自主性協同系統在無人機的應用

林 冠 澔 撰 國立雲林科技大學 資 訊 管 理 系

摘要

隨著無人機技術在多領域的廣泛應用, 如何實現多架無人機之間的自主協同作業 成為一項重要挑戰。本研究旨在開發一套全 自主性的協同系統運用於無人機的,結合協 同技術、影像辨識與智能決策演算法,實現 無人機群體在動態環境中的高效自主運作。 該系統利用影像辨識技術,讓無人機能夠即 時分析環境中的視覺信息,進行目標識別與 環境 咸知, 並透過智能決策演算法實現動態 的路徑規劃與任務分配。協同技術的引入使 多架無人機之間可以無縫共享信息,進行分 散式決策與協同行動,從而提高任務執行的 準確性與效率。研究中的演算法設計著重於 通過強化學習與群體智能技術,讓無人機能 夠根據數據與當前環境進行自主學習和優 化决策,使系統在面對多變環境和突發事件 時具備強大的應變能力。該研究不僅對人工 智能技術的發展具有重要意義,更是對未來 的,還能為未來智慧城市、環境保護和應急 管理等領域提供新的技術支持。

一、研究動機

本研究的動機來源於目前大學專題的 題目,因目前主要是以虛擬的方式進行模擬, 此透過模擬器擷取數據進行數據共享,以此 增加協同的使用性,在一些自主協作和智能 化的部分還尚未有太大的應用,因此藉由強 化學習、群體智能及影像辨識等技術來實現 自動化的任務分配與路徑規劃等目的,讓機 群能夠自主應對複雜環境或事件等應用。 我對協同技術以及智能化集體決策在 無人機中的應用深感興趣,特別是這些技術 如何幫助無人機群體在三維空間中進行自 主協作、決策和行動。當面臨陸地空間有限 的限制時,這種方式可以替代部分傳統的地 面工具,還能夠憑藉其在空中靈活運動的特 性,提供更加高效的解決方案,我相信這樣 的研究能夠對整個科技及社會帶來實質的 貢獻。

二、簡介

隨著計算處理、感測元件及通訊領域的 新一代發展,旋翼飛行器、無人機等空中機 器人,已經有許多非凡的功用進入到人類生 活當中,儘管單體式自主導航無人機已在工 業和學術實踐中積極發展,但群體式系統很 少能實現可比擬的性能。然而目前現實中, 已經有許多各種空中集群的各種應用,如讓 人印象深刻的大型無人機燈光秀 [1][2],在 許多佳節或商業應用中,頻繁的應用。在大 規模及成功的商業應用的背後,其根本的基 礎技術及決策, 只是透過預先編譯的路徑或 軌跡,透過全球定位系統 [3]、搭載 RTK 即 時動態差分處理及 PPK 動態後處理 [4]等定 位法技術定位集群,因此在自主性的集群基 處上,如何在雜亂的或隨機無法預期的環境 中,使群體可以反應規則或根據其他狀態調 整其運動模式,將會是集群成為一個重要性 的關鍵。

根據 Mordor Intelligence 2024-2029 年無人機市場規模分析 [5],無人機市場規模預計到 2024 年為 352.8 億美元,預計到 2029年將達到 676.4 億美元,在預測期內 (2024-2029年)複合年增長率為 13.90%。

2024-2029全球無人機市場規模 (單位:十億/美元)

就市場銷售量及收入而言,預計到 2029 年, 全球無人機市場銷售量將達到 950 萬台 [6], 全球無人機市場規模將大幅增長。雖然這些 數據來自 2024 年的市場洞察分析,但無人 機持續成長的趨勢,清楚地反映出對當前及 未來市場發展具有重要參考意義。

三、研究方法

I. 模擬環境及系統架構設計

在系統決策及影像辨識等技術開發前, 本研究將使用 AirSim 套件及 Unreal Engine 等模擬器來模擬不同應用場景,包括複雜的 動態環境。模擬器將生成不同的場景與數據, 自主協同系統將在這些模擬環境中進行多 次測試,其包含影像辨識、深度學習及決策 演算法等技術,以驗證系統在不同任務條件 下的適應性與協作效率。除此之外,不排除 使用嵌入式系統作為更進一步的開發。

II. 影像辨識技術的應用

本研究將開發影像辨識模組,讓無人機能夠通過模擬環境搭載的 AirSim 套件提供 API 來實現影像檢索,即時處理視覺信息。 使用 LiDAR 透過發射雷射脈衝來計算距離 來捕捉三維環境的測量數據。利用影像匹配 和視差計算的結果,產生密集的三維點雲, 透過進一步處理,這些點雲可以用於建立表 面模型、高低起伏和物體的形狀。

III. 集群分散式配置

在模擬器中,分散式集群局限於本地模 擬,雖然控制等指令可由相對資訊共享而來, 但實際輸出控制是集中式控制實現的,而且 端到端之間的資訊是無延遲同步共享,因此 模擬的條件非常理想化,所得到的模擬結果 並不能反應實際控制過程中的集群應有的 狀態,因此結果可信度低。

需進一步編寫了集群個體模組,每個模 組都有自己的記憶體、通訊設備及測量儀器 等等,並且在飛行過程中受通訊品質影響, 個體間獨處理計算並且存在延遲性,因此每 次模擬結果會更符合實際情況。

IV. 自主決策演算法的開發

首先透過粒子群優化算法(Particle Swarm Optimization, PSO)。將粒子初始化,每個無人機作為一個粒子,而粒子作為位置或路徑規劃的一個指標。粒子根據其自身或群體中的數據進行更新。而每個粒子根據適應度函數評估優劣,假設以三維點雲建模,函數可以根據覆蓋率來設計。粒子會根據兩個主要因素來持續更新,其包含個體最優解及群體最優解,在兩者之間找尋最佳解,直到收斂到最優解或達到停止條件。

其次則使用強化學習結合,在粒子群優 化的基礎上,進一步引入強化學習,讓集群 能根據數據優化自身行為,還能根據環境的 動態變化及時調整飛行策略。這樣可以提高 集群應對複雜場景的自主學習和應變能力。

V. 實驗驗證與評估

利用模擬器來進行不同場景間群體無 人機系統的初步測試,模擬各種環境條件與 突發事件,測試演算法的穩定性和效率。

四、預期結果

I. 高效的任務執行與協同

藉由粒子群優化算法和強化學習相結合,我們預期無人機群體能夠在不同環境下 自主學習並優化其行動決策,從而高效地完 成任務。

II. 準確的三維點雲建模

利用影像辨識和 Li DAR 技術,無人機將 能夠捕捉高精度的三維點雲,並生成精確的 三維環境模型。

III. 系統自主應變能力的提升

通過引入強化學習技術,無人機群體能 夠在多變或不可預測的環境中,進行自主學 習與行為調整,進一步提高系統的自主性與 適應能力。我預期系統在面對突發狀況,如 某節點故障時,能夠快速做出決策調整,從 而保證任務的順利完成。

IV. 分散式決策效率

協同技術和分散式決策算法的引入,將 使無人機群體能夠在沒有集中控制的情況 下,自主協調並共享任務相關信息,從而有 效地完成分散式任務分配與規劃。

五、文獻探討

根據空中影像中即時重建三維地形的 技術 [7]文章探討。從多角度的空中影像中 提取地形特徵,使用影像處理算法識別地形 變化,並確保在高動態環境下也能有效處理 透過視覺算法計算不同影像之間的深度信 息。此外,自動飛行路徑規劃與點雲資料的 整合可以促進任務級無人機指揮並簡化機 隊操作。此研究未充分考慮複雜環境應用, 且依賴單一類型的影像數據,分析捕獲的影 像資料所需的大量處理時間,從而限制了即 時資料擷取能力。 PPSwarm 研究 [8]提出了一種基於粒子群優化算法的混合方法,稱為混合粒子群優化,專門針對複雜場景中的多 UAV 路徑規劃進行了優化。粒子群優化算法本身是一種基於群體智能的啟發式算法,通常用於解決多維優化問題,而 PPSwarm 在此基礎上進行了改進。具體而言,該研究引入了多重策略組合,使每個 UAV 能夠根據自身和群體中的數據動態調整行動,從而更有效地解決環境中的障礙物和動態威脅。

野外微型飛行機器人群計畫 [9]開發能 夠獨立導航、編隊飛行和即時決策。這些機 器人搭載視覺感測器和計算資源,使它們能 夠在森林等複雜、未知的環境中導航。它們能 夠自主實現障礙物偵測、定位和即時飛行 路徑規劃,這代表了群體機器人在實際應用 中的飛躍。然而,在這些系統能夠在野外有 效部署之前,必須先解決一些挑戰。能源效 率、環境適應能力和強大的群體溝通等問題 是人們關注的關鍵領域。

參考文獻

- [1] 先創國際, "DJI 大疆無人機燈光秀全球首秀," 2023
- [2] 交通部觀光屬, "Intel-300 架無人機璀璨點亮," 交通部觀光屬, 2019. [Online]. Available: https://www.taiwan.net.tw/m1.aspx?sNo=0027135
- [3] 簡敏琦, "GPS 動態定位演算法與無人載具實驗," 碩士論文, 國立成功大學, 2013.
- [4] 黃呂揚斌, "無人機配合 RTK、PPK 方法在測繪 之應用,"碩士論文,國立台灣科技大學,2020.
- [5] Mordor Intelligence, "Drones market size (2024-2029)," Intelligence, Mordor, 2024.
- [6] Statista, "Drones Worldwide," Statista, 2024.
- [7] Wang, Q., "Towards real-time 3D terrain reconstruction from aerial imagery," *Geographies*, 第 册 4, 編號 1, pp. 66-82, 2024.
- [8] Q. Meng, K. Chen, and Q. Qu, "PPSwarm: Multi-UAV path planning based on hybrid PSO in complex scenarios," *Drones*, 第 5 册, 編號 5, p. 192, 2024.
- [9] X. Zhou et al, "Swarm of micro flying robots in the wild," *Science Robotics*, 第 7 册, p. eabm5954, 2022.
- [10] P. Foehn et al, "Time-optimal planning for quadrotor waypoint flight," *Science Robotics*, 第6冊, p. eabh1221, 2021.