文章编号:1003-1421(2007)12-0057-04 中图分类号: F502 文献标识码:B

大城市对外交通枢纽客运 需求量预测方法研究

张发オ

(重庆市城市交通规划研究所 规划交通部,重庆 400020)

摘 要: 在分析大城市对外交通枢纽客运需求特征的基础上 提出 客运需求量由初始需求量、增长趋势量和假日变化量3部分构成 通 过选用时间序列法中的静态方法建立了交通枢纽客运需求量数学 预测模型,并以郑州铁路车站为实例,说明该方法的预测过程。 关键词:城市;对外交通枢纽;客运需求;预测;时间序列

告着社会经济的发展 ,大城市 **月** 对外客货交流日益加强 ,各 种对外交通方式根据自身的技术 经济特点及优势,也得到充分运用 而发展。同时运输市场也进一步分 工明确 ,专业细化 ,因此 ,交通枢纽 在城市中的布局是非常重要的。

目前,我国城市对外交通枢纽 主要有4种:铁路枢纽、公路枢纽、 航空枢纽、港口枢纽。 城市交通正 处于快速发展阶段,道路拥挤、噪 音污染等问题日益加剧,城市交通 问题已经成为各大城市日益关注 的重点。为此,交通专家学者们提 出了多种措施和手段,如优化各种 交通枢纽的场站布局,充分衔接各 种交通方式,优化运营组织管理 等。而优化运营组织管理,就需要 有相应的基础数据作为支撑,如交 通流量等。从这一角度出发,对交 通枢纽的客运需求量进行研究,提 出一种较为成熟的预测方法,希望 这些预测数据对运营组织工作提 供决策依据,对缓解城市交通拥挤 起到积极作用。

客运需求分析

大城市对外客运交通枢纽中, 各种交通运输方式有其独特的技 术经济特点 ,因此其客运需求的特 征也不同。

(1)铁路运输以其安全、准确、 大容量等特点,决定了客流是以中 长距离为主。目前,城际铁路客运 专线在我国得到较快发展,以其速 度快、舒适、准点等特点,成为中短 距离城市间的主流客运方式,它的 客流主要以商务、旅游、访友为主。

(2)公路运输以速度快、机动 灵活等特点在城市对外运输中占 据了一定的市场。它的客流主要以 商务、探亲、访友为主。

(3)航空运输在长距离运输 中,它以速度快、舒适等特点有其 独有的市场份额。 在中短距离运输 中,目前正面临着高速公路、城际 铁路的竞争。它的客流主要以商 务、旅游为主。

(4)水运的技术经济特点是速 度慢、成本低,在中短距离运输中, 逐渐退出了客运市场,仅有部分旅 游客运和大宗的货运市场。

表1列出各种交通运输方式的 客运需求特征。

2 预测总体思路

影响大城市对外交通枢纽的 客运需求量的因素是多种多样的, 客流量本身的变化是没有什么规律 可循的。因此,若要根据每个影响 因素来判断未来客运需求量是有 难度的,也不现实。由于城市经济 水平与客运需求量的关系是比较 紧密的,而城市经济水平变化本身 就很难把握,再加上其它交通方式 的竞争和各种因素的影响,就很难 理清这些潜在的关系。预测思路就 是绕开这些直接相关的影响因素, 通过对历史客流量的变化特征分 析,寻求客流量的构成变化并研究 其客流变化规律。 其实质就是各种

表1 各种交通运输方式客运需求特征比较

交通方式	特点	运量	运价	运距	客流	
铁路	安全	大	中偏低	适宜中长距离出行	商务、旅游为主	
公路	机动灵活	小	中偏高	适宜中短距离出行	探亲、访友为主	
航空	速度快	小	高	适宜长距离出行	商务、旅游为主	
水运	速度慢	大	低	适宜中短距离出行	旅游为主	

因素的影响综合看成这种变化规律,然后再根据客流构成变化的规律来预测客流需求变化规律,最后求得客流需求量。

从大城市对外交通枢纽历史 数据的分析研究中发现,客运需求 量是随着社会经济的发展而呈现 曲线增长的变化趋势,而这种变化 趋势的细分,又可以发现客运需求 的日变化、周变化、月变化、年变化 形成了某些潜在规律,如周期性、 趋势性、假日性等。周期性是指客 运需求量以年为一个周期,在不同 年的同一时期表现出相同需求趋 势; 趋势性是指客运需求量在全年 表现出一种变动趋势,按某种规律 上升或下降或停留在某一水平: 假 日性主要表现在节假日期间,如春 运、暑运、"五一"、"十一"等期间, 客运需求量明显大幅增长。不可预 测的外部影响因素,如洪水、大雪、 地震、" 非典 "等可能影正常客运的 需求,如2003年全国受"非典"影 响,各种客运需求量降到了当年最 低点,本文研究的预测方法不考虑 此类因素的影响。

3 预测方法

把大城市对外交通枢纽客运需求量理解为初始需求量、增长趋势量和假日变化量3部分之和。 其中,初始需求量是交通枢纽每年年初的客运量;增长趋势量是交通枢

纽客运需求以年为周期,在每月按 某种规律的变化需求量: 假日变化 量为春运、暑运、"五一"、"十一"等 节假日影响带来的客运需求变化 量。因此,大城市对外交通枢纽的 客运需求量可以表示为: 交通枢纽 客运需求量 = 初始需求量 + 增长趋 势量+假日变化量。其中,假日变 化量为:(初始需求量+增长趋势 量)×假日影响系数,则:交通枢纽 客运需求量 = (初始需求量 + 增长 趋势量)×(1+假日影响系数)。将 (1+假日影响系数)定义为假日因 子,最终变换为:交通枢纽客运需 求量 = (初始需求量 + 增长趋势 量)×假日因子。

为使交通枢纽客运需求量表 达式能用数学式表示出来,先假定 初始需求、增长趋势和假日需求在 预测时期内都不随观测到新需求 而变动,以历史数据为基础估计这 些未知参数,然后用相同的数值进 行未来的预测。选用时间序列法中 的静态方法来建立交通枢纽客运 需求量数学预测模型,即:

F_t =(L+T×t)×H_t 式中: F_t —交通枢纽在t期的预测 客运需求量:

L—t 期初期需求量(对基期剔除假日影响后的需求的预测);

T—预计期增长趋势系数; H,—预计期的假日因子;

t—时期。

对客运需求量数学预测模型的求解,分为3个步骤: 剔除假日因子带来的影响,用线性回归法来预测初期需求量L和增长趋势系数T; 预测假日因子H_t; 根据式(1)求客运需求预测量。

4 实例求解

4.1 初期需求量和增长趋势系数 的求解

结合郑州站2002—2004年实际旅客需求量为基础数据(见表2),预测2005年1—7月份的旅客需求量,以此来说明预测数学模型的求解过程。在预测初期需求量和增长趋势系数之前,必须对基础历史数据进行处理,剔除假日因子带来的影响,以郑州站每年1月客流量为初期需求量,以后每月线性增长,需求规律是以年为周期,每年重复增长规律。

为了保证在剔除假日因子影响需求后每个月都占有相同的权重,对剔除假日影响后的需求取平均值,计算式如下(给定一个周期t):

$$\hat{D}_{t} = \begin{cases} \left[D_{t-(p/2)} + D_{t+(p/2)} + \sum_{i=t+1-(p/2)}^{t-1+(p/2)} 2D_{i} \right] / \\ 2p \left(p \text{ 为偶数} \right) \\ \sum_{i=t-(p/2)}^{t+(p/2)} D_{i} / p \left(p \text{ 为奇数}, i \text{ 进1 法取整} \right) \end{cases}$$

$$\left(\frac{p}{2} < t < \frac{2n-1}{2} p+1\right) \qquad (2)$$
式中: \hat{D}_t 一第 t 期剔除假日影响后需求:

p一周期;

n一周期数。

在实例分析中,周期为1年,单位为月,周期数n=3,周期p=12。

表2 郑州站相关数据

年	月	时期 t	实际需求量 D_r	剔除假日影响后需求Ô,	剔除假日后平均需求量 \overline{D}_i	假日因子苗
2002	1	1	1 239 395		1 194 992.236	1.037
	2	2	1 144 688		1 204 705.339	0.950
	3	3	1 381 347		1 214 418.443	1.137
	4	4	1 334 516		1 224 131.546	1.090
	5	5	1 288 908		1 233 844.649	1.045
	6	6	1 194 449		1 243 557.752	0.961
	7	7	1 384 541	1 299 391.875	1 253 270.856	1.105
	8	8	1 403 769	1 316 423.250	1 262 983.959	1.111
	9	9	1 351 971	1 324 757.708	1 272 698.062	1.062
	10	10	1 360 191	1 316 728.375	1 282 410.166	1.061
	11	11	1 215 196	1 301 434.292	1 292 123.269	0.940
	12	12	1 181 523	1 296 304.625	1 301 836.372	0.908
	1	13	1 463 812	1 292 641.208	1 311 549.475	1.116
	2	14	1 329 024	1 289 538.083	1 321 262.579	1.006
	3	15	1 397 038	1 294 719.750	1 330 975.682	1.050
	4	16	1 126 121	1 299 670.083	1 340 688.785	0.840
2003	5	17	1 130 245	1 305 503.958	1 350 401.888	0.837
	6	18	1 230 000	1 316 071.292	1 360 114.992	0.904
	7	19	1 261 068	1 327 431.917	1 369 828.095	0.921
	8	20	1 452 767	1 339 804.917	1 379 541.198	1.053
	9	21	1 427 333	1 349 758.458	1 389 254.302	1.027
	10	22	1 403 637	1 368 141.208	1 398 967.405	1.003
	11	23	1 311 763	1 398 093.750	1 408 680.508	0.931
	12	24	1 338 572	1 422 917.417	1 418 393.611	0.944
	1	25	1 579 418	1 448 655.292	1 428 106.715	1.106
	2	26	1 510 370	1 474 564.375	1 437 819.818	1.050
	3	27	1 454 577	1 488 239.333	1 447 532.921	1.005
	. 4	28	1 509 768	1 495 232.583	1 457 246.025	1.036
	5	29	1 465 459	1 497 810.250	1 466 959.128	0.999
004	6	30	1 490 554	1 495 483.042	1 476 672.231	1.009
2004	7	31	1 618 223		1 486 385.334	1.089
	8	32	1 717 430		1 496 098.438	1.148
	9	33	1 490 869		1 505 811.541	0.990
	10	34	1 507 939		1 515 524.644	0.995
	11	35	1 269 325		1 525 237.748	0.832
	12	36	1 325 157		1 534 950.851	0.863

铁道运输与经济

对于时期t=7,可以求出2002年7 月至2004年6月间剔除假日影响 后的需求量。剔除了假日带来的影 响需求后,客运需求量就以一个固 定的增长趋势变化,因而需求量与 时间(月)之间存在一个线性关系。 这种关系用式(3)表示:

$$\overline{D}_t = M + K \times t$$
 (3)
式中: \overline{D}_t —在时期内剔除假日影响
后的客运需求量;

M-初期或基期剔除假日影 响后的需求量;

K—剔除假日影响后的需求变 化趋势或增长速度。

根据剔除假日影响后需求量 的线性关系,可以用一元线性回归 方法来求出需求增长趋势K(斜率) 和初期需求量M(截距)两参数,根 据式(3)反推出剔除假日影响后的 全部平均需求量。

郑州站的相关数据和参数见 表2。

4.2 假日因子的求解

假日因子 \overline{H} ,(时期t)是实际客 运需求量D,与剔除假日因子影响 后的需求D,之间的比率。如(4)式 所示:

$$\overline{H}_{i} = D_{i}/\overline{D}_{i}$$
 (4)

根据郑州站的实际发送旅客 量和表2中的各个时期剔除假日 因子影响后的平均需求量可以求出 假日因子的平均值H,。假定有一个 周期数为n的基础数据,对于所有 $t=pn+i(1 \le i \le p)$ 为形式的时期, 可计算得到假日因子值:

$$H_{t} = \left(\sum_{j=0}^{n-1} \overline{H}_{pj+i}\right) / n \tag{5}$$

在实例分析中, H, 值见表2, n=3, p=3, 利用式(5)可以求得 2005年1-7月份假日因子H,值, 其值为:

$$H_{37} = (\overline{H}_1 + \overline{H}_{13} + \overline{H}_{25})/3 =$$

(1.037 + 1.116 + 1.106)/3 = 1.086

其他H.值计算方法同上,数值 见表3。

4.3 预测结果

根据式(1)及表3计算的值,郑 州站2005年1-7月份旅客需求量 计算过程如下式所示,其他F,计算 相同,数值见表3。

 $F_{37} = (L + 37t) \times H_{37} = (1 185 279 +$ $9713 \times 37) \times 1.086 = 1678125$

需要说明的是客运需求量预 测准确与否,与预测数学模型、预 测软件是没有直接关系的,数学模 型和软件只是一个途径和辅助工 具而已,与预测人员对需要预测的 对象进行深入分析和全面理解的 程度有关。另外,大城市对外交通 枢纽客运需求量与枢纽建成投入 运用时间(即项目开发成熟度)有 较大关系, 枢纽投入运用时间越 长,客流需求变化表现比较平稳, 容易把握其需求规律;而枢纽刚投

表3 郑州站2005年客运需求量预测结果

月份	实际需求量 D_i	假日因子H,	预测需求量 F_i	相对误差	平均误差
1	1 611 963	1.086	1 678 125	0.04	
2	1 527 325	1.002	1 557 752	0.05	
3	1 657 144	1.064	1 664 169	0.004	
4	1 679 791	0.989	1 556 057	0.07	0.025
5	1 554 191	0.960	1 520 479	0.02	
6	1 521 800	0.958	1 526 444	0.003	
7	1 683 839	1.038	1 663 877	0.01	

表3中预测客运需求量与实际 旅客发送量的相对误差最大为7%, 最小为0.3%, 平均误差为2.5%, 说 明此预测铁路车站客运需求量的 方法是适用可行的。

5 结束语

上例之所以取得较好预测结 果,原因在于此计算模型是从两个 方面来考虑的,一是基于时间序列 且从研究对象本身出发,属于微观 方面;二是基于客流变化的影响因 素出发,属于宏观方面。两者综合 考虑建立预测模型提高了客流预 测的准确度。此方法也可用在大城 市对外交通的公路枢纽、航空枢纽 及港口枢纽,预测计算公式和步骤 也是相同的。

入运行或运用时间不长,客流需求 变化的表现则是跳跃、突变,客流 变化几乎没有规律可循。因此,该 预测方法针对大城市中运营已久 的对外交通枢纽,在中短期内预测 是非常有效的。

参考文献:

- [1] 杨 镕. 具有假日特征的航线旅客流 量预测模型及应用[D]. 北京:北京航 空航天大学,2002.
- [2] 森尼尔·乔普瑞,彼得·梅因德尔.供 应链管理——战略、规划与运营[M]. 北京:社会科学文献出版社,2003.

收稿日期: 2007-08-10 修订日期: 2007-11-15

责任编辑: 尹 红