Complement of a Function

- The complement of a function F is F'.

 It is obtained by interchanging 0's for 1's and 1's for 0's in the value of F.
- The complement of a function may be derived algebraically through DeMorgan's theorem.

```
Theorem 5(a) (DeMorgan): (x + y)' = (x' \cdot y')
Theorem 5(b) (DeMorgan): (x \cdot y)' = (x' + y')
```

Example:

$$F_1 = x'yz' + x'y'z$$

 $F_1' = (x'yz' + x'y'z)'$
 $= (x + y' + z)(x + y + z')$

Complement of a Function (Example)

```
If F_1 = A+B+C

Then F_1'
= (A+B+C)'
= (A+X)' \qquad let B+C = X
= A'X' \qquad by DeMorgan's
= A'(B+C)'
= A'(B'C') \qquad by DeMorgan's
= A'B'C' \qquad associative
```

Complement of a Function (More Examples)

```
(x'yz' + x'y'z)'
 = (x'yz')' (x'y'z)'
 = (X+Y'+Z) (X+Y+Z')
[x(y'z'+yz)]'
 = x' + (y'z' + yz)'
 = x' + (y'z')' (yz)'
 = X' + (y+z) (y'+z')
A simpler procedure
  take the dual of the function (interchanging AND and
 OR operators and 1's and 0's) and complement each
 literal. {DeMorgan's Theorem}
  X'YZ' + X'Y'Z
    The dual of function is (x'+y+z') (x'+y'+z)
     Complement of each literal: (x+y'+z)(x+y+z')
```

Representation Conversion

- Need to transition between boolean expression, truth table, and circuit (symbols).
- Converting between truth table and expression is easy.
- Converting between expression and circuit is easy.
- More difficult to convert to truth table.

Your Turn

Minimize the following Boolean Function

Answer =?

$$(x'y'+z)'+z+xy+wz?$$

Answer = ?

Your Turn Solution

A'B(D'+C'D)+B(A+A'CD)?

Your Turn Solution Contd..

$$(x'y'+z)'+z+xy+wz?$$

$$(x'y' + 2)' + 2 + xy + w2$$
.
 $(x+y) \cdot 2' + 2(1x^{2}w) + xy$
 $(2x^{2})(2+x+y) + xy$
 $(x+y+2) + xy$
 $(x+y+2+x)(x+y+2+y)$
 $(x+y+2+x)(x+y+2+y)$
 $(x+y+2)(x+y+2)$
 $=(x+y+2)$ Am.

Canonical Forms

- A canonical form is a standard method for representing Boolean functions.
- The two canonical forms that are used are:
 - Sum of Minterms
 - Product of Maxterms
- These forms are sometimes considered the "brute force" method of representing functions as they seldom represent a function in a minimized form.

Minterms

- Any given binary variable can be represented in two forms:
 - x, its normal form, and
 - x', its complement
- If we consider two binary variables and the AND operation, there are four combinations of the variables:
 - xy
 - xy'
 - x'y
 - x'y'
- Each of the above four AND terms is called a minterm or a standard product.
- n variables can be combined to form 2ⁿ minterms.

Minterms Expressed Two Variables

X	Y	Minterm	Notation
0	0	x' Y'	m_0
0	1	x'Y	m_1
1	0	x Y'	m_2
1	1	χY	m_3

Minterms Expressed Three Variables

			Minterms	
X	y	Z	Term	Designation
0	0	0	x'y'z'	m_0
0	0	1	x'y'z	mı
0	1	0	x'yz'	m_2
0	1	1	x'yz	mз
1	0	0	xy'z'	m4
1	0	1	x'yz'	m ₅
1	1	0	xyz'	mം
1	1	1	хуг	m7

Maxterms

- Any given binary variable can be represented in two forms:
 - x, its normal form, and
 - x', its complement
- If we consider two binary variables and the OR operation, there are four combinations of the variables:
 - x + y
 - x + y'
 - x' + y
 - x' + y'
- Each of the above four OR terms is called a maxterm or a standard sum.
- n variables can be combined to form 2ⁿ maxterms.
- Each maxterm is the complement of its corresponding minterm and vice-versa.

Maxterms Expressed

Three Variables

			Max	Maxterms		
x	y	Z	Term	Designation		
0	0	0	x+y+z	M_0		
0	0	1	x + y + z'	M_1		
0	1	0	x + y' + z	M_2		
0	1	1	x + y' + z'	M_3		
1	0	0	x' + y + z	M_4		
1	0	1	x' + y + z'	M_5		
1	1	0	x' + y' + z	M_6		
1	1	1	x' + y' + z'	M_7		

Truth Table to Expression (Sum of Minterms)

- Any Boolean function can be expressed as a sum of minterms or sum of products (i.e. the ORing of terms).
 - You can form the function algebraically by forming a minterm for each combination of the variables that produces a 1 in the function. (Each row with output of 1 becomes a product term)
 - Sum (OR) product terms together.

Sum of Minterms Example

x	y	Z	Function F ₁	Required Minterms
0	0	0	1	x'y'z'
0	0	1	0	
0	1	0	0	
0	1	1	1	x'yz
1	0	0	1	xy'z'
1	0	1	0	
1	1	0	0	
1	1	1	0	

$$F_1 = x'y'z' + x'yz + xy'z'$$

= $m_0 + m_3 + m_4$
= $\sum (0,3,4)$

Equivalent Representations of Circuits

- All three formats are equivalent
- Number of 1's in truth table output column equals AND terms for Sum-of-Products (SOP)

X	У	Z	G
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$G = xyz + xyz' + x'yz$$

Truth Table to Expression (Product of Maxterms)

- Any Boolean function can be expressed as a product of maxterms or product of sums (i.e. the ANDing of terms).
 - You can form the function algebraically by forming a maxterm for each combination of the variables that produces a 0 in the function. (Each row with output of 0 becomes a standard sums)
 - AND these maxterms together.

Product of Maxterms Example

х	y	Z	Function F ₁	Required Maxterms
0	0	0	1	
0	0	1	0	x + y + z'
0	1	0	0	x + y' + z
0	1	1	1	
1	0	0	1	
1	0	1	0	x' + y + z'
1	1	0	0	x' + y' + z
1	1	1	0	x' + y' + z'

$$F_1 = (x + y + z')(x + y' + z)(x' + y + z')(x' + y' + z)(x' + y' + z')$$

$$= M_1 M_2 M_5 M_6 M_7$$

$$= \prod (1, 2, 5, 6, 7)$$

Summary

- Canonical Form of Boolean Function?
 - Sum of Minters
 - Product of Maxterms
- Minterms?
 - AND terms containing all variables, for input value=1 the variable is unprimed and for input value=0 the variable is primed
- Maxterms?
 - OR terms containing all variables, for input value=1 the variable is primed and for input value=0 the variable is unprimed
- Sum of minterms?
 - Take those minterms where the function is 1
- Product of Maxterms?
 - Take those maxterms where the function is 0

The End