

(Lecture 15 – Unscented Kalman Filtering)

Dr. John L. Crassidis

University at Buffalo – State University of New York
Department of Mechanical & Aerospace Engineering
Amherst, NY 14260-4400
johnc@buffalo.edu

http://www.buffalo.edu/~johnc

母

Estimate Derivation (i)

- Start with the following problem formulation
 - Given a random variable x and a set of measurements, denoted by $\tilde{\mathbf{Y}}_k = \{\tilde{\mathbf{y}}_0, \, \tilde{\mathbf{y}}_1, \, \dots, \, \tilde{\mathbf{y}}_k\}$, evaluate an estimate of x, i.e.,

$$\hat{\mathbf{x}}_k = \mathbf{f}[\tilde{\mathbf{y}}_i, \quad 0 = 1, 2 \dots, k]$$
 (1)

Say we wish to minimize the conditional mean-square error

$$J = E\left\{ (\hat{\mathbf{x}}_k - \mathbf{x}_k)^T (\hat{\mathbf{x}}_k - \mathbf{x}_k) | \tilde{\mathbf{Y}}_k \right\}$$
$$= E\left\{ \hat{\mathbf{x}}_k^T \hat{\mathbf{x}}_k - \hat{\mathbf{x}}_k^T \mathbf{x}_k - \mathbf{x}_k^T \hat{\mathbf{x}}_k + \mathbf{x}_k^T \mathbf{x}_k | \tilde{\mathbf{Y}}_k \right\}$$

- Need to determine $E\left\{\hat{\mathbf{x}}_k|\tilde{\mathbf{Y}}_k\right\}$ and $E\left\{\hat{\mathbf{x}}_k^T\hat{\mathbf{x}}_k|\tilde{\mathbf{Y}}_k\right\}$
- Because the estimate is a function of the measurements, from Eq. (1) we have

$$E\left\{\hat{\mathbf{x}}_{k}|\tilde{\mathbf{Y}}_{k}\right\} = \hat{\mathbf{x}}_{k}, \text{ and } E\left\{\hat{\mathbf{x}}_{k}^{T}\hat{\mathbf{x}}_{k}|\tilde{\mathbf{Y}}_{k}\right\} = \hat{\mathbf{x}}_{k}^{T}\hat{\mathbf{x}}_{k}$$

• Then J can be explicitly written out as

$$J = \hat{\mathbf{x}}_k^T \hat{\mathbf{x}}_k - \hat{\mathbf{x}}_k^T E\left\{\mathbf{x}_k | \tilde{\mathbf{Y}}_k\right\} - E\left\{\mathbf{x}_k^T | \tilde{\mathbf{Y}}_k\right\} \hat{\mathbf{x}}_k + E\left\{\mathbf{x}_k^T \mathbf{x}_k | \tilde{\mathbf{Y}}_k\right\}$$

Estimate Derivation (ii)

• Add and subtract $E\{\mathbf{x}_k^T|\tilde{\mathbf{Y}}_k\}E\{\mathbf{x}_k|\tilde{\mathbf{Y}}_k\}$ to give

$$J = \left[\hat{\mathbf{x}}_k - E\left\{\mathbf{x}_k | \tilde{\mathbf{Y}}_k\right\}\right]^T \left[\hat{\mathbf{x}}_k - E\left\{\mathbf{x}_k | \tilde{\mathbf{Y}}_k\right\}\right] - E\left\{\mathbf{x}_k^T | \tilde{\mathbf{Y}}_k\right\} E\left\{\mathbf{x}_k | \tilde{\mathbf{Y}}_k\right\} + E\left\{\mathbf{x}_k^T \mathbf{x}_k | \tilde{\mathbf{Y}}_k\right\} - \lim_{\mathbf{x} \in \mathcal{X}_k} |\tilde{\mathbf{x}}_k| \mathbf{x}_k | \mathbf{x$$

- Note that the last two terms do not depend on the estimate
- This is clearly minimized when

$$\hat{\mathbf{x}}_k = E\left\{\mathbf{x}_k | \tilde{\mathbf{Y}}_k\right\}$$

- Provides a rigorous approach to understand what the estimate is from a conditional expectation point of view
 - Note that the estimate at the $k^{\rm th}$ time point is conditioned on all the measurements up to that point
 - This is where the "memory" comes into the estimate
 - Obviously seen in the sequential least squares estimator as an example

MAP KF Derivation (i)

Begin with the following density functions

$$p(\hat{\mathbf{x}}_k^-) = \frac{1}{\left[\det(2\pi P_k^-)\right]^{1/2}} \exp\left[-\frac{1}{2}(\hat{\mathbf{x}}_k^- - \mathbf{x}_k)^T (P_k^-)^{-1}(\hat{\mathbf{x}}_k^- - \mathbf{x}_k)\right]$$

$$p(\tilde{\mathbf{y}}_k|\mathbf{x}_k) = \frac{1}{\left[\det(2\pi R_k)\right]^{1/2}} \exp\left[-\frac{1}{2}(\tilde{\mathbf{y}}_k - H_k\mathbf{x}_k)^T R_k^{-1}(\tilde{\mathbf{y}}_k - H_k\mathbf{x}_k)\right]$$
(1)

• Use Bayes' rule on $p(\mathbf{x}_k|\tilde{\mathbf{Y}}_k)$, with $\tilde{\mathbf{Y}}_k = \{\tilde{\mathbf{y}}_0,\,\tilde{\mathbf{y}}_1,\,\ldots,\,\tilde{\mathbf{y}}_k\}$

$$p(\mathbf{x}_{k}|\tilde{\mathbf{Y}}_{k}) = \frac{p(\mathbf{Y}_{k}|\mathbf{x}_{k})p(\mathbf{x}_{k})}{p(\tilde{\mathbf{Y}}_{k})}$$

$$= \frac{p(\tilde{\mathbf{y}}_{k}, \tilde{\mathbf{Y}}_{k-1}|\mathbf{x}_{k})p(\mathbf{x}_{k})}{p(\tilde{\mathbf{y}}_{k}, \tilde{\mathbf{Y}}_{k-1})}$$
(2)

Consider the following conditional relationship

$$p(\mathbf{a}|\mathbf{b}) = \frac{p(\mathbf{a}, \mathbf{b})}{p(\mathbf{b})}$$
 or $p(\mathbf{a}, \mathbf{b}) = p(\mathbf{a}|\mathbf{b})p(\mathbf{b})$ (3)

MAP KF Derivation (ii)

• Define $\mathbf{a} \equiv \tilde{\mathbf{y}}_k$, $\mathbf{b} \equiv \tilde{\mathbf{Y}}_{k-1}$, then the denominator in Eq. (2) becomes

$$p(\tilde{\mathbf{y}}_k, \tilde{\mathbf{Y}}_{k-1}) = p(\tilde{\mathbf{y}}_k | \tilde{\mathbf{Y}}_{k-1}) p(\tilde{\mathbf{Y}}_{k-1})$$
(4)

Consider the following relationship

$$p(\mathbf{a}, \mathbf{b} \mid \mathbf{c}) = \frac{p(\mathbf{a}, \mathbf{b}, \mathbf{c})}{p(\mathbf{c})}$$
 (5)

Rewrite Eq. (3) using different notation (replacing b with d)

$$p(\mathbf{a}, \mathbf{d}) = p(\mathbf{a}|\mathbf{d})p(\mathbf{d}) \tag{6}$$

• Using Eq. (6) with $\mathbf{d} = [\mathbf{b}^T \ \mathbf{c}^T]^T$, then Eq. (5) becomes

$$p(\mathbf{a}, \mathbf{b} \mid \mathbf{c}) = \frac{p(\mathbf{a}, \mathbf{b}, \mathbf{c})}{p(\mathbf{c})} = \frac{p(\mathbf{a} \mid \mathbf{b}, \mathbf{c})p(\mathbf{b}, \mathbf{c})}{p(\mathbf{c})}$$

• Finally use Eq. (3) on $p(\mathbf{b}, \mathbf{c})$ to give

$$p(\mathbf{a}, \mathbf{b} \mid \mathbf{c}) = \frac{p(\mathbf{a} \mid \mathbf{b}, \mathbf{c})p(\mathbf{b}, \mathbf{c})}{p(\mathbf{c})} = \frac{p(\mathbf{a} \mid \mathbf{b}, \mathbf{c})p(\mathbf{b} \mid \mathbf{c})p(\mathbf{c})}{p(\mathbf{c})}$$
$$= p(\mathbf{a} \mid \mathbf{b}, \mathbf{c})p(\mathbf{b} \mid \mathbf{c})$$

图

MAP KF Derivation (iii)

• Define $\mathbf{a} \equiv \tilde{\mathbf{y}}_k, \ \mathbf{b} \equiv \tilde{\mathbf{Y}}_{k-1}, \ \mathbf{c} \equiv \mathbf{x}_k$, then

$$p(\tilde{\mathbf{y}}_k, \tilde{\mathbf{Y}}_{k-1} | \mathbf{x}_k) = p(\tilde{\mathbf{y}}_k | \tilde{\mathbf{Y}}_{k-1}, \mathbf{x}_k) p(\tilde{\mathbf{Y}}_{k-1} | \mathbf{x}_k)$$
 (7)

• From Eqs. (4) and (7), Eq. (2) becomes

$$p(\mathbf{x}_k|\tilde{\mathbf{Y}}_k) = \frac{p(\tilde{\mathbf{y}}_k|\tilde{\mathbf{Y}}_{k-1}, \mathbf{x}_k)p(\tilde{\mathbf{Y}}_{k-1}|\mathbf{x}_k)p(\mathbf{x}_k)}{p(\tilde{\mathbf{y}}_k|\tilde{\mathbf{Y}}_{k-1})p(\tilde{\mathbf{Y}}_{k-1})}$$

• Use Bayes' rule on $p(\tilde{\mathbf{Y}}_{k-1}|\mathbf{x}_k)$ to give

$$p(\mathbf{x}_k|\tilde{\mathbf{Y}}_k) = \frac{p(\tilde{\mathbf{y}}_k|\tilde{\mathbf{Y}}_{k-1}, \mathbf{x}_k)p(\mathbf{x}_k|\tilde{\mathbf{Y}}_{k-1})p(\tilde{\mathbf{Y}}_{k-1})p(\mathbf{x}_k)}{p(\tilde{\mathbf{y}}_k|\tilde{\mathbf{Y}}_{k-1})p(\tilde{\mathbf{Y}}_{k-1})p(\mathbf{x}_k)}$$

- Using the fact that the measurement sequence is conditionally independent given the current state gives $p(\tilde{\mathbf{y}}_k|\tilde{\mathbf{Y}}_{k-1},\mathbf{x}_k)=p(\tilde{\mathbf{y}}_k|\mathbf{x}_k)$
- Then

$$p(\mathbf{x}_k|\tilde{\mathbf{Y}}_k) = \frac{p(\tilde{\mathbf{y}}_k|\mathbf{x}_k)p(\mathbf{x}_k|\mathbf{Y}_{k-1})}{p(\tilde{\mathbf{y}}_k|\tilde{\mathbf{Y}}_{k-1})}$$
(8)

MAP KF Derivation (iv)

• By definition $p(\mathbf{x}_k|\mathbf{Y}_{k-1}) \equiv p(\hat{\mathbf{x}}_k^-)$ so Eq. (8) becomes

$$p(\mathbf{x}_k|\tilde{\mathbf{Y}}_k) = \frac{p(\tilde{\mathbf{y}}_k|\mathbf{x}_k)p(\hat{\mathbf{x}}_k^-)}{p(\tilde{\mathbf{y}}_k|\tilde{\mathbf{Y}}_{k-1})}$$
(9)

- The MAP estimate for the update is given by maximizing Eq. (9)
- Note that the denominator of Eq. (9) does not depend on x_{i}
- Taking the natural log of Eq. (9) and using Eq. (1), leads to the following necessary condition

$$\frac{\partial}{\partial \mathbf{x}_k} \left[(\tilde{\mathbf{y}}_k - H_k \mathbf{x}_k)^T R_k^{-1} (\tilde{\mathbf{y}}_k - H_k \mathbf{x}_k) + (\hat{\mathbf{x}}_k^- - \mathbf{x}_k)^T (P_k^-)^{-1} (\hat{\mathbf{x}}_k^- - \mathbf{x}_k) \right] \Big|_{\hat{\mathbf{x}}_k^+} = \mathbf{0}$$

This yields

$$-H_k^T R_k^{-1} (\tilde{\mathbf{y}}_k - H_k \hat{\mathbf{x}}_k^+) + (P_k^-)^{-1} (\hat{\mathbf{x}}_k^+ - \hat{\mathbf{x}}_k^-) = \mathbf{0}$$

• Rearranging, and adding and subtracting $H_k \hat{\mathbf{x}}_k^-$ yields $(P_k^-)^{-1}(\hat{\mathbf{x}}_k^+ - \hat{\mathbf{x}}_k^-) = H_k^T R_k^{-1}(\tilde{\mathbf{y}}_k - H_k \hat{\mathbf{x}}_k^+ + H_k \hat{\mathbf{x}}_k^- - H_k \hat{\mathbf{x}}_k^-)$

由

MAP KF Derivation (v)

Combining terms gives

$$(P_k^-)^{-1}(\hat{\mathbf{x}}_k^+ - \hat{\mathbf{x}}_k^-) = H_k^T R_k^{-1} [\tilde{\mathbf{y}}_k - H_k(\hat{\mathbf{x}}_k^+ - \hat{\mathbf{x}}_k^-) - H_k \hat{\mathbf{x}}_k^-]$$

or

$$[(P_k^-)^{-1} + H_k^T R_k^{-1} H_k] (\hat{\mathbf{x}}_k^+ - \hat{\mathbf{x}}_k^-) = H_k^T R_k^{-1} (\tilde{\mathbf{y}}_k - H_k \hat{\mathbf{x}}_k^-)$$

Solving for the update gives

$$\hat{\mathbf{x}}_{k}^{+} = \hat{\mathbf{x}}_{k}^{-} + K_{k} [\tilde{\mathbf{y}}_{k} - H_{k} \hat{\mathbf{x}}_{k}^{-}]$$

$$K_{k} = P_{k}^{+} H_{k}^{T} R_{k}^{-1}$$

$$P_{k}^{+} \equiv \left[(P_{k}^{-})^{-1} + H_{k}^{T} R_{k}^{-1} H_{k} \right]^{-1}$$

Using the matrix inversion lemma on the updated covariance gives

$$P_k^+ = P_k^- - P_k^- H_k^T [H_k P_k^- H_k^T + R_k]^{-1} H_k P_k^-$$

- This shows how the Kalman update equation can be derived from a MAP perspective
- Propagation equations remain the same as before

Joint-Conditional Gaussian (i)

- Consider two random variables ${\bf x}$ and ${\bf y}$, with means ${m \mu}_x$ and ${m \mu}_y$ that are jointly Gaussian
 - Define the stack vector $\mathbf{z} = [\mathbf{x}^T \ \mathbf{y}^T]^T$ with covariance

$$R^{e_z e_z} \equiv \begin{bmatrix} R^{e_x e_x} & R^{e_x e_y} \\ R^{e_y e_x} & R^{e_y e_y} \end{bmatrix} = \begin{bmatrix} E \left\{ \mathbf{e}_x \mathbf{e}_x^T \right\} & E \left\{ \mathbf{e}_x \mathbf{e}_y^T \right\} \\ E \left\{ \mathbf{e}_y \mathbf{e}_x^T \right\} & E \left\{ \mathbf{e}_y \mathbf{e}_y^T \right\} \end{bmatrix}$$

where $\mathbf{e}_x \equiv \mathbf{x} - \boldsymbol{\mu}_x$ and $\mathbf{e}_y \equiv \mathbf{y} - \boldsymbol{\mu}_y$. Also define $\mathbf{e}_z \equiv \mathbf{z} - \boldsymbol{\mu}_z$, where $\boldsymbol{\mu}_z \equiv [\boldsymbol{\mu}_x^T \ \boldsymbol{\mu}_y^T]^T$

The block inverse of the covariance is defined by

$$\begin{bmatrix} R^{e_x e_x} & R^{e_x e_y} \\ R^{e_y e_x} & R^{e_y e_y} \end{bmatrix}^{-1} \equiv \begin{bmatrix} \mathcal{R}^{e_x e_x} & \mathcal{R}^{e_x e_y} \\ \mathcal{R}^{e_y e_x} & \mathcal{R}^{e_y e_y} \end{bmatrix} \tag{1}$$

The identities for the matrix partition inverse are

$$(\mathcal{R}^{e_{x}e_{x}})^{-1} = R^{e_{x}e_{x}} - R^{e_{x}e_{y}}(R^{e_{y}e_{y}})^{-1}R^{e_{y}e_{x}}$$

$$(R^{e_{y}e_{y}})^{-1} = \mathcal{R}^{e_{y}e_{y}} - \mathcal{R}^{e_{y}e_{x}}(\mathcal{R}^{e_{x}e_{x}})^{-1}\mathcal{R}^{e_{x}e_{y}}$$

$$(2a)$$

$$(\mathcal{R}^{e_{y}e_{y}})^{-1} = \mathcal{R}^{e_{y}e_{y}} - \mathcal{R}^{e_{y}e_{x}}(\mathcal{R}^{e_{x}e_{x}})^{-1}\mathcal{R}^{e_{x}e_{y}}$$

$$(2b) \circ (2c)_{9}$$

Joint-Conditional Gaussian (ii)

Recall that the conditional probability is given by

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{y})}$$

where $p(\mathbf{x}, \mathbf{y})$ is the joint probability

- But $p(\mathbf{x}, \mathbf{y})$ is the just $p(\mathbf{z})$
- Then the conditional probability of x given y is

$$p(\mathbf{x}|\mathbf{y}) = \frac{\left[\det(2\pi R^{e_z e_z})\right]^{-1/2} \exp\left[-\frac{1}{2}\mathbf{e}_z^T (R^{e_z e_z})^{-1}\mathbf{e}_z\right]}{\left[\det(2\pi R^{e_y e_y})\right]^{-1/2} \exp\left[-\frac{1}{2}\mathbf{e}_y^T (R^{e_y e_y})^{-1}\mathbf{e}_y\right]}$$

$$= \frac{\left[\det(2\pi R^{e_z e_z})\right]^{-1/2}}{\left[\det(2\pi R^{e_z e_z})\right]^{-1/2}} \exp\left[-\frac{1}{2}\mathbf{e}_z^T (R^{e_z e_z})^{-1}\mathbf{e}_z + \frac{1}{2}\mathbf{e}_y^T (R^{e_y e_y})^{-1}\mathbf{e}_y\right]$$

Define the exponent by

$$q = -\frac{1}{2}\mathbf{e}_z^T (R^{e_z e_z})^{-1}\mathbf{e}_z + \frac{1}{2}\mathbf{e}_y^T (R^{e_y e_y})^{-1}\mathbf{e}_y$$

Joint-Conditional Gaussian (iii)

• Substituting Eq. (1) and using the definition of e_z gives

$$q = -\frac{1}{2} \begin{bmatrix} \mathbf{e}_x^T & \mathbf{e}_y^T \end{bmatrix} \begin{bmatrix} \mathcal{R}^{e_x e_x} & \mathcal{R}^{e_x e_y} \\ \mathcal{R}^{e_y e_x} & \mathcal{R}^{e_y e_y} \end{bmatrix} \begin{bmatrix} \mathbf{e}_x \\ \mathbf{e}_y \end{bmatrix} + \frac{1}{2} \mathbf{e}_y^T (R^{e_y e_y})^{-1} \mathbf{e}_y$$

$$= -\frac{1}{2} (\mathbf{e}_x^T \mathcal{R}^{e_x e_x} \mathbf{e}_x + \mathbf{e}_x^T \mathcal{R}^{e_x e_y} \mathbf{e}_y + \mathbf{e}_y^T \mathcal{R}^{e_y e_x} \mathbf{e}_x + \mathbf{e}_y^T \mathcal{R}^{e_y e_y} \mathbf{e}_y) + \frac{1}{2} \mathbf{e}_y^T (R^{e_y e_y})^{-1} \mathbf{e}_y$$

Let's prove that

$$a \equiv \mathbf{e}_{x}^{T} \mathcal{R}^{e_{x}e_{x}} \mathbf{e}_{x} + \mathbf{e}_{x}^{T} \mathcal{R}^{e_{x}e_{y}} \mathbf{e}_{y} + \mathbf{e}_{y}^{T} \mathcal{R}^{e_{y}e_{x}} \mathbf{e}_{x} + \mathbf{e}_{y}^{T} \mathcal{R}^{e_{y}e_{y}} \mathbf{e}_{y}$$

$$= (\mathbf{e}_{x} + (\mathcal{R}^{e_{x}e_{x}})^{-1} \mathcal{R}^{e_{x}e_{y}} \mathbf{e}_{y})^{T} \mathcal{R}^{e_{x}e_{x}} (\mathbf{e}_{x} + (\mathcal{R}^{e_{x}e_{x}})^{-1} \mathcal{R}^{e_{x}e_{y}} \mathbf{e}_{y})$$

$$+ \mathbf{e}_{y}^{T} (\mathcal{R}^{e_{y}e_{y}} - \mathcal{R}^{e_{y}e_{x}} (\mathcal{R}^{e_{x}e_{x}})^{-1} \mathcal{R}^{e_{x}e_{y}}) \mathbf{e}_{y}$$

• Multiplying all terms and using $(R^{e_x e_y})^T = R^{e_y e_x}$ gives

$$a = \mathbf{e}_{x}^{T} \mathcal{R}^{e_{x}e_{x}} \mathbf{e}_{x} + \mathbf{e}_{x}^{T} \mathcal{R}^{e_{x}e_{y}} \mathbf{e}_{y} + \mathbf{e}_{y}^{T} \mathcal{R}^{e_{y}e_{x}} \mathbf{e}_{x}$$

$$+ \mathbf{e}_{y}^{T} (\mathcal{R}^{e_{y}e_{x}} (\mathcal{R}^{e_{x}e_{x}})^{-1} \mathcal{R}^{e_{x}e_{y}}) \mathbf{e}_{y} + \mathbf{e}_{y}^{T} \mathcal{R}^{e_{y}e_{y}} \mathbf{e}_{y} - \mathbf{e}_{y}^{T} (\mathcal{R}^{e_{y}e_{x}} (\mathcal{R}^{e_{x}e_{x}})^{-1} \mathcal{R}^{e_{x}e_{y}}) \mathbf{e}_{y}$$

$$= \mathbf{e}_{x}^{T} \mathcal{R}^{e_{x}e_{x}} \mathbf{e}_{x} + \mathbf{e}_{x}^{T} \mathcal{R}^{e_{x}e_{y}} \mathbf{e}_{y} + \mathbf{e}_{y}^{T} \mathcal{R}^{e_{y}e_{x}} \mathbf{e}_{x} + \mathbf{e}_{y}^{T} \mathcal{R}^{e_{y}e_{y}} \mathbf{e}_{y} \checkmark$$

Joint-Conditional Gaussian (iv)

Then

$$q = -\frac{1}{2} \left[(\mathbf{e}_x + (\mathcal{R}^{e_x e_x})^{-1} \mathcal{R}^{e_x e_y} \mathbf{e}_y)^T \mathcal{R}^{e_x e_x} (\mathbf{e}_x + (\mathcal{R}^{e_x e_x})^{-1} \mathcal{R}^{e_x e_y} \mathbf{e}_y) \right]$$
$$+ \mathbf{e}_y^T (\mathcal{R}^{e_y e_y} - \mathcal{R}^{e_y e_x} (\mathcal{R}^{e_x e_x})^{-1} \mathcal{R}^{e_x e_y}) \mathbf{e}_y + \frac{1}{2} \mathbf{e}_y^T (\mathcal{R}^{e_y e_y})^{-1} \mathbf{e}_y$$

Using Eq. (2a) simplifies the above expression to simply

$$q = -\frac{1}{2} (\mathbf{e}_x + (\mathcal{R}^{e_x e_x})^{-1} \mathcal{R}^{e_x e_y} \mathbf{e}_y)^T \mathcal{R}^{e_x e_x} (\mathbf{e}_x + (\mathcal{R}^{e_x e_x})^{-1} \mathcal{R}^{e_x e_y} \mathbf{e}_y)$$

Now look at

$$\frac{\left[\det(2\pi R^{e_z e_z})\right]^{-1/2}}{\left[\det(2\pi R^{e_y e_y})\right]^{-1/2}} = \frac{1}{\left[\det(2\pi R^{e_y e_y})\right]^{-1/2} \left[\det(2\pi R^{e_z e_z})\right]^{1/2}}$$

• Use the following relation on $R^{e_z e_z}$

$$\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det(D) \det(A - B D^{-1}C)$$

Joint-Conditional Gaussian (v)

Then

$$\begin{aligned} &\left[\det(2\pi R^{e_y e_y})\right]^{-1/2} \left[\det(2\pi R^{e_z e_z})\right]^{1/2} \\ &= \left[\det(2\pi R^{e_y e_y})\right]^{-1/2} \left[\det(2\pi R^{e_y e_y})\right]^{1/2} \left\{\det[2\pi (R^{e_x e_x} - R^{e_x e_y} (R^{e_y e_y})^{-1} R^{e_y e_x})]\right\}^{1/2} \\ &= \left\{\det[2\pi (R^{e_x e_x} - R^{e_x e_y} (R^{e_y e_y})^{-1} R^{e_y e_x})]\right\}^{1/2} \end{aligned}$$

So

$$\frac{\left[\det(2\pi R^{e_z e_z})\right]^{-1/2}}{\left[\det(2\pi R^{e_y e_y})\right]^{-1/2}} = \frac{1}{\left\{\det\left[2\pi (R^{e_x e_x} - R^{e_x e_y} (R^{e_y e_y})^{-1} R^{e_y e_x})\right]\right\}^{1/2}}$$

• Finally, $p(\mathbf{x}|\mathbf{y})$ becomes

$$p(\mathbf{x}|\mathbf{y}) = \frac{e^q}{\left\{ \det[2\pi (R^{e_x e_x} - R^{e_x e_y} (R^{e_y e_y})^{-1} R^{e_y e_x})] \right\}^{1/2}}$$

Thus the conditional probability is also Gaussian

Joint-Conditional Gaussian (vi)

• Using the definitions of \mathbf{e}_x , \mathbf{e}_y and the identity $(\mathcal{R}^{e_x e_x})^{-1} \mathcal{R}^{e_x e_y} = -R^{e_x e_y} (R^{e_y e_y})^{-1}$ from Eq. (2c) allows us to write $\mathbf{e}_x + (\mathcal{R}^{e_x e_x})^{-1} \mathcal{R}^{e_x e_y} \mathbf{e}_y = \mathbf{x} - \boldsymbol{\mu}_x - R^{e_x e_y} (R^{e_y e_y})^{-1} (\mathbf{y} - \boldsymbol{\mu}_y)$

Then the conditional mean of x given y is simply

$$E\{\mathbf{x}|\mathbf{y}\} = \boldsymbol{\mu}_x + R^{e_x e_y} (R^{e_y e_y})^{-1} (\mathbf{y} - \boldsymbol{\mu}_y)$$

Its covariance is given by

$$cov \{\mathbf{x}|\mathbf{y}\} = R^{e_x e_x} - R^{e_x e_y} (R^{e_y e_y})^{-1} R^{e_y e_x}$$

 These equations for the conditional mean and covariance are cornerstones for much of the developments of linear estimation using Gaussian variables

Relation to KF (i)

 The previous derivation can be related to the Kalman filter if we note the following definitions

$$\hat{\mathbf{x}}_{k}^{+} \equiv E\left\{\mathbf{x}|\mathbf{y}\right\}, \quad \hat{\mathbf{x}}_{k}^{-} \equiv \boldsymbol{\mu}_{x}$$

$$P_{k}^{e_{x}e_{y}} \equiv R^{e_{x}e_{y}}, \quad P_{k}^{e_{y}e_{y}} \equiv R^{e_{y}e_{y}}, \quad K_{k} \equiv P_{k}^{e_{x}e_{y}}(P_{k}^{e_{y}e_{y}})^{-1} \qquad (1)$$

$$\mathbf{e}_{k}^{-} \equiv \tilde{\mathbf{y}}_{k} - \hat{\mathbf{y}}_{k}^{-} = \mathbf{y} - \boldsymbol{\mu}_{y}$$

with

$$P_k^{e_x e_y} = E\left\{ (\hat{\mathbf{x}}_k^+ - \hat{\mathbf{x}}_k^-) \, \mathbf{e}_k^{-T} \right\}$$
$$P_k^{e_y e_y} = E\left\{ \mathbf{e}_k^- \, \mathbf{e}_k^{-T} \right\}$$

Compute the second expectation equation by first using

$$\mathbf{e}_{k}^{-} \equiv \tilde{\mathbf{y}}_{k} - \hat{\mathbf{y}}_{k}^{-}$$

$$= H_{k}\mathbf{x} + \mathbf{v}_{k} - H_{k}\hat{\mathbf{x}}_{k}^{-}$$

$$= H_{k}\left(\mathbf{x} - \hat{\mathbf{x}}_{k}^{-}\right) + \mathbf{v}_{k}$$

Then the "innovations covariance" is given by

$$P_k^{e_y e_y} = H_k P_k^- H_k^T + R_k$$

Relation to KF (ii)

- The first expectation equation is the cross-covariance
- From $\hat{\mathbf{x}}_k^+ \hat{\mathbf{x}}_k^- = K_k \mathbf{e}_k^-$ and Eq. (2) we have

$$P_k^{e_x e_y} = E \left\{ K_k \mathbf{e}_k^- \mathbf{e}_k^{-T} \right\}$$
$$= K_k (H_k P_k^- H_k^T + R_k)$$
$$= P_k^- H_k^T$$

where $K_k = P_k^- H_k^T (H_k P_k^- H_k^T + R_k)^{-1}$ was used

 Then from the definitions in Eq. (1), the Kalman update and covariance expressions are given by

$$\hat{\mathbf{x}}_{k}^{+} = \hat{\mathbf{x}}_{k}^{-} + K_{k} \mathbf{e}_{k}^{-}$$

$$K_{k} = P_{k}^{e_{x}e_{y}} (P_{k}^{e_{y}e_{y}})^{-1}$$

$$P_{k}^{+} = P_{k}^{-} - K_{k} P_{k}^{e_{y}e_{y}} K_{k}^{T}$$

- Just another form for the Kalman filter equations
- Useful for analysis purposes and in the derivation of the Unscented filter

EKF (Slight Return)

Truth equations

$$\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_k, \mathbf{w}_k, \mathbf{u}_k, k), \quad \mathbf{w}_k \sim \mathcal{N}(\mathbf{0}, Q_k)$$

$$\tilde{\mathbf{y}}_k = \mathbf{h}(\mathbf{x}_k, \mathbf{u}_k, \mathbf{v}_k, k), \quad \mathbf{v}_k \sim \mathcal{N}(\mathbf{0}, R_k)$$

Update equations

$$\hat{\mathbf{x}}_k^+ = \hat{\mathbf{x}}_k^- + K_k \mathbf{e}_k^-$$
$$P_k^+ = P_k^- - K_k P_k^{e_y e_y} K_k^T$$

Innovation sequence and gain calculation

Tesidual
$$\mathbf{e}_k^- \equiv \tilde{\mathbf{y}}_k - \hat{\mathbf{y}}_k^- = \tilde{\mathbf{y}}_k - \mathbf{h}(\hat{\mathbf{x}}_k^-, \, \mathbf{u}_k, k)$$

$$K_k = P_k^{e_x e_y} (P_k^{e_y e_y})^{-1}$$

 $P_k^{e_y e_y} \Rightarrow$ covariance of \mathbf{e}_k^- , $P_k^{e_x e_y} \Rightarrow$ cross correlation of $\hat{\mathbf{x}}_k^-$, $\hat{\mathbf{y}}_k^-$

 Note, we've shown for linear systems that these equations reduce down to the normal KF equations

Unscented Transformation (i)

- Basic premise ⇒ easier to approximate a Gaussian distribution than to approximate a nonlinear function octent is saill
- Advantages over extended Kalman filter
 - Can be applied to non-differentiable functions
 - No Jacobian or higher derivatives are required
 - Valid to higher-order expansions
- Same basic structure as the extended Kalman filter
 - Different covariance propagation and cross-correlation approach
 - Decomposes the covariance matrix to form "sigma points"
- First introduced by Julier and Uhlmann, 1996
 - Showed several examples of its advantages over the EKF
 - Since that time there have been many applications
 - Quaternion attitude estimation
 - GPS/INS Applications

Caussian

Unscented Transformation (ii)

- random variable
- Suppose we have an arbitrary function $\mathbf{y} = \mathbf{h}(\mathbf{x})$
- ullet Translated sigma points from covariance P_{xx} and mean $ar{f x}$

$$oldsymbol{\sigma} \leftarrow 2n ext{ rows or columns from } \pm \sqrt{(n+\lambda)P_{xx}}$$
 becomposited $\chi^{(0)} = \bar{\mathbf{x}}, \quad \chi^{(i)} = oldsymbol{\sigma}^{(i)} + \bar{\mathbf{x}}, \quad i = 1, 2, \cdots, 2n$

- Transformed sigma points $oldsymbol{\gamma}^{(i)} = \mathbf{h}[oldsymbol{\chi}^{(i)}]$
- Predicted mean and covariance

$$\bar{\mathbf{y}} = \frac{1}{n+\lambda} \left\{ \lambda \boldsymbol{\gamma}^{(0)} + \sum_{i=1}^{2n} \boldsymbol{\gamma}^{(i)} \right\}$$

Unscented Transformation (iii)

From Wan and van der Merwe

Simple Example

- Julier and Uhlmann, 1996 considered $y = h(x) = x^2$
 - ullet x is normally distributed with mean $ar{x}$ and variance σ_x^2
- True mean and variance

$$\bar{y} = \bar{x}^2 + \sigma_x^2, \quad \sigma_y^2 = 2\sigma_x^4 + 4\bar{x}^2\sigma_x^2$$

Linearized mean and variance (mean is biased)

$$\bar{y} = \bar{x}^2, \quad \sigma_y^2 = 4\bar{x}^2\sigma_x^2$$

Unscented transformation ⇒ calculate sigma points

$$\{\chi^{(0)}, \, \chi^{(1)}, \, \chi^{(2)}\} = \{\bar{x}, \, \bar{x} - \sigma, \, \bar{x} + \sigma\}, \text{ with } \sigma = \sqrt{(n+\lambda)\sigma_x^2}$$
$$\{\gamma^{(0)}, \, \gamma^{(1)}, \, \gamma^{(2)}\} = \{\bar{x}^2, \, \bar{x}^2 - 2\bar{x}\sigma + \sigma^2, \, \bar{x}^2 + 2\bar{x}\sigma + \sigma^2\}$$

Unscented mean and variance

$$\bar{y} = \bar{x}^2 + \sigma_x^2, \quad \sigma_y^2 = \lambda \sigma_x^4 + 4\bar{x}^2 \sigma_x^2$$

• Equal to the truth when $\lambda = 2$

Scaled Unscented Filter (i)

Form an augmented covariance matrix

$$P_{k}^{a} = \begin{bmatrix} P_{k}^{-} & P_{k}^{xw} & P_{k}^{xv} \\ (P_{k}^{xw})^{T} & Q_{k} & P_{k}^{wv} \\ (P_{k}^{xv})^{T} & (P_{k}^{wv})^{T} & R_{k} \end{bmatrix}$$

Compute sigma points ⇒ Cholesky decomposition

$$oldsymbol{\sigma}_k \leftarrow 2L ext{ columns from } \pm \gamma \sqrt{P_k^a} \ oldsymbol{\chi}_k^{a(0)} = \hat{\mathbf{x}}_k^a \ oldsymbol{\chi}_k^{a(i)} = oldsymbol{\sigma}_k^{(i)} + \hat{\mathbf{x}}_k^a$$

where

$$\begin{aligned} \mathbf{x}_k^a &= \begin{bmatrix} \mathbf{x}_k \\ \mathbf{w}_k \\ \mathbf{v}_k \end{bmatrix} \equiv \begin{bmatrix} \boldsymbol{\chi}_k^{x(i)} \\ \boldsymbol{\chi}_k^{w(i)} \\ \boldsymbol{\chi}_k^{v(i)} \end{bmatrix}, & \hat{\mathbf{x}}_k^a &= \begin{bmatrix} \hat{\mathbf{x}}_k^- \\ \mathbf{0}_{q \times 1} \\ \mathbf{0}_{m \times 1} \end{bmatrix}, & \lambda = \alpha^2(L+\kappa) - L \\ 1 \times 10^{-4} \leq \alpha \leq 1 \end{aligned}$$
• Note, $\alpha = 1$ and $\beta = 0$ gives previous (unscaled) version

Scaled Unscented Filter (ii)

Transformed set of sigma points

$$oldsymbol{\chi}_{k+1}^{x(i)} = \mathbf{f}(oldsymbol{\chi}_k^{x(i)}, \, oldsymbol{\chi}_k^{w(i)}, \, \mathbf{u}_k, \, k) \ oldsymbol{\gamma}_k^{(i)} = \mathbf{h}(oldsymbol{\chi}_k^{x(i)}, \, \mathbf{u}_k, \, oldsymbol{\chi}_k^{v(i)}, \, k)$$

Weights

$$W_0^{\text{mean}} = \frac{\lambda}{L + \lambda}$$

$$W_0^{\text{cov}} = \frac{\lambda}{L + \lambda} + (1 - \alpha^2 + \beta)$$

$$W_i^{\text{mean}} = W_i^{\text{cov}} = \frac{1}{2(L + \lambda)}, \quad i = 1, 2, \dots, 2L$$

Output and cross-correlation (perform updates)

$$P_k^{yy} = \sum_{i=0}^{2L} W_i^{\text{cov}} \left[\gamma_k^{(i)} - \hat{\mathbf{y}}_k^- \right] \left[\gamma_k^{(i)} - \hat{\mathbf{y}}_k^- \right]^T = P_k^{e_y e_y}$$

$$P_k^{e_x e_y} = \sum_{i=0}^{2L} W_i^{\text{cov}} \left[\chi_k^{x(i)} - \hat{\mathbf{x}}_k^- \right] \left[\gamma_k^{(i)} - \hat{\mathbf{y}}_k^- \right]^T$$

Scaled Unscented Filter (iii)

Propagated mean estimate and output

$$\hat{\mathbf{x}}_{k+1}^{-} = \sum_{i=0}^{2L} W_i^{\text{mean}} \boldsymbol{\chi}_{k+1}^{x(i)}$$

$$\hat{\mathbf{y}}_{k+1}^{-} = \sum_{i=0}^{2L} W_i^{\text{mean}} \boldsymbol{\gamma}_{k+1}^{(i)}$$

Propagated covariance

$$P_{k+1}^{-} = \sum_{i=0}^{2L} W_i^{\text{cov}} \left[\boldsymbol{\chi}_{k+1}^{x(i)} - \hat{\mathbf{x}}_{k+1}^{-} \right] \left[\boldsymbol{\chi}_{k+1}^{x(i)} - \hat{\mathbf{x}}_{k+1}^{-} \right]^T$$

Measurement error appears linearly? If yes, then

$$P_k^a = \begin{bmatrix} P_k^- & P_k^{xw} \\ & & \\ (P_k^{xw})^T & Q_k \end{bmatrix}, \quad P_k^{e_y e_y} = P_k^{yy} + R_k$$

Scaled Unscented Filter (iv)

- Steps for Unscented Filter
 - Given $\hat{\mathbf{x}}_k^-, \hat{\mathbf{y}}_k^-, P_k^-$, first form augmented covariance P_k^a
 - ullet Get sigma points and $oldsymbol{\chi}_k^{a(i)}$
 - ullet Get output points $oldsymbol{\gamma}_k^{(i)}$
 - Compute output covariance P_k^{yy} and cross correlation $P_k^{e_x e_y}$
 - Compute innovations covariance $P_k^{e_y e_y}$ and gain K_k
 - Update state and covariance \Rightarrow gives estimate at time t_k
 - Calculate propagated state points $oldsymbol{\chi}_{k+1}^{x(i)}$
 - Compute propagated state $\hat{\mathbf{x}}_{k+1}^-$ and covariance P_{k+1}^-
 - Form augmented covariance and repeat

$$P_{k}^{yy} = \sum_{i=0}^{2L} W_{i}^{c} \sum_{k=0}^{2L} P_{i}^{xw} \sum_{k=0}^{2L} P_{$$

UF Assumption

- UF still assumes a Gaussian distribution
 - True for both the prior and posterior distributions
 - Only two variables are required to fully described the pdf: the mean and the covariance
 - "Particles" of the UF exactly match input covariance

$$\sigma \leftarrow 2n \text{ rows or columns from } \pm \sqrt{(n+\lambda)P_{xx}}$$

$$\boldsymbol{\chi}^{(0)} = \bar{\mathbf{x}}, \quad \boldsymbol{\chi}^{(i)} = \boldsymbol{\sigma}^{(i)} + \bar{\mathbf{x}}, \quad i = 1, 2, \dots, 2n$$

$$\bar{\mathbf{x}} = \frac{1}{n+\lambda} \left\{ \lambda \boldsymbol{\chi}^{(0)} + \frac{1}{2} \sum_{i=1}^{2n} \boldsymbol{\chi}^{(i)} \right\}$$

$$P_{xx} = \frac{1}{n+\lambda} \left\{ \lambda \left[\boldsymbol{\chi}^{(0)} - \bar{\mathbf{x}} \right] \left[\boldsymbol{\chi}^{(0)} - \bar{\mathbf{x}} \right]^T + \frac{1}{2} \sum_{i=1}^{2n} \left[\boldsymbol{\chi}^{(i)} - \bar{\mathbf{x}} \right] \left[\boldsymbol{\chi}^{(i)} - \bar{\mathbf{x}} \right]^T \right\}$$

- Only the mean and covariance of the first two moments of the underlying distribution are maintained
 - Accurate to at least 2nd-order in Taylor series expansion (3rd-order for Gaussian inputs)

由

UF MATLAB Code Example

```
% Input Mean and Covariance
n=4;
x bar=randn(n,1)
p_x = randn(n); p_x = p_x x p_x x'
% Matrix square root
lambda=abs(randn(1));
psquare=chol((n+lambda)*p xx)';
sig=real([psquare -psquare]);
chi=sig+kron(x bar,ones(1,2*n));
% Mean
x = 1/(n+lambda)*(lambda*x bar'+0.5*sum(chi,2)')'
% Covariance
pmat=chi-kron(x est,ones(1,2*n));
p est=1/(n+lambda)*(lambda*(x bar-x est)*(x bar-
x \text{ est})'+0.5*pmat*pmat')
```

```
x bar =
  0.4998
  1.2781
 -0.5478
  0.2608
p_{XX} =
  2.3911 -1.5379 -1.2075
                          1.6667
          6.4358 -3.1783 -1.6417
 -1.2075 -3.1783
                 6.8739 -1.0540
  1.6667 -1.6417 -1.0540 1.3371
x est =
  0.4998
  1.2781
 -0.5478
  0.2608
p est =
  2.3911 -1.5379 -1.2075
                           1.6667
          6.4358 -3.1783
                          -1.6417
 -1.2075 -3.1783
                  6.8739 -1.0540
  1.6667 -1.6417 -1.0540
                          1.3371
```

Example (i)

Consider the following state-space model

$$F = \begin{bmatrix} -4 & -3 & -4 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad H = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Choosing a sampling interval of 0.1 seconds gives

$$\Phi = \begin{bmatrix} 0.6583 & -0.2637 & -0.3324 & -0.0820 \\ 0.0820 & 0.9862 & -0.0177 & -0.0044 \\ 0.0044 & 0.0995 & 0.9994 & -0.0002 \\ 0.0002 & 0.0050 & 0.1000 & 1.0000 \end{bmatrix}$$

Initial conditions for the true and estimated states

$$\mathbf{x}_0 = \begin{bmatrix} 1 & 0 & 2 & 0 \end{bmatrix}^T, \quad \hat{\mathbf{x}}_0 = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T$$

Initial covariance

$$P_0 = \operatorname{diag} [(2/3)^2 \quad 0.001 \quad (4/3)^2 \quad 0.001]$$

First state has a 3σ bound of 2, third state has a 3σ bound of
 4, and second and fourth state are known pretty accurately 28

Example (ii)

Measurement error covariance

$$R = \begin{bmatrix} 0.01 & 0.005 \\ 0.005 & 0.02 \end{bmatrix}$$

• Continuous-time process noise given by Q=0.01, with

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T$$

so that

- Note, process noise is only added to the first state
 - The rest are just kinematic states, which have no error
- Ran both the standard Kalman filter and Unscented filter
 - Gave nearly identical results to almost within machine precision

First State Errors and 3σ Bounds

Example (v)

```
% Output
h=[1 0 0 0;0 0 1 0];
% Sampling Interval and Time
dt=0.1;tf=60;t=[0:dt:tf]';m=length(t);
% State Model
f=[-4 -3 -4 -1; eye(3) zeros(3,1)];
n=4;
% Measurement Covariance
r=[0.01\ 0.005;0.005\ 0.02];
% Generate Correlated Noise
[tt,lam]=eig(r);
v uncorr=randn(m,2)*lam.(0.5);
v=(tt*v_uncorr')';
% Process Noise Spectral Density
```

q=zeros(n);q(1,1)=1e-2;

Example (vi)

```
% Get Discrete-Time Matrices
bmat = expm([-f q; zeros(4) f']*dt);
phi=bmat(n+1:2*n,n+1:2*n)';
qd=phi*bmat(1:n,n+1:2*n);
% Generate Correlated Noise
[tt,lam]=eig(qd);
w uncorr=randn(m,n)*lam.(0.5);
w=(tt*w uncorr')';
% Get Measurements
x=zeros(m,4);x(1,:)=[1 0 2 0];
for i=1:m-1
x(i+1,:)=(phi*x(i,:)')'+w(i,:);
end
y=(h*x')';ym=y+[v(:,1) v(:,2)];
% Kalman Filter Parameters
```

xe_kf=zeros(m,4);p_cov_kf=zeros(m,4);

p kf=diag([(2/3)^2 0.001 (4/3)^2 0.001]);p_cov_kf(1,:)=diag(p_kf)';

Example (vii)

```
% Kalman Filter Loop
for i=1:m-1
% Propagation
p kf=phi*p_kf*phi'+qd;
xe kf(i+1,:)=(phi*xe kf(i,:)')';
% Update
gain=p_kf*h'*inv(h*p_kf*h'+r);
p kf=(eye(4)-gain*h)*p kf;
p cov kf(i+1,:)=diag(p kf)';
xe kf(i+1,:)=xe kf(i+1,:)+(gain*(ym(i+1,:)'-h*xe kf(i+1,:)'))';
end
```

Example (viii)

```
% Unscented Filter Parameters
xe uf=zeros(m,4);p cov uf=zeros(m,4);
p uf=diag([(2/3)^2 0.001 (4/3)^2 0.001]);p cov uf(1,:)=diag(p uf)';
alp=1;beta=0;ell=2*n;kap=3+ell;
lam=alp^2*(ell+kap)-ell;
w0m=lam/(ell+lam);
w0c=lam/(ell+lam)+(1-alp^2+beta);
wim=1/(2*(ell+lam));
% No off-diagnoal elements in the augmented covariance,
% so we can take the cholesky of each separately.
% But note that for the filter with augmented state,
% both xx and sigw need to be 4 x 16 instead of 4 x 8,
% which is the case for the non-augmented state.
% Take cholelsky of qd (note it's constant)
psquarew=chol(qd)';
sigw=[zeros(n,2*n) sqrt(ell+lam)*psquarew -sqrt(ell+lam)*psquarew];
```



```
% Unscented Filter Loop for i=1:m-1
```

77. Zie bear theron

```
% Covariance Decomposition

psquare=chol(p_uf)';

sigv=real([sqrt(ell+lam)*psquare -sqrt(ell+lam)*psquare]);

xx0=xe_uf(i,:)';

xx=[sigv+kron(xe_uf(i,:)',ones(1,2*n)) repmat(xx0,1,2*n)];
```

```
% Propagation xx0=phi*xx0; = OzziC+ meg+gabe = fanily xx=phi*xx+sigw; xe\_uf(i+1,:)=w0m*xx0'+wim*sum(xx,2)';
```

% Covariance pp0=w0c*(xx0-xe_uf(i+1,:)')*(xx0-xe_uf(i+1,:)')'; pmat=xx-kron(xe_uf(i+1,:)',ones(1,4*n)); p_uf=pp0+wim*pmat*pmat';

Satisfyino

Example (x)

```
% Output
yez=h*xx;ye0=h*xx0;ye=w0m*ye0+wim*sum(yez,2);
% Calculate pyy
pyy0=w0c*(ye0-ye)*(ye0-ye)';pyymat=yez-kron(ye,ones(1,4*n));
pyy=pyy0+wim*pyymat*pyymat';
% Calculate pxy
pxy0=w0c*(xx0-xe uf(i+1,:)')*(ye0-ye)';
pxy=pxy0+wim*pmat*pyymat';
% Innovations Covariance
pvv=pyy+r;
% Gain and Update
gain=real(pxy*inv(pvv));
p uf=p uf-gain*pvv*gain';p cov uf(i+1,:)=diag(p uf)';
xe uf(i+1,:)=xe uf(i+1,:)+(gain*(ym(i+1,:)'-ye))';
```

end

Example (xi)

```
% Plot Results
figure(1)
sig3 kf=p cov kf.(0.5)*3;
clf
plot(t,sig3_kf(:,1),'r',t,xe_kf(:,1)-x(:,1),'b',t,-sig3_kf(:,1),'r')
set(gca,'fontsize',12)
axis([0 60 -0.2 0.2])
ylabel('{x_1} Errors and Bounds')
xlabel('Time (sec)')
title('KF')
figure(2)
sig3 uf=p cov uf.(0.5)*3;
clf
plot(t,sig3_uf(:,1),'r',t,xe_uf(:,1)-x(:,1),'b',t,-sig3_uf(:,1),'r')
set(gca,'fontsize',12)
axis([0 60 -0.2 0.2])
ylabel('{x_1} Errors and Bounds')
xlabel('Time (sec)')
title('UF')
```

Example (xii)

figure(3)
clf
plot(t,xe_kf-xe_uf)
set(gca,'fontsize',12)
ylabel('State Differences Between KF and UF')
xlabel('Time (sec)')

Free Falling Body Example (i)

- Estimate ballistic coefficient, x_3 , of a vertical falling body
- Measure range by a radar
- M and Z are constants
- α relates air density with altitude (constant)
- No process noise
 - Nonlinearities cause the problems, not process noise
- EKF and UF comparisons
 - Same initial covariances
 - Monte Carlo simulation with 100 runs

Free Falling Body Example (ii)

场

Free Falling Body Example (iii)

```
% Initialize
dt=1;tf=60;t=[0:dt:tf]';m=length(t); % stores samples every second
runs=100;
xes1=zeros(m,runs);xes2=zeros(m,runs);xes3=zeros(m,runs);
xes1 kf=zeros(m,runs);xes2 kf=zeros(m,runs);xes3 kf=zeros(m,runs);
% Main Loop for Trial Runs
for ij = 1:runs,
  % Allocate Variables
  gam=5e-5;h=100000;mm=100000;
  x=zeros(m,3);x(1,1)=300000;x(1,2)=20000;x(1,3)=1e-3;
  ym=zeros(m,1);r=1e4;ym(1)=sqrt(mm^2+(x(1,1)-h)^2)+sqrt(r)*randn(1);
  % Initial Conditions
  pcov=diag([1e6 4e6 1e-4]);p=zeros(m,3);p(1,:)=diag(pcov)';
  xe=zeros(m,3);xe(1,1)=300000;xe(1,2)=20000;xe(1,3)=3e-5;
 % Kalman Filter Initial Conditions
  pcov_kf=diag([1e6 4e6 1e-4]);p_kf=zeros(m,3);p_kf(1,:)=diag(pcov_kf)';
  xe kf=zeros(m,3);xe kf(1,1)=300000;xe_kf(1,2)=20000;xe_kf(1,3)=3e-5;
```


Free Falling Body Example (iv)

```
% Unscented Filter Parameters
 alp=1;beta=2;kap=0;n=3;lam=alp^2*(n+kap)-n;
 w0m=lam/(n+lam);w0c=lam/(n+lam)+(1-alp^2+beta);
 wim=1/(2*(n+lam));yez=zeros(1,6);
 % Interval Set to 1/64 Seconds for Integration
 dt=1/64;tf=60;t=[0:dt:tf]';m=length(t);
 % Main Filter Loop
 for i=1:m-1
    % Truth
    f1=dt*athansfun(x(i,:)',gam);
    f2=dt*athansfun(x(i,:)'+0.5*f1,gam);
    f3=dt*athansfun(x(i,:)'+0.5*f2,gam);
    f4=dt*athansfun(x(i,:)'+f3,gam);
    x(i+1,:)=x(i,:)+1/6*(f1'+2*f2'+2*f3'+f4');
    % Measurement
    ym(i+1)=sqrt(mm^2+(x(i+1,1)-h)^2)+sqrt(r)*randn(1);
 end
 x = x(1:1/dt:end,:);
 ym = ym(1:1/dt:end);
```

由

Free Falling Body Example (v)

```
% Interval Set to 1 Second for Estimate Propagation and Update
  dt=1;tf=60;t=[0:dt:tf]';m=length(t);
  for i=1:m-1
    % Unscented Filter
    % Covariance Decomposition
    psquare=chol(pcov)';
    sigv=real([sqrt(n+lam)*psquare -sqrt(n+lam)*psquare]);
    xx0=xe(i,:)';
    xx = sigv + kron(xe(i,:)', ones(1,2*n));
    % Calculate Mean Through Propagation
    fl=dt*athansfun([xx0 xx],gam);
    f2=dt*athansfun([xx0 xx]+0.5*f1,gam);
    f3=dt*athansfun([xx0 xx]+0.5*f2,gam);
    f4=dt*athansfun([xx0 xx]+f3,gam);
    xx0=xx0+1/6*(f1(:,1)+2*f2(:,1)+2*f3(:,1)+f4(:,1));
    xx=xx+1/6*(f1(:,2:2*n+1)+2*f2(:,2:2*n+1)+2*f3(:,2:2*n+1)+f4(:,2:2*n+1));
    xe(i+1,:)=w0m*xx0'+wim*sum(xx,2)';
```


Free Falling Body Example (vi)

```
% Covariance
   pp0=w0c*(xx0-xe(i+1,:)')*(xx0-xe(i+1,:)')';
    pmat=xx-kron(xe(i+1,:)',ones(1,2*n));
    pcov=pp0+wim*pmat*pmat';
    % Output
    for j = 1:2*n
      yez(j)=sqrt(mm^2+(xx(1,j)-h)^2);
    end
    ye0 = sqrt(mm^2 + (xx0(1)-h)^2);
    ye=w0m*ye0+wim*sum(yez,2);
    % Calculate pyy
    pyy0=w0c*(ye0-ye)*(ye0-ye)';
   pyymat=yez-ye;
    pyy=pyy0+wim*pyymat*pyymat';
    % Calculate pxy
    pxy0=w0c*(xx0-xe(i+1,:)')*(ye0-ye);
    pxy=pxy0+wim*pmat*pyymat';
```

Free Falling Body Example (vii)

```
% Innovations Covarinace
   pvv=pyy+r;
   % Gain and Update
   gain=real(pxy*inv(pvv));
   pcov=pcov-gain*pvv*gain';
   p(i+1,:)=diag(pcov)';
   xe(i+1,:)=xe(i+1,:)+(gain*(ym(i+1)-ye))';
   % Kalman Filter - Sometimes This Diverges
   % State Propagation
   fl=dt*athansfun(xe kf(i,:)',gam);
   f2=dt*athansfun(xe kf(i,:)'+0.5*f1,gam);
   f3=dt*athansfun(xe kf(i,:)'+0.5*f2,gam);
   f4=dt*athansfun(xe kf(i,:)'+f3,gam);
   xe kf(i+1,:)=xe kf(i,:)+1/6*(f1'+2*f2'+2*f3'+f4');
   % Estimate Output
   ye kf = sqrt(mm^2 + (xe kf(i+1,1)-h)^2);
```


Free Falling Body Example (viii)

```
% Covariance Propagation
    f=\exp(-gam*xe kf(i,1))*[0 - \exp(gam*xe kf(i,1)) 0]
      gam*xe kf(i,2)^2*xe kf(i,3) -2*xe kf(i,2)*xe kf(i,3) -xe kf(i,2)^2
      0\ 0\ 0];
    phi=c2d(f,zeros(3,1),dt);
    pcov kf=phi*pcov kf*phi';
    % Update
    h kf = [(xe kf(i+1,1)-h)/sqrt(mm^2+(xe kf(i+1,1)-h)^2) 0 0];
    gain_kf=pcov_kf*h_kf'*inv(h_kf*pcov kf*h kf'+r);
    pcov kf=(eye(3)-gain kf*h kf)*pcov kf;
    p kf(i+1,:)=diag(pcov kf)';
    xe kf(i+1,:)=xe kf(i+1,:)+(gain kf*(ym(i+1)-ye kf))';
  end
```


Free Falling Body Example (ix)

```
% Error for Each Trial Run
  xes1(:,jj)=abs(xe(:,1)-x(:,1));
  xes2(:,jj)=abs(xe(:,2)-x(:,2));
  xes3(:,jj)=abs(xe(:,3)-x(:,3));
  xes1 kf(:,jj)=abs(xe kf(:,1)-x(:,1));
  xes2 kf(:,jj)=abs(xe kf(:,2)-x(:,2));
  xes3 kf(:,jj)=abs(xe kf(:,3)-x(:,3));
end
% Average and 3-Sigma Outlier
xerr=[sum(xes1,2) sum(xes2,2) sum(xes3,2)]/runs;
sig3=p.^{(0.5)*3};
xerr kf=[sum(xes1 kf,2) sum(xes2 kf,2) sum(xes3 kf,2)]/runs;
sig3 kf=p kf.^{(0.5)*3};
```

由

Free Falling Body Example (x)

```
% Plot Results
plot(t,xerr(:,1),t,xerr_kf(:,1),'--')
set(gca,'Fontsize',12)
ylabel('Absolute Error of Average Altitude Error (M)')
xlabel('Time (Sec)')
legend('Unscented Filter','Extended Kalman Filter')
```


Free Falling Body Example (xi)

function f=athansfun(x,gam)

```
% Function Routine for Athans Problem
[m,n]=size(x);
f=zeros(m,n);
f(1,:)=-x(2,:);
f(2,:)=-exp(-gam*x(1,:)).*(x(2,:).^2).*x(3,:);
f(3,:)=zeros(1,n);
```