Devoir à la maison nº 17

Problème 1 —

Partie I – Intégrales de Wallis

On pose pour tout $n \ge 0$,

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$$

- 1. Calculer I_0 et I_1 .
- 2. En intégrant par parties, trouver une relation de récurrence entre I_n et I_{n+2} .
- 3. En déduire une expression de I_{2n} et I_{2n+1} pour tout $n\in\mathbb{N}$ à l'aide de factorielles.
- **4.** Vérifier que $(I_n)_{n\geqslant 0}$ est décroissante. En déduire que $\frac{n+1}{n+2}I_n\leqslant I_{n+1}\leqslant I_n$ pour tout $n\in\mathbb{N}$.
- 5. Démontrer que $I_{n+1} \underset{n \to +\infty}{\sim} I_n$.
- **6.** Établir que pour tout $n \in \mathbb{N}$, $(n+1)I_{n+1}I_n = \frac{\pi}{2}$.
- 7. En déduire que $I_n \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}$.

Partie II – Formule de Stirling

On pose pour tout $n\in\mathbb{N}^*,\, u_n=\frac{n^ne^{-n}\sqrt{n}}{n!}.$

- $\textbf{1. Pour tout } n \in \mathbb{N}^*, \text{ on pose } \nu_n = \ln \frac{\mathfrak{u}_{n+1}}{\mathfrak{u}_n}. \text{ Montrer que } \nu_n \underset{n \to +\infty}{=} \mathcal{O}\left(\frac{1}{n^2}\right).$
- 2. En déduire que (u_n) converge vers une certaine limite $l\in\mathbb{R}_+^*.$
- 3. Montrer que $l = \frac{1}{\sqrt{2\pi}}$ et en déduire un équivalent de n!.