SYNTHESIS OF LOGIC FUNCTIONS

COMBINATIONAL LOGIC CIRCUITS

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Synthesis of XOR/XNOR Gate

Synthesis of Logic Functions

SYNTHESIS OF XOR/XNOR GATE

SYNTHESIS

Synthesis is the process of transforming a high-level description of a desired functional behavior into a corresponding **hardware circuit** that implements that behavior.

Cooking process analogy

high-level description

logic circuit

EXCLUSIVE-OR GATE

Logic Symbol

Truth Table

A	В	Y	Minterm
0	0	0	
0	1	1	J\$
1	0	1	AB
1	1	0	

Equivalent Logic Circuit

$$Y = \bar{A}B + A\bar{B}$$

EXCLUSIVE-NOR GATE

Logic Symbol

Truth Table

A	В	Y	Minterm
0	0	1	五百
0	1	0	
1	0	0	
1	1	1	AB.

Equivalent Logic Circuit

$$Y = \bar{A}\bar{B} + AB$$

SYNTHESIS OF LOGIC FUNCTIONS

Synthesize the logic function describe by the truth table.

A	В	С	f	Minterm
0	0	0	0	
0	0	1	1	X BC
0	1	0	1	I BO
0	1	1	0	
1	0	0	1_	ABC
1	0	1	0	
1	1	0	0	
1	1	1	1	ABC

Solution

$$f = I(5c + 80) + A(5c + 80)$$

$$XNDR$$

A section of a bubble gumball factory uses a conveyor system equipped with three sensors— s_1 , s_2 , and s_3 to inspect each gumball.

- $s_1 = 1$ if the gumball is too light.
- $s_2 = 1$ if the gumball is too small in diameter.
- $s_3 = 1$ if the gumball is too large in diameter

The conveyor moves gumballs over a trap door that rejects defective ones. A gumball should be rejected if:

- It is too large $(s_3 = 1)$, or
- It is both too light and too small ($s_1 = 1 \& s_2 = 1$).

Synthesize a logic circuit that activates the trap door based on the sensor outputs.

Conveyor and Sensors

Solution

				
51	62	Sz	4	Minterm
0	0	0	0	
0	O	1	ı	S1 S2 S3
0	1	\mathcal{O}	0	
0	1	1	ı	6, 52 S3
1	0	0	0	
1	0	1	l	S1 S2 S3
1	1	0	l	S1 S2 53
	1	1	١	5, 52 53

Conveyor and Sensors

Solution

Conveyor and Sensors

$$f = \overline{S_1} \, \overline{S_2} \, S_3 + \overline{S_1} \, S_2 \, S_3 + \overline{S_1} \, \overline{S_2} \, S_3 + \overline{S_1} \, S_2 \, S_3 + \overline{S_1} \, S_3 \, S_3 + \overline{S_1} \, S_3 + \overline{S_1} \, S_3 + \overline{S_1} \, S_3 + \overline{S_1} \, S_2 + \overline{S_1} \, S_3 + \overline{S_1} \, S_2 + \overline{S_1} \,$$

Synthesize a logic circuit that controls a single light in a large room with three entry points, each equipped with a switch. The behavior of this three-way light control are as follows:

- 1. The light is OFF when all three switches are open.
- 2. Closing any one of the switches turns the light ON.
- 3. If <u>two</u> switches are <u>closed</u> simultaneously, the light turns OFF.

4. If all three switches are closed, the light

Solution

ABC	f	Minterm
lo 10	0	
001	l	ABC
0 1 0	1	IBO
0 11	D	
100	ı	ABO
101	0	
110	0	
111	l	ABC

Solution

ABC	f	Minterm
000	0	
001	l	ABC
0 1 0	ı	I B O
0 1 1	D	
100	ı	ABO
T 0 T	0	
110	0	
111	l	ABC

f= ABC + ABO + ABO + ABC

LABORATORY

