CA2 ØN Z 1 -75 E2225

Bulk power facilities SW Ontario

Submission to the Royal Commission on Electric Power Planning December 1978

Covernment
Publications

CA2PN

Z 1

- 75-E222K

Requirement for Additional Bulk Power
Facilities in Southwestern Ontario

Submission of ONTARIO HYDRO

to the

Royal Commission
on Electric Power Planning

Table of Contents

1 2			Page	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	Synopsis			
	1.0 (a) (b) (c) (d)	Introduction Incorporation of Bruce GS B Load Supply Interconnections Incorporation of Future Generating Stations	2 2 2 3 3	
	2.0	Requirement for New Bulk Power Transmission from Bruce	4	
	2.1	Approval of Bruce GS B	4	
	2.2	Description of Existing and Approved Transmission Facilities from Bruce Nuclear Power Development		
	2.3	Capability of Existing and Approved Facilities	4	
	3.0	Supply to Southwestern Ontario	6	
28	3.1	Planning to Meet Future Loads	6	
30 31 32 33	3.2	Load Growth in Southwestern Ontario	6	
	3.2.1	General	6	
35	3.2.2	The Load Forecast	7	
36	3.2.3	The SRI-CEA Econometric Model	8	
38	3.2.3.1	General	8	
40	3.2.3.2	Model Structure	9	
42 43 44 45	3.2.3.3	Scenarios Considered	10	

Table of	Contents Cont'd	Page
3.3	Existing Supply Facilities	11
3.3.1	Kitchener Area Bulk Power Supply Facilities	11
3.3.2	London-Sarnia-Windsor Area Bulk Power Supply Facilities	12
3.3.2.1	Transmission Facilities	12
3.3.2.2	Thermal Generating Stations	12
3.3.2.3	Combustion Turbine Generating Sets	12
3.3.2.4	Interconnections with U.S. Utilities	12
3.3.3	Stop-Gap Measures	13
3.3.3.1	General	13
3.3.3.2	Transmission	13
(a)	High Temperature Operation	13
(b)	Replacement of Conductors	14
(c)	Summary of Planned Capacity Increases on Existing 230 kV Transmission Lines in Southwestern Ontario	14
3.4	Capability of Existing System (Including Stop-Gap Measures)	15
3.5	Effect of System Power and Energy Losses	17
3.6	Static Capacitor Requirements	17
4.0	Conclusions	10000
4.0	Conclusions	18
	ii	

Appendices

- A. Copy of order in Council Document OC-2065/78, dated July 12, 1978.
- B. Chapter III and Tables B-7 and B-8 from the SRI Report to CEA, entitled "Long Range Electricity Forecast for Canada-A Methodology", dated November, 1978.
- C. Results from SRI-CEA Model Study in which the Growth Rates of Gross Domestic Provincial Product were varied.

Figures

- 1. Southwestern Ontario Operating and Load Areas.
- Southwestern Ontario---Major Existing and Approved 230 kV & 500 kV Transmission Facilities.
- 3. Technical Details of Existing and Approved Facilities for Incorporation of Bruce GS 'A'.
- 4A. Essex Operating Area Actual and Forecast Sum of Customer December Peak Loads by Classification.
- 4B. Kent Operating Area Actual and Forecast Sum of Customer December Peak Loads by Classification.
- 4C. Lambton Operating Area Actual and Forecast Sum of Customer December Peak Loads by Classification.
- 4D. Strathroy Operating Area Actual and Forecast Sum of Customer December Peak Loads by Classification.
- 4E. East Elgin Operating Area Actual and Forecast Sum of Customer December Peak Loads by Classification.
- 4F. Beachville Operating Area Actual and Forecast Sum of Customer December Peak Loads by Classification.
- 4G. Clinton Operating Area Actual aand Forecast Sum of Customer December Peak Loads by Classification.
- 4H. Brantford Operating Area Actual and Forecast Sum of Customer December Peak Loads by Classification.
- 41. Guelph Operating Area Actual and Forecast Sum of Customer December Peak Loads by Classification.

16

1.7 18

- 19 20 21 22
- 23 24 25 26 27

28

- 29 30 31 32 33
- 35 36 37 38 39 40

34

41

55

48

- Listowel Operating Area Actual and Forecast Sum of Customer 4J. December Peak Loads by Classification.
- Walkerton Operating Area Actual and Forecast Sum of Customer 4K. December Peak Loads by Classification.
- Orangeville Operating Area Actual and Forecast Sum of 4L. Customer December Peak Loads by Classification.
- Alliston Operating Area Actual and Forecast Sum of Customer 4M. December Peak Loads by Classification.
- Owen Sound Operating Area Actual and Forecast Sum of 4N. Customer December Peak Loads by Classification.
- Simcoe Operating Area Actual and Forecast Sum of December 40. Peak Loads by Classification.
- Stayner Operating Area Actual and Forecast Sum of Customer December Peak Loads by Classification.
- 5. Operating Areas in Southwestern Ontario Actual and Forecast December Peak Loads.
- 6. Forecast of Southwestern Ontario Critical Area Station Loads Coincident with January Peak.
- 7. Southwestern Ontario Critical Area Load Growth.
- 8. Conceptual Framework for SRI-CEA Model.
- Effect of Variations in Growth Rate of Gross Domestic 9. Provincial Product on Growth in Demand for Electric Energy.
- 10. Southwestern Ontario SRI-CEA Model Forecast of Electric Energy Growth.
- Southwestern Ontario Supply Facilities --- Ratings of Critical 11. Circuits. (Before Completion of Planned Work.)
- Capability of Existing Bulk Power Transmission System for Supply of Southwestern Ontario Critical Area Load.
- 13A. Load Flow Plot, January 1987 Peak Load, 0 MW Sales to Michigan, 1 Unit in service at Lambton, all Facilities in Service
- 13B. Load Flow Plot, January 1987 Peak Load, 0 MW Sales to Michigan, 1 Unit in service at Lambton, M32W and M33W Out of Service.

7 8

- 14A Load Flow Plot, January 1989 Peak Load, 0 MW Sales to Michigan, 3 Units in service at Lambton, all Facilities in service
- 14B. Load Flow Plot, January 1989 Peak Load, 0 MW Sales to Michigan, 3 Units in service at Lambton, D4W, M32W and M33W out of service.
- 15A. Load Flow Plot, January 1989 Peak Load, 2000 MW Sales to Michigan, 3 Units in service at Lambton, all Facilities in service.
- 15B. Load Flow Plot, January 1989 Peak Load, 2000 MW Sales to Michigan, 3 Units in service at Lambton, M32W out of service.
- 16. High and Low Growth Curves for Southwestern Ontario Critical Area Load.
- 17. Southwestern Ontario Power Losses in Transmission Facilities at Time of System Peak. (with all Transmission Facilities in service and without major new additions)
- 18. Southwestern Ontario Critical Load Area Static Capacitor Requirements for Load Supply.

V

Digitized by the Internet Archive in 2023 with funding from University of Toronto

2 3 4

Synopsis

The existing and approved transmission facilities from the Bruce Nuclear Power Development are not adequate for the incorporation of Bruce Generating Station (GS) B in addition to Bruce GS A and Douglas Point GS.

The critical area load in southwestern Ontario is forecast to grow at an annual rate of 5.5% from 1978 to 1987 and 5.2% from 1987 to 2001. A number of stop-gap measures are being implemented which will increase the capability of the existing transmission facilities. By the winter of 1987/88 major new bulk power facilities will be required for the supply to customers in southwestern Ontario.

The earliest possible time by which major new facilities can be installed is late 1986. The planning process for the provision of additional facilities must be continued in an orderly way if the required in-service dates are to be met. Confirmation of the need for such facilities is therefore requested from the Royal Commission on Electric Power Planning.

1.0 Introduction:

On July 11, 1974, the Ontario Government announced that it would hold public hearings into the long range planning of Ontario's electric power system. On March 13, 1975, the Honourable Allan Grossman, Provincial Secretary for Resources Development, announced in the Legislature the Government's decision to establish an independent commission of enquiry to hold these hearings. He stated, "The Commission will focus on the broad conceptual consequences of alternative ways of supplying power during the period 1983 to 1993". The March 13, 1975, statement also noted that there are certain electric power generating and transmission projects that Ontario Hydro considers must be initiated during the tenure of the Commission. The original terms of reference with respect to these projects were amended by Order-in-Council 2065/78 dated July 12, 1978, a copy of which is attached to this submission as Appendix A. Rather than concentrate on the need for certain specific transmission connections, the amended terms of reference call for an examination of the need for, and timing of, additional bulk power facilities within broad geographic areas.

This submission deals with the requirement for additional bulk power facilities in southwestern Ontario which, for the purposes of the Royal Commission's examination of need, is considered to be that area south of Bruce Nuclear Power Development and west of a line through Essa Transformer Station (TS) and Nanticoke Generation Station (GS). This is shown in Figure 1.

There are four main requirements for major new supply facilities in southwestern Ontario:

(a) Incorporation of Bruce GS B

Studies have shown that the existing and approved transmission facilities from the Bruce Nuclear Power Development are inadequate to incorporate Bruce GS B in addition to Bruce GS A and Douglas Point GS. Major new transmission facilities are needed to meet this requirement.

(b) Load Supply

There is an urgent requirement for major new transmission lines and transformer stations in southwestern Ontario to supply the growing load in that part of the province, in particular the load in the Kitchener, London, Sarnia and Windsor areas.

2 3 4 5 6 7

(c) <u>Interconnections</u>

Another requirement is to reinforce the interconnections with the Michigan Electric Power Pool in the vicinity of Sarnia and Windsor. An interconnection is a transmission line which directly connects adjacent electric utilities. Interconnections are mutually advantageous to the interconnected electric utilities, providing advantages of improved system reliability and reduced costs. The advantages are discussed in the Ontario Hydro Information Memorandum to the Royal Commission on Electric Power Planning, entitled "System Interconnections", dated June 1976 (Exhibit 23-0). Interconnections also have their disadvantages but these are outweighed by their advantages.

If the advantages of interconnections are to be realized, the internal transmission of each of the interconnected power systems must be adequate to support interchanges of power in both directions over the interconnections. A utility has a responsibility to design its own system so that it can provide assistance to the other systems if it expects to obtain assistance from them.

The Ontario Hydro system has for many years been interconnected with the Detroit Edison Company in the State of Michigan by transmission interconnections across the St. Clair and the Detroit rivers. There are four interconnections with Detroit Edison which, along with other interconnections with utilities in New York State, permit the Ontario Hydro system to operate in synchronism with the large power grid covering much of eastern North America.

If the advantages of interconnections are to remain commensurate in the future with those of the past, the capability of the bulk power system to support transfers of power over the interconnections must keep pace with the growth of the Ontario Hydro system.

The requirement to reinforce the interconnections does not determine the required in-service date for new facilities but it is one of the factors which must be considered in the development of a system plan.

(d) Incorporation of Future Generating Stations

It is expected that before the year 2000 at least one additional thermal generating station located in the Niagara Peninsula or southwestern Ontario will be required. The incorporation of this station into the bulk power system will require new transmission. Since any such station could not be in service before the 1990's, this transmission requirement does not occur as soon as the first

two requirements but along with interconnections it must be considered when developing an overall plan.

2.0 Requirement for New Bulk Power Transmission from Bruce

2.1 Approval of Bruce GS B

On November 4, 1975 the Honourable Dennis R. Timbrell, then Minister of Energy advised that final Cabinet approval had been given "to construct and operate a 4x800 megawatt nuclear fuelled generating station at the Bruce Nuclear Power Development, with a first unit in-service date of 1982, to be followed by two units in 1983 and one in 1984..."

The current first synchronizing and commercial in-service dates for these units are:

	lst Synch.		Commercial In-Service	
First Unit Second Unit Third Unit Fourth Unit	November November November August	83 84	April	84

2.2 Description of Existing and Approved
Transmission Facilities from Bruce
Nuclear Power Development

At the present time the Bruce Nuclear Power Development is connected to the bulk power grid by two 2-circuit 230 kV transmission lines. A third 2-circuit 230 kV line with one circuit strung connects the Bruce Complex with the 115 kV transmission system in the Owen Sound area via a 250 MVA 230-115 kV autotransformer. Construction of a 500 kV 2-circuit transmission line between the Bruce Complex and the 500 kV bulk power grid at Milton TS has been approved and is scheduled for service in 1979. The geographic locations of the present and approved transmission facilities are shown on Figure 2. Technical details are shown on Figure 3.

2.3 Capability of Existing and Approved Facilities

Ontario Hydro Information Memorandum to the Royal Commission on Electric Power Planning entitled "The Transmission Planning Process" (Exhibit 22-0) describes in some detail the methods and criteria used in planning the bulk power system. Ontario Hydro, as a member of the Northeast Power Co-ordinating Council (NPCC), has agreed to design its bulk power system in accordance with the

2 3

4 5

 NPCC document "Basic Criteria for Design and Operation of Interconnected Power Systems". A copy of this document is contained in the Ontario Hydro Information Memorandum entitled "Reliability" (Exhibit 20-0).

To assist in maintaining the stability of the Bruce generating stations for the above criteria, Ontario Hydro uses a number of control techniques. The principal methods employed are the use of high speed excitation systems with power system stabilizers on its large generators and the use of generation rejection. It is desirable to limit the use of generation rejection and the amount of generation rejected for the following reasons:

- (a) It imposes severe stress on the turbine-generator unit which could lead to serious damage.
- (b) With nuclear units, reactors may experience a temporary decrease in reactivity causing them to lose their ability to sustain a chain reaction and making them unavailable for restart for up to two days. This would mean additional replacement energy costs of about \$500,000 per unit (1978 dollars) for each occurrence and could lead to a generation shortage if several units were involved.
- (c) If the amount of generation rejected is too large it can cause cascading outages on the interconnected systems.

In view of these considerations it is Ontario Hydro's design practice to limit the use of generation rejection on thermal generation units to conditions which occur very infrequently. Therefore, generation would not be rejected for a single contingency event such as loss of a 2 circuit transmission line with all other facilities in service. Generation rejection would, however, be used in the case of loss of a 1 or 2 circuit line with one circuit already out of service.

A further consideration in determining the amount of generation which can be rejected is the effect of the rejection on the integrity of the interconnected systems. In order to avoid jeopardizing the integrity of these systems, it will be necessary to limit the rejection of Bruce generation to two units, or, if more than two units must be rejected it will also be necessary to provide for the rejection (disconnection) of an equivalent amount of customer loads.

Transient stability studies of the system, with the existing and approved transmission facilities in place and full output from Bruce GS A and B and Douglas Point GS, show that to avoid transient instability for a double circuit outage of the Bruce GS x Milton TS 500 kV line, the rejection of 6 Bruce GS generators

will be required. In order to avoid jeopardizing the integrity of the interconnected system for this large generation loss, it will be necessary to reject about 3000 MW of load.

Alternatively, generation rejection could be limited to two Bruce units and the output of the Bruce complex limited to about 3000 MW which would result in about 3000 MW of nuclear generation being locked-in with extremely large economic penalties. It is desirable to have a second line from Bruce GS in service by November 1982, the synchronizing date of the first unit at Bruce GS B. However the earliest possible in-service date is now late 1986. Therefore it is essential that new transmission facilities be provided as soon as possible.

3.0 Supply to Southwestern Ontario:

3.1 Planning to Meet Future Loads:

Prudent planning of an electric power system requires continual attention to the relationship between the capability of the system facilities and the demands which are placed on these facilities by the electric load. This implies the anticipation of future load growth in each area and the appropriate additions to the system facilities in time to supply these future loads.

3.2 Load Growth in Southwestern Ontario

3.2.1 General

Southwestern Ontario occupies a pivotal position in the Canadian economy with effects that spread far beyond its own confines. The demand for electricity in the area has tended to reflect its importance and is forecast to grow at rates only slightly lower than those which have prevailed in the past.

Southwestern Ontario contains some of Canada's richest farm land and is an important source of food for the whole nation. Modern high productivity farming techniques have made the agricultural sector an important and rapidly growing user of electric power. Heating and climate control in poultry farming, grain drying and bulk milk refrigeration in the dairy industry are just a few examples of the extensive use of electric energy by the farming community.

Southwestern Ontario has to a great extent been a point of entry for new industries coming into Canada from the United States which have often tended to establish initially at points close to the United States border and to move at a later date to other parts of Ontario. The automobile and petrochemical industries, together with their ancillary industries such as rubber, glass, plastics and electronics, have all had a pervasive influence on

the economy of southwestern Ontario leading to concentrations of population in urban areas of significant size.

The fortunes of the automobile industry in particular have had a dramatic impact upon the demand for electricity, as indicated by the growth rate before and after 1965 when the Canada-US Auto Pact came into being.

3.2.2 The Load Forecast

For purposes of administration, the Ontario Hydro system is divided into Operating Areas. The operating areas contained in the area south of Bruce and west of a line through Essa TS and Nanticoke GS are shown on Figure 1. The actual and forecast load for December for each of these areas except Barrie, Brampton, Dundas and Cayuga are tabulated in Figures 4A to 4P inclusive. These Operating Area loads are not tabulated as they are not supplied from the transmission facilities under study. December values are used to indicate growth trends because the historical records are more readily available although as stated below, January loads are used to assess requirements. A graphical representation of the forecasts is shown in Figure 5.

The load in each operating area is segregated by user class into three components:

- a) Municipal the power supplied to the municipal electric utilities for resale.
- b) Retail the power supplied at retail rates to customers outside the municipalities by Ontario Hydro facilities.
- c) Direct Industrial the power supplied directly by Ontario Hydro at wholesale rates to industrial customers.

The load in the study area varies throughout the day, from day to day during the week, and from season to season throughout the year. The peak loads over the winter period impose the most severe duty on the existing facilities and determine the timing of the requirement for new facilities, and for the area under study this is forecast to occur in January. Therefore, this study of system adequacy is based on load forecast for January.

The supply of loads in the Kitchener, London, Sarnia and Windsor areas shown enclosed in the shaded area in Figure 1 is particularly important in determining the capability of the existing bulk power transmission system. It is these loads which determine the power flowing on the most critically loaded facilities which supply southwestern Ontario. The forecast coincident January peak load by station in this area is tabulated

3 4

.17

for selected years in Figure 6 and shown graphically in Figure 7. The average forecast growth rate of this load is 5.5% from 1978 to 1987 and 5.2% from 1987 to 2001.

This forecast is based on interviews with municipal utilities, direct customers and Operating Area managers and also upon information supplied by builders and developers. The projection of the forecast beyond 1987 is based upon the assessment of past response to economic and social factors and the expected course of these factors in the future.

3.2.3 The SRI-CEA Econometric Model

3.2.3.1 General

The model was developed by the consulting firm SRI International at the request of the Canadian Electrical Association (CEA)*. The purpose of this mathematical model is to project the long term demand for electric energy by end use.

In order to obtain a forecast from the model, it is necessary to make separate forecasts of a number of variables such as population, industrial production and gross domestic provincial product (GDPP) and to estimate the parameters required to provide the dynamic relationship between the variables and the demand for electricity. Therefore a reasonable forecast is obtained only if reasonable and consistent estimates of the variables are combined with reasonable and consistent estimates of the parameters. Further, the model is structured in such a way that it cannot forecast new relationships between energy use and the variables considered or other variables that may be important in the future.

The model was developed quite recently and Ontario Hydro has had limited experience with its use. A great deal of experience will be required to determine the model's capabilities and limitations. While the economic data required by the model is available on a provincial base, not all of it is available for Regions of the Province as required by the study. Other models are also being developed which will provide information for comparison with the SRI-CEA model.

The SRI-CEA model is useful in understanding questions such as the following:

- (1) For a set of economic assumptions, what are likely ranges in growth rates for electricity use?
- (*) "Long Range Electricity Forecast for Canada A Methodology," November 1978, by SRI International, for the Canadian Electrical Association.

3 4

- (2) If another Arab oil embargo is initiated (bringing higher oil prices), how will that influence the demand for electricity?
- (3) What will be the impact on energy demand of increasing electric rates in the residential, industrial, and commercial sectors?
- (4) If gas prices rise rapidly, what impact will that have on the consumption of electricity for residential space and water heating?
- (5) How will changes in the expansion rate of the provincial economy affect the use of electricity in residences, in commerce, and in industry?
- (6) If a certain industry expands production, what effect will that have on the use of electricity?
- (7) Where can development effort be best employed to improve the quality of load forecasts?

3.2.3.2 Model Structure

The conceptual framework used in the SRI-CEA model to forecast energy use is shown in Figure 8. On the right side of the figure are shown the economic variables that influence the demand for energy in each end use application. The end use markets themselves appear in the centre and the left side shows the energy sources that supply the market. The end uses were selected on the basis of their relative size and importance in the marketplace for electricity in Canada. Broadly speaking, the markets are the residential, agricultural, commercial and industrial (manufacturing and mining) sectors.

For each end use, the quantity of electricity demanded is analytically related to appropriate economic and industrial indicators. The structural form of these relationships was developed based on a consideration of market behaviour, availability of data, simplicity of equation form, and reasonableness of computed results.

The industrial demand for electricity is dependent on the patterns of electricity use and levels of production in specific industries. In industry, pulp and paper, chemical, steel, and aluminum and the mining of iron, copper, and coal each require large quantities of electricity, predominantly for motor drive and electrolytic processing. Thus, future consumption of electricity is directly correlated with industrial production. Electricity use by all other industries, referred to in the SRI

report as "light manufacturing", is correlated with general levels of manufacturing activity--that is, value added in manufacturing.

In the residential sector, three separate markets were analyzed. Total energy requirements for (1) space heating, (2) water heating and (3) electric appliances. The energy requirements for each of the first two were correlated on the basis of per-capita use with GDPP per capita, energy prices, and a lag parameter. The form of the estimating equation has terms for income and price elasticity coupled with a lag parameter. The share that electricity will capture in these competitive heating markets was related to housing trends and the price of electricity relative to gas and/or oil. Electricity use for appliances was also correlated on a per capita basis with GDPP per capita, electricity prices, and a lag term.

A similar approach was employed in the commercial sector, where energy use per service employee was correlated with GDPP and price.

Thus, the principal economic variables used in the model to forecast the demand for energy are:

- . Gross Domestic Provincial Product (GDPP)
- . Population
- . Total Employment
- Service employment
- . GDPP/Manufacturing
- . GDPP/Agriculture
- . Production of the pulp and paper, chemical, steel, aluminum and mining industries.

The parameters used in the model are estimated on the basis of historical relationships. These parameters include income and price elasticities and lag parameters, market share parameters and gross economic parameters. These are listed and their use described in Appendix B. SRI have indicated that these parameters should be viewed as their best initial estimates for Ontario as a whole and that they should be revised when increased understanding and knowledge of particular markets is obtained.

3.2.3.3 Scenarios Considered

The SRI-CEA model was used to project future growth in electric energy consumption for three scenarios in which the growth rate of the Ontario Gross Domestic Provincial Product was varied. The GDPP growth rates used and the resultant growth rates in electric energy consumption are shown in Figure 9 together with Ontario Hydro's 1978 forecast of peak growth rates. The SRI-CEA forecast

of electric energy consumption is also shown graphically in Figure 10 for each scenario. The detailed output of the model for several years for each scenario is provided in Appendix C.

Scenario #1 is the reference forecast using the parameters suggested by SRI when they developed the model. The SRI reference forecast used rates of growth in GDPP of 3.8% to 1990 and 3.2% thereafter. These result in an average annual growth rate in electric energy consumption of 4.0% in the period to 2000.

Scenario #2 illustrates the effect of using GDPP growth rates approximately the same as those published in December 1977 by the Ontario Economic Council (OEC)*. These rates are 5.3% per year to 1981, then 4.4% per year to 1985 and 4.1% per year thereafter. These result in a forecast average annual growth rate in electric energy consumption of 5.1% in the period to 2000.

Scenario 3 illustrates the effects of high growth in which GDPP is assumed to grow at a rate of 5.5% until 1985 and at 4.5% thereafter. These result in a forecast average annual growth rate in electric energy consumption of 5.8% in the period to 2000.

The SRI model shows how the growth in electric energy consumption is dependent on the forecast of total economic activity in the province. It is also capable of examining the effects of changes in the other major variables on consumption of electrical energy.

3.3 Existing Supply Facilities

The existing bulk power supply facilities in southwestern Ontario are most easily described in two parts, namely those facilities which supply the Kitchener area, and those which supply the London - Sarnia - Windsor area.

3.3.1 Kitchener Area Bulk Power Supply Facilities:

At the present time, bulk power to the Kitchener area can be supplied over four 230 kV 2 circuit steel tower transmission lines which terminate at Detweiler TS located southwest of the city of Kitchener. In addition to supplying power to this part of the province, these lines are also an integral part of the provincial grid. The geographic locations of these lines are shown in Figure 2 and technical details such as lengths, conductor sizes and present ampacities are shown on the schematic diagram, Figure 11.

(*) "The Ontario Economy 1978-1987", December, 1977; by J.A. Sawyer, D.P. Dungan, and J.W.L. Winder for the Ontario Economic Council.

1 2 3

3.3.2 London - Sarnia - Windsor Area Bulk Power Supply Facilities

Bulk power is normally supplied to the London - Sarnia - Windsor area over 230 kV lines from Detweiler TS, from Middleport TS near Hamilton, and from thermal generating stations located within the area. In addition, the four interconnections with Detroit Edison Co. permit interchange of energy and power between Ontario Hydro and US utilities. Details of these facilities are given below.

3.3.2.1 Transmission Facilities

The geographic locations of the transmission lines are shown in Figure 2 and technical details such as length, conductor sizes and ampacities prior to uprating are shown on the schematic diagram, Figure 11.

3.3.2.2 Thermal Generating Stations:

- At Lambton GS near Sarnia, four 500 MW coal-fired generators are installed. Each of these units have a maximum December peak output of 525 MW and a maximum continuous rating (MCR) of 495 MW.
- At J. Clark Keith GS in Windsor, four 64 MW coal-fired units are installed. Each of these generating units has a maximum December peak output of 64 MW and a MCR of 63.5 MW. At present this station has been de-commissioned as an economy measure. It is planned to re-commission it in 1980 with modifications which will enable it to meet air quality requirements.

3.3.2.3 Combustion Turbine Generating Sets:

- At Sarnia-Scott TS, four light oil fuelled, combustion turbine driven generating sets (CTU'S) of 17.75 MW capacity each are installed.
- At Lambton GS, four CTU's of 7.5 MW capacity each are also installed.
- At J. Clark Keith GS in Windsor, a single 7.0 MW CTU is installed.

3.3.2.4 Interconnections with U.S. Utilities:

Interconnections with the Detroit Edison Co. in Michigan consist of four tie lines all under 4 miles in length. Tie lines B3N, L4D and L5lD cross the St. Clair River into Michigan near Sarnia

2

3 4

55

while the remaining tie line, J5D, crosses the Detroit River into Michigan in the vicinity of Windsor.

3.3.3 Stop-gap Measures

3.3.3.1 General

In order to meet the forecast loads up to about January 1987, it is planned to implement a number of stop-gap measures which include increases in circuit ampacities and the installation of large amounts of static capacitors. While there is no alternative to the stop-gap measures, they could result in a significant reduction in system reliability. They involve the extensive use of engineering solutions which are a major extrapolation of existing practices and which could introduce unforeseen problems. The proposed stop-gap measures are discussed in more detail in the following sections.

3.3.3.2 Transmission

The critical circuits of the existing bulk power transmission system in southwestern Ontario are shown in Figure 11. Some of the circuits will soon be overloaded and it is planned to increase their capacities in one or more of the ways discussed below:

High Temperature Operation

Aluminum Cable Steel Reinforced (acsr) transmission line conductors have usually been operated at temperatures of up to 90°C or lower in normal conditions and up to 125°C in emergency conditions. Ontario Hydro has carried out extensive field and laboratory tests to determine the practicality of operating the existing acsr conductors at higher temperatures or replacing them with conductors which can be operated at higher temperatures.

These tests have indicated that operating temperatures of up to 1500C are permissible. This is a considerable increase over past practice and significantly higher than used by other utilities.

For example a 1977 report* by a CIGRE study committee of utilities in Germany, England, Ireland, France, Belgium and Hungary indicates that maximum conductor temperatures for emergency operation range from 50°C to 110°C with most of the values being either 75°C or 80°C.

CIGRE Committee 31, Working Group 31-02 Reference Number 3177 (GT02) 01.

In order to allow for the increased conductor sag at the higher temperatures planned by Ontario Hydro, it is required in most cases that the tension of the conductors be increased or that the conductors be raised by adding extensions to the existing towers.

(b) Replacement of Conductors

In some cases additional capacity can be obtained by replacing the existing conductor by a conductor with a larger aluminum cross-section where the structural design of the existing towers will permit.

(c) Summary of Planned Capacity Increases on Existing 230 kV Transmission Lines in Southwestern Ontario

The work which it is practicable to do on each of the existing circuits has been determined by a study of the individual circuits. The following table shows for each of the most critical circuits in southwestern Ontario, the ratings prior to and after uprating. Except for circuits D6/7V where a lesser rating is adequate, the planned ratings are based on a conductor temperature of 150°C. Although it is considered acceptable to operate acsr conductors at temperatures of 150°C., there has been very little experience in the industry with such temperatures. Therefore, unexpected troubles could occur in service, and it must be accepted that the circuits will likely be less reliable than when operated more conservatively. A similar observation can be made about the structural security of the transmission line towers. When they have been restrung with conductors having a higher capacity, they will be adequate in so far as their structural capability will exceed the minimum loading standards of the Canadian Standards Association. However, there will be less reserve capability than now exists to withstand the severe storm conditions which may occur, although infrequently.

Summary of Capacity Increases Planned on Existing 230 kV Transmission Lines In Southwestern Ontario

Winter Ampacity

		Prior To Uprating (Amperes)	Uprated (Note 1) (Amperes)
230 kV 1 cct Line Middleport TS x Bucha		1220	2040
230 kV 2 cct Line Middleport TS x Bucha		1790	2600
230 kV 2 cct Line Detweiler TS x Buchan	, -	1310	2040
230 kV 2 cct Line Detweiler TS x Orange		1390	1650
230 kV 2 cct Line Middleport TS x Detwe		1710	2600

Note 1 Uprated by reconductoring and/or raising towers.

3.4 Capability of Existing System (Including Stop-Gap Measures)

The capability of the existing bulk power transmission system to meet the following normal criteria was determined assuming that the stop-gap measures described above are implemented and that static capacitors are provided to maintain adequate voltage levels.

- A) loss of a 2 circuit line with all other circuits in service; one unit in service at Lambton GS; and zero net interchange with Michigan.
- B) Loss of a 2 circuit line with one circuit already out of service; three units in service at Lambton GS; and zero net interchange with Michigan.
- C) Loss of a single circuit with all other circuits in service; three units in service at Lambton GS; and a 2000 MW sale to Michigan.

These conditions reflect the intent of the NPCC "Basic Criteria" referred to in Section 2.3 above.

In addition to the power flows required to supply the load and to support any sales to US utilities, there is a circulating power flow around Lake Erie as explained in the Information Memorandum entitled "System Interconnections" (Exhibit 23-0). Even with no net import or export of power with US utilities, there is usually a flow of power over the interconnections with power leaving Ontario to Michigan and simultaneously returning to Ontario from New York (or vice versa). This is known as circulating power. While studies are continually being carried out to determine the likely magnitude of this circulating power, it is impractical to predict its magnitude with any degree of exactness more than a few years in advance. For this study, it has been assumed that prefault circulating power will be approximately 300 MW with condition A, and approximately 500 MW coincident with conditions B & C, counterclockwise around Lake Erie.

It should be noted that the above system conditions were evaluated only on the basis of the ampacities of the critical circuits and the maintenance of acceptable voltage levels at bulk power system delivery points. Consideration of another critical power system parameter, transient stability, could well result in some reduction in these capability limits.

Computer studies show that the amounts of southwestern Ontario load which can be supplied under conditions A, B and C are 4,100 MW, 4,500 MW and 4,300 MW respectively. Condition A, loss of a 2 circuit line with all other lines in service, one unit at Lambton GS in service and zero net interchange with Michigan, is the most limiting condition and requires that additional transmission facilities be provided in 1987. Figure 12 shows this capability plotted on the load growth curve. Figures 13, 14 and 15 show results of computer simulation of the system conditions A, B and C. The power flows for each circuit and the voltages at each station are indicated. Circuits out of service are indicated with the symbol O/S.

The conditions discussed above are for the forecast load, which is the most likely value of load. If the load growth rate were to be higher than this forecast amount, the existing facilities would be inadequate sooner, and if the rate were to be lower, the reverse would be true. This is illustrated in Figure 16 in which a high and a low forecast (average annual growth rates of about 6% and 4% respectivly) have been superimposed on Figure 12. This shows that the need for new facilities would be advanced 2 years with the high forecast and deferred 4 years with the low

-16-

3.5 Effect of System Power and Energy Losses

There are two undesirable effects of resistive transmission line losses on the operation of the bulk power system. The first is increased fuel consumption and the second is a requirement for additional generating capacity. It should be noted that the line losses generally reach a peak at the same time as the load.

Excessive losses thus impose a two-fold cost penalty on the power system, and there is every incentive, therefore, for the electric utility to keep transmission losses low. Not only does it help to reduce costs to its customers, but it also helps to achieve the goals of energy conservation and the conservation of scarce capital resources.

Losses in an electrical transmission line are proportional to the square of the current that it is required to carry. For example, if the current on a line is increased to 10% above normal, the losses will increase to 21% above normal. There is thus a practical limit to the amount of power which can be carried economically on any particular line at a given voltage level. The stop-gap measures which have been described above in section 3.3.3 for uprating the existing facilities all tend to push the operation of these 230 kV lines in an uneconomic direction.

A graph of system power losses in southwestern Ontario at time of January peak loads is shown in Figure 17. As can be observed in this graph, system losses are approximately 260 MW in January, 1987. It is estimated that these losses are about 85 MW more than they would be if 500 kV transmission had been provided. Based on the value of replacement energy and excluding any capacity charges, the annual cost in 1987 of the additional losses is over 11 million dollars, or in terms of fuel, about 160,000 tons of US coal.

3.6 Static Capacitor Requirements

In addition to increasing resistive power losses, increased transmission line loadings also result in increased reactive power losses. Unlike resistive power losses, which can be mitigated to a certain extent by re-conductoring with larger conductor, reactive power losses are largely determined by the geometry of transmission line construction. This type of loss is also proportional to the square of the current flowing in the line, and has a large effect on the regulation of voltage at the terminals of lines which are carrying high currents. Maintaining adequate voltage levels at bulk power delivery points is important both for system stability considerations and to provide satisfactory voltage for customers' equipment. Banks of static capacitors are required to compensate for the reactive power

losses in the transmission system, not only under normal conditions with all lines in service but also at times when transmission circuits are out of service. Expensive switching equipment must also be provided to switch the capacitor banks on and off the system in response to changing system conditions.

A graph of system static capacitor requirements is shown in Figure 18. The graph shows a requirement of 1700 MVAR in January 1986 and 2000 MVAR in January 1987, an increase in capacitor requirements of approximately 300 MVAR. In 1979 dollars, capacitor banks cost \$8,200 per MVAR.

4.0 Conclusions

With respect to the first requirement, the incorporation of Bruce GS B, it would have been desirable to have a transmission line in service by November 1982, the synchronizing date for the first unit at Bruce GS B, because the existing and approved transmission lines are not adequate to incorporate this plant. However, the earliest possible in-service date for a new transmission line is late 1986. Planning should proceed now to provide new transmission as soon as possible for the incorporation of Bruce GS B.

With respect to the second requirement, the supply of power to southwestern Ontario, the earliest possible year by which major new facilities could be provided is also late 1986. For the following reasons, planning should proceed now to provide for the necessary facilities.

- A If the load grows at the forecast rate, the capability of the existing facilities (including stop-gap measures) to supply it with adequate reliability will be exceeded in the winter of 1987/88.
- New transmission facilities installed by the winter of 1987/88 could reduce the power losses in supplying the southwestern Ontario load by about 85 MW. The decreased losses would be equivalent to a reduction in system load and, therefore, would effectively increase the capability of the Ontario Hydro system to meet the load, or alternatively to make profitable sales of unused surplus generating capacity to other utilities.
- C The annual cost of the bulk power transmission losses will increase rapidly. It is estimated that the savings in losses in 1987 by the addition of new transmission facilities would be over 11 million (in 1987 dollars)

considering energy cost only and including no capacity charges.

D If the load growth proves to be greater than forecast, the need for new facilities will be even more pressing.

However, it is impractical to speed up the process of obtaining approvals, acquiring property rights and constructing the new facilities. On the other hand, if the load growth proves to be less than forecast it would be possible to delay construction.

The bulk of the expenditures for major new facilities scheduled for service in 1986 do not have to be committed until about 1982. It is at that time that the factors outlined above will be reviewed finally and a decision made whether or not to proceed with design and construction. However, if the option of having the facilities in service by 1986 is to be retained, the process now under way of studying alternatives, selecting a plan and specific locations for facilities must continue. In other words, for several years ahead, the project can be cancelled or deferred without incurring any loss except for the cost of the on-going studies.

APPENDIX A

Copy of Order in Council Document OC-2065/78, dated July 12, 1978

Executive Council

Copy of an Order-in-Council approved by Her Honour the Lieutenant Governor, dated the 12th day of July, A.D. 1978.

The Committee of Council have had under consideration the report of the Honourable the Provincial Secretary for Resources Development, wherein he states that,

WHEREAS the Royal Commission on Electric

Power Planning was appointed pursuant to The Public

Inquiries Act, 1971, and its terms of reference were

established by Order-in-Council numbered OC-2005B/75

dated 17th July, 1975;

AND WHEREAS paragraph 4 of Order-in-Council numbered OC-2005B/75 called for the Commission to consider and report on certain projects on a priority basis;

AND WHEREAS by Order-in-Council numbered OC-3489/77 the Royal Commission on Electric Power Planning was requested to provide its interim report on issues relating to nuclear power in Ontario by June 30, 1978;

AND WHEREAS since July, 1975, revisions have been made in the projections of electric load growth expected to occur in Ontario Hydro's East System before 1988, and beyond that date to the year 2000;

AND WHEREAS, in part as the result of such load growth revisions for the period beyond 1987, it is no longer necessary for the Royal Commission to

consider and report on a priority basis on the North
Channel generating station;

AND WHEREAS in light of the passage of The Environmental Assessment Act, 1975, which followed the approval of the Royal Commission's terms of reference, the description of specific transmission connections set out in paragraph 4 of the terms of reference is no longer appropriate and should be replaced by an examination of the need for, and the timing of, additional bulk power facilities within broad geographic areas;

AND WHEREAS it is desirable to have the Royal Commission on Electric Power Planning review the need for, and the timing of, additional bulk power facilities and to report thereon to the Ministry of Energy, and for the specific nature of additional bulk power facilities which might then be proposed, including their locational and environmental aspects, to be reviewed by the Environmental Assessment Board;

AND WHEREAS the Government further intends to appoint members of the Royal Commission on Electric

Power Planning to the Environmental Assessment Board in order to transfer experience in electric power planning matters to that Board;

AND WHEREAS by Order-in-Council numbered OC-1999/78 dated the 5th day of July, 1978, the Committee of Council amended paragraph 4 of the Commission's terms of reference.

AND WHEREAS a paragraph was omitted from Order-in-Council numbered OC-1999/78, rendering it incomplete,

The Honourable the Provincial Secretary for Resources Development recommends that Order-in-Council numbered OC-1999/78 be revoked and that paragraph 4 of Order-in-Council numbered OC-2005B/75 be further amended as follows:

- 4.) A) Having concluded its hearings with respect to paragraphs 1, 2 and 3 of its terms of reference;
 - i) For the geographic area of Ontario south of Bruce nuclear power development and west of a line between Essa transformer station and Nanticoke generating station, consider and report to the Minister of Energy on or before May 31, 1979 on load growth in the area up to the end of 1987 and from 1987 to the year 2000, the capability of existing and committed bulk power generation and transmission facilities to supply this load to the area taking into account Government policy with respect to the use of interconnections with neighbouring utilities, and the resulting date at which additional bulk power facilities, if any, will be needed, but excluding consideration of the specific nature of the additional bulk power facilities which may be required and of their locational and environmental aspects;

- For the geographic area of Ontario east ii) of Lennox generating station, consider and report to the Minister of Energy on or before June 30, 1979 on load growth in the area up to the end of 1987 and from 1987 to the year 2000, the capability of existing and committed bulk power generation and transmission facilities to supply this load to the area taking into account Government policy with respect to the use of interconnections with neighbouring utilities, and the resulting date at which additional bulk power facilities, if any, will be needed, but excluding consideration of the specific nature of the additional bulk power facilities which may be rerequired and of their locational and environmental aspects;
- B) Provide the Government with its report and recommendations on paragraphs 1, 2 and 3 of these terms of reference on or before October 31, 1979.

The Committee of Council concur in the

recommendation of the Honourable the Provincial

Secretary for Resources Development and advise that
the same be acted on.

Certified,

Deputy clerk Executive Council.

APPENDIX B

Chapter III and Tables B-7 and B-8 from the SRI Report to CEA entitled "Long Range Electricity Forecast for Canada - A Methodology", dated November, 1978.

III MODEL RELATIONSHIPS

Four types of forecasting equations were developed: one for the industrial market, one for the residential and commercial markets, one for the farm sector, and one for competitive heating markets. These relationships along with general macroeconomic model relationships are discussed in Chapter III. The specific equations are listed in Appendix A. Descriptions of the various methods employed in the estimation of model parameters are detailed in Appendix B.

General Energy Growth and Market Share Model

This section serves as a discussion of the concepts and implementation of the model for all of the energy markets described in the study, except for the farm market, which has its own equation form. (Its form will be described later.) The general approach to describing total market growth will be outlined, followed by a discussion of exactly which variables control the model equation for each end-use market. This discussion will be referenced in each of the market sections that follow in Chapter IV of this report. In addition, for those markets in which electricity competes with other fuels, we discuss the methodology that connects market share and electricity demand.

In general terms, the model equation used in this study is as follows:

(Demand in the next period) =

Constant X (Demand in the current period) lpha X (Income in the next period) $^{A(1-lpha)}$ X (Price in the next period) $^{B(1-lpha)}$.

The first term in the form, the constant, is simply a statistical requirement for fitting historical data. In the actual implementation of the form, the constant is not relevant as a ratio form is used to force the model to extrapolate from the last year in the historical period. The ratio form has the following appearance:

Demand in the next period

Demand in the current period

Demand in the current period

Demand in the previous period

X

(Income in the next period Income in the current period)

A(1-
$$\alpha$$
)

X

(Price in the next period Price in the current period)

B(1- α)

The exponents of the ratio form are identical to the non-ratio form. The second term of the original form is the lag term, and the exponent α is the lag parameter. The interpretation of this parameter is that the next period depends to some extent on the current period. Another way to look at it is to consider there is a certain amount of inertia in each market. Regardless of the economic influences of the next period -the income and price terms -- total market consumption can only increase or decrease so much. With appliances, for example, limited electricity distribution and possible limitations in the availability of appliances could hold down the growth of the market despite sharp increases in income and drops in electricity prices. The term α measures the magnitude of this inertia in each market. In one extreme case, $\alpha = 1$ means that the market is fixed at a constant value and is not sensitive at all to economic influences. In the other extreme case, $\alpha = 0$ means that there is no inertia and that the market depends only upon economic influences. Real-world situations, of course, fall between these two extremes. Two energy markets represent the extremes of this lag and time response. In one extreme, manufacturing facilities, energy use tracks levels of plant production. In this case there is no time lag; therefore, the lag parameter is zero. Another case is the conversion of households to electric heating, a more slowly-moving market. The lag parameter would be more like 0.95, reflecting the 25 or more years required to convert all households. Table 5 lists values of the lag parameter and the corresponding time in years for an 80 percent change in the market in response to a given occurrence.

Table 5

RELATIONSHIP BETWEEN LAG PARAMETERS AND TIME

Lag Parameter	Time (years)
0.0	0.0
0.2	1.2
0.4	1.8
0.6	3.2
0.8	7.2
0.9	15.0

The third term stands for income, and reflects the notion that the more people make, the more energy they consume. There is, however, a saturation effect. People will keep their homes only so warm or buy only so many appliances, regardless of their income. Saturation terms can be explicitly included in the model, but limitations in the data, as well as a preference for simplicity, have led us not to do so. The system does allow for considering saturation effects through its ability to vary parameters with time throughout the forecast horizon.

The exponent of the income term is $A(1-\alpha)$, where A represents the long-term income elasticity, and the $(1-\alpha)$ adjusts for the lag parameter. Only $(1-\alpha)$ of the "frictionless" income effect will occur because of the inertia that is described by the lag term. The significance of income elasticity might be seen most easily in the ratio form. It measures how much of a relative change in energy consumption will result from a given

relative change in incomes. Typical values for A are about 0 to 0.2 for heating markets, about 0.9 to 1.2 for light manufacturing, and more than 1.0 for appliances and the commercial end uses.

The last term stands for price. B represents the price elasticity, and $(1-\alpha)$ stands for the same lag adjustment as above. The same comments about saturation that were made previously also apply to the price term. The ratio form, given that B must be negative, shows that the price elasticity controls the relative market growth in response to a given relative reduction in price. The inverse effect of the elasticities also naturally applies; falling incomes and rising prices lead to shrinking markets.

Given the general form, it still remains to select exactly those variables that are to be used to model each market. The choices include the following:

- Total energy consumption (demand) or consumption (demand) per capita
- · The measure of income most closely related to a given market
- · The appropriate measure of price.

Table 6 shows the variables chosen to describe each energy market. The weighted average prices previously specified are calculated using the oil, gas, and electricity market shares and their respective prices. Although all prices are forecast, only electricity's market share is forecast for the competitive markets. The market shares of oil and gas in the base year are used for the purposes of calculating the weighted averages, both for the energy relationships and the market share projections. Trial calculations demonstrated that this simplification introduced negligible error into the results.

Farm Forecasting Relationship

The special equation for electrical energy consumption on farms is slightly different from the equations for the other market relationships. While more detailed work is needed on the agricultural sector, the relationship included in the model captures the following concepts of what controls the market:

Table 6
MODEL VARIABLES

Market	Energy Measure	Income Measure	Price Measure
Residential space heating	kWh/capita	Total GDPP/ capita	Weighted average residential energy price
Residential water heating	kWh/capita	Total GDPP/ capita	Weighted average residential energy price
Appliances	kWh/capita	Total GDPP/ capita	Residential electricity price
Commercial heating	kWh/service employee	Total GDPP/ capita	Weighted average residential energy price
Commercial motors	kWh/service employee	Total GDPP/ capita	Commercial elec- tricity price
Street lighting	kWh	Total GDPP	Commercial elec- tricity price
Light manufacturing	kWh	GDPP- Manufacturing	Industrial elec- tricity price

- There is a lagged relationship between energy requirements and GDPP-Agriculture.
- There is a strong relationship between farm usage and general residential usage in the same period.

The following parameters are specified for the farm equation:

- A: The GDPP-Agriculture elasticity
- B: The total residential consumption electricity
- C: The GDPP-Agriculture lag factor.

A specifies the relative growth of agricultural electricity demand compared to the growth in GDPP-Agriculture. B specifies the amount of relative growth dependent on residential demand growth. C is the familiar lag factor.

Industrial Forecasting Relationships

All of the industrial sector markets, except light manufacturing, are forecast using a straightforward approach. Electricity consumption for light manufacturing is forecast based on GDPP-Manufacturing and industrial price for electricity, as described previously. The rest of the markets are estimated as follows:

- (1) The data for the base year of history are used to calculate the electricity consumption per unit of industrial output.
- (2) The annual growth rate of industrial output, supplied by the user, is used to project the output.
- (3) The parameter for annual efficiency improvement is used to reduce the expected electrical consumption per unit of output.
- (4) The expected output is multiplied by the expected per unit consumption to yield total consumption by industry.

The annual efficiency improvement estimates should be based both on experience and on available technological forecasts. The form of the average improvement equation is:

Market Share Forecasts

The principal markets in which electricity competes with other sources of energy are the residential space heating, residential water heating, and commercial heating markets. For these markets, SRI's approach is first to estimate the total energy requirements and then to estimate the share of the market that will be captured by electricity.

The form of the market share model can be described in two parts. In the first stage,

(Market share in the next period) =
(Lag factor) x (Market share in the next period) +
(1 - lag factor) x (Expected market share) .

The lag factor has much the same significance here as it did in the energy equations: market share can change only so much from period to period because of lags in the economy. The expected market share indicates what the market share would be if there were no lags in the system, i.e., what share a given fuel--electricity in this case--would be based on theoretical economic considerations. Another way to look at market share would be to consider it as what the market share would be in many years if there were no changes in economic conditions.

The second stage, the long-term expected market share, is calculated as follows:

(Expected market share)
$$e = \frac{\text{(Maximum market share)}}{\left(1 + P_R^N\right)}$$

where
$$P_R = \frac{(Price_e) (Efficiency)}{(Price_{avg})}$$
.

The maximum market share term is included for situations when it is known that, for other reasons—distribution problems, for example—a given fuel will never capture all of a market regardless of the price incentives. The form of the equation is such that even if the price of the fuel in question reaches zero, the resulting market share will never rise above the maximum market share.

The term Price measures the relative price incentive of using Priceavg electricity. Priceavg is the average price of competing fuels, weighted by market share. For a given set of parameters, it can be seen as Price, the price of electricity drops, the resulting market share approaches the maximum market share.

The efficiency parameter provides for the adjustment of the results to account for such differences as the capital requirements needed to convert from one fuel to another, and societal or consumer preferences for one fuel versus another. One way to develop a fuel efficiency value

is to consider a price ratio that, all things considered, would lead to a fuel's capturing half of the maximum market share.

GDPP and Population Forecasts

Two key parameters that are supplied by the user are the growth rates for GDPP and GDPP per capita. The specifications of these two rates imply a growth rate for population that is calculated by the system. It would have been possible to input any two of these three growth rates and calculate the third. Total GDPP and GDPP per capita were chosen because the first reflects total growth in the provincial economy and the second suggests individual economic well-being. The calculated population growth rate, meanwhile, is the maximum sustainable growth rate consistent with the projected gains in economic activity and improvements in the standard of living.

It has been shown that several other key macroeconomic variables can be projected based on these growth rates. (Examples are included in the statistical summary in Appendix B). The method used in this system is to specify the relationship--a kind of elasticity--between the controlling growth rate and the dependent growth rate. Five such elasticities are used in the system:

- (1) GDPP-Manufacturing, based on total GDPP
- (2) GDPP-Agriculture, based on total GDPP
- (3) Total employment, based on population
- (4) Service employment, based on population
- (5) Number of households, based on population.

In Ontario, for example, the elasticity of service employment with population was specified as 2.4 in 1976, dropping to 2.2 in 1990. That means that service employment is expected to grow 2.4 times as fast as population, dropping to 2.2 times as fast later. These variables, with the exception of number of households and total employment which are calculated for informational purposes, are used in subsequent calculations. The number for service employment, for example, is used to derive the data on energy consumption per service employee; this input is used in

the models that deal with electricity use for motor drives and heating in the commercial market.

TABLE B-8	REFERENCE CASE FORECAST	MACROECONOMIC AND INDUSTRIAL PARAMETERS
	TABLE B-7	FORECAST MARKET SHARE AND PRICE PARAMETERS

RIO 1990	3.2	1.2	4.0	.85	.40	1.4	2.2	1.6		2.5	2.0	3.5	2.5		.50	.50	.50	.50		2.5	2.0	3.0	4.0		0.0	0.0	0.0	0.0
ONTARIO 1976 199	3.8	1.4	0.9	06:	.40	1.8	2.4	- 00.		3.5	3.0	4.5	3.0		.50	.50	.50	.50		3.0	3.0	0.9	5.0		0.0	0.0	0.0	0.0
MACRO GROWTH RATES	GDPP GDPP/Capita	Population	CPI Percent/Year	ELASTICITIES GDPP Mfa./GDPP	GDPP Ag./GDPP	Total Employment/Pop.	Serv. Employment/Pop.	Households/Pop.	INDUSTRIAL GROWTH RATES	Aluminum	Pulp & Paper	Chemicals	Steel	INDUSTRIAL EFFICIENCY IMPROVEMENTS PERCENT/YR.	Aluminum	Pulp & Paper	Chemicals	Steel	MINING GROWTH RATES	Iron Ore	Copper	00	Other	MINING EFFICIENCY IMPROVEMENTS	Iron Ore	Copper	Coal	Other
1990	01	100.0	50.0		.80	100.0	80.0	.10		.95	100.0	50.00	2.00		1.00	2.00	2.00		1.00	2.00	2.00		1.00					
ONTARIO 1976 199	0	100.0	50.0		80	100.0	80.0	.10		95	100.0	50.00	2.00		1.00	2.00	00.00		2.00	3.00	00:00		2.00					
MARKET SHARE MODEL	RESIDENTIAL SPACE MEETING	Max. Share	Relative EI. Efficiency Price Ratio Power	ONIT A DI CONTACTOR	Las Parameter	Max Share	Belative El. Efficiency	Price Ratio	COMMERCIAL SPACE HEATING	Lad Parameter	Max Share	Relative El. Efficiency	Price Ratio Power	PRICE GROWTH RATES REAL Residential	Electricity	Gas	lio	Commercial	Electricity	Gas	Oil	Industrial	Electricity					

9.60

9.60

LOSSES AND EXPORTS

APPENDIX C

Results from SRI-CEA Model Study in which the Growth
Rates of Gross Domestic Provincial Product were varied.

SOUTHWESTERN ONTARIO FORECAST OF ELECTRIC ENERGY CONSUMPTION USING SRI-CEA ECONOMETRIC MODEL

SCENARIO 1

BASIS: All Parameters Including GDPP as in SRI-CEA
Model Reference Forecast

ELECTRIC ENERGY CONSUMPTION (GW·h)

	ELECTRIC ENERGY CONSUMPTION (GW-h)								
	Actual			Forecast					
	1976	1980	1985	1990	1995	2000			
RESIDENTIAL (GW-h)									
SPACE HEATING WATER HEATING APPLIANCES ETC.	1055 1343 2464	1714 1479 2946	2370 1619 3641	2907 1749 4454	3427 1864 5165	4013 1985 5986			
TOTAL RESIDENTIAL ELECTRICITY	4862	6139	7630	9110	10456	11984			
TOTAL FARM (GW·h)	1074	1318	1604	1890	2150	2445			
COMMERCIAL (GW-h)									
HEATING OTHER (MOTORS + LIGHTING) STREET LIGHTING	118 2028 158	631 2575 187	1306 3461 229	2049 4488 278	2847 5467 323	3773 6658 374			
TOTAL COMMERCIAL ELECTRICITY	2304	3393	4996	6815	8637	10804			
MANUFACTURING (GW·h)									
CHEMICALS STEEL	1149 9	1343 10	1633 11	1965 13	2277 14	2637 15			
LIGHT MANUFACTURING	6446	7356	8677	10152	11495	13015			
SUBTOTAL - MANUFACTURING	7604	8710	10321	12130	13786	15668			
MINING (GW-h)	0	0	0	0	0	0			
TOTAL CONSUMPTION (GW·h)	15844	19559	24551	29944	35029	40901			

APPENDIX C-1

SOUTHWESTERN ONTARIO FORECAST OF ELECTRIC ENERGY CONSUMPTION USING SRI-CEA ECONOMETRIC MODEL

SCENARIO 2

BASIS: Growth Rates in GDPP as per Ontario Economic Council: All Other Parameters as in Scenario 1.

ELECTRIC ENERGY CONSUMPTION (GW-h)

		ELECTRIC	ENERGIC	ONSOIVIF I I	IOIA (GAN-III)	
	Actual			Forecast		
	1976	1980	1985	1990	1995	2000
RESIDENTIAL (GW·h)						
SPACE HEATING	1055	1816	2605	3261	4015	4910
WATER HEATING	1343	1566	1779	1962	2185	2429
APPLIANCES ETC.	2464	3120	4004	4997	6051	7324
TOTAL RESIDENTIAL ELECTRICITY	4862	6501	8388	10220	12251	14664
TOTAL 5 4 744 (014)	4074	4000	4754		0.400	00.45
TOTAL FARM (GW·h)	1074	1390	1751	2101	2489	2945
COMMERCIAL (GW·h)						
HEATING	118	722	1630	2677	4086	5945
OTHER (MOTORS + LIGHTING)	2028	2944	4319	5863	7845	10492
STREET LIGHTING	158	199	256	318	386	467
TOTAL COMMERCIAL ELECTRICITY	2304	3865	6205	8858	12316	16904
MANUE A CTUDINIO (CW)						
MANUFACTURING (GW·h) CHEMICALS	1149	1242	1000	1005	0077	0007
STEEL	9	1343 10	1633 11	1965 13	2277	2637
LIGHT MANUFACTURING	6446	7788	9535	11368	14 13358	15 15697
Eldin martor at ordina	0440	7700	9999	11300	13330	15097
SUBTOTAL - MANUFACTURING	7604	9142	11179	13346	15649	18350
MINIMO (OWL)						
MINING (GW·h)	0	0	0	0	0	0
TOTAL CONSUMPTION (GW-h)	15844	20897	27523	34526	42705	E0000
TOTALE CONTROLLE THOM (CIVIL)	13077	20037	2/523	34520	42705	52863

APPENDIX C-2

SOUTHWESTERN ONTARIO FORECAST OF ELECTRIC ENERGY CONSUMPTION USING SRI-CEA ECONOMETRIC MODEL

SCENARIO 3

BASIS: High Growth Rates in GDPP; All Other Parameters as in Scenario 1.

ELECTRIC ENERGY CONSUMPTION (GW·h)

			LINEINGI	2014201411. I	IOIA (GALII)	
	Actual			Forecast		
	1976	1980	1985	1990	1995	2000
RESIDENTIAL (GW·h)						
SPACE HEATING	1055	1830	2743	3500	4392	5476
WATER HEATING	1343	1578	1873	2106	2390	2709
APPLIANCES ETC.	2464	3143	4215	5362	6620	8167
TOTAL RESIDENTIAL ELECTRICITY	4862	6551	8831	10968	13401	16352
TOTAL FARM (GW·h)	1074	1399	1836	2243	2704	3257
COMMERCIAL (GW·h)						
HEATING	118	735	1836	3152	5012	7600
OTHER (MOTORS + LIGHTING)	2028	2996	4865	6904	9624	13412
STREET LIGHTING	158	201	272	346	427	527
TOTAL COMMERCIAL ELECTRICITY	2304	3931	6973	10401	15064	21538
INDUSTRIAL						
MANUFACTURING (GW·h)						
CHEMICALS	1149	1343	1633	1965	2277	2637
STEEL	9	10	11	13	14	15
LIGHT MANUFACTURING	6446	7847	10035	12189	14559	17391
SUBTOTAL - MANUFACTURING	7604	9201	11679	14167	16850	20044
MINING (GW·h)	0	0	0	0	0	0
TOTAL CONSUMPTION (GW-h)	15844	21082	29319	37778	48019	61191

APPENDIX C-3

ESSEX OPERATING AREA ACTUAL & FORECAST SUM OF CUSTOMER DECEMBER PEAK LOADS BY CLASSIFICATION (MW)

YEAR	MUNICIPAL	RETAIL	DIRECT	TOTAL
TEAT			CTUAL	
1000	1.4.1	30	0	171
1962 1963	141 150	30	0	182
1963	161	34	0	195
1965	188	30	0	218
1966	231	31	0	262
1967	223	33	0	256
1968	247	43	0	290
1969	259	46	0	305
1970	286	52	0	338
1971	301	53	0	354
1972	325	61	0	386
1973	333	69	0	402
1974	338	75	0	413
1975	371	80	0	451
1976	388	91	0	479
1977	387	92	0	479
	LOAD	FORECAST R	EPORT - 78021	3
1978	429	89	0	518
1979	452	94	0	546
1980	472	101	0	573
1981	493	108	0	601
1982	515	115	0	630
1983 1984	538	124	0	662
1985	566 594	132 142	0	698
1986	625	151	0	736 776
1987	656	162	0	818
1007	030		JECTION	010
1988	690	176	0	866
1989	725	192	0	917
1990	761	209	0	970
1991	799	227	0	1026
1992	837	247	0	1084
1993	876	268	0	1144
1994	916	290	0	1206
1995	957	313	0	1270
1996	998	338	0	1336
1997	1041	364	0	1405
1998	1084	392	0	1476
1999	1128	421	0	1549
2000	1173	452	0	1625
1000 4077			TE - PERCENT	
1962 — 1977 1977 — 1987	7.0	7.8	-	7.1
1977 – 1987 1987 – 2000	5.4	5.8	-	5.5
1907 — 2000	4.6	8.2	_	5.4

KENT OPERATING AREA ACTUAL & FORECAST SUM OF CUSTOMER DECEMBER PEAK LOADS BY CLASSIFICATION (MW)

			DIRECT	
YEAR	MUNICIPAL	RETAIL	INDUSTRIAL	TOTAL
		А	CTUAL	
1962	48	9	0	57
1963	52	10	0	62
1964	57	11	0	68
1965	65	25	0	90
1966	70	25	0	95
1967	72	27	0	99
1968	76	32	0	108
1969	79	34	0	113
1970	78	36	0	114
1971	83	36	0	119
1972	90	43	0	133
1973	95	43	0	138
1974	95	44	0	139
1975	101	50	0	151
1976	109	54	0	163
1977	110	55	0	165
	LOAD	FORECAST	REPORT – 78021	
1978	113	58	0	171
1979	118	61	0	179
1980	124	66	0	190
1981	131	72	0	203 215
1982	137	78	0	230
1983	145	₩5 91	0	244
1984	153 161	98	0	259
1985	170	106	0	276
1986	179	114	0	293
1987	175		DJECTION	
4000	190	124	0	314
1988	200	134	0	334
1989	212	146	0	358
1990 1991	224	158	0	382
1992	236	171	0	407
1993	249	185	0	434
1994	262	200	0	462
1995	276	215	0	491
1996	290	232	0	522
1997	304	250	0	554
1998	320	270	0	590
1999	335	290	0	625
2000	351	312	0	663
		GROWTH RA	TE - PERCENT	
1962 — 1977	5.7	12.8	***	7.3
1962 – 1977	5.0	7.6	_	5.9
1987 — 2000	5.3	8.1	_	6.5
1007 2000				

LAMBTON OPERATING AREA ACTUAL & FORECAST SUM OF CUSTOMER DECEMBER PEAK LOADS BY CLASSIFICATION (MW)

			DIRECT	
YEAR	MUNICIPAL	RETAIL	INDUSTRIAL	TOTAL
		А	CTUAL	
1962	15	0	126	141
1963	16	0	109	125
1964	17	0	106	123
1965	18	27	109	154
1966	19	29	167	215
1967	76	32	184	292
1968	80	36	212	328
1969	87	38	229 239	354 369
1970	84 86	46 47	239	372
1971	92	55	189	336
1972 1973	96	56	184	336
1974	101	59	146	306
1975	112	63	177	352
1976	116	71	169	356
1977	124	68	190	382
	LOAD	FORECAST 1	REPORT - 780213	
1978	120	82	207	409
1979	123	90	227	440
1980	129	98	241	468
1981	136	107	245	488
1982	144	116	264	524
1983	152	126	293	571
1984	160	138	307	605
1985	168	151	322	641
1986 1987	177 186	164 179	338 354	679 719
1907	100)JECTION	713
4000	400			755
1988	195	194 209	366 379	755 792
1989 1990	204 213	209	392	830
1991	222	242	406	870
1992	232	260	420	912
1993	241	279	435	955
1994	251	299	450	1000
1995	262	321	466	1049
1996	272	344	482	1098
1997	283	368	499	1150
1998	295	393	517	1205
1999	306	421	535	1262
2000	318	450	554	1322
		GROWTH R	ATE - PERCENT	
1962 — 1977	15.1	+01.00	2.8	6.9
1977 — 1987	4.1	10.2	6.4	6.5
1987 — 2002	4.2	7.3	3.5	4.8

STRATHROY OPERATING AREA ACTUAL & FORECAST SUM OF CUSTOMER DECEMBER PEAK LOADS BY CLASSIFICATION (MW)

YEAR	MUNICIPAL	DETAIL	DIRECT	TOTAL
TEAN	WONICIPAL	RETAIL	INDUSTRIAL CTUAL	TOTAL
4000				
1962	163	21	0	184
1963	181	23	0	204
1964	195	26	0	221
1965	208	30	0	238
1966	221	35	0	256
1967	211	36	0	247
1968	233	33	0	266
1969	241	35	0	276
1970	252	39	0	291 306
1971	266	40 46	0	348
1972	302		0	366
1973	313 332	53 46	4	382
1974 1975	344	54	4	402
	350	59	5	414
1976	350	61	5	416
1977			REPORT - 780213	710
	LUAD			
1978	363	64	3	430
1979	373	68	3	444
1980	386	72	3	461
1981	402	77	3	482
1982	423	81	3	507
1983	441	86	3	530
1984	460	91	3	554
1985	480	97	3	580
1986	501	102	3	606 634
1987	523	108	_	034
		PRC	JECTION	
1988	548	116	3	667
1989	574	124	4	702
1990	602	133	4	739
1991	630	142	4	776
1992	660	152	5	817
1993	691	162	5	858
1994	723	172	5	900 947
1995	757	184	6	947
1996	792	196	6	1044
1997	829	208	7 7	1096
1998	867	222	7	1150
1999	907	236	8	1207
2000	948	251		1207
			ATE - PERCENT	
1962 — 1977	5.2	7.4		5.6
1977 — 1987	4.1	5.9	_	4.3
1987 — 2000	4.7	6.7	7.8	5.1

EAST ELGIN OPERATING AREA ACTUAL & FORECAST SUM OF CUSTOMER DECEMBER PEAK LOADS BY CLASSIFICATION (MW)

			DIRECT	
YEAR	MUNICIPAL	RETAIL	INDUSTRIAL	TOTAL
		A	CTUAL	
1962	36	24	0	60
1963	41	27	0	68
1964	45	30	0	75
1965	47	23	0	70
1966	48	25	0	73
1967	45	25	13	83 94
1968	50	28	16 16	98
1969	51	31	14	99
1970	52	33 34	14	102
1971	54 59	37	14	110
1972	62	37	14	113
1973 1974	65	37	14	116
1974	67	41	12	120
1976	71	40	13	124
1977	75	45	13	133
1077		FORECAST F	REPORT - 780213	
1070	77	45	12	134
1978 1979	80	47	13	140
1980	84	50	13	147
1981	88	52	13	153
1982	93	55	14	162
1983	98	58	14	170
1984	104	61	13	178
1985	109	64	13	186
1986	115	68	12	195
1987	121	71	12	204
		PRO	JECT	
1988	128	75	14	217
1989	134	79	15	228
1990	141	83	17	241
1991	148	88	19	255
1992	156	92	20	268
1993	164	97	22	283
1994	172	102	24	298
1995 1996	181 190	108 113	25 27	314 330
1997	200	119	29	348
1998	210	126	30	366
1999	221	132	32	385
2000	232	139	33	404
			TE – PERCENT	
1962 — 1977	5.0	4.3	_	5.5
1977 — 1987	4.9	4.7		4.4
1987 — 2000	5.1	5.3	8.1	5.4
				0.1

BEACHVILLE OPERATING AREA ACTUAL & FORECAST SUM OF CUSTOMER DECEMBER PEAK LOADS BY CLASSIFICATION (MW)

YEAR	MUNICIPAL	RETAIL	DIRECT	TOTAL
	ACTUAL			
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973	61 66 70 79 89 85 92 94 97 101 112 117	36 39 43 33 36 35 42 46 50 52 56 61 64	0 0 39 4 13 16 12 11 11 13	97 105 113 151 129 133 150 152 158 164 181 192 195
1975	121	72 80	14 13	207 223
1976 1977	130 131	80	12	223
1377			EPORT 780213	
1070	132	86	13	231
1978 1979 1980 1981 1982 1983 1984 1985 1986	132 136 142 148 155 162 169 177 185 194	92 99 106 113 121 129 138 148 158	13 14 15 15 15 15 15 14 13 13	242 256 269 283 298 313 329 346 365
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000	204 214 225 236 248 260 272 285 298 311 324 338 352	168 179 190 201 214 227 241 256 272 288 306 325 345 GROWTH RA	15 17 18 20 22 24 26 28 29 31 33 34 36	387 410 433 457 484 511 539 569 599 630 663 697 733
1962 — 1977	5.2	5.5	_	5.7
1977 — 1987 1987 — 2000	4.0 4.7	7.0 6.2	0 .8 6.4	5.1 5.5

CLINTON OPERATING AREA ACTUAL & FORECAST SUM OF CUSTOMER DECEMBER PEAK LOADS BY CLASSIFICATION (MW)

		DIRECT			
YEAR	MUNICIPAL	RETAIL	INDUSTRIAL	TOTAL	
	ACTUAL				
1962	24	26	0	50	
1963	24	28	0	52	
1964	26	30	0	56	
1965	27	23	0	50	
1966	27	23	0	50	
1967	26	28	0	54	
1968	28	33	0	61	
1969	29	36	0	65	
1970	30	40	0	70	
1971	32	41	0	73	
1972	34	46	0	80	
1973	37	48	0	85	
1974	38	44	3	85	
1975	43	50	3	96	
1976	44	58	3	105	
1977	44	59	3	106	
	LOAD	FORECAST R	EPORT – 780213		
1978	45	60	3	108	
1979	46	64	3	113	
1980	49	69	3	121	
1981	51	74	3	128	
1982	54	80	3	137	
1983	56	86	3	145	
1984	59	93	3	155	
1985	62	100	3	165	
1986	65	108	3	176	
1987	69	116	3	188	
	PROJECTION				
1988	72	123	3	198	
1989	75	130	3	208	
1990	79	138	4	221	
1991	83	146	4	233	
1992	87	155	4	246	
1993	91	164	5	260	
1994 1995	95	174	5 5	274	
1996	100 105	184 195	6	289	
1997	110	206	6	306 322	
1998	115	200	7	340	
1999	121	230	7	358	
2000	126	244	7	377	
	GROWTH RATE – PERCENT				
1962 — 1977					
1977 – 1987	4.6	5.6 7.0	0.0	5.1	
1987 — 2000	4.7	5.9	6.7	5.9 5.5	
1307 - 2000	7./	5.5	0.7	5.5	

BRANTFORD OPERATING AREA ACTUAL & FORECAST SUM OF CUSTOMER DECEMBER PEAK LOADS BY CLASSIFICATION (MW)

YEAR	MUNICIPAL	RETAIL	DIRECT	TOTAL
	ACTUAL			
1962	63	11	0	74
1963	68	11	0	79
1964	75	12	0	87
1965	85	28	0	113
1966	91	25	0	116
1967	91	24	0	115
1968	98	28	0	126
1969	100	28	0	128
1970	109	35	0	144
1971	114	32	0	146
1972	125	36	0	161
1973	135	38	0	173
1974	134	41	0	175 174
1975	138	36 39	0	190
1976	151 151	39	0	190
1977			PORT – 780213	
	153	29	0	182
1978	168	31	0	199
1979 1980	178	32	0	210
1981	190	34	0	224
1982	202	36	0	238
1983	215	37	0	252
1984	232	40	0	272
1985	250	42	0	292
1986	269	44	0	313
1987	290	47	0	337
		PROJ	ECTION	
1988	305	49	0	354
1989	321	52	0	373
1990	337	55	0	392
1991	354	57	0	411
1992	370	60	0	450
1993	387	63	0	470
1994	404	66 69	0	490
1995	421	72	0	511
1996	439	75	0	531
1997	456	78	0	551
1998	473 490	81	0	571
1999	507	85	0	592
2000			ES - PERCENT	
		8.8	_	6.5
1962 — 1977	6.0 6.7	1.9	_	5.9
1977 — 1987	4.4	4.7		4.4
1987 — 2000	4.4			

GUELPH OPERATING AREA ACTUAL & FORECAST SUM OF CUSTOMER DECEMBER PEAK LOADS BY CLASSIFICATION (MW)

YEAR	MUNICIPAL	RETAIL	DIRECT INDUSTRIAL	TOTAL	
		ACTUAL			
1962 1963 1964 1965 1966 1967	193 206 228 254 296 315	13 14 17 32 32 31	0 0 0 4 4	206 220 245 290 332 350	
1968 1969 1970 1971 1972 1973	354 382 399 423 471 501	35 36 39 40 44 48	4 4 3 4 5 5	393 422 441 467 520 554	
1974 1975 1976 1977	516 538 573 584 LOAD	49 60 61 66 FORECAST F	5 5 5 5 REPORT — 78021	570 603 639 655	
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987	652 681 716 755 794 843 893 946 1002	33 36 38 42 45 49 53 58 63	7 9 9 10 10 11 12 13 13	692 726 763 807 849 903 958 1017 1078	
4000	PROJECTION				
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000	1117 1177 1239 1305 1374 1447 1523 1604 1688 1777 1871 1970 2074	73 77 81 85 90 94 99 104 110 115 121 127 133 GROWTH RA	15 15 16 16 17 17 18 19 19 20 20 21 21	1205 1269 1336 1406 1481 1558 1640 1727 1817 1912 2012 2118 2228	
1962 — 1977 1977 — 1987 1987 — 2000	7.7 6.2 5.3	11.4 0.4 5.2	10.8 3.2	8.0 5.7 5.3	

LISTOWEL OPERATING AREA ACTUAL & FORECAST SUM OF CUSTOMER DECEMBER PEAK LOADS BY CLASSIFICATION (MW)

VEAD	MANAGORAI		DIRECT		
YEAR	MUNICIPAL	RETAIL	INDUSTRIAL	TOTAL	
	ACTUAL				
1962	9	10	0	19	
1963	10	11	0	21	
1964 1965	11 12	14 14	0	25	
1966	12	18	0	26 30	
1967	13	20	0	33	
1968	14	21	0	35	
1969	15	22	Ö	37	
1970	16	24	0	40	
1971	16	26	0	42	
1972	17	29	0	46	
1973	18	30	0	48	
1974	20	26	0	46	
1975	22	33	0	55	
1976	23	37	0	60	
1977	24	35	0	59	
	LOAD	FORECAST I	REPORT - 780213		
1978	22	36	0	58	
1979	22	37	0	59	
1980	23	39	0	62	
1981	25	41	0	66	
1982	26	43	0	69	
1983	27	45	0	72 77	
1984	29	48	0	81	
1985	30	51 54	0	86	
1986	32	57	0	90	
1987	33				
	PROJECTION				
1988	35	59	0	94	
1989	36	62	0	98 102	
1990	38	64	0	107	
1991	40	67 70	0	112	
1992	42	73	0	116	
1993	43 45	76	0	121	
1994	45	79	0	126	
1995	50	83	0	133	
1996	52	86	0	138	
1997	54	89	0	143	
1998 1999	57	93	0	150	
2000	59	97	0	156	
2000	(ROWTH RA	TES - PERCENT		
1002 1077	6.8	8.7	-	7.8	
1962 — 1977 1977 — 1987	3.2	5.0	-	4.3	
1987 – 1987	4.6	4.2	estret	4.3	

WALKERTON OPERATING AREA ACTUAL & FORECAST SUM OF CUSTOMER DECEMBER PEAK LOADS BY CLASSIFICATION (MW)

0001011121121			DIRECT		
YEAR	MUNICIPAL	RETAIL	INDUSTRIAL	TOTAL	
1962	22	9	0	31	
1963	25	11	0	36	
1964	28	12	0	40	
1965	29	23	0	52	
1966	32	31	0	63	
1967	32	28	0	60	
1968	37	34	Ö	71	
1969	38	35	0	73	
1970	41	39	Ö	80	
1971	43	43	3	89	
1972	46	54	31	131	
1973	49	55	63	167	
1974	53	55	67	175	
1975	59	75	67	201	
1976	66	77	65	208	
1977	67	76	65	208	
1377				200	
			EPORT - 780213		
1978	68	87	141	296	
1979	72	89	201	362	
1980	78	93	215	386	
1981	84	98	215	397	
1982	91	95	215	401	
1983	98	102	215	415	
1984	106	107	215	428	
1985	115	113	215	443	
1986	124	119	215	458	
1987	135	125	215	475	
	PROJECTION				
1988	144	134	217	495	
1989	153	143	218	514	
1990	162	153	2 19	534	
1991	172	163	219	554	
1992	183	174	220	577	
1993	194	186	221	601	
1994	205	198	221	624	
1995	217	211	221	649	
1996	230	225	221	676	
1997	243	240	221	704	
1998	257	255	221	733	
1999	271	272	221	764	
2000	286	289	221	796	
	GROWTH RATES – PERCENT				
1962 — 1977	7.7	15.3		13.5	
1977 1987	7.3	5.1	12.7	8.6	
1987 — 2000	5.9	6.7	0.2	4.1	
				1, 1	

ORANGEVILLE OPERATING AREA ACTUAL & FORECAST SUM OF CUSTOMER DECEMBER PEAK LOADS BY CLASSIFICATION (MW)

YEAR	MUNICIPAL	RETAIL	DIRECT	TOTAL
			CTUAL	101712
1962	6	8	0	14
1963	7	8	0	15
1964	7	9	0	16
1965	8	12	0	20
1966	9	13	0	22
1967	9	16	0	25
1968 1969	11 14	18 21	0	29 35
1970	15	22	0	37
1971	15	24	0	39
1972	17	27	0	44
1973	19	30	0	49
1974	20	30	0	50
1975	22	37	0	59
1976	23 25	45 39	0	68 64
1977	REPORT - 780213	04		
1978	28	48	0	76
1979	30	54	0	84
1980	32	61	0	93
1981	35	69	0	104
1982	38	78	0	116
1983	41	88	0	129 144
1984	44 47	100 112	0	159
1985 1986	51	127	0	178
1987	55	144	0	199
1307	PROJECTION			
1988	59	155	0	214
1989	63	167	0	230
1990	67	179	0	246 264
1991	71	193	0	283
1992	76	207 223	0	303
1993	80 85	239	0	324
1994	90	257	0	347
1995 1996	96	276	0	372
1997	101	295	0	396
1998	107	317	0	424 452
1999	113	339	0	452
2000	119	363		402
			TES - PERCENT	10.7
1962 - 1977	10.0	11.1	- Comm	12.0
1977 — 1987	8.2	14.0 7.4	8999	7.0
1987 — 2000	6.1	7.77		

ALLISTON OPERATING AREA ACTUAL & FORECAST SUM OF CUSTOMER DECEMBER PEAK LOADS BY CLASSIFICATION (MW)

ACTUAL 1962 8	AL
1963 9 12 0 21 1964 10 13 0 23 1965 10 11 0 21 1966 11 1 12 0 23 1967 12 14 0 26 1968 13 16 0 29 1969 15 18 0 33 1970 16 21 0 37 1971 17 23 0 40 1972 19 26 0 45 1973 21 30 0 51 1974 22 30 0 51 1974 22 30 0 51 1975 26 35 0 61 1976 28 40 0 68 1977 29 38 0 67 LOAD FORECAST REPORT 780213 1978 31 45 0 76 1979 34 47 0 81 1980 37 48 0 86 1981 40 50 0 90 1982 44 53 0 97	
1963 9 12 0 21 1964 10 13 0 23 1965 10 11 0 21 1966 11 12 0 23 1967 12 14 0 26 1968 13 16 0 29 1969 15 18 0 33 1970 16 21 0 37 1971 17 23 0 45 1972 19 26 0 45 1973 21 30 0 51 1974 22 30 0 51 1974 22 30 0 51 1975 26 35 0 61 1976 28 40 0 68 1977 29 38 0 67 LOAD FORECAST REPORT 780213 1978 31 45 0 76 1979 34 47 0 81 1980 37 48 0 85 1981 40 50 0 97 1982	9
1965	1
1966	3
1967 1968 13 16 0 29 1969 15 18 0 33 1970 16 21 0 37 1971 17 23 0 40 1972 19 26 0 45 1973 21 30 0 51 1974 22 30 0 51 1975 26 35 0 61 1976 28 40 0 68 1977 29 38 0 67 LOAD FORECAST REPORT 780213 1978 1979 34 47 0 81 1980 37 48 0 85 1981 40 50 0 97 1982	
1968	
1969 15 18 0 33 1970 16 21 0 37 1971 17 23 0 40 1972 19 26 0 45 1973 21 30 0 51 1974 22 30 0 52 1975 26 35 0 61 1976 28 40 0 68 1977 29 38 0 67 LOAD FORECAST REPORT 780213 1978 31 45 0 76 1979 34 47 0 81 1980 37 48 0 85 1981 40 50 0 97 1982 44 53 0 97	
1970	
1971 17 23 0 40 1972 19 26 0 45 1973 21 30 0 51 1974 22 30 0 52 1975 26 35 0 61 1976 28 40 0 68 1977 29 38 0 67 LOAD FORECAST REPORT 780213 1978 31 45 0 76 1979 34 47 0 81 1980 37 48 0 85 1981 40 50 0 90 1982 44 53 0 97	
1972	
1973 21 30 0 51 1974 22 30 0 52 1975 26 35 0 61 1976 28 40 0 68 1977 29 38 0 67 LOAD FORECAST REPORT 780213 1978 31 45 0 76 1979 34 47 0 81 1980 37 48 0 85 1981 40 50 0 90 1982 44 53 0 97	
1974 22 30 0 52 1975 26 35 0 61 1976 28 40 0 68 1977 29 38 0 67 LOAD FORECAST REPORT 780213 1978 31 45 0 76 1979 34 47 0 81 1980 37 48 0 85 1981 40 50 0 90 1982 44 53 0 97	
1975 26 35 0 61 1976 28 40 0 68 1977 29 38 0 67 LOAD FORECAST REPORT 780213 1978 31 45 0 76 1979 34 47 0 81 1980 37 48 0 85 1981 40 50 0 90 1982 44 53 0 97	
1976 28 40 0 68 1977 29 38 0 67 LOAD FORECAST REPORT 780213 1978 31 45 0 76 1979 34 47 0 81 1980 37 48 0 85 1981 40 50 0 90 1982 44 53 0 97	
1977 29 38 0 67 LOAD FORECAST REPORT 780213 1978 31 45 0 76 1979 34 47 0 81 1980 37 48 0 85 1981 40 50 0 90 1982 44 53 0 97	
LOAD FORECAST REPORT 780213 1978 31 45 0 76 1979 34 47 0 81 1980 37 48 0 85 1981 40 50 0 90 1982 44 53 0 97	
1978 31 45 0 76 1979 34 47 0 81 1980 37 48 0 85 1981 40 50 0 90 1982 44 53 0 97	/
1979 34 47 0 81 1980 37 48 0 85 1981 40 50 0 90 1982 44 53 0 97	_
1980 37 48 0 85 1981 40 50 0 90 1982 44 53 0 97	
1981 40 50 0 90 1982 44 53 0 97	
1982 44 53 0 97	
1905 46 57 0 100	
1984 53 60 0 113	
1985 58 62 0 120	
1986 63 65 0 128	
1987 69 68 0 137	
PROJECTION	
1988 74 73 0 147	7
1989 80 79 0 159	9
1990 87 85 0 172	2
1991 93 91 0 184	4
1992 101 97 0 198	8
1993 108 105 0 213	3
1994 117 112 0 229	9
1995 125 120 0 245	
1996 134 129 0 263	
1997 144 138 0 282	
1998 154 148 0 302 1999 165 159 0 324	
0 02-1	
0,0	Ь
GROWTH RATES – PERCENT	
1962 – 1977 9.0 8.6 – 8.8	
1977 – 1987 9.1 6.0 – 7.4	
1987 – 2000 7.5 7.3 – 7.4	

OWEN SOUND OPERATING AREA ACTUAL & FORECAST SUM OF CUSTOMER DECEMBER PEAK LOADS BY CLASSIFICATION (MW)

YEAR	MUNICIPAL	RETAIL	DIRECT	TOTAL		
	mornon AL		CTUAL	TOTAL		
1962	22	12	11	45		
1963	24	14	9	47		
1964	25	15	5	45		
1965	27	16	7	50		
1966	31	18	6	55		
1967	35	21	4	60		
1968	40	26	4	70		
1969	42	29	4	75		
1970	45	34	3	82		
1971	46	38	3	87		
1972	51	43	3	97		
1973	57	47	3	107		
1974	58	51	3	112		
1975	69	59	3	131 147		
1976	74	70	3	147		
1977	73 67 3 LOAD FORECAST REPORT – 780213					
				154		
1978	78	73 81	3	166		
1979	82	91	3	181		
1980	87 94	102	3	199		
1981	100	115	3	218		
1982 1983	107	129	3	239		
1984	114	144	3	261		
1985	122	162	3	287		
1986	131	181	3	315		
1987	141	203	3	347		
		PRO	DJECTION			
1988	151	219	3	373		
1989	162	236	3	401		
1990	174	255	3	432		
1991	186	274	3	463 498		
1992	199	296	3	535		
1993	213	319	3	575		
1994	228	344 371	3	617		
1995	243	399	3	661		
1996	259 276	431	3	710		
1997	294	464	3	761		
1998	312	500	3	815		
1999	332	539	3	874		
2000		GROWTH RA	TES - PERCENT			
	8.3	12.1	arm	8.0		
1962 — 1977	6.8	11.7	_	9.3		
1977 — 1987 1987 — 2000	6.8	7.8	-	7.4		
1307 2000						

SIMCOE OPERATING AREA ACTUAL & FORECAST SUM OF CUSTOMER DECEMBER PEAK LOADS BY CLASSIFICATION (MW)

YEAR	MUNICIPAL	RETAIL	DIRECT INDUSTRIAL	TOTAL
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975	17 17 20 20 21 22 25 25 27 27 27 30 31 34 35 37	15 14 16 15 15 16 19 20 21 20 23 24 27 28	0 0 0 0 0 0 0 0 0	32 31 36 35 36 38 44 45 48 47 53 55 61 63 66
1977	38	29 AD FORECAST	0 REPORT 780213	67
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987	38 39 40 43 45 47 49 51 54	30 32 33 34 35 36 37 39 41 43	0 0 0 0 0 0 0	68 71 73 77 80 83 86 90 95
		PROJE	CTION	
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000	59 61 64 67 70 73 76 80 83 87 91 95	45 47 49 52 54 57 60 63 66 69 73 76	0 0 0 0 0 0 0 0	104 108 113 119 124 130 136 143 149 156 164 171
		GROWTH RATE		173
1967 — 1977 1977 — 1987 1987 — 2000	5.5 4.0 4.5	4.5 4.0 4.9		5.0 4.0 4.7

STAYNER OPERATING AREA ACTUAL & FORECAST SUM OF CUSTOMER DECEMBER PEAK LOADS BY CLASSIFICATION (MW)

			DIRECT	TOTAL	
YEAR	MUNICIPAL		INDUSTRIAL	TOTAL	
			CTUAL		
1962	10	8	0	18	
1963	11	9	0	20	
1964	12	10	0	22	
1965	13	8	0	21 23	
1966	14	9	0	28	
1967	16	12 14	0	35	
1968	21 22	19	0	41	
1969 1970	23	23	0	46	
1970	25	25	0	50	
1972	29	29	0	58	
1973	32	31	0	63	
1974	32	31	0	63	
1975	36	38	0	74	
1976	51	34	0	85	
1977	50	33	0	83	
	LOAD	FORECAST	REPORT - 780213		
1978	53	31	0	84	
1979	56	34	0	90	
1980	60	38	0	98 105	
1981	63	42	0	114	
1982	68	46	0	122	
1983	72	50	0	132	
1984	76	56 61	0	141	
1985	80	67	0	152	
1986	85 90	74	0	164	
1987		PROJECTION			
	96	80	0	176	
1988	103	86	0	189	
1989	110	93	0	203	
1990 1991	117	100	0	217	
1991	125	107	0	232	
1993	133	115	0	248 265	
1994	141	124	0	283	
1995	150	133	0	302	
1996	159	143	0	321	
1997	168	153 164	0	342	
1998	178	176	0	364	
1999	188	188	0	387	
2000	199		ATES - PERCENT		
		9.9	_	10.7	
1962 - 1977	11.3	9.9 8.4	ann	7.0	
1977 — 1987	6.1	7.4	, man	6.8	
1987 — 2000	6.3	7.7			

FORECAST OF SOUTHWESTERN ONTARIO CRITICAL AREA STATION LOADS COINCIDENT WITH JANUARY PEAK (MW)

STATIONS	1979	1981	1987	1991	1996	2001
AYLMER	18.0	20.5	27.7	33.6	42.9	54.6
ESSEX	95.0	87.5	113.6	136.7	167.5	199.2
LONDON HIGHBURY 13.8 kV	24.6	24.7	24.8	29.7	37.0	46.0
LONDON HIGHBURY 27.6 kV	88.1	93.8	101.6	123.1	156.0	197.3
INGERSOLL	42.0	47.5	66.8	82.5	107.2	138.5
J. C. KEITH	66.7	76.3	110.1	142.4	194.2	260.5
KENT TS	125.7	144.8	209.1	273.4	374.0	500.0
KINGSVILLE	67.3	76.4	110.1	146.7	205.5	279.4
LAMBTON	43.7	51.8	65.9	83.6	111.8	149.2
LONDON CLARK	73.9	78.3	85.3	104.5	133.9	170.8
LONDON NELSON	80.5	86.1	86.9	104.0	129.8	161.3
LONDON WONDERLAND	111.2	80.6	106.9	131.2	168.6	215.8
SARNIA MODELAND	-	82.6	127.9	162.6	215.9	284.6
SARNIA ST ANDREWS	150.7	90.9	106.0	125.4	153.0	185.9
STRATHROY	38.7	54.1	80.4	105.0	144.7	197.5
ST THOMAS 13.8 kV	30.6	30.8	36.6	44.6	57.1	73.2
ST THOMAS 27.6 kV	50.1	51.8	79.2	98.8	130.1	170.7
TILLSONBURG	44.9	50.3	68.4	85.1	111.9	146.9
SARNIA VIDAL	15.1	15.5	16.9	20.2	24.6	29.7
WINDSOR WALKER	81.5	61.3	79.6	95.8	117.3	139.5
WALLACEBERG	38.5	44.6	62.6	79.8	107.6	144.3
WANSTEAD	28.3	33.2	52.4	68.4	93.9	127.7 116.8
WINDSOR CRAWFORD	62.6	51.3	66.7	80.2	98.2 288.8	375.5
WINDSOR LAUZON	109.7	124.3	171.3	217.8	141.9	177.2
WOODSTOCK	61.0	68.4	91.1		56.5	70.2
LONDON TALBOT 13.8 kV		5.5	37.8	45.3 124.7	155.7	193.3
LONDON TALBOT 27.6 kV	-	50.5	104.2		127.2	151.3
WINDSOR MALDEN	-	66.5	86.3	103.8 67.4	86.3	107.6
BRANT	47.6	53.2	53.8	140.0	170.5	204.3
BRANTFORD	113.9	132.6	115.1	140.0		
DETWEILLER	25.9	28.9	11.3	14.1	17.9	22.7
ELMIRA	27.4	32.1	50.8	64.4	85.6	113.3
FERGUS	67.4	77.7 152.0	90.9	109.1	136.9	171.8
GALT	135.7	79.6	100.5	124.9	163.5	214.0
GUELPH CAMPBELL	68.0	78.0	143.0	177.7	232.7	304.4
GUELPH CEDAR	66.7		74.8	92.4	119.8	155.2
KITCHENER GRABER	50.3	56.0	67.5	83.3	108.0	139.9
KITCHENER 3	65.9	73.4	103.1	127.2	165.0	213.6
KITCHENER 4	89.8	100.1	-	-	_	_
NORFOLK	57.7	63.2	115.8	139.5	175.3	219.9
PRESTON EAST	-	37.4	48.4	57.8	72.0	89.7
WATERLOO RUSH	33.9	53.7	69.1	82.3	102.4	127.4
WATERLOO SCHEIFELE	48.7	53.7	112.3	136.5	167.8	198.3
LYNDEN ROAD	west .	_	41.4	53.0	70.1	91.8
WILMOT CENTRE	44.0	12.8	17.8	22.5	29.3	37.9
WOLVERTON	11.6	12.0	61.3	75.7	98.2	127.2
KITCHENER SW	-	-	52.7	66.8	89.1	118.1
WOOLWICH	-		56.8	69.9	90.0	115.6
ROCKWOOD	-	178.9	247.4	295.0	356.0	425.0
DIRECT INDUSTRIAL	158.8					8 154.9
TOTAL LOAD	2 618.0	2 959.5	4 010.0	4 959.8	6 389.2	6 154.9
TOTAL LOAD						

FIGURE 7

CONCEPTUAL FRAMEWORK FOR SRI-CEA MODEL

EFFECT OF VARIATIONS IN GROWTH RATE OF GROSS DOMESTIC PROVINCIAL PRODUCT ON GROWTH IN DEMAND FOR ELECTRIC ENERGY

A. Growth Rates in Gross Domestic Provincial Product

	Scenario	
# 1 SRI Growth Rates %	#2 OEC Growth Rates %	#3 High Growth Rates %
	Note 1	
3.8	5.3	5.5
3.8	4.4	5.5
3.8	4.1	4.5
3.2	4.1	4.5
	SRI Growth Rates % 3.8 3.8	#1 #2 SRI OEC Growth Rates % Note 1 3.8 5.3 3.8 4.4 3.8 4.1

B. Resulting in Electric	Ontario Hydro Forecast 780213 %			
				Note 2
1976 — 1981	5.3	7.1	7.3	5.3
1981 — 1985	4.6	5.4	6.8	5.9
1985 — 1990	4.1	4.6	5.2	5.8
1990 — 2000	3.2	4.4	4.9	5.4

Note 1 These figures are approximations of year by year data given in the Ontario Economic Council (OEC) Report for the period to 1987.

Note 2 The Ontario Hydro forecast growth rates are for December peak loads from figure 4.

SOUTHWESTERN ONTARIO
SRI – CEA MODEL FORECAST OF ELECTRIC
ENERGY GROWTH

LOAD FLOW PLOT
JANUARY 1987 PEAK LOAD
O MW SALES TO MICHIGAN
1 UNIT IN-SERVICE AT LAMBTON
ALL FACILITIES IN SERVICE

LOAD FLOW PLOT
JANUARY 1987 PEAK LOAD
O MW SALES TO MICHIGAN
1 UNIT IN-SERVICE AT LAMBTON
M32W AND M33W OUT-OF-SERVICE

PF787562

MUV 78

LOAD FLOW PLOT
JANUARY 1989 PEAK LOAD
O MW SALES TO MICHIGAN
3 UNITS IN-SERVICE AT LAMBTON
ALL FACILITIES IN-SERVICE

NOV 78

LOAD FLOW PLOT
JANUARY 1989 PEAK LOAD
O MW SALES TO MICHIGAN
3 UNITS IN-SERVICE AT LAMBTON
D4W, M32W AND M33W OUT-OF-SERVICE

PF 787561

MUV 7A

LOAD FLOW PLOT
JANUARY 1989 PEAK LOAD
2000 MW SALES TO MICHIGAN
3 UNITS IN-SERVICE AT LAMBTON
ALL FACILITIES IN-SERVICE

LF787957

04 DFC 78

LOAD FLOW PLOT
JANUARY 1989 PEAK LOAD
2000 MW SALES TO MICHIGAN
3 UNITS IN-SERVICE AT LAMBTON
M32W OUT-OF-SERVICE

PF787560

05 DEC 78

HIGH AND LOW LOAD GROWTH CURVES FOR SOUTHWESTERN ONTARIO CRITICAL AREA LOAD

FIGURE 16

SOUTHWESTERN ONTARIO POWER LOSSES IN TRANSMISSION FACILITIES AT TIME OF SYSTEM PEAK

(With All Transmission Facilities In Service and Without Major New Additions)

SOUTHWESTERN ONTARIO CRITICAL LOAD AREA STATIC CAPACITOR REQUIREMENTS FOR LOAD SUPPLY

