

#:



FIG. 1B PART ONE: TRIGGER REACTION



| MAJORITY                      | MAJORITY ATGXXGGCGATGCTTCCCCTCTTTGAGCCCCAAAGGCCGGGTCCTCCTGGTGGACGGGCACCACCTGGCCT |
|-------------------------------|----------------------------------------------------------------------------------|
| DNAPTAQ<br>DNAPTFL<br>QNAPTTH | 70<br>67<br>67<br>68<br>67<br>68                                                 |
| MAJORITÝ                      | MAJORITY ACCGCACCTICTTCGCCCTGAAGGGCCTCACCACCACCOGGGGGGAACCGGTGCAGGCGGTTTACGGCTT  |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH | CA                                                                               |
| MAJORITY                      | CGCCAAGAGCCTCCTCAAGGCCCCTGAAGGAGGACGGGGGCXXGCCGGTGXTCGTGGTCTTTGACGCCAAG          |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH | 207<br>AA                                                                        |
| MAJORITY                      | GCCCCCTCCTTCCGCCACGAGGCCTACGAGGCCTACAAGGCGGGCCGGGCCCCCCCC                        |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH | 277<br>                                                                          |
| MAJORITY                      | CCCGGCAGCTCGCCCTCATCAAGGAGCTGGTGGACCTCCTGGGGCTTGCGCGCCTCGAGGTCCCCGGCTA           |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH | A                                                                                |

### FIG.2A

| MAJORITY                      | MAJORITY CAGGCGGACGACGTXCTGGCCACCCTGGCCAAGAAGGCGGAAAAGGGGGGGTACGAGGTGCGCATCCTC  |
|-------------------------------|---------------------------------------------------------------------------------|
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH | T                                                                               |
| MAJORITY                      | MAJORITY ACCGCCGACCGCGACCTCTACCAGCTCCTTTCCGACCGCATCGCCGTCCTCCACCCCGAGGGGTACCTCA |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH |                                                                                 |
| MAJORITY                      | TCACCCGGCGTGG                                                                   |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH |                                                                                 |
| MAJORITY                      | MAJORITY GGGGGACCCCTCCGACAACCTCCCCGGGGTCAAGGGCCATCGGGGAGAGGCCGCCCXGAAGCTCCTCXAG |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH | CGAGTGGGAGTGGGAGTGGGZ7GTAGAGAGAGGAGGB30                                         |
| MAJORITY                      | GAGTGGGGGAGCCTGGAAAACCTCCTCAAGAACCTGGACCGGGTGAAGCCCGC····CXTCCGGGAGAAGA         |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH | 694                                                                             |

### FIG. 2B

| 764<br>761<br>770                                                                                                                                        |                                                                               | 834<br>831<br>840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           | 904<br>901<br>910 |                                                                                  | 974<br>971<br>980                     |                                                                                 | 1044<br>1041<br>1050 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------|----------------------|
| DNAPTAQ T. T. C. T. A. C. GC. A. T. C. GG. A. DNAPTFL GGG. G. C. GCC. T. C. A. T. C. A. T. C. GCC. T. C. G. G. C. G. | MAJORITY GGTGGACTTCGCCAAGXGGCGGGAGCCCGACCGGGGGGGTTAGGGGCCTTTCTGGAGGGCTGGAGTTT | DNAPTAQAATAATAATTCTCTCTCTCTCTCTCTCTCTCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC. | MAJORITY GGCAGCCTCCTCCACGAGTTCGGCCTCCTGGAGGGCCCCCAAGGCCCTGGAGGGCCCCTTGGAGGCCCCCTGGCCCCCGC | DNAPTAQ T         | MAJORITY CGGAAGGGGCCTTCGTGGCCTTTGTCCTTTCCCGCCCCGAGCCCATGTGGGGCCGAGCTTCTGGCCCTGGC | DNAPTAQ GTC.TTC.TTC.TTC.TTC.TTC.TTC.T | MAJORITY CGCCGCCAGGGAGGGCCGGGTCCACCGGGCACCAGACCCCTTTAXGGGCCTXAGGGACCTXAAGGAGGTG | DNAPTAQ              |

### FIG. 2C

| MAJORITY                      | CGGGGXCTCCTCGCCAAGGACCTGGCCGTTTTGGCCCTGAGGGGGCCTXGACCTCXTGCCCGGGGACG            |                   |
|-------------------------------|---------------------------------------------------------------------------------|-------------------|
| DNAPTAQ<br>DNAPTEL<br>DNAPTTH | 6T                                                                              | 114<br>111<br>120 |
| MAJORITY                      | ACCCCATGCTCCTC                                                                  |                   |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH | 1184<br>                                                                        | 184<br>181<br>90  |
| MAJORITY                      | GGGGGAGTGGACGG                                                                  |                   |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH | C                                                                               | 54<br>160<br>160  |
| MAJORITY                      | CGCCTTGAGGGGGA                                                                  |                   |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH | A.6A.A.A.A.C.C.G                                                                | 24<br>21<br>30    |
| MAJORITY                      | MAJORITY CCCACATGGAGGCCACGGGGGTXCGGCTGGACGTGGCCTACCTCCAGGCCCTXTCCCTGGAGGTGGCGGA |                   |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH | 66                                                                              | 94<br>91<br>00    |

| MAJORITY GGAGATCCGCCGCCTCGAGGAGGAGGTCTTCCGCCTGGCCGGCC |                               | MAJORITY CAGCTGGAAAGGGTGCTCTTTGACGAGCTXGGGCTTCCCGCCATCGGCAAGACGGAGAAGACXGGCAAGC |                    | GCTCCACCAGCGCCGCGGGGTGGTGGAGGCCCTXCGXGAGGCCCCACCCCA | 1604<br>           | CCGGGAGCTCACCAAGCTCAAGAACACCTACATXGACCCCCCTGCCXGXCCTCGTCCACCCCCAGGACGGGC | 1674<br> | CGCCTCCACACCCGCTTCAACCAGACGGCCACGGCCACGGCTTAGCTAGC | 6                               |
|-------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------|--------------------|-----------------------------------------------------|--------------------|--------------------------------------------------------------------------|----------|----------------------------------------------------|---------------------------------|
| MAJORITY GGA                                          | DNAPTAQ<br>DNAPTEL<br>DNAPTIH | MAJORITY CAGO                                                                   | DNAPTAQ<br>DNAPTFL | MAJORITY GCTC                                       | DNAPTAQ<br>DNAPTFL | MAJORITY CCGG                                                            | DNAPTAQ  | MAJORITY CGCC                                      | DNAPTAQ<br>DNAPTFLG.<br>DNAPTTH |
|                                                       | and the second second         |                                                                                 |                    |                                                     |                    |                                                                          |          |                                                    |                                 |

### FIG. 2E

. ...

| 1814<br>1811<br>1820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1884<br>1881<br>1890                                                                       |                                                                                | 1954<br>1951<br>1960                                             |                                                                                 | 2024<br>2021<br>2030                                                   |                                                                                 | 2094<br>2091<br>2100 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------|
| MAJORITY AGAACATCCCCGTCCGCCCCXCTGGGCCAGAGGATCCGCCGGGCCTTCGTGGCCGAGGAGGGTTGGGC  DNAPTA  DNAPTFL  DNAPTFL  COLUMN CO | MAJORITY GTTGGTGGCCCTGGACTATAGCCAGATAGAGCTCCGGGGTCCTGGCCCACCTCTCCGGGGACGAGACCTG  DNAPTAQ A | MAJORITY ATCCGGGTCTTCCAGGAGGGGAGGGACATCCACACCCAGACCGCCAGCTGGATGTTCGGCGTCCCCCGG | DNAPTAQ       6         DNAPTFL       7T         DNAPTTH       A | MAJORITY AGGCCGTGGACCCCCTGATGCGCCGGGCGGCCAAGACCATCAACTTCGGGGTCCTCTACGGCATGTCGGC | DNAPTAQ         DNAPTFL       A. 66. A. T.         DNAPTTH       66.6. | MAJORITY CCACCGCCTCTCCCCAGGAGCTTGCCATCCCCTACGAGGAGGCGGTGGCCTTCATTGAGCGCTACTTCAG | DNAPTAQ       A      |
| MAJ<br>DNA<br>DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DNA<br>DNA<br>DNA                                                                          | MAJ                                                                            | DNA<br>DNA<br>DNA                                                | MAJ                                                                             | DNA<br>DNA<br>DNA                                                      | MAJ                                                                             | DNA<br>DNA<br>DNA    |

A \*\*\*\* (

| Ь                                                        | . 2164<br>. 2161<br>. 2170      | d                                                                                 | . 2234<br>. 2231<br>. 2240    | رے                                                                              | . 2304<br>T 2301<br>. 2310    | ں                                                                      | . 2374<br>. 2371<br>. 2380    | ⊢                                                                                   | . 2444<br>. 2441<br>. 2450    |
|----------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------|-------------------------------|
| MAJORITY AGCTTCCCCAAGGTGCGGGCCTGGATTGAGAGCCCTGGAGGGGGGGG | A                               | MAJORITY CCCTCTTCGGCCGCGCGCGCTACGTGCCCGACCTCAACGCCCGGGTGAAGAGCGTGCGGGAGGCGGGGGGGG | C A AG. G C C C C             | MAJORITY GCGCATGGCCTTCAACATGCCCGTCCAGGGCACCGCCGCCGACCTCATGAAGCTGGCCATGGTGAAGCTC | 6                             | TTCCCCCGGCTXCAGGAAATGGGGGCCAGGATGCTCCTXCAGGTCCACGACGAGGTGGTCCTCGAGGCCC | AGG                           | MAJORITY CCAAAGAGCGGGGGGGGGGGGGGGGGGCCGCTTTGGCCAAGGAGGTCATGGAGGGGGGTCTATCCCCTGGCCGT | . A A                         |
| MAJORIĄY                                                 | DNAPTAQ<br>- DNAPTEL<br>DNAPTJH | MAJORITY                                                                          | DNAPTAQ<br>DNAPTFL<br>DNAPTTH | MAJORITY                                                                        | DNAPTAQ<br>DNAPTFL<br>DNAPTTH | MAJORITY                                                               | DNAPTAQ<br>DNAPTFL<br>ONAPTTH | MAJORITY                                                                            | DNAPTAQ<br>DNAPTFL<br>DNAPTTH |

## MAJORITY GCCCTGGAGGTGGGGGATGGGGGGGGGGCTCTCCGCCAAGGAGTAG

|                                                                                                              | 2499    | 2496    | 2505    |
|--------------------------------------------------------------------------------------------------------------|---------|---------|---------|
| וואס מעדוו פרורני ופפאפפו פפאפפו פפפפאו פפפפאו פפפפאור ופפראפין בפרוני איני פרוני איני פרוני איני פרוני איני | A9      | •       |         |
| TADORE                                                                                                       | DNAPTAQ | DNAPTFL | DNAPTTH |
|                                                                                                              |         |         |         |

### FIG. 3E

# MAJORITY SFPKVRAWIFKTI EEGEDDGWWF

| MAJORITY FPRLXEMGARMLLQVHDELVLEAPKXRAEXVAALAKEVMEGVYPLAVPLEVEVGXGEDWLSAKEX  TAQ PROE | R. 767 |  |
|--------------------------------------------------------------------------------------|--------|--|
|                                                                                      |        |  |



## Genes for Wild-Type and Pol(-)DNAPTfl

Codons essential to polymerase Polymerase "3' Exo" Domain Coding Regions: 5' Nuclease FIG. 5A 🖄 (wt)

Bam HI 7 FIG. 5B 3



FIG. 6



FIG. 7





FIG. 8



FIG. 9A

FIG. 9B





FIG. 10B



FIG. 11A

FIG. 11B





**FIG. 13A** 







RBS: Ribosome binding site ptac: Synthetic tac promoter lac IQ: Lac repressor gene

lacZ: Beta-galactosidase alpha fragment rrnBt: E. coli rrnB transcription terminator



RBS: Ribosome binding site  $P_{\phi 10}$ : Bacteriophage T7  $\phi 10$  promoter  $T\phi$ : T7  $\phi$  Terminator

FIG. 15



FIG. 16D

FIG. 16C



**FIG. 16E** 





FIG. 17





PRIMED M13

FIG. 18



FIG. 19A



## ACTUACION OF THE

| Ban | CCCCAGGGTTTTCCCAGTCACGACGTTGTAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCCGAATTCGAGCTCGGTACCCGGGATCCTC GCGTCCAAAAGGGTCAGTGCTGCAACATTTTGCTGACGTTAACATTATGCTGAGTGATATCCCGCTTAAGCTCGAGCCATGGGCCCTAGGAG GCGGTCCCAAAAGGGTCAGTGCTGCAACATTTTGCTGCCCCAAACATTATGCTGAGTGATATCCCGCTTAAGCTCGAGCCATGGGCCCTAGGAG  -47 Forward | AGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAATTGTTA TCACAGTGGATTTATCGAACCGCATTAGTACCAGTATCGACAAGGACACCTTTAACAAT  — SP6 ——————————————————————————————————                                                        |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | CCCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTG GCGGTCCCAAAAGGGTCAGTGCTGCAACATTTTGCTGCCGGTCACTTAACA                                                                                                                                                                                                       | Sal / BspM / Sph / Hind III TAGAGTCGACCTGCAGCATCGAGCATTCTATAGTGTCACCTAAATAGCTTGGCGATTAGTGTCATGGTCATAGCACACACA |

TCCGCTCACAATTCCACACATACGA
AGGCGAGTGTTAAGGTGTGTTGTATGCT
--48 Reverse
--206



**FIG. 22A** 



**—** 206 **—** 85 <del>- 508</del> <del>- -</del> 85

FIG. 22B



FIG. 23

M M

FIG. 24

Ω

ಡ



72 - 24

ENZYME:- DNAPTaq \triangleright \tri

FIG. 25A

FIG. 25B



**).** 





FIG. 28A



M 1 2 3 4 5 6





FIG. 28B





FIG. 29



FIG. 30





FIG. 31

## 

| 5' PROBE 3' | AGAAAGGAAGGAAGAAAGCGAAAGG FLUOR. | TTCGGCCGCTTGCACCGCTCTTTCCTTCCTTTCGCTTTCC |
|-------------|----------------------------------|------------------------------------------|
| 5.          | GACGGGAAAGCCGGCGAACG             | 3. CTGCCCTTTCGGCCGCTTGCAC                |

TARGET NUCLEIC ACID

## FIG. 32A

|       | FLUOR.                                              | 5/                                             |                     |
|-------|-----------------------------------------------------|------------------------------------------------|---------------------|
| · ro  | AAGCGAAAGG                                          | TTCGCTTTCC                                     |                     |
| PROBE | AAGGAAGGAAGA                                        | TTCCTTC                                        | ACID                |
| 3'5'  | AAAGCCGGCGAAOGTGGCGAGAAAGGAAGGAAGAAAGCGAAAGG FLUOR. | TTGGGCCGCTTGCACGGCTCTTTCCTTCCCTTTCGCTTTCC ~ 5' | TARGET NUCLEIC ACID |
| 5.    | GAAAGCC                                             | <br>3 ~ > CTGCCCCTTTCGC                        |                     |

## FIG. 32B

TARGET NUCLEIC ACID

FIG. 32C





terotore energy





FIG. 35



FIG. 36





FIG. 38



FIG. 39



FIG. 40A



FIG. 40B





FIG. 4

.



FIG. 42



FIG. 43





FIG. 44



FIG. 45



FIG. 46



FIG. 47



FIG. 48



FIG. 49



FIG. 50





FIG. 51



FIG. 52

FIG. 53B



FIG. 55



70 (C10 amino T's) 74 (C6 amino T's) \_ NH3+ C10 90 ŻΙ ZI, <u>"</u> 0 0 = PFIG. 56

75





FIG. 59



61

FIG. 60A



FIG. 60B



FIG. 61



FIG. 62



FIG. 64

| 5'                  | AGAAAGGAAGGAAAGCGAAAGG 3'                                                         |
|---------------------|-----------------------------------------------------------------------------------|
| 3'                  | CGGCCGCTTGCACCGCTCTTTCCTTCCCTTCTTTCGCTTTCC 5' $A_{CA}$                            |
| <b>.</b>            | AGAAAGGAY                                                                         |
| 3'                  | CGGCCGCTTGCACCGCTCTTTCCTTCCCTTCTTTCGCTTTCC 5'_                                    |
|                     | FIG. 65A                                                                          |
| 5 '<br>3 '          | CAG AAGGAAGGGAAAGCGAAAGG 3'CCGGCCGCTTCTTTCCCTTCCCTTCTTTCGCTTTCC 5'                |
|                     |                                                                                   |
| 5'<br>3'            | CGGCCGCTTGCACCGCTCTTTCCTTCCCTTCTTTCGCTTTCC 5'                                     |
|                     | FIG. 65B                                                                          |
|                     |                                                                                   |
| 5 '<br>3 '          | CAGGCCGCTTGCACCGCTCTTTCCTTCCCTTCTTTCGCTTTCC 5'                                    |
|                     | CAGGGGAACGTGGCGAGAAGGAAGGGAAAGGGAAAGG 3'                                          |
| 5' <u>(</u><br>3' ( | GCCGGCGAACGTGGCGAGAAAGGAAAGGGAAAGGGAAAGG 3'CGGCCGCTTCCTTCCCTTCCCTTCCCTTCCCTTCCCTT |
|                     | FIG. 65C                                                                          |
| 5 '                 | CAGGGGAAGAAAGCGAAAGG 3'CAGGGCCGCTTTCCTTTCCCTTCCCTTCCCTTCCCTTCC                    |
| 3'                  | CGGCCGCTTGCACCGCTCTTTCCTTCCCTTCTTTCGCTTTCC 5'                                     |
|                     | CAGGGTACY                                                                         |
| 5' <u>(</u>         | GCCGGCGAACGTGGCGAGAAAGGAAAGGAAAGCGAAAGG 3'CGGCCGCTTGCCTTCCTTCCCTTCCTTCCCTTCCCTTC  |

FIG. 65D

2CI

 $H_2N$ 

**FED** 

OH

FIG. 66



FIG. 68



FIG. 69



### HINGANN THEFT

|          | 10                                                                          | 20             | 3,0 0,5     | 0†<br>0†  | 50                | 09                                                | -2-           |      |
|----------|-----------------------------------------------------------------------------|----------------|-------------|-----------|-------------------|---------------------------------------------------|---------------|------|
| · .      | MGVQFGDFIPKNIISFEDLKGKKVAIDGMNALYQFLTSIRLRDGSPLRNRKGEITSAYNGVFY MJAFEN1.PRO | NIISFEDLKG     | KKVAIDGMNAL | YQFLTSIRI | RDGSPLRNR         | KGEITSAYNGVF                                      | Y MJAFEN1     | PRO  |
| _        | MGVPIGEIIPRKEIELEN                                                          | KEIELENLYG     | KKIAIDALNAI | YQFLSTIR( | KDGTPLMDS         | ILYGKKIAIDALNAIYQFLSTIRQKDGTPLMDSKGRITSHLSGLFY    |               | PR0  |
| _        | MGIQGLAKLIADVAPSAIRENDIKSYFGRKVAIDASMSIYQFLIAVRQ-GGDVLQNEEGETTSHLMGMFY      | RENDIKSYFG     | RKVAIDASMSI | YQFLIAVR( | <b>2-GGDVLQNE</b> | EGETTSHLMGMF                                      |               | PR0  |
| _        | MGIHGLAKLIADVAPSAIRENDIKSYFGRKVAIDASMSIYQFLIAVRQ-GGDVLQNEEGETTS-LMGMFY      | RENDIKSYFG     | RKVAIDASMSI | YQFLIAVR( | 3-GGDVLQNE        | EGETTS-LMGMF                                      | Y MUSFEN1.PRO | PR0  |
| <b>,</b> | MGIKGLNAIISEHVPSAIRKSDIKSFFGRKVAIDASMSLYQFLIAVRQQDGGQLTNEAGETTSHLMGMFY      | RKSDIKSFFG     | RKVAIDASMSL | YQFLIAVR( | QDGGQL TNE,       | AGETTSHLMGMF                                      | Y YST510.PR0  | RO   |
| ·        | MGVHSFWDIAGPTARPVRLESLEDKRMAVDASIWIYQFLKAVRDQEGNAVKNSHITGFFR                | RPVRLESLEDI    | KRMAVDASIWI | YQFLKAVRI | QEGNAVKN-         | SHITGFF                                           | R YSTRAD2.PR0 | PR0  |
|          | MGVSGLWNILEPVKRPVKLETLVNKRLAIDASIWIYQFLKAVRDKEGNQLKSSHVVGFFR SPORAD13.PR    | (RPVKĽ ETL VNI | KRLAIDASIWI | YQFLKAVRI | KEGNQLKS-         | SHVVGFF                                           | R SPORAD1     | . PR |
|          | MGVOGLWKLLECSG                                                              | ROVSPEALEGI    | KILAVDISIWL | NQALKGVRI | ORHGNSIEN-        | CSGROVSPEALEGKILAVDISIWLNQALKGVRDRHGNSIENPHLLTLFH | H HUMXPG.PRO  | RO   |
|          | ı                                                                           | HRVSPEALEGI    | KVLAVDISIWL | NQALKGVRI | SHGNVIEN-         | CSGHRVSPEALEGKVLAVDISIWLNQALKGVRDSHGNVIENAHLLTLFH | H MUSXPG. PRO | RO   |
|          | MGVOGLWKLLECSGRPINPGTLEGKILAVDISIWLNQAVKGARDRQGNAIQNAHLLTLFH                | RPINPGTLEGI    | KILAVDISIWL | NQAVKGARI | ORQGNAIQN-        | AHLLTLF                                           | H XENXPG. PRO | R0   |
| . —      | MTINGIWEWANHVVRKVPNETMRDKTLSIDGHIWLYESLKGCEAHHQQTPNSYLVTFFT                 | RKVPNETMRD     | KTLSIDGHIWL | YESLKGCE/ | лниодт            | PNSYLVTFF                                         | T CELRAD2.PR0 | PR0  |
|          |                                                                             |                |             |           |                   |                                                   |               |      |

|    | 08-                                                                            | 90           | 100         | 110                                                   | 120        | 130                                     | 140     |              |
|----|--------------------------------------------------------------------------------|--------------|-------------|-------------------------------------------------------|------------|-----------------------------------------|---------|--------------|
| 64 | KTIHLLENDITPIWVFDGEPPKLKEKTRKVRREMKEKAELKMKEAIKKEDFEEAAKYAKRVSYLTP MJAFEN1.PRO | FDGEPPKLKEKT | RKVRREMKEKA | <b>ELKMKEAIKK</b>                                     | EDFEEA     | AKYAKRVSYL                              | TP MJA  | FEN1.PRO     |
| 64 | RTINLMEAGIKPVYVFDGEPPEFKKKEL                                                   | FDGEPPEFKKKE | LEKRREAREEA | EKRREAREEAEEKWREALEKGEIEEARKYAQRATRVNE PFUFEN1.PRO    | GEIEEA     | RKYAQRATRV                              | NE PFU  | FEN1.PRO     |
| 20 | RTIRMMENGIKPVYVFDGKPPQLKSGEL                                                   | FDGKPPQLKSGE |             | AKRSERRAEAEKQLQQAQAAGAEOEVEKFTKRLVKVTK HUMFEN1.PRO    | GAE0EV     | EKFTKRLVKV                              | /TK HUM | FEN1.PRO     |
| 69 | 8                                                                              | FDGKPPQLKSGE | LAKRSERRAEA | AKRSERRAEAEKQLQQAQEAGMEEEVEKFTKRLVKVTK                | GMEEEV     | EKFTKRLVKV                              | /TK MUS | MUSFEN1.PRO  |
| 71 | $\propto$                                                                      | FDGKPPDLKSHE |             | TKRSSRRVETEKKLAEATTELEKMKQERRLVKVSK YST510.PR0        | TTELEK     | MKQERRLVKV                              | /SK YST | 510.PR0      |
| 61 |                                                                                | FDGGVPVLKRET | IRQRKERRQGK | RQRKERRQGKRESAKSTARKLLALQLQNGSNDNKRDSDEVTM            | LALQLQNGS  | NDNKRDSDEV                              | /TM YST | YSTRAD2.PRO  |
| 61 | RICKLLFFGIKPVFVFDGGAPSLKRQTI                                                   | FDGGAPSLKRQT | IQKRQARRLDR | <b>QKRQARRLDREENATVTANKLLALQMRHQAMLLKRDADEVTQ</b>     | -LALQMRHQA | MLLKRDADEV                              | /TQ SP0 | SPORAD13.PRO |
| 61 |                                                                                | FDGDAPLLKKÕT |             | <u> VKRRIQRKDLASSDSRKTTEKLLKTFLKRQAIKTERIAATVTG</u>   | LKTFLKRQA  | IKTERIAATV                              | /TG HUM | HUMXPG.PRO   |
| 61 | ~                                                                              | FDGDAPLLKKQT |             | <b>AKRRQRKDSASIDSRKTTEKLLKTFLKRQALKTDRIAASVTG</b>     | LKTFLKRQA  | LKTDRIAASV                              | /TG MUS | MUSXPG.PRO   |
| 61 |                                                                                | FDGEAPLLKRQT | LAKRRQRTDKA | AKRRQRTDKASNDARKTNEKLLRTFLKRQAIKAERIAATVTG XENXPG.PRO | LRTFLKRQA  | IKAERIAATV                              |         | XPG.PRO      |
| 9  | œ                                                                              | FDNINASSSAHE | SKDQNEFVPRK | (RRSFGDSPFTI                                          | 11 V       | t t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |         | CELRAD2.PR0  |

# 

|      | 150                                                                              | 160          | 170        | 180                                                   | 190                 | 200        | 210    |                                                        |
|------|----------------------------------------------------------------------------------|--------------|------------|-------------------------------------------------------|---------------------|------------|--------|--------------------------------------------------------|
| 120. | 120 KMVENCKVIISIMGIPVVEAPSEGEANASYMAKKGDVWAVVSODYDALLYGAPRVVRNLTTTKEMMJAFEN1.PRO | VVEAPSEGEAU  | ASYMAKKGD\ | /WAVVS0DYD/                                           | ALLYGAPRVVF         | NLTTTKEM-  |        | 1JAFEN1.PRO                                            |
| 130  | MITEDAKKILEIMGIPIVOAPSEGEAOA                                                     | TVOAPSEGEAO, | AAYMAAKGS\ | VYASASQDYDS                                           | SLLFGAPRLVF         | INLTITGKRK | LPGK   | AYMAAKGSVYASASQDYDSLLFGAPRLVRNLTITGKRKLPGK PFUFEN1.PR0 |
| 136  | OHNDECKHLLSLMGIPYLDAPSEAEASC                                                     | YLDAPSEAEAS  | CAALVKAGK  | AALVKAGKVYAAATEDMDCLTFGSPVLMRHLTASEAKKLPIQ I          | CLTFGSPVLMF         | HLTASEAKK  | LPIQ   | HUMFEN1.PRO                                            |
| 134  | OHNDECKHLLSLMGIPYLDAPSEAEASC                                                     | YLDAPSEAEAS  | CAALAKAGK  | <b>AALAKAGKVYAAATEDMDCLTFGSPVLMRHLTASEAKKLPIQ</b>     | CLTFGSPVLMF         | HLTASEAKK  | LPIQ   | MUSFEN1.PRO                                            |
| 134  | FHNFFAOKI 1 GI MGIPYIIAPTEAEAOC                                                  | YIIAPTEAEAO  | CAELAKKGK  | AELAKKGKVYAAASEDMDTLCYRTPFLLRHLTFSEAKKEPIH YST510.PRO | <b>FL</b> CYRTPFLLF | HLTFSEAKK  | EPIH \ | /ST510.PR0                                             |
| 131  | DMTKFVOFI I SRFGIPYITAPMEAEAOC                                                   | YITAPMEAEAO  | CAELLOLNLY | VDGIITDDSD\                                           | /FLFGGTKIYk         | (NMFHEKNY- | VE \   | AELLQLNLVDGIITDDSDVFLFGGTKIYKNMFHEKNYVE YSTRAD2.PRO    |
| 121  | VMIKECOFIIRIEGI PYTVAPOFAEAOCSKLLELKLVDGIVTDDSDVFLFGGTRVYRNMFNQNKFVE             | YTVAPOFAEAO  | CSKLLELKLY | /DGIVTDDSD/                                           | /FLFGGTRVYF         | NMFNQNKF-  |        | SPORAD13.PRO                                           |
| 131  |                                                                                  | YIOAPMEAEAO  | CAILDLTDO. | AILDLTDQTSGTITDDSDIWLFGARHVYRNFFNKNKFVE               | IWLFGARHVYF         | NFFNKNKF-  |        | HUMXPG.PRO                                             |
| 121  |                                                                                  | YTOAPMEAEAO  | CAVLDLSDQ  | AVLDLSDQTSGTITDDSDIWLFGARHVYKNFFNKNKFVE               | <b>IMLFGARHVY</b>   | (NFFNKNKF- |        | MUSXPG.PRO                                             |
| 121  | OMCI ESOFI I OI FGTPYTVAPMEAEAOC                                                 | YTVAPMEAEAO  | CAILDLTDO  | AILDLTDQTSGTITDDSDIWLFGARHVYKNFFSQNKHVE               | IWLFGARHVY          | (NFFSQNKH- |        | XENXPG.PRO                                             |
| 111  | DHVYKTNALLTELGIKVIIAPGDGEAQC                                                     | VIIAPGDGEAQ  | CARLEQLGV  | ARLEQLGVTSGCITTDFDYFLFGGKNLYRFDFTAGT                  | YFLFGGKNLYF         | FDFTAGT    |        | CELRAD2.PRO                                            |

|     | 25     | 220 2                            | 230 2                         | 240       | 250                                                             | 260        | 270               | 280    |              |  |
|-----|--------|----------------------------------|-------------------------------|-----------|-----------------------------------------------------------------|------------|-------------------|--------|--------------|--|
| 195 | ;      | FI TEI NEVI E                    | DIRISLODLI                    | DIAIFMGT  | PELTELNEVIEDLESLDDLIDIAIFMGTDYNPGGVKGIGFKRAYELVRSGVAKDV MJAFEN1 | GIGFKRAY   | <b>ELVRSGVAK-</b> | DV P   | IJAFEN1.PRO  |  |
| 200 | $\geq$ | NVYVE-TKPFITILEEVLKELKLTREKL     | (ELKLTREKL)                   | ELAILVGT  | IELAILVGTDYNPGGIKGIGLKKALEIVRHSKDPLAKF                          | GIGLKKAL   | EIVRHSKDPL        | AKF F  | PFUFEN1.PRO  |  |
| 206 |        | ELGLNOEOFV                       | FFHLSRILOELGLNOEOFVDLCILLGSD) | /CESIRGIG | )YCESIRGIGPKRAVDLIQKHKSIEEIVRRLDPNKY                            | HKSIEEIV   | RRLDPN            |        | HUMFEN1.PRO  |  |
| 202 |        | FFHI SRVI OFI GI NOFOFVDLCILLGSD | /DLCILLGSD\                   | /CESIRGIG | YCESIRGIGAKRAVDLIQKHKSIEEIVRRLDPSKY                             | HKSIEEIV   | RRLDPS            |        | MUSFEN1.PRO  |  |
| 204 |        | FIDTELVIRGIDITIEOFVDLCIMLGCD     | /DLCIMLGCD)                   | CESIRGVG  | YCESIRGVGPVTALKLIKTHGSIEKIVEFIESGESNNTKW                        | HGSIEKIV   | EFIESGESNN        |        | YST510.PR0   |  |
| 198 |        | FYDAFSTIKI I GI DRKNMIELAOLL GSD | ELAOLL GSD)                   | TNGLKGMG  | YTNGLKGMGPVSSIEVIAEFGNLKNFKDWYNNGOFDKRK                         | FGNLKNF    | <b>KDWYNNGOFD</b> |        | YSTRAD2.PR0  |  |
| 300 |        | I YI MDDMKRFFNVNOMDI IKLAHLLGSD  | (KLAHLLGSD)                   | TMGLSRVG  | YTMGLSRVGPVLALEILHEFPGDTGLFEFKKWFQRLSTGHAS                      | FPGDTGLFEF | KKWFQRLSTG        | SHAS 9 | SPORAD13.PRO |  |
| 198 |        | VYOVVDEHNOLGI DRNKL TNI AYLLGSD  | INI AYLLGSD                   | TEGIPTVG  | NTEGIPTVGCVTAMEILNEFPGHGLEPLLKFSEWWHEAQKNP                      | FPGHGLEPLL | KFSEWWHEAG        |        | HUMXPG.PRO   |  |
| 119 |        | VYOVVDEYSOLGI DRNKLINI AYLLGSD   | INI AYI I GSD                 | TEGIPTVG  | YTEGIPTVGCVTAMEILNEFPGRGLDPLLKFSEWWHEAQNNK                      | FPGRGLDPLL | KFSEWWHEAC        |        | MUSXPG.PRO   |  |
| 108 |        | VVOVADTHNOLGLDRAKLINLAYLLGSD     | INI AYLI GSD                  | YTEGIPTVG | )YTEGIPTVGYVSAMEILNEFPGQGLEPLVKFKEWWSEAQKDK                     | FPGQGLEPLV | KFKEWWSEAC        |        | XENXPG.PRO   |  |
| 175 |        |                                  |                               |           | SSTACLHDIMHLSLGRMFM                                             | IMHLSLGRMF | M M               |        | CELRAD2.PRO  |  |

FIG. 70B

# 

|             | MJAFEN1.PRO PFUFEN1.PRO HUMFEN1.PRO MUSFEN1.PRO YST510.PRO YSTRAD2.PRO YSTRAD2.PRO HUMXPG.PRO MUSXPG.PRO CELRAD2.PRO                                                                                 | MJAFEN<br>PFUFEN<br>HUMFEN<br>MUSFEN<br>YST510<br>YSTRAD<br>YSTRAD<br>HUMXPG<br>XENXPG                                                                         | ELRAD2.P        |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| L           | SYVRE                                                                                                                                                                                                | 420<br><br>KGKQ<br>VGTQ<br>SVAM<br>VAVM                                                                                                                        | VAEIM           |
|             | KEGIIKFLVDENI<br>EEGILKFLCDEHI<br>EEELIKFMCGEK(<br>EEELVKFMCGEK(<br>EKELIEYLCDDKI<br>LDMLRSFMKTQL(<br>LDELRQFLMATV(<br>LDKIREFCQRYF(<br>LEQIREFCESRF(                                                | 410<br><br>                                                                                                                                                    | AANF            |
| <u></u> ⊢ ດ | SLSLKLPD<br>NLVWRDPD<br>ELKWSEPN<br>ELKWSEPN<br>NLKWSPPK<br>PFVWGVPD<br>SFLWGKPD<br>SFLWGKPD<br>SFLWGKPD<br>SFLWGKPD<br>EFGDDGNE                                                                     | 400<br><br>                                                                                                                                                    | SEIPKII         |
|             | 340<br>TDN<br>LDPES<br>VDPES<br>IDGNE<br>MRPEVDDSK<br>LKPVVDDSK<br>LKPVVDDSK<br>LKPVVDDSK<br>IVSVFD-IL                                                                                               | 390<br>                                                                                                                                                        | ITMYLRPPV       |
|             | 310<br>                                                                                                                                                                                              | 380<br>DDFFKVT<br>DDFFKVT<br>DGFFOVV<br>DSFFRLAQQE                                                                                                             | VGFPNCD         |
| - 6         | KEPKV                                                                                                                                                                                                | 370<br><br>TQGRL<br>TQGRL<br>(K<br>TQCRI<br>(TQLRI                                                                                                             | KKYNF           |
|             | LKKEVEYYDEIKRIFK<br>QKQSDVDLYAIKEFFL<br>PVPENWLHKEAHQLFL<br>PVPENWLHKEAQQLFL<br>KIPEDWPYKQARMLFL<br>QETENKFEKDLRKKLV<br>KNDVNTPVKKRINKLV<br>KNBNNTPVKKRINKLV<br>KVAENPYDTKVKKKL-<br>KVAENPYDTKVKKKL- | 360 RVKKHVDKLYNLIA RVKNGLERLKKAI RIRSGVKRLSKSRQGS- RIRSGVKRLSKSRQGS- RIRSGVKRLSKSRQGS- RVKSGISRLKKGLKSG- KSDEILIPLIRDVNKRK KTDESLFPVLKQLDAQC KTDESLFPVLKQLDAQC | IPARSEDTQRKLRLR |
| 14          | 251<br>265<br>267<br>267<br>272<br>268<br>268<br>268<br>268<br>268<br>268<br>268<br>268<br>194                                                                                                       | 300<br>314<br>320<br>318<br>323<br>337<br>336<br>336<br>336                                                                                                    | 2               |

#### FIG. 70C

# ACCOLUTE CENTRE

|           | FEN1.PRO FEN1.PRO FEN1.PRO FEN1.PRO FEN1.PRO S10.PRO RAD2.PRO RAD13.PRO IXPG.PRO IXPG.PRO IXPG.PRO |      | FEN1.PRO<br>FEN1.PRO<br>FEN1.PRO<br>510.PRO<br>SAD2.PRO<br>RAD13.PRO<br>XPG.PRO<br>XPG.PRO<br>XPG.PRO |
|-----------|----------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------|
| -0-       | - MJAF<br>S HUMF<br>S HUMF<br>T YSTS<br>- YSTR<br>L SPOR<br>M HUMX<br>T CELR                       | 099  | MJA<br>S HUM<br>YST<br>YST<br>YST<br>YST<br>MUS<br>MUS<br>CEL                                         |
| 4         | GSL<br>GSL<br>PK-<br>PK-<br>SDELOSRI<br>EHAESSSL<br>EDGEGSSV<br>D                                  | . 5  | NKTKQKTLKSGKQSTLKKKAKTGAAGKKKAKTGGAGNKKLNKNKNKKKKK GKKRKLRRARG GKKRKLKSMK-                            |
| 480       | <br>                                                                                               | 250  | <br><br>                                                                                              |
| 470       |                                                                                                    | 540  |                                                                                                       |
| 460       |                                                                                                    | 530  | KKLNTSKRIS<br>SIENLPRKTK<br>SSSDSDDDGG<br>SSSDSDDDGG                                                  |
| 450       | KRLENALSSF<br>SSSLKRKRLSF<br>GTKRKPTEC                                                             | 520  |                                                                                                       |
| 440       |                                                                                                    | 510  |                                                                                                       |
| 430       | KRINEFF                                                                                            | 9005 | SAKRKEPEPKGST                                                                                         |
| San Japan | 314<br>327<br>348<br>348<br>351<br>351<br>406<br>406<br>322                                        |      | 314<br>327<br>352<br>352<br>354<br>476<br>476<br>458                                                  |

### FIG. 70D

| DAWFKZ | SWFK   | <b>FKRG</b> | FRRG | TKGR | RK | KRRR     | KRKT | RKKK   | VKRK | 160 |
|--------|--------|-------------|------|------|----|----------|------|--------|------|-----|
| 322    | $\sim$ | /           | /    | /    | σ  | $\infty$ | 4    | $\sim$ | 2    | 7   |

MJAFEN1.PRO PFUFEN1.PRO HUMFEN1.PRO YST510.PRO YST510.PRO YSTRAD2.PRO SPORAD13.PRO HUMXPG.PRO MUSXPG.PRO XENXPG.PRO

FIG. 70E



FIG. 71