Corrigés des exercices

Exercice 1

1. Soit $x \in \mathbb{R}^+$.

 $\sum f_n(0)$ converge et si $x \neq 0$, $n^2 f_n(x) \xrightarrow[n \to +\infty]{} 0$ donc la série numérique à termes positifs $\sum f_n(x)$ converge.

Ainsi $\sum f_n$ converge simplement sur \mathbb{R}^+ .

2. Déterminons la nature de la série numérique $\sum \sup_{x \in \mathbb{R}_+} |f_n(x)|$.

Soit
$$x \in \mathbb{R}^+$$
. Alors $f'_n(x) = \frac{1}{n^2}e^{-nx}(1-nx)$.

On en déduit le tableau de variation suivant :

donc
$$\sup_{x \in \mathbb{R}_+} |f_n(x)| = f_n\left(\frac{1}{n}\right) = \frac{1}{n^3 e}$$
.

Or $\sum \frac{1}{n^3}$ converge donc $\sum f_n$ converge normalement sur \mathbb{R}^+ .

Exercice 2

1. Soit $x \in \mathbb{R}^+$.

La série numérique $\sum f_n(x)$ est alternée. Montrons qu'elle vérifie le critère spécial.

La suite
$$(|f_n(x)|) = \left(\frac{e^{-x\sqrt{n}}}{n}\right)$$
 converge vers 0.

Elle est décroissante car

$$\frac{|f_{n+1}(x)|}{|f_n(x)|} = \frac{n}{n+1} e^{-x(\sqrt{n+1}-\sqrt{n})} \le 1$$

Ainsi la série numérique $\sum f_n(x)$ converge via le critère spécial.

Donc $\sum f_n$ converge simplement sur \mathbb{R}^+ .

- 2. La série numérique $\sum |f_n(0)| = \sum \frac{1}{n}$ diverge donc $\sum f_n$ ne converge pas absolument sur \mathbb{R}^+ .
- 3. On a $\sup_{x \in \mathbb{R}^+} |f_n(x)| = \frac{1}{n}$ or $\sum \frac{1}{n}$ diverge donc $\sum f_n$ ne converge pas normalement sur \mathbb{R}^+ .

Exercice 3

1. Soit $x \in \mathbb{R}$.

La suite $\left(\frac{1}{n+x^2}\right)_{n\in\mathbb{N}^*}$ est décroissante et tend vers 0 donc, via le critère spécial des séries alternées,

la série numérique $\sum f_n(x)$ converge.

Donc $\sum f_n$ converge simplement sur \mathbb{R} .

2. Soit $x \in \mathbb{R}$.

On a $|f_n(x)| = \frac{1}{n+x^2} \underset{+\infty}{\sim} \frac{1}{n}$ et $\sum \frac{1}{n}$ diverge donc $\sum f_n$ ne converge pas absolument sur \mathbb{R} .

3. On a immédiatement $\sup_{x \in \mathbb{R}} |f_n(x)| = \frac{1}{n}$.

Or $\sum \frac{1}{n}$ diverge donc $\sum f_n$ ne converge pas normalement sur \mathbb{R} .