Albert Wiryawan

Avw2@illinois.edu

673431511

PHYS466

Homework #6: Ising Model

Problem #1

(a)

Pa- Probability of being added to the cluster

 $T(\{s\} \to \{s\}')$ -> Probability of not being in the cluster (for bonds along the edge of the cluster before it is flipped

$$=(1-P_a)^m$$

 $T(\{s\}' \to \{s\})$ -> Probability of not being in the cluster (for bonds along the edge of the cluster after it is flipped.

$$=(1-P_a)^n$$

From these two derived equations the ratio of observed probabilities will then be given by

$$\frac{T(\{s\} \to \{s\}')}{T(\{s\}' \to \{s\})} = (1 - P_a)^{m-n}$$

(b)

The change in energy of energy flipping in a cluster is dependent upon 2*(m-n) since energy sites from neighbors are used to calculate the energy. As such, (m-n) is needed since to find the number of bonds along an edge after an energy flip. This value is then multiplied by two because energy states go from -1 to 1 which is acquires a difference of two.

(c)
$$P_a = 1 - e^{-2\beta}$$

$$(1 - P_a)^{m-n} \frac{A(\{s\} \to \{s\}')}{A(\{s\}' \to \{s\})} = e^{-2\beta(m-n)}$$

$$\frac{A(\{s\} \to \{s\}')}{A(\{s\}' \to \{s\})} = 1$$

$$A(\{s\} \to \{s\}') = A(\{s\}' \to \{s\})$$

$$A(\{s\} \to \{s\}') = \min(1, e^{(-\beta[H\{s\}' - H\{s\}]])})$$

As such, when the minimum is 1 every cluster flip will be accepted resulting in no accept/reject check in step 4 of the Wolff Algorithm.

If minimum is

$$\exp[f_0](-\beta[H(\{s\}') - H(\{s\})])), A(\{s\} \rightarrow \{s\}^{\prime})/A(\{s\}' \rightarrow \{s\})) = \exp^{f_0}(-2\beta(-H(\{s\}') + H(\{s\}))) = \exp^{f_0}(2\beta(H(\{s\}^{\prime})))/\exp^{f_0}(2\beta(\{s\})))$$

From this we can say that $H(\{s\}')=H(\{s\})$, which can only be made when every cluster is accepted

Problem #2

(a)Classic Algorithm

Temperature	Average Energy	Average Square
		Magnetization
1.4	0.0002487 ± 0.02148	0.00013±3.9887e-7
1.8	-0.0005447 ± 0.02276	0.000134083±4.0806e-7
2.2	-0.000445±0.0203145	0.0001311758 <u>+</u> 4.1339e-7
2.6	-0.0018706±0.021206	0.000125772±3.69827e-7
3.0	-0.0004422±.02003425	0.00012494375±3.992e-7

(b)Wolff Algorithm

Temperature	Average Energy	Average Square Magnetization
1.4	1.37e-05±0.01221	0.002458±2.889e-7
1.8	-0.00015955±0.02221	.002303348875±5.12114e-7
2.2	-0.0003589 ± 0.02103	.0006303±3.89e-7
2.6	-0.0006381±0.01998	0.0005083985 <u>+</u> 4.1612e-7
3.0	-0.0009171 ± 0.02001	0.000334565±4.02e-7

(c)

Temperature	Autocorrelation classic	Autocorrelation wolff
1.4	1	1.342342126
1.8	1.0031312581365517	1. 006232123
2.2	1.0516899906812924	1.0893204
2.6	1	1
3.0	2.920034248429272625	2.10115176463136

The autocorrelation in the Wolff algorithm shorter than the classical is at temperature T=3.0