Annotation-Efficient Learning: Class-Incremental Learning and Few-Shot Learning

Yaoyao Liu

Outline of today's talk

1. Class-Incremental Learning

Mnemonics Training: Multi-Class Incremental Learning without Forgetting CVPR 2020

2. Few-Shot Learning

An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning ECCV 2020

Background: class-incremental learning

Phase 1

Background: class-incremental learning

Phase 2

Background: class-incremental learning

Phase 3

Background: Class-Incremental Learning

Phase 3

Challenge: catastrophic forgetting

Literature review

Technique 1: Replay samples for the old classes:

iCaRL^[1], IL2M^[2], ...

Mnemonics exemplars

Technique 2: Preserve the knowledge for the old model:

LwF^[3], LUCIR^[4], PODNet^[5]...

Weight transfer operations

- [1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017;
- [2] Belouadah, Eden, and Adrian Popescu. "II2m: Class incremental learning with dual memory." CVPR 2019;
- [3] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." TPAMI 2017;
- [4] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019;
- [5] Douillard, Arthur, et al. "PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning." ECCV 2020.

Replay samples for the old classes

Replay samples for the old classes

Question: how to extract the exemplars?

Existing methods:

E.g., herding^[1, 4, 6]: select the samples near the average embedding

Limitations for existing methods:

- Heuristic selection, not performance-based
- Select from finite sets (real images)

Our method: Mnemonics exemplars

Question: Can we generate the optimal exemplars?

Benefits for our method:

- + Optimal selection by end-to-end training
- + Select from continuous (infinite) synthetic data

- [1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017;
- [4] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019;
- [6] Wu, Yue, et al. "Large scale incremental learning." CVPR 2019.

Question: how to formulate the optimization of the exemplars?

In the *i*-th incremental phase,

Data for the current phase

Bilevel optimization formulation:

$$\min_{\mathcal{E}_{0:i}} \mathcal{L}\left(\Theta_{i}^{\mathcal{E}}; \mathcal{E}_{0:i-1} \cup D_{i}\right)$$
s. t. $\Theta_{i}^{\mathcal{E}} = \min_{\mathcal{E}_{0:i}} \mathcal{L}\left(\Theta_{i}; \mathcal{E}_{0:i}\right)$

Literature review

Technique 1: Replay samples for the old classes:

iCaRL^[1], IL2M^[2], ...

Mnemonics exemplars

Technique 2: Preserve the knowledge for the old model:

LwF^[3], LUCIR^[4], PODNet^[5]...

Weight transfer operations

- [1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017;
- [2] Belouadah, Eden, and Adrian Popescu. "Il2m: Class incremental learning with dual memory." CVPR 2019;
- [3] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." TPAMI 2017;
- [4] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019;
- [5] Douillard, Arthur, et al. "PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning." ECCV 2020.

Preserve the knowledge for the old model

Preserve the knowledge for the old model

Distillation loss Classification loss

Preserve the knowledge for the old model

LUCIR^[4] (CVPR 2019) \Longrightarrow Distillation on the final feature maps

PODNet^[5] (ECCV 2020) Distillation on the feature maps from all layers

Distillation: preserve high-level knowledge for the old model

It is better to transfer low-level knowledge among tasks...^[7]

Q: Can we preserve the low-level knowledge for the old model?

- [1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017;
- [4] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019;
- [5] Douillard, Arthur, et al. "PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning." ECCV 2020;
- [7] Taylor, Matthew E., and Peter Stone. "An introduction to intertask transfer for reinforcement learning." Ai Magazine 32.1 (2011): 15-15.

How to transfer low-level knowledge for class-incremental learning?

Weight transfer operations: Channel-wise masks

(b) Our Scaling S1 and Shifting S2

Global computing glow

Our method: Technique 1 + Technique 2

BOP = Bilevel Optimization Program

Our method boosts the performance

Dataset: ImageNet-Subset

References

[4] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019;

[6] Wu, Yue, et al. "Large scale incremental learning." CVPR 2019.

Our method boosts the performance

Metric	Method	CIFAR-100			ImageNet-Subset			ImageNet		
		N=5	10	25	5	10	25	5	10	25
	LwF ^{\(\phi\)} (2016)[2]	49.59	46.98	45.51	53.62	47.64	44.32	44.35	38.90	36.87
Average acc. (%) \uparrow $\bar{\mathcal{A}} = \frac{1}{N+1} \sum_{i=0}^{N} \mathcal{A}_i$	LwF w/ ours	54.21	52.72	51.59	60.94	59.25	59.71	52.70	50.37	50.79
	iCaRL (2017)[1]	57.12	52.66	48.22	65.44	59.88	52.97	51.50	46.89	43.14
	iCaRL w/ ours	60.00	57.37	54.13	72.34	70.50	67.12	60.61	58.62	53.46
	BiC (2019) [6]	59.36	54.20	50.00	70.07	64.96	57.73	62.65	58.72	53.47
	BiC w/ ours	60.67	58.11	55.51	71.92	70.73	69.22	64.63	62.71	60.20
	LUCIR (2019) [4]	63.17	60.14	57.54	70.84	68.32	61.44	64.45	61.57	56.56
	LUCIR w/ ours	63.34	62.28	60.96	72.58	71.37	69.74	64.54	63.01	61.00

- Generic
- Boost the performance for **FOUR** different baselines

- [1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017;
- [3] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." TPAMI 2017;
- [4] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019;
- [6] Wu, Yue, et al. "Large scale incremental learning." CVPR 2019.

Ablation study

Mathad	(CIFAR-10	00	Imo	ImagNet-Subset		
Method	N=5	10	25	5	10	25	
Baseline (LUCIR [4])	63.17	60.14	57.54	70.84	68.32	61.44	
+ weight transfer operations	62.98	61.23	60.36	71.66	71.02	69.40	
+ weight transfer operations and mnemonics exemplars	63.34	62.28	60.96	72.58	71.37	69.74	

References

[4] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019.

t-SNE results: clearer separation in the data

Phase 25

One region for one class Light color: original data Deep color: exemplars

Dataset: ImageNet

Our method:

- Clearer separation in data
- Exemplars locate on the class boundaries

- [1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017;
- [4] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019.

Outline of today's talk

1. Class-Incremental Learning

Mnemonics Training: Multi-Class Incremental Learning without Forgetting CVPR 2020

2. Few-Shot Learning

An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning ECCV 2020

Research background

Limitation: most algorithms are based on supervised learning,
 so we need lots of labeled samples to train the model

Medical images: expensive to label the data

Mitosis detection 有丝分裂检测

Few-shot learning: learning with limited data

Question: how to learn a model with limited labeled data?

Task: few-shot image classification

Review: meta-learning

Review: meta-learning

Training tasks

Existing methods vs. our E³BM

Existing methods:

- A single base-learner
- Arbitrary base-learning hyperparameters
- Unstable

Our E³BM:

- An ensemble of multiple base-learners
- Task-specific base-learning hyperparameters
- + Stable and robust

- [8] Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017;
- [9] Sun, Qianru, et al. "Meta-transfer learning for few-shot learning." CVPR 2019;
- [10] Hu, Shell Xu, et al. "Empirical Bayes Transductive Meta-Learning with Synthetic Gradients." ICLR 2020.

Existing method: MAML^[8]

Existing method: MAML^[8]

 Θ Epoch-wise base-learner θ Base-learner initializer α Learning rate v Combination weight

Our method: E³BM framework

For one training task: Predictions from multiple base-learners deploy $\nabla \mathcal{L}_2^{(tr)}$ $\nabla \mathcal{L}_{M}^{(tr)}$ $\nabla \mathcal{L}_1^{(tr)}$ **Hyperprior Learner** deploy α Learning rate

Our method: E³BM framework

For one training task: Predictions from multiple base-learners deploy $\nabla \mathcal{L}_{M}^{(tr)}$ $\nabla \mathcal{L}_{2}^{(tr)}$ $\nabla \mathcal{L}_{1}^{(tr)}$ **Hyperprior Learner** deploy v_1 Task-specific base-learning hyperparameters α Learning rate

The architecture of the hyperprior learner

For the m-th base epoch:

(a) Epoch-independent

Boost the performance on THREE baselines

The 5-class few-shot classification results (%).

Mothoda	Backbone	$mini { m Im}$	ageNet	$tiered {f Im}$	nageNet	FC100		
wiethods		1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	
MAML	4CONV	48.70	63.11	49.0	66.5	38.1	50.4	
MTL	ResNet-25	63.4	80.1	69.1	84.2	43.7	60.1	
MAML+E ³ BM	4CONV	53.2(†4.5)	$65.1(\uparrow 2.0)$	52.1(†3.1)	70.2(†3.7)	39.9(†1.8)	$52.6(\uparrow 2.2)$	
(+time, +param)	_	(8.9, 2.2)	(9.7, 2.2)	(10.6, 2.2)	(9.3, 2.2)	(7.8, 2.2)	(12.1, 2.2)	
$MTL+E^3BM$	ResNet-25	64.3 (†0.9)	81.0 (†0.9)	70.0 (†0.9)	$85.0(\uparrow 0.8)$	45.0 (†1.3)	60.5 (†0.4)	
(+time, +param)	_	(5.9, 0.7)	(10.2, 0.7)	(6.7, 0.7)	(9.5, 0.7)	(5.7, 0.7)	(7.9, 0.7)	

(a) Inductive Methods

	WRN-28-10		79.2	72.9	82.8	45.2	55.9
SIB+E ³ BM	WRN-28-10	71.4 (\uparrow 1.4)	81.2 (†2.0)	75.6 (†2.7)	84.3 (†1.5)	46.0 (†0.8)	57.1 (↑1.2)
(+time, +param)	_	(2.1, 0.04)	(5.7, 0.04)	(5.2, 0.04)	(4.9, 0.04)	(6.1, 0.04)	(7.3, 0.04)

(b) Transductive Methods

- [8] Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017;
- [9] Sun, Qianru, et al. "Meta-transfer learning for few-shot learning." CVPR 2019;
- [10] Hu, Shell Xu, et al. "Empirical Bayes Transductive Meta-Learning with Synthetic Gradients." ICLR 2020.

Open-source resources

1. Class-Incremental Learning

Mnemonics Training: Multi-Class Incremental Learning without Forgetting GitHub: https://github.com/yaoyao-liu/mnemonics-training

2. Few-Shot Learning

An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning GitHub: https://github.com/yaoyao-liu/e3bm

Thanks! Any questions?

Yaoyao Liu yaoyao.liu@mpi-inf.mpg.de

References

- [1] Rebuffi, Sylvestre-Alvise, et al. "iCaRL: Incremental classifier and representation learning." CVPR 2017; [2] Belouadah, Eden, and Adrian Popescu. "II2m: Class incremental learning with dual memory." CVPR 2019;
- [3] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." TPAMI 2017;
- [4] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019;
- [4] Hou, Sainti, et al. Learning a unified classifier interfering in the Baltimus CVI N 2019,
- [5] Douillard, Arthur, et al. "PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning." ECCV 2020;
- [5] Doubled, Arthur, et al. 1 Object Outputs Distillation for Small-rasks incremental Learning.
- [6] Wu, Yue, et al. "Large scale incremental learning." CVPR 2019;
- [8] Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017;
- [9] Sun, Qianru, et al. "Meta-transfer learning for few-shot learning." CVPR 2019;
- [10] Hu, Shell Xu, et al. "Empirical Bayes Transductive Meta-Learning with Synthetic Gradients." ICLR 2020;
- [11] Sun, Qianru, et al. "Meta-transfer learning for few-shot learning." CVPR 2019;
- [12] Liu, Yaoyao, et al. "Mnemonics Training: Multi-Class Incremental Learning without Forgetting." CVPR 2020;
- [12] Liu, Taoyao, et al. Whentonics Training, Multi-Class in Central Learning Without Forgetting. CVT N 2020
- [13] Sun, Qianru, et al. "Meta-Transfer Learning through Hard Tasks." TPAMI 2020;
- [14] Liu, Yaoyao, Bernt Schiele, and Qianru Sun. "An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning." ECCV 2020.

[7] Taylor, Matthew E., and Peter Stone. "An introduction to intertask transfer for reinforcement learning." Ai Magazine 32.1 (2011): 15-15;