Определение 1. Пусть A — некоторое конечное множество. *Информация в множестве* A — это число

$$\chi(A) = \log |A|$$
.

Оно соответствует интуитивному представлению о том, что необходимо $\log |A|$ бит для выделения некоторого элемента множества. Отметим, что число $\chi(A)$ может быть нецелым.

- **1.** Пусть загадано число от 1 до N. Можно задавать любые вопросы на «да/нет». Сколько вопросов потребуется, если на один ответ можно дать неверный ответ, а вопросы:
 - (а) можно задавать адаптивно;
 - (b) нужно написать заранее?
- **2.** Для множества $A \subseteq \mathbb{N}^3$ будем обозначать $\pi_{ij}(A)$ проекцию A на координатную плокость, задаваемую осями i,j (индексы $i,j \in [3]$). Докажите, что для любого конечного A выполняется:

$$2\log |A| \le \log |\pi_{12}(A)| + \log |\pi_{13}(A)| + \log |\pi_{23}(A)|.$$

3. Для множества $A \subseteq \mathbb{N}^4$ будем обозначать $\pi_{ij}(A)$ проекцию A на координатную плокость, задаваемую осями i,j,k (индексы $i,j,k \in [4]$). Докажите, что для любого конечного A выполняется:

$$3\log |A| \le \log |\pi_{123}(A)| + \log |\pi_{124}(A)| + \log |\pi_{134}(A)| + \log |\pi_{234}(A)|.$$

- **4.** Пусть имеется некоторая карточка, про которую известно, что на одной её стороне написано целое неотрицательное число n, а на другой целое число n+1. Алиса и Боб сидят друг напротив друга смотрят на эту карточку с разных сторон и между ними происходит следующий разговор.
 - А: Я не знаю числа на стороне Боба.
 - Б: Я не знаю числа на стороне Алисы.

Это повторяется 10 раз и после этого Алиса говорит, что знает число на стороне Боба. Какие числа могли быть написаны на карточке?

- 5. Алиса задумала целое число от 1 до 2^n . Сколько денег нужно иметь, чтобы отгадать задуманное число, задавая вопросы с ответами да,нет, если за каждый ответ «да» приходится платить 1 монету, а каждый ответ «нет» 2 монеты.
- **6.** Имеются 60 монет, среди которых ровно одна фальшивая (неизвестно какая). Все настоящие монеты одного веса, а фальшивая легче или тяжелее. На чашечных весах можно сравнивать по весу любые две группы монет. Нужно найти фальшивую монету и выяснить, легче она или тяжелее. Докажите, что необходимо и достаточно сделать 5 взвешиваний.
- **7.** Дано 5 различных по весу камешков a_1, \ldots, a_5 . Можно ли их упорядочить по весу с помощью 7 взвешиваний?

Определение 2. Пусть A — двумерное множество с проекциями X и Y. Количество информации, содержащееся в A, если мы уже знаем вторую координату, определяется следующим образом:

$$\chi_{Y|X}(A) = \max_{x} (\log |A_x|),$$

где A_x — сечение A по координате x.

Интуитивно — это достаточное количество бит, нужное для кодирования элемента, зная его первую проекцию. Но это определение «плохое», так как разным элементам могут соответствовать сечения разных размеров.

Нетрудно проверить, что при таком определении выполнено неравенство

$$\chi(A) \le \chi(A_Y) + \chi_{X|Y}(A).$$

Пример 1. Есть два игрока, первый загадывает число от 1 до *п*. Сколько вопросов с ответом «да/нет» необходимо задать второму игроку, чтобы угадать число? При этом у задачи есть два варианта: с *неадаптивной* стратегией, когда второй игрок пишет все вопросы заданы заранее, и *адаптивной* стратегией, когда второй игрок задаёт очередной вопрос, зная ответы на все предыдущие.

Решение. Покажем, что $h = \lceil \log n \rceil$ и есть оптимальное количество вопросов.

Пусть Q_i — ответ на i-ый вопрос (один бит), N — искомое число,

$$B := Q_1 \times Q_2 \times \cdots \times Q_h$$
.

Посмотрим на множество пар (N,B) по всем возможным N и B. Корректность протокола означает, что если мы знаем все Q_i , то можем определить число, то есть $\chi_B([n])=0$. Легко заметить, что $\chi(Q_i)\leq 1$. Тогда

$$\log n \le \chi(N, B) \le \sum_{i=1}^{h} \chi(Q_i) + \chi_B([n]) = \sum_{i=1}^{h} \chi(Q_i) \le h.$$

Таким образом, $h \ge \log n$, доказана нижняя оценка.

Ту же оценку можно было легко получить и другими, более простыми способами, но метод выше обобщается на гораздо более сложные ситуации. \Box

- **8.** Рассмотрим следующую задачу: даны n монеток, из которых одна фальшивая и имеет другой вес, и рычажные весы. Вопрос можно ли за m взвешиваний определить фальшивую монету? Решите задачу в следующих вариантах:
 - (a) n = 30, m = 3.
 - (b) n = 15, m = 3.