

* Method of forecasting:

- Arithmetic . الطريقة الحسابية
- Geometric. الطريقة الهندسية
- Annual growth. معدل الزيادة السنوية
- Decreasing rate of increase تناقص معدل
- Graphical extension.التمديد الرسومي
- Graphical comparison. مقارنة رسومية

1- Arithmetic method

The rate of increase is constant

• Ka =
$$\frac{dp}{dt}$$

•
$$\int_{Po}^{Pn} = Ka * \int_{to}^{tn} dt$$

•
$$\mathbf{K}_{a} = \frac{Pn - Po}{tn - to} = \frac{\Delta p}{\Delta t}$$

$$P_n = P_o + K_a (t_n - t_o)$$

- Pn: The population in the
- Po: The population in the
- n: Design period.
- Ka: Uniform growth rate معدل ثبات النمو constant المنتظم

Gives		Solution		
years	Р	Pn - Po (4P)	tn-to (∆D⊕	$Ka = \frac{\Delta P}{\Delta t}$
1910	46000	15000	10	1500
1920	80000	27000	10	2700
1930	87000	28000	10	2800
1940	116000	14000	10	1400
1960	129000	20000	10	2000
1980	149000	18000	10	1800
1970	186000			

Ka (average) =
$$\frac{\sum Ka}{No.of\ Ka} = \frac{12000}{6} = 2000 \frac{capita}{year}$$

$$P_{2020} = 165000 + 2000 (2020 - 1970) = 265000$$
capita

2- Geometric method

The rate of increase is Proportional to population

•
$$\frac{dp}{dt} = K_g \times P$$

•
$$\int_{Po}^{Pn} \frac{dp}{P} = K_g \int_{to}^{tn} (t_n - t_o)$$

•
$$lnP_{n}$$
- $lnP_{o} = K_{g} (t_{n}$ - $t_{o})$

•
$$\Delta lnP = K_g (\Delta t)$$

•
$$K_g = \frac{\Delta \ln P}{\Delta t}$$

$$\checkmark Kg = \frac{\Delta lnP}{\Delta t}$$

Year

Ex: Find the pop. The city (A) at year 2020 using geometric method

Given		Solution				
Year	р	ΔlnP	tn-to	In Pn-Po	Kg	
1910	45000	10.7144	10	0.2877	0.02877	
1920	60000	11.0021	10	0.3716	0.03716	
1930	87000	11.3737	10	0.279	0.0279	
1940	115000	11.6527	10	0.1149	0.01149	
1950	129000	11.7676	10	0.1149	0.01441	
1960	149000	11.9117		0.102	0.0102	
1970	165000	12.0137	10	0.102	0.0102	

K_g (average) =
$$\frac{\sum Kg}{No.of \ Kg} = \frac{0.13}{6} = 0.02167$$

$$lnP_{2020} = ln(165000) + (0.02167) \times (2020-1970)$$

$$P_{2020} = 487575 c$$

3- Annual Growth Rate

o Pn = Po
$$(1 + \frac{m}{100})^n$$

$$\circ$$
 n = tn – to

o **m = [**
$$(\frac{Pn}{Po})^{\frac{1}{n}} - 1$$
]

n : Design Period

• m : Annual growth rate

Ex: Find the pop. The city (A) at year 2020 using annual rate.

M=2.195% Po=165000 c Year =1970

$$P_{2020}$$
 = 165000(1+ 0.02195) $^{2020-1970}$

Water consumption

Water uses:

Domestic use	50%
Industrial use	20%
Commercial use	15%
Public use	5%
Losses and wastes	10%

- **&Climate**
- *Type of community(economic condition)(standard of living)
- City size
- Water pressure
- Water quality
- Cost of water
- *Wastewater projects

Variation in water consumption

التفاوت في استهلاك المياه

*Daily change

Characteristic hourly consumption curve

Fluctuation of consumption for various periods of time تقلبات الاستهلاك لفتره زمنية مختلفة

Increasing in water consumption

*Water consumption (% increase) =
$$\left(\frac{p_e}{p_o}\right)^{0.125}-1$$
*100

- *Completely metered system % increase = $\left(\frac{p_s}{p_s}\right)^{0.11}-1$ *100
- *Annual growth % increase = $((1+r)^n 1)*100$
- r = (1/10) *m annual growth rate
- n = Design period

$$q_f = (1 + \% increase) * q_{present}$$

Design flows

- >Average flow (Q av)= p * q
- >Maximum monthly flow (Q max. monthly)
- >Q max. monthly = 1.4 Qav
- >Maximum daily flow (Q max. daily)
- >Q max. daily = 1.8 Qav
- >Maximum hourly flow (Q max. hourly)
- >Q max. hourly = 2.5 Qav

Design flows

>Average flow (Q av)= p * q

>Maximum monthly flow (Q max. monthly)

>Maximum daily flow (Q max. daily)

>Maximum hourly flow (Q max. hourly)

$$Q_{\text{average}} = \frac{277 * 552632}{1000} = 153079 m^3 / d$$

$$Q_{max. Monthly} = 1.4 Qave = 214311 m^3 / d$$

$$Q_{max.daily} = 1.8Qave = 275542 m^3 / d$$

$$Q_{max. Hourly}$$
 = 2.5Qave = 382698 m³ / d

Characteristics of water

Chemical characteristics:

1- PH: Ranged from (6.5-9.5)

2-Dissolved Solids:

Manganese <= 0.1 mg /l Iron and manganese <= 0.3

mg/1

Calcium <=200 mg/l sodium <= 200mg/1 Iron <=0.3mg/l Magnesium <= 150mg/l

Sulphate <=400 mg/l chloride <= 500 mg/l Copper <= 1.0 mg/l Nitrate <= $10 \, mg/l$ Nitrate <=0.005mg/l lead <=0.05mg/lCadmium<#0.005mg/l chloride <= 500mg/l

Mercury <=0.001mg/l toxic matters = zerro

Characteristics of water

Chemical characteristics:

1- PH: Ranged from (6.5-9.5)

2-Dissolved Solids:

Manganese <= 0.1 mg /l Iron and manganese <= 0.3

mg/l

Calcium <=200 mg/l sodium <= 200mg/1 150 mg/l Iron <=0.3mg/l Magnesium <= Sulphate <=400 mg/l chloride <= $500 \, \text{mg/l}$ Copper <= 1.0 mg/l Nitrate <= $10 \, \text{mg/l}$ Nitrate <=0.005mg/l lead <= 0.05mg/l500 mg/1Cadmium<#0.005mg/l chloride <=

Mercury <=0.001mg/l toxic matters = zerro

