Last time:

$$f$$
 differentiable at a \iff $f'(a) = \lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$
exists

Ex Let aeR. Are the following functions f: R > R differentiable at a?

Yes. Claim:
$$f'(a) = 4$$
. For $h \neq 0$,
 $f(a+h)-f(a) = 4(4+h)+2(-(4+2)) = 4h = 4$

. The value of $\frac{f(a+h)-f(a)}{h}$ at h=0 does not affect the limit

So
$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = \lim_{h\to 0} 4 = 4.$$

$$(2)$$
 $f(n) = n^2$

Yes. Claim:
$$f'(a) = 2a$$
. For $h \neq 0$,
 $\frac{f(a+h)-f(a)}{h} = \frac{(a+h)^2-a^2}{h} = \frac{a^2+2ah+h^2-a^2}{h} = 2a+h$

· We know lim p(h) = p(0) for any polynomial p

So
$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = \lim_{h\to 0} (2a+h) = 2a.$$

. The armine

. דור אישלי

3
$$f(x) = x^3$$
.

Yes. Claim:
$$f'(a) = 3a^2$$
. For $h \neq 0$,
$$f(a+h) - f(a) = (a+h)^3 - a^3 = a^3 + 3a^2h + 3ah^2 + h^3 - a^3$$

$$= 3a^2 + 3ah + h^2$$

So
$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = \lim_{h\to 0} (3a^2+3ah+h^2) = 3a^2$$
.

$$\frac{f(0+h)-f(0)}{h} = \frac{|h|}{h} = \begin{cases} 1 & h>0\\ -1 & h<0 \end{cases}$$

$$\lim_{h \to 0^{-1}} \frac{f(0+h) - f(0)}{h} = 1 \quad \lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h} = -1$$

$$\Rightarrow$$
 $\lim_{h\to 0} \frac{f(0+h)-f(0)}{h}$ does not exist

Prop If f is differentiable at a, then f is continuous at a.

Pf: We know

$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = f'(a), \quad \lim_{h\to 0} h = 0$$

Therefore, by the limit law for multiplication,

$$\lim_{h\to 0} (f(a+h)-f(a)) = \lim_{h\to 0} (\frac{f(a+h)-f(a)}{h} \cdot h)$$

$$= f'(a) \cdot O = O$$

This means: 4270, 3870 s.t.

0< |h| < 8 => |f(a+h) - f(a) | < E.

Taking h to be 2-a, we get:

0<1x-al<8 => |f(n)-f(a)|< E.

ロ

So $\lim_{n\to\infty} f(n) = f(a)$.

Rmk Continuous \neq differentiable. E.g., f(x) = |x| is continuous and not differentiable at x = 0.

 $\underline{\text{Ex}}$ let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^2 & x \ge 0 \\ -x^2 & x < 0 \end{cases}$

At which points ae R is & differentiable?

- ① (ase: a>0. Then $f(x)=x^2 \forall x\in(a-8,a+8)$, for S=a. So the derivative of f at a is the same as for x^2 : f'(a)=2a.
- (2) Case: a < 0. Then $f(x) = -x^2 \quad \forall x \in (a 8, a + 8)$, for S = |a|. So the derivative of f at a is the same as for $-x^2$:

$$\lim_{h \to \infty} \frac{(a+h)^2 - a^2}{h} = 2a$$

$$\Rightarrow f'(a) = \lim_{h \to 0} \frac{-(a+h)^2 - (-a^2)}{h} = -2a.$$

3 Case:
$$a=0$$
. For $h\neq 0$,

$$\frac{f(0+h)-f(0)}{h} = \left\{ \begin{array}{c} \frac{h^2-0}{h} = h & \text{if } h>0 \\ -\frac{h^2-0}{h} = -h & \text{if } h<0 \end{array} \right\} = \|h\|$$

So

$$f'(o) = \lim_{h \to 0} \frac{f(o+h) - f(o)}{h} = 0.$$

Altogether, f is differentiable at any $a \in \mathbb{R}$, and:

No. We'll prove \$100 does not exist.

For h ≠ 0,

$$\frac{f(0+h)-f(0)}{h}=\frac{\sqrt{1h}}{h}=\left\{\begin{array}{ll}\frac{1}{\sqrt{h}}&h>0\\-\frac{1}{\sqrt{-h}}&h<0\end{array}\right.$$

Claim: lim to does not exist.

Suppose not: lim to = LER.

which is a contradiction.

Therefore $\lim_{h\to 0} \frac{f(0+h)-f(0)}{h}$ does not exist. D