Optimization II Quiz

Due No due date **Time Limit** None

Points 2 Questions 2
Allowed Attempts Unlimited

Available after Apr 1 at 16:13

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	less than 1 minute	0 out of 2

Submitted Jun 16 at 18:21

Jnanswered

Question 1

0 / 1 pts

What is the gradient for a function formulated as f(X1, X2) = 3*log(X1) + log(1-X2) at point (X1=1, X2=2)?

orrect Answer

- **[3, 1]**
- [0, 0]
- 2
- 0 4

Gradient in respect to X1: 3/X1 at point X1=1 => 3

Gradient in respect to X2: -1/(1-X2) at point X2=2 => 1

Vector of gradients is [3, 1]

Jnanswered	Question 2 0	/ 1 pts		
	Which statement is FALSE about Gradient Descent? You may have more than one answer.			
	☐ It is guaranteed to find a local optimum			
orrect Answer				
	It is useful when we cannot compute the derivative of the target function	ı		
	☐ The learning rate influences the step size			
orrect Answer	☐ It is guaranteed to find a global minimum			
	 we need to be able to compute the first derivative in order to apply GD 	,		
	 GD is guaranteed to find a LOCAL optimum for non-convex functions (for convex functions the local optimum is equal to global optimum) 	the		
	The learning rate indeed specifies how big a 'step' we take in the opposite direction of the gradient, for each update iteration.			