Discrete Structures for Computer Science

William Garrison

bill@cs.pitt.edu 6311 Sennott Square

Lecture #2: Propositional Logic

Today's Topic: Propositional Logic

- What is a proposition?
- Logical connectives and truth tables
- Translating between English and propositional logic

Logic is the basis of all mathematical and analytical reasoning

Given a collection of known truths, logic allows us to deduce new truths

Example

Base facts:

If it is raining, I will not go outside
If I am inside, Lisa will stay home
Lisa and I always play video games if we are together during the weekend
Today is a rainy Saturday

Conclusion: Lisa and I will play video games today

Logic allows us to advance mathematics through an iterative process of conjecture and proof

Propositional logic is a very simple logic

Definition: A proposition is a precise statement that is either true or false, but not both.

Examples:

- \bullet 2 + 2 = 4 (true)
- All dogs have 3 legs (false)
- x² < 0 (false)
- Washington, D.C. is the capital of the USA (true)

Not all statements are propositions

- Charlie is handsome
 - "Handsome" is a subjective term.
- $x^3 < 0$
 - True if x < 0, false otherwise.
- Springfield is the capital
 - True in Illinois, false in Massachusetts.

ELITATION OF THE PROPERTY OF T

We can use logical connectives to build complex propositions

We will discuss the following logical connectives:

- ¬ (not)
- (conjunction / and)
- (disjunction / or)
- ⊕ (exclusive disjunction / xor)
- \bullet \rightarrow (implication)
- ↔ (biconditional)

Negation

The negation of a proposition is true iff the proposition is false

The truth table for negation

(I'll sometimes use T and \bot)

ENTERSITE OF THE PROPERTY OF T

Negation Examples

Negate the following propositions

- Today is Monday
- 21 * 2 = 42

What is the truth value of the following propositions

- ¬(9 is a prime number)
- ¬(Pittsburgh is in Pennsylvania)

Conjunction

The conjunction of two propositions is true iff both propositions are true

р	q	p∧q
Т	Т	
Т	F	
F	Т	
F	F	

The truth table for conjunction

 2^2 = 4 rows since we know both p and q!

Disjunction

The disjunction of two propositions is true if at least one proposition is true

р	q	p v q
Т	Т	
Т	F	
F	Т	
F	F	

The truth table for disjunction

PART OF THE PART O

Conjunction and disjunction examples

This symbol means "is defined as" or "is equivalent to" (sometimes I'll use ≜)

Let:

- $p \equiv x^2 \ge 0$
- \bullet q = A lion weighs less than a mouse
- r = 10 < 7
- \bullet s = Pittsburgh is located in Pennsylvania

What are the truth values of these expressions:

- p ∧ q
- p ∧ s
- p ∨ q
- q v r

THI CAN THE PROPERTY OF THE PR

In-class Exercises

Problem 1: Let $p \equiv 2+2=5$, $q \equiv$ eagles can fly, $r \equiv 1=1$. Determine the value for each of the following:

- p ∧ q
- ¬p ∨ q
- $p \vee (q \wedge r)$
- $(p \lor q) \land (\neg r \lor \neg p)$

Exclusive or (XOR)

The exclusive or of two propositions is true if exactly one proposition is true

р	q	p ⊕ q
Т	Т	
Т	F	
F	Т	
F	F	

The truth table for exclusive or

Note: Exclusive or is typically used to natural language to identify *choices*. For example "You may have a soup or salad with your entree."

SET THE CO.

Implication

The implication $p \rightarrow q$ is false if p is true and q is false, and true otherwise

Terminology

- p is called the hypothesis
- q is called the conclusion

р	q	$p \rightarrow q$
Т	Т	
Т	F	
F	Т	
F	F	

The truth table for implication

Implication (cont.)

The implication $p \rightarrow q$ can be read in a number of (equivalent) ways:

- If p then q
- p only if q
- p is sufficient for q
- q whenever p

Implication examples

Let:

- p = Jane gets a 100% on her final
- q = Jane gets an A

What are the truth values of these implications:

- $p \rightarrow q$
- \bullet q \rightarrow p

Other conditional statements

Given an implication $p \rightarrow q$:

- \bullet q \rightarrow p is its converse
- $\neg q \rightarrow \neg p$ is its contrapositive
- $\neg p \rightarrow \neg q$ is its inverse

Note: An implication and its contrapositive *always* have the same truth value

ELIPE REITOR

Biconditional

The biconditional $p \leftrightarrow q$ is true if and only if p and q assume the same truth value

р	q	$p \leftrightarrow q$
Т	Т	
Т	F	
F	Т	_
F	F	

The truth table for the biconditional

Note: The biconditional statement p ↔ q is often read as "p if and only if q" or "p is a necessary and sufficient condition for q."

Truth tables can also be made for more complex expressions

Example: What is the truth table for $(p \land q) \rightarrow \neg r$?

Like mathematical operators, logical operators are assigned precedence levels

- 1. Negation
 - $\neg q \lor r$ means $(\neg q) \lor r$, not $\neg (q \lor r)$
- 2. Conjunction
- 3. Disjunction
 - $q \wedge r \vee s$ means $(q \wedge r) \vee s$, not $q \wedge (r \vee s)$
- 4. Implication
 - $q \wedge r \rightarrow s$ means $(q \wedge r) \rightarrow s$, not $q \wedge (r \rightarrow s)$
- 5. Biconditional

In general, we will try to use parenthesis to disambiguate these types of expressions.

THE THE TABLE OF T

In-class Exercises

Problem 2: Show that an implication $p \rightarrow q$ and its contrapositive $\neg q \rightarrow \neg p$ always have the same value

Hint: Construct two truth tables

Problem 3: Construct the truth table for the compound proposition $p \land (\neg q \lor r) \rightarrow s$

English sentences can often be translated into propositional sentences

But why would we do that?

Philosophy and epistemology

Verifying complex system specifications

Example #1

Example: You can see an R-rated movie only if you are over 17 or you are accompanied by your legal guardian.

Find logical connectives

Let:

Translate fragments

Create logical expression

Example #2

Example: You can have free coffee if you are senior citizen and it is a Tuesday

Let:

Example #3

Example: If you are under 17 and are not accompanied by your legal guardian, then you cannot see the R-rated movie.

Let:

Note: The above translation is the contrapositive of the translation from example 1!

Logic also helps us understand bitwise operations

- Computers represent data as sequences of bits
 - e.g., 0101 1101 1010 1111
- Bitwise logical operations are often used to manipulate these data
- If we treat 1 as true and 0 as false, our logic truth tables tell us how to carry out bitwise logical operations

Bitwise logic examples

1010 1110 ^ 1110 1010 1010 11101110 1010

⊕ 1010 1110 1110 1010

In-class Exercises

Problem 4: Translate the following sentences

- If it is raining and today is Saturday then I will either play video games or watch a movie
- You get a free salad only if you order off of the extended menu and it is a Wednesday

Problem 5: Solve the following bitwise problems

(h) 1011 1000 1010

^ 1011 1000 ^ 1010 0110

Final Thoughts

Propositional logic is a simple logic that allows us to reason about a variety of concepts

In recitation:

- More examples and practice problems
- Be sure to attend!

Next:

- Logic puzzles and logical equivalences
- Please read sections 1.2 and 1.3
 - ➤ In general: do the assigned reading!