```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
```

In [2]: iris=sns.load_dataset('iris')

In [3]: iris

Out[3]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
					•••
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

In [4]: iris.head()

Out[4]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

```
In [5]: iris.species.unique()
```

Out[5]: array(['setosa', 'versicolor', 'virginica'], dtype=object)

In [9]: sns.kdeplot(iris.loc[(iris['species']=='setosa'), 'sepal_length'], color='b', label=

Out[9]: <AxesSubplot:xlabel='sepal_length', ylabel='Density'>

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:952: Matplo tlibDeprecationWarning: Case-insensitive properties were deprecated in 3.3 and support will be removed two minor releases later

scout, = self.ax.plot([], [], **plot_kws)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:995: Matplo tlibDeprecationWarning: Case-insensitive properties were deprecated in 3.3 and support will be removed two minor releases later

artist, = ax.plot(support, density, **artist_kws)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:952: Matplo tlibDeprecationWarning: Case-insensitive properties were deprecated in 3.3 and support will be removed two minor releases later

scout, = self.ax.plot([], [], **plot_kws)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:995: Matplo tlibDeprecationWarning: Case-insensitive properties were deprecated in 3.3 and support will be removed two minor releases later

artist, = ax.plot(support, density, **artist_kws)

Out[10]: <AxesSubplot:xlabel='sepal_length', ylabel='Density'>

In [18]: sns.relplot(data=iris,x="sepal_length",y="sepal_width")

Out[18]: <seaborn.axisgrid.FacetGrid at 0x21182bf6f40>

In [19]: sns.relplot(data=iris,x="petal_length",y="petal_width")

Out[19]: <seaborn.axisgrid.FacetGrid at 0x21182c39d00>


```
In [22]: | sns.kdeplot(iris.loc[(iris['species']=='setosa'),
                              sepal_length'],color='b',Label='setosa')
         sns.kdeplot(iris.loc[(iris['species']=='virginica'),
                              'sepal length'],color='r',Label='virginica')
         sns.kdeplot(iris.loc[(iris['species']=='versicolor'),
                              'sepal_length'],color='g',Label='versicolor')
         C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:952: Matplo
         tlibDeprecationWarning: Case-insensitive properties were deprecated in 3.3 and
         support will be removed two minor releases later
           scout, = self.ax.plot([], [], **plot_kws)
         C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:995: Matplo
         tlibDeprecationWarning: Case-insensitive properties were deprecated in 3.3 and
         support will be removed two minor releases later
           artist, = ax.plot(support, density, **artist_kws)
         C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:952: Matplo
         tlibDeprecationWarning: Case-insensitive properties were deprecated in 3.3 and
         support will be removed two minor releases later
           scout, = self.ax.plot([], [], **plot_kws)
         C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:995: Matplo
         tlibDeprecationWarning: Case-insensitive properties were deprecated in 3.3 and
         support will be removed two minor releases later
           artist, = ax.plot(support, density, **artist kws)
         C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:952: Matplo
         tlibDeprecationWarning: Case-insensitive properties were deprecated in 3.3 and
         support will be removed two minor releases later
           scout, = self.ax.plot([], [], **plot kws)
         C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:995: Matplo
         tlibDeprecationWarning: Case-insensitive properties were deprecated in 3.3 and
```

Out[22]: <AxesSubplot:xlabel='sepal_length', ylabel='Density'>

support will be removed two minor releases later
artist, = ax.plot(support, density, **artist_kws)


```
In [24]: sns.boxplot(x='sepal_length',y='sepal_width',data=iris)
```

Out[24]: <AxesSubplot:xlabel='sepal_length', ylabel='sepal_width'>


```
In [29]: iris=np.random.randn(1000)
plt.hist(iris)
```



```
In [61]: labels='car','scotty','truck','bus'
sizes=[225,130,245,210]
colors=['r','b','g','c']
explode=(0.1,0,0,0)
plt.pie(sizes,explode=explode,labels=labels,colors=colors,autopct='%1.1f%%',shadoplt.axis('equal')
plt.show()
```


In []: