Memoryless generic discrete logarithm computation in an interval using kangaroos

Anthony MARTINEZ, Nicolas VALLET

January 2022

Table des matières

1	Compilation and execution instructions 1.1 Compilation	2 2 2
2	Question 1	2
3	Question 2	2
4	Question 3	2
5	Question 4	3
6	Question 5	4
7	Question 6	5
8	Question 7	5

Synthèse

1 Compilation and execution instructions

1.1 Compilation

Since we are using some math functions, to compile our code, one must use the following command : gcc main.c -lm

1.2 Execution

To execute the program, one must use the following command : ./a.out

2 Question 1

If we try to find the discrete logarithm by computing all possible values in the group G for example with the following algorithm:

```
Given h ang g such that h = g^a over G we want to find a
currentVal = g
for i in range 1, N with N the order of G:
    currentVal *= g
    if currentVal == h:
        return i
```

For thoose algorithm we have at most N multiplication over G. So we are in $O(N) = O(2^s)$ with s the size of the input so the complexity will be exponential which means that this would not be feasible on a personal computer.

3 Question 2

For this question we have used the fast exponentiation algorithm to implement the map $x \mapsto g^x$ with g = 4398046511104. The file testQuestion2.c test the function on the values given in the subject. Here is the algorithm:

```
exp(n, a): #with n the number and a the exponent
  result = 1
  while(a):
    if a&1
       result = result * n
    a >> = 1
    n = n * n
  return result
```

4 Question 3

For this question here is what we found:

Let's call A and B the number we want to multiply modulo $(2^{115} - 85)$.

Now let's write A and B as a concatenation of number for example 320 is the concatenation of 3 and 20. So let's take 4 numbers x, y, y, y, y and y we write y and y where y is the concatenation of y and y (same for y).

Then we can write the multiplication as follow $xy * wv = (x_- + y) * (w_- + v) = (x_- * w_-) + (x_- * v) + (y * w_-) + (y * v)$ where the symbol _ is a padding of 0. For example 320 * 110 = (300 + 20) * (100 + 10).

Therefore, to do our multiplication we have 4 additions to perform modulo $(2^{115} - 85)$.

Now we switch in the binary representation and we say that xy, wv are of length 128 bits at most and each number x, y, w, v are at most of length 64 bits.

```
So xy = x * 2^{64} + y reciprocally for wv.
```

Now we will analyse each little multiplications we have to perform:

```
(x_- * w_-) = (x * 2^{64} * w * 2^{64}) = (x * w * 2^{128})

(x_- * v) = (x * 2^{64} * v)

(y * w_-) = y * w * 2^{64}
```

```
(y*v)
```

Going back to our code we have the variables a and b equal to xy and wv.

```
And with those lines we have
    a0.t[0] = a.t[0]; // a0 = y
    a1.t[0] = a.t[1]; // a1 = x

b0.t[0] = b.t[0]; // b0 = v
    b1.t[0] = b.t[1]; // b1 = w

And with those one we start the multiplication
    //for this one we know that 2^128 modulo 2^115 -85 is equal to 696320
    a1b1 = a1.s * b1.s * 696320; // (x * w * 2^128)
    a0b1 = a0.s * b1.s; // y * w * 2^64
    a1b0 = a1.s * b0.s; // (x * 2^64 * v)
    a0b0 = a0.s * b0.s; // (y*v)
```

Now we have to apply the modulo for each multiplication and this line is doing this:

```
a0b0 = ((a0b0 >> 115) * 85) + (a0b0 & m115.s);
```

And here is our explanation. Our idea is the following, if we want to do i [u-p] we can say that i = k(u-p) + r with k in Z. So i = ku - kp + r and if kp < u we have i = r - kp [u] and we want to show that's what do the line of code above.

In our case the u is equal to 2^{115} , p is equal to 85 and i is the content of a0b0 that is on 128 bits.

If we perform a0b0 modulo 2^{115} it's the same as $a0b0\&(2^{115}-1)$ which is equal to our number m115. So we have the value of our r for the formula above.

Now we want to get the kp. So going back to our operation a0b0 modulo 2^{115} the k is equal to a0b0 shift to the left by 115 so in C it's a0b0 >> 115. And now we have to multiply it by our p value corresponding to 85.

```
So the line : a0b0 = ((a0b0 >> 115) * 85) + (a0b0 \& m115.s); perform the modulo over 2^115 -85 for a number of size 2^128.
```

Now some other information. Each of our multiplication are strictly inferior to 2^{128} . Because the number we are multiplying are inferior to 2^{64} . And for the rest of the code here is what happened:

```
mid.s = a0b1 + a1b0; // y * w * 2\^64 + (x * 2\^64 * v)
mid_q.t[0] = mid.t[1]; //we take the first part of the number above
// So mid_q = j * 2^128 So as the first operation it's equal to
// j * 696320
mid_q.s *= 696320;

//Now we do the rest of our addition
mid_r.t[1] = mid.t[0];
mid_r.s = ((mid_r.s >> 115) * 85) + (mid_r.s & m115.s);

res.s = a1b1 + a0b0 + mid_q.s + mid_r.s;
res.s = (res.s >> 115) * 85 + (res.s & m115.s);

res.s = res.s > mod.s ? res.s - mod.s : res.s;
return res;
```

5 Question 4

 $W=2^{64}$ is a parameter given in the statement. From it, we can use the result given by the heuristic analysis and compute $p=log(W)/sqrt(W)=64/2^{32}=1/2^{26},\ k=log(W)/2=32$ and $\mu=sqrt(W)/2=2^{31}$.

For the e_j values, it is recommended in the book to use 2^j values. So to obtain an average of 2^{31} we get the following values:

```
ej[31]
for i in range 0,31:
ej[i] = 2^(i+4)
```

For the subsets $S_{1...k}$ we do a modulo 32 and we map 0 to subset 0, 1 to 1 etc...

As for the distinguishable values, since $p = 1/(2^{26})$, we do a modulo 2^{26} of the current value and if it is equal to zero, it is a distinguishable one.

6 Question 5

Our program works for the value $g^{2^{31}}$ but for the value given in the subject our algorithm do not find a distinguishable point where the 2 kangoroo's stop. It's probably because the e_j values we have choosen are not suitable in this example. Our function dlog64 works like this:

```
//We have 2 hash table one for the tame kangaroo and one for the wild
//gExponentEJ is a table which contains all values of g^ej
//ej is a table which contains all values of ej
maskForModulo = (1<<26) - 1 //Mask for</pre>
maskForEj = (1 << 5) - 1; //Mask for modulo 32
wildKangaroo = target
tameKangaroo = g^{(2^63)}
index = 0
tameExponent = 2^63
wildExponent = 0
trapExponent = 0
result = 0
while(true)
    index = tameKangaroo.s & maskForEj
    tameKangaroo = mul11585(tameKangaroo, gExponentEJ[index])
    tameExponent += ej[index]
    if (tameKangaroo.s & maskForModulo) == 0
        //We have a distinguishable element
        //The function searchTameKangarooTable search in the hash table of the
        //tame kangaroo if the wild kangaroo has put a trap for his current value
        //And the second argument trapExponent return the exponent value of the trap
        if searchTameKangarooTable(tameKangaroo.s, &trapExponent)
            if trapExponent > tameExponent
                result.s = trapExponent - tabeExponent
                result.s = tameExponent - trapExponent
            break
        else
            //We put a trap for the wild kangaroo
            insertWildKangarooTable(tame.s, tameExponent)
    index = wildKangaroo.s & maskForEj
    wildKangaroo = mul11585(wildKangaroo, gExponentEJ[index])
    wildExponent += ej[index]
    if (wildKangaroo.s & maskForModulo) == 0
        //We have a distinguishable element
        //The function searchWildKangarooTable search in the hash table of the
        //wild kangaroo if the tame kangaroo has put a trap for his current value
        //And the second argument trapExponent return the exponent value of the trap
        if searchWildKangarooTable(wildKangaroo.s, &trapExponent)
            if trapExponent > wildExponent
                result.s = trapExponent - wildExponent
            else
                result.s = wildExponent - trapExponent
            break
        else
            //We put a trap for the wild kangaroo
            insertTameKangarooTable(tame.s, tameExponent)
return result
```

7 Question 6

Depending on the value we choose for the e_j 's values our implementation respects the heuristic or not. Depending on the value, the algorithm takes more or less time.

8 Question 7

If we change the value of the e_j 's values the algorithm can take more or less time. Some values are more suitable to some problems. By changing the position of the starting point we have the same problem.