Nipun Batra January 22, 2020

IIT Gandhinagar

Contour Plot And Gradients

Contour Plot And Gradients

Gradient denotes the direction of steepest ascent or the direction in which there is a maximum increase in f(x,y)

1

Contour Plot And Gradients

Gradient denotes the direction of steepest ascent or the direction in which there is a maximum increase in f(x,y)

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$$

1

•
$$y = x^2$$

- $y = x^2$
- Key idea: Go to x_1 from x_0 such that $y_1 < y_0$

- $y = x^2$
- Key idea: Go to x_1 from x_0 such that $y_1 < y_0$

•
$$\frac{\partial y}{\partial x} = 2x$$

- $y = x^2$
- Key idea: Go to x_1 from x_0 such that $y_1 < y_0$
- $\cdot \frac{\partial y}{\partial x} = 2x$
- At x = 4.1, we have max. decrease along the direction of $-\frac{\partial y}{\partial x}$

- $\cdot y = x^2$
- Key idea: Go to x_1 from x_0 such that $y_1 < y_0$
- $\frac{\partial y}{\partial x} = 2x$
- At x = 4.1, we have max. decrease along the direction of $-\frac{\partial y}{\partial x}$
- Equation of tangent at x=4.1: y = 8.2x-16.82

General Optimization Technique Question: Find minimum y

• Start with some x_0

- Start with some x_0
- · Till convergence or iterations exhahusted

- Start with some x₀
- · Till convergence or iterations exhahusted

•
$$X_i = X_{i-1} - \alpha \frac{\partial y}{\partial x} X_{i-1}$$

- Start with some x₀
- · Till convergence or iterations exhahusted

•
$$X_i = X_{i-1} - \alpha \frac{\partial y}{\partial x} X_{i-1}$$

General Optimization Technique Question: Find minimum y

- Start with some x₀
- · Till convergence or iterations exhahusted

•
$$X_i = X_{i-1} - \alpha \frac{\partial y}{\partial x} X_{i-1}$$

Here, α is the learning rate or step parameter

Let us start with initial x value of $x_0 = 4.1$ and learning rate $\alpha = 0.2$

$$X = 4.1 - 0.2 \times 2 \times 4.1 = 2.46$$

$$x = 2.46 - 0.2 \times 2 \times 2.46 = 1.48$$

$$x = 1.48 - 0.2 \times 2 \times 1.48 = 0.89$$

Χ

What if α is large?

The model starts overshooting!

What if α is very small?

Then the rate of convergence is small. It takes more time for a model to reach the minimum cost!

Slow Convergence

Slow Convergence

Slow Convergence

Local Minima

 Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss $l(f(x_i|\theta), y_i) = (f(x_i|\theta) y_i)^2$, used in linear regression

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss $l(f(x_i|\theta), y_i) = (f(x_i|\theta) y_i)^2$, used in linear regression
- Cost function is usually more general. It might be a sum of loss functions over your training set plus some model complexity penalty (regularization). For example:

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss $l(f(x_i|\theta), y_i) = (f(x_i|\theta) y_i)^2$, used in linear regression
- Cost function is usually more general. It might be a sum of loss functions over your training set plus some model complexity penalty (regularization). For example:
- Mean Squared Error $MSE(\theta) = \frac{1}{N} \sum_{i=1}^{N} (f(x_i|\theta) y_i)^2$

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss $l(f(x_i|\theta), y_i) = (f(x_i|\theta) y_i)^2$, used in linear regression
- Cost function is usually more general. It might be a sum of loss functions over your training set plus some model complexity penalty (regularization). For example:
- Mean Squared Error $MSE(\theta) = \frac{1}{N} \sum_{i=1}^{N} (f(x_i|\theta) y_i)^2$
- Objective function is the most general term for any function that you optimize during training.

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss $l(f(x_i|\theta), y_i) = (f(x_i|\theta) y_i)^2$, used in linear regression
- Cost function is usually more general. It might be a sum of loss functions over your training set plus some model complexity penalty (regularization). For example:
- Mean Squared Error $MSE(\theta) = \frac{1}{N} \sum_{i=1}^{N} (f(x_i|\theta) y_i)^2$
- Objective function is the most general term for any function that you optimize during training.

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss $l(f(x_i|\theta), y_i) = (f(x_i|\theta) y_i)^2$, used in linear regression
- Cost function is usually more general. It might be a sum of loss functions over your training set plus some model complexity penalty (regularization). For example:
- Mean Squared Error $MSE(\theta) = \frac{1}{N} \sum_{i=1}^{N} (f(x_i|\theta) y_i)^2$
- Objective function is the most general term for any function that you optimize during training.

We have thus far seen:

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss $l(f(x_i|\theta), y_i) = (f(x_i|\theta) y_i)^2$, used in linear regression
- Cost function is usually more general. It might be a sum of loss functions over your training set plus some model complexity penalty (regularization). For example:
- Mean Squared Error $MSE(\theta) = \frac{1}{N} \sum_{i=1}^{N} (f(x_i|\theta) y_i)^2$
- Objective function is the most general term for any function that you optimize during training.

We have thus far seen:

$$\sum \epsilon_i^2 = \sum (y_i - (\theta_0 + \theta_1 x_i))^2$$

Gradient Descent Algorithm

Start with random values of θ_0 and θ_1 Till convergence

$$\cdot \theta_0 = \theta_0 - \frac{\partial}{\partial \theta_0} (\sum \epsilon_i^2)$$

$$\theta_1 = \theta_1 - \frac{\partial}{\partial \theta_1} (\sum \epsilon_i^2)$$

The updates have to be done simultaneously!

Gradient Descent Algorithm

$$\frac{\partial}{\partial \theta_0} (\sum \epsilon_i^2) = 2 \sum (y_i - (\theta_0 + \theta_1 x_i))(-1)$$

$$\frac{\partial}{\partial \theta_1} (\sum \epsilon_i^2) = 2 \sum (y_i - (\theta_0 + \theta_1 x_i))(-x_i)$$

Learn $y = \theta_0 + \theta_1 x$ on following dataset, using gradient descent where initially $(\theta_0, \theta_1) = (4, 0)$ and step-size, $\alpha = 0.1$, for 2 iterations.

Х	у
1	1
2	2
3	3

Our predictor,
$$\hat{y} = \theta_0 + \theta_1 x$$

Error for
$$i^{th}$$
 datapoint, $\epsilon_i = y_i - \hat{y}_i$
 $\epsilon_1 = 1 - \theta_0 - \theta_1$
 $\epsilon_2 = 2 - \theta_0 - 2\theta_1$
 $\epsilon_3 = 3 - \theta_0 - 3\theta_1$

$$MSE = \frac{\epsilon_1^2 + \epsilon_2^2 + \epsilon_3^2}{3} = \frac{14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1}{3}$$

Difference between SSE and MSE

$$\sum \epsilon_{i}^{2}$$
 increases as the number of examples increase

So, we use MSE

$$MSE = \frac{1}{n} \sum_{i} \epsilon_{i}^{2}$$

Here *n* denotes the number of samples

$$\frac{\partial MSE}{\partial \theta_0} = \frac{2\sum\limits_{i} \left(y_i - \theta_0 - \theta_1 x_i\right) \left(-1\right)}{N} = \frac{2\sum\limits_{i} \epsilon_i \left(-1\right)}{N}$$

$$\frac{\partial MSE}{\partial \theta_1} = \frac{2\sum\limits_i \left(y_i - \theta_0 - \theta_1 x_i\right)\left(-x_i\right)}{N} = \frac{2\sum\limits_i \epsilon_i\left(-x_i\right)}{N}$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 4 - 0.2 \frac{((1 - (4 + 0))(-1) + (2 - (4 + 0))(-1) + (3 - (4 + 0))(-1))}{3}$$

$$\theta_0 = 3.6$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 4 - 0.2 \frac{((1 - (4 + 0))(-1) + (2 - (4 + 0))(-1) + (3 - (4 + 0))(-1))}{3}$$

$$\theta_0 = 3.6$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_1 = 0 - 0.2 \frac{((1 - (4+0))(-1) + (2 - (4+0))(-2) + (3 - (4+0))(-3))}{3}$$

$$\theta_1 = -0.67$$

$$\mathsf{MSE} = \tfrac{1}{3} \big(14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1 \big)$$

MSE =
$$\frac{1}{3}(14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1)$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 3.6 - 0.2 \frac{((1 - (3.6 - 0.67))(-1) + (2 - (3.6 - 0.67 \times 2))(-1) + (3 - (3.6 - 0.67 \times 3))(-1))}{3}$$

$$\theta_0 = 3.54$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 3.6 - 0.2 \frac{((1 - (3.6 - 0.67))(-1) + (2 - (3.6 - 0.67 \times 2))(-1) + (3 - (3.6 - 0.67 \times 3))(-1))}{3}$$

$$\theta_0 = 3.54$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_0 = 3.6 - 0.2 \frac{((1 - (3.6 - 0.67))(-1) + (2 - (3.6 - 0.67 \times 2))(-2) + (3 - (3.6 - 0.67 \times 3))(-3))}{3}$$

$$\theta_0 = -0.55$$

Cost v/s Iterations ($\alpha = 0.1$)

Fit at iteration 0

Fit at iteration 20

Iteration v/s Epcohs for gradient descent

• Iteration: Each time you update the parameters of the model

Iteration v/s Epcohs for gradient descent

- Iteration: Each time you update the parameters of the model
- Epoch: Each time you have seen all the set of examples

Vanilla Gradient Descent

• in Vanilla (Batch) gradient descent: We update params after going through all the data

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost
- For a single update, it needs to compute the gradient over all the samples. Hence takes more time

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost
- For a single update, it needs to compute the gradient over all the samples. Hence takes more time

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost
- For a single update, it needs to compute the gradient over all the samples. Hence takes more time

Stochastic Gradient Descent

· In SGD, we update parameters after seeing each each point

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost
- For a single update, it needs to compute the gradient over all the samples. Hence takes more time

Stochastic Gradient Descent

- · In SGD, we update parameters after seeing each each point
- Noisier curve for iteration vs cost

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost
- For a single update, it needs to compute the gradient over all the samples. Hence takes more time

Stochastic Gradient Descent

- · In SGD, we update parameters after seeing each each point
- Noisier curve for iteration vs cost
- For a single update, it computes the gradient over one example. Hence lesser time

Gradient Descent

- Slower in speed (Needs to see many examples before update)
- · Smooth convergence
- iterations = epochs

Stochastic Gradient Descent

- Faster in speed
- · Noisy convergence
- iterations = epochs × examples

Learn $y = \theta_0 + \theta_1 x$ on following dataset, using SGD where initially $(\theta_0, \theta_1) = (4, 0)$ and step-size, $\alpha = 0.1$, for 1 epoch (3 iterations).

Х	у
2	2
3	3
1	1

Our predictor,
$$\hat{y} = \theta_0 + \theta_1 x$$

Error for
$$i^{th}$$
 datapoint, $e_i = y_i - \hat{y}_i$
 $e_1 = 1 - \theta_0 - \theta_1$
 $e_2 = 2 - \theta_0 - 2\theta_1$
 $e_3 = 3 - \theta_0 - 3\theta_1$

While using SGD, we compute the MSE using only 1 datapoint per iteration.

So MSE is e_1^2 for iteration 1 and e_2^2 for iteration 2.

For Iteration i

$$\frac{\partial MSE}{\partial \theta_0} = 2 (y_i - \theta_0 - \theta_1 x_i) (-1) = 2e_i (-1)$$

$$\frac{\partial MSE}{\partial \theta_1} = 2(y_i - \theta_0 - \theta_1 x_i)(-x_i) = 2e_i(-x_i)$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 4 - 0.1 \times 2 \times (2 - (4 + 0)) (-1)$$

$$\theta_0 = 3.6$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 4 - 0.1 \times 2 \times (2 - (4 + 0))(-1)$$

$$\theta_0 = 3.6$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_1 = 0 - 0.1 \times 2 \times (2 - (4 + 0))(-2)$$

$$\theta_1 = -0.8$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 3.6 - 0.1 \times 2 \times (3 - (3.6 - 0.8 \times 3))(-1)$$

$$\theta_0 = 3.96$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 3.6 - 0.1 \times 2 \times (3 - (3.6 - 0.8 \times 3)) (-1)$$

$$\theta_0 = 3.96$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_0 = -0.8 - 0.1 \times 2 \times (3 - (3.6 - 0.8 \times 3))(-3)$$

$$\theta_1 = 0.28$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 3.96 - 0.1 \times 2 \times (1 - (3.96 + 0.28 \times 1))(-1)$$

$$\theta_0 = 3.312$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

Iteration 3

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 3.96 - 0.1 \times 2 \times (1 - (3.96 + 0.28 \times 1)) (-1)$$

$$\theta_0 = 3.312$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

 $\theta_0 = 0.28 - 0.1 \times 2 \times (1 - (3.96 + 0.28 \times 1))(-1)$

$$\theta_1 = -0.368$$

Mini-Batch Gradient Descent

In mini-batch gradient descent, we compute the gradient over a mini-batch of samples, thereby getting the best of both worlds.

When to use Gradient Descent

Gradient Descent

- Good for online setting (more data over time, no need to create new matrices!)
- · Good for large data

Normal systems

- Good for simple data
- · No need to worry about learning rates, etc
- · Non trivial to solve

Projected Gradient Descent

For θ_i , if we want to impose the condition that $\theta_i >= 0$

$$\theta_i = max(\theta_i - \alpha \frac{\partial \epsilon(\theta_0, \theta_1, ...)}{\partial \theta_i}, 0)$$