<u>Projet : Phase 3 – Evaluez votre modèle</u>

Attention : les valeurs utilisées ci-dessous sont des exemples, pas les valeurs que vous devez obtenir. L'idée est de comprendre les principes expliqués.

Rappel: On n'évalue jamais un modèle sur les données à partir desquelles on l'a entrainé !!!

Idée: comparer chaque "déplacement" se trouvant dans "testSet.csv" avec chacun des déplacements « modèle » calculés en phase 3. Le numéro de classe attribué à l'enregistrement de « testSet.csv » est le numéro du modèle duquel le déplacement étudié se rapproche le plus.

1 (bleu foncé)=Downstairs / série 2 (orange)=jogging/ série 3 (gris)=sit down/ série 4 (jaune) stand up / série 5 (bleu clair) =upstairs/ 6 (vert)=walking

attention : pas la même échelle.

1 (bleu foncé)=Downstairs / série 2 (orange)=jogging/ série 3 (gris)=sit down/ série 4 (jaune) stand up / série 5 (bleu clair) =upstairs/ 6 (vert)=walking

Selon le programme, la classe qui sera la plus ressemblante sera downstairs.

Que veut dire s'en rapprocher le plus?

Vous attribuerez la classe dont le pattern est le plus proche de l'enregistrement en termes de distance euclidienne à savoir :

$$d(e,p) = \sqrt{(e_1 - p_1)^2 + (e_2 - p_2)^2 + \dots + (e_{10eme\,sec} - p_{10eme\,sec})^2}$$

La classe estimée est celle du pattern qui se rapproche le plus de l'enregistrement en cours de traitement.

Dans la phase 2, nous avons tenté de modéliser chaque type de mouvement.

Vérifions avec la classe indiquée dans testSet :

Il s'agit de

downstairs

A vous:

A disposition : Le fichier « model.csv » « structuré » comme suit :

Mouvement	Vacc	Vacc	Vacc	Vacc	 Vacc
1					
2					
6					

ainsi que le fichier « testSet .csv »

Ainsi, nous espérons pouvoir identifier les « déplacements » du fichier testSet.csv en attribuant à un déplacement le type de mouvement auquel il ressemble le plus en respectant l'algorithme « maison » proposé.

 $\mathsf{IG232}: \mathsf{w}$ De la programmation numérique à la data intelligence » C. Charlier

Ecrivez le DA et implémentez qui permet à partir des fichiers "model.csv" et "testSet.csv" de générer les tableaux realClasses et estimatedClasses et d'ensuite, évaluer le modèle.

Le tableau realClasses contiendra, pour chaque « déplacement » du fichier testSet, la réponse correcte càd le type de mouvement qu'il aurait fallu lui attribuer.

Le tableau estimatedClasses contiendra, pour chaque « déplacement » du fichier testSet, la classe estimée par notre algorithme « maison ».

Lorsque les deux tableaux auront été générés, vous ferez appel aux fonctions d'évaluation que je vous fournirai via la bibliothèque « ClassificationPerformance ».

Lisez les quelques consignes pour l'implémentation avant de démarrer votre DA.

Consignes pour l'implémentation :

- 1. Soyez attentifs à la rapidité d'exécution dans vos choix algorithmiques.
- 2. En fin de DA, faire appel aux trois modules (fonctions) je vous founirai via la bibliothèque à savoir : displayResultsForEachClass(realClasses, estimatedClasses, nbTests) displayAccuracy(realClasses, estimatedClasses, nbTests) displayClass(realClasses, estimatedClasses, nbTests)
 - 3. N'utilisez pas de pointeurs (sauf bien sûr les pointeurs de fichiers).
 - 4. A rendre sur le devoir Moodle votre DA, comme d'habitude suivi des éventuelles aides auxquelles vous avez fait appel via chapgpt, votre code sur github pour le 12 mai à 23h59.