集合論ゼミ 2013年01月22日

石井大海

早稲田大学基幹理工学部数学科三年

2013年01月22日

定義と幾つかの自明な命題

Def. 5.9

- 関係 R が B 上整礎関係である $\stackrel{\text{def}}{\Longleftrightarrow}$ R|B が整列関係である.
- ullet $\langle B,R
 angle$ が整礎構造 $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ $\langle R,B
 angle$ は構造で,R は B 上整礎.

Prop. 5.10

R が A 上整礎 \Leftrightarrow $\begin{cases} 0 \neq y \subseteq A \text{ if } R\text{-}極小元を持つ \\ (\forall x \in A) \{x \in A \mid y R x\} \text{ if \sharp } \end{cases}$

Prop. 5.11

R が A 上整礎 , $B \subseteq A \Rightarrow R$ は B 上整礎 .

整礎関係に関する rank

整礎関係に対する rank を定義する.極小元に対しては rank 0 , そこから順に辿って 1,2,... と続いていく感じ.

Def. 5.12 (整礎関係に関する rank; Zermelo 1935)

R: 整礎関係 とする.このとき,V 上の函数 ρ_R を次のように定める.

$$\rho_R(x) = \sup^+ \left\{ \rho_R(y) \mid y R x \right\} \tag{1}$$

右辺の集合 { $\rho_R(y) \mid y\,R\,x$ } は R の left-narrowness より集合となり , $\rho_R(x)$ が順序数となることは整礎帰納法により簡単に示せる .

整礎関係の性質Ⅰ

Prop. 5.13

R が整礎関係のとき,以下が成立する.

$$x R y \rightarrow \rho_R(x) < \rho_R(y)$$
 (2)

Proof.

 $x R y \text{ LU } \rho_R(x) < \sup^+ \{ \rho_R(x) \mid x R y \} = \rho_R(y)$

集合論ゼミ 2013 年 01 月 22 日 07-10-10 1 一順序と整礎性 一整礎関係 一整礎関係の性質

とあるが,明らかに (2) を満たす函数は一意ではない.物によっては,おそらく (1) を指しているものであると考える.

整礎関係の性質 ||

Exercise 5.14

- **1** R: well-founded のとき $x R^* y \rightarrow \rho_R(x) < \rho_R(y)$
- $oldsymbol{\scriptsize{\scriptsize{\scriptsize{\scriptsize{0}}}}}$ R: left-narrow, $H:V\to {
 m On}$ かつ H,R が (2) を満たす $\Rightarrow R$ は well-founded
- ⊕ R が整礎 ⇒ R*も整礎

- 😗 ρ_R が rank 函数 , $A:R^{-1}$ -closed $\Rightarrow \rho_R[A] = \mathrm{On}$ または $\rho_R[A] \in \mathrm{On}$

関係 R , 函数 $H:V\to \mathrm{On}$ が $\begin{subarray}{l} (2) (1) を満たすとき , <math>H$ を R の rank 函数 と云う . (v) より , これは $\{H(x)\mid x\,R\,y\,\}$ が集合で $H(x)=\sup^+\{H(x)\mid x\,R\,y\,\}$ となるときと同値 .

整礎関係の性質 III

(i) の証明

x R^* y とすると , x から y への R-鎖が存在する . そのそれぞれ について 5.13 を繰り返し適用し , 推移律を用いれば良い .

(ii) の証明

 $u \neq 0$ とする . $H[u] \subseteq \mathrm{On}$ は空ではないので , < に関する最小元 が存在する . そこで , $\alpha = \min H[u]$ として ,

$$v = \{ x \in u \mid H(x) = \alpha \}$$

とおくと,取り方から $v\neq 0$.実はこの元が u の R-極小元となっている. $x_0\in v$ とし, $(\exists y\in u)y$ R x_0 だったとする.すると,(2) より $H[u]\ni H(y)< H(x_0)=\alpha$ となり, α の H[u] 上の最小性に矛盾する.よって R は整礎関係となる.

整礎関係の性質 IV

(iii) の証明

(ii) を用いる、そこで、H として ρ_R を取る、すると (i) より

$$x R^* y \rightarrow H(x) = \rho_R(x) < \rho_R(y) = H(y)$$

となる.よって, R* も整礎関係であることがわかる.

(iv) の証明.

x の R に関する整礎帰納法で示す.帰納法の仮定は, $\forall y(y\,R\,x o
ho_S(y) \leq
ho_R(y))$ である.よって,

$$\rho_S(x) = \sup_{y \in x} + \rho_S(y) \le \sup_{y \in x} + \rho_R(y) = \rho_R(x)$$

整礎関係の性質 V

(v) の証明

(1) は 5.13 より (2) を満たす . よって , (ii) より R は整礎関係となる . よって , 整礎帰納法より \sup^+ による定義が一意的に定まることが判る .

Proof

誘導に従ってやってみようとしたが余り上手く行かなかったのと 今後便利なので,次の補題を介して証明することにする.

Lemma.

 $A: R^{-1}$ -closed, R: well-founded $\Rightarrow \alpha \in \rho_R[A] \land \beta < \alpha \rightarrow \beta \in \rho_R[A]$

整礎関係の性質 Ⅵ

補題の証明

- α に関する順序数の帰納法で示す . $\alpha=0$ のときは自明 .
 - $\frac{\alpha=\beta+1}{\alpha+1}$ のとき . $\rho_R(x)=\beta+1, \gamma<\beta+1$ とする . $\frac{\alpha+1}{\alpha+1}=\sup^+\{\rho_R(y)\mid y\,R\,x\}$ なので , 命題 3.33 より β は 右辺の集合の最大値となり , A は R^{-1} -closed であるから , $\beta\in\rho_R[A]$ である . $\gamma\leq\beta$ とする . 上の議論より $\gamma=\beta$ のときは OK . $\gamma\in\beta$ とすると , 帰納法の仮定より $\gamma\in\rho_R[A]$ となる . よって $\alpha=\beta+1$ の時も OK .
 - α が極限順序数のとき . $\alpha=\sup^+\{\, \rho_R(y)\,|\, y\, R\, x\,\}$ が極限順序数であることから , 右辺の集合には最大元が存在しない . よって , 任意の $\beta<\alpha$ に対して , $\beta<\rho_R(y)<\alpha$ となるような $y\in A$ が存在することがわかる . よって , $\rho_R(y)$ に関して帰納法の仮定が使えて , $\beta\in\rho_R[A]$ となる .

整礎関係の性質 VII

(vi) の証明.

上の命題を用いれば,あっと云う間に終わる. $\rho_R[A]\subseteq \mathrm{On}$ であり,補題より特にこれは On の始断面である. On の始断面は全体か特定の順序数のどちらかであるので,これで命題が示された.

6. 整礎集合

クラス推移閉包とその性質

 \in^{-1} -closed な集合を推移的集合と呼んだことに注意.

Def. 6.1 (推移閉包)

 $A \circ \in {}^{-1}$ -閉包を $A \circ$ の推移閉包と呼び , $\mathrm{Tc}(A) \circ$ 表す .

 $\mathrm{Tc}(A) := A \cup (\in^{-1})^*[A]$

Cor. 6.2

- ullet 任意のクラス A について , $\mathrm{Tc}(A)$ は A を含む最小の推移的 クラス . 特に集合 x について $\mathrm{Tc}(x)$ は集合 .

Proof.

- $oldsymbol{1}$ 定理 4.20 及び 4.33 より明らか $(\cdot \cdot \cdot \epsilon^{-1}$ は right-narrow) .
- の $B\subseteq \mathrm{Tc}(A)$ より,A は B を含む推移的集合.よって $\mathrm{Tc}(B)$ の最小性から $\mathrm{Tc}(B)\subseteq \mathrm{Tc}(A)$.
- ⑪ $x\in \mathrm{Tc}(A)$ とすると, $\mathrm{Tc}(A)$ が推移的であることから $x\subseteq \mathrm{Tc}(A)$ となるので,(ii) から $\mathrm{Tc}(x)\subseteq \mathrm{Tc}(A)$.よって $A\cup\bigcup_{x\in A}\mathrm{Tc}(x)\subseteq \mathrm{Tc}(A)$.

逆向きの包含関係を示すには , (i) より $A \cup \bigcup_{x \in A} \mathrm{Tc}(x)$ が推移的であることが云えれば十分である .

 $z \in y \in A \cup \bigcup_{x \in A} \operatorname{Tc}(x)$ とする. $y \in A$ のとき. $z \in y$ より $z \in \operatorname{Tc}(y)$. $y \in \bigcup_{x \in A} \operatorname{Tc}(x)$ とすると,

 $(\exists x \in A)z \in y \in \operatorname{Tc}(x)$ となり, $\operatorname{Tc}(x)$ の推移性から $z \in \operatorname{Tc}(x) \subseteq \bigcup_{x \in A} \operatorname{Tc}(x)$ となる.よって示された.

整礎集合とその性質 I

Def. 6.3 (整礎集合)

 $\operatorname{Wf} := \{ x \mid \in \mathfrak{N} \operatorname{Tc}(x)$ 上整礎 $\}$. Wf の元を整礎集合と云う .

Th. 6.4

Wf は $, \in$ がその上で整礎関係となる最大の推移的クラスである.

Wf が推移的であること.

 $x \in y \in \mathrm{Wf}$ とする. $y \in \mathrm{Wf}$ より $\mathrm{Tc}(y)$ 上 \in が整礎関係となる. $x \in y \subseteq \mathrm{Tc}(y)$ より $x \subseteq \mathrm{Tc}(y)$ であり,15(ii) より $\mathrm{Tc}(x) \subseteq \mathrm{Tc}(y)$.今, $\mathrm{Tc}(y)$ 上 \in は整礎なので,5.11 より $\mathrm{Tc}(y)$ 上でも整礎.よって $y \in \mathrm{Wf}$.

整礎集合とその性質 ||

∈ が Wf 上整礎であること.

 $0 \neq u \subseteq \mathrm{Wf}$ として,u が \in -極小元を持つことを見る. $x \in u$ を とり, $x \cap u = 0$ なら x が極小元となるので OK. $x \cap u \neq 0$ とすると,x は整礎的集合なので \in は $\mathrm{Tc}(x)$ 上整礎.よってその空でない部分集合 $\mathrm{Tc}(x) \cap u$ には \in -極小元 z が存在する.明らかに,これは u の \in -極小元でもある.

Wf が最大であること.

C を \in が整礎関係となる推移的クラスとする $.x \in C$ について \in が $\mathrm{Tc}(x)$ 上の整礎関係となることを示せれば $C \subseteq \mathrm{Wf}$ が云える $.x \in C$ とすると ,C の推移性より $x \subseteq C$ であり $,C = \mathrm{Tc}(C)$ だから $\mathrm{Tc}(x) \subseteq C$ となる . 今 , \in は C 上整礎関係なので , その部分集合 $\mathrm{Tc}(x)$ 上でも整礎関係となり , 従って $x \in \mathrm{Wf}$ となる .

Wf の性質 I

Prop. 6.5

- $\textbf{1} \ x \subseteq \mathrm{Wf} \to x \in \mathrm{Wf}$
- 2 $x \in \mathrm{Wf} \land y \subseteq x \rightarrow y \in \mathrm{Wf}$
- 3 $x \in \mathrm{Wf} \to \cup x \in \mathrm{Wf} \land \mathfrak{P}(x) \in \mathrm{Wf}$
- \bullet On \subseteq Wf

(1),(2)の証明.

(1) の証明. $x\subseteq \mathrm{Wf}$ とすると,(ii) および 6.4 より $\mathrm{Tc}(x)\supseteq \mathrm{Wf}$. Wf 上 \in は整礎なので, $\mathrm{Tc}(x)$ 上でも整礎.よって $x\in \mathrm{Wf}$.

(2) の証明. $y\subseteq x\in \mathrm{Wf}$ とする.すると $\mathrm{Tc}(y)\subseteq \mathrm{Tc}(x)$.よって $\mathrm{Tc}(y)$ 上 \in は整礎関係となり, $y\in \mathrm{Tc}$ となる.

(3) の証明.

 $x \in \mathrm{Wf}$ とする.このとき $\mathrm{Tc}(x)$ 上 \in は整礎. $y \in x \in \mathrm{Wf}$ とすると,Wf が推移的クラスであることから $y \in \mathrm{Wf}$.よって $y \subseteq \mathrm{Wf}$.よって $\cup x \subseteq \mathrm{Wf}$.(1) より $\cup x \in \mathrm{Wf}$.次に, $y \subseteq x \in \mathrm{Wf}$ とする.このとき $y \subseteq \mathrm{Wf}$ となるので $y \in \mathrm{Wf}$.よって $\mathfrak{P}(x) \subseteq \mathrm{Wf}$ であり,従って $\mathfrak{P}(x) \in \mathrm{Wf}$.

(4) の証明.

 $lpha\in\mathrm{On}\stackrel{\mathrm{def}}{\Longleftrightarrow}lpha$ は推移的で \in により整列 であった.整列関係は整礎関係でもあり, $lpha=\mathrm{Tc}(lpha)$ 上 \in は整礎となるので,従って $lpha\in\mathrm{Wf}$.よって $\mathrm{On}\subseteq\mathrm{Wf}$.

整礎集合の rank とその性質

Def. 6.6

整礎集合 $x \in \mathrm{Wf}$ の rank $\rho(x)$ とは , $\in \mid \mathrm{Wf}$ -rank のこと . 即ち ,

$$\rho(x) = \rho_{\in|\mathrm{Wf}}(x).$$

 $\rho(x)$ が常に順序数となることは容易に確かめられる.

Cor. 6.7

 $x \in \mathrm{Wf} \to \rho(x) = \sup^+ \{ \rho(y) \mid y \in x \}$. $\sharp \hbar$, $y \in \mathrm{Wf} \land x \in y \to x \in \mathrm{Wf} \land \rho(x) < \rho(y)$

Prop. 6.8

任意の順序数 α に対し , $\rho(\alpha)=\alpha$

6.8 の証明.

lpha に関する順序数の帰納法で示す. 帰納法の仮定は,

$$(\forall \beta < \alpha) \rho(\beta) = \beta.$$

ここで,

 $\rho(\alpha) = \sup^{+} \{ \rho(\beta) \mid \beta \in \alpha \} = \sup^{+} \{ \beta \mid \beta \in \alpha \} = \sup^{+} \alpha = \alpha$

よって示された.

演習問題I

Exercise 6.9

- ① x: 推移的整礎集合 $\Rightarrow \rho(x) = \{ \rho(y) \mid y \in x \}$ 即ち, x は $\rho(x)$ 未満の各ランクの元を持つ.
- $2x \in \mathrm{Wf} \to \forall z (x \in z \to (\exists y \in z)(y \cap z = 0))$

(1) の証明.

x は推移的集合であるから,特に \in $^{-1}$ -closed である.よって, $\rho[x] = \{ \rho(y) \mid y \in x \}$ は 5.14 (vi) の補題より,On と一致するか順序数である.今,x は集合なので, $\rho[x] \in \mathrm{On}$. ρ は \in の rankなので, $(\forall y \in x)\rho(y) < \rho(x)$. \dots $\rho[x] \subseteq \rho(x)$. また, $\rho(y) < \rho[x]$ なので, $\rho[x]$ は x の狭義上界.よって, $\rho(x)$ が x の最小狭義上界であることから, $\rho(x) = \rho[x]$. よって $\rho[x] = \rho(x)$.

(2) の → 方向

 $x\in \mathrm{Wf}, x\in \mathbf{Z}$ とする.すると $\mathrm{Wf}\cap\mathbf{Z}\neq \mathbf{0}$ は Wf の部分集合であるので, \in -極小元を取ることが出来る.これが $y\cap\mathbf{Z}=\mathbf{0}$ を満たすことは容易に判る.

演習問題 |||

(2) の ← 方向.

右辺の対偶を取ると, $\forall z((\forall y \in z)(y \cap z \neq 0) \rightarrow x \notin z)$. そこで,特に $z = \operatorname{Tc}(\{x\}) \setminus \operatorname{Wf}$ と置く. $x \in \operatorname{Tc}(\{x\})$ より $x \notin z$ が云えれば $x \in \operatorname{Wf}$ が云える. z = 0 ならばよい.そこで $z \neq 0$ として, $y \in z$ を取る.特に $y \notin \operatorname{Wf}$ より $\operatorname{Tc}(y)$ には \in 極小元が存在しない:

$$(\forall u \in \mathrm{Tc}(y))(\exists v \in \mathrm{Tc}(y))v \in u$$

特に $y\subseteq \operatorname{Tc}(y)$ より $u\in y$ にとれば, $(\forall u\in y)(\exists v\in \operatorname{Tc}(y))v\in u$.もし v が整礎集合なら, $\operatorname{Tc}(y)$ の \in -極小元が取れることになるので $v\notin \operatorname{Wf}$.よって $v\in z$ であり, $(\forall u\in y)(\exists v\in z)v\in u$ となる.よって $y\cap z\neq 0$. $y\in z$ は任意であったから,仮定より $x\notin z$ となる.

Prop. 6.10 (Mirimanoff 1917)

 $\{x \in \mathrm{Wf} \mid \rho(x) < \alpha\}$ は集合.

Proof.

 $S_{lpha}:=\{\,x\in\mathrm{Wf}\mid
ho(x)<lpha\,\}$ とおき, S_{lpha} が集合であることを lpha に関する帰納法で示す.lpha=0 のときは自明.

• $\alpha = \beta + 1$ のとき . S_{β} が集合であるとする . 今 ,

$$S_{\beta+1} = \{ x \in \text{Wf} \mid \rho(x) < \beta+1 \} = \{ x \in \text{Wf} \mid \rho(x) \le \beta \}$$

 $x\in y\in S_{\beta+1}$ とすると , 6.7 より $x\in \mathrm{Wf}\wedge \rho(x)<\rho(y)$. よって $x\in S_{\beta}$ となるので , $y\subseteq S_{\beta}$. 従って $y\in \mathfrak{P}(S_{\beta})$ となるので , $S_{\beta+1}\subseteq \mathfrak{P}(S_{\beta})$. 以上から , 部分集合公理および冪集合公理より $S_{\beta+1}$ も集合 .

続き.

β = λ (極限順序数)のとき.このとき,

$$S_{\lambda} = \{ x \in \text{Wf} \mid \rho(x) < \lambda \}$$

=
$$\bigcup_{\beta < \lambda} \{ x \in \text{Wf} \mid \rho(x) < \beta \} = \bigcup_{\beta < \lambda} S_{\beta}$$

帰納法の仮定より各 S_{β} は集合であり , λ も集合であるので , 従って S_{λ} も集合となる .

$R(\alpha)$ とその性質

Def. 6.11

On 上の函数 R を次により定義する.

$$R(\alpha) = \{ x \in \text{Wf} \mid \rho(x) < \alpha \}$$

(右辺は 6.10 より集合となる)

Prop. 6.12

- R(α) は推移的集合.
- $m \times \subseteq R(\alpha) \leftrightarrow x \in Wf \land \rho(x) \leq \alpha$
- $lackbox{w} x \in \mathrm{Wf}
 ightarrow
 ho(x) = (x \subseteq R(lpha)$ となる最小のlpha)
- $R(\alpha) = \cup_{\beta < \alpha} \mathfrak{P}(R(\beta))$
- $\mathfrak{g} \quad \alpha < \beta \rightarrow R(\alpha) \subseteq R(\beta)$
- $\mathfrak{m} R(\alpha+1) = \mathfrak{P}(R(\alpha))$
- \oplus α :極限順序数 \rightarrow $R(\alpha) = \cup_{\beta < \alpha} R(\beta)$

(i),(ii) の証明

(i) の証明. $x \in R(\alpha)$ とする. $\rho(x) < \alpha \land \mathrm{Wf}$ となるので, 6.7 より $\rho(y) < \rho(x) < \alpha$ かつ $y \in \mathrm{Wf}$.よって $u \in R(\alpha)$. (ii) の証明. $x \in \mathrm{Wf}$ について $\rho(x) \in \mathrm{On}$ より $\rho(x) < \rho(x) + 1$ となるので, $x \in R(\rho(x) + 1)$.よって $\mathrm{Wf} \subseteq \bigcup_{\alpha \in \mathrm{On}} R(\alpha)$.逆向きの包含関係は明らか.

(*iii*) の (←).

 $x\in \mathrm{Wf}, \rho(x)\leq \alpha$ とする . $y\in x$ とすると , 6.7 より $y\in \mathrm{Wf}$ かっ $\rho(y)<\rho(x)\leq \alpha$. よって $x\subseteq R(\alpha)$

(iii) \mathfrak{O} (\rightarrow) .

 $x\subseteq R(\alpha)$ とする.このとき $x\subseteq R(\subseteq)\subseteq \mathrm{Wf}$ より $x\in Wf$ である.よって, $y\in x$ とすれば $\rho(y)<\rho(x)$ で $y\in \mathrm{Wf}$ となる.今 $x\subseteq R(\alpha)$ だから $\rho(y)<\alpha$. $\alpha\notin R(\alpha)$ に注意すれば,これは α が $\rho[x]$ の狭義上界であると云うことである.他方, $\rho(x)=\sup^+\rho[x]$ であるから, $\rho(x)\leq \alpha$ となる.

(iv) の証明

 $x\in \mathrm{Wf}$ とし, $\alpha=\rho(x)$ と置く.このとき, $\rho(x)\leq \alpha$ であるので,(iii) より $x\subseteq R(\alpha)$ は OK.後は最小性を示せばよい. $x\subseteq R(\beta)$ とすると $\rho(x)\leq \beta$. $y\in R(\alpha)$ を取ると, $\rho(y)<\alpha=\rho(x)$ であり $y\in \mathrm{Wf}$.よって推移律より $\rho(y)<\beta$ となるので, $y\in R(\beta)$.よって $R(\alpha)\subseteq R(\beta)$.

(v) の証明

 (\subseteq) を示す. $x \in R(\alpha)$ とする.即ち, $x \in \mathrm{Wf} \wedge \rho(x) < \alpha$ とする. $\overline{\rho(x)} \leq \overline{\rho(x)}$ だから,(iii) より $x \subseteq R(\rho(x))$. $\therefore x \in \mathfrak{P}(R(\rho(x)))$.よって OK.

 (\supseteq) を示す. $x\in\bigcup_{eta<lpha}\mathfrak{P}(R(eta))$ とする.即ち $(\existseta<lpha)(x\in\mathfrak{P}(R(eta)))$ とする. $x\subseteq R(eta)$ となるので, $ho(x)\leeta$.eta<lpha より ho(x)<lpha となり,従って $x\in R(lpha)$.よって示された.

(vi) の証明.

 $\alpha < \beta$ とする .

 $x \in R(\alpha) \leftrightarrow x \in \mathrm{Wf} \land \rho(x) < \alpha \rightarrow x \in \mathrm{Wf} \land \rho(x) < \beta \leftrightarrow x \in R(\beta)$

(vii) の証明

$$x \in R(\alpha+1) \Leftrightarrow \rho(x) < \alpha+1$$
 $\Leftrightarrow \rho(x) \leq \alpha$
 $\Leftrightarrow iii) \times \subseteq R(\alpha)$
 $\Leftrightarrow x \in \mathfrak{P}(R(\alpha))$
よって示された.

Proof.

 α : 極限順序数 とする .(v) より ,

$$R(\alpha) = \bigcup_{\beta < \alpha} \mathfrak{P}(R(\beta))$$

ここで , (vii) と , (vi) より $R(\beta) \subseteq R(\beta+1)$ であることから ,

$$R(\alpha) = \bigcup_{\beta < \alpha} R(\beta + 1) \supseteq \bigcup_{\beta < \alpha} R(\beta).$$

lpha が極限順序数であることから,eta<eta+1<lpha であり, $x\in R(eta+1)\subseteq \bigcup_{eta<lpha}R(eta)$.よって示された.

整礎関係に関する長い議論の果てに , ρ と R の概念に到達した . しかし , 逆に On 上の函数 R を (v) によって定義して , (ii) によって Wf を , (iv) によって ρ を定めることも出来る .

累積的な階層

 $R(\alpha)$ は具体的にどういうものなのだろうか?前の命題から,次のような生成段階であることがわかる.

- 動 始めは何もない状態 0 からスタートする .
- ② 前段までに作った集合全体に,その部分集合を継ぎ足すこれを繰り返して得られるのが $R(\alpha)$ であり,これにより Wf を全てカバーすることが出来る.これによって,次の三つを直接的に示すことが出来る.
- **1** *x* ∉ *x*
- ② $x \in y_n \in y_{n-1} \in \cdots \in y_2 \in y_1 \in x$ なる列 y はない.
- $3 \cdots \in y_{n+1} \in y_n \in \cdots \in y_2 \in y_1 \in x$ なる列 y もない.