第十节 运输问题

- 产销平衡运输问题的数学模型
 - 产销平衡运输问题的表上作业法
 - 产销不平衡的运输问题

销地产地	B_1	B_2	• • •	B_n	产量
A_1	c_{11} \bar{x}_{11}	$c_{12}^{x_{12}}$	• • •	c_{1n} x_{1n}	a_1
A_2	c_{21} x_{21}	c_{22} x_{22}	• • •	C_{2n} x_{2n}	a_2
•	• • •	• • •	• • •	• • •	•
A_m	C_{m1} X_{m1}	C_{m2} x_{m2}	• • •	C_{mn} X_{mn}	a_m
销量	b_1	b_2	• • •	b_n	

问: 应怎样调运货物才能使总运费最小?

变量个数: m×n

约束个数: m+n

设
$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$

$$\min S = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}
x_{11} + x_{12} + \dots + x_{1n} = a_{1}
x_{21} + x_{22} + \dots + x_{2n} = a_{2}
x_{m1} + x_{m2} + \dots + x_{mn} = a_{m}
x_{11} + x_{21} + \dots + x_{m1} = b_{1}
x_{12} + x_{22} + \dots + x_{m2} = b_{2}
x_{1n} + x_{2n} + \dots + x_{mn} = b_{n}
x_{ij} \ge 0$$

 $-X = (x_{11}, x_{12}, \dots, x_{1n}, x_{21}, x_{22}, \dots, x_{2n}, \dots, x_{m1}, x_{m2}, \dots, x_{mn})^{T}$

$$(P)\min S = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\begin{cases} x_{11} + x_{12} + \dots + x_{1n} = a_1 \\ x_{21} + x_{22} + \dots + x_{2n} = a_2 \\ x_{m1} + x_{m2} + \dots + x_{mn} = a_m \\ x_{11} + x_{21} + \dots + x_{m1} = b_1 \\ x_{12} + x_{22} + \dots + x_{m2} = b_2 \\ x_{1n} + x_{2n} + \dots + x_{mn} = b_n \\ x_{ij} \ge 0 \end{cases}$$

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

行数: m+n 列数: $m\times n$

可以求得:R(A) = m + n - 1, 即AX = b中 所以(P)基本可行解中基

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

 $x_{11} + x_{12} + \cdots + x_{1n} = a_1$ $x_{21} + x_{22} + \cdots + x_{2n} = a_2$ $x_{m1} + x_{m2} + \cdots + x_{mn} = a_m$ $x_{11} + x_{21} + \cdots + x_{m1} = b_1$ $x_{12} + x_{22} + \cdots + x_{m2} = b_2$ $x_{1n} + x_{2n} + \cdots + x_{mn} = b_n$ $x_{ii} \ge 0$ AX = b

$$(P)\min S = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\begin{cases} x_{11} + x_{12} + \dots + x_{1n} = a_1 & u_1 \\ x_{21} + x_{22} + \dots + x_{2n} = a_2 & u_2 \\ x_{m1} + x_{m2} + \dots + x_{mn} = a_m & u_m \\ x_{11} + x_{21} + \dots + x_{m1} = b_1 & v_1 \\ x_{12} + x_{22} + \dots + x_{m2} = b_2 & v_2 \\ x_{1n} + x_{2n} + \dots + x_{mn} = b_n & v_n \\ x_{ij} \ge 0 \end{cases}$$

$$(P) \min S = CX$$

$$(D) \text{ In the equation of the problem of the equation of the problem o$$

$$AX = b$$

$$X \ge 0$$

$$(D)\max Z = \lambda b$$

$$\lambda A \le C$$

$$\lambda = (u_1, u_2, \dots, u_m, v_1, v_2, \dots, v_n)$$

 $|u_i + v_j \le c_{ij}|$

 $j=1,2,\cdots,n$

 $i=1,2,\cdots,m$

 $\max Z = \lambda b$ $\lambda A \le C$

$$X = (x_{11}, x_{12}, \dots, x_{1n}, x_{21}, x_{22}, \dots, x_{2n}, \dots, x_{m1}, x_{m2}, \dots, x_{mn})$$

$$C = (c_{11}, c_{12}, \dots, c_{1n}, c_{21}, c_{22}, \dots, c_{2n}, \dots, c_{m1}, c_{m2}, \dots, c_{mn})$$

$$\lambda = (u_1, u_2, \dots, u_m, v_1, v_2, \dots, v_n)$$

, /	,											
	(1)	1	•••	1								
					1	1	•••	1				
	0								1	1	•••	1
=	1				1				1			
	1	1				1				1		
				1				1				1
	•											

$$(P)\min S = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\begin{cases} x_{11} + x_{12} + \dots + x_{1n} = a_1 & u_1 \\ x_{21} + x_{22} + \dots + x_{2n} = a_2 & u_2 \\ x_{m1} + x_{m2} + \dots + x_{mn} = a_m & u_m \\ x_{11} + x_{21} + \dots + x_{m1} = b_1 & v_1 \\ x_{12} + x_{22} + \dots + x_{m2} = b_2 & v_2 \\ x_{1n} + x_{2n} + \dots + x_{mn} = b_n & v_n \\ x_{ij} \ge 0 \end{cases}$$

$$(P) \min S = CX$$

$$AY = b$$

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

(D)
$$\max Z = \sum_{i=1}^{m} a_i u_i + \sum_{j=1}^{n} b_j v_j$$

 $u_i + v_j \le c_{ij} \quad i = 1, 2, \dots, m$
 $j = 1, 2, \dots, n$

$$(D) \max Z = \lambda b$$

$$\lambda A \le C$$

$$\lambda = (u_1, u_2, \dots, u_m, v_1, v_2, \dots, v_n)$$

第十节 运输问题

- ✓ 产销平衡运输问题的数学模型
- 产销平衡运输问题的表上作业法
 - 产销不平衡的运输问题

二. 产销平衡运输问题的表上作业法:

迭代原理:

 $(P) \min S = CX$

AX = b

 $X \ge 0$

迭代步骤:

基本可行解转移

- 1. 初始调运方案的求法--最小元素法
- 2. 建立最优性检验准则
- 3. 调运方案的调整--位势法

- 二. 产销平衡运输问题的表上作业法
 - 初始调运方案的求法一最小元素法
 - 最优性检验准则
 - 调运方案的调整一位势法

1. 初始调运方案的求法一最小元素法: 例1-23

销地 产地	В	1	В	2	В	3	E	$\overline{B_4}$	产量	
A_1	1.5	20 *	2	X	0.3	80*	3	X	100	20
$oxed{A_2}$	7	30 *	0.8	20*	1.4	X	2	30 *	80.	60-30
A_3	1.2	×	0.3	50 *	2	X	2.5	X	50	
销量	t 5	<u>Q_</u>	7	4	40	90	3	0	230	
	3	 		20						

基本思想: 就近供应,即找最小运价的格子,给 尽可能大的运量。

1. 初始调运方案的求法一最小元素法: 例1-23

销地 产地	B	3 1	В	2	В	3	В	4	产量
A_1	1.5	20*	2		0.3	80*	3	-	100
A_2	7	30 *	0.8	20*	1.4		2	30 *	80
A_3	1.2		0.3	50 *	2		2.5		50
销量	5	0	70		8	80		0	230

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

初始调运方案: $X = (20,0,80,0,30,20,0,30,0,50,0,0)^T$

定理1-12

用最小元素法得到的 $X = (x_{ij})$ 是(P)的一个基本可行解。 *格子中的运量 x_{ij} 为基变量(个数 = m+n-1), 没*格子中的运量 $x_{ii} = 0$ 为非基变量。

1. 初始调运方案的求法--最小元素法: 例1-24

销地产地	\boldsymbol{B}	1	B_2	2	B	3	产量
A_1	1	1*	2	×	2	0*	1
A_2	3	X	1	2*	3	0*	2
A_3	2	X	3	X	1	4*	4
销量	1	•	7	>		-	7

最小元素法需要 注意两点:

- 1) 若填完一个画*的数后,它所在行、列的剩余量均为0,则规定只能在行、列之一的空格内打火,不能在该数所在行、列空格内同时打 ×
- 2) 若只剩下最后一行或一列没有填数或打X时,规定在每一个空格内只许填数,不许打X,即使变量取0也只能填0并在右上方画*(保证基变量个数为m+n-1)

第十节 运输问题

- ✓ 产销平衡运输问题的数学模型
- 产销平衡运输问题的表上作业法
 - 产销不平衡的运输问题

- 二. 产销平衡运输问题的表上作业法
 - ✔ 初始调运方案的求法—最小元素法
 - 最优性检验准则
 - ■调运方案的调整一位势法

销地产地	B_1	B_2	• • •	B_n	产量
A_1	c_{11} x_{11}	$c_{12}^{x_{12}}$	• • •	c_{1n} x_{1n}	a_1
A_2	c_{21} x_{21}	c_{22} x_{22}	• • •	$c_{2n}^{X_{2n}}$	a_2
•	• • •	• • •	• • •	• • •	•
A_m	$c_{m1}^{ X_{m1}}$	$c_{m2}^{ \chi_{m2}}$	• • •	$c_{mn}^{\chi_{mn}}$	a_m
销量	b_1	b_2	• • •	b_n	

问: 应怎样调运货物才能使总运费最小?

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$(P) \quad \min S = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$(x_{11} + x_{12} + \dots + x_{1n} = a_1$$

$$x_{21} + x_{22} + \dots + x_{2n} = a_2$$

$$x_{m1} + x_{m2} + \dots + x_{mn} = a_m$$

$$x_{m1} + x_{m2} + \dots + x_{mn} = a_m$$

$$x_{11} + x_{21} + \dots + x_{m1} = b_1$$

$$x_{12} + x_{22} + \dots + x_{m2} = b_2$$

$$x_{1n} + x_{2n} + \dots + x_{mn} = b_n$$

$$x_{ii} \ge 0$$

复习

上销平衡运输问题的数学模型:

可以求得: R(A) = m + n - 1, 即AX = b 中有效方程的个数, 所以(P)基本可行解中基变量个数为m + n - 1

 $(P) \min S = CX$

AX = b

$$(P) \min S = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\begin{cases} x_{11} + x_{12} + \dots + x_{1n} = a_1 & u_1 \\ x_{21} + x_{22} + \dots + x_{2n} = a_2 & u_2 \\ x_{m1} + x_{m2} + \dots + x_{mn} = a_m & u_m \\ x_{11} + x_{21} + \dots + x_{m1} = b_1 & v_1 \\ x_{12} + x_{22} + \dots + x_{m2} = b_2 & v_2 \\ x_{1n} + x_{2n} + \dots + x_{mn} = b_n & v_n \\ x_{ij} \ge 0 \end{cases}$$

(D)
$$\max Z = \sum_{i=1}^{m} a_i u_i + \sum_{j=1}^{n} b_j v_j$$
$$u_i + v_j \le c_{ij} \quad i = 1, 2, \dots, m$$
$$j = 1, 2, \dots, n$$

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$(D) \max Z = \lambda b$$

$$\lambda A \le C$$

$$\lambda = (u_1, \dots, u_i, \dots, u_m, v_1, \dots, v_i, \dots, v_n)$$

二. 产销平衡运输问题的表上作业法:

迭代原理:

初始调运方案 初始

初始基本可行解

 $(P) \min S = CX$ AX = b $X \ge 0$

基本可行解转移

调整调运方案

(使总运费下降)

停止迭代

1. 初始调运方案的求法--最小元素法: 例1-23

销地产地	В	1	В	32	В	$\overline{B_3}$	I	$\overline{B_4}$	产量	
A_1	1.5	20 *	2	X	0.3	80*	3	X	100	20
A_2	7	30 *	0.8	20*	1.4	X	2	30 *	80	60-30
A_3	1.2	X	0.3	50 *	2	X	2.5	X	50	
销量	t 5	0	7	4	-	30_	7	0	230	
	3	 		20-						•

基本思想: 就近供应,即找最小运价的格子,给 尽可能大的运量。

2. 建立最优性检验准则

$$(P) \min S = CX$$
$$AX = b$$

 $X \ge 0$

定理1-10 (最优性判别定理)

设 $X = (x_{ij})$ 是(P)的基本可行解, $\lambda = (u_{ij})$

的可行解。若它们满足互补松弛条件: $x_{ij}(c_{ij}-p_{ij}=$

则 $X = (x_{ij})$ 是(P)的最优解。

证明: :: X, λ 分别是(P)和(D)的可行解,由5

 X,λ 分别是(P)和(D)的最优解 \longleftrightarrow (C- λ

$$(c_j - \lambda p_j)x_j = 0, j = 1, 2, \dots, n$$

$$\lambda p_{ij} = (u_1, \dots, u_i, \dots, u_m, v_1, \dots, v_j, \dots, v_n) \vdots$$

$$= u_i + v_j \qquad m + j - 1$$

$$(c_{ij} - \lambda p_{ij})x_{ij} = 0,$$

$$(c_{ij} - u_i - v_j)x_{ij} = 0$$

$$i = 1, 2, \dots, m, j = 1, 2, \dots, n$$

-m + j

(D)

2. 建立最优性检验准则 例1-23

销地产地	B	1	B_2		В	3	В	4	产量
A_1	C_{11}	X_{11}	c_{12}^{-}	x_{12}	c_{13}	x_{13}	C_{14}	\mathcal{X}_{14}	a_1
A_2	C_{21}	x_{21}	c_{22}	X_{22}	c_{23}^{-}	x_{23}	c_{24}	\mathcal{X}_{24}	a_2
A_3	c_{31}	x_{31}	c_{32}	X_{32}	C_{33}	X_{33}	c_{34}	X_{34}	a_3
销量	b	1	b	2	b	3	b	4	
	12		1/		1/		12		

 u_1 — 行位势数

 u_2

 u_3

$$\frac{v_1}{(P) \min S} = \sum_{3}^{3} \sum_{4}^{4} c_{ij} x_{ij} \qquad (D) \max Z = \sum_{3}^{3} a_i u_i + \sum_{4}^{4} b_j v_j$$

(P)
$$\min S = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij}$$

(D)
$$\max Z = \sum_{i=1}^{3} a_i u_i + \sum_{j=1}^{4} b_j v_j$$

$$\sum_{\substack{j=1\\2}}^{4} x_{ij} = a_i, \quad i = 1,2,3$$

$$u_i + v_j \le c_{ij}$$
 $i = 1,2,3$
 $j = 1,2,3,4$

$$\sum_{i=1}^{3} x_{ij} = b_j, \quad j = 1,2,3,4$$
$$x_{ij} \ge 0$$

2. 建立最优性检验准则

स्थार गा	_		_		1
B_1 第地	$oldsymbol{B}_2$	B_3	$oldsymbol{B_4}$	产量	
A _{1 1.5} 20*	2	0.3 80*	3	100	$u_1 = 0$
A_2 7 30^*	0.8 20*	1.4	² 30*	80	u ₂ = 5.5
A_3	_{0.3} 50*	2	2.5	50	$u_3 = 5$
销量 50	70	80	30	230	
$v_1 = 1.5$	$V_2 = -4.7$	$V_3 = 0.3$	$V_4 = -3.5$		

变量m+n个; 方程m+n-1个

 $\begin{aligned}
 u_1 + v_1 &= 1.5 \\
 u_1 + v_3 &= 0.3 \\
 u_2 + v_1 &= 7 \\
 u_2 + v_2 &= 0.8 \\
 u_2 + v_4 &= 2 \\
 u_3 + v_2 &= 0.3
\end{aligned}$

设 $X = (x_{ij})$ 是(P)的一个基本可行解,寻找(D)的一个可行解

$$\lambda = (u_i, v_j)$$
 使 $x_{ij}(c_{ij} - u_i - v_j) = 0$ → *格子中, $c_{ij} - u_i - v_j = 0$

$$i = 1,2,3, j = 1,2,3,4$$

*格子中, $c_{ij} = u_i + v_j$

$$\phi u_1 = 0$$
,得到方程组的一个解:

$$u_1, u_2, u_3, v_1, v_2, v_3, v_4$$

 $\lambda = (0, 5.5, 5, 1.5, -4.7, 0.3, -3.5)$

$$\min S = CX$$

$$AX = b$$

$$X \ge 0$$

 $\max Z = \lambda b$ $\lambda A \le C$

2. 建立最优性检验准则 例1-23

销地产地	В	1	B_2		В	3	E	\mathbf{B}_{4}	产量	
A_1	1.5	20 *	2		0.3	80 *	3		100	
A_2	7	30 *	0.8	20*	1.4		2	30 *	80	
A_3	1.2		0.3	50 *	2		2.5		50	
销量	± 50	50		70		80	3	0	230	
	$v_1 =$	1.5	$v_2 =$	-4.7	$V_3 =$	0.3	v_4 =	-3.5		

最优性检验: 检验 $\lambda = (u_1, u_2, u_3, v_1, v_2, v_3, v_4)$ 是否是(*D*)的可行解

$$\max Z = \lambda b$$
$$\lambda A \le C$$

$$u_i + v_j \le c_{ij}$$
 $i = 1,2,3$
 $j = 1,2,3,4$

2. 建立最优性检验准则 例1-23

销地产地	В	1	B_2		В	3	B	\overline{B}_4	产量	
A_1	1.5	20 *	2		0.3	80 *	3		100	
A_2	7	30 *	0.8	20 *	1.4	X	2	30*	80	Z
A_3	1.2		0.3	50 *	2		2.5		50	
销量	± 50	0	7	'0	_	80	3	0	230	
•	$v_1 =$	1.5	v_2 =	-4.7	$V_3 =$	0.3	v_4 =	-3.5		_

设 $X = (x_{ii})$ 是(P)的 一个基本可行解, $u_1 = 0$ 寻找(D)的一个可 $u_2 = 5.5$ 行解 $\lambda = (u_i, v_j)$ 使 $u_3 = 5$ *格子中, $c_{ij} = u_i + v_j$

最优性检验: 检验 $\lambda = (u_1, u_2, u_3, v_1, v_2, v_3, v_4)$ 是否是(**D**)的可行解

$$\longrightarrow u_i + v_j \le c_{ij} ? \longrightarrow c_{ij} - u_i - v_j \ge 0?$$

若 x_{ij} 的检验数 $\lambda_{ij} = c_{ij} - u_i - v_j \begin{cases} = 0, & *格子中, \\ \geq 0, \ \%*格子中, \end{cases}$

则 λ 是(*D*)的可行解, $X = (x_{ij})$ 是(*P*)的最优解。 而 $\lambda_{23} = -4.4 < 0$

$$ff \lambda_{23} = -4.4 < 0$$

 $\therefore \lambda$ 不是(D)的可行解, $X = (x_{ij})$ 不是(P)的最优解。

2. 建立最优性检验准则 例1-23

销地产地	В	1	B_2		B_3		B_4		产量	
A_1	1.5	20 *	2		0.3	80*	3		100	l
A_2	7	30 *	0.8	20*	1.4		2	30 *	80	l
A_3	1.2		0.3	50 *	2		2.5		50	1
销量	50	0	70		8	80	30		230	
7	$V_1 =$	1.5	$V_2 =$	-4.7	$V_2 =$	0.3	$V_{A} =$	-3.		_

最优性检验:

- 1)计算行、列位势数: 由 $c_{ij} = u_i + v_j$ (*格子)计算 u_i, v_j
- 2)计算 x_{ij} 检验数: $\lambda_{ij} = c_{ij} u_i v_j$ (没*格子)

若 λ_{ij} 都 ≥0,则 $X = (x_{ij})$ 是(P)的最优解。

若存在 $\lambda_{ij} < 0$,则 $X = (x_{ij})$ 不是(P)的最优解。

产销平衡运输问题的表上作业法

- ✓ 初始调运方案的求法—最小元素法
- ✓ 最优性检验准则
- 调运方案的调整一位势法

调运方案的调整—位势法

- 确定进基变量
 - ■确定离基变量
 - ■构造闭回路
 - ■确定调整量
 - ■调整调运方案

3. 调运方案的调整一位势法(基本可行解的转移)

确定进基变量:

逐行检查,第一个负检验数对应的非基变量(没*格子中的运量)进基,可使总运费下降。

单纯形算法:

若非基变量 x_j 的检验数 $y_{0j} = c_j - C_B B^{-1} p_j < 0$, 则 x_j 进基可使新的基本可行解目标值 \downarrow ,即: $S^1 = S^0 + y_{0j} \theta$ $\because y_{0j} < 0 :: \theta > 0$ 越大,目标值 \downarrow 得越多。

运输问题的表上作业法:

若非基变量
$$x_{ij}$$
 的检验数 $\lambda_{ij} = c_{ij} - u_i - v_j < 0$, $\lambda p_{ij} = u_i + v_j$ $= c_{ij} - \lambda p_{ij} < 0$,

则 x_{ij} 进基可使新的基本可行解目标值 \downarrow ,

新的调运方案的总费用↓,即: $S^1 = S^0 + \lambda_{ij}\theta$

·:λ_{ii} < 0 :. θ > 0 越大,总费用 ↓ 得越多。

2. 建立最优性检验准则 例1-23

销地产地	B_1		B_2		B_3		B_4		产量	
A_1	1.5	20 *	2		0.3	80 *	3		100	
A_2	7	30 *	0.8	20 *	1.4	X	2	30 *	80	
A_3	1.2		0.3	50 *	2		2.5		50	
销量	50	0	7	'0	8	80	3	0	230	
	$v_1 =$	1.5	v_2 =	-4.7	$V_3 =$	0.3	V_4 =	-3.5		_

最优性检验: 检验 $\lambda = (u_1, u_2, u_3, v_1, v_2, v_3, v_4)$ 是否是(*D*)的可行解

则 λ 是(*D*)的可行解, $X = (x_{ij})$ 是(*P*)的最优解。而 $\lambda_{23} = -4.4 < 0$ $\therefore \lambda$ 不是(*D*)的可行解, $X = (x_{ij})$ 不是(*P*)的最优解。

调运方案的调整—位势法

- ✔ 确定进基变量
- 确定离基变量
 - ■构造闭回路
 - ■确定调整量
 - ■调整调运方案

闭回路:

销地 产地	B_1	B_2		B_3	B_4		产量	里里
A_1	x_{11}	\neg	x_{12}				a_1	
A_2		ŀ	x_{22}		_	x_{24}	a_2	
A_3	x_{31}					X_{34}	a_3	
销量	b_1	\boldsymbol{b}_2	2	b_3	ľ	94		

 $\{x_{11}, x_{12}, x_{22}, x_{24}, x_{34}, x_{31}\}$ 是一个闭回路

闭回路的三个几何特征:

- 1)每个顶点都是"拐角点"
- 2) 每条边不是水平就是垂直
- 3)每一行(列)若有闭回路的顶点,则有且仅有两个.

1) 构造闭回路:

	销地产地	В	1	В	2	В	3	B	\overline{B}_4	产量	
	A_1	1.5	20*	2	\neg	0.3	80*	3		100)
	A_2	7	30 ⁺	0.8	20*	1.4		2	30 *	80)
	A_3	1.2		0.3	50 *	2		2.5		50	
1	消量	5	0	7	'0	8	80	3	0	230)

例1-23

定理1-13

若已知一个基本可行解,则对任意一个非基变量 x_{ij} ,存在唯一的闭回路,它包含这个非基变量(没*格子),而闭回路的其余顶点都是基变量(*格子).

1) 构造闭回路:

	B_1		B_2		B_3		B_4		产量
A_1	1.5	2 0*	2		0.3	80*	3		100
A_2	7	30*	0.8	20*	1.4 1.4		2	30 *	80
A_3	1.2		0.3	50 *	2		2.5		50
销量	50	0	7	0	8	80	3	0	230

例1-23

定理1-13

若已知一个基本可行解,则对任意一个非基变量 x_{ij} ,存在唯一的闭回路,它包含这个非基变量(没*格子),而闭回路的其余顶点都是基变量(*格子)

1) 构造闭回路:

	B_1		B_2		B_3		B_4		产量
A_1	1.5	20*	2		0.3	80*	3		100
A_2	7	30*	0.8	2 0*	1.4		2	30 *	80
A_3	1.2		0.3	50*	2		2.5		50
销量	5	0	7	' 0	8	0	3	0	230

例1-23

定理1-13

若已知一个基本可行解,则对任意一个非基变量 x_{ij} ,存在唯一的闭回路,它包含这个非基变量(没*格子),而闭回路的其余顶点都是基变量(*格子)

1) 构造闭回路:

	B	1	В	2	В	3	B	\overline{B}_4	产量
A_1	1.5	20*	2		0.3	80*	3	٦.	100
A_2	7	30*	0.8	20*	1.4 1.4		2	30 *	80
A_3	1.2		0.3	50 *	2		2.5		50
销量		0	7	'0	8	80	3	0	230

例1-23

定理1-13

若已知一个基本可行解,则对任意一个非基变量 x_{ij} ,存在唯一的闭回路,它包含这个非基变量(没*格子),而闭回路的其余顶点都是基变量(*格子)

第一章 线性规划

调运方案的调整—位势法

- ✔ 确定进基变量
- 确定离基变量
 - ✓构造闭回路
 - 确定调整量
 - ■调整调运方案

2) 确定调整量:

假设 $x_{11} = 0$ 为非基变量,

	B_1	B_2	B_3	B_4	产量	λ_{11}
A_1	$x_{11} + \theta$	x_{12}	$-\boldsymbol{\theta}$		a_1	 +/;
A_2		x_{22}	θ	$x_{24} - \theta$	a_2	化
A_3	$x_3 - \theta$			$x_{34} + \theta$	a_3	
销量	b_1	b_2	b_3	$b_{\scriptscriptstyle A}$		(光

 $\lambda_{11} < 0$,则 x_{11} 为进基变量,

构造闭回路:

[x₁₁,x₁₂,x₂₂,x₂₄,x₃₄,x₃₁]
(没*格子) 基变量(*格子)

问题: 调整量 $\theta > 0$ 应取多大? $S^1 = S^0 + \lambda_{11}\theta$

分析: 为使总费用下降, θ 越大越好. 但同时必须保证顶点处

运量非负。

2) 确定调整量:

假设 $x_{11} = 0$ 为非基变量,

销地产地	B_1	B_2	B_3	B_4	产量	$\lambda_{11} < 0$	则 x_{11} 为进基变量,
A_1	$X_1 + \theta$	$x_{12} - ($	9 ≥ 0		a_1	构造的	可回路:
A_2		$x_{22} +$	heta	$\chi_{24} - \theta$	≥ 0		$(x_{2},x_{22},x_{24},x_{34},x_{31})$
A_3	$x_3 - \theta$	≥0		$x_{34} + 6$	a_3		$\underbrace{2, x_{22}, x_{24}, x_{34}, x_{31}}_{2}$
销量	b_1	\boldsymbol{b}_2	b_3	b_4		(没*格-	子) 基变量(*格子)

问题: 调整量 $\theta > 0$ 应取多大? $S^1 = S^0 + \lambda_{11}\theta$

分析:为使总费用下降, θ 越大越好.但同时必须保证顶点处

运量非负.

结论: $\theta = \min\{x_{12}, x_{24}, x_{31}\} =$ 奇数次顶点处的最小运量

 $= x_{24} \longrightarrow x_{24}$ 为离基变量

注意: 若闭回路中有两个奇数次顶点处的运量= θ,则调整后 只能有一个为离基变量(没*格子),另一个仍为基变量0*

线性规划1-10

第一章 线性规划

调运方案的调整—位势法

- ✔ 确定进基变量
 - ■确定离基变量
 - ✓构造闭回路
 - ✓确定调整量

调运方案的调整:

假设 $x_{11} = 0$ 为非基变量,

销地 产地	I	\mathbf{S}_{1}	B_2	B_3	B_4	产量
A_1	X_1	$1 + \theta$	$x_{12} - 6$	9		a_1
A_2			$x_{22} +$	heta	$x_{24} - \theta$	a_2
A_3	x_3	<u>ι</u> -θ			$x_{34}+\theta$	a_3
销量		b_1	b_2	b_3	b_4	

 $\lambda_{11} < 0$,则 x_{11} 为进基变量,

结论: $\theta = \min\{x_{12}, x_{24}, x_{31}\} =$ 奇数次顶点处的最小运量 $= x_{24} \rightarrow x_{24}$ 为离基变量

调整:

闭回路上{ 偶数次顶点处的运量 +θ 奇数次顶点处的运量 -θ

不在闭回路顶点上的其它各运量不变。 $S^1 = S^0 + \lambda_{11}\theta$ 调整后, $x_{11} = \theta$ 为基变量, $x_{24} = 0$ 为非基变量,得到

的新的基本可行解(新的调运方案)使总运费下降。

线性规划1-10

第一章 线性规划

调运方案的调整—位势法

- ✔ 确定进基变量
 - ■确定离基变量
 - ✓构造闭回路
 - ✓确定调整量
- ✓调整调运方案

销地 产地	B_1	В	2	В	3	В	4	产量	
A_1	20	2	$\frac{1}{2} > 0$	0.3	80*	$\frac{\lambda_1}{3}$	₄ > 0	100	
$A_2 _7$	30*	0.8	20 *	1.4 ²	3 < (2	30 *	80	
A_3	2	0.3	50 *	2		2.5		50	
销量	50	7	0	8	0	3	0	230	

$$\lambda_{23}\theta = -4.4 \times 30 = -132$$

$$u_1 = 0$$
 $S^1 = S^0 + \lambda_{23}\theta$
 $u_2 = 5.5$ $= 355 - 132 = 223$

$$u_2 = 5.5 = 355 - 132 = 223$$

$$u_3 = 5$$

 V_1 **=1.5** V_2 **=-4.** IV_3 **=U.3** V_4 **=-3.5 1.** 用最小元素法求出初始调运方案 $\theta = \min\{80,30\} = 30$

利用 $c_{ii} = u_i + v_i$ (*格子) 2. 最优性检验: 1)计算行、列位势数:

2)计算
$$x_{ii}$$
 检验数:

$$\lambda_{ij} = c_{ij} - u_i - v_j (2 * 格子)$$

若 λ_{ii} 都 ≥ 0, 则 $X = (x_{ij})$ 是(P)的最优解。否则,

3. 调整调运方案: 1)构造闭回路 2)确定调整量 θ

3)调整调运方案

线性规划1-10

销地产地	В	1	В	2	В	3	B	4	产量]			
A_1	1.5	50 *	2		0.3	50 *	3		100	$u_1 = 0$		$S^1 =$	$S^0 + \lambda_{23}\theta$
A_2	7	3 0 *	0.8	20*	1.4	30 *	2	30 *	80	$u_2 = 5$.5	= 35	5 - 132 = 223
A_3	1.2		0.3	50 *	2		2.5		50	$u_3 = 5$			
销量	5	0_	7	0	8	80	3	_	230				
	$v_1 =$	1.5	$v_2 =$	-4.7	$V_3 =$	0.3	v_4 =	-3.	5	-			

- 1. 用最小元素法求出初始调运方案 $\theta = \min\{80,30\} = 30$
- 2. 最优性检验: 1)计算行、列位势数: $c_{ij} = u_i + v_j$ (*格子)

2)计算 x_{ij} 检验数:

 $\lambda_{ij} = c_{ij} - u_i - v_j (% *格子)$

若 λ_{ii} 都 ≥ 0 ,则 $X=(x_{ij})$ 是(P)的最优解。否则,

- 3. 调整调运方案: 1)构造闭回路 2)确定调整量 θ
 - 3)调整调运方案

$_{ m ru}$ B_1	B_2	B_3	B_4	产量	
$A_1 _{1.5}$ 50*	$\lambda_{12} > 0$	0.3 50*	$3^{\lambda_{14}} > 0$	100	$u_1 = 0$
$A_2 \mid_{7} \lambda_{11} > 0$	0.8 20*	30*	2 30 *	80	$u_2 = 1.1$
$A_3 _{1.2} < 0$	0.3 50*	2	2.5	50	$u_3 = 0.6$
销量 50	70	80	30	230	
$v_1 = 1.5$	$v_2 = -0.3$	$3V_3 = 0.3$	$v_4 = 0.9$		•

$$\lambda_{31} < 0$$

0
$$S^{1} = S^{0} + \lambda_{23}\theta$$

1.1 $= 355 - 132 = 223$

$$\theta = \min\{50,30,50\} = 30$$

2. 最优性检验: 1)计算行、列位势数: $c_{ij} = u_i + v_j$ (*格子)

2)计算 x_{ii} 检验数:

$$\lambda_{ij} = c_{ij} - u_i - v_j$$
(没*格子)

若 λ_{ii} 都 ≥ 0 ,则 $X=(x_{ij})$ 是(P)的最优解。否则,

3. 调整调运方案: 1)构造闭回路 2)确定调整量 θ

销 产地		B_1	В	2	В	3	В	3 4	产量	
A_1	1.5	20 *	2		0.3	80*	3		100	$u_1 = 0$
A_2	7		0.8	50 *	1.4	30 *	2	30 *	80	$u_2 = 1.1$
A_3	1.2	30*	0.3	20 *	2		2.5		50	$u_3 = 0.6$
销量	遣 5		•	'0		80	3		230	
	v_1	1.5	v_2 =	-0.3	$V_3 =$	0.3	v_4 =	0.9		

$$\theta = \min\{50,30,50\} = 30$$

2. 最优性检验: 1)计算行、列位势数: $c_{ij} = u_i + v_j$ (*格子)

2)计算 x_{ii} 检验数:

$$\lambda_{ij} = c_{ij} - u_i - v_j (2*格子)$$

若 λ_{ii} 都 ≥ 0 ,则 $X=(x_{ij})$ 是(P)的最优解。否则,

3. 调整调运方案: 1)构造闭回路 2)确定调整量 θ

所述
$$B_1$$
 B_2 B_3 B_4 产量 A_1 1.5 20^* $2^{\lambda_{12}} > 0$ 0.3 80^* $3^{\lambda_{14}} > 0$ 100 10

 $X^* = (20,0,80,0,0,50,0,30,30,20,0,0)^T, S^* = 196$

2. 最优性检验: 1)计算行、列位势数: $c_{ii} = u_i + v_i$ (*格子)

2)计算 x_{ii} 检验数: $\lambda_{ij} = c_{ij} - u_i - v_j$ (没*格子)

若 λ_{ii} 都 ≥ 0, 则 $X = (x_{ij})$ 是(P)的最优解。否则,

3. 调整调运方案: 1)构造闭回路 2)确定调整量 θ

第一章 线性规划

第十节 运输问题

- ✓ 产销平衡运输问题的数学模型
- ✓ 产销平衡运输问题的表上作业法
- 产销不平衡的运输问题

三. 产销不平衡运输问题: (1)产大于销 $\sum_{i=1}^{m} a_i > \sum_{j=1}^{n} b_j$

销地产地	B_1	B_2	• • •	B_n	产量
A_1	$c_{11}^{\bar{x}_{11}}$	$c_{12}^{x_{12}}$	• • •	c_{1n} x_{1n}	a_1
A_2	$c_{21}^{x_{21}}$	$c_{22}^{-x_{22}}$	• • •	$c_{2n}^{X_{2n}}$	a_2
•	• • •	• • •	• • •	• • •	•
A_m	$c_{m1}^{ x_{m1}}$	$c_{m2}^{ \chi_{m2}}$	• • •	$c_{mn}^{ \chi_{mn}}$	a_{m}
销量	b_1	b_2	• • •	b_n	

产大于销 一 产销平衡 方法:

m	n	
		h
$\sum a_i$	L	$oldsymbol{v}_j$
$\overline{i=1}$	i=1	

销地产地	B_1	B_2	• • •	B_n	B_{n+1}	产量
A_1	c_{11} \bar{x}_{11}	c_{12} x_{12}	• • •	c_{1n} x_{1n}	$0^{x_{1,n+1}}$	a_1
A_2	c_{21} x_{21}	c_{22} x_{22}	• • •	$c_{2n}^{X_{2n}}$	$0^{x_{2,n+1}}$	a_2
•	• • •	• • •	• • •	• • •		•
A_{m}	c_{m1} x_{m1}	$C_{m2}^{\chi_{m2}}$	• • •	C_{mn} χ_{mn}	$0^{x_{m,n+1}}$	a_m
销量	b_1	b_2	• • •	b_n	b_{n+1}	

$$b_{n+1} = \sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j$$

产销平衡的运输问题

销地产地	B_1	B_2	B_3	B_4	产量
A_1	1	3	5	3	5
A_2	0.5	4	2	7	6
A_3	2	0.8	1	4	8
销量	2	4	3	7	

销地产地	B_1	B_2	B_3	B_4	B_5	产量
A_1	1	3	5	3	0	5
A_2	0.5	4	2	7	0	6
A_3	2	0.8	1	4	0	8
销量	2	4	3	7	3	19

21

销地产地	B_1	1	B_{i}	2	B_{i}	3	B_4		1	B_5	产量	
A_1	1	X	3	X	5	X	3	5 *	0	×	4	
A_2	0.5	2*	4	X	2	X	7	1*	0	3*	6	43
A_3	2	X	0.8	4*	1	3*	4	1*	0	×	8	41
销量	2	•	4		3		7		~	3.	19	

1. 用最小元素法求出初始调运方案

销地 产地	B_1	B_2	B_3	B_4	B_5	产量	u_i	2 < 0
A_1	$\lambda_{11} > 0$	$\frac{\lambda_{12}}{3}$	$0.3\lambda_{13} > 0$	5 *	$0^{\lambda_{15} > 0}$	5	0	$\lambda_{23} < 0$
A_2	0.5 2*	$\lambda_{22} > 0$	2 ₂₃ < 1	7 1*	3 *	6	4	
A_3	2	0.8 4*	1 3*	4 1	0	8	1	
销量	2	4	3	7	3	19		
12	2.5	0.2	<u> </u>	2	1		•	

→ 用最小元素法求出初始调运方案

 \mathcal{L} 最优性检验: 1)计算行、列位势数: $c_{ij} = u_i + v_j$ (*格子)

2)计算 x_{ii} 检验数:

$$\lambda_{ij} = c_{ij} - u_i - v_j (% *格子)$$

 $\theta = \min\{1,3\} = 1$

若 λ_{ii} 都 ≥ 0, 则 $X = (x_{ii})$ 是(P)的最优解。否则,

3. 调整调运方案: 1)构造闭回路 2)确定调整量 θ

销地 产地	B_1	B_2	B_3	B_4	B_5	产量	u_i
A_1	1	3	5	5 *	0	5	0
A_2	0.5 2	* 4	2 1*	7 1*	$\overline{0}$ 3*	6	4
A_3	2	0.8 4*	1 2*	4 2*	0	8	1
销量	2	4	3	7	3	19	
$\overline{v_j}$	-3.5	-0.2	0	3	-4	6	$0 = \min\{1.3\} =$

1 用最小元素法求出初始调运方案

 \mathcal{Y} 最优性检验: 1)计算行、列位势数: $c_{ij} = u_i + v_j$ (*格子)

2)计算 x_{ij} 检验数:

$$\lambda_{ij} = c_{ij} - u_i - v_j (% *格子)$$

若 λ_{ii} 都 ≥ 0, 则 $X = (x_{ij})$ 是(P)的最优解。否则,

3. 调整调运方案: 1)构造闭回路 2)确定调整量 θ

销地产地	B_1	B_2	B_3	B_4	B_5	产量	u_i
A_1	$\lambda_{11} > 0$	$\frac{\lambda_{12}}{3} > 0$	$\frac{\lambda_{13} > 0}{5}$	3 5*	$0^{\lambda_{15} > 0}$	5	0
A_2	$0.5 2^*$	$\lambda_{22} > 0$	2 1*	$\lambda_{24} > 0$	$0 3^*$	6	2
A_3	$\lambda_{31} > 0$	0.8 4*	1 2*	4 2*	$\lambda_{35} > 0$	8	1
销量	2	4	3	7	3	19	
$\overline{v_j}$	-1.5	-0.2	0	3	-2		•

2. 最优性检验: 1)计算行、列位势数: $c_{ij} = u_i + v_j$ (*格子)

2)计算 x_{ii} 检验数:

$$\lambda_{ij} = c_{ij} - u_i - v_j (2*格子)$$

若 λ_{ii} 都 ≥ 0, 则 $X = (x_{ij})$ 是(P)的最优解。否则,

3. 调整调运方案: 1)构造闭回路 2)确定调整量 θ

销地 产地	B_1		B_{2}	2	I	$\overline{B_3}$	B_{i}	4		\overline{B}_{5}	;	产量	u_i
A_1	1		3		5		3	5*	0			5	0
A_2	0.5	2*	4		2	1*	7		0		3*	6	2
A_3	2		0.8	4*	1	2*	4	2*	0		-	8	1
销量	2		4	•		3	7			3		19	

$$v_j$$
 -1.5 -0.2 0 3 -2

$$V_j$$
 -1.5 -0.2 0 3 -2 $X^* = (0,0,0,5,0,2,0,1,0,3,0,4,2,2,0)^T, $S^* = 31.2$$

2. 最优性检验: 1)计算行、列位势数: $c_{ii} = u_i + v_i$ (*格子)

2)计算 x_{ij} 检验数: $\lambda_{ij} = c_{ij} - u_i - v_j$ (没*格子)

若 λ_{ii} 都 ≥ 0 ,则 $X=(x_{ij})$ 是(P)的最优解。否则,

3. 调整调运方案: 1)构造闭回路 2)确定调整量 θ

三. 产销不平衡运输问题: (2) 销大于产 $\sum_{i=1}^{m} a_i < \sum_{j=1}^{n} b_j$

销地产地	B_1	B_2	• • •	B_n	产量
A_1	$c_{11}^{\bar{x}_{11}}$	$c_{12}^{x_{12}}$	• • •	c_{1n} x_{1n}	a_1
A_2	$c_{21}^{x_{21}}$	$c_{22}^{-x_{22}}$	• • •	$c_{2n}^{X_{2n}}$	a_2
•	• • •	• • •	• • •	• • •	•
A_m	$c_{m1}^{ x_{m1}}$	$c_{m2}^{\chi_{m2}}$	• • •	C_{mn} χ_{mn}	a_m
销量	b_1	b_2	• • •	b_n	

销大于产 一 产销平衡 方法:

三. 产销不平衡运输问题: (2) 销大于产 $\sum_{i=1}^{m} a_i < \sum_{j=1}^{n} b_j$

$$\sum_{i=1}^m a_i < \sum_{j=1}^n b_j$$

销地产地	$ B_1 $	B_2	• • •	B_n	产量
A_1	$c_{11}^{x_{11}}$	$c_{12}^{x_{12}}$	• • •	c_{1n} x_{1n}	a_1
A_2	$c_{21}^{x_{21}}$	$c_{22}^{x_{22}}$		$c_{2n}^{X_{2n}}$	a_2
•	• • •	• • •	• • •	• • •	•
A_m	$c_{m1}^{ X_{m1}}$	$c_{m2}^{\chi_{m2}}$	• • •	C_{mn} X_{mn}	a_m
A_{m+1}	$0^{x_{m+1,1}}$	$x_{m+1,2}$		$x_{m+1,n}$	a_{m+1}
销量	b_1	$\overline{b_2}$	• • •	b_n	

$$a_{m+1} = \sum_{j=1}^{n} b_j - \sum_{i=1}^{m} a_i$$

产销平衡的运输问题

第一章 线性规划

第十节 运输问题

- ✓ 产销平衡运输问题的数学模型
- ✓ 产销平衡运输问题的表上作业法
- ✓ 产销不平衡的运输问题

作业: P97 14 (1) (3)

作业: P85 5 (1) (3)

课上练习

用单纯形法求解下列LP问题:

min
$$26x_1 + x_2 - 3x_3$$

s.t. $10x_1 + x_2 - x_3 \ge -2$
 $-4x_1 + x_2 + x_3 \le 4$
 $x_1, x_2, x_3 \ge 0$

最优解: $X^* = (0,1,3)^T$, 最优值: -8