Word Meanings

Latent Semantic Analytics

Dr. Uzair Ahmad

Program

- Word meanings and context
- The distributional hypothesis
- Design dimensions of word representations
- Latent semantic analysis
- Evaluation of representations

Word meanings: NLP Challenge

The distributional hypothesis

Acquire meaningful representations from unlabeled data

A bottle of ____ is on the table.

Everybody likes ____.

Don't have ____ before you drive.

We make ____ out of corn.

The distributional hypothesis

- (14.1) A bottle of ____ is on the table.
- (14.2) Everybody likes ____.
- (14.3) Don't have ____ before you drive.
- (14.4) We make ____ out of corn.

	contextual properties										
	(14.1)	(14.2)	(14.3)	(14.4)							
tezgüino	1	1	1	1							
loud	0	0	0	0							
motor oil	1	0	0	1							
tortillas	0	1	0	1							
choices	0	1	0	0							
wine	1	1	1	0							

YOU SHALL KNOW A WORD BY THE COMPANY IT KEEPS. (FIRTH 1957)

Word representations

Context

```
Brown Clusters \{one\}

WORD2VEC, h=2 \{moment, one, English, complications\}

Structured WORD2VEC, h=2 \{(moment, -2), (one, -1), (English, +1), (complications, +2)\}

Dependency contexts, \{(one, NSUBJ), (English, DOBJ), (moment, ACL^{-1})\}
```

Representation

Contexts |C|

		c1	c2	с3	c4	c5	m1	m2	m3	m4
	human	1	0	0	1	0	0	0	0	0
	interface	1	0	1	0	0	0	0	0	0
	computer	1	1	0	0	0	0	0	0	0
	user	0	1	1	0	1	0	0	0	0
V	system	0	1	1	2	0	0	0	0	0
Words	response	0	1	0	0	1	0	O	0	0
	time	0	1	0	0	1	0	0	0	0
	EPS	0	0	1	1	0	0	0	0	0
	survey	0	1	0	0	0	0	0	0	1
	trees	0	0	0	0	0	1	1	1	0
	graph	0	O	0	0	0	0	1	1	I
	minors	0	0	0	0	0	0	0	1	l

Term-Document Matrix

		c1	c2	c 3	c4	c5	m1	m2	m3	m4
1	human	1	0	0	1	0	0	0	0	0
2	interface	1	0	1	0	0	0	0	0	0
3	computer	1	1	0	0	0	0	0	0	0
4	user	0	1	1	0	1	0	0	0	0
5	system	0	1	1	2	0	0	0	0	0
6	response	0	1	0	0	1	0	O	0	0
7	time	0	I	0	0	1	0	O	0	0
8	EPS	0	0	1	1	0	0	0	0	0
9	survey	0	1	0	0	0	0	O	0	1
10	trees	0	O	0	0	0	1	1	1	0
11	graph	0	O	0	0	0	0	1	1	i
12	minors	0	0	0	0	0	0	0	1	ì

Term-Document Matrix Dimension 2

$$\min_{\mathbf{U} \in \mathbb{R}^{V \times K}, \mathbf{S} \in \mathbb{R}^{K \times K}, \mathbf{V} \in \mathbb{R}^{|\mathcal{C}| \times K}} ||\mathbf{C} - \mathbf{U}\mathbf{S}\mathbf{V}^{\top}||_{F}$$
s.t.
$$\mathbf{U}^{\top}\mathbf{U} = \mathbb{I}$$

$$\mathbf{V}^{\top}\mathbf{V} = \mathbb{I}$$

$$\forall i \neq j, \mathbf{S}_{i,j} = 0,$$

		c1	c2	c3	c4	c5	m1	m2	m3	m4
1	human	1	0	0	1	0	0	0	0	0
2	interface	1	0	1	0	0	0	0	0	0
3	computer	1	1	0	0	0	0	0	0	0
4	user	0	1	1	0	1	0	0	0	0
5	system	0	1	1	2	0	0	0	0	0
6	response	0	1	0	0	1	0	O	0	0
7	time	0	I	0	0	1	0	0	0	0
8	EPS	0	0	1	1	0	0	0	0	0
9	survey	0	1	0	0	0	0	O	0	1
10	trees	0	O	0	0	0	1	1	1	0
11	graph	0	0	0	0	0	0	1	1	1
12	minors	0	0	0	0	0	0	0	1	l

Term-Document Count Matrix

Ø

Dimension

- Transforming the count matrix C
 - Pointwise mutual information

$$PMI(i, j) = \log \frac{p(i, j)}{p(i)p(j)} = \log \frac{p(i \mid j)p(j)}{p(i)p(j)} = \log \frac{p(i \mid j)}{p(i)}$$

- Transforming the count matrix C
 - Positive Pointwise mutual information

$$PPMI(i, j) = \begin{cases} PMI(i, j), & p(i \mid j) > p(i) \\ 0, & \text{otherwise.} \end{cases}$$

PMI

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

$$P(\text{w=information, c=data}) = \frac{3982}{11716} = .3399$$

$$P(\text{w=information}) = \frac{7703}{11716} = .6575$$

$$P(\text{c=data}) = \frac{5673}{11716} = .4842$$

$$ppmi(\text{information,data}) = \log 2(.3399/(.6575 * .4842)) = .0944$$

Summary

- Distributed representations
 - Latent Semantic Analysis
 - Information retrieval
- Evaluation methods
 - Intrinsic
 - Extrinsic