	Sequential (as opposed to one-shot)	Evaluative (as opposed to supervised)	Sampled (as opposed to exhaustive)
Supervised learning	×	×	✓
Planning (Chapter 3)	✓	×	×
Bandits (Chapter 4)	×	✓	×
Tabular reinforcement learning (Chapters 5, 6, 7)	✓	✓	×
Deep reinforcement learning (Chapters 8, 9, 10, 11, 12)	✓	✓	✓

Sequential feedback

- 1. Reward can be delayed.
- 2. Hard to assign credit for rewards.

Immediate feedback

- 1. Supervised learning.
- 2. Rewards are assigned to the action just taken.

Evaluative feedback

- 1. goodness of feedback is relative.
- 2. " is it the best !!"

Supervised feedback

- 1. Classification problem.
- 2. No guessing; if the model makes a mistake, the correct answer is provided immediately.

Sampled feedback

- 1. Generalisation of gathered feedbacks.
- 2. Supervised learning

Exhaustive feedback

- 1. Has access to all possible samples.
- 2. Tabular reinforcement learning.

Function approximation RL.

- high dimensions of state and action space.
- continuous state and action space.
- Through this, we can use generalization.

$$Q(s, \mathbf{a}; \theta_i)$$

Ideal objective.

$$L_{i}\left(heta_{i}
ight)=\mathbb{E}_{s,a}\left[\left(q_{st}(s,a)-oldsymbol{Q}\left(s,a; heta_{i}
ight)
ight)^{2}
ight]$$

Where Optimal action-value function is

$$q_*(s,a) = \max_{\pi} \mathbb{E}_{\pi} \left[G_t \mid S_t = s, A_t = a
ight], orall s \in S, orall a \in A(s)$$

On-policy and off-policy TD targets

on-policy

$$y_i^{ ext{Sarsa}} = R_{t+1} + \gamma Q\left(S_{t+1}, A_{t+1}; heta_i
ight)$$

off-policy

$$y_{i}^{Q ext{-learning}} = R_{t+1} + \gamma \max_{a} Q\left(S_{t+1}, a; heta_{i}
ight)$$

Q-learning target, an off-policy TD target

$$y_i^{Q ext{-learning}} = R_{t+1} + \gamma \max_a Q\left(S_{t+1}, a; heta_i
ight)$$

$$L_{i}\left(heta_{i}
ight)=\mathbb{E}_{s,a,r,s'}\left[\left(r+\gamma\max_{a'}Q\left(s',a'; heta_{i}
ight)-Q\left(s,a; heta_{i}
ight)
ight)^{2}
ight]$$

$$abla_{ heta_{i}}L_{i}\left(heta_{i}
ight)=\mathbb{E}_{s,a,r,s'}\left[\left(r+\gamma\max_{a'}Q\left(s',a'; heta_{i}
ight)-Q\left(s,a; heta_{i}
ight)
ight)
abla_{ heta_{i}}Q\left(s,a; heta_{i}
ight)
ight]$$

Batch gradient descent

Mini-batch gradient descent

Stochastic gradient descent

