Understanding Data Spaces: A Systematic Mapping Study of Foundations, Technical Building Blocks, and Sectoral Adoption

Anhelina Kovach[®]a, Leticia Montalvillo[®]a, Jorge Lanza[®]b, Pablo Sotres[®]b, Aitor Urbieta[®]a

^aIKERLAN Technology Research Centre, Basque Research and Technology Alliance (BRTA), Mondragón, 20500, Spain ^bNetwork Planning and Mobile Communications Laboratory, Universidad de Cantabria, Santander, 38005, Spain

Set of primary studies classified on facets

Table 1: Primary studies facet classification

Reference	Title	Year	Research Type	Building Blocks	Sector
Stier et al. [1]	Ontology-Based Battery Production Dataspace and Its Interweaving with Artificial Intelligence- Empowered Data Analytics	2024	Validation	Data Value Creation Enablers (Data Offering - Reuse)	Manufacturing
Ordóñez-Martínez et al. [2]	Defining the Balearic Islands' Tourism Data Space: An Approach to Functional and Data Re- quirements	2024	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Tourism
Ordóñez-Martínez et al. [3]	Toward Establishing a Tourism Data Space: Innovative Geo-Dashboard Development for Tourism Research and Management	2024	Solution	Data Value Creation Enablers (Value Creation Services - Reuse)	Tourism
Bellini et al. [4]	Data Sources and Models for Integrated Mobility and Transport Solutions	2024	Conceptual	Data Interoperability (Data Models - Reuse)	Mobility
Li et al. [5]	Collaborative Model-Based Systems Engineering Using Dataspaces and SysML v2	2024	Solution	Data Interoperability (Data Models - Reuse)	Manufacturing
Coppolino et al. [6]	Building Cyber-Resilient Smart Grids with Digital Twins and Data Spaces	2023	Evaluation	Data Interoperability (Data Exchange - Reuse), Data Value Creation Enablers (Value Creation Services - New)	Energy
Volz et al. [7]	On the Role of Digital Twins in Data Spaces	2023	Validation	Data Interoperability (Data Models - Reuse), Data Value Creation Enablers (Value Creation Services - New)	Green Deal
Falcão et al. [8]	A Reference Architecture for Enabling Interoperability and Data Sovereignty in the Agricultural Data Space	2023	Validation	Data Interoperability (Data Models - Reuse), Data Sovereignty (Usage Control - Reuse), Data Value Creation Enablers (Value Creation Services - NA)	Agriculture
Koppelaar et al. [9]	A Digital Product Passport for Critical Raw Materials Reuse and Recycling	2023	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Green Deal
Gil et al. [10]	Context-Aware Policy Analysis for Distributed Usage Control	2022	Validation	Data Sovereignty (Usage Control - New)	Energy
Usländer et al. [11]	Symbiotic Evolution of Digital Twin Systems and Dataspaces	2022	Solution	Data Interoperability (Data Models - Reuse), Data Value Creation Enablers (Value Creation Services - New)	Manufacturing
Niccolucci et al. [12]	Populating the Data Space for Cultural Heritage with Heritage Digital Twins	2022	Solution	Data Interoperability (Data Models - New)	Cultural Heritage
Janev et al. [13]	Responsible Knowledge Management in Energy Data Ecosystems	2022	Solution	Data Value Creation Enablers (Data Offering - Reuse, Pub. and Discovery - Reuse), Data Interoperability (Data Models - Reuse)	Energy
Pedrazzoli et al. [14]	Challenges and Founding Pillars for a Manufacturing Platform to Support Value Networks Operating in a Circular Economy Framework	2022	Conceptual	Data Interoperability (Data Exchange - Reuse), Data Value Creation Enablers (Value Creation Services - Reuse)	Manufacturing

Table 1: Primary studies facet classification (continued)

Reference	Title	Year	Research Type	Building Blocks	Sector
Frey et al. [15]	Bauhaus.MobilityLab: A Living Lab for the Development and Evaluation of AI-Assisted Services	2022	Solution	Data Interoperability (Data Exchange - Reuse), Data Value Creation Enablers (Value Creation Services - Reuse)	Energy
Stojanovic et al. [16]	Methodology and Tools for Digital Twin Management — The FA3ST Approach	2021	Validation	Data Interoperability (Data Models - New), Data Value Creation Enablers (Value Creation Services - Reuse)	Manufacturing
Usländer et al. [17]	Smart Factory Web — A Blueprint Architecture for Open Marketplaces for Industrial Production	2021	Evaluation	Data Value Creation Enablers (Pub. and Discovery - Reuse, Value Creation Services - New), Data Interoperability (Data Models - Reuse, Data Exchange - Reuse)	Manufacturing
Nativi et al. [18]	Digital Ecosystems for Developing Digital Twins of the Earth: The Destination Earth Case	2021	Solution	Data Value Creation Enablers (Value Creation Services - NA)	Green Deal
Munoz-Arcentales et al. [19]	Data Usage and Access Control in Industrial Data Spaces: Implementation Using FIWARE	2020	Validation	Data Sovereignty (Usage Control - New, Identity Management - Reuse), Data Interoperability (Data Exchange - Reuse)	Agriculture
Kotsev et al. [20]	From Spatial Data Infrastructures to Data Spaces — A Technological Perspective on the Evolution of European SDIs	2020	Opinion	Data Interoperability (Data Models - Reuse)	Green Deal
Cuno et al. [21]	Data Governance and Sovereignty in Urban Data Spaces Based on Standardized ICT Reference Architectures	2019	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Mobility
Alonso et al. [22]	Industrial Data Space Architecture Implementation Using FIWARE	2018	Validation	Data Interoperability (Data Exchange - Reuse), Data Value Creation Enablers (Pub. and Discovery - Reuse), Data Sovereignty (Identity Management - Reuse, Usage Control - Reuse)	Manufacturing
Meyer zum Felde et al. [23]	Extending Actor Models in Data Spaces	2023	Solution	Data Sovereignty (Identity Management - New, Trust Framework - Reuse)	Generic
Jaberansary et al. [24]	Analyzing Distributed Medical Data in FAIR Data Spaces	2023	Solution	Data Value Creation Enablers (Data Offering - Reuse, Pub. and Discovery - Reuse)	Healthcare
Fotiou et al. [25]	Data integrity protection for data spaces	2024	Validation	Data Sovereignty (Trust Framework - New, Identity Management - New)	Mobility
Marino et al. [26]	Enabling Compute and Data Sovereignty with Infrastructure-Level Data Spaces	2023	Validation	Data Interoperability (Data Exchange - New)	Healthcare
Langer et al. [27]	Towards a Data Space for Interoperability of Analytic Provenance	2023	Conceptual	Data Interoperability (Prov. and Traceability - Reuse)	Generic
Pomp et al. [28]	SPACE_DS: Towards a Circular Economy Data Space	2023	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Generic
Boukhers et al. [29]	Enhancing Data Space Semantic Interoperability through Machine Learning: a Visionary Perspective	2023	Conceptual	Data Interoperability (Data Models - Reuse), Data Value Creation Enablers (Data Offering - Reuse, Value Creation Services - Reuse)	Generic
Le Phuoc et al. [30]	Towards a Decentralized Data Hub and Query System for Federated Dynamic Data Spaces	2023	Validation	Data Interoperability (Prov. and Traceability - New), Data Value Creation Enablers (Pub. and Discovery - Reuse)	Mobility

Table 1: Primary studies facet classification (continued)

Reference	Title	Year	Research Type	Building Blocks	Sector
Brost et al. [31]	An Ecosystem and IoT Device Architecture for Building Trust in the Industrial Data Space	2018	Validation	Data Sovereignty (Usage Control - New, Identity Management - Reuse), Data Interoperability (Data Exchange - Reuse)	Generic
Ahmadian et al. [32]	Extending model-based privacy analysis for the industrial data space by exploiting privacy level agreement	2018	Conceptual	Data Sovereignty (Trust Framework - New)	Generic
Klug and Prinz [33]	Fair prices for sustainability in agriculture and food. Requirements and design options for a data-based transparency system	2023	Solution	Data Interoperability (Prov. and Traceability - NA), Data Sovereignty (Identity Management - Reuse, Usage Control - Reuse)	Agriculture
Deshmukh et al. [34]	Requirements and Building Blocks for Manufacturing Dataspaces	2023	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Manufacturing
Sang et al. [35]	Predictive Maintenance in Industry 4.0	2021	Solution	Data Interoperability (Data Exchange - Reuse, Prov. and Traceability - Reuse)	Manufacturing
Breidenbach et al. [36]	Development of a flexible and interoperable ar- chitecture to customize clinical solutions target- ing the care of multimorbid patients	2023	Solution	Data Value Creation Enablers (Value Creation Services - NA)	Healthcare
Paulus et al. [37]	The PLASMA Framework: Laying the Path to Domain-Specific Semantics in Dataspaces	2023	Solution	Data Interoperability (Data Models - New), Data Value Creation Enablers (Value Creation Services - New)	Mobility
Anthony Jnr. [38]	Applying Enterprise Architecture for Digital Transformation of Electro Mobility towards Sus- tainable Transportation	2020	Solution	Data Value Creation Enablers (Value Creation Services - NA), Data Interoperability (Data Exchange - Reuse)	Mobility
Pinto et al. [39]	Data Spaces Based Approach for B2B Data Exchange: A Footwear Industry Case	2023	Solution	Data Value Creation Enablers (Value Creation Services - NA)	Manufacturing
Neubauer et al. [40]	Architecture for Manufacturing-X: Bringing Asset Administration Shell, Eclipse Dataspace Connector and OPC UA together	2023	Solution	Data Value Creation Enablers (Value Creation Services - Reuse), Data Interoperability (Data Models - Reuse)	Manufacturing
Alexopoulos et al. [41]	An industrial data-spaces framework for resilient manufacturing value chains	2023	Solution	Data Value Creation Enablers (Data Offering - Reuse, Value Creation Services - Reuse), Data Interoperability (Data Models - Reuse)	Manufacturing
Auñón et al. [42]	Evaluation and utilisation of privacy enhancing technologies — A data spaces perspective	2024	Validation	Data Sovereignty (Trust Framework - New)	Healthcare
Pinheiro et al. [43]	Industrial Information Sharing 4.0	2022	Solution	Data Interoperability (Data Exchange - Reuse)	Manufacturing
Farahani and Mon- sefi [44]	Smart and collaborative industrial IoT: A federated learning and data space approach	2023	Solution	Data Sovereignty (Trust Framework - Reuse)	Manufacturing
Corte-Real et al. [45]	Blockchain technology and universal health coverage: Health data space in global migration	2022	Conceptual	Data Interoperability (Prov. and Traceability - Reuse)	Healthcare
Lahti et al. [46]	The Concept of Urban Mobility Innovation Environment for Data-Driven Service Development	2023	Solution	Data Interoperability (Data Exchange - Reuse)	Mobility
Landolfi et al. [47]	A MaaS platform architecture supporting data sovereignty in sustainability assessment of manufacturing systems	2019	Conceptual	Data Interoperability (Prov. and Traceability - Reuse), Data Sovereignty (Usage Control - New), Data Value Creation Enablers (Value Creation Services - New)	Manufacturing
Wolfert et al. [48]	Digital innovation ecosystems in agri-food: design principles and organizational framework	2023	Experience	Data Value Creation Enablers (Value Creation Services - NA)	Agriculture
Michikata et al. [49]	Applying Homomorphic Encryption to Data Spaces	2023	Validation	Data Sovereignty (Trust Framework - New)	Mobility

Table 1: Primary studies facet classification (continued)

Reference	Title	Year	Research Type	Building Blocks	Sector
Nast et al. [50]	Work-in-Progress: Towards an International Data Spaces Connector for the Internet of Things	2020	Solution	Data Interoperability (Data Exchange - New)	Generic
Somma et al. [51]	Digital Twin Space: The Integration of Digital Twins and Data Spaces	2023	Validation	Data Interoperability (Data Models - Reuse), Data Value Creation Enablers (Value Creation Services - Reuse)	Mobility
Iñigo et al. [52]	Towards Standardized Manufacturing as a Service through Asset Administration Shell and International Data Spaces Connectors	2022	Solution	Data Interoperability (Data Models - Reuse), Data Value Creation Enablers (Value Creation Services - Reuse)	Manufacturing
Sayad and Lemoine [53]	Towards Cross-domain Resilience in SDN- enabled Smart Power Grids: Enabling Informa- tion Sharing through Dataspaces	2023	Solution	Data Value Creation Enablers (Value Creation Services - NA), Data Interoperability (Prov. and Traceability - Reuse)	Energy
Sarabia-Jácome et al. [54]	Seaport Data Space for Improving Logistic Maritime Operations	2020	Validation	Data Value Creation Enablers (Value Creation Services - NA), Data Interoperability (Data Exchange - Reuse), Data Sovereignty (Identity Management - Reuse, Usage Control - Reuse)	Mobility
Qarawlus et al. [55]	Sovereign Data Exchange in Cloud-Connected IoT using International Data Spaces	2021	Validation	Data Interoperability (Data Exchange - Reuse)	Mobility
Vassilev et al. [56]	Towards First Urban Data Space in Bulgaria	2022	Experience	Data Value Creation Enablers (Value Creation Services - NA), Data Interoperability (Data Exchange - Reuse), Data Sovereignty (Identity Management - Reuse)	Mobility
Volz et al. [57]	An Industrial Marketplace - the Smart Factory Web Approach and Integration of the Interna- tional Data Space	2019	Solution	Data Interoperability (Data Exchange - Reuse, Data Models - Reuse), Data Value Creation Enablers (Value Creation Services - Reuse, Pub. and Discovery - Reuse), Data Sovereignty (Usage Control - Reuse)	Manufacturing
Klîmek et al. [58]	Atlas: A Toolset for Efficient Model-Driven Data Exchange in Data Spaces	2023	Solution	Data Interoperability (Data Models - New)	Generic
Matsunaga et al. 59]	ITDT: International Testbed for Dataspace Technology	2023	Solution	Data Value Creation Enablers (Value Creation Services - NA)	Generic
Kalogeropoulos et al. [60]	EdgeDS: Data Spaces enabled Multi-Access Edge Computing	2023	Validation	Data Value Creation Enablers (Value Creation Services - New)	Mobility
Krasteva et al. [61]	How Federated Machine Learning Helps Increase the Mutual Benefit of Data-Sharing Ecosystems	2023	Solution	Data Value Creation Enablers (Value Creation Services - Reuse)	Mobility
Balint and Truong [62]	On Supporting Contract-Aware IoT Dataspace Services	2017	Validation	Data Sovereignty (Usage Control - New)	Generic
Karagiannis et al. 63]	Data Sovereignty at the Edge of the Network	2023	Validation	Data Value Creation Enablers (Value Creation Services - NA)	Energy
Pullmann et al. 64]	Ontology-based information modelling in the industrial data space	2017	Solution	Data Value Creation Enablers (Data Offering - Reuse)	Manufacturing
Elia et al. [65]	A Data Space for Climate Science in the European Open Science Cloud	2023	Solution	Data Value Creation Enablers (Value Creation Services - NA)	Green Deal
Berenguer et al. 66]	From Research on Data-Intensive Software to In- novation in Data Spaces: A Search Service for Tabular Data	2024	Experience	Data Value Creation Enablers (Pub. and Discovery - New)	Generic
Karacic [67]	Europe, we have a problem! Challenges to health data-sharing in the EU	2022	Opinion	Data Sovereignty (Trust Framework - Reuse)	Healthcare

Table 1: Primary studies facet classification (continued)

Reference	Title	Year	Research Type	Building Blocks	Sector
Regazzoni et al. [68]	SECURED for Health: Scaling Up Privacy to Enable the Integration of the European Health Data Space	2024	Solution	Data Sovereignty (Trust Framework - Reuse)	Healthcare
Meneguzzo et al. [69]	Shaping the Future of Energy Markets: Federated Systems and Blockchain Synergy	2024	Solution	Data Interoperability (Prov. and Traceability - New), Data Sovereignty (Identity Management - Reuse)	Energy
Yang et al. [70]	Truthfully Negotiating Usage Policy for Data Sovereignty	2022	Validation	Data Sovereignty (Usage Control - New)	Generic
Koshizuka and Mano [71]	DATA-EX: Infrastructure for Cross-Domain Data Exchange Based on Federated Architecture	2022	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Generic
Karagiannis et al. [72]	The Blue Dataverse: A System for Marine Data Sovereignty	2023	Validation	Data Value Creation Enablers (Value Creation Services - Reuse)	Green Deal
Kapsalis et al. [73]	An Energy Efficiency Marketplace for Buildings: The ENERGATE System Architecture	2023	Solution	Data Value Creation Enablers (Value Creation Services - Reuse)	Energy
Lia and Colella [74]	CkanFAIR: a digital tool for assessing the FAIR principles	2023	Validation	Data Value Creation Enablers (Pub. and Discovery - New)	Public Administration
Ono and Tang- teerasunun [75]	Design Thinking Framework for Values Captur- ing and Technical Features Validation for Digital Healthcare Platform	2022	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Healthcare
Qarawlus et al. [76]	Demonstration of Data-Sovereign Telemetry Broker for Open and Disaggregated Optical Net- works	2023	Validation	Data Value Creation Enablers (Value Creation Services - NA)	Generic
Yu et al. [77]	Food Supply Blockchain: A Bright Future for the Food Supply Chain	2023	Validation	Data Value Creation Enablers (Value Creation Services - Reuse), Data Interoperability (Prov. and Traceability - Reuse)	Agriculture
Piest et al. [78]	Demonstrating the Architecture for Situation- aware Logistics using Smart Returnable Assets	2023	Validation	Data Value Creation Enablers (Value Creation Services - NA)	Manufacturing
Chandran et al. [79]	Transforming Personal Data Transactions with Auditable, Privacy-Preserving Data Exchange Agreements: Fostering Transparency and Trust in Digital Wallet Ecosystems	2023	Solution	Data Sovereignty (Usage Control - Reuse, Trust Framework - New, Identity Management - Reuse)	Healthcare
Bellini et al. [80]	Rapid Prototyping & Development Life Cycle for Smart Applications of Internet of Entities	2023	Evaluation	Data Value Creation Enablers (Value Creation Services - Reuse), Data Interoperability (Data Exchange - Reuse, Data Models - Reuse)	Mobility
Harjula et al. [81]	Smart Manufacturing Multi-Site Testbed with 5G and Beyond Connectivity	2021	Solution	Data Value Creation Enablers (Value Creation Services - Reuse), Data Interoperability (Data Exchange - Reuse)	Manufacturing
Dickopf et al. [82]	Application of the Asset Administration Shell in the context of Engineering Data Management Systems	2023	Solution	Data Interoperability (Data Models - Reuse), Data Value Creation Enablers (Value Creation Services - Reuse)	Manufacturing
Ajdinović et al. [83]	Interoperable Digital Product Passports: An Event-Based Approach to Aggregate Production Data to Improve Sustainability and Transparency in the Manufacturing Industry	2024	Solution	Data Interoperability (Data Exchange - Reuse, Data Models - Reuse), Data Value Creation Enablers (Value Creation Services - Reuse)	Manufacturing
Appenzeller et al. [84]	Towards Distributed Healthcare Systems – Virtual Data Pooling Between Cancer Registries as Backbone of Care and Research	2021	Solution	Data Sovereignty (Usage Control - Reuse)	Healthcare
Jurmu et al. [85]	Exploring the Role of Federated Data Spaces in Implementing Twin Transition within Manufacturing Ecosystems	2023	Experience	Data Value Creation Enablers (Value Creation Services - NA)	Manufacturing
Hellmeier et al.	Implementing Data Sovereignty: Requirements & Challenges from Practice	2023	Experience	Data Value Creation Enablers (Value Creation Services - NA)	Generic

Table 1: Primary studies facet classification (continued)

Reference	Title	Year	Research Type	Building Blocks	Sector
Raab et al. [87]	Federated electronic health records for the European Health Data Space	2023	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Healthcare
Hussein et al. [88]	Towards the European Health Data Space (EHDS) ecosystem: A survey research on future health data scenarios	2023	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Healthcare
Martella et al. [89]	Identifying key factors in designing data spaces for Urban Digital Twin Platforms: a data driven approach	2023	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Mobility
Pampus et al. [90]	Evolving Data Space Technologies: Lessons Learned from an IDS Connector Reference Im- plementation	2022	Experience	Data Interoperability (Data Exchange - Reuse), Data Sovereignty (Identity Management - Reuse), Data Value Creation Enablers (Data Offering - Reuse)	Generic
Werkmeister [91]	Development of User-Centred Interaction Design Patterns for the International Data Space	2021	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Generic
Dobreva et al. [92]	Data Spaces for Cultural Heritage: Insights from GLAM Innovation Labs	2022	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Cultural Heritage
Rucco et al. [93]	Supporting Energy Digital Twins with Cloud Data Spaces: An Architectural Proposal	2022	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Energy
Belsa et al. [94]	A Novel Approach for Calculating Real-Time Composite Indicators Relying on Internet of Things and Industrial Data Spaces	2022	Solution	Data Interoperability (Data Models - Reuse, Data Exchange - Reuse), Data Sovereignty (Identity Management - Reuse, Usage Control - Reuse), Data Value Creation Enablers (Value Creation Services - Reuse)	Manufacturing
Firdausy et al. [95]	A Data Connector Store for International Data Spaces	2022	Validation	Data Value Creation Enablers (Pub. and Discovery - Reuse, Data Offering - Reuse)	Generic
Bruckner et al. [96]	A Policy-Agnostic Programming Language for the International Data Spaces	2021	Solution	Data Sovereignty (Usage Control - New)	Generic
Bader et al. [97]	The International Data Spaces Information Model – An Ontology for Sovereign Exchange of Digital Content	2020	Solution	Data Value Creation Enablers (Data Offering - New)	Generic
Petersen et al. [98]	Value-Added Services, Virtual Enterprises and Data Spaces Inspired Enterprise Architecture for Smart Cities	2019	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Mobility
Möller et al. [99]	Towards an Architecture to Support Data Access in Research Data Spaces	2021	Solution	Data Value Creation Enablers (Pub. and Discovery - Reuse)	Research and Innovation
Kannisto and Hästbacka [100]	Data Autonomy in Message Brokers in Edge and Cloud for Mobile Machinery: Requirements and Technology Survey	2022	Experience	Data Interoperability (Data Exchange - NA)	Manufacturing
Usmani et al. [101]	Towards Multimodal Knowledge Graphs for Data Spaces	2023	Solution	Data Value Creation Enablers (Data Offering - New)	Mobility
Cimmino et al. [102]	Open Digital Rights Enforcement framework (ODRE): From descriptive to enforceable policies	2025	Validation	Data Sovereignty (Usage Control - New)	Generic
Kulkarni et al. [103]	Using SysML as a Modelling Language for Dataspaces	2024	Validation	Data Interoperability (Data Models - Reuse)	Mobility
Kovach et al. [104]	Sovereign IIoT Data Exchange Using DAG- Based DLT and International Data Spaces Archi- tecture	2024	Solution	Data Interoperability (Prov. and Traceability - Reuse), Data Sovereignty (Identity Management - Reuse, Usage Control - New)	Generic
Blumenröhr et al. [105]	FAIR Digital Objects for the Realization of Globally Aligned Data Spaces	2024	Solution	Data Value Creation Enablers (Pub. and Discovery - Reuse)	Generic

Table 1: Primary studies facet classification (continued)

Reference	Title	Year	Research Type	Building Blocks	Sector
Huang et al. [106]	Design of a Secure Industrial Data Interaction System Based on International Data Space and Optimized KP-ABE Algorithm	2024	Validation	Data Sovereignty (Trust Framework - Reuse)	Generic
Der Sylvestre Sidibe and Dhouib [107]	An Approach for Sovereign Data Exchange of AAS Digital Twins Through the International Data Space Network	2024	Solution	Data Interoperability (Data Models - Reuse), Data Value Creation Enablers (Value Creation Services - Reuse)	Manufacturing
Distefano and Zifru [108]	Exploring the interplay between DataSpaces and Large Language Models	2024	Validation	Data Value Creation Enablers (Value Creation Services - New, Data Offering - Reuse, Pub. and Discovery - Reuse), Data Interoperability (Data Models - Reuse)	Healthcare
Al-Qatf et al. [109]	RAG4DS: Retrieval-Augmented Generation for Data Spaces—A Unified Lifecycle, Challenges, and Opportunities	2025	Conceptual	Data Value Creation Enablers (Value Creation Services - New, Data Offering - Reuse, Pub. and Discovery - Reuse), Data Interoperability (Data Models - Reuse)	Generic
Morabito et al. [110]	Intent-Based Pseudonymization for Healthcare Workflows on Intra-Hospital Data Space Do- main	2024	Validation	Data Sovereignty (Trust Framework - Reuse)	Healthcare
García et al. [111]	Privacy Preserving Enablers for Data Space Ecosystems	2025	Conceptual	Data Sovereignty (Trust Framework - Reuse, Identity Management - Reuse, Usage Control - Reuse)	Generic
Ahmadian et al.	Privacy-Friendly Sharing of Health Data Using a Reference Architecture for Health Data Spaces	2024	Solution	Data Sovereignty (Trust Framework - New, Usage Control - New)	Healthcare
Doulkeridis et al. [113]	The MobiSpaces Manifesto on Mobility Data Spaces	2024	Solution	Data Value Creation Enablers (Data Offering - Reuse, Value Creation Services - Reuse), Data Interoperability (Data Exchange - Reuse, Prov. and Traceability - Reuse), Data Sovereignty (Usage Control - Reuse)	Mobility
Nizamis et al. [114]	Introducing an Enhanced Metadata Broker for Manufacturing Data Spaces	2024	Solution	Data Value Creation Enablers (Data Offering - New, Pub. and Discovery - Reuse)	Manufacturing
Steinert and Al- endeitering [115]	Data Trustees: A Whitelisting Approach for Trusted Data Sharing	2024	Solution	Data Sovereignty (Trust Framework - New)	Generic
aniguchi et al.	DSPOL: A High-Level Language for Defining Data Policies in Data Spaces	2024	Solution	Data Sovereignty (Usage Control - New)	Generic
Gavric et al. [117]	Enhancing Security in International Data Spaces: A STRIDE Framework Approach	2025	Validation	Data Sovereignty (Trust Framework - Reuse)	Generic
Mitrovska et al. 118]	Federated Learning Governance using Eclipse Dataspace Components Connectors	2024	Validation	Data Value Creation Enablers (Value Creation Services - Reuse)	Healthcare
Danish and Schnicke [119]	Integrating Systems of Record (SOR) into the Asset Administration Shell (AAS) Dataspace	2024	Validation	Data Value Creation Enablers (Value Creation Services - Reuse), Data Interoperability (Data Models - Reuse, Data Exchange - Reuse)	Manufacturing
Aanathunga et al. 120]	Enabling secure and self-sovereign machine learning model exchange in manufacturing data spaces	2024	Validation	Data Value Creation Enablers (Value Creation Services - Reuse, Data Offering - New), Data Sovereignty (Usage Control - Reuse), Data Interoperability (Data Models - Reuse)	Manufacturing

Table 1: Primary studies facet classification (continued)

Reference	Title	Year	Research Type	Building Blocks	Sector
Gerlach et al. [121]	Gaia-X-Med: Experiences with Building Dataspaces for Medical Applications	2024	Experience	Data Sovereignty (Usage Control - New, Trust Framework - New, Identity Management - Reuse)	Healthcare
Karl et al. [122]	Building a Data Space for the Public Security Domain Using Smart Contracts	2024	Solution	Data Sovereignty (Trust Framework - Reuse)	Public Administration
Latvakoski et al. [123]	A Simulation-Based Study on Securing Data Sharing for Situational Awareness in a Port Ac- cident Case	2024	Evaluation	Data Value Creation Enablers (Value Creation Services - NA), Data Interoperability (Data Exchange - Reuse), Data Sovereignty (Trust Framework - Reuse, Identity Management - Reuse)	Mobility
Georgiou et al. [124]	SKILLAB: Creating a Skills Supply and Demand Data Space	2024	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Skills
Gaeta et al. [125]	GATEKEEPER Platform: Secure Processing Environment for European Health Data Space	2025	Evaluation	Data Value Creation Enablers (Value Creation Services - Reuse), Data Sovereignty (Trust Framework - Reuse), Data Interoperability (Data Exchange - Reuse)	Healthcare
Wang et al. [126]	Industrial Data Space Framework Design and Feasibility Analysis - A Case Study of China's New Energy Industry	2024	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Energy
Mitrovska et al. [127]	Data Governance Framework for Telemetry Sharing	2024	Solution	Data Value Creation Enablers (Value Creation Services - NA), Data Interoperability (Data Exchange - NA)	Generic
Petroulakis et al. [128]	Towards the development of a network provisioning platform for data exchange in the health data space	2024	Experience	Data Value Creation Enablers (Value Creation Services - NA)	Healthcare
Coppolino et al. [129]	Connecting the Mobility and the Refu- elling/Recharging Infrastructures: The Role of Data Spaces	2024	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Mobility
Bacco et al. [130]	Agricultural Data Space: the METRIQA Plat- form and a Case Study in the CODECS project	2024	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Agriculture
Perera et al. [131]	Confidentiality Preserving Data Sharing for Life Cycle Assessment in Process Industries	2024	Conceptual	Data Sovereignty (Trust Framework - Reuse, Identity Management - Reuse)	Manufacturing
Nardone et al. [132]	Secure and Transparent Data Sharing Among Connected Devices: Integrating Data Spaces and Provenance	2024	Conceptual	Data Interoperability (Prov. and Traceability - Reuse)	Healthcare
Kalatzis et al. [133]	Smart Farming data and IoT in Support of Agri- cultural Policy Monitoring	2024	Conceptual	Data Value Creation Enablers (Value Creation Services - NA)	Agriculture
Alsamhi et al. [134]	Skyward secure: Advancing drone data-sharing in 6G with decentralized dataspace and supported technologies	2025	Solution	Data Value Creation Enablers (Value Creation Services - Reuse), Data Interoperability (Prov. and Traceability - Reuse)	Mobility
Liao et al. [135]	An industrial dataspace for automotive supply chain: Secure data sharing based on data association relationship	2025	Evaluation	Data Value Creation Enablers (Value Creation Services - NA)	Manufacturing
Akaichi et al. [136]	Interoperable and Continuous Usage Control Enforcement in Dataspaces	2024	Solution	Data Sovereignty (Usage Control - New)	Generic
Hosseinzadeh et al. [137]	A Systematic Approach toward Extracting Technically Enforceable Policies from Data Usage Control Requirements	2020	Solution	Data Sovereignty (Usage Control - New)	Generic

Table 1: Primary studies facet classification (continued)

Reference	Title	Year	Research Type	Building Blocks	Sector
Arnold et al. [138]	Towards Enabling FAIR Dataspaces Using Large Language Models	2024	Solution	Data Sovereignty (Usage Control - Reuse), Data Value Creation Enablers (Value Creation Services - Reuse, Data Offering - Reuse)	Generic
Vogt et al. [139]	Towards Digital Twin-Based Dataspaces for Industrial Computer Vision Services	2024	Validation	Data Interoperability (Data Models - Reuse), Data Value Creation Enablers (Value Creation Services - Reuse)	Manufacturing
Kyriakou et al. [140]	A Secure and Trustworthy Biometric Data Ecosystem for Cross-border Suspect Identifica- tion	2024	Solution	Data Sovereignty (Trust Framework - Reuse), Data Value Creation Enablers (Value Creation Services - NA)	Public Administration
Manoury et al. [141]	Supporting Changes in Digital Ownership and Data Sovereignty Across the Automotive Value Chain with Catena-X	2025	Conceptual	Data Value Creation Enablers (Value Creation Services - Reuse)	Manufacturing
Gonçalves et al. [142]	Evaluating Legal Compliance of Federated Learning Tools for the European Health Data Space (EHDS)	2024	Evaluation	Data Sovereignty (Trust Framework - Reuse)	Healthcare
Hoseini et al. [143]	Challenges and Opportunities of LLM- Augmented Semantic Model Creation for Dataspaces	2025	Conceptual	Data Value Creation Enablers (Data Offering - Reuse)	Generic
Gil et al. [144]	Sovereignty by design and human values in agri- culture data spaces	2025	Experience	Data Value Creation Enablers (Value Creation Services - NA)	Agriculture
Lancker et al. [145]	Semantic and Technically Interoperable Data Exchange in the Flanders Smart Data Space	2024	Validation	Data Value Creation Enablers (Value Creation Services - NA, Pub. and Discovery - Reuse), Data Interoperability (Data Exchange - Reuse)	Mobility
Soltysinski et al. [146]	Digital Calibration Certificate in a trusted quality infrastructure federated data space: A proof of concept	2024	Solution	Data Value Creation Enablers (Value Creation Services - NA), Data Sovereignty (Identity Management - Reuse)	Public Administration
Zhang et al. [147]	Trans-Border Trusted Data Spaces: A General Framework Supporting Trustworthy International Data Circulation	2025	Evaluation	Data Value Creation Enablers (Value Creation Services - NA), Data Sovereignty (Usage Control - Reuse), Data Interoperability (Prov. and Traceability - Reuse)	Generic
Nagel et al. [148]	IntraDataspace: An architecture of a company- internal Dataspace	2024	Experience	Data Value Creation Enablers (Value Creation Services - NA), Data Interoperability (Data Exchange - Reuse)	Manufacturing
Papadakis et al. [149]	CCDUIT: A Software Overlay for Cross- Federation Collaboration Between Data Spaces	2024	Validation	Data Interoperability (Data Models - Reuse, Data Exchange - Reuse)	Mobility

References

- [1] S. P. Stier, X. Xu, L. Gold, M. Möckel, Ontology-Based Battery Production Dataspace and Its Interweaving with Artificial Intelligence-Empowered Data Analytics, Energy Technology 12 (4) (2024). doi:https://doi.org/10.1002/ente.202301305.
- [2] Ordóñez-Martínez, Dolores and Seguí-Pons, Joana M. and Ruiz-Pérez, Maurici, Defining the Balearic Islands' Tourism Data Space: An Approach to Functional and Data Requirements, Data 9 (3) (2024). doi:10.3390/data9030041.
- [3] D. Ordóñez-Martínez, J. M. Seguí-Pons, M. Ruiz-Pérez, To-ward Establishing a Tourism Data Space: Innovative Geo-Dashboard Development for Tourism Research and Management, Smart Cities 7 (1) (2024) 633–661. doi:10.3390/smartcities7010026.
- [4] P. Bellini, S. Bilotta, E. Collini, M. Fanfani, P. Nesi, Data Sources and Models for Integrated Mobility and Transport Solutions, Sensors 24 (2) (2024). doi:10.3390/s24020441.
- [5] Z. Li, F. Faheem, S. Husung, Collaborative Model-Based Systems Engineering Using Dataspaces and SysML v2, Systems 12 (1) (2024). doi:10.3390/systems12010018.
- [6] L. Coppolino, R. Nardone, A. Petruolo, L. Romano, Building Cyber-Resilient Smart Grids with Digital Twins and Data Spaces, Applied Sciences 13 (24) (2023). doi:10.3390/app132413060.
- [7] F. Volz, G. Sutschet, L. Stojanovic, T. Usländer, On the Role of Digital Twins in Data Spaces, Sensors 23 (17) (2023). doi: 10.3390/s23177601.
- [8] R. Falcão, R. Matar, B. Rauch, F. Elberzhager, M. Koch, A Reference Architecture for Enabling Interoperability and Data Sovereignty in the Agricultural Data Space, Information 14 (3) (2023). doi:10.3390/info14030197.
- [9] R. H. E. M. Koppelaar, et al., A Digital Product Passport for Critical Raw Materials Reuse and Recycling, Sustainability 15 (2) (2023). doi:10.3390/su15021405.
- [10] G. Gil, A. Arnaiz, M. Higuero, F. J. Diez, E. Jacob, Context-Aware Policy Analysis for Distributed Usage Control, Energies 15 (19) (2022). doi:10.3390/en15197113.
- [11] T. Usländer, M. Baumann, S. Boschert, R. Rosen, O. Sauer, L. Stojanovic, J. C. Wehrstedt, Symbiotic Evolution of Digital Twin Systems and Dataspaces, Automation 3 (3) (2022) 378– 399. doi:10.3390/automation3030020.
- [12] F. Niccolucci, A. Felicetti, S. Hermon, Populating the Data Space for Cultural Heritage with Heritage Digital Twins, Data 7 (8) (2022). doi:10.3390/data7080105.
- [13] V. Janev, et al., Responsible Knowledge Management in Energy Data Ecosystems, Energies 15 (11) (2022). doi:10.3390/en15113973.
- [14] P. Pedrazzoli, M. Sorlini, D. Rovere, O. Lazaro, P. Malò, M. Fiorello, Challenges and Founding Pillars for a Manufacturing Platform to Support Value Networks Operating in a Circular Economy Framework, Applied Sciences 12 (6) (2022). doi:10.3390/app12062995.
- [15] C. Frey, P. Hertweck, L. Richter, O. Warweg, Bauhaus.MobilityLab: A Living Lab for the Development and Evaluation of AI-Assisted Services, Smart Cities 5 (2022). doi:10.3390/smartcities5010009.
- [16] L. Stojanovic, T. Usländer, F. Volz, C. Weißenbacher, J. Müller, M. Jacoby, T. Bischoff, Methodology and Tools for Digital Twin Management—The FA3ST Approach, IoT 2 (4) (2021) 717–740. doi:10.3390/iot2040036.
- [17] T. Usländer, et al., Smart Factory Web—A Blueprint Architecture for Open Marketplaces for Industrial Production, Applied Sciences 11 (14) (2021). doi:10.3390/app11146585.

- [18] S. Nativi, P. Mazzetti, M. Craglia, Digital Ecosystems for Developing Digital Twins of the Earth: The Destination Earth Case, Remote Sensing 13 (11) (2021). doi:10.3390/ rs13112119.
- [19] A. Munoz-Arcentales, S. López-Pernas, A. Pozo, A. Alonso, J. Salvachúa, G. Huecas, Data Usage and Access Control in Industrial Data Spaces: Implementation Using FIWARE, Sustainability 12 (9) (2020). doi:10.3390/su12093885.
- [20] A. Kotsev, M. Minghini, R. Tomas, V. Cetl, M. Lutz, From Spatial Data Infrastructures to Data Spaces — A Technological Perspective on the Evolution of European SDIs, ISPRS International Journal of Geo-Information 9 (3) (2020). doi: 10.3390/ijgi9030176.
- [21] S. Cuno, L. Bruns, N. Tcholtchev, P. Lämmel, I. Schiefer-decker, Data Governance and Sovereignty in Urban Data Spaces Based on Standardized ICT Reference Architectures, Data 4 (1) (2019). doi:10.3390/data4010016.
- [22] A. Alonso, A. Pozo, J. M. Cantera, F. De la Vega, J. J. Hierro, Industrial Data Space Architecture Implementation Using FI-WARE, Sensors 18 (7) (2018). doi:10.3390/s18072226.
- [23] H. Meyer zum Felde, M. Kollenstart, T. Bellebaum, S. Dalmolen, G. Brost, Extending Actor Models in Data Spaces, in: Companion Proceedings of the ACM Web Conference 2023, Association for Computing Machinery, 2023, p. 1447–1451. doi:10.1145/3543873.3587645.
- [24] M. Jaberansary, M. Maia, Y. Ucer Yediel, O. Beyan, T. Kirsten, Analyzing Distributed Medical Data in FAIR Data Spaces, in: Companion Proceedings of the ACM Web Conference 2023, Association for Computing Machinery, 2023, p. 1480–1484. doi:10.1145/3543873.3587663.
- [25] N. Fotiou, G. Xylomenos, Y. Thomas, Data integrity protection for data spaces, in: Proceedings of the 17th European Workshop on Systems Security, EuroSec '24, Association for Computing Machinery, 2024, p. 44–50. doi:10.1145/3642974. 3652284.
- [26] J. Marino, L. Camiciotti, F. Cheinasso, A. Olivero, F. Risso, Enabling Compute and Data Sovereignty with Infrastructure-Level Data Spaces, in: Proceedings of the Eclipse Security, AI, Architecture and Modelling Conference on Cloud to Edge Continuum, eSAAM '23, Association for Computing Machinery, 2023. doi:10.1145/3624486.3624509.
- [27] T. Langer, A. Pomp, T. Meisen, Towards a Data Space for Interoperability of Analytic Provenance, in: Companion Proceedings of the ACM Web Conference 2023, Association for Computing Machinery, 2023, p. 1502–1503. doi:10.1145/ 3543873.3587686.
- [28] A. Pomp, M. Jansen, H. Berg, T. Meisen, SPACE DS: Towards a Circular Economy Data Space, in: Companion Proceedings of the ACM Web Conference 2023, Association for Computing Machinery, 2023, p. 1500–1501. doi:10.1145/3543873. 3587685.
- [29] Z. Boukhers, C. Lange, O. Beyan, Enhancing Data Space Semantic Interoperability through Machine Learning: a Visionary Perspective, in: Companion Proceedings of the ACM Web Conference 2023, Association for Computing Machinery, 2023, p. 1462–1467. doi:10.1145/3543873.3587658.
- [30] D. Le Phuoc, S. Schimmler, A. Le-Tuan, U. A.Kuehn, M. Hauswirth, Towards a Decentralized Data Hub and Query System for Federated Dynamic Data Spaces, in: Companion Proceedings of the ACM Web Conference 2023, Association for Computing Machinery, 2023, p. 1452–1457. doi: 10.1145/3543873.3587646.
- [31] G. S. Brost, M. Huber, M. Weiß, M. Protsenko, J. Schütte, S. Wessel, An Ecosystem and IoT Device Architecture for Building Trust in the Industrial Data Space, in: Proceedings

- of the 4th ACM Workshop on Cyber-Physical System Security, CPSS '18, Association for Computing Machinery, 2018, p. 39–50. doi:10.1145/3198458.3198459.
- [32] A. S. Ahmadian, J. Jürjens, D. Strüber, Extending model-based privacy analysis for the industrial data space by exploiting privacy level agreements, in: Proceedings of the ACM Symposium on Applied Computing, SAC '18, Association for Computing Machinery, 2018, p. 1142–1149. doi:10.1145/3167132.3167256.
- [33] L. Klug, W. Prinz, Fair prices for sustainability in agriculture and food. Requirements and design options for a data-based transparency system., in: Proceedings of the 24th Annual International Conference on Digital Government Research, Association for Computing Machinery, 2023, p. 496–507. doi: 10.1145/3598469.3598525.
- [34] R. A. Deshmukh, S. A. Chala, C. Lange, Requirements and building blocks for manufacturing dataspaces, in: Companion Proceedings of the ACM Web Conference 2023, Association for Computing Machinery, 2023, p. 1485–1493. doi: 10.1145/3543873.3587664.
- [35] G. M. Sang, L. Xu, P. de Vrieze, Y. Bai, F. Pan, Predictive Maintenance in Industry 4.0, in: Proceedings of the 10th International Conference on Information Systems and Technologies, ICIST '20, Association for Computing Machinery, 2021. doi:10.1145/3447568.3448537.
- [36] M. Breidenbach, et al., Development of a flexible and interoperable architecture to customize clinical solutions targeting the care of multimorbid patients, in: Proceedings of the 10th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-Exclusion, DSAI '22, Association for Computing Machinery, 2023, p. 12–17. doi:10.1145/3563137.3563157.
- [37] A. Paulus, A. Pomp, T. Meisen, The PLASMA Framework: Laying the Path to Domain-Specific Semantics in Dataspaces, in: Companion Proceedings of the ACM Web Conference 2023, Association for Computing Machinery, 2023, p. 1474–1479. doi:10.1145/3543873.3587662.
- [38] B. Anthony Jnr., Applying Enterprise Architecture for Digital Transformation of Electro Mobility towards Sustainable Transportation, in: Proceedings of the 2020 Computers and People Research Conference, SIGMIS-CPR '20, Association for Computing Machinery, 2020, p. 38–46. doi:10.1145/3378539.3393858.
- [39] P. Pinto, C. Sousa, C. Cardeiro, Data Spaces Based Approach for B2B Data Exchange: A Footwear Industry Case, Procedia Computer Science 219 (2023) 933-940. doi:https://doi. org/10.1016/j.procs.2023.01.369.
- [40] M. Neubauer, et al., Architecture for manufacturing-X: Bringing asset administration shell, eclipse dataspace connector and OPC UA together, Manufacturing Letters 37 (2023) 1–6. doi: https://doi.org/10.1016/j.mfglet.2023.05.002.
- [41] K. Alexopoulos, et al., An industrial data-spaces framework for resilient manufacturing value chains, Procedia CIRP 116 (2023) 299–304, cIRP Life Cycle Engineering Conference. doi:https://doi.org/10.1016/j.procir.2023. 02.051.
- [42] J. Auñón, et al., Evaluation and utilisation of privacy enhancing technologies—A data spaces perspective, Data in Brief 55 (2024) 110560. doi:https://doi.org/10.1016/j.dib. 2024.110560.
- [43] P. Pinheiro, C. Sousa, C. Toscano, Industrial Information Sharing 4.0, Procedia Computer Science 204 (2022) 610– 617. doi:https://doi.org/10.1016/j.procs.2022. 08.074.
- [44] B. Farahani, A. K. Monsefi, Smart and collaborative indus-

- trial IoT: A federated learning and data space approach, Digital Communications and Networks 9 (2) (2023) 436–447. doi:https://doi.org/10.1016/j.dcan.2023.01.022.
- [45] A. Corte-Real, T. Nunes, C. Santos, P. Rupino da Cunha, Blockchain technology and universal health coverage: Health data space in global migration, Journal of Forensic and Legal Medicine 89 (2022) 102370. doi:https://doi.org/ 10.1016/j.jflm.2022.102370.
- [46] J. Lahti, I. Heino, T. Lusikka, The Concept of Urban Mobility Innovation Environment for Data-Driven Service Development, Transportation Research Procedia 72 (2023) 1792–1799, tRA Lisbon 2022 Conference Proceedings Transport Research Arena (TRA Lisbon 2022). doi:https://doi.org/10.1016/j.trpro.2023.11.655.
- [47] G. Landolfi, A. Barni, G. Izzo, A. Fontana, A. Bettoni, A MaaS platform architecture supporting data sovereignty in sustainability assessment of manufacturing systems, Procedia Manufacturing 38 (2019) 548–555. doi:https://doi.org/10. 1016/j.promfg.2020.01.069.
- [48] S. Wolfert, C. Verdouw, L. van Wassenaer, W. Dolfsma, L. Klerkx, Digital innovation ecosystems in agri-food: design principles and organizational framework, Agricultural Systems 204 (2023) 103558. doi:https://doi.org/10.1016/j. agsy.2022.103558.
- [49] T. Michikata, Y. Sasaki, N. Koshizuka, Applying Homomoprhic Encryption to Data Spaces, in: IEEE International Conference on Big Data (BigData), 2023, pp. 4748–4753. doi: 10.1109/BigData59044.2023.10386824.
- [50] M. Nast, et al., Work-in-Progress: Towards an International Data Spaces Connector for the Internet of Things, in: 2020 16th IEEE International Conference on Factory Communication Systems (WFCS), 2020, pp. 1–4. doi:10.1109/ WFCS47810.2020.9114503.
- [51] A. Somma, A. D. Benedictis, M. Zappatore, C. Martella, A. Martella, A. Longo, Digital Twin Space: The Integration of Digital Twins and Data Spaces, in: 2023 IEEE International Conference on Big Data (BigData), 2023. doi: 10.1109/BigData59044.2023.10386737.
- [52] M. A. Iñigo, J. Legaristi, F. Larrinaga, A. Perez, J. Cuenca, B. Kremer, E. Montejo, A. Porto, Towards Standardized Manufacturing as a Service through Asset Administration Shell and International Data Spaces Connectors, in: IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, 2022, pp. 1–6. doi:10.1109/IEC0N49645.2022.9968592.
- [53] K. Sayad, B. Lemoine, Towards Cross-domain Resilience in SDN-enabled Smart Power Grids: Enabling Information Sharing through Dataspaces, in: 2023 IEEE International Conference on Omni-layer Intelligent Systems (COINS), 2023, pp. 1–6. doi:10.1109/COINS57856.2023.10189319.
- [54] D. Sarabia-Jácome, C. E. Palau, M. Esteve, F. Boronat, Seaport Data Space for Improving Logistic Maritime Operations, IEEE Access 8 (2020) 4372–4382. doi:10.1109/ACCESS.2019. 2963283
- [55] H. Qarawlus, M. Hellmeier, J. Pieperbeck, R. Quensel, S. Biehs, M. Peschke, Sovereign Data Exchange in Cloud-Connected IoT using International Data Spaces, in: 2021 IEEE Cloud Summit (Cloud Summit), 2021. doi:10.1109/ IEEECloudSummit52029.2021.00010.
- [56] V. Vassilev, et al., Towards First Urban Data Space in Bulgaria, in: 2022 IEEE International Smart Cities Conference (ISC2), 2022, pp. 1–7. doi:10.1109/ISC255366.2022.9922237.
- [57] F. Volz, L. Stojanovic, R. Lamberti, An Industrial Marketplace - the Smart Factory Web Approach and Integration of the International Data Space, in: 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Vol. 1, 2019, pp.

- 714-720. doi:10.1109/INDIN41052.2019.8972061.
- [58] J. Klîmek, et al., Atlas: A Toolset for Efficient Model-Driven Data Exchange in Data Spaces, in: 2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), 2023. doi: 10.1109/MODELS-C59198.2023.00009.
- [59] I. Matsunaga, T. Michikata, N. Koshizuka, ITDT: International Testbed for Dataspace Technology, in: International Conference on Big Data, 2023. doi:10.1109/BigData59044. 2023.10386196.
- [60] I. Kalogeropoulos, M. E. Vlontzou, N. Psaromanolakis, E. Zarogianni, V. Theodorou, EdgeDS: Data Spaces enabled Multi-Access Edge Computing, in: Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2023. doi:10.1109/EuCNC/6GSummit58263. 2023.10188334.
- [61] I. Krasteva, B. Kraychev, E. Kiyamousavi, How Federated Machine Learning Helps Increase the Mutual Benefit of Data-Sharing Ecosystems, in: 2023 IEEE/ACM 2nd International Conference on AI Engineering Software Engineering for AI (CAIN), 2023, pp. 96–97. doi:10.1109/CAIN58948.2023.00023
- [62] F.-B. Balint, H.-L. Truong, On Supporting Contract-Aware IoT Dataspace Services, in: 2017 5th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2017, pp. 117–124. doi:10.1109/MobileCloud.2017.28.
- [63] V. Karagiannis, A. Al-Akrawi, O. Hödl, Data Sovereignty at the Edge of the Network, in: IEEE International Conference on Fog and Edge Computing (ICFEC), 2023. doi:10.1109/ ICFEC57925.2023.00013.
- [64] J. Pullmann, N. Petersen, C. Mader, S. Lohmann, Z. Kemeny, Ontology-based information modelling in the industrial data space, in: 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2017. doi:10.1109/ETFA.2017.8247688.
- [65] D. Elia, F. Antonio, S. Fiore, P. Nassisi, G. Aloisio, A Data Space for Climate Science in the European Open Science Cloud, Computing in Science & Engineering 25 (2023). doi: 10.1109/MCSE.2023.3274047.
- [66] A. Berenguer, O. Alcaraz, D. Tomás, J.-N. Mazón, From Research on Data-Intensive Software to Innovation in Data Spaces: A Search Service for Tabular Data, IEEE Software 41 (2024) 59–66. doi:10.1109/MS.2024.3359333.
- [67] J. Karacic, Europe, we have a problem! Challenges to health data-sharing in the EU, in: 2022 18th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 2022, pp. 47–50. doi:10.1109/ WiMob55322.2022.9941532.
- [68] F. Regazzoni, et al., SECURED for Health: Scaling Up Privacy to Enable the Integration of the European Health Data Space, in: 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2024, pp. 1–4. doi:10.23919/DATE58400.2024.10546514.
- [69] S. Meneguzzo, S. Bergia, A. Favenza, C. Schifanella, A. Mozzato, V. Gatteschi, Shaping the Future of Energy Markets: Federated Systems and Blockchain Synergy, in: 2024 IEEE Computers, Software, and Applications Conference (COMPSAC), 2024, pp. 2026–2031. doi:10.1109/COMPSAC61105.2024.00324.
- [70] C. Yang, Y. Guo, M. Yu, L. Zhang, Truthfully Negotiating Usage Policy for Data Sovereignty, in: 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), 2022, pp. 20–27. doi: 10.1109/TrustCom56396.2022.00014.

- [71] N. Koshizuka, H. Mano, DATA-EX: Infrastructure for Cross-Domain Data Exchange Based on Federated Architecture, in: 2022 IEEE International Conference on Big Data (Big Data), 2022, pp. 6145–6152. doi:10.1109/BigData55660.2022.10020855.
- [72] V. Karagiannis, M. Al-Naday, T. De Block, The Blue Dataverse: A System for Marine Data Sovereignty, in: IEEE World Forum on Internet of Things, 2023. doi:10.1109/WF-IoT58464.2023.10539378.
- [73] P. Kapsalis, A. Papapostolou, K. Touloumis, I. Andreoulaki, Z. Mylona, H. Doukas, An Energy Efficiency Marketplace for Buildings: The ENERGATE System Architecture, in: 14th Conference on Information, Intelligence, Systems & Applications (IISA), 2023. doi:10.1109/IISA59645.2023. 10345882.
- [74] M. Lia, D. D. Colella, CkanFAIR: a digital tool for assessing the FAIR principles, in: 2023 IEEE International Conference on Big Data (BigData), 2023. doi:10.1109/BigData59044.2023.10386850.
- [75] K. Ono, P. Tangteerasunun, Design Thinking Framework for Values Capturing and Technical Features Validation for Digital Healthcare Platform, in: 2022 IEEE Technology & Engineering Management Conference - Asia Pacific (TEMSCON-ASPAC), 2022, pp. 075–078. doi:10.1109/ TEMSCON-ASPAC52831.2022.9916553.
- [76] H. Qarawlus, et al., Demonstration of Data-Sovereign Telemetry Broker for Open and Disaggregated Optical Networks, in: Optical Fiber Communications Conference and Exhibition (OFC), 2023. doi:10.1364/0FC.2023.M3Z.3.
- [77] H. Yu, et al., Food Supply Blockchain: A Bright Future for the Food Supply Chain, in: 2023 IST-Africa Conference (IST-Africa), 2023, pp. 1–8. doi:10.23919/IST-Africa60249. 2023.10187787.
- [78] J. P. S. Piest, R. H. Bemthuis, G. Charismadiptya, Demonstrating the Architecture for Situation-aware Logistics using Smart Returnable Assets, in: 2020 IEEE 24th International Enterprise Distributed Object Computing Workshop (EDOCW), 2020, pp. 86–90. doi:10.1109/EDOCW49879.2020.00024.
- [79] L. Chandran, L. Lundin, G. Padayatti, Transforming Personal Data Transactions with Auditable, Privacy-Preserving Data Exchange Agreements: Fostering Transparency and Trust in Digital Wallet Ecosystems, in: 2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA), 2023, pp. 1–9. doi:10.1109/ETFA54631. 2023.10275546.
- [80] P. Bellini, D. Bologna, M. Fanfani, L. A. Ipsaro Palesi, P. Nesi, G. Pantaleo, Rapid Prototyping & Development Life Cycle for Smart Applications of Internet of Entities, in: 2023 27th International Conference on Engineering of Complex Computer Systems (ICECCS), 2023, pp. 142–151. doi:10.1109/ ICECCS59891.2023.00026.
- [81] I. Harjula, M. Uitto, M. Jurmu, J. Koskinen, J. Mäkelä, S. Walter, M. Hentula, T. Heikkilä, M. Lintala, K. Rautiola, Smart Manufacturing Multi-Site Testbed with 5G and Beyond Connectivity, in: 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2021, pp. 1–6. doi:10.1109/PIMRC50174. 2021.9569284
- [82] T. Dickopf, S. Forte, S. Weber, C. Stürmer, C. Muggeo, Application of the Asset Administration Shell in the context of Engineering Data Management Systems, in: IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2023, pp. 1–8. doi:10.1109/ETFA54631.2023.10275383.
- [83] S. Ajdinović, M. Strljic, A. Lechler, O. Riedel, Interoperable

- Digital Product Passports: An Event-Based Approach to Aggregate Production Data to Improve Sustainability and Transparency in the Manufacturing Industry, in: 2024 IEEE/SICE International Symposium on System Integration (SII), 2024, pp. 729–734. doi:10.1109/SII58957.2024.10417487.
- [84] A. Appenzeller, et al., Towards Distributed Healthcare Systems Virtual Data Pooling Between Cancer Registries as Backbone of Care and Research, in: 2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA), 2021, pp. 1–8. doi:10.1109/AICCSA53542.2021.9686918.
- [85] M. Jurmu, et al., Exploring the Role of Federated Data Spaces in Implementing Twin Transition within Manufacturing Ecosystems, Sensors 23 (9) (2023). doi:10.3390/ s23094315
- [86] M. Hellmeier, J. Pampus, H. Qarawlus, F. Howar, Implementing Data Sovereignty: Requirements & Challenges from Practice, in: Proceedings of the 18th International Conference on Availability, Reliability and Security, ARES '23, Association for Computing Machinery, 2023. doi:10.1145/3600160.3604995.
- [87] R. Raab, et al., Federated electronic health records for the European Health Data Space, The Lancet Digital Health 5 (11) (2023) e840-e847. doi:https://doi.org/10. 1016/S2589-7500(23)00156-5.
- [88] R. Hussein, L. Scherdel, F. Nicolet, F. Martin-Sanchez, Towards the European Health Data Space (EHDS) ecosystem: A survey research on future health data scenarios, International Journal of Medical Informatics 170 (2023) 104949. doi: https://doi.org/10.1016/j.ijmedinf.2022.104949.
- [89] C. Martella, A. Martella, A. I. H. A. Ramadan, Identifying key factors in designing data spaces for Urban Digital Twin Platforms: a data driven approach, in: 2023 IEEE International Conference on Big Data (BigData), 2023. doi:10.1109/ BigData59044.2023.10386353.
- [90] J. Pampus, B.-F. Jahnke, R. Quensel, Evolving Data Space Technologies: Lessons Learned from an IDS Connector Reference Implementation, in: T. Margaria, B. Steffen (Eds.), Leveraging Applications of Formal Methods, Verification and Validation. Practice, Springer Nature Switzerland, Cham, 2022, pp. 366–381.
- [91] T. Werkmeister, Development of User-Centred Interaction Design Patterns for the International Data Space, in: M. M. Soares, E. Rosenzweig, A. Marcus (Eds.), Design, User Experience, and Usability: UX Research and Design, Springer International Publishing, Cham, 2021, pp. 144–155. doi: https://doi.org/10.1007/978-3-030-78221-4_10.
- [92] M. Dobreva, K. Stefanov, K. Ivanova, Data Spaces for Cultural Heritage: Insights from GLAM Innovation Labs, in: Y.-H. Tseng, M. Katsurai, H. N. Nguyen (Eds.), From Born-Physical to Born-Virtual: Augmenting Intelligence in Digital Libraries, Springer International Publishing, Cham, 2022, pp. 492–500. doi:https://doi.org/10.1007/ 978-3-031-21756-2\41.
- [93] C. Rucco, A. Longo, M. Zappatore, Supporting Energy Digital Twins with Cloud Data Spaces: An Architectural Proposal, in: Image Analysis and Processing. ICIAP 2022 Workshops: ICIAP International Workshops, Springer-Verlag, Berlin, Heidelberg, 2022, p. 47–58. doi:10.1007/ 978-3-031-13324-4_5.
- [94] A. Belsa, R. Vaño, I. Lacalle, M. Julián, F. Boronat, C. E. Palau, A Novel Approach for Calculating Real-Time Composite Indicators Relying on Internet of Things and Industrial Data Spaces, in: D. Camacho, et al. (Eds.), Intelligent Distributed Computing XIV, Springer International Publishing,

- Cham, 2022, pp. 45-55. doi:https://doi.org/10.1007/978-3-030-96627-0\5.
- [95] D. R. Firdausy, P. de Alencar Silva, M. van Sinderen, M.-E. Iacob, A Data Connector Store for International Data Spaces, in: M. Sellami, et al. (Eds.), Cooperative Information Systems, Springer International Publishing, 2022, pp. 242–258. doi: 10.1007/978-3-031-17834-4 14.
- [96] F. Bruckner, J. Pampus, F. Howar, A Policy-Agnostic Programming Language for the International Data Spaces, in: S. Hammoudi, C. Quix, J. Bernardino (Eds.), Data Management Technologies and Applications, Springer International Publishing, Cham, 2021, pp. 172–194. doi:https://doi.org/10.1007/978-3-030-83014-4_9.
- [97] S. Bader, et al., The International Data Spaces Information Model - An Ontology for Sovereign Exchange of Digital Content, in: The Semantic Web - ISWC 2020, Springer International Publishing, Cham, 2020. doi:https://doi.org/10. 1007/978-3-030-62466-8_12.
- [98] S. A. Petersen, Z. Pourzolfaghar, I. Alloush, D. Ahlers, J. Krogstie, M. Helfert, Value-Added Services, Virtual Enterprises and Data Spaces Inspired Enterprise Architecture for Smart Cities, in: L. M. Camarinha-Matos, H. Afsarmanesh, D. Antonelli (Eds.), Collaborative Networks and Digital Transformation, Springer International Publishing, 2019, pp. 393– 402. doi:10.1007/978-3-030-28464-0_34.
- [99] J. Möller, D. Jankowski, A. Hahn, Towards an architecture to support data access in research data spaces, in: 2021 IEEE 22nd International Conference on Information Reuse and Integration for Data Science (IRI), 2021, pp. 310–317. doi: 10.1109/IRI51335.2021.00049.
- [100] P. Kannisto, D. Hästbacka, Data Autonomy in Message Brokers in Edge and Cloud for Mobile Machinery: Requirements and Technology Survey, in: 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA), 2022, pp. 1–4. doi:10.1109/ETFA52439.2022. 9921693.
- [101] A. Usmani, M. J. Khan, J. G. Breslin, E. Curry, Towards Multimodal Knowledge Graphs for Data Spaces, in: Companion Proceedings of the ACM Web Conference 2023, Association for Computing Machinery, 2023, p. 1494–1499. doi: 10.1145/3543873.3587665.
- [102] A. Cimmino, J. Cano-Benito, R. García, Open Digital Rights Enforcement framework (ODRE): From descriptive to enforceable policies, Computers & Security (2025). doi:https: //doi.org/10.1016/j.cose.2024.104282.
- [103] P. J. Kulkarni, J. Zerbin, C. Koldewey, R. Bernijazov, R. Dumitrescu, Using sysml as a modelling language for dataspaces, in: 2024 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD), 2024, pp. 1–6. doi:10.1109/ICTMOD63116.2024.10878227.
- [104] A. Kovach, J. Lanza, L. Montalvillo, A. Urbieta, Sovereign IIoT Data Exchange Using DAG-Based DLT and International Data Spaces Architecture, in: Proceedings of the 4th Eclipse Security, AI, Architecture and Modelling Conference on Data Space, eSAAM '24, Association for Computing Machinery, 2024. doi:10.1145/3685651.3686658.
- [105] N. Blumenröhr, P.-J. Ost, F. Kraus, A. Streit, FAIR Digital Objects for the Realization of Globally Aligned Data Spaces, in: 2024 IEEE International Conference on Big Data (BigData), 2024, pp. 374–383. doi:10.1109/BigData62323.2024. 10825796.
- [106] Q. Huang, X. Ouyang, H. Xie, F. Wu, Design of a Secure Industrial Data Interaction System Based on International Data Space and Optimized KP-ABE Algorithm, in: 2024 China Automation Congress (CAC), 2024, pp. 6888–6893. doi:

- 10.1109/CAC63892.2024.10864569.
- [107] G. Der Sylvestre Sidibe, S. Dhouib, An Approach for Sovereign Data Exchange of AAS Digital Twins Through the International Data Space Network, in: 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA), 2024, pp. 1–4. doi:10.1109/ETFA61755. 2024.10711067.
- [108] S. Distefano, Y. N. Yifru, Exploring the interplay between DataSpaces and Large Language Models, in: 2024 IEEE International Conference on Big Data (BigData), 2024, pp. 5506– 5515. doi:10.1109/BigData62323.2024.10825298.
- [109] M. Al-Qatf, et al., RAG4DS: Retrieval-Augmented Generation for Data Spaces—A Unified Lifecycle, Challenges, and Opportunities, IEEE Access 13 (2025) 39510–39522. doi: 10.1109/ACCESS.2025.3545387.
- [110] G. Morabito, A. Ruggeri, A. Celesti, M. Villari, M. Fazio, Intent-Based Pseudonymization for Healthcare Workflows on Intra-Hospital Data Space Domain, in: 2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMP-SAC), 2024, pp. 918–927. doi:10.1109/COMPSAC61105. 2024.00127.
- [111] N. B. García, M. H. Padilla, A. F. S. Gómez, Privacy Preserving Enablers for Data Space Ecosystems, in: M. Presser, et al. (Eds.), Global Internet of Things and Edge Computing Summit, Springer Nature Switzerland, Cham, 2025, pp. 73–88. doi:https://doi.org/10.1007/978-3-031-78572-6_5.
- [112] A. S. Ahmadian, S. Franke, C. Gnoguem, J. Juerjens, Privacy-Friendly Sharing of Health Data Using a Reference Architecture for Health Data Spaces, in: Proceedings of the 4th Eclipse Security, AI, Architecture and Modelling Conference on Data Space, eSAAM '24, Association for Computing Machinery, 2024. doi:10.1145/3685651.3685657.
- [113] C. Doulkeridis, I. Chrysakis, S. Karagiorgou, P. Kranas, G. Makridis, Y. Theodoridis, The MobiSpaces Manifesto on Mobility Data Spaces, in: Proceedings of the 4th Eclipse Security, AI, Architecture and Modelling Conference on Data Space, eSAAM '24, Association for Computing Machinery, 2024, p. 66–75. doi:10.1145/3685651.3685654.
- [114] A. Nizamis, D. Ioannidis, P. Gkonis, P. Trakadas, Introducing an Enhanced Metadata Broker for Manufacturing Data Spaces, in: Proceedings of the 4th Eclipse Security, AI, Architecture and Modelling Conference on Data Space, eSAAM '24, Association for Computing Machinery, 2024, p. 37–40. doi:10.1145/3685651.3686699.
- [115] M. Steinert, M. Altendeitering, Data Trustees: A Whitelisting Approach for Trusted Data Sharing, in: Proceedings of the 4th Eclipse Security, AI, Architecture and Modelling Conference on Data Space, eSAAM '24, Association for Computing Machinery, 2024, p. 86–92. doi:10.1145/3685651.3685656.
- [116] S. Taniguchi, S. Nakajima, T. Michikata, H. Seike, N. Koshizuka, DSPOL: A High-Level Language for Defining Data Policies in Data Spaces, in: 2024 IEEE International Conference on Big Data (BigData), 2024. doi:10.1109/ BigData62323.2024.10825983.
- [117] N. Gavric, A. Shalaginov, A. Andrushevich, A. Rumsch, A. Paice, Enhancing Security in International Data Spaces: A STRIDE Framework Approach, Technologies 13 (1) (2025). doi:10.3390/technologies13010008.
- [118] A. Mitrovska, M. F. Rosas, P. Safari, B. Shariati, J. K. Fischer, R. Freund, Federated Learning Governance using Eclipse Dataspace Components Connectors, in: 2024 IEEE International Conference on Big Data (BigData), 2024, pp. 7946–7954. doi:10.1109/BigData62323.2024.10826122.
- [119] M. G. A. Danish, F. Schnicke, Integrating Systems of Record

- (SOR) into the Asset Administration Shell (AAS) Dataspace, in: 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA), 2024, pp. 1–8. doi:10.1109/ETFA61755.2024.10710635.
- [120] T. Ranathunga, A. McGibney, S. Bharti, Enabling secure and self-sovereign machine learning model exchange in manufacturing data spaces, Journal of Industrial Information Integration 42 (2024) 100733. doi:https://doi.org/10.1016/ j.jii.2024.100733.
- [121] B. Gerlach, H. Hesse, S. Fischer, M. Leucker, Gaia-X-Med: Experiences with Building Dataspaces for Medical Applications, Future Internet 16 (12) (2024). doi:10.3390/ fi16120463.
- [122] R. Karl, et al., Building a Data Space for the Public Security Domain Using Smart Contracts, in: 2024 4th Intelligent Cybersecurity Conference (ICSC), 2024. doi:10.1109/ICSC63108.2024.10894789.
- [123] J. Latvakoski, A. Umer, T. Nykänen, J. Tihinen, A. Talman, A Simulation-Based Study on Securing Data Sharing for Situational Awareness in a Port Accident Case, Systems 12 (10) (2024). doi:10.3390/systems12100389.
- [124] K. Georgiou, et al., SKILLAB: Creating a Skills Supply and Demand Data Space, in: Proceedings of the 4th Eclipse Security, AI, Architecture and Modelling Conference on Data Space, eSAAM '24, Association for Computing Machinery, 2024. doi:10.1145/3685651.3686701.
- [125] E. Gaeta, et al., GATEKEEPER Platform: Secure Processing Environment for European Health Data Space, IEEE Access 13 (2025) 34627–34638. doi:10.1109/ACCESS.2025. 3530559
- [126] S. Wang, X. Geng, T. Gao, L. Zhang, M. Jing, J. Yu, Industrial Data Space Framework Design and Feasibility Analysis - A Case Study of China's New Energy Industry, in: 2024 IEEE Smart World Congress (SWC), 2024, pp. 912–918. doi:10. 1109/SWC62898.2024.00151.
- [127] A. Mitrovska, B. Shariati, P. Safari, J. K. Fischer, Data Governance Framework for Telemetry Sharing, in: ECOC 2024; 50th European Conference on Optical Communication, 2024.
- [128] N. Petroulakis, P. Zervoudakis, G. Nomikos, A. Kornilakis, P. Chatziadam, D. Laskaratos, V. M. Eleftheria, Z. Eleni, V. Theodorou, Towards the development of a network provisioning platform for data exchange in the health data space, in: 2024 IEEE Conference on Standards for Communications and Networking (CSCN), 2024, pp. 147–153. doi:10.1109/ CSCN63874.2024.10849743.
- [129] L. Coppolino, R. Nardone, A. Petruolo, L. Romano, Connecting the Mobility and the Refuelling/Recharging Infrastructures: The Role of Data Spaces, in: 2024 IEEE International Conference on Environment and Electrical Engineering and 2024 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2024, pp. 1–6. doi: 10.1109/EEEIC/ICPSEurope61470.2024.10751267.
- [130] M. Bacco, et al., Agricultural Data Space: the METRIQA Platform and a Case Study in the CODECS project, in: Conference on Computer Science and Intelligence Systems (FedC-SIS), 2024, pp. 543–548. doi:10.15439/2024F5291.
- [131] H. Perera, U. D. Atmojo, V. Vyatkin, Confidentiality Preserving Data Sharing for Life Cycle Assessment in Process Industries, in: 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA), 2024, pp. 1–4. doi:10.1109/ETFA61755.2024.10710738.
- [132] R. Nardone, A. Petruolo, F. Uccello, Secure and Transparent Data Sharing Among Connected Devices: Integrating Data Spaces and Provenance, in: 2024 IEEE International Conference on Cyber Security and Resilience (CSR), 2024. doi:

- 10.1109/CSR61664.2024.10679405.
- [133] N. Kalatzis, M. Paraskevopoulos, G. Routis, I. Roussaki, Smart Farming data and IoT in Support of Agricultural Policy Monitoring, in: 2024 IEEE International Conference on Omnilayer Intelligent Systems (COINS), 2024. doi:10.1109/ COINS61597.2024.10622371.
- [134] S. H. Alsamhi, et al., Skyward secure: Advancing drone data-sharing in 6G with decentralized dataspace and supported technologies, Journal of Parallel and Distributed Computing (2025). doi:https://doi.org/10.1016/j.jpdc.2025. 105040.
- [135] Y. Liao, X. Kong, L. Yin, Y. Gao, X. Dong, An industrial dataspace for automotive supply chain: Secure data sharing based on data association relationship, Journal of Industrial Information Integration 44 (2025) 100778. doi:https://doi.org/10.1016/j.jii.2025.100778.
- [136] I. Akaichi, et al., Interoperable and Continuous Usage Control Enforcement in Dataspaces, in: Proceedings of the Second International Workshop on Semantics in Dataspaces, Vol. 3705, CEUR-WS.org, 2024.
- [137] A. Hosseinzadeh, A. Eitel, C. Jung, A Systematic Approach toward Extracting Technically Enforceable Policies from Data Usage Control Requirements, in: Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), SCITEPRESS, Valletta, Malta, 2020, pp. 397–405. doi:10.5220/0008936003970405.
- [138] B. T. Arnold, et al., Towards Enabling FAIR Dataspaces Using Large Language Models, in: Proceedings of the Second International Workshop on Semantics in Dataspaces, Vol. 3705, CEUR-WS.org, 2024.
- [139] S. Vogt, P. Patolla, J. Metzler, D. Reichelt, Towards Digital Twin-Based Dataspaces for Industrial Computer Vision Services, in: 2024 IEEE 22nd International Conference on Industrial Informatics (INDIN), 2024, pp. 1–7. doi:10.1109/INDIN58382.2024.10774458.
- [140] K. Kyriakou, et al., A Secure and Trustworthy Biometric Data Ecosystem for Cross-border Suspect Identification, in: 2024 IEEE International Conference on Big Data (BigData), 2024, pp. 2762–2771. doi:10.1109/BigData62323.2024. 10826113.
- [141] M. Manoury, T. Riedelsheimer, M. Hellmeier, T. Meyer, Supporting Changes in Digital Ownership and Data Sovereignty Across the Automotive Value Chain with Catena-X, Procedia Computer Science 253 (2025) 374–383. doi:10.1016/j.

- procs.2025.01.099.
- [142] S. Gonçalves, et al., Evaluating Legal Compliance of Federated Learning Tools for the European Health Data Space (EHDS), in: 2024 2nd International Conference on Federated Learning Technologies and Applications (FLTA), 2024. doi:10.1109/ FLTA63145.2024.10839840.
- [143] S. Hoseini, A. Burgdorf, A. Paulus, T. Meisen, C. Quix, A. Pomp, Challenges and Opportunities of LLM-Augmented Semantic Model Creation for Dataspaces, in: A. Meroño Peñuela, et al. (Eds.), The Semantic Web: ESWC 2024 Satellite Events, Springer Nature Switzerland, Cham, 2025, pp. 183–200. doi:10.1007/978-3-031-78955-7_17.
- [144] R. M. Gil, M. Ryan, R. García, Sovereignty by design and human values in agriculture data spaces, Agriculture and Human Values (2025). doi:10.1007/s10460-024-10674-0.
- [145] D. V. Lancker, S. Logghe, J. A. Rojas, A. D. Craene, Z. Vanlishout, P. Colpaert, Semantic and Technically Interoperable Data Exchange in the Flanders Smart Data Space, in: G. Demartini, K. Hose, M. Acosta, et al. (Eds.), The Semantic Web (ISWC 2024), Springer Nature Switzerland, Cham, 2025, pp. 289–303. doi:10.1007/978-3-031-77847-6_16.
- [146] T. Sołtysiński, J. Niederhausen, S. Eichstädt, Digital Calibration Certificate in a trusted quality infrastructure federated data space: A proof of concept, Measurement: Sensors (2024) 101484doi:https://doi.org/10.1016/j.measen.2024.101484.
- [147] C. Zhang, et al., Trans-Border Trusted Data Spaces: A General Framework Supporting Trustworthy International Data Circulation, IEEE Access 13 (2025) 30481–30496. doi:10.1109/ ACCESS. 2025.3541295
- [148] R. Nagel, M.-K. Walda, J. P. Meyer, IntraDataspace: An architecture of a company-internal Dataspace, in: Proceedings of the 4th Eclipse Security, AI, Architecture and Modelling Conference on Data Space, eSAAM '24, Association for Computing Machinery, 2024, p. 50–56. doi:10.1145/3685651. 3686657
- [149] N. Papadakis, G. Bouloukakis, K. Magoutis, CCDUIT: A Software Overlay for Cross-Federation Collaboration Between Data Spaces, in: 2024 IEEE 21st International Conference on Software Architecture Companion (ICSA-C), 2024, pp. 143– 150. doi:10.1109/ICSA-C63560.2024.00031.