$11a_{23} (K11a_{23})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{53} - 2u^{52} + \dots + b + 1, \ u^{52} - u^{51} + \dots + a - u, \ u^{54} - 2u^{53} + \dots + 2u^2 - 1 \rangle$$

 $I_2^u = \langle -u^2 + b + u, \ u^2 + a - u, \ u^3 - u^2 + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 57 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{53} - 2u^{52} + \dots + b + 1, \ u^{52} - u^{51} + \dots + a - u, \ u^{54} - 2u^{53} + \dots + 2u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{52} + u^{51} + \dots + 7u^{3} + u \\ -u^{53} + 2u^{52} + \dots - 2u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{52} + u^{51} + \dots + u - 1 \\ u^{52} - u^{51} + \dots - u^{2} - u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{6} + u^{4} - 2u^{2} + 1 \\ u^{6} + u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{8} - u^{6} + 3u^{4} - 2u^{2} + 1 \\ u^{10} - 2u^{8} + 3u^{6} - 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{52} + u^{51} + \dots + 3u^{3} + 2u \\ -2u^{53} + 3u^{52} + \dots - 2u - 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{52} + u^{51} + \dots + 3u^{3} + 2u \\ -2u^{53} + 3u^{52} + \dots - 2u - 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $u^{53} + 2u^{52} + \cdots 13u 5$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{54} - 4u^{53} + \dots + 5u - 1$
c_2	$u^{54} + 28u^{53} + \dots + 5u + 1$
c_3, c_6	$u^{54} - u^{53} + \dots + 28u + 8$
c_5,c_9	$u^{54} + 2u^{53} + \dots + 2u^2 - 1$
c ₇	$u^{54} - 21u^{53} + \dots - 912u + 64$
c_8, c_{10}, c_{11}	$u^{54} + 14u^{53} + \dots + 4u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{54} - 28y^{53} + \dots - 5y + 1$
c_2	$y^{54} + 44y^{52} + \dots - 29y + 1$
c_3, c_6	$y^{54} - 21y^{53} + \dots - 912y + 64$
c_5, c_9	$y^{54} - 14y^{53} + \dots - 4y + 1$
c ₇	$y^{54} + 19y^{53} + \dots - 85248y + 4096$
c_8, c_{10}, c_{11}	$y^{54} + 54y^{53} + \dots - 28y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.948112 + 0.298354I		
a = 1.205050 + 0.065806I	-4.67558 - 3.96496I	-10.65253 + 5.36076I
b = -2.47632 + 1.36880I		
u = 0.948112 - 0.298354I		
a = 1.205050 - 0.065806I	-4.67558 + 3.96496I	-10.65253 - 5.36076I
b = -2.47632 - 1.36880I		
u = -0.718756 + 0.708822I		
a = 0.989080 + 0.349916I	1.72344 + 4.24877I	-1.89208 - 7.05777I
b = -0.893237 - 0.687723I		
u = -0.718756 - 0.708822I		
a = 0.989080 - 0.349916I	1.72344 - 4.24877I	-1.89208 + 7.05777I
b = -0.893237 + 0.687723I		
u = -0.953732 + 0.349837I		
a = -0.061370 + 0.782367I	-0.69346 + 4.89748I	-4.90328 - 6.49260I
b = 0.558618 - 0.498636I		
u = -0.953732 - 0.349837I		
a = -0.061370 - 0.782367I	-0.69346 - 4.89748I	-4.90328 + 6.49260I
b = 0.558618 + 0.498636I		
u = -0.829612 + 0.586776I		
a = 0.900184 + 0.101382I	1.80763 + 4.19776I	-1.27767 - 7.87465I
b = -1.216120 - 0.670600I		
u = -0.829612 - 0.586776I		
a = 0.900184 - 0.101382I	1.80763 - 4.19776I	-1.27767 + 7.87465I
b = -1.216120 + 0.670600I		
u = 1.006640 + 0.186947I		
a = -0.985399 + 0.649993I	-4.34560 + 3.65314I	-10.05122 - 3.06776I
b = 1.58875 - 0.30591I		
u = 1.006640 - 0.186947I		
a = -0.985399 - 0.649993I	-4.34560 - 3.65314I	-10.05122 + 3.06776I
b = 1.58875 + 0.30591I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.936944 + 0.259765I		
a = -1.088760 - 0.644557I	-4.90867 + 1.39018I	-11.17255 - 4.35263I
b = 1.68766 + 0.11648I		
u = -0.936944 - 0.259765I		
a = -1.088760 + 0.644557I	-4.90867 - 1.39018I	-11.17255 + 4.35263I
b = 1.68766 - 0.11648I		
u = -1.007510 + 0.341711I		
a = 1.191860 - 0.125655I	-3.43639 + 9.75051I	-8.30305 - 9.36472I
b = -2.43976 - 0.96569I		
u = -1.007510 - 0.341711I		
a = 1.191860 + 0.125655I	-3.43639 - 9.75051I	-8.30305 + 9.36472I
b = -2.43976 + 0.96569I		
u = 0.892491 + 0.183773I		
a = -0.171964 - 0.552035I	-1.67290 - 0.31402I	-7.28536 + 0.85083I
b = 0.779603 + 0.338273I		
u = 0.892491 - 0.183773I		
a = -0.171964 + 0.552035I	-1.67290 + 0.31402I	-7.28536 - 0.85083I
b = 0.779603 - 0.338273I		
u = 0.880753		
a = -0.535851	-1.51820	-5.33260
b = 1.06380		
u = 0.831263 + 0.825334I		
a = 0.897031 - 0.632195I	1.86207 - 0.72710I	-3.27217 + 0.I
b = -0.774607 + 0.728358I		
u = 0.831263 - 0.825334I		
a = 0.897031 + 0.632195I	1.86207 + 0.72710I	-3.27217 + 0.I
b = -0.774607 - 0.728358I		
u = -0.823137 + 0.844727I		
a = -0.312862 - 0.944385I	2.56847 - 1.88759I	0
b = -1.73844 - 0.80253I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.823137 - 0.844727I		
a = -0.312862 + 0.944385I	2.56847 + 1.88759I	0
b = -1.73844 + 0.80253I		
u = -0.862381 + 0.818968I		
a = -0.583547 + 0.090309I	4.38756 + 2.45269I	0
b = 0.49799 + 1.75744I		
u = -0.862381 - 0.818968I		
a = -0.583547 - 0.090309I	4.38756 - 2.45269I	0
b = 0.49799 - 1.75744I		
u = 0.804605 + 0.877981I		
a = -0.294081 + 1.060590I	4.52521 + 8.09679I	0
b = -1.35489 + 0.61945I		
u = 0.804605 - 0.877981I		
a = -0.294081 - 1.060590I	4.52521 - 8.09679I	0
b = -1.35489 - 0.61945I		
u = -0.956300 + 0.721294I		
a = 0.490288 + 0.770861I	1.09373 + 1.25845I	0
b = -0.371501 - 0.639488I		
u = -0.956300 - 0.721294I		
a = 0.490288 - 0.770861I	1.09373 - 1.25845I	0
b = -0.371501 + 0.639488I		
u = 0.826228 + 0.868166I		
a = -0.706693 - 0.315162I	7.09944 + 2.70045I	0
b = 0.91045 - 1.19576I		
u = 0.826228 - 0.868166I		
a = -0.706693 + 0.315162I	7.09944 - 2.70045I	0
b = 0.91045 + 1.19576I		
u = -0.926090 + 0.797649I		
a = 0.083529 - 0.557091I	4.18784 + 3.59964I	0
b = -1.82650 + 0.41695I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.926090 - 0.797649I		
a = 0.083529 + 0.557091I	4.18784 - 3.59964I	0
b = -1.82650 - 0.41695I		
u = -0.516406 + 0.577695I		
a = -0.036990 + 1.075540I	2.66225 + 0.01615I	2.03217 - 0.16196I
b = 0.657739 + 0.015042I		
u = -0.516406 - 0.577695I		
a = -0.036990 - 1.075540I	2.66225 - 0.01615I	2.03217 + 0.16196I
b = 0.657739 - 0.015042I		
u = 0.950127 + 0.790670I		
a = 0.667535 - 0.810906I	1.49449 - 5.32145I	0
b = -0.527757 + 0.770419I		
u = 0.950127 - 0.790670I		
a = 0.667535 + 0.810906I	1.49449 + 5.32145I	0
b = -0.527757 - 0.770419I		
u = 0.896659 + 0.861407I		
a = -0.040376 + 0.871785I	9.95886 - 0.40591I	0
b = -1.82541 + 0.01530I		
u = 0.896659 - 0.861407I		
a = -0.040376 - 0.871785I	9.95886 + 0.40591I	0
b = -1.82541 - 0.01530I		
u = -0.962624 + 0.798447I		
a = -0.928929 - 0.233282I	2.13549 + 8.01692I	0
b = 2.53779 + 2.34211I		
u = -0.962624 - 0.798447I		
a = -0.928929 + 0.233282I	2.13549 - 8.01692I	0
b = 2.53779 - 2.34211I		
u = 0.923219 + 0.851100I		
a = -0.876432 + 0.007481I	9.87556 - 5.94354I	0
b = 1.57894 - 1.93563I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.923219 - 0.851100I		
a = -0.876432 - 0.007481I	9.87556 + 5.94354I	0
b = 1.57894 + 1.93563I		
u = 0.972034 + 0.812571I		
a = 0.275106 + 0.680780I	6.64241 - 8.94495I	0
b = -1.73893 - 0.27634I		
u = 0.972034 - 0.812571I		
a = 0.275106 - 0.680780I	6.64241 + 8.94495I	0
b = -1.73893 + 0.27634I		
u = 0.988340 + 0.806697I		
a = -1.009690 + 0.227138I	3.9497 - 14.3488I	0
b = 2.56726 - 1.93517I		
u = 0.988340 - 0.806697I		
a = -1.009690 - 0.227138I	3.9497 + 14.3488I	0
b = 2.56726 + 1.93517I		
u = -0.137568 + 0.670291I		
a = -0.44103 + 1.74491I	-0.68378 - 6.18510I	-2.38929 + 5.41509I
b = 0.799841 - 0.000276I		
u = -0.137568 - 0.670291I		
a = -0.44103 - 1.74491I	-0.68378 + 6.18510I	-2.38929 - 5.41509I
b = 0.799841 + 0.000276I		
u = 0.571380 + 0.287951I		
a = 1.207730 - 0.200032I	-1.12376 - 1.18488I	-5.58028 + 5.43531I
b = 0.06093 + 1.45702I		
u = 0.571380 - 0.287951I		
a = 1.207730 + 0.200032I	-1.12376 + 1.18488I	-5.58028 - 5.43531I
b = 0.06093 - 1.45702I		
u = -0.211819 + 0.582109I		
a = 1.207330 + 0.116243I	1.59069 - 1.49648I	1.55257 + 1.21320I
b = -0.531021 - 0.291086I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.211819 - 0.582109I		
a = 1.207330 - 0.116243I	1.59069 + 1.49648I	1.55257 - 1.21320I
b = -0.531021 + 0.291086I		
u = -0.567584		
a = -1.94525	-2.29901	2.64120
b = 1.23770		
u = 0.075195 + 0.497044I		
a = -0.33607 - 2.18707I	-2.17031 + 1.07616I	-4.84925 - 0.51569I
b = 0.838168 - 0.011197I		
u = 0.075195 - 0.497044I		
a = -0.33607 + 2.18707I	-2.17031 - 1.07616I	-4.84925 + 0.51569I
b = 0.838168 + 0.011197I		

II.
$$I_2^u = \langle -u^2 + b + u, \ u^2 + a - u, \ u^3 - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + u \\ u^{2} - u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + u \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{2} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + u \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + u \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-2u^2 + 7u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^3$
c_2, c_4	$(u+1)^3$
c_3, c_6, c_7	u^3
<i>C</i> ₅	$u^3 + u^2 - 1$
c ₈	$u^3 - u^2 + 2u - 1$
<i>c</i> ₉	$u^3 - u^2 + 1$
c_{10}, c_{11}	$u^3 + u^2 + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_6, c_7	y^3
c_5, c_9	$y^3 - y^2 + 2y - 1$
c_8, c_{10}, c_{11}	$y^3 + 3y^2 + 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.877439 + 0.744862I		
a = 0.662359 - 0.562280I	1.37919 - 2.82812I	-4.28809 + 2.59975I
b = -0.662359 + 0.562280I		
u = 0.877439 - 0.744862I		
a = 0.662359 + 0.562280I	1.37919 + 2.82812I	-4.28809 - 2.59975I
b = -0.662359 - 0.562280I		
u = -0.754878		
a = -1.32472	-2.75839	-16.4240
b = 1.32472		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^3)(u^{54} - 4u^{53} + \dots + 5u - 1)$
c_2	$((u+1)^3)(u^{54} + 28u^{53} + \dots + 5u + 1)$
c_{3}, c_{6}	$u^3(u^{54} - u^{53} + \dots + 28u + 8)$
C4	$((u+1)^3)(u^{54} - 4u^{53} + \dots + 5u - 1)$
c_5	$(u^3 + u^2 - 1)(u^{54} + 2u^{53} + \dots + 2u^2 - 1)$
c_7	$u^3(u^{54} - 21u^{53} + \dots - 912u + 64)$
c_8	$(u^3 - u^2 + 2u - 1)(u^{54} + 14u^{53} + \dots + 4u + 1)$
<i>c</i> ₉	$(u^3 - u^2 + 1)(u^{54} + 2u^{53} + \dots + 2u^2 - 1)$
c_{10}, c_{11}	$(u^3 + u^2 + 2u + 1)(u^{54} + 14u^{53} + \dots + 4u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^3)(y^{54} - 28y^{53} + \dots - 5y + 1)$
c_2	$((y-1)^3)(y^{54} + 44y^{52} + \dots - 29y + 1)$
c_3, c_6	$y^3(y^{54} - 21y^{53} + \dots - 912y + 64)$
c_5,c_9	$(y^3 - y^2 + 2y - 1)(y^{54} - 14y^{53} + \dots - 4y + 1)$
c ₇	$y^3(y^{54} + 19y^{53} + \dots - 85248y + 4096)$
c_8, c_{10}, c_{11}	$(y^3 + 3y^2 + 2y - 1)(y^{54} + 54y^{53} + \dots - 28y + 1)$