Virtual Memory Translation

Consider a system with a 64-bit virtual address and 4KB page size.

- A. What is the size of the virtual address space of a process?
- B. How many bits in the virtual address represent the byte offset into a page?
- C. How many bits in the virtual address are needed to determine the page number?
- D. How many page-table entries does a process' page-table contain?
- E. If one page table entry has a size of 4 bytes, what is the size of page table?
- F. How many pages will be required to store the page table in physical memory?

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes

How many bits is the offset?

Note:

Virtual address = Virtual Page Number + Virtual Page Offset Physical address = Physical Page Number + Physical Page Offset

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes

How many bits is the offset?

$$\log_2(64) = 6$$

Note:

Virtual address = Virtual Page Number + Virtual Page Offset Physical address = Physical Page Number + Physical Page Offset

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes How many bits is the offset?

$$\log_2(64) = 6$$

Virtual adress: 0x0AC1

13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	1	0	1	0	1	1	0	0	0	0	0	1

Offset bits

Note:

Virtual address = Virtual Page Number + Virtual Page Offset Physical address = Physical Page Number + Physical Page Offset

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes How many bits is the offset?

$$\log_2(64) = 6$$

So, how many bits are for VPN?

Virtual adress: 0x0AC1

13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	1	0	1	0	1	1	0	0	0	0	0	1

Offset bits

Note:

Virtual address = Virtual Page Number + Virtual Page Offset Physical address = Physical Page Number + Physical Page Offset

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes

How many bits is the offset?

$$\log_2(64) = 6$$

So, how many bits are for VPN?

$$14 - 6 = 8$$

Note:

Virtual address = Virtual Page Number + Virtual Page Offset Physical address = Physical Page Number + Physical Page Offset

Virtual Page Offset and Physical Page Offset are same.

Virtual adress: 0x0AC1

13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	1	0	1	0	1	1	0	0	0	0	0	1

Offset bits

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes

How many bits is the offset?

$$\log_2(64) = 6$$

So, how many bits are for VPN?

$$14 - 6 = 8$$

Note:

Virtual address = Virtual Page Number + Virtual Page Offset Physical address = Physical Page Number + Physical Page Offset

Virtual Page Offset and Physical Page Offset are same.

13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	1	0	1	0	1	1	0	0	0	0	0	1
1								I					

VPN bits

Offset bits

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes

How many bits is the offset?

$$\log_2(64) = 6$$

So, how many bits are for VPN?

$$14 - 6 = 8$$

Note:

Virtual address = Virtual Page Number + Virtual Page Offset Physical address = Physical Page Number + Physical Page Offset

Virtual Page Offset and Physical Page Offset are same.

Virtual adress: 0x0AC1

13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	0	0	1	0	0	0	0	0	1

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes How many bits is the offset?

$$\log_2(64) = 6$$

So, how many bits are for VPN?

$$14 - 6 = 8$$

Note:

Virtual address = Virtual Page Number + Virtual Page Offset Physical address = Physical Page Number + Physical Page Offset

Virtual Page Offset and Physical Page Offset are same.

Virtual adress: 0x0AC1

13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	0	0	1	0	0	0	0	0	1

VPN (in hex): 0x09

VPN	PPN	Valid
00	28	1
01	_	0
02	33	1
03	02	1
04	-	0
05	16	1
06	-	0
07	-	0
08	13	1
09	17	1
OA	09	1
OB	-	0
OC	-	0
OD	2D	1
0E	11	1
0F	OD	1

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes How many bits is the offset?

$$\log_2(64) = 6$$

So, how many bits are for VPN? 14 - 6 = 8

Note:

Virtual address = Virtual Page Number + Virtual Page Offset Physical address = Physical Page Number + Physical Page Offset

Virtual Page Offset and Physical Page Offset are same.

Virtual adress: 0x0AC1

13 12	11	10	9	8	7	6	5	4	3	2	1	0
0 0	0	0	1	0	0	1	0	0	0	0	0	1

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes How many bits is the offset?

$$\log_2(64) = 6$$

So, how many bits are for VPN?

$$14 - 6 = 8$$

Note:

Virtual address = Virtual Page Number + Virtual Page Offset Physical address = Physical Page Number + Physical Page Offset

Virtual Page Offset and Physical Page Offset are same.

Virtual adress: 0x0AC1

13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	0	0	1	0	0	0	0	0	1

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes

$$\log_2(64) = 6$$

So, how many bits are for VPN?

$$14 - 6 = 8$$

Note:

Virtual address = Virtual Page Number + Virtual Page Offset Physical address = Physical Page Number + Physical Page Offset

Virtual Page Offset and Physical Page Offset are same.

Virtual adress: 0x0AC1

10

13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	0	0	1	0	0	0	0	0	1

6

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes

How many bits is the offset?

$$\log_2(64) = 6$$

So, how many bits are for VPN?

$$14 - 6 = 8$$

Note:

Virtual address = Virtual Page Number + Virtual Page Offset Physical address = Physical Page Number + Physical Page Offset

Virtual Page Offset and Physical Page Offset are same.

13	12	11	10	9	8	7	6	5	4	3	2	1	0
C	0	0	0	1	0	0	1	0	0	0	0	0	1

PPN (in hex): 0x17

Physical address : 11 10 9 8 7 6 5 4 3 2 1 0 1 0 1 1 1 1

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes

How many bits is the offset?

$$\log_2(64) = 6$$

So, how many bits are for VPN?

$$14 - 6 = 8$$

Note:

Virtual address = Virtual Page Number + Virtual Page Offset Physical address = Physical Page Number + Physical Page Offset

Virtual Page Offset and Physical Page Offset are same.

11 10 9 8 7 6 5 4 3 2 1

Physical address

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes

How many bits is the offset?

$$\log_2(64) = 6$$

So, how many bits are for VPN?

$$14 - 6 = 8$$

Note:

Virtual address = Virtual Page Number + Virtual Page Offset Physical address = Physical Page Number + Physical Page Offset

Virtual Page Offset and Physical Page Offset are same.

Physical address

11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 1 1 1 0 0 0 0 0

= 0x5C1

```
1 MB of virtual memory
                              4 KB page size
256 KB of physical memory
                               TLB: 8 entries, 2-way set associative
```

- How many bits are needed to represent the virtual address space?20. (1 MB = 2^{20} bytes.)
- How many bits are needed to represent the physical address space?₁₈. (256 KB = 2^{18} bytes.)
- How many bits are needed to represent the offset?
- 12. (4 KB = 2¹² bytes.)

 How many bits are needed to represent VPN?
 8. (20-12.)
- How many bits are in the TLB index?
 How many bits are in the TLB tag?
 6. (8-2.)

19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	1	1	1	1	0	1	0	0	0	0	1	0	0	1	1	0	0	1

VPN								Offset bits											
19	9 18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
(0 0	1	1	1	1	0	1	0	0	0	0	1	0	0	1	1	0	0	1

TLB										
Index	Tag	PPN	Valid 1							
0	05	13								
	3F	15	1							
1	10	0F	1							
	OF	1E	0							
2	1F	01	1							
	11	1F	0							
3	03	2B	1							
	1D	23	0							

Virtual adress: 0x3D099

17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Physical address:

Virtual adress: 0x3D099

Physical address: 0x1E099