Calcolo Integrale Comp	oito m. 00.155				
1) Dire se le sequenti aff		vere a false			
1A) La serie di Termine					
	K+4		Vero		
∑ k=0	1 - a < 1	Diverse			
K=0	K +-1	2-			
1B) La serie di termin	e pemercico 3º è	convergente.			
	C 4K		Vero		
∑ ($\left(\frac{3}{4}\right)^{K} \rightarrow q = \frac{3}{4}$	Converge essendo			
K = O	4				
1c) La serie di termina	penerico 1	e convergente			
	K√K		Vers		
	$\sum_{K=0}^{\infty} \frac{1}{K\sqrt{K}} = \sum_{K=0}^{\infty}$	1 3>			
	K=O K-IK K=	$\begin{array}{c c} 1 & d \\ & \frac{3}{2} \end{array}$			
10) La secce di termin	ne penerico 5 ^K	mom converge			
	(-4)*		Vero		
	$\sum_{k=0}^{\infty} \left(-\frac{5}{4}\right)^k \rightarrow q$	= <u>5</u> q < -1	Indeterminata (Non e:	siste)	
	K=0 4/	4	<u> </u>		
2) Dire se le sequenti affe	rmazioni sono V	vere o false.			
2A) La serie di termin		converse a 4.			
	C 4K		Vero		
	$\sum_{\kappa=0}^{\infty} \left(\frac{3}{4}\right)^{\kappa}$	7 = 3 Comverge		- 4	
	K=0 (4)	4	1- 3		
2 B)					
<u> </u>	3				
K=2. 3K	2	Falso			
∑ 1 = K=2 3K	$\left(\frac{1}{3}\right)^2 \sum_{\kappa=0}^{\infty} \left(\frac{1}{3}\right)^{\kappa}$	$\left(\begin{array}{c}1\\1\\\end{array}\right)$	1 6		
K=2 3K	3 / (=0 (3 /	$=$ $\left(\frac{1}{3}\right)$, $\frac{1}{1-\frac{1}{3}}$	6		

26)				
00 J 4 K =	A18+4			
K=0	3	F 0		
> 0 K =	15 <u>Co</u> K	Falso		
<u>/</u>	4 ^K = 4 ¹² + 00 =	+∞		
20) La serie di termine	pemerico 15 converge a	4		
		Falso		
	$\frac{1}{15} = \frac{15}{15} = \frac{00}{15} = \frac{1}{15} = \frac{1}{15$	1 = 75		
5	, , , , , ,	5		
3) Dire se le seprenti affe	rmazioni sono vero o Pa	lse.		
3 , 20 3000 11 190000	pemerico K può esserte	Falso		
_ <				
Ka	K → L _{im} K × ⋅ ∞ K+-1	= 1 Diverge perché KX	• 0	
3B) La serie di termine	$\underbrace{\text{pemerico}}_{\text{K+5}} cos^2 \left(\frac{1}{\text{K+5}} \right) \stackrel{\circ}{\text{e}} co$	nverpente		
			Falso	
	$\sum_{\kappa=0}^{\infty} \cos^2\left(\frac{1}{\kappa+5}\right) \rightarrow \lim_{\kappa\to\infty} \lim_{\kappa\to\infty} \frac{1}{\kappa+\infty}$	cos (1) = 1 Nom può	essere comvergente	
3c) La serie a termine e	enerico sin (1) o converge	o diverpe positivamente		
	- K+5		ero ero	
×=:	- Sim(1) - francisco	1 = 0 quindi o converge o		
K=.	K+5 K+00	k+5		
	C J ^K			
3D) La serie di termine gen	nerico (-1) ^K sadisfa la comd		penza.	
00_		Veno		
X = €	$\frac{(-4)^{K}}{K+3} \rightarrow \lim_{K\to\infty} \frac{(-4)^{K}}{K+3} = 0$			
4) Dire se le sequenti affe	rmazioni sono vere o fal	2se.		

4A)La serie di termine pen	menica e 3/k² - 1 e d	ivergente		
y 110 oosee ar joenning jeen				
	7/12	- 0		
e	27/K2-1 N 7	also		
	ımfatti			
l:m K→∞	$\frac{e^{2/\kappa^2}-1}{\kappa^2}=1$			
∑ ∑ ×=0	$\frac{2}{\sqrt{\frac{7}{K^2}}} \rightarrow d=2 d>$	1 Converge		
4B) La socie di termine pene	exico ly (1+4) e' di	veroemte		
	к/			
Cm	n (4 + 4) n 4	/		
		Vero		
lin k+t	$\frac{\ln \left(\ln(1+\frac{4}{\kappa})\right)}{\ln \frac{4}{\kappa}} = 4$			
∑ K=0	4 d≤1 Diverge			
4c) La socie di termine cem	nerico to (K) é d	liverpente		
	K+2 /	Vera		
ρ	(K) + t () +			
K+m le	$e\left(\frac{\kappa}{\kappa+2}\right) = t_e(4) *$	U- U Verge		
40) La servie di termine pemen	Prico K^4 $sim\left(\frac{1}{K^2}\right)$ e	diverpente.		
	lim K⁴sın(k K+∞ 1/K³	$\frac{1}{1} = \frac{\sin\left(\frac{1}{K^2}\right)}{\frac{1}{K^2}} = \frac{1}{1}$	1	
	κ3	K ³		
	Imf	atti	Falso	
	K ⁴ ·Sim	$0\left(\frac{1}{\kappa^{2}}\right) \sqrt{\frac{1}{\kappa^{3}}}$		
		K, K,		
	×=0 ∑ ∞	1 252 224	C	
	K=0	$\frac{1}{\kappa^3} \qquad d=3 \qquad d74$	Converge	

5) Sig.	0	. 1	2014	רנא															
5) Sia										0									
0	u) Diru	2 (mol	i vamd0	la ri	sposta) se e	Comve	roenTe	O Mo	ta se	me.								
				8															
				<u>}</u> K=1	1 K ⁸	A=8	esse	ndo um	a seu	e ovem	omica	pe mero	li zzato	. Com	d>1	Conve	roe		
) Diæ	(moti	vando l	a rispo	sta) se	ė con	nversen	ite o	mo lo	Serie									
					<u></u>	Фк													
					K=4	Cl _{K+2}													
					>	1	<u>×</u>	K 8		ρ. _~	К8):		ام م	V . 0			
					K=1	1 K8 1 (K+2)8	K=1	(K+2)	8	lim	(K+Z)8		Divere	г рекс	ne cu	< X ● U			
C) Diæ	(moti va	ndo la	rispos 0	sta) se 0 K ² ·	e com	verpeni	e o m	o la	sexie									
) K=	K ²	te(1	<u>s</u>)												
				li	m K	2. te(1/K)	s) =	te(i	(<s) =<="" th=""><th>4</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></s)>	4									
				K.		1 K ⁶		1 K	8										
						infatt	:												
					K	ر <u>۱</u> ۲8) 10 <u></u>	6											
					8														
					∑ K=1	1_ K ⁶	d=6	d>1	allor	a Com	verpe								
d) Dite	(motiv	ando (posta)	se è	conver	pente	o mo	la seu	ie								
				\ \sum_{\circ}		cosla	<u>k)</u>												
				K=	-1 E	n(1+a	k)												
					<u>∞</u>	1 - cos	(ax)	a r	= 4	K=4	1	Com	erpe						
					K=1	ln(1+		2a	× 2	K=4	K ⁸		- 26						

6) Sie		- FK																	
							,		l.										
	u) Dire	. cmoti	vando	la ris) se ∞		mvero	enTe	o mo	la	serie							
						<u>}</u> K=0	a _K												
						∞													
						K=0	5 ^K →	q=5	qωι	mdi d	121	per o	westo	Dive	noe				
	o) Dire	(motiv	rando l	n risp	osta) s	e e` u	onverge	nte o	no la	Serie									
						1 0 ak													
					K=	o a _K													
					>	1	² ∑ <u></u>	(') ^K	0= 4	awa	ndi -1<	0 (4	D6#	osta (c m y/2×	,			
					K=0	5 K	K=0	(5)	غ ۹۰ غ	- φυι <i>ι</i> ι			ρου φυ	(210	- NOG				
	Dire (motivo	ando la	rispos				മ നഠ	la seri	e.									
					K=0	<u>ак</u> 6 ^к													
					K=0	5 ^K =	∑ K=0 (5)K	q= <u>5</u>	quindi	-1< q <	1 pec	questo	Comvi	erge				
	d) Dire(motiva	ndo la	risposta) se e`	Comverç	ente o	no la	serie										
					>	K ⁵ ·α _K													
					K=o	K!													
					≥ 2	κ⁵. 5 ^κ													
		Δ			K=0	K!	1.0	٠.											
		/*\ve	emob K) USOCE		(K+1)5	o del 19 · 5 ^(K+1) :+1)!				0								
					lim K→∞	К5 .		= lim K+10	5 (K+	1)4 = 0	<i>l</i> '(c) < - (wimdi	Comver	ee				