

Batch: A2 Roll No.: 1911027

Experiment / assignment / tutorial No. 7

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date

Title: Calculating Earned Value.

Objective: To Demonstrate Earned Value Analysis and prepare baseline budget calculation.

Expected Outcome of Experiment:

Course Outcome	After successful completion of the course students should be able to
CO4	Monitor the progress of projects and to assess the risk of slippage so that project's requirements can be controlled.

Books/ Journals/ Websites referred:

- 1. Bob Hughes, Mike cotterell, Rajib Mall "Software Project Management", fifth Edition, Tata McGraw Hill, Special Indian Edition
- 2. Royce, "Software Project Management", Pearson Education, 1999.
- 3. Project Management Institute: "A Guide to the Project Management Body of Knowledge (PMBOK Guide)" 5th Edition Project Management Institute.
- **4.** John Nicholas, Herman Steyn, "Project Management for Business Engineering and Technology" 4th Edition.

Pre Lab/ Prior Concepts:

Work Breakdown Structure of Project, Project Plan

New Concepts to be learned

- Planned Value (PV), Actual Cost (AC), Earned Value (EV)
- Cost Efficiency indicator
- Baseline schedule and budget

Work-out:

Students are needed to calculate Earned Value by assigning 'value' to each task or work package and create Baseline budget

Following are the metrics which are calculated for the project:

- Budgeted Cost of Work Performed = BCWP
- Budgeted Cost of Work Scheduled= BCWS
- Actual Cost of Work Performed= ACWP
- Schedule Variance (SV) = BCWP BCWS
- Schedule Performance Index (SPI) = BCWP / BCWS
- Cost Variance (CV) = BCWP ACWP
- Cost Performance Index (CPI) = BCWP / ACWP
- Estimate At Completion (EAC) = BAC / CPI
- Variance At Completion (VAC)
- Budget At Completion (BAC)
- Schedule At Completion (SAC) = Total duration / SPI

Assumption: Out of the allocated time to the project, 4 months have been completed, and the following are the activities that are in progress or completed. Activities A to F are completed, and those from G to J are ongoing.

Activity	Particulars	Predecessor(s)	Duration	BCWP	BCWS	ACWP
Code						
A	Server and	-	14	3500000	3000000	3700000
	database					
	procurement					
В	Data	A	28	950000	1300000	875000
	Collection of					
	existing EV					
	infrastructure					
С	Geospatial	В	21	800000	650000	750000
	Analysis and					

${\bf K.\,J.\,}$ Somaiya College of Engineering, Mumbai-77

(Autonomous College Affiliated to University of Mumbai)

	1.	(1141011011		nated to Chiversity of 1	1	
	site selection					
	for public and					
	semi					
	public					
	charging					
	stations.					
D	Tie Ups with	С	14	175000	100000	175000
	electricity					
	provider.					
Е	Charging	D	7	125000	300000	150000
	station					
	planning and					
	pricing for					
	private					
	charging					
	infrastructure.					
F	Pricing	D	21	450000	300000	375000
•	calculations		21	130000	300000	373000
	for charging					
	EV at public					
	and semi					
	public					
	charging stations.					
C		Е	5.6	4000000	2500000	4200000
G	Land	F	56	4000000	2500000	4300000
	Acquisition					
	and					
	permissions					
	for					
	installing					
	charging					
	stations.	~				******
Н	Charging	C	28	750000	750000	640000
	stations					
	logistics,					
	tracking.					
I	Connecting	H, D	28	200000	350000	250000
	EV					
	charging					
	stations to					
I	delivery and tracking. Connecting EV charging	H, D	28	200000	350000	250000

	electricity					
	grids.					
J	Installation of	Ι	28	12000000	12500000	13500000
	EV					
	charging					
	stations.					

SV	SPI	CV	CPI	EAC	VAC	SAC
500000	1.166666667	-200000	0.9459459459	3171428.571	-171428.5714	12
-350000	0.7307692308	75000	1.085714286	1197368.421	102631.5789	38.31578947
150000	1.230769231	50000	1.066666667	609375	40625	17.0625
75000	1.75	0	1	100000	0	8
-175000	0.4166666667	-25000	0.8333333333	360000	-60000	16.8
150000	1.5	75000	1.2	250000	50000	14
1500000	1.6	-300000	0.9302325581	4622500	-2122500	35
0	1	110000	1.171875	546133.3333	203866.6667	28
-150000	0.5714285714	-50000	0.8	312500	37500	49
-500000	0.96	-1500000	0.888888889	15187500	-2687500	29.16666667

Conclusions:

1) Activities that are behind schedule:

- a) Data Collection of existing EV infrastructure: Considering the size of India, it is very evident that a good amount of time will be required to get different aspects of a particular land.
- b) Charging station planning and pricing for private charging infrastructure: Due to the negotiations made by the private charging infrastructure provider, it will take additional time to get the best deal after all the negotiations, which will benefit both the parties, i.e., the provider and the consumer.
- c) Connecting EV charging stations to electricity grids: There are many cases where the connections made to the EV charging stations from the electricity provider's place include areas that are not authorized, so the connections have

to be diverted, and it will take time to map the exact places for efficient connections.

d) Installation of EV charging stations: It is the actual physical work, and many factors may affect it such as climate, labour attendance, raw materials, etc.

2) Activities that are on schedule:

- a) Server and database procurement: Because there are so many service providers, it will not take much time to find the exact service provider to procure the server and the database's, configuration also takes less time.
- b) Geospatial Analysis and site selection for public and semi public charging stations: It is very evident that analysing the data of the entire land area of India is very time-consuming, but due to the computing infrastructure rise this activity will not take any additional time to find the correct places for building charging stations.
- c) Tie Ups with electricity provider: Considering the requirement of electricity for the project, it is very important to find the best deal with the electricity provider that is providing service near the place where the station will be installed and electricity provider will also get business due to tie up there wont be any delays from both the sides.
- d) Pricing calculations for charging EV at public and semi public charging stations: The project that has been developed is already implemented in other nations, so calculations of prices can be easily made by considering the prices of other nations at the base.
- e) Land Acquisition and permissions for installing charging stations: Installation of EV charging stations on a particular land area makes that area a self-financed area, as the owner will get a good amount for the same, and as benefits are provided, it won't take much time to acquire the land.
- f) Charging stations logistics, delivery and tracking: Due to the developed infrastructure and the good export policy of India, this activity can be easily accelerated with the help of special permissions.

3) Activities that are over budget:

- a) Server and database procurement: Considering the amount of data that will be required to be stored and the requests that are served with the help of the server, it is evident that additional spare money will be required for the efficient operation of the server and database.
- b) Charging station planning and pricing for private charging infrastructure: Negotiations by the private infrastructure provider may require additional meetings and benefits, so they may require additional cost.
- c) Land Acquisition and permissions for installing charging stations: The permissions process goes through a series of parties, from the actual land owner

K. J. Somaiya College of Engineering, Mumbai-77

(Autonomous College Affiliated to University of Mumbai)

to the middle man and then to the government, and satisfying the needs of all may incur some additional cost.

- d) Connecting EV charging stations to electricity grids: The reason given for the schedule delay also applies to the cost.
- e) Installation of EV charging stations: The reason given for the schedule delay also applies to the cost.

4) Activities that are not overbudget:

- a) Data Collection of existing EV infrastructure: Multiple data providers may help in getting the data at the best price, so there won't be any problem with additional spending on this activity.
- b) Geospatial Analysis and site selection for public and semi public charging stations: Due to the computing power available nowadays, it won't take any additional devices to speed up the process of analysis, so this activity won't add any additional cost other than that of the budget allocated.
- c) Tie Ups with electricity provider: Electricity providers will also get business by making tie-ups, so they will also provide the best deal, which will benefit both parties.
- d) Pricing calculations for charging EV at public and semi public charging stations: The reason given for the schedule delay also applies to the cost.
- e) Charging stations logistics, delivery and tracking: This activity's costs will be specified in the contract, so there will be very few chances of going over budget.

Post Lab Questions:

1) Explain what is Schedule Variance (SV), Time Variance (TV) and Cost Variance (CV).

2=1JAns	Schedule variance (SV) :- 1) It is an indicator of
	with the a people seneal (p. 15 about or hall
73 75	The sea within admind villa
	Transport (EVM) to bankida a branca
2 ~ ~ ~	Janes Cost of Cook Schodulad
	actual work appoint
	of the difference between these two numbers is
Y	the schedule variance.
4	5) schodula Variance is important la
7:1	5) schodule variance is important be cause it gives
tedied	project managers an accurate picture of the
	project's progress which is a vital element of
,	project management
	of respect managers must be able to stort and
6	and address hay arise and address them suickly
	to ensure the project stays on track
	Time variance (TV):- UA time variance is the
	difference between the standard hours and actual
	hours assigned to a job.
	2) The concept is used in standard costing to identify
	inefficiences in a production process.
	3) The variance is then multiplied by the standard
	cost per hour to quantify the monetary value of
	the variance.
	If the main problem with the time variance
	concept is that it is calculated from a baseline that
	may have been poorly derived:
	of the sif the beating the
	optimistic, the baselines time goal was overly
	time Variance or matter best of the the
	time variance, no matter how officiently the work

1	(ost Variance ((v):- 1) (ost variance is the
h	difference between the amount you budget for a
	project and the actual amount you stand completing
Harres	The projection of the transmission
	2) The technical definition is the difference
1950	hatupen the budge ted cost of work partimed
	and the actual cost of work portomed.
	3) It is a way to show how an expense line
	itam trainet of any budget is performing
your .	Bana an Goan Ciallet
	the design of the control of a walk 1901
	20 to 20 to 10 to 100 (a) 131 A(1)(1) (c)
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ا - اداله	Lasth what the alter
6	their budget.
	Triffer.

- 2) A project having following 150 modules is to be developed in 30 weeks. On an average 5 modules are expected to be developed in a week. Cost of development of each module is 7500 INR.
 - A review is taken after 12 th week and it was observed that 54 modules are developed and the amount spent is 5, 00,000 INR.
 Comment on progress of the project. Also state when the project is expected to complete if continued with the same pace and what will be expected cost when the project gets completed.
 - Similar activity is carried out after 24 th week and the status was 124 modules completed and amount spent is 9,00,000.
 Comment on progress of the project. Also state when the project is expected to complete if continued with the same pace and what will be expected cost when the project gets completed.

4-2/Ans	(as A = BCMs = Works x Models x Cost.
1001	B(Ws = 12 x 5 x 75000 = 74,50,000
	hold address the lob
19.70	ARC BONT = modulas dovoloped x lost.
	pil 12th week
FREE	= 54 X7500
_3 	£4.05.000.
	the a section
	ACNP=75,00,000
4-15-	or well I make to the following the hand of them and
	SV=BCMP- BCMS=7-45,000.
4.4	5/T = B(N/P/B(Ns = 0,9)
A	place resident mane in the second contract of the
100	behind schedule.
	behind schodule.

(V = B(MP-ACMP = 7-95,000
CPT = BCHP/ACHP = 0.81.
- As (W to and cotto the project is
- overbudget.
= Estimate at completion = Budget at /
EAC completion/CPI.
= 150x 7500
=7) 3,8 8,8 88 . 89
3.5
schodule at completion = total number of whoks
9.9
= 33.3 wooks
tee (as B:-
B(W) = 24 x 5 x 7500 = 79,00,000.
BCMP = 124 X 7500 = 79,30,000
A(MP = 7 9,00,000.
- SV = B(NP-B(NS = #30,000.
- SP = BCWT/BCWS = 1.03.
- The project is operating on time.

П	(Autonomous Conege Affinated to University of Mulidar)
-	
	CV = B(MP-A(MP=130,000
	CPI = B(NP/A(NP=1.03)
	The project los is not over hidget.
-	tas buggers
	= EAC = BAC / CPI.
1	= 150x 7500
	1.03
	= I 10,92,233,
	er a p v a t i a
	- SAC = Total number of weeks
	the second of the CP#
	= 30
	the comment of 1,03 to the to the cold it
	= 29.1 warks
7	
	1-13
	511 0 2 1 3 1 3 2 5