Investigations on the use of Hashing for Parallel Graph and Hypergraph Processing

Somesh Singh and Bora Uçar

March 24, 2022

ROMA Working Group

Problem of Interest

Given: A d-dimensional sparse tensor T

<u>Goal:</u> To answer queries of the form — "Is $\mathcal{T}[i_1,\ldots,i_d]$ zero or nonzero?"

A desirable solution should have:

- O(d) query response time
- Small memory overhead
- Fast preprocessing

Our focus: Hashing methods with worst-case optimal lookups

Motivating Applications

- Kolda and Hong* propose an efficient algorithm for the decomposition of sparse tensors.
 - Sample the zeros and nonzeros of the given tensor.
 - For sampling zeros, a random set of indices is created, and those positions in the given tensor are checked for zero.

 Checking for the presence of edges in a dense graph or subgraph (e.g. a quasi-clique).

^{*}T. G. Kolda and D. Hong, "Stochastic gradients for large-scale tensor decomposition," SIAM Journal on Mathematics of Data Science, vol. 2, no. 4, pp. 1066–1095, 2020.

FKSLean§ — A Perfect Hashing Method

- FKSLean employs a two-level structure to obtain a perfect hashing.
- First level hash function: $h(\mathbf{k}, \mathbf{x}, p, n) := (\mathbf{k}^T \mathbf{x} \mod p) \mod n$
- Second level hash function: $h(\mathbf{k}_i, \mathbf{x}, p, 2b_i^2) := (\mathbf{k}_i^T \mathbf{x} \mod p) \mod 2b_i^2$

FKSLean data-structure

 $[\]S$ Bertrand *et al.*, "Algorithms and data structures for hyperedge queries," Inria Grenoble Rhône-Alpes, Research Report RR-9390, Feb. 2021.

FKSLean — Storage Requirements

FKSLean data-structure

K is a set of d-tuples.

At each bucket B_i :

- \bullet b_i is the number of hyperedges.
- If $b_i = 0$, nothing is stored.
- If $b_i = 1$, a reference to the only hyperedge in B_i is stored.
- If $b_i \geq 2$,
 - A $k_i \in K$ which defines a perfect hashing for B_i is stored.
 - Storage space of size 2b_i², which holds the references to the b_i hyperedges in B_i.

FKSLean — In Theory and Practice

A few theoretical results [Bertrand et al.]

- ① For a randomly chosen $k \in U$ the probability that $\sum b_i^2 < 7n$ is more than 1/2.
 - In expectation, one can find a k such $\sum b_i^2 < 7n$ in a few trials.
 - Such a k guarantees a total of O(n) storage space for the buckets.
- ② For a randomly chosen $\mathbf{k}_i \in U$ the probability that \mathbf{k}_i defines a perfect hashing $h(\mathbf{k}_i, \mathbf{x}, p, 2b_i^2)$ for the hyperedges of B_i is more than 1/2.
- O(log n) different d-tuples in K are enough, in expectation, to supply each bucket with a suitable hash function.
 - A total space of $O(d \log n)$ for K suffices.

In practice [Bertrand et al.]

- ① Total storage space required for the buckets is less than 5n.
- Less than 0.5 log₂ n d-tuples in K suffice.

PARFKSLEAN: Parallelize the Construction of FKSLean

Parallel construction proceeds in two steps:

- 1 Setting up fksOffset, in parallel
 - Bucketing
 - ② Build hyperedge-lists for buckets
 - Populate fksOffset
- 2 Populating fksStorage, in parallel

Setting-up fksOffset

- Bucketing
 - Compute in parallel $h(\mathbf{k}, \mathbf{e}, p, n)$ for every hyperedge \mathbf{e} and store it in $bucket_ids$ array.
- Building hyperedge-lists for buckets
 - Maintain two arrays items and offset.

- Populate offset array with histogram of bucket_ids array.
- Parallel prefix-sum on offset array using a two-pass algorithm.
- Populate the *items* array in parallel.

- Populating fksOffset
 - Populate fksOffset in parallel, using the following relation:

$$exttt{fksOffset}[i] := egin{cases} b_i & ext{if } b_i \in \{0,1\}, \ 1+2b_i^2 & ext{otherwise}. \end{cases}$$

where,
$$b_i := \text{offset}[i+1] - \text{offset}[i]$$
.

- Parallel prefix-sum on fksOffset array.
- Examine fksOffset[n] for checking the storage requirement.

Populating fksStorage

- **1** Populate **K** with $2 \log_2 n$ keys.
- Coarse-grained parallelization for populating fksStorage handle every bucket independently.
 - If $b_i = 0$, do nothing.
 - If b_i = 1, store the id of the hyperedge in fksStorage at position fksOffset[i].
 - If $b_i \geq 2$,
 - Pick a k_i from K to effect a perfect hashing of the hyperedges mapped to B_i .
 - Place hyperedge **e** in the hyperedge-list of B_i at position $h(\mathbf{k}_i, \mathbf{e}, p, 2b_i^2) + \text{fksOffset}[i]$ in fksStorage.

Experimental Evaluation

CPU Intel Xeon Gold 5218 (64 cores, 2.3 GHz, 384 GB RAM)

Software Debian GNU/Linux 10 (64 bit), GCC 8.3.0, OpenMP

State-of-the-art: $PTHash^{\dagger}$ — nonminimal and minimal perfect hash function for static sets, with support for parallel construction.

Inputs: Tensors from the FROSTT (http://frostt.io/) dataset.

[†]G. E. Pibiri and R. Trani, "PTHash: Revisiting FCH minimal perfect hashing," in 44th SIGIR, International Conference on Research and Development in Information Retrieval. ACM, 2021, pp. 1339–1348

Construction Time

Takeaway: In the construction phase, PARFKSLEAN is always faster than all the three variants of PTHash for all thread configurations.

T-1 T-2

0.5

T-3

T-4

T-5 T-6 T-7 T-10

T-8

Construction Time

$$\#$$
 threads = 32

Takeaway: In the construction phase, **PARFKSLEAN** is **always** faster than all the three variants of PTHash for all thread configurations.

Scalability of Construction Phase

Takeaway: PARFKSLEAN exhibits better parallel scaling.

Query Response Time

		1	PTHash	1	
Tensor	#Threads	-PC	-DD	-EF	PARFKSLEAN
nell-2	2	2.01	1.64	2.10	0.97
	4	1.01	0.95	1.06	0.53
	8	0.46	0.49	0.54	0.27
	16	0.25	0.27	0.29	0.15
	32	0.14	0.15	0.16	0.11
	64	0.08	0.09	0.11	0.07
	2	2.51	2.04	2.20	1.07
flickr-4d					
₩	64	0.11	0.09	0.09	0.08
4d	2	2.30	2.02	2.25	1.11
delicious-4d		:			
del	64	0.10	0.09	0.15	0.08
nell-1		:			
	64	0.11	0.10	0.08	0.08

Execution time (in seconds) for 10^7 queries on four large tensors.

Takeaway: PARFKSLEAN is at least as fast as the best performing variant of PTHash in all thread configurations for all inputs.

Conclusions

- PARFKSLEAN parallelizes the construction phase of FKSLean.
- O The construction phase of PARFKSLEAN exhibits good parallel scaling.
- PARFKSLEAN outperforms the state-of-the-art both in construction, and query response.

Conclusions

- PARFKSLEAN parallelizes the construction phase of FKSLean.
- O The construction phase of PARFKSLEAN exhibits good parallel scaling.
- PARFKSLEAN outperforms the state-of-the-art both in construction, and query response.

Thank You

Backup Slides

Input Tensors

Tensor	d	Dimensions	n
chicago_crime (T-1)	5,330,673		
vast-2015-mc1-3d (T-2)		$165,427 \times 11,374 \times 2$	26,021,854
vast-2015-mc1-5d (T-3)		$165,427 \times 11,374 \times 2 \times 100 \times 89$	26,021,945
enron (T-4)	4	6,066 × 5,699 × 244,268 ×	54,202,099
		1,176	
nell-2 (T-5)	3	$12,092 \times 9,184 \times 28,818$	76,879,419
flickr-3d (T-6)	3	319,686 × 28,153,045 ×	112,890,310
		1,607,191	
flickr-4d (T-7)	4	319,686 × 28,153,045 ×	112,890,310
		$1,607,191 \times 731$	
delicious-3d (T-8)	3	532,924 × 17,262,471 ×	140,126,181
		2,480,308	
delicious-4d (T-9)	4	532,924 × 17,262,471 ×	140,126,181
		$2,480,308 \times 1,443$	
nell-1 (T-10)	3	2,902,330 × 2,143,368 ×	143,599,552
		25,495,389	

Input tensors from FROSTT dataset