- 4. (c) It's an estimator of μ , the population mean difference in corneal thickness between an eye with glaucoma and a healthy eye.
 - (f) A bootstrap sample here satisfies these criteria.

 draw from the original with replacement.

 obtain a sample of the same size as original (violated here)
 - (9) A 99% bootstrap percentile interval should extend from the 0.5-percentile to the 99.5-percentile. With 1000 points, these percentiles are 5 away from the two ends. Estimating, that is approximately (~10, 6.3).
 - (h) It mostly seems so. We likely

 · have an SRS (not an iid), but n = 8 is a very small sample

 · have a normal population (biological measurements, normal quantile

 plot mostly straight)

(i)
$$-2.125 \pm (3.4995) \frac{9.5982}{\sqrt{8}}$$
, or $(-14.00, 9.75)$

(b)
$$\hat{p} = \frac{57}{100} = 0.57$$
, $E(\hat{p}) = p = 0.6$, $V_{ar}(\hat{p}) = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{(0.6)(0.4)}{100}} = 0.04899$

$$\Rightarrow Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} = \frac{0.57 - 0.6}{0.04899} = -0.612$$

(e) The rejection region is Z < -1.5548, and so Z = -0.612 is in the nonrejection region. We fail to reject H_0 .

(f) We reject Ho when the Z-score

$$\frac{7}{2} = \frac{0.57 - 0.6}{\sqrt{(0.6)(0.4)/n}} < -1.5548 \Rightarrow \left(\frac{0.03}{1.5548}\right)^2 > \frac{(0.6)(0.4)}{n}$$

$$\Rightarrow n > \frac{(0.6 \times 0.4)}{(0.03/1.5548)^2} = 644.64.$$
 So $n = 645$ is minimal.