Simple Example: Knapsack Problem

- We are given a set $N = \{1, \dots n\}$ of items and a capacity W.
- There is a profit p_i and a size w_i associated with each item $i \in N$.
- We want to choose the set of items that maximizes profit subject to the constraint that their total size does not exceed the capacity.
- ullet The most straightforward formulation is to introduce a binary variable x_i associated with each item.
- x_i takes value 1 if item i is chosen and 0 otherwise.
- Then the formulation is

$$\max \sum_{j=1}^{n} p_{j} x_{j}$$
s.t.
$$\sum_{j=1}^{n} w_{j} x_{j} \leq W$$

$$x_{i} \in \{0, 1\} \quad \forall i$$

Is this formulation correct?

An Alternative Formulation

- Let us call a set $C \subseteq N$ a cover if $\sum_{i \in C} w_i > W$. • Further, a cover C is minimal if $\sum_{i \in C \setminus \{j\}} w_i \leq W$ for all $j \in C$.
- Then we claim that the following is also a valid formulation of the original problem.

$$\max \sum_{j=1}^n p_j x_j$$
 s.t. $\sum_{j \in C} x_j \le |C| - 1$ for all minimal covers C $x_i \in \{0,1\}$ $i \in N$

Which formulation is "better"?