MTH211A: Theory of Statistics

Problem set 4

Methods of Point Estimation

- 1. Let X_1, \ldots, X_n be a random sample from the following distribution. In each case, find the method of moments (MoM) estimator for $g(\theta)$:
 - (a) $\operatorname{Gamma}(\alpha, \beta)$, and $g(\boldsymbol{\theta}) = (\alpha, \beta)^{\top}$. $\rightarrow \left(\begin{array}{c} \overline{\mathbf{X}}_{\mathbf{N}} \\ \overline{\mathbf{S}}_{\mathbf{n}} \end{array}\right)^{\top}$
 - (b) Beta (α, β) and $g(\theta) = \alpha/\beta$.
 - (c) Poisson(λ) and $g(\theta) = \exp\{-\lambda\}$. = exp(- $\frac{\pi}{2}$)
 - (d) Location scale Exponential (μ, σ) and and $g(\theta) = (\mu, \sigma)$.
- 2. Let X_1, \ldots, X_n be a random sample from the following distribution. In each case, find the maximum likelihood estimator (MLE) for $g(\theta)$:
 - (a) Binomial (m, θ) , and $g(\theta) = \theta$.
 - (b) Binomial (θ, p) , and $g(\theta) = \theta$ when n = 1.
 - (c) $\operatorname{Binomial}(m, \theta)$, and $g(\theta) = P(X_1 + X_2 = 0)$.
 - (d) Hypergeometric (m, r, θ) with p.m.f.

$$f_X(x; m, r, \theta) = \frac{\binom{m}{x} \binom{\theta - m}{r - x}}{\binom{\theta}{x}}, \quad \theta = m + 1, m + 2, \dots; \quad \max\{0, r + m - \theta\} \le x \le \min\{m, r\},$$

 $g(\theta) = \theta$ and n = 1.

- (e) Double exponential: pdf $f_X(x;\theta) = 2^{-1} \exp\{-|x-\theta|\}$; with $x \in \mathbb{R}$ and $\theta \in \mathbb{R}$.
- (f) Uniform (α, β) , and $g(\theta) = \alpha + \beta$.
- (g) Normal (θ, θ^2) , and $g(\theta) = \theta$.
- (h) Inverse Gaussian(θ_1, θ_2) and $g(\boldsymbol{\theta}) = (\theta_1, \theta_2)$.
- (i) Uniform $(\theta, \theta + |\theta|), \theta \in \mathbb{R}$ and $g(\theta) = \theta$.
- (i) Weibull (θ, k) distribution with pdf as follows

$$f_X(x;\theta,k) = \frac{k}{\theta} \left(\frac{x}{\theta}\right)^{k-1} e^{-(x/\theta)^k}, \qquad x \ge 0, \quad \theta, k > 0,$$

and $q(\theta) = \theta^k$.

3. Suppose that the random variables Y_1, \ldots, Y_n satisfy $Y_i = \beta x_i + \epsilon_i$, $i = 1, \ldots, n$, where x_1, \ldots, x_n are fixed constants, and $\epsilon_1, \ldots, \epsilon_n$ are iid N $(0, \sigma^2), \sigma^2$ unknown.

1

- (a) Find a two-dimensional sufficient statistic for (β, σ^2) .
- (b) Find the MLE of β , and show that it is an unbiased estimator of β .
- (c) Find the distribution of the MLE of β .

- (e) Calculate the exact variance of $\sum Y_i / \sum x_i$ and compare it to the variance of the MLE.
- (f) Show that $\left[\sum_{i} (Y_i/x_i)\right]/n$ is also an unbiased estimator of β .
- (g) Calculate the exact variance of $\left[\sum (Y_i/x_i)\right]/n$ and compare it to the variances of the estimators in the previous two estimates.
- 4. Suppose n independent observations are taken from a random variable X with distribution $normal(\mu, 1)$, but instead of recording all the observations, one notes only whether or not the observation is less than 0. If m observations are less than 0, then find the MLE of μ .
- than 0. If m observations are less than 0, then find the MLE of μ .

 5. Let X_1, \dots, X_n be a random sample from $normal(0, \sigma^2)$ distribution, where $\sigma^2 > 2$. Find the MLE of σ^2 . Is it a consistent estimator of σ^2 ?
- σ². Is it a consistent estimator of σ²?
 6. Let X_{i,j}, i = 1,...,s and j = 1,...,n be independent random variables, where X_{i,j} is distributed as normal(μ_i, σ²), i = 1,...,s.
 - (a) Find MLEs for μ_1, \ldots, μ_s , and σ^2 .
 - (b) Show that the MLE for σ^2 is not consistent as $s \to \infty$, if n is fixed.
- 7. Let X_1, \dots, X_n be a sample from the PDF

$$f_{\theta}(x) = \begin{cases} 2x/(\alpha\theta), & \text{if } 0 \le x \le \theta, \\ 2(\alpha - x)/\{\alpha(\alpha - \theta)\}, & \text{if } \theta \le x \le \alpha, \\ 0 & \text{otherwise,} \end{cases}$$

where $\alpha > 0$ is known. Show that the MLE of θ has to be one of the observations.

- 8. Let $\mathbf{X}_1, \dots, \mathbf{X}_n$ be a random sample from a multivariate normal distribution $N_k(\boldsymbol{\mu}, \sigma^2 I)$ where I is the identity matrix of order k. Find MLEs of $\boldsymbol{\mu}$ and σ^2 .
- 9. Let X_1, \dots, X_n be iid with one of the two pdfs. If $\theta = 0$, then

$$f(x \mid \theta) = \begin{cases} 1 & \text{if } 0 < x < 1, \\ 0 & \text{otherwise,} \end{cases}$$

while if $\theta = 1$, then

$$f(x \mid \theta) = \begin{cases} 1/(2\sqrt{x}) & \text{if } 0 < x < 1, \\ 0 & \text{otherwise.} \end{cases}$$

Find a MLE of θ .

10. Let X and Y be independent random variables having exponential distributions with expectations λ and μ , respectively. Define

$$Z = \min\{X, Y\},$$
 and $W = \begin{cases} 1 & \text{if } Z = X, \\ 0 & \text{if } Z = Y. \end{cases}$

Let $(Z_1, W_1), \dots, (Z_n, W_n)$ be n iid observations on (Z, W). Based on these samples, find MLEs of λ and μ .

- 11. Given a random sample X_1, \dots, X_n from a population with pdf $f(x \mid \theta)$, show that maximizing the likelihood function, $L(\theta \mid \mathbf{x})$, as a function of θ is equivalent to maximizing $l(\theta \mid \mathbf{x}) = \log L(\theta \mid \mathbf{x})$.
- 12. A density function f_x is called *unimodal* or *log-concave* if $\log f_x$ is a concave function.

- (a) Let X_1, \dots, X_n be iid with density $f(x \theta)$. Show that the likelihood function has a unique root if f'(x)/f(x) is monotone, and the root is a maxima if f'(x)/f(x) is decreasing. Hence, the densities that are yield unique MLEs.
- (b) Let X_1, \dots, X_n be iid positive random variables (or, symmetrically distributed about zero) with common pdf $f_X(x) = af(ax)$, a > 0. Show that the likelihood equation has a unique maxima if xf'(x)/f(x) is strictly decreasing for x > 0.
- (c) If X_1, \dots, X_n are iid with density $f(x_i \theta)$ where f is unimodal and the likelihood equation has a unique root. Show that the likelihood equation also has a unique root if the density of each X_i is $af[a(x_i \theta)]$, with a > 0 known.
- 13. If X_1, \dots, X_n are iid with density $f(x_i \theta)$ or $\sigma f(\sigma x_i)$, and f is the logistic density as follows

$$f(u) = \frac{\exp\{-x\}}{[1 + \exp\{-x\}]^2}, \quad x \in \mathbb{R}.$$

Find the MLEs of $\widehat{\theta}_{\text{ML}}$ and $\widehat{\sigma}_{\text{ML}}$ of θ and σ . Find the limiting distributions of $\sqrt{n}\left(\widehat{\theta}_{\text{ML}} - \theta\right)$ and $\sqrt{n}\left(\widehat{\sigma}_{\text{ML}} - \sigma\right)$.

$$\frac{f'(0)}{f(0)} = \frac{-e^{-x}}{(1+e^{-x})^2} + \frac{2 \cdot e^{-x} \cdot e^{-x}}{(1+e^{-x})^3}$$

$$g(u) = \frac{f(4u)}{f(u)} - 1 + \frac{2e^{-x}}{(1+e^{-x})} = -1 + \frac{2}{1+e^{-x}}$$