Homework 9

Jaden Wang

Problem (4.6). Let M be a Riemannian manifold. M is a locally symmetric space if $\nabla R = 0$, where R is the curvature tensor of M.

- (a) Let $\gamma:[0,\ell)\to M$ be a geodesic of M. Let X,Y,Z be parallel vector fields along γ . Prove that R(X,Y)Z is a parallel field along γ .
- (b) Prove that if M is locally symmetric, connected, and has dimension two, then M has constant sectional curvature.
- (c) Prove that if M has constant (sectional) curvature, then M is a locally symmetric space.
- Proof. (a) Let $V := \dot{\gamma}$ be the velocity field along γ . Since X, Y, Z are parallel along γ , we have $\nabla_V X = \nabla_V Y = \nabla_V Z = 0$ along γ . Let W be any vector field, then tensor derivative yields

$$\nabla R(X, Y, Z, W, V) = V(R(X, Y, Z, W)) - R(\nabla_V X, Y, Z, W) - R(X, \nabla_V Y, Z, W)$$

$$- R(X, Y, \nabla_V Z, W) - R(X, Y, Z, \nabla_V W)$$

$$= V(R(X, Y, Z, W)) - R(0, Y, Z, W) - R(X, 0, Z, W)$$

$$- R(X, Y, 0, W) - R(X, Y, Z, \nabla_V W)$$

$$= V(R(X, Y, Z, W)) - R(X, Y, Z, \nabla_V W) = 0.$$

This yields $V(R(X,Y,Z,W)) = R(X,Y,Z,\nabla_V W)$. Recall the Leibniz rule for the metric:

$$V\left(\langle R(X,Y)Z,W\rangle\right) = \langle \nabla_V(R(X,Y)Z),W\rangle + \langle R(X,Y)Z,\nabla_VW\rangle.$$

It follows that $\langle \nabla_V(R(X,Y)Z), W \rangle = 0$. Since W is arbitrary, it must be that $\nabla_V(R(X,Y)Z) = 0$, proving that R(X,Y)Z is parallel along γ .

(b) First, let c = K(p) for any $p \in M$. Now define $A = \{p \in M : K(p) = c\}$. Thus we know that A is not empty. Since K is a smooth function on M, A is the preimage of

a single point c and therefore is closed in M. To prove that M has constant sectional curvature, it suffices to show that A is open as well so we must have A = M. That is, we wish to show that any $p \in A$ has an open neighborhood U such that $U \subseteq A$.

Consider the normal neighborhood U of p with geodesic frame $\{E_1, E_2\}$. Since M has dimension two, this frame spans the entire TU so we only need to show K is constant in U under this frame. Let $q \in U$ and let γ be a geodesic connecting p and q. By definition of geodesic frame, E_1 and E_2 are parallel fields along γ . Since M is locally symmetric, it follows from part (a) that $R(E_1, E_2)E_1$ is a parallel field along γ as well. Since K(p) = c, we have

$$K(p) = \frac{\langle R(E_1, E_2)E_1(p), E_2(p) \rangle}{\|E_1(p)\|^2 \|E_2(p)\|^2 - \langle E_1(p), E_2(p) \rangle^2}$$

$$= \frac{\langle R(E_1, E_2)E_1(q), E_2(q) \rangle}{\|E_1(q)\|^2 \|E_2(q)\|^2 - \langle E_1(q), E_2(q) \rangle^2} \quad \text{parallel transport is isometry}$$

$$= K(q) = c.$$

We conclude that $U \subseteq A$ and thus A is open as desired.

(c) Since M has constant sectional curvature K_0 , by Lemma 3.4, $R = K_0 R'$, where

$$\langle R'(X,Y,Z),W\rangle = \langle X,Z\rangle \langle Y,W\rangle - \langle Y,Z\rangle \langle X,W\rangle.$$

Claim 0.1. For any $V \in \mathfrak{X}(M)$, $\nabla_V R' = 0$.

The proof is a straightforward computation:

$$\begin{split} V(R'(X,Y,Z,W)) &= V[\langle X,Z\rangle\,\langle Y,W\rangle - \langle Y,Z\rangle\,\langle X,W\rangle] \\ &= [\langle \nabla_V X,Z\rangle + \langle X,\nabla_V Z\rangle]\,\langle Y,W\rangle + \langle X,Z\rangle\,[\langle \nabla_V Y,W\rangle + \langle Y,\nabla_V W\rangle] \\ &- [\langle \nabla_V Y,Z\rangle + \langle Y,\nabla_V Z\rangle]\,\langle X,W\rangle - \langle Y,Z\rangle\,[\langle \nabla_V X,W\rangle + \langle X,\nabla_V W\rangle] \\ &= \langle \nabla_V X,Z\rangle\,\langle Y,W\rangle + \langle X,\nabla_V Z\rangle\,\langle Y,W\rangle \\ &+ \langle X,Z\rangle\,\langle \nabla_V Y,W\rangle + \langle X,Z\rangle\,\langle Y,\nabla_V W\rangle \\ &- \langle \nabla_V Y,Z\rangle\,\langle X,W\rangle - \langle Y,\nabla_V Z\rangle\,\langle X,W\rangle \\ &- \langle Y,Z\rangle\,\langle \nabla_V X,W\rangle - \langle Y,Z\rangle\,\langle X,\nabla_V W\rangle \end{split}$$

$$= R'(\nabla_V X, Y, Z, W) + R'(X, \nabla_V Y, Z, W)$$
$$+ R'(X, Y, \nabla_V Z, W) + R'(X, Y, Z, \nabla_V W).$$

The claim follows immediately. Using this claim, we obtain

$$V(R(X, Y, Z, W)) = K_0 V(R'(X, Y, Z, W))$$

$$= K_0 [R'(\nabla_V X, Y, Z, W) + R'(X, \nabla_V Y, Z, W) + R'(X, Y, \nabla_V Z, W) + R'(X, Y, Z, \nabla_V W)]$$

$$= R(\nabla_V X, Y, Z, W) + R(X, \nabla_V Y, Z, W) + R(X, Y, Z, \nabla_V W) + R(X, Y, \nabla_V Z, W) + R(X, Y, Z, \nabla_V W).$$

It follows that $\nabla R(X, Y, Z, W, V) = V(R(X, Y, Z, W)) - (R(\nabla_V X, Y, Z, W) + R(X, \nabla_V Y, Z, W) + R(X, Y, Z, W)) + R(X, Y, Z, W) + R(X, Y, Z, W)) = 0$. That is, M is locally symmetric.

Problem (4.8 (Schur's Theorem)). Let M^n be a connected Riemmannian manifold with $n \geq 3$. Suppose that M is isotropic, that is, for each $p \in M$, the sectional curvature $K(p, \sigma)$ does not depend on $\sigma \subseteq T_pM$. Prove that M has constant sectional curvature, that is, $K(p, \sigma)$ also does not depend on p.

Proof. By the proof of Lemma 3.4, since K(p) is independent of $\sigma \subset T_pM$, we have R(p) = K(p)R'(p). By the claim from previous problem, we know that for any $V \in \mathfrak{X}(M)$, $\nabla_V R' = 0$. It follows that $\nabla_V(R) = \nabla_V(KR') = V(K)R' + K\nabla_V R' = V(K)R'$. Now consider the 2nd Bianchi identity:

$$0 = \nabla R(X, Y, Z, W, V) + \nabla R(X, Y, W, V, Z) + \nabla R(X, Y, V, Z, W)$$

$$0 = V(K)R'(X, Y, Z, W) + Z(K)R'(X, Y, W, V) + W(K)R'(X, Y, V, Z)$$

$$0 = V(K)[\langle X, Z \rangle \langle Y, W \rangle - \langle Y, Z \rangle \langle X, W \rangle]$$

$$+ Z(K)[\langle X, W \rangle \langle Y, V \rangle - \langle Y, W \rangle \langle X, V \rangle]$$

$$+ W(K)[\langle X, V \rangle \langle Y, Z \rangle - \langle Y, V \rangle \langle X, Z \rangle].$$

Since $n \geq 3$, for any Z we can find W, Y s.t. $\langle Z, W \rangle = \langle Y, W \rangle = \langle Y, Z \rangle = 0$ (i.e. Z, W, Y

are linearly independent) and $\langle Y, Y \rangle \equiv 1$. The equation becomes

$$\begin{split} 0 &= Z(K) \, \langle X, W \rangle - W(K) \, \langle X, Z \rangle \\ 0 &= \langle Z(K)W - W(K)Z, X \rangle \\ 0 &= Z(K)W - W(K)Z \qquad \qquad X \text{ is arbitrary} \\ 0 &= Z(K) := dK(Z) \qquad \qquad Z, W \text{ linearly independent.} \end{split}$$

Since Z is arbitrary, we conclude that $dK \equiv 0$. That is, K is constant everywhere.

Problem (4.9). Prove that the scalar curvature K(p) at $p \in M$ is given by

$$K(p) = \frac{1}{\omega_{n-1}} \int_{S^{n-1}} \operatorname{Ric}_p(x) dS^{n-1},$$

where ω_{n-1} is the area of the sphere S^{n-1} in T_pM and dS^{n-1} is the area elements on S^{n-1} .

Proof. Fix a $p \in M$. Recall the symmetric bilinear form Q(x,y) that is the trace of the linear map $z \mapsto R_p(x,z)y$. We know that there is a real symmetric matrix A s.t. $\frac{1}{n-1}Q(x,y) = \langle Ax,y \rangle$. Spectral Theorem yields an orthonormal eigenbasis $\{e_i\}$ of A with corresponding real eigenvalues λ_i . Thus, if a unit vector $x = x^i e_i$, we have $\mathrm{Ric}_p(x) = \frac{1}{n-1}Q(x,x) = \lambda^i x_i^2$. Moreover, x is a unit normal vector to S^{n-1} . Let $V = \lambda^i x^i e_i$, with $\mathrm{div} V = \sum_{i=1}^n \lambda_i$, we obtain

$$\begin{split} \frac{1}{\omega_{n-1}} \int_{S^{n-1}} \mathrm{Ric}_p(x) dS^{n-1} &= \frac{1}{\omega_{n-1}} \int_{S^{n-1}} \lambda^i x_i^2 dS^{n-1} \\ &= \frac{1}{\omega_{n-1}} \int_{S^{n-1}} \left\langle V, x \right\rangle dS^{n-1} \\ &= \frac{1}{\omega_{n-1}} \int_{B^n} \mathrm{div} \, V \, dB^n \qquad \text{Stokes Theorem} \\ &= \frac{\mathrm{div} \, V}{\omega_{n-1}} \int_{B^n} dB^n \\ &= \frac{\sum_{i=1}^n \lambda_i}{n} \qquad area(S^{n-1}) = \frac{d(R^n vol(B^n))}{dR} \bigg|_{R=1} = n \cdot vol(B^n) \\ &= \frac{\sum_{i=1}^n \mathrm{Ric}_p(e_i)}{n} \\ &= K(p). \end{split}$$