Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа № 121

по курсу общей физики на тему: «Измерение магнитного поля Земли»

> Работу выполнил: Баринов Леонид (группа Б02-827)

1 Аннотация

В работе будут определены характеристики шарообразных неодимовых магнитов и измерены горизонтальная и вертикальная составляющие индукции магнитного поля Земли и магнитное наклонение.

2 Теоретические сведения

Точечный магнитный диполь

Простейший магнитный диполь может быть образован витком с током или постоянным магнитом. По определению, магнитный момент \vec{P}_m тонкого витка площадью S с током I равен:

$$\vec{P}_m = \frac{I}{c}\vec{S} = \frac{I}{c}S\vec{n}$$

где c - скорость света в вакууме, $\vec{S} = S\vec{n}$ – вектор площади контура, образующий с направлением тока правовинтовую систему, \vec{n} — единичный вектор нормали к площадке S (это же направление \vec{P}_m принимается за направление $S \to N$ от южного (S) к северному (N) полюсу). Если размеры контура с током или магнитной стрелки малы по сравнению расстоянием до диполя, то соответствующий магнитный диполь \vec{P}_m называют элементарным или точечным.

Магнитное поле точечного диполя определяется по формуле, аналогичной формуле для поля элементарного электрического диполя:

$$\vec{B} = 3\frac{(\vec{P}_m, \vec{r})\vec{r}}{r^5} - \frac{\vec{P}_m}{r^3} \tag{1}$$

В магнитном поле с индукцией \vec{B} на точечный магнитный диполь \vec{P}_m действует механический момент сил:

$$\vec{M} = \vec{P}_m \times \vec{B} \tag{2}$$

Под действием вращающего момента \vec{M} виток с током или постоянный магнит поворачивается так, чтобы его магнитный момент выстроился вдоль вектора индукции магнитного поля. Это – положение устойчивого равновесия: при отклонении от этого положения возникает механический момент внешних сил, возвращающий диполь к положению равновесия. В положении, когда Рт и В параллельны, но направлены противоположно друг другу, также имеет место равновесие (M=0), но такое равновесие неустойчиво: малейшее отклонение от этого положения приведёт к появлению момента сил, стремящихся отклонить диполь ещё дальше от начального положения.

Магнитный диполь в магнитном поле обладает энергией:

$$W = -(\vec{P}_m, \vec{B}) \tag{3}$$

Из этой формулы следует, что энергия диполя в поле минимальна и равна $W_{min} = -P_m B$ при сонаправленных векторах $\vec{P}_m \uparrow \uparrow \vec{B}$ (угол θ между \vec{P}_m и B равен нулю), т.е., как и следовало ожидать, в положении устойчивого равновесия.

В неоднородном поле на точечный магнитный диполь, кроме момента сил, действует ещё и сила:

$$\vec{F} = (\vec{P}_m, \vec{\nabla})\vec{B} \tag{4}$$

где $\vec{\nabla}=\left(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z}\right)$ — дифференциальный оператор Гамильтона.

Используя формулы для момента силы, силы и энергии, не сложно выяснить, как ведёт себя свободный магнитный диполь в неоднородном магнитном поле: он выстраивается вдоль силовых линий магнитного поля и, кроме того, под действием результирующей силы, возникающей из-за неоднородности поля, втягивается в область более сильного магнитного поля, т.е. в область, где он обладает меньшей энергией.

Зная магнитные моменты P_1 и P_2 двух небольших постоянных магнитов, можно рассчитать силу их взаимодействия. Если магнитные моменты $P_1 = P_2 = P_m$ двух одинаковых небольших магнитов направлены вдоль соединяющей их прямой, а расстояние между ними равно r, то магниты взаимодействуют с силой:

$$F = P_m \frac{\partial B}{\partial r} = P_m \frac{\partial (2P_m/r^3)}{\partial r} = -6\frac{P_m^2}{r^4}$$
 (5)

Магниты притягиваются, если их магнитные моменты сонаправлены $(P_1 \uparrow \uparrow P_2)$ и отталкиваются, если моменты направлены противоположно друг другу $(\vec{P_1} \uparrow \downarrow P_2)$.

Если магнитные моменты направлены перпендикулярно соединяющей их прямой, то сила их взаимодействия окажется в два раза меньшей: $F = 3p^2/r^4$ (в этом случае диполи притягиваются при $\vec{P}_1 \uparrow \uparrow \vec{P}_2$ и отталкиваются при $\vec{P}_1 \uparrow \uparrow \uparrow P_2$).

Неодимовые магнитные шары

В настоящей работе используются неодимовые магниты шарообразной формы. В настоящей работе имеет значение то, что:

- 1. Шары намагничены однородно;
- 2. Вещество, из которого изготовлены магниты, является магнитожестким материалом.

Магнитное поле однородно намагниченного шара радиуса R на расстояниях r > R от центра шара совпадает с полем точечного магнитного диполя \vec{P}_m , равного полному магнитному моменту шара и расположенного в его центре. (Можно показать, что внутри (r < R) такого шара поле однородно и равно $B_0 = 2P_m/R^3$)

Магнитожёсткость материала означает, что магнитные моменты шаров в нашей работе не изменяются под действием внешних магнитных полей, т.е. шар ведёт как жёсткий диполь. Поэтому, при расчетах можно считать, что шары взаимодействуют как жёсткие точечные магнитные диполи, расположенные в центрах шаров

Полный магнитный момент \vec{P}_m постоянного магнита определяется намагниченностью p_m вещества, из которого он изготовлен. По определению, намагниченность

- это магнитный момент единицы объёма. Для однородно намагниченного шара намагниченность, очевидно, равна:

$$\vec{p}_m = \frac{\vec{P}_m}{V} \tag{6}$$

где V – объем шара

Намагниченность — важная характеристика вещества постоянных магнитов, определяющая, в частности, величину остаточной магнитной индукции $B_r = 4\pi p_m$ (остаточная индукция B_r — одна из величин, которая, как правило, указывается в справочниках по магнитожёстким материалам).

Не сложно показать, что индукция магнитного поля \vec{B}_p на полюсах однородно намагниченного шара связана с величиной намагниченности p_m и остаточной магнитной индукцией \vec{B}_r формулой:

$$\vec{B}_p = \frac{8\pi}{3} \vec{p}_m = \frac{2}{3} \vec{B}_r \tag{7}$$

3 Оборудование

12 одинаковых неодимовых магнитных шариков, тонкая нить для изготовления крутильного маятника, медная проволока диаметром (0,5-0,6) мм, электронные весы, секундомер, измеритель магнитной индукции ATE-8702, штангенциркуль, брусок из немагнитного материала $(25\times30\times60~\text{мм}^3)$, деревянная линейка, штатив из немагнитного материала; дополнительные неодимовые магнитные шарики (\sim 20 шт.) и неодимовые магниты в форме параллелепипедов (2~шт.), набор гирь и разновесов.

4 Результаты измерений и обработка результатов

Проведем измерения массы шариков. n - количество шариков

n	m , Γ	m_0 , г
12	25,9	2,16
10	24,2	2,42

Таблица 1. Измерение массы грузов

Усредняя получим:

$$m_0^{
m cp} = 2,29 \pm 0,13$$
 г

Измерим диаметр одного шарика с помощью штангенциркуля и микрометра. D – диаметр n шариков

Микрометр	Штангенциркуль		
d, mm	n	D, cm	d, cm
5,98	12	7,21	0,6
6,01	10	6,00	0,6
6,03	8	4,80	0,6
5,99			
6,00			

Таблица 2. Определение диаметра шариков с помощью штангенциркуля и микрометра

Усредним:

$$d = 6, 0 \pm 0, 1 \text{ mm}$$

Используя дополнительные шарики, составим цепочку из 20-30 шариков и, с помощью неодимовых магнитов в форме параллелепипедов, подсоединим цепочку к гире и разновесам, так, чтобы общая масса системы составила ~ 500 г. Добавляя или удаляя шарики, подберем минимальный вес F системы цепочки с гирей, при котором она отрывается от верхнего шарика.

Взвесим получившуюся цепочку:

$$M = 544 \; \text{r}$$

По формуле $F_0 = F/1,08$ определим силу сцепления двух шаров:

$$F_0 = 5 \text{ H}$$

Из формулы $F_0=6P_m^2/d^4$ определите магнитный момент шарика P_m . Оценим погрешность результата.

$$P_m = 103, 9 \pm 3, 5 \text{ spr/}\Gamma c$$

Вычислим значение поля на полюсах по формуле $B_p = 16 P_m/d^3$:

$$B_p \approx 7700 \pm 460 \; \Gamma c$$

$$B_p = 0,77 \pm 0,05$$
 Тл

Значение, измеренное магнитометром:

$$B_p^{\scriptscriptstyle {
m T}} = 0,6 \pm 0,2$$
 Тл

Определение горизонтальной составляющей магнитного поля Земли

Исследуем зависимость периода T крутильных колебаний «стрелки» от количества магнитных шариков $n.\ k$ – количество полных периодов колебаний стрелки. составляющих «стрелку».

n	t, c	k	T, c	n	t, c	k	T, c
3	19,43	30	0,65	7	15,02	10	1,50
3	9,68	15	0,65	7	7,56	5	1,51
3	6,06	10	0,61	8	17,36	10	1,74
4	17,56	20	0,88	8	8,39	5	1,68
4	12,88	15	0,86	9	15,16	8	1,90
4	8,78	10	0,88	9	15,42	8	1,93
5	21,61	20	1,08	10	10,85	5	2,17
5	16,15	15	1,08	10	10,46	5	2,09
5	10,73	10	1,07	11	11,79	5	2,36
6	12,65	10	1,27	11	11,58	5	2,32
6	12,72	10	1,27	12	12,93	5	2,59
6	12,48	10	1,25	12	12,68	5	2,54

Таблица 3. Зависимость периода T крутильных колебаний от количества магнитных шариков в стрелке

По результатам в таблице 3 построим график зависимости периода T крутильных колебаний от количества магнитных шариков n в «стрелке». (рис. 1)

Рис. 1. график зависимости периода T крутильных колебаний от количества магнитных шариков n в «стрелке»

По значению углового коэффициента рассчитаем величину горизонтальной со-

ставляющей магнитного поля Земли по формуле: $B_h = \frac{\pi^2 m d^2}{3k^2 P_m}$ $B_h = 0,58 \pm 0,04 \; \Gamma {\rm c}$

Определение вертикальной составляющей магнитного поля Земли

Определим механический момент сил, действующий со стороны магнитного поля Земли на горизонтально расположенную магнитную «стрелку». Для этого, с помощью одного или нескольких кусочков проволоки, уравновесим «стрелку» в горизонтальном положении.

С помощью весов определим массу уравновешивающего груза $m_{\rm rp}$. Из условия равновесия рассчитаем механический момент сил M, действующих на горизонтальную «стрелку» со стороны поля Земли. l – количество шариков, составляющих плечо силы.

n	1	$m_{ m rp},$ г	M , дин \cdot см
10	3	0,222	391,61
	4	0,131	308,11
8	3	0,182	321,05
8	2	0,281	330,46
6	2	0,209	245,78
	1	0,348	204,62
4	1	0,297	174,64

Таблица 4. Зависимость момента силы M, действующей на горизонтальную «стрелку» со стороны поля Земли, от количества шариков в «стрелке» n

Рис. 2. момента силы M, действующей на горизонтальную «стрелку» со стороны поля Земли, от количества шариков в «стрелке» n

По значению углового коэффициента (A) вычисляем вертикальную составляющую магнитного поля Земли по формуле $B_{\nu} = A/P_m$:

$$B_{\nu} = 0.30 \pm 0.05 \; \Gamma c$$

Используя результаты измерений B_h и B_{ν} , определим магнитное наклонение β и полную величину индукции магнитного поля Земли на широте Долгопрудного B.

$$\beta \approx 27^{\circ}$$

$$B = 0.65 \pm 0.12 \, \text{Fc}$$

Оценим также полный магнитный момент P_3 Земли:

$$P_3 \approx 8 \cdot 10^{25} \text{ spr/}\Gamma c$$

5 Обсуждение результатов и выводы

Была рассчитана сила сцепления двух неодимовых шаров:

$$F \approx 5 \text{ H}$$

В работе был определен магнитный момент неодимового шарика с диаметром d=6 мм:

$$P_m = 104 \pm 4 \text{ spr/}\Gamma c \quad (\varepsilon = 4\%)$$

Была рассчитана величина поля на полюсах магнитного шарика:

$$B_p = 0.77 \pm 0.05 \text{ Tm} \quad (\varepsilon = 6\%)$$

Что в целом совпадает со значением, полученным с помощью магнитометра:

$$B_n^{\mathrm{T}} = 0, 6 \pm 0, 2 \mathrm{T} \pi$$

Исследована зависимость периода T крутильных колебаний «стрелки» от количества магнитных шариков n, составляющих «стрелку». (Рис. 1)

По значению углового коэффициента была рассчитана величина горизонтальной составляющей магнитного поля Земли:

$$B_h = 0.58 \pm 0.04 \; \Gamma c \quad (\varepsilon = 7\%)$$

Результат оказался довольно сильно завышен относительно табличного значения:

$$B_{b}^{T} = 0,15 \, \Gamma c$$

Это можно объяснить весомым влиянием других магнитов, находящихся на небольших расстояний от установки.

Также был построен график зависимости механического момента силы M от количества шариков, составляющих магнитную «стрелку». (Рис. 2)

С помощью угла наклона графика была рассчитана вертикальная составляющая магнитного поля Земли:

$$B_{\nu} = 0.30 \pm 0.05 \, \text{Tc} \quad (\varepsilon = 17\%)$$

Что с учетом погрешности соотносится с табличным значением:

$$B_{\nu}^{\text{\tiny T}} = 0,46 \; \Gamma \text{c}$$

Исходя из горизонтальной и вертикальной компоненты магнитного поля Земли было определено магнитное отклонение β и полная величина индукции магнитного поля Земли:

$$\beta \approx 27^{\circ}$$

$$B = 0,65 \pm 0,12 \ \Gamma \text{c} \quad (\varepsilon = 18\%)$$

Видно, что значения плохо соотносятся с табличным в основном из-за рассчитанной горизонтальной составляющей магнитного поля Земли:

$$\beta^{\rm \tiny T}=71^{\circ}$$

$$B=0,48 \Gamma c$$

Также была получена достаточно грубая оценка магнитного момента P_3 Земли:

$$P_{\rm s} \approx 8 \cdot 10^{25} \ {\rm эрг/\Gamma c}$$