$$T(n) \stackrel{?}{=} \begin{cases} 1, & \text{se } n \leq 5 \\ 2 \cdot T\left(\frac{n}{5}\right) + 3 \cdot T\left(\sqrt[5]{n}\right) + 4, & \text{of trimential} \end{cases}$$

Livello	Nodi per livello	bimensione in in put	Contributo per nodo	Contributo totale per liveleo
0	1	0	4	4
1	5	n 5 0 √n	4	20
2	25	25 0 \$ 5 0 0 0	4	100
i	5 ^{<i>i</i>}	1	4	4.5

Calcaliamo le altezze:

$$\frac{n}{c^{h_{max}}} \le 5 < z > n \le 5 \cdot s^{h_{max}} < z > \frac{h_{max}}{5} > \frac{n}{5} < z > h_{max} > log (\frac{n}{6})$$

$$\frac{n}{s^{hmax}} \le s < \Rightarrow n \le s \cdot s^{hmax} < \Rightarrow s^{hmax} \Rightarrow \frac{n}{s} < \Rightarrow h \text{ hmax} \Rightarrow \log_{s} \left(\frac{n}{s}\right)$$

$$\frac{1}{s^{hmin}} \le s < \Rightarrow \frac{1}{s^{hmin}} \log_{s} (n) \le 1 < \Rightarrow \log_{s} (n) \le s^{hmin} \Rightarrow \log_{s} (\log_{s} (n))$$

Calcaliamo le sommatorie

$$\frac{\sum_{i=0}^{n} 4 \cdot 5^{i}}{\sum_{i=0}^{n} 4 \cdot 5^{i}} \leq T(n) \leq \sum_{i=0}^{n} 4 \cdot 5^{i}$$

hmin
$$4 \stackrel{\text{bmin}}{\underset{i \neq 0}{\sum}} 5^{i} \leq T(n) \leq 4 \stackrel{\text{bmax}}{\underset{i \neq 0}{\sum}} 5^{i}$$

$$5.5$$
 $\log_{5}(\log_{5}(n))$ $-1 \le T(n) \le 5.5$ $\log_{5}(\frac{n}{5})$ -1

