

ACHAT HAYAT

Données Consommation en Électricité

```
cons_eng12= pd.read_csv("D:\\Aopenclassroom\\p9\\données/eCO2mix_RTE_Annuel-Definitif_2012.csv")
cons_eng13= pd.read_csv("D:\\Aopenclassroom\\p9\\données/eCO2mix_RTE_Annuel-Definitif_2013.csv")
cons_eng14= pd.read_csv("D:\\Aopenclassroom\\p9\\données/eCO2mix_RTE_Annuel-Definitif_2014.csv")
cons_eng15= pd.read_csv("D:\\Aopenclassroom\\p9\\données/eCO2mix_RTE_Annuel-Definitif_2015.csv")
cons_eng16= pd.read_csv("D:\\Aopenclassroom\\p9\\données/eCO2mix_RTE_Annuel-Definitif_2016.csv")
cons_eng17= pd.read_csv("D:\\Aopenclassroom\\p9\\données/eCO2mix_RTE_Annuel-Definitif_2017.csv")
cons_eng18= pd.read_csv("D:\\Aopenclassroom\\p9\\données/eCO2mix_RTE_Annuel-Definitif_2018.csv")
cons_eng19= pd.read_csv("D:\\Aopenclassroom\\p9\\données/eCO2mix_RTE_Annuel-Definitif_2019.csv")
cons_eng20= pd.read_csv("D:\\Aopenclassroom\\p9\\données/eCO2mix_RTE_Annuel-Definitif_2020.csv")
```

	s_eng=pd s_eng.hea		cons_	eng12,c	ons_eng13,con	s_eng14,	cons_eng1	5, con:	s_eng16,	cons_er	ng17	,cons_eng1	8,cons_eng1	19,cons_eng	20], ignore	2_3 }
	Périmètre	Nature	Date	Heures	Consommation	Prévision J-1	Prévision J	Fioul	Charbon	Gaz		Hydraulique - Fil de l? eau + éclusée	Hydraulique - Lacs	Hydraulique - STEP turbinage	Bioénergies - Déchets	
0	France	Données définitives		00:00	58315.0	58200.0	58200.0	492.0	25.0	3816.0		ND	ND	ND	ND	ė:
1	France	Données définitives	2012-	00:15	NaN	57700.0	57550.0	NaN	NaN	NaN		NaN	NaN	NaN	NaN	

Données Consommation en Électricité

```
cons_eng=cons_eng.loc[cons_eng.Périmètre=='France']
nan1=cons_eng.loc[cons_eng['Consommation'].isna()==True]
nan1
```

	_		
	Date	Nature	Consommation
0	2012-01-01	Données définitives	58315.0
1	2012-01-01	Données définitives	NaN

```
Cons_eng=cons_eng[['Date','Nature','Consommation']]

Date Nature Consommation

0 2012-01-01 Données définitives 58315.0

1 2012-01-01 Données définitives NaN

2 2012-01-01 Données définitives 50215.0
```

- périmètre==France
- transformer en date time ['date']
- grouper par mois les données consommation

```
cons_eng_gb=pd.DataFrame(cons_eng.groupby(cons_eng['Date'].dt.strftime(('%Y-%m')))['Consommation'].mean()).sort_values(by='Date'
cons_eng_gb

Date Consommation
0 2020-12 63700.449597
1 2020-11 55049.665972
```

Représentation graphique de la consommation

- on remarque une forte saisonnalité
- mais qui semble liés au données de températures pics en période hivernale et d'été creux en périodes estivales
- on doit corriger de l'effet de température

Données Dju

pour correction de l'effet de température

- DJU (Degré Jour Unifié)
- valeur représentative de l'écart entre la température d'une journée et un seuil de température préétabli (18 °C).
- Sommés sur une période,
- calcule les besoins de chauffage et de climatisation d'un bâtiment.

https://cegibat.grdf.fr/simulateur/calcul-dju

- chef lieu de région :Paris Montessori
- Période: **01/01/09 au 30/05/2021**

Données Dju

- on retrouve des données mensuelles en colonnes
- et annuelles en lignes
- pour climatisation et chauffage
- de 2009-2020

Données chaufage

chauf

	JAN	FÉV	MAR	AVR	MAI	JUN	JUI	AOÛ	SEP	OCT	NOV	DÉC
2020	339.0	249.6	268.6	81.4	65.7	20.6	0.9	4.5	34.3	157.5	227.2	336.8
2019	404.9	268.3	233.1	168.5	117.9	24.4	0.0	1.7	26.7	133.7	282.6	327.3

Données sur la climatisation

clim

	JAN	FÉV	MAR	AVR	MAI	JUN	JUI	AOÛ	SEP	OCT	NOV	DÉC
2020	0	0	0	11.5	28.6	57.5	96.6	157.0	72.3	0.0	0.0	0
2019	0	0	0	5.7	3.2	100.1	152.3	115.6	22.6	4.0	0.0	0

	mois	chaufage
0	2020-01	339.0
1	2020-02	249.6

	mois	climatisation
0	2020-01	0.0
12	1000000000	1272

- on joints les dataframes de besoins en consommation, en chauffage, en climatisation
- un seul dataframe ayant la date en index
- on rajouter une colonne dju (clim et chauf)

```
elec=cons_eng_ren.merge(dju,how='inner').sort_nelec
```

è	mois	Consommation	chaufage	climatisation
107	2012-01	68261.475806	336.0	0.0
106	2012-02	77847.751437	435.9	0.0
105	2012-03	57722.497984	201.9	0.0

```
#mettre la colonne en dateTime
elec['mois'] = pd.to_datetime(elec['mois'])
elec
```

	mois	Consommation	chaufage	climatisation
107	2012-01-01	68261.475806	336.0	0.0
106	2012-02-01	77847.751437	435.9	0.0

elec.isna().sum	()	elec.isnull().s	um()
mois	0	mois	0
Consommation	0	Consommation	0
chaufage	0	chaufage	0
climatisation	0	climatisation	0
dtype: int64		dtype: int64	

Représentation graphique de la DJU

 les deux suivent deux saisonnalité différentes mais à dominance hivernale

Représentation graphique de la DJU et consommation d'énergie

- graphes de la consommation et du dju
- les deux suivent presque la même saisonnalité

la variation de la courbe consommation d'énergie sont effectivement liées aux écarts de la température

Correction des données de consommation mensuelles de l'effet température:régression linéaire multiple

on suppose que les effets de température influes sur la consommation :

• y=a+b1X1+c1X2+e

- R²=0.96%
- p value=0.00<5% les
 paramètres sont significatifs

```
reg e = smf.ols('Consommation~chaufage+climatisation',
                                                         data=electr).fit()
print(reg e.summary())
                             OLS Regression Results
Dep. Variable:
                          Consommation
                                          R-squared:
                                                                            0.961
Model:
                                         Adj. R-squared:
                                                                            0.961
                         Least Squares
                                         F-statistic:
Method:
                                                                            1305.
                     Tue, 05 Jul 2022
                                         Prob (F-statistic):
Date:
                                                                         6.88e-75
                                         Log-Likelihood:
                                                                          -971.47
Time:
                              10:47:43
No. Observations:
                                         AIC:
                                                                            1949.
Df Residuals:
                                         BIC:
                                   105
                                                                            1957.
Df Model:
Covariance Type:
                             std err
                                                      P> t
                                                                  [0.025
                     coef
                                                                              0.97
Intercept
               4.001e+04
                             495.621
                                          80.733
                                                      0.000
                                                                 3.9e+04
                                                                             4.1e+
chaufage
                  76.8834
                               1.901
                                         40.437
                                                      0.000
                                                                  73.113
                                                                              80.6
climatisation
                  33.9385
                               5.731
                                           5.922
                                                      0.000
                                                                  22.575
                                                                              45.3
```

Tester la performance du modèle

Verifier la colinearité des variables

```
variables = reg_e.model.exog
[variance_inflation_factor(variables, i) for i in np.arange(1,variables.shape[1])]
[1.95445692253576, 1.95445692253576]
```

- le test Pegan:p-value<5%
- non rejet de HO
- les variances sont **constantes**

les coefficients VIF <10
 =>les variables ne sont pas
 corrélées entre elles

tester l'homocidacité

```
#calcule des residues
electr['rstudent'] = reg_e.get_influence().resid_

#tester l'homoscédasticité (c'est-à-dire la const_, pval, __, f_pval = statsmodels.stats.diagnosti
print('p value test Breusch Pagan:', pval)

p value test Breusch Pagan: 0.5772346011834666
```

Tester la performance du modèle:tester la normalité des residues

- une distribution presque **symétrique** allure d'une **distribution normale**
- alignée avec la distribution théorique d'une loi normale.
- Un test de Shapiro-Wilk :p-value>5%

les residues suivent une loi normale

ShapiroResult(statistic=0.9925020337104797, pvalue=0.8224667310714722)

Correction des données de consommation mensuelles de l'effet température:

- lè modèle est validé
- correction avec les paramètres:
- b1**=76.88,** C1=**33.94**

conso(adj)=conso-b1*chauf-c1*clim

electr['Consommation_corg1'] electr		org1'] =	electr['Con	sommation'] - (ele	ctr['chaufage']*b1)-(electr['climatisation']*c1)
mois	Consommation	chaufage	climatisation	Consommation_corg1	
2012-01-01	68261.475806	336.0	0.0	42428.655018	
2012-02-01	77847.751437	435.9	0.0	44334.279468	

série est de type: additive

• la **tendance** est presque invariante

- saisonnalité de période de 12
- residues faible

 on doit corriger la série des variations saisonnières

correction des variation saisonnières de la consommation corrigée:

lissage triple de holt winters:il rajout la tendance et la saisonnalité

deseasonal = ser_corrig.values - result_mul.seasonal

mois	
2012-01-01	42015.795134
2012-02-01	41282.543698
2012-03-01	42854.827499
2012-04-01	39381.663164
2012-05-01	41386.567323
2020-08-01	37938.878863
2020-09-01	37990.910451
2020-10-01	39347.662840
2020-11-01	38173.633015
2020-12-01	38632.157253
Name -	-1 400

- l'effet de la variation saisonnières est atténué pas de pics francs ni valeurs aberrantes
- pics positifs et négatifs périodique(12)
- on utilise ce modèle pour la prédiction

Prévision sur la consommation méthode Holt Winters

- les données divisées en parties train et test
- modélisation sur la consommation corrigée .
- prédiction se rapprochant des données réels
- evaluation métrique:faible

Mean Absolute Error = 970.7395250858875 Mean Squared Error = 1481834.3263622115

Prévision sur la consommation méthode SARIMA données utilisées:

- pour avoir un modèle performant, méthode SARIMA plus puissant,
 - pour la partie differentiation sur tout le data

Сог	Consommation_corg1					
mois						
2012-01-01	NaN					
2012-02-01	1905.624450					
2012-03-01	-2134.538975					
2020-11-01	-1522.600625					
2020-12-01	224.363510					

 pour la partie training 12mois tronqués

Consommation_corg1					
	mois				
42428.655018	2012-01-01				
44334.279468	2012-02-01				
42199.740492	2012-03-01				
38700.500577	2018-11-01				
38478.891691	2018-12-01				

 le test sur les 12 derniers mois

Consommation_corg1					
mois					
2019-01-01	41178.286266				
2019-02-01	44910.825692				
2019-03-01	39796.498723				
2019-11-01	38965.904599				
2019-12-01	37610.153460				

- pour avoir un modèle performant, méthode SARIMA plus puissant,
- La sortie ACF présente une décroissance lente vers 0, ce qui traduit un problème de non-stationnarité
- tester la stationnarité de notre série avec le test ADF (Augmented Dickey-Fuller).
- **non rejet de** l'hypothèse de non-stationnarité de la série,
- contrairement à la série différenciée.

donc **On effectue donc une différenciation** (*I-B*)

p-value ADF série originelle :0.27031869816536236 p-value ADF série différenciée :0.005027668770853414

Prévision sur la consommation méthode SARIMA différenciation à l'ordre (I-B)

- Des pics significatifs dans le graphique ACF au décalage 6, 12,18... (composante saisonnière semestrielle).
- Dans le graphique PACF, des pics positifs et négatifs significatifs.
- série non stationnaire

donc On effectue une deuxième différenciation d'ordre donc une (*I-B*12)pour éliminer la saisonnalité

différenciation à l'ordre (I-B12)

- la stationnarité semble être établie
- on passe à Déterminer des ordres optimaux

Prévision sur la consommation méthode SARIMA différenciation à l'ordre (I-B12)

- autocorrelation simples et partielle s'annulent a partir du rang p+1
- on suppose que c' est un model

Estimer les paramètres et les départager par l'AIC (ou le BIC)

Autocorrelation

Estimer les paramètres du model 1 ARIMA(1,1,1),(1,1,1)12

			SARIMAX	Results			
Dep. Varia Model: Date: Time: Sample:	SAR.	IMAX(1, 1,	Thu, 07 Jul	, 12) Log 2022 AIC 05:37 BIC 0 HQIC	Observations Likelihood	:	8 -644.83 1299.67 1310.99 1304.17
			<mark></mark>	opg			
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	0.3851	0.146	2.637	0.008	0.099	0.671	
ma.L1	-0.5442	0.118	-4.601	0.000	-0.776	-0.312	
ar.S.L12	-0.7080	558.606	-0.001	0.999	-1095.555	1094.139	
ma.S.L12	0.7080	558.633	0.001	0.999	-1094.193	1095.609	
sigma2	3.203e+06	4.19e+05	7.647	0.000	2.38e+06	4.02e+06	
Ljung-Box	(L1) (Q):		5.77	Jarque-Bera	(JB):		1.52
Prob(Q):	3.010ft 34.7f03		0.02	Prob(JB):			0.47
Heteroskedasticity (H):		1.18	Skew:			0.28	
Prob(H) (t	wo-sided):		0.70	Kurtosis:			3.44

```
6 : lb stat
                 1.415924
1b pvalue
             0.759581
dtype: float64
12 : lb stat
                  4.360298
1b pvalue
             0.775777
dtype: float64
18 : lb stat
                 12.844748
lb pvalue
              0.522819
dtype: float64
24 : lb stat
                  17.308334
lb pvalue
              0.416067
dtype: float64
30 : 1b stat
                  20.072889
lb pvalue
              0.391080
dtvpe: float64
36 : lb stat
                  22.027058
lb pvalue
              0.417585
```

- la p-value RA.12;MA.S.L12 (partie saisonnière) Q n'est pas significative
- les indicateurs de performance AIC et BIC semblent faible
- le test de blancheur de jung Box :les p values non significatives indiquent un bruit blanc

diagnostique des résidus


```
#Test de Jarque-Bera
results0.test_normality("jarquebera")[0][1]
0.46795658962724085
```

- Test utilisé: Jarque-Bera ne prend pas en compte les premiers residues qui divergent légèrement d'un schéma gaussien
- le test non significatif donc
- non rejet de l'hypothèse de la normalité des residues

on enlève la partie RA.12 MA(12) au model et on test a nouveau

Estimer les paramètres sur le modèle amélioré (1,1,1),(0,1,0,12)

=======		.=== <u>=</u> =====					
Dep. Varia					. Observations:		84
Model:	SARI	[MAX(1, 1,	1)x(0, 1, [], 12)	Likelihood		-643.45
Date:			Thu, 07 Ju	1 2022 AIG			1292.916
Time:			19	:16:16 BIG	5		1299.698
Sample:				0 HQ1 - 84	IC		1295.616
Covariance	e Type:			opg			
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	0.3721	0.202	1.841	0.066	-0.024	0.768	
ma.L1	-0.5135	0.166	-3.089	0.002	-0.839	-0.188	
sigma2	4.224e+06	6.52e+05	6.483	0.000	2.95e+06	5.5e+06	
Ljung-Box	(L1) (Q):		6.19	Jarque-Bera	a (JB):		1.81
Prob(Q):	100000000000000000000000000000000000000		0.01	THE RESERVE AND ASSESSMENT OF THE PARTY OF T			0.40
Heteroske	dasticity (H):		1.19	Skew:			0.32
Prob(H) (1	two-sided):		0.67	Kurtosis:			3.46

```
6 : lb stat
1b pvalue
             0.772174
dtype: float64
12 : lb stat
                  4.334899
lb pvalue
             0.783224
dtype: float64
18 : lb stat
                  12.89830
1b pvalue
              0.527459
dtype: float64
24 : 1b stat
                  17.39749
lb pvalue
              0.418589
dtype: float64
30 : 1b stat
                  20.18118
1b pvalue
              0.391573
dtype: float64
36 : 1b stat
                  22.14826
lb pvalue
              0.416470
dtype: float64
```

- les paramètres sont non significatifs AR.1
- les indicateurs de performance AIC et BIC semblent plus faibles
- le test de blancheur de jung Box :les p values non significatives indiquent un bruit blanc

diagnostique des résidus sur le model 2:(1,1,1),(0,1,0,12)


```
#Test de Jarque-Bera
results1.test_normality("jarquebera")[0][1]
0.40462704569811303
```

- Test Jarque-Bera conclu au non rejet de l'hypothèse de la normalité des residues
- diagrammes indiquent une disposition semblable à celle normale

on retire la partie MA(12) au model et on test a nouveau

Estimer les paramètres sur le modèle amélioré (0,1,1),(0,1,0.12)

```
______
Dep. Variable:
                                             Log Likelihood
Model:
                SARIMAX(0, 1, 1)x(0, 1, [], 12)
Date:
                              Thu, 07 Jul 2022
                                                                         1299.99
Time:
                                     19:32:04
Sample:
                                              HOIC
                                                                         1292.798
                                                               0.9751
ma.L1
            -9.1449
                        0.050
                                -2.870
                                           0.004
                                                     -0.244
                                                               -0.046
sigma2
                                           0.000
          4.267e+06
Liung-Box (L1) (0):
                                 4.64
                                       Jarque-Bera (JB):
Prob(0):
                                 0.03
                                       Prob(JB):
                                                                     0.07
Heteroskedasticity (H):
Prob(H) (two-sided):
```

```
6 : lb stat
                 1.576410
lb pvalue
             0.735775
dtype: float64
12 : lb stat
                  4.675704
lb pvalue
             0.755824
dtype: float64
18 : lb stat
                  13.302670
lb pvalue
              0.508447
dtype: float64
24 : lb stat
                  17.829839
lb pvalue
              0.401953
dtvpe: float64
30 : lb stat
                  20.62613
lb pvalue
              0.374307
dtvpe: float64
36 : lb stat
                   22.61287
lb pvalue
              0.397481
dtype: float64
```

- les paramètres sont significatifs
- les indicateurs de performance AIC et BIC semblent plus faibles
- le test de blancheur de jung Box :les p values non significatives indiquent un bruit blanc

diagnostique des résidus sur le model 2:(0,1,1),(0,1,0,12)


```
#Test de Jarque-Bera
results2.test_normality("jarquebera")[0][1]
0.071153098748574
```

- Test Jarque-Bera conclu au non rejet de l'hypothèse de la normalité des residues
- diagrammes indiquent une disposition semblable à celle normale

on peut retenir ce model

SARIMA optimal

 Construction d'un modèle SARIMA en utilisant la fonction auto arima() de pmdarima.,

• pour la fréquence m=12, D=1.

```
        Dep. Variable:
        y
        No. Observations:
        84

        Model:
        SARIMAX(1, 1, 1)x(0, 1, 1, 12)
        Log Likelihood
        -634.241

        Date:
        Thu, 07 Jul 2022
        AIC
        1276.482

        Time:
        09:28:25
        BIC
        1285.532
```

le model choisi est le model (1,1,1)(0,1,1)[12]

```
Performing stepwise search to minimize aic
ARIMA(1,1,1)(0,1,1)[12]
                                     : AIC=1276.482, Time=0.32 sec
ARIMA(0,1,0)(0,1,0)[12]
                                     : AIC=1294.855, Time=0.04 sec
                                     : AIC=1283.706, Time=0.10 sec
 ARIMA(1,1,0)(1,1,0)[12]
 ARIMA(0,1,1)(0,1,1)[12]
                                     : AIC=1282.488, Time=0.15 sec
 ARIMA(1,1,1)(0,1,0)[12]
                                     : AIC=1292.910, Time=0.26 sec
 ARIMA(1,1,1)(1,1,1)[12]
                                     : AIC=1299.678, Time=0.25 sec
 ARIMA(1,1,1)(0,1,2)[12]
                                     : AIC=1277.349, Time=0.82 sec
 ARIMA(1,1,1)(1,1,0)[12]
                                     : AIC=1278.325, Time=0.32 sec
ARIMA(1,1,1)(1,1,2)[12]
                                     : AIC=inf, Time 1.53 sec
ARIMA(1,1,0)(0,1,1)[12]
                                     : AIC=1282.043, Time=0.13 sec
ARTMA(2,1,1)(0,1,1)[12]
                                     : AIC=1278.969. Time=0.38 sec
ARIMA(1,1,2)(0,1,1)[12]
                                     : AIC=1286.864, Time=0.41 sec
 ARIMA(0,1,0)(0,1,1)[12]
                                     : AIC=1289.557, Time=0.10 sec
 ARIMA(0,1,2)(0,1,1)[12]
                                     : AIC=1284.624, Time=0.19 sec
 ARIMA(2,1,0)(0,1,1)[12]
                                     : AIC=1282.435, Time=0.16 sec
 ARIMA(2,1,2)(0,1,1)[12]
                                     : AIC=1279.115, Time=0.56 sec
 ARIMA(1,1,1)(0,1,1)[12] intercept
                                     : AIC=1278.386, Time=0.51 sec
Best model: ARIMA(1,1,1)(0,1,1)[12]
Total fit time: 6.266 seconds
```

optimal SARIMA (1,1,1)(0,1,1)[12]

SARIMAX Results								
Dep. Varia		IMAX(1, 1,	1)x(0, 1, 1	y , 12)		Observations Likelihood	;	84 -634, 241
Date:			Thu, 07 Jul		AIC			1276.482
Time:			11:	43:20	BIC			1285.532
Sample:				0	HQIC			1280.081
Covariance	e Type:			- 84 opg				
	coef	std err	Z	P	> z	[0.025	0.975]	
ar.L1	-0.7977	0.126	-6.351	e	.000	-1.044	-0.552	
ma.L1	0.6500	0.156	4.178	0	.000	0.345	0.955	
ma.S.L12	-0.2233	0.041	-5.445	0	.000	-0.304	-0.143	
sigma2	3.203e+06	4.62e+05	6.939	0	.000	2.3e+06	4.11e+06	
Ljung-Box	(L1) (Q):		2.15	Jarque	e-Bera	(JB):		2.57
Prob(Q):		0.14	Prob(JB):		0.28			
Heteroskedasticity (H):		2.00	Skew:		0.31			
Prob(H) (two-sided):		0.10	Kurtosis:			3.70		
							========	

```
Retard : p-value
6 : 1b stat
                 1.801166
1b pvalue
             0.665040
dtype: float64
12 : lb stat
                  4.270485
1b pvalue
          0.715927
dtype: float64
18 : lb stat
                  10.151397
1b pvalue
             0.521580
dtype: float64
24 : lb stat
                 13, 215083
lb pvalue
              0.493048
dtvpe: float64
30 : 1b stat
                 15.141654
1b pvalue
              0.536798
dtype: float64
36 : lb stat
                  16.537049
1b pvalue
              0.596844
```

- les paramètres sont tous significatifs
- les indicateurs de performance AIC et BIC semblent plus faible
- le **test de blancheur** de jung Box :les p values non significatives sauf pour le retard 24 à la limite 0.49%. => indiquent un bruit blanc

tester la normalité des residues du modèle optimal (1,1,1)(0,1,1)[12]


```
#Test de Jarque-Bera
results3.test_normality("jarquebera")[0][1]
0.2771802880260108
```

- Test Jarque-Bera conclu au non rejet de l'hypothèse de la normalité des residues
- diagrammes indiquent une disposition semblable à celle normale

on retire la partie MA(12) au model et on test a nouveau

le choix du modèle OPTIMAL

Prévision à partir des deux modèles

- prévision sur les les deux modèles
- les deux modèles ont sortis des prédictions comprises dans l'intervalle de prévision à 95%
- se rapprochent des données du test

le choix du model 3 :

- résultats qui se rapprochant des données test
- MAE et MSE plus faible

evaluation métrique du model Sarima MOC

model2: (1,1,1),(1,1,0,12)

: from sklearn.metrics import mean_absolute_error,mean_squared_error print(f'Mean Absolute Error = {mean_absolute_error(t_s,p_s)}^*) print(f'Mean Squared Error = {mean_squared_error(t_s,p_s)}')

Mean Absolute Error = 1947.458167081630 Mean Squared Error = 6222198.237265994

evaluation métrique du model Sarima model 3: (1,1,1)(0,1,1)[12]

from sklearn.metrics import mean_absolute_error,mean_squared_error
print(f'Mean Absolute Error = {mean_absolute_error(t_s,p_s)}')
print(f'Mean Squared Error = {mean_squared_error(t_s,p_s)}')

Mean Absolute Error = 1499.717676893689 Mean Squared Error = 4037980.913736209

Analyse a posteriori

comparaison méthode holt-winters et SARIMA

- la méthode de holt winter semble être plus proche des données
- avec une métrique plus faible que celle de SARIMA

il y existe un modèle plus performant que le model (1,1,1),(0,1,1,12)

comparer avec map

model 3: (1,1,1)(0,1,1)[12]

evaluation métrique du model Sarima

```
from sklearn.metrics import mean_absolute_error,mean_squared_error
print(f'Mean Absolute Error = {mean_absolute_error(t_s,p_s)}')
print(f'Mean Squared Error = {mean_squared_error(t_s,p_s)}')
```

Mean Absolute Error = 1499.717676893689 Mean Squared Error = 4037980.9137362097

model: holt_winters

Mean Absolute Error = 970.7395250858875 Mean Squared Error = 1481834.3263622115

Conclusion:

- Ol les deux methodes de prevision sont satisfaisantes se rapprochent des données du test
- 02 un meilleur modèle peut être obtenue avec SARIMA