1

a)
$$p \rightarrow (q \rightarrow r) = \neg p \land \neg q \land r$$

р	q	r	¬р	¬q	$p \to (q \to r)$
Т	T	T	F	F	Т
Т	T	F	F	F	F
Т	F	T	F	T	Т
T	F	F	F	T	Т
F	T	T	T	F	Т
F	T	F	T	F	Т
F	F	Т	Т	T	Т
F	F	F	T	T	Т

b) $(p \rightarrow q) \rightarrow r = \neg(\neg p \land q) \land r = (p \lor \neg q) \land r$

р	q	r	¬q	$(p \to q) \to r$
Т	Т	T	F	Т
Т	Т	F	F	F
Т	F	T	Т	Т
Т	F	F	Т	Т
F	Т	T	F	Т
F	Т	F	F	F
F	F	T	Т	Т
F	F	F	Т	F

c) $(p \land q) \rightarrow r = (\neg p \lor \neg q) \land r$

р	q	r	¬р	¬q	$(p \to q) \to r$
Т	T	T	F	F	Т
Т	T	F	F	F	F
Т	F	T	F	T	Т
Т	F	F	F	T	F
F	T	T	T	F	Т
F	T	F	T	F	F
F	F	Т	T	Т	Т
F	F	F	T	T	Т

d) $\forall x (x \rightarrow (p \rightarrow (q \rightarrow r))) = \forall x (\neg x \land \neg p \land \neg q \land r)$

р	q	r	¬р	¬q	$\forall x \Big(x \to \Big(p \to (q \to r) \Big) \Big)$
Т	Т	T	F	F	Т
Т	Т	F	F	F	F
Т	F	T	F	Т	Т
Т	F	F	F	Т	Т
F	Т	T	Т	F	Т
F	Т	F	Т	F	Т
F	F	T	Т	Т	Т
F	F	F	Т	Т	Т

$$e) \ \left(\exists x(x) \right) \rightarrow \left(p \rightarrow (q \rightarrow r) \right) = \mathit{True} \rightarrow \left(p \rightarrow (q \rightarrow r) \right) = \left(p \rightarrow (q \rightarrow r) \right) \quad \because \left(\exists x(x) \right) = \mathit{Ture}$$

р	q	r	¬р	¬q	$p \to (q \to r)$
Т	T	Т	F	F	Т
Т	T	F	F	F	F
Т	F	T	F	Т	Т
Т	F	F	F	Т	Т
F	T	T	T	F	Т
F	Т	F	T	F	Т
F	F	Т	T	T	Т
F	F	F	T	T	Т

f)
$$p \to (q \to (r \to \forall x(x))) = p \to (q \to (r \to False)) = \neg p \land \neg q \land (\neg r \land False)$$

р	q	r	¬р	¬q	¬r	$p \to \left(q \to \left(r \to \forall x(x)\right)\right)$
Т	Т	T	F	F	F	F
Т	Т	F	F	F	Т	Т
Т	F	Т	F	T	F	Т
Т	F	F	F	T	Т	Т
F	Т	Т	T	F	F	Т
F	Т	F	Т	F	Т	Т
F	F	T	T	Т	F	Т
F	F	F	Т	Т	Т	Т

g) $p \rightarrow (q \rightarrow \forall x(r \rightarrow x)) = \neg p \land \neg q \land \forall x(r \rightarrow x)$

р	q	r	¬р	¬q	$\forall x(r \rightarrow x)$	$p \to \Big(q \to \Big(r \to \forall x(x)\Big)\Big)$
Т	Т	Т	F	F	F	F
Т	Т	F	F	F	Т	Т
Т	F	T	F	T	F	Т
Т	F	F	F	T	Т	Т
F	Т	Т	T	F	F	Т
F	Т	F	T	F	Т	Т
F	F	Т	T	T	F	Т
F	F	F	T	T	Т	Т

h) $p \to \forall x (q \to (r \to x)) = \neg p \land \forall x (q \to (r \to x))$

р	q	r	¬р	$\forall x \big(q \to (r \to x) \big)$	$p \to \forall x (q \to (r \to x))$
Т	Т	Т	F	F	Т
Т	Т	F	F	Т	Т
Т	F	Т	F	Т	Т
Т	F	F	F	Т	Т
F	Т	Т	Т	F	F
F	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т
F	F	F	Т	Т	Т

- a) When S_{13} is a true, $S_1 \sim S_{12}$ need to be a true but that's not possible. And for n>1, when the $S_{13} \sim S_{n+1}$ is false, S_n cannot be a true because all of $S_1 \sim S_n$ cannot be a true. Only S_1 can be a true. Or, every statements are false.
- b) S_{13} is true because true statement can't be more than 13 which is total number of all statements. Since S_{13} is true, S_1 cannot be true because there is already one true statement. And S_{12} is true because there are only 12 statements except S_1 which cannot be a true. We can keep doing this until S_7 , so $S_{13} \sim S_7$ is true and other statements are false.
- c) When n is the biggest number that S_n is true, even if the every sentences beneath S_n are true, S_n cannot be true. Which means all sentences are false.
- d) Two cases are available. Only S_1 can be true and other statements are false, or every statements are false.

$$\neg S_2 \lor \neg S_3$$

e) Over half of statements from the top is true and rest are false.

$$\neg S_1 \lor S_2 \lor S_3$$

f) Every statements are false.

$$\neg S_1 \lor \neg S_2 \lor \neg S_3$$