Please note, all Griffiths problems come from our class text, the second edition.

1. Griffiths 3.27

Problem 3.27 Sequential measurements. An operator \hat{A} , representing observable A, has two normalized eigenstates ψ_1 and ψ_2 , with eigenvalues a_1 and a_2 , respectively. Operator \hat{B} , representing observable B, has two normalized eigenstates ϕ_1 and ϕ_2 , with eigenvalues b_1 and b_2 . The eigenstates are related by

$$\psi_1 = (3\phi_1 + 4\phi_2)/5, \quad \psi_2 = (4\phi_1 - 3\phi_2)/5.$$

- (a) Observable A is measured, and the value a_1 is obtained. What is the state of the system (immediately) after this measurement?
- (b) If B is now measured, what are the possible results, and what are their probabilities?
- (c) Right after the measurement of B, A is measured again. What is the probability of getting a_1 ? (Note that the answer would be quite different if I had told you the outcome of the B measurement.)

2. Griffiths 4.1

*Problem 4.1

(a) Work out all of the **canonical commutation relations** for components of the operators \mathbf{r} and \mathbf{p} : [x, y], $[x, p_y]$, $[x, p_x]$, $[p_y, p_z]$, and so on. Answer:

$$[r_i, p_j] = -[p_i, r_j] = i\hbar \delta_{ij}, \quad [r_i, r_j] = [p_i, p_j] = 0,$$
 [4.10]

where the indices stand for x, y, or z, and $r_x = x$, $r_y = y$, and $r_z = z$.

(b) Confirm Ehrenfest's theorem for 3-dimensions:

$$\frac{d}{dt}\langle \mathbf{r}\rangle = \frac{1}{m}\langle \mathbf{p}\rangle, \quad \text{and} \quad \frac{d}{dt}\langle \mathbf{p}\rangle = \langle -\nabla V\rangle.$$
 [4.11]

(Each of these, of course, stands for *three* equations—one for each component.) *Hint:* First check that Equation 3.71 is valid in three dimensions.

(c) Formulate Heisenberg's uncertainty principle in three dimensions. Answer:

$$\sigma_x \sigma_{p_x} \ge \hbar/2$$
, $\sigma_y \sigma_{p_y} \ge \hbar/2$, $\sigma_z \sigma_{p_z} \ge \hbar/2$, [4.12]

but there is no restriction on, say, $\sigma_x \sigma_{p_y}$.

3. Griffiths **4.18**

*Problem 4.18 The raising and lowering operators change the value of m by one unit:

$$L_{\pm} f_l^m = (A_l^m) f_l^{m\pm 1}, [4.120]$$

where A_l^m is some constant. Question: What is A_l^m , if the eigenfunctions are to be normalized? Hint: First show that L_{\mp} is the hermitian conjugate of L_{\pm} (since L_x and L_y are observables, you may assume they are hermitian . . . but prove it if you like); then use Equation 4.112. Answer:

$$A_l^m = \hbar \sqrt{l(l+1) - m(m \pm 1)} = \hbar \sqrt{(l \mp m)(l \pm m + 1)}.$$
 [4.121]

Note what happens at the top and bottom of the ladder (i.e., when you apply L_+ to f_l^l or L_- to f_l^{-l}).

4. Griffiths **4.19**

*Problem 4.19

(a) Starting with the canonical commutation relations for position and momentum (Equation 4.10), work out the following commutators:

$$[L_z, x] = i\hbar y, [L_z, y] = -i\hbar x, [L_z, z] = 0, [L_z, p_x] = i\hbar p_y, [L_z, p_y] = -i\hbar p_x, [L_z, p_z] = 0.$$
 [4.122]

- (b) Use these results to obtain $[L_z, L_x] = i\hbar L_y$ directly from Equation 4.96.
- (c) Evaluate the commutators $[L_z, r^2]$ and $[L_z, p^2]$ (where, of course, $r^2 = x^2 + y^2 + z^2$ and $p^2 = p_x^2 + p_y^2 + p_z^2$).
- (d) Show that the Hamiltonian $H=(p^2/2m)+V$ commutes with all three components of L, provided that V depends only on r. (Thus H, L^2 , and L_z are mutually compatible observables.)

5. **B&J 6.12**

6.12 Let $\hat{\bf n}$ be a unit vector in a direction specified by the polar angles (θ, ϕ) . Show that the component of the angular momentum in the direction $\hat{\bf n}$ is

$$L_n = \sin\theta\cos\phi L_x + \sin\theta\sin\phi L_y + \cos\theta L_z$$

= $\frac{1}{2}\sin\theta(e^{-i\phi}L_+ + e^{i\phi}L_-) + \cos\theta L_z$.

If the system is in simultaneous eigenstates of L^2 and L_z belonging to the eigenvalues $l(l+1)\hbar^2$ and $m\hbar$,

- (a) what are the possible results of a measurement of L_n ?
- (b) what are the expectation values of L_n and L_n^2 ?