Math Examples

This document demonstrates the mathematical capabilities of the Advanced Markdown Viewer using MathJax.

Basic Math Notation

Inline Math

Here are some inline math examples:

- Einstein's equation: \$E = mc^2\$
- Pythagorean theorem: $a^2 + b^2 = c^2$ \$
- Quadratic formula: $x = \frac{b^2 4ac}{2a}$
- Natural logarithm: $\ln(e) = 1$

Display Math

Complex equations look better in display mode:

```
$$
\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}
$$
$$
\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}
$$
```

Advanced Examples

Calculus

\$\$

Derivatives

```
\frac{d}{dx} \sin(x) = \cos(x)
$$

\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
$$

Integrals
$$
\\int_0^1 x^2 dx = \frac{1}{3}
$$$
```

Linear Algebra

Matrices

```
$$
A = \begin{pmatrix}
a_{11} & a_{12} & a_{13} \
a_{21} & a_{22} & a_{23} \
a_{31} & a_{32} & a_{33} \
end{pmatrix}
$$
```

Determinant

```
$$
\det(A) = \begin{vmatrix}
a & b & c \
d & e & f \
g & h & i
\end{vmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg)
$$
```

Eigenvalues

```
$$
A\vec{v} = \lambda\vec{v}
$$
```

Statistics

Normal Distribution

```
\f(x) = \frac{1}{\sigma(2\pi)} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sin(x^2)}\right)^2} \
```

Bayes' Theorem

```
$$ P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$
```

Physics

Schrödinger Equation

```
$ i\hbar\frac{\pi(\{r,t) = \hat{H}\Psi(\mathbb{r},t) = \frac{H}\Psi(\mathbb{r},t) }
```

Maxwell's Equations

\end{align}

Greek Letters

Common Greek letters used in mathematics:

Letter	Symbol	LaTeX
Alpha	\$\alpha\$	\alpha
Beta	\$\beta\$	\beta
Gamma	\$\gamma\$	\gamma
Delta	\$\delta\$	\delta
Epsilon	\$\epsilon\$	\epsilon
Lambda	\$\lambda\$	\lambda
Mu	\$\mu\$	\mu
Pi	\$\pi\$	\pi
Sigma	\$\sigma\$	\sigma
Omega	\$\omega\$	\omega

Complex Expressions

Fourier Transform

Taylor Series

```
f(x) = \sum_{n=0}^{\inf y} \frac{f^{(n)}(a)}{n!}(x-a)^n
```

Riemann Zeta Function

```
\ \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}} $$
```

Formatting Tips

Fractions

```
• Simple: \frac{a}{b} \rightarrow \frac{a}{b}
```

• Continued: $\cfrac{a}{b} + \cfrac{c}{d}$ $\rightarrow \cfrac{a}{b} + \cfrac{c}{d}$ \$

Roots

- Square root: $\sqrt{x} \rightarrow \$\sqrt{x}$ \$
- nth root: $\sqrt{n}{x} \rightarrow \sqrt{n}{x}$

Subscripts and Superscripts

- Subscript: $x_1 \rightarrow x_1$
- Superscript: $x^2 \rightarrow x^2$
- Both: $x_1^2 \rightarrow x_1^2$

Operators

- Sum: $\sum_{i=1}^n \rightarrow \sum_{i=1}^n$
- Product: $\displaystyle \frac{i=1}^n \rightarrow \frac{i=1}^n$
- Integral: $\int_a^b \rightarrow \int_a^b$
- Limit: $\lim_{x \to 0} \rightarrow \lim_{x \to 0}$

Mathematical expressions make documentation more precise and beautiful! \clubsuit