

MICROSAR CANTSYN

Technical Reference

Version 3.7.1

Authors	Stephanie Schaaf, Martin Nonnenmann, Thilo Rachlitz, Charu Pathni, Bernd Sigle, Stephanie Baumgartner
Status	Released

Document Information

History

Author	Date	Version	Remarks
Stephanie Schaaf	2014-11-05	1.0.0	Initial version
Stephanie Schaaf	2014-12-05	1.1.0	Minor corrections
Stephanie Schaaf	2017-05-10	3.1.0	Support multiple Time Domains in Tx state machine
Martin Nonnenmann	2017-07-03	3.2.0	Debounce Time introduction
Thilo Rachlitz	2017-08-03	3.3.0	Immediate Time Synchronization
Charu Pathni, Thilo Rachlitz	2017-10-06	3.4.0	New DET codes and return type for API SetTransmissionMode changed Message type compatibility
Bernd Sigle	2018-04-04	3.5.0	Updated AUTOSAR architecture Updated referenced documents Updated list of unsupported features
Bernd Sigle	2018-05-22	3.6.0	Improved exclusive area description Support Measurement (MC Data)
Bernd Sigle	2018-08-31	3.6.1	Updated chapter 4.1 to new template Updated AUTOSAR architecture Updated referenced documents
Stephanie Baumgartner	2019-01-15	3.7.0	MISRA-C:2012 compliance
Thilo Rachlitz, Bernd Sigle	2019-03-06	3.7.1	Updated used services Updated Det error codes Minor improvements

Reference Documents

No.	Source	Title	Version
[1]	AUTOSAR	AUTOSAR_SWS_TimeSyncOverCAN.pdf	4.3.1
[2]	AUTOSAR	AUTOSAR_SWS_TimeSyncOverCAN.pdf	4.2.2
[3]	AUTOSAR	AUTOSAR_TR_BSWModuleList.pdf	4.2.2
[4]	AUTOSAR	AUTOSAR_SWS_DefaultErrorTracer.pdf	4.2.2
[5]	AUTOSAR	AUTOSAR_SWS_Rte.pdf	4.2.2
[6]	AUTOSAR	AUTOSAR_SWS_SynchronizedTimeBaseManager.pdf	4.3.0
[7]	AUTOSAR	AUTOSAR_SWS_CANInterface.pdf	4.2.2
[8]	AUTOSAR	AUTOSAR_SWS_CRCLibrary.pdf	4.2.2

Scope of the Document

This technical reference describes the general use of the Time Synchronization over CAN.

Caution

We have configured the programs in accordance with your specifications in the questionnaire. Whereas the programs do support other configurations than the one specified in your questionnaire, Vector's release of the programs delivered to your company is expressly restricted to the configuration you have specified in the questionnaire.

Contents

1	Com	ponent Hi	story	7
2	Intro	duction		8
	2.1	Archited	cture Overview	8
3	Func	tional Des	scription	10
	3.1	Feature	es	10
		3.1.1	Deviations	10
		3.1.2	Additions/ Extensions	10
			3.1.2.1 Memory Initialization	11
			3.1.2.2 Message type compatibility	11
		3.1.3	Limitations	11
	3.2	Initializa	ation	11
	3.3	States .		11
		3.3.1	Message transmission states	11
		3.3.2	Message reception states	12
	3.4	Main Fเ	unctions	12
	3.5	Error H	andling	12
		3.5.1	Development Error Reporting	12
		3.5.2	Production Code Error Reporting	13
4	Integ			
	4.1	Embed	ded Implementation	14
	4.2	Critical	Sections	15
5	API [Descriptio	n	16
	5.1	Type D	efinitions	16
	5.2	Service	es provided by CANTSYN	17
		5.2.1	CanTSyn_Init	17
		5.2.2	CanTSyn_InitMemory	
		5.2.3	CanTSyn_GetVersionInfo	18
		5.2.4	CanTSyn_SetTransmissionMode	19
		5.2.5	CanTSyn_MainFunction	19
	5.3	Service	es used by CANTSYN	20
	5.4	Callbac	k Functions	20
		5.4.1	CanTSyn_RxIndication	21
		5.4.2	CanTSyn_TxConfirmation	21
6	Conf	iguration.		22

	6.1	Configuration Variants	22
7	Glos	sary and Abbreviations	23
	7.1	Glossary	23
	7.2	Abbreviations	23
8	Cont	tact	24

Illustrations

Figure 2-1	AUTOSAR Architecture OverviewInterfaces to adjacent modules of the CANTSYN	
Figure 2-2	interfaces to adjacent modules of the CANTSTN	9
Tables		
Table 1-1	Component history	7
Table 3-1	Supported AUTOSAR standard conform features	10
Table 3-2	Not supported AUTOSAR standard conform features	10
Table 3-3	Features provided beyond the AUTOSAR standard	11
Table 3-4	Service IDs	
Table 3-5	Errors reported to DET	
Table 4-1	Implementation files	14
Table 5-1	Type definitions	16
Table 5-2	CanTSyn_Init	17
Table 5-3	CanTSyn_InitMemory	18
Table 5-4	CanTSyn_GetVersionInfo	
Table 5-5	CanTSyn_SetTransmissionMode	
Table 5-6	CanTSyn_MainFunction	
Table 5-7	Services used by the CANTSYN	20
Table 5-8	CanTSyn_RxIndication	21
Table 5-9	CanTSyn_TxConfirmation	
Table 7-1	Glossary	
Table 7-2	Abbreviations	23

1 Component History

The component history gives an overview over the important milestones that are supported in the different versions of the component.

Component Version	New Features
1.0.0	Initial creation
3.1.0	Support multiple Time Domains in Tx state machine
3.2.0	Debounce Time introduction
3.3.0	Immediate Time Synchronization
3.4.0	Minor improvements
3.5.0	Module refactored
3.6.0	Support Measurement (MC Data)
3.6.1	Minor improvements
3.7.0	MISRA-C:2012 compliance
3.7.1	Bug fixes and minor improvements

Table 1-1 Component history

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW module CANTSYN as specified in [1].

Supported AUTOSAR Release*:	4	
Supported Configuration Variants: pre-compile		
Vendor ID:	CANTSYN_VENDOR_ID	30 decimal
		(= Vector-Informatik, according to HIS)
Module ID:	CANTSYN_MODULE_ID	161 decimal
		(according to ref. [3])

^{*} For the precise AUTOSAR Release 4.x please see the release specific documentation.

The CanTSyn module handles the distribution of time information over CAN busses.

2.1 **Architecture Overview**

The following figure shows where the CANTSYN is located in the AUTOSAR architecture.

Figure 2-1 AUTOSAR Architecture Overview

¹Includes Adc, Eep, Fls, EthSwt, Eth and Wdg ² Functionality represented in EthTSyn and StbM * Different variants available

The next figure shows the interfaces to adjacent modules of the CANTSYN. These interfaces are described in chapter 5.

Figure 2-2 Interfaces to adjacent modules of the CANTSYN

9

3 Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the CANTSYN.

The AUTOSAR standard functionality is specified in [1], the corresponding features are listed in the tables

- Table 3-1 Supported AUTOSAR standard conform features
- Table 3-2 Not supported AUTOSAR standard conform features

Vector Informatik provides further CANTSYN functionality beyond the AUTOSAR standard. The corresponding features are listed in the table

> Table 3-3 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features
Calculation and assembling of Time Synchronization Messages on CAN
Validation and disassembling of Time Synchronization Messages on CAN
Enabling and disabling of network access
Configurable Debounce Time
Immediate Time Synchronization

Table 3-1 Supported AUTOSAR standard conform features

3.1.1 Deviations

The following features specified in [1] are not supported:

Not Supported AUTOSAR Standard Conform Features
Configuration variant Post-Build
CRC validation option CRC_OPTIONAL
Extended Message Format (CAN FD PDU)
User Data in Offset Message Format for Offset Time Bases
SGW status in Offset Message Format for Offset Time Bases

Table 3-2 Not supported AUTOSAR standard conform features

3.1.2 Additions/ Extensions

The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard
Memory Initialization
Message type compatibility

Table 3-3 Features provided beyond the AUTOSAR standard

3.1.2.1 Memory Initialization

AUTOSAR expects the startup code to automatically initialize RAM. Not every startup code of embedded targets reinitializes all variables correctly. It is possible that the state of a variable may not be initialized as expected. To avoid this problem the Vector AUTOSAR CanTSyn provides an additional function to initialize the relevant variables of the CanTSyn. See also chapters 3.2 and 5.2.2 for details.

3.1.2.2 Message type compatibility

Message types of Offset messages have been changed between [1] and [2]. CanTSyn provides an additional parameter <code>CanTSynMessageCompatibility</code> to configure the used message types.

3.1.3 Limitations

There are no known limitations.

3.2 Initialization

The Time Synchronization over CAN is initialized by calling CantSyn_Init(). This is done by the ECU State Manager (EcuM).

On platforms, where RAM is not initialized to zero by the startup code, the function <code>CanTSyn_InitMemory()</code> has to be called first and then a call to <code>CanTSyn_Init()</code> can be realized.

3.3 States

The CanTSyn is operational after initialization. It implements state machines for the transmission and reception of Time Synchronization messages.

3.3.1 Message transmission states

> CANTSYN STATE SEND WAITING FOR SYNC SEND

If the GLOBAL_TIME_BASE bit is set, a time master transmits SYNC messages according to a configured cycle time or immediately, if the corresponding Time Base has been changed.

> CANTSYN_STATE_SEND_WAITING_FOR_SYNC_TX_CONFIRMATION

After transmission of the SYNC message the time master waits for the TX confirmation. If a timeout occurs while waiting for the TX confirmation the master resets its state and sends the next SYNC message.

> CANTSYN STATE SEND WAITING FOR FOLLOW UP SEND

If the TX confirmation for the SYNC message is received before a timeout occurs the time master sends the FUP message.

> CANTSYN_STATE_SEND_WAITING_FOR_FOLLOW_UP_TX_CONFIRMATION

After transmission of the FUP message the time master waits for the TX confirmation. When the TX confirmation is received or a timeout occurs the master resets its state and sends the next SYNC message.

3.3.2 Message reception states

> CANTSYN STATE RECEIVE WAITING FOR SYNC

After initialization a time slave is waiting for the reception of a SYNC message.

> CANTSYN STATE RECEIVE WAITING FOR FOLLOW UP

After reception of a SYNC message a time slave is waiting for a FUP message. When the message was received or the configured follow up timeout time is expired, the time slave will reset its state and wait for the next SYNC message.

3.4 Main Functions

The Cantsyn_MainFunction() triggers the transmission of Time Synchronization Messages and monitors timeouts for correct handling of the RX and TX state machines. Depending on the configuration cyclic and immediate transmission is possible.

3.5 Error Handling

3.5.1 Development Error Reporting

By default, development errors are reported to the DET using the service Det_ReportError() as specified in [4], if development error reporting is enabled (i.e. pre-compile parameter CANTSYN DEV ERROR DETECT==STD ON).

If another module is used for development error reporting, the function prototype for reporting the error can be configured by the integrator, but must have the same signature as the service Det ReportError().

The reported CANTSYN ID is 161.

The reported service IDs identify the services which are described in 5.2. The following table presents the service IDs and the related services:

Service ID	Service
0x01	CanTSyn_Init
0x02	CanTSyn_GetVersionInfo
0x03	CanTSyn_SetTransmissionMode
0x42	CanTSyn_RxIndication
0x40	CanTSyn_TxConfirmation
0x06	CanTSyn_MainFunction

Table 3-4 Service IDs

The errors reported to DET are described in the following table:

Error Code	Description
0x01	CANTSYN_E_INVALID_PDUID
0x02	CANTSYN_E_UNINIT
0x03	CANTSYN_E_NULL_POINTER
0x04	CANTSYN_E_INIT_FAILED
0x05	CANTSYN_E_PARAM
0x06	CANTSYN_E_INV_CTRL_IDX

Table 3-5 Errors reported to DET

3.5.2 Production Code Error Reporting

No production error codes are currently used by CanTSyn.

4 Integration

This chapter gives necessary information for the integration of the MICROSAR CANTSYN into an application environment of an ECU.

4.1 Embedded Implementation

The delivery of the CANTSYN consists out of these files:

File Name	Description	Integration Tasks
CanTSyn.c	Main implementation file of the CanTSyn.	-
CanTSyn.h	Main header file of the CanTSyn.	-
CanTSyn_Cbk.h	Header file that contains the prototypes of callback functions of the CanTSyn.	-
CanTSyn_Types.h	Header file that contains the type definitions of the CanTSyn.	-
CanTSyn_Cfg.c	Generated file that contains definitions of structures in precompile-time variant.	-
CanTSyn_Cfg.h	Generated file that contains declarations of structures in precompile-time variant.	-

Table 4-1 Implementation files

4.2 Critical Sections

The CanTSyn has code sections which need protection against interrupts and OS tasks which can interrupt each other. Therefore, the CanTSyn uses one exclusive area which requires a global interrupt lock:

CANTSYN EXCLUSIVE AREA 0

The CanTSyn calls StbM services. Depending on the StbM configuration, the StbM in turn calls OS APIs like <code>GetCounterValue()</code> and <code>GetElapsedValue()</code>. According the AUTOSAR OS specification it is not allowed to call these OS APIs with disabled interrupts. Nevertheless, the CanTSyn module requires the interrupt lock to be able to guarantee high accuracy and data consistency.

Caution

If the StbM is configured to use OS APIs and the implementation method of the exclusive area is configured to <code>OS_INTERRUPT_BLOCKING</code> or <code>ALL_INTERRUPT_BLOCKING</code>, the OS may report the error <code>E_OS_DISABLEDINT</code> notified by the OS <code>ErrorHook()</code>. In that case the implementation method of the exclusive area <code>CANTSYN_EXCLUSIVE_AREA_O</code> inside the RTE / SchM configuration needs to be set to <code>OS_RESOURCE</code> or <code>CUSTOM</code>.

If $OS_RESOURCE$ is selected the CAN ISR(s) need to reference the OS Resource created by the RTE.

If CUSTOM is selected the SchM APIs for entering and exiting the exclusive area need to be implemented manually by using an interrupt lock mechanism but without calling OS APIs like SuspendOSInterrupts() or DisableAllInterrupts().

Note:

The exclusive area implementation method CUSTOM is a MICROSAR RTE extension and might not be available in other RTEs.

For general details about exclusive areas refer to [5].

5 API Description

For an interfaces overview please see Figure 2-2.

5.1 Type Definitions

The types defined by the CANTSYN are described in this chapter.

Type Name	C- Type	Description	Value Range
CanTSyn_ConfigType	struct	Post-build configuration structure	_
CanTSyn_TransmissionModeType	pe enum	Handles the enabling and disabling of the	CANTSYN_TX_OFF Transmission disabled
		transmission mode	CANTSYN_TX_ON Transmission enabled

Table 5-1 Type definitions

5.2 Services provided by CANTSYN

5.2.1 CanTSyn_Init

Prototype

void CanTSyn Init (const CanTSyn ConfigType *configPtr)

Parameter

configPtr Pointer to selected configuration structure.

Return code

- |.

Functional Description

This function initializes the Time Synchronization over CAN.

Particularities and Limitations

- > Service ID: see table 'Service IDs'
- > This function is synchronous.
- > This function is non-reentrant.
- > This API should be called by the ECU State Manger during the startup phase.
- > This function has to be called before any other CanTSyn service function is called (except CanTSyn InitMemory()).

Expected Caller Context

> Task context

Table 5-2 CanTSyn_Init

5.2.2 CanTSyn_InitMemory

Prototype		
void CanTSyn_InitMemory (void)		
Parameter		
-	-	
Return code		
-	-	

Functional Description

Initializes the global variables in case an initializing startup code is not used. This function sets the CanTSyn into an uninitialized state.

Particularities and Limitations

- > This function is synchronous.
- > This function is non-reentrant.
- > If this function is used it shall be called before any other CanTSyn function after startup.

Expected Caller Context

> Task context

Table 5-3 CanTSyn_InitMemory

5.2.3 CanTSyn_GetVersionInfo

Prototype		
<pre>void CanTSyn_GetVersionInfo (Std_VersionInfoType *versioninfo)</pre>		
Parameter		
versioninfo	Pointer to where to store the version information of this module.	
Return code		
-	-	
Functional Description		

| Functional Description

This API can be used to get the version information of the CanTSyn.

Particularities and Limitations

- > Service ID: see table 'Service IDs'
- > This function is synchronous.
- > This function is non-reentrant.
- > This API is only available if enabled by the configuration parameter CanTSynVersionInfoApi.

Expected Caller Context

> No restriction

Table 5-4 CanTSyn_GetVersionInfo

5.2.4 CanTSyn_SetTransmissionMode

Prototype

void CanTSyn_SetTransmissionMode (uint8 CtrlIdx, CanTSyn_TransmissionModeType
Mode)

Parameter	
CtrlIdx	Index of the CAN channel
Mode	CANTSYN_TX_OFF: Turn TX capabilities off
	CANTSYN_TX_ON: Turn TX capabilities on
Beturn code	

Return	code

Functional Description

This API is used to turn on and off the TX capabilities of the CanTSyn.

Particularities and Limitations

- > Service ID: see table 'Service IDs'
- > This function is synchronous.
- > This function is non-reentrant.

Expected Caller Context

> No restriction

Table 5-5 CanTSyn_SetTransmissionMode

5.2.5 CanTSyn_MainFunction

Prototype void CanTSyn_MainFunction (void) Parameter - - Return code

Functional Description

Main function for cyclic and immediate call / resp. SYNC and FUP transmission.

Particularities and Limitations

- > Service ID: see table 'Service IDs'
- > This function is synchronous.
- > This function is non-reentrant.

Expected Caller Context

> Task context

Table 5-6 CanTSyn_MainFunction

5.3 Services used by CANTSYN

In the following table services provided by other components, which are used by the CANTSYN are listed. For details about prototype and functionality refer to the documentation of the providing component.

Component	API
StbM	StbM_GetCurrentTimeDiff
	StbM_GetCurrentTimeRaw
	StbM_BusSetGlobalTime
	StbM_GetCurrentTime
	StbM_GetOffset
	StbM_GetTimeBaseStatus
	StbM_GetTimeBaseUpdateCounter
CanIf	CanIf_Transmit
Crc	Crc_CalculateCRC8H2F
Det	Det_ReportError
RTE / SchM	SchM_Enter_CanTSyn_CANTSYN_EXCLUSIVE_AREA_0 SchM_Exit_CanTSyn_CANTSYN_EXCLUSIVE_AREA_0

Table 5-7 Services used by the CANTSYN

5.4 Callback Functions

This chapter describes the callback functions that are implemented by the CANTSYN and can be invoked by other modules. The prototypes of the callback functions are provided in the header file Cantsyn Cbk.h by the CANTSYN.

5.4.1 CanTSyn_RxIndication

Prototype		
void CanTSyn_RxIndication (PduIdType RxPduId, const PduInfoType *PduInfoPtr)		
Parameter		
RxPduId	ID of the received I-PDU.	
PduInfoPtr	Contains the length (SduLength) of the received I-PDU and a pointer to a buffer (SduDataPtr) containing the I-PDU.	
Return code		
-	-	

Functional Description

Indication of a received I-PDU from a lower layer communication interface module.

Particularities and Limitations

- > Service ID: see table 'Service IDs'
- > This function is synchronous.
- > This function is reentrant for different Pdulds. Non-reentrant for the same Pduld.

Expected Caller Context

> No restriction

Table 5-8 CanTSyn_RxIndication

5.4.2 CanTSyn_TxConfirmation

Prototype		
<pre>void CanTSyn_TxConfirmation (PduIdType TxPduId)</pre>		
Parameter		
TxPduId	ID of the I-PDU that has been transmitted.	
Return code		
-	-	
Functional Description		

Functional Description

The lower layer communication interface module confirms the transmission of an I-PDU.

Particularities and Limitations

- > Service ID: see table 'Service IDs'
- > This function is synchronous.
- > This function is reentrant for different Pdulds. Non-reentrant for the same Pduld.

Expected Caller Context

> No restriction

Table 5-9 CanTSyn_TxConfirmation

6 Configuration

In the CANTSYN the attributes can be configured with the following tools:

> Configuration in DaVinci Configurator

6.1 Configuration Variants

The CANTSYN supports the configuration variants

> VARIANT-PRE-COMPILE

The configuration classes of the CANTSYN parameters depend on the supported configuration variants. For their definitions please see the CanTSyn_bswmd.arxml file.

Glossary and Abbreviations 7

7.1 **Glossary**

Term	Description
DaVinci Configurator	Configuration and generation tool for MICROSAR components

Table 7-1 Glossary

7.2 **Abbreviations**

Abbreviation	Description
API	Application Programming Interface
AUTOSAR	Automotive Open System Architecture
BSW	Basis Software
CAN	Controller Area Network
CANIF	CAN Interface
CANTSYN	Time Synchronization over CAN
CRC	Cyclic Redundancy Check
DET	Development Error Tracer
ECU	Electronic Control Unit
HIS	Hersteller Initiative Software
MICROSAR	Microcontroller Open System Architecture (the Vector AUTOSAR solution)
PDU	Protocol Data Unit
RTE	Runtime Environment
SCHM	Schedule Manager
SGW	Synchronized Gateway
SRS	Software Requirement Specification
STBM	Synchronized Time-Base Manager
SWC	Software Component
SWS	Software Specification

Table 7-2 Abbreviations

8 Contact

Visit our website for more information on

- > News
- > Products
- > Demo software
- > Support
- > Training data
- > Addresses

www.vector.com