Homework 2

Graphical Models

Pedro M. Achanccaray Diaz PUC-Rio

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \left[exp \left(\sum_{i \in S} U(y_i, \mathbf{x}) + \theta_P \sum_{i \in S} \sum_{j \in N_i} P(y_i, y_j, \mathbf{x}_i, \mathbf{x}_j) \right) \right]$$

Where:

- $\mathbf{y} = [y_1, ..., y_n]$: set of labels, where $y_i \in \{1, ..., M\}$ and M is the number of classes and n is the number of sites
- x: observed data
- *U* and *P* are the *Unary* (Association) and *Pairwise* (Interaction) potentials
- S: sites in the image indexed by i
- N_i : Neighborhood of a site i, where $j \in N_i$ is a neighbor site of i
- *Z*: partition function or normalizing constant
- θ_P : Pairwise potential weight
- $\theta_P \in [1,2,...]$

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \left[exp \left(\sum_{i \in S} U(y_i, \mathbf{x}) + \theta_P \sum_{i \in S} \sum_{j \in N_i} P(y_i, y_j, \mathbf{x}_i, \mathbf{x}_j) \right) \right]$$

Unary or Association Potential:

How likely an image site i will take a label given its y_i feature vector $\mathbf{f}_i(\mathbf{x})$

$$U(y_i, \mathbf{x}) = log P(y_i | \mathbf{f}_i(\mathbf{x}))$$

Any discriminative classifier can be used.

Random Forest (RF):

$$logP(y_i|\mathbf{f}_i(\mathbf{x})) = \left(\frac{V_y}{N_T}\right)$$

 $\emph{N}_{\emph{T}}$ is the number of trees and V_y is the number of votes for a class y

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \left[exp \left(\sum_{i \in S} U(y_i, \mathbf{x}) + \theta_P \sum_{i \in S} \sum_{j \in N_i} P(y_i, y_j, \mathbf{x}_i, \mathbf{x}_j) \right) \right]$$

Pairwise or Interaction Potential:

Potts Model

$$P(y_i, y_j) = \begin{cases} \beta & \text{, if } y_i = y_j \\ 0 & \text{, if } y_i \neq y_j \end{cases}$$

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \left[exp \left(\sum_{i \in S} U(y_i, \mathbf{x}) + \theta_P \sum_{i \in S} \sum_{j \in N_i} P(y_i, y_j, \mathbf{x}_i, \mathbf{x}_j) \right) \right]$$

Pairwise or Interaction Potential:

Contrast-sensitive Potts Model

$$P(y_i, y_j, \mathbf{x}_i, \mathbf{x}_j) = \begin{cases} p + (1 - p)e^{-\frac{d_{ij}^2}{2\sigma^2}} & \text{, if } y_i = y_j \\ 0 & \text{, if } y_i \neq y_j \end{cases}$$

where: $d_{ij} = \|\mathbf{f}_i(\mathbf{x}) - \mathbf{f}_j(\mathbf{x})\|$ and σ^2 is the mean value of d_{ij}^2 determined during training.

 $p \in [0; 1]$ controls the weights of the data-dependent and data-independent smoothing terms.

The following approaches are proposed to be tested:

- 1. RF_{Pixel} : Using only the unary potential. Association Potential with Random Forest (RF) classifier.
- 2. $CRF_{RF+Potts}$: Using the unary and pairwise potentials. Association Potential with Random Forest (RF) and Spatial Interaction potential with Potts Model.
- 3. CRF_{RF+ContrastPotts}: Using the unary and pairwise potentials. Association Potential with Random Forest (RF) and Spatial Interaction potential with Contrast-Sensitive Potts Model.

Perform the following experiments:

- 1. Run RF_{Pixel} , $CRF_{RF+Potts}$ and $CRF_{RF+ContrastPotts}$.
- 2. Change the θ_p to find the one that produce the best result.
- 3. Show maps for different approaches and values of θ_P , as well as accuracy metrics (OA, AA, Precision, Recall, F1-score)

Markov Random Fields - CRF

The following approaches are proposed to be tested:

- 1. NB_{Pixel} : Using only the unary potential. Association Potential with Naïve Bayes (NB) classifier.
- 2. $MRF_{NB+Potts}$: Using the unary and pairwise potentials. Association Potential with Naïve Bayes (NB) and Spatial Interaction potential with Potts Model.
- 3. MRF_{NB+ContrastPotts}: Using the unary and pairwise potentials. Association Potential with Naïve Bayes (NB) and Spatial Interaction potential with Contrast-Sensitive Potts Model.

Perform the following experiments:

- 1. Run NB_{Pixel} , $MRF_{NB+Potts}$ and $MRF_{NB+ContrastPotts}$.
- 2. Change the θ_p to find the one that produce the best result.
- 3. Show maps for different approaches and values of θ_P , as well as accuracy metrics (OA, AA, Precision, Recall, F1-score)

$CRF_{RF+Potts}$

 $\theta_{SP}=1$

$CRF_{RF+ContrastPotts}$

$CRF_{RF+Potts}$

 $\theta_{SP}=2$

$CRF_{RF+ContrastPotts}$

$CRF_{RF+Potts}$

 $\theta_{SP}=3$

$CRF_{RF+ContrastPotts}$

$CRF_{RF+Potts}$

 $\theta_{SP} = 4$

$CRF_{RF+ContrastPotts}$

$CRF_{RF+Potts}$

 $\theta_{SP}=5$

$CRF_{RF+ContrastPotts}$

$CRF_{RF+Potts}$

 $\theta_{SP}=6$

$CRF_{RF+ContrastPotts}$

$CRF_{RF+Potts}$

 $\theta_{SP}=7$

$CRF_{RF+ContrastPotts}$

$CRF_{RF+Potts}$

 $\theta_{SP}=8$

$CRF_{RF+ContrastPotts}$

$CRF_{RF+Potts}$

 $\theta_{SP}=9$

$CRF_{RF+ContrastPotts}$

$CRF_{RF+Potts}$

 $\theta_{SP}=10$

$CRF_{RF+ContrastPotts}$

