

FCC PART 24E&PART 27 MEASUREMENT AND TEST REPORT

For

Iconnect

No.9, Aly. 58, Ln. 112, Ruiguang Rd., Neihu Dist., Taipei City, Taiwan

FCC ID: 2AB8796

Report Type: Product Name: Original Report 4G LTE USB Dongle Tom Tong **Test Engineer:** Tom Tang Report Number: RDG170405005B **Report Date:** 2017-05-05 **Henry Ding EMC Leader** Reviewed By: Bay Area Compliance Laboratories Corp. (Chengdu) **Test Laboratory:** No.5040, Huilongwan Plaza, No.1, Shawan Road, Jinniu District, Chengdu, Sichuan, China Tel: 028-65523123, Fax: 028-65525125

Note: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Chengdu). Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. This report was valid only with a valid digital signature.

www.baclcorp.com

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	3
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	3
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	5
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	5
CONFIGURATION OF TEST SETUP	5
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
FCC §1.1310 & §2.1093- RF EXPOSURE	8
APPLICABLE STANDARD	
Test Result	
FCC §2.1047 - MODULATION CHARACTERISTIC	9
FCC § 2.1046,§ 24.232 (C) & § 27.50 - RF OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST F ROCEDURE	
TEST DATA	
FCC §2.1049, §24.238 & §27.53- OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST FROCEDURE TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §2.1051, §24.238(A) & §27.53- SPURIOUS EMISSIONS AT ANTENNA TERMINALS	23
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	24
FCC §2.1053, §24.238 & §27.53- SPURIOUS RADIATED EMISSIONS	34
APPLICABLE STANDARD	34
Test Procedure	34
TEST EQUIPMENT LIST AND DETAILS	35
TEST DATA	35
FCC §24.238(A) & §27.53- BAND EDGES	37
APPLICABLE STANDARD	37
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	38
FCC §2.1055, §24.235 & §27.54 - FREQUENCY STABILITY	
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	50

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Iconnect*'s product, model number: *Onyx4G (FCC ID: 2AB8796)* (the "EUT") in this report was a *4G LTE USB Dongle*, which was measured approximately: $9.3cm (L) \times 3.1 cm (W) \times 0.7 cm (H)$, rated input voltage: DC5V from USB port.

Note: The series product,modelsOnyx4G-E,Onyx4GR,Onyx4GR-E,Onyx4GT-E,Onyx4GT-E,Onyx4GRT, Onyx4GRT-E,Tube-U4GR,Tube-U4GR,Tube-U4GT,Tube-U4GRT,N4GRN,N4GR,N4GR,N4GRT,CampPro-4G, CampPro-4GR,WISP-4G,WISP-4GR,Onyx5G,Onyx5GR,Tube-U5G,Tube-U5GR,N5G,N5GR,CampPro-5G,CampPro-5GR,WISP-5G,WISP-5GR and Onyx4G are electrically identical, we selected Onyx4G for testing, the differences between them were explained in the attached declaration letter.

*All measurement and test data in this report was gathered from final production sample, serial number: 170405005 (assigned by the BACL, Chengdu). It may have deviation from any other sample. The EUT supplied by the applicant was received on 2017-04-05, and EUT conformed to test requirement.

Objective

This report is prepared on behalf of *Iconnect* in accordance with: Part 2-Subpart J, Part 24-Subpart E and part 27 of the Federal Communications Commission's rules.

The objective is to determine compliance with FCC rules for output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, spurious radiated emission, frequency stability and band edge.

Related Submittal(s)/Grant(s)

No Related Submittal.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J, Part 24 Subpart E and Part 27.

Applicable Standards: TIA/EIA 603-D-2010.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Chengdu).

Report No.: RDG170405005B Page 3 of 52

Test Facility

The test site used by BACL to collect test data is located in the No.5040, Huilongwan Plaza, No.1, Shawan Road, Jinniu District, Chengdu, Sichuan, China.

Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on April 24, 2015. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 560332. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Report No.: RDG170405005B Page 4 of 52

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA-603-D-2010.

The test items were performed with the EUT operating at testing mode.

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	Laptop	PP11L	QDS-BRCM1017
R&S	Universal Radio Communication Tester	CMU200	109 038
R&S	Wideband Radio Communication Tester	CMW500	1201.002K50- 146520-wh

Configuration of Test Setup

Report No.: RDG170405005B Page 5 of 52

Block Diagram of Test Setup

Report No.: RDG170405005B Page 6 of 52

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310, §2.1093	RF Exposure	Compliance
§2.1046; § 24.232 (c); §27.50	RF Output Power	Compliance
§ 2.1047	Modulation Characteristics	Not Applicable
§ 2.1049; § 24.238; §27.53	Occupied Bandwidth	Compliance
§ 2.1051, § 24.238 (a); §27.53	Spurious Emissions at Antenna Terminal	Compliance
§ 2.1053 § 24.238 (a); §27.53	Spurious Radiation Emissions	Compliance
§ 24.238 (a); §27.53	Out of band emission, Band Edge	Compliance
§ 2.1055 § 24.235; §27.54	Frequency stability vs. temperature Frequency stability vs. voltage	Compliance

Report No.: RDG170405005B Page 7 of 52

Bay Area Compliance Laboratories Corp. (Chengdu)

FCC §1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

FCC§1.1310 and §2.1093.

Test Result

Compliant, please refer to the SAR report: RDG170405005-20.

Report No.: RDG170405005B Page 8 of 52

According to FCC § 2.1047(d), 24E&Part 27 there is no specific requirement for digital modulation therefore modulation characteristic is not presented.	FCC §2.1047 - MODULATION CHARACTE	
	According to FCC § 2.1047(d), 24E&Part 27 there is no therefore modulation characteristic is not presented.	specific requirement for digital modulation
	Report No.: RDG170405005B	Page 9 of 52

FCC § 2.1046,§ 24.232 (c) & § 27.50 - RF OUTPUT POWER

Applicable Standard

According to FCC §2.1046 and §24.232 (C), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications..

According to FCC §2.1046 and §27.50 (d), (4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.

According to §24.232 (d) Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Test Procedure

GSM/GPRS/EGPRS

Function: Menu select > GSM Mobile Station > GSM 850/1900

Press Connection control to choose the different menus

Press RESET > choose all the reset all settings

Connection Press Signal Off to turn off the signal and change settings

Network Support > GSM + GPRS or GSM + EGSM

Main Service > Packet Data

Service selection > Test Mode A - Auto Slot Config. off

MS Signal Press Slot Config Bottom on the right twice to select and change the number of time slots and power setting

> Slot configuration > Uplink/Gamma

> 33 dBm for GPRS 850

> 30 dBm for GPRS 1900

> 27 dBm for EGPRS 850

> 26 dBm for EGPRS 1900

BS Signal Enter the same channel number for TCH channel (test channel) and BCCH

channel

Frequency Offset > + 0 Hz

Mode > BCCH and TCH

BCCH Level > -85 dBm (May need to adjust if link is not stable)

BCCH Channel > choose desire test channel [Enter the same channel number for TCH

Page 10 of 52

channel (test channel) and BCCH channel]

Channel Type > Off

Report No.: RDG170405005B

Bay Area Compliance Laboratories Corp. (Chengdu)

P0 > 4 dB

Slot Config > Unchanged (if already set under MS signal)

TCH > choose desired test channel

Hopping > Off Main Timeslot > 3

Network Coding Scheme > CS4 (GPRS) and MCS5 (EGPRS)

Bit Stream > 2E9-1 PSR Bit Stream

AF/RF Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input Connection Press Signal on to turn on the signal and change settings

LTE (FDD):

The following tests were conducted according to the test requirements in 3GPP TS36.101

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	Channel bandwidth / Transmission bandwidth (RB)							
	1.4 MHz								
QPSK	>5	>4	>8	> 12	> 16	> 18	≤ 1		
16 QAM	≤ 5	≤ 4	≤8	≤ 12	≤ 16	≤ 18	≤ 1		
16 QAM	>5	> 4	>8	> 12	> 16	> 18	≤ 2		

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RS})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5,5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA
			3	>5	≤ 1
			5	>6	≤1
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36	10	>6	≤1
			15	>8	≤ 1
			20	>10	≤ 1
NS 04	6.6.2.2.2	41	5	>6	≤ 1
N3_04	0.0.2.2.2	41	10, 15, 20	See Tab	le 6.2.4-4
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	n/a
NS 07	6.6.2.2.3	13	10	Table 6.2.4-2	Table 6.2.4-2
NS_07	6.6.3.3.2	13	10	180/0 0.2.4-2	lable 6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤3
NS 09	6.6.3.3.4	21	10, 15	> 40	s 1
	0.0.0.0.			> 55	≤ 2
NS_10	00001	20	15, 20	Table 6.2.4-3	Table 6.2.4-3
NS_11	6.6.2.2.1	23'	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5
NS_32					-
Note 1: A	pplies to the lower t	block of Band 23, i.e	a carrier place	d in the 2000-201	10 MHz region.

Radiated method:

ANSI/TIA 603-D section 2.2.17

Report No.: RDG170405005B Page 11 of 52

Test Equipment List and Details

Manufacturer	Description	Model Number	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
Sunol Sciences	Broadband Antenna	JB3	A121808	2016-04-10	2019-04-09
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
ETS	Horn Antenna	3115	003-6076	2016-12-02	2017-12-01
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726- 0113024	2014-06-16	2017-06-15
EMCO	Adjustable Dipole Antenna	3121C	9109-258	N/A	N/A
HP	Signal Generator	8648C	3623A04150	2016-05-23	2017-05-22
WILTRON	SWEPT FREQUENCY SYNTHESIZER	6737	213001	2016-05-23	2017-05-22
EMCT	Semi-Anechoic Chamber	966	966-1	2015-04-24	2018-04-23
Unknown	RF Cable (below 1GHz)	Unknown	NO.1	2016-11-10	2017-11-09
Unknown	RF Cable (below 1GHz)	Unknown	NO.4	2016-11-10	2017-11-09
Unknown	RF Cable (above 1GHz)	Unknown	NO.2	2016-11-10	2017-11-09
R&S	Universal Radio Communication Tester	CMU200	11-9435686-111	2016-07-28	2017-07-27
R&S	Wideband Radio Communication Tester	CMW500	106891	2016-11-23	2017-11-23

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Data

Environmental Conditions

Temperature:	25.4 °C		
Relative Humidity:	43%		
ATM Pressure:	99.8kPa		

The testing was performed by Tom Tang on 2017-05-04.

Report No.: RDG170405005B Page 12 of 52

Conducted Power

PCS Band

				Peak C	t Power (dBm)				
Band	Channel No.	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot	EDGE 1 TX Slot	EDGE 2 TX Slot	EDGE 3 TX Slot	EDGE 4 TX Slot
	512	31.63	27.29	25.93	24.12	25.79	23.65	21.62	19.62
PCS	661	31.69	27.50	26.23	24.40	25.87	23.83	21.63	19.70
	810	31.99	28.58	27.14	24.78	25.98	24.07	21.68	19.89

LTE Band VII (PART 27)

Channel Bandwidth	Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1#0	22.19	22.23	20.73
		1#13	22.46	22.24	20.99
	QPSK	1#24	22.37	21.99	21.12
	QFSK	15#0	21.82	21.31	19.97
5 MHz		15#11	21.78	21.32	20.12
3 IVITZ		25#0	21.85	21.26	20.04
		1#0	21.00	20.86	19.22
	16QAM	1#13	21.45	20.82	19.45
		1#24	21.42	20.69	19.61
		25#0	21.03	20.69	19.37
		1#0	21.25	22.39	20.60
		1#24	21.93	22.30	20.78
	QPSK	1#49	22.24	22.06	21.16
	QPSK	25#0	21.14	21.12	19.56
10 MHz		25#24	21.24	21.02	20.12
10 MHZ		50#0	21.35	21.19	19.97
		1#0	20.95	21.61	20.17
	16QAM	1#24	21.78	21.64	20.26
	IOWAIVI	1#49	21.34	21.34	20.58
		50#0	21.54	21.25	19.19

Report No.: RDG170405005B Page 13 of 52

Channel Bandwidth	Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1#0	22.06	22.31	20.90
		1#37	23.07	22.19	20.81
	QPSK	1#74	23.00	21.62	21.49
	QFSK	36#0	22.29	21.27	19.62
15M		36#35	21.87	21.14	20.21
TOW		75#0	21.79	21.13	19.76
		1#0	21.52	21.54	20.09
	16-QAM	1#37	22.25	21.34	20.65
		1#74	22.54	20.72	20.65
		75#0	20.78	20.38	19.13
		1#0	21.24	22.32	20.79
		1#49	22.79	22.73	21.68
	QPSK	1#99	22.71	21.51	21.28
		50#0	22.33	21.40	19.64
2014		50#49	22.09	20.96	19.85
20M		100#0	19.60	21.17	19.60
		1#0	20.88	21.74	21.22
	40.044	1#49	21.60	21.48	20.84
	16-QAM	1#99	21.83	20.67	21.51
		100#0	20.88	20.29	18.87

PAR, Band VII

Test Modulation		Channel Bandwidth	Low Channel PAR (dB)	Middle Channel PAR (dB)	High Channel PAR (dB)	Limit (dB)
ODSK	1 RB	20M	4.76	4.96	5.60	13.00
QPSK	100 RB		6.36	6.16	6.32	13.00
16QAM	1 RB	20M	5.40	5.92	6.32	13.00
IOQAW	100 RB	20101	7.04	6.96	7.08	13.00

Note: peak-to-average ratio (PAR) <13 dB.

Report No.: RDG170405005B Page 14 of 52

ERP & EIRP

Part 24E

Page		Dessiver	Substituted Method			Absolute					
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	Substituted Level (dBm)	Ited Antenna Cable Loss Lev		Absolute Level (dBm)	Limit (dBm)	Margin (dB)			
	PCS 1900_Middle Channel										
1880.000	Н	91.23	18.6	11.7	2.7	27.6	33.0	5.4			
1880.000	V	89.65	17.2	11.7	2.7	26.2	33.0	6.8			
	EDGE 1900_Middle Channel										
1880.000	Н	89.63	17	11.7	2.7	26.0	33.0	7.0			
1880.000	V	88.19	15.7	11.7	2.7	24.7	33.0	8.3			

LTE Band VII

		Danahuan	Sub	stituted Met	hod	Absolute					
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)			
QPSK 5 MHz Middle Channel											
2535.000	Н	87.93	15.3	13.1	3.1	25.3	33.00	7.7			
2535.000	V	87.12	16	13.1	3.1	26.0	33.00	7.0			
QPSK 10 MHz Middle Channel											
2535.000	Н	88.31	15.7	13.1	3.1	25.7	33.00	7.3			
2535.000	V	86.87	15.7	13.1	3.1	25.7	33.00	7.3			
QPSK 15 MHz Middle Channel											
2535.000	Н	87.69	15.1	13.1	3.1	25.1	33.00	7.9			
2535.000	V	86.58	15.4	13.1	3.1	25.4	33.00	7.6			
			QPSK 20N	1Hz Middle	Channel						
2535.000	Н	87.08	14.5	13.1	3.1	24.5	33.00	8.5			
2535.000	V	87.63	16.5	13.1	3.1	26.5	33.00	6.5			
			16QAM 5 I	MHz Middl	e Channel	_					
2535.000	Н	86.77	14.2	13.1	3.1	24.2	33.00	8.8			
2535.000	V	86.74	15.6	13.1	3.1	25.6	33.00	7.4			
			16QAM 10	MHz Midd	le Channel						
2535.000	Н	88.04	15.4	13.1	3.1	25.4	33.00	7.6			
2535.000	V	87.16	16	13.1	3.1	26.0	33.00	7.0			
			16QAM 15	MHz Middl	e Channel						
2535.000	Н	87.42	14.8	13.1	3.1	24.8	33.00	8.2			
2535.000	V	86.75	15.6	13.1	3.1	25.6	33.00	7.4			
			16QAM 20	MHz Middl	e Channel						
2535.000	Н	87.27	14.7	13.1	3.1	24.7	33.00	8.3			
2535.000	V	87.91	16.8	13.1	3.1	26.8	33.00	6.2			

Report No.: RDG170405005B Page 15 of 52

FCC §2.1049, §24.238 & §27.53- OCCUPIED BANDWIDTH

Applicable Standard

FCC §2.1049, §24.238 and §27.53.

Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The 26 dB & 99% bandwidth was recorded.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
Unknown	RF Cable	Unknown	NO.3	Each Time	/
Unknown	Two-way Spliter	Unknown	OE0120121	Each Time	/

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Data

Environmental Conditions

Temperature:	22.1~22.8 °C
Relative Humidity:	39 %
ATM Pressure:	96.2~99.6kPa

The testing was performed by Tom Tang from 2017-04-19 to 2017-04-23.

Test Mode: Transmitting

Report No.: RDG170405005B Page 16 of 52

Test Result: Compliant. Please refer to the following table and plots.

Band	Test Channel	Mode	99% Occupied Bandwidth (kHz)	26 dB Occupied Bandwidth (kHz)
PCS	M	GPRS	246.5	316.6
F C 3	IVI	EDGE	246.5	314.6

Band	Test Modulation	Test Bandwidth (MHz)	Test Channel	99% Occupied Bandwidth (MHz)	26 dB Occupied Bandwidth (MHz)
		5		4.520	5.120
	QPSK	10	М	9.120	10.400
		15		13.560	15.220
LTE		20		18.000	19.620
Band VII		5		4.520	5.120
	16QAM	10	М	9.120	10.360
	IOQAW	15	IVI	13.560	15.160
		20		18.000	19.680

Report No.: RDG170405005B Page 17 of 52

23.1111.12017 22.30.03

EDGE 1900

LTE Band VII

Date: 19.APR.2017 10:17:32

QPSK_10 MHz

Date: 19.APR.2017 10:26:21

QPSK_15 MHz

Date: 19.APR.2017 10:32:21

QPSK_20 MHz

Date: 19.APR.2017 10:39:14

16QAM_5 MHz

Date: 19.APR.2017 10:21:29

16QAM_10 MHz

Date: 19.APR.2017 10:27:59

16QAM_15 MHz

Date: 19.APR.2017 10:34:01

16QAM_20 MHz

Date: 19.APR.2017 10:53:06

FCC §2.1051, §24.238(a) & §27.53- SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

FCC §2.1051, §24.238(a) and §27.53.

According to §24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to §27.53 (m), (4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Report No.: RDG170405005B Page 23 of 52

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
Unknown	RF Cable	Unknown	NO.3	Each Time	/
Unknown	Two-way Spliter	Unknown	OE0120121	Each Time	/

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Data

Environmental Conditions

Temperature:	22.1~22.8 °C
Relative Humidity:	39 %
ATM Pressure:	96.2~99.6kPa

The testing was performed by Tom Tang from 2017-04-19 to 2017-04-23.

Please refer to the following plots.

Report No.: RDG170405005B Page 24 of 52

GPRS1900_Middle Channel

EDGE 1900_ Middle Channel

LTE Band VII (Middle Channel)

QPSK_5 MHz

Report No.: RDG170405005B Page 28 of 52

QPSK_10 MHz

QPSK_15 MHz

QPSK_20 MHz

FCC §2.1053, §24.238 & §27.53- SPURIOUS RADIATED EMISSIONS

Applicable Standard

According to §24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to §27.53 (m), (4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB = 10 lg (TXpwr in Watts/0.001) – the absolute level

Spurious attenuation limit in dB = $43 + 10 \text{ Log}_{10}$ (power out in Watts)

Report No.: RDG170405005B Page 34 of 52

Test Equipment List and Details

Manufacturer	Description	Model Number	Serial Number	Calibration Date	Calibration Due Date
Agilent	Amplifier	8447D	2944A10442	2016-12-02	2017-12-01
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
Sunol Sciences	Broadband Antenna	JB3	A121808	2016-04-10	2019-04-09
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
ETS	Horn Antenna	3115	003-6076	2016-12-02	2017-12-01
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726- 0113024	2014-06-16	2017-06-15
EMCO	Adjustable Dipole Antenna	3121C	9109-258	N/A	N/A
HP	Signal Generator	8648C	3623A04150	2016-05-23	2017-05-22
WILTRON	SWEPT FREQUENCY SYNTHESIZER	6737	213001	2016-05-23	2017-05-22
Mini-circuits	Amplifier	ZVA-183-S+	771001215	2016-05-20	2017-05-19
HP	Amplifier	8449B	3008A00277	2016-12-02	2017-12-01
EMCT	Semi-Anechoic Chamber	966	966-1	2015-04-24	2018-04-23
Unknown	RF Cable (below 1GHz)	Unknown	NO.1	2016-11-10	2017-11-09
Unknown	RF Cable (below 1GHz)	Unknown	NO.4	2016-11-10	2017-11-09
Unknown	RF Cable (above 1GHz)	Unknown	NO.2	2016-11-10	2017-11-09
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1315	2016-08-18	2017-08-18
Ducommun Technolagies	Horn Antenna	ARH-2823-02	1007726-01 1312	2016-08-18	2017-08-18

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Data

Environmental Conditions

Temperature:	23.3 °C
Relative Humidity:	49 %
ATM Pressure:	98.2kPa

The testing was performed by Tom Tang on 2017-05-02.

EUT Operation Mode: Transmitting

Report No.: RDG170405005B Page 35 of 52

30MHz-20GHz:

PCS Band

Paration		Danahuan	Sub	Substituted Method				
Frequency (MHz)	Polar (H/V)) Reading (dBμV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
			SPRS1900, Fre	quency:1880	.000 MHz			
3760.000	Н	34.21	-61.7	13.8	3.8	-51.7	-13.0	38.7
3760.000	V	33.69	-60.9	13.8	3.8	-50.9	-13.0	37.9
381.000	Н	42.64	-58.4	0.0	0.6	-59.0	-13.0	46.0
438.000	V	46.82	-56.3	0.0	0.6	-56.9	-13.0	43.9

LTE Band VII (30MHz-26GHz):

	Frequency (H/V)		Sub	stituted Met	hod			Margin (dB)	
Frequency (MHz)			Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)		
	QPSK,Frequency:2535.00 MHz								
5070.000	Н	37.14	-56.2	13.9	4.5	-46.8	-25.0	21.8	
5070.000	V	39.63	-54.5	13.9	4.5	-45.1	-25.0	20.1	
7605.000	Н	36.58	-54.3	13.2	5.7	-46.8	-25.0	21.8	
7605.000	V	35.52	-55.4	13.2	5.7	-47.9	-25.0	22.9	
2655.000	Н	54.37	-42.8	13.1	3.2	-32.9	-25.0	7.9	
2655.000	V	51.96	-47.4	13.1	3.2	-37.5	-25.0	12.5	
237.000	Н	43.25	-61.3	0.0	0.5	-61.8	-25.0	36.8	
542.000	V	47.24	-54.4	0.0	0.7	-55.1	-25.0	30.1	

Note:

- 1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.

 2) Absolute Level = SG Level - Cable loss + Antenna Gain

 3) Margin = Limit-Absolute Level

Report No.: RDG170405005B Page 36 of 52

FCC §24.238(a) & §27.53- BAND EDGES

Applicable Standard

According to §24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to §27.53 (m), (4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency.

Report No.: RDG170405005B Page 37 of 52

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
Unknown	RF Cable	Unknown	NO.3	Each Time	/
Unknown	Two-way Spliter	Unknown	OE0120121	Each Time	/

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Data

Environmental Conditions

Temperature:	22.1~22.8 °C	
Relative Humidity:	39 %	
ATM Pressure:	96.2~99.6kPa	

The testing was performed by Tom Tang from 2017-04-19 to 2017-04-23.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following plots.

Report No.: RDG170405005B Page 38 of 52

GPRS 1900, Left Band Edge

GPRS 1900, Right Band Edge

EDGE 1900, Left Band Edge

EDGE 1900, Right Band Edge

LTE Band VII

QPSK_5MHz_ 25 RB_ Right

Report No.: RDG170405005B Page 41 of 52

QPSK_10MHz_ 50 RB_ Right

Report No.: RDG170405005B Page 42 of 52

QPSK_15MHz_ 75 RB_ Right

Report No.: RDG170405005B Page 43 of 52

QPSK_20MHz_ FULL RB_ Left

QPSK_20MHz_ FULL RB_ Right

Report No.: RDG170405005B Page 44 of 52

16QAM_5MHz_ 25 RB_ Right

Report No.: RDG170405005B Page 45 of 52

16QAM_10MHz_ 50 RB_ Left

16QAM_15MHz_ 75 RB_ Right

Report No.: RDG170405005B Page 47 of 52

16QAM_20MHz_ FULL RB_ Left

16QAM_20MHz_ FULL RB_ Right

FCC §2.1055, §24.235 & §27.54 - FREQUENCY STABILITY

Applicable Standard

FCC § 2.1055 (a), § 2.1055 (d), §24.235, §27.54

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

	T.l	– –		46	N 4 - I 'I -	O
Fradilancy	I AIARANCA T	or iraner	nittare in	the Pilhiid	1 N/IODIID	SAMME
Frequency 7	i dici alice i	ui italisi	เแนะเจาเ	LITE I UDIK	, IVIODIIC	OCI VICES

Frequency Range (MHz)	Base, fixed (ppm)	Mobile > 3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

According to §27.54, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set from 85% to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

Report No.: RDG170405005B Page 49 of 52

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
BACL	High Temperature Test Chamber	BTH-150	30024	2016-12-02	2017-12-01
FLUKE	Multimeter	1587	27870099	2016-12-30	2017-12-29
R&S	Universal Radio Communication Tester	CMU200	11-9435686- 111	2016-07-28	2017-07-27
R&S	Wideband Radio Communication Tester	CMW500	106891	2016-11-23	2017-11-23
Unknown	RF Cable	Unknown	NO.3	Each Time	/

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Data

Environmental Conditions

Temperature:	22.1 °C
Relative Humidity:	39%
ATM Pressure:	96.7kPa

The testing was performed by Tom Tang on 2017-04-24.

Report No.: RDG170405005B Page 50 of 52

PCS Band (Part 24E)

GMSK, Middle Channel, f _c = 1880.0 MHz					
Temperature	Voltage	Frequency Error	Frequency Error	Result	
℃	V _{dc}	Hz	ppm		
-30	5.0	60	0.032	Pass	
-20	5.0	69	0.037	Pass	
-10	5.0	72	0.038	Pass	
0	5.0	63	0.034	Pass	
10	5.0	64	0.034	Pass	
20	5.0	62	0.033	Pass	
30	5.0	65	0.035	Pass	
40	5.0	67	0.036	Pass	
50	5.0	71	0.038	Pass	

PCS Band (Part 24E)

EDGE, Middle Channel, f _c = 1880.0 MHz					
Temperature	Voltage	Frequency Error	Frequency Error	Result	
°C	V _{dc}	Hz	ppm		
-30	5.0	29	0.015	Pass	
-20	5.0	34	0.018	Pass	
-10	5.0	33	0.018	Pass	
0	5.0	38	0.020	Pass	
10	5.0	31	0.016	Pass	
20	5.0	34	0.018	Pass	
30	5.0	32	0.017	Pass	
40	5.0	38	0.020	Pass	
50	5.0	35	0.019	Pass	

Report No.: RDG170405005B Page 51 of 52

LTE Band VII:

QPSK, Channel Bandwidth:10MHz Middle Channel, f _c = 2535 MHz					
Temperature	Voltage	Frequency Error	Frequency Error	Result	
್ಕೆ	V _{dc}	Hz	ppm		
-30	5.0	-2.34	-0.0009	Pass	
-20	5.0	-1.87	-0.0007	Pass	
-10	5.0	-2.45	-0.0010	Pass	
0	5.0	-3.16	-0.0012	Pass	
10	5.0	-1.95	-0.0008	Pass	
20	5.0	-2.75	-0.0011	Pass	
30	5.0	-2.67	-0.0011	Pass	
40	5.0	-2.48	-0.0010	Pass	
50	5.0	-1.94	-0.0008	Pass	

16QAM, Channel Bandwidth:10MHz Middle Channel, f _c =2535 MHz					
Temperature	Voltage	Frequency Error	Frequency Error	Result	
${\mathbb C}$	V_{dc}	Hz	ppm		
-30	5.0	-6.15	-0.0024	Pass	
-20	5.0	-5.41	-0.0021	Pass	
-10	5.0	-4.65	-0.0018	Pass	
0	5.0	-5.27	-0.0021	Pass	
10	5.0	-5.91	-0.0023	Pass	
20	5.0	-5.11	-0.0020	Pass	
30	5.0	-4.89	-0.0019	Pass	
40	5.0	-5.37	-0.0021	Pass	
50	5.0	-4.63	-0.0018	Pass	

Note: The fundamental emissions stay within the authorized bands of operation based on the frequency deviation measured is small, the extreme voltage was declared by applicant.

***** END OF REPORT *****

Report No.: RDG170405005B Page 52 of 52