Cours 3

Null

26 septembre 2023

Table des matières

1	Espaces Mesurés		
	1.1	Ensembles Mesurables	1
	1.2	Mesures Positives	1
	1.3	Fonctions Mesurables	1
	1.4	Classe Monotone	2

1 Espaces Mesurés

- 1.1 Ensembles Mesurables
- 1.2 Mesures Positives
- 1.3 Fonctions Mesurables

Théorème 1.3.1. La composition de deux applications mesurables est mesurable.

Remarque 1.3.1.1 (Composition Mesurable). Il faut bien que les applications f et g partagent un espace, avec la même tribu (comme la chanson). On définit fréquemment deux tribus différentes $sur \mathbb{R}^d$: la tribu borélienne et la tribu de Lebesgue, tribu complétée de la tribu borélienne pour la mesure de Lebesgue $\mathcal{M}(\lambda) = \{A \subset \mathbb{R}^d, \exists B_1, B_2 \in \mathcal{B}(\mathbb{R}^d), B_1 \subset A \subset B_2 \text{ et } \lambda(B_2 \setminus B_1) = 0\}$ et on $a: B(\mathbb{R}^d) \subsetneq \mathcal{M}(\lambda)$. Dans certains livres : f est mesurable si $f: (\mathbb{R}, \mathcal{M}(\lambda)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ est mesurable.

Proposition 1.3.1. Pour que f soit mesurable, il suffit qu'il existe une sous-classe engendrant \mathcal{B} pour laquelle la propriété est vraie.

Corollaire 1.3.1.1. Si $f: \mathbb{R}^{d_1} \to \mathbb{R}^{d_2}$ est continue, elle est mesurable pour les boréliens.

Corollaire 1.3.1.2. Une application produit est mesurable.

Démonstration. On a : $A_1 \bigotimes A_2 = \sigma (A_1 \times A_2)$

Lemme 1.3.2. Les applications $(+)(\times)(\max)(\min)$ de deux fonctions réelles sont mesurables

Corollaire 1.3.2.1. Les parties positives et négatives d'une fonction sont mesurables

Proposition 1.3.2. Si les f_n sont mesurables de E dans $\overline{\mathbb{R}}$ alors : $\sup_n f_n$, $\inf_n f_n$, $\lim\inf_n f_n$, $\lim\lim_n f_n$,

Démonstration. 1. Si $f(x) = \inf f_n(x)$: $f^{-1}[-\infty, a[= \bigcup_n \{x \mid f_n(x) < a\}]$. De même pour sup. On en déduit immédiatement $\liminf f_n = \sup_{n \ge 0} \inf_{k \ge n} f_k$.

2. On a : $\{x \in E \mid \lim f_n(x) \text{ existe}\} = \{x \in E \mid \lim \inf f_n(x) = \lim \sup f_n(x)\} = \mathcal{G}^{-1}(\Delta) \text{ où } \mathcal{G} = (\lim \inf f_n, \lim \sup f_n) \text{ et } \Delta \text{ est la diagonale de } \overline{\mathbb{R}}^2.$

Définition 1.3.1 (Mesure-Image). On appelle mesure image de μ par f, notée $f_{\#}\mu$ la mesure $f_{\#}\mu(B) = \mu(f^{-1}(B))$

1.4 Classe Monotone

Définition 1.4.1 (Classe Monotone). $\mathcal{M} \in \mathcal{P}(E)$ est une classe monotone si :

- 1. $E \in \mathcal{M}$
- 2. Si $A, B \in \mathcal{M}$ avec $A \subset B$, $B \setminus A \in \mathcal{M}$
- 3. Si $(A_n) \in \mathcal{M}^{\mathbb{N}}$ croissante, $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{M}$

Remarque 1.4.0.1. Toute tribu est une classe monotone

Lemme 1.4.1. Si \mathcal{M} est une classe monotone stable par intersections finies, c'est une tribu.

$$\textbf{D\'efinition 1.4.2.} \ \mathit{Si} \ \mathcal{C} \subset \mathcal{P}(E) \ : \mathcal{M}(\mathcal{C}) = \bigcap_{\mathit{Mclasse monotone, C} \subset \mathcal{M}}$$

Théorème 1.4.2 (Lemme de Classe Monotone). Si $\mathcal{C} \subset \mathcal{P}(E)$ est stable par intersections finies : $\mathcal{M}(\mathcal{C}) = \sigma \mathcal{C}$

Remarque 1.4.2.1. Les classes monotones sont des outils plus maniables que les tribus et se marient mieux avec les propriétés des mesures. Le théorème fait le lien entre tribus et classes monotones, ce qui facilite la vie avec les mesures.

 $D\acute{e}monstration$. Point Méthodologique : ne pas essayer d'exprimer des éléments de \mathcal{C} . T'façon les preuves constructives, c'est pour les salopes.

Remarque 1.4.2.2. On peut en déduire l'unicité de la mesure de Lebesgue. C'est une conséquence du théorème suivant.

Théorème 1.4.3. Soit C stable par intersections telle que $\sigma C = A$. On suppose $\mu_1(A) = \mu_2(A), \forall A \in C$ Alors:

- 1. $Si \ \mu_1(E) = \mu_2(E) < +\infty \ alors \ \mu_1 = \mu_2$
- 2. S'il existe $(E_n) \in \mathcal{A}^{\mathbb{N}}$ croissante d'union E et de mesures égales et finies par μ_1 et μ_2 alors $\mu_1 = \mu_2$

Démonstration. 1. Cas fini : $\mathcal{M} = \{A \in \mathcal{A} \mid \mu_1(A) = \mu_2(A)\}$ est une classe monotone. Donc $\mathcal{M} = \mathcal{A}$ par Lemme de Classe Monotone

2. Cas Infini : On applique le cas fini à E_n en prenant la restriction. Par continuité croissante, on obtient bien le résultat.

2