Автоматическая обработка естественного языка Введение

Екатерина Владимировна Еникеева protoev@yandex.ru https://github.com/named-entity/hse-nlp

6 сентября 2022

Преподаватели

Екатерина Владимировна Еникеева

protoev@yandex.ru

Александр Викторович Орлов

alexander.orlov98@gmail.com

О чем этот курс

AOEЯ / AOT = Natural Language Processing (NLP) особое внимание к русскоязычным данным

- 3 курс:
 - базовые статистические и нейросетевые модели
 - методы AOT по уровням (NLP pipeline)
 - морфология, синтаксис, фонетика (?)
 - оценка качества
- 4 курс: прикладные задачи АОТ («семантика», АОТ на уровне целого текста)

Основные активности

- Все занятия практические:
 - Лекция + обсуждение + код
 - Семинар с самостоятельной работой
- Чтение статей (на английском)
- Семинар с обсуждением статей
- Домашки
- Финальный проект

Оценка

- домашки (2) 40% ~10 дней
- квизы по статьям (2) + ридинг-семинар 20% ~неделя
- проект (1) 40% ~месяц

Что нужно для оценок 9/10:

- задания со * в домашках и квизах
- оформление проекта

Финальный проект

Корпус-менеджер (поиск по корпусу с лингвистической разметкой):

- о Поэтапная разметка корпуса
- о Организация поиска
- о Представление результатов
- Более подробное ТЗ в начале октября
- о Команда до 4 человек

Ранний период NLP

• С чего всё начиналось? Какая первая NLP-шная задача встала перед программистами?

Ранний период NLP

Машинный перевод и идея AI (искусственного интеллекта)

- 1940-е тест Тьюринга
- **1947** Warren Weaver идея статистического перевода
- 1954 Джорджтаунский эксперимент перевод по правилам
- 1958 первая Всесоюзная конференция по МП
- **1966** доклад ALPAC, AI Winter

Чатботы

они же: chatterbots, виртуальные собеседники, диалоговые системы

1964-1966 – ELIZA

1972 - PARRY

Как работает?

Правила

нейро

File Edit Options Buffers Tools Help

I am the psychotherapist. Please, describe your problems.

you are finished talking, type RET twice.

I have a terrible headache.

Maybe you should consult a doctor of medicine, I am a psychiatrist.

Okay, I'll do that then.

Can you elaborate on that?

What are you talking about? No I cannot elaborate. See you la sater.

Why do you say that?

Now you're just talking nonsense!

What makes you believe now I am just talking nonsense?

You are not making any sense.

Perhaps your plans have something to do with this.

-u: ** *doctor*

(Doctor Fill) -- L1 -- Top------

Natural Language Understanding

• 1970-e – Conceptual Dependency Theory (R. Schank)

Augmented Transition Network (W.A. Woods)

Figure 2. Basic form of a conceptual dependency graph.

Figure 3. Representation of "John gave Mary a book."

Задачи моделирования (1)

- синтаксис
 - supervised и unsupervised
 - rule-based формальные грамматики
- семантика
 - онтологии, тезаурусы
 - дистрибутивные модели классические ДСМ, word embeddings
 - семантические роли, фреймы

Появление статистических методов

- конец 1980х-1990е внедрение статистических методов в различные направления NLP:
 - распознавание речи (speech recognition)
 - морфологический анализ (POS-tagging)
 - коллокации
 - классификация текстов

Применение методов АОТ

Применение методов АОТ

- информационный поиск
- автодополнение (клавиатуры, email); исправление опечаток
- извлечение именованных сущностей, фактов
- автоматическое реферирование; антиплагиат
- оценка тональности, извлечение мнений
- классификация текстов; выделение подтем в документе
- вопросно-ответные системы
- распознавание и синтез речи
- ...

Задачи моделирования (1)

- синтаксис
 - supervised и unsupervised
 - rule-based формальные грамматики
- семантика
 - онтологии, тезаурусы
 - дистрибутивные модели классические ДСМ, word embeddings
 - семантические роли, фреймы

Задачи моделирования (2)

• понимание (NLU) vs. порождение (NLG) текста

-> связь AOT и искусственного интеллекта (ИИ, AI – Artificial Intelligence)

NLP challenges

• Почему вообще интересно заниматься NLP и не все задачи до сих пор решены?

NLP challenges

- **неоднозначность** языка на всех уровнях (linguistic ambiguity): 1 форма N значений
- **синонимия** всех уровнях: 1 значение может выражаться N разними способами
- стилистическое разнообразие
- продуктивность (неологизмы)
- идиоматичность, некомпозициональность
- low-resourced languages

Методы

- rule-based (основанные на правилах, требуют экспертизы)
- статистические (требуют данных)
 - классические
 - основанные на машинном обучении
- гибридные

Почти во всех задачах state-of-the-art (SOTA) – нейронные сети

Пайплайн

1. Сбор данных

Есть готовые корпуса, а есть парсинг. Для разных задач нужны разные тексты.

Где нам взять данные для того, чтобы.... (и какие доп. проблемы мы можем найти, какие вопросы задать?)

- 1. Обучить нейросеть определять тональность высказывания (проще говоря, является ли текст положительным/хвалебным, негативным или нейтральным)?
- 2. Создать программу, которая будет определять, написан ли текст в формальном стиле или нет?
- 3. Обучить нейросеть определять хейтспич?
- 4. Создать функцию, которая убирает из текста стоп-слова в малом языке?
- 5. Создать спеллчекер?
- 6. спелчекер без морфологии?

Данные: корпуса / датасеты

Тесты + сегментация + метаданные + разметка

- Корпуса одного языка
 - Brown corpus, British National Corpus, Penn Treebank
 - Национальный корпус русского языка (НКРЯ)
- Параллельные и многоязычные:
 - Europarl, UN Corpus, Opus
- Под специфические задачи
 - Twitter US Airline Sentiment ...

Данные: тегсеты

- Английский и мультиязычные:
- Stanford NLP
- Universal Dependencies
- Русский
- Соревнования «Диалога» (Ru-Eval)
- НКРЯ (Mystem), pymorphy / OpenCorpora

Сегментация (тексты, абзацы, предложения)

```
In [1]: text = "Mr. Smith bought ticket to San Francisco. He was very happy."
    text.split('.')
Out[1]: ['Mr', ' Smith bought ticket to San Francisco', ' He was very happy', '']
In [2]: import nltk
In [3]: nltk.sent_tokenize(text)
Out[3]: ['Mr. Smith bought ticket to San Francisco.', 'He was very happy.']
```

Токенизация (слова, токены, стоп-слова)

```
In [5]: en_sentence = nltk.sent_tokenize(text)[0]
en_sentence.split()

Out[5]: ['Mr.', 'Smith', 'bought', 'ticket', 'to', 'San', 'Francisco.']

In [6]: ru_sentence = "Мистер Смит купил билет до Сан-Франциско."
ru_sentence.split()

Out[6]: ['Мистер', 'Смит', 'купил', 'билет', 'до', 'Сан-Франциско.']
```

??? Аналитические формы, компаунды, коллокации

```
In [7]: nltk.word_tokenize(en_sentence)
Out[7]: ['Mr.', 'Smith', 'bought', 'ticket', 'to', 'San', 'Francisco', '.']
```

Лемматизация / стемминг

Лемма ~ лексема ~ начальная форма Стем ~ основа ~ усеченная словоформа

Морфологический анализ (~POS-tagging)

Морфологический анализ (~POS-tagging)

```
In [24]: import pymorphy2
         m = pymorphy2.MorphAnalyzer()
         for t in nltk.word tokenize (ru sentence):
             print(m.parse(t)[0])
         Parse (word='мистер', tag=OpencorporaTag('NOUN, anim, masc sing, nomn'), normal form='мистер', score=1.0, methods stack=
         ((DictionaryAnalyzer(), 'мистер', 52, 0),))
         Parse (word='cмит', tag=OpencorporaTag('NOUN, anim, masc, Sqtm, Surn sing, nomn'), normal form='cмит', score=0.333333, meth
         ods stack=((DictionaryAnalyzer(), 'CMMT', 29, 0),))
         Parse (word='купил', tag=OpencorporaTag('VERB, perf, tran masc, sing, past, indc'), normal form='купить', score=1.0, method
         s stack=((DictionaryAnalyzer(), 'купил', 680, 1),))
         Parse(word='билет', tag=OpencorporaTag('NOUN,inan,masc sing,accs'), normal form='билет', score=0.666666, methods stac
         k=((DictionaryAnalyzer(), 'билет', 34, 3),))
         Parse (word='до', tag=OpencorporaTag('PREP'), normal form='до', score=1.0, methods stack=((DictionaryAnalyzer(), 'до',
         24, 0),))
         Parse (word='caн-франциско', tag=OpencorporaTag('NOUN, inan, masc, Sgtm, Fixd, Geox sing, loct'), normal form='caн-франциск
         o', score=0.416666, methods stack=((DictionaryAnalyzer(), 'сан-франциско', 31, 5),))
         Parse (word='.', tag=OpencorporaTag('PNCT'), normal form='.', score=1.0, methods stack=((PunctuationAnalyzer(score=0.
         9), '.'),))
```

Разрешение неоднозначности (лемм / тегов)

```
Mr./NNP Smith/NNP bought/VBD ticket/NN to/TO San/NNP Francisco/NNP ./.
```

Мистер/(NOUN,anim,masc sing,nomn)
Смит/(NOUN,anim,masc,Surn sing,nomn | ...)
купил/(VERB,perf,tran masc,sing,past,indc)
билет/(NOUN,inan,masc sing,nomn |
NOUN,inan,masc sing,accs)

. . .

Синтаксический анализ (parsing)

Семантический анализ? (Semantic Role Labeling)

купить: [ARG0: Мистер Смит]

[V: купил]

[ARG1: билет до Сан-Франциско]

Семантический анализ?

Данные: подготовка

Разметка

(спец. инструменты – BRAT, ...) \rightarrow xml / tsv / ...

- Согласованность разметчиков (Cohen's kappa)
- Краудсорсинг

Отбор данных

Dataset augmentation / distillation

Каппа Коэна мера согласованности между двумя категориальными переменными. Обычно говорят о двух оценщиках, которые распеделяют n наблюдений по s категориям.

$$\kappa = rac{p_o - p_e}{1 - p_e},$$

где p_o — доля полного согласия, а p_e — вероятность случайного согласия.

Для случая s = 2, можно нарисовать следующую таблицу сопряженности:

	s_1	s_2
s_1	а	b
s_2	С	d

В таком случае:

$$egin{aligned} ullet & p_o = rac{a+d}{a+b+c+d} \ ullet & p_e = rac{(a+b) imes(a+c)+(d+b) imes(d+c)}{(a+b+c+d)^2} \end{aligned}$$

семинар

Представление данных

Вспомним tf*idf: можно сравнивать между собой тексты и слова (|d|=длина документа)

Суперъяхта — большая прогулочная яхта. Этот термин не имеет формального определения. |d|=10

Ранг неориентированного графа имеет два не связанных друг с другом определения. |d|=11

Осада Парижа — осада Парижа в 1590 году во время Восьмой (и последней) Религиозной войны во Франции. |d|=16

tf * idf	doc_1	doc_2	doc_3
суперъяхта	(1/10) * (3/1)	(0/11) * (3/1)	(0/16) * (3/1)
имеет	(1/10) * (3/2)	(1/11) * (3/2)	(0/16) * (3/2)
определения	(1/10) * (3/2)	(1/11) * (3/2)	(0/16) * (3/2)
осада	(0/10) * (3/1)	(0/11) * (3/1)	(2/16) * (3/1)

Вектора слов

One-hot encoding

Суперъяхта — большая прогулочная яхта.

Словарь:

- 0 большая
- 1 прогулочная
- 2 суперъяхта
- 3 яхта
- 4.

	0	1	2	3	4
суперъяхта	0	0	1	0	0
большая	1	0	0	0	0
прогулочная	0	1	0	0	0
яхта	0	0	0	1	0

Вектора слов

Word embeddings: e.g. Word2vec

! Фиксированный размер вектора

суперъяхта: [1.23 3.48 2.59]

большая: [0.74. 4.31 0.98]

• • •

Можно оценивать: близость слов, текстов и тп

NLP Pipeline

ВХОДНОЙ ТЕКСТ

ПРЕПРОЦЕССИНГ

нормализация

векторизация

основной процесс

(может использовать теги, связи и т.п.)

семинар

Оценка качества

• внутренняя

(из IR) точность, полнота, ассuracy; специфические метрики

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

• внешняя

в более высокоуровневых приложениях

Оценка качества

relevant elements

selected elements

41

How many selected

How many relevant

F1-score is **harmonic** mean of precision and recall score and is used as a metrics in the scenarios where choosing either of precision or recall score can result in compromise in terms of model giving high false positives and false negatives respectively.

$$F = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

Золотой стандарт

= golden standard / benchmark

Проблемы:

- репрезентативность, сбалансированность
- выбор экспертов
- приближенность к реальным данным

семинар

Практическая вставка про токенизацию

https://colab.research.google.com/drive/1ne5HCczQSwCh6m0wj2VJvOA8Rbh7-fxk?usp=sharing

https://colab.research.google.com/drive/1w02iQpc18
 eQcToG1vKJoheVdblGBqFqk#scrollTo=Dh0CDmMmiS
 cF blanked
 https://colab.research.google.com/drive/1BqXRwoi_
 qJnmVYUgTsfa1SKHDat5xROk#scrollTo=Dh0CDmMmi
 ScF done

Спасибо!

Вопросы?