Optiver trading at the close 上位解法まとめ

概要

- 上位解法まとめ
 - 特に7th solutionモデルに着目
- Kaggle初心者目線
 - 。 Kaggle特有のテクニック等は詳しくない
 - 。 コンペには参加(1836位/3176位)
- 実験
 - 主にモデルの比較

1st solution

- Catboost(0.5), 4 layer GRU(0.3), 4 layer Transformer(0.2)
- 400日をtrain, 81日をvalid
- seconds_in_bucket_group (300秒まで、300~480秒まで、480秒以上の3つのgroup)でgroup化
- seconds_in_bucket でgroup化してrank
- 300 features by CatBoost model's feature importance
- オンライン学習ではメモリ制約をうまく回避して特徴量を減らさないようにした
- 出力のsumがOになるようにしている
- 出力がindexからの乖離になるようにpost processing

1st solution

model name	validation set w/o PP	validation set w/ PP	test set w/o OL w/ PP	test set w/ OL one time w/ PP	test set w/ OL five times w/ PP
CatBoost	5.8287	5.8240	5.4523	5.4291	5.4165
GRU	5.8519	5.8481	5.4690	5.4368	5.4259
Transformer	5.8614	5.8619	5.4678	5.4493	5.4296
GRU + Transformer	5.8233	5.8220	5.4550	5.4252	5.4109
CatBoost + GRU + Transformer	5.8142	5.8117	5.4438	5.4157	5.4030*(overtime)

6th solution

- NN only
- 時間フラグ(1stの seconds_in_bucket_group)とほぼ同等
 - 1stと違ってgroup化してるわけではなさそう
- 359日をtrain, 121日をvalid
- 特徴量は35~36個
 - ∘ windowは2日分
 - 出力は(batch_size, number_stocks, 55)
- 出力のsumがOになるようにしている
- 4 layer transformer(3個) and GRU(1個)

7th solution

- CNN + LSTM + LightGBM
- 中央値からの乖離特徴量
- codeはこちら
- post processingはなし

9th solution

- XGBoost only
 - LightGBMと大差なかった
- group化した特徴量を使っていたようだが詳細はよくわからなかった
- 特徴量は157個(メモリ制約から絞る必要があった)
- 最新の45日間のデータに1.5の重みを設定
- 出力がindexからの乖離になるようにpost processing
- codeはこちら

実験

codeはこちら

- 7th solutionをベースに特徴量を固定して複数モデル(後述)を比較
- CVは400日train, 81日valid
 - validの結果とLBはある程度相関があるとして、validで比較
- Post processingを行う(ref: 1st solution)
- Online learningは考慮しない
- polarsで再実装

モデル

Model	Description
LightGBM	7th solutionのハイパーパラメータ
CatBoost	LightGBMのハイパーパラメータと極力合わせた
XGBoost	LightGBMのハイパーパラメータと極力合わせた
CNN	7th solutionのモデル
LSTM	7th solutionのモデル
GRU	LSTM部分をGRUに変更したモデル
Transformer	LSTM部分を4 layer Transformerに変更したモデル

特徴量 (7th solution, for tree models)

- 生特徴量
- ベース特徴量(spread等、後述)
- imbalance特徴量(各種size, 各種price)
- lag特徴量(生特徴量,ベース特徴量)
- 累積特徴量(各種size, imbalance特徴量, ベース特徴量)
- ["date_id", "seconds_in_bucket"] でgroup化して中央値からの乖離を取った特徴量(生特徴量,ベース特徴量,imbalance size特徴量)
- Global features
 - stock_idでgroup化した特徴量

ベース特徴量(1)

name	description
spread	ask_price - bid_price
volume	ask_size + bid_size
volumne_imbalance	bid_size - ask_size
imbalance_ratio	imbalance_size - matched_size
price_spread_near_far	near_price - far_price
price_wap_difference	reference_price - wap

ベース特徴量(2)

name	description
weighted_imbalance	imbalance_size * imbalance_buy_sell_flag
bid_ask_ratio	bid_size / ask_size
imbalance_to_bid_ratio	imbalance_size / bid_size
imbalance_to_ask_ratio	imbalance_size / ask_size
matched_size_to_total_size_ratio	matched_size / (bid_size + ask_size)

Global features

• stock_idごとに集計した特徴量

```
def global features(df: pl.DataFrame) -> pl.DataFrame:
    columns = ["bid_size", "ask_size", "bid_price", "ask_price"]
    groupby_cols = ["stock_id"]
    global features df = (
        df_group_by(groupby_cols).agg(to_describe(columns)).sort("stock_id")
    global features df = global features df.with columns(
        median_size=pl.col("bid_size_median").add(pl.col("ask_size_median")),
        std_size=pl.col("bid_size_std").add(pl.col("ask_size_std")),
        ptp_size=pl.col("bid_size_max").sub(pl.col("ask_size_min")),
        median_price=pl.col("bid_price_median").add(pl.col("ask_price_median")),
        std_price=pl.col("bid_price_std").add(pl.col("ask_price_std")),
        ptp_price=pl.col("bid_price_max").sub(pl.col("ask_price_min")),
    return df.join(global_features_df, on="stock_id", how="left")
```

NN特徴量

- 生特徴量 + target lag(1~3) + imbalance price/size + 中央値からの乖離を取った特徴量 + Global features¹
- ["date_id", "stock_id"]でgroup化してwindow=3でバッチ化

^{1:} 実験では分位点(25%点や75%点)等も入れてしまったが、7th solutionのコードでは入っていない

NN Architecture (CNN)

差分layer: lagを取ってpadding

```
numerical_input (window_size=3, features=2)
  [1, 2],
  [2, 3],
  [3, 4]
lag=1
  [1, 1], \# (2-1, 3-2)
  [1, 1], \# (3-2, 4-3)
padding
  [0, 0], # padding
  [1, 1],
  [1, 1]
```

NN Architecture (LSTM/GRU)

- numerical featuresとcategorical featuresを分けてembedding
- このあとにLSTM/GRU -> dense layerが続く

NN Architecture (Transformer)

https://keras.io/examples/timeseries/timeseries_classification_transformer/ これを拝借

```
def transformer_encoder(inputs, head_size, num_heads, ff_dim, dropout=0):
    # Attention and Normalization
    x = layers.MultiHeadAttention(
        key_dim=head_size, num_heads=num_heads, dropout=dropout
    )(inputs, inputs)
    x = layers.Dropout(dropout)(x)
    x = layers.LayerNormalization(epsilon=1e-6)(x)
    res = x + inputs
   # Feed Forward Part
    x = layers.Conv1D(filters=ff_dim, kernel_size=1, activation="relu")(res)
    x = layers.Dropout(dropout)(x)
    x = layers.Conv1D(filters=inputs.shape[-1], kernel_size=1)(x)
    x = layers.LayerNormalization(epsilon=1e-6)(x)
    return x + res
```

Post processing (1st solution)

```
prediction_df["stock_weights"] = prediction_df["stock_id"].map(weight)
prediction_df["target"] = (
    prediction_df["target"]
    - (prediction_df["target"] * prediction_df["stock_weights"]).sum()
    / prediction_df["stock_weights"].sum()
)
```

$$Target = \left(\frac{StockWAP_{t+60}}{StockWAP_{t}} - \frac{IndexWAP_{t+60}}{IndexWAP_{t}}\right) * 10000$$

この形を意識

実験結果

Model	Score	Score(w/PP)
LightGBM	5.83807	5.83807
CatBoost	5.85796	5.85791
XGBoost	5.84004	5.84004
CNN	5.86448	_
GRU	5.86424	_
LSTM	5.86781	_
Transformer	5.87409	_

- LightGBMが最も良い結果
- NNの結果に対するPPの実装が間に 合わなかった(後日追記します)
- Transformerは多分実装がよろしく ない

7th solutionとの比較

https://github.com/nimashahbazi/optiver-trading-close/blob/master/training/optiver-258-lgb-submit.ipynb

```
# public-validation
# dates_train = [0,390]
# dates_test = [391,480]
~~~
lgb_preds Score on Test: 5.860964545705968
nn_preds Score on Test: 5.871083373009854
rnn_preds Score on Test: 5.8716475533769525
```

- train/test期間を合わせたほうがわかりやすかった(実験終わってから気づいた)
- inferenceのコードを見てるとrandom seed avaragingしているのでもう少し良くなるはず
- 大体再現できていそう

考察

- モデル比較
- 特徴量
- CV
- アンサンブル

考察: モデル比較

Model	Score	Score(w/PP)
LightGBM	5.83807	5.83807
CatBoost	5.85796	5.85791
XGBoost	5.84004	5.84004
CNN	5.86448	_
GRU	5.86424	_
LSTM	5.86781	_
Transformer	5.87409	_

- Treeの方が良い結果
 - ∘ 1st, 7th solution ≥ compatible
- 1st solutionのように
 seconds_in_bucket_group で
 group化した特徴量を入れてみるの
 もいいかも

考察: Feature importance (lightgbm, top 20)

考察:特徴量

- 特徴量の加工はシンプルなものが多かった
- 問題の構造を反映した特徴量&group化
 - cross sectional

$$Target = \left(\frac{StockWAP_{t+60}}{StockWAP_{t}} - \frac{IndexWAP_{t+60}}{IndexWAP_{t}}\right) * 10000$$

time group

考察: CV

- 単純な時間による2分割CVで十分そう
 - optiverの以前のコンペでもTimeSeriesSplitが使われていた
- (個人的には)時間で5分割kfoldしてvalidation setの平均を出していたが、LBとの相関はあまりなさそうに感じた
- LBとの相関が高いCVのやり方をまず見つけるのが重要

考察: アンサンブル

Model	Score + PP
LGB * 0.6 + XGB * 0.3 + CAT * 0.1	5.83871

- weightは適当
- 少し良くなる
- 実装上の都合でNNを含めたアンサンブルの結果は間に合わず
 - 。 後日追記予定

まとめ

- Tree modelと時系列NNが使われていた
 - Tree modelがNNよりちょっと良い結果
 - ただし、6th solutionはNN only
 - アンサンブルで少し良くなるはず
- group化した特徴量が効いている
- post processingによるスコアの改善
- ある程度再現の取れた実験が行えた