Bike Sharing System

Jieun Lim

https://colab.research.google.com/drive/1Qni4z-2Xsc2X-S5bJG-lSosZNb5nE-XK#scrollTo=IrwV7GXM8JHG

import pandas as pd
from google.colab import files
uploaded = files.upload()

- Choose Files 2 files
 - bike_train.csv(text/csv) 648353 bytes, last modified: 3/22/2021 100% done
 bike_test.csv(text/csv) 323856 bytes, last modified: 3/22/2021 100% done
 Saving bike_train.csv to bike_train (1).csv
 Saving bike_test.csv to bike_test (1).csv

This data is provided according to the Capital Bikeshare Data License Agreement

- datetime hourly date + timestamp
- season 1 = spring, 2 = summer, 3 = fall, 4 = winter
- holiday whether the day is considered a holiday
- workingday whether the day is neither a weekend nor holiday
- weather -
 - 1: Clear, Few clouds, Partly cloudy, Partly cloudy
 - 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
 - 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
 - 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

- temp temperature in Celsius
- atemp "feels like" temperature in Celsius
- humidity relative humidity
- windspeed wind speed
- casual number of non-registered user rentals initiated
- registered number of registered user rentals initiated
- count number of total rentals (Dependent Variable)

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
0	2011-01-01 00:00:00	1	0	0	1	9.84	14.395	81	0.0	3	13	16
1	2011-01-01 01:00:00	1	0	0	1	9.02	13.635	80	0.0	8	32	40
2	2011-01-01 02:00:00	1	0	0	1	9.02	13.635	80	0.0	5	27	32


```
import missingno as msno
msno.matrix(train, figsize = (12, 5))
```

No Missing data

How the data is distributed: Skewness, Kurtosis

=> will use log scaling for normal distribution

EDA & Feature

```
#2011-01-01 00:00:00
```

```
#Train data
datetime = train['datetime']

train_year = []
train_month = []
train_day = []

train_hour = []
train_minute = []
train_second = []
```

```
for i in datetime:
  data = i.split(" ")
  day = data[0]
  new date = day.split("-")
  train year.append(new date[0])
  train month.append(new_date[1])
  train day.append(new date[2])
  time = data[1]
  new_time = time.split(":")
  train hour.append(new time[0])
  train minute.append(new time[1])
  train second.append(new time[2])
train['year'] = train year
train['month'] = train month
train['day'] = train day
train['hour'] = train hour
train['minute'] = train minute
train['second'] = train second
```

year	month	day	hour	minute	second	
2011	01	20	00	00	00	
2011	01	20	01	00	00	
2011	01	20	02	00	00	
2011	01	20	03	00	00	
2011	01	20	04	00	00	

Correlation

-0.6

- 0.4

- 0.2

-0.0

- -0.2

neg: humidity, #bike sharing

pos: temp, #bike sharing

EDA & Feature engineering

```
#Dummy variable Season
season=pd.get_dummies(train['season'],prefix='season')
train=pd.concat([train,season],axis=1)
train.head()
season=pd.get_dummies(test['season'],prefix='season')
test=pd.concat([test,season],axis=1)
test.head()
```

season_1	season_2	season_3	season_4
1	0	0	0
1	0	0	0
1	0	0	0
1	0	0	0
1	0	0	0

EDA & Feature engineering

```
# Dummy variable weather
weather=pd.get_dummies(train['weather'],prefix='weather')
train=pd.concat([train,weather],axis=1)
train.head()
weather=pd.get_dummies(test['weather'],prefix='weather')
test=pd.concat([test,weather],axis=1)
test.head()
```

	weather_1	weather_2	weather_3	weather_4
	1	0	0	0
)	1	0	0	0
	1	0	0	0
	1	0	0	0
	1	0	0	0

- 1) Day is only 1~19th is available on the Train data. Therefore we cannot use it for feature
- 2) Increase during rush hour (07AM 08AM, 17 18PM). I'd like to compare it between Weekdays and weekands
- 3) The largest number of bicycle shares in June.

EDA

```
for i in train['datetime']:
    train_weekday.append(datetime.datetime.strptime(i, "%Y-%m-%d %H:%M:%S").strftime("%A"))

for i in test['datetime']:
    test_weekday.append(datetime.datetime.strptime(i, "%Y-%m-%d %H:%M:%S").strftime("%A"))

train['weekday'] = train_weekday
test['weekday'] = test_weekday
```

[16] # In order to compare Weekdays and weekands

import datetime
train_weekday = []
test weekday = []

get day-type(monday, tuesday) from datetime


```
fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(nrows = 5)
fig.set_size_inches(18, 25)

sns.pointplot(data = train, x = 'hour', y = 'count', ax=ax1)
sns.pointplot(data = train, x = 'hour', y = 'count', hue = 'workingday', ax=ax2)
sns.pointplot(data = train, x = 'hour', y = 'count', hue = 'weekday', ax=ax3)
sns.pointplot(data = train, x = 'hour', y = 'count', hue = 'weather', ax=ax4)
sns.pointplot(data = train, x = 'hour', y = 'count', hue = 'season', ax=ax5)
```


EDA & Feature engineering

There are too many "0" on the wind speed. (95%) So we will not use it as an feature

```
[18] #train['windspeed']==0.count()
    1-(np.count_nonzero(train['windspeed'])/train.size)
```

0.9537165069572701

Modeling Work

- Y = Count
- X = Season, weather, "temp", "atemp", "humidity", "year", "hour", "weekday", "holiday",
 "workingday"
- Use Train data, Test data
- Use RMSLE SCORE
- Compare models:
 - Linear Regression
 - RandomForest
 - GradientBoost

Evaluate Model

Root Mean Squared Logarithmic Error

- Slight modification on MSE
- Penalties for under-predicted estimate rather than over-predicted estimate

The smaller the value of RMSLE,

The better precision

=> score:closer to 0?

https://www.kaggle.com/carlolepelaars/understanding-the-metric-rmsle

RMSLE SCORE

```
[23] from sklearn.metrics import make scorer
     # will use rmsle score
     def rmsle(predicted values, actual values, convertExp=True):
         if convertExp:
             predicted_values = np.exp(predicted_values),
             actual values = np.exp(actual values)
         # change it to array
         predicted values = np.array(predicted values)
         actual values = np.array(actual values)
         # add 1 since there are lots of 0
         # apply log to make it normal distribution
         log predict = np.log(predicted values + 1)
         log_actual = np.log(actual_values + 1)
         \# (yhat - y)^2
         difference = log predict - log actual
         difference = np.square(difference)
         # mean of (yhat - y)^2
         mean difference = difference.mean()
         # sart
         score = np.sqrt(mean difference)
         return score
```

Compare Models

Linear Regression Model

```
from sklearn.linear model import LinearRegression, Ridge, Lasso
from sklearn.model selection import GridSearchCV
from sklearn import metrics
import numpy as np
import warnings
pd.options.mode.chained assignment = None
warnings.filterwarnings("ignore", category=DeprecationWarning)
# initialize
lModel = LinearRegression()
# train
y train log = np.loglp(y train)
lModel.fit(X train, y train log)
# predict and print score
preds = lModel.predict(X train)
print ("RMSLE Value For Linear Regression: ",
       rmsle(np.exp(y train log), np.exp(preds), False))
```

RMSLE Value For Linear Regression: 0.9705379002315476

Compare Models

Ensemble

- Averaging out biases
- Reduce variance
- Avoid overfitting

Ensemble Models - Random Forest

```
[56] from sklearn.ensemble import RandomForestRegressor
    rfModel = RandomForestRegressor(n_estimators=100)

y_train_log = np.loglp(y_train)
    rfModel.fit(X_train, y_train_log)

preds = rfModel.predict(X_train)
    score = rmsle(np.exp(y_train_log),np.exp(preds),False)
    print ("RMSLE Value For Random Forest: ",score)
```

RMSLE Value For Random Forest: 0.10744300712309492

Compare Models

Ensemble Model - Gradient Boost

- Gradient Boost or XG Boost Perform better based on Bagging

```
[36] from sklearn.ensemble import GradientBoostingRegressor
   gbm = GradientBoostingRegressor(n_estimators=4000, alpha=0.01);

y_train_log = np.loglp(y_train)
   gbm.fit(X_train, y_train_log)

preds = gbm.predict(X_train)
   score = rmsle(np.exp(y_train_log),np.exp(preds),False)
   print ("RMSLE Value For Gradient Boost: ", score)
```

RMSLE Value For Gradient Boost: 0.21357403727249372

Questions?

