Evaluation of sensitivity to resolution of LiDAR gait recognition using simulation data

B4 Tanaka Serina

Background

- 3D LiDAR
 - Expected to be used for self-driving car
 - Low resolution for distant objects
 - →Difficult to use for person recognition

 Analyze how much accuracy gait recognition achieves for low-resolution data

OUMVLP-Mesh

- Multi-View Large Population Dataset with Human Mesh
- 3D human mesh
- 10,307subjects
 - 14view
 - 2sequences
 - 25frames
- IM2D joint
- HC3D joint
- 85-D SMPL parameter

Generate simulation data

Estimate SMPL parameter

- Input: simulation data
- Output: SMPL parameter
- Use pointnet++
 - Unordered
 - Invariance under transformation
 - Interaction among points

• Loss: MSE loss

Result (generate simulation data)

 $0.5^{\circ} \times 0.5^{\circ}$

 $0.25^{\circ} \times 0.25^{\circ}$

Result (estimation SMPL parameter)

Result of estimation SMPL parameter

Simulation data(point cloud)

SMPL parameter (85 dim)

MSE loss for various resolution

Resolution	Camera	Root rotation	Pose	Shape	Whole data
1.0×1.0	0.0002	0.0011	0.0118	0.0007	0.009678
0.5x0.5	0.0002	0.0009	0.0100	0.0008	0.008248
0.25x0.25	0.0002	0.0009	0.0079	0.0008	0.006574

Summary

- Background
 - Gait recognition + 3D LiDAR
- Generate simulation data
 - Point cloud(resolution: 1.0x1.0, 0.5x0.5, 0.25x0.25)
- Estimate SMPL parameter from simulation data which have various resolution
 - Use pointnet++
- Result
 - Generate simulation data
 - Estimated SMPL model
 - MSE loss to various resolution