

20

CLAIMS

- 1. A memory device for multi-level recording comprising:
- 5 a substrate; and
 - a memory material supported by the substrate, the memory material including a phase change alloy defined by: $In_x (Sb_nTe_{100-n})_{100-x}$ where x is 3-30, n is 63-82.
 - 2. The device of claim 1, wherein x is 5-15.
 - 3. The device of claim 1, wherein x is 7-15.
 - 4. The device of claim 1, wherein x is 9-13.
 - 5 The device of claim 1, wherein the phase change alloy is In₉(Sb₇₂Te₂₈)₉₁.
 - 6. The device of claim 1, wherein the phase change alloy is In₁₀(Sb₇₂Te₂₈)₉₀.
 - 7. The device of claim 1, wherein the phase change alloy is In₁₁(Sb₇₂Te₂₈)₈₉.
 - 8. The device of claim 1, wherein the phase change alloy has a peak with a substantial FWHM at around 2 theta =24-26 degrees of X-ray diffraction using $CuK\alpha$.
 - 9. An optical memory device for multi-level recording comprising:
- a substrate; and
 - a phase change alloy supported on the substrate, the phase change alloy lacking silver and having a eutectic base alloy composition with at least one element for providing a sigma-to-dynamic range of less than 2%.

20

25

- 10. The device of claim 9, wherein the phase change alloy has a peak with a substantial FWHM at around 2 theta =24-26 degrees of X-ray diffraction using CuKα.
- 11. The device of claim 9, wherein the alloy has at least two phases during data recording, one phase being a major phase and the other phase being a minor phase.
 - 12. The device of claim 10, wherein the device is an optical memory disk.
 - 13. The device of claim 10, wherein the alloy has 7 or more detectable levels.
 - 14. The device of claim 10, wherein the alloy has at least 11 detectable levels.
 - 15. The device of claim 11, wherein the memory material comprises a phase change alloy defined by: M_x (Sb_nTe_{100-n})_{100-x} where x is 3-30, n is 63-82, where M is at least one main group metal.
 - 16. The device of claim 15, wherein x is 5-15.
 - 17. The device of claim 15, wherein x is 7-15.
 - 18. The device of claim 15, wherein x is 9-13.
 - 19. The device of claim 11, wherein the FWHM at around 2 theta =24-26 degrees of X-ray diffraction using CuKα is greater than that of AgIn(SbTe) at a corresponding concentration for M.