

Universität Ulm

Abgabe: Freitag, den 26.06. um $12~\mathrm{Uhr}$

Dr. Gerhard Baur Dr. Jan-Willem Liebezeit Marcus Müller Sommersemester 2020 Punktzahl: 10

Übungen Analysis 1: Blatt 9

35. Beweisen oder widerlegen Sie die folgenden Aussagen:

- (5)
- (a) Ist $(x_n)_{n\in\mathbb{N}}$ eine reelle, gegen $x\in\mathbb{R}$ konvergente, Folge mit $x_n\in\mathbb{N}$ für alle $n\in\mathbb{N}$, dann gilt $x\in\mathbb{N}$.
- (b) Eine beschränkte Folge hat immer endlich viele Häufungspunkte.
- (c) Es sei $(y_n)_{n\in\mathbb{N}}$ eine komplexe Folge, sodass für alle $p\in\mathbb{N}$ die Folge $(y_{n+p}-y_n)_{n\in\mathbb{N}}$ eine Nullfolge ist, dann konvergiert die Folge $(y_n)_{n\in\mathbb{N}}$.

Sei $(a_n)_{n\in\mathbb{N}}$ eine komplexe Zahlenfolge und $(x_n)_{n\in\mathbb{N}}$ sei definiert durch

$$x_n = \frac{1}{n} \sum_{k=1}^n a_k.$$

- (d) Konvergiert $(a_n)_{n\in\mathbb{N}}$ gegen $a\in\mathbb{C}$, dann konvergiert auch x_n gegen a.
- (e) Divergiert die Folge $(a_n)_{n\in\mathbb{N}}$, so ist auch $(x_n)_{n\in\mathbb{N}}$ eine divergente Folge.
- **36.** Zeigen Sie die folgenden Charakterisierung der Konvergenz komplexer Zahlenfolgen: Eine Folge $(x_n)_{n\in\mathbb{N}}$ aus \mathbb{C} konvergiert genau dann gegen $x\in\mathbb{C}$, wenn für alle Teilfolgen $(x_{n_k})_{k\in\mathbb{N}}$ von $(x_n)_{n\in\mathbb{N}}$ eine weitere Teilfolge $(x_{n_{k_l}})_{l\in\mathbb{N}}$ von $(x_{n_k})_{k\in\mathbb{N}}$ existiert, die gegen x konvergiert.
- 37. Beweisen oder widerlegen Sie die folgenden Aussagen.

(3)

- (a) Sei $(a_n)_{n\in\mathbb{N}}$ eine komplexe Zahlenfolge und $a\in\mathbb{C}$. Konvergieren die Teilfolgen $(a_{2k})_{k\in\mathbb{N}}$ und $(a_{2k+1})_{k\in\mathbb{N}}$ beide gegen a, so konvergiert auch $(a_n)_{n\in\mathbb{N}}$ gegen a.
- (b) Sind $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ nichtnegative reelle beschränkte Zahlenfolgen, dann gilt

$$\limsup_{n \to \infty} (a_n b_n) \ge \left(\limsup_{n \to \infty} a_n \right) \left(\limsup_{n \to \infty} b_n \right).$$

(c) Ist $(a_n)_{n\in\mathbb{N}}$ eine beschränkte reelle Zahlenfolge, dann gilt

$$-\limsup_{n\to\infty}(-a_n)=\limsup_{n\to\infty}a_n.$$