

Noms de réseaux par leur taille

Taille	Туре	Example
Pièce	PAN (Personal Area Network)	Bluetooth (e.g., headset)
Batiment	LAN (Local Area Network)	WiFi, Ethernet
Ville	MAN (Metropolitan Area Network)	Cable, DSL
Pays	WAN (Wide Area Network)	Large ISP
Planète	The Internet (network of all networks)	The Internet!

ZZ

Lexique des composants réseaux

Utilise le réseau upports apps	Skype, iTunes, Amazon Laptop, mobile, desktop
upports apps	Laptop, mobile, desktop
telaie des nessages entre les liens	Access point, cable/DSL modem
connecte les loeuds	Wires, wireless
∩ •	essages entre es liens onnecte les

Valeur de la connectivité

- "Metcalfe's Law" ~1980:
 - La valeur d'un réseau de N noeuds est proportionnelle à N²
 - Les grand réseaux ont beaucoup plus de valeur que les petits réseaux

Connectivité d'Internet

Exigence 2 : Partage des ressources efficace

Multiplexage de plusieurs flux logiques sur un seul lien physique

- Ressource : liens et nœuds
- Comment partager un lien ?
 - Multiplexage
 - Démultiplexage
 - Multiplexage temporel synchrone
 - Tranches de temps/données transmises dans des tranches prédéterminées

Partage des ressources efficace

Un commutateur multiplexant des paquets provenant de plusieurs sources sur un lien partagé

- FDM : multiplexage par répartition en fréquence
- Multiplexage statistique
 - Les données sont transmises en fonction de la demande de chaque flux.
 - Qu'est-ce qu'un flux ?
 - Paquets vs messages
 - FIFO, Round-Robin, Priorités (Qualité de service (QoS))
 - Congestionné?

Hes-so// GENÈVE

Haute école du paysage, d'ingénierie et d'architecture de Genève

Exigence 3 : Abstraction commune aux applications

Processus communiquant sur un canal abstrait

Canaux logiques

- Chemin de communication d'application à application ou canal
- Abstraction d'un canal pour toutes les applications
 - Flux d'octets sans perte
 - Transmission par paquet avec pertes possibles
 - Ordre des messages ?
 - Confidentialité ?

Modèles de communication courants

- Client Serveur
- Deux types de canaux de communication
 - Canaux de demande/réponse
 - Canaux de flux de messages

et d'architecture de Genève

Haute école du paysage, d'ingénierie

Fiabilité

- Le réseau doit masquer les erreurs
- Les paquets sont erronés
 - Erreurs sur les bits (1 à 0, et vice versa)
 - Erreurs en rafale plusieurs erreurs consécutives
- Les paquets sont perdus (congestion)
- Panne d'un lien ou d'un nœud
- Retard de livraison des messages
- Les messages sont livrés dans le désordre

Exigence 4 : (inter) opérabilité

- Tension entre :
 - Évolutivité d'un réseau
 - Stabilité de gestion
 - Inter-opérabilité
- Deux options face à la complexité
 - On ne change rien
 - On structure
 - On automatise la Configuration
 - On uniformise et on standardise tout

Hes-so GENEV

Haute école du paysage, d'ingénierie et d'architecture de Genève

Architecture de réseau

Architecture de réseau

Application programs

Process-to-process channels

Host-to-host connectivity

Hardware

Exemple d'architecture réseau en couches

Architecture de réseau

Système en couches avec des abstractions alternatives disponibles à une couche donnée

Protocoles

- Le protocole définit les interfaces entre les couches d'un même système et avec les couches du système homologue
- Ils sont des éléments constitutifs d'une architecture réseau
- Chaque protocole a deux interfaces
 - interface de service : opérations sur ce protocole
 - interface peer-to-peer : messages échangés avec les pairs
- Le terme "protocole" a plusieurs sens
 - spécification de l'interface peer-to-peer
 - module qui implémente cette interface

Interfaces

Interfaces de service et de couche identique

Protocoles et standardisation

- Spécification du protocole : prose, pseudo-code, diagramme de transition d'état
- Interopérable : lorsque deux ou plusieurs protocoles qui implémentent la spécification arrivent à communiquer
- IETF : Groupe de travail sur l'ingénierie Internet
 - Internet Engineering Task Force
 - https://ietf.org
- ITU : Union Internationale des Télécom
 - Basé à Genève

Hes-so// GENÈVE

Haute école du paysage, d'ingénierie et d'architecture de Genève

Graphe de protocole

Exemple de graphique de protocole

les nœuds sont les protocoles et les liens la relation « dépend de »

Hes-so//GENÈVE

Haute école du paysage, d'ingénierie et d'architecture de Genève

Encapsulation

Les messages de haut niveau sont encapsulés dans des messages de bas niveau

Hes-so//GENÈVE

Haute école du paysage, d'ingénierie et d'architecture de Genève

Architecture OSI

Le modèle OSI à 7 couches

OSI – Interconnexion des systèmes ouverts

Description des couches

- Couche physique
 - Gère la transmission de bits bruts sur une liaison de communication vers ou depuis un signal analogique.
- Couche de liaison de données
 - Collecte un flux de bits dans un agrégat de bits plus grand appelé une trame
 - L'adaptateur réseau avec le pilote de périphérique dans le système d'exploitation implémente le protocole dans cette couche
 - Les trames sont d'abord délivrées aux hôtes.
- Couche réseau
 - Gère le routage entre les nœuds d'un réseau à commutation de paquets
 - L'unité de données échangées entre les nœuds de cette couche est appelée un paquet

Les couches physiques, liaison de données, et réseau sont implémentées sur tous les nœuds du réseau

Description des couches

- Couche Transport
 - Implémente un canal de processus à processus
 - L'unité d'échanges de données dans cette couche est appelée un message
- Couche Session
 - Fournit un espace de noms utilisé pour relier les flux de transport potentiellement différents qui font partie d'une seule application
- Couche de présentation
 - Préoccupé par le format des données échangées entre pairs
- Couche d'application
 - Normaliser le type commun d'échanges

La couche de transport et les couches supérieures s'exécutent généralement uniquement sur les hôtes finaux et non sur les commutateurs et routeurs intermédiaires

Hes-so// GENÈVI

Haute école du paysage, d'ingénierie et d'architecture de Genève

Architecture Internet

- Défini par l'IETF
- Trois caractéristiques principales
 - N'implique pas une stratification stricte.
 L'application est libre de contourner les couches de transport définies et d'utiliser directement IP ou d'autres réseaux sousjacents
 - Une forme de sablier large en haut, étroit au milieu et large en bas. IP sert de couche unificatrice pour l'architecture
 - Pour qu'un nouveau protocole soit officiellement inclus dans l'architecture, il doit y avoir à la fois une spécification de protocole et au moins une (et de préférence deux) implémentations représentatives de la spécification

