Analyse 1

Lucas Jung

BA1 09-2021

Table des matières

1	Fon	ctions
	1.1	Types des fonctions élémentaires
	1.2	Injectives surjectives bijectives et réciproques
	1.3	Fonctions composées
	1.4	Transformations de graphiques
2	Nor	nbres réels
	2.1	Ensembles
		2.1.1 Notations
		2.1.2 Opérations
	2.2	Nombres naturels, relatifs et rationnels
	2.3	Nombres réels
		2.3.1 Bone inférieure et supérieure
		2.3.2 Notation intervalles
		2.3.3 Minimum et maximum
3	Nor	mbres complexes
	3.1	Définitions
	3.2	Formes de nombres complexes
		3.2.1 Forme cartésienne
		3.2.2 Forme polaire trigonométrique
		3.2.3 Forme polaire exponentielle
	3.3	Opérations
		3.3.1 Multiplication
		3.3.2 Division
		3.3.3 Conjugaison
	3.4	Formule de Moivre
	3.5	Racines des nombres complexe
	3.6	Equations polynomiales complexes
		3.6.1 Quadratique
		3.6.2 Polynôme à coefficients réels
	3.7	Sous-ensemble du plan complexe
4	Suit	tes des nombres réels
	4.1	Raisonnement par récurrence
	4.2	Limite des suites

		4.2.1 Opération algébriques sur les limites						
		4.2.2 Relation d'ordre						
		4.2.3 Théorème des deux gendarmes						
		4.2.4 Suite géométrique						
		4.2.5 Critère de d'Alembert						
		4.2.6 Limites infinies						
		4.2.7 Le nombre e						
		4.2.8 Suites définies par récurrence						
	4.3	Sous-suites et suites de Cauchy						
	4.5							
	4.4							
	4.4	Limite supérieure et inférieure d'une suite bornée						
5	Séries numériques 18							
	5.1	Définitions						
	_	5.1.1 Série géométrique						
		5.1.2 Série harmonique						
		5.1.3 Convergence absolue						
	5.2	Critère de convergence						
	0.2	Cirolic de convergence						
6	Fon	Fonctions réelles 20						
	6.1	Définitions et propriétés						
	6.2	Limite d'une fonction						
		6.2.1 Caractérisation de la limite d'une fonction à partir des suites 2						
		6.2.2 Critère de Cauchy pour les fonctions						
		6.2.3 Opération sur les limites						
	6.3	Théorème des 2 gendarmes pour les fonctions						
	6.4	Limite de la composée						
	6.5	Limites à l'infini						
	6.6	Limite infinies						
	6.7	Limites à droite et à gauche						
	6.8	Fonction exponentielle et logarithmique						
		6.8.1 Exponentielle						
		6.8.2 Logarithme						
	6.9	Fonctions continues						
		6.9.1 Cauchy pour les fonctions continues						
		6.9.2 Opération algébriques sur les fonctions continues						
		6.9.3 Prolongement par continuité						
		6.9.4 Continuité sur un intervalle						
7	Cal	Calcul différentiel 26						
	7.1	Dérivabilité						
	7.2	Fonction dérivée						
	7.3	Opérations algébriques						
	7.4	Dérivée de la réciproque						
	7.5	Dérivée logarithmique						
	7.6	Fonction hyperboliques						
	7.7	Dérivée d'ordre supérieur						

	7.8	Théorème des accroissements finis	28				
		7.8.1 Les points d'extrema	28				
		7.8.2 Théorème de Rolle	28				
		7.8.3 Théorème des accroissements finis (TAF)	28				
	7.9	Règle de Bernoulli-L'Hospital	29				
		7.9.1 Règle de Bernoulli-L'Hospital	29				
	7.10	Taylor et développements limités	30				
		7.10.1 Développements limités	30				
		7.10.2 Opération algébriques	30				
	7.11	Étude fonctions	31				
8	Séri	es entières	32				
	8.1	Rayon de convergence	32				
	8.2	Série de Taylor	32				
	8.3	Primitive est dérivée de fonctions définie par une série entière	33				
9	Calcul intégral 34						
	9.1	Intégrale d'une fonction continue	34				
	9.2	Relation entre l'intégrale et la primitive	34				
	9.3	Technique intégration	35				
		9.3.1 Changement de variable	35				
		9.3.2 Intégration par parties	35				
		9.3.3 Intégration fonction rationnelle	35				
	9.4	Intégrales généralisées	36				
		9.4.1 Intégrales généralisées sur un intervalle borné	36				
		9.4.2 Critère de comparaison	36				
		9.4.3 Intégrales généralisée sur un intervalle non borné	36				

Chapitre 1

Fonctions

1.1 Types des fonctions élémentaires

- 1. Polynômes : $f(x) = 3x^3 + 5x + 4$
 - Linéaires : f(x) = ax + b
 - Quadratiques : $f(x) = ax^2 + bx + c$ $a, b, c \in \mathbb{R}, a \neq 0$
- 2. Rationnelles : $f(x) = \frac{P(x)}{Q(x)}$ P(x), Q(x) sont des polynômes $Q(x) \neq 0$
- 3. Algébriques : toute fonction obtenue à partir des polynômes par application des opérations algébriques $(+, -, \cdot, \ldots)$
- 4. Transcendantes
 - Trigonométriques (et réciproques) $f(x) = \sin x$ $f(x) = \cos x$
 - Exponentielles et logarithmiques (réciproque) $f(x) = e^x$ $f(x) = \log x$ x > 0 $g(x) = a^x, a > 0, a \neq 1, x \in \mathbb{R}$ $g^{-1}(x) = \log_a x, x > 0$

1.2 Injectives surjectives bijectives et réciproques

Définition: Soient $E, F \subset \mathbb{R}$, $f: E \to F$ est une règle qui donne une seule valeur f(x) pour tout $x \in D_f \subset E$

Définition: $f: E \to F$ est surjective si $\forall y \in F, \exists x \in D_f$ tel que f(x) = y

Définition: $f: E \to F$ est injective si $\forall x_1, x_2 \in D_f$ tel que $f(x_1) = f(x_2) \implies x_1 = x_2$

Définition: $f: E \to F$ est bijective si elle est injective et surjective

Définition: $f: E \to F$ bijective, on définit la fonction réciproque par l'équation $f(x) = y \iff x = f^{-1}(y) \quad x \in E, y \in F$

1.3 Fonctions composées

Soient $f: D_f \to \mathbb{R}$ $g: D_g \to \mathbb{R}$

Supposons que $f(D_f) \subset D_g$, alors on peut définir la fonction composée $g \circ f : D_f \to \mathbb{R}$ par la formule $g \circ f(x) = g(f(x))$

1.4 Transformations de graphiques

Si on déplace le graphique sur l'axe des y, il faut ajouter une valeur à la fonction (ex. : f(x) - 3). (valeur > 0 monte le graphe)

Si on déplace le graphique sur l'axe des x, il faut ajouter une valeur à l'argument de la fonction (ex. : f(x-3)). (valeur < 0 déplace le graphe vers la droite)

Si on étend le graphique sur l'axe des y, il faut multiplier la valeur de la fonction par une valeur (ex. : 2f(x)). (valeur > 1 étend le graphe)

Si on étend le graphique sur l'axe des x, il faut multiplier la valeur de l'argument de la fonction (ex. : f(2x)). (valeur < 1 étend le graphe)

Chapitre 2

Nombres réels

2.1 Ensembles

Un ensemble est une collection d'objects définis et distincts.

2.1.1 Notations

- $b \in Y : b$ appartient à Y
- \forall : pour tout
- ∃ : il existe
- $Y \subset X : Y$ est un sous-ensemble de $X \ (\forall b \in Y \implies b \in X)$
- $Y = X \iff Y \subset X \text{ et } X \subset Y$
- $\emptyset = \{\}$: ensemble vide

2.1.2 Opérations

- Réunion : $X \cup Y = \{a \in X \text{ ou } a \in Y\}$
 - $-c \notin X \cup Y \iff c \notin X \text{ et } c \notin Y$
- Intersection : $X \cap Y = \{a \in X \text{ et } a \in Y\}$
 - $-\ c\not\in X\cap Y\iff c\not\in X \text{ ou } c\not\in Y$
- Différence : $X \setminus Y = \{a \in X \text{ et } a \not\in Y\}$
 - $-X\setminus (Y\cap Z)=(X\setminus Y)\cup (X\setminus Z)$

2.2 Nombres naturels, relatifs et rationnels

Définition du bon ordre : Tout sous-ensemble non vide contient un plus petit élément.

L'ensemble des nombres naturels est $\mathbb{N} = \{0, 1, 2, \ldots\}$.

L'ensemble des nombres entiers relatifs est $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$.

L'ensemble des nombres rationnels : $\mathbb{Q} = \left\{ \frac{p}{q}, \quad p, q \in Z, q \neq 0 \right\}$

2.3 Nombres réels

Définition axiomatique de \mathbb{R} :

- 1. \mathbb{R} est un corps
 - Ensemble munit de l'addition et de la multiplication
 - $\forall x, y, z \in \mathbb{R}$ - (x+y)+z=x+(y+z)- x+y=y+x- $\exists 0 \in \mathbb{R} : x+0=x$ - $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : x+y=0$ - $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ - $x \cdot y = y \cdot x$ - $\exists 1 \in \mathbb{R} : 1 \neq 0 : x \cdot 1 = x, \forall x \in \mathbb{R}$ - $\forall x \in \mathbb{R}, x \neq 0 \implies \exists y \in \mathbb{R} : x \cdot y = 1$ - $x \cdot (y+z) = x \cdot y + x \cdot z$
- 2. \mathbb{R} est un corps ordonné : $\forall x, y \in \mathbb{R}$
 - $x \le y$ et $y \le x \implies x = y$
 - x < y et $y < z \implies x < z$
 - $x < y \implies x + z < y + z$
 - $x \ge 0$ et $y \ge 0 \implies x \cdot y \ge 0$
- 3. Axiome de la borne inférieure : $\forall S \subset \mathbb{R}_+^*, S \neq \emptyset, \exists a \in \mathbb{R}_+$ tel que
 - $a < x, \forall x \in S$
 - Quel que soit $\varepsilon > 0$ il existe un élément $x_{\varepsilon} \in S$ tel que $x_{\varepsilon} a \leq \varepsilon$

Alors \mathbb{R} est un corps commutatif, ordonné et complet.

2.3.1 Bone inférieure et supérieure

Définition: Soit $S \subset \mathbb{R}, S \neq \emptyset$, on dit que $a \in \mathbb{R}$ est un majorant de S si $\forall x \in S$ on a $x \leq a$ et on dit que $b \in \mathbb{R}$ est in minorant de S si $\forall x \in S$ on a $x \geq b$.

Définition borné : Si S est majoré et minoré alors S est borné.

Définition : soit S un sous-ensemble non-vide de \mathbb{R} . Un nombre réel b (respectivement a) vérifiant les propriétés suivantes :

- $\forall x \in S, x \leq b \ (a \leq x)$
- $\forall \varepsilon > 0$ il existe un element $x_{\varepsilon} \in S$ tel que $x_{\varepsilon} \geq b \varepsilon$ $(x_{\varepsilon} \leq a + \varepsilon)$

Alors b est le supremum et a est l'infimum de Z.

Existance et unicité

Théorème: Tout sous-ensemble non-vide majoré (minoré) $S \subset \mathbb{R}$ possède un supremum (infimum) qui est unique.

Preuve de l'existence :

- 1. Si $S \subset \mathbb{R}_+^* \implies \exists a \in \mathbb{R}, a = \inf S \text{ (axiome)}$
- 2. Si $S \subset \mathbb{R} : \exists t \in \mathbb{R} : x \geq t \ \forall x \in S$ mais $t \leq 0$ (S minoré par $t \leq 0$) Soit $S_1 = \{x - t + 1, x \in S\} \subset \mathbb{R}_+^* \implies$ par l'axiome de la borne inférieure il existe $a_1 = \inf S_1$. Alors $a = a_1 + t - 1 = \inf S$ $\forall x \in S \implies x - t + 1 \geq a_1 \implies x \geq a_1 + t - 1 = a$ $\forall \varepsilon > 0 \ \exists y \in S : y - t + 1 - a_1 \leq \varepsilon \implies y - (a_1 + t - 1) \leq \varepsilon$

3. Si
$$S \subset \mathbb{R}$$
: $\exists p \in \mathbb{R} : x \leq p \ \forall p \in S \ (S \text{ majoré par } p \in \mathbb{R})$
Considérons $S_2 = \{y \in \mathbb{R} : y = -x, x \in S\} \implies S_2 \text{ minoré par } -p \in \mathbb{R}$
Par 2, $\exists a_2 = \inf S_2 \implies a = -a_2 = \sup S \ (\text{vérifier propriétés supremum})$

Preuve de l'unicité : Si $\inf S$ (subS) existe, alors il est le plus grand minorant (plus petit majorant) de S et il est unique.

Supposons par l'absurde qu'il existe supS et $b \in \mathbb{R}$: $b < \sup S$ et b est un majorant de S.

$$\exists \varepsilon = \frac{\sup S - b}{2} \implies \sup S - \varepsilon > b \ge x \ \forall x \in S$$

$$\implies \sup S - x > \varepsilon \ \forall x \in S \quad \text{Contradiction définition sup}$$

 $\sup S$ est le plus petit majorant de S.

2.3.2 Notation intervalles

Soit a < b $a, b \in \mathbb{R}$

- $\{x \in \mathbb{R} : a \le x \le b\} = [a, b]$ intervalle fermé borné
- $\{x \in \mathbb{R} : a \le x < b\} = [a, b[$ intervalle semi-ouvert borné
- $\mathbb{R} \cup \{-\infty, \infty\} = \overline{\mathbb{R}}$ droite réelle achevée

Intervalles non-bornés :

- $\{x \in \mathbb{R} : x \ge a\} = [a, +\infty[\text{ ferm\'e}]$
- $\{x \in \mathbb{R} : x \leq b\} =]-\infty, b]$ fermé
- $\{x \in \mathbb{R} : x > a\} =]a, +\infty[$ ouvert
- $\{x \in \mathbb{R} : x < b\} =]-\infty, b[$ ouvert

Supremum et infimum

•
$$\inf[a, b] = \inf[a, b[= \inf[a, b[= \inf]a, b] = a$$

$$x \ge a \ \forall x \in [a, b]$$

$$\forall \varepsilon > 0, x_{\varepsilon} \in [a, b] : x_{\varepsilon} - a \le \varepsilon$$

$$1) \ \varepsilon < b - a \implies x_{\varepsilon} = a + \varepsilon$$

$$2) \ \varepsilon \ge b - a \implies x_{\varepsilon} = \frac{b + a}{2}$$

• $\sup[a, b] = \sup[a, b] = \sup[a, b] = \sup[a, b] = b$

$$x \leq b \ \forall x \in [a,b]$$

$$\forall \varepsilon > 0, x_{\varepsilon} \in [a,b] : b - x_{\varepsilon} \leq \varepsilon \implies x_{\varepsilon} = b \implies b - b = 0 \leq \varepsilon$$

Théorème propriété d'Archimède : $\forall (x,y) \in \mathbb{R}$ tel que $x > 0, y \ge 0$ il existe $n \in \mathbb{N}^*$ tel que nx > y.

Preuve:

- 1. $\mathbb{N} \subset \mathbb{R}$ n'est pas majoré (par l'absurde, pour tout nombre entier il en existe un plus grand)
- 2. Soit $\frac{y}{x} \in \mathbb{R}_+$, alors $\exists n \in \mathbb{N} : n > \frac{y}{x} \iff nx > y$

Donc \mathbb{R} est un corps archimédien.

Théorème: $\mathbb{Q} \subset \mathbb{R}$, \mathbb{Q} est dense dans \mathbb{R} . Pour tout couple $x, y \in \mathbb{R}$, x < y il existe un nombre rationnel $r \in \mathbb{Q}$: x < r < y.

Preuve:

Par la propriété d'Archimède $\exists n \in \mathbb{N}^* : n(y-x) > 1 \implies y-x > \frac{1}{n} \implies x < x + \frac{1}{n} < y$. (ne marche que si x est rationnel)

$$\frac{nx}{n} < \frac{nx+1}{n} < y \iff \frac{nx}{n} < \frac{\lfloor nx \rfloor + 1}{n} \le \frac{nx+1}{n} < y$$

Alors $r = \frac{\lfloor nx \rfloor + 1}{n} \in \mathbb{Q}$ et x < r < y.

2.3.3 Minimum et maximum

Si $\inf S \in S$, on dit que S possède un minimum : $\min S = \inf S$.

Si $\sup S \in S$, on dit que S possède un maximum : $\max S = \sup S$.

Chapitre 3

Nombres complexes

3.1 Définitions

On a vu que l'équation $x^2=2$ n'a pas de solution dans \mathbb{Q} . De même, l'équation $x^2=-1$ n'a pas de solution dans \mathbb{R} .

Alors on introduit le symbole i tel que $i^2 = -1$.

On considère les expressions de la forme $\{z = a + ib : a, b \in \mathbb{R}\} = \mathbb{C}$.

- 1. (a+ib) + (c+id) = (a+c) + i(b+d)Élément neutre : 0 + i0, opposé : -a + i(-b)
- 2. $(a+ib)\cdot(c+id)=ac-bd+i(ad+bc)$ Élément neutre : 1+i0, réciproque si $z\neq 0$: $z^{-1}=\frac{a-ib}{a^2+b^2}$ $(z\cdot z^{-1}=1)$

Les opérations sont associatives, commutatives et la distributivité est respectée.

Donc \mathbb{C} est un corps commutatif.

L'ensemble \mathbb{C} n'est pas ordonné.

3.2 Formes de nombres complexes

3.2.1 Forme cartésienne

Forme cartésienne : z = a + ib avec $a, b \in \mathbb{R}$

Partie réelle et partie imaginaire : $z = \text{Re}(z) + i \cdot \text{Im}(z)$ avec $\text{Re}(z) = a \in \mathbb{R}, \text{Im}(z) = b \in \mathbb{R}$

Le module de z:

$$|z| = \sqrt{a^2 + b^2} \ge 0, \quad |z| = 0 \iff z = 0$$

3.2.2 Forme polaire trigonométrique

Form polaire trigonométrique : $z = p(\cos \varphi + i \sin \varphi)$ avec $p \ge 0, \varphi \in \mathbb{R}$

Partie réelle et partie imaginaire : $Re(z) = p \cos \varphi$, $Im(z) = p \sin \varphi$

Le module de $z = p \ge 0$.

L'argument de z, noté φ , est défini à $2k\pi$ près $(k \in \mathbb{Z})$:

$$p \neq 0 \implies \sin \varphi = \frac{\operatorname{Im}(z)}{p}, \quad \cos \varphi = \frac{\operatorname{Re}(z)}{p}, \quad \tan \varphi = \frac{\operatorname{Im}(z)}{\operatorname{Re}(z)} = \frac{b}{a}$$

Trouver l'argument du nombre complexe z = a + ib:

- Si a>0 : $\varphi=\arg z=\arctan\left(\frac{b}{a}\right)\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$
- Si a<0 : $\varphi=\arg z=\arctan\left(\frac{b}{a}\right)+\pi\in\left]\frac{\pi}{2},\frac{3\pi}{2}\right[$
- Si a=0
 - Si b > 0: $\varphi = \frac{\pi}{2}$
 - Si b < 0: $\varphi = \frac{3\pi}{2}$

Remarque : l'argument de z est définit seulement pour les nombres complexes non nuls.

3.2.3 Forme polaire exponentielle

Forme polaire exponentielle : soit $z = x + iy \in \mathbb{C}$, alors $e^z = \exp z = e^x(\cos y + i\sin y)$.

Formule d'Euler : $e^{iy} = \cos y + i \cdot \sin y$ avec $y \in \mathbb{R}$

On a alors: $e^{i(y_1+y_2)} = e^{iy_1}e^{iy_2}$

Si $y_1 = 2k\pi + y_2, k \in \mathbb{Z} \implies e^{iy_1} = e^{iy_2}$.

$$e^{i\pi} = \cos \pi + i \cdot \sin \pi = -1$$
$$\implies e^{i\pi} + 1 = 0$$

Forme polaire trigonométrique : $z = p(\cos \varphi + i \sin \varphi) \implies z = pe^{i\varphi}$

On a donc les formes suivantes :

$$z = \operatorname{Re}(z) + i\operatorname{Im}(z) = \underbrace{|z|(\cos\arg z + i\sin\arg z)}_{\text{trigonométrique}} = \underbrace{|z|e^{i\arg z}}_{\text{exponentielle}}$$

3.3 Opérations

3.3.1 Multiplication

La multiplication est plus facile en forme polaire exponentielle.

Soient $z_1 = |z_1|e^{i\varphi_1}, z_2 = |z_2|e^{i\varphi_2}$ deux nombres complexes non nuls.

$$z_1 \cdot z_2 = |z_1| \cdot |z_2| e^{i(\varphi_1 + \varphi_2)}$$

Cela correspond géométriquement à "tourner" le nombre z_1 de l'angle φ_2 .

3.3.2 Division

La division est plus facile en forme polaire exponentielle.

$$z = |z|e^{i\arg z}, z \neq 0 \implies z^{-1} = \frac{1}{|z|}e^{-i\varphi}$$

$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} e^{i(\arg z_1 - \arg z_2)}, \quad |z_2| \neq 0$$

3.3.3 Conjugaison

Soit $z=a+ib=|z|e^{i\varphi}\in\mathbb{C}$, alors le conjugué de z est $\bar{z}=a-ib=|z|e^{-i\varphi}$.

$$z \neq 0 \implies z^{-1} = \frac{a - ib}{a^2 + b^2} = \frac{\bar{z}}{|z|^2} \implies \bar{z}z = |z|^2 \in \mathbb{R}$$

Sous forme polaire:

$$z = p(\cos\varphi + i\sin\varphi) \implies \bar{z} = p(\cos\varphi - i\sin\varphi) = p(\cos(-\varphi) + i\sin(-\varphi)) = pe^{-i\varphi}$$

Porpiétés

- 1. $\overline{z \pm w} = \bar{z} \pm \bar{w}$
- $2. \ \overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- $3. \ \overline{\left(\frac{z}{w}\right)} = \frac{\bar{z}}{\bar{w}}$
- 4. $|\bar{z}| = |z|$

$$Re(z) = \frac{z + \bar{z}}{2}$$
$$Im(z) = \frac{z - \bar{z}}{2i}$$

3.4 Formule de Moivre

Pour tout $p > 0, \varphi \in \mathbb{R}, n \in \mathbb{N}^*$, on a $(p(\cos \varphi + i \sin \varphi))^n = p^n(\cos(n\varphi) + i \sin(n\varphi))$.

Formule de Moivre :

$$(pe^{i\varphi})^n = p^n e^{in\varphi}$$

Démonstration par récurrence :

- 1. Initialisation : $n = 1 \implies (pe^{i\varphi})^1 = pe^{i\varphi}$ est vrai
- 2. Hérédité : Supposons que la proposition soit vraie pour $n=k\in\mathbb{N}^*$ et montrons qu'elle est vraie pour n=k+1 :

$$(pe^{i\varphi})^{k+1} = (pe^{i\varphi})^k \cdot (pe^{i\varphi}) = p^{k+1}e^{i(k\varphi+\varphi)} = p^{k+1}e^{i(k+1)\varphi}$$

3. Donc la proposition marche pour tout $n \in \mathbb{N}^*$

3.5 Racines des nombres complexe

Il faut utiliser la forme polaire.

Si $w = se^{i\varphi}, w \in \mathbb{C}^*$, alors pour tout $n \in \mathbb{N}^*$:

$$\{z \in \mathbb{C}^* : z^n = w\} = \{\sqrt[n]{s}e^{i\frac{\varphi + 2k\pi}{n}}, k = \{0, 1, \dots, n - 1\}\}$$

Racine carrée:

$$\{\sqrt[2]{s}e^{i\frac{\varphi+2k\pi}{2}}, k=\{0,1\}\} = \{\sqrt{s}e^{\frac{i\varphi}{2}}, -\sqrt{s}e^{\frac{i\varphi}{2}}\} = \pm\sqrt{s}e^{\frac{i\varphi}{2}}$$

On a toujours n racines n-ième d'un nombre complexe.

Les solutions se trouvent toujours au somment d'un polygone régulier à n cotés.

3.6 Equations polynomiales complexes

3.6.1 Quadratique

Lors du calcul du discriminant Δ , on peut avoir $\Delta < 0$.

Théorème fondamentale de l'algèbre

Tout polynôme $P(z) = a_n z^n + \ldots + a_1 z + a_0, a \in \mathbb{C}, a_n \neq 0$ s'écrit sous la forme :

$$P(z) = a_n(z - w_1)^{m_1}(z - w_2)^{m_2} \dots (z - w_p)^{m_p}, \quad w \in \mathbb{C} \text{ distincts}, m \in \mathbb{N}^*, \sum_{i=1}^p m_i = n$$

On dit que m_i est la multiplicité de la racine w_i .

Remarque : Cela n'est pas vrai dans \mathbb{R} .

3.6.2 Polynôme à coefficients réels

Si $z \in \mathbb{C}$ est une racine de P(z) à coefficients réels, alors \bar{z} l'est aussi.

Démonstration:

$$P(\bar{z}) = \sum_{k=0}^{n} a_k \bar{z}^k = \sum_{k=0}^{n} \overline{a_k} \cdot \bar{z}^k = \overline{\sum_{k=0}^{n} a_k z^k} = \overline{P(z)}$$

Tout polynôme non-constant à coefficients réels peut être factorisé en produit des polynômes à coefficients réels de degré 1 ou 2.

Analyse 1 - BA1

3.7 Sous-ensemble du plan complexe

Exemple : Soit $z_0 \in \mathbb{C}, r > 0$ (donc $r \in \mathbb{R}$), considérons $\{z \in \mathbb{C} : |z - z_0| = r\}$

$$|z - z_0| = |x + iy - x_0 - iy_0| = |x - x_0 + i(y - y_0)| = \sqrt{(x - x_0)^2 + (y - y_0)^2} = r$$
$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

Cela représente donc un cercle de rayon r et de centre (x_0, y_0) .

Chapitre 4

Suites des nombres réels

Définition: Une suite de nombres réels est une application $f: \mathbb{N} \to \mathbb{R}$ définie pour tout nombre naturel (ou pour tout $n \ge n_0 \in \mathbb{N}$), notée (a_n) ou $a_n = f(n)$.

Exemples:

- 1. Les nombres de Fibonacci : $f_0 = f_1 = 1, f_{n+2} = f_n + f_{n+1}$
- 2. Suite arithmétique : $a_n = a \cdot n + b$, $a, b \in \mathbb{R}, a \neq 0$
- 3. Suite géométrique : $a_n = a \cdot r^n$, $a, r \in \mathbb{R}^*, r \neq \pm 1$

Définition: Une suite est majorée (minorée) s'il existe nue nombre M (m) réel tel que $a_n \leq M \ \forall n \in \mathbb{N} \ (a_n \geq m)$.

On dit que la suite est bornée si elle est majorée et minorée.

$$(a_n)$$
 bornée $\iff \exists X \leq 0 : |a_n| \leq X \ \forall n \in \mathbb{N}$
 $X = \max(|M|, |m|)$

Remarque: les majorants, minorants d'une suite ne sont pas uniques.

Définition: Une suite (a_n) est (strictement) croissante si $\forall n \in \mathbb{N}$ on a $a_{n+1} \geq a_n$ $(a_{n+1} > a_n)$

Une suite (a_n) est (strictement) décroissante si $\forall n \in \mathbb{N}$ on a $a_{n+1} \leq a_n$ $(a_{n+1} < a_n)$

Une suite est dite (strictement) monotone si elle est (strictement) croissante ou décroissante.

Exemples:

- 1. Les nombres de Fibonacci : croissante et minorée par 1
- 2. Suite arithmétique :
 - Si a > 0: strictement croissante, minorée par b
 - Si a < 0: strictement décroissante, majorée par b

4.1 Raisonnement par récurrence

Soit P(n) un proposition dépendante d'un entier naturel n tel que :

- 1. Initialisation : $P(n_0)$ est vraie
- 2. Hérédité : $\forall n \geq n_0, P(n) \implies P(n+1)$ (supposons P(n) vraie est montrons alors que P(n+1) est vraie)

Alors, P(n) est vraie pour tout $n \ge n_0$.

Généralisation de la méthode de récurrence :

- 1. $P(n_0), P(n_0+1), \dots, P(n_0+k)$ avec k fixé sont vraies
- 2. $\{P(n), P(n+1), \dots, P(n+k)\} \implies P(n+k+1) \ \forall n \ge n_0$

Alors, P(n) est vraie pour tout $n \ge n_0$.

4.2 Limite des suites

Définition: On dit que la suite (x_n) est convergente et admet pour limite le nombre réel $l \in \mathbb{R}$ si $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0$ on a $|x_n - l| \leq \varepsilon$. On note alors $\lim_{n \to \infty} x_n = l$.

Pour tout intervalle entre $l-\varepsilon$ et $l+\varepsilon$, on peut trouver un indice n_0 (qui peut dépendre de ε) tel que tous les éléments de la suite après cet indice sont contenus dans cet intervalle.

Dans une preuve on chercher a montrer l'existante d'un tel n_0 donc on doit trouver un n_0 qui fonctionne pour tout ε donné.

La preuve qu'une suite est divergente se fait par l'absurde : supposons que la suite admet l comme limite et trouvons un ε pour lequel il n'existe pas de n_0 tel que $\forall n \geq n_0 \implies |a_n - l| \leq \varepsilon$ ce qui amène à une contradiction.

Définition: Une suite qui n'est pas convergente est dite divergente.

Résultat de cours : $\lim_{n\to\infty}\frac{1}{n^p}=0, \ \forall p\in\mathbb{R}_+^*$

Inégalité triangulaire : $|x+y| \le |x| + |y|, \ \forall x, y \in \mathbb{R}$

Proposition : la limite d'une suite est unique. Soit (a_n) une suite de nombres réels et supposons que $a \in \mathbb{R}$ et $b \in \mathbb{R}$ sont des limites de (a_n) , alors a = b.

Démonstration : Soit $\varepsilon > 0 \implies$ puisque $\lim_{n \to \infty} a_n = a \implies \exists n_0 \in \mathbb{N} : \forall n \ge n_0, |a_n - a| < \frac{\varepsilon}{2}$ et puisque $\lim_{n \to \infty} a_n = b \implies \exists m_0 \in \mathbb{N} : \forall n \ge m_0, |a_n - b| < \frac{\varepsilon}{2}$. Dès lors, $\forall n \ge \max(n_0 - m_0) \implies |a - b| = |a - a_n + a_n - b| \le |a - a_n| + |a_n - b| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \implies \forall \varepsilon > 0 \ |a - b| \le \varepsilon \implies a - b = 0 \implies a = b$.

Proposition: Toute suite convergente est bornée. (la réciproque est fausse)

Démonstration : Soit $\lim_{n\to\infty} a_n = l \in \mathbb{R}$ et soit $\varepsilon = 1 \implies \exists n_0 \in \mathbb{N} : \forall n \geq n_0, |a_n - l| \leq 1 \iff l-1 \leq a_n \leq l+1 \ \forall n \geq n_0$. Soit $S = \{a_0, a_1, \dots, a_{n_0-1}\}$ ensemble fini, donc $\exists \max S, \min S$. Donc la suite (a_n) est bornée par $\min(\min S, l-1)$ et $\max(\max S, l+1)$.

4.2.1 Opération algébriques sur les limites

Soient (a_n) et (b_n) deux suites convergentes $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, alors :

1.
$$\lim_{n \to \infty} (a_n \pm b_n) = a \pm b$$

- 2. $\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$
- $3. \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b} \text{ si } b \neq 0$

Remarques:

- 1. Si $(a_n + b_n)$ converge, alors soit (a_n) et (b_n) convergent, soit (a_n) et (b_n) divergent.
- 2. Si $\lim_{n\to\infty} (a_n b_n) = 0 \implies \text{soit } \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$, soit les suites (a_n) et (b_n) sont divergentes
- 3. $\forall p \in \mathbb{R}$, si $\lim_{n \to \infty} a_n = a$, alors $\lim_{n \to \infty} p \cdot a_n = p \cdot a$.
- 4. Soit $(a_n \cdot b_n)$ converge, soit (a_n) et (b_n) convergent, soit (a_n) et (b_n) divergent, soit une convergente et une divergente.

Cependant, si $\lim_{n\to\infty} b_n = b \neq 0$, alors (a_n) est convergente et $\lim_{n\to\infty} a_n = \frac{\lim_{n\to\infty} (a_n \cdot b_n)}{\lim_{n\to\infty} b_n}$

5. Si $\lim_{n\to\infty} a_n = 0$, alors la suite $\left(\frac{1}{a_n}\right)$ est divergente, si elle existe.

Proposition sur le quotient de deux suites polynomiales :

$$x_n = a_p \cdot n^p + \dots + a_1 n + a_0, \ y_n = b_q \cdot n^q + \dots + b_1 n + b_0,$$

$$a_i, b_i \in \mathbb{R}, \ a_p, b_q \neq 0, \ p, q \in \mathbb{N}^*$$

$$\implies \lim_{n \to \infty} \frac{x_n}{y_n} = \begin{cases} 0, & \text{si } p < q \\ \frac{a_p}{b_q}, & \text{si } p = q \\ \text{diverge}, & \text{si } p > q \end{cases}$$

4.2.2 Relation d'ordre

Soit (a_n) et (b_n) deux suites convergentes, $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$.

Proposition: Supposons que $\exists m_0 \in \mathbb{N} : \forall n \geq m_0 \implies a_n \geq b_n$, alors $a \geq b$.

Démonstration par contraposée : supposons que b>a (sans perte de généralité), soit $\varepsilon=\frac{b-a}{4}$, alors $\exists n_0\in\mathbb{N}: a-\varepsilon\leq a_n\leq a+\varepsilon$ et $b-\varepsilon\leq b_n\leq b+\varepsilon$, $\forall n\geq n_0$, donc $\forall n\geq n_0$ $a_n\leq a+\varepsilon=a+\frac{b-a}{4}< a+\frac{b-a}{2}=\frac{a+b}{2}=b-\frac{b-a}{2}< b-\frac{b-a}{4}=b-\varepsilon\leq b_n$, donc $\forall n\geq n_0$ $a_n< b_n$ mais par la condition $\forall n\geq m_0, a_n\geq b_n \implies \forall n\geq \max(n_0,m_0)$ on a : $a_n< b_n$ et $a_n\geq b_n$, contradiction.

4.2.3 Théorème des deux gendarmes

Soient $(a_n), (b_n), (c_n)$ trois suites telles que :

- 1. $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = l$
- 2. $\exists k \in \mathbb{N} : \forall n \geq k \implies a_n \leq b_n \leq c_n$, alors $\lim_{n \to \infty} b_n = l$

Démonstration : Soit $\varepsilon > 0 \implies \exists n_0 \in \mathbb{N} : \forall n \geq n_0$, on a : $-\varepsilon \leq a_n - l \leq \varepsilon$ et $-\varepsilon \leq c_n - l \leq \varepsilon$, $\forall n \geq k$ $a_n - l \leq b_n - l \leq c_n - l$. Alors $\forall n \geq \max(n_0, k) \implies -\varepsilon \leq a_n - l \leq b_n - l \leq c_n - l \leq \varepsilon$ donc $-\varepsilon \leq b_n - l \leq \varepsilon$ $\forall n \geq \max(n_0, k)$ et par la définition, $\lim_{n \to \infty} b_n = l$

4.2.4 Suite géométrique

Soit $a_n = a_0 r^n$ avec $a_0, r \in \mathbb{R}$ et $a_0 \neq 0$.

$$\lim_{n\to\infty} a_0 r^n = 0, \quad |r| < 1$$

$$\lim_{n\to\infty} a_0 r^n = a_0, \quad r=1$$

$$a_n = a_0 r^n \text{ diverge}, \quad |r| > 1 \text{ ou } r = -1$$

4.2.5 Critère de d'Alembert

Soit (a_n) un suite telle que $a_n \neq 0 \ \forall n \in \mathbb{N}$ et $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = p \geq 0$ alors :

- Si p < 1 alors $\lim_{n \to \infty} a_n = 0$
- Si p > 1 alors (a_n) diverge
- Si p=1 alors on ne peut rien dire sur la convergence de (a_n)

4.2.6 Limites infinies

On dit que (a_n) tend vers $+\infty$ si $\forall A > 0, \exists n_0 \in \mathbb{N} : \forall n \geq n_0, a_n \geq A$. On note $\lim_{n \to \infty} a_n = \infty$

On dit que (b_n) tend vers $-\infty$ si $\forall A < 0, \exists n_0 \in \mathbb{N} : \forall n \geq n_0, b_n \leq A$. On note $\lim_{n \to \infty} b_n = -\infty$

Propriétés:

- 1. $\lim_{n \to \infty} a_n = \infty = \lim_{n \to \infty} b_n$ alors $\lim_{n \to \infty} (a_n + b_n) = \infty$
- 2. $\lim_{n\to\infty} a_n = \pm \infty$ et (b_n) est bornée alors $\lim_{n\to\infty} (a_n \pm b_n) = \pm \infty$
- 3. Règle d'un gendarme :
 - $\lim_{n\to\infty} b_n = \infty$ et $a_n \ge b_n \ \forall n \ge n_0$ alors $\lim_{n\to\infty} a_n = \infty$
 - $\lim_{n \to \infty} b_n = -\infty$ et $a_n \le b_n \ \forall n \ge n_0$ alors $\lim_{n \to \infty} a_n = -\infty$
- 4. (a_n) bornée et $\lim_{n\to\infty}b_n=\pm\infty$ alors $\lim_{n\to\infty}\frac{a_n}{b_n}=0$
- 5. $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = +\infty, a_n \neq 0 \ \forall n \ \text{alors} \ (a_n) \ \text{diverge}$

Formes indéterminées:

- 1. $\infty \infty$
- $2. 0 \cdot \infty$
- $3. \frac{\infty}{\infty}$
- $4. \frac{0}{0}$

Théorème convergence des suites monotones : Toute suite croissante majorée (décroissante minorée) converge vers son supremum (infimum).

Toute suite croissante (décroissante) qui n'est pas majorée (minorée) diverge vers l'infini (moins l'infini).

4.2.7 Le nombre e

Proposition: Soient $(x_n): x_0 = 1, x_n = (1 + \frac{1}{n})^n \ \forall n \ge 1 \text{ et } (y_n): y_0 = 1, y_n = 1 + \sum_{i=1}^n \frac{1}{i!} \ \forall n \ge 1 \text{ alors}:$

- 1. $x_n \leq y_n \ \forall n \in \mathbb{N}$
- 2. $y_n \leq 3 \ \forall n \in \mathbb{N}$
- 3. (y_n) est croissante
- 4. (x_n) est croissante

On a donc que $\exists \lim_{n \to \infty} y_n = l \le 3$ et alors $\exists \lim_{n \to \infty} x_n = l' \le 3$.

Définition:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

4.2.8 Suites définies par récurrence

Soit $x_0 = a \in \mathbb{R}$ et $x_{n+1} = g(x_n)$ où $g : \mathbb{R} \to \mathbb{R}$ une fonction.

Proposition : Si g(x) est bornée et croissante alors (x_n) : $x_{n+1} = g(x_n)$ est bornée et monotone donc convergente.

Proposition : Si g(x) est décroissante alors (x_n) n'est pas monotone, mais elle peut quand même converger.

Remarque : Si (x_n) converge alors sa limite est solution de l'équation l = g(l).

Récurence linéaire

Soit $a_0 \in \mathbb{R}$, $a_{n+1} = q \cdot a_n + b$ où $q, b \in \mathbb{R}$ alors :

- 1. Si |q| < 1 alors (a_n) converge vers $\lim_{n \to \infty} a_n = \frac{b}{1-q}$
- 2. Si $|q| \ge 1$ alors (a_n) diverge (sauf si (a_n) est une suite constante)

Méthode d'étude

- 1. Trouver les candidats pour la limite : en supposant que la suite converge, il faut résoudre l=g(l), si l'équation n'admet pas de solution alors la suite diverge
- 2. Étudier la convergence :
 - Récurrence linéaire : Récurence linéaire
 - Si $g(x_n)$ est croissante, alors la suite (x_n) est monotone. Si $x_0 < x_1$ alors (x_n) est croissante et chercher un majorant; un minorant si (x_n) est décroissant.
 - Si (x_n) et (a_n) deux suites : $0 < a_n < 1 \ \forall n \in \mathbb{N}$ et $\exists l \in \mathbb{R} : (x_{n+1} l) = a_n(x_n l)$, alors (x_n) converge.
 - Si g(x) n'est ni linéaire ni croissante : faire un graphique.
 - Démontrer que (x_n) est une suite de Cauchy, alors (x_n) converge

4.3 Sous-suites et suites de Cauchy

Définition : Une sous-suite d'une suite (a_n) est une suite $k \to a_{n_k}$, où $k \to n_k$ est une suite strictement croissante de nombre naturels.

Proposition convergence d'une sous-suite : Si $\lim_{n\to\infty} a_n = l$ alors tout sous-suite (a_{n_k}) converge aussi vers l.

Théorème de Bolzano: Dans toute suite bornée, il existe une sous-suite convergente.

$$(a_n): m \le a_n \le M \ \forall n \in \mathbb{N} \implies \exists (a_{n_k}) \subset (a_n): \lim_{k \to \infty} a_{n_k} = l \in \mathbb{R}$$

4.3.1 Suite de Cauchy

La suite (a_n) est une suite de Cauchy si $\forall \varepsilon > 0$ il existe $n_0 \in \mathbb{N}$ tel que $\forall n, m \geq n_0$, $|a_n - a_m| \leq \varepsilon$.

Proposition: une suite (a_n) est une suite de Cauchy \iff (a_n) est convergente.

Remarque : $\lim_{n\to\infty} (a_{n+k} - a_n) = 0 \ \forall k \in \mathbb{N}$ n'implique pas que (a_n) est une suite de Cauchy (car ici n_0 dépend de k).

4.4 Limite supérieure et inférieure d'une suite bornée

Définition : Soit (x_n) une suite bornée : $\exists m, M \in \mathbb{R} : m \leq x_n \leq M \ \forall n \in \mathbb{N}$, on définit les suite $y_n = \sup\{x_k, k \geq n\}$ et $z_n = \inf\{x_k, k \geq n\}$. Alors, y_n est décroissante et minorée $(y_n \geq x_n \geq m \ \forall n \in \mathbb{N})$ donc elle converge ; z_n est croissante et majorée $(z_n \leq x_n \leq M \ \forall n \in \mathbb{N})$ donc elle converge.

$$\exists \lim y_n = \limsup x_n$$
$$\exists \lim z_n = \liminf x_n$$

Remarque : $\lim y_n = \lim z_n = l$ si et seulement si $\lim x_n = l$ (par les 2 gendarmes).

Attention : y_n, z_n ne sont pas forcément des sous-suites!

Chapitre 5

Séries numériques

5.1 Définitions

La série de terme général a_n est un couple de la suite (a_n) et de la suite des sommes partielles $S_n = \sum_{k=0}^n a_k$.

On se demande si la suite des sommes partielles convergent : $\sum_{k=0}^{\infty} a_k$ de terme général a_k .

La série $\sum_{k=0}^{\infty} a_k$ est convergente \iff la suite (S_n) des sommes partielles est convergent.

La limite $\lim_{n\to\infty} S_n = l$ s'appelle la somme de la série $\sum_{k=0}^{\infty} a_k$, on note alors $\sum_{k=0}^{\infty} a_k = l$.

Si (S_n) est divergente, alors on dit que la série $\sum_{k=0}^{\infty} a_k$ est divergente.

5.1.1 Série géométrique

Rappel: $\sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x} \ \forall x \neq 1.$

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r} \quad |r| < 1$$

Remarque : si $|r| \ge 1$ alors $\sum_{k=0}^{\infty} r^k$ diverge.

5.1.2 Série harmonique

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 est divergente

Remarque : la série $\sum_{n=1}^{\infty} \frac{1}{n^p}$ (= $\zeta(p)$) est convergente pour tout p > 1.

5.1.3 Convergence absolue

Une série $\sum_{n=0}^{\infty} a_n$ est dite absolument convergente si la série $\sum_{n=0}^{\infty} |a_n|$ est convergente.

Proposition : une série absolument convergente est convergente.

Proposition, condition nécessaire : Si la série $\sum_{n=1}^{\infty} a_n$ converge, alors $\lim_{n\to\infty} a_n = 0$ (donc si la limite de a_n ne converge pas vers 0, la série diverge).

Remarque : $\lim_{n\to\infty} a_n = 0$ n'implique pas la convergence de $\sum_{n=1}^{\infty} a_n$

5.2 Critère de convergence

Proposition critère de Leibnitz pour les séries alternées : Soit (a_n) une série telle que :

- 1. il existe $p \in \mathbb{N} : |a_{n+1}| \leq |a_n| \ \forall n \geq p$ (décroissant en valeur absolue)
- 2. il existe $p \in \mathbb{N} : a_{n+1} \cdot a_n \leq 0 \ \forall n \geq p$ (alternée à chaque terme)
- 3. $\lim_{n\to\infty} a_n = 0$ (convergence terme général)

Alors $\sum_{n=0}^{\infty} a_n$ est convergente.

Proposition critère de comparaison pour $(a_n \ge 0 \ \forall n)$: Soit (a_n) et (b_n) deux suites telles que $\exists k \in \mathbb{N} : 0 \le a_n \le b_n \ \forall n \ge k \ \text{alors}$:

- Si $\sum_{n=0}^{\infty} b_n$ converge alors $\sum_{n=0}^{\infty} a_n$ converge
- Si $\sum_{n=0}^{\infty} a_n$ diverge alors $\sum_{n=0}^{\infty} b_n$ diverge

Remarque : Si $\sum_{n=0}^{\infty} a_n$ possède que des termes positifs (négatifs), et la suite des sommes partielles est majorée (minorée), alors la série $\sum_{n=0}^{\infty} a_n$ est convergente.

Proposition critère de d'Alembert : Soit (a_n) une suite : $a_n \neq 0 \ \forall n \in \mathbb{N}$ et $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = p \in \mathbb{R}$ alors :

- 1. Si p < 1 alors $\sum_{n=0}^{\infty} a_n$ converge absolument
- 2. Si p > 1 alors $\sum_{n=0}^{\infty} a_n$ diverge

Proposition critère de Cauchy : Soit (a_n) une suite et $\exists \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = p \in \mathbb{R}$ alors :

- 1. Si p < 1 alors $\sum_{n=0}^{\infty} a_n$ converge absolument
- 2. Si p > 1 alors $\sum_{n=0}^{\infty} a_n$ diverge

Remarque : Si $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = p$ et $\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = r$ alors p = r.

Remarque : si p = 1 on ne sait rien de la convergence.

Chapitre 6

Fonctions réelles

6.1 Définitions et propriétés

Une fonction $f: E \to F$, où $E, F \subset \mathbb{R}$ est une application qui donne pour tout élément $x \in D(f) \subset E$ un unique élément $y = f(x) \in F$.

- D(f): le domaine de définition ($\subset E$)
- f(D): l'ensemble image $(\subset F)$

Le graphique de f est l'ensemble des points sur le plan \mathbb{R}^2 avec les coordonnées (x, f(x)).

Propriétés:

- 1. f est croissante sur D(f) si $\forall x_1, x_2 \in D(f) : x_1 < x_2 \implies f(x_1) \le f(x_2)$
- 2. f est décroissante sur D(f) si $\forall x_1, x_2 \in D(f) : x_1 < x_2 \implies f(x_1) \ge f(x_2)$
- 3. f est monotone si elle est croissante ou décroissante sur D(f)
- 4. f est paire si D(f) est symétrique $(x \in D(f)) \implies -x \in D(f)$ et $f(-x) = f(x) \ \forall x \in D(f)$
- 5. f est impaire si D(f) est symétrique $(x \in D(f) \implies -x \in D(f))$ et $f(-x) = -f(x) \ \forall x \in D(f)$
- 6. f est periodique si $\exists p \in \mathbb{R}^* : \forall x \in E \ x + p \in E \ \text{et} \ f(x+p) = f(x) \ (p \ \text{est une période})$ de f, T est la plus petite période)
- 7. f est majorée (minorée) sur $A \subset E$ si l'ensemble $f(A) \subset \mathbb{R}$ est majorée (minorée)
- 8. f est bornée sur A si elle est majorée et minorée sur A ($\exists M \in \mathbb{R}_+ : |f(x)|_{x \in A} \leq M$)
- 9. Borne supérieure $\sup_{x \in A} f(x) = \sup\{f(x), x \in A\}$
- 10. Borne inférieur $\inf_{x \in A} f(x) = \inf\{f(x), x \in A\}$
- 11. Maximum (minimum) local d'une fonction au point $x_0 \in E$ si $\exists \delta > 0 : \forall x \in D(f) |x x_0| \le \delta \implies f(x) \le f(x_0) \ (f(x) \ge f(x_0))$
- 12. Maximum (minimum) globale d'une fonction $M, m \in f(E) : \forall x \in E \ f(x) \leq M$ $(f(x) \geq m)$
- 13. Si f est bijective, sa fonction réciproque est définie par $y = f(x), x \in E \iff x = f^{-1}(y), y \in F$

Remarques:

- Il n'existe pas toujours de plus petite période T
- \bullet La borne supérieure (et inférieure) peuvent ne pas appartenir à A
- On dit que f atteint son maximum (minimum) en x_0 si $f(x_0) = M$
- S'il existe un maximum (minimum) global alors f est majorée (minorée) et sup f(x) = M (inf f(x) = m)
- Une fonction bornée sur E n'atteint pas toujours son maximum ou minimum sur E
- Les fonctions paires ou périodiques ne sont pas injectives
- Les graphiques des fonctions réciproques sont symétriques par rapport à la droite y = x

Définition composition de fonctions : Soient $f: E \to F$ et $g: G \to H$ avec $E, F, G, H \subset \mathbb{R}$ en supposant $f(E) \subset G$, on définit la composée : $g \circ f(x) = g(f(x)) : E \to H$.

Remarque : Si f est bijective alors $f^{-1} \circ f(x) = f \circ f^{-1}(x) = x$

6.2 Limite d'une fonction

Une fonction $f: E \to F$ est définie au voisinage de $x_0 \in \mathbb{R}$ s'il existe $\delta > 0$ tel que $\{x \in \mathbb{R} : 0 < |x - x_0| < \delta\} \subset E$.

Remarque : f n'est pas forcément définie en $x = x_0$.

Une fonction $f: E \to F$ définie au voisinage de x_0 admet pour limite le nombre réel l lorsque x tend vers x_0 si :

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x \in E \; 0 < |x - x_0| \le \delta \implies |f(x) - l| \le \varepsilon$$

On note alors $\lim_{x \to x_0} f(x) = l$.

Proposition: si la limite existe, elle est unique.

6.2.1 Caractérisation de la limite d'une fonction à partir des suites.

Soit $f: E \to F \lim_{x \to x_0} f(x) = l \iff$ pour toute suite $(a_n) \subset \{x \in E, x \neq x_0\}$ telle que $\lim_{n \to \infty} a_n = x_0$, on a $\lim_{n \to \infty} f(a_n) = l$.

Attention : cela doit fonctionner pour toutes suite (a_n) !

Corollaire: Soit f définie au voisinage de x_0 telle que toute suite $(a_n) \in E \setminus x_0$ qui admet $\lim_{n\to\infty} a_n = x_0$, la suite $(f(a_n))$ converge, alors $\lim_{x\to x_0} f(x)$ existe.

Exemple:

$$\lim_{x \to x_0} x^p = x_0^p \quad \forall p \in \mathbb{N}, \forall x_0 \in \mathbb{R}$$

Remarque : pratique pour prouver qu'une limite n'existe pas, trouver deux suite qui ne donne pas la même limite.

6.2.2 Critère de Cauchy pour les fonctions

$$\exists \lim_{x \to x_0} f(x) \iff \forall \varepsilon > 0 \ \exists \delta > 0 : \forall x_1, x_2 \in \{x \in E : 0 < |x - x_0| \le \delta\} : |f(x_1) - f(x_2)| \le \varepsilon$$

6.2.3 Opération sur les limites

Soit $\lim_{x \to x_0} f(x) = l_1 \in \mathbb{R}$ et $\lim_{x \to x_0} g(x) = l_2 \in \mathbb{R}$:

- 1. $\lim_{x \to x_0} (\alpha f(x) + \beta g(x)) = \alpha l_1 + \beta l_2$
- 2. $\lim_{x \to x_0} (f(x) \cdot g(x)) = l_1 \cdot l_2$
- 3. $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{l_1}{l_2} \text{ (si } l_2 \neq 0, g(x) \neq 0)$

6.3 Théorème des 2 gendarmes pour les fonctions

Soient $f, g, h : E \to F$ telles que :

- 1. $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = l$
- 2. $\exists \alpha > 0 : \forall x \in \{x \in E : 0 < |x x_0| \le \alpha\}$ on a $f(x) \le h(x) \le g(x)$

Alors $\lim_{x \to x_0} h(x) = l$.

6.4 Limite de la composée

Soient $f: E \to F$, $\lim_{x \to x_0} f(x) = y_0; g: G \to H$, $\lim_{y \to y_0} g(y) = l$. Supposons que $f(E) \subset G$ et $\exists \alpha > 0: 0 < |x - x_0| < \alpha \implies f(x) \neq y_0$.

Alors: $\lim_{x \to x_0} (g \circ f)(x) = l$.

Ce théorème nous permet de changer de variables dans les limites.

Remarque : par le théorème, $\lim_{x\to a} \frac{\sin(t(x))}{t(x)} = 1$ si $\lim_{x\to a} t(x) = 0$.

6.5 Limites à l'infini

Définition : $f: E \to F$ est définie au voisinage de $+\infty$ $(-\infty)$ si $\exists \alpha \in \mathbb{R} :]\alpha, +\infty[\subset E$ $(]-\infty, \alpha[\subset E)$.

Définition : une fonction définie au voisinage de $+\infty$ $(-\infty)$ admet pour limite le nombre réel l lorsque $x \to +\infty$ $(-\infty)$ si $\forall \varepsilon > 0 \; \exists \alpha \in \mathbb{R} : \forall x \in E : x \geq \alpha \; (x \leq \alpha) \implies |f(x) - l| \leq \varepsilon$.

On note alors: $\lim_{x \to +\infty} f(x) = l$ et $\lim_{x \to -\infty} f(x) = l$.

On dit que la fonction admet une asymptote horizontale y = l lorsque $x \to \infty$ $(-\infty)$.

6.6 Limite infinies

Définition : $f: E \to F$ définie au voisinage de $x_0 \in \mathbb{R}$ tend vers $+\infty$ $(-\infty)$ lorsque $x \to x_0$ si $\forall A > 0 \; \exists \delta > 0 : 0 < |x - x_0| \le \delta \implies f(x) \ge A \; (f(x) \le -A)$.

On note alors: $\lim_{x \to x_0} f(x) = +\infty$ ou $\lim_{x \to x_0} f(x) = -\infty$.

Remarque : $\lim_{x\to 0} \frac{1}{x}$ n'existe pas car la limite n'est pas la même à gauche et à droite.

Remarque : touts les résultats (propriétés) obtenus pour les limites lorsque $x \to x_0$ restent valables pour les limites à l'infini.

6.7 Limites à droite et à gauche

Définition : $f: E \to F$ est définie à droite (à gauche) de x_0 s'il existe $\alpha > 0$ tel que $|x_0, x_0 + \alpha| \subset E$ ($|x_0 - \alpha, x_0| \subset E$).

Définition : $f: E \to F$ définie à droite (à gauche) de x_0 admet pour limite à droite (à gauche) de x_0 le nombre réel l si $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x \in E : 0 < x - x_0 \le \delta \; (0 < x_0 - x \le \delta)$ $\Longrightarrow |f(x) - l| \le \varepsilon$.

Notation : $\lim_{x \to x_0^+} f(x) = l$ à droite et $\lim_{x \to x_0^-} f(x) = l$ à gauche.

Remarque : $\lim_{x \to x_0} f(x) = l \iff \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = l$

6.8 Fonction exponentielle et logarithmique

6.8.1 Exponentielle

Définition : $e^x = \sum_{n=0}^{\infty} \frac{x^n}{x!}$ (preuve par le critère de d'Alembert)

Convention : $0^0 = 1, 0! = 1$

Propositions:

- 1. $e^{x+y} = e^x \cdot e^y \quad \forall x, y \in \mathbb{R}$
- $2. \ e^{-x} = \frac{1}{e^x} \quad \forall x \in \mathbb{R}$
- $3. \ e^x > 0 \quad \forall x \in \mathbb{R}$

Propriétés:

- 1. $\lim_{x \to \infty} e^x = \infty$
- $2. \lim_{x \to -\infty} e^x = 0$
- 3. e^x est croissante $\forall x \in \mathbb{R}$
- 4. e^x est bijective dans $\mathbb{R} \to \mathbb{R}_+^*$
- $5. \lim_{x \to 0} \frac{e^x 1}{x} = 1$

6.8.2 Logarithme

On a $e^x : \mathbb{R} \to \mathbb{R}_+^*$ bijective donc on peut définir la fonction réciproque, le logarithme naturel. $\exists \log x : \mathbb{R}_+^* \to \mathbb{R}$.

$$e^x = y \iff x = \log y \quad \forall x \in \mathbb{R}, \forall y \in \mathbb{R}_+^*$$

Propriétés :

- 1. $e^{\log x} = x \quad \forall x \in \mathbb{R}_+^*$
- 2. $\log(e^x) = x \quad \forall x \in \mathbb{R}$
- 3. $\log(x \cdot y) = \log x + \log y$
- 4. $\log\left(\frac{x}{y}\right) = \log x \log y$
- 5. $\log(x^r) = r \cdot \log x \quad \forall r \in \mathbb{N}^*$
- 6. $\log 1 = 0, \log e = 1$

6.9 Fonctions continues

Définition : une fonction $f: E \to F$ est continue en un point $x_0 \in E$ si $\lim_{x \to x_0} f(x) = f(x_0)$.

Conditions de continuité:

- 1. $\lim_{x \to x_0} f(x) \in \mathbb{R}$ existe
- 2. f(x) est bien définie en x_0
- 3. $\lim_{x \to x_0} f(x_0)$

Remarque : tout polynôme est continue sur \mathbb{R} et toute fonction rationnelle ou racine sur son domaine.

Définition : $f: E \to F$ est dite continue à droite (à gauche) en $x_0 \in E$ si :

$$\lim_{x \to x_0^+} f(x) = f(x_0) \quad \left(\lim_{x \to x_0^-} f(x) = f(x_0) \right)$$

Remarque : f est continue en $x_0 \iff$ elle est continue à gauche et à droite en x_0 .

6.9.1 Cauchy pour les fonctions continues

 $f: E \to F$ définie au voisinage de x_0 et en x_0 , alors f est continue en x_0 si et seulement si $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x_1, x_2 \in \{x \in E: |x - x_0| \le \delta\}, |f(x_1) - f(x_2)| \le \varepsilon$.

6.9.2 Opération algébriques sur les fonctions continues

Si f et g sont continues en x_0 , alors :

- 1. $\alpha f + \beta g$ est continue en $x_0 \ \forall \alpha, \beta \in \mathbb{R}$
- 2. $f \cdot g$ est continue en x_0

- 3. $\frac{f}{g}$ est continue en x_0 si $g(x_0) \neq 0$
- 4. Si la fonction composée est bien définie et que g est continue en $f(x_0)$ alors $(g \circ f)$ est continue en x_0

Remarque : $(g \circ f)$ continue n'implique pas que f ou g soit continue en $x_0/f(x_0)$.

6.9.3 Prolongement par continuité

Définition : Soit $f: E \to F$ une fonction telle que $c \notin E$ et $\lim_{x \to c} f(x) \in \mathbb{R}$ existe, alors la fonction $\hat{f}(x): E \cup \{c\} \to \mathbb{R}$ est définie comme :

$$\hat{f}(x) = \begin{cases} f(x) & , x \in E \\ \lim_{x \to c} f(x) & , x = c \end{cases}$$

Cette fonction est appelée le prolongement par continuité de f au point x=c.

Remarque : un tel prolongement est unique et la fonction \hat{f} est continue en c.

6.9.4 Continuité sur un intervalle

Définition : Une fonction $f: I \to F$ où I est un intervalle ouvert non-vide est continue sur I si f est continue en tout point $x \in I$.

Si I est un intervalle fermé [a, b], elle doit être continue sur l'intervalle ouvert et continue à gauche en x = b et à droite en x = a.

Théorème : Soit $a < b \in \mathbb{R}$ et $f : [a, b] \to F$ une fonction continue sur l'intervalle fermé et borné [a, b], alors f atteint son infimum et son supremum sur [a, b].

Théorème de la valeur intermédiaire : Soit $a < b \in \mathbb{R}, f : [a, b] \to \mathbb{R}$ une fonction continue, alors f atteint son supremum et son infimum et toute valeur comprise entre les deux.

$$f([a,b]) = \left[\min_{[a,b]} f(x), \max_{[a,b]} f(x)\right]$$

En particulier, f atteint toute valeur comprise entre f(a) et f(x).

Corollaires:

- 1. Soit $a < b \in \mathbb{R}$ et $f : [a, b] \to \mathbb{R}$ une fonction continue telle que $f(a) \cdot f(b) < 0$. Alors il existe au moins un point $c \in]a, b[: f(c) = 0$.
- 2. Soit I un intervalle ouvert et $f: I \to \mathbb{R}$ fonction continue strictement monotone, alors f(I) est un intervalle ouvert.
- 3. Toute fonction injective continue sur un intervalle est strictement monotone.
- 4. Toute fonction bijective continue sur un intervalle admet une fonction réciproque continue et strictement monotone.

Chapitre 7

Calcul différentiel

7.1 Dérivabilité

Définition : Une fonction $f: E \to F$ est dite dérivable en $x_0 \in E$ s'il exist la limite $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \in \mathbb{R}$.

Cette limite est appelée la dérivée de f en x_0 , notée $f'(x_0)$.

Remarque: Si f est dérivable en $x = x_0$, on peut écrire: $f(x) = f(x_0) + f'(x_0)(x - x_0) + r(x)$ où $r(x) = f(x) - f'(x_0)(x - x_0)$, alors r(x) est telle que $\lim_{x \to x_0} \frac{r(x)}{x - x_0} = 0$.

On a donc que toute fonction dérivable en $x=x_0$ admet une présentation :

$$f(x) = f(x_0) + a \cdot (x - x_0) + r(x)$$

$$\lim_{x \to x_0} \frac{r(x)}{x - x_0} = 0$$

Dans ce cas on dit que f est différentiable en x_0 .

Réciproquement $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = a \implies f$ est dérivable en x_0 et $f'(x_0) = a$.

Alors f est dérivable en x_0 si et seulement si f est différentiable en x_0 et $f'(x_0) = a$.

7.2 Fonction dérivée

Si $f: E \to F$ est dérivable sur un ensemble $D(f') \subset E$, alors on définit la fonction dérivée :

$$f':D(f')\to\mathbb{R},x\mapsto f'(x)$$

Remarque interprétation géométrique : f'(x) représente la pente de la tangente au graphe de f(x).

Equation de la tangente : $y = f(x_0) + f'(x_0)(x - x_0)$.

Théorème : Une fonction dérivable en $x = x_0$ est continue en $x = x_0$ (réciproque fausse).

On peut introduire la dérivée infinie, si $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = \pm \infty$ (f n'est pas dérivable), alors le graphique de f admet une tangente verticale en $x=x_0$.

7.3 Opérations algébriques

Soient $f, g: E \to F$ deux fonctions dérivables en $x = x_0$.

- 1. $(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta f'(x_0) \quad \forall \alpha, \beta \in \mathbb{R}$
- 2. $(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$
- 3. $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) g'(x_0)f(x_0)}{g^2(x_0)}$ si $g(x) \neq 0$ au voisinage de x_0

Dérivée de la composée : Soit $f: E \to F$ dérivable en $x_0 \in E$, $g: G \to H$ $(f(E) \subset G)$ dérivable en $f(x_0)$, alors $\exists (g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$.

7.4 Dérivée de la réciproque

Théorème : Soit $f: I \to F$ une fonction bijective continue sur I et dérivable en $x_0 \in I$, telle que $f'(x_0) \neq 0$. Alors la fonction réciproque $f^{-1}: F \to I$ est dérivable en $y_0 = f(x_0)$ et :

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$
 $(y_0 = f(x_0))$

Corollaire : Si $f: I \to F$ et $f^{-1}: F \to I$ sont deux fonctions réciproques continues sur leurs domaines et dérivables à l'inteérieur, alors pour tout x à l'intérieur de F, tel que $f'(f^{-1}(x)) \neq 0$, on a :

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

7.5 Dérivée logarithmique

Soit $f(x) = f_1(x)^{f_2(x)} \implies f'(x) = ?$

$$(f_1(x)^{f_2(x)})' = (e^{f_2(x)\log f_1(x)})' = (f_1(x)^{f_2(x)}) (\log f_1(x)^{f_2(x)})'$$

On a donc : $f'(x) = f(x) \cdot (\log f(x))'$

7.6 Fonction hyperboliques

$$sinh x = \frac{e^x - e^{-x}}{2} \qquad \cosh x = \frac{e^x + e^{-x}}{2}$$

Remarques:

- 1. sinh est impaire
- 2. cosh est paire
- 3. $(\sinh x)' = \cosh x$
- 4. $(\cosh x)' = \sinh x$

 $5. \cosh^2 x - \sinh^2 x = 1$

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \ \forall x \in \mathbb{R} \qquad \coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}} \ \forall x \in \mathbb{R}^*$$

Remarque: $-1 < \tanh x < 1$

7.7 Dérivée d'ordre supérieur

Définition : $f^{(n)}(x) = (f^{(n-1)}(x))'$, dérivée d'ordre n.

Définition : $f: E \to F$ est n fois dérivable si elle admet une dérivée d'ordre n.

Définition : $f: E \to F$ est de classe $C^n(E)$ si elle admet une dérivée d'ordre n qui est continue sur E (n fois continûment dérivable).

7.8 Théorème des accroissements finis

Théorème : Si $f: E \to F$ dérivable en $x_0 \in E$, telle que f admet un extremum local en x_0 , alors $f'(x_0) = 0$ (la réciproque est fausse, x^3).

Définition : Si $f: E \to F$ est dérivable en x_0 et $f'(x_0) = 0$, on dite que x_0 est un point stationnaire de f.

7.8.1 Les points d'extrema

Soit $f:[a,b]\to\mathbb{R}$ continue:

- 1. Les points stationnaires : $f'(x_0) = 0$
- 2. Les points $x \in]a,b[$ où f'(x) n'existe pas
- 3. Les bornes x = a et x = b

7.8.2 Théorème de Rolle

Soit $a < b \in \mathbb{R}$ et $f : [a, b] \to F$, telle que :

- 1. f est continue sur [a, b]
- 2. f est dérivable sur a, b
- 3. f(a) = f(b)

Alors il existe au moins un point $c \in]a, b[$ tel que f'(c) = 0

7.8.3 Théorème des accroissements finis (TAF)

Soit $a < b \in \mathbb{R}$ et $f : [a, b] \to \mathbb{R}$, telle que :

- 1. f est continue sur [a, b]
- 2. f est dérivable sur a, b

Alors, il existe au moins un point $c \in]a, b[$ tel que $f'(c) = \frac{f(b) - b(a)}{b - a}$.

Remarque : si $f(a) = f(b) \implies$ on retrouve le théorème de Rolle.

Corollaires:

- 1. Soit $f:[a,b]\to\mathbb{R}$ continue sur [a,b] et dérivable sur]a,b[et $f'(x)=0\ \forall x\in]a,b[$. Alors f est constante su [a,b].
- 2. Si f(x) et g(x) sont continues dérivables sur]a,b[et telles que f'(x)=g'(x) $\forall x\in]a,b[\Longrightarrow f(x)=g(x)+\alpha$ où $\alpha\in\mathbb{R}$.
- 3. $f'(x) \ge 0$ $(f'(x) \le 0) \ \forall x \in]a, b[\iff f \text{ est croissante (décroissante) sur }]a, b[$.
- 4. f'(x) > 0 $(f'(x) < 0) \forall x \in]a, b[\implies f \text{ est strictement croissante (décroissante)}$ sur]a, b[.

Attention: x^3 strictement croissante mais $f'(x^3) \ge 0$ (implication simple).

Généralisation

Théorème : $f, g : [a, b] \to \mathbb{R}$ telles que :

- 1. f, g sont continues sur [a, b]
- 2. f, g sont dérivables sur [a, b]
- 3. $g'(x) \neq 0 \text{ sur } [a, b[$

Alors il existe $c \in]a, b[$ tel que $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

7.9 Règle de Bernoulli-L'Hospital

Théorème : Soient $f,g:]a,b[\to\mathbb{R}$ deux fonctions dérivables sur]a,b[, si :

- 1. $g(x) \neq 0, g'(x) \neq 0 \text{ sur } [a, b[$
- 2. $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0$ ou $+\infty$ ou $-\infty$
- 3. $\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = \mu \in \overline{\mathbb{R}}$

Alors: $\lim_{x \to a^+} \frac{f(x)}{g(x)} = \mu$.

7.9.1 Règle de Bernoulli-L'Hospital

 $f, g: \{x \in I, x_0 \neq x\} \to \mathbb{R} \text{ telle que}:$

- 1. f, g sont dérivables sur $I \setminus \{x_0\}$ et $g(x) \neq 0, g'(x) \neq 0$ sur $I \setminus \{x_0\}$
- 2. $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ ou $+\infty$ ou $-\infty$
- 3. $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \mu \in \overline{\mathbb{R}}$

Alors: $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \mu$.

7.10 Taylor et développements limités

Soit $f: I \to F$ une fonction (n+1) fois dérivable sur $I \ni a$. Alors $\forall x \in I, \exists u$ entre a et x tel que :

$$f(x) = \underbrace{f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x - a)^n}_{P_n(f) \text{ Polynôme de Taylor}} + \underbrace{\frac{f^{(n+1)}(u)}{(n+1)!}(x - a)^{n+1}}_{R_n(f) \text{ Reste}}$$

C'est la formule de Taylor.

Remarque : La formule de Taylor s'appelle la formule de MacLaurin si a=0.

7.10.1 Développements limités

Définition : Soit $f: E \to F$ une fonction définie au voisinage de x = a, s'il existe des nombres a_0, a_1, \ldots, a_n tels que $\forall x \in E, x \neq a$, on a :

$$f(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \dots + a_n(x - a)^n + (x - a)^n \varepsilon(x)$$

$$\lim_{x \to a} \varepsilon(x) = 0$$

Alors on dit que f admet un développement limité d'ordre n autour de x = a.

Proposition : Si f admet un développement limité d'ordre n autour de x=a, alors celui-ci est unique.

Corollaire : Soit $a \in I$; $f : I \to \mathbb{R}$ une fonction (n+1) fois continûment dérivable sur I. Alors la formule de Taylor nous fournit le DL d'ordre n de la fonction f autour de x = a.

Remarques:

- 1. En fait, il suffit d'avoir f n fois continûment dérivable sur I.
- $2. \ f$ peut avoir un DL sans que la formule de taylor lui soit applicable.

Conclusion: Soit $f: I \to F$ telle que $f \in C^n(I)$, soient $a, x \in I, x \neq a$ alors:

$$f(x) = f(a) + f'(a)(x - a) + \ldots + \frac{f^{(n)}(a)}{n!}(x - a)^n + (x - a)^n \varepsilon(x)$$

$$\lim_{x \to a} \varepsilon(x) = 0$$

C'est le développement limité d'ordre n de la fonction f autour de x=a.

7.10.2 Opération algébriques

Proposition : Soient $f, g: E \to \mathbb{R}$ deux fonctions admettant le développement limité autour de x = a.

$$f(x) = P_f^{n}(x) + (x - a)^n \varepsilon_1(x)$$

$$g(x) = P_g^{n}(x) + (x - a)^n \varepsilon_2(x)$$

Alors:

1. $\alpha f(x) + \beta g(x)$ admet un DL d'ordre n autour de $x = a : P_{\alpha f + \beta g}{}^n(x) = \alpha P_f{}^n(x) + \beta P_g{}^n(x)$

- 2. $f(x) \cdot g(x)$ admet un DL d'ordre n autour de $x = a : P_{f \cdot g}{}^{n}(x) = P_{f}{}^{n}(x) \cdot P_{g}{}^{n}(x)$ (où on ne conserve que les termes d'ordres $\leq n$)
- 3. Si $b_0 \neq 0, g(x) \neq 0$ sur E, $\frac{f(x)}{g(x)}$ admet un DL d'ordre n autour de $x = a : P_{\frac{f}{g}}^{n}(x) = \frac{P_f^{n}(x)}{P_g^{n}(x)}$ (où on ne conserve que les termes d'ordres $\leq n$)

Proposition DL fonction composée : Soient f(x), g(y) admettant respectivement un DL autour de x = a, y = 0, alors $g \circ f$ admet un DL d'ordre n autour de $x = a : P_{g \circ f}^{n}(x) = g(0) + b_1(P_f^h(x-a)) + \ldots + b_n(P_f^n(x-a))^n$. (où on ne conserve que les termes d'ordres $\leq n$)

7.11 Étude fonctions

Si $f: I \to F$ est dérivable sur I et admet un extremum local en x = c, alors f'(c) = 0.

Proposition condition suffisante pour qu'une fonction ait un extremum local : Soit $f: I \to F$ une fonction n fois continûment dérivable sur I, où $n \in \mathbb{N}^*$ est pair, et telle que $f'(c) = f''(c) = \ldots = f^{(n-1)}(c) = 0$, mais $f^{(n)}(c) \neq 0$. Alors :

- Si $f^{(n)}(c) > 0 \implies f$ admet un minimum local en x = c
- Si $f^{(n)}(c) < 0 \implies f$ admet un maximum local en x = c

Définition : $f: E \to F$ une fonction dérivable en $a \in E$, soit l(x) = f(a) + f'(a)(x - a) la tangente à la courbe y = f(x) en (a, f(a)). Considérons $\Psi(x) = f(x) - l(x) = f(x) - f(a) - f'(a)(x - a)$, si Ψ change de signe en x = a, alors (a, f(a)) est un point d'inflexion de f.

Proposition condition suffisante pour qu'une courbe ait un point d'inflexion : Soit $f: I \to F$ une fonction n fois continûment dérivable sur I, où $n \in \mathbb{N}$ est impair, n > 1, et on $a: f''(a) = f'''(a) = \ldots = f^{(n-1)}(a) = 0; f^{(n)}(a) \neq 0$. Alors le point (a, f(a)) est un point d'inflexion de f.

Définition : $f: I \to F$ est convexe sur I si pour tout couple $a < b \in I$, le graphique de f(x) se trouve au dessous de la droite passant par (a, f(a)) et (b, f(b)) (fonction en dessous de ses cordes).

Définition : $f: I \to F$ est concave sur I si pour tout couple $a < b \in I$, le graphique de f(x) se trouve au dessus de la droite passant par (a, f(a)) et (b, f(b)) (fonction en dessus de ses cordes).

Proposition: Soit $f: I \to F$ deux fois dérivable sur I, alors f est convexe (concave) sur $I \iff f''(x) \ge 0$ ($f''(x) \le 0$) sur $I \iff f'(x)$ est croissante (décroissante) sur I.

Chapitre 8

Séries entières

8.1Rayon de convergence

Définition : L'expression $\sum_{k=0}^{\infty} a_k (x - x_0)^k$ est dite une série entière, $a_k \in \mathbb{R} \ \forall k \in \mathbb{N}$.

Le domaine de convergence : $D = \{x \in \mathbb{R} : \sum_{k=0}^{\infty} a_k (x - x_0)^k \text{ converge} \}.$

La fonction $f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k, x \in D$ est définie par la série entière.

Théorème rayon de convergence : Soit la série entière $\sum_{k=0}^{\infty} a_k (x-x_0)^k$. Alors, il existe $r: 0 \le r \le +\infty$ tel que :

- 1. La série converge absolument $\forall x : |x x_0| \leq r$
- 2. La série diverge $\forall x : |x x_0| > 0$

Remarques:

- 1. D est un intervalle qui contient x_0 et contré en x_0
- 2. La convergence de la série entière en $x=x_0\pm r$ doit être étudié séparément
- 3. Si $r \neq 0, r \in \mathbb{R}_+ \implies D = \text{un des 4 intervalles} :]x_0 r, x_0 + r[, [x_0 r, x_0 + r],]x_0 r]$ $[x, x_0 + r], [x_0 - r, x_0 + r]$
- 4. Si $r=0 \implies D=x_0$
- 5. Si $r = \infty \implies D = \mathbb{R}$

- Remarque : Soit $\sum_{k=0}^{\infty} a_k (x x_0)^k$ une série entière de rayon de convergence r:

 1. Supposons que $a_k \neq 0 \ \forall k \in \mathbb{N}$, si $\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = l$ avec $0 \leq l \leq +\infty \implies r = \frac{1}{l}$ on a $r = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right|$
 - 2. Si $\lim_{k \to \infty} |a_k|^{\frac{1}{k}} = l \text{ avec } 0 \le l \le +\infty \implies r = \frac{1}{l}$

8.2Série de Taylor

Soit $f: I \to \mathbb{R}$ (I ouvert) une foctino de classe $C^{\infty}(I)$, et $x_0 \in I$, alors la série de Taylor de f au point x_0 :

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Si $x_0 = 0$, $\sum_{k=0}^{\infty} \frac{f^{(k)(0)}}{k!} x^k$ est la série de MacLaurin.

On peut alors chercher l'ensemble $E \subset D$ où $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$, où la série de Taylor converge vers f(x).

Remarque:

$$f(x) = \underbrace{\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k}_{\text{Polynôme de Taylor}} + \underbrace{\frac{f^{(n+1)}(u)}{(n+1)!} (x - x_0)^{n+1}}_{R_n(f)}$$

où u est entre x et x_0 .

On a donc que $\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$ converge vers $f(x) \iff \lim_{n \to \infty} R_n(f)(x) = 0$.

Exemples:

1.
$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} \quad \forall x \in \mathbb{R}$$

2.
$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} \quad \forall x \in \mathbb{R}$$

3.
$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \quad \forall x \in \mathbb{R}$$

8.3 Primitive est dérivée de fonctions définie par une série entière

Définition primitive : Soit $f:[a,b]\to\mathbb{R}$ continue, la fonction $F:[a,b]\to\mathbb{R}$ est une primitive de f sur [a, b] si $F'(x) = f(x) \ \forall x \in]a, b[$.

Remarque: Si $F_1(x)$ et $F_2(x)$ sont deux primitives de f(x) sur [a,b], alors $F_1(x) = F_2(x) +$ $\alpha \ \forall x \in [a, b] \text{ où } \alpha \in \mathbb{R}.$

Théorème :

- 1. Si r > 0, alors $f(x) = \sum_{k=0}^{\infty} b_k (x x_0)^k$ est continues sur $]x_0 r, x_0 + r[$.
- 2. Si r > 0, alors $F(x) = \sum_{k=0}^{\infty} \frac{b_k}{k+1} (x-x_0)^{k+1}$ est la primitive de f(x) sur $]x_0 r, x_0 + r[$ telle que $F(x_0) = 0$.
- 3. Les deux séries entières $\sum_{k=0}^{\infty} b_k (x-x_0)^k$ et $\sum_{k=0}^{\infty} \frac{b_k}{k+1} (x-x_0)^{k+1}$ (primitive) ont le même rayon de convergence r.

Corollaire: Les deux séries entières $\sum_{k=0}^{\infty} a_k (x-x_0)^k$ et $\sum_{k=1}^{\infty} k a_k (x-x_0)^{k-1}$ (dérivée) ont le même rayon de convergence r.

Si r > 0, alors $f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$ est continûment dérivable sur $]x_0 - r, x_0 + r[$ et $f'(x) = \sum_{k=1}^{\infty} k a_k (x - x_0)^{k-1}$.

Exemples:

1.
$$\log x = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (x-1)^k \quad x \in]0,2]$$

2. $\frac{1}{x} = \sum_{k=0}^{\infty} (-1)^k (x-1)^k$

2.
$$\frac{1}{x} = \sum_{k=0}^{\infty} (-1)^k (x-1)^k$$

Chapitre 9

Calcul intégral

9.1 Intégrale d'une fonction continue

Définition sommes de Darboux : Soit $f:[a,b]\to\mathbb{R}$ continue, soit $\sigma=\{x_0=a< x_1< x_2\ldots < x_n=b\}$, $\sigma_{\text{régulière}}=\{a,a+\frac{b-a}{n},\ldots,a+k\frac{b-a}{n},\ldots,b\}$ de pas $P(\sigma)=\max\{x_i-x_{i-1}\}$. Alors, $\overline{S}_{\sigma}(f)=\sum_{k=1}^n M_k(x_k-x_{k-1})$ où $M_k=\max_{[x_{k-1},x_k]}f(x)$ est la somme de Darboux supérieure de f relativement à σ . On définit aussi $\underline{S}_{\sigma}(f)=\sum_{k=1}^n m_k(x_k-k_{k-1})$ où $m_k=\min_{[k_{k-1},x_k]}f(x)$ est la somme de Darboux inférieure de f relativement à σ .

Remarque : Si $\sigma_1 \subset \sigma_2$ (au quel on à ajouté des points), alors $\underline{S}_{\sigma_1}(f) \leq \underline{S}_{\sigma_2}(f)$.

Si f est continue sur [a, b], $\overline{S}(f) = \underline{S}(f)$.

Définition : $f:[a,b] \to \mathbb{R}$ continue, a < b, alors $\int_a^b f(x) dx = \overline{S}(f) = \underline{S}(f)$ est l'intégrale de Riemann de la fonction f sur [a,b].

Définition : Si $b < a \int_a^b f(x) dx = - \int_b^a f(x) dx$, $\int_a^a f(x) dx = 0$.

Calcul d'intégrale : $\int_a^b f(x) dx = \lim_{n \to \infty} \overline{S}_{\sigma_n}(f)$ (le pas de la subdivision tend vers 0).

Règle: $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$

Théorème de la moyenne : a < b, f(x) continue sur [a, b], alors il existe un point $c \in [a, b]$ tel que $\int_a^b f(x) dx = f(c)(b-a)$.

9.2 Relation entre l'intégrale et la primitive

Proposition: Soit a < b, f une fonction continue sur [a, b], alors la fonction $F(x) = \int_a^x f(t) dt$ est la primitive de f(x) sur [a, b] telle que F(a) = 0.

Théorème fondamental du calcul intégrale : Soit a < b, f(x) continue sur [a, b]. Si G(x) est une primitive de f(x) sur [a, b] alors :

$$\int_{a}^{b} f(x) dx = G(b) - G(a)$$

Propriétés :

- 1. Linéarité : $\int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$
- 2. Si $f(x) \ge 0$ et $\int_a^b f(x) dx = 0 \implies f(x) = 0 \ \forall x \in [a, b]$.
- 3. Corollaire : si $f(x) \le g(x) \ \forall x \in [a, b] \implies \int_a^b f(x) \, dx \le \int_a^b g(x) \, dx$
- 4. Intégrale fonction de ces bornes : $f:[a,b] \to \mathbb{R}$ continue, $g,h:I \to [a,b]$ dérivables sur I, alors:

$$\frac{d}{dx} \left(\int_{h(x)}^{g(x)} f(t) dt \right) = f(g(x)) \cdot g'(x) - f(h(x)) \cdot h'(x)$$

Technique intégration 9.3

Changement de variable 9.3.1

Proposition : $f:[a,b] \to \mathbb{R}$ continue, $\varphi:[\alpha,\beta] \to [a,b]$ continûment dérivable sur $I \supset [\alpha, \beta]$, alors:

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) \, dx = \int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) \, dt$$

où $x = \varphi(t)$.

9.3.2Intégration par parties

Proposition: $g, f: I \to \mathbb{R}$ continûment dérivable, $[a, b] \subset I$, alors:

$$\int_{a}^{b} f(x) \cdot g'(x) \, dx = f(x)g(x) \Big|_{a}^{b} - \int_{a}^{b} g(x)f'(x) \, dx$$

Ou sous une autre forme : $\int_a^b f \, dg = fg \Big|_a^b - \int_a^b g \, df$ où $df = f'(x) \, dx$.

Remarque : cette méthode marche bien pour les cas suivants :

- (polynôme)($\log x$)^k
- (polynôme)($\sin x$, $\cos x$)
- (polynôme) e^x

Intégration fonction rationnelle

Pour les intégrales de la forme $\int \frac{P(x)}{Q(x)} dx$, il faut décomposé la fraction en éléments simples.

1.
$$\int \frac{dx}{ax+b} = \frac{1}{a} \log |ax+b| + C$$

1.
$$\int \frac{dx}{ax+b} = \frac{1}{a} \log |ax+b| + C$$
2.
$$\int \frac{(cx+d) dx}{(x-a)(x-b)} = A \log |x-a| + B \log |x-b| + C \text{ où } A = \frac{ac-d}{a-b}; B = c - A$$
3.
$$\int \frac{dx}{(ax+b)^k} = \frac{1}{a(1-k)} (ax+b)^{-k+1} + C$$

3.
$$\int \frac{dx}{(ax+b)^k} = \frac{1}{a(1-k)}(ax+b)^{-k+1} + C$$

4.
$$\int \frac{dx}{x^2 + px + q} = \frac{1}{\sqrt{q - \frac{p^2}{4}}} \arctan\left(\frac{x + \frac{p}{2}}{\sqrt{q - \frac{p^2}{4}}}\right) + C$$

5.
$$\int \frac{x \, dx}{x^2 + px + q} = \frac{1}{2} \log |x^2 + px + q| + C$$

6.
$$\int \frac{x \, dx}{(1+x^2)^n} = \frac{1}{2(1-n)} (x^2+1)^{-n+1} + C$$

9.4 Intégrales généralisées

9.4.1 Intégrales généralisées sur un intervalle borné

Définition : Soit a < b et $f : [a, b] \to \mathbb{R}$ une fonction continue. Alors on définit l'intégrale généralisée par la limite

$$\int_{a}^{b^{-}} f(t) dt = \lim_{x \to b^{-}} \int_{a}^{x} f(t) dt$$

si la limite existe, sinon l'intégrale généralisée $\int_a^{b^-} f(t) dt$ est divergente.

Si $f:]a,b] \to \mathbb{R}$ est continue, on définit l'intégrale généralisée par la limite

$$\int_{a^+}^b f(t) dt = \lim_{x \to a^+} \int_x^b f(t) dt$$

si la limite existe, sinon l'intégrale généralisée $\int_{a^+}^b f(t) dt$ est divergente.

9.4.2 Critère de comparaison

Proposition : Soient f,g:[a,b[deux fonctions continues telles qu'il existe $c\in]a,b[$: $0\leq f(x)\leq g(x)\ \forall x\in [c,b[$, alors si $\int_a^{b^-}g(x)\,dx$ converge : (la limite finie existe) $\int_a^{b^-}f(x)\,dx$ converge. Si $\int_a^{b^-}f(x)\,dx$ diverge, $\int_a^{b^-}g(x)\,dx$ diverge.

Remarque : il existe un critère similaire pour $f, g:]a, b] \to \mathbb{R}$ continues.

Corollaire : Soit $f:[a,b[\to\mathbb{R} \text{ continue. Supposions qu'il existe }\alpha\in\mathbb{R} \text{ tel que }\lim_{x\to b^-}f(x)\cdot(b-x)^\alpha=l\ (\in\mathbb{R}^*)\neq 0.$ Alors l'intégrale généralisée $\int_a^{b^-}f(t)\,dt$ converge $\iff \alpha<1$ et diverge $\iff \alpha>1$.

Définition : Soi $a < b, f :]a, b[\to \mathbb{R}$ continue, $c \in]a, b[$ arbitraire, alors l'intégrale généralisée

$$\int_{a^{+}}^{b^{-}} f(t) dt = \int_{a^{+}}^{c} f(t) dt + \int_{c}^{b^{-}} f(t) dt$$

converge si et seulement si les deux intégrales généralisées convergent.

Remarque : la définition ne dépend pas du choix de $c \in]a,b[$.

9.4.3 Intégrales généralisée sur un intervalle non borné

Définition : Soit $f:[a,+\infty[\to\mathbb{R}$ une fonction continue. Alors l'intégrale généralisée

$$\int_{a}^{\infty} f(t) dt = \lim_{x \to +\infty} \int_{a}^{x} f(t) dt$$

si la limite existe. Sinon, l'intégrale généralisée $\int_a^\infty f(t)\,dt$ est divergente.

Soit $f:]-\infty,b]\to\mathbb{R}$ continue, alors l'intégrale généralisée

$$\int_{-\infty}^{b} f(t) dt = \lim_{x \to -\infty} \int_{x}^{b} f(t) dt$$

si la limite existe. Sinon, l'intégrale généralisée $\int_{-\infty}^b f(t)\,dt$ est divergente.

Critère de comparaison : Si $0 \le f(x) \le g(x)$ pour tout x > c pour un certain c > a, alors si

$$\int_{a}^{\infty} g(d) dx \text{ converge } \Longrightarrow \int_{a}^{\infty} f(x) dx$$
$$\int_{a}^{\infty} f(x) dx \text{ diverge } \Longrightarrow \int_{a}^{\infty} g(x) dx$$

Exemple:

1. $\int_1^\infty \frac{dx}{x^\beta} = \frac{1}{\beta - 1}$ si $\beta > 1$ (divergente si $\beta \le 1$)

2. $\int_{0+}^{1} \frac{dx}{x^{\alpha}} = \frac{1}{1-\alpha}$ si $\alpha < 1$ (divergente si $\alpha \ge 1$)

Corollaire : Soit $f: [a, +\infty[\to \mathbb{R} \text{ continue et } \beta \in \mathbb{R} \text{ tel que } \lim_{x \to \infty} f(x) \cdot x^{\beta} = l \ (\in \mathbb{R}) \neq 0,$ alors : $\int_a^\infty f(t) \, dt$ converge $\iff \beta > 1$ et diverge $\iff \beta \leq 1$.

Définition : Soit f une fonction continue sur $]a, +\infty[$. Alors l'intégrale généralisée

$$\int_{a^{+}}^{\infty} f(t) dt = \int_{a^{+}}^{c} f(t) dt + \int_{c}^{\infty} f(t) dt$$

pour un $c \in]a, \infty[$ converge si et seulement si les deux intégrales généralisées convergent. Sinon, l'intégrale généralisée $\int_{a^+}^{\infty} f(t) dt$ diverge.

Définition : Si $f: \mathbb{R} \to \mathbb{R}$ continue, alors on peut considérer

$$\int_{-\infty}^{\infty} f(t) dt = \int_{-\infty}^{c} f(t) dt + \int_{c}^{\infty}, \quad c \in \mathbb{R}$$

qui est convergente si et seulement si les deux intégrales convergent. La définition ne dépend pas du choix de $c \in \mathbb{R}$.