AES-Tests

_

Abschlussprojekt Modul "Assemblerprogrammierung"

von Konstantin Blechschmidt & Tim M. Kretzschmar

<u>Inhalt:</u>

Testfall 1 – Bildschirmwechsel per Mausklick	Erfolgreich	✓
Testfall 2 – SBOX-Substitution bei Ver- und Entschlüsseln	Erfolgreich	✓
Testfall 3 – ShiftRow & Inverse	Erfolgreich	✓
Testfall 4 – ShiftColumn	Erfolgreich	✓
Testfall 5 – ShiftColumn Invers	Fehlgeschlager	n 🔀
Testfall 6 – Schluessel Anwenden (PROC)	Erfoloreich	√

<u>Testfall 1 – Bildschirmwechsel per Mausklick</u>

Hauptbildschirm:

Cursor befindet sich in der Bildschirm-Mitte

Maus über der Verschlüsselung:

Cursor über der Schaltfläche "Verschluesseln"

Nach dem Klick:

<u>Testfall 2 – SBOX-Substitution bei Ver- und Entschlüsseln</u>

Eingabe Verschlüsselung

Beweis:

Buchstabe	HexWert (ASCII)	Substitutionswert	
Н	48 _{hex} (72 _{dez})	52 _{hex}	\
a	61 _{hex} (97 _{dez})	EF _{hex}	\
1	6C _{hex} (108 _{dez})	50 _{hex}	✓
1	6C _{hex} (108 _{dez})	50 _{hex}	\
0	6F _{hex} (111 _{dez})	A8 _{hex}	✓
Н	48 _{hex} (72 _{dez})	52 _{hex}	\
e	65 _{hex} (101 _{dez})	4D _{hex}	✓
r	72 _{hex} (114 _{dez})	40 _{hex}	✓
r	72 _{hex} (114 _{dez})	40 _{hex}	\
P	50 _{hex} (80 _{dez})	53 _{hex}	\
r	72 _{hex} (114 _{dez})	40 _{hex}	\
0	6F _{hex} (111 _{dez})	A8 _{hex}	\
f	66 _{hex} (102 _{dez})	33 _{hex}	\
e	65 _{hex} (101 _{dez})	4D _{hex}	\
S	73 _{hex} (115 _{dez})	8F _{hex}	>
S	73 _{hex} (115 _{dez})	8F _{hex}	>
0	6F _{hex} (111 _{dez})	A8 _{hex}	\
r	72 _{hex} (114 _{dez})	40 _{hex}	✓
"0" (Nicht die ASCII 0)	00 _{hex}	63 _{hex}	✓

Die große Menge an "63" nach der Nachricht erscheinen durch den Hintergrund, dass der *TastaturBuffer* (das Array zum Zwischenspeichern) mit 0 initialisiert ist und somit alle nicht überschriebenen Werte eine 0 innehaben.

Gegeneingabe Entschlüsseln

Die ganzen "R" entstehen wieder durch die fehlende Eingabe (0 bei der invertierten SBox ist 52_{hex} und dies entspricht dem großen R.

Testfall 3 – ShiftRow & Inverse

Eingabe Verschlüsselung

Beweis:

Buchstabe	HexWert (ASCII)	Verschoben	Blöcke	
Н	48 _{hex} (72 _{dez})	48 _{hex} (72 _{dez})	1	✓
a	61 _{hex} (97 _{dez})	61 _{hex} (97 _{dez})	1	✓
1	6C _{hex} (108 _{dez})	6C _{hex} (108 _{dez})	1	✓
1	6C _{hex} (108 _{dez})	6C _{hex} (108 _{dez})	1	✓
0	6F _{hex} (111 _{dez})	48 _{hex} (72 _{dez})	2	✓
Н	48 _{hex} (72 _{dez})	65 _{hex} (101 _{dez})	2	✓
e	65 _{hex} (101 _{dez})	72 _{hex} (114 _{dez})	2	✓
r	72 _{hex} (114 _{dez})	6F _{hex} (111 _{dez})	2	✓
r	72 _{hex} (114 _{dez})	72 _{hex} (114 _{dez})	3	✓
P	50 _{hex} (80 _{dez})	6F _{hex} (111 _{dez})	3	\
r	72 _{hex} (114 _{dez})	72 _{hex} (114 _{dez})	3	\
0	6F _{hex} (111 _{dez})	50 _{hex} (80 _{dez})	3	\
f	66 _{hex} (102 _{dez})	73 _{hex} (115 _{dez})	4	✓
e	65 _{hex} (101 _{dez})	66 _{hex} (102 _{dez})	4	✓
S	73 _{hex} (115 _{dez})	65 _{hex} (101 _{dez})	4	\
S	73 _{hex} (115 _{dez})	73 _{hex} (115 _{dez})	4	\
0	6F _{hex} (111 _{dez})	6F _{hex} (111 _{dez})	1	✓
r	72 _{hex} (114 _{dez})	72 _{hex} (114 _{dez})	1	✓
"0" (Nicht die ASCII 0)	00 _{hex}	00 _{hex}	1	✓

Schema (Verschlüsselung ShiftRow):

0	1	2	3	Rotate x0	0	1	2	3
4	5	6	7	Rotate x1	5	6	7	4
8	9	10	11	Rotate x2	10	11	8	9
12	13	14	15	Rotate x3	15	12	13	14

Gegeneingabe Entschlüsselung:

Testfall 4 - ShiftColumn

Bope:	30 31 22	a	2	<u>?</u> 7	3 1 2 3 1 2 1 1	7 1 3) =	6,			AL	LES	HEX	, ,	≥ Eing	ale	<i>`0</i> `	~j~	2 3
	33)	a	, \3	3	1 1	2/	/	63	/										
	I)=	:)	30.2	Φ	31.3	Ф	32		Ф										
		=	60	Ð	53	θ	32	2	θ	33									
				33					1										
		=	32 (6)																
	T/)_	2	20.1	Ð	31.2	Ф	32.	3	Ð	33.	1								
							=648												
		ے	30	Ф	62	Θ	5	6	Ø	33									
			27.61	52					65										
		=	37 (61)																
	T/)_		30.1	Ð	37.1	Ф	32.	2	Ф	33.	3								
	/									=66 83.	?								
		ے	30	θ	31	Θ	64		Ð	55									
			20 (1)	1					31										
		=	30 (62)																
	亚)=	.)	30.3	Ф	31.1	Ф	32.	1	Ф	33.	2								
			=60050																
		2	50	Ф	31	Θ	32		Ð	66			1.	,	()				
				61					54				60		32 37 30 35				
		-	35 (6)									ر =	6,	=	20 1				
													h.		35				

Screenshot:

Testfall 5 – ShiftColumn Invers

<u>Testfall 6 – SchluesselAnwenden (PROC)</u>

Es wird hier der implementierte Standardschlüssel ohne Expansion verwendet zur Demonstration.

Theoretisch:

Buchstabe	HexWert (ASCII)	Schlüsselwert	XOR Ergebnis	
Н	48 _{hex} (72 _{dez})	51 _{hex}	19 _{hex}	✓
a	61 _{hex} (97 _{dez})	DB _{hex}	BA _{hex}	✓
1	6C _{hex} (108 _{dez})	AD _{hex}	C1 _{hex}	✓
1	6C _{hex} (108 _{dez})	CF _{hex}	A3 _{hex}	✓
0	6F _{hex} (111 _{dez})	83 _{hex}	EChex	✓
Н	48 _{hex} (72 _{dez})	9F _{hex}	D7 _{hex}	✓
e	65 _{hex} (101 _{dez})	BD _{hex}	D8 _{hex}	✓
r	72 _{hex} (114 _{dez})	27 _{hex}	55 _{hex}	✓
r	72 _{hex} (114 _{dez})	B7 _{hex}	C5 _{hex}	✓
P	50 _{hex} (80 _{dez})	FF _{hex}	AF _{hex}	✓
r	72 _{hex} (114 _{dez})	25 _{hex}	57 _{hex}	✓
0	6F _{hex} (111 _{dez})	8A _{hex}	E5 _{hex}	✓
f	66 _{hex} (102 _{dez})	1F _{hex}	79 _{hex}	✓
e	65 _{hex} (101 _{dez})	A6 _{hex}	C3 _{hex}	✓
S	73 _{hex} (115 _{dez})	B3 _{hex}	C0 _{hex}	✓
S	73 _{hex} (115 _{dez})	91 _{hex}	E2 _{hex}	✓
0	6F _{hex} (111 _{dez})	FB _{hex}	94 _{hex}	✓
r	72 _{hex} (114 _{dez})	9C _{hex}	EE _{hex}	/

Screenshot als Beweis:

