CS311: Homework #1

Due on September 5, 2014 at $05:00 \mathrm{pm}$

 $Professor\ Lathrop\ 12:40pm$

Kien Nguyen

Prove:

a) $12|\mathbb{N} \subseteq 3|\mathbb{N}$

For $n \in 12|\mathbb{N}, \exists k \in \mathbb{N}$ such that n = 12k then n = 3*(4k) then $n \in 3|\mathbb{N}$ Therefore $12|\mathbb{N} \subseteq 3|\mathbb{N}$

- b) $35|\mathbb{N} = 5|\mathbb{N} \cap 7|\mathbb{N}$
 - (1) we prove $35|\mathbb{N} \subseteq 5|\mathbb{N} \cap 7|\mathbb{N}$ For $n \in 12|\mathbb{N}, \exists k \in \mathbb{N}$ such that n = 35kHence, we have n = 5*(7k) and n = 7*(5k) then $n \in 5|\mathbb{N}$ and $n \in 7|\mathbb{N}$. So $n \in 5|\mathbb{N} \cap 7|\mathbb{N}$ (done for-arrow)
 - (2) we prove $5|\mathbb{N} \cap 7|\mathbb{N} \subseteq 35|\mathbb{N}$

For $n \in 5|\mathbb{N} \cap 7|\mathbb{N}$, we can have $n \in 5|\mathbb{N}$ and $n \in 7|\mathbb{N}$. Since $n \in 5|\mathbb{N} \exists k \in \mathbb{N}$ such that n = 5k. Then $5k \in 7|\mathbb{N}$ then 5k is divisible by 7

Because (5,7) = 1 (largest common divisor), then k is divisible by 7.

So $\exists h \in \mathbb{N}$ such that k = 7h. Then n = 5*(7h) or n = 35h. Then $n \in 35|\mathbb{N}$ (done reversed-arrow). Therefore, $12|\mathbb{N} \subseteq 3|\mathbb{N}$.

c) $20|\mathbb{N} \nsubseteq 3|\mathbb{N}$

In order for $20|\mathbb{N}\subseteq 3|\mathbb{N}$, every single element in $20|\mathbb{N}$ must be in $3|\mathbb{N}$. Since $20\in 20|\mathbb{N}$, but $20\notin 3|\mathbb{N}\Rightarrow 20|\mathbb{N}\not\subseteq 3|\mathbb{N}$

For arbitrary sets A,B, prove:

a)
$$A \cup B = B \iff A \subseteq B$$

b)
$$A \cap B = B \iff B \subseteq A$$

c)
$$A - (A - B) \subseteq B$$

And prove there exists sets A, B such that:

d)
$$B \nsubseteq A - (A - B)$$

Proof. (a)
$$(\Rightarrow)$$
 Prove: If $A \cup B = B \Rightarrow A \subseteq B$

For $\forall x \in A, x \in A \cup B$. But we also have $A \cup B = B \Rightarrow x \in B$.

So $\forall x \in A$, also we have $x \in B$.

Therefore, $A \subseteq B$. (done forward arrow)

$$(\Leftarrow)$$
 Prove: If $A \subseteq B \Rightarrow A \cup B = B$

By definition, $A \cup B = \{x | x \in A \parallel x \in B\}.$

We also have for every $x \in A$, $x \in B$ also (because $A \subseteq B$.)

$$\Rightarrow A \cup B = \{x | x \in B\} = B$$
. (done reversed arrow)

(b)
$$(\Rightarrow)$$
 Prove: If $A \cap B = B \Rightarrow B \subseteq A$

For $\forall x \in B$, we also have $x \in A \cap B$ because $B = A \cap B$. Therefore, also we have $x \in A$, $\Rightarrow B \subseteq A$. (done forward arrow)

$$(\Leftarrow)$$
 Prove: If $B \subseteq A \Rightarrow A \cap B = B$

By definition, $A \cap B = \{x | x \in A \land x \in B.$

Because $B \subseteq A \Rightarrow \forall x \in B$, then apparently $x \in A$.

Therefore, $A \cap B = \{x | x \in B\} = B$. (done reversed arrow)

- (c) Using venn diagrams
- (d) $A = \{0, 1\}, B = \{1, 2\} \Rightarrow A (A B) = \{1\}.$ Therefore, $B \nsubseteq A - (A - B)$.

Give an example of a function $f: \mathbb{Z} \to \mathbb{N}$ that is both one-to-one and onto

Proof. Choose f such that:

$$f(n) = \begin{cases} 2n+1 & \text{if } n \ge 0 \\ 2|n| & \text{if } n < 0 \end{cases}$$

(a) Prove f is one-to-one

For any number
$$n, m \in \mathbb{Z}$$
, we have $f(n) = f(m) \iff n, m \ge 0 \parallel n, m < 0$
If $n, m \ge 0$, then $f(n) = f(m) \iff 2n + 1 = 2m + 1 \iff n = m$.
If $n, m < 0$, then $f(n) = f(m) \iff 2|n| = 2|m \iff n = m$.
Therefore $f(n) = f(m) \iff n = m \Rightarrow f$ is one-to-one.

(b) Prove f is onto

Therefore f is onto.

For any number $v \in \mathbb{N}$, If v is odd, we can choose n = (v-1)/2 such that f(n) = v. If v is even, we can choose n = -v/2 such that f(n) = v.

Let $f: \mathbb{Z} \to \mathbb{Z}$ be a function defined as f(n) = 3x + 7. Prove:

- (a) f is one to one
- (b) f is NOT onto

Proof. (a) For every $x, y \in \mathbb{Z}$, we have: $f(x) = f(y) \Leftrightarrow 3x + 7 = 3y + 7 \Leftrightarrow x = y \Rightarrow f$ is one to one.

(b) Let v=8. Assume that there is a value $x\in Z$ such that f(x)=v or f(x)=8 $\Rightarrow 3x+7=8 \Rightarrow x=1/7 \Rightarrow x\notin \mathbb{Z} \Rightarrow$ contradiction. Therefore f is NOT onto.

Problem 5

Let r be a relation over real numbers such that for $a, b \in \mathbb{R}$, a r b if and only if $a - b \in \mathbb{Z}$. Prove that r is an equivalence relation.

Proof. (1) Prove r is reflective For $\forall x \in \mathbb{R}, x - x = 0 \in \mathbb{Z} \Rightarrow r$ is reflective.

- (2) Prove r is symmetric For $x, y \in \mathbb{R}$, assume that $x y \in \mathbb{Z} \Rightarrow x y = z \in \mathbb{Z} \Rightarrow y x = -z \in \mathbb{Z} \Rightarrow r$ is symmetric.
- (3) Prove r is transitive For $x,y,z\in\mathbb{R}$, assume that $x-y=a\in\mathbb{Z}$ and $y-z=b\in\mathbb{Z}$ $\Rightarrow x-z=(x-y)+(y-z)=a+b\in\mathbb{Z}\Rightarrow r$ is transitive. So, r is an equivalence relation.

Use induction to prove the following:

a) For all $n \in \mathbb{Z}^+$,

$$1+3+5+\cdots+2n-1=n^2$$

Base case: $n = 1 \Rightarrow 1 + 3 + 5 + \cdots + 2n - 1 = 1 = n^2 \Rightarrow$ statement is true for n = 1.

Induction: Assume the statement is true for n, that is $1+3+5+\cdots+2n-1=n^2$, we'll prove that the statement also holds for n+1, that is $1+3+5+\cdots+2(n+1)-1=(n+1)^2$.

 $1+3+5+\cdots+2(n+1)-1=1+3+5+\cdots+2n-1+2(n+1)-1=n^2+2(n+1)-1=n^2+2n+1=(n+1)^2$. (done)

b) For all $n \in \mathbb{Z}^+$,

$$3^n > 2^n$$

Base case: $n = 1 \Rightarrow 3^n = 3$ and $2^n = 2 \Rightarrow 3^n > 2^n \Rightarrow$ statement is true for n = 1.

Induction: Assume the statement is true for n, that is $3^n > 2^n$, we'll prove that the statement is also holds for n + 1, that is $3^{n+1} > 2^{n+1}$.

We have $3^{n+1} = 3^n 3$ and $2^{n+1} = 2^n 2$.

Since $3^n > 2^n$ and 3 > 2, then $3^n 3 > 2^n 2 \Rightarrow 3^{n+1} > 2^{n+1}$. (done)

c) For all $n \in \mathbb{Z}^+$,

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Base case: $n=1, \sum_{i=1}^{n} i=1=\frac{n(n+1)}{2} \Rightarrow \text{statement is true for } n=1.$

Induction: Assume the statement is true for n, that is $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$, we'll prove that the statement is

also holds for n + 1, that is $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) = \frac{n(n+1)}{2} + (n+1)$$

$$=\frac{n^2+n+2n+2}{2}=\frac{(n+1)(n+2)}{2}$$

(done)

d) For all $n \in \mathbb{Z}^+$,

$$n^3 + 2n$$
 is divisible by 3

Base case: $n = 1, n^3 + 2n = 3$ is divisible by 3. So, statement is true for n = 1.

Induction: Assume the statement is true for n, that is $n^3 + 2n = 3k$, where $k \in \mathbb{Z}^+$, we'll prove that the statement is also holds for n + 1, that is $(n + 1)^3 + 2(n + 1)$ is also divisible by 3.

 $(n+1)^3+2(n+1)=n^3+3n^2+3n+1+2n+2=(n^3+2n)+(3n^2+3n+3)=3k+3(n^2+n+1)=3(k+n^2+n+1)$ is divisible by 3. (done)