# **Data Preparation**

## **Outline**

Attributes and Objects

- Types of Data
- Data Quality
- Similarity and Distance
- Data Preprocessing

### What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
  - Examples: eye color of a person, temperature, etc.
  - Attribute is also known as variable, field, characteristic, dimension, or feature

Objects

- A collection of attributes describe an object
  - Object is also known as record, point, case, sample, entity, or instance

### **Attributes**

|   |     |        | )                 |                   |       |
|---|-----|--------|-------------------|-------------------|-------|
| _ | Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat |
|   | 1   | Yes    | Single            | 125K              | No    |
|   | 2   | No     | Married           | 100K              | No    |
|   | 3   | No     | Single            | 70K               | No    |
|   | 4   | Yes    | Married           | 120K              | No    |
|   | 5   | No     | Divorced          | 95K               | Yes   |
|   | 6   | No     | Married           | 60K               | No    |
|   | 7   | Yes    | Divorced          | 220K              | No    |
|   | 8   | No     | Single            | 85K               | Yes   |
|   | 9   | No     | Married           | 75K               | No    |
| _ | 10  | No     | Single            | 90K               | Yes   |

### **Attribute Values**

- Attribute values are numbers or symbols assigned to an attribute for a particular object
- Distinction between attributes and attribute values
  - Same attribute can be mapped to different attribute values
    - Example: height can be measured in feet or meters
  - Different attributes can be mapped to the same set of values
    - Example: Attribute values for ID and age are integers
  - But properties of attribute can be different than the properties of the values used to represent the attribute

## **Measurement of Length**

The way you measure an attribute may not match the attributes properties.



## **Types of Attributes**

There are different types of attributes

### Nominal

Examples: ID numbers, eye color, zip codes

### Ordinal

 Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height {tall, medium, short}

### Interval

 Examples: calendar dates, temperatures in Celsius or Fahrenheit.

### Ratio

 Examples: temperature in Kelvin, length, counts, elapsed time (e.g., time to run a race)

## **Properties of Attribute Values**

The type of an attribute depends on which of the following properties/operations it possesses:

```
Distinctness:= ≠
```

- Nominal attribute: distinctness
- Ordinal attribute: distinctness & order
- Interval attribute: distinctness, order & meaningful differences
- Ratio attribute: all 4 properties/operations

|                            | Attribute<br>Type | Description                                                                | Examples                                                                                | Operations                                                            |
|----------------------------|-------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Categorical<br>Qualitative | Nominal           | Nominal attribute values only distinguish. (=, ≠)                          | zip codes, employee ID numbers, eye color, sex: {male, female}                          | mode, entropy, contingency correlation, χ2 test                       |
| Cate<br>Qua                | Ordinal           | Ordinal attribute values also order objects. (<, >)                        | hardness of minerals, {good, better, best}, grades, street numbers                      | median,<br>percentiles, rank<br>correlation, run<br>tests, sign tests |
| Numeric<br>Quantitative    | Interval          | For interval attributes, differences between values are meaningful. (+, -) | calendar dates,<br>temperature in<br>Celsius or Fahrenheit                              | mean, standard deviation, Pearson's correlation, t and F tests        |
| Nu<br>Quar                 | Ratio             | For ratio variables, both differences and ratios are meaningful. (*, /)    | temperature in Kelvin,<br>monetary quantities,<br>counts, age, mass,<br>length, current | geometric mean,<br>harmonic mean,<br>percent variation                |

This categorization of attributes is due to S. S. Stevens

|                            | Attribute<br>Type                | Transformation                                                                                             | Comments                                                                                                                               |  |
|----------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| cal<br>ve                  | Nominal Any permutation of value |                                                                                                            | If all employee ID numbers were reassigned, would it make any difference?                                                              |  |
| Categorical<br>Qualitative | Ordinal                          | An order preserving change of values, i.e.,<br>new_value = f(old_value)<br>where f is a monotonic function | An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}. |  |
| Numeric<br>Quantitative    | Interval                         | new_value = a * old_value + b<br>where a and b are constants                                               | Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).      |  |
| – ਰੱ                       | Ratio                            | new_value = a * old_value                                                                                  | Length can be measured in meters or feet.                                                                                              |  |

This categorization of attributes is due to S. S. Stevens

### **Discrete and Continuous Attributes**

### Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

### Continuous Attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floatingpoint variables.

# **Asymmetric Attributes**

- Only presence (a non-zero attribute value) is regarded as important
  - Words present in documents
  - Items present in customer transactions
- If we met a friend in the grocery store would we ever say the following?

"I see our purchases are very similar since we didn't buy most of the same things."

## **Important Characteristics of Data**

- Dimensionality (number of attributes)
  - High dimensional data brings a number of challenges
- Sparsity
  - Only presence counts
- Resolution
  - Patterns depend on the scale
- Size
  - Type of analysis may depend on size of data

## Types of data sets

- Record
  - Data Matrix
  - Document Data
  - Transaction Data
- Graph
  - World Wide Web
  - Molecular Structures
- Ordered
  - Spatial Data
  - Temporal Data
  - Sequential Data
  - Genetic Sequence Data

### **Record Data**

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

| Tid Refund |     | Marital<br>Status | Taxable<br>Income | Cheat |  |
|------------|-----|-------------------|-------------------|-------|--|
| 1          | Yes | Single            | 125K              | No    |  |
| 2          | No  | Married           | 100K              | No    |  |
| 3          | No  | Single            | 70K               | No    |  |
| 4          | Yes | Married           | 120K              | No    |  |
| 5          | No  | Divorced          | 95K               | Yes   |  |
| 6          | No  | Married           | 60K               | No    |  |
| 7          | Yes | Divorced          | 220K              | No    |  |
| 8          | No  | Single            | 85K               | Yes   |  |
| 9          | No  | Married           | 75K               | No    |  |
| 10         | No  | Single            | 90K               | Yes   |  |

### **Data Matrix**

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such a data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

| Projection of x Load | Projection of y load | Distance | Load | Thickness |
|----------------------|----------------------|----------|------|-----------|
| 10.23                | 5.27                 | 15.22    | 2.7  | 1.2       |
| 12.65                | 6.25                 | 16.22    | 2.2  | 1.1       |

### **Document Data**

- Each document becomes a 'term' vector
  - Each term is a component (attribute) of the vector
  - The value of each component is the number of times the corresponding term occurs in the document.

|            | team | coach | play | ball | score | game | win | lost | timeout | season |
|------------|------|-------|------|------|-------|------|-----|------|---------|--------|
| Document 1 | 3    | 0     | 5    | 0    | 2     | 6    | 0   | 2    | 0       | 2      |
| Document 2 | 0    | 7     | 0    | 2    | 1     | 0    | 0   | 3    | 0       | 0      |
| Document 3 | 0    | 1     | 0    | 0    | 1     | 2    | 2   | 0    | 3       | 0      |

### **Transaction Data**

- A special type of data, where
  - Each transaction involves a set of items.
  - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.
  - Can represent transaction data as record data

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Coke, Milk         |
| 2   | Beer, Bread               |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Coke, Diaper, Milk        |

## **Graph Data**

Examples: Generic graph, a molecule, and webpages



Benzene Molecule: C6H6

### **Useful Links:**

- Bibliography
- Other Useful Web sites
  - ACM SIGKDD
  - KDnuggets
  - o The Data Mine

### **Book References in Data Mining and Knowledge Discovery**

Usama Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy uthurasamy, "Advances in Knowledge Discovery and Data Mining", AAAI Press/the MIT Press, 1996.

J. Ross Quinlan, "C4.5: Programs for Machine Learning", Morgan Kaufmann Publishers, 1993. Michael Berry and Gordon Linoff, "Data Mining Techniques (For Marketing, Sales, and Customer Support), John Wiley & Sons, 1997.

# **Knowledge Discovery and Data Mining Bibliography**

(Gets updated frequently, so visit often!)

- Books
- General Data Mining

#### **General Data Mining**

Usama Fayyad, "Mining Databases: Towards Algorithms for Knowledge Discovery", Bulletin of the IEEE Computer Society Technical Committee on data Engineering, vol. 21, no. 1, March 1998.

Christopher Matheus, Philip Chan, and Gregory Piatetsky-Shapiro, "Systems for knowledge Discovery in databases", IEEE Transactions on Knowledge and Data Engineering, 5(6):903-913, December 1993.

### **Ordered Data**

Sequences of transactions



### **Ordered Data**

Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC CGCAGGGCCCGCCCCGCGCCGTC GAGAAGGCCCCCCCTGGCGGCG GGGGGAGGCGGGCCGCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCTGCGACCAGGG

### **Ordered Data**

Spatio-Temporal Data

Average Monthly Temperature of land and ocean



# **Data Quality**

Poor data quality negatively affects many data processing efforts

- Data mining example: a classification model for detecting people who are loan risks is built using poor data
  - Some credit-worthy candidates are denied loans
  - More loans are given to individuals that default

## **Data Quality ...**

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
  - Noise and outliers
  - Wrong data
  - Fake data
  - Missing values
  - Duplicate data

### **Noise**

- For objects, noise is an extraneous object
- For attributes, noise refers to modification of original values
  - Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen
  - The figures below show two sine waves of the same magnitude and different frequencies, the waves combined, and the two sine waves with random noise
    - The magnitude and shape of the original signal is distorted







### **Outliers**

- Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set
  - Case 1: Outliers are noise that interferes with data analysis
  - Case 2: Outliers are the goal of our analysis
    - Credit card fraud
    - Intrusion detection
- Causes?



## **Missing Values**

- Reasons for missing values
  - Information is not collected (e.g., people decline to give their age and weight)
  - Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
- Handling missing values
  - Eliminate data objects or variables
  - Estimate missing values
    - Example: time series of temperature
    - Example: census results
  - Ignore the missing value during analysis

## **Duplicate Data**

- Data set may include data objects that are duplicates, or almost duplicates of one another
  - Major issue when merging data from heterogeneous sources
- Examples:
  - Same person with multiple email addresses
- Data cleaning
  - Process of dealing with duplicate data issues
- When should duplicate data not be removed?

## **Similarity and Dissimilarity Measures**

- Similarity measure
  - Numerical measure of how alike two data objects are.
  - Is higher when objects are more alike.
  - Often falls in the range [0,1]
- Dissimilarity measure
  - Numerical measure of how different two data objects are
  - Lower when objects are more alike
  - Minimum dissimilarity is often 0
  - Upper limit varies
- Proximity refers to a similarity or dissimilarity

## **Similarity/Dissimilarity for Simple Attributes**

The following table shows the similarity and dissimilarity between two objects, x and y, with respect to a single, simple attribute.

| Attribute         | Dissimilarity                                                                                     | Similarity                                                                            |  |  |
|-------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| Type              |                                                                                                   |                                                                                       |  |  |
| Nominal           | $d = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$                   | $s = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$       |  |  |
| Ordinal           | d =  x - y /(n - 1)<br>(values mapped to integers 0 to $n-1$ , where $n$ is the number of values) | s = 1 - d                                                                             |  |  |
| Interval or Ratio | d =  x - y                                                                                        | $s = -d, s = \frac{1}{1+d}, s = e^{-d},$ $s = 1 - \frac{d - min\_d}{max\_d - min\_d}$ |  |  |

### **Euclidean Distance**

Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

where n is the number of dimensions (attributes) and  $x_k$  and  $y_k$  are, respectively, the  $k^{th}$  attributes (components) or data objects  $\mathbf{x}$  and  $\mathbf{y}$ .

## **Euclidean Distance**



| point     | X | y |
|-----------|---|---|
| <b>p1</b> | 0 | 2 |
| <b>p2</b> | 2 | 0 |
| р3        | 3 | 1 |
| p4        | 5 | 1 |

|           | p1    | <b>p2</b> | р3    | p4    |
|-----------|-------|-----------|-------|-------|
| <b>p1</b> | 0     | 2.828     | 3.162 | 5.099 |
| <b>p2</b> | 2.828 | 0         | 1.414 | 3.162 |
| р3        | 3.162 | 1.414     | 0     | 2     |
| p4        | 5.099 | 3.162     | 2     | 0     |

**Distance Matrix** 

### Minkowski Distance

 Minkowski Distance is a generalization of Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}$$

Where r is a parameter, n is the number of dimensions (attributes) and  $x_k$  and  $y_k$  are, respectively, the  $k^{\text{th}}$  attributes (components) or data objects x and y.

## Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab,  $L_1$  norm) distance.
  - A common example of this for binary vectors is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r=2. Euclidean distance
- $\Gamma \to \infty$ . "supremum" ( $L_{max}$  norm,  $L_{\infty}$  norm) distance.
  - This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

## **Cosine Similarity**

 $\blacksquare$  If  $\mathbf{d}_1$  and  $\mathbf{d}_2$  are two document vectors, then

$$\cos(\mathbf{d_1}, \mathbf{d_2}) = \langle \mathbf{d_1}, \mathbf{d_2} \rangle / ||\mathbf{d_1}|| \, ||\mathbf{d_2}||,$$

where  $<\mathbf{d_1},\mathbf{d_2}>$  indicates inner product or vector dot product of vectors,  $\mathbf{d_1}$  and  $\mathbf{d_2}$ , and  $\parallel \mathbf{d} \parallel$  is the length of vector  $\mathbf{d}$ .

### Example:

$$d_1 = 3205000200$$
 $d_2 = 100000102$ 

$$\langle \mathbf{d_1}, \mathbf{d2} \rangle = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$
 $| \mathbf{d_1} || = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481$ 
 $| \mathbf{d_2} || = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{0.5} = (6)^{0.5} = 2.449$ 
 $\cos(\mathbf{d_1}, \mathbf{d_2}) = 0.3150$ 

## **Entropy**

- □ For
  - a variable (event), X,
  - with *n* possible values (outcomes),  $x_1, x_2 ..., x_n$
  - each outcome having probability,  $p_1, p_2 ..., p_n$
  - the entropy of X, H(X), is given by

$$H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

- $\hfill\Box$  Entropy is between 0 and  $\log_2 n$  and is measured in bits
  - Thus, entropy is a measure of how many bits it takes to represent an observation of X on average

# **Entropy Examples**

□ For a coin with probability p of heads and probability q = 1 - p of tails

$$H = -p \log_2 p - q \log_2 q$$

- For p = 0.5, q = 0.5 (fair coin) H = 1
- For p = 1 or q = 1, H = 0

What is the entropy of a fair four-sided die?

### **Entropy for Sample Data: Example**

| Hair Color | Count | p    | $-p\log_2 p$ |
|------------|-------|------|--------------|
| Black      | 75    | 0.75 | 0.3113       |
| Brown      | 15    | 0.15 | 0.4105       |
| Blond      | 5     | 0.05 | 0.2161       |
| Red        | 0     | 0.00 | 0            |
| Other      | 5     | 0.05 | 0.2161       |
| Total      | 100   | 1.0  | 1.1540       |

Maximum entropy is  $log_2 5 = 2.3219$ 

### **Entropy for Sample Data**

- Suppose we have
  - a number of observations (m) of some attribute, X,
     e.g., the hair color of students in the class,
  - where there are n different possible values
  - And the number of observation in the  $i^{th}$  category is  $m_i$
  - Then, for this sample

$$H(X) = -\sum_{i=1}^{n} \frac{m_i}{m} \log_2 \frac{m_i}{m}$$

For continuous data, the calculation is harder

### **Data Preprocessing**

- Aggregation
- Sampling
- Discretization and Binarization
- Attribute Transformation
- Dimensionality Reduction
- Feature subset selection
- Feature creation

### **Aggregation**

- Combining two or more attributes (or objects) into a single attribute (or object)
- Purpose
  - Data reduction reduce the number of attributes or objects
  - Change of scale
    - Cities aggregated into regions, states, countries, etc.
    - Days aggregated into weeks, months, or years
  - More "stable" data aggregated data tends to have less variability

**Table 2.4.** Data set containing information about customer purchases.

| Transaction ID | Item    | Store Location | Date                 | Price   |  |
|----------------|---------|----------------|----------------------|---------|--|
| :              | :       | :              | :                    | :       |  |
| 101123         | Watch   | Chicago        | $\frac{.}{09/06/04}$ | \$25.99 |  |
| 101123         | Battery | Chicago        | 09/06/04             | \$5.99  |  |
| 101124         | Shoes   | Minneapolis    | 09/06/04             | \$75.00 |  |
| :              | :       | :              | :                    | :       |  |
| •              |         | •              | •                    |         |  |

### **Example: Precipitation in Australia**

This example is based on precipitation in Australia from the period 1982 to 1993.

The next slide shows

- A histogram for the standard deviation of average monthly precipitation for 3,030 0.5° by 0.5° grid cells in Australia, and
- A histogram for the standard deviation of the average yearly precipitation for the same locations.
- The average yearly precipitation has less variability than the average monthly precipitation.
- All precipitation measurements (and their standard deviations) are in centimeters.

### **Example: Precipitation in Australia ...**

#### Variation of Precipitation in Australia



**Standard Deviation of Average Monthly Precipitation** 

Standard Deviation of Average Yearly Precipitation

# **Sampling**

- Sampling is the main technique employed for data reduction.
  - It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians often sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is typically used in data mining because processing the entire set of data of interest is too expensive or time consuming.

## Sampling ...

The key principle for effective sampling is the following:

- Using a sample will work almost as well as using the entire data set, if the sample is representative
- A sample is representative if it has approximately the same properties (of interest) as the original set of data

# **Sample Size**



## **Types of Sampling**

- Simple Random Sampling
  - There is an equal probability of selecting any particular item
  - Sampling without replacement
    - As each item is selected, it is removed from the population
  - Sampling with replacement
    - Objects are not removed from the population as they are selected for the sample.
    - In sampling with replacement, the same object can be picked up more than once
- Stratified sampling
  - Split the data into several partitions; then draw random samples from each partition

### **Sample Size**

□ What sample size is necessary to get at least one object from each of 10 equal-sized groups.



#### Discretization

- Discretization is the process of converting a continuous attribute into an ordinal attribute
  - A potentially infinite number of values are mapped into a small number of categories
  - Discretization is used in both unsupervised and supervised settings



Data consists of four groups of points and two outliers. Data is onedimensional, but a random y component is added to reduce overlap.



Equal interval width approach used to obtain 4 values.



Equal frequency approach used to obtain 4 values.



K-means approach to obtain 4 values.

### Discretization in Supervised Settings

- Many classification algorithms work best if both the independent and dependent variables have only a few values
- We give an illustration of the usefulness of discretization using the following example.



**Figure 2.14.** Discretizing *x* and *y* attributes for four groups (classes) of points.

#### **Binarization**

 Binarization maps a continuous or categorical attribute into one or more binary variables

**Table 2.6.** Conversion of a categorical attribute to five asymmetric binary attributes.

| Categorical Value | Integer Value | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ |
|-------------------|---------------|-------|-------|-------|-------|-------|
| awful             | 0             | 1     | 0     | 0     | 0     | 0     |
| poor              | 1             | 0     | 1     | 0     | 0     | 0     |
| OK                | 2             | 0     | 0     | 1     | 0     | 0     |
| good              | 3             | 0     | 0     | 0     | 1     | 0     |
| great             | 4             | 0     | 0     | 0     | 0     | 1     |

#### **Attribute Transformation**

- An attribute transform is a function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values
  - Simple functions: x<sup>k</sup>, log(x), e<sup>x</sup>, |x|
  - Normalization
    - Refers to various techniques to adjust to differences among attributes in terms of frequency of occurrence, mean, variance, range
    - Take out unwanted, common signal, e.g., seasonality
  - In statistics, standardization refers to subtracting off the means and dividing by the standard deviation

### **Example: Sample Time Series of Plant Growth**



Net Primary
Production (NPP)
is a measure of
plant growth used
by ecosystem
scientists.

#### **Correlations between time series**

|             | Minneapolis | Atlanta | Sao Paolo |
|-------------|-------------|---------|-----------|
| Minneapolis | 1.0000      | 0.7591  | -0.7581   |
| Atlanta     | 0.7591      | 1.0000  | -0.5739   |
| Sao Paolo   | -0.7581     | -0.5739 | 1.0000    |

### **Seasonality Accounts for Much Correlation**



Normalized using monthly Z Score:

Subtract off monthly mean and divide by monthly standard deviation

#### **Correlations between time series**

|             | Minneapolis | Atlanta | Sao Paolo |
|-------------|-------------|---------|-----------|
| Minneapolis | 1.0000      | 0.0492  | 0.0906    |
| Atlanta     | 0.0492      | 1.0000  | -0.0154   |
| Sao Paolo   | 0.0906      | -0.0154 | 1.0000    |

## **Curse of Dimensionality**

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which are critical for clustering and outlier detection, become less meaningful



- Randomly generate 500 points
- Compute difference between max and min distance between any pair of points

### **Dimensionality Reduction**

#### Purpose:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

#### Techniques

- Principal Components Analysis (PCA)
- Singular Value Decomposition
- Others: supervised and non-linear techniques

## **Dimensionality Reduction: PCA**

 Goal is to find a projection that captures the largest amount of variation in data



### **Dimensionality Reduction: PCA**



#### **Feature Subset Selection**

- Another way to reduce dimensionality of data
- Redundant features
  - Duplicate much or all of the information contained in one or more other attributes
  - Example: purchase price of a product and the amount of sales tax paid
- Irrelevant features
  - Contain no information that is useful for the data mining task at hand
  - Example: students' ID is often irrelevant to the task of predicting students' GPA
- Many techniques developed, especially for classification

#### **Feature Creation**

- Create new attributes that can capture the important information in a data set much more efficiently than the original attributes
- Three general methodologies:
  - Feature extraction
    - Example: extracting edges from images
  - Feature construction
    - Example: dividing mass by volume to get density
  - Mapping data to new space
    - Example: Fourier and wavelet analysis

### **Mapping Data to a New Space**

#### **□** Fourier and wavelet transform



**Two Sine Waves + Noise** 

Frequency