# Introduction to Information Retrieval

Hinrich Schütze and Christina Lioma

Lecture 13: Text Classification & Naive Bayes

### Overview

- 1 Recap
- 2 Text classification
- 3 Naive Bayes
- 4 NB theory
- 5 Evaluation of TC

## Overview

- 1 Recap
- 2 Text classification
- 3 Naive Bayes
- 4 NB theory
- **5** Evaluation of TC

## Looking vs. Clicking



- Users view results one and two more often / thoroughly
- Users click most frequently on result one



#### Pivot normalization



Source: Lillian Lee

## Use min heap for selecting top k out of N

- Use a binary min heap
- A binary min heap is a binary tree in which each node's value is less than the values of its children.
- It takes  $O(N \log k)$  operations to construct the k-heap containing the k largest values (where N is the number of documents).
- Essentially linear in N for small k and large N.

## Binary min heap



## Heuristics for finding the top k most relevant

- Document-at-a-time processing
  - We complete computation of the query-document similarity score of document  $d_i$  before starting to compute the query-document similarity score of  $d_{i+1}$ .
  - Requires a consistent ordering of documents in the postings lists
- Term-at-a-time processing
  - We complete processing the postings list of query term  $t_i$  before starting to process the postings list of  $t_{i+1}$ .
  - Requires an accumulator for each document "still in the running"
- The most effective heuristics switch back and forth between term-at-a-time and document-at-a-time processing.

## Tiered index



## Complete search system



## Take-away today

- Text classification: definition & relevance to information retrieval
- Naive Bayes: simple baseline text classifier
- Theory: derivation of Naive Bayes classification rule & analysis
- Evaluation of text classification: how do we know it worked / didn't work?

## Outline

- 1 Recap
- 2 Text classification
- 3 Naive Bayes
- 4 NB theory
- 5 Evaluation of TC

## A text classification task: Email spam filtering

```
From: ''' <takworlld@hotmail.com>
Subject: real estate is the only way... gem oalvgkay
Anyone can buy real estate with no money down
Stop paying rent TODAY !
There is no need to spend hundreds or even thousands for
similar courses
I am 22 years old and I have already purchased 6 properties
using the
methods outlined in this truly INCREDIBLE ebook.
Change your life NOW !
Click Below to order:
http://www.wholesaledaily.com/sales/nmd.htm
```

How would you write a program that would automatically detect and delete this type of message?

## Formal definition of TC: Training

#### Given:

- A document space X
  - Documents are represented in this space typically some type of high-dimensional space.
- A fixed set of classes  $C = \{c_1, c_2, \dots, c_j\}$ 
  - The classes are human-defined for the needs of an application (e.g., relevant vs. nonrelevant).
- A training set D of labeled documents with each labeled document <d, c> ∈ X × C

Using a learning method or learning algorithm, we then wish to learn a classifier Y that maps documents to classes:

$$\Upsilon: X \to C$$

## Formal definition of TC: Application/Testing

Given: a description  $d \subseteq X$  of a document Determine:  $\Upsilon(d) \subseteq C$ , that is, the class that is most appropriate for d

## Topic classification



#### Exercise

 Find examples of uses of text classification in information retrieval

## Examples of how search engines use classification

- Language identification (classes: English vs. French etc.)
- The automatic detection of spam pages (spam vs. nonspam)
- The automatic detection of sexually explicit content (sexually explicit vs. not)
- Topic-specific or vertical search restrict search to a "vertical" like "related to health" (relevant to vertical vs. not)
- Standing queries (e.g., Google Alerts)
- Sentiment detection: is a movie or product review positive or negative (positive vs. negative)

#### Classification methods: 1. Manual

- Manual classification was used by Yahoo in the beginning of the web. Also: ODP, PubMed
- Very accurate if job is done by experts
- Consistent when the problem size and team is small
- Scaling manual classification is difficult and expensive.
- → We need automatic methods for classification.

#### Classification methods: 2. Rule-based

- Our Google Alerts example was rule-based classification.
- There are IDE-type development environments for writing very complex rules efficiently. (e.g., Verity)
- Often: Boolean combinations (as in Google Alerts)
- Accuracy is very high if a rule has been carefully refined over time by a subject expert.
- Building and maintaining rule-based classification systems is cumbersome and expensive.

## A Verity topic (a complex classification rule)

```
comment line
                  # Beginning of art topic definition
top-lenel topic
                  art ACCRUE
                       /author = "fsmith"
                                = "30-Dec-01"
topio de finition modifiers 🕳
                       /date
                       /annotation = "Topic created
                                                             subtopic
                                                                               * 0.70 film ACCRUE
                                         by fsmith"
                                                                               ** 0.50 STEM
subtopictopic
                  * 0.70 performing-arts ACCRUE
                                                                                    /wordtext = film
                  ** 0.50 WORD
  eviden cetopi c
                                                             subtopic
                                                                               ** 0.50 motion-picture PHRASE
                       /wordtext = ballet
  topic definition modifier
                                                                               *** 1.00 WORD
  eviden cetopi c
                  ** 0.50 STEM
                                                                                    /wordtext = motion
                       /wordtext = dance
  topic definition modifier
                                                                               *** 1.00 WORD
                  ** 0.50 WORD
  eviden cetopi c
                                                                                    /wordtext = picture
                       /wordtext = opera
  topic definition modifier
                                                                               ** 0.50 STEM
  eviden cetopi c
                  ** 0.30 WORD
                                                                                    /wordtext = movie
                       /wordtext = symphony
  topic definition modifier
                                                             subtopic
                                                                               * 0.50 video ACCRUE
subtopic
                  * 0.70 visual-arts ACCRUE
                                                                               ** 0.50 STEM
                  ** 0.50 WORD
                                                                                    /wordtext = video
                       /wordtext = painting
                                                                               ** 0.50 STEM
                  ** 0.50 WORD
                                                                                    /wordtext = vcr
                       /wordtext = sculpture
                                                                               # End of art topic
```

## Classification methods: 3. Statistical/Probabilistic

- This was our definition of the classification problem text classification as a learning problem
- (i) Supervised learning of a the classification function Υ and
   (ii) its application to classifying new documents
- We will look at a couple of methods for doing this: Naive Bayes, Rocchio, kNN, SVMs
- No free lunch: requires hand-classified training data
- But this manual classification can be done by non-experts.

## Outline

- 1 Recap
- 2 Text classification
- 3 Naive Bayes
- 4 NB theory
- **5** Evaluation of TC

## The Naive Bayes classifier

- The Naive Bayes classifier is a probabilistic classifier.
- We compute the probability of a document d being in a class c as follows:  $P(c|d) \propto P(c) \quad \prod \quad P(t_k|c)$ 
  - $n_d$  is the length of the document. (number of tokens)
  - $P(t_k \mid c)$  is the conditional probability of term  $t_k$  occurring in a document of class c

 $1 \le k \le n_d$ 

- $P(t_k \mid c)$  as a measure of how much evidence  $t_k$  contributes that c is the correct class.
- P(c) is the prior probability of c.
- If a document's terms do not provide clear evidence for one class vs. another, we choose the c with highest P(c).

## Maximum a posteriori class

- Our goal in Naive Bayes classification is to find the "best" class.
- The best class is the most likely or maximum a posteriori (MAP) class c<sub>map</sub>:

$$c_{\mathsf{map}} = \argmax_{c \in \mathbb{C}} \hat{P}(c|d) = \argmax_{c \in \mathbb{C}} \; \hat{P}(c) \prod_{1 \leq k \leq n_d} \hat{P}(t_k|c)$$

## Taking the log

- Multiplying lots of small probabilities can result in floating point underflow.
- Since log(xy) = log(x) + log(y), we can sum log probabilities instead of multiplying probabilities.
- Since log is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

$$c_{\mathsf{map}} = rg \max_{c \in \mathbb{C}} \ [\log \hat{P}(c) + \sum_{1 \leq k \leq n_d} \log \hat{P}(t_k | c)]$$

## Naive Bayes classifier

Classification rule:

$$c_{\mathsf{map}} = rg \max_{c \in \mathbb{C}} \ [\log \hat{P}(c) + \sum_{1 \leq k \leq n_d} \log \hat{P}(t_k | c)]$$

- Simple interpretation:
  - Each conditional parameter  $\log \hat{P}(t_k|c)$  is a weight that indicates how good an indicator  $t_k$  is for c.
  - The prior  $log \hat{P}(c)$  is a weight that indicates the relative frequency of c.
  - The sum of log prior and term weights is then a measure of how much evidence there is for the document being in the class.
  - We select the class with the most evidence.

#### Parameter estimation take 1: Maximum likelihood

- Estimate parameters  $\hat{P}(c)$  and  $\hat{P}(t_k|c)$  from train data: How?
- Prior:

$$\hat{P}(c) = \frac{N_c}{N}$$

- N<sub>c</sub>: number of docs in class c; N: total number of docs
- Conditional probabilities:

$$\hat{P}(t|c) = \frac{T_{ct}}{\sum_{t' \in V} T_{ct'}}$$

- T<sub>ct</sub> is the number of tokens of t in training documents from class
   c (includes multiple occurrences)
- We've made a Naive Bayes independence assumption here:  $\hat{P}(t_{k_1}|c) = \hat{P}(t_{k_2}|c)$

#### The problem with maximum likelihood estimates: Zeros



• If WTO never occurs in class China in the train set:

$$\hat{P}(\text{WTO}|\textit{China}) = \frac{T_{\textit{China}}, \text{WTO}}{\sum_{t' \in \textit{V}} T_{\textit{China},t'}} = \frac{0}{\sum_{t' \in \textit{V}} T_{\textit{China},t'}} = 0$$

## The problem with maximum likelihood estimates: Zeros (cont)

 If there were no occurrences of WTO in documents in class China, we'd get a zero estimate:

$$\hat{P}(WTO|China) = \frac{T_{China,WTO}}{\sum_{t' \in V} T_{China,t'}} = 0$$

- → We will get P(China|d) = 0 for any document that contains WTO!
- Zero probabilities cannot be conditioned away.

## To avoid zeros: Add-one smoothing

Before:

$$\hat{P}(t|c) = \frac{T_{ct}}{\sum_{t' \in V} T_{ct'}}$$

Now: Add one to each count to avoid zeros:

$$\hat{P}(t|c) = \frac{T_{ct} + 1}{\sum_{t' \in V} (T_{ct'} + 1)} = \frac{T_{ct} + 1}{(\sum_{t' \in V} T_{ct'}) + B}$$

• B is the number of different words (in this case the size of the vocabulary: |V| = M)

## To avoid zeros: Add-one smoothing

- Estimate parameters from the training corpus using add-one smoothing
- For a new document, for each class, compute sum of (i) log of prior and (ii) logs of conditional probabilities of the terms
- Assign the document to the class with the largest score

## Naive Bayes: Training

```
TrainMultinomialNB(\mathbb{C}, \mathbb{D})
  1 V \leftarrow \text{ExtractVocabulary}(\mathbb{D})
  2 N \leftarrow \text{CountDocs}(\mathbb{D})
  3 for each c \in \mathbb{C}
      do N_c \leftarrow \text{CountDocsInClass}(\mathbb{D}, c)
  5
           prior[c] \leftarrow N_c/N
            text_c \leftarrow ConcatenateTextOfAllDocsInClass(\mathbb{D}, c)
  6
           for each t \in V
           do T_{ct} \leftarrow \text{COUNTTOKENSOFTERM}(text_c, t)
  8
           for each t \in V
           do condprob[t][c] \leftarrow \frac{T_{ct}+1}{\sum_{t'}(T_{ct'}+1)}
 10
 11
       return V, prior, condprob
```

## Naive Bayes: Testing

```
APPLYMULTINOMIALNB(\mathbb{C}, V, prior, condprob, d)

1 W \leftarrow \text{EXTRACTTOKENSFROMDOC}(V, d)

2 for each c \in \mathbb{C}

3 do score[c] \leftarrow \log prior[c]

4 for each t \in W

5 do score[c] + = \log condprob[t][c]

6 return arg \max_{c \in \mathbb{C}} score[c]
```

## Exercise

|              | docID | words in document           | in $c = China$ ? |
|--------------|-------|-----------------------------|------------------|
| training set | 1     | Chinese Beijing Chinese     | yes              |
|              | 2     | Chinese Chinese Shanghai    | yes              |
|              | 3     | Chinese Macao               | yes              |
|              | 4     | Tokyo Japan Chinese         | no               |
| test set     | 5     | Chinese Chinese Tokyo Japan | ?                |

- Estimate parameters of Naive Bayes classifier
- Classify test document

## Example: Parameter estimates

Priors:  $\hat{P}(c) = 3/4$  and  $\hat{P}(\overline{c}) = 1/4$  Conditional probabilities:

$$\hat{P}(\text{Chinese}|c) = (5+1)/(8+6) = 6/14 = 3/7$$
 $\hat{P}(\text{Tokyo}|c) = \hat{P}(\text{Japan}|c) = (0+1)/(8+6) = 1/14$ 
 $\hat{P}(\text{Chinese}|\overline{c}) = (1+1)/(3+6) = 2/9$ 
 $\hat{P}(\text{Tokyo}|\overline{c}) = \hat{P}(\text{Japan}|\overline{c}) = (1+1)/(3+6) = 2/9$ 

The denominators are (8 + 6) and (3 + 6) because the lengths of  $text_c$  and  $text_{\overline{c}}$  are 8 and 3, respectively, and because the constant B is 6 as the vocabulary consists of six terms.

## **Example: Classification**

$$\hat{P}(c|d_5) \propto 3/4 \cdot (3/7)^3 \cdot 1/14 \cdot 1/14 \approx 0.0003$$
  
 $\hat{P}(\overline{c}|d_5) \propto 1/4 \cdot (2/9)^3 \cdot 2/9 \cdot 2/9 \approx 0.0001$ 

Thus, the classifier assigns the test document to c = China. The reason for this classification decision is that the three occurrences of the positive indicator CHINESE in  $d_5$  outweigh the occurrences of the two negative indicators Japan and Tokyo.

## Time complexity of Naive Bayes

| mode     | time complexity                                                 |
|----------|-----------------------------------------------------------------|
| training | $\Theta( \mathbb{D} L_{ave} +  \mathbb{C}  V )$                 |
|          | $\Theta(L_{a} +  \mathbb{C} M_{a}) = \Theta( \mathbb{C} M_{a})$ |

- $L_{ave}$ : average length of a training doc,  $L_a$ : length of the test doc,  $M_a$ : number of distinct terms in the test doc,  $\mathbb{D}$ : training set, V: vocabulary,  $\mathbb{C}$ : set of classes
- $\Theta(|\mathbb{D}|L_{ave})$  is the time it takes to compute all counts.
- $\Theta(|\mathbb{C}||V|)$  is the time it takes to compute the parameters from the counts.
- Generally:  $|\mathbb{C}||V| < |\mathbb{D}|L_{ave}$
- Test time is also linear (in the length of the test document).
- Thus: Naive Bayes is linear in the size of the training set (training) and the test document (testing). This is optimal.

### Outline

- 1 Recap
- 2 Text classification
- 3 Naive Bayes
- 4 NB theory
- 5 Evaluation of TC

## Naive Bayes: Analysis

- Now we want to gain a better understanding of the properties of Naive Bayes.
- We will formally derive the classification rule . . .
- . . . and state the assumptions we make in that derivation explicitly.

## Derivation of Naive Bayes rule

We want to find the class that is most likely given the document:

$$c_{\mathsf{map}} = \underset{c \in \mathbb{C}}{\mathsf{arg\,max}} P(c|d)$$

Apply Bayes rule  $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ :

$$c_{\text{map}} = \underset{c \in \mathbb{C}}{\operatorname{arg\,max}} \frac{P(d|c)P(c)}{P(d)}$$

Drop denominator since P(d) is the same for all classes:

$$c_{\text{map}} = \underset{c \in \mathbb{C}}{\operatorname{arg\,max}} P(d|c)P(c)$$

# Too many parameters / sparseness

```
c_{\mathsf{map}} = \underset{c \in \mathbb{C}}{\mathsf{arg}} \max_{c \in \mathbb{C}} P(d|c)P(c)
= \underset{c \in \mathbb{C}}{\mathsf{arg}} \max_{c \in \mathbb{C}} P(\langle t_1, \dots, t_k, \dots, t_{n_d} \rangle | c)P(c)
```

- There are too many parameters  $P(\langle t_1, \ldots, t_k, \ldots, t_{n_d} \rangle | c)$ , one for each unique combination of a class and a sequence of words.
- We would need a very, very large number of training examples to estimate that many parameters.
- This is the problem of data sparseness.

## Naive Bayes conditional independence assumption

To reduce the number of parameters to a manageable size, we make the Naive Bayes conditional independence assumption:

$$P(d|c) = P(\langle t_1, \ldots, t_{n_d} \rangle | c) = \prod_{1 \leq k \leq n_d} P(X_k = t_k | c)$$

We assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities  $P(X_k = t_k \mid c)$ . Recall from earlier the estimates for these priors and conditional probabilities:  $\hat{P}(c) = \frac{N_c}{N}$  and  $\hat{P}(t \mid c) = \frac{T_{ct}+1}{(\sum_{t' \in V} T_{ct'})+B}$ 

#### Generative model



$$P(c|d) \propto P(c) \prod_{1 \leq k \leq n_d} P(t_k|c)$$

- Generate a class with probability P(c)
- Generate each of the words (in their respective positions), conditional on the class, but independent of each other, with probability  $P(t_k \mid c)$
- To classify docs, we "reengineer" this process and find the class that is most likely to have generated the doc.

### Second independence assumption

- $\hat{P}(t_{k_1}|c) = \hat{P}(t_{k_2}|c)$
- For example, for a document in the class *UK*, the probability of generating QUEEN in the first position of the document is the same as generating it in the last position.
- The two independence assumptions amount to the bag of words model.

### A different Naive Bayes model: Bernoulli model



#### Violation of Naive Bayes independence assumption

- The independence assumptions do not really hold of documents written in natural language.
- Conditional independence:

$$P(\langle t_1,\ldots,t_{n_d}\rangle|c)=\prod_{1\leq k\leq n_d}P(X_k=t_k|c)$$

- Positional independence:  $\hat{P}(t_{k_1}|c) = \hat{P}(t_{k_2}|c)$
- Exercise
  - Examples for why conditional independence assumption is not really true?
  - Examples for why positional independence assumption is not really true?
- How can Naive Bayes work if it makes such inappropriate assumptions?

#### Why does Naive Bayes work?

- Naive Bayes can work well even though conditional independence assumptions are badly violated.
- Example:

|                                                   | $c_1$   | <i>c</i> <sub>2</sub> | class selected        |
|---------------------------------------------------|---------|-----------------------|-----------------------|
| true probability $P(c d)$                         | 0.6     | 0.4                   | <i>c</i> <sub>1</sub> |
| $\hat{P}(c)\prod_{1\leq k\leq n_d}\hat{P}(t_k c)$ | 0.00099 | 0.00001               |                       |
| NB estimate $\hat{P}(c d)$                        | 0.99    | 0.01                  | $c_1$                 |

- Double counting of evidence causes underestimation (0.01) and overestimation (0.99).
- Classification is about predicting the correct class and not about accurately estimating probabilities.
- Correct estimation  $\Rightarrow$  accurate prediction.
- But not vice versa!

#### Naive Bayes is not so naive

- Naive Naive Bayes has won some bakeoffs (e.g., KDD-CUP 97)
- More robust to nonrelevant features than some more complex learning methods
- More robust to concept drift (changing of definition of class over time) than some more complex learning methods
- Better than methods like decision trees when we have many equally important features
- A good dependable baseline for text classification (but not the best)
- Optimal if independence assumptions hold (never true for text, but true for some domains)
- Very fast
- Low storage requirements

### Outline

- 1 Recap
- 2 Text classification
- 3 Naive Bayes
- 4 NB theory
- 5 Evaluation of TC

#### **Evaluation on Reuters**



# Example: The Reuters collection

| symbol   | statist                 | tic                                            |                   | value       |
|----------|-------------------------|------------------------------------------------|-------------------|-------------|
| Ν        | docun                   | nents                                          |                   | 800,000     |
| L        | avg. 7                  | # word to                                      | kens per document | 200         |
| M        | word                    | types                                          | 400,000           |             |
| avg.     |                         | # bytes per word token (incl. spaces/punct.)   |                   | 6           |
|          | avg. 7                  | # bytes per word token (without spaces/punct.) |                   | 4.5         |
| avg.     |                         | # bytes per word type                          |                   | 7.5         |
|          | non-positional postings |                                                |                   | 100,000,000 |
| type of  | class                   | number                                         | examples          |             |
| region   |                         | 366                                            | UK, China         |             |
| industry | /                       | 870                                            | poultry, coffee   |             |
| subject  | area                    | 126                                            | elections, sports |             |

#### A Reuters document



#### **Evaluating classification**

- Evaluation must be done on test data that are independent of the training data (usually a disjoint set of instances).
- It's easy to get good performance on a test set that was available to the learner during training (e.g., just memorize the test set).
- Measures: Precision, recall,  $F_1$ , classification accuracy

#### Precision P and recall R

|                                  | in the class         | not in the class     |  |  |
|----------------------------------|----------------------|----------------------|--|--|
| predicted to be in the class     | true positives (TP)  | false positives (FP) |  |  |
| predicted to not be in the class | false negatives (FN) | true negatives (TN)  |  |  |

$$P = TP / (TP + FP)$$
  
 $R = TP / (TP + FN)$ 

#### A combined measure: F

•  $F_1$  allows us to trade off precision against recall.

$$F_1 = \frac{1}{\frac{1}{2}\frac{1}{P} + \frac{1}{2}\frac{1}{R}} = \frac{2PR}{P + R}$$

• This is the harmonic mean of P and R:  $\frac{1}{F} = \frac{1}{2}(\frac{1}{P} + \frac{1}{R})$ 

#### Averaging: Micro vs. Macro

- We now have an evaluation measure  $(F_1)$  for one class.
- But we also want a single number that measures the aggregate performance over all classes in the collection.
- Macroaveraging
  - Compute F<sub>1</sub> for each of the C classes
  - Average these C numbers
- Microaveraging
  - Compute TP, FP, FN for each of the C classes
  - Sum these C numbers (e.g., all TP to get aggregate TP)
  - Compute F<sub>1</sub> for aggregate TP, FP, FN

#### Naive Bayes vs. other methods

| (a)     |                           | NB | Rocchio | kNN |       | SVM |
|---------|---------------------------|----|---------|-----|-------|-----|
| 34000 - | micro-avg-L (90 classes)  | 80 | 85      | 86  |       | 89  |
|         | macro-avg (90 classes)    | 47 | 59      | 60  |       | 60  |
| b)      |                           | NB | Rocchio | kNN | trees | SVM |
|         | earn                      | 96 | 93      | 97  | 98    | 98  |
|         | acq                       | 88 | 65      | 92  | 90    | 94  |
|         | money-fx                  | 57 | 47      | 78  | 66    | 75  |
|         | grain                     | 79 | 68      | 82  | 85    | 95  |
|         | crude                     | 80 | 70      | 86  | 85    | 89  |
|         | trade                     | 64 | 65      | 77  | 73    | 76  |
|         | interest                  | 65 | 63      | 74  | 67    | 78  |
|         | ship                      | 85 | 49      | 79  | 74    | 86  |
|         | wheat                     | 70 | 69      | 77  | 93    | 92  |
|         | corn                      | 65 | 48      | 78  | 92    | 90  |
| •       | micro-avg (top 10)        | 82 | 65      | 82  | 88    | 92  |
|         | micro-avg-D (118 classes) | 75 | 62      | n/a | n/a   | 87  |

Evaluation measure:  $F_1$  Naive Bayes does pretty well, but some methods beat it consistently (e.g., SVM).

## Take-away today

- Text classification: definition & relevance to information retrieval
- Naive Bayes: simple baseline text classifier
- Theory: derivation of Naive Bayes classification rule & analysis
- Evaluation of text classification: how do we know it worked / didn't work?

#### Resources

- Chapter 13 of IIR
- Resources at http://ifnlp.org/ir
  - Weka: A data mining software package that includes an implementation of Naive Bayes
  - Reuters-21578 the most famous text classification evaluation set (but now it's too small for realistic experiments)