DNA Structure:

- 1. Deoxyribonucleic acid (DNA)
- 2. Nucleotide subunits
- 3. Nitrogenous bases (adenine, guanine, cytosine, thymine)
- 4. Sugar-phosphate backbone
- 5. Complementary strands
- 6. Double helix structure

RNA Structure:

- 1. Comparison with DNA structure
- 2. Differences in RNA structure (e.g., ribose sugar, uracil instead of thymine)

Complementary Base Pairing:

- 1. Understanding base pairing rules (A-T, C-G in DNA; A-U, C-G in RNA)
- 2. Significance in replication and transcription

Nucleic acids

Are polymers made from smelled monomers called nucleotides

They consist of 5 elements \rightarrow C - H - O - N - P

They are made when nucleotides form covalent bonds between each other and create a polynucleotide.

Polynucleotide is the building block for DNA and RNA

Nucleotide

Is the building block of a nucleic acid

But there is another thing that exists called **nucleoside**, which is a nucleotide with no phosphate

A nucleotide consists of 3 main parts

pentose sugar (ribose)

it has 5 carbons that go from 1:5 clockwise

Ribose

Deoxyribose

Phosphate group

It's an inorganic compound that is negatively charged, it forms a covalent bond with carbon 5

Nitrogenous bases

Are also called nucleobases, they form the building blocks of DNA & RNA.

There is a total of 5 nitrogenous bases, they connect with carbon no.1 in the pentose sugar

purines	pyrimidines	
nitrogenous bases that	Nitrogenous bases that	
contain 2 rings	rings have 1 ring	
Adenine - Guanine	Thymine – Uracil -	
	Cytosine	

The difference between Uracil & Thymine Is that **Thymine has a methyl group**

A normal looking nucleotide

You can differentiate between nucleic acids based on two things

- The type of the **pentose** sugar
- The type of the **nitrogenous base**

Nucleic acids can be classified into 2 things

	DNA (deoxyribonucleic acid)	RNA (ribonucleic a cid)
Sugar type	Deoxyribose (C5H10O4)	Ribose (C5H10O5)
Nitrogenous base	Cytosine (C) – Guanine (G) –	Cytosine (C) – Guanine (G) –
	Adenine (A) – Thymine (T)	Adenine (A) – Uracil (U)
Number of nucleotide	Two strands of nucleotides (double-	Single strand of nucleotides
strands	helix)	
Where it exists	Inside the cell as it makes up the	It gets made by transcripting DNA
	chromosomes	and get sent into the cytoplasm
importance	It contains the genetic information	It's used to make protein which is
	of a creature, plays a role in cell	the thing that
	division, aka it contains the	 Shows the genetic
	blueprints of a living organism	features
		 Organize the biological
		tasks
		Basically, it's the doer of the
		blueprint

DNA

Often called deoxyribonucleic acid, it's two strands of nucleotides in a spiral shape often called **double-helix**

Double helix

It refers to the spiral structure of the DNA, the spiraling helps for efficient packaging of the genetic information while being stable

In each helix, the DNA strands repeat in the pattern ATCG in DNA or AUCG in RNA

Complementary strands

It means that nitrogenous bases do not bond with anything

To make the double helix in the DNA, specific nitrogenous bases must form **hydrogenous bonds** with other specific nitrogenous bases, they need to **complement** each other in our case

it is A = T or U = T

And $G \equiv C$

Sugar-phosphate backbone

It refers to the **pentose** and **phosphate** molecules connecting the DNA together

The oxygen In the phosphate connects both the hydrogen of carbon 5 and the hydrogen of carbon 3

The pentose connects to the nitrogenous base by the hydrogen of the **OH** connected to carbon 1

RNA

Often called ribonucleic acid, it's a single strand of nucleotides

It has uracil instead of Thymine

it goes in a spiral shape and but just a single **helix**, because it makes it more flexible and able to be fold into variety of complex shapes and perform a wide range of functions within the cell

TRANSCRIPTION

It's the process of copying a gene's DNA sequence into RNA strand

TRANSLATION

It's the process of turning the RNA strand into protein