

Санкт-Петербургский государственный университет Кафедра системного программирования

Параллелизация conde в урезанной реализации miniKanren для OCaml (Unicanren)

Андрей Антонович Диденко, 241 группа

Научный руководитель: к.ф.-м.н. Д.С.Косарев, доцент кафедры системного программирования

Консультант: к.ф.-м.н. Д.С.Косарев, "MatMex, JetBrains Research laboratory"

Санкт-Петербург 2016

Введение

- Работа направлена на повышение эффективности решения заданий при помощи языка miniKanren путем декомпозиции задачи на потоке
- Данное решение предназначено для разработчиков, ипользующих miniKanren
- По моим данным, у этой работы нет аналогов!

Существующие решения (инструменты, подходы, алгоритмы)

- За основу взят язык программирования OCaml, а также встаиваемый в него язык miniKanren
- Для разработки моего проекта была задействована библиотека Domainslib для версии OCaml5
- В 5 версии добавлены инструменты с более удобным функционалом

Постановка задачи

Целью работы является распараллеливание miniKanren Задачи:

- Выбрать алгоритм, подход, метод
- Разработать алгоритм, который должен ускорить выполнение программы на miniKanren
- Доказать корректность алгоритма
- Реализовать предложенный алгоритм
- Провести экспериментальное исследование предложенной реализации

Алгоритм ABC^1

За основу решения взят алгоритм АВС

- Почему именно он, а не другие
- Ключевые особенности выбранного алгоритма, важные для решения поставленных задач

¹Результаты и обоснования выбора пути достижения цели

Новый алгоритм²

```
string res = "";
for(i = 0; i < 1; i++) {
res = "()" + res; Результат (SPPF):
```

Аппроксимация:

Грамматика:

²Иллюстративные возможности: таблицы, картинки, код

Доказательство корректности алгоритма

Формулировки утверждений. Идеи доказательств проговариваются устно.

Теорема (Пифагора: геометрическая формулировка)

В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.

Теорема (Пифагора: алгебраическая формулировка)

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

То есть, если обозначить длину гипотенузы треугольника через c, а длины катетов через a b, получим верное равенство: $a^2 + b^2 = c^2$.

Теорема (Обратная теорема Пифагора)

Для всякой тройки положительных чисел a, b и c, такой, что $a^2+b^2=c^2$, существует прямоугольный треугольник c катетами a и b и гипотенузой c.

Архитектура решения

- В реализации интересны архитектура, библиотеки, инструменты
- Не надо добавлять на слайд примеры кода

Экспериментальное исследование

Постановка эксперимента

- На каком наборе данных проводилось экспериментальное исследование, почему были выбраны именно эти данные
- На каком оборудовании проводилось исследование
- Какие решения были выбраны для сравнения и почему

Результаты экспериментального исследования

- Какие результаты показало экспериментальное исследование
- Желательно привести графики, иллюстрирующие полученные результаты
 - У иллюстраций должны быть подписи, у графиков легенда, подписи к осям, например:

Результаты

- Практически то же, что и на слайде с постановкой задачи, но в совершенной форме — что делал лично автор
- Четкое отделение результатов своей работы (особенно для коллективных работ)
- Формулировать глаголами совершенного вида в прошедшем времени ("сделано", "получено")
- Обсуждение (ограничения, валидность, альтернативы)
- Не нужно слайдов типа "Все", "Вопросы?", "Спасибо за внимание"
- Если результаты были представлены на конференции и опубликованы, это желательно указать

Дополнительный слайд

Например, с огромной страшной формулой всего, которая нужна для пояснения деталей при ответе на частый вопрос

$$\lim_{\Delta t \to 0^{+}} \int_{\Delta t}^{T} \int_{\Omega} D(t_{1}, x) \frac{\varphi(t_{1} - \Delta t, x) - \varphi(t_{1}, x)}{(-\Delta t)} dx dt_{1}$$

$$= \lim_{\Delta t \to 0^{+}} \int_{0}^{T} \int_{\Omega} D(t_{1}, x) \frac{\varphi(t_{1} - \Delta t, x) - \varphi(t_{1}, x)}{(-\Delta t)} \chi_{(\Delta t, T)}(t_{1}) dx dt_{1}$$

$$= \int_{0}^{T} \int_{\Omega} D(t_{1}, x) \frac{\partial \varphi}{\partial t_{1}}(t_{1}, x) dx dt_{1}.$$

Второй дополнительный слайд

- Много дополнительных слайдов не надо: 1–2 вполне достаточно в большинстве случаев
- Кроме формул здесь могут быть схемы, рисунки, таблицы и другие вспомогательные материалы