24 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2070 Bhadra

Exam.	新江 1000 1000 1000 1000 1000 1000 1000 10	Regular "	· .
Level	BE	Full Marks	80
Programme	BEL, BEX, BCT, B.Agri.	Pass Marks	32
Year / Part	II / II	Time	3 hrs.

Subject: - Numerical Method (SH553)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- √ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

[6]

[6]

[4]

[8]

[8]

[8]

[8]

[6]

[4]

[6]

[6]

- Define error. Explain different types of errors in numerical computation.
- 2 Find a real root of the following equation correct to four decimals using False Position method.

$$e^{\cos x} - \sin x - 1 = 0$$

- 3. Discuss the limitations of Newton-Raphson method while finding a real root of a non-linear equation.
- 4. Solve the following system of equations using LU factorization method.

$$5x_1 + 2x_2 + 3x_3 = 31$$

 $3x_1 + 3x_2 + 2x_3 = 25$
 $x_1 + 2x_2 + 4x_3 = 25$

- 5 Write an algorithm for solving a system of linear equations of 'N' unknowns using Gauss-Jordan Method.
- 6. Find y at x = 8 from the following data using Natural Cubic Spline interpolation.

x	3	. 5	77	9
у	3	2	3	1

7. Fit the following set of data to a curve of them form $y = a b^x$. Also evaluate y(7).

x	2	4	6	8	10	12
у	16.0	11.1	8.7	6.4	4.7	2.6

8. Evaluate the following integral using Romberg method.

$$\int_{0}^{2} \frac{e^{x} + \sin x}{1 + x^{2}} dx$$

9. Determine y'(1) and y"(1) from the following data.

X	0.5	1.0	1.5	2.0	2.5
У	6	3	2	1.2	0.8

Solve the following initial value problem for y(1.2) using the Runge-Kutta fourth order method.

$$y'' - 3y' + y = \sin x$$
; $y(1) = 1.2$; $y'(1) = 0.5$

Write an algorithm to solve two point boundary value problem using shooting method.

12. Solve $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary conditions as shown in figure below.

a real root of the following equation correct to four decimals using Faise Position

$$0 = 1 - x \operatorname{mis} - x \operatorname{m}$$

as the limitations of Newton-Raphson method wishe finding a real root of a

the following system of equations using LU factorization method.

$$c_1 + 2x_2 + 4x_3 = 25$$

e an algorithm for solving a system of linear equations of 'N' unknowns using

y at x = 8 from the following data using Natural Cubic Spline interpolation.

he following set of data to a curve of them form $y = a b^2$. Also evaluate y(7).

10 12		2 L x . 1
4.7 2.6	11.1 8.7 6.4	0.01 y

hate the following integral using Romberg method.

$$\int_{1-x^2}^{2} e^x + \sin x \, dx$$

amine v'(1) and y"(1) from the following data.

7.5		0.1	₹.0	X
	C-1	£ 1		

ve the following initial value mobiem for v(1.2) using the Runge-Kutta fourth order

an algorithm to solve two point boundary value problem using shooting method