卷积运算简介

参考:

http://blog.csdn.net/anan1205/article/details/12313593 http://blog.csdn.net/u014114990/article/details/51125776

本文档主要介绍两个方面:

- 1. 矩阵卷积如何转化为矩阵相乘的形式;
- 2. 多通道卷积过程。

矩阵卷积、矩阵相乘的转化

两个矩阵卷积转化为矩阵相乘形式——Matlab应用(这里考虑二维矩阵,在图像中对应)两个图像模糊(边缘)操作,假设矩阵A、B,A代表源图像,B代表卷积模板,那么B的取值决定最后运算的结果。

Matlab中的应用函数——conv2(二维卷积,一维对应conv)

函数给出的公式定义为:

$$c(n_1, n_2) = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = h-\infty}^{\infty} a(k_1, k_2) b(n_1 - k_1, n_2 - k_2)$$

 $k_1 = -\infty k_2 = h-\infty p://blog. csdn. net/anan1205$

同一维数据卷积一样,它的实质在于将卷积模板图像翻转(旋转180),这里等同于一维信号的翻转,然后将 卷积模板依次从上到下、从左到右滑动,计算在模板与原始图像交集元素的乘积和,该和就作为卷积以后的数值。

为了验证后续矩阵卷积转化为矩阵相乘,这里给出的conv2的实例描述:

假设矩阵A(4*3)、B(2*3)如下:

	1	2	3				
1	1	4	5				
2	2	5	6		1	2	3
3	3	5	6	1	1	2	3
4	7	8	9	2	tp://blo§	. csdn. ne 6	/anan12 0 5

首先, B需要旋转180,

命令旋转2次90即可:

B = rot90(rot90(B));或者B = rot90(h,2); 结果为:

		1	2	3
	1	7	6	5
1	2	n://blo	csdn. ne <mark>2</mark>	/anan120 <mark>1</mark> 5

其次:命令conv2函数:

C = conv2(A,B, 'shape'),该函数的具体操作图示:

	7	6	5				7	6	5	
	3	2	1*1	4	5		3	1*2	4*1	5
_			2	5	6			2	5	6
			3	5	6			3	5	6
			7	8	9 h	t t j	p://blo)g 7 csc	n. net/a	nar 9 1205

依次计算直至结束,结果数据为:

	1	2	3	4	5
1	1	6	16	22	15
2	7	35	78	85	53
3	13	48	99	98	60
4	22	65	127	113	69
5	35	h 82	p://bl 142	csdn. n 110	/anan12 63

shape的取值有三种,full代表返回卷积以后的全部数据,size为(mA+mB-1,nA+nB-1)的数据;same代表返回卷积以后的原图size (mA,nA)的部分数据;valid返回size为(mA-mB+1,nA-nB+1)的数据,指的是模板元素全部参加运算的结果数据,即源图像和模板的交集为模板。

矩阵卷积转化为矩阵相乘, 网上也有很多方法, 通俗化表示为:

 $A \times B = B1*A1;$

需要针对原始数据与模板数据做变换, 变换过程如下:

	1	2	3				
1	1	4	5				
2	2	5	6		1	2	3
3	3	5	6	1	1	2	3
4	7	8	9	12	tp://blo§	. csdn. ne🍳	/anan120

首先进行周期延拓,补零:

M = mA+mB-1 = 5; N = nA+nB-1 = 5, 对应卷积以后full数据大小。

那么初次换换的A和B为:

	1	2	3	4	5	
1	1	4	5	0	0	
2	2	5	6	0	0	
3	3	5	6	0	0	
4	7	8	9	0	0	
5	0	0	0	0	0	(A1)
						. (,,,_,
	1	2	3	4	5	
1	1	2	3	0	0	
2	5	6	7	0	0	
3	0	0	0	0	0	
4	0	0	0	0	0	
5	0	0	httm.//	100 0000	net/ana	(B1)

其次对A1和B1分别进行变换

转化B1——针对B1以及转换矩阵方法为:

	1	2	3	4	5	
1	1	2	3	0	0	a
2	5	6	7	0	0	е
3	0	0	0	0	0	d
4	0	0	0	0	0	С
5	0	0	1++n.//b	og. csdn. r	ot /enen 0	on b x

将B1中的每一行向量依次按照B转化为一个方形矩阵Ba~Be,然后针对于每一个方形矩阵按照B矩阵组合成一个新的矩阵B1。B1矩阵的大小为((mA+mB-1)*(nA+nB-1), (mA+mB-1)*(nA+nB-1))。

转化A1——堆叠向量式

将上个步骤转换的A1按照行向量顺寻依次转化为一个列向量,那么列向量的大小为((mA+mB-1) *(nA+nB-1),1)大小。

 $\mathsf{A1} = [1,4,5,0,0,2,5,6,0,0,3,5,6,0,0,0,0,0,0,0,0,0,0,0,0]^\mathsf{T}$

多通道卷积过程

卷积过程对一个通道的图像进行卷积,比如 10 个卷积核,得到 10 个 feature maps,那么输入图像为 RGB 三个通道呢,输出就为 30 个 feature map 吗, 答案肯定不是的, 输出的个数依然是 卷积核的个数。 可以查看常用模型,比如 lenet 手写体,Alex imagenet 模型, 每一层输出 feature map 个数 就是该层卷积核的个数。

1、一通道 多个卷积核卷积过程

一个卷积核得到的特征提取是不充分的,我们可以添加多个卷积核,比如 32 个卷积核,可以学习 32 种特征。在有多个卷积核时,如下图所示:输出就为 32 个 feature map

2、 多通道的多个卷积核

下图展示了<mark>在四个通道</mark>上的卷积操作,有两个卷积核,生成两个通道。其中需要注意的是,<mark>四个通道上每个通道对应一个卷积核</mark>,先将 w2 忽略,只看 w1,那么在 w1 的某位置(i,j)处的值,是由四个通道上(i,j)处的卷积结果相加然后再取激活函数值得到的。 所以最后得到两个 feature map, 即输出层的卷积核核个数为 feature map 的个数。

$$h_{ij}^k = \tanh((W^k * x)_{ij} + b_k)$$

所以,在上图由 4 个通道卷积得到 2 个通道的过程中,参数的数目为 $4\times2\times2\times2$ 个,其中 4 表示 4 个通道,第一个 2 表示生成 2 个通道,最后的 2×2 表示卷积核大小。