Introduction to Machine Learning Jonathan Shewchuk Exam Prep 2 Solutions CS 189 Spring 2022

This exam-prep discussion section covers anisotropic normal distributions, Quadratic and Linear Discriminant Analyses, and some of their extensions.

	,	
	Multiple Choice	
(m) [3 pts] In LDA/QDA, what are the effects of modifying the sample covariance matrix as $\tilde{\Sigma} = 0 < \lambda < 1$?		sample covariance matrix as $\tilde{\Sigma} = (1 - \lambda)\Sigma + \lambda I$, where
	$lacksquare$ $\tilde{\Sigma}$ is positive definite	$ ilde{\Sigma}$ is invertible
	\bigcirc Increases the eigenvalues of Σ by λ	$lacksquare$ The isocontours of the quadratic form of $\tilde{\Sigma}$ are closer to spherical
(h)) [3 pts] We are using linear discriminant analysis to classify points $x \in \mathbb{R}^d$ into three different classes. Let S be the of points in \mathbb{R}^d that our trained model classifies as belonging to the first class. Which of the following are true?	
	\bigcirc The decision boundary of S is always a hyperplane	$igorup S$ can be the whole space \mathbb{R}^d
	 The decision boundary of S is always a subset of a union of hyperplanes 	 S is always connected (that is, every pair of points in S is connected by a path in S)
	Top left: Given that we have three classes, S is defined by two linear inequalities, and therefore its boundary may not be a hyperplane.	
Bottom left: Given that S is defined as the points satisfying a set of inequalities, its boundary is a defined by each of the linear inequalities.		of inequalities, its boundary is a subset of the hyperplanes
	Top right: If the prior for the first class is high enough, the probability of that class could be higher everywhen hence S would be the whole space. For example, take $\mu_1 = \mu_2 = \mu_3$ and $\pi_1 > \pi_2 = \pi_3$. Bottom right: S is a convex polytope defined by the intersection of half-spaces (i.e. the points satisfying a set of inequalities). This is a convex set, and therefore it is connected.	
(o)	[3 pts] Suppose you have a multivariate normal distribution with a positive definite covariance matrix Σ. Consid second multivariate Gaussian distribution whose covariance matrix is $\kappa \Sigma$, where $\kappa = \cos \theta > 0$. Which of the follow statements are true about the ellipsoidal isocontours of the second distribution, compared to the first distribution?	
	\bigcirc The principal axes of the ellipsoids would be rotated by θ	\bigcirc The principal axes (radii) of the ellipsoids will be scaled by $1/\kappa$
	\bigcirc The principal axes (radii) of the ellipsoids will be scaled by κ	The principal axes (radii) of the ellipsoids will be scaled by $\sqrt{\kappa}$
Multiplying Σ by κ multiplies the eigenvalues by κ . The axes of the ellipsoids are so		es of the ellipsoids are scaled by the square roots of the

eigenvalues of Σ .

- (s) [3 pts] Suppose you have a sample in which each point has d features and comes from class C or class D. The class conditional distributions are $(X_i|y_i=C) \sim N(\mu_C,\sigma_C^2)$ and $(X_i|y_i=D) \sim N(\mu_D,\sigma_D^2)$ for unknown values $\mu_C,\mu_D \in \mathbb{R}^d$ and $\sigma_C^2,\sigma_D^2 \in \mathbb{R}$. The class priors are π_C and π_D . We use 0-1 loss.
 - If $\pi_C = \pi_D$ and $\sigma_C = \sigma_D$, then the Bayes decision rule assigns a test point z to the class whose mean is closest to z.
 - If $\pi_C = \pi_D$, then the Bayes decision rule is $r^*(z) = \operatorname{argmin}_{A \in \{C,D\}} \left(|z \mu_A|^2 / (2\sigma_A^2) + d \ln \sigma_A \right)$
- If $\sigma_C = \sigma_D$, then the Bayes decision boundary is always linear.
- \bigcirc If $\sigma_C = \sigma_D$, then QDA will always produce a linear decision boundary when you fit it to your sample.

2 Quadratics and Gaussian Isocontours (Spring 2016)

(a) [4 pts] Write the 2×2 matrix Σ whose unit eigenvectors are $\begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}$ with eigenvalue 1 and $\begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}$ with eigenvalue 4. Write out **both** the eigendecomposition of Σ and the final 2×2 matrix Σ .

$$\Sigma = \left[\begin{array}{cc} 1/\sqrt{5} & -2/\sqrt{5} \\ 2/\sqrt{5} & 1/\sqrt{5} \end{array} \right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 4 \end{array} \right] \left[\begin{array}{cc} 1/\sqrt{5} & 2/\sqrt{5} \\ -2/\sqrt{5} & 1/\sqrt{5} \end{array} \right] = \left[\begin{array}{cc} 17/5 & -6/5 \\ -6/5 & 8/5 \end{array} \right].$$

(b) [3 pts] Write the symmetric square root $\Sigma^{1/2}$ of Σ . (The eigendecomposition is optional, but it might earn you partial credit if you get $\Sigma^{1/2}$ wrong.)

$$\Sigma^{1/2} = \left[\begin{array}{cc} 1/\sqrt{5} & -2/\sqrt{5} \\ 2/\sqrt{5} & 1/\sqrt{5} \end{array} \right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right] \left[\begin{array}{cc} 1/\sqrt{5} & 2/\sqrt{5} \\ -2/\sqrt{5} & 1/\sqrt{5} \end{array} \right] = \left[\begin{array}{cc} 9/5 & -2/5 \\ -2/5 & 6/5 \end{array} \right].$$

(c) [3 pts] Consider the bivariate Gaussian distribution $X \sim \mathcal{N}(\mu, \Sigma)$. Let $P(X = \mathbf{x})$ be its probability distribution function (PDF). Write the formula for the isocontour $P(\mathbf{x}) = e^{-\sqrt{5}/2}/(4\pi)$, substitute in the value of the determinant $|\Sigma|$ from part (a) (but leave μ and Σ^{-1} as variables), and simplify the formula as much as you can.

$$\frac{1}{2\pi\sqrt{|\Sigma|}} \exp\left(-\frac{(\mathbf{x}-\mu)^{\top}\Sigma^{-1}(\mathbf{x}-\mu)}{2}\right) = \frac{e^{-\sqrt{5}/2}}{4\pi}$$
$$(\mathbf{x}-\mu)^{\top}\Sigma^{-1}(\mathbf{x}-\mu) = \sqrt{5}$$

(d) [5 pts] Draw the isocontour $P(\mathbf{x}) = e^{-\sqrt{5}/2}/(4\pi)$ where $\mu = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ and Σ is given in part (a).

3 Discriminant Analysis (Spring 2016)

Let's derive the decision boundary when one class is Gaussian and the other class is exponential. Our feature space is one-dimensional (d = 1), so the decision boundary is a small set of points.

We have two classes, named N for normal and E for exponential. For the former class (Y = N), the prior probability is $\pi_N = P(Y = N) = \frac{\sqrt{2\pi}}{1+\sqrt{2\pi}}$ and the class conditional P(X|Y = N) has the normal distribution $\mathcal{N}(0, \sigma^2)$. For the latter, the prior probability is $\pi_E = P(Y = E) = \frac{1}{1+\sqrt{2\pi}}$ and the class conditional has the exponential distribution

$$P(X=x|Y=E) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \geq 0, \\ 0 & \text{if } x < 0. \end{cases}$$

Write an equation in x for the decision boundary. (Only the positive solutions of your equation will be relevant; ignore all x < 0.) Use the 0-1 loss function. Simplify the equation until it is quadratic in x. (You don't need to solve the quadratic equation. It should contain the constants σ and λ . Ignore the fact that 0 might or might not also be a point in the decision boundary.) Show your work, starting from the posterior probabilities.

Ignoring the possibility of x = 0, the decision boundary is the set of positive solutions to

$$P(Y = N|X = x) = P(Y = E|X = x)$$

$$\frac{P(X = x|Y = N)P(Y = N)}{P(X = x)} = \frac{P(X = x|Y = E)P(Y = E)}{P(X = x)}$$

$$\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right) \frac{\sqrt{2\pi}}{1 + \sqrt{2\pi}} = \lambda e^{-\lambda x} \frac{1}{1 + \sqrt{2\pi}}$$

$$-\ln \sigma - \frac{x^2}{2\sigma^2} = \ln \lambda - \lambda x$$

$$0 = \frac{x^2}{2\sigma^2} - \lambda x + \ln \lambda + \ln \sigma.$$

Note that the last term can be abbreviated to $\ln(\lambda \sigma)$. The last line above is not necessary for full credit; the second-last line counts as a "quadratic equation." The first line of math also is not necessary for full credit, but Bayes' Theorem must implicitly be present.