Problem - 1283D - Codeforces 7/21/20, 10:48 PM

HOME CONTESTS GYM **PROBLEMSET GROUPS** RATING EDU API CALENDAR HELP 10 YEARS! ##

PROBLEMS SUBMIT STATUS STANDINGS CUSTOM TEST

D. Christmas Trees

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input output: standard output

There are *n* Christmas trees on an infinite number line. The i-th tree grows at the position x_i . All x_i are guaranteed to be distinct.

Each integer point can be either occupied by the Christmas tree, by the human or not occupied at all. Non-integer points cannot be occupied by anything.

There are m people who want to celebrate Christmas. Let y_1, y_2, \ldots, y_m be the positions of people (note that all values $x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_m$ should be **distinct** and all y_j should be integer). You want to find such an arrangement of people that the value $\sum \min_{i} |x_i - y_j|$ is the minimum possible (in other words, the sum of distances to the nearest Christmas tree for all people should be minimized).

In other words, let d_j be the distance from the j-th human to the nearest Christmas tree ($d_j = \min_{i=1}^n |y_j - x_i|$). Then you need to choose such positions y_1, y_2, \dots, y_m that $\sum_{i=1}^m d_j$ is the minimum possible.

Input

The first line of the input contains two integers n and m $(1 \le n, m \le 2 \cdot 10^5)$ — the number of Christmas trees and the number of people.

The second line of the input contains *n* integers x_1, x_2, \ldots, x_n ($-10^9 \le x_i \le 10^9$), where x_i is the position of the *i*-th Christmas tree. It is guaranteed that all x_i are distinct.

Output

In the first line print one integer res — the minimum possible value of $\sum_{j=1}^m \min_{i=1}^n |x_i - y_j|$ (in other words, the sum of distances to the nearest Christmas tree for all people).

In the second line print *m* integers y_1, y_2, \dots, y_m $(-2 \cdot 10^9 \le y_i \le 2 \cdot 10^9)$, where y_i is the position of the j-th human. All y_i should be distinct and all values $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_m$ should be **distinct**.

If there are multiple answers, print any of them.

Examples

input	Сору
2 6 1 5	
output	Сору

Codeforces Round #611 (Div. 3)

Finished

→ Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you solve this problem in the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

\rightarrow Problem tags

shortest paths *1800 graphs greedy No tag edit access

→ Contest materials

- Announcement (en)
- Tutorial

×

Problem - 1283D - Codeforces 7/21/20, 10:48 PM

Codeforces (c) Copyright 2010-2020 Mike Mirzayanov
The only programming contests Web 2.0 platform
Server time: Jul/21/2020 22:47:45^{UTC-4} (i1).
Desktop version, switch to mobile version.
Privacy Policy

Supported by

