巨量資料管理學院碩士在職專班

統計分析

2022/10/7 陳光宏

軟體操作

EXCEL樞紐分析表

- •請參考資料檔:Week 3檔案.xlsx
- 請製作銷售地區與商品名稱的列聯表
- •請問銷售地區與銷售的商品種類是否有相關?

訂單編號	▼ 交易日期 ▼	客戶編號	▼ 商品名稱	▼ 銷售數量 ▼ 業務姓名	▼ 銷售地區 🔻	成交單價 🔻
P80105	2019/1/5	C81001	電腦	2 Alex Wang	東區	\$21,000
P80106	2019/1/6	C81006	螢幕	2 Grace Fang	中區	\$3,000
P80107	2019/1/7	C81003	印表機	7 Eddy Chen	北區	\$2,500
P80108	2019/1/17	C81002	螢幕	5 Eddy Chen	北區	\$3,000
P80109	2019/1/11	C81005	螢幕	16 Bob Lee	中區	\$3,000
P80110	2019/1/14	C81007	印表機	9 Frank Hsio	東區	\$2,000
P80111	2019/1/15	C81004	電腦	2 Chris Chang	南區	\$21,000
P80112	2019/1/9	C81004	電腦	3 Hans Lin	南區	\$21,000
P80113	2019/1/18	C81009	螢幕	8 Chris Chang	南區	\$3,000
D00114	2010/1/10	C01000	 数	A Hono Lin	士石	¢2 000

加總 - 銷售數量 列標籤	欄標籤 ▼ 印表機	電腦	螢幕	總計
中區	17	4	41	62
北區	28	37	18	83
東區	35	8	29	72
南區	49	15	28	92
總計	129	64	116	309

計數 - 銷售數量	欄標籤 ▼			
列標籤 🔻	印表機	電腦	螢幕	總計
中區	20.00%	20.00%	60.00%	100.00%
北區	30.00%	40.00%	30.00%	100.00%
東區	37.50%	25.00%	37.50%	100.00%
南區	33.33%	33.33%	33.33%	100.00%
總計	30.00%	30.00%	40.00%	100.00%

製作列聯表 - SAS EG

商品名稱					
	印表機	電腦	螢幕	總計	
銷售地區					
中區	次數	2	2	6	10
	列百分比	20.00	20.00	60.00	
北區	次數	3	4	3	10
	列百分比	30.00	40.00	30.00	
東區	次數	3	2	3	8
	列百分比	37.50	25.00	37.50	
南區	次數	4	4	4	12
	列百分比	33.33	33.33	33.33	
總計	次數	12	12	16	40

從 Week 4檔案.xlsx 匯入的資料 ·

	▲ 訂單編號	□ 交易日期	▲ 客戶編號] 清單資料(L)		▲ 業務姓名	A
1	P80105	05JAN2019	C81001	電影Σ	摘要統計精靈(M)	2	Alex Wang	東區
2	P80106	06JAN2019	C81006	登幕Σ		2	Grace Fang	中區
3	P80107	07JAN2019	C81003	印料	摘要表精靈(B)	7	Eddy Chen	北區
4	P80108	17JAN2019	C81002	登 -		5	Eddy Chen	北區
5	P80109	11JAN2019	C81005	登		6	Bob Lee	中區
б	P80110	14JAN2019	C81007	印章		9	Frank Hsio	東區
7	P80111	15JAN2019	C81004	電		2	Chris Chang	南區
8	P80112	09JAN2019	C81004	電		3	Hans Lin	南區
9	P80113	18JAN2019	C81009	登 👚	表格分析(A)	8	Chris Chang	南區
10	P80114	19JAN2019	C81009	螢幕		4	Hans Lin	南區

Ⅲ 表格分析 (2)- Local:WORK.WEEK 4檔案

資料 素格 儲存格統計值	儲存格統計值	
(本)	可用的統計值 累積欄百分比(W) 欄百分比(U) 儲存格文數(F) 儲存格百分比(P) 遗漏值次數(V) 儲存格對 Pearson 卡方的貢獻(L) 儲存格次數與預期值的離差(D) 預測的儲存格次數(E) 總次數的百分比(T) 在資料集內包含百分比(N)	
□ 預覽程式碼(C)		執行(R) ▼

機率分布

隨機變數 (Random variables)

- 欲描述的事件
- 有多種可能的情況
- 每一種情況有特定的發生機率
- 互斥與collectively exhaustive
- 例如
 - 某人買了五樣商品,想了解這五樣商品屬於書籍類的機率
 - 丟兩個骰子,想了解出現點數總和的機率

機率分布 (Probability distribution)

- 描述隨機變數的行為
- 用數學來描述
- 透過機率分布,計算隨機變數每種情況下的機率

練習1

假設同時丟三個硬幣

- 1. 請寫出總共有幾種可能的情況?
- 2. 請列出每種情況的機率?
- 3. 請問隨機變數是什麼?

可能的	的情況	機率
1		
2		
3		

Possible Events	х	P(x)
TTT	0	1/8
HTT, THT, TTH	1	3/8
ннт, нтн, тнн	2	3/8
ННН	3	1/8
Total		1

描述機率分布

- 機率密度函數 (Probability density function, PDF)
 - 隨機變數為X軸,對應的機率值為Y軸
 - Probability mass function (PMF)
- 累積機率分布函數 (Cumulative distribution function, CDF)

練習2

•請問下列三個例子裡,哪些不能說是機率分布?

Exar	nple A	Example B		Exan	nple C
x	P(x)	x	P(x)	х	P(x)
0	.80	1	.05	50	.30
1	.20	2	.15	60	.60
		3	.25	70	.40
		4	.40		
		5	.10		

期望值與變異數

- 期望值 (Expected value)
 - 加權平均的概念

$$E(X) = \mu = \sum_{i=1}^{N} x_i P(x_i)$$

- 變異數 (Variance)
 - 離平均有多遠

$$Var(X) = \sigma^2 = \sum_{i=1}^{N} [x_i - \mu]^2 P(x_i)$$

範例1

- 某公司周日緊急客服電話的PDF如下
- 請計算來電次數的期望值

х	P(x)
0	.05
1	.10
2	.30
3	.25
4	.20
5	.10
Total	1.00

範例2

- 某個小旅館有7間房間,二月是旅遊旺季,老闆想了解二月份佔 房的狀況
- 計算平均佔房數,及其變異數

Х	P(x)	xP(x)	$x - \mu$	$[x-\mu]^2$	$[x-\mu]^2P(x)$
0	.05				
1	.05				
2	.06				
3	.10				
4 5	.13				
5	.20				
6	.15				
7	.26				
Total	1.00	$\mu =$			$\sigma^2 =$

解開黑盒子

- 二項式分布 (Binomial distribution)
- 卜瓦松分布 (Poisson distribution)
- 常態分布 (Normal distribution)

二項式分布 (Binomial distribution)

Bernoulli Experiment	Possible Outcomes	Probability of "Success"
Flip a coin	1 = heads 0 = tails	$\pi = .50$
Inspect a jet turbine blade	1 = crack found 0 = no crack found	$\pi = .001$
Purchase a tank of gas	1 = pay by credit card0 = do not pay by credit card	$\pi = .78$
Do a mammogram test	1 = positive test0 = negative test	$\pi = .0004$

二項式分布 (Binomial distribution)

k = 成功次數

n = 總數

p = 成功機率

q = 1 - p

$$Pr(X=k)=\binom{n}{k}p^kq^{n-k}, \quad k=0,1,\ldots,n$$

Parameters	$n=$ number of trials $\pi=$ probability of success
PDF	$P(X = x) = \frac{n!}{x!(n-x)!} \pi^{x} (1 - \pi)^{n-x}$
Excel* PDF	=BINOM.DIST(x , n , π , 0)
Excel* CDF	=BINOM.DIST(x , n , π , 1)
Domain	$x = 0, 1, 2, \ldots, n$
Mean	$n\pi$
Standard deviation	$\sqrt{n\pi(1-\pi)}$
Random data generation in Excel	=BINOM.INV(n , π , RAND()) or use Excel's Data Analysis Tools
Comments	Skewed right if π $<$.50, skewed left if π $>$.50, and symmetric if π $=$.50.

Binomial Shape

$$\pi < .50$$

$$\pi = .50$$

$$\pi > .50$$

skewed right

symmetric

skewed left

範例

到某醫院急診的病人中,大約有20%沒有額外買保險

- 1. 隨機選取5個病人,請問至少有3個病人沒買保險的機率是多少 $Pr(X \ge 3)$?
- 2. 承上,請問這5個病人中,預期會有多少人沒有額外買保險?

範例解答

方法一 **代公式**

$$Pr(X=k) = \binom{n}{k} p^k q^{n-k}, \quad k = 0, 1, \dots, n$$

方法二

查表

方法三 利用excel Exact binomial probabilities $Pr(X = k) = \binom{n}{k} p^k q^{n-k}$ (continued)

n	k	.05	.10	.15	.20	.25	.30	.35	.40	.45	.50
	18	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000
	19	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000
20	0	.3585	.1216	.0388	.0115	.0032	.0008	.0002	.0000	.0000	.0000
	1	.3774	.2702	.1368	.0576	.0211	.0068	.0020	.0005	.0001	.0000
	2	.1887	.2852	.2293	.1369	.0669	.0278	.0100	.0031	.0008	.0002
	3	.0596	.1901	.2428	.2054	.1339	.0716	.0323	.0123	.0040	.0011
	4	.0133	.0898	.1821	.2182	.1897	.1304	.0738	.0350	.0139	.0046
	5	.0022	.0319	.1028	.1746	.2023	.1789	.1272	.0746	.0365	.0148
	6	.0003	.0089	.0454	.1091	.1686	.1916	.1712	.1244	.0746	.0370
	7	.0000	.0020	.0160	.0546	.1124	.1643	.1844	.1659	.1221	.0739
	R	0000	0004	0046	0222	0609	1144	1614	1707	1623	1201

Χ	P(x)
0	0.3277
1	0.4096
2	0.2048
3	0.0512
4	0.0064
5	0.0003

卜瓦松分布 (Poisson distribution)

- 可視為二項式分布的一種極端例子(稀有事件)
 - n 很大、p很小的時候
- 某一段時間內,發生某事件的個案數

X = number of customers arriving at a bank ATM in a given minute.

X = number of file server virus infections at a data center during a 24-hour period.

X = number of asthma patient arrivals in a given hour at a walk-in clinic.

卜瓦松分布 (Poisson distribution)

x = 發生個數或次數

 $\lambda =$ 期望發生個數或次數

e = 2.71828...

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

Parameter	$\lambda=$ mean arrivals per unit of time or space
PDF	$P(X = x) = \frac{\lambda^{x} e^{-\lambda}}{x!}$
Excel* PDF	=POISSON.DIST(x, λ , O)
Excel* CDF	=POISSON.DIST(x, λ , 1)
Domain	$x = 0, 1, 2, \dots$ (no obvious upper limit)
Mean	λ
Standard deviation	$\sqrt{\lambda}$
Comments	Always right-skewed, but less so for larger λ .

卜瓦松分布的PDF

範例

某家商店平常週四上午九點到十點,大約會有**1.7**個客人來店購物

- 1. 請問"大約會有1.7個客人來店購物"怎麼計算來的?
- 2. 在同日同個時段,會有三個客人來購物的機率是多少?
- 3. 會有三個以上的客人來購物的機率是多少?
- 4. 請問期望值和標準差分別是多少?

連續變項的機率分布

• PDF f(x) 與 CDF F(x)

機率 = PDF的面積

• 連續型的隨機變數介於a和b之間的機率 P(a < X < b)

期望值與變異數

Mean
$$E(X) = \mu = \int_{-\infty}^{+\infty} x f(x) dx$$
Variance
$$Var(X) = \sigma^2 = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$$

期望值與變異數

Continuous Random Variable

Mean

$$E(X) = \mu = \int_{-\infty}^{+\infty} x f(x) \, dx$$

Variance

$$Var(X) = \sigma^2 = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$$

Discrete Random Variable

$$E(X) = \mu = \sum_{\text{all } x} x P(x)$$

$$Var(X) = \sigma^2 = \sum_{\text{all } x} [x - \mu]^2 P(x)$$

常態分布 (Normal distribution)

- $N(\mu, \sigma^2)$
- $[\mu 3\sigma, \mu + 3\sigma]$ 包含幾乎所有數值

Parameters	$\mu=$ population mean $\sigma=$ population standard deviation
PDF	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$
Domain	$-\infty < \chi < +\infty$
Mean	μ
Std. Dev.	σ
Shape	Symmetric, mesokurtic, and bell-shaped.
PDF in Excel*	=NORM.DIST(x, μ , σ ,0)
CDF in Excel*	=NORM.DIST(x, μ , σ ,1)
Random data in Excel	=NORM.INV(RAND(), μ , σ)

標準常態分布

•把隨機變數x標準化

$$z = \frac{x - \mu}{\sigma}$$

Parameters	$\mu=$ population mean $\sigma=$ population standard deviation
PDF	$f(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \text{ where } z = \frac{x - \mu}{\sigma}$
Domain	$-\infty < z < +\infty$
Mean	0
Standard deviation	1
Shape	Symmetric, mesokurtic, and bell-shaped.
CDF in Excel*	=NORM.S.DIST(z,1)
Random data in Excel	=NORM.S.INV(RAND())
Comment	There is no simple formula for a normal CDF, so we need normal tables or Excel to find areas.

範例

某修車廠修車時間的PDF如右,平均時間是28分鐘,標準差5分鐘

- 1. 請問有多少比例的車,其修車時間會低於半小時?
- 2. 現在來了一台車,請問修這台車的時間超過40分鐘的機率是多少?
- 3. 老闆希望80%的車,修車時間不要超過半小時,請問平均修車時間必須是多少才能符合老闆的要求?

範例解答1

Using Excel,

=NORM.DIST(30,28,5,1)

= .655422

$$z = \frac{30 - 28}{5} = 0.40$$

範例解答 2

Using Excel,

= 1 - NORM.DIST(40,28,5,1)

= .008198

$$z = \frac{40 - 28}{5} = 2.4$$

範例解答 3

$$z = \frac{x - \mu}{\sigma}$$

$$0.84 = \frac{30 - \mu}{5}$$

$$\mu = 30 - 0.84(5) = 25.8$$

課後作業

• 請具體寫出一個今天學習到的統計概念 (字數不限)