For this task you continue to work with SparkSQL. The objective is to create reports on the average and median departure delays of (a) all the airports, and (b) all the airways in the dataset. You should give four reports, two for the airports (average/median delays) and two for the airways (average/median delays). Each report is a CSV file containing one line for each airport/airway and the lines of each file should be ordered (in descending order) based on the corresponding criterion (average/median delay). No header files are required for these files. An extra instruction you have from your supervisor is that you should take care of some data outliers: you should not consider in your analysis any airports/airways that have extremely low number of flights; the criterion is that any airport/airway belonging in the lowest 1% percentile, regarding the number of flights, should be omitted.

Regarding the second task, first I create a subset name df2 of the original cleaned flights_data. We shall check also for duplicate rows in this dataset (duplicates are 17427) and drop them.

After these data cleaning operations of the subset, we have to examine for outliers regarding the number of flights and drop the observations that below to the lowest 1% percentile. We group by the column Origin and aggregate the number of flights, after we sort this output with ascending order because we want to find which airport had the lowest number of flights. The value of the 1% percentile is 82, this means that airports with total number of flights below to 82 are belonging in the lowest 1% of the sample. Specifically, the airports, labeled as AKN, PGV, GST, DLG belong to the lowest percentile of 1% thus we exclude these observations from our subset.

Now, we are going to answer in the question and find the average and median departure delay by airport (ORIGIN) and by airways (CARRIER). We implement basic group and order by operations for columns ORIGIN and CARRIER separately regarding the median we want to calculate the percentile of 0.5 which indicates the value which the 50% is below it.

Finally, after the calculations we can say that the highest average departure delay by airport is 33 minutes in the airport labeled OTH while the median departure delay by airport is 8 minutes in the airport labeled ADK. On the other hand the highest average departure delay by airways is 17.97 minutes for the airways labeled as B6 while the highest meadian value for departure delay by airways is 0. For the final implementation of the question, we have to export the first 100 observations of the results in csv format files. Output of the code is shown below.

Figure 1 - By Origin avg

+	++	
ORIGIN	AVG_DEP_DELAY	
+		
OTH	33.78393351800554	
XWA	32.604878048780485	
MMH	30.97339246119734	
HYA	29.349397590361445	
MEI	28.883597883597883	
ACK	28.468233246301132	
EGE	26.46260017809439	
MQT	26.30520909757887	
HGR	25.175824175824175	
CMX	24.05037037037037	
ACV	23.69741697416974	
SHD	23.590975254730715	
ASE	23.487853577371048	
OGS	23.40711462450593	
OGD	23.298076923076923	
SLN	22.853982300884955	
SWF	22.178612716763006	
BLV	21.483647175421208	
СКВ	21.414165666266506	
STC	21.315384615384616	
++		
only showing top 20 rows		

ORIGIN MED DEP DELA	V
++	-+
ADK 8.	0
OGD 7.	0
HYA 3.	0
PPG 3.	0
MDW 2.	0
HOU 1.	0
DAL 1.	0
LCK 0.	0
SCK 0.	0
BLV 0.	0
OAK 0.	0
AZA 0.	0
ART 0.	0
XWA 0.	0
BWI 0.	0
STL 0.	0
HGR 0.	0
HTS 0.	0
MSY -1.	0
BUR -1.	0

+----+ only showing top 20 rows

+	++
CARRIER	AVG_DEP_DELAY
+	++
B6	17.79093175794827
EV	17.258067529071123
F9	14.579861293345829
YV	13.832468572307441
UA	13.025803558755596
00	12.61465643511896
AA	12.147021962540084
NK	10.957563163075577
OH	10.728678657413964
9E	10.318901967011373
WN	10.190969664917063
G4	10.131758791088002
MQ	9.304324396289934
YX	8.58882968607265
DL	8.190638385819591
AS	5.058321980191957
HA	1.4454658962933946
+	

+	++
CARRIER	MED_DEP_DELAY
+	++
WN	0.0
DL	-2.0
AA	-2.0
F9	-3.0
00	-3.0
NK	-3.0
B6	-3.0
HA	-3.0
G4	-3.0
YV	-3.0
OH	-3.0
UA	-3.0
MQ	-3.0
EV	-4.0
9E	-4.0
AS	-4.0
YX	-4.0
+	++