近代物理实验[

2023-2024学年秋季学期

主讲教师:何琛娟

上课教师:廖红波,熊俊,聂家财,

王海波, 熊昌民, 张全星,

蒋楠, 陈崇艳, 马宇翰

技术支持:熊俊,弓文平,李多

实验课环节

预习(预习报告)

实验(提问、讲解、实验)

总结 (实验报告)

近代物理实验要求 (预习)

- 预习要求:
 - 课前认真预习实验讲义,捋清线索,提取重要信息。

物理原理(实验原理)仪器原理

以氢氘光谱实验为例

- 物理原理(概念、图像)
 - 光谱(定性、定量)
 - 氢光谱(有什么规律?为什么?)
 - 氢氘光谱(有什么相似点?有什么不同点?为什么?)
 -
- 实验原理
 - 如何得到光谱?
 - 如何记录光谱?
 - 如何测量光谱?
 -

非线性电路 光学多道与氢氘同位素光谱 He-Ne激光器模式分析与模分裂

- 仪器原理
 - 光谱仪结构?
 - 各部件的作用?
 - 仪器参数的选择?
 - 多道? 单道?
 -

近代物理实验要求 (预习)

• 预习要求:

- 课前认真预习实验讲义,捋清线索,提取重要信息。
- 注意相关内容的联系 (与其他理论/课程、与其他实验项目)
- 预习报告:
 - 实验目的
 - 原理(物理、实验、仪器)
 - 实验内容
 - 关于思考题

不看字数! 看关键点!

实验课

阅读实验说明牌,仪器说明书等。 关注"注意事项"。

讲解

(检查预习报告、提问)

实验(思考、尝试、讨论、记录)

变温霍尔效应实验说明

安全注意事项。

- 湿手不能始及过冷表面、液氮漏斗。防止皮肤冻粘在深冷表面上。造成严重冻伤。灌液 氮时一定要带厚棉手套。如果发生冻伤。请立即用大量自来水冲洗。并接烫伤处理伤口。
- 2. 注入液氮时,先注入一部分液氮,带容器冷透后再将液氮补满。
- 3. 实验时要注意宣内通风。
- 4. 实验完毕,一定要拧松、提起中心杆,防止热膨胀胀坏恒温器。

实验方法及实验步骤

1、抽真空

- 1) 连接真空系统和样品池之间的真空活扣:
- 2) 关上真空阀 2:
- 3) 合上墙上真空泵开关:
- 4) 打开复合真空计开关:
- 5) 拧开样品池上方的真空阀 1:
- 6) 复合真空计指示 1Pa后, 关上样品池上方的真空阀 1、真空泵开关:
- 7) 拧开真空阀 2. 放气后, 打开真空活扣, 准备测试。

2、磁场的测定:

用高斯计测量永磁铁的磁场强度.

3、 拿温下的霍尔测量:

开机预热,调整样品电流到10.00 毫安,选择样品2.接下开关 Ni.测雹尔电压 Ni.如果电压较小,改在200 毫伏式20 毫伏档:接电流换向开关,测 Ni. 缓慢旋转永磁铁180°之后,测 Ni. 电流换向。测 Ni.

4、变温测量:

首先将温控仪的温度设定在80K。取出恒温器中心杆,将杯型漏斗插入恒温器,并将中心杆放在漏斗中,以便预冷。缓慢注入液氮直至鼓满为止,等待样品冷却到最低温度后再次注入液氮直至鼓满为止。取出漏斗,插入中心杆并能至最低位置。再回能约180°~720°,即可通过按温仪设度按温了。

控温时顺时针转动中心杆至最低位置。再回旋约180°~720°即可通过控温仪设定控温 了。等温度控制稳定后(温度波动小子±1.5°C),重复测量过程3。测得此温度点的各项霍尔 参数。改变设定温度。测另一个温度点的霍尔参数。温度控制范围为80%到300%。80%-180%。 每隔5%测一点,180%-300%。每隔10%测一点如果发现在某一区域的数值变化很快。可以给 小测量间隔至2%。

中心杆旋高则冷量增大,适于快速降温和较低温度的实验。按温精度与 PID 参数有关。 请适当调整中心杆高度,以提高不同温区的按温精度。

5、关机

- 1) 实验完毕,一定要拧松、提起中心杆,防止热膨胀胀坏恒温器。
- 2) 关控温仪和测试仪开关。

实验题目

学号: 姓名:

【**摘要**】(用100-200字描述本次实验的目的、 关键词: (三到五个词,主要用于检索)

一、引言: 用简短的语言介绍实验的相关背景

二、原理: 在理解的基础上,用简明扼要的语

三、实验:介绍实验的仪器、实验方法和主要

四、结果与分析讨论:介绍结果(定性、定量),分析规律,讨论成因

- 1、以图、表的形式结合语言展示实验结果(数据、现象);
- 2、分析实验结果呈现出来的规律,进一步处理;
- 3、结合原理,比较实验结果与理论预期,对实验中观测到的现象和实验结果进行合理的解释;
- 4、分析影响实验结果因素和造成实验误差的原因。

五、结论和建议(总结): 总结全文(主要方法,主要结果,主要结论),提出建议 六、参考文献:

- 1、书的格式:作者.书名.出版地.出版社.出版时间
- 2、文献的格式:作者,论文题目,期刊题目.期刊的年、卷、期

实验报告的规范

• 图的规范

- ▶ 报告中的所有的图要统一编号。
- ▶ 所有的图必须有图题。
- > 数据图的纵、横轴必须表明其物理意义和单位。

• 表格的规范

- ▶ 报告中所有的表格也要统一编号。
- ▶ 所有的表格必须有题目,并表明每一栏数据的物理意义和单位。

• 公式的规范

- ▶ 所有的公式也要统一标号。
- ▶ 公式中出现的符号在第一次出现时一定要标明其物理意义和单位。

表 6-2-1 考虑相对论修正前后, 电子波波长 λ 与电压 U 的关系。

U (KV) ₽	λ (Å) μ	λ _r (Å) ,	U (KV) ↔	λ (Å) ω	λ _r (Å) ,
C (HV) +	(修正前)↓	(修正后)』	0 (117)+	(修正前)↓	(修正后)。
20₽	0. 0867₽	0. 0851₽	40₽	0. 0613⊬	0. 0590₽
25₽	0. 0776₽	0. 0757₽	45₊	0. 0573₽	0. 0554₊
30₽	0. 0708₽	0. 0682₊	50₽	0. 0548₽	0. 0535₊
35₽	0. 0656₽	0. 0634₽	55₽	0. 0523₽	0. 0496₽

设电子到达阳极时的速度为v,有。

$$eU = \frac{1}{2}m_0v^2 = \frac{P^2}{2m_0}, \qquad (6-2-3) \, .$$

式中 e 为电子电量,U 为加速电压, m_0 为电子的静止质量, P 为电子动量。将此式代入(6-2-2)式,则电子波的波长 λ 与

摘 要:法布里-珀罗腔(F-P)通常是由2面平行效置的反射镜组 ②盖尔-赛斯光束。测量了 F-P 腔的自由光谱区、相邻模模:

关键词:法布里-珀罗腔:拉盖尔-高斯模式:自由光谱区:激光模式 中国分类号:0436.1

法布里·珀罗(F-P)腔通常是由2面平行放置 的反射镀组成的多光束干涉仪,是制作镀膜镀片、 滤波片、波分复用器、光纤传感器、激光器等光学 器件的重要基础元件[1]。通过将激光器输出频率 锁定到外部参考 F-P 腔的共振频率,可实现稳频 激光[24]。这在引力波探测[3]、光学原子钟[5]、精密 光谱学 等领域有广泛的应用.

将入射光束耦合进入 F-P 腔。光场会在反射 镜间多次来回反射,经过干涉相长过程,腔内光场 被增强,最终形成稳定腔内光场,该过程相当于 对传输光波施加边界条件,导致光场被约束在腔 内的有限空间,只存在一系列特定的本征态,每个 光场本征态对应 1 种激光模式.

F-P 腔的模式分为纵模和模模, 本文基于 F P腔的基本工作原理,设计了可分辨不同激光模 式的实验装置,通过实验,学生能直观而全面地 理解激光模式的输出特性,加深对多光束干涉原 理的认识,提高学生在光路设计与调节、光电信号 探測、数据处理与分析等方面的动手能力。

1 F-P 腔的基本原理

F-P 腔是由 2 而高反射率腔锥组成,当入射

基于法布里 珀罗 其中, λ 为激光波长. 通常入腔角度很小,可认为 cos θ≈1. 同时。F-P腔内介质是真空或空气时。 (de)·b,程雨欣··b,职佳文:折射率 n≈1. 对于真空中传输的光束·其传播速 (华中科技大学 物理学院 a. 1 度为 c-299 792 458 m/s. 激光频率可直接由测 b. 引力与量子物理湖北省 量的激光波长读取,

> 定义 1. 为透射光强 1. 为入射光强 不考虑 腔镜的吸收损耗,得到入射光的透射函数

$$T(\delta) = \frac{I_c}{I_c} = \frac{1}{1 + \frac{4R \sin^2(\delta/2)}{(1-R)^2}}$$
, (3)

DOI:10,1965 选用反射率 R 不同的腔镜,透射函数随相位 8 变 化的线型如图 2 所示, 对于不同 R.F-P 跨透射峰 光束i 的线宽也不同. R 越高.F-P 腔透射峰的线宽越 反射 7 電,光谱分辨本领也越强,当相位满足 8-2mg 时 图11 (g 为正整数)。入射光会在 F-P 腔反射镜之间干 涉增强形成驻波, 这种在腔内沿光传输方向建立 的光场称为 F-P 腔的纵模 · q 称为纵模数. 对于 给定腔长 L. 当透射函数达到极大值时, 光学腔内 2 个相邻共振峰的频率差就是 F-P 腔的自由光谱 K (free spectral range FSR):

$$\Delta \nu_{\text{FSR}} = \nu_{q+1} - \nu_{q} = \frac{\epsilon}{2L}, \quad (4)$$

图 2 多光來干涉的透射光强函数

盖尔·高斯模式的频率为

的系数

(0< g .)

2 生

构设计

平面镜

半径为

3 所示.

0.45,胎

633 nm

633 nm

率,其中

镰的凹

合. 为

文!

シーー。 焦距 f=100 mm的透鏡送行光场模式匹配. 激光 器的频率由波长计读取. F-P 腔后放置光电探测 g 为纵相 间光强分布.

图 4 实验装置示意图

可提供最:

围大,但容

调节激光

可以实现权

水平).

出. 其中1 -

3 F-P 腔耦合输出模式与结果分析

采用"Walking the beam"方法·调节入腔的 个腔镜: 构的两; 反射镜 M, 和 M, 即精细调节光束入腔的角度和 实! 位置,使入射激光束尽可能以正入射的方式从前 出中心: 腔鏡的中心位置射入 F-P 腔. 如果光束调节的精 度不够。会导致 F-P 腔耦合输出的模模不够清晰 明亮,且不稳定. 选择透镜的聚焦位置,使入射光 10° Hz 遊与 F-P 腔模式匹配,同时扫描激光频率与 F-P 腔共振,使耦合入腔的基模光强最强 单模光线

> 根据式(5),不同的激光模式具有不同的共振 频率、调谐激光频率、由 CCD 相机记录 F-P 腔耦 合输出的模模,如图 6 所示. 实验过程中,频率调 谐是由电流调节与压电陶瓷调节共同配合完成。

具体实验装置实物图如图 5 所示, 由于在记

录 F-P 腔 持暗室环境 进行展示

(g) TEM-

(b) TEM.

图 6 F-P 腔耦合输出的不同空间模模

这些横模具有典型的拉盖尔·高斯光束特征 基模为圆形光斑,而高阶模在镜面上出现径向和 角向方向的波节线,由波长计读取不同模式的频 率,如表1所示,纵模数《可结合光电探测器所 探测的透射峰进行分辨。

去1 不同模式的领車差值

40 40 44	Δa/GHz						
纵模数	TEM=	TEM	TEM,				
Q	0	0,639	1, 292				
q+1	2,502	3, 181	3,850				
q+2	5,076	5,746	6,436				
q+3	7,640	8, 326	9,002				
0+4	10, 221	10,910	11,610				

对多个相邻的基模频率进行线性拟合,如图 7 所示. 可知 F-P 腔的自由光谱区为(2.566± 0,001) GHz,与理论计算值的偏差为 3.5%. 对 于同一纵模,角向两相邻横模之间的频率差为 (0.673±0,020) GHz · 而径向两相邻模模之间的 類率差为(1,350±0,036) GHz,相比于式(5)的 理论计算值,偏差分别为7.0%和7.4%。

图 7 F-P 腔的自由光谱区

自由光谱区和模式频率间隔与理论计算结果 之间存在频率偏差,主要来源于 F-P 腔的腔长抖 动而引起的共振频率偏移(环境温度波动及振动 噪声导致),以及激光器自身的频率漂移,此外还 包括波长计测量精度的限制、腔长的测量误差、腔 内杂质等.

4 结束语

基于 F-P 腔设计了激光模式分析装置,通过 对透射信号空间光场分布和光强的测量分析。有 助于学生直观理解激光的模模和纵模、实验测量 F-P 腔自由光谱区相比于理论计算值的偏差为 3.5%,径向相邻模模频率间隔约为角向相邻模模 麵車间隔的2倍,实验结果与理论分析相符.作 为面向本科生的实验教学课程,本实验教学有助 于培养学生的动手实践能力,并加强学生对光学、 激光原理、电学等相关知识的理解与掌握。

致谢.感谢王志送同学帮助设计 F-P 腔.感 谢柳奎博士与李宗阳博士帮助筹建实验平台.

参考文献:

- [1] 郭振华, F-P 多光束干涉仪的发明者--- 法布里和 功罗[]. 物理,2004,33(4):293-297。
- [2] Matei D G, Legero T, Hafner S, et al. 1,5 mm bsers with sub-10 mHz linewidth [3]. Physical Review Letters, 2017,118(26):263202.
- [3] 王彬宇,王南朝,刘崇,等,基于法布里,珀罗干涉仪 的激光谱线特性测量研究[J]。物理实验,2019,39
- [4] Zeng X Y, Ye Y X, Shi X H, et al, Thermal-noiselimited higher-order mode locking of a reference cavity [1]. Optics Letters : 2018+43(8):1690-1693.
- [5] Luo J. Chen L S. Duan H Z. et al. TianQine a. space-horne gravitational wave detector [J]. Classied and Quantum Gravity + 2016 - 33(3): 035010.
- [6] 郑新·张洁·石晓耀·等。基于量子逻辑技术的铝素 子光類标研究进展[]。中国科学:物理学 力学 天 文學,2016,46(7),073004
- [7] Grinin A. Matveev A. Yost D.C. et al. Two-photon frequency comb spectroscopy of atomic hydrogen [J]. Science, 2020,370(6520):1061-1066,
- [8] 姚启钧、光学教程[M] 4版,北京:高等教育出版 \$\$.2008.45-50.
- [9] 梁铨廷,物理光学[M] 4版,北京:电子工业出版 44.2012,160-163.
- [10] 關頻獎, 真以智, 陈倜嵘, 等, 激光原理[M], 5 版 北京:國防工业出版社。2004:61-63.

46 · DI

 $E_t = E_{ol}$

其中,

表达了

F-P 腔的腔镜除了会在传输方向上限制光 场、形成纵模、也会在垂直于传输方向的平面上形 成横模,横模的产生可以借助"孔阑传输线"进行 理解:将腔镜视为有限孔径的孔阑,光在谐振腔内 的来回反射相当于通过一个个孔阑、光场由于衍 射效应不断被整形。最终实现稳定的槽向光场输 出。称为谐振腔的"自再现模"。该过程可通过选 代算法求解基尔霍夫菲涅耳衍射公式得到 得具有拉盖尔-高斯函数形式的光场 不同拉

单个实验的考核方案(100)

- 预习情况(20)
 - -预习报告:写在实验记录本上,简述实验目的、实验原理、实验方法与实验内容
 - -回答问题:对实验的思考、理解及对实验内容的掌握
- 实验操作(50)
 - 一实验态度和纪律
 - 一操作的规范性(低温、激光、放射性等的操作规范)
 - 一分析问题和解决问题的能力
 - 一实验内容的完整性和数据的合理性
 - 一实验记录的规范性(过程、条件、结果的完整性,整洁,有效数字,表格设计等)
- 实验报告(30)
 - -是否符合"论文"要求的格式
 - -叙述是否简洁、清楚
 - -公式、图表是否规范
 - -实验过程描述是否清楚
 - -数据处理中的有效数字、单位是否正确
 - -实验分析和讨论是否深入

近代物理实验要求 (实验常规)

- 每位同学必须准备一个实验记录本。预习报告和实验过程都记录在本子上,实验记录不要使用铅笔。
- 进入实验室后,先阅读实验说明书和相关操作规范,对照讲义和操作说明熟悉实验仪器,未经老师许可不能自行打开实验仪器。
- 就餐时,同组的同学轮流去,最好不要同时离开实验室,出去前请告诉指导教师。实验室内不允许吃东西喝饮料,可带饮用水。
- 实验结束后,实验数据必须由老师签字确认之后,才能关闭实验仪器。
- 离开实验室前,一定要填写实验记录登记本。离开前还应整理好实验仪器并清洁实验室,经老师同意后才能离开。

近代物理实验要求(考勤)

- 不迟到。迟到**15分钟**以内的,任课教师将按情况对本次实验进行扣分。 迟到**15**分钟以上者,不准做实验,该实验成绩为**0**分。
- 不早退。认真完成实验要求,只有当教师检查完实验室并认可后,才可以离开实验室。
- 不拖堂。学生应在规定的上课时间内完成实验,教师根据规定时间内完成情况给分,仪器出现故障时例外。
- 不无故旷课。无故旷课者,不补做实验,该实验成绩为**0**分。并记入最后成绩之中。
- 实验中,未经老师同意擅自离开实验室半小时以上,以旷课处理。
- 请假制度。有急事先提交有辅导员签字的假条,病假必须要有医院的证明,准假后可补选实验。
- 如果有迟到15分钟和无故旷课时,其零分将计入最后成绩中。

近代物理实验要求 (实验报告)

- 实验报告需在实验结束后两个星期内提交。晚两周扣5分。
- 无故缺实验报告,则该次实验最高不超过60分。
- 严禁抄袭他人报告。一经发现,抄者和被抄者的实验报告成绩均按0分论处。
- 若发现实验原理全文拷贝网上电子讲义(不论哪个学校的),原理部分成绩为0分。
- 实验报告必须附上原始数据。可复印,或拍照打印,大小和清晰度要求能 看清数据和老师的签名。
- 实验报告的总长度建议控制在5-8页(五号字, A4纸, 1.5倍间距)。
- 实验报告要求当面交给老师,尤其是第一个。

课程安排

- 关于任课教师
- 关于上课时间 星期一 13:30-19:30 星期四 8:00-14:00 星期五 13:30-19:30 45*8=360(min)=6(h) 就餐时间

实验名称	星期一	星期四	星期五	
非线性电路211	聂家财	马宇翰	张金星	
高温超导205	双外则	プナギョ	欢 亚生	
液晶物性818	1会 3次 4日	1会 3次 4日	工场地	
塞曼效应811	何琛娟	何琛娟	王海波	
光泵磁共振802/804	熊昌民	陈荣艳	淳楠	
光纤性质与应用806/808	• • • • • •	7K 5K 4C	1分1用	
激光模式分析801	廖红波	廖红波	能佼	
光学 罗道810	多红汉	多红汉	非人	

2023~2024学年 第一学期校历

月份	周次	星期一	星期二	星期三	星期四	星期五	星期六	星期日	内 容
2023年		21	22	23	24	25	26	27	
8月	1	28	29	30	31	1	2	3	1.2023年8月21日全体教师
	2	4	5	6	7	8	9	10	正式上班,8月21日至8月
0.0	3	11	12	13	14	15	16	17	25日为教师培训与学术交 流周:
9月	4	18	19	20	21	22	23	24	
	5	25	26	27	28	29	30	1	2.8月26日为本科生二、 三、四年级和研究生二、
	6	2	3	4	5	6	7	8	三年级注册日;
10.5	7	9	10	11	12	13	14	15	3.8月27日为本科生、研究
10月	8	16	17	18	19	20	21	22	生新生报到日,8月28日
	9	23	24	25	26	27	28	29	举行本科生、研究生新生
	10	30	31	1	2	3	4	5	开学典礼;
	11	6	7	8	9	10	11	12	4. 中秋节、国庆节: 9月29 日至10月6日(共8天) 放
11 10	12	13	14	15	16	17	18	19	假、全校停课;10月7日
11月	13	20	21	22	23	24	25	26	至8日正常上班、教学正
	14	27	28	29	30	1	2	3	常进行;
	15	4	5	6	7	8	9	10	5. 元旦放假安排待国务院办
12月	16	11	12	13	14	15	16	17	公厅公布2024年节假日安 排后另行通知:
12月	17	18	19	20	21	22	23	24	6.2024年1月8日学生放寒
	18	25	26	27	28	29	30	31	0.2024年1月8日学生放尽 假;
	19	1	2	3	4	5	6	7	7.2024年1月15日教师放寒

- 校历安排:
 - 上课周: 1-17周
 - 考试周: 18-19周
- 课程安排:
 - 大课: 1周
 - 实验: 2-17周
 - 答疑: 17周
 - 考试: 18/19周
- 每个同学本学期做7个实验

实验总成绩的计算方法

- 总成绩(100) =期末成绩×20%+平时成绩×80%
- 平时成绩(100)=Σ单个实验成绩/7 (注意!)
- 期末成绩(100)
 - > 笔试(试卷,内容包括原理、仪器、实验方法、问题解决、实验设计、数据处理等)
 - > 总结、调研报告、仪器介绍小视频

说明!

- 关于实验课时间:
 - 按教务系统选课时间
 - 分组(按选课班级)
 - 轮次表
- 关于时间内容的调换
 - 提前找老师
 - 提前找同学

近代物理实验 2023 秋季学期实验安排 (周一)

日期	第2周	第3周	第4周	第5周	第6周	第7周	第8周	第9周
实验	9月4日	9月11日	9月18日	9月25日	10月2日	10月9日	10月16日	10月23日
	王懷一							
非线性电路	仇亦昕							
科技楼 C211	贾文意							
	努尔·买买提							
	林祺辉							
高温超导	萱烨语							
科技機 C205	李婉仪							
	李昕瑶							
液晶物性	王俊康							
科技楼 C818	孔欣意							
THIX BY COLO	10/0/25							
	张泰阳							
塞曼效应	易艺							
科技楼 C811	泰潇							
	甄愚杨							
光学多道	巩伊湾							
科技楼 C810	杨硕							
	莫子夜							
	董吳霖							
光纤/应用	张棚钰							
科技楼 C806&808	曹柳铖							
	吳贝安							
光泵磁共振	王彦皓							
科技楼 C802&804	黄尚玉							
	瓦尔斯·阿不都拉							
模式分析	原子涵							
科技機 C801	郑萍娜							