Resampling-Based Control of the FDR

Joseph P. Romano¹ Azeem S. Shaikh² and Michael Wolf³

¹Departments of Economics and Statistics Stanford University

> ²Department of Economics University of Chicago

> ³Department of Economics University of Zurich

- Problem Formulation
- 2 Existing Methods
- 3 New Method
- 4 Theory & Practice
- Simulations
- 6 Conclusions
- References

- Problem Formulation
- 2 Existing Method
- 3 New Method
- 4 Theory & Practice
- Simulations
- 6 Conclusions
- References

General Set-Up & Notation

- Data $X = (X_1, ..., X_n)$ from distribution P
- Interest in parameter vector $\theta(P) = \theta = (\theta_1, \dots, \theta_s)'$
- The individual hypotheses concern the elements θ_i , for i = 1, ..., s, and can be (all) one-sided or (all) two-sided

One-sided hypotheses:

$$H_i$$
: $\theta_i \leq \theta_{0,i}$ vs. H'_i : $\theta_i > \theta_{0,i}$

Two-sided hypotheses:

$$H_i$$
: $\theta_i = \theta_{0,i}$ vs. H'_i : $\theta_i \neq \theta_{0,i}$

General Set-Up & Notation

- Data $X = (X_1, ..., X_n)$ from distribution P
- Interest in parameter vector $\theta(P) = \theta = (\theta_1, \dots, \theta_s)'$
- The individual hypotheses concern the elements θ_i , for i = 1, ..., s, and can be (all) one-sided or (all) two-sided

One-sided hypotheses:

$$H_i$$
: $\theta_i \leq \theta_{0,i}$ vs. H'_i : $\theta_i > \theta_{0,i}$

Two-sided hypotheses:

$$H_i$$
: $\theta_i = \theta_{0,i}$ vs. H'_i : $\theta_i \neq \theta_{0,i}$

- Test statistic $T_{n,i} = (\hat{\theta}_{n,i} \theta_{0,i})/\hat{\sigma}_{n,i}$ or $T_{n,i} = |\hat{\theta}_{n,i} \theta_{0,i}|/\hat{\sigma}_{n,i}$
- $\hat{\sigma}_{n,i}$ is a standard error for $\hat{\theta}_{n,i}$ or $\hat{\sigma}_{n,i} \equiv 1/\sqrt{n}$
- $\hat{p}_{n,i}$ is an individual *p*-value

The False Discovery Rate

Consider s individual tests H_i vs. H'_i .

False discovery proportion

F = # false rejections; R = # total rejections

$$FDP = \frac{F}{R} 1\{R > 0\} = \frac{F}{\max\{R, 1\}}$$

False discovery rate

• $FDR_P = E_P(FDP)$

Goal: (strong) asymptotic control of the FDR at level α :

$$\limsup_{n\to\infty} FDR_P \le \alpha \quad \text{for all } P$$

- Problem Formulation
- 2 Existing Methods
- 3 New Method
- 4 Theory & Practice
- Simulations
- 6 Conclusions
- References

Benjamini and Hochberg (1995)

Stepup method:

- Ordered *p*-values: $\hat{p}_{n,(1)} \leq \hat{p}_{n,(2)} \leq \ldots \leq \hat{p}_{n,(s)}$
- Let $j^* = \max \{j : \hat{p}_{n,(j)} \le \alpha_j\}$, where $\alpha_j = j\alpha/s$
- Reject $H_{(1)}, ..., H_{(j^*)}$

Comments:

- Original proof assumes independence of the *p*-values
- Validity has been extended to certain dependence types (Benjamini and Yekutieli, 2001)

Modifications of BH (1995)

Storey, Taylor and Siegmund (2004):

• Under sufficient conditions for BH (1995):

$$FDR_P \le \frac{s_0}{s}\alpha$$
 where $s_0 = |I(P)| = \#\{\text{true hypotheses}\}$

• Instead of $\alpha_j = j\alpha/s$ use $\alpha_j = j\alpha/\hat{s}_0$ with

$$\hat{s}_0 = \frac{\#\{\hat{p}_{n,i} > \lambda\} + 1}{1 - \lambda} \quad \text{for some } 0 < \lambda < 1$$

• Proof assumes the $\hat{p}_{n,i}$ to be 'almost independent'

Modifications of BH (1995)

Bejamini, Krieger and Yekutieli (2006):

Step 1:

- Apply the BH (1995) procedure at nominal level $\alpha^* = \alpha/(1+\alpha)$
- Let *r* denote the number of rejected hypotheses
- (a) If r = 0, reject nothing, and stop
- (b) If r = s, reject everything, and stop
- (c) Otherwise, continue

Step 2:

- Apply the BH (1995) procedure at nominal level α
- Instead of $\alpha_i = j\alpha/s$ use $\alpha_i = j\alpha/\hat{s}_0$ with

$$\hat{s}_0 = s - r$$

• Proof assumes independence of the $\hat{p}_{n,i}$, but simulations show robustness against various dependence structures

- Problem Formulation
- 2 Existing Method
- New Method
- 4 Theory & Practice
- Simulations
- 6 Conclusions
- References

Basic Idea (Troendle, 2000)

For any stepdown procedure with critical values c_1, \ldots, c_s :

$$FDR_{P} = E_{P} \left[\frac{F}{\max\{R, 1\}} \right] = \sum_{1 \le r \le s} \frac{1}{r} E_{P}[F|R = r] P\{R = r\}$$
with $P\{R = r\} = P\{T_{n,(s)} \ge c_{s}, \dots, T_{n,(s-r+1)} \ge c_{s-r+1}, T_{n,(s-r)} < c_{s-r}\}$

Basic Idea (Troendle, 2000)

For any stepdown procedure with critical values c_1, \ldots, c_s :

$$FDR_{P} = E_{P} \left[\frac{F}{\max\{R, 1\}} \right] = \sum_{1 \le r \le s} \frac{1}{r} E_{P}[F|R = r] P\{R = r\}$$
with $P\{R = r\} = P\{T_{n,(s)} \ge c_{s}, \dots, T_{n,(s-r+1)} \ge c_{s-r+1}, T_{n,(s-r)} < c_{s-r}\}$

If all false hypotheses are rejected with $p. \to 1$, then with $p. \to 1$:

$$FDR_{P} = \sum_{s-s_{0}+1 \le r \le s} \frac{r-s+s_{0}}{r}$$

$$(1)$$

$$\times P\{T_{n,s_0:s_0} \ge c_{s_0}, \dots, T_{n,s-r+1:s_0} \ge c_{s-r+1}, T_{n,s-r:s_0} < c_{s-r}\}$$

Here $T_{n,r:t}$ is the rth largest of the test statistics $T_{n,1}, \ldots, T_{n,t}$, and we assume w.l.o.g. that $I(P) = \{1, \ldots, s_0\}$.

Basic Idea (continued)

Goal:

- Bound (1) above by α for any P, at least asymptotically
- In particular, this must be ensured for any $1 \le s_0 \le s$.

First, consider any P such that $s_0 = 1$:

- Then (1) reduces to $\frac{1}{s}P\{T_{n,1:1} \ge c_1\}$
- And so $c_1 = \inf\{x \in \mathbb{R} : \frac{1}{s} P\{T_{n,1:1} \ge x\} \le \alpha\}$

Basic Idea (continued)

Goal:

- Bound (1) above by α for any P, at least asymptotically
- In particular, this must be ensured for any $1 \le s_0 \le s$.

First, consider any P such that $s_0 = 1$:

- Then (1) reduces to $\frac{1}{s}P\{T_{n,1:1} \ge c_1\}$
- And so $c_1 = \inf\{x \in \mathbb{R} : \frac{1}{s} P\{T_{n,1:1} \ge x\} \le \alpha\}$

Next, consider any P such that $s_0 = 2$. Then (1) reduces to:

- $\frac{1}{s-1}P\{T_{n,2:2} \ge c_2, T_{n,1:2} < c_1\} + \frac{2}{s}P\{T_{n,2:2} \ge c_2, T_{n,1:2} \ge c_1\}$
- And so c_2 is the smallest $x \in \mathbb{R}$ for which $\frac{1}{s-1}P\{T_{n,2:2} \ge x, T_{n,1:2} < c_1\} + \frac{2}{s}P\{T_{n,2:2} \ge x, T_{n,1:2} \ge c_1\} \le \alpha$

Basic Idea (continued)

Goal:

- Bound (1) above by α for any P, at least asymptotically
- In particular, this must be ensured for any $1 \le s_0 \le s$.

First, consider any P such that $s_0 = 1$:

- Then (1) reduces to $\frac{1}{s}P\{T_{n,1:1} \ge c_1\}$
- And so $c_1 = \inf\{x \in \mathbb{R} : \frac{1}{s} P\{T_{n,1:1} \ge x\} \le \alpha\}$

Next, consider any P such that $s_0 = 2$. Then (1) reduces to:

- $\frac{1}{s-1}P\{T_{n,2:2} \ge c_2, T_{n,1:2} < c_1\} + \frac{2}{s}P\{T_{n,2:2} \ge c_2, T_{n,1:2} \ge c_1\}$
- And so c_2 is the smallest $x \in \mathbb{R}$ for which $\frac{1}{s-1}P\{T_{n,2:2} \ge x, T_{n,1:2} < c_1\} + \frac{2}{s}P\{T_{n,2:2} \ge x, T_{n,1:2} \ge c_1\} \le \alpha$

And so forth ...

Estimation of the c_i

Since P is unknown, so are the 'ideal' critical values c_i .

We sugggest a bootstrap method to estimate the c_i :

- \hat{P}_n is an *unrestricted* estimate of P with $\theta_i(\hat{P}_n) = \hat{\theta}_{n,i}$
- X^* is generated from \hat{P}_n and the $T^*_{n,i}$ are computed from X^* , but centered at $\hat{\theta}_{n,i}$ rather than at $\theta_{0,i}$
- E.g., for one-sided testing: $T_{n,i}^* = (\hat{\theta}_{n,i}^* \hat{\theta}_{n,i})/\hat{\sigma}_{n,i}^*$

Estimation of the c_i

Since P is unknown, so are the 'ideal' critical values c_i .

We sugggest a bootstrap method to estimate the c_i :

- \hat{P}_n is an *unrestricted* estimate of P with $\theta_i(\hat{P}_n) = \hat{\theta}_{n,i}$
- X^* is generated from \hat{P}_n and the $T^*_{n,i}$ are computed from X^* , but centered at $\hat{\theta}_{n,i}$ rather than at $\theta_{0,i}$
- E.g., for one-sided testing: $T_{n,i}^* = (\hat{\theta}_{n,i}^* \hat{\theta}_{n,i})/\hat{\sigma}_{n,i}^*$

Important detail:

- The ordering of the original $T_{n,i}$ determines the 'true' null hypotheses in the bootstrap world
- The permutation $\{k_1, \ldots, k_s\}$ of $\{1, \ldots, s\}$ is defined such that $T_{n,k_1} = T_{n,(1)}, \ldots, T_{n,k_s} = T_{n,(s)}$
- ullet Then $T_{n,r:t}^*$ is the rth smallest of the statistics $T_{n,k_1}^*,\ldots,T_{n,k_r}^*$

Estimation of the c_i (continued)

Start with c_1 :

•
$$\hat{c}_1 = \inf\{x \in \mathbb{R} : \frac{1}{s}\hat{P}_n\{T_{n,1:1}^* \ge x\} \le \alpha\}$$

Estimation of the c_i (continued)

Start with c_1 :

•
$$\hat{c}_1 = \inf\{x \in \mathbb{R} : \frac{1}{s} \hat{P}_n\{T_{n,1:1}^* \ge x\} \le \alpha\}$$

Then move on to c_2 :

• \hat{c}_2 is the smallest $x \in \mathbb{R}$ for which

$$\frac{1}{s-1}\hat{P}_n\{T_{n,2:2}^* \ge x, T_{n,1:2}^* < \hat{c}_1\} + \frac{2}{s}\hat{P}_n\{T_{n,2:2}^* \ge x, T_{n,1:2}^* \ge \hat{c}_1\} \le \alpha$$

Estimation of the c_i (continued)

Start with c_1 :

•
$$\hat{c}_1 = \inf\{x \in \mathbb{R} : \frac{1}{s}\hat{P}_n\{T_{n,1:1}^* \ge x\} \le \alpha\}$$

Then move on to c_2 :

• \hat{c}_2 is the smallest $x \in \mathbb{R}$ for which

$$\frac{1}{s-1}\hat{P}_n\{T_{n,2:2}^* \geq x, T_{n,1:2}^* < \hat{c}_1\} + \frac{2}{s}\hat{P}_n\{T_{n,2:2}^* \geq x, T_{n,1:2}^* \geq \hat{c}_1\} \leq \alpha$$

And so forth ...

Unlike Troendle (2000), monotonicity $\hat{c}_{i+1} \geq \hat{c}_i$ is not enforced.

- Problem Formulation
- 2 Existing Methods
- 3 New Method
- 4 Theory & Practice
- Simulations
- 6 Conclusions
- References

Some Theory

Assumptions

- (1) The sampling distribution of $\sqrt{n}(\hat{\theta}_n \theta)$ under *P* converges to a limit distribution with continuous marginals
- (2) The bootstrap consistently estimates this limit distribution
- (3) $\sqrt{n}\hat{\sigma}_{n,i}$ and $\sqrt{n}\hat{\sigma}_{n,i}^*$ converge to the same constant in probability (for i = 1, ..., s)
- (4) The limiting joint distribution corresponding to the 'true' test statistics is exchangeable

Some Theory

Assumptions

- (1) The sampling distribution of $\sqrt{n}(\hat{\theta}_n \theta)$ under *P* converges to a limit distribution with continuous marginals
- (2) The bootstrap consistently estimates this limit distribution
- (3) $\sqrt{n}\hat{\sigma}_{n,i}$ and $\sqrt{n}\hat{\sigma}_{n,i}^*$ converge to the same constant in probability (for i = 1, ..., s)
- (4) The limiting joint distribution corresponding to the 'true' test statistics is exchangeable

Theorem

- (i) Any false H_i will be rejected with $p. \to 1$ as $n \to \infty$
- (ii) The method asymptotically controls the FDR at level α

Some Practice

Assumption (4) is somewhat restrictive (though less restrictive than an assumption of independence)

But simulations indicate that the method appears robust to

- different limiting variances of the 'true' test statistics
- different limiting correlations of the 'true' test statistics

- Problem Formulation
- 2 Existing Method
- 3 New Method
- 4 Theory & Practice
- Simulations
- 6 Conclusions
- 7 References

Problem Formulation Existing Methods New Method Theory & Practice **Simulations** Conclusions References

Set-Up I

Data generating process and testing problem:

- I.i.d. random vectors from $N(\theta, \Sigma)$, with n = 100
- $\theta_i = 0$ or $\theta_i = 0.2$, with s = 50
- Σ has constant correlation ρ
- H_i : $\theta_i \leq 0$ vs. H'_i : $\theta_i > 0$
- $T_{n,i}$ is the usual *t*-statistic

Methods considered:

- **(BH)** Benjamini and Hochberg (1995)
- (STS) Storey et al. (2004) with $\lambda = 0.5$
- **(BKY)** Benjamini et al. (2006)
- (**Boot**) Bootstrap method

Criteria:

- Empirical FDR (nominal level $\alpha = 10\%$)
- Average number of true rejections

4 D > 4 P > 4 B > 4 B >

Results I

Control

Rejected

0.0

34.8

0.0

49.7

0.0

44.9

	ho = 0			ho = 0.9				
	BH	STS	BKY	Boot	BH	STS	BKY	Boot
All $\theta_i = 0$								
Control	10.0	10.3	9.1	10.0	4.8	32.6	4.4	9.8
Rejected	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ten $ heta_i = 0.2$								
Control	7.6	9.5	7.3	7.3	5.0	26.5	5.8	10.0
Rejected	3.4	3.8	3.4	3.4	3.7	4.5	3.7	6.0
Twenty five $\theta_i = 0.2$								
Control	5.0	9.5	6.2	6.7	3.9	18.3	7.1	9.5
Rejected	13.2	17.4	14.5	14.9	12.6	14.2	12.7	16.6

All $\theta_i = 0.2$ 0.0

48.2

0.0

32.1

0.0

47.3 32.1 36.4

0.0

Problem Formulation New Method Theory & Practice Simulations References

Set-Up II

Data generating process and testing problem:

- I.i.d. random vectors from $N(\theta, \Sigma)$, with n = 100
- Three $\theta_i = 0$ and one $\theta_i = 0.2$ or 20, with s = 4
- Σ is a random correlation matrix: take 1,000 draws
- H_i : $\theta_i \leq 0$ vs. H'_i : $\theta_i > 0$
- $T_{n,i}$ is the usual t-statistic

Methods considered:

- (**BH**) Benjamini and Hochberg (1995)
- (STS) Storey et al. (2004) with $\lambda = 0.5$
- (**BKY**) Benjamini et al. (2006)
- (Boot) Bootstrap method

Criteria:

Simulations

Results II

- 1 Problem Formulation
- 2 Existing Method
- New Method
- 4 Theory & Practice
- Simulations
- **6** Conclusions
- References

oblem Formulation Existing Methods New Method Theory & Practice Simulations Conclusions References

Conclusions

Methodology:

- Bootstrap method implicitly accounts for the dependence structure of the test statistics
- Extended the approach of Troendle (2000) to non-normal data

Problem Formulation Existing Methods New Method Theory & Practice Simulations Conclusions References

Conclusions

Methodology:

- Bootstrap method implicitly accounts for the dependence structure of the test statistics
- Extended the approach of Troendle (2000) to non-normal data

Advantages:

- Appears more powerful than current competitors
- At least compared to those, that are also robust against various dependence structures

Problem Formulation Existing Methods New Method Theory & Practice Simulations Conclusions References

Conclusions

Methodology:

- Bootstrap method implicitly accounts for the dependence structure of the test statistics
- Extended the approach of Troendle (2000) to non-normal data

Advantages:

- Appears more powerful than current competitors
- At least compared to those, that are also robust against various dependence structures

Disadvantage:

- Computationally more expensive than methods based on the individual *p*-values
- Should be considered negligible this day and age

- Problem Formulation
- 2 Existing Methods
- 3 New Method
- 4 Theory & Practice
- Simulations
- 6 Conclusions
- References

Problem Formulation Existing Methods New Method Theory & Practice Simulations Conclusions References

References

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society, Series B*, 57(1):289–300.

Benjamini, Y., Krieger, A. M., and Yekutieli, D. (2006). Adaptive linear step-up procedures that control the false discovery rate. *Biometrika*, 93(3):491–507.

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. *Annals of Statistics*, 29(4):1165–1188.

Storey, J. D., Taylor, J. E., and Siegmund, D. (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. *Journal of the Royal Statistical Society, Series B*, 66(1):187–205.

Troendle, J. F. (2000). Stepwise normal theory test procedures controlling the false discovery rate. *Journal of Statistical Planning and Inference*, 84(1):139–158.

