Logistic Regression Meets Fintech

Cristian Pachon, Jelena Mirkovic

Machine Learning Study Meetup Barcelona, 21 October, 2015

Outline

- About us
- PART I Logistic regression & risk scoring (Cristian)
 - Odds and odds ratio
 - Logistic regression model
 - Interpretation of the parameters and the relationship with OR
 - Goodness of Fit
 - LR in practice: R framework
- PART II Regression models applied in marketing (Jelena)
 - Generalized linear models
 - Marketing basics for techies
 - Measuring TV marketing campaigns impact

Fintech is unbundling the banking offering

Foreign exchange Consumer loans

Business loans

Transfe rs

Paymen ts

Wealth management

CAN CAPITAL

Snapcash

Source: CBInsights

The sector is attracting significant investment...

The impact of the Internet can be devastating

US Newspaper Adverting Revenues (1950 – 2013)

...and incumbents do not always win

US Music Industry Revenues (1999 – 2013)

Our Business: Originating Loans 24/7!

- Online, paperless lending
 - QueBueno.es overdraft solution, microcredits
 - PagaMasTarde.es installment payments
 - NFC-based mobile payments & more coming soon!

Our Business: Originating Loans 24/7!

- Online, paperless lending
 - QueBueno.es microcredits, overdraft solution
 - PagaMasTarge.es installment payments for e-commerce
 - NFC-based mobile payments & more coming soon!
- Risk-based pricing

Outline

- About us
- PART I Logistic regression & risk scoring (Cristian)
 - Odds and odds ratio
 - Logistic regression model
 - Interpretation of the parameters and the relationship with OR
 - Goodness of Fit
 - LR in practice: R framework
- PART II Regression models applied in marketing (Jelena)
 - Generalized linear models
 - Marketing basics for techies
 - Measuring TV marketing campaigns impact

The Model – Introduction

- A loan is in a Defualt situation when it has not been paid.
- From a Statistic point of view, the Default is a random variable represented by:

```
1 if the user has not paid the loan (D)
D =
0 otherwise (D)
```


The Model – Introduction

Goal

 We are interested in finding an expression that allows us to establish a relationship between D and the rest of variables.

Age	Gender	LABORAL	Default
19	M	EMPLOYED	0
34	M	UNEMPLOYED	0
43	F	SELFEMPLOYED	1
29	F	STUDENT	0
35	F	STUDENT	0
56	M	EMPLOYED	1
32	M	SELFEMPLOYED	0

Odds

• Let D be the outcome of interest (in our case, it is the Default variable). Then, the odds(D) is defined as:

$$odds(D) = \frac{P(D)}{1 - P(D)}$$

Odds

For example:

• The odds is often used to describe the chance of winning a game

Odds

	D	D	Total
X = 1 (M)	45	105	150
X = O(F)	40	160	200
Total	85	265	350

$$Odds(D \mid X = 0) = \frac{P(D \mid X = 0)}{1 - P(D \mid X = 0)} = \frac{\frac{40}{200}}{1 - \frac{40}{200}} = 0.25$$

$$Odds(D \mid X = 1) = \frac{P(D \mid X = 1)}{1 - P(D \mid X = 1)} = \frac{\frac{45}{150}}{1 - \frac{45}{150}} = 0.43$$

Odds Ratio

$$OR = \frac{odds(D \mid X = 1)}{odds(D \mid X = 0)}$$

Odds Ratio

 Given the following contingency table, the Odds Ratio is obtained as follows:

	D	D	Total
X = 1 (M)	а	b	a+b
X = O(F)	С	d	c+d
Total	a+c	b+d	a+b+c+d

The Odds Ratio

	D	D	Total
X = 1 (M)	45	105	150
X = O(F)	40	160	200
Total	85	265	350

$$OR = \frac{45.160}{105.40} = 1.71$$

• That is, the odds of the default is 1.71 times higher among males as compared with females.

The Odds Ratio

- Comments
 - When OR>1, we say that the variable is a Risk factor.
 - When OR = 1, there is not relation between the variable and the Default.
 - It is important to check the confidence interval of the Odds Ratio to see if 1 is included.

Let D be the Default

Let X a covariate vector(age, gender, laboral status ...)

Age	Gender	LABORAL	Default
19	М	EMPLOYED	0
34	M	UNEMPLOYED	0
43	F	SELFEMPLOYED	1
29	F	STUDENT	0
35	F	STUDENT	0
56	M	EMPLOYED	1
	•••		
32	M	SELFEMPLOYED	0

X: Covariate Vector

D: Default

Goal

 Our goal is to find an expression that allows us to establish a relationship between D and the covariate vector X

Expression of the logistic regression model

• Let D be the default and X de age. The first idea that we have:

$$D = \alpha + \beta \cdot X$$

A linear model such as the previous one is not meaningful!!!!

$$P(D=1 \mid X) = \alpha + \beta \cdot X$$

$$P(D=1 \mid X) \in [0,1]$$

$$\alpha + \beta \cdot X \in \Re$$

$$odds(D = 1 \mid X) = \frac{P(D = 1 \mid X)}{1 - P(D = 1 \mid X)} = \alpha + \beta \cdot X$$

$$\frac{P(D = 1 \mid X)}{1 - P(D = 1 \mid X)} \in [0, +\infty)$$

$$\alpha + \beta \cdot X \in \Re$$

We solve this problem if we model the log of the odds:

$$\ln[odds(D=1 \mid X)] = \ln\left[\frac{P(D=1 \mid X)}{1 - P(D=1 \mid X)}\right] = \alpha + \beta \cdot X$$

General Expression

• logit function of p = P(D=1|X) as a linear combination of $X_1, ..., X_n$

$$\log it(p) = \ln \left[\frac{p}{1-p} \right] = \alpha + \beta_1 \cdot X_1 + \dots + \beta_n \cdot X_n$$

$$p = \frac{\exp(\alpha + \beta_1 \cdot X_1 + \dots + \beta_n \cdot X_n)}{1 + \exp(\alpha + \beta_1 \cdot X_1 + \dots + \beta_n \cdot X_n)}$$

Logistic Curve

$$P(D \mid X) = \frac{\exp(\alpha + \beta \cdot X)}{1 + \exp(\alpha + \beta \cdot X)}$$

Logistic Curve

$$P(D \mid X) = \frac{\exp(\alpha + \beta \cdot X)}{1 + \exp(\alpha + \beta \cdot X)}$$

alpha = 1, beta = 0.25

- If we model P(D=0|X): the sign of the coefficient changes.
- Covariates: categorical variables as well as continuous variables.
- Dummy coding is used when categorical variables are included in a regression model. Let X be the gender:

$$X_{1} = \begin{cases} 1 & \text{if Gender is male} \\ 0 & \text{otherwise} \end{cases}$$

$$\ln \left[\frac{P(D=1 \mid X_1)}{1 - P(D=1 \mid X_1)} \right] = \alpha + \beta \cdot X_1$$

- In the financial industry, this model is known as scoring model, and the right hand term is called score ($\alpha + \beta \cdot X$)
- Another model, similar to this one, is the probit model. In this case the expression is:

$$\phi^{-1}(p) = \alpha + \beta \cdot X$$

where ϕ is the probability distribution function of a N(0, 1)

Dichotomic variable

• Let X_k be a dichotomic covariate of a logistic regression model. The odds ratio associated with $X_k = 1$:

$$OR = \frac{odds(D = 1 | X_1, ..., X_k = 1, ..., X_n)}{odds(D = 1 | X_1, ..., X_k = 0, ..., X_n)} = \exp(\beta_k)$$

Since:

$$\ln[odds(D|X_1,...,X_n)] = \alpha + \beta_1 \cdot X_1 + \cdots + \beta_n \cdot X_n$$

Continuous variable

• Let X_k be a continuous variable. Then, the odds ratio associated with comparing two levels which differ c units is:

$$OR = \frac{odds(D = 1 | X_1, ..., X_k = x + c, ..., X_n)}{odds(D = 1 | X_1, ..., X_k = x, ..., X_n)} = \exp(c \cdot \beta_k)$$

Since:

$$\ln[odds(D|X_1,...,X_n)] = \alpha + \beta_1 \cdot X_1 + \cdots + \beta_n \cdot X_n$$

The model constant

 The interpretation of the model constant α is related to the probability for D = 1 in case of an individual with zero values in all covariates:

$$p = \frac{\exp(\alpha + \beta_1 \cdot X_1 + \dots + \beta_n \cdot X_n)}{1 + \exp(\alpha + \beta_1 \cdot X_1 + \dots + \beta_n \cdot X_n)} \longrightarrow p_0 = P(D \mid X = 0) = \frac{\exp(\alpha)}{1 + \exp(\alpha)}$$

Which is the same as:
$$\frac{p_0}{1-p_0} = \exp(\alpha)$$

The model constant

• To provide the model constant with a relevant meaning, continuous covariates may be centered, for example, around their means:

$$Y = X - \overline{X}$$

$$p_0 = P(D = 1 | Y = 0) = P(D = 1 | X = \overline{X}) = \frac{\exp(\alpha)}{1 + \exp(\alpha)}$$

The Model – Checking Goodness of fit

The Hosmer-Lemeshow (HL) Test

- If the model is well specified, the number of events predicted should be similar to the ones observed.
- The HL test works as follows:
 - It sorts the observations according to the estimated probability.
 - They are divided into 5 to 10 groups of the same size.

The Model – Checking Goodness of fit

The Hosmer-Lemeshow (HL) Test

• Within each of these n group, the observed number of events O_k k = 1, ..., n is compared to the expected number E_k

$$E_k = \sum_{j=1}^{R_k} p_j$$

Where Rk is the number of observations of the group k.

• Finally:
$$\chi_{HL}^{2} = \sum_{k=1}^{n} \frac{(O_k - E_k)^2}{V_k} \sim \chi_{n-2}, \qquad V_k = \sum_{j=1}^{R_k} p_j (1 - p_j)$$

Outline

- About us
- PART I Logistic regression & risk scoring (Cristian)
 - Odds and odds ratio
 - Logistic regression model
 - Interpretation of the parameters and the relationship with OR
 - Goodness of Fit
 - LR in practice: R framework
- PART II Regression models applied in marketing (Jelena)
 - Generalized linear models
 - Marketing basics for techies
 - Measuring TV marketing campaigns impact

Generalized Linear Models (GLzM)

• Linear Model: $Y = \beta X + \varepsilon$

• GLzM: when Y goes not follow the normal distribution:

$$E(Y) = g^{-1}(\beta X)$$

- g link function
- The model has very nice properties if Y follows a distribution from the exponential family!!
 - Normal, exponential, gamma, Poisson, Bernoulli, Binomial...
 - Canonical link function
- Logistic regression as a special case of GzLM
 - Y follows Bernoulli: link function is logit functioN

Marketing

- Online & offline marketing campaigns
 - From the first visit to the conversion
 - Attribution modeling

mata onamici odnivorolom viodanzor			
See the percentage of conversion paths that included combinations of the channels below. Select up to four channels.			
10	Channel	% of total conversions	
	Direct	74.84%	
V	Paid Search	46.31%	
V	Referral	32.61%	
	Organic Search	17.06%	
	Other Advertising	0.18%	
	Social Network	0.08%	

Multi-Channel Conversion Visualizer

- How to evaluate offline campaigns?
 - i.e. TV campaigns

TV Marketing

- Impact of TV campaigns
 - Branding vs. direct response

Web Traffic

• Organic + Brand

TV Spot Impact

- Questions:
 - What is it impact duration?
 - What is the baseline traffic?
 - Overlapping spots: how to attribute visits to different spots?

GzLM for modeling TV visits

- GLzM model: $E(Y) = g^{-1}(\beta X)$
- Y: TV visits
 - Y follows Poisson distribution / from the exponential family
- X: TV spots on different channels, month, day of the month/week,
- β: estimated coefficients, directly corresponding to the impact of an ad
 - Intercept indicates the branding awareness
- Comments:
 - Negative coefficients, small channels, "Autonomicas": geographically limited impact
- R: glm, nls (non-linear least square)

Cost Effectiveness Of TV Spots

Color:

The darker, the more expensive

Major factors:

- Day of month
- Hour
- Weekday

TV Marketing Optimization Cycle

Thank you!

Questions?

<u>cristian@digitalorigin.com</u> <u>jmirkovic@digitalorigin.com</u>

