Proyecto Alfabeto

Por:

- Emilio Aced Fuentes
- Roberto Alcover Couso
- Arturo Blázquez Pérez
- Nicolás Trejo Moya

Problema

- Clasificación de letras:
 - → ¿Es una l o una J?
- Se nos da una base de datos de letras manuscritas
- → ¿Qué modelos usar?
- → ¿Cómo entrenarlos?
- ¿A que damos prioridad al acierto o al tiempo?

Datos

Obtención:

Datos en crudo

Aplicación del .ipnb

Preprocesamiento

Imagen tras aplicar aplicar umbralización de la imagen mediante otsu y un filtro de mediana de tamaño 3

En un principio tenemos 1320 imágenes de tamaño 150x206 = 30.900 atributos.

Atributos

- Necesidad de reducir el espacio de atributos.
- → ¿Qué hacemos?

Reducimos el número de atributos recortando las zonas blancas dado que no aportan información relevante.

También, para mantener el mismo tamaño en todas las imágenes, interpolamos a un tamaño deseado.

Al reducir el número de atributos y eliminar aquellos que no nos aportan información esperamos mejorar la eficiencia de nuestros clasificadores.

Modelos

K-Nearest Neighbor Example

Pruebas

- Para el entrenamiento usamos el 50% de los datos
 - RandomForest
 - Crea los árboles de decisión que elegirán por voto a que clase pertenece un ejemplo en la clasificación.
 - SCV
 - Es un clasificador lineal, por ello calcula el vector de pesos de cada clase.
 - KNN
 - Simplemente almacena los datos para después calcular las distancias a un ejemplo.

Random Forest

- Parámetros:
 - Número de arboles:500
 - Profundidad: 10
- Atributos:
 - Imágenes de tamaño 9x4
- Taşa de acierto: 92.57%

Ejemplos de clasificación:

Matriz de confusión:

Clase	Precisión	Sensibilidad
A	0.93	0.99
В	0.86	0.75
С	0.97	0.99
D	0.91	0.92
E	0.95	0.92
F	0.88	0.98
G	0.96	0.97
Н	1	0.93
I	0.88	0.87
J	0.90	0.93

$$I = \begin{bmatrix} 69 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 48 & 0 & 5 & 2 & 3 & 0 & 0 & 4 & 0 \\ 0 & 0 & 73 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 59 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 54 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 61 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 66 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 & 0 & 0 & 0 & 67 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 58 & 6 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 & 56 \end{bmatrix}$$

SVC

- Parámetros:
 - Distribución: Gamma (0.001)
- Atributos:
 - Eliminación de columnas y filas poco significativas
- Tasa de acierto: 96.21%

Ejemplos de clasificación:

Matriz de confusión:

Clase	Precisión	Sensibilidad
A	0.96	0.96
В	0.95	0.89
С	0.99	1
D	0.94	0.97
E	0.97	0.97
F	0.93	1
G	1	0.97
Н	1	0.97
I	0.97	0.90
J	0.92	0.97

$$M = \begin{bmatrix} 69 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 57 & 0 & 3 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 74 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 57 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 62 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 66 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 70 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 61 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 57 & 0 & 0 \end{bmatrix}$$

KNN

- Parámetros:
 - Número de vecinos:10
- Atributos:
 - Eliminación de columnas y filas poco significativas
- Tasa de acierto: 94.39%

Ejemplos de clasificación:

Matriz de confusión:

Clase	Precisión	Sensibilidad
A	0.97	0.99
В	0.95	0.83
С	0.91	1.00
D	0.97	0.95
E	0.98	0.88
F	0.91	1.00
G	0.98	0.91
Н	1	0.99
I	0.85	0.91
J	0.93	0.97

Análisis exploratorio

- Tasa de aciertos
- Tiempo de ejecución
- Tiempo de clasificación

Tasa de aciertos

- SVC alcanza su máximo con imágenes de tamaño 100x50 y falla al aumentar el tamaño de las imágenes.
- Random Forest y KNN trabajan bien con tamaños de imágenes menores.

Tiempo de ejecución

- SVC es el más lento
- KNN tiene un rendimiento medio
- Random Forest es el más eficiente

Atributos vs Tiempo de clasificación

- En caso de tener tiempo ilimitado siempre escogeremos a SVC ante KNN dado que SVC tiene menor tiempo de clasificación y mayor tasa de acierto
- En limitaciones de tiempo siempre escogeremos Random Forest

Conclusiones

- SVC clasifica muy bien pero no es nada robusto respecto al número de atributos
- Random Forest es muy rápido pero tiene menor tasa de acierto que SVC y KNN
- KNN es el segundo clasificador en tasa de aciertos y tiempo