UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MECÂNICA CAMPUS CURITIBA

FLÁVIO SIDNEI DOS SANTOS NETO GUSTAVO CARPEJANI RAIMUNDO JÚLIO TINTI DE ANDRADE LUCAS DE BRITO MOLETTA

PROJETO INTEGRADOR II - INFORMAÇÕES DE ENERGIA DO COMPRESSOR

1 PROBLEMA

O trabalho para a disciplina Projeto Integrador II consiste em um projeto que une os conhecimentos dos alunos adquiridos ao longo do curso. Dentro desse contexto, o Professor Celso Salamon expôs que o compressor de ar da universidade não está funcionando como deveria, gastando mais energia do que necessário e até entrando em manutenção de 1600 horas mais cedo do que o esperado. Com isso o presente time escolheu o monitoramento das informações de energia do compressor para conseguir compreender o que está ocorrendo de errado em seu funcionamento.

Esse problema está extremamente ligado com o uso de dados para manutenção e estudo do mau funcionamento de uma máquina. Assim sendo, esse trabalho se engloba no âmbito de indústria 4.0 e tem a capacidade de colocar as informações de uma máquina na nuvem para que haja o monitoramento e o estudo dos dados que estão sendo coletados.

Portanto, após sintetizar o problema, a equipe levantou os requisitos do projeto com o professor, para entregar uma solução mais adequada. Com isso, os requisitos são:

- Sinalização visual para comunicação de problemas.
- Enviar email para os professores responsáveis quando houver problema.
- Análise dos dados de tensão e corrente do compressor

2 SOLUÇÃO PROPOSTA

Dessa forma, compreendendo o problema e os requisitos do cliente, a solução desenvolvida consiste em adquirir os dados do compressor, transmiti-los para um microcontrolador, que terá um script NodeRed fazendo o armazenamento dessas informações em um banco de dados MySQL. Além disso, se houver alguma anomalia no funcionamento do compressor, o NodeRed irá enviar um email para os professores responsáveis ao mesmo tempo que irá mandar o sinal para que a sinalização visual seja ativada. Ainda,

haverá uma tela gráfica que irá ler o banco de dados, para mostrar as informações temporais em um dashboard. Com isso, essa solução irá ajudar a compreender quais são os problemas que estão ocorrendo no compressor da universidade.

Anteriormente, existiam alguns pontos em aberto. O primeiro deles era em relação ao dashboard, a solução escolhida foi usar um serviço cloud para hospedar o site com os dados, assim, qualquer um com esse endereço conseguirá observar os valores. O segundo ponto era em relação a aquisição de dados, isso porque existe um controlador nesse compressor que pode dar as informações para o grupo, porém foi utilizado um sensor PZEM-004T-100A para realizar as medições de corrente e tensão.

Com isso, a equipe tem como objetivo não gastar mais de 1000 reais ao longo do semestre, visto que, nesse cenário, o gasto seria com um microcontrolador, um sinal luminoso e os sensores de tensão e corrente. Além disso, estaremos utilizando o Azure para estudantes, que disponibiliza 100 dólares para serem gastos em suas soluções, ou seja, o gasto com nuvem será nulo.

Componente	Preço
Placa Raspberry Pl 3	R\$ 650,00
Sinal Luminoso	R\$ 5,00
PZEM-004T-100A	R\$ 100,00
ESP 32	R\$ 70,00

3 PLANEJAMENTO

Com relação aos prazos, a equipe planejou coletar os dados de tensão e corrente nas próximas três semanas, dedicando duas semanas para trabalhar com o banco de dados. Em seguida, será montado o esquema para envio de e-mails e o Dashboard, com a análise dos dados nas últimas semanas de

trabalho. Para uma visão mais detalhada, o planejamento completo pode ser conferido na imagem abaixo.

A seguinte imagem descreve o planejamento da equipe para coletar dados de tensão e corrente, trabalhar com o banco de dados, montar o esquema para envio de e-mails, além de realizar a análise de dados e criação do Dashboard nas próximas semanas:

	Atividades									(Sema	na				
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	Definição	х	х	х												
2	Aquisição de dados				х	х	х									
3	Design do Banco de dados					х	х	х								
4	Coleta de dados							х	х	х	Х	х				
5	Comunicação via Email								х	х	Х					
6	Design Dashboard								х	х	Х					
7	Análise dos dados											х	Х	х		
8	Montagem do sistema de alarme visual												Х	х	Х	
9	Últimos ajustes													х	х	
10	Entrega															х

4 RISCOS

A tabela a seguir apresenta uma lista de possíveis riscos e suas respectivas estratégias de mitigação em um projeto. Entre os riscos listados estão a falta de internet, problemas de armazenamento e a não aquisição dos dados do compressor diretamente. Cada risco tem uma estratégia de mitigação específica, como banco de dados local no microcontrolador, compra de SD com maior capacidade e uso de sensores externos. Essas estratégias são cruciais para garantir que o projeto seja bem-sucedido e que os dados coletados sejam confiáveis e precisos. A tabela fornece uma visão geral dos riscos potenciais e suas estratégias de mitigação, ajudando a orientar o planejamento e a execução do projeto.

Risco	Mitigação					
Falta de internet	Uso de banco de dados local no Raspberry PI.					
Armazenamento	Compra de SD com maior capacidade					
Não aquisição dos dados do compressor diretamente	Uso de sensores externos					

5 SOLUÇÃO IMPLEMENTADA

A solução implementada para o problema do compressor de ar da universidade é um sistema de monitoramento e alerta baseado em tecnologias de IoT e Indústria 4.0.

Iniciando pela coleta de dados, utilizamos um sensor PZEM-004T-100A V3.0 em conjunto com uma Raspberry Pi 3 para adquirir os dados do compressor. As informações são adquiridas via protocolo MODBUS-RTU e são processadas usando a plataforma Node-RED instalada na Raspberry. Esses dados vêm em um vetor que disponibiliza diversas informações, mencionadas em seu datasheet, tais como corrente, tensão, fator de potência, frequência, potência e energia, porém, para o projeto, serão utilizadas todas com exceção da frequência.

Os dados ingeridos são armazenados em dois bancos de dados MySQL, um local como backup, e um hospedado na plataforma em nuvem do Azure, que será a fonte usada pela plataforma Streamlit para construir os gráficos.

Durante a ingestão dos dados pelo Node-RED, as medições passam por uma comparação para definir o estado atual em que o compressor se encontra, entre ligado, desligado e em stand-by. E dessa forma, quando uma anomalia é detectada, o sistema dispara alertas visuais e por e-mail. O alerta visual é processado pelo ESP32 quando ele recebe uma mensagem enviada pelo Node-RED através do protocolo MQTT, e a lógica embutida no código do ESP32 define como ele deve se comportar baseado nas especificidades de cada mensagem recebida.

Para a visualização dos dados, criamos uma página online utilizando o Streamlit. Nesta página, é possível acessar os gráficos para análise do funcionamento do compressor, além de informações de quanto tempo o compressor passou nos três modos de operação.

A imagem a seguir ilustra o fluxo de informação desde o sensor até a sinalização e página online.

5.1 AQUISIÇÃO DE DADOS

Para realizar a coleta de dados, foi necessário elaborar um sistema que fosse capaz de coletar e armazenar os dados do compressor, para então realizar todo o processo de implementação na nuvem e trabalhar os conceitos de indústria 4.0, o modelo elaborado segue o seguinte esquema elétrico, onde foi monitorada uma das tensões de fase do disjuntor que alimenta o compressor.

Essa interface será feita pela plataforma Node-RED, rodando na Raspberry, utilizando bibliotecas específicas para leituras via MODBUS-RTU. O seguinte fluxo foi configurado dentro do Node-RED.

No qual os parâmetros necessários para sua configuração serão apresentados no próximo capítulo.

5.1.1 ELEMENTO SENSOR

Para a aquisição dos dados elétricos do compressor, foi utilizado o sensor Sensor PZEM-004T-100A V3.0 essa placa é capaz de medir as seguintes propriedades do sistema:

- Corrente (0 100A)
- Tensão (80-260V)
- Potência ativa (0-23kW)
- Fator de potência (0.00)
- Frequência (45-65Hz)

As leituras do sensor são enviadas para o microprocessador através do protocolo de comunicação MODBUS-RTU, os parâmetros de comunicação do sensor estão ilustrados a seguir:

- Baud rate 9600
- 8 bits de dados
- 1 bit de parada
- Sem paridade

Esses parâmetros de comunicação são fornecidos no datasheet do fornecedor e serão utilizados no microprocessador para realizar a leitura dos dados.

5.1.2 ELEMENTO PROCESSADOR

O sensor necessita de uma interface que consiga ler as informações que ele disponibiliza, assim utilizamos a Raspberry Pi 3 como nosso microprocessador para trabalhar em conjunto com esse sensor. A aquisição dos dados será feita pela plataforma Node-RED, que nos permite criar fluxos de trabalho para processar e analisar os dados coletados pelo sensor.

O Node-RED é uma plataforma de programação visual baseada em fluxo que permite criar aplicações de forma intuitiva, conectando blocos de código chamados de "nós" para definir a lógica de funcionamento do sistema. Ele é amplamente utilizado em projetos de automação, loT e integração de sistemas.

Usando a biblioteca Modbus no Node-RED, é possível configurar a comunicação com o Sensor PZEM-004T-100A V3.0 para ler os dados elétricos do compressor, conforme imagem a seguir.

≭ Serial port	/dev/ttyUSB0
Serial type	RTU-BUFFERD 🗸
Baud rate	9600 🕶
Data Bits	8 •
Stop Bits	1 •
Parity	None 🗸

Dessa forma, utilizando-se desse nó, é possível receber os dados de corrente, tensão, fator de potência, frequência, potência e energia que o sensor lê do sistema em que está instalado. Porém, no caso desse projeto, utilizaremos todas as informações com exceção da frequência.

5.2 ARMAZENAMENTO DE DADOS

Dessa forma, coleta de dados é a primeira etapa do processo, em seguida a essa aquisição, é utilizado o Node-RED para armazená-los utilizando bancos de dados MySQL em diferentes localidades: as informações adquiridas irão ser armazenadas em um banco de dados local na própria Raspberry e em um banco de dados na nuvem.

O MySQL, é um sistema de gerenciamento de banco de dados relacional, ele permite que os dados sejam estruturados em tabelas, facilitando sua posterior consulta e análise. Logo, com a ajuda do Node-RED, os dados são formatados e inseridos diretamente em nosso banco de dados MySQL, permitindo um fluxo contínuo de dados do sensor para o banco de dados.

Para o serviço de nuvem, estaremos utilizando o serviço Azure para nosso sistema de armazenamento de dados. Adicionalmente, criamos um sistema de backup local, que recebe os dados da mesma forma que o banco em Azure, já que em situações de falta de internet, ele continua a ser preenchido, de forma a amenizar potenciais perdas de informações. Como é visto na imagem abaixo, as mesmas informações são enviadas para os dois bancos de dados, porém com a ressalva de que se houver falta de internet, o banco de dados que está na nuvem não será populado.

A seguir temos um exemplo da estrutura dos dados dentro do MySQL, a estrutura é a mesma em ambos os bancos, local e Azure.

5.3 PROCESSAMENTO DE DADOS

Após a coleta e o armazenamento, chegamos à fase de processamento de dados, nessa etapa, o Node-RED, rodando na Raspberry, já está programado para identificar anomalias e o modo de operação baseando-se nas características normais de funcionamento do compressor.

Para o modo de operação, em toda leitura do sensor, o Node-RED faz uma estrutura condicional que determina se o compressor está desligado, ligado ou em stand-by. Dessa forma, ao determinar o modo de operação, ele publica essa informação em um tópico no protocolo MQTT, que está sendo

ouvido por um ESP32 em um ambiente fora da sala do compressor. Essa decisão é tomada no nó condSinal mostrado abaixo.

Na medida em que o ESP32 ouve essa informação, ela determina qual led será ativada. Deixando fácil identificar qual o modo de operação o compressor está.

Além do modo de operação, é possível identificar anomalias, que nesse projeto é a falta de dados sendo inseridos no banco da nuvem no período de 2 horas, o que caracterizaria a chave do compressor ter caído ou a internet não estar funcionando. Assim, ao identificar essa anomalia no condEmail da imagem acima, essa informação também é publicada no tópico, e o ESP32 ao ouvir, acende uma luz de emergência para avisar que há algum problema.

Paralelamente a isso, a plataforma também é responsável por enviar um alerta por e-mail aos professores responsáveis, esse alerta contém informações detalhadas sobre a anomalia detectada.

Esses dois sistemas de alerta funcionam em conjunto para garantir que qualquer problema com o compressor seja identificado e comunicado efetivamente.

5.3.1 SINALIZAÇÃO VISUAL

A sinalização visual é uma parte essencial de nossa solução para garantir que as informações relevantes sejam comunicadas de forma clara e

imediata. Para essa finalidade, foi configurado um dispositivo ESP32, que está localizado na sala do professor responsável.

O ESP32 é programado para ler um tópico MQTT, que é disparado pela Raspberry localizada no compressor e indica visualmente o estado de operação. Desta forma, mesmo que o professor não esteja constantemente verificando os dados do sistema na plataforma online, a sinalização visual garante que qualquer problema seja imediatamente notificado.

O ESP32 foi programado para sinalizar, através de três LEDs e uma lâmpada, o estado de operação do compressor, de acordo com a mensagem publicada no tópico MQTT. O LED azul indica que o compressor está em funcionamento, o amarelo sinaliza que o compressor está em modo de espera, uma condição de stand-by, o vermelho indica que o compressor está desligado.

Além disso, a lâmpada serve como um sinal de alarme. Quando acesa, indica que a anomalia foi detectada no sistema do compressor. Este alerta visual é acionado automaticamente pela Raspberry quando o sistema não coletou dados por 2 horas, a imagem a seguir ilustra a sinalização dos 4 modos.

A imagem a seguir mostra a caixa instalada na sala do professor.

5.4 PÁGINA ONLINE

Um dos propósitos do nosso projeto é a capacidade de visualizar e analisar os dados coletados. Para isso, desenvolvemos uma página web, disponível no link: https://pi2energymonitor.azurewebsites.net/. Esta página permite que qualquer pessoa, em qualquer lugar, tenha acesso aos dados elétricos medidos pelo nosso sistema.

A visualização de dados é feita por meio de gráficos intuitivos e fáceis de interpretar. Isso fornece aos usuários a possibilidade de realizar uma análise rápida do funcionamento do sistema, identificar padrões e potenciais anomalias.

O objetivo desta página web é permitir uma monitorização contínua e em tempo real do compressor de ar da universidade, sem a necessidade de estar fisicamente presente. Além disso, proporciona aos professores responsáveis a capacidade de responder a possíveis problemas de maneira rápida e eficiente.

No site é possível filtrar os dados por data e quais dados se deseja observar, as imagens a seguir ilustram a barra de rolagem em que se pode especificar o período que se deseja analisar

É possível plotar os gráficos de Tensão, Corrente, Potência, Fator de Potência e Ângulo de fase ao longo do tempo especificado, conforme imagem a seguir.

Selecione os gráficos que deseja ver:

A imagem a seguir mostra o gráfico de tensão, no período de 2023-06-22 10:41:54 até 2023-06-23 09:07:00.

Uma das solicitações do professor Salamon, foi identificar e quantificar o tempo em que o compressor ficava em cada modo de funcionamento, essas informações foram alocadas na página conforme imagens a seguir.

Corrente Média no período

0.848 A

Fator de Potência calculado no período

0.925

Tempo desligado durante o período

17.06 Horas

Tempo ligado durante o período

0.16 Horas

Tempo em standby durante o período

0.83 Horas

Modos de operação

5.5 REPOSITÓRIO

Dessa forma, o código desenvolvido para o site no Streamlit, código do ESP32 e o JSON utilizado no Node-RED está disponível no repositório a seguir https://github.com/amiralezer/pi2/tree/main.

6 PROBLEMA ENFRENTADO

Durante o andamento do desenvolvimento do projeto, a equipe de TI da Universidade implementou uma camada de segurança na rede de internet. Assim, a partir de um momento do projeto, para utilizar a internet da sede ecoville se tornou necessário realizar a autenticação da rede.

Para a questão do ESP32, essa situação não alterou a solução, visto que o ESP32 apenas necessita da internet para conseguir ouvir o tópico MQTT, a transmissão de dados se dá internamente dentro da rede da universidade.

Para o Raspberry a afirmativa do parágrafo anterior não é verdade. Em nossa configuração, estamos utilizando um cabo de rede no Raspberry também, mas para continuar utilizando o Node-RED era necessário realizar a autenticação da rede, e essa autenticação perde a validade após 2 dias. Recomendamos que seja pedido ao setor de TI que seja criado uma sub rede que não tenha essa camada de segurança, porém se isso não for possível, a equipe implementou a solução descrita abaixo, porém não é possível garantir seu funcionamento devido a particularidade desse sistema em Raspberry onde foram customizadas inúmeras configurações, e não é claro quais interações cada uma delas pode ter tido com o comportamento de rede.

Desta forma, o gerenciador de conexão do Raspberry foi modificado, alterando o padrão 'dhcpcd' para o 'NetworkManager'. O qual se mostrou mais apto a lidar com redes que utilizam segurança WPA2 empresarial e autenticação PEAP e MSCHAPv2, como o caso da universidade. A partir disso, foi alterada a configuração de 'wpa_supplicant', sendo este uma pré configuração da rede com os parâmetros necessários e adição do certificado

de segurança para utilização da rede, disponibilizado no site da universidade, que podem ser anexados aos parâmetros de configuração para conexão à rede.

7 CONCLUSÃO

O projeto de monitoramento e alerta do compressor de ar da universidade demonstrou ser uma aplicação eficaz dos conceitos da Indústria 4.0 e Internet das Coisas (IoT) na resolução de problemas do dia-a-dia. Ao integrar sensores, microprocessadores, protocolos de comunicação e plataformas de programação visual, conseguimos estabelecer um sistema que coleta, processa e armazena dados de operação em tempo real.

Durante a implementação e monitoramento do projeto, percebeu-se uma característica peculiar do compressor: ele partia e logo desligava em um intervalo aproximado de 1 hora. Isso foi crucial para identificar um padrão que, sem um sistema de monitoramento contínuo como o que implementamos, seria difícil de detectar. Essa descoberta sublinha a importância da implementação de tecnologias de monitoramento contínuo em equipamentos industriais.

O projeto demonstrou como o uso de tecnologias pode auxiliar na identificação de padrões operacionais anormais, prevenção de falhas e consequente otimização de recursos, melhorando assim a eficiência e longevidade dos sistemas mecânicos. Além disso, a solução desenvolvida permite a continuidade da análise dos dados e, potencialmente, a detecção de novos padrões e anomalias de funcionamento.

Esta experiência nos forneceu uma visão prática da aplicação das tecnologias da Indústria 4.0, reforçando a importância de sua adoção para a evolução e sustentabilidade do setor industrial.