ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА

Рабочая тетрадь

Преподаватель:	
Факультет:	
Студент:	
Группа:	
Вариант:	
Зачёт:	
Дата:	

Лабораторная работа 5

ОДНОФАЗНЫЙ ТРАНСФОРМАТОР

Цель работы

Изучить устройство, принцип действия, режимы работы и снять характеристики однофазного трансформатора.

Ход работы

• Рассчитать цепи (Рис.1, Рис.2 и Рис.3).

Рис. 1: Цепь при режиме холостого хода

Рис. 2: Цепь при режиме коротного замыкания

Рис. 3: Цепь при рабочем режиме

• Заполнить таблицы.

Таблица "Режим холостого хода"

Измерить				Вычислить					
U _{1H} , B	U _{2H} , B	I _{1X'} A	Р _{Х'} Вт	n	ω ₁ , витк.	ω ₂ , витк.	ΔP _M , Bτ	cosφ _X	
220	45,67	0,027	0,902	4,82	1622	338	0,902	0,152	

Таблица "Режим короткого замыкания"

	Измерить				Вы			
U _{1K'} B	I _{1K'} B	I _{2K} , A	P _{K'} Bt	Z _K , Ом	R _K , Ом	X _K , Ом	ΔP _O , Bt	cosφ _K
220	1,356	6,478	242,5	162,24	131,88	94,49	242,5	0,813

Таблица "Рабочий режим"

Ъ		И	змери	Вычислить				
R, Ом	U ₁ ,	I ₁ , A	Р ₁ , Вт	U ₂ , B	I ₂ , A	Р ₂ , Вт	cosφ	η, %
80		0,114	24,55		0,533		0,979	93
110	220	0,084	18,26	43,48	0,395	17,16	0,988	94
130	220	0,071	15,60	43,82	0,337	14,76	0,999	95
219	220	0,047	10,05	44,51	0,212	9,44	0,972	94
300	220	0,044	7,81	44,75	0,149	6,66	0,807	85

• Построить зависимости

Выводы

В ходе лабораторной работы я изучил принцип работы однофазного трансформатора, его устройство и режимы работы. Провёл измерения в трёх различных режимах: холостом ходу, коротком замыкании и рабочем режиме.

В рабочем режиме эффективность трансформатора варьировалась от 85% до 95% в зависимости от нагрузки. Наибольшой КПД был зафиксирован при сопротивлении 130 Ом, где он составил 95%. Это говорит о том, что транформатор работает наиболее эффективно при оптимальной нагрузке, обеспечивая минимальные потери энергии.

С увеличением нагрузки КПД постепенно снижался, что обусловлено увеличением потерь в обмотках и сердечнике трансформатора.