Statistics for Ecologists

Olivier Gimenez

October 2020

Who's that guy?!

Olivier Gimenez

- Senior scientist at CNRS, in Montpellier France.
- Trained as a statistician
- Soon attracted by the bright side of ecology
- Working at the interface of animal demography, statistical modelling and social sciences
- More on https://oliviergimenez.github.io/
- Twitter @oaggimenez

Acknowledgments

Acknowledgments

 Sean Anderson, Ben Bolker, Jason Matthiopoulos, David Miller, Denis Réale and Francisco Rodriguez-Sanchez for sharing their courses material

This Class

Slides, R codes, data and practicals

- I used R, and RStudio is your friend
- I also used R Markdown to write reproducible documents (slides/exercises)
- All material is available on GitHub https://github.com/oliviergimenez/statistics-for-ecologists-Master-courses
- Check out the files gimenez_lectures.R and gimenez_practicals.R
- You will need the following R packages: arm, bbmle, broom, dplyr, effects, lme4, mgcv, MuMIn, R2jags, tibble, visreg

On our plate

- Distributions and likelihoods
- Hypothesis testing and multimodel inference
- Introduction to Bayesian inference
- Generalized Linear Models (GLMs)
- Generalized Additive Models (GAMs)
- Mixed Effect Models

On our plate

- Distributions and likelihoods
- Hypothesis testing and multimodel inference
- Introduction to Bayesian inference
- Generalized Linear Models (GLMs)
- Generalized Additive Models (GAMs)
- Mixed Effect Models

Distributions and likelihoods

Distributions

- What for?
- Conceptual models, bearing in mind that:
 All models are wrong, but some are useful (G.E.P. Cox, 1976)
- Either represent how the world works
- Or capture the behavior of a statistic under some null hypothesis we'd like to test
- Discrete or continuous

Discrete distributions

Bernoulli distribution

Context: A single trial with two outcomes, success/failure

 $X \sim \mathsf{Bern}(p)$ with p probability of having a success

Example: X is the random variable being born a female

Ten Bernoulli trials with p=0.5

Ten Bernoulli trials with p=0.5, again

Hundred Bernoulli trials with $p=0.5\,$

Hundred Bernoulli trials with $p=0.2\,$

Hundred Bernoulli trials with $p=0.8\,$

Summary: Bernoulli distribution

- **notation**: $X \sim \mathsf{Bern}(p)$
- range: discrete, x = 0, 1
- **distribution**: $P(X = x) = p^x (1 p)^{1 x}$
- parameters: p is the probability of success
- mean: p
- variance: p(1-p)

Binomial distribution

Context: Total number of successes from a fixed number of independent Bernoulli trials, all with same probability of success

 $X \sim \operatorname{Bin}(N,p)$ with p probability of having a success and N number of trials

$$P(X = x) = \frac{N!}{x!(N-x)!}p^x(1-p)^{N-x} = \binom{N}{x}p^x(1-p)^{N-x}$$

Example: X is the random variable number of heads in a series of coin flipping

Binomial distribution

$$\begin{split} P(X=x) &= \binom{N}{x} p^x (1-p)^{N-x} \\ &\frac{x}{0} \frac{P(X=x)}{0 & (1-p)^N} \\ &1 & Np(1-p)^{N-1} \\ & \dots & \dots \\ & \text{N} & p^N \end{split}$$

Binomial distribution

Fortunately, R has this pre-programmed

```
dbinom(x = 1, size = 10, prob = 0.5) # equals 10*0.5*(1-0.5)^(10-1)
## [1] 0.009765625
```

Hundred Binomial trials with ${\cal N}=10$ and p=0.5

Hundred Binomial trials with $N=10\ \mathrm{and}\ p=0.5$, again

Hundred Binomial trials with ${\cal N}=10$ and p=0.2

Hundred Binomial trials with ${\cal N}=10$ and p=0.8

 \bullet Let's say $X \sim \mathrm{Bin}(N=10,p=0.5)$ is a random variable counting the number of males

- \bullet Let's say $X \sim \mathrm{Bin}(N=10, p=0.5)$ is a random variable counting the number of males
- What is the probability of having at most 2 males?

- \bullet Let's say $X \sim \mathrm{Bin}(N=10, p=0.5)$ is a random variable counting the number of males
- What is the probability of having at most 2 males?

•
$$P(X \le 2) = P(X = 0) + P(X = 1)$$

- \bullet Let's say $X \sim \mathrm{Bin}(N=10,p=0.5)$ is a random variable counting the number of males
- What is the probability of having at most 2 males?
- $P(X \le 2) = P(X = 0) + P(X = 1)$
- How to compute this in R?

- \bullet Let's say $X \sim \mathrm{Bin}(N=10, p=0.5)$ is a random variable counting the number of males
- What is the probability of having at most 2 males?
- $P(X \le 2) = P(X = 0) + P(X = 1)$
- How to compute this in R?
- $\bullet \ \ \mathsf{dbinom}(\mathsf{x}{=}0,\mathsf{size}{=}10,\mathsf{prob}{=}0.5) + \mathsf{dbinom}(\mathsf{x}{=}1,\mathsf{size}{=}10,\mathsf{prob}{=}0.5)$

Summary: Binomial distribution

- notation: $X \sim \text{Bin}(N, p)$
 - range: discrete, $0 \le x \le N$
 - distribution: $P(X=x)=\binom{N}{x}p^x(1-p)^{1-x}$
 - $\ \ \,$ $\ \ \,$ $\ \ \,$ parameters: p the probability of success, and N the number of trials
- lacktriangle mean: Np
 - $\bullet \quad \text{variance: } Np(1-p)$
 - in R: rbinom, dbinom

Poisson distribution

Context: Number of occurrences of an event over a given unit of space or time.

 $X \sim \mathsf{Poisson}(\lambda)$ with λ expected number of occurrences

$$P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

Example: X is the random variable number of birds counted on a colony during the breeding season

Poisson distribution

$$P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

$$\frac{x \quad P(X = x)}{0 \quad e^{-\lambda}}$$

$$1 \quad \lambda e^{-\lambda}$$

$$\dots \quad \dots$$

Poisson distribution

$$\begin{array}{ccc} x & P(X=x) \\ \hline 0 & e^{-\lambda} \\ 1 & \lambda e^{-\lambda} \\ \dots & \dots \end{array}$$

Fortunately, R has this pre-programmed

```
dpois(x=0,lambda=3) # equals exp(-3)
## [1] 0.04978707
```

Hundred Poisson trials with $\lambda=1$

Hundred Poisson trials with $\lambda=2$

Hundred Poisson trials with $\lambda=10$

Thousand Poisson trials with $\lambda=10$

Summary: Poisson distribution

- **notation**: $X \sim \mathsf{Poisson}(\lambda)$
 - range: discrete, $x \ge 0$
 - distribution: $P(X=x) = \frac{e^{-\lambda}\lambda^x}{x!}$
 - \bullet parameters: λ the rate or expected number per sample
- mean: λ
 - variance: \(\lambda \)
 - in R: rpois, dpois

Continuous distribution

Normal (Gaussian) distribution

Context: Distribution of "adding lots of things together". Derived from *Central Limit Theorem*, which says that if you add a large number of independent samples from the same distribution the distribution of the sum will be approximately normal.

 $X \sim \operatorname{Normal}(\mu, \sigma^2)$ where μ is the mean and σ^2 the variance

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Example: Practically everything.

Normal probability density function

Summary: Normal distribution

- notation: $X \sim N(\mu, \sigma^2)$
 - range: continuous, all real values
- distribution: $f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
 - parameters: μ the mean and σ the standard deviation
- lacktriangle mean: μ
 - variance: σ^2
 - in R: rnorm, dnorm

Why do we love the Normal distribution

- $\hbox{ If has nice properties, such as: if } X \sim {\rm N}(\mu,\sigma^2) \hbox{, then } Z = \frac{X-\mu}{\sigma} \sim {\rm N}(0,1)$
- It is a limiting distribution (Central Limit Theorem)
- It can be a good approximation for other distributions

Example: Approximating Binomial by Normal (1)

$$X \sim \text{Bin}(N = 50, p = 0.3)$$

Mean is
$$Np = 50 \times 0.3 = 15$$

Variance is
$$Np(1-p) = 50 \times 0.3 \times 0.7 = 10.5$$

Therefore, X can be approximated by $Y \sim {\rm N}(15, \sigma = \sqrt{10.5})$

Example: Approximating Binomial by Normal (2)

Conclusions about distributions

Common Distributions - Discrete

When we have something that is dichotomous (either 0 or 1, negative/positive, false/true, male/female, present/absent):

Binomial(number of trials, probability)

When we have something that is a discrete count, with no theoretical maximum, but with a common average:

Poisson(lambda)

Common Distributions - Discrete

When we are recording the number of failures before a number of successes, or when we have something that is a discrete count with no theoretical maximum, and with more variation than Poisson:

NegativeBinomial(number of successes, probability of success)

NegativeBinomial(mean, overdispersion)

Common Distributions - Continuous

When we have something that is continuous, symmetrical about the mean and unbounded:

Normal(mean, standard deviation)

When we have something that is continuous, not symmetrical, and bounded at zero:

Exponential(rate)

Gamma(shape, rate)

Common Distributions - Continuous

When we have something that is continuous, not symmetrical, and bounded at zero:

• When we have something that is continuous, and bounded between 0 and 1:

Simple bounded distribution:

Uniform(min, max)

More? Check out in R:

?Distributions

Likelihoods

- So far, when talking about probability distributions, we assumed that we knew the parameter values
- And we wanted to know what data we might get from these distributions
- In the real world, it is usually the other way around
- A more relevant question might be: We have observed 3 births by a female during her 10 breeding attempts. What does this tell us about the true probability of getting a successful breeding attempt from this female? For the population?

We don't know what the probability of a birth is, but we can see what the probability of getting our data would be for different values:

```
dbinom(x = 3, size = 10, prob = 0.1)
## [1] 0.05739563
```

We don't know what the probability of a birth is, but we can see what the probability of getting our data would be for different values:

```
dbinom(x=3,size=10,prob=0.9)
## [1] 8.748e-06
```

We don't know what the probability of a birth is, but we can see what the probability of getting our data would be for different values:

```
dbinom(x=3,size=10,prob=0.25)
## [1] 0.2502823
```

So we would be more likely to observe 3 births if the probability is $0.25\ \text{than}\ 0.1\ \text{or}\ 0.9$

The likelihood

- This reasoning is so common in statistics that it has a special name:
- The likelihood is the probability of observing the data under a certain model
- The data are known, we usually consider the likelihood as a function of the model parameters $\theta_1,\theta_2,\dots,\theta_p$

$$L = P(\theta_1, \theta_2, \dots, \theta_p \mid \mathsf{data})$$

This is a very important concept

Likelihood functions

We may create a function to calculate a likelihood e.g.:

```
lik.fun <- function(parameter){</pre>
  11 <- dbinom(x=3, size=10, prob=parameter)</pre>
  return(11)
lik.fun(0.3)
## [1] 0.2668279
lik.fun(0.6)
## [1] 0.04246733
```

Maximize the likelihood (3 successes ot of 10 attempts)

The maximum of the likelihood is at value 0.3

The Maximum Likelihood

- There is always a set of parameters that gives you the highest likelihood of observing the data: the Maximum Likelihood Estimate(s) [MLEs]
- This can be calculated using:
- Trial and error (not efficient!)
- Compute the maximum of a function by hand (rarely doable in practice)
- \blacksquare An iterative optimization algorithm: ?optimize (1 parameter) and ?optim (> 1 parameter) in R

By hand: compute MLE of p from $Y \sim \text{Bin}(N=10,p)$ with k=3 successes

$$\begin{split} P(Y=k) &= {k \choose N} p^k (1-p)^{N-k} = L(p) \\ &\log(L(p)) = \mathsf{cte} + k \log(p) + (N-k) \log(1-p) \end{split}$$

We are searching for the maximum of L, or equivalently that of $\log(L)$

Compute derivate w.r.t.
$$p$$
: $\frac{d \log(L)}{dp} = \frac{k}{p} - \frac{(N-k)}{(1-p)}$

Then solve
$$\frac{d \log(L)}{d p} = 0$$
; the MLE is $\hat{p} = \frac{k}{N} = \frac{3}{10} = 0.3$

Here, the MLE is the proportion of observed successes

Using a computer: MLE of p from $Y \sim \text{Bin}(N=10,p)$ with k=3 successes

```
lik.fun <- function(parameter) dbinom(x=3, size=10, prob=parameter)
# ?optimize
optimize(lik.fun,c(0,1),maximum=TRUE)
## $maximum
## [1] 0.3000157
##
## $objective
## [1] 0.2668279</pre>
```

Use optim when the number of parameters is > 1.

Binomial likelihood with 3 successes ot of 10 attempts

The Maximum Likelihood Estimate (MLE)

The MLE is the best guess set of parameter values for our given data

Imprecise and biased

Precise but biased

Unbiased but imprecise

Unbiased and precise!

The Maximum Likelihood Estimate (MLE)

- The MLE is the best guess set of parameter values for our given data
- But the chances of the true parameter values being close to the MLE is dependent on the amount of information in the data!

Binomial likelihood with increasing sample size

Confidence intervals: A refresher

Let's approach confidence intervals through simulations

Imagine you are measuring the temperature of a cup of water 10 times but you have an old really bad thermometer. The true temperature is 3 degrees Celsius and the standard deviation on the sampling error is 5.

```
# Simulate data:
mu <- 3
sigma <- 5
n <- 10
y <- rnorm(n = n, mean = mu, sd = sigma)
y</pre>
```

```
## [1] 5.9276441 6.5473301 2.4534834 0.7325141 6.0294373 -6.0897798
## [7] 6.1504928 1.6190795 1.5792013 -1.5966100
```

Apply linear regression

We will estimate a mean temperature by fitting an intercept only linear regression model:

```
m \leftarrow lm(v^1)
broom::tidy(m)
## # A tibble: 1 x 5
## term estimate std.error statistic p.value
\#\# \cdot chr \cdot db \close chr \cdot chr
## 1 (Intercept) 2.34 1.29 1.82 0.103
confint(m)
                  2.5 % 97.5 %
##
## (Intercept) -0.5749909 5.245549
```