Faster DNN Training With Selective Backpropagation

Angela Jiang, Daniel Wong, Lilia Tang, Michael Kaminsky[†], Michael A. Kozuch[†], Padmanabhan Pillai[†], David G. Andersen, Gregory R. Ganger

Background

Goal: Improve wall-clock time of training to a particular accuracy

Trends

- Labeled datasets are larger (e.g., high frame rate video, click through data)
- DNN inference is faster with accelerators and deep compression

Approach

- Isolate hard examples using output of the forward pass
- Reduce cost of backwards pass by only training on hard examples
- Reduce cost of inference using hardware-accelerated or quantized inference

Motivation

- Choose learning examples more efficiently (e.g., to filter redundant datasets)
- Get signal from training quickly (e.g., hyperparameter search)

Can we speed up training by only backpropagating "surprising" examples?

Selective Backprop achieves same accuracy with fewer training examples

T.4 peddough 1.2 Deddough 1.0 D

- Baseline does not perform filtering
- Selective Backprop (SB) filters >85% of examples

Num Images Backpropped

- SB achieves comparable accuracy with fewer examples on both CIFAR10 and MNIST
- SB reduces test loss quicker than baseline

Diving into CIFAR 10

Easy Examples

Future Work