B Parking: Status update

G. Karathanasis on behalf of B-Parking group

Physics Motivation

- EWK couplings of leptons to gauge bosons are independent of lepton flavour
- → lepton flavour "universality" (LFU)
- Flavour-changing neutral currents (FCNC) prohibited at tree level; only through loop (penguin/box) Feynman diagrams (GIM mechanism)
- → FCNC ideal for testing LFU

Physics Motivation

- EWK couplings of leptons to gauge bosons are independent of lepton flavour
- → lepton flavour "universality" (LFU)
- Flavour-changing neutral currents (FCNC) prohibited at tree level; only through loop (penguin/box) Feynman diagrams (GIM mechanism)
- → FCNC ideal for testing LFU
- FCNC process are rare → sensitive to existence of new Physics (NP)
- Violation of LFU (difference in e/μ/τ couplings) would be stunning evidence for NP

Recent measurements

• Deviations from SM (~2.0 σ -2.5 σ from predicted values) reported by LHCb, most notably in R_K and R_{K*}

• With
$$R_K = \frac{Br(B \to K \mu^+ \mu^-)/Br(B \to K J/\psi(\to \mu^+ \mu^-))}{Br(B \to K e^+ e^-)/Br(B \to K J/\psi(\to e^+ e^-))}$$
• And $R_{K^*} = \frac{Br(B \to K^* \mu^+ \mu^-)/Br(B \to K^* J/\psi(\to \mu^+ \mu^-))}{Br(B \to K^* e^+ e^-)/Br(B \to K^* J/\psi(\to e^+ e^-))}$
• $0.745 \pm 0.036 [1]$
• 0.66 ± 0.03 , for $q^2 [0.045-1.1]$ GeV [2]
• 0.69 ± 0.05 , for $q^2 [1.1-6]$ GeV [2]

 Also deviating from SM are Br measurements [3-5] and angular observables of rare b → s decays [5-6]

Recent measurements

- Deviations from SM (~2.0 σ -2.5 σ from predicted values) reported by LHCb, most notably in R_K and R_{K*}
- With $R_K = \frac{Br(B \to K \mu^+ \mu^-)/Br(B \to K J/\psi(\to \mu^+ \mu^-))}{Br(B \to K e^+ e^-)/Br(B \to K J/\psi(\to e^+ e^-))}$
- And $R_{K^*} = \frac{Br(B \to K^* \ \mu^+ \ \mu^-)/Br(B \to K^* \ J/\psi(\to \mu^+ \ \mu^-))}{Br(B \to K^* \ e^+ \ e^-)/Br(B \to K^* \ J/\psi(\to e^+ \ e^-))}$

0.745 ±0.036 [1]

 0.66 ± 0.03 , for $q^2[0.045-1.1]$ GeV [2]

 0.69 ± 0.05 , for $q^2[1.1-6]$ GeV [2]

- Also deviating from SM are Br measurements [3-5] and angular observables of rare b → s decays [6-7]
- B-Parking goal: Collect enough b hadrons to study rare B processes that can give evidence for new Physics with CMS (competitive to LHCb and before Belle II)

B-Parking: An unbiased B sample

- CMS B physics trigger menu is primarily μ-based
 - \rightarrow we can get B \rightarrow $\mu\mu$ K **but not B** \rightarrow **eeK**
- Idea: use an opposite side tag approach to collect a large unbiased sample of B decays
 - Triggering on one B (tag) in order to collect unbiased B on the other side (probe)
 - Successfully used in the past (LEP, B factories, LHCb)
 - Generic B sample that can be used for many studies
 - e.g.: rare decays ($B_s \rightarrow \phi \phi$), CP violation e.t.c.
- Use CMS infrastructure and store ("park") those events, then process them during LS2
- B (tag): can be provided by B pure trigger → Single Muon since the BF(b → μX,including b->c->μX) is ≈20% and σ(b) is huge
- B → μμK or eeK has BF of 10-7 → very small and with ~10% reconstruction efficiency need ~ 10¹⁰ B

Trigger Studies

Trigger Strategy

- Strategy:
 - L1 seeds enhanced in b hadron decays
 - Refinement in HLT
 - Save 2kHz in DAQ
- L1 seeds:
 - Single μ L1 seeds pure (~40%) in B decays
 - Progressively lower p_⊤ thresholds for constant 8kHz of rate
- HLT:
 - Reconstruct L3 μ, impose p_T and impact parameter parameter (IP) cuts
 - Rate reduction at 2kHz (average throughput)
- Store events in single copies

L1 Seeds/HLT Paths development

- Tuning/optimizing paths for maximum performance, during datataking
- As luminosity decreases, η-restricted seeds keep the L1 rate constant
- HLT main paths: HLT_Mu9_IP6,5,4
- Trigger strategy optimized for high purity using MC

Current proposal

Lumi (E34)	L1 seed	HLT	rate	purity	#B
1.7	Mu12er1p5	Mu12_IP6	1585	0.92	10.5M
1.5	Mu10er1p5	Mu9_IP5	3656	0.80	21M
1.3	Mu8er1p5	Mu9_IP5	3350	0.80	20M
1.1	Mu8er1p5	Mu7_IP4	6153	0.59	33M
0.9	Mu7er1p5	Mu7_IP4	5524	0.59	29M

S. Fiorendi, R. Manzoni, M. Verzetti

L1 Seeds/HLT Paths development

- Tuning/optimizing paths for maximum performance, during datataking
- As luminosity decreases, ηrestricted seeds keep the L1 rate constant
- HLT main paths: HLT Mu9 IP6,5,4
- Trigger strategy optimized for high purity using MC

Current proposal

Lumi (E34)	L1 seed	HLT	rate	purity	#B
1.7	Mu12er1p5	Mu12_IP6	15 3	0.92	10.5M
1.5	Mu10er1p5	Mu IP5	3656	0.80	21M
1.3	Mu8er1p5	ML9_IP5	3350	0.80	20M
1.1	Mu8er105	Mu7_IP4	6153	0.59	33M
0.9	M₁7er⊋p5	Mu7_IP4	5524	0.59	29M

Purity measured with B → D*µv

- b purity: fraction of single-µ triggered events from b decays:
- $P_b = \frac{N(b \to \mu X)}{N(\mu)}$

- Reconstruct B \rightarrow D* $\mu\nu$ with D* \rightarrow D $^0\pi_s$ \rightarrow (π K) π_s ,

For Mu9_IP6 trigger

- Generate and run on MC for acceptance * efficiency
- Put everything together $\rightarrow P_h \approx 0.73$, in agreement with MC
- Left: $\pi_s p_T$ distribution starting from 300MeV!
- Right: $M(K,\pi,\pi_s)$ $M(K,\pi)$; RS= correct sign μ ; WS= wrong μ sign (combinatorial bkg)

G.K.

Electron Reconstruction

Electron reconstruction

One of main challenges is the low p_T e reconstruction

- Investigated where low p_T (e) efficiency is lost
- Inefficiencies: Seeding and PF-e/γ steps
- Tried with different seedings:
 - Efficiency increased but not enough (30%-50%)
- PF-e/γ step: under study
- Aiming for a new tool outside of PF (lower plot)

New reconstruction:

- Do not change PF algo
- Add a standalone chain tailor made for low $p_{\scriptscriptstyle T}$ e
- Use Machine Learning techniques to control fakes

Conversions: Low p_T(e) sample

- In order to tune e reconstruction for low p_{T} , need a very pure data sample
- Use general tracks → find distinct y→ee signature
- Focus only in conversions from 1st PIX layer (1.5cm<R<4cm – upper plot)
- ...then run the gsfElectron reconstruction
- Lower plot: $p_T(e)$ from conversions

Sample purity ~98%

B Reconstruction (using only 470M events)

$B \rightarrow J/\psi(\rightarrow \mu\mu)K/B \rightarrow \mu\mu K$

- B reconstructed from μ -pair and a K ; cuts applied to maximize S/ $\sqrt{(S+B)}$
- B → μμK: still not enough data (only 470M from 10B have been processed)

- Next step: Sychronizing B reconstruction codes

$$B_s \rightarrow J/\psi (\rightarrow \mu\mu \text{ or } \rightarrow ee)\phi$$

- Reconstruct B_s from e(μ) pair and two tracks
- Helpful for e-ID development
- Difference in B_s in μμ because of triggering μ
- Expected B_s=550

$\overline{B} \rightarrow J/\psi(\rightarrow ee)K/B \rightarrow J/\psi(\rightarrow ee)K^*$

- Reconstruction of B in eeK and eeK* channels
- Even with the current e-ID a decent reconstruction

$$B \rightarrow D^0 (\rightarrow K\pi)\pi$$

- First observation in CMS:
 - Can complement D*Iv, for purity measurement
 - Can be used study of CP violation
- Large combinatorics in hadronic state → use charge combinations .&. vertex requirements
- Fitted $B \rightarrow D^0 (\rightarrow K\pi)\pi$: 55.4 +/- 6.6 events

Other uses of B Parking Sample

- Rare B_S decays: ττ,φφ,ΚΚ,Κπ,Κ*Κ*,Κττ,Κ*ττ
- R(D*) measurement
- Flavour violating decays: B_(S) → τμ,τε
- CP-Violation in various decays, using opposite-side tagging
- Probe т → 3µ via B → D* тv
- And much more (open call to CMS creativity...)

Acknowledgements

- Many thanks to Run Coordination, Trigger/TSG, DAQ, Computing & Offline, T0 Operations, PPD, Physics Coordination, EGM for strong support and a lot of help!
- The success of the B Physics Parking initiative is a success of the entire CMS and a demonstration of our strength and flexibility in pursuing novel topics via novel means

Summary

- A brief status of B Parking analysis presented
- Strong results in e-reconstruction, B reconstruction/selection
- Already at 80% of the required B number (10¹⁰ B) reach our goal until run 2 ends!
- and a lot of work still ongoing!

- Plan for following months:
 - Finalize the low p_⊤ electron reconstruction
 - Work on optimal B selection, using MVA method(s)
 - Work on purity measurement for more triggers

Back up

References

- [1] R. Aaij, et al. (LHCb), JHEP 08, 055 (2017), 1705.05802
- [2] R. Aaij, Aaij, et al. (LHCb), Phys. Rev. Lett. 113, 151601 (2014),
- [3] LHCb collaboration, Differential branching fractions and isospin asymmetries of B → K^(*)µµ, JHEP 06 (2014) 133
- [4] LHCb collaboration, Angular analysis and differential branching fraction of the decay $B_s \rightarrow \phi \mu \mu$, JHEP 09 (2015) 179
- [5] LHCb collaboration, Differential branching fraction and angular analysis of $\Lambda_b \to \Lambda \mu \mu$, JHEP 06 (2015) 115
- [6] LHCb collaboration, Angular analysis of the B \rightarrow K* $\mu\mu$ decay using 3fb-1 of integrated luminosity
- [7] Belle collaboration, S. Wehle et al., Lepton- avor-dependent angular analysis of B \rightarrow K*II hys. Rev. Lett. 118 (2017) 111801