

Presented and prepared by James Lockridge

What is a stepper motor?

- Basic function: uses electrical signals to control rotor position
- Advantages:
 - Hold rotor in place for long periods of time
 - Precise positioning without sensors
 - Low cost
 - Easy to control

Brushed DC (BDC) motors

Brushless DC (BLDC) motors

Stepper motor

S

Stepper motor construction

Permanent magnet

- Permanent magnet in rotor [2]
- Teeth on stator only [2]
- Typically 2 phases [1]
- Step angles 3.6°-18°
- Low torques

Hybrid

- Permanent magnet in rotor [2]
- Teeth on stator and rotor [2]
- Typically 2 phases [1]
- Step angles 0.9°-1.8°
- Wide range of torque options

Variable reluctance

- No magnets [1]
- Teeth on stator *and* rotor [2]
- Rotor made of magnetic steel [1]
- ≥3 phases [1]

Bipolar vs. unipolar

Basic stepper driving

To find more stepper driver technical resources and search products, visit http://www.ti.com/motor-drivers/stepper-driver/overview.html

Resources

- [1] Acarnley, Paul P. Stepping motors: a guide to theory and practice. 4th ed., Institution of Engineering and Technology, 2007.
- [2] Collins, Danielle. "Stepper motors: Differences between permanent magnet, variable reluctance, and hybrid types," Linear Motion Tips, 26 April 2018.

© Copyright 2018 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com