Generative Topographic Mapping(GTM) 특허 지도 및 머신러닝을 통한 공백 기술의 도출 및 평가: 탐색적 접근

서울과학기술대학교 일반대학원 데이터사이언스학과 이예빈

목차

- 01 서론
- 02 선행연구
- 03 연구 방법
- 04 실험 결과
- 05 결론

01 서론

■ 연구 배경

- 국가와 기업의 발전을 위해 기술 혁신을 계획할 때 가장 중요한 단계는 기술의 동향을 이해하고 유망한 기술이 무엇인지 파악하는 것임[7]
- 유망 기술은 국가와 기업, 산업, 사회적인 측면 모두에서 큰 관심거리임 [27]
 - 유망 기술에 대한 투자와 자원은 한정적인 데 반해 기술은 급격하게 변하고 있는 추세임 [7]
 - 따라서, 미래에 유망한 기술 영역을 먼저 발굴하고 해당 기술을 선험적으로 개발하는 것이 매우 중요하게 고려되고 있음 [1]
- 유망 기술에 대한 기존 연구는 특허를 기반으로 수행되어 왔음
 - 기술 혁신의 결과물인 특허 정보는 기술 동향을 분석하기 위한 대표적인 지표들 중 하나이며 기술의 확산을 관찰하고 평가하는 데 활용되고 있음 [3]
- 유망 기술 발굴은 예측 가능한 지표들을 기반으로 수행되어왔기 때문에 예측이 가능한 결과가 나올뿐 아니라 주로 주류 기술이 유망 기술로 발굴되는 경향이 있음
 - 그러나, 실제 산업현장에서는 주류 기술 뿐만 아니라 추후 개발 가능한 기술을 사전적으로 검토하고 발굴하는 것이 매우 중요함
 - 이러한 기술들은 공백 기술이라는 이름으로 연구되어 옴
 - ✓ 주로 공백 기술 발굴 연구는 2차원 공간에 각 특허를 맵핑한 특허 지도에서의 빈 공간을 공백으로 간주하고 이를 발굴하는 방식으로 수행되어 왔음 [4-6, 11, 14, 17-19, 21, 26, 28-30, 32, 33]

01 서론

▋ 연구 동기

- 특허 지도 기반 공백 기술 발굴 연구는 두 가지로 나눌 수 있음
 - ① 주관적 공백 발굴
 - 클러스터링 또는 주성분 분석(Principal Component Analysis; PCA)을 통해 차원을 축소하고 2차원 지도를 생성하는 방법
 - ✓ 기술 개발 현황을 밀도 있게 볼 수 있지만, 공백 영역을 발굴하는 데 있어 주관적인 판단에 의존해야 함 [28]
 - ② 객관적 공백 발굴
 - GTM(Generative Topographic Mapping; GTM)을 활용하여 지도를 생성하고 역맵핑을 통해 공백 기술을 발굴하는 방법
 - ✓ 공백 기술의 판단에 있어 주관적인 판단을 배제할 수 있음 [28]
 - ▶ 그러나, 기존 연구들은 공백에 대한 해석 및 유망성 예측 등 공백 발굴 이후의 사후적 분석은 미흡함 [1]
 - ▶ 유망성 평가를 제한적으로 시도한 일부 연구들은 주변 특허를 이용 [26] 하거나 기간별 특허 지도를 비교하였음 [6, 32, 33]

▋ 연구 목적

- 특허 기반 GTM 방법론을 활용하여 객관적 특허 지도를 생성하고 공백 기술 영역을 도출하고자 함
- 공백을 도출함에 그치지 않고, 도출된 공백 영역에 대해 키워드 기반, 지표 기반, 머신러닝 기반 유망성 평가를 통해 공백 영역의 유망성에 대해 종합적 비교 분석을 수행하고자 함
 - ✔ 특히, 머신러닝이 공백 기술의 유망성을 파악하는 데 실질적인 효과가 있는지 알아보고자 함

02 선행 연구

- 유망 기술 예측 (Forecasting Emerging Technologies)
 - 기술 예측은 각 분야에 따라 향후 필요한 기술에 대한 개념을 이끌어내는 작업임 [5]
 - 혁신을 위해서는 미래에 다가올 기회를 빠르게 포착하고 도전하는 것이 매우 중요하기 때문에 유망 기술 예측에 대한 연구들이 활발히 진행되어 옴 [35]
 - 특허를 기술을 대리할 수 있는 중요한 원천으로 보고 특허 데이터를 활용하여 유망 기술을 예측하고자 하는 연구들이 다수 진행되어 옴
 - 특허 데이터는 구조적 부분(특허 인용수, 특허 분류, 출원인 수 등)과 비구조적 부분(제목, 청구항, 초록, 설명 등)으로 나뉨 [22]
 - ✓ 특허의 구조적 데이터를 활용

선행 연구	설명
Cho and Shih, 2011	특허 인용 네트워크를 활용하여 빠르게 발전하는 기술에 대한 구조적 지표를 제시
Breitzman and Thomas, 2015	특허 인용 정보를 활용하여 새로운 기술을 파악하는 군집 분석 모델 제안
Lee et al., 2018	유망 기술의 특징별 특허 지표를 선정한 후 피인용 수를 예측하는 딥러닝 모델 제안
Kwon and Geum, 2020	축적된 기술지식의 품질을 고려하여 기계학습을 기반으로 핵심 특허를 예측하는 모델 제안

✓ 특허의 비구조적 데이터를 활용

선행 연구	설명
Yoon and Park, 2005	기술 기회를 포착하기 위한 키워드 기반 형태 분석 프레임워크 제안
Yoon and Kim, 2011	빠르게 진보하는 기술 트렌드 파악을 위한 SAO(Subject-Action-Object) 기반 분석 프레임워크 제안
Gerken and Moehrle, 2012	새로운 특허를 식별하기 위해 특허 사이의 거리를 계산하는데 텍스트 정보를 사용한 프레임워크 제안
Lee et al., 2015	텍스트 마이닝 기법으로 특허를 표현하고 LOF(Local Outlier Factor)를 활용하여 특허의 novelty 정도를 수량적으로 표현
Joung and Kim, 2017	새롭게 출현하는 기술 파악을 위한 기술 키워드 기반 특허 분석 프레임워크 제안
Chung and Sohn, 2020	특허의 텍스트 정보를 활용한 딥러닝 기반 특허 등급 평가 모델 제안

02 선행 연구

■ 특허 지도 (Patent Map)

- 특허 지도는 출원된 특허 정보를 가공하여 그 분석 결과를 그래프 등으로 시각화 한 것으로 실용적이고 직관적인 정보를 제공하기 때문에 전략 수립에 효과적임[23]
 - ✓ 그러나 현재 사용되는 분석 도구들은 특허 문서에 포함된 데이터의 요약과 단순한 시각화에 그침 [5]
- 특허 지도는 목적에 따라 technical patent map, management patent map, claim patent map 으로 구분됨 [32]
 - technical patent map (기술적 특허 지도): 핵심 기술을 이해하고 잠재적 기술을 식별, 전반적인 기술의 흐름 파악
 - management patent map (관리적 특허 지도) : 특정 기술의 추세를 파악, 경쟁자의 기술과 전략 파악, 신제품 아이디어 도출
 - claim patent map (청구항 특허 지도): 특허 갈등을 모니터링, 특허의 수명주기와 적용가능성을 평가
 - ✓ 기술적 특허 지도는 개발되지 않은 잠재 기술을 지도에서 파악하기 때문에 특허 공백을 발견하는데 유용함

■ 공백 기술 (Vacant Technology)

- 공백 기술은 하나의 기술 영역에서 해당 기술을 세부 기술 분야로 분류했을 때 다른 분야에 비해 상대적으로 연구와 개발이 제대로 이루어지고 있지 못한 세부 기술로 정의됨 [26]
- 공백 기술을 파악하기 위해 특허 지도를 생성하는 연구들은 대부분 특허를 벡터화 하여 2차원 지도상에 나타내는 방식을 활용함
 - SOM, PCA, GTM 등 다양한 방식이 활용되어 옴

02 선행 연구

■ 특허 지도를 활용한 공백 기술 추출

① 클러스터링 또는 주성분 분석(Principal Component Analysis; PCA)을 통해 차원을 축소하고 2차원 지도를 생성하는 방법

선행 연구	요약	분석 기법	공백 영역 평가 방식
Yoon et al., 2002	PCA와 SOM을 기반으로 특허 포트폴리오 생성	PCA + SOM	기간별 지도 생성 후 비교
Lee et al., 2009	특허 키워드를 기반으로 특허 지도를 생성하고 공백 영역에서 신기술 창출 가능성을 평가	PCA	공백 주변 특허를 전문가의 판단으로 검증
전성해 외, 2010	특허와 논문 데이터를 활용하여 개발이 취약한 기술을 찾아내는 방법론 제안	SOM + Matrix analysis	X
전성해, 2011	앙상블모형(통계적 기법+기계학습)을 활용한 공백 기술 예측 모형 구축	SVD-PCA + K-Means Clustering	기간별 지도 생성 후 피인용 수 비교
Kim et al., 2015	클러스터링을 통해 비어 있는 기술 군을 식별하고 각 클러스터별 키워드를 추출	K-Means Clustering + LDA	X
조우진 and 이성주, 2021	기간 별 특허 지도를 생성하고 발전한 기술과 그렇지 않은 기술의 차이를 평가	Clustering	기간별 지도 생성 후 지표 비교

② GTM(Generative Topographic Mapping; GTM)을 활용하여 지도를 생성하고 역맵핑을 통해 공백 기술을 발굴하는 방법

선행 연구	요약	분석 기법	공백 영역 평가 방식
Son et al., 2012	특허 공백을 식별하기 위해 GTM을 기반으로 한 특허 지도 개발	GTM	PCA, SOM 과 비교
Jeong & Yoon., 2011	특허 지도를 생성하고 공백인 영역의 역 맵핑 키워드 검색을 통해 필수 특허 식별	GTM	X
Cho et al., 2021	특허 지도를 생성한 후 공백 영역의 키워드를 추출함으로 기술 기회 발굴	GTM	X
Jeong & Yoon., 2013	표준 지도와 특허 지도를 구축한 뒤 두 가지를 비교함으로써 유망 기술 추출	GTM	표준 지도와 특허 지도 비교
Wu et al., 2018	표준 지도와 특허 지도를 구축한 뒤 두 지도 사이의 유사도를 통해 유망 특허 식별	GTM	표준 지도와 특허 지도 비교
Feng et al., 2021	LDA를 활용하여 비즈니스 모델 별 주제를 생성하고 GTM을 적용하여 역맵핑 결과를 해석	LDA + GTM	X
Teng et al., 2021	PCA로 차원 축소를 먼저 진행한 후 GTM 기반 특허 지도를 생성	PCA + GTM	전문가 판단
Jeong et al., 2015	특허 지도를 생성하고 Bass 모델로 새로운 특허의 출현을 예측하여 특허 로드맵 구축	GTM + Bass diffusion model	전문가 판단: 기술성, 시장성 지표
Yoon and Magee, 2018	특허 지도를 생성 후 공백 노드에 대한 link prediction을 수행하여 기술 기회 발굴	GTM + Link Prediction	기간별 지도 생성 후 연결 여부 비교

■ 연구 프레임워크

- ① 데이터 수집 및 전처리
 - 특허 텍스트 벡터화
 - title + abstract 사용

	keyword 1	keyword 2	keyword 3	 keyword n
patent 1				
patent 2				
patent 3				
į.				
patent m				

✓ 전처리 과정

- 소문자화, 영어가 아닌 문자 삭제
- 불용어 제거
- Lemmatize → 명사(NN, NNP)만 추출
- Term Frequency 기준 상위 5% 단어를 keyword로 지정
- 추출된 keyword 에서 추가 불용어 제거
- TF-IDF 행렬을 통해 patent-keyword matrix 구축

- ② 공백 영역 도출
 - 차원 축소

· GTM 공백 영역 벡터 도출 [26]

reverse mapping

	keyword 1	keyword 2	keyword 3	 keyword n
vacant 1				
vacant 2				
vacant 3				
÷				
vacant p				

■ ③ 공백 영역 유망성 평가

- 비교 집단 정의
 - 유망 특허 집단
 - ✓ 피인용 수(Forward Citation) 기준 상위 50개 특허를 유망 특허 집단으로 정의
 - 주변 특허 집단
 - ✓ 공백 영역 기준 한번에 도달할 수 있는 인접 특허를 주변 특허 집단으로 정의
- 공백 영역 역맵핑 결과로 공백에 대한 문장 생성

	keyword 1	keyword 2	keyword 3	•••	keyword n
vacant 1	$v_{1,1}$	$v_{1,2}$	$v_{1,3}$		$v_{1,n}$
vacant 2	$v_{2,1}$	$v_{2,2}$	$v_{2,3}$		$v_{2,n}$
vacant 3	$v_{3,1}$	$v_{3,2}$	$v_{3,3}$		$v_{3,n}$
i.	:	:	:	:	:
vacant p	$v_{p,1}$	$v_{p,2}$	$v_{p,3}$		$v_{p,n}$

③ 공백 영역 유망성 평가

- 키워드 기반 분석
 - 집단 내 출현 빈도 기준으로 15% 이상 등장한 키워드만 활용
 - 유사도 계산: $Similarity(A, B) = \frac{A \cap B}{A \cup B}$
 - ✓ 유망 특허 집단 키워드 vs. 공백 영역 키워드
 - ✓ 주변 특허 집단 키워드 vs. 공백 영역 키워드
- 지표 기반 분석
 - 유망 특허 집단 피인용 수, 주변 특허 집단 피인용 수 비교 분석
- 머신러닝 기반 분석
 - 공백 영역의 피인용 수(Forward Citation) 값을 예측

	patent text (title + abstract)	FC
patent 1		
patent 2		
patent 3		
:	:	
patent m		

	vacant text	FC
vacant 1	keyword 1 keyword 2 ··· keyword n	
vacant 2		
vacant 3		
:		
vacant k	:	

▶ 유망한 공백 영역 정의

■ ① 데이터 수집 및 전처리

- 데이터 수집
 - 데이터 출처: USPTO (https://www.uspto.gov/)
 - ✓ Health care 산업과 관련된 특허를 수집 (검색 키워드: 'healthcare')
 - ✔ G16H 의료 정보, 즉 의료 또는 건강 관리 데이터의 취급 또는 처리를 위해 특별히 채택 된 정보 및 통신 기술 [ICT]
 - ✓ 검색 조건 Patent office: US, Language: English, Status: Grant, Type: Patent
 - ✓ 수집 기간: 2010.01.01 ~ 2019.12.31 (10년)
 - ✓ 수집 항목: patent number, patent date, patent type, patent title, patent abstract, forward citation number, forward citation date
 - ▶ 총 6,832개의 특허 수집
- 데이터 전처리
 - 비구조적 정보 벡터화
 - ✓ 전처리 과정을 거쳐 Term frequency 기준 상위 5% keyword 선정 → 312개의 keyword (추가적인 불용어 제거 후: 308개)
 - ► 6832 * 308 patent-keyword matrix

② 공백 영역 도출

- 특허 벡터 차원 축소
 - Truncated SVD 사용: 70%의 설명력을 가지도록 feature 축소
 - \blacktriangleright (6832, 308) \rightarrow (6832, 138)
- 공백 영역 좌표 도출

	x1	x2		x1	x2		x1	x2
vacant 1	1.0000	1.0000	vacant 13	-0.0667	-0.0667	vacant 25	0.3333	-0.4667
vacant 2	0.0667	0.8667	vacant 14	0.0667	-0.0667	vacant 26	0.6000	-0.4667
vacant 3	1.0000	0.8667	vacant 15	-1.0000	-0.2000	vacant 27	0.7333	-0.4667
vacant 4	-0.3333	0.7333	vacant 16	-0.4666	-0.2000	vacant 28	0.8667	-0.4667
vacant 5	-0.2000	0.6000	vacant 17	-0.0667	-0.2000	vacant 29	-0.0667	-0.6000
vacant 6	-1.0000	0.2000	vacant 18	0.0667	-0.2000	vacant 30	0.0667	-0.6000
vacant 7	-0.3333	0.2000	vacant 19	-0.0667	-0.3333	vacant 31	0.7333	-0.6000
vacant 8	-0.4666	0.0667	vacant 20	0.2000	-0.3333	vacant 32	-0.0667	-0.7333
vacant 9	-0.3333	0.0667	vacant 21	0.6000	-0.3333	vacant 33	0.4667	-0.7333
vacant 10	-0.2000	0.0667	vacant 22	0.7333	-0.3333	vacant 34	0.6000	-0.7333
vacant 11	-1.0000	-0.0667	vacant 23	0.0667	-0.4667	vacant 35	-0.0667	-1.0000
vacant 12	-0.3333	-0.0667	vacant 24	0.2000	-0.4667			

② 공백 영역 도출

■ 역 맵핑을 통한 공백 영역 벡터 도출

vacant_number	access	accordance	account	acquisition	action	activity	adherence	administration	agent	alarm	alert	algorithm	amount	analysis	apparatus	application	area
vacant1	-0.001327367	-0.006431529	0.002929315	0.012216369	0.003905302	0.005058575	0.00378969	0.010199371	0.012538981	0.009441392	0.00792619	0.005147631	0.009316575	0.011258367	0.015400809	0.019224176	0.01278853
vacant2	0.004548112	-0.00044025	0.005281582	0.000920868	0.004130476	0.005378369	-0.002701362	-0.000122558	0.005141391	0.010012994	0.00385038	-0.002695709	0.004423129	0.00379465	0.008460965	0.040119492	0.006972951
vacant3	-0.002099948	-0.006429652	0.002081828	0.012198701	0.003260465	0.004218625	0.004281922	0.010333146	0.011821653	0.007877907	0.007372711	0.005654013	0.008683115	0.010751208	0.014162163	0.012752921	0.011768793
vacant4	0.006624222	0.002128608	0.005804831	-0.003930343	0.003858031	0.005034839	-0.005201703	-0.004469858	0.001560453	0.009363407	0.001786862	-0.005767527	0.00196342	0.000305622	0.004777933	0.045372332	0.003897014
vacant5	0.004902121	0.001275039	0.004500333	-0.002337238	0.003088932	0.004029247	-0.003712072	-0.00284273	0.001797245	0.007494975	0.001736465	-0.004068582	0.001938399	0.000792043	0.00435357	0.034992405	0.00356225
vacant6	0.008282338	0.00641463	0.004699979	-0.012057315	0.001899687	0.002502868	-0.008220891	-0.011403654	-0.006081419	0.004633488	-0.002943635	-0.009706215	-0.003614005	-0.006692792	-0.004250212	0.039031684	-0.003608597
vacant7	0.003533316	0.002136118	0.002414245	-0.004001029	0.001278197	0.001674408	-0.003232403	-0.003934654	-0.001309394	0.003108295	-0.000427469	-0.003741616	-0.000570897	-0.001723396	-0.000177578	0.019482457	-0.000182702
vacant8	0.003710254	0.002993441	0.002023767	-0.005629472	0.00075762	0.0010001	-0.003737569	-0.00529423	-0.002980841	0.001849758	-0.00148403	-0.004427795	-0.001812797	-0.003224137	-0.002230506	0.016919875	-0.001887413
vacant9	0.002760735	0.002137995	0.001566757	-0.004018698	0.000633359	0.000834458	-0.002740171	-0.003800878	-0.002026722	0.001544811	-0.000980948	-0.003235233	-0.001204358	-0.002230555	-0.001416224	0.013011202	-0.001202439
vacant10	0.001811216	0.00128255	0.001109748	-0.002407924	0.000509098	0.000668816	-0.001742772	-0.002307526	-0.001072603	0.001239864	-0.000477865	-0.002042671	-0.000595919	-0.001236974	-0.000601942	0.00910253	-0.000517466
vacant11	0.006736596	0.006418386	0.003004369	-0.012092665	0.000609528	0.000822337	-0.007236056	-0.011136002	-0.007516612	0.001505346	-0.004051008	-0.008693069	-0.004881401	-0.007707491	-0.006728432	0.026084319	-0.005648837
vacant12	0.001987574	0.002139874	0.000718634	-0.004036379	-1.20E-05	-6.12E-06	-0.002247569	-0.003667002	-0.002744587	-1.98E-05	-0.001534842	-0.002728471	-0.001838293	-0.002738095	-0.002655799	0.006535092	-0.002222942
vacant13	8.85E-05	0.000428983	-0.000195385	-0.000814832	-0.000260484	-0.000337407	-0.000252772	-0.000680298	-0.00083635	-0.000629741	-0.000528677	-0.000343347	-0.000621416	-0.000750933	-0.001027234	-0.001282253	-0.000852995
vacant14	-0.000861696	-0.000427104	-0.000652738	0.00079715	-0.000384838	-0.000503173	0.000745374	0.000814174	0.000118484	-0.000934917	-2.52E-05	0.00085011	-1.25E-05	0.000243393	-0.000212341	-0.005193857	-0.000167508
vacant15	0.005964014	0.006420263	0.002156881	-0.012110333	-3.53E-05	-1.76E-05	-0.006743824	-0.011002226	-0.00823394	-5.81E-05	-0.004604487	-0.008186687	-0.005514862	-0.008214651	-0.007967077	0.019613064	-0.006668575
vacant16	0.002164512	0.002997197	0.000328156	-0.005664821	-0.000532539	-0.000680431	-0.002752734	-0.005026578	-0.004416034	-0.001278384	-0.002591403	-0.00341465	-0.003080193	-0.004238836	-0.004708726	0.00397251	-0.003927653
vacant17	-0.000684046	0.00043086	-0.001042873	-0.0008325	-0.000905321	-0.001177357	0.00023946	-0.000546522	-0.001553677	-0.002193225	-0.001082156	0.000163036	-0.001254876	-0.001258092	-0.002265879	-0.007753508	-0.001872733
vacant18	-0.001634278	-0.000425227	-0.001500225	0.000779482	-0.001029675	-0.001343124	0.001237607	0.00094795	-0.000598843	-0.002498401	-0.000578696	0.001356492	-0.000645981	-0.000263766	-0.001450986	-0.011665112	-0.001187245
vacant19	-0.001456627	0.000432738	-0.00189036	-0.000850168	-0.001550159	-0.002017308	0.000731693	-0.000412746	-0.002271005	-0.00375671	-0.001635634	0.000669418	-0.001888337	-0.001765252	-0.003504525	-0.014224763	-0.00289247
vacant20	-0.003356378	-0.001278795	-0.002804723	0.002372587	-0.001798773	-0.002348716	0.002727237	0.002575078	-0.000362052	-0.004366833	-0.000629092	0.003055437	-0.000671002	0.000222656	-0.001875349	-0.02204504	-0.001522009
vacant21	-0.006205649	-0.003845774	-0.004176095	0.007206117	-0.002171649	-0.002845767	0.00572018	0.007056254	0.00250102	-0.005281903	0.000880532	0.006634017	0.001154771	0.003204144	0.000568108	-0.03377399	0.000533425
vacant22	-0.007155168	-0.004701219	-0.004633105	0.008816891	-0.00229591	-0.003011409	0.006717578	0.008549606	0.003455139	-0.00558685	0.001383614	0.007826579	0.00176321	0.004197725	0.001382391	-0.037682662	0.001218398
vacant23	-0.00318002	-0.000421471	-0.003195836	0.000744132	-0.002319834	-0.003023654	0.002222441	0.001215602	-0.002034036	-0.005626543	-0.001686069	0.002369638	-0.001913377	-0.001278465	-0.003929206	-0.024612477	-0.003227486
vacant24	-0.004129539	-0.001276917	-0.003652846	0.002354906	-0.002444095	-0.003189297	0.003219839	0.002708954	-0.001079917	-0.00593149	-0.001182986	0.003562199	-0.001304938	-0.000284884	-0.003114924	-0.02852115	-0.002542512
vacant25	-0.005079059	-0.002132362	-0.004109856	0.00396568	-0.002568355	-0.003354939	0.004217237	0.004202306	-0.000125799	-0.006236438	-0.000679904	0.004754761	-0.000696499	0.000708697	-0.002300642	-0.032429822	-0.001857539
vacant26	-0.00697881	-0.003843895	-0.005024218	0.007188435	-0.00281697	-0.003686347	0.006212782	0.00719013	0.001783155	-0.006846561	0.000326638	0.00714078	0.000520835	0.002696605	-0.000671466	-0.040250099	-0.000487078
vacant27	-0.007928329	-0.004699341	-0.005481228	0.008799209	-0.002941231	-0.00385199	0.00721018	0.008683482	0.002737273	-0.007151508	0.00082972	0.008333341	0.001129274	0.003690186	0.000142816	-0.044158772	0.000197896
vacant28	-0.008878561	-0.005555428	-0.00593858	0.010411191	-0.003065585	-0.004017756	0.008208327	0.010177954	0.003692108	-0.007456683	0.00133318	0.009526798	0.00173817	0.004684512	0.000957709	-0.048070376	0.000883383
vacant29	-0.00300237	0.000436494	-0.003585971	-0.000885518	-0.002840318	-0.003697838	0.001716527	-0.000145094	-0.003706198	-0.006884852	-0.002743007	0.001682564	-0.003155733	-0.002779951	-0.005982745	-0.027172128	-0.004932711
vacant30	-0.003952601	-0.000419594	-0.004043324	0.000726464	-0.002964672	-0.003863605	0.002714674	0.001349378	-0.002751363	-0.007190028	-0.002239547	0.00287602	-0.002546838	-0.001785624	-0.005167852	-0.031083732	-0.004247223
vacant31	-0.008700911	-0.004697463	-0.006328715	0.008781541	-0.003586068	-0.00469194	0.007702413	0.008817258	0.002019946	-0.008714992	0.000276242	0.008839724	0.000495814	0.003183026	-0.00109583	-0.050630027	-0.000821842
vacant32	-0.003774951	0.000438371	-0.004433459	-0.000903187	-0.003485155	-0.004537789	0.00220876	-1.13E-05	-0.004423525	-0.008448337	-0.003296486	0.002188946	-0.003789193	-0.00328711	-0.007221391	-0.033643383	-0.005952448
vacant33	-0.007574453	-0.002984695	-0.006262183	0.005542325	-0.003982385	-0.005200606	0.006199849	0.00596433	-0.000605619	-0.009668583	-0.001283402	0.006960983	-0.001354525	0.000688705	-0.00396304	-0.049283937	-0.003211527
vacant34	-0.008523973	-0.00384014	-0.006719193	0.007153099	-0.004106645	-0.005366248	0.007197247	0.007457682	0.0003485	-0.00997353	-0.00078032	0.008153545	-0.000746086	0.001682286	-0.003148757	-0.053192609	-0.002526553
vacant35	-0.005320693	0.000442127	-0.006129069	-0.000938537	-0.004775314	-0.006218319	0.003193594	0.000256334	-0.005858718	-0.011576479	-0.004403859	0.003202092	-0.00505659	-0.004301809	-0.009699611	-0.046590747	-0.007992689

- ② 공백 영역 도출
 - 공백 정의
 - 도출된 공백 영역 하나하나를 vacant, 인접 공백 영역을 하나로 묶은 집단을 VA(Vacant Area)로 정의

공백 영역 (Vacant Area) 구분

- VA1 vacant 1, vacant 3
- VA2 vacant 2
- VA3 vacant 4, vacant 5
- VA4 vacant 6
- VA5 vacant 7, vacant 8, vacant 9, vacant 10, vacant 12, vacant 13, vacant 14, vacant 16, vacant 17, vacant 18, vacant 19
- VA6 vacant 11, vacant 15
- VA7 vacant 20, vacant 23, vacant 24, vacant 25, vacant 29, vacant 30, vacant 32
- VA8 vacant 21, vacant 22, vacant 26, vacant 27, vacant 28, vacant 31
- VA9 vacant 33, vacant 34
- VA10 vacant 35

- ③ 공백 영역 유망성 평가
 - 피인용 수 분포

count mean std min 25% 50%	6832.000000 2.194672 10.407135 0.000000 0.000000
50%	0.000000
75%	1.000000
max	303.000000

피인용 수	특허 수
0	4,595
1	800
2	399
3	214
4	138
5 이상	686
합계	6,832
3 4 5 이상	214 138 686

- 특허의 출원연도를 기준으로 5년 이내 피인용수만 활용
- 피인용수가 50 이상(상위 50개)인 특허를 유망 특허, 나머지를 유망하지 않은 특허로 정의

피인용 수	유망하지 않은 특허 (0)	유망 특허 (1)
씌인공 구	6,782 개 (99.27%)	50 개 (0.73%)

■ ③ 공백 영역 유망성 평가

- 키워드 기반 분석
 - system, method, device, patient, information 은 범용적으로 나타나는 단어임

	키워드	설명
유망 특허 (상위 50개)	system, device, method, patient, information, time, user, processor, sensor, interface, location, monitor, instruction, memory, display, computer	대상의 측정, 검사와 관련된 기술
VA 1 주변 특허 (134개)	image, method, system, device, information, processing, patient, plurality, display	이미지 송출과 관련된 기술
VA 2 주변 특허 (19개)	unit, information, method, system, application, measurement, processing, apparatus, time, device, display, user, health, program, part, request, response, server, computer, collection, parameter, care, classification, period, acquisition, communication, process	부품, 단위, 측정과 관련된 기술
VA 3 주변 특허 (32개)	sensor , method, application , system, patient, device, apparatus , computer, monitoring , plurality, time, condition, record, user, unit, embodiment, information, parameter, processor, control, function, measurement	대상의 모니터링과 관련된 소프트웨어, 하드웨어 기술
VA 4 주변 특허 (44개)	information, system, method, user, device, apparatus, computer, embodiment, interface, identification, plurality, processing, processor, program, medium, unit	정보를 전달하는 기기에 사용되는 기술
VA 5 주변 특허 (84개)	sensor, device, system, method, event, information, monitoring, patient, user, condition, apparatus, example, drug, communication, health, plurality	대상을 모니터하고 투약을 결정하는 기술
VA 6 주변 특허 (33개)	medication, information, system, method, device, patient, container, prescription, computer, access, identification, plurality, storage, user, time, process, machine, monitoring, image, apparatus	약물, 투약, 처방 등에 관한 기술
VA 7 주변 특허 (73개)	event, method, system, patient, information, device, risk, time, treatment, plurality, monitoring, embodiment, detection	구체적인 질병 case를 포착하는 기술
VA 8 주변 특허 (28개)	method, patient, system, blood, model, event, image, computer, flow, measurement, vessel, device, information, response, treatment, plurality, interest, measure, level	혈액 검사와 같은 검사 방법 관련 기술
VA 9 주변 특허 (29개)	patient, risk, method, system, model, health, plurality, care, condition, event, level, management, record, machine, disease, monitoring, score, determine, time, prediction, information, computer, assessment	환자의 위험관리, 처방, 진단과 관련된 기술
VA 10 주변 특허 (10개)	risk, treatment, method, patient, system, assessment, blood, device, level, monitoring, term, condition, invention, assistance, control, platform, recommendation, technique, time, decision, probability, result, embodiment, marker, sample, use, combination, diagnosis	진단과 치료를 결정하는 데 도움을 주는 기술

- ③ 공백 영역 유망성 평가
 - 키워드 기반 분석

공백 영역	유망 특허 집단과의 유사도	주변 특허 집단과의 유사도
VA 1	0.0432	0.0217
VA 2	0.0632	0.0853
VA 3	0.0645	0.0773
VA 4	0.0777	0.0673
VA 5	0.0519	0.0519
VA 6	0.0976	0.1190
VA 7	0.0339	0.0465
VA 8	0.0345	0.0565
VA 9	0.0264	0.0833
VA 10	0.0000	0.1475

전체적으로 낮은 유사도를 보이지만 이는 공백 영역 키워드 문장이 실제 공백에서 추출된 것이 아니라 가상으로 생성되었기 때문임

- VA 6 ▶ 유망 특허와 비슷하며 주변 특허와도 비슷한 영역
 - ✓ 유망 특허와 유사도가 가장 높음
 - ✓ 주변 특허와 유사도는 두번째로 높음
- VA 10
 - ✓ 주변 특허와 유사도가 가장 높지만 유망 특허와 전혀 유사하지 않음
- VA 2
 - ✓ 유망 특허와 유사도가 네번째로 높음
 - ✓ 주변 특허와의 유사도 또한 세번째로 높음
- VA 3
 - ✓ 유망 특허와 유사도가 세번째로 높음
 - ✓ 주변 특허와의 유사도는 보통 정도임 (5번째로 높음)
- VA 4
 - ✔ 유망 특허와 유사도가 두번째로 높으나 주변 특허와는 유사도가 낮은 편임 (6번째로 높음)

- ③ 공백 영역 유망성 평가
 - 지표 기반 분석
 - 피인용 수 분포

	Mean	Std	Min	0.25	0.50	0.75	Max
유망특허(상위 50개)	94.18	61.94	50.00	54.00	67.00	114.25	303.00
VA 1 주변 특허 (134개)	0.91	2.56	0.00	0.00	0.00	1.00	21.00
VA 2 주변 특허 (19개)	1.11	2.85	0.00	0.00	0.00	0.00	10.00
VA 3 주변 특허 (32개)	2.69	5.77	0.00	0.00	0.00	1.00	18.00
VA 4 주변 특허 (44개)	0.55	1.34	0.00	0.00	0.00	0.00	7.00
VA 5 주변 특허 (84개)	1.81	5.23	0.00	0.00	0.00	1.00	31.00
VA 6 주변 특허 (33개)	0.94	2.25	0.00	0.00	0.00	1.00	12.00
VA 7 주변 특허 (73개)	1.82	6.78	0.00	0.00	0.00	1.00	55.00
VA 8 주변 특허 (28개)	4.86	13.22	0.00	0.00	1.00	1.25	52.00
VA 9 주변 특허 (29개)	2.83	10.35	0.00	0.00	0.00	0.00	55.00
VA 10 주변 특허 (10개)	0.90	1.66	0.00	0.00	0.00	0.75	4.00

• VA 8

- ✓ 주변 특허의 피인용 수가 가장 높음
- ✓ 그러나, VA 8은 주변 특허와의 키워드 유사도는 낮은 편임 (10개의 공백 영역 중 6번째로 높음)
- VA 7, VA 9
 - ✓ 피인용 수가 극단적으로 높은 이상치 특허가 존재함

③ 공백 영역 유망성 평가

- 머신러닝 기반 분석
 - 전체 특허 수: 6,832개
 - ✓ train 전체 특허 벡터의 70% 를 train set 으로 설정 → 4,782개
 - ✓ validation 전체 특허 벡터의 30% 를 validation set 으로 설정 → 2,050개
 - train set 에 대해 SMOTE (k=3) 를 사용하여 oversampling 진행

4000 -					
3000 -					
2000 -					
1000 -					
0.0	0.2	0.4	0.6	0.8	1.0

train set	0 (Non-promising)	1 (Promising)
(4,782)	4,745	37
validation set	0 (Non-promising)	1 (Promising)

train set	0 (Non-promising)	1 (Promising)
(4,782)	4,745	4,745
validation set	0 (Non-promising)	1 (Promising)
(2,050)	2,037	13

- ③ 공백 영역 유망성 평가
 - 머신러닝 기반 분석
 - 모델 학습

		Accuracy	Precision	Recall	F1-score	AUROC
Logistic Pagrassian	비유망	0.7766	0.9950	0.7791	0.8739	0.5819
Logistic Regression	유망	0.7766	0.0110	0.3846	0.0214	0.5619
Naïve Bayes	비유망	0.8902	0.9940	0.8949	0.9419	0.5244
Naive Dayes	유망		0.0093	0.1538	0.0175	0.5244
Support Vector Machine	비유망	0.9927	0.9937	0.9990	0.9963	0.4995
Support vector Macrille	유망	0.9927	0.0000	0.0000	0.0000	0.4995
BERT	비유망	0,9932	0.9937	0.9995	0.9966	0.4998
DERT	유망	0.9932	0.0000	0.0000	0.0000	0.4336

- 전체적인 정확도는 높은 편이지만 유망한 것을 유망하다고 예측하는 성능이 현저히 떨어짐 (오버샘플링에서 발생된 과적합)
- 정확도 기준으로 보았을 때, 딥러닝 기반 모델인 BERT가 가장 높은 정확도를 띄지만, 검증 데이터가 불균형하기 때문에 좋은 성능이라고 할 수 없음
- AUROC 기준으로 보았을 때, Logistic Regression이 가장 높은 값을 보이지만, 이는 random 하게 예측하는 값인 0.5와 별로 큰 차이가 나지 않음
- ▶ 일반적으로 유망 기술의 분석에서는 텍스트 문서 뿐만 아니라 출원인, 패밀리 특허 수, 청구항 특징 등을 종합적으로 활용
- ▶ 근본적으로 공백 영역의 문장은 GTM 역맵핑 결과를 이용하여 가상으로 생성된 문장이기 때문에 주요한 키워드만 포함되어 있으나 유망 특허 집단의 문장은 실제 해당 특허로부터 도출되었기 때문에 전체 키워드를 포함하고 있음. 따라서, 이 두 가지를 사용하여 공백의 유망성을 예측하기에 한계가 있음

■ ③ 공백 영역 유망성 평가

- 머신러닝 기반 분석
 - 유망 예측 공백 영역
 - Logistic Regression
 - ✓ VA 3 vacant 4
 - ✓ VA 4 vacant 6
 - ✓ VA 5 vacant 7, vacant 8, vacant 9, vacant 10, vacant 12, vacant 13, vacant 16, vacant 17
 - ✓ VA 6 vacant 11 , vacant 15
 - Naïve Bayes: 35개의 공백 영역 모두 유망하지 않다 예측
 - SVM: 35개의 공백 영역 모두 유망하지 않다 예측
 - BERT
 - ✓ VA 3 vacant 5
 - ✓ VA 5 vacant 9, vacant 10, vacant 12
 - ✓ VA 7 vacant 24, vacant 29
 - ✓ VA 8 vacant 22, vacant 31
 - ▶ VA 3과 VA 5는 비슷한 키워드 분포를 가지고 있음 (sensor가 상위에 위치함)
 - ▶ 유망 특허와 유사도가 높은 VA 6이 유망하다고 예측됨
 - ▶ 주변 특허의 피인용 수가 높은 VA 8 또한 유망하다고 예측됨

- ③ 공백 영역 유망성 평가
 - 분석 결과 비교

	분석 결과
키워드 기반 분석	유망 특허와 유사도가 높은 영역 - VA 6, VA 4, VA 3, VA 2, VA 5 주변 특허와 유사도가 높은 영역 - VA 10, VA 6, VA 2, VA 9, VA 3
지표 기반 분석	주변 특허의 피인용 수가 높은 영역 - VA 8, VA 9, <mark>VA 3</mark> , VA 7, <mark>VA 5</mark>
머신러닝 기반 분석	Logistic Regression 유망 예측 영역 - VA 3, VA 4, VA 5, VA 6 BERT 유망 예측 영역 - VA 3, VA 5, VA 7, VA8

- 전체적으로 등장한 VA 3과 VA 5는 두 영역의 주변 특허의 키워드의 분포가 비슷하며 이 영역에서 등장하는 키워드들은 유망 특허 집단의 키워드에서도 등장함을 알 수 있음
- VA 3 주변 특허 집단: sensor, method, application, system, patient, device, apparatus, computer, monitoring, plurality, time, condition, record, user, unit, embodiment, information, parameter, processor, control, function, measurement
- VA 5 주변 특허 집단: sensor, device, system, method, event, information, monitoring, patient, user, condition, apparatus, example, drug, communication, health, plurality

- ③ 공백 영역 유망성 평가
 - 분석 결과 비교
 - VA 3 주변 특허 예시

특허번호	제목
8667290	Efficient, high volume digital signature system for medical and business applications
9173567	Triggering user queries based on sensor inputs
9339193	Physiological adaptability system with multiple sensors
10172593	Pregnancy state monitoring
10182763	Intelligent assistive mobility device

- ▶ 센서를 통해 환자의 상태를 파악하고 입력 값을 다양화하거나, 사용자들의 질의응답을 자동화 시켜 헬스케어 시스템의 효율성을 높이는 소프트웨어 및 하드웨어 전반에 대한 기술
- VA 5 주변 특허 예시

특허 번호	제목
9412369	Automated adverse drug event alerts
10582881	Sensor system and method for determining a breathing type
10950335	Health tracking device
11076932	Wireless sensor and monitored patient association system and method
11185281	System and method for delivering sensory stimulation to a user based on a sleep architecture model

▶ 체계적으로 환자 투약 및 건강정보를 모니터링 하고 이를 바탕으로 의료기관에 자동 연계하여 위험을 감지하는 서비스 및 기술

05 결론

■ 연구 요약

■ GTM 특허 지도를 통해 공백 기술 영역을 발굴하고 해당 공백 기술 영역이 유망한지 그렇지 않은지에 대한 평가를 통해 추후 개발이 필요한 기술 영역을 제시함

■ 연구 의의

- 공백 추출에 초점을 맞춘 이전 연구에서 더 나아가 공백의 유망성을 평가함
 - 공백의 유망성 평가를 제한적으로 시도한 이전 연구들은 전문가의 판단과 같은 정성적인 방법 또는 주변 특허의 지표 활용 및 기간별 지도 비교를 수행함
 - 본 연구에서는 GTM 역맵핑 결과를 가지고 키워드 기반 분석, 지표 기반 분석, 머신러닝 기반 분석을 통해 종합적인 평가를 수행함
- 이를 통해, 잠재적 기술 기회를 발굴함에 있어 중요한 시사점을 제공할 수 있음

■ 연구 한계

- 특정 산업을 중심으로 진행되기 때문에 추후 방법론의 적용 범위를 넓히는 것이 필요함
- 특허 벡터는 희소 행렬(Sparse matrix) 이기 때문에 차원 축소 시 정보의 손실이 존재함
 - 본 연구에서는 Truncated SVD 를 활용하여 차원 축소를 진행함
 - 추후 정보의 손실을 최소화 할 수 있는 방법을 고안하는 것이 필요함
- 특허의 피인용수가 높은 기술이 유망하다고 가정하고 분석함
 - 기술의 유망성을 평가하는 데에는 다양한 지표가 활용될 수 있기 때문에 추후 이를 반영한 심층적인 분석을 할 수 있음
- 예측된 유망 공백 영역에 대한 검증이 부족함
 - 머신러닝 모델을 사용하였지만 모델의 성능이 높지 않음
 - 제한된 정보로 인해 임의로 생성된 문장에 대한 예측 결과이기 때문임, 추후 이를 극복할 방안을 고려하는 것이 필요함

참고문헌

- [1] 김혜인, 박인채, 윤병운. (2017). 특허분석을 통한 ICT 분야 공백기술영역 도출 방법론 개발. 대한산업공학회 춘계공동학술대회 논문집, 2703-2733.
- [2] 안세희. (2022). "글로벌 헬스케어 서비스 시장 동향과 주요 핵심 기술/제도이슈", 한국바이오경제연구센터, 제 140호, p.1-2.
- [3] 전상규. (2021). 특허 네트워크 분석을 통한 기술융합 및 융합기술의 확산 연구-디지털 데이터 처리 기술 중심으로. 지식재산연구, 16(4), 161-202.
- [4] 전성해, 박상성, 신영근, 장동식, 정호석. (2010). 자기조직화지도와 매트릭스분석을 이용한 특허분석시스템의 공백기술 예측. 한국콘텐츠학회논문지, 10(2), 462-480.
- [5] 전성해. (2011). 앙상블모형을 이용한 공백기술예측. 한국지능시스템학회 논문지, 21(3), 341-346.
- [6] 조우진, 이성주. (2021). 기술의 발전가능성 판단을 위한 클러스터 기반 유망기술 추출 연구. 대한산업공학회 추계학술대회 논문집, 633-638.
- [7] Kwon, U., & Geum, Y. (2020). Identification of promising inventions considering the quality of knowledge accumulation: A machine learning approach. Scientometrics, 125(3), 1877-1897.
- [8] Bishop, C. M., & Svensén, M. C. K. I. Williams. (1998). GTM: the generative topographic mapping. Neural Computing and Application, 10(1), 215-234.
- [9] Breitzman, A., & Thomas, P. (2015). The emerging clusters model: a tool for identifying emerging technologies across multiple patent systems. Research policy, 44(1), 195-205.
- [10] Cho, T. S., & Shih, H. Y. (2011). Patent citation network analysis of core and emerging technologies in Taiwan: 1997–2008. Scientometrics, 89(3), 795-811.
- [11] Cho, Y., Han, Y. J., Hwang, J., Yu, J., Kim, S., Lee, C., Lee, S., & Yi, K. P. (2021). Identifying Technology Opportunities for Electric Motors of Railway Vehicles with Patent Analysis. Sustainability, 13(5):2424.
- [12] Chung, P., & Sohn, S. Y. (2020). Early detection of valuable patents using a deep learning model: Case of semiconductor industry. Technological Forecasting and Social Change, 158, 120146.
- [13] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the Association for Information Science and Technology, 41, 391-407.
- [14] Feng, J., Liu, Z., & Feng, L. (2021). Identifying opportunities for sustainable business models in manufacturing: Application of patent analysis and generative topographic mapping. Sustainable production and consumption, 27, 509-522.
- [15] Gerken, J. M., & Moehrle, M. G. (2012). A new instrument for technology monitoring: novelty in patents measured by semantic patent analysis. Scientometrics, 91(3), 645-670.
- [16] Global Industry Analysts (2020), "Digital Health: Global Market Trajectory&Analytics," accessed on June 9.
- [17] Jeong, S., & Yoon, B. (2011). Exploring an essential patent through a GTM-based standard map. First International Technology Management Conference, 723-730.
- [18] Jeong, S., & Yoon, B. (2013). A Systemic Approach to Exploring an Essential Patent Linking Standard and Patent Maps: Application of Generative Topographic Mapping (GTM). Engineering Management Journal, 25:1, 48-57.
- [19] Jeong, Y., Lee, K., Yoon, B., & Phaal, R. (2015). Development of a patent roadmap through the Generative Topographic Mapping and Bass diffusion model. Journal of Engineering and Technology Management, 38, 53-70.
- [20] Joung, J., & Kim, K. (2017). Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data. Technological Forecasting and Social Change, 114, 281-292.
- [21] Kim, G., Park, S. S., & Jang, D. (2015). Technology Forecasting using Topic-Based Patent Analysis. Journal of Scientific & Industrial Research, 74, 265-270.
- [22] Kim, J., & Lee, C. (2017). Novelty-focused weak signal detection in futuristic data: Assessing the rarity and paradigm unrelatedness of signals. Technological Forecasting and Social Change, 120, 59-76.

Reference

- [23] Kim, Y., Suh, J., & Park, S. (2008). Visualization of patent analysis for emerging technology. Expert Systems with Applications, 34(3), 1804-1812.
- [24] Lee, C., Kang, B., & Shin, J. (2015). Novelty-focused patent mapping for technology opportunity analysis. Technological Forecasting and Social Change, 90, 355-365.
- [25] Lee, C., Kwon, O., Kim, M., & Kwon, D. (2018). Early identification of emerging technologies: A machine learning approach using multiple patent indicators. Technological Forecasting and Social Change, 127, 291-303.
- [26] Lee, S., Yoon, B., & Park, Y. (2009). An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation, 29(6-7), 481-497.
- [27] Rotolo, D., Hicks, D., & Martin, B. R. (2015). What is an emerging technology?. Research policy, 44(10), 1827-1843.
- [28] Son, C., Suh, Y., Jeon, J., & Park, Y. (2012). Development of a GTM-based patent map for identifying patent vacuums. Expert Systems with Applications, 39(3), 2489-2500.
- [29] Teng, F., Sun, Y., Chen, F., Qin, A., & Zhang, Q. (2021). Technology opportunity discovery of proton exchange membrane fuel cells based on generative topographic mapping. Technological Forecasting and Social Change, 169, 120859.
- [30] Wu, F., Mi, L., Li, X., Huang, L., & Tong, Y. (2018). Identifying potential standard essential patents based on text mining and generative topographic mapping. 2018 IEEE International Symposium on Innovation and Entrepreneurship (TEMS-ISIE), 1-9.
- [31] Yoon, B., & Park, Y. (2005). A systematic approach for identifying technology opportunities: Keyword-based morphology analysis. Technological Forecasting and Social Change, 72(2), 145-160.
- [32] Yoon, B., Yoon, C., & Park, Y. (2002). On the development and application of a self-organizing feature map-based patent map. R&D Management, 32(4), 291-300.
- [33] Yoon, B., & Magee, Christopher L. (2018). Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction. Technological Forecasting and Social Change, 132, 105-117.
- [34] Yoon, J., & Kim, K. (2011). Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks. Scientometrics, 88(1), 213-228.
- [35] Zhu. D, & Porter, A.L. (2002). Automated extraction and visualization of information for technological intelligence and forecasting. Technological Forecasting and Social Change, 69, 495–506.