11 Arbres

Avec les tris, la notion d'arbre apparait.

11.1 Contexte _

Les arbres ⁴² sont des listes à plusieurs éléments; les arbres sont composés de nœuds et d'arcs; les arcs relient les nœuds; parmis les nœuds, on distingue la racine, les nœuds intermédiaires et les feuilles; le premier nœud est appelé racine; les nœuds reliés par un arc à la racine sont les nœuds-fils de la racine; les nœuds ne possédant pas de fils sont des feuilles; les nœuds qui ne sont pas des feuilles et qui ne sont pas la racine sont des nœuds intermédiaires; les feuilles sont des nœuds terminaux.

Les arbres binaires sont des arbres où chaque nœud peut avoir au maximum deux nœuds-fils; afin d'obtenir une représentation sans ambiguïté d'un arbre, on considérera le fils unique d'un nœud comme le sous-arbre gauche de ce nœud.

On appelle également facteur de branchement le nombre de nœuds-fils pour chaque nœud dans l'arbre; dans un arbre binaire, le facteur de branchement est de 2.

Fig. 2 – Arbres à 3 et 4 nœuds.

La figure 2 présente deux exemples arbres; à gauche, on a un arbre à 3 nœuds; 1 est la racine; 2 et 3 sont des feuilles; à droite, on a un arbre à 4 nœuds; 10 est la racine; 11 est un nœud intermédiaire; 12 et 13 sont des feuilles.

La profondeur d'un nœud est la distance à la racine; la racine est à profondeur zéro; les nœuds-fils de la racine sont à profondeur un; la hauteur d'un arbre est la profondeur maximale de ses nœuds.

Un arbre est complet si toutes les feuilles sont à la même profondeur; dans ce cas, pour un arbre de hauteur h:

- le nombre de feuilles est 2^h le nombre de nœuds est $2^{h+1} 1$

^{42.} Un arbre est un graphe orienté sans cycle; les nœuds d'un arbre peuvent posséder des nœuds-fils pour lesquels ce nœud sera leur nœud parent; l'orientation du graphe est une conséquence de l'existance du nœud racine qui implique un sens d'orientation; les arcs permettent a priori d'aller vers les nœuds-fils; stocker la liaison vers le nœud parent n'est pas obligatoire; l'absence de cycle implique qu'il n'existe qu'un seul chemin pour relier deux

En utilisant les listes, six solutions de réprésentation interne sont possibles :

- ① Considérer les nœuds non-terminaux comme des listes de taille variable et les feuilles comme des éléments.
- ② Considérer les nœuds non-terminaux comme des listes de taille variable et les feuilles comme des listes à un élément.
- 3 Considérer les nœuds non-terminaux comme des listes de taille variable et les feuilles comme des listes de taille 3, avec un élément et deux listes vides.
- ① Considérer les nœuds non-terminaux comme des listes de taille 3 (en les complétant si nécessaire avec des listes vides) et les feuilles comme des éléments.
- ⑤ Considérer les nœuds non-terminaux comme des listes de taille 3 (en les complétant si nécessaire avec des listes vides) et les feuilles comme des listes de taille 1.
- © Considérer les nœuds non-terminaux comme des listes de taille 3 (en les complétant si nécessaire avec des listes vides) et les feuilles comme des listes de taille 3.

Avec ①, les arbres présentés en figure 2 correspondent aux définitions suivantes :

```
'(1 2 3)
'(10 (11 12 13))
```

Avec ②, les arbres présentés en figure 2 correspondent aux définitions suivantes :

```
'(1 (2) (3))
'(10 (11 (12) (13)))
```

Avec 3, les arbres présentés en figure 2 correspondent aux définitions suivantes :

```
'(1 (2 () ()) (3 () ()))
'(10 (11 (12 () ()) (13 () ())))
```

Avec ①, les arbres présentés en figure 2 correspondent aux définitions suivantes :

```
'(1 2 3)
'(10 (11 12 13) ())
```

Avec (5), les arbres présentés en figure 2 correspondent aux définitions suivantes :

```
'(1 (2) (3))
'(10 (11 (12) (13)) ())
```

Avec 6, les arbres présentés en figure 2 correspondent aux définitions suivantes :

```
'(1 (2 () ()) (3 () ()))
'(10 (11 (12 () ()) (13 () ())) ())
```

Avec 6, on a des définitions structurellement plus lourdes et globalement plus homogènes; tous les nœuds sont représentés par des listes de taille 3; on peut déduire du contenu des listes la nature des nœuds (i.e. si deuxième et troisième valeurs sont des listes vides, alors le nœud considéré est une feuille).

11.2 Arbres binaires

Afin de simplifier/clarifier l'utilisation des arbres, il est possible de définir des fonctions de manipulation des arbres dans une interface (nommée bt1) :

```
(define tree list)
(define (leaf e) e)
(define (leaf? e) (not(list? e)))
(define (not-leaf? e) (list? e))
(define (root T) (first T))
(define (L-subtree T) (first(rest T)))
(define (R-subtree T) (first(rest T))))
(define (has-L-subtree? T) (>(length T) 1))
(define (has-R-subtree? T) (>(length T) 2))
```

Ici, comme présenté dans ①, les nœuds intermédiaires sont des listes de taille variable et les feuilles sont des éléments.

Notons que:

- La définition du prédicat not-leaf? évite (not(leaf? e)) équivalent à (not(not(list? e))) qui produirait un test avec une double négation inutile.
- Les fonctions de test has-L-subtree? et has-R-subtree? utilisent la taille de la liste et présupposent donc que le sous-arbre gauche existe avant le sous-arbre droit.

Ainsi les arbres présentés en figure 2 correspondent maintenant à :

```
(tree 1 (leaf 2) (leaf 3))
(tree 10 (tree 11 (leaf 12) (leaf 13)))

'(1 2 3)
'(10 (11 12 13))
```


Fig. 3 – Arbres binaire avec 10 nœuds.

La figure 3 présente un arbre à 10 nœuds, dont les définitions suivantes sont équivalentes :

```
(tree 10 (tree 11 (leaf 1) (tree 12 (leaf 2) (leaf 3)))
(tree 13 (tree 14 (leaf 4) (leaf 5))))
(tree 10 (tree 11 1 (tree 12 2 3)) (tree 13 (tree 14 4 5)))

'(10 (11 1 (12 2 3)) (13 (14 4 5)))
```

11.3 Parcours en profondeur

Le parcours en profondeur consiste à descendre le plus profond possible avant d'explorer la branche suivante; dans les arbres étiquetés sur tous les nœuds, on différencie les parcours préfixe, infixe et postfixe :

- Dans le cas préfixe, il s'agit d'évaluer le nœud courant, puis le sous-arbre gauche, puis le sous-arbre droit; un nœud est donc évalué avant ses sous-arbres gauche et droit.
- Dans le cas infixe, il s'agit d'évaluer le sous-arbre gauche, puis le nœud courant, puis le sous-arbre droit; un nœud est donc évalué quand son sous-arbre droit est complètement évalué et est évalué ensuite son sous-arbre droit.
- Dans le cas postfixe, il s'agit d'évaluer le sous-arbre gauche, puis le sousarbre droit, puis le nœud courant; un nœud est donc évalué quand ses deux sous-arbres sont complètement évalués.

Parcours préfixe en profondeur avec l'interface bt1

La fonction dfs-list réalise la construction d'une liste des nœuds de l'arbre en suivant un parcours préfixe en profondeur et en utilisant les définitions de l'interface bt1 :

```
(define (dfs-list T)
(if (leaf? T) (list T)
(if (has-R-subtree? T)
(append (list (root T)) (dfs-list (L-subtree T))
(dfs-list (R-subtree T)))
(append (list (root T)) (dfs-list (L-subtree T)))
(append (list (root T)) (dfs-list (L-subtree T)))
(b)
(continue T)
```

Appliquée à l'arbre de la figure 3, la fonction dfs-list retourne la liste des nœuds correspondant au parcours préfixe.

```
(dfs-list '(10 (11 1 (12 2 3)) (13 (14 4 5))))

'(10 11 1 12 2 3 13 14 4 5)
```

Parcours infixe en profondeur avec l'interface bt1

La fonction dfs-list2 réalise la construction d'une liste des nœuds de l'arbre en suivant un parcours infixe en profondeur et en utilisant les définitions de l'interface bt1 :

```
(define (dfs-list2 T)
(if (leaf? T) (list T)
(if (has-R-subtree? T)
(append (dfs-list2 (L-subtree T)) (list (root T))
(dfs-list2 (R-subtree T)))
(append (dfs-list2 (L-subtree T)) (list (root T)))
()))
```

Appliquée à l'arbre de la figure 3, la fonction dfs-list2 retourne la liste des nœuds correspondant au parcours infixe.

```
(dfs-list2 '(10 (11 1 (12 2 3)) (13 (14 4 5))))

'(1 11 2 12 3 10 4 14 5 13)
```

Parcours postfixe en profondeur avec l'interface bt1

La fonction dfs-list3 réalise la construction d'une liste des nœuds de l'arbre en suivant un parcours postfixe en profondeur et en utilisant les définitions de l'interface bt1 :

```
(define (dfs-list3 T)
(if (leaf? T) (list T)
(if (has-R-subtree? T)
(append (dfs-list3 (L-subtree T)) (dfs-list3 (R-subtree T))
(list (root T)))
(append (dfs-list3 (L-subtree T)) (list (root T)))
)))
```

Appliquée à l'arbre de la figure 3, la fonction dfs-list3 retourne la liste des nœuds correspondant au parcours postfixe.

```
(dfs-list3 '(10 (11 1 (12 2 3)) (13 (14 4 5))))
'(1 2 3 12 11 4 5 14 13 10)
```

11.4 Parcours en largeur

Partant de la notion de niveau dans un arbre, qui caractérise l'ensemble des nœuds à une profondeur fixée, le parcours en largeur consiste à descendre niveau par niveau et d'énumérer les nœuds de chaque niveau; un niveau inférieur (i.e. à profondeur +1) est exploré après évaluation complète du niveau courant.

On peut réaliser un parcours en profondeur en utilisant deux listes :

```
— Une première liste des nœuds courants nommée \mathcal R
```

- Une seconde liste des fils des nœuds courants nommée $\mathcal L$
- Initialement $\mathcal{R} \leftarrow \{ \mathtt{root}(T) \}$ et $\mathcal{L} \leftarrow \{ \emptyset \}$
- A chaque itération, \mathcal{L} reçoit les fils de \mathcal{R}
- Entre chaque itération, $\mathcal{R} \leftarrow \mathcal{L}$
- On arrête quand $\mathcal{L} = \{\emptyset\}$

Appliqué à la figure 3, on a :

En utilisant bt1, on définit une fonction root-nodes qui pour une liste d'arbres Lin retourne la liste des nœuds root de Lin et une fonction subtrees qui pour une liste d'arbres Lin retourne la liste des sous-arbres de Lin.

```
(define (root-nodes Lin)
      (if (empty? Lin) empty
2
         (let ([i (first Lin)])
3
         (if (leaf? i)
           (cons i (root-nodes (rest Lin)))
           (cons (root i) (root-nodes (rest Lin)))
6
        ))))
    (define (subtrees Lin)
      (if (empty? Lin) empty
          (let ([i (first Lin)])
10
          (if (leaf? i)
11
             (subtrees (rest Lin))
             (if (has-R-subtree? i)
13
                (cons (L-subtree i) (cons (R-subtree i)
14
                   (subtrees (rest Lin))))
15
                (cons (L-subtree i) (subtrees (rest Lin)))
             )))
17
      ))
18
```

Ce qui permet d'obtenir :

```
(root-nodes '((10 (11 1 (12 2 3)) (13 (14 4 5)))))
(root-nodes '((11 1 (12 2 3)) (13 (14 4 5))))

'(10)
'(11 13)
```

La première liste (ligne 1) contient l'arbre de la figure 3 dont la racine est 10. La deuxième liste (ligne 2) contient les deux sous-arbres de 10, dont les racines sont 11 et 13.

On obtient également :

```
(subtrees '((10 (11 1 (12 2 3)) (13 (14 4 5)))))
(subtrees '((11 1 (12 2 3)) (13 (14 4 5))))

'((11 1 (12 2 3)) (13 (14 4 5)))
'(1 (12 2 3) (14 4 5))
```

La première liste (ligne 1) contient l'arbre de la figure 3 dont les sous-arbres sont :

```
— (11 1 (12 2 3))
— (13 (14 4 5))
```

La deuxième liste (ligne 2) contient les deux sous-arbres de 10, dont les sous-arbres sont :

- 1(12 2 3)(14 4 5)
- Avec les fonctions root-nodes et subtrees, on obtient la fonction bfs pour un

```
parcours en largeur:

(define (bfs Ln)
(define (f Ln R)
(if (empty? Ln) R
(f (subtrees Ln) (append R (root-nodes Ln)))
))
(f Ln empty))
(bfs '((10 (11 1 (12 2 3)) (13 (14 4 5)))))

(10 11 13 1 12 14 2 3 4 5)
```

La fonction bfs utilise une fonction auxiliaire f pour initialiser \mathcal{R} à la liste vide; appliquée à l'arbre de la figure 3, bfs retourne une énumération des nœuds à profondeur croissante.

11.5 Arbres de recherche

Dans les arbres binaires de recherche, les nœuds sont classés selon la valeur des étiquettes; pour un nœud n de valeur v, les nœuds de valeur inférieure à v seront classés dans les sous-arbres gauches de n et les nœuds de valeur supérieure à v seront classés dans les sous-arbres droits de n; la position des nœuds dans l'arbre dépend donc de l'ordre d'ajout dans l'arbre; la figure 4 représente un arbre dont les éléments sont ajoutés dans l'ordre défini par le liste L1 égale à '(6 3 7 8 5 2); la figure 5 représente un arbre dont les éléments sont ajoutés dans l'ordre défini par le liste L2 égale à '(7 6 8 3 2 5).

Fig. 4 - arbre de L1.

Fig. 5 - arbre de L2.

En utilisant la représentation **(6)**, il est possible de définir des fonctions de manipulation des arbres binaires de recherche dans une interface (nommée bt6) :

```
(define (tree val L R) (list val L R))
    (define (leaf val) (list val empty empty))
    (define (root T) (first T))
    (define (L-subtree T) (first(rest T)))
    (define (R-subtree T) (first(rest(rest T))))
    (define (has-L-subtree? T) (not (empty? (L-subtree T))))
    (define (has-R-subtree? T) (not (empty? (R-subtree T))))
    (define (add T val)
      (if (empty? T) (leaf val)
q
         (let ([r (root T)])
10
           (if (< val r)
11
             (if (has-L-subtree? T)
12
               (tree r (add (L-subtree T) val) (R-subtree T))
13
               (tree r (leaf val) (R-subtree T)))
             (if (has-R-subtree? T)
15
               (tree r (L-subtree T) (add (R-subtree T) val))
16
               (tree r (L-subtree T) (leaf val)))
17
          ))))
18
    (define (addl T L)
19
      (if (empty? L) T
20
         (addl (add T (first L)) (rest L))
21
      ))
```

L'interface bt6 représente les arbres avec des listes de taille 3; les feuilles sont également des listes de taille 3, avec une liste vide pour sous-arbre gauche et une liste vide pour sous-arbre droit; la fonction leaf crée un arbre avec une racine et des sous-arbres vides; la fonction add permet d'ajouter des éléments dans un arbre et la fonction add1 permet d'ajouter une liste de valeurs.

On peut retrouver les arbres des figures 4 et 5 en utilisant add ou addl:

```
(add(add(add(add(add empty 6) 3) 7) 8) 5) 2)
(addl empty '(6 3 7 8 5 2))
(add(add(add(add(add empty 7) 6) 8) 3) 2) 5)
(addl empty '(7 6 8 3 2 5))

(6 (3 (2 () ()) (5 () ())) (7 () (8 () ())))
(6 (3 (2 () ()) (5 () ())) (7 () (8 () ())))
(7 (6 (3 (2 () ()) (5 () ())) ()) (8 () ()))
(7 (6 (3 (2 () ()) (5 () ())) ()) (8 () ()))
```

11.6 Arbres équilibrés

Un arbre est équilibré quand ses sous-arbres ont des petites différences de hauteurs ; cette différence de hauteurs (sous-arbre gauche moins sous-arbre droit) est appelée facteur d'équilibrage ; l'utilisation des arbres équilibrés permet de garantir des opérations de recherche d'un élément en temps optimal ⁴³ ; les opérations d'ajout et de suppression d'un élément sont cependant plus coûteuse en temps car elles peuvent impliquer une transformation de l'arbre (appelée rééquilibrage) ; dans un arbre AVL ⁴⁴, le facteur d'équilibrage est inférieur strict à 2 en valeur absolue ⁴⁵ ; si un nœud possède un facteur d'équilibrage supérieur à 2 en valeur absolue, alors un rééquilibrage est nécessaire ; l'insertion d'un nouvel élément suit donc les étapes suivantes :

- Insertion du nouvel élément dans l'arbre.
- Mise à jour des facteurs d'équilibrage des nœuds parents de l'élément ajouté.
- Si le facteur d'équilibrage d'un nœud est au-delà des valeurs admises, appliquer un rééquilibrage 46 .

Les opérations de rééquilibrage possibles sont la rotation droite, la rotation gauche, la rotation gauche-droite et la rotation droite-gauche.

^{43.} Dans un arbre équilibré à n nœuds, la recherche d'un élément est de $O(\log\,n)$.

^{44.} Les arbres de recherche automatiquement équilibrés ont été presentés par Adelson-Velskii et Landis en 1962.

^{45.} Pour une hauteur plus grande dans le sous-arbre gauche, un nœud possède une différence de hauteur positive; pour une hauteur plus grande dans le sous-arbre droit, un nœud possède une différence de hauteur négative; pour un nœud n, pour h la fonction de hauteur d'un arbre, avec G(n) le sous-arbre gauche du nœud n et D(n) le sous-arbre droit du nœud n, un arbre AVL vérifie |h(G(n)) - h(D(n))| < 2.

^{46.} Lors d'un ajout dans un arbre équilibré, les facteurs d'équilibrage des nœuds parent du nœud ajouté sont à mettre à jour; regarder les facteurs d'équilibrage de ses nœuds est donc suffisant pour détecter un déséquilibre.

Si un nœud possède un facteur d'équilibrage de 2 et son sous-arbre gauche un facteur d'équilibrage de 1, alors une rotation droite est nécessaire; pour r la racine avant rotation, r' la racine après rotation, g(n) le fils gauche du nœud n, d(n) le fils droit du nœud n, une rotation droite correspond aux étapes suivantes :

- r perd son fils gauche g(r).
- g(r) perd son fils droit d(g(r)).
- g(r) devient la nouvelle racine r'.
- r devient d(r') le fils droit de r'.
- d(g(r)) devient g(d(r')) le fils gauche du fils droit de r'.

Le calcul d'un facteur d'équilibrage est défini comme suit :

- Si c'est une feuille, il vaut *,
- Si c'est un nœud avec un sous-arbre gauche feuille et sans sous-arbre droit, il vaut 1,
- Sinon il vaut facteur de sous-arbre gauche moins facteur de sous-arbre droit.

La figure 6 présente un exemple de rotation droite à la racine; pour chaque nœud, on note à sa droite, la hauteur de l'arbre correspondant, suivie du facteur d'équilibrage; hauteur et facteur d'équilibrage sont séparés par un slash (noté /); les feuilles possèdent des hauteurs nulles et pas de facteur d'équilibrage (notés 0/*); avant rotation, le nœud de valeur 4 a une hauteur de 2 et un facteur d'équilibrage de 1, et la racine est le nœud de valeur 10, qui a une hauteur de 3 et un facteur d'équilibrage de 2, qui implique un rééquilibrage; les nœuds de valeur 10 et 4 sont déclencheurs de ce rééquilibrage; après rééquilibrage, leur valeur d'équilibrage est nulle dans ce cas; selon les cas, les valeurs d'équilibrage après rééquilibrage sont de -1, 0 ou 1.

Fig. 6 – Rotation droite d'un arbre.

La figure 7 présente un autre cas possible d'arbre nécessitant un rééquilibrage par rotation droite; la figure 8 présente un arbre avec des valeurs négatives de facteur d'équilibrage.

Fig. 7 – Exemple d'arbre nécessitant un rééquilibrage par rotation droite.

Fig. 8 – Exemple d'arbre avec des facteurs d'équilibrage négatifs.

Par symétrie, si un nœud possède un facteur d'équilibrage de -2 et son sousarbre droit un facteur d'équilibrage de 1, alors une rotation gauche est nécessaire; dans ce cas :

- r perd son fils droit d(r).
- d(r) perd son fils gauche g(d(r)).
- d(r) devient la nouvelle racine r'.
- r devient g(r') le fils gauche de r'.
- g(d(r)) devient d(g(r')) le fils droit du fils gauche de r'.

La figure 9 présente un exemple de rotation gauche à la racine; avant rotation, le nœud de valeur 11 a une hauteur de 2 et un facteur d'équilibrage de -1, et la racine est le nœud de valeur 4, qui a une hauteur de 3 et un facteur d'équilibrage de -2, qui implique un rééquilibrage; les nœuds de valeur 11 et 4 sont déclencheurs de ce rééquilibrage; après rééquilibrage, leur valeur d'équilibrage est nulle.

Fig. 9 – Rotation gauche d'un arbre.

Selon les situations, le rééquilibrage nécessite une opération (comme vu précédemment en figure 6) ou deux opérations; la figure 10 présente un exemple de rotation gauche droite (*i.e.* gauche sur le fils gauche puis droite sur la racine); les figures 11, 12, 14 et 13 résument respectivement l'ensemble des situations de rééquilibrage par rotation droite, rotation gauche, rotation gauche droite et rotation droite gauche; les sous-arbres sont représentés par des triangles.

Fig. 10 – Rotation gauche droite d'un arbre.

Fig. 11 – Rotation droite d'un arbre; les différentes valeurs de facteur d'équilibrage des nœuds (a,b) avant rotation sont (2,1) et (2,0); par rotation on a : $(2,1) \rightarrow (0,0)$ et $(2,0) \rightarrow (1,-1)$.

Fig. 12 – Rotation gauche d'un arbre ; les différentes valeurs de facteur d'équilibrage des nœuds (a,b) avant rotation sont (-2,-1) et (-2,0) ; par rotation on a : $(-2,-1) \rightarrow (0,0)$ et $(-2,0) \rightarrow (-1,1)$.

Fig. 13 – Rotation gauche droite d'un arbre; les différentes valeurs de facteur d'équilibrage des nœuds (a,b,c) avant rotation sont (2,-1,-1), (2,-1,0) et (2,-1,1); par rotation on a : $(2,-1,-1) \rightarrow (1,0,0)$, $(2,-1,0) \rightarrow (0,0,0)$ et $(2,-1,1) \rightarrow (0,-1,0)$.

Fig. 14 – Rotation droite gauche d'un arbre ; les différentes valeurs de facteur d'équilibrage des nœuds (a,b,c) avant rotation sont (-2,1,-1), (-2,1,0) et (-2,1,1) ; par rotation on a : $(-2,1,-1) \rightarrow (1,0,0)$, $(-2,1,0) \rightarrow (0,0,0)$ et $(-2,1,1) \rightarrow (0,-1,0)$.

Il s'agit donc d'observer le facteur d'équilibrage à chaque ajout d'une nouvelle feuille, pouvant déséquilibrer l'arbre et impliquer une opération de rotation.

L'interface avltree, définie ci-dessous, représente les arbres AVL avec des listes de taille 5; un nœud possède une valeur, une profondeur, un facteur d'équilibrage, un sous-arbre droit et sous-arbre gauche; la fonction (avltree val L R) construit l'arbre avec les valeurs de profondeur et de facteur d'équilibrage mais sans faire l'opération de rééquilibrage.

```
(define (leaf e) (list e 0 0 empty empty))
    (define (avltree val L R)
     (if (and (empty? L) (empty? R)) (leaf val)
        (let ([dl (depth L)]
              [dr (depth R)])
          (list val (+ 1 (max dl dr)) (- dl dr) L R)
       )))
    (define (equi T) (first (rest (rest T))))
    (define (avltree5 val d e L R) (list val d e L R))
    (define (root T) (first T))
    (define (L-subtree T) (first(rest(rest(rest T)))))
11
    (define (R-subtree T) (first(rest(rest(rest(rest(T))))))
12
    (define (has-L-subtree? T) (not(empty? (L-subtree T))))
13
    (define (has-R-subtree? T) (not(empty? (R-subtree T))))
14
    (define (leaf? T) (and (empty? (L-subtree T)) (empty? (R-subtree T))))
15
    (define (depth T)
16
      (if (empty? T) -1
17
        (if (leaf? T) 0
18
           (first(rest T)))))
19
    (define (add T val)
20
       (if (empty? T) (leaf val)
21
        (let ([r (root T)])
22
           (if (< val r)
23
             (if (has-L-subtree? T)
24
               (avltree r (add (L-subtree T) val) (R-subtree T))
               (avltree r (leaf val) (R-subtree T)))
26
             (if (has-R-subtree? T)
27
               (avltree r (L-subtree T) (add (R-subtree T) val))
28
               (avltree r (L-subtree T) (leaf val)))
29
          ))))
30
    (define (addl T L)
31
      (if (empty? L) T
32
         (addl (add T (first L)) (rest L))
33
      ))
```

En utilisant la fonction add1 on peut définir l'arbre de la figure 6.

```
(addl empty '(10 4 3 6 2 11))

'(10 3 2 (4 2 1 (3 1 1 (2 0 0 () ()) ())
(6 0 0 () ()))
(11 0 0 () ()))
```

Et enfin, on définit la rotation droite, conformément à la figure 11 pour les facteurs d'équilibrage des nœuds (a,b) variant par rotation selon $(2,1) \to (0,0)$,

comme suit :

Ce qui permet d'obtenir le résultat suivant :

```
(rotate-R (addl empty '(10 4 3 6 2 11)))

'(4 2 0 (3 1 1 (2 0 0 () ()) ()) (10 1 0 (6 0 0 () ()) (11 0 0 () ())))
```

Pour finaliser l'interface avltree, le lecteur pourra :

- Définir les différentes fonctions de rotation conformément aux figures 11, 12, 13 et 14.
- Définir une fonction reequi qui teste les différents cas ⁴⁷ de déséquilibre et appelle la fonction de rééquilibrage associée.
- Ajouter un appel à reequi pour l'ajout de chaque nœud.

^{47.} Dans le cas de l'ajout, le test des valeurs d'équilibrage des nœuds parent du nœud ajouté est suffisant pour la détection du déséquilibre; dans le cas de la suppression, le test des nœuds parent du nœud supprimé est suffisant pour la détection du déséquilibre.