COURS DE PROJET STATISTIQUE AVEC R : TP1 $\,$

DIOP Ousseynou (ISEP 3)

2024-04-08

Contents

Bibliothèques	1
Préparation des données	2
Description des données	2
Importation et mise en forme	2
Création de variable	2
Analyses descriptives	3
Un peu de cartographie	9
Transformation de la base en données géographiques	9
Premiere carte	10
Avec le Sénégal	11
Carte brute Sénégal	11
Carte Sénégal niveau région	12
Carte Sénégal niveau département	13
Carte Sénégal niveau commune	14
Réprésentation spatiale des PME suivant le sexe	15
Réprésentation spatiale des PME suivant le niveau d'instruction	16
Autre Statistique spatiale	17
Bibliothèques	
library(haven)	

library(dplyr)

library(ggplot2)
library(sf)

library(ggspatial)

Préparation des données

Description des données

Voir tp

Importation et mise en forme

```
way <- here::here() #chemin relatif de notre base de données
past <- pasteO(way,"/Base_Projet.xlsx") #chemin complet pour acceder a la base de données
projet_nd <- read_xlsx(past) #importation de la base
projet <- data.frame(projet_nd) #transformation de la base en data_frame
```

Pour connaître le nombre de lignes (i.e. le nombre de PME) et colonnes (i.e. nombre de variables) de la base projet, il est possible d'utilisé les fonctions comme **dim** ou **str**.

```
dim(projet) # donne respectivement le nombre de ligne et de colonne
```

```
## [1] 250 33
```

Le nombre de PME dans la base de données projet est de 250, de meme le nombre de variables est de 33.

NB: la fonction str donne les caractéristiques de la base (des variables).

Vérifions s'il existe des valeurs manquantes pour la variable key.

```
unique(is.na(projet$key)) #la fonction is.na vérifie s'il y a des valeurs manquantes sur la variable ke
```

```
## [1] FALSE
```

Le resultat montre que toutes les observations ont un identifiant.

Création de variable

```
#creation de la variable parle

langue <- langue %>%
   mutate(parle =q24a_1+q24a_2+q24a_3+q24a_4+q24a_5+q24a_6+q24a_7+q24a_9+q24a_10) #La fonction mutate pe

#selection de parle et key

langue <- langue %>%
   select(key,parle)

#Merge des df langue et projet

projet_lg <- merge(projet,langue, by="key") #la variable Key est la variable clée de la fusion des deux</pre>
```

Analyses descriptives

univarie(projet_lg,sexe)

```
univarie <- function(data, var, include_na = TRUE) {</pre>
  if (!is.data.frame(data)) {
    stop("la base de données n'est pas un dataframe")
  nom <- deparse(substitute(var))#Ici nous avons recuperer uniquement le nom de la variable pour éviter
  if (!nom %in% names(data)) {
    stop("cette variable n'existe pas dans la base")
  }
  if (!include_na) {
    data <- na.omit(data) #supprimer les ligne qui ont des NA
  # Calcul des statistiques descriptives
  summary_stats <- summary(data[[nom]])</pre>
  # Tracé des fréquences
  graphe <- sjPlot::plot_frq(data, coord.flip = TRUE, nom, show.na = include_na)</pre>
  show(graphe)
  return(summary_stats)
}
```


Length Class Mode
250 character character

```
projet_lg <- projet_lg %>%
    rename(niveau_d_instruction=q25)
univarie(projet_lg,niveau_d_instruction)#appel de la fonction univarie
```


Length Class Mode
250 character character

```
projet_lg <- projet_lg %>%
  rename(statut_juridique=q12)
univarie(projet_lg,statut_juridique)
```


Length Class Mode
250 character character

```
projet_lg <- projet_lg %>%
  rename(propriete_locataire=q81)
univarie(projet_lg,propriete_locataire)
```



```
## Length Class Mode
## 250 character character
```

```
bivarie <- function(data, var1, var2) {</pre>
  if (!is.data.frame(data)) {
    stop("La base de données n'est pas un dataframe")
  }
  var1_nom <- deparse(substitute(var1)) #Ici nous avons recuperer uniquement le nom de la variable pour
  if (!var1_nom %in% names(data)) {
    stop("La variable", var1_nom, "n'existe pas dans la base de données")
  }
  var2_nom <- deparse(substitute(var2))</pre>
  if (!var2_nom %in% names(data)) {
    stop("La variable", var2_nom, "n'existe pas dans la base de données")
 }
  # Extraction des variables
  var1_data <- data[[var1_nom]]</pre>
  var2_data <- data[[var2_nom]]</pre>
  # Tableau croisé pour les deux variables avec fréquences
  cross_table1 <- addmargins(table(var1_data, var2_data)) #ajouter les sommes marginales avec addmargin</pre>
  cross_table <- addmargins(prop.table(table(var1_data, var2_data)) * 100, margin = 1)</pre>
```

```
# Affichage du tableau croisé avec fréquences en pourcentage
  cat("\nTableau croisé entre", var1_nom, "et", var2_nom, "avec fréquences:\n")
 print(cross table1)
 cat("\nTableau croisé entre", var1_nom, "et", var2_nom, "avec fréquences en pourcentage:\n")
 return(list(cross_table = cross_table))
}
bivarie(projet_lg,statut_juridique,sexe)
##
## Tableau croisé entre statut_juridique et sexe avec fréquences:
##
               var2_data
## var1_data
                Femme Homme Sum
##
    Association
                  3
                          3
##
    GIE
                  149
                         30 179
##
    Informel
                 32
                        6 38
##
    SA
                   1
                          6 7
##
    SARL
                  2
                       11 13
##
    SUARL
                    4
                         3 7
                         59 250
##
    Sum
                  191
##
## Tableau croisé entre statut_juridique et sexe avec fréquences en pourcentage:
## $cross_table
##
               var2 data
## var1_data
              Femme Homme
##
    Association 1.2 1.2
##
    GIE
                 59.6 12.0
##
                12.8 2.4
    Informel
##
                 0.4 2.4
    SA
                  0.8 4.4
##
    SARL
##
    SUARL
                  1.6
                       1.2
                 76.4 23.6
##
bivarie(projet_lg,niveau_d_instruction,sexe)
##
## Tableau croisé entre niveau_d_instruction et sexe avec fréquences:
##
                    var2_data
## var1_data
                     Femme Homme Sum
##
                         70
                               9 79
    Aucun niveau
##
    Niveau primaire
                        48
                               8 56
                               18 74
##
    Niveau secondaire
                         56
##
    Niveau Superieur
                        17
                            24 41
##
    Sum
                        191
                              59 250
## Tableau croisé entre niveau_d_instruction et sexe avec fréquences en pourcentage:
## $cross_table
##
                     var2_data
```

```
## var1_data
                      Femme Homme
##
                       28.0
    Aucun niveau
                              3.6
    Niveau primaire
##
                       19.2
                              3.2
                              7.2
##
    Niveau secondaire 22.4
##
    Niveau Superieur
                        6.8
                              9.6
##
                       76.4 23.6
bivarie(projet_lg,propriete_locataire,sexe)
##
## Tableau croisé entre propriete_locataire et sexe avec fréquences:
##
                var2_data
                 Femme Homme Sum
## var1_data
##
    Locataire
                    16
                           8 24
    Propriétaire
                   175
                          51 226
                          59 250
##
                   191
##
## Tableau croisé entre propriete_locataire et sexe avec fréquences en pourcentage:
## $cross_table
##
                var2_data
## var1_data
                 Femme Homme
                  6.4 3.2
##
   Locataire
    Propriétaire 70.0 20.4
                  76.4 23.6
##
    Sum
```

Un peu de cartographie

Transformation de la base en données géographiques

```
projet_map<- sf::st_as_sf(projet_lg, coords = c("gps_menlongitude", "gps_menlatitude")) #changer les do</pre>
class(projet_map) #class de la base de données
## [1] "sf"
                   "data.frame"
sf::st_crs(projet_map) <- 4326 #système de coordonnées
str(projet_map)
## Classes 'sf' and 'data.frame':
                                   250 obs. of 34 variables:
                         : chr "uuid:004b9117-d180-4031-a6af-6b4efabb5f53" "uuid:007d8eb4-45eb-44f4-a
  $ key
                                "Diourbel" "Thiès" "Saint-Louis" "Diourbel" ...
## $ region
                         : chr
## $ departement
                                "Bambey" "Tivaouane" "Dagana" "Mbacké" ...
                         : chr
                                "Femme" "Femme" "Homme" "Femme" ...
## $ sexe
                         : chr
##
  $ q24
                                62 60 58 60 63 61 45 45 65 60 ...
                         : num
                               0 0 1 1 0 1 0 0 1 1 ...
## $ q24a_1
                         : num
## $ q24a_2
                               1 1 1 1 1 1 1 1 1 1 . . .
                         : num
## $ q24a_3
                         : num 0000000000...
                         : num 0 1 0 0 0 0 1 1 0 0 ...
## $ q24a_4
                         : num 000010000...
## $ q24a_5
```

```
## $ q24a 6
                      : num 0000000000...
## $ q24a_7
                      : num 0000000000...
                      : num 0000000000...
## $ q24a 9
## $ q24a_10
                        : num 0000000001...
## $ niveau_d_instruction: chr "Aucun niveau" "Niveau secondaire" "Niveau secondaire" "Niveau primair
## $ q26
                       : num 20 10 30 25 21 25 12 7 5 30 ...
## $ statut_juridique : chr "GIE" "GIE" "GIE" "GIE" ...
## $ q14b
                              "Non" "Non" "Non" "Oui" ...
                        : chr
                       : chr
## $ q16
                              "Non" "Oui" "Non" "Oui" ...
## $ q17
                       : chr NA "Bon état" NA "Bon état"
## $ q19
                       : chr
                              "Mauvais état" NA "Mauvais état" NA ...
## $ q20
                              "Oui" "Non" "Oui" "Oui" ...
                       : chr
## $ filiere_1
                      : num 1 1 0 1 0 0 0 0 1 0 ...
## $ filiere_2
                      : num 0000001100...
## $ filiere_3
                       : num 0 0 1 0 1 1 0 0 1 1 ...
## $ filiere_4
                       : num 0 1 0 0 0 0 0 0 0 0 ...
## $ q8
                       : chr "Aucun" "Tansformation d'autres céréales" "Transformation du riz" "Tan
## $ propriete_locataire : chr "Propriétaire" "Locataire" "Propriétaire" "Locataire" ...
## $ submissiondate : POSIXct, format: "2021-06-05 15:33:51" "2021-06-15 01:10:46" ...
                      : POSIXct, format: "2021-06-04 15:14:14" "2021-06-08 14:40:28" ...
## $ start
## $ today
                      : POSIXct, format: "2021-06-04" "2021-06-08" ...
## $ sexe2
                       : num 1 1 0 1 0 1 1 1 1 0 ...
## $ parle
                        : num 1 2 2 2 2 2 2 2 3 ...
                        :sfc_POINT of length 250; first list element: 'XY' num -16.6 14.8
## $ geometry
## - attr(*, "sf_column")= chr "geometry"
## - attr(*, "agr")= Factor w/ 3 levels "constant", "aggregate",..: NA ...
    ..- attr(*, "names")= chr [1:33] "key" "region" "departement" "sexe" ...
```

Premiere carte

```
graphe_1 <- ggplot(projet_map) +
  aes(fill = sexe, colour = sexe) +
  geom_sf(size = 2.35) +
  scale_fill_manual(values = c(femme = "#F8766D", homme = "#61FFEC")) +
  xlab("Longitude") +
  ylab("Latitude") +
  annotation_scale(location = "br") +
  annotation_north_arrow(location = "tr", which_north = "true")
graphe_1</pre>
```


Avec le Sénégal

```
#IMPORTATION DES DONNEES DU SENEGAL
past_sn0 <- paste0(way,"/gadm41_SEN_0.shp")
past_sn1 <- paste0(way,"/gadm41_SEN_1.shp")
past_sn2 <- paste0(way,"/gadm41_SEN_2.shp")
past_sn3 <- paste0(way,"/gadm41_SEN_3.shp")

sn_map0 <- read_sf(past_sn0)
sn_map1 <- read_sf(past_sn1)
sn_map2 <- read_sf(past_sn2)
sn_map3 <- read_sf(past_sn3)</pre>
```

Carte brute Sénégal

```
library(ggplot2)

# Créer la carte brute du Sénégal
carte_0 <- ggplot(sn_map0) +
  aes(fill = COUNTRY) +
  geom_sf(size = 1.2) +
  scale_fill_brewer(palette = "Accent", direction = 1) +</pre>
```

```
labs(title = "Carte brute du Sénégal") +
theme_minimal() +
theme(legend.position = "none") +
annotation_scale(location = "bl") +
annotation_north_arrow(location = "tl", which_north = "true")
print(carte_0)
```

Carte brute du Sénégal

Carte Sénégal niveau région

```
carte_1 <- ggplot() +
  geom_sf(data = sn_map1, aes(fill = NAME_1), color = "black", size = 0.8) +
  geom_sf_text(data = sn_map1, aes(label = NAME_1), size = 3, color = "black") + # Ajouter les noms de
  theme(legend.position = "none")+ # Masquer la légende
  labs(title = "Carte du Sénégal niveau region") +
  annotation_scale(location = "bl") +
  annotation_north_arrow(location = "tl", which_north = "true")
print(carte_1)</pre>
```

Carte du Sénégal niveau region

Carte Sénégal niveau département

```
carte_2 <- ggplot() +
  geom_sf(data = sn_map2, aes(fill = NAME_2), color = "black", size = 0.8) +
  geom_sf_text(data = sn_map2, aes(label = NAME_2), size = 3, color = "black") + # Ajouter les noms de
  theme(legend.position = "none")+ # Masquer la légende
  labs(title = "Carte du Sénégal niveau departement") +
  annotation_scale(location = "bl") +
  annotation_north_arrow(location = "bl", which_north = "true")
print(carte_2)</pre>
```

Carte du Sénégal niveau departement

Carte Sénégal niveau commune

```
carte_3 <- ggplot() +
  geom_sf(data = sn_map3, aes(fill = NAME_3), color = "black", size = 0.8) +
  geom_sf_text(data = sn_map3, aes(label = NAME_3), size = 3, color = "black") + # Ajouter les noms de
  theme(legend.position = "none")+ # Masquer la légende
  labs(title = "Carte Sénégal niveau commune") +
  annotation_scale(location = "bl") +
  annotation_north_arrow(location = "bl", which_north = "true")
print(carte_3)</pre>
```

Carte Sénégal niveau commune

Réprésentation spatiale des PME suivant le sexe

```
carte_sen_sex <- ggplot()+
  geom_sf(data=sn_map1, color = "black", size = 0.8)+
  theme(legend.position = "none") +
  geom_sf(data=projet_map,aes(fill = sexe, colour = sexe),size = 2.35)+
  scale_fill_manual(values = c(femme = "#F8766D",
  homme = "#61FFEC")) +
  labs(title = "Representation spatiale des PME suivant le sexe")+
  geom_sf_text(data = sn_map1, aes(label = NAME_1), size = 3, color = "black") +
  annotation_scale(location = "br") +
  annotation_north_arrow(location = "tr", which_north = "true")+
  theme_minimal()
  carte_sen_sex</pre>
```


Réprésentation spatiale des PME suivant le niveau d'instruction

```
carte_sen_niv_ins <- ggplot()+
  geom_sf(data=sn_map1, color = "black", size = 0.8)+
  theme(legend.position = "none") +
  geom_sf(data=projet_map,aes(colour = niveau_d_instruction),size = 1.2)+
  geom_sf_text(data = sn_map1, aes(label = NAME_1), size = 3, color = "black") +
  scale_color_hue(direction = 1,name = "Niveau d'instruction") +
  annotation_scale(location = "br") +
  labs(title = "Representation spatiale des PME suivant le niveau d instruction")+
  annotation_north_arrow(location = "tr", which_north = "true")+
  theme_minimal()
  carte_sen_niv_ins</pre>
```

Representation spatiale des PME suivant le niveau d instruction

Autre Statistique spatiale

```
carte_sen_pro_loc <- ggplot()+
  geom_sf(data=sn_map1, color = "black", size = 0.8)+
  theme(legend.position = "none") +
  geom_sf(data=projet_map,aes(colour = propriete_locataire),size = 1.2)+
  geom_sf_text(data = sn_map1, aes(label = NAME_1), size = 3, color = "black") +
  scale_color_hue(direction = 1,name = "Propriété/Locataire") +
  annotation_scale(location = "br") +
  labs(title = "Representation spatiale des PME suivant les propriétaires ou locataires")+
  annotation_north_arrow(location = "tr", which_north = "true")+
  theme_minimal()
  carte_sen_pro_loc</pre>
```

Representation spatiale des PME suivant les propriétaires ou locataires

