

Redes de Computadores

Routing Estático, Dinâmico e Inter-VLAN

Luísa Caeiro, Jorge Martins e Manuel Ferreira

(adaptação dos slides CISCO CCNA Routing and Switching)

ESTSetúbal (v1)

Encaminhamento de Pacotes num Router

0

0

192.168.2.0/24

192.168.3.0/24

192.168.4.0/24

Dir. Connect.

Dir. Connect.

192.162.3.2

Fa/0/0

\$0/0/0

\$0/0/0

Encaminhamento de Pacotes num Router

Escolha do melhor Caminho

Quando existem alternativas de encaminhamento, os routers selecionam a melhor rota com base na:

- Distância administrativa reflete a "fiabilidade" da fonte de informação da rota;
- Métrica da rota mede a "distância" para a rede de destino. A métrica mais baixa é a escolhida.

Como conhece o Router as redes remotas?

- Routing estático rotas configuradas manualmente pelo administrador da rede. Utilizadas por exemplo em redes acessíveis por uma única rota (rede stub).
- Routing Dinâmico as redes remotas são aprendidas através da troca de informação entre routers.

Os protocolos de Routing Dinâmico utilizam métricas diferentes:

- Routing Information Protocol (RIP) Número de Saltos (Hop Count).
- *Open Shortest Path First (OSPF)* Custo baseado da largura de banda acumulada.
- Enhanced Interior Gateway Routing Protocol (EIGRP) Custo baseado na Largura de Banda, Atraso, Carga de Tráfego e Confiança da Rota.

5

Como conhece o Router as redes remotas?

- As rotas estáticas têm distância administrativa 1.
- Os protocolos de **Routing Dinâmico** utilizam métricas diferentes:
 - Routing Information Protocol (RIP) Número de Saltos (Hop Count).
 - *Open Shortest Path First (OSPF)* Custo baseado da largura de banda acumulada.
 - Enhanced Interior Gateway Routing Protocol (EIGRP) Custo baseado na Largura de Banda, Atraso, Carga de Tráfego e Confiança da Rota.

6

Distância Administrativa por Omissão

Route Source	Administrative Distance
Connected	0
Static	1
EIGRP summary route	5
External BGP	20
Internal EIGRP	90
IGRP	100
OSPF	110
IS-IS	115
External EIGRP	170
Internal BGP	200

Balanceamento de Carga

- Quando existem diversas rotas alternativas com a mesma métrica, o router envia pacotes em sequência para todas elas.
- Este balanceamento ocorre quer nas rotas aprendidas dinamicamente, quer nas rotas estáticas.

8

Tabela de Routing


```
RI#show ip routs

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia -

IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

D 10.1.1.0/24 [90/2170112] via 209.165.200.226, 00:00:05,
```


Configuração de Rotas Estáticas

- As rotas estáticas são uma forma de "ensinar" aos routers como chegar a redes remotas. Este tipo de rotas tem as seguintes caraterísticas:
 - Definem um caminha explícito entre dois routers
 - Se a topologia mudar, têm de se alterar manualmente as rotas
 - São seguras, uma vez que pacotes externos ao router não as alteram
 - Pode ser configurada uma rota por omissão para o router.

Sintaxe:

```
R2(config)# ip route network-address network-mask {next-hop-ip | exit-interface} (Rota "Normal")

R2(config)# ip route 0.0.0.0 0.0.0 {next-hop-ip | exit-interface} (Rota por Omissão)
```


Utilização das Rotas por Omissão

- Este tipo de rotas são utilizadas em dois casos típicos:
 - Dentro de uma intranet, quando um router apenas tem um caminho da saída (Stub Network).
 - Configuração da rota no Router de saída da rede, ligado ao ISP.

Configuração de Rotas Estáticas


```
R1(config)# ip route 192.168.3.0 255.255.255.0 F0/0
R1(config)# ^Z
R1#
R1# show ip route | begin Gateway
Gateway of last resort is not set
     192.168.1.0/24 is directly connected, FastEthernet0/0
     192.168.2.0/24 is directly connected, FastEthernet0/1
     192.168.3.0/24 is directly connected, FastEthernet0/0
R1#
```

12

Configuração da Rota por Omissão


```
R1(config)# ip route 0.0.0.0 0.0.0 F0/0
R1(config)# ^Z
R1#
R1# show ip route | begin Gateway
Gateway of last resort is 0.0.0.0 to network 0.0.0.0

C 192.168.1.0/24 is directly connected, FastEthernet0/0
C 192.168.2.0/24 is directly connected, FastEthernet0/1
S* 0.0.0.0/0 is directly connected, FastEthernet0/0
```


Routing Dinâmico

Routing Dinâmico

Os routers CISCO suportam os seguintes protocolso de routing dinâmicos:

- OSPF Open Shortest Path First
- EIGRP Enhanced Interior Gateway Routing Protocol
- IS-IS Intermediate System-to-Intermediate System
- RIP Routing Information Protocol

Routing Dinâmico

O protocolo mais utilizado atualmente é o OSPF.

Agumas limitações dos restantes são:

• EIGRP: Proprietário da CISCO

• RIP: Tem como métrica o número de saltos

• IS-IS: Complexo de configurar

Tabela de Routing do OSPF


```
R1# sh ip route
```


O que é o routing Inter-VLAN?

- Cada VLAN é um único domínio de broadcast e uma sub-rede IP única.
- Computadores em VLANs diferentes, por omissão, não podem comunicar entre si.
- Para que as VLANs comuniquem entre si é necessário um router para interligar domínios de broadcast separados e sub-redes IP diferentes.

Inter-VLAN routing é o processo de encaminhamento de tráfego de uma VLAN para outra.

Métodos de Routing Inter-VLAN

- Existem 3 métodos para encaminhar o tráfego entre VLANs:
 - Tradicional.
 - Router-on-a-stick.
 - Baseado em Switch.

Cada VLAN fica ligada a uma interface do router.

- O routing tradicional exige que os routers tenham múltiplas interfaces físicas para facilitar o inter-VLAN routing.
- Cada interface é configurada com um endereço IP da subrede associada à VLAN particular a que está ligada.
- Nesta configuração, os dispositivos de rede usam o router como um gateway para aceder aos dispositivos ligados a outras VLANs.

- Tem limitações devido à utilização de interfaces físicas.
- À medida que o número das aumenta na rede, a abordagem de ter uma interface por VLAN torna-se inadequada devido hardware do router.

- Os routers têm um número limitado de interfaces físicas que podem usar para ligar VLANs diferentes.
- Os custos associados a adicionar interfaces Ethernet num router são elevados.

- Tem lin utilizaçã físicas.
- À medicaumenta abordag por VLA inadeque hardwar
- Os route usar par

• Os custos associados a adicionar interfaces Ethernet num router são elevados.

R1#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

```
R1 (config) #interface fa0/0
```

R1 (config-if) #ip address 172.17.10.1 255.255.255.0

R1 (config-if) #no shutdown

```
R1 (config-if) #interface fa0/1
```

R1 (config-if) #ip address 172.17.30.1 255.255.255.0

R1 (config-if) #no shutdown

• Uma Interface do router para todas as VLANs.

- Funcionalmente é semelhante ao modelo de inter-VLAN routing tradicional.
- Subinterfaces:
 - Ultrapassam as limitações de hardware do router.
 - São interfaces virtuais baseadas em software atribuídas a interfaces físicas.
 - Cada subinterface está configurada com o um endereço IP, máscara de sub-rede, e atribuição de uma única VLAN.
 - Associadas a uma ligação trunk a um switch.

- Configuração das Subinterfaces:
 - Semelhante à configuração de interfaces físicas:
 - Criar a subinterface.
 - Atribuir uma VLAN.
 - Atribuir um endereço IP.
 - Ativar a interface.

- Criação da subinterface:
 - A designação da subinterface é sempre a interface física, seguida por um ponto e o número da subinterface.
 - O número da subinterface é configurável, mas tipicamente é o número da VLAN.

R1 (config) #interface [interface].nn

NOTA: A VLAN de gestão deve ser também configurada se se quiser usar em múltiplos switches que não estejam diretamente ligados por trunks.

- Associação a uma VLAN:
 - Antes de atribuir um endereço IP, a interface deve ser configurada para operar numa VLAN específica usando o encapsulamento apropriado.

R1(config-subif)#encapsulation dot1q vlan-id

- Atribuição de endereço IP:
 - O endereço IP atribuído será o default gateway da VLAN.

```
R1(config-subif)#ip address [address] [mask]
```


- Ativação da interface:
 - As Subinterfaces não são ativadas individualmente.
 - Quando se ativa a interface física, todas as subinterfaces associadas ficam ativas.

R1(config-if)#no shutdown

• Configuração de Subinterfaces:

```
R1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R1 (config) #interface fa0/0.10
                                                   VLAN 10
R1 (config-subif) #encapsulation dot1q 10
R1 (config-subif) #ip address 172.17.10.1 255.255.255.0
R1 (config-subif) #interface fa0/0.30
                                                   VLAN 30
R1 (config-subif) #encapsulation dot1q 30
R1 (config-subif) #ip address 172.17.30.1 255.255.255.0
R1 (config-subif) #interface fa0/0
                                     Ativa Interfaces
R1 (config-if) #no shutdown
%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up
%LINK-5-CHANGED: Interface FastEthernet0/0.10, changed state to up
%LINK-5-CHANGED: Interface FastEthernet0/0.30, changed state to up
R1 (config-if) #end
R1#
```


• Configuração de Subinterfaces:

```
R1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R1 (config) #interface fa0/0(10)
R1 (config-subif) #encapsulation dot1q 10
R1 (config-subif) #ip address 172.17 (10.1 255.255.255.0
R1 (config-subif) #interface fa0/0.30
                                                Planeamento!
R1 (config-subif) #encapsulation dot1q 30
R1 (config-subif) #ip address 172.17(30)1 255.255.255.0
R1 (config-subif) #interface fa0/0
R1 (config-if) #no shutdown
%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up
%LINK-5-CHANGED: Interface FastEthernet0/0.10, changed state to up
%LINK-5-CHANGED: Interface FastEthernet0/0.30, changed state to up
R1 (config-if) #end
R1#
```


Layer 3 Switch Inter-VL

• Usa Switch Virtual Interfaces (SVI) para voltar a marcar a frame.

Comparação entre Interface e subinterface de um Router

Physical Interface	Subinterface
One physical interface per VLAN	One physical interface for many VLANs
No bandwidth contention	Bandwidth contention
Connected to access mode switch port	Connected to trunk mode switch port
More expensive	Less expensive
Less complex connection configuration	More complex connection configuration

Quando se junta tudo

• Inter-VLAN Routing Tradicional

```
S1#show vlan brief
VLAN Name
                                       Status
                                                 Ports
     default
                                                 Fa0/1, Fa0/2, Fa0/3, Fa0/7
1
                                       active
                                                 Fa0/8, Fa0/9, Fa0/10, Fa0/12
                                                 Fa0/13, Fa0/14, Fa0/15, Fa0/16
                                                 Fa0/17, Fa0/18, Fa0/19, Fa0/20
                                                 Fa0/21, Fa0/22, Fa0/23, Fa0/24
                                                 Gig1/1, Gig1/2
10
                                                 Fa0/4, Fa0/11
     VLAN0010
                                       active
     VLAN0030
                                                 Fa0/5, Fa0/6
30
                                       active
1002 fddi-default
                                       active
1003 token-ring-default
                                       active
1004 fddinet-default
                                       active
1005 trnet-default
                                       active
S1#
```


• Inter-VLAN Routing Tradicional

172.17.10.21

Routing Inter-VLAN, Estatico e Dinamico

```
R1#show ip route
Codes: C - connected, S - static.....
<output omitted>

Gateway of last resort is not set

172.17.0.0/24 is subnetted, 2 subnets
C 172.17.10.0 is directly connected, FastEthernet0/0
C 172.17.30.0 is directly connected, FastEthernet0/1
R1#
```

172.17.30.23

38

Configuração do Rout

```
VLAN 10
                                                                                 VLAN 30
                                                                    ➤ F0/4
                                                                          F0/5
S1#configure terminal
Enter configuration commands, one per line. End wit
                                                                          F0/6
                                                                     F0/11
S1 (config) #vlan 10
S1 (config-vlan) #vlan 30
                                                                                 PC3
S1 (config-vlan) #exit
S1 (config) #interface fa0/11
                                                              172.17.10.21
                                                                               172.17.30.23
S1 (config-if) #switchport access vlan 10
S1 (config-if) #interface fa0/4
S1 (config-if) #switchport access vlan 10
S1 (config-if) #interface fa0/6
S1 (config-if) #switchport access vlan 30
S1 (config-if) #interface fa0/5
S1 (config-if) #switchport access vlan 30
S1 (config-if) #end
%sys-5-config I: co R1#configure terminal
S1#
                     R1 (config) #interface fa0/0
                     R1 (config-if) #ip address 172.17.10.1 255.255.255.0
                     R1 (config-if) #no shutdown
                     R1 (config-if) #interface fa0/1
                     R1 (config-if) #ip address 172.17.30.1 255.255.255.0
                     R1 (config-if) #no shutdown
                     R1 (config-if) #end
  Routing Inter-VLAN, Estático e
                     R1#
```

172.17.10.1/24

F0/0

172.17.30.1/24

• Inter-VLAN Routing Router-on-a-stick

S1#configure terminal

VLANs

```
S1#show vlan brief
                                               Ports
VLAN Name
                                     Status
                                                 ----- Trunk in Native
                                               Fa0/1, Fa0/2 V AN
    default
                                     active
1
                                               Fa0/5, Fa0/7, Fa0/0, Fa0/9
                                               Fa0/10, Fa0/12, Fa0/13, Fa0/14
                                               Fa0/15, Fa0/16, Fa0/17, Fa0/18
                                               Fa0/19, Fa0/20, Fa0/21, Fa0/22
                                               Fa0/23, Fa0/24 Cial/1 Cig1/2
                                               Fa0/11 VLANS
10
    VLAN0010
                                     active
                                               Fa0/6
30
    VLAN0030
                                     active
1002 fddi-default
                                     active
1003 token-ring-default
                                     active
1004 fddinet-default
                                     active
1005 trnet-default
                                     active
S1 #
```


• Inter-VLAN Routing Router-on-a-stick

Subinterfaces

F0/0.10: 172.17.10.1/24

```
R1#show ip route
Codes: C - connected, S - static....
<output omitted>

Gateway of last resort is not set

172.17.0.0/24 is subnetted, 2 subnets
C 172.17.10.0 is directly connected, FastEthernet0/0.10
C 172.17.30.0 is directly connected, FastEthernet0/0.30
R1#
```

172.17.10.21

172.17.30.23