	Page: Oute: / /	
	Day -221 (maph-25	
*	Strongly connected component:	
	Q-Q (10) (7-G)	=
2.10	3 2 9 8 4 5 5 CC 1 5 CC 2 5 CC 3 5 CC 4	
=)	In a directed graph, SCC is a subset of ventices where every vertex in the	
	subset is reachable from every other vertex in the same subset by	
	traversing the direct edges.	
<u>0</u>	(ount: 4. Print: 0123	=
	9 10 11 82 20 20 20 20 20 20 20 20 20 20 20 20 20	· . =\
	4 5 6 7	-
=)	By normal traversing, we can't find the SCCs.	=
=)	So, we can solve this question by using trosanaju's algo.	

	Page: Date: / /
=)	we can visualize every component as a node then -
	$ SCC1 \rightarrow SCC2 \rightarrow SCC3 $
(G) =)	so, if we find a way that if we go in SCCI then after traversing all the nodes of SCCI, we will not go to SCC2.
to =)	For that, we we can neverse the edge 6/w SCC1 & SCC2.
by O	SCC1 ← SCC2 ← SCC3 ← SCC4 /
=	So, how to find these edges.
E)	For that if can reverse all the
- al /	And after this operation, SCCs remain sccs.
=)	Also, we have to fallow the order of traversing. i.e. SCC1 then SCC2 then SCC3 & then SCC4.
3	For this, we can use Topological Sort. by DFS method.

	Page:
=)	After that we have to reverse the edges & Apply DFS.
	Steps:
1,	Topological Sort, Reverse the edge,
3,	Pap element from the stack The stack of the
	T.S. make sure that all the non- cycle hodes remains in order or traversed according to order.
* disc	Tanjahis Alganithm! 010 $1/1$ $2/2$ $3/3$ $4//43$ $5/8/3$ $6//8/3$ 0 0 0 0 0 0 0 0 0 0
=)	So, we will use Tanjan's Algo, to find out SCC. But it will find SCC in single pass but our kosanaju's Algo find SCC in 3 passes.

Now, we start traversing the nodes & give them disc & fow time value. And when we are returning back then we updates the values of disc & low,
And when we are returning back then we updates the values of
then we updates the values of
asc 8 100,
scc x else
And then we update the low values of the node with min of low values of node & neighbours.
So, if disc & low value are equal then it is a SCC.
If the neigh is already visited then we will update the law value with the min of low of node & neigh.
we also remember that if we will
we also remember that if we will not directly apply above rule. we girst check that visited node in the stack is present on not. If present, then we will apply the above rule.