Big Data Management Building a Big Data Architecture

<u>DTIM</u> Research Group Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

Introduction and general framework

Introduction - Early 2000s

- Relational, expensive and monolithic data management systems buckled under the demands of **modern data processing**.
 - New systems had to be cost-effective, scalable, available, and reliable.

Introduction - Early 2000s

- Relational, expensive and monolithic data management systems buckled under the demands of **modern data processing**.
 - New systems had to be cost-effective, scalable, available, and reliable.
- Several innovations allowed **distributed** computation and storage on massive computing clusters at a **vast scale**.

Introduction - Early 2000s

- Relational, expensive and monolithic data management systems buckled under the demands of **modern data processing**.
 - New systems had to be cost-effective, scalable, available, and reliable.
- Several innovations allowed **distributed** computation and storage on massive computing clusters at a **vast scale**.
- The **Big Data** era had begun, and the profile of the **Big Data engineer** emerged.

Introduction - 2000s & 2010s

- Explosion of tools.

Introduction - 2000s & 2010s

- Explosion of tools.
- Engineers had to be proficient in **both** low-level infrastructure hacking and software development.
 - Managing these tools was a lot of work and required constant attention to install, maintain, configure and upgrade.

Introduction - 2000s & 2010s

- Explosion of tools.
- Engineers had to be proficient in **both** low-level infrastructure hacking and software development.
 - Managing these tools was a lot of work and required constant attention to install, maintain, configure and upgrade.
- Open source developers and third parties started looking for ways to abstract, simplify, and make big data available without the high administrative overhead and cost of managing their clusters

Introduction - 2020s

- Data management trends are moving towards decentralized, modularized, managed, and **highly abstracted** tools.

Introduction - 2020s

- Data management trends are moving towards decentralized, modularized, managed, and **highly abstracted** tools.
- Data engineers increasingly find their role focused on things **higher in the value chain**: data management, data architecture, orchestration, and general data lifecycle management.

Introduction - 2020s

- Data management trends are moving towards decentralized, modularized, managed, and **highly abstracted** tools.
- Data engineers increasingly find their role focused on things **higher in the value chain**: data management, data architecture, orchestration, and general data lifecycle management.

Data engineering is increasingly a discipline of <u>interoperation</u>; connecting various technologies in streamlined processing workflows to serve ultimate business goals.

Introduction - Project Goal

To build a Big Data Management Architecture

Introduction - Project Goal

To build a Big Data Management Architecture

- Understanding the different stages of data management
- Defining the execution pipeline
- Selecting the appropriate tools/technologies
- Deploying and orchestrating the execution

Data Ingestion

Get data from the **sources**

Data Ingestion	Landing Zone	Trusted Zone
Get data from the sources	Store the raw data	Apply generic data quality

Data Ingestion	Landing Zone	Trusted Zone	Exploitation Zone
Get data from the sources	Store the raw data	Apply generic data quality	Arrange data to be exploited

Data Ingestion	Landing Zone	Trusted Zone	Exploitation Zone	Data Consumption
Get data from the sources	Store the raw data	Apply generic data quality	Arrange data to be exploited	Get the data and generate value

Context	Data Ingestion	Landing Zone	Trusted Zone	Exploitation Zone	Data Consumption
Define domain, value and datasets	Get data from the sources	Store the raw data	Apply generic data quality	Arrange data to be exploited	Get the data and generate value

The Framework - Considerations

- This framework is meant to **guide** the development of the project, but in any case defines a hard set of rules to follow

Context	Data Ingestion	Landing Zone	Trusted Zone	Exploitation Zone	Data Consumption
	CE				
Define domain, value and datasets	Get data from the sources	Store the raw data	Apply generic data quality	Arrange data to be exploited	Get the data and generate value

The Framework - Considerations

- This framework is meant to **guide** the development of the project, but in any case defines a hard set of rules to follow.
- You can deviate from this structure if it fits your needs.

Context	Data Ingestion	Landing Zone	Trusted Zone	Exploitation Zone	Data Consumption
	C E				
Define domain, value and datasets	Get data from the sources	Store the raw data	Apply generic data quality	Arrange data to be exploited	Get the data and generate value

The Framework - Considerations

- This framework is meant to **guide** the development of the project, but in any case defines a hard set of rules to follow.
- You can deviate from this structure if it fits your needs.
- Always make sure to **justify** your decisions.

Context	Data Ingestion	Landing Zone	Trusted Zone	Exploitation Zone	Data Consumption
	CE				
Define domain, value and datasets	Get data from the sources	Store the raw data	Apply generic data quality	Arrange data to be exploited	Get the data and generate value

Too many tools

Data management landscape in 2024 (lakefs)

Organization, deliverables and guidelines

(You have both this and the previous information in LearnSQL)

- Groups of **3 people** (4 if someone is left alone).

- Groups of **3 people** (4 if someone is left alone).
- Evaluation is divided into two main deliverables

- Groups of **3 people** (4 if someone is left alone).
- Evaluation is divided into two main deliverables

Context	Data Ingestion	Landing Zone	Trusted Zone	Exploitation Zone	Data Consumption
	_				~~~
	P1			P2	

- Groups of **3 people** (4 if someone is left alone).
- Evaluation is divided into two main deliverables

- In each deliverable we demand two artifacts
 - A explanatory **document** of the project.
 - A project **repository** with the developed code.

- Groups of **3 people** (4 if someone is left alone).
- Evaluation is divided into two main deliverables

- In each deliverable we demand two artifacts
 - A explanatory **document** of the project.
 - A project **repository** with the developed code.
- The final grade of the project will be:

$$P = 0.5P1 + 0.5P2$$

- You will have a deliverable **before** each follow-up session

- You will have a deliverable **before** each follow-up session

	Week (Monday)	Project/Problems (Wednesday)	Theory (Thursday)		
1	2/10/2025	(No class)	Introduction + Big Data Design		
2	2/17/2025	P1-Presentation	Distributed Data Management		
3	2/24/2025	Problems	Distributed Data Processing		
4	3/3/2025	P1-Followup	Distributed File Systems		
5	3/10/2025	Problems	Key-Value Stores		
6	3/17/2025	P1-Followup	Document Stores		
7	3/24/2025	Problems	Autonomous Learning (no class)		
8	3/31/2025	Partials	P1-Delivery		
9	4/7/2025	(No class)	Big Data Architectures		
10	4/14/2025	East	ter Week		
11	4/21/2025	P2-Presentation	MapReduce I		
12	4/28/2025	Problems	May 1st		
13	5/5/2025	P2-Followup	MapReduce II		
14	5/12/2025	Problems	Spark		
15	5/19/2025	P2-Followup	Stream Management		
16	5/26/2025	Problems	Data Engineering		
17	6/2/2025	P2-Delivery + Final Exam			

- You will have a deliverable **before** each follow-up session
- In each, you will have to include parts of the architecture

- You will have a deliverable **before** each follow-up session
- In each, you will have to include parts of the architecture
- These will not directly count towards the grade
 - The goal is to structure the development and provide better feedback
 - If significant effort is show, it will be taken into consideration for the final evaluation

Evaluation guidelines

- The document is a fundamental part of the project
 - Showcase rigorous thinking and soundness

Evaluation guidelines

- The document is a fundamental part of the project
 - Showcase rigorous thinking and soundness
- The implementation has to present the desirable properties of software development
 - That is, dynamicity, reusability, openness, reproducibility, etc.

Evaluation guidelines

We want you to be ambitious and develop a complex project

