Average Variance

J. Poland

Risk Anomal

Data

Variance De composition

Results

Out of Sample

Allocation

Explaination

Conclusion

Don't Throw out the Return with the Risk: Average Variance Portfolio Management

Jeramia Poland

Indian School of Business

April 1, 2018

Risk Anomaly

Data

Variance De composition

Results

In Sample Out of Sample

Allocation

Explainatio

Conclusion

How Risky is your Aversion?

 Higher Return is better than lower return, lower risk is better than higher risk

Risk Anomaly

Data

Variance De composition

Results In Sample

Asset

E. ... Latara et a ...

Conclusions

How Risky is your Aversion?

- Higher Return is better than lower return, lower risk is better than higher risk
- Leverage access to higher returns at higher risk

Risk Anomaly

Data

Variance D composition

Results
In Sample
Out of Sample

Asset

Evolaination

Conclusions

How Risky is your Aversion?

- Higher Return is better than lower return, lower risk is better than higher risk
- Leverage access to higher returns at higher risk
- Time leverage on a component which predicts higher risk you can decrease exposure ahead of risky times

Results
In Sample
Out of Sample

Asset Allocation

Explaination

Conclusions

How Risky is your Aversion?

- Higher Return is better than lower return, lower risk is better than higher risk
- Leverage access to higher returns at higher risk
- Time leverage on a component which predicts higher risk you can decrease exposure ahead of risky times
- Are you giving up potential returns?

Equity Premium

Equity Premium

- Markowitz (1952) formal portfolio variance, return optimization
- Haugen (1972) low risk portfolios out perform
- Moreira and Muir (2017) portfolios scaled by last months realized volatilty outperform the underlying

Volatiltiy Managed Market Investment

- $W_t R_{st}$ where R_{st} is the monthly return to the CRSP market portfolio in month t.
- $\sigma^2(r_{s,t-1})$ is the variance, where $r_{s,t-1}$ is the series of daily returns of the CRSP market portfolio for month t-1
- $W_t = \frac{1}{\sigma^2(r_{c,t-1})}$ is the investment weight on the CRSP market portfolio for month t 4 D > 4 A > 4 B > 4 B > B

Risk Anomaly

Data

Variance Documents

Result

In Consulta

Out of Samp

Asset

_

Conclusion

Moreira and Muir 2017

Figure 3. Cumulative returns to the volatility-managed market return. The top panel plots the cumulative returns to a buy-and-held strategy versus a volatility-managed strategy for the market portfolio from 1926 to 2015. The y-axis is on a log scale and both strategies have the same uncenditional monthly standard deviation. The lower left panel plots relling one-year returns from each strategy and the lower right panel shows the drawdown or onch strategy.

Out of Sampl

E 11 11

Explainatio

Conclusions

Market Variance

- Campbell, Lettau, and Xu (2001) variance of individual assets vs market variance and CAPM
- Pollet and Wilson (2010) decompose quarterly variance of market portfolio - Avg cor and Avg var

Avg Var and Avg Cor

$$R_{s,t} = \sum_{1}^{N} w_{n,t} R_{n,t}$$

$$\sigma^{2}(r_{s,t}) = \sum_{n=1}^{N} \sum_{m=1}^{N} w_{n,t} w_{m,t} \sigma_{n,t}^{2} \sigma_{m,t}^{2} \rho_{n,m,t}$$

$$\sigma_{s,t}^{2} = \sum_{n=1}^{N} w_{n,t} \sigma_{n,t}^{2} \times \sum_{n=1}^{N} \sum_{m\neq n}^{N} w_{n,t} w_{m,t} \rho_{n,m,t}$$

$$AV_{t} = \sum_{n=1}^{N} w_{n,t} \sigma_{n,t}^{2} \text{ and } AC_{t} = \sum_{n=1}^{N} \sum_{m\neq n}^{N} w_{n,t} w_{m,t} \rho_{n,m,t}$$

Pollet and Wilson 2010 - Risk

Table: 1963Q2:2007Q1

			SV_{t+1}		
AC_t	0.014*** (0.005)		0.005 (0.005)		
AV_t		0.144*** (0.023)	0.136*** (0.024)		0.188** [*] (0.042)
SV_t				0.310*** (0.072)	-0.156 (0.124)
Constant	0.002 (0.001)	0.002** (0.001)	0.001 (0.001)	0.003*** (0.001)	0.001** (0.001)
Observations R ² Adjusted R ²	176 0.042 0.037	176 0.184 0.179	176 0.096 0.091	176 0.096 0.091	176 0.191 0.182

Note:

p<0.1; **p<0.05; ***p<0.01

Asset

Explaination

Conclusions

Pollet and Wilson 2010 - Returns

Table: 1963Q2:2007Q1

			RET_{t+1}		
AC_t	0.215*** (0.068)		0.248*** (0.072)		
AV_t		-0.116 (0.347)	-0.512 (0.356)		-1.746*** (0.615)
SV_t				1.466 (1.026)	5.795*** (1.828)
Constant	-0.038** (0.017)	0.014 (0.010)	-0.034** (0.017)	0.005 (0.008)	0.022** (0.010)
Observations R ²	176 0.054	176 0.001	176 0.065	176 0.012	176 0.056
Adjusted R ²	0.049	-0.005	0.054	0.006	0.045

Note:

*p<0.1; **p<0.05; ***p<0.01

Risk Anomaly

Data

Variance De composition

Results

Out of Sample

Allocation

Explainatio

Conclusion

Average Variance

- Timing leverage by variance generates higher returns
- Market variance contains average correlation
- Average variance is at least unrelated to future returns
- $W_t = \frac{1}{AV_{t-1}}$ is the investment weight on the CRSP market portfolio

Cummulative Excess Log Returns - Monthly

Risk Anomaly

Data

Variance De composition

Results

In Sample Out of Sample

Allocation

Explainatio

Conclusions

CRSP daily returns

- NYSE daily return (1926-2017)
- NYSE-AMEX daily returns (1962-2017)
- NASDAQ daily returns (1974-2017)

Risk Anomaly

Data

Variance Decomposition

In Sample
Out of Sample
Asset

Evalainatio

Conclusion

Summary Stats

Monthly 1962M6:2016M12

Statistic	N	Mean	St. Dev.	Min	Max	Autocorrelation
RFT	655	0 410	4.460	-26.134	14 814	0.081
AC	655	0.410	0.129	-20.134 0.019	0 762	0.620
AV	655	0.201	0.129	0.019	10 416	0.667
SV	655	0.200	0.406	0.006	5.664	0.551

Monthly 1926M7:2016M12

Statistic	N	Mean	St. Dev.	Min	Max	Autocorrelation
RET	1,085	0.495	5.371	-34.523	33.188	0.106
AC	1,085	0.276	0.134	0.019	0.762	0.610
AV	1,085	0.881	1.281	0.154	19.540	0.718
SV	1,085	0.248	0.502	0.006	5.808	0.612

Average Variance Variance Prediction J. Poland Sample 1962M6:2016M12 SV_{t+1} 0.005*** AC_t 0.010*** Results (0.001)(0.001) AV_t 0.261*** 0.234*** 0.123*** (0.016)(0.017)(0.035)0.320***

-0.00001

(0.0002)

654

0.297

0.296

(0.033)

0.001***

(0.0001)

654

0.304

0.303

*p < 0.1; **p < 0.05; **** $p < 0.01 < \ge >$

-0.001***

(0.0003)

654

0.320

0.318

(0.074)

0.0004**

(0.0002)

654

0.317

0.315

11/31

In Sample SV_t 0.551***

-0.001**

(0.0003)

654

0.110

0.109

Constant

 R^2

Note:

Observations

Adjusted R²

Average Variance **AV** Prediction J. Poland Sample 1962M6:2016M12 AV_{t+1} AC_t 0.014***-0.001Results (0.003)(0.002)In Sample AV_t 0.667*** 0 674*** 1.030*** (0.029)(0.031)(0.065) SV_t 1.092*** -0.844***(0.070)(0.135)Constant 0.004*** 0.003*** 0.006*** 0.003*** 0.001*** (0.001)(0.0003)(0.0003)(0.001)(0.0004)Observations 654 654 654 654 654 R^2 0.048 0 445 0.273 0 446 0.477 Adjusted R² 0.046 0.445 0.272 0.4440.475 Note: *p<0.1; **p<0.05; ***p<0.0199.0

12 / 31

Average Variance Return Prediction J. Poland Sample 1962M6:2016M12 RET_{t+1} AC_t 0.017 0.037*** Results (0.013)(0.014)In Sample AV_t -0.678***-0.877***-0.905*(0.203)(0.216)(0.463) SV_t 0.526 -1.174***(0.426)(0.969)Constant -0.00010.009*** 0.007*** 0.001 0.010***

(0.004)(0.002)(0.002)(0.004)(0.003)Observations 655 655 655 655 655 R^2 0.002 0.017 0.012 0.0270.017 Adjusted R² 0.001 0.015 0.010 0.024 0.014 Note: *p < 0.1; **p < 0.05; ***p < 0.01 =

13/31

Average Variance

J. Poland

Risk Anomal

Variance De

Results

In Sample
Out of Sample

Allocation

Out-of-Sample Tests

• Divide the sample 1962:06 - 2016:12 into 15% training 85% prediction

Risk Anomaly

Data

Variance De composition

Results

In Sample
Out of Sample

Asset Allocation

Explaination

Conclusion

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.

Risk Anomaly

Data

Variance De composition

Results

In Sample
Out of Sample

Asset

Conclusion

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = q + 1, q + 2, ..., T for out-of-sample forecast evaluation.

Results

Out of Sample

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = q + 1, q + 2, ..., T for out-of-sample forecast evaluation.
- Regression model is "trained" over initial period

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = q + 1, q + 2, ..., T for out-of-sample forecast evaluation.
- Regression model is "trained" over initial period
 - Estimate $\hat{\alpha}_t$ and $\hat{\beta}_t$ by regressing $\{r_{s+1}\}_{s=1}^{t-1}$ on a constant and $\{x\}_{s=1}^{t-1}$

Out of Sample
Asset

Evolainatio

Conclusion

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = q + 1, q + 2, ..., T for out-of-sample forecast evaluation.
- Regression model is "trained" over initial period
 - Estimate $\hat{\alpha}_t$ and $\hat{\beta}_t$ by regressing $\{r_{s+1}\}_{s=1}^{t-1}$ on a constant and $\{x\}_{s=1}^{t-1}$
- Generate one period ahead prediction

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = a + 1, a + 2, ..., T for out-of-sample forecast evaluation.
- Regression model is "trained" over initial period
 - Estimate $\hat{\alpha}_t$ and $\hat{\beta}_t$ by regressing $\{r_{s+1}\}_{s=1}^{t-1}$ on a constant and $\{x\}_{c=1}^{t-1}$
- Generate one period ahead prediction
 - $\hat{r}_{t+1} = \hat{\alpha}_t + \hat{\beta}_t x_t$

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = a + 1, a + 2, ..., T for out-of-sample forecast evaluation.
- Regression model is "trained" over initial period
 - Estimate $\hat{\alpha}_t$ and $\hat{\beta}_t$ by regressing $\{r_{s+1}\}_{s=1}^{t-1}$ on a constant and $\{x\}_{c=1}^{t-1}$
- Generate one period ahead prediction
 - $\hat{r}_{t+1} = \hat{\alpha}_t + \hat{\beta}_t x_t$
- Each following month the "training" window expands by one month

Out of Sample Stats

- $y_t \hat{y}_{x,t} = e_{x,t}$: forecast error of preditor x
- $\frac{1}{T}\sum_{1}^{T}(e_{x,t})^2 = MSFE_x$: mean squared forecast error based on predictor x

R_{oos}^2 Campbell and Thompson 2007

- $R_{os}^2 = 1 \frac{MSFE_x}{MSFF_x}$
- R_{os}^2 = proportional reduction in MSFE

MSE-F Mcracken 2004

- MSE-F = $T imes rac{\frac{1}{T} \sum_{1}^{T} (e_{b,t}^2 e_{x,t}^2)}{MSEF}$
- MSE-F = F-type test for significance in squared residual (like in sample regression)

composition

In Sample Out of Sample

Asset Allocatio

Explainatio

Conclusion

Out of Sample Stats

- R_{oos}^2 and MSE-F test improvement in forecast accuracy relative to a benchmark
- Encompassing tests impose the greater requirement that the benchmark have no valuable forecasting information

ENC-NEW Mcracken and Clark 2009

- ENC-NEW = $T imes rac{rac{1}{T} \sum_{1}^{T} (e_{b,t}^2 e_{b,t} e_{x,t})}{MSFE_x}$
- ENC-NEW = F-type statistic on the imporvement of including the benchmark

ENC-HLN Harvey, Lebourne and Newbold 1998

- Optimal forecast $= \hat{y}_t^* = (1 \lambda)\hat{y}_{b,t} + \lambda\hat{y}_{x,t}$
- $\lambda =$ measure of the optimal combination of forecasts from x and the benchmark

Results In Sample

Out of Sample

Allocation

Explainatio

Conclusion

Out of Sample Results

Table: 1970M7:2017M12

Benchmark: Historical Average

	Sample	R_{oos}^2	MSE-F	ENC-NEW	ENC-HLN
SV_{t+1}	Monthly	25.414*	189.790***	160.994**	1***
AV_{t+1}	Monthly	38.11**	342.979***	355.228**	0.967***
RET_{t+1}	Monthly	-0.059	-0.328	3.493**	0.478

Benchmark: SV_t

	Sample	R_{oos}^2	MSE-F	ENC-NEW	ENC-HLN
SV_{t+1}	Monthly	4.041	23.454***	25.409**	0.929*
AV_{t+1}	Monthly	26.853	204.485***	135.494**	1***
RET_{t+1}	Monthly	2.116	12.043***	8.2**	1

Out of Sample Results

Table: 1926M7:1962M6

Benchmark: Historical Average

	Sample R_{oos}^2		MSE-F	ENC-NEW	ENC-HLN				
SV_{t+1}	Monthly 49.972***		367.592***	397.183**	0.931***				
AV_{t+1}	Monthly 50.747**		379.160***	409.061**	0.932***				
RET_{t+1}	Γ_{t+1} Monthly -8.708		-29.479	-9.96	0				
Benchmark: SV_t									
Sample R_{oos}^2			MSE-F	ENC-NEW	ENC-HLN				
SV_{t+1}	Monthly	-1.289	-4.682	76.562**	0.485*				

47.013***

-21.152

Monthly

Monthly

11.328

-6.098

 AV_{t+1}

 RET_{t+1}

0.62**

0

121.513**

-6.192

Asset Allocation

Investment Weight

$$w_{AV,t} = \frac{c_{AV}}{AV_{t-1}}$$
 and $w_{SV,t} = \frac{c_{SV}}{SV_{t-1}}$ c is a constant used to equalize the standard deviation of strategies to the buy and hold

Strategy Investment Weight

Statistic	N	Mean	St. Dev.	Min	Max
$W_{SV,t}$	1,085	1.290	1.412	0.017	16.193
$W_{AV,t}$	1,085	1.301	0.710	0.033	4.253

Performance Measures

- RET = annualized average log excess return
- Sharpe $=\frac{\mathbb{E}[R_{\mathsf{x}}]}{\sigma(R_{\mathsf{x}})}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x 0]}{\sqrt{\int_{-\infty}^{0} (0 R_x)^2 f(R_x) dR}}$, return for downside
- Kappa(n) = $\frac{\mathbb{E}[R_x-0]}{\sqrt[n]{LPM_n}}$, where LPM is lower partial moment Kappa[2] = Sortino
- UpsidePotential $=\frac{\mathbb{E}[(R_x-0)_+]}{\sqrt{\mathbb{E}[(R_x-0)_-^2]}}$, dollar of average gain for downside risk
- Rachev = $\frac{ETL_{\alpha}(r_f x'r)}{ETL_{\beta}(x'r r_f)}$ where $ETL_{\alpha} = \frac{1}{\alpha} \int_{0}^{\alpha} VaR_{q}(X) dq$, dollar of possible extreme gain for dollar of possible extreme loss

Asset Allocation

Explaination

Conclusions

Performance

1926M7:2016M12

Strategy	RET	Sharpe	Sortino	Kappa	UpsidePotential	Rachev
ВН	5.932	0.319	0.447	0.082	0.584	0.841
SV	8.598	0.462	0.722	0.132	0.650	1.151
AV	9.677	0.520	0.778	0.150	0.706	0.972

1962M6:2016M12

Strategy	RET	Sharpe	Sortino	Карра	${\sf UpsidePotential}$	Rachev
ВН	5.112	0.332	0.463	0.089	0.635	0.826
SV	7.311	0.406	0.647	0.122	0.663	1.212
AV	7.857	0.470	0.702	0.139	0.719	0.987

Risk Anomaly

Risk Anomaly

Variance D

Results
In Sample

Asset Allocation

Evalaination

Conclusions

Drawdowns

St	trategy	N	Max DD	Avg DD	Max Length	Avg Length	Max Recovery	Avg Recovery
	ВН	82	-84.803	-8.069	188	11.549	154	7.207
	SV	65	-63.508	-11.162	246	14.954	135	7.446
	AV	87	-60.208	-9.014	205	10.851	135	5.034

Results In Sample

Out of Samp

Allocation

Explaination

Conclusion

Risk over Reward

- The higher excess returns of low-risk strategies (assets) comes from a preference for the lottery like extreme returns possible from higher risk investments - Barberis and Huang (2008); Brunnermeier, Gollier, and Parker (2007)
- Leverage constraints prevent investors from taking the low-risk position - Black (1972)

Explaination

Lottery

- For lotter preferences to explain the higher returns of either SV or AV, the Buy and Hold strategy must be more lottery-like than either
- It is not

		MAX1		SMAX1				
Strategy	Mean	Median	Sd	Mean	Median	Sd		
ВН	1.776	1.422	1.398	2.186	1.971	1.046		
SV	1.569	1.258	1.243	3.229	2.167	4.661		
AV	1.796	1.650	0.960	2.884	1.691	4.992		
		MAX5			SMAX5			
Strategy	Mean	Median	Sd	Mean	Median	Sd		
ВН	1.134	0.922	0.774	1.410	1.341	0.540		
SV	1.023	0.842	0.787	2.084	1.377	2.765		
AV	1.164	1.088	0.534	1.827	1.121	2.833		

(1)

(0.029)Explaination BH*GMCAP -0.000-0.000

(0.000)(0.000)

GMCAP ₅₀₀			0.524	0.660
BH*GMCAP ₅₀₀			(0.998) -18.636 (24.213)	(0.948) -15.823 (22.993)
Controls	FF-3	FF-5	(24.213) FF-3	(22.993) FF-5

525

0.775

0.772

525

0.749

0.747

525

=0.775

0.772

25/31

525

0.749

0.747

Observations

Adjusted R²

 R^2

Performance Issues

Weights [0,1.5]

Strategy	RET	Sharpe	Sortino	Карра	UpsidePotential	Rachev
ВН	5.932	0.319	0.447	0.082	0.584	0.841
SV	6.171	0.467	0.691	0.128	0.667	0.982
AV	7.885	0.486	0.706	0.133	0.683	0.896

Weights [0,1]

Strategy	RET	Sharpe	Sortino	Kappa	UpsidePotential	Rachev
ВН	5.932	0.319	0.447	0.082	0.584	0.841
SV	4.649	0.433	0.619	0.113	0.646	0.897
AV	5.814	0.447	0.632	0.117	0.657	0.845

Average Variance

J. Poland

Risk Anomaly
Data
Variance De- composition

Explaination

Leverage

					AV			
ВН	0.724*** (0.027)	0.805*** (0.029)	0.788*** (0.042)	0.843*** (0.041)	0.804*** (0.033)	0.889*** (0.035)	0.858*** (0.025)	0.900*** (0.026)
LF _{AEM}	0.178*** (0.038)	0.134*** (0.037)						
BH*LF _{AEM}	1.231*** (0.352)	1.508*** (0.341)						
ICRF			0.0004 (0.026)	0.006 (0.025)				
BH*ICRF			0.301 (0.196)	0.308 (0.188)				
ВС					-0.0002 (0.0002)	-0.0001 (0.0002)		
вн*вс					0.001 (0.004)	-0.003 (0.004)		
Δ MD ₁₉₈₄							0.00000 (0.00000)	0.00000 (0.00000)
BH*Δ MD ₁₉₈₄							0.00002*** (0.00000)	0.00002** (0.00000)
Controls	FF-3	FF-5	FF-3	FF-5	FF-3	FF-5	FF-3	FF-5
Observations R ² Adjusted R ²	396 0.764 0.761	396 0.785 0.781	396 0.748 0.745	396 0.771 0.767	432 0.739 0.736	432 0.761 0.757	431 0.772 0.770	431 0.791 0.788

Average Variance

J. Poland

Explaination

Leverage

	AV							
ВН	0.596*** (0.065)	0.675*** (0.065)	0.445*** (0.097)	0.619*** (0.102)	0.561*** (0.075)	0.661*** (0.075)		
Broker _{call}	-0.0004 (0.0005)	-0.001 (0.0005)						
BH*Broker _{call}	0.033*** (0.012)	0.039*** (0.012)						
Bank _{call}			0.00002 (0.001)	0.00005 (0.001)				
BH*Bank _{call}			0.061*** (0.013)	0.044*** (0.013)				
Bank _{Prime}					-0.001 (0.0004)	-0.001 (0.0004		
BH*Bank _{Prime}					0.037*** (0.011)	0.033*** (0.010)		
Observations R ² Adjusted R ²	336 0.678 0.673	336 0.712 0.706	265 0.802 0.798	265 0.818 0.813	395 0.729 0.726	395 0.753 0.749		
Note*				*p<0.1	; **p<0.05;	***p<0.0		

Risk Anomaly

Data

Variance De composition

Results In Sample

Accet

Allocation

LAPIamatic

Conclusions

Conclusions

 Market variation contains average correlation which is compensated by higher returns

Risk Anomaly

Data

Variance De composition

Results
In Sample
Out of Sample

Asset

Conclusions

- Market variation contains average correlation which is compensated by higher returns
- SV management throws out return with risk, AV does not

Variance De composition

Results
In Sample
Out of Sample

Asset Allocation

Explaination

Conclusions

- Market variation contains average correlation which is compensated by higher returns
- SV management throws out return with risk, AV does not
- AV out performs in all most all measures

Variance Documents

Results
In Sample
Out of Sample

Asset

Explaination

Conclusions

- Market variation contains average correlation which is compensated by higher returns
- SV management throws out return with risk, AV does not
- AV out performs in all most all measures
- Neither SV nor AV can be expained as behavior, lottery preference stories

Allocation

Explaination

Conclusions

- Market variation contains average correlation which is compensated by higher returns
- SV management throws out return with risk, AV does not
- AV out performs in all most all measures
- Neither SV nor AV can be expained as behavior, lottery preference stories
- Leverage constraints are a better explaination of the returns to SV and AV above the market

Risk Anomaly

Data

Variance Documents

Results

In Sample Out of Sampl

Allocation

Explaination

Conclusions

Portfolio performance significance

Subsample robust stats - Inoune and Rossi (2012)

Expand the left hand side - international / portfolio of equity indexes

AV utility gains

Average Variance J. Poland

Risk Anomaly

Data

Variance Decomposition

Result

In Sample

Out of Sample

Allocation

Explaination

Risk Anomaly

Data

Variance D compositio

Result

In Sample
Out of Sampl

Asset

Evolainatio

Conclusions

Time Series

Monthly Measures of Daily Return Statistics

