Reference Sheet for Elementary Lattice Theory

Propositional Calculus

Metatheorem Any two theorems are equivalent; 'true' is a theorem. Equivales is the only equivalence relation that is associative $((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$, and it has identity true.

Discrepancy ' $\not\equiv$ ' is symmetric, associative, has identity ' false ', mutually associates with equivales $((p \not\equiv q) \equiv r) \equiv (p \not\equiv (q \equiv r))$, and mutually interchanges with it as well $(p \not\equiv q \equiv r) \equiv (p \equiv q \not\equiv r)$.

Implication has the alternative definition $p \Rightarrow q \equiv \neg p \lor q$, thus having true as both left identity and right zero; it distributes over \equiv in the second argument, and is self-distributive; and has the properties

Shunting

$$p \land q \Rightarrow r \quad \equiv \quad p \Rightarrow (q \Rightarrow r)$$

$$\begin{array}{ccc}
p \wedge (p \Rightarrow q) & \equiv & p \wedge q \\
p \wedge (q \Rightarrow p) & \equiv & p
\end{array}$$

Contrapositive

 $p \Rightarrow q \equiv \neg q \Rightarrow \neg p \qquad \qquad p \land (p \Rightarrow q) \Rightarrow q$

It is an order relation generated by 'false \Rightarrow true'; whence 'from false, follows anything': false $\Rightarrow p$. Moreover it has the useful property "(3.62)": $p \Rightarrow (q \equiv r) \equiv p \land q \equiv p \land r$.

Conjunction and disjunction distribute over one another, \vee distributes over \equiv , \wedge distributes over $\equiv -\equiv$ in that $p \wedge (q \equiv r \equiv s) \equiv p \wedge q \equiv p \wedge r \equiv p \wedge s$, and they satisfy,

Excluded MiddleContradiction
 $p \lor \neg p$ Absorption
 $p \land \neg p \equiv \text{ false}$ De Morgan
 $p \land (\neg p \lor q) \equiv p \land q$
 $p \lor (\neg p \land q) \equiv p \lor q$
 $\neg (p \lor q) \equiv \neg p \land \neg q$

Lattices

The distributive lattice interface $(L, \sqsubseteq, \sqcap, \sqcup, \perp, \top)$ has the following implementations:

 \diamond Booleans: ($\mathbb{B}, \Rightarrow, \land, \lor$, false, true)

- —Our ambient logic!
- \diamond Extended Number Line: $(\mathbb{R}, \leq, \min, \max, -\infty, +\infty)$
- \diamond Naturals under division: (N, |, gcd, lcm, 1, 0)
- Substructures of a given datatype with the substructure ordering.
 E.g., sets, lists, and graphs with subset, subsequence, and subgraph ordering.

An order is a relation $\sqsubseteq : L \to L \to \mathbb{B}$ satisfying the following three properties:

ReflexivityTransitivityAntisymmetry $a \sqsubseteq a$ $a \sqsubseteq b \land b \sqsubseteq c \Rightarrow a \sqsubseteq c$ $a \sqsubseteq b \land b \sqsubseteq a \Rightarrow a = b$

An order is bounded if there are elements $\top, \bot : L$ being the lower and upper bounds of all other elements:

Top ElementBottom Element $a \sqsubseteq \top$ $\bot \sqsubseteq a$

A *lattice* is a pair of operations \sqcap , \sqcup : $L \to L \to L$ specified by the properties:

The operations act as providing the greatest lower bound, 'glb', 'supremum', or 'meet', by \sqcap ; and the least upper bound, 'lub', 'infimum', or 'join', by \sqcup . Let \square be one of \sqcap or \sqcup , then:

Symmetry of \Box Associativity of \Box Idempotency of \Box $a\Box b=b\Box a$ $(a\Box b)\Box c=a\Box (b\Box c)$ $a\Box a=a$

Duality Principle:

If a statement S is a theorem, then so is $S[(\sqsubseteq, \sqcap, \sqcup, \top, \bot) := (\supseteq, \sqcup, \sqcap, \bot, \top)].$