普通物理学

Saturday $4^{\rm th}$ March, 2023

目录

1	常数	4
2	平动与转动	4
3	能量 能量	5
	3.1 圆周运动	5
	3.2 保守力	5
	3.3 动能	5
4	相对论	5
	4.1 洛伦兹因子	
	4.2 相对论效应	
	4.3 质能方程	
	4.4 静能	
	4.5 洛伦兹变换	
	4.6 一维速度叠加	
	4.7 相对论动量和能量关系式	
_	<i>E</i> (4-1-TB)	
5	VII 13:2-5	6
	5.1 理想气体物态方程	
	5.2 压强	
	5.3 气体分子方均根速率	
	5.4 能量按自由度均分定理	
	5.5 内能	
	5.6 气体分子速率分布函数	
	5.6.1 归一化条件	
	5.6.2 麦克斯韦速率分布律	
	5.7 平均自由程	8
6	热力学	9
	6.1 热力学第一定律	9
	6.2 准静态过程	9
	6.3 循环过程	10
	6.3.1 热机效率	10
	6.3.2 制冷系数	10
	6.3.3 卡诺循环	10
	6.4 熵	11
	6.4.1 自由膨胀不可逆	11
	6.4.2 玻尔兹曼关系	11

7	静电	场	11
	7.1	库仓定律	11
	7.2	电场强度	12
	7.3	电场强度通量	12
	7.4	高斯定理(有源场)	12
	7.5	环路定理(无旋场)	12
	7.6	电势能	12
	7.7	电势	12
	7.8	微分关系	13
	7.9	静电平衡	13
	7.10	常见导体总结	13
	7.11	电容	13
		7.11.1 相对介电常量	13
		7.11.2 介电常量	14
		7.11.3 串联	14
		7.11.4 并联	14
		7.11.5 电场能量	14
		7.11.6 能量密度	14
		7.11.7 常见电容总结	14
	7.12	电介质	15
		7.12.1 有电介质时的高斯定理	15
8	恒定	电流的磁场	15
	8.1	电流	
	8.2	电流密度	
	8.3	电动势	
	8.4	欧姆定律	
	8.5	磁感应强度和磁通量	
		8.5.1 磁感应强度	
		8.5.2 磁通量	
	8.6	毕奥-萨伐尔定律	
		8.6.1 常见导体总结	
	8.7	运动电荷磁场	16
	8.8	恒定磁场高斯定理(无源场)	17
	8.9	安培环路定理(有旋场)	17
	8.10	霍尔效应	17
	8.11	安培力	17
	8.12	磁场对载流线圈的作用	17
	8.13	磁场力做功	18
	8.14	洛伦兹力	18
		磁介质	

		8.15.1 有磁介质时的安培环路定理 18	,
9	电磁	感应 18	;
	9.1	法拉第电磁感应定律 18	;
		9.1.1 磁通链	,
		9.1.2 感应电动势	;
		9.1.3 感应电流	;
		9.1.4 感应电荷)
	9.2	运动导线内部电场	į
	9.3	动生电动势)
	9.4	感生电场(有旋无源场) 19)
	9.5	自感和互感 19)
		9.5.1 自感应)
		9.5.2 互感应	,
	9.6	磁场能量 20)
	9.7	能量密度 20)
	9.8	位移电流 20	j
	9.9	麦克斯韦方程组)

1 常数

常量	符号	值	量纲
圆周率	π	$3.1415926 \cdots$	
地球重力加速度	g	9.8	m/s^2
真空光速	c	$2.99792458 \cdot 10^8$	m/s
绝对零度		$0 (-273.15^{\circ} C)$	K
元电荷	e	$1.602117733 \cdot 10^{-19}$	C
引力常量	G	$6.672 \cdot 10^{-11}$	$N \cdot m^2/kg^2$
静电力常量	k	$8.987551 \cdot 10^9$	$N \cdot m^2/C^2$
真空介电常量	ε_0	$8.854187817 \cdot 10^{-12}$	$C^2/\left(N\cdot m^2\right)$
真空磁导率	μ_0	$4\pi \cdot 10^{-7}$	$T \cdot m/A$
阿伏伽德罗常数	N_A	$6.0221367 \cdot 10^{23}$	mol^{-1}
普朗克常数	h	$6.62607015 \cdot 10^{-34}$	$J \cdot s$
里德伯常量	R	$1.097373157 \cdot 10^7$	m^{-1}
气体摩尔体积 (标准情况)	n	22.4	L/mol
普适气体常数	R	8.31	$J/\left(mol\cdot K\right)$
玻尔兹曼常数	k_B	$1.380649 \cdot 10^{-23}$	J/K

2 平动与转动

r 为某点到参考点的位矢

	平动			转动		
位移	\boldsymbol{x}		角度	θ		
速度	$oldsymbol{v}$	$\frac{\mathrm{d} oldsymbol{x}}{\mathrm{d} t}$	角速度	ω	$\frac{\mathrm{d} heta}{\mathrm{d} t}$	
加速度	\boldsymbol{a}	$\frac{\mathrm{d} oldsymbol{v}}{\mathrm{d} t}$	角加速度	α	$\frac{\mathrm{d} \boldsymbol{\omega}}{\mathrm{d} t}$	
质量	m		转动惯量	J	$\int r^2 \mathrm{d}m$	
力	\boldsymbol{F}	$m oldsymbol{a}$	力矩	M	$J\boldsymbol{\alpha} = r \times \boldsymbol{F}$	
动量	\boldsymbol{p}	$moldsymbol{v}$	角动量	$oldsymbol{L}$	$J\boldsymbol{\omega} = r imes \boldsymbol{p}$	
冲量	I	$igg oldsymbol{F}t = oldsymbol{p} - oldsymbol{p}_0 \ igg $	冲量矩	\boldsymbol{H}	$oldsymbol{M}t = oldsymbol{L} - oldsymbol{L}_0$	
平动动能	E_k	$rac{1}{2}moldsymbol{v}^2$	转动动能	E_k	$rac{1}{2}Joldsymbol{\omega}^2$	
功	A	Fx	功	A	$oldsymbol{M} heta$	

3 能量

3.1 圆周运动

- a_t 切向加速度
- a_n 法向加速度

$$\boldsymbol{v} = R\boldsymbol{\omega}$$

$$a_t = R\alpha$$

$$a_n = \frac{v^2}{R} = v\omega = R\omega^2$$

3.2 保守力

k 弹性系数

$$\oint \boldsymbol{F} \mathrm{d} \boldsymbol{r} = 0$$

保守力类型	力 F/N	势能 E_p/J
重力	mg	mgh
弹力	kx	$\frac{1}{2}kx^2$
引力	$G\frac{Mm}{r^2}$	$G\frac{Mm}{r}$
电场力	$k\frac{Qq}{r^2}$	$k\frac{Qq}{r}$

3.3 动能

$$E_k = \frac{1}{2}mv^2 = \frac{p^2}{2m}$$

4 相对论

u 参考系移动速度,沿Ox方向

4.1 洛伦兹因子

$$\gamma = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$$

4.2 相对论效应

效应	表达式
尺缩效应	$l = \frac{l_0}{\gamma}$
钟慢效应	$t = t_0 \gamma$
质增效应	$m = m_0 \gamma$

4.3 质能方程

$$E=mc^2$$

4.4 静能

∞ 静质量

$$E_0 = m_0 c^2$$

4.5 洛伦兹变换

$$\begin{cases} x' = (x - ut) \gamma \\ t' = \left(t - \frac{u}{c^2}x\right) \gamma \end{cases}$$

4.6 一维速度叠加

$$v_x' = \frac{v_x - u}{1 - \frac{u}{c^2}v}$$

4.7 相对论动量和能量关系式

$$E^2 = c^2 p^2 + E_0^2$$

- 5 气体动理论
- 5.1 理想气体物态方程
 - p 气体压强
 - V 气体体积
 - T 气体热力学温度

- R 普适气体常数
- M 气体摩尔质量
- m 气体质量

$$\frac{pV}{T} = \frac{m}{M}R$$

5.2 压强

- n 气体的物质的量, m = nM
- N 单位体积内的气体分子数, $N = N_A n$
- m_0 分子质量, $m = Nm_0$
- k_B 玻尔兹曼常数, $R = k_B N_A$
- $\bar{\varepsilon}_{tk}$ 分子平均平动动能

$$p = Nk_BT = \frac{1}{3}Nm_0\bar{v^2} = \frac{2}{3}N\bar{\varepsilon}_{tk}$$

5.3 气体分子方均根速率

$$v_{rms} = \sqrt{\bar{v^2}} = \sqrt{\frac{3k_BT}{m_0}} = \sqrt{\frac{3RT}{M}}$$

5.4 能量按自由度均分定理

i 气体分子自由度

$$\bar{\varepsilon}_k = \frac{i}{2} k_B T$$

分子类型	平动自由度 i _t	转动自由度 i _r	分子平均总动能 $\bar{\varepsilon}_k$
单原子分子	3	0	$\frac{3}{2}k_BT$
刚性双原子分子	3	2	$rac{5}{2}k_BT$
刚性多原子分子	3	3	$3k_BT$
非刚性分子	3	>1	还有振动自由度等

5.5 内能

$$E = \frac{m}{M} \frac{i}{2} RT = \frac{mN_A}{M} \bar{\varepsilon}_k = N \bar{\varepsilon}_k$$

5.6 气体分子速率分布函数

$$f\left(v\right) = \frac{\mathrm{d}N}{N\mathrm{d}v}$$

5.6.1 归一化条件

$$\int_{0}^{+\infty} f(v) \, \mathrm{d}v = 1$$

可据此求出

$$\bar{v} = \int_{0}^{+\infty} vf(v) dv$$

$$\bar{v}^{2} = \int_{0}^{+\infty} v^{2} f(v) dv$$

$$\Delta N = N \int_{v_{1}}^{v_{2}} f(v) dv$$

$$\Delta \bar{v} = \frac{\int_{v_{1}}^{v_{2}} vNf(v) dv}{\Delta N}$$

5.6.2 麦克斯韦速率分布律

m₀ 单个气体分子质量

$$f(v) = 4\pi \left(\frac{m_0}{2\pi k_B T}\right)^{\frac{3}{2}} \exp\left(-\frac{m_0 v^2}{2k_B T}\right) v^2$$

5.7 平均自由程

- v 算术平均速率
- **Z** 碰撞频率
- d 分子直径
- n 单位体积内的气体分子数

$$\bar{\lambda} = \frac{\bar{v}}{\bar{Z}} = \frac{1}{\sqrt{2}\pi d^2 n}$$

6 热力学

6.1 热力学第一定律

Q 吸收热量

 ΔE 内能增量

A 对外做功

$$Q = \Delta E + A$$

$$A = \int_{V_2}^{V_1} p dV$$

$$\Delta E = \frac{m}{M} \frac{i}{2} R \Delta T$$

6.2 准静态过程

 C_m 摩尔热容

 $C_{V,m}$ 气体的摩尔定容热容, $C_{V,m} = \frac{i}{2}R$

 $C_{p,m}$ 气体的摩尔定压热容(迈耶公式), $C_{p,m}=C_{V,m}+R$

 $C_{n,m}$ 气体的摩尔多方热容, $C_{n,m} = C_{V,m} + \frac{R}{1-n}$

$$\gamma$$
 摩尔热容比, $\gamma = \frac{C_{p,m}}{C_{V,m}} = \frac{i+2}{i}$

n 多方指数,且:

$$n = \begin{cases} \infty & \text{等容过程} \\ 0 & \text{等压过程} \\ 1 & \text{等温过程} \\ \gamma & \text{绝热过程} \end{cases}$$

表 1: 热力学

过程	常量	过程方程(常量)	A	Q	ΔE	C_m
等容	V	pT^{-1}	0	$\frac{m}{M}C_V$	$\gamma_{,m}\Delta T$	$C_{V,m}$
等压	p	VT^{-1}	$p\Delta V = \frac{m}{M}R\Delta T$	$\frac{m}{M}C_{p,m}\Delta T$	$\frac{m}{M}C_{V,m}\Delta T$	$C_{p,m}$
等温	T	pV	$\frac{m}{M}RT\ln\frac{V_2}{V_1} = \frac{m}{M}RT\ln\frac{p_1}{p_2} $ 0		0	∞

Continued on next page

表 1: 热力学 (Continued)

绝热	δQ	pV^{γ} $V^{\gamma-1}T$ $p^{\gamma-1}T^{-\gamma}$	$-\frac{m}{M}C_{V,m}\Delta T$ $=-\frac{\Delta (pV)}{\gamma - 1}$	0	$\frac{m}{M}C_{V,m}\Delta T$	0
多方		pV^{n} $V^{n-1}T$ $p^{n-1}T^{-n}$	$\frac{m}{M}RT \ln \frac{V_2}{V_1} =$ $\frac{m}{M}RT \ln \frac{p_1}{p_2} \qquad (n=1)$ $-\frac{\Delta (pV)}{n-1} \qquad (n \neq 1)$	$A + \Delta E$	$\frac{m}{M}C_{V,m}\Delta T$	$C_{n,m}$

注: 在微分形式下 Δ 变为微分算子 d

6.3 循环过程

若 p-V 坐标轴上有默认顺时针的循环过程 C,即

$$\Delta E = 0$$

$$A = Q_1 - Q_2 = \oint_C \mathrm{d}V$$

若为逆时针即为制冷(积分为负)

6.3.1 热机效率

- Q1 从高温热源吸收热量
- Q_2 向低温热源放出热量

$$\eta = \frac{A}{Q_1} = \frac{Q_1 - Q_2}{Q_1}$$

6.3.2 制冷系数

- Q₁ 向高温热源放出热量
- Q2 从低温热源吸收热量

$$w = \frac{Q_2}{A} = \frac{Q_2}{Q_1 - Q_2}$$

6.3.3 卡诺循环

两个绝热和两个等温过程组成的循环

- T_1 高温热源
- T_2 低温热源

$$\eta_C = \frac{Q_1 - Q_2}{Q_1} = \frac{T_1 - T_2}{T_1}$$

$$w_C = \frac{Q_2}{Q_1 - Q_2} = \frac{T_2}{T_1 - T_2}$$

6.4 熵

在可逆过程中

$$\oint \frac{\delta Q}{T} = 0$$

$$\mathrm{d}S = \frac{\delta Q}{T}$$

$$\Delta S_{1\to 2} = \int_{1\to 2} \frac{\delta Q}{T}$$

- 6.4.1 自由膨胀不可逆
- 6.4.2 玻尔兹曼关系

W 热力学概率

$$S = k_B \ln W$$

7 静电场

7.1 库仑定律

- F 试探电荷受到的库仑力
- Q 场源电荷
- q 试探电荷
- r 两电荷间距
- ε_0 真空介电常量
- k 静电力常量
- e 场源电荷到试探电荷的方向

$$\boldsymbol{F} = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2} \boldsymbol{e} = k \frac{Qq}{r^2} \boldsymbol{e}$$

7.2 电场强度

$$\boldsymbol{E} = \frac{\boldsymbol{F}}{q} = \frac{Q}{4\pi\varepsilon_0 r^2} \boldsymbol{e}$$

7.3 电场强度通量

$$oldsymbol{\Psi}_E = oldsymbol{E} \cdot oldsymbol{S}$$

7.4 高斯定理(有源场)

$$\Psi_E = igoplus_S oldsymbol{E} \cdot \mathrm{d}oldsymbol{S}$$

点电荷 q 为球心的球壳上通量为

$$\Psi_E = \frac{q}{\varepsilon_0}$$

7.5 环路定理(无旋场)

$$\oint \boldsymbol{E} \cdot \mathrm{d}\boldsymbol{l} = 0$$

7.6 电势能

取无限远处为电势零点

r 距离电荷 r 处

$$W = q \int_{r}^{+\infty} \boldsymbol{E} \cdot \mathrm{d}\boldsymbol{l}$$

7.7 电势

$$V = \frac{W}{q} = \int_{r}^{+\infty} \mathbf{E} \cdot d\mathbf{l}$$
$$V = \frac{Q}{4\pi\varepsilon_0 r}$$

$$U=\Delta V$$

7.8 微分关系

$$\nabla V = \frac{\mathrm{d}V}{\mathrm{d}n} \boldsymbol{e}_n = -\boldsymbol{E}$$

7.9 静电平衡

闭合曲面导体内, 电荷分布在导体外表面上, 内部无电荷分布

- σ 电荷的面密度
- e_n 面的法向量

$$oldsymbol{E} = rac{\sigma}{arepsilon_0} oldsymbol{e}_n$$

7.10 常见导体总结

- q 点电荷
- λ 电荷线密度
- σ 电荷面密度
- r 球心到样点距离
- r_0 电势零点

表 2: 静电场

均匀带电导体类型	场强 E	电势 V
点 (球面)	$\frac{q}{4\pi\varepsilon_0 r^2}$	$\frac{q}{4\pi\varepsilon_0 r}$
无限长直线 (圆柱面)	$\frac{\lambda}{2\pi\varepsilon_0 r}$	$\frac{\lambda}{2\pi\varepsilon_0}\ln\frac{r_0}{r}$
无限大平面	$\frac{\sigma}{2\varepsilon_0}$	$\frac{\sigma}{2\varepsilon_0} \left(r_0 - r \right)$

注: 壳内部电场为 0, 电势同壳

7.11 电容

孤立导体的电容

$$C = \frac{Q}{U}$$

7.11.1 相对介电常量

 C_0 极板间为真空时的电容

$$\varepsilon_r = \frac{C}{C_0}$$

7.11.2 介电常量

$$\varepsilon = \varepsilon_0 \varepsilon_r$$

7.11.3 串联

$$\frac{1}{C} = \sum \frac{1}{C_i}$$

7.11.4 并联

$$C = \sum C_i$$

7.11.5 电场能量

V 极板间体积

$$W = \frac{1}{2}CU^2 = \frac{1}{2}\varepsilon E^2 V$$

7.11.6 能量密度

$$w_e = \frac{W}{V} = \frac{1}{2}\varepsilon E^2$$

7.11.7 常见电容总结

r 球心到样点距离

 R_1, R_2 圆柱 (球) 形电容半径

- 1 圆柱长度
- d 极板间距
- S 极板正对面积

电容类型	电容 C
球形电容	$4\pi\varepsilon r\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$
圆柱形电容	$\frac{2\pi\varepsilon l}{\ln R_2 - \ln R_1}$
平行板电容	$\varepsilon \frac{S}{d}$

7.12 电介质

- D 电位移
- P 电极化强度

$$\boldsymbol{D} = \varepsilon_0 \boldsymbol{E} + \boldsymbol{P} = \varepsilon \boldsymbol{E}$$

7.12.1 有电介质时的高斯定理

$$\iint_{\mathbf{G}} \boldsymbol{D} \cdot \mathrm{d}\boldsymbol{S} = q_0$$

- 8 恒定电流的磁场
- 8.1 电流

$$I = \frac{\mathrm{d}q}{\mathrm{d}t}$$

8.2 电流密度

S 垂直于电流的截面面积

$$\boldsymbol{j} = \frac{\mathrm{d}I}{\mathrm{d}S}$$

8.3 电动势

 E_k 非静电性场的场强

$$\mathscr{E} = \frac{\mathrm{d}A}{\mathrm{d}q} = \int_{B}^{A} \boldsymbol{E}_{k} \cdot \mathrm{d}\boldsymbol{l} = \oint_{I} \boldsymbol{E}_{k} \cdot \mathrm{d}\boldsymbol{l}$$

8.4 欧姆定律

 ρ 电阻率

$$R = \frac{V}{I} = \rho \frac{l}{S}$$

8.5 磁感应强度和磁通量

8.5.1 磁感应强度

$$B = \frac{\mathrm{d}\Phi}{\mathrm{d}S}$$

8.5.2 磁通量

$$\Phi = \int_L \boldsymbol{B} \cdot \mathrm{d} \boldsymbol{S}$$

8.6 毕奥-萨伐尔定律

电流元对某点激发的磁场

- μ0 真空磁导率
- r 电流元到某点的距离
- e_r 从电流元指向某点的单位向量

$$\mathrm{d}\boldsymbol{B} = \frac{\mu_0}{4\pi} \frac{I \mathrm{d}\boldsymbol{l} \times \boldsymbol{e}_r}{r^2}$$

$$\boldsymbol{B} = \frac{\mu_0}{4\pi} \int_L \frac{I \mathrm{d}\boldsymbol{l} \times \boldsymbol{e}_r}{r^2}$$

8.6.1 常见导体总结

- a 点 P 到长直导线垂直距离
- R 圆半径
- x 点到圆心距离

点与载流导体	磁场 B
长直导线外一点 P	$\frac{\mu_0 I}{4\pi a} \left(\cos \angle PAB + \cos \angle PBA\right)$
圆导线轴线上一点	$\frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}}$

8.7 运动电荷磁场

- 一个电荷运动产生的磁场
- v 电荷运动速度

$$I = nqvS$$

$$\mathrm{d}N = n S \mathrm{d} \boldsymbol{l}$$

$$oldsymbol{B}_q = rac{\mathrm{d}oldsymbol{B}}{\mathrm{d}N} = rac{\mu_0}{4\pi} rac{qoldsymbol{v} imes oldsymbol{e}_r}{r^2}$$

8.8 恒定磁场高斯定理(无源场)

$$\iint_{S} \boldsymbol{B} \cdot d\boldsymbol{S} = 0$$

8.9 安培环路定理(有旋场)

$$\oint_{L} \boldsymbol{B} \cdot \mathrm{d}\boldsymbol{l} = \mu_0 \sum_{l} I$$

8.10 霍尔效应

U 霍尔电势差

 R_H 霍尔系数

$$U = R_H \frac{IB}{d} = \frac{IB}{nqd}$$

$$R_H = \frac{1}{nq}$$

8.11 安培力

弗莱明右手定则

$$F = Il \times B$$

- 8.12 磁场对载流线圈的作用
 - m 磁矩
 - N 线圈匝数
 - S 线圈面积

M 磁力矩

$$m = NISe_n$$

$$M = m \times B$$

8.13 磁场力做功

$$A=I\Delta\Phi$$

8.14 洛伦兹力

弗莱明右手定则

$${m F}=q{m v}\times{m B}$$

8.15 磁介质

H 磁场强度

M 磁化强度

$$\boldsymbol{B} = \mu_0 \left(\boldsymbol{H} + \boldsymbol{M} \right) = \mu \boldsymbol{H}$$

8.15.1 有磁介质时的安培环路定理

$$\oint \boldsymbol{H} \cdot \mathrm{d}\boldsymbol{l} = \sum I$$

- 9 电磁感应
- 9.1 法拉第电磁感应定律
- 9.1.1 磁通链

N 线圈匝数

$$\Psi = N\Phi$$

9.1.2 感应电动势

$$\mathscr{E}_i = -\frac{\mathrm{d}\Psi}{\mathrm{d}t} = -N\frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

9.1.3 感应电流

$$I_i = \frac{\mathcal{E}_i}{R}$$

9.1.4 感应电荷

$$q = \int_{t_1}^{t_2} I_i \mathrm{d}t = \frac{\Delta \Phi}{R}$$

9.2 运动导线内部电场

$${m E}_k = {m v} imes {m B}$$

9.3 动生电动势

$$\mathscr{E} = \int_L \boldsymbol{E}_k \cdot \mathrm{d} \boldsymbol{l}$$

- 9.4 感生电场(有旋无源场)
- E_i 感生电场强度

$$\oint_{L} \mathbf{E}_{i} \cdot d\mathbf{l} = -\iint_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}$$

$$\oint_{S} \mathbf{E}_{i} \cdot d\mathbf{S} = 0$$

- 9.5 自感和互感
- 9.5.1 自感应
 - L 自感系数

$$L = \frac{\Psi}{I} = \mu_0 \frac{N^2}{l} \pi R^2$$
$$\mathscr{E}_L = -L \frac{\mathrm{d}I}{\mathrm{d}t}$$

- 9.5.2 互感应
 - L 互感系数
 - $k \in [0,1]$ 耦合因数

$$M = \frac{\Phi_{21}}{I_1} = \frac{\Phi_{12}}{I_2} = k\sqrt{L_1L_2}$$
$$\mathcal{E}_{21} = -M\frac{\mathrm{d}I_1}{\mathrm{d}t}$$
$$\mathcal{E}_{12} = -M\frac{\mathrm{d}I_2}{\mathrm{d}t}$$

9.6 磁场能量

$$W_m = \frac{1}{2}LI_0^2 = \frac{1}{2}I\Psi$$

9.7 能量密度

μ 磁导率

$$w_m = \frac{W_m}{V} = \frac{B^2}{2\mu} = \frac{1}{2}\boldsymbol{B} \cdot \boldsymbol{H}$$

9.8 位移电流

 I_d 位移电流

 j_d 位移电流密度

$$I_d = S \frac{\mathrm{d}D}{\mathrm{d}t} = \frac{\mathrm{d}\Psi}{\mathrm{d}t}$$
$$j_d = \frac{1}{S} \frac{\mathrm{d}\Psi}{\mathrm{d}t} = \frac{\mathrm{d}D}{\mathrm{d}t}$$
$$\oint_L \boldsymbol{H} \cdot \mathrm{d}\boldsymbol{l} = \sum (I + I_d) = \int_S \boldsymbol{j} \cdot \mathrm{d}\boldsymbol{S} + \int_S \frac{\partial \boldsymbol{D}}{\partial t} \cdot \mathrm{d}\boldsymbol{S}$$

9.9 麦克斯韦方程组

$$\begin{cases} \iint_{S} \mathbf{D} \cdot d\mathbf{S} = \sum q = \iiint_{V} \rho dV \\ \iint_{S} \mathbf{B} \cdot d\mathbf{S} = 0 \\ \oint_{L} \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Psi}{dt} = -\iint_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S} \\ \oint_{L} \mathbf{H} \cdot d\mathbf{l} = I + I_{d} = \iint_{S} \mathbf{j} \cdot d\mathbf{S} + \iint_{S} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{S} \end{cases}$$