INSTITITO POLITÉCNICO NACIONAL

d) $(PO_4)^{3-}$

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA Y TECNOLOGÍAS AVANZADAS

Química Inorgánica, enlace covalente y iónico, estructura de Lewis, TRPECV SEGUNDO EXAMEN PERIODO 2022-2

NOMBRE DEL ALUMNO:	BOLETA:	GRUPO:1 <u>EM1</u>
NOMBRE DEL ALUMNO:	BOLETA:	GRUPO:1 <u>EM1</u>
NO SE PERMITEN CONSULTAS, SO	LO SE PERMITE CALCULADO	RA Y TABLA PERIÓDICA.
Para entregar el examen deberán r		
ejercicios solicitados y posteriorm		
<u>equipo, la solución deberá llevar e</u>		
<u>participaron en la resolución del exa</u>	amen. La resolución debe ser (ciara, legible y visible.
1 Con la familia a la que pertenece cada e	elemento, indica la fórmula molecula	ar más probable para compuestos
formados al reaccionar:		
a) carbono y azufre.		
b) fosforo y flúor		
c) Bario y selenio		
d) cloro y silicio		
e) aluminio y iodo		
2 Escribe la fórmula química del compues	sto iónico formado por los siguiente	es pares de elementos:
a) Al y F		
b) Li y O		
c) Mg y Se		
d) Rb y N		
e) Ga y P		
3 Determina estructuras de Lewis, Geom	etría y la hibridación que presenta	el átomo central en las moléculas
siguientes:		
a) AsCl ₄		
b) SeCl ₄ .		
c) (SbCl ₅) ²⁻		
4 Escribe la estructura de Lewis y con crit	terios de T.R.P.E.C.V. indica la geom	netría molecular para:
a) AsCl ₂ Br ₃		
b) PCIF ₅ -		
c) AsH ₄ ⁺		
d) BF ₄		
5 Utilice los conceptos de carga formal y	explique la mejor estructura de Lev	wis para las siguientes moléculas:
a) SO₃	,	. 6
b) NO ₃ -		
c) H ₃ CNO ₂		
C/ 113C14O2		

6.- Calcula aplicando el ciclo de Born Haber, el cálculo de la energía reticular (SELECCIONA UNO)

$$F_2(g) + Ca(s) \rightarrow CaF_2(s)$$

$$Mg(s) + O_2(g) \rightarrow MgO(s)$$

7.- Calcula la energía reticular del PRODUCTO dada la siguiente información (SELECCIONA UNO)

$$K(s)$$
 + $\frac{1}{2}Br_{2(1)}$ \longrightarrow $KBr_{(s)}$ Al(s) + $O_{2}(g)$ \longrightarrow $O_{2}(g)$ \longrightarrow $O_{3}(g)$

8.- Encontrar la energía para formación de las siguientes sustancias orgánicas

$$CH_3-CH_2OH \Rightarrow CH_2=CH_2 + H_2O$$

 $CH_3-Cl + H_2O \Rightarrow CH_3-OH + HCl$

AFINIDADES ELECTRÓNICAS							
100						H	He
						73	< 0
Li	Be	В	C	N	O	F	Ne
60	≤ 0	27	122	0	141	328	< 0
Na	Mg	Al	Si	P	S	Cl	Ar
53	≤ 0	44	134	72	200	349	< 0
K	Ca	Ga	Ge	As	Se	Br	Kr
48	2.4	29	118	77	195	325	< 0
Rb	Sr	In	Sn	Sb	Te	I	Xe
47	4.7	29	121	101	190	295	< 0
Cs	Ba	Tl	Pb	Bi	Po	At	Rn
45	14	30	110	110			< 0

🖰. Magnesio × Configuración electrónica $[Ne] 3s^2$ Estados de oxidación 650 °C, 923 K Punto de fusión Punto de ebullición 1107 °C, 1380 K Densidad 1,74 g/ml Electronegatividad 1,60 Å Radio atómico Radio covalente 1,36 Å 0,65 (+2) Å Radio iónico 1ª Energia de ionización 737 kJ/mol 2ª Energia de ionización 1450 kJ/mol 3ª Energia de ionización 7733 kJ/mol Calor de atomización 146 kJ/mol Calor de fusión 8,95 kJ/mol Calor de vaporización 127,6 kJ/mol Calor específico 1,02 J g⁻¹ K⁻¹ 156 W m⁻¹ K⁻¹ Conductividad térmica 0,224 microohmios⁻¹ Conductancia eléctrica Estructura cristalina hexagonal Propiedades ácido-base básico 24 (78.99), 25 (10.0), 26 (11.01) Isótopos

PROPIEDADES FÍSICAS Estado ordinario Líquido Densidad 3.122 g/cm³ 265.95 K | -7.20 °C Punto de fusión Punto de ebullición 331.95 K | 58.80 °C 5.80 kJ/mol Entalpía de fusión Entalpía de 14.80 kJ/mol vaporización Calor específico 0.474 J/q·K

ኳ, Calcio × Configuración electrónica $[Ar] 4s^2$ Estados de oxidación +2 838 °C, 1111 K Punto de fusión Punto de ebullición 1440 °C, 1713 K Densidad 1,55 g/ml 1.0 Electronegatividad 1,97 Å Radio atómico Radio covalente 0,99⁽⁺²⁾ Å Radio iónico 1ª Energia de ionización 590 kJ/mol 2ª Energia de ionización 1146 kJ/mol 4912,64 kJ/mol 3ª Energia de ionización 177,7 kJ/mol Calor de atomización Calor de fissión 8,8 kJ/mol Calor de vaporización 153,7 kJ/mol 0,65 J g⁻¹ K⁻¹ Calor especifico 195 W m⁻¹ K⁻¹ Conductividad térmica Conductancia eléctrica 0,218 microohmios⁻¹ Estructura cristalina cúbica centrada en una cara Propiedades ácido-base básico 40 (96.94), 42 (0.65), 43 (0.135), Isótopos 44 (2.09), 46 (0.004), 48 (0.187)

🖰. Potasio X Configuración electrónica [Ar] 4s1 Estados de oxidación +1Punto de fusión 63,7 °C, 336,85 K Punto de ebullición 760 °C, 1033,15 K Densidad 0,86 g/ml Electronegatividad 0,8 Radio atómico 2,35 Å 2,03 Å Radio covalente 1,33 ⁽⁺¹⁾ Å Radio iónico 1ª Energia de ionización 418,81 kJ/mol 2ª Energia de ionización 3051,85 kJ/mol 3ª Energia de ionización 4419,64 kJ/mol Calor de atomización 90,14 kJ/mol Calor de fusión 2,33 kJ/mol Calor de vaporización 79,1 kJ/mol $0,757~J~g^{-1}~K^{-1}$ Calor especifico 102.5 W m⁻¹ K⁻¹ Conductividad térmica 0,143 microohmios⁻¹ Conductancia eléctrica Estructura cristalina cúbica centrada en el interior Propiedades ácido-base básico 39 (93.26), 40 (0.012), 41 (6.73) Isótopos

[Ne] $3s^2 3p^1$ Configuración electrónica Estados de oxidación Punto de fusión 660 °C, 933 K 2467 °C, 2740 K Punto de ebullición 2,70 g/mlDensidad Electronegatividad 1,5 Radio atómico 1,43 Å Radio covalente 1,18 Å 0,50 (+5) Å Radio iónico 577,4 kJ/mol 1ª Energia de ionización 1876,7 kJ/mol 2ª Energia de ionización 3ª Energia de ionización 2744,8 kJ/mol Calor de atomización 324 kJ/mol Calor de fusión 10,7 kJ/mol Calor de vaporización 290,8 kJ/mol 0,90 J g⁻¹ K⁻¹ 237 W m⁻¹ K⁻¹ Calor especifico Conductividad térmica 0,382 microohmios⁻¹ Conductancia eléctrica cúbica centrada en una cara Estructura cristalina Propiedades ácido-base anfotérico Isótopos 27 (100)

🔄 Aluminio

Average Bond Enthalpies (kJ/mol)

Single	Bonds						
С—Н	413	N-H	391	О-Н	463	F—F	155
c-c	348	N-N	163	0-0	146		
C-N	293	N-O	201	O-F	190	Cl-F	253
c-o	358	N-F	272	O-CI	203	CI-CI	242
C-F	485	N-Cl	200	0-1	234		
C-CI	328	N-Br	243			Br-F	237
C-Br	276			S-H	339	Br-Cl	218
C-I	240	н-н	436	S-F	327	Br—Br	193
c-s	259	H-F	567	s-cl	253		
		H-Cl	431	S-Br	218	I-Cl	208
Si-H	323	H—Br	366	s-s	266	I—Br	175
Si-Si	226	H-I	299			1-1	151
Si-C	301						
Si-O	368						
Multip	le Bonds						
c=c	614	N=N	418	O ₂	495		
C = C	839	$N \equiv N$	941	12.000 mm			
C=N	615			S=O	523		
C = N	891			s=s	418		
C=0	799						
C≡0	1072						

E electroafinidad primera del O = -141,2 kJ mol⁻¹ E electroafinidad segunda del O = -791,0 kJ mol⁻¹

Х