Problem 1

For $Yy \in S$, $y \le e^{Si}$, e is an upper bound of S. $sup S \le e^{-}$. Proof Prove by contradiction, if sup $S \in E$ density of Q = p = 26Q s.t. $sup \le e^{-} \times (2 < 1)$, where $sup S = e^{-} \times (2 < e^{-})$. So $sup S = e^{-} \times (2 < e^{-})$. Since $e^{-} \ge S$ and $e^{-} > sup S$ which is a contradiction. So $sup S = e^{-}$.

For \forall y \in S, $e^0=1$ \angle y . 1 is an lower bound of S. $1 \leqslant Inf S$. Prove by controdiction, if $1 \leqslant Inf S$, By density of Q, \exists $z \in Q$ s.t. $0 \leqslant z \leqslant X$, where $Inf S = e^{Ix}$, so $1 \leqslant e^{Iz} \leqslant e^{Ix} = Inf S$, since $g \in e^{Iz} \leqslant S$ and $e^{Iz} \leqslant Inf S$, which is a controdiction. So Inf = 1.

:. The supremum is e, The infimum is 1.

b) $T = \{n\cos\frac{h\pi}{2} | n\in \mathbb{N}\}$. Since $\cos\frac{n\pi}{2} \in [a-1,1]$, $n\in \mathbb{N}$, it is obvious that the set $T = \{n\cos\frac{h\pi}{2} | n\in \mathbb{N}\}$ is unbounded. To prove it is unbounded below, if it is bounded below, it converge to a point. Since $n\in \mathbb{N}$, $n \to -\infty$ is still $-\infty$, it means T is unbounded below, hence T its infimum doesn't exist.

Problem 2

By Since A is bounded, $S \subseteq A$ implie that s is also bounded. Since $S \subseteq A$, $\forall as \in S$, $s \geqslant InfA$, also $s \leq \sup A$.

By theorem 2 of the dual between Sup and Inf. in By the people of Infimum and Supremum, Inf $S \leq \sup S$.

Therefore, $\inf A \leq \inf S \leq \sup S \leq \sup A$.

For Since A and B are both subsets of positive number. C is also a subsets of positive number. Let $a \in A$, $b \in B$, $c \in C$. Inf $A \le a \le \sup A$, Inf $B \le b \le \sup B$, By the definition of Infimum and Supremum.

(InfA)(InfB) \leq $ab \leq (sup A)(sup B)$. Since (sup A)(sup B) is an upper bound of C and $sup A sup B \in C$. By definiting of supremum. sup C = sup A sup B.

ii) No, if $A = \{-3, -2, -1\}$, $B = \{1, 2, 3\}$, $C = \{-9, -6, -4, -3, -2, -1\}$ In this example, sup A = -1, sup B = 3, result (i) will show that sup C = (-1)(3) = -3.

However, $\sup C = -1 \neq -3$, which shows that $\sup C = \sup A \sup B$ is not valid if the either A or B. Contain negative number.

 $4/\sqrt{\frac{h}{n}} \approx \frac{b}{n}$, take $K_* = \left[\frac{b}{s}\right] + 1$, then $n \ge K_* \Rightarrow \left[\frac{b}{n} - 0\right] < \epsilon$, So $\frac{b}{n} = 0$.

by Since { b_n} is a convergent sequence with $\lim_{n\to\infty} b_n = b > 0$. $\forall \epsilon > 0$, $\exists K_n \le 1 \quad n \ge k$, $|b_n - b| < \epsilon$. To prove $\lim_{n\to\infty} \overline{b} b_n = \overline{b} b_n$, $|\overline{b} b_n - \overline{b}| = |\overline{b} b_n - \overline{b}| = 0 < \epsilon$ for $n \ge k$. Therefore, $\lim_{n\to\infty} \overline{b} b_n = \overline{b}$

By monotine sequence theorem, $\frac{kn}{m}$ $\times n$ exists, $\frac{x_n^2+2}{3}=X_{n+1}$. Let $n\to\infty$, $\frac{x_n^3+2}{3}=X$ $\Rightarrow x_n^3+2=0$ $\Rightarrow (x-1)(x^2-2)=0 \Rightarrow X=\text{ in or -}G$ or 1. By monotons sequence theorem, $\text{ lin } X_n=\sup\{x_n:n\geq 1\}$. Therefore, x=1, \dots $\text{ lim } X_n=1$, $\text{ {Xn}}$? Converges to 1.

6/ of Since $\lim_{N\to\infty} \frac{X_{n+1}}{X_n} = L\langle 1 \rangle$, $\forall \xi$, $\exists k \in \mathbb{N} \text{ s.t.} |\frac{X_{n+1}}{X_n} - L| \langle \xi \rangle |\frac{X_{n+1}}{X_n} | - |L| \langle \xi$

 $\left|\frac{X_2}{X_1}\right|\left(\frac{X_3}{X_2}\right)-\left|\frac{X_n}{X_{n+1}}\right|< r^n \Rightarrow \left|\frac{X_n}{X_1}\right|< r^n \Rightarrow \left|X_n\right|< r^n$

b) $\lim_{N\to\infty} \frac{x_{n+1}}{X_n} = L > 1$. We let $L - \xi = \frac{x_n}{X_n} > 1$. Since $\lim_{N\to\infty} \frac{x_{n+1}}{X_n} = L > 1 \Rightarrow \left| \frac{x_{n+1}}{X_n} - L \right| < \xi$. $\forall n > k \in \mathbb{N}$ $\Rightarrow L - \xi < \frac{x_{n+1}}{X_n} < L + \xi \Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $r < \frac{x_{n+1}}{X_n} = L > 1 \Rightarrow \left| \frac{x_{n+1}}{X_n} - L \right| < \xi$. $\forall n > k \in \mathbb{N}$ $\Rightarrow L - \xi < \frac{x_{n+1}}{X_n} < L + \xi \Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X_n} < L + \xi$. $\Rightarrow r < \frac{x_{n+1}}{X$

9i/ $\{x_n\} = \{1,1,1,\ldots,(\}$ then $\{x_n\}$ converges to 1 ii/ $\{x_n\} = n$, where $n \in \mathbb{N}$, $\lim_{n \to \infty} \frac{n+1}{n} \Rightarrow \frac{1+\frac{1}{1}}{1} \Rightarrow 1$. $\{x_n\}$ % not converges.