

יטם	c. Number .
	Tentative Specification
	Preliminary Specification
	Approval Specification

MODEL NO.: M220ZGE SUFFIX: P01

Customer:								
APPROVED BY	SIGNATURE							
Name / Title Note Product Version C1								
Please return 1 copy for your confirmation with your signature and comments.								

Approved By	Checked By	Prepared By
吳柏勳	柯直孝	趙宗信

Version 2.0 7 June 2011 1 / 25

- CONTENTS -

1. GENERAL DESCRIPTION	4
1.1 OVERVIEW	4
1.2 GENERAL SPECIFICATIONS	4
2. MECHANICAL SPECIFICATIONS	4
3. ABSOLUTE MAXIMUM RATINGS	5
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	5
3.2 ELECTRICAL ABSOLUTE RATINGS	
3.2.1 TFT LCD MODULE	
3.3 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)	5
4. ELECTRICAL SPECIFICATIONS	6
4.1 FUNCTION BLOCK DIAGRAM	6
4.2. INTERFACE CONNECTIONS	
4.3 ELECTRICAL CHARACTERISTICS	8
4.4 Vcc POWER DIP CONDITION	
4.5 LVDS DATA MAPPING TABLE	10
4.6 COLOR DATA INPUT ASSIGNMENT	11
4.7 DISPLAY TIMING SPECIFICATIONS	
4.8 POWER ON/OFF SEQUENCE	14
5. OPTICAL CHARACTERISTICS	
5.1 TEST CONDITIONS	
5.2 OPTICAL SPECIFICATIONS	15
5.3 Flicker Adjustment	19
6. RELIABILITY TEST ITEM	20
7. LABEL	21
7.1 CMI OPEN CELL LABEL	21
8. PACKING	22
8.1 Packing Information	22
8.2 CARTON	22
8.3 PALLET	23
9.1 HANDLING PRECAUTIONS	24
9.2 SAFETY PRECAUTIONS	24
9.3 OTHER	24
10. OUTLINE DRAWING	25

Version 2.0 7 June 2011 2 / 25

REVISION HISTORY

Version	Date	Page	Description
2.0	June.07, 2011	All	Spec Ver.2.0 was first issued.
		Ç.	
	N		

Version 2.0 7 June 2011 3 / 25

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The M220ZGE-P01 is a 22" TFT LCD cell with driver ICs and a 30-pins-2ch-LVDS circuit board.

The product supports 1680 x 1050 WSXGA+ (16:10 wide screen) mode and can display up to 16.7M colors. The backlight unit is not built in.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	22 real diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1680 x R.G.B. x 1050	pixel	-
Pixel Pitch	0.282(H) x 0.282(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Transmissive Mode	Normally white	-	-
Surface Treatment	AG type, 3H hard coating, Haze 25	-	-
Power Consumption	4.32	Watt	-

2. MECHANICAL SPECIFICATIONS

Item	Min.	Тур.	Max.	Unit	Note
Weight	554.2	574.2	g	-	
I/F connector mounting		(2)			
position	-	(2)			

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

- (2) Connector mounting position
- (3) Please refer to sec.3.1 for more information of power consumption.

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note		
ILGIII	Syllibol	Min.	Max.	Offic	Note	
Storage Temperature	T _{ST}	-20	+60	ōC	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	ōC	(1), (2)	

Note (1) (a) 90 %RH Max. (Ta \leq 40 $^{\circ}$ C).

- (b) Wet-bulb temperature should be 39 $^{\circ}$ C Max. (Ta > 40 $^{\circ}$ C).
- (c) No condensation.

Note (2) The temperature of panel surface should be 0 °C min. and 60 °C max.

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

Item	Symbol	Value	Э	Unit	Note	
item	Gyiriboi	Min	Max	Offic		
Power Supply Voltage	V _{CC}	-0.3	+6.0	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

3.3 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

High temperature or humidity may reduce the performance of panel. Please store LCD panel within the specified storage conditions.

Storage Condition: With packing.

Storage temperature range: 25±5 °C.

Storage humidity range: 50±10%RH.

Shelf life: 30days

Version 2.0 7 June 2011 5 / 25

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

PIN ASSI	JININEINI	
Pin	Name	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	RXOC-	Negative LVDS differential clock input. (odd)
9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	Ground
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	Ground
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	GND	Ground
25	NC	For LCD internal use only, Do not connect

Version 2.0 7 June 2011 6 / 25

27 NC For LCD internal use only, Do not connect 28 Vcc +5.0V power supply 29 Vcc +5.0V power supply	26	NC	For LCD internal use only, Do not connect
29 Vcc +5.0V power supply	27	NC	For LCD internal use only, Do not connect
1 117	28	Vcc	+5.0V power supply
	29	Vcc	+5.0V power supply
30 Vcc +5.0V power supply	30	Vcc	+5.0V power supply

Note (1) Connector Part No.:

093G30-B2001A-G4 (STARCONN) or 187098-30091 (P-TWO) or equivalent

Note (2) User's connector Part No:

Mating Wire Cable Connector Part No.: FI-X30H(JAE) or FI-X30HL(JAE)

Mating FFC Cable Connector Part No.: 217007-013001 (P-TWO) or JF05X030-1 (JAE).

Note (3) The first pixel is odd.

Note (4) Input signal of even and odd clock should be the same timing.

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

4.3 ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Value			Unit	Note
1 araille	7161	Syllibol	Min.	Тур.	Max.	Offic	Note
Power Supply	/ Voltage	Vcc	4.5	5.0	5.5	V	-
Ripple Vo	ltage	V_{RP}			300	mV	-
Rush Cu	rrent	I _{RUSH}			5	Α	(2)
	White	-		0.38	0.456	Α	(3)a
Power Supply Current	Black	_		0.63	0.756	Α	(3)b
	Vertical Stripe	-		0.72	0.864	Α	(3)c
Power Consumption		PLCD	-	3.6	4.32	Watt	(4)
LVDS differential input voltage		Vid	200	-	600	mV	
LVDS common input voltage		Vic	1.0	1.2	1.4	V)
Logic High Input Voltage		VIH	2.64	3.3	3.5	V	
Logic Low Inn	ut Voltage	VII	_	Ω	0.66	V	

 $Ta = 25 \pm 2 \, {}^{\circ}C$

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) I_{RUSH}: the maximum current when VCCS is rising

 $\ensuremath{I_{\text{IS}}}\xspace$ the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black.

Vcc rising time is 470μs

Note (3) The specified power supply current is under the conditions at Vcc = 5.0 V, Ta = 25 ± 2 °C, Fv = 60

Version 2.0 7 June 2011 8 / 25

Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The power consumption is specified at the pattern with the maximum current.

Note (5) VID waveform condition

Version 2.0 7 June 2011 9 / 25

4.4 Vcc POWER DIP CONDITION

Dip condition: $4.0V \le Vcc \le 4.5V, Td \le 20ms$

4.5 LVDS DATA MAPPING TABLE

LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Onamilei 00	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Ghanner O1	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Ghanner 02	Data order	DE	NA	NA	OB5	OB4	OB3	OB2
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27
	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6
LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Ghanner E0	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 GHallilei ET	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 GHannel E2	Data order	DE	NA	NA	EB5	EB4	EB3	EB2
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 GHaffile E3	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6

Version 2.0 7 June 2011 10 / 25

4.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

	Color		Data Signal Red Green Blue																						
			R6	R5	R4	R3	R2	R1	R0	R7	R6	G5	G4	reer G3	G2	G1	G0	R7	R6	B5	B4	Je B3	B2	B1	В0
	Black	R7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1_	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	. 1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:			:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
li ica	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:		•	.		:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	-			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale				:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Plue(252)				0				:	:	-	:	:					-		: 1		:	•		;
Blue	Blue(253)	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	1	1		1	1	1	0	1
	Blue(254) Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Diue(200)	U	U	0	U	0	0	U	U	0	0	0	0	0	U	0	U		I	I	I	I	ı		

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

4.7 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	49	60	77	MHz	-
	Period	Tc	13	16.7	20	ns	
	Input cycle to cycle jitter	T_{rcl}	-	-	200	ns	(1)
LVDS Clock	Input Clock to data skew	TLVCCS			0.4	ps	(2)
	Spread spectrum modulation range	Fclkin_ mod	Fclkin3 %	-	Fclkin_+3 %	MHz	(3)
	Spread spectrum modulation frequency	F _{SSM}	-	-	200	KHz	(3)
	Frame Rate	Fr	50	60	76	Hz	Tv=Tvd+Tvb
Vertical Display Term	Total	Tv	1077	1080	1090	Th	-
vertical Display Term	Active Display	Tvd	1050	1050	1050	Th	-
	Blank	Tvb	Tv-Tvd	30	Tv-Tvd	Th	-
	Total	Th	910	920	929	Tc	Th=Thd+Thb
Horizontal Display Term	Active Display	Thd	840	840	840	Tc	-
	Blank	Thb	Th-Thd	80	Th-Thd	Tc	-

Note:(0) Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.

INPUT SIGNAL TIMING DIAGRAM

Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

Note (2) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (3) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Version 2.0 7 June 2011 13 / 25

4.8 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Timing Specifications:

0.5< t1 \leq 10 msec

 $0 < t2 \le 50 \text{ msec}$

 $0 < t3 \le 50 \text{ msec}$

 $t4 \ge 500 \text{ msec}$

t5 ≥ 450 msec

 $t6 \ge 90 \text{ msec}$

 $5 \le t7 \le 100 \, \text{msec}$

Note.

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) It is not guaranteed that products are damaged which is caused by not following the Power Sequence.
- (7) It is suggested that Vcc falling time follows t7 specification, else slight noise is likely to occur when LCD is turned off (even backlight is already off).

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Ta	25±2	°C				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	V _{CC}	5	V				
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"						
LED Light Bar Input Current Per Input Pin	I _{PIN}	25 ± 0.3	mA _{DC}				
PWM Duty Ratio	D	100	%				
LED Light Bar Test Converter							

5.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Iten	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx			0.645			
	neu	Ry			0.342			
0.1	Green	Gx			0.309			
Color Chromaticity	Groon	Gy	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$	Тур –	0.620	Тур +	_	(2), (6)
(CIE 1931)	Blue	Bx	CS-2000	0.03	0.151	0.03	_	(2), (0)
(8.2.1881)	Blue	Ву	R=G=B=255		0.059			
	White	Wx	Gray scale		0.313			
	vviile	Wy			0.329			
Center Tran	smittance	T%			6.3	-	%	(2), (5)
Contrast	Ratio	CR		700	1000	-	-	(3), (6)
Respons	e Time	T_R	$\theta_x=0^\circ, \theta_Y=0^\circ$	-	1.3	2.2	ms	(4)
Пезропз	C TITLE	T_F	$0_X=0$, $0_Y=0$	-	3.7	5.8	1113	(+)
White Va	White Variation		$\theta_x=0^\circ$, $\theta_Y=0^\circ$	-	-	1.43	-	(6), (7)
Viewing Angle	Horizontal	$\theta x - + \theta x +$	CR ≧ 10	150	170	-	Deg.	(2), (6)
Viewing Angle	Vertical	θ y- + θ y+	011 <u>=</u> 10	140	160	-	Deg.	(2), (0)
Viewing Angle	Horizontal	$\theta x - + \theta x +$	CR ≧ 5	160	178	Deg.		(2), (6)
1.511119741910	Vertical	θ y- + θ y+	3 11 ≡ 3	150	170		209.	(-), (0)

Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages

Note (1) Light source is the BLU, which is supplied by CMO, and driving voltages are based on suitable gamma voltages. White is without signal input and R, G, B are with signal input. SPEC is judged by CMO's golden sample

Version 2.0 7 June 2011 15 / 25

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

Note (2) Definition of Viewing Angle (θx , θy):

Note (3): Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (8).

Note (4) Definition of Response Time (T_R, T_F):

Version 2.0 16 / 25 7 June 2011

Note (5) Definition of Transmittance (T%):

Module is without signal input.

L(X) and $L_{BLU}(X)$ is corresponding to the luminance of the point X at Figure in Note (8).

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 20minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20minutes in a windless room.

Note (7): Measurement Setup:

The LCD Panel should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after light source "C" for 30 minutes in a windless room.

DMS 803

Note (8) : Definition of Transmittance Variation ($\delta T\%$):

Measure the transmittance at 9 points

Maximum [T%(1), T%(2), ... T%(9)]

$$\delta \text{ T%} = \frac{\text{Minimum } [\text{T%}(1), \text{T%}(2), \dots \text{T%}(9)]}{\text{Minimum } [\text{T%}(1), \text{T%}(2), \dots \text{T%}(9)]}$$

Version 2.0 7 June 2011 18 / 25

5.3 Flicker Adjustment

Flicker must be finely adjusted after module assembling and aging. Please follow the instructions below.

(1) Adjustment Pattern: 2H1V checker pattern as follows.

R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	

(2) Adjustment Method:

Flicker should be adjusted by turning the volume for flicker adjustment by the ceramic driver. It is adjusted to the point with least flickering of the whole screen. After making it surely overrun at once, it should be adjusted to the optimum point.

6. RELIABILITY TEST ITEM

Environment test conditions are listed as following table.

Items	Required Condition	Note				
Temperature Humidity Bias (THB)	Ta= 50°C, 80%RH, 240hours					
High Temperature Operation (HTO)	Ta= 50°C, 50%RH, 240hours					
Low Temperature Operation (LTO)	Ta= 0°C, 240hours	(1)				
High Temperature Storage (HTS)	Ta= 60°C, 240hours					
Low Temperature Storage (LTS)	Ta= -20°C, 240hours					
Package Vibration Test	ISTA STANDARD 1.14Grms Random, Frequency Range: 1 ~ 200 Hz Top & Bottom: 30 minutes (+Z), 10 min (-Z), Right & Left: 10 minutes (X) Back & Forth 10 minutes (Y)	(2)				
Thermal Shock Test (TST)	-20°C/30min, 60°C / 30min, 100 cycles					
On/Off Test	25°C, On/10sec, Off /10sec, 30000 cycles					
Altitude Test	Operation: 10000 ft / 24hours Non-Operation: 30000 ft / 24hours	(1)				

Note (1) The tests are done with LCD modules (M220Z3-LA3).

Note (2) The test is done with a package shown in Section 8.

7. LABEL

7.1 CMI OPEN CELL LABEL

The barcode nameplate is pasted on each OPEN CELL as illustration for CMI internal control.

Barcode definition:

Serial ID: <u>CM-M0E01-X-X-X-X-XX-L-XX-L-YMD-NNNN</u>

Code	Meaning	Description
CM	Supplier code	CMI=CM
M0E01	Model number	M220ZGE-P01=M0E01
Х	Revision code	C1:1, C2:2,
Х	Source driver IC code	Century=1, CLL=2, Demos=3, Epson=4, Fujitsu=5, Himax=6, Hitachi=7, Hynix=8, LDI=9, Matsushita=A, NEC=B, Novatek=C,
Х	Gate driver IC code	OKI=D, Philips=E, Renasas=F, Samsung=G, Sanyo=H, Sharp=I, TI=J, Topro=K, Toshiba=L, Windbond=M
XX	Cell location	Tainan, Taiwan=TN
L	Cell line #	1,2,~,9,A,B,~,Y,Z
XX	Module location	Tainan, Taiwan=TN; Ningbo China=NP
L	Module line #	1,2,~,9,A,B,~,Y,Z
YMD	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31= 1, 2, 3, ~, 9, A, B, C, ~, T, U, V
NNNN	Serial number	Manufacturing sequence of product

8. PACKING

8.1 Packing Information

(1) 24 LCD Open CELL / 1 Box

(2) Box dimensions: 625(L) X 525(W) X 320(H) mm

(3) Weight: approximately: 21kg (24 open cells per box)

8.2 CARTON

Figure. 8-1 Packing method

8.3 PALLET

Figure. 8-2 Packing method

9. PRECAUTIONS

9.1 HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble backlight or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It is not permitted to have pressure or impulse on the module because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture come into or contacted the product, because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.

9.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.

9.3 OTHER

(1) When fixed patterns are displayed for a long time, remnant image is likely to occur.

10. OUTLINE DRAWING

Version 2.0 25 / 25 7 June 2011