Habilitando um prédio a localizar contextualmente dispositivos utilizando redes sem fio

IoT

Mercado

- dZone IoT 2015 → IoT como foco das empresas;
- Grandes empresas estão incluindo IoT no seu plano de negócios e produtos;
- 6,4 bilhões de coisas conectadas até o final de 2016 (Gartner);
- Este número é possibilitado pelo baixo custo computacional, que aliado ao tamanho dos dispositivos computacionais atuais possibilita a computação ubíqua.

Tamanho e custo de computadores

Computadores ultra pequenos

Motivação

- Não existe um caminho de construção e validação para aplicações IoT claro para desenvolvedores locais;
- Estes dispositivos e outros (dispositivos, pessoas e sistemas) ganhariam a informação de localização contextual (mais completa do que um ponto x, y);
- Com o número absurdo de dispositivos localizar cada um deles torna-se um desafio para humanos.

Conceitos Chave

- Computação Ubíqua
- Localização
- Contextualização
- Serviço WEB

Problema

- Contextualização de dispositivos: local e global
- Saber localização de uma dispositivo para interação
- Falta de documentação para construção, manutenção e segurança
- Análise de custos: implementação e manutenção

Proposta

Desenvolver e documentar o processo de criação de um sistema de localização contextual para o interior de prédios utilizando resíduos de comunicação sem fio como Wifi 802.11 e Bluetooth.

Objetivos Gerais

Considerando características locais, propõem-se a construção de uma aplicação para localizar contextualmente dispositivos dentro de um prédio piloto e avaliar sua precisão.

Além desta aplicação, é objetivo definir o custo do projeto piloto incluindo esforço de pesquisa assim como definir um custo para replicação deste localizador contextual em outros prédios.

Objetivos Específicos

- A. Estabelecer o estado da arte sobre a desenvolvimento de aplicações IoT;
- B. Identificar desafios locais para o desenvolvimento;
- Identificar provedores de serviços, dispositivos e ferramentas para o desenvolvimento;
- D. construir sensores de identificação e localização (distância) de dispositivos cuja comunicação seja baseada em Bluetooth e Wi-Fi;
- E. Posicionar estes sensores;
- F. Construir um dispositivo agregador destas informações com uma WEB REST API
- G. Estimar o custo total do projeto piloto e de replicação em outros prédios.

Desenvolvimento

Luís Henrique Puhl de Souza

Marcelo Augusto Cordeiro

Metodologia e Cronograma

Utilizaremos prototipagem ágil (semelhante a metodologia Scrum) executando iterações de uma semana onde a cada iteração uma nova versão melhorada do produto completo (hardware, software, documentação e resultados) será entregue.

Cronograma

Tabela 1 – Cronograma de Atividades Propostas

Atividade	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out
Levantamento Bibliográfico Inicial	X	X							
Escolha de provedores e fornecedores		X	X	X	X	X			
Construção, avaliação e manutenção dos sensores e agregadores			X	X	X	X	X		
Estimativas de custos					X	X	X	X	
Documentação de desenvolvimento			X	X	X	X	X	X	
Revisão Final							X	X	X

Fonte: Produzido pelo autor.

Este projeto está no GitHub

https://github.com/luis-puhl/DeviceAwareBuilding-AcademicProject

Obrigado

Luís Henrique Puhl luispuhl@gmail.com