ABSTRACT:

A known encoder 100 comprises a segmentation unit 110 for segmenting an audio or speech signal s into at least one segment $\mathbf{x}(\mathbf{n})$ and a calculation unit 120 for calculating sinusoidal code data in the form of frequency and amplitude data of a given extension $\widehat{\mathbf{x}}(\mathbf{n})$ from the segment $\mathbf{x}(\mathbf{n})$ such that the extension $\widehat{\mathbf{x}}(\mathbf{n})$ approximates the segment $\mathbf{x}(\mathbf{n})$ as good as possible for a given criterion. It is the object of the invention to improve the known encoder such that the calculation of said sinusoidal code data can be carried out in a simpler and cheaper way. This object is solved according to the invention by calculating the sinusoidal code data θ_k^i , d_j^i and e_j^i for the segment $\mathbf{x}(\mathbf{n})$ according to the following extension $\widehat{\mathbf{x}}$:

$$\widehat{x} = \sum_{i=1}^{L} \sum_{j=0}^{J-1} \left[d_{j}^{i} f_{j}(n) \cos(\Theta'(n)) + e_{j}^{i} f_{j}(n) \sin(\Theta'(n)) \right].$$

Fig. 1.