Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}_{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#1} \ \sigma_{1^{-}\alpha}^{\#2} \ \tau_{1^{-}\alpha}^{\#1} \ \tau_{1^{-}\alpha}^{\#2}$	0	0	0	0	0	0	0
$\sigma_{1^{-}}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3-r_4)}$	$\frac{i(k^2(6r_3-3r_4)+2t_2)}{k(1+k^2)^2(2r_3-r_4)t_2}$	$\frac{1}{r_3 - \frac{r_4}{2}} + \frac{3 k^2}{t_2}$ $\frac{r_3 - \frac{r_4}{2}}{(1 + k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3-r_4)}$	$\frac{k^2 (6r_3 - 3r_4) + 2t_2}{(k+k^3)^2 (2r_3 - r_4)t_2}$	$-\frac{i(k^2(6r_3-3r_4)+2t_2)}{k(1+k^2)^2(2r_3-r_4)t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 (2 r_3 - r_4)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3-r_4)}$	$\frac{i \sqrt{2}}{k(1+k^2)(2r_3-r_4)}$	0	0	0	0
	$_{1}^{#1}$ $+^{\alpha\beta}$	$_{1}^{#2}$ $+^{\alpha\beta}$	$_{1}^{#1}+^{lphaeta}$	$\sigma_{1}^{\#1} + \alpha$	$J_{1}^{#2} + \alpha$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

Quadratic (free) action	$S_{F} == \iiint (\frac{1}{6} (4t_{2} \omega_{\kappa}^{\kappa\lambda} \omega_{\kappa\lambda}^{\prime\prime} + 2t_{2} \omega_{\kappa\lambda}^{\prime\prime} \omega_{\kappa\lambda}^{\prime\prime} +$	$6 f^{\alpha\beta} \tau_{\alpha\beta} + 6 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 4 r_2 \partial^\beta \omega^{\theta\alpha}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$4 r_2 \partial_\theta \omega_{\alpha\beta}^{ + 12 r_4 \partial_\alpha \omega_{\lambda}^{ - 12 r_4 \partial_\theta \omega_{\lambda}^{ +$	$t_2 \partial^{\alpha} f_{ heta \kappa} \partial^{\kappa} f_{ lpha} - t_2 \partial^{lpha} f_{ \kappa heta} \partial^{\kappa} f_{ lpha} + t_2 \partial^{lpha} f_{ \kappa \lambda} + 2 t_2 \omega_{ l heta \kappa} \partial^{\kappa} f^{ l heta} -$	$4t_2\;\omega_{_{IK}\theta}\;\partial^\kappa f^{'\theta} - 2t_2\;\omega_{_{\theta_{IK}}}\;\partial^\kappa f^{'\theta} + 4t_2\;\omega_{_{\theta_{KI}}}\;\partial^\kappa f^{'\theta} - t_2\partial^\alpha f^\lambda_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$t_2 \partial_\kappa f_{ b}^{ \lambda} \partial^\kappa f_{ b}^{ \theta} + t_2 \partial_\kappa f_{ b}^{ \theta} \partial^\kappa f_{ b}^{ \theta} + 2 r_2 \partial_\kappa \omega^{\alpha\beta\theta} \partial^\kappa \omega_{\alpha\beta\theta} + 4 r_2 \partial_\kappa \omega^{\theta\alpha\beta} \partial^\kappa \omega_{\alpha\beta\theta} - 2 r_2 \partial_\kappa \omega_{\alpha\beta\theta} \partial^\kappa \omega_{\alpha\beta\phi} \partial^\kappa \omega_{\alpha$	$4r_2\partial^\beta\omega_{,}{}^{\alpha\lambda}\partial_\lambda\omega_{\alpha\beta}^{} + 4r_2\partial^\beta\omega_{,}{}^{\lambda\alpha}\partial_\lambda\omega_{\alpha\beta}^{} - 24r_3\partial^\beta\omega_{,}{}^{\lambda\alpha}\partial_\lambda\omega_{\alpha\beta}^{} -$	$12r_4\partial_lpha \omega_\lambda^{\ \ lpha}\partial^\lambda\omega^{ heta\kappa}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ } + 12r_4\partial_ heta\omega_\lambda^{\ \ lpha}\partial^\lambda\omega^{ heta\kappa}_{\ \ \ \ \ \ \ })[t, ext{κ, $y,$ z}]dzdydxdt$
-------------------------	---	---	--	---	--	---	--	---

$f_{1^{ ext{-}}lpha}^{\#2}$	0	0	0	0	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1^{\text{-}}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{\#1}$	$\frac{1}{3}\vec{l}\sqrt{2}kt_2$	<i>ikt</i> 2 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	3 3	$-\frac{1}{3}ikt_2$	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	k ² (;	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} + \alpha \beta$	$\omega_1^{\#2} + \alpha \beta$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} \dag^{\alpha}$	$\omega_{1}^{\#2} \dagger^{lpha}$	$f_{1^{ op}}^{\#1} \dagger^{lpha}$	$f_{1}^{\#2} +^{\alpha}$

c	$\sigma_{0}^{\#1}$ †	$\frac{1}{-2k^2r_3 + 4k^2r_4}$	0	0	0	$\omega_{_0^+}^{\sharp 1}$ †			
7	T ₀ ^{#1} †	0	0	0	0	$f_{0}^{#1}$ †			
7	T ₀ ^{#2} †	0	0	0	0	$f_{0+}^{#2}$ †			
c	σ ^{#1} †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$	$\omega_{0}^{#1}$ †			
	Soul	rce constrair	nts/g	aug	e gener	ators			
	SO(3) irreps				Multiplicities				
	$\tau_{0^{+}}^{#2} =$:= O	1	1					
	$\tau_{0^{+}}^{\#1} =$:= O	1	1					
	$\tau_1^{\#2\alpha} == 0$				3				
	$\tau_1^{\#1}{}^{\alpha} == 0$			3	3				
	$\sigma_1^{\#2\alpha} == 0$			3					
	$\sigma_1^{\#1\alpha} == 0$			3					
	$\tau_{1}^{\#1}$	$\alpha^{\beta} + i k \sigma_{1}^{\#2\alpha\beta}$	3						
	$\sigma_2^{\#1\alpha\beta\chi} == 0$				5				
	$\tau_{2+}^{\#1\alpha\beta} == 0$				5				
				1					

Total constraints:

 $\tau_{0^{+}}^{\#1} \ \tau_{0^{+}}^{\#2} \ \sigma_{0^{-}}^{\#1}$

1		U		U	U	0	
†		0		0	0	$k^2 r_2 +$	t_2
	$\tau_2^{\#1}_{\alpha\beta} \ \sigma_2^{\#1}_{\alpha\beta\chi}$	0	0	0			
	$\tau_{2}^{\#1}\alpha\beta$	0	0	0			
	$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 (-2 r_3 + r_4)}$	0	0			
	•	$\sigma_{2}^{\#1} + \alpha^{\beta}$	$\tau_2^{\#1} + \alpha^{\beta}$	$\sigma_{2}^{\#1} +^{\alpha\beta\chi}$			
			U	$\nu_{2}^{\#1}$ α_{l}	3	$f_{2+\alpha\beta}^{\#1}$	$\omega_2^{\#1}{}_{\alpha\beta\chi}$
	$\omega_2^{\#}$	$^{1}_{+}$ † $^{\alpha\beta}$	k ² (-	2 r ₃ -	⊦ <i>r</i> ₄)	0	0

0

0

0

 $f_{0^{+}}^{\#1} f_{0^{+}}^{\#2}$

0 0

 $\omega_0^{\#1}$

 $-2k^2(r_3-2r_4)$

 $f_{2^{+}}^{\sharp 1}\dagger^{\alpha\beta}$

 $\omega_2^{\#1}$ † $^{lphaeta\chi}$

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $-\frac{t_2}{r_2} > 0$
Spin: 0
Parity: Odd

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$