Satisfactibilidad y modelación

Clase 5

IIC 1253

Prof. Pedro Bahamondes

Outline

Satisfactibilidad

Modelando con lógica

Epílogo

Satisfactibilidad

Definición

Una fórmula φ es satisfactible si existe una valuación σ tal que $\sigma(\varphi) = 1$.

Ejemplo

Las siguientes fórmulas son satisfactibles:

$$(p \lor q) \to r$$
$$p \to \neg p$$

Las siguientes fórmulas no son satisfactibles:

$$p \land \neg p$$
$$(p \lor q) \leftrightarrow \neg (p \lor q)$$

Una fórmula es satisfactible si hay algún "mundo" en el cual es verdadera

El problema de satisfactibilidad

Problema de satisfactibilidad (SAT)

Sea φ una fórmula proposicional. El **problema de satisfactibilidad** consiste en determinar si φ es satisfactible o no.

Este es un problema central en computación

- Permite resolver problemas fuera de la lógica...
- ... usando modelación en lógica proposicional

¿Es un problema difícil? ¿Cómo se resuelve?

Objetivos de la clase

- □ Comprender el concepto de satisfactibilidad de fórmulas y conjuntos
- □ Aplicar lógica para modelar problemas

Outline

Satisfactibilidad

Modelando con lógica

Epílogo

Ejercicio

Sea M un mapa conformado por n países. Decimos que M es 3-coloreable si se pueden pintar todos los países con 3 colores sin que ningún par de países adyacentes tenga el mismo color. En otras palabras, los países vecinos deben tener colores distintos.

Dado un mapa M, construya una fórmula $\varphi \in \mathcal{L}(P)$ tal que M es 3-coloreable si y sólo si φ es satisfactible.

La fórmula φ debe **codificar** los requisitos y estructura del problema

Ejercicio (mapa 3-coloreable)

Sea M el mapa. Consideremos la lista de países $\{1, 2, ..., n\}$ y una lista de pares de países adyacentes $A = \{(i, j), (k, m), ...\}$.

Seguiremos la siguiente estrategia para resolver el problema

- 1. Definición de variables proposicionales
 - Variables predefinidas por el problema
 - Variables que hay que asignar
- 2. Construcción de restricciones a través de fórmulas proposicionales
- 3. Demostración de que φ cumple lo pedido (si y solo si)

Ejercicio (mapa 3-coloreable)

Primero, definimos las variables proposicionales. Usamos dos tipos de variables:

■ Para $1 \le i, j \le n$ definimos

$$p_{ij} = \begin{cases} 1 & \text{si } i \text{ es adyacente con } j \\ 0 & \text{si no} \end{cases}$$

Observamos que cada p_{ij} se conoce de antemano una vez que conocemos el mapa M. Debemos **inicializarlas**.

■ Análogamente, para $1 \le i \le n$ definimos

$$r_i$$
 b_i g_i

que valen 1 si el país i es pintado rojo, azul o verde respectivamente, y 0 en caso contrario. Estas variables deben ser **determinadas** para resolver el problema.

¿Qué restricciones son naturales para este problema?

Ejercicio (mapa 3-coloreable)

Para representar el problema vamos a definir φ como la conjunción de las siguientes fórmulas.

"Cada país tiene exactamente un color"

$$\varphi_{C} = \bigwedge_{i=1}^{n} \left(\left(r_{i} \vee b_{i} \vee g_{i} \right) \wedge \left(r_{i} \rightarrow \left(\neg b_{i} \wedge \neg g_{i} \right) \right) \wedge \left(b_{i} \rightarrow \left(\neg r_{i} \wedge \neg g_{i} \right) \right) \right) \wedge \left(g_{i} \rightarrow \left(\neg r_{i} \wedge \neg b_{i} \right) \right)$$

"Países adyacentes tienen colores distintos"

$$\varphi_{D} = \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{n} \left(p_{ij} \to \left(\left(r_{i} \to \neg r_{j} \right) \land \left(b_{i} \to \neg b_{j} \right) \land \left(g_{i} \to \neg g_{j} \right) \right) \right)$$

Ejercicio (mapa 3-coloreable)

 $lue{}$ Inicializamos las variables conocidas por la instancia M del problema

$$\varphi_M = \bigwedge_{(i,j)\in A} p_{ij} \wedge \bigwedge_{(i,j)\notin A} \neg p_{ij}$$

Entonces, nuestra fórmula será la conjunción de las fórmulas anteriores:

$$\varphi = \varphi_C \wedge \varphi_D \wedge \varphi_M$$

Ahora demostraremos que M es 3-coloreable si y sólo si φ es satisfactible.

Debemos demostrar dos direcciones

Ejercicio (mapa 3-coloreable)

(⇒) **PDQ** Si M es 3-coloreable, entonces φ es satisfactible.

Supongamos que M es 3-coloreable. Luego, existe una coloración válida para M.Construimos una valuación σ según

$$\sigma(p_{ij}) = \begin{cases} 1 & \text{si } i, j \text{ son adyacentes en } M \\ 0 & \text{en otro caso} \end{cases}$$

$$\sigma(r_i) = \begin{cases} 1 & \text{si } i \text{ es rojo en la coloración de } M \\ 0 & \text{en otro caso} \end{cases}$$

$$\sigma(b_i) = \begin{cases} 1 & \text{si } i \text{ es azul en la coloración de } M \\ 0 & \text{en otro caso} \end{cases}$$

$$\sigma(g_i) = \begin{cases} 1 & \text{si } i \text{ es verde en la coloración de } M \\ 0 & \text{en otro caso} \end{cases}$$

Esta dirección consiste en construir una valuación que satisface φ

Ejercicio (mapa 3-coloreable)

- (\Rightarrow) (continuación) Ahora verificamos que $\sigma(\varphi)$ = 1:
 - $\sigma(\varphi_C)$: para cada país i, se debe cumplir que $\sigma(r_i)$ = 1, o que $\sigma(g_i)$ = 1, o que $\sigma(b_i)$ = 1, y solo una de estas, por construcción de σ . Luego, es claro que $\sigma(\varphi_C)$ = 1.
 - $\sigma(\varphi_D)$: para cada combinación de países i,j, sabemos que $\sigma(\rho_{ij})=1$ solo cuando los países son adyacentes. Entonces, como en φ_D tenemos una implicancia, solo nos preocuparemos de los pares de países adyacentes. En el consecuente de la implicancia, sabemos que si por ejemplo $\sigma(r_i)=1$, se debe cumplir que $\sigma(r_j)=0$, dado que construimos σ a partir de una 3-coloración. Para las otras dos implicancias, sabemos que el lado izquierdo va a ser falso (por la fórmula φ_C), y por lo tanto todo el lado derecho se hace verdadero, y entonces $\sigma(\varphi_D)=1$. El análisis para cuando i es de otro color es análogo.

Ejercicio (mapa 3-coloreable)

- (⇒) (continuación)
 - $\sigma(\varphi_M)$: por construcción de σ es claro que $\sigma(\varphi_M)$ = 1, dado que la construimos precisamente como esta fórmula, asignando 1 a pares de países adyacentes y 0 a los que no.

Finalmente, como φ es la conjunción de las fórmulas anteriores, concluimos que $\sigma(\varphi) = 1$, y entonces φ es satisfactible.

La dirección opuesta comienza suponiendo que φ es satisfactible

Ejercicio (mapa 3-coloreable)

(\Leftarrow) **P.D.** Si φ es satisfactible, entonces M es 3-coloreable.

Supongamos que φ es satisfactible. Luego, existe una valuación σ tal que $\sigma(\varphi) = 1$, y por construcción $\sigma(\varphi_C) = \sigma(\varphi_D) = \sigma(\varphi_M) = 1$. Usaremos esta valuación para colorear el mapa.

En primer lugar, como $\sigma(\varphi_C)=1$, sabemos que para cada i, $\sigma(r_i\vee g_i\vee b_i)=1$, y por lo tanto cada país tiene asignado al menos un color. Sin pérdida de generalidad, supongamos que $\sigma(r_k)=1$, es decir, pintamos el país k rojo. Como también se cumple que $\sigma(r_k\to (\neg g_k\wedge \neg b_k))=1$, necesariamente $\sigma(g_k)=0$ y $\sigma(b_k)=0$, y por lo tanto cada país tiene un único color.

Esta dirección busca deducir la **existencia** de una coloración a partir de la valuación

Ejercicio (mapa 3-coloreable)

(⇐) (continuación)

En segundo lugar, como $\sigma(\varphi_M)=1$, sabemos que si i,j son adyacentes en M, $\sigma(p_{ij})=1$, y si no lo son, $\sigma(p_{ij})=0$. Ahora, en $\sigma(\varphi_D)=1$, solo nos interesa el primer caso (dado que en el segundo no podemos concluir nada de la implicancia). Tomemos entonces i,j adyacentes, y sin pérdida de generalidad supongamos que $\sigma(r_i)=1$. Como $\sigma(r_i\to\neg r_j)=1$ para todo j adyacente a i, necesariamente $\sigma(r_j)=0$, y entonces los países adyacentes no pueden estar pintados del mismo color.

Concluimos que usando los colores asignados por φ a través de r_i, g_i, b_i , podemos 3-colorear M.

En general, para modelar con lógica, consideramos:

- **Variables proposicionales de decisión**: Típicamente, modelan la decisión a tomar o la asignación a realizar. Ej: Colores de los países r_i, b_i, g_i
- Variables auxiliares: Típicamente, modelan datos conocidos del problema, se fuerza que adquieran cierto valor de verdad. Ej: Vecindad entre países p_{ij}
- Inicialización de variables: Fuerzan el valor de verdad de las variables auxiliares. Ej: Inicialización de los pij
- **Restricciones**: Relacionan las variables del problema de manera que reflejen las restricciones naturales y especificadas del problema. Ej: Distintos colores para países vecinos φ_D

Típicamente, la modelación viene acompañada de una demostración.

Otros conceptos asociados a satisfactibilidad

Definición

Una fórmula φ es una **contradicción** si no es satisfactible; es decir, para toda valuación σ se tiene que $\sigma(\varphi) = 0$.

Ejemplo

 $p \wedge \neg p$

Definición

Una fórmula φ es una **tautología** si para toda valuación σ se tiene que $\sigma(\varphi)$ = 1.

Ejemplo

 $p \vee \neg p$

 $p \leftrightarrow p$

Otros conceptos asociados a Satisfactibilidad

Definición

Una fórmula φ es una **tautología** si para toda valuación σ se tiene que $\sigma(\varphi)$ = 1.

Podemos definir la equivalencia lógica de una manera alternativa:

Teorema

Dos fórmulas $\varphi, \psi \in L(P)$ son lógicamente equivalentes si $\varphi \leftrightarrow \psi$ es una tautología.

Demuestre el teorema (★)

Outline

Satisfactibilidad

Modelando con lógica

Epílogo

Objetivos de la clase

- □ Comprender el concepto de satisfactibilidad de fórmulas y conjuntos
- □ Aplicar lógica para modelar problemas