1. คนอง 35 ที่ท่มามอนาคาร และมี credit ต่อกก จะข้อเอาไนม

1.1 ระบค่าที่ต้องใช้

จากข้อมลตัวอย่างในไฟล์ ข้อมลที่มีให้ใช้เป็น

- อายุ (Age): กลุ่มช่วงอายุที่ใกล้เคียงคือ 31-40
- อาชีพ (Income/Occupation): ไม่มีระบุโดยตรงเกี่ยวกับ "ธนาคาร" ในตัวอย่างเดิม ต้องจัดกลุ่มใหม่ เช่น "medium income"
- สถานะเครดิต (Credit rating): "excellent"

ตัวอย่างข้อมูลที่ใช้มีค่าดังนี้:

อายุ	รายได้	นักเรียน	เครติต	ชื้อคอมพิวเตอร์
31–40	high		fair	yes
31–40	low	yes	excellent	yes
31–40	medium		excellent	yes
31–40	high	yes	fair	yes

1.2 คำนวณค่าความน่าจะเป็น

คำนวณจากกฎของ Naïve Bayes

$$P(C|X) = rac{P(X|C)P(C)}{P(X)}$$

โดยที่:

- P(X|C) เป็นความน่าจะเป็นที่ข้อมูล X จะอยู่ในคลาส C
- P(C) เป็นความน่าจะเป็นของแต่ละคลาส (buys_computer = yes/no)
- P(X) เป็นตัวปรับคำความน่าจะเป็นให้รวมกันได้ 1 (ไม่จำเป็นต้องคำนวณหากเปรียบ เทียบอัตราส่วน)

คำนวณ P(C)

- $P(buys_computer = yes) = 9/14 = 0.643$
- $P(buys_computer = no) = 5/14 = 0.357$

คำนวณ P(X|C) สำหรับ buys_computer = yes

จากตารางตัวอย่าง:

$$P(age = "31 - 40" | buys_computer = yes) = 3/9 = 0.333$$

$$P(income = "medium" | buys_computer = yes) = 4/9 = 0.444$$

$$P(credit_rating = "excellent" | buys_computer = yes) = 3/9 = 0.333$$

คำนวณ

$$P(X|buys_computer = yes) = 0.333 \times 0.444 \times 0.333 = 0.049$$

$$P(X|buys_computer = yes) imes P(buys_computer = yes) = 0.049 imes 0.643 = 0.032$$

คำนวณ P(X|C) สำหรับ buys_computer = no

PI 13 INPI 300 IN.

 $P(age = "31 - 40" | buys_computer = no) = 1/5 = 0.2$

 $P(income = "medium" | buys_computer = no) = 2/5 = 0.4$

 $P(credit_rating = "excellent" | buys_computer = no) = 2/5 = 0.4$

คำนวณ

 $P(X|buys_computer = no) = 0.2 \times 0.4 \times 0.4 = 0.032$

 $P(X|buys_computer = no) \times P(buys_computer = no) = 0.032 \times 0.357 = 0.011$

ตัดสินใจ

เปรียบเทียบความน่าจะเป็น:

- $P(buys_computer = yes|X) = 0.032$
- $P(buus\ commuter = no|X) = 0.0$

เนื่องจาก $P(buys_computer = yes|X) > P(buys_computer = no|X)$ สรุป: คนอาซุ 35 ที่ทำงานธนาคารและมีเ~*ติดตีมาก มีแนวโน้มที่จะฮื้อคอมพิวเตอร์ $\overline{\checkmark}$

2. คนอง 50 และเงิน นักเริ่ณ อะทั่งคลมในม

2.1 ระบุค่าที่ต้องใช้

• อายุ (Age): >40

• อาชีพ (Student): yes

• เครดิต: ไม่ระบุ ให้ใช้ค่าเฉลี่ยจากข้อมูลที่มี

ตัวอย่างข้อมูลที่ใช้:

อายุ	รายได้	นักเรียน	เครดิต	ซื้อคอมพิวเตอร์
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
>40	medium	yes	fair	yes
>40	medium	no	excellent	no

2.2 คำนวณค่าความน่าจะเป็น

คำนวณ P(X|C) สำหรับ buys_computer = yes

$$P(age = ">40" | buys_computer = yes) = 3/9 = 0.333$$

$$P(student = "yes" | buys_computer = yes) = 6/9 = 0.667$$

คำนวณ

$$P(X|buys_computer = yes) = 0.333 \times 0.667 = 0.222$$

$$P(X|buys_computer = yes) \times P(buys_computer = yes) = 0.222 \times 0.643 = 0.143$$

คำนวณ P(X|C) สำหรับ buys_computer = no

$$P(age=">40"|buys_computer=no)=2/5=0.4$$

$$P(student = "yes" | buys_computer = no) = 1/5 = 0.2$$

คำนวณ

$$P(X|buys_computer = no) = 0.4 \times 0.2 = 0.08$$

$$P(X|buys_computer = no) \times P(buys_computer = no) = 0.08 \times 0.357 = 0.028$$

F

ตัดสินใจ

เปรียบเทียบความน่าจะเป็น:

- $P(buys_computer = yes|X) = 0.143$
- $P(buys_computer = no|X) = 0.028$

เนื่องจาก $P(buys_computer = yes|X) > P(buys_computer = no|X)$ สรุป: คนอายุ 50 และเป็นนักเรียน มีแนวโน้มที่จะซื้อคอมพิวเตอร์ \checkmark