## Импорт необходимых модулей

### In [1]:

```
1 !pip install missingno

Requirement already satisfied: missingno in c:\python37\lib\site-packages
```

(0.4.1)
Requirement already satisfied: matplotlib in c:\python37\lib\site-packages
(from missingno) (3.0.0)
Requirement already satisfied: scipy in c:\python37\lib\site-packages (from

missingno) (1.1.0)

Requirement already satisfied: seaborn in c:\python37\lib\site-packages (from missingno) (0.9.0)

Requirement already satisfied: numpy in c:\python37\lib\site-packages (from missingno) (1.16.2)

Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in c:\python37\lib\site-packages (from matplotlib->missingno) (2.2.2)

Requirement already satisfied: cycler>=0.10 in c:\python37\lib\site-packages (from matplotlib->missingno) (0.10.0)

Requirement already satisfied: python-dateutil>=2.1 in c:\python37\lib\site-packages (from matplotlib->missingno) (2.7.3)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\python37\lib\site-pac kages (from matplotlib->missingno) (1.0.1)

Requirement already satisfied: pandas>=0.15.2 in c:\python37\lib\site-packag es (from seaborn->missingno) (0.23.4)

Requirement already satisfied: six in c:\python37\lib\site-packages (from cy cler>=0.10->matplotlib->missingno) (1.10.0)

Requirement already satisfied: setuptools in c:\python37\lib\site-packages (from kiwisolver>=1.0.1->matplotlib->missingno) (40.5.0)

Requirement already satisfied: pytz>=2011k in c:\python37\lib\site-packages (from pandas>=0.15.2->seaborn->missingno) (2017.2)

You are using pip version 18.1, however version 19.1.1 is available. You should consider upgrading via the 'python -m pip install --upgrade pip' command.

### In [2]:

```
import numpy as np
import pandas as pd
import missingno as msno
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="whitegrid")
```

# Загрузка данных. Первый взгляд

### In [3]:

```
beer_recipe = pd.read_csv('beer-recipes/recipeData.csv', index_col='BeerID', encoding=
beer_recipe.head()
```

### Out[3]:

|        | Name                                        | URL                                                | Style                                    | StyleID | Size(L) | OG    |   |
|--------|---------------------------------------------|----------------------------------------------------|------------------------------------------|---------|---------|-------|---|
| BeerID |                                             |                                                    |                                          |         |         |       |   |
| 1      | Vanilla<br>Cream Ale                        | /homebrew/recipe/view/1633/vanilla-<br>cream-ale   | Cream Ale                                | 45      | 21.77   | 1.055 | 1 |
| 2      | Southern<br>Tier<br>Pumking<br>clone        | /homebrew/recipe/view/16367/southern-tier-pumk     | Holiday/Winter<br>Special<br>Spiced Beer | 85      | 20.82   | 1.083 | 1 |
| 3      | Zombie<br>Dust<br>Clone -<br>EXTRACT        | /homebrew/recipe/view/5920/zombie-<br>dust-clone-e | American IPA                             | 7       | 18.93   | 1.063 | 1 |
| 4      | Zombie<br>Dust<br>Clone -<br>ALL<br>GRAIN   | /homebrew/recipe/view/5916/zombie-<br>dust-clone-a | American IPA                             | 7       | 22.71   | 1.061 | 1 |
| 5      | Bakke<br>Brygg<br>Belgisk<br>Blonde 50<br>I | /homebrew/recipe/view/89534/bakke-<br>brygg-belgis | Belgian Blond<br>Ale                     | 20      | 50.00   | 1.060 | 1 |

#### 5 rows × 22 columns

**→** 

### In [4]:

print(beer\_recipe.info(verbose=False))

<class 'pandas.core.frame.DataFrame'>
Int64Index: 73861 entries, 1 to 73861
Columns: 22 entries, Name to UserId
dtypes: float64(13), int64(2), object(7)

memory usage: 13.0+ MB

None

# Детальный анализ данных

# Пропуски

### In [5]:

- 1 %matplotlib inline
  2 msno.matrix(beer\_recipe.sample(500))
- Out[5]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x25b8b41eb00>



### In [6]:

```
null_priming = beer_recipe['PrimingMethod'].isnull()
print('Priming Method пропущено в {} строк из {}, т.е. в {} % случаев'
format(null_priming.sum(), len(beer_recipe), round((null_priming.sum()/len(beer_recipe)))
```

Priming Method пропущено в 67095 строк из 73861, т.е. в 90.84 % случаев

### In [7]:

```
style_cnt = beer_recipe.loc[:,['Style','PrimingMethod']]
    style_cnt['NullPriming'] = style_cnt['PrimingMethod'].isnull()
 2
 3
    style_cnt['Count'] = 1
    style_cnt_grp = style_cnt.loc[:,['Style','Count','NullPriming']].groupby('Style').sum(
 4
 5
 6
    style_cnt_grp = style_cnt_grp.sort_values('NullPriming', ascending=False)
 7
    style_cnt_grp.reset_index(inplace=True)
 8
 9
    def stacked_bar_plot(df, x_total, x_sub_total, sub_total_label, y):
10
11
        f, ax = plt.subplots(figsize=(12, 8))
12
        sns.set_color_codes("pastel")
13
14
        sns.barplot(x=x_total, y=y, data=df, label="Total", color="b")
15
16
        sns.set_color_codes("muted")
        sns.barplot(x=x_sub_total, y=y, data=df, label=sub_total_label, color="b")
17
18
        ax.legend(ncol=2, loc="lower right", frameon=True)
19
20
        sns.despine(left=True, bottom=True)
21
22
        return f, ax
23
24
    f, ax = stacked_bar_plot(style_cnt_grp[:20], 'Count', 'NullPriming', 'Priming Method i
25
    ax.set(title='Пропущенные значения в столбце PrimingMethod на каждый тип', ylabel='',
    sns.despine(left=True, bottom=True)
26
```



## Дизбаланс классов

```
In [8]:
```

```
1 print('В датасете {} различных типов пива'.format(beer_recipe.StyleID.nunique()))
```

В датасете 176 различных типов пива

### In [9]:

```
top10 style = list(style cnt grp['Style'][:10].values)
 1
 2
 3
    style_cnt_other = style_cnt_grp.loc[:, ['Style','Count']]
 4
    style_cnt_other.Style = style_cnt_grp.Style.apply(lambda x: x if x in top10_style else
 5
    style_cnt_other = style_cnt_other.groupby('Style').sum()
 6
 7
    style_cnt_other['Ratio'] = style_cnt_other.Count.apply(lambda x: x/float(len(beer_recipation))
    style_cnt_other = style_cnt_other.sort_values('Count', ascending=False)
 8
 9
   f, ax = plt.subplots(figsize=(8, 8))
10
    explode = (0.05, 0.05, 0.05, 0, 0, 0, 0, 0, 0, 0)
11
    plt.pie(x=style_cnt_other['Ratio'], labels=list(style_cnt_other.index), startangle = 1
12
13
    plt.title('Круговая диаграмма типов пива в датасете')
14
    plt.show()
```

Круговая диаграмма типов пива в датасете



Т.к. типов слишком много, для классификации я взял только 10 из 176 самых популярных классов, которые формируют из себя 46 процентов данных. При этом, чтобы уравнять распределения классов в данных, я отбросил долю данных о двух резко выделяющихся типах пива.

#### In [10]:

```
beer_recipe = beer_recipe[beer_recipe['Style'].isin(style_cnt_grp['Style'][:10].values
index_apa = beer_recipe[beer_recipe['Style']=='American Pale Ale']\
index[:int(beer_recipe[beer_recipe['Style']=='American Pale Ale'].shape[0]*63//100)]
index_ipa = beer_recipe[beer_recipe['Style']=='American IPA']\
index[:beer_recipe[beer_recipe['Style']=='American IPA'].shape[0]*75//100]
beer_recipe.drop(index_apa , inplace=True)
beer_recipe.drop(index_ipa , inplace=True)
```

### In [11]:

```
style_cnt = beer_recipe.loc[:,['Style','PrimingMethod']]
style_cnt['NullPriming'] = style_cnt['PrimingMethod'].isnull()
style_cnt['Count'] = 1
style_cnt_grp = style_cnt.loc[:,['Style','Count','NullPriming']].groupby('Style').sum(
style_cnt_grp = style_cnt_grp.sort_values('NullPriming', ascending=False)
style_cnt_grp.reset_index(inplace=True)
```

### In [12]:

```
top10 style = list(style cnt grp['Style'][:10].values)
 2
    style_cnt_other = style_cnt_grp.loc[:, ['Style','Count']]
 3
 4
    style_cnt_other.Style = style_cnt_grp.Style.apply(lambda x: x if x in top10_style else
 5
    style_cnt_other = style_cnt_other.groupby('Style').sum()
 6
 7
    style_cnt_other['Ratio'] = style_cnt_other.Count.apply(lambda x: x/float(len(beer_recipation))
    style_cnt_other = style_cnt_other.sort_values('Count', ascending=False)
 8
9
   f, ax = plt.subplots(figsize=(8, 8))
10
    explode = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
11
    plt.pie(x=style_cnt_other['Ratio'], labels=list(style_cnt_other.index), startangle = 1
13
    plt.title('Круговая диаграмма типов пива в датасете')
    plt.show()
14
```

Круговая диаграмма типов пива в датасете



### Категориальные фичи

### In [13]:

```
print( list(beer_recipe.select_dtypes(include=object).columns))
```

```
['Name', 'URL', 'Style', 'SugarScale', 'BrewMethod', 'PrimingMethod', 'PrimingAmount']
```

### In [14]:

```
1 ax = sns.countplot(x='SugarScale', data=beer_recipe)
2 ax.set(title='Гистограмма значени SugarScale')
3 sns.despine(left=True, bottom=True)
4 print('B столбце SugarScale {} пропущенных значений'.format(beer_recipe.SugarScale.isn
```

### В столбце SugarScale 0 пропущенных значений



### In [15]:

```
1 ax = sns.countplot(x='BrewMethod', data=beer_recipe)
2 ax.set(title='Гистограмма значени BrewMethod')
3 sns.despine(left=True, bottom=True)
4 print('B столбце BrewMethod {} пропущенных значений'.format(beer_recipe.BrewMethod.isng)
```

### В столбце BrewMethod 0 пропущенных значений



```
In [16]:
```

```
1 print('B столбце PrimingMethod {} пропущенных значений'.format(beer_recipe.PrimingMethod 2 print(beer_recipe.PrimingMethod.unique()[:20])

В столбце PrimingMethod 282 пропущенных значений
[nan 'Corn Sugar' 'corn sugar' 'Sugar' 'Dextrose' 'Sukkerlake' 'Add in last 5 of boil' 'Cane Sugar' 'Forced CO2' 'Dme' 'forced carbonation' 'Corn Sugar? Strong Ale yeast?' 'Dark Brown Sugar' 'Honey' 'Light DME' 'sucrose' 'Table sugar' '3oz' ' Corn Sugar' 'dextrose']
```

### Числовые фичи

```
In [17]:
                  print(list(beer_recipe.select_dtypes(exclude=object)))
['StyleID', 'Size(L)', 'OG', 'FG', 'ABV', 'IBU', 'Color', 'BoilSize', 'BoilT
ime', 'BoilGravity', 'Efficiency', 'MashThickness', 'PitchRate', 'PrimaryTem
p', 'UserId']
In [18]:
                    def get sg from plato(plato):
       2
                                     sg = 1 + (plato / (258.6 - ( (plato/258.2) *227.1) ) )
       3
                                     return sg
       4
       5
                   beer_recipe['OG_sg'] = beer_recipe.apply(lambda row: get_sg_from_plato(row['OG']) if re
                  beer_recipe['FG_sg'] = beer_recipe.apply(lambda row: get_sg_from_plato(row['FG']) if re
       7
                   beer_recipe['BoilGravity_sg'] = beer_recipe.apply(lambda row: get_sg_from_plato(row['Boundary to the standard to the stan
```

### In [19]:

```
num_feats_list = ['Size(L)', 'OG_sg', 'FG_sg', 'ABV', 'IBU', 'Color', 'BoilSize', 'Boil's beer_recipe.loc[:, num_feats_list].describe().T
```

### Out[19]:

|                | count   | mean      | std        | min     | 25%   | 50%    | 75%    | max      |
|----------------|---------|-----------|------------|---------|-------|--------|--------|----------|
| Size(L)        | 19577.0 | 46.851393 | 189.055791 | 1.000   | 18.93 | 20.820 | 24.000 | 6102.080 |
| OG_sg          | 19577.0 | 1.058765  | 0.015172   | 1.000   | 1.05  | 1.057  | 1.065  | 1.500    |
| FG_sg          | 19577.0 | 1.013183  | 0.004915   | 0.999   | 1.01  | 1.013  | 1.015  | 1.148    |
| ABV            | 19577.0 | 5.987758  | 1.553305   | 0.000   | 5.11  | 5.780  | 6.660  | 49.960   |
| IBU            | 19577.0 | 46.918919 | 42.742047  | 0.000   | 25.04 | 36.770 | 57.910 | 1359.420 |
| Color          | 19577.0 | 11.829264 | 10.379289  | 0.000   | 5.15  | 7.770  | 14.300 | 108.650  |
| BoilSize       | 19577.0 | 52.926640 | 201.348525 | 1.000   | 21.77 | 28.000 | 30.000 | 6454.130 |
| BoilTime       | 19577.0 | 63.740512 | 12.369370  | 0.000   | 60.00 | 60.000 | 60.000 | 240.000  |
| BoilGravity_sg | 19001.0 | 1.051856  | 0.024441   | 1.000   | 1.04  | 1.046  | 1.056  | 1.500    |
| Efficiency     | 19577.0 | 66.011748 | 14.202624  | 0.000   | 65.00 | 70.000 | 75.000 | 100.000  |
| MashThickness  | 11857.0 | 2.135589  | 1.679638   | 0.300   | 1.50  | 1.500  | 3.000  | 63.000   |
| PitchRate      | 8646.0  | 0.687480  | 0.332113   | 0.000   | 0.35  | 0.750  | 0.750  | 2.000    |
| PrimaryTemp    | 13087.0 | 19.885641 | 3.800540   | -17.780 | 18.33 | 20.000 | 21.000 | 85.000   |

### In [20]:

```
vlow_scale_feats = ['OG_sg', 'FG_sg', 'BoilGravity_sg', 'PitchRate']
low_scale_feats = ['ABV', 'MashThickness']
mid_scale_feats = ['Color', 'BoilTime', 'Effficiency', 'PrimaryTemp']
high_scale_feats = ['IBU', 'Size(L)', 'BoilSize']
```

### In [21]:

```
f, ax = plt.subplots(figsize=(12, 8))
ax = sns.boxplot(data=beer_recipe.loc[:, vlow_scale_feats], orient='h')
ax.set(title='График самых мелкомасштабных фич датасета')
sns.despine(left=True, bottom=True)
```



### In [22]:

```
f, ax = plt.subplots(figsize=(12, 8))
ax = sns.boxplot(data=beer_recipe.loc[:, low_scale_feats], orient='h')
ax.set(title='График мелкомасштабных фич датасета')
sns.despine(left=True, bottom=True)
```



### In [23]:

```
f, ax = plt.subplots(figsize=(12, 8))
ax = sns.boxplot(data=beer_recipe.loc[:, mid_scale_feats], orient='h')
ax.set(title='График среднемасштабных фич датасета')
sns.despine(left=True, bottom=True)
```



### In [24]:

```
f, ax = plt.subplots(figsize=(12, 8))
ax = sns.boxplot(data=beer_recipe.loc[:, high_scale_feats], orient='h')
ax.set(title='График крупномасштабных фич датасета')
sns.despine(left=True, bottom=True)
```



## Корреляция

```
In [25]:
```

```
pairplot_df = beer_recipe.loc[:, ['Style','OG_sg','FG_sg','ABV','IBU','Color']]

sns.set(style="dark")
sns.pairplot(data=pairplot_df)
plt.show()
```



#### In [26]:

```
style_cnt_grp = style_cnt_grp.sort_values('Count', ascending=False)
top5_style = list(style_cnt_grp['Style'][:5].values)

top5_style_df = pairplot_df[pairplot_df['Style'].isin(top5_style)]

f, ax = plt.subplots(figsize=(12, 8))
sns.violinplot(x='Style', y='OG_sg',data=top5_style_df)
plt.show()
```

c:\python37\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Usin g a non-tuple sequence for multidimensional indexing is deprecated; use `arr [tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an erro r or a different result.

return np.add.reduce(sorted[indexer] \* weights, axis=axis) / sumval



### In [27]:

```
top5_style = list(style_cnt_grp['Style'][:5].values)
beer_recipe['Top5_Style'] = beer_recipe.Style.apply(lambda x: x if x in top5_style elso
sns.lmplot(x='ABV', y='OG', hue='Top5_Style', col='Top5_Style', col_wrap=3, data=beer_recipe.
```

### Out[27]:

### <seaborn.axisgrid.FacetGrid at 0x25b8fc47860>



In [28]:

1 sns.lmplot(x='ABV', y='OG\_sg', hue='Top5\_Style', col='Top5\_Style', col\_wrap=3, data=be

Out[28]:

<seaborn.axisgrid.FacetGrid at 0x25b9045f940>



# Построение моделей

## Предобработка данных

### In [29]:

```
from sklearn.preprocessing import LabelEncoder, Imputer
 2
    from sklearn.model_selection import train_test_split
 3
 4
    features_list= ['StyleID', #целевой признак
 5
                     'OG_sg','FG_sg','ABV','IBU','Color',
 6
                    'SugarScale', 'BrewMethod',
 7
                    'Size(L)', 'BoilSize', 'BoilTime', 'BoilGravity_sg',
                    'Efficiency', 'MashThickness', 'PitchRate', 'PrimaryTemp'
 8
 9
10
11
    clf_data = beer_recipe.loc[:, features_list]
12
13
    # Кодирование категориальных значений
    cat_feats_to_use = list(clf_data.select_dtypes(include=object).columns)
14
    for feat in cat_feats_to_use:
15
16
        encoder = LabelEncoder()
        clf_data[feat] = encoder.fit_transform(clf_data[feat])
17
18
    #Заполнение пропусков
19
20
    num_feats_to_use = list(clf_data.select_dtypes(exclude=object).columns)
21
    for feat in num_feats_to_use:
22
        imputer = Imputer(strategy='median')
        clf_data[feat] = imputer.fit_transform(clf_data[feat].values.reshape(-1,1))
23
24
25
   # Выделение целевого признака
   X = clf_data.iloc[:, 1:]
26
27
   y = clf_data.iloc[:, 0]
28
   X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, stratify=y, ra
29
```

c:\python37\lib\site-packages\sklearn\utils\deprecation.py:58: DeprecationWa rning: Class Imputer is deprecated; Imputer was deprecated in version 0.20 a nd will be removed in 0.22. Import impute.SimpleImputer from sklearn instea

warnings.warn(msg, category=DeprecationWarning)

c:\python37\lib\site-packages\sklearn\utils\deprecation.py:58: DeprecationWa
rning: Class Imputer is deprecated; Imputer was deprecated in version 0.20 a
nd will be removed in 0.22. Import impute.SimpleImputer from sklearn instea
d.

warnings.warn(msg, category=DeprecationWarning)

c:\python37\lib\site-packages\sklearn\utils\deprecation.py:58: DeprecationWa
rning: Class Imputer is deprecated; Imputer was deprecated in version 0.20 a
nd will be removed in 0.22. Import impute.SimpleImputer from sklearn instea
d

warnings.warn(msg, category=DeprecationWarning)

c:\python37\lib\site-packages\sklearn\utils\deprecation.py:58: DeprecationWa rning: Class Imputer is deprecated; Imputer was deprecated in version 0.20 a nd will be removed in 0.22. Import impute.SimpleImputer from sklearn instea d.

warnings.warn(msg, category=DeprecationWarning)

c:\python37\lib\site-packages\sklearn\utils\deprecation.py:58: DeprecationWa rning: Class Imputer is deprecated; Imputer was deprecated in version 0.20 a nd will be removed in 0.22. Import impute.SimpleImputer from sklearn instea d.

warnings.warn(msg, category=DeprecationWarning)

c:\python37\lib\site-packages\sklearn\utils\deprecation.py:58: DeprecationWa
rning: Class Imputer is deprecated; Imputer was deprecated in version 0.20 a
nd will be removed in 0.22. Import impute.SimpleImputer from sklearn instea
d.

warnings.warn(msg, category=DeprecationWarning)

c:\python37\lib\site-packages\sklearn\utils\deprecation.py:58: DeprecationWa rning: Class Imputer is deprecated; Imputer was deprecated in version 0.20 a nd will be removed in 0.22. Import impute.SimpleImputer from sklearn instea

warnings.warn(msg, category=DeprecationWarning)

c:\python37\lib\site-packages\sklearn\utils\deprecation.py:58: DeprecationWa
rning: Class Imputer is deprecated; Imputer was deprecated in version 0.20 a
nd will be removed in 0.22. Import impute.SimpleImputer from sklearn instea
d.

warnings.warn(msg, category=DeprecationWarning)

c:\python37\lib\site-packages\sklearn\utils\deprecation.py:58: DeprecationWa rning: Class Imputer is deprecated; Imputer was deprecated in version 0.20 a nd will be removed in 0.22. Import impute.SimpleImputer from sklearn instea

warnings.warn(msg, category=DeprecationWarning)

c:\python37\lib\site-packages\sklearn\utils\deprecation.py:58: DeprecationWa rning: Class Imputer is deprecated; Imputer was deprecated in version 0.20 a nd will be removed in 0.22. Import impute.SimpleImputer from sklearn instea d.

warnings.warn(msg, category=DeprecationWarning)

c:\python37\lib\site-packages\sklearn\utils\deprecation.py:58: DeprecationWa rning: Class Imputer is deprecated; Imputer was deprecated in version 0.20 a nd will be removed in 0.22. Import impute.SimpleImputer from sklearn instea d.

warnings.warn(msg, category=DeprecationWarning)

c:\python37\lib\site-packages\sklearn\utils\deprecation.py:58: DeprecationWa rning: Class Imputer is deprecated; Imputer was deprecated in version 0.20 a nd will be removed in 0.22. Import impute.SimpleImputer from sklearn instea d.

warnings.warn(msg, category=DeprecationWarning)

c:\python37\lib\site-packages\sklearn\utils\deprecation.py:58: DeprecationWa
rning: Class Imputer is deprecated; Imputer was deprecated in version 0.20 a
nd will be removed in 0.22. Import impute.SimpleImputer from sklearn instea

warnings.warn(msg, category=DeprecationWarning)

c:\python37\lib\site-packages\sklearn\utils\deprecation.py:58: DeprecationWa
rning: Class Imputer is deprecated; Imputer was deprecated in version 0.20 a
nd will be removed in 0.22. Import impute.SimpleImputer from sklearn instea
d.

warnings.warn(msg, category=DeprecationWarning)

c:\python37\lib\site-packages\sklearn\utils\deprecation.py:58: DeprecationWa
rning: Class Imputer is deprecated; Imputer was deprecated in version 0.20 a
nd will be removed in 0.22. Import impute.SimpleImputer from sklearn instea

warnings.warn(msg, category=DeprecationWarning)

c:\python37\lib\site-packages\sklearn\utils\deprecation.py:58: DeprecationWa
rning: Class Imputer is deprecated; Imputer was deprecated in version 0.20 a
nd will be removed in 0.22. Import impute.SimpleImputer from sklearn instea
d.

warnings.warn(msg, category=DeprecationWarning)

### In [30]:

```
1 #Проверим формат данных и наличие пропусков
2 X.info()
```

```
Int64Index: 19577 entries, 7 to 73861
Data columns (total 15 columns):
                  19577 non-null float64
0G_sg
FG_sg
                  19577 non-null float64
ABV
                  19577 non-null float64
IBU
                  19577 non-null float64
                  19577 non-null float64
Color
                  19577 non-null float64
SugarScale
BrewMethod
                  19577 non-null float64
Size(L)
                  19577 non-null float64
BoilSize
                  19577 non-null float64
                  19577 non-null float64
BoilTime
                 19577 non-null float64
BoilGravity_sg
Efficiency
                 19577 non-null float64
MashThickness
                 19577 non-null float64
PitchRate
                  19577 non-null float64
                 19577 non-null float64
PrimaryTemp
dtypes: float64(15)
```

<class 'pandas.core.frame.DataFrame'>

### Масштабирование

memory usage: 3.0 MB

### In [31]:

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)
```

### In [32]:

```
sanity_df = pd.DataFrame(X_train, columns = X.columns)
sanity_df.describe().T
```

### Out[32]:

|                | count   | mean              | std      | min        | 25%       | 50%       | 75%       |      |
|----------------|---------|-------------------|----------|------------|-----------|-----------|-----------|------|
| OG_sg          | 15661.0 | -5.290619e-<br>15 | 1.000032 | -3.797645  | -0.569259 | -0.117284 | 0.399257  | 28.4 |
| FG_sg          | 15661.0 | 5.991589e-<br>15  | 1.000032 | -2.830207  | -0.637818 | -0.039894 | 0.411515  | 26.8 |
| ABV            | 15661.0 | 3.933597e-<br>16  | 1.000032 | -3.783844  | -0.557280 | -0.127914 | 0.427737  | 27.7 |
| IBU            | 15661.0 | -6.987011e-<br>17 | 1.000032 | -1.099991  | -0.514494 | -0.238732 | 0.256329  | 30.7 |
| Color          | 15661.0 | 1.919160e-<br>16  | 1.000032 | -1.139966  | -0.642957 | -0.389636 | 0.238368  | 9.0  |
| SugarScale     | 15661.0 | 3.783875e-<br>16  | 1.000032 | -6.743279  | 0.148296  | 0.148296  | 0.148296  | 0.′  |
| BrewMethod     | 15661.0 | -6.351828e-<br>18 | 1.000032 | -0.602041  | -0.602041 | -0.602041 | 0.377346  | 2.3  |
| Size(L)        | 15661.0 | 7.712934e-<br>18  | 1.000032 | -0.241550  | -0.145732 | -0.135632 | -0.118638 | 32.0 |
| BoilSize       | 15661.0 | -3.493506e-<br>17 | 1.000032 | -0.257687  | -0.151818 | -0.121569 | -0.111486 | 32.2 |
| BoilTime       | 15661.0 | 1.179625e-<br>16  | 1.000032 | -5.158404  | -0.303884 | -0.303884 | -0.303884 | 14.2 |
| BoilGravity_sg | 15661.0 | 4.422234e-<br>15  | 1.000032 | -2.122995  | -0.481865 | -0.235696 | 0.133559  | 18.  |
| Efficiency     | 15661.0 | -2.300269e-<br>16 | 1.000032 | -4.645258  | -0.070782 | 0.281101  | 0.632984  | 2.3  |
| MashThickness  | 15661.0 | -2.395547e-<br>16 | 1.000032 | -1.181302  | -0.283420 | -0.283420 | -0.238526 | 45.7 |
| PitchRate      | 15661.0 | 3.112396e-<br>16  | 1.000032 | -3.231898  | 0.118578  | 0.118578  | 0.118578  | 5.7  |
| PrimaryTemp    | 15661.0 | -4.042485e-<br>16 | 1.000032 | -12.077784 | -0.293056 | 0.027355  | 0.027355  | 20.8 |
| 4              |         |                   |          |            |           |           |           | •    |

# Обучение базовых моделей

### In [33]:

```
from sklearn.linear model import SGDClassifier
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
 5
    from time import time
 6
    sgd = SGDClassifier()
 7
 8 knc = KNeighborsClassifier()
    dtc = DecisionTreeClassifier()
    rfc = RandomForestClassifier()
10
11
    gbc = GradientBoostingClassifier()
12
    models = [sgd, knc, dtc, rfc, gbc]
13
14
    for model in models:
        start = time()
15
16
        model.fit(X train, y train)
        stop = time()
17
18
        duration = stop-start
        print(type(model).__name__, ': время обучения - ', duration)
19
c:\python37\lib\site-packages\sklearn\linear_model\stochastic_gradient.py:14
```

```
4: FutureWarning: max_iter and tol parameters have been added in SGDClassifi er in 0.19. If both are left unset, they default to max_iter=5 and tol=None. If tol is not None, max_iter defaults to max_iter=1000. From 0.21, default m ax_iter will be 1000, and default tol will be 1e-3. FutureWarning)

SGDClassifier: время обучения - 0.07810401916503906

KNeighborsClassifier: время обучения - 0.12496709823608398

DecisionTreeClassifier: время обучения - 0.22611451148986816
```

c:\python37\lib\site-packages\sklearn\ensemble\forest.py:248: FutureWarning: The default value of n\_estimators will change from 10 in version 0.20 to 100 in 0.22.

```
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
```

RandomForestClassifier : время обучения - 0.33602404594421387 GradientBoostingClassifier : время обучения - 17.34536123275757

### Проверка результатов

### In [34]:

| ecision  0.15  0.29  0.30  0.16  0.26  0.76  0.34  0.54      | 0.09<br>0.14<br>0.40<br>0.08<br>0.18<br>0.76<br>0.11                                                                                    | f1-score  0.11 0.19 0.34 0.11 0.21 0.76 0.16                                                                                                                                                                                                                                                                                                                                      | support<br>408<br>230<br>597<br>455<br>561<br>254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.15<br>0.29<br>0.30<br>0.16<br>0.26<br>0.76<br>0.34<br>0.54 | 0.09<br>0.14<br>0.40<br>0.08<br>0.18<br>0.76<br>0.11                                                                                    | 0.11<br>0.19<br>0.34<br>0.11<br>0.21<br>0.76                                                                                                                                                                                                                                                                                                                                      | 408<br>230<br>597<br>455<br>561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.29<br>0.30<br>0.16<br>0.26<br>0.76<br>0.34<br>0.54         | 0.14<br>0.40<br>0.08<br>0.18<br>0.76<br>0.11                                                                                            | 0.19<br>0.34<br>0.11<br>0.21<br>0.76                                                                                                                                                                                                                                                                                                                                              | 230<br>597<br>455<br>561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.30<br>0.16<br>0.26<br>0.76<br>0.34<br>0.54                 | 0.40<br>0.08<br>0.18<br>0.76<br>0.11                                                                                                    | 0.34<br>0.11<br>0.21<br>0.76                                                                                                                                                                                                                                                                                                                                                      | 597<br>455<br>561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.16<br>0.26<br>0.76<br>0.34<br>0.54                         | 0.08<br>0.18<br>0.76<br>0.11                                                                                                            | 0.11<br>0.21<br>0.76                                                                                                                                                                                                                                                                                                                                                              | 455<br>561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.26<br>0.76<br>0.34<br>0.54                                 | 0.18<br>0.76<br>0.11                                                                                                                    | 0.21<br>0.76                                                                                                                                                                                                                                                                                                                                                                      | 561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.76<br>0.34<br>0.54                                         | 0.76<br>0.11                                                                                                                            | 0.76                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.34<br>0.54                                                 | 0.11                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                   | 25/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.54                                                         |                                                                                                                                         | 0 16                                                                                                                                                                                                                                                                                                                                                                              | 25 <del>4</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                              | 0.07                                                                                                                                    | A. TO                                                                                                                                                                                                                                                                                                                                                                             | 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A 12                                                         | 0.87                                                                                                                                    | 0.67                                                                                                                                                                                                                                                                                                                                                                              | 296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.10                                                         | 0.29                                                                                                                                    | 0.18                                                                                                                                                                                                                                                                                                                                                                              | 241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.47                                                         | 0.66                                                                                                                                    | 0.55                                                                                                                                                                                                                                                                                                                                                                              | 523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.34                                                         | 0.34                                                                                                                                    | 0.34                                                                                                                                                                                                                                                                                                                                                                              | 3916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.34                                                         | 0.36                                                                                                                                    | 0.33                                                                                                                                                                                                                                                                                                                                                                              | 3916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.32                                                         | 0.34                                                                                                                                    | 0.32                                                                                                                                                                                                                                                                                                                                                                              | 3916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ecision                                                      | recall                                                                                                                                  | f1-score                                                                                                                                                                                                                                                                                                                                                                          | support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.41                                                         | 0.53                                                                                                                                    | 0.46                                                                                                                                                                                                                                                                                                                                                                              | 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.52                                                         | 0.53                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                   | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              | 0.32                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                   | 455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.62                                                         | 0.48                                                                                                                                    | 0.54                                                                                                                                                                                                                                                                                                                                                                              | 523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.50                                                         | 0.50                                                                                                                                    | 0.50                                                                                                                                                                                                                                                                                                                                                                              | 3916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 3916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.51                                                         | 0.50                                                                                                                                    | 0.50                                                                                                                                                                                                                                                                                                                                                                              | 3916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                              |                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ecision                                                      | recall                                                                                                                                  | f1-score                                                                                                                                                                                                                                                                                                                                                                          | support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.42                                                         | 0.44                                                                                                                                    | 0.43                                                                                                                                                                                                                                                                                                                                                                              | 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.53                                                         | 0.52                                                                                                                                    | 0.52                                                                                                                                                                                                                                                                                                                                                                              | 523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              | 0.34<br>0.34<br>0.32<br>ecision<br>0.41<br>0.52<br>0.50<br>0.39<br>0.41<br>0.75<br>0.45<br>0.75<br>0.43<br>0.62<br>0.50<br>0.52<br>0.51 | 0.47 0.66  0.34 0.34 0.34 0.36 0.32 0.34  ecision recall  0.41 0.53 0.52 0.53 0.50 0.60 0.39 0.32 0.41 0.48 0.75 0.77 0.45 0.40 0.75 0.70 0.43 0.30 0.62 0.48  0.50 0.50 0.52 0.51 0.51 0.50  ecision recall  0.42 0.44 0.51 0.50  ecision recall  0.42 0.44 0.51 0.50  ecision recall  0.42 0.44 0.51 0.51 0.49 0.49 0.33 0.31 0.43 0.43 0.76 0.74 0.46 0.48 0.68 0.69 0.37 0.40 | 0.47       0.66       0.55         0.34       0.34       0.34         0.34       0.36       0.33         0.32       0.34       0.32    ecision recall f1-score         0.41       0.53       0.46         0.52       0.53       0.52         0.50       0.60       0.55         0.39       0.32       0.35         0.41       0.48       0.44         0.75       0.77       0.76         0.45       0.40       0.43         0.75       0.70       0.73         0.43       0.30       0.35         0.62       0.48       0.54         0.50       0.50       0.50         0.51       0.50       0.50         0.52       0.51       0.51         0.51       0.50       0.50         0.52       0.51       0.51         0.49       0.49       0.49         0.33       0.31       0.32         0.43       0.43       0.43         0.43       0.43       0.43         0.51       0.51       0.51         0.49       0.49       0.49 <t< td=""></t<> |

|                    |            |          |            | •       |
|--------------------|------------|----------|------------|---------|
| micro a            | vg 0.4     | 8 0.48   | 0.48       | 3916    |
| macro a            | vg 0.5     | 0 0.50   | 0.50       | 3916    |
| weighted a         | vg 0.4     | 8 0.48   | 0.48       | 3916    |
| J                  | J          |          |            |         |
| RandomForestClassi | fier :     |          |            |         |
|                    | precisi    | on recal | l f1-score | support |
|                    | ·          |          |            | • • •   |
| Imperial I         | PA 0.4     | 7 0.56   | 0.51       | 408     |
| Sais               | on 0.5     | 7 0.60   | 0.59       | 230     |
| Blonde A           | le 0.5     | 5 0.62   | 0.59       | 597     |
| American Brown A   | le 0.4     | 4 0.35   | 0.39       | 455     |
| American Amber A   | le 0.5     | 2 0.55   | 0.53       | 561     |
| American Sto       | ut 0.7     | 7 0.81   | 0.79       | 254     |
| Irish Red A        | le 0.5     | 5 0.51   | 0.53       | 351     |
| American Light Lag | er 0.7     | 1 0.76   | 0.74       | 296     |
| American Pale A    |            | 9 0.41   | 0.45       | 241     |
| American I         | PA 0.6     | 4 0.58   | 0.61       | 523     |
|                    |            |          |            |         |
| micro a            | vg 0.5     | 6 0.56   | 0.56       | 3916    |
| macro a            | _          | 7 0.57   | 0.57       | 3916    |
| weighted a         | vg 0.5     | 6 0.56   | 0.56       | 3916    |
| •                  |            |          |            |         |
| GradientBoostingCl | assifier : |          |            |         |
| •                  | precisi    | on recal | l f1-score | support |
|                    |            |          |            |         |
| Imperial I         | PA 0.5     | 5 0.62   | 0.58       | 408     |
| Sais               | on 0.6     | 0 0.71   | 0.65       | 230     |
| Blonde A           | le 0.6     | 0.63     | 0.62       | 597     |
| American Brown A   | le 0.5     | 5 0.35   | 0.43       | 455     |
| American Amber A   | le 0.5     | 7 0.62   | 0.60       | 561     |
| American Sto       | ut 0.7     | 6 0.89   | 0.82       | 254     |
| Irish Red A        | le 0.6     | 4 0.60   | 0.62       | 351     |
| American Light Lag | er 0.7     | 4 0.81   | 0.77       | 296     |
| American Pale A    | le 0.5     | 6 0.51   | 0.53       | 241     |
| American I         | PA 0.6     | 7 0.63   | 0.65       | 523     |
|                    |            |          |            |         |
| micro a            | vg 0.6     | 2 0.62   | 0.62       | 3916    |
| macro a            | vg 0.6     | 2 0.64   | 0.63       | 3916    |
| weighted a         | vg 0.6     | 2 0.62   | 0.61       | 3916    |
| -                  |            |          |            |         |

# Подбор параметров моделей

### In [\*]:

```
#Подбор параметров моделей (длительный процесс, поэтому данные о подборе сохраняются в
 2
    from sklearn.model_selection import GridSearchCV
 3
    from sklearn.model_selection import ShuffleSplit
 4
 5
    sgd_parameters = {'loss' : ['hinge', 'log', 'modified_huber', 'squared_hinge', 'percep'
                       'penalty': ['l1', 'l2'],
 6
 7
                       'alpha': [0.00001, 0.0001, 0.001],
                       'max_iter': [500, 1000, 2000]}
 8
9
    knc_parameters = {'n_neighbors' : [3, 5, 10],
                       'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute']}
10
    dtc_parameters = {'criterion' : ['gini', 'entropy'],
11
                       'max_leaf_nodes': [5, 10, 15, None],
12
13
                       'random_state': [35],
14
                       'max depth': [5, 10, 15, None]}
    frc_parameters = {'max_leaf_nodes': [5, 10, 15, None],
15
16
                       'random_state': [35],
                       'n_estimators': [10, 50, 100],
17
                       'max_depth': [5, 10, 15, None]}
18
    gbc_parameters = {'loss' : ['deviance', 'exponential'],
19
                       'learning_rate': [0.01, 0.1, 1],
20
21
                       'random_state': [35],
22
                       'n estimators': [60, 100, 120],
23
                       'max depth': [2, 3, 4]}
24
    parameters = [sgd_parameters, knc_parameters, dtc_parameters, frc_parameters, gbc_parameters
25
    cv = ShuffleSplit(n_splits = 5, test_size = 0.2)
26
    grid_list=[]
27
    for i in range(len(models)):
28
        m = models[i]
29
        p = parameters[i]
        grid = GridSearchCV(m, p, cv = cv)
30
31
        grid.fit(X_train, y_train)
        grid_list.append(grid)
32
```

#### In [ ]:

```
#Coxpaнeнue моделей с подобранными параметрами
from sklearn.externals import joblib
for i in len(models):

m = models[i]
grid = grid_list[i]
joblib.dump(grid.best_estimator_, type(m).__name__ +'__best_params.pkl')
```

### In [ ]:

```
#Загрузка моделей с подобранными параметрами
best_models = []
for m in models:
    best_models.append(joblib.load(type(m).__name__ +'_best_params.pkl'))
```

### Итоговые результаты

### In [ ]:

### In [ ]:

```
from sklearn.model selection import learning curve
 1
 2
 3
    def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=None, train)
 4
        plt.figure()
 5
        plt.title(title)
 6
        if ylim is not None:
 7
            plt.ylim(*ylim)
 8
        plt.xlabel("Training examples")
        plt.ylabel("Score")
 9
        train_sizes, train_scores, test_scores = learning_curve(
10
            estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
11
12
        train_scores_mean = np.mean(train_scores, axis=1)
13
        train_scores_std = np.std(train_scores, axis=1)
14
        test_scores_mean = np.mean(test_scores, axis=1)
        test_scores_std = np.std(test_scores, axis=1)
15
16
        plt.grid()
17
18
        plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
19
                         train_scores_mean + train_scores_std, alpha=0.1,
                         color="r")
20
21
        plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
22
                          test_scores_mean + test_scores_std, alpha=0.1, color="g")
23
        plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
24
                 label="Training score")
        plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
25
26
                 label="Cross-validation score")
27
        plt.legend(loc="best")
28
29
        return plt
```

#### In [ ]:

```
title = "Learning Curve"
best_model =
cv = ShuffleSplit(n_splits=30, test_size=0.2, random_state=35)
plot_learning_curve(estimator, title, X, y, cv=cv, n_jobs=4)

plt.show()
```

### In [ ]:

```
from sklearn.model selection import validation curve
 1
 2
 3
    def plot_val_curve(X, y, model, param_name, param_range, scorer):
 4
        X, y = X, y
 5
        cv = ShuffleSplit(n_splits=30, test_size=0.2, random_state=35)
 6
        train_scores, test_scores = validation_curve(model, X, y, param_name=param_name, p
 7
        train_scores_mean = np.mean(train_scores, axis=1)
 8
        train_scores_std = np.std(train_scores, axis=1)
 9
        test_scores_mean = np.mean(test_scores, axis=1)
        test scores std = np.std(test scores, axis=1)
10
11
        plt.title("Validation Curve")
12
13
        plt.xlabel(param_name)
14
        plt.ylabel("Score")
15
        plt.ylim(0.0, 1.1)
16
        lw = 2
        plt.semilogx(param_range, train_scores_mean, label="Training score",
17
                       color="darkorange", lw=lw)
18
        plt.fill_between(param_range, train_scores_mean - train_scores_std,
19
20
                           train_scores_mean + train_scores_std, alpha=0.2,
21
                           color="darkorange", lw=lw)
22
        plt.semilogx(param_range, test_scores_mean, label="Cross-validation score",
                       color="navy", lw=lw)
23
24
        plt.fill_between(param_range, test_scores_mean - test_scores_std,
25
                           test_scores_mean + test_scores_std, alpha=0.2,
26
                           color="navy", lw=lw)
27
        plt.legend(loc="best")
28
        return plt
```

### In [ ]:

```
from sklearn.metrics import make_scorer, accuracy_score

param_range = list(range(2, 10, 1))
param_name = "max_depth"
acc_scorer = make_scorer(accuracy_score)
val_curve(X, y, best_model, param_name, param_range, acc_scorer)

plt.show()
```