信息安全的数学基础(1)

唐灯

上海交通大学网络空间安全学院

第二章 群

- §2.1 群的定义和性质
- §2.2 子群和生成元集
- §2.3 陪集和陪集分解
- §2.4 正规子群和商群
- §2.5 群的同态和同构
- §2.6 循环群
- §2.7 置换群
- §2.8 群的直积

§2.1 群的定义和性质

- ■群的定义
- 群的例子
- 群的性质
- 群的判定

代数运算

定义 1

设 S 为集合. 我们称映射 $f: S \times S \to S$, $(a,b) \mapsto c$ 为集合 S 上的一个代数运算或二元运算 (binary operation).

代数运算

定义 1

设 S 为集合. 我们称映射 $f: S \times S \to S$, $(a,b) \mapsto c$ 为集合 S 上的一个代数运算或二元运算 (binary operation).

注 1.1

集合 S 上的任意一个代数运算均具有唯一性和封闭性.

代数运算

定义 1

设 S 为集合. 我们称映射 $f: S \times S \to S$, $(a,b) \mapsto c$ 为集合 S 上的一个代数运算或二元运算 (binary operation).

注 1.1

集合 S 上的任意一个代数运算均具有唯一性和封闭性.

注 1.2

在数学应用中, 记号 c=f(a,b) 并不是一个很适宜的记号. 实际上, 我们经常使用 "·"和 "*"等符号来表示代数运算, 即 $c=a\cdot b, a\times b, a*b, a+b, a\circ b$ 等.

结合律和交换律

定义 2

集合 S 上的代数运算 "·" 如果满足对任意 $a,b,c \in S$ 都有 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$,

则称该代数运算满足**结合律** (associative law). 如果对任意 $a,b\in S$ 都有

$$a \cdot b = b \cdot a,$$

则称其满足交换律 (commutative law).

例 3

有理数的加法、减法和乘法都是有理数集 $\mathbb Q$ 上的代数运算, 但除法不是 $\mathbb Q$ 上的代数运算. 如果只考虑所有非零有理数的集合 $\mathbb Q^* = \mathbb Q \setminus \{0\}$, 则除法是 $\mathbb Q^*$ 上的代数运算.

有理数的加法、减法和乘法都是有理数集 $\mathbb Q$ 上的代数运算, 但除法不是 $\mathbb Q$ 上的代数运算. 如果只考虑所有非零有理数的集合 $\mathbb Q^* = \mathbb Q \setminus \{0\}$, 则除法是 $\mathbb Q^*$ 上的代数运算.

例 4

设 m 为大于 1 的正整数, \mathbb{Z}_m 为 \mathbb{Z} 的模 m 剩余类集. 对 $\bar{a}, \bar{b} \in \mathbb{Z}_m$, 规定

$$\bar{a} + \bar{b} = \overline{a+b}$$
$$\bar{a} \cdot \bar{b} = \overline{ab}$$

则"+"与" \cdot "都是 \mathbb{Z}_m 上的代数运算.

证明

只要证明上面规定的运算与剩余类的代表元的选取无关即可. 设

$$\bar{a} = \overline{a'}, \quad \bar{b} = \overline{b'},$$

则

$$m | a - a', \quad m | b - b'.$$

证明

只要证明上面规定的运算与剩余类的代表元的选取无关即可. 设

$$\bar{a} = \overline{a'}, \quad \bar{b} = \overline{b'},$$

则

$$m | a - a', \quad m | b - b'.$$

于是

$$m \mid (a - a') + (b - b') = (a + b) - (a' + b'),$$

 $m \mid (a - a') b + (b - b') a' = (ab) - (a'b'),$

证明

只要证明上面规定的运算与剩余类的代表元的选取无关即可. 设

$$\bar{a} = \overline{a'}, \quad \bar{b} = \overline{b'},$$

则

$$m | a - a', \quad m | b - b'.$$

于是

$$m \mid (a - a') + (b - b') = (a + b) - (a' + b'),$$

 $m \mid (a - a') b + (b - b') a' = (ab) - (a'b'),$

从而

$$\overline{a+b} = \overline{a'+b'}, \quad \overline{ab} = \overline{a'b'},$$

所以 "+"与 "·" 都是 \mathbb{Z}_m 上的代数运算.

定义 5

设 G 是一个非空集合, "·"是 G 上的一个代数运算, 即对所有的 $a,b \in G$, 有 $a \cdot b \in G$. 如果运算 "·"满足下述三个条件:

定义 5

设 G 是一个非空集合, "·"是 G 上的一个代数运算, 即对所有的 $a,b \in G$, 有 $a \cdot b \in G$. 如果运算 "·"满足下述三个条件:

(1) 结合律成立, 即对所有的 $a,b,c \in G$, 有 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$;

定义 5

设 G 是一个非空集合, "·"是 G 上的一个代数运算, 即对所有的 $a,b \in G$, 有 $a \cdot b \in G$. 如果运算 "·"满足下述三个条件:

- (1) 结合律成立, 即对所有的 $a,b,c \in G$, 有 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$;
- (2) G 中有单位元 (identity element) e, 即对每个 $a \in G$, 有 $e \cdot a = a \cdot e = a$;

定义 5

设 G 是一个非空集合, "·"是 G 上的一个代数运算, 即对所有的 $a,b \in G$, 有 $a \cdot b \in G$. 如果运算 "·"满足下述三个条件:

- (1) 结合律成立, 即对所有的 $a,b,c \in G$, 有 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$;
- (2) G 中有单位元 (identity element) e, 即对每个 $a \in G$, 有 $e \cdot a = a \cdot e = a$;
- (3) G 中每个元素 a 均有逆元 (inverse), 即存在元素 $b \in G$ 使得 $a \cdot b = b \cdot a = e$,

定义 5

设 G 是一个非空集合, "·"是 G 上的一个代数运算, 即对所有的 $a,b \in G$, 有 $a \cdot b \in G$. 如果运算 "·"满足下述三个条件:

- (1) 结合律成立, 即对所有的 $a,b,c \in G$, 有 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$;
- (2) G 中有单位元 (identity element) e, 即对每个 $a \in G$, 有 $e \cdot a = a \cdot e = a$;
- (3) G 中每个元素 a 均有逆元 (inverse), 即存在元素 $b \in G$ 使得 $a \cdot b = b \cdot a = e$,

则称 G 关于运算 "·" 构成一个群 (group), 记作 (G,\cdot) .

定义 5

设 G 是一个非空集合, "·"是 G 上的一个代数运算, 即对所有的 $a,b \in G$, 有 $a \cdot b \in G$. 如果运算 "·"满足下述三个条件:

- (1) 结合律成立, 即对所有的 $a,b,c \in G$, 有 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$;
- (2) G 中有单位元 (identity element) e, 即对每个 $a \in G$, 有 $e \cdot a = a \cdot e = a$;
- (3) G 中每个元素 a 均有逆元 (inverse), 即存在元素 $b \in G$ 使得 $a \cdot b = b \cdot a = e$,

则称 G 关于运算 "·" 构成一个群 (group), 记作 (G, \cdot) .

注 5.1

(1) 如果群 (G, \cdot) 仅满足结合律, 我们称之为半群; 如果 (G, \cdot) 满足结合律且存在单位元, 我们称之为含幺半群.

定义 5

设 G 是一个非空集合, "·"是 G 上的一个代数运算, 即对所有的 $a,b \in G$, 有 $a \cdot b \in G$. 如果运算 "·"满足下述三个条件:

- (1) 结合律成立, 即对所有的 $a,b,c \in G$, 有 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$;
- (2) G 中有单位元 (identity element) e, 即对每个 $a \in G$, 有 $e \cdot a = a \cdot e = a$;
- (3) G 中每个元素 a 均有逆元 (inverse), 即存在元素 $b \in G$ 使得 $a \cdot b = b \cdot a = e$,

则称 G 关于运算 "·" 构成一个群 (group), 记作 (G,\cdot) .

注 5.1

- (1) 如果群 (G, \cdot) 仅满足结合律, 我们称之为半群; 如果 (G, \cdot) 满足结合律且存在单位元, 我们称之为含幺半群.
- (2) 我们将证明群 G 的单位元 e 和每个元素的逆元都是唯一的. G 中元素 a 的唯一的逆元通常记作 a^{-1} .

群的阶

定义 6

群 (G, \cdot) 中元素的个数称为群 G 的阶 (order), 记为 |G|. 如果 |G| 是有限数, 则称 G 为有限群 (finite group), 否则称 G 为无限群 (infinite group). 无限群的阶记为 ∞ .

群的阶

定义 6

群 (G, \cdot) 中元素的个数称为群 G 的阶 (order), 记为 |G|. 如果 |G| 是有限数, 则称 G 为有限群 (finite group), 否则称 G 为无限群 (infinite group). 无限群的阶记为 ∞ .

定义 7

如果群 G 上的代数运算 "·" 还满足交换律, 即对任意的 $a,b\in G$, 有 $a\cdot b=b\cdot a$, 则称 G 是一个交换群 (commutative group) 或阿贝尔群 (Abelian group).

注

注 7.1

(1) 我们通常用 "+" 法来表示阿贝尔群 G 的代数运算, 记为 (G,+). 习惯上, 只有当一个群为交换群时, 才用 "+"来表示群的运算, 并称这个运算为**加法**, 把运算的结果叫做**和**, 同时称这样的群为**加群**.

注 7.1

- (1) 我们通常用 "+" 法来表示阿贝尔群 G 的代数运算, 记为 (G,+). 习惯上, 只有当一个群为交换群时, 才用 "+"来表示群的运算, 并称这个运算为**加法**, 把运算的结果叫做**和**, 同时称这样的群为**加群**.
- (2) 我们通常将 (G,+) 上的单位元记为 0, 并称 0 为 (G,+) 的 零元; 记 (G,+) 中 a 的逆元为 -a, 并称 -a 为 a 的负元.

注 7.1

- (1) 我们通常用 "+" 法来表示阿贝尔群 G 的代数运算, 记为 (G,+). 习惯上, 只有当一个群为交换群时, 才用 "+"来表示群的运算, 并称这个运算为**加法**, 把运算的结果叫做**和**, 同时称这样的群为**加**群.
- (2) 我们通常将 (G,+) 上的单位元记为 0, 并称 0 为 (G,+) 的 **零元**; 记 (G,+) 中 a 的逆元为 -a, 并称 -a 为 a 的**负元**.
- (3) 将不是加群的群称为**乘群**,并把乘群的代数运算叫做**乘法**, 运算的结果叫做**积**,乘群的运算符号通常省略不写.

注 (续)

(4) 在不致引起混淆的情况下, 常将加群和乘群简称为群. 今后, 如不作特别声明, 总假定群的运算是乘法.

注 (续)

- (4) 在不致引起混淆的情况下, 常将加群和乘群简称为群. 今后, 如不作特别声明. 总假定群的运算是乘法.
- (5) 在群 (G, \cdot) 中, 对任意的正整数 n 以及 $a \in G$, 定义 a^n 表示 n 个 a 相乘, 再约定 $a^0 = e$ 以及 $a^{-n} = (a^{-1})^n$, 则 a^n 对任意整数 n 都有意义, 且对任意 $m, n \in \mathbb{Z}$ 有 $a^n \cdot a^m = a^{n+m}$ 和 $(a^n)^m = a^{nm}$.

注 (续)

- (4) 在不致引起混淆的情况下, 常将加群和乘群简称为群. 今后, 如不作特别声明, 总假定群的运算是乘法.
- (5) 在群 (G,\cdot) 中,对任意的正整数 n 以及 $a \in G$, 定义 a^n 表示 n 个 a 相乘,再约定 $a^0 = e$ 以及 $a^{-n} = \left(a^{-1}\right)^n$,则 a^n 对任意整数 n 都有意义,且对任意 $m, n \in \mathbb{Z}$ 有 $a^n \cdot a^m = a^{n+m}$ 和 $(a^n)^m = a^{nm}$. 在群 (G,+) 中,相应地定义 na 表示 n 个 a 相加,再约定 0a = 0 以及 (-n)a = n(-a),则 na 对任意整数 n 都有意义,且对任意 $m, n \in \mathbb{Z}$ 有 na + ma = (n + m)a,m(na) = mna,以及 n(a + b) = na + nb.

例 8

ℤ 关于数的加法运算构成阿贝尔群. 这个群称为整数加群.

ℤ 关于数的加法运算构成阿贝尔群. 这个群称为整数加群.

证明: 对任意的 $a, b \in \mathbb{Z}$, 有 $a + b \in \mathbb{Z}$, 所以 "+" 是 \mathbb{Z} 上的一个代数运算. 同时, 对任意的 $a, b, c \in \mathbb{Z}$ 有

$$(a+b) + c = a + (b+c),$$

所以结合律成立. 另一方面, $0 \in \mathbb{Z}$, 且对每个 $a \in \mathbb{Z}$ 有

$$a + 0 = 0 + a = a,$$

所以 0 为 \mathbb{Z} 的单位元. 又对每个 $a \in \mathbb{Z}$ 有

$$a + (-a) = (-a) + a = 0,$$

所以 -a 是 a 的逆元, 从而 \mathbb{Z} 关于 "+"构成群, 显然这是一个阿贝尔群.

例 9

 \mathbb{Q} , \mathbb{R} , \mathbb{C} 关于数的加法运算都构成阿贝尔群, 0 为加法单位元; $\mathbb{Q}^*=\mathbb{Q}\setminus\{0\}$, $\mathbb{R}^*=\mathbb{R}\setminus\{0\}$, 以及 $\mathbb{C}^*=\mathbb{C}\setminus\{0\}$ 关于数的乘法运算都构成阿贝尔群, 1 为乘法单位元.

例 9

 \mathbb{Q} , \mathbb{R} , \mathbb{C} 关于数的加法运算都构成阿贝尔群, 0 为加法单位元; $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$, $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$, 以及 $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ 关于数的乘法运算都构成阿贝尔群, 1 为乘法单位元.

注 9.1

在上述例子中, \mathbb{Q} , \mathbb{R} , \mathbb{C} 关于数的加法运算构成阿贝尔群, 而 \mathbb{Q}^* , \mathbb{R}^* , \mathbb{C}^* 关于数的乘法运算亦构成阿贝尔群, 而且加法和乘法运算满足分配律, 即对 \mathbb{Q} , \mathbb{R} , \mathbb{C} 中任意三个元素 a,b,c 都有 (a+b)c=ac+bc. 这样的集合称为域. 域的定义将在第三章详细阐述, 在此之前, 我们常将 \mathbb{Q} 称为**有理数域**, \mathbb{R} 称为**实数域**, \mathbb{C} 称为**复数域**.

例 10

实数域 \mathbb{R} 上全体 n 阶方阵的集合 $\mathrm{M}_n(\mathbb{R})$ 关于矩阵的加法运算构成一个交换群.

例 10

实数域 \mathbb{R} 上全体 n 阶方阵的集合 $\mathrm{M}_n(\mathbb{R})$ 关于矩阵的加法运算构成一个交换群.

例 11

集合 $\{1,-1,i,-i\}$ 关于数的乘法运算构成一个交换群.

n 次单位根群

例 12

全体 n 次单位根组成的集合

$$U_n = \{x \in \mathbb{C} \mid x^n = 1\}$$

$$= \left\{ \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} \mid k = 0, 1, 2, \dots, n - 1 \right\}$$

关于数的乘法运算构成一个 n 阶交换群.

n 次单位根群

例 12

全体 n 次单位根组成的集合

$$U_n = \{x \in \mathbb{C} \mid x^n = 1\}$$

= $\left\{\cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} \mid k = 0, 1, 2, \dots, n - 1\right\}$

关于数的乘法运算构成一个 n 阶交换群.

证明: 对任意的
$$x, y \in U_n$$
, 因为 $x^n = 1, y^n = 1$, 所以 $(xy)^n = x^n y^n = 1 \cdot 1 = 1$,

因此 $xy \in U_n$. 因为数的乘法满足交换律和结合律, 所以 U_n 的乘法也满足交换律和结合律. 由于 $1 \in U_n$, 且对任意的 $x \in U_n$, $1 \cdot x = x \cdot 1 = x$, 所以 1 为 U_n 的单位元. 又由于对任意的 $x \in U_n$, $x^{n-1} \in U_n$ 且 $x \cdot x^{n-1} = x^{n-1} \cdot x = x^n = 1$.

所以 x 有逆元 x^{n-1} . 因此, U_n 关于数的乘法构成一个群. 通常 称这个群为 n 次单位根群, U_n 是一个具有 n 个元素的交换群.

剩余类加法群

例 13

设 m 是大于 1 的正整数, 则 \mathbb{Z}_m 关于剩余类的加法构成加群. 这个群称为 \mathbb{Z} 的模 m 剩余类加群.

剩余类加法群

例 13

设 m 是大于 1 的正整数, 则 \mathbb{Z}_m 关于剩余类的加法构成加群. 这个群称为 \mathbb{Z} 的模 m 剩余类加群.

证明: 由例 4 知, 剩余类的加法运算 "+" 是 \mathbb{Z}_m 的代数运算.

剩余类加法群

例 13

设 m 是大于 1 的正整数, 则 \mathbb{Z}_m 关于剩余类的加法构成加群. 这个群称为 \mathbb{Z} 的模 m 剩余类加群.

证明: 由例 4 知, 剩余类的加法运算 "+" 是 \mathbb{Z}_m 的代数运算. (1) 对任意的 $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}_m$,

$$(\bar{a} + \bar{b}) + \bar{c} = \overline{a + b} + \bar{c} = \overline{(a + b) + c}$$
$$= \overline{a + (b + c)} = \bar{a} + \overline{b + c}$$
$$= \bar{a} + (\bar{b} + \bar{c}),$$

所以结合律成立.

剩余类加法群

例 13

设 m 是大于 1 的正整数, 则 \mathbb{Z}_m 关于剩余类的加法构成加群. 这个群称为 \mathbb{Z} 的模 m 剩余类加群.

证明: 由例 4 知, 剩余类的加法运算 "+" 是 \mathbb{Z}_m 的代数运算. (1) 对任意的 $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}_m$,

$$(\bar{a} + \bar{b}) + \bar{c} = \overline{a + b} + \bar{c} = \overline{(a + b) + c}$$
$$= \overline{a + (b + c)} = \bar{a} + \overline{b + c}$$
$$= \bar{a} + (\bar{b} + \bar{c}),$$

所以结合律成立.

(2) 对任意的 $\bar{a}, \bar{b} \in \mathbb{Z}_m$,

$$\bar{a} + \bar{b} = \overline{a+b} = \overline{b+a} = \bar{b} + \bar{a},$$

所以交换律成立.

(3) 对任意的 $\bar{a} \in \mathbb{Z}_m$,

$$\bar{a} + \bar{0} = \overline{a+0} = \bar{a},$$
$$\bar{0} + \bar{a} = \overline{0+a} = \bar{a}.$$

所以 $\bar{0}$ 为 \mathbb{Z}_m 的零元.

(3) 对任意的 $\bar{a} \in \mathbb{Z}_m$,

$$\bar{a} + \bar{0} = \overline{a+0} = \bar{a},$$
$$\bar{0} + \bar{a} = \overline{0+a} = \bar{a}.$$

所以 $\overline{0}$ 为 \mathbb{Z}_m 的零元.

(4) 对任意的 $\bar{a} \in \mathbb{Z}_m$,

$$\bar{a} + \overline{-a} = \overline{a + (-a)} = \overline{0},$$

 $\overline{-a} + \bar{a} = \overline{(-a) + a} = \overline{0}.$

所以 $\overline{-a}$ 为 \bar{a} 的负元.

于是, \mathbb{Z}_m 关于剩余类的加法构成加群.

剩余类乘法群

例 14

设m是大于1的正整数,记

$$U(m) = \{ \bar{a} \in \mathbb{Z}_m \mid (a, m) = 1 \},\,$$

则 U(m) 关于剩余类的乘法运算构成群.

剩余类乘法群

例 14

设 m 是大于 1 的正整数, 记 $U(m) = \{ \bar{a} \in \mathbb{Z}_m \mid (a, m) = 1 \},$

则 U(m) 关于剩余类的乘法运算构成群.

证明: (1) 对任意的 $\bar{a}, \bar{b} \in U(m)$, 有 (a,m) = 1, (b,m) = 1, 于是可得 (ab,m) = 1, 从而 $\overline{ab} \in U(m)$. 所以剩余类的乘法 "·" 是 U(m) 的代数运算.

剩余类乘法群

例 14

设m是大于1的正整数,记

$$U(m) = \{ \bar{a} \in \mathbb{Z}_m \mid (a, m) = 1 \},\,$$

则 U(m) 关于剩余类的乘法运算构成群.

证明: (1) 对任意的 $\bar{a}, \bar{b} \in U(m)$, 有 (a,m)=1, (b,m)=1, 于是可得 (ab,m)=1, 从而 $\overline{ab} \in U(m)$. 所以剩余类的乘法 "·" 是 U(m) 的代数运算. (2) 对任意的 $\bar{a}, \bar{b}, \bar{c} \in U(m)$,

$$(\bar{a} \cdot \bar{b}) \cdot \bar{c} = \overline{ab} \cdot \bar{c} = \overline{(ab)c} = \overline{a(bc)}$$
$$= \bar{a} \cdot \overline{bc} = \bar{a} \cdot (\bar{b} \cdot \bar{c})$$

所以结合律成立.

(3) 因为 (1,m)=1, 从而 $\overline{1}\in U_m$, 且对任意的 $\overline{a}\in U(m)$, $\overline{a}\cdot\overline{1}=\overline{a\cdot 1}=\overline{a},$ $\overline{1}\cdot\overline{a}=\overline{1\cdot a}=\overline{a},$

所以 $\overline{1}$ 为 U(m) 的单位元.

(3) 因为
$$(1,m)=1$$
, 从而 $\overline{1}\in U_m$, 且对任意的 $\overline{a}\in U(m)$,
$$\overline{a}\cdot\overline{1}=\overline{a\cdot 1}=\overline{a},$$

$$\overline{1}\cdot\overline{a}=\overline{1\cdot a}=\overline{a},$$

所以 $\bar{1}$ 为 U(m) 的单位元. (4) 对任意的 $\bar{a} \in U(m)$, 有 (a,m)=1. 由整除的性质可知, 存在 $u,v\in\mathbb{Z}$, 使 au+mv=1.

显然 (u,m)=1, 因此对任意 $t\in\mathbb{Z}$ 有 (u+tm,m)=1, 于是 $\bar{u}\in U(m)$.

(3) 因为
$$(1,m)=1$$
, 从而 $\overline{1}\in U_m$, 且对任意的 $\overline{a}\in U(m)$,
$$\overline{a}\cdot\overline{1}=\overline{a\cdot 1}=\overline{a},$$

$$\overline{1}\cdot\overline{a}=\overline{1\cdot a}=\overline{a},$$
 所以 $\overline{1}$ 为 $U(m)$ 的单位元. (4) 对任意的 $\overline{a}\in U(m)$, 有 $(a,m)=1$. 由整除的性质可知, 存在 $u,v\in\mathbb{Z}$, 使
$$au+mv=1.$$
 显然 $(u,m)=1$, 因此对任意 $t\in\mathbb{Z}$ 有 $(u+tm,m)=1$, 于是 $\overline{u}\in U(m)$. 由于
$$\overline{a}\cdot\overline{u}=\overline{au}$$

$$=\overline{au+mv} \quad \text{(因为 } m\mid mv=(au+mv)-au)$$

$$=\overline{1}.$$

(3) 因为
$$(1,m)=1$$
, 从而 $\overline{1}\in U_m$, 且对任意的 $\overline{a}\in U(m)$,
$$\overline{a}\cdot\overline{1}=\overline{a\cdot 1}=\overline{a},$$

$$\overline{1}\cdot\overline{a}=\overline{1\cdot a}=\overline{a},$$

所以 $\bar{1}$ 为 U(m) 的单位元. (4) 对任意的 $\bar{a} \in U(m)$, 有 (a,m)=1. 由整除的性质可知, 存在 $u,v\in\mathbb{Z}$, 使 au+mv=1.

显然 (u,m)=1, 因此对任意 $t\in\mathbb{Z}$ 有 (u+tm,m)=1, 于是 $\bar{u}\in U(m)$. 由于

$$\bar{a} \cdot \bar{u} = \overline{au}$$

$$= \overline{au + mv} \quad \text{(因为 } m \mid mv = (au + mv) - au)$$

$$= \bar{1}.$$

类似可得 $\bar{u} \cdot \bar{a} = \bar{u}\bar{a} = \bar{a}\bar{u} = \bar{1}$. 所以 \bar{u} 为 \bar{a} 的逆元. 从而知, U(m) 的每个元素在 U(m) 中都可逆.

一般线性群和对称群

注 14.1

群 $(U(m),\cdot)$ 也称为 $\mathbb Z$ 的模 m 单位群, 显然这是一个交换群. 当 p 为素数时, U(p) 常记作 $\mathbb Z_p^*$. 易知 $\mathbb Z_p^*=\{\overline{1},\overline{2},\cdots,\overline{p-1}\}$.

一般线性群和对称群

注 14.1

群 $(U(m),\cdot)$ 也称为 $\mathbb Z$ 的模 m 单位群, 显然这是一个交换群. 当 p 为素数时, U(p) 常记作 $\mathbb Z_p^*$. 易知 $\mathbb Z_p^*=\{\overline{1},\overline{2},\cdots,\overline{p-1}\}$.

例 15 (一般线性群)

全体 n 阶可逆方阵的集合 $\mathrm{GL}_n(\mathbb{R})$ 关于矩阵的乘法运算构成群,群 $\mathrm{GL}_n(\mathbb{R})$ 中的单位元是单位矩阵 E_n , $A\in\mathrm{GL}_n(\mathbb{R})$ 的逆元是 A 的逆矩阵 A^{-1} . 当 n>1 时 $\mathrm{GL}_n(\mathbb{R})$ 不是一个阿贝尔群.

一般线性群和对称群

注 14.1

群 $(U(m),\cdot)$ 也称为 $\mathbb Z$ 的模 m 单位群, 显然这是一个交换群. 当 p 为素数时, U(p) 常记作 $\mathbb Z_p^*$. 易知 $\mathbb Z_p^*=\{\overline{1},\overline{2},\cdots,\overline{p-1}\}$.

例 15 (一般线性群)

全体 n 阶可逆方阵的集合 $\mathrm{GL}_n(\mathbb{R})$ 关于矩阵的乘法运算构成群, 群 $\mathrm{GL}_n(\mathbb{R})$ 中的单位元是单位矩阵 E_n , $A\in\mathrm{GL}_n(\mathbb{R})$ 的逆元是 A 的逆矩阵 A^{-1} . 当 n>1 时 $\mathrm{GL}_n(\mathbb{R})$ 不是一个阿贝尔群.

例 16 (对称群)

设 A 为非空集合. A到自身的一个一一映射称为A 的一个置换 (permutation). 记 A 的所有置换构成的集合为 S(A), 则 S(A) 在映射 的复合作为乘法运算下是群, 其单位元为恒等映射, 我们称 S(A) 为 A 的对称群 (symmetric group) 或置换群 (permutation group). 特别地, 设 $A=\{1,2,\ldots,n\}$, 记 $S_n=S(A)$, 则 S_n 为 $\{1,\ldots,n\}$ 所有置换构成的集合. 容易验证 S_2 为阿贝尔群, S_n $(n\geqslant 3)$ 不是阿贝尔群.

群的性质

定理 17

设 G 为群,则有

- (1) 群 G 的单位元是唯一的;
- (2) 群 G 的每个元素的逆元是唯一的:
- (3) 对任意的 $a \in G$, 有 $(a^{-1})^{-1} = a$;
- (4) 对任意的 $a, b \in G$, 有 $(ab)^{-1} = b^{-1}a^{-1}$;
- (5) 在群中消去律成立, 即设 $a,b,c \in G$, 如果 ab=ac, 或 ba=ca, 则 b=c.

(1) 如果 e_1, e_2 都是 G 的单位元, 则

$$e_1e_2 = e_2$$
, (因为 e_1 是 G 的单位元)
 $e_1e_2 = e_1$, (因为 e_2 是 G 的单位元)

(1) 如果 e_1, e_2 都是 G 的单位元, 则

$$e_1e_2 = e_2$$
, (因为 e_1 是 G 的单位元)
 $e_1e_2 = e_1$, (因为 e_2 是 G 的单位元)

因此,

$$e_2 = e_1 e_2 = e_1,$$

所以单位元是唯一的.

(1) 如果 e_1, e_2 都是 G 的单位元, 则

$$e_1e_2 = e_2$$
, (因为 e_1 是 G 的单位元)
 $e_1e_2 = e_1$, (因为 e_2 是 G 的单位元)

因此,

$$e_2 = e_1 e_2 = e_1,$$

所以单位元是唯一的. (2) 设 b, c 都是 $a \in G$ 的逆元, 则 ab = ba = e, ac = ca = e

(1) 如果 e_1, e_2 都是 G 的单位元, 则

$$e_1e_2 = e_2$$
, (因为 e_1 是 G 的单位元)
 $e_1e_2 = e_1$, (因为 e_2 是 G 的单位元)

因此,

$$e_2 = e_1 e_2 = e_1,$$

所以单位元是唯一的. (2) 设 b, c 都是 $a \in G$ 的逆元, 则 ab = ba = e, ac = ca = e

于是

$$c = ce = c(ab) = (ca)b = eb = b,$$

所以 a 的逆元是唯一的.

(1) 如果 e_1, e_2 都是 G 的单位元, 则

$$e_1e_2 = e_2$$
, (因为 e_1 是 G 的单位元)
 $e_1e_2 = e_1$, (因为 e_2 是 G 的单位元)

因此,

$$e_2 = e_1 e_2 = e_1,$$

所以单位元是唯一的. (2) 设 b, c 都是 $a \in G$ 的逆元, 则 ab = ba = e, ac = ca = e

于是

$$c = ce = c(ab) = (ca)b = eb = b,$$

所以 a 的逆元是唯一的. (3) 因为 a^{-1} 是 a 的逆元, 所以 $a^{-1}a = aa^{-1} = e$. 从而由逆元的定义知, a 是 a^{-1} 的逆元.

(1) 如果 e_1, e_2 都是 G 的单位元, 则

$$e_1e_2 = e_2$$
, (因为 e_1 是 G 的单位元)
 $e_1e_2 = e_1$, (因为 e_2 是 G 的单位元)

因此,

$$e_2 = e_1 e_2 = e_1,$$

所以单位元是唯一的. (2) 设 b, c 都是 $a \in G$ 的逆元, 则 ab = ba = e. ac = ca = e

于是

$$c = ce = c(ab) = (ca)b = eb = b,$$

所以 a 的逆元是唯一的. (3) 因为 a^{-1} 是 a 的逆元, 所以 $a^{-1}a = aa^{-1} = e$. 从而由逆元的定义知, a 是 a^{-1} 的逆元. 又由 逆元的唯一性得

$$(a^{-1})^{-1} = a.$$

(4) 直接计算可得

$$(ab) (b^{-1}a^{-1}) = a (bb^{-1}) a^{-1} = aea^{-1} = aa^{-1} = e$$

(4) 直接计算可得

$$(ab) (b^{-1}a^{-1}) = a (bb^{-1}) a^{-1} = aea^{-1} = aa^{-1} = e$$

及

$$(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b = b^{-1}eb = b^{-1}b = e,$$

(4) 直接计算可得

$$(ab) (b^{-1}a^{-1}) = a (bb^{-1}) a^{-1} = aea^{-1} = aa^{-1} = e$$

及

$$\left(b^{-1}a^{-1}\right)(ab) = b^{-1}\left(a^{-1}a\right)b = b^{-1}eb = b^{-1}b = e,$$

从而由逆元的唯一性得

$$(ab)^{-1} = b^{-1}a^{-1}.$$

(4) 直接计算可得

$$(ab) (b^{-1}a^{-1}) = a (bb^{-1}) a^{-1} = aea^{-1} = aa^{-1} = e$$

及

$$\left(b^{-1}a^{-1}\right)(ab) = b^{-1}\left(a^{-1}a\right)b = b^{-1}eb = b^{-1}b = e,$$

从而由逆元的唯一性得

$$(ab)^{-1} = b^{-1}a^{-1}$$
.

(5) 如果 ab = ac, 由于 a 的逆存在, 则两边同时乘以 a^{-1} 立即可得 b = c. 同理可证另一消去律.

群的判定

定理 18

设 G 是一个具有代数运算的非空集合, 则 G 关于所给的运算构成群的充分必要条件是

- (1) G 的运算满足结合律;
- (2) G 中有一个元素 e (称为 G 的左单位元), 使得对任意的 $a \in G$, 有 ea = a;
- (3) 对 G 的每一个元素 a, 存在 $a' \in G$ (称为 a 的左逆元) 使得 a'a = e. 这里 $e \not\in G$ 的左单位元.

必要性. 由群的定义, 这是显然的.

必要性. 由群的定义, 这是显然的.

充分性.

必要性. 由群的定义, 这是显然的.

充分性. 只需证: $e \in G$ 的单位元, $a' \in A$ 的逆元即可.

必要性. 由群的定义, 这是显然的.

充分性. 只需证: $e \in G$ 的单位元, $a' \in A$ 的逆元即可. 对任意 $a \in G$, 由 (3) 知, 存在 $a' \in G$, 使得

$$a'a = e$$
.

右边同乘 e 有

$$a'ae = ee = e = a'a.$$

必要性. 由群的定义, 这是显然的.

充分性. 只需证: e 是 G 的单位元, a' 是 a 的逆元即可. 对任意 $a \in G$, 由 (3) 知, 存在 $a' \in G$, 使得

$$a'a = e$$
.

右边同乘 e 有

$$a'ae = ee = e'a$$
.

左边同乘 a' 的左逆 a'' 有

$$a''a'ae = a''a'a \Rightarrow eae = ea \Rightarrow ae = a,$$

即 e 也是右单位元.

必要性. 由群的定义, 这是显然的.

充分性. 只需证: e 是 G 的单位元, a' 是 a 的逆元即可. 对任意 $a \in G$, 由 (3) 知, 存在 $a' \in G$, 使得

$$a'a = e$$
.

右边同乘 e 有

$$a'ae = ee = e'a$$
.

左边同乘 a' 的左逆 a'' 有

$$a''a'ae = a''a'a \Rightarrow eae = ea \Rightarrow ae = a,$$

即 e 也是右单位元.

现证明左逆也是右逆.

必要性. 由群的定义, 这是显然的.

充分性. 只需证: e 是 G 的单位元, a' 是 a 的逆元即可. 对任意 $a \in G$, 由 (3) 知, 存在 $a' \in G$, 使得

$$a'a = e$$
.

右边同乘 e 有

$$a'ae = ee = e'a$$
.

左边同乘 a' 的左逆 a'' 有

$$a''a'ae = a''a'a \Rightarrow eae = ea \Rightarrow ae = a,$$

即 e 也是右单位元.

现证明左逆也是右逆. 注意到

$$a'(aa') = (a'a) a' = ea' = a' = a'e,$$

必要性. 由群的定义, 这是显然的.

充分性. 只需证: $e \in G$ 的单位元, $a' \in A$ 的逆元即可. 对任意 $a \in G$, 由 (3) 知, 存在 $a' \in G$, 使得

$$a'a = e$$
.

右边同乘 e 有

$$a'ae = ee = e'a$$
.

左边同乘 a' 的左逆 a'' 有

$$a''a'ae = a''a'a \Rightarrow eae = ea \Rightarrow ae = a,$$

即 e 也是右单位元.

现证明左逆也是右逆. 注意到

$$a'(aa') = (a'a) a' = ea' = a' = a'e,$$

左边同乘 a' 的左逆 a'' 有

$$e(aa') = ee \Rightarrow (aa') = e.$$

必要性. 由群的定义, 这是显然的.

充分性. 只需证: $e \in G$ 的单位元, $a' \in A$ 的逆元即可. 对任意 $a \in G$, 由 (3) 知, 存在 $a' \in G$, 使得

$$a'a = e$$
.

右边同乘 e 有

$$a'ae = ee = e'a$$
.

左边同乘 a' 的左逆 a'' 有

$$a''a'ae = a''a'a \Rightarrow eae = ea \Rightarrow ae = a,$$

即 e 也是右单位元.

现证明左逆也是右逆. 注意到

$$a'(aa') = (a'a) a' = ea' = a' = a'e,$$

左边同乘 a' 的左逆 a'' 有

$$e(aa') = ee \Rightarrow (aa') = e.$$

进而再由条件(1)知G为群.

定理 19

设 G 是一个具有乘法运算的非空有限集合, 如果 G 满足结合律且对两个消去律成立, 则 G 构成群.

定理 19

设 G 是一个具有乘法运算的非空有限集合, 如果 G 满足结合律且对两个消去律成立, 则 G 构成群.

证明: 不妨设集合 $G = \{a_1, a_2, \dots, a_n\}$. 对任意 $b \in G$, 如果 $ba_i = ba_j$, 则由左消去律得 $a_i = a_j$, 于是 i = j.

定理 19

设 G 是一个具有乘法运算的非空有限集合, 如果 G 满足结合律且对两个消去律成立, 则 G 构成群.

证明: 不妨设集合 $G = \{a_1, a_2, \cdots, a_n\}$. 对任意 $b \in G$, 如果 $ba_i = ba_j$, 则由左消去律得 $a_i = a_j$, 于是 i = j. 这说明, ba_1, ba_2, \cdots, ba_n 是 G 中 n 个互不相同的元素. 同理 a_1b, a_2b, \cdots, a_nb 也是 G 中 n 个互不相同的元素.

定理 19

设 G 是一个具有乘法运算的非空有限集合, 如果 G 满足结合律且对两个消去律成立, 则 G 构成群.

证明: 不妨设集合 $G = \{a_1, a_2, \cdots, a_n\}$. 对任意 $b \in G$, 如果 $ba_i = ba_j$, 则由左消去律得 $a_i = a_j$, 于是 i = j. 这说明, ba_1, ba_2, \cdots, ba_n 是 G 中 n 个互不相同的元素. 同理 a_1b, a_2b, \cdots, a_nb 也是 G 中 n 个互不相同的元素. 因为 |G| = n, 所以

$$\{a_1b, a_2b, \cdots, a_nb\} = G = \{ba_1, ba_2, \cdots, ba_n\}.$$

定理 19

设 G 是一个具有乘法运算的非空有限集合, 如果 G 满足结合律且对两个消去律成立, 则 G 构成群.

证明: 不妨设集合 $G=\{a_1,a_2,\cdots,a_n\}$. 对任意 $b\in G$, 如果 $ba_i=ba_j$, 则由左消去律得 $a_i=a_j$, 于是 i=j. 这说明, ba_1,ba_2,\cdots,ba_n 是 G 中 n 个互不相同的元素. 同理 a_1b,a_2b,\cdots,a_nb 也是 G 中 n 个互不相同的元素. 因为 |G|=n, 所以

$$\{a_1b, a_2b, \cdots, a_nb\} = G = \{ba_1, ba_2, \cdots, ba_n\}.$$

由于 $b \in G$, 因此必存在 $a_i \in G$ 使得 $a_i b = b$. 对任意 $a \in G$, 则 必存在 $a_j \in G$ 使得 $ba_j = a$.

定理 19

设 G 是一个具有乘法运算的非空有限集合, 如果 G 满足结合律且对两个消去律成立, 则 G 构成群.

证明: 不妨设集合 $G=\{a_1,a_2,\cdots,a_n\}$. 对任意 $b\in G$, 如果 $ba_i=ba_j$, 则由左消去律得 $a_i=a_j$, 于是 i=j. 这说明, ba_1,ba_2,\cdots,ba_n 是 G 中 n 个互不相同的元素. 同理 a_1b,a_2b,\cdots,a_nb 也是 G 中 n 个互不相同的元素. 因为 |G|=n, 所以

$$\{a_1b, a_2b, \cdots, a_nb\} = G = \{ba_1, ba_2, \cdots, ba_n\}.$$

由于 $b \in G$, 因此必存在 $a_i \in G$ 使得 $a_i b = b$. 对任意 $a \in G$, 则必存在 $a_j \in G$ 使得 $ba_j = a$. 于是

 $a_i a = a_i b a_j = (a_i b) a_j = b a_j = a$, 因此 a_i 为 G 的左单位元.

定理 19

设 G 是一个具有乘法运算的非空有限集合, 如果 G 满足结合律且对两个消去律成立, 则 G 构成群.

证明: 不妨设集合 $G=\{a_1,a_2,\cdots,a_n\}$. 对任意 $b\in G$, 如果 $ba_i=ba_j$, 则由左消去律得 $a_i=a_j$, 于是 i=j. 这说明, ba_1,ba_2,\cdots,ba_n 是 G 中 n 个互不相同的元素. 同理 a_1b,a_2b,\cdots,a_nb 也是 G 中 n 个互不相同的元素. 因为 |G|=n, 所以

$$\{a_1b, a_2b, \cdots, a_nb\} = G = \{ba_1, ba_2, \cdots, ba_n\}.$$

由于 $b \in G$, 因此必存在 $a_i \in G$ 使得 $a_i b = b$. 对任意 $a \in G$, 则必存在 $a_j \in G$ 使得 $ba_j = a$. 于是

 $a_i a = a_i b a_j = (a_i b) a_j = b a_j = a$, 因此 a_i 为 G 的左单位元. 进一步, 对任意 $a \in G$, 注意到 $\{a_1 a, a_2 a, \dots, a_n a\} = G$, 从而存在 $a_i \in G$ 使得 $a_i a = a_i$, 即 a 有左逆元.

定理 19

设 G 是一个具有乘法运算的非空有限集合, 如果 G 满足结合律且对两个消去律成立, 则 G 构成群.

证明: 不妨设集合 $G=\{a_1,a_2,\cdots,a_n\}$. 对任意 $b\in G$, 如果 $ba_i=ba_j$, 则由左消去律得 $a_i=a_j$, 于是 i=j. 这说明, ba_1,ba_2,\cdots,ba_n 是 G 中 n 个互不相同的元素. 同理 a_1b,a_2b,\cdots,a_nb 也是 G 中 n 个互不相同的元素. 因为 |G|=n, 所以

$$\{a_1b, a_2b, \cdots, a_nb\} = G = \{ba_1, ba_2, \cdots, ba_n\}.$$

由于 $b \in G$, 因此必存在 $a_i \in G$ 使得 $a_i b = b$. 对任意 $a \in G$, 则必存在 $a_j \in G$ 使得 $ba_j = a$. 于是

 $a_ia = a_iba_j = (a_ib)a_j = ba_j = a$, 因此 a_i 为 G 的左单位元. 进一步, 对任意 $a \in G$, 注意到 $\{a_1a, a_2a, \cdots, a_na\} = G$, 从而存在 $a_l \in G$ 使得 $a_la = a_i$, 即 a 有左逆元. 于是由定理 18 知 G 为群.

§2.2 子群和生成元集

- 子群的定义
- 子群的性质
- 子群的条件
- 子群的判定
- 子群的交
- 生成元集
- 生成子群的特征

§2.1 群的定义和性质

- 群的定义
- 群的例子
- 群的性质
- 群的判定

子群的定义

定义 20 (子群的定义)

设 G 是一个群, H 是 G 的一个非空子集. 如果 H 关于 G 的运算也构成群, 则称 H 为 G 的一个子群, 记作 H < G.

子群的定义

定义 20 (子群的定义)

设 G 是一个群, H 是 G 的一个非空子集. 如果 H 关于 G 的运算也构成群, 则称 H 为 G 的一个子群, 记作 H < G.

注 20.1

- (1) 对任意群 G, G 本身以及只含单位元 e 的子集 $H = \{e\}$ 是 G 的子群;
- (2) $H = \{e\}$ 和 G 称为 G 的平凡子群 (trivial subgroup), 群 G 的其它子群称为 G 的非平凡子群 (nontrivial subgroup);
- (2) 群 G 的不等于它自身的子群称为 G 的真子群 (proper subgroup).

例 21

设 m 是一个整数, 令

$$H = \{ mz \mid z \in \mathbb{Z} \},\$$

则 H 为整数加群 $\mathbb Z$ 的子群. 这个群称为由 m 所生成的子群, 常记作 $m\mathbb Z$ 或 $\langle m \rangle$.

设 m 是一个整数, 令

$$H = \{ mz \mid z \in \mathbb{Z} \},\$$

则 H 为整数加群 $\mathbb Z$ 的子群. 这个群称为由 m 所生成的子群, 常记作 $m\mathbb Z$ 或 $\langle m \rangle$.

证明: (1) 因为 $0 = m \times 0 \in H$, 所以 H 非空.

- (2) 对任意的 $mx, my \in H$, 有 $mx + my = m(x + y) \in H$, 所以 H 关于 \mathbb{Z} 的运算封闭.
- (3) 因为结合律对 \mathbb{Z} 成立, 所以对 H 也成立.
- (4) 因为 $0 \in H$ 且对任意的 $mx \in H$, 0 + mx = mx + 0 = mx, 所以 0 为 H 的零元.
- (5) 对 $mx \in H$, 有 $-mx = m(-x) \in H$, 且 (-mx) + mx = mx + (-mx) = 0, 所以 -mx 为 mx 的负元.

从而由子群的定义知, H < G.

例 22

在 \mathbb{Z} 关于模 m 的剩余类加群 \mathbb{Z}_m 中, 令 $H=\{mz\mid z\in\mathbb{Z}\}$, 则 H 是 \mathbb{Z}_m 的平凡子群.

例 22

在 \mathbb{Z} 关于模 m 的剩余类加群 \mathbb{Z}_m 中, 令 $H=\{mz\mid z\in\mathbb{Z}\}$, 则 H 是 \mathbb{Z}_m 的平凡子群.

例 23

令 \mathbb{R}^n 为实数域 \mathbb{R} 上全体 n 维向量的集合关于向量的加法运算构成的群. 设 $A\in \mathrm{M}_n(\mathbb{R})$, 令

$$H = \{ X \in \mathbb{R}^n \mid AX = 0 \},$$

则 H 为 \mathbb{R}^n 的子群.

问题

- (1) 在上面两个例中, 注意到 H 作为子群有单位元, 而 \mathbb{Z}_m 和 \mathbb{R}^n 也有单位元.
- (2) H 中的元素 a 在 H 中有逆元, 而 a 又是 \mathbb{Z}_m 和 \mathbb{R}^n 的元素, 它在 \mathbb{Z}_m 和 \mathbb{R}^n 中也有逆元.

问题

- (1) 在上面两个例中, 注意到 H 作为子群有单位元, 而 \mathbb{Z}_m 和 \mathbb{R}^n 也有单位元.
- (2) H 中的元素 a 在 H 中有逆元, 而 a 又是 \mathbb{Z}_m 和 \mathbb{R}^n 的元素, 它在 \mathbb{Z}_m 和 \mathbb{R}^n 中也有逆元.

问: 子群的单位元以及逆元与 \mathbb{Z}_m 和 \mathbb{R}^n 的单位元以及逆元之间有何关系?

子群的性质

定理 24

设G为群H是G的子群M则

- (1) 群 G 的单位元 e 是 H 的单位元;
- (2) 对任意的 $a \in H$, a 在 G 中的逆元 a^{-1} 就是 a 在 H 中的逆元.

子群的性质

定理 24

设G为群,H是G的子群,则

- (1) 群 G 的单位元 e 是 H 的单位元;
- (2) 对任意的 $a \in H$, a 在 G 中的逆元 a^{-1} 就是 a 在 H 中的逆元.

证明: (1) 以 e' 表示 H 的单位元, e' 当然也是 G 的元素, 则

$$e'e' = e' = e'e,$$

由定理 17 知群 G 有消去律, 于是 e'=e.

(2) 以 a' 表示 a 在 H 中的逆元, 则

$$aa' = e' = e = aa^{-1}$$
.

同样由 G 的消去律得 $a' = a^{-1}$.

注 24.1 (子群判定条件)

由于群 G 的运算满足结合律, 所以结合律在 G 的任何关于 G 的运算封闭的非空子集 H 上都成立. 于是, 由群的定义知, 如果群 G 的非空子集 H 满足下列三个条件:

注 24.1 (子群判定条件)

由于群 G 的运算满足结合律, 所以结合律在 G 的任何关于 G 的运算封闭的非空子集 H 上都成立. 于是, 由群的定义知, 如果群 G 的非空子集 H 满足下列三个条件:

(1) H 在群 G 的运算下封闭;

注 24.1 (子群判定条件)

由于群 G 的运算满足结合律, 所以结合律在 G 的任何关于 G 的运算封闭的非空子集 H 上都成立. 于是, 由群的定义知, 如果群 G 的非空子集 H 满足下列三个条件:

- (1) H 在群 G 的运算下封闭;
- (2) H 包含 G 的单位元;

注 24.1 (子群判定条件)

由于群 G 的运算满足结合律, 所以结合律在 G 的任何关于 G 的运算封闭的非空子集 H 上都成立. 于是, 由群的定义知, 如果群 G 的非空子集 H 满足下列三个条件:

- (1) H 在群 G 的运算下封闭;
- (2) H 包含 G 的单位元;
- (3) H 包含它的每个元素的逆元,

注 24.1 (子群判定条件)

由于群 G 的运算满足结合律, 所以结合律在 G 的任何关于 G 的运算封闭的非空子集 H 上都成立. 于是, 由群的定义知, 如果群 G 的非空子集 H 满足下列三个条件:

- (1) H 在群 G 的运算下封闭;
- (2) H 包含 G 的单位元;
- (3) H 包含它的每个元素的逆元,

则 H < G.

定理 25

设 G 为群, H 是群 G 的非空子集, 则 H 成为群 G 的子群的充分必要条件是:

- (1) 对任意 $a, b \in H$, 有 $ab \in H$;
- (2) 对任意 $a \in H$, 有 $a^{-1} \in H$.

定理 25

设 G 为群, H 是群 G 的非空子集, 则 H 成为群 G 的子群的充分必要条件是:

- (1) 对任意 $a, b \in H$, 有 $ab \in H$;
- (2) 对任意 $a \in H$, 有 $a^{-1} \in H$.

证明: 必要性. 如果 H < G, 则条件 (1) 自然成立. 又由定理 24 知, 条件 (2) 也成立.

充分性. 由条件 (1) 知, G 的乘法是 H 的代数运算. 乘法结合律对 G 的所有元素都成立, 自然对 H 的元素也成立. 由条件 (1) 知 H 关于 G 的运算封闭. 对任意的 $a \in H$, 由条件 (2) 知 $a^{-1} \in H$, 再由条件 (1) 得 $e = a^{-1}a \in H$. 由条件 (2) 知对任意 $a \in H$ 有 $a^{-1} \in H$. 则由注 24.1 立即可得 H < G.

定理 26 (子群判定定理)

设 G 为群, H 是群 G 的非空子集, 则 H 成为 G 的子群的充分 必要条件是对任意的 $a,b \in H$, 有 $ab^{-1} \in H$.

定理 26 (子群判定定理)

设 G 为群, H 是群 G 的非空子集, 则 H 成为 G 的子群的充分 必要条件是对任意的 $a,b\in H$, 有 $ab^{-1}\in H$.

证明: 必要性. 设 H 是 G 的子群, 则对任意的 $b \in H$, 有 $b^{-1} \in H$. 又对任意的 $a \in H$, 因 H 关于 G 的运算封闭, 所以 $ab^{-1} \in H$.

充分性. 由于 H 非空, 任取 $a \in H$. 则可得 $aa^{-1} = e \in H$. 注意 到 H 包含 e, a, 则有 $ea^{-1} = a^{-1} \in H$. 最后, 对任意 $a, b \in H$, 已证 $a^{-1}, b^{-1} \in H$, 于是可得 $ab = a(b^{-1})^{-1} \in H$. 由定理 25 可得 H 是 G 的子群.

有限群的子群判定

定理 27

设 G 为一有限群, H 是群 G 的非空子集, 则 H 成为 G 的子群 的充分必要条件是对任意的 $a,b \in H$, 有 $ab \in H$.

有限群的子群判定

定理 27

设 G 为一有限群, H 是群 G 的非空子集, 则 H 成为 G 的子群 的充分必要条件是对任意的 $a,b \in H$, 有 $ab \in H$.

证明: 必要性显然.

充分性. 根据定理 25, 只需证明对任意 $a \in H$ 有 $a^{-1} \in H$ 即可. 如果 $a = e \in H$, 则显然 $a^{-1} = e \in H$. 如果 $e \neq a \in H$, 则元素 a, a^2, a^3, \cdots 都应在 H 中. 由于 G 有限, 故 H 有限, 因此必存在 $1 \leq i < j$ 使得 $a^i = a^j$, 从而 $e = a^{j-i} = a \cdot a^{j-i-1}$ (其中 j-i > 1, 否则 a = e), 于是 $a^{j-i-1} = a^{-1} \in H$.

例 28

 $\mathrm{GL}_n(\mathbb{R})$ 表示所有 n 阶可逆实矩阵关于矩阵的乘法构成的群. 记 $\mathrm{SL}_n(\mathbb{R})=\{A\in\mathrm{M}_n(\mathbb{R})\mid \det(A)=1\}\,,$

则 $\mathrm{SL}_n(\mathbb{R})$ 是 $\mathrm{GL}_n(\mathbb{R})$ 的子群. $\mathrm{SL}_n(\mathbb{R})$ 称为特殊线性群 (special linear group).

 $\mathrm{GL}_n(\mathbb{R})$ 表示所有 n 阶可逆实矩阵关于矩阵的乘法构成的群. 记 $\mathrm{SL}_n(\mathbb{R}) = \{A \in \mathrm{M}_n(\mathbb{R}) \mid \det(A) = 1\}$,

则 $\mathrm{SL}_n(\mathbb{R})$ 是 $\mathrm{GL}_n(\mathbb{R})$ 的子群. $\mathrm{SL}_n(\mathbb{R})$ 称为特殊线性群 (special linear group).

- 证明: (1) 显然, 对单位方阵 $E_n \in \mathrm{M}_n(\mathbb{R})$, 有 $\det(E_n) = 1$, 故 $E_n \in \mathrm{SL}_n(\mathbb{R})$. 且对每个 $A \in \mathrm{SL}_n(\mathbb{R})$, 由于 $\det(A) = 1$, 故 A 可逆, 从而 $A \in \mathrm{GL}_n(\mathbb{R})$, 所以 $\mathrm{SL}_n(\mathbb{R})$ 是 $\mathrm{GL}_n(\mathbb{R})$ 的非空子集.
- (2) 对任意的 $A, B \in \mathrm{SL}_n(\mathbb{R}), \det(A) = \det(B) = 1$, 于是 B 可逆, $AB^{-1} \in M_n(\mathbb{R})$. 且

$$\det(AB^{-1}) = \det(A) \cdot \det(B)^{-1} = 1 \cdot 1^{-1} = 1,$$

所以 $AB^{-1} \in \mathrm{SL}_n(\mathbb{R})$.

从而由定理 26 可知 $\mathrm{SL}_n(\mathbb{R})$ 是 $\mathrm{GL}_n(\mathbb{R})$ 的子群.

练习

例 29

设乘群 $G=\mathbb{Z}_7^*$, 令 $H=\{1,2,4\}\subseteq G$, 则 H 是 \mathbb{Z}_7^* 的子群.

子群的交

定理 30

群 G 的任意两个子群的交集还是 G 的子群.

子群的交

定理 30

群 G 的任意两个子群的交集还是 G 的子群.

证明: 设 H_1, H_2 是群 G 的两个子群.

定理 30

群 G 的任意两个子群的交集还是 G 的子群.

证明: 设 H_1, H_2 是群 G 的两个子群.

(1) 因 G 的单位元 $e \in H_1 \cap H_2$, 所以 $H_1 \cap H_2$ 是 G 的非空子集.

定理 30

群 G 的任意两个子群的交集还是 G 的子群.

证明: 设 H_1, H_2 是群 G 的两个子群.

- (1) 因 G 的单位元 $e \in H_1 \cap H_2$, 所以 $H_1 \cap H_2$ 是 G 的非空子集.
- (2) 对任意 $a, b \in H_1 \cap H_2$, 有 $a, b \in H_1$, $a, b \in H_2$, 而 H_1, H_2 都是 G 的子群, 所以 $ab^{-1} \in H_1$, $ab^{-1} \in H_2$.

定理 30

群 G 的任意两个子群的交集还是 G 的子群.

证明: 设 H_1, H_2 是群 G 的两个子群.

- (1) 因 G 的单位元 $e \in H_1 \cap H_2$, 所以 $H_1 \cap H_2$ 是 G 的非空子集.
- (2) 对任意 $a,b \in H_1 \cap H_2$, 有 $a,b \in H_1, a,b \in H_2$, 而 H_1,H_2 都是 G 的子群, 所以 $ab^{-1} \in H_1, ab^{-1} \in H_2$. 于是 $ab^{-1} \in H_1 \cap H_2$, 从而由定理 26 知 $H_1 \cap H_2$ 是 G 的子群.

定理 30

群 G 的任意两个子群的交集还是 G 的子群.

证明: 设 H_1, H_2 是群 G 的两个子群.

- (1) 因 G 的单位元 $e \in H_1 \cap H_2$, 所以 $H_1 \cap H_2$ 是 G 的非空子集.
- (2) 对任意 $a, b \in H_1 \cap H_2$, 有 $a, b \in H_1, a, b \in H_2$, 而 H_1, H_2 都是 G 的子群, 所以 $ab^{-1} \in H_1, ab^{-1} \in H_2$. 于是 $ab^{-1} \in H_1 \cap H_2$, 从而由定理 26 知 $H_1 \cap H_2$ 是 G 的子群.

注 30.1

群 G 的两个子群的并集不一定是 G 的子群. 例如在整数加群 \mathbb{Z} 中, 令 $H_1=\{2z\mid z\in\mathbb{Z}\},\,H_2=\{3z\mid z\in\mathbb{Z}\},\,$ 则易验证 $H_1,H_2<\mathbb{Z},$ 但是 $2+3\notin H_1\cup H_2.$

定理 31

设 S 是群 G 的一个非空子集, 令 M 表示 G 中所有包含 S 的子群所组成的集合, 即

$$M = \{ H < G \mid S \subseteq H \},\$$

令

$$K = \bigcap_{H \in M} H,$$

则 K 是 G 的子群.

生成元集

定义 32

设 S 是群 G 的一个非空子集, $M=\{H< G\mid S\subseteq H\}$, $K=\bigcap_{H\in M}H$, 称 K 为群 G 的由子集 S 所生成的子群, 简称生成子群, 记作 $\langle S\rangle$, 即

$$\langle S \rangle = \bigcap_{S \subseteq H < G} H.$$

子集 S 称为 $\langle S \rangle$ 的**生成元集**或**生成元组**. 如果 $S = \{a_1, a_2, \cdots, a_r\}$ 为有限集, 则记

$$\langle S \rangle = \langle a_1, a_2, \cdots, a_r \rangle.$$

生成子群的特征

定理 33

设 S 是群 G 的一个非空子集, 则

- (1) $\langle S \rangle$ 是 G 的包含 S 的最小子群;
- (2) $\langle S \rangle = \left\{ a_1^{l_1} a_2^{l_2} \cdots a_k^{l_k} \mid a_i \in S, l_i = \pm 1, k \in \mathbb{N} \right\}.$

生成子群的特征

定理 33

设 S 是群 G 的一个非空子集, 则

- (1) $\langle S \rangle$ 是 G 的包含 S 的最小子群;
- (2) $\langle S \rangle = \left\{ a_1^{l_1} a_2^{l_2} \cdots a_k^{l_k} \mid a_i \in S, l_i = \pm 1, k \in \mathbb{N} \right\}.$

证明: (1) 设 H 是 G 的任一子群. 如果 $S \subseteq H$, 由于 $\langle S \rangle$ 是 G 的所有包含 S 的子群的交, 所以 $\langle S \rangle \subseteq H$, 且 $S \subseteq \langle S \rangle$. 这就证明 了 (1).

生成子群的特征

定理 33

设 S 是群 G 的一个非空子集. 则

- (1) $\langle S \rangle$ 是 G 的包含 S 的最小子群;
- (2) $\langle S \rangle = \left\{ a_1^{l_1} a_2^{l_2} \cdots a_k^{l_k} \mid a_i \in S, l_i = \pm 1, k \in \mathbb{N} \right\}.$

证明: (1) 设 H 是 G 的任一子群. 如果 $S \subseteq H$, 由于 $\langle S \rangle$ 是 G 的所有包含 S 的子群的交, 所以 $\langle S \rangle \subseteq H$, 且 $S \subseteq \langle S \rangle$. 这就证明了 (1).

(2) $\langle S \rangle$ 是包含 S 的子群, 所以对任意的 $a \in S, a^{-1} \in \langle S \rangle$. 从而对任意的 $a_i \in S$ 及任意的 $l_i = \pm 1 \ (i = 1, 2, \cdots, k)$,

$$a_1^{l_1}a_2^{l_2}\cdots a_k^{l_k}\in\langle S\rangle.$$

$$T = \left\{ a_1^{l_1} a_2^{l_2} \cdots a_k^{l_k} \mid a_i \in S, l_i = \pm 1, k \in \mathbb{N} \right\},\,$$

则 $T \subseteq \langle S \rangle$.

$$T = \left\{ a_1^{l_1} a_2^{l_2} \cdots a_k^{l_k} \mid a_i \in S, l_i = \pm 1, k \in \mathbb{N} \right\},\,$$

则 $T \subseteq \langle S \rangle$. 现证, $T = \langle S \rangle$.

令

$$T = \left\{ a_1^{l_1} a_2^{l_2} \cdots a_k^{l_k} \mid a_i \in S, l_i = \pm 1, k \in \mathbb{N} \right\},\,$$

则 $T \subseteq \langle S \rangle$. 现证, $T = \langle S \rangle$. 因为形式为

$$a_1^{l_1}a_2^{l_2}\cdots a_k^{l_k}$$

的元素的乘积仍为这一形式, 所以 T 对乘法封闭. 又每个这种形式的元素的逆也是这种形式的元素, 所以 T 中每个元素的逆元仍在 T 中, 从而 T 是 G 的子群.

令

$$T = \left\{ a_1^{l_1} a_2^{l_2} \cdots a_k^{l_k} \mid a_i \in S, l_i = \pm 1, k \in \mathbb{N} \right\},\,$$

则 $T \subseteq \langle S \rangle$. 现证, $T = \langle S \rangle$. 因为形式为

$$a_1^{l_1}a_2^{l_2}\cdots a_k^{l_k}$$

的元素的乘积仍为这一形式, 所以 T 对乘法封闭. 又每个这种形式的元素的逆也是这种形式的元素, 所以 T 中每个元素的逆元仍在 T 中, 从而 T 是 G 的子群. 又因为显然有 $S\subseteq T$, 所以又得 $\langle S \rangle \subseteq T$. 于是 $\langle S \rangle = T$. 从而 (2) 得证.

循环群

例 34

当 S 只包含群 G 的一个元素 a 时, 由于

$$a^{l_1}a^{l_2}\cdots a^{l_k}=a^{\sum_{i=1}^k l_i},$$

所以

$$\langle a \rangle = \{ a^r \mid r \in \mathbb{Z} \} .$$

这种由一个元素 a 生成的子群称为由 a 生成的**循环群** (cyclic group).

循环群

例 34

当 S 只包含群 G 的一个元素 a 时, 由于 $a^{l_1}a^{l_2}\cdots a^{l_k}=a^{\sum_{i=1}^k l_i},$

所以

$$\langle a \rangle = \{ a^r \mid r \in \mathbb{Z} \} .$$

这种由一个元素 a 生成的子群称为由 a 生成的**循环群** (cyclic group).

注 34.1

若 G 为有限群,则对任意 $e \neq a \in G$ 集合 $S = \{a, a^2, a^3, \cdots\}$ 是 G 的一个循环子群. 事实上,由于 G 有限,故该集合有限,因此必存在 $1 \leq i < j$ 使得 $a^i = a^j$,从而 $e = a^{j-i} = a \cdot a^{j-i-1} \in S$ $(j-i>1), a^{-1} = a^{j-i-1} \in S$,从而 $(a^t)^{-1} = (a^{j-i-1})^t \in S$,由定理 25 可知 S 为 G 的一个子群. 循环群是公钥密码协议和对称密码理论的基础,其具体性质和结构将在本章第 6 节详细叙述.

例

例 35

若
$$S=\{a,b\}$$
 是群 G 的一个子集且 $ab=ba$, 则
$$\langle a,b\rangle=\{a^mb^n\mid m,n\in\mathbb{Z}\}\,.$$

例

例 35

若
$$S = \{a, b\}$$
 是群 G 的一个子集且 $ab = ba$, 则 $\langle a, b \rangle = \{a^m b^n \mid m, n \in \mathbb{Z}\}$.

例 36

若 $S=\{a,b\}$ 是群 G 的一个子集且 a,b 满足关系 $a^2=b^3=e$ 和 $ba=ab^2$. 试列出群 $\langle a,b\rangle$ 的所有元素.

由 $a^2 = b^3 = e$ 得

$$a^{-1} = a, \quad b^{-1} = b^2.$$

从而由定理 33 知, $\langle a,b\rangle$ 中的每个元素都是一些形如

$$a^k$$
, b^l $(k = 0, 1; l = 0, 1, 2)$

的元素的乘积. 由 $ba = ab^2$ 可得

$$b^k a = ab^{2k},$$

所以对每一个由 a^{k_i} 与 b^{l_j} 所组成的乘式, 总可以连续地应用 $ba=ab^2$, 最终将所有的因子 a^{k_i} 移至乘式的左端, 而把因子 b^{l_j} 置于乘式的右端. 所以

$$\langle a, b \rangle = \left\{ a^k b^l \mid k, l \in \mathbb{N} \cup \{0\} \right\}.$$

再应用关系 $a^2 = b^3 = e$ 得

$$\langle a, b \rangle = \left\{ e, a, b, b^2, ab, ab^2 \right\}.$$

作业

▷ Page 25: 3-9; 17; 22 (乘法表定义见 Page 11).

§2.3 陪集和陪集分解

- 群中集合的乘积
- 子群的乘积
- 子群的陪集
- 陪集的指数
- 元素的阶

§2.2 子群和生成元集

- 子群的定义
- 子群的性质
- 子群的条件
- 子群的判定
- 子群的交
- 生成元集
- 生成子群的特征

群中集合的乘积

定义 37

设 $A \subseteq B$ 是乘群 G 的两个非空子集, 称集合 $AB = \{ab \mid a \in A, b \in B\}$

为群的子集 A 与 B 的**乘积** (product). 对任意 $g \in G$, 如果 $A = \{g\}$, 则 AB 与 BA 分别简记为 gB 和 Bg.

群中集合的乘积

定义 37

设 A 与 B 是乘群 G 的两个非空子集, 称集合

$$AB = \{ab \mid a \in A, b \in B\}$$

为群的子集 $A \subseteq B$ 的乘积 (product). 对任意 $g \in G$, 如果 $A = \{g\}$, 则 $AB \subseteq BA$ 分别简记为 $gB \cap Bg$.

注 37.1

(1) 当 G 为加群时,上述记号应相应地改为

$$A + B = \{a + b \mid a \in A, b \in B\},\$$

 $g + A = \{g + a \mid a \in A\},\$

$$A + q = \{a + q \mid a \in A\},\$$

并称
$$A + B$$
 为 A 与 B 的和 (sum). 显然有

$$A + B = B + A, \quad g + A = A + g.$$

(2) 设 A, B, C 是群 G 的非空子集. 若 G 不是阿贝尔群时, 通常不能推出 AB = BA; 若有 AB = AC, 通常不能推出 B = C.

群中集合的乘积

定理 38

设 A,B,C 是群 G 的任意三个非空子集, g 是群 G 的任一元素. 则有

- (1) A(BC) = (AB)C;
- (2) eA = A, 其中 $e \in G$ 的单位元;
- (3) 如果 gA = gB 或 Ag = Bg, 则 A = B.

证明

- (1) 对任意的 $x \in A(BC)$, 存在 $a \in A, b \in B, c \in C$, 使 x = a(bc). 而 $x = a(bc) = abc = (ab)c \in (AB)C$, 于是 $A(BC) \subseteq (AB)C$. 同理可证, $(AB)C \subseteq A(BC)$. 所以 A(BC) = (AB)C.
- (2) 对任意 $a \in eA$, 存在 $a' \in A$ 使得 ea' = a. 由于 $a = ea' = a' \in A$, 因此 $eA \subseteq A$. 另一方面, 对任意 $a' \in A$ 有 $a' = ea' \in eA$. 因此 $A \subseteq eA$. 由此可得 eA = A.
- (3) 如果 gA = gB, 由 (2) 有 $A = eA = g^{-1}gA = g^{-1}gB = B$. 同理可证另一等式.

子群的乘积

定理 39

设 G 是群, H, K 是 G 的任意两个子群. 则

- (1) HH = H;
- (2) $HK < G \iff HK = KH$.

子群的乘积

定理 39

设 G 是群, H, K 是 G 的任意两个子群. 则

- (1) HH = H;
- (2) $HK < G \iff HK = KH$.

证明: (1) 如果 H 是群 G 的子群, 则对任意的 $g,h\in H$, $gh\in H$, 从而 $HH\subseteq H$. 另一方面, 由定理 38 第 (2) 条可得 $H=eH\subseteq HH$. 所以 HH=H.

子群的乘积

定理 39

设 G 是群, H, K 是 G 的任意两个子群. 则

- (1) HH = H;
- (2) $HK < G \iff HK = KH$.

证明: (1) 如果 H 是群 G 的子群, 则对任意的 $g,h \in H$, $gh \in H$, 从而 $HH \subseteq H$. 另一方面, 由定理 38 第 (2) 条可得 $H = eH \subseteq HH$. 所以 HH = H. (2) 必要性 设 HK 为 G 的子群. 对任意的 $hk \in HK$, 其中 $h \in H, k \in K$, 则有 $(hk)^{-1} \in HK$. 因而存在 $h_1 \in H$, $k_1 \in K$, 使 $h_1k_1 = (hk)^{-1}$. 从而 $hk = (h_1k_1)^{-1} = k_1^{-1}h_1^{-1} \in KH$,

所以

 $HK \subseteq KH$.

反之, 对任意的
$$kh \in KH$$
, 其中 $k \in K, h \in H$, 有
$$(kh)^{-1} = h^{-1}k^{-1} \in HK, \text{ 因此 } (h^{-1}k^{-1})^{-1} \in HK. \text{ 于是}$$

$$kh = \left(h^{-1}k^{-1}\right)^{-1} \in HK,$$

所以

$$KH \subseteq HK$$
.

这就证明了 HK = KH.

反之, 对任意的 $kh \in KH$, 其中 $k \in K, h \in H$, 有 $(kh)^{-1} = h^{-1}k^{-1} \in HK, \text{ 因此 } (h^{-1}k^{-1})^{-1} \in HK. \text{ 于是}$ $kh = \left(h^{-1}k^{-1}\right)^{-1} \in HK,$

所以

$$KH \subseteq HK$$
.

这就证明了 HK = KH. **充分性** 对任意的 $h_1k_1, h_2k_2 \in HK$, 其中 $h_i \in H, k_i \in K$ (i = 1, 2). 由于 HK = KH, 因此有 $h_1k_1 (h_2k_2)^{-1} = h_1k_1k_2^{-1}h_2^{-1} = h_1\left(k_1k_2^{-1}\right)h_2^{-1}$ $\in HKH = H(KH) = H(HK) = (HH)K = HK$.

由此知, HK 是 G 的子群.

子群的陪集

定义 40

设 G 是群, H 是 G 的子群. 对任意的 $a \in G$, 群 G 的子集 $aH = \{ah \mid h \in H\} \quad \text{与} \quad Ha = \{ha \mid h \in H\}$ 分别称为 H 在 G 中的**左陪集** (left coset) 和**右陪集** (right coset).

观察例 21, 例 22, 例 23 则易得下述性质:

- H 的一个陪集一般不是 G 的子群:
- lacksquare G 的两个不同的元素可能生成 H 的同一个左陪集.

子群的陪集

定理 41

设 H 是群 G 的子群, $a,b \in G$, 则

- (1) $aH = H \iff a \in H$;
- (2) $aH < G \iff a \in H$;
- (3) $aH = bH \iff a^{-1}b \in H$.

子群的陪集

定理 41

设 H 是群 G 的子群, $a,b \in G$, 则

- (1) $aH = H \iff a \in H$;
- (2) $aH < G \iff a \in H$;
- (3) $aH = bH \iff a^{-1}b \in H$.

证明: (1) 如果 aH = H, 则因 $a = ae \in aH$, 所以 $a \in H$.

反之, 如果 $a \in H$, 则 $aH \subseteq HH = H$. 由于 $a \in H$, 则 $a^{-1} \in H$, 类似有 $a^{-1}H \subseteq HH \subseteq H$. 于是

 $H = eH = (aa^{-1})H = a(a^{-1}H) \subseteq aH$. MU aH = H.

(2) 因为 $a \in aH$ 且 aH < G, 所以 $a^2 \in aH$, 即存在 $h \in H$ 使得 $a^2 = ah$, 由消去律得 $a = h \in H$.

另一方面, 如果 $a \in H$, 则由 (1) 得 aH = H 为子群.

(3) 如果 aH = bH, 则

$$a^{-1}bH = a^{-1}aH = eH = H,$$

从而由 (1) 知, $a^{-1}b \in H$.

反之, 如果
$$a^{-1}b \in H$$
, 则又由 (1) 得 $a^{-1}bH = H$, 于是 $aH = a\left(a^{-1}bH\right) = \left(aa^{-1}\right)bH = ebH = bH$.

陪集与等价

注 41.1

定理 41 的结论对右陪集也成立, 结论为 $Ha = Hb \Leftrightarrow ba^{-1} \in H$.

陪集与等价

注 41.1

定理 41 的结论对右陪集也成立, 结论为 $Ha = Hb \Leftrightarrow ba^{-1} \in H$.

引理 42

设 G 是群, H < G. 定义 G 上的关系为: 对于 $a,b \in G$, $\frac{a}{a} \sim b \Leftrightarrow a^{-1}b \in H$. 则 \sim 是 G 上的等价关系, 并且元素 a 对此等价关系的<mark>等价类是 aH</mark>.

注 41.1

定理 41 的结论对右陪集也成立, 结论为 $Ha = Hb \Leftrightarrow ba^{-1} \in H$.

引理 42

设 G 是群, H < G. 定义 G 上的关系为: 对于 $a,b \in G, a \sim b \Leftrightarrow a^{-1}b \in H$. 则 \sim 是 G 上的等价关系, 并且元素 a 对此等价关系的等价类是 aH.

证明: 对每个 $a \in G$, 由于 $a^{-1}a = e \in H$, 从而 $a \sim a$, 因此该关系具有反身性;

注 41.1

定理 41 的结论对右陪集也成立, 结论为 $Ha = Hb \Leftrightarrow ba^{-1} \in H$.

引理 42

设 G 是群, H < G. 定义 G 上的关系为: 对于 $a,b \in G, a \sim b \Leftrightarrow a^{-1}b \in H$. 则 \sim 是 G 上的等价关系, 并且元素 a 对此等价关系的等价类是 aH.

证明: 对每个 $a \in G$, 由于 $a^{-1}a = e \in H$, 从而 $a \sim a$, 因此该关系具有反身性;若 $a \sim b$, 则 $a^{-1}b \in H$, 由于 H 是子群, 从而 $b^{-1}a = \left(a^{-1}b\right)^{-1} \in H$, 于是 $b \sim a$, 因此该关系满足对称性;

注 41.1

定理 41 的结论对右陪集也成立, 结论为 $Ha = Hb \Leftrightarrow ba^{-1} \in H$.

引理 42

设 G 是群, H < G. 定义 G 上的关系为: 对于 $a,b \in G, a \sim b \Leftrightarrow a^{-1}b \in H$. 则 \sim 是 G 上的等价关系, 并且元素 a 对此等价关系的等价类是 aH.

证明: 对每个 $a \in G$, 由于 $a^{-1}a = e \in H$, 从而 $a \sim a$, 因此该关系具有反身性;若 $a \sim b$, 则 $a^{-1}b \in H$, 由于 H 是子群, 从而 $b^{-1}a = \left(a^{-1}b\right)^{-1} \in H$, 于是 $b \sim a$, 因此该关系满足对称性; 若 $a \sim b, b \sim c$, 则 $a^{-1}b, b^{-1}c \in H$. 因此 $a^{-1}c = \left(a^{-1}b\right)\left(b^{-1}c\right) \in H$. 于是 $a \sim c$.

注 41.1

定理 41 的结论对右陪集也成立, 结论为 $Ha = Hb \Leftrightarrow ba^{-1} \in H$.

引理 42

设 G 是群, H < G. 定义 G 上的关系为: 对于 $a,b \in G, a \sim b \Leftrightarrow a^{-1}b \in H$. 则 \sim 是 G 上的等价关系, 并且元素 a 对此等价关系的等价类是 aH.

证明: 对每个 $a \in G$, 由于 $a^{-1}a = e \in H$, 从而 $a \sim a$, 因此该关系具有反身性;若 $a \sim b$, 则 $a^{-1}b \in H$, 由于 H 是子群, 从而 $b^{-1}a = \left(a^{-1}b\right)^{-1} \in H$, 于是 $b \sim a$, 因此该关系满足对称性; 若 $a \sim b, b \sim c$, 则 $a^{-1}b, b^{-1}c \in H$. 因此 $a^{-1}c = \left(a^{-1}b\right)\left(b^{-1}c\right) \in H$. 于是 $a \sim c$.综上即得 $a \sim b$ 分 $a \sim b$ 上的等价关系.

注 41.1

定理 41 的结论对右陪集也成立, 结论为 $Ha = Hb \Leftrightarrow ba^{-1} \in H$.

引理 42

设 G 是群, H < G. 定义 G 上的关系为: 对于 $a,b \in G, a \sim b \Leftrightarrow a^{-1}b \in H$. 则 \sim 是 G 上的等价关系, 并且元素 a 对此等价关系的等价类是 aH.

证明: 对每个 $a \in G$, 由于 $a^{-1}a = e \in H$, 从而 $a \sim a$, 因此该关系具有反身性;若 $a \sim b$, 则 $a^{-1}b \in H$, 由于 H 是子群, 从而 $b^{-1}a = \left(a^{-1}b\right)^{-1} \in H$, 于是 $b \sim a$, 因此该关系满足对称性;若 $a \sim b, b \sim c$, 则 $a^{-1}b, b^{-1}c \in H$. 因此 $a^{-1}c = \left(a^{-1}b\right)\left(b^{-1}c\right) \in H$. 于是 $a \sim c$.综上即得 $a \rightarrow b \Leftrightarrow a^{-1}b = h \in H \Leftrightarrow b = ah \in aH$. 从而与 a 等价的元素全体为集合 aH.

子群的陪集

注 42.1

由引理 42 和定理 41 第 (3) 条可知若有 H < G, 则对任意 $a,b \in G$ 有 aH 与 bH <mark>或者完全相同或者无公共元素</mark>. 因此群 G 可表示成子群 H 的一些互不相交的左陪集之并. 从而群 G 的子群 H 的全体左陪集的集合组成群 G 的一种分类, 即

$$G = \bigcup_{g_i \in \mathcal{R}} g_i H,$$

其中 $\frac{g_i}{g_i}$ 取遍 H 的<mark>不同陪集的代表元</mark>的集合 R. 特别地, 如果 G 为有限群, 则

$$|G| = \sum_{i=1}^{t} |g_i H| = \sum_{i=1}^{t} |H| = t|H|,$$

其中 t 为 H 的不同左陪集的个数.

子群的陪集

定理 43

设
$$H$$
 为 G 的子群, 则
$$\phi: G/H \longrightarrow H\backslash G,$$

$$aH \longmapsto Ha^{-1},$$
 是 G/H 到 $H\backslash G$ 的——映射, 其中
$$G/H = \{gH \mid g \in G\},$$

$$H\backslash G = \{Hg \mid g \in G\}.$$

证明

单映射.

(1) 如果 aH = bH, 则由定理 41 的第 (3) 条知 $a^{-1}b \in H$, 则 $Ha^{-1} = Ha^{-1}\left(bb^{-1}\right) = H\left(a^{-1}b\right)b^{-1} = Hb^{-1}$.

这说明, ϕ 是 G/H 到 $H\backslash G$ 的映射.

- (2) 设 $aH, bH \in G/H$, 如果 $\phi(aH) = \phi(bH)$, 即 $Ha^{-1} = Hb^{-1}$, 则由注 41.1 得 $b^{-1}a \in H$, 于是 $aH = (bb^{-1})aH = b(b^{-1}aH) = bH$, 所以 ϕ 是 G/H 到 $H\backslash G$ 的
- (3) 对任意的 $Ha \in H \backslash G$, 有 $\phi\left(a^{-1}H\right) = Ha$, 所以 ϕ 是 G/H 到 $H \backslash G$ 的满映射.

陪集的指数

定义 44

设 G 是群, H 是 G 的子群. 称子群 H 在群 G 中的左陪集或右 陪集的个数 (有限或无限) 为 H 在 G 中的**指数** (index), 记作 [G:H].

陪集的指数

定义 44

设 G 是群, H 是 G 的子群. 称子群 H 在群 G 中的左陪集或右陪集的个数 (有限或无限) 为 H 在 G 中的<mark>指数</mark> (index), 记作 [G:H].

定理 45 (Lagrange 定理)

设 G 是一个有限群, H 是 G 的子群, 则 |G| = |H|[G:H].

定义 46

设 G 是一个群, e 是 G 的单位元, $a \in G$. 如果存在正整数 r, 使 $a^r = e$, 则称 a 是**有限阶元素**, 否则称 a 是**无限阶元素**. 使 $a^r = e$ 的最小正整数 r 称为元素 a 的**阶** (order), 记作 ord a = r. 如果 a 是无限阶元素, 则记作 ord $a = \infty$.

例 47

在 \mathbb{Z}_6 中, 计算每个元素的阶.

例 47

在 \mathbb{Z}_6 中, 计算每个元素的阶.

解:
$$\mathbb{Z}_6=\{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4},\overline{5}\}$$
. 因为

$$1 \cdot \overline{2} = \overline{2}, \quad 2 \cdot \overline{2} = \overline{4}, \quad 3 \cdot \overline{2} = \overline{6} = \overline{0},$$

所以 ord $\overline{2} = 3$. 类似可得

 $\operatorname{ord} \overline{0} = 1$, $\operatorname{ord} \overline{1} = 6$, $\operatorname{ord} \overline{3} = 2$, $\operatorname{ord} \overline{4} = 3$, $\operatorname{ord} \overline{5} = 6$.

例 47

在 \mathbb{Z}_6 中, 计算每个元素的阶.

解:
$$\mathbb{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$$
. 因为

$$1 \cdot \overline{2} = \overline{2}, \quad 2 \cdot \overline{2} = \overline{4}, \quad 3 \cdot \overline{2} = \overline{6} = \overline{0},$$
 所以 ord $\overline{2} = 3$. 类似可得

ord $\overline{0} = 1$, ord $\overline{1} = 6$, ord $\overline{3} = 2$, ord $\overline{4} = 3$, ord $\overline{5} = 6$.

例 48

在整数加群 Z 中, 除零元外每个元素都是无限阶的.

定理 49

设 G 为群, e 为 G 的单位元.

- (1) 对任意的 $a \in G$, 有 ord $a = \text{ord } a^{-1}$;
- (2) 设 ord a = n, 如果有 $m \in \mathbb{Z}$, 使 $a^m = e$, 则 $n \mid m$;
- (3) 设 ord a=n, 则对任意的 $m \in \mathbb{Z}$, ord $a^m = \frac{n}{(n,m)}$;
- (4) 设 ord a = n, ord b = m, 如果 ab = ba 且 gcd(n, m) = 1, 则 ord ab = mn.

定理 49

设G为群,e为G的单位元.

- (1) 对任意的 $a \in G$, 有 ord $a = \text{ord } a^{-1}$;
- (2) 设 ord a = n, 如果有 $m \in \mathbb{Z}$, 使 $a^m = e$, 则 $n \mid m$;
- (3) 设 ord a = n, 则对任意的 $m \in \mathbb{Z}$, ord $a^m = \frac{n}{(n,m)}$;
- (4) 设 ord a = n, ord b = m, 如果 ab = ba 且 gcd(n, m) = 1, 则 ord ab = mn.
- 证明: (1) 当 ord $a = \infty$ 时,显然有 ord $a^{-1} = \infty$. 设 ord a = r,易得 $e = (aa^{-1})^r = a^r(a^{-1})^r = e(a^{-1})^r = (a^{-1})^r$. 从而 ord $a^{-1} \le r$. 设 ord $a^{-1} = t$,则显然 $t \le r$. 由 $e = (aa^{-1})^t = a^t(a^{-1})^t = a^t$ 可得 r < t. 从而 r = t.
- (2) 根据元素阶的定义显然有 $m \ge n$. 因为 $n \ne 0$, 所以存在 $q, r \in \mathbb{Z}$, 使 m = qn + r, 其中 $0 \le r < n$. 则有 $a^m = a^{nq+r} \Rightarrow e = (a^n)^q a^r = ea^r \Rightarrow e = a^r$, 则 r = 0, 否则与 a的阶为 n 定义矛盾.

66 / 178

证明 (续)

(3) 设 ord
$$a^m = r$$
, 则 $a^{rm} = (a^m)^r = e$, 于是, $n \mid rm$. 从而
$$\frac{n}{(n,m)} \mid \frac{m}{(n,m)} \cdot r$$
. 因为 $\left(\frac{n}{(n,m)}, \frac{m}{(n,m)}\right) = 1$ (否则若
$$\left(\frac{n}{(n,m)}, \frac{m}{(n,m)}\right) = s > 1$$
 则 $s(m,n)$ 是 m,n 的公因子, 与 (m,n) 是最大公因子矛盾), 则有 $\frac{n}{(n,m)} \mid r$. 另一方面, 注意到
$$\left(a^m\right)^{\frac{n}{(n,m)}} = a^{\frac{mn}{(n,m)}} = (a^n)^{\frac{m}{(n,m)}} = e$$
, 于是由 (2) 可得 $r \mid \frac{n}{(n,m)}$. 综上可知 $r = \frac{n}{(n,m)}$.

证明 (续)

(4) 设
$$\operatorname{ord} ab = r$$
, 则
$$a^{rm} = a^{rm} \cdot b^{rm} \quad \text{(因为 } \operatorname{ord} b = m \text{)}$$

$$= (ab)^{rm} = e,$$
 所以 $n \mid rm$. 又因为 $\gcd(n, m) = 1$, 所以 $n \mid r$. 同理可证
$$b^{rn} = b^{rn} \cdot a^{rn} = e$$
, 从而 $m \mid r$. 由 $\gcd(n, m) = 1$, 可得存在整数 s, t 使得 $sn + tm = 1 \Rightarrow snr + tmr = r \Rightarrow mn \mid r$. 另一方面,
$$(ab)^{mn} = a^{mn} \cdot b^{mn} = e \cdot e = e.$$
 所以又有 $r \mid mn$. 综上可得 $r = mn$.

定理 50

设 G 是一个有限群, |G| = n, 则对任意的 $a \in G$, a 是有限阶的, 且 $ord a \mid |G|$, 即有限群的任何一个元素的阶都是群阶数的因子.

定理 50

设 G 是一个有限群, |G| = n, 则对任意的 $a \in G$, a 是有限阶的, 且 ord $a \mid |G|$, 即有限群的任何一个元素的阶都是群阶数的因子.

推论 51

设 G 为有限群, |G|=n, 则对任意的 $a\in G$, 有 $a^n=e$.

推论 51

设 G 为有限群, |G|=n, 则对任意的 $a\in G$, 有 $a^n=e$.

证明: 设 a 的阶为 d, 则有正整数 n_1 , 使 $n = dn_1$. 于是 $a^n = a^{dn_1} = \left(a^d\right)^{n_1} = e^{n_1} = e$.

推论 51

设 G 为有限群, |G|=n, 则对任意的 $a \in G$, 有 $a^n=e$.

证明: 设 a 的阶为 d, 则有正整数 n_1 , 使 $n = dn_1$. 于是 $a^n = a^{dn_1} = \left(a^d\right)^{n_1} = e^{n_1} = e$.

注 51.1

将推论 51 应用到例 14 中, 可以从群的角度再次证明 Euler 定理和 Fermat 小定理.

作业

 \triangleright Page 71: 2, 6, 8, 12, 13, 21.

§2.4 正规子群和商群

- ■正规子群
- 正规子群的判定
- 正规子群的性质
- 陪集的运算
- ■商群
- 商群的应用

§2.3 陪集和陪集分解

- 群中集合的乘积
- 子群的乘积
- 子群的陪集
- 陪集的指数
- 元素的阶

定义 52

设 H 是群 G 的子群, 如果对每个 $a \in G$, 都有 aH = Ha, 则称 H 是群 G 的一个正规子群 (normal subgroup) 或不变子群 (invariant subgroup), 记作 $H \triangleleft G$.

定义 52

设 H 是群 G 的子群, 如果对每个 $a \in G$, 都有 aH = Ha, 则称 H 是群 G 的一个正规子群 (normal subgroup) 或不变子群 (invariant subgroup), 记作 $H \triangleleft G$.

注 52.1

在上述定义中, 条件 aH=Ha 仅仅表示两个集合 aH 与 Ha 相等, 通常无法由 aH=Ha 推出 ah=ha 对 H 中所有的元素 h 都成立. aH=Ha 意味着对任意的 $h_1\in H$, 存在 $h_2\in H$, 使得 $ah_1=h_2a$.

定义 52

设 H 是群 G 的子群, 如果对每个 $a \in G$, 都有 aH = Ha, 则称 H 是群 G 的一个正规子群 (normal subgroup) 或不变子群 (invariant subgroup), 记作 $H \triangleleft G$.

注 52.1

在上述定义中, 条件 aH = Ha 仅仅表示两个集合 aH 与 Ha 相等, 通常无法由 aH = Ha 推出 ah = ha 对 H 中所有的元素 h 都成立. aH = Ha 意味着对任意的 $h_1 \in H$, 存在 $h_2 \in H$, 使得 $ah_1 = h_2a$.

例 53

由正规子群的定义容易知道, 群 G 的单位元群 $\{e\}$ 和群 G 本身都是 G 的正规子群. 这两个正规子群称为 G 的**平凡正规子群**. 如果群 G 只有平凡的正规子群, 且 $G \neq \{e\}$, 则称 G 为单群 (simple group).

例 54

如果 G 是交换群, 则 G 的一切子群都是 G 的正规子群.

例 54

如果 G 是交换群, 则 G 的一切子群都是 G 的正规子群.

证明: 因为

 $aH = \{ah \mid h \in H\} = \{ha \mid h \in H\} = Ha, \quad \forall a \in G,$

所以 H 是 G 的正规子群.

例 54

如果 G 是交换群, 则 G 的一切子群都是 G 的正规子群.

证明: 因为

 $aH = \{ah \mid h \in H\} = \{ha \mid h \in H\} = Ha, \quad \forall a \in G,$

所以 H 是 G 的正规子群.

例 55

设 H, K 都是 G 的子群. 如果 H 是 G 的正规子群且 $H \subseteq K$, 则 H 也是 K 的正规子群.

例 54

如果 G 是交换群, 则 G 的一切子群都是 G 的正规子群.

证明: 因为

 $aH=\{ah\mid h\in H\}=\{ha\mid h\in H\}=Ha,\quad \forall a\in G,$

所以 H 是 G 的正规子群.

例 55

设 H, K 都是 G 的子群. 如果 H 是 G 的正规子群且 $H \subseteq K$, 则 H 也是 K 的正规子群.

证明: 显然 H 是 K 的子群. 因为 H 是 G 的正规子群, 所以对任意的 $a \in G$, 有 aH = Ha. 特别地, 对任意的 $a \in K$, 由于 K < G 的子群, 所以也有 aH = Ha. 从而 H 为 K 的正规子群.

例 56

设 G 为群, H 是 G 的子群. 如果 H 在 G 中的指数 [G:H]=2, 则 H 是 G 的正规子群.

例 56

设 G 为群, H 是 G 的子群. 如果 H 在 G 中的指数 [G:H]=2, 则 H 是 G 的正规子群.

证明: 对任意 $a \in G$, 若 $a \in H$, 则 aH = H = Ha. 若 $a \notin H$, 则 由定理 41 第 (1) 条知 aH 与 H 是 G 的两个不同的陪集. 由于 [G:H] = 2, 由此 $G = H \cup aH$. 同理有 $G = H \cup Ha$.

因为 $aH \cap H = \emptyset$, 而 $aH \subseteq G = H \cup Ha$, 所以 $aH \subseteq Ha$. 同理有 $Ha \subseteq aH$, 所以 aH = Ha. 因此 $H \neq G$ 正规子群.

正规子群的判定

定理 57

设 G 是群, H 是 G 的子群, 则下列三个条件等价:

- (1) H 是 G 的正规子群;
- (2) 对任意的 $a \in G$, 有 $aHa^{-1} \subseteq H$;
- (3) 对任意的 $a \in G, h \in H$, 有 $aha^{-1} \in H$.

 $((1)\Rightarrow (2))$ 因为 $H \triangleleft G$, 所以对任意的 $a \in G$, 有 aH = Ha. 因而 $aHa^{-1} = (Ha)a^{-1} = H\left(aa^{-1}\right) = He = H \subseteq H.$

 $((1)\Rightarrow(2))$ 因为 $H\triangleleft G$, 所以对任意的 $a\in G$, 有 aH=Ha. 因而

$$aHa^{-1} = (Ha)a^{-1} = H(aa^{-1}) = He = H \subseteq H.$$

 $((2) \Rightarrow (3))$ 因为 $aHa^{-1} = H$, 所以显然有 $aHa^{-1} \subseteq H$. 于是对任意 $h \in H$, 有 $aha^{-1} \in H$.

 $((1)\Rightarrow(2))$ 因为 $H\triangleleft G$, 所以对任意的 $a\in G$, 有 aH=Ha. 因而

$$aHa^{-1} = (Ha)a^{-1} = H(aa^{-1}) = He = H \subseteq H.$$

 $((2)\Rightarrow (3))$ 因为 $aHa^{-1}=H$, 所以显然有 $aHa^{-1}\subseteq H$. 于是对任意 $h\in H$, 有 $aha^{-1}\in H$. $((3)\Rightarrow (1))$ 对任意的 $a\in G, h\in H$, 有 $aha^{-1}\in H$, 所以 $ah=ahe=ah(a^{-1}a)=(aha^{-1})~a\in Ha$,

从而 $aH \subseteq Ha$.

 $((1)\Rightarrow(2))$ 因为 $H\triangleleft G$, 所以对任意的 $a\in G$, 有 aH=Ha. 因而

$$aHa^{-1} = (Ha)a^{-1} = H(aa^{-1}) = He = H \subseteq H.$$

 $((2)\Rightarrow (3))$ 因为 $aHa^{-1}=H$, 所以显然有 $aHa^{-1}\subseteq H$. 于是对任意 $h\in H$, 有 $aha^{-1}\in H$. $((3)\Rightarrow (1))$ 对任意的 $a\in G, h\in H$, 有 $aha^{-1}\in H$, 所以

$$ah = ahe = ah(a^{-1}a) = (aha^{-1}) a \in Ha,$$

从而 $aH \subseteq Ha$. 另一方面, 对任意的 $a \in G, h \in H$, 有 $a^{-1}ha = a^{-1}h\left(a^{-1}\right)^{-1} \in H$,

于是

$$ha = eha = (aa^{-1})ha = a(a^{-1}ha) \in aH,$$

从而 $Ha \subseteq aH$. 于是 aH = Ha. 由此得 $H \triangleleft G$.

正规子群的性质

定理 58

设 G 为群, H, K 是 G 的正规子群, 则 $H \cap K \to HK$

都是 G 的正规子群.

正规子群的性质

定理 58

设 G 为群, H, K 是 G 的正规子群, 则 $H \cap K$ 与 HK

都是 G 的正规子群.

证明: (1) 由定理 30 知 $H \cap K < G$. 对任意的 $x \in G$, 有 $x(H \cap K)x^{-1} \subseteq xHx^{-1} = Hxx^{-1} \subseteq H,$ $x(H \cap K)x^{-1} \subseteq xKx^{-1} = Kxx^{-1} \subseteq K.$

于是 $x(H \cap K)x^{-1} \subseteq H \cap K$. 由定理 57 第 (2) 条可得 $H \cap K$ 是 G 的正规子群.

正规子群的性质

定理 58

设 G 为群, H, K 是 G 的正规子群, 则 $H \cap K \hookrightarrow HK$

都是 G 的正规子群.

证明: (1) 由定理 30 知 $H \cap K < G$. 对任意的 $x \in G$, 有 $x(H \cap K)x^{-1} \subseteq xHx^{-1} = Hxx^{-1} \subseteq H,$ $x(H \cap K)x^{-1} \subseteq xKx^{-1} = Kxx^{-1} \subseteq K.$

于是 $x(H \cap K)x^{-1} \subseteq H \cap K$. 由定理 57 第 (2) 条可得 $H \cap K$ 是 G 的正规子群. (2) 由于 H 与 K 都是 G 的正规子群, 因此 HK = KH, 于是由定理 39 第 (2) 条可得 HK 是 G 的子群. 对任意的 $x \in G$, 由于 H, K 都是 G 的正规子群, 则 x(HK) = (xH)K = (Hx)K = H(xK) = H(Kx) = (HK)x, 所以 HK 是 G 的正规子群.

▶ 若 H 是群 G 的正规子群,则由正规子群的定义可知 H 的 左陪集 aH 与右陪集 Ha 完全相同,因而可直接称 aH 或 Ha 为它的一个陪集.

▶ 若 H 是群 G 的正规子群,则由正规子群的定义可知 H 的 左陪集 aH 与右陪集 Ha 完全相同,因而可直接称 aH 或 Ha 为它的一个陪集.

定义 59

设 $H \triangleleft G$, 令 $G/H = \{aH \mid a \in G\}$. 对任意的 $aH, bH \in G/H$, 规定 G/H 中关于陪集的运算 "·" 为 $(aH) \cdot (bH) = (ab)H.$ (1)

引理 60

设 $H \triangleleft G$, 则 G/H 中关于陪集的运算 "·" 是 G/H 的一个代数运算.

引理 60

设 $H \triangleleft G$, 则 G/H 中关于陪集的运算 "·" 是 G/H 的一个代数运算.

证明: 只需证明 H 的任意两个陪集 aH,bH 的乘积是唯一确定的,它与陪集的代表元 a,b 的选取无关. 设 a'H=aH,b'H=bH,则 $a'H\cdot b'H=\left(a'b'\right)H=a'\left(b'H\right)=a'(bH)=a'(Hb)$ $=\left(a'H\right)b=(aH)b=a(Hb)=(ab)H,$ $=aH\cdot bH$

所以上述运算是 G/H 的一个代数运算.

定理 61

设 $H \triangleleft G$, 则 G/H 关于定义 59 规定的运算 "·"构成群.

定理 61

设 $H \triangleleft G$, 则 G/H 关于定义 59 规定的运算 "·"构成群.

证明: (1) 引理 60 已证该运算为代数运算.

定理 61

设 $H \triangleleft G$, 则 G/H 关于定义 59 规定的运算 "·"构成群.

证明: (1) 引理 60 已证该运算为代数运算. (2) 对任意的 $a,b,c\in G$, 有

$$(aH \cdot bH) \cdot cH = (ab)H \cdot cH = ((ab)c)H$$

= $(a(bc))H = aH \cdot (bc)H$
= $aH \cdot (bH \cdot cH)$, 所以结合律成立.

定理 61

设 $H \triangleleft G$, 则 G/H 关于定义 59 规定的运算 "·"构成群.

证明: (1) 引理 60 已证该运算为代数运算. (2) 对任意的 $a,b,c\in G$, 有

$$(aH \cdot bH) \cdot cH = (ab)H \cdot cH = ((ab)c)H$$

= $(a(bc))H = aH \cdot (bc)H$
= $aH \cdot (bH \cdot cH)$, 所以结合律成立.

(3) 任意 $a \in G$, 有 $eH \cdot aH = (ea)H = aH = (ae)H = aH \cdot eH$, 所以 eH(=H) 为 G/H 的单位元.

定理 61

设 $H \triangleleft G$, 则 G/H 关于定义 59 规定的运算 "·"构成群.

证明: (1) 引理 60 已证该运算为代数运算. (2) 对任意的 $a,b,c\in G$, 有

$$(aH \cdot bH) \cdot cH = (ab)H \cdot cH = ((ab)c)H$$

 $= (a(bc))H = aH \cdot (bc)H$
 $= aH \cdot (bH \cdot cH), 所以结合律成立.$

(3) 任意 $a \in G$, 有 $eH \cdot aH = (ea)H = aH = (ae)H = aH \cdot eH$, 所以 eH(=H) 为 G/H 的单位元. (4) 对任意的 $aH \in G/H$, 有 $a^{-1}H \in G/H$, 且

$$a^{-1}H \cdot aH = \left(a^{-1}a\right)H = eH = \left(aa^{-1}\right)H = aH \cdot a^{-1}H,$$
 所以 G/H 中每个元素 aH 都有逆元 $a^{-1}H$.

定义 62

设 G 为群, H 是 G 的正规子群. H 的所有陪集 G/H 关于由式 (1) 所规定的运算构成的群称为群 G 关于子群 H 的**商群** (quotient group), 仍记作 G/H.

定义 62

设 G 为群, H 是 G 的正规子群. H 的所有陪集 G/H 关于由式 (1) 所规定的运算构成的群称为群 G 关于子群 H 的**商群** (quotient group), 仍记作 G/H.

推论 63

设 $H \triangleleft G$, 则

- (1) 商群 G/H 的单位元是 eH(=H);
- (2) aH 在 G/H 中的逆元是 $a^{-1}H$.

定义 62

设 G 为群, H 是 G 的正规子群. H 的所有陪集 G/H 关于由式 (1) 所规定的运算构成的群称为群 G 关于子群 H 的**商群** (quotient group), 仍记作 G/H.

推论 63

设 $H \triangleleft G$. 则

- (1) 商群 G/H 的单位元是 eH(=H);
- (2) aH 在 G/H 中的逆元是 $a^{-1}H$.

推论 64

设 $H \triangleleft G$. 如果 G 是交换群, 则商群 G/H 也是交换群.

- 由于 H 在 G 中的指数 [G:H] 就是 H 在 G 中的陪集的个数, 所以 |G/H| = [G:H].
- 特别地, 当 G 是有限群时,

$$|G/H| = [G:H] = \frac{|G|}{|H|}.$$

- 由于 H 在 G 中的指数 [G:H] 就是 H 在 G 中的陪集的个数, 所以 |G/H| = [G:H].
- 特别地, 当 G 是有限群时,

$$|G/H| = [G:H] = \frac{|G|}{|H|}.$$

推论 65

有限群 G 的商群的阶是群 G 的阶数的因子.

例 66

设 \mathbb{Q}^* 是所有非零有理数构成的乘法群, $H=\{1,-1\}$, 则 $H \triangleleft \mathbb{Q}^*$. 对任意的 $a \in \mathbb{Q}^*$, 有 $aH=\{a,-a\}$, 所以 $\mathbb{Q}^*/H=\{aH \mid a>0, a\in \mathbb{Q}\}.$

显然, \mathbb{Q}^*/H 是无限群.

例 66

设 \mathbb{Q}^* 是所有非零有理数构成的乘法群, $H = \{1, -1\}$, 则 $H \triangleleft \mathbb{Q}^*$. 对任意的 $a \in \mathbb{Q}^*$, 有 $aH = \{a, -a\}$, 所以 $\mathbb{Q}^*/H = \{aH \mid a > 0, a \in \mathbb{Q}\}$.

显然, \mathbb{Q}^*/H 是无限群.

例 67

设
$$G=\mathbb{Z}_{18}, H=\langle \overline{6} \rangle$$
, 则
$$G/H=\{\overline{0}+H,\overline{1}+H,\overline{2}+H,\overline{3}+H,\overline{4}+H,\overline{5}+H\}=\langle \overline{1}+H \rangle.$$
 由于这是一个阶为 6 的循环群.

例 68

设 $G = \mathbb{Z}, m$ 为任一大于 1 的正整数. 令 $H = \langle m \rangle$, 则 $H \triangleleft \mathbb{Z}$. 易知,

$$a + H = b + H \iff m \mid a - b.$$

由此推出, H 的全体陪集为

$$\overline{0} = 0 + H = \{ zm \mid z \in \mathbb{Z} \},\$$

$$\overline{1} = 1 + H = \{1 + zm \mid z \in \mathbb{Z}\},\$$

.

$$\overline{m-1} = (m-1) + H = \{(m-1) + zm \mid z \in \mathbb{Z}\}.$$

显然, \mathbb{Z} 关于 $\langle m \rangle$ 的商群 $\mathbb{Z}/\langle m \rangle$ 就是 \mathbb{Z} 关于模 m 的剩余类加 群 \mathbb{Z}_m . 因此有

$$\mathbb{Z}/\langle m \rangle = \mathbb{Z}_m.$$

商群的应用

定理 69 (Cauchy Theorem)

设 G 为有限交换群, |G| = n. 证明: 对 n 的任一素因子 p, G 必有阶为 p 的元素.

商群的应用

定理 69 (Cauchy Theorem)

设 G 为有限交换群, |G|=n. 证明: 对 n 的任一素因子 p, G 必有阶为 p 的元素.

证明: 对 n 应用数学归纳法. 首先, 当 n=2 时, 结论显然成立. 假设结论对所有阶小于 n 的交换群成立. 考察阶为 n 的交换群 G, 设 p 为 n 的任一素因子. 任取 $a \in G, a \neq e$, 设 ord a = r.

(1) 如果 r = pk, 则由定理 49 第 (3) 条立即可得 $\operatorname{ord} a^k = p$, 结论成立.

证明 (续)

(2) 如果 $p \nmid r$, 令 $H = \langle a \rangle$, 则 H 为 G 的正规子群, 且商群 G/H为交换群. 由于 $|G/H|=rac{n}{r}< n$, 且有 $p\nmid r$ 以及 $p\mid n$, 所以 $p \mid \frac{n}{x}$. 从而由归纳假设知, 存在 $bH \in G/H$, 使得 ord bH = p, $(bH)^p = e_{G/H} = eH = H$, 其中 $e_{G/H}$ 是 G/H 的单位元, e 是 G的单位元. 由于 G/H 是交换群. 故 $(bH)^p = bH \cdot bH \cdot \cdots \cdot bH = b^pH$, 因此 $b^pH = H$, 于是由定理 41 第 (1) 条可知 $b^p \in H$. 从而 $b^{pr} = e$. 由于 $p \nmid r$, 由定理 49 第 (2) 条知 $(bH)^r \neq H$, 即 $b^r \notin H$, 于是 $b^r \neq e$. 而 $(b^r)^p = e$, 所以 ord $b^r \mid p$, 从而 ord $b^r = p$. 于是由归纳法原理知结论成立.

作业

▷ Page 79: 2, 4, 9, 11, 13, 23, 25 (选做).

§2.4 正规子群和商群

- 正规子群
- 正规子群的判定
- ■正规子群的性质
- 陪集的运算
- ■商群
- ■商群的应用

§2.5 群的同态和同构

- 同态与同构
- 同态的性质
- 同构的性质
- 同态的核
- 同态基本定理
- 同构的证明步骤

同态与同构

定义 70

设 (G, \cdot) 与 (G', \circ) 是两个群, ϕ 是 G 到 G' 的一个映射. 如果对任意的 $a, b \in G$ 都有

$$\phi(a \cdot b) = \phi(a) \circ \phi(b),$$

则称 ϕ 是群 G 到群 G' 的一个同态映射 (homomorphism), 简称 同态. 当同态映射 ϕ 作为集合映射为满射时, 称 ϕ 为群 G 到 G' 的满同态 (epimorphism); 当同态映射 ϕ 作为集合映射是单射时, 称 ϕ 为群 G 到 G' 的单同态 (monomorphism); 当同态映射 ϕ 作为集合映射是一一映射时, 称 ϕ 为群 G 到 G' 的同构 (isomorphism), 表示成 $G\cong G'$. 群 G 到它自身的同态 (同构) 映射称为群 G 的自同态 (自同构).

同态与同构

定义 70

设 (G, \cdot) 与 (G', \circ) 是两个群, ϕ 是 G 到 G' 的一个映射. 如果对任意的 $a, b \in G$ 都有

$$\phi(a \cdot b) = \phi(a) \circ \phi(b),$$

则称 ϕ 是群 G 到群 G' 的一个**同态映射** (homomorphism), 简称 **同态**. 当同态映射 ϕ 作为集合映射为满射时, 称 ϕ 为群 G 到 G' 的**满同态** (epimorphism); 当同态映射 ϕ 作为集合映射是单射时, 称 ϕ 为群 G 到 G' 的**单同态** (monomorphism); 当同态映射 ϕ 作为集合映射是一一映射时, 称 ϕ 为群 G 到 G' 的**同构** (isomorphism), 表示成 $G \cong G'$. 群 G 到它自身的同态 (同构) 映射称为群 G 的自同态 (自同构).

注 70.1

在同态映射的定义中, 等式左边的 $a \cdot b$ 是在 G 中进行的运算, 而 等式右边的 $\phi(a) \circ \phi(b)$ 却是在 G' 中进行运算. 当 G 和 G' 都是 乘群时我们常将两边的代数运算符号省略.

例 71

设 \mathbb{R}^n 为实数域 \mathbb{R} 上全体 n 维向量的集合关于向量的加法运算构成的群, $H=\{AX\mid X\in\mathbb{R}^n\}$, 其中 $A\in\mathrm{M}_n(\mathbb{R})$. 令 $\phi:\mathbb{R}^n\longrightarrow H$

$$X \longmapsto AX$$
,

则 $\phi \in \mathbb{R}^n$ 到 H 的同态映射.

例 71

设 \mathbb{R}^n 为实数域 \mathbb{R} 上全体 n 维向量的集合关于向量的加法运算构成的群, $H=\{AX\mid X\in\mathbb{R}^n\}$, 其中 $A\in\mathrm{M}_n(\mathbb{R})$. 令

$$\phi: \mathbb{R}^n \longrightarrow H$$

 $X \longmapsto AX$,

则 ϕ 是 \mathbb{R}^n 到 H 的同态映射.

例 72

设 G, G' 是两个群, e' 是 G' 的单位元. 对任意的 $a \in G$, 令

$$\phi: \quad G \quad \longrightarrow \quad G',$$

$$a \quad \longmapsto \quad e'.$$

则对任意的 $a, b \in G$,

$$\phi(ab) = e' = e'e' = \phi(a)\phi(b),$$

所以 ϕ 是 G 到 G' 的同态映射.

设 G 是整数加群 \mathbb{Z}, G' 是全体非零实数 \mathbb{R}^* 关于数的乘法所构成的乘法群. 今

$$\phi: \quad \mathbb{Z} \longrightarrow \quad \mathbb{R}^*$$
$$n \longmapsto (-1)^n.$$

显然 ϕ 是 G 到 G' 的映射. 且对任意的 $m,n\in\mathbb{Z}$, 有 $\phi(m+n)=(-1)^{m+n}=(-1)^m\cdot(-1)^n=\phi(m)\cdot\phi(n)$.

因此 ϕ 是 $(\mathbb{Z},+)$ 到 (\mathbb{R}^*,\cdot) 的同态映射.

设 $\mathbb{R}[x]$ 为全体实系数多项式关于多项式的加法所构成的群. 令

$$\phi: \quad \mathbb{R}[x] \longrightarrow \mathbb{R}[x]$$
 $f(x) \longmapsto f'(x)$ (即 $f(x)$ 的导数),

则 ϕ 是 $\mathbb{R}[x]$ 到它自身的映射. 且对任意的 $f(x), g(x) \in \mathbb{R}[x]$, 有

$$\phi(f(x) + g(x)) = (f(x) + g(x))'$$

$$= f'(x) + g'(x)$$

$$= \phi(f(x)) + \phi(g(x))$$

所以 ϕ 是 $\mathbb{R}[x]$ 到它自身的同态映射. 易知, 这是一个满同态.

自然同态

例 75

设 G 为群, H 是 G 的正规子群. 对商群 G/H, 令

$$\eta: G \longrightarrow G/H,$$

 $a \longmapsto aH$,

则 η 是<mark>满映射</mark>, 且对任意 $a,b \in G$, 有

$$\eta(ab) = (ab)H = aH \cdot bH = \eta(a)\eta(b),$$

所以 η 是 G 到它的商群 G/H 的同态映射. 通常称这样的同态映射为**自然同态** (natural homomorphism).

恒等同构

例 76

设 G 是群, ι 是 G 的恒等映射:

$$\iota: G \longrightarrow G$$
,

$$a \longmapsto a, \quad \forall a \in G,$$

显然 ι 是一一映射. 又对任意的 $a,b \in G$,

$$\iota(ab) = ab = \iota(a)\iota(b),$$

所以, ι 是 G 的一个自同构, 这个同构称为恒等同构.

例 77

设 \mathbb{R} 是全体实数组成的加法群, \mathbb{R}^+ 表示全体正实数组成的乘法 群, 则群 \mathbb{R} 与 \mathbb{R}^+ 同构.

例 77

设 $\mathbb R$ 是全体实数组成的加法群, $\mathbb R^+$ 表示全体正实数组成的乘法 群, 则群 $\mathbb R$ 与 $\mathbb R^+$ 同构.

证明: (1) 对任意的 $x \in \mathbb{R}$, 令

$$\phi(x) = 2^x,$$

则 ϕ 是 \mathbb{R} 到 \mathbb{R}^+ 的映射.

设 $\mathbb R$ 是全体实数组成的加法群, $\mathbb R^+$ 表示全体正实数组成的乘法群, 则群 $\mathbb R$ 与 $\mathbb R^+$ 同构.

证明: (1) 对任意的 $x \in \mathbb{R}$, 令

$$\phi(x) = 2^x$$

则 ϕ 是 \mathbb{R} 到 \mathbb{R}^+ 的映射. (2) 设 $x,y \in \mathbb{R}$, 如果 $\phi(x) = \phi(y)$, 即 $2^x = 2^y$, 则 x = y. 所以 ϕ 是 \mathbb{R} 到 \mathbb{R}^+ 的单映射.

设 $\mathbb R$ 是全体实数组成的加法群, $\mathbb R^+$ 表示全体正实数组成的乘法 群, 则群 $\mathbb R$ 与 $\mathbb R^+$ 同构.

证明: (1) 对任意的 $x \in \mathbb{R}$, 令

$$\phi(x) = 2^x,$$

则 ϕ 是 \mathbb{R} 到 \mathbb{R}^+ 的映射. (2) 设 $x,y \in \mathbb{R}$, 如果 $\phi(x) = \phi(y)$, 即 $2^x = 2^y$, 则 x = y. 所以 ϕ 是 \mathbb{R} 到 \mathbb{R}^+ 的单映射. (3) 对任意的 $r \in \mathbb{R}^+$, 令 $x = \log_2 r$, 则 $x \in \mathbb{R}$, 且

$$\phi(x) = 2^x = 2^{\log_2 r} = r,$$

所以 ϕ 是 \mathbb{R} 到 \mathbb{R}^+ 的满映射.

设 $\mathbb R$ 是全体实数组成的加法群, $\mathbb R^+$ 表示全体正实数组成的乘法 群, 则群 $\mathbb R$ 与 $\mathbb R^+$ 同构.

证明: (1) 对任意的 $x \in \mathbb{R}$, 令

$$\phi(x) = 2^x,$$

则 ϕ 是 \mathbb{R} 到 \mathbb{R}^+ 的映射. (2) 设 $x,y \in \mathbb{R}$, 如果 $\phi(x) = \phi(y)$, 即 $2^x = 2^y$, 则 x = y. 所以 ϕ 是 \mathbb{R} 到 \mathbb{R}^+ 的单映射. (3) 对任意的 $r \in \mathbb{R}^+$, 令 $x = \log_2 r$, 则 $x \in \mathbb{R}$, 且

$$\phi(x) = 2^x = 2^{\log_2 r} = r,$$

所以 ϕ 是 \mathbb{R} 到 \mathbb{R}^+ 的满映射. (4) 对任意的 $x,y\in\mathbb{R}$,

$$\phi(x+y) = 2^{x+y} = 2^x \cdot 2^y = \phi(x) \cdot \phi(y),$$

所以 ϕ 保持运算. 从而 ϕ 是 \mathbb{R} 到 \mathbb{R}^+ 的同构映射.

例 78

由例 12 知全体 n 次单位根组成的集合 $U_n=\{\mathrm{e}^{\frac{2\pi ik}{n}}\mid 0\leq k\leq n-1\}$ 关于数的乘法构成群. 由例 13 知 $\mathbb Z$ 的模 n 剩余类可构成加群 $(\mathbb{Z}_n,+)$.

由例 12 知全体 n 次单位根组成的集合

 $U_n=\{\mathrm{e}^{\frac{2\pi i k}{n}}\mid 0\leq k\leq n-1\}$ 关于数的乘法构成群. 由例 13 知 $\mathbb Z$ 的模 n 剩余类可构成加群 $(\mathbb Z_n,+)$. 作映射

$$\phi: U_n \longrightarrow (\mathbb{Z}_n, +),$$

$$e^{\frac{2\pi i k}{n}} \longmapsto \bar{k}.$$

由例 12 知全体 n 次单位根组成的集合

 $U_n=\{\mathrm{e}^{rac{2\pi ik}{n}}\mid 0\leq k\leq n-1\}$ 关于数的乘法构成群. 由例 13 知 $\mathbb Z$ 的模 n 剩余类可构成加群 $(\mathbb Z_n,+)$. 作映射

$$\phi: U_n \longrightarrow (\mathbb{Z}_n, +),$$

$$e^{\frac{2\pi i k}{n}} \longmapsto \bar{k}.$$

则有

$$\begin{split} \phi\left(\mathrm{e}^{\frac{2\pi i k}{n}}\cdot\mathrm{e}^{\frac{2\pi i k'}{n}}\right) &= \phi\left(\mathrm{e}^{\frac{2\pi i (k+k')}{n}}\right) \\ &= \overline{k+k'} = \overline{k} + \overline{k'} \\ &= \phi\left(\mathrm{e}^{\frac{2\pi i n}{n}}\right) + \phi\left(\mathrm{e}^{\frac{2\pi i b}{n}}\right), \end{split}$$

所以 ϕ 是群同态, 显然 ϕ 是一一映射, 从而 ϕ 为群同构.

同态的性质

定理 79

设 ϕ 是群 G 到群 G' 的同态映射, e 与 e' 分别是 G 与 G' 的单位元, $a \in G$, 则

- (1) ϕ 将 G 的单位元映到 G' 的单位元, 即 $\phi(e) = e'$;
- (2) ϕ 将 a 的逆元映到 $\phi(a)$ 的逆元, 即 $\phi(a^{-1}) = (\phi(a))^{-1}$;
- (3) 设 n 是任一整数, 则 $\phi(a^n) = (\phi(a))^n$;
- (4) 如果 ord a 有限,则 ord $\phi(a)$ | ord a.

(1) 因 e 与 e' 分别是 G 与 G' 的单位元, 所以对 $\forall a \in G$ 有 $\phi(a)e' = \phi(a) = \phi(ae) = \phi(a)\phi(e)$,

从而由消去律得

$$e' = \phi(e),$$

即 $\phi(e)$ 为 G' 的单位元.

(2) 直接计算可得

$$\phi(a)\phi(a^{-1}) = \phi(aa^{-1}) = \phi(e) = e' = \phi(a)(\phi(a))^{-1}.$$

由消去律得

$$\phi(a^{-1}) = (\phi(a))^{-1},$$

即 $\phi(a^{-1})$ 为 $\phi(a)$ 的逆元.

(3) 当
$$n = 0$$
 时,

$$\phi(a^0) = \phi(e) = e' = (\phi(a))^0.$$

当 n > 0 时,

$$\phi(a^n) = \phi(a^{n-1}a) = \phi(a^{n-1})\phi(a)$$
$$= \dots = (\phi(a))^{n-1}\phi(a) = (\phi(a))^n.$$

当 n < 0 时,

$$\phi(a^n) = \phi((a^{-1})^{-n}) = (\phi(a^{-1}))^{-n}$$
$$= (\phi(a)^{-1})^{-n} = (\phi(a))^n.$$

(4) 设 ord a=r, 则

$$(\phi(a))^r = \phi(a^r) = \phi(e) = e',$$

所以 $\operatorname{ord} \phi(a) \mid \operatorname{ord} a$.

同构的性质

定理 80

设 ϕ 是群 G 到 G' 的同构映射, e 与 e' 分别是 G 与 G' 的单位元, 则 ϕ 是可逆映射, 且 ϕ 的逆映射 ϕ^{-1} 是群 G' 到群 G 的同构映射.

同构的性质

定理 80

设 ϕ 是群 G 到 G' 的同构映射, e 与 e' 分别是 G 与 G' 的单位元, 则 ϕ 是可逆映射, 且 ϕ 的逆映射 ϕ^{-1} 是群 G' 到群 G 的同构映射.

证明: ϕ 是群 G 到 G' 的——映射, 所以 ϕ 是可逆的映射, 且其 逆映射 ϕ^{-1} 是 G' 到 G 的——映射. 下面证明 ϕ^{-1} 为同态映射.

对任意的 $a',b' \in G'$, 由于可逆映射是满映射, 所以存在 $a,b \in G$, 使

$$\phi(a) = a', \quad \phi(b) = b'.$$

对任意的 $a',b' \in G'$, 由于可逆映射是满映射, 所以存在 $a,b \in G$, 使

 $=\phi^{-1}(a')\phi^{-1}(b'),$

$$\phi(a) = a', \quad \phi(b) = b'.$$
于是, $\phi^{-1}(a') = a$, $\phi^{-1}(b') = b$, 并且
$$\phi^{-1}(a'b') = \phi^{-1}(\phi(a)\phi(b))$$

$$= \phi^{-1}(\phi(ab))$$

$$= (\phi^{-1} \circ \phi)(ab)$$

$$= ab$$

这就证明了 ϕ^{-1} 是 G' 到 G 的同构映射.

设 ℝ* 为所有正实数构成的乘法群,则指数函数

$$\exp: \mathbb{R} \longrightarrow \mathbb{R}_+^*,$$
$$x \longmapsto 2^x,$$

是群同构. 其逆为对数函数

$$lb: \mathbb{R}_+^* \longrightarrow \mathbb{R},$$
$$y \longmapsto \log_2 y.$$

设 ℝ* 为所有正实数构成的乘法群,则指数函数

$$\exp: \mathbb{R} \longrightarrow \mathbb{R}_+^*,$$
$$x \longmapsto 2^x.$$

是群同构. 其逆为对数函数

$$lb: \mathbb{R}_+^* \longrightarrow \mathbb{R},$$
$$y \longmapsto \log_2 y.$$

注 81.1

设群 G 与 G' 同构. 如果 G 是交换群, 则 G' 也是交换群; 如果 G 是有限群, 则 G' 也是有限群且 |G|=|G'|.

同构的性质

定理 82

群的同构是一个等价关系,即

- (1) $G \cong G$ (反身性);
- (2) 若 $G \cong G'$, 则 $G' \cong G$ (对称性);
- (3) 若 $G \cong G', G' \cong G''$, 则 $G \cong G''$ (传递性), 其中 G, G', G'' 都是群.

- (1) 见例 76.
- (2) 由定理 80 立即可证.

- (1) 见例 76.
- (2) 由定理 80 立即可证. (3) 设 ϕ 是 G 到 G' 的同构映射, ψ 是 G' 到 G'' 的同构映射. 由映射复合的性质知 $\psi \circ \phi$ 是 G 到 G'' 的 ——映射.

- (1) 见例 76.
- (2) 由定理 80 立即可证. (3) 设 ϕ 是 G 到 G' 的同构映射, ψ 是 G' 到 G'' 的同构映射. 由映射复合的性质知 $\psi \circ \phi$ 是 G 到 G'' 的 ——映射. 又对任意的 $x, y \in G$ 有

$$(\psi \circ \phi)(xy) = \psi(\phi(xy))$$

$$= \psi(\phi(x)\phi(y))$$

$$= \psi(\phi(x))\psi(\phi(y))$$

$$= (\psi \circ \phi)(x)(\psi \circ \phi)(y).$$

所以 $\psi \circ \phi$ 是 G 到 G'' 的同构映射, 从而 $G \cong G''$.

(原) 象集

定义 83

设 ϕ 为群 G 到群 G' 的映射, A,B 分别为 G 与 G' 的非空子集. 记

$$\phi(A) = \{ \phi(x) \mid x \in A \},\$$

$$\phi^{-1}(B) = \{ x \in G \mid \phi(x) \in B \},\$$

则 $\phi(A)$ 与 $\phi^{-1}(B)$ 分别是 G' 与 G 的非空子集 $(\phi^{-1}(B))$ 仅仅是一个集合的记号, 并不表示映射 ϕ 是可逆的). $\phi(A)$ 与 $\phi^{-1}(B)$ 分别称为子集 A 与 B 在 ϕ 下的象集与原象集.

同态的性质

定理 84

设 ϕ 是群 G 到 G' 的同态映射, H 与 K 分别是 G 与 G' 的子群, 则

- (1) $\phi(H)$ 是 G' 的子群;
- (2) $\phi^{-1}(K)$ 是 G 的子群;
- (3) 如果 H 是 G 的正规子群, 则 $\phi(H)$ 是 $\phi(G)$ 的正规子群;
- (4) 如果 $K \in G'$ 的正规子群, 则 $\phi^{-1}(K) \in G$ 的正规子群.

同态的性质

定理 84

设 ϕ 是群 G 到 G' 的同态映射, H 与 K 分别是 G 与 G' 的子群, 则

- (1) $\phi(H)$ 是 G' 的子群;
- (2) $\phi^{-1}(K)$ 是 G 的子群;
- (3) 如果 H 是 G 的正规子群, 则 $\phi(H)$ 是 $\phi(G)$ 的正规子群;
- (4) 如果 $K \in G'$ 的正规子群, 则 $\phi^{-1}(K) \in G$ 的正规子群.

证明: (1) 对任意的 $h_1, h_2 \in H$, 有 $h_1 h_2^{-1} \in H$, 所以 $\phi(h_1)(\phi(h_2))^{-1} = \phi(h_1)\phi(h_2^{-1}) = \phi(h_1 h_2^{-1}) \in \phi(H),$ 所以 $\phi(H)$ 是 G' 的子群.

(2) 对任意的 $a,b \in \phi^{-1}(K)$, 有 $\phi(a),\phi(b) \in K$, 则 $\phi\left(ab^{-1}\right) = \phi(a)\phi\left(b^{-1}\right) = \phi(a)\phi(b)^{-1} \in K,$ 于是 $ab^{-1} \in \phi^{-1}(K)$, 所以 $\phi^{-1}(K)$ 是 G 的子群.

(2) 对任意的 $a,b \in \phi^{-1}(K)$, 有 $\phi(a),\phi(b) \in K$, 则 $\phi\left(ab^{-1}\right) = \phi(a)\phi\left(b^{-1}\right) = \phi(a)\phi(b)^{-1} \in K,$ 于是 $ab^{-1} \in \phi^{-1}(K)$, 所以 $\phi^{-1}(K)$ 是 G 的子群. (3) 由 (1) 知, $\phi(H)$ 是 $\phi(G)$ 的子群. 又对任意的 $a' \in \phi(G), h' \in \phi(H)$, 存在 $a \in G, h \in H$ 使得 $\phi(a) = a', \phi(h) = h'$, 则 $aha^{-1} \in H$. 于是 $a'h'a'^{-1} = \phi(a)\phi(h)(\phi(a))^{-1} = \phi(a)\phi(h)\phi\left(a^{-1}\right)$ $= \phi\left(aha^{-1}\right) \in \phi(H),$ 所以 $\phi(H)$ 是 $\phi(G)$ 的正规子群.

(2) 对任意的 $a,b\in\phi^{-1}(K)$, 有 $\phi(a),\phi(b)\in K$, 则

$$\phi\left(ab^{-1}\right)=\phi(a)\phi\left(b^{-1}\right)=\phi(a)\phi(b)^{-1}\in K,$$

于是 $ab^{-1} \in \phi^{-1}(K)$, 所以 $\phi^{-1}(K)$ 是 G 的子群.(3) 由 (1) 知, $\phi(H)$ 是 $\phi(G)$ 的子群. 又对任意的 $a' \in \phi(G), h' \in \phi(H)$, 存在 $a \in G, h \in H$ 使得 $\phi(a) = a', \phi(h) = h'$, 则 $aha^{-1} \in H$. 于是 $a'h'a'^{-1} = \phi(a)\phi(h)(\phi(a))^{-1} = \phi(a)\phi(h)\phi\left(a^{-1}\right)$

$$=\phi\left(aha^{-1}\right)\in\phi(H),$$

所以 $\phi(H)$ 是 $\phi(G)$ 的正规子群.(4) 由 (2) 知, $\phi^{-1}(K)$ 是 G 的子群. 又对任意的 $a \in G, h \in \phi^{-1}(K)$, 则 $\phi(h) \in K$, 而 K 是 G' 的正规子群, 故

$$\phi\left(aha^{-1}\right) = \phi(a)\phi(h)\phi(a)^{-1} \in K.$$

从而 $aha^{-1} \in \phi^{-1}(K)$, 所以 $\phi^{-1}(K)$ 是 G 的正规子群.

定义 85

设 ϕ 是群 G 到 G' 的同态映射, e' 是 G' 的单位元, 则称 e' 在 G 中的原象集

$$\phi^{-1}\left(\left\{e'\right\}\right) = \left\{a \in G \mid \phi(a) = e'\right\}$$

为同态映射 ϕ 的核 (kernel), 记作 $\operatorname{Ker} \phi$.

定义 85

设 ϕ 是群 G 到 G' 的同态映射, e' 是 G' 的单位元, 则称 e' 在 G 中的原象集

$$\phi^{-1}(\{e'\}) = \{a \in G \mid \phi(a) = e'\}$$

为同态映射 ϕ 的核 (kernel), 记作 $\operatorname{Ker} \phi$.

定理 86

设 ϕ 是群 G 到 G' 的同态映射, 则 $\operatorname{Ker} \phi$ 是 G 的正规子群.

定义 85

设 ϕ 是群 G 到 G' 的同态映射, e' 是 G' 的单位元, 则称 e' 在 G 中的原象集

$$\phi^{-1}(\{e'\}) = \{a \in G \mid \phi(a) = e'\}$$

为同态映射 ϕ 的核 (kernel), 记作 $\operatorname{Ker} \phi$.

定理 86

设 ϕ 是群 G 到 G' 的同态映射, 则 $\frac{\text{Ker }\phi}{}$ 是 $\frac{G}{}$ 的正规子群.

证明: 易知 $\{e'\}$ 是 G' 的正规子群. 从而由定理 84 第 (4) 条知 $\operatorname{Ker} \phi$ 是 G 的正规子群.

定义 85

设 ϕ 是群 G 到 G' 的同态映射, e' 是 G' 的单位元, 则称 e' 在 G 中的原象集

$$\phi^{-1}(\{e'\}) = \{a \in G \mid \phi(a) = e'\}$$

为同态映射 ϕ 的核 (kernel), 记作 $\operatorname{Ker} \phi$.

定理 86

设 ϕ 是群 G 到 G' 的同态映射, 则 $\operatorname{Ker} \phi$ 是 G 的正规子群.

证明: 易知 $\{e'\}$ 是 G' 的正规子群. 从而由定理 84 第 (4) 条知 $\operatorname{Ker} \phi$ 是 G 的正规子群.

例 87

例 72 至例 75 中的同态映射的核分别是 $G, 2\mathbb{Z}, \mathbb{R}, H.$

例 88

试求 $(\mathbb{Z}_{12},+)$ 到 $(\mathbb{Z}_{18},+)$ 的所有同态映射, 并求每一个同态映射的核.

例 88

试求 $(\mathbb{Z}_{12},+)$ 到 $(\mathbb{Z}_{18},+)$ 的所有同态映射, 并求每一个同态映射的核.

证明: 设 ϕ 是 \mathbb{Z}_{12} 到 \mathbb{Z}_{18} 的任一同态映射. 因为 \mathbb{Z}_{12} 是循环群, 所以 ϕ 由 $\phi(\overline{1})$ 完全确定. 因 $\operatorname{ord}\overline{1}=12$, 从而由定理 79 第 (4) 条知 $\operatorname{ord}\phi(\overline{1})$ | 12.

例 88

试求 $(\mathbb{Z}_{12},+)$ 到 $(\mathbb{Z}_{18},+)$ 的所有同态映射, 并求每一个同态映射的核.

证明: 设 ϕ 是 \mathbb{Z}_{12} 到 \mathbb{Z}_{18} 的任一同态映射. 因为 \mathbb{Z}_{12} 是循环群, 所以 ϕ 由 $\phi(\overline{1})$ 完全确定. 因 $\operatorname{ord} \overline{1} = 12$, 从而由定理 79 第 (4) 条知 $\operatorname{ord} \phi(\overline{1}) \mid 12$. 又因为 $\operatorname{ord} \phi(\overline{1}) \mid \mathbb{Z}_{18} \mid = 18$, 所以 $\operatorname{ord} \phi(\overline{1}) \mid (12,18) = 6$,

所以 $\phi(\overline{1})$ 的可能的取值为

 $\overline{0}, \overline{9}, \overline{6}, \overline{12}, \overline{3}, \overline{15}.$

例 88

试求 $(\mathbb{Z}_{12},+)$ 到 $(\mathbb{Z}_{18},+)$ 的所有同态映射, 并求每一个同态映射的核.

证明: 设 ϕ 是 \mathbb{Z}_{12} 到 \mathbb{Z}_{18} 的任一同态映射. 因为 \mathbb{Z}_{12} 是循环群, 所以 ϕ 由 $\phi(\overline{1})$ 完全确定. 因 ord $\overline{1} = 12$, 从而由定理 79 第 (4) 条知 ord $\phi(\overline{1}) \mid 12$. 又因为 ord $\phi(\overline{1}) \mid |\mathbb{Z}_{18}| = 18$, 所以 ord $\phi(\overline{1}) \mid (12, 18) = 6$,

所以 $\phi(\overline{1})$ 的可能的取值为

 $\overline{0}, \overline{9}, \overline{6}, \overline{12}, \overline{3}, \overline{15}.$

由此得对应的同态映射与相应的核分别为

$$\begin{array}{lll} \phi_{1}(\bar{x}) = \overline{0}, & \operatorname{Ker} \phi_{1} = \mathbb{Z}_{12}; \\ \phi_{2}(\bar{x}) = 9\bar{x}, & \operatorname{Ker} \phi_{2} = 2\mathbb{Z}_{12}; \\ \phi_{3}(\bar{x}) = 6\bar{x}, & \operatorname{Ker} \phi_{3} = 3\mathbb{Z}_{12}; \\ \phi_{4}(\bar{x}) = 12\bar{x}, & \operatorname{Ker} \phi_{4} = 3\mathbb{Z}_{12}; \\ \phi_{5}(\bar{x}) = 3\bar{x}, & \operatorname{Ker} \phi_{5} = 6\mathbb{Z}_{12}; \\ \phi_{6}(\bar{x}) = 15\bar{x}, & \operatorname{Ker} \phi_{6} = 6\mathbb{Z}_{12}. \end{array}$$

112 / 178

群同态基本定理

定理 89 (群同态基本定理)

设 ϕ 是群 G 到群 G' 的满同态, $K = \operatorname{Ker} \phi$, 则 $G/K \cong G'$.

群同态基本定理

定理 89 (群同态基本定理)

设 ϕ 是群 G 到群 G' 的满同态, $K = \operatorname{Ker} \phi$, 则 $G/K \cong G'$.

证明: 由定理 86 知, K 是 G 的正规子群, 所以有商群 G/K. 令

$$\begin{array}{cccc} \tilde{\phi}: & G/K & \longrightarrow & G', \\ & aK & \longmapsto & \phi(a). \end{array}$$

(1) 如果 aK=bK, 则 $a^{-1}b\in K$, 于是 $\phi\left(a^{-1}b\right)=e'$, 所以 $\phi(a)=\phi(b)$, 即 $\widetilde{\phi}(aK)=\widetilde{\phi}(bK)$. 这说明, $\widetilde{\phi}$ 的定义与代表元的选取无关, 从而 $\widetilde{\phi}$ 为 G/K 到 G' 的映射.

证明 (续)

(2) 对任意的 $a' \in G'$, 因为 ϕ 是满映射, 所以存在 $a \in G$ 使得 $\phi(a) = a'$. 从而

$$\widetilde{\phi}(aK) = \phi(a) = a',$$

因此, $\widetilde{\phi}$ 是 G/K 到 G' 的满映射.

(3) 如果
$$\phi(a) = \phi(b)$$
, 则

$$\phi(a^{-1}b) = (\phi(a))^{-1}\phi(b) = e'.$$

于是 $a^{-1}b \in K$, 由此得 aK = bK. 所以 $\widetilde{\phi}$ 是 G/K 到 G' 的单映射.

(4) 对任意的 $aK, bK \in G/K$, 有

$$\widetilde{\phi}(aK \cdot bK) = \widetilde{\phi}(abK) = \phi(ab) = \phi(a)\phi(b)$$

$$= \widetilde{\phi}(aK)\widetilde{\phi}(bK).$$

所以

$$\widetilde{\phi}: G/K \cong G'.$$

例 90

设 m 是任一大于 1 的正整数. 令

$$\phi: \quad \mathbb{Z} \quad \longrightarrow \quad \mathbb{Z}_m,$$

例 90

设 m 是任一大于 1 的正整数. 令

$$\phi: \quad \mathbb{Z} \quad \longrightarrow \quad \mathbb{Z}_m,$$

(1) 显然 ϕ 为 \mathbb{Z} 到 \mathbb{Z}_m 的映射.

例 90

设 m 是任一大于 1 的正整数. 令

$$\phi: \quad \mathbb{Z} \quad \longrightarrow \quad \mathbb{Z}_m, \\
a \quad \longmapsto \quad \bar{a}.$$

(1) 显然 ϕ 为 \mathbb{Z} 到 \mathbb{Z}_m 的映射. (2) 对任意的 $\bar{a} \in \mathbb{Z}_m$, 有 $a \in \mathbb{Z}$, 使 $\phi(a) = \bar{a}$, 所以 ϕ 为 \mathbb{Z} 到 \mathbb{Z}_m 的满映射.

设m是任一大于1的正整数. 令

$$\phi: \quad \mathbb{Z} \quad \longrightarrow \quad \mathbb{Z}_m, \\
a \quad \longmapsto \quad \bar{a}.$$

(1) 显然 ϕ 为 \mathbb{Z} 到 \mathbb{Z}_m 的映射. (2) 对任意的 $\bar{a} \in \mathbb{Z}_m$, 有 $a \in \mathbb{Z}$, 使 $\phi(a) = \bar{a}$, 所以 ϕ 为 \mathbb{Z} 到 \mathbb{Z}_m 的满映射. (3) 对任意的 $a,b \in \mathbb{Z}$, 有

$$\phi(a+b) = \overline{a+b} = \overline{a} + \overline{b} = \phi(a) + \phi(b)$$

所以 ϕ 为 \mathbb{Z} 到 \mathbb{Z}_m 的满同态.

设m是任一大于1的正整数. 令

$$\phi: \quad \mathbb{Z} \quad \longrightarrow \quad \mathbb{Z}_m,$$

$$a \quad \longmapsto \quad \bar{a}.$$

(1) 显然 ϕ 为 \mathbb{Z} 到 \mathbb{Z}_m 的映射. (2) 对任意的 $\bar{a} \in \mathbb{Z}_m$, 有 $a \in \mathbb{Z}$, 使 $\phi(a) = \bar{a}$, 所以 ϕ 为 \mathbb{Z} 到 \mathbb{Z}_m 的满映射. (3) 对任意的 $a,b \in \mathbb{Z}$. 有

$$\phi(a+b) = \overline{a+b} = \overline{a} + \overline{b} = \phi(a) + \phi(b)$$

所以 ϕ 为 \mathbb{Z} 到 \mathbb{Z}_m 的满同态. (4) 同态的核

$$\operatorname{Ker} \phi = \{ x \in \mathbb{Z} \mid \phi(x) = \overline{0} \}$$
$$= \{ x \in \mathbb{Z} \mid \overline{x} = \overline{0} \}$$
$$= \{ x \in \mathbb{Z} | m | x \} = \langle m \rangle.$$

从而由同态基本定理得

$$\tilde{\phi}: \quad \mathbb{Z}/\langle m \rangle \cong \mathbb{Z}_m.$$

应用群同态基本定理证明群的同构, 一般有以下五个步骤:

应用群同态基本定理证明群的同构, 一般有以下五个步骤:

第一步 建立群 G 与群 G' 的元素之间的对应关系 ϕ , 并证明 ϕ 为 G 到 G' 的映射;

应用群同态基本定理证明群的同构, 一般有以下五个步骤:

第一步 建立群 G 与群 G' 的元素之间的对应关系 ϕ , 并证明 ϕ 为 G 到 G' 的映射;

第二步 证明 ϕ 为 G 到 G' 的满映射;

应用群同态基本定理证明群的同构, 一般有以下五个步骤:

第一步 建立群 G 与群 G' 的元素之间的对应关系 ϕ , 并证明 ϕ 为 G 到 G' 的映射;

第二步 证明 ϕ 为 G 到 G' 的满映射;

第三步 证明 ϕ 为 G 到 G' 的同态映射;

应用群同态基本定理证明群的同构, 一般有以下五个步骤:

第一步 建立群 G 与群 G' 的元素之间的对应关系 ϕ , 并证明 ϕ 为 G 到 G' 的映射;

第二步 证明 ϕ 为 G 到 G' 的满映射;

第三步 证明 ϕ 为 G 到 G' 的同态映射;

第四步 计算同态的核 $Ker \phi$;

应用群同态基本定理证明群的同构, 一般有以下五个步骤:

第一步 建立群 G 与群 G' 的元素之间的对应关系 ϕ , 并证明 ϕ 为 G 到 G' 的映射;

第二步 证明 ϕ 为 G 到 G' 的满映射;

第三步 证明 ϕ 为 G 到 G' 的同态映射;

第四步 计算同态的核 $Ker \phi$;

第五步 应用群同态基本定理得 $G/\operatorname{Ker} \phi \cong G'$.

例 91

设群 $U_4 = \{1, -1, i, -i\}$ 是 4 次单位根群, $K = \{e, a, b, ab\}$ (Klein 四元群, 它是最小的非循环群) 是由元素 a, b 及关系 $a^2 = b^2 = e$ 和 ab = ba 所定义的群. 问 U_4 与 K 是否同构, 为什么?

设群 $U_4 = \{1, -1, i, -i\}$ 是 4 次单位根群, $K = \{e, a, b, ab\}$ (Klein 四元群, 它是最小的非循环群) 是由元素 a, b 及关系 $a^2 = b^2 = e$ 和 ab = ba 所定义的群. 问 U_4 与 K 是否同构, 为什么?

证明: 如果 U_4 与 K 同构, 设 ϕ 是 U_4 到 K 的同构映射. 令 $\phi(i) = x$. 易知, $x^2 = e$. 从而

$$\phi(-1) = \phi(i^2) = (\phi(i))^2 = x^2 = e.$$

另一方面, $\phi(1)=e$. 由于 ϕ 是单映射, 所以 -1=1. 这是一个矛盾. 从而知 U_4 与 K 不同构.

例 92

4 阶群必同构于 U_4 或 Klein 四元群 $K = \{e, a, b, ab\}$.

4 阶群必同构于 U_4 或 Klein 四元群 $K = \{e, a, b, ab\}$.

证明: 设H为一个4阶群.

- (1) 如果 H 有 4 阶元, 则 H 为 4 阶循环群, 从而 H 与 U_4 同构.
- (2) 如果 H 不含有 4 阶元, 则除单位元 e 外, H 的其余三个元素的阶都是 2, 不妨设这三个元素为 a,b,ab=ba. 显然 H 是交换群. 从而 H 的元素与 K 的元素——对应, 且有完全—致的运算关系. 所以 H 与 K 同构.

§2.5 群的同态和同构

- 同态与同构
- 同态的性质
- 同构的性质
- 同态的核
- 同态基本定理
- 同构的证明步骤

§2.6 循环群

- 循环群的定义
- 循环群的例子
- 循环群的生成元
- 循环群的子群
- 循环群的结构

循环群的定义

定义 93

设 G 是群, 如果存在 $a \in G$, 使得 $G = \langle a \rangle$, 则称 G 为一个循环 群 (cyclic group), 并称 a 为 G 的一个生成元 (generator). 当 G 的元素个数无限时, 称 G 为无限循环群; 当 G 的元素个数为 n 时, 称 G 为 n 阶循环群.

循环群的定义

定义 93

设 G 是群, 如果<mark>存在 $a \in G$, 使得 $G = \langle a \rangle$, 则称 G 为一个循环 群 (cyclic group), 并称 a 为 G 的一个生成元 (generator). 当 G 的元素个数无限时, 称 G 为无限循环群; 当 G 的元素个数为 n 时, 称 G 为 n **阶循环**群.</mark>

注 93.1

由循环群的定义易见以下结论:

- (1) 如果 $G = \langle a \rangle$ 是 n 阶循环群, 则 $G = \{e, a, a^2, a^3, \cdots, a^{n-1}\}$. 显然有 $\operatorname{ord} a = n$ 并且 $a^{k+tn} = a^k a^{tn} = a^k e = a^k$, 其中 $k, t \in \mathbb{Z}$. 进一步, 对任意 $k, l \in \mathbb{Z}$, 若有 $a^k = a^l$, 则 $a^{k-l} = e$. 由定理 49 第 (2) 条知 $n \mid k l$, 于是 $a^k = a^l \Leftrightarrow n \mid k l$.
- (2) 如果 G 为无限循环群,则由定理 33 知 $G = \{e, a, a^{-1}, a^2, a^{-2}, a^3, a^{-3}, \cdots\}$,并且 ord $a = \infty$. 对任意 $k, l \in \mathbb{Z}$,若有由 $a^k = a^l$,则 $a^{k-l} = e$,于是 k = l.

例 94

整数加群 Z 是无限循环群.

整数加群 Z 是无限循环群.

证明: 显然, Z 是无限群. 又因为

$$\mathbb{Z} = \{ n \cdot 1 \mid n \in \mathbb{Z} \},\$$

所以 $\mathbb{Z}=\langle 1 \rangle$. 容易看出, $\mathbb{Z}=\langle -1 \rangle$, 所以 1 与 -1 都是 \mathbb{Z} 的生成元. 并且对任意的 $d\in \mathbb{Z}, d\neq \pm 1$, 显然有 $1\notin \langle d \rangle$, 所以 $\langle d \rangle \neq \mathbb{Z}$. 从而知. 1 与 -1 是群 \mathbb{Z} 的仅有的两个生成元.

例 95

设
$$m$$
 为正整数, 则模 m 剩余类加群
$$\mathbb{Z}_m = \{\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{m-1}\}$$

$$= \{0 \cdot \overline{1}, 1 \cdot \overline{1}, 2 \cdot \overline{1}, \cdots, (m-1) \cdot \overline{1}\} = \langle \overline{1} \rangle,$$
 所以 \mathbb{Z}_m 是 m 阶循环群.

例 95

设 m 为正整数,则模 m 剩余类加群 $\mathbb{Z}_m = \{\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{m-1}\}$ $= \{0 \cdot \overline{1}, 1 \cdot \overline{1}, 2 \cdot \overline{1}, \cdots, (m-1) \cdot \overline{1}\} = \langle \overline{1} \rangle,$ 所以 \mathbb{Z}_m 是 m 阶循环群.

例 96

容易计算在 \mathbb{Z}_5^* 中, ord $2=\operatorname{ord} 3=|\mathbb{Z}_5^*|=4$, 所以 \mathbb{Z}_5^* 是 4 阶循环群, 且 2 与 3 是 \mathbb{Z}_5^* 的两个生成元 (显然是 \mathbb{Z}_5^* 的两个仅有的生成元).

对 n 次单位根群

$$U_n = \left\{ \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} \mid k = 0, 1, 2, \dots, n - 1 \right\}.$$

令

$$\omega = \cos\frac{2\pi}{n} + i\sin\frac{2\pi}{n}$$

则

$$U_n = \langle \omega \rangle = \{1, \omega, \omega^2, \cdots, \omega^{n-1}\},\,$$

所以 U_n 是一个 n 阶循环群. 由定理 49 第 (3) 条知当 (k,n)=1 时, ord $\omega^k=n$, 因此当 (k,n)=1 时 ω^k 都是 U_n 的生成元.

定理 98

设 p 为素数, 则 \mathbb{Z}_p^* 是 p-1 阶循环群.

定理 98

设 p 为素数, 则 \mathbb{Z}_p^* 是 p-1 阶循环群.

例 99

U(15) 是否是循环群?

定理 98

设 p 为素数, 则 \mathbb{Z}_p^* 是 p-1 阶循环群.

例 99

U(15) 是否是循环群?

证明: $U(15) = \{1, 2, 4, 7, 8, 11, 13, 14\}$. 容易算出 $2^4 = 4^4 = 7^4 = 8^4 = 11^4 = 13^4 = 14^4 = 1$.

所以 U(15) 中每一个元素的阶都小于 U(15) 的阶 8, 从而 U(15) 不是循环群.

125 / 178

循环群的生成元

定理 100

设 $G = \langle a \rangle$ 为循环群, 则

- (1) 如果 $|G| = \infty$, 则 $a 与 a^{-1}$ 是 G 的两个仅有的生成元;
- (2) 如果 |G| = n, 则 G 恰有 $\phi(n)$ 个生成元, 且 a^r 是 G 的生成元的充分必要条件是 (n,r) = 1, 其中 $\phi(n)$ 是欧拉函数.

循环群的生成元

定理 100

设 $G = \langle a \rangle$ 为循环群, 则

- (1) 如果 $|G| = \infty$, 则 $a 与 a^{-1}$ 是 G 的两个仅有的生成元;
- (2) 如果 |G| = n, 则 G 恰有 $\phi(n)$ 个生成元, 且 a^r 是 G 的生成元的充分必要条件是 (n,r) = 1, 其中 $\phi(n)$ 是欧拉函数.

证明: (1) 显然, a 与 a^{-1} 都是 G 的生成元. 若 a^k 是 G 的任一生成元, 则存在 $n \in \mathbb{Z}$, 使得 $\left(a^k\right)^n = a^{kn} = a$. 由注 93.1 第 (2) 条 得 kn = 1, 从而 $k = \pm 1$. 这就证明了 (1).

循环群的生成元

定理 100

设 $G = \langle a \rangle$ 为循环群, 则

- (1) 如果 $|G| = \infty$, 则 $a = a^{-1}$ 是 G 的两个仅有的生成元;
- (2) 如果 |G| = n, 则 G 恰有 $\phi(n)$ 个生成元, 且 a^r 是 G 的生成元的充分必要条件是 (n,r) = 1, 其中 $\phi(n)$ 是欧拉函数.

证明: (1) 显然, a 与 a^{-1} 都是 G 的生成元. 若 a^k 是 G 的任一生成元, 则存在 $n \in \mathbb{Z}$, 使得 $\left(a^k\right)^n = a^{kn} = a$. 由注 93.1 第 (2) 条 得 kn = 1, 从而 $k = \pm 1$. 这就证明了 (1).(2) 由定理 49 第 (3) 条 知 $\operatorname{ord} a^r = \frac{n}{(n,r)}$, 从而

$$a^r$$
 为 G 的生成元 \Longleftrightarrow ord $a^r = n \Longleftrightarrow \frac{n}{(n,r)} = n$ \Longleftrightarrow $(n,r) = 1,$

故由欧拉函数的知 G 的生成元的个数为 $\phi(n)$.

例 101

求 \mathbb{Z}_{12} 的全部生成元.

求 \mathbb{Z}_{12} 的全部生成元.

解: 因 $\mathbb{Z}_{12}=\langle \overline{1} \rangle$, 所以 $\overline{r}=r\cdot \overline{1}$ 是 \mathbb{Z}_{12} 的生成元的充分必要条件 是

由此得 \mathbb{Z}_{12} 的全部生成元为

$$\overline{1}, \overline{5}, \overline{7}, \overline{11}.$$

定理 102

循环群的任一子群也是循环群.

定理 102

循环群的任一子群也是循环群.

证明: 设 $G=\langle a \rangle$ 为循环群, H 为 G 的一个子群. 如果 $H=\{e\}$, 则 $H=\langle e \rangle$ 是循环群. 如果 $H\neq \{e\}$, 则 H 必含有某个 $a^l, l\neq 0$,因而 H 也含有 a^{-l} ,从而 H 必含有 a 的某些正整数幂. 设 r 是使 $a^r\in H$ 的最小正整数,下面证明 $H=\langle a^r\rangle$.

定理 102

循环群的任一子群也是循环群.

证明: 设 $G=\langle a \rangle$ 为循环群, H 为 G 的一个子群. 如果 $H=\{e\}$, 则 $H=\langle e \rangle$ 是循环群. 如果 $H\neq \{e\}$, 则 H 必含有某个 $a^l,l\neq 0$, 因而 H 也含有 a^{-l} , 从而 H 必含有 a 的某些正整数幂. 设 r 是使 $a^r\in H$ 的最小正整数,下面证明

$$H = \langle a^r \rangle$$
.

对任意的 $a^k \in H, r \le k \in \mathbb{Z}$, 存在 $s,t \in \mathbb{Z}, 0 \le t < r$ 使得 k = sr + t, 则

$$a^t = a^{k-sr} = a^k \cdot (a^r)^{-s} \in H.$$

因为 t < r, 所以由 r 的选取知 t = 0. 于是对任意 $a^k \in H$ 有

$$a^k = a^{sr} = (a^r)^s \in \langle a^r \rangle, \ \mathbb{D} \ H \subseteq \langle a^r \rangle.$$

又显然有 $\langle a^r \rangle \subseteq H$. 所以 $H = \langle a^r \rangle$ 为循环群.

推论 103

设 $G = \langle a \rangle$ 为循环群, ord a = n, $r \in \mathbb{Z}$. 如果 (n, r) = d, 则 $\langle a^r \rangle = \langle a^d \rangle$.

推论 103

设 $G = \langle a \rangle$ 为循环群, ord a = n, $r \in \mathbb{Z}$. 如果 (n, r) = d, 则 $\langle a^r \rangle = \langle a^d \rangle$.

证明: 因为 (n,r)=d, 所以存在 $u,v\in\mathbb{Z}$ 使得 d=un+vr. 于是 $a^d=a^{un+vr}=a^{vr}\in\langle a^r\rangle$. 另一方面, 同样由于 (n,r)=d, 所以 $d\mid r$, 从而又有 $a^r\in\langle a^d\rangle$. 由此得 $\langle a^r\rangle=\langle a^d\rangle$.

推论 103

设 $G=\langle a \rangle$ 为循环群, ord $a=n,\ r\in\mathbb{Z}$. 如果 (n,r)=d, 则 $\langle a^r \rangle = \langle a^d \rangle$.

证明: 因为 (n,r)=d, 所以存在 $u,v\in\mathbb{Z}$ 使得 d=un+vr. 于是 $a^d=a^{un+vr}=a^{vr}\in\langle a^r\rangle$. 另一方面, 同样由于 (n,r)=d, 所以 $d\mid r$, 从而又有 $a^r\in\langle a^d\rangle$. 由此得 $\langle a^r\rangle=\langle a^d\rangle$.

推论 104

设 $G = \langle a \rangle$ 为循环群,

- (1) 如果 $|G| = \infty$, 则 G 的全部子群为 $\left\{ \left\langle a^d \right\rangle \mid d = 0, 1, 2, \cdots \right\}.$
- (2) 如果 |G| = n, 则 G 的全部子群为 $\left\{ \left\langle a^d \right\rangle \mid d \ \, \text{为} \ \, n \ \, \text{的正因子} \, \right\}.$

证明

由定理 102 知, 循环群的任一子群必形如 $\langle a^r \rangle$ $(r \in \mathbb{Z})$. 显然, $\langle a^r \rangle = \langle a^{-r} \rangle$. 因此, 循环群的任一子群必形如 $\langle a^r \rangle$ $(r \in \mathbb{Z}$ 且 $r \geqslant 0$).

证明

由定理 102 知, 循环群的任一子群必形如 $\langle a^r \rangle$ $(r \in \mathbb{Z})$. 显然, $\langle a^r \rangle = \langle a^{-r} \rangle$. 因此, 循环群的任一子群必形如 $\langle a^r \rangle$ $(r \in \mathbb{Z}$ 且 $r \geqslant 0$).

(1) 如果 $|G|=\infty$, 因为对任意的 $r_1>r_2>0$, 有 $r_1\nmid r_2$, 所以 $a^{r_2}\notin\langle a^{r_1}\rangle$, 于是 $\langle a^{r_2}\rangle\neq\langle a^{r_2}\rangle$. 另一方面, 对任意的 r>0, 显然 $a^r\notin\langle a^0\rangle=\langle e\rangle$, 所以又有 $\langle a^r\rangle\neq\langle e\rangle$. 由此得 G 的全部子群为 $\left\{\left\langle a^d\right\rangle\mid d=0,1,2,\cdots\right\}.$

证明

由定理 102 知, 循环群的任一子群必形如 $\langle a^r \rangle$ $(r \in \mathbb{Z})$. 显然, $\langle a^r \rangle = \langle a^{-r} \rangle$. 因此, 循环群的任一子群必形如 $\langle a^r \rangle$ $(r \in \mathbb{Z}$ 且 $r \geqslant 0$).

- (1) 如果 $|G|=\infty$, 因为对任意的 $r_1>r_2>0$, 有 $r_1\nmid r_2$, 所以 $a^{r_2}\notin\langle a^{r_1}\rangle$, 于是 $\langle a^{r_1}\rangle\neq\langle a^{r_2}\rangle$. 另一方面, 对任意的 r>0, 显然 $a^r\notin\langle a^0\rangle=\langle e\rangle$, 所以又有 $\langle a^r\rangle\neq\langle e\rangle$. 由此得 G 的全部子群为 $\left\{\left\langle a^d\right\rangle\mid d=0,1,2,\cdots\right\}.$

例 105

求 \mathbb{Z}_{12} 的全部子群.

求 \mathbb{Z}_{12} 的全部子群.

解: 因 12 的全部正因子为

所以 \mathbb{Z}_{12} 的子群共有以下 6 个:

$$\langle \overline{1} \rangle = \mathbb{Z}_{12},$$

$$\langle \overline{2} \rangle = 2\mathbb{Z}_{12} = \{ \overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10} \},$$

$$\langle \overline{3} \rangle = 3\mathbb{Z}_{12} = \{ \overline{0}, \overline{3}, \overline{6}, \overline{9} \},$$

$$\langle \overline{4} \rangle = 4\mathbb{Z}_{12} = \{ \overline{0}, \overline{4}, \overline{8} \},\$$

$$\langle \overline{6} \rangle = 6\mathbb{Z}_{12} = \{ \overline{0}, \overline{6} \},\$$

$$\langle \overline{12} \rangle = 12 \mathbb{Z}_{12} = \{ \overline{0} \}.$$

循环群的结构定理

定理 106

设 G 为循环群.

- (1) 如果 $G = \langle a \rangle$ 是无限循环群, 则 $G \cong (\mathbb{Z}, +)$;
- (2) 如果 $G = \langle a \rangle$ 是 n 阶循环群, 则 $G \cong (\mathbb{Z}_n, +)$.

循环群的结构定理

定理 106

设 G 为循环群.

- (1) 如果 $G = \langle a \rangle$ 是无限循环群, 则 $G \cong (\mathbb{Z}, +)$;
- (2) 如果 $G = \langle a \rangle$ 是 n 阶循环群, 则 $G \cong (\mathbb{Z}_n, +)$.

证明: (1) 令

$$\phi: \mathbb{Z} \longrightarrow G,$$

$$k \longmapsto a^k, \quad \forall k \in \mathbb{Z}.$$

(i) 显然 ϕ 是 \mathbb{Z} 到 G 的映射;

(ii) 设 $k, l \in \mathbb{Z}$, 如果 $a^k = a^l$, 则由注 93.1 第 (2) 条得 k = l, 所以 ϕ 为 \mathbb{Z} 到 G 的单映射;

(ii) 设 $k, l \in \mathbb{Z}$, 如果 $a^k = a^l$, 则由注 93.1 第 (2) 条得 k = l, 所以 ϕ 为 \mathbb{Z} 到 G 的单映射; (iii) 对任意的 $a^k \in G$, 有 $k \in \mathbb{Z}$, 使 $\phi(k) = a^k$, 所以 ϕ 是 \mathbb{Z} 到 G 的满映射;

(ii) 设 $k,l\in\mathbb{Z}$, 如果 $a^k=a^l$, 则由注 93.1 第 (2) 条得 k=l, 所以 ϕ 为 \mathbb{Z} 到 G 的单映射; (iii) 对任意的 $a^k\in G$, 有 $k\in\mathbb{Z}$, 使 $\phi(k)=a^k$, 所以 ϕ 是 \mathbb{Z} 到 G 的满映射; (iv) 对任意的 $k,l\in\mathbb{Z}$, $\phi(k+l)=a^{k+l}=a^k\cdot a^l=\phi(k)\cdot\phi(l),$ 所以 ϕ 是 \mathbb{Z} 到 G 的同构映射. 因此, $G\cong(\mathbb{Z},+)$.

(ii) 设 $k,l\in\mathbb{Z}$, 如果 $a^k=a^l$, 则由注 93.1 第 (2) 条得 k=l, 所以 ϕ 为 \mathbb{Z} 到 G 的单映射; (iii) 对任意的 $a^k\in G$, 有 $k\in\mathbb{Z}$, 使 $\phi(k)=a^k$, 所以 ϕ 是 \mathbb{Z} 到 G 的满映射; (iv) 对任意的 $k,l\in\mathbb{Z}$, $\phi(k+l)=a^{k+l}=a^k\cdot a^l=\phi(k)\cdot \phi(l),$ 所以 ϕ 是 \mathbb{Z} 到 G 的同构映射. 因此, $G\cong (\mathbb{Z},+)$. (2) 令 $\phi: \quad \mathbb{Z}_n\longrightarrow G,$ $\bar{k}\longmapsto a^k, \quad \forall \bar{k}\in\mathbb{Z}_n.$

(ii) 设 $k,l\in\mathbb{Z}$, 如果 $a^k=a^l$, 则由注 93.1 第 (2) 条得 k=l, 所以 ϕ 为 \mathbb{Z} 到 G 的单映射; (iii) 对任意的 $a^k\in G$, 有 $k\in\mathbb{Z}$, 使 $\phi(k)=a^k$, 所以 ϕ 是 \mathbb{Z} 到 G 的满映射; (iv) 对任意的 $k,l\in\mathbb{Z}$, $\phi(k+l)=a^{k+l}=a^k\cdot a^l=\phi(k)\cdot\phi(l),$

所以 ϕ 是 \mathbb{Z} 到 G 的同构映射. 因此, $G\cong (\mathbb{Z},+)$. (2) 令

$$\phi: \mathbb{Z}_n \longrightarrow G,$$

$$\bar{k} \longmapsto a^k, \quad \forall \bar{k} \in \mathbb{Z}_n.$$

(i) 设 $\bar{k} = \bar{l}$, 则 $n \mid k - l$, 于是 $a^{k-l} = e$, 从而 $a^k = a^l$, 所以 ϕ 是 \mathbb{Z}_n 到 G 的映射;

- (ii) 设 $\bar{k}, \bar{l} \in \mathbb{Z}_n$, 如果 $\phi(\bar{k}) = \phi(\bar{l})$, 即 $a^k = a^l$, 则 $n \mid k l$, 从而 $\bar{k} = \bar{l}$, 所以 ϕ 是 \mathbb{Z}_n 到 G 的单映射;
- (iii) 对任意的 $a^k \in G$, 有 $\bar{k} \in \mathbb{Z}_n$, 使 $\phi(\bar{k}) = a^k$, 所以 ϕ 是 \mathbb{Z}_n 到 G 的满映射;

- (ii) 设 $\bar{k}, \bar{l} \in \mathbb{Z}_n$, 如果 $\phi(\bar{k}) = \phi(\bar{l})$, 即 $a^k = a^l$, 则 $n \mid k l$, 从而 $\bar{k} = \bar{l}$, 所以 ϕ 是 \mathbb{Z}_n 到 G 的单映射;
- (iii) 对任意的 $a^k \in G$, 有 $\bar{k} \in \mathbb{Z}_n$, 使 $\phi(\bar{k}) = a^k$, 所以 ϕ 是 \mathbb{Z}_n 到 G 的满映射; (iv) 对任意的 $\bar{k}, \bar{l} \in \mathbb{Z}_n$, 有 $\phi(\bar{k}+\bar{l}) = \phi(\overline{k}+\bar{l}) = a^{k+l} = a^k \cdot a^l = \phi(\bar{k}) \cdot \phi(\bar{l})$.

- (ii) 设 $\bar{k}, \bar{l} \in \mathbb{Z}_n$, 如果 $\phi(\bar{k}) = \phi(\bar{l})$, 即 $a^k = a^l$, 则 $n \mid k l$, 从而 $\bar{k} = \bar{l}$, 所以 ϕ 是 \mathbb{Z}_n 到 G 的单映射;
- (iii) 对任意的 $a^k \in G$, 有 $\bar{k} \in \mathbb{Z}_n$, 使 $\phi(\bar{k}) = a^k$, 所以 ϕ 是 \mathbb{Z}_n 到 G 的满映射; (iv) 对任意的 $\bar{k}, \bar{l} \in \mathbb{Z}_n$, 有 $\phi(\bar{k} + \bar{l}) = \phi(\overline{k} + \bar{l}) = a^{k+l} = a^k \cdot a^l = \phi(\bar{k}) \cdot \phi(\bar{l}).$

注 106.1

由定理 106 可知, 从同构的观点看, 循环群仅有两类, 即整数加群 $(\mathbb{Z},+)$ 和模 n 剩余类加群 $(\mathbb{Z}_n,+)$, 所以掌握了这两类群, 也就等于把一切循环群都弄清楚了.

§2.6 循环群

- 循环群的定义
- 循环群的例子
- 循环群的生成元
- 循环群的子群
- 循环群的结构

§2.7 对称群

- 对称群
- 凯莱定理
- 轮换与对换
- 置换的轮换表示
- 置换的对换分解
- 奇 (偶) 置换
- 交错群

对称群的定义

定义 107

设 A 为非空集合. 记 A 的所有置换构成的集合为 S(A), 则 S(A) 在映射的复合作为乘法运算下是群, 我们称 S(A) 为 A 的 **对称群** (symmetric group), S(A) 的任一子群称为置**换群** (permutation group). 如果 A 是有 n 个元素的有限集, 则将 A 表示为 $[n] = \{1,2,3,\cdots,n\}$, 并且对任意 $\sigma \in S(A)$ 记为 $\sigma = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \end{pmatrix}$; 此时将 S(A) 记为 S_n , 并称为 n 次对称群.

例 108

写出 S_3 的全部元素.

写出 S_3 的全部元素.

 \mathbf{M} : 易得 S_3 有 6 个元素, 它们是

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix},$$
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}.$$

设置换
$$\sigma \in S_5$$
 为

$$\sigma(1)=3, \sigma(2)=5, \sigma(3)=2, \sigma(4)=4, \sigma(5)=1$$
,则
$$\sigma=\left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 4 & 1 \end{array} \right).$$

该置换也可以写成

$$\sigma = \begin{pmatrix} 2 & 1 & 4 & 3 & 5 \\ 5 & 3 & 4 & 2 & 1 \end{pmatrix} \quad \mathbf{\vec{g}} \quad \sigma = \begin{pmatrix} 5 & 3 & 1 & 4 & 2 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$$

等.

设置换 $\sigma \in S_5$ 为

$$\sigma(1)=3, \sigma(2)=5, \sigma(3)=2, \sigma(4)=4, \sigma(5)=1$$
,则
$$\sigma=\left(\begin{array}{cccc}1&2&3&4&5\\3&5&2&4&1\end{array}\right).$$

该置换也可以写成

$$\sigma = \begin{pmatrix} 2 & 1 & 4 & 3 & 5 \\ 5 & 3 & 4 & 2 & 1 \end{pmatrix} \quad \vec{\mathbf{x}} \quad \sigma = \begin{pmatrix} 5 & 3 & 1 & 4 & 2 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$$

等.

注 109.1

由于置换的乘法本质上是映射的合成, 所以置换的乘法是从右往左的. 此外, 对于 $\sigma \in S_n$ 以及 1 到 n 中的 r $(r \geq 2)$ 个不同的数 i_1, i_2, \cdots, i_r , 若有 $\sigma(i_1) = i_2, \sigma(i_2) = i_3, \cdots, \sigma(i_{r-1}) = i_r$, 则可表示为 $i_1 \rightarrow i_2 \rightarrow i_3 \rightarrow \cdots \rightarrow i_r$.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, 其中$$
 σ 以下列顺序作用于集合 $\{1,2,3,4,5\}$: $1 \to 3 \to 1$, $2 \to 1 \to 2$, $3 \to 2 \to 3$, $4 \to 4 \to 4$.

定理 111

n 次对称群 S_n 的阶是 n!.

定理 111

n 次对称群 S_n 的阶是 n!.

定理 112 (凯莱定理 (Cayley, 1854))

每一个群都同构于一个置换群.

定理 111

n 次对称群 S_n 的阶是 n!.

定理 112 (凯莱定理 (Cayley, 1854))

每一个群都同构于一个置换群.

证明: 设 G 是群, $a \in G$, 定义 ϕ_a 为 $\phi_a(x) = ax$, $\forall x \in G$, 则 ϕ_a 是 G 的一个置换. 令

$$G_l = \{ \phi_a \mid a \in G \} .$$

易证 G_l 关于映射的合成构成群 S(G) 的一个子群.

定理 111

n 次对称群 S_n 的阶是 n!.

定理 112 (凯莱定理 (Cayley, 1854))

每一个群都同构于一个置换群.

证明: 设 G 是群, $a \in G$, 定义 ϕ_a 为 $\phi_a(x) = ax$, $\forall x \in G$, 则 ϕ_a 是 G 的一个置换. 令

$$G_l = \{ \phi_a \mid a \in G \} .$$

易证 G_l 关于映射的合成构成群 S(G) 的一个子群. 进一步, 令

$$\rho: G \longrightarrow G_l,$$

$$a \longmapsto \phi_a, \quad \forall a \in G.$$

易证 ρ 是 G 到 G_l 的同构.

轮换与对换

定义 113

设 σ 是一个 n 阶置换. 如果存在 1 到 n 中的 r 个不同的数 i_1, i_2, \cdots, i_r ,使 $\sigma(i_1) = i_2, \sigma(i_2) = i_3, \cdots, \sigma(i_{r-1}) = i_r, \sigma(i_r) = i_1$,并且 σ 保持其余的元素不变,则称 σ 是一个长度为 r 的**轮换** (cycle),简称 r 轮换,记作 $\sigma = (i_1 i_2 \cdots i_r)$,其中集合 $\{i_1, i_2, \cdots, i_r\}$ 记为 $I(\sigma)$. 特别地,2 轮换称为**对换** (transposition).

轮换与对换

定义 113

设 σ 是一个 n 阶置换. 如果存在 1 到 n 中的 r 个不同的数 i_1, i_2, \cdots, i_r ,使 $\sigma(i_1) = i_2, \sigma(i_2) = i_3, \cdots, \sigma(i_{r-1}) = i_r, \sigma(i_r) = i_1$,并且 σ 保持其余的元素不变,则称 σ 是一个长度为 r 的**轮换** (cycle),简称 r 轮换,记作 $\sigma = (i_1 i_2 \cdots i_r)$,其中集合 $\{i_1, i_2, \cdots, i_r\}$ 记为 $I(\sigma)$. 特别地,2 轮换称为**对换** (transposition).

定义 114

设 $\sigma=(i_1i_2\cdots i_r)$ 与 $\tau=(j_1j_2\cdots j_s)$ 是两个轮换, 如果对任意 $k\in [r], l\in [s]$ 均有 $i_k\neq j_l$, 则称 σ 与 τ 为两个不相交的轮换.

轮换与对换

定义 113

设 σ 是一个 n 阶置换. 如果存在 1 到 n 中的 r 个不同的数 i_1, i_2, \cdots, i_r , 使 $\sigma(i_1) = i_2, \sigma(i_2) = i_3, \cdots, \sigma(i_{r-1}) = i_r, \sigma(i_r) = i_1$, 并且 σ 保持其余的元素不变, 则称 σ 是一个长度为 r 的**轮换**

开且 σ 保持具余的元素不变, 则称 σ 是一个长度为 r 的轮f (cycle), 简称 r 轮换, 记作 $\sigma=(i_1i_2\cdots i_r)$, 其中集合 $\{i_1,i_2,\cdots,i_r\}$ 记为 $I(\sigma)$. 特别地, 2 轮换称为**对换** (transposition).

定义 114

设 $\sigma = (i_1 i_2 \cdots i_r)$ 与 $\tau = (j_1 j_2 \cdots j_s)$ 是两个轮换, 如果对任意 $k \in [r], l \in [s]$ 均有 $i_k \neq j_l$, 则称 σ 与 τ 为两个不相交的轮换.

■ 一般地, 恒等置换常写为 (1). 若一个置换不是恒等置换, 则在它的分解式中. 常将出现的 1 轮换省略不写.

例 115

将
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 6 & 1 & 5 & 2 \end{pmatrix}$$
 表为不相交轮换的乘积.

例 115

将
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 6 & 1 & 5 & 2 \end{pmatrix}$$
 表为不相交轮换的乘积.

解. 容易看出, σ 以下列顺序作用于 $\{1,2,3,4,5\}$ 的元素:

所以
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 6 & 1 & 5 & 2 \end{pmatrix}$$
 = $(14)(236)(5) = (14)(236)$.

例 115

将
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 6 & 1 & 5 & 2 \end{pmatrix}$$
 表为不相交轮换的乘积.

解. 容易看出, σ 以下列顺序作用于 $\{1,2,3,4,5\}$ 的元素:

所以
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 6 & 1 & 5 & 2 \end{pmatrix} = (14)(236)(5) = (14)(236).$$

例 116

三次对称群 S_3 的 6 个元素的轮换表示为

$$\sigma_1 = (1);$$
 $\sigma_2 = (12);$ $\sigma_3 = (13);$ $\sigma_4 = (23);$ $\sigma_5 = (123);$ $\sigma_6 = (132).$

轮换的性质

定理 117

任何两个不相交轮换的乘积是可以交换的.

轮换的性质

定理 117

任何两个不相交轮换的乘积是可以交换的.

证明: 设 $\sigma = (i_1 i_2 \cdots i_r)$ 与 $\tau = (j_1 j_2 \cdots j_s)$ 是两个不相交的轮换, a 是 $\{1, 2, \cdots, n\}$ 中的任意一个数.

- (1) 如果 $a \neq i_k, j_l \ (k \in [r], l \in [s])$,则 $\sigma \tau(a) = \sigma(a) = a, \ \tau \sigma(a) = \tau(a) = a,$ 所以 $\sigma \tau(a) = \tau \sigma(a)$.
- (2) 如果 $a = i_k \ (k \in [r])$, 则 $\sigma(a) \neq j_l \ (l \in [s])$. 从而 $\sigma\tau(a) = \sigma(a)$, $\tau\sigma(a) = \tau(\sigma(a)) = \sigma(a)$, 所以 $\sigma\tau(a) = \tau\sigma(a)$.
- (3) 同理可证, 如果 $a=j_l\ (l\in[s])$, 也有 $\sigma\tau(a)=\tau\sigma(a)$. 综上定理得证.

定理 118

 S_n 中每一个置换可表为一些不相交轮换的乘积.

定理 118

 S_n 中每一个置换可表为一些不相交轮换的乘积.

证明: 设置换为 $\sigma \in S_n$. 任意选取 $i_1 \in [n]$. 不妨设轮换 $\sigma_1 = (i_1 i_2 \cdots i_r)$, 任意选取 $j_1 \in [n] \backslash I(\sigma_1)$, 可得一轮换 $\sigma_2 = (j_1 j_2 \cdots j_s)$. 显然 $I(\sigma_1) \cap I(\sigma_2) = \emptyset$. 由于 n 有限, 以此类推 可得一系列不相交轮换 $\sigma_1, \sigma_2, \cdots, \sigma_t$, 并且 $\cup_{k=1}^t I(\sigma_k) = [n]$. 进一步, 可验证 $\sigma = \sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_t$. 于是定理得证.

注 118.1

设 $\sigma \in S_n$. 则对任意 $i \in [n]$, 由 σ 是置换易知包含 i 的轮换在不考虑初始值时是唯一确定的. 从而由定理 117 和定理 118 知将 σ 分解为不相交轮换的乘积, 如果不考虑轮换内的整数次序和不相交轮换之间的次序, 以及乘积中 1 轮换的个数, 则这个分解式是唯一的.

注 118.1

设 $\sigma \in S_n$. 则对任意 $i \in [n]$, 由 σ 是置换易知包含 i 的轮换在不考虑初始值时是唯一确定的. 从而由定理 117 和定理 118 知将 σ 分解为不相交轮换的乘积, 如果不考虑轮换内的整数次序和不相交轮换之间的次序, 以及乘积中 1 轮换的个数, 则这个分解式是唯一的.

例 119

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 1 & 6 \end{pmatrix} = (12345);$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 5 & 4 & 3 & 1 \end{pmatrix} = (126)(35).$$

例 120

将下列轮换的乘积表示为不相交轮换的乘积: (3654)(3241)(31524).

将下列轮换的乘积表示为不相交轮换的乘积:

由此得 (3654)(3241)(31524) = (142)(365).

定理 121

如果 $\sigma \in S_n$ 是一个 r 轮换, 则 ord $\sigma = r$.

定理 121

如果 $\sigma \in S_n$ 是一个 r 轮换, 则 ord $\sigma = r$.

证明: 直接计算可知 $\sigma^r = (1)$, 且对任意的 $0 < s < r, \sigma^s \neq e$, 所以 $\operatorname{ord} \sigma = r$.

定理 121

如果 $\sigma \in S_n$ 是一个 r 轮换, 则 ord $\sigma = r$.

证明: 直接计算可知 $\sigma^r = (1)$, 且对任意的 $0 < s < r, \sigma^s \neq e$, 所以 ord $\sigma = r$.

定理 122

如果 $\sigma \in S_n$ 是一些不相交轮换的乘积

$$\sigma = \sigma_1 \sigma_2 \cdots \sigma_s$$
,

其中 σ_i 是 r_i 轮换, 则 ord $\sigma = [r_1, r_2, \cdots, r_s]$.

定理 121

如果 $\sigma \in S_n$ 是一个 r 轮换, 则 ord $\sigma = r$.

证明: 直接计算可知 $\sigma^r = (1)$, 且对任意的 $0 < s < r, \sigma^s \neq e$, 所以 $\operatorname{ord} \sigma = r$.

定理 122

如果 $\sigma \in S_n$ 是一些不相交轮换的乘积

$$\sigma = \sigma_1 \sigma_2 \cdots \sigma_s$$

其中 σ_i 是 r_i 轮换, 则 ord $\sigma = [r_1, r_2, \cdots, r_s]$.

证明: 设 $m = [r_1, r_2, \dots, r_s]$. 由于不相交轮换的乘积是可以互相交换的, 因此

$$\sigma^m = \sigma_1^m \sigma_2^m \cdots \sigma_s^m = e,$$

从而 ord $\sigma \mid m$.

证明 (续)

另一方面,设
$$\sigma_1=(i_1i_2\cdots i_{r_1})$$
,则对任意的 $i_j\in\{i_1,i_1,\cdots,i_{r_1}\}$,由于 $\sigma_1,\,\sigma_2,\cdots,\sigma_s$ 为互不相交的轮换,因此
$$\sigma_1^{\operatorname{ord}\,\sigma}\left(i_j\right)=\sigma_1^{\operatorname{ord}\,\sigma}\sigma_2^{\operatorname{ord}\,\sigma}\cdots\sigma_s^{\operatorname{ord}\,\sigma}\left(i_j\right)\\ =\sigma^{\operatorname{ord}\,\sigma}\left(i_j\right)=i_j.$$
 由此推出 $\sigma_1^{\operatorname{ord}\,\sigma}=e$,从而 $r_1\mid\operatorname{ord}\,\sigma$. 同理可证
$$r_i\mid\operatorname{ord}\,\sigma\left(i=1,2,\cdots,s\right).$$
 于是
$$m=[r_1,r_2,\cdots,r_s]\mid\operatorname{ord}\,\sigma.$$
 所以
$$\operatorname{ord}\,\sigma=[r_1,r_2,\cdots,r_s]$$

例 123

设 σ 是一个 7 阶置换, 已知 $\sigma^3 = (1437562)$, 试求 σ .

例 123

设 σ 是一个 7 阶置换, 已知 $\sigma^3 = (1437562)$, 试求 σ .

解法 1: 由已知, σ 是 1 \sim 7 的一个置换. 因为 σ ³ 是一个 7 轮换, 所以 σ 也是一个 7 轮换, 从而 ord σ = 7. 于是

$$\sigma = (\sigma^3)^5 = (1437562)^5 = (1674253).$$

设 σ 是一个 7 阶置换, 已知 $\sigma^3 = (1437562)$, 试求 σ .

解法 1: 由已知, σ 是 $1\sim7$ 的一个置换. 因为 σ^3 是一个 7 轮换, 所以 σ 也是一个 7 轮换, 从而 ord $\sigma=7$. 于是

$$\sigma = (\sigma^3)^5 = (1437562)^5 = (1674253).$$

解法 2: 本题也可按下面的方法求解:

易知, σ 是一个 7 轮换. 设 $\sigma = (i_1 i_2 i_3 i_4 i_5 i_6 i_7)$, 则

$$\sigma^3 = (i_1 i_4 i_7 i_3 i_6 i_2 i_5).$$

将这与 $\sigma^3 = (143756)$ 比较, 可得

$$i_1 = 1, i_2 = 6, i_3 = 7, i_4 = 4, i_5 = 2, i_6 = 5, i_7 = 3,$$
 \square $\sigma = (167425).$

置换的对换分解

定理 124

每个置换都可表为对换的乘积.

置换的对换分解

定理 124

每个置换都可表为对换的乘积.

证明: 首先, 设 $\sigma = (i_1 i_2 \cdots i_r)$ 是一个 r 轮换, 则 $\sigma = (i_1 i_2) (i_2 i_3) \cdots (i_{r-2} i_{r-1}) (i_{r-1} i_r).$

所以每个轮换可以表示为对换的乘积. 由于每个置换可以表示为不相交轮换的乘积, 所以每个置换也可以表示为对换的乘积.

置换的对换分解

定理 124

每个置换都可表为对换的乘积.

证明: 首先, 设 $\sigma = (i_1 i_2 \cdots i_r)$ 是一个 r 轮换, 则 $\sigma = (i_1 i_2) (i_2 i_3) \cdots (i_{r-2} i_{r-1}) (i_{r-1} i_r).$

所以每个轮换可以表示为对换的乘积. 由于每个置换可以表示为不相交轮换的乘积, 所以每个置换也可以表示为对换的乘积.

例 125

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 3 & 6 & 2 & 5 & 4 & 1 \end{pmatrix} = (17)(23)(36)(64)$$
$$= (71)(36)(25)(64)(45)(25).$$

逆序(数)

定义 126

由 $1,2,\cdots,n$ 这 n 个数排成的任一个有序数组 i_1,i_2,\cdots,i_n 称为一个 n 级排列. 在一个排列中, 如果一对数的前后位置与大小顺序相反, 即前面的数大于后面的数, 那么就称它们构成一个**逆 序**, 排列中的逆序总数称为这个排列的**逆序数**. 对任意 $\sigma \in S_n$, 则 $\sigma(1)\sigma(2)\sigma(3)\cdots\sigma(n)$ 可以看做是一个 n 级排列, 其逆序数记为 $\mathcal{N}(\sigma)$.

置换的对换分解唯一性

定理 127

将一个置换 $\sigma \in S_n$ 表为对换的乘积, 所用对换个数的奇偶性是唯一的.

置换的对换分解唯一性

定理 127

将一个置换 $\sigma \in S_n$ 表为对换的乘积, 所用对换个数的奇偶性是唯一的.

证明: 设 $\sigma_1 \sigma_2 \cdots \sigma_r$ 是 σ 的任意一个对换的乘积表示, 即 $\sigma = \sigma_1 \sigma_2 \cdots \sigma_r$,

其中 σ_i 都是对换. 由于排列 $\sigma(1)\sigma(2)\cdots\sigma(n)$ 可由自然排列 $123\cdots n$ 经过 r 次对换 $\sigma_1,\sigma_2,\cdots,\sigma_r$ 得到, 而自然排列的逆序 数为 0, 是偶数. 因此, r 的奇偶性和排列 $\sigma(1)\sigma(2)\cdots\sigma(n)$ 的逆 序数的奇偶性必然相同, 于是可知 $\sigma\in S_n$ 表为对换的乘积时所 用对换个数的奇偶性是由排列 $\sigma(1)\sigma(2)\cdots\sigma(n)$ 的逆序数的奇偶性唯一确定的.

定义 128

可表成偶数个对换的乘积的置换叫偶置换 (even permutation), 可表成奇数个对换的乘积的置换叫奇置换 (odd permutation).

定义 128

可表成偶数个对换的乘积的置换叫偶置换 (even permutation), 可表成奇数个对换的乘积的置换叫奇置换 (odd permutation).

注 128.1

由置换和排列的关系以及定义 128 可知:

- (1) 任何两个偶 (奇) 置换之积是偶置换;
- (2) 一个偶置换与一个奇置换之积是奇置换;
- (3) 一个偶 (奇) 置换的逆置换仍是一个偶 (奇) 置换.

定理 129

设 G 是置换群. 若 G 中存在奇置换, 则 G 中奇置换的个数与偶置换的个数相同.

定理 129

设 G 是置换群. 若 G 中存在奇置换, 则 G 中奇置换的个数与偶置换的个数相同.

证明: 设 G 中有奇置换. 由于 G 是置换群, 所以 $(1) \in G$, 而 (1) 为偶置换. 所以 G 中既有奇置换又有偶置换. 以 G 与 E 分别表示 G 中奇置换与偶置换的集合. 设 G 为 G 的任一奇置换, 则

$$\sigma O = \{ \sigma \delta \mid \delta \in O \} \subseteq E,$$

$$\sigma E = \{ \sigma \tau \mid \tau \in E \} \subseteq O.$$

因此

$$|O| = |\sigma O| \le |E|, |E| = |\sigma E| \le |O|,$$

由此得 |O| = |E|. 这就证明了结论.

推论 130

当 n > 1 时, 在全体 n 阶置换中, 奇置换与偶置换各有 $\frac{n!}{2}$ 个.

推论 130

当 n > 1 时, 在全体 n 阶置换中, 奇置换与偶置换各有 $\frac{n!}{2}$ 个.

定理 131

设 G 是置换群. 则 G 中所有偶置换的集合 H 是 G 的子群.

推论 130

当 n > 1 时, 在全体 n 阶置换中, 奇置换与偶置换各有 $\frac{n!}{2}$ 个.

定理 131

设 G 是置换群. 则 G 中所有偶置换的集合 H 是 G 的子群.

证明: 因 $(1) \in G$ 为偶置换, 所以 $(1) \in H$, 从而 H 非空. 又由于两个偶置换的乘积仍是偶置换, 所以 H 关于置换的乘积封闭. 由注 128.1 第 (3) 条知 H 中每个偶置换的逆为偶置换, 仍然在 H中. 由定理 25 知 H 为 G 的子群.

交错群

定义 132

由 S_n 的全体偶置换所构成的子群称为 n 次**交错群** (alternating group), 记作 A_n .

交错群

定义 132

由 S_n 的全体偶置换所构成的子群称为 n 次**交错群** (alternating group), 记作 A_n .

例 133

 S_3 的交错群为

$$A_3 = \{(1), (123), (132)\}.$$

§2.7 对称群

- 对称群
- 凯莱定理
- 轮换与对换
- 置换的轮换表示
- 置换的对换分解
- 奇 (偶) 置换
- 交错群

§2.8 群的直积

- 群的外直积
- 外直积的性质
- 外直积元素的阶
- 循环群的外直积
- 群的内直积
- 内直积的性质
- 内直积的判定

定义 134

设 G_1,G_2,\cdots,G_n 是有限多个群. 构造集合 G_1,G_2,\cdots,G_n 的笛卡尔积

$$G = \{(g_1, g_2, \cdots, g_n) \mid g_i \in G_i, i = 1, 2, \cdots, n\},\$$

并在 G 中定义运算

$$(g_1, g_2, \cdots, g_n) \cdot (g'_1, g'_2, \cdots, g'_n) = (g_1 g'_1, g_2 g'_2, \cdots, g_n g'_n),$$

则 G 关于上述运算构成群, 称为群 G_1, G_2, \dots, G_n 的**外直积** (external direct product), 记作 $G = G_1 \times G_2 \times \dots \times G_n$.

注 134.1

设 $G = G_1 \times G_2 \times \cdots \times G_n$ 是群 G_1, G_2, \cdots, G_n 的外直积, 则

注 134.1

设 $G = G_1 \times G_2 \times \cdots \times G_n$ 是群 G_1, G_2, \cdots, G_n 的外直积, 则

(1) 如果 e_1, e_2, \cdots, e_n 分别是群 $G_1, G_2, \cdots G_n$ 的单位元, 则 (e_1, e_2, \cdots, e_n) 是 G 的单位元. 进一步, 设 $(g_1, g_2, \cdots, g_n) \in G$, 则 $(g_1, g_2, \cdots, g_n)^{-1} = (g_1^{-1}, g_2^{-1}, \cdots, g_n^{-1});$

注 134.1

设 $G = G_1 \times G_2 \times \cdots \times G_n$ 是群 G_1, G_2, \cdots, G_n 的外直积, 则

- (1) 如果 e_1, e_2, \cdots, e_n 分别是群 $G_1, G_2, \cdots G_n$ 的单位元,则 (e_1, e_2, \cdots, e_n) 是 G 的单位元. 进一步,设 $(g_1, g_2, \cdots, g_n) \in G$,则 $(g_1, g_2, \cdots, g_n)^{-1} = (g_1^{-1}, g_2^{-1}, \cdots, g_n^{-1});$
- (2) G 是有限群的充分必要条件是 G_1, G_2, \dots, G_n 都是有限群. 并且, 当 G 是有限群时, 有 $|G| = |G_1| |G_2| \dots |G_2|$;

注 134.1

设 $G = G_1 \times G_2 \times \cdots \times G_n$ 是群 G_1, G_2, \cdots, G_n 的外直积, 则

- (1) 如果 e_1, e_2, \cdots, e_n 分别是群 $G_1, G_2, \cdots G_n$ 的单位元, 则 (e_1, e_2, \cdots, e_n) 是 G 的单位元. 进一步, 设 $(g_1, g_2, \cdots, g_n) \in G$, 则 $(g_1, g_2, \cdots, g_n)^{-1} = (g_1^{-1}, g_2^{-1}, \cdots, g_n^{-1})$;
- (2) G 是有限群的充分必要条件是 G_1, G_2, \dots, G_n 都是有限群. 并且, 当 G 是有限群时, 有 $|G| = |G_1| |G_2| \dots |G_2|$;
- (3) 当 G_1, G_2, \dots, G_n 都是加群时, 它们的外直积通常记作 $G_1 \oplus G_2 \oplus \dots \oplus G_n$, 并称为**外直和**.

例 135

(1) $\mathbb{R}^n = \mathbb{R} \times \cdots \times \mathbb{R}$;

例 135

- (1) $\mathbb{R}^n = \mathbb{R} \times \cdots \times \mathbb{R}$;
- (2) 由例 92 知 4 阶群 $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ 必同构于 Klein 四元群 $G = \{e, a, b, ab\}$ 或 4 阶循环群.

- (1) $\mathbb{R}^n = \mathbb{R} \times \cdots \times \mathbb{R}$:
- (2) 由例 92 知 4 阶群 $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ 必同构于 Klein 四元群 $G = \{e, a, b, ab\}$ 或 4 阶循环群.注意到对任意 $(a,b) \in \mathbb{Z}_2 \oplus \mathbb{Z}_2$ 有 (a,b) + (a,b) = (0,0). 因此 $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ 不 是循环群. 令 G 到 $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ 的映射 ϕ 为 $\phi(e) = (0,0), \phi(a) = (1,0), \phi(b) = (0,1), \phi(ab) = (1,1), 则 <math>\phi$ 是一同构映射. 事实上, G 到 $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ 的任意一个将 e 映射 到零元 (0,0) 的一一映射都是一个同构映射.

定理 136

设 $G = G_1 \times G_2 \times \cdots \times G_n$ 是群 G_1, G_2, \cdots, G_n 的外直积, 则 G 是交换群的充分必要条件是 G_1, G_2, \cdots, G_n 都是交换群.

定理 136

设 $G = G_1 \times G_2 \times \cdots \times G_n$ 是群 G_1, G_2, \cdots, G_n 的外直积, 则 G 是交换群的充分必要条件是 G_1, G_2, \cdots, G_n 都是交换群.

证明: 如果
$$G_1, G_2, \dots, G_n$$
 都是交换群,则对任意的 $(g_1, g_2, \dots, g_n), (g'_1, g'_2, \dots, g'_n) \in G$ 有 $(g_1, g_2, \dots, g_n) \cdot (g'_1, g'_2, \dots, g'_n) = (g_1 g'_1, g_2 g'_2, \dots, g_n g'_n)$ $= (g'_1 g_1, g'_2 g_2, \dots, g'_n g_n)$ $= (g'_1, g'_2, \dots, g'_n) \cdot (g_1, g_2, \dots, g_n)$,

所以 G 是交换群.

定理 136

设 $G = G_1 \times G_2 \times \cdots \times G_n$ 是群 G_1, G_2, \cdots, G_n 的外直积, 则 G 是交换群的充分必要条件是 G_1, G_2, \cdots, G_n 都是交换群.

证明: 如果 G_1, G_2, \cdots, G_n 都是交换群, 则对任意的

 $(g_1, g_2, \dots, g_n), (g'_1, g'_2, \dots, g'_n) \in G \, \bar{\mathbf{q}}$ $(g_1, g_2, \dots, g_n) \cdot (g'_1, g'_2, \dots, g'_n) = (g_1 g'_1, g_2 g'_2, \dots, g_n g'_n)$ $= (g'_1 g_1, g'_2 g_2, \dots, g'_n g_n)$ $= (g'_1, g'_2, \dots, g'_n) \cdot (g_1, g_2, \dots, g_n),$

所以 G 是交换群. 反之, 如果 G 是交换群, 那么对任意的 $(g_1,g_2,\cdots,g_n),(g_1',g_2',\cdots,g_n')\in G$ 有 $(g_1,g_2,\cdots,g_n)\cdot(g_1',g_2',\cdots,g_n')=(g_1',g_2',\cdots,g_n')\cdot(g_1,g_2,\cdots,g_n),$ 即 $(g_1g_1',g_2g_2',\cdots,g_ng_n')=(g_1'g_1,g_2'g_2,\cdots,g_n'g_n).$ 因此 $g_ig_i'=g_i'g_i$ 对任意 1< i< n. 从而 G_1,G_2,\cdots,G_n 都是交换群.

定理 137

设 $G = G_1 \times G_2 \times \cdots \times G_n$ 是群 G_1, G_2, \cdots, G_n 的外直积,则对任意 $\sigma \in S_n$ 有 $G_1 \times G_2 \times \cdots \times G_n \cong G_{\sigma(1)} \times G_{\sigma(2)} \times \cdots \times G_{\sigma(n)}$.

定理 137

设
$$G = G_1 \times G_2 \times \cdots \times G_n$$
 是群 G_1, G_2, \cdots, G_n 的外直积, 则对 任意 $\sigma \in S_n$ 有 $G_1 \times G_2 \times \cdots \times G_n \cong G_{\sigma(1)} \times G_{\sigma(2)} \times \cdots \times G_{\sigma(n)}$.

证明: 构造映射

$$\phi: G_1 \times G_2 \times \cdots \times G_n \longrightarrow G_{\sigma(1)} \times G_{\sigma(2)} \times \cdots \times G_{\sigma(n)},$$
$$(a_1, a_2, \cdots, a_n) \longmapsto (a_{\sigma(1)}, a_{\sigma(2)}, \cdots, a_{\sigma(n)}),$$

则 ϕ 是一一映射.

证明 (续)

注意到

$$\phi((a_{1}, a_{2}, \dots, a_{n}) \cdot (b_{1}, b_{2}, \dots, b_{n}))$$

$$= \phi(a_{1}b_{1}, a_{2}b_{2}, \dots, a_{n}b_{n})$$

$$= (a_{\sigma(1)}b_{\sigma(1)}, a_{\sigma(2)}b_{\sigma(2)}, \dots, a_{\sigma(n)}b_{\sigma(n)})$$

$$= (a_{\sigma(1)}, a_{\sigma(2)}, \dots, a_{\sigma(n)}) \cdot (b_{\sigma(1)}, b_{\sigma(2), \dots, b_{\sigma(n)}})$$

$$= \phi(a_{1}, a_{2}, \dots, a_{n})\phi(b_{1}, b_{2}, \dots, b_{n}).$$

证明 (续)

注意到

$$\phi\left(\left(a_{1},a_{2},\cdots,a_{n}\right)\cdot\left(b_{1},b_{2},\cdots,b_{n}\right)\right)$$

$$=\phi\left(a_{1}b_{1},a_{2}b_{2},\cdots,a_{n}b_{n}\right)$$

$$=\left(a_{\sigma(1)}b_{\sigma(1)},a_{\sigma(2)}b_{\sigma(2)},\cdots,a_{\sigma(n)}b_{\sigma(n)}\right)$$

$$=\left(a_{\sigma(1)},a_{\sigma(2)},\cdots,a_{\sigma(n)}\right)\cdot\left(b_{\sigma(1)},b_{\sigma(2),\cdots,b_{\sigma(n)}}\right)$$

$$=\phi\left(a_{1},a_{2},\cdots,a_{n}\right)\phi\left(b_{1},b_{2},\cdots,b_{n}\right).$$
因此, ϕ 是 $G_{1}\times G_{2}\times\cdots\times G_{n}$ 到 $G_{\sigma(1)}\times G_{\sigma(2)}\times\cdots\times G_{\sigma(n)}$ 的同构映射,从而
$$G_{1}\times G_{2}\times\cdots\times G_{n}\cong G_{\sigma(1)}\times G_{\sigma(2)}\times\cdots\times G_{\sigma(n)}.$$

定理 138

设 $G = G_1 \times G_2 \times \cdots \times G_n$ 是群 G_1, G_2, \cdots, G_n 的外直积, e_1, e_2, \cdots, e_n 分别是群 $G_1, G_2, \cdots G_n$ 的单位元, 则

- (1) 定义 $H_i = \{e_1\} \times \cdots \times \{e_{i-1}\} \times G_i \times \{e_{i+1}\} \times \cdots \times \{e_n\}$, 则 H_i 是 G 的一个正规子群, 且同构于 G_i ;
- (2) $G = H_1 H_2 \cdots H_n$;
- (3) 如果 $h_1 h_2 \cdots h_n = h'_1 h'_2 \cdots h'_n$, 其中 $h_i, h'_i \in H_i$, 则对所有 $1 \le i \le n$ 有 $h_i = h'_i$.

定理 138

设 $G = G_1 \times G_2 \times \cdots \times G_n$ 是群 G_1, G_2, \cdots, G_n 的外直积, e_1, e_2, \cdots, e_n 分别是群 $G_1, G_2, \cdots G_n$ 的单位元, 则

- (1) 定义 $H_i = \{e_1\} \times \cdots \times \{e_{i-1}\} \times G_i \times \{e_{i+1}\} \times \cdots \times \{e_n\}$, 则 H_i 是 G 的一个正规子群, 且同构于 G_i ;
- (2) $G = H_1 H_2 \cdots H_n$;
- (3) 如果 $h_1h_2\cdots h_n = h'_1h'_2\cdots h'_n$, 其中 $h_i, h'_i \in H_i$, 则对所有 $1 \le i \le n$ 有 $h_i = h'_i$.

证明: (1) 由于 e_i 和 G_i 都是 G 的正规子群,由正规子群的定义和外直积的定义易验证 H_i 是 G 的正规子群.

证明(续)

现证 H_i 同构于 G_i . 令

$$\phi: G_i \longrightarrow H_i,$$

$$g_i \longmapsto (e_1, \cdots, e_{i-1}, g_i, e_{i+1}, \cdots, e_n),$$

则易验证 ϕ 是 H_i 到 G_i 的同构映射.

证明 (续)

现证 H_i 同构于 G_i . 令

$$\phi: G_i \longrightarrow H_i,$$

$$g_i \longmapsto (e_1, \cdots, e_{i-1}, g_i, e_{i+1}, \cdots, e_n),$$

则易验证 ϕ 是 H_i 到 G_i 的同构映射.

(2) 设有
$$g=(g_1,g_2,\cdots,g_n)\in G$$
, 其中 $g_i\in G_i$. 于是有 $g=(g_1,e_2,e_3,\cdots,e_{n-1},e_n)\cdot (e_1,g_2,e_3,\cdots,e_{n-1},e_n)\cdot \cdots (e_1,e_2,e_3,\cdots,e_{n-1},g_n)\in H_1H_2\cdots H_n$, 于是 $G\subseteq H_1H_2\cdots H_n$. 反之, 显然有 $H_1H_2\cdots H_n\subseteq G$. 因此, $G=H_1H_2\cdots H_n$.

证明 (续)

现证 H_i 同构于 G_i . 令

$$\phi: G_i \longrightarrow H_i,$$

$$q_i \longmapsto (e_1, \cdots, e_{i-1}, q_i, e_{i+1}, \cdots, e_n),$$

则易验证 ϕ 是 H_i 到 G_i 的同构映射.

(2) 设有 $g = (g_1, g_2, \dots, g_n) \in G$, 其中 $g_i \in G_i$. 于是有 $g = (g_1, e_2, e_3, \dots, e_{n-1}, e_n) \cdot (e_1, g_2, e_3, \dots, e_{n-1}, e_n) \cdot \dots$ $(e_1, e_2, e_3, \dots, e_{n-1}, g_n) \in H_1H_2 \cdots H_n$, 于是 $G \subseteq H_1H_2 \cdots H_n$. 反之,显然有 $H_1H_2 \cdots H_n \subseteq G$. 因此, $G = H_1H_2 \cdots H_n$.

(3) 显然对任意 $a \in H_i, b \in H_j$ 有 ab = ba, 其中 $i \neq j$. 设有 $h = h_1 h_2 \cdots h_n = h'_1 h'_2 \cdots h'_n \in H_1 H_2 \cdots H_n$, 其中 $h_i = (e_1, \cdots, e_{i-1}, g_i, e_{i+1}, \cdots, e_n) \in H_i$, $h'_i = (e_1, \cdots, e_{i-1}, g'_i, e_{i+1}, \cdots, e_n) \in H_i$, $g_i, g'_i \in G_i$. 可得 $h'_1^{-1}h_1h'_2^{-1}h_2 \cdots h'_n^{-1}h_n = e = (g'_1^{-1}g_1, g'_2^{-1}g_2, \cdots, g'_n^{-1}g_n)$. 由于 G 的单位元是 $e = (e_1, e_2, \cdots, e_n)$, 因此对所有 $1 \leq i \leq n$ 有 $g_i = g'_i$,于是有 $h_i = h'_i$.

167 / 178

例 139

设 $G_1 = \langle a \rangle, G_2 = \langle b \rangle$ 分别是 3 阶和 5 阶的循环群, 则 $G = G_1 \times G_2$ 是一个 15 阶的循环群.

设 $G_1 = \langle a \rangle, G_2 = \langle b \rangle$ 分别是 3 阶和 5 阶的循环群, 则 $G = G_1 \times G_2$ 是一个 15 阶的循环群.

解: 首先, 由定理 136 知, G 是一个 15 阶的交换群. 设 e_1, e_2 分别是 G_1, G_2 的单位元, 取 $c = (a, b) \in G$, 其中 $a \neq e_1, b \neq e_2$, 则 $c^3 = (e_1, b^3)$, $c^5 = (a^2, e_2)$,

所以 c^3, c^5 都不等于 (e_1, e_2) . 可知 ord $c \neq 3, 5$. 由拉格朗日定理知, ord c = 15. 即 $G = \langle c \rangle$ 是 15 阶循环群.

外直积元素的阶

定理 140

设 G_1, G_2 是两个群, a 和 b 分别是 G_1 和 G_2 中的有限阶元素,则对于 $(a,b) \in G_1 \times G_2$,有 $\operatorname{ord}(a,b) = [\operatorname{ord} a,\operatorname{ord} b]$.

外直积元素的阶

定理 140

设 G_1,G_2 是两个群, a 和 b 分别是 G_1 和 G_2 中的有限阶元素,则对于 $(a,b)\in G_1 imes G_2$, 有

 $\operatorname{ord}(a, b) = [\operatorname{ord} a, \operatorname{ord} b].$

证明: 设 ord a = m, ord b = n, s = [m, n], 则 $(a, b)^s = (a^s, b^s) = (e_1, e_2)$.

从而 (a,b) 的阶有限, 设其为 t, 则需证明 t=s. 由上式有 $t\mid s$. 下证 $s\mid t$. 因为

$$(e_1, e_2) = (a, b)^t = (a^t, b^t),$$

所以, $a^t = e_1, b^t = e_2$. 于是, $m \mid t$ 且 $n \mid t$, 从而 t 是 m 和 n 的公倍数. 而 s 是 m 和 n 的最小公倍数, 因此 $s \mid t$. 结合以上讨论得 s = t.

下面来确定 $\mathbb{Z}_{15} \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5$ 中 5 阶元素的个数. 由定理 140, 就是要确定 $\mathbb{Z}_{15} \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5$ 中满足 $5 = \operatorname{ord}(a, b) = [\operatorname{ord} a, \operatorname{ord} b]$ 的元素 (a, b) 的个数. 显然这就要求或者 $\operatorname{ord} a = 5$ 且 $\operatorname{ord} b = 1$ 或 5, 或者 $\operatorname{ord} a = 1$ 且 $\operatorname{ord} b = 5$. 下面分情况讨论.

下面来确定 $\mathbb{Z}_{15} \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5$ 中 5 阶元素的个数. 由定理 140, 就是要确定 $\mathbb{Z}_{15} \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5$ 中满足 $5 = \operatorname{ord}(a,b) = [\operatorname{ord} a,\operatorname{ord} b] \oplus \mathbb{Z}_5$ 的个数. 显然这就要求或者 $\operatorname{ord} a = 5$ 且 $\operatorname{ord} b = 1$ 或 5, 或者 $\operatorname{ord} a = 1$ 且 $\operatorname{ord} b = 5$. 下面分情况讨论.

(1) ord a = ord b = 5. 此时 a 有 4 种选择 (即 3, 6, 9, 12), b 也有 4 种选择, 从而共有 16 个 5 阶元素;

下面来确定 $\mathbb{Z}_{15} \oplus \mathbb{Z}_5 \oplus 5$ 阶元素的个数. 由定理 140, 就是要确定 $\mathbb{Z}_{15} \oplus \mathbb{Z}_5 \oplus 5$ 中满足 $5 = \operatorname{ord}(a, b) = [\operatorname{ord} a, \operatorname{ord} b]$ 的元素 (a, b) 的个数. 显然这就要求或者 $\operatorname{ord} a = 5$ 且 $\operatorname{ord} b = 1$ 或 5, 或者 $\operatorname{ord} a = 1$ 且 $\operatorname{ord} b = 5$. 下面分情况讨论.

- (1) ord a = ord b = 5. 此时 a 有 4 种选择 (即 3, 6, 9, 12), b 也有 4 种选择, 从而共有 16 个 5 阶元素;
- (2) ord a = 5, ord b = 1. 此时 a 仍有 4 种选择, 而 b 只有一种选择, 故共有 4 个 5 阶元素;

下面来确定 $\mathbb{Z}_{15} \oplus \mathbb{Z}_5 \oplus 5$ 阶元素的个数. 由定理 140, 就是要确定 $\mathbb{Z}_{15} \oplus \mathbb{Z}_5$ 中满足 $5 = \operatorname{ord}(a, b) = [\operatorname{ord} a, \operatorname{ord} b]$ 的元素 (a, b) 的个数. 显然这就要求或者 $\operatorname{ord} a = 5$ 且 $\operatorname{ord} b = 1$ 或 5, 或者 $\operatorname{ord} a = 1$ 且 $\operatorname{ord} b = 5$. 下面分情况讨论.

- (1) ord a = ord b = 5. 此时 a 有 4 种选择 (即 3, 6, 9, 12), b 也有 4 种选择, 从而共有 16 个 5 阶元素;
- (2) ord a = 5, ord b = 1. 此时 a 仍有 4 种选择, 而 b 只有一种选择, 故共有 4 个 5 阶元素:
- (3) $\operatorname{ord} a = 1$, $\operatorname{ord} b = 5$. 此时 a 只有一种选择, 而 b 有 4 种选择, 故也有 4 个 5 阶元素.
- 于是, $\mathbb{Z}_{15} \oplus \mathbb{Z}_5$ 共有 24 个 5 阶元素.

循环群的外直积

定理 142

设 G_1 和 G_2 分别是 m 阶及 n 阶的循环群,则 $G_1 \times G_2$ 是循环群的充要条件是 (m,n)=1.

循环群的外直积

定理 142

设 G_1 和 G_2 分别是 m 阶及 n 阶的循环群,则 $G_1 \times G_2$ 是循环群的充要条件是 (m,n)=1.

证明: 设 $G_1 = \langle a \rangle, G_2 = \langle b \rangle$.

假设 $G_1 \times G_2$ 是循环群. 若 $(m,n) = t \neq 1$, 则由于 $\operatorname{ord} a = m$, ord b = n, 而 $a^{m/t}$ 和 $b^{n/t}$ 的阶都是 t, 因此 $\left\langle \left(a^{m/t}, e_2\right)\right\rangle$ 和 $\left\langle \left(e_1, b^{n/t}\right)\right\rangle$ 是循环群 $G_1 \times G_2$ 中的两个不同的 t 阶子群. 而这与推论 103 的第 (2) 条相矛盾, 所以 (m,n) = 1.

循环群的外直积

定理 142

设 G_1 和 G_2 分别是 m 阶及 n 阶的循环群,则 $G_1 \times G_2$ 是循环群的充要条件是 (m,n)=1.

证明: 设 $G_1 = \langle a \rangle, G_2 = \langle b \rangle$.

假设 $G_1 \times G_2$ 是循环群. 若 $(m,n) = t \neq 1$, 则由于 $\operatorname{ord} a = m$, ord b = n, 而 $a^{m/t}$ 和 $b^{n/t}$ 的阶都是 t, 因此 $\left\langle \left(a^{m/t}, e_2\right)\right\rangle$ 和 $\left\langle \left(e_1, b^{n/t}\right)\right\rangle$ 是循环群 $G_1 \times G_2$ 中的两个不同的 t 阶子群. 而这与推论 103 的第 (2) 条相矛盾, 所以 (m,n) = 1.

反之, 假设
$$(m,n) = 1$$
, 则

$$ord(a, b) = [m, n] = mn$$

= $|G_1| \cdot |G_2| = |G_1 \times G_2|$

所以 (a,b) 是 $G_1 \times G_2$ 的生成元, 因此 $G_1 \times G_2$ 是循环群.

定义 143

设 H_1, \dots, H_n 是 G 的子群. 如果群 G 满足下述三个条件:

- (1) H_1, \dots, H_n 都是 G 的正规子群;
- $(2) G = H_1 H_2 \cdots H_n;$
- (3) 如果 $h_1 \cdots h_n = h'_1 \cdots h'_n$, 其中 $h'_i, h_i \in H_i$, 则对所有 $1 \le i \le n$ 有 $h_i = h'_i$,

则称 $G \neq H_1, \dots, H_n$ 的**内直积** (internal direct product).

引理 144

如果群 G 是有限多个正规子群 H_1, H_2, \dots, H_n 的内直积, 则对 任意 $a \in H_i, b \in H_i$ 有 ab = ba, 其中 $i \neq j$.

引理 144

如果群 G 是有限多个正规子群 H_1, H_2, \dots, H_n 的内直积, 则对任意 $a \in H_i, b \in H_i$ 有 ab = ba, 其中 $i \neq j$.

证明: 由于 $ab \in aH_j = H_ja$, 从而存在 $b' \in H_j$ 使得 ab = b'a. 同理, 由 $ab \in H_ib = bH_i$ 可知存在 $a' \in H_i$ 使得 ab = ba'. 于是可得 b'a = ba'. 由内直积中每个元素表示法唯一性可知 b' = b, a' = a.

注 144.1

设群 G 是有限多个正规子群 H_1, H_2, \cdots, H_n 的内直积, 由定义 143 可得:

群的内直积

注 144.1

设群 G 是有限多个正规子群 H_1, H_2, \cdots, H_n 的内直积, 由定义 143 可得:

(1) 定义 143 中的第 (3) 条即为对任意 $h \in G$ 时, 若有 $h = h_1 \cdots h_n$, 其中 $h_i \in H_i$, 则 h 的表示法唯一. 特别地, 若 G 的单位元 $e = h_1 \cdots h_n$, 其中 $h_i \in H_i$, 则有 $h_i = e$, 这是 因为 $e = e \cdots e$;

群的内直积

注 144.1

设群 G 是有限多个正规子群 H_1, H_2, \cdots, H_n 的内直积, 由定义 143 可得:

- (1) 定义 143 中的第 (3) 条即为对任意 $h \in G$ 时, 若有 $h = h_1 \cdots h_n$, 其中 $h_i \in H_i$, 则 h 的表示法唯一. 特别地, 若 G 的单位元 $e = h_1 \cdots h_n$, 其中 $h_i \in H_i$, 则有 $h_i = e$, 这是 因为 $e = e \cdots e$;
- (2) 由引理 144 可得若有 $h = h_1 h_2 \cdots h_n$, $h' = h'_1 h'_2 \cdots h'_n$, 其中 $h_i, h'_i \in H_i$, 则 $hh' = h_1 h'_1 h_2 h'_2 \cdots h_n h'_n$;

群的内直积

注 144.1

设群 G 是有限多个正规子群 H_1, H_2, \cdots, H_n 的内直积, 由定义 143 可得:

- (1) 定义 143 中的第 (3) 条即为对任意 $h \in G$ 时, 若有 $h = h_1 \cdots h_n$, 其中 $h_i \in H_i$, 则 h 的表示法唯一. 特别地, 若 G 的单位元 $e = h_1 \cdots h_n$, 其中 $h_i \in H_i$, 则有 $h_i = e$, 这是 因为 $e = e \cdots e$:
- (2) 由引理 144 可得若有 $h = h_1 h_2 \cdots h_n$, $h' = h'_1 h'_2 \cdots h'_n$, 其中 $h_i, h'_i \in H_i$, 则 $hh' = h_1 h'_1 h_2 h'_2 \cdots h_n h'_n$;
- (3) 定义 143 中的第 (3) 条可等价为单位元 e 的表示法唯一.

定理 145

如果群 G 是有限多个正规子群 H_1, H_2, \cdots, H_n 的内直积, 则 $G \cong H_1 \times H_2 \times \cdots \times H_n$.

定理 145

如果群 G 是有限多个正规子群 H_1, H_2, \cdots, H_n 的内直积, 则 $G \cong H_1 \times H_2 \times \cdots \times H_n$.

证明: 构造映射

$$\phi: H_1 \times H_2 \times \cdots \times H_n \longrightarrow G,$$

 $(h_1, h_2, \cdots, h_n) \longmapsto h_1 h_2 \cdots h_n.$

定理 145

如果群 G 是有限多个正规子群 H_1, H_2, \cdots, H_n 的内直积, 则 $G \cong H_1 \times H_2 \times \cdots \times H_n$.

证明: 构造映射

$$\phi: H_1 \times H_2 \times \dots \times H_n \longrightarrow G,$$
$$(h_1, h_2, \dots, h_n) \longmapsto h_1 h_2 \cdots h_n.$$

由定义 143 第 (3) 条知 ϕ 为单射, 由定义 143 第 (2) 条知 ϕ 为满射. 注意到对任意 $(h_1, \dots, h_n), (h'_1, \dots, h'_n) \in H_1 \times \dots \times H_n$ 有

$$\phi((h_1, \dots, h_n) \cdot (h'_1, \dots, h'_n)) = \phi(h_1 h'_1, h_2 h'_2, \dots, h_n h'_n)$$

$$= h_1 h'_1 \dots h_n h'_n$$

$$= h_1 \dots h_n h'_1 \dots h'_n$$

$$= \phi(h_1, \dots, h_n) \phi(h'_1, \dots, h'_n).$$

因此, ϕ 是 $H_1 \times H_2 \times \cdots \times H_n$ 到 G 的同构映射.

注 145.1

外直积 $G = H_1 \times H_2 \times \cdots \times H_n$ 中的群 H_1, H_2, \cdots, H_n 一般并不是 G 中的子群, 故有 "外直积"之称, 而内直积 $G = H_1H_2 \cdots H_n$ 中的 H_1, H_2, \cdots, H_n 则都是 G 的子群. 根据定理 138 和定理 145 可见, 内外直积的概念本质上是一致的, 所以有时可不对内外直积加以区分. 而统称为群的直积.

内直积的判定

定理 146

设群 $G = H_1 H_2 \cdots H_n$, 其中每个 H_i 都是 G 的正规子群, 则下述三条等价:

- (1) $G \in H_i, H_2, \cdots, H_n$ 的内直积;
- (2) $H_1 \cdots H_{i-1} \cap H_i = \{e\}$, 对任意 $i = 2, \cdots, n$;
- (3) $H_1 \cdots H_{i-1} H_{i+1} \cdots H_n \cap H_i = \{e\}$, 对任意 $i = 2, \dots, n$.

内直积的判定

定理 146

设群 $G = H_1 H_2 \cdots H_n$, 其中每个 H_i 都是 G 的正规子群, 则下述三条等价:

- (1) $G \in H_i, H_2, \cdots, H_n$ 的内直积;
- (2) $H_1 \cdots H_{i-1} \cap H_i = \{e\}$, 对任意 $i = 2, \cdots, n$;
- (3) $H_1 \cdots H_{i-1} H_{i+1} \cdots H_n \cap H_i = \{e\}$, 对任意 $i = 2, \cdots, n$.

证明: 我们按照 "(2) \Rightarrow (1) \Rightarrow (3) \Rightarrow (2)" 的顺序来证明定理.

内直积的判定

定理 146

设群 $G = H_1 H_2 \cdots H_n$, 其中每个 H_i 都是 G 的正规子群, 则下述三条等价:

- (1) $G \in H_i, H_2, \cdots, H_n$ 的内直积;
- (2) $H_1 \cdots H_{i-1} \cap H_i = \{e\}$, 对任意 $i = 2, \cdots, n$;
- (3) $H_1 \cdots H_{i-1} H_{i+1} \cdots H_n \cap H_i = \{e\}$, 对任意 $i = 2, \cdots, n$.

证明: 我们按照 "(2) \Rightarrow (1) \Rightarrow (3) \Rightarrow (2)" 的顺序来证明定理. "(2) \Rightarrow (1)" 由定理 39 第 (2) 条知 $H_1 \cdots H_i < G$. 假设任意 $g \in G$ 有两种表示方法 $g = h_1 \cdots h_n = h'_1 \cdots h'_n$, 其中 $h_i, h'_i \in H_i$, 其中 $h_i, h'_i \in H_i$, 则 $(h'_1 \cdots h'_{n-1})^{-1}(h_1 \cdots h_{n-1}) = h'_n h_n^{-1} \in H_1 \cdots H_{n-1} \cap H_n$.

证明 (续)

由 (2) 可得 $h'_n h_n^{-1} = (h'_1 \cdots h'_{n-1})^{-1} (h_1 \cdots h_{n-1}) = e$. 因此 $h'_n = h_n, h'_1 \cdots h'_{n-1} = h_1 \cdots h_{n-1}$. 类似地,由 $h'_1 \cdots h'_{n-1} = h_1 \cdots h_{n-1}$ 可得 $h'_{n-1} = h_{n-1}$. 以此类推可得 $h'_{n-2} = h_{n-2}, h'_{n-3} = h_{n-3}, \cdots, h'_1 = h_1$.

证明 (续)

由 (2) 可得 $h'_n h_n^{-1} = (h'_1 \cdots h'_{n-1})^{-1} (h_1 \cdots h_{n-1}) = e$. 因此 $h'_n = h_n, h'_1 \cdots h'_{n-1} = h_1 \cdots h_{n-1}$. 类似地, 由 $h'_1 \cdots h'_{n-1} = h_1 \cdots h_{n-1}$ 可得 $h'_{n-1} = h_{n-1}$. 以此类推可得 $h'_{n-2} = h_{n-2}, h'_{n-3} = h_{n-3}, \cdots, h'_1 = h_1.$ "(1) \Rightarrow (3)" 对任意 $h_i \in H_1 \cdots H_{i-1} H_{i+1} \cdots H_n \cap H_i$ 可得 $h_1 \cdots h_{i-1} h_{i+1} \cdots h_n = h_i \in H_1 \cdots H_{i-1} H_{i+1} \cdots H_n \cap H_i$, 其中 $h_i \in H_i$. 于是 $e = h_1 \cdots h_{i-1} h_{i+1} \cdots h_n h_i^{-1} = h_1 \cdots h_{i-1} h_{i-1}^{-1} h_{i+1} \cdots h_n.$ 当 $G \in H_1, H_2, \cdots, H_n$ 的内直积时, 由 G 的单位元 e 表示法的 唯一性可知 $h_i^{-1} = e$, 从而 $h_i = e$. " $(3) \Rightarrow (2)$ " 显然.