UPPSALA UNIVERSITY

Department of Mathematics Örjan Stenflo TENTAMEN I MATEMATIK Probability theory II, 1MS036 October 25, 2019, 8–13

Permitted aids: Table with probability distributions (Gut, Appendix B). Calculators are not allowed.

For grade 5 the requirement is a total of at least 32 points, for grade 4 at least 25 points and the limit to pass (grade 3) is a total of 18 points.

1. (a) Let (X,Y) be a discrete random vector. Suppose $\mathrm{E}(|Y|) < \infty$. Prove that

$$E(Y) = E(E(Y|X)).$$

(3p)

(b) Let $X_1, X_2, ...$ be a sequence of independent and identically distributed discrete random variables with $E(|X_1|) < \infty$, and let $S_n = \sum_{i=1}^n X_i$. Show that

$$E(X_1|S_n) = \frac{1}{n}S_n.$$

(3p)

- 2. (a) Give the definition of moment generating function, $\psi_X(t)$, of a random variable X, and give an example of a random variable X where $\psi_X(t)$ does not exist for all t in some open interval containing zero. (2p)
 - (b) Let $(X|M=m) \in Po(m)$, where $M \in \Gamma(p,a)$. Find P(X=k) for k=0,1..., and show that X has a negative binomial distribution. (4p)
- 3. Let $X \in \Gamma(p_1, a)$ and $Y \in \Gamma(p_2, a)$ be independent and let U = X + Y and V = X/(X+Y).
 - (a) Find the joint distribution of (U, V) and show that U and V are independent. (4p)
 - (b) Show that $V \in \beta(p_1, p_2)$. (3p)

Please turn the page!

4. The normal random vector (X,Y) has moment generating function

$$\Psi_{X,Y}(s,t) = e^{2s+3t+s^2+cst+2t^2},$$

where c is a constant.

- (a) Determine c so that X + 2Y and 2X Y become independent. (4p)
- (b) Let c be chosen like in (a) so that X + 2Y and 2X Y are independent. Express

$$P(X + 2Y < 2X - Y)$$

in terms of the distribution function of a standard normal random variable. (3p)

5. Suppose $\mathbf{X} \in N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\mathbf{X} = (X_1, X_2, X_3)^t$, $\boldsymbol{\mu} = (1, 4, 2)^t$, and $\boldsymbol{\Sigma} = \begin{pmatrix} 4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 9 \end{pmatrix}$.

Find the conditional distribution of (X_1, X_2) given that $X_1 + X_2 + X_3 = z$. (7p)

6. Let $(X_n)_{n=1}^{\infty}$, and $(Y_n)_{n=1}^{\infty}$ be two independent sequences of independent and identically distributed random variables where $E(X_1) = E(Y_1) = \mu$ and $Var(X_1) = Var(Y_1) = \sigma^2$, $\sigma > 0$. Let

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad S_X^2(n) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2,$$

$$\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i,$$
 $S_Y^2(n) = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y}_n)^2.$

(a) Show that

$$S_n = \frac{1}{\sqrt{2}} \sqrt{S_X^2(n) + S_Y^2(n)} \stackrel{p}{\to} \sigma$$
, as $n \to \infty$.

(3p)

(b) Show that

$$Z_n = \frac{\sqrt{n}(\bar{X}_n - \bar{Y}_n)}{\sigma\sqrt{2}}$$

converges in distribution as $n \to \infty$, and find the limiting distribution. (2p)

(c) Show that

$$T_n = \frac{\sqrt{n}(\bar{X}_n - \bar{Y}_n)}{\sqrt{S_X^2(n) + S_Y^2(n)}}$$

converges in distribution as $n \to \infty$, and find the limiting distribution. (2p)

Some Distributions and Their Characteristics

Discrete Distributions

ا ن

Distribution, notation	Probability function	EX	$\operatorname{Var} X$	$\varphi_X(t)$	
One point $\delta(a)$	p(a) = 1	a	0	e^{ita}	
Symmetric Bernoulli	$p(-1) = p(1) = \frac{1}{2}$	0	1	$t \cos t$	
Bernoulli $Be(p), \ 0 \le p \le 1$	$p(0) = q, \ p(1) = p; \ q = 1 - p$	d	bd	$q + pe^{it}$	
Binomial $Bin(n,p), \ n=1,2,\ldots, \ 0 \le p \le 1$	$p(k) = \binom{n}{k} p^k q^{n-k}, \ k = 0, 1, \dots, n; \ q = 1 - p$	du	bdu	$(q+pe^{it})^n$	
Geometric $\operatorname{Ge}(p), \ 0 \le p \le 1$	$p(k) = pq^k, \ k = 0, 1, 2, \dots; \ q = 1 - p$	$\frac{d}{b}$	$\frac{q}{p^2}$	$\frac{p}{1 - qe^{it}}$	
First success $\operatorname{Fs}(p),\ 0\leq p\leq 1$	$p(k) = pq^{k-1}, \ k = 1, 2, \dots; \ q = 1 - p$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^{it}}{1 - qe^{it}}$	
Negative binomial NBin (n, p) , $n = 1, 2, 3,$, $0 \le p \le 1$	$p(k) = {n+k-1 \choose k} p^n q^k, \ k = 0, 1, 2,;$ q = 1 - p	$\frac{d}{b}u$	$n\frac{q}{p^2}$	$\left(\frac{p}{1-qe^{it}}\right)^n$	
Poisson $\operatorname{Po}(m),m>0$	$p(k) = e^{-m} \frac{m^k}{k!}, \ k = 0, 1, 2, \dots$	w	m	$e^{m(e^{it}-1)}$	
Hypergeometric $H(N,n,p), \ n=0,1,\ldots,N,$ $N=1,2,\ldots,$ $p=0,\frac{1}{N},\frac{2}{N},\ldots,1$	$p(k) = \frac{\binom{Np}{k} \binom{Nq}{n-k}}{\binom{N}{n}}, k = 0, 1, \dots, Np;$ $\binom{N}{n} \qquad q = 1-p;$ $n-k = 0, \dots, Nq$	đu	$npq \frac{N-n}{N-1}$	*	

Continuous Distributions

An asterisk (*) indicates that the expression is too complicated to present here; in some cases a closed formula does not even exist. Following is a list of some continuous distributions, abbreviations, their densities, means, variances, and characteristic functions.

(0x(t)	$\phi_X(t)$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$	$\frac{e^{it}-1}{it}$	sin t	$\left(\frac{e^{itb/2} - e^{ita/2}}{\frac{1}{2}it(b-a)}\right)^2$		$\left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2$	$\frac{1}{1-ait}$	$\frac{1}{(1-ait)^p}$	$\frac{1}{(1-2it)^{n/2}}$	$\frac{1}{1+\alpha^2t^2}$	*
Var X	var A	$\frac{1}{12}(b-a)^2$	$\frac{1}{12}$	⊣l∞	$\frac{1}{24}(b-a)^2$		119	a^2	pa^2	2n	$2a^2$	$\frac{rs}{(r+s)^2(r+s+1)}$
E X	$E \lambda$	$\frac{1}{2}(a+b)$	IΩ	0	$\frac{1}{2}(a+b)$		0	a	pa	u	0	$r \begin{vmatrix} r \\ +s \end{vmatrix}$
Density	Density	$f(x) = \frac{1}{b-a}, \ a < x < b$	$f(x) = 1, \ 0 < x < 1$	$f(x) = \frac{1}{2}, x < 1$	$f(x) = \frac{2}{b-a} \left(1 - \frac{2}{b-a} \left x - \frac{a+b}{2} \right \right)$	a < x < b	f(x) = 1 - x , x < 1	$f(x) = \frac{1}{a} e^{-x/a}, \ x > 0$	$f(x) = \frac{1}{\Gamma(p)} x^{p-1} \frac{1}{a^p} e^{-x/a}, \ x > 0$	$f(x) = \frac{1}{\Gamma(\frac{n}{2})} x^{\frac{1}{2}n-1} \left(\frac{1}{2}\right)^{n/2} e^{-x/2}, \ x > 0$	$f(x) = \frac{1}{2a} e^{- x /a}, -\infty < x < \infty$	$f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1},$
Distribution notation	Distribution, notation	Uniform/Rectangular $U(a,b)$	U(0,1)	U(-1,1) Triangular	$\operatorname{Tri}(a,b)$		Tri(-1, 1)	Exponential $\operatorname{Exp}(a), \ a > 0$	Gamma $\Gamma(p,a),a>0,p>0$	Chi-square $\chi^2(n), n=1,2,3,\ldots$	Laplace $L(a), a > 0$	Beta

Continuous Distributions (continued)

Distribution, notation	Density	EX	Var X	$\varphi_X(t)$
Weibull $W(\alpha,\beta), \ \alpha,\beta>0$	$f(x) = \frac{1}{\alpha \beta} x^{(1/\beta)-1} e^{-x^{1/\beta}/\alpha}, \ x > 0$	$\alpha^{\beta} \Gamma(\beta+1)$	$a^{2\beta} \left(\Gamma(2\beta + 1) - \Gamma(\beta + 1)^2 \right)$	*
Rayleigh $\operatorname{Ra}\left(lpha ight) ,\ lpha>0$	$f(x) = \frac{2}{\alpha} x e^{-x^2/\alpha}, \ x > 0$	$\frac{1}{2}\sqrt{\pi\alpha}$	$lpha(1-rac{1}{4}\pi)$	*
Normal $N(\mu, \sigma^2),$ $-\infty < \mu < \infty, \ \sigma > 0$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(x-\mu)^2/\sigma^2},$	ή	σ^2	$e^{i\mu t - \frac{1}{2}t^2\sigma^2}$
	-8 < 8 < 8 < 8			
N(0,1)	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, -\infty < x < \infty$	0	1	$e^{-t^2/2}$
Log-normal $LN(\mu,\sigma^2),$ $-\infty < \mu < \infty, \ \sigma > 0$	$f(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{-\frac{1}{2}(\log x - \mu)^2/\sigma^2}, \ x > 0$	$e^{\mu + \frac{1}{2}\sigma^2}$	$e^{2\mu} \left(e^{2\sigma^2} - e^{\sigma^2} \right)$	*
(Student's) t $t(n), n = 1, 2, \dots$	$f(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n} \Gamma(\frac{n}{2})} \cdot d \frac{1}{(1+\frac{x^2}{n})^{(n+1)/2}},$ $-\infty < x < \infty$	0	$\frac{n}{n-2}, \ n>2$	*
(Fisher's) F $F(m \ n) \ m \ n-1 \ 2$	$f(x) = \frac{\Gamma(\frac{m+n}{2})(\frac{m}{n})^{m/2}}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} \cdot \frac{x^{m/2-1}}{(1+\frac{mx}{n})^{(m+n)/2}},$	$\frac{n}{n-2}$,	$\frac{n^2(m+2)}{m(n-2)(n-4)} - \left(\frac{n}{n-2}\right)^2,$	*
z (775, 75), 775, 76 — z, z,	0 < x	n > 2	n > 4	

Continuous Distributions (continued)

Distribution, notation Density	Density	EX	$\operatorname{Var} X$	$\varphi_X(t)$
Cauchy				
C(m,a)	$f(x) = \frac{1}{\pi} \cdot \frac{a^2}{a^2 + (x - m)^2}, -\infty < x < \infty$	RĮ	EQ.	$e^{imt-a t }$
C(0,1)	$f(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}, \ -\infty < x < \infty$	RĮ	A	$e^{- t }$
Pareto	$f(x) = \frac{\alpha k^{\alpha}}{x^{\alpha+1}}, \ x > k$	$\frac{\alpha k}{\alpha - 1}, \ \alpha > 1$	$\frac{\alpha k}{\alpha-1}, \ \alpha>1 \qquad \frac{\alpha k^2}{(\alpha-2)(\alpha-1)^2}, \ \alpha>2,$	*
$\operatorname{Pa}(k,\alpha),\ k>0,\ \alpha>0$				