Supplementary Information

Revealing Carbon Capture Chemistry with 17-Oxygen NMR Spectroscopy Berge, Pugh et al.

Supplementary Table 1. – Overview of the amine-functionalised frameworks investigated in the DFT calculations together with the studied CO_2 adsorption classifications. Unless alternate metals are listed, it is assumed that the Mg framework, *i.e.*, $Mg_2(dobpdc)$, is functionalised with the amine shown. (chain = ammonium carbamate chain, pairs = carbamic acid pairs, mixed = mixed ammonium carbamate – carbamic acid). Unsymmetrical amines are assumed to form a metal-nitrogen bond with the less sterically hindered amine, and also to react with CO_2 at that same amine. Two (R,R)-dach compounds are listed as this chiral diamine interacts with the chiral $M_2(dobpdc)$ framework to form two distinct enantiomers.³ One tetraamine-functionalised framework was considered, known as 3-4-3- $Mg_2(dobpdc)$.

Supplementary Figure 1. – Differentiation of adsorption modes based on ^{13}C NMR. a) Illustrations showing the different carbon environments present in the different CO_2 adsorption structures. b) An overview of the DFT-calculated ^{13}C isotropic chemical shifts for the different classifications showing no clear differentiation between ammonium carbamate chains and carbamic acids. The chemical shift anisotropy of the DFT-calculated ^{13}C NMR shift was also investigated. A plot of $A = (\delta_{11} + \delta_{33} - \delta_{22})$ vs δ_{22} has been shown to differentiate protonated and deprotonated forms of CO_2 adsorbed in amine functionalised silica materials. For our materials, less of a clear differentiation is seen (Figure S1c).

Supplementary Table 2a. – The $^{13}{ m C}$ NMR parameters obtained from DFT calculations for ammonium carbamate chain structures.

^{***}This structure formed a chain structure with the inserted CO₂ being protonated.

δ_{iso}	δ_{11}	δ_{22}	δ_{33}	Compound	δ_{iso}	δ_{11}	δ_{22}	δ_{33}
(ppm)	(ppm)	(ppm)	(ppm)		(ppm)	(ppm)	(ppm)	(ppm)
159.97	204.68	166.90	108.33	m-2-	159.40	202.84	168.94	106.43
				Mg ₂ (dobpdc)				
159.96	206.80	167.45	105.62	i-2-	161.05	231.63	141.66	109.88
				Mg ₂ (dobpdc)				
159.71	206.76	166.64	105.73	m2m-	162.57	212.85	164.85	110.01
				Mg ₂ (dobpdc)				
161.88	214.75	164.53	106.37	pn-	165.27	215.03	176.21	104.56
				Mg ₂ (dobpdc)				
164.74	214.58	175.04	104.59	dmpn	159.20	208.87	160.67	108.06
				Mg ₂ (dobpdc)				
159.14	208.16	159.82	109.43	(R,R)dach-R-	159.16	210.95	156.51	110.01
				Mg ₂ (dobpdc)				
159.69	207.18	163.44	108.44	e-2-e-	161.25	209.05	164.00	110.71
				Mg ₂ (dobpdc)				
161.68	203.62	174.99	106.44	343-	162.54	204.19	178.27	105.17
				Mg ₂ (dobpdc)**				
159.41	215.30	158.69	104.24					
	(ppm) 159.97 159.96 159.71 161.88 164.74 159.14 159.69	(ppm) (ppm) 159.97 204.68 159.96 206.80 159.71 206.76 161.88 214.75 164.74 214.58 159.14 208.16 159.69 207.18 161.68 203.62	(ppm) (ppm) (ppm) 159.97 204.68 166.90 159.96 206.80 167.45 159.71 206.76 166.64 161.88 214.75 164.53 164.74 214.58 175.04 159.14 208.16 159.82 159.69 207.18 163.44 161.68 203.62 174.99	(ppm) (ppm) (ppm) (ppm) 159.97 204.68 166.90 108.33 159.96 206.80 167.45 105.62 159.71 206.76 166.64 105.73 161.88 214.75 164.53 106.37 164.74 214.58 175.04 104.59 159.14 208.16 159.82 109.43 159.69 207.18 163.44 108.44 161.68 203.62 174.99 106.44	(ppm) (ppm) (ppm) (ppm) 159.97 204.68 166.90 108.33 m-2-Mg2(dobpdc) 159.96 206.80 167.45 105.62 i-2-Mg2(dobpdc) 159.71 206.76 166.64 105.73 m2m-Mg2(dobpdc) 161.88 214.75 164.53 106.37 pn-Mg2(dobpdc) 164.74 214.58 175.04 104.59 dmpn-Mg2(dobpdc) 159.14 208.16 159.82 109.43 (R,R)dach-R-Mg2(dobpdc) 159.69 207.18 163.44 108.44 e-2-e-Mg2(dobpdc) 161.68 203.62 174.99 106.44 343-Mg2(dobpdc)**	(ppm) (ppm) (ppm) (ppm) (ppm) 159.97 204.68 166.90 108.33 m-2- Mg2(dobpdc) 159.40 159.96 206.80 167.45 105.62 i-2- Mg2(dobpdc) 161.05 159.71 206.76 166.64 105.73 m2m- Mg2(dobpdc) 162.57 161.88 214.75 164.53 106.37 pn- Mg2(dobpdc) 165.27 164.74 214.58 175.04 104.59 dmpn Mg2(dobpdc) 159.20 159.14 208.16 159.82 109.43 (R,R)dach-R- Mg2(dobpdc) 159.16 159.69 207.18 163.44 108.44 e-2-e- Mg2(dobpdc) 161.25 161.68 203.62 174.99 106.44 343- Mg2(dobpdc)** 162.54	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{*}structure at full CO_2 capacity 1

^{**}structure at half CO₂ capacity¹

Supplementary Table 2b. - The 13 C parameters obtained from DFT calculations on mixed adsorption structures. For each structure there are two 13 C environments.

*This structure formed an alternative mixed structure consisting of one chain of ammonium carbamates, and one chain of carbamic acids.

Compound	Environment	$\delta_{ m iso}$	δ_{11}	δ_{22}	δ_{33}
		(ppm)	(ppm)	(ppm)	(ppm)
pn-Mg ₂ (dobpdc)	M-OCO	157.95	203.25	163.49	107.10
	СООН	157.16	231.31	130.05	110.13
mpn- Mg ₂ (dobpdc)	M-OCO	157.33	202.51	162.75	106.74
wig ₂ (doopde)	СООН	157.15	231.83	129.90	109.71
dmpn- Mg ₂ (dobpdc)	M-OCO	158.20	201.08	166.88	106.65
wig ₂ (doopde)	СООН	157.80	232.72	134.92	105.75
dmpn- Zn ₂ (dobpdc)	M-OCO	158.01	201.17	165.01	107.84
ZII ₂ (doopde)	СООН	158.19	231.23	135.79	107.53
ii2- Mg ₂ (dobpdc)*	M-OCO	162.85	214.15	166.15	108.24
wig/(doopde)	М-ОСОН	158.92	215.67	157.03	104.07

Supplementary Table 2c. - The ¹³C parameters obtained from DFT calculations on carbamic acid pair structures. The carbamic acid pairs show two different carbon environments. This is due to them being unsymmetric with respect to the organic linker backbone. In this table COOH^a refers to the part of the pair with the C=O bond pointing towards the backbone. The COOH^b structure refers to the part of the pair with the C-OH pointing towards the backbone.

Compound	Environment	δ_{iso}	δ_{11}	δ_{22}	δ_{33}
		(ppm)	(ppm)	(ppm)	(ppm)
pn-Mg ₂ (dobpdc)	COOHª	161.85	214.58	166.95	104.03
pn-Mg ₂ (dobpdc)	COOH ^b	161.00	228.83	146.52	107.63
mpn- Mg ₂ (dobpdc)	COOH ^a	161.64	213.46	168.07	103.37
mpn- Mg ₂ (dobpdc)	COOHb	160.76	228.91	145.98	107.39
dmpn- Mg ₂ (dobpdc)	COOH ^a	161.87	216.68	165.78	103.15
dmpn- Mg ₂ (dobpdc)	COOHb	161.23	230.39	146.52	106.79
dmpn- Zn ₂ (dobpdc)	COOHª	162.33	215.30	168.40	103.29
dmpn- Zn ₂ (dobpdc)	COOHb	161.66	229.99	148.26	106.73

Supplementary Table 3a. - The $^{17}{\rm O}$ NMR parameters obtained from DFT calculations on ammonium carbamate chain structures.

Bold letters are used to indicate the oxygen investigated.

Compound	Site	δ_{iso}	C_Q	η_Q	Compound	Site	δ_{iso}	C_Q	η_Q
		(ppm)	(MHz)				(ppm)	(MHz)	
e-2-	M-OCO	174.09	-7.30	0.91	m-2-	M -O CO	176.03	-7.31	0.96
Mg ₂ (dobpdc)	M-OCO	175.05	-7.25	0.68	Mg ₂ (dobpdc)	M-OC O	171.00	-7.32	0.67
ee-2-	M-OCO	169.10	-7.35	0.95	i-2-	M -O CO	168.78	-7.56	0.43
Mg ₂ (dobpdc)	M-OCO	185.47	-6.97	0.72	Mg ₂ (dobpdc)	M-OC O	224.16	7.94	0.50
mm-2-	M -O CO	177.14	-7.37	0.93	m-2-m-	M -O CO	151.18	-7.64	0.97
Mg ₂ (dobpdc)	M-OC O	164.95	-7.15	0.66	Mg ₂ (dobpdc)	M-OC O	194.47	-6.92	0.88
dmen-	M -O CO	160.17	7.68	0.96	pn-	M -O CO	158.73	7.75	0.73
Mg ₂ (dobpdc)	M-OCO	202.07	6.48	0.91	Mg ₂ (dobpdc)	M-OC O	195.46	6.74	0.84
mpn-	M-OCO	161.76	7.64	0.88	dmpn-	M -O CO	172.59	-7.63	0.94
Mg ₂ (dobpdc)	M-OC O	199.02	6.73	0.91	Mg ₂ (dobpdc)	M-OC O	192.79	-6.93	0.98
dmpn-	M-OCO	170.73	-8.28	0.91	e2e-	M -O CO	161.16	-7.61	0.93
Zn ₂ (dobpdc)	M-OC O	192.46	-6.90	0.95	Mg ₂ (dobpdc)	M-OC O	200.56	-7.04	0.98
343-	M-OCO	164.73	7.52	0.84	343-	M -O CO	170.73	-7.47	0.87
Mg ₂ (dobpdc)*	M-OC O	183.41	-7.11	0.72	Mg ₂ (dobpdc) **	M-OCO	188.99	-7.14	0.85
e2-	М-ОСОН	175.74	7.26	0.98					
Mg ₂ (dobpdc)***	м-осон	135.75	-7.94	0.37					

^{*}structure at full CO_2 capacity 1

^{**}structure at half CO₂ capacity¹

^{***}This structure formed a chain structure with the inserted CO₂ being protonated.

Supplementary Table 3b. - The $^{17}{\rm O}$ NMR parameters obtained from DFT calculations on mixed adsorption structures.

*This structure formed an alternative mixed structure consisting of one chain of ammonium carbamates, and one chain of carbamic acids.

Bold letters are used to indicate the oxygen investigated.

Compound	Environm	δ_{iso}	C_Q	η_{Q}	Compound	Environm	δ_{iso}	C_Q	η_Q
	ent	(ppm)	(MHz)			ent	(ppm)	(MHz)	
pn-	M- O CO	168.20	-7.57	0.98	mpn-	M- O CO	168.15	-7.54	0.98
Mg ₂ (dobpdc)	M-OC O	181.21	-7.23	0.97	Mg ₂ (dobpdc)	M-OCO	182.32	-7.24	0.96
	СООН	220.59	7.64	0.59		СООН	220.90	7.68	0.58
	соон	117.34	-8.21	0.46		СООН	118.11	-8.19	0.46
dmpn-	M- O CO	165.56	-7.56	0.96	dmpn-	M- O CO	164.87	-8.23	0.92
Mg ₂ (dobpdc)	M-OC O	182.68	-7.23	0.87	Zn ₂ (dobpdc)	M-OCO	185.12	-7.15	0.89
	СООН	229.71	7.87	0.55		СООН	222.77	7.78	0.59
	соон	130.65	-8.18	0.39		СООН	125.23	-8.22	0.42
ii-2-	M- O CO	175.77	-7.36	0.93					
Mg ₂ (dobpdc)*	Ig ₂ (dobpdc)* M-OCO 203.04 6.62 0.98								
	СООН	179.35	7.53	0.90					
	СООН	136.95	-8.24	0.32					

Supplementary Table 3c.- The ¹⁷O NMR parameters for carbamic acid structures. The carbamic acid pairs also show two different carbon environments and hence four different oxygen environments. This is due to them being unsymmetric with respect to the organic linker backbone. In this table COOH^a refers to the part of the pair with the C=O bond pointing towards the backbone. The COOH^b structure refers to the part of the pair with the C-OH pointing towards the backbone. Bold letters are used to indicate the oxygen investigated.

Compound	Site	δ_{iso}	C_Q	η_{Q}	Compound	Site	δ_{iso}	C_Q	η_{Q}
		(ppm)	(MHz)				(ppm)	(MHz)	
pn-	C O OH ^a	193.07	-6.99	0.95	mpn-	C O OH ^a	191.84	-7.04	0.92
Mg ₂ (dobpdc)	CO OH ^a	122.17	-8.22	0.34	Mg ₂ (dobpdc)	CO OH ^a	120.16	-8.22	0.34
	C O OH ^b	188.07	6.79	0.94		C O OH ^b	185.29	6.78	0.94
	CO OH ^b	131.52	-8.15	0.42		CO OH ^b	132.22	-8.11	0.39
dmpn-	C O OH ^a	196.48	-6.94	0.97	dmpn	C O OH ^a	194.26	-6.98	0.96
Mg ₂ (dobpdc)	CO OH ^a	123.71	-8.31	0.39	Zn ₂ (dobpdc)	CO OH ^a	124.24	-8.26	0.37
	C O OH ^b	196.61	6.78	0.92		C O OH ^b	194.64	6.73	0.95
	CO OH ^b	133.41	-8.11	0.40		CO OH ^b	134.35	-8.06	0.40

Supplementary Figure 2. - 2D MQMAS ¹⁷**O NMR (20.0 T, 14 KHz MAS) spectra of selected samples**. Only three out of the four expected peaks for chemisorbed CO₂ were detected for (dmpn)-Mg₂(dobpdc) and (ii-2)-Mg₂(dobpdc). However, it is clear by fitting the 1D ¹⁷O MAS spectra (Figure 3b, Figure 4) that an additional signal at lower chemical shifts is needed to fully deconvolute the lineshape for these materials. Although, a fourth signal is not observed in the MQMAS spectrum, likely owing to the low efficiency of multiple quantum excitation for nuclei with large quadrupolar couplings, this signal can be clearly resolved in the ¹⁷O MAS spectrum at 20.0 T and 23.5 T (Figure 3, SI Figure S3, Figure 4a, SI Figure S7). In all cases, peaks from physisorbed CO₂ are not observed in the MQMAS spectra as these species are likely to have negligible quadrupolar couplings.

Supplementary Figure 3. - The ¹⁷O NMR spectra of CO₂-dosed (dmpn)-Mg₂(dobpdc). The spectrum was taken at 23.5 T with a 20 kHz MAS rate for an independent sample to that shown in the main text at 20.0 T.

Supplementary Figure 4. - Simultaneous two field fitting of the ¹⁷O NMR spectra of (dmpn)-Mg₂(dobpdc) using the program ssNake.² a) The resulting fit for the ¹⁷O NMR data obtained at 850 MHz (20.0 T, 14kHz MAS). b) The resulting fit for the ¹⁷O NMR data obtained at 1 GHz (23.5 T, 20.0 kHz). The peaks corresponding to physisorbed CO₂ were included in the fit to account for the lower shift intensities in the 850 MHz spectrum. This was done assuming two different environments for physisorbed CO₂. This fit did not account for the physisorbed peaks seen in the 1 GHz spectra indicating that other factors beyond field dependence are needed to describe the physisorbed peaks seen.

(a) (ee-2)-Mg₂(dobpdc)

(b) (i-2)-Mg₂(dobpdc)

(c) $(e-2)-Mg_2(dobpdc)$

Supplementary Figure 5. - Schematics of the DFT optimised ammonium carbamate chain structures for CO_2 -dosed (diamine)- Mg_2 (dobpdc) samples. a) (ee-2)- Mg_2 (dobpdc)- CO_2 showing H-bonding to the "free" oxygen, b) (i-2)- Mg_2 (dobpdc)- CO_2 showing H-bonding to the "inserted" oxygen, and c) (e-2)- Mg_2 (dobpdc)- CO_2 showing H bonding to the "free" oxygen and H-bonding between adjacent carbamate chains.

Supplementary Figure 6. The alternative structure for CO₂ dosed (e-2)-Mg₂(dobpdc) in which hydrogen bonding is taking place to the "free" oxygen. Upon geometry optimisation, the hydrogen-bonded proton moved resulting in a structure in which the CO₂ was present as carbamic acid.

Supplementary Table 4. The experimental and DFT calculated NMR parameters for CO₂ dosed (e-2)-Mg₂(dobpdc). In addition to the DFT structure shown in the main text (Figure 4b, Table 1), two alternative structures were investigated. The carbamic acid structure is the structure resulting from geometry optimisation of the structure Figure S6. The second structure is the same structure as in Figure S6, *i.e.*, without geometry optimisation. This second structure had the same hydrogen bonding arrangement as CO₂ dosed (ee-2)-Mg₂(dobpdc) (Figure S5a) and show a better fit between DFT calculated and experimental parameters. Bold letters are used to indicate the oxygen investigated.

Compound	DFT structure	DFT structure $\delta^{17}O$ (ppm)		η_{Q}
		Experiment (DFT)	Experiment (DFT)	Experiment (DFT)
(e-2)–Mg ₂ (dobpdc)	Carbamic acid	M- O CO: 171 (175)	6.9 (7.3)	1.0 (1.0)
		M-OC O : 197 (135)	6.3 (7.9)	0.9 (0.4)
(e-2)–Mg ₂ (dobpdc)	Figure S6	M- O CO: 171 (176)	6.9 (6.9)	1.0 (0.8)
	without geometry optimisation	M-OC O : 197 (188)	6.3 (7.3)	0.9 (0.8)

Supplementary Figure 7. - The ^{17}O NMR spectra of CO_2 -dosed (ii-2)-Mg₂(dobpdc). The spectrum was taken at 20.0 T with a 14 kHz MAS rate for an independent sample to that shown in the main text at 23.5 T.

Supplementary Figure 8. - Simultaneous two field fitting of the ¹⁷O NMR spectra of (ii-2)-Mg₂(dobpdc) using the program ssNake.² a) The resulting fit for the ¹⁷O NMR data obtained at 850 MHz (20.0 T, 14kHz MAS). b) The resulting fit for the ¹⁷O NMR data obtained at 1 GHz (23.5 T, 20.0 kHz).

Supplementary Figure 9. - Quantitative solution 1H NMR (400 MHz) spectra of acid-digested (diamine)-Mg₂(dobpdc) samples.

Supplementary Table 5. - Stoichiometries and diamine loadings of amine-functionalised frameworks determined by $^1\mathrm{H}$ solution-state NMR of acid-digested samples.

Diamine	Formula	Diamine loading
i-2	Mg ₂ (dobpdc)(i-2) _{1.92}	96%
e-2	Mg ₂ (dobpdc)(e-2) _{2.09}	104%
ee-2	Mg ₂ (dobpdc)(ee-2) _{1.89}	95%
dmpn – 20.0 T sample	Mg ₂ (dobpdc)(dmpn) _{2.02}	101%
dmpn – 23.5 T sample	Mg ₂ (dobpdc)(dmpn) _{2.00}	100%
ii-2 – 20.0 T sample	Mg ₂ (dobpdc)(ii-2) _{1.88}	94%
ii-2 – 23.5 T sample	Mg ₂ (dobpdc)(ii-2) _{2.04}	102%

Supplementary Figure 10. - PXRD patterns of $Mg_2(dobpdc)$ and the investigated (diamine)- $Mg_2(dobpdc)$ samples. The PXRD was taken using a Malvern Panalytical Empyrean instrument equipped with an X'celerator Scientific detector, using non-monochromated Cu K α radiation ($\lambda = 1.5418$ Å). Each sample was placed in a glass sample holder and measured in reflection geometry with sample spinning. The data was collected at room temperature over a 2 θ range of 2-40°, with an effective step size of 0.01 – 0.02° and a total collection time of 45 min.

Supplementary Table 6. – Basic characterisation of amine-grafted silicas. Elemental analysis and CO_2 uptake by thermogravimetric analysis experiments in 15% CO_2/N_2 .

Sample name	Organic cont ent (%)	Nitrogen content (mmol/g)	CO ₂ Adsorption (mmol/g)				CO ₂ /N	
			25 °C	50 °C	75 °C	25 °C	50 °C	75 °C
SBA-15	0	0	0.12	0.05	0.02	-	-	-
Tri-Si	30.43	6.34	1.35	1.66	1.50	0.21	0.26	0.24
Pr-Si	20.83	3.59	1.43	1.31	1.11	0.40	0.36	0.31

A Bicarbonate

C Carbamic Acid

E Carbamic acid + H bonding

G Bicarbonate + H bonding

B Silyl propyl

D Carbamate

F Carbamic acid + H₂O

H Ditethered Carbamic Acid

Supplementary Figure 11. – Amine-grafted silica structures investigated by cluster calculations in Gaussian software.

Supplementary Table 7. – The $^{17}{\rm O}$ NMR chemical shifts calculated for amine-grafted silica structures shown in Figure S11.

Bold letters are used to indicate the oxygen investigated.

	Structure	O site	¹⁷ Ο δ _{calc}	¹⁷ O C _Q	¹⁷ O η _Q	¹⁷ Ο δ _{calc,obs}
			(ppm)	/MHz		(ppm)
	Bicarbonate	C=O	178.2	7.8	0.75	154.4
A		C- O	174.3	8.4	0.56	149.1
		С- О Н	136.7	9.6	0.78	100.2
	Silyl Propyl	C-O-Si	138.1	9.3	0.13	110.0
В		C=O	212.1	8.4	0.50	187.4
	Carbamic Acid	C=O	243.9	8.7	0.39	218.1
C		С- О Н	120.7	9.8	1.00	79.3
	Carbamate	C- O	187.1	7.7	0.98	161.9
D		C=O	191.1	7.6	0.69	169.1
	Carbamic Acid +	С- О Н	117.8	10.1	1.00	73.7
E	H bonding	C=O				
			208.2	8.2	0.62	183.3
	Carbamic Acid	С- О Н	118.8	10.0	1.00	74.8
F	+H ₂ O	C=O	205.3	8.3	0.64	179.9
	Bicarbonate + H	С- О Н	120.0	9.9	1.00	77.6
G	bonding	C-OH-NH2	140.5	8.7	1.00	107.8
		C=O				
			229.9	8.2	0.39	206.8
	Ditethered	С- О Н	98.4	10.0	1.00	54.9
H	Carbamic Acid	C= O	251.4	8.8	0.24	225.8

Supplementary References

- (1) Kim, E. J.; Siegelman, R. L.; Jiang, H. Z. H.; Forse, A. C.; Lee, J. H.; Martell, J. D.; Milner, P. J.; Falkowski, J. M.; Neaton, J. B.; Reimer, J. A.; Weston, S. C.; Long, J. R. Cooperative Carbon Capture and Steam Regeneration with Tetraamine-Appended Metal-Organic Frameworks. *Science* **2020**, *369* (6502). https://doi.org/10.1126/science.abb3976.
- van Meerten, S. G. J.; Franssen, W. M. J.; Kentgens, A. P. M. SsNake: A Cross-Platform Open-Source NMR Data Processing and Fitting Application. *Journal of Magnetic Resonance* **2019**, *301*, 56–66. https://doi.org/10.1016/J.JMR.2019.02.006.
- (3) Martell, J. D.; Porter-Zasada, L. B.; Forse, A. C.; Siegelman, R. L.; Gonzalez, M. I.; Oktawiec, J.; Runčevski, T.; Xu, J.; Srebro-Hooper, M.; Milner, P. J.; Colwell, K. A.; Autschbach, J.; Reimer, J. A.; Long, J. R. Enantioselective Recognition of Ammonium Carbamates in a Chiral Metal-Organic Framework. *Journal of the American Chemical Society* **2017**, *139* (44). https://doi.org/10.1021/jacs.7b09983.
- (4) Čendak, T.; Sequeira, L.; Sardo, M.; Valente, A.; Pinto, M. L.; Mafra, L. Detecting Proton Transfer in CO2 Species Chemisorbed on Amine-Modified Mesoporous Silicas by Using 13C NMR Chemical Shift Anisotropy and Smart Control of Amine Surface Density. *Chemistry - A European Journal* 2018, 24 (40). https://doi.org/10.1002/chem.201800930.