Análisis de Establecimientos Productivos Laborales de Argentina

Trabajo Final de Ciencia de Datos para Economía y Negocios

• Estudiante: Valentina Gutiérrez Curátola

• Registro: 906.474

• Docente: Nicolás Sidicaro

Contenido

- ✓ Introducción y Objetivos.
- ✓ Descripción de los datos utilizados.
- ✓ Metodología Aplicada.
- ✓ Análisis Exploratorio de Datos ("EDA").
- ✓ Resultados Principales
- ✓ Modelos de Machine Learning.
- ✓ Conclusiones.
- ✓ Limitaciones y Trabajo Futuro.

Introducción y Objetivos

¿Existen factores que influyen en la participación femenina laboral?

- ✓ Este proyecto analiza 1.37 millones de establecimientos productivos argentinos.
- ✓ Se aplican técnicas de ciencia de datos para identificar patrones de género, geografía y actividad.
- ✓ Los hallazgos aportan una mirada crítica sobre la estructura productiva y los determinantes de la participación femenina en el mercado laboral.

Introducción y Objetivos

Objetivo del proyecto:

- ✓ Explorar patrones de participación femenina por sector y región.
- ✓ Desarrollar modelos de clasificación y predicción.
- ✓ Generar recomendaciones para política pública y negocios.

Introducción y Objetivos

Hallazgos Principales

- ✓ **Determinismo sectorial:** El tipo de industria predice la composición de género mejor que la ubicación geográfica.
- ✓ **Paradoja exportadora:** Los sectores con mayor capacidad exportadora tienen menor participación femenina.
- ✓ Liderazgo patagónico: La región sur muestra mayor inclusión de género que el centro tradicional.
- ✓ Concentración de servicios: El 82% de establecimientos se concentra en 3 sectores principales:
 - 1. Sectores Tradicionales (construcción, agricultura, transporte)
 - 2. Servicios Especializados (salud, educación, servicios profesionales).
 - 3. Sectores Productivos (industria y tecnología).

Datos Originales

- ✓ Los datos fueron obtenidos del Centro de Estudios para la Producción (CEP XXI).
- ✓ Se obtuvieron 1.408.470 registros correspondientes a establecimientos productivos relevados durante los años 2021 y 2022.
- ✓ Para el análisis se consideraron 24 variables que incluyen información empresarial, geográfica y sectorial.

Proceso de Limpieza

- ✓ Se conservaron el 100% de los registros vinculados a actividades, departamentos y combinaciones departamento-actividad.
- ✓ En cuanto a los establecimientos, se logró conservar el 97% de los registros originales, alcanzando un total de 1.366.827 casos finales.

Etapa	Registros Iniciales	Registros Finales	Retención
Actividades	951	951	100%
Departamentos	527	527	100%
Departamento-Actividad	316.697	316.697	100%
Establecimientos	1.408.470	1.366.827	97,04%

[✓] Este proceso aseguró la calidad y representatividad de la muestra sin sacrificar volumen de datos relevante.

Proceso de Limpieza

- ✓ Los datos provienen de un portal oficial, lo que garantiza su validez y estructura estandarizada.
- ✓ Al ser generados por organismos públicos con metodologías consistentes, llegaron en buen estado de limpieza, con identificadores claros y sin registros relevantes faltantes.
- ✓ Esto se refleja en las altas tasas de retención con 100% en actividades, departamentos y combinaciones, y 97% en establecimientos.

Transformación de Datos

- 1. Se ajustó la validación del código de actividad económica (CLAE6) para aceptar tanto códigos de cinco como de seis dígitos, garantizando así una mayor cobertura de actividades.
- 2. Se eliminaron filtros geográficos que resultaban demasiado estrictos, lo que permitió incluir más regiones en el análisis.
- 3. Se priorizó la conservación de datos de alta calidad, siendo estos los más completos y consistentes, logrando una retención del 97% de los registros tras la depuración.

Metodología Aplicada

¿Cómo analizamos los datos?

1. Exploración

- ¿Dónde están las empresas?
- ¿Qué sectores son más grandes?
- ¿Cuáles tienen más mujeres?

2. Identificación

- ¿Qué empresas exportan?
- ¿Qué sectores son más grandes?
- ¿Cuáles tienen más mujeres?

3. Agrupación

- ¿Se pueden agrupar sectores similares?
- ¿Qué tienen en común?

4. Validación

- ¿Los patrones son confiables?
- ¿Se pueden usar para predecir?

¿Por qué este enfoque?

✓ Dado el volumen y complejidad de los datos (1.37 millones de empresas), fue necesario aplicar métodos sistemáticos para identificar patrones y evitar conclusiones erróneas.

EDA: Concentración Geográfica

- ✓ Centro: 74,5% de establecimientos (Buenos Aires, Córdoba, Santa Fe).
- ✓ Distribución equilibrada: Resto del país 25,5%.

EDA: Composición de Género

Promedio nacional: 35,2% de participación femenina.

EDA: Composición de Género

Variabilidad alta: Desde 8% (construcción) hasta 82% (salud).

EDA: Patrones Sectoriales - Proceso de Clusterización

Sectores "Feminizados" (>50% mujeres)

- ✓ Salud: 82% mujeres, 0,5% exportadores.
- ✓ Educación: 77% mujeres, mínima exportación.
- ✓ Patrón identificado (cluster): sectores orientados al mercado doméstico y con alta calificación requerida.

EDA: Patrones Sectoriales - Proceso de Clusterización

Sectores "Masculinizados" (<20% mujeres)

- ✓ Construcción: 8% mujeres, baja exportación.
- ✓ Agricultura: 9% mujeres, exportación moderada.
- ✓ Patrón identificado (cluster): actividades intensivas en trabajo físico, asociadas a sectores tradicionales.

EDA: Patrones Sectoriales - Proceso de Clusterización

Sectores Exportadores (>5% exportan)

✓ Industria manufacturera: 23% mujeres, 12% exportadores.

Resultados Principales: Análisis Sectorial

Principales Sectores por Volumen

- ✓ El sector con mayor cantidad de establecimientos es el comercio, que representa el 28,4% del total (387.785 casos).
- \checkmark Le siguen los servicios a asociaciones, con un 10,1%, y la agricultura, con un 10,0%.
- ✓ La industria manufacturera también tiene un peso significativo, con un 9,8% de los establecimientos.
- ✓ El transporte completa el top cinco, con un 6,8%.

EDA: Sorpresas Geográficas

Patagonia Líder en Inclusión

- ✓ Santa Cruz: 41,4% participación femenina
- ✓ Neuquén, Chubut: >40% participación
- ✓ Contradicción: Región menos poblada, mayor inclusión

Centro Tradicional

- ✓ Buenos Aires: 34,9% (bajo el promedio nacional)
- ✓ Reflexión: ¿Concentración no implica inclusión?

Resultados Principales: Análisis Sectorial

Participación Femenina por Sector

- ✓ En los sectores de salud y enseñanza, la participación femenina supera el 75%, siendo considerados espacios altamente feminizados.
- ✓ En los servicios financieros, el porcentaje alcanza el 57%, mostrando una presencia importante de mujeres en servicios especializados.
- ✓ En contraste, en sectores tradicionalmente masculinos como industria, construcción y agricultura, la participación femenina es mucho menor (22,6%, 8,3% y 8,6%, respectivamente).
- ✓ Esta diferencia evidencia una fuerte segmentación de género en el mercado laboral por sector.

Resultados Principales: Análisis Geográfico

Participación Femenina por Provincia

- ✓ Las provincias de la Patagonia lideran en inclusión de género, con Santa Cruz (41,4%), Chubut (40,4%) y Neuquén (40,0%) encabezando el ranking nacional.
- ✓ Tierra del Fuego (39,3%) y Río Negro (38,9%) completan el top 5, consolidando a la región patagónica como referente en participación femenina (promedio regional: 39,0%).
- ✓ En contraste, el NEA presenta los menores niveles de inclusión (27,8% promedio), mientras que la región Centro se ubica en un punto intermedio con un 34,9%.
- ✓ Estos patrones regionales reflejan desigualdades geográficas en la inclusión de género dentro del mercado laboral.

Modelos de Machine Learning ("ML")

Dos líneas de análisis con algoritmos de clasificación y segmentación

1. Hipótesis de negocio

- ✓ Predicción de capacidad exportadora.
- ✓ Influencia geográfica sobre la participación femenina.
- ✓ Identificación de patrones distintivos en el sector salud.

2. Comparación de modelos

- ✓ Predicción de alta participación femenina (≥50%).
- ✓ Evaluación de regresión logística vs. random forest.
- ✓ Métricas consideradas: Accuracy, AUC, sensibilidad, F1-score.

ML - Hipótesis 1: ¿Podemos predecir qué establecimientos serán exportadores?

- ✓ Objetivo: Predecir exportación a partir de características sectoriales, geográficas y de género.
- ✓ Modelo: Random Forest (300 árboles, 5-fold CV)
- ✓ Resultados:
 - Accuracy: 78.8%
 - Sensitivity: 69.6%
 - AUC: 0.785
 - Balanced Accuracy: 74.4%
- ✓ Variables predictivas clave:
 - Sector industria (más exportador)
 - Tamaño de empresa
 - Cantidad de empleo
 - Proporción de mujeres
- ✓ Interpretación:
 - Tamaño e industria son predictores clave de capacidad exportadora.
 - Los modelos predicen con buena precisión a pesar del fuerte desbalance (3.2% exportadores).

ML - Hipótesis 2: ¿La participación femenina varía geográficamente de forma predecible?

- ✓ Objetivo: Determinar si la ubicación predice niveles de participación femenina altos.
- ✓ Modelo: Regresión Logística (5-fold CV)
- ✓ Resultados:
 - Accuracy: 55.2%
 - AUC: 0.568
- ✓ Variables significativas:
 - Longitud: Más al Este ligeramente mayor participación femenina
 - Diversidad sectorial: Mayor diversidad en el departamento contribuye a mayor participación femenina
 - Región centro: se asocia a menor participación femenina, en promedio
- ✓ Interpretación:
 - Influencia geográfica limitada.
 - Efectos significativos pero marginales → el sector sigue siendo el factor dominante.

ML - Hipótesis 3: ¿El sector salud presenta patrones únicos identificables?

- ✓ Objetivo: Detectar patrones distintivos del sector salud.
- ✓ Modelo: Random Forest (200 árboles)
- ✓ Resultados:
 - Accuracy: 74.0%
 - Sensitivity: 85.6%
 - AUC: 0.869
- ✓ Variables predictivas clave:
 - Proporción de mujeres
 - Quintil exportador (negativo)
 - Empleo
- ✓ Interpretación:
 - El sector salud es altamente identificable por su fuerte perfil de género (82% mujeres), baja exportación y perfil geográfico estable.

ML - Conclusiones del modelado por hipótesis

Conclusiones generales:

- ✓ Sector económico es más determinante que la geografía.
- ✓ ML permite validar hipótesis de política pública y estrategia empresarial.
- ✓ Sectores tradicionalmente masculinos son más exportadores, pero menos inclusivos.

Hipótesis	Modelo	Accuracy	AUC	Conclusión
H1	Random Forest	78.8%	0.785	Predictivo
<i>H</i> 2	Regresión Logística	55.2%	0.568	Limitado
Н3	Random Forest	74.0%	0.869	Distintivo

ML - Comparación de Modelos: Predicción de Alta Participación Femenina

- ✓ Objetivo: Predecir si un establecimiento tiene alta participación femenina (≥50%) en base a sus características (sector, región, tamaño, etc.)
- ✓ Modelos Comparados:
 - Regresión Logística Modelo interpretable, rápido
 - Random Forest Modelo no lineal, captura interacciones
- ✓ Métrica de referencia (baseline):
 - Predecir siempre la clase mayoritaria
 - Accuracy = 63.2%
- ✓ Decisión de Corte
 - Alta participación = proporción de mujeres $\geq 50\%$

ML - Comparación de Modelos: Predicción de Alta Participación Femenina

ML - Resultados y Comparación de Modelos

✓ Desempeño en conjunto de prueba.

Métrica	Reg. Logística	Random Forest
Accuracy	64.2%	67.1%
AUC	0.649	0.443
F1-Score	0.473	0.217
Sensitivity	43.6%	12.4% 🛕

✓ Conclusión

- Regresión Logística es preferida: mejor balance entre precisión, sensibilidad y comprensión.
- Random Forest tuvo mejor accuracy general pero muy baja capacidad para detectar casos positivos.

ML - Resultados y Comparación de Modelos

ML - Análisis de Errores

Principales Errores Observados (matrices de confusión)

- ✓ Random Forest clasifica casi todo como "Baja", con sensibilidad muy baja.
- ✓ Regresión Logística mejora la detección de "Alta", pero aún con margen de mejora.

ML - Oportunidades de Mejora

✓ Balance de Clases

- La variable objetivo está desbalanceada (63% baja, 37% alta).
- Podrían explorarse técnicas más avanzadas de resampling o SMOTE.

✓ Inclusión de más variables

 Incorporar variables adicionales como tipo jurídico, fecha de creación, o redes de proveedores podría mejorar la predicción.

✓ Nuevos Algoritmos

Evaluar métodos como Gradient Boosting (XGBoost) o SVM para capturar mejor patrones no lineales.

✓ Evaluación contextual

• Ajustar métricas al caso de uso: si el objetivo es identificar con seguridad los establecimientos con alta participación, priorizar sensibilidad y recall.

✓ Optimización técnica

■ El entrenamiento de Random Forest fue costoso (30 minutos). Puede mejorarse con reducción de dimensionalidad o sampling más agresivo.

Conclusiones

¿Qué aprendimos?

- ✓ Sobre exportaciones
 - Se puede predecir qué empresas tienen potencial exportador.
 - Políticas focalizadas son más efectivas que universales.
- ✓ Sobre empleo femenino
 - El sector importa más que la ubicación geográfica.
 - Existe un dilema entre exportar e incluir mujeres.
- ✓ Sobre geografía
 - La ubicación influye pero no determina.
 - La Patagonia sorprende ubicándose como líder en inclusión.
- ✓ Sobre sectores
 - Existen 3 grupos muy diferentes de actividades económicas.
 - Cada grupo necesita políticas específicas.

Se podrían diseñar políticas más precisas y efectivas usando estos hallazgos como herramientas.

Conclusiones

¿Qué aprendimos?

✓ El uso de herramientas de ciencia de datos, como la extracción y análisis de datos, el aprendizaje supervisado y no supervisado, permite descubrir patrones, modelizar la realidad y tomar decisiones informadas.

Limitaciones y Trabajo Futuro

¿Qué no incluye este estudio?

- ✓ Evolución en el tiempo:
 - Solo analizamos 2021-2022.
 - No sabemos cómo cambian los patrones año a año.
- ✓ Otras variables importantes:
 - Salarios y productividad.
 - Factores culturales regionales.
 - Impacto de políticas específicas.
- ✓ Relaciones causales:
 - Identificamos patrones, no causas definitivas.
 - ¿Los sectores determinan el género, o viceversa?

Limitaciones y Trabajo Futuro

Otras consideraciones metodológicas

- ✓ Cobertura restringida al empleo formal:
 - Solo incorpora trabajadores en relación de dependencia registrados en SIPA y AFIP.
 - Excluye empleo informal, cuentapropistas, casas particulares y microestablecimientos estacionales.
 - Subestima la densidad productiva real en zonas con alta informalidad

✓ Clasificación sectorial:

- Algunas empresas informan según versiones antiguas de CLAE por lo que pueden generarse errores de clasificación.
- Se suprimen actividades que no pudieron vincularse al CLAE 2010 ocasionando omisiones sectoriales puntuales en microsectores o actividades emergentes.

✓ Comparabilidad y Temporalidad:

■ Es una versión exploratoria por lo que al no ser final, carece de robustez para comparaciones históricas o estudios a largo plazo

Limitaciones y Trabajo Futuro

Próximos Pasos de Investigación

- ✓ Seguimiento temporal: Ver evolución 2019-2025.
- ✓ Relevamiento de otras variables: Integrar datos de salarios y productividad y factores culturales regionales.
- ✓ Estudios causales: Evaluar impacto de políticas específicas.