Facit til prøve-Eksamen1 i Diskret Matematik

Opgave 1

$$A = \{x \in \mathbb{Q} \mid 1 \le x \le 2\} \text{ og } B = \{x \in \mathbb{Q} \mid 1 \le x \le 4\}.$$

Lad f(x) = 3x - 2. Når $\in A$ er $f(x) \in B$.

 $f(x) = y \Leftrightarrow 3x - 2 = y \Leftrightarrow x = \frac{y+2}{3}$. Når $y \in B$ er $\frac{y+2}{3} \in A$.

Da f(x) = y har entydig løsning $x \in A$ for ethvert $y \in B$ er funktionen $f: A \mapsto B$ en bijektion. Altså |A| = |B|.

Opgave 2

Hvis x > 1 er $x < x^2$, $1 < x^2$ og $|f(x)| = |5x^2 + 7x + 4| = 5x^2 + 7x + 4 < 5x^2 + 7x^2 + 4x^2 = 16x^2 = 16|x^2|$. Hvis K = 1, C = 16 så er $|f(x)| < C|x^2|$ for alle x > K.

Opgave 3

$$i \in \mathbb{N} \land i \le n \land x = 3^i + (-2)^i \land y = 3^{i-1} + (-2)^{i-1}$$
 (1)

Før første gennemløb af while er x=1,y=2,i=1. Dermed er (1) sand (da $n \ge 1$).

1. Antag (1) er sand før et gennemløb af while-løkken. Da løkken gennemløbes igen er betingelsen i < n sand.

Efter gennemløbet:

 $i_{\text{ny}} = i + 1$. Da i < n og $i \in \mathbb{N}$ er $i_{\text{ny}} \le n$ og $i_{\text{ny}} \in \mathbb{N}$.

$$x_{\text{ny}} = z = x + 6y = 3^{i} + (-2)^{i} + 6 \cdot 3^{i-1} + 6 \cdot (-2)^{i-1} = 3^{i} + (-2)^{i} + 2 \cdot 3^{i} - 3 \cdot (-2)^{i} = 3 \cdot 3^{i} + (-2)(-2)^{i} = 3^{i_{\text{ny}}} + (-2)^{i_{\text{ny}}}.$$

$$y_{\text{ny}} = x = 3^{i} + (-2)^{i} = 3^{i_{\text{ny}}-1} + (-2)^{i_{\text{ny}}-1}.$$

- (1)er altså sand efter gennemløbet. Dermed er (1) en invariant.
- 2. Når while-løkken standser er betingelsen i < n falsk, men (1) er sand. Dermed er i = n og $x = 3^i + (-2)^i = 3^n + (-2)^n$.

Opgave 4

- 1. Mulig løsning: $e_4, e_9, e_{10}, e_{11}, e_{12}, e_5, e_8$.
- 2. Mulig løsning: $e_9, e_5, e_4, e_{11}, e_{12}, e_8, e_{10}$.

Opgave 5

- 1. En Hamilton kreds: e_9 , e_2 , e_{10} , e_8 , e_{11} , e_3 , e_{12} , e_5 . (Der er flere andre Hamilton-
- 2. Grafen har ingen Euler-kreds da der er punkter med ulige grad.

Opgave 6

111 mod 11 = 1 (da 111 =
$$10 \cdot 11 + 1$$
)
222 mod 11 = 2
333 mod 11 = 3
444 mod 11 = 4
Derfor er $111 \cdot 222 + 333 \cdot 444 \equiv 1 \cdot 2 + 3 \cdot 4 \equiv 3 \pmod{11}$.
Altså ($111 \cdot 222 + 333 \cdot 444$) mod 11 = 3.

Opgave 7

$$85 = 1 \cdot 65 + 20$$

$$65 = 3 \cdot 20 + 5$$

$$20 = 85 - 65$$

$$5 = 65 - 3 \cdot 20 = 65 - 3(85 - 65) = 4 \cdot 65 - 3 \cdot 85$$

$$20 = 4 \cdot 5 + 0$$
Altså $\gcd(65, 85) = 5 = 4 \cdot 65 + (-3) \cdot 85$. $s = 4, t = -3$

Opgave 8

1. $a_1 = \frac{1+2}{1} \cdot 2 = 6$, $a_2 = \frac{2+2}{2} \cdot 6 = 12$, $a_2 = \frac{3+2}{3} \cdot 12 = 20$. 2. Vis at $a_k = k^2 + 3k + 2$, for alle $k \ge 0$. Bevis ved induktion.

Basisskridt k = 0: $a_0 = 2 = 0^2 + 3 \cdot 0 + 2$

Induktionsskridt: Lad $m \ge 0$ og antag at $a_m = m^2 + 3m + 2$.

Skal vise ligningen med k = m + 1: Venstre side: $a_{m+1} = \frac{(m+1)+2}{m+1} a_m = \frac{m+3}{m+1} (m^2 + 3m + 2)$ Højre side: $(m+1)^2 + 3(m+1) + 2 = m^2 + 5m + 6$.

V.S=? H.S.: $\frac{m+3}{m+1}(m^2+3m+2) = m^2+5m+6$ $(m+3)(m^2+3m+2) = (m+1)(m^2+5m+6),$

hvilket ved udregning ses at være korrekt. Ligningen er altså opfyldt for k = m + 1 og dermed for ethvert $k \ge 0$.

Opgave 9

$$x \equiv 2 \pmod{4} \land x \equiv 3 \pmod{9}$$
.

$$4 \cdot 9 = 36.$$

$$gcd(9,4) = 1 = 1 \cdot 9 + (-2) \cdot 4$$
, da

$$9 = 2 \cdot 4 + 1$$
 $1 = 9 - 2 \cdot 4$.

En løsning:

$$x = 2 \cdot 9 \cdot 1 + 3 \cdot 4 \cdot (-2) = -6.$$

En anden løsning:

$$x = -6 + 36 = 30.$$

x er løsning hvis og kun hvis $x \equiv 30 \pmod{36}$.

Opgave 10

En mængde $S, S \subseteq \mathbb{N} \times \mathbb{N}$, er defineret rekursivt ved

- $(0,0) \in S$,
- hvis $(a,b) \in S$ så er (a+1,b+3), (a+2,b+2) og (a+3,b+1) også i S.

1.
$$(0,0) \in S \Rightarrow (0+1,0+3) = (1,3) \in S \Rightarrow (1+1,3+3) = (2,6) \in S \Rightarrow (2+2,6+2) = (4,8) \in S$$
.

2. Hvis
$$(a,b) \in S$$
 så er $4 \mid a+b$

Bevis ved strukturel induktion.

Basisskridt (a, b) = (0, 0): $4 \mid 0 + 0$.

Rekursionsskridt: Lad $(a,b) \in S$ og antag $4 \mid a+b$.

Lad (a', b') være konstrueret fra (a, b). Altså $(a', b') \in \{(a + 1, b + 3), (a + 2, b + 2), (a + 3, b + 1)\}.$

Så er a'+b'=a+b+4. Da 4 går op i a+b, går 4 også op i a'+b'.

Opgave 11

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| = 5 + 5 + 5 - 1 - 1 - 1 + 1 = 13.$$