TAREA 3

ALEJANDRO UMAÑA, KEVIN VELEZ

Problema 1

Sean A, B, segmentos, demuestre que si $\frac{A}{B} = \frac{C}{D}$ entonces $\frac{A}{C} = \frac{B}{D}$

Demostración: Por hipotesis tenemos que $\frac{A}{B} = \frac{C}{D}$ esto significa por definición que si nA = mB entonces nC = mD

 \Rightarrow) Supongamos que $\frac{A}{C}$ esto significa que nA=nC, y por tanto tenemos nA=nC=mB Partiendo de nA=mB agregamos cosas iguales a cosas iguales

$$nA + nC = nC + mB$$
 Pero $nC = mD$
 $nA + mD = nC + mB$ Pero $nC = nA$
 $nA + mD = mB + nA$ Quitando coas iguales
 $mD = mB$

Esto quiere decir que si nA = nC entonces mD = mB pero por definición significa que $\frac{A}{C} = \frac{B}{D}$.

 \Leftarrow) Supongamos que $\frac{B}{D}$ esto significa por definición que mB = mD, por tanto mD = mB = nC

Partiendo de nA = mB entonces nA + mD = mB + mD, pero mD = nC, por lo que nA + mD = mB + nC, pero mD = mB entonces nA + mB = mB + nC, así que nA = nC. Esto significa que $\frac{A}{C}$, por tanto nA = mB, entonces $nA = nC \Rightarrow \frac{B}{D} = \frac{A}{C}$.

Problema 2

Sean A, B segmentos, con A>B. Demuestre que $\frac{A}{G}>\frac{B}{G}$

Demostración: Supongamos que A > B. Sea C el segmento tal que B + C = A.

Tomemos mA, mB y nG tal que mA, mC > G. Tomemos nG el menor múltiplo de G que hace que $nG \ge mB$. Por tanto, mB no es mayor que nG.

Pero mA > nG, en efecto, como nG es el menor múltiplo que hace $nG \ge mB$, entonces nG - G < mB y tenemos que G < mC, por tanto, $nG - \mathcal{G} + \mathcal{G} < mB + mC$, es decir nG < mA.

Luego, tenemos que $\frac{A}{G} > \frac{B}{G}$.