Problem Formulation

The metalevel search space: The MDP $\langle S, A, T, R, s, t \rangle$

- A set of states $s \in S$.
- A set of actions $a \in A$.
- A transition function T(s, a, s').
- A reward function R(s).
- A start state s.
- A terminal state t.

The state: A state s is an object model consists of a grounded PDDL domain model $\langle P, A \rangle$.

- A set of propositions P.
- A set of actions $a_{EFF}^{PRE} \in A$.
- Each action a_e^p has a set PRE of preconditions and a set EFF of effects.

Working Domain:

Listing 1: LightSwitch Domain

State Metaspace Analysis

Let p be the number of predicates, a be the number of actions.

Each action has a set PRE and EFF of propositions. For each proposition, there are three possible values that it can take on in a concrete instance of the model:

- The proposition can belong to clause as a positive literal.
- The proposition can belong to a clause as a negative literal.
- The proposition can not belong to the clause.

Thus, for each action, there are 3^{2p} possibilities. For all a actions, there are $\prod_{1}^{a} 3^{2p} = (3^{2p})^a = 3^{2ap}$ possibilities.

For the example domain, we have p=2 predicates and a=2 actions and $3^{2ap}=3^{2*2*2}=3^8=6561$ possible domain models.

Action Metaspace Analysis

Let p be the number of predicates, a be the number of actions. Given a metastate s in the metaspace S, each proposition can be changed to one of the other two possibile values. Thus, there are 4ap metaactions.