Kubernetes and Bluemix

Agenda

- Getting started with Kubernetes
 - Why k8s and its future
 - Container Orchestration
- K8s architecture
- Deploying apps into cluster using Bluemix Container Service(BCS)
- Picking the Right Solution

Containers are Future Deployment Units.

How to deploy containers?

1. Manual Deployment: using ssh

2. Automated Deployment: Chef/Puppet/Ansible/Saltstack

3. Container Orchestration Tools: Docker Swarm/Apache Mesos/ Kubernetes/Nomad

Why K8s?

- Engineering
 - You can only know where you're going if you know where you've been
- Community
- Easier Container Deployment
- Infrastructure Cost

Cons

- Risk of running latest features in production
- Difficulty understanding to new users
- Needs more documentation

Container Orchestration

- Single controller/management unit
- Scheduling
- Fault tolerant
- Scale on demand
- Optimal resources
- Service discovery
- Update/Rollback without any downtime

What is Kubernetes?

"Kubernetes is an open-source system for automating deployment, scaling, and management of containerized applications."

From Borg to Kubernetes

"Google's Borg system is a cluster manager that runs hundreds of thousands of jobs, from many thousands of different applications, across a number of clusters each with up to tens of thousands of machines."

K8s Features

- Automated Scheduling
- Self healing
- Horizontal Scaling
- Service discovery and Load balancing
- Secrets and Configuration Management
- Automated Rollouts and Rollbacks
- Storage orchestration
- Batch Execution

Kubernetes Architecture

Kubernetes Master

Kubernetes Node

How Kubernetes Works?

HTTP Port : 8000	MYSQL Port : 3306	WORDPRESS Port : 8001
Replicas = 2	Replicas = 1	Replicas =2
Pod x 2	Pod x 1	Pod x 2

Docker host

Docker host

Docker host

We must treat the datacenter itself as one massive warehouse-scale computer.

Kubernetes Key Concept

Pod: Group of tightly coupled containers and volume

Replication Controller: A loop that drives the current state to desired state

Service: A set of running pods that work together

Volumes: Pod level storage and configuration

Kubernetes components

 One or more Master Components - API Server, Scheduler, Controller manager, etcd(can be configured externally)

One or more Worker Nodes - Container Runtime, kubelet, kubeproxy

Distributed Key-Value store - etcd(based on Raft Consensus Algorithm)

Bluemix Container Service(BCS)

Application Lifecycle with IBM BCS

Step 1 - Acquire

Step 2 - Build

Step 3 - Deliver

Step 4 - Run

Step 5 - Maintain

Characteristics	Lite clusters	Standard clusters
Available in Bluemix Public	\odot	\odot
Private networking within a cluster	\odot	\otimes
Public app access by a Nodeport service	\odot	\otimes
User access management	\odot	\otimes
Bluemix service access from the cluster and apps	\odot	\odot
Disk space on worker node for storage	\odot	\odot
Persistent NFS file-based storage with volumes		\odot
Public or private app access by a load balancer service		\odot
Public app access by an Ingress service		\odot
Portable public IP addresses		\otimes
Available in Bluemix Dedicated (Closed Beta)		\odot

Secure Clusters: Public Default

Setting up K8s Cluster on Bluemix

\$ bx plugin list

\$ bx login

\$ bx target -o org_name -s space_name

CREATING CLUSTER

\$ bx cs clusters

USING CLI

\$ bx cs cluster-config cluster_name

\$ bx plugin update container-service -r Bluemix

\$ kubectl proxy

Demo

 Deploying apps into cluster using Bluemix Container Service(BCS)

ColorApp Demo

Kubernetes Cluster

Understanding Services

Kubernetes Cluster

Picking the Right Solution

VS

Conclusion

- Kubernetes allows you to deploy and manage application running on multiple host using Docker.
- Container, Micro-service, Kubernetes are long way to go.
- Bluemix Container Service automate the underlying cluster creation and monitoring task.
- Hybrid cloud strategy is the key aspect kubernetes.

Q/A

Thank you

Ask any further questions.

