More maths!

The dot product and projections: another way to see it

Dot product: projections

$$\vec{C} = \vec{A} \cdot \hat{B}$$

Where \widehat{B} is the unit vector of $\overline{\mathsf{B}}$

Lane filter

Autonomous mobile robot

See – think – act

THIS IS THE MOST IMPORTANT SLIDE OF THE WEEK!

Following lanes – Overview

Localization

I see a pillar

There are 3 places I can see a pillar from

I moved forward

This is where I can be now

I see a pillar again

There are 3 places I can see a pillar from

Therefore I must be here now

Lane filter

Predict
With movement

Update
With measurements

With measurements and database

Localization

Position of white, red and yellow lines with respect to Moose

Distance from lane center: d Orientation: φ

What do we want to estimate?

Distance *d*from center of lane

d > 0: too much on the left

Orientation φ

from straight direction

 $\varphi > 0$: looking too much to the left

Can we be sure?

Do you see anything interesting on this picture?

Representing belief *p*(*d*, φ)

Representing belief $p(d, \varphi)$

This is a probability map. The sum of all elements is 1.

Representing belief $p(d, \varphi)$

We can estimate the current position and orientation by taking the coordinates of the maximum in the map!

Lane filter

Predict
With applied velocities

Update
With position of lanes

 $\phi_{\textit{old}}$ the previous orientation estimation

 d_{old} the previous position estimation

(t) the angular velocity

V the linear velocity

 δt the time since previous estimation

How would you get φ_new and d_new?

$$\phi_{new} = ?$$
 $d_{new} = ?$

Your turn! Find a way to estimate φ new and d new.

 φ_{old} the previous orientation estimation

 d_{old} the previous position estimation

 ω the angular velocity

the linear velocity

 δt the time since previous estimation

$$\varphi_{new} = ?$$
 $d_{new} = ?$

$$d_{new} = 7$$

Angular velocity ω is the derivative of orientation ϕ !

$$\omega = \frac{\varphi(t + \delta t) - \varphi(t)}{\delta t} = \frac{\varphi_{new} - \varphi_{old}}{\delta t}$$

Therefore:

$$\varphi_{new} = \varphi_{old} + \omega \cdot \delta t$$

Linear velocity v is the derivative of position... in 2 dimensions!

Linear velocity v is the derivative of position... in 2 dimensions!

We need to project *v* in the *d* direction.

$$v_d = v \cdot \sin(\varphi)$$

$$d_{new} = d_{old} + v_d \cdot \delta t$$

= $d_{old} + v \cdot \sin(\varphi_{old}) \cdot \delta t$

Dynamic equations:

$$\varphi_{new} = \varphi_{old} + \omega \cdot \delta t$$

$$d_{new} = d_{old} + v \cdot \sin(\varphi_{old}) \cdot \delta t$$

Propagate prediction on belief

$$\varphi_{new} = \varphi_{old} + \omega \cdot \delta t$$

$$d_{new} = d_{old} + v \cdot \sin(\varphi_{old}) \cdot \delta t$$

Move of each point with a $\omega \cdot \delta t$ in the φ direction $v \cdot \sin(\varphi) \cdot \delta t$ in the d direction

V = 5 m/s $\omega = -5^{\circ}/\text{s}$ dt = 1 s Give me the d and phi coordinates of each possible location after the update

Lane filter

Predict
With applied velocities

Update
With position of lanes

Updating

Idea: combine

- Our current idea of where we are: the *prior* $p(d, \varphi)$
- The probability of observations m: the *likelihood* $p(m \mid d, \varphi)$

To get the **posterior** $p(d, \varphi \mid m)$

This is Bayes law!

We don't need this (normalization constant)

We don't need this because we can normalize:

$$\sum_{d} \sum_{\varphi} p(d, \varphi \mid m) = 1$$

How do we compute the likelihood?

$$p(d, \varphi \mid m) = \frac{p(m \mid d, \varphi) \cdot p(d, \varphi)}{p(m)}$$

Computing the likelihood

 $p(m | d, \varphi)$ is computed by voting.

- 1) For each line in m, we compute the corresponding d and φ
- 2) We add +1 in the corresponding square of a new belief map
- 3) We normalize the new belief map when we have seen all the lines.

What do we want to estimate?

Distance *d*from center of lane

d > 0: too much on the left

Orientation φ

from straight direction

 $\varphi > 0$: looking too much to the left

Computing the likelihood

- 1) For each line in m, we compute the corresponding d and φ
- 2) We add +1 in the corresponding square of a new belief map
- 3) We normalize the new belief map when we have seen all the maps.

Computing d and φ for each line

1) For each line in m, we compute the corresponding d, φ and L

If the line is white, it has to be on the right.

If the line is yellow, it has to be on the left.

If the line is outside the color band, we have to reduce the computed d by the width of the lane (white or yellow).

How to do this?

Draw, think, figure out the maths and implement it!

In function def generateVote(self,segment), compute d_i, phi_i and l_i. You have access to:

- segment.points[0].x, segment.points[0].y, segment.points[1].x, segment.points[1].y are the x and y coordinates of points 0 and 1 of the segment.
- segment.color = segment.WHITE or segment.YELLOW
- self.lanewidth is the width of the lane
- self.linewidth_yellow and self.linewidth_white are the witdths of yellow and white lines

In function def generateVote(self,segment), compute d_i, phi_i and l_i. You have access to:

- segment.points[0].x, segment.points[0].y, segment.points[1].x, segment.points[1].y are the x and y coordinates of points 0 and 1 of the segment.
- segment.color = segment.WHITE or segment.YELLOW
- self.lanewidth is the width of the lane
- self.linewidth_yellow and self.linewidth_white are the witdths of yellow and white lines

Computing the likelihood

 $p(m | d, \varphi)$ is computed by voting.

- 1) For each line in m, we compute the corresponding d and φ
- 2) We add +1 in the corresponding square of a new belief map
- 3) We normalize the new belief map when we have seen all the maps.

1) Pink: 0 White: 1 Light gray: 2 Dark gray: 3 Black: 4 What values do we have in the belief map after normalizing?

Now we have this And this (which is the previous belief)

$$p(d, \varphi \mid m) = \frac{p(m \mid d, \varphi) \cdot p(d, \varphi)}{p(m)}$$

How do we get the new d, φ map?

What does the posterior belief map look like?