Pracownia z analizy numerycznej

Sprawozdanie do zadania **P2.20**. Redukcja macierzy metodą Gaussa

Prowadzący: dr Witold Karczewski

Aleksander Balicki, nr indeksu: 220989 Dominika Rogozińska, nr indeksu: 221094

Wrocław, 5 grudnia 2010r.

1. Wstęp

Metodę Gaussa redukcji macierzy wykorzystuje się do rozwiązywania takich problemów jak znajdowanie macierzy odwrotnej, obliczanie rzędu macierzy, a także rozwiązywanie układów równań z wieloma niewiadomymi. Efektywność tej metody zależy od szczegółów implementacji i modyfikacji algorytmu oraz wskaźnika uwarunkowania macierzy. Poniżej zostały zaprezentowane wyniki otrzymane dla eliminacji Gaussa bez i z następującymi modyfikacjami: wybór największego(co do modułu) ««««¡reduktora»»»» z wiersza, z kolumny, z podmacierzy(wybór pełny). Badania zostały przeprowadzone dla kilku rodzajów macierzy: macierzy Hilberta, macierzy Pei, macierzy losowej z dominującą przekątną oraz macierzy oraz macierzy losowej, w ktorej większość elementów należy do przedziału (-1,1), a kilka jest wybranych z zakresu (-1000,1000).

2. Definicje

Definicja 1. Macierzą o wymiarach $m \times n$ (macierzą o m wierszach i n kolumnach), nad ciałem K nazywamy każdą funkcję typu $\{1, \cdots, m\} \times \{1, \cdots, n\} \to K$.

Interesują będą nas macierze o rozmiarach $n \times n$, które przedstawiają układy n równań z n niewiadomymi. Przykładowymi danymi do badań sposobów rozwiązania takich układów były macierze rzędu n, które są nieosobliwe, więc układy te zawsze mają rozwiązanie. Macierz zapisujemy w następujący sposób:

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}$$

Weźmy przykładowy układ równań:

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,n}x_n = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \cdots + a_{2,n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \cdots + a_{n,n}x_n = b_n \end{cases}$$

Z tym układem wiążemy macierz układu A oraz wektor wyrazów wolnych b:

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix} b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Definicja 2. Macierzą Hilberta nazywamy macierz $n \times n$, w której

$$a_{i,j} = \frac{1}{i+j-1}$$

Definicja 3. Macierzą Pei nazywamy macierz $n \times n$, w której

$$a_{i,j} = \begin{cases} 1 & i \neq j \\ d & i = j \end{cases}$$

gdzie d jest parametrem.

Definicja 4. Macierzą o dominującej przekątnej nazywamy macierz, w której

$$\bigwedge_{1 \leqslant i \leqslant n} \sum_{j \neq i} |a_{i,j}| \leqslant |a_{i,i}|$$

Definicja 5. Wskaźnik uwarunkowania macierzy A w równaniu Ax = b jest charakterystyczną własnością macierzy, informującą o tym jaki będzie maksymalny stosunek blędu względnego wektora rozwiązania x do błędu względego b.

Definicja 6. Normę maksimum dla wektora $x = [x_1, x_2, \dots, x_n]$ definiujemy jako

$$||x||_{\infty} = max\{|x_i| : i = 1, 2, \dots, n\}$$

Normy maksimum użyjemy jako wskaźnika numerycznej poprawności metody Gaussa, porównując wartości $\|b-A\tilde{x}\|_{\infty}$ dla wszystkich prób. Wartość \tilde{x} to nasze przybliżone rozwiązanie, więc $\|b-A\tilde{x}\|_{\infty}$ oznacza największy spośród błędów przybliżeń x_i .

Definicja 7. Wskaźnik uwarunkowania macierzy A w równaniu Ax = b jest charakterystyczną własnością macierzy, informującą o tym jaki będzie maksymalny stosunek blędu względnego wektora rozwiązania x do blędu względego b.

$$\kappa(A) = \|A^-1\| \cdot \|A\|$$

Definicja ta jest taka sama dla każdej zwartej normy.

3. Metoda eliminacji Gaussa

Metoda ta została stworzona przez Carla Friedricha Gaussa. Daje ona algorytm do rozwiązania układu równań liniowych, obliczenia rzędu macierzy i znalezienia macierzy odwrotnej do danej. Algorytm składa się z 2 kroków, najpierw doprowadzamy macierz do postaci schodkowej, a następnie znajdujemy wynik układu poprzez podstawienie w tył(funkcja back substitution). W metodzie Gaussa stososuje się 3 operacje elementarne na wierszach macierzy. Te operacje to:

- 1. Zamiana kolejności wierszy
- 2. Pomnożenie wszystkich wartości w wierszu przez niezerowy skalar λ
- 3. Dodanie do dowolnego wiersza kombinacji liniowej pozostałych wierszy

Operacje elementarne mają ciekawe własności, mianowicie:

- Nie zmieniają rzędu macierzy
- Dowolną macierz można za pomocą skończonej liczby kroków doprowadzić do macierzy w postaci schodkowej
- 3.1. Metoda eliminacji Gaussa bez wyboru elementów głównych
- 3.2. Metoda eliminacji Gaussa z wyborem elementów głownych z wiersza
- 3.3. Metoda eliminacji Gaussa z wyborem elementów głównych z kolumny
- 3.4. Metoda eliminacji Gaussa z pełnym wyborem elementów głównych(z podmacierzy)

Nasz algorytm zauważy zero na pozycji $Z_{1,1}$. Zamieni pierwszy wiersz z drugim. Uzna, że wartość $Z_{1,1}$ jest niezerowa i przejdzie do następnego kroku. W trakcie algorytmu wykona się dzielenie 45/0.0000000000001. Wiemy, z [2], że przy dzieleniu przez liczby bliskie zeru następuje utrata cyfr dokładnych wyniku. Algorytm zachowywałby się zdecydowanie lepiej, jeżeli dzielilibyśmy przez większą liczbę. Algorytm wyboru elementu głównego w kolumnie:

```
for k from 1 to N-1

znajdz wiersz, w którym jest maksymalna wartość |M[i,k]| dla wszystkich i > k

zamień wiersz z tą maksymalną wartością z k-tym wierszem

for i from k+1 to N

odejmij od i-tego wiersza k-ty wiersz (M[i,k]/M[k,k]) razy

zwróć ilość niezerowych wierszy
```

Można też szukać elementu o największym module w całej podmacierzy, wydłuża to czas obliczeń, ale poprawia własności numeryczne. Algorytm z wyborem pełnym:

```
for k from 1 to N-1

znajdz i,l takie, że |M[i,l]| jest maksymalne dla wszystkich i > k, l > k

zamień l-tą kolumnę z k-tą kolumną

zamień i-ty wiersze z k-tym wierszem

zamień wiersz z tą maksymalną wartością z k-tym wierszem

for i from k+1 to N

odejmij od i-tego wiersza k-ty wiersz (M[i,k]/M[k,k]) razy

zwróć ilość niezerowych wierszy
```

4. Program

Program testujący jest napisany w języku C++. Użyto typu podwójnej precyzji (double). Wyniki zostały zapisane jako plik z rozszerzeniem .csv, a następnie opracowane graficznie za pomocą programu gnuplot.

5. Wyniki prób

5.1. Macierz Hilberta

Wskaźnik uwarunkowania macierzy Hilberta o rozmiarze \boldsymbol{n} to:

$$\kappa(H_n) = O(\frac{e^{3.5255n}}{\sqrt{n}})$$

Źle uwarunkowana, leci w kosmos. Wykres nie obejmuje całego zakresu.

5.2. Macierz Pei

Dobrze uwarunkowana, wygląda tak samo dla każdej modyfikacji algorytmu - ξ na przekątnej sa największe liczby i są równe.

5.3. Macierz z dominującą przekątną

Dobrze uwarunkowana, dla metody bez modyfikacji i wyboru z wiersza(po którym zmieniamy kolumny) nie za dobrze, dla wyboru z kolumn i full lepiej i prawie tak samo.

5.4. Macierz losowa

6. Wnioski

Literatura

- [1] Notatki z wykładu Algebra Emanuela Kierońskiego
- [2] Notatki z wykładu Analiza Numeryczna Stanisława Lewanowicza
- [3] Kincaid David, Cheney Ward, Analiza numeryczna
- [4] J. M. Jankowscy, Przegląd metod i algorytmów numerycznych
- [5] http://wolframalpha.com/
- [6] http://en.wikipedia.org/
- [7] http://wazniak.mimuw.edu.pl/