

Série C - session 2007 : problème 1 - corrigé

Partie A: Utilisation des propriétés géométriques des transformations

1 - Construction : AB = 6 cm

2- a) Rapport et l'angle de S

$$S(D) = D$$
 et $S(A) = B$

$$k = \frac{DB}{DA} = \frac{AB\sqrt{2}}{AB} = \sqrt{2}$$

$$\theta = (\overrightarrow{\mathsf{DA}}, \overrightarrow{\mathsf{DB}}) = \frac{\pi}{4}$$

b) Image du point E par S

Soit E' = S(E), on a
$$(\overrightarrow{DE}, \overrightarrow{DE'}) = \frac{\pi}{4}$$
 et $DE' = \sqrt{2}DE$

On a
$$(\overrightarrow{DE},\overrightarrow{DF})=\frac{\pi}{4}$$
, donc E ' \in (DF). De plus DF = $\sqrt{2}$ DE , d'où E ' = F.

Une mesure de l'angle $(\overrightarrow{AE}, \overrightarrow{BF})$

$$S(A) = B$$
 et $S(E) = F$ alors $(\overrightarrow{AE}, \overrightarrow{BF}) = \frac{\pi}{4}$

3 - a) Construction de I (voir figure)

b) Montrons que le point I est l'intersection des cercles (Γ) et (Γ')

Le point I est l'intersection des droites (AE) et (BF).

Comme
$$(\overrightarrow{AE}, \overrightarrow{BF}) = \frac{\pi}{4}$$
, on a $(\overrightarrow{IA}, \overrightarrow{IB}) = \frac{\pi}{4}$. Alors $(\overrightarrow{IA}, \overrightarrow{IB}) = (\overrightarrow{DA}, \overrightarrow{DB})$, d'où I,D, A et B appartiennent au cercle (Γ) .

Ensuite,
$$(\overrightarrow{IE}, \overrightarrow{IB}) = \frac{\pi}{4}$$
 et $(\overrightarrow{IB}, \overrightarrow{IF}) = \pi$ implique $(\overrightarrow{IE}, \overrightarrow{IF}) = \frac{\pi}{4} + \pi$. Or, $(\overrightarrow{DE}, \overrightarrow{DF}) = \frac{\pi}{4}$, d'où

$$(\overrightarrow{IE}, \overrightarrow{IF}) = (\overrightarrow{DE}, \overrightarrow{DF}) + \pi . I, D, E \text{ et FB appartiennent au cercle } (\Gamma').$$

 $\textit{Conclusion}: I \in (\Gamma) \ \ \text{et} \ \ I \in (\Gamma') \ \ \text{alors} \ \ I \in (\Gamma) \cap (\Gamma')$

c) Montrons que les droites (ID) et (BF) sont perpendiculaires.

(
$$\Gamma$$
) est le cercle de diamètre [AD], comme $I \in (\Gamma)$, on a $(\overrightarrow{ID}, \overrightarrow{IB}) = \frac{\pi}{2}$.

D'où, les droites (ID) et (BF) sont perpendiculaires.

4 - Montrons que I est l'image de D par la réflexion d'axe (OO')

I et D sont les points d'intersection de (Γ) et (Γ') , donc I et D sont symétriques par rapport à la droite (OO') passant par les centres.

Partie B: Utilisation des nombres complexes

1- Affixes des points A, B, C, D et G.

$$\overrightarrow{DA} = 6\overrightarrow{e_1}$$
 et $\overrightarrow{DC} = 6\overrightarrow{e_2}$

On a $z_A = 6$; $z_B = 6 + 6i$; $z_C = 6i$; $z_D = 0$ et $z_G = -3$.

2 -a) Expression complexe de la similitude plane directe S

L'écriture complexe de S est de la forme : z' = a z + b

$$S(D) = D$$
 implique $z_D = az_D + b$

$$S(A) = B$$
 implique $z_B = az_A + b$

On a résoudre le système :

$$\begin{cases} 0a + b = 0 \\ 6a + b = 6 = 6 \end{cases}$$

Sa résolution donne a = 1 + i et b = 0.

D'où l'expression complexe de S est : z ' = (1 + i) z.

b) Eléments caractéristiques de S.

$$k = |1 + i| = \sqrt{2}$$

$$\theta = arg(1+i) = \frac{\pi}{4}$$

a) Nature et éléments géométriques de f.

L'écriture complexe de f est de la forme : $z' = a\overline{z} + b$ avec $a = \frac{4}{5} + \frac{3}{5}i$.

$$\left| a \right| = \left| \frac{4}{5} + \frac{3}{5}i \right| = 1$$
, f est donc un antidéplacement.

$$a\overline{b} + b = (\frac{4}{5} + \frac{3}{5}i)(-\frac{6}{5} - \frac{18}{5}i) + (-\frac{6}{5} + \frac{18}{5}i) = 0$$

f est une réflexion

Eléments caractéristiques de f :

Soit D' = f(D), on a $z_{D'} = (-\frac{6}{5} + \frac{18}{5}i)$, alors l'axe de la réflexion f est la médiatrice de[DD'].

Remarque : On vérifie que f(O) = O et f(O') = O'. f est la réflexion d'axe (OO').

b) Expression de x' et y' en fonction de x et y.

$$z = x + iy$$
 et $z' = x' + iy'$

$$(x'+iy') = (\frac{4}{5} + \frac{3}{5}i)(x-iy) + (-\frac{6}{5} + \frac{18}{5}i)$$

L'expression analytique de f est :

$$\begin{cases} x' = \frac{4}{5}x + \frac{3}{5}y - \frac{6}{5} \\ y' = \frac{3}{5}x - \frac{4}{5}y + \frac{18}{5} \end{cases}$$

c) Affixe z_I du point I tel que f(D) = I.

$$z_D = 0$$
 i.e. $x_D = y_D = 0$

$$z_{\rm I} = (-\frac{6}{5} + \frac{18}{5}i)$$

d) Vérifions que les points G, I et C sont alignés.

$$z_{\overrightarrow{GI}} = z_{\overrightarrow{I}} - z_{\overrightarrow{G}} = \left(-\frac{6}{5} + \frac{18}{5}i\right) - (-3) = \frac{9}{5} + \frac{18}{5}i$$

2

$$z_{GC} = z_C - z_G = (6i) - (-3) = 3 + 6i$$

$$z_{\overrightarrow{GI}} = \frac{3}{5} z_{\overrightarrow{GC}}$$
 i.e. $\overrightarrow{GI} = \frac{3}{5} \overrightarrow{GC}$

Les points G, I et C sont alignés.