Numeri Complessi

Francesco Coppola – A.S 2016/2017

Accenno storico

I numeri complessi hanno avuto una genesi dilatata nel tempo. Cominciarono a essere utilizzati formalmente nel XVI secolo.

Si può far risalire l'introduzione dei numeri immaginari e complessi a Raffaele Bombelli che utilizzava le espressioni *più di meno e meno di meno* per indicare +ie-i. Egli applicò la formula di Cardano per la risoluzione di equazioni di terzo grado all'equazione $x^3 = 15x + 4$ e non si spaventò davanti alla comparsa di radici quadrate di numeri negativi.

Prima di allora, si sapeva che una soluzione è 4 (si può verificare sostituendo il valore), ma con la formula non si riusciva a giungere al risultato e si lasciava il procedimento risolutivo in-compiuto.

Con il linguaggio moderno, la soluzione proposta da Bombelli si può sintetizzare così:

$$x = \sqrt[3]{2 + 11i} + \sqrt[3]{2 - 11i}$$

Poiché

$$(2+i)^3 = 2 + 11i$$
 e $(2-i)^3 = 2 - 11i$

Si ottiene:

$$x = (2 + i) + (2 - i) = 2 + 2 = 4$$

Definizione

Con l'espressione **numero complesso** si intende un numero formato da una parte immaginaria e da una parte reale. Può essere perciò rappresentato dalla somma di un numero reale e di un numero immaginario.

Introdurremo ora un nuovo insieme numerico, più ampio di **R**, che indicheremo con la lettera **C** che sarà l'insieme dei numeri complessi.

DEFINIZONE:

Chiamiamo **numero complesso** ogni coppia ordinata (a;b) di numeri reali.

Possiamo anche dire che un numero complesso è un qualsiasi elemento dell'insieme R x R.

ESEMPIO:

$$(2; 3), (5; 0), (3; -\frac{2}{7}), (38; \sqrt{3}).$$

Nel riquadro sovrastante sono mostrati alcuni esempi di numeri complessi.

Operazioni e proprietà

Definiamo in C le operazioni di addizione e di moltiplicazione e l'elevamento al quadrato.

.L'addizione

DEFINIZONE:

Somma di numeri complessi

Dati due numeri complessi (a;b) e (c;d),

$$(a; b) + (c; d) = (a + c; b + d)$$

la loro somma è il numero complesso

definito dalla coppia (a + c; b + d)

ESEMPIO:

$$(2;4)+(6;9)=(8;-5)$$

Si può dimostrare che l'addizione fra numeri complessi gode delle proprietà commutativa e associativa. Inoltre, il numero (0; 0) è l'elemento neutro dell'addizione.

.La moltiplicazione

DEFINIZONE:

Prodotto di due numeri complessi

Dati due numeri complessi (a;b) e (c;d),

$$(a; b) \cdot (c; d) = (ac - bd; ad + bc)$$

Il loro prodotto è il numero complesso

definito dalla coppia (ac - bd; ad + bc)

ESEMPIO:

$$(2; 4) * (3; 1) = (2*3 - 4*1; 2*1 + 4*3) = (2; 14)$$

Si può dimostrare che la moltiplicazione fra numeri complessi gode delle proprietà **commutativa e associativa** e di quella **distributiva rispetto all'addizione**. Inoltre, il numero (1; 0) è **l'elemento neutro**, mentre (0; 0) è **l'elemento assorbente**, ossia moltiplicato per un numero qualsiasi dà come risultato se stesso.

Il quadrato di un numero complesso

DEFINIZONE:

Quadrato di un numero complesso

In generale:

$$(a; b)^2 = (a; b) \cdot (a; b) = (a^2 - b^2; 2ab).$$

ESEMPIO:

$$(2; 3)^2 = (2; 3) \cdot (2; 3) = (4 - 9; 6 + 6) = (-5; 12)$$

"Qual è quel numero il cui quadrato è uguale a - 4?"

Il numero complesso (0; 2) soddisfa la richiesta del problema.

In generale, il quadrato di un numero complesso del tipo (0; b) è uguale al reale negativo $-b^2$. Infatti:

$$(0; b)^2 = (0; b) \cdot (0; b) = (0 \cdot 0 - b \cdot b; 0 \cdot b + b \cdot 0) = (-b^2; 0) = -b^2.$$

ESEMPIO:

$$(0; 2)^2 = (0; 2) \cdot (0; 2) = (0 \cdot 0 - 2 \cdot 2; 0 \cdot 2 + 2 \cdot 0) = (-4; 0) = -4.$$

Calcolo con i numeri complessi in forma algebrica

La forma a + bi è detta forma algebrica del numero complesso (a; b).

Un numero complesso **a** + **bi** ha una forma simile a un binomio e, nel calcolo, possiamo eseguire le operazioni con i numeri complessi utilizzando le stesse regole valide per i binomi.

.L'addizione

$$(\underline{a} + \underline{b}\underline{i}) + (\underline{c} + \underline{d}\underline{i}) = (\underline{a} + \underline{c}) + (\underline{b} + \underline{d})\underline{i}$$

In generale, la somma di due numeri complessi è un numero complesso che ha:

- Per parte reale la somma delle parti reali;
- Per coefficiente della parte immaginaria la somma dei coefficienti delle parti immaginarie.

La **somma di due numeri complessi coniugati** è un numero reale doppio della parte reale degli addendi.

$$(a + bi) + (a - bi) = 2a$$

La somma di due numeri complessi opposti è 0.

$$(a + bi) + (-a - bi) = 0$$

.La sottrazione

$$(\underline{a} + \underline{b}\underline{i}) - (\underline{c} + \underline{d}\underline{i}) = (\underline{a} - \underline{c}) + (\underline{b} - \underline{d})\underline{i}$$

La differenza fra due numeri complessi è un numero complesso che ha:

- Per parte reale la differenza delle parti reali;
- Per coefficiente della parte immaginaria la differenza dei coefficienti delle parti immaginarie.

La differenza fra due numeri complessi coniugati è un numero immaginario che ha per coefficiente il doppio del coefficiente della parte immaginaria del minuendo.

$$(a + bi) - (a - bi) = a + bi - a + bi = 2bi$$

La moltiplicazione

$$(a + bi) \cdot (c + di) = (ac - bd) + (ad + bc)i$$

Algebricamente possiamo calcolare il **prodotto fra numeri complessi** nel modo seguente:

$$(a + bi) \cdot (c + di) = ac + adi + bci + bdi^2$$

Essendo $i^2 = -1$, abbiamo $bdi^2 = -bd$, quindi:

$$(\underline{a} + \underline{bi}) \cdot (\underline{c} + \underline{di}) = \underline{ac} + \underline{adi} + \underline{bci} - \underline{bd} = (\underline{ac - bd}) + (\underline{ad + bc})i$$

Il **prodotto di due numeri complessi coniugati** è un numero reale dato dalla somma del quadrato della parte reale e del quadrato del coefficiente della parte immaginaria:

$$(a + bi) \cdot (a - bi) = a^2 - (bi)^2 = a^2 - b^2i^2 = a^2 + b^2$$

.Il reciproco

Il reciproco di un numero complesso **a + bi** è quel numero complesso che moltiplicato per il numero dato dà come risultato 1.

Lo indichiamo con $\frac{1}{a+bi}$

Se moltiplichiamo numeratore e denominatore della frazione per il coniugato di **a + bi**, cioè per **a – bi**, otteniamo che il reciproco di **a + bi** è:

$$\frac{1}{a+bi} = \frac{a-bi}{(a+bi)(a-bi)} = \frac{a-bi}{a^2+b^2}$$

Verifichiamo ora che il prodotto del numero complesso **a + bi** per il suo reciproco è uguale a 1.

$$(a+bi)\cdot \frac{a-bi}{a^2+b^2} = \frac{a^2+b^2}{a^2+b^2} = 1$$

.La divisione

Il quoziente fra due numeri complessi **a + bi** e **c + di** è definito come prodotto del primo per il reciproco del secondo.

$$(a+bi):(c+di)=(a+bi)\cdot\frac{1}{c+di}=\frac{a+bi}{c+di}$$

Possiamo quindi indicare la divisione anche con $\underbrace{a+bi}_{c+di}$

Per ottenere il quoziente possiamo applicare la definizione, ma si può verificare che giungiamo allo stesso risultato se moltiplichiamo numeratore e denominatore per **c** - **di** (complesso coniugato del denominatore):

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$$

.La potenza

Fra le potenze di numeri complessi esaminiamo solo l'elevamento al quadrato e al cubo.

Per il calcolo del quadrato utilizziamo la regola del quadrato di un binomio:

$$(x + y)^2 = x^2 + 2xy + y^2$$
.
 $(a + bi)^2 = a^2 + 2abi + b^2i^2 = a^2 - b^2 + 2abi$

Per il calcolo del cubo utilizziamo la regola del cubo di un binomio:

$$(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3.$$

$$(a + bi)^3 = a^3 + 3a^2bi + 3ab^2i^2 + b^3i^3 = a^3 + 3a^2bi - 3ab^2 - b^3i =$$

$$= a^3 - 3ab^2 + (3a^2b - b^3)i.$$

Forma vettoriale

Poiché un numero complesso, per definizione, è una coppia ordinata (a; b) di numeri reali, fissato su un piano un sistema di assi cartesiani Oxy, è possibile associare a ogni numero complesso un punto P(a; b) del piano e viceversa.

Abbiamo così creato una corrispondenza biunivoca fra i numeri complessi e i punti del piano che permette di rappresentare geometricamente i numeri complessi.

Il piano in cui si rappresenta C si chiama **piano complesso** o **piano di** Gauss.

In tale piano i punti dell'asse x corrispondono a numeri reali, i punti del l'asse y corrispondono a numeri immaginari, gli altri punti del piano corrispondono a numeri complessi. L'asse x è detto asse reale, l'asse y invece asse immaginario.

ESEMPIO:

In figura sono rappresentati nel piano di Gauss il numero reale -3, il numero immaginario 4i e il numero complesso 5 + 2i.

▶ Figura 3 Al punto A corrisponde il numero reale -3, al punto B il numero immaginario 4i e al punto C il numero complesso 5 + 2i.

.I vettori e i numeri complessi

Dato un vettore **v**, è sempre possibile disegnarlo nel piano cartesiano scegliendo come suo rappresentante il segmento orientato **OP** con primo estremo nell'origine. Le coordinate del punto **P**, secondo estremo del vettore **OP**, si chiamano **componenti** del vettore.

a. Il segmento orientato \overrightarrow{OP} , che ha per primo estremo l'origine degli assi, è il rappresentante del vettore \overrightarrow{v} .

b. Le componenti del vettore \overrightarrow{OP} sono (a; b), cioè le coordinate del punto P.

Poiché a ogni punto del piano P è associato uno e un solo vettore OP, esiste una **corrispondenza biunivoca** fra i **numeri complessi** e i **vettori** del piano di Gauss, che associa a ogni numero a + bi il vettore che ha per componenti a e b, e viceversa.

Forma trigonometrica di un numero complesso

Poiché valgono le relazioni:

$$a = r\cos\alpha$$
, $b = r\sin\alpha$,

Abbiamo:

$$a + bi = r\cos\alpha + (r\sin\alpha)i = r[\cos\alpha + (\sin\alpha)i].$$

Possiamo pertanto scrivere il numero complesso z nella forma trigonometrica

$$z = r(\cos\alpha + i \sin\alpha),$$

Dove

$$r = \sqrt{a^2 + b^2}$$
 e $\operatorname{tg} \alpha = \frac{b}{a}$

ESEMPIO:

Consideriamo il numero complesso $\sqrt{3} + i$.

Calcoliamo r e α :

$$r = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{4} = 2;$$

$$tg \alpha = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \rightarrow \alpha_1 = \frac{\pi}{6} \lor \alpha_2 = \frac{7}{6} \pi.$$

Scegliamo $\alpha_1 = \frac{\pi}{6}$ perché a e b sono positivi, quindi α appartiene al primo quadrante.

La forma trigonometrica del numero complesso $\sqrt{3} + i$ è:

$$2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$
.

Operazioni fra numeri complessi in forma trigonometrica

La struttura di un numero complesso in forma trigonometrica rende più agevoli le varie operazioni aritmetiche.

.La moltiplicazione

Calcoliamo il prodotto dei numeri complessi $z_1 = r(\cos \alpha + i \sin \alpha)$ e

$$z_{2} = s(\cos \beta + i \sin \beta)$$

$$z_{1} \cdot z_{2} = r \cdot s \cdot (\cos \alpha + i \sin \alpha) \cdot (\cos \beta + i \sin \beta) =$$

$$= r \cdot s \cdot (\cos \alpha \cos \beta + i \cos \alpha \sin \beta + i \sin \alpha \cos \beta - \sin \alpha \sin \beta),$$

$$\cos(\alpha + \beta)$$

$$z_{1} \cdot z_{2} = r \cdot s [\cos(\alpha + \beta) + i \sin(\alpha + \beta)].$$

REGOLA:

Prodotto di due numeri complessi

Il prodotto di due numeri complessi scritti in forma trigonometrica è uguale al numero complesso dato che ha per modulo il prodotto dei moduli dei numeri dati e per argomento la somma degli argomenti

ESEMPIO:

Consideriamo i numeri complessi:

$$z_1 = 2 \cdot \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right), z_2 = 3 \cdot \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right).$$

Il loro prodotto è:

$$z_1 \cdot z_2 = 2 \cdot 3 \left[\cos \left(\frac{\pi}{6} + \frac{\pi}{3} \right) + i \operatorname{sen} \left(\frac{\pi}{6} + \frac{\pi}{3} \right) \right] = 6 \cdot \left(\cos \frac{\pi}{2} + i \operatorname{sen} \frac{\pi}{2} \right).$$

.La potenza

In generale, la potenza n-esima di un numero complesso è calcolabile con la seguente formula, detta anche formula di **De Moivre**:

$$[r \cdot (\cos \alpha + i \sin \alpha)]^n = r^n \cdot (\cos n\alpha + i \sin n\alpha), \cos n \in \mathbb{Z}^+.$$

REGOLA:

Potenza di un numero complesso

La potenza con esponente intero di un numero complesso scritto in forma trigonometrica è uguale al numero complesso che ha per modulo la potenza del modulo del numero dato è per argomento il prodotto dell'esponente per l'argomento del numero dato

DIMOSTRAZIONE:

• Scriviamo la potenza come prodotto di fattori uguali:

$$[r(\cos\alpha + i \sin\alpha)]^n =$$

$$= \underbrace{[r(\cos\alpha + i \sin\alpha)] \cdot [r(\cos\alpha + i \sin\alpha)] \cdot ... \cdot [r(\cos\alpha + i \sin\alpha)]}_{n \text{ fattori}} =$$

• Applichiamo la regola del prodotto fra numeri complessi:

$$= \underbrace{r \cdot r \cdot \dots \cdot r}_{n \text{ fattori}} \cdot \left[\cos(\alpha + \alpha + \dots + \alpha) + i \operatorname{sen}(\alpha + \alpha + \dots + \alpha) \right] = \frac{r}{n \text{ fattori}} \cdot \underbrace{n \text{ addendi}}_{n \text{ addendi}} = r^n (\cos n\alpha + i \operatorname{sen} n\alpha).$$

Le coordinate polari

Ogni punto del piano può essere individuato, oltre che dalle coordinate cartesiane, da coordinate polari. Per individuare un **sistema di coordinate polari nel piano**, fissiamo un punto O, detto polo, una semiretta orientata x avente origine in O, detta **asse polare**, e una unità di misura *u*.

A ogni punto P del piano diverso da O, associamo due numeri r e a:

- r: misura di OP rispetto a u;
- a: misura dell'angolo orientato $x\hat{O}P$, formato da OP con l'asse polare e preso in senso antiorario.

r si chiamo **modulo**, α **anomalia** o **argomento**. R e α sono le coordinate polari di P; le indicheremo con P[r; α].

. Coordinate polari in relazione a quelle cartesiane

Conoscendo le coordinate polari di un punto P[r;a] si possono ricavare le sue coordinate cartesiane (x;y).

Nel triangolo OPH possiamo applicare il primo teorema dei triangoli rettangoli, ottenendo:

$$x = r\cos\alpha$$
, $y = r\sin\alpha$.

Viceversa, possiamo ricavare le coordinate polari da quelle cartesiane calcolando:

$$r = \sqrt{x^2 + y^2}$$
, α : $tg \alpha = \frac{y}{x}$,

ESEMPIO:

1. Date le coordinate polari del punto $A\left[2; \frac{\pi}{3}\right]$, determiniamo le sue coordinate cartesiane:

$$x_A = r\cos\alpha = 2\cos\frac{\pi}{3} = 2\frac{1}{2} = 1,$$

$$y_A = r\sin\alpha = 2\sin\frac{\pi}{3} = 2\frac{\sqrt{3}}{2} = \sqrt{3}.$$

2. Date le coordinate cartesiane del punto $B(-2\sqrt{3}; 2)$, determiniamo le sue coordinate polari:

$$r = \sqrt{(-2\sqrt{3})^2 + 2^2} = \sqrt{12 + 4} = 4,$$

$$\alpha: \operatorname{tg} \alpha = \frac{b}{a} = \frac{2}{-2\sqrt{3}} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3} \to \alpha_1 = \frac{5}{6}\pi \vee \alpha_2 = \frac{11}{6}\pi.$$

Poiché B è nel secondo quadrante, il valore di α è:

$$\alpha = \frac{5}{6}\pi.$$

Conclusioni

I numeri complessi sono presenti in tutta la matematica, e sono protagonisti di interi settori, come l'analisi complessa o la geometria algebrica. La teoria dei numeri analitica usa l'analisi complessa per affrontare problemi sui numeri interi. Alcuni esempi sono il teorema dei numeri primi e la collegata ipotesi di Riemann. Nel campo della fisica quantisitica invece il campo dei numeri complessi è una componente essenziale di quest'ultima dato che la teoria è sviluppata in uno spazio di Hilbert a dimensione infinita derivato da C. L'unità immaginaria compare anche nell'equazione di Schrödinger.

Francesco Coppola

Matematica – A.S 2016/2017

Prof.ssa Simonetta Pellacchia