2018金融计算

• 教材: Excel与金融工程学(周爱民)

• 实现: Mathematica 11.2

现金流的时间价值

货币的时间价值的度量有两种,一是绝对方式即利息,二是相对方式即利率。

符号	定义
P	本金
r	利率
n	期数

単利

公式:

$$I = P \times r \times n,\tag{1}$$

复利

公式:

$$I = P((1+r)^n - 1) (2)$$

连续复利

公式:

$$I = P(e^{rn} - 1) \tag{3}$$

现值

公式:

$$PV = P(1+r)^{-n} \tag{4}$$

终值

公式:

$$FV = P(1+r)^n \tag{5}$$

固定收益证券定价

符号	定义
PV	债券的价格(现值)
C	每期支付的利息
r	利率
n	期数
M	到期价格
D	麦考雷久期
T	债券的到期时间
y	期间收益率

• 债券定价

公式:

$$PV = \frac{C}{(1+r)^1} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \dots + \frac{C}{(1+r)^n} + \frac{M}{(1+r)^n}$$
 (6)

• 债券久期

公式:

$$D = \sum_{t=1}^{T} \left(\frac{PV_t}{PV} \times r\right) \tag{7}$$

权证定价

符号	定义
C	欧式看涨期权价格
P	欧式看跌期权价格
S	标的资产市场价格
X	期权的执行价格
N	正态分布函数
T-t	距到期时间
r_0	连续复利的年化的无风险利率
r	标的资产的对数收益率
σ	标的资产价格的波动率

• Black-Scholes期权定价

公式:

$$C = S \times N(d_1) - X \times e^{-r(T-t)} \times N(d_2)$$
(8)

$$P = X \times e^{-r(T-t)} \times N(-d_2) - S \times N(-d_1)$$

$$\tag{9}$$

附:

$$r = log(\frac{P_{t+1}}{P_t}) \tag{10}$$

$$\sigma = Var(r) \tag{11}$$

$$d_1 = \frac{ln(\frac{S}{X}) + (r + \frac{\sigma^2}{2})(T - t)}{\sigma\sqrt{T - t}}$$

$$\tag{12}$$

$$d_2 = d_1 - \sigma\sqrt{T - t} \tag{13}$$