第1章 概述

本章学习要求——基本概念

■ 面向连接

□ 必须经过连接建立、连接维护与释放连接三个阶段。

■ 面向无连接

- □ 传输过程不需要经过以上三个阶段。
- 在无连接服务中,每个分组都携带完整的目的结点 地址,各个分组在系统中是独立传送的。
- 由于无连接服务发送的分组可能经历不同路径发送 到目的主机,因此目的主机接收的分组可能出现乱 序、重复与丢失现象。
- □ 可靠性不是很好,但是由于省去了很多保证机制, 所以通信协议相对简单,通信效率比较高。

本章学习要求——基本概念

■ 电路交换

- 通信之前要在通信两方之间建立一条被两方独占的物理通道。
- 通信两方之间的物理通路一旦建立。两方能够随时通信。实时性强。

■ 分组交换

- * 存储转发
- ※ 高效、灵活、迅速、可靠
- ⋄ 面向连接的虚电路和面向无连接的数据报(IP)
- ■报文交换

本章学习要求——网络的性能指标1

■速率

- □ 单位: bps、b/s
- □ 通信与计算机的进制差别: k(K)、M、G、T···

■帯宽

- □ 通信(频域): 频带宽度(HZ)
- □ 计算机网络(时域):最高数据率(b/s)——理论

■ 吞吐量

□ 强调网络实际的数据率

本章学习要求——网络的性能指标2

- ■时延
 - □ 发送时延
 - □ 传播时延
 - □ 处理时延
 - □ 排队时延
- ■时延带宽积
- 往返时间 RTT
- ■利用率

本章学习要求——网络的体系结构

- 体系结构——计算机网络的各层及其协议的集合
 - □ 0SI──理论
 - □ TCP/IP——实际
- ■基本概念
 - □ 层次、协议──语法、语义、时序
 - □ 实体
 - □ 服务──低层向高一层提供
 - □ 对等层-PDU
 - □ 服务访问点SAP

本章学习要求——网络的体系结构

OSI 的体系结构

应用层 表示层 会话层 运输层 网络层 数据链路层 物理层

五层协议的体系结构 TCP/IP 的体系结构

综合的五层参考模型中各层的功能以及PDU

- 物理层 (CH2) ——不封装
 - □ 在媒体上传输比特流,并屏蔽差异 ——**比特流**
- 数据链路层(CH3)
 - □ 采取差错检测、差错控制与流量控制等方法,向网络层提供 高质量的服务。
- 网络层(CH4)
 - □ 为分组交换网上的不同主机提供通信服务,向运输层提供透 明的服务 ——分组
- 运输层(CH5)
 - □ 为主机的进程间提供数据传输服务 ——报文段/数据报

- 应用层 (CH6)
 - □ 通过应用进程间的交互完成特定网络应用 ——报文

综合的五层参考模型中各层的协议及设备

- 物理层——集线器HUB、中继器
- 数据链路层(CH3+CH9.1)——交换机、网桥
 - □ 有线局域网

 - 点对点: ppp广播式: CSMA/CD
 - □ 无线局域网: CSMA/CA
- 网络层(CH4) ——路由器
 - □ IP协议——20B基本首部,面向无连接的数据报
 - □ 面向连接的虚电路
- 运输层(CH5)
 - □ 面向连接的TCP——20B基本首部
 - □ 面向无连接的UDP——8B首部
- 应用层(CH6)
 - □ 采用TCP: HTTP、Telnet、SMTP、FTP
 - □ 采用UDP: DNS、DHCP、SNMP、TFTP

第二章 物理层

物理层(Physical Layer)

- 功能:确定如何使用物理传输介质,即利用物理传输介质为数据链路层提供物理连接,在通信线路上传输数据比特的电信号。
- 协议(规程): 规定了物理接口的各种特性
 - □ 机械特性,电气特性,功能特性,过程特性
 - □ 作用:要尽可能地屏蔽掉各种媒体和设备的具体特性,使得数据链路层感觉不到差异的存在。

物理层的基本概念

- 数据: 一般指具有一定意义的符号序列。
- **信息:** 信息是数据的内涵,数据是信息的载体。信息 需要通过数据表示出来。
- 信号: 信号是数据的电、磁、光形式的表现。
 - □ 数据和信息必须转化为信号才能在介质中传播。
 - □ 模拟信号/数字信号
 - □ 码元
- 信源:产生和发送信号的设备或计算机。
- 信宿:接收和处理信息的设备或计算机。
- 信道: 信道是指向某一个方向传送消息的媒体。

编码、调制方法

- 基带信号——来自信源的信号
- 基带调制——编码
- 基带传输——在数字通信信道上, 直接传输基带信号的方式
- ◆ 带通信号——载波调制后的信号
- ◆ 带通调制——使用载波的调制
- ◆ 频带传输、宽带传输

RZ——归零 NRZ——不归零 曼彻斯特 差分曼彻斯特

调幅AM 调频FM 调相PM 正交振幅调制QAM

15

信道的极限容量

- ■香农公式
 - □ 信噪比**= 10 log₁₀(S/N)** (dB)
 - $\Box C = W \log_2(1+S/N) \quad \text{(bps)}$

信道复用技术

- 信道多路复用技术是指用共享信道同时传输多 路信号的技术。
 - □ 频分多路复用: 所有用户在同样的时间占用不同的 带宽资源。
 - □ 时分多路复用: 所有用户在不同的时间占用同样的 频带宽度。
 - □波分多路复用
 - □ 码分多路复用:用一组包含互相正交的码字的码组 携带多路信号,靠不同的编码来区分各路原始信号

第3章 数据链路层

数据链路层基本概念

使用的信道

- PPP协议
- 广播信道: CSMA/CD协议、 CSMA/CA协议

三个最基本问题

- 点对点信道:■ 封装成帧(frame) 帧首、帧尾——定界
 - ■透明传输 可以传输任意字符
 - 差错控制 检错、纠错

循环冗余检测 CRC——FCS的一种 可以检测帧内比特错, 无法检测帧错误 发送方 接收方 n+1位 n阶生成多项式P(x) n阶生成多项式P(x) 数据M后添加n个0后 用接收到的数据除以P(x) 除P(x)得余数R(n位) 余数为0:接受 发送: MR 余数为1: 丢弃

局域网

特点: 为一个单位所拥有、地理范围和站点数目均有限。

■ 主要技术因素:

- □ **拓扑结构** 星型、总线、环型
- □ **传输介质** 铜缆、双绞线、光纤等
- □ 介质访问控制方法 今牌、CSMA/CD

■ 主要优点:

- □ 具有广播功能,从一个站 点可很方便地访问全网。
- □便于扩展。
- □可靠性、可用性和生存性。

链路层的两个子层:逻辑链路控制LLC和媒体接入控制MAC

以太网

总线型、广播、CSMA/CD协议(半双工)

■ 两个重要措施:

交付

了一倍。

- □ **无连接** □ **3** 不可靠的、尽最大努力的
- □ **曼彻斯特编码** 自带时钟;所占的频带宽 度比原始的基带信号增加
- CSMA/CD的要点:
 - □ 多点接入
 - □载波监听
- □ 碰撞检测

CSMA/CD

- 争用期/碰撞窗口
 - □ 二倍端到端时延
 - 争用期 = 2×端到端距离 传播速率
 - 最短帧长=争用期×数据率
- ■最短帧长、最大帧长
- ■截断二进制指数退避

以太网的MAC层

- MAC地址
 - □ 6字节(48位)
- 帧的类型
 - □ 单播 (unicast) 帧
 - □ 广播 (broadcast) 帧
 - □ 多播 (multicast) 帧

- MAC帧
 - □ 前导: 101010......11
 - □ 目的地址/源地址: 各6字节
 - □ 类型:上层协议,如0800-IP数据报
 - □ 数据: 46 (64-18) ~1500
 - □ FCS: CRC检错码
- 定界: 曼彻斯特编码的特点

	6	6	2	46 ~ 1500	4
8 字节前导	目的地址	源地址	类型	数 据	FCS

扩展以太网

物理层扩展

- 中继器
- 集线器
 - □ 扩大了以太网覆盖的地理范围。
 - □ <mark>碰撞域</mark>增大了,但总的吞吐量 并未提高。
 - 使用不同的数据率的局域网不 能用集线器互连。

链路层扩展

- 网桥
- 交换机——多端口网桥
 - □ 扩大了物理范围。
 - □ 扩展后的网络被网桥/交换机隔 离成多个碰撞域。
 - 可互连不同物理层、不同 MAC 子层和不同速率的局域网。
 - □ 过滤通信量、提高了可靠性。
 - □ 独享带宽,增加了总容量。

交换机的问题

- 隔离了冲突域,但是没能隔离广播域
 - □ 冗余链路会导致广播风暴
 - □ 解决方案: 生成树协议STP, 逻辑上切断部分链路
- VLAN:虚拟局域网——可以隔离广播域
 - □ 使用802.1Q帧(dot1Q),在MAC地址的源地址和类型 字段之间插入4字节的VLAN标记。
 - □ 限制了接收广播信息的工作站数,使得网络不会因传播过多的广播信息(即"广播风暴")而引起性能恶化。

网络互连使用路由器

- 集线器/交换机:仅仅扩大了网络规模,而这仍然是一个网络。
- 路由器: 进行网络互连和路由选择。
 - □可以隔离广播域

高速以太网——速率≥100 Mbps

100BASE-T

- 半双工或全双工
- 保持帧格式不变
- 保持最短帧长不

变

吉比特以太网

- 半双工或全双工
- 保持帧格式不变
- 保持最短帧长不变
- 载波延伸: 将争用 期从64B延长至 512B
- 分组突发: 提高连续发送多个短帧的效率

10吉比特以太网

- 全双工
- 保持帧格式不变
- 无争用期
- 保持最短帧长不变

CSMA/CA: 载波监听多点接入/碰撞避免

- 无线网上不能使用CSMA/CD (碰撞<mark>检测</mark>)
 - □ 无线信道和有线信道的不同
 - □ 暴露站和隐蔽站问题
- 改进的CSMA/CA
 - □碰撞避免
 - □ 停止等待协议: 保证了可靠性

第4章 网络层

网络层提供的两种服务——虚电路与数据报

对比的方面	虚电路服务	数据报服务
思路	可靠通信应当由网络来保证	可靠通信应当由用户主机来保证
连接的建立	必须有	不需要
终点地址	仅在连接建立阶段使用,每 个分组使用短的虚电路号	每个分组都有终点的完整地址
分组的转发	属于同一条虚电路的分组均 按照同一路由进行转发	每个分组独立选择路由进行转发
当结点出故障时	所有通过出故障的结点的虚 电路均不能工作	出故障的结点可能会丢失分组, 一些路由可能会发生变化
分组的顺序	总是按发送顺序到达终点	到达终点时不一定按发送顺序
端到端的差错处 理和流量控制	可以由网络负责,也可以由 用户主机负责	由用户主机负责

网络地址

- 物理地址: 网卡地址, MAC地址 (6B)
- 逻辑地址: IP地址 (4B IPv4, 16B IPv6)
- 端口号: 标识运行于源或目的地计算机上的特定应用进程(2B)

地址解析协议 ARP: IP地址—MAC地址

- 当主机 A 欲向本局域网上的某个主机 B 发送 IP 数据报时,就先在其 ARP 高速缓存中查看有无主机 B 的 IP 地址。
 - □ 如有,就可查出其对应的硬件地址,再将此硬件地址写入 MAC 帧,然后通过局域网将该 MAC 帧发往此硬件地址。
 - □ 如没有,ARP 进程在本局域网上广播发送一个 ARP 请求分组。收到 ARP 响应分组后,将得到的 IP 地址到硬件地址的映射写入 ARP 高速缓存。
- 使用ARP的<mark>四种典型情况(P127)</mark>。

- 长数据报可以提高传输效率(首部比重小);短数据报可以提高转发速度
- MTU: 由链路层协议规定

分片

- 分组总长度 (首部+数据部分)长度 > MTU时对数 据报进行分片
- 第i个分片的信息:
 - □ 总长度: (分片i的首部+分片i的数据)长度 \leq MTU
 - □ 标识字段: 与原数据报相同, 便于接收方还原数据报
 - □ 标志: DF=0; MF=1/0 (不是/是最后一片)
 - □ 片偏移:第i个分片在原分组中的起始位置(以8字节为单位,所以除最后一片外,其他片长度必须是8的倍数!)
 - 如,片偏移为100,代表此分片的起始位置是第 8*100 B

IP协议——IP地址

- 两级IP:
- net-id + host-id
- □ A、B、C类地址
- □特殊的IP地址

- 三级IP
- net-id + subnet-id + host-id
- □子网掩码
- □划分子网
- 无分类域间路由选择CIDR
 - □ 斜线记法
 - □ 无分类的两级编址 (掩码)

子网划分

- 两级IP——三级IP: 所有子网的子网掩码都是相同的。
 - □子网号: n位
 - □ 子网数量: 2ⁿ-2
 - □ 子网中主机数量:
 - **C**类2⁽⁸⁻ⁿ⁾-2——**B**类2⁽¹⁶⁻ⁿ⁾-2——**A**类2⁽²⁴⁻ⁿ⁾-2。
- CIDR划分子网: 网络前缀 m 位, 主机号(32-m)位
 - □子网号: n位
 - □子网数量: 2ⁿ
 - □ 子网中主机数量: 2^{32-m-n}-2

路由选择

■三级IP的路由选择

□ 将IP地址与每条路由中的掩码按位与,判断是否与该路由的网络地址相匹配,匹配则选择相应的接口/路由跳转;若都不匹配,则选择默认路由

■ CIDR的路由选择

- □路由聚合: 超网
- □ **最长前缀匹配原则**:从匹配结果中选择具有最长网络前缀的路由

Routing protocol——路由选择协议

	路由信息协议 RIP	开放最短路径优先 OSPF	边界网关协议 BGP
网关协议	内部	内部	外部
依据	跳数	度量/代价	多策略
算法	距离向量	链路状态	路径向量
传送方式	UDP	IP	TCP
路由交换	按固定时间间 隔与相邻路由 器交换完整路 由表	链路状态改变时, 以洪泛法向所有路 由器发送此信息	在自治系统之间交换可达性
其他	跳数16不可达		

RIP的距离向量算法——P155

路由器收到相邻路由器(其地址为 X)的一个 RIP 报文:

- (1) 先修改此 RIP 报文中的所有项目:把 "下一跳"字段中的地址都改为 X,并把所有的"距离"字段的值加 1。
- (2) 对修改后的 RIP 报文中的每一个项目, 重复以下步骤:
- ② 若项目中的目的网络不在路由表中,则把该项目加到路由表中。

 否则
 - ② 若<u>下一跳字段给出的路由器地址是同样</u>的,则把收到的项目替 换原路由表中的项目。

否则

- ③ 若收到项目中的距离<u>小于路由表中的距离</u>,则进行更新 否则,什么也不做。
- (3) 若 3 分钟还没有收到相邻路由器的更新路由表,则把此相邻路由器记为不可达路由器,即将距离置为 16 (表示不可达)。
- (4) 返回。

IPv6

- IPv6 的地址
 - □ 128位: 冒号十六进制记法
 - □ 在十六进制记法中,允许把数字前面的0省略。
 - □ 零压缩: 在任一地址中只能使用一次零压缩
- 从 IPv4 向 IPv6 的过渡方式
 - □ 双协议栈
 - □ 隊道

专用 IP 地址与NAT

- 保留三段地址作为专用地址
 - \square 10. 0. 0. 0 \sim 10. 255. 255. 255
 - \square 172. 16. 0. 0 \sim 172. 31. 255. 255
 - \square 192. 168. 0. 0 \sim 192. 168. 255. 255
- NAT
 - □ 所有使用本地地址的主机在和外界通信时,都要在 NAT 路由器**上将其本地地址转换成全球 IP 地址,**才能和互 联网连接。

第5章 运输层

TCP和UDP

ТСР	UDP	
报文段	用户数据报	
面向连接	面向无连接	
可靠交付	不可靠交付	
面向字节	面向报文	
一对一 首部开销大,慢	支持一对多、多对一、 一对一、多对多 首部开销小,快	
拥塞控制、流量控制	适合实时应用	
加塞江岬、加里江闸	但日大时四用	

TCP的可靠传输

- ■确认与重传
 - □ 停止等待
 - □ 连续ARQ
- ■滑动窗口协议
 - □ 序号seq: 本报文段的第一个字节序号
 - □ 确认号ack: 期望收到对方的下一个报文段的数据的第 一个字节的序号
 - □累积确认

窗口——流量控制和拥塞控制

- 流量控制(点对点通信控制)——基于滑动窗口:接收方根据接收缓存的大小动态控制发送方的发送窗口大小(调整TCP首部"窗口"字段值——),限制发送方注入报文的速率。——rwnd

发送窗口的上限值 = Min [rwnd, cwnd]

拥塞控制

- 相关算法:
 - □ 慢开始
 - □拥塞避免
 - □ 快重传
 - □ 快恢复
- 相关问题:

慢开始

拥塞避免

3-ACK

- □ cwnd: 在哪个阶段指数增大? 线性增大? 什么情况下会减半? 什么情况下会减小到1? ┛ 超时
- □ ssthresh: 何时会改变?

初始ssthresh值的确定:慢开始——拥塞避免 $ssthresh = \frac{cwnd}{2}$:超时或者3-ACK

第6章 应用层

