Радиопараметри на средата при IEEE 802.11 (Wi-Fi)

Теоретична част

Децибелът се използва за изразяване на относителната разлика в нивото между два сигнала. Изчислява се по формулата:

(1)
$$X_{dB}=10. lg\left(\frac{P_{2}}{P_{1}}\right)$$
, където P_{1} и P_{2} са двете мощности

Например, ако изменението на мощността $\frac{P_2}{P_1}=10000$, то $10.\lg(10000)=40dB$.

Ако във формула (1) P_1 =1mW (стойност, приета за опорна единица при IEEE 802.11), то резултатът от изчисляването на произволна мощност P (изразена във W) ще генерира резултат в dBm. Резултатните уравнения ще изглеждат по следния начин:

(2)
$$Y_{dBm} = 10. lg \frac{P_W}{1mW} = 10. lg(1000. P_W) = 10. lg P_W + 30,$$

(3)
$$P_W = \frac{10^{\frac{Y_{dBm}}{10}}}{1000} = 10^{\frac{Y_{dBm}-30}{10}}$$
, където 1mW=10⁻³W

На базата на цитираните формули, таблица 1 визуализира преобразуване на dBm към W.

dBm	W	dBm	W	dBm	W	dBm	W
0	1.0 mW	16	40 mW	32	1.6 W	50	100 W
1	1.3 mW	17	50 mW	33	2.0 W	54	250 W
2	1.6 mW	18	63 mW	34	2.5 W	57	500 W
3	2.0 mW	19	79 mW	35	3.2 W	60	1 000 W
4	2.5 mW	20	100 mW	36	4.0 W	64	2 500 W
5	3.2 mW	21	126 mW	37	5.0 W	67	5 000 W
6	4 mW	22	158 mW	38	6.3 W	70	10 000 W
7	5 mW	23	200 mW	39	8.0 W	74	25 000 W
8	6 mW	24	250 mW	40	10 W	77	50 000 W
9	8 mW	25	316 mW	41	13 W	80	100 000 W
10	10 mW	26	398 mW	42	16 W	84	250 000 W
11	13 mW	27	500 mW	43	20 W	87	500 000 W
12	16 mW	28	630 mW	44	25 W		
13	20 mW	29	800 mW	45	32 W		

14	25 mW	30	1.0 W	46	40 W	
15	32 mW	31	1.3 W	47	50 W	

таблица 1 Преобразуване на dBm към W

Пример 1: Стойността на децибелите на предавател с мощност 10mW е 10dBm. Изчислява се по формула (2):

$$10.\lg\left(\frac{10\ mW}{1\ mW}\right) = 10.\lg 10 = 10.1 = 10dBm$$

Пример 2: Стойността на децибелите на усилвател, чието усилване е 10000 пъти, е 40 dBm. Изчисляването се извършва по формула (1).

$$10.\lg\left(\frac{P_2}{P_1}\right) = 10.\lg 10000 = 40dBm$$

От подобни изчисления или таблица 1 се получава, че:

двойно увеличаване на мощността е с означение (3 dBm), 10 пъти увеличение – (10 dBm), 1000 пъти увеличение – (30 dBm); наполовина намаляване на мощността е с означение (-3 dBm), 10 пъти намаление – (-10 dBm), 1000 пъти намаление – (-30 dBm);

Физически фактори, указващи влияние върху разпространението на сигнала

Параметрите, имащи значение за разпространението на сигнала са:

- 1. Мощността на предаване;
- 2. Загуби по кабела между предавател и антена;
- 3. Усилване на предавателната антена;
- 4. Местоположение на двете антени разстояние, препятствия;
- 5. Усилване на приемащата антена;
- 6. Загуби по кабела между антена и приемник;
- 7. Чувствителност на приемника минималната мощност на сигнала, зададена в dBm или mW, необходима на приемника за неговото декодиране. Например чувствителност на приемника от 0 dBm e 1 mW, (-60 dBm) 0.000001 mW, (-70 dBm) 0.0000001 mW. Знакът минус означава, че мощността е под опорната стойност от 1mW. Колкото стойността е по-малка (по-отрицателна), толкова чувствителността на приемника е по-добра.

Пресмятане на изходната мощност при предаване

Пресмятането се извършва по формулата:

(4) EIRP=TX Power-Coax Cable Loss+TX Antenna Gain, където:

EIRP се изчислява в dBm,

TX Power - изходната мощност на предавателя в dBm,

Coax Cable Loss - загуби в свързващия антената кабел в dB,

TX Antenna Gain - усилване на предавателната антена в dBi.

EIRP е стойността, която се контролира от стандартизиращите организации за безжично оборудване в обхват 2.4 GHz или 5 GHz.

Пресмятане нивото на приетия сигнал

Пресмятането се извършва по формулата:

(5) RX Signal=EIRP-FSL+RX Antenna Gain-Coax Cable Loss, където:

RX Signal - изчислява се в dBm,

EIRP – стойността, изчислена от (4),

FSL – стойността на затихването в средата в dB,

RX Antenna Gain - усилване на приемната антена в dB,

Coax Cable Loss - загуби в свързващия антената кабел в dB.

Изчисляването на **FSL** е по формулата:

(6) FSL = 36,6 + 20. lgF + 20 lgD,

където:

 \mathbf{F} - честотата в MHz,

D - разстоянието между приемника и предавателя в мили.

За гарантиране на нормалната работа на трасето е необходимо да се въведе оперативен запас. Той се изчислява по формулата:

(*7) SOM=Rx signal level-Rx sensitivity, където:

SOM - оперативен запас в dB,

Rx signal level – ниво на приетия сигнал,

Rx sensitivity — чувствителност на приемника (определя се от техническата спецификация на радиооборудването)

Нива на SOM:

SOM ≥ 20dB – напълно достатъчно за гарантирана връзка;

SOM ≈ 14dB - типична стойност за презапасяване;

SOM ≤ 10dB – достатъчна при незашумена среда.

Задачи за изпълнение

Да се определи разстоянието, на което може да се изгради линково радиотрасе, ако са налични следните данни за радиомодулите:

Мощност на предавателите: 100 mW;

Чувствителност на приемниците: -89 dBm;

Усилване на антените: 12 dBi;

Загуби в свързващите фидери: 1 dB; Работен честотен диапазон: 2.44 GHz.

Допълнителна информация:

Мощността на стандартните предаватели (в dBm) е в границите от 18 dBm до 20 dBm (от 63 до 100 mW).

Стандартната чувствителност на приемника (в dBm) е между (-75 dBm) и (-100 dBm).

Решение:

1. Изчисляване на изходната мощност в dBm

Пресмята се изотропно излъчената мощност чрез (4)

Пресмята се необходимият сигнал в приемника, нужен за правилно декодиране на данните чрез (7), като се добавя и оперативен презапас от 14dB.

Определя се необходимата стойност за FSL по (5)

По формула (6) се определя какво е разстоянието в мили на база на известните параметри:

$$lgD=rac{FSL-36,6-20.\,lgF}{20}=rac{117-36,6-20.\,lg2440}{20}=0,6326$$
 $D=10^{0,6326}pprox4,29$ мили

След преобразуването в километри се получава:

$$D_{km} = D_{miles}$$
. 1,609344 = 4,29.1,609344 = 6,9 km

От получения резултат може да се заключи, че конкретното оборудване може да постигне ефективно разстояние от 6,9 км.