

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA

W KRAKOWIE

Metody Obliczeniowe w Nauce i Technice

Sprawozdanie z metod rozwiązywania układów równań liniowych

Maciej Kmąk Informatyka WI AGH, II rok 14. Czerwca 2025

1 Cel Ćwiczenia

Celem ćwiczenia jest przeanalizowanie i porównanie wybranych metod rozwiązywania układów równań liniowych postaci Ax = b z punktu widzenia:

- 1. **Złożoności obliczeniowej i zużycia pamięci** różnych algorytmów oraz pomiar rzeczywistych czasów wykonania i wielkości zaalokowanej pamięci.
- 2. **Stabilności i zbieżności** analiza współczynnika uwarunkowania $\kappa(A)$ dla metod bezpośrednich oraz promienia spektralnego $\rho(G)$ macierzy iteracji w metodzie Jacobiego.
- 3. **Dokładności numerycznej** ocena wpływu błędów zaokrągleń (na przykładzie precyzji float32 i float64 z biblioteki NumPy) oraz współczynnika uwarunkowania macierzy $\kappa(A)$ na uzyskane rozwiązania (normy $||x_{\text{zadany}} x_{\text{obliczony}}||_{\infty}$ i $||\cdot||_2$).

Badania obejmowały trzy pod-zadania:

Zadanie 6a Macierze pełne(źle uwarunkowana macierz hilbertowska oraz macierz symetryczna); rozwiązanie metodą eliminacji Gaussa.

• Macierz hilbertowska:

$$a_{ij} = \begin{cases} 1, & i = 1, \\ \frac{1}{i+j-1}, & i \neq 1, \end{cases}$$
 $i, j = 1, 2, \dots, n.$

• Macierz symetryczna:

$$a_{ij} = \begin{cases} \frac{2i}{j}, & i \ge j, \\ a_{ji}, & i < j, \end{cases}$$
 $i, j = 1, 2, \dots, n.$

Zadanie 6b Macierz trójdiagonalna; porównanie eliminacji Gaussa i algorytmu Thomasa.

• Macierz trójdiagonalna:

$$A^{n \times n} = \begin{cases} 6, & i = j, \\ \frac{1}{i+4}, & j = i+1, \\ \frac{6}{i+4+1}, & j = i-1, \\ 0, & |i-j| > 1. \end{cases}$$

Zadanie 7 Macierze o strukturze $a_{ii} = k$, $a_{ij} = 1/(|i-j|+m)$; rozwiązanie metodą Jacobiego z dwoma kryteriami stopu oraz wyznaczenie promienia spektralnego macierzy iteracji.

• Macierz z zadania:

$$a_{i,i} = 7,$$
 $a_{i,j} = \frac{1}{|i-j|+4}$ $(i \neq j, i, j = 1, ..., n).$

2 Dane techniczne

Doświadczenie zostało przeprowadzone na komputerze osobistym o specyfikacji:

- System Operacyjny: Windows 11 Pro
- Procesor: 12th Gen Intel(R) Core(TM) i5-1235U 1.3 GHz
- Język: Python 3.12

3 Przebieg doświadczenia

Zadanie 6a – macierze źle (hilbertowska) i dobrze uwarunkowane (2i/j)

- 1. Zakresy wymiarów macierzy n:
 - Hilbertowska: n = 2, 3, ..., 100.
 - $Macierz\ 2i/j: n \in \{2, 3, ..., 100\} \cup \{110, 120, ..., 500\}.$
- 2. Dla każdego (n, dtype):
 - (a) Generacja wektora wzorcowego $\mathbf{x}_{\text{true}} \in \{\pm 1\}^n.$
 - (b) Budowa macierzy A i obliczenie $\mathbf{b} = A\mathbf{x}_{\text{true}}$.
 - (c) Wyznaczenie współczynnika uwarunkowania

$$\kappa(A) = ||A||_{\infty} ||A^{-1}||_{\infty}.$$

- (d) Rozwiązanie $A\mathbf{x} = \mathbf{b}$ metodą eliminacji Gaussa.
- (e) Obliczenie błędów:

$$e_{\text{max}} = \|\mathbf{x}_{\text{true}} - \mathbf{x}_{\text{calc}}\|_{\infty}, \qquad e_{\text{euk}} = \|\mathbf{x}_{\text{true}} - \mathbf{x}_{\text{calc}}\|_{2}.$$

Zadanie 6b – macierz trójdiagonalna

- 1. Zakresy wymiarów: $n \in \{2, ..., 100\} \cup \{110, 120, ..., 1000\}$.
- 2. Dla każdego (n, dtype):
 - (a) Generacja wektorów macierzy oraz losowego $\mathbf{x}_{\text{true}} \in \{\pm 1\}^n$.
 - (b) Obliczenie $\mathbf{b} = A_{\text{tri}} \mathbf{x}_{\text{true}}$.
 - (c) Rozwiązanie układu dwiema metodami:
 - Algoryt
m Thomasa (złożoność czasowa O(n),pamięciowa
 O(n)),
 - Eliminacja Gaussa (złożoność czasowa $O(n^3)$, pamięciowa $O(n^2)$).
 - (d) Pomiar czasu wykonania i zużycia pamięci (moduł tracemalloc).
 - (e) Obliczenie błędów e_{max} , e_{euk} .

Zadanie 7 – metoda Jacobiego

- 1. Badanie progu zbieżności:
 - Konstruowano macierz A dla n = 1, ..., 1000.
 - Dla każdego n obliczano promień spektralny macierzy iteracji Jacobiego.
 - Zidentyfikowano pierwszy n_0 , dla którego $\rho(G) \geq 1$.
- 2. **Zawężenie badania do** $n \in \{3, 5, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500\}$.
- 3. Schemat pomiarów:
 - Kryteria stopu:

$$||x^{(k+1)} - x^{(k)}||_{\infty} < \varepsilon$$
 lub $||Ax^{(k)} - b||_{\infty} < \varepsilon$,

dla
$$\varepsilon \in \{10^{-2}, 10^{-3}, 10^{-5}, 10^{-7}, 10^{-9}, 10^{-12}, 10^{-15}\}.$$

- Trzy wektory startowe: zerowy, losowy z $\{\pm 100\}$ i "pośredni" z $\{\pm 30, \pm 40, \pm 50, \pm 60\}$.
- 4. Dla każdej kombinacji $(n, \varepsilon, \text{start})$:
 - (a) Mierzono liczbę iteracji do zbieżności i średni czas jednej iteracji.
 - (b) Obliczano błędy końcowe e_{max} , e_{euk} .

4 Wyniki Doświadczenia

Wyniki doświadczenia 6a cz.1 – macierz źle uwarunkowana

W tabeli 1 oraz na rysunkach 1a,1b i 2 przedstawiono zebrane dla zakresu n=2–20 wartości błędu maksymalnego i euklidesowego oraz współczynnika uwarunkowania macierzy dla precyzji float32 i float64.

Tabela 1: Zadanie 6a cz.1: wyniki eksperymentu dla $n \in \{2, ..., 20\}$ (float32 vs. float64)

		float32		float64			
n	$e_{ m max}$	$e_{ m euk}$	κ	$e_{ m max}$	$e_{ m euk}$	κ	
2	0.000e+00	0.000e+00	8.000e+00	0.000e+00	0.000e+00	8.000e+00	
3	1.311e-06	1.660e-06	2.400e+02	5.107e-15	6.489e-15	2.400e+02	
4	1.907e-06	2.322e-06	1.530e + 04	2.975e-14	3.767e-14	1.530e + 04	
5	4.644e-04	6.392e-04	7.435e + 05	1.125e-12	1.559e-12	7.431e + 05	
6	8.652e-03	1.298e-02	3.266e + 07	1.807e-10	2.678e-10	3.216e + 07	
7	2.677e+00	3.849e + 00	1.950e + 09	1.162e-09	1.670e-09	1.417e + 09	
8	4.133e-01	6.608e-01	$1.250e{+10}$	1.795e-07	2.677e-07	5.566e + 10	
9	4.133e+00	5.855e + 00	1.487e + 11	1.318e-06	2.150e-06	2.019e + 12	
10	3.290e+00	5.326e+00	1.956e + 10	2.235e-05	3.545 e-05	8.025e + 13	
11	5.538e+00	9.358e + 00	9.681e + 09	8.048e-05	1.328e-04	3.014e + 15	
12	1.365e + 01	1.939e + 01	$1.139e{+10}$	2.253e-01	3.769e-01	1.090e + 17	
13	3.458e+00	6.108e + 00	4.776e + 10	2.501e + 01	4.246e + 01	3.190e + 18	
14	8.869e+00	1.603e + 01	2.123e+10	1.747e + 00	2.809e+00	5.476e + 18	
15	1.831e+01	2.950e + 01	2.395e + 10	4.037e+00	6.354e + 00	6.797e + 18	
16	1.388e + 01	3.289e + 01	6.037e + 10	4.837e + 00	8.773e + 00	7.414e + 18	
17	9.063e+00	1.842e + 01	$1.511e{+11}$	6.808e + 00	9.786e + 00	9.695e + 18	
18	3.052e+01	4.764e + 01	7.394e + 10	3.891e + 00	7.472e + 00	5.371e + 19	
19	5.168e + 01	8.536e + 01	7.890e + 10	6.956e + 00	1.169e + 01	3.423e + 19	
20	2.125e+02	3.766e + 02	$8.415e{+10}$	3.479e + 01	5.495e + 01	5.351e + 20	

(a) Norma euklidesowa - skala logarytmiczna

(b) Norma maksimum - skala liniowa

Rysunek 1: Wykresy błędów: euklidesowego i maksimum $||x_{\text{true}} - x_{\text{calc}}||$ dla precyzji float32 i float64

Macierz A w zadaniu 1 z ćwiczenia 6a to zmodyfikowana macierz Hilberta, w której pierwszy wiersz składa się z samych jedynek ($a_{1j} = 1$), a pozostałe elementy odpowiadają klasycznej definicji macierzy Hilberta. Taka konstrukcja prowadzi do silnie złego uwarunkowania, co możemy zauważyć także na rys. 2.

Rysunek 2: Współczynnik uwarunkowania $\kappa(A)$ (skala logarytmiczna)

Uwarunkowanie i rola $\kappa(A)$. Na rysunku 2 możemy zauważyć, że wartość współczynnika $\kappa(A)$ rośnie bardzo szybko z n, osiągając rzędy 10^{10} dla float32 oraz 10^{20} dla float64. Skorelowane jest to z gwałtownym wzrostem błędu maksimum: dla precyzji float32 błąd zaczyna istotnie rosnąć już od $n \approx 7$, natomiast dla float64 dopiero od $n \approx 13$ (por. Tabela 1, kolumna e_{max}). Możemy więc wnioskować, że $\kappa(A)$ stanowi wiarygodny wskaźnik prognozowania utraty dokładności obliczeń.

Wpływ precyzji. Zastosowanie float64 przesuwa próg istotnego wzrostu błędów w porównaniu do float32; niemniej, w skrajnie źle uwarunkowanych przypadkach narastanie błędów staje się zauważalne stosunkowo szybko (w badanym układzie przy $n \approx 13$) pomimo użycia podwójnej precyzji.

Wyniki doświadczenia 6a cz.2 – macierz dobrze uwarunkowana

W tabeli 2 oraz na rysunkach 3a i 3b przedstawiono wyniki dla zakresu

$$n \in \{2, 3, \dots, 20, 25, 30, 40, 50, 75, 100, 150, 200\}$$

Tabela 2: Zadanie 6a cz.2: wyniki eksperymentu dla $n \in \{2, 3, 4, 5, 20, 25, 30, 40, 50, 75, 100, 150, 200\}$ (float32 vs. float64)

		float32		float64			
n	e_{\max}	$e_{ m euk}$	κ	e_{\max}	$e_{ m euk}$	κ	
2	0.000e+00	0.000e+00	3.000e+00	0.000e+00	0.000e+00	3.000e+00	
3	1.192e-07	1.192e-07	8.667e + 00	2.220e-16	2.483e-16	8.667e + 00	
4	1.192e-07	1.333e-07	1.650e + 01	2.220e-16	2.483e-16	1.650e + 01	
5	2.980e-07	4.172e-07	2.680e + 01	1.554e-15	2.254e-15	2.680e + 01	
20	1.669e-05	2.821e-05	4.725e + 02	1.332e-14	2.423e-14	4.725e + 02	
25	1.359e-05	2.715e-05	7.424e + 02	4.796e-14	7.926e-14	7.424e + 02	
30	2.128e-05	3.960e-05	1.073e + 03	4.996e-14	9.060e-14	1.073e + 03	
40	2.551e-05	5.840e-05	1.916e + 03	7.017e-14	1.665e-13	1.916e + 03	
50	5.406e-05	1.249e-04	3.002e + 03	1.280e-13	2.335e-13	3.002e+03	
75	1.726e-04	5.749e-04	6.778e + 03	2.736e-13	6.868e-13	6.778e + 03	
100	5.060e-04	1.644e-03	1.207e + 04	4.929e-13	1.527e-12	1.207e + 04	
150	7.410e-04	2.420e-03	2.720e + 04	1.751e-12	5.864e-12	2.720e + 04	
200	1.211e-03	4.152e-03	4.841e + 04	1.390e-12	6.411e-12	4.841e + 04	

- (a) Norma maksimum skala logarytmiczna
- (b) Norma euklidesowa skala logarytmiczna

Rysunek 3: Błędy obliczeń $||x_{\text{true}} - x_{\text{calc}}||$ dla float32 i float64

Błędy numeryczne. Na logarytmicznych wykresach normy maksimum i euklidesowej widać stabilny przebieg błędów: krzywe dla float32 są przesunięte o stałą wartość w górę (rzędy wielkości wyższe niż dla float64), niemniej nie pojawiają się nagłe skoki ani gwałtowne odchylenia.

Uwarunkowanie i rola $\kappa(A)$. Współczynnik $\kappa(A)$ rośnie stopniowo i bez wyraźnych skoków, co potwierdza dobre uwarunkowanie macierzy – zgodnie z przewidywaniami nie obserwuje się istotnej utraty dokładności w rozwiązywaniu układów. Ponadto, w Tabeli 2 widać, że wartości $\kappa(A)$ dla precyzji float32 i float64 są identyczne.

Wyniki doświadczenia 6b – algorytm Thomasa vs. eliminacja Gaussa

Poniżej zestawiono wybrane tabele z wynikami obliczeń dla układów o rozmiarach

 $n \in \{2, 3, \dots, 10, 20, 50, 100, 150, 200, 300, 400, 500, 750, 1000\},\$

porównujące algorytm Thomasa i pełną eliminację Gaussa.

Tabela 3: Wyniki eksperymentu – algorytm Thomasa

	float32				float64			
n	$e_{ m max}$	$e_{ m euk}$	t [s]	Pamięć [B]	$e_{ m max}$	$e_{ m euk}$	t [s]	Pamięć [B]
2	0.000e+00	0.000e+00	7.129e-04	9.500e+02	0.000e+00	0.000e+00	4.980e-05	9.600e+02
3	5.960e-08	5.960e-08	6.840e-05	9.120e + 02	1.110e-16	1.110e-16	9.160e-05	9.840e + 02
4	1.192e-07	1.192e-07	9.850e-05	9.400e + 02	1.110e-16	1.110e-16	7.970e-05	1.040e + 03
5	1.192e-07	1.333e-07	9.850e-05	9.680e + 02	2.220e-16	2.220e-16	9.990e-05	1.096e + 03
6	1.192e-07	1.192e-07	1.182e-04	9.960e + 02	2.220e-16	3.331e-16	1.187e-04	1.152e + 03
7	1.192e-07	1.788e-07	1.486e-04	1.024e + 03	2.220e-16	2.719e-16	1.489e-04	1.208e + 03
8	1.192e-07	1.788e-07	1.608e-04	1.052e + 03	1.110e-16	1.923e-16	1.582e-04	1.264e + 03
9	1.192e-07	2.230e-07	2.812e-04	1.080e + 03	2.220e-16	3.846e-16	1.920e-04	1.320e + 03
10	5.960e-08	5.960e-08	2.036e-04	1.108e + 03	2.220e-16	2.937e-16	3.152e-04	1.376e + 03
20	1.192e-07	2.308e-07	3.916e-04	1.388e + 03	2.220e-16	3.331e-16	3.910e-04	1.936e + 03
50	1.788e-07	3.909e-07	1.165e-03	2.228e + 03	2.220e-16	7.022e-16	1.235e-03	3.616e + 03
100	1.192e-07	6.166e-07	1.894e-03	3.628e + 03	2.220e-16	1.047e-15	2.164e-03	6.416e + 03
200	1.192e-07	7.633e-07	4.699e-03	6.428e + 03	3.331e-16	1.506e-15	5.264e-03	1.202e + 04
300	1.788e-07	9.629e-07	7.446e-03	9.308e + 03	3.331e-16	1.720e-15	1.083e-02	1.770e + 04
400	1.788e-07	1.132e-06	9.170e-03	1.211e+04	2.220e-16	1.769e-15	1.462e-02	2.330e + 04
500	1.788e-07	1.176e-06	1.541e-02	1.491e + 04	3.331e-16	2.161e-15	1.217e-02	2.890e + 04
750	1.192e-07	1.507e-06	2.395e-02	2.191e + 04	3.331e-16	2.753e-15	2.380e-02	4.290e + 04
1000	1.788e-07	1.761e-06	5.323e-02	2.891e + 04	3.331e-16	3.329e-15	3.504e-02	5.690e + 04

Tabela 4: Wyniki eksperymentu – eliminacja Gaussa

		floa	at32		float64				
$n \mid$	e_{max}	$e_{ m euk}$	t [s]	Pamięć [B]	$e_{ m max}$	$e_{ m euk}$	t [s]	Pamięć [B]	
2	0.000e+00	0.000e+00	5.003e-04	1.365e + 03	0.000e+00	0.000e+00	1.368e-04	1.384e+03	
3	5.960e-08	5.960e-08	2.748e-04	1.376e + 03	1.110e-16	1.110e-16	1.781e-04	1.488e + 03	
4	1.192e-07	1.192e-07	2.613e-04	1.444e + 03	1.110e-16	1.110e-16	2.167e-04	1.624e + 03	
5	1.192e-07	1.333e-07	3.871e-04	1.528e + 03	2.220e-16	2.220e-16	3.023e-04	1.792e + 03	
6	1.192e-07	1.192e-07	4.195e-04	1.628e + 03	2.220e-16	3.331e-16	3.638e-04	1.992e + 03	
7	1.192e-07	1.788e-07	5.984e-04	1.744e + 03	2.220e-16	2.719e-16	5.345e-04	2.224e + 03	
8	1.192e-07	1.788e-07	7.069e-04	1.876e + 03	1.110e-16	1.923e-16	9.618e-04	2.881e + 03	
9	1.192e-07	2.230e-07	1.080e-03	2.024e+03	2.220e-16	3.846e-16	6.944e-04	2.784e + 03	
10	5.960e-08	5.960e-08	9.397e-04	2.188e + 03	2.220e-16	2.937e-16	8.721e-04	3.184e + 03	
20	1.192e-07	2.308e-07	2.707e-03	5.584e + 03	2.220e-16	3.331e-16	2.573e-03	1.054e + 04	
50	1.788e-07	3.909e-07	1.554e-02	3.102e+04	2.220e-16	7.022e-16	1.490e-02	6.142e + 04	
100	1.192e-07	6.166e-07	5.359e-02	1.214e + 05	2.220e-16	1.047e-15	5.651e-02	2.422e + 05	
200	1.192e-07	7.633e-07	2.736e-01	4.822e + 05	3.331e-16	1.506e-15	4.543e-01	9.638e + 05	
300	1.788e-07	9.629e-07	8.278e-01	1.083e + 06	3.331e-16	1.720e-15	8.710e-01	2.165e + 06	
400	1.788e-07	1.132e-06	1.678e + 00	1.924e + 06	2.220e-16	1.769e-15	1.711e+00	3.847e + 06	
500	1.788e-07	1.176e-06	1.821e + 00	3.005e + 06	3.331e-16	2.161e-15	1.797e + 00	6.009e + 06	
750	1.192e-07	1.507e-06	4.008e + 00	6.757e + 06	3.331e-16	2.753e-15	3.948e + 00	1.351e + 07	
1000	1.788e-07	1.761e-06	1.166e + 01	1.201e+07	3.331e-16	3.329e-15	1.143e + 01	2.402e+07	

Rysunek 4: Porównanie czasu obliczeń [s] (skala liniowa) dla metod Thomasa i Gaussa.

Rysunek 5: Porównanie zużycia pamięci (w bajtach) w zależności od n.

Rysunek 6: Porównanie błędu euklidesowego $e_{\text{euk}} = ||x_{\text{true}} - x_{\text{calc}}||_2$ w skali logarytmicznej.

Czas obliczeń: Z porównania (Rys. 4) wynika, że czas rozwiązania układu trójdiagonalnego algorytmem Thomasa rośnie liniowo wraz ze wzrostem rozmiaru n, co potwierdza jego złożoność $\mathcal{O}(n)$. Natomiast pełna eliminacja Gaussa wykazuje typowy dla siebie przebieg sześcienny $\mathcal{O}(n^3)$, przez co dla większych n staje się znacznie wolniejsza.

Zużycie pamięci: Rysunek 5a pokazuje, że algorytm Thomasa wykorzystuje pamięć proporcjonalnie do n (trzy wektory długości n), natomiast eliminacja Gaussa (rys. 5b) – ze względu na pełne przechowywanie macierzy $n \times n$ – wymaga przestrzeni kwadratowej $\mathcal{O}(n^2)$. Dodatkowo wyższa precyzja (float64) skutkuje dwukrotnym zwiększeniem zużycia pamięci w obu metodach.

Dokładność rozwiązań: Jak ilustruje wykres błędu euklidesowego (Rys.6), obie metody osiągają porównywalną dokładność: wartości e_{max} i e_{euk} nie różnią się pomiędzy algorytmem Thomasa a eliminacją Gaussa. Jedynym czynnikiem wpływającym na wielkość błędów jest zastosowana precyzja zmiennoprzecinkowa (float32 vs. float64) a nie sam algorytm.

Wyniki doświadczenia 7 – metoda Jacobiego

W pierwszym etapie badania obliczono promień spektralny $\rho(G)$ dla wybranych rozmiarów układu n. Wyniki przedstawiono w Tabeli 5. Z Tabeli 5b widać, że promień spektralny po raz pierwszy przekracza 1 przy n=362. Na Rysunku 7 zaprezentowano przebieg $\rho(G)$ w całym badanym zakresie oraz powiększenie fragmentu wokół $n\approx362$. Badanie promienia spektralnego macierzy iteracyjnej G wykazało, że $\rho(G)<1$ dla $n\leq300$, a $\rho(G)>1$ już od n=362. W dalszych testach skupiono się więc na "zbieżnych" układach $n\leq300$ oraz "niezbieżnych" $n\geq400$, rozwiązując je metodą Jacobiego w precyzji float64.

(a) $n \in \{100, 200, 300, 400\}$			$,400$ }	(b) $\rho(G)$ dla $360 \le n \le 363$			
	n	$\rho(G)$	_		n	$\rho(G)$	
	100	0.6584	-		360	0.99872	
	200	0.8392			361	0.99948	
	300	0.9488			362	1.00024	
_	400	1.0277	_		363	1.00100	

Tabela 5: Promień spektralny $\rho(G)$: porównanie wybranych wartości

Rysunek 7: Promień spektralny $\rho(G)$ w zależności od n.

Jako kryteria stopu przyjęto normę przyrostu $||x^{(k+1)}-x^{(k)}||_{\infty} < \varepsilon$ i residualną $||Ax^{(k)}-b||_{\infty} < \varepsilon$, oraz trzy typy wektora początkowego: zerowy, losowy z $\{\pm 100\}$ i "pośredni" z $\{\pm 30, \pm 40, \pm 50, \pm 60\}$. Kryterium przyrostowe – liczba iteracji

Rysunek 8: Liczba iteracji do spełnienia kryterium przyrostowego $\|x^{(k+1)} - x^{(k)}\|_{\infty} < \varepsilon$.

Kryterium residualne – liczba iteracji

Rysunek 9: Liczba iteracji do spełnienia kryterium residualnego $||Ax^{(k)} - b||_{\infty} < \varepsilon$.

Warto zauważyć, że dla kryterium residualnego i tolerancji $\varepsilon=10^{-15}$ w większości przypadków (por. Rys. 9a, 9b, 9c) iteracje dochodziły do ustawionego limitu, mimo to końcowe wartości błędu maksymalnego $e_{\rm max}$ były zgodne z ograniczeniami arytmetyki liczb zmiennoprzecinkowych (zob. Rysunek 10).

Kryterium residualne – błąd maksymalny $e_{\rm max}$

Rysunek 10: Błąd maksymalny $e_{\text{max}} = ||x_{\text{true}} - x^{(N)}||_{\infty}$ przy kryterium residualnym.

Ostateczne wnioski płynące z analizy promienia spektralnego oraz przebiegu iteracji przedstawiają się następująco:

- Dla $n \leq 300$ ($\rho(G) < 1$) metoda Jacobiego konwerguje, zaś gdy $\rho(G) > 1$ (od n = 362), brak jest zbieżności w zadanym limicie kroków.
- Kryterium przyrostowe generuje zwykle mniejszą liczbę iteracji niż residualne, ale prowadzi do wyższych błędów końcowych.
- Kryterium residualne zapewnia lepszą kontrolę dokładności kosztem większej liczby iteracji i dłuższego czasu pojedynczej iteracji.
- Wariant zerowy wektora startowego daje najszybszą zbieżność i najniższe błędy, natomiast wektor "oddalony" (± 100) wymaga najwięcej iteracji, zwłaszcza przy mniejszych tolerancjach.

5 Podsumowanie Zagadnienia

Badania obejmowały trzy problemy: (6a) układy o pełnych macierzach dobrze i źle uwarunkowanych, (6b) układy trójdiagonalne, (7) układy rozwiązywane metodą Jacobiego. Poniżej syntetyzujemy najważniejsze wnioski.

Uwarunkowanie a metody bezpośrednie (Zadanie 6a)

- Macierz hilbertowska (złe uwarunkowanie). Współczynnik uwarunkowania osiągał rzędy $10^{10}-10^{20}$; odpowiadało to lawinowemu wzrostowi błędu $e_{\rm max}$ od $n\approx 7$ (float32) i $n\approx 13$ (float64). Podwójna precyzja tylko *opóźniała* katastrofę numeryczną nie usuwała jej przy skrajnie źle uwarunkowanych macierzach.
- Macierz 2i/j (dobre uwarunkowanie). κ(A) rosło wolno (maks. ≈ 10⁵), a profil błędów pozostawał gładki; różnice między float32 i float64 sprowadzały się do stałego przesunięcia o kilka rzędów wielkości, zgodnego z oczekiwaniami dla różnych precyzji liczb zmiennoprzecinkowych.

Współczynnik uwarunkowania $\kappa(A)$ jest wiarygodnym predyktorem jakości rozwiązania dla metod bezpośrednich: nagły skok κ zwiastuje równie nagły wzrost błędu, zaś wysoka precyzja nie zastąpi dobrego uwarunkowania macierzy.

Macierze trójdiagonalne – Thomas vs. Gauss (Zadanie 6b)

- **Złożoność.** Algorytm Thomasa potwierdził złożoność czasową i pamięciową O(n); pełna eliminacja Gaussa odpowiednio $O(n^3)$ i $O(n^2)$. Przy n=1000 Thomas był ok. **200** × szybszy i **400** × oszczędniejszy pamięciowo.
- **Dokładność.** Obie metody dawały identyczne wartości e_{max} oraz e_{euk} . O błędzie decydowała wyłącznie precyzja (float32/float64), a nie dobór algorytmu.

W przypadku układów trójdiagonalnych algorytm Thomasa pozwala uzyskać porównywalną dokładność rozwiązań przy znacznie niższych kosztach obliczeniowych i pamięciowych niż pełna eliminacja Gaussa.

Metoda Jacobiego – granice zbieżności (Zadanie 7)

Promień spektralny i zbieżność

Promień spektralny $\rho(G)$ stanowi dobry wskaźnik zbieżności metod iteracyjnych – układy konwergują jedynie wtedy, gdy $\rho(G) < 1$.

Kryteria stopu i wektory startowe

- Kryterium przyrostowe wymagało mniej iteracji, lecz kończyło z większymi błędami.
- **Kryterium residualne** zapewniało niższy błąd kosztem większej liczby iteracji i dłuższego czasu na iterację.
- Wektor startowy zerowy zbiegał najszybciej i z najmniejszą liczbą iteracji, podczas gdy wektor ± 100 wymagał największej liczby kroków, szczególnie przy mniejszych tolerancjach $\varepsilon \leq 10^{-9}$.

Ograniczenia arytmetyki zmiennoprzecinkowej

Przy kryterium residualnym i tolerancji $\varepsilon=10^{-15}$ iteracje w większości przypadków dochodziły do ustawionego limitu (por. Rys. 9 i 10), mimo to uzyskane wartości błędu maksymalnego $e_{\rm max}$ pozostawały w granicach około 10^{-14} , co uwidacznia wpływ ograniczonej precyzji zmiennoprzecinkowej.