

Diplomski studij

Informacijska i komunikacijska tehnologija:

Telekomunikacije i informatika Računarstvo:

Programsko inženjerstvo i informacijski sustavi Računarska znanost

Raspodijeljeni sustavi

4.
Splet računala, P2P, programski agent

Ak.god. 2009./2010.

Sadržaj predavanja

- Splet računala
 - Motivacija
 - Osnovni elementi spleta računala
 - Grozd računala
 - Splet računala
 - Usporedba grozda i spleta računala
- Sustavi s ravnopravnim sudionicima (peer-to-peer, P2P)
 - Centralizirani i decentralizirani raspodijeljeni sustavi
 - Definicija sustava P2P
 - Nestrukturirani sustavi P2P
 - Strukturirani sustavi P2P
- Programski agent

Splet računala

Motivacija

- Globalna mreža Internet
 - Uspostava komunikacije između geografski raspodijeljenih korisnika
 - Objavljivanje, pretraživanje i razmjena sadržaja
- Internet osnova za izgradnju nove vrste aplikacija ?
- Splet računala
 - Raspodijeljeni sustav za usklađeno upravljanje, razmjenu i korištenje raznovrsnih sredstava u globalnoj mreži Internet

Osnovni elementi spleta računala

Splet računala

Osnovni elementi spleta računala

Struktura spleta računala

- Sredstva
 - Podaci, aplikacije,
 - računalni procesi,
 - spremnički prostor,
 - računalna snaga
- Računalno sklopovlje
 - Procesorske jedinice,
 - radna računala,
 - mrežno sklopovlje,
 - osjetila, aktuatori
- Grozd računala
 - Čvrsto povezani skup
 - sklopovlja i sredstava

Grozd računala

- Definicija grozda računala
- Arhitektura grozda računala
- Aplikacije grozda računala
- Primjeri grozda računala

Definicija grozda računala

Sustav za izvođenje paralelnih ili raspodijeljenih aplikacija zasnovan na skupu računala koja su povezana lokalnom mrežom i zajednički djeluju kao objedinjeno računalno sredstvo

Arhitektura grozda računala

Paralelne i raspodijeljene aplikacije

Slijedne aplikacije

Okruženje za razvoj paralelnih i raspodijeljenih aplikacija

Posrednik grozda računala

Računalo

Operacijski sustav

Programska potpora za komunikaciju

Sklopovlje mrežnog sučelja

Računalo

Operacijski sustav

Programska potpora za komunikaciju

Sklopovlje mrežnog sučelja

Računalo

Operacijski sustav

Programska potpora za komunikaciju

Sklopovlje mrežnog sučelja

Programska potpora

Sklopovlje

Lokalna mreža grozda računala

Sklopovlje grozda računala

- Okolina za izvođenje
 - Simetrični višeprocesorski sustavi (engl. symmetric multiprocessor systems)
 - Skup radnih stanica (engl. cluster of workstations)
 - Skup osobnih računala (engl. cluster of personal stations)
- Komunikacijska mreža
 - Sabirnica (engl. bus)
 - Komunikacijska matrica (engl. crossbar)
 - Lokalna mreža visoke propusnosti (Gigabit Ethernet)
 - Raznovrsne vlasničke tehnologije (Quadrics QsNet, Myrinet)

Programska potpora grozda računala

- Operacijski sustav
 - Linux, Hewlett Packard UniX (HPUX)
 - Sun Solaris
 - Microsoft Windows
- Posrednički sustav grozda računala
 - Podsustav za upravljanje poslovima
 - Podsustav za nadgledanje rada
 - Razvojno okruženje
 - Podsustav dijeljenog spremničkog prostora

Programska potpora grozda računala

- Podsustav za upravljanje poslovima
 - Korisničko sučelje za upravljanje procesima i aplikacijama
 - Definiranje značajki korisničkih procesa i aplikacija
 - Korisničke postavke za upravljanje sredstvima
 - Primjeri: Sun Grid Engine (SGE), Portable Batch System (PBS), Condor

- Podsustav za nadgledanje rada
 - Stanje sredstava
 - Statistika zauzeća sredstava
 - Primjeri: Ganglia, Supermon

Programska potpora grozda računala

- Razvojno okruženje
 - Razvoj logike procesa
 - Razvoj logike međudjelovanja procesa
 - Usmjeravanje procesa na izvođenje
 - Komunikacija zasnovana na razmjeni poruka
 - Primjeri: Message Passing Interface (MPI), Linda, High Performace Fortran (HPF), Z-Level Programming Language (ZPL)
- Podsustav dijeljenog spremničkog prostora
 - Raspodijeljeno spremanje i dohvat velike količine podataka
 - Primjeri: Network File System (NFS), AFS, Lustre

- Primjer aplikacija
 - Znanstvene aplikacije u biologiji, medicini, fizici
 - (složeni izračuni velikog skupa podataka)
 - Baze podataka velikih razmjera
 - (pouzdanost i dostupnost podataka)
 - Poslovne aplikacije
 - (dubinska analiza korisničkih obrazaca ponašanja)
- Osnovni razredi aplikacija
 - Računalno zahtjevne aplikacije
 - Komunikacijski zahtjevne aplikacije
 - Aplikacije visokog stupnja dostupnosti

- Računalno zahtjevne aplikacije
 - Složene računske operacije
 - Potrebna velika količina
 - procesorske snage
 - Skup radnih jedinica
 - Privatna mreža
 - Pristupno računalo
 - Posrednik između privatne i javne mreže
 - Upravljanje i nadgledanje izvođenja poslova

- Komunikacijski zahtjevne aplikacije
 - Razmjena velike količine podataka ili suradnja u stvarnom vremenu
 - Razmjena rezultata eksperimenata, video konferencije, dijeljenje aplikacija
 - Raznovrsna korisnička računala
 - povezana mrežom
 - Velika propusnost
 - Kratko vrijeme odziva

- Aplikacije visokog stupnja dostupnosti
 - Osnovni sustavi za poslovanje
 - Mrežni poslužitelji
 - Poslužitelji pošte
 - Baze podataka
 - Dostupnost i pouzdanost
 - Bez središnjeg upravljanja
 - Raspoređivanje zahtjeva sredstvima
 - Izbjegavanje nedostupnih sredstava u trenutku kvara

Primjer grozda računala

- Beowulf (www.beowulf.org)
 - Do 1024 radnih računala
 - Intel, AMD procesorske jedinice
 - Standardne mrežne tehnologije
 - Fast Ethernet, Gigabit Ethernet
 - Otvoreni OS (Linux)

Radna računala

- Isabella (www.srce.hr/isabella)
 - 448 procesorskih jezgri
 - HP Blades, Dual Intel Xeon,
 - AMD Opteron
 - Lokalna mreža (10 Gb Infiniband)
 - 20 projekta s nekoliko desetaka članova

Splet računala

Definicija spleta računala

- Arhitektura spleta računala
- Vrste spletova računala

Primjeri spleta računala

Definicija spleta računala

- Splet računala je raspodijeljena računalna okolina koja omogućava
 - Usklađeno dijeljenje heterogenih i geografski raspršenih sredstava (računalna snaga, spremnički prostor, mrežna propusnost, aktuatori, osjetila)
 - Usklađeno dijeljenje informacija, procesa i aplikacija unutar i između dinamičnih virtualnih organizacija raznovrsnih institucija

Arhitektura spleta računala

Aplikacija spleta računala

Dijeljenje sredstava (Collective)

Upravljanje sredstvima (Resource)

Uspostava komunikacije (*Connectivity*)

Osnovna sredstva (Fabric)

Globalna mreža Internet

Aplikacija

Transportni sloj

Mrežni sloj IP

Podatkovna poveznica

Osnovna sredstva

 Uspostava raznovrsnih i raznorodnih sredstva koja ostvaruju osnovne funkcionalnosti spleta računala

- Osnovne vrste sredstava
 - Računalna sredstva (engl. computational resources)
 - Spremnički prostor (engl. storage systems)
 - Katalozi sredstava (engl. resource catalogues)
 - Mrežna sredstva (engl. network resources)
 - Osjetila i aktuatori (engl. sensors and actuators)

Uspostava komunikacije

- Osnova za uspostavu sigurne i pouzdane komunikacije između sredstava dostupnih u spletu računala
- Osnovne značajke komunikacije
 - Prijenos velike količine podataka
 - Učinkovito usmjeravanje sadržaja
 - Naslovljavanje sredstava i sudionika komunikacije
 - Sigurnost
 - Pouzdanost

Upravljanje sredstvima

- Osnovni protokoli za udaljeno postavljanje, nadgledanje, korištenje sredstava
 - Informacijski protokoli
 - Upravljački protokoli
- Informacijski protokoli
 - Dohvaćanje, pregled i analiza stanja sredstava u spletu računala
 - (zauzeće sredstava, broj kvarova, broj korisnika,...)
- Upravljački protokoli
 - Upravljanje postavkama za dijeljenje, korištenje i upravljanje sredstvima spleta računala
 - (prava pristupa, dostupnost, udruživanje, usmjeravanje,...)

Dijeljenje sredstava

 Protokoli i usluge za učinkovito dijeljenje, usklađivanje rada i upravljanje grupom sredstava spleta računala

- Usluge za dijeljenje sredstava
 - Imeničke usluge
 - Usluge za raspoređivanje zahtjeva za pristup sredstvima
 - Usluge za posredovanje u suradnji sredstava
 - Usluge za nadgledanje rada skupine sredstava
 - Okruženja za razvoj logike suradnje sredstava
 - Usluge za naplatu korištenja sredstava

Vrste spletova računala

- Spletovi za složene proračune (engl. Computational grids)
 - Modeliranje i simuliranje složenih znanstvenih eksperimenata
- Podatkovni spletovi računala (engl. Data grids)
 - Spremanje i obrada velike količine podataka
- Poslovni spletovi računala (engl. Business grids)
 - Dubinska analiza velike količine podataka
- Bežični spletovi računala (engl. Wireless grids)
 - Potpora bežičnim korisničkim uređajima

Primjeri spleta računala

TeraGrid

Enabling Grids for E-science in Europe (EGEE)

CROGrid

TeraGrid

- Nacionalni splet računala SAD-a
- Razvoj najveće okoline spleta računala za znanstvena istraživanja
 - Istraživanje lijekova za rak
 - modeliranje i predviđanje vremenskih uvjeta
- Sredstva
 - 1015 flops računalne snage
 - 30 Pbyte spremničkog prostora
 - 40 Gbit/s mrežne propusnosti

Enabling Grids for E-science in Europe (EGEE)

- Splet računala u EU
- Splet računala za izvođenje znanstvenih aplikacija
 - Obrada podataka sustava Large Hadron Collider (LHC)
 - Obrada biomedicinskih podataka
 - Modeliranje i simuliranje prirodnih pojava
- EGEE-III sredstva
 - 72,000 procesnih jedinica
 - 20 Pbyte spremničkog
 - prostora
 - 10,000 reg. korisnika

CroGRID

- Hrvatski splet računala (www.cro-grid.hr, www.cro-ngi.hr)
 - FER, ETK, SRCE, ETFOS, FESB, GRADRI, RITEH

Aplikacije

- Dubinska analiza podataka
- Analiza proteina
- Pametni transport

Infrastruktura

Grozdovi računala

Posrednički sustav

Programski modeli i jezici za razvoj aplikacija

CroGRID posrednički sustav

- Programmable Internet Environment (PIE)
 - Razvoj raspodijeljenih aplikacija zasnovanih na kompoziciji usluga

Struktura PIE sustava

Prividna mreža

Imenik i spremnik usluga

Mehanizmi suradnje i

natjecanja usluga

Razvoj opisa kompozicije usluga

Izvođenje opisa kompozicije usluga

Usporedba grozda i spleta računala

	Grozd računala	Splet računala
Aplikacije	Izvođenje računalno zahtjevnih aplikacija	Dijeljenje raznovrsnih sredstava u globalnoj mreži
Tehnologija	Primjena vlasničkih i standardiziranih tehnologija	Primjena standardiziranih tehnologija
Geografska raspodijeljenost	Elementi sustava na bliskoj geografskoj udaljenosti	Elementi sustava globalno raspodijeljeni
Upravljanje	Središnje upravljanje sredstvima sustava	Više administrativnih domena za upravljanje sustavom
Povezanost	Čvrsto povezane strukture	Labavo povezane strukture
Prilagodljivost	Zatvorena okolina	Otvorena okolina

Računarstvo na daljinu (Cloud Computing)

 Sustav za posluživanje korisničkih usluga i aplikacija velikih razmjera zasnovan na primjeni tehnologija spleta i grozda računala te P2P mreža

- Značajke
 - Velik broj radnih računala (> 2k) povezanih u grozdove/spletove računala
 - Grozdovi računala povezani u veće strukture koje zajednički čine računalni oblak
 - Postavljanje, izvođenje i upravljanje aplikacijama uz QoS

Dodatne informacije

- Knjige
 - I. Foster, C. Kesselman: "The Grid 2: Blueprint for a New Computing Infrastructure", Morgan Kaufmann, 2004.
- Web
 - Open Grid Forum (www.ogf.org)
 - Grid Computing, IEEE DS Online (dsonline.computer.org/gc)
 - The Globus Alliance (www.globus.org)
- FER Kolegiji
 - Računarstvo zasnovano na uslugama
 - 1. sem, dipl., Pl&IS, RI, RZ, T&I
 - Posrednici umreženih sustava
 - 2. sem, dipl., PI&IS, RI, RZ, T&I

Sustavi s ravnopravnim sudionicima (peer-to-peer, P2P)

Raspodijeljeni sustavi 29.09.2009. 35 od 82

- Centralizirani i decentralizirani raspodijeljeni sustavi
- Definicija sustava P2P
- Nestrukturirani sustavi P2P
- Strukturirani sustavi P2P

Centralizirani raspodijeljeni sustav

Primjer - Web tražilice

- npr. Google
- 91 000 000 upita po danu
- oko 2 480 000 000 indeksiranih dokumenata

Upit
"FER adresa"

Lista rangiranih odgovora - www.fer.hr....

Grozd računala: 15000 poslužitelja (podatak iz 2003)

Decentralizirani raspodijeljeni sustav (1)

- Primjer aplikacija za razmjenu mp3 datoteka
 - npr. Napster
 - 1 570 000 korisnika
 - 2 000 000 mp3 datoteka
 (u prosjeku 220 datoteka po korisniku)
 (podaci za 02/2001)

Upit
<title> "brick in the wall"
<artist> "pink floyd"
<size> "1 MB"
<category> "rock"

Prijenos datoteke f.mp3 s *peera* X

Odgovor f.mp3 se nalazi na peeru X

Peer Peer Peer Peer Napsterov Poslužite Peer Peer Peer Peer Peer

Napster: 100 poslužitelja

Decentralizirani raspodijeljeni sustav (2)

- Primjer: aplikacija za razmjenu datoteka
 - npr. Gnutella
 - 40,000 čvorova, 3·106 datoteka (podaci iz 08/2000)

- Centralizirani i decentralizirani raspodijeljeni sustavi
- Definicija sustava P2P
- Nestrukturirani sustavi P2P
- Strukturirani sustavi P2P
- Primjeri aplikacija

Definicija sustava peer-to-peer (P2P)

- mreža ravnopravnih sudionika tj. "čvorova" - peerova
- svaki peer istovremeno obavlja funkciju poslužitelja i klijenta
- svaki čvor "plaća" sudjelovanje u mreži nudeći dio vlastitih resursa (memorija, CPU, mreža) ostalim čvorovima
- peerovi ulaze i izlaze iz sustava po volji, dinamična i nestabilna topologija
- potencijalno sustav P2P nudi neograničene resurse (broj peerova nije ograničen)

Mreža peerova

- Kada su 2 peera susjedi?
 - otvorena TCP konekcija ili
 - virtualne grane među peerovima, peer zna IP adresu drugog peera
- Kako se održava mreža peerova?
 - mreža je izrazito nestabilna
 - npr. peer periodički provjerava stanje susjeda (ping porukama)
 - ako je susjed nedostupan, briše se iz liste susjeda
 - potreban je poseban algoritam za otkrivanje novih susjeda
 - poseban algoritam za dodavanje novog peera u postojeću mrežu (najčešće poznaje listu peerova za inicijalni kontakt)

Obilježja sustava P2P

- decentralizirani raspodijeljeni sustav
 - nema centralizirane koordinacije među peerovima
 - ne postoji jedna točka ispada
- samoorganizirajuća mreža čvorova
 - peerovi su autonomni
- skalabilan sustav
 - dodavanje novih čvorova i ispad čvorova je podržano organizacijom P2P mreže i definiranim protokolima
- globalni informacijski sustav bez velikih ulaganja
 - raspodijeljena instalacija i održavanje

Osnovna zadaća sustava P2P (1)

Pronalaženje resursa (npr. datoteka) u sustavima P2P!

Osnovna zadaća sustava P2P (2)

Kako pronaći podatak *d* u mreži peerova?

- "naivno rješenje": poslati upit svim peerovima u mreži
 - problemi: moram znati adrese svih peerova, što je s mrežnim prometom?
- "manje naivno rješenje": poslati upit odabranim peerovima u mreži
 - problemi: kako odabrati peerove, hoću li sigurno pronaći podatak d?
- "pametnije" rješenje
 - pohraniti podatak d na odabrani peer p (ili odabrane peerove): dovoljno je znati adresu peera p da mu možemo proslijediti upit
 - postoji algoritam koji povezuje peera p s podatkom d, a svi peerovi u mreži znaju taj algoritam
 - isti algoritam se koristi pri pohranjivanju i traženju podatka

Vrste sustava P2P

nestrukturirani sustavi

- mrežna topologija nema definiranu strukturu ("manje naivno rješenje")
- mrežu peerova čini slučajan graf, npr. peer "poznaje" svoja četiri susjeda i preko njih pretražuje cijelu mrežu
- primjeri: Freenet, Gnutella, KaZaA, BitTorrent

strukturirani sustavi

- mrežna topologija je definirana i ima posebnu strukturu ("pametnije" rješenje)
- podatku d možemo pridijeliti ključ k (svaki peer može odrediti k za d)
- podatak d je pohranjen na peeru koji je "zadužen" za ključ k, a ne na peeru koji ga kreira
- primjeri: CAN, Chord, P-Grid, Pastry

- Centralizirani i decentralizirani raspodijeljeni sustavi
- Definicija sustava P2P
- Nestrukturirani sustavi P2P
- Strukturirani sustavi P2P

Nestrukturirani sustavi P2P

- podatak (npr. datoteka) je pohranjen na peeru koji ga kreira, ne postoji veza između podatka d i peera p
- moguće je pohraniti kopiju podatka na peerovima koji ga kopiraju s originalnog peera
- pretraživanje se izvodi preplavljivanjem ili slučajnim izborom (random walk), itd.

Obilježja nestrukturiranih sustava P2P

- jednostavnost
 - jednostavan protokol za pronalaženje podataka
- robustnost
 - ne postoji jedna točka ispada
- niska cijena objavljivanja novog podatka
 - podatak ostaje pohranjen na peeru koji ga objavljuje
- velika cijena prilikom pretraživanja
 - generira se veliki mrežni promet
 - neskalabilno rješenje, kompleksnost O(n²), n je broj peerova
- dobro rješenje za pronalaženje podataka koji su replicirani na velikom broju peerova, ali ne za podatke pohranjene na malome broju peerova

- Centralizirani i decentralizirani raspodijeljeni sustavi
- Definicija sustava P2P
- Nestrukturirani sustavi P2P
- Strukturirani sustavi P2P

Strukturirani sustavi P2P

- za podatak d svaki peer može izračunati ključ k
 - npr. k = hash(d), gdje je hash() hash funkcija
- za dani ključ k pronaći peera p koji je zadužen za prostor ključeva u koji spada k
 - mreža peerova implementira metodu lookup(k) koja vraća identifikator peera za dani ključ k
 - metoda lookup(k) je implementirana distribuirano, ako peer ne zna odgovor na upit, zna ga usmjeriti prema peeru s odgovorom
- za pohranjivanje podatka pronalazimo nadležnog peera i prosljeđujemo mu podatak
- prilikom pretraživanja pronalazimo nadležnog peera i prosljeđujemo mu upit koji opet sadrži podatak koji tražimo

Odnos između peera, podatka i ključa

Osobine strukturiranih sustava P2P

- garantira pohranjivanje i pronalaženje podatka u O(log n) koraka (n je broj peerova u mreži)
 - skalabilno rješenje u smislu generiranog prometa u odnosu na nestrukturirane sustave
- povećana cijena objavljivanja novog podatka u odnosu na nestrukturirane sustave P2P
 - podatak se pohranjuje na peeru koji je za njega "zadužen"
- potrebno je održavati dodatne strukture podataka (tablice usmjeravanja) radi umjeravanje upita prema peerovima koji pohranjuju tražene podatke

Primjer strukturiranog sustava P2P

- koristi ideju raspodijeljene hash tablice Distributed Hash Table (DHT)
- hash tablica je raspodijeljena na više čvorova.

- Metoda lookup omogućuje svakom čvoru pronalaženje vrijednosti povezane s nekim ključem (ključ računamo na temelju atributa)
- primjer: lookup("CS30"), odgovor: "Distributed Sys."

Chord: Kako raspodijeliti hash tablicu?

- Primjer mreže s 5 čvorova {a,b,c,d,e}
- Koristi se prostor ključeva veličine N = 16 (dovoljna su 4 bita za kodiranje)
- Čvorovima se jednoznačno pridjeljuju ključevi uz pomoć posebne funkcije H₁, npr. H₁(a) = 0.

Mogući identifikatori čvorova: {0,1, ..., 15}, N = 16

Chord: Kako se podatak dodjeljuje čvoru?

- Podacima se pridjeljuju ključevi iz istog prostora {0,1, ..., 15} koristeći funkciju H₂
- Npr. podatak ("cs15", "networking")
 dobiva ključ 13 jer vrijedi H₂("cs15") =
 13
- Kako u mreži ne postoji čvor s ključem 13, podatak se pohranjuje na prvom sljedećem čvoru (to je u ovom slučaju čvor a kojemu je ključ = 0)

Chord: Kako ćemo povezati čvorove?

 Svaki čvor održava jedan pokazivač na sljedbenika, tj. na prvi sljedeći čvor u smjeru kazaljke na satu

sljedbenik čvora $0 \rightarrow$ čvor sljedbenik čvora $2 \rightarrow$ čvor sljedbenik čvora $5 \rightarrow$ čvor sljedbenik čvora $6 \rightarrow$ čvor sljedbenik čvora $11 \rightarrow$ čvor

Chord: Jednostavno pretraživanje

Chord: Kako ubrzati pretraživanje (1)

Primjer: tablica usmjeravanja za čvor s ključem 15

Za čvorove koji ne postoje, pokazivač se postavlja na prvog sljedbenika!

Chord: Kako ubrzati pretraživanje (2)

Primjer: na čvoru 15 je postavljen upit za podatkom čiji je ključ jednak 10, a pohranjen je na čvoru 13

čvor 15 usmjerava upit od čvora 3 (ključ 13 je veći od 10!) čvor 3 usmjerava upit do čvora 13

Dodatne informacije

Eng Keong Lua Crowcroft, J. Pias, M. Sharma, R. Lim, S., A survey and comparison of peer-to-peer overlay network schemes, IEEE Communications Surveys & Tutorials, 7(2), Second Quarter 2005, pp. 72-93.

http://www.cl.cam.ac.uk/teaching/2005/AdvSysTop/survey.pdf

- FER kolegiji
 - Umrežavanje sadržaja
 - 3. sem, dipl., T&I

Programski agent

Agent

Agent je jedinka koja djeluje u ime svojeg vlasnika ili korisnika:

- sa sposobnošću djelovanja u okružju, promatranja okružja i njegovom djelomičnom predodžbom,
- vođena skupom namjera ili ciljeva,
- s vlastitim resursima i vještinama,
- koja može komunicirati s drugim agentima,
- koja se može reproducirati.

Podjela i obilježja agenata

Agenti se dijele na:

- fizikalne ili virtualne,
- ljudske,sklopovske ili programske.

Obilježja agenta:

- inteligencija znanje, rasuđivanje, učenje
- samostalnost,
- reaktivnost pobuda iz okružja,
- proaktivnost usmjerenost cilju,
- pokretljivost,
- komunikativnost, kooperativnost, društvenost, ...

Vrste agenata

- Informacijski (traženje informacije u mreži: pretraživanje i filtriranje, snabdijevanje informacijama, savjetovanje i fokusiranje, ...).
- Kooperacijski (rješavanje složenog problema: skupni posao, zabava, upravljanje mrežom/komunikacijom, ...).
- Transakcijski (obrada i nadzor transakcije: e-trgovina, poslovni procesi, proizvodni procesi, ...).

Jedan agent ili višeagentski sustav!

Organizacija višeagentskog sustava

Mikro razina

Dva ili nekoliko agenata u međusobnoj interakciji

Skupina

Više agenata s različitim ulogama

Društvo

Mnogo agenata u dinamičnim odnosima

Uzor: sociološki (npr. tim) ili

biološki (npr. kolonija mrava)

Pokretni programski agent

Pokretni agent:

- program koji predočuje korisnika u mreži i može migrirati samostalno iz čvora u čvor zbog izvedbe neke obrade u ime korisnika.
- Agentova aplikacija opisuje neki posao, ubacuje agenta u mrežu dopuštajući mu kretanje i povratak u početni čvor po obavljenom poslu.
- Agent se može kretati mrežom po prethodno određenom putu ili na temelju dinamički prikupljene informacije.

Od modela klijent-poslužitelj ...

Programski model:

Poziv udaljene procedure (RPC – Remote Procedure Call)

... do pokretnog programskog agenta

Programski model:

Udaljeno programiranje (RP – *Remote Programming*)

Agentska platforma (1)

- Operacijski sustav
- Agentska platforma

 (osnovna programska
 oprema za pokretljivost)
 koja sadrži tri sloja s
 agentskim, sigurnosnim
 i komunikacijskim
 funkcijama,
- Agenti

Agentska platforma (2)

- Agentski sloj (izvođenje i nadzor aktivnih agenata, snabdijevanje agenata s funkcijama za pokretljivost, komunikaciju, identifikaciju, ...);
- Sigurnosni sloj (zaštita od promjene/čitanja i nedopuštenog ulaza u sustav, funkcije kriptografije, digitalnog potpisa i certifikacije, zaštitna pregrada, ...),
- Komunikacijski sloj (protokoli, formati, RP, serijalizacija/deserijalizacija, ...)

Primjer:

 ◆ JADE – Java Agent DEvelopmemt Framework (jade.tilab.com)

Osnovne agentske operacije (1)

Identifikacija agenta

- identify (agent-id, personal-key, agent-type)
 - agent-id identifikator agenta
 - personal-key osobni ključ agenta
 - agent-type vrsta agenta

Traženje raspoloživog agenta

getAvailableAgent (agent-id, agent-type)

Kontaktiranje agenta

contact (agent-id, agent-id)

Osnovne agentske operacije (2)

Odašiljanje naloga

- sendCommand (agent-id, agent-id, command)
 - command nalog

Premještanje (migracija) agenta

move (agent-id, address)

Izmjena poruka

- sendMessage (agent-id, agent-id/agent-type, (address), message)
 - address adresa mrežnog čvora
 - message poruka

Komunikacija između agenata (1)

- 1. Agent I identificira samog sebe s agent-id=I, personal-key=pkI i agent-type=atI s naredbom identify (I, pkI, atI).
- 2. Agentski sloj provjerava identifikacijsku informaciju agenta I u lokalnoj bazi agenata.
- 3. Agent I traži drugog raspoloživog agenta definirajući njegov agenttype=atx i pokreće naredbu getAvailableAgent (I, atx).

Komunikacija između agenata (2)

- 4. Agentski sloj pronalazi agenta partnera J vrste *atx* s njegovim *agent-id=J*.
- 5. Agentski sloj informira o agentu J s njegovim *agent-id=J*.
- 6-7. Agent I kontaktira agenta J naredbom *contact* (*I*, *J*).

Komunikacija između agenata (3)

- 8. Agentski sloj označava agenta J kao zauzetog u lokalnoj bazi agenata.
- 9. Agent I definira zahtijevani nalog command i šalje ga agentu J naredbom sendCommand (I, J, command).
- 10. Agent J prima zahtijevani nalog s naredbom *sendCommand* (*I*, *J*, *command*).

Migracija agenta (1)

- 1. Agent I identificira samog sebe s agent-id=I, personal-key=pkI i agent-type=atI s naredbom identify (I, pkI, atI).
- 2. Agentski sloj provjerava identifikacijsku informaciju agenta I u lokalnoj bazi agenata na izvorištu A.

Migracija agenta (2)

- 3-4. Agentski slojevi na izvorišnoj lokaciji A i odredišnoj lokaciji B izvode naredbu *move* (*I*, *B*) kojom se provodi migracija agenta I. Agent I se obnavlja na lokaciji B.
- 5-6. Agent I identificira samog sebe s *agent-id=I*, *personal-key=pkI* i *agent-type=atI* s naredbom *identify* (*I*, *pkI*, *atI*) u lokalnoj bazi agenata na odredištu B.

Izmjena poruka između agenata (1)

- 1. Agent I identificira samog sebe s agent-id=I, personal-key=pkI i agent-type=atI s naredbom identify (I, pkI, atI).
- 2. Agentski sloj provjerava identifikacijsku informaciju agenta I u lokalnoj bazi agenata.

Izmjena poruka između agenata (2)

- 3. Agent I pripravlja poruku *message* koju će poslati poznatom udaljenom agentu J na lokaciji *address=B* s naredbom *sendMessage* (*I*, *J*, *B*, *message*).
- 4. Agentski sloj na izvorišnoj lokaciji A šalje naredbu agentu J na odredišnoj lokaciji B.

Izmjena poruka između agenata (3)

- 5. Agentski sloj označava agenta J kao zauzetog u lokalnoj bazi agenata.
- 6. Agent J prima poruku prenesenu naredbom sendMessage (I, J, B, message).

Dodatne informacije

 FIPA (The Foundation for Intelligent Physical Agents), standardizacijsko tijelo o okviru IEEE Computer Society (www.fipa.org)

FER kolegiji

- Pokretni programski agenti
 - 2. sem, dipl., T&I
- Konkurentno programiranje
 - 2. sem, dipl., T&I