B. E. COMMON TO ALL PROGRAMMES

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - IV

COMPLEX ANALYSIS, PROBABILITY AND STATISTICAL METHODS

(Common to all programmes)
oice Based Credit System (CBCS) sch

Course Code	18MAT41	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(2:2:0)	SEE Marks	60		
Credits	03	Exam Hours	03		

Course Learning Objectives:

- To provide an insight into applications of complex variables, conformal mapping and special functions
 arising in potential theory, quantum mechanics, heat conduction and field theory.
- To develop probability distribution of discrete, continuous random variables and joint probability distribution occurring in digital signal processing, design engineering and microwave engineering.

Module-1

Calculus of complex functions: Review of function of a complex variable, limits, continuity, and differentiability. Analytic functions: Cauchy-Riemann equations in Cartesian and polar forms and consequences

Construction of analytic functions: Milne-Thomson method-Problems.

Module-2

Conformal transformations: Introduction. Discussion of transformations: $w = Z^2$, $w = e^z$, w = z + z

 $(z \neq 0)$ Bilinear transformations- Problems

Complex integration: Line integral of a complex function-Cauchy's theorem and Cauchy's integral formula and problems.

Module-3

Probability Distributions: Review of basic probability theory. Random variables (discrete and continuous), probability mass/density functions. Binomial, Poisson, exponential and normal distributions- problems (No derivation for mean and standard deviation)-Illustrative examples.

Module-4

Statistical Methods: Correlation and regression-Karl Pearson's coefficient of correlation and rank correlation Statistical Networks. Correlation and regression-market reason scheme to correlation a problems. Regression analysis- lines of regression –problems. Curve Fitting: Curve fitting by the method of least squares- fitting the curves of the form- $y = ax + b, y = ax^b andy = ax^2 + bx + c$.

Module-5

Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation and covariance

Sampling Theory: Introduction to sampling distributions, standard error, Type-I and Type-II errors. Test of hypothesis for means, student's t-distribution, Chi-square distribution as a test of goodness of fit. Course Outcomes: At the end of the course the student will be able to:

- Use the concepts of analytic function and complex potentials to solve the problems arising in electromagnetic field theory.
- Utilize conformal transformation and complex integral arising in aerofoil theory, fluid flow visualization and image processing.
- Apply discrete and continuous probability distributions in analyzing the probability models arising in engineering field.
- Make use of the correlation and regression analysis to fit a suitable mathematical model for the statistical data.

Construct joint probability distributions and demonstrate the validity of testing the hypothesis.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
 - There will be two full questions (with a maximum of four sub- questions) from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	oks	No. 7 (5 (4 po 1)		2 8 192 1 1
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition,2016
2	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	44 th Edition, 2017
3	Engineering Mathematics	Srimanta Pal et al	Oxford University Press	3 rd Edition,2016
Referen	ice Books	10 N. P. L.	1, 12, 12, 11, 12, 21	PJE C. DICE.
1	Advanced Engineering Mathematics	C. Ray Wylie, Louis C.Barrett	McGraw-Hill	6 th Edition 1995
2	Introductory Methods of Numerical Analysis	S.S.Sastry	Prentice Hall of India	4 th Edition 2010
3	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill	11th Edition,2010
4	A Text Book of Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publications	2014
5	Advanced Engineering Mathematics	Chandrika Prasad and Reena Garg	Khanna Publishing,	2018

Web links and Video Lectures:

- 1. http://nptel.ac.in/courses.php?disciplineID=111
- 2. http://www.class-central.com/subject/math(MOOCs)
- http://academicearth.org/
 VTU EDUSAT PROGRAMME 20