Math 110BH Homework 6

Nathan Solomon

March 19, 2024

1

Let M be a (left) R-module generated by one element. Prove that M is isomorphic to the factor module R/I where I is a (left) ideal of R.

2

Let R be a commutative ring. Show that for every two R modules M and N, the group $\text{Hom}_R(M,N)$ has a structure of an R-module.

3

Let M be a (left) R-module, $N \subset M$ a submodule. Prove that if N and M/N are finitely generated, then so is M.

4

Prove that for any (left) R-module M, the groups $\operatorname{Hom}_R(R,M)$ and M are isomorphic.

5

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a ring R-module homomorphism. Show that there is a unique $m \times n$ matrix A such that $F(x) = A \cdot x$ for any $x \in \mathbb{R}^n$.

6

Let R be a commutative ring and $I \subset R$ an ideal. Prove that if I is a free R-module, then I is a principal ideal.

7

Show that \mathbb{Q} is not a free abelian group (\mathbb{Z} -module).

Suppose it has a basis and then try to find a contradiction?

8

Prove that a free finitely generated (left) R-module has a finite basis.

9

Let M be a (left) R-module, $I \subset R$ an ideal. Denote by IM the submodule of M generated by the products am for all $a \in I$ and $m \in M$.

- (a) Assume that IM = 0. Show that M admits a structure of a (left) module over the factor ring R/I.
- (b) Show that M/IM admits a structure of a (left) module over the factor ring R/I.
- (c) Prove that if M is a free R-module, then M/IM is a free R/I-module. Hint: Show that if S is a basis for M; then the set of cosets $\{s + IM, s \in S\}$ is a basis for M/IM.
- (d) Let R be a nonzero commutative ring. Prove that if (left) R-module R^n and R^m are isomorphic, then n=m. Deduce that every two bases for a free finitely generated R-module have the same number of elements. Hint: Consider modules over the factor ring R/I where I is a maximal ideal of R.
- (a)
- (b)
- (c)
- (d)

Let A be an abelian group, $f \in \text{End}(A)$. Show that A admits a $\mathbb{Z}[x]$ -module structure such that $x \cdot a = f(a)$ for all $a \in A$.