Fulton Chapter 4: Projective Varieties

Projective Algebraic Sets

Aritra Kundu Problem Set - 7

Email: aritra@cmi.ac.in **Topic**: Algebraic Geometry

Problem 1 4,7

Show that each irreducible component of a cone is a cone.

Solution: Let V is an algebraic set over P^n .

$$C(V) = \{(x_1, x_2, ... x_{n+1}) | (x_1, x_2, ... x_{n+1}) \in A^{n+1} \text{ or } (x_1, x_2, ... x_{n+1}) = (0, 0... 0) \}$$

is defined to be the cone over V. Let $V = \bigcup_{i=1}^n V_i$ where V_i is an irreducible component of V.

Claim: $C(V) = \bigcup_{i=1}^{n} C(V_i)$

Proof: Let $a \in C(V) \implies a = (0,0,..0)$ or $a \in V$. In both of the cases $a \in \bigcup_{i=1}^n C(V_i)$. If $b \in \bigcup_{i=1}^n C(V_i) \implies b \in C(V_i) \implies b = (0,0,...0)$ or $b \in V_i \implies b \in C(V)$. So, $C(V) = \bigcup_{i=1}^n C(V_i)$.

Now $I_a(C(V_i)) = I_p(V_i)$ as V_i is an irreducible projective space. $I_p(V_i)$ is prime $\implies C(V_i)$

is irreducible. So, irreducible component of C(V) is also a cone [as the decomposition is unique]

Problem 2 4,12

Let $H_1, H_2...H_m$ be hypersurfaces in $P^n, m \leq n$. Show that $H_1 \cap H_2 \cap ...H_m \neq \phi$

Solution: Hyperplane is a hypersurface defined by a form of degree 1.i.e, V is a hypersurface if V=V(F) where deg(F)=1 and F is a form. $V=\cap_{i=1}^n H_i$. Let $H_i=V(F_i),\ V=V(F_1,F_2...F_m)$. Let

$$F_i(X_1, X_2..X_{n+1}) = \sum_{j=1}^{n+1} a_{ji} X_j$$

Let $A = (a_{ij})$ which is a $(n+1) \times m$ order matrix. So rank of A = r, 1 < r < n+1 [as m < n+1]. So, by the problem 4.11 \exists a projective change of co-ordinates T s.t. $V^T = V(X_{r+1}, ... X_{n+1})$. So, $V^T \neq \phi$. So, $V \neq \phi$

Problem 3 4,13

Let $P = (a_1, a_2...a_{n+1}), Q = (b_1, b_2...b_{n+1})$ be two distinct points of P^n . The line L through P and Q is defined by

$$L = \{ (\lambda a_1 + \mu b_1 ... \lambda a_{n+1} + \mu b_{n+1}) | \lambda, \mu \neq 0 \}$$

Prove the projective analogue of Problem 2.15.

Solution:

(a) If T is a projective change of co-ordinates then T(L) is the line passing through T(P), T(Q).

$$T(L) = \{ (T(\lambda P + \mu Q)) | \lambda, \mu \neq 0 \} = \{ (\lambda T(P) + \mu T(Q)) | \lambda, \mu \neq 0 \}$$

[as T maps linearly to the co-ordinates] So, T(L) is the line passing through T(P), T(Q)

(b) A line is a linear subvariety of dimension 1 and a linear subvariety of dimension 1 is a line passing through any two of its point.

let L be a line passing through $P = (a_1, a_2...a_{n+1}), Q = (b_1, b_2...b_{n+1})$

as P,Q are distinct point in $P^n \implies (a_1,a_2..a_{n+1}),(b_1,b_2...b_{n+1})$ are linearly independent vectors in k^{n+1}

so, there is an invertible matrix A of $n+1\times n+1$ s.t. $A(1,0,...0)=(a_1,a_2...a_{n+1}), A(0,1,...0)=(b_1,b_2...b_{n+1})$

so, there corresponding projective change of co ordinate T will transform e_1 to P, e_2 to Q.

now $L^T = T^{-1}(L)$ is the line passing through $T^{-1}(P) = e_1, T^{-1}(Q) = e_2$

so, $T^{-1}(L) = (\lambda, \mu, 0, 0,0) = V(X_3, ...X_{n+1})[as \lambda, \mu \neq 0]$ which is a linear subvariety of dimension 1

similarly if V is a linear subvariety of dimension 1 then \exists a projective change of co-ordinates T s.t. $T^{-1}(L) = V(X_3, \ldots, X_{n+1})$ which is the line passing through $e_1, e_2 \implies L$ is a line passing through $T(e_1), T(e_2)$

c)In P^2 a line is the same thing as a hyperplane.

If L is a line in P^2

so, $T^{-1}(L)=V(X_3)=\{(\lambda,\mu,0)|\lambda,\mu\neq 0\}\implies L=V(X_3(T_1,T_2,T_3))\implies L$ is a hyperplane.

d)let $P, P' \in P^1, L1, L2$ are two distinct lines passing through P and L'1, L'2 are two distinct passing through P' show that there is an projective change of co-ordinates T s.t.T(P) = P', T(Li) = L'i.i = 1, 2

4 14

let P_1, P_2, P_3 (resp. Q_1, Q_2, Q_3) be three points in P^2 not lying on a line . Show that \exists a projective

```
change of co-ordinates T: P^2 \to P^2 s.t. T(P_i) = Q_i
```

Solution:

let
$$P_i = (a_i 1, a_i 2, a_i 3)$$

since P_1, P_2, P_3 (resp Q_1, Q_2, Q_3) are not lying in a line so, they are linearly independent in $K^3 \implies$ forms a basis in K^3 .

so, \exists an invertible matrix A s.t. $A(P_i) = Q_i$

let T be the corresponding projective change of co-ordinates w.r.t A

so,
$$T(P_i) = Q_i$$

4.15)

Show that any two distinct lines in P^2 intersect in one point.

Solution:

let
$$L_1 = (\lambda, \mu, 0)$$
 (ie, the line passing through $(1, 0, 0) = e_1$; $e_2 = (0, 1, 0)$, $L_2 = (\lambda P + \mu Q)$

let
$$P = (a_1, a_2, a_3), Q = (b_1, b_2, b_3)$$

so,
$$L_2 = \{(\lambda a_1 + \mu b_1), (\lambda a_2 + \mu b_2), (\lambda a_3 + \mu b_3)\}$$

if both a_3, b_3 are zero then L_1, L_2 becomes the same line.

let $a_3 \neq 0$

if $b_3 = 0$ then $Q = b_1 e_1 + b_2 e_2 \in L_1$

so, L_1, L_2 intersect in Q

let $b_3 \neq 0$

$$b_3(P) - a_3(Q) = (b_3a_1 - a_3b_1, b_3a_2 - a_3b_2, 0) \in L_1$$

so, L_1, L_2 intersect in a point.

let A, B be two lines

so, \exists a projective change of co-ordinates T s.t. $T(A) = L_1$

let $T(B) = L_2$

so, let R be the intersection point of L_1, L_2

so, $T^{-1}(R)$ is the intersection point of A, B

4.16

Let L_1, L_2, L_3 (resp. M_1, M_2, M_3) are three line in P^2 s.t. not all 3 passes through a same point show that there is a projective change of co-ordinates T s.t. $T(L_i) = M_i$)

Solotion:

let P_{ij} is the point of intersection of L_i and L_j and Q_{ij} is the point of intersection of M_i and M_j where i < j

so, as P_{12} , P_{13} , P_{23} (resp., Q_{12} , Q_{13} , Q_{23}) does not lie in a line so, by problem 4.14 \exists a projective change of co-ordinates T s.t. $T(P_{ij}) = Q_{ij}$

and so by the problem 4.13 part $a T(L_i) = M_i$

4.18

let $H = V(\sum a_i X_i)$ be a hyperpalne in $P^n.(a_1, a_2...a_{n+1})$ is determined by H upto constant. a)show that assigning $(a_1, a_2, ...a_{n+1}) = P \in P^n$, to H sets a natural one to one correspondence between {hyperplanes in P^n } and P^n .

Solution:

$$\phi: P^n \to \{\text{hyperplanes in } P^n\} \text{ s.t. } \phi(a_1, a_2...a_{n+1}) = V(a_1X_1 + ...a_{n+1}X^{n+1})$$
 clearly ϕ_1 is well defined.

```
\psi: \{\text{hyperplanes in } P^n\} \to P^n \text{ s.t. } V(F) = V(a_1X_1 + ...a_{n+1}X^{n+1}) = (a_1, a_2...a_{n+1}) \\ \text{let } V(a_1X_1 + ...a_{n+1}X^{n+1}) = V(b_1X_1 + ...b_{n+1}X^{n+1}) \implies I(V(a_1X_1 + ...a_{n+1}X^{n+1})) = I(V(b_1X_1 + ...b_{n+1}X^{n+1})) \\ \implies a_1X_1 + ...a_{n+1}X^{n+1} = \lambda(b_1X_1 + ...b_{n+1}X^{n+1}), \lambda \neq 0 \\ \text{[as forms of deg 1 are irreducible]} \\ \implies (a_1, a_2...a_{n+1}) = (b_1, b_2...b_{n+1}) \text{ in } P^n \\ \text{and } \phi o \psi \text{ and } \psi o \phi \text{ both are identity. so, assigning } (a_1, a_2, ...a_{n+1}) = P \in P^n, \text{ to } H \text{ sets a natural one to one correspondence between } \{\text{hyperplanes in } P^n\} \text{ and } P^n. \\ P \in P^n, P^* = \phi(P), H \text{ is a hyperplane then } H^* = \psi(H) \\ \text{b)Show that } P^{**} = P; H^{**} = H. \text{Show that } P \in H \iff H^* \in P^* \\ \text{Solution:} \\ \text{clearly by part a } P^{**} = P; H^{**} = H \\ \text{let } P = (p_1, p_2..p_{n+1}) \in H = V(a_1X_1 + ...a_{n+1}X^{n+1}) \iff a_1p_1 + ...a_{n+1}p_{n+1} = 0 \iff
```

 $(a_1, a_2, ... a_{n+1}) \in V(p_1 X_1 + ... p_{n+1} X^{n+1}) \iff H^* \in P^*$