Basic Typst Cheatsheet

Variables

\$ A = pi r^2 \$	$A=\pi r^2$
<pre>\$ "area" = pi dot "radius"^2 \$</pre>	$area = \pi \cdot radius^2$
<pre>\$ cal(A) := { x in RR x "is natural" } \$</pre>	$\mathcal{A} \coloneqq \{x \in \mathbb{R} \mid x \text{ is natural}\}$

Symbols

\$ x < y => x gt.eq.not y \$	$x < y \Rightarrow x \ngeq y$
\$ lambda \$	λ
\$ Lambda \$	Λ
https://typst.app/docs/ reference/symbols/sym/	for all symbols

Line breaks

Function calls

\$ frac(a^2,2) \$
$$\frac{a^2}{2}$$
 \$ vec(1, 2, delim: "[") \$
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 \$ mat(1, 2; 3, 4) \$
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

Alignment

\$ (3x + y) / 7 &= 9 && "given" \ 3x + y &= 63 & "multiply	$\frac{3x+y}{7} = 9$ given
by 7" \	3x + y = 63 multiply by 7
3x &= 63 - y && "subtract y" \	3x = 63 - y subtract y
x &= 21 - y/3 & "divide by 3" \$	$x = 21 - \frac{y}{3} \text{divide by 3}$

Accent

<pre>\$ grave(a) \$</pre>	\grave{a}
<pre>\$ arrow(a) \$</pre>	$ec{a}$
<pre>\$ tilde(a) \$</pre>	$ ilde{a}$
https://typet.opp/docs/	

https://typst.app/docs/
reference/math/accent/

for all accents

Attach

Binomial

<pre>\$ binom(n, k) \$</pre>	$\binom{n}{k}$
<pre>\$ binom(n, k_1, k_2, k_3,, k_m) \$</pre>	$\binom{n}{k_1,k_2,k_3,,k_m}$

cancel

<pre>\$ (a dot b dot cancel(x)) / cancel(x) \$</pre>	$rac{a \cdot b \cdot arkappa}{arkappa}$
cancel(x) \$	J O

cases

equation

Let \$a\$, \$b\$, and \$c\$ be the side lengths of right-angled triangle. Then, we know that:

Let a, b, and c be the side lengths of right-angled triangle. Then, we know that:

$$a^2 + b^2 = c^2$$

$$a^2 + b^2 = c^2$$

$$sum_(k=1)^n k = (n(n+1)) / 2 s$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

frac

Left/Right

mat

primes

$$a_b''' = a_b'''$$

Roots

\$
$$sqrt(3 - 2 \ sqrt(2)) =$$
 $sqrt(2) - 1$ \$
\$ $root(3, x)$ \$ $\sqrt[3]{x}$

Sizes

stretch

op

\$
$$\tan x = (\sin x)/(\cos x)$$
\$ $\tan x = \frac{\sin x}{\cos x}$

Under/Over

<pre>\$ underline(1 + 2 + + 5) \$</pre>	1+2++5
<pre>\$ overline(1 + 2 + + 5) \$</pre>	$\overline{1+2+\ldots+5}$
<pre>\$ underbrace(1 + 2 + + 5, "numbers") \$</pre>	$\underbrace{1+2+\ldots+5}_{\text{numbers}}$

Variants

\$ sans(A B C) \$	ABC
<pre>\$ frak(P) \$</pre>	\mathfrak{P}
\$ f: NN -> RR \$	$f:\mathbb{N} o\mathbb{R}$

vec

integral

emoji

```
emoji.face 
emoji.zzz 
zz
```

table

```
#table(
  columns: 2,
  [*Amount*],
[*Ingredient*],
  [360g], [Baking flour],
)
Amount Ingredient
360g
Baking flour
```

image

```
#figure(
image("idTmyHzBar_logos.jpeg",
width: 10%),
   caption: [
    Typst Logo
    ],
)
Figure 1: Typst Logo
```

packages

```
https://typst.app/
universe/search/?kind= for all packages
packages
```