Practice Prelim 1, STAT 611, Spring 2021

In the solutions, we use the notation:

$$\widehat{m}_1 := \sum_{i=1}^n X_i, \qquad \widehat{m}_2 := \sum_{i=1}^n X_i^2.$$

- 1. Let X_1, \ldots, X_n be iid random variables from a half normal distribution $HN(\mu, \sigma^2)$. The PDF is $f_X(x) = \sqrt{2/(\pi\sigma^2)} \exp\{-(x-\mu)^2/(2\sigma^2)\}$ for $x > \mu$ and $f_X(x) = 0$ for $x \le \mu$.
 - (a) Find a sufficient statistic for $(\mu, \sigma^2)^T$. Briefly justify your answer. $(X_1, \ldots, X_n)^T$ itself is a sufficient statistic by the definition. To be more interesting,

$$f(X) = \left(\frac{2}{\pi\sigma^2}\right)^{n/2} e^{-\frac{\sum_{i=1}^n (X-\mu)^2}{-2\sigma^2}} I(X_{(1)} > \mu)$$
$$= \left(\frac{2}{\pi\sigma^2}\right)^{n/2} e^{-\frac{\sum_{i=1}^n X_i^2 + n\mu^2 - 2\mu \sum_{i=1}^n X_i}{-2\sigma^2}} I(X_{(1)} > \mu).$$

 $(\widehat{m}_2, \widehat{m}_1, X_{(1)})^T$ is a three dimensional sufficient statistic.

(b) Find a minimum sufficient statistic $(\mu, \sigma^2)^T$. Briefly justify your answer. $(\widehat{m}_2, \widehat{m}_1, X_{(1)})^T$ is also a minimum sufficient statistic. Because

$$\left(\frac{2}{\pi\sigma^2}\right)^{n/2} e^{-\frac{\sum_{i=1}^n X_i^2 + n\mu^2 - 2\mu \sum_{i=1}^n X_i}{-2\sigma^2}} I(X_{(1)} > \mu) > 0$$

$$\iff \left(\frac{2}{\pi\sigma^2}\right)^{n/2} e^{-\frac{\sum_{i=1}^n Y_i^2 + n\mu^2 - 2\mu \sum_{i=1}^n Y_i}{-2\sigma^2}} I(Y_{(1)} > \mu) > 0$$

implies $X_{(1)} = Y_{(1)}$.

$$\left(\frac{2}{\pi\sigma^2}\right)^{n/2}e^{-\frac{\sum_{i=1}^nX_i^2+n\mu^2-2\mu\sum_{i=1}^nX_i}{-2\sigma^2}}I(X_{(1)}>\mu)/3\left(\frac{2}{\pi\sigma^2}\right)^{n/2}e^{-\frac{\sum_{i=1}^nY_i^2+n\mu^2-2\mu\sum_{i=1}^nY_i}{-2\sigma^2}}I(Y_{(1)}>\mu)$$

free of μ, σ implies $\sum_{i=1}^n X_i = \sum_{i=1}^n Y_i$, $\sum_{i=1}^n X_i^2 = \sum_{i=1}^n Y_i^2$.

(c) Supposed μ is known, find a complete statistic and the UMVUE for σ^2 . Justify your answer. $\sum_{i=1}^{n} (X_i - \mu)^2$ is a complete minimum sufficient statistic since this is now within the exponential family.

Also,

$$\mathbb{E}_{\sigma^2}(X_i - \mu)^2 = \int_{\mu}^{\infty} (x - \mu)^2 \sqrt{\frac{2}{\pi \sigma^2}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right) dx$$
$$= \int_{0}^{\infty} z^2 \sqrt{\frac{2}{\pi \sigma^2}} \exp\left(-\frac{z^2}{2\sigma^2}\right) dz$$
$$= \int_{-\infty}^{\infty} z^2 \sqrt{\frac{1}{2\pi \sigma^2}} \exp\left(-\frac{z^2}{2\sigma^2}\right) dz$$
$$= \sigma^2.$$

So the UMVUE for σ^2 is $\frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$.

- 2. Let X_1, \ldots, X_n be iid random variables from the Pareto(a, b) distribution. The PDF is $f_X(x) = ba^b x^{-b-1}$ for x > a and $f_X(x) = 0$ for $x \le a$. The parameters a, b satisfy a > 0, b > 2.
 - (a) Find the moment estimator for a, b. Provide brief derivation.

$$E(X) = \frac{ab}{b-1}, \qquad E(X^2) = \frac{ba^2}{(b-1)^2(b-2)} + \frac{a^2b^2}{(b-1)^2} = \frac{ba^2}{b-2}$$

Thus, solve

$$\widehat{m}_1 = \frac{ab}{b-1}, \quad \widehat{m}_2 = \frac{ba^2}{b-2}.$$

We obtain

$$\widehat{a} = \frac{\widehat{m}_1 \sqrt{\widehat{m}_2}}{\sqrt{\widehat{m}_2 - \widehat{m}_1^2 + \sqrt{\widehat{m}_2}}}, \qquad \widehat{b} = 1 + \sqrt{\frac{\widehat{m}_2}{\widehat{m}_2 - \widehat{m}_1^2}}.$$

(b) Find the MLE for a, b. Provide brief derivation.

$$l = n\log(b) + nb\log(a) - (b+1)\sum_{i=1}^{n}\log(x_i) + \sum_{i=1}^{n}\log I(x_i > a)$$

Hence, $\hat{a} = x_{(1)}$. From

$$l'_b = n/b + n\log(a) - \sum_{i=1}^n \log(x_i) = 0,$$

we obtain $\hat{b} = n/\{\sum_{i=1}^{n} \log(x_i) - n \log(x_{(1)})\}$. Obviously $l_b'' < 0$. So this is MLE.

3. Let X_1, \dots, X_n be independent random variables, and $X_i \sim \text{Exponential}(scale = \lambda)$, i.e., $f(x) = \frac{1}{\lambda} \exp(-x/\lambda)$, for $x \geq 0$

(a) Find a MLE for λ . The log-likelihood function is

$$\log L(\lambda; \mathbf{x}) = -n \log \lambda - \frac{1}{\lambda} \sum_{i=1}^{n} x_i.$$

Setting the score function to 0 gives:

$$\frac{\partial}{\partial \lambda} \log L(\lambda; \mathbf{x}) = -\frac{n}{\lambda} + \frac{1}{\lambda^2} \sum_{i=1}^{n} x_i = 0. \Rightarrow \hat{\lambda} = \bar{x}.$$

Note that

$$\frac{\partial^2}{\partial \lambda^2} \log L(\lambda; \mathbf{x}) = \frac{n}{\lambda^2} - \frac{2}{\lambda^3} \sum_{i=1}^n x_i,$$

which is equal to $-n/(\bar{x})^2 < 0$ at $\lambda = \hat{\lambda}$. This means the log-likelihood function has a local maximum at $\hat{\lambda}$. Since $\hat{\lambda} = \bar{x}$ is the unique stationary point, it is also the global argmax. That is $\hat{\lambda} = \bar{x}$ is the MLE for λ .

- (b) Show that the MLE is an unbiased estimator for λ . Easy to see $\mathbb{E}_{\lambda}(X_i) = \lambda$ for all i, then the unbiasedness follows.
- (c) Calculate the mean squared error of the MLE. Since the MLE is unbiased, we have

$$MSE_{\lambda}(\bar{X}) = Var_{\lambda}(\bar{X}) = \frac{\lambda^2}{n}.$$

(d) Find the Fisher information $I(\lambda)$ for n observations. From the log-likelihood function, we have

$$I(\lambda) = -\mathbb{E}_{\lambda} \left(\frac{\partial^2}{\partial \lambda^2} \log L(\lambda; \mathbf{x}) \right)$$
$$= -\frac{n}{\lambda^2} + \frac{2}{\lambda^3} \mathbb{E}_{\lambda} \left(\sum_{i=1}^n X_i \right) = \frac{n}{\lambda^2}.$$

(e) Find a sufficient statistics for λ .

We can write the joint pdf in the form of a one-parameter exponential family:

$$\exp\left(-n\log\lambda - \frac{1}{\lambda}\sum_{i=1}^{n}x_i\right).$$

So the statistic \bar{X} is sufficient.

(f) Find the MLE for $P(X_1 < 1)$.

Note that $P(X_1 < 1) = 1 - e^{-1/\lambda}$. So by the invariance property of MLE, the MLE for $P(X_1 < 1)$ is

$$1 - \exp\left(-\frac{1}{\bar{X}}\right)$$
.