$$6^2 = 3$$

$$=6^{8}\cdot6^{1}$$

m=d 1)

6. RSA problem

$$N = p \cdot 9$$
 $\phi(N) = (p-1)(9-1)$

Pick e gcd(e,
$$\varphi(N) = 1$$

compute d, s.t. $d \cdot e = 1 \mod \varphi(N)$

Fe: $x \mapsto x^e \mod N$

Fa: $y \mapsto y^e \mod N$

Fd (Fe(x)) = $x \mod N$

Fd (Fe(x)) = $x \mod N$

Fx. $-p = 3$, $q = 11$, $N = p - 2 = 33$
 $-\varphi(N) = (p - 1)(1 - 1) = 20$
 $-pick e = f$, $qcd(7, 20) = 1$
 $-zompute d = 3$

Sit. ($d \cdot e = 1 \mod 20$)

($N = 33$, $e = f$, $Q = 3$)

 $x = 2$

Fe(x) = $(2^{7} = 2^{2} \cdot 2^{2} \cdot 2^{2}) = \mod 3$
 $f = 1 \cdot 2^{7} + 1 \cdot 2^{7} + 1 \cdot 2^{6}$
 $x = 2^{7} \cdot 2^{7} \cdot 2^{7} \cdot 2^{7}$
 $x = 2^{7} \cdot 2^{7} \cdot 2^{7} \cdot 2^{7}$
 $x = 2^{7} \cdot 2^{7} \cdot 2^{7} \cdot 2^{7}$
 $x = 2^{7} \cdot 2^{7} \cdot 2^{7} \cdot 2^{7}$
 $x = 2^{7} \cdot 2^{7} \cdot 2^{7} \cdot 2^{7}$
 $x = 2^{7} \cdot 2^{7} \cdot 2^{7} \cdot 2^{7}$
 $x = 2^{7} \cdot 2^{7} \cdot 2^{7} \cdot 2^{7}$

Felx1=37=34.3.3=3.915 mod 31 $\frac{1}{3!}$ $\frac{3}{3!}$ $\frac{3}{3!}$ $\frac{4}{3!}$ = 9 m·d3} 9 9x9 mod 33 = 15 $F_{d}(9) = 9^{3} = 9^{2} \cdot 9^{1} = 3 \mod 3$ $3 = 4 \cdot 2^{1} + 1 \cdot 2^{0}$ 9_{11}^{1} 9_{11}^{2} cong: (M, e, d) Fe, Fa exest Fd 5 x 2/2 d unknown PJA: Given x mod N Find x Forteris Given: N=p.g. 7ind p - PSA US. faztoring.
- PSA = faztoring Giver. Box

Froal. Use B-Box

invert.

Proal.

Re -> x(1) xe -> x (modN)

 $(x^e)^d = x \mod v$ Suffices to get a (N,e) is known find d w dre = 1 mod (N) Need \$(N) = (p-1).(9-1) V VFind of then (xe) = 1 mod N - faztoring ? PSA PSA > > N (Faztorius) p Secure) = factoring. \$(N) - (N,e) = faztoring $(x^e)^d = x$ $(x^e)^d = x$

1. Lyclic groups. a. (In, modn) = {0, ..., N-1} factor: gcd(a,N)} identitye=1 Sperial case: N=p prime. * 2p = {1,2, · · · , p-1} $\mathcal{E}_{1}^{*} = \{1, 2, \dots, 6\}$ mod't · 3° = 1 3¹ = 3 3 = 2 33=6 34=4 35=5 36=1 · 2° = 1 21 = 2 22 = 4 $z^{3} = 1$ $z^{4} = 2$ $z^{5} = 1$ OBS: Ex can be generated by 3: generator of 27

Z = NOT a gen

. Pet. G a group. 165=n. suppose 7 geG, s.t. 8, 9, ii gn all distinct n of them (horse all of G) Then: G is called a Cyllic group. $G = \langle j \rangle$. $F_{1}^{*} = \langle 3 \rangle$ g is called a generator. Thin: Zt is zyclic for any prime p. (modp) b. Diszrete logarithm. - G = 29, 1G = 9- 29= 80, ··· 9-13 FGEXP: #9-36

- Suppose:
$$y = g^{x} \in G$$
.
 $x := \log_{g} y$
 $x := \log_{g} y$
 $x := \log_{g} y$
 $x := \log_{g} y$
 $y := \log_{g} y$

DL assumption Inverting (g* >x) is hard.

Ear needs (hA, hB) > g XAX3 b. Computational DH assumption (ZDH) > zonputing g xax13 from gxa & gxx is hard! => Ear Connot Compute K=gXAXB (5) x=9 xxxx if treated as a key z better look random Dezisional DH (DDH) (G,9,9,9^x,9^x,9^x,x₂) (G, 9, 9, 9^x, 9^x, 9^x) indep.