CS1571 Fall 2019 10/9 In-Class Worksheet

Name: _	
Where	were you sitting in class today:
A.	Pre-Reflection
	a scale of 1-5, with 5 being most confident, how well do you think you could execute se learning objectives:
	Compare model checking, theorem proving, and resolution as ways of inferring knowledge from a knowledge base.
10.3	B Prove that a KB entails a sentence alpha through resolution.
11.3	3 Compare first-order logic to propositional logic.
11.4	Translate English sentences into first order logic.
В.	Theorem Proving with Resolution
	Let's go back to the Wumpus world. Suppose our KB is currently: $(B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$
We	want to prove that KB $\mid= \alpha$, where α says "there's no pit in Room 1,2" ($\neg P_{1,2}$)
Firs	t, figure out the CNF for:
($(B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})) \wedge \neg B_{1,1}$
Step	o 1: Remove the biconditional using biconditional elimination.
((H	$B_{1,1} \rightarrow (P_{1,2} V P_{2,1})) \land ((P_{1,2} V P_{2,1}) \rightarrow B_{1,1}) \land \neg B_{1,1})$

Step 2: Remove the implication using implication elimination.

$$(\neg B_{1,1} \ V \ (P_{1,2} \ v \ P_{2,1})) \ ^{\wedge} \ (\neg (P_{1,2} \ V \ P_{2,1}) \ v \ B_{1,1}) \ ^{\wedge} \ \neg B_{1,1}$$

Step 3: Move \neg inwards using de Morgan's rules and double-negation ($\neg(\neg P) \Leftrightarrow P$):

$$(\neg B_{1,1} \ V \ (P_{1,2} \ v \ P_{2,1})) \ ((\neg P_{1,2} \ \neg \neg P_{2,1}) \ V \ B_{1,1}) \ \neg \neg B_{1,1}$$

Step 4: Apply distributivity law to get conjunctions of disjunctions.

$$(\neg B_{1,1} \ V \ P_{1,2} \ V \ P_{2,1}) \land (\neg P_{1,2} \ V \ B_{1,1}) \land (\neg P_{2,1} \ V \ B_{1,1}) \land \neg B_{1,1}$$

Step 5: To prove by contradiction with resolution, we need to negate the sentence we want to prove and add it to the KB. So KB $^-\alpha$ is

$$(\neg B_{1,1} \ V \ P_{1,2} \ V \ P_{2,1}) \ ^ (\neg P_{1,2} \ V \ B_{1,1}) \ ^ (\neg P_{2,1} \ V \ B_{1,1}) \ ^ \neg B_{1,1} \ ^ P_{1,2}$$

Step 6: Apply the resolution rule to create new clauses until you get a contradiction. You can use the table to track your work.

Clause #	Clause	Clauses Used
1	$(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1})$	
2	(¬P _{1,2} v B _{1,1})	
3	$(\neg P_{1,2} \lor B_{1,1})$ $(\neg P_{2,1} \lor B_{1,1})$	
4	$\neg B_{1,1}$	
5	$P_{1,2}$	
6	$\neg P_{1,2}$	2, 4
7		

2. $(P^Q)^(P => R)^((Q^R) => S]$, Prove S

(P^Q) ^ (¬P V R) ^ [¬(Q^R) V S] (P^Q) ^ (¬P V R) ^ [¬Q V ¬R V S] (P^Q) ^ (¬P V R) ^ [¬Q V ¬R V S] ^ ¬S $^{\sim}$ R V S R S End at: S ^ ~S == contradiction

C. First-Order Logic

You are all experts in something. Express something about what you know in First-Order Logic. I will be using these answers (non-anonymized) as discussion items next class.

11.4 Translate English sentences into first order logic.