数理逻辑

户保田

e-mail:hubaotian@hit.edu.cn

哈尔滨工业大学 (深圳) 计算机学院

课程信息

• 授课教师: 户保田 博士, 助理教授

• 办公室: 信息楼1518

邮箱: hubaotian@hit.edu.cn

• 助教:徐朕燃、许天骁

课程QQ群:扫码加入,以班级-姓名(如,0班-户 保田)格式实名

课程信息

课程教材: 李涛,张岩,刘峰主编.任世军主审.《数理逻辑引论》

修订版,哈尔滨工业大学出版社,2016.06

参考书: 王捍贫.《数理逻辑》 (离散数学一分册) , 北京大学

出版社, 1997

课程考核方法

考核环节	所占分值	考核与评价细则
平时作业及考核	30	学生们上课考勤,对提问的回答等,占5分;课程测试与作业,占25分,最后合计成绩占30分。
期末考试	70	卷面成绩 100 分,以卷面成绩按比例折算成实际得分,考试命题 以大纲中的应知应会内容为主,并保证逐年有所变化。

综合成绩前3名,平时成绩前2名!

- "事物发展有其内在的逻辑"
- "这个人为人处世,有他自己的逻辑"
- "按照对方辩友的逻辑,岂不是说 ……"
- "说话、写文章都要讲逻辑"
- "这篇论文结构严谨,逻辑严密。"
- "他的发言颠三倒四,逻辑混乱"

帝国主义者的逻辑和人民的逻辑是这样的不同。捣乱,失败,再捣乱,再失败,直至灭亡——这就是帝国主义和世界上一切反动派对待人民事业的逻辑,...斗争,失败,再斗争,再失败,再斗争,直至胜利——这就是人民的逻辑。

(毛泽东:《丢掉幻想准备斗争》)

- 逻辑一词最早来自古希腊语logos (逻各斯)
 - 语言、命题、说明、解释、论证
 - 理性、理念、推理、推理能力
 - 尺度、关系、比例、价值
 - •
- 逻辑一词的不同含义
 - 客观事物的规律性
 - 某种理论、观点、行为方式

- 逻辑学作为一门学科是以推理形式为主要研究对象
 - 推理: 从已知条件(前提)得出结论的过程
- 推理形式: 推理的结构, 同类的不同具体推理具有共同的结构

所有人都是会死的

张三是人

张三是会死的

所有金属都是导体 铜是金属

铜是导体

所有A都是B

C是A

C是B

所有的金属都是导体 铜是金属

铜是导体

所有的金属都是导体 铜是导体

铜是金属

所有A都是B

C是A

C是B

所有A都是B

C是B

C是A

- 逻辑学是研究有效推理形式
- 有效推理形式: 真前提通过有效推理形式只能得到真结论, 即
 - : 通过有效推理形式, 从真前提不会得到假结论。

所有的金属都是导体 铜是导体 铜是金属

- 逻辑学是一门高度抽象的学科,是其他学科的工具,应用范围非常广
- 逻辑学分为传统逻辑和数理逻辑
 - 传统逻辑: 古典逻辑, 以古希腊亚里士多德为代表
 - 数理逻辑:现代逻辑,以莱布尼茨为创始人

(亚里士多德,公元前384年 -公元前322年)

(莱布尼茨, 1646-1716)

• 先秦时代的逻辑思想,以"名学","辩学"为代表

子曰:必也正名乎!。。。。名不正则 言不顺, 言不顺则事不成, 事不成则 礼乐不兴,礼乐不兴则刑罚不中.刑 罚不中,则民无所措手足。故君子名 之必可言也,言之必可行也。君子于 其言, 无所苟而已矣。

——《论语. 子路篇》

• 先秦时代的逻辑思想,以"名学","辩学"为代表

庄子与惠子游于濠梁之上。

庄子曰:"鲦鱼出游从容,是鱼乐也。"

惠子曰: "子非鱼,安知鱼之乐?"

庄子曰:"子非我,安知我不知鱼之乐?"

惠子曰: "我非子, 固不知子矣, 子固非鱼

也, 子不知鱼之乐, 全矣。"

庄子曰:"请循其本。子曰汝安知鱼乐云者,

既已知吾知之而问我,我知之濠上也。"

——《庄子.外篇. 秋水第十七》

• 先秦时代的逻辑思想,以"名学","辩学"为代表

"楚人有鬻盾与矛者, 誉之曰:

'吾盾之坚,物莫能陷也。'又誉其

矛曰: '吾矛之利, 于物无不陷也。'

或曰: '以子之矛, 陷子之盾, 何

如?'其人弗能应也。

夫不可陷之盾与无不陷之矛,不 可同世而立。

——《韩非子. 难一》

• 先秦时代的逻辑思想,以"名学","辩学"为代表

曰: "白马非马, 可乎?"

曰: "可。"

曰: "何哉?"

曰: "马者, 所以命形也。白者, 所以命色也。命色者, 非命

形也,故曰白马非马。"。。。

曰: "求马,黄、黑马皆可致。求白马,黄、黑马不可致。"

——公孙龙子:《白马论》

• 《墨经》提出了比较完整的逻辑体系

夫辩者,将以明是非之分,审治乱之纪,明 同异之处,察名实之理,处利害,决嫌疑焉。" 以名举实,以辞抒意,以说出故。

——《墨经. 小取》

什么是数理逻辑

- 数理逻辑是用数学的方法,数学的语言,数学的工具研究诸如推理的有效性
 - 、证明的真实性、数学的真理性和计算的可行性等这类现象中的逻辑问题。

其研究对象是对证明和计算进行符号化以后的形式系统。数理逻辑的研究范

围是逻辑学中可被数学模式化的部分

- 数理逻辑的内容
 - 逻辑演算(命题逻辑、谓词逻辑)
 - 证明论
 - 集合论(公理集合论和朴素集合论)
 - 递归论
 - 模型论

什么是数理逻辑

- 数理逻辑与集合论,图论,近世代数组成离散数学
- 数理逻辑是很多课程的基础
 - 人工智能
 - 形式语义学
 - 程序设计方法学

未来的深度神经网络应当能够实现 System2(逻辑分析系统),实现的是有意识的、有逻辑的、有规划的、可推理以及可以语言表达的系统

数字字谜问题

DCNALD 已知公式: +GERALD

RCBERT

共有10个字母A,B,C,D,EG,N,L,R,T,每个字母代表0-9中的一个,没有重复。已知D=5,计算其余9个字母所代表的数字。

数理逻辑的发展简史

- 初始阶段 (1660-19世纪末)
 - 亚里士多德
 - 莱布尼茨
 - 布尔代数
- 过渡阶段 (1900-1940)
 - 非欧几何公理方法
 - 实数理论皮亚诺算术
 - 集合论、数学基础及希尔伯特计划
- 成熟阶段 (1930-)
 - 哥德尔不完全定理
 - 四论(证明论、模型论、递归论、公理化集合论)

传统(形式)逻辑与数理逻辑

曰: "白马非马, 可乎?"

曰: "可。"

曰: "何哉?"

曰: "马者, 所以命形也。白者, 所以命色也。命色者, 非命

形也,故曰白马非马。"。。。

曰: "求马,黄、黑马皆可致。求白马,黄、黑马不可致。"

——公孙龙子:《白马论》

命题逻辑

- 命题与联结词
- 形式语言与命题公式
- 范式
- 联结词的扩充与归约
- 命题演算形式系统PC
- 命题演算形式系统PC的定理

电路中的逻辑—开关

• 开关及其两种状态

- 开关->事件
 - 可以从开关A得到一个事件: "x和y两点是连通的。"
 - 用A表示此事件。
 - 对立事件 \overline{A} 就是: "x和y两点是切断的。"

电路中的逻辑—复杂开关

- 开关A和B有对应的事件A和B, $A \lor B$ 和 $A \land B$ 在电路中意味着什么呢?
- 事件AVB表示"或者A通或者B通"。因此,AVB的发生等价于A与B之一是通的,这说明事件AVB对应于开关A和B并联所得到的电路。

• 事件 $A \land B$ 表示 "A通并且B通"。因此, $A \land B$ 的发生等价于 $A \hookrightarrow B$ 是两者都是通的,这说明事件 $A \land B$ 对应于开关 $A \bowtie B$ 串联所得到的电路。

电路中的逻辑—通断表

• 复杂开关AVB的通断表

—————————————————————————————————————	开关 B	复杂开关A∀B
通	通	通
通	断	通
断	通	通
断	断	断

• 复杂开关A\B的通断表

—————————————————————————————————————	开关 B	复杂开关A∧B
通	通	
通	断	断
断	通	断
断	断	断

电路中的逻辑——状态相反的开关

• 与开关A相反的开关 \overline{A}

• 开关 和的通断表

 开关 <i>A</i>	开关7
通	断
断	通

电路中的逻辑——真值表

- 通断表→真值表
 - 通→真→1→T
 - 断→假→0→F
 - 开关的通断对应事件的真假

A	Ā
真(1)	假(0)
假(0)	真(1)

• 真值表

\overline{A}	В	A V B	$A \wedge B$
1	1	1	1
1	0	1	0
0	1	1	0
0	0	0	0

- 楼梯上有一盏灯,如何设计电路使楼上、楼下均能自由开关?
 - 设楼下的开关为A,楼上的开关为B
 - 如果开关A, B已经接入电路并已达到要求,那么这个电路就是一个新的开关P

\overline{A}	В	P
1	1	1
1	0	0
0	1	0
0	0	1

В	Р
1	1
0	0
1	0
0	1
	1 0 1

• 由真值表知, $P = (A \land B) \lor (\overline{A} \land \overline{B})$

- 一个展览大厅有三个门,如何设计电路使三个门的任何一个均能自由开关 展览厅的灯?
- 设三个门处的开关分别为A,B和C,应如何设计电路才能达到预定的要求?

A	В	С	P
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	0

命题

• 命题: 命题是一个能判断真假的陈述句。

• 原子命题:不包含其他命题成分的命题称为简单命题。

• 复合命题:至少包含一个其他命题成分的命题称为复合命题。

• 支命题: 组成复合命题的那些命题称为支命题。

逻辑联结词

- 对把几个支命题联结起来构成复合命题的词项叫作逻辑联结词。
 - ·并且......
 - 并非……
 -或(者)......
 - 如果……那么……
 -当且仅当......
- 命题的真假
 - 简单命题的真假取决于它是否反映了客观世界
 - 复合命题的真假也是如此,但是复合命题是由其支命题组成的
 - 支命题的真假完全可以决定复合命题的真假

逻辑联结词

- p表示 "2是素数" , q表示 "3是偶数"
 - "2是素数并且3也是偶数"可以表示成 "p并且q"
- 在 "p并且q" 形式的复合命题中,只有当两个支命题p和q都真时, "p并且q" 才真,否则就是假。
 - 2是素数并且3也是素数(真命题)
 - 2是素数并且3也是偶数 (假命题)

例子

- 雪是白的。
- 雪是黑的。
- 好大的雪啊!
- 任何一个大偶数可以表示成两个素数之和。
- 太阳有第11颗行星。
- 2+2=5.
- 2是素数又是偶数。
- 陈胜吴广起义之日杭州下雨。
- 你上哪儿去?
- 这句话是假的。
- x+y<0

自然语言中的联结词

- 逻辑中的联结词可以用某种自然语言来表述,但绝不等同于任何一种自然语言中相关的词。
- 在汉语中说: "甲和乙有了孩子,并且结婚了"与说"甲和乙结婚了,并且有了孩子"含义有所不同。
- 在汉语里"并且"作为联结词,它联结的句子不仅有递进的意思还有时间 的先后顺序。但是逻辑中的联结词仅与真假值有关系。

联结词的符号表示

• 否定词 -: 对应于 "并非……"

合取词∧: 对应于 ".....并且....."

• 析取词V:对应于 ".....或者....."

蕴含词→: 对应于 "如果……那么……"

• 等价词↔: 对应于 "……当且仅当……"

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

符号化表示

- A当且仅当B。可表示为, $A \leftrightarrow B$
- $A \stackrel{\cdot}{=} B$ 。可表示为, $B \rightarrow A$
- A仅当B; 只有B才有A; 非B一定非A。均可表示为, $A \to B$
- A的充分必要条件是B。可表示为, $A \leftrightarrow B$
- A的充分条件是B。可表示为, $B \rightarrow A$
- A的必要条件是B。可表示为, $A \rightarrow B$

符号化表示

- 1、用p表示"今天是星期五" "今天不是星期五"可表示为, $\neg p$
- 2、用*p*表示"2是素数", *q*表示"2是偶数" "2是素数并且2也是偶数"可表示为, *p* ∧ *q*
- 3、用p表示"研一上组合数学课",q表示"研一上算法设计课" "研一或者上组合数学课,或者上算法设计课"可表示为, $p \vee q$
- 4、用p表示"明天下雨",q表示"我在家看书" "如果明天下雨,那么我在家看书"可表示为, $p \to q$
- 5、用p表示"你是大一新生",q表示"你能在寝室用电脑" "只有你不是大一新生,才能在寝室用电脑"可表示为, $(q \to \neg p)$
- 6、用p表示"三角形是等腰三角形",q表示"三角形中有两个角相等" "三角形是等腰三角形当且仅当三角形中有两个角相等"可表示为, $p \leftrightarrow q$