Глава 4

Производная функции

§ 4.1 Определение производной

Определение 4.1. Если существует предел

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \int (x_0) = \int (x_0) = \frac{dx}{dx} (x_0) = \frac{dx$$

ΔX→O

то он называется производной функции f в точке x_0 . Обозначают $\frac{df(x_0)}{dx},\ y'(x_0),\ f'(x_0).$ Определение 4.2. Разности $\Delta x = x - x_0$ $\Delta y = f(x) - f(x_0)$ называются приращениями аргумента и функции соответственно.

Таким образом, мы можем записать

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

Операция нахождения производной называется дифференцированием

функции. Пример 4.1. Найти производную y', если y=c (c – постоянная). Так как $\Delta y=c-c=0$, то $\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}$ и, таким образом,

ак
$$\Delta y = c - c = 0$$
, то $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$ и, таким образом, $c' = 0$.

Определение 4.3. Если существуют пределы

$$\lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \quad \text{и} \quad \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0}$$

=
$$\lim_{x\to x_0} 2 \sin \frac{x \times x_0}{2} \cos \frac{x+x_0}{2}$$
= $\lim_{x\to x_0} (x) \cos \frac{x+x_0}{2} \sin \frac{x^2}{2} \sin \frac{x^2}{2} = \lim_{x\to x_0} (x) \cos \frac{x+x_0}{2} \sin \frac{x^2}{2} = \lim_{x\to x_0} (x) \cos \frac{x}{2} \sin \frac{x^2}{2} = \lim_{x\to x_0} (x) \cos \frac{x}{2} \sin \frac{x}{2} = \lim_{x\to x_0} (x) \cos \frac{x}{2}$

то они называются соответственно левосторонней и правосторонней производными функции f в точке x_0 .

Обозначают $f'_{-}(x_0), f'_{+}(x_0).$

Определение 4.4. Если существуют пределы

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \infty, \quad \text{или} \quad \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = +\infty, \quad \text{или} \quad \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = -\infty,$$

то говорят, что функция y = f(x) имеет бесконечные производные (с соответствующим знаком) в точке x_0 .

В дальнейшем под выражением «существует производная функции» будем понимать наличие конечной производной, если не оговорено противное.

Теорема 4.1. Производная $f'(x_0)$ существует тогда и только тогда, когда существуют $f'_{-}(x_0)$, $f'_{+}(x_0)$ и $\underline{f'_{-}}(x_0) = f'_{+}(x_0)$.

Доказательство. Обозначим $\varphi(x) = \underbrace{\frac{f(x) - f(x_0)}{x - x_0}}_{x - x_0}, x \neq x_0$. Согласно теореме об односторонних пределах, $\lim_{x \to x_0} \varphi(x)$ существует тогда и только тогда, когда существуют $\lim_{x \to x_0 - 0} \varphi(x), \lim_{x \to x_0 + 0} \varphi(x)$ и $\lim_{x \to x_0 - 0} \varphi(x) = \lim_{x \to x_0 + 0} \varphi(x)$. Заметим, что $\lim_{x \to x_0} \varphi(x) = f'(x_0), \lim_{x \to x_0 - 0} \varphi(x) = f'_-(x_0)$ и $\lim_{x \to x_0 + 0} \varphi(x) = f'_+(x_0)$.

Теорема 4.2. Если существует $f'(x_0)$, то функция f непрерывна в точке x_0 .

Доказательство. Из равенства

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \Rightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x$$

получаем

$$\lim_{x \to x_0} \left[\frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \right] = 0,$$

то есть

$$\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)=\alpha(x),\qquad \alpha(x)\to 0 \text{ при } x\to x_0.$$
 Таким образом,
$$\overline{\overline{\textbf{G}}}(x\to x_0)$$

$$f(x) - f(x_0) = f'(x_0)(x - x_0) + \alpha(x)(x - x_0).$$
 (20), TO HDABAR MACTE DABEHCTBA (4.2) CTDEMUTCH K HYJIK

Если $x \to x_0$, то правая часть равенства (4.2) стремится к нулю, и поэтому $f(x) \to f(x_0)$. Следовательно, функция y = f(x) непрерывна в точке x_0 .

Замечание 4.1. Отметим, что из непрерывности функции f в точке x_0 , вообще говоря, не следует существование производной в этой

Рассмотрим пример. Функция f(x) = |x|, очевидно, непрерывна в точке $x_0 = 0$ (как и во всех других), но не имеет в этой точке производной.

В самом деле, при $x \geq 0$ имеем f(x) = |x| = x, поэтому

$$f'_{+}(0) = \lim_{x \to +0} \frac{f(x) - f(0)}{x} =$$
 Дим Турганда Аналогично, при $x \le 0$ имеем $f(x) = |x| = -x$, поэтому

$$f'_{-}(0) = \lim_{x \to -0} \frac{f(x) - f(0)}{x} = 1$$

Тем самым доказано, что функция f(x) = |x| не имеет в точке $x_0 = 0$ производной, однако в этой точке существуют как левосторонняя, так и правосторонняя призводные.

Определение 4.5. Если функция f имеет производную в точке x_0 , то она называется дифференцируемой в этой точке.

Если функция f имеет производную в любой точке $x_0 \in X$, то она называется дифференцируемой на множестве X.

$\S 4.2$ Правила вычисления производных

Теорема 4.3. Пусть функции $y_1 = f_1(x)$ и $y_2 = f_2(x)$ определены в окрестности точки $x_0 \in \mathbb{R}$ и имеют в самой точке x_0 производные, тогда и их сумма $f_1(x)+f_2(x)$, произведение $f_1(x)f_2(x)$, а если $f_2(x)\neq 0$, то и частное $\frac{f_1(x)}{f_2(x)}$ имеют в точке x_0 производные, причем

$$(y_1 + y_2)' = y_1' + y_2', (4.3)$$

$$(y_1y_2)' = y_1'y_2 + y_1y_2', (4.4)$$

$$\left(\frac{y_1}{y_2}\right)' = \frac{y_1'y_2 - y_1y_2'}{y_2^2} \tag{4.5}$$

(в формулах $(4.3) - (4.5) x = x_0$)

Доказательство. Пусть функции $y_1 = f_1(x)$ и $y_2 = f_2(x)$ определены в окрестности $U(x_0)$ точки $x_0, \ (x_0 + \Delta x) \in U(x_0)$ и

$$\Delta y_1 = f_1(x_0 + \Delta x) - f_1(x_0), \ \Delta y_2 = f_2(x_0 + \Delta x) - f_2(x_0).$$

Для простоты записи будем иногда опускать обозначение аргумента, рассматривая при этом приращения функций только в точке x_0 .

Если $y = y_1 + y_2$, то

$$\Delta y = (f_1(x_0 + \Delta x) + f_2(x_0 + \Delta x)) - (f_1(x_0) + f_2(x_0)) =$$

$$= (f_1(x_0 + \Delta x) - f_1(x_0)) + (f_2(x_0 + \Delta x) - f_2(x_0)) = \Delta y_1 + \Delta y_2,$$

откуда при $\Delta x \neq 0$ получим

$$\frac{\Delta y}{\Delta x} = \frac{\Delta y_1}{\Delta x} + \frac{\Delta y_2}{\Delta x}.$$

Переходя здесь к пределу при $\Delta x \to 0$ и замечая, что в силу существования производных функций y_1 и y_2 в точке x_0 предел правой части этого равенства существует и равен $y_1' + y_2'$, получим, что существует и предел его левой части, то есть существует производная y', причем $y' = y_1' + y_2'$, то есть формула (4.3) доказана.

Если $y = y_1 y_2$, то аналогичным образом получаем

$$\Delta y = f_1(x_0 + \Delta x)f_2(x_0 + \Delta x) - f_1(x_0)f_2(x_0) =$$

$$= (f_1(x_0 + \Delta x)f_2(x_0 + \Delta x) - f_1(x_0)f_2(x_0 + \Delta x)) +$$

$$+ (f_1(x_0)f_2(x_0 + \Delta x) - f_1(x_0)f_2(x_0)) =$$

$$= (f_1(x_0 + \Delta x) - f_1(x_0))f_2(x_0 + \Delta x) + f_1(x_0)(f_2(x_0 + \Delta x) - f_2(x_0)) =$$

$$= \Delta y_1 f_2(x_0 + \Delta x) + f_1(x_0)\Delta y_2.$$

Далее,

$$\frac{\Delta y}{\Delta x} = \frac{\Delta y_1}{\Delta x} f_2(x_0 + \Delta x) + f_1(x_0) \frac{\Delta y_2}{\Delta x}.$$

Из существования производной $f_2'(x_0)$ следует непрерывность функции f_2 в точке $x_0:\lim_{\Delta x\to 0}f_2(x_0+\Delta x)=f_2(x_0)$; кроме того, $\lim_{\Delta x\to 0}\frac{\Delta y_1}{\Delta x}=y_1', \lim_{\Delta x\to 0}\frac{\Delta y_2}{\Delta x}=y_2'.$ Поэтому, перейдя к пределу при $\Delta x\to 0$, из полученного равенства имеем

$$y' = y_1' y_2 + y_1 y_2',$$

то есть формула (4.4) доказана.

Наконец, если $y = \frac{y_1}{y_2}$ и $f_2(x_0) \neq 0$, то

$$\Delta y = \frac{f_1(x_0 + \Delta x)}{f_2(x_0 + \Delta x)} - \frac{f_1(x_0)}{f_2(x_0)} =$$

) (x)= (x) 52(x)=5(x) =5(x-1/x)-5(x)= -5(x-1/x)-5(x), -2x=x-x

$$=\frac{f_1(x_0+\Delta x)f_2(x_0)-f_1(x_0)f_2(x_0+\Delta x)}{f_2(x_0+\Delta x)f_2(x_0)}=$$

$$=\frac{f_1(x_0+\Delta x)f_2(x_0)-\overline{f_1(x_0)[f_2(x_0+\Delta x)-f_2(x_0)]}+f_2(x_0)]}{f_2(x_0+\Delta x)f_2(x_0)}=$$

$$=\frac{[f_1(x_0+\Delta x)-f_1(x_0)]f_2(x_0)-f_1(x_0)[\overline{f_2(x_0+\Delta x)-f_2(x_0)]}}{f_2(x_0+\Delta x)f_2(x_0)},$$

$$\frac{\Delta y}{\Delta x}=\frac{\frac{\Delta y_1}{\Delta x}f_2(x_0)-f_1(x_0)\frac{\Delta y_2}{\Delta x}}{f_2(x_0+\Delta x)f_2(x_0)}.$$
Отсюда при $\Delta x\to 0$, вспомнив снова, что из существова ($\lambda \to 0$)

Отсюда при $\Delta x \to 0$, вспомнив снова, что из существования производной следует непрерывность функции, и, следовательно, $\lim_{\Delta x \to 0} f_2(x_0 + \Delta x) = f_2(x_0)$, получим

$$y' = \frac{y_1' y_2 - y_1 y_2'}{y_2^2},$$

то есть формула (4.5) также доказана.

Следствие 4.1. Если функция y = f(x) является дифференцируемой в точке x_0 и $c \in \mathbb{R}$, то функция cf(x) также дифференцируема в точке x_0 , причем

$$(cy)' = cy' \qquad (x = x_0).$$

Действительно, учитывая (4.1), из формулы (4.4) получаем

$$(cy)' = c'y + cy' = cy'.$$

§ 4.3 Производная сложной функции

Теорема 4.4. Пусть функция z = f(x) дифференцируема в точке x_0 , а функция y = g(z) дифференцируема в точке $z_0 = f(x_0)$. Тогда сложная функция y = g(f(x)) дифференцируема в точке x_0 , причем

$$y'(x_0) = g'(f(x_0))f'(x_0). (4.6)$$

Доказательство. Сложная функция y(x) непрерывна в точке x_0 , так как из дифференцируемости функций f и g следует непрерывность этих функций соответственно в точках x_0 и z_0 (§ 4.1, теорема 4.2). Поэтому функция y(x) определена в окрестности $U(x_0,\delta)$ при некотором $\delta>0$.

Пусть Δx — произвольное приращение независимого переменного такое, что $\Delta x \neq 0$ и $|\Delta x| < \delta$. Обозначим

$$\Delta z = f(x_0 + \Delta x) - f(x_0), \ \Delta y = y(x_0 + \Delta x) - y(x_0).$$

Приращение Δz , зависящее от Δx , определяет приращение $\Delta y = \Delta g$ функции g(z) в точке z_0 , то есть

функции g(z) в точке z_0 , то есть $\Delta y = \Delta g = g(z_0 + \Delta z) - g(z_0)$, где $z_0 = f(x_0)$.

Так как функция g дифференцируема в точке z_0 , то из равенства

$$\lim_{\Delta z \to 0} \frac{g(z_0 + \Delta z) - g(z_0)}{\Delta z} = g'(z_0)$$

$$\Delta y = \Delta g = g'(z_0)\Delta z + \Delta z \cdot \alpha(\Delta z), \tag{4.7}$$

где $\alpha(\Delta z) \to 0$ при $\Delta z \to 0$.

Заметим, что функция $\alpha(\Delta z)$ не определена при $\Delta z = 0$. Однако риращение Δz может обратиться в нуль и при $\Delta x \neq 0$. Поэтому доопределим $\alpha(\Delta z)$ при $\Delta z = 0$, полагая $\alpha(0) = 0$. Тогда равенство (4.7) будет выполняться и при $\Delta z = 0$.

Разделив обе части равенства (4.7) на $\Delta x \neq 0$, получим

$$\frac{\Delta y}{\Delta x} = g'(z_0) \frac{\Delta z}{\Delta x} + \frac{\Delta z}{\Delta x} \alpha(\Delta z). \tag{4.8}$$

Приращение Δy в левой части равенства (4.8) можно рассматривать как приращение сложной функции y=g(f(x)), соответствующее приращению аргумента Δx .

Если $\Delta x \to 0$, то $\Delta z \to 0$ в силу непрерывности функции z=f(x) в точке x_0 , и поэтому $\alpha(\Delta z) \to 0$. Кроме того, $\frac{\Delta z}{\Delta x} \to f'(x_0)$, так как функция f дифференцируема в точке x_0 . Следовательно, правая часть равенства (4.8) имеет при $\Delta x \to 0$ предел, равный $g'(f(x_0))f'(x_0)$. Поэтому существует предел левой части (4.8), то есть сложная функция y=g(f(x)) дифференцируема в точке x_0 и справедлива формула (4.6).

-3/2) lin Dt -3/2) lin Dt + lin 02.3(02)

§ 4.4 Производная обратной функции и функции, заданной параметрически

 $\{x_0\}$ $\{x_$

7= f(x), xe X

チャーよけら

57

 $f'(x_0) \neq 0$; тогда обратная функция $x = f^{-1}(y)$ имеет производную в точке $y_0 = f(x_0)$, причем

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)},$$

то есть производная обратной функции равна обратной величине производной данной функции.

Доказательство. Зафиксируем какую-то окрестность точки x_0 , на которой функция f определена, непрерывна и строго монотонна, и будем рассматривать f только в этой окрестности. Тогда обратная функция определена и непрерывна на некотором интервале, содержащем точку y_0 и являющемся образом указанной выше окрестности точки x_0 . Поэтому если $\Delta x = x - x_0$, $\Delta y = y - y_0$, y = f(x), то $\Delta x \to 0$ равносильно $\Delta y \to 0$ в том смысле, что $\lim_{\Delta x \to 0} \Delta y = 0$ (для функции f) и $\lim_{\Delta x \to 0} \Delta x = 0$ (для функции f^{-1}).

и $\lim_{\Delta y \to 0} \Delta x = 0$ (для функции f^{-1}). Для любых $\Delta x \neq 0$, $\Delta y \neq 0$ имеем $\frac{\Delta x}{\Delta y} = \frac{1}{\Delta y/\Delta x}$. При $\Delta x \to 0$ (или, что то же, в силу сказанного выше, при $\Delta y \to 0$) предел правой части существует, значит, существует и предел левой части, причем

$$\underbrace{\lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y}}_{\text{ } = \text{ }} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta y} = \underbrace{\frac{1}{\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}}}_{\text{ }} = \frac{1}{f'(x_0)}$$

Ho $\lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = (f^{-1})'(y_0)$, поэтому $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$.

Этой теореме можно дать наглядную геометрическую интерпретацию. Как известно, $f'(x_0)=\operatorname{tg}\alpha$, где α – значение угла, образуемого касательной графика функции f в точке (x_0,y_0) с положительным направлением оси Ox, а $(f^{-1})'(y_0)=\operatorname{tg}\beta$, где β – значение угла, образованного той же касательной с осью Oy.

Очевидно, $\beta = \pi/2 - \alpha$, поэтому

$$(f^{-1})'(y_0) = \operatorname{tg} \beta = \frac{1}{\operatorname{ctg} \beta} = \frac{1}{\operatorname{ctg} \left(\frac{\pi}{2} - \alpha\right)} = \frac{1}{\operatorname{tg} \alpha} = \frac{1}{f'(x_0)}.$$

Определение 4.6. Пусть функции $x = \varphi(t)$ и $y = \psi(t)$ определены в некоторой окрестности точки t_0 и функция $x = \varphi(t)$ непрерывна и строго монотонна в указанной окрестности; тогда существует обратная $\varphi(t)$ функция $t = \varphi^{-1}(x)$, и в некоторой окрестности точки $x_0 = \varphi(t_0)$ имеет смысл композиция $f(x) = \psi(\varphi^{-1}(x))$. Эта функция и

27= 2-40 = = f(x)- f(x,)= = f(xot/x)- f(xot/x)

=5'(y)-3-1(y) -5'(y)-9-1(y) -5'(y)-9-1(y)

5-7(x)