Hyperspectral Imaging: Bead Identification and Future Directions?

Emma Stavropoulos

Cissé Lab

Advisor: Dr. Jan-Hendrik Spille

Presentation 8/28/2017

Overall Goal: Simultaneously identify multiple fluorescent molecules across visible spectrum

Uses a dispersive element (prism) in a secondary imaging pathway to disperse light

Requires a direct image and a dispersed (spectral) image to identify both position and color

☐ Acquires all spectral information simultaneously, no extra filters or switching lasers!

Optical System

Optical System

Optical System

Nanogrid – 200 nm point sources

Spectral

Note: All images taken with filter Cube with Semrock Dichroic Mirror Reflects 405, 488, 561, 635 nm lasers

512 x 512 pixels

1024 x 1024 pixels

Nanogrid – 200 nm point sources

Direct

Spectral – 590 nm reference filter

Direct 160 nm/pixel

Spectral x ~ 30-40 nm/px

1024 x 1024 pixels

Direct

Spectral

512 x 512 pixels

Deconvolve to disentangle spatial and spectral

information

Spectral Path: various filters

I. Transformation

I. Transformation

Spectral camera restriction

1. localize corresponding points on direct camera and spectral camera (590 nm)

2. Affine transformation

II. Dispersion Map

Spectral image using 590 nm filter, false colored orange

Composite image of 6 filters (465-710 nm), false colored to match approximately

II. Dispersion Map

Spectral Path:
various filters

Spectral Path:
590/10 nm reference

As desired linear dispersion ~ 3.6 nm/px!

Spectral image using 590 nm filter, false colored orange

Composite image of 6 filters (465-710 nm), false colored to match approximately

Mapping linear dispersion by imaging 7 filters and nanogrid

X-Distance from Reference Coordinate [px]

1024 x 1024 pixels

Three microbeads with single dyes

Goal:

Characterize three beads on mixed slides based on spectra

FluoSpheres Spectra

Dark Red

Red

Yellow-green bead (cyan) appears more shifted left than the red bead (yellow)

488 nm yellow-green bead spectrum

Imaging fixed tri-color beads

Dispersion: Red ---> Blue spread

Imaging fixed tri-color beads

Dispersion: Red ---> Blue spread

Future directions - Quantum Dots?

Pros

- Very narrow spectra
- Excitable by 405 nm laser
- Blink when isolated or can stably fluoresce
- Stable for a long time
- Bright!

Cons

- Much larger (tens of nm)
- Spectral blueing in oxygen environment and toxic to cells (mostly fixed)

Chan et al. Luminescent quantum dots for multiplexed biological detection and imaging. *Current opinion in biotechnology*. 2002; 13:40-46

Localization model

Immobile QD as reference

Localization model

Immobile QD as reference

Localize red when green is off

Localization model

Localize green when red is off

Localization model

Conclusion:
estimated distance of 3 DNA lengths
within 2 nm of accepted value,
each with less than 7 nm uncertainty

Hyperspectral imaging – what it (maybe) can and can't do

Requirements:

- -fixed reference positions for direct camera
- -sparse but bright
- >50 ms exposure
- -no blinking,except for spectral barcodes
- -no sub-pixel localization experiments \rightleftharpoons

Hyperspectral imaging – what it (maybe) can and can't do

Requirements:

- -fixed reference positions for direct camera
- -sparse but bright
- >50 ms exposure
- -no blinking,except for spectral barcodes
- -no sub-pixel localization experiments \rightleftharpoons

Dynamics

Fixed objects with reference color (tagged in blue) and binding fluorescent probes (green/red)

☐ relative intensities reveal binding dynamics

Hyperspectral imaging – what it (maybe) can and can't do

Requirements:

- -fixed reference positions for direct camera
- -sparse but bright
- >50 ms exposure
- -no blinking,except for spectral barcodes
- -no sub-pixel localization experiments \rightleftharpoons

Dynamics

Fixed objects with reference color (tagged in blue) and binding fluorescent probes (green/red)

☐ relative intensities reveal binding dynamics

Multiplex Imaging

Blinking QD complexes bind to receptors on membrane

☐ frequency/type of cell receptors reveal information about cell

multiple types of receptors

Thank you!