CS-8804 – Machine Learning for Robotics

Finding models in noisy data

Cédric Pradalier

Features: Motivation

- Why Features:
 - Raw data: huge amount of data to be stored
 - Compact features require less storage (e.g. Lines, planes)
 - Provides rich and accurate information
 - Basis for high level features (e.g. more abstract features, objects)

Line Extraction: Split-and-Merge

Line Extraction: Motivation

Map of the ASL hallway built using line segments

Line Extraction: Motivation

 Map of the ASL hallway built using orthogonal planes constructed from line segments

© R. Siegwart, D. Scaramuzza, ETH Zurich - ASL

Line Extraction: Motivation

- Why laser scanner:
 - Dense and accurate range measurements
 - High sampling rate, high angular resolution
 - Good range distance and resolution.
- Why line segment:
 - The simplest geometric primitive
 - Compact, requires less storage
 - Provides rich and accurate information
 - Represents most office-like environment.

Line Extraction: The Problem

- Scan point in polar form: (ρ_i, θ_i)
- Assumptions:
 - Gaussian noise with (0, σ) for ρ
 - Negligible angular uncertainty

- Line model in polar form:
 - $x \cos \alpha + y \sin \alpha = r$
 - -π < α <= π
 - r >= 0

Line Extraction: The Problem (2)

- Three main problems:
 - How many lines?
 - Which points belong to which line?
 - This problem is called SEGMENTATION
 - Given points that belong to a line, how to estimate the line parameters?
 - This problem is called LINE FITTING
- The Algorithms we will see:
 - 1. Split and merge
 - 2. Linear regression
 - 3. RANSAC
 - 4. Hough-Transform

Algorithm: Split-and-Merge (standard)

- The most popular algorithm which is originated from computer vision.
- A recursive procedure of fitting and splitting.
- A slightly different version, called Iterative-End-Point-Fit, simply connects the end points for line fitting.

Algorithm: Split-and-Merge (Iterative-End-Point-Fit)

Algorithm: Split-and-Merge

Algorithm 1: *Split-and-Merge*

- 1. Initial: set s_1 consists of N points. Put s_1 in a list L
- 2. Fit a line to the next set s_i in L
- 3. Detect point P with maximum distance d_P to the line
- 4. If d_P is less than a threshold, continue (go to step 2)
- 5. Otherwise, split s_i at P into s_{i1} and s_{i2} , replace s_i in L by s_{i1} and s_{i2} , continue (go to 2)
- 6. When all sets (segments) in L have been checked, merge collinear segments.

12 Algorithm: Split-and-Merge: Example application

Model fitting using the Hough Transform

A bit of history

Bubble chamber and cloud chamber images

Further references:

http://en.wikipedia.org/wiki/Hough transform

http://en.wikipedia.org/wiki/RANSAC

http://vision.ece.ucsb.edu/~zuliani/Research/RANSAC/RANSAC.shtml

Principle

- Special case: line
 - \circ y = a x + b
 - Equation for a line in (x,y) space
 - Also a linear equation in (a,b) space:
 - b = -xa + b
 - Each (x,y) data point defines a line in (a,b) space
- Principle
 - Two data points define a single parameter set (a,b)
 - Two lines in (a,b) space intersect to the common (a,b) value

Illustration

Representation of the parameter space

- How to find the parameter set which is consistent with the most data-points?
- Build an "accumulator" over the parameter space, initialised to zero
- For each data point,
 - For all suitable parameter,
 - accumulator[parameter] + 1
- Problem: requires to preset the range of parameters

Step by step accumulation: final

Without smoothing: iteration 30

Without smoothing: final

What if there are several lines?

Y = 0.90 * x + 0.05 + 0.01*randn

Y = 0.20 * x + 0.25 + 0.01*randn

What if there are several lines?

Y = 0.90 * x + 0.05 + 0.01*randn

Y = 0.20 * x + 0.25 + 0.01*randn

What if there are several lines?

Max at a = 0.19

b = 0.25

What if there are several lines

- Find multiple peaks
 - Thresholding...
 - Mean-shift...
 - Non-maxima suppression
 - 0
- Find the first line, then remove all data points from this line, and run Hough again...
- Hacks and ad-hoc solutions

Other line representations

- Y = a*x+b: a is unbounded, so the accumulator needs to be unbounded as well.
- Alternative: change the representation
 - A line is defined by its distance to the origin and angle:

- For a given point (x,y),
 - Lines passing through x,y verify

From wikipedia

Step by step accumulation: final

r = 0.04

a = 0.88

b = 0.05

Step by step accumulation: final, no smoothing

Application to circles

Circle equation

$$(x-a)^2 + (y-b)^2 = r^2$$

- Parameter center (a,b), radius r
- If we assume r known, it is also a circle in (a,b) space

About r:

- r influences the possible/expected number of votes per parameter set.
- Either search in 3D space (a,b,r)
- Or run a search in (a,b) space for multiple candidate r

Context

Step by step accumulation: final

Step by step accumulation: final, no smoothing

Step by step accumulation: wrong radius

R=0.4 instead of R=0.3

Hough Transform: summary

- Very robust detector
 - Low sensitivity to noise
 - Low sensitivity to outliers
- Only really works for low number of parameters
 - Exponential memory requirement
 - Needs a bounded parameter space
- Not very often used for real applications, except with a strong prior reducing the search space
 - Looking for nearly vertical lines
 - Looking for circles of know radius

Model fitting using RANSAC

From Hough Transform to RANSAC

- How to deal with
 - Higher number of parameters
 - Possibly unbounded parameters
 - Limited memory requirements
- Accepting that
 - Probabilistic guarantees are sometimes enough
- RANSAC
 - Random Sampling Consensus
 - Intelligent sampling of the parameter space

RANSAC principle

Objective:

 Estimate a model with p parameters using n data points

Assumption:

- Using q data points (q << n), a closed form of the p parameter can be estimated (2D line: q = 2)
- Repeat enough time:
 - Sample q data points and estimate model M(q)
 - Count the number S of data points consistent with the model $(M(q)(x_i) < \varepsilon)$
 - If S is better that previous score, keep this model

Example: $S_{init} = 0$

Example: $S_{init} = 0$

S = 31

Example: $S_{best} = 31$

Example: $S_{best} = 31$

Alternative scoring

Counting the number of consistent data point is equivalent to minimising:

$$S(M) = \sum_{i=1}^{n} \rho(M(q_i))$$

Where:

$$\rho(M(q_i)) = \begin{cases} 0 & |M(q(i))| < \delta \\ 1 & otherwise \end{cases}$$

• Why not something smoother?
$$\rho(M(q_i)) = \begin{cases} M(q(i)) & |M(q(i))| < \delta \\ \delta & otherwise \end{cases}$$

MSAC: M-Estimator Sample Consensus

Number of iterations

- Let P be the probability of selecting a good subset of q data point.
- Let h be the number of iterations
- Let ϵ be the desired probability of having sampled at least one good subset after h iteration.
- We want: $(1-P)^h \le \grave{o}$
- Hence: $h \ge \left\lceil \frac{\log \delta}{\log(1-P)} \right\rceil$ where $\log(1-P) \le 0$
- How to compute P?

How to compute P?

- Assume we know the number of inliers N_i
- If all points have the same probability of being selected,

$$P = \frac{\binom{N_I}{q}}{\binom{N}{q}} = \frac{N_I!(N-q)!}{N!(N_I - q)!} = \prod_{i=1}^{q-1} \frac{N_I - i}{N - i}$$

- If $N \square q$ and $N_I \square q$ $P = \prod_{i=1}^{q-1} \frac{N_I i}{N i} \approx \left(\frac{N_I}{N}\right)^q$
- But we don't know N_{l} ...

How to compute P?

- Let \hat{N}_I be the biggest number of inliers seen so far.
- We have: $\hat{N}_I \leq N_I \Rightarrow P(\hat{N}_I) \leq P(N_I)$ $\Rightarrow \log(1 - P(\hat{N}_I)) \geq \log(1 - P(N_I))$ $\Rightarrow \frac{1}{\log(1 - P(\hat{N}_I))} \leq \frac{1}{\log(1 - P(N_I))}$ $\Rightarrow \frac{\log \delta}{\log(1 - P(\hat{N}_I))} \geq \frac{\log \delta}{\log(1 - P(N_I))}$
- Hence: $h = \left| \frac{\log \delta}{\log(1 P(\hat{N}_I))} \right|$ is a conservative required number of iterations

- Line model: $a \cdot x + b \cdot y + c = 0$
- Minimum number of points: 2

• Fitness measure: distance from a point to the line: $M(x,y \mid a,b,c) = |a \cdot x + b \cdot y + c|$

- This implies/requires
$$\begin{pmatrix} a \\ b \end{pmatrix} = 1$$

Alternative model computation

Line construction from projective geometry

$$\begin{pmatrix} a' \\ b' \\ c' \end{pmatrix} = \begin{pmatrix} P_1.x \\ P_1.y \\ 1 \end{pmatrix} \times \begin{pmatrix} P_2.x \\ P_2.y \\ 1 \end{pmatrix}$$

Matlab implementation

```
% Compute line model
param = line param(P1,P2);
% Evaluate the model on all points
score i = abs(param(1)*xl+param(2)*yl+param(3));
idx = find(score_i < max_error);</pre>
                                                     \rho(M(q_i)) = \begin{cases} M(q(i)) & |M(q(i))| < \delta \\ \delta & otherwise \end{cases}
% Number of inliers
count = size(idx,1);
% Model score
score = sum(score i(idx)) + (n-count)*max error
if score < best consensus
 best consensus = score;
 best param = param;
 best inliers = count;
end
```


Example 1: Final Model

Max at a = 0.8957 (0.90) b = 0.0470 (0.05)

Georgia Lorraine

• Circle model: $(x-a)^2 + (y-b)^2 = r^2$

• Minimum number of points: 2

• Circle model: $(x-a)^2 + (y-b)^2 = r^2$

Fitness measure: distance from a point to the circle:

$$M(x, y | a, b) = \left| r - \sqrt{(x-a)^2 + (y-b)^2} \right|$$

 The sqrt is not strictly necessary, but gives M a metric meaning.

Example 2: Final Model

Max at a = 0.4026 (0.40) b = 0.5022 (0.50)

Inliers: 318

• Circle model:

$$(x-a)^2 + (y-b)^2 = r^2$$

Minimum number of points: 3

In reference frame (u,v):

$$x = \frac{l}{2}$$

$$y = \frac{1}{2} \frac{x_3^2 - l \cdot x_3 + y_3^2}{y_3}$$

$$r = \sqrt{x^2 + y^2}$$

Circle model:

$$(x-a)^2 + (y-b)^2 = r^2$$

• Fitness measure: distance from a point to the circle:

$$M(x, y \mid a, b) = \left| r - \sqrt{(x-a)^2 + (y-b)^2} \right|$$

 The sqrt is not strictly necessary, but gives M a metric meaning.

Example 3: Final

Max at

Lorraine

RANSAC Summary

- Also a very robust estimator
 - But only probabilistic guarantees to find the optimum
- No constraints on the parameter space
- Less sensitive to the dimensionality if the inliers are dominants
- Choosing between HT and RANSAC:
 - RANSAC is most of the time a better choice.
 - HT is more exhaustive and better encodes multiple candidates.

CONCLUSION

Conclusion

- Features: powerful way to extract most important information from raw data
- Reduction of dimension, hopefully without loss of information
- Investment of computation power with the hope that later tasks (matching, localisation, mapping, ...) will become easier.
- Tons of features in computer vision.

