BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC PHENIKAA

ĐỀ SỐ: 1

Đề thi gồm có 04 câu; 02 trang Đề thi **không được** sử dụng tài liêu

ĐỀ THI KẾT THÚC HỌC PHẦN

(Đối với môn thi tự luận)

Học phần: Tối ưu hóa

Mã học phần:

Ngày thi: Giờ thi:

Thời gian làm bài: 90 phút (Không kể thời gian giao đề)

Họ và tên sinh viên: Số báo danh: Số báo

Câu 1: (2 điểm): Tìm cực trị địa phương của hàm số $f(x_1,x_2)=e^{-2x_1^2-3x_2^2}x_1x_2$.

Câu 2: (3 điểm): Cho bài toán:

$$\begin{split} \min & & 5x_1^2 + x_2 \\ s.t. & & 2x_1^2 + 3x_2^2 \leq 9, \\ & & x_1 + x_2 \geq 1, \\ & & x_1, x_2 \geq 0. \end{split}$$

- a. (1.5 điểm) Chứng minh rằng bài toán trên là bài toán là tối ưu lồi.
- b. (1.5 điểm) Tìm giá trị tối ưu của bài toán sử dụng điều kiện KKT.

Câu 3: (3 điểm): Một nhà máy tiểu thủ công nghiệp sản xuất 3 loại thiết bị máy móc kí hiệu là A, B, C, sử dụng thép và đồng thau. Biết rằng số lượng thép, đồng thau, và số tuần cần thiết để sản xuất được một đơn vị sản phẩm mỗi loại được cho trong bảng dưới đây.

	A	В	С	Giới hạn
Thép	5	5	3	100 kg
Đồng thau	3	4	9	75 kg
Số tuần	1	2	1	20 tuần

Cho biết lợi nhuận thu được từ mỗi sản phẩm loại A, B, C tương ứng là 6, 4, 7. Xác định số lượng sản phẩm mỗi loại nên sản xuất để tối đa hóa lợi nhuận, với yêu cầu rằng tổng khối lượng thép và đồng thau tương ứng không vượt quá 100kg và 75g, và số tuần làm việc tối đa là 20.

- a. (1 điểm) Viết mô hình quy hoạch tuyến tính của bài toán trên
- b. (2 điểm) Sử dụng thuật toán đơn hình tìm lời giải tối ưu

Câu 4: (2 điểm):

Bài toán phân lớp nhị phân (binary classification) là quá trình phân lớp 1 đối tượng dữ liệu vào 2 lớp cho trước nhờ 1 mô hình phân lớp (model) nào đó. Ví dụ, Gmail xác định xem một email có phải là spam hay không; hay các ngân hàng xác định xem một khách hàng có khả năng thanh toán nợ hay không. Mô hình phân lớp được xây dựng dựa trên 1 tập dữ liệu được xây dựng trước đó có gán nhãn (hay còn gọi là tập huấn luyện). Quá trình phân lớp là quá trình gán nhãn cho đối tượng dữ liệu. Xét mô hình phân lớp hồi qui Logistic (Logistic regression) trong phân lớp nhị phân của học có giám sát (supervised learning). Trong mô hình này, cho biết các điểm dữ liệu đầu vào $\{(\mathbf{x}_i,y_i): i=1,...,n\}$,

- $\mathbf{x}_i \in \mathbb{R}^d$ biểu diễn thuộc tính của dữ liệu thứ i, và
- $y_i \in \{0,1\}$ là nhãn của dữ liệu tương ứng.

Yêu cầu là tìm một vector tham số $\theta \in \mathbb{R}^d$ sao cho hàm số sau đây đạt giá trị nhỏ nhất.

$$L(\theta) = -\frac{1}{n} \sum_{i=1}^{n} y_i \log \left(\sigma \left(\theta^T \mathbf{x}_i \right) \right) - \frac{1}{n} \sum_{i=1}^{n} \left(1 - y_i \right) \log \left(1 - \sigma \left(\theta^T \mathbf{x}_i \right) \right),$$

trong đó hàm sigmoid $\sigma:\mathbb{R} \to \mathbb{R}_{_+}$ được định nghĩa như sau:

$$\sigma(t) = \frac{1}{1 + e^{-t}} \, .$$

Hàm $L(\theta)$ được gọi là hàm loss (hay hàm $Cross\ Entropy$).

- a. (1 điểm) Chứng minh rằng hàm $L(\theta)$ là hàm lồi
- b. (1 điểm) Biểu diễn $L(\theta)$ trong trường hợp d=n=1 và tìm $\theta \in \mathbb{R}$ để hàm $L(\theta)$ đạt giá trị nhỏ nhất.

Tổng: 04 câu

Ghi chú: - Cán bộ coi thi không giải thích gì thêm.

PGS. TS. Nguyễn Trung Thành

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯ**ỜNG ĐẠI HỌC PHENIKAA**

ĐÁP ÁN ĐỀ THI KẾT THÚC HỌC PHẦN

Học phần: Tối ưu hóa

Mã học phần:

<u>ĐỀ SỐ:</u> 1

Đáp án gồm có 04 trang

Câu		Điểm	Chuẩn đầu ra học phần								
Câu 1		<u>2 điểm</u>	_								
	Tính các đạo hàm riêng: $f'_{x_1} = e^{-2x_1^2 - 3x_2^2} (1 - 4x_1^2) x_2$ $f''_{x_1} = 4x_1^{-2x_1^2 - 3x_2^2} (4x_1^2 - 2x_1^2)$	2		1)							
	$\begin{aligned} f_{x_1^2}^{"} &= 4e^{-2x_1^2 - 3x_2^2} (4x_1^2 - 3)x \\ f_{x_1x_2}^{"} &= e^{-2x_1^2 - 3x_2^2} (4x_1^2 - 1)(6x_1^2 - 6x_1^2 - $	0.5									
	Giải hệ $f_{x_1}^{'} = f_{x_2}^{'} = 0$ đư $(0,0); (1/2,1/\sqrt{6})$	0.5									
	Ma trận Hess: $H = e^{-2x_1^2 - 3x_2^2} \begin{bmatrix} 4 \\ (4x)^2 \end{bmatrix}$	0.25									
	Xét điều kiện:										
	Điểm dừng	det(H')	$f_{x_1^2}^{"}$	Kết luận							
	(0,0)	-1 < 0		Không là cực trị							
	$(1/2,1/\sqrt{6})$	4 > 0	< 0	Cực đại	0.75						
	$(-1/2,1/\sqrt{6}$	4 > 0	> 0	Cực tiểu							
	$(1/2,-1/\sqrt{6}$	4 > 0	>0	Cực tiểu							
	$(-1/2,-1/\sqrt{6})$	(5) $4 > 0$	< 0	Cực đại							
Câu 2	-				<u>3 điểm</u>						
a.	Hàm mục tiêu $5x_1^2 + x_2$	à hàm lồi vì m	a trận Hess	s là PSD	0.5						
	Sử dụng định nghĩa tập l	n mục tiêu $5x_1^2 + x_2$ là hàm lồi vì ma trận Hess là PSD lụng định nghĩa tập lồi để chỉ ra rằng miền ràng buộc là tập lồi									

b.	Hàm Lagrange:		
-	$L = 5x_1^2 + x_2 + \lambda(2x_1^2 + 3x_2^2 - 9) - \mu_1(x_1 + x_2 - 1) - \mu_2x_1 - \mu_3x_2$		
H	Điều kiện KKT:		
	$\int L_{x_1} = 10x_1 + 4\lambda x_1 - \mu_1 - \mu_2 = 0$		
	$L_{x_2} = 1 + 6\lambda x_2 - \mu_1 - \mu_3 = 0$	1	
	$\lambda \left(2x_1^2 + 3x_2^2 - 9\right) = 0$		
	$\mu_1(x_1 + x_2 - 1) = 0$		
	$\mu_2 x_1 = 0$		
	$\mu_3 x_2 = 0$		
	$2x_1^2 + 3x_2^2 \le 9$		
	$x_1 + x_2 \ge 1$		
	$\begin{vmatrix} x_1, x_2 \ge 0 \\ 1 & x_1 \end{vmatrix}$		
	$\left(\lambda,\mu_{1},\mu_{2}\geq0\right)$		
2	$\text{Yét } \lambda \neq 0 : \text{suy ra } 2x_1^2 + 3x_2^2 = 9$		
	• $\mu_1 \neq 0$: suy ra $x_1 + x_2 = 1$ suy ra không tồn tại đồng thời $x_1, x_2 \geq 0$		
		0.25	
	• $\mu_1 = 0$: suy ra $\mu_3 \neq 0 \Rightarrow x_2 = 0 \Rightarrow x_1 = \frac{3}{\sqrt{2}} \Rightarrow \mu_3 = 1, \mu_2 = 0, \lambda < 0$		
	1		
	$\int 10x_1 - \mu_1 - \mu_2 = 0$		
	Xét $\lambda = 0$: suy ra $\begin{cases} 10x_1 - \mu_1 - \mu_2 = 0 \\ 1 - \mu_1 - \mu_3 = 0 \end{cases}$		
	• $\mu_1 \neq 0$: suy ra $x_1 + x_2 = 1$.		
	$-\mu_{2} = \mu_{3} = 0 \Rightarrow \mu_{1} = 1, x_{1} = 1/10, x_{2} = 9/10$		
	$\mu_2 = 0, \mu_3 \neq 0 : \Rightarrow x_2 = 0, x_1 = 1, \mu_1 = 10, \mu_3 < 0$	0.5	
	$- \mu_3 = 0, \mu_2 \neq 0 : \Rightarrow x_1 = 0, x_2 = 1, \mu_2 < 0$		
	$- \mu_3, \mu_2 \neq 0 : \Rightarrow x_1 = x_2 = 0$		
	• $\mu_1 = 0$: suy ra $\mu_3 = 1 \Rightarrow x_2 = 0 \Rightarrow x_1 = 0$		
H	KL: Vậy hệ có nghiệm duy nhất (1/10, 9/10) và là điểm tối ưu của bài toán.	0.25	
Câu 3		<u> 3 điểm</u>	
a. H	Đặt x_1,x_2,x_3 lần lượt là số lượng sản phẩm loại A, B, C tương ứng cần sản xuất		
	tể tối đa hóa lợi nhuận. Khi đó ta có bài toán QHTT sau:		
	$\max 6x_1 + 4x_2 + 7x_3$		
	$s.t. 5x_1 + 5x_2 + 3x_3 \le 100,$	1	
	$3x_{_{1}}+4x_{_{2}}+9x_{_{3}}\leq 75,$		
	$x_1 + 2x_2 + x_3 \le 20,$		
	$x_{_{\! 1}}, x_{_{\! 2}}, x_{_{\! 3}} \ge 0.$		

	-T									T	r
b.		x ₁	x ₂	x ₃	S ₁	S_2	S_3	const.			
		5	5	3	1	0	0	100	-		
		3	4	9	0	1	0	75			
		1	2	1	0	0	(1)	20			
		<u>6</u>	4	7	0	0	0	F - 0			
		1	1	3/5	1/5	0	0	20			
		3	4	9	0	1	0	75		0.5	
		1	2	1	0	0	(1)	20			
		6	4	7	0	0	0	F - 0			
		(1)	1	3/5	1/5	0	0	20			
		0	1	36/5	-3/5	(1)	0	15			
		0	1	2/5	-1/5	0	(1)	0			
		0	-2	17/5	-6/5	0	0	F - 120			
			-2	1113	-0/3	•		1 - 120			
		x ₁	x ₂	x ₃	S ₁	S ₂	S ₃	const.	_		
		1	1	3/5	1/5	0	0	20			
		0	1	36/5	-3/5	1	0	15			
		0	1	2/5	-1/5	0	1	0			
		0	-2	17/5	-6/5	0	0	F - 120			
		1	1	3/5	1/5	0	0	20			
		0	1	36/5	-3/5	(1)	0	15		0.5	
		0	5/2	1	-1/2	0	5/2	0			
		0	-2	17/5	-6/5	0	0	F - 120			
		1	-1/2	0	1/2	0	-3/2	20			
		0	-17	0	3	1	-18	15			
		0	5/2	1	-1/2	0	5/2	0			
		0	-21/2	0	1/2	0	-17/2	F - 120			
		x ₁	x ₂	х ₃	S ₁	S ₂	S ₃	const.			
		1	-1/2	0	1/2	0	-3/2	20			
		0	-17	0	3	1	-18	15			
		0	5/2	1	-1/2	0	5/2	0			
		0	-21/2	0	1/2	0	-17/2	F - 120			
		1	-1/2	0	1/2	0	-3/2	20		0.5	
		0	-17/3 5/2	0	-1/2	1/3 0	-6 5/2	5 0		0.5	
		0	-21/2	0	1/2	0	-17/2	F - 120			
		(1)	7/3	0	0	-1/6	3/2	35/2			
		0	-17/3	0	1	1/3	-6	5			
		0	-1/3	1	0	1/6	-1/2	5/2			
		0	-23/3	0	0	-1/6	-11/2	F - 245/2			
	$x_1 = 35/2$ $x_2 = 0$ $x_3 = 0$	5/2								~ -	
	$F_{\text{max}} = 245/2$									0.5	
Câu 5										<u>2 điểm</u>	
a.				1λ. 1	£' (-		1	(+) 1>1>	4 4.7 .~		
	Hàm $f_1(t) = -\log(\sigma(t))$ là hàm lồi do $f_1'(t) = -1 + \sigma(t)$ là hàm đơn điệu tăng.						0.25				
	Hàm $f_2(t) = -\log(1-\sigma(t))$ là hàm lồi do $f_2^{'}(t) = 1 + f_1^{'}(t)$ là hàm đơn điệu tăng.						0.25				
1	Xét $g(y) = f(Ay)$. Ta có $\nabla^2_y g(y) = A^T \nabla^2_x f(Ay) A$. Do đó						0.5				
									<u> </u>		

	$z^{T}\nabla_{y}^{2}g(y)z = z^{T}A^{T}\nabla_{x}^{2}f(Ay)Az = (Az)^{T}f(Ay)(Az) \ge 0$		
	với mọi z . Suy ra $ abla_y^2 g(y)$ là ma trận PSD với mọi y .		
	$\boxed{\text{Vậy } -\log \Big(\sigma \Big(\theta^T \mathbf{x}_{_i}\Big)\Big), -\log \Big(1-\sigma \Big(\theta^T \mathbf{x}_{_i}\Big)\Big) \text{ là các hàm lỗi, và hàm L là hàm lỗi vì}}$		
	là tổng của các hàm lồi.		
b.	Biểu diễn $L(\theta)$ trong trường hợp $d=n=1$:	0.5	
	$L(\theta) = -y \log(\sigma(\theta x)) - (1 - y) \log(1 - \sigma(\theta x))$	0.5	
	Đạo hàm $L'(\theta) = 0 \Leftrightarrow \frac{1-y}{y} = e^{-\theta x}$. Nếu $x \neq 0$ thì $\theta = -\frac{\log \frac{1-y}{y}}{x}$.	0.5	

Trưởng Khoa/Bộ môn

Giảng viên làm đáp án

PGS. TS. Nguyễn Trung Thành