f'(x) = 1

f'(x) = m

 $f'(x) = nx^{n-1}$

 $f'(x) = -\frac{1}{x^2}$

 $f'(x) = \cos x$

 $f'(x) = -\sin x$

 $f'(t) = \omega \cos(\omega t + \varphi)$

 $f'(t) = -\omega \sin(\omega t + \varphi)$

 $f'(x) = e^x$

 $f'(x) = ae^{ax+b}$

 $f'(x) = \frac{1}{x}$

f(x)	f'(x)

f(x) = k

f(x) = x

f(x) = mx + p

 $f(x) = x^n (n \in \mathbb{N}^*)$

 $f(x) = \frac{1}{x}$

 $f(x) = \sin x$

 $f(x) = \cos x$

 $f(t) = \sin(\omega t + \varphi)$

 $f(t) = \cos(\omega t + \varphi)$

 $f(x) = e^x$

 $f(x) = e^{ax+b}$

 $f(x) = \ln x$

f(x)= lm u

(1)

2

3

4

(5)

6

7

8

9

10

11

(12)

Intervalle de validité

f'(x) = 0

 $-\infty, +\infty$]-∞,+∞[

]-∞,+∞[

]-∞,+∞[

]-/∞, +∞[

]- ∞, + ∞[

 $]-\infty$, 0[ou]0, $+\infty$ [

]-∞,+∞ $]-\infty,+\infty[$

 $]-\infty,+\infty[$]-∞,+∞[]-∞,+∞[

$$f(x) = 0 \qquad \qquad f(x) = 0$$

$$\beta(x) = \infty^m (m \neq -1)$$
 $F(x) = \frac{x^{m+1}}{m+1} + \lambda$

$$\beta(\infty) = \frac{1}{\infty^2}$$

$$F(\infty) = -\frac{1}{\infty} + 1$$

$$f(x) = \frac{1}{x}$$

$$\frac{1}{\infty}$$

 $f(\infty) = \frac{\sqrt{1 + n_{\sigma}}}{n_{\sigma}}$

f121=1ax+1

 $F(x) = -\frac{1}{2} \cos(ax + b) + b$

F(x) = aretan(U) + 1

F1201= 1 2021+1 +1

$$(tan x)' = \frac{1}{cos^2 x}$$