

Team 51: Radio Mobile Foxbot Bi-Weekly Update 2

> Brady Lagrone Sophia Panagiotopoulos Miguel Segura

Sponsor: Kevin Nowka and David Gent TA: Fahrettin Ay

Project Summary

- Purpose:
- Amateur Radio Directional Finding (ARDF) is traditionally done with a stationary transmitter, limiting the training abilities.
- Transmitted signals are nonadjustable with little variability for the user.
- Our Proposal:
- We will have a mobile robot chassis transmitting user selected signals.
- This will increase the potential of ARDF training.

Project/Subsystem Overview

Brady Lagrone

Subsystem Goal Overview: Autonomous Pathing System:

- Robot can arrive at user decided destination while avoiding objects by using sensors and Pixhawk.
- MCU will send analog signal to radio transmit while controlling PTT function.
- MCU will receive and control batteries properties

Power System:

- Lippo batteries will be converted for component ratings.
- Battery monitor will send alert to MCU when voltage ratings are low.

Radio System:

- User can send DTMF tone to Foxbot which can be decoded to determine user selected settings (transmit for houndbot or battery health).
- Radio will transmit the formulated signal by the MCU. If the user has requested battery health, morse will be decoded.

Project Timeline

Subsysten Designs an Testing (completed	power and radio	Integration of MCU and Motor Driver (to complete	Integration of power and radio ADC (to complete	Final Integration(to complete by 3/7)	System Testing (to be completed 3/17)	Demo and Report (to complete by 4/14)
01/27)	PTT (completed 2/9)	by 2/14)	by 2/14)	,	,	.,,

MCU Subsystem

Miguel Segura

Accomplishments since last update ~16 hrs of effort	Ongoing progress/problems and plans until the next presentation					
 Armed the PixHawk to Mission Planner to provide the autonomous design. Wrote code to make LEDs interact as "motors" to measure their PWM signal from Mission Planner through the PixHawk. 	 Integrate PixHawk to Sabertooth and perform test runs through Mission Planner Further develop simulation protocol and get functionality across the system. 					

MCU Subsystem

Miguel Segura

Power Subsystem

Brady Lagrone

Accomplishments since last update 30 hrs of effort	Ongoing progress/problems and plans until the next presentation		
 Established I2C communication with BQ7692003PWR battery monitor Wrote and tested code for the ADC detecting levels 0-9, for integrating with the radio subsystem Wrote code for to produce morse code from the generated sine wave, and tested and integrated with radio subsystem 	 Continue and finish PCB integration between power and radio subsystem Establish more modes of operation according to digits pressed 		

Power Subsystem

Brady Lagrone

ADC Monitor and changing what flag is triggered, for now 1 reads and prints (in morse) voltage of cell one from the battery monitor

```
// Function to read the cell voltage
float read_cell_voltage(uint8_t vc_hi_addr, uint8_t vc_low_addr) {
    // Read the values of VC_HI and VC_LOW registers
    uint8_t vc_hi = read_register(vc_hi_addr);
    uint8_t vc_low = read_register(vc_low_addr);
    printf("This is the HI: 0x%02X, and this is the Lo: 0x%02X \n", vc_hi, vc_low);

    // Combine VC_HI and VC_LOW into a 16-bit value
    uint16_t combined_value = (vc_hi << 8) | vc_low;

    // Mask out bits <15:14> to use only bits <13:0>
    combined_value = combined_value & 0x3FFF; // 0x3FFF = 0b001111111111111

    // Multiply the combined value by 375 microvolts (375e-6 volts)
    float voltage = combined_value * 375e-6;

    return voltage;
}
```

Read registers of cells and calculates the voltage representation

```
float voltageLevels[NUM_LEVELS] = {2.12, 0.72, 0.78, 1.57, 3.3, 1.77, 1.87, 2.21, 1.28, 2.05};
void vTaskMonitorADC(void *pvParameters) {
       if(adc action_flag == -1){
          float voltage = read adc voltage();
           printf("ADC Voltage: %.2fV\n", voltage);
           for (int i = 0; i < NUM_LEVELS; i++) {
              if (voltage >= (voltageLevels[i] - TOLERANCE) && voltage <= (voltageLevels[i] + TOLERANCE)) {</pre>
                  if(i != adc_prev_flag){    //Prevent code from flagging the same voltage level more than once
                      adc_action_flag = i; // Set flag to detected action number
                      printf("Action Detected: %d\n", adc_action_flag);
else if (adc action flag == 1){
    vTaskDelay(pdMS TO TICKS(500));
    gpio set level(Trans, 1);
    printf("Executing Action %d, reading Cell1 Voltage \n", adc_action_flag);
    // Read the voltage of Cell 1
    float voltage = read cell voltage(VC1 HI, VC1 L0);
    snprintf(message, sizeof(message), "%.2f", voltage);
    printf("Cell 1 Voltage: %s V\n", message);
    // Play Morse code message
    playMorseString(message, frequency);
    dac_output_voltage(DAC_PIN, 0);
    gpio_set_level(Trans, 0);
    adc prev flag = adc action flag;
    adc_action_flag = -1;
```


Radio Subsystem

Sophia Panagiotopoulos

Accomplishments since last update 30 hours of effort	Ongoing progress/problems and plans until the next presentation		
 Completed a bit weighted voltage divider to minimize pins needed from the ESP with the ADC being able to recognize different tones sent. Coded a sine wave generator for the DAC that can transmit when a voltage is read from the ADC, allowing for radio transmission and MCU integration. PTT is enabled by IO pin when ADC reads a value and DAC wants to transmit. 	 Work on shutting down decoder board when PTT is enabled through something like a high-side driver circuit or op-amp. Refine voltage divider since some values are too close for the ESP to differentiate between. 		

Radio Subsystem Figure

Sophia Panagiotopoulos

```
ADC Voltage: 0.00V
ADC Voltage: 0.00V
ADC Voltage: 0.00V
ADC Voltage: 0.00V
ADC Voltage: 0.79V
Action Detected: 2
Executing Action 2, reading Cell2 Voltage
This is the HI: 0x10, and this is the Lo: 0x44
Cell 2 Voltage: 1.56 V
Letter: 1, Morse Code: ----
Letter: 5, Morse Code: ----
Letter: 6, Morse Code: ----
Letter: 6, Morse Code: ----
```

Image 1: ADC reading DTMF Tone 2

Image 2: Code to Generate Audio Frequency

Validation Plan

Maragraph)	Test Name	Success Criteria	Methodology	Status	Responsible Engineer(s)
		Radio on foxbot is able to pick up signals from user radio within the specified foxhunt	Radio on the foxbot is able to recognize a sent signal from the user radio by		
3.2.1.1	Transmisison Range	region	outputting the tone from its speaker.	TESTED	Sophia
		The foxbot will operate for at least 1 hour	The batteries are able to run the system for 1 hour when left alone.	UNTESTED	Brady
3.2.1.3	DTMF Decoding Accur-	A binary value, output of the decoder, will correspond to the keypad number sent by the	LEDs will show the bits that are high or low, indicating the value in binary.	TESTED	Sophia
		The system shall be straightforward and the user shall be able to troubleshoot if there is an	It should take the user not more than 10 minutes to load the path and start up		
3.2.1.4	Intutiveness of System	issue	the foxbot.	UNTESTED	Full Team
		The foxbot will stay on the user decicded path and will avoid obstacles including trees,	Place the foxbot in a location and it should be able to determine its path		
3.2.1.5	Pathing Accuracy	ditches, and moving objects.	while staying in the programmed range. It will be able to reroute if any	UNTESTED	Miguel
		The user radio will be able to pick up the transmitted signal from the foxbot radio and	App on phone will be able to decode the sent signal corresponding to a		
	Morse Decoding Accur	decode it using a morse decoding app.		UNTESTED	Sophia
	Mass	The foxbot will not exceed 7lbs		UNTESTED	Full Team
3.2.2.2	Mounting	The sensors shall be able to be mounted to the corners of the chassis and the radio will be	Attatch the sensors to the corners of the chassis and test for accuracy. The	UNTESTED	Full Team
			Cases should hold the components and protect them from enviornmental		
	System Packaging	The radio, PCBs, and MCU will be held in custom protective cases	factors like heat, humidity, and water.	UNTESTED	Full Team
3.2.3.1	Input Voltage (Radio)	The Baofeng will receive an input voltage fo 7.4 V at a current of 1780mA	Use a multimeter to validate input voltage levels.	TESTED	Brady
3.2.3.2	Input Voltage (ESP)	The ESP will receive an input voltage of 3.3V at a current of 160mA	Use a multimeter to validate input voltage levels.	TESTED	Brady
			used to show the battery level as a percentage of a fully charged rating. A		
		The voltage of the batteries will be read by a GPIO pin of the ESP and will detatch the	trasistor will be activated to break the circuit when the battery levels drop		
3.2.3.3	Voltage Monitoring	battery from the system if the voltage becomes too low.	below a usable voltage.	UNTESTED	Brady and Miguel
		The foxbot shall be able to traverse flat terrain and withstand temperatues in the range of	The system will be placed in various enviornments ensuring the monitors can		
3.2.4.1	Enviornmental Resistan	5°C to 40°C	traverse the terrain.	UNTESTED	Full Team
		The foxbot will self automate a loaded path from the pixhawk while communicating with			
		the user through DTMF signals and morse. It will hide from the houndbot and will be able to	Foxbot is placed at a starting location, follows automated path with sending		
	Full System Demo	run for 1 hour while avoiding obstacles	and receiving signals, and avoid getting caught by the houndbot.	UNTESTED	Full Team

Gantt Chart

