

IRSAMC - LCAR - Équipe d'interférométrie Stage M1 Physique

Conception d'un dispositif d'imagerie d'un nuage d'atomes froids

BRUNO DATO

TUTEUR: ALEXANDRE GAUGUET

AVRIL-MAI 2015

Introduction

1. Interféromètre à atomes froids

2. Imagerie par absorption

3. Conception d'un dispositif optique

4. Interface *LabVIEW* d'une caméra scientifique

5. Calibration de la caméra

Condensats d'atomes très froids

1. Interféromètre à atomes froids

2. Imagerie par absorption

Loi de Beer-Lambert $\frac{dI}{dz}$

$$I_0 \ll I_{sat}$$
 \longrightarrow $n(x,y) = \frac{2\pi}{3\lambda^2} \frac{\Gamma^2 + 4\Delta^2}{\Gamma^2} \ln \frac{I_0(x,y)}{I_f(x,y)}$

Système à deux niveaux

 σ la section efficace d'absorption

- $\Gamma = 2\pi.6,07$ MHz Largeur naturelle de la transition
- $\Delta = \omega \omega_0$
- λ la longueur d'onde du laser

3. Conception d'un dispositif optique

Paire de lentilles simples

Contraintes

- Taille de l'enceinte
- Dispositif compact
- Grossissement 2,5

3. Conception d'un dispositif optique

$$f_1' = \frac{x(d - f_2')}{(f_2' - d + x) - \frac{f_2'}{G}}$$

Focale f_1 ' de la première lentille en fonction de la seconde f_2 ' en respectant les contraintes énoncées ci dessus

4. Interface *LabVIEW* d'une caméra scientifique

Principe VI

- Configuration caméra
- Capture image
- Enregistrement et traitement des données

Paramètres à configurer

- Déclenchement (Front montant ou descendant, source et attente)
- Exposition (type et durée)

5. Calibration de la caméra

Image d'une cible

Résolution expérimentale $31,25 \mu m$

Résolution théorique 6,45 μm (taille pixel)

Moyennes de coupes verticales de l'image en fonction de la position en pixels

5. Calibration de la caméra

Espérance E(Y) du nombre de détections Y en fonction de la variance Var(Y) du nombre de détection pour plusieurs puissances lumineuses

Schéma du dispositif de mesure

$$Var(Y) = sE(Y) + c$$

- s le gain
- c une erreur systématique

Gain expérimental

1,6 dét/e⁻

Résolution théorique

0,28 dét/e-

Espérance du nombre de détections (#)

Conclusion

- Interface LabVIEW fonctionnelle
- Dispositif optique → Aberrations optiques et profondeur de champ
- Calibration → tests supplémentaires
- Etude du bruit de détection et résolution sur un nuage d'atomes

Niveau hyperfins 87Rb

Transition fermée

- Règles de sélection : $\Delta m_F = 0, \pm 1$
- Polarisation σ+
- Conservation moment cinétique $\rightarrow \Delta m_{\scriptscriptstyle F} = +1$