

Outline

Motivation

Overviev

Single Qubit Operations

Controlled Operations

Measurements

Universality

Algorithn

Quantum Circuits – Let's Build Quantum Machines!

What's This session About?

This is where we level up. We're building the quantum equivalent of classical circuits — with qubits, not bits. Think logic gates, but with superposition and entanglement.

Quantum Circuits – Let's Build Quantum Machines!

What's This session About?

This is where we level up. We're building the quantum equivalent of classical circuits — with qubits, not bits. Think logic gates, but with superposition and entanglement.

- Quantum Gates The basic ops like Hadamard, Pauli, and CNOT.
- Controlled Operations Gates that act depending on other qubits.
- Measurement Observing qubits without breaking your algorithm (too much).
- **Universality** Building ANY quantum operation from a small set of gates.
- Simulation & Complexity Why quantum circuits aren't just cool they're powerful.

Outline

Motivation

Overview

Single Qubit Operations

Controlled Operations

Measurements

Universality

Algorithn

Quantum Algorithms: Overview

What's a Quantum Algorithm?

- Starts with $|0\rangle^{\otimes n}$
- Applies a sequence of unitary gates: $|\psi_{\text{final}}\rangle = U_d \cdots U_2 U_1 |0\rangle^{\otimes n}$
- Ends with a measurement in the computational basis

Why Do We Care?

- Some quantum algorithms outperform the best classical ones.
- Only two types known to offer super-polynomial speedups:
 - 1. Quantum Fourier Transform (e.g., Shor's algorithm)
 - 2. Quantum Search (e.g., Grover's algorithm)

Two Main Quantum Algorithm Families

Quantum Fourier Transform (QFT)

- Used in factoring, period-finding
- Core to Shor's algorithm
- Time complexity: $O(n^2)$

Grover's Algorithm

- Search in unstructured databases
- Finds marked item in $O(\sqrt{N})$
- Quadratic speedup

Outline

Motivation

Overview

Single Qubit Operations

Controlled Operations

Measurements

Universality

Algorithn

Single Qubit Operations – Let's Go Quantum Solo

The Basics

- A qubit state is: $|\psi
 angle = a|0
 angle + b|1
 angle$ with $|a|^2 + |b|^2 = 1$
- Single-qubit operations are 2×2 unitary matrices
- They rotate the state on the Bloch sphere

Single Qubit Operations – Let's Go Quantum Solo

The Basics

- A qubit state is: $|\psi\rangle=a|0\rangle+b|1\rangle$ with $|a|^2+|b|^2=1$
- Single-qubit operations are 2×2 unitary matrices
- They rotate the state on the Bloch sphere

Pauli Gates – Quantum Logic Basics

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

- X: bit-flip (quantum NOT)
- Z: phase-flip
- Y: combo of both
- All three generate 180° rotations around Bloch sphere axes

H, S, and T – Special Single-Qubit Gates

$$H=rac{1}{\sqrt{2}}egin{bmatrix}1&1\1&-1\end{bmatrix},\quad S=egin{bmatrix}1&0\0&i\end{bmatrix},\quad T=egin{bmatrix}1&0\0&e^{i\pi/4}\end{bmatrix}$$

- *H*: puts $|0\rangle$ into superposition
- S: 90° phase shift, T: 45° phase shift $(\pi/8 \text{ gate})$
- Useful relations: $S = T^2$, $H = \frac{X+Z}{\sqrt{2}}$

Bloch Sphere + Rotations

- Any qubit state: $|\psi\rangle = \cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle$
- Corresponds to point on unit sphere (Bloch vector):

$$(\cos\phi\sin\theta, \,\sin\phi\sin\theta, \,\cos\theta)$$

Rotation gates:

$$R_x(\theta) = e^{-i\theta X/2}, \quad R_y(\theta) = e^{-i\theta Y/2}, \quad R_z(\theta) = e^{-i\theta Z/2}$$

Rotation Gates – Matrix Style

$$R_{x}(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix} \quad R_{y}(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$$
$$R_{z}(\theta) = \begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix}$$

Rotation Gates – Matrix Style

$$R_{x}(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix} \quad R_{y}(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$$
$$R_{z}(\theta) = \begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix}$$

Bonus Fact: $T = R_z(\pi/4)$ (up to a global phase)

Every Gate is Just Fancy Rotation

Euler Decomposition

Any 1-qubit unitary U can be written as:

$$U=e^{i\alpha}R_z(\beta)R_y(\gamma)R_z(\delta)$$

Every Gate is Just Fancy Rotation

Euler Decomposition

Any 1-qubit unitary U can be written as:

$$U=e^{i\alpha}R_z(\beta)R_y(\gamma)R_z(\delta)$$

Corollary: There exist A, B, C such that:

$$U = e^{i\alpha}AXBXC$$
, $ABC = I$

This is big when you want to build gates using just rotations + Pauli-X!

Exercises

- 1. Show that HXH = Z, HZH = X, HYH = -Y
- 2. Prove: $\exp(iAx) = \cos(x)I + i\sin(x)A$ when $A^2 = I$ Use this to verify the rotation matrices.
- 3. Express the Hadamard gate in the form:

$$U = e^{i\alpha}AXBXC$$

Outline

Motivation

Overview

Single Qubit Operations

Controlled Operations

Measurements

Universality

Algorithn

Controlled Operations – If A, Then B

What Are They?

- Controlled operations are the quantum version of conditional logic.
- Most famous: Controlled-NOT (CNOT) or CX gate.
- Acts on two qubits:

$$|c\rangle|t\rangle\mapsto|c\rangle|t\oplus c\rangle$$

Controlled Operations – If A, Then B

What Are They?

- Controlled operations are the quantum version of conditional logic.
- Most famous: Controlled-NOT (CNOT) or CX gate.
- Acts on two qubits:

$$|c\rangle|t\rangle\mapsto|c\rangle|t\oplus c\rangle$$

CNOT Gate – Matrix View

Matrix in Computational Basis

$$\mathsf{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

ullet Target is flipped only if control is |1
angle

CNOT Gate – Matrix View

Matrix in Computational Basis

$$\mathsf{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

ullet Target is flipped only if control is |1
angle

Fun Fact: CNOT is its own inverse: $CNOT^2 = I$

Controlled-U Gate – Generalizing CNOT

$$|c\rangle|\psi\rangle \mapsto |c\rangle U^c|\psi\rangle$$

- If c = 0: nothing happens.
- If c = 1: apply U to target.

Controlled- *U* **Gate – Generalizing CNOT**

$$|c\rangle|\psi\rangle \mapsto |c\rangle U^c|\psi\rangle$$

- If c = 0: nothing happens.
- If c = 1: apply U to target.

Matrix:

$$\mathsf{CU} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & u_{00} & u_{01} \ 0 & 0 & u_{10} & u_{11} \end{bmatrix}$$

Controlled-*U* **Using 1-Qubit Gates**

Important

Any U can be written as:

$$U = e^{i\alpha}AXBXC$$
 with $ABC = I$

So controlled-U can be built like:

Controlled-*U* **Using 1-Qubit Gates**

Important

Any U can be written as:

$$U = e^{i\alpha}AXBXC$$
 with $ABC = I$

So controlled-U can be built like:

This decomposition works because $XBX = B^{-1}$ (when $X^2 = I$)

Toffoli and $C^n(U)$ – Many Controls, One Target

- Toffoli = $C^2(X)$ = controlled-controlled-NOT
- General $C^n(U)$: apply U if all n control qubits = 1
- Formally:

$$C^{n}(U)|x_{1}\cdots x_{n}\rangle|\psi\rangle=|x_{1}\cdots x_{n}\rangle U^{x_{1}x_{2}\cdots x_{n}}|\psi\rangle$$

Toffoli and $C^n(U)$ – Many Controls, One Target

- Toffoli = $C^2(X)$ = controlled-controlled-NOT
- General $C^n(U)$: apply U if all n control qubits = 1
- Formally:

$$C^{n}(U)|x_{1}\cdots x_{n}\rangle|\psi\rangle=|x_{1}\cdots x_{n}\rangle U^{x_{1}x_{2}\cdots x_{n}}|\psi\rangle$$

Matrix size: $2^{n+1} \times 2^{n+1}$

Used for: Universal logic, error correction, Grover's diffusion operator

Toffoli with Basic Gates

- You can build Toffoli using only:
 - Hadamard H
 - Phase S, T
 - CNOT

Toffoli with Basic Gates

- You can build Toffoli using only:
 - Hadamard H
 - Phase S, T
 - CNOT

Try It Yourself!

- 1. Find the 4×4 unitary matrix for a CNOT gate.
- 2. Use Hadamard + Controlled-Z to construct a CNOT gate.
- 3. Construct a Controlled- $R_x(\theta)$ gate using CNOT + 1-qubit gates.

Try It Yourself!

- 1. Find the 4×4 unitary matrix for a CNOT gate.
- 2. Use Hadamard + Controlled-Z to construct a CNOT gate.
- 3. Construct a Controlled- $R_x(\theta)$ gate using CNOT + 1-qubit gates.

Bonus: Why does CNOT = HZH (up to basis change)?

Outline

Motivation

Overview

Single Qubit Operations

Controlled Operation

Measurements

Universality

Algorithn

Measurement – Where Qubits Spill Their Secrets

- Measurement converts a quantum state into a classical outcome.
- Usually in the **computational basis**: $|0\rangle, |1\rangle$
- Denoted by:

Measure
$$|\psi\rangle = \sum_i a_i |i\rangle \quad o \quad i$$
 with probability $|a_i|^2$

• After measurement: system collapses to |i
angle

Measurement – Where Qubits Spill Their Secrets

- Measurement converts a quantum state into a classical outcome.
- Usually in the **computational basis**: $|0\rangle, |1\rangle$
- Denoted by:

Measure
$$|\psi\rangle = \sum_i a_i |i\rangle \quad o \quad i$$
 with probability $|a_i|^2$

• After measurement: system collapses to |i
angle

(Symbol: meter or box with arrow to classical bit)

Mathematical Formalism of Measurement

Measurement Operators

$$\{M_m\}$$
 such that $\sum_m M_m^\dagger M_m = I$

Mathematical Formalism of Measurement

Measurement Operators

$$\{M_m\}$$
 such that $\sum_m M_m^\dagger M_m = I$

If the system is in state $|\psi\rangle$, outcome m occurs with probability:

$$p(m) = \langle \psi | M_m^{\dagger} M_m | \psi \rangle$$

Post-measurement state becomes:

$$\frac{M_m|\psi\rangle}{\sqrt{p(m)}}$$

Projective Measurements – The Common Case

• For computational basis:

$$M_0 = |0\rangle\langle 0|, \quad M_1 = |1\rangle\langle 1|$$

• Then for state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$:

$$p(0) = |\alpha|^2, \quad p(1) = |\beta|^2$$

ullet After measurement, state is either |0
angle or |1
angle

When to Measure?

- At the end: to extract the answer.
- During: to control future operations based on measured values.
- Can be used for:
 - Probabilistic post-selection
 - Adaptive measurements (e.g., quantum error correction)
 - Teleportation and intermediate collapses

When to Measure?

- At the end: to extract the answer.
- During: to control future operations based on measured values.
- Can be used for:
 - Probabilistic post-selection
 - Adaptive measurements (e.g., quantum error correction)
 - Teleportation and intermediate collapses

Quantum Circuit Model allows:

- Unitary gates
- Measurement gates (classical output)
- Classical control of future gates

Why Not Just Use Unitaries?

- Measurement is irreversible and probabilistic.
- Unitaires are reversible and deterministic.
- You need measurement to:
 - Collapse entanglement
 - Output classical info
 - Apply classical feedback

Why Not Just Use Unitaries?

- Measurement is irreversible and probabilistic.
- Unitaires are reversible and deterministic.
- You need measurement to:
 - Collapse entanglement
 - Output classical info
 - Apply classical feedback

Takeaway: You can simulate measurement with unitaries plus ancilla + tracing, but it's messy.

Exercises – Test Your Quantum Reflexes

1. Suppose you measure qubit 1 of the state:

$$|\psi
angle=rac{1}{\sqrt{2}}(|00
angle+|11
angle)$$

What's the post-measurement state if the result is 0? What if it's 1?

2. Show that measurement in the computational basis is equivalent to applying:

$$\sum_{i} |i\rangle\langle i|$$

as the projectors.

3. Construct a measurement operator that distinguishes between $|+\rangle$ and $|-\rangle$.

Outline

Motivation

Overview

Single Qubit Operations

Controlled Operations

Measurements

Universality

Algorithr

Universal Quantum Gates – What's the Big Deal?

Definition

A set of quantum gates is **universal** if:

Any unitary U can be approximated to arbitrary accuracy $\varepsilon>0$ using only gates from that set.

Universal Quantum Gates – What's the Big Deal?

Definition

A set of quantum gates is **universal** if:

Any unitary U can be approximated to arbitrary accuracy $\varepsilon>0$

using only gates from that set.

- Classical analogy: NAND is universal for Boolean logic.
- Quantum version? We want a minimal set that does everything.
- Example universal set:

$$\{H, S, T, CNOT\}$$

Step 1: Two-Level Unitary Matrices

- Any $d \times d$ unitary matrix U can be decomposed into simpler unitaries acting on just 2 dimensions at a time.
- These are called two-level unitaries.

Step 1: Two-Level Unitary Matrices

- Any $d \times d$ unitary matrix U can be decomposed into simpler unitaries acting on just 2 dimensions at a time.
- These are called two-level unitaries.

Example: 3×3 Case

$$U = egin{bmatrix} a & d & g \ b & e & h \ c & f & j \end{bmatrix} \Rightarrow U = U_1^\dagger U_2^\dagger U_3^\dagger$$

where each U_i is a two-level unitary.

Key Idea: Reduce one row/column at a time like Gaussian elimination!

Step 2: 1-Qubit + CNOTs = Enough

• Any two-level unitary can be implemented using:

• This means: {CNOT, all 1-qubit unitaries} is universal.

Step 2: 1-Qubit + CNOTs = Enough

• Any two-level unitary can be implemented using:

• This means: {CNOT, all 1-qubit unitaries} is universal.

So now the challenge becomes:

How do we approximate ANY 1-qubit unitary using a small set?

Step 3: Discrete Universal Gate Set

- ullet We want to go from: All 1-qubit unitaries o small fixed gate set
- Turns out, the following is enough:

$$\{H, S = R_z(\pi/2), T = R_z(\pi/4), \text{CNOT}\}$$

• With these, you can approximate any $U \in U(2^n)$ to arbitrary accuracy

Step 3: Discrete Universal Gate Set

- We want to go from: All 1-qubit unitaries \rightarrow small fixed gate set
- Turns out, the following is enough:

$$\{H, S = R_z(\pi/2), T = R_z(\pi/4), \text{CNOT}\}$$

• With these, you can approximate any $U \in U(2^n)$ to arbitrary accuracy

Why Is This Wild?

Even though this set is finite, it's dense in unitary space. You just need long enough circuits!

The Solovay–Kitaev Theorem – Efficient Approximations

Theorem

Any 1-qubit unitary $\it U$ can be approximated to accuracy $\it \varepsilon$ using:

 $O(\log^c(1/\varepsilon))$ gates from a finite universal set

where $c \approx 2$

The Solovay–Kitaev Theorem – Efficient Approximations

Theorem

Any 1-qubit unitary U can be approximated to accuracy ε using:

 $O(\log^c(1/\varepsilon))$ gates from a finite universal set

where $c \approx 2$

- Before SK: naïve methods took $\sim 1/\varepsilon$ gates.
- Now: polylog overhead a quantum compiler's dream.
- Practical implication: your gate set doesn't need to be big, just smart.

Exercise Time – Build Your Brain!

1. Build a circuit to add two 2-bit numbers mod 4:

$$|x,y\rangle\mapsto|x,x+y\mod 4\rangle$$

- 2. Prove: $cos(\theta) = \frac{3}{5} \Rightarrow \theta$ is irrational multiple of 2π
- 3. Show that any circuit using only H, S, T gates results in a matrix with entries of form $2^{-k/2} \cdot \mathbb{Z}[i]$

Outline

Motivation

Overview

Single Qubit Operations

Controlled Operations

Measurements

Universality

Algorithm

Representing Quantum Circuits

- Quantum algorithms = sequences of unitary gates + measurements
- Circuits use:
 - Horizontal wires = qubits
 - Boxes = gates
 - Time flows left to right

Representing Quantum Circuits

- Quantum algorithms = sequences of unitary gates + measurements
- Circuits use:
 - Horizontal wires = qubits
 - Boxes = gates
 - Time flows left to right

(Illustrate: 3-qubit input to Hadamard chain)

Cost of a Quantum Circuit

Key metrics:

- Gate count: Total number of gates (like runtime)
- Circuit depth: Max number of sequential steps
- Width: Number of qubits used

Cost of a Quantum Circuit

Key metrics:

- Gate count: Total number of gates (like runtime)
- Circuit depth: Max number of sequential steps
- Width: Number of qubits used

Example

A depth-3 circuit acting on 3 qubits:

Standard Gate Symbols gate-symbols.png

Standard Gate Symbols gate-symbols.png

Depth vs. Gate Count – Can We Parallelize?

- Quantum gates on different qubits can run in parallel.
- Two gates on the same qubit must be serialized.
- **Goal:** Minimize depth without increasing gate count too much.

Depth vs. Gate Count – Can We Parallelize?

- Quantum gates on different qubits can run in parallel.
- Two gates on the same qubit must be serialized.
- **Goal:** Minimize depth without increasing gate count too much.

Example: Parallel Hadamards

$$|0\rangle$$
 H \Rightarrow Depth $= 1$
 $|0\rangle$ H \Rightarrow $|0\rangle$ H \Rightarrow $|0\rangle$ H \Rightarrow $|0\rangle$ $|0\rangle$

Variants of the Circuit Model

- Classical control: Measure \rightarrow control next gate (e.g., teleportation)
- Mid-circuit measurement: Useful in error correction, resets
- **Ancilla qubits:** Temporary workspace qubits (can be reset)
- Measurement-based models: Gates replaced by adaptive measurements (e.g., MBQC)

Variants of the Circuit Model

- Classical control: Measure \rightarrow control next gate (e.g., teleportation)
- Mid-circuit measurement: Useful in error correction, resets
- Ancilla qubits: Temporary workspace qubits (can be reset)
- Measurement-based models: Gates replaced by adaptive measurements (e.g., MBQC)

Important: These variants are computationally equivalent!

Comparing Classical and Quantum Circuits

Classical:

- Bits (0 or 1)
- Deterministic gates (AND, OR, NOT)
- Irreversible

Quantum:

- Qubits
- Unitary gates (reversible)
- Superposition + entanglement

Try These!

- 1. Design a 3-qubit quantum circuit that applies Hadamard to all and flips the last qubit if the first two are $|1\rangle$.
- 2. Convert the following circuit into gate matrix form:

$$H \otimes I \cdot \mathsf{CNOT}_{12} \cdot I \otimes X$$

3. What is the minimum depth of a circuit that applies a Hadamard on each of 5 qubits followed by a single Toffoli?

Circuit Equivalences

- Two circuits are equivalent if they produce the same final output state for any input.
- Why care?
 - Optimization
 - Implementation ease
 - Understanding structure

Circuit Equivalences

- Two circuits are equivalent if they produce the same final output state for any input.
- Why care?
 - Optimization
 - Implementation ease
 - Understanding structure

Example:

$$HXH = Z$$
, $HZH = X$, $HYH = -Y$

Key Equivalences – Single Qubit Remix

Useful conjugation identities:

$$HXH = Z$$

 $HZH = X$
 $HYH = -Y$

Key Equivalences – Single Qubit Remix

Useful conjugation identities:

$$HXH = Z$$

 $HZH = X$
 $HYH = -Y$

These follow from:

$$H = rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$$
 and $X = egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$

Transformations via Basis Change

Phase gate:
$$S = R_z(\pi/2)$$
, $T = R_z(\pi/4)$

Transformations via Basis Change

Phase gate:
$$S = R_z(\pi/2)$$
, $T = R_z(\pi/4)$

Conjugate with Hadamard:

$$HR_z(\theta)H = R_x(\theta)$$

Example:

$$HTH = R_{\times}(\pi/4)$$

This lets you rotate around X using Z-axis rotation + basis swap.

Rotations on the Bloch Sphere

- Composing two rotations = one new rotation
- Angle and axis found by:

$$c_{12} = c_1 c_2 - s_1 s_2 \hat{n}_1 \cdot \hat{n}_2$$
 $s_{12} \hat{n}_{12} = s_1 c_2 \hat{n}_1 + c_1 s_2 \hat{n}_2 - s_1 s_2 \hat{n}_2 imes \hat{n}_1$

•
$$c_i = \cos(\theta_i/2), s_i = \sin(\theta_i/2)$$

Rotations on the Bloch Sphere

- Composing two rotations = one new rotation
- Angle and axis found by:

$$c_{12} = c_1 c_2 - s_1 s_2 \hat{n}_1 \cdot \hat{n}_2$$
 $s_{12} \hat{n}_{12} = s_1 c_2 \hat{n}_1 + c_1 s_2 \hat{n}_2 - s_1 s_2 \hat{n}_2 \times \hat{n}_1$

• $c_i = \cos(\theta_i/2), s_i = \sin(\theta_i/2)$

This is crucial when understanding approximate gate decompositions!

Circuit Identities in Practice

Original:

$$-H$$

Equivalent:

$$-R_{\times}(\pi/4)$$

Circuit Identities in Practice

Original:

Equivalent:

H T H $R_{x}(\pi/4)$

Why this matters: Helps with gate scheduling and simplification.

Exercise Time – Flex These Equivalences

- 1. Prove: HXH = Z and $HTH = R_x(\pi/4)$
- 2. Simplify this circuit:

$$H o T o H o T^\dagger o H$$

3. Using Bloch sphere rotation formulas, compute the net rotation of:

$$R_x(\pi/4)R_y(\pi/2)$$