12 Cisaillement

12.1 Définition

Dans toute section droite (S) d'une poutre soumise à du cisaillement pur, le torseur de cohésion se réduit à :

$$T_{coh} = \begin{cases} 0 & 0 \\ T_{y} & 0 \\ 0 & 0 \end{cases} \text{ ou } T_{coh} = \begin{cases} 0 & 0 \\ 0 & 0 \\ T_{z} & 0 \end{cases} \text{ ou } T_{coh} = \begin{cases} 0 & 0 \\ T_{y} & 0 \\ T_{z} & 0 \end{cases}$$

Remarques:

Dans la pratique on ne trouve jamais un tel torseur de cohésion pour une section droite d'une poutre « loin des lieux d'applications des actions extérieures ». Cependant le calcul de la contrainte moyenne permet une approximation valable pour des liaisons particulières.

12.2 Calcul de la contrainte

Dans une section (S) de normale \vec{x} , l'état de cisaillement pur est caractérisé en tout point de cette section par une contrainte normale nulle et une répartition uniforme de la contrainte tangentielle :

Contrainte tangentielle de cisaillement :

$$\tau = \frac{T}{S}$$
 avec $T = \sqrt{T_y^2 + T_z^2}$

12.3 Condition de résistance

$$\tau_{maxi} = \frac{T}{S} \leqslant R_{pg} = \frac{R_g}{S}$$

Exemples d'applications :

Calcul d'axes, goupilles, rivet,....

13 Flexion

13.1 Définition

Selon la présence ou non d'un effort tranchant, la poutre est dite en flexion simple ou en flexion pure.

Avec.

Flexion Pure: Pas d'effort tranchant.

$$T_{coh} = \begin{cases} 0 & 0 \\ 0 & M_{fy} \\ 0 & M_{fz} \end{cases}$$

A

Flexion Simple: Présence d'un effort Tranchant.

$$T_{coh} = \begin{cases} 0 & 0 \\ 0 & M_{fy} \\ 0 & M_{fz} \end{cases}$$

On pose $M_f = \sqrt{M_{fv}^2 + M_{fz}^2}$

Remarque :
$$T_y = \frac{-dM_{fz}}{dx}$$
 et $T_z = \frac{+dM_{fy}}{dx}$.

13.2 Calcul de la contrainte

Zone tendue et Zone comprimée

Il existe au moins une fibre tq $\,\epsilon \! = \! 0$ et $\sigma \! = \! 0\,$ c'est la fibre neutre.

Il existe une ZONE TENDUE tq $\epsilon > 0$ et $\sigma > 0$.

Il existe une ZONE COMPRESSEE tq $\epsilon \triangleleft 0$ et $\sigma \triangleleft 0$.

Calcul de la déformée

De même façon que précédemment, on montre :

$$\sigma = \frac{E}{\rho} y = \frac{-M_{fz}}{I_{Gz}} y$$

IGz est les moment quadratique de la section par rapport à l'axe z.

13.3 Condition de résistance

$$|\sigma_{maxi}| = \frac{M_{fzmaxi}}{I_{Gz}} y_{maxi} \leq R_{pe}$$

13.4 Calcul de la déformée

En se limitant à de la flexion autour de l'axe G \vec{z} , dans le cas des poutre droites et compte tenu de l'hypothèse de petite déformation :

$$y'' = \frac{d^2 y}{dx^2} = \frac{M_{fz}(x)}{E I_{Gz}}$$

13.5 Moment quadratique

13.5.1 <u>Définition</u>

Le moment quadratique encore appelé moment d'inertie I_{Oy} d'une surface plane par rapport à un axe (Oy) de son plan est égal à $I_{oy} = \int_{\Sigma} z^2 \mathrm{dS}$

13.5.2 Moment quadratique polaire

$$I_0 = I_{Oy} + I_{Oz} = \int_{\Sigma} \rho^2 dS$$
 Unité : mm⁴

13.5.3 Moments quadratiques à connaître

I_{Gy}	$I_{\it Gz}$	I_0
$\frac{hb^3}{12}$	$\frac{bh^3}{12}$	$\frac{bh}{12}(b^2+h^2)$
$\frac{a^4}{12}$	$\frac{a^4}{12}$	$\frac{a^4}{6}$
$\pi \frac{d^4}{64}$	$\pi \frac{d^4}{64}$	$\pi \frac{d^4}{32}$
$\frac{\pi(D^4-d^4)}{64}$	$\frac{\pi(D^4-d^4)}{64}$	$\frac{\pi(D^4-d^4)}{32}$

13.5.4 Théorème de Huygens

 $I_{Oz} = I_{Gz} + S.d^2$ Où S est la section et d la distance entre les axes Oz et Gz