Annotated slides

2526-MA140: Week 01, Lecture 2 (L02)

More About Functions

Dr Niall Madden

University of Galway

17 September, 2025

4

4

Outline

- 1 Functions: notation
 - Domain of a function
- 2 4 Ways to Represent a Function
- 3 Graphical Representation
- 4 A Catalog of Functions

- Linear functions
- 5 Polynomials
 - Sketching polynomials
- 6 Rational Functions
 - Long division
- 7 Exercises

For more, see Sections 1.1 and 1.2 of https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/01%3A_Functions_and_Graphs

2

Recall: This section is all about **functions**, which a "rule" for mapping inputs to outputs.

- 1. Writing $f: A \to B$ means the inputs come from the set A, and the outputs come from the set B. (A **set** is just a collection of things).
- 2. A is called the **domain**, and B is called the **co-domain**.
- 3. y = f(x) means "x gets mapped to y according to the rule defined by f". We sometimes also say "y is the image of x".
- 4. The subset of *B* that contains all the images of the things in *A* is called the **range** of *f*.
- 5. When we write $x \in A$ we mean "x is an element of A, or "x belongs to A".
- 6. C S B means "C is a subset of B" ie, Everything in C is also in B.

Domain of a function

Often, the domain of a function is not expilicitly stated. In such a case the following **Domain Convention** applies.

The **domain** of a function f is the set of all numbers x for which f(x) makes sense and gives a real-number output.

where f: IR -> IR

Example

1. Find the subset of \mathbb{R} that is the domain of $f_1(x) = \frac{1}{x^2 - x}$.

for all $x \in IR$, except where it leads to division by 0, is where $x^2 - x = 0$.

That is, x(x-1) = 0, meaning x = 0 or x = 1. So the domain of f is

IR except x=0, x=1

MA140 — W01-2: More about functions

4/26

Domain of a function

Often, the domain of a function is not expilicitly stated. In such a case the following **Domain Convention** applies.

The **domain** of a function f is the set of all numbers x for which f(x) makes sense and gives a real-number output.

Example

```
1. Find the subset of \mathbb{R} that is the domain of f_1(x) = \frac{1}{x^2 - x}. So the answer is |\mathbb{R}| except x=0 the x=1 we can write this in several different ways a) |\mathbb{R}/\{0,1\} by x \in (-\infty,0) \cup (0,1) \cup (1,\infty) = x \in (a,b) x \in (a,b) = x \in (a,b) =
```

Domain of a function

Example

Find the subset of \mathbb{R} that is the **domain** of the function $f_2(x) = \sqrt{x+2}$.

Since
$$\sqrt{x+2}$$
 is a real number only if $x+2 \ge 0$, we have $x \ge -2$.

Ans:
$$x \ge -2$$

Ans:
$$x_{3}-2$$
Equivalently: $x \in [-2, \infty)$

[-2, infinity)

Domain of a function

Example

Given the function $f_3(x) = 3x^2 + 1$, find the largest subset of \mathbb{R}

Domain of a function

Example

Identify the domain (in \mathbb{R}) and range of $f_4(x) = \sqrt{(x+4)(3-x)}$

for
$$x$$
 to be in the domain of f_t we need $(x+4)(3-x) \ge 0$

50, Either both
$$x+4 \le 0$$
 & $3-x \le 0$ (a) or $x+4 \ge 0$ & $3-x \ge 0$ (b)

(a) Need
$$x \le -4$$
 & $x \ge 1$
There are none!

(a) Need
$$x \leq -4$$
 & $x \geq 3$.

There are none!

(b) $x \geq -4$ & $x \leq 3$

or $x \in [-4, 3]$

Domain of a function

Example

Identify the domain (in \mathbb{R}) and range of $f_4(x) = \sqrt{(x+4)(3-x)}$

For the range: Since
$$(x+4)(3-x) > 0$$
 for all x in the domination
$$\sqrt{(x+4)(3-x)} > 0 + 00$$

However (and I got this bit wrong in class!) (x+4)(3-x) takes its maximum at the midpoint between x=-4 and x=3. That is,

at x=-1/2. So, in fact
$$f(x) \le \sqrt{(7/2)(7/2)} = 7/2 = 3.5$$

(Sorry about that!!)

MA140 — W01-2: More about functions

7/26

Domain of a function

Example

Identify the domain and range of $f_5(x) = \frac{1}{x}$.

The domain is $1R/\sqrt{303} = (-\infty,0) \cup (0,\infty)$. The range is also $1R/\sqrt{303}$

X

4 Ways to Represent a Function

A function can be represented in different ways:

- 1. **verbally** (by a description in words);
- 2. numerically (as a table of values); (only topoints)
- 3. visually (as a graph);
- 4. algebraically (by an explicit formula).

Often it is possible, and useful, to go from one way to another.

Graphical Representation

$\textbf{Graph} \to \textbf{Table}$

A common way to *visualize* a function $f: X \to \mathbb{R}$ is its *graph* in the x, y-plane. In this example, $f(x) = x^2 - x + 4$.

A Catalog of Functions

There are many different types of functions that can be used to model relationships between objects in the real world.

The most common types of functions (in MA140) are:

- Linear Functions,
- ► Colynomial Functions
- ► *Power* Functions,
- Rational Functions,
- ► *Algebraic* Functions,
- Trigonometric Functions,
- ► Exponential Functions,
- Logarithms.

Also: Constant functions!

A Catalog of Functions

Linear functions

Linear functions have formulae such as f(x) = mx + c, where mand c are some given numbers.

It is often represented graphically as a straight line of slope m

through the point (0, c).

MA140 — W01-2: More about functions

12/26

Polynomials

Polynomials

A polynomial function (or just polynomial) is a function of the form varphi varphi varphi varphi

$$y = f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0, \quad x \in \mathbb{R},$$

where $a_0, a_1, ..., a_n$ are real numbers called the **coefficients** of the polynomial.

The number n is called the **degree** of the polynomial.

There are special names for polynomials of low degree:

If
$$n=0$$
, then $f(x)$ is constant

If $n=1$, $f(x)$ is $f(x)$ is $f(x)$ is $f(x)$ in $f(x)$ is $f(x)$ is $f(x)$.

 $f(x)$ is $f(x)$ is $f(x)$ is $f(x)$.

Exercises

Exercise 1.2.1

Identify the largest possible subset of \mathbb{R} that could be the domain and range of these functions:

1.
$$f(x) = (x-4)^2 + 5$$

2.
$$f(x) = \sqrt{3x+2} - 1$$

3.
$$f(x) = 3/(x-2)$$
.

(See Example 1.1.2 of the textbook).

Exercise 1.2.2

Sketch the graphs of

(i)
$$y = 5x^2 - 7$$

(ii)
$$y = x^2 - 4x + 3$$

(iii)
$$y = x^3 - 6x^2 - 11x - 6$$