Proyecto final

Entrega: Viernes 14 de diciembre de 2012 por correo electrónico a Iker. NO habrá prórroga.

Utilizar Octave para resolver los siguientes ejercicios. Antes de realizar preguntas: leer con cuidado estas hojas, las hojas de ayuda que están en la página del curso y discutir en el equipo.

1. Movimiento de una partícula sobre una esfera giratoria

• Una partícula de masa m se mueve sobre una esfera que gira con rapidez angular constante ω alrededor de su eje de simetría hacia la derecha (como la Tierra). Sobre la partícula actúa una fuerza efectiva \mathbf{F} . La ecuación diferencial que describe el movimiento de la partícula desde el punto de vista de un insecto parado sobre la esfera está dada por

$$m\ddot{\mathbf{r}} = \mathbf{F} - m\vec{\omega} \times (\vec{\omega} \times \mathbf{r}) - 2m\vec{\omega} \times \dot{\mathbf{r}}$$

donde $\vec{\omega}$ es un vector cuya dirección indica el eje de rotación de la esfera y su magnitud es la rapidez angular con la que gira. El eje de rotación de la Tierra hace un ángulo de 23.4° con la vertical. En unidades terrestres, $|\vec{\omega}| = 1$.

Resolver las ecuaciones diferenciales en coordenadas cartesianas y después, utilizando la transformación de coordenadas cartesianas a coordenadas esféricas, obtener $\theta(t)$ y $\phi(t)$, es decir, la latitud y la longitud que permiten encontrar a la partícula sobre la esfera. Usar como guía [1].

- Si la partícula es lanzada con velocidad $\mathbf{v_0}$ hacia el oriente desde la ubicación (θ_0, ϕ_0) , dibujar su trayectoria en el plano θ vs. ϕ en ausencia de fuerzas externas. ¿El resultado es esperado? Explicar.
- Si ahora actúa la fuerza gravitacional $\mathbf{F} = mg\hat{\mathbf{r}}$, dibujar la trayectoria como antes. Repetir para una partícula lanzada hacia el poniente. ¿Cuáles son las diferencias con el caso anterior? ¿El resultado es esperado? Explicar.
- Determinar qué puntos iniciales sobre la esfera producen trayectorias interesantes. Guiarse con la intuición física.

Referencias

- [1] Timberlake, Todd y Hasbun, Javier E., Computation in classical mechanics, Am. J. Phys. 76, p. 334.
- [2] Thornton, Stephen T. y Marion, Jerry B., Classical Dynamics of Particles and Systems, Thomson Learning, 2004.

2. Caos en el péndulo físico

- 1. La ecuación de movimiento de un péndulo simple de longitud l en coordenadas polares es $\hat{\theta} = -\frac{g}{l}\sin\theta$. Comparar las oscilaciones del péndulo simple con las del oscilador armónico simple para distintos desplazamientos iniciales. ¿Por qué el péndulo es un oscilador no lineal?
- 2. Aplicar una fuerza armónica al péndulo simple $(F_0 \sin \Omega t)$ y estudiar el comportamiento para distintos valores de la frecuencia y la amplitud. ¿Qué sucede?

- 3. El efecto del amortiguamiento ya fue estudiado en una tarea. Juntando todos los "ingredientes" se obtiene la ecuación 3.8 de [1]. Resolver esta ecuación usando ode45 y reproducir la figura 3.4a. ¿Cómo se hace para que θ varíe en $[0, 2\pi]$?
- 4. Para $F_0=0.5$ y $F_0=1.2$, comparar $\theta(t)$ para tres valores de $\theta(0)$ cercanos ($\dot{\theta}(0)$ fijo). ¿El resultado es esperado? Explicar.
- 5. Dibujar el espacio fase, como se muestra en la figura 3.6, considerando algunos valores para $\theta(0)$ cercanos $(\dot{\theta}(0))$ fijo). Interpretar ambos casos en términos del significado físico de θ y $\dot{\theta}$.
- 6. Para $F_0 = 1.2$ dibujar las secciones de Poincaré correspondientes con n condiciones iniciales, $n \in [4, 10]$. Considerar $\theta(0) \in [-\pi, \pi]$ y $\dot{\theta}(0) \in [-2, 2]$ uniformemente distribuidos. Integrar en el intervalo de tiempo $[0, 100 \cdot 2\pi/\Omega]$ usando lsode. ¿Por qué se dice que el conjunto de puntos obtenido es un atractor? Puede ser de utilidad revisar las páginas 166-169 de [2].
 - Nota: Es conveniente utilizar dos matrices para guardar los valores de θ y $\dot{\theta}$ obtenidos para las n condiciones iniciales. Crear las matrices usando ones(t,n), con t, el número de pasos de tiempo. Después se puede aprovechar plot(A,B), donde A y B son matrices. Recuerda utilizar el "truco" del punto 3 y ajustar los valores de θ para que varíen en $[-\pi, \pi]$.
- 7. A partir de lo anterior y de lo que explica Giordano, ¿cuáles son algunas características del caos determinista?

Referencias

- [1] Giordano, Nicholas J. y Nakanishi, Hisao, Computational Physics, Prentice Hall, 2006.
- [2] Thornton, Stephen T. y Marion, Jerry B., Classical Dynamics of Particles and Systems, Thomson Learning, 2004.

Presentación del trabajo

- Escribir un documento de no más de seis cuartillas con L⁴TEX, en el cual se describa el procedimiento utilizado y se analicen los resultados obtenidos en cada ejercicio. Incluir las gráficas necesarias. Comentar sobre lo aprendido durante la realización del proyecto.
- Entregar un archivo .pdf y dos archivos .m. El nombre de los archivos debe contener el nombre de pila de los dos autores: nombre1+nombre2.ext