

Lecture 21

Yao Li

Department of Statistics and Operations Research
UNC Chapel Hill

Introduction

- Non-Parametric Classification
- K-Nearest Neighbors (k-NN)
 - Machine Learning Technique
 - Intuitive
 - Non-Parametric
 - Used for Predicting Classes of an Output Variable

K-NN Algorithm

- Step 1: Choose a k
- Step 2: Select the k Most Similar Observations in a Database Which are the "Closest" According to the Input Variables
- Step 3: Find the Most Common Classification Among These
- Step 4: Classify the New Observation Based on What is Category is Known to Occur Most

Tutorial 12

- Instructions
 - Data > library(titanic)
 - Required Packages
 - library(modelr)
 - library(tidyverse)
 - library(purrr)
 - library(broom)
 - library(class)
 - Download Tutorial 12 and Open .Rmd File

Part 1: Feature Engineering and Visualization

Titanic Survival Data

> library(titanic)

Response Variable

$$Y = \begin{cases} 1 & \text{if Survived} \\ 0 & \text{if Did Not Survive} \end{cases}$$

- Explanatory Variables
 - Siblings/Spouses Aboard
 - Parents/Children Aboard
 - Passenger Fare
- Goal: Use k-NN to Predict a Passenger to Survive or to Die a Miserable, Cold Death

Part 1: Feature Engineering and Visualization

- Run Chunk 1
 - Creating a New Variable
 - What Does This Variable

Represent?

Run Chunk 2

- New Individual: Alice
 - Had 3 Family Members on Ship
 - Spent \$100 on Ticket
 - Survived or Died?
- Run Chunk 1

- Finding Similar Passenger
 - Out-of-Sample Passenger
 - $X_{11} = Family Onboard$
 - $X_{12} = Fare$
 - Passenger in Training Data
 - $X_{21} = Family Onboard$
 - $X_{22} = Fare$
 - Geometric Distance Formula

$$d = \sqrt{(x_{11} - x_{21})^2 + (x_{12} - x_{22})^2}$$

- Two Scenarios
 - Distance is Small
 - Distance is Large

- Run Chunk 2
 - Suppose k=5
 - Five Most Similar Passengers

Survived	Fare	Family	d
1	93.500	2	6.576473
0	106.425	1	6.729088
1	106.425	0	7.090883
1	93.500	0	7.158911
1	108.900	1	9.121952
0	108.900	1	9.121952

- Why are There Six?
- Did Alice Survive or Die?

- Run Chunk 3
 - Output Figure

- What Did You Expect to See?
- Are You Surprised?

- Consider Standardization
 - Multiple Methods
 - Classic Formula

$$Z = \frac{X - \mu}{\sigma_{\chi}}$$

- Use \overline{x} and s_x
- What We are Doing
 - Centering Data
 - Scaling Data

- Run Chunk 1
 - Units: Standard Deviations
 - Alice: Above Average Family

Size and Fare

- Run Chunk 2
 - Recall: Alice
 - Family Size of 3
 - \$100 Ticket
 - Before & After Standardization

- Chunk 2 Continued
 - Both Before and After Standardization We Would Predict Alice to Survive
 - Updated Figure

- Run Chunk 1
 - Suppose k is Large (k=500)

- Chunk 1 Continued
 - Votes From Neighbors

```
KNN.PREDICT=table(ST5$Survived)
print(KNN.PREDICT)

##
## 0 1
## 258 251
```

- Based on k-NN When k=500
 - 258 Neighbors Died
 - 251 Neighbors Survived
- Predict Alice is Food for Fish

- Leave-on-Out Cross Validation
 - Helpful Package for k-NN > library(class)
 - Install the R Package
 - Helpful Functions
 - Peforming k-NN

> knn(train, test, cl, k = 1)

- LOOCV > knn.cv(train, cl, k = 1)
- For Other Important Arguments, See Documentation

- Run Chunk 2
 - Consider k=1,2,3,...,250
 - Use CV, to Generate Out-of-Sample Predictions for Each k
 - Calculate Overall Accuracy Percentage

- Run Chunk 3
 - Identify Best Choice for k (k=18)
 - Use k to Generate Predictions on Future Data With Unknown Survival > titanic_test
 - Figure Illustrating Predictions on Test Set for Competition

