Suppose D1 is a 10x6 matrix and D2 is a 1x11 matrix. You set:

DVec = [D1(:); D2(:)];

Which of the following would get D2 back from DVec?

reshape(DVec(60:71), 1, 11)

reshape(DVec(61:72), 1, 11)

Correct

reshape(DVec(60:70), 11, 1)

Continue

Let $J(\theta)=\theta^3$. Furthermore, let $\theta=1$ and $\epsilon=0.01$. You use the formula: $\frac{J(\theta+\epsilon)-J(\theta-\epsilon)}{2\epsilon}$ to approximate the derivative. What value do you get using this approximation? (When $\theta=1$, the true, exact derivative is $\frac{d}{d\theta}J(\theta)=3$). 3.0000 • 3.0001 Correct 3.0301 • 6.0002

Continue

What is the main reason that we use the backpropagation algorithm rather than the numerical gradient computation method during learning?
The numerical gradient computation method is much harder to implement.
The numerical gradient algorithm is very slow.
Correct
Backpropagation does not require setting the parameter EPSILON.
 None of the above.

Consider this procedure for initializing the parameters of a neural network:
1. Pick a random number r = rand(1,1) * (2 * INIT_EPSILON) - INIT_EPSILON; 2. Set $\Theta_{ij}^{(l)}=r$ for all i,j,l .
Does this work?
Yes, because the parameters are chosen randomly.
○ Yes, unless we are unlucky and get r=0 (up to numerical precision).
Maybe, depending on the training set inputs x(i).
No, because this fails to break symmetry.
Correct

Continue

Suppose you are using gradient descent together with backpropagation to try to minimize $J(\Theta)$ as a function of Θ . Which of the following would be a useful step for verifying that the learning algorithm is running correctly?

Plot $J(\Theta)$ as a function of Θ , to make sure gradient descent is going downhill.

Plot $J(\Theta)$ as a function of the number of iterations and make sure it is increasing (or at least non-decreasing) with every iteration.

Plot $J(\Theta)$ as a function of the number of iterations and make sure it is decreasing (or at least non-increasing) with every iteration.

Correct

Plot $J(\Theta)$ as a function of the number of iterations to make sure the parameter values are improving in classification accuracy.