For all questions, answer choice (E) NOTA means that none of the given answers is correct. Good Luck!

1. Find the equation of the line with slope 2 that goes through the point (4,-5).

$$(A) 2x + y = 13$$

(B)
$$2x - y = 13$$

(C)
$$2x + y = -13$$

(D)
$$2x - y = -13$$

2. Find the discriminant of the quadratic $5x^2 + 4 + 9x = 0$.

$$(C) -176$$

$$(D) -29$$

3. Evaluate |5-12i|.

(C)
$$5 + 12i$$

4. If $x + \frac{1}{x} = 3$, then what is $x^4 + \frac{1}{x^4}$?

5. Given that $f(x) = \frac{5+12x}{5x+12}$, find the inverse of f(x).

(A)
$$f^{-1}(x) = \frac{5 - 12x}{5x - 12}$$

(B)
$$f^{-1}(x) = \frac{5x+12}{5+12x}$$

(A)
$$f^{-1}(x) = \frac{5-12x}{5x-12}$$
 (B) $f^{-1}(x) = \frac{5x+12}{5+12x}$ (C) $f^{-1}(x) = \frac{5x-12}{5-12x}$ (D) $f^{-1}(x) = \frac{5+12x}{5x+12}$

(D)
$$f^{-1}(x) = \frac{5+12x}{5x+12}$$

6. Sid is taking a run and he gets tired. He takes a break after 1 mile, then he takes another after half a mile, then after a quarter of a mile, with each distance being half of the distance before. How far does he travel altogether, in miles, if he can run infinitely?

(D)
$$\infty$$

7. Find the determinant of the following matrix:

 $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$

$$(C) -5$$

(E) NOTA

8. How many solutions does the equation $\frac{2015(x-1)(x-2)(x-3)(x-4)}{(x-1)(x-3)(x-5)} = \frac{x(x-1)(x-2)(x-3)(x-4)}{(x-1)(x-3)(x-5)}$ have?

(E) NOTA

9. Find the remainder when $3x^3 + 7x^2 - 9x + 5$ is divided by x - 2.

$$(D) -27$$

(E) NOTA

10. Order the conics by increasing eccentricity, if parabolas are P, circles are C, ellipses are E, and hyperbolas are H.

(E) NOTA

11. If $a = \log 2$, $b = \log 3$, and $c = \log 5$, which of the following is equal to $\log(2250)$?

(A)
$$2a + 3b - c$$

(B)
$$2a + 3b + c$$

(C)
$$a + 2b + 3c$$

(D)
$$a + b + c$$

12. What is the units digit of $2^{2015} + 3^{123456789} + 5^x + 6^{2x+0y+1a+5} + 19^{123}$?

$$(C)$$
 5

13.	Find the sum of all real	solutions to the equation	$(x^2 + x - 3)^{(x^2 + x - 6)} = 1$	•	
	(A) 4	(B) -4	(C) 2	(D) -2	(E) NOTA
14.	_		a geometry problem in 4 r a full Mu Alpha Theta te		
	(A) 60	(B) $\frac{180}{19}$	(C) $\frac{1800}{19}$	(D) $\frac{360}{19}$	(E) NOTA
15.	Identify the following co	nic (be as specific as poss	sible):		
	$3x^2 + 18x + 4y^2 + 16y + 47 = 4$				
	(A) Circle	(B) Ellipse	(C) Parabola	(D) Hyperbola	(E) NOTA
16.	How many of the following $f(x) = 7^{x^2}$ $f(x) = \frac{3}{x^2 - 5}$ $f(x) = x^3 - 2x$	ing are even functions?			
	f(x) = 0 (A) 1	(B) 2	(C) 3	(D) 4	(E) NOTA
17.	Let $\phi = \prod_{i=1}^{100} 9^i$. Evaluate	$\log_3 \phi$.			
	$^{i=1}$ (A) 5050	(B) 10100	(C) 2525	(D) 20200	(E) NOTA
18.	Find $\frac{x + \sqrt{x^2 - 1}}{x - \sqrt{x^2 - 1}} - \frac{x - \sqrt{x^2 - 1}}{x + \sqrt{x^2 - 1}}$	$\frac{-\sqrt{x^2-1}}{-\sqrt{x^2-1}}$ if $x = \frac{2}{\sqrt{2}}$.			
	(A) $2\sqrt{2}$	(B) $4\sqrt{2}$	(C) $\frac{7}{3}$	(D) $\frac{8}{3}$	(E) NOTA
19.	Let $f(x) = (x-1)^{2015} +$ (A) 2015		$+\ldots+(x-1)^3+(x-1)^3$ (C) 2013). What is the sum of the (D) 2011	roots of $f(x)$? (E) NOTA
20.	Simplify: $(\frac{\log 3}{\log 2} + \frac{\log 9}{\log 4})$	0 0			
	(A) 2	(B) 4	(C) 5	(D) 6	(E) NOTA
21.	If $2(7^2 + 24^2)^{2015} + 3(15)^{2015}$	$(x^2 + 20^2)^{2015} = 5^x$, find x .			
	(A) 2015	(B) 2016	(C) 4030	(D) 4031	(E) NOTA
22.	Determine the value of	$ 3 - 4i - 12i^{2015} .$			

(C) 7

(D) -7

(E) NOTA

(B) -13

(A) 13

- 23. An arithmetic sequence has 2015 terms, and the 1008th term is 12. What is the sum of all of the terms in the sequence?
 - (A) 24192
- (B) 24180
- (C) 24168
- (D) 12096
- (E) NOTA

- 24. Compute: $\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{98 \times 99} + \frac{1}{99 \times 100}$
 - (A) 0.01
- (B) 0.9
- (C) 0.98
- (D) 0.99
- (E) NOTA
- 25. Find the number of distinct permutations of the letters in the word INVITATIONAL.
 - (A) $\frac{12!}{2!2!3!}$
- (B) 12!
- (C) $\frac{12!}{2!2!2!}$
- (D) $\frac{12!}{3!2!2!2!}$
- (E) NOTA

- 26. Evaluate: $\sum_{n=0}^{\infty} \frac{1}{n^2 + 3n + 2}$
 - (A) ∞
- (B) 1
- (C) 2
- (D) 5

- (E) NOTA
- 27. N is the number of 1's in the number A and 1's are the only digits in A. If N is 2015, what are the last 3 digits of $A^2 5$?
 - (A) 315
- (B) 316
- (C) 317
- (D) 318
- (E) NOTA
- 28. If $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8$ and x_9 are roots of the 9th-degree Raj function $R(x) = 4x^9 + a_8x^8 + a_7x^7 + a_6x^6 + a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$, find a_8 if:

$$x_1 + x_2 + x_3 + x_4 = 6$$

$$x_2 + x_3 + x_4 + x_5 = 3$$

$$x_3 + x_4 + x_5 + x_6 = -7$$

$$x_4 + x_5 + x_6 + x_7 = -5$$

$$x_5 + x_6 + x_7 + x_8 = 9$$

$$x_6 + x_7 + x_8 + x_9 = -6$$

$$x_7 + x_8 + x_9 + x_1 = -2$$

$$x_8 + x_9 + x_1 + x_2 = 8$$

$$x_9 + x_1 + x_2 + x_3 = -14$$

(A) 8

(B) 2

(C) 9

(D) 21

(E) NOTA

- 29. Calculate the number of digits in 7^{2015} given that $\log 7 = 0.80$.
 - (A) 1700
- (B) 1600
- (C) 1612
- (D) 1613
- (E) NOTA

- 30. Find the sum of the integers contained within the domain of $y = \frac{\sqrt{|x|-4}}{x^2+2x-15}$.
 - $(A) -\infty$
- (B) ∞

- (C) 2
- (D) 0

(E) NOTA