

Small World Phenomenon

Six Degrees of Separation

- Milgram asked randomly chosen "starter" individuals to each try forwarding a letter to a designated "target" person.
- The target's name, address, occupation and some personal information are provide.
- Each participant could only advance the letter by forwarding it to a single acquaintance that he or she knew.
- A third of the letters arrived at the target.
- In a median of six steps.

- Killworth and Bernard studied the strategies that people employ for choosing how to forward a message toward a target.
 - a mixture of primarily geographic and occupational features being used, with different features being favored depending on the characteristics of the target in relation to the sender.

Existence of short paths

- Two striking facts
 - Short paths are there in abundance.
 - People, acting without any sort of global "map" of the network, are effective at collectively finding these short paths.
- Do you expect the same happen on social networks?

Structure and Randomness

Each friend is linked to 100 new people

Triadic closure

Highly clustered individuals, so why do shortest paths exist?

Watts-Strogatz model (Ring)

Two types of links

- Homophily
 - We connect to others who are like ourselves.
 - Many triangles
- Weak ties
 - The links to acquaintances that connect us to parts of the network that would otherwise be far apart.

We start with a where each vertex is connected to its k nearest neighbors

like so.

With probability *p*, we reconnect this edge to a vertex chosen uniformly at random over the

entire ring, with duplicate edges forbidden. Otherwise, we leave the edge in place.

Watts-Strogatz model (Grid)

Everyone lives on a two-dimensional grid

 Two nodes are one grid-step apart if they are directly adjacent to each other.

Two types of links

- Homophily: each node form a link to all other nodes that lie within a radius of up to r grid steps away.
- Weak ties: each node also forms a link to k other nodes selected uniformly at random from the grid (very far apart).

The combinations

- weak ties
 - reach many people in a small no. steps
- mainly homophilous links and few weak ties
 - many triangles
 - If only one out of every k nodes is allowed to have a single random friend, this is enough to make the world small.

Decentralized Search

Milgram small-world experiment

A model for decentralized search

- Starting with the grid-based model of Watts and Strogatz
- Node s has to forward a message to node t passing it along edges of the network.
- s knows the location of t but s does not know the random edges out of any nodes other than itself.
- Each intermediate nodes has this partial information as well.

A model for decentralized search

- We will evaluate different search procedures according to their delivery time.
- Require a large number of steps to reach a target — much larger than the true length of the shortest path.

Analysis of Decentralized Search

A set of n nodes arranging on a 1D ring

directed edges to two adjacent nodes

A set of n nodes arranging on a 1D ring

local contacts long-range contacts

- directed
 edges to two
 adjacent
 nodes
- a single directed edge to some other node

 $\operatorname{prob} \propto d(v, w)^{-1}$

Myopic Search

start node s → target node t

the shortest path from a to i

Generalizing the network model

- Nodes on a grid and each node has edges to each other node within r grid steps.
- Each of its k random edges is generated in a way that decays with distance
 - Let d(v, w) denote the number of grid steps between nodes v and w.
 - Probability of an edge is proportional to d(v, w)^{-q}

Graph of d-q

Generalizing the network model

- q=0, the links are chosen uniformly at random
- Small q, the long-range links are "too random"
- Large q, the long-range links are "not random enough,"

Small q, more long distances edges

- Decentralized search is most efficient when q = 2 (so that random links follow an inverse-square distribution).
- Decentralized search has about the same efficiency on networks of hundreds million nodes across all exponents q between 1.5 and 2.0.

Efficiency of Decentralized Search

- Kleinberg 2000
 - nxn grid, α_0 , α_2 , α_r constants
 - Direct link to nodes within r grid steps away.
 - Prob. of a long range edge : d(v, w)^{-q}
- When q=0, the expected delivery time is at least $\alpha_0 n^{2/3}$
- When $0 \le q < 2$, the expected delivery time is at least $\alpha_r n^{(2-q)/3}$
- When q>2, the expected delivery time is at least $\alpha_r n^{(q-2)/(q-1)}$
- When q = 2 and r = 1, the expected delivery time is at most $\alpha_2(\log n)^2$

A Rough Calculation Motivating the Inverse-Square Network

- A node v in the network
- Considering the group of nodes lying at distances between d and 2d from v
- The probability that a random edge links into any node in this group is approximately independent of the value of d.

When q=2, same probability, regardless of the distance

Geographic Data on Friendship (Liben-Nowell et al)

- The population density of the LiveJournal network, a blogging site with 500,000 users
- Users provided links to their friends.
- The population density of the users is extremely non-uniform.
- Distance based model
 - → Rank-based model

