A Finite Volume Method for Pricing American options on two stocks.

March 1, 2012

Julien BERTON

Université de Marne-la-Vallée, Champs-sur-marne, 77454 Marne-la-Vallée

Robert EYMARD

Université de Marne-la-Vallée, Champs-sur-marne, 77454 Marne-la-Vallée

Keywords: American Options, Obstacle problem, Finite Volume Method.

Premia 14

Introduction

The valuation of American options on two stocks, also called two-colours Rainbow options by practitioners, is an important problem in financial economics since a wide variety of contracts that are traded in the O.T.C. market involve such options (Exchange options, Best-of options). Unlike European options, American options cannot be valued by closed-form formulae, even in the Black-Scholes model, and require the use of numerical methods.

1 American Options on Two Stocks

The price at time 0 of an American option on two stocks in the Black-Scholes setting is given by

$$P_A(0, s_1, s_2) = \sup_{\tau \in \mathcal{T}_0} E\left[e^{-r\tau} \psi(S_{\tau}^1, S_{\tau}^2)\right].$$

This price can be formulated, after a logarithm change of variable, in terms of the solution u to the following variational inequality (see e.g. [10]),

$$\begin{cases}
\max\left(\psi - u, \frac{\partial u}{\partial t} + \frac{\sigma_1^2}{2} \frac{\partial^2 u}{\partial x_1^2} + \frac{\sigma_2^2}{2} \frac{\partial^2 u}{\partial x_2^2} + \alpha_1 \frac{\partial u}{\partial x_1} + \alpha_2 \frac{\partial u}{\partial x_2} + \rho \sigma_1 \sigma_2 \frac{\partial^2 u}{\partial x_1 \partial x_2} - ru\right) = 0, & (t, x_1, x_2) \text{ in } [0, T[\times R^2 u] + \alpha_1 \frac{\partial u}{\partial x_1} + \alpha_2 \frac{\partial u}{\partial x_2} + \rho \sigma_1 \sigma_2 \frac{\partial^2 u}{\partial x_1 \partial x_2} - ru\right) = 0, & (t, x_1, x_2) \text{ in } [0, T[\times R^2 u] + \alpha_1 \frac{\partial u}{\partial x_2} + \alpha_2 \frac{\partial u}{\partial x_2} + \rho \sigma_1 \sigma_2 \frac{\partial^2 u}{\partial x_1 \partial x_2} - ru\right) = 0, & (t, x_1, x_2) \text{ in } [0, T[\times R^2 u] + \alpha_1 \frac{\partial u}{\partial x_2} + \alpha_2 \frac{\partial u}{\partial x_2} + \rho \sigma_1 \sigma_2 \frac{\partial^2 u}{\partial x_1 \partial x_2} - ru\right) = 0, & (t, x_1, x_2) \text{ in } [0, T[\times R^2 u] + \alpha_2 \frac{\partial u}{\partial x_2} + \alpha_2 \frac{\partial u}{\partial x_2} + \alpha_2 \frac{\partial u}{\partial x_2} + \rho \sigma_1 \sigma_2 \frac{\partial^2 u}{\partial x_1 \partial x_2} - ru\right) = 0, & (t, x_1, x_2) \text{ in } [0, T[\times R^2 u] + \alpha_2 \frac{\partial u}{\partial x_2} + \alpha_2 \frac{\partial^2 u}{\partial x_2} - ru\right) = 0, & (t, x_1, x_2) \text{ in } [0, T[\times R^2 u] + \alpha_2 \frac{\partial u}{\partial x_2} - ru\right) = 0, & (t, x_1, x_2) \text{ in } [0, T[\times R^2 u] + \alpha_2 \frac{\partial u}{\partial x_2} + \alpha_2 \frac{\partial u}{\partial x_2}$$

With the time change of variable t' = T - t and the following geometrical transformation:

$$(x,y) \longmapsto (X,Y) = \left(x * \cos(\theta) + y * \sin(\theta), \left(\frac{\alpha}{\beta}\right)^{\frac{1}{2}} (y * \cos(\theta) - x * \sin(\theta))\right)$$

1

with, if $\sigma_1^2 - \sigma_2^2 \neq 0$

$$\begin{cases} \tan(2\theta) = \frac{2\rho\sigma_1\sigma_2}{\sigma_1^2 - \sigma_2^2}, \\ \alpha = \frac{(\sigma_1^2 + \sigma_2^2)\cos(2\theta) + \sigma_1^2 - \sigma_2^2}{4\cos(2\theta)}, \\ \beta = \frac{(\sigma_1^2 + \sigma_2^2)\cos(2\theta) + \sigma_2^2 - \sigma_1^2}{4\cos(2\theta)}. \end{cases}$$

if, $\sigma_1^2 - \sigma_2^2 = 0$,

$$\begin{cases} \theta = \frac{\pi\rho}{4|\rho|}, \\ \alpha = \frac{\sigma_1^2}{2}(1+|\rho|), \\ \beta = \frac{\sigma_1^2}{2}(1-|\rho|). \end{cases}$$

one obtains,

$$\begin{cases}
\min\left(\psi - u, \frac{\partial u}{\partial t} - \alpha \Delta u - \operatorname{grad}(\vec{v}u) + ru\right) = 0, & (t, x_1, x_2) \text{ in } [0, T] \times \mathbb{R}^2 \\
u(0, x_1, x_2) = \psi(e^{x_1}, e^{x_2})
\end{cases}$$
(2)

with,

$$\vec{v} = ((r - \lambda_1 - \frac{\sigma_1^2}{2})\cos(\theta) + (r - \lambda_2 - \frac{\sigma_2^2}{2})\sin(\theta), \left((r - \lambda_2 - \frac{\sigma_2^2}{2})\cos(\theta) - (r - \lambda_1 - \frac{\sigma_1^2}{2})\sin(\theta)\right)(\frac{\alpha}{\beta})^{\frac{1}{2}}).$$

2 The finite volume schemes

Let us consider the problem:

$$\frac{\partial u}{\partial t}(x,t) + \operatorname{div}(u(x,t)\vec{v}) - \alpha \Delta u(x,t) + ru(x,t) \ge 0, \ (x,t) \in \Omega \times]0,T[$$
(3)

$$u(x,t) \ge \psi(x), \ (x,t) \in \Omega \times]0,T[\tag{4}$$

$$\left(\frac{\partial u}{\partial t}(x,t) + \operatorname{div}(u(x,t)\vec{v}) - \alpha\Delta u(x,t) + ru(x,t)\right)(\psi(x) - u(x,t)) = 0, \ (x,t) \in \Omega \times]0,T[\quad (5)$$

$$u(x,0) = \psi(x), \ x \in \Omega \tag{6}$$

under the following assumptions

Assumption 1. $1. d \in \mathbb{N}^*$,

- 2. $\Omega \subset \mathbb{R}^d$ is a bounded open polygonal,
- 3. $\psi \in H_0^1(\Omega) \cap C^2(\bar{\Omega}),$
- 4. $\psi \geq 0$ a.e on Ω ,
- 5. T > 0.

A weak for of the problem (3)-(6) yields the following variational inequality:

$$\left\{ \begin{array}{l} u \in L^2(0,T;H^1_0(\Omega)), \frac{\partial u}{\partial t} \in L^2(\Omega \times]0,T[), u(x,0) = \psi(\Omega), \text{ p.p. } x \in \Omega, satisfying : \\ \int_{\Omega} \left(\frac{\partial u}{\partial t}(x,t) + ru(x,t) + \operatorname{div}(u(x,t)\vec{v}) \right) (v(x,t) - u(x,t)) + \alpha \nabla u(x,t) \nabla (v(x,t) - u(x,t)) dx \geq 0 \\ \text{p.p } t \in]0,T[,\forall v \in H^1(\Omega), v \geq \psi. \end{array} \right.$$

(7)

By [12], there exits a unique solution of (7).

In order to obtain a numerical approximation of the solution of (7), let us now describe the space and time discretization of $\Omega \times]0, T[$.

Definition 1 (Admissible meshes). An admissible mesh of Ω is given by a set τ of open bounded polygonal convex subsets of Ω called control volumes, a family ε of subsets of $\bar{\Omega}$ contained in hyperplanes of \mathbb{R}^d with strictly positive measure, and a family of point $(x_K)_{K\in \tau}$ (the "centers" of control volumes) satisfying the following properties:

- (i) The closure of the union of all control volumes is $\bar{\Omega}$.
- (ii) For any $K \in \tau$, there exits a subset ε_K of ε such that $\partial K = \bigcup_{\sigma \in \varepsilon_K} \bar{\sigma}$. Furthermore, $\varepsilon = \bigcup_{K \in \tau} \varepsilon_K$.
- (iii) For any $(K, L) \in \tau^2$ with $K \neq L$, either the "lenght" (i.e. the (d-1) Lebesgue measure) of $\bar{K} \cap \bar{L}$ is 0 or $\bar{K} \cap \bar{L} = \bar{\sigma}$ for some $\sigma \in \varepsilon$. In the latter case, we shall write $\sigma = K|L$ and $\varepsilon_{int} = \sigma \in \varepsilon, \exists (K|L) \in \tau^2, \sigma = K|L$. For any $K \in \tau$, we shall denote by \mathcal{N}_K the set of boundary control volumes of K, i.e. $\mathcal{N}_K = \{L \in \tau, K|L \in \varepsilon_K\}$.
- (iv) The family of points $(x_K)_{K \in \tau}$ is such that $x_K \in K$ (for all $K \in \tau$) and, if $\sigma = K|L$, it is assumed that the straight line (x_K, x_L) is orthogonal to σ .

For a control volume $K \in \tau$, we will denote by m(K) its measure and $\varepsilon_{ext,K}$ the subset of the edges of K included in the boundary $\partial\Omega$. If $L \in \mathcal{N}_K$, m(K|L) will denote the measure of the edge between K and L, $\tau_{K|L}$ the "transmissibility" through K|L, defined by $\tau_{K|L} = \frac{m(K|L)}{d(x_K,x_L)}$. Similarly, if $\sigma \in \varepsilon_{ext,K}$, we will denote by $m(\sigma)$ its measure and τ_{σ} the "transmissibility" through σ , defined by $\tau_{\sigma} = \frac{m(\sigma)}{d(x_K,\sigma)}$. One denotes $\varepsilon_{ext} = \bigcup_{K \in \tau} \varepsilon_{ext,K}$ an for $\sigma \in \varepsilon_{ext}$, one denotes by K_{σ} the control volume K such that $\sigma \in \varepsilon_{ext,K}$. The size of the mesh τ is defined by

$$size(\tau) = \max_{K \in \tau} diam(K),$$
 (8)

and a geometrical factor, linked with the regularity of the mesh, is defined by

$$reg(\tau) = \max_{K \in \tau} (card\varepsilon_K, \max_{\sigma \in \varepsilon_K} \frac{diam(K)}{d(x_K, \sigma)}). \tag{9}$$

Definition 2 (Time discretization of (0,T)). A time discretization of (0,T) is given by an integer value N and by an increasing sequence of real values $(t^n)_{n\in[0,N+1]}$ with $t^0=0$ and $t^{N+1}=T$. The time step is uniform and defined by $\delta t=t^{n+1}-t^n$, for $n\in[0,N]$.

Definition 3 (Space-time discretization of $\Omega \times (0,T)$). A finite volume discretization \mathcal{D} of $\Omega \times (0,T)$ is a family $\mathcal{D} = (\tau,\varepsilon,(x_K)_{K\in\tau},N,(t^n)_{n\in[0,N]})$, where $\tau,\varepsilon,(x_K)_{K\in\tau}$ is an admissible mesh of Ω in the sense of Definition 1 and $N,(t^n)_{n\in[0,N+1]}$ is a time discretization of (0,T) in the sense of Definition 2. For a given mesh \mathcal{D} , one defines:

$$size(\mathcal{D}) = \max(size(\tau), \delta t),$$

 $req(\mathcal{D}) = req(\tau).$

Let us now introduce the space of piecewise constant functions associated with an admissible mesh and some "discrete H_0^1 " norm for this space. This discrete norm will be used to obtain some estimates on the approximate solution given by a finite volume scheme.

Definition 4. Let Ω be an open bounded polygonal subset of \mathbb{R}^d , and τ an admissible mesh. Define $X(\tau)$ as the set of functions from Ω to \mathbb{R} which are constant over each control volume of the mesh.

Definition 5 (Discrete norms). Let Ω be an open bounded polygonal subset of \mathbb{R}^d , and τ an admissible finite volume mesh in the sense of Definition 1. For $u, v \in X(\tau)$ we define a scalar product by

$$[u, v]_{1, \tau} = \sum_{\sigma \in \varepsilon} T_{sigma} D_{\sigma} u D_{\sigma} v = \sum_{\substack{\sigma \in \varepsilon_{int} \\ \sigma = K \mid L}} T_{KL} (u_L - u_K) (v_L - v_K) + \sum_{\sigma \in \varepsilon_{ext}} T_{K\sigma} u_{K\sigma} v_{K\sigma}$$
(10)

where, for any $\sigma \in \varepsilon$, $T_{\sigma} = \frac{m(\sigma)}{d_{\sigma}}$ and

$$D_{\sigma}u = |u_K u_L| \text{ if } \sigma \in \varepsilon_{int}, \sigma = K|L,$$
$$D_{\sigma}u = |u_K| \text{ if } \sigma \in \varepsilon_{K,ext},$$

where u_K denotes the value taken by u on the control volume K and the sets $\varepsilon, \varepsilon_{int}, \varepsilon_{ext}, \varepsilon_{K,ext}$ are definited in definition 1. We note $\|\cdot\|_{1,\tau}$ the discrete H_0^1 norm associated.

The schemes:

Let \mathcal{D} be a finite volume discretization of $\Omega \times (0,T)$. Let us now define an implicit upwind finite volume scheme, the discrete unknowns are $u=(u_K^{n+1})_{K\in \mathcal{T},\,n\in[0,T]}$ and $\tilde{u}=(\tilde{u}_K^{n+1})_{K\in \mathcal{T},\,n\in[0,T]}$ and verify:

$$u_K^0 = \psi(x_K) = \psi_K,\tag{11}$$

$$u_K^{n+1} = \max\left(\tilde{u}_K^{n+1}, u_K^0\right),\tag{12}$$

$$m_K \left(\tilde{u}_K^{n+1} - u_K^n \right) + \Delta t \sum_{\sigma \in \varepsilon_K} v_{K,\sigma} u_{\sigma,+}^{n+1} + \alpha \Delta t [u^{n+1}, 1_K]_{1,\tau} + r \Delta t m_K u_K^{n+1} = 0,$$
 (13)

with,

$$\vec{v} \in \mathbb{R}^d,$$

$$v_{K,\sigma} = -\int_{\sigma} \vec{v}.\vec{n}_{K\sigma}d\gamma(x) = -\vec{v}.\vec{n}_{K\sigma}m(\sigma).$$

$$u_{\sigma,+}^n = \begin{cases} u_K^n & \text{si } \sigma \in \varepsilon_{int}, \sigma = K|L, v_{K,\sigma} \ge 0 \\ u_L^n & \text{si } \sigma \in \varepsilon_{int}, \sigma = K|L, v_{K,\sigma} < 0 \\ u_K^n & \text{si } \sigma \in \varepsilon_{K,ext}, v_{K,\sigma} \ge 0 \\ 0 & \text{si } \sigma \in \varepsilon_{K,ext}, v_{K,\sigma} < 0 \end{cases}$$

Remark 1. we can also consider a implicit central finite volume scheme:

$$u_K^0 = \psi(x_K) = \psi_K, \tag{14}$$

$$u_K^{n+1} = \max\left(\tilde{u}_K^{n+1}, u_K^0\right),\tag{15}$$

$$m_{K}\left(\tilde{u}_{K}^{n+1} - u_{K}^{n}\right) + \Delta t \left[\sum_{\substack{\sigma \in \varepsilon_{K,int} \\ \sigma = K|L}} v_{KL} \frac{u_{K}^{n+1} + u_{L}^{n+1}}{2} + \sum_{\sigma \in \varepsilon_{K,ext}} v_{K\sigma} \frac{u_{K\sigma}^{n+1}}{2}\right] + \alpha \Delta t [u^{n+1}, 1_{K}]_{1,\tau} + r \Delta t m_{K} u_{K}^{n+1} = 0.$$
(16)

Definition 6 (Approximate solution). Let \mathcal{D} be an admissible discretization of $\Omega \times (0,T)$ in the sense of definition 3. The approximate solution (C^{∞}) in time on $\Omega \times (0,T)$ of (3) - (6) associated to the discretization \mathcal{D} is defined almost everywhere in $\Omega \times (0,T)$ by:

$$u_{\mathcal{D}}(x,t) = \frac{t - n\Delta t}{\Delta t} u_K^{n+1} + \frac{(n+1)\Delta t - t}{\Delta t} u_K^n, \forall (x,t) \in K \times [n\Delta t, (n+1)\Delta t], \forall n = 0 \dots N, \forall K \in \tau.$$

Thanks to this Definition, one gets almost everywhere in $\Omega \times (0,T)$:

$$\frac{\partial u_{\mathcal{D}}(x,t)}{\partial t} = \frac{u_K^{n+1} - u_K^n}{\Delta t}, \forall t \in [n\Delta t, (n+1)\Delta t], \forall x \in K, \forall n = 0 \dots N, \forall K \in \tau.$$

3 Existence of the solution and stability results for the implicit schemes

Lemma 1. Under Assumptions 1, let \mathcal{D} be a discretization of $\Omega \times (0,T)$ in the sense of Definition 3. If $(u_K^n)_{\substack{K \in \mathcal{T} \\ n \in \mathbb{N}}}$ is a solution of the implicit upwind finite volume scheme (11) - (13), then there exists a sequence $(\theta_K^n)_{\substack{n=0...N \\ K \in \mathcal{T}}} \in [0,1]$ such that :

$$u_K^{n+1} - u_K^n = \theta_K^n \left(\tilde{u}_K^{n+1} - u_K^n \right), \forall K \in \tau, \forall n = 0 \dots N.$$

Lemma 2 (Existence and uniqueness). Under Assumptions 1, let \mathcal{D} be a discretization of $\Omega \times (0,T)$ in the sense of Definition 3. Then there exists a unique solution $(u_K^n)_{\substack{K \in \mathcal{T} \\ n \in \mathbb{N}}}$ to the system of equations (11) - (13).

Proposition 1 (L^{∞} and L^{2} estimate). Under Assumptions 1, let \mathcal{D} be a discretization of $\Omega \times (0,T)$ in the sense of Definition 3 and let $(u_{K}^{n})_{\substack{K \in \mathcal{T} \\ n \in [0,N+1]}}$ be the unique solution of the scheme (11) - (13). Then,

$$|u_K^n| \le ||\psi||_{L^{\infty}(\Omega)}, \forall K \in \tau, \forall n \in [0, N+1],$$

and

$$\frac{1}{2} \sum_{K \in \tau} m_K (u_K^{l+1})^2 + \sum_{K \in \tau} m_K \sum_{n=0}^l (u_K^{n+1} - u_K^n)^2 + \alpha \sum_{n=0}^l \Delta t [u^{n+1}, u^{n+1}]_{1, \tau} \le \|\psi\|_{L^{\infty}(\Omega)}^2 m(\Omega) + \alpha T [u^0, u^0]_{1, \tau}, \forall l \le N$$

4 Estimate

Corollary 1. Under Assumptions 1, let $(\mathcal{D}_m)_{m\in\mathbb{N}}$ be sequence of discretization of $\Omega\times(0,T)$ in the sense of Definition 3 such that $\Delta t_m \underset{m\to+\infty}{\longrightarrow} 0$, $size(\tau_m) \underset{m\to+\infty}{\longrightarrow} 0$, $\zeta\in\mathbb{R}$ such that $\zeta\geq reg(D_m) \ \forall m\in\mathbb{N}$, and let $(u_K^n)_{K\in\mathcal{T}}$ be the unique solution of the scheme (11) - (13). Then, there exists $U\in L^2(\Omega\times]0,T[)$, and a subsequence noted $(u_{D_m})_{m\in\mathbb{N}}$ such that $u_{D_m} \underset{m\to+\infty}{\longrightarrow} U$ for the weak topology of $L^2(\Omega\times]0,T[)$.

Proposition 2. Under Assumptions 1, let $(\mathcal{D}_m)_{m\in\mathbb{N}}$ be sequence of discretization of $\Omega\times(0,T)$ in the sense of Definition 3, $\zeta\in\mathbb{R}$ such that $\zeta\geq reg(D)$, and let $(u_K^n)_{\substack{K\in\mathcal{T}\\n\in[0,N+1]}}$ be the unique solution of the scheme (11) - (13). Then, there exists C>0 only depending on ψ , α , Ω , T, \vec{v} , r, such that :

$$\alpha[u^{N+1}, u^{N+1}]_{1, \tau} + \sum_{n=0}^{N} \Delta t \sum_{K \in \tau} m_K \left(\frac{u_K^{n+1} - u_K^n}{\Delta t} \right)^2 \le C(u^0, \psi, \alpha, \Omega, T, \vec{v}, r).$$

Corollary 2. Under Assumptions 1, let $(\mathcal{D}_m)_{m\in\mathbb{N}}$ be sequence of discretization of $\Omega\times(0,T)$ in the sense of Definition 3 such that $\operatorname{size}(\tau_m) \underset{m\to+\infty}{\longrightarrow} 0$, $\zeta\in\mathbb{R}$ such that $\zeta\geq\operatorname{reg}(D)$, and let

 $(u_K^n)_{\substack{K\in\mathcal{T}\\n\in[0,N+1]}} \text{ be the unique solution of the scheme (11) - (13)}. \quad \text{Then, the set } \{\frac{\partial u_D}{\partial t}\}_{N,\,\mathcal{T}} \text{ is borned in } L^2(\Omega\times]0,T[) \text{ and so, there exists } Z\in L^2(\Omega\times]0,T[) \text{ such that, op to a subsequence, } \{\frac{\partial u_{D_m}}{\partial t}\}_{m\in\mathbb{N}} \text{ tends to } Z \text{ in the weak topology of } L^2(\Omega\times]0,T[) \text{ as } m\to+\infty.$

Corollary 3 (Space-translate and Time-Translate estimate). Under Assumptions 1, let \mathcal{D} be a discretization of $\Omega \times (0,T)$ in the sense of Definition 3, $\zeta \in \mathbb{R}$ such that $\zeta \geq reg(D)$ and let u_D the approximate solution in the sense of Definition 6 be prolonged by zero on $\mathbb{R}^{d+1} \setminus \Omega \times]0, T[$. Then there exists C_2 only depending on T, ψ, α, τ, d and C_3 only depending on $T, \psi, \alpha, d, r, \vec{v}$ such that:

$$||u_D(.+\eta,.) - u_D(.,.)||_{L^2(\mathbb{R}^{d+1})}^2 \le C_2|\eta| (|\eta| + 4\text{size}(\tau)), \forall \eta \in \mathbb{R}^d.$$

and

$$||u_D(., +\lambda) - u_D(., .)||_{L^2(\mathbb{R}^{d+1})}^2 \le \lambda C_3, \ \forall \lambda \in]0, T[.$$

With this preceding estimates, one can apply the Riesz-Frechet-Kolmogorov compactness criterion.

5 Compactness

Corollary 4. Under Assumptions 1, let $(\mathcal{D}_m)_{m\in\mathbb{N}}$ be sequence of discretization of $\Omega\times(0,T)$ in the sense of Definition 3 such that $\Delta t_m \underset{m\to+\infty}{\longrightarrow} 0$, $size(\tau_m) \underset{m\to+\infty}{\longrightarrow} 0$, $\zeta\in\mathbb{R}$ such that $\zeta\geq reg(D_m) \ \forall m\in\mathbb{N}$, and let $(u_K^n)_{\substack{K\in\mathcal{T}\\n\in[0,N+1]}}$ be the unique solution of the scheme (11) - (13). Then, up to a subsequence,

$$u_{D_m} \underbrace{\longrightarrow}_{m \to +\infty} U \ dans \ L^2(\Omega \times]0, T[).$$

where U is defined by the Corollary $\mathbf{1}$ and checks $U \in L^2\left(0,T;H^1\left(\Omega\right)\right), U(t,.) = 0$ a.e. on $\partial\Omega$, a.e. $t \in [0,T[, and \frac{\partial U}{\partial t} = Z a.e. on]0,T[\times\Omega].$

6 Convergence

Proposition 3. Under Assumptions 1, let $(\mathcal{D}_m)_{m\in\mathbb{N}}$ be sequence of discretization of $\Omega\times(0,T)$ in the sense of Definition 3 such that $\Delta t_m \underset{m\to+\infty}{\longrightarrow} 0$, $\operatorname{size}(\tau_m) \underset{m\to+\infty}{\longrightarrow} 0$, $\zeta\in\mathbb{R}$ such that $\zeta\geq \operatorname{reg}(D_m) \ \forall m\in\mathbb{N}$, and let $(u_K^n)_{K\in\mathcal{T}}$ be the unique solution of the scheme (11) - (13). Let $(u_{D_m})_{m\in\mathbb{N}}$ the sequence of approximate solution in the sense of the Definition ??, and let U the limit of a subsequence $(u_{D_m})_{m\in\mathbb{N}}$ thanks to Corollary 4. Then, for all function $w\in L^2\left(0,T;H_0^1(\Omega)\right)$, such that $w(t,\cdot)\geq \psi$ a.e. on Ω , the following inequality holds:

$$\int_{\Omega} \frac{\partial U}{\partial t}(x,t)(w(x,t) - U(x,t)) + \alpha \nabla U(x,t) \nabla (w(x,t) - U(x,t)) +$$

$$rU(x,t)(w(x,t) - U(x,t)) + (w(x,t) - U(x,t)) \operatorname{div}(U(x,t)\vec{v}) \operatorname{dx} \ge 0 \ p.p \ t \in]0,T[.$$

7 Numerical Results

7.1 Localization and Stability

We define three localizations.

Lemma 3 (Localization). We consider,

$$P_{Aloc}(0, s_1, s_2) = \sup_{\tau \in \mathcal{T}_{0,T}} E\left[e^{-r\tau \wedge T_{loc}^{0,s}} \psi(S_{\tau \wedge T_{loc}^{0,s}}^1, S_{\tau \wedge T_{loc}^{0,s}}^2)\right],$$

 $\begin{array}{l} \textit{with } T_{loc}^{0,s} = \inf\{t>0, |S_t^1-s^1| < loc, |S_t^2-s^2| < loc\}. \\ Then, \ \textit{if } \psi(s^1,s^2) = (K-\min(s^1,s^2))^+, \end{array}$

$$|P_A(0, s_1, s_2) - P_{Aloc}(0, s_1, s_2)| \le 4K \left[2 - N(\frac{loc - a_1}{\sqrt{T}\sigma_1}) - N(\frac{loc - a_2}{\sqrt{T}\sigma_2}) \right]$$

if $\psi(s^1, s^2) = (\max(s^1, s^2) - K)^+$

$$|P_A(0, s_1, s_2) - P_{Aloc}(0, s_1, s_2)| \le$$

$$8\left[\exp\left(s^{1} + T(|r - \lambda_{1}| + \frac{\sigma_{1}^{2}}{2})\right) + \exp\left(s^{2} + T(|r - \lambda_{2}| + \frac{\sigma_{2}^{2}}{2})\right)\right]\sqrt{(2 - N(\frac{loc - a1}{\sqrt{T}\sigma_{1}}) - N(\frac{loc - a2}{\sqrt{T}\sigma_{2}})}$$
if $\psi(s^{1}, s^{2}) = (s^{1} - \mu s^{2})^{+}$,

$$|P_A(0, s_1, s_2) - P_{Aloc}(0, s_1, s_2)| \le 8 \exp\left(s^1 + T(|r - \lambda_1| + \frac{\sigma_1^2}{2})\right) \sqrt{(2 - N(\frac{loc - a1}{\sqrt{T}\sigma_1}) - N(\frac{loc - a2}{\sqrt{T}\sigma_2}))}$$

where, $ai = T|r_i - \lambda_i - \frac{\sigma_i^2}{2}|$ and N is the repartition function of a standard normal distribution.

One uses the following polynomial approximation for the repartition function of a standard normal distribution :

$$N(x) \approx 1 - \frac{1}{\sqrt{2\Pi}} \exp\left(-\frac{x^2}{2}\right) (b_1 t + b_2 t^2 + b_3 t^3 + b_4 t^4 + b_5 t^5), \text{ si } x > 0,$$

with

$$\begin{array}{rcl} p & = & 0.2316419 \\ b_1 & = & 0.319381530 \\ b_2 & = & -0.356563782 \\ b_3 & = & 1.781477937 \\ b_4 & = & -1.821255978 \\ b_5 & = & 1.330274429 \\ t & = & \frac{1}{1+px}. \end{array}$$

Explicit central finit volume scheme:

$$u_K^0 = \psi_K, \tag{17}$$

$$u_K^{n+1} = \max\left(\tilde{u}_K^{n+1}, u_K^0\right),\tag{18}$$

$$m_K \left(\tilde{u}_K^{n+1} - u_K^n \right) + \Delta t \sum_{L \in N_K} \left(\frac{u_K^n + u_L^n}{2} \right) \underbrace{\int_{K|L} -\vec{v}.\vec{n}_{KL} d\gamma(x)}_{v_{KL}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac{u_K^n}{2} \int_{\sigma} -\vec{v}.\vec{n}_{K\sigma} d\gamma(x)}_{k_{K\sigma}} + \Delta t \underbrace{\sum_{\sigma \in \varepsilon_{K,ext}} \frac$$

$$\alpha \Delta t[u^n, 1_K]_{1, \tau} + r \Delta t m_K u_K^n = 0.$$

Explicit upwind finite volume scheme

$$u_K^0 = \psi_K, \tag{20}$$

$$u_K^{n+1} = \max\left(\tilde{u}_K^{n+1}, u_K^0\right), \tag{21}$$

$$m_K \left(\tilde{u}_K^{n+1} - u_K^n \right) + \Delta t \sum_{\sigma \in \varepsilon_K} v_{K\sigma} u_{\sigma,+}^n + \alpha \Delta t [u^n, 1_K]_{1,\tau} + r \Delta t m_K u_K^n = 0.$$
 (22)

with,

$$\vec{v} = ((r - \lambda_1 - \frac{\sigma_1^2}{2})\cos(\theta) + (r - \lambda_2 - \frac{\sigma_2^2}{2})\sin(\theta), \left((r - \lambda_2 - \frac{\sigma_2^2}{2})\cos(\theta) - (r - \lambda_1 - \frac{\sigma_1^2}{2})\sin(\theta)\right)(\frac{\alpha}{\beta})^{\frac{1}{2}}).$$

Lemma 4 (L^{∞} stability). Let \mathcal{D} be an admissible discretization of $\Omega \times (0,T)$ in the sense of definition 3.

Let $(u_K^n)_{K,n}$ be the unique solution of the explicit central scheme (17) - (19).

If,
$$\Delta t \leq \frac{m_K}{m_K \frac{r}{2} + \frac{\alpha}{2} \sum_{\sigma \in \varepsilon_{K,ext}} T_{K\sigma} + \sum_{L \in N_K} \left(\alpha T_{KL} + \frac{|v_{KL}|}{4} \right)}$$
, $\forall K \in \tau$ and if $T_{K\sigma} \geq \frac{1}{2\alpha} \left| \int_{\sigma} -\vec{v} \cdot \vec{n_{K\sigma}} d\gamma(x) \right|$, $\forall K \in \tau$, $\forall \sigma \in \varepsilon_{K}$, then:

$$||u_{\tau}^{n+1}||_{L^{\infty}} \le ||u_{\tau}^{0}||_{L^{\infty}}, \forall n = 0 \dots N.$$

Let $(u_K^n)_{K,n}$ be the unique solution of the explicit upwind scheme (20) - (22). If $\Delta t \leq \frac{m_K}{rm_K + (\sum_{\sigma \in \varepsilon_K} (v_{K\sigma})^+ + \alpha T_{K\sigma})}, \forall K \in \tau$, then:

$$||u_{\tau}^{n+1}||_{L^{\infty}} \le ||u_{\tau}^{0}||_{L^{\infty}}, \forall n = 0 \dots N.$$

7.2 Pratical implementation and results

We choose to evaluate the American Put option on the minimum of two underlying assets with payoff $\psi(S^1,S^2)=\left(K-\min(S^1,S^2)\right)^+$. We assume that the initial values of the stock prices are $s^1=100,s^2=100$, the volatility $\sigma_1=0.2,\sigma_2=0.2$, the interest rate $r=\log(1.05)$, the continuous dividend rates $\delta_1=0,\delta_2=0$, the exercice price K=100, the maturity T=1 and the correlation $\rho=0$. We take as the "true" reference price, the one issued of the multinomial BEG tree-method with 3000 step and compare it wich the following algrithm:

- 1. the explicit DPEXP algorithm
- 2. the DPADI algorithm
- 3. the BEG algorithm
- 4. the explicit finite volume algorithm
- 5. the explicit finite volume algorithm with a smaller time step

For the last algorithm, we multiply by 0.6 the time step obtained by the stability condition. All computation was performed on a PC Pentium IV 2.4 GH computer with 512 Mb of RAM. The "centers" of control volumes are defined as follow:

$$x_K = x[i * N + j] = (v1 - loc + i * h, v2 - loc + j * g), \forall (i, j) \in [0, N]^2$$

$N \times M$	DP-EXP	DP-ADI	BEG	FV-EXP	FV-EXPdt*0.6	TRUE
100×100	10.3065;1s	10.2947;1s	10.2974;1s	10.3196;1s	10.3081;1s	10.3080
200×200	10.3054;6s	10.3031;2s	10.3030;1s	10.3108;3s	10.3095;4s	10.3080
300×300	10.3073;32s	10.3050;7s	10.3048;1s	10.3098;11s	10.3084;19s	10.3080
400×400	10.3082;100s	10.3058;18s	10.3057;2s	10.3085;35s	10.3082;59s	10.3080

Table 1: American Put option on the minimum of two underlying assets

where the space steps are defined by $h = \frac{2*loc}{N}$ and $g = \frac{2*loc*\sqrt{\frac{\alpha}{\beta}}}{N}$. The control volume K is the rectangle centered in x_K with the measure m(K) = hg.

It appears that the numerical FV-EXP method are finally faster than DP-EXP and slower than DP-ADI or BEG.

References

- [1] Brézis, Haïm, Analyse fonctionnelle (Théorie et applications)., Dunod, Paris, 1999.
- [2] Crandall M.G,Lions P.L, Viscosity solutions of Hamilton-Jacobi Equations, Trans. A.M.S.277,1992
- [3] Dautray, Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Tome 8., Masson, Paris, 1988.
- [4] R.EYMARD, T.GALLOUËT, M.GUTNIC, R.HERBIN, D.HILHORST, Approximation by the finite volume method of an elliptic-parabolic equation arising in environmental studies., Mathematical Models and Methods in Applied Sciences (M3AS), vol. 11, n 9 (2001) 1505-1528.
- [5] R.EYMARD, T.GALLOUËT, R.HERBIN, Finite Volume Methods., Handbook of Numerical Analysis, Ph. Ciarlet JL. Lions eds, Elsevier, 7, p. 715-1022 (2000).
- [6] R.EYMARD, T.GALLOUËT, R.HERBIN, Convergence of finite volume schemmes for semilinear convection diffusion equations., Numerische Mathematik, 82, 90-116, 1999.
- [7] R.EYMARD, T.GALLOUËT, R.HERBIN, Finite Volume approximation of elliptic probles and convergence of an approximate gradient., Appl. Num. Math., 37/1-2, pp.31-53, 2001.
- [8] R.EYMARD, T.GALLOUËT, D.HILHORST, Y.NAIT SLIMANE, Finite volumes and non linear diffusion equations., RAIRO Model. Math. Anal. Numer. 32(6), 747-761 (1998).
- [9] R.HERBIN, E.MARCHAND, Finite volume approximation of a class of variational inequalities, IMA Journal of Numerical Analysis (2001)21, 553-585.
- [10] Jaillet, Lamberton, Lapeyre, Variational inequalities and the pricing of American options, Acta Appl.Math.21,1990. 1
- [11] Kushner, Probality methods for Approximation in Stochastic Control and for Elliptic Equations, Academic Press, 1977
- [12] Ladyzhenskaya, Solonnikov, ural'tseva, Linear and quasi-linear equations of parabolic type. 3
- [13] Lamberton, Lapeyre, Introduction au calcul stochastique appliqué à la finance, Ellipses, 1997.