7.3 Difusión

$$\rho(x,y,z,t) \propto P(x,y,z,t)$$

$$\frac{\partial \rho}{\partial t} = \mathbf{D} \cdot \nabla^2 \rho$$

En una dimensión

$$\frac{\partial \rho}{\partial t} = \mathbf{D} \cdot \frac{\partial^2 \rho}{\partial x^2}$$
 Solución analítica.

Podemos comprobar que la función

$$\rho(x,t) = \frac{1}{\sigma} exp\left(-\frac{x^2}{2\sigma^2}\right)$$

es solución de la ecuación, si se cumple que

$$\sigma = \sqrt{2Dt}$$

7.3 Difusión

$$\frac{\partial \rho}{\partial t} = D \cdot \nabla^2 \rho$$

$$\frac{\partial \rho}{\partial t} = D \frac{\partial^2 \rho}{\partial x^2}$$

Solución a la ecuación de difusión en 1D:

7.3 Difusión

Solución a la ecuación de difusión en 2D:

Se podrían obtener estos resultados de manera numérica como hemos hecho en temas anteriores.

7.3 Difusión

En este caso se han metido 1000 caminantes en 5 posibles posiciones (entre -2 y 2) por eso la densidad de probabilidad es 0.2.

7.3 Difusión

7.3 Difusión

1000 caminantes

60000 caminantes

Aquí se han aumentado los caminantes y se ha duplicado el tamaño de las clases del histograma, lo cuál suaviza el histograma en sí.

7.4 Entropía y flecha del tiempo

Difusión de una gota de leche en una taza de café

Dimensión de la taza: 200x200. La gota se sitúa en [-5,5].

4 partículas por punto: 484 partículas posibl

11 puntos en la dirección horizontal y 11 en la vertical (121 posiciones posibles). 121x4 = 484

Cuando una partícula llega al borde da la taza no pueden sobrepasarla.

7.4 Entropía y flecha del tiempo

Difusión de una gota de leche en una taza de café

7.4 Entropía y flecha del tiempo

Difusión de una gota de leche en una taza de café

7.4 Entropía y flecha del tiempo

```
scene.height=640  # Para hacer la pantalla cuadrada.
scene.range=105
curve(vector(-101,-101,0), vector(-101,101,0), color=color.yellow, radius=0.5)
curve(vector(-101,101,0), vector(101,101,0), color=color.yellow, radius=0.5)
curve(vector(101,101,0), vector(101,-101,0), color=color.yellow, radius=0.5)
curve(vector(101,-101,0), vector(-101,-101,0), color=color.yellow, radius=0.5)
cs = np.empty(N_caminantes,sphere)

cs[i]=sphere(pos=vector(x[i],y[i],0), radius=1, color=color.white)

rate(100)

cs[j].pos=(vector(x[j],y[j],0))
```

7.4 Entropía y flecha del tiempo

7.4 Entropía y flecha del tiempo

$$s = -k_B \sum_i p_i \ln p_i$$

En equilibrio, $p_i = 1/\Omega$, donde Ω es el nº de microestados

$$s = k_{\rm B} \ln \Omega$$

Antes de dísolverse, la gota de leche está alejada del equilibrio. Tomamos $k_B=\mathbf{1}$

$$S = -\sum_{i} P_{i} \ln P_{i}$$

7.4 Entropía y flecha del tiempo

Para obtener la entropía dividimos el espacio en regiones, o "estados"

H,bordes_x,bordes_y = histogram2d(x,y,bins=Nbins,range=[[xmin,xmax],[ymin,ymax]])

7.4 Entropía y flecha del tiempo

Podemos usar la función histogram2d de numpy

H,bordes_x,bordes_y = histogram2d(x,y,bins=Nbins,range=[[xmin,xmax],[ymin,ymax]])

7.5 Modelos de crecimiento de agregados

El crecimiento de agregados o cúmulos de partículas puede simularse mediante caminos aleatorios y métodos estocásticos.

Dos modelos

Modelo de Eden

Modelo DLA
(Diffusion limited aggregation)

7.5 Modelos de crecimiento de agregados

Modelo de Eden

7.5 Modelos de crecimiento de agregados

Modelo de Eden

7.5 Modelos de crecimiento de agregados

Modelo de Eden

7.5 Modelos de crecimiento de agregados

Modelo DLA

Basado en caminos aleatorios. Se comienza con una semilla y se "sueltan" uno o varios caminantes en posiciones aleatorias que van haciendo sus caminos. Cuando un caminante. Cuando el caminante o partícula alcanza un punto del perímetro del agregado, se queda en esa posición, pasando a formar parte del mismo.

7.5 Modelos de crecimiento de agregados

Modelo DLA

7.5 Modelos de crecimiento de agregados

Modelo DLA

7.5 Modelos de crecimiento de agregados

Modelo DLA

7.5 Modelos de crecimiento de agregados

Modelo DLA

7.5 Modelos de crecimiento de agregados

7.5 Modelos de crecimiento de agregados

Para un disco de radio r, con una densidad superficial o:

$$m(r) = \sigma \cdot \pi \cdot r^2$$

Para un hílo de longítud l, con una densídad líneal λ:

$$m(l) = \lambda \cdot l$$

Podemos generalizar

$$m(r) \propto r^{d_f}$$

$$ln(m) = d_f \cdot ln(r) + cte.$$

7.5 Modelos de crecimiento de agregados

Dimensionalidad fractal de los agregados tipo Eden y tipo DLA

