Package 'LIHNPSD'

April 12, 2012

Type Package

Version 0.2.1

Title Poisson Subordinated Distribution

Date 2012-04-12
Author Stephen Horng-Twu Lihn <stevelihn@gmail.com></stevelihn@gmail.com>
Maintainer Stephen Horng-Twu Lihn <stevelihn@gmail.com></stevelihn@gmail.com>
Description A Poisson Subordinated Distribution to capture major leptokurtic features in log-return time series of financial data.
License GPL-2
Depends R (>= 2.14.1), sn, moments, BB, Bolstad2, optimx, Rmpfr
<pre>URL http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2032762</pre>
R topics documented:
LIHNPSD-package
.N
calcqq
density
dji_logr
generatepdf
gold_logr
LihnBetaPoly
LihnFunctionAnalytic
LihnFunctionKth
LihnFunctionSum
LihnFunctionValidate
LIHNPSD_plotcdf
LIHNPSD_plotlogpdf
LIHNPSD_plotpdf
LIHNPSD_plotqq
LIHNPSD_plot_std4gr
LIHNPSD_prepare_data
LIHNPSD_standardfit_fn

2 LIHNPSD-package

LIHNPSD_standardfit_test	13
LIHNPSD_theoretical_result	14
LIHNPSD_UnitTest	15
LihnTildeFunction	15
MergeTailHistogram	16
MergeTailHistogramOneSide	16
$mu1_analytic \ \dots $	17
mu2_analytic	17
mu3_analytic	18
mu4_analytic	19
$mu_n_core \dots \dots \dots \dots \dots \dots \dots \dots \dots $	19
poisson_sum	20
poisson_sum_kth	20
prepare	21
psdkernel	21
psdkurtosis	22
psdmagnitude	22
psdskewness	23
psdunittest	23
psdvariance	24
r10y_logr	24
rawedf	25
rawedfinv	25
rawdensity	
$raw density 0 \ldots \ldots$	27
rawdensityslope	27
rawdensity_kth	28
rawmean	28
rawmu1	
rawmu2	30
rawmu3	
rawmu4	
rawsn	
SPSD	
standardfit	33
szd_logr	34
tailindex	34
tailindex_plot	
TimeSeriesLogReturn	
vix_logr	36
	37

Index

.N

Description

A new Poisson subordinated distribution is proposed to capture major leptokurtic features in log-return time series of financial data. This distribution is intuitive, easy to calculate, and converge quickly. It fits well to the historical daily log-return distributions of currencies, commodities, Treasury yields, VIX, and, most difficult of all, DJIA. It serves as a viable alternative to the more sophisticated truncated stable distribution.

Author(s)

Stephen Horng-Twu Lihn <stevelihn@gmail.com>

References

On a Poisson Subordinated Distribution for Precise Statistical Measurement of Leptokurtic Financial Data, SSRN 2032762, http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2032762.

See Also

```
{\tt dji\_logr, rawmean, rawdensity, LIHNPSD\_prepare\_data, LIHNPSD\_theoretical\_result, LIHNPSD\_plot\_std4grames and {\tt discounties} and {\tt discounti
```

Examples

```
# Load the daily log-return data of DJIA
data(dji_logr)

# Construct the S3 object for PSD
dist <- list( sigma= 0.004625, alpha= 0.292645, gamma= 0.482744, beta= -0.154049, location= 0.002968 )
class(dist) <- "LIHNPSD"
dist <- rawmean(dist)

# A simple graph of the distribution's log PDF
x <- seq(-0.1,0.1,by=0.1/1000)
plot( x, log(rawdensity(dist,x)), pch=".")

# The more sophisticated fit and graphs
dt <- LIHNPSD_prepare_data(dji_logr, breaks=160, merge_tails=c(4,2))
th <- LIHNPSD_theoretical_result(dist, dt)
LIHNPSD_plot_std4gr(th, dt)</pre>
```

Simple MPFR constructor

Description

. N

Construct an MPFR object with provided precision for further use in constructing PSD object in MPFR mode

Usage

```
.N(x,p=128)
```

4 calcqq

Arguments

x The number

p The precision, typically one of 64, 96, 128.

Value

Return an MPFR object

Examples

```
\# Convert the number 0.5 to 128-digit precision in MPFR .N( 0.5, 128 )
```

calcqq

Calculate quantile-to-quantile object from PSD and histogram

Description

Calculate quantile-to-quantile object from PSD and histogram

Usage

```
calcqq(d, hq, step = 5, debug = 0)
```

Arguments

d The PSD S3 object

hq list(qhx = h\$mids, qhy = h\$counts) where h is the histogram

step The steps of PSD movement

debug 0/1: Print debug (mostly timing) message or not

Value

Х	Data's x values
xq	Data's CDF(x)
У	PSD fit's x values
уq	PSD fit's $CDF(x)$

density 5

density

The probability density function of PSD with location parameter.

Description

The probability density function of PSD with location parameter. Since location parameter is included, the mean of the PDF is always adjusted to reflect the location parameter.

Usage

```
density(d, x)
```

Arguments

d A fully specified PSD S3 object

x x of PDF

Value

Return PDF(x)

See Also

rawdensity

dji_logr

Log-return of DJIA

Description

Log-return data of DJIA from 1930 to 2011

Usage

```
data(dji_logr)
```

References

See Yahoo Finance ^DJI for more details.

6 gold_logr

gen	era	ıte	ndf

Internal utility to generate (raw) PDF

Description

Internal utility to generate (raw) PDF

Usage

```
generatepdf(d, NS, NT, raw=1)
```

Arguments

d	A fully specified PSD S3 object
NS	Extend x-axis to number of sigma
NT	Number of tick samples per unit of sigma
raw	1: Use rawdensity; 0: Use density

Value

N	Number	of	data	points

x Array of x delta x

pb $Array ext{ of } PDF(x)$

See Also

density, rawdensity

<pre>gold_logr</pre>	go.	Ld_	.log	gr
----------------------	-----	-----	------	----

Log-return of spot gold

Description

Log-return data of spot gold (London PM fixing) from 1972 to 2009

Usage

```
data(gold_logr)
```

References

See LBMA website for more details.

LihnBetaPoly 7

LihnBetaPoly The beta polynomial

Description

The beta polynomial in the general form of the N-th moment

Usage

```
LihnBetaPoly(N, b)
```

Arguments

N The N-th polynomial

b Beta

Value

The numeric value of the polynomial

References

See Section "General Form of the N-th Moment" in the PSD paper

Examples

```
\# g_1(b) = b
LihnBetaPoly(1, 0.5)
```

 ${\tt LihnFunctionAnalytic} \quad \textit{Analytic form of Lihn function}$

Description

Analytic form of Lihn function for integer alpha

Usage

```
LihnFunctionAnalytic(alpha, x)
```

Arguments

alpha The order of Lihn function. Must be an integer from -1 to 4

x The x parameter

Value

The numeric value of Lihn function

8 LihnFunctionSum

References

Appendix A of the PSD paper.

See Also

LihnFunctionSum

Examples

```
# L_1(x) = x+1
LihnFunctionAnalytic(1,1)
```

LihnFunctionKth

The k-th term in the sum of Lihn function

Description

The k-th term in the sum of Lihn function. This is used internally by LihnFunctionSum.

See Also

LihnFunctionSum

LihnFunctionSum

The summation form of Lihn function

Description

The summation form of Lihn function

Usage

```
LihnFunctionSum(alpha, x, epsilon = 1e-10)
```

Arguments

alpha The order of Lihn function

x The x parameter epsilon tolerance of error

Value

The numeric value of Lihn function

References

Appendix A of the PSD paper.

LihnFunctionValidate 9

See Also

Lihn Function Analytic

Examples

```
\# L_1(x) = x+1
LihnFunctionSum(1,1)
```

LihnFunctionValidate

Validation of Lihn function implementations

Description

Validation of Lihn function implementations

Usage

LihnFunctionValidate()

Examples

LihnFunctionValidate()

LIHNPSD_plotcdf

Internal utility to plot cdf chart

Description

Internal utility to plot cdf chart used by LIHNPSD_plot_std4gr

Usage

```
LIHNPSD_plotcdf(dist, h, data_st, tx, tcdf, xlab = "log(r)", main = "PSD CDF")
```

Arguments

dist	the PSD S3 object
h	The histogram

data_st The descriptive statistics of the data

tx The x axis for theoretical plot, usually it is tx from LIHNPSD_theoretical_result

tcdf The CDF for theoretical plot

xlab The x-axis label main The main label

Value

N/A

See Also

```
LIHNPSD_plot_std4gr, LIHNPSD_theoretical_result
```

10 LIHNPSD_plotpdf

_plotlogpdf

Description

Internal utility to plot cdf chart used by LIHNPSD_plot_std4gr

Usage

```
LIHNPSD_plotlogpdf(dist, h, tx, tpdf, xlab = "log(r)", main = "PSD Log PDF")
```

Arguments

dist	The PSD S3 object
h	The histogram
tx	The x axis for theoretical plot, usually it is tx from LIHNPSD_theoretical_result
tpdf	The PDF for theoretical plot
xlab	The x-axis label
main	The main label

Value

N/A

See Also

 ${\tt LIHNPSD_plot_std4gr, LIHNPSD_theoretical_result}$

LIHNPSD_plotpdf	Internal utility to plot pdf chart

Description

Internal utility to plot pdf chart used by LIHNPSD_plot_std4gr

Usage

```
LIHNPSD_plotpdf(dist, h, tx, tpdf, xlab = "log(r)", main = "PSD PDF")
```

Arguments

dist	the PSD S3 object
h	The histogram
tx	The x axis for theoretical plot, usually it is tx from LIHNPSD_theoretical_result
tpdf	The PDF for theoretical plot
xlab	The x-axis label
main	The main label

LIHNPSD_plotqq 11

Value

N/A

See Also

LIHNPSD_plot_std4gr, LIHNPSD_theoretical_result

LIHNPSD_plotqq

Internal utility to plot qq chart

Description

Internal utility to plot qq chart used by LIHNPSD_plot_std4gr

Usage

```
LIHNPSD_plotqq(dist, qqp, merge_tails, main = "PSD QQ-Plot")
```

Arguments

dist the PSD S3 object

qqp The qq-plot data set, usually output of calcqq

merge_tails Specify the numbers of data points to merge in both tails when processing his-

togram

main The main label

Value

N/A

See Also

```
LIHNPSD_plot_std4gr, calcqq
```

LIHNPSD_plot_std4gr

Standard utility to plot a 4-chart graph on a given data set and PSD

fit

Description

Standard utility to plot a 4-chart graph on a given data set and PSD fit.

Usage

```
LIHNPSD_plot_std4gr(th, dt, EPS, file = NA)
```

Arguments

th The theoretical object from LIHNPSD_theoretical_result

dt The data set object from LIHNPSD_prepare_data
EPS TRUE: plot for eps file; FALSE: plot to screen

file File name of the eps output

Value

No output value

Description

Prepare the data set object from log-return series

Usage

```
LIHNPSD_prepare_data(logr, breaks, merge_tails)
```

Arguments

logr The log-return series breaks Breaks for histogram

merge_tails Specify the numbers of data points to merge in both tails when processing his-

togram

Value

logr The log-return series from the input

N The length of logr

breaks Breaks specified from the input
merge_tails merge_tails from the input

stats The descriptive statistics of logr: c(mean(logr), sqrt(var(logr)), skewness(logr), kurtos

h The histogram of logr
hq The tail-merged histogram

See Also

standardfit

LIHNPSD_standardfit_fn

Internal utility to perform nonlinear fit using spg

Description

Internal utility to perform nonlinear fit using spg

Usage

```
LIHNPSD_standardfit_fn(psd, data_stats, hist, plotqq = 1, weights = list(), merge_tails = c(0, 0)
```

Arguments

An internal array representing a guess of the PSD parameters

hist Input histogram

plotqq TRUE/FALSE: Plot intermediate charts oor not

weights Specify the weights of each component in the nonlinear fit, defaults are 1.

merge_tails Specify the numbers of data points to merge in both tails when processing his-

togram

debug TRUE/FALSE: print debug messages or not

Value

A numeric value representing the error of the fit

See Also

standardfit

```
LIHNPSD_standardfit_test
```

 ${\it Internal\ utility\ to\ test\ the\ stability\ of\ {\tt LIHNPSD_standardfit_fn}}$

Description

Internal utility to test the stability of LIHNPSD_standardfit_fn

Usage

```
LIHNPSD_standardfit_test(d, r, hist, plotqq = 1, weights = list(), merge_tails = c(0, 0))
```

Arguments

d A PSD S3 object representing initial guess of the PSD parameters

r Input log-return series hist Input histogram

plotqq TRUE/FALSE: Plot intermediate charts oor not

weights Specify the weights of each component in the nonlinear fit, defaults are 1.

Merge_tails Specify the numbers of data points to merge in both tails when processing his-

togram

Value

The debug output of LIHNPSD_standardfit_fn

See Also

LIHNPSD_standardfit_fn

LIHNPSD_theoretical_result

Prepare the theoretical result on a given data set and PSD fit

Description

Prepare the theoretical result on a given data set and PSD fit

Usage

```
LIHNPSD_theoretical_result(dist, dt, N=5000)
```

Arguments

dist A PSD S3 object to evaluate theoretical result. Location parameter is included.

dt The data set output from LIHNPSD_prepare_data

N The number of data points when calculating PDF / CDF

Value

dist the PSD S3 object from the input

N N from the input qqp Output from calcqq merge_tails Copied from dt

tx x by seq(min(dt\$logr), max(dt\$logr), length=N+1)

dx dx on tx

tpdf Theoretical PDF calculated on tx tcdf Theoretical CDF calculated on tx

See Also

calcqq, density, rawcdf

LIHNPSD_UnitTest 15

LIHNPSD_UnitTest

Perform major unit tests on the package

Description

Perform major unit tests on the package

Usage

```
LIHNPSD_UnitTest(mpfr = 0)
```

Arguments

mpfr

If non-zero value is specified, MPFR will be used.

Value

Error if not passed

See Also

psdunittest

Lihn Tilde Function

The tilde Lihn function

Description

The tilde Lihn function

Usage

```
LihnTildeFunction(x, alpha, p, epsilon = 1e-10)
```

Arguments

x The x parameter
 alpha The alpha parameter
 p The p parameter
 epsilon the tolerance of error

Value

The numeric value of the tilde Lihn function

References

Section "Pareto Tail" of the PSD paper.

Examples

```
LihnTildeFunction(0,0,0)
# should equal to 1/sqrt(2*pi)
```

MergeTailHistogram

Utility function to merge tails in the histogram

Description

Utility function to merge data points in the tails of the histogram.

Usage

```
MergeTailHistogram(q, merge_tails)
```

Arguments

```
q In the form of list(qhx = h$mids, qhy = h$counts) where h is a histogram

merge_tails Number of data points to merge on each side, in the form of c(left, right)
```

Value

Modified q after the merge

Examples

```
# Load the daily log-return data of DJIA
data(dji_logr)
h <- hist(dji_logr, breaks = 60, plot = FALSE)
# Merge two data points from the left tail, and one data points from the right tail
q2 <- MergeTailHistogram( list(qhx=h$mids, qhy=h$counts), c(2,1) )</pre>
```

MergeTailHistogramOneSide

 $Internal\ utility\ function\ to\ merge\ the\ left\ tail\ in\ the\ histogram$

Description

Internal utility function to merge the left tail in the histogram

Usage

```
MergeTailHistogramOneSide(q, allowed_merge)
```

Arguments

mu1_analytic 17

Value

Modified q after the merge

See Also

MergeTailHistogram

mu1_analytic	Calculate the analytic form of the first moment (mean) of PSD without
	location parameter

Description

Calculate the analytic form of the first moment (mean) of PSD without location parameter. The analytic form uses Lihn function.

Usage

```
mu1_analytic(d)
```

Arguments

d

A fully specified PSD S3 object

Value

Numeric value of the mean

References

See Section "The Mean" in the PSD paper

See Also

rawmean, rawmu1

mu2_analytic	Calculate the analytic form of the second moment of PSD without lo-
	cation parameter

Description

Calculate the analytic form of the second moment of PSD without location parameter. The analytic form uses Lihn function.

Usage

```
mu2_analytic(d)
```

mu3_analytic

Arguments

d

A fully specified PSD S3 object

Value

Numeric value of the second moment

References

See Section "The Variance" in the PSD paper

See Also

rawmu2

mu3_analytic

Calculate the analytic form of the third moment of PSD without location parameter

Description

Calculate the analytic form of the third moment of PSD without location parameter. The analytic form uses Lihn function.

Usage

```
mu3\_analytic(d)
```

Arguments

d

A fully specified PSD S3 object

Value

Numeric value of the third moment

References

See Section "The Skewness" in the PSD paper

See Also

rawmu3

mu4_analytic 19

canon parameter	mu4_analytic	Calculate the analytic form of the fourth moment of PSD without location parameter
-----------------	--------------	--

Description

Calculate the analytic form of the fourth moment of PSD without location parameter. The analytic form uses Lihn function.

Usage

```
mu4_analytic(d)
```

Arguments

d A fully specified PSD S3 object

Value

Numeric value of the fourth moment

References

See Section "The Kurtosis" in the PSD paper

See Also

rawmu4

mu_n_core	Calculate the analytic core part of N-th moment of PSD without loca-
	tion parameter

Description

Calculate the analytic core part of N-th moment of PSD without location parameter. The analytic form uses Lihn function. The core part does not include the beta polynomial (LihnBetaPoly) since it does not have a general analytic form.

Usage

```
mu_n_core(d, n)
```

Arguments

d A fully specified PSD S3 object

n The N-th moment

Value

Numeric value of the core part of the N-th moment

20 poisson_sum_kth

References

See Section "General Form of the N-th Moment" in the PSD paper

See Also

```
LihnBetaPoly
```

poisson_sum

Utility to calculate the Poisson sum

Description

Utility to calculate the Poisson sum

Usage

```
poisson_sum(d, fn)
```

Arguments

d A fully specified PSD S3 object

fn The input function

Value

The numeric value of the sum on fn

poisson_sum_kth

Internal utility to calculate the k-th item of the Poisson sum

Description

Internal utility to calculate the k-th item of the Poisson sum

Usage

```
poisson_sum_kth(d, fn, k)
```

Arguments

d A fully specified PSD S3 object

fn The input function k Specify the k-th item

Value

The numeric value of the k-th item on fn

See Also

```
poisson_sum
```

prepare 21

prepare

Internal utility to construct a PSD S3 object

Description

Internal utility to construct a PSD S3 object. This utility makes sure unspecified parameters are set to zero. If MPFR precision is set, all the parameters will be converted to MPFR. Several standard numbers are also stored within the object for easy access, such as pi, e. This utility is for internal use most of time, which is wrapped by rawmean.

Usage

```
prepare(d)
```

Arguments

d

A primitive PSD S3 object

Value

A fully specified PSD S3 object

See Also

rawmean

Examples

```
# Construct the S3 object for PSD dist <- list( sigma= 0.004625, alpha= 0.292645, gamma= 0.482744, beta= -0.154049, location= 0.002968 ) class(dist) <- "LIHNPSD" dist <- prepare(dist)
```

psdkernel

Calculate the ratio of the actual volatility vs the unit volatility

Description

Calculate the ratio of the actual volatility vs the unit volatility

Usage

```
psdkernel(d, k)
```

Arguments

d A fully specified PSD S3 objectk The k in the Poisson distribution

Value

The numeric value of the kernel

22 psdmagnitude

psdkurtosis

Calculate the kurtosis based on Poisson sum of moments

Description

Calculate the kurtosis based on Poisson sum of moments.

Usage

```
psdkurtosis(d)
```

Arguments

d

A fully specified PSD S3 object

Value

Numeric value of the kurtosis

References

See Section "The Kurtosis" in the PSD paper

See Also

rawmu4

psdmagnitude

A simplistic algorithm of estimating magnitude of shock

Description

A simplistic algorithm of estimating magnitude of shock

Usage

```
psdmagnitude(d, r, step=0.1)
```

Arguments

d A fully specified PSD S3 object

r Log-return of the day

step Fractional k step for the precision of the estimate, default is 0.1.

Value

Estimated k magnitude

psdskewness 23

psdskewness

Calculate the skewness based on Poisson sum of moments

Description

Calculate the skewness based on Poisson sum of moments.

Usage

psdskewness(d)

Arguments

d

A fully specified PSD S3 object

Value

Numeric value of the skewness

References

See Section "The Skewness" in the PSD paper

See Also

rawmu3

psdunittest

Perform unit tests on the specified PSD S3 object

Description

Perform unit tests on the specified PSD S3 object

Usage

psdunittest(d)

Arguments

d

A PSD S3 object

Value

Error if not passed

See Also

LIHNPSD_UnitTest

r10y_logr

psdvariance

Calculate the variance based on Poisson sum of moments

Description

Calculate the variance based on Poisson sum of moments.

Usage

```
psdvariance(d)
```

Arguments

d

A fully specified PSD S3 object

Value

Numeric value of the variance

References

See Section "The Variance" in the PSD paper

See Also

rawmu2

r10y_logr

Log-return of R10Y

Description

Log-return data of R10Y (10-Year Treasury yield) from 1962 to 2011

Usage

```
data(r10y_logr)
```

References

See Federal Reserve Board website for more details.

rawcdf 25

rawcdf

Calculate the raw CDF

Description

Calculate the raw CDF

Usage

```
rawcdf(d, x)
```

Arguments

d A fully specified PSD S3 object

 ${\sf x} {\sf x}$ of CDF

Value

Return CDF(x)

References

See Section "Development of PSD" in the PSD paper

See Also

rawcdfinv

rawcdfinv

Calculate Inverse of CDF using Newton's method

Description

Calculate Inverse of CDF using Newton's method

Usage

```
rawcdfinv(d, c, xinit)
```

Arguments

d A fully specified PSD S3 object

c CDF

xinit Initial guess of x. Use 0 if not sure.

Value

Return x where CDF(x)=c

26 rawdensity

References

See Section "Development of PSD" in the PSD paper

See Also

rawcdf

rawdensity

The probability density function of PSD without location parameter

Description

The probability density function of PSD without location parameter. Since there is no additional location parameter, the PDF is exactly the same as what is described in the PSD paper. We use "raw" to differentiate such PDF from the more complicated (yet more complete) PDF with location parameter.

Usage

```
rawdensity(d, x)
```

Arguments

d A fully specified PSD S3 object

x x of PDF

Value

Return PDF(x)

References

See Section "Development of PSD" in the PSD paper

See Also

SPSD, density

rawdensity0 27

rawdensity0

The raw PDF at x=0

Description

The raw PDF at x=0. It is implemented from the analytic result primarily for internal validation purpose.

Usage

rawdensity0(d)

Arguments

d

A fully specified PSD S3 object

Value

Return PDF(x)

References

See Section "Development of PSD" in the PSD paper

See Also

 ${\it rawdensity}$

rawdensityslope

Calculate the slope of the PDF (dP/dx)

Description

Calculate the slope of the PDF (dP/dx)

Usage

```
rawdensityslope(d, x)
```

Arguments

d A fully specified PSD S3 object

x x of dP/dx

Value

Return dP/dx

References

See Section "Tail Index" in the PSD paper

28 rawmean

See Also

rawdensity

rawdensity_kth

The k-th item of the raw PDF

Description

The k-th item of the raw PDF. This is used primarily to understand the internal structure of the subordination.

Usage

```
rawdensity_kth(d, x, k)
```

Arguments

d A fully specified PSD S3 object

x x of PDF

k The k-th item in the Poisson sum

Value

Return PDF(x)

References

See Section "Development of PSD" in the PSD paper

See Also

rawdensity

rawmean

Utility to construct a PSD S3 object with calculated mean

Description

Utility to construct a PSD S3 object with calculated mean. Mean of a PSD distribution is required in many calculations. So it makes sense to calculate it and store it in the S3 object once for all. The word "raw" means the calculation is performed without considering the location parameter.

Usage

rawmean(d)

Arguments

d

A PSD S3 object

rawmu1 29

Value

A fully specified PSD S3 object with calculated mean

References

See Section "The Mean" in the PSD paper

Examples

```
# Construct the S3 object for PSD dist <- list( sigma= 0.004625, alpha= 0.292645, gamma= 0.482744, beta= -0.154049, location= 0.002968 ) class(dist) <- "LIHNPSD" dist <- rawmean(dist)
```

rawmu1

Calculate the Poisson sum of the first moment (mean) of PSD without location parameter

Description

Calculate the Poisson sum of the first moment (mean) of PSD without location parameter.

Usage

rawmu1(d)

Arguments

d

A fully specified PSD S3 object

Value

Numeric value of the mean

References

See Section "The Mean" in the PSD paper

See Also

```
rawmean, mu1_analytic
```

30 rawmu3

rawmu2

Calculate the Poisson sum of the second moment of PSD without location parameter

Description

Calculate the Poisson sum of the second moment of PSD without location parameter.

Usage

```
rawmu2(d)
```

Arguments

d

A fully specified PSD S3 object

Value

Numeric value of the second moment

References

See Section "The Variance" in the PSD paper

See Also

```
psdvariance, mu2_analytic
```

rawmu3

Calculate the Poisson sum of the third moment of PSD without location parameter

Description

Calculate the Poisson sum of the third moment of PSD without location parameter.

Usage

```
rawmu3(d)
```

Arguments

d

A fully specified PSD S3 object

Value

Numeric value of the third moment

References

See Section "The Skewness" in the PSD paper

rawmu4 31

See Also

```
psdskewness, mu3_analytic
```

rawmu4

Calculate the Poisson sum of the fourth moment of PSD without location parameter

Description

Calculate the Poisson sum of the fourth moment of PSD without location parameter.

Usage

```
rawmu4(d)
```

Arguments

d A fully specified PSD S3 object

Value

Numeric value of the fourth moment

References

See Section "The Kurtosis" in the PSD paper

See Also

```
psdkurtosis, mu4_analytic
```

rawsn

Internal utility for SN related function

Description

Internal utility for SN related function

Usage

```
rawsn(d, type, x, k)
```

Arguments

d A fully specified PSD S3 object type 1: for PDF, 2: for 2nd term of dP/dx

x x of SN

k The k-th item in the Poisson sum

SPSD SPSD

Value

A numeric value

See Also

rawdensity, rawdensityslope

SPSD

Simple PSD constructor

Description

Construct an S3 object for PSD in double-precision or MPFR

Usage

```
SPSD(sigma, alpha, gamma, beta=0, mpfr=0)
```

Arguments

sigma	sigma value of PSD
alpha	alpha value of PSD
gamma	gamma value of PSD

beta optional beta value of PSD for skewness

mpfr optional mpfr precision. Default is 0, which sets all calculations in double pre-

cision. For MPFR, set it to an integer, typically one of 64, 96, 128.

Value

Return an S3 object of LIHNPSD class that can be used for subsequent calculation.

Note

This constructor doesn't include the location parameter.

See Also

See also package's example for the DJIA parameters.

Examples

```
# Normal distribution

SPSD( 1,0,0 )

# PSD that approximate DJIA

SPSD(0.004625, 0.292645, 0.482744, -0.154049)
```

standardfit 33

standardfit	Standard utility to perform nonlinear PSD fit
-------------	---

Description

Standard utility to perform nonlinear PSD fit

Usage

```
standardfit(d, r, hist, trace, iter, plotqq, weights, merge_tails)
```

Arguments

d	A PSD S3 object representing initial guess of the PSD parameters
r	Input log-return series
hist	Input histogram
trace	TRUE/FALSE: turn trace on/off
iter	Maximum number of iterations
plotqq	TRUE/FALSE: Plot intermediate charts oor not
weights	Specify the weights of each component in the nonlinear fit, defaults are 1.
merge_tails	Specify the numbers of data points to merge in both tails when processing his-

togram

Value

dist A PSD S3 object representing best nonlinear fit
psdout The output of optmix/psg function. This is for debugging purpose only.

See Also

```
LIHNPSD_standardfit_fn
```

Examples

34 tailindex

```
# The final PSD
#dist <- fit$dist</pre>
```

szd_logr

Log-return of SZD/USD

Description

Log-return data of SZD/USD exchange rate from 1975 to 2008

Usage

```
data(szd_logr)
```

References

See Federal Reserve Board website for more details.

tailindex

Calculate the tail index

Description

Calculate the tail index

Usage

```
tailindex(d, x)
```

Arguments

d A fully specified PSD S3 object
x where the tail index is evaluated

Value

Return the tail index

References

See Section "Tail Index" in the PSD paper

tailindex_plot 35

tailindex_plot

Generate the plot of tail index for the specified PSD

Description

Generate the plot of tail index for the specified PSD

Usage

```
tailindex_plot(d, xmin, xmax, ymax=0.4)
```

Arguments

d A fully specified PSD S3 object

xmin Minimum of x-axis
xmax Maximum of x-axis

ymax Maximum of y-axis, default is 0.4

Value

N/A

References

See Section "Tail Index" in the PSD paper

See Also

tailindex

TimeSeriesLogReturn

Convert price series to log-return series

Description

Convert daily price series to log-return series by a specified time interval

Usage

TimeSeriesLogReturn(pr, days)

Arguments

pr Array of daily prices

days Time interval, typically 1 for one day

Value

Array of log-return series

36 vix_logr

Examples

```
pr <- c( 100.0, 102.0, 106.0, 105.0 )
logr <- TimeSeriesLogReturn(pr,1)</pre>
```

vix_logr

Log-return of VIX

Description

Log-return data of VIX from 1990 to 2011

Usage

```
data(vix_logr)
```

References

See Yahoo Finance ^VIX for more details.

Index

T · CDE	m ' maakaaa
*Topic CDF	*Topic package
LIHNPSD_plotcdf, 9	LIHNPSD-package, 2
rawcdf, 25	*Topic plot
rawcdfiny, 25	LIHNPSD_plot_std4gr,11 LIHNPSD_plotcdf,9
*Topic Constructor	LIHNPSD_plotCd1, 9 LIHNPSD_plotlogpdf, 10
SPSD, 32	LIHNPSD_plotpdf, 10
*Topic Lihn function	LIHNPSD_plotqq, 11
LihnFunctionAnalytic, 7	*Topic statistics
LihnFunctionKth, 8	mu1_analytic, 17
LihnFunctionSum, 8	mu2_analytic, 17
LihnFunctionValidate, 9 *Topic MPFR	mu3_analytic, 18
•	mu4_analytic, 19
.N, 3	mu_n_core, 19
*Topic PDF	psdkurtosis, 22
density, 5	psdskewness, 23
generatepdf, 6	psdvariance, 24
LIHNPSD_plotlogpdf, 10 LIHNPSD_plotpdf, 10	rawmu1, 29
rawdensity, 26	rawmu2, 30
rawdensity0,27	rawmu3, 30
rawdensity, 27 rawdensity_kth, 28	rawmu4,31
rawdensityslope, 27	*Topic tail
rawsn, 31	MergeTailHistogram, 16
*Topic Poisson sum	MergeTailHistogramOneSide, 16
LihnFunctionKth, 8	tailindex, 34
LihnFunctionSum, 8	tailindex_plot, 35
poisson_sum, 20	*Topic testing
poisson_sum_kth, 20	LIHNPSD_UnitTest, 15
*Topic analytic	psdunittest, 23
LihnFunctionAnalytic, 7	. N, 3
*Topic constructor	
. N, 3	calcqq, 4, <i>11</i> , <i>14</i>
prepare, 21	
rawmean, 28	density, 5, 6, 14, 26
*Topic data	dji_logr, 3, 5
dji_logr, 5	generatends 6
gold_logr, 6	generatepdf, 6
r10y_logr, 24	gold_logr, 6
szd_logr, 34	LihnBetaPoly, 7, <i>19</i> , <i>20</i>
vix_logr, 36	LihnFunctionAnalytic, 7, 9
*Topic histogram	LihnFunctionKth, 8
MergeTailHistogram, 16	LihnFunctionSum, 8, 8
MergeTailHistogramOneSide, 16	LihnFunctionValidate, 9
go rattritotogi amoneotae, 10	

38 INDEX

```
LIHNPSD (LIHNPSD-package), 2
LIHNPSD-package, 2
LIHNPSD_plot_std4gr, 3, 9-11, 11
LIHNPSD_plotcdf, 9
LIHNPSD_plotlogpdf, 10
LIHNPSD_plotpdf, 10
LIHNPSD_plotqq, 11
LIHNPSD_prepare_data, 3, 12
LIHNPSD_standardfit_fn, 13, 14, 33
LIHNPSD_standardfit_test, 13
LIHNPSD_theoretical_result, 3, 9-11, 14
LIHNPSD_UnitTest, 15, 23
LihnTildeFunction, 15
MergeTailHistogram, 16, 17
MergeTailHistogramOneSide, 16
mu1_analytic, 17, 29
mu2_analytic, 17, 30
mu3_analytic, 18, 31
mu4_analytic, 19, 31
mu_n_core, 19
poisson_sum, 20, 20
poisson_sum_kth, 20
prepare, 21
psdkernel, 21
psdkurtosis, 22, 31
psdmagnitude, 22
psdskewness, 23, 31
psdunittest, 15, 23
psdvariance, 24, 30
r10y_logr, 24
rawcdf, 14, 25, 26
rawcdfinv, 25, 25
rawdensity, 3, 5, 6, 26, 27, 28, 32
rawdensity0, 27
rawdensity_kth, 28
rawdensityslope, 27, 32
rawmean, 3, 17, 21, 28, 29
rawmu1, 17, 29
rawmu2, 18, 24, 30
rawmu3, 18, 23, 30
rawmu4, 19, 22, 31
rawsn, 31
SPSD, 26, 32
standardfit, 12, 13, 33
szd_logr, 34
tailindex, 34, 35
tailindex_plot, 35
TimeSeriesLogReturn, 35
vix_logr, 36
```