3-28-methods

Evaluating methods

- What is the question?
- What are we measuring?
 - Structure
 - Activity
- Strengths & Weaknesses
 - Cost
 - Invasiveness
 - Spatial/temporal resolution

Spatial and Temporal Resolution

[@sejnowski2014putting]

Types of methods

- Structural
 - Mapping the circuitry
 - Anatomy
- Functional
 - What does it do?
 - Physiology/Activity

Mapping structures

- · Cell/axon stains
 - Golgi stain whole cells
 - Cellular distribution, concentration, microanatomy

Retrograde vs. anterograde tracers

· What connects where

Mapping structures

- Computed axial tomography (CAT), CT
- · X-ray based

Tomography

http://img.tfd.com/mk/T/X2604-T-22.png

Tomography

http://static.howstuffworks.com/gif/cat-scan-pineapple.jpg

Magnetic Resonance Imaging (MRI)

- Magnetic resonance
- Protons have spin (magnetic dipole)
- Align with strong magnetic field
- When perturbed, speed of realignment varies by tissue
- Realignment gives off radio frequency signals

MRI

http://s.hswstatic.com/gif/mri-steps.jpg

Structural MRI

- Tissue density/type differences
- Gray vs. white Axon fibers
- Spectroscopy
- Region sizes/volumes

Diffusion tensor imaging (DTI)

https://www.simonsfoundation.org/wp-content/uploads/2012/02/hitting-nerve3.jpeg

Voxel-based morphometry (VBM)

http://www.frontiersin.org/files/Articles/18691/fnhum-06-00184-HTML/image_m/fnhum-06-00184-g003.jpg

Functional methods

- Recording from the brain
- Interfering with the brain
- Stimulating the brain

Recording from the brain

- Single/multi unit recording
- Microelectrodes
- · Small numbers of nerve cells

Single/multi-unit Recording

Nature Reviews | Neuroscience

http://www.nature.com/nrn/journal/v5/n11/images/nrn1535_{18/42}

Single/multi-unit recording

- What does neuron X respond to?
- Great temporal (ms), spatial resolution (um)
- Invasive
- Rarely suitable for humans, but...

Electrocorticography

http://www.neurofisiologia.net/wp-content/uploads/2009/07/corticografia.jpg

Positron Emission Tomography (PET)

- Radioactive tracers (glucose, oxygen)
- Positron decay
- Experimental condition control
- Average across individuals
- Evaluating PET
 - Temporal (~ s) and spatial (mm-cm) resolution worse than fMRI
 - Radioactive exposures + mildly invasive
 - Dose < airline crew exposure in 1 yr

Functional Magnetic Resonance Imaging (fMRI)

- Neural activity -> local O^^2 consumption increase
- · Blood Oxygen Level Dependent (BOLD) response
 - Oxygenated vs. deoxygenated hemoglobin
 - Do regional blood O^^2 levels (and flow) vary with behavior X?
- Evaluating
 - Non-invasive, but expensive
 - Moderate but improving (mm) spatial, temporal (~sec) resolution
- Hemodynamic Response Function
 - 1s delay plus 3-6 s ramp-up

Hemodynamic Response Function (HRF)

http://openi.nlm.nih.gov/imgs/512/236/3109590/3109590_TONIJ-5-24_F1.png

Electroencephalography (EEG)

- How does it work?
- Electrodes on scalp or brain surface
- · What do we measure?
- Combined activity of huge # of neurons

EEG

http://sfari.org/images/images-2013-folder/images-sfn-2013/20131110sfneeg

EEG

- · High temporal, poor spatial resolution
- Analyze frequency bands
 - LOW: deep sleep
 - MIDDLE: Quiet, alert state
 - HIGH: "Binding" information across senses

EEG Frequency

http://www.peakmind.co.uk/images/frequency.jpg

Event-related potentials (ERPs)

• EEGs time-locked to some event - Averaged over many trials

ERPs

Event-Related Potential Technique

Brain Computer Interface (BCI)

http://s.hswstatic.com/gif/brain-computer-interface-3.gif

Magneto-encephalography (MEG)

- Like EEG, but measuring magnetic fields
- High temporal resolution
- Magnetic field propagates w/o distortion

MEG

Manipulating the brain

- Nature's "experiments"
 - Stroke, head injury, tumor
 - Neuropsychology
- Logic: damage impairs performance = region critical for behavior
- · Poor spatial/temporal resolution, limited experimental control

Phineas Gage

34/42

Stimulating the brain

- Pharmacological
- Electrical (transcranial Direct Current Stimulation tDCS)
- Magnetic (Transcranial magnetic stimulation TMS)

tDCS

http://sci2.haifa.ac.il/faculty/kaphzan/images/stories/tdcs%20stimulatio

TMS

http://www.med.upenn.edu/lcns/images/TMS.jpg

Evaluating stimulation methods

- Spatial/temporal resolution?
 - Assume stimulation mimics natural activity?
- Deep brain stimulation as therapy
 - Parkinson's Disease
 - Depression
 - Epilepsy

Deep brain stimulation

http://www.nimh.nih.gov/images/health-and-outreach/mental-health-topic-brain-stimulation-therapies/dbs_60715_3.jpg

Simulating the brain

- Computer/mathematical models of brain function
- Example: neural networks
- · Cheap, noninvasive, can be stimulated or "lesioned"

Growing a brain

http://www.kurzweilai.net/most-complete-functioning-human-brain-model-to-date-according-to-researchers

http://www.kurzweilai.net/images/organoid-derivation-development.jpg

Main points

- Multiple structural, functional methods
- · Different levels of spatial and temporal resolution
- Goal is converging evidence