Section XVIII: Identification of Ketamine

I. Introduction:

Ketamine comes in a clear liquid and a white or off-white powder form. It is also found with other substances such as heroin and MDMA. Samples are screened and analyzed by GC/FID and subsequently confirmed by GC/MS. Ketamine samples alone requires, by law, a test for the presence of Chloride Ion. This is done by a manual test for chloride ion or by IR.

II. Reagents:

- A.) 9:1 Methylene Chloride/Isopropanol or Ethanol
- B.) 2M Sulfuric Acid, H₂SO₄
- C.) Potassium Persulfate, K₂S₂O₈.
- D.) .2M Silver Nitrate, AgNO₃.

III. Equipment:

- A.) Analytical balance
- B.) Weigh paper
- C.) Pipettes
- D.) Glass test tubes
- E.) 2 mL autosampler vials with Teflon caps
- F.) GC/FID: HP 6890 or 7890A
- G.) GC/MS: HP 7890A/5975C or HP 6890/5973 series.
- H.) Perkin Elmer Spectrum 100 FT-IR Spectrometer.

IV. Procedure:

A.) Chromatography by GC/FID and GC/MS.

- 1. Obtain gross weight of sample evidence bag.
- 2. Remove one sample packet from the evidence bag and weigh.
- 3. Record individual packet gross weight in logbook.
- 4. Remove powder from packet onto a weigh paper.
- 5. Reweigh the empty packet and record the weight.
- 6. Add about 5 mg of sample to a labeled 2 mL autosampler vial.
- 7. Add powder back to packet and reseal.
- 8. Return packet(s) to original evidence back, reseal, and then put evidence bag in a new plastic bag and seal.
- 9. Subtract empty packet weight from total weight to obtain the powders net weight.

- 10. For up to 100 packets, analyze 10% of the total. Report the average of the individual the net weights.
- 11. For more than 100 packets, analyze the square root of the total. Report the average of all the individual net weights.
- 12. Add 1-2 mL of Ethanol or 9:1 Methylene Chloride/Isopropanol to the autosampler vial(s) containing the sample and cap.
- 13. Place vial(s) on the GC/FID autosampler and run with the following sequence: Standard, Blank, Samples.
- 14. GC/FID conditions are as follows:

Method: EXP.M

Oven:

Initial Temp: 245°C Initial Time: 0.00 min.

Rate: 10°/min. Final Temp: 290°C Run Time: 10 min. Max. Temp: 325°C

Equilibration Time: 0.5 min.

Inlet:

Mode: split (35:1) Initial Temp: 250°C Pressure: 24.99 psi Gas Type: Helium

Column:

Capillary: HP-1 30m x 320um Initial Flow: 3.3 mL/min.

Detector:

Temp: 300°C

Hydrogen Flow: 30.0 mL/min.

Air Flow: 400 mL/min. Makeup Gas: Helium

- 15. Obtain chromatographs. If ketamine is present, the instrument will detect a peak with a retention time characteristic of that compound and will generate a report with accompanying chromatograph.
- 16. Check concentration to determine if a dilution is needed or if the injection volume needs to be increased for subsequent GC/MS run. Also observe any erroneous data that indicates the sample may have to be reinjected.
- 17. Place same sequence on the GC/MS autosampler and
- 18. GC/MS conditions are as follows:

Method: EXP.M

Oven:

Initial Temp: 230°C Initial Time: 0.00 min. Max. Temp: 325°C

Equilibration Time: 0.50 min.

Rate: 10°/min. Final Temp: 280°C Run Time: 10 min.

Inlet:

Mode: split (50:1) Initial Temp: 250°C Pressure: 31.65 psi Gas Type: Helium

Column:

Capillary: HP-1MS 25m x 200um x 0.33um

Max. Temp: 300°C Initial Flow: 1.0 mL/min.

- 19. If ketamine is present in sample, the instrument will detect a total ion peak at its characteristic retention time and will generate a report along will accompanying chromatograph and spectra. The spectra will contain the identity if the peak and its ion abundance.
- B.) Determining the presence of the Chloride Ion.
 - 1. Analyst may either use the manual Test for Chloride Ion (see below) or the FT-IR Spectrometer.
 - 2. Test for Chloride Ion:
 - a. Dissolve 3-5 mg of sample in 1 ml of 2M H_2SO_4 . This will eliminate interference from non halides

i.e. CO₃⁻², CN and S⁻² etc.

- b. Add 10-15 mg of K₂S₂O₈. This oxidizes Br⁻ and Γ but not Cl⁻ to Br₂ or I₂. A brown coloration indicates the presence of I2 or Br₂. This will eliminate interference from Γ and Br⁻.
- c. Heat to 100° C. for 5-10 minutes. This will drive off halides as gases Br₂ and I₂.
- d. Cool then add 2 Drops of .2M AgNO₃. A white precipitate indicates the presence of Chloride (Cl⁻). AgF is soluble in water.

V. Results:

A.) Record results of the GC/MS and Chloride Ion Test in logbook. Then transfer the results to appropriate evidence sheets that

- came with the actual samples. Be sure to include date of analysis, net weight if applicable, number analyzed, results, and signature.
- B.) All reports generated from the instruments should be filed so that they may be accessed at a later date, if necessary.