

NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2020

MATHEMATICS: PAPER I

MARKING GUIDELINES

Time: 3 hours 150 marks

These marking guidelines are prepared for use by examiners and sub-examiners, all of whom are required to attend a standardisation meeting to ensure that the guidelines are consistently interpreted and applied in the marking of candidates' scripts.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines. It is also recognised that, without the benefit of attendance at a standardisation meeting, there may be different interpretations of the application of the marking guidelines.

NOTE:

- If a candidate answers a question more than once, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking memorandum.

SECTION A

QUESTION 1

(a)(1)	$px^{2} + 2x - 3 = 0$ $x = \frac{(-2) \pm \sqrt{(2)^{2} - 4(p)(-3)}}{2(p)}$ $x = \frac{-2 \pm \sqrt{4 + 12p}}{2p}$ $x = \frac{-2 \pm 2\sqrt{1 + 3p}}{2p}$ $x = \frac{-1 \pm \sqrt{1 + 3p}}{p}$ Non-real roots for: $1 + 3p < 0$	use of quadratic formula $x = \frac{-2 \pm \sqrt{4 + 12p}}{2p}$ simplified solution
(a)(2)	Non-real roots for: $1+3p<0$ $p<-\frac{1}{3}$	$ \Delta < 0 $ $ \rho < -\frac{1}{3} $
(b)	$\sqrt{x-2} + 4 = x$ $x^{2} - 9x + 18 = 0$ $(x-2) = (x-4)^{2}$ $x-2 = x^{2} - 8x + 16$ $x = 6 \text{ or } x = 3$ $n/v \text{ for } x = 3$	No marks for $\Delta > 0$ Isolate surd $x^2 - 4x + 4$ $x^2 - 8x + 16$ factors answer with selection
(c)	$(x+3)(x-1) \ge 0$ Crit. values: -3 ; 1 $x \le -3$ or $x \ge 1$	Number line/graph $x \le -3$ or $x \ge 1$

r		1
(a)	$x^{\frac{2}{3}} = 4$	
	$\left(x^{\frac{2}{3}}\right)^{\frac{3}{2}} = \left(2^{2}\right)^{\frac{3}{2}}$	$(2)^{\frac{3}{2}}$ 3
	$\begin{pmatrix} X^3 \end{pmatrix} = (2^2)^2$	$\left(x^{\frac{2}{3}} \right)^{\frac{3}{2}} = (2^2)^{\frac{3}{2}}$
	$x = \pm 8$	x = 8
	Alternate:	x = -8
	$\sqrt[3]{x^2} = 4$	
	$\left(\sqrt[3]{x^2}\right)^3 = \left(4\right)^3$	$\left(\sqrt[3]{x^2}\right)^3 = \left(4\right)^3$
	$x^2 = 64$	
	x = 8 or x = -8	$\begin{array}{c} x = 8 \\ x = -8 \end{array}$
(b)	$x^2 + 1 = x - y$	$x^2 + 1 = x - y$
	Sub: $y = 2 - 3x$	Sub: $y = 2 - 3x$
	$x^2 + 1 = 4x - 2$	$x^2 + 1 = 4x - 2$
	$x^2-4x+3=0$	x = 1
	x=1 or $x=3$	<i>y</i> = −1
	When $x = 1$; $y = -1$	<i>x</i> = 3
	When $x = 3$; $y = -7$	<i>y</i> = −7
	Alternate:	$3^{x^2+1} = \frac{3^x}{3^x}$ sub. eq 1
	y = 2 - 3x eq 1	$3^{x^2+1} = \frac{3^x}{3^y}$ sub. eq 1
	y = 2 - 3x eq 1 $3^{x^2+1} = 3^{x-y}$ sub. eq 1	$3^{x^2+1} = 3^{4x-2}$
	y = 2 - 3x eq 1 $3^{x^2+1} = 3^{x-y}$ sub. eq 1 $3^{x^2+1} = 3^{x-(2-3x)}$	$3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$
	y = 2 - 3x eq 1 $3^{x^2+1} = 3^{x-y}$ sub. eq 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$
	y = 2-3x eq 1 $3^{x^2+1} = 3^{x-y}$ sub. eq 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$
	y = 2-3x eq 1 $3^{x^2+1} = 3^{x-y}$ sub. eq 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$
	y = 2-3x eq 1 $3^{x^2+1} = 3^{x-y}$ sub. eq 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2+1=4x-2$ $x^2-4x+3=0$ x=1 or $x=3$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$
	y = 2-3x eq 1 $3^{x^2+1} = 3^{x-y}$ sub. eq 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 or $x = 3When x = 1; y = -1$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$
(c)	y = 2-3x eq 1 $3^{x^2+1} = 3^{x-y}$ sub. eq 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 or $x = 3When x = 1; y = -1When x = 3; y = -7$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$
(c)	y = 2-3x eq 1 $3^{x^2+1} = 3^{x-y}$ sub. eq 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 or $x = 3When x = 1; y = -1When x = 3; y = -7A = P(1+i)^n$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$ $y = -7$
(c)	y = 2-3x eq 1 $3^{x^2+1} = 3^{x-y}$ sub. eq 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 or $x = 3When x = 1; y = -1When x = 3; y = -7A = P(1+i)^n$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$ $y = -7$
(c)	y = 2-3x eq 1 $3^{x^2+1} = 3^{x-y}$ sub. eq 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 or $x = 3When x = 1; y = -1When x = 3; y = -7A = P(1+i)^n25000 = 20000 \left(1 + \frac{4}{100}\right)^n$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$ $y = -7$ $25\ 000 = 20\ 000 \left(1 + \frac{4}{100}\right)^{n}$
(c)	y = 2-3x eq 1 $3^{x^2+1} = 3^{x-y}$ sub. eq 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 or $x = 3When x = 1; y = -1When x = 3; y = -7A = P(1+i)^n25\ 000 = 20\ 000 \left(1 + \frac{4}{100}\right)^n\frac{5}{4} = (1,04)^n$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$ $y = -7$
(c)	y = 2-3x eq 1 $3^{x^2+1} = 3^{x-y}$ sub. eq 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 or $x = 3When x = 1; y = -1When x = 3; y = -7A = P(1+i)^n25\ 000 = 20\ 000 \left(1 + \frac{4}{100}\right)^n\frac{5}{4} = (1,04)^n$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$ $y = -7$ $25\ 000 = 20\ 000 \left(1 + \frac{4}{100}\right)^{n}$ $n = \log_{1,04}\left(\frac{5}{4}\right)$
(c)	y = 2-3x eq 1 $3^{x^2+1} = 3^{x-y}$ sub. eq 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 or $x = 3When x = 1; y = -1When x = 3; y = -7A = P(1+i)^n25000 = 20000 \left(1 + \frac{4}{100}\right)^n$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$ $y = -7$ $25\ 000 = 20\ 000 \left(1 + \frac{4}{100}\right)^{n}$

(a)	$f(0) = 3 - \frac{4}{0 - 2}$	f(0) = 5
	f(0) = 5	
(b)	$3 - \frac{4}{x - 2} = 0$	
	x-2 3(x-2)-4=0 restr. $x \ne 2$	
	3x-6-4=0	
	$x = \frac{1}{3}$	3(x-2)-4=0
	$x = \frac{10}{3}$ $x = 3\frac{1}{3}$	$3(x-2)-4=0$ $x=3\frac{1}{3}$
(c)	20 ¹ ^y	
	20	
	16 +	Shape
	12 -	Vertical Asymptote
	8 +	Horizontal Asymptote
		Intercepts
	x	
	-10 -5 10 15	
	-4+	
	-8 -	
(d)(1)	f(x+p)=3	
	$f(x+p) = 3 - \frac{4}{x+p-2}$ $f(x+p) = -\frac{4}{[x+(p-2)]} + 3$	$f(x+p) = 3 - \frac{4}{x+p-2}$
	$f(x+p) = -\frac{4}{}$	x+p-2
4.0.45		
(d)(2)	Graph of f will shift p units to the right	Explanation

(e)(1)	For $f^{-1}(x)$: $x = 3 - \frac{4}{y-2}$	
	$x=3-\frac{4}{y-2}$	
	$\frac{4}{y-2}=3-x$	$x = 3 - \frac{4}{y - 2}$
	4 = (3-x)(y-2)	4 = (3-x)(y-2)
	4 = 3y - 6 - xy + 2x $3y - xy = 4 + 6 - 2x$	
	y(3-x) = 10-2x 10-2x	$\therefore f^{-1}(x) = \frac{10-2x}{3-x}$
	$y = \frac{10 - 2x}{3 - x}$	Alternate final answer:
	$\therefore f^{-1}(x) = \frac{10-2x}{3-x}$	$f^{-1}(x) = \frac{2x - 10}{x - 3}$
	Alternate final answer:	Alternate final answer:
	$f^{-1}(x) = \frac{2x-10}{x-3}$	$y = -\frac{4}{x-3} + 2$
(e)(2)	Domain of $f^{-1}(x)$: $x \in R$; $x \neq 3$	$x \in R$; $x \neq 3$

(4)(a)	$ar^2 = 7$	$ar^2 = 7$
(1)(α)	$ar^5 = -2401$	ur = r
		$ar^5 = -2401$
	$\therefore \frac{ar^5}{ar^2} = -\frac{2401}{7}$	_
	$\therefore r^3 = -343$	$\therefore \frac{ar^5}{ar^2} = -\frac{2401}{7}$
	∴ <i>r</i> = -7	ar² 7
	$T_n = a(-7)^{n-1}$	r = -7
	$T_3 = a(-7)^{3-1} = 7$	$a=\frac{1}{7}$
	$a = \frac{7}{49}$	1
	$\therefore a = \frac{1}{7}$ 3 7 15 27 Sequence	
(4)(b)(1)	3 7 15 27 Sequence	Sequence
	4 8 12 First Difference	First Difference
	4 4 Constant second differ	Constant second differ
(b)(2)	2a = 4 ∴ a = 2	
	3a+b=4 : $b=-2$	Method
	a+b+c=3 : $c=3$	a = 2
	$T_n = 2n^2 - 2n + 3$	b = -2
		2 2
		c = 3
	Alternate:	
	$T_n = 7(n-1) - 3(n-2) + \frac{(n-1)(n-2)}{2} \times (4)$	Method
	$T_n = 7n - 7 - 3n + 6 + (n^2 - 3n + 2)(2)$	a = 2
	$T_n = 2n^2 - 2n + 3$	b = -2
		c = 3

		,
(a)	$g(x) = \log_t x \text{ sub. } (2;-1)$	
	$-1 = \log_t 2$	-1 = log, 2
	$t^{-1}=2$	
	$t=\frac{1}{2}$	$t=\frac{1}{2}$
(b)	X-int. of normal/standard log graph is always:	- ()
	$(1,0)$ since $\log_t 1 = 0$	∴ C(1;0)
	$\therefore C(1;0)$	
	Alternate: For Co-ord. of C: X-int, let $y = 0$	
	$y = \log_{\underline{1}} x$	
	2	
	$0 = \log_{\frac{1}{2}} x$	∴ C(1;0)
	$x = \left(\frac{1}{2}\right)^0$	
	x=1	
	∴ C(1;0)	
(c)	$f(x) = 2p^x + q$	
	q = -1 since asymptote passes through A(2;-1)	9 .
	$f(x) = 2p^{x} - 1$ sub. (1,0)	$0 = 2p^1 - 1$ $p = \frac{1}{2}$
	$0=2p^1-1$	$p=\frac{1}{2}$
	$\therefore p = \frac{1}{2}$	
(d)	D is the <i>y</i> -int of f : let $x = 0$	
	$f(x) = 2 \times \left(\frac{1}{2}\right)^{x} - 1$ sub. $x = 0$	$y = 2 \times \left(\frac{1}{2}\right)^0 - 1$
	$y = 2 \times \left(\frac{1}{2}\right)^0 - 1$	
		∴ D(0;1)
	y=1	
(-)	∴ D(0;1)	
(e)	$f(x) = 2\left(\frac{1}{2}\right)^{x} - 1$ sub. B(2; y)	(4)2
	$f(x) = 2\left(\frac{1}{2}\right)^2 - 1$	$f(x) = 2\left(\frac{1}{2}\right)^2 - 1$
	$f(x) = y = -\frac{1}{2}$	Length of AB = $\frac{1}{2}$
	Length of AB = $\frac{1}{2}$	
(f)	Range of $f: y > -1$	<i>y</i> > −1

(a)	$f(x) = 1 - 2x + x^2$	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$1-2(x+h)+(x+h)^2$
	$f'(x) = \lim_{h \to 0} \frac{1 - 2(x+h) + (x+h)^2 - (1 - 2x + x^2)}{h}$	$-(1-2x+x^2)$
	$f'(x) = \lim_{h \to 0} \frac{1 - 2x - 2h + x^2 + 2xh + h^2 - 1 + 2x - x^2}{h}$	Squaring and distributing
	••	Factorisation
	$f'(x) = \lim_{h \to 0} \frac{-2h + 2xh + h^2}{h}$	Notation
	$f'(x) = \lim_{h \to 0} \frac{h(-2+2x+h)}{h}$	Sub. to get: 2x-2
	$f'(x) = \lim_{h \to 0} (-2 + 2x + h)$	
	2x-2	
(b)	$y = x^{10} + 10x$	10 <i>x</i> ⁹
	$\frac{dy}{dx} = 10x^9 + 10$	10
(c)	$y = \frac{5}{x^3} + \frac{x^{\frac{1}{2}}}{x^3}$	_5
	$y = 5x^{-3} + x^{-\frac{5}{2}}$	$y = 5x^{-3} + x^{-\frac{5}{2}}$
	$\frac{dy}{dx} = -15x^{-4} - \frac{5}{2}x^{-\frac{7}{2}}$	$\frac{dy}{dx} = -15x^{-4} - \frac{5}{2}x^{-\frac{7}{2}}$
		Penalise 1 for notation

SECTION B

QUESTION 7

(a)	For: $x < -4$ and $x > 1$	<i>x</i> < -4 <i>x</i> > 1
(b)	y y x y 2	Shape X-Intercepts
(c)	k > p or $k < q$	k > p k < q
(d)	$x > -1\frac{1}{2}$	$x > -1\frac{1}{2}$

(a)(1)	8 ⁶	86
(a)(2)	00.400	$8 \times 7 \times 6 \times 5 \times 4 \times 3$
(1.) (4.)	= 20 160	20 160
(b)(1)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{3}{15}$; $\frac{5}{15}$ and $\frac{7}{15}$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 Branches with correct values
(b)(2)	$\left(\frac{5}{15} \times \frac{7}{14}\right) + \left(\frac{7}{15} \times \frac{5}{14}\right)$	$\left(\frac{5}{15} \times \frac{7}{14}\right)$
	$=\frac{1}{3}$	$\left(\frac{7}{15} \times \frac{5}{14}\right)$ $= \frac{1}{3}$
(c)	$P(A \cap B) = P(A) \times P(B)$	$\therefore P(A \cap B) = 0,0016$
	$\therefore P(A \cap B) = 0.08 \times 0.02$	P(AUB) = P(A) + P(B) -
	= 0,0016	P(A∩B)
	but $P(AUB) = P(A) + P(B) - P(A \cap B)$	$\therefore P(AUB) = 0.08 + 0.02$
	$\therefore P(AUB) = 0.08 + 0.02 - 0.0016$	= 0.0984
	= 0,0984	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Alternate:	=1-P(no wins)
	P(at least one win) = P(one or more wins)	0,98
	=1-P(no wins)	
	$=1-P(L)\times P(L)$	0,92
	$= 1 - 0.98 \times 0.92$ = 0.0984	= 0,0984

(a)	a = 725	a = 725
	b = 190	b = 190
(b)	$h = k(x-a)^2 + b$	$h = k(x-725)^2 + 190$
	$h = k(x-725)^2 + 190$ sub. (0;315)	$k = \frac{1}{4205}$
	$315 = k(0-725)^2 + 190$. 200
	$k = \frac{1}{4205}$	$210 = \frac{1}{4205} (x - 725)^2$
	,	+190
	$h = \frac{1}{4205} (x - 725)^2 + 190$ sub. $(x;210)$	x = 1015 or $x = 435$
	$210 = \frac{1}{4205} (x - 725)^2 + 190$	Therefore the horizontal
	x = 1015 or $x = 435$	distance of hygrometer from the left tower is 435 m.
	Therefore the horizontal distance of	the left tower is 400 m.
	hygrometer from the left tower is 435 m.	

(a) $F = 8755 \left[\frac{\left(1 + \frac{6,7}{400}\right)^{(5\times4)} - 1}{\frac{6,7}{400}} \right]$

F = 205973,485

Total cost of shares = $8755 \times 4 \times 5$ Total cost of shares = 175100

Total Profit = 30 873,485

% Profit =
$$\frac{30\,873,485}{175\,100} \times 100$$

= 17,6319 % ≈ 17,6%

Alternate:

$$F = 8.755 \left[\frac{\left(1 + \frac{6.7}{400}\right)^{(5\times4)} - 1}{\frac{6.7}{400}} \right]$$

F = 205973,485

∴ 17,6%

Total cost of shares = $8755 \times 4 \times 5$ Total cost of shares = 175100

$$\therefore \% \text{Profit} = \frac{205 \ 973,485}{175100}$$
$$= 1,176319$$

Inside square bracket

Correct X in correct formula

F = 205973,485

175 100

30 873,485

≈ 17,6%

Inside square bracket

Correct X in correct formula

F = 205 973,485

175 100

 $\% \text{ Profit } = \frac{205 973,485}{175 100}$

≈ 17,6%

$300\ 000 = x \left \frac{1 - \left(1 + \frac{9.5}{1200}\right)^{-(15x12)}}{\frac{9.5}{1200}} \right $	'	9,5
---	---	-----

x = 3132,674049

Balance of loan = A - F

$$A = 300\ 000 \left(1 + \frac{9.5}{1200}\right)^{12 \times 5}$$

A = 481 502,8408

$$F = 3132,674049 \left[\frac{\left(1 + \frac{9,5}{1200}\right)^{(12 \times 5)} - 1}{\frac{9,5}{1200}} \right]$$

F = 239 405,9954

Balance of loan

$$=$$
 (481 502,8408) $-$ (239 405,9954)

= 242 096,8454

≈ 242 096,85

Alternate:

$$P = 3132,674049 \left[\frac{1 - \left(1 + \frac{9,5}{1200}\right)^{-(10 \times 12)}}{\frac{9,5}{1200}} \right]$$

 $P = 242\ 096,8454$ $\approx 242\ 096,85$

No, there would be a shortfall of R36123,36

300 000

Inside the square bracket

x = 3132,674049

A = 481502,8408

F = 239 405,9954

 $= \left(481\ 502,8408\right) - \left(239\ 405,9954\right)$

Comparison between 10a and 10b with conclusion

300 000

Inside the square bracket

x = 3132,674049

$$P = 3\,132,674049 \left[\frac{1 - \left(1 + \frac{9,5}{1200}\right)^{-(10 \times 12)}}{\frac{9,5}{1200}} \right]$$

No. of years: -120

 $\approx 242\,096,85$

Comparison between 10a and 10b with conclusion

(a)	$\sum_{i=1}^{\infty} \frac{k}{2^i} + \sum_{i=1}^{10} 2^{2i} > 10000000$	
	Working with: $\sum_{i=1}^{\infty} \frac{k}{2^i}$	
	$T_1 = \frac{k}{2}$; $T_2 = \frac{k}{4}$; $T_3 = \frac{k}{8}$	
	Common ratio: $\frac{k}{4} \div \frac{k}{2}$	
	$r = \frac{1}{2}$	$r=\frac{1}{2}$
	$S_{\infty} = \frac{a}{1-r} \text{for} -1 < r < 1$	
	$S_{\infty} = \frac{\frac{k}{2}}{1 - \frac{1}{2}}$	Correct substitution into correct formula to get
	$S_{\infty} = k$	$S_{\infty} = k$
	Working with: $\sum_{i=1}^{10} 2^{2i}$	
	$T_1 = 2^2$; $T_2 = 2^4$; $T_3 = 2^6$	
	Common ratio: $r = 4$	r = 4
	$S_n = \frac{a(r^n - 1)}{r + 1} ; \ r \neq 1$	7 = 4
	$S_{10} = \frac{4(4^{10} - 1)}{4 - 1}$	Correct substitution into correct formula to get
	$S_{10} = 1398100$	
		$S_{10} = 1398100$
	$\therefore \sum_{i=1}^{\infty} \frac{k}{2i} + \sum_{i=1}^{10} 2^{2i} > 1 \ 000 \ 000 \ \text{can be rewritten as}$	
	k+1398100>1000000	k+1398100>1000000
	k > -398 100	$\therefore k = -398099 (k \in \mathbb{Z})$
	$\therefore k = -398\ 099 (k \in \mathbb{Z})$	
(b)(1)	$5 + \frac{15}{2} + 10 + \dots + \frac{505}{2}$	
	Common difference of $\frac{5}{2}$; series is arithmetic	$d = \frac{5}{2}$
	$T_n = a + (n-1)d$	Correct substitution in the
	$\frac{505}{2} = 5 + (n-1)\left(\frac{5}{2}\right)$	correct formula
		<i>n</i> = 100
	$250 = \frac{5}{2}n$	
	n = 100	

(b)(2)	Middle 30 terms would be: T_{36} to T_{65} $T_{36} = 5 + (35) \left(\frac{5}{2}\right)$	T ₃₆
	$T_{36} = \frac{185}{2}$	$T_{36} = \frac{185}{2}$
	Let $a = \frac{185}{2}$; $d = \frac{5}{2}$ $S_n = \frac{n}{2} [2a + (n-1)d]$	Correct substitution into correct formula
	$S_{30} = \frac{30}{2} \left[2 \left(\frac{185}{2} \right) + (29) \left(\frac{5}{2} \right) \right]$	S ₃₀ = 3 862,5
	S ₃₀ = 3 862,5	
	Alternate: Middle 30 terms would be: T_{36} to T_{65}	T_{36}
	$T_{36} = 5 + (35)\left(\frac{5}{2}\right)$ $T_{36} = \frac{185}{2}$	$T_{36} = \frac{185}{2}$
	$T_{65} = 5 + (64)\left(\frac{5}{2}\right)$	
	$T_{65} = 165$ $S_n = \frac{n}{2}(a+I)$	Correct substitution into
	$S_n = \frac{30}{2}(4+1)$ $S_{30} = \frac{30}{2}\left(\frac{185}{2} + 165\right)$	correct formula $S_{30} = 3862,5$
	$S_{30} = 2 \left(2 \right)$ $S_{30} = 3862,5$	030 – 3 002,3

12	Let: $g(1) = h(1)$ $(1)^3 - a(1)^2 + 6 = 2(1)^2 + b(1) + 3$	g(1)=h(1)
	1-a+6=2+b+3 a=2-b eq1	a = 2 - b eq1
	u = 2	
	$g'(x) = 3x^2 - 2ax$	$g'(x) = 3x^2 - 2ax$ h'(x) = 4x + b
	h'(x)=4x+b	
	g'(1) = h'(1)	g'(1) = h'(1)
	$3(1)^2 - 2a(1) = 4(1) + b$	2a+b=-1
	3-2a=4+b sub eq1: $a=2-b3-2(2-b)=4+b$	b=5
	b = 5 $a = -3$	
	$h(x) = 2x^2 + 5x + 3$ h(1) = 10	(4.40)
		(1;10)
	Point of contact is: (1;10)	

13	8x + 4x + 4h = P	8x + 4x + 4h = P
	P=12x+4h	
	P-12x=4h	, 1, ,
	$\therefore h = \frac{1}{4}P - 3x$	$h = \frac{1}{4}P - 3x$
	$V = I \times b \times h$	
	$V = (2x)(x)(h)$ sub.: $h = \frac{1}{4}P - 3x$	
	$V = (2x)(x)\left(\frac{1}{4}P - 3x\right)$	$V = (2x)(x)\left(\frac{1}{4}P - 3x\right)$
	$V = \frac{1}{2}x^2P - 6x^3$	$V = \frac{1}{2}x^2P - 6x^3$
	$V' = Px - 18x^2$	$V' = Px - 18x^2$
	0 = x(P-18x)	0 = x(P-18x)
	$x = 0 \text{ or } x = \frac{P}{18}$	P=18x
	Hence, length of the box is $2x = \frac{P}{9}$	Length of the box is $2x$ and $P = 18x$
	: length of box is $\frac{1}{9}P$ cm when the volume is	
	a maximum.	

Total: 150 marks