- 5. For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and v is an eigenvector of A corresponding to an eigenvalue λ then 2v is an eigenvector of A corresponding to the eigenvalue 2λ . Assumption: C_{abc} .

b) If V is a subspace of \mathbb{R}^2 and \mathbf{w} is a vector such that $\operatorname{proj}_V \mathbf{w} = -\mathbf{w}$ then \mathbf{w} must be the zero vector. $Z = \mathbf{W} - \mathbf{w} = \mathbf{O}$

- c) If A is a square matrix which is both symmetric and orthogonal then A^2 is the identity Assump: take. matrix.
- d) If A and B are 2×2 matrices which are both orthogonally diagonalizable, then the matrix A+B is also orthogonally diagonalizable.

$$\begin{array}{lll} \text{(i.)} & \text{(A = 20)} & \text{(A = AI)} = \text{(A = AI)}$$

a.) this is false Since for a given Halix dille glocal destik P= [v, ... v] word where The Eq A PDP doesn't involve a charge in P of all so why should? 2v correspond to 2R.

b.) if projuw = - w +3 then where 2 is orthogonal to V spree

C.) True +3 they conside

Timbu

In order to have a Orthogonally symmetre Matix Identity the entries on the diggoral Must be I . . A will result in the