Zhengdong Zhang

Email: zhengz@uoregon.edu

Course: MATH 635 - Algebraic Topology II

Instructor: Dr.Daniel Dugger

Homework 4

ID: 952091294

Term: Winter 2025

Due Date: 6^{th} February, 2025

Problem 1

Prove that every map $\mathbb{R}P^6 \to S^6$ is homotopic to a map that is constant on the subspace $\mathbb{R}P^5 \subseteq \mathbb{R}P^6$.

Solution: Given a map $f: \mathbb{R}P^6 \to S^6$, by CAT, f is homotopic to a cellular map $f': \mathbb{R}P^6 \to S^6$. Note that S^6 has only one 0-cell and one 6-cell, so the 5-skeleton of S^6 is a 0-cell, while the 5-skeleton of $\mathbb{R}P^6$ is homeomorphic to $\mathbb{R}P^5$. the cellularity implies that f' is constant on $\mathbb{R}P^5 \subseteq \mathbb{R}P^6$.

Problem 2

If S_1 and S_2 and S_3 are pointed set, then a sequence $S_1 \xrightarrow{f} S_2 \xrightarrow{g} S_3$ is said to be exact (in the middle spot) if Im $f = g^{-1}(*)$.

Let (X, A) be a relative CW complex, and choose a basepoint of A (also regard as a basepoint of X). Use HEP to prove that for any pointed space Z, the evident sequence

$$[X/A, Z]_* \xrightarrow{f} [X, Z]_* \xrightarrow{g} [A, Z]_*$$

is exact in the middle spot. Here $[-,-]_*$ denotes homotopy classes of maps relative to the basepoint.

Solution: Let $\pi: X \to X/A$ be the quotient map. Take $\alpha: X/A \to Z$ be a pointed map. We know by definition that $f([\alpha]) = [\alpha \circ \pi]$. And

$$(g \circ f)([\alpha]) = g([\alpha \circ \pi]) = [\alpha \circ \pi|_A].$$

We know that the map $\alpha \circ \pi$ factors through X/A, this means that it sends every point in A to the base point in Z. So we have Im $f \subset q^{-1}(*)$.

On the other hand, consider $\beta: X \to Z$ with the property that $\beta|_A$ is homotopic to the constant map. We need to show that there exists $\gamma: X/A \to Z$ such that $f([\gamma]) = [\beta]$. β being homotopic to the constant map C_* implies there exists $h: A \times I \to Z$ such that $h(-,0) = \beta|_A$ and $h(-,1) = C_*$. We have the following diagram:

$$X \times \{0\} \cup A \times I \xrightarrow{\beta \cup h} Z$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \times I$$

By HEP, we have a homotopy $H: X \times I \to Z$ such that $H(-,0) = \beta$. Take $\delta = H(-,1): X \to Z$, since H is extended from h, we know for any $x \in A$, $\delta(x) = H(x,1) = h(x,1) = *$ is the constant map. So δ factors through X/A, namely there exists $\gamma: X/A \to Z$ such that $\gamma \circ \pi = \delta$. This is

the same as saying $f([\gamma]) = [\beta]$. We have proved that $g^{-1}(*) \subset \text{Im } f$. Thus, we can conclude that $\text{Im } f = g^{-1}(*)$.

Problem 3

Let $X_1 \hookrightarrow X_2 \hookrightarrow$ be a sequence of CW inclusions (each (X_i, X_{i-1}) is a relative CW complex). Let $X = \operatorname{colim}_n X_n$. Each inclusion $X_i \hookrightarrow X$ induces maps $[X, Z] \to [X_i, Z]$ for any space Z, and together these yield a map $\phi : [X, Z] \to \lim_n [X_n, Z]$. Use HEP to prove that ϕ is surjective.

Solution: For the limit, we have te following diagram:

Take an element $s \in \lim_n [X_n, Z]$, we denote $s_i := p_i s \in [X_i, Z]$. Let $k_i : X_i \hookrightarrow X_{i+1}$ be the inclusion of ith skeleton into (i+1)th skeleton of X. By the commutativity of the above diagram, we know that $j_2([s_2]) = [s_2 \circ k_1] = [s_1]$. There exists a homotopy $h_1 : X_1 \times I \to Z$ such that $h_1(-, 1) = s_1(-)$ and $h_2(-, 0) = (s_2 \circ k_1)(-)$. Consider the following diagram:

$$X_2 \times \{0\} \cup X_1 \times I \xrightarrow{s_2 \cup h_1} Z$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad X_2 \times I$$

Note that for any $x \in X_1$, $h_1(x,0) = (s_2 \circ k_1)(x)$. By HEP, we have a homotopy $h_2 : X_2 \times I \to Z$ such that $h_2(-,0) = s_2(-)$ and for any $x \in X_1$, $h_2(x,1) = h_1(x,1) = s_1(x)$, this means we have a commutative diagram:

$$X_1 \xrightarrow{k_1} X_2$$

$$\downarrow s_1 \downarrow \qquad h_2(-,1) \cong s_2$$

$$Z$$

We can construct h_3, h_4, \ldots consecutively in this way and obtain a diagram as follows

$$X_{1} \xrightarrow{k_{1}} X_{2} \xrightarrow{k_{2}} \cdots \xrightarrow{k_{n-1}} X_{n} \xrightarrow{k_{n}} \cdots$$

$$\downarrow \\ Z$$

$$\downarrow \\ h_{2}(-,1) \qquad h_{n}(-,1)$$

where for any $1 \leq i$, $h_i(-,1)$ is homotopic to s_i . By the universal property of $X = \text{colim}_n X_n$, we

have a unique map $f: X \to Z$ such that the following diagram commutes:

Note that f precompose with the canonical map $f \circ q_i : X_i \to X \to Z$ is equal to $h_i(-,1) \simeq s_i$. By the uniqueness of limit, this implies that $\phi(f) = s$ since $p_i(\phi(f)) = [s_i] \in [X_i, Z]$.

Problem 4

Regard $\mathbb{R}P^3$ as a subspace of $\mathbb{R}P6$ in the usual way. Take two copies of $\mathbb{R}P^6$ and glue their 3-skeletons together (via the identity map), to make a new space X. Compute the groups $H_*(X)$.

Solution: The space X has the following CW complex structure: for $i \leq 3$, it has one *i*-cell in each dimension and the attatching map is the same as the cell structure for $\mathbb{R}P^3$. For $3 \leq i \leq 6$, X has two *i*-cells in each dimension and each *i*-cell glued to the (i-1)-skeleton X_{i-1} in the same way as what happens in $\mathbb{R}P^6$. So the cellular chain complex can be written as:

$$\mathbb{Z}^2 \xrightarrow{(2,2)} \mathbb{Z}^2 \xrightarrow{0} \mathbb{Z}^2 \xrightarrow{(2,2)} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \to 0.$$

So the homology groups can be calculated as

$$H_i(X) = \begin{cases} \mathbb{Z}, & \text{if } i = 0, 4; \\ \mathbb{Z}/2, & \text{if } i = 1, 3; \\ \mathbb{Z}/2 \oplus \mathbb{Z}/2, & \text{if } i = 5; \\ 0, & \text{otherwise.} \end{cases}$$

Problem 5

Suppose (X,A) is a pair for which HEP holds. Let $j:A\hookrightarrow X$ be the inclusion, and let C_j denote the mapping cone of j. Let $p:C_j\to X/A$ be the projection that collapse CA down to the basepoint. Use HEP to produce a map $q:X/A\to C_j$ such that p and q are part of a homotopy equivalence.

Solution: Consider the canonical inclusion $i: X \to C_j = X \cup_j CA$. Identify $CA = (A \times I)/(A \times \{1\})$ and the quotient map $h: A \times I \to CA \supseteq C_j$ can be viewed as a homotopy on the subspace $A \subseteq X$.

We know that $h(-,0) = i|_A$ is just the inclusion j.

$$X \times \{0\} \cup A \times I \xrightarrow{i \cup h} C_j$$

$$\downarrow \qquad \qquad \exists H$$

$$X \times I$$

By HEP, there exists a map $H: X \times I \to C_j$ such that the above diagram commutes. Note that $H(-,1): X \to C_j$ maps the subspace $A \subseteq X$ to the peak in $CA \subseteq C_j$ since h(-,1) is the constant map on A. So H(-,1) must factor through the quotient space X/A, and we take $q = H(-,1): X/A \to C_j$. Next, we need to show that p and q give us a homotopy equivalence between X/A and C_j .

View $pq = p \circ H(-,1): X \to C_i \to X/A$. We know by construction that H(-,1) is homotopic to $H(-,0): X \to C_i$ which is just the inclusion. So $pq \simeq p \circ H(-,0): X \to X/A$ is just the quotient map. When factoring through X/A, pq is homotopic to the identity $id: X/A \to X/A$. On the other hand, we need to show that qp is homotopic to the identity $C_j \to C_j$. Consider the following map $K: C_i \times I \to C_i$ constructed in this way: for any $x \in X$ and $t \in I$, K(x,t) = H(x,t). For $(y,s) \in CA = A \times I/\sim$, write $(y,s,t) \in CA \times I = (A \times I/\sim) \times I$ and $v_0 := A \times \{1\} \in CA$ is the point at the top of the cone. We send (y, s, t) to $(1 - s)H(y, t) + sv_0$ where $y \in A \subseteq X$. We check that this indeed defines a map $K: C_j \times I \to C_j$. Note that $C_j = X \cup_j CA$. We need to check that for any $t \in I$, the image $A \times \{0\} \subseteq CA$ must be sent to the same points as $A \subseteq X$. This is true because K(y,0,t)=H(y,t)=K(y,t) if we identify $y\sim (y,0)\in A\times\{0\}\cong A\xrightarrow{\jmath}X$. K is continous by construction. Note that when t=0, on X, K(-,0)=H(-,0) is just the inclusion $X\hookrightarrow C_j$ and on CA, $K(y,s,0) = (1-s)H(y,0) + sv_0 = (1-s)y + sv_0$ just maps the same line in CA to the same line, so $K(-,0): C_j \to C_j$ is the identity. When t=1, note that $K(y,1)=H(y,1)=v_0$ for any $y \in A$ by construction of H, and K(-,1) is the composition $qp: C_j \to C_j$. Thus, we have constructed a homotopy K between qp and the identity. This proves that p and q give a homotopy equivalence between X/A and C_i .

Problem 6

Suppose M and N are n-dimensional manifold with boundary, and $h: \partial M \to \partial N$ is a homeomorphism. Then one gets a new manifold (without boundary) by gluing M and N together along h. That is, one takes the space $M \cup_h N = [M \sqcup N]/\sim$ where the quotient relation is $x \sim h(x)$ for $x \in \partial M$.

Let $M=N=D^2\times S^1$. Then $\partial M=\partial N=S^1\times S^1$. Let p,q,a,b be integers such that qa-pb=1, and let $h:S^1\times S^1\to S^1\times S^1$ be given by

$$(e^{ix}, e^{iy}) \mapsto (e^{i(ax+by)}, e^{i(px+qy)}).$$

The condition that qa - pb = 1 implies that h is a homeomorphism. Compute $H_*(M \cup_h N)$.

Solution:

Claim: h is a homeomorphism.

Proof: Consider the following map h':

$$h': S^1 \times S^1 \to S^1 \times S^1,$$

 $(e^{ix}, e^{iy}) \mapsto (e^{i(qx-by)}, e^{i(-px+ay)}).$

This map is continuous by definition and we can check that

$$(e^{ix}, e^{iy}) \xrightarrow{h' \circ h} h'(e^{i(ax+by)}, e^{i(px+qy)})$$

$$= ((e^{i(ax+by)})^q \cdot (e^{i(px+qy)})^{-b}, (e^{i(ax+by)})^{-p} \cdot (e^{i(px+qy)})^a)$$

$$= (e^{i(aq-bp)x} \cdot e^{i(bq-bq)y}, e^{i(-ap+pa)x} \cdot e^{i(-bp+qa)y})$$

$$= (e^{ix}, e^{iy}).$$

Similarly, we can check that $h \circ h'$ is also the identity. So h is a homeomorphism.

Write $M=D_M^2\times S^1$ and $N=D_N^2\times S^1$. Let 0 denote the center of the disks. Note that $M-0:=(D_M^2-0)\times S^1$ and $N-0:=(D_N^2-0)\times S^1$ are open and deforms retract into the boundary ∂M and ∂N respectively. Take $U=M\cup_h (N-0)$ and $V=(M-0)\cup_h N$. We have $U\cup V=M\cup_h N$ and $U\cap V$ is homotopic equivalent to the glued boundary $\partial M=\partial N=S^1\times S^1\cong T$, which is homeomorphic to a torus T. Since $D_M^2-0\cong D_N^2-0$ is contractible, U and V are homotopic equivalent to $\{*\}\times S^1$. The Mayer-Vietoris sequence gives us the following long exact sequence in reduced homology:

$$\tilde{H}_*(S^1 \times S^1) \cong \tilde{H}_*(T) \qquad \tilde{H}_*(S^1) \oplus \tilde{H}_*(S^1) \qquad \tilde{H}_*(M \cup_h N)$$

$$0 \longrightarrow 0 \longrightarrow ?$$

$$2 \longrightarrow 0 \longrightarrow ?$$

$$1 \qquad \mathbb{Z} \oplus \mathbb{Z} \longleftarrow \mathbb{Z} \oplus \mathbb{Z} \longrightarrow ?$$

$$0 \longrightarrow 0 \longleftarrow \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z} \oplus \mathbb{Z}$$

Note that both M and N are path-connected, from the long exact sequence we know that

$$H_0(M \cup_h N) = H_3(M \cup_h N) = \mathbb{Z}.$$

For the rest of the homology groups, we need to determine the homeomorphism $i: H_1(S^1 \times S^1) \to H_1(S^1) \oplus H_1(S^1)$. i is induced by the compostion of maps

$$S^{1} \times S^{1} \longleftrightarrow D^{2} \times S^{1} \cong M$$

$$\downarrow h \downarrow \downarrow$$

$$S^{1} \times S^{1} \longleftrightarrow D^{2} \times S^{1} \cong N$$

Passing to the first homology groups, we can see that

We know that $H_1(S^1 \times S^1)$ has two generators corresponding to each S^1 . We can see from the diagram that p_1 and p_2 just project the generators to the second factor. Suppose α, β generates $H_1(S^1 \times S^1)$. From the diagram we can see that $p_1(\alpha, \beta) = \beta$ and $p_2(h_*(\alpha, \beta)) = p_2(a\alpha + b\beta, p\alpha + q\beta) = p\alpha + q\beta$. So the map

$$i: H_1(S^1 \times S^1) \to H_1(S^1) \oplus H_1(S^1)$$

in the Mayer-Vietoris sequence is given by $(\alpha, \beta) \mapsto (\beta, p\alpha + q\beta)$. Alternatively, this map can be viewed as a matrix $A = \begin{pmatrix} 0 & 1 \\ p & q \end{pmatrix}$ from \mathbb{Z}^2 to \mathbb{Z}^2 . If p = 0, then $\det A = 0$ and $\ker i = \mathbb{Z}$ and $\operatorname{coker} i = \langle \alpha, \beta \rangle / \langle \beta, q\beta \rangle = \mathbb{Z}$. If p = 1 or p = -1, then A is invertible, and this implies i is an isomorphism, so $\ker i = \operatorname{coker} i = 0$. If $p \neq 0, 1, -1$, then $\ker i = 0$ and $\operatorname{coker} i = \mathbb{Z}/p\mathbb{Z}$. We can summarize the homology groups as follows.

If p = 0, then

$$H_i(M \cup_h N) = \begin{cases} \mathbb{Z}, & \text{if } i = 0, 1, 2, 3; \\ 0, & \text{otherwise.} \end{cases}$$

If p = 1 or p = -1, then

$$H_i(M \cup_h N) = \begin{cases} \mathbb{Z}, & \text{if } i = 0, 3; \\ 0, & \text{otherwise.} \end{cases}$$

If $p \neq 0, 1, -1$, then

$$H_i(M \cup_h N) = \begin{cases} \mathbb{Z}, & \text{if } i = 0, 3; \\ \mathbb{Z}/p\mathbb{Z}, & \text{if } i = 1; \\ 0, & \text{otherwise.} \end{cases}$$

Problem 7

Let (X,A) be a CW pair, and Y be any space. Suppose given $f: X \to Y$ and $h: A \times I \to Y$ such that $h|_{A\times 0} = f|_A$. The HEP says that there exists an $H: X \times I \to Y$ such that $H|_{A\times I} = h$ and $H_0 = f$. Now suppose that $h': A \times I \to Y$ is another map such that $h'|_{A\times 0} = f|_A$, and let $H': X \times I \to Y$ be an extension of h' just as H was an extension of h. Prove that if h is homotopic to h' relative to $A \times \{0\}$, via a homotopy called λ , then H' can be chosen so that it is homotopic to H relative to H relativ

Solution: Consider the pair of spaces $(X \times I, (X \times \{0\}) \cup (A \times I))$. This is a CW pair since (X, A) is a CW pair and we can choose a CW complex structure for $X \times I$ and $A \times I$. Note that the map $f: X \to Y$ can be extended to a map $F: X \times 0 \times I \to Y$ with F(x, 0, t) = f(x) for any $x \in X$ and any $t \in I$. Consider the map $H: X \times I \to Y$ and the homotopy $F \cup \lambda: (X \times \{0\} \times I) \cup (A \times I \times I) \to Y$.

We know that

$$(F \cup \lambda)|_0 = f \cup h = H|_{(X \times \{0\}) \cup (A \times I)}.$$

The following diagram:

$$(X\times 0\times I)\cup (A\times I\times I)\cup (X\times I\times 0) \xrightarrow{F\cup \lambda\cup H} Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad X\times I\times I$$

implies that there exists a homotopy $\Lambda: X \times I \times I \to Y$ such that $\Lambda(x,t,0) = H(x,t)$ and $\Lambda|_{X \times \{0\} \cup (A \times I)} = F \cup \lambda$. We choose $H'(x,t) = \Lambda(x,t,1)$. This proves that H' is homotopic to H relative to $X \times \{0\}$ through a homotopy Λ that extends λ .