ST1131 Summary 24/25 Teh Xu An

Variables							
Types of Variab	Types of Variables						
Types	Category	Remarks	Examples				
Nominal	Categorical	No Order	Race, Gender				
Ordinal	Categorical	Ordered	Ratings				
Discrete	Quantitativa	Numbers with	Number of,				
Discrete	Quantitative	fixed difference	Set of integers				
Continuous	Continuous Quantitative Forms intervals Age, Height, Weight						
Quantitative →	Quantitative → Categorical Ordinal: Ordered ranges of values						
Variable Roles (Response / Explanatory)							
Response Alt (LRM): Dependent, Target, Output							
Explanatory Alt (LRM): Regressor, Independent, Predictor, Covariate							
If Explanatory	is Categorical, g	groups are compare	ed.				
If unable to identify roles of variables, explore association.							
Lurking / Confounding Variables							
Lurking	Unobserved & influential, potential confounding						
Confounding 2 Observed but related variables; undifferentiable							
Basis of Lurking /Confounding: Correlation does not imply causation							

	Relative Frequencies				
	Proportion (of X) $P(X)$ =Observations(of X) / Total Observations				
Percentage (of X)		Proportion (of X) × 100%			

Studies & Sample Survey			
Study Types (Ob	Study Types (Observational / Experimental)		
Observational	Observe subjects for variables, no interventions		
Observationat	Easier to conduct, cost effective		
	Assign subjects to treatments, record observations		
Experimental	Able to control for lurking variables		
	May be unethical, impractical, or costly		
Steps of a Samp	Steps of a Sample Survey		
Description	A study that records sample's subjects' response/		
Description	measurements, drawn from the population randomly		
Step 1 Identify the Population			
Step 2 Create Sampling Frame, a list of subjects in popu			
to sample, ideally the whole population			
Step 3	Set Sampling Design for selecting subjects from the		
этер э	sampling frame		
Step 4	Collect Data from the randomly selected subjects		

Random Sampling		
Premise	Good sampling designs employ randomization ie chance	
Fielilise	over convenience	
Description	Each sample of size <i>n</i> has the same chance of being	
Description	selected from a sampling frame	
Step 1	Subjects in sampling frame are numbered	
Step 2	Generate a set of <i>n</i> random numbers	
Subjects with numbers in the set of <i>n</i> numbers are		
Step 3	to be a Simple Random Sample	
Other Random Samples: Clustered / Stratified		

Biases in Sample Surveys				
Sampling Bias	Caused by sampling frame/design step			
Non-Sampling Bias	Response / Non-Response Bias.			
Sampling Bias: Unde	er Coverage, Non-Random Sample			
Response Bias: Subj	ect wrong response, Misleading questions			
Non-Response Bias:	Cannot be reached, Refuse to participate			
Large Sample Size d	oes not guarantee an unbiased sample!			
Poor alternative Surv	veys to Sample Surveys			
Convenience San	nple selected based on ease of access			
Volunteer Sub	jects are encouraged to participate			
Elements of good Ex	perimental Studies			
Control A	group without treatment for comparison			
Randomization Ra	andom assignment of treatment			
Blind St	ubjects are unaware of treatment or placebo			
Double Blind*	oth Subjects and Administrators are unaware of			
tre	treatment or placebo.			
Role of Randomization in Experimental Studies				
Eliminate Bias that may appear if we assign subjects by hand				
Balance groups on lurking variables that we know affects response / that				
may be unknown to	us			

Numerical Summaries				
	Mean: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, sensitive to outlier, use when not			
Center	skewed, $Y \stackrel{n}{=} bX + a \rightarrow \overline{Y} = b\overline{X} + a$			
	Median: 50th	Median: 50 th quantile, robust to outlier, use when skewed		
		max), always used		
Variability	Variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$, used when symmetric			
	Standard Deviation: $s = \sqrt{s^2}$, used when not symmetric			
Variability (Notes)	$Y = bX + a \rightarrow s_Y^2 = b^2 s_X^2, s_Y = b s_X$ $\sim 68\%$ in $\bar{X} \pm s$, $\sim 95\%$ in $\bar{X} \pm 2s$, $\sim 99.7\%$ in $\bar{X} \pm 3s$ Works only in unimodal symmetric models.			
IQR	Range of $(q_{0.25}, q_{0.75})$ or (Q_1, Q_3)			
Quantile	q_v : $100p$ -th quantile ie $100p$ percent fall below q_v			
Quartile	Q_1, Q_2, Q_3 : $q_{0.25}, q_{0.5}, q_{0.75}$ / lower, median, upper			
Five-Number Summary Includes $q_0, q_{0.25}, q_{0.5}, q_{0.75}, q_1$ Good indicator of center and variable		Includes q_0 , $q_{0.25}$, $q_{0.5}$, $q_{0.75}$, q_1 Good indicator of center and variability		
Outliers	Outliers $X_{outlier}$: $< Q_1 - 1.5 \times IQR \text{ or } > Q_3 + 1.5 \times IQR$			

Probability Topic					
Sample Space	Set of all p	ossible	outcomes		
Event	Subset of	sample	space		
Suppose events A	, B and C a	re in sa	mple space S		
D(A)	_ r	number	of outcomes in A		
P(A)	total nu	mber o	f possible outcom	es in S	
$P(A) \geq 0$	$P(A) \ge 0$ $P(S) = 1$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$				
$A \& B$ are independent $\equiv (P(A \cap B) = P(A)P(B)) \lor (P(A B) = P(A))$					
$P(A B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \times P(B A)}{P(B)}, \text{ where } P(B) > 0$					
Sensitivity $P(+ D)$			Specificity	$P(- D^c)$	
Prevalence $P(D)$					

$P(A) = \sum_{i=1}^{n} P(A \cap B_i)$, where $B_1, B_2,, B_n$ partitions S	
$P(B_i A) = \frac{P(A B_i)P(B_i)}{\sum_{i=1}^{n} P(A B_i)P(B_i)}, \text{ where } B_1, B_2,, B_n \text{ partitions S}$	
$P(B_i A) = \frac{\sum_{i=1}^{n} P(A B_i)P(B_i)}{\sum_{i=1}^{n} P(A B_i)P(B_i)}$, where $B_1, B_2,, B_n$ partitions 3	

Random Variables				
Definition	Measurement of the outcome of an experiment			
Probability	Specifies possible values of a random variable and			
Distribution	their probabilities			
Discrete Random				
Definition	Takes on a set of separate values			
Probability Distribution	Assigns a probability $p_{\scriptstyle X}$ to each possible values of X			
Annotation notes	Uppercase letters: Denotes the random variable Lowercase letters: Denotes the value it takes on			
Mean	$\mu = \sum_{x} x p_{x}, E(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \mu$			
Variance	$\mu = \sum_{x} x p_{x}, E(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_{i}) = \mu$ $\sigma^{2} = \sum_{x} (x - \mu)^{2} p_{x}, Var(\bar{X}) = \frac{1}{n^{2}} \sum_{i=1}^{n} \sigma^{2} = \frac{\sigma^{2}}{n}$			
Continuous Random Variables				
Mean	$\mu = \int x f(x) dx$ Quantile $P(X \le q_p) = p$			
Variance	$\sigma^2 = \int (x - \mu)^2 f(x) dx$			
Binomial Distribut	$(X \sim Bin(n, p))$			
Definition	n independent trials with p probability of success			
Bernoulli	Bin(1,p), a binomial distribution with only 1 trial			
P(x successes)	$P(X = x) = C_x^n p^x (1 - p)^{n - x}$			
Mean of X	E(X) = np Variance $Var(X) = np(1-p)$			
Normal Distributio	on (Gaussian Distribution / $X \sim N(\mu, \sigma^2)$)			
Definition	Symmetric, bell-shaped / unimodal, and characterized by its mean μ and its variance σ²			
If $d > 0$, $P(X)$	$\leq \mu - d) = P(X \geq \mu + d)$ $q_{1-p} = 2\mu - q_p$			
Suppose $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$,				
General Linear Transform $aX + bY \sim N(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2)$				
General Linear Transform $aX + bY \sim N(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2)$ Standardize Normal $Z = \frac{X - \mu}{\sigma} \sim N(0,1), \text{ where } X \sim N(\mu, \sigma^2)$				
Binomial Estimatio	on $Bin(moderately large n, p \approx 0.5 \pm 0.2) \approx N(np, np(1-p)), where np(1-p) \geq 5$			
t-Distribution with				
t-score $\frac{\bar{X}-\mu}{s/\sqrt{n}}$ ~	t-score $\frac{\bar{x}-\mu}{s/\sqrt{n}} \sim t_{n-1}$; @ $n \ge 30$, $t_{n-1} \approx z$, $\frac{1}{\sqrt{n}} t_{n-1,1-\alpha/2} \approx q_{1-\alpha/2}$			

Sampling Distribution			
Quantitative Sampling Distribution Sample Mean, $ar{X} o \mu$			
$Bin(1,p)$ Sampling Distribution Sample Proportion, $\hat{p} \rightarrow p$			
Central Limit Theorem			
Suppose IID $X_1, X_2,, X_n$, and $n \ge 30$, then $\bar{X} \sim N(\mu, \sigma^2/n)$			

Confidence Interval		
Point Estimate Single best guess number for population parameter		
Point Estimate	Sample proportion: \hat{p} , Sample mean: $ar{X}$	
Interval	An interval of numbers within which the parameter value	
Estimate	is believed to fall	

ST1131 Summary 24/25 Teh Xu An

Estimates	$\bar{X} \approx \mu$	$s^2 \approx \sigma^2$	s ≈ σ	$X_{(0.5)} \approx q_{0.5}$
CI level α	$\hat{p} \pm q_{1-\alpha/2} \times \sigma$	σ or $ar{X} \pm t_{n-1,1-\alpha}$	$x/2 \times \frac{s}{\sqrt{n}}$	
Interpret CI	$(1-lpha) imes 100\%$ confident that \hat{p}/\bar{X} falls in CI level $lpha$			
CI Width	Width $2 \times q_{1-\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \text{ or } 2 \times t_{n-1,1-\alpha/2} \times \frac{s}{\sqrt{n}}$			

$\begin{array}{c c} \text{Hypothesis Test} \\ \text{Assumptions} \\ \text{To Check} \\ \text{Stop if assumptions not fulfilled} \\ \text{Test Statistic} \\ \text{Score of the sample against H_0} \\ \text{Null Distribution} \\ \text{Distribution of test statistic under H_0} \\ \text{probability of sample against null distribution} \\ \text{Type I Error} \\ \text{Reject H_0 when it is true AKA false positive} \\ \text{Type II Error} \\ \text{Don't reject H_0 when it is false AKA false negative} \\ \text{Test Power} \\ \text{I} - \beta, \text{ where } \beta \text{ is the probability of Type II Error} \\ \text{Independence & Dependence} \\ \text{Independent} \\ \text{Sample} \\ \text{Observations in one sample implies nothing in anothe sample} \\ \text{Dependent} \\ \text{Sample} \\ \text{Subject/individuals, hence related samples} \\ \text{Independent Samples, Equal Variance (Two sample t-test)} \\ \text{Hypothesis Assumptions} \\ \text{Both population variances are the same, } \frac{s_X^2}{s_Y^2} \in \left(\frac{1}{3},3\right) \\ \text{Variance Test} \\ \text{H}_0: \mu_x - \mu_y = 0 \\ H_1: \mu_x - \mu_y \neq 0/\mu_x - \mu_y < 0/\mu_x - \mu_y > 0 \\ \text{Supposition} \\ \text{Since both population equal variance, let σ^2 be that.} \\ \text{Pooled} \\ \text{Variance} \\ $		
To Check		
Test Statistic Score of the sample against H_0 Null Distribution Distribution of test statistic under H_0 probability of sample against null distribution Type I Error Reject H_0 when it is true AKA false positive Type II Error Don't reject H_0 when it is false AKA false negative Test Power $1-\beta$, where β is the probability of Type II Error Independence & Dependence Independent Observations in one sample implies nothing in another sample sample Sample Sample Sample Sample Independent Samples, Equal Variance (Two sample t -test) + Hypothesis Assumptions Both population variances are the same, $\frac{s_X^2}{s_Y^2} \in \left(\frac{1}{3},3\right)$ Variance Test $\frac{H_0: \mu_X - \mu_y = 0}{H_1: \mu_X - \mu_y \neq 0/\mu_X - \mu_y < 0/\mu_X - \mu_y > 0}$ Let $X \sim N(\bar{X}, s_X^2)$ of size $n_t, Y \sim N(\bar{Y}, s_Y^2)$ of size n_t		
Null Distribution Distribution of test statistic under H_0 ρ -value probability of sample against null distribution Type I Error Reject H_0 when it is true AKA false positive Type II Error Don't reject H_0 when it is false AKA false negative Test Power $1-\beta$, where β is the probability of Type II Error Independence & Dependence Independent Observations in one sample implies nothing in another Sample Dependent Two groups/samples comprise the same set of Sample Independent Samples, Equal Variance (Two sample t -test) + Hypothesis Assumptions Both population variances are the same, $\frac{s\tilde{\chi}}{s\tilde{\chi}} \in \left(\frac{1}{3},3\right)$ Variance Test $H_0: \mu_{\chi} - \mu_{\gamma} = 0$ $H_1: \mu_{\chi} - \mu_{\gamma} \neq 0/\mu_{\chi} - \mu_{\gamma} < 0/\mu_{\chi} - \mu_{\gamma} > 0$ Currentiation Let $X \sim N(\bar{X}, s\tilde{\chi})$ of size $n_1, Y \sim N(\bar{Y}, s\tilde{\chi})$ of size n_2		
$\begin{array}{ll} p\text{-value} & \text{probability of sample against null distribution} \\ \hline \text{Type I Error} & \text{Reject H_0 when it is true AKA false positive} \\ \hline \text{Type II Error} & \text{Don't reject H_0 when it is false AKA false negative} \\ \hline \text{Test Power} & 1-\beta, \text{ where }\beta \text{ is the probability of Type II Error} \\ \hline \text{Independence & Dependence} \\ \hline \text{Independent} & \text{Observations in one sample implies nothing in anothe sample} \\ \hline \text{Sample} & \text{Sample} \\ \hline \text{Dependent} & \text{Two groups/samples comprise the same set of subject/individuals, hence related samples} \\ \hline \text{Independent Sample} & \text{Subject/individuals, hence related samples} \\ \hline \text{Independent Samples, Equal Variance (Two sample t-test)} \\ \hline + \text{Hypothesis Assumptions} \\ \hline \text{Both population variances are the same, } \frac{s_X^2}{s_Y^2} \in \left(\frac{1}{3},3\right) \\ \hline \text{Variance Test} & \frac{H_0: \mu_X - \mu_y = 0}{H_1: \mu_X - \mu_y \neq 0/\mu_X - \mu_y < 0/\mu_X - \mu_y > 0} \\ \hline \text{Currentiation} & \text{Let $X{\sim}N(\bar{X},s_X^2)$ of size $n_1, Y{\sim}N(\bar{Y},s_Y^2)$ of size n_Y} \\ \hline \end{array}$		
Type I Error Reject H_0 when it is true AKA false positive Type II Error Don't reject H_0 when it is false AKA false negative Test Power $1-\beta$, where β is the probability of Type II Error Independence & Dependence Independent Observations in one sample implies nothing in another sample sample Two groups/samples comprise the same set of subject/individuals, hence related samples Independent Samples, Equal Variance (Two sample t -test) + Hypothesis Assumptions Both population variances are the same, $\frac{s_X^2}{s_Y^2} \in \left(\frac{1}{3},3\right)$ Variance Test $\frac{1}{1} \mu_X - \mu_y = 0$ $\frac{1}{1} \mu_X - \mu_y \neq 0/\mu_X - \mu_y < 0/\mu_X - \mu_y > 0$ Let $X \sim N(\bar{X}, s_X^2)$ of size $n_1, Y \sim N(\bar{Y}, s_Y^2)$ of size n_2		
Type II Error Don't reject H_0 when it is false AKA false negative Test Power $1-\beta$, where β is the probability of Type II Error Independence & Dependence Independent Sample Observations in one sample implies nothing in another sample Two groups/samples comprise the same set of subject/individuals, hence related samples Independent Samples, Equal Variance (Two sample t -test) + Hypothesis Assumptions Both population variances are the same, $\frac{s_X^2}{s_Y^2} \in \left(\frac{1}{3}, 3\right)$ Variance Test $\frac{1}{2} H_0: \mu_X - \mu_y = 0$ $H_1: \mu_X - \mu_y \neq 0/\mu_X - \mu_y < 0/\mu_X - \mu_y > 0$ Let $X \sim N(\bar{X}, s_X^2)$ of size $n_1, Y \sim N(\bar{Y}, s_Y^2)$ of size n_Y		
Test Power		
Sample sample Dependent Two groups/samples comprise the same set of subject/individuals, hence related samples Independent Samples, Equal Variance (Two sample t -test) Assumptions + Hypothesis Assumptions Both population variances are the same, $\frac{s_X^2}{s_Y^2} \in \left(\frac{1}{3}, 3\right)$ Variance Test $H_0: \mu_x - \mu_y = 0$ $H_1: \mu_x - \mu_y \neq 0/\mu_x - \mu_y < 0/\mu_x - \mu_y > 0$ Composition Let $X \sim N(\bar{X}, s_X^2)$ of size $n_1, Y \sim N(\bar{Y}, s_Y^2)$ of size n_Y		
Dependent Sample Two groups/samples comprise the same set of subject/individuals, hence related samples Independent Samples, Equal Variance (Two sample <i>t</i> -test)		
Dependent Sample Two groups/samples comprise the same set of subject/individuals, hence related samples Independent Samples, Equal Variance (Two sample <i>t</i> -test)		
Independent Samples, Equal Variance (Two sample t -test) Assumptions		
Assumptions H Hypothesis Assumptions Both population variances are the same, $\frac{s_X^2}{s_Y^2} \in \left(\frac{1}{3},3\right)$ Variance Test $H_0: \mu_x - \mu_y = 0$ $H_1: \mu_x - \mu_y \neq 0/\mu_x - \mu_y < 0/\mu_x - \mu_y > 0$ Let $X \sim N(\bar{X}, s_X^2)$ of size $n_1, Y \sim N(\bar{Y}, s_Y^2)$ of size n_Y		
Assumptions H Hypothesis Assumptions Both population variances are the same, $\frac{s_X^2}{s_Y^2} \in \left(\frac{1}{3},3\right)$ Variance Test $H_0: \mu_x - \mu_y = 0$ $H_1: \mu_x - \mu_y \neq 0/\mu_x - \mu_y < 0/\mu_x - \mu_y > 0$ Let $X \sim N(\bar{X}, s_X^2)$ of size $n_1, Y \sim N(\bar{Y}, s_Y^2)$ of size n_Y		
Assumptions Both population variances are the same, $\frac{s_X^2}{s_Y^2} \in \left(\frac{1}{3},3\right)$ Variance Test $H_0: \mu_x - \mu_y = 0$ $H_1: \mu_x - \mu_y \neq 0/\mu_x - \mu_y < 0/\mu_x - \mu_y > 0$ Composition Let $X \sim N(\bar{X}, s_X^2)$ of size $n_1, Y \sim N(\bar{Y}, s_Y^2)$ of size n_Y		
Variance lest $H_1: \mu_x - \mu_y \neq 0/\mu_x - \mu_y < 0/\mu_x - \mu_y > 0$ Let $X \sim N(\bar{X}, s_X^2)$ of size $n_1, Y \sim N(\bar{Y}, s_Y^2)$ of size n_Y		
$H_1: \mu_x - \mu_y \neq 0/\mu_x - \mu_y < 0/\mu_x - \mu_y > 0$ Let $X \sim N(\bar{X}, s_X^2)$ of size $n_1, Y \sim N(\bar{Y}, s_Y^2)$ of size n_Y		
Supposition Let $X \sim N(\bar{X}, s_X^2)$ of size n_1 , $Y \sim N(\bar{Y}, s_Y^2)$ of size n_Y Since both population equal variance, let σ^2 be that.		
Supposition Since both population equal variance, let σ^2 be that. Pooled $\sigma^2 = s_p^2 = \frac{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}{n_y^2 + n_y^2}$		
Pooled $\sigma^2 = s_p^2 = \frac{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}{n_y + n_y}$		
Variance $\sigma^2 = S_p^2 = \frac{1}{2}$		
$n_v + n_v - 2$		
(7 7) 0		
Test Statistic $T = \frac{(\bar{X} - \bar{Y}) - 0}{se} \text{ where } se = s_p \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}$		
Under H_0 , T follows t -distribution $df = (n_X + n_Y - 2)$		
H_1 : $\mu_x - \mu_y \neq 0$, Two tail probability from $t_{n_x+n_y-2}$		
<i>p</i> -value $H_1: \mu_x - \mu_y > 0$, Right area of <i>T</i> from $t_{n_x + n_y - 2}$		
H_1 : $\mu_x - \mu_y < 0$, Left area of T from $t_{n_X + n_Y - 2}$		
Conclusion Interpret p-value		
Independent Samples, Unequal Variance (Welch Test)		
Assumptions Two sample t-test minus same variance		
Test Statistic same as Two Sample t-test		
Test Statistic Under H_0 , T follows t -distribution df (too complex) $df \text{ Calculation} $ (Bonus) $df = \frac{(se_X + se_Y)^2}{\frac{se_X^2}{n_X - 1} + \frac{se_Y^2}{n_Y - 1}}, se_X = \frac{s_X^2}{n_X}, se_Y = \frac{s_Y^2}{n_Y}$		
$df = \frac{(se_X + se_Y)^2}{se_X - se_Y} = \frac{s_X^2}{s_X^2} \cdot se_Y = \frac{s_Y^2}{s_Y^2}$		
(Bonus) $ \frac{a_f}{se_X^2} = \frac{se_Y^2}{se_Y^2}, se_X = \frac{n_X}{n_X}, se_Y = \frac{n_Y}{n_Y} $		
$\frac{1}{n_{\chi}-1}+\frac{1}{n_{\gamma}-1}$		
Dependent Samples (Dependent t-test for paired samples)		
Every observation in a sample has a matched value in		
other sample, hence we compare the mean of		
Premise other sample, hence we compare the mean of differences of matched observations with 0, then we		

Linear Regressio	n
Linear	$Y = \beta_0 + \beta_1 X + \epsilon$, ϵ is a random variable with variance
Regression	σ^2 , β_0 is Y-intercept, β_1 is slope of line
	$Y \sim N(\beta_0 + \beta_1 X, \sigma^2)$, where σ^2 is constant
Indicator Terms	$I(X = value) = \begin{cases} 1, & X = value \\ 0, & X \neq value \end{cases}$ If $Cor(X_1, X_2)$ is high or X_1 and X_2 are associated, we
	$(0, X \neq value)$
Interaction	
Terms	can have interaction term $(X_1 * X_2)$ as a regressor
"Linear"	Linearity in the parameters
OLS Estimation	Ordinary Least Square Estimation
OLO Estimation	Minimises sum of squared residuals, e_i 's: $e_i = Y_i - \widehat{Y}_i$
t test	Test significance of one regressor (or one coefficient)
F test	Test significance of the whole model
t-test for β	
Step 1	Check assumptions
	H_0 : $\beta = 0$ or H_0 :regressor X is no significant
Step 2	$H_1: \beta \neq 0$ or $H_1:$ regressor X is significant
·	*One-sided tests are also possible
Step 3	$t = \hat{\beta}/SE(\hat{\beta})$, null distribution of t is t_{n-2}
Step 4	Derive p-value found from R output
0	Conclude whether the slope β is significantly different
Step 5	from 0 at a pre-specified α-level
F-tests in a Linea	
	H_0 : all the coefficients, except intercept, are zero
Hypothesises	H_1 : >0 coefficients, except intercept, are nonzero
Fixes	Linear assumption violated: Transform Regressor
	Variance not constant: Transform Target
Standardized	$Y - \hat{Y}$ $\sigma_{Y-\hat{Y}}$
Residual	$SR = \frac{Y - \hat{Y}}{SE(Y - \hat{Y})}$, where $SE(Y - \hat{Y}) = \frac{\sigma_{Y - \hat{Y}}}{\sqrt{n}}$
Checks for Lines	ar Model Assumptions
	Random Data, Relationship between X and Y is linear
LRM Y~X	Error term $\epsilon \sim N(0, \sigma^2)$, homoscedasticity = constant σ
Constant σ ²	Histogram and QQ plot of SR are normal
oonstant o	Plot of SR against \hat{Y} and SR versus X: points scatter
Normality	randomly about 0, within the interval (-3, 3)
Outlier	Outlier Points: $ SR > 3$
Influential	Influential Points: $cook. distance > 1$
Linear Model Int	
Coefficient of	
	Proportion of total variation of the response that is
determination R^2	explained by the model, falls between 0 and 1. Rig R^2 = good fit, but more veriables will increase R^2
	Big R^2 = good fit, but more variables will increase R^2
Adjusted R ²	Big R - good in, but more variables with increase R $R_{adj}^2 = 1 - \frac{(1 - R^2)(n - 1)}{n - k - 1}$ Where k is the number of reference in the model.
R_{adj}^2	Where k is the number of regressors in the model
,	
$Cor(X,Y)\&R^2$	$\sqrt{R^2} = Cor(X, Y) $

Tables		
Frequency Tables		
Summary (To	Modal Category	
Include)	Relative Frequency	
Contingency Table		

Summary	Modal Category
(To Include)	Relative Frequency

Plots			
Bar Plots			
Summary (To include)	+ Frequency Tables Summary Mention groups of high/low proportions Any trends with ordinal categories.		
Clustered / Stacked for comparing 2 categorical variables.			
Histogram			
Summary (To include)	Clusters, Gaps, Deviations, Suspected Outliers Mounds: Unimodal, Bimodal, Multimodal Skew: Symmetric, Left-Skew, Right-Skew		
Remarks (Skews)	Longer = Thicker = Heavier Shorter = Thinner = Lighter Histogram is skewed towards the longer tail.		
Boxplot			
Summary (To include)	Box: Lower Bound, Line, Upper Bound: Q_1 , Q_2 , Q_3 Whiskers: Lower Whisker, Upper Whisker: $Q_1-1.5\times sd$, $Q_3+1.5\times sd$ Outliers: Points beyond the whiskers		
Remarks	Useful for identifying potential outliers Indicator of skewness if unimodal		
Scatterplot			
Summary (To include)	Correlation: $r = \frac{1}{n-1} \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{s_X} \right) \left(\frac{Y_i - \bar{Y}}{s_Y} \right)$		
Remarks	Useful for identifying potential outliers Indicator of skewness if unimodal		
QQ Plot			
Description	To check normality by plotting standardized sample quantiles against theoretical quantiles of a $N(0,1)$		
Summary (To Include)	Tail above/below Line: Shorter/Longer than Normal Normality		
Remarks	If the points follow a straight line, there is evidence that the data came from a normal distribution		