

UNIVERSITY OF ASIA PACIFIC

Department of Computer Science & Engineering

Course Title : Digital Logic & System Design Lab

Course Code : CSE 210

Experiment No. : 03

Experiment Name: Test and verify the universality of -

a) NAND gateb) NOR gate

Date of Performance: 01-02-2022

Date of Submission : 07-02-2022

Submitted by: Submitted To:

Name : Sheikh Nafez Sadnan Shammi Akhtar

Reg. No.: 20101106 Assistant Professor

Roll No.: 106 Department of CSE

Section: B₍₂₎ University of Asia Pacific

A.

Problem Statement: Test and verify the universality of -

- a) NAND gate
- b) NOR gate

Input and Output Variables:

Here A,B is input and Y is output

Instruments (Used in This Experiment):

- i. IC-7400 (NAND GATE)
- ii. IC-7402 (NOR GATE)
- iii. Wires
- iv. Trainer board

Truth Table:

AND Gate

Input		Output
A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate

Ir	iput	Output
A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

NAND Gate

Input		Output
A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate

Input		Output
A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

XOR Gate

Input		Output
A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

NOT Gate

Input	Output
0	1
1	0

Logic Expression:

Logic Gate	Logic Expression
AND	Y = A . B
OR	Y = A + B
NOT	Y = A
NAND	Y = A . B
NOR	Y = A + B
XOR	Y = A⊕B

Logic Diagram:

Circuit Diagram: (with logical equation)

Using NAND Gate:

a) AND Input A=0, B=0

NAND TO AND

Input A=0, B=1

NAND TO AND

NAND TO AND

NAND TO AND

b) OR: A + B = ((A.A)' . (B.B)')' Input A=0, B=0

Input A=1, B=1

c) NAND

Input A=0, B=0

NAND GATE

NAND GATE

Input A=1, B=0

NAND GATE

NAND GATE

d) NOR

Input A=0, B=0

NAND TO NOR

Input A=0, B=1

NAND TO NOR

Input A=1, B=0

NAND TO NOR

NAND TO NOR

e) XOR Input A=0, B=0

NAND TO XOR

Input A=0, B=1

NAND TO XOR

NAND TO XOR

Input A=1, B=1

NAND TO XOR

f) NOT : A' = (A.A)' Input A=0

NAND TO NOT

Input A=1

NAND TO NOT

Using NOR Gate:

a) AND

Input A=0, B=0

NOR TO AND

Input A=0, B=1

NOR TO AND

NOR TO AND

NOR TO AND

b) OR: A + B = ((A.A)' . (B.B)')' Input A=0, B=0

Input A=0, B=1

c) NAND

Input A=0, B=0

NOR TO NAND

NOR TO NAND

NOR TO NAND

Input A=1, B=1

NOR TO NAND

d) NOR Input A=0, B=0

NOR GATE

Input A=0, B=1

NOR GATE

NOR GATE

Input A=1, B=1

NOR GATE

e) XOR Input A=0, B=0

NOR TO XOR

NOR TO XOR

Input A=1, B=1

NOR TO XOR

f) NOT : A' = (A.A)' Input A=0

Input A=1

Discussion: In this experiment, we proved and verified the universality of NAND and NOR gate. We have used NAND gate & NOR gate to make circuits of basic gates (AND,OR,NOT) and XOR gate. Security protocols were strictly maintained during the experiment. We have verified our outputs created in trainer board by following truth table outputs.