BUAL5610/6610/6616-Predictive Modeling II

- ▶ **Instructor**: Dr. Pei Xu *(Pronunciation: |Pay| |She|)*
- E-mail: pzx0002@auburn.edu
- Office: Lowder 420

Syllabus

- Class Time
 - >Section 001: TR 8:00 9:15 am @ Lowder 20
 - ➤ Section 002: TR 9:30 10:45 pm @ *Lowder 27*
- Office Hours: TR 1 2 pm; others by appt.
- ▶ **Graduate Assistant:** Lingxiao Wang (lzw0039@ auburn.edu)

<u>Canvas:</u> Lecture slides and additional reading materials will be given weekly through Canvas. Course announcements will also be published via Canvas. It is extremely important to check Canvas and your email regularly to stay informed about the class.

Textbooks

- James, Witten, Hastie, and Tibshirani. "<u>An Introduction to</u> <u>Statistical Learning</u>. (Springer; 7th printing 2017)" ISBN-13: 978-1461471370; ISBN-10: 1461471370
- Tan, Pang-Ning, Steinbach, Michael, Kumar, Vipin, Karpatne, Anuj. "Introduction to Data Mining", (Pearson, 2nd edition, 2018) ISBN-13: 9780133128901; ISBN-10: 0133128903
- Wes McKinney. "Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython" (2nd Edition). 2017. ISBN-13: 978-1491957660.

SOFTWARE

• **Python 3**: https://www.anaconda.com/download/
Anaconda is the most popular Python data science platform. It aims to simplify package management and deployment with a collection of over 1500 open source packages.

GRADING

The grading policy for this course is point-based. Points can be earned from the following tasks.

1)	Homework Assignments	100 points \gamma	
2)	In-class work/quizzes	50 points	
3)	Final Project	50 points >	400 points in total
4)	Take-Home Exam 1	100 points	
5)	Take-Home Exam 2	100 points J	

6) Attendance bonus (on-campus only) ≈ 10 points

The numerical points you earned will be converted to letter grades as follows:

A: >= 360 (90%) B: 320-359 (80%) C: 280-319 (70%) D: 240-279 (60%) F: 0-239

6

Course Topics

Week	Date	Topics								
1	Jan 9	Syllabus; Introduction to Business Analytics								
2	Jan 14, 16	Introduction to Predictive Modelling; Introduction to Python								
3	Jan 21, 23	Introduction to Pandas; Data Understanding								
4	Jan 28, 30	Assessing Model Accuracy: Bias-Variance tradeoff								
5	Feb 4, 6	Resampling Methods: Cross Validation & Bootstrap								
6	Feb 11, 13	Tree-based Methods								
7	Feb 18, 20	Ensemble Methods: Bagging & Boosting; Random Forest								
8	Feb 25, 27	Take home Exam 1								
9	Mar 3, 5	Nearest Neighbor; Naïve Bayes								
10	Mar 9-13	Spring Break								
11	Mar 17, 19	Support Vector Machines								
12	Mar 24, 26	Neural Networks [Decide a topic for final project]								
13	Mar 31, Apr 2	Model Comparison								
14	Apr 7, 9	Sentiment Analysis								
15	Apr 14, 16	Topic Mining								
16	Apr 21, 23	Special Topic: The Frontiers of Predictive Modeling								
17	Apr 28-30	Take home Exam 2								

Introduction to Business Analytics

Dr. Pei Xu Auburn University Tuesday, January 7, 2020

Content

- Definition of Business Analytics
- Unsupervised vs. Supervised learning
- ▶ The nature of this course: project-oriented

What is Business Analytics?

- The use of data analysis and computer technology to make better business decisions
 - Discover unknown unknowns in data
 - obtain actionable insight
 - communicate business data stories

- Descriptive analytics
- Predictive analytics
- Prescriptive analytics

- Descriptive analytics
 - uses data to understand past and present
 - Summarize data into meaningful charts and reports
 - Typical questions:

How much did we sell in each region?

What was our revenue and profit last quarter?

Visualization of Data Science Degree

- Descriptive analytics
- Predictive analytics
- Prescriptive analytics

- Predictive analytics
 - analyzes past performance in an effort to predict the future
 - Detecting patterns or relationships, and then extrapolating these relationships forward in time
 - Typical questions:

What will happen if demand falls by 10% or if supplier prices go up 5%? What do we expect to pay for fuel over the next several months?

Target Pregnancy Prediction Program

- Descriptive analytics
- Predictive analytics
- Prescriptive analytics

- Prescriptive analytics
 - uses optimization techniques to identify the best alternatives to minimize or maximize some objective
 - Typical question:
 What is the best way of shipping goods from our factories to minimize costs

Example 1: Retail Markdown Decisions

Most department stores clear seasonal inventory by reducing prices. The key question is:

When to reduce the price and by how much, to meet inventory goal and maximize revenue?

Descriptive analytics: examine historical data for similar products (prices, units sold, advertising, ...)

Predictive analytics: predict sales based on pricing decisions

Prescriptive analytics: find the best sets of pricing and advertising to

maximize sales revenue

Unsupervised and Supervised learning (1)

Unsupervised Learning

- The model is <u>not provided with the correct results</u> during the training.
 - Different Types of Clustering

How many clusters do you expect?

Unsupervised and Supervised learning (2)

Supervised Learning

- Training data includes both the input and the desired results.
- For some examples the correct results (targets) are known and are given in input to the model during the learning process.
 - Neural Networks
 - Decision Trees

Unsupervised and Supervised learning (3)

Supervised Learning

Divide the whole dataset to two parts:

- A **training set** is a set of data used to discover potentially predictive relationships.
- A **test set** is a set of data used to assess the strength and utility of a predictive relationship.

Unsupervised and Supervised learning (4)

Supervised Learning

SampleRNN trained on all 32 of Beethoven's piano sonatas. https://soundcloud.com/samplernn/samplernn-music-1

How a Japanese cucumber farmer is using deep learning https://cloud.google.com/blog/big-data/2016/08/how-a-japanese-cucumber-farmer-is-using-deep-learning-and-tensorflow

Visualizing a Self-Driving Future https://www.youtube.com/watch?v=HJ58dbd5g8g

9 Applications of Machine Learning from Day-to-Day Life https://medium.com/app-affairs/9-applications-of-machine-learning-from-day-to-day-life-112a47a429d0

What is this course about?

- Know-how: project oriented
- Model Selection
- Result Interpretation
- Business Implication
- In-depth discussion of Algorithm

Sample Datasets

Sport Analytics: NCAA Men's Basketball

Stock Market Analytics

This data set consists of percentage returns for the S&P 500 stock index over 1,250 days, from the beginning of 2001 until the end of 2005.

Credit Default

https://www.kaggle.com/c/GiveMeSomeCredit

PDP interact for "IngFinanceCnt24" and "TLSatPct"

Number of unique grid points: (InqFinanceCnt24: 8, TLSatPct: 10)

Variable	Туре	Len	Label						
BanruptcyInd	Num	8	Bankruptcy Indicator						
CollectCnt	Num	8	Number Collections						
DerogCnt	Num	8	Number Public <u>Derogatories</u>						
InqCnt06	qCnt06 Num 8		Number Inquiries 6 Months						
InqFinanceCnt24 Nur		8	Number Finance Inquires 24 Months						
InqTimeLast	Num	8	Time Since Last Inquiry						
TARGET	Num	8	0 = Paid off; 1= Bad debt						
TL50UtilCnt	Num	8	Number Trade Lines 50 pct Utilized						
TL75UtilCnt	Num	8	Number Trade Lines 75 pct Utilized						
TLBadCnt24	Num	8	Number Trade Lines Bad Debt 24 Months						
TLBadDerogCnt	Num	8	Number Bad <u>Dept</u> plus Public <u>Derogatories</u>						
TLBalHCPct	Num	8	Percent Trade Line Balance to High Credit						
TLCnt	t Num 8		Total Open Trade Lines						
TLCnt03	Num	8	Number Trade Lines Opened 3 Months						
TLCnt12	Num	8	Number Trade Lines Opened 12 Months						
TLCnt24	Num	8	Number Trade Lines Opened 24 Months						
TLDel3060Cnt24	Num	8	Number Trade Lines 30 or 60 Days 24 Months						
TLDel60Cnt	Num	8	Number Trade Lines Currently 60 Days or Worse						
TLDel60Cnt24	Num	8	Number Trade Lines 60 Days or Worse 24 Months						
TLDel60CntAll	Num	8	Number Trade Lines 60 Days or Worse Ever						
TLDel90Cnt24	Num	8	Number Trade Lines 90+ 24 Months						
TLMaxSum	Num	8	Total High Credit All Trade Lines						
TLOpen24Pct	Num	8	Percent Trade Lines Open 24 Months						
TLOpenPct	Num	8	Percent Trade Lines Open						
TLSatCnt Num		8	Number Trade Lines Currently Satisfactory						
TLSatPct Num		8	Percent Satisfactory to Total Trade Lines						
TLSum	Num	8	Total Balance All Trade Lines						
TLTimeFirst	Num	8	Time Since First Trade Line						
TLTimeLast	Num	8	Time Since Last Trade Line						

Black Friday purchases

Yelp Review Ratings

```
#number of each star rating in data
sns.countplot(rating2['stars'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x28e2b994320>

<matplotlib.axes._subplots.AxesSubplot at 0x28e295b94e0>

business_id	city	is_open	latitude	longitude	name	review_count	stars	 NC	NV	NY	ОН	ON	PA	QC	sc	TX	WI
gnKjwL_1w79qoiV3IC_xQQ	Charlotte	1	35.092564	-80.859132	Musashi Japanese Restaurant	170	4.0	 1	0	0	0	0	0	0	0	0	0
1Dfx3zM-rW4n-31KeC8sJg	Phoenix	1	33.495194	-112.028588	Taco Bell	18	3.0	 0	0	0	0	0	0	0	0	0	0
fweCYi8FmbJXHCqLnwuk8w	Mentor- on-the- Lake	1	41.708520	-81.359556	Marco's Pizza	16	4.0	 0	0	0	1	0	0	0	0	0	0
nh_kQ16QAoXWwqZ05MPfBQ	Las Vegas	1	36.116549	-115.088115	Myron Hensel Photography	21	5.0	 0	1	0	0	0	0	0	0	0	0
KWywu2tTEPWmR9JnBc0WyQ	Las Vegas	1	36.080168	-115.182756	Hunk Mansion	107	4.0	 0	1	0	0	0	0	0	0	0	0

Customized Twitter Sentiment

https://docs.google.com/spreadsheets/d/1vV61g7eiYjXINTj0gqtb DHA8m5knEcdsZrQHkFU-8Ro/edit?usp=sharing