# Creating an FPGA accelerator in 15 min!

Andreas Olofsson, Adapteva & Parallella Founder

(Presented at ANL FPGA Workshop)

# **Kickstarting Parallel Computing**

- Parallella: "Supercomputing for everyone"
- 18 CPU cores + FPGA on a credit card (5W)
- Democratizes access to parallel computing
- \$898K raised on Kickstarter in Oct 2012
- Open source and open access
- Starting at \$99
- Available at Amazon & Digi-Key

## Parallella Specs (http://parallella.org)

| Performance  | ~30 GFLOPS            |  |
|--------------|-----------------------|--|
| Architecture | ARM + FPGA + MANYCORE |  |
| Memory       | 1GB DDR3              |  |
| IO           | ~25 Gb/s (48 GPIO)    |  |
| Size         | credit-card           |  |
| Power        | <5W                   |  |
| Cost         | \$99 -> \$249         |  |

## "Hello World" in Software

- 1. CODE: main() { printf("Hello World\n");}
- 2. **COMPILE:** gcc hello.c
- 3. **TEST:** ./a.out
- 4. **DEBUG:** printf, gdb

#### "Hello World" in Hardware

- 1. **CODE:** Verilog/VHDL source
- 2. **CODE MORE:** Verilog/SystemC testbench
- 3. **TEST:** VCS/NC/Icarus/Verilator
- 4. **DEBUG:** Waveform debugging
- 5. **SYNTHESIZE:** HDL-->NETLIST-->POLYGONS
- 6. **BURN:** FPGA/ASIC
- 7. **TEST MORE:** Pray that it works...

## **Hardwave vs Software**

|                 | SW      | HW             |
|-----------------|---------|----------------|
| Compile Time    | seconds | minutes/months |
| Libraries       | lots    | little         |
| Debugging       | "easy"  | an art         |
| Cost of mistake | low     | VERY HIGH!!!!  |

### Let's start..."hello world"

```
assign result[31:0]=input0[31:0]+input1[31:0];
```



## What's missing

- 1. Control code
- 2. Host/Accelerator Hardware interfaces
- 3. Test environment
- 4. Synthesis scripts (non trivial)
- 5. Drivers (software)



How many man-years is that?

## **OH! (Open Hardware Library)**

- Verilog
- MIT license
- ~15K lines of code so far
- Best practices based on 20 years of chip design
- Silicon proven building blocks
- Small: FIFOs, synchronizers, muxes, arbiters, etc
- Big: chip to chip link, mailboxes, memory translators
- http://github.com/parallela/oh
- Yes, we do accept pull requests!



## **Accelerator Case Study**

- 1. Coding: 2hrs
- 2. **Simulate/Debug:** 2hrs
- 3. **Synthesize:** 2hrs
- 4. Debug 1st "Bus Error": 1hr
- 5. **Debug 2nd "Bus Error":** 2hrs



9hrs to put together something that takes 30 seconds in C!

#### Files Used

REPO: github.com/parallella/oh/accelerator

- 1. **Code:** hdl/{accelerator.v,axi\_accelerator.v}
- 2. **Testbench:** dv/{dut\_axi\_accelerator.v,build.sh,run.sh}
- 3. **Synthesis:** fpga/{package.tcl, run.tcl}
- 4. **Drivers:** sw/{driver.c,test.c}

#### How to Run

#### **VERIFY:**

```
$ cd accelerator/dv
$ ./build.sh  # build
$ ./run.sh tests/hello.emf  # load data
$ gtkwave waveform.vcd  # view waveform
$ cd ../fpga
$ ./build.sh  # build bitstream
```

## **Conclusions**

- 1. Yes, today you CAN build an FPGA accelerator in 15 min
- 2. Anything new is still 100x more expensive to develop than SW
- 3. Develop for FPGAs, but keep ASIC option open

...to make FPGA universally viable we need to catch up with >>\$trillion investment in software infrastructure

Email: andreas@adapteva.com

**Twitter:** @adapteva