

DUAL POWER AMPLIFIER

- SUPPLY VOLTAGE DOWN TO 3 V
- LOW CROSSOVER DISTORSION
- LOW QUIESCENT CURRENT
- BRIDGE OR STEREO CONFIGURATION

DESCRIPTION

The TDA2822 is a monolithic integrated circuit in 12+2+2 powerdip, intended for use as dual audio power amplifier in portable radios and TS sets.

TYPICAL APPLICATION CIRCUIT (STEREO)

March 1995 1/11

PIN CONNECTION (top view)

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	15	V
lo	Output Peak Current	1.5	Α
P _{tot}	Total Power Dissipation at T_{amb} = 50 °C at T_{case} = 70 °C	1.25 4	W W
T _{stg} , T _j	Storage and Junction Temperature	- 40 to 150	°C

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th j-amb}	Thermal Resistance Junction-ambient Max	80	°C/W
R _{th j-case}	Thermal Resistance Junction-pins Max	20	°C/W

ELECTRICAL CHARACTERISTICS (Vs = 6 V, T_{amb} = 25 °C, unless otherwise specified) STEREO (test circuit of fig. 1)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		3		15	V
Vc	Quiescent Output Voltage	V _s = 9 V V _s = 6 V		4 2.7		V V
I _d	Quiescent Drain Current			6	12	mA
l _b	Input Bias Current			100		nA
Po	Output Power (each channel)	$ \begin{aligned} &d = 10 \ \% & &f = 1 \ \text{kHz} \\ &V_s = 9 \ V & &R_L = 4 \ \Omega \\ &V_s = 6 \ V & &R_L = 4 \ \Omega \\ &V_s = 4.5 \ V & &R_L = 4 \ \Omega \end{aligned} $	1.3 0.45	1.7 0.65 0.32		W W W
Gv	Closed Loop Voltage Gain	f = 1 kHz	36	39	41	dB
Ri	Input Resistance	f = 1 kHz	100			kΩ
^e N	Total Input Noise	$R_s = 10 \text{ k}\Omega$ B = 22 Hz to 22 kHz Curve A		2.5 2		μV μV
SVR	Supply Voltage Rejection	f = 100 Hz	24	30		dB
CS	Channel Separation	$R_g = 10 \text{ k}\Omega \text{ f} = 1 \text{ kHz}$		50		dB

BRIDGE (test circuit of fig. 2)

Vs	Supply Voltage		3		15	V
ld	Quiescent Drain Current	R _L = ∞		6	12	mA
Vos	Output Offset Voltage	$R_L = 8 \Omega$		10	60	mV
I _b	Input Bias Current			100		nA
Po	Output Power	$ d = 10 \% f = 1 \text{ kHz} $ $ V_s = 9 \text{ V} R_L = 8 \Omega $ $ V_s = 6 \text{ V} R_L = 8 \Omega $ $ V_s = 4.5 \text{ V} R_L = 4 \Omega $	2.7 0.9	3.2 1.35 1		W W W
d	Distortion (f = 1 kHz)	$R_L = 8 \Omega$ $P_o = 0.5 W$		0.2		%
Gv	Closed Loop Voltage Gain	f = 1 kHz		39		dB
Ri	Input Resistance	f = 1 kHz	100			kΩ
^e N	Total Input Noise	R_s = 10 k Ω B = 22 Hz to 22 kHz Curve A		3 2.5		μV μV
SVR	Supply Voltage Rejection	f = 100 Hz		40		dB

Figure 1: Test Circuit (stereo).

Figure 2: P.C. Board and Components Layout of the Circuit of Figure 1 (1:1 scale).

Figure 3: Test Circuit (bridge).

Figure 4: P.C. Board and Components Layout of the Circuit of Figure 3 (1:1 scale).

Figure 14: Application Circuit for Portable Radios.

MOUNTING INSTRUCTION

The $R_{th\,j-amb}$ of the TDA2822 can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board (Figure 15) or to an external heatsink (Figure 16).

The diagram of Figure 17 shows the maximum dissipable power P_{tot} and the $R_{th\ j-amb}$ as a function of the side " ∂ " of two equal square copper areas having a thickness of $35\,\mu$ (1.4 mils).

Figure 15 : Example of P.C. Board Copper Area which is used as Heatsink.

During soldering the pins temperature must not exceed 260 $^{\circ}$ C and the soldering time must not be longer than 12 seconds.

The external heatsink or printed circuit copper area must be connected to electrical ground.

Figure 16: External Heatsink Mounting Example.

