Gole

Learn V_{π} of a given policy π in a model-free environment.

We will see two approaches:

- 1. Monte Carlo
- 2. Temporal difference

Monte Carlo Learning

For each E_n for each S_t^n .

1.
$$T_{n+1}(S^n_t) = T_n(S^n_t) + G^n_{t:T}$$
 for rest $T_{n+1}(s) = T_n(s)$

2.
$$N_{n+1}(S_t^n)=N_n(S_t^n)+1$$
 for rest $N_{n+1}(s)=N_n(s)$

3.
$$V_n(S_t)=rac{T_n(S_t)}{N_n(S_t)}$$
 for rest $V_{n+1}(s)=V_n(s)$

When
$$N(s) o \infty, V(s) o v_\pi(s)$$
 .

Incremental Mean

The mean $\mu_1, \mu_2,...$ of a serquence $x_1, x_2, x_3,...$ can be camputed incrementally.

$$egin{align} \mu_k &= rac{1}{k} \sum_{j=1}^k x_j = rac{1}{k} igg(x_k + \sum_{j=1}^{k-1} x_j igg) \ &= rac{1}{k} (x + k + (k-1) \mu_{k-1}) \ &= \mu_{k-1} + rac{1}{k} (x_k - \mu_{k-1}) \ \end{aligned}$$

Incremental Monte-Carlo Updates

For each E_n for each S_t^n .

1.
$$N_{n+1}(S_t^n)=N_n(S_t^n)+1$$
 for rest $N_{n+1}(s)=N_n(s)$

2.
$$V_{n+1}(S_t) = V_n(S_t) + rac{G_{t:T}^n - V_n(S_t)}{N_n(S_t)}$$
 for rest $V_{n+1}(s) = V_n(s)$

or

2.
$$V_{n+1}(S_t) = V_n(S_t) + lpha(G_{t:T}^n - V_n(S_t))$$
 for rest $V_{n+1}(s) = V_n(s)$

Temporal-difference Learning

• Update value $V_n(S_t)$ toward actual return G_t .

$$V_{n+1}(S_t) = V_n(S_t) + \alpha(\boldsymbol{G}_{t:T}^n - V_n(S_t))$$

- Temporal-difference learning algorithm: TD(0)
 - \circ Update value $V_n(S_t)$ toward estimated return $R_t^n+\gamma V_n(S_{t+1})$

$$V_{n+1}(S_t) = V_n(S_t) + lpha(\underbrace{R_t^n + \gamma V_n(S_{t+1})}_{ ext{TD target}} - V_n(S_t))$$

Advantages and Disadvantages of MC vs. TD

- TD can learn before knowing the final outcome.
 - TD can learn online after every step.
 - MC must wait until end of episode before return is known.
- TD can learn without the final outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$

MC

 $V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$

TD

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$$

DP

Bootstrapping and Sampling

- Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps
- Sampling: update samples an expectation
 - MC samples
 - DP does not sample
 - TD samples

N-Step temporeal-difference learning

Given a E_n we define

$$G_{t:t+n} := R_t + ... + \gamma^{m-1}R_{t+n} + \gamma^n V_{t+n-1}(S_{t+n})$$
 $V_{n+1}(S_t) = V_n(S_t) + lpha(\underbrace{G_{t:t+n}}_{n-step\ error} - V_n(S_t))$

Generalized bootstrapping

 $(1 - \lambda) \lambda^2$

 $(1 - \lambda) \lambda$

1 - λ

TD

∞-step bootstrapping

 $S_{_t}$

 A_{t}

 A_{t+a}

 A_{t+3}

 A_{T-I}

 \mathcal{R}_{t+3} , \mathcal{S}_{t+3}

 R_{t+1} , S_{t+1}

 λ^{T-t-1}

MC

n-step ··· bootstrapping

3-step bootstrapping

2-step bootstrapping 1-step bootstrapping

4 (3) And a value in between will give a weighted combination of all n-step estimates. Beautiful, right?!

$TD(\lambda)$

$$G_{t:T}^{\lambda}:=(1-\lambda)\sum_{n=1}^{T-t}\lambda^{n-1}G_{t:t+n}$$

$$V_{n+1}(S_t) = V_n(S_t) + lpha(\underbrace{G_{t:T}^{\lambda ext{-return}}_{\lambda ext{-error}}^{\lambda ext{-return}}_{\lambda ext{-error}}$$

$\mathsf{TD}(\lambda)$ Backward-view

- 1. Set $e_0(s) = 0 \ \forall s \in \mathbb{S}$ every new episode.
- 2. When we encounter a state s. $e_t(s) = e_{t-1}(s) + 1$

3.
$$\delta^{ ext{TD}}_{t:t+1} = R_{t+1} + \gamma V_t(S_{t+1}) - V_t(S_t)$$

4.
$$V_{t+1} = V_t + \alpha \delta_{t:t+1}^{\mathrm{TD}} e_t$$

5.
$$e_{t+1} = e_t \gamma \lambda$$

Thanks