Sistema Inteligente de detección de errores tácticos en Ajedrez

Miguel Moles Mestre

Tutores:

Francisco Javier Melero Rus Francisco Herrera Triguero

Universidad de Granada

25 de julio de 2023

Miguel Moles Mestre

Universidad de Granada

Presentación

- 1 Introducción
- 2 Errores
- 3 Características
- 4 Clustering
- 5 Validación
- 6 Caso Práctico
- Conclusiones
- 8 Fin

res Características Clustering Validación Caso Práctico Concl o 00000 000000 00

Ajedrez

Introducción •000000

Miguel Moles Mestre

Universidad de Granada

Introducción Errore

rrores C

acterísticas Cluste

ustering

l<mark>idación</mark> 000000 Práctico

onclusione

Historia de los motores de ajedrez

Figure: Mac Hack VI (1967)

Figure: Kasparov vs 32 motores(1985)

Figure: Kasparov vs Deep Blue (1997)

res Características Clustering Validación Caso Práctico Co O 00000 000000 000000 00

Motores en la actualidad

Introducción

IA y ajedrez: ¿Ahora qué?

Aimchess

Clasificar errores de ajedrez

- 1 Localizar los fallos comunes en el juego de una persona
 - para mejorar
 - para un futuro oponente
- Obtener posiciones similares a los errores
- 3 Estudiar la existencia de tipos disjuntivos de posiciones

Objetivos

Introducción 0000000

> Usar aprendizaje automático no supervisado para clasificar errores de ajedrez.

Errores

aracterísticas

ustering

/alidación ၁၀၀၀၀၀၀ Caso Práctico oo Conclusione

Software Usado

python-chess

Librerías generales
Extracción de errores

AsynclO

Extracción de características

Clustering de errores

Miguel Moles Mestre

Universidad de Granada

Error de Ajedrez

Evaluaciones de Stockfish:

1 Antes: -0.1

2 Ahora: 8.2

Septimiento de la companya del companya del companya de la comp movimiento: -8.3

Errores no deseados

Posiciones muy ganadas

Posiciones muy perdidas

Miguel Moles Mestre

Programa de extracción: objetivos

- Velocidad
- Calidad de análisis
- Búsquedas cortas

Errores Características Clustering Validación Caso Práctico Conclusiones ooo oo oo oo

Paralelización

Requisitos para clustering

- Medir semejanzas
- Distancias
- Vector de características

rrores **Características** Clustering **V**alidación Caso Práctico Conclusiones ○○○○ ○○○○ ○○○○○ ○○○○○○ ○○

DeepChess

Stage 1: DBN (Pos2Vec)

Stage 2: Supervised Training (DeepChess)

Mov2Vec y Dif2Vec

Penúltima y última capa

$$\sum_{i=1}^{100} (w_{0,i} * out_i)(>, <) \sum_{i=1}^{100} (w_{1,i} * out_i)$$

Mov2Vec:

$$(w_{0,i} * out_i | i = 1 \dots 100) \cup (w_{1,i} * out_i | i = 1 \dots 100)$$

Dif2Vec:

$$((w_{0,i} - w_{1,i}) * out_i | i = 1 \dots 100)$$

Miguel Moles Mestre

rrores **Características** Clustering Validación Caso Práctico Conclusiones

Pos2Vec 1 y 2

Pos2Vec1

- Antes del entrenamiento completo
- Pos2Vec2
 - Después del entrenamiento completo

Implementación

- Crear modelos vacíos
- 2 Introducir pesos
- Guardar los 4 modelos

Base de datos

- Lichess, media 2400
- Extraídos 501.858 errores
- Transformados con mov2vec, dif2vec, pos2vec1 y pos2vec2

rrores Características **Clustering** Validación Caso Práctico Conclusiones 000 0000 **00000** 000000 00

Características 0

	Porcentaje no 0	Caract. no 0
mov2vec	10.1%	30 de 200
dif2vec	10.1%	15 de 100
pos2vec1	31.9%	85 de 100
pos2vec2	6.21%	48 de 100

Acumular características

	Caract. acumuladas	Caract. finales
mov2vec	6 → 2	26
dif2vec	3 → 1	13
pos2vec1	$35 \rightarrow 2$	52
pos2vec2	33 → 1	16

Método del codo para el número de clusters

Número de clusters final

mov2vec	20
dif2vec	20
pos2vec1	30
pos2vec2	20

es Características <mark>Clustering</mark> Validación Caso Práctico Cor oooooo oo oo

K-medias

Hasta **absoluta convergencia** o 200 iteraciones.

Etiquetas tácticas

- 38 etiquetas
- Motivos tácticos en ambos bandos

Medida de calidad de separación:

$$Punt(etiq, cluster) = max_{x \in etiq}(\frac{pIntracluster_x - pTotal_x}{1 - pTotal_x})$$

Errores Características Clustering Validación Caso Práctico Conclusiones F

Mov2Vec

Errores Características Clustering Validación Caso Práctico Conclusiones

Dif2Vec

n Errores Características Clustering <mark>Validación</mark> Caso Práctico Conclusiones Fin 0000 00000 000000 00

Pos2Vec1

Errores Características Clustering **Validación** Caso Práctico Conclusiones F

Pos2Vec2

es Características Clustering **Validación** Caso Práctico Cor o ooooo oooooo oo oo

Cluster 9, Dif2Vec

Cluster 16, Dif2Vec

Datos disponibles

- **1 William Steinitz** (1836-1900)
- 2 590 partidas
- 3020 errores extraídos

roducción Errore

rrores

aracterísticas oooo ustering ၁၀၀၀၀ Validaciór oooooo Caso Práctico ⊙● onclusione

Proporciones de clusters

Porcentaje de pertenencia de los datos a los clusters de pos2vec1

Porcentaje de pertenencia de los datos a los clusters de dif2vec

Resultados prometedores

- Clusters que separan bien
- La mayoría de ellos mejorable

Pos2Vec2 > Mov2Vec y Dif2Vec >>> Pos2Vec1

Redes neuronales: difícil obtener información de ellas

DeepChess y Stockfish no coinciden mucho

Trabajo futuro

Experimentar:

- Otras bases de datos
- Diferentes definiciones de error
- Diferentes distancias
- Más preprocesado
- Otros algoritmos de clustering

Implementar una interfaz para un usuario Usar más etiquetas de tácticos Mejorar la interpretación de los casos prácticos

¡Gracias por su atención!