Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Previously Presented) A compound of the formula

$$\begin{array}{c|c}
(R^1)_x \\
& \\
N \\
& \\
R^3
\end{array}$$

$$Y - Z - R^2$$

wherein:

x is from 0 to 2;

 R^1 is selected from the group consisting of hydroxy, C_1 to C_9 alkoxy (optionally substituted by halo), C_1 to C_9 cycloalkylalkoxy (wherein the cycloalkyl group is optionally substituted by C_1 to C_4 alkyl or halo, and the alkoxy group is optionally substituted by halo), arylalkoxy (wherein the aryl group is optionally substituted by C_1 to C_4 alkyl, C_1 to C_3 alkoxy or halo, and the alkoxy group is optionally substituted by halo) and C_1 to C_9 alkyl amino (wherein the alkyl group is optionally substituted by halo)

 R^2 is selected from the group consisting of H, alkyl, aryl, arylalkyl, cycloalkyl and cycloalkylalkyl, wherein alkyl moieties are optionally substituted by halo, and aryl groups are optionally substituted by C_1 to C_4 alkyl, C_1 to C_4 alkoxy and halo,

 R^3 is absent when -Y-Z- R^2 is attached to N, or R^3 is selected from the group consisting of H, C_1 to C_7 alkyl and benzyl, when

-Y-Z-R² is not attached to N;

Y is C_2 to C_{10} alkylene, in which one non-terminal carbon atom may be replaced by O; and

Z is

wherein R^5 , R^6 and R^7 are independently H, aryl (C_1 to C_3) alkyl or cycloalkyl (C_1 to C_3) alkyl optionally substituted by halo, and Q is H or methyl, provided that when Z is

$$\begin{array}{c|c}
 & Q \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

at least one of R^5 and R^7 is aryl(C_1 to C_3)alkyl or cycloalkyl(C_1 to C_3)alkyl, optionally substituted by halo;

or a pharmaceutically acceptable salt thereof.

- 2. (Cancelled)
- 3. (Currently Amended, Withdrawn) The compound of claim 1 or 30-wherein R² is selected from phenyl, halophenyl, benzyl, halobenzyl, phenylethyl, halophenylethyl, phenylpropyl, halophenylpropyl, phenylbutyl, halophenylbutyl, tolyl, methoxybenzyl, trifluoromethylbenzyl, halo-methoxybenzyl, phenylbenzyl, adamantanemethyl, adamantanemethyl, adamantanepropyl, cyclohexanemethyl, cyclohexaneethyl, and naphthyl.
- 4. (Currently Amended, Withdrawn) The compound of claim 1 or 30 wherein x is 0.
- 5. (Currently Amended, Withdrawn) The compound of claim 1 or 30 wherein x is 1 or 2, and R^1 is selected from hydroxy, C_1 to C_9 alkoxy (optionally substituted by halo), C_1 to C_9 cycloalkylalkoxy (wherein the cycloalkyl group is optionally substituted by C_1 to C_4 alkyl or halo, and the alkoxy group is optionally substituted by halo), arylalkoxy (wherein the aryl group is optionally substituted by C_1 to C_4 alkyl, C_1 to C_3 alkoxy or halo, and the alkoxy

group is optionally substituted by halo) and C_1 to C_9 alkylamino wherein the alkyl group is optionally substituted by halo.

- 6.-7. (Cancelled)
- 8. (Withdrawn) The compound of claim 1, wherein Y is propylene, butylene, pentylene, hexylene, heptylene, octylene or nonylene.
 - 9.-12. (Cancelled)
- 13. (Withdrawn) A pharmaceutical composition comprising a therapeutically effective amount of the compound of claim 1, and a physiologically acceptable diluent or carrier.
 - 14.-30. (Canceled)
- 31. (Currently Amended, Withdrawn) A method of treating a patient in need of a sedative, a sleep regulator, an anticonvulsant, a regulator of hypothalamo-hypophyseal secretion, an antidepressant, a modulator of cerebral circulation, treatment of asthma or treatment of irritable bowel syndrome comprising administering to said patient a therapeutically effective amount of H₃ receptor ligand or a pharmaceutically acceptable salt thereof according to claim 1, said H₃-receptor ligand being a compound of the formula

wherein and the second

— x is from 0 to 2;

 R^4 is selected from the group consisting of hydroxy, C_4 to C_9 alkoxy (optionally substituted by halo), C_4 to C_9 cycloalkylalkoxy (wherein the cycloalkyl group is optionally substituted by C_4 to C_4 alkyl or halo, and the alkoxy group is optionally

substituted by halo), arylalkoxy (wherein the aryl group is optionally substituted by C_1 to C_4 alkyl, C_1 to C_3 alkoxy or halo, and the alkoxy group is optionally substituted by halo) and C_1 to C_9 alkyl amino (wherein the alkyl group is optionally substituted by halo)

 ${\bf R}^2$ is selected from the group consisting of H, alkyl, aryl, arylalkyl, cycloalkyl and cycloalkylalkyl, wherein alkyl moieties are optionally substituted by halo, and aryl groups are optionally substituted by ${\bf C}_1$ to ${\bf C}_4$ alkyl, ${\bf C}_1$ to ${\bf C}_4$ alkoxy and halo,

_____R³ is absent when -Y-Z-R² is attached to N, or R³ is selected from the group consisting of H, C_1 to C_7 alkyl and benzyl, when

-Y-Z-R² is not attached to N;

Y is C_2 to C_{10} alkylene, in which one non-terminal carbon atom may be replaced by O; and

_____Z is

wherein R^5 , R^6 and R^7 are independently H, aryl (C_1 to C_2) alkyl or cycloalkyl (C_1 to C_3) alkyl optionally substituted by halo, and Q is H or methyl, or Q is linked to R^5 or R^7 to form a five-membered ring or Q is linked to R^2 to form a six-membered ring, provided that when Z is

$$\begin{array}{c|c}
 & Q \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

at least one of R^5 and R^7 is aryl(C_1 to C_3)alkyl or cycloalkyl(C_1 to C_3)alkyl, optionally substituted by halo;

or a pharmaceutically acceptable salt thereof.

- 32. (Withdrawn) The method of claim 31, wherein R² is selected from phenyl, halophenyl, benzyl, halobenzyl, phenylethyl, halophenylethyl, phenylpropyl, halophenylpropyl, phenylbutyl, halophenylbutyl, tolyl, methoxybenzyl, trifluoromethylbenzyl, halo-methoxybenzyl, phenylbenzyl, adamantanemethyl, adamantaneethyl, adamantanepropyl, cyclohexanemethyl, cyclohexaneethyl, and naphthyl.
 - 33. (Withdrawn) The method of claim 31, wherein x is 0.
- 34. (Withdrawn) The method of claim 31, wherein x is 1 or 2, and R^1 is selected from hydroxy, C_1 to C_9 alkoxy (optionally substituted by halo), C_1 to C_9 cycloalkylalkoxy (wherein the cycloalkyl group is optionally substituted by C_1 to C_4 alkyl or halo, and the alkoxy group is optionally substituted by halo), arylalkoxy (wherein the aryl group is optionally substituted by C_1 to C_4 alkyl, C_1 to C_3 alkoxy or halo, and the alkoxy group is optionally substituted by halo) and C_1 to C_9 alkylamino wherein the alkyl group is optionally substituted by halo.
- 35. (Withdrawn) The method of claim 31, wherein Y is propylene, butylene, pentylene, hexylene, heptylene, octylene or nonylene.