Moving Forward with (PET-)BIDS Derivatives

BIDS DERIVATIVES MEETING COPENHAGEN June 21-23, 2023

Guidelines for the format and content of PET data

Knudsen & Innis et al. 2020, JCBFM

Guidelines for the format and content of PET data

MRTM, MRTM2, Logan_{ref}, SRTM, SRTM2, Logan, FRTM, ESRTM, ESRTM2, Patlak

PET-BIDS Derivatives

How to move forward with PET-BIDS Derivatives

We need to cover 8 steps of potential processing steps

- 1. Motion correction
- 2. Co-registration
- 3. Delineation of Volumes of Interest
- 4. Partial Volume Correction
- 5. Kinetic Modeling
- 6. Smoothing
- 7. Blood processing
- 8. Parametric Images (voxelwise and surface-based)

How to move forward with PET-BIDS Derivatives

We need to cover 8 steps of potential processing steps

- 1. Motion correction
- 2. Co-registration
- 3. Delineation of Volumes of Interest
- 4. Partial Volume Correction
- 5. Kinetic Modeling
- 6. Smoothing
- 7. Blood processing
- 8. Parametric Images (voxelwise and surface-based)

Common across many modalities

PET-BIDS Derivatives (defining output files)

Motion Correction (*_desc)

Files:

- * desc-confounds timeseries.tsv
- *_desc-confounds_timeseries.json
- *_desc-mc_pet.nii.gz
- *_desc-mc_pet.json
- * figures/QC (redundant?)?

Registration (*_space-)

Files:

- *_from-pet_to-T1w_reg.xfm
- *_from-pet_to-T1w_reg.json
- *_space-T1w_desc-brain_mask.nii.gz
- * space-T1w desc-ref pet.nii.gz
- *_space-T1w_desc-ref_pet.json
- *_space-T1w_pet.nii.gz

Delineation of Volumes of Interest (* desc-)

Files:

- *_desc-gtmseg_dseg.nii.gz
- * desc-gtmseg dseg.tsv
- * desc-gtmseg tacs.tsv
- * desc-gtmseg morph.tsv
- *_desc-brainstem_dseg.nii.gz
- * desc-brainstem dseg.tsv

Kinetic modeling (*_km-)

Files:

- $\verb| *_km-mrtm2_desc-gtmseg_kinpar-BPnd_pet.tsv| \\$
- *_km-mrtm2_desc-gtmseg_kinpar-BPnd_pet.json
- *_km-srtm_desc-gtmseg_kinpar-BPnd_pet.tsv
- *_km-srtm_desc-gtmseg_kinpar-BPnd_pet.json
- $\verb|*_km-srtm_desc-brainstem_kinpar-R1_pet.tsv|$
- *_km-srtm_desc-brainstem_kinpar-R1_pet.json ...

Smoothing (*_sm-)

Files:

- *_sm-8_pet.nii.gz
- *_sm-8_pet.json

Partial Volume Correction (*_pvc-)

Files:

- *_pvc-mg_pet.nii.gz
- *_pvc-mg_pet.json
- *_pvc-mg_desc-gm_mask.nii.gz
- * pvc-mg desc-wm mask.nii.gz
- * pvc-mg desc-csf mask.nii.gz

Blood derivatives

Files:

- * config.json
- *_inputfunction.json
- *_inputfunction.tsv

Parametric images (volumes and surfaces)

Files:

- * space-MNI305 res-2 km-mrtm2 kinpar-BPnd pet.nii.gz
- *_space-fsaverage_hemi-L_km-mrtm2_kinpar-BPnd_pet.nii.gz
- *_space-fsaverage_hemi-R_km-mrtm2_kinpar-BPnd_pet.nii.gz

Software for PET analysis pipelines

SOFTWARE for analyzing PET (and MR) data

SOFTWARE	Motion	Registration	Smoothing	Delineation of	Partial Volume	Pharmacokinetic	Open
	correction			Volumes of Interest	Correction (PVC)	Modeling	source
AIR	X	X					×
FreeSurfer	x	x	x	x	x	x	x
FSL	x	x	x	X			x
SPM*	x	x	X	x			
PMOD	x	x	x	x	x	x	
MIAKAT*	x	x	x	x	x	x	
PVElab*		x		x	x		
APPIAN		x		x	x	x	х
Kinfitr						х	х
PETPVC					х		х

^{*}Runs via MATLAB, and is therefore not open source.

REFERENCES

AIR: http://air.bmap.ucla.edu/AIR5/index.html
FreeSurfer: https://surfer.nmr.mgh.harvard.edu/

FSL: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki SPM: https://www.fil.ion.ucl.ac.uk/spm/ PMOD: https://www.pmod.com/web/

MIAKAT: http://www.miakat.org/MIAKAT2/index.html

PVElab: https://xtra.nru.dk/pveout/

APPIAN: https://github.com/APPIAN-PET/APPIAN

Kinfitr: https://github.com/mathesong/kinfitr PETPVC: https://github.com/UCL/PETPVC

Statistics from Nørgaard et al. 2019 (review of 105 published DASB papers):

AIR (N=7), FreeSurfer (N=2), FSL (N=3), SPM (N=60), PMOD (N=34), MIAKAT (N=0), PVElab (N=15), APPIAN (N=0), Kinfitr (N=0), PETPVC (N=0).

How to move forward with PET-BIDS Derivatives

- 1. We need to align steps with other modalities to move forward
- 2. Have to make some choices on provenance

