Spring 2011

信號與系統 Signals and Systems

Chapter SS-7
Sampling

Feng-Li Lian NTU-EE Feb11 – Jun11

Figures and images used in these lecture notes are adopted from "Signals & Systems" by Alan V. Oppenheim and Alan S. Willsky, 1997

- Representation of of a Continuous-Time Signal by Its Samples: The Sampling Theorem
- Reconstruction of of a Signal from Its Samples
 Using Interpolation
- The Effect of Under-sampling: Aliasing
- Discrete-Time Processing of Continuous-Time Signals
- Sampling of Discrete-Time Signals

Representation of CT Signals by its Samples

Representation of CT Signals by its Samples

Representation of CT Signals by its Samples

$$x_1(t) \neq x_2(t) \neq x_3(t)$$

$$x_1(kT) = x_2(kT) = x_3(kT)$$

Impulse-Train Sampling:

p(t): sampling function

T: sampling period

$$w_s = \frac{2\pi}{T}$$
: sampling frequency

$$\Rightarrow x_p(t) = x(t) p(t)$$

$$p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT)$$

$$x_p(t) = \sum_{n=-\infty}^{+\infty} x(nT)\delta(t-nT)$$

Impulse-Train Sampling:

From multiplication property,

$$x_p(t) = x(t) \ p(t) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad X_p(jw) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) P(j(w-\theta)) d\theta$$

$$=\frac{1}{T}\sum_{k=-\infty}^{+\infty}X(j(w-kw_s))$$

Ex 4.21, p. 323

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$p(t) \stackrel{\mathcal{F}}{\longleftrightarrow} P(jw) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(w - kw_s)$$

Ex 4.8, pp. 299-300

Impulse-Train Sampling:

Ex 4.21, 4.22, pp. 323-4

The Sampling Theorem:

x(t): a band-limited signal

with
$$X(jw) = 0$$
 for $|w| > w_M$

 $\begin{array}{c|c}
 & \times (j\omega) \\
 & \downarrow \\
 & -\omega_{M} & \omega_{M} & \omega
\end{array}$

if
$$w_s > 2w_M$$
 where $w_s = \frac{2\pi}{T}$

 $\Rightarrow x(t)$ is uniquely determined by $x(nT), n = 0, \pm 1, \pm 2, ...,$

 $\Rightarrow 2w_M$: Nyquist rate

 w_M : Nyquist frequency

Exact Recovery by an Ideal Lowpass Filter:

Exact Recovery by an Ideal Lowpass Filter:

 $x_{D}(t)$

Sampling with Zero-Order Hold:

Sampling with Zero-Order Hold:

Ex 4.4, p. 293

Eq 4.27, p. 301

$$x(t-t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-jwt_0}X(jw)$$

$$H_0(jw) = e^{-jwT/2} \left[\frac{2\sin(wT/2)}{w} \right]$$

With Ideal Lowpass Filter & with Zero-Order Hold:

Sampling with Zero-Order Hold:

$$H_0(jw) = e^{-jwT/2} \left[\frac{2\sin(wT/2)}{w} \right]$$

$$H(jw) = H_0(jw)H_r(jw)$$

$$\Rightarrow H_r(jw) = \frac{e^{jwT/2}H(jw)}{\frac{2\sin(wT/2)}{w}}$$

- Representation of of a Continuous-Time Signal by Its Samples: The Sampling Theorem
- Reconstruction of of a Signal from Its Samples
 Using Interpolation
- The Effect of Under-sampling: Aliasing
- Discrete-Time Processing of Continuous-Time Signals
- Sampling of Discrete-Time Signals

Reconstruction of a Signal from its Samples Using Interpolation, Feng-Li Lian © 2011

Exact Interpolation:

$$x_p(t) = \sum_{n=-\infty}^{+\infty} x(nT)\delta(t-nT)$$

$$x_r(t) = x_p(t) * h(t)$$

Ex 2.11, p. 110
$$x(t-t_0) = x(t) * \delta(t-t_0)$$

$$x_r(t) = \sum_{n=-\infty}^{+\infty} x(nT)h(t-nT)$$

ideal lowpass filter with a magnitude of T

$$h(t) = T \, \frac{w_c}{\pi} \, \frac{\sin(w_c t)}{w_c t}$$

$$x_r(t) = \sum_{n=-\infty}^{+\infty} x(nT) \frac{w_c T}{\pi} \frac{\sin(w_c(t-nT))}{w_c(t-nT)}$$

Reconstruction of a Signal from its Samples Using Interpolation, Feng-Li Lian © 2011

Exact Interpolation:

$$\frac{\mathbf{x}_r(t)}{\mathbf{x}_r(t)} = \sum_{n=-\infty}^{+\infty} x(nT) \frac{\mathbf{w}_c T}{\pi} \frac{\sin(\mathbf{w}_c(t-nT))}{\mathbf{w}_c(t-nT)}$$

$$\frac{w_c}{\pi} \frac{2\pi}{w_s} \frac{\sin \pi (w_c (t-nT)/\pi)}{\pi w_c (t-nT)/\pi}$$

$$rac{2w_c}{w_s}\operatorname{sinc}(w_c(t-nT)/\pi)$$

Reconstruction of a Signal from its Samples Using Interpolation, Feng-Li Lian © 2011

Ideal Interpolating Filter & The Zero-Order Hold:

- Representation of of a Continuous-Time Signal by Its Samples: The Sampling Theorem
- Reconstruction of of a Signal from Its Samples
 Using Interpolation
- The Effect of Under-sampling: Aliasing
- Discrete-Time Processing of Continuous-Time Signals
- Sampling of Discrete-Time Signals

$$w_s > 2w_M$$

Samples

$$w_0 = \frac{w_s}{6}$$

$$w_0 = \frac{2w_s}{6}$$

$$w_0 = \frac{4w_s}{6}$$

$$w_0 = \frac{5w_s}{6}$$

- Representation of of a Continuous-Time Signal by Its Samples: The Sampling Theorem
- Reconstruction of of a Signal from Its Samples
 Using Interpolation
- The Effect of Under-sampling: Aliasing
- Discrete-Time Processing of Continuous-Time Signals
- Sampling of Discrete-Time Signals

Discrete-Time Processing of CT Signals:

C/D or A-to-D (ADC) and D/C or D-to-A (DAC):

A-to-D: analog-to-digital converter

D-to-A: digital-to-analog converter

Feng-Li Lian © 2011 NTUEE-SS7-Sampling-43

2 3 4

n

-4 -3 -2 -1 0

C/D Conversion:

$$X_c(jw)$$

$$X_p(jw)$$

$$X_d(e^{j\Omega})$$

C/D Conversion:

Table 4.2, p. 329
$$\delta(t - t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-jwt_0}$$

Eq 7.3, 7.6, p. 517

C/D conversion

$$X_p(jw) = \sum_{n=-\infty}^{+\infty} x_c(nT)e^{-jwnT} = \frac{1}{T} \sum_{K=-\infty}^{+\infty} X_c(j(w-kw_s))$$

$$X_d(e^{j\Omega}) = \sum_{n=-\infty}^{+\infty} x_d[n] e^{-j\Omega n}$$
 $= \sum_{n=-\infty}^{+\infty} x_c(nT) e^{-j\Omega n}$

$$\Rightarrow X_{d}(e^{j\Omega}) = X_{p}\left(j\frac{\Omega}{T}\right) = \frac{1}{T}\sum_{K=-\infty}^{+\infty} X_{c}\left(j\left(\frac{\Omega}{T} - k\frac{2\pi}{T}\right)\right)$$

C/D Conversion:

 $X_p(jw)$

 $X_d(e^{j\Omega})$

