Fourier Transform of sine - Gaussian

Define Functions

$$ln[1] = sineGaussian[t] := A * e^{-\Gamma * t^2} * Sin[2 * \pi * f_c * t]$$

$$\ln[3]:= FT[f_] := Abs\left[\frac{1}{\sqrt{T}} \int_{0}^{T} \left(sineGaussian[t] * e^{2*\pi * f * i * t}\right) dl t\right]$$

Define constants

$$ln[4]:=$$
 T = 1; $f_c = 10$; Q = 1; $\Gamma = \frac{2 * \pi * f_c}{Q}$; A = 100;

ln[5]:= Plot[sineGaussian[t], {t, -1, 1}, PlotRange \rightarrow {-150, 150}]

If I copy the output of typing FT[f] and turn it into a new function, and plot the new function, it is significantly faster than just plotting FT[g] - this takes much longer.

Out[6]=
$$\frac{5}{2}\sqrt{5} e^{-\frac{1}{20}\pi \operatorname{Re}[(10+f)^2]} \operatorname{Abs}\left[e^{2f\pi}\left(\operatorname{Erfi}\left[\frac{1}{2}(-10+f)\sqrt{\frac{\pi}{5}}\right] - \operatorname{Erfi}\left[\frac{1}{2}((-10+20\ \emph{i})+f)\sqrt{\frac{\pi}{5}}\right]\right) - \operatorname{Erfi}\left[\frac{1}{2}(10+f)\sqrt{\frac{\pi}{5}}\right] + \operatorname{Erfi}\left[\frac{1}{2}((10+20\ \emph{i})+f)\sqrt{\frac{\pi}{5}}\right]\right]$$

In[7]:= **new[f_]:=**

$$\frac{5}{2}\sqrt{5} e^{-\frac{1}{20}\pi \operatorname{Re}[(10+f)^{2}]} \operatorname{Abs}\left[e^{2f\pi}\left(\operatorname{Erfi}\left[\frac{1}{2}(-10+f)\sqrt{\frac{\pi}{5}}\right]-\operatorname{Erfi}\left[\frac{1}{2}((-10+20\,i)+f)\sqrt{\frac{\pi}{5}}\right]\right)\right]$$

Erfi
$$\left[\frac{1}{2}(10+f)\sqrt{\frac{\pi}{5}}\right]$$
 + Erfi $\left[\frac{1}{2}((10+20\bar{l})+f)\sqrt{\frac{\pi}{5}}\right]$

LogLogPlot[new[f], $\{f, 0.01, 100\}$, PlotRange $\rightarrow \{0, 10\}$] (*Fast*)

