Time Series Anomaly Detection CNN + AE

- CNN의 모든 내용을 설명하지는 않습니다.
- CNN의 기본 개념과 Conv1D에 대해서 간략하게 살펴보고, CNN+AE를 이용한 이상탐지를 수행해 봅니다.

Convolutional Neural Network

ConvNet(1)

```
Conv2D(32, kernel_size=(3, 3), input_shape=(5, 5, 1),
       padding='same', strides = (1,1), activation='relu'),
```

- ✓ ConvNet(특히 Conv2D) : 이미지 분석에 주로 사용
 - 데이터에 담겨 있는 지역적(Local) 특징을 추출
 - 필터(커널) : 개수 32개
 - 2차원으로 이동하며 Feature Map 구성

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Convolution(합성곱)

					1
4	Ð	4	0	0	(1×
0	4	10	1	0	+(0>
9	0	4	1	1	+(0>
0	0	1	1	0	
0	1	1	0	0	

Convolved Feature Map

ConvNet²

```
Conv2D(32, kernel_size=(3, 3), input_shape=(5, 5, 1), padding='same', strides = (1,1), activation='relu'),
```

- ✓ Stride : 몇 칸 씩 이동할 것인지 지정
- ✓ Size 축소 5 X 5 → 3 X 3
 - 만약 Size를 유지하려면 padding 옵션사용

1 _{×1}	1 _{×0}	1,	0	0
0,0	1,	1 _{×0}	1	0
0 _{×1}	0 _{×0}	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

ConvNet3

```
Conv2D(32, kernel_size=(3, 3), input_shape=(5, 5, 1), padding='same', strides = (1,1), activation='relu'),
```

✓ Padding

- Size 유지되도록 이미지 둘레에 0으로 덧대기(padding!)
- \blacksquare 5 X 5 \rightarrow 5 X 5
- padding = 'same'

0	9	0	9	0	0	0
0	Ð	4	Ò	0	0	0
0	q	Ð	4	1	0	0
0	0	0	1	1	1	0
0	0	0	1	1	0	0
0	0	1	1	0	0	0
0	0	0	0	0	0	0

2	2		

MaxPooling

MaxPooling2D(pool_size=(2, 2), strides=(2, 2)),

✓ 출력데이터(Feature Map)의 크기를 줄이거나 특정 데이터를 강조하기 위해 사용

■ pooling_size : 풀링 크기 행 x 열

■ strides : 옆, 아래 몇 칸 씩 이동할지

■ 출력데이터크기 : Input Size // Pooling Size (나머지는 버림)

Feature Map

8	12	1	8
5	4	21	0
26	6	7	15
2	21	1	2

Max Pooling

12	21
26	15

Flatten과 Dense Layer

- ✓ CNN + MaxPooling Layer로 특징을 추출한 후에, (3차원)
- ✓ 최종 예측 결과로 뽑기 위해서는 (1차원 혹은 단일 값)
- ✓ Dense Layer로 연결해야 합니다.

```
Flatten(),
Dense(128, activation='relu'),
Dense(10, activation='softmax')
```


Convolutional Neural Network-Review

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 28, 28, 32)	320
max_pooling2d (MaxPooling2D)	(None, 14, 14, 32)	0
conv2d_1 (Conv2D)	(None, 14, 14, 64)	18496
max_pooling2d_1 (MaxPooling 2D)	(None, 7, 7, 64)	0
flatten (Flatten)	(None, 3136)	0
dense (Dense)	(None, 128)	401536
dense_1 (Dense)	(None, 10)	1290

CNN + AE for Denoising

✓ CNN을 AE로 만들어 이미지의 노이즈를 제거하는 용도로 사용 됩니다.

1D-Conv Net (Conv1D)

✓지역적 특징을 1차원 관점에서 추출

- 필터가 1차원으로 이동하며 Feature Map 구성
- 시퀀스 분석에 사용.

1D-Conv Net for Time Series

✓ LSTM : 과거에서 불필요한 것은 잊고, 최근 정보를 더 중요하게

✓ 1D-Conv : 시간 흐름별로 중요한 정보 요약, 평활화.

1D-Conv Net + AE for Anomaly Detection

✓ 코드 구성

- Conv1D의 filter 수를 32 → 16 → 32 로 줄였다가 늘려가면서 구성
- padding = 'same' : timesteps 유지하기 위해.
- Conv1DTranspose : deconvolution


```
# Encoder
input_layer = Input(shape=(timesteps, n_features))
encoder = Conv1D(32, 3, activation='relu', padding = 'same')(input_layer)
encoder = Conv1D(16, 3, activation="relu", padding = 'same')(encoder)

# Decoder
decoder = Conv1DTranspose(32, 3, activation="relu", padding = 'same')(encoder)
decoder = Conv1DTranspose(n_features, 3, padding = 'same')(decoder)
conv1d_ae2 = Model(inputs=input_layer, outputs=decoder)
conv1d_ae2.compile(loss='mse', optimizer='adam')
```

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 10, 59)]	0
conv1d (Conv1D)	(None, 10, 32)	5696
conv1d_1 (Conv1D)	(None, 10, 16)	1552
conv1d_transpose (Conv1DTranspose)	(None, 10, 32)	1568
convid_transpose_1 (ConviDT ranspose)	(None, 10, 59)	5723

Total params: 14,539
Trainable params: 14,539
Non-trainable params: 0

Conv#DTranspose: deconvolution

- ✓ ConvNet을 통해 압축해 갔던 feature map의 크기를 다시 늘려 줌
 - 압축된 feature map의 각 cell 주의로 zero padding 추가
 - Filter를 통해 convolution 수행
- ✓ Convolution Layer의 결과물을 반대로(원래 크기로) 돌려 놓을 때 사용.

