Question	Answer	Marks	Guidance
(a)	KE change = $\pm (0.5 \times 900 \times 16^2 - 0.5 \times 900 \times 11^2)$ $[= \pm (115200 - 54450) = \pm 60750]$	B1	
	$PE = 900g \times 150 \times 0.12 [=162000]$	B1	Allow $900g \times 150 \times \sin 6.89^{\circ}$ or $900g \times 150 \times \sin 6.9^{\circ}$ Not from use of constant acceleration/Newton's second law.
	[Work done by car's engine =] 24000×12 [= 288000]	B1	OE e.g. $24000 = \frac{WD}{12}$
	Work done against resistive forces = $24000 \times 12 - 900g \times 150 \times 0.12 - 0.5 \times 900 \times 16^2 + 0.5 \times 900 \times 11^2$ = $288000 - 162000 - 115200 + 54450$	M1	Use of work-energy 5 terms; dimensionally correct. Work done by car's engine not from using one of the given speeds. Allow sign errors.
	Work done = 65 250 J	A1	or 65.25 kJ Allow AWRT 65300 J or 65.3 kJ from correct work
		5	

Question	Answer	Marks	Guidance
(b)	Driving Force = $\frac{32000}{v}$	B1	OE e.g. $32000 = DF \times v$
	$\frac{32000}{v} = 1520 + 4v$	M1	Apply N2L to the car with $a = 0$ (3 terms) and attempt to solve a 3-term quadratic in v . For reference $4v^2 + 1520v - 32000 = 0$ Allow if no working seen and have correct real solution(s) to their 3-term quadratic. If working shown and if using the formula, it must be using the correct formula. If factorising must have 3 of the 4 terms correct of $(v-20)(v+400)$
	$Speed = 20 \text{ms}^{-1}$	A1	Only.
		3	