2013 AUMC Solutions

1. An integral.

The value is $e^2 + 2 - 2/e$. We have

$$\int_{1/e}^{e^2} |\ln x| dx = \int_{1/e}^{1} (-\ln x) dx + \int_{1}^{e^2} (\ln x) dx$$

$$= (-x \ln x + x) \Big|_{1/e}^{1} + (x \ln x - x) \Big|_{1}^{e^2}$$

$$= 1 - \left(-\frac{1}{e} (-1) + \frac{1}{e} \right) + (2e^2 - e^2) - (-1)$$

$$= e^2 + 2 - 2/e.$$

2. An arithmetic progression of 2013 terms.

Let d be the common difference in the arithmetic progression. Rationalize denominators to get

$$\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \dots + \frac{1}{\sqrt{a_{2012}} + \sqrt{a_{2013}}}$$

$$= \frac{\sqrt{a_1} - \sqrt{a_2}}{a_1 - a_2} + \frac{\sqrt{a_2} - \sqrt{a_3}}{a_2 - a_3} + \dots + \frac{\sqrt{a_{2012}} - \sqrt{a_{2013}}}{a_{2012} - a_{2013}}$$

$$= -\frac{1}{d}(\sqrt{a_1} - \sqrt{a_2} + \sqrt{a_2} - \sqrt{a_3} + \dots + \sqrt{a_{2012}} - \sqrt{a_{2013}})$$

$$= -\frac{1}{d}(\sqrt{a_1} - \sqrt{a_{2013}}) = -\frac{1}{d}\frac{a_1 - a_{2013}}{\sqrt{a_1} + \sqrt{a_{2013}}}$$

$$= -\frac{1}{d}\frac{-2012d}{\sqrt{a_{2012}} + \sqrt{a_{2013}}} = \frac{2012}{\sqrt{a_1} + \sqrt{a_{2013}}}.$$

3. Length of a crease.

We'll show that $|EF| = 15\sqrt{5}/2|$. Let x = |EF| and y = |BF| = |B'F|. Let G be the point where the line through E parallel to AD crosses CD. Then |GE| = |AD| = 12, |EB'| = |EB| = 15, so |GB'| = 9 by the Pythagorean Theorem. Then |B'C| = 6, and from the right triangle B'CF, $6^2 + (12 - y)^2 = y^2$, giving

y = 15/2. Finally, from the right triangle EBF we get $x^2 = 15^2 + (15/2)^2$, and $x = 15\sqrt{5}/2$.

page 1 of 3

4. Roots are three consecutive integers.

They are (p,q) = (12,60) and (-12,-60). If the roots are n-1, n and n+1, then

$$47 = (n-1)n + (n-1)(n+1) + n(n+1) = 3n^2 - 1,$$

so $n^2 = 16$ and $n = \pm 4$. Then q = (n-1)n(n+1) and p = (n-1) + n + (n+1) = 3n, so with n = 4 we get (p, q) = (12, 60), and with n = -4, (p, q) = (-12, -60).

5. A polynomial of degree 2013.

The remainder is $x^2 + 4x$. We know that the remainder is a polynomial of the form $ax^2 + bx + c$, so we may write

$$x^{2013} + x^{1013} + x^{513} + x^{113} + x^2 = (x^3 - x)Q(x) + ax^2 + bx + c$$
 (1)

for some partial quotient Q(x) and remainder $ax^2 + bx + c$. Substituting successively x = 1, x = 0 and x = -1 into (1), we obtain the three equations 5 = a + b + c, 0 = c, and -3 = a - b + c. The solution of this system is a = 1, b = 4, c = 0, so our remainder is as claimed.

6. Integer values of a quotient.

(a) There are $\boxed{14}$ such integers, and (b) the largest is $\boxed{n=871}$. By long division we find that

$$\frac{(n-1)^2}{n+29} = n - 31 + \frac{900}{n+29}.$$

This is an integer if, and only if, n + 29 is a divisor of 900. Now, $900 = 2^2 3^2 5^2$, which has $3^3 = 27$ divisors (namely, $2^r 3^s 5^t$ with r, s, t chosen from $\{0, 1, 2\}$). As n is required to be positive, $n + 29 \ge 30$, and $30 \cdot 30 = 900$, so of the 27 divisors, 13 are smaller than 30 and 13 are larger. Thus there are 14 positive integers n such that n + 29 is a divisor of 900. The largest is the one for which n + 29 = 900, namely n = 871.

7. A quotient of tangents.

We show that $\left[\frac{\tan a}{\tan b} = \frac{m}{n}\right]$. We have

$$\frac{\sin(a+b)}{\sin(a-b)} = \frac{\sin a \cos b + \cos a \sin b}{\sin a \cos b - \cos a \sin b} = \frac{\frac{\sin a \cos b}{\cos a \sin b} + 1}{\frac{\sin a \cos b}{\cos a \sin b} - 1} = \frac{u+1}{u-1}$$

where $u = \frac{\tan a}{\tan b}$. Then

$$1 + \frac{2n}{m-n} = \frac{m+n}{m-n} = \frac{u+1}{u-1} = 1 + \frac{2}{u-1},$$

so that $\frac{2}{u-1} = \frac{2n}{m-n}$, and thus $u-1 = \frac{m-n}{n} = \frac{m}{n} - 1$, and $\frac{\tan a}{\tan b} = u = \frac{m}{n}$.

8. m+n=2013.

No such integer exists. The fact that a has n digits means that $10^{n-1} \le a < 10^n$. Then $10^{3n-3} \le a^3 < 10^{3n}$, so $m \in \{3n-2, 3n-1, 3n\}$ and $m+n \in \{4n-2, 4n-1, 4n\}$. Thus m+n is 2, 3 or 0 mod 4. But 2013 is 1 mod 4, so m+n cannot be 2013.

9. Consecutive positive terms.

The largest possible number of consecutive positive terms is $\boxed{5}$. The sequence starting 1,2,3,1,1 has 5 consecutive positive terms. We show that there cannot be six consecutive positive terms. It suffices to show that the first six terms cannot all be positive. We have $a_{n+2}=a_n-a_{n-1}$. If $a_4\leq a_3$, then $a_6=a_4-a_3\leq 0$. If $a_4>a_3$ and a_1 and a_2 are positive, then $a_2-a_1=a_4>a_3$, so $a_3< a_2-a_1< a_2$, and $a_5=a_3-a_2<0$. Thus at least one of any six consecutive terms is non-positive.

10. Rational or irrational?

We show that N is rational by showing that the sequence of final digits is periodic; i.e., that for some k, T_{n+k} and T_n always have the same final digit. Consider that

$$T_{n+k} - T_n = \frac{(n+k)(n+k+1)}{2} - \frac{n(n+1)}{2}$$
$$= \frac{n^2 + (2k+1)n + k(k+1) - n^2 - n}{2} = \frac{2kn + k(k+1)}{2}.$$

If k = 20 we have $T_{n+20} - T_n = 20n + 210 \equiv 0 \pmod{10}$, so T_{n+20} and T_n always have the same final digit. Thus the decimal expansion of N is repeating, and N is rational.