

Enhanced Vibration Control on simple Electro-Mechanical System using Piezoelectric Patches

Barutta Edoardo 10726132 Bauce Lorenzo 10743634 Meneghini Davide 10715030 Milic Kristjan 11012938 Visentin Nicola 10797203

Data Analysis and Experimental Characterization for Robotic and Mechatronic Systems A.Y. 2023/24

Lecturers: Manzoni S., Lucà F.

Summary

- 1. Introduction
- 2. Analytical model
- 3. Experimental testing
- 4. Comparison and conclusions

DEPARTMENT OF MECHANICAL ENGINEERING

1. INTRODUCTION

VIBRATION ATTENUATION THROUGH PIEZOELECTRIC PATCHES

- Direct (sensor) and inverse (actuator) piezoelectric effect → Electro-mechanical system (EMS)
- Small size and weight, low or null energy consumption → Small-medium size structures
- Active or passive circuits
- Single or multi-mode attenuation

OUR CASE: CANTILEVER BEAM, TWO PATCHES AND R.C.

- Stainless steel cantilever beam vibrations bending modes
- Two piezoelectric patches wired in series (PIC151)
- Active Circuit: real circuit (RC) with shunt resistance in series with a virtual negative capacitance
- Single mode attenuation on 1st mode

DEPARTMENT OF MECHANICAL ENGINEERING

2. ANALYTICAL MODEL

ELECTRO-MECHANICAL SYSTEM (EMS)

- Elastic structure coupled with piezoelectric patch.
- External force F_{ext} .
- Shunt impedance Z_{sh} .
- Voltage V and charge Q at the piezoelectric actuator.

EMS dynamics is derived by means of the modal coordinates $q_i(t)$, while the electrical behaviour is described by the balance of electric charges within the piezoelectric patches. Considering *i*th mode:

$$\begin{cases} \dot{q}_i + 2\xi_i \omega_i \dot{q}_i + \omega_i^2 q_i - x_i V = F_i \\ \sum_{i=1}^N x_i q_i + C_\infty V = Q \end{cases}$$

PIEZOELECTRIC CAPACITANCE ESTIMATION

The piezoelectric capacitance is influenced by the dynamics of the structure:

$$C(\Omega) \cong C_{\infty} + \sum_{i=1}^{N} \frac{x_i^2}{\omega_i^2 + 2j\xi_i\omega_i\Omega - \Omega^2}$$

For
$$\Omega \cong \omega_i$$
:

$$C(\Omega) \cong C_{pi} + \frac{x_i^2}{\omega_i^2 + 2j\xi_i\omega_i\Omega - \Omega^2}$$

$$C_{pi} = C_{\infty} + \sum_{n=i+1}^{N} \frac{x_n^2}{\omega_n^2}$$

The simplified EMS model becomes:

$$\begin{cases} \ddot{q}_i + 2\xi_i \omega_i \dot{q}_i + \omega_i^2 q_i - x_i V = F_i \\ x_i q_i + C_{pi} V = Q \end{cases}$$

MODAL COUPLING FACTOR

Changing coordinates:
$$\bar{V} = V \sqrt{C_{pi}}$$
 $\bar{Q} = \frac{Q}{\sqrt{C_{pi}}}$
$$\qquad \qquad \qquad \begin{cases} \ddot{q}_i + 2\xi_i \omega_i \dot{q}_i + \omega_i^2 q_i - k_i \omega_i \bar{V} = F_i \\ \bar{V} - \bar{Q} - k_i q_i \omega_i = 0 \end{cases}$$

 k_i is defined as the Modal Electro-Mechanical Coupling Factor (MEMCF):

$$k_i = \frac{x_i}{\omega_i \sqrt{C_{pi}}}$$
 or $|k_i| = \sqrt{\frac{\widehat{\omega}_i^2 - \omega_i^2}{\omega_i^2}}$

 ω_i and $\widehat{\omega}_i$ are the short and open natural frequencies computed experimentally.

NEGATIVE CAPACITANCE ACTIVE CIRCUIT

Enhanced vibration control is performed by a negative capacitance (NC) circuit in **series configuration**:

- Negative capacitance $-C_2$ is connected to the shunt impedance Z_{sh} .
- Series configuration provides better attenuation at low ω .
- New equivalent capacitance leads to the Enhanced Modal Electro-Mechanical Coupling Factor (EMEMCF) which depends on the natural frequency of the EMS with the shunt Z_{sh} short-circuited and in open-circuit.

$$\left|\tilde{k}_{i}\right| = \sqrt{\frac{(\omega_{i}^{oc})^{2} - (\omega_{i}^{sc})^{2}}{\omega_{i}^{2}}}$$

 \tilde{k}_i/k_i ratio must be maximized by selecting β_2 index, without reaching instability condition.

$$\beta_2 = \frac{C_{pi}}{C_2} \qquad \frac{\tilde{k}_i}{k_i} = \frac{1}{\sqrt{1 - \beta_2}}$$

$$\omega_i^{sc} = \omega_i \sqrt{1 - \frac{\beta_2 k_i^2}{1 - \beta_2}} \qquad \omega_i^{oc} = \widehat{\omega}_i$$

OPTIMAL TUNING FOR SHUNT RESISTANCE

By neglecting the structural damping at this step, when R_{sh} is varied there exists a point F common to the amplitudes of all the FRFs.

The optimum FRF corresponding to the best attenuation is that with its maximum at point F which frequency value ω_F is:

$$\omega_F = \sqrt{\frac{(\omega_i^{oc})^2 + (\omega_i^{sc})^2}{2}}$$

 au_e denotes the optimal electric time constant for RC circuits:

$$au_e = R_{sh}C_{eqs} = R_{sh} \frac{C_{pi}}{1 - \beta_2}$$

$$au_e^{opt} = \frac{1}{\omega_F}$$

 au_e^{opt} depends on the considered mode as depicted from \mathcal{C}_{pi} and by the tuning of the NC \mathcal{C}_2 and the shunt resistance R_{sh}

ANALYTICAL ATTENUATION FOR SINGLE-MODE CONTROL

The EMS with the shunt resistance will show a new frequency response function $H_i(\Omega)$ which depends on the electric time constant and the new modal parameters:

$$H_i(\Omega) = \frac{q_i}{F_i} = \frac{1 + j\tau_e \Omega}{(\omega_i^{sc})^2 - (1 + 2j\xi_i\omega_i\tau_e)\Omega^2 + j\Omega[\tau_e(\omega_i^{oc})^2 + 2\xi_i\omega_i - \tau_e\Omega^2]}$$

The performance of the shunts is then evaluated by defining the vibration attenuation parameter A_{dB} :

$$A_{dB} = 20 \log_{10} \frac{H_{sc}}{H_{sh}} = 20 \log_{10} \frac{\tilde{k}_i^2 + 2\sqrt{2}\xi_i \sqrt{2 + \tilde{k}_i^2 - 2K^2}}{4\xi_i \sqrt{1 - \xi_i^2}}$$

- $K = \tilde{k}_1 \sqrt{\beta_2}$
- H_{sc} is the FRF peak amplitude in $\Omega = \omega_i$ evaluated for the short circuit not controlled.
- H_{sh} is the FRF peak amplitude in $\Omega=\omega_F$ evaluated for the active circuit with the optimal shunt resistance.

DEPARTMENT OF MECHANICAL ENGINEERING

3. EXPERIMENTAL TESTING

EXPERIMENTAL SETUP

Accelerometer sensitivity: $0.0104 \frac{V}{m/s^2}$

Input sensitivity: $1 \frac{V}{A}$

INPUT SIGNAL DEFINITION

- Band limited random noise ($f_{cut,in} = 15 \ Hz$, $f_{cut,out} = 1000 \ Hz$)
- Amplitude limited to avoid saturation
- Single test with $T = 100 \, s$, all frequency of interest are excited

DATA PROCESSING – WELCH APPROACH

Varying overlap

DATA PROCESSING – WELCH APPROACH

Varying acquisition duration

DATA PROCESSING – THOMSON APPROACH

- Used to avoid the problem with resolution reduction when the acquisition time is too short
- Slepian windows to reduce leakage (k=6)

TRANSFER FUNCTION ESTIMATION

TRANSFER FUNCTION ESTIMATION

SDOF APPROXIMATION – NYQUIST PLOT

Very separate peaks Low damping

SDOF APPROXIMATION – BEST FITTING

Least square minimization using as model the single DOF approximated TF:

$$H^{mod}(\omega_k) = \frac{-\omega^2 A_k}{-\omega^2 + 2j\xi_k \omega_k \omega + \omega_k^2} + R_{k,l} + R_{k,h} \ \omega^2 \quad \text{with} \quad A_k = \frac{\psi_{ki} \cdot \psi_{kj}}{m_k}$$

First guesses:

- Natural frequencies: peak of the FRF magnitude
- Damping: phase derivative $\xi_k = -\frac{1}{\omega_k \cdot \frac{\partial \varphi}{\partial \omega} \Big|_{\omega_k}}$
- $A_k = -2 Im[H(\omega_k)] \xi_k$

Results:

	f_1	ξ_1
Short circuit	27.00 Hz	0.0087
Open circuit	27.71 Hz	0.0132

BUILDING THE NEGATIVE CAPACITANCE

Considering an ideal OP-AMP

$$Z_{nc} = -\frac{Z_1 Z_3}{Z_2} = \frac{1}{j \Omega C_n}$$

$$C_n = -\frac{R_2 \hat{C}}{R_1}$$

This is called «ideal circuit» (IC)

BUILDING THE REAL CIRCUIT

• Add \hat{R} in parallel, that acts as a high-pass filter:

$$Z_{nc} = -\tilde{R} // C_n = -\frac{1}{\frac{1}{\tilde{R}} + j\omega C_n}$$
 with $\tilde{R} = \frac{R_1 \hat{R}}{R_2}$

Not anymore a negative pure capacitance!

This is called «real circuit» (RC)

COMPENSATION RESISTANCE

- Add compensation resistance R_S in parallel with $-\tilde{R}$ and $-C_2$
- Equivalent resistance:

$$R_{eq} = -\tilde{R} //R_{s} = -\frac{\tilde{R}R_{s}}{R_{s} - \tilde{R}}$$

• Choose R_s to get $R_{eq} \rightarrow -\infty$

ELECTRICAL CIRCUIT SET-UP

- Real circuit
- Series configuration
- Higher performance at lowest mode

highest
$$C_{pi}$$
 and $\beta_2 = \frac{C_{pi}}{C_2}$

• Optimised for 1^{st} mode far from instability limit ($\mathcal{C}_2 > \mathcal{C}_0$)

$$\beta_2 = \frac{c_{p1}}{c_2} = 0.70$$

Real circuit – Series Configuration

ELECTRICAL CIRCUIT SET-UP

C _{p1}	C_2	Ĉ	R_{sh}
37.75 nF	53.60 nF	67.80 nF	47.58 kΩ

R_2	R_1	R	R_s
8.2 kΩ	10.4 kΩ	1.0 MΩ	1.30 ΜΩ

ACTIVE CIRCUIT EFFECT

	f_1	ξ_1
Short circuit	27.00 Hz	0.0087
Open circuit	27.71 Hz	0.0132
Active circuit	27.15 Hz	0.0848

4. COMPARISON AND CONCLUSIONS

ATTENUATION EVALUATION - FREQUENCY

β_2	<i>C</i> _{p1} [nF]	k_1	\widetilde{k}_1
0,704	37.75	0,24	0,44
$ au_e^{opt}$	$R_{sh}\left[k\Omega\right]$	$\widetilde{k}_1/\mathrm{k}_1$	zactive \$1
0,006	47,58	1,84	0.0848

The resonance amplitude attenuation is:

$$A_{dB}^{exp} = 15.42 \ dB$$

$$A_{dB}^{th} = 15.71 \ dB$$

31

ATTENUATION EVALUATION - TIME

COSIDERATIONS

- Longer acqusition time
- Higher β_2
- Real components available are different from the ideal ones
- Changing circuit configuration
- Use of the better estimation of C_{p1}

RECONSTRUCTED C(f) AND CPI

 C_{pi} values estimated by a fitting between analytical model and data provided.

$$C(\Omega) \cong \sum_{i=1}^{3} \frac{C_{pi} k_i^2}{-\frac{\Omega^2}{\omega_i^2} + 2j \frac{\xi_i}{\omega_i} \Omega + 1} + C_{p4}$$

with
$$C_{pi} = C_{pi+1} (1 + k_{i+1}^2)$$

C _{p0}	C_{p1}	C _{p2}	C_{p3}
39.45 nF	37.30 nF	37.03 nF	36.65 kΩ

FEM MODEL

Note: the values shown should be compared to the ones of the paper as we have used the dimensions reported there

CONTACTS

edoardo.barutta@mail.polimi.it

lorenzo.bauce@mail.polimi.it

davide.meneghini@mail.polimi.it

kristjan.milic@mail.polimi.it

nicola.visentin@mail.polimi.it

www.mecc.polimi.it

@meccpolimi

