528-24 12058

HSCT AIRFRAME MATERIALS THE BOEING PRESPECTIVE

MAY 16, 1991

DONALD L. GRANDE MANAGER - HSCT STRUCTURES

Effect of Cruise Mach Number on Maximum Takeoff Weight

RECOMMENDATIONS

72,000 HRS	60,000 HRS	30,000
TOTAL TIME	SUPERSONIC TIME	FLIGHT CYCLES

200°F TO 350°F

TEMPERATURES

CHARACTERIZING MATERIAL AGING EFFECTS

MATERIAL FAMILY "A"

MATERIAL FAMILY "A"

REAL TIME TESTING

CHACTERIZING MATERIAL AGING EFFECTS

REAL TIME CONDITIONING-COMPOSITES
REAL TIME

	I SO THERMRL				
	TEMP-TIME HIST	200°F 275°F 350°F	10K 30K 60K 90K 120K		
	LOAD & TEMP TIME HIST			ЭНО	7°59-
ه بـ	LOAD-TIME HIST	RT		CAI	BT .
E E – Z G ⊢ W	ISOTHERNAL UU ISOTHERNAL DAINTED 8 03 TIME HIST WATER	11 200°F 350°F	10K 30K 60K	TENS COMP SHEAR	200°F 275°F 350°F
	HBSUMB	ВТ			
Œ (C) :	ISOTHERMAL				-65°F RT
± ω տ	TEMP-TIME HIST LET	200°F 275°F	10K 30K 60K	SHEAR	200°F
– ⇒ w	LOAD & TEMP TIME HIST	350°F		PULL-OFF	275°F 350°F
	LOAD-TIME HIST	ВТ			
Su	I SOTHERMAL			SOLUENT	-65°F
т а л	TEMP-TIME HIST	200°F 275°F	10K 30K 60K	SHEAR	AT 200°F
Œ≅⊢	LORD & TEMP TIME HIST	350°F		RDHESION	275°F 350°F

GURE 7

REAL TIME CONDITIONING-COMPOSITES (CONCLUDED)

		B ₹	200 F	350°F	81 200°F 275°F 350°F
	0110	0 H C	SHEAR	PULL-OFF	COLOR GLOSS RAIN EROSION
	200°F 275°F 350°F				10K 20K
					200°F 275°F 350°F
	I SOTHERMAL	TEMP-TIME HIST	LOAD-TIME HIST	LOAD & TENP TIME HIST	ISOTHERNAL TEMP-TIME HIST
	ναΣ03-UI) x	

-65°F 200°F 275°F 350°F TESTING COMPRESSION KAPP, CREEP TENSION BEARING SHEAR da/dN 10K 30K 60K 90K 120K REAL TIME CONDITIONING-METALS 200°F 275°F 350°F Я TEMP-TIME HIST LORD-TIME HIST LOAD & TEAP TIME HIST ISOTHERNAL $\sigma = \omega \omega \vdash$

FIGURE 7 (CONT.)

CANDIDATE ADVANCED METALLIC MATERIALS

Mach=2.0

Advanced Aluminums

2xxx

7xxx

X7093

Aluminum-Lithiums

2090

8090

Weldalite 049

Metal-Matrix Composites (MMCs)

2009/SiC/15% to 25% w or p (modified 2124 matrix)

X2080/SiC/xxx

6090/SiC/xxx (modified 6013 matrix)

Weldalite 049/SiC/xxx

6xxx/SCS-2/50% (continuous fiber)

Mach=2.4

High-Temperature Aluminums (RSRs)

X8019 (CZ42)

8009 (FVS0812)

FVS 0611

FVS1212

High-Temperature MMCs

8009/SiC/xxx

X8019/SiC/xxx

FVS1212/SiC/xxx

Ti xxx/SCS-6/40% (continuous fiber)

Titaniums

6 - 4

15-3-3-3

6-2-2-2

10-2-3

SP 700

OBJECTIVES

- and manufacturing Develop and evaluate "low-cost" airplane designs by examining alternate structural, material, concepts
- Advise material suppliers and NASA on desired material properties, product forms, and processing techniques 5.

Figure 1-1. Structures and Materials Trady Study Design Options

May 1991

DUE TO SPEED STUDY

4-WK SCHED SLIDE

> z Ŋ Plans Compi Compl 🗸 **Dvmt Plans** æ Perf Eval Compl Perf Eval Compl Dvmt 2 2 9 6 3 0 6 3 0 7 4 1 8 Dtl Scr Compl Dtl Scr Compl LOW-COST AIRPLANE TRADE STUDY Conc Costs G Conc Costs O A ~ 1 1 2 2 9 6 JUL Mfg Plans Mfg Plans 1 2 2 4 1 8 N O O Des Conc Des Conc 1 1 2 1 1 2 3 1 1 2 3 1 1 2 9 6 3 0 7 4 1 7 4 MΑΥ Final Matl Proj Final Matl Proj APR Vndr Cntcts Vndr Cntcts 1 2 2 1 8 5 2 9 5 2 Scr Compl Init Scr Compl α ▼ Des Conc Des Conc B 2 2 Init ш 5 ш, æ 2 3 1 2 2 1 1 2 2 3 0 7 4 1 8 4 1 8 5 Z Z Prel Matl Proj ▼ Prel Matl Proj ▼ Š Prel Des Crit $\overline{\circ}$ Prel Des DE 0 6 z SCRNG NITIAL SCRNG DETAIL PLAN PERF EVAL DVMT DOC/ REV

Trd Stdy Schdl

THIS PAGE INTENTIONALLY BLANK