EC 313, Summer 2019 Xiang LI (GE) Final - FORMULAS

Name:

UO ID: _____

real GDP per person: $\frac{\mathbf{Y_t}}{\mathbf{population}}$

 Y_t : real GDP at t

real GDP growth: $\frac{\mathbf{Y_{t}} - \mathbf{Y_{t-1}}}{\mathbf{Y_{t-1}}}$

 Y_{t-1} : real GDP at t-1

GDP deflator: $P_t = \frac{nGDP}{rGDP} = \frac{\$Y_t}{Y_t}$

 Y_t : nominal GDP

inflation rate: $\pi_{\mathbf{t}} = \frac{\mathbf{P_{t}} - \mathbf{P_{t-1}}}{\mathbf{P_{t-1}}}$

labor force: $\mathbf{L} = \mathbf{N} + \mathbf{U}$

U: unemployment; N: empolyment

unemployment rate: $\mathbf{u} = \frac{\mathbf{U}}{\mathbf{L}}$

participation rate: $\frac{L}{population}$

production/outoput/supply/GDP: $\mathbf{Y} = \mathbf{C} + \mathbf{I} + \mathbf{G}$ C: consumption; I: investment; G: gov't spending

demand: $\mathbf{Z} \equiv \mathbf{C} + \mathbf{I} + \mathbf{G}$

consumption: $\mathbf{C} = \mathbf{c_0} + \mathbf{c_1} \times \mathbf{Y_D}$

disposable income: $\mathbf{Y}_{\mathbf{D}} = \mathbf{Y} - \mathbf{T}$

Y: income; T: tax

goods market equilibirum: $\mathbf{Y} = \frac{1}{1-c_1}[\mathbf{c_0} + \mathbf{I} + \mathbf{G} - \mathbf{c_1}\mathbf{T}]$

demand for money: $\mathbf{M}^{\mathbf{d}} = \mathbf{\$Y} \times \mathbf{L}(\mathbf{i})$

supply for money: $\mathbf{M}^{\mathbf{s}} = \mathbf{M}$

money market equilibirum: $\frac{\mathbf{M}}{\mathbf{P}} = \mathbf{Y}\mathbf{L}(\mathbf{i})$

IS relation: $\mathbf{Y} = \mathbf{C}(\mathbf{Y} - \mathbf{T}) + \mathbf{I}(\mathbf{Y}, \mathbf{i}) + \mathbf{G}$

LM relation: $\mathbf{i} = \overline{\mathbf{i}}$

real interest rate: $\mathbf{r_t} = \mathbf{i_t} - \pi_{\mathbf{t+1}}^{\mathbf{e}}$

 i_t : nominal interest rate; π^e_{t+1} : expected inflation

risk premium: $\mathbf{x} = (\mathbf{1} + \mathbf{i}) \frac{\mathbf{p}}{\mathbf{1} - \mathbf{p}}$

i: interest rate on risk-free borrowing; p: probability of default

extended IS relation: $\mathbf{Y} = \mathbf{C}(\mathbf{Y} - \mathbf{T}) + \mathbf{I}(\mathbf{Y}, \mathbf{r} + \mathbf{x}) + \mathbf{G}$

r: real interest rate; x: risk premium

extended LM relation: $\mathbf{r} = \bar{\mathbf{r}}$

 \bar{r} : policy rate

wage-setting: $\mathbf{W} = \mathbf{P^e} \mathbf{F}(\mathbf{u}, \mathbf{z})$

 P^e : expected prices; u: unemployment rate; z: catchall factor

price-setting: P = (1 + m)W

W: nominal wages; P: prices; m: markup

labor market eq.: $\mathbf{F}(\mathbf{u_n}, \mathbf{z}) = \frac{1}{1+m}$

 u_n : natrual rate of unemployment/natural rate

the natural rate of unemployment: $\mathbf{u_n} = \frac{\mathbf{m} + \mathbf{z}}{\alpha}$

 α : parameter

static expectations: $\pi_{\mathbf{t}}^{\mathbf{e}} = \bar{\pi}$

 π_t^e : expected inflation; $\bar{\pi}$: a constant

adaptive expectations: $\pi_{\mathbf{t}}^{\mathbf{e}} = (\mathbf{1} - \theta)\bar{\pi} + \theta\pi_{\mathbf{t}-\mathbf{1}}$

 θ : parameter

the theoretical Phillips Curve I: $\pi_{\mathbf{t}} = \pi_{\mathbf{t}}^{\mathbf{e}} + (\mathbf{m} + \mathbf{z}) - \alpha \mathbf{u}_{\mathbf{t}}$

 u_t : unemployment rate in period t

the theoretical Phillips Curve II: $\pi_{\mathbf{t}} - \pi_{\mathbf{t}}^{\mathbf{e}} = \frac{\alpha}{L} (\mathbf{Y_t} - \mathbf{Y_n})$

 Y_n : potential/natural output

the theoretical Phillips Curve III: $\pi_{\bf t}=\pi^{\bf e}_{\bf t}-\alpha({\bf u_t}-{\bf u_n})$

 Y_t : output in period t

the original Phillips Curve I: $\pi_{\mathbf{t}} = \bar{\pi} + (\mathbf{m} + \mathbf{z}) - \alpha \mathbf{u}_{\mathbf{t}}$

 π_t : inflation in period t

the original Phillips Curve II: $\pi_{\mathbf{t}} - \bar{\pi} = \frac{\alpha}{L} (\mathbf{Y_t} - \mathbf{Y_n})$

L: labor force

the original Phillips Curve III: $\pi_{\mathbf{t}} - \bar{\pi} = -\alpha(\mathbf{u_t} - \mathbf{u_n})$

the modified Phillips Curve I: $\pi_{\mathbf{t}} = \pi_{\mathbf{t-1}} + (\mathbf{m} + \mathbf{z}) - \alpha \mathbf{u_t}$

 π_{t-1} : inflation in period t-1

the modified Phillips Curve II: $\pi_{\mathbf{t}} - \pi_{\mathbf{t-1}} = -\alpha(\mathbf{u_t} - \mathbf{u_n})$

the modified Phillips Curve III: $\pi_{\mathbf{t}} - \pi_{\mathbf{t-1}} = \frac{\alpha}{\mathbf{L}}(\mathbf{Y_t} - \mathbf{Y_n})$

the Okun Law: $\mathbf{Y_t} - \mathbf{Y_n} = -\mathbf{L} * (\mathbf{u_t} - \mathbf{u_n})$

Inflation Targeting: $\pi_{\mathbf{t}} = \pi^* - \alpha(\mathbf{u_t} - \mathbf{u_n})$

 π^* : inflation target; i^* : target nominal interest rate

The Taylor Rule: $\mathbf{i_t} = \mathbf{i^*} + \alpha(\pi_t - \pi^*) - \beta(\mathbf{u_t} - \mathbf{u_n})$

 i_t : the nominal policy rate; α, β : parameters