兰州大学 2020~2021 学年第 二 学期

期末考试试卷 (A 卷)

课程名称	·	高等数学 (物理类)				任课教师:					
学院:			专业: 年纟			级:					
姓名: 校园卡号:											
题号	_		三	四	五	六	七	总分			
分数											

- 一、计算题 (共 54 分):
- 1.求方程 $x' + x \cos y e^{-\sin y} = 0$ 的通解。
- 2.求方程 $y'' 3y' + 2y = e^{2x}$ 的通解。
- 3.计算极限 $\lim_{(x,y)\to(\infty,3)} (1+\frac{1}{2x})^{\frac{x^2}{x+y}}$
- 二 (10 分) 已知某直线过(-1,0,4), 与平面 3x-4y+z=10 平行, 且与直线

$$\frac{x+1}{1} = \frac{y-3}{1} = \frac{z}{2}$$
 相交, 求该直线

 Ξ (12 分) 已知 z 满足 $f(xy, \frac{x}{y}) + g(\frac{y}{x}) = z$, 其中 f 具有二阶连续偏导数,求

$$\frac{\partial^2 z}{\partial x \partial y}$$

四(10分)已知z满足 $\frac{x}{z} = \ln \frac{z}{y}$,求dz

五(11 分)已知 dz = 2xdx - 2ydy,且过 (1,1,2),求 z 在椭圆域

$$\{(x,y) \mid x^2 + \frac{y^2}{4} \le 1\}$$
 时 z 的最值

六(1)(12 分)计算积分 $\int_0^1 dy \int_{\sqrt{y}}^y \frac{\sin x}{x} dx$

(2) (12 分) 计算积分
$$I=\iint\limits_{\Omega}(x^2+y^2)dV$$
 ,其中 Ω 是由曲线 $\begin{cases} y^2=2z\\ x=0 \end{cases}$ 绕 z 轴

旋转形成的曲面与平面 z=8所围成的空间

七(10分)计算曲面积分

$$\iint\limits_{\Sigma}(f(x,y,z)+x)dydz+(2f(x,y,z)+y)dzdx+(f(x,y,z)+z)dxdy\;,\;\;\sharp +$$

f(x,y,z) 连续可导, Σ 为平面柱面 x-y+z-1=0 在第四卦限部分的上侧

兰州大学 2020~2021 学年第 二 学期 期末考试试卷 (A 卷)

课程名称	:	高等数学	(物理类)	任课教师:							
学院:		=	专业:	年级:							
姓名: 校园卡号:											
题号	_		=	四	五.	六	七	总分			
分数											

一、计算题 (共 36 分):

1.求方程
$$y' - \frac{2}{x}y = \frac{2}{x} - 2$$
 的通解。

- 2.求方程 y'' 2y' + y = 0 的通解。
- 3.计算曲线积分 $\int_{\Gamma} \sqrt{x^2 + y^2} ds$, 其中 Γ 是圆周 $x^2 + y^2 = x$
- 4.求曲面 $z = x^2 + y^2 1$ 在 (2,1,4) 点的切平面方程
- 5.计算极限 $\lim_{(x,y)\to(0,0)} (x+y) \ln(x^2+y^2)$

6.求与二直线
$$L_1$$
: $\begin{cases} x = 3z - 1 \\ y = 2z - 3 \end{cases}$,和 L_1 : $\begin{cases} y = 2x - 5 \\ z = 7x + 2 \end{cases}$ 垂直且相交的直线方程

二(10分)设 y = g(x,z), 而 z 是由方程 f(x-z,xy) = 0 所确定的 x,y 的函数,

 $\bar{x}\frac{dz}{dx}$

三 (12 分)设 $z = f(2x - y, y \sin x)$, 其中 f 具有二阶连续偏导数, 求 $\frac{\partial^2 z}{\partial x \partial y}$

四 (10 分) 求球面 $x^2 + y^2 + z^2 = 16$ 在抛物面 $x^2 + y^2 + z = 16$ 之外部分的面积

五(11 分)计算曲线积分 $I = \int_L \frac{x-y}{x^2+y^2} dx + \frac{x+y}{x^2+y^2} dy$, 其中 L 是按逆时针定

向的椭圆 $x^2 + 2y^2 = 1$

六(11 分)计算曲面积分 $I=\iint_{\Sigma}2xdydz-ydzdx+zdxdy$,其中 Σ 由柱面

 $x^{2} + y^{2} = 4$ 被平面 x + z = 2 和 z = 0 所截部分的外侧

七(10 分)求抛物面 $x^2 + y^2 = 4z$,柱面 $x^2 + y^2 = 8y$,平面 z = 0 围成几何体的体积

2021

$$\rightarrow$$
, 1. $x = e^{-\sin y}(y+C)$

2.
$$y = C_1 e^x + C_2 e^{2x} + x e^{2x}$$

3.
$$e^{\frac{1}{2}}$$

二、
$$\begin{cases} 3x - 4y + z - 1 = 0\\ -10x + 4y + 3z - 22 = 0 \end{cases}$$
 或点向式 $\frac{x+1}{16} = \frac{y}{19} = \frac{z-4}{28}$

$$\equiv xyf_{11}'' - \frac{x}{y^3}f_{22}'' + f_1' - \frac{1}{y^2}f_2' - \frac{y}{x}g'' - \frac{1}{x^2}g'$$

四、
$$\frac{yzdx + z^2dy}{xy + yz}$$

五、
$$z = x^2 - y^2 + 2$$
,最大值 3,最小值-2

$$\dot{\pi}, (1) \sin 1-1 (2) \frac{1024\pi}{3}$$

 $\pm \frac{1}{2}$

2020

一、1、P374,例 2.10。2、P389,例 3.11。 3、P214,例 4.3。4、P88,例 2.10。 5、0。6、P28,例 2.5。 二、P125,例 4.17。三、P117,例 4.9。 四、P226,例 4.15。五、P292,例 4.7。 六、参考 P301,例 4.18。七、P200,例 3.4。