Pulse Efficient Quantum Circuits

Nathan Earnest-Noble, Ph.D. Quantum Computing Application Researcher

Overview

- Calibrating Single and Two Qubit Gates Rabi Oscillations and Getting a CNOT from the Cross Resonance
- Circuit Transpilation Understanding Differences from Gate vs Pulse Perspectives
- Continuous Gate Sets Reducing Circuit Depth by Scaling the Cross Resonance Interaction

Overview

- Calibrating Single and Two Qubit Gates Rabi Oscillations and Getting a CNOT from the Cross Resonance
- Circuit Transpilation Understanding Differences from Gate vs Pulse Perspectives
- Continuous Gate Sets Reducing Circuit Depth by Scaling the Cross Resonance Interaction

An X gate is Calibrated from Rabi Oscillations

Control Pulses Can Have Different Shapes

The Derivative Removal by Adiabatic Gate (DRAG) Reduces Leakage Errors

Rabi Oscillation is a Rough Amplitude Calibration: Repeated Gates to Get Amplify Error

😂 Qiskit

Rabi Oscillation is a Rough Amplitude Calibration: Repeated Gates to Get Amplify Error

Rabi Oscillation is a Rough Amplitude Calibration: Repeated Gates to Get Amplify Error

The Z Gate is Done through Control Electronic Phase

In lab frame of reference:

$$U = Exp[-i \Omega T(\cos(\gamma)\sigma_X + \sin(\gamma)\sigma_Y)]$$

Z Gate

Gate established by phase adjustment in classical electronics

McKay, D. C. et al "Efficient Z gates for quantum computing." Physical Review A 96, no. 2 (2017): 022330.

With the X and VZ gates, one Can Prepare Arbitrary 1Q States

In lab frame of reference:

$$U = Exp[-i \Omega T(\cos(\gamma)\sigma_X + \sin(\gamma)\sigma_Y)]$$

Z + X Gates allows for arbitrary single qubit rotations

Dynamical Decoupling: Improve Qubit Coherence with Echos

In lab frame of reference:

$$U = Exp[-i \Omega T(\cos(\gamma)\sigma_X + \sin(\gamma)\sigma_Y)]$$

 $\pi/2$ -pulse + π -pulse result in qubit echo

IBM Backends Use the Cross Resonance Gate

$$\psi = |00\rangle \longrightarrow CXH|\psi\rangle = |\psi'\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$H_D = \hbar \epsilon(t) \left[ZI - \nu_1 IX - \frac{J}{\Delta_{01}} ZX \right]$$

The Cross Resonance Interaction Is Not a CNOT Straight Out of the Box

Using:

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

One can show:

$$U(ZX(\theta)) = e^{-i\frac{\theta}{2}ZX} = \begin{bmatrix} \cos(\frac{\theta}{2}) & -i\sin(\frac{\theta}{2}) & 0 & 0 \\ -i\sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) & 0 & 0 \\ 0 & 0 & \cos(\frac{\theta}{2}) & -i\sin(\frac{\theta}{2}) \\ 0 & 0 & -i\sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{bmatrix}$$

The Cross Resonance Interaction Is Not a CNOT Straight Out of the Box

Using:

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

One can show:

$$U(ZX(\pi/2)) = e^{-i\frac{\pi}{4}ZX} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -i\frac{\sqrt{2}}{2} & 0 & 0\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0\\ -i\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0\\ 0 & 0 & \frac{\sqrt{2}}{2} & -i\frac{\sqrt{2}}{2}\\ 0 & 0 & 0 & -i\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

The CR interaction itself, does not give the desired CNOT – BUT...

The Cross Resonance Interaction Is Not a CNOT Straight Out of the Box

$$U(ZX(\pi/2))U(ZI(-\pi/2))U(IX(-\pi/2)) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

The Cross Resonance Interaction Alone Has More Terms than ZX

$$H_{CR}$$

$$= \hbar \epsilon(t) \left[ZI - \nu_1 IX - \frac{J}{\Delta_{01}} ZX \right]$$

The Echoed Cross Resonance Interaction Removes the ZI term

$$H_{CR}$$

$$= \hbar \epsilon(t) \left[\frac{ZI - \nu_{\pm} IX}{\Delta_{01}} \right]$$

The Rotary Tones remove the IX interaction from the CR Tone

$$H_{CR}$$

$$= \hbar \epsilon(t) \left[\frac{ZI - \nu_{+}IX}{\Delta_{01}} - \frac{J}{\Delta_{01}} \frac{ZX - \nu_{+}ZY}{\Delta_{01}} \right]$$

A Rotation on the Target Qubit Results in a CNOT Gate

$$H_{CR}$$

$$= \hbar \epsilon(t) \left[\frac{ZI - \nu_{\pm} IX}{\Delta_{01}} - \frac{J}{\Delta_{01}} ZX - \frac{J}{\nu_{\pm} ZY} \right]$$

Overview

- Calibrating Single and Two Qubit Gates Rabi Oscillations and Getting a CNOT from the Cross Resonance
- Circuit Transpilation Understanding Differences from Gate vs Pulse Perspectives
- Continuous Gate Sets Reducing Circuit Depth by Scaling the Cross Resonance Interaction

Transpilation Maps an Ideal Quantum Circuit to a Real Backend

Circuit #1

Transpilation Maps an Ideal Quantum Circuit to a Real Backend

 $|q_0\rangle$ $|q_1\rangle$ $|q_2\rangle$ $|q_3\rangle$ $|q_4\rangle$

Well
Compiled
Circuit #1

from qiskit import transpile transpile(circ,backend,optimization_level=0,1,2,3)

Backend: ibmqx4 (5 Qubits)

Poorly Compiled Circuit #2

An Open CNOT has redundant 1Q gates

An Open CNOT has redundant 1Q gates

An Open CNOT has redundant 1Q gates

An Open CNOT can be Made from the CR Gate

The Reversed CNOT Direction is NOT done "natively"

Inst_map = backend.defaults().instruction_schedule map
inst_map.get("cx",qubits=[1,0])

inst_map.get("cx",qubits=[0,1])

Cross Resonance is not symmetric! (One direction is slower) And we save time on daily gate calibrations!

Circuit Based Optimization Can Improve Specific Gate Parameters 😂 **Qiskit**

Circuit Based Optimization Can Improve Specific Gate Parameters

Circuit Based Optimization Cannot Improve All Gate Parameters

Overview

- Calibrating Single and Two Qubit Gates Rabi Oscillations and Getting a CNOT from the Cross Resonance
- Circuit Transpilation Understanding Differences from Gate vs Pulse Perspectives
- Continuous Gate Sets Reducing Circuit Depth by Scaling the Cross Resonance Interaction

$$\alpha^* = |A^*| w^* + |A^*| \sigma \sqrt{2\pi} \operatorname{erf}(n_{\sigma})$$

$$\alpha^* = |A^*| w^* + |A^*| \sigma \sqrt{2\pi} \operatorname{erf}(n_{\sigma})$$

When there is a non-zero width w:

$$\alpha(\theta) = \frac{\theta}{\pi/2} \alpha^*$$

$$w(\theta) = \frac{\alpha(\theta)}{|A^*|} - \sigma\sqrt{2\pi}\operatorname{erf}(n_\sigma)$$

$$\alpha^* = |A^*| w^* + |A^*| \sigma \sqrt{2\pi} \operatorname{erf}(n_{\sigma})$$

When there is a non-zero width w:

$$\alpha(\theta) = \frac{\theta}{\pi/2} \alpha^*$$

$$w(\theta) = \frac{\alpha(\theta)}{|A^*|} - \sigma \sqrt{2\pi} \operatorname{erf}(n_{\sigma})$$

When the width w is zero:

$$|A(\theta)| = \frac{\alpha(\theta)}{\sigma\sqrt{2\pi}\operatorname{erf}(n_{\sigma})}$$

Applications Using CR___ Gates

Garion, S. et al arXiv:2007.08532 (2020).

Shift the CR phase:

Garion, S. et al arXiv:2007.08532 (2020).

Append Hadamards to the target:

Generalizing to SU4 gates with Cartan's KAK Decompostion

Cartan's KAK Decompostion

$$k_{1,2} \in SU(2) \otimes SU(2)$$

$$U = k_1 A k_2 \qquad A = e^{ik \top \cdot \Sigma/2} \in SU(4) \setminus SU(2) \otimes SU(2)$$

Where $\Sigma T = (XX, YY, ZZ)$

Continuous CR Based SU4:

CNOT Based SU4:

Generalizing to SU4 gates with Cartan's KAK Decompostion

Cartan's KAK Decompostion

$$k_{1,2} \in SU(2) \otimes SU(2)$$

$$U = k_1 A k_2$$

$$A = e^{ik T \cdot \Sigma/2} \in SU(4) \setminus SU(2) \otimes SU(2)$$

Where
$$\Sigma T = (XX, YY, ZZ)$$

Continuous CR Based SU4:

CNOT Based SU4:

Generalizing to SU4 gates with Cartan's KAK Decompostion

Cartan's KAK Decompostion

$$k_{1,2} \in SU(2) \otimes SU(2)$$

$$U = k_1 A k_2$$

$$A = e^{ik T \cdot \Sigma/2} \in SU(4) \setminus SU(2) \otimes SU(2)$$

Where
$$\Sigma T = (XX, YY, ZZ)$$

Continuous CR Based SU4:

SWAP(θ) decomposition gives k T = ($\eta \pi/2$, $\eta \pi/2$, θ + $\eta \pi/2$)) where η = -1 if θ > 0 and 1 otherwise.

CNOT Based SU4:

Lab 5

In Lab 5 we will:

- Produce the ZZ Pauli Feature Map
- Simulate QPT Circuits With and Without Noise
- Study the Impact of SPAM Errors on QPT circuits
- Do an Analogous Study of the Pulse Scaling Technique