Distinguished Engineering

Transformer 5/5 - Transformer, the dark knight

•••

BW

Plan

- Prologue, seq2seq
- Attention, please
- Transformer, a new hope
- Transformer, revenge of the fallen
- Transformer, vision

Transformer

• Residual connection, Layer Normalization

$$ln_i = LayerNorm(x_i)$$

$$\hat{x}_{i,k} = rac{x_{i,k} - \mu_i}{\sqrt{\sigma_i^2 + \epsilon}}$$

$$ln_i = \gamma \hat{x}_i + eta = LayerNorm(x_i)$$

Transformer

• Multi-head Attention

FFNN

$$Attention(Q,K,V) = softmax(rac{QK^T}{\sqrt{d_k}})V$$

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR2021

The MLP contains two tayers with a GELU non-linearity.

$$\mathbf{z}_0 = [\mathbf{x}_{\text{class}}; \mathbf{x}_p^1 \mathbf{E}; \mathbf{x}_p^2 \mathbf{E}; \dots; \mathbf{x}_p^N \mathbf{E}] + \mathbf{E}_{pos}, \qquad \mathbf{E} \in \mathbb{R}^{(P^2 \cdot C) \times D}, \, \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D}$$
(1)

$$\mathbf{z}'_{\ell} = \text{MSA}(\text{LN}(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1}, \qquad \qquad \ell = 1 \dots L$$
 (2)

$$\mathbf{z}_{\ell} = \text{MLP}(\text{LN}(\mathbf{z}'_{\ell})) + \mathbf{z}'_{\ell}, \qquad \qquad \ell = 1 \dots L$$
 (3)

$$\mathbf{y} = \mathrm{LN}(\mathbf{z}_L^0) \tag{4}$$

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M &
ViT-Huge	32	1280	5120	16	632M &

Table 1: Details of Vision Transformer model variants.

ViT

- +
- o Simple (almost) architecture & well-proved performance
- o Scalability
- o Less Training Time
- o Excellent performance
- -
- o Less inductive bias —> requires more data!!
 - Less data, less performance

- Order
- Embedding
- ActivationGELU vs ReLU

Figure 1: The GELU ($\mu=0,\sigma=1$), ReLU, and ELU ($\alpha=1$).

$$\operatorname{GELU}(x) = xP(X \leq x) = x\Phi(x) = x \cdot rac{1}{2} \Big[1 + \operatorname{erf}(x/\sqrt{2}) \Big]$$

ViT Tra

Transformer

ViT

Positional Embedding

Everything can be found in https://wikidocs.net/book/2155
https://github.com/ukairia777/tensorflow-nlp-tutorial
https://hongl.tistory.com/232
https://dev-woong.tistory.com/38