Escuela Técnica Superior de Ingeniería Informática

Asignatura:

Algebra Lineal y Numérica

Autor:

Fernando José Mateos Gómez

Ultima Modificacion: 2 de febrero de 2022

> jisod jis inšpīsna rimjamja jis in & > jisod jis inšpīsna rimbit gijas in &

Indice

1.	Ten	na 1: Sistemas de Ecuaciones Lineales, Métodos Directos	2
	1.1.	Sistema de Ecuaciones Lineales	2
		1.1.1. Método de Eliminacion de Gauss	2
		1.1.2. Discusión	2
	1.2.	Matrices Elementales	3
		1.2.1. Propiedades	3
	1.3.	Método de Gauss-Jordan	3
		1.3.1. Matriz Inversa	3
	1.4.	Método LU	3
		1.4.1. Método de Cholesky	4
2.	Tema 2: Sistemas de Ecuaciones Lineales y Métodos Iterativos		
	2.1.	Introducción	5
	2.2.	Radio Espectral	5
	2.3.	Descomposición	5
		2.3.1. Método de Jacobi	6
		2.3.2. Método de Gauss-Seidel	6
3.	Tema 3: Condicionamiento de Sistemas de Ecuaciones Lineales		
	3.1.	Introducción	7
	3.2.	Espacio Vectorial	7
		3.2.1. Ejemplos	7
	3.3.	Normas Vectoriales y Matriciales	7
		3.3.1. Vectores	7
		3.3.2. Matrices	8
	3.4.	Número de Condición de una Matriz	8
	3.5.	Transformaciones y Condicionamiento	8
	3.6.	Transformaciones Householder	8
	3.7.	Método QR	8
4.	Ten	na 4: Series Numéricas. Series de Potencias	9
5.	Ten	na 5: Series de Fourier. Series Trigonométricas	10
გ.	Ten	na 6: Funciones de Varias Variables	11

1. Tema 1: Sistemas de Ecuaciones Lineales, Métodos Directos

1.1. Sistema de Ecuaciones Lineales

Considerando que un sistema de ecuaciones lineales se puede representar como $\mathbf{A}\mathbf{x} = \mathbf{b}$ podemos decir entonces que esta expresión equivale a:

$$\begin{cases} ax + by + cz + \dots = k \\ \dots + \dots + \dots + \dots = \dots \\ \dots + \dots + \dots + \dots = \dots \\ \dots + \dots + \dots + \dots = \dots \end{cases}$$

Que es lo mismo que:

$$\begin{pmatrix} ax & by & cz & \cdots \\ \vdots & \ddots & \cdots & \cdots \\ \vdots & \cdots & \ddots & \cdots \\ \vdots & \cdots & \cdots & \ddots \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ \vdots \end{pmatrix} = \begin{pmatrix} k \\ \vdots \\ \vdots \\ \vdots \end{pmatrix}$$

1.1.1. Método de Eliminacion de Gauss

Aplicando transformaciones elementales simplificamos la matriz (A|b) de forma que sea triangular superior:

$$\begin{pmatrix} 1 & 2 & | 3 \\ -1 & 1 & | 3 \\ 1 & 1 & | 3 \end{pmatrix} \xrightarrow{F_{21}(1) \ F_{31}(-1)} \begin{pmatrix} 1 & 2 & | 3 \\ 0 & 3 & | 6 \\ 0 & -1 & | 0 \end{pmatrix} \xrightarrow{F_{32}(\frac{1}{3})) \ F_{2}(\frac{1}{3})} \begin{pmatrix} 1 & 2 & | 3 \\ 0 & 1 & | 2 \\ 0 & 0 & | 2 \end{pmatrix}$$

$$\begin{cases} x + 2y = 3 \\ 3y = 6 \\ 0 = 2 \end{cases}$$

En este caso no tiene solución.

1.1.2. Discusión

Existen 3 tipos de sistemas de ecuaciones:

- Incompatible: No tiene soluciones.
- Compatible:
 - Determinado: Tiene una sola solución.
 - Indeterminado: Tiene infinitas soluciones.

Para determinar cual es, sin resolverla, aplicamos el método de Rouché-Fröbenius:

- Si el Rango(A) \neq Rango(A|b) entonces es Incompatible.
- Si el Rango(A) es igual al número de incógnitas, es <u>Determinado</u>.
- Si el Rango(A) es menor al número de incógnitas es Indeterminado.

1.2. Matrices Elementales

Llamamos a estas a las matrices que surgen de operar con sus filas (F) o columnas C.

- $F_{ij} \Rightarrow F_i \leftrightarrow F_j$
- $F_i(\lambda) \Rightarrow F_i \leftarrow \lambda F_i$
- $F_{ij}(\lambda) \Rightarrow F_i \leftarrow F_i + F_j \lambda$

1.2.1. Propiedades

- 1. Mover dos filas o columnas implica en multiplicar la matriz por (-1).
- 2. Multiplicar una fila o columna por un número, implica multiplicar la matriz por ese valor
- 3. $F_{ij} = F_{ij}^{-1}$
- 4. $F_i^{-1}(\lambda) = F_i(\frac{1}{\lambda})$
- 5. $F_{ij}^{-1}(\lambda) = F_{ij}(-\lambda)$

1.3. Método de Gauss-Jordan

Se basa en el método de Gauss, partiendo de una matriz I, unitaria, debemos de encontrar otra tal que su producto nos devuelva la solución que buscamos.

1.3.1. Matriz Inversa

Para calcularla debemos de hacer transformaciones elementales de la matriz A|I tal que A se convierta en I, haciendo transformaciones elementales para obtener una matriz triangular superior y luego diagonal. Es decir:

$$A^{-1} = FI$$

1.4. Método LU

Para poder aplicar este algoritmo, y sus derivados, debemos de cerciorarnos que A es una matriz definida positiva, cada una de sus submatrices, partiendo desde el elemento en la primera columna, primera fila, y de ahí expandiendo, es positiva.

$$Ax = b$$
 $A = LU$

Considerando A como la matriz con la que partimos, las matrices L y U son matrices diagonales inferior y superior, respectivamente. Considerando esto, podemos usar el método de Gauss para obtener la matriz U y para L, aplicamos el siguiente sistema de ecuaciones:

$$\begin{cases} Ly = b \\ Ux = y_0 \end{cases}$$

Siendo x la solución del sistema. ¿Cómo hayar L? A partir de las transformaciones elementales que hemos hecho, le hacemos la inversa, y se las aplicamos a una matriz unitaria,

3

veamos este ejemplo:

$$\begin{pmatrix} 2 & -1 & 0 & 1 \\ 2 & -2 & 0 & 2 \\ -2 & 0 & 1 & -2 \\ -1 & 1 & 0 & 0 \end{pmatrix} \xrightarrow{F_{21}(-1) F_{31}(1) F_{41}\left(\frac{1}{2}\right)} \begin{pmatrix} 2 & -1 & 0 & 1 \\ 0 & -1 & 0 & 1 \\ 0 & -1 & 1 & -1 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} \xrightarrow{F_{32}(-1) F_{42}\left(\frac{1}{2}\right)} \begin{pmatrix} 2 & -1 & 0 & 1 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Ahora tenemos la siguiente ecuacion:

$$F_{42}\left(\frac{1}{2}\right)F_{32}(-1)F_{41}\left(\frac{1}{2}\right)F_{31}(1)F_{21}(-1)A = U$$

$$L = \left(F_{42}\left(\frac{1}{2}\right)F_{32}(-1)F_{41}\left(\frac{1}{2}\right)F_{31}(1)F_{21}(-1)\right)^{-1}$$

$$L = F_{21}(1)F_{31}(-1)F_{41}\left(\frac{-1}{2}\right)F_{32}(1)F_{42}\left(\frac{-1}{2}\right)I$$

Con todo esto, ya seríamos capaces de plantear los sistemas de ecuaciones.

1.4.1. Método de Cholesky

Es una derivación del método LU, solo se puede usar cuando la matriz es simétrica $A = A^t$, en cuyo caso $A = KK^t$

De esta forma, ahora la ecuación que tendremos que resolver es la siguiente:

$$\begin{cases} Ky = b \\ K^t x = y_0 \end{cases}$$

Para obtener K debemos de obtener L y multiplicarla por una matriz formada por los elementos de la diagonal de U, con su raiz cuadrada:

$$\begin{pmatrix} 4 & 2 & 0 \\ 2 & 3 & -2 \\ 0 & -2 & 3 \end{pmatrix} \xrightarrow{F_{21}\left(\frac{-1}{2}\right) F_{32}(1)} \begin{pmatrix} 4 & 2 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{pmatrix} = U$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

$$K = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 1 & \sqrt{2} & 0 \\ 0 & -\sqrt{2} & 1 \end{pmatrix}$$

2. Tema 2: Sistemas de Ecuaciones Lineales y Métodos Iterativos

2.1. Introducción

Dado un sistema Ax = b, si A es invertible, es decir, el sistema es compatible determinado, por lo que podemos calcular la solución como $\hat{x} = A^{-1}b$, siendo \hat{x} la única solución posible. Usamos este método cuando el sistema es pequeño, pero si la matriz A es extremadamente grande, podemos usar métodos de aproximación que nos ayuden a acercarnos a la solución, con un error muy cercano a 0.

Para lograr esto usaremos el radio espectral y el <u>autovalor</u>.

2.2. Radio Espectral

Consideramos Q como una matriz cuadrada, por lo que un **autovalor** es un escalar λ para el que existe un vector x no nulo tal que:

$$Qx = \lambda x$$

Tras esto podemos calcular los autovalores como:

$$|Q - \lambda I| = 0$$

De esta forma solo tendremos que calcular un determinante para esta matriz resultante tal que sus raices son sus autovalores:

$$pQ(\lambda) = |Q - \lambda I|$$

Así obtendremos el radio espectral, que será el autovalor de mayor valor, absoluto:

$$\rho(\lambda) = \{|\lambda| : \lambda \text{ autovalor de } Q\}$$

2.3. Descomposición

¿Cómo calculamos la matriz Q?, simple, cualquier matriz cuadrada se puede descomponer en la suma de dos matrices (una de ellas es invertible):

$$A = M + N \qquad Ax = b$$
$$(M + N) x = b$$
$$Mx = b - Nx$$
$$x = M^{-1}b + M^{-1}Nx = C + Qx$$

De esta forma, de forma general podemos obtener la solución en la iteración enésima:

$$\hat{x}_n = Qx_{n-1} + C$$

Podemos calcular el error con Q^n , cuanto más cercana a cero sea esa matriz, entonces más precisa es la solución.

Es decir, calculamos el radio espectral de:

$$\rho(-M^{-1}N) = 0$$

Ahora, considerando que las matrices M y N, las podemos seguir descomponiendo, podemos descomponer A en 3 matrices (triangular superior e inferior y la diagonal)

$$A = D + U + L$$

2.3.1. Método de Jacobi

$$\hat{x}_n = Jx_{n-1} + C$$
 $J = -D^{-1}(L+U)$ $C = D^{-1}b$

2.3.2. Método de Gauss-Seidel

$$\hat{x}_n = GSx_{n-1} + C$$
 $GS = -(D+L)^{-1}U$ $C = (D+L)^{-1}b$

3. Tema 3: Condicionamiento de Sistemas de Ecuaciones Lineales

3.1. Introducción

En la realidad, los valores de nuestro sistema no son conocidos o exactos, lo que afecta a nuestro sistema, para esto condicionaremos el sistema (para obtener un error muy bajo) Cuando peor condicionado esté el sistema, más grande será el error.

3.2. Espacio Vectorial

Sobre un cuerpo \mathbb{K} (\mathbb{R} o \mathbb{C}), es un cuerpo \mathcal{V} que tiene dos operaciones (suma y producto). Siendo $(u, v \in \mathcal{V})$, podemos usar estas propiedades:

- Suma:
 - Propiedad Conmutativa
 - Propiedad Asociativa
- Producto:
 - $(\alpha, \beta)(v + u) = \alpha v + \alpha u + \beta v + \beta u$
 - $(\alpha\beta)u = u(\alpha\beta)$

3.2.1. Ejemplos

Por parte de los vectores, se pueden escribir así:

$$\mathbb{R}^n = \{ n (u_1, ..., u_n) : u_1, ..., u_n \in \mathbb{R} \}$$

Por parte de las matrices:

$$\mathcal{M}_n(\mathbb{R}) = \{A_{(aij)} \text{ matrices cuadradas de orden } n \text{ con } aij \in \mathbb{R} \}$$

3.3. Normas Vectoriales y Matriciales

3.3.1. Vectores

Es un **espacio vectorial** \mathcal{V} sobre \mathbb{R} tal que $\|\cdot\|: \mathcal{V} \to [0, \infty)$ cumple:

- $\|u\| = 0 \Leftrightarrow u = 0$
- Propiedad homogénea: $\|\lambda u\| = |\lambda| \|u\|$
- $||u + v|| \le ||u|| + ||v||$

De esta forma podemos calcular también la distancia entre dos vectores:

$$d(u, v) = ||u - v||$$

Es un **espacio normado**, un espacio vectorial \mathcal{V} dotado de una forma:

- $||u||_{\infty} = \max\{|u_1|, ..., |u_n|\}$
- $\blacksquare \|u\|_k = \sqrt[k]{\sum_{n=1} u_n^k}$
- \blacksquare Norma euclídea: $\|u\|_2 = \sqrt[2]{\sum_{n=1} u_n^2}$

3.3.2. Matrices

Una **norma matricial**, se define en un espacio de matrices, normas sobre $\mathcal{M}_n(\mathbb{R})$ que cumplen:

- $||AB|| \le ||A|| \, ||B||$
- Norma matricial con la vectorial: $||Au|| \le ||A|| \, ||u||$

Ejemplos de normas son:

- \blacksquare La máxima suma de las **columnas** $\|A\|_{\infty} = \max \sum_{j=1} |a_{ij}|$
- \blacksquare La máxima suma de las filas $\|A\|_1 = \max \sum_{i=1} |a_{ij}|$
- Norma espectral: $\|A\|_2 = \sqrt{\rho(A^t A)}$
- Norma de Frobenius, es la suma de todos los elementos de la matriz, al cuadrado: $\sqrt{\sum_{i=1} \sum_{j=1} a_{ij}^2}$.

O la suma de los elementos de la matriz traspuesta por si misma: $\sqrt{\delta(A^t,A)}$ Es similar a la norma espectral.

3.4. Número de Condición de una Matriz

Dado un sistema Ax = b, con A invertible y $b \neq 0$, b se modificará por b_p :

$$\begin{cases} Ax = b & x_0 = A^{-1}b \\ Ax_p = b_p & x_p = A^{-1}b_p \end{cases}$$

La solución de x_p tendrá un error, $\varepsilon = ||b - b_p||$, que llamaremos **cota de error relativo**. Si:

$$\xi \simeq 0 \Rightarrow ||x_0 - x_p|| = ||A^{-1}(b - b_p)|| \le ||A^{-1}|| ||b - b_p||$$

Esto significa que nos interesa que $\|A^{-1}\|$ sea lo más pequeño posible, ya que $\|b-b_p\|$ será muy pequeño

- 3.5. Transformaciones y Condicionamiento
- 3.6. Transformaciones Householder
- 3.7. Método QR

4. Tema 4: Series Numéricas. Series de Potencias

5. Tema 5: Series de Fourier. Series Trigonométricas

6. Tema 6: Funciones de Varias Variables