Новосибирский государственный университет 09.03.01 Информатика и вычислительная техника

Выпускная квалификационная работа бакалавра по теме

Разработка программного модуля визуализации диаграмм процессов по спецификации на языке Reflex

Докладчик: Беленькая София Евгеньевна, студентка 4 курса факультета информационных технологий Новосибирского государственного университета. **Научный руководитель**: **Зюбин В.Е.,** зав. кафедрой компьютерных технологий ФИТ НГУ, д. т. н., доцент, зав. лаб. ИАиЭ СО РАН.

Соруководитель: **Розов А. С.**, старший преподаватель кафедры КТ.

Языки описания управляющих алгоритмов

- Языки процесс-ориентированного программирования (ПОП)
 - Reflex
 - Industrial C
 - и другие
- Языки стандартов МЭК 61131-3.
- Языки общего назначения в роли низкоуровневого средства.

Актуальность

В рамках итеративной модели при:

- разработке ПО
- поддержке ПО

Возникают задачи:

- реверсивного инжиниринга;
- рефакторинга кода.

Документация для ПОП создается вручную:

- Занимает значительное время(от 2 часов).
- Может быть причиной ошибок.

 Потребность в автоматизации процесса создания и визуализации диаграмм для ПОП (в частности, для языка Reflex).

Цель работы и задачи

Цель работы: разработка программного модуля визуализации диаграмм процессов по спецификации на языке Reflex.

Задачи:

- провести анализ:
 - специфики ПОП;
 - существующих средств построения диаграмм по коду;
 - диаграмм, использующихся для анализа кода.
- спроектировать модуль:
 - сформулировать требования к программному модулю;
 - разработать диаграммы для отображения связей процессов;
 - определить формат представления диаграмм.
- разработать архитектуру модуля, реализовать модуль визуализации
- провести тестирование созданной реализации и опробовать ее на практике

Специфика языка Reflex

- Программа состоит из описания процессов.
- Процессы представлены автоматами состояний.
- Исполнение происходит в кооперативной модели многопоточности.
- Процессы взаимодействуют по данным и по управлению.

```
proc Cooking{
  from proc INIT K DOOR, Y ALARM, Y WARM, COOK TIME
    state Start
        if (K DOOR == OPEN)
           COOK TIME = 0;
           else
            if (COOK TIME != 0)
               Y WARM = ON;
               set next;
     state Cooking
         if (K DOOR != OPEN)
            Y WARM = OFF;
            set state WaitForDoorClose;
          timeout (COOK TIME)
             Y WARM = OFF;
             set next;
```

Сравнительный анализ средств визуализации диаграмм для языков общего назначения

	Class Designer для Visual Studio	Astah UML	MagicDraw	Software Ideas Modeler	BOUML	Visual paradigm	Rational Rose	Enterprise Architect	IntelliJ Idea	Sybase PowerDesigner	NetBeans	LabVIEW	Altova UModel 2008
Реверсивный инжиниринг	+	+	+	+	+	+	+	+	+	+	+	+	+
Кодогенерация	-	+	+	+	+	+	+	+	-	+	-	+	+
Возможность модификации	+	+	+	+	+	+	+	+	+	+	+	+	+
Динамическое построение	+		+	+	-		+		+	-	-		
Возможность скрывать компоненты классов	+			+	+		+		+	+	-	-	
Количество видов диаграмм	1	9	24	14	10+	28	5+	12	3	3+	5+	1	14+

Анализ средств разработки систем управления и ПО для встраиваемых систем

	MATLAB: Stateflow, Simulink	CoDeSys	ISaGRAF	YAPLC	AXEI Logidab	SOFTLOGIC TRACE MODE	SIMATIC STEP 7	SCADA TRACE MODE	MasterSCADA	KB-IDE	Arduino IDE	IDE компании Cygnal (MCS-51)	Atmel Studio	CodeVisionAVR	Keil MDK–ARM (Keil uVision)	Atollic TrueSTUDIO	IAR Embedded Workbench	CooCox CoIDE	Scilab	Quantium platform (qm)
Реверсивный инжиниринг	-	-	-	-	+	-	-	+	+	-	-	-	-	-	-	+	-	+	+	-
Кодогенерация	+	-	+	+	+	-	-	-	-	+	-	+	-	+	-	+	+	+	+	+
Возможность модификации диаграмм								+	+							+		+	+	
Платно для коммерческого использования	+	+	+	-	+	+	+	+	+	-	-	-	-	+	+	-	+	-	-	-

Удовлетворяет требованиям

Не удовлетворяет

Данные отсутствуют

Требования к средству визуализации диаграмм

Необходимо обеспечить:

- возможность редактирования диаграмм
- автоматическую укладку диаграмм на плоскость
- визуализацию
 - диаграмм состояний процесса,
 - диаграмм связи процессов по данным,
 - диаграмм связи процессов по управлению.
- возможность сохранения диаграммы в отдельный файл.

Диаграмма состояний процесса

Диаграмму состояний процесса предложено отображать в виде диаграммы состояний UML.

Диаграмма связи процессов по данным

Для построения диаграмм связи процессов по данным разработана нотация на основе:

- диаграммы деятельности (идея подписей над стрелками);
- диаграммы состояний UML (обозначение вершин)

Диаграмма связи процессов по управлению

Для построения диаграмм связи процессов по управлению были модифицированы:

- диаграмма деятельности UML (общий вид вершин диаграммы).
- диаграмма состояний UML (идея подписей над стрелками, обозначение точки входа).

Обзор форматов представления графов

	GraphML	Gv	Xgml	Gml	Node	Edge list	Pajek	Leda	TLP	Gw	GEXF
Хранение координат	+	-	+	+	-	-	+	+	+	+	+
Форма вершин	+	+	+	+	-	-	+	+	+	+	+
Ориентированный граф	+	+	+	+	+	+	+	+	+	+	+
Подписи над ребрами	+	+	+	+	-	-	+	+	+	+	-
Поддерживающие средства	Gephi, Igraph, OGDF, Yed, Network X	GraphViz, Gephi, Igraph*, OGDF, ZGRViewer, NetworkX	Yed	Gephi, Igraph, OGDF, Yed, NetworkX, Tulip, LEDA	Yed, NetDra w	OGDF, Yed, Network X, NetDraw	Gephi, Igraph, Network X, NetDraw	Igraph, OGDF, NetworkX , LEDA	OGDF, Gephi, Tulip	LEDA	Gephi, OGDF, NetworkX , Tulip

Удовлетворяет требованиям

Не удовлетворяет требованиям

Возможности конвертации:

Выбран формат GML

12 /14

Архитектура

- Отдельные генераторы для каждого вида диаграмм
- Отдельный генератор текста на GML
- Перед генерацией создается модель диаграммы в виде списка вершин и ребер

Реализация

- Модуль выполнен в виде Eclipseплагина
- Используемые технологии: Xtend, Xtext
- Генератор диаграмм вызывается каждый раз при сохранении исходного кода в Reflex IDE.

Результаты

	Время создания	Количество ошибок в диаграмме
Модуль генерации диаграмм	1-10 секунд	0
Вручную	2-8 часов	3+

Полученный модуль генерирует диаграммы:

- связи процессов по данным,
- связи процессов по управлению,
- состояний процессов по AST за несколько секунд, что позволяет:
- на несколько порядков сократить время создания диаграмм
- ускорить рецензирование и рефакторинг кода (за счет наглядности диаграмм)
- упростить поддержку проектов
- гарантировать отсутствие ошибок в диаграммах, вызванных человеческим фактором.

Публикации

Публикация доклада «Разработка программного модуля визуализации диаграмм процессов по спецификации на языке Reflex» в сборнике конференции МНСК 2020 в секции «Инструментальные и прикладные программные системы»

Контакты:

Email: <u>s.belenkaia8@g.nsu.ru</u>

Github для реализации: https://github.com/Belenkaia/Diagram_generator.git

Github для анализа: https://github.com/Belenkaia/Diagram-visualisation.git

