machine learning

K-Means

Lecture VII

פיתוח: ד"ר יהונתן שלר משה פרידמן

קרדיט - ד"ר יונתן רובין

מוטיבציה – חלוקת קבוצת לקוחות לקבוצות

- למנהל קשרי לקוחות יש חמישה עובדים ורוצה לחלק את הלקוחות ל-5
 קבוצות כך שכל קבוצה תשויך למנהל אחר.
 - "אתגר שלנו ל"חשוף 5 קבוצות "מעניינות" ♦
 - של כל קבוצה class label אין לנו את ה- אין לנו את ה-
 - איך נעשה זאת? ♦
 - ?הביל? לפי צבע בגדים? לפי גובה?

שיטות מבוססות חלוקה k-means ואלגוריתם

גישה 1: שיטות מבוססות חלוקה

- K אשכולות (כקלט לאלגוריתם) מצא חלוקה ל-K אשכולות שמביאה אותנו לאופטימיזציה
- ⇒ השאיפה אופטימום גלובלי עבור על כל החלוקות האפשריות ובחר
 את הטובה ביותר.
- א מרכז האשכול (prototype) מרכז האשכול מיוצג ע"י אב-טיפוס (א

Clustering

- החלוקה של n איברים לתוך קבוצות – נחשבת לאחת מאבות הטיפוס של למידה לא מונחית.
- הנחת היסוד היא, <u>שהנתונים נוצרו</u> ממספר מחלקות שונות
- * המטרה היא לקבץ נתונים שנוצרו ממחלקות זהות לתוך אותו קלסטר.

Clustering

- החלוקה של n איברים לתוך K קבוצות נחשבת לאחת מאבות הטיפוס של למידה לא מונחית.
 - הנחת היסוד היא, <u>שהנתונים נוצרו</u> ממספר מחלקות שונות
 - * המטרה היא לקבץ נתונים שנוצרו ממחלקות זהות לתוך אותו קלסטר.

שאלות שנובעות מהנחות אלו:

- * כמה מחלקות יש?
- למה בעצם שלא נשייך כל נתון לתוך מחלקה בפני עצמה?
 - מהי פונקציית המטרה שאנחנו רוצים ♦ clustering?

גישה 1: שיטות מבוססות חלוקה (protoype) ע"י אב-טיפוס (cluster-יצוג ה-

יצוג ע"י אב-טיפוס שמייצג את (prototype) – לכל cluster יצוג ע"י אב-טיפוס שמייצג את cluster הוקטורים ששייכים לאותו cluster.

⇒ אינטואיציה גאומטרית: ה"נקודות" (וקטורים) ב-cluster, קרובים ל"אב-טיפוס" (prototype) מרכזי.
• ישוח ל"אב-טיפוס" (prototype) מרכזי.

.prototypes - ובשאיפה כל "נקודה" רחוקה משאר ה

מטרה: מצא אוסף של אבות-טיפוס (prototypes)

j "כיל את הנקודות שהכי קרובות ל-"אב-טיפוס" Cluster *

גישה 1: שיטות מבוססות חלוקה K-Means

עבור האלגוריתמים הפשוטים והנפוצים עבור – K-Means clustering

- Lloyd, 1957 הומצא על יד *
- הרעיון למצוא אוסף של prototypes, המייצגים את ה- ♦ clusters
 - cluster- מייצג את מרכז ה-prototype מייצג את מרכז ה-K-Means רמוזה על ידי שם האלגוריתם בהמשך).

גישה 1: שיטות מבוססות חלוקה K-Means - המטרה

- k נניח שמספר ה-clusters &
- cluster אחד עבור כל prototype הנחה של
- μ נסמן את ה-prototypes ע"י נסמן את ה-prototypes מייצג תוחלת).
- לעיתים מסמנים את ה-prototype כ-mean (המסמן center ממוצע), או ע"י המסמן כ mean מרכז).

המטרה: לייצר prototypes טובים, כך שה"נקודות" במטרה לייצר כל האפשר בים ל"אב-טיפוס" ב-cluster, קרובים ל"אב-טיפוס" האפשר (וקטורים) ב-

גישה 1: שיטות מבוססות חלוקה K-Means - המטרה

המטרה: לייצר prototypes טובים, כך שה"נקודות" כך שה"נקודות" (וקטורים) ב-cluster, קרובים ל"אב-טיפוס" μ_j ככל האפשר

גישה 1: שיטות מבוססות חלוקה K-Means – המטרה – מינימיזציה של המרחק

:עבור נקודה x_i , נגדיר את המרחק ל-prototype אינגדיר את גדיר את גדיר את ביותר ϕ

$$d(x_i, \mu) = \min_j ||x_i - \mu_j||^2$$

: פונקצית המטרה – למצוא $f(\mu)$, הממזער את *

$$f(\mu) = \sum_i d(x_i, \mu)$$

(convex הפונקציה אינה פוקציה קמורה (פונקצית *

אלגוריתם K-means משתפר בכל צעד (מבחינת פונקצית המטרה)

clustering פונקציות מרחק שניתן להשתמש לצורך

$$d(\overrightarrow{x_j},\overrightarrow{x_i}) = \sum_{m=1}^d \sqrt{(x_{j_m} - x_{i_m})^2}$$
ב אוקלידי במרחק אוקלידי: במרחק אוקלידי

פונקציות מיניקובסקי:

$$d(\overrightarrow{x_j}, \overrightarrow{x_i}) = \left(\sum_{m=1}^{d} |x_{j_m} - x_{i_m}|^p\right)^{\frac{1}{p}} : \underline{copic} + \underline{co$$

אפשרויות נוספות:

$$d(\overrightarrow{x_j}, \overrightarrow{x_i}) = \frac{\overrightarrow{x_j}^T \cdot \overrightarrow{x_i}}{\|\overrightarrow{x_j}\| \cdot \|\overrightarrow{x_i}\|} : \underline{\text{Cosine similarity}} \quad *$$

Edit distance *

... רגע לפני – K-means

... ?אריץ scaling, בד"כ נרצה להריץ k-means, מדוע? ... *

K-means - scaling

Importance:

- *No scaling let's attributes with high variability / range to dominate the metric
- *K-means performed well on Normal distributed data Standardization w/t-scale: $t_{attr_val} = \frac{attr_val - mean(attr)}{std_{sample}(attr)}$

Without scaling

With scaling

K-means - scaling

Risk: Standardization discards information.

- If that information is irrelevant, then standardizing cases can be quite helpful.
- If that information is important, then standardizing cases can be disastrous.

For instance:

* If you have attributes with a well-defined meaning. Say, latitude and longitude, then you should not scale your data, because this will cause distortion..

K-means אלגוריתם

- K נתון: אוסף ווקטורים ופרמטר
- אשכולות K-טמאלית שמחלקת ל- אשכולות 🎄

- מרכזים K "נחש" .1
- 2. שייך כל ווקטור ל"מרכז" הקרוב אליו
- 3. חשב מרכזים מחדש ע"י מציאת מרכז האשכול
- (עד התכנסות) חזור על צעדים 2-3 עד שאין יותר עדכונים (עד התכנסות)

- K נתון: אוסף ווקטורים ופרמטר *
- אשכולות K-טמאלית שמחלקת ל- אשכולות 🌣
 - (2 prototypes צריך למצוא clusters 2) k=2 און *

- מרכזים K"ע"ו.1
- 2. שייך כל ווקטור ל'מרכז' הקרוב אלי
 - .3

- K נתון: אוסף ווקטורים ופרמטר *
- אשכולות K-מצא חלוקה אופטימאלית שמחלקת ל
 - (2 prototypes צריך למצוא clusters 2) k=2 און *

- מרכזים K "נחש" .1
- 2. שייך כל ווקטור ל"מרכז" הקרוב אר
 - .3
- ieroberekannek aktivistational en etakistational en etakistational

- K נתון: אוסף ווקטורים ופרמטר
- אשכולות K-מצא חלוקה אופטימאלית שמחלקת ל
 - (2 prototypes צריך למצוא clusters 2) k=2 און *

- מרכזים K "נחש" .1
- 2. שייך כל ווקטור ל"מרכז" הקרוב אליו
 - .3

- K נתון: אוסף ווקטורים ופרמטר
- אשכולות K-מצא חלוקה אופטימאלית שמחלקת ל
 - (2 prototypes צריך למצוא clusters 2) k=2 * *

- נחש" K מרכזים .1
- 2. שייך כל ווקטור ל"מרכז" הקרוב אליו
- 3. חשב מרכזים מחדש ע"י מציאת מרכז האשכול
 - republication of the particular state of the state of the

- אוסף ווקטורים ופרמטר 💠
- אשכולות K-מצא חלוקה אופטימאלית שמחלקת ל
 - (2 prototypes צריך למצוא clusters 2) k=2 און *

- נחש" K מרכזים .1
- 2. שייך כל ווקטור ל"מרכז" הקרוב אליו
- .3 חשב מרכזים מחדש ע"י מציאת מרכז האשכול
 - שאין יותר עדכונים 2-3 עד שאין יותר עדכונים .4 (עד התכנסות)

– K-means prototypes - הם ה-grototypes - המשמשים כמרכזים?

– K-means

מה הם ה-prototypes המשמשים כמרכזים?

$$x_1, x_2, ..., x_n ; x_i \in \mathbb{R}$$

נתון מדגם של n דוגמאות:

ממוצע המדגם

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$(x_i - \mu)$$

שונות

(מדד לפיזור)

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

- K-means

מה הם ה-prototypes המשמשים כמרכזים?

 $?C_1$, C_2 clusters מה קורה אם ניקח

 μ_2

. אוד. cluster מרית – clusters 2 כראים יותר מתאימים מ-cluster אוד.

 μ_1

$$\mu_1 = \frac{1}{n_1} \sum_{i \in C_1} x_i$$
 prototypes-ה $\mu_2 = \frac{1}{n_2} \sum_{i \in C_2} x_i$ $\sigma_1^2 = \frac{1}{n_1} \sum_{i=1}^{n_1} (x_i - \mu_1)^2$ clusters- המטרה: פיזור מינימלי $\sigma_2^2 = \frac{1}{n_2} \sum_{i=1}^{n_1} (x_i - \mu_2)^2$

שאלת סקר

-איך נחשב את ה-prototype לכל cluster ב-kmeans ואיך נדע שה- 1. איך נחשב את ה-cluster לווקטרים השייכים אליו?

תשובות אפשרויות:

- א. מחשבים prototype ע"י שונות, ונדע שה-cluster אייכותי ע"י ממוצע וקטורי ושאיפה לממוצע מינימלי
- ב. מחשבים prototype ע"י ממוצע וקטורי, ונדע שה-cluster אייכותי ע"י חישוב שונות ושאיפה לשונות מינימלית

- תשובה

(objective function) פונקציית המטרה – <u>K-Means</u>

 $\widehat{y_i} \in \{1,...,k\}$ שנשייך אליו את דוגמה x_i כאשר cluster-נסמן את ה-cluster שנשייך אליו את דוגמה ליו ה

 $\overrightarrow{\mu_1},...,\overrightarrow{\mu_k}$: prototype - עבור כל cluster, קיים וקטור מייצג cluster, עבור כל

$$J = \sum_{j=1}^k \sum_{\widehat{y_i}=j} \sigma_j^2$$
 פונקצית המחיר – הפיזור המשותף:
$$= \sum_{j=1}^k \sum_{\widehat{y_i}=j} ||x_i - \mu_j||^2$$

 $\min[J]=\min_{\{\widehat{y_i},\mu_j\}}$ [$\sum_{j=1}^k\sum_{\widehat{y_i}=j}||x_i-\mu_j||^2$]:בעית אופטימיזציה: *

- :בעיה NP-hard ולכן נפתור בשלבים
- (k-means-ב 2 מינימיזציה של איוך למרכזים המייצגים למרכזים שיוך למרכזים *

– (objective function) – פונקציית המטרה – <u>K-Means</u> בעיית המינימיזציה

$$\mathbf{J} = \sum_{j=1}^k \sum_{\widehat{y_i}=j} ||x_i - \mu_j||^2$$
 פונקצית המחיר – הפיזור המשותף:

$$r_{i,j} = \begin{cases} 1 & \widehat{y}_i = j \\ 0 & \widehat{y}_i \neq j \end{cases}$$

עזר פונקצית עזר - $r_{i,j}$

i במטרה של פונקצית r – בחירת השיוך הטוב ביותר עבור כל וקטור

כעת נגדיר את פונקצית המחיר כך:

$$J = \sum_{j=1}^{k} \sum_{i=1}^{n} r_{i,j} \cdot ||x_i - \mu_j||^2$$

– (objective function) פונקציית המטרה — <u>K-Means</u> חלק א של המינימיזציה –שיוכיים למרכזים המייצגים

$$r_{i,j} = \begin{cases} 1 & \widehat{y}_i = j \\ 0 & \widehat{y}_i \neq j \end{cases}$$

$$\begin{vmatrix} r_{i,j} = \begin{cases} 1 & \widehat{y}_i = j \\ 0 & \widehat{y}_i \neq j \end{vmatrix} \qquad J = \sum_{j=1}^k \sum_{i=1}^n r_{i,j} \cdot ||x_i - \mu_j||^2$$

בעיית מינימיזציה א':

 $\{\mu_i\}$ בהינתן המרכזים

$$min_{\{\widehat{y_i}\}} \left[\sum_{j=1}^k \sum_{i=1}^n r_{i,j} \cdot ||x_i - \mu_j||^2 \right]$$

 $\{\mu_i\}$ כך בהינתן המרכזים לחלופין ניתן להגדיר את מינימיזציה א' כך בהינתן המרכזים

$$min_{\{r_{i,j}\}} \left[\sum_{j=1}^{k} \sum_{i=1}^{n} r_{i,j} \cdot ||x_i - \mu_j||^2 \right]$$

– (objective function) פונקציית המטרה — <u>K-Means</u> חלק ב של המינימיזציה – מציאת המרכזים המייצגים

$$r_{i,j} = \begin{cases} 1 & \widehat{y}_i = j \\ 0 & \widehat{y}_i \neq j \end{cases}$$

$$\begin{vmatrix} 1 & \widehat{y}_i = j \\ 0 & \widehat{y}_i \neq j \end{vmatrix} J = \sum_{j=1}^k \sum_{i=1}^n r_{i,j} \cdot ||x_i - \mu_j||^2$$

בעיית מינימיזציה ב':

 $\{r_{i,j}\}$ בהינתן השיוכיים

$$min_{\{\mu_i\}} \left[\sum_{j=1}^k \sum_{i=1}^n r_{i,j} \cdot ||x_i - \mu_j||^2 \right]$$

שאלת סקר

לגבי k means איזו מהטענות הבאות נכונה:

א. עבור דאטה סט מסוים, ככל שמגדילים את ה ,k הסטיה מהסנטרואידים קטנה

ב. עבור דאטה סט גדול מספיק k-means יתכנס לאופטימום הגלובלי ללא קשר לאיתחול שלו

ג. כל התשובות נכונות

 \star תשובה \star

centroids-שלב ב - אתחול ה-K-means

עבור האתחול הבסיסי של אלגוריתם K-means שלב 1 באלגוריתם) יש להגריל את המרכזים (ה-centroids) בצורה אקראית בהתפלגות אחידה

- שלגוריתם המקורי (Lloyd, 1957), כל נקודות בתחום ההגדרה (לפי המימדיות) הם מועמדים פוטנציאלים.
- של האקראית של (Hamerly & Elkan, 2002) Forgy method (א מתוך ה-dataset) ולא מתוך כל ערך אפשרי).
 - kmeans++ בשיעור הבא נלמד שיטה אחרת *

שלב 4 – בלל עצירה ו/או התכנסות – K-means

מדוע מובטח לנו שהתהליך יתכנס?

- K-יש(p(n,k) אפשרויות לחלק ח ווקטורים ל
 קבוצות
- כלומר, יש מס' (גדול, אך) סופי של מרכזיםאפשריים
- אם השתנתה הקונפיגורציה (שינוי מרכזים/שיוך נקודות מחדש למרכזים) סימן שיש לנו "סטייה" קטנה יותר מאשר הייתה לפני כן.
 - כלומר: בוודאי שבכל עדכון אנו מגיעיםלקונפיגורציה שעדיין לא היינו בה לפני כן.
 - איטרציות האפשריות הינו סופי.

שלב 4 – כלל עצירה ו/או התכנסות – K-means

- No (or minimum) re-assignments of data points to different clusters, or
- * No (or minimum) change of centroids, or
- minimum decrease in the sum of squared error (SSE),

* To deal with complex cases, we usually also add a maximum number of iterations

שאלת סקר

?k-means באיזו שיטה מהשיטות נשתמש ע"מ לוודא עצירת 1.

תשובות אפשרויות:

א. שינוי מזערי או אין שינוי בשיוך נקודות למרכזים

ב. שינוי מזערי ב-SSE בתוך ה- cluster

ג. כמות מקסימלית של איטרציות

ד. כל התשובות נכונות

π – π

?מדוק חוסר שינוי במרכזים, שקול לתשובה א., מדוע

האם מובטח לנו למצוא את הקונפיגורציה האופטימאלית?

האם מובטח לנו למצוא את הקונפיגורציה האופטימאלית?

תלוי בK ומציאת מינימום לוקאלי

Would be better to have one cluster here

... and two clusters here

האם מובטח לנו למצוא את הקונפיגורציה האופטימאלית?

אלגוריתם k means אלגוריתם

- מצריך דוגמאות התחלתיות
 - משנה מה בוחרים..

- מה יכול להשתבש?

מספר דרכים כדי למנוע בעיות מהסוג הזה (נלמד בהמשך): איתחולים שונים, טכניקות שונות לחיתוך ואיחוד קבוצות תלוי באיתחול

(k means -בשלב זה אתם צרכים לדעת (ביחס ל

מהו הדבר שאותו אנחנו מאפטמים?

?האם אנחנו בטוחים שהאלגוריתם יסתיים?

?האם אנחנו בטוחים שנמצא קלסטור אופטימלי

מדוע כדאי לעשות סילום?

איך צריך לאתחל את המערכת?

DEMO

http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

ליכום K-means

- יתרונות: ♦
- * קל למימוש
- יעיל חישובית *
 - * חסרונות:
- עלול לעצור במינימום מקומי
- שבור ערכים אוגדר היטב כאשר ניתן לחשב ממוצע של מאפיין. מה נעשה עבור ערכים אוגדר היטב כאשר ניתן לחשב ממוצע של מאפיין. מה נעשה עבור ערכים קטגוריים???
 - K צריך להגדיר את *
 - outliers-> רגיש ל