CC2-S1

2018-2019

- Correction - Analyse -

Partie 1

1. Soit y une fonction de la variable réelle t. Donner la solution générale de l'équation différentielle

$$y'' = 0 (\mathscr{E}_c)$$

L'ensemble des solutions de (\mathscr{E}_c) est $S_{(\mathscr{E}_c)} = \{t \mapsto at + b, \ a, b \in \mathbb{R}\}$ c'est à dire l'ensemble des fonctions

2. On considère la série entière $\sum_{p\geq 0} (-1)^p t^{2p}$.

Donner son rayon de convergence et sa somme lorsqu'elle est définie. La série entière $\sum_{p>0} (-1)^p t^{2p}$ est la série géométrique de raison $-t^2$ et de premier terme 1; elle converge si, et

seulement si, $|-t^2| < 1$, c'est à dire |t| < 1. Son rayon de convergence vaut donc 1 et

$$\forall t \in]-1,1[, \sum_{p=0}^{+\infty} (-1)^p t^{2p} = \frac{1}{1+t^2}$$

3. On considère la série entière $\sum_{p\geq 0} (-1)^p t^{2p+1}$.

Donner son rayon de convergence et sa somme lorsqu'elle est définie. La série entière $\sum_{p\geq 0} (-1)^p t^{2p+1}$ est la série géométrique de raison $-t^2$ et de premier terme t; elle converge si, et

seulement si, $|-t^2| < 1$, c'est à dire |t| < 1. Son rayon de convergence vaut donc 1 et

$$\forall t \in]-1,1[, \sum_{p=0}^{+\infty} (-1)^p t^{2p+1} = \frac{t}{1+t^2}$$

Partie 2

On considère l'équation différentielle :

$$(1+t^2)y'' + 4ty' + 2y = 0 (\mathcal{E}_h)$$

1. a. Montrer que f est une solution de (\mathcal{E}_h) si, et seulement si, $\varphi: t \mapsto (1+t^2)f(t)$ est une fonction affine de t(on pensera à calculer sa dérivée seconde).

Soit f une solution de (\mathcal{E}_h) . Alors $f \in D^2(\mathbb{R}, \mathbb{R})$, ce qui équivaut à $\varphi \in D^2(\mathbb{R}, \mathbb{R})$. De plus, $\forall t \in \mathbb{R}, \ \varphi'(t) = (1+t^2)f'(t) + 2tf(t)$ et $\varphi''(t) = (1+t^2)f''(t) + 4tf'(t) + 4f(t)$. Dès lors,

$$f$$
 est une solution de $(\mathscr{E}_h) \iff \forall t \in \mathbb{R}, \ (1+t^2)f''(t)+4tf'(t)+2f(t)=0$

$$\iff \forall t \in \mathbb{R}, \ \varphi''(t)=0$$

$$\iff \varphi \in S_{\mathscr{E}_c}$$

b. Montrer que $\left\{t \mapsto \frac{1}{1+t^2}, t \mapsto \frac{t}{1+t^2}\right\}$ est une base de l'espace des solutions de (\mathscr{E}_h) .

D'après ce qui précède, f est une solution de (\mathscr{E}_h) si, et seulement si, $\varphi: t \mapsto (1+t^2)f(t)$ est une fonction affine. Par suite, f est une solution de (\mathscr{E}_h) si, et seulement si, $\exists a, b \in \mathbb{R}, \ \forall t \in \mathbb{R}, \ (1+t^2)f(t) = at+b$ ou encore $\exists a, b \in \mathbb{R}, \ \forall t \in \mathbb{R}, \ f(t) = \frac{at+b}{1+t^2} = \frac{b}{1+t^2} + \frac{at}{1+t^2}$.

Spé PT Page 1 sur 3 On en déduit que $S_{\mathscr{E}_h} = \operatorname{Vect}\{t \mapsto \frac{1}{1+t^2}, t \mapsto \frac{t}{1+t^2}\}$ puis comme la famille $\{t \mapsto \frac{1}{1+t^2}, t \mapsto \frac{t}{1+t^2}\}$ est libre, on conclut que c'est une base de $S_{\mathscr{E}_h}$.

Autre méthode:

On peut aussi dire que la famille proposée est libre, et que chaque fonction de la famille est solution de (\mathscr{E}_h) (à vérifier). Par suite $\text{Vect}\{t\mapsto \frac{1}{1+t^2},t\mapsto \frac{t}{1+t^2}\}\subset S_{\mathscr{E}_h}$. Comme on sait que $\dim(S_{\mathscr{E}_h})=2$, on conclut que $\text{Vect}\{t\mapsto \frac{1}{1+t^2},t\mapsto \frac{t}{1+t^2}\}=S_{\mathscr{E}_h}$ et que $\{t\mapsto \frac{1}{1+t^2},t\mapsto \frac{t}{1+t^2}\}$ est une base de $S_{\mathscr{E}_h}$.

2. Dans cette question, on propose une autre méthode pour déterminer les solutions de l'équation homogène (\mathcal{E}_h) . On recherche les solutions de (\mathcal{E}_h) développables en série entière au voisinage de 0, sous la forme

$$y(t) = \sum_{n=0}^{+\infty} a_n t^n$$
, de rayon de convergence $R > 0$, et où les a_n , $n \in \mathbb{N}$, sont des réels.

a. Donner, pour tout $n \in \mathbb{N}$, une relation de récurrence entre a_{n+2} et a_n .

$$t\mapsto y(t)=\sum_{n=0}^{+\infty}a_nt^n$$
 est C^{∞} sur $]-R,R[$, puis par dérivation terme à terme, on obtient

$$y \text{ est solution de } (\mathscr{E}_h) \Longleftrightarrow \forall t \in]-R, R[, \sum_{n=0}^{+\infty} (n+2)(n+1)a_{n+2}t^n + \sum_{n=0}^{+\infty} n(n-1)a_nt^n + \sum_{n=0}^{+\infty} 4na_nt^n + \sum_{n=0}^{+\infty} 2a_nt^n = 0$$

$$\Longleftrightarrow \forall t \in]-R, R[, \sum_{n=0}^{+\infty} \left((n+2)(n+1)a_{n+2} + (n^2+3n+2)a_n\right)t^n = 0$$

$$\Longleftrightarrow \forall n \in \mathbb{N}, (n+2)(n+1)a_{n+2} + \underbrace{(n^2+3n+2)}_{(n+2)(n+1)}a_n = 0 \quad \text{(unicit\'e du DSE(0))}$$

$$\Longleftrightarrow \forall n \in \mathbb{N}, a_{n+2} = -a_n$$

b. Pour tout entier naturel p, exprimer a_{2p} et a_{2p+1} en fonction de p, a_0 et a_1 . On a $\forall p \in \mathbb{N}, a_{2p+2} = -a_{2p}$ et $a_{2p+3} = -a_{2p+1}$, donc (a_{2p}) et (a_{2p+1}) sont deux suites géométriques de raison -1 et de premiers termes respectifs a_0 et a_1 . On conclut que

$$\forall p \in \mathbb{N}, \quad a_{2p} = (-1)^p a_0 \quad \text{et} \quad a_{2p+1} = (-1)^p a_1$$

c. En déduire une expression simplifiée de $\sum_{n=0}^{+\infty} a_n t^n$ au voisinage de 0.

Pour |t| < 1, les deux séries géométriques $\sum_{p=0}^{n-1} a_{2p} t^{2p}$ et $\sum_{p=0}^{n} a_{2p+1} t^{2p+1}$ sont convergentes, et alors

$$\forall t \in]-1,1[, \sum_{n=0}^{+\infty} a_n t^n = \sum_{p=0}^{+\infty} a_{2p} t^{2p} + \sum_{p=0}^{+\infty} a_{2p+1} t^{2p+1} = a_0 \sum_{p=0}^{+\infty} (-1)^p t^{2p} + a_1 \sum_{p=0}^{+\infty} (-1)^p t^{2p+1} = \frac{a_0}{1+t^2} + \frac{a_1 t}{1+t^2} + a_1 \sum_{p=0}^{+\infty} (-1)^p t^{2p+1} = \frac{a_0}{1+t^2} + \frac{a_1 t}{1+t^2} + a_1 \sum_{p=0}^{+\infty} (-1)^p t^{2p+1} = \frac{a_0}{1+t^2} + a_1 \sum_{p=0}^{+\infty} (-1)^p t^{2p+1} = \frac{a_0$$

(d'après la partie 1). On retrouve les résultats précédents mais uniquement sur]-1,1[.

Partie 3

Résoudre l'équation différentielle :

$$(1+t^2)y'' + 4ty' + 2y = \frac{1}{1+t^2} \tag{E}$$

D'après la partie 2, on connaît une solution (au moins) de l'équation homogène associée à (\mathscr{E}) qui ne s'annule pas sur \mathbb{R} , par exemple $t\mapsto \frac{1}{1+t^2}$. On peut donc appliquer la méthode de Lagrange, on recherchant une solution

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 2 sur 3

de (\mathscr{E}) sous la forme $y(t)=\varphi(t)\frac{1}{1+t^2},\ t\in\mathbb{R}$ où $\varphi\in D^2(\mathbb{R},\mathbb{R}).$

On a alors $\forall t \in \mathbb{R}, \varphi(t) = (1 + t^2)y(t)$, puis on en déduit, comme à la question **1a** de la **partie 2**, que :

$$y$$
 est solution de $(\mathscr{E}) \iff \forall t \in \mathbb{R}, \ (1+t^2)y''(t) + 4ty'(t) + 2y(t) = \frac{1}{1+t^2}$
 $\iff \forall t \in \mathbb{R}, \ \varphi''(t) = \frac{1}{1+t^2}$

On a, sur \mathbb{R} , $\int \frac{1}{1+t^2} dt = \operatorname{Arctan}(t) + C_1$, $C_1 \in \mathbb{R}$, puis $\int \operatorname{Arct}(t) dt = t \operatorname{Arctan}(t) - \frac{1}{2} \ln(1+t^2) + C_2$, $C_2 \in \mathbb{R}$ (en intégrant par parties) donc les solutions de (\mathscr{E}) sur \mathbb{R} sont

$$t \mapsto \frac{1}{1+t^2} \left(C_1 t + C_2 + t \operatorname{Arctan}(t) - \frac{1}{2} \ln(1+t^2) \right), \ (C_1, C_2) \in \mathbb{R}^2$$

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 3 sur 3