1.三角比

三角比とは**三角形に関わる比**の事である。 ある三角形において、全ての角度が同じならばどんな 大きさになろうともそれぞれの辺の比率は等しい。

仮に1:2:3の比率の三角形があれば、 何倍にしようと比率は同じままである。 (これは三角形に限らず全ての図形で成り立つ)

比率は同じなので、どこかの辺の長さが分かれば 残りの辺の長さも求められる。

Aが6とすれば、 B = 9**C=** 3

このことから、

三角形の辺の比率は角度が分かればわかり、 特に直角三角形の場合は90度の角以外の角が一つでも分 かれば比率を求められる事が分かる。

そこで頻繁によく使う角度を覚えておくことで、 色んな計算を効率よく行う事が考えられた。

そして、その数値が様々な応用計算のベースとして 使われていくようになった。

これが三角比である。

2.三角比

自然界において、底や高さは出せないが斜辺は出せる という状況が頻発した。 そのため、生まれたのが

斜辺を掛けると底が出せる。 $\cos \theta$:

 $\sin \theta$: 斜辺を掛けると高さが出せる。

であり、例外的に底が分かるときがあるので、

 $tan \theta$: 底を掛けると高さが分かる。

が生まれた。

これらを合わせて三角比と言う。

$$\cos \theta = \frac{c}{a}$$

$$\sin \theta = \frac{b}{a}$$

3. 覚えておくべき三角比

結局のところ、頻繁に使われる角度は決まっている。 であるから、次の角度の三角比を覚えておけば良い。

$$\cos 30^{0} = \frac{\sqrt{3}}{2} \qquad \cos 45^{0} = \frac{1}{\sqrt{2}} \qquad \cos 60^{0} = \frac{1}{2}$$

$$\sin 30^{0} = \frac{1}{2} \qquad \sin 45^{0} = \frac{1}{\sqrt{2}} \qquad \sin 60^{0} = \frac{\sqrt{3}}{2}$$

$$\tan 30^{0} - \frac{1}{2} \qquad \tan 45^{0} = 1 \qquad \tan 60^{0} = \sqrt{3}$$

$$\tan 30^0 = \frac{1}{\sqrt{3}}$$
 $\tan 45^0 = 1$ $\tan 60^0 = \sqrt{3}$

|1| 直角三角形の三角比

(1) 右の図の直角三角形ABC において、 sinA, cosA, tanA の値を求めよ。

(2) 右の図の直角三角形ABCにおいて、 sinA, cosA, tanA の値を求めよ。

(3) 右の図の直角三角形を参考に、次の三角比の値を求めよ。

① sin30°

- ② cos45°
- ③ tan60°

2 三角比の表

三角比の表を用いて、次の図の 直角三角形 ABC における $\angle A$ の およその大きさ A を求めよ。

(1)

(2)

(3)

三角比の表

A	sinA	cosA	tanA				
~				A	sinA	cosA	tanA
25°	0.4226	0.9063	0.4663	35°	0.5736	0.8192	0.7002
26°	0.4384	0.8988	0.4877	36°	0.5878	0.8090	0.7265
27°	0.4540	0.8910	0.5095	37°	0.6018	0.7986	0.7536
28°	0.4695	0.8829	0.5317	38°	0.6157	0.7880	0.7813
29°	0.4848	0.8746	0.5543	39°	0.6293	0.7771	0.8098
30°	0.5000	0.8660	0.5774	40°	0.6428	0.7660	0.8391
31°	0.5150	0.8572	0.6009	41°	0.6561	0.7547	0.8693
32°	0.5299	0.8480	0.6249	42°	0.6691	0.7431	0.9004
33°	0.5446	0.8387	0.6494	43°	0.6820	0.7314	0.9325
34°	0.5592	0.8290	0.6745	44°	0.6947	0.7193	0.9657
				45°	0.7071	0.7071	1.0000
				~			

当該ファイルに関連のある部分を抜粋しています。

3 鋭角の三角比の相互関係

 $\overline{\overset{=}{ heta}}$ は鋭角とする。

- (1) $\cos \theta = \frac{2}{7}$ のとき、 $\sin \theta \ge \tan \theta$ の値を求めよ。
- (2) $\tan \theta = \frac{1}{2}$ のとき、 $\sin \theta \ \ \ \cos \theta$ の値を求めよ。

4 三角比から θ を求める シータは0°~90°とする。

- (1) $\sin\theta = 1/\sqrt{2}$
- (2) $\cos = 1/2$

(3) $\tan\theta=1$