平成24年度-平成23年度(10月期) 金沢大学大学院自然科学研究科 博士前期課程入学試験						
		問	題用	紙		
専攻名	電子情報工学項	専攻			The first publication of the second	
試験科目名	専門科目 ②電気磁気学	P.	2/7	7		

注:問1と問2の解答は別々の答案用紙に書くこと.

- 問 1. 半径 a [m] の導体球 A の外側に,内半径 2a [m],外半径 3a [m] の 導体球殻 B が,導体球 A と中心を同じくして配置されている。ここで,a は正の定数であり,球 A の中心からの距離を r [m] とする。導体球 A と導体球殻 B との間 $a \le r \le 2a$ の領域は,誘電率が r の関数 $\varepsilon(r) = (\varepsilon_0 a)/r$ [F/m] で表される誘電体で満たされている。導体球 B を接地し,導体球 A に Q (> 0) [C] の電荷を与えたとき,以下の間に答えよ
 - (1) $0 \le r \le 3a$ の範囲の電界をr の関数として求めよ
 - (2) $0 \le r \le 3a$ の範囲の静電ポテンシャル(電位)をr の関数として求めよ
 - (3) 導体球 A と導体球殻 B とからなるコンデンサの静電容量を求めよ.
 - (4) 導体間の領域における単位体積あたりの電界のエネルギーを求めよ、さらに、導体間領域に蓄えられる全静電エネルギーを求めよ、

問 2. 以下の問について導出の過程を含めて解答せよ。

- (1) 図 2.1 に示すように、磁性体 1 と 2 が平面で境界を形成している。ただし、境界面上の面電流はなく、磁性体 1 と 2 の透磁率はそれぞれ μ_1 , μ_2 [H/m] である。磁性体 1 内の磁束密度 B_1 [T] が境界面の法線となす角度は θ_1 である。一方、磁性体 2 内の磁束密度 B_2 [T] が境界面の法線となす角度は θ_2 である。磁束密度 B_1 , B_2 の境界面に対する法線方向成分および接線方向成分を、それぞれ B_{1n} , B_{2n} , B_{1t} , B_{2t} (単位はすべて [T]) と表す。磁束密度 B [T] に関して $\oint B \cdot dS = 0$ (ガウスの法則) が成り立つことを用いて、境界面上の磁束密度の満たすべき条件を求めよ。
- (2) (1) において、磁界 H [A/m] に関して $\oint H \cdot dl = 0$ (アンペアの法則) が成り立つことを用いて、境界面上の <u>磁束密度</u> の満たすべき条件を求めよ
- (3) (1) において、 θ_1 と θ_2 の間に成り立つ関係式を求めよ
- \bigvee (4) 図 2.2 に示すように,無限の大きさを持った磁性体内(透磁率 μ [H/m])の磁束密度が均一な値 B_0 [T] であるとき,十分に 細長い円柱状の空隙 ((直径 d [m])/(長さ l [m]) \ll 1,透磁率 μ_0 [H/m])が B_0 の向きと平行に空いている。この円柱状空 隙内の磁束密度 B [T] の大きさと方向を求めよ。
- \checkmark (5) (4) と同様な磁性体中に,極めて薄い正方形平板状の空隙 ((厚み g [m])/(辺の長さ l) \ll 1, 透磁率 μ_0) が B_0 の向きに 垂直に空いている。この空隙内の磁束密度 B の大きさと方向を求めよ。

図 2.1 二種類の磁性体が接する境界面

図 2.2 無限の大きさの磁性体 (透磁率 μ) 中の空隙