Input B_H_REFv1.3_	_demand_ta	ab_supply.txt	The EnergyP	PLAN model 16.1
Fixed demand (TWh/year): Flexible demand 0,00 Fixed demand 7,52 Fixed imp/exp. 3,57 Electric heating + HP 2,93 Transportation 0,00 Electric cooling 0,22 Total 14,30	57 06 06 06 30 H	Capacities Efficiencies Group 2: MW-e MJ/s elec. Ther COF CHP 0 1500 0,40 0,50 Heat Pump 0 0 3,00	Regulation Strate(Technical regulation no. 1 CEEP regulation 000000000 Minimum Stabilisation share 0,00 Stabilisation share of CHP 0,00	Fuel Price level: Basic Capacities Storage Efficiencies Elec. Storage MW-e GWh Elec. Ther. Charge 1: 0 0 0.80
Solar Thermal 0,00 0,00 0 Industrial CHP (CSHP) 0,00 0,00 0	Gr.3 Sum 0,50 1,45 0,00 0,00 0,00 0,00	Boiler 0 0,90 Group 3: CHP 1017 82 0,21 0,47 Heat Pump 0 0 3,00 Boiler 1165 0,90 Condensing 1099 0,30	Minimum CHP gr 3 load 0 MW Minimum PP 0 MW Heat Pump maximum share 1,00 Maximum import/export 1800 MW Distr. Name: Hour nordpool.txt	Discharge 1: 0 0,80 Discharge 2: 0 0,80 Discharge 2: 0 0,90 Electrolysers: 0 0,80 0,00 Rockbed Storage: 0 0 1,00
· · · · · · · · · · · · · · · · · · ·	ear 0,00 Grid	Heatstorage: gr.2: 0 GWh gr.30 GWh Fixed Boiler: gr.2:0,0 Per cent gr.0,0 Per cent	Addition factor 0,00 DKK/MWh Multiplication factor 2,00	CAES fuel ratio: 0,000 (TWh/year) Coal Oil Ngas Biomass
-,	ear 0,00 sation ear 0,00 share ear	Electricity prod. from CSHP Waste (TWh/year) Gr.1: 0,00 0,00 Gr.2: 0,00 0,00 Gr.3: 0,00 0,00	Average Market Price227 DKK/MWh Gas Storage 0 GWh Syngas capacity 0 MW Biogas max to grid 0 MW	Transport 0,00 13,43 0,01 0,00 Household 1,15 0,41 0,71 13,47 Industry 2,47 1,32 0,89 0,20 Various 0,18 0,39 1,07 0,00
Output				

Output

_	District Heating											Electricity															Exchange			
_	Demand	1			Produ	ction						Consumption Production Balance									Dov	ment								
	Distr.		Waste							Ва-	ļ	Flex.&		Elec-		Hydro			Ну-		Waste			Stab-					Imp	Exp
	heating	Solar	CSHP		CHP	HP	ELT	Boiler			l .	dTransp		trolyser		Pump		RES		hermal	CSHF		PP		Imp	Exp	CEEP			
	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	%	MW	MW	MW	MW	Millio	on DKK
January	348	0	0	229	81	0	0	39	0	0	737	7	4	0	701	0	0	100	482	0	0	999	500	100	13	0	0	0	3	0
February	273	0	0	180	75	0	0	18	0	0	769	7	3	0	550	0	0	84	443	0	0	935	294	100	0	1	0	1	0	0
March	253	0	0	166	72	0	0	14	0	0	712	7	3	0	508	0	0	108	456	0	0	894	391	100	5	3	0	3	1	0
April	170	0	0	112	53	0	0	5	0	0	762	7	2	0	341	0	0	61	452	0	0	661	217	100	0	0	0	0	0	0
May	101	0	0	67	35	0	0	0	0	0	833	7	1	0	204	0	0	50	452	0	0	430	300	100	0	7	0	7	0	1
June	63	0	0	41	21	0	0	0	0	0	966	7	1	0	126	0	0	59	486	0	0	267	414	100	0	0	0	0	0	0
July	43	0	0	28	15	0	0	0	0	0	1074	7	1	0	86	0	0	62	515	0	0	182	741	100	0	0	0	0	0	0
August	36	0	0	24	12	0	0	0	0	0	1035	7	0	0	73	0	0	58	522	0	0	153	871	100	0	0	0	0	0	0
Septemb	er 55	0	0	36	19	0	0	0	0	0	1013	7	1	0	111	0	0	67	505	0	0	234	626	100	0	0	0	0	0	0
October	131	0	0	86	45	0	0	0	0	0	936	7	2	0	263	0	0	81	493	0	0	553	424	100	0	0	0	0	0	0
Novembe	r 228	0	0	150	67	0	0	11	0	0	864	7	3	0	459	0	0	85	488	0	0	829	503	100	0	0	0	0	0	0
Decembe	r 281	0	0	185	76	0	0	20	0	0	866	7	4	0	565	0	0	109	450	0	0	945	482	100	14	6	0	6	3	1
Average	165	0	0	109	48	0	0	9	0	0	881	7	2	0	332	0	0	77	479	0	0	589	482	100	3	1	0	1	Avera	age price
Maximum	544	0	0	358	82	0	0	104	0	0	1514	13	7	0	1094	0	0	233	556	0	0	1017	1600	100	312	492	0	492	(DK	(K/MWh)
Minimum	8	0	0	5	3	0	0	0	0	0	22	0	0	0	17	0	0	0	0	0	0	35	0	100	0	0	0	0	295	195
TWh/yea	1,45	0,00	0,00	0,95	0,42	0,00	0,00	0,08	0,00	0,00	7,74	0,06	0,02	0,00	2,91	0,00	0,00	0,68	4,21	0,00	0,00	5,18	4,23		0,02	0,01	0,00	0,01	7	2
FUEL B	ALANCE	(TWh/\	ear).							Wa	ste/ C/	AES Bio	Con-F	lectro-		PV an	d Wind	off					Indus	trv	lmr	/Fxn C	orrecte	d CO	2 emis	sion (Mt)
. 022 2	DHP	` .	2 CHF	23 Bo	iler2 B	oiler3	PP	Geo/N	lu.Hydr			c.ly. ver			Wind	CSP			dro So	olar.Th	Гransр.	housel		us Tota		np/Exp			otal I	, ,
Coal	0,61	_	0,88	3	- n	,02	7,00							_	_					_		1.15	2,64	12,31	1 (0,00	12,31	1	,21 4	4,21
Oil	0,01	_	-	,		,	2,34	_	_	_				_	_	_	_	_		_ 13		0,41	1,71	17,91		•	17,91			4,77
N.Gas	0.45	_	_			,	2,34	_	_	_		_	_	_	_	_	_	_			,	0,71	1,96	6,31		,00	6,31		,	1,46
Biomass	-, -	_	_			, -	2,34	_	-	_		_	_	_	_	_	_	_		_	, -	3,47	0,20	16.04		•	16,04		,	0.00
Renewa		_	-		- 0	,02	2,54	-	4,21	_				-	- 0.16	0.08	_	4.6	1	-	- '	5,41	0,20	4,89		,00	4,89		,	0,00
H2 etc.	DIG -	-	-		-	-	-	-	4,21	-				-	0,10	0,00	-	4,0	7	-	-	-	-	0.00		,00 ,00	0.00		,	0,00
Biofuel	-	-	-		_	-	-	-	-	-				-	-	-	-	-		-	-	-	-	0,00		,00	0,00		,	0,00
Nuclear/	ccs -	-	-		-	-	-	-	-	-				-	-	-	-	-		-	-	-	-	0,00		,00 ,00	0,00		,	0,00
Total	1,06		0,88	2		,09 1	4,04		4,21			_			0,16	0,08		4,6	1	_ 1/	,25 1	5,74	6,51	57,45		-	57,49	_	,28 10	
i Ulai	1,00	-	0,00	,	- 0	,00 1	- ,∪ -	-	4,∠ 1	_		- •	-	-	0,10	0,00	-	4,0	_	- 14	,, _ U I	5,14	0,51	51,40	, ,	,0 4	•	10	,20 11	∪, -1-1

Output specifications	B_H_REFv1.3	_demand_tab_supply.txt
-----------------------	-------------	------------------------

The EnergyPLAN model 1	16.
------------------------	-----

											Dist	rict He	ating F	roducti	on													1 (1)	>
	Gr.1 Gr.2													Gr.3										RES specification					
	District				District								Stor-	Ва-	District								Stor-	Ва-	RES1	RES2	RES3	RES 7	Γotal
	heating	Solar	CSHP	DHP	heating	Solar	CSHF	CHP	HP	ELT	Boiler	EH	age	lance	heating	Solar	CSHF	CHP	HP	ELT	Boiler	EH	age	lance	Wind	Photo	River I	4-7 ɔ	
	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW
January	229	0	0	229	0	0	0	0	0	0	0	0	0	0	119	0	0	81	0	0	39	0	0	0	18	7	75	0	100
February	180	0	0	180	0	0	0	0	0	0	0	0	0	0	94	0	0	75	0	0	18	0	0	0	23	8	54	0	84
March	166	0	0	166	0	0	0	0	0	0	0	0	0	0	86	0	0	72	0	0	14	0	0	0	29	8	71	0	108
April	112	0	0	112	0	0	0	0	0	0	0	0	0	0	58	0	0	53	0	0	5	0	0	0	19	11	31	0	61
May	67	0	0	67	0	0	0	0	0	0	0	0	0	0	35	0	0	35	0	0	0	0	0	0	21	10	20	0	50
June	41	0	0	41	0	0	0	0	0	0	0	0	0	0	21	0	0	21	0	0	0	0	0	0	12	12	35	0	59
July	28	0	0	28	0	0	0	0	0	0	0	0	0	0	15	0	0	15	0	0	0	0	0	0	10	13	38	0	62
August	24	0	0	24	0	0	0	0	0	0	0	0	0	0	12	0	0	12	0	0	0	0	0	0	12	12	34	0	58
Septembe	er 36	0	0	36	0	0	0	0	0	0	0	0	0	0	19	0	0	19	0	0	0	0	0	0	15	10	42	0	67
October	86	0	0	86	0	0	0	0	0	0	0	0	0	0	45	0	0	45	0	0	0	0	0	0	16	8	57	0	81
Novembe	r 150	0	0	150	0	0	0	0	0	0	0	0	0	0	78	0	0	67	0	0	11	0	0	0	17	7	61	0	85
Decembe	r 185	0	0	185	0	0	0	0	0	0	0	0	0	0	96	0	0	76	0	0	20	0	0	0	27	3	79	0	109
Average	109	0	0	109	0	0	0	0	0	0	0	0	0	0	56	0	0	48	0	0	9	0	0	0	18	9	50	0	77
Maximum	358	0	0	358	0	0	0	0	0	0	0	0	0	0	186	0	0	82	0	0	104	0	0	0	87	35	172	0	233
Minimum	5	0	0	5	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	C
Total for t	he whole	e year																											
TWh/year	0,95	0,00	0,00	0,95	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,50	0,00	0,00	0,42	0,00	0,00	0,08	0,00		0,00	0,16	0,08	0,44	0,00	0,68

Own use of heat from industrial CH0,00 TWh/year

								NATI	JRAL GA	S EXCHA	NGE						
ANNUAL COSTS (Million DKK)		DHP &	CHP2	PP	Indi-	Trans	Indu.	Deman	d Bio-	Syn-	CO2Hy	SynHy	SynHy	Stor-	Sum	lm-	Ex-
Total Fuel ex Ngas exchange =	0	Boilers	CHP3	CAES	vidual	port	Var.	Sum	gas	gas	gas	gas	gas	age		port	port
Uranium = 0		MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW
Coal = 0	January	119	0	64	171	1	236	592	0	0	0	0	0	0	592	592	0
FuelOil = 0	February	90	0	66	134	1	256	547	0	0	0	0	0	0	547	547	ő
Gasoil/Diesel= 0	March	83	0	107	124	1	238	553	0	0	0	0	0	0	553	553	ő
Petrol/JP = 0	April	54	0	139	83	1	190	468	0	0	0	0	0	0	468	468	ő
Gas handling = 0	May	32	0	241	50	1	170	493	0	0	0	0	0	0	493	493	ő
Biomass = 0	June	20	0	333	31	1	138	522	0	0	0	0	0	0	522	522	ő
Food income = 0	July	13	0	575	21	1	157	767	0	0	0	0	0	0	767	767	0
Waste = 0	August	11	0	656	18	1	111	797	0	0	0	0	0	0	797	797	0
Total Ngas Exchange costs =	0 September		0	488	27	1	154	688	0	0	0	0	0	0	688	688	o l
	October	41	0	272	64	1	378	756	0	0	0	0	0	0	756	756	0
Marginal operation costs =	0 Novembe	r 74	0	168	112	1	263	618	0	0	0	0	0	0	618	618	0
Total Electricity exchange = -82	26 Decembe	r 93	0	84	138	1	386	702	0	0	0	0	0	0	702	702	0
Import = 7	A	5 4	0	007	04	4	000	000	0	0	0	0	0	0	000	000	_
Export = -2	Average	54	0	267	81	1	223	626	0	0	0	0	0	0	626	626	0
Bottleneck = 0	Maximum	198 3	0	834	268	1	728	1175	0	0	0	0	0	0	1175	1175	0
Fixed imp/ex= -830	Minimum	3	0	0	4	1	0	21	0	0	0	0	0	0	21	21	U
Total CO2 amissism seets -	Total for t	ne whole	year														
Total CO2 emission costs =	0 TWh/year	0,47	0,00	2,34	0,71	0,01	1,96	5,50	0,00	0,00	0,00	0,00	0,00	0,00	5,50	5,50	0,00
Total variable costs = -82	26																
Fixed operation costs =	0																

-826 RES Share: 36,4 Percent of Primary Energy 51,0 Percent of Electricity

0

Annual Investment costs =

TOTAL ANNUAL COSTS =

5,4 TWh electricity from RES

08-mart-2022 [22:13]