Chase Conaway

12/5/2020

HW #4

Github link: https://github.com/Chase1242/HW4.git

Professor Guizani

- 1. Define these terms as they relate to graph and graph algorithms: Use mathematical terms where appropriate.
 - a. Graph A set that consists of edges and vertices
 - b. Vertices a point on a graph that is usually connected to another vertex
 - c. Edge Connects two vertices
 - d. Undirected graph a graph where you can go any way on any edge
 - e. Directed graph a graph that requires you to follow the edges in a specific way, i.e. the edges have a direction
 - f. Path a sequence of vertices describes a route
 - g. Loop A path that has length one and starts and ends on itself
 - h. Cycle a graph of at least length one where you can get back to where you started
 - i. Acyclic a graph that does not allow you to get back to where you started
 - j. Connected connected if there is a path from every vertex to every other vertex
 - k. Sparse When the number of edges is less than the number of vertices

- 1. Weight the cost to take a certain route
- 2. We would want to use an adjacency matrix when the graph is dense and an adjacency list when the graph is sparse
- 3. One problem is using a graph to navigate to somewhere in the world. A second problem would be when you have an AI searching for a player in the game. A third problem would be for a 20 questions game, that uses a binary search tree.
- 4. A directed, cyclic graph
- 5. On vertex 7
- 6. 7 vertices, 17 edges

7. [6] Are these cyclic or acyclic graphs?

- 8. Directed, Acyclic graph
- 9. A breadth-first search searches the adjacent nodes first, determining the length of the path along the way. A depth-first search uses a stack to keep track of the nodes. If a node is not visited, then it gets pushed onto the stack, doing this until it cannot anymore. When it cannot continue, the algorithm pops off the stack until a node hasn't been visited and repeats the process.

10.

Node: Distance	Priority Queue
1 (0 40. 2 15 (4110)	

(from A) B: 5	A, B
(from B) D: 2	A, B, D
(from D) F: 3	A, B, D, F
(from F) E: 1	A, B, D, F, E
(from E) C: 1	A, B, D, F, E, C

11.

- a. MAD2104, degree of 8
- b. CDA 4101, indegree of 3
- c. MAD 2104, out degree of 6
- d. Topo sort: MAC3311, COP3210, COP3400,
 COP3337, COP4555, MAD2104, CAP3700,
 MAD3305, MAD3512, COP3530, CIS4610,
 COP5621, COP 4540, CDA4101, CDA4400,
 COP4610, COP4225