8.1 Midterms Exam Coverage

Midterms BCHE102A - Exam Coverage

- Introduction of Biochemistry
 - Basic Biology Concepts
 - Cell Biology
 - Water and Its Properties
- Carbohydrates
 - Structure
 - Classification
 - Biological Significance
- Lipids
 - Structure
 - Classification
 - Biological Significance

8.2 Water and Its Properties

May 26, 2022

Midterm exam review - Water and it's Properties

What is the Difference of Ionic and Covalent Bonding?

- Ionic
 - Transferring Electrons
 - · Strong bond
 - Metal + Non metal
 - Cations + Anions
- Covalent
 - Non metal + non metal
 - Pure covalent (non polar) → stronger than a polar covalent
 - Sharing of electrons
- Carbon is a non-metal

What is a Hydrogen Bond?

- Hydrogen atoms with strong electronegative atoms such as O and N
 - In the periodic table, the electronegativity increases going to the right
- Bond strength
 - stronger than other dispersion forces (Van der Waals)
 - stronger than dipole-dipole
 - · Weaker than Ionic and Pure Covalent though

Intermolecular and Intramolecular H bond

Intramolecular K-bd
weaker id-id attraction b/w
molecules oolower mp (158.6°C)

- Intramolecular within the molecule
 - When an H is connected to an O (for example) in a molecule, there is an unequal sharing of molecules. The O has a slightly negative charge because the electrons are mostly there. This is also why H becomes slightly positive.
 - Another atom that has a lone pair within the same molecule may be attracted to the slightly positive H atom the molecule has
- Intermolecular between 2 or more molecules

 In water, Oxygen is slightly negative and each H is slightly negative. When there is another molecule that has an atom that has a lone pair it can get attracted to the slightly positive of H

Hydrogen Bonds happen in:

- H2O
- Proteins
 - Secondary structure
- Nucleic Acids
 - DNA and RNA
 - Nucleotide bases
- · Both Proteins and Nucleic acids need H bonds for stability

Describe the water molecule

• Composition: 2 H and 1 O

• Formula: H2O

Properties of Water

· Odorless, colorless, transparent, and tasteless

- Excellent Solvent
- Cohesion and Adhesion
 - Surface tension
 - Capillary Action
- High Specific Heat
- High Heat of Vaporization

Why is Water a Polar Molecule?

 Because there is an **Electronegativity Difference** beweeen the O and H atoms. O is more electronegative than H

Why is Water an Excellent Solvent?

- not universal
- "like dissolves like"
 - Non-polar solutes need non-polar solvents
 - Polar solutes need polar solvents
- This is attributed to its polarity

1. Dissolution

- · a physical change
- NaCl+H2O → NaCl(aq)
 - forms a hydration shell

- NaCl (s) crystal lattice structure
 - In disolution the crystal lattice structure breaks down but the NaCl ionic bond doesn't break, just "embraced" by the water molecules

2. Dissociation

- also known as ionization → release of electrolytes
- When water molecules pull Na and Cl away from each other

Describe Water as a Reactant

• Dehydration Synthesis

- removal of water
- usually for building
 - Ex. Glucose (monosaccharide) → Glycogen (polysaccharide)
 - Glycosidic bonds between glucose units formed when removal of water
- Hydrolysis

Adding water to separate (lysis)

High Heat of Vaporization

- single drop of water to single drop of alcohol
- attributed to H bonds → needs high energy to break down (high heat)
 - single drop of water takes a long time to evaporate
- · Application: in the body, we don't boil in our own skin

- Resistance of body to sudden temperature changes
- Why have to regulate aquarium temp?
 - Fish kill happens when sudden temperature changes → dissolved oxygen in water goes down in high heat
- · Thermoregulation: evaporative cooling
 - Sweat is 90% water
 - Phase changes → energy to become gas

Cohesion and Adhesion

- Forces of Attraction
- Cohesion
 - · same molecules
 - H2O to H2O
 - Water drops stacked on coin → dome shape
 - Surface tension
 - The more cohesive forces the higher the surface tension
 - Application water strider and basilisk lizard
 - the surface of the water doesn't break easily
- Adhesion
 - H2O to different molecules
 - H2O to cell wall
 - Capillary Action
 - transport of water in plants
 - to do this, adhesive forces are stronger than the cohesive and also stronger than gravity
 - if high cohesive forces, it will keep water molecules together and not go up.

•

8.3 Carbohydrates

Carbohydrates

Describe a Carbohydrate Molecule

- CnH2nOn
 - n is based on the number of carbons
- Functional Groups
 - OH (Hydroxyl)
 - Aldehydes
 - Ketones
- Covalent bond

A type of Monosaccharide that has 5 carbon atoms

- Pentose
- 3 C atoms
 - Triose
- 4 C atoms
 - Tetrose
- 6 C atoms
 - Hexose

A type of monosaccharide which has an aldehyde group attached to first carbon

- Aldose
- If put into C2 it is a ketose

A type of carbohydrate that has 3-10 monomeric units

- Oligosaccharides
- some references say 2-10 monomeric units
 - Disaccharides are therefore under oligosaccharides
- Mono → Di → Oligo → Poly

What is a chiral carbon

• Has 4 different groups/substituents connected to this C atom

It refers to the stored form of carbohydrates in animals

- glycogen
- stored in the liver and muscles
- plants?
 - starch is the equivalent of glycogen in plants

Refers to the structural carbohydrate in the exoskeleton of arthropods

- Chitin
- Plants?
 - Cellulose

Two main components of starch

- amylose 20%
 - H2O soluble
- amylopectin 80%
 - H2O insoluble

Glucose + Galactose will yield

Lactose

Glucose + Fructose will yield

- Sucrose
 - Glucose is 6 membered ring
 - Fructose is 5 membered ring

Stachyose and raffinose are disaccharides

- False, oligosaccharides
- Stachyose is a tetrose
- Raffinose is a triose

True or False: Polysaccharides include amylose, cellobiose, glycogen, and chitin

• FALSE, cellobiose is a disaccharide

How do you distinguish between the alpha and beta anomers?

- Alpha anomer opposite side, Beta anomer same side
- Pyranose
 - C1 OH
 - C6 CH2OH
- Furanose
 - C2 OH
 - C6 CH2OH

Examine the structure of this Fischer projection of monosaccharide gulose.

- 1. is it D or L sugar D sugar
- 2. Aldose or Ketose? Aldose
- 3. How many chiral centers? 4 C2-C5

- 4. Convert this to Haworth structure? (two structures alpha and beta)
 - Bond rotation of C5 to clockwise because D sugar, thus CH2OH is above
 - If L sugar, C5 bond rotation is counterclockwise

Study the Fischer Projections to Answer the Questions Below

mannose

- 1. Is Galactose D or L sugars
 - D Sugar
- 2. Is Mannose a D Sugar or L Sugar
 - D Sugar
- 3. Are these two Carbohydrates enantiomers? If not, how many places do they differ?
 - No. Enantiomers are mirror images
 - They differ at C2 and C4
- 4. What is the term that will describe the relationship between galactose and mannose?
 - Epimer 1 Chiral Carbon difference

- Diastereomer 2-3 Chiral Carbon Difference
 - thus, Mannose and Galactose are Diastereomers
 Epimer is also a diasteriomer