Variable	Steady state	Single Glucose
		Perturbation
Trehalose	Inactive. Its steady state flux in included in the G6P-sink reaction	Active.
cycle		
Inosine	Inactive.	Active.
salvage		
pathway		
sumAXP	Changes in the total sum of ATP + ADP + AMP are considered	The inosine salvage
(= ATP +	by setting the initial concentrations of the adenosine nucleotides	pathway acts as a
ADP +	to the experimental concentration at the beginning of each stead	sink of adenosine
AMP)	state simulation.	nucleotides.
Enzyme	A ratio between the experimental activity at a given dilution rate	This ratio equals 1.
concentra-	and the value at 0.1h ⁻¹ is calculated and then multiplied to the	
tion	V_{max} .	
Sink	A phenomenological expression is derived to make these reaction	The kinetics at 0.1 h ⁻¹
reactions	rates resemble experimental data.	is used.
ATPase	ATPase is adjusted in a growth rate dependent manner, using	The reaction constant
activity	GAM and NGAM.	is estimated to fit the
		data.
mitoATP	The growth rate-dependent mitochondrial activity is considered	The reaction constant
	using the PYR sink reaction. This is implemented by changes in	is estimated to fit the
	the reaction constant.	data.
mitoN-	The growth rate-dependent mitochondrial activity is considered	The reaction costant
ADH	using the PYR sink reaction. This is implemented by changes in	is estimated to fit the
	the reaction constant.	data.

References