

Hackathon de energía hidropredictiva

2024

Índice.

1. Somos mottum

- Lo que hacemos, misión y visión
- Nuestro equipo

2. Asumimos el reto

- Reto
- Objetivos
- Complejidades

3. Solución

- Poder predictivo de nuestra solución según MAE
 - o Técnicas de precisión
 - Técnicas de eficiencia

4. Escalabilidad y próximos pasos

Somos mottum.

Consultora estratégica y tecnológica que utiliza la **ciencia de datos y la inteligencia artificial** para **impactar** en la toma de decisiones complejas de **gobiernos y organizaciones**.

¿Nuestra visión? #dataforhumanity.

Estamos aquí porque...

- La IA es un antes y un después en nuestras vidas. Tenemos la misión de **entenderla**, usarla inteligentemente y divulgar su impacto para garantizar su uso a favor de la sostenibilidad.
- Queremos colaborar con las empresas presentes para formar parte de la solución y no del problema. Las sinergias son claves para potenciar el impacto de la Inteligencia Artificial en el tejido empresarial y, por lo tanto, en la sociedad.

Han confiado en nosotros.

Nuestro equipo.

Jose Luis Delgado Davara

CEO & Founder

Hylenne González

Project Manager

Arturo Ortiz

Technological Solution Engineer

Beltrán Valle

Computer Science and Al Engineer

Entremos en materia.

Reto, objetivo y complejidades.

Apoyar la Gestión Hidráulica desde dos puntos de vista: sostenibilidad energética y la eficiencia del consumo de la IA.

Mayor precisión en la previsión de energía diaria.

Eficiencia de la IA

Algoritmos con mayor precisión

† consumo de energía

Algoritmos más eficientes ↓ precisión

La solución.

La solución: Algoritmo altamente eficiente.

MAE 19,6

Precisión*

Kg/CO2 (E=0.027351 kWh)

Bombilla led 5W - 5h, 32 mins

^{*}Mean Absolute Error: medida de la diferencia entre dos variables continuas. Considerando dos series de datos (unos calculados y otros observados) relativos a un mismo fenómeno, el error absoluto medio sirve para cuantificar la precisión de una técnica de predicción comparando por ejemplo los valores predichos frente a los observados, el tiempo real frente al tiempo previsto, o una técnica de medición frente a otra técnica alternativa de medición.

Nuestra propuesta:

IEEAV

Índice de Eficiencia Energética en Algoritmos Verdes

Consumo energético.

Modelo	Cantidad de modelos	Tiempo de entrenamiento (min)	Métrica (MAE)	Kg/CO2	IEAV
XGBoost	2	6	67	0.0001995	0.003
RandomForest	2	7	40	0.0006797	0.017
LSTM	10	35	28	0.0058118	0.208
LSTM reducido	10	20	21	0.0047604	0.227

¿Cómo lo logramos?

Selección de variables importantes

1

Selección de variables importantes

1

Selección de variables importantes

- Emplazamientos
- Aforos
- Aforos complementarios (datos abiertos)

Datos abiertos de aforos!!

1

Selección de variables importantes

Plantas hidroeléctricas en la cuenca del Duero

Técnicas aumentar la eficiencia.

Consumo energético.

Modelo	Cantidad de modelos	Tiempo de entrenamiento (min)	Métrica (MAE)	Kg/CO2	IEAV
XGBoost	2	6	67	0.0001995	0.00297761194
RandomForest	2	7	40	0.0006797	0.0169925
LSTM	10	35	28	0.0058118	0.2075642857
LSTM reducido	10	20	21	0.0047604	0.2266857143

La solución.

MAE 19,6

Precisión*

Kg/CO2 (E=0.027351 kWh)

Mean Absolute Error: **medida de la diferencia entre dos variables continuas**. Considerando dos series de datos (unos calculados y otros observados) relativos a un mismo fenómeno, el error absoluto medio sirve para cuantificar la precisión de una técnica de predicción comparando por ejemplo los valores predichos frente a los observados, el tiempo real frente al tiempo previsto, o una técnica de medición frente a otra técnica alternativa de medición.

Conclusiones:

<u>IA explicable para orientar a la no explicable</u>
 La IA explicable puede servirnos para guiar el diseño de algoritmos más eficientes.

El uso inteligente de la IA para garantizar la sostenibilidad en la gestión hidráulica: La IA tiene potencial de mantener la eficiencia.

La importancia de un Índice de Eficiencia en Algoritmos Verdes (IEAV):
Es importante que se materialicen las iniciativas del PNAV y se resuelvan necesidades reales como la de Iberdrola.

Muchas gracias.

Sigamos en contacto a través de: email:

il@mottum.io / hello@mottum.io

Página web: mottum.io

LinkedIn: linkedin.com/company/mottum

Datos adicionales.

- Emplazamientos
- Aforos
- Aforos complementarios (datos abiertos)

