Una Reformulación de la Mecánica Clásica

Antonio A. Blatter

Licencia Creative Commons Atribución 3.0 (2015) Buenos Aires
Argentina

Este trabajo presenta una reformulación de la mecánica clásica que es invariante bajo transformaciones entre sistemas de referencia inerciales y no inerciales y que puede ser aplicada en cualquier sistema de referencia sin necesidad de introducir las fuerzas ficticias.

Introducción

La reformulación de la mecánica clásica que este trabajo presenta se desarrolla a partir de un sistema auxiliar de partículas (denominado free-system) que es utilizado para obtener magnitudes cinemáticas (denominadas inerciales) que son invariantes bajo transformaciones entre sistemas de referencia inerciales y no inerciales.

La posición inercial \mathbf{r}_i , la velocidad inercial \mathbf{v}_i y la aceleración inercial \mathbf{a}_i de una partícula i, están dadas por:

$$\mathbf{r}_{i} \doteq (\vec{r}_{i} - \vec{R})$$

$$\mathbf{v}_{i} \doteq (\vec{v}_{i} - \vec{V}) - \vec{\omega} \times (\vec{r}_{i} - \vec{R})$$

$$\mathbf{a}_{i} \doteq (\vec{a}_{i} - \vec{A}) - 2 \vec{\omega} \times (\vec{v}_{i} - \vec{V}) + \vec{\omega} \times [\vec{\omega} \times (\vec{r}_{i} - \vec{R})] - \vec{\alpha} \times (\vec{r}_{i} - \vec{R})$$

 $(\mathbf{v}_i \doteq d(\mathbf{r}_i)/dt)$ y $(\mathbf{a}_i \doteq d^2(\mathbf{r}_i)/dt^2)$ donde \vec{r}_i es el vector de posición de la partícula i, \vec{R} es el vector de posición del centro de masa del free-system y $\vec{\omega}$ es el vector de velocidad angular del free-system (ver Anexo I)

La fuerza neta \mathbf{F}_i que actúa sobre una partícula i (m_i) produce una aceleración inercial \mathbf{a}_i , según la siguiente ecuación:

$$\mathbf{F}_i = m_i \mathbf{a}_i$$

Los sistemas de referencia inerciales y no inerciales no deben introducir las fuerzas ficticias sobre \mathbf{F}_i .

Las magnitudes $[m_i, \mathbf{r}_i, \mathbf{v}_i, \mathbf{a}_i \ \mathbf{y} \ \mathbf{F}_i]$ son invariantes bajo transformaciones entre sistemas de referencia inerciales y no inerciales.

Un sistema de referencia S es no rotante si la velocidad angular $\vec{\omega}$ del free-system respecto a S es igual a cero y S es además inercial si la aceleración \vec{A} del centro de masa del free-system respecto a S es igual a cero.

Definiciones

Para un sistema de N partículas, las siguientes definiciones son aplicables:

Masa M $\doteq \sum_{i}^{N} m_{i}$

Posición CM 1 $\vec{R}_{cm} \doteq M^{-1} \sum_{i}^{N} m_i \vec{r}_i$

Velocidad CM 1 $\vec{V}_{cm} \doteq M^{-1} \sum_{i}^{N} m_i \vec{v}_i$

Aceleración CM 1 $\vec{A}_{cm} \doteq M^{-1} \sum_{i}^{N} m_i \vec{a}_i$

Posición CM 2 $\mathbf{R}_{cm} \doteq \mathbf{M}^{-1} \sum_{i}^{\mathbf{N}} m_i \mathbf{r}_i$

Velocidad CM 2 $\mathbf{V}_{cm} \doteq \mathbf{M}^{-1} \sum_{i}^{\mathbf{N}} m_{i} \mathbf{v}_{i}$

Aceleración CM 2 $\mathbf{A}_{cm} \doteq \mathbf{M}^{-1} \sum_{i}^{\mathbf{N}} m_{i} \mathbf{a}_{i}$

Momento Lineal 1 $\mathbf{P}_1 \doteq \sum_{i}^{N} m_i \mathbf{v}_i$

Momento Angular 1 $\mathbf{L}_1 \doteq \sum_{i=1}^{N} m_i \left[\mathbf{r}_i \times \mathbf{v}_i \right]$

Momento Angular 2 $\mathbf{L}_2 \doteq \sum_{i=1}^{N} m_i \left[(\mathbf{r}_i - \mathbf{R}_{cm}) \times (\mathbf{v}_i - \mathbf{V}_{cm}) \right]$

Trabajo 1 $W_1 \doteq \sum_{i=1}^{N} \int_{1}^{2} \mathbf{F}_i \cdot d\mathbf{r}_i = \Delta K_1$

Energía Cinética 1 $\Delta K_1 \doteq \sum_{i=1}^{N} \Delta \frac{1}{2} m_i (\mathbf{v}_i)^2$

Energía Potencial 1 $\Delta U_1 \doteq -\sum_i^N \int_1^2 \mathbf{F}_i \cdot d\mathbf{r}_i$

Energía Mecánica 1 $E_1 \doteq K_1 + U_1$

Lagrangiano 1 $L_1 \doteq K_1 - U_1$

Trabajo 2 $W_2 \doteq \sum_{i=1}^{N} \int_{1}^{2} \mathbf{F}_i \cdot d(\mathbf{r}_i - \mathbf{R}_{cm}) = \Delta K_2$

Energía Cinética 2 $\Delta K_2 = \sum_{i}^{N} \Delta \frac{1}{2} m_i (\mathbf{v}_i - \mathbf{V}_{cm})^2$

Energía Potencial 2 $\Delta\,\mathbf{U}_2\ \doteq\ -\,\sum_i^{_{\mathrm{N}}}\int_{_1}^2\,\mathbf{F}_i\cdot d(\mathbf{r}_i-\mathbf{R}_{cm})$

Lagrangiano 2 $L_2 \doteq K_2 - U_2$

Trabajo 3
$$W_3 \doteq \sum_i^N \Delta^1/2 \, \mathbf{F}_i \cdot \mathbf{r}_i = \Delta \, \mathbf{K}_3$$
 Energía Cinética 3
$$\Delta \, \mathbf{K}_3 \doteq \sum_i^N \Delta^1/2 \, m_i \, \mathbf{a}_i \cdot \mathbf{r}_i$$
 Energía Potencial 3
$$\Delta \, \mathbf{U}_3 \doteq -\sum_i^N \Delta^1/2 \, \mathbf{F}_i \cdot \mathbf{r}_i$$
 Energía Mecánica 3
$$\mathbf{E}_3 \doteq \mathbf{K}_3 + \mathbf{U}_3$$
 Trabajo 4
$$W_4 \doteq \sum_i^N \Delta^1/2 \, \mathbf{F}_i \cdot (\mathbf{r}_i - \mathbf{R}_{cm}) = \Delta \, \mathbf{K}_4$$
 Energía Cinética 4
$$\Delta \, \mathbf{K}_4 \doteq \sum_i^N \Delta^1/2 \, \mathbf{F}_i \cdot (\mathbf{r}_i - \mathbf{R}_{cm}) = \Delta \, \mathbf{K}_4$$
 Energía Potencial 4
$$\Delta \, \mathbf{U}_4 \doteq -\sum_i^N \Delta^1/2 \, \mathbf{F}_i \cdot (\mathbf{r}_i - \mathbf{R}_{cm})$$
 Energía Mecánica 4
$$\mathbf{E}_4 \doteq \mathbf{K}_4 + \mathbf{U}_4$$
 Trabajo 5
$$W_5 \doteq \sum_i^N \left[\int_1^2 \mathbf{F}_i \cdot d(\vec{r}_i - \vec{R}) + \Delta^1/2 \, \mathbf{F}_i \cdot (\vec{r}_i - \vec{R}) \right] = \Delta \, \mathbf{K}_5$$
 Energía Cinética 5
$$\Delta \, \mathbf{K}_5 \doteq \sum_i^N \Delta^1/2 \, m_i \left[(\vec{v}_i - \vec{V})^2 + (\vec{a}_i - \vec{A}) \cdot (\vec{r}_i - \vec{R}) \right]$$
 Energía Potencial 5
$$\Delta \, \mathbf{U}_5 \doteq -\sum_i^N \left[\int_1^2 \mathbf{F}_i \cdot d(\vec{r}_i - \vec{R}) + \Delta^1/2 \, \mathbf{F}_i \cdot (\vec{r}_i - \vec{R}) \right]$$
 Energía Mecánica 5
$$\mathbf{W}_6 \doteq \sum_i^N \left[\int_1^2 \mathbf{F}_i \cdot d(\vec{r}_i - \vec{R}_{cm}) + \Delta^1/2 \, \mathbf{F}_i \cdot (\vec{r}_i - \vec{R}_{cm}) \right] = \Delta \, \mathbf{K}_6$$
 Energía Cinética 6
$$\Delta \, \mathbf{K}_6 \doteq \sum_i^N \Delta^1/2 \, m_i \left[(\vec{v}_i - \vec{V}_{cm})^2 + (\vec{a}_i - \vec{A}_{cm}) \cdot (\vec{r}_i - \vec{R}_{cm}) \right]$$
 Energía Potencial 6
$$\Delta \, \mathbf{U}_6 \doteq -\sum_i^N \left[\int_1^2 \mathbf{F}_i \cdot d(\vec{r}_i - \vec{R}_{cm}) + \Delta^1/2 \, \mathbf{F}_i \cdot (\vec{r}_i - \vec{R}_{cm}) \right]$$
 Energía Mecánica 6
$$\mathbf{E}_6 \doteq \mathbf{K}_6 + \mathbf{U}_6$$

Relaciones

En un sistema de partículas, entre las energías cinéticas, las energías potenciales y las energías mecánicas, se dan siempre estas relaciones (ver Anexo II)

$$K_{1} = K_{2} + \frac{1}{2} M \mathbf{V}_{cm}^{2}$$

$$K_{3} = K_{4} + \frac{1}{2} M \mathbf{A}_{cm} \cdot \mathbf{R}_{cm}$$

$$K_{5} = K_{6} + \frac{1}{2} M \left[(\vec{V}_{cm} - \vec{V})^{2} + (\vec{A}_{cm} - \vec{A}) \cdot (\vec{R}_{cm} - \vec{R}) \right]$$

$$K_{5} = K_{1} + K_{3} & U_{5} = U_{1} + U_{3} & E_{5} = E_{1} + E_{3}$$

$$K_{6} = K_{2} + K_{4} & U_{6} = U_{2} + U_{4} & E_{6} = E_{2} + E_{4}$$

Principios

El momento lineal $[\mathbf{P}_1]$ de un sistema aislado de N partículas permanece constante si las fuerzas internas obedecen la tercera ley de Newton en su forma débil.

$$\mathbf{P}_1 = \text{constante} \quad \left[\ d(\mathbf{P}_1)/dt \ = \ \sum_i^{\scriptscriptstyle \mathrm{N}} m_i \, \mathbf{a}_i \ = \ \sum_i^{\scriptscriptstyle \mathrm{N}} \mathbf{F}_i \ = \ 0 \ \right]$$

El momento angular $[L_1]$ de un sistema aislado de N partículas permanece constante si las fuerzas internas obedecen la tercera ley de Newton en su forma fuerte.

$$\mathbf{L}_1 = \text{constante} \quad \left[d(\mathbf{L}_1)/dt = \sum_i^{\text{N}} m_i \left[\mathbf{r}_i \times \mathbf{a}_i \right] = \sum_i^{\text{N}} \mathbf{r}_i \times \mathbf{F}_i = 0 \right]$$

El momento angular $[L_2]$ de un sistema aislado de N partículas permanece constante si las fuerzas internas obedecen la tercera ley de Newton en su forma fuerte.

$$\mathbf{L}_{2} = \text{constante} \qquad \left[d(\mathbf{L}_{2})/dt = \sum_{i}^{N} m_{i} \left[(\mathbf{r}_{i} - \mathbf{R}_{cm}) \times (\mathbf{a}_{i} - \mathbf{A}_{cm}) \right] =$$

$$\sum_{i}^{N} m_{i} \left[(\mathbf{r}_{i} - \mathbf{R}_{cm}) \times \mathbf{a}_{i} \right] = \sum_{i}^{N} (\mathbf{r}_{i} - \mathbf{R}_{cm}) \times \mathbf{F}_{i} = 0$$

Las energías mecánicas $[E_1 \ y \ E_2]$ de un sistema de N partículas permanecen constantes si el sistema está sujeto solamente a fuerzas conservativas.

$$E_1 = constante \qquad \left[\begin{array}{ccc} \Delta \; E_1 \; = \; \Delta \; K_1 + \Delta \; U_1 \; = \; 0 \end{array} \right]$$

$$E_2 = constante \qquad \left[\begin{array}{ccc} \Delta \; E_2 \; = \; \Delta \; K_2 + \Delta \; U_2 \; = \; 0 \end{array} \right]$$

Las energías mecánicas $[E_3 \ y \ E_4]$ de un sistema de N partículas son siempre iguales a cero, por lo tanto, permanecen siempre constantes.

$$\begin{aligned} \mathbf{E}_{3} &= \text{ constante} & \left[\mathbf{E}_{3} &= \sum_{i}^{\mathbf{N}} \sqrt{2} \left[m_{i} \, \mathbf{a}_{i} \cdot \mathbf{r}_{i} - \mathbf{F}_{i} \cdot \mathbf{r}_{i} \right] = 0 \right] \\ \mathbf{E}_{4} &= \text{ constante} & \left[\mathbf{E}_{4} &= \sum_{i}^{\mathbf{N}} \sqrt{2} \left[m_{i} \, \mathbf{a}_{i} \cdot (\mathbf{r}_{i} - \mathbf{R}_{cm}) - \mathbf{F}_{i} \cdot (\mathbf{r}_{i} - \mathbf{R}_{cm}) \right] = 0 \right] \\ & \sum_{i}^{\mathbf{N}} \sqrt{2} m_{i} \left[(\mathbf{a}_{i} - \mathbf{A}_{cm}) \cdot (\mathbf{r}_{i} - \mathbf{R}_{cm}) \right] = \sum_{i}^{\mathbf{N}} \sqrt{2} m_{i} \, \mathbf{a}_{i} \cdot (\mathbf{r}_{i} - \mathbf{R}_{cm}) \end{aligned}$$

Las energías mecánicas $[E_5 \ y \ E_6]$ de un sistema de N partículas permanecen constantes si el sistema está sujeto solamente a fuerzas conservativas.

$$E_5 = constante$$
 $\left[\Delta E_5 = \Delta K_5 + \Delta U_5 = 0 \right]$ $E_6 = constante$ $\left[\Delta E_6 = \Delta K_6 + \Delta U_6 = 0 \right]$

Observaciones

Todas las ecuaciones de este trabajo pueden ser aplicadas en cualquier sistema de referencia inercial o no inercial.

Los sistemas de referencia inerciales y no inerciales no deben introducir las fuerzas ficticias sobre \mathbf{F}_{i} .

En este trabajo, las magnitudes $[m, \mathbf{r}, \mathbf{v}, \mathbf{a}, M, \mathbf{R}, \mathbf{V}, \mathbf{A}, \mathbf{F}, \mathbf{P}_1, \mathbf{L}_1, \mathbf{L}_2, \mathbf{W}_1, \mathbf{K}_1, \mathbf{U}_1, \mathbf{E}_1, \mathbf{L}_1, \mathbf{W}_2, \mathbf{K}_2, \mathbf{U}_2, \mathbf{E}_2, \mathbf{L}_2, \mathbf{W}_3, \mathbf{K}_3, \mathbf{U}_3, \mathbf{E}_3, \mathbf{W}_4, \mathbf{K}_4, \mathbf{U}_4, \mathbf{E}_4, \mathbf{W}_5, \mathbf{K}_5, \mathbf{U}_5, \mathbf{E}_5, \mathbf{W}_6, \mathbf{K}_6, \mathbf{U}_6 \mathbf{y} \mathbf{E}_6]$ son invariantes bajo transformaciones entre sistemas de referencia inerciales y no inerciales.

La energía mecánica E_3 de un sistema de partículas es siempre igual a cero $[E_3 = K_3 + U_3 = 0]$

Por lo tanto, la energía mecánica E_5 de un sistema de partículas es siempre igual a la energía mecánica E_1 del sistema de partículas [$E_5 = E_1$]

La energía mecánica E_4 de un sistema de partículas es siempre igual a cero [$E_4 = K_4 + U_4 = 0$]

Por lo tanto, la energía mecánica E_6 de un sistema de partículas es siempre igual a la energía mecánica E_2 del sistema de partículas [$E_6 = E_2$]

Si la energía potencial U_1 de un sistema de partículas es una función homogénea de grado k entonces la energía potencial U_3 y la energía potencial U_5 del sistema de partículas, están dadas por: $\left[U_3=\left(\frac{k}{2}\right)U_1\right]$ y $\left[U_5=\left(1+\frac{k}{2}\right)U_1\right]$

Si la energía potencial U_2 de un sistema de partículas es una función homogénea de grado k entonces la energía potencial U_4 y la energía potencial U_6 del sistema de partículas, están dadas por: $\left[U_4 = \left(\frac{k}{2}\right)U_2\right]$ y $\left[U_6 = \left(1 + \frac{k}{2}\right)U_2\right]$

Si la energía potencial U_1 de un sistema de partículas es una función homogénea de grado k y si la energía cinética K_5 del sistema de partículas es igual a cero entonces se obtiene: $[K_1 = -K_3 = U_3 = (\frac{k}{2}) U_1 = (\frac{k}{2+k}) E_1]$

Si la energía potencial U_2 de un sistema de partículas es una función homogénea de grado k y si la energía cinética K_6 del sistema de partículas es igual a cero entonces se obtiene: $[K_2 = -K_4 = U_4 = (\frac{k}{2}) U_2 = (\frac{k}{2+k}) E_2]$

Si la energía potencial U_1 de un sistema de partículas es una función homogénea de grado k y si el promedio de la energía cinética $\langle K_5 \rangle$ del sistema de partículas es igual a cero entonces se obtiene: $\left[\langle K_1 \rangle = - \langle K_3 \rangle = \langle U_3 \rangle = \left(\frac{k}{2} \right) \langle U_1 \rangle = \left(\frac{k}{2+k} \right) \langle E_1 \rangle \right]$

Si la energía potencial U_2 de un sistema de partículas es una función homogénea de grado k y si el promedio de la energía cinética $\langle K_6 \rangle$ del sistema de partículas es igual a cero entonces se obtiene: $\left[\langle K_2 \rangle = - \langle K_4 \rangle = \langle U_4 \rangle = \left(\frac{k}{2} \right) \langle U_2 \rangle = \left(\frac{k}{2+k} \right) \langle E_2 \rangle \right]$

El promedio de la energía cinética $\langle K_5 \rangle$ y el promedio de la energía cinética $\langle K_6 \rangle$ de un sistema de partículas con desplazamiento acotado son siempre iguales a cero.

La energía cinética K_5 y la energía cinética K_6 de un sistema de N partículas pueden ser también expresadas como sigue: [$K_5 = \sum_{i=1}^{N} \frac{1}{2} m_i (\dot{r}_i \dot{r}_i + \ddot{r}_i r_i)$] donde $r_i \doteq |\vec{r}_i - \vec{R}|$ y [$K_6 = \sum_{j>i}^{N} \frac{1}{2} m_i m_j M^{-1} (\dot{r}_{ij} \dot{r}_{ij} + \ddot{r}_{ij} r_{ij})$] donde $r_{ij} \doteq |\vec{r}_i - \vec{r}_j|$

La energía cinética K₅ y la energía cinética K₆ de un sistema de N partículas pueden ser también expresadas como sigue: [K₅ = $\sum_{i}^{\rm N}$ ½ m_i ($\ddot{\tau}_i$)] donde $\tau_i \doteq 1/2$ ($\vec{r}_i - \vec{R}$) · ($\vec{r}_i - \vec{R}$) y [K₆ = $\sum_{j>i}^{\rm N}$ ½ m_i m_j M⁻¹($\ddot{\tau}_{ij}$)] donde $\tau_{ij} \doteq 1/2$ ($\vec{r}_i - \vec{r}_j$) · ($\vec{r}_i - \vec{r}_j$)

La energía cinética K_6 es la única energía cinética que puede ser expresada sin necesidad de introducir magnitud alguna relacionada con el free-system [tales como: \mathbf{r} , \mathbf{v} , \mathbf{a} , $\vec{\omega}$, \vec{R} , etc.]

En un sistema aislado de partículas la energía potencial U_2 es igual a la energía potencial U_1 si las fuerzas internas obedecen la tercera ley de Newton en su forma débil [$U_2 = U_1$]

En un sistema aislado de partículas la energía potencial U_4 es igual a la energía potencial U_3 si las fuerzas internas obedecen la tercera ley de Newton en su forma débil [$U_4 = U_3$]

En un sistema aislado de partículas la energía potencial U_6 es igual a la energía potencial U_5 si las fuerzas internas obedecen la tercera ley de Newton en su forma débil [$U_6 = U_5$]

Un sistema de referencia S es no rotante si la velocidad angular $\vec{\omega}$ del free-system respecto a S es igual a cero y S es además inercial si la aceleración \vec{A} del centro de masa del free-system respecto a S es igual a cero.

Si el origen de un sistema de referencia no rotante $[\vec{\omega} = 0]$ coincide siempre con el centro de masa del free-system $[\vec{R} = \vec{V} = \vec{A} = 0]$ entonces se logra: $[\mathbf{r}_i = \vec{r}_i, \mathbf{v}_i = \vec{v}_i \text{ y } \mathbf{a}_i = \vec{a}_i]$ Por lo tanto, es posible afirmar que siempre: $[\mathbf{v}_i = d(\mathbf{r}_i)/dt \text{ y } \mathbf{a}_i = d^2(\mathbf{r}_i)/dt^2]$

Este trabajo no contradice la primera y segunda ley de Newton puesto que estas dos leyes siguen siendo válidas en cualquier sistema de referencia inercial. La ecuación $[\mathbf{F}_i = m_i \, \mathbf{a}_i]$ es una simple reformulación de la segunda ley de Newton.

Bibliografía

- A. Einstein, Sobre la Teoría de la Relatividad Especial y General.
- E. Mach, La Ciencia de la Mecánica.
- R. Resnick y D. Halliday, Física.
- J. Kane y M. Sternheim, Física.
- H. Goldstein, Mecánica Clásica.
- L. Landau y E. Lifshitz, Mecánica.

Anexo I

Free-System

El free-system es un sistema de N partículas que está siempre libre de fuerzas externas e internas, que es tridimensional y que las distancias relativas entre las N partículas permanecen siempre constantes.

La posición \vec{R} , la velocidad \vec{V} y la aceleración \vec{A} del centro de masa del free-system respecto a un sistema de referencia S, la velocidad angular $\vec{\omega}$ y la aceleración angular $\vec{\alpha}$ del free-system respecto al sistema de referencia S, están dadas por:

$$\mathbf{M} \doteq \sum_{i}^{\mathbf{N}} m_{i}$$

$$\vec{R} \doteq \mathbf{M}^{-1} \sum_{i}^{\mathbf{N}} m_i \, \vec{r}_i$$

$$\vec{V} \doteq \mathbf{M}^{-1} \sum_{i}^{\mathbf{N}} m_i \, \vec{v}_i$$

$$\vec{A} \doteq \mathbf{M}^{-1} \sum_{i}^{\mathbf{N}} m_i \, \vec{a}_i$$

$$\vec{\omega} \; \doteq \; \overrightarrow{I}^{\scriptscriptstyle -1} \cdot \vec{L}$$

$$\vec{\alpha} \doteq d(\vec{\omega})/dt$$

$$\stackrel{\leftarrow}{I} \doteq \sum_i^{\scriptscriptstyle \mathrm{N}} m_i \left[\, | \, \vec{r}_i - \vec{R} \, |^2 \stackrel{
ightarrow}{1} - (\vec{r}_i - \vec{R}) \otimes (\vec{r}_i - \vec{R}) \, \right]$$

$$\vec{L} \doteq \sum_{i}^{N} m_{i} (\vec{r}_{i} - \vec{R}) \times (\vec{v}_{i} - \vec{V})$$

donde M es la masa del free-system, \vec{l} es el tensor de inercia del free-system (respecto a \vec{R}) y \vec{L} es el momento angular del free-system respecto al sistema de referencia S.

Transformaciones

$$(\vec{r}_i - \vec{R}) \doteq \mathbf{r}_i = \mathbf{r}_i'$$

$$(\vec{r}_i' - \vec{R}') \doteq \mathbf{r}_i' = \mathbf{r}_i$$

$$(\vec{v}_i - \vec{V}) - \vec{\omega} \times (\vec{r}_i - \vec{R}) \doteq \mathbf{v}_i = \mathbf{v}_i'$$

$$(\vec{v}_i' - \vec{V}') - \vec{\omega}' \times (\vec{r}_i' - \vec{R}') \doteq \mathbf{v}_i' = \mathbf{v}_i$$

$$(\vec{a}_i - \vec{A}) - 2\vec{\omega} \times (\vec{v}_i - \vec{V}) + \vec{\omega} \times [\vec{\omega} \times (\vec{r}_i - \vec{R})] - \vec{\alpha} \times (\vec{r}_i - \vec{R}) \doteq \mathbf{a}_i = \mathbf{a}'_i$$

$$(\vec{a}_i' - \vec{A}') - 2 \vec{\omega}' \times (\vec{v}_i' - \vec{V}') + \vec{\omega}' \times [\vec{\omega}' \times (\vec{r}_i' - \vec{R}')] - \vec{\alpha}' \times (\vec{r}_i' - \vec{R}') \stackrel{\cdot}{=} \mathbf{a}_i = \mathbf{a}_i$$

Anexo II

Relaciones

En un sistema de partículas se dan siempre estas relaciones (Las magnitudes \mathbf{R}_{cm} , \mathbf{V}_{cm} , \mathbf{A}_{cm} , \vec{R}_{cm} , \vec{V}_{cm} y \vec{A}_{cm} pueden ser reemplazadas por las magnitudes \mathbf{R} , \mathbf{V} , \mathbf{A} , \vec{R} , \vec{V} y \vec{A} o por las magnitudes \mathbf{r}_i , \mathbf{v}_i , \mathbf{a}_i , \vec{r}_i , \vec{v}_i y \vec{a}_i , respectivamente. Por otro lado, siempre $\mathbf{R} = \mathbf{V} = \mathbf{A} = 0$)

$$\begin{split} &\mathbf{r}_{i} \doteq (\vec{r}_{i} - \vec{R}) \\ &\mathbf{R}_{cm} \doteq (\vec{R}_{cm} - \vec{R}) \\ &\longrightarrow (\mathbf{r}_{i} - \mathbf{R}_{cm}) = (\vec{r}_{i} - \vec{R}_{cm}) \\ &\mathbf{v}_{i} \doteq (\vec{v}_{i} - \vec{V}) - \vec{\omega} \times (\vec{r}_{i} - \vec{R}) \\ &\mathbf{V}_{cm} \doteq (\vec{V}_{cm} - \vec{V}) - \vec{\omega} \times (\vec{R}_{cm} - \vec{R}) \\ &\longrightarrow (\mathbf{v}_{i} - \mathbf{V}_{cm}) = (\vec{v}_{i} - \vec{V}_{cm}) - \vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \\ &(\mathbf{v}_{i} - \mathbf{V}_{cm}) \cdot (\mathbf{v}_{i} - \mathbf{V}_{cm}) = \left[(\vec{v}_{i} - \vec{V}_{cm}) - \vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] \cdot \left[(\vec{v}_{i} - \vec{V}_{cm}) - \vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] = \\ &(\vec{v}_{i} - \vec{V}_{cm}) \cdot (\vec{v}_{i} - \vec{V}_{cm}) - 2 (\vec{v}_{i} - \vec{V}_{cm}) \cdot \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] + \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] \cdot \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] = \\ &(\vec{v}_{i} - \vec{V}_{cm}) \cdot (\vec{v}_{i} - \vec{V}_{cm}) + 2 (\vec{r}_{i} - \vec{R}_{cm}) \cdot \left[\vec{\omega} \times (\vec{v}_{i} - \vec{V}_{cm}) \right] + \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] \cdot \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] = \\ &(\vec{v}_{i} - \vec{V}_{cm}) \cdot (\vec{v}_{i} - \vec{V}_{cm}) + 2 (\vec{v}_{i} - \vec{R}_{cm}) \cdot \left[\vec{\omega} \times (\vec{v}_{i} - \vec{V}_{cm}) \right] + \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] \cdot \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] = \\ &(\vec{v}_{i} - \vec{V}_{cm}) \cdot (\vec{v}_{i} - \vec{V}_{cm}) + 2 (\vec{v}_{i} - \vec{V}_{cm}) \cdot (\vec{r}_{i} - \vec{R}_{cm}) + \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] \cdot \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] = \\ &(\vec{v}_{i} - \vec{V}_{cm}) \cdot (\vec{v}_{i} - \vec{V}_{cm}) + 2 (\vec{v}_{i} - \vec{V}_{cm}) \cdot (\vec{r}_{i} - \vec{R}_{cm}) + \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] \cdot \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] = \\ &(\vec{u}_{i} - \mathbf{A}_{cm}) \cdot (\mathbf{r}_{i} - \mathbf{R}_{cm}) = \left(\vec{a}_{i} - \vec{A}_{cm} \right) \cdot (\vec{r}_{i} - \vec{R}_{cm}) - \left[2 \vec{\omega} \times (\vec{v}_{i} - \vec{V}_{cm}) \right] \cdot (\vec{r}_{i} - \vec{R}_{cm}) = \\ &(\vec{u}_{i} - \vec{A}_{cm}) \cdot (\vec{r}_{i} - \vec{R}_{cm}) - \left[\vec{u} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] \cdot (\vec{r}_{i} - \vec{R}_{cm}) + \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] \cdot (\vec{r}_{i} - \vec{R}_{cm}) + \left[\vec{u} \cdot (\vec{r}_{i} - \vec{R}_{cm}) \right] \cdot (\vec{r}_{i} - \vec{R}_{cm}) + \left[\vec{u} \cdot (\vec{v}_{i} - \vec{R}_{cm}) \right] \cdot (\vec{r}_{i} - \vec{R}_{cm}) + \left[\vec{u} \cdot (\vec{r}_{i} - \vec{R}_{cm}) \right] \cdot (\vec{r}_{i} - \vec{R}_{cm}) + \left[\vec{u} \cdot (\vec{r}_{i} - \vec{R}_{cm}) \right] \cdot (\vec{r}_{i} - \vec{R}_{$$

Anexo III

Magnitudes

Las magnitudes L₂, W₂, K₂, U₂, W₄, K₄, U₄, W₆, K₆ y U₆ de un sistema de N partículas pueden ser también expresadas como sigue:

$$\begin{split} \mathbf{L}_{2} &= \sum_{j>i}^{\mathrm{N}} m_{i} m_{j} \, \mathbf{M}^{-1} \big[\left(\mathbf{r}_{i} - \mathbf{r}_{j} \right) \times \left(\mathbf{v}_{i} - \mathbf{v}_{j} \right) \big] \\ \mathbf{W}_{2} &= \sum_{j>i}^{\mathrm{N}} m_{i} m_{j} \, \mathbf{M}^{-1} \big[\int_{1}^{2} \left(\mathbf{F}_{i} / m_{i} - \mathbf{F}_{j} / m_{j} \right) \cdot d(\mathbf{r}_{i} - \mathbf{r}_{j}) \big] \\ \Delta \, \mathbf{K}_{2} &= \sum_{j>i}^{\mathrm{N}} \Delta^{1} /_{2} \, m_{i} \, m_{j} \, \mathbf{M}^{-1} \left(\mathbf{v}_{i} - \mathbf{v}_{j} \right)^{2} = \mathbf{W}_{2} \\ \Delta \, \mathbf{U}_{2} &= -\sum_{j>i}^{\mathrm{N}} m_{i} \, m_{j} \, \mathbf{M}^{-1} \big[\int_{1}^{2} \left(\mathbf{F}_{i} / m_{i} - \mathbf{F}_{j} / m_{j} \right) \cdot d(\mathbf{r}_{i} - \mathbf{r}_{j}) \big] \\ \mathbf{W}_{4} &= \sum_{j>i}^{\mathrm{N}} \Delta^{1} /_{2} \, m_{i} \, m_{j} \, \mathbf{M}^{-1} \big[\left(\mathbf{F}_{i} / m_{i} - \mathbf{F}_{j} / m_{j} \right) \cdot \left(\mathbf{r}_{i} - \mathbf{r}_{j} \right) \big] \\ \Delta \, \mathbf{K}_{4} &= \sum_{j>i}^{\mathrm{N}} \Delta^{1} /_{2} \, m_{i} \, m_{j} \, \mathbf{M}^{-1} \big[\left(\mathbf{a}_{i} - \mathbf{a}_{j} \right) \cdot \left(\mathbf{r}_{i} - \mathbf{r}_{j} \right) \big] = \mathbf{W}_{4} \\ \Delta \, \mathbf{U}_{4} &= -\sum_{j>i}^{\mathrm{N}} \Delta^{1} /_{2} \, m_{i} \, m_{j} \, \mathbf{M}^{-1} \big[\left(\mathbf{F}_{i} / m_{i} - \mathbf{F}_{j} / m_{j} \right) \cdot \left(\mathbf{r}_{i} - \mathbf{r}_{j} \right) \big] \\ \mathbf{W}_{6} &= \sum_{j>i}^{\mathrm{N}} m_{i} \, m_{j} \, \mathbf{M}^{-1} \big[\int_{1}^{2} \left(\mathbf{F}_{i} / m_{i} - \mathbf{F}_{j} / m_{j} \right) \cdot d\left(\vec{r}_{i} - \vec{r}_{j} \right) + \Delta^{1} /_{2} \left(\mathbf{F}_{i} / m_{i} - \mathbf{F}_{j} / m_{j} \right) \cdot \left(\vec{r}_{i} - \vec{r}_{j} \right) \big] = \mathbf{W}_{6} \\ \Delta \, \mathbf{U}_{6} &= -\sum_{j>i}^{\mathrm{N}} m_{i} \, m_{j} \, \mathbf{M}^{-1} \big[\int_{1}^{2} \left(\mathbf{F}_{i} / m_{i} - \mathbf{F}_{j} / m_{j} \right) \cdot d\left(\vec{r}_{i} - \vec{r}_{j} \right) + \Delta^{1} /_{2} \left(\mathbf{F}_{i} / m_{i} - \mathbf{F}_{j} / m_{j} \right) \cdot \left(\vec{r}_{i} - \vec{r}_{j} \right) \big] \\ \Delta \, \mathbf{U}_{6} &= -\sum_{j>i}^{\mathrm{N}} m_{i} \, m_{j} \, \mathbf{M}^{-1} \big[\int_{1}^{2} \left(\mathbf{F}_{i} / m_{i} - \mathbf{F}_{j} / m_{j} \right) \cdot d\left(\vec{r}_{i} - \vec{r}_{j} \right) + \Delta^{1} /_{2} \left(\mathbf{F}_{i} / m_{i} - \mathbf{F}_{j} / m_{j} \right) \cdot \left(\vec{r}_{i} - \vec{r}_{j} \right) \big] \end{aligned}$$

Las magnitudes $W_{(1\ al\ 6)}$ y $U_{(1\ al\ 6)}$ de un sistema aislado de N partículas cuyas fuerzas internas obedecen la tercera ley de Newton en su forma débil se reducen a:

$$\begin{split} \mathbf{W}_1 &= \mathbf{W}_2 = \sum_i^{\mathrm{N}} \int_1^2 \mathbf{F}_i \cdot d\vec{r}_i \\ \Delta \mathbf{U}_1 &= \Delta \mathbf{U}_2 = -\sum_i^{\mathrm{N}} \int_1^2 \mathbf{F}_i \cdot d\vec{r}_i \\ \mathbf{W}_3 &= \mathbf{W}_4 = \sum_i^{\mathrm{N}} \Delta^{1/2} \mathbf{F}_i \cdot \vec{r}_i \\ \Delta \mathbf{U}_3 &= \Delta \mathbf{U}_4 = -\sum_i^{\mathrm{N}} \Delta^{1/2} \mathbf{F}_i \cdot \vec{r}_i \\ \mathbf{W}_5 &= \mathbf{W}_6 = \sum_i^{\mathrm{N}} \left[\int_1^2 \mathbf{F}_i \cdot d\vec{r}_i + \Delta^{1/2} \mathbf{F}_i \cdot \vec{r}_i \right] \\ \Delta \mathbf{U}_5 &= \Delta \mathbf{U}_6 = -\sum_i^{\mathrm{N}} \left[\int_1^2 \mathbf{F}_i \cdot d\vec{r}_i + \Delta^{1/2} \mathbf{F}_i \cdot \vec{r}_i \right] \end{split}$$