Question 1

Reading the sample data
import pandas as pd
data = pd.read_csv("/content/2019 Winter Data Science Intern Challenge Data Set - Sheet1.csv'
data.head()

	order_id	shop_id	user_id	order_amount	total_items	<pre>payment_method</pre>	created_at
0	1	53	746	224	2	cash	2017-03-13 12:36:56
1	2	92	925	90	1	cash	2017-03-03 17:38:52
2	3	44	861	144	1	cash	2017-03-14 4:23:56
_		4.0	225				2017-03-26

Data cleaning (handling missing data)
data.isna().any()

order_id	False
shop_id	False
user_id	False
order_amount	False
total_items	False
payment_method	False
created_at	False
dtype: bool	

data.describe()

	order_id	shop_id	user_id	order_amount	total_items	1
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.00000	
mean	2500.500000	50.078800	849.092400	3145.128000	8.78720	
std	1443.520003	29.006118	87.798982	41282.539349	116.32032	
min	1.000000	1.000000	607.000000	90.000000	1.00000	
25%	1250.750000	24.000000	775.000000	163.000000	1.00000	
50%	2500.500000	50.000000	849.000000	284.000000	2.00000	
75%	3750.250000	75.000000	925.000000	390.000000	3.00000	
max	5000.000000	100.000000	999.000000	704000.000000	2000.00000	

The mean of order_amount is 3145.128 which is provided in the question. Here we can see there is a huge difference between min max values of order_amount which means it is possible that data has outlier.

a. A Better Way to Evaluate Data.

▼ Let us calculate AOV by store(shop_id) first and visualize those values

```
store = data.groupby("shop_id").mean()
store.sort_values(by="order_amount",ascending=False).head()
```

	order_id	user_id	order_amount	total_items	1
shop_id					
42	2441.921569	758.588235	235101.490196	667.901961	
78	2663.021739	867.739130	49213.043478	1.913043	
50	2162.431818	834.500000	403.545455	2.090909	
90	2694.163265	839.857143	403.224490	2.265306	
38	2639.714286	837.800000	390.857143	2.057143	

store.reset_index().plot.scatter(x='shop_id',y='order_amount')

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3155b62d0>

import matplotlib.pyplot as plt

```
plt.boxplot(store['order_amount'])
plt.ylabel("Average order value by shop")
```


Here we can see there are two outliers which has impacted the mean. shop 42 and 78 have extreme average order values.

b. What metric can be used then.

If these two values were either errors we can remove them but if they aren't then we could use median instead of mean which will only provide the middle most value instead of average value.

- c. What is the value.

So \$284 is the value that can be used instead of 3145.128

Ouestion 2

a. How many orders were shipped by Speedy Express in total?

SELECT count(*) as orders_shipped_by_speedy_Express FROM Orders where

▼ ShipperID in (Select ShipperID from Shippers where ShipperName="Speedy Express")

Result:				
Number of Records: 1				
orders_shipped_by_speedy_Express				
54				

→ b. What is the last name of the employee with the most orders?

select LastName, count() as orders from Orders JOIN Employees on

 Orders.EmployeeID = Employees.EmployeeID group by LastName order by count() desc limit(1);

Peacock is the lastname of the employee with most orders

c. What product was ordered the most by customers in Germany?

- SELECT ProductName,sum(Quantity) as Quantity FROM OrderDetails Join Products on OrderDetails.ProductID = Products.ProductID where OrderID IN
- ▼ (Select Orders.OrderID from customers join Orders on Customers.CustomerID=Orders.CustomerID where Country='Germany' order by OrderID) group by Products.ProductID order by Quantity desc;

Result:			
Number of Records: 45			
ProductName	Quantity		
Boston Crab Meat	160		
Gorgonzola Telino	125		
Tunnbröd	105		
Steeleye Stout	100		
Teatime Chocolate Biscuits	95		
Mozzarella di Giovanni	86		
Chang	84		
Lakkalikööri	75		
Fløtemysost	75		
Camembert Pierrot	75		
Inlagd Sill	72		
Raciette Courdavault	70		
Northwoods Craphorns Cause	70		

✓ 0s completed at 10:15 AM

×