s18quiz: EXP LOG (Solution v1)

1. Graph $y = \log_2(x+3) + 5$ and $y = 2^{x+3} + 5$ on the grids below. Also, draw any asymptotes with dotted lines.

2. Write (but do not evaluate) the solution to the equation below by writing a logarithmic expression.

$$11 = \left(\frac{3}{7}\right) \cdot 2^{5t/4}$$

Divide both sides by $\frac{3}{7}$.

$$\frac{11 \cdot 7}{3} = 2^{5t/4}$$

Take log, base 2, of both sides.

$$\log_2\left(\frac{11\cdot7}{3}\right) = \frac{5t}{4}$$

Divide both sides by $\frac{5}{4}$.

$$\frac{4}{5} \cdot \log_2\left(\frac{11 \cdot 7}{3}\right) = t$$

Switch sides.

$$t = \frac{4}{5} \cdot \log_2\left(\frac{11 \cdot 7}{3}\right)$$

3. An exponential function $f(x) = 0.327 \cdot e^{1.09x}$ is graphed below on a semi-log plot.

a. Using the plot above, evaluate f(0.7).

$$f(0.7) = 0.7$$

b. Express $f^{-1}(x)$, the inverse of f.

$$f^{-1}(x) = \frac{1}{1.09} \cdot \ln\left(\frac{x}{0.327}\right)$$

c. Using the plot above, evaluate $f^{-1}(0.03)$.

$$f^{-1}(0.03) = -2.2$$