

Quiz #7 Solutions

Problem 1.

First of all, we already know that $\operatorname{Ker} \varphi$ is a subgroup of G. In order to show that it is a normal subgroup, we need to show that, for every $x \in \operatorname{Ker} \varphi$ and for every $g \in G$, $gxg^{-1} \in \operatorname{Ker} \varphi$. In other words we need to show that $\varphi(gxg^{-1}) = e'$, where e' denotes the identity element of G'. This is a straightforward computation, using the properties of a group homomorphism:

$$\varphi(gxg^{-1}) = \varphi(g)\varphi(x)\varphi(g^{-1})$$

$$= \varphi(g)\varphi(x)\varphi(g)^{-1}$$

$$= \varphi(g)e'\varphi(g)^{-1}$$

$$= \varphi(g)\varphi(g)^{-1}$$

$$= e'$$

Problem 2.

Consider the map

$$\varphi \colon G \to G'$$
$$k \mapsto e^{2ik\pi/n}$$

where $G = \mathbb{Z}$ and $G' = U_n$.

This map, which we have seen several times in class, is a group homomorphism. Moreover, its kernel is $n\mathbb{Z}$. By the first isomorphism theorem, we get $G/\mathrm{Ker}\,\varphi\approx\mathrm{Im}\,\varphi$, in other words $\mathbb{Z}/n\mathbb{Z}\approx U_n$.

Problem 3.

(1)
$$x + y = [3] + [4] = [7] = [1]$$
.

(2)
$$-x = -[3] = [-3] = [3]$$
 and $-y = -[4] = [-4] = 2$.

(3)
$$x = [3]$$
 and $2x = [6] = [0]$, therefore x is of order 2. $y = [4], 2y = [8] = [2], 3y = [12] = [0]$, therefore y is of order 3.