then there is a unique x_y such that $\nabla f_{x_y} = y$, so that

$$f^*(y) = x_y^{\top} \nabla f_{x_y} - f(x_y),$$

and f^* is differentiable with

$$\nabla f_y^* = x_y$$
.

We now return to our optimization problem.

Proposition 50.20. Consider Problem (P),

minimize
$$J(v)$$

subject to $Av \leq b$
 $Cv = d$,

with affine inequality and equality constraints (with A an $m \times n$ matrix, C an $p \times n$ matrix, $b \in \mathbb{R}^m$, $d \in \mathbb{R}^p$). The dual function $G(\lambda, \nu)$ is given by

$$G(\lambda, \nu) = \begin{cases} -b^{\top} \lambda - d^{\top} \nu - J^*(-A^{\top} \lambda - C^{\top} \nu) & if -A^{\top} \lambda - C^{\top} \nu \in \text{dom}(J^*), \\ -\infty & otherwise, \end{cases}$$

for all $\lambda \in \mathbb{R}^m_+$ and all $\nu \in \mathbb{R}^p$, where J^* is the conjugate of J.

Proof. The Lagrangian associated with the above program is

$$L(v, \lambda, \nu) = J(v) + (Av - b)^{\mathsf{T}} \lambda + (Cv - d)^{\mathsf{T}} \nu$$

= $-b^{\mathsf{T}} \lambda - d^{\mathsf{T}} \nu + J(v) + (A^{\mathsf{T}} \lambda + C^{\mathsf{T}} \nu)^{\mathsf{T}} v$,

with $\lambda \in \mathbb{R}^m_+$ and $\nu \in \mathbb{R}^p$. By definition

$$G(\lambda, \nu) = -b^{\top} \lambda - d^{\top} \nu + \inf_{v \in \mathbb{R}^n} (J(v) + (A^{\top} \lambda + C^{\top} \nu)^{\top} v)$$

$$= -b^{\top} \lambda - d^{\top} \nu - \sup_{v \in \mathbb{R}^n} (-(A^{\top} \lambda + C^{\top} \nu)^{\top} v - J(v))$$

$$= -b^{\top} \lambda - d^{\top} \nu - J^* (-A^{\top} \lambda - C^{\top} \nu).$$

Therefore, for all $\lambda \in \mathbb{R}^m_+$ and all $\nu \in \mathbb{R}^p$, we have

$$G(\lambda, \nu) = \begin{cases} -b^{\top} \lambda - d^{\top} \nu - J^* (-A^{\top} \lambda - C^{\top} \nu) & \text{if } -A^{\top} \lambda - C^{\top} \nu \in \text{dom}(J^*), \\ -\infty & \text{otherwise,} \end{cases}$$

as claimed. \Box

As application of Proposition 50.20, consider the following example.