EE6367: Topics in Data Storage and Communications

2023

Lecture 19: 08 November 2023

Instructor: Shashank Vatedka Scribe: Gautam Singh

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

19.1 Notions of Convergence

Definition 19.1 (Almost Sure Convergence). A sequence of random variables X_1, X_2, \ldots, X_n converges almost surely to a random variable X if

$$\Pr\left(\lim_{n\to\infty}|X_n - X| > \epsilon\right) = 0, \ \forall \ \epsilon > 0.$$
(19.1)

and we denote this as $X_n \xrightarrow{\text{as}} X$.

Equivalently, we can write (19.1) as

$$\Pr\left(|X_n - X| > \epsilon\right) \to 0, \ n \geqslant N, \ N \to \infty. \tag{19.2}$$

Definition 19.2 (Convergence in Probability). We say that X_n converges to X in probability and write $X_n \xrightarrow{P} X$ if

$$\lim_{n \to \infty} \Pr\left(|X_n - X| > \epsilon\right) = 0 \tag{19.3}$$

or equivalently

$$\Pr\left(|X_n - X| > \epsilon\right) \to 0, \ n \to 0. \tag{19.4}$$

Definition 19.3 (Convergence in Distribution). We say that a sequence of random variables $\{X_n\}$ converges in distribution to another random variables X if for all x where F_X is continuous,

$$X_n \xrightarrow{\mathrm{d}} X.$$
 (19.5)

As an example, consider X_1, X_2, \ldots, X_n which are iid samples drawn from an independent distribution f_X . Then, $F_{X_n}(x) = F_X(x)$ for all x and n, but X_n does not converge to X almost surely and in probability.

Theorem 19.4 (Strong Law of Large Numbers). If X_1, X_2, \ldots, X_n are iid with $\mathbb{E}[X_1] = \mu < \infty$, then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{\text{as}} \mu \tag{19.6}$$

We state two important results for these notions of convergence.

Theorem 19.5 (Weak Law of Large Numbers). If X_1, X_2, \ldots, X_n are iid with $\mathbb{E}[X_1] = \mu < \infty$, then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \mu. \tag{19.7}$$

19.2 Mean Squared Error of DME With Location Families

In the DME problem,

$$\mathbb{E}\left[Y_i\right] = \Pr\left(X_i \leqslant \theta\right) \tag{19.8}$$

$$=F_X\left(\theta-\mu\right)\tag{19.9}$$

$$\implies \frac{1}{n} \sum_{i=1}^{n} Y_i \xrightarrow{\text{as}} F_X (\theta - \mu). \tag{19.10}$$

We quote another result for F_X^{-1} .

Theorem 19.6 (Continuous Mapping Theorem). If $g : \mathbb{R} \to \mathbb{R}$ is continuous and differentiable, then the following identities hold.

1.
$$X_n \xrightarrow{\text{as}} X \implies g(X_n) \xrightarrow{\text{as}} g(X)$$
.

2.
$$X_n \xrightarrow{P} X \implies g(X_n) \xrightarrow{P} g(X)$$
.

3.
$$X_n \stackrel{\mathrm{d}}{\to} X \implies g(X_n) \stackrel{\mathrm{d}}{\to} g(X)$$
.

Using Theorem 19.6, we see that

$$F_X^{-1}\left(\frac{1}{n}\sum_{i=1}^n Y_i\right) \xrightarrow{\text{as}} F_X^{-1}\left(F_X\left(\theta - \mu\right)\right) \tag{19.11}$$

$$\implies \hat{\mu} \xrightarrow{\text{as}} \mu.$$
 (19.12)

We also make use of the central limit theorem.

Theorem 19.7 (Central Limit Theorem). If X_1, X_2, \ldots, X_n are iid samples with $\mathbb{E}[X_i] = \mu$ and $\operatorname{Var} X_i = \sigma^2$, then

$$\frac{\sum_{i=1}^{n} (X_i - \mu)}{\sqrt{n\sigma^2}} \xrightarrow{d} \mathcal{N}(0,1).$$
 (19.13)

From (19.13), we have

$$Z \triangleq \sqrt{n} \left(\left(\frac{1}{n} \sum_{i=1}^{n} X_i \right) - \mu \right) \xrightarrow{d} \mathcal{N} \left(0, \sigma^2 \right)$$
 (19.14)

$$\implies \mathbb{E}\left[Z^2\right] = n\left(\text{MSE}\right) \to \sigma^2 \tag{19.15}$$

$$\implies \text{MSE} \to \frac{\sigma^2}{n}.\tag{19.16}$$

However, we still cannot conclude anything about the MSE of $\hat{\mu}$. We require another tool.

19.3 Delta Method

Suppose $\phi : \mathbb{R} \to \mathbb{R}$ is differentiable $\{X_i\}_{i=1}^n$ is a sequence of random variables and $\{r_i\}_{i=1}^n$ is a sequence of real numbers such that $r_n \to \infty$ as $n \to \infty$. Further, suppose that

$$r_n(X_n - \theta) \xrightarrow{d} X.$$
 (19.17)

Then,

$$r_n\left(\phi\left(X_n\right) - \phi\left(\theta\right)\right) \xrightarrow{\mathrm{d}} \left(\frac{dt}{d\phi}\Big|_{t=\theta}\right) X$$
 (19.18)

Using the Delta Method for our problem, define

$$Y_n \triangleq \frac{1}{n} \sum_{i=1}^n X_i. \tag{19.19}$$

To estimate $\phi(\mu)$, we use the *plugin estimator*

$$\phi(\hat{\mu}) = \phi\left(\frac{1}{n}\sum_{i=1}^{n}Y_i\right). \tag{19.20}$$

Hence,

$$\sqrt{n}(Y_n - \mu) \xrightarrow{d} Y \sim \mathcal{N}(0, \sigma^2)$$
 (19.21)

$$\implies \sqrt{n} \left(\phi Y_n - \phi \left(\mu \right) \right) \stackrel{\mathrm{d}}{\rightarrow} \left(\phi' \left(\mu \right) \right) Y \tag{19.22}$$

$$n \text{ (MSE)} \xrightarrow{d} 2\mu Y$$
 (19.23)

$$nMSE(\mu^2) = 4\mu^2\sigma^2. (19.24)$$