Music Arrangement via Quantum Annealing

Lucas Kirby

17th January 2025

Durham University

2025-01-17

Theory Music arrangement

Quantum annealing

Methods

Results

Conclusions

2

-Overview

1. Welcome to the talk!

Music Arrangement via Quantum Annealing

Results

Conclusions

Music Arrangement via Quantum Annealing —Theory

Theory

Theory

Music arrangement

- Adaptation of previously composed pieces for practical or artistic reasons
- Traditionally complex and time-consuming
- This study focuses on **reduction**

Source: Wikimedia Commons

Music Arrangement via Quantum Annealing 2025-01-17 —Theory -Music arrangement ☐ Music arrangement

. This study focuses on reduction

Music arrangement

pieces for practical or artistic

Quantum annealing

- *Materials* heating and cooling a material to alter its physical properties
- *Quantum* changing a quantum system from one Hamiltonian to another
- Done slowly and adiabatically to remain in the ground state

$$H(t) = \left(1 - \frac{t}{T}\right)H_0 + \frac{t}{T}H_p$$

Music Arrangement via Quantum Annealing

Theory

Quantum annealing

Quantum annealing

Quantum annealing

- Materials heating and cooling a material to alter its physical properties
- Quantum changing a quantum system from one Hamiltonian to another
- Done slowly and adiabatically to remain in the ground state

$$H(t) = \left(1 - \frac{t}{T}\right)H_0 + \frac{t}{T}H_p$$

Quantum annealing

-QUBO

Ising model

$$H(s) = -\sum_{i < j} J_{ij} s_i s_j - \sum_{i=1}^{N} h_i s_i$$

QUBO

Quadratic Unconstrained Binary Optimisation

$$f(x) = \sum_{i < j} Q_{i,j} x_i x_j + \sum_i Q_{i,i} x_i$$

—Theory

Quantum annealing

How to combine them?

Methods

Methods

Problem formulation

- 1. Split parts into phrases
- 2. Arrange phrases into a graph
- 3. Solve graph problem using QPU
- 4. Construct arrangement from solution

-Problem formulation

Problem formulation

3. Solve graph problem using QPU 4. Construct arrangement from solution

Toy example

Toy example

Music Arrangement via Quantum Annealing —Results

Results

Results

Excerpt

String Quartet No. 10 by Ludwig van Beethoven

Music Arrangement via Quantum Annealing 2025-01-17 -Results ---yet fatter in our committee party y deposition and party or -Excerpt engery (magy) gypty for enger from the magy pro-matigate to the profession String Quarter No. 33 by Lastwig van Hantmann

- par Two comments of

Phrase detection

Local boundary detection model (LBDM)

Boundary strengths for the Violin I part

Problem graph

Solutions

Music Arrangement via Quantum Annealing
—Results
—Solutions

Lowest energy solution was -26.8 with a degeneracy of 34

Blocks

The net electric flux through any closed surface is proportional to the enclosed charge.

Alert This is an alert.

Example This is an example.

-Apperance sync

- Volume rate of flow equal to divergence
- Summed over entire volume
- Equal to net flow across the boundary

Source: Wikimedia Commons

$$\iiint_{V} \nabla \cdot \mathbf{F} \, dV = \oiint_{A} \mathbf{F} \cdot d\mathbf{A}$$

Conclusions

Equation gather

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} + \mu_0 I$$

