Лекция 5

Ilya Yaroshevskiy

3 марта 2021 г.

Содержание

1	Me	тод Ньютона(продолжение). Вывод через ряд Тейлора	1
	1.1	Аппроксимация производных	2
	1.2	Метод Ньютона(продолжение)	2
		Модификации метода Ньютона	
		1.3.1 Метод Ньютона-Рафсона	3
		1.3.2 Метод Маркрафта	3
	1.4	Метод минимизации многомодальных функций	9
		1.4.1 Метод ломанных	

1 Метод Ньютона(продолжение). Вывод через ряд Тейлора

• x_k — текущая оценка решения x^*

$$f(x_k + p) = f(x_k) + pf'(x_k) + \frac{1}{2!}p^2f''(x_k) + \dots$$

$$f(x^*) = \min_x f(x) = \min_p f(x_k + p) = \min_p [f(x_k) + pf'(x_k) + \frac{1}{2}p^2f''(x_k) + \dots] \approx$$

$$\approx \min_p [f(x_k) + pf'(x_k) + \frac{1}{2}p^2f''(x_k)]$$

$$f'(x_k) + pf''(x_k) = 0$$

$$p = -\frac{f'(x_k)}{f''(x_k)}$$

p — аппроксимация шага: от $x_k \to x^*$. $x^* \approx x_k + p$

$$x_{k+1} = x_k + p = x_k - \frac{f'(x_k)}{f''(x_k)} \tag{1}$$

Главное преимущество метода Ньютона:

- высокая(квадратичная) скорость сходимости
 - если x_k достаточно близка x^* и если $f''(x^*) > 0$, то:

$$|x_{k+1} - x^*| \le \beta |x_k - x^*|^2$$
 , $\beta = \text{const} > 0$

Неудачи в методе Ньютона:

- 1. f(x) плохо аппроксимируется первыми тремя членами в ряде Тейлора. x_{k+1} может быть хуже x_k
- 2. $p = -\frac{f'(x_k)}{f''(x_k)}$ определено только тогда, когда $f''(x_k) \neq 0$ $f''(x_k) > 0$ условие минимума квадратичной аппроксимации Если $f''(x_k) < 0$ алгоритм сходится к максимуму
- 3. Кроме f(x) нужно вычислять f'(x) и f''(x), что в реальных задачах затруднительно

Аппроксимация производных

Правая разностная схема:

$$f'(x_k) \approx \frac{f(x_k + h) - f(x_k)}{h}$$
 , $h \sim \varepsilon$

Центральная разностная схема:

$$f'(x_k) \approx \frac{f(x_k + h) - f(x_k - h)}{2h}$$

порядок точности — $O(h^2)$

Метод Ньютона(продолжение)

Если f(x) — квадратичная функция, то f'(x) — линейная

В 1 точное равенство, и следовательно метод Ньютона сходится за один шаг, при любом выборе xПусть $x^* \in [a, b]$ и f(x) — трижды непрерывно дифференцируемая и выпуклая на [a, b] функция. $\{x_k\}$ будет сходится к пределе x^* монотонно, если:

$$0 < \frac{x^* - x_{k+1}}{x^* - x_k} < 1$$

$$f'(x^*) = 0 = f'(x_k) + f''(x_k(x^* - x_k)) + \frac{f'''(x_k)}{2}(x^* - x_k)^2$$

$$\frac{x^* - x_{k+1}}{x^* - x_k} = \frac{x^* - x_k + \frac{f'(x_k)}{f''(x_k)}}{x^* - x_k} = 1 - \frac{2}{2 + \frac{f'''(x)(x^* - x_k)^2}{f'(x_k)}}$$

Итерация
онная поледовательность $\{x_k\}$ монотонна, если $\frac{f'''(x)}{f'(x_k)}>0$, то есть достаточное условие . . . $\Pi p u м e p$.

$$f(x) = x \cdot \arctan(x) - \frac{1}{2}\ln(1+x^2)$$

. пусть $|f'(x)| < 10^{-7}$

from sympy import *

$$f'''(x) = -\frac{2x}{(1+x^2)^2}$$
$$f'(x)''(x) < 0$$

Выбор начального приближение $x_0 = 1$

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

$$\begin{array}{c|cccc} k & x_k & f'(x_k) & f''(x_k) \\ \hline 0 & 1 & 0.785 & \frac{1}{2} \\ 1 & -0.57 & -0.518 & 0.754 \\ 2 & 0.117 & 0.116 & \dots \\ 3 & \dots & \dots & \dots \\ 4 & 9 \cdot 10^{-8} & 9 \cdot 10^{-8} & \dots \end{array}$$

Выолнилось условие $|f'(x_k)| \leq 10^{-7}$ — окончание итерационного процесса. $x \approx 9 \cdot 10^{-8} \approx 0$

1.3 Модификации метода Ньютона

1.3.1 Метод Ньютона-Рафсона

$$x_{k+1} = x_k - \tau_k \frac{f'(x_k)}{f''(x_k)}$$
 , $0 < \tau_k \le 1$

 $\tau_k = \tau = \mathrm{const} \ (\tau = 1$ — метод Ньютона)

$$\varphi(\tau) = f(x_k - \tau \frac{f'(x_k)}{f''(x_k)}) \to \min$$

$$\tau_k = \frac{(f'(x_k))^2}{(f'(x_k))^2 + (f'(\tilde{x}_k))^2}$$

, где
$$\tilde{x}=x_k-rac{f'(x_k)}{f''(x_k)}$$

1.3.2 Метод Маркрафта

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k) + \mu_k} \quad , \mu_k > 0$$

 μ_0 рекомендуется выбирать на порядок больше значения второй произвдной в x_0 μ_{k+1} : $\mu_{k+1} = \frac{\mu_k}{2}$, если $f(x_{k+1}) < f(x_k)$, иначе $\mu_{k+1} = 2 \cdot \mu_k$

1.4 Метод минимизации многомодальных функций

1.4.1 Метод ломанных

Условие Липшица: $f(x), x \in [a, b]$ будет удовлетворять условию, если:

$$|f(x_1) - f(x_2)| \le L|x_1 - x_2|$$
, $\forall x_1, x_2 \in [a, b]$