# Supervised Learning IV - Naive Bayes

# 1. Our Example Data

| Outlook  | Temperature | Humidity | Windy? | Play Outside? |
|----------|-------------|----------|--------|---------------|
| Sunny    | Hot         | High     | False  | No            |
| Sunny    | Hot         | High     | True   | No            |
| Overcast | Hot         | High     | False  | Yes           |
| Rainy    | Mild        | High     | False  | Yes           |
| Rainy    | Cool        | Normal   | False  | Yes           |
| Rainy    | Cool        | Normal   | True   | No            |
| Overcast | Cool        | Normal   | True   | Yes           |
| Sunny    | Mild        | High     | False  | No            |
| Sunny    | Cool        | Normal   | False  | Yes           |
| Rainy    | Mild        | Normal   | False  | Yes           |
| Sunny    | Mild        | Normal   | True   | Yes           |
| Overcast | Mild        | High     | True   | Yes           |
| Overcast | Hot         | Normal   | False  | Yes           |
| Rainy    | Mild        | High     | True   | No            |

a.

b. Play Outside? is the label (ground truth)

# 2. Conversion into Numeric Representation

|         |             | -        |        |               |
|---------|-------------|----------|--------|---------------|
| Outlook | Temperature | Humidity | Windy? | Play Outside? |
| 0       | 2           | 1        | 0      | 0             |
| 0       | 2           | 1        | 1      | 0             |
| 1       | 2           | 1        | 0      | 1             |
| 2       | 1           | 1        | 0      | 1             |
| 2       | 0           | 0        | 0      | 1             |
| 2       | 0           | 0        | 1      | 0             |
| 1       | 0           | 0        | 1      | 1             |
| 0       | 1           | 1        | 0      | 0             |
| 0       | 0           | 0        | 0      | 1             |
| 2       | 1           | 0        | 0      | 1             |
| 0       | 1           | 0        | 1      | 1             |
| 1       | 1           | 1        | 1      | 1             |
| 1       | 2           | 0        | 0      | 1             |
| 2       | 1           | 1        | 1      | 0             |

a

b. Change to machine familiar format

### 3. Modeling the Data

- a. Last time we assumed we wanted to learn a decision tree
  - i. Biased the model with axis-parallel cuts

b. This time:

$$\hat{y} = \underset{y \in Y}{\operatorname{argmaxPr}[Y = y \mid x]}$$

$$= \underset{y \in Y}{\operatorname{argmax}} \frac{\Pr[x \mid Y = y] \Pr[Y = y]}{\Pr[x]}$$

$$= \underset{y \in Y}{\operatorname{argmaxPr}[x \mid Y = y] \Pr[Y = y]}$$

$$= \underset{y \in Y}{\operatorname{argmaxPr}} \left[ x \middle| Y = y \right] \Pr[X]$$

- i. Y-hat is the output
- Calculate the probability of class 1 and class 0 to find out which class is ii. more likely by applying bayes rule
- The denominator does not depend on the value of y, so we can factor it out
- c. Learn probabilistic model
- 4. The Hard Part
  - a. Need to learn two things:
    - i. Pr[Y]

| Play Outside? = y | Pr[Y=y] |
|-------------------|---------|
| 0                 | 5/14    |
| 1                 | 9/14    |

- 2. Easy: just count!
- ii. Pr[x | Y]

1.

1. Hard, need to learn a joint distribution:

$$\Pr[x_{Outlook}, x_{Temp}, x_{Humidity}, x_{Windy} | Y]$$

b. In general:

$$\Pr[x | y] = \Pr[f_1, f_2, f_3, ..., f_m | Y]$$

- Figuring this is difficult → counting them will take a lot of time
- b. What should we do?
  - i. Naïve Bayes part:
    - 1. Assume features are conditionally independent

a 
$$\Pr[f_1, f_2, f_3, ..., f_m | Y] = \Pr[f_1 | Y] \Pr[f_2 | Y] \Pr[f_3 | Y] ... \Pr[f_m | Y]$$

- b. We assume the features are independent when in reality it is not necessary the case
- 5. Naive Bayes
  - a. Since we assumed conditional independence:
    - i. Only need to focus on one feature at a time!
    - ii Much easier!

$$\begin{array}{c|c}
\Pr[x_{Outlook} | Y] \\
\Pr[x_{Humidity} | Y] \\
\Pr[x_{Temp} | Y] \\
\Pr[x_{Windy} | Y]
\end{array}$$

2. Now we do not need superior amount of data

| Outlook | Pr[Outlook = x   Y = 0] | Pr[Outlook = x   Y = 1] |
|---------|-------------------------|-------------------------|
| 0       | 3/5                     | 2/9                     |
| 1       | 0/5                     | 4/9                     |
| 2       | 2/5                     | 3/9                     |

| Humidity | Pr[Humidity = x   Y = 0] | Pr[Humidity = x   Y = 1] |
|----------|--------------------------|--------------------------|
| 0        | 2/5                      | 6/9                      |
| 1        | 3/5                      | 3/9                      |

4.

- b. Be careful!
  - i. Don't want 0 probs!
    - 1. Smooth the distribution  $\rightarrow$  0s are too aggressive and make things small value but not 0
      - a. Smoothing refers to the fact that I should not believe the training data 100%
    - 2. If there are 0s, Naive Bayes is overfitting  $\rightarrow$  caring too much about the data collected
- 6. Naive Bayes Visually

| Outlook | Temperature | Humidity | Windy? | Play Outside? |
|---------|-------------|----------|--------|---------------|
| 0       | 2           | 1        | 0      | 0             |
| 0       | 2           | 1        | 1      | 0             |
| 1       | 2           | 1        | 0      | 1             |
| 2       | 1           | 1        | 0      | 1             |
| 2       | 0           | 0        | 0      | 1             |
| 2       | 0           | 0        | 1      | 0             |
| 1       | 0           | 0        | 1      | 1             |
| 0       | 1           | 1        | 0      | 0             |
| 0       | 0           | 0        | 0      | 1             |
| 2       | 1           | 0        | 0      | 1             |
| 0       | 1           | 0        | 1      | 1             |
| 1       | 1           | 1        | 1      | 1             |
| 1       | 2           | 0        | 0      | 1             |
| 2       | 1           | 1        | 1      | 0             |

a.



i. Instance of Bayesian network

#### 7. How to Make Predictions

b.

function predict(x) returns int // class label

$$\Pr\big[Y\!=y\,\Big|\,x\big]=\Pr[Y=y]\prod_{f\in F}\!\Pr[f=x_f|\,Y\!=y]$$

if 
$$\Pr[Y = y \mid x] > \text{best\_prob then}$$
  
 $\text{best\_prob} = \Pr[Y = y \mid x]$   
 $\text{best\_class} = y$   
end if

end for return best\_class

8. Continuous Features

a.

- a. The node no longer contains a pmf
- b. That's ok!
  - i. Parameterize with a pdf

- 1. For instance, assume a Gaussian (or another pdf)
- 2. Learn the parameters of the pdf from the feature data!
- c. When making predictions:
  - i. You have the feature value: how likely is it to be drawn from the pdf!
- 9. Decision Boundary
  - a. Consider binary classification
    - i. Argument extends to higher dims

$$\Pr\left[c = 1 \mid \overrightarrow{x}\right] = \frac{\Pr\left[\overrightarrow{x} \mid c = 1\right] \Pr\left[c = 1\right]}{\Pr\left[\overrightarrow{x} \mid c = 1\right] \Pr\left[c = 1\right] + \Pr\left[\overrightarrow{x} \mid c = 0\right] \Pr\left[c = 0\right]}$$

$$= \frac{1 + \frac{\Pr\left[\overrightarrow{x} \mid c = 0\right] \Pr\left[c = 0\right]}{\Pr\left[\overrightarrow{x} \mid c = 1\right] \Pr\left[c = 1\right]}}{1 + e^{-\log\left(\frac{\Pr\left[\overrightarrow{x} \mid c = 1\right] \Pr\left[c = 1\right]}{\Pr\left[\overrightarrow{x} \mid c = 0\right] \Pr\left[c = 0\right]}\right)}}$$

$$= \frac{1}{1 + e^{-\log\left(\frac{\Pr\left[\vec{x}\mid c=1\right]}{\Pr\left[\vec{x}\mid c=0\right]}\right) - \log\left(\frac{\Pr\left[c=1\right]}{\Pr\left[c=0\right]}\right)}}$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

c.  $\rightarrow$  sigmoid function

$$= \sigma \left( \log \left( \frac{\Pr[\overrightarrow{x} \mid c = 1]}{\Pr[\overrightarrow{x} \mid c = 0]} \right) + \log \left( \frac{\Pr[c = 1]}{\Pr[c = 0]} \right) \right)$$

$$= \sigma \left( \log \left( \frac{\Pr[c = 1]}{\Pr[c = 1]} \right) + \sum_{x_i} \log \left( \frac{\Pr[x_i \mid c = 1]}{\Pr[x_i \mid c = 0]} \right) \right)$$

- d.
- e. This is not a linear equation in x
  - i. In general, Naïve Bayes is not a linear classifier!
  - ii. The decision boundary is not a line
- f. What if  $Pr[x_i|c]$  is from the exponential family?
  - i. Gaussian
  - ii. Exponential
  - iii. Bernoulli
  - iv. Dirichlet
  - v. Poisson
  - vi. ...

### 10. When Pr[xi|c] is from the exponential family

General formula for distribution in exponential family

$$\begin{aligned} &\Pr\left[x_{i} \mid c\right] = h_{i}\left(x_{i}\right)e^{\frac{\overrightarrow{w}_{i}^{cT}\phi_{i}\left(x_{i}\right) - f\left(\overrightarrow{w}_{i}^{c}\right)}} & \text{offset} \\ &\text{amplitude} & \text{Linear comb. of features} \\ &\Pr\left[c = 1 \mid \overrightarrow{x}\right] = \sigma \left(\log\left(\frac{\Pr\left[c = 1\right]}{\Pr\left[c = 0\right]}\right) + \sum_{x_{i}}\log\left(\frac{\Pr\left[x_{i} \mid c = 1\right]}{\Pr\left[x_{i} \mid c = 0\right]}\right) \\ &= \sigma \left(\log\left(\frac{\Pr\left[c = 1\right]}{\Pr\left[c = 0\right]}\right) + \sum_{x_{i}}\log\left(\frac{h_{i}\left(x_{i}\right)e^{\overrightarrow{w}_{i}^{cT}\phi_{i}\left(x_{i}\right) - f\left(\overrightarrow{w}_{i}^{c}\right)}}{h_{i}\left(x_{i}\right)e^{\overrightarrow{w}_{i}^{cT}\phi_{i}\left(x_{i}\right) - f\left(\overrightarrow{w}_{i}^{c}\right)}}\right) \\ &= \sigma \left(\log\left(\frac{\Pr\left[c = 1\right]}{\Pr\left[c = 0\right]}\right) + \sum_{x_{i}}\left[\log\left(\frac{h_{i}\left(x_{i}\right)}{h_{i}\left(x_{i}\right)}\right) + \log\left(e^{\overrightarrow{w}_{i}^{cT}\phi_{i}\left(x_{i}\right) - f\left(\overrightarrow{w}_{i}^{c}\right) - f\left(\overrightarrow{w}_{i}^{c}\right)}\right)\right) \right] \\ &= \sigma \left(\log\left(\frac{\Pr\left[c = 1\right]}{\Pr\left[c = 0\right]}\right) + \sum_{x_{i}}\left[-f\left(\overrightarrow{w}_{i}^{c}\right) + f\left(\overrightarrow{w}_{i}^{c}\right)\right] + \sum_{x_{i}}\left(\overrightarrow{w}_{i}^{cT} - \overrightarrow{w}_{i}^{cT}\right)\phi_{i}\left(x_{i}\right)\right) \end{aligned} \right) \end{aligned}$$

i. Fi takes the ith feature and it turns it into bunch of other features in the new coordinate space

$$=\sigma\left(\frac{b}{b}+\sum_{x_i}\overrightarrow{w}^T\phi_i(x_i)\right)$$

b.

a.

- c. When Pr[xi|c] is exponential
  - i. Naïve Bayes is a linear classifier
    - 1. Not linear in x
    - 2. Linear in  $\phi(\vec{x})$ 
      - a. Linear in the new feature space
    - 3. Naive Bayes has internal representation of the points provided (more human like) → it is linear in its internal space
    - 4. Asymptotically Logistic Regression!
      - a. Softmax Regression for k > 2 classes