CS310 Automata Theory – 2016-2017

Nutan Limaye

Indian Institute of Technology, Bombay
 nutan@cse.iitb.ac.in

Lecture 5: Finite state automata January 10, 2017

Last class

On power of NFAs

Correctness of subset construction.

NFA with ϵ moves equivalent to NFA with no ϵ moves.

Lemma

For any NFA A with ϵ transitions, there is another NFA, say B, such that B has no ϵ transitions and L(A) = L(B).

Proof Idea

Let $S \subseteq Q$.

Let

$$E(S) = \left\{ q \middle| \begin{array}{l} q \text{ is reachable from some state in } S \\ \text{with zero or more } \epsilon \text{ transitions} \end{array} \right\}$$

Lemma

For any NFA A with ϵ transitions, there is another NFA, say B, such that B has no ϵ transitions and L(A) = L(B).

Proof Idea

Let $S \subseteq Q$.

Let

$$E(S) = \left\{ q \middle| \begin{array}{l} q \text{ is reachable from some state in } S \\ \text{with zero or more } \epsilon \text{ transitions} \end{array} \right\}$$

Lemma

For any NFA A with ϵ transitions, there is another NFA, say B, such that B has no ϵ transitions and L(A) = L(B).

Proof Idea

Let $S \subseteq Q$.

Let

$$E(S) = \left\{ q \middle| \begin{array}{l} q \text{ is reachable from some state in } S \\ \text{with zero or more } \epsilon \text{ transitions} \end{array} \right\}$$

Lemma

For any NFA A with ϵ transitions, there is another NFA, say B, such that B has no ϵ transitions and L(A) = L(B).

Proof Idea

Let $S \subseteq Q$.

Let

$$E(S) = \left\{ q \middle| \begin{array}{l} q \text{ is reachable from some state in } S \\ \text{with zero or more } \epsilon \text{ transitions} \end{array} \right\}$$

Lemma

For any NFA A with ϵ transitions, there is another NFA, say B, such that B has no ϵ transitions and L(A) = L(B).

Proof.

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA with ϵ transitions. We construct NFA, say B as follows:

Construction

$$Q'=Q$$

 Σ' same as Σ , but no ϵ used anywhere,

$$\delta'(q,a) = E(\delta(q,a)),$$

$$q_0' = q_0$$
,

$$F' = F$$

Wha if ϵ transitions from the start/to the final state in A?

Lemma

For any NFA A with ϵ transitions, there is another NFA, say B, such that B has no ϵ transitions and L(A) = L(B).

Lemma

For any NFA A with ϵ transitions, there is another NFA, say B, such that B has no ϵ transitions and L(A) = L(B).

Example

Add a new start state \tilde{q}_0 .

Consider $\hat{\delta}(E(q_0), c)$ for every $c \in \Sigma$.

Add an edge from $\tilde{q_0}$ to $q \in Q$ with label c if

$$q \in E\left(\hat{\delta}(E(q_0),c)\right).$$

Lemma

For any NFA A with ϵ transitions, there is another NFA, say B, such that B has no ϵ transitions and L(A) = L(B).

Lemma

For any NFA A with ϵ transitions, there is another NFA, say B, such that B has no ϵ transitions and L(A) = L(B).

Lemma

For any NFA A with ϵ transitions, there is another NFA, say B, such that B has no ϵ transitions and L(A) = L(B).

Proof.

Let $A = (Q, \Sigma, \delta, q_0, F)$ be given. We construct $B = (Q', \Sigma', \delta', q_0, F')$ as follows:

Construction

$$Q'=Q\cup\{ ilde{q_0}\},\ q_0'= ilde{q_0},\ \Sigma'\ ext{same as }\Sigma\ ext{but no }\epsilon,$$
 $F'=\left\{egin{array}{ll} F\cup\{ ilde{q_0}\} & ext{if }E(\{q_0\})\cap F
eq\emptyset \ ext{otherwise} \end{array}
ight.$ $\delta'(q,a)=\left\{egin{array}{ll} E(\delta(E(q_0),a)) & ext{if }q= ilde{q_0} \ E(\delta(q,a)) & ext{otherwise} \end{array}
ight.$

Correctness

Tutorial 2.