UNIVERSITY OF TORONTO FACULTY OF ARTS AND SCIENCE

Test2, Nov 8, 2024

MAT224H1 F

Examiners: A. Berdnikov, N.Jung, M. Volpe

Duration: 100 mins

This test has 12 pages.

Total: 50 marks

-NO AIDS ALLOWED

- -No marks will be given for a completely wrong solution.
- -Unless specified, the vector addition and scalar multiplication of a vector space are all standard ones of the vector space.

1. (2 marks) Let $W = \{p(x) \in C(\mathbf{R}) | p(x) = a_0 + a_1 x + a_2 x^2, a_i \in \mathbf{R}, a_2 \neq 0\}$. Show that W is not a subspace of $C(\mathbf{R})$.

- **2.** (4 marks) Let $W = \{ \begin{bmatrix} a & 0 \\ c & d \end{bmatrix} \in M_{2\times 2}(\mathbf{R}) | a = d \}.$
 - (a) (3 marks) Find a basis for W.

(b) (1 marks) Show that W is isomorphic to ${\bf R}^2$ by constructing an isomorphism.

- **3.** (8 marks) Let $T: V \longrightarrow V$ be a linear transformation and $\alpha = \{\mathbf{v}_1, \mathbf{v}_2\}$ be an orthonormal basis for V. Suppose $[T]_{\alpha}^{\alpha} = \begin{bmatrix} 1 & -2 \\ 4 & -1 \end{bmatrix}$.
 - (a) (3 marks) Compute the inner product $\langle T(\mathbf{v}_1), \mathbf{v}_2 \rangle$

(b) (2 marks) Show that T invertible and find T^{-1} .

(c) (3 marks) Is T diagonalizble? Explain your answer.

4. (6 marks) Consider a subspace $W = \operatorname{Span}(\{1, e^x, e^{-x}\})$ of $C^{\infty}(\mathbf{R})$ with a basis $\{1, e^x, e^{-x}\}$. Let $T: W \longrightarrow W$ be a linear transformation defined by T(1) = 2, $T(e^x) = 1 + 3e^x$, and $T(e^{-x}) = 2 + 2e^{-x}$. Find all eigenvalues and their associated eigenspaces of T.

- 5. (7 marks) Let $\mathbf{W} = \mathrm{span}\{(1,2,1)\} \subset \mathbf{R}^3$
 - (a) (3 marks) Find the orthogonal complement, W^{\perp} .

(b) (2 marks) Let $\mathbf{x} \neq 0 \in W$ and $\{\mathbf{y}, \mathbf{z}\}$ be an orthogonal basis for W^{\perp} . Show that $\alpha = \{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is a basis of \mathbf{R}^3 .

(c) (2 marks) Find $[P_{W^{\perp}}]^{\alpha}_{\alpha}$.

- **6.** (6 marks) The following statements are false. Explain why they are false by providing a counterexample.
 - (a) (3 marks)

Let W_1 and W_2 be subspaces of a vector space V. The vectors in $W_1 + W_2$ are expressed uniquely by the addition of two vectors in W_1 and W_2 .

(b) (3 marks) If a square matrix A is diagonalizable, A is invertible.

7. (3 marks) Let $T:V\longrightarrow V$ be a linear transformation. Suppose λ and μ are distinct eigenvalues of T. Show that any eigenvectors \mathbf{x} and \mathbf{y} associated with the eigenvalues λ and μ respectively, are linearly independent.

8. (6 marks)

Let $\mathbf{W} = \text{span}\{(-1,0,1,0), (1,-1,2,1)\}.$

(a) (3 marks) Find an orthonormal basis of W using Gram-Schmidt Process.

(b) (3 marks) Find the orthogonal projection $P_{\mathbf{W}}(1,1,1,1).$

- 9. (8 marks) Let $\alpha = \{x, 1+x\}$ and $\beta = \{2x+1, x-3\}$ be bases for $P_1(\mathbf{R})$.
 - (a) (4 marks) Suppose for $p(x) \in P_1(\mathbf{R})$, $[p(x)]_{\alpha} = (2,1)$. Find $[p(x)]_{\beta}$.

(b) (4 marks) Let $T: P_1(\mathbf{R}) \longrightarrow P_1(\mathbf{R})$ be defined by T(x) = x + 2 and T(1+x) = x - 2. Suppose $S: P_1(\mathbf{R}) \longrightarrow P_1(\mathbf{R})$ is a linear mapping such that $[ST]^{\alpha}_{\alpha} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$. Find $[S]^{\alpha}_{\beta}$.