Summarize your data with descriptive stats

IMPORTING AND MANAGING FINANCIAL DATA IN PYTHON

Stefan Jansen Instructor

Be on top of your data

- Goal: Capture key quantitative characteristics
- Important angles to look at:
 - Central tendency: Which values are "typical"?
 - Dispersion: Are there outliers?
 - Overall distribution of individual variables

Central tendency

• Mean (average):
$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

- Median: 50% of values smaller/larger
- Mode: most frequent value

Central tendency

• Mean (average):
$$ar{x} = rac{1}{n} \sum_{i=1}^n x_i$$

- Median: 50% of values smaller/larger
- Mode: most frequent value

Central tendency

• Mean (average):
$$ar{x} = rac{1}{n} \sum_{i=1}^n x_i$$

- Median: 50% of values smaller/larger
- Mode: most frequent value

Calculate summary statistics

```
nasdaq = pd.read_excel('listings.xlsx', sheetname='nasdaq', na_values='n/a')
market_cap = nasdaq['Market Capitalization'].div(10**6)
market_cap.mean()
3180.7126214953805
market_cap.median()
225.9684285
market_cap.mode()
0.0
```


Calculate summary statistics

Dispersion

ullet Variance: Sum all of the squared differences from mean and divide by n-1

$$\circ \ var = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2$$

• Standard deviation: Square root of variance

$$\circ$$
 $sd = \sqrt{var}$

Calculate variance and standard deviation

```
variance = market_cap.var()
print(variance)
```

648773812.8182

np.sqrt(variance)

25471.0387

market_cap.std()

25471.0387

Let's practice!

IMPORTING AND MANAGING FINANCIAL DATA IN PYTHON

Describe the distribution of your data with quantiles

IMPORTING AND MANAGING FINANCIAL DATA IN PYTHON

Stefan Jansen Instructor

Describe data distributions

- First glance: Central tendency and standard deviation
- How to get a more granular view of the distribution?
- Calculate and plot quantiles

More on dispersion: quantiles

- Quantiles: Groups with equal share of observations
 - Quartiles: 4 groups, 25% of data each
 - Deciles: 10 groups, 10% of data each
 - Interquartile range: 3rd quartile 1st quartile

Quantiles with pandas

```
market_cap = nasdaq['Market Capitalization'].div(10**6)
median = market_cap.quantile(.5)
median == market_cap.median()
```

True

```
quantiles = market_cap.quantile([.25, .75])
```

```
      0.25
      43.375930

      0.75
      969.905207
```

```
quantiles[.75] - quantiles[.25] # Interquartile Range
```

926.5292771575

Quantiles with pandas & numpy

```
deciles = np.arange(start=.1, stop=.91, step=.1)
deciles
array([ 0.1, 0.2, 0.3, 0.4, ..., 0.7, 0.8, 0.9])
market_cap.quantile(deciles)
0.1
         4.884565
0.2
        26.993382
0.3
        65.714547
0.4
       124.320644
0.5
        225.968428
0.6
       402.469678
```


Visualize quantiles with bar chart

```
title = 'NASDAQ Market Capitalization (million USD)'
market_cap.quantile(deciles).plot(kind='bar', title=title)
plt.tight_layout(); plt.show()
```


All statistics in one go

```
market_cap.describe()
```

```
3167.000000
count
           3180.712621
mean
          25471.038707
std
min
              0.000000
25%
             43.375930 # 1st quantile
50%
            225.968428 # Median
75%
            969.905207 # 3rd quantile
         740024.467000
max
Name: Market Capitalization
```


All statistics in one go

```
market_cap.describe(percentiles=np.arange(.1, .91, .1))
```

```
3167.000000
count
           3180.712621
mean
std
          25471.038707
              0.000000
min
10%
              4.884565
20%
             26.993382
30%
             65.714547
            124.320644
40%
            225.968428
50%
60%
            402.469678
            723.163197
70%
80%
           1441.071134
```


Let's practice!

IMPORTING AND MANAGING FINANCIAL DATA IN PYTHON

Visualize the distribution of your data

IMPORTING AND MANAGING FINANCIAL DATA IN PYTHON

Stefan Jansen
Instructor

Always look at your data!

Identical metrics can represent very different data

Introducing seaborn plots

- Many attractive and insightful statistical plots
- Based on matplotlib
- Swiss Army knife: seaborn.distplot()
 - Histogram
 - Kernel Density Estimation (KDE)
 - Rugplot

10 year treasury: trend and distribution

```
ty10 = web.DataReader('DGS10', 'fred', date(1962, 1, 1))
ty10.info()
```

```
DatetimeIndex: 14443 entries, 1962-01-02 to 2017-05-11

Data columns (total 1 columns):

DGS10 13825 non-null float64
```

```
ty10.describe()
```

```
DGS10
mean 6.291073
std 2.851161
min 1.370000
25% 4.190000
50% 6.040000
...
```


10 year treasury: time series trend

```
ty10.dropna(inplace=True) # Avoid creation of copy
ty10.plot(title='10-year Treasury'); plt.tight_layout()
```


10 year treasury: historical distribution

```
import seaborn as sns
sns.distplot(ty10)
```


10 year treasury: trend and distribution

```
ax = sns.distplot(ty10)
ax.axvline(ty10['DGS10'].median(), color='black', ls='--')
```


Let's practice!

IMPORTING AND MANAGING FINANCIAL DATA IN PYTHON

Summarize categorical variables

IMPORTING AND MANAGING FINANCIAL DATA IN PYTHON

Stefan Jansen Instructor

From categorical to quantitative variables

- So far, we have analyzed quantitative variables
- Categorical variables require a different approach
- Concepts like average don't make much sense
- Instead, we'll rely on their frequency distribution

Categorical listing information

```
RangeIndex: 360 entries, 0 to 359

Data columns (total 8 columns):

Stock Symbol 360 non-null object

Company Name 360 non-null object

Last Sale 346 non-null float64

Market Capitalization 360 non-null float64

IPO Year 105 non-null float64

Sector 238 non-null object

Industry 238 non-null object

dtypes: datetime64[ns](1) float64(3), object(4)
```


Categorical listing information

```
amex = amex['Sector'].nunique()
```

12

- apply(): call function on each column
- Lambda: "anonymous function", receives each column as argument x

```
amex.Sector.apply(lambda x: x.nunique())
```

```
Stock Symbol 360
Company Name 326
Last Sale 323
Market Capitalization 317
...
```

How many observations per sector?

```
amex['Sector'].value_counts()
```

```
Health Care
                         49 # Mode
Basic Industries
                         44
                         28
Energy
Consumer Services
                         27
Capital Goods
                         24
Technology
                         20
Consumer Non-Durables
                        13
Finance
                         12
Public Utilities
                         11
Miscellaneous
```


How many IPOs per year?

```
amex['IPO Year'].value_counts()
```

```
2002.0
        19 # Mode
2015.0
        11
1999.0
1993.0
2014.0
2013.0
2017.0
2009.0
1990.0
1991.0
Name: IPO Year, dtype: int64
```

Convert IPO Year to int

```
ipo_by_yr = amex['IPO Year'].dropna().astype(int).value_counts()
ipo_by_yr
```

```
2002
        19
2015
        11
1999
1993
2014
2004
        5
2003
2017
1987
Name: IPO Year, dtype: int64
```

Convert IPO Year to int

```
ipo_by_yr.plot(kind='bar', title='IPOs per Year')
plt.xticks(rotation=45)
```


Let's practice!

IMPORTING AND MANAGING FINANCIAL DATA IN PYTHON

