F.Y. IMP	Reg. No
August 2014	Name

816

First Year Higher Secondary Improvement Examination

Part - III

CHEMISTRY

Maximum: 60 Scores

Time: 2 Hours

Cool off time: 15 Minutes

General Instructions to Candidates:

- There is a 'Cool off time' of 15 minutes in addition to the writing time of 2 hrs.
- You are neither allowed to write your answers nor to discuss anything with others during the 'cool off time'.
- Use the 'cool off time' to get familiar with questions and to plan your answers.
- Read the questions carefully before answering.
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except nonprogrammable calculators are not allowed in the Examination Hall.

നിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും. ഈ സമയത്ത് ചോദ്യങ്ങൾക്ക് ഉത്തരം എഴുതാനോ, മറ്റുള്ളവരുമായി ആശയ വിനിമയം നടത്താനോ പാടില്ല.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപുർവ്വം വായിക്കണം.
- 🐡 എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരം എഴുതണം.
- ഒരു ചോദ്യനമ്പർ ഉത്തരമെഴുതാൻ തെരഞ്ഞെടുത്തു കഴിഞ്ഞാൽ ഉപ ചോദ്യങ്ങളും അതേ ചോദ്യ നമ്പരിൽ നിന്ന് തന്നെ തെരഞ്ഞെടുക്കേണ്ടതാണ്.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽത്തന്നെ ഉണ്ടായിരിക്കണം.
- ത്രവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

- 1. Hydrogen combines with oxygen to form two different compounds, namely, water (H_2O) and hydrogen peroxide (H_2O_2) .
 - a) Which law is obeyed by this combination?
 - b) State the law. (2)
 - c) How many significant figures are present in the following?
 - i) 0.0025
 - ii) 285 (1)
- 2. a) Write the subshellwise electronic configurations of the following elements:
 - i) Cu (Z = 29)
 - ii) Cr(Z = 24)

Give reason for the extra stability of these atoms.

- b) Canal rays were discovered by discharge tube experiments conducted in a modified cathode ray tube. Give any two characteristics of canal rays. (1)
- c) A microscope with suitable photons is employed to locate an electron in an atom within a distance of 0.4Å. What is the uncertainty involved in the measurement of its velocity? (2)

- ${f 1.}$ ഹൈഡ്രജൻ ഓക്സിജനുമായി കൂടിച്ചേർന്ന് രണ്ടു വ്യത്യസ്ത സംയുക്തങ്ങൾ അതായത് ജലവും (H_2O) ഹൈഡ്രജൻ പെറോക്സൈഡും (H_2O_9) ഉണ്ടാകുന്നു.
 - മ) ഏത് നിയമമാണ് ഈ കൂടിച്ചേരലിൽ
 അനുസരിക്കപ്പെടുന്നത്?
 - b) ആ നിയമം പ്രസ്താവിക്കുക. (2)
 - c) താഴെ കൊടുത്തിരിക്കുന്നവയിൽ എത്ര 'സിഗ്നിഫിക്കന്റ് ഫിഗറുകൾ' ഉണ്ട്.
 - i) 0.0025
 - ii) 285 (1)
- 2. a) താഴെ കൊടുത്തിരിക്കുന്നവയുടെ സബ്ഷെൽ രൂപത്തിലുള്ള ഇലക്ട്രോൺ വിന്യാസം എഴുതുക.
 - i) Cu(Z = 29).
 - ii) Cr(Z = 24)

ഈ ആറ്റങ്ങളുടെ അധിക സ്ഥിരതക്കുള്ള കാരണം എഴുതുക. (2

- b) ഒരു ആധുനീകരിച്ച കാഥോഡ് റേ ട്യൂബിൽ നടത്തിയ ഡിസ്ചാർജ്ജ് ട്യൂബ് പരീക്ഷണങ്ങളുടെ ഫലമായാണ് കനാൽ രശ്മികൾ കണ്ടുപിടിച്ചത്. കനാൽ രശ്മികളുടെ ഏതെങ്കിലും രണ്ട് പ്രത്യേകതകൾ എഴുതുക. (
- ഒരു ആറ്റത്തിലെ 0.4Å ദൂരത്തിലുള്ള ഒരു ഇലക്ട്രോണിന്റെ സ്ഥാനം നിർണ്ണ യിക്കാൻ കഴിവുള്ള ഫോട്ടോണിനെ ഒരു മൈക്രോസ്ക്കോപ്പിൽ ഉപയോഗിച്ചു. അതിന്റെ പ്രവേഗം കണക്കാക്കുമ്പോൾ അതിലുള്ള അനിശ്ചിതത്വം എത്രയായി-രിക്കും.

(2)

(3)

(3)

- 3. a) Transition elements were placed in between group 3 and group 12 of the periodic table.

 Give any two characteristics of transition elements.
 - b) Does the ionization enthalpy decrease along a group? Give reason.

(2)

(2).

(3)

(3)

- 4. a) Molecular orbitals are formed by the linear combination of atomic orbitals (LCAO). Give the salient features of the molecular orbital theory.
 - b) Explain sp^3d hybridization with a suitable example. (2)

\mathbf{OR}

- a) The shapes of the molecules is based on the VSEPR theory.

 Give the salient features of this theory.
- b) Draw the potential energy curve for the formation of a hydrogen molecule on the basis of the internuclear distance of the hydrogen atoms. (2)

- 3. മ) ആവർത്തനപ്പട്ടികയിൽ 3-ാം ഗ്രൂപ്പിനും 12-ാം ഗ്രൂപ്പിനും ഇടയിലാണ് സംക്രമണ മൂലകങ്ങൾ സ്ഥിതിചെയ്യുന്നത്. സംക്രമണ മൂലകങ്ങളുടെ ഏതെങ്കിലും രണ്ട് സവിശേഷതകൾ എഴുതുക.
 - b) അയൊണൈസേഷൻ എൻഥാൽപി ഒരു ഗ്രൂപ്പിലൂടെ കടന്നു പോകുമ്പോൾ കുറയുന്നുണ്ടോ? കാരണമെഴുതുക. (2)
- 4. a) മോളിക്യുലാർ ഓർബിറ്റലുകൾ ഉണ്ടാകുന്നത് അറ്റോമിക ഓർബിറ്റലു കളുടെ ലീനിയർ സംയോജനം മൂലമാണ് (LCAO). മോളിക്യൂലാർ ഓർബിറ്റൽ തിയറിയുടെ സവിശേഷതകൾ എന്തെല്ലാം.
 - b) അനുയോജ്യമായ ഒരു ഉദാഹരണ 6 ത്തിന്റെ സഹായത്തോടെ sp^3d ഹൈബ്രഡൈസേഷൻ വിശദമാക്കുക. $oldsymbol{(2)}$

അല്ലെങ്കിൽ

- a) തന്മാത്രകളുടെ ആകൃതി നിർണ്ണയിക്കു-ന്നത് VSEPR സിദ്ധാന്തത്തെ അടിസ്ഥാനമാക്കിയാണ്. ഈ സിദ്ധാന്തത്തിന്റെ സവിശേഷതകൾ എന്തെല്ലാം?
- b) ഹൈഡ്രജൻ ആറ്റത്തിന്റെ ഇന്റർ ന്യൂക്കിയർ അകലത്തിന്റെ അടിസ്ഥാന ത്തിൽ ഹൈഡ്രജൻ തന്മാത്രയുടെ രൂപീകരണത്തിന്റെ പൊട്ടൻഷൃൽ ഊർജ്ജ കർവ് വരയ്ക്കുക. (2)

(2)

Volume (/V)

- a) Name the gas law shown by the above graph. (1)
- b) State the gas law. (1)
- c) At 35°C and 700 mm of Hg pressure, a gas occupies a 500 ml volume. What will be its pressure when the temperature is 15°C and the volume of the gas is 450 ml?

(2)

- spontaneity of reactions at a constant pressure and temperature. How is ΔG helpful in predicting the spontaneity of the reaction? (2)
 - b) State and explain Hess's law of constant heat summation. (2)

Volume (1/V)

- മുകളിൽ കൊടുത്തിരിക്കുന്ന ഗ്രാഫ് വ്യക്തമാക്കുന്ന വാതക നിയമത്തിന്റെ പേരെഴുതുക.
- b) പ്രസ്തുത വാതക നിയമം പ്രസ്താവിക്കുക. (1
- c) 35^{0} C ലും 700 mm മെർക്കുറി മർദ്ദത്തിലും ഒരു വാതകം ഉൾക്കൊള്ളുന്ന വ്യാപ്തം 500 ml ആണ്. ഈ വാതകത്തിന്റെ താപനില 15^{0} C-ഉം വ്യാപ്തം 450 ml ആണെങ്കിൽ അതിന്റെ മർദ്ദം കണക്കാക്കുക.
- a) സ്ഥിര മർദ്ദത്തിലും ഊഷ്മാവിലും രാസപ്രവർത്തനങ്ങളുടെ 'സ്പൊണ്ടേ—നിറ്റി' അറിയുന്നതിനുള്ള ഒരു മാനദണ്ഡമായി ΔG ഉപയോഗിക്കുന്നു. എങ്ങനെയാണ് രാസ പ്രവർത്തന ങ്ങളുടെ 'സ്പൊണ്ടേനിറ്റി' പ്രവചിക്കു ന്നതിന് ΔG പ്രയോജനപ്പെടുന്നത്?
 - b) ഹെസ്സിന്റെ (Hess's) കോൺസ്റ്റന്റ് ഹീറ്റ് സമ്മേഷൻ നിയമം പ്രസ്താവിച്ച് വിശദീകരിക്കുക.

- 7. Le-Chatelier's principle makes a qualitative prediction about the change in conditions on equilibrium.
 - a) State Le-Chatelier's principle. (1)
 - b) $N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$. What is the effect of pressure on the above equilibrium?

- c) The species HCO_3^- and HSO_4^- can act both as Bronsted acids and bases. Write the corresponding conjugate acid and conjugate base of the above species. (2)
- 8. a) Using stock notation, represent the following compounds:
 - i) HAuCl₄
 - ii) MnO_2 (1)
 - b) i) Define the electronic concept of oxidation and reduction. (1)
 - ii) Find out the oxidizer and reducer in the following reaction on the basis of the electronic concept.

$$2Na_{(s)} + Cl_{2(g)} \rightarrow 2NaCl_{(s)} \tag{1}$$

- 7. രാസ സംതുലനത്തിന് വ്യതിയാനം വരുത്തുന്ന അവസ്ഥകളെപ്പറ്റി ക്വാളിറ്റേറ്റീവ് ആയി പ്രതിപാദിക്കുന്നതിന് ലേ-ഷാറ്റ്ലിയർ തത്വം ഉപയോഗിക്കുന്നു.
 - a) ലേ-ഷാറ്റ്ലിയർ തത്വം പ്രസ്താവിക്കുക. (1)
 - b) $N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$ മുകളിൽ കൊടുത്തിരിക്കുന്ന രാസസംതുലന പ്രവർത്തനത്തിൽ മർദ്ദത്തിന്റെ സ്വാധീനമെന്ത്? (2)
 - c) HCO₃, HSO₄ എന്നീ സ്പീഷീസിന് ബ്രോൺസ്റ്റഡ് ആസിഡുകളായും ബെയ്സുകളായും പ്രവർത്തിക്കുവാൻ കഴിയും. മുകളിൽ കൊടുത്തിരിക്കുന്ന സ്പീഷീസുകളുടെ കോൺജുഗേറ്റ് ആസിഡും കോൺജുഗേറ്റ് ബേസും എഴുതുക.
 (2)
- 8. a) സ്റ്റോക്ക് നൊട്ടേഷൻ ഉപയോഗിച്ച് താഴെക്കൊടുത്തിരിക്കുന്ന സംയുക്ത ങ്ങളെ പ്രതിനിധീകരിക്കുക.
 - i) $HAuCl_4$
 - ii) MnO_2 (1)
 - b) i) ഇലക്ട്രോൺ സങ്കല്പനത്തിന്റെ അടിസ്ഥാനത്തിൽ ഓക്സീകരണ വും നിരോക്സീകരണവും നിർവ്വചിക്കുക.
 - ii) ഇലക്ട്രോൺ സങ്കല്പനത്തിന്റെ അടിസ്ഥാനത്തിൽ താഴെ കൊടുത്തിരിക്കുന്ന രാസ പ്രവർ-ത്തനത്തിലെ ഓക്സീകാരിയും നീരോക്ലീകാരിയും കണ്ടുപിടിക്കുക.

$$2Na_{(s)} + Cl_{2(g)} \rightarrow 2NaCl_{(s)} \tag{1}$$

Turn Over

(1)

- a) Give one reaction supporting the amphoteric nature of water. (2)
- 9. a) ജലത്തിന്റെ ആംഫോട്ടെറിക് സ്വഭാവ ത്തെ സാധൂകരിക്കുന്ന ഏതെങ്കിലും ഒരു രാസപ്രവർത്തനം എഴുതുക. (2
- b) Write the names of any two electron-rich hydrides.
- b) ഏതെങ്കിലും രണ്ട് ഇലക്ട്രോൺ റിച്ച് ഹൈഡ്രൈഡുകളുടെ പേരെഴുതുക. (1)
- c) Complete the following reaction $Ca \left(HCO_3 \right)_2 \xrightarrow{\text{Heating}} \dots \dots + H_2O + \dots$ (1
- c) താഴെക്കൊടുത്തിരിക്കുന്ന രാസപ്രവർ ത്തനം പൂർത്തീകരിക്കുക.

$$Caig(HCO_3ig)_2 \xrightarrow{ riangleq 2$$
 $+H_2O+\dots$ (1)

- 10. a) The reactivity of alkali metals towards air is different for different metals. How do alkali metals react with air?
- 10. a) ആൽക്കലി ലോഹങ്ങളുടെ വായുവി ലുള്ള രാസപ്രവർത്തനം വൃതൃസ്ത ലോഹങ്ങൾക്ക് വൃതൃസ്ത രീതിയിലാണ്. എങ്ങനെയാണ് ആൽക്കലി ലോഹങ്ങൾ വായുവുമായി പ്രവർത്തിക്കുന്നത്.
- b) Match the following: (2)
- b) ചേരുഠപടി ചേർക്കുക: (2)

${f A}$			${f B}$		
i)	Sodium hydroxide	p)	Dead burnt plaster		
ii)	സോഡിയം ഹൈഡ്രോക്സൈഡ് Anhydrous calcium sulphate	q)	ഡെഡ് ബേൺറ്റ് പ്ലാസ്റ്റർ Slaked lime		
, .	അൻഹൈഡ്രസ് കാൽസ്യം സൾഫേറ്റ്		സ്ലേക്കഡ് ലൈം		
iii)	Calcium hydroxide കാൽസും ഹൈഡ്രോക്സൈഡ്	r)	Quick lime ക്വിക്ക് ലൈം		
iv)	Sodium bicarbonate സോഡിയം ബൈകാർബണേറ്റ്	s)	Caustic soda കാസ്റ്റിക് സോഡ		
		t)	Baking soda ബേക്കിങ്ങ് സോഡ		

(2)

(1)

- 11. Give reasons for the following:
 - a) CO_2 is a gas whereas SiO_2 is a solid.
 - b) CCl_4 cannot be hydrolyzed but $SiCl_4$ can be hydrolysed. (1
 - c) Borax bead test can be used to identify metaborates in the laboratory.
 - d) Graphite is used as a lubricant in machines. (1)
- 12. a) Give the IUPAC names of the following compounds. (2)

- 11. താഴെക്കൊടുത്തിരിക്കുന്നവയ്ക്കുള്ള കാരണങ്ങൾ എഴുതുക.
 - മ) കാർബൺ ഡൈ ഓക്സൈഡ് ഒരു
 വാതകവും സിലിക്കൺഡൈഓക് സൈഡ് ഒരു ഖരവുമാണ്.
 - b) CCl_4 നെ ഹൈഡ്രോളിസിസ് നടത്താൻ കഴിയുകയില്ല. എന്നാൽ $SiCl_4$ നെ ഹൈഡ്രോളിസിസ് നടത്താൻ കഴിയുന്നു.
 - c) ബൊറാക്സ് ബീഡ് ടെസ്റ്റ് മെറ്റാബൊറേറ്റുക്ളെ തിരിച്ചറിയു ന്നതിന് ലബോറട്ടറിയിൽ ഉപയോഗിക്കുന്നു.
 - d) ഗ്രാഫൈറ്റ് മെഷീനുകളിൽ ലൂബ്രിക്കന്റ് അയി ഉപയോഗിക്കുന്നു. (1
- $oldsymbol{12.}$ a) താഴെ കൊടുത്തിരിക്കുന്ന സഠയുക്ത ങ്ങളുടെ $oldsymbol{ ext{IUPAC}}$ നാമങ്ങളെഴുതുക. (2)
- i) $CH_3-CH_2-CH-CH_2-CH_2-CH-CH_2-CH_3$ $| \qquad | \qquad | \qquad |$ $OH \qquad CH_3$

(1)

- ii) $CH_3 CH_2 CH = CH CH_2 COOH$
- b) How many ' σ ' and ' π ' bonds are present in the following compound?

$$CH_2 = C = CHCH_3 \tag{1}$$

- c) Write the name of the test used to detect nitrogen, sulphur, halogens and phosphorous present in an organic compound. (1)
- d) Explain any one method for the estimation of nitrogen present in an organic compound. (2)

b) താഴെ കൊടുത്തിരിക്കുന്ന സംയുക്ത ത്തിൽ എത്ര ' σ ' ബോണ്ടും എത്ര ' π ' ബോണ്ടും ഉണ്ട്.

$$CH_2 = C = CHCH_3 \tag{1}$$

- c) ഒരു ഓർഗാനിക് സംയുക്തത്തിലെ നൈട്രജൻ, സൾഫർ, ഹാലൊജനുകൾ, ഫോസ്ഫറസ് എന്നിവയെ തിരിച്ചറിയു ന്നതിനുള്ള ടെസ്റ്റിന്റെ പേരെഴുതുക.
- d) ഒരു ഓർഗാനിക് സംയുക്തത്തിലെ നൈട്രജന്റെ അളവ് കണ്ടുപിടിക്കു ന്നതിനുള്ള ഏതെങ്കിലും ഒരു മാർഗ്ഗം വിശദീകരിക്കുക.

Turn Over

KR-25

13.	a)	Draw the Cis- and trans-	•
•	· .	isomers of the following	
		compound: $C_2H_5CCH_3 = CCH_3C_2H_5.$	(2)
-	· · ·		, , , , , , , , , , , , , , , , , , ,
^	b)	Complete the following reactions.	(1)
		i) $3CH \equiv CH \xrightarrow{\text{Red hot iron tube}}$	
		ii) $CaC_2 + 2H_2O \rightarrow Ca(OH)_2 +$	
	c)	Draw the sawhorse projections	
-	•	for eclipsed and staggered forms	
	, ·	of a ethane molecule.	(2)
 · .	•	OR	
	a)	How is alkane prepared by	
· ·		Kolbe's electrolytic method?	(2)
• • •	b)	Select the activating groups	
		from the following:	(1)
		i) $-NH_2$ ii) $-SO_3H$	· · · · · · · · · · · · · · · · · · ·
		iii) $-CH_3$ iv) $-COOH$	` .
	c)	What is ozonolysis? Write the	
:	-	names of the products obtained	
		when propene undergoes	
		ozonolysis.	(2)
14.	a)	Carbon monoxide is one of the	· •
•		most serious air pollutants.	
		How does it pollute the	•
		atmosphere?	(2)

b) Give any two applications of

green chemistry in day-to-day

3.	a)	താഴെ കൊടുത്തിരിക്കുന്ന	
		സംയുക്തത്തിന്റെ സിസും ട്രാൻസും	
,		ഐസോമെറുകൾ വരയ്ക്കുക.	
e .		$C_2H_5CCH_3 = CCH_3C_2H_5$	(2)
	b)	താഴെ കൊടുത്തിരിക്കുന്ന രാസപ്രവർ—	
		ത്തനങ്ങളെ പൂർത്തീകരിക്കുക.	(1)
÷ .		i) $3CH \equiv CH \text{2000 2000 2000 2000 2000 2000 2000 20$	F = # 9
		ii) $CaC_2 + 2H_2O \rightarrow Ca(OH)_2 +$	
	c) -	ഈഥെയ്ൻ തന്മാത്രയുടെ	· .
		എക്ലിപ്സ്ഡ് രൂപത്തിന്റെയും	
	-	സ്റ്റാഗ്ഗേർഡ് രൂപത്തിന്റെയും	
		സോഹോർസ് പ്രൊജക്ഷനുകൾ	
		വരയ്ക്കുക.	(2)
		അല്ലെങ്കിൽ	
	a)	കോൾബിന്റെ വൈദ്യുത വിശ്ലേഷണ	
		രീതിവഴി ആൽക്കെയ്ൻ നിർമ്മിക്കുന്നത്	
· ·		എങ്ങനെ.	(2)
,	b)	താഴെ കൊടുത്തിരിക്കുന്നവയിൽ	
1		നിന്നും ആക്ടിവേറ്റിങ്ക് ഗ്രൂപ്പ്	
•		തിരഞ്ഞെടുത്തെഴുതുക.	(1)
		i) $-NH_2$ ii) $-SO_3H$	
	-		
		iii) $-CH_3$ iv) $-COOH$	
	c)	ഓസോണോളിസിസ് എന്നാലെന്ത്?	
,	• .	പ്രൊപ്പീൻ ഓസോണോളിസിസിന്	
		വിധേയമാകുമ്പോൾ ഉണ്ടാകുന്ന	
		ഉൽപ്പന്നങ്ങളുടെ പേരെഴുതുക.	(2)
4.	. a)	കാർബൺ മോണോക്സൈഡ്	.
		അന്തരീക്ഷ മലിനീകരണത്തിന് കാരണ	
		മാകുന്ന ഏറ്റവും ഗുരുതരമായ ഒരു	
		മലിനീകാരിയാണ്. ഇത് അന്തരീക്ഷത്തെ	
		എങ്ങനെയാണ് മലിനമാക്കുന്നത്.	(2)
	b)	നിത്യ ജീവിതത്തിലെ ഗ്രീൻ	
	,	കെമിസ്ട്രിയുടെ ഏതെങ്കിലുഠ രണ്ട്	
		പ്രായോഗിക ഉപയോഗങ്ങൾ എഴുതുക.	(1)