Roles and Teams Hedonic Game

Matthew Spradling, Judy Goldsmith, **Xudong Liu**, Chandrima Dadi and Zhiyu Li

Department of Computer Science University of Kentucky Lexington, KY, USA

Overview

- Introduction
 - League of Legends[®]
 - Roles and Teams Hedonic Game (RTHG)
 - Coalition Formation Games (CFG)
- 2 RTHG Solutions
 - Optimization
 - Stability
- 3 Acknowledgments

League of Legends®

By hours played per month, the most popular online game in the world.

- Players are matched to small teams of 3 or 5.
- Players select their avatars, called **champions**.
- Each team plays against another team.

Figure: A few champions from League of Legends[®].

Conflicts in Matchmaking

- Champions excel in different roles (Support, Attack, Defend...)
- Each player wants to play her preferred role.

Figure: Players may argue over their role selections.

Conflicts in Matchmaking

- A set of **roles** is a **team composition**.
- Each player wants her preferred team composition.

Figure: Players may argue over appropriate team compositions.

RTHG Model

- P: a population of agents;
- m: a team size
- R: a set of available roles
- C: a set of available team compositions. $t \in C$: a set of m not necessarily unique roles in R, where ordering doesn't matter.
- U: a utility function vector $\langle u_0,...,u_{|P|-1}\rangle$ where for each agent $p\in P$, for each composition $t\in C$, and for each role $r\in t$, there is a utility function $u_p(r,t)$.

A solution is a partition of agents into teams of size m.

RTHG Instance

Table: Example RTHG instance with |P| = 4, m = 2, |R| = 2

$\langle r, t \rangle$	$u_{p_0}(r,t)$	$u_{p_1}(r,t)$	$u_{p_2}(r,t)$	$u_{p_3}(r,t)$
$\langle A, AA \rangle$	2	2	0	0
$\langle A, AA \rangle$	2	2	0	0
$\langle A, AB \rangle$	0	3	2	2
$\langle B, AB \rangle$	3	0	3	3
$\langle B,BB \rangle$	1	1	1	1
$\langle B,BB \rangle$	1	1	1	1

Coalition Formation Games (CFG)

- Players are to be divided into a partition of coalitions.
- Utility of a partition is determined by the agents in the coalitions.

Hedonic CFG

Utility of a partition depends only on each player's valuation of **her own coalition**, not other coalitions.

Other Hedonic CFG models:

- Group Activity Selection Problem
- Additively Separable Hedonic Games

Solution Concepts

Optimal solutions:

- Perfect partition
- Utilitarian partition (MaxSum)
- Egalitarian partition (MaxMin)

Stable solutions:

- Nash stable partition
- Individually stable partition

Perfect RTHG

Definition

A partition of agents to coalitions is **perfect** if each player p plays (r, t)and $u_p(r,t) = \max\{u_p(r',t'): r' \in R \land t' \in C\}$. The language PERFECT RTHG consists of those instances of RTHG for which a perfect partition exists.

Theorem

PERFECT RTHG is NP-hard.

Proof Sketch.

We show that EXACT COVER \leq_m^P a special case of PERFECT RTHG.

MaxSum and MaxMin RTHG

Definition

Given an instance I of RTHG, a MaxSum partition is one that achieves the maximum value of $\sum_{i<|P|} u_{p_i}$. A **MaxMin partition** is one that achieves the maximum value of $\min_{n \in P} u_n$.

Theorem

MAXSUM RTHG and MAXMIN RTHG are both NP-hard.

Proof Sketch.

We show that Special Perfect RTHG \leq_m^P MaxSum RTHG. We show that Special Perfect RTHG \leq_m^P MaxMin RTHG.

- Based on scoring voting.
- Agent's utility function vector is a ballot.

Table: Initialization Step: Determine votes upon each composition.

$\langle r, t \rangle$	$u_{p_0}(r,t)$	$u_{p_1}(r,t)$	$u_{p_2}(r,t)$	$u_{p_3}(r,t)$	Total Vote
$\overline{\langle A, AA \rangle}$	3	3	0	0	12 for AA
$\langle A, AA \rangle$	3	3	0	0	
$\langle A, AB \rangle$	0	2	3	2	14 for AB
$\langle B, AB \rangle$	2	0	2	3	
$\langle B, BB \rangle$	1	1	1	1	8 for BB
$\langle B, BB \rangle$	1	1	1	1	

Table: Select a composition with a maximum total vote.

$\langle r, t \rangle$	$u_{p_0}(r,t)$	$u_{p_1}(r,t)$	$u_{p_2}(r,t)$	$u_{p_3}(r,t)$	Total Vote
$\langle A, AA \rangle$	3	3	0	0	12 for AA
$\langle A, AA \rangle$	3	3	0	0	
$\langle A, AB \rangle$	0	2	3	2	14 for AB
$\langle B, AB \rangle$	2	0	2	3	
$\langle B, BB \rangle$	1	1	1	1	8 for BB
$\langle B, BB \rangle$	1	1	1	1	

For each team being formed:

Table: Select *m* agents with the largest votes on the selected composition.

$\langle r, t \rangle$	$u_{p_0}(r,t)$	$u_{p_1}(r,t)$	$u_{p_2}(r,t)$	$u_{p_3}(r,t)$	Total Vote
$\overline{\langle A, AA \rangle}$	3	3	0	0	12 for AA
$\langle A, AA \rangle$	3	3	0	0	
$\langle A, AB \rangle$	0	2	3	2	14 for AB
$\langle B, AB \rangle$	2	0	2	3	
$\langle B, BB \rangle$	1	1	1	1	8 for BB
$\langle B, BB \rangle$	1	1	1	1	

For each team being formed:

Table: Match selected agents to preferred roles in this composition.

$\langle r, t \rangle$	$u_{p_0}(r,t)$	$u_{p_1}(r,t)$	$u_{p_2}(r,t)$	$u_{p_3}(r,t)$	Total Vote
$\overline{\langle A, AA \rangle}$	3	3	0	0	12 for AA
$\langle A, AA \rangle$	3	3	0	0	
$\langle A, AB \rangle$	0	2	3	2	14 for AB
$\langle B, AB \rangle$	2	0	2	3	
$\langle B, BB \rangle$	1	1	1	1	8 for BB
$\langle B, BB \rangle$	1	1	1	1	

For each team being formed:

Table: Remove selected agents from the population (team has been formed).

$\langle r, t \rangle$	$u_{p_0}(r,t)$	$u_{p_1}(r,t)$	Total Vote
$\langle A, AA \rangle$	3	3	12 for AA
$\langle A, AA \rangle$	3	3	
$\langle A, AB \rangle$	0	2	4 for AB
$\langle B, AB \rangle$	2	0	
$\langle B, BB \rangle$	1	1	4 for BB
$\langle B, BB \rangle$	1	1	

Continue until each player has been matched to a team.

Heuristic Testing

Observation

The time complexity of GreedyRTHGPartiton is $O(|P|^2/m)$.

 Experiment: Compared heuristic results to brute-force computed MaxSum and MaxMin on small populations up to |P| = 15.

Observation

The time complexity of brute force MaxSum or MaxMin calculation is $O(|P|! \cdot (|C| + |P|/m)^{|P|/m})$

Heuristic Results

- True MaxSum underestimated by 85.22% on average.
- True MaxMin underestimated by 119.79% on average.
- Consistently better at estimating MaxSum compared to MaxMin.

Role Change

Given a partition, a player may want to change to a prefered role.

Figure: Player p_0 changes **roles**.

Stability

Position Swap

Given a partition, players may prefer to swap positions.

Figure: Players p_1 and p_4 swap **positions**.

Stable Partitions in RTHG

Definition

A partition is **Nash stable** iff no agent can improve her own utility by means of a role change or position swap.

Definition

A partition is **individually stable** iff no agent can improve her own utility by means of a role change or position swap without lowering the utility of any other agent.

Finding Stable Partitions

Theorem

Given an instance I of RTHG, an **individually stable** solution can always be found by **local search** in time polynomial in |I|.

Theorem

Given an instance I of RTHG, a Nash stable solution may not always exist.

For more details on these results, please see our paper in ADT'13!

Acknowledgments

- League of Legends[®], champions and their images owned by Riot Games[®], a subsidiary of Tencent Holdings[®]. Used under Fair Use for educational purposes.
- Xudong partially supported by NSF grant IIS-0913459.
- Thanks to Dr. Goldsmith's Comparative Decision Making course at the University of Kentucky, where this work first began!
- Slides prepared by Matthew Spradling.