교과목: 디지털정보처리

1. 리눅스 시스템 개념 이해

2021학년도 1학기 옥수열

강의 소개

2021학년도 1학기 수업계획 기본사항

수업	لاد	교과목의 필요성	4차산업시대에 디지털 정보를 처리하는 과정은 매우 기본적이고 필수적인 일이다. 본 교과목에서는 디지털 정보처리 시스템으로서 다양한 시스템에 사용되고 있는 리눅스 시스템(문영체계)을 활용한 정보처리방법을 학습하고자 한다. 리눅스 시스템은 단순한 임베디드 시스템부터 슈퍼컴퓨터까지 다양한 시스템의 운영체계로 사용되고있을 뿐 아니라 최근 핫이슈가 되고 있는 인공							
Tü	포계	교과목 개 요	득한다. Linux 설치	으로 리눅스 운영체) , 시스템을 사용하기 지보수 기법 및 핵심 구	가위한 기초적인 명 ⁸	령어, Shell 프로그림	뱀의 작성, 다양한 :	유틸리티 등의 활 📗		
수업	본 교과목은 디지털 정보처리 시스템의 하나인 리눅스 시스템의 기초적인 과정을 통하여 운영체제의 개념을 파악하게 제에서 다양한 서버의 구축에 활용함으로 실제적인 서버 시스템 구축까지 가능한 능력을 키움에 목표가 있다. 특히 해하고 활용할 수 있는 능력을 배양한다. - 서버용 운영체제로서 리눅스/유닉스에 대한 기본 개념 이해									
사전	학습	었음								
		주교재	강의자료 제공 (공인 LPIC(linux professional institute certification) Linux 표준 교재 기반하여 작성됨)							
교재 및 참고문헌		참고자료	1, 이것이 우분투 리눅스다 - 우분투 리눅스 설치부터 네트워크와 서버구축, 운영까지 (저자 : 우재남, 한빛미디어, 2020) 2. 우분투 리눅스 - 시스템&네트워크 (저자:이종원, 한빛아카데미, 2018) 3. 리눅스 실습 for beginner (저자:우재남, 한빛아카데미, 2020)							
		참고 사이트								
		강의식	실험/실습	문제중심학습 (PBL 1)						
수업	방법	1. 기본적으로 대면 강의 진행하고자 하나, 코로나 상황에 따라 대면과 비대면 혼합 강의가 진행될 수도 있음. 2. 강의시간에는 이론과 실습을 병행하고, 각 장마다 난이도별 응용예제를 자습하도록 한다. ※ 주별 수업계획은 일정 또는 강의 진도에 따라 학습목표 및 학습내용이 변경될 수 있음								
	종류	출석	과제	임의평가	중간시험	기말시험	기타	합계		
학습 평가	비율	15%	5%	0%	40%	40%	0%	100%		
방법	방법	1) 출석 : 지각은 1회당 0.2점 감점, 결석은 1회당 0.5점 감점 2) 과제 : 장별 실습 과제 또는 미니 프로젝트 과제 3) 중간 및 기말 시험 : 문법과 실습 예제를 필기로 시험 4) 기타 : 수업태도 불성실한 학생에게 감점이 있음 ※ 코로나 등 상황에 따라 변경될 수 있음								

강의 소개

참고사이트

- Ubuntu tutorials, https://ubuntu.com/tutorials
- Learn ubuntu absolute beginners, https://www.tutorialspoint.com/ubuntu/index.htm
- 외 다양한 블로그, 유투브 등

강의 소개

주	학습목표	학습내용	관련자료	수업활동	수정
1	1장 리눅스 시스템 개념 이해	- 리눅스 소개, 역사, 특징 - 운영체제의 일반 구조, 리눅스 커널 구조 - 서비스와 유틸리티, 소프트웨어	강의자료 (pdf), 참고 자료	이론강의	수정
2	2장 리눅스 시스템 설치	- 가상 머신 VirtualBox와 Ubuntu 설치 - X 윈도무와 데스크톱 환경	강의자료 (pdf), 참고 자료	이론강의, 실습	수정
3	3장 기본 명령어 기초 1	- 리눅스 기본 명령어, 파일의 종류 - 디렉토리 계층구, 홈디렉토리, 디렉토리 리스트, 디렉토리 생성과 삭제 등 - 커널 및 유저 랜드, 쉘(shell) 링크 및 파일 명령어 기초	강의자료 (pdf), 참고 자료	이론강의, 실습	수정
4	4장 쉘(shell) 사용하기	- 쉘의 기능, 실행 절차, 환경변수 등 - 로그인 쉘, Bash - 쉘 프로그래밍	강의자료 (pdf), 참고 자료	이론강의, 실습	수정
5	5장 정규 표현과 파이프 및 기본 명령어 2	- 정규 표현와 파이프 - touch, sort, uniq, tr, diff 기본 명령어 - 추가적인 압축, 텍스트 처리, 필터링 등에 관련된 유틸리티 사용법	강의자료 (pdf), 참고 자료	이론강의, 실습	수정
6	6장 vi 편집기	- vi 편집기 개요, 사용법 및 환경설정 - 리눅스 문서 편집기	강의자료 (pdf), 참고 자료	이론강의, 실습	수정
7	7장 프로세스 관리 및 파일 관리	- 프로세스 개념, 프로세스 관리 명령어 - 프로세스 제어 명령어, 프로세스 우선 순위, 시그널	강의자료 (pdf), 참고 자료	이론강의, 실습	수정
8	중간고사	중간고사(오프라인시험예정) (코로나 인하여 온라인 변경 가능)			수정
9	8장 쉘 스크립트	- 쉘의 개념과 특징 - 쉘 스크립트 프로그래밍 기본 - 쉘 스크립트 프로그래밍 응용 기능	강의자료 (pdf), 참고 자료	이론강의, 실습 과제 제시 (기간 9주 차~13주 차)	수정
10	9장 네트워크 설정 및 관리	- 네트워크 기초 및 설정 - 호스트 설정, 네트워크 상태 확인 (ping 명령, traceroute 명령 ifconfig 명령 nslookup명령 / etc/ rc.d/ init.d/ network 스크립트 등)	강의자료 (pdf), 참고 자료	이론강의, 실습	수정
11	10장 프로세스 관리	- 프로세스 개념, 관리 명령 - 포어그라운드, 백그라운드 - 작업예약	강의자료 (pdf), 참고 자료	이론강의, 실습	수정
12	11장 사용자 및 그룹관리, 패키지 관리	- 사용자 계정 관련 파일 및 관리 명령 - 그룹 관리 명령 - 사용자 정보 관리 명령 - 디스크 사용량(쿼터) 설정	강의자료 (pdf), 참고 자료	이론강의, 실습	수정
13	12장 서버 구축	- 네임 서버, 메일 서버 설치와 운영 - 데이터베이스 서버, 웹 서버 설치와 운영 - FTP, NFS, Samba 서버 설치와 운영 - 프록시 서버, 방화벽 개념	강의자료 (pdf), 참고 자료	이론강의, 실습	수정
14	13장 리눅스 시스템 개발 환경	- 리눅스에서 C 프로그램을 개발하기 위한 기본 도구인 gcc, gdb, make 사용법	강의자료 (pdf), 참고 자료	이론강의, 실습	수정
15	기말고사	기말고사 (오프라인시험예정) (코로나 인하여 온라인 변경 가능			수정

1) 4차 산업혁명의 핵심은?

"사이버 세계와 물리적 세계가 하나의 시스템으로 연결된 지능형 사이버물리시스템(CPS) 구축이 4차 산업혁명의 핵심이다"

클라우스 슈밥(세계경제포럼 회장)

1) 4차 산업혁명의 핵심은?

- CPS는 실세계와 IT가 긴밀하게 결합한 시스템으로써 '사물인터 넷(Internet of Things, IoT)'과 유사한 개념이다.
- CPS는 컴퓨팅 시스템과 우리가 살아가는 물리 세계와의 밀접 한 상호작용을 강조한다.
- 특히 CPS는 통신 기술을 활용 하여 물리적 현상을 관찰, 계산 및 조작하는 각 시스템 개체들 간의 협력적 관계를 구축한다.

[출처]

https://m.blog.naver.com/PostView.nhn?blogId=sikokns&logNo=221345188916&proxyReferer=https:%2F%2Fwww.google.co.kr%2F

1] 4차 산업혁명의 핵심은?

2) IT기술로 새로운 비즈니스사이클 출현

데이터 활용 관점에서 모든 분야의 경쟁 영역이 변화

<u>데이터수집 → 해석 → 처</u> <u>리</u>사이클

목적에 맞는 적절한 조합

다른 분야의 기기, 시스템 연계

산업의 울타리를 넘은 새로운 서비스 확대

2) IT기술로 새로운 비즈니스사이클 출현

3) 4차 산업 혁명의 핵심 기술: Linux 기반으로 운영

IOT Computing

Al Computing

3) 4차 산업 혁명의 핵심 기술: Linux 기반으로 운영

IOT Computing

Cortex-M를 구동시킬 수 있는 OS 가 Mbed OS 입니다.

ARM

- ARM은 (Advanced RISC Machine) 약자이 며 1985년 영국 캠브릿지 대학의 연구진들 이 시작한 벤처 기업으로 시작한 회사.
- ARM은 반도체 회사지만 반도체를 직접 만들지 않는 팸리스 회사이며, MCU의 아키텍처 개발만 하는 전문 회사.
- 타 반도체 회사에서 ARM IP(아키텍처)를 갖고 자신만의 반도체를 만드는 회사가 대표적으로 TI, STM, 삼성, 프리스 케일, Nvidia, 퀄컴등이 있음.
- 그리고, ARM는 2016년에 일본 소프트뱅크에서 36조원 전액 현금으로 인수한 회사.
- 통계적으로 전세계 스마트폰의 90% 이상 이 ARM 반도체로 만들어져 있음.
- 스마트폰 뿐만 아니라, 태블릿, 스마트 와 치, 저장장치 컨트롤러, 차량용 메인 컨트롤 러, 무선통신기기 등 다양한 사업군의 기기 에서 ARM 반도체로 사용
- · 다양한 산업군에 사용되고 있는 ARM Architecture의 종류로는 Cortex A, Cortex R, Cortex M 포트폴리오로 갖고 있음.

3) 4차 산업 혁명의 핵심 기술: Linux 기반으로 운영

Cloud Computing

가상화

가상화는 단일한 물리 하드웨어 시스템에서 여러 시뮬레이션 환경이나 전용 리소스를 생성할 수 있는 기술

- 가상화는 하이퍼바이저라 불리는 소프트웨어가 하드웨어에 직접 연결되며 1
 개의 시스템을 가상 머신(VM)이라는 별도의 고유하고 안전한 환경으로 분할.
- 이러한 VM은 하이퍼바이저의 기능을 사용하여 머신의 리소스를 하드웨어에 서 분리한 후 적절하게 배포

클라우드

클라우드는 네트워크 전체에서 확장 가능한 리소스를 추상화하고 풀링 하는 IT 환경

3) 4차 산업 혁명의 핵심 기술: Linux 기반으로 운영

AI Computing

추론

학습

NVIC

NVIDIA Jetson Modules

Nano

TX1

TX2

Xavier

Linux OS

3) 4차 산업 혁명의 핵심 기술: Linux 기반으로 운영

1. 클라우드 비용

2. 대기업의 리눅스 채택

3. 사물인터넷 (Internet of Things)

4. 보안 문제 (Security concerns) 5. 비용 민감도 (Cost Sensitivity)

미래형 운영체제?

<출처 : 티맥스 U2L 전환 >

U2L이란 유닉스 플랫폼 환경(하드웨어, OS, DBMS, 미들웨어, 애플리케이션 등)을 리눅스 환경으로 마이그레이션(Migration)하는 방법론

1) 리눅스 자격증

리눅스 국제공인자격증 LPIC

LPI Linux Essentials

- 내용: 기본 콘솔 편집기를 사용하고 Linux 운영 체제의 프로세스, 프로그램 및 구성 요소를 이해할 수있는 능력 을 보여줍니다.
- 방법: LPI 010 시험에 합격하십시오. 60 개의 객관식 질 문 40 개.
- 비용: \$ 110 USD (시험 1 회, 만료되지 않음). 가격은 지역마다 다를 수 있습니다.

LPIC-1 공인 Linux 관리자

- 내용: 명령 줄을 사용하여 유지 관리 작업을 수행하고 Linux를 실행하는 컴퓨터를 설치 및 구성하며 기본 네 트워킹을 구성 할 수있는 기능.
- 방법: LPI 101 및 102 시험에 합격하십시오. 각 시험은 60 개의 객관식 시험과 90 분 내에 빈칸 채우기 시험입니다.
- 비용: 시험 당 188 달러 (2 시험, 5 년간 유효한 인증).
 가격은 지역마다 다를 수 있습니다.

LPIC-2 공인 Linux 엔지니어

- 내용: 중소 규모의 혼합 네트워크를 관리 할 수있는 기능.
- 방법: LPI 201 및 202 시험에 합격하십시오. 각 시험은 60 개의 객관식 시험과 90 분 내에 빈칸 채우기 시험입니다. LPIC-1 인증을 보유하고 있어야합니다.
- 비용: 시험 당 188 달러 (2 시험, 5 년간 유효한 인증).
 가격은 지역마다 다를 수 있습니다.

운영체제/서버분야 리눅스 마스터

국내 리눅스 시장 활성화에 따라 전문 기술 인력 양성을 위해 마련된 자격시험으로 리눅스 기반 데스크탑 활용 및 서버 운영 능력, 리눅스 시스템의 설계개발 및 관리 능력, 리눅스 기반 네트워크 및 구축 운영 능력 등 평가

○ 리눅스마스터 (Linux Master)

- 리눅스로 운영되는 전세계 80%이상의 스마트폰, 70%이상의 클라우드 서버, 세계 상위의 500대 슈퍼컴퓨터를 비롯해서 5세대 이동통신(5G), 사물인터넷(IoT), 드론, 자율주행차 등 미래성장동력 분야에서 다양한 응용기반기술에 토대가 되는 자격종목
- 리눅스 기반 시스템의 관리능력을 평가하는 1급 자격과 리눅스 운영시스템의 프로그램 사용능력을 평가하는 2급 자격으로 구분
- 리눅스마스터 1, 2급은 NCS(국가직무능력표준) 등을 바탕으로 SW기술자의 체계적 역량 가이드라인 ITSOF(IT분야역량체계)의 IT시스템관리자(L5, L3)로 인정

2. 리눅스 소개

2) UNIX일화

2. 리눅스 소개

2) UNIX / Linux 역사

UNIX 개발

- 1969년 AT&T Bell Labs, Ken Thompson, Dennis Ritchie, Douglas McIlroy, Brian Kernighan(Unics)
- Multics (Multiplexed Information and Computing Service) 프로젝트에서 파생
- Open System : License with source
- 개발 의도
- Portable
- Multi-Tasking
- Multi-User
- Time-Sharing
- Network 와 Security 개념은 없었다.

