CSI 4142: Introduction to Data Science

Project Canadian Disaster Database

From
Alexandre Mizon 7680262
And
Daniel Audi 7382986

Presented to Professor Herna Viktor April 5th 2018

Physical Design

We chose postgresSQL as our database management system. The script to create the tables for our data mart is included in Appendix A or our repository under the "Physical design" folder.

Data Staging

For data staging we decided to use python for programming language to perform any manipulation on the data. This include cleaning, normalizing, refactoring the data and adding it to 5 differents CSV corresponding to each of our data mart tables. We included below all the cleanup steps we followed as well as a high level schematic.

Data Cleanup Steps:

separate requests.

- 1. Removed empty rows and incomplete records not allowing us to try filling the missing information. Kept track of such records in the data cleanup registry located in the registry below.
- 2. Put 0 in all costs if estimated total cost and normalized cost were put to 0. Otherwise put unknown.
- 3. Complete missing EVENT END DATE column with either the information in the summary or by manual research.
- 4. For all non earthquake events replace 0 to blanks to not interfere with any possible data analysis, i.e. average magnitude.
- 5. For each location field, we used the powerful geoname library that makes an API call with the brut field retrieving all the necessary information such as city name, province/state, country, coordinates and populations.
 For the cases one cell contains more than one province and city we parse it based on some criterias, most of the time using the connector "and", and make

Data Cleanup Registry:

Row	Action	Description
1009	delete	Empty record
1010	delete	No information on the disaster or the location
1034	delete	Empty record
1035	delete	No information on the disaster or the location
1037	delete	Empty record
1038	delete	No information on the disaster or the location
1043	delete	Empty record
1044	delete	No information on the disaster or the location
1031	fill-up	Event summary was informative enough to make some research and complete most fields
274	update	Normalized location field by changing "across Canada' to simply "Canada"
489	update	Normalized location field by changing "across Canada' to simply "Canada"
525	update	Normalized location field by changing "across Canada' to simply "Canada"
311	update	Normalized location field by changing "across Canada' to simply "Canada"
488	update	Normalized location field by changing "across Canada' to simply "Canada"
1008	complete	Event end date based on summary
967	update	Normalized location field by changing "across Canada' to simply "Canada"
1033	complete	Event end date based on summary
1036	complete	Event end date based on summary
1037	complete	Event end date based on summary

High-Level One page schematic breakdown:

Identify starting and ending points

- CSV files → PostgreSQL CanadianDisaster datamart

Label known data sources

- CanadianDisaster CSV file from Project
- Open source library (geoname) returning cities, population, provinces/states, and countries.

Include placeholders for sources yet to be determined

- Not applicable

Label targets

- Facts, Location, Cost, Disaster, Date, Summary

Notes about known problems

- Extremely messy location data
- Provinces and city are mixed and don't always follow the same format
- Possibility of having more than one city and province in one record
- Possible use of ambiguous terms indicating a region rather than a city and province
- missing numerous event end dates

Flow:

OLAP Queries

Note: All our queries and results are available in the OLAP queries and results folders, in the zip file.

Drill down:

- -- DRILL DOWN
- --YEAR DRILL DOWN:listing number of technology disasters each year, month day select d.year, Dl.disaster_group, count(*) as total_count from

fact f, date d, disaster DI
where f.start_date_key=D.date_key and f.disaster_key=DI.disaster_key and
DI.disaster_group='Technology'
group by (d.year, DI.disaster_group)
order by d.year DESC;

--SEASON DRILL DOWN:listing number of technology disasters each year, season select d.year, d.season_canada, Dl.disaster_group, count(*) as total_count from

fact f, date d, disaster DI where f.start_date_key=D.date_key and f.disaster_key=DI.disaster_key and DI.disaster_group='Technology' group by (d.year, d.season_canada, DI.disaster_group) order by d.year, d.season_canada DESC;

--MONTH DRILL DOWN:listing number of technology disasters each year, season, month select d.year, d.season_canada, d.month, Dl.disaster_group, count(*) as total_count from

fact f, date d, disaster DI where f.start_date_key=D.date_key and f.disaster_key=DI.disaster_key and DI.disaster_group='Technology' group by (d.year, d.season_canada, d.month,DI.disaster_group) order by d.year, d.season_canada, d.month DESC;

--DAY DRILL DOWN:listing number of technology disasters each year, season, month, day select d.year, d.season_canada, d.month, d.day, Dl.disaster_group, count(*) as total_count from

fact f, date d, disaster DI where f.start_date_key=D.date_key and f.disaster_key=DI.disaster_key and DI.disaster_group='Technology' group by (d.year, d.season_canada, d.month,d.day,DI.disaster_group) order by d.year, d.season_canada, d.month, d.day DESC;

Roll-up:

--ROLL-UP

--ROLL UP BY CITY: Listing the total number of fatalities from 1990 to 2005 by city-> province -> country

select I.country, I.province, I.city, sum(f.fatalities) as total_fatalities from fact f, location I, date d

where

f.location_key=l.location_key and f.start_date_key=d.date_key and d.year between 1990 and 2005

GROUP BY I.country, I.province, I.city

ORDER BY I.country, I.province, I.city ASC;

--ROLL UP BY PROVINCE: Listing the total number of fatalities from 1990 to 2005 by province -> country

select I.country, I.province, sum(f.fatalities) as total_fatalities

from fact f, location I, date d

where

f.location_key=l.location_key and f.start_date_key=d.date_key and d.year between 1990 and 2005

GROUP BY I.country, I.province

ORDER BY I.country, I.province ASC;

--ROLL UP BY YEAR: Listing the total number of fatalities from 1990 to 2005 by country select I.country, sum(f.fatalities) as total_fatalities

from fact f, location I, date d

where

f.location_key=l.location_key and f.start_date_key=d.date_key and d.year between 1990 and 2005

GROUP BY I.country

ORDER BY I.country ASC;

4	country text	total_fatalities bigint
1	Canada	838
2	France	0
3	Saint Pierre and Mi	21
4	Saudi Arabia	261
5	United States	78

Slice:

--average population affected (in thousands) by types in disaster in the the fall season select d.disaster_type, CAST(AVG(f.population/1000) as int) as average_population_affected_in_thousands, CAST(AVG(f.evacuated) as int) as average_evacuted from fact f, disaster d, date dt WHERE dt.season_canada='fall' and f.disaster_key = d.disaster_key and f.start_date_key=dt.date_key group by (d.disaster_type) order by average_population_affected_in_thousands DESC

--average population affected (in thousands) by types in disaster in the the winter season

select d.disaster_type, CAST(AVG(f.population/1000) as int) as average_population_affected_in_thousands, CAST(AVG(f.evacuated) as int) as average_evacuted from fact f, disaster d, date dt WHERE dt.season_canada='winter' and f.disaster_key = d.disaster_key and f.start_date_key=dt.date_key group by (d.disaster_type) order by average population affected in thousands DESC

--average population affected (in thousands) by types in disaster in the the summer season

```
select d.disaster_type, CAST(AVG(f.population/1000) as int) as average_population_affected_in_thousands, CAST(AVG(f.evacuated) as int) as average_evacuted from fact f, disaster d, date dt WHERE dt.season_canada='summer' and f.disaster_key = d.disaster_key and f.start_date_key=dt.date_key group by (d.disaster_type) order by average_population_affected_in_thousands DESC
```

--average population affected (in thousands) by types in disaster in the the spring season select d.disaster_type, CAST(AVG(f.population/1000) as int) as average_population_affected_in_thousands, CAST(AVG(f.evacuated) as int) as average_evacuted from fact f, disaster d, date dt WHERE dt.season_canada='spring' and f.disaster_key = d.disaster_key and f.start_date_key=dt.date_key group by (d.disaster_type) order by average population affected in thousands DESC

Example result for winter season:

4	disaster_type text	average_population_affected_in_thousands integer	average_evacuted integer
1	Bomb Attacks	4262	0
2	Winter Storm	3956	45
3	Epidemic	2181	[null]
4	Storm - Unspeci	2134	0
5	Flood	1644	276
6	Marine	1194	2400
7	Hurricane / Typ	972	934
8	Storms and Sev	948	41
9	Kidnapping / Mu	836	0
10	Residential	823	217
11	Shootings	812	0
12	Non-Residential	534	0
13	Derailment Rele	185	56478
14	Tornado	176	0
15	Leak / Spill Rele	98	850
16	Manufacturing /	80	0
17	Vehicle Release	80	0
18	Landslide	54	224
19	Rail	44	60
20	Air	36	0
24	c. c	22	^

Dice:

-- contrast the total number of fatalities in Ontario and Quebec from 2010 to 2016 SELECT

I.province,

SUM(f.fatalities) as total_fatalities

FROM fact f, date d, location I

WHERE (I.province = 'Ontario' OR I.province = 'Quebec')

AND d.year between 2010 and 2016

and f.start_date_key = d.date_key and f.location_key=l.location_key
GROUP BY province

4	province text	total_fatalities bigint		
1	Ontario	7		
2	Quebec	18		

Top N:

-- determine the 5 cities in Canada with the most floods.

SELECT I.city, count(*) as riot_count

FROM fact

INNER JOIN location I ON fact.location_key = I.location_key

INNER JOIN disaster d ON fact.disaster_key = d.disaster_key

WHERE disaster_type = 'Flood' AND country = 'Canada'

GROUP BY city

ORDER BY count(*) DESC

LIMIT 5;

Result:

4	city text	riot_count bigint
1	Toronto	25
2	Lower Mainland	19
3	Winnipeg	19
4	Red Deer	13
5	Saskatoon	12

Business Intelligence Dashboard:

For the BI dashboard we opted to use Qlik Sense. We decided to showcase the highlight of our data through the various charts. Since we were able to retrieve the coordinates where each disasters occured it allowed us to populate the interactive map as well.

Classification Algorithm:

We employed the decision tree classification algorithm to explore the data. Our goal was to build two models in order to gather knowledge and see if we could determine the disaster type and the disaster subgroup with our data. We employed WEKA with the J48 classifier.

Both of these models were built using the following attributes:

Attributes: 29 fatalities injured evacuated province description population disaster_type disaster_subgroup disaster_group disaster_category magnitude utility_people_affected month year weekend season_canada estimated_total_cost normalized_total_cost federal_dfaa_payments provincial_dfaa_payments provincial_payments municipal_cost insurance_payments ogd_costs ngo_payments keyword1 keyword2 keyword3 Test mode: 10-fold cross-validation

Disaster subgroup:

Using the 10 folds cross-validation test option we obtained great results as were able to successfully classify the instances 98.8272% of the time.

```
=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 1264 98.8272 %
Incorrectly Classified Instances 15 1.1728 %
Kappa statistic 0.9725
Mean absolute error 0.0023
Root mean squared error 0.0392
Relative absolute error 3.4437 %
Root relative squared error 21.6196 %
Total Number of Instances 1279
```

Looking at the confusion matrix we can see how our data follows very closely the diagonal hence the extremely high percentage. This validates the data we chose for this model was good.

```
=== Confusion Matrix ===

a b c d e f g h i j k l m <-- classified as

29 10 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | a = Fire

9 19 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = Explosion

0 0 15 0 0 0 0 2 0 0 0 0 0 0 | c = Infrastructure failure

0 0 0 45 1 0 0 0 0 0 0 0 0 0 0 | d = Geological

0 0 0 0 896 0 0 0 0 0 0 0 0 0 | e = Meteorological Hydrological

0 0 0 0 896 0 0 0 0 0 0 0 0 | f = Transportation accident

0 0 0 0 2 0 17 0 0 0 0 0 0 | g = Biological

0 0 0 0 0 0 0 69 0 0 0 0 0 | h = Hazardous Chemicals

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | j = Civil Incident

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | k = Terrorist

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | l = Hijacking

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | m = Space Event
```

Disaster type:

Using the same tests options and data we created a model to determine the disaster type.

In this case the results were not as high as the previous model but were still informative. We were able to correctly classify the instances 807/1279 which is 64% of the time.

```
=== Stratified cross-validation ===
=== Summary ===
                                                             63.0962 %
36.9038 %
                                         807
Correctly Classified Instances
Incorrectly Classified Instances
                                         472
                                           0.5624
Kappa statistic
                                            0.0211
Mean absolute error
Root mean squared error
                                            0.1145
Relative absolute error 50.
Root relative squared error 79.
Total Number of Instances 1279
                                          50.379 %
                                        79.331 %
```

The confusion matrix was quite large but here's most of it:

Just like the previous model we can see how our data follows fairly closely the diagonal hence the high percentage. We can accept the usefulness of this model as the results are satisfactory.

Cluster Analysis:

We employed the expectation-maximization clustering algorithm to explore the data and find some clusters within our data. To do so, we decided to employ WEKA.

The most obvious cluster we found was within seasons. We can perfectly see how each of the seasons instances are grouped together. Naturally this is a result we expected but it's nice for a first validation of the EM algorithm.

```
Cluster
Attribute
              0
                 1
                   2
           (0.14)(0.27)(0.27)(0.32)
season canada
             1 1 323 1
 spring
             1 321 1 1
 winter
 summer
             1 1 1 385
           166 1 1
 fall
 [total] 169 324 326 388
```

Another cluster we found exploring the data was between year and keyword 1. The statistics and visualization are given below. As we can see we can clearly see the three clusters the algorithm mentioned on the visualization.

	Cluster		
Attribute	0	1	2
	(0.24)	(0.42)	(0.33)
year	=======	======	======
mean	58.7398	9.0144	88.7654
std. dev.	16.8604	4.9382	6.9083
keyword1			
fire	3.168	10.9864	5.8456
BC,	14.209	10.6027	6.1882
Wellington	1.0059	2.9941	1
buried	1.001	1.999	1
September	2.0599	1.9943	1.9458
Calgary	1.0505	1.9978	5.9517
Arrow	1.001	1.999	1
19,	1.0009	1.9991	1
February	5.8651	2.9928	2.1422
swept	2.0018	1.9981	1
Columbia,	2.9374	2.2257	3.8369
Quebec	2.4535	8.9548	1.5918
side.	1.0012	1.9988	1
caused	3.3756	13.9668	11.6576
Provinces,	3.8772	5.1076	1.0153
passenger	2.001	1.999	1

Anomaly Detection:

In order to detect anomalies we opted to use statistical tests.

Appendix A

```
CREATE TYPE season as ENUM('winter', 'spring', 'summer', 'fall');
CREATE TABLE project.Date (
 date_key int PRIMARY KEY,
 day int,
 month int,
 year int,
 weekend boolean,
 season_canada season
);
CREATE TABLE project. Disaster (
 disaster_key int PRIMARY KEY,
 disaster type text,
 disaster_subgroup text,
 disaster_group text,
 disaster_category text,
 magnitude numeric,
 utility_people_affected int
);
CREATE TABLE project.Summary (
 description_key int PRIMARY KEY,
 summary text,
 keyword1 text,
 keyword2 text,
 keyword3 text
);
CREATE TABLE project.Location (
 location_key int PRIMARY KEY,
 city text,
 province text,
 country text,
 canada boolean,
 longitude numeric,
 latitude numeric,
 description text
);
CREATE TABLE project.Costs (
 costs_key int PRIMARY KEY,
 estimated_total_cost numeric,
 normalized_total_cost numeric,
 federal_dfaa_payments numeric,
 provincial_dfaa_payments numeric,
```

```
provincial_payments numeric,
 municipal_cost numeric,
 insurance_payments numeric,
 ogd_costs numeric,
 ngo_payments numeric
);
CREATE TABLE project.Fact (
 start_date_key int,
 end_date_key int,
 location_key int,
 disaster_key int,
 description_key int,
 costs_key int,
 fatalities int,
 injured int,
 evacuated int,
 population int
```