ISC Cvičení 2 - Čísla

Jakub Martiško

4. října 2016

Polynomiální zápis

- Používáme poziční soustavy umístění číslice v rámci čísla je důležité (123 vs. 321).
- Předpokládejme desítkovou soustavu:

$$1323.52 = 1*10^3 + 3*10^2 + 2*10^1 + 3*10^0 + 5*10^{-1} + 2*10^{-2}$$

Lze použít pro převod z libovolné soustavy do desítkové:

$$(101.1)_2 = (1*2^2 + 0*2^1 + 1*2^0 + 1*2^{-1})_{10} = (5.5)_{10}$$

Převod mezi soustavami - celá část

```
function CONVERT(number, base)

result \leftarrow 0

remainder \leftarrow 0

while (number > 0) do

remainder \leftarrow number%base

number \leftarrow number/base

result \leftarrow remainder + +result

return result
```

Převod mezi soustavami - desetiná část

```
function CONVERT(number, base)

result ← 0

remainder ← 0

while (number! = 0) do

aux = number * base
remainder ← trunc(aux)
number ← aux - remainder
result ← result + remainder
return result
 > 12++34 = 1234
```

Sčítání ve dvojkové soustavě

Podobné jako v desítkové

$$0+0=0$$
; $0+1=1$; $1+1=10$; $1+1+1=11$; . . .

Např:

Záporná čísla

ullet Přímý kód — nejvyšší bit značí znaménko (0pprox+,1pprox-)

$$(0000\,1001)_2 = (+5)_{10}$$

$$(1000\,1001)_2 = (-5)_{10}$$

 Inverzní kód (jedničkový doplněk)— převrácené hodnoty jednotlivých bitů, nejvyšší bit stále určuje znaménko

$$(00001001)_2 = (+5)_{10}$$

$$(11110110)_2 = (-5)_{10}$$

Záporná čísla - doplňkový kód

 Doplňkový kód (dvojkový doplněk) — vezmu inverzní kód a přičtu jedničku:

$$(6)_{10} = (0000\,0110)_2 \rightarrow (1111\,1001)_2 \rightarrow (1111\,1010)_2 = (-6)_{10}$$

 Nebo — jdu od nejméně významného bitu, nuly opisuju, jakmile narazím na jedničku tak ji také opíšu a další čísla invertuju:

$$(0000\,1010) \rightarrow (0) \rightarrow (10) \rightarrow (110) \rightarrow \cdots \rightarrow (1111\,0110)_2$$

Převody mezi soustavami o základu 2, 8, 16, 32

- Použít algoritmus ze strany 4
- Jedná se o soustavy o základu 2ⁿ:

2	16(8)	2	16(8)	2	16	2	16
0000	0	0100	4	1000	8	1100	С
0001	1	0101	5	1001	9	1101	D
0010	2	0110	6	1010	Α	1110	Ε
0011	3	0111	7	1011	В	1111	F

Endiany

- Určují pořadí jednotlivých bajtů, při ukládání dlouhých hodnot do paměti
- Big: některé síťové protokoly
- Little: x86, x86-64
- Např pro číslo *FFEEDDCC*:

adresa	Big	Little		
100	FF	CC		
101	EE	DD		
102	DD	EE		
103	CC	FF		

Záporná číslá - transformovaná (posunutá) nula

- Nula není reprezentována jako ... 0000 ale je posunutá většinou do hodnoty, kde MSB = 1 a ostatní bity jsou rovny 0
- Číslo obsahujicí samé 0 pak odpovídá nejmenšímu číslu a číslo obsahujicí samé 1 pak největšímu číslu.
- Převod inverze MSB v doplňkovém kódu (platí jen při posunu definovaném výše).
- Např. (8 bitů):

$$(1000\,0000)_2=(0)_{10};(3)_{10}=(1000\,0011)_2;(-1)_{10}=(0111\,1111)_2$$

Plovoucí des. čárka

• Číslo se rozdělí na znaménko, mantisu a exponent, výsledek je pak dán vztahem:

$$vysl = mantisa * zaklad^{exponent}$$

- Základ je roven hodnotě 2 (dvojková soustava), mantisa v přímém kódu, exponent v posunuté nule (může být posunuta jinak než bylo popsáno výše).
- Např. (pro jednoduchost uvedeno v desítkové soustavě):

$$-1.2345 = -(12345 * 10^{-4}) = [-][12345][-4]$$