Метод «идеальной» точки

Метод основан на идее целевого программирования, состоящей в нахождении на множестве эффективных векторных оценок $\mathbf{F}_{\mathrm{P}}(\mathbf{X})$ многокритериальной аналитической задачи решения, максимально приближенного к некоторой недостижимой «идеальной» цели \mathbf{F}^g .

Этап 1. Построение идеальной точки. Решаем m задач:

$$\begin{cases} f_{1}(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}} \implies f_{1}(\mathbf{x}^{g}) = f_{1}^{g}, \\ \dots \\ f_{m}(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}} \implies f_{m}(\mathbf{x}^{g}) = f_{m}^{g}. \end{cases}$$

$$\Rightarrow$$
 $\mathbf{F}^g = \left[f_1^g, ..., f_m^g \right]^T$ - «идеальная» точка.

Этап 2. Формируем функцию, характеризующую метрику критериального пространства, например, в виде:

$$\rho\left(\mathbf{F}(\mathbf{x}), \mathbf{F}^{g}\right) = \sum_{i=1}^{m} \left(f_{i}(\mathbf{x}) - f_{i}^{g}\right)^{2}$$

Этап 3. Решаем задачу:

$$\rho(\mathbf{F}(\mathbf{x}), \mathbf{F}^g) \rightarrow \min_{\mathbf{x} \in \mathbf{X}} \Rightarrow \mathbf{F}(\mathbf{x}^*) = \mathbf{F}^*$$

Решение $\mathbf{F}(\mathbf{x}^*) = \mathbf{F}^*$ будем считать оптимальным решением исходной многокритериальной аналитической задачи, максимально приближенным к идеальной цели

$$\mathbf{F}^g = \left[f_1^g, \dots, f_m^g \right]^T \quad .$$

$$f_{2}$$

$$f_{3}$$

$$f_{4}$$

$$f_{4}$$

$$f_{5}$$

$$f_{6}$$

$$f_{7}$$

$$f_{1}$$

$$f_{2}$$

$$f_{3}$$

$$f_{4}$$

$$f_{4}$$

$$f_{5}$$

$$f_{7}$$

$$f_{7}$$

$$f_{8}$$

$$f_{1}$$

$$f_{1}$$

$$f_{2}$$

$$f_{3}$$

$$f_{4}$$

$$f_{4}$$

$$f_{5}$$

$$f_{4}$$

$$f_{5}$$

$$f_{7}$$

Пример. Дана многокритериальная аналитическая задача:

$$f_1(\mathbf{x}) = x_1 + x_2 \to \max_{\mathbf{x} \in \mathbf{X}}$$

$$f_2(\mathbf{x}) = -3x_1 + x_2 \to \max_{\mathbf{x} \in \mathbf{X}}$$

$$f_3(\mathbf{x}) = x_1 - 3x_2 \to \max_{\mathbf{x} \in \mathbf{X}}$$

где множество Х определяется системой ограничений:

$$\mathbf{X}: \begin{cases} x_1 + x_2 \ge 46, \\ x_1 - 2x_2 \le 23, \\ -3x_1 + 2x_2 \le 46, \\ 0 \le x_1 \le 92, \\ 0 \le x_2 \le 69. \end{cases}$$

Требуется решить поставленную задачу методом «идеальной» точки.

Геометрическая интерпретация

$$) \approx 38196.2 > \rho(\mathbf{x}^{(1)})$$

Этап 1. Построение идеальной точки. Решаем последовательно следующие задачи.

1.
$$f_1(\mathbf{x}) = x_1 + x_2 \longrightarrow \max_{\mathbf{x} \in \mathbf{X}}$$
.

Оптимальное решение достигается в вершине D области допустимых решений $\mathbf{X} = ABCDE_{:} \mathbf{x}^{1g} = [92; 69]^T$, $f_1(\mathbf{x}^{1g}) = f_1^g = 161$.

$$2. \quad f_2(\mathbf{x}) = -3x_1 + x_2 \longrightarrow \max_{\mathbf{x} \in \mathbf{X}}$$

Оптимальное решение достигается в вершине В :

$$\mathbf{x}^{2g} = [9.2; 36.8]^T$$
 $f_2(\mathbf{x}^{2g}) = f_2^g = 9.2$

3.
$$f_3(\mathbf{x}) = x_1 - 3x_2 \rightarrow \max_{\mathbf{x} \in \mathbf{X}}$$

Оптимальное решение достигается в вершине A :
$$\mathbf{x}^{3g} = \begin{bmatrix} 38.33; 7.67 \end{bmatrix}^T$$
 , $f_3(\mathbf{x}^{3g}) = f_3^g = 15.33$

Таким образом, идеальная точка: $\mathbf{F}^g = [161; 9.2; 15.33]^T$.

Этап 2. Сформируем функцию метрики:

$$\rho(\mathbf{F}(\mathbf{x}), \mathbf{F}^g) = (x_1 + x_2 - 161)^2 + (-3x_1 + x_2 - 9.2)^2 + (x_1 - 3x_2 - 15.33)^2$$

Этап 3. Решаем задачу:

$$\rho(\mathbf{F}(\mathbf{x}), \mathbf{F}^g) \to \min_{\mathbf{x} \in \mathbf{X}}$$
 (1)

Это задача нелинейного программирования, в которой целевая функция - нелинейная, а система ограничений, задающая область $\mathbf{X} = \mathrm{ABCDE}$, - линейная. Для решения задач данного типа целесообразно применять метод Франк-Вульфа.

Метод Франк-Вульфа

Шаг 0. Задать k = 0 - номер итерации .

Задать \mathbf{x}^0 - начальное приближение.

Вычислить градиент целевой функции $hoig(\mathbf{F}(\mathbf{x}),\mathbf{F}^gig)$:

$$\nabla \rho(\mathbf{x}) = \left[\frac{\partial \rho(\mathbf{x})}{\partial x_1}; \frac{\partial \rho(\mathbf{x})}{\partial x_2} \right]^T$$

$$\frac{\partial \rho(\mathbf{x})}{\partial x_1} = 22x_1 - 10x_2 - 297.47 \quad ; \quad \frac{\partial \rho(\mathbf{x})}{\partial x_2} = -10x_1 + 22x_2 - 248.49 \quad (2)$$

Выполним одну итерацию метода Франк-Вульфа.

Итерация 1. Итерация включает в себя следующие основные шаги.

Шаг 1. Сформировать вспомогательную функцию вида:

$$\tilde{\rho}^{(k+1)}(\mathbf{x}) = \frac{\partial \rho(\mathbf{x}^{(k)})}{\partial x_1} x_1 + \frac{\partial \rho(\mathbf{x}^{(k)})}{\partial x_2} x_2$$

С учетом 2):

$$\tilde{\rho}^{(1)}(\mathbf{x}) = 760.53x_1 + 73.59x_2 \cdot$$

Шаг 2. Решить задачу линейного программирования:

$$\tilde{\rho}^{(1)}(\mathbf{x}) = 760.53x_1 + 73.59x_2 \rightarrow \min_{\mathbf{x} \in \mathbf{X}} \Rightarrow \overline{\mathbf{x}}^{(1)} \quad . \tag{3}$$

Оптимальное решение $\overline{\mathbf{x}}^{(1)}$ задачи (3) достигается в вершине B(9.2; 36.8) области $\mathbf{X} = ABCDE$: $\overline{\mathbf{x}}^{(1)} = \begin{bmatrix} 9.2; 36.8 \end{bmatrix}^T$.

Шаг 3. Найти приближение к решению задачи (1) в виде:

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} + \lambda_0 (\overline{\mathbf{x}}^{(1)} - \mathbf{x}^{(0)})$$
 , (4)

где λ_0 определяется из решения задачи:

$$\rho\left(\mathbf{x}^{(1)}(\lambda)\right) \to \min_{0 \le \lambda \le 1} \quad . \quad (5)$$

Целевая функция в задаче (5) зависит только от параметра λ ,

т.к. в (5) все параметры, кроме λ , фиксированы и известны.

Интервал $0 \le \lambda \le 1$ означает, что оптимальное значение функции $\rho(\mathbf{x})$ ищется на отрезке $\left[\mathbf{x}^{(0)}, \overline{\mathbf{x}}^{(1)}\right]$.

Подставляя числовые значения $\mathbf{x}^{(0)}, \overline{\mathbf{x}}^{(1)}$ в (4), получим:

$$\mathbf{x}^{(1)} = \begin{bmatrix} (69 - 59.8\lambda) \\ (46 - 9.2\lambda) \end{bmatrix}$$

$$\rho(\mathbf{x}^{(1)}) = 34765.88\lambda^2 - 46157.01\lambda + 38196.15$$
 (6)

Для определения минимума функции (6) вычисляем производную по λ и приравниваем ее нулю:

$$\frac{d\rho}{d\lambda} = 69531.76\lambda - 46157.01 = 0$$

Получаем: $\lambda_0 \simeq 0.664$.

Оптимальное значение: $\mathbf{x}^{(1)} \simeq \begin{bmatrix} 29.30;\ 39.89 \end{bmatrix}^T; \quad \rho \Big(\mathbf{x}^{(1)}\Big) \simeq 22876.1$. Для сравнения: $\rho \Big(\mathbf{x}^{(0)}\Big) \simeq 38196.2 > \rho \Big(\mathbf{x}^{(1)}\Big)$.

Т.е. в результате выполнения итерации 1 значение целевой функции $ho(\mathbf{x})$ уменьшилось (см. геометрич. интерпретацию). Далее полагаем k=k+1 и переходим к итерации 2.