

A space $\tilde{\chi}$ 76 **n-connected at infinity** if $\forall K \subset \tilde{\chi}$ compact, $\exists C \subset K$ compact such that every map $S \longrightarrow \tilde{\chi} - K$ is nullhomotopic in $\tilde{\chi} - C$. The figure illustrates the general fact that \mathbb{R}^n 75 (n-2)-connected at infinity.

If $G = \Pi_1(X)$, where X is, say, a closed manifold with universal cover $\tilde{X} = \mathbb{R}^n$, then we say that G is (n-2)-connected at infinity, and in our case the (co-)homology of G satisfies Poincaré duality.

As it happens, Ghaving cohomological dimension n and being (n-2)-connected at infinity implies that G satisfies a generalization of Poincaré duality due to Bieri and Eckmann.

- Rylee Lyman Rutgers University-Newark