ČETVRTI TJEDAN

1. Definirati pojmove: predikat, karakteristični skup predikata, n-mjesni predikat.

Predikat je funkcija $P(\cdot)$ koja svakom elementu x iz nekog skupa (domene predikata) D pridružuje sud P(x). (Obavezno treba zadati domenu iz koje uzimamo elemente u tom predikatu.)

Skup svih elemenata domene D na kojem je predikat istinit zove se **karakteristični skup predikata**.

Kažemo da je predikat P(x) jednomjestan ako ima (ovisi o) jednu varijablu $x \in D$. Dvomjesni predikat P(x, y) ima dvije varijable $x \in D_1$, $y \in D_z$, dok n-mjesni predikat ima n varijabla $X_k \in D_k$, $k = 1, \ldots, n$. Skup $D = D_1 x \ldots x$ Dn zove se domena predikata. Jasno je da n -mjesni predikat možemo gledati i kao jednomjesni predikat, s elementima domene koji su poredani n-terci.

2. Što su vezane varijable, a što fiktivne varijable?

Kažemo da je neki nastup varijable x_i u formuli predikatnog računa **vezan** ako uz nju dolazi kvantifikator $\forall x_i$ ili $\exists x_i$. Inače kažemo daje nastup varijable X_i **slobodan**.

Ako semantička vrijednost (vrijednost istinitosti) predikata ne ovisi o nekoj varijabli, onda se ta varijabla zove **fiktivna varijabla**. Npr. ako sa P(x, y) označimo predikat " $x \ge 1$ ", gdje su $x, y \in R$, onda je varijabla y fiktivna. Varijabla o kojoj ne ovisi taj predikat i njezina vrijednost ne utječe na vrijednost predikata.

3. Definirati pojmove: univerzalni kvantifikator i egzistencijalni kvantifikator.

Neka je P(x) predikat i x iz zadane domene D . Onda sa $\forall x P(x)$ označavamo sud koji je istinit onda i samo onda ako je sud P(a) istinit za svaki $a \in D$. Sud $\forall x P(x)$ čitamo "za svaki x vrijedi P(x) ", "za sve x je P(x) ". Simbol \forall zovemo **univerzalnim kvantifikatorom**.

Na sličan način sa \exists P(x) označavamo sud koji je istinit ako postoji barem jedan element a \in D za koji je sud P(a) istinit. Sud \exists P(x) čitamo "postoji x tako da vrijedi P(x) ". Simbol \exists je **egzistencijalni kvantifikator** (kvantifikator postojanja).

Primjer:

slijed
$$(a_n)$$
 je konvergentan \equiv $(\exists a \in \mathbf{R})(\forall \varepsilon > 0)(\exists n_0 \in \mathbf{N})(\forall n \in \mathbf{N})(n > n_0 \Rightarrow |a_n - a| < \varepsilon).$

Za slijed koji nije konvergentan kažemo da je divergentan. Prema tome, uzimajući u obzir činjenicu da je $\neg(A \Rightarrow B) \equiv A \land \neg B$, dobivamo na temelju prethodnog teorema ovakav zaključak:

```
slijed (a_n) je divergentan \equiv \neg[(\exists a \in \mathbf{R})(\forall \varepsilon > 0)(\exists n_0 \in \mathbf{N})(\forall n \in \mathbf{N})(n > n_0 \Rightarrow |a_n - a| < \varepsilon)] \equiv (\forall a \in \mathbf{R})(\exists \varepsilon > 0)(\forall n_0 \in \mathbf{N})(\exists n \in \mathbf{N})(n > n_0 \land |a_n - a| \ge \varepsilon).
```

4. Kada kažemo da su dvije formule predikatnog računa logički ekvivalentne?

Za dvije formule predikatnog računa kažemo da su logički ekvivalentne ako za svaki predikat s pomoću kojih su definirane, i za svaki izbor vrijednosti iz domena predikata, dobivamo ekvivalentne sudove.

5. Iskazati i dokazati teorem koji daje DeMorganove formule za predikate.

Teorem 1. Vrijede ove DeMorganove formule za predikate P(x):

- (a) $\neg \forall x P(x) \equiv \exists x \neg P(x)$,
- (b) $\neg \exists x P(x) \equiv \forall x \neg P(x)$.

Valjda:

a)
$$\neg (\forall x P(x)) \equiv \exists x \neg P(x)$$

Treba dolazat $T \equiv T$ i $L \equiv L$
(ii)

(i) Neha je $\tau(\forall x P(x)) \equiv T$. Onda je $\forall x P(x) \equiv L$ => tada $\exists x$ za hoji je P(x) lažan $\forall x P(x) \equiv T$

(ii) Neha je $\neg(\forall x \ P(x)) \equiv \bot$. Onda je $\forall x \ P(x) \equiv \top$ tada $\exists x$ za hoji je P(x) istinit tj. $\exists x \ \neg P(x) \equiv \bot$

$$\begin{array}{ccc}
(i) & T = T \\
T = T & \text{tosalob aden} \\
(ii) & (ii)
\end{array}$$

(i) Nelsa je $\neg (\exists x P(x)) \equiv T$. Onda je $\exists x P(x) \equiv \bot$ Dalule, ne postoji miti jedan $x \in D$ za koji je P(x) istinit. Odnosmo, $\forall x \neg P(x) \equiv T$

(ii) Neha je $\tau(\exists x P(x)) \equiv \bot$. Tada je $\exists x P(x) \equiv \top$ Dable, nije ishna da za svahi \times vnjedi negacija od P(x), $\forall x \tau P(x) \equiv \bot$