\square Task 5.1

Today's lab will help directly with the assignment.

Download the following (possibly familiar) code.

Link.java

In this lab, you will implement a class called LinkedList.java. The class should use a generic (LinkedList<T>) to constrain the types that can be put into the linked list. This class should have the following attributes and methods that implement a linked list:

- a head and tail reference to the beginning and end of the linked list
- a constructor that initialises an empty linked list
- is Empty() that returns true if there are no elements in the list and false otherwise.

Your linked list should also have the following methods:

- T elementAt (i): Returns the element at position i. The first position in the list is 0. If the ith position does not exist, a NoSuchElementException is thrown.
- void insertAt (int i, T e): Inserts element e into the ith position of the linked list. If the ith position does not exist, a NoSuchElementException is thrown. Note for an empty list, you can insert at position 0. For a list of one element, you can insert at position 1. etc.

Implement this linked list inside LinkedList.java. Create a Main.java class with a main method to test your linked list. Create link lists of type String and Integer. Print out the elements to the screen to demonstrate that your methods work.

\sqcap Task 5.2

In your main method, write the following java code:

```
LinkedList < String > strs = new LinkedList < String > ();
LinkedList < Integer > ints = new LinkedList < Integer > ();
ints.insertAt (0, ''Hi there.'');
```

Please explain why this code does not compile.

\sqcap Challenge Task 5.3

It doesn't make too much sense to add elements without removing them. Create a method that removes an item from the list.

• void removeAt (int i): Removes the element at the ith position of the linked list. If the ith position does not exist, a NoSuchElementException exception is thrown.