Листок 7

1. Другое определение нормальной формы Хомского. Заметим, что грамматика в $H\Phi X$ не может порождать ε , однако мы знаем КС-языки, содержащие ε . В действительности имеет место

Теорема 1. Пусть G - KC-грамматика, а G' - грамматика в $H\Phi X$, полученная из G применением рассмотренного ранее алгоритма. Тогда

$$L(G') = L(G) \setminus \{\varepsilon\}.$$

Можно сформулировать другое определение $H\Phi X$, которое с практической точки зрения не хуже нашего, но позволяет выводить ε .

Определение (другое определение нормальной формы Хомского). Говорят, что КС-грамматика G находится в *нормальной форме Хомского*, если она не содержит бесполезных символов и каждая продукция грамматики имеет один из видов:

- $(1) A \rightarrow a$
- (2) $A \rightarrow BC$,
- (3) $S \to \varepsilon$,

где $a \in \Sigma$, $A, B, C, S \in N$, S — стартовый символ, не встречающийся в правых частях продукций грамматики.

Чтобы получить $H\Phi X$ в смысле последнего определения достаточно добавить в алгоритм удаления ε -правил шаг 4:

Если $S \in \operatorname{Gen}_G(\varepsilon)$, то ввести в грамматику новый стартовый символ S' и две продукции $S' \to S \mid \varepsilon$.

- \otimes Скорректировать решения заданий по получению НФХ так, чтобы ответом служила грамматика в НФХ в смысле второго определения.
- **2. Алгоритмические проблемы контекстно-свободных языков.** Тремя основными проблемами теории формальных языков являются:
 - (1) проблема пустоты: для данной грамматики G определить

$$L(G) \stackrel{?}{=} \varnothing;$$

(2) проблема принадлежности: для данных грамматики G и слова $w \in \Sigma^*$ определить

$$w \stackrel{?}{\in} L(G);$$

(3) проблема эквивалентности: для данных грамматик G_1, G_2 определить

$$L(G_1) \stackrel{?}{=} L(G_2).$$

Проверка пустоты КС-языка сводится к построению $\mathrm{Gen}_G(\Sigma)$ и проверке $S \in \mathrm{Gen}_G(\Sigma)$. Рассмотрим один алгоритм, решающий проблему принадлежности для КС-языков.

Алгоритм (Кок—Янгер—Касами, «СҮК-алгоритм»).

Вход: грамматика $G = (\Sigma, N, \mathcal{P}, S \in N)$ в НФХ, слово $w \in \Sigma^*$.

Выход: да, $w \in L(G)$ / нет, $w \not\in L(G)$.

МЕТОД: последовательное определение нетерминалов, выводящих всевозможные подстроки w всё большей длины.

Пусть $w = w_1 \dots w_n$. Для всех $1 \leqslant i \leqslant j \leqslant n$ определим множество

$$N_{ij} = \{ A \in N \mid A \Rightarrow_G^* w_i \dots w_j \}.$$

Очевидно, что $w \in L(G) \Leftrightarrow S \in N_{1n}$. Приведём алгоритм построения множеств N_{ij} .

for $i \leftarrow 1$ to n

do
$$N_{ii} \leftarrow \{A \in N \mid A \rightarrow w_i \in \mathcal{P}\} \rhd Подстроки w длины 1$$

for $s \leftarrow 2$ to $n \rhd$ Цикл по длине подстроки

do for $i \leftarrow 1$ **to** $n - s + 1 \rhd$ Цикл по месту начала подстроки $j \leftarrow i + s - 1 \rhd$ Позиция конца подстроки с началом в w_i длины s $N_{ij} \leftarrow \{A \in N \mid A \to BC \in \mathcal{P}; \exists k \in [i, j - 1]_{\mathbb{Z}} \colon B \in N_{ik}, \ C \in N_{k+1j}\}$

Замечание. Алгоритм удобно выполнять, заполняя таблицу с N_{ij} в ячейках. Используя СҮК-алгоритм,

- (1) для грамматики G с продукциями: $S \to AB$, $A \to BB \mid a$, $B \to AB \mid b$ определить, принадлежат ли L(G) строки: (a) aabbb, (б) babab, (в) b^7 ;
- (2) для грамматики G с продукциями: $S \to AB \mid BC$, $A \to BA \mid a$, $B \to CC \mid b$, $C \to AB \mid a$ определить, принадлежат ли L(G) строки: (a) ababa, (б) baaab, (в) aabab.

Замечание 1 (о применении СҮК-алгоритма к решению задачи синтаксического анализа). Несложная модификация СҮК-алгоритма позволяет в случае $w \in L(G)$ давать на выходе вывод w в G. С точки зрения теории синтаксического анализа СҮК-алгоритм проводит восходящий (bottom-up) анализ.

Замечание 2 (о сложности СҮК-алгоритма). Нетрудно видеть, что сложность СҮК-алгоритма может быть оценена как $O(n^3 \cdot |\mathcal{P}|)$, что ограничивает применение алгоритма на практике. Чаще всего в приложениях рассматривается подкласс КС-грамматик, детерминированные КС-грамматики (по-другому, LL(k)- и LR(k)-грамматики), для которых существуют линейные алгоритмы разбора (сложность O(n)).

Утверждение. Проблема эквивалентности КС-грамматик является неразрешимой.