

The University of Faisalabad 🎱

Course	Course Title	Contact Hrs./Week	Total Lectures Allocated
Navttc	Artificial Intelligence (Machine Learning & Deep Learning)	20	60

Discipline	Commencement of the Course	Course Duration	Course Termination Date
All Discipline		12-Weeks	

1. COURSE LEVEL

Undergraduate and Graduate

2. PREREQUISITES

There is basic python pre-requisite for this course

3. COURSE Objective:

This course provides an in-depth training program focused on developing employable skills in Artificial Intelligence (AI), with a specialization in Natural Language Processing (NLP) and Microsoft Azure AI. The course aims to equip participants with both theoretical knowledge and practical skills, encouraging professional behavior and critical thinking. Delivered by a team of experienced instructors, the curriculum emphasizes hands-on learning, problem-solving, and practical assessments. It also fosters personal development traits such as responsibility, self-reliance, and adaptability. By the end of the course, trainees are expected to have a solid understanding of AI and machine learning concepts, be familiar with modern ML techniques, and gain practical experience using key tools and libraries such as scikit-learn, pandas, NumPy, TensorFlow, PyTorch, and Keras.

4. KEY SKILLS AND ATTRIBUTES TO BE DEVELOPED BY THE COURSE			
Analytical Thinking and	-Ability to analyze data and derive meaningful insights. Identifying the right algorithms for		
Problem-Solving	specific machine learning and deep Learning tasks.		
Technical Proficiency and	- Mastery of machine learning models and frameworks, assessing model performance		
Critical Evaluation	using evaluation metrics and improving through tuning.		
Practical Application	- Applying ML techniques to solve real-world problems with large datasets		
Collaboration and	-Working on group projects and presenting findings effectively.		
Communication	- Working on group projects and presenting infames effectively.		

Weeks	Lecture No.	Contents	
	Day 1	Introduction to AI, Course Overview, Career Survey, Software Installation	
	Day 2	Linux Basics (commands, shutdown, environment variables)	
Week 1	Day 3	Python Basics: values, expressions, string ops, input & type casting	
	Day 4	Data Structures: lists, tuples, dictionaries, sets	
	Day 5	Control Flow: if/else, loops, list comprehension, iterators	
	Day 1	Functions, lambda, file & exception handling	
	Day 2	OOP concepts: classes, inheritance, access specifiers	
Week 2	Day 3	Polymorphism, magic methods, abstract classes	
	Day 4	Data types, quantitative/qualitative variables	
	Day 5	Central tendency & dispersion: mean, mode, std deviation, z-score	
Week 3	Day 1	Correlation, univariate/multivariate plots, probability basics	

	Day 2	Conditional probability, distributions, Bayesian probability		
	Day 3	NumPy arrays: creation, reshaping, operations		
	Day 4	NumPy indexing, broadcasting, arithmetic operations		
	Day 5	Intro to Pandas, DataFrames, missing data handling		
	Day 1	Pandas merge/join/groupby, plotting		
	Day 2	Seaborn plots (distplot, boxplot, heatmap, etc.)		
Week 4	Day 3	ML Pipeline Overview		
	Day 4	Supervised ML: Regression and Classification		
	Day 5	Linear Regression (with/without vectorization)		
	Day 1	Multivariate Linear Regression		
	Day 2	Polynomial Regression		
Week 5	Day 3	Logistic Regression (Binary)		
	Day 4	Logistic Regression (Multiclass)		
	Day 5	Practice Day (ML models coding)		
	Day 1	NLP Introduction, preprocessing, NLTK/SpaCy		
	Day 2	Tokenization, POS, NER, BoW		
Week 6	Day 3	Evaluation metrics, dataset imbalance		
	Day 4	SVM and Decision Trees		
	Day 5	Random Forest		
	Day 1	Boosting Algorithms		
	Day 2	MLP Neural Networks: forward/backpropagation		
Week 7	Day 3	Neural Network implementation with TensorFlow/Keras		
	Day 4	CNNs: 2D and 1D		
	Day 5	Practice: Neural Network coding		
	Day 1	Recurrent Neural Networks (RNNs)		
	Day 2	Long-Short-Term-Memory Networks (LSTM)		
Week 8	Day 3	LSTM Code Practice		
	Day 4	Gated Recurrent Unit Networks		
	Day 5	GRU Code Practice		
	Day 1	Word2Vec, CBOW, Skip-gram		
	Day 2	Gensim and Custom Training		
Week 9	Day 3	Sequence Models		
	Day 4	Sequence Models, 1-to-1, 1-to-Many		
	Day 5	Many-to-1, Many-to-Many		
Mack 10	Day 1	Bi-directional RNN/LSTM		
Week 10	Day 2	Attention Mechanism		

Week 13		Final Exams	
	Day 5	Conversational Al solution implementation	
	Day 4	Knowledge mining	
Week 12	Day 3	Language understanding, Q&A bots	
	Day 2	Azure NLP: Text, speech, translation	
	Day 1	Video processing	
	Day 5	Image/video analysis, classification	
	Day 4	Deployment, CI/CD integration, anomaly detection, personalization	
Week 11	Day 3	Azure resource management, cost monitoring	
	Day 2	Speech services, responsible AI, security	
	Day 1	Choosing Azure AI services (vision, language, decision)	
	Day 5	Planning, architecture discussion	
	Day 4	Project selection	
	Day 3	Attention Mechanism in Models	

5. TEACHING AND LEARNING METHODS

Duration: 12 weeks, 240 hours in total **Lectures:** 60 (20 hours per week)

Per Lecture: 04 hours

- -Live lecture sessions using Multimedia
- -Question Answer Session
- -Discussion on covered and continuous topics with students during the class lectures
- -Case Studies
- -Video links of related topics will be providing to students
- Providing hand-outs on relevant topics
- Assignments: Reading Topics and Written assignments using internet and books

6. TECHNOLOGY REQUIREMENTS

- -Computer System
- -Learning Management System
- -Supporting Software (e.g. Anaconda, Vsc, Tensorflow, Scikit-Learn, Pandas)
- Internet Facility
- Digital Library Access

7. REQUIRED LEARNING RESOURCES		
Text Book(s):		
Reference Book(s):		
Journals/Periodicals: (Title, Publisher)	None	
Websites:	W3 School,	

8. COURSE ASSESSMENT

- -Homework exercise in the form of supplementary reading materials will be given to students according to the course progress; homework will be not marked and will not be counted towards the course assessment.
- -2 quiz and 3 assignments will be given during the course
- -1 final exam will be performed.

9. GUIDELINES FOR SUBMISSION OF ASSIGNMENTS

Read the assignment requirements carefully, including any specific instructions on length, formatting, style, etc., provided for every assignment. If no specific instructions are given, here are some general suggestions for you to follow:

- -Include sufficient identification on every assignment submitted (e.g., your name; the course name, course code, and the assignment number or title).
- -For assignments with multiple questions, identify the question number and restate each assignment question before providing your answer.
- -Review your assignment before submitting it to make sure you have completed the assignment in full. Also, carefully proofread your work for spelling and grammatical errors that could affect your grade.
- -Submit assignment on LMS till due date.
- -Also, unless you have registered for an extension, assignments submitted after the due date, will be returned to you ungraded.

10. CONTRIBUTION OF COURSE TO MEET THE PROFESSIONAL COMPONENT

This course prepares students to work professionally in the area of artificial intelligence and machine learning fields. Students should be able to apply knowledge of machine learning to identify and address the problems which may be solved by machine learning and artificial intelligence.

11. DISCLAIMER

This course outline is tentative; I reserve the right to change the deadlines, readings, or assignments during the course.

Note: - The above course outline covers all contents of the course AI (ML and DL) as prescribed by National Vocational and Technical Training Commission			
Instructor's name: Muhammad Saeed	Signature & Date:	HOS/COS:	