MAS291 - HOMEWORK CHAP 7

Nguyen Dang Loc - SE160199

7-10

Suppose that the random variable X has the continuous uniform distribution

$$f(x) = egin{cases} 1, & 0 \leq x \leq 1 \ 0, & ext{otherwise} \end{cases}$$

Suppose that a random sample of n = 12 observations is selected from this distribution. What is the approximate probability distribution of \overline{X} – 6? Find the mean and variance of this quantity.

Solution:

Mean and variance of continuous unifrom distribution:

$$\mu=E(X)=rac{0+1}{2}=0.5, \ \sigma^2=V(X)=rac{(1-0)^2}{12}=rac{1}{12}pprox 0.0833$$

The sampling distribution of the sample mean \overline{X} is approximately normal with

+ Mean:
$$\mu_{\overline{X}} = E(\overline{X}) = \mu$$

+ Variance:
$$\sigma_{\overline{X}}^2 = V(\overline{X}) = \frac{\sigma^2}{n}$$

Mean and variance of the probability distribution $\overline{X} - 6$:

$$E(\overline{X} - 6) = E(\overline{X}) - 6 = 0.5 - 6 = -5.5$$

$$V(\overline{X} - 6) = V(\overline{X}) = \frac{\sigma^2}{n} = \frac{1/12}{12} \approx 0.00694$$

7-3

PVC pipe is manufactured with a mean diameter of 1.01 inch and a standard deviation of 0.003 inch. Find the probability that a random sample of n = 9 sections of pipe will have a sample mean diameter greater than 1.009 inch and less than 1.012 inch.

Solution:

Let $X_1, X_2, ..., X_9$ is a random sample of size n=9 of pipe's diameter with $\mu=1.01,\ \sigma=0.003$

The sampling distribution of \overline{X} is normal with

+ Mean
$$\mu_{\overline{X}} = \mu = 1.009$$
,

+ Standard deviation
$$\,\sigma_{\overline{X}} = rac{\sigma}{\sqrt{n}} = rac{0.003}{\sqrt{9}} = 0.001\,$$

Then:

$$P(1.009 < \overline{X} < 1.012) = P(\frac{1.009 - 1.01}{0.003/\sqrt{9}} < Z < \frac{1.012 - 1.01}{0.003/\sqrt{9}})$$

$$= P(-1 < Z < 2)$$

$$\approx 0.8185946$$

7-17

From the data in Exercise 6-21 on the pH of rain in Ingham County, Michigan:

5.47	5.37	5.38	4.63	5.37	3.74	3.71	4.96	4.64	5.11	5.65
5.39	4.16	5.62	4.57	4.64	5.48	4.57	4.57	4.51	4.86	4.56
4.61	4.32	3.98	5.70	4.15	3.98	5.65	3.10	5.04	4.62	4.51
4.34	4.16	4.64	5.12	3.71	4.64					

What proportion of the samples has pH below 5.0?

Solution:

A sample size n=39, a subsample size x=26 which contain values less than 5.

The proportion of the sample has pH below 5.0 is:
$$P(X < 5.0) = rac{x}{n} = rac{26}{39} pprox 0.667$$

About 67% of the sample has pH below 5.0.

Use R: