[CS304] Introduction to Cryptography and Network Security

Course Instructor: Dr. Dibyendu Roy Winter 2022-2023 Scribed by: Pallikonda Sai Teja Lecture (Week 05)

Student ID: 202011052

1 Group

• Group \rightarrow (G,*) G is closed under *

 $\alpha \in G$

 $\alpha^0, \alpha^1, \alpha^2, \dots \in G$

 $\alpha^0 \to identity$

for a $b \in G$

 $\exists i \geq \text{such that } b = \alpha^i \Rightarrow G \subseteq \langle \alpha \rangle$

then α is called the generator of (G, *)

• $(G, *) = <\alpha>$

• A Group G is cyclic if there is an element $\alpha \in G$, such that for every $b \in G$ there is an integer i with $b = \alpha^i$

This α is called the generator of G.

 $G = <\alpha>$

|G|: finite • (G, *)

 $a \in G o(a) = m, a^m = e$ $e = a^0, a^1, a^2, ..., a^{m-1}in G$ $H = \{a^0, a^1, a^2, ..., a^{m-1}\}\$

1. $H \subseteq G$

2. H is a group under *

if $x, y \in H$ $\Rightarrow x * y \in H$

for every $a^i \in H \exists$ the inverse of a^i

H is a group with *.

H is a sub group of G.

 $H = \langle a \rangle$

H is a cyclic sub group of G.

 $|H| = |\langle a \rangle| \rightarrow \text{order of cyclic subgroup} = O(a)$

2 Lagrange Theorem

If G is a finite group.

H is a sub group of G then |H| divides |G|.

|S| is cardinality of set S

• G is a finite group

 $a \in G$

O(a) divides |G|. $rightarrow a \in G$ $\mathbf{H} = \{\mathbf{e}{=}a^0, a^1, a^2, .., a^{O(a)-1}\}$ H is a sub group of G.

• If the order of $a \in G$ is t then

$$O(a) = \frac{t}{\gcd(t,k)}$$

If gcd(t, k) = 1then $O(a^k) = t = O(a)$ $\Rightarrow |\langle a^k \rangle| = |\langle a \rangle|$ $x \in \langle a^k \rangle$ \Rightarrow x = $(a^k)^i = a^{ki} \in \langle a \rangle$ $\langle a^k \rangle \subseteq \langle a \rangle$ $< a^k > = < a >$ a^k is also a generator of $\langle a \rangle$

(Since $|\langle a^k \rangle| = |\langle a \rangle|$)

• $Z^*_{19} = \{ x \mid \gcd(x, 19) = 1, 1 \le x \le 18 \}$ $*_{19}$: multiplication modulo 19.

Find the generator of $(Z^*_{19}, *_{19})$ $<2>= \{1,\,2,\,4,\,8,\,16,\,13,\,7,\,14,\,9,\,18,\,17,\,15,\,11,\,3,\,6,\,12,\,5,\,10\} = Z^*{}_{19}$ $\langle 2^5 \rangle = \langle 13 \rangle$ is also a generator of Z^*_{19}

3 Ring

A ring $(R, +_R, *_R)$ consists of one set R with two binary operations arbitrarily denoted by $+_R$ (addition) and *R (multiplication) on R satisfing the following properties.

- 1. $(R, +_R)$ is a abelian group with the identity element 0_R .
- 2. The operation $*_R$) is associate i.e.,

$$a *_{R}(b *_{R}c) = (a *_{R}b) *_{R}c \ \forall \ a, b, c \in R$$

3. There is a multiplication identity denoted by 1_R with $1_R \neq 0_R$ such that

$$1_{\mathsf{R}} *_{\mathsf{R}} a = a *_{\mathsf{R}} 1_{\mathsf{R}} = a \ \forall \ a \in R$$

4. The operation $*_R$ is distributive over $+_R$ i.e.,

$$(b + {}_{R}c) * {}_{R}a = (b * {}_{R}a) + {}_{R}(c * {}_{R}a)$$

$$a*_{\mathbf{R}}(b+_{\mathbf{R}}c) = (a*_{\mathbf{R}}b) +_{\mathbf{R}}(a*_{\mathbf{R}}c)$$

Example: $(Z, +, .) \rightarrow Ring$

 \Rightarrow a.b = b.a \forall a, b \in Z commutative ring

An element 'a' of a ring R is called unit or an invertable elements if there is an element $b \in R$ such that $a *_R b = 1_R$

- The set of units in a Ring R forms a group under multiplication operation.
- \Rightarrow This is known as group of units of R.

4 Field

A field is a non-empty set F together with two binary operations +(addition) and *(multiplication) for which the following properties are satisfied.

- 1. (F, +) is an abelian group.
- 2. If 0_F denotes the additive identity element of (F,+) then $(F \setminus \{0_F\}, *)$ is a commutative abelian group.
- 3. \forall a, b, c \in F we have

$$a * (b + c) = (a * b) + (a * c)$$

Example: $(Z_P,+_P,*_P) \rightarrow Field$?

 $P \rightarrow Prime$

- 1. $Z_P = \{0,1,2,...,P-1\}$
- 2. It is a group under first operation.
- 3. 0 is the identity, if $x \in Z_P$ then $\exists P-x$ such that $x +_P (P-x) = 0$.
- 4. The operation is commutative.
- 5. $(\{Z_{P-0}\}, *)$ is a commutative group.
- 6. \exists multiplicative identity is "1".
- 7. $x \in \{Z_{P}-0\} \exists y \in \{Z_{P}-0\} \text{ such that } x *_{P} y = 1, \text{ because } (x, p) = 1.$
- 8. It is a abelian group.

$$x * ymodp = y * xmodp.$$

9. It is distributive

$$a *_{\mathbf{P}}(b +_{\mathbf{p}}c = (a *_{\mathbf{p}}b) +_{\mathbf{p}}(a *_{\mathbf{p}}c)$$

 $(Z_{\mathbf{P}}, +_{\mathbf{P}}, *_{\mathbf{P}}) \rightarrow Field$

5 Field Extension

Suppose k_2 is a field with addition (+) and multiplication (*). Suppose $k_1 \subseteq k_2$ is closed under both these operations such that k_1 itself is a field with the restriction of + and * the set k_1 .

$$\begin{array}{l} \bullet \ F \to \mathrm{field} \ (F,\,+,\,*) \\ F(x) = \{a_0 \,+\, a_1 x \,+\, ... | \ a_i \in F\} \\ + \to \mathrm{Polynomial} \ \mathrm{addition} \\ * \to \mathrm{Polynomial} \ \mathrm{multiplication} \\ P_1(x) \in F(x), \, P_1(x) = a_0 \,+\, a_1 x \,+\, a_2 x^2 \\ P_2(x) \in F(x), \, P_2(x) = b_0 \,+\, b_1 x \,+\, b_2 x^2 \\ P_1(x) \,+\, P_2(x) = (a_0 \,+\, a_1 x \,+\, a_2 x^2) \,+\, (b_0 \,+\, b_1 x \,+\, b_2 x^2) \\ P_1(x) \,+\, P_2(x) = (a_0 \,+\, b_0) \,+\, (a_1 \,+\, b_1) x \,+\, (a_2 \,+\, b_2) x^2 \end{array}$$

 $(a_i + b_i) \rightarrow Field \ addition.$ additive operation on F as $(a_i, b_i) \in F$.

$$\rightarrow (a_0 + a_1 x + a_2 x^2 + ... + a_{n-1} x^{n-1}) * (b_0 + b_1 x + b_2 x^2 + ... + b_{n-1} x^{n-1})$$

 $= a_0b_0 + (a_0b_1 + a_1b_0)x + + (a_{n-1}b_{n-1})x^{2n-2}$ $a_i * b_i \rightarrow \text{Field multiplication in F as } a_i, b_i \in \text{F.}$ addition between the elements has to be done in the field.

- (F[x], +, *) is a polynomial ring.
 - 1. (F[x], +) must be a abelian group. $a_0 + a_1x + a_2x^2$ $a_i \in F$ $+ b_0 + b_1x + b_2x^2$ $a_i + b_i = 0$ $(a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 = 0$
 - 2. * is associative.
 - 3. 1 is the multiplicative identity.
 - 4. * is distributive over +.

$$\begin{split} \bullet \ & F_2 = \{0,\!1\} \\ & F_2[x] = \{a_0 + a_1x + a_2x^2 + ... \mid a_i \in F_2\} \\ & p(x) = x + 1 \in F_2[x] \\ & q(x) = x^2 + x + 1 \in F_2[x] \\ & p(x) + q(x) = (x + 1) + (x^2 + x + 1) = x^2 + (1 + 1)x + (1 + 1) = x^2 \ p(x) * q(x) = (x + 1)*(x^2 + x + 1) \\ & = (x^3 + x^2 + x) + (x^2 + x + 1) = x^3 + (1 + 1)x^2 + (1 + 1)x + 1 = x^3 + 1. \end{split}$$

• A polynomial $P(x) \in F(x)$ of degree $n \ (n >= 1)$ is called irreduciable if it cannot be written in the form of $P_1(x) * P_2(x)$ with $P_1(x), P_2(x) \in F[x]$ and degree of $P_1(x), P_2(x)$ must be >= 1.

$$P(x) \neq P_1(x) * P_2(x)$$

- $x^2 + 1 \in F(x)$ $(x+1)*(x+1) = x^2 + (1+1)x + 1 = x^2 + 1$. $(x^2 + 1) = (x+1)*(x+1)$ in $F_2[x]$ $x^2 + 1$ is reducable in $F_2[x]$
- I = $\langle P(x) \rangle = \{Q(x).P(x) \mid Q(x) \in F(x)\}\$ I \rightarrow ideal generated by P(x).
- $f[x] / < P(x) > = \{g(x) \% P(x) | g(x) \in F(x)\}$ $Q(x) \in F[1]$ Q(x) = d(x) * P(x) * r(x) $r(x) \in F[x] / < P(x) >$ if P(x) is irreducable polynomial then (F[x] / < P(x) >, +, *) becomes field. Example: $x^2 + x + 1 \in F_2[x], F_2 = \{0, 1\}$ $P(x) = x^2 + x + 1$ is irreducible
- $$\begin{split} \bullet \ & F_2[x]/< x^2 + x + 1 > \\ & q(x) = d(x).p(x) + r(x) \\ & deg(r(x)) < 2 \\ & r(x) = \{0, 1, x, x{+}1\} \end{split}$$

•
$$x^2 + x + 1$$
) $x^2 + 1$ (1 $x^2 + x + 1$ $x^2 + x + 1$

•
$$F_2[x]$$
 / $< x^2 + x + 1 > x^2 + x + 1 = 0$
 α is the root of $x^2 + x + 1 = 0$
 $\alpha^2 + \alpha + 1 = 0$
 $\Rightarrow \alpha^2 = \alpha + 1$
 $< \alpha > = \{0, 1 = \alpha^0, \alpha^1, \alpha^2 = \alpha + 1\} \Rightarrow O(\alpha) = 2$
 $\Rightarrow \{0, 1, \alpha, \alpha + 1\}$
 $x^2 + x + 1$ is a primitive polynomial.

Example:
$$F_2[x] / < x^3 + x + 1 >$$
= $\{0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1\}$
 $\alpha^3 + \alpha + 1 = 0$
 $\alpha^3 = \alpha + 1$
 $\{0, \alpha, \alpha^2, \alpha^3 = \alpha + 1, \alpha^2 + \alpha, \alpha^2 + \alpha + 1, \alpha^2 + 1, 1\}$
 $x^3 + x + 1$ is a primitive polynomial.
 $x^2 * (x^2 + x + 1) = x^4 + x^3 + x^2$
= $x(x + 1) + (x + 1) + x^2$
= $x^2 + x + x + 1 + x^2$
= 1

6 Advanced Encryption Standard (AES)

It is standardized by NISP.

 \Rightarrow Rijndael

winner of Advanced Encryption Standard competition.

 \Rightarrow Winner of competition was named as AES.

 $AES \rightarrow i$) It is iterated block cipher

ii) It is based on SPN

AES-128

- i) Block size = 128 bit.
- ii) Number fo rounds = 10.
- iii) Secret key size = 128 bit.

AES-192

- i) Block size = 128 bit.
- ii) Number of rounds = 12.

iii) Secret key size = 192 bit.

AES-256

- i) Block size = 128 bit.
- ii) Number of rounds = 14.
- iii) Secret key size = 256 bit.

• AES-128

