

Plano de Ensino para o Ano Letivo de 2020

	IDE	ENTIFICAÇÃO		
Disciplina:				Código da Disciplina:
Estruturas de Concreto				ETC323
Course:				
Concrete Structures				
Materia:				
Periodicidade: Anual	Carga horária total:	160	Carga horária sem	anal: 00 - 02 - 02
	Carga norana totali	. 100	Série:	Período:
Curso/Habilitação/Ênfase:				
Engenharia Civil			5	Noturno
Engenharia Civil			4	Diurno
Engenharia Civil			4	Noturno
Professor Responsável:		Titulação - Gradua	ção	Pós-Graduação
Januário Pellegrino Neto		Engenheiro Civ	vil .	Mestre
Professores:		Titulação - Gradua	ção	Pós-Graduação
Januário Pellegrino Neto		Engenheiro Civ	⁄il	Mestre
Marcos Monteiro		Engenheiro Civ	⁄il	Especialista
Pedro Henrique Cerento de l	Engenheiro Civ	⁄il	Mestre	
•	IFTIVOS - Conhec			

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Conhecimentos:

- C1 A finalidade da estrutura na engenharia.
- C2 Como funcionam os elementos estruturais.
- C3 Segurança estrutural.
- C4 Influência do projeto arquitetônico no custo das estruturas.
- C5 Comportamento dos materiais que compõe o concreto armado e protendido.
- C6 A necessidade do equilíbrio e da compatibilidade.

Habilidades:

- H1 Saber identificar os elementos estruturais mais comuns e suas funções.
- H2 Saber diferenciar situações referentes aos estados limites ELU e ELS.
- H3 Saber estabelecer os critérios econômicos no dimensionamento.
- H4 Saber modelar matematicamente os problemas de dimensionamento.

Atitudes:

- Al Incorporar o conceito de segurança probabilística confiabilidade.
- A2 Decidir apoiado em conceitos de viabilidade econômica custo x benefício.
- A3 Identificação do custo dos materiais e de mão-de-obra.
- A4 Valorizaração de modelos parametrizados em ensaios.

2020-ETC323 página 1 de 11

EMENTA

Introdução ao concreto estrutural.

Segurança das estruturas: conceitos probabilísticos e o método dos estados limites (ELU e ELS).

Introdução à concepção estrutural: lançamento da estrutura de um edifício, carregamentos sobre as estruturas das edificações, tomada de cargas nos elementos estruturais e ação do vento.

Dimensionamento no ELU - Solicitações normais (FNS, FNC, FOC e Diagramas de Interação) e tangenciais (força cortante e torção).

Dimensionamento dos pilares. Estabilidade global e efeitos de 2a ordem.

Verificação no ELS: verificação de flechas e abertura de fissuras.

Detalhamento de lajes, vigas e pilares.

Introdução ao Concreto Protendido: conceitos básicos, sistemas e tipos de protensão, Estado Limite de Serviço (ELS), Força e Armadura de Protensão, Perdas de Protensão e Verificação no Estado Limite Último (ELU).

Projeto estrutural de edifícios: Sistema integrado aplicado ao projeto de estruturas de edifícios. Interoperabilidade da modelagem estrutural com um aplicativo BIM.

SYLLABUS

Introduction to structural concrete.

Structural safety: probabilistic concepts and the limit state method (ELU and ELS).

Introduction to structural design: launching the structure of a building, loading on building structures, taking loads on structural elements and wind action.

ELU sizing - Normal (FNS, FNC, FOC, and Interaction Diagrams) and tangential (shear and torsional) stresses.

Pillar sizing. Overall stability and 2nd order effects.

ELS check: arrow check and crack opening.

Detailing of slabs, beams and pillars.

Introduction to Prestressed Concrete: Basic concepts, prestressing systems and types, Limit of Service (ELS), Stress Strength and Armature, Stress Losses, and Ultimate Limit Verification (ELU).

Structural design of buildings: Integrated system applied to the design of building structures. Interoperability of structural modeling with a BIM application.

TEMARIO

2020-ETC323 página 2 de 11

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Exercício - Sim Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Ensino Híbrido
- Sala de aula invertida
- Problem Based Learning
- Gamificação

METODOLOGIA DIDÁTICA

A disciplina utilizará a técnica expositiva e estratégias ativas para aprendizagem (EAA), com apoio de recursos áudio-visuais, para as aulas teóricas e práticas.

Nas aulas práticas será desenvolvido um projeto, além de exercícios e da técnica expositiva, havendo orientação e acompanhamento no desenvolvimento do projeto em sala de aula, utilizando de ferramentas computacionais compatíveis com o BIM - Building Information Modeling.

Nas aulas teóricas, além da técnica expositiva e EAA, serão propostos trabalhos e exercícios, propiciando a sistematização do dimensionamento por meio de ferramentas computacionais.

Todas estas atividades nas aulas teóricas e práticas - projeto, trabalhos e exercícios - compõem a nota de trabalho.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Materiais de Construção: propriedades dos materiais concreto e aço; Resistência dos Materiais e Teoria das Estruturas: tensões, deformações e comportamento estrutural - determinação dos esforços solicitantes em estruturas usuais da construção civil.

CONTRIBUIÇÃO DA DISCIPLINA

Desenvolver no aluno:

- 1 A noção de valor ao ato de pensar e planejar, utilizando o projeto como ferramenta de simulação de diversas soluções estruturais possíveis;
- 2 O preparo adequado no uso das ferramentas computacionais, priorizando a conceituação da solução e a expectativa da qualidade do resultado ao invés da aceitação passiva das respostas numéricas obtidas pela informatização dos procedimentos de análise;
- 3 A compreensão de que o equilíbrio dos elementos estruturais é uma qualidade essencial mínima e que a durabilidade é uma qualidade necessária que o cliente melhor identifica;
- 4 A compreensão das necessidades dos clientes e fornecedores no ciclo de desenvolvimento do projeto;
- 5 A sensibilidade na priorização das soluções que aliem a segurança, a economia e sejam exequíveis;
- 6 A compreensão da lógica de funcionamento das estruturas em concreto armado e protendido: posicionamento das armaduras de equilíbrio, posicionamento das armaduras de compatibilidade. Deformações plásticas e reológicas e o seu

2020-ETC323 página 3 de 11

INSTITUTO MAUÁ DE TECNOLOGIA

relacionamento com a execução da obra;

7 - A noção de segurança estrutural associada à análise de confiança da estatística.

BIBLIOGRAFIA

Bibliografia Básica:

ARAÚJO, José Milton de. Curso de concreto armado. 2. ed. Rio Grande, RS: Dunas, 2003. v. 1 a 4.

CARVALHO, Roberto Chust; FIGUEIREDO FILHO, Jasson Rodrigues. Cálculo e detalhamento de estruturas usuais de concreto armado: segundo a NBR 6118:2003. 3. ed. São Carlos, SP: UFSCAR, 2013. 367 p.

CARVALHO, Roberto Chust; PINHEIRO, Libânio Miranda. Cálculo e detalhamento de estruturas usuais de concreto armado. 2. ed. São Paulo, SP: Pini, 2013. v. 2. 617 p. ISBN 9788572662765.

Bibliografia Complementar:

ARAÚJO, José Milton. Projeto estrutural de edifícios de concreto armado. 2. ed. Rio Grande, RS: Dunas, 2009. 224 p.

FUSCO, Péricles Brasiliense. Estruturas de concreto: solicitações normais, estados limites últimos; teoria e aplicações. Rio de Janeiro, RJ: Guanabara Dois, 1981. 464 p.

FUSCO, Péricles Brasiliense. Estruturas de concreto: solicitações tangenciais. São Paulo, SP: Pini, 2008. 328 p. ISBN 9788572662086.

FUSCO, Péricles Brasiliense. Tecnologia do concreto estrutural: tópicos aplicados. São Caetano do Sul, SP: Pini, 2008. 179 p. ISBN 9788572662000.

FUSCO, Péricles Brasiliense. Técnica de armar as estruturas de concreto. São Paulo, SP: Pini, 1998. 382 p. ISBN 85-7266-057-7.

GRAZIANO, Francisco Paulo. Projeto e execução de estruturas de concreto armado. São Paulo, SP: O Nome da Rosa, 2005. 160 p. (Coleção Primeiros Passos da Qualidade no Canteiro de Obras).

JIMENEZ MONTOYA, P; MONSEGUER, A. Garcia; CABRE, F. Moran. Hormigon armado. Barcelona: Gustavo Gili, [s.d.]. v. 2.

JIMENEZ MONTOYA, P; MONSEGUER, A. Garcia; CABRE, F. Moran. Hormigon armado. 8. ed. Barcelona: Gustavo Gili, [s.d.]. v. 1.

2020-ETC323 página 4 de 11

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos e provas (quatro e duas substitutivas).

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0 \quad k_3: 1,0 \quad k_4: 1,0$

Peso de $MP(k_{D})$: 3,0 Peso de $MT(k_{D})$: 1,0

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

A avaliação T (trabalhos) constará de projetos, trabalhos e exercícios desenvolvidos ao longo dos semestres, individualmente ou em grupo, acompanhados pelo professor quando em sala de aula, valorizando a presença do aluno à aula, da seguinte forma:

- Teoria exercícios e trabalhos em cada semestre: T1 (25%) e T3 (25%)
- Projeto exercícios e projetos em cada semestre: T2 (25%) e T4 (25%)

Todas as avaliações dos trabalhos, T1 a T4, têm os mesmos pesos.

2020-ETC323 página 5 de 11

OUTRAS INFORMAÇÕES	
	1

2020-ETC323 página 6 de 11

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

1.	CAD TQS	- Software	integrado par	ra projeto	de est	truturas	de	concreto	
			IM - Autodesk						
3.	SAP2000	- Software	para Análise	Estrutural	pelo	Método	dos	Elementos	Finitos

2020-ETC323 página 7 de 11

APROVAÇÕES

Prof.(a) Januário Pellegrino Neto Responsável pela Disciplina

Prof.(a) Cassia Silveira de Assis Coordenador(a) do Curso de Engenharia Civil

Data de Aprovação:

2020-ETC323 página 8 de 11

	<u> </u>	
	PROGRAMA DA DISCIPLINA	
Nº da	Conteúdo	EAA
semana		
1 E	Planejamento.	0
1 L	Planejamento.	0
2 L	Concepção Estrutural de Edifícios. Projeto de	0
	Arquitetura.Conceitos Básicos. Lançamento da Estrutura.	
2 E	Apresentação. Introdução ao Concreto Estrutural.	0
3 L	Conceitos Básicos. Lançamento da Estrutura.	11% a 40%
3 E	Segurança das Estruturas. Durabilidade das Estruturas de CA.	11% a 40%
4 L	Concepção Estrutural de Edifícios. Pré-dimensionamento. Planta de	0
	Formas.	
4 E	Solicitações Normais - ELU. Flexão Normal Simples - FNS (ELU).	0
	Hipóteses básicas e Domínios de Deformações.	
5 E	FNS - Seção Retangular - Armadura Simples. Dimensionamento.	11% a 40%
5 L	Concepção Estrutural de Edifícios. Pré-dimensionamento. Planta de	11% a 40%
	Formas.	
6 E	FNS - Seção Retangular - Armadura Dupla. Dimensionamento.FNS -	0
	Seção Retangular - Dimensionamento e Verificação.	
6 L	Concepção Estrutural de Edifícios. Cargas Verticais.	0
7 E	FNS - Seção tipo T. Dimensionamento.	0
7 L	Concepção Estrutural de Edifícios. Cargas Verticais.	11% a 40%
8 L	Concepção Estrutural de Edifícios. Cargas Horizontais de Vento.	0
8 E	FNS - Concreto de Alto Desempenho (CAD). Aplicativo FNS.FNS -	11% a 40%
	Seções Quaisquer. Problemas de Dimensionamento e Verificação.	
9 E	Prova P1.	0
9 L	Prova P1.	0
10 L	Estabilidade Global: conceito e aplicação do coeficiente Gama-Z.	0
10 L	Estabilidade Global: conceito e aplicação do coeficiente Gama-Z.	0
10 E	Lajes maciças de CA - Esforços Solicitantes. Dimensionamento.	0
11 L	Estabilidade Global: conceito e aplicação do coeficiente Gama-Z.	11% a 40%
11 E	Lajes maciças de CA - Dimensionamento e Detalhamento.	11% a 40%
11 L	Estabilidade Global: conceito e aplicação do coeficiente Gama-Z.	11% a 40%
12 L	Projeto de Lajes - dimensionamento e detalhamento.	0
12 L	Projeto de Lajes - dimensionamento e detalhamento.	0
12 E	Resistência ao Cisalhamento de Vigas. Força Cortante.	110 - 400
13 L	Projeto de Lajes - dimensionamento e detalhamento.	11% a 40%
13 L	Projeto de Lajes - dimensionamento e detalhamento.	11% a 40%
13 E	Resistência ao Cisalhamento de Vigas. Força Cortante. Resistência ao Cisalhamento de Vigas. Torção.	11% a 40%
14 E 14 L		0
1 T T T	Aderência, ancoragem e emenda de barras.Alojamento de barras, decalagem e corte de barras.	U
15 L	Semana de Inovação Mauá - SMILE 2020.	0
15 E	Semana de Inovação Mauá - SMILE 2020.	0
16 L	Detalhamento Completo de Vigas. Armadura de suspensão e de pele.	0
16 E	Solicitações Normais - ELU. Flexão Normal Composta (FNC).	0
17 E	FNC - Dimensionamneto.	11% a 40%

2020-ETC323 página 9 de 11

INSTITUTO MAUÁ DE TECNOLOGIA

17 L	Projeto Completo de Vigas.	11% a 40%
18 E	FNC - Grande Excentricidade. Aplicações.	11% a 40%
18 L	Projeto Completo de Vigas.	11% a 40%
19 E	Prova P2.	0
19 L	Prova P2.	0
20 E	Prova P2.	0
20 L	Prova P2.	0
21 L	Atendimento.	0
21 E	Atendimento.	0
22 E	Planejamento.	0
22 L	Planejamento.	0
23 E	Prova PS1.	0
23 L	Prova PS1.	0
24 L	Modelagem Estrutural de Edifícios. Sistema Integrado. BIM.	0
24 E	FNC - Diagramas de Interação - Dimensional.	0
25 L	Modelagem Estrutural de Edifícios. Sistema Integrado. BIM.	11% a 40%
25 E	FNC - Diagramas de Interação - Adimensional.Flexão Oblíqua	11% a 40%
	Composta (FOC).	
26 E	Diagramas de Interação - Aplicações.Pilares - eslbeltez e tipos	0
	básicos,.	
26 L	Análise Estrutural. Sistema Integrado.	0
27 L	Análise Estrutural. Sistema Integrado.	11% a 40%
27 E	Pilares - Esforços, dimensionamento e disposições construtivas.	11% a 40%
	Exemplos.	
28 L	Projeto de Pilares. Esforços, Dimensionamento e Detalhamento.	0
28 E	Pilares - dimensionamento e detalhamento. Exemplos.Estabilidade	0
	Global: conceito e aplicação do coeficiente Gama-Z	
29 E	Estabilidade Global e Pilares - Exercícios.	11% a 40%
29 L	Projeto de Pilares.	11% a 40%
30 E	Prova P3.	0
30 L	Prova P3.	0
31 L	Projeto de Lajes e Vigas - Sistema Integrado.	0
31 E	Estado Limite de Serviço - ELS - Conceito. Estádio II.	0
32 L	Projeto de Pilares - Sistema Integrado.	0
32 E	ELS - Estádio II. Rigidez equivalente - Branson.	11% a 40%
33 E	ELS - Estado Limite de Deformação Excessiva. Fluência.ELS -	0
	Estado Limite de Fissuração Excessiva.	
33 L	ELS - Verificação de Lajes e Vigas.	11% a 40%
34 L	ELS - Verificação de Lajes e Vigas.	0
34 E	Concreto Protendido. Histórico, motivação e aplicações. Conceitos	0
	Básicos de Protensão. Flexão Normal Composta (FNC).	
35 E	Sistemas de Protensão. Tipos de Protensão. Estado Limite de	11% a 40%
	Serviço. Força de Protensão e Armadura de Protensão - Exemplo.	
35 L	Projeto de uma Viga Protendida.	11% a 40%
36 E	Verificações Complementares. Faixa de Passagem dos Cabos.Perdas	0
	de Protensão - conceitos, imediatas e progressivas.	-
36 L	Projeto de uma Viga Protendida.	0
37 L	Projeto de uma Viga Protendida.	0
		<u> </u>

2020-ETC323 página 10 de 11

INSTITUTO MAUÁ DE TECNOLOGIA

37 E	Verificação no Estado Limite Último (ELU) - Flexão.	11% a 40%
38 L	Prova P4.	0
38 E	Prova P4.	0
39 L	Prova P4.	0
39 E	Prova P4.	0
40 E	Atendimento.	0
40 L	Atendimento.	0
41 L	Prova PS2.	0
41 E	Prova PS2.	0
Legenda	: T = Teoria, E = Exercício, L = Laboratório	

2020-ETC323 página 11 de 11