

Module 1 Unit 2

OPTICAL FIBRES – FORMULAS

Parameter	Formula
1. Numerical Aperture	$NA = n_0 \sin(\theta_c)$
	$NA = \sqrt{n_1^2 - n_2^2}$
	$NA = n_1 \sqrt{2\Delta}$
2. (External) Acceptance angle	$\theta_{\rm c} = \sin^{-1}({\rm NA})$
3. (Internal) Critical angle	$i_0 = \sin^{-1}\left(\frac{n_2}{n_1}\right)$
	$i_0 = \sin^{-1}(1 - \Delta)$
4. Fractional refractive index	$\Delta = \frac{n_1 - n_2}{n_1}$
	$n_2 = n_1(1 - \Delta)$
5. V-number/Normalized frequency	$V = \frac{2\pi a}{\lambda} NA$
	V < 2.405 for SM fibre
6. Number of modes	$N_{\rm m} = \frac{V^2}{2}$ for SI fibre
	$N_{ m m}=rac{V^2}{4}$ for GRIN fibre
7. Attenuation coefficient	$\alpha = \frac{1}{L} 10 \log \left(\frac{P_{in}}{P_{out}} \right) dB/km$
	(L taken in km)
8. Intermodal dispersion	$\tau_i = \frac{n_1 L \Delta}{c}$ sec for SI fibre
	$ au_{\rm i} = rac{n_2 { m L} \Delta^2}{2 { m c}} { m sec} $
7/07	Conversion: 1 sec/m \equiv 10 ¹² ns/km
9. Max. bit rate	$B = \frac{0.7}{\tau}$ bits/sec;
	$ au = \sqrt{ au_{i}^{2} + au_{m}^{2}}$ sec