Advanced Empirical Finance: Topics and Data Science

Stefan Voigt Spring 2024

University of Copenhagen and Danish Finance Institute

Machine learning

What is Machine learning?

The definition of "machine learning" is inchoate and is often context specific. We use the term to describe (i) a diverse collection of high-dimensional models for statistical prediction, combined with (ii) so-called "regularization" methods for model selection and mitigation of overfit and (iii) efficient algorithms for searching among a vast number of potential model specifications. (Gu et al. 2020)

- (i) select between small simplistic and complex ML models
- (i) Focus on predictive accuracy
- (ii) selecting from multiple models in-sample leads to overfitting and poor out-of-sample performance
- (ii) "regularization" methods for model selection
- (iii) challenge in terms of computational effort

ML in Finance

3

What makes ML in Finance special?

Challenges (Israel, Kelly, Moskowitz, 2019)

- Limited data (left-hand side limited by T)
- · Markets evolve and thus even lower effective sample size
- By market efficiency: small signal-to-noise ratio (limited predictability)
- Data potentially unstructured (company announcements)

Our aim

• Exploit potential for improving risk premium measurement $E_{t}\left(r_{i,t+1}\right)$

But...

- · improved predictions are still only measurements
- The measurements do not tell us about economic mechanisms or equilibria
- Machine learning methods on their own do not identify fundamental associations among asset prices and conditioning variables

Overview: Empirical Asset Pricing via Machine Learning

- Familiarize yourself with the paper "Empirical Asset Pricing via Machine Learning" by Gu et al. (2020)
- comparative analysis of machine learning methods for the canonical problem of measuring asset risk premiums
- "We demonstrate large economic gains to investors using machine learning forecasts, in some cases doubling the performance of leading regression-based strategies from the literature."

Machine learning roadmap

- 1. Bias-Variance Trade-off
- 2. Penalized Linear Regressions (Ridge and Lasso)
- 3. Regression Trees and Random Forests
- 4. Neural Networks
- 5. Advanced case studies and applications

Your task:

- · Return prediction for all CRSP-listed stocks
- · Large set of macroeconomic predictors
- · Hundreds of predictive firm and economic characteristics
- · You should study Gu et al. (2020) in depth!
- Exercises: Prepare the dataset as explained in Section 2.1 of Gu et al. (2020)

Bias-Variance Trade-off

Unbiased, linear estimators

$$E_t(r_{i,t+1}) = g(x_{i,t}) \stackrel{??}{=} \beta' x_{i,t}$$

- Machine learning prescribes a vast collection of high-dimensional models that attempt to predict future quantities of interest while imposing regularization
- We know: OLS is the best linear unbiased estimator (BLUE)
- "Best" = the lowest variance estimator among all other unbiased linear estimators
- Requiring the estimator to be linear is binding since nonlinear estimators exist (e.g., neural networks or regression trees)
- · Likewise, unbiased is crucial since biased estimators do exist

Biased estimators?

- Shrinkage methods: the variance of the OLS estimator can be high as OLS coefficients are unregulated
- If judged by Mean Squared Error (MSE), biased estimators could be more attractive if they produce substantially smaller variance than OLS

Shortcomings of OLS

- Let β denote the true regression coefficient and let $\hat{\beta} = (X'X)^{-1}X'y$, where X is a $(T \times N)$ matrix of explanatory variables
- Then, the variance of the (unbiased) OLS estimate $\hat{\beta}$ is given by

$$Var(\hat{\beta}) = E((\hat{\beta} - \beta)(\hat{\beta} - \beta)')$$

$$= E((X'X)^{-1}X'\varepsilon\varepsilon'X(X'X)^{-1})$$

$$= \sigma_{\varepsilon}^{2}E((X'X)^{-1})$$

where ε is the vector of residuals and σ_{ε}^2 is the variance of the error term

- When the predictors are highly correlated, the term $(X'X)^{-1}$ quickly explodes
- Even worse: the OLS solution is not unique if X is not of full rank

OLS in a prediction context

- 1. restrictive
- 2. may provide poor predictions, may be subject to over-fitting
- 3. does not penalize for model complexity and could be difficult to interpret

The Bias-Variance Trade-off

· Assume the model

$$y = f(x) + \varepsilon$$
, $\varepsilon \sim (0, \sigma_{\varepsilon}^2)$

- β^{ols} has a host of well-known properties (Gauss-Markov)
- But: Can we choose $\hat{f}(x)$ to fit future observations well?
- · MSE depends on the model as follows:

$$\begin{split} E(\hat{\varepsilon}^2) &= E((y - \hat{f}(\mathbf{x}))^2) = E((f(\mathbf{x}) + \varepsilon - \hat{f}(\mathbf{x}))^2) \\ &= \underbrace{E((f(\mathbf{x}) - \hat{f}(\mathbf{x}))^2)}_{\text{total quadratic error}} + \underbrace{E(\varepsilon^2)}_{\text{irreducible error}} \\ &= E(\hat{f}(\mathbf{x})^2) + E(f(\mathbf{x})^2) - 2E(f(\mathbf{x})\hat{f}(\mathbf{x})) + \sigma_{\varepsilon}^2 \\ &= E(\hat{f}(\mathbf{x})^2) + f(\mathbf{x})^2 - 2f(\mathbf{x})E(\hat{f}(\mathbf{x})) + \sigma_{\varepsilon}^2 \\ &= \underbrace{Var(\hat{f}(\mathbf{x}))}_{\text{variance of model}} + \underbrace{E((f(\mathbf{x}) - \hat{f}(\mathbf{x})))^2}_{\text{squared bias}} + \sigma_{\varepsilon}^2 \end{split}$$

 A biased estimator with small variance may have a lower MSE than an unbiased estimator

Over-fitting example

- · 100 monthly manufacturing industry excess returns
- · Estimate a polynomial regression

$$r_t = \alpha + \sum_{p=1}^{P} \beta_p t^p$$

where t is a time index, ranging from 1 to 60

• Evaluate the performance in-sample and out-of-sample for P = 1, 2, 3, 5, 20

Ridge Regression

- Introduced by Hoerl and Kennard (1970a, 1970b)
- Impose a penalty on the L_2 norm of the parameters $\hat{\beta}$ such that for $c \ge 0$ the estimation takes the form

$$\beta^{\text{ridge}} = \arg\min_{\beta} (y - X\beta)' (y - X\beta) \text{ s.t. } \beta'\beta \le c$$

· Standard optimization procedure yields

$$\beta^{\text{ridge}} = (X'X + \lambda I)^{-1} X'y$$

- Hyper parameter λ (c) controls the amount of regularization
- Note that $\beta^{\text{ridge}} = \beta^{\text{ols}}$ for $\lambda = 0$ ($c \to \infty$) and $\beta^{\text{ridge}} \to 0$ for $\lambda \to \infty$ ($c \to 0$)
- $(X'X + \lambda I)$ is non-singular even if X'X is
- Note: Usually, the intercept is not penalized (in practice: demean y)

Ridge Regression

• Let
$$D:=X'X$$

$$\beta^{\text{ridge}}=(X'X+\lambda I)^{-1}X'y$$

$$=(D+\lambda I)^{-1}DD^{-1}X'y$$

$$=(D(I+\lambda D^{-1}))^{-1}D\beta^{\text{ols}}$$

$$=(I+\lambda D^{-1})^{-1}D^{-1}D\beta^{\text{ols}}=(I+\lambda D)^{-1}\beta^{\text{ols}}$$

- β^{ridge} is biased because $E(\beta^{\text{ridge}} \beta) \neq 0$ for $\lambda \neq 0$
- · But at the same time (under homoscedastic error terms)

$$\mathsf{Var}(\beta^{\mathsf{ridge}}) = \sigma_{\varepsilon}^2 \, (D + \lambda I)^{-1} \, X' X (D + \lambda I)^{-1}$$

- You can show that $Var(\beta^{ridge}) \leq Var(\beta^{ols})$
- Trade-off between bias and variance of the estimator!