- ASSIGNMENT 15

 The value of the Roction, which is langu than the values of fox) nearby; ie, if f(c) > f(x) frall x near c then f(c) is a relative max of f
 - (b) in both cakes, fier > fix) relative. For x near C absolute. In all x in the domain of f
 - (c) If a finction has an extreme value, then it must occur at a critical point
 - (d) [No] f(x)=x3 satisfies f'(0)=0, but fix) has mo extreme value at x=0.
- (e) To test a critical print x=c we can use increasing decreasing argument If f increases to the left of a and decreases to the right of c, then f has a local (vol.) wax at c switch increases enderrates for break un'unimum
- f(x)=|x| at x=0 -> f'(0) does not exist, so f"(0) cannot exist extre

2. (a) if f is continuous on a closed interval Ea, b]

from f has an absolute max. and an absolute min.
in Ea, b]

- DY A MAX
- 3. $R = K \cdot \frac{1}{2^{k_1}}$
 - if d -0.82 (20% reduction) then

$$R = K. \frac{1}{(0.8d)^4} = \frac{1}{0.84}. K. \frac{1}{d^4}$$

= 2.44 · original resistance

H. (a)
$$f(x) = x^3 - x + 2$$

 $f'(x) = 3x^2 - 1 = 0$, $x^2 = \frac{1}{3} \rightarrow x = \pm \sqrt{\frac{1}{3}}$

(b)
$$f(x) = x^3 + x + 2$$

 $f'(x) = 3x^2 + 1 = 0$, $x^2 = -\frac{1}{3} \rightarrow no c.p.'s$

(c)
$$f(x) = x \ln x$$

 $f'(x) = \ln x + x \cdot \frac{1}{x} = \ln x + 1 = 0$
 $\ln x = -1 \rightarrow x = e^{-1}$

(d)
$$f(x) = \sin x + \cos x$$

 $f'(x) = \cos x - \sin x = 0 \rightarrow \sin x = \cos x$
(divide by $\cos x$) $\tan x = 1$
so $x = \frac{\pi}{4} + \pi k$

(e) f(x) = 1x+21

f'(x)=0...no such
points (slope is
either 1 or -1)
f'(x) due at x=-2

omswer: X=-2

(f)
$$f(x) = xe^{3x}$$

 $f'(x) = e^{3x} + xe^{3x}$. $3 = e^{3x}$. $(1+3x) = 0$
 $= e^{3x} = 0$ $= e^{3x}$. $= e^{3$

5.
$$f'(x) = 4x^3 - 4 = 0 \rightarrow 4(x^3 - 1) = 0$$

$$\frac{x}{1}$$
 $f(x) = x^{4} - 4x + 3$
1 0 a abs. min. at $x = 1$
0 3 abs. max. at $x = 2$
2 11 a abs. max.

6.
$$f'(x) = \frac{\frac{1}{x} \cdot x - \ln x}{x^2} = \frac{1 - \ln x}{x^2} = 0$$

 $-41 - \ln x = 0$, $\ln x = 1$, $x = e^1 = e$

$$\frac{x}{f(x)} = \frac{\ln x}{x}$$
 $\frac{\ln e}{e} = \frac{1}{e} = 0.367 + \text{abs. max.}$
 $\frac{\ln 1}{1} = \frac{0}{1} = 0 + \text{abs. min.}$
 $\frac{\ln 3}{3} = 0.366$

7. No. It is true mly if the finction is continuous on [a,b].

For instance, the first on the right has no absolute max.

8. I is true, because differentiability at a implies continuity at a

I not true (f could have a huritantal tempent see question 1(d) or 9)

III true, since slupe of tempent = f'(2) = 0

9.

OY:

$$\frac{10!}{10!} \frac{(100+f_5)_5}{(100+f_5)_5} (100-f_5)$$

N'(t)=0... 100- $t^2=0$ — θ $t=\pm 10$ take t=10 only since assumption states $t \neq 0$

 $N(10) = 5000 + \frac{30000 \cdot 10}{100 + 100} = 6500$ max population

77' (a)

any increasing or decreasing function

c, cz are critical points

ov:

(c)

min. at c max. at a and b

(d)

min. at c3 c,,c2,c3 are critical points