无锡学院 试卷

2023 - 2024 学年 第 2 学期

高等数学 II(2) 课程试卷

试卷类型	В	_(注明 A、B 卷)	考试类型	闭卷	(注明开、	闭卷)
	ט		1 7 M/V I	1,11. (4)	- ハエツノノ	141. R. 1

2、本试卷共 6 页; 考试时间 120 分钟; 出卷时间: 2024 年 6 月

3、姓名、学号等必须写在指定地方; 考试时间: 2024 年 7月

4、本考卷适用专业年级: 文科各专业

题 号	_	 三	四	五.	六	七	总分
得 分							
阅卷人							

(以上内容为教师填写)

专业	年级	班级
学号	姓名	教师

请仔细阅读以下内容:

- 1、 考生必须遵守考试纪律。
- 2、 所有考试材料不得带离考场。
- 3、 考生进入考场后,须将学生证或身份证放在座位的左上角。
- 4、 考场内不许抽烟、吃食物、喝饮料。
- 5、 考生不得将书籍、作业、笔记、草稿纸带入考场, 主考教师允许带入的除外。
- 6、 考试过程中,不允许考生使用通讯工具。
- 7、 开考 15 分钟后不允许考生进入考场,考试进行 30 分钟后方可离场。
- 8、 考生之间不得进行任何形式的信息交流。
- 9、除非被允许,否则考生交卷后才能离开座位。
- 10、考试违纪或作弊的同学将被请出考场,其违纪或作弊行为将上报学院。

本人郑重承诺: 我已阅读上述 10 项规定,如果考试是违反了上述 10 项规定,本人将自愿接受学校按照有关规定所进行的处理。上面姓名栏所填姓名即表示本人已阅读本框的内容并签名。

阅卷人	得分

── 一、填空题(每小题 3 分,共 15 分)

- 1. 设二元函数 $f(x+y,x-y) = x^2 y^2$, 则 f(x,y) = xy
- 2. 设平面有界闭区域 $D: x^2 + y^2 \le 1$,则二重积分 $\iint_{\Gamma} xy^{2024} d\sigma = ___0$ ___.
- 4. 微分方程 xy' = y 的通解是_______ Cx ______
- 5. 微分方程 y'' y' = 2x 的通解是____ $y = -x^2 2x + C_1e^x + C_2$ ____.

阅卷人	得分

二、选择题(每小题 3 分, 共 15 分)

答案: BDBCA

1. 设
$$z = e^{xy}$$
, 则 $dz = (B)$.

A.
$$e^{xy} dx$$
 B. $(xdy + ydx)e^{xy}$ C. $xdy - ydx$ D. $(x + y)e^{xy}$

B.
$$(xdy + ydx)e^{xy}$$

C.
$$xdy - ydx$$

D.
$$(x+y)e^{xy}$$

2. 设
$$I = \int_0^2 dx \int_x^{2x} f(x,y) dy$$
 , 交换积分次序后, $I = (D)$.

A.
$$\int_{x}^{2x} dy \int_{0}^{2} f(x, y) dx$$

A.
$$\int_{x}^{2x} dy \int_{0}^{2} f(x, y) dx$$
 B. $\int_{0}^{2} dy \int_{y}^{y/2} f(x, y) dx + \int_{2}^{4} dy \int_{y/2}^{2} f(x, y) dx$

$$C. \int_0^4 dy \int_v^{y/2} f(x, y) dx$$

C.
$$\int_0^4 dy \int_y^{y/2} f(x, y) dx$$
 D. $\int_0^2 dy \int_{y/2}^y f(x, y) dx + \int_2^4 dy \int_{y/2}^2 f(x, y) dx$

3. 设
$$D$$
是由 $x^2 + y^2 \le 4$ 围成的区域,则 $\iint_D (4 - x^2 - y^2) dx dy$ 的值为(B).

C.
$$\frac{16}{3}\pi$$

B.
$$8\pi$$
 C. $\frac{16}{3}\pi$ D. $\frac{32}{3}\pi$

A.
$$\sum_{n=1}^{\infty} \frac{1}{n} \ln(1 + \frac{1}{n})$$
 B. $\sum_{n=1}^{\infty} \frac{n}{2^n}$ C. $\sum_{n=1}^{\infty} \ln(1 + \frac{1}{\sqrt{n}})$ D. $\sum_{n=1}^{\infty} \sin \frac{1}{n^2}$

B.
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$

C.
$$\sum_{n=1}^{\infty} \ln(1 + \frac{1}{\sqrt{n}})$$

D.
$$\sum_{n=1}^{\infty} \sin \frac{1}{n^2}$$

5. 微分方程
$$y'' - y' - 6y = (x^2 + 2x)e^{-x}$$
 的特解形式是(A).

A.
$$(ax^2 + bx + c)e^{-x}$$

B.
$$x(ax^2 + bx + c)e^{-x}$$

C.
$$x^2(ax^2 + bx + c)e^{-x}$$
 D. $(ax^2 + bx)e^{-x}$

D.
$$(ax^2 + bx)e^{-x}$$

核分人	得分

三、计算下列各题(每小题 6 分,共 36 分)

阅卷人	得分

解: 由于
$$\frac{\partial z}{\partial u} = e^u \sin v$$
, $\frac{\partial z}{\partial v} = e^u \cos v$, $\frac{\partial u}{\partial x} = y$, $\frac{\partial u}{\partial y} = x \frac{\partial v}{\partial x} = 2$, $\frac{\partial v}{\partial y} = -3$,

所以

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} = e^u \sin v \cdot y + e^u \cos v \cdot z = e^{xy} [y \sin(2x - 3y) + 2\cos(2x - 3y)].$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} = e^u \sin v \cdot x + e^u \cos v \cdot (-3) = e^{xy} [x \sin(2x - 3y) - 3\cos(2x - 3y)].$$

阅卷人	得分

2. 求方程
$$y' = -2xy + 3xe^{-x^2}$$
 的通解.

解: 将方程整理为 $y' + 2xy = 3xe^{-x^2}$.

记
$$P(x) = 2x$$
, $Q(x) = 3xe^{-x^2}$,

则通解为
$$y = e^{-\int 2x dx} \left(\int 3x e^{-x^2} e^{\int 2x dx} dx + C \right)$$

$$= e^{-x^2} \left(\int 3x e^{-x^2} e^{x^2} dx + C \right)$$

$$= e^{-x^2} \left(\frac{3}{2} x^2 + C \right).$$
3 分

得分 阅卷人

3. 设D是由 $1 \le x^2 + y^2 \le 9$, $y \ge 0$ 围成的区域,求二重积分

$$\iint\limits_{D} \frac{1}{\sqrt{9-x^2-y^2}} \, \mathrm{d}x \mathrm{d}y \; .$$

解: 由题可知 $D = \{(\gamma, \theta) \mid 0 \le \theta \le \pi, 1 \le \gamma \le 3\}$

故
$$\iint_{D} \frac{1}{\sqrt{9 - x^{2} - y^{2}}} dx dy = \int_{0}^{\pi} d\theta \int_{1}^{3} \frac{\gamma}{\sqrt{9 - \gamma^{2}}} d\gamma \qquad 3 \%$$

$$= \pi \cdot \int_{1}^{3} (-\frac{1}{2}) \cdot \frac{1}{\sqrt{9 - \gamma^{2}}} d(9 - \gamma^{2})$$

$$= \pi \cdot (-\sqrt{9 - \gamma^{2}}) \Big|_{1}^{3}$$

$$= 2\sqrt{2}\pi \qquad 3 \%$$

阅卷人	得分

4. 求由方程 $u^3 + yu - x = 0$ 所确定的隐函数 u = u(x, y) 的偏导数 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial x}$, $\frac{\partial^2 u}{\partial x^2}$.

导数
$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial^2 u}{\partial x^2}$

将方程 $u^3 + yu - x = 0$ 两边同时对 x 求偏导,

则
$$3u^2 \cdot \frac{\partial u}{\partial x} + y \cdot \frac{\partial u}{\partial x} - 1 = 0$$
.

进而
$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial \left(\frac{1}{3u^2 + y}\right)}{\partial x} = -\frac{6u \cdot \frac{\partial u}{\partial x}}{\left(3u^2 + y\right)^2} = -\frac{6u}{\left(3u^2 + y\right)^3} \dots 2$$
 分

将方程 $u^3 + yu - x = 0$ 两边同时对 y 求偏导,

则
$$3u^2 \cdot \frac{\partial u}{\partial y} + u + y \cdot \frac{\partial u}{\partial y} = 0$$
.

故
$$\frac{\partial u}{\partial y} = -\frac{u}{3u^2 + y}$$
.

阅卷人	得分

5. 将函数 $f(x) = \frac{1}{2-x}$ 展开成 x 的幂级数,并指出展开式成立

阅卷人	得分

6. 计算二重积分 $\iint_D (x^2+y^2) dxdy$, 其中 D 是由直线 y=x, v=x+2 和 y=2, y=6 所围成的闭区域.

解: 由于
$$D = \{(x,y) | 2 \le y \le 6, y-2 \le x \le y\}$$

故
$$\iint_{D} (x^{2} + y^{2}) dx dy = \int_{2}^{6} dy \int_{y-2}^{y} (x^{2} + y^{2}) dx$$
 3 分
$$= \int_{2}^{6} dy \left(\frac{1}{3} x^{3} + y^{2} x \right) \Big|_{x=y-2}^{x=y}$$

$$= \int_{2}^{6} \left(4y^{2} - 4y + \frac{8}{3} \right) dy$$

$$= \left(\frac{4}{3} y^{3} - 2y^{2} + \frac{8}{3} \right) \Big|_{2}^{6}$$

$$= 224$$
 3 分

阅卷人	得分

四、解答题(8分)判断下列级数是否收敛,若收敛,是绝对收敛还是条件收敛:

(1)
$$\sum_{n=1}^{\infty} \frac{\sin \frac{n\pi}{5}}{2^n}$$
; (2) $\sum_{n=1}^{\infty} (-1)^n \ln \left(1 + \frac{\alpha}{\sqrt{n}}\right)$ ($\alpha > 0$ 为常数).

而
$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$
 收敛,

故
$$\sum_{n=1}^{\infty} \left| \frac{\sin \frac{n\pi}{5}}{2^n} \right|$$
 收敛,

$$(2) \ \text{id} \ U_n = \ln \left(1 + \frac{\alpha}{\sqrt{n}} \right).$$

则当 $n \to +\infty$ 时,显然 U_n 单调递减趋于 0.

又因为当
$$n \to +\infty$$
 时,有 $U_n = \ln\left(1 + \frac{\alpha}{\sqrt{n}}\right) \sim \frac{\alpha}{\sqrt{n}}$,

而
$$\sum_{n=1}^{\infty} \frac{\alpha}{\sqrt{n}}$$
 发散,故 $\sum_{n=1}^{\infty} U_n$ 发散,

阅卷人	得分

五、解答题(8分) 求方程 y''+8y'+16y=32x 满足 $y\big|_{x=0}=0$, $y'\big|_{x=0}=1$ 的特解.

$$y|_{x=0} = 0$$
, $y'|_{x=0} = 1$ 的特解.

题设方程对应的齐次方程的特征方程为 $\gamma^2 + 8\gamma + 16 = 0$, 解:

故特征根为 $\gamma_1 = \gamma_2 = -4$.

从而原方程对应的齐次方程的通解为 $y = C_1 e^{-4x} + C_2 x e^{-4x}$

由于 0 不是特征根,故设原方程的一个特解为 $v^* = ax + b$.

将其代入原方程, 得8a+16(ax+b)=32x.

故
$$a = 2, b = -1$$
.

因此 $y^* = 2x - 1$ 为原方程的一个特解......4 分

所以 $y = y + y^* = C_1 e^{-4x} + C_2 x e^{-4x} + 2x - 1$ 为原方程的通解,

从而
$$y' = -4C_1e^{-4x} + C_2e^{-4x} - 4C_2xe^{-4x} + 2$$
.

将
$$y|_{x=0}=0, y'|_{x=0}=1$$
 代入得

$$C_1 - 1 = 0, -4C_1 + C_2 + 2 = 1.$$

故
$$C_1 = 1, C_2 = 3$$
.

因此原方程满足 $y|_{x=0} = 0$, $y'|_{x=0} = 1$ 的特解为 $y = e^{-4x} + 3xe^{-4x} + 2x - 1$.

......4分

阅卷人	得分

六、解答题(8 分)求函数 $f(x,y) = 9xy - x^3 - y^3$ 的极值.

解: 建立方程组
$$\begin{cases} f_x = 9y - 3x^2 = 0 \\ f_y = 9x - 3y^2 = 0 \end{cases}$$

故驻点为 (0,0),(3,3).

$$\stackrel{\text{def}}{=} (x, y) = (0, 0), AC - B^2 = -81 < 0,$$

故 (0,0) 不是极值点.

当
$$(x,y)=(3,3)$$
 时, $AC-B^2=18^2-9^2=243>0$, 且 $A=-18<0$,

故
$$f(3,3) = 9 \cdot 9 - 27 - 27 = 27$$
 为极小值......4 分

阅卷人	得分

七、解答题 (10 分) 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ 的收敛域及和函数.

$$\mathfrak{M}: \quad \lim_{n\to\infty}\frac{1}{n+1}\bigg/\frac{1}{n}=1.$$

故收敛半径为 $R = \frac{1}{1} = 1$.

当
$$x=1$$
 时, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ 收敛.

当
$$x = -1$$
 时, $\sum_{n=1}^{\infty} \frac{1}{-n}$ 发散.

故收敛域 (-1,1].4分

记
$$S(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$
.

则
$$S(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \int_{0}^{x} t^{n-1} dt$$

$$= \int_0^x \left[\sum_{n=1}^\infty \left(-t \right)^{n-1} \right] dt$$

$$= \int_0^x \frac{1}{1+t} dt$$

=
$$\ln(1+x), x \in (-1,1].$$
 6 $\frac{1}{2}$