Podstawy Elektrotechniki 2

lista 8

1. Obliczyć rozkład natężenia pola magnetycznego wzdłuż osi symetrii dwu pierścieni kołowych (cewki Helmholtza). O ile procent zmieni się H jeżeli z zmienia się w granicach $\pm \frac{R}{4}$ (względem H(R/2)).

2.Określić wartość , kierunek i zwrot wektora indukcji magnetycznej B w p-cie P (rys. obok)
Dane:

I = 2 kA; $\overrightarrow{AB} = 40cm$; $\overrightarrow{AP} = 30cm$

3. Określić wartość i kierunek wektora indukcji magnetycznej B pola wytworzonego przez dwa prostopadle względem siebie umieszczone pierścienie kołowe w p-cie P.

Dane: $R_1 = 30$ cm; $R_2 = 40$ cm; $I_1 = N$ A; $I_2 = I$ A Rozważyć różne warianty kierunków przepływu prądów.

4. Jednorodny drut metalowy tworzący okrąg o promieniu R , dołączony jest do źródła prądu w sposób podany na rysunku. Określić natężenie pola magnetycznego H w środku okręgu, jeżeli jest dany prąd I oraz kat α . Pole od przewodów doprowadzających prąd , pominąć.

5. Obliczyć całkę z wektora H po zamkniętej krzywej L obejmującej prostoliniowy przewód przez który płynie prąd I (rys. obok). Dane: I = N A; $\alpha = 1/3\Pi$

6. Wyprowadź wzór na natężenie pola magnetycznego H dla jednowarstwowego długiego selenoidu (R<< L) wzdłuż jego osi symetrii oraz toroidu o przekroju kołowym

 $(\ dane: \quad selenoid: R, L, I, n; \quad toroid: R_1, R_2, \ r_o \ , I, n \)$