Modeling ionograms with Deep Neural Networks: Contrasting models

Aricoché¹, E. Rojas², R.Rojas³, M. Milla⁴

¹Universidad Nacional Del Callao, Callao, Perú,

²Cornell university, New York, USA,

³Universidad de Ingeniería y tecnología, Lima, Perú

⁴Pontificia Universidad Católica del Perú, Lima, Perú,

Scientific problem

$$h(f) = \int_0^{z_r} rac{dz}{n(z)} = \int_0^{z_r} rac{dz}{\sqrt{1 - rac{fp(z)^2}{f2}}}$$

What is h(f)?

DPS4 digisonde give **ionograms** data every 15 minutes

Why do we need to estimate foF2?

Datasets

The c-level flag indicates and qualifies some ARTIST scaled results [1]. Day of year values were converted into 2 quadrature components to avoid discontinuities as proposed in [2]. Mg II is a good solar proxy for foF2[3]

Datasets: ionograms

Models

Hyperparameter optimization: Folds

Sliding window

18 years of data was used to train and validate our models, the year 2019 was used as testing data

Hyperparameter optimization: Optuna

intervals for parameters where chosen based on previous jobs[5]

foF2 comparisons and results

foF2 comparisons and results

The persistence model uses the value at the previous time step (t-1) to predict the expected outcome

Ionograms comparisons and results

•Ionograms predictions of model2

Parameter inputs importance

Comparisons between models

Comparisons with previous model

Evaluation of neural network models to estimate foF2 (RMSE-MHz)				
Metrics	Model 2 (1 month of data)	Model 2 (3 months of data)	IRI ESTIMATIONS	SAMI2 ESTIMATIONS
Solstice of a Solar Minimum (December 2009)	0.44	0.47	1.12	0.59
Equinox of a solar minimum (March 2009)	0.58	0.51	1	0.75
Solstice of a solar maximum (June 2014)	0.62	0.82	0.67	1.47
Equinox of a solar maximum (March 2013)	1.81	1.53	1.25	0.70

Nowcasting approach

model to predict This nowcasting approach predicts ionograms for the next differences one or two hours. Here are some preliminary results: between ionograms 1000 prediction 750 Differences New predictions 500 or corrected persistence 250 Persistence model

Conclusions and future work

- By using not only frequencies that are foF2 but also frequencies that are not and virtual heights to estimate foF2, we can observe that this approach is slightly better than using a regression neural network for foF2 for the testing year.
- After making tests on small datasets, we can observe through the good estimations that using deep learning or Machine learning approaches with non-complex models can have potential applications to make ionosonde parameters forecasting using ionosondes with few data or recently installed ionosondes.
- We will continue exploring the nowcasting approach.
- Future work will be oriented toward electron densities forecasting.

References

- 1. https://www.digisonde.com/pdf/Digisonde4DManual_LDI-web.pdf
- 2. Poole, A. W. V., & Mckinnell, L. A. (2000). On the predictability of foF2 using neural networks. Radio Science, 35(1), 225–234. https://doi.org/10.1029/1999RS900105.
- 3. Laštovi cka, J. The best solar activity proxy for long-term ionospheric investigations. Adv. Space Res. 2021, 68, 2354–2360.
- 4. Optuna: A Next-generation Hyperparameter Optimization Framework. Takuya, Akiba, y otros. 2019. 2019. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. DOI: 10.1145/3292500.3330701.
- 5. **L.A. McKinnell,** Equatorial predictions from a new neural network based global foF2 model 2009(feed-forward)

Thank you