CryptoHWRemarks

Krishna Acharya

January 2020

1 Q1

. All the codes written work, they have appropriate documentation, output with running time has been provided

2 Q2

2.1 Q2a

Takagi improved upon textbook RSA, and suggested using $N = pq^r$, Lets compare the cost.

- **Keygen** and **Encryption** (since we work with small public exponent) have the similar running time as textbook RSA.
- MAIN IDEA: Compute $d_p = e^{-1} \pmod{p-1}$ and $d_q = e^{-1} \pmod{q-1}$, get $m_p = c^{d_p} \pmod{p}$ and $m_q = c^{d_q} \pmod{q}^1$ Hensel lift is used for $m \pmod{q^r}$. Given $m_i^e = c \pmod{q^i}$ we can lift solution to q^{i+1} . $m_{i+1}^e = (m_i + xq^i)^e = m_i^e + x(em_i^{e-1})q^i = c \pmod{q^{i+1}}$. The starting lift value is just m_q computed earlier.
- Combine the two solutions using Chinese remainder theorem
- Why this is faster, requires r-1 lifts, and exponentiation for m_p and m_q , for the similar bit size N, the corresponding p and q required to represent it are smaller, hence the exponentiation is cheaper.

2.2 Q2b

Boneh, Durfee and Howgrave-Graham in [1] come up with an algorithm that factorizes pq^r in time $\mathcal{O}\left(2^{k^{1-\epsilon}+\mathcal{O}(\log k)}\right)$. Where p and q are k bit primes p and q are q are q and q and q are q and q and q and q are q a

In particular $r = \Omega(\log p)$ is equivalent to k = 1 which results in the running time being $\mathcal{O}\left(2^{\mathcal{O}(\log k)}\right) = \mathcal{O}\left(poly(k)\right)$ i.e polynomial in the number of bits k

For their result they build the lattice with the vectors corresponding to $g_{i,k} := N^{m-k}x^if^k(x)$ where $f(x) = (\bar{q}+x)^r$. There is a main lemma and Proof which I won't go into further detail here.

2.3 Q2c

I tried implementing the following algorithm from the same paper [1] ³ The attempt can be found in Q5.py

References

[1] Dan Boneh, Glenn Durfee, and Nick Howgrave-Graham. Factoring n = pr q for large r. 1999.

¹Using CRT for decryption

²i.e $|\log p - \log q| \le \mathcal{O}(1)$

³I tried to adapt their method by just using small roots in sage, but had no progress here