Exercises from Dummit and Foote Chapter 13 on Field Theory

Wesley Basener

July 22, 2025

Problem 1.1. Show that $p(x) = x^3 + 9x + 6$ is irreducible in $\mathbb{Q}[x]$. Let θ be a root of p(x). Find the inverse of $1 + \theta$ in $\mathbb{Q}(\theta)$.

Proof. The polynomial p(x) is monic and all non leading terms are divisible by 3 with the constant term not divisible by 3^2 . So, by Eisenstein's criterion, the polynomial is irreducible.

By the Euclidean property, there are polynomials a(x) and b(x) such that

$$a(x)(1+x) + b(x)(x^3 + 9x + 6) = 1$$

Mapping this polynomial to $Q(\theta)$ yields,

$$a(\theta)(1+\theta)=1$$

So $a(\theta)$ is the inverse of $(1 + \theta)$.

We can find $a(\theta)$ with the Euclidean algorithm (D&F p275). Doing so gives us

$$(x^3 + 9x + 6) = (x+1)(x^2 - x + 10) - 4$$

Hence, the inverse of $\theta + 1$ is $\frac{1}{4}(\theta^2 - \theta + 10) = \frac{1}{4}\theta^2 - \frac{1}{4}\theta + \frac{5}{2}$. This can be verified with

$$(\theta+1)(\frac{1}{4}\theta^2 - \frac{1}{4}\theta + \frac{5}{2}) = \frac{1}{4}(\theta^3 - 9\theta + 10) = \frac{1}{4}(\theta^3 + 9\theta + 6) + 1 = 1$$

Problem 1.2. Show that $x^3 - 2x - 2$ is irreducible over \mathbb{Q} and let θ be a root. Compute $(1 + \theta)(1 + \theta + \theta^2)$ and $\frac{1+\theta}{1+\theta+\theta^2}$ in $\mathbb{Q}(\theta)$.

Proof. This polynomial is again irreducible by Eisenstein. Multiplying out the given product yields

$$(1+\theta)(1+\theta+\theta^2) = 1 + 2\theta + 2\theta^2 + \theta^3$$

Dividing by $\theta^3 + \theta + 1$ yields a remainder of $2\theta^2 + \theta$. //TODO

Problem 1.3. Show that $x^3 + x + 1$ is irreducible over \mathbb{F}_2 and let θ be a root. Compute the powers of θ in $\mathbb{F}_2(\theta)$.

Proof. The polynomial is congruent to 1 mod 2 whenever it is evaluated at 1 and 0. Hence, it has no roots in \mathbb{F}_2 and is irreducible there.

We immediately have that $\theta^3 = \theta + 1$. We can also see that $\theta = \theta^3 + 1$ so $\theta^2 = \theta^6 + 1$. Dividing the base polynomial by this renders θ^2 as a remainder, so their is no reduced form of θ^2 . θ is obviously itself and $\theta^0 = 1$.

For θ^n where n > 3, we can factor n into a sum of 3s and some b equal to either 1 or 2 as n = 3a + b yielding $\theta^n = (\theta)^{3a} \cdot \theta^b = (\theta + 1)^a \cdot \theta^b$. Repeating the process for a and factoring when needed will eventually terminate with a polynomial of degree less than 3.

Problem 1.5. Suppose α is a rational root of a monic polynomial in $\mathbb{Z}[x]$. Prove that α is an integer.

Proof. Let $a, b \in \mathbb{Z}$ be such that $\frac{a}{b} = \alpha$ is fully reduced. By the rational roots theorem, b divides the leading term of the polynomial, which is 1. So, b is either 1 or -1. In either case, α is an integer.

Problem 1.6. Show that if α is a root of $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, then $a_n \alpha$ is a root of $x^n + a_{n-1} x^{n-1} + a_n a_{n-2} x^{n-2} + ... + a_n^{n-2} a_1 x + a_n^{n-1} a_0$.

Proof. Evaluating the later polynomial yields

$$a_n^n \alpha^n + a_n^{n-1} a_{n-1} \alpha^{n-1} + a_n^{n-1} a_{n-2} \alpha^{n-2} + \dots + a_n^{n-1} a_1 \alpha + a_n^{n-1} a_0 = a_n^{n-1} (a_n \alpha^n + a_{n-1} \alpha^{n-1} + \dots + a_1 \alpha + a_0)$$

Which is just a_n^{n-1} times the original polynomial evaluated at its root. Thus, $a_n\alpha$ is a root of the given polynomial.

Problem 1.7. Prove that $x^3 - nx + 2$ is irreducible for $n \neq -1, 3, 5$.

Proof. Suppose it is reducible, then we can rewrite the polynomial as $x^3 - nx + 2 = (x - \theta)(x^2 + ax + b)$ for some root θ . By Gauss's lemma, we can assume a, b, and θ are integers. From this, we can infer that $a = \theta$, which allows us to rewrite the equation as $(x-a)(x^2 + ax + b)$. We can further infer that ab = -2 and $a^2 - b = n$. Since a and b are integers, the only options for their values are (a = 1, b = -2), (a = -1, b = 2), (a = 2, b = -1), and (a = -2, b = 1). These result in n being equal to -1, -1, 5, and 3 respectively. Hence, if n is not one of these options, the polynomial is irreducible.

Problem 2.1. Let \mathbb{F} be a finite field of characteristic p. Prove that $\mathbb{F} = p^n$ for some positive integer n.

Proof. The field \mathbb{F} is an extension of its prime subfield $(1_{\mathbb{F}})$. By theorem 17, \mathbb{F} being finite implies that it is a extended from $1_{\mathbb{F}}$ by a finite number or elements $\alpha_1, \alpha_2, ..., \alpha_i$. Each element has finite dimension $k_1, k_2, ..., k_j$. Hence, by lemma 16 and theorem 14, the field has degree $n = k_1 k_2 ... k_j$, and any element can be represented as a linear sum $a_1\beta_1 + a_2\beta_2 + ... + a_n\beta_n$, with $a_1, ..., a_n \in (1_{\mathbb{F}})$ and each β_l being powers of roots of polynomials with solutions $\alpha_1, ..., \alpha_i$. Since their are p choices for each a_l , it is easy to see that there are p^n unique choices for any element in \mathbb{F} .

Problem 2.2. Let $g(x) = x^2 + x - 1$ and let $h(x) = x^3 - x + 1$. Obtain fields of 4, 8, 9, and 27 elements by adjoining a root of f(x) to the field F where f(x) = g(x) or h(x) and $F = \mathbb{F}_2$ or \mathbb{F}_3 . Write down the multiplication tables for the fields with 4 and 9 elements and show that the nonzero elements form a cyclic group.

Proof. By proposition 11, the fields $\mathbb{F}_2/(g(x))$, $\mathbb{F}_2/(h(x))$, $\mathbb{F}_3/(g(x))$, and $\mathbb{F}_3/(h(x))$ are of order 4, 8, 9, and 27 respectively.

Letting α be a root for g(x), the multiplication tables of the first and third fields are

				1	α 1	$1 + \alpha$		
		_	1	1	α 1	$1 + \alpha$		
			α	α	$1 + \alpha$	1		
			$1 + \alpha$	$1 + \alpha$	1	α		
	1	2	α	2α	$1 + \alpha$	$2 + \alpha$	$1+2\alpha$	$2+2\alpha$
1	1	2	α	2α	$1 + \alpha$	$2 + \alpha$	$1+2\alpha$	$2+2\alpha$
2	2	1	2α	α	$2+2\alpha$	$1+2\alpha$	$2 + \alpha$	$1 + \alpha$
α	α	2α	$1 + \alpha$	$2 + \alpha$	$1+2\alpha$	$1 + \alpha$	7	8
2α	2α	1	3	4	5	6	7	8
$1 + \alpha$	$1 + \alpha$	1	3	4	5	6	7	8
$2 + \alpha$	$2 + \alpha$	1	3	4	5	6	7	8
$1+2\alpha$	$1+2\alpha$	1	3	4	5	6	7	8
$2+2\alpha$	$2+2\alpha$	1	3	4	5	6	7	8

Problem 2.3. Determine the minimal polynomial over \mathbb{Q} for the element 1+i.

Proof. The minimal polynomial is the irreducible monic polynomial of minimal degree with 1+i as a root. Since there is obviously no degree 1 polynomial with such a root, we start by solving the quadratic equation for 1+i

$$(1+i)^2 + b(1+i) + c = 0 \rightarrow 2i + bi + b + c = 0$$

The equation is solved by setting b=-2 and c=2. Hence, the minimal polynomial is $x^2-2x+2x$

Problem 2.5. Let $F = \mathbb{Q}(i)$. Prove that $x^3 - 2$ and $x^3 - 3$ are irreducible over F.

Proof. Both of these follow from Eisenstein's criterion, since 2 and 3 are not squares. \Box

Problem 2.7. Prove that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ [one inclusion is obvious, for the other consider $(\sqrt{2} + \sqrt{3})^2$ etc.]. Conclude that $[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = 4$. Find an irreducible polynomial satisfied by $\sqrt{2} + \sqrt{3}$.

Proof. Since any element of $\mathbb{Q}(\sqrt{2} + \sqrt{3})$ contains a rational number, $\sqrt{2}$, $\sqrt{3}$, it is obviously a s subset of the field generated by these elements, namely $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ Thus, we have $\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

For the other inclusion, consider $(\sqrt{2} + \sqrt{3})^3 = 11\sqrt{2} + 9\sqrt{3}$. Hence, subtracting this from $11(\sqrt{2} + \sqrt{3})$ yields $2\sqrt{3}$. From there, it is obvious that $\sqrt{2}$ and $\sqrt{3}$ are in $\mathbb{Q}(\sqrt{2} + \sqrt{3})$.

By theorem 14, we have $4 = [\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}].$

To find the minimal polynomial, we first note that we are looking for a fourth degree term. Raising $(\sqrt{2} + \sqrt{3})$ to the fourth power gives us $49 + 20\sqrt{6}$. Raising it to the second gives $5 + 2\sqrt{6}$. So, to cancel the $\sqrt{6}$ out, we set the x^4 coefficient to 1 and x^2 's coefficient to -10. Setting the constant to 1 leaves us with

$$(\sqrt{2} + \sqrt{3})^4 - 10(\sqrt{2} + \sqrt{3})^2 + 1 = 0$$

Hence, the minimal polynomial for this term is $x^4 - 10x^2 + 1$.

Problem 2.9. Let F be a field of characteristic $\neq 2$. Let a, b be elements of the field F with b not a square in F. Prove that a necessary and sufficient condition for $\sqrt{a+\sqrt{b}}=\sqrt{m}+\sqrt{n}$ for some m and n in F is that a^2-b is a square in F. Use this to determine when the field $\mathbb{Q}(\sqrt{a+\sqrt{b}})(a,b\in\mathbb{Q})$ is biquadratic over \mathbb{Q} .

Proof. The term $\sqrt{a+\sqrt{b}}$ is a root of the polynomial $x^4-2ax^2-b+a^2$.

First, suppose $\sqrt{m} + \sqrt{n} = \sqrt{a + \sqrt{b}}$. Then, $\sqrt{m} + \sqrt{n}$ is a root of the polynomial and the term $(\sqrt{m} + \sqrt{n})^4 + 2a(\sqrt{m} + \sqrt{n})^2$ must be in \mathbb{Q} . So 2a must be such that the roots in the following expression cancel.

$$4\sqrt{nm^3} + 4\sqrt{nm^3} + m^2 + n^2 + 6nm + 2a(n + \sqrt{nm} + m)$$

To do this, we solve for a in the equation $2a(2\sqrt{nm}) = -4\sqrt{nm^3} - 4\sqrt{mn^3}$. The solution is of course m + n = a. Plugging this result in for a in the previous equation yields

$$4\sqrt{nm^3} + 4\sqrt{nm^3} + m^2 + n^2 + 6nm + 2a(n + \sqrt{nm} + m) = -m^2 + 2mn - n^2 = -(m - n)^2$$

Ultimately, we have

$$-(m-n)^2 + a^2 - b = 0$$

whenever $\sqrt{m} + \sqrt{m} = \sqrt{a + \sqrt{b}}$. Hence, $a^2 - b$ is a square. Now suppose that $a^2 - b$ is a square. Then, let $m = \frac{2a-1}{2}$ and $n = \frac{1}{2}$. We have

Problem 2.11. (a) Let $\sqrt{3+4i}$ denote the square root of the complex number 3+4i that lies in the first quadrant and let $\sqrt{3-4i}$ denote the square root of 3-4i that lies in the fourth quadrant. Prove that $[\mathbb{Q}(\sqrt{3+4i}+\sqrt{3-4i}):\mathbb{Q}]=1$.

(b) Determine the degree of the extension $\mathbb{Q}(\sqrt{1+\sqrt{-3}}+\sqrt{1-\sqrt{-3}})$ over \mathbb{Q} .

Proof. (a) This is the same as proving $\sqrt{3+4i}+\sqrt{3-4i}$ is a rational number. Using Euler's identity

$$\begin{split} \sqrt{3+4i} + \sqrt{3-4i} &= \\ \sqrt{5}(\cos(\arctan(\frac{4}{3})) + i\sin(\arctan(\frac{4}{3})))^{\frac{1}{2}} + \sqrt{5}(\cos(\arctan(\frac{4}{3})) + i\sin(\arctan(\frac{4}{3})))^{\frac{1}{2}} \\ &= \\ 2\sqrt{5}\cos(\frac{1}{2}\arctan(\frac{4}{3}))) &= \sqrt{20}\cos(\frac{1}{2}\arctan(\frac{4}{3}))) \end{split}$$

Next, we factor the trigonometric functions with the identies $\cos(\frac{\theta}{2}) = \pm \sqrt{\frac{1+\cos(\theta)}{2}}$ and $\cos(\arctan(\theta)) = \frac{1}{\sqrt{1+\theta^2}}$.

$$\sqrt{20}(\cos(\frac{1}{2}\arctan(\frac{4}{3})) = \pm\sqrt{20}\sqrt{\frac{1+\cos(\arctan(\frac{4}{3}))}{2}}$$

$$=$$

$$\pm\sqrt{20}\sqrt{\frac{1+\frac{1}{1+(\frac{4}{3})^2}}{2}} = \pm\sqrt{10+\frac{90}{25}}$$

$$=$$

$$\pm\sqrt{\frac{340}{25}} = \pm\sqrt{16} = \pm4$$

Hence, $\mathbb{Q}(\sqrt{1+\sqrt{-3}}+\sqrt{1-\sqrt{-3}})\cong\mathbb{Q}$ and the degree of the extension is 1.

(b). We work in a similar manner to reduce the expression. By Euler's identity we have

$$\sqrt{1+\sqrt{-3}} + \sqrt{1-\sqrt{-3}}$$

$$\begin{split} \sqrt{2}(\cos(\arctan(\sqrt{3})) + i\sin(\arctan(\sqrt{3})))^{\frac{1}{2}} + \sqrt{2}(\cos(\arctan(\sqrt{3})) - i\sin(\arctan(\sqrt{3})))^{\frac{1}{2}} &= \sqrt{2}(\cos(\frac{1}{2}\arctan(\sqrt{3})) + i\sin(\frac{1}{2}\arctan(\sqrt{3}))) \\ &= \\ 2\sqrt{2}\cos(\frac{1}{2}\arctan(\sqrt{3})) \end{split}$$

Using the same identities as before,

$$=2\sqrt{2}\sqrt{\frac{1+\frac{1}{\sqrt{1+\sqrt{3}^2}}}{2}}=\sqrt{4+\frac{4}{\sqrt{4}}}=\sqrt{6}$$

Hence, this extension is obviously of degree 2.

Problem 1.13. Suppose $F = \mathbb{Q}(\alpha_1, \alpha_2, ..., \alpha_n)$ where $\alpha_i^2 \in Q$ for i = 1, 2, ..., n. Prove that $\sqrt[3]{2} \notin F$.

Proof. Since each α_i^2 is in \mathbb{Q} , $[\mathbb{Q}(\alpha_i):\mathbb{Q}]=2$ for each i. So the degree of $\mathbb{Q}(\alpha_1)$ will be 1 or 2. The degree of $\mathbb{Q}(\alpha_1,\alpha_2)\mathbb{Q}(\alpha_1)(\alpha_2)$ will either be 1, 2, or $2\cdot 2$. By induction, the degree of $F=\mathbb{Q}(\alpha_1,\alpha_2,...,\alpha_n)$ will be 2^i for some $1\leq i\leq n$. Hence, the degree of F is not a divisible by 3.

By corollary 15, if $\mathbb{Q}(\sqrt[3]{2})$ is in F, then the degree of $\mathbb{Q}(\sqrt[3]{2})$ must divide [F:Q]=2. However, the degree of $\mathbb{Q}(\sqrt[3]{2})$ is 3. Therefore, $\sqrt[3]{2}$ it is not contained in F.

Problem 1.15. A field F is said to be formally real if -1 is not expressible as a sum of squares in F. Let F be a formally real field, let $f(x) \in F[x]$ be an irreducible polynomial of odd degree and let α be a root of f(x). Prove that $F(\alpha)$ is also formally real. [Pick α a counterexample of minimal degree. Show that $-1 + f(x)g(x) = (p_1(x))^2 + ... + (p_m(x))^2$ for some $p_i(x), g(x) \in F[x]$ where g(x) has odd degree $< \deg f$. Show that some root β of g has odd degree over F and $F(\beta)$ is not formally real, violating the minimality of α .]

Proof. Suppose α is a minimal degree counterexample for some field F. (It is possible to choose a minimal degree counterexample for any field F because any root α has finite degree.) By definition, $p_1(\alpha)^2 + ... + p_n(\alpha)^2 = -1$ for each $p_i(\alpha)$ being in $F(\alpha)$. Let $q(x) = (p_1(x))^2 + ... + (p_n(x))^2$. Since $q(x) \cong -1 \mod f(x)$, there is a g(x) such that -1 + f(x)g(x) = q(x). Since deg $q(x) = \deg g(x) \cdot \deg f(x)$ is even, deg g(x) must be odd. Since each term in $q(\alpha)$ is the square of a term in $F(\alpha) \cong F[x]/(f(x))$, q(x) has degree at most $2(\deg f - 1)$. Hence, g(x) has degree at most $2(\deg f - 1) - \deg f = \deg f - 2$. So $\deg g < \deg f$.

Let g'(x) be the minimal irreducible odd degree factor of g(x) and denote its root by β . Let $p'_i(x)$ be the remainder after dividing $p_i(x)$ be g(x). Then in $F(\beta)$, the term $p'_n(\beta)^2 + ... + p'_1(\beta)^2 = -1$, which is a contradiction. Therefore, $F(\alpha)$ is formally real for all odd degree roots α .

Problem 2.17. Let f(x) be an irreducible polynomial of degree n over a field F. Let g(x) be any polynomial in F[x]. Prove that every irreducible factor of the composite polynomial f(g(x)) has degree divisible by n.

Proof. If α is a root of f(x), then the roots of $g(x) - \alpha$ are roots of f(g(x)). If β is a root of $g(x) - \alpha$, then it will have degree $n \leq \deg g$. Hence, β will have degree $n \cdot \deg f$ in f(g(x)), which obviously divides $\deg f$. \square

Problem 2.19. Let K be an extension of F of degree n.

- (a) For any $\alpha \in K$ prove that α acting by left multiplication on K is an F-linear transformation of K.
- (b) Prove that K is isomorphic to a subfield of the ring of $n \times n$ matrices over F, so the ring of $n \times n$ matrices over F contains an isomorphic copy of every extension of F of degree n.

Proof. (a) Let a, b be elements of K and c be an element of F; $\alpha \cdot (a + bc) = \alpha \cdot (a) + c\alpha \cdot (b)$.

Problem 4.1. Determine the splitting field and its degree over $x^4 - 2$.

Proof. This polynomial can be factored as $(x^2 - \sqrt{2})(x^2 + \sqrt{2}) = (x - \sqrt[4]{2})(x + \sqrt[4]{2})(x - i\sqrt[4]{2})(x + i\sqrt[4]{2})$. Hence, its roots are $\pm \sqrt[4]{2}, \pm i\sqrt[4]{2}$. So the splitting field is isomorphic to $\mathbb{Q}(\sqrt[4]{2}, i\sqrt[4]{2})$. Since the polynomial is irreducible in \mathbb{Q} by Eisenstein, this extension is degree 4.

Problem 4.3. Determine the splitting field and its degree over \mathbb{Q} for $x^4 + x^2 + 1$.

Proof. Using the quadratic formula on $x^2 + x + 1$ yields $\frac{-1 \pm i\sqrt{3}}{2}$ So the roots of the original polynomial are $\pm \sqrt{\frac{-1 \pm i\sqrt{3}}{2}}$. And the splitting field is hence $\mathbb{Q}(\sqrt{\frac{-1+i\sqrt{3}}{2}}, \sqrt{\frac{-1-i\sqrt{3}}{2}})$.

Using Wolfram Alpha to find different forms of $\sqrt{\frac{-1+i\sqrt{3}}{2}}$, $\sqrt{\frac{-1-i\sqrt{3}}{2}}$, we see that the roots of the polynomial can also be written as $\pm \frac{1}{2} \pm \frac{i\sqrt{3}}{2}$. Hence, the cutting field is isomorphic to $\mathbb{Q}(i\sqrt{3})$, and the field is hence a two degree extension.

Remark 1. Since I have already done a few problems involving reduction of complex numbers, I decided to use Wolfram Alpha to simplify terms. However, while using wolfram alpha, I discovered that the polynomial $x^4 + x^2 + 1$ can be factored in $\mathbb Q$ as $(x^2 + x + 1)(x^2 - x + 1)$. This is reminiscent of example 4 on page 534 of the book. Sometimes, the degree of a splitting field is lower than expected.

Problem 4.5. Let K be a finite extension of F. Prove that K is a splitting field over F if and only if every irreducible polynomial in F[x] that has a root in K splits completely in K[x]. [Use Theorems 8 and 27.]

Proof. Suppose K is a splitting field of F, and that $f'(x) \in F[x]$ is an irreducible polynomial with a root α in K. And let f(x) be a polynomial in F[x] with root α which is split by K. Let β be any root of f'(x). By theorem 8, we can extend the identity isomorphism to conclude $F(\alpha) \cong F(\beta)$. From the division algorithm in $F(\alpha)$, we can conclude that there is a g(x) in $F(\alpha)[x]$ such that $f(x) = (x - \alpha)^n g(x)$, where n is the order of α in f(x). (note that there is no remainder since $(x - \alpha)^n$ divides f(x).) Since

Problem 5.1. Prove that the derivative D_x of a polynomial satisfies $D_x(f(x)+g(x)) = D_x(f(x))+D_x(g(x))$ and $D_x(f(x)g(x)) = D_x(f(x))g(x)+D_x(g(x))f(x)$ for any two polynomials f(x) and g(x).

Proof. Let $f(x)=f_mx^m+f_{m-1}x^{m-1}+\ldots+f_1x+f_0$ and $g(x)=g_nx^n+g_{n-1}x^{n-1}+\ldots+f_1x+f_0$. The derivative of f(x)+g(x) is then $mf_mx^{m-1}+\ldots+f_1+ng_nx^{n-1}+\ldots+g_1$, which is obviously $D_x(f(x))+D_x(g(x))$. For f(x)g(x), we can rewrite the product as $\sum_{i=0}^n\sum_{j=0}^mg_if_jx^{i+j}$. The derivative of this is

$$\Sigma_{i=0}^{n} \Sigma_{j=0}^{m} (i+j) g_{i} f_{j} x^{i+j-1} = \Sigma_{i=0}^{n} \Sigma_{j=0}^{m} (i g_{i} x^{i-1}) f_{j} x^{j} + g_{i} x^{i} (j f_{j} x^{j-1}) = 0$$

Distributing the sumations leads us to

$$\sum_{i=0}^{n} i g_i x^{i-1} \sum_{j=0}^{m} f_j x^j + \sum_{i=0}^{n} g_i x^i \sum_{j=0}^{m} j f_j x^{j-1}$$

Which is of course the equivalent to $D_x(g(x))f(x) + g(x)D_x(f(x))$.

Problem 5.3. Prove that d divides n if and only if $x^d - 1$ divides $x^n - 1$. [Note that if n = qd + r then $x^n - 1 = (x^{qd+r} - x^r) + (x^r - 1)$.]

Proof. Suppose d divides n. Then, for any α a root of x^d-1 , $\alpha^n-1=(\alpha^{dq}-1=1^q-1=1-1=0.$ So x^n-1 has all of x^d-1 roots. Furthermore, since both polynomials are separable, all of x^d-1 roots show up exactly once in its factorization. From this we can conclude that x^d-1 factors out of x^n-1 . Now, suppose x^d-1 divides x^n-1 . Then any root α of x^d-1 is also a root of x^n-1 . As noted in the hint, we can rewrite x^n-1 as $(x^{qd+r}-x^r)+(x^r-1)$. At α , this must evaluate to 0. So, we have $0=(\alpha^{qd+r}-\alpha^r)+(\alpha^r-1)=(\alpha^{qd}\alpha^r-\alpha^r)+(\alpha^r-1)=(\alpha^r-\alpha^r)+(\alpha^r-1)=(\alpha^r-1)$. Hence x^r-1 must be zero for any root of x^d-1 . Since there are d>r distinct roots for x^d-1 , this can only be true if x^r-1 is identically 0. Therefore, r=0 and d|n.

Problem 5.5. For any prime p and any nonzero $a \in \mathbb{F}_p$ prove that $x^p - x + a$ is irreducible and separable over \mathbb{F}_p . [For the irreducibility: One approach - prove first that if a is a root then a + 1 is also a root. Another approach - suppose it's reducible and compute derivatives.]

Proof. Suppose for the sake of contradiction that $\alpha \in \mathbb{F}_p$ is a root of the polynomial. Then $(\alpha+1)^p - (\alpha+1) + a$ can be rewritten by the Frobenius endomorphism theorem to $\alpha^p + 1^p - \alpha + 1 + a = \alpha^p + \alpha + a$. Hence, $\alpha+1$ is also a root. By induction, this means that every element of the field is a root of the polynomial. Hence, a is a root and $0 = a^p - a + a = a^p$. This is a contradiction since a is nonzero and fields are integral domains. Therefore, the polynomial is irreducible in \mathbb{F}_p . It follows from proposition 37 that the polynomial is also separable.

Problem 5.7. Suppose K is a field of characteristic p which is not a perfect field: $K \neq K^p$. Prove there exist irreducible inseparable polynomials over K. Conclude that there exist inseparable finite extensions of K.

Proof. Let a be an element of K such that $\alpha = a^{\frac{1}{p}} \notin K$. The field $K(\alpha)$ is still of characteristic p. So we have $(x-\alpha)^p = x^p - \alpha^p = x^p - a$. Hence, $x^p - a$ is inseparable, as well as being obviously irreducible in K. Therefore, $K(\alpha)$ is a finite inseparable extension of K. To see that there are multiple irreducible inseparable polynomials in K and multiple inseparable extensions of K, note that $a+a \neq a$ is also not perfect since $(a+a)^{\frac{1}{p}} = \alpha + \alpha \notin K$.

Problem 5.9. Show that the binomial coefficient $\binom{pn}{pi}$ is the coefficient of x^{pi} in the expansion of $(1+x)^{pn}$. Working over \mathbb{F}_p show that this is the coefficient of $(x^p)^i$ in $(1+x^p)^n$ and hence prove that $\binom{pn}{pi}=\binom{n}{i}(m+1)^n$ and p.

Proof. By the binomial theorem, the coefficient of x^{pi} is $\binom{pn}{pi}$. In \mathbb{F} , we can rewrite $(1+x)^{pn}$ as $(1+x^p)^n$. Hence, $\binom{pn}{pi}$ is also the coefficient of $(x^p)^i$ in the expansion.