

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS FLORIANÓPOLIS DEPARTAMENTO ACADÊMICO DE ELETRÔNICA

## COMPUTAÇÃO CIENTÍFICA

Prof. Marco Valério Miorim Villaça

## Capítulo IV

Ajuste de curvas: método dos mínimos quadrados, método polinomial e linearização

Parte I – Regressão Linear

#### Regressão Linear

 O objetivo da regressão linear é determinar a "melhor" reta que se ajuste a um conjunto de dados.

Exemplo: Experimento do túnel de vento para medir como a força da resistência do ar depende da velocidade.



#### Regressão Linear

Dados experimentais (Tabela I) para a força e a velocidade em um experimento de túnel de vento e gráfico correspondente

| v, m/s | 10 | 20 | 30  | 40  | 50  | 60   | 70  | 80   |
|--------|----|----|-----|-----|-----|------|-----|------|
| F, N   | 25 | 70 | 380 | 550 | 610 | 1220 | 830 | 1450 |



#### Regressão Linear

# Como obter a reta que melhor se ajusta aos dados?



Computação Científica Undécima Parte

### Método dos mínimos quadrados

- Quando um erro substancial estiver associado aos dados, a melhor estratégia de ajuste de curva é determinar uma função aproximada que ajuste a forma ou a tendência geral dos dados sem necessariamente passar pelos pontos individuais.
- O exemplo mais simples é o ajuste de uma reta a um conjunto de pares de observação

$$(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$$

A expressão matemática do ajuste por uma reta é

$$y = a_0 + a_1 x + e \tag{i}$$

onde: a<sub>0</sub> – intersecção com o eixo y;

a<sub>1</sub> – inclinação da reta e

e = erro ou resíduo entre o modelo e a observação

#### Método dos mínimos quadrados

O erro ou resíduo é, portanto, descrito por

$$e = y - (a_0 + a_1 x)$$

ou seja, a discrepância entre o valor verdadeiro de y e o valor aproximado  $a_0 + a_1 x$ 

- O método dos mínimos quadrados (MMQ) é o mais utilizado em muitas ciências experimentais para o ajuste de parâmetros a dados experimentais.
- O ajuste dos parâmetros pelo MMQ consiste em determinar os valores de a<sub>0</sub> e a<sub>1</sub> que minimizam a soma dos quadrados dos resíduos:

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$
 (ii)

Para determinar os parâmetros a<sub>0</sub> e a<sub>1</sub> deriva-se (ii) com relação a estes:

$$\frac{\partial S_r}{\partial a_0} = -2\sum_{i=1}^n (y_i - a_0 - a_1 x_i)$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum_{i=1}^n (y_i - a_0 - a_1 x_i) x_i$$

Para obter o mínimo, iguala-se as derivadas a zero:

$$\sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} a_{0} - \sum_{i=1}^{n} a_{1} x_{i} = 0$$

$$\sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} a_{0} x_{i} - \sum_{i=1}^{n} a_{1} x_{i}^{2} = 0$$

• Como 
$$\sum_{i=1}^{n} (a_0) = n a_0$$

Resulta:

$$n a_0 + \left(\sum_{i=1}^n x_i\right) a_1 = \sum_{i=1}^n y_i \qquad (iii)$$

$$\left(\sum_{i=1}^{n} x_{i}\right) a_{0} + \left(\sum_{i=1}^{n} x_{i}^{2}\right) a_{1} = \sum_{i=1}^{n} x_{i} y_{i}$$
 (iv)

Resolvendo o sistema para a<sub>1</sub>.

$$a_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$
 (v)

Substituindo (v) em (iii), obtém-se a<sub>0</sub> a partir de:

$$a_0 = \overline{y} - a_1 \overline{x}$$

onde  $\bar{y}$  e  $\bar{x}$  são as médias de y e x

Exemplo 1

Ajuste uma reta aos valores da Tabela I

 Nesse caso F = f (v). Reorganizando os dados da Tabela I e totalizando os somatórios necessário, constrói-se a tabela abaixo

| i      | $x_i$ | $y_i$        | $x_i^2$ | $x_i y_i$ |
|--------|-------|--------------|---------|-----------|
| 1      | 10    | 25           | 100     | 250       |
| 2      | 20    | 70           | 400     | 1.400     |
| 3      | 30    | 380          | 900     | 11 400    |
| 4      | 40    | 550          | 1 600   | 22 000    |
| 5      | 50    | 610          | 2.500   | 30 500    |
| 6      | 60    | 1 220        | 3 600   | 73.200    |
| 7      | 70    | 830          | 4 900   | 58.100    |
| 8      | _80   | <u>1 450</u> | 6 400   | 116,000   |
| $\sum$ | 360   | 5 135        | 20.400  | 312.850   |

• Dessa tabela resulta que 
$$\bar{y} = \frac{5135}{8} = 641,875 \ e \ \bar{x} = \frac{360}{8} = 45$$

 A inclinação e a intersecção com o eixo y podem ser calculadas com as equações (iii) e (iv):

$$a_1 = \frac{8 \cdot 312 - 360 \cdot 5135}{8 \cdot 20400 - 360^2} = 19,47024$$

$$a_0 = 641,875 - 19,47024 \cdot 45 = -234,2875$$

 Utilizando F no lugar de y e v no lugar de x, o ajuste por mínimos quadrados dos dados é

$$F = -234,2857 + 19,47024v$$

Reta válida para

$$v > \frac{234,2857}{19,47024} > 12,03 \ m/s$$

 A Figura abaixo representa o ajuste por mínimos quadrados de uma reta aos dados da Tabela I



### Quantificação do erro Regressão linear

Vimos que a soma dos quadrados dos resíduos é definida por:

$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

 Equação similar a soma dos quadrados dos resíduos entre os pontos dados e a média

$$S_t = \sum_{i=1}^n (y_i - \overline{y})^2$$

utilizada em estatística no cálculo do desvio padrão

$$s_y = \sqrt{\frac{S_t}{n-1}}$$

• Assim, por analogia podemos determinar um "desvio padrão" para a reta de regressão:  $\frac{1}{S}$ 

 $s_{y/x} = \sqrt{\frac{S_r}{n-2}}$ 

## Quantificação do erro Regressão linear

A diferença entre o módulo do erro residual antes da regressão

$$S_t = \sum_{i=1}^n (y_i - \overline{y})^2$$

e o erro residual que permanece após a regressão

$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

normalizada, é chamado de coeficiente de determinação

$$r^2 = \frac{S_t - S_r}{S_t}$$

 Para um ajuste perfeito, S<sub>r</sub> = 0 e r<sup>2</sup> = 1, ou seja, a reta explica 100% da variação dos dados.

### Quantificação do erro Regressão linear

Uma equação alternativa para r<sup>2</sup>, conveniente para cálculo

computacional é

$$r^{2} = \frac{n \sum_{i=1}^{n} (x_{i} y_{i}) - (\sum_{i=1}^{n} x_{i}) \cdot (\sum_{i=1}^{n} y_{i})}{\sqrt{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}} \sqrt{n \sum_{i=1}^{n} y_{i}^{2} - (\sum_{i=1}^{n} y_{i})^{2}}}$$

 Utilizando a equação acima, calcula-se o coeficiente de determinação do ajuste realizado no Exemplo 1:

$$r^{2} = \left(\frac{8 \cdot 312850 - 360 \cdot 5135}{\sqrt{(8 \cdot 20400 - 360^{2})} \cdot \sqrt{(8 \cdot 5104325 - 5135^{2})}}\right)^{2} = 0,8805$$

 O que indica que 88,05% da incerteza original foi explicada pelo ajuste linear.

#### Linearização de relações não lineares

- Nem sempre a relação entre a variável dependente e a independente é linear.
- Nesses casos, podem ser usadas transformações para expressar os dados em uma forma que seja compatível com a regressão linear:
  - Equação exponencial:  $y = \alpha e^{\beta x}$
  - Equação de potência simples:  $y = \alpha x^{\beta}$
  - Equação de taxa de crescimento de saturação:  $y = \alpha \frac{x^m}{\beta^m + x^m}$

onde m é a ordem do ajuste.

#### Linearização de relações não lineares



### Linearização de relações não lineares

Equação exponencial

$$- y = \alpha e^{\beta x} \rightarrow \ln y = \ln \alpha + \beta x$$

• Equação de potência simples:

$$-y = \alpha x^{\beta} \rightarrow \log y = \log \alpha + \beta \log x$$

Equação da taxa de crescimento da saturação:

$$- y = \alpha \frac{x^m}{\beta^m + x^m} \rightarrow \frac{1}{y} = \frac{1}{\alpha} + \frac{\beta^m}{\alpha} \cdot \frac{1}{x^m}$$

Exemplo 2

Ajuste a equação  $y=\alpha x^{\beta}$  aos dados da Tabela I usando uma transformação logarítmica

 Reorganizando os dados da Tabela I e totalizando os somatórios necessário, constrói-se a tabela abaixo

| i      | $x_i$ | $y_i$ | $\log x_i$ | $\log y_i$ | $(\log x_i)^2$ | $\log x_i \log y_i$ |
|--------|-------|-------|------------|------------|----------------|---------------------|
| 1      | 10    | 25    | 1.000      | 1.398      | 1.000          | 1.398               |
| 2      | 20    | 70    | 1.301      | 1.845      | 1.693          | 2.401               |
| 3      | 30    | 380   | 1.477      | 2.580      | 2.182          | 3.811               |
| 4      | 40    | 550   | 1.602      | 2.740      | 2.567          | 4.390               |
| 5      | 50    | 610   | 1.699      | 2.785      | 2.886          | 4.732               |
| 6      | 60    | 1220  | 1.778      | 3.086      | 3.162          | 5.488               |
| 7      | 70    | 830   | 1.845      | 2.919      | 3.404          | 5.386               |
| 8      | 80    | 1450  | 1.903      | 3.161      | 3.622          | 6.016               |
| $\sum$ |       |       | 12.606     | 20.515     | 20.516         | 33.622              |
|        |       |       |            |            |                |                     |

Dessa tabela resulta que

$$\bar{y} = \frac{20,515}{8} = 2,5644 \ e \ \bar{x} = \frac{12,606}{8} = 1,5757$$

 A inclinação e a intersecção com o eixo y podem ser calculadas com as equações (iii) e (iv):

$$a_1 = \frac{8 \cdot 33,622 - 12,606 \cdot 20,515}{8 \cdot 20,516 - 12,606^2} = 1,9842$$

$$a_0 = 2,5644 - 1,9842 \cdot 1,5757 = -0,5620$$

 Utilizando F no lugar de y e v no lugar de x, o ajuste por mínimos quadrados dos dados é

$$\log F = -0.5620 + 1.9842 \log v$$

 Para exibir o ajuste utilizando coordenadas não transformadas, utiliza-se

$$a_0 = \log \alpha \rightarrow \alpha = 10^{a_0}$$

$$a_1 = \beta$$

Substituindo os valores:

$$\alpha = 10^{-0.5620} = 0.2741$$
  
 $\beta = 1.9842$ 

O ajuste por mínimos quadrados, então, é

$$F = 0.2741 v^{1.9842}$$

O coeficiente de determinação é (calcule): r² = 0,9481

A Figura abaixo representa o ajuste por mínimos quadrados de um modelo de potência simples aos dados da Tabela I, sendo (a) o ajuste dos dados transformados e (b) o ajuste da equação de potência juntamente com os dados



#### Exercícios

1) A concentração de bactéria E. Coli em uma área de prática de natação é monitorada após uma tempestade:

| t (h)                  | 4    | 8    | 12   | 16  | 20  | 24  |
|------------------------|------|------|------|-----|-----|-----|
| c( <i>UFC/100 m</i> l) | 1600 | 1320 | 1000 | 890 | 650 | 560 |

O tempo é medido em horas seguindo o fim da tempestade, e a unidade UFC é uma Unidade Formadora de Colônia. Use esses dados para estimar (a) a concentração no fim da tempestade t = 0 e (b) o instante de tempo em que a concentração alcança 200 UFC/100 ml.

#### Exercícios

2) Um pesquisador relatou os dados tabulados a seguir para uma experiência a fim de determinar a taxa de crescimento da bactéria k (por dia) como uma função da concentração de oxigênio c (*mg/l*). Sabe-se que tais dados podem ser modelados pela seguinte equação:

$$y = k_m \frac{c^2}{c_s + c^2}$$

onde  $c_s$  e  $k_m$  são parâmetros Use uma transformação para linearizar esta equação. A seguir use a regressão linear para estimar  $c_s$  e  $k_m$  e prever a taxa de crescimento em  $c = 2 \, mg/l$ .

| С | 0,5 | 0,8 | 1,5 | 2,5 | 4   |
|---|-----|-----|-----|-----|-----|
| k | 1,1 | 2,5 | 5,3 | 7,6 | 8,9 |

#### Função Scilab

Faça uma função Scilab

```
function [a,r2] = reglinear(x,y)
```

para realizar a regressão linear ajustando os dados a um dos modelos estudados. A função após ser chamada deve apresentar o seguinte menu:

#### Digite:

- <1> para Ajuste por uma reta
- <2> para Ajuste por uma exponencial
- <3> para Ajuste por uma potência simples
- <4> por uma eq. de taxa de crescimento saturado de ordem m

#### Função Scilab

- A função deve:
  - Retornar a₀, a₁ e o coeficiente de determinação;
  - Traçar a curva ajustada e os pontos experimentais;
  - Calcular  $\alpha$  e  $\beta$  quando for o caso (2, 3 e 4).
- Teste a sua função conferindo com os resultados obtidos nos Exemplos 1 e 2 e nos Exercícios 1 e 2.

# Bibliografia e crédito das figuras

- CHAPRA, Steven. Applied numerical methods with MATHLAB for engineers and scientists. McGrawHill, 2012.
- CHAPRA, Steven e CANALE, Raymond. Numerical methods for engineers. McGrawHill, 2010.