3.1

Fix m > 0 and g > 0. Consider $E_{\rm I}(x, v) := \frac{1}{2} m v^2 + g x$ for $(x, v) \in \mathbb{R}^2$.

- In the x-v plane, sketch the level curves of $E_{\rm I}$.
- If $E_{\mathbf{I}}(x(t), v(t))$ is constant and $\dot{x} = v$, what is \dot{v} ?
- Sketch x and v as functions of t.
- Compute $F = m\ddot{x}$.

3.2

Same for $E_{II}(x, v) := \frac{1}{2}mv^2 + \frac{1}{2}kx^2$, where k > 0.

3.3

Suppose $F = m\ddot{x} \stackrel{!}{=} -kx - \gamma v$, where k > 0 and $\gamma > 0$. Sketch the orbits in phase space.

3.4

Given the vectorfield $x \mapsto Ax$ in \mathbb{R}^2 , suggest a plausible matrix A.

