8A - OPTIMIZATION: GRADIENT DESCENT Derek Nowrouzezahrai derek@cim.mcgill.ca

Back to Optimizing Scalar Functions

Consider scalar functions $f: \mathbb{R}^m \to \mathbb{R}$ again and recall that (quasi-)Newton methods sought estimates of the extrema of f

$$\mathbf{x}_* = \underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x})$$

by iterating as $\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{\Gamma} \nabla f(\mathbf{x}_k)$, where different values of $\Gamma \in \mathbb{R}^{m \times m}$ correspond to different methods:

- $\Gamma \coloneqq [\mathbf{H}_{f(\mathbf{x}_k)}]^{-1}$ leads to the standard Newton method,
- $\Gamma = \lambda \left[\mathbf{H}_{f(\mathbf{x}_k)} \right]^{-1}$ leads to the damped Newton method,
 - ullet with or without applying *line search* to choose λ
- $\Gamma = [\mathbf{B}_{f(\mathbf{x}_k)}]^{-1}$ leads to Broyden-like quasi-Newton variants (DFP or BFGS)

Remember that the iteration

 $\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{\Gamma} \nabla f(\mathbf{x}_k),$ with $\Gamma \in \mathbb{R}^{m \times m}$, uses 2nd-order information encoded in the Γ 2tensor in order to transform the gradient $\nabla f(\mathbf{x}_k)$ vector to pointdirectly away from the quadratic manifold's root

Remember that the iteration

 $\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{\Gamma} \nabla f(\mathbf{x}_k),$ with $\Gamma \in \mathbb{R}^{m \times m}$, uses 2nd-order information encoded in the Γ 2tensor in order to transform the gradient $\nabla f(\mathbf{x}_k)$ vector to point directly away from the quadratic manifold's root

Remember that the iteration

 $\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{\Gamma} \nabla f(\mathbf{x}_k),$ with $\Gamma \in \mathbb{R}^{m \times m}$, uses 2nd-order information encoded in the Γ 2tensor in order to transform the gradient $\nabla f(\mathbf{x}_k)$ vector to point directly away from the quadratic manifold's root

Remember that the iteration

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{\Gamma} \nabla f(\mathbf{x}_k)$$
, with $\Gamma \in \mathbb{R}^{m \times m}$, uses 2nd-order information encoded in the Γ 2-tensor in order to **transform** the gradient $\nabla f(\mathbf{x}_k)$ vector to point directly away from the quadratic manifold's root

- it also changes $-\nabla f(\mathbf{x}_k)$'s length to "connect" \mathbf{x}_k to the approx. root

Note, however, that while the direction $-\mathbf{\Gamma}\nabla f(\mathbf{x}_k)$ uses higher-order local information at \mathbf{x}_k in the hopes that the new iterate brings us closer to a minimum, and so that

$$f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$$

There's no guarantee this will hold

- the condition of Γ plays a role in this

What we do know, however, is <u>for</u> $\underline{small\ lengths}\ \alpha_k \in \mathbb{R}$, walking along the direction of steepest descent at \mathbf{x}_k , $-\nabla f(\mathbf{x}_k)$, leads to a new point

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)$$

that, with $\alpha_k > 0$, will satisfy

$$f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$$

as long as $\nabla f(\mathbf{x}_k) \neq 0$

- so, how do we choose α_k ?

Gradient Descent – Line Search (again)

Similarly to a Newton iteration along direction $-[\mathbf{H}_{f(\mathbf{x}_k)}]^{-1} \nabla f(\mathbf{x}_k)$, the **gradient descent** method can take (at least) one step, but now in the direction of steepest descent, $-\nabla f(\mathbf{x}_k)$

- we can set the distance α_k (that we step along $-\nabla f(\mathbf{x}_k)$) manually, or...
- we can use a *line search* to solve for a "locally optimal" distance

Doing so amounts, yet again, to solving a 1D minimization problem that "walks" along a 1D slice $g_k(\gamma)$ of the multivariate f(x) along $-\nabla f(x_k)$

$$\alpha_k = \underset{\gamma}{\operatorname{argmin}} \underbrace{f(\mathbf{x}_k - \gamma \nabla f(\mathbf{x}_k))}_{g_k(\gamma)} \text{ and } \mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)$$

- again, apply any 1D optimization method to the α_k optimization problem

Gradient Descent – Observations

Compared to Newton's multivariate method, each iteration of gradient descent is much less expensive

- we don't have to form, nor invert (!), the Hessian
- set α_k with line search (expensive!) or manually/heuristically or hybrid
 - e.g., take many (possibly non-constant) steps along $-\nabla f(\mathbf{x}_k)$ per iterate

Gradient Descent - Observations

Compared to Newton's multivariate method, each iteration of gradient descent is much less expensive

- we don't have to form, nor invert (!), the Hessian
- set α_k with line search (expensive!) or manually/heuristically or hybrid
 - e.g., take many (possibly non-constant) steps along $-\nabla f(\mathbf{x}_k)$ per iterate
 - this latter strategy is commonly employed in machine learning
- need gradient evaluation, which can be approximated à la secant

Gradient Descent – Iterative Linear System Solvers

GD – Extensions & Other Applications

Gradient descent is a very robust tool

- applicable to scalar function minimization, with many variants
 - parallelizable and stochastic function evaluation
 - advanced step size selection processes (without 2nd-order costs)
 - adaptive and multiple-steps per iteration, to avoid line search

What we'll see next, however, is that a very familiar (and important) problem can also be tackled using gradient descent

- with *significant* benefits

Motivating Gradient Descent for Linear Systems

We will show how to tailor gradient descent to very efficiently solve systems of linear equations – why would you do this?

- we already have many direct methods: LU/Cholesky, QR and SVD
 - + these approaches directly yield a solution
 - the unique solution for fully constrained systems,
 - a least-squares result for overconstrained systems without solutions, and
 - one of an infinite number of solutions for underdetermined systems
 - + these approaches can amortize computation cost over many instances of the problem, for different RHS values \mathbf{b} in $\mathbf{A}\mathbf{x} = \mathbf{b}$

Motivating Gradient Descent for Linear Systems

We will show how to tailor gradient descent to very efficiently solve systems of linear equations – why would you do this?

- we already have many direct methods: LU/Cholesky, QR and SVD
 - for an $n \times n$ matrix **A**, these methods all require about $O(n^3)$ time
 - the direct methods become prohibitively costly as n increases
 - these methods require $O(n^2)$ storage, regardless of the form of ${\bf A}$
 - an important example is sparse matrices with, e.g., O(n) non-zero elements intermediate stages of direct methods (e.g., Gaussian Elimination) are almost certain to not yield intermediate sparse matrices

Gradient Descent for Linear Systems

Applications of gradient descent to minimization of non-linear functions focussed on scalar functions $f: \mathbb{R}^m \to \mathbb{R}$

- when solving linear systems, we are dealing with restricted forms (i.e., linear) of vector-valued functions, $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^n$
- we will, however, be able to reformulate the problem of solving a linear system to that of *minimizing a scalar function*

GD for SPD Systems – Set the Stage

First, some assumptions:

- A is an n x n square matrix
- A has full rank
- A is symmetric positive definite
 - \bullet $A = A^T$
 - $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \quad \forall \mathbf{x} \neq 0$
 - \bullet A > 0

Iterative Linear Solvers

Unlike **direct methods** that leverage decompositions to solve for a solution, **iterative solvers** progressively build better and better estimates of a solution

- given the k^{th} solution estimate \mathbf{x}_k , an iterative solution updates the estimate according to the following general update rule:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \, \mathbf{d}_k$$

where α_k is the *step size* (or length) and \mathbf{d}_k the *step direction* The goal when designing iterative methods is to find α_k 's and \mathbf{d}_k 's that drive $\|\mathbf{A}\mathbf{x}_k - \mathbf{b}\|$ to zero as quickly as possible

Gradient Descent for SPD Systems

We must express the solution x of Ax = b as the minimizer of an f(x) before using gradient descent to find x

- <u>recall</u>: every root finding problem can be framed as a minimization, and vice-versa
- we want to solve for the root of $\mathbf{A}\mathbf{x} \mathbf{b} = \mathbf{0}$ and so seek the minimum of the $f(\mathbf{x})$ such that $\nabla f(\mathbf{x}) = 0 = \mathbf{A}\mathbf{x} \mathbf{b}$
 - \bullet the minimum x (if it exists) will satisfy our linear system
 - we terminate iterative solvers *close* to the solution, so when

$$\|\nabla f(\mathbf{x}_k)\| < \epsilon_{\nabla} \text{ or } |f(\mathbf{x}_k) - f(\mathbf{x}_{k-1})| < \epsilon_f$$

Gradient Descent for SPD Systems

$$\nabla f(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}$$

This is actually all we need to apply a (very) basic version of gradient descent that iterates towards a solution as

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)$$

$$= \mathbf{x}_k - \alpha_k (\mathbf{A}\mathbf{x}_k - \mathbf{b})$$

so long as we choose a "sufficiently small" step size α_k this iteration will (hopefully) inch towards a solution as

$$\|\nabla f(\mathbf{x}_0)\| > \|\nabla f(\mathbf{x}_1)\| > ... > \|\nabla f(\mathbf{x}_k)\| \text{ or } f(\mathbf{x}_0) > f(\mathbf{x}_1) > ... > f(\mathbf{x}_k)$$

Gradient Descent for SPD Systems

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)$$

$$= \mathbf{x}_k - \alpha_k (\mathbf{A}\mathbf{x}_k - \mathbf{b})$$

Choosing a Good Step Size

$$\nabla f(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k (\mathbf{A}\mathbf{x}_k - \mathbf{b})$$

If we want to be more effective in our choice for α_k , then we can choose an optimal step size α_k^* with a line search:

$$\alpha_k^* = \underset{\gamma}{\operatorname{argmin}} f\left(\mathbf{x}_k - \gamma \nabla f(\mathbf{x}_k)\right) = \underset{\gamma}{\operatorname{argmin}} f\left(\mathbf{x}_k - \gamma \left(\mathbf{A}\mathbf{x}_k - \mathbf{b}\right)\right)$$

but we need to first find f(x) in order to, e.g., perform a line search with a 1D optimization routine

$$\nabla f(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}$$

Since the gradient of f(x) is a linear function of x, f(x) must be quadratic in x and it's easy to show that it has the form

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} - \mathbf{b}^{\mathrm{T}} \mathbf{x} + c \quad \text{for any } c \in \mathbb{R}$$

and now we could apply a 1D optimization with f(x) to solve for the optimal step size

$$\alpha_k^* = \underset{\gamma}{\operatorname{argmin}} f(\mathbf{x}_k - \gamma (\mathbf{A}\mathbf{x}_k - \mathbf{b}))$$

- this, however, won't be necessary: we can obtain $lpha_k^*$ analytically!

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} - \mathbf{b}^{\mathrm{T}} \mathbf{x} + c$$

$$\alpha_k^* = \underset{\gamma}{\operatorname{argmin}} f(\mathbf{x}_k - \gamma (\mathbf{A} \mathbf{x}_k - \mathbf{b}))$$

Derivation strategy:

- 1. expand $f(\mathbf{x}_k \gamma(\mathbf{A}\mathbf{x}_k \mathbf{b})) = g_k(\gamma)$,
- 2. solve for α_k^* , the value of γ that minimizes $g_k(\gamma)$, as $\frac{dg_k(\gamma)}{d\gamma} = g_k'(\gamma) = 0$

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} - \mathbf{b}^{\mathrm{T}} \mathbf{x} + c$$

Derivation strategy:

- 1. expand $f(\mathbf{x}_k \gamma(\mathbf{A}\mathbf{x}_k \mathbf{b})) = g_k(\gamma)$,
- 2. solve for α_k^* , the value of γ that minimizes $g_k(\gamma)$, as $\frac{dg_k(\gamma)}{d\gamma} = g_k'(\gamma) = 0$

let
$$\mathbf{y}_k := \mathbf{A}\mathbf{x}_k - \mathbf{b} = \nabla f(\mathbf{x}_k)$$

 $g_k(\gamma) = f(\mathbf{x}_k - \gamma \mathbf{y}_k) = \frac{1}{2} (\mathbf{x}_k - \gamma \mathbf{y}_k)^T \mathbf{A} (\mathbf{x}_k - \gamma \mathbf{y}_k) - \mathbf{b}^T (\mathbf{x}_k - \gamma \mathbf{y}_k) + c$
 $= \frac{1}{2} (\mathbf{x}_k^T \mathbf{A} \mathbf{x}_k - 2\gamma \mathbf{x}_k^T \mathbf{A} \mathbf{y}_k + \gamma^2 \mathbf{y}_k^T \mathbf{A} \mathbf{y}_k) - \mathbf{b}^T \mathbf{x}_k + \gamma \mathbf{b}^T \mathbf{y}_k + c$
 $= \frac{1}{2} \gamma^2 \mathbf{y}_k^T \mathbf{A} \mathbf{y}_k - \gamma (\mathbf{x}_k^T \mathbf{A} \mathbf{y}_k - \mathbf{b}^T \mathbf{y}_k) - \mathbf{b}^T \mathbf{x}_k + \mathbf{x}_k^T \mathbf{A} \mathbf{x}_k + c$

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} - \mathbf{b}^{\mathrm{T}} \mathbf{x} + c$$

Derivation strategy:

- 1. expand $f(\mathbf{x}_k \gamma(\mathbf{A}\mathbf{x}_k \mathbf{b})) = g_k(\gamma)$,
- 2. solve for α_k^* , the value of γ that minimizes $g_k(\gamma)$, as $\frac{dg_k(\gamma)}{d\gamma} = g_k'(\gamma) = 0$

$$g_{k}(\gamma) = f(\mathbf{x}_{k} - \gamma \mathbf{y}_{k}) = \frac{1}{2} \gamma^{2} \mathbf{y}_{k}^{T} \mathbf{A} \mathbf{y}_{k} - \gamma (\mathbf{x}_{k}^{T} \mathbf{A} \mathbf{y}_{k} - \mathbf{b}^{T} \mathbf{y}_{k}) - \mathbf{b}^{T} \mathbf{x}_{k} + \mathbf{x}_{k}^{T} \mathbf{A} \mathbf{x}_{k} + c$$

$$g_{k}'(\gamma) = \gamma \mathbf{y}_{k}^{T} \mathbf{A} \mathbf{y}_{k} - \mathbf{x}_{k}^{T} \mathbf{A} \mathbf{y}_{k} + \mathbf{b}^{T} \mathbf{y}_{k}$$

$$\gamma^{*} = (\mathbf{x}_{k}^{T} \mathbf{A} \mathbf{y}_{k} - \mathbf{b}^{T} \mathbf{y}_{k}) / (\mathbf{y}_{k}^{T} \mathbf{A} \mathbf{y}_{k})$$

$$= (\mathbf{x}_{k}^{T} \mathbf{A} - \mathbf{b}^{T}) \mathbf{y}_{k} / (\mathbf{y}_{k}^{T} \mathbf{A} \mathbf{y}_{k})$$

$$= (\mathbf{A} \mathbf{x}_{k} - \mathbf{b})^{T} \mathbf{y}_{k} / (\mathbf{y}_{k}^{T} \mathbf{A} \mathbf{y}_{k})$$

$$= (\mathbf{A} \mathbf{x}_{k} - \mathbf{b})^{T} \mathbf{y}_{k} / (\mathbf{y}_{k}^{T} \mathbf{A} \mathbf{y}_{k})$$

$$|\text{et } \mathbf{y}_{k} = \mathbf{A} \mathbf{x}_{k} - \mathbf{b} = \nabla f(\mathbf{x}_{k})$$

$$\gamma^{*} = ||\mathbf{y}_{k}||^{2} / (\mathbf{y}_{k}^{T} \mathbf{A} \mathbf{y}_{k})$$

Steepest Descent for SPD Systems

Unlike the step size you would obtain by line search, in this linear setting we derived an *optimal* step size for each gradient descent iteration: $\alpha_k^* = \|\mathbf{y}_k\|^2 / (\mathbf{y}_k^T \mathbf{A} \mathbf{y}_k)$

So, gradient descent for linear systems iterates as follows:

- choosing the descent direction $\mathbf{y}_k \coloneqq \nabla f(\mathbf{x}_k) = \mathbf{A}\mathbf{x}_k \mathbf{b}$
- computing the optimal step size as $\alpha_k^* = \|\mathbf{y}_k\|^2 / (\mathbf{y}_k^T \mathbf{A} \mathbf{y}_k)$
- updating the estimate of the minimum as $\mathbf{x}_{k+1} = \mathbf{x}_k \alpha_k^* (\mathbf{A} \mathbf{x}_k \mathbf{b})$

GD using the optimal step size is referred to as the <u>steepest descent</u> algorithm

SD for SPD Systems – Analysis

We can derive an interesting relationship between subsequent descent directions $\nabla f(\mathbf{x}_k) = \mathbf{A}\mathbf{x}_k - \mathbf{b}$ and $\nabla f(\mathbf{x}_{k+1}) = \mathbf{A}\mathbf{x}_{k+1} - \mathbf{b}$ in the iterative process:

- subsequent gradient descent directions are mutually <u>perpendicular!</u>
- this leads to an iterative "zig-zag" behaviour over iterations

$$||\mathbf{y}_{k}||^{2}/(\mathbf{y}_{k}^{T}\mathbf{A}\mathbf{y}_{k}) = \alpha_{k}^{*}$$

$$\alpha_{k}^{*}(\mathbf{y}_{k}^{T}\mathbf{A}\mathbf{y}_{k}) = ||\mathbf{y}_{k}||^{2}$$

$$(\mathbf{y}_{k})^{T}\mathbf{y}_{k} - \alpha_{k}^{*}(\mathbf{A}\mathbf{y}_{k})^{T}\mathbf{y}_{k} = 0$$

$$(\mathbf{A}\mathbf{x}_{k} - \mathbf{b})^{T}\mathbf{y}_{k} - \alpha_{k}^{*}(\mathbf{A}\mathbf{y}_{k})^{T}\mathbf{y}_{k} = 0$$

$$(\mathbf{A}\mathbf{x}_{k} - \mathbf{b} - \alpha_{k}^{*}\mathbf{A}\mathbf{y}_{k})^{T}\mathbf{y}_{k} = 0$$

$$(\mathbf{A}(\mathbf{x}_{k} - \alpha_{k}^{*}\mathbf{y}_{k}) - \mathbf{b})^{T}\mathbf{y}_{k} = 0$$

$$(\mathbf{A}\mathbf{x}_{k+1} - \mathbf{b})^{T}\mathbf{y}_{k} = 0$$

$$(-\mathbf{y}_{k+1})^{T}\mathbf{y}_{k} = 0$$

$$\nabla f(\mathbf{x}_{k+1})^{T}\nabla f(\mathbf{x}_{k}) = 0$$

Steepest Descent for SPD Systems

SD for SPD Systems – Convergence

A thorough convergence analysis for gradient descent yields three notable conclusions [Solomon; section 11.1.2]

- 1. it is guaranteed to eventually converge to a unique* minimum,
- 2. change in backward error is bounded above by 1 1/ cond(A), and
- 3. since $cond(A) \ge 1$, the convergence of gradient descent improves as the conditioning of A improves

SD for SPD Systems – Convergence

Well conditioned A

Poorly conditioned A

SD for SPD Systems – Convergence

When compared to direct methods – costing roughly $O(n^3)$ – the number of iterations needed to get sufficiently close to a solution with steepest descent may be very large (depending on the conditioning of the system)

- if **A** is sparse with O(n) non-zero elements, then each iteration of SD costs roughly O(n) and we can afford to take $O(n^2)$ iterations before we start becoming more expensive than direct methods
- however, for dense **A**, each iteration costs $O(n^2)$ and after O(n) iterations SD can become more expensive than a direct method

SD for SPD Systems – Behaviour

As we showed earlier, SD ping-pongs between mutually perpendicular directions when solving a linear system

- this leads to us possible following many "parallel" directions during the process of convergence

