Métodos Numéricos Derivación e Integración Numérica

Diego Passarella

Universidad Nacional de Quilmes

Motivación

La necesidad de la utilización de métodos numéricos para realizar integrales o derivades surge de las siguientes situaciones:

- Se conoce f(x) pero el cálculo de sus derivadas $f'(x), f''(x), \cdots$ es muy complejo. Lo mismo para su primitiva $\int f(x)dx$.
- No se conoce la expresión de la función, solamente su valor en algunos puntos. Por lo tanto se debe usar esa información para estimar las derivadas e integrales.

Aproximación Polinómica

De forma general, se pueden utilizar las aproximaciones polinómicas vistas anteriormente para estimar las derivadas e integrales. Si:

$$f(x) \approx \sum_{k=1}^{m} y_k I_k(x) \Rightarrow$$

$$f'(x) \approx \sum_{k=1}^{m} y_k I'_k(x)$$
 , $\int_{x_0}^{x_1} f(x) dx \approx \sum_{k=0}^{m} y_k \int_{x_0}^{x_1} I_k(x) dx$

En general, la utilización de polinomios interpolantes globales de alto orden (elevado *m*) no suele utilizarse (recordar fenómeno de Runge). En cambio, se pueden utilizan aproximaciones locales de bajo orden, como ser:

- Interpolación lineal a trozos
- Interpolación parabólica a trozos
- Splines cúbicos

La interpolación lineal a trozos es simple pero genera derivadas de primer orden constantes y discontinuas, mientras que la derivación de un spline no suele ser práctica de implementar.

En general se trabaja con derivaciones locales de la función, por medio de polinomios de bajo orden.

Diferencias Finitas

Se pueden generar diversas aproximaciones de la derivada de una función partir de desarrollo en serie de Taylor alrededor de un punto.

$$f(x) = f(x_0) + \sum_{i=1}^{\infty} f^{(k)}(x_0) \frac{(x - x_0)^k}{k!}$$

Si consideramos una discretización equiespaciada del dominio donde está definida f(x) de la forma

$$a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$$

de tal manera que $x_i - x_{i-1} = h$, podemos generar combinaciones de desarrollos de Taylor centrados en un x_i para obtener la derivada en ese punto.

Derivada progresiva de primer orden

A partir de la aproximación de $f(x_{i+1})$ centrada en x_i y del valor de $f(x_i)$ se puede construir una aproximación de primer orden de la derivada en x_i .

$$f(x_{i+1}) = f(x_i) + (x_{i+1} - x_i)f'(x_i) + \Re((x_{i+1} - x_i)^2)$$

$$f(x_i) = f(x_i)$$

Restando ambas expresiones se llega a:

$$f(x_{i+1}) - f(x_i) = (x_{i+1} - x_i)f'(x_i) + \Re((x_{i+1} - x_i)^2) \Rightarrow$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} + \Re(h)$$

El error que se comete con este esquema es proporcional a h.

Derivada regresiva de primer orden

De forma equivalente al caso anterior, se puede tomar el desarrollo en un punto anterior de la discretización.

En este caso conviene expresar a los desarrollos de Taylor como:

$$f(x_i) = f(x_i)$$

$$f(x_i - h) = f(x_i) - h f'(x_i) + \frac{h^2}{2} f''(x_i) - \frac{h^3}{6} f'''(x_i) + \dots - /+$$

De los cuales se obtiene:

$$f'(x_i) = \frac{f(x_i) - f(x_i - h)}{h} + \Re(h)$$

Con este esquema el error que se comete vuelve a ser proporcional a h.

Derivada centrada de segundo orden

Una mejor aproximación de la derivada primera en x_i viene dada por:

$$f'(x_i) = \frac{f(x_i + h) - f(x_i - h)}{2h} + \Re(h^2)$$

¿Como se llega a este esquema y por qué el error cometido es propocional a h^2 ?

Otras derivadas primeras de segundo orden

Otro tipo de derivadas con error proporcional a h^2 son:

$$f'(x_i) \approx \frac{-3f(x_i) + 4f(x_{i+1}) - f(x_{i+2})}{2h}$$

$$f'(x_i) \approx \frac{-f(x_{i-2}) + 4f(x_{i-1}) - 3f(x_i)}{2h}$$

Estas aproximaciones sirven para tener una estimación de la derivada primera con un error proporcional a h^2 en todos los puntos de la discretización.

Derivada segunda y subsiguientes

Con los desarrollos de Taylor anteriores se puede obtener la siguiente aproximación de la derivada segunda en x_i

$$f''(x_i) = \frac{f(x_i + h) - 2f(x_i) + f(x_i - h)}{h^2} + \Re(h^2)$$

Tomando cada vez más puntos se pueden obtener aproximaciones de derivadas de mayor orden.

Integración mediante interpolación polinómica

Volviendo sobre la idea de aproximar a f(x) con un polinomio de orden m, se puede plantear una aproximación de la integral de f(x) como:

$$\int_{a}^{b} f(x) dx \approx \int_{a}^{b} P_{m}(x) dx = \sum_{i=0}^{m} f(x_{i}) \int_{a}^{b} I_{i}(x) dx = \sum_{i=0}^{m} f(x_{i}) \omega_{i}$$

Fórmulas de integración del tipo

$$\int_a^b f(x) dx \approx \sum_{i=0}^m f(x_i) \omega_i$$

son denominadas fórmulas de cuadratura.

Fórmulas de Newton-Cotes

Se considera el intervalo de integración subdividido de forma equiespaciada en m+1 puntos, de forma que:

$$x_0 = a$$
, $x_m = b$, $x_{i+1} - x_i = b = \frac{b-a}{m}$

Considerando distintos m's se llegan a las siguientes fórmulas de integración:

Fórmulas de Newton-Cotes

• Fórmula del trapecio (n = 1):

$$\int_a^b f(x) dx \approx \frac{h}{2} (f(a) + f(b))$$

• Fórmula de Simpson (n = 2):

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

• Fórmula de 3/8 (n = 3):

$$\int_{a}^{b} f(x) dx \approx \frac{3h}{8} \left(f(a) + 3f\left(\frac{2a+b}{3}\right) + 3f\left(\frac{a+2b}{3}\right) + f(b) \right)$$