

ASK QUESTION LOG IN JOIN FOR FREE

Textbook Solutions > Linear Algebra: A Modern Introducti... > Chapter 6: Vector Spaces > Exercise 32

SExercise 32, Linear Algebra: A Modern Introduction, 4th Edition NEXT QUESTION

Linear Algebra: A Modern Introduction, 4th Edition, Chapter 6: Vector Spaces

Exercise 32, Page 514

Exercise 32 Answer

Step by step explanation

HIDE ALL

Tip

• In this type of questions we need to find eigenvalues and eigenvectors.

Explanation

- ullet We will take $\,eta$ as the standard basis of $\,\mathbb{R}^2$
- We will find $[T]_{\beta}$ with the help of standard basis.
- Eigenvalues does not exist as $\det([T]_{\beta}-\lambda I)$ do not have real roots.

• So, Basis C does not exist for T to be diagonalizable.

Step 1 of 1

^

Let, β = $\{e_{1,}e_{2}\}$ be the standard basis of \mathbb{R}^{2} .

$$T(e_1) = egin{bmatrix} 1 \ 1 \end{bmatrix} \ \mathsf{T}(e_2) = egin{bmatrix} -1 \ 1 \end{bmatrix}$$

Thus,

$$[\mathsf{T}]_{\beta} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

Eigenvalues of $[T]_{\beta}$:

$$\det([T]_{\beta} - \lambda I) = \det(\begin{bmatrix} 1 - \lambda & -1 \\ 1 & 1 - \lambda \end{bmatrix})$$
$$= (1 - \lambda)^2 - (-1)$$
$$= (1 - \lambda)^2 + 1$$

 $(1-\lambda)^2$ +1 does not have any real roots. T_β does not have eigenvalue. Therefore, Basis C such that T is diagonalizable does not exist.

Final answer

^

In this question basis does not exist such that T is diagonalizable.

Related books SEE ALL