D. Appleman and Tree

time limit per test: 2 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white.

Consider a set consisting of k ($0 \le k \le n$) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k+1) parts. Note, that each part will be a tree with colored vertices.

Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo $1000000007 (10^9 + 7)$.

Input

The first line contains an integer n ($2 \le n \le 10^5$) — the number of tree vertices.

The second line contains the description of the tree: n - 1 integers $p_0, p_1, ..., p_{n-2}$ ($0 \le p_i \le i$). Where p_i means that there is an edge connecting vertex (i+1) of the tree and vertex p_i . Consider tree vertices are numbered from 0 to n - 1.

The third line contains the description of the colors of the vertices: n integers $x_0, x_1, ..., x_{n-1}$ (x_i is either 0 or 1). If x_i is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white.

Output

Output a single integer — the number of ways to split the tree modulo 100000007 ($10^9 + 7$).

Examples

```
input

3
0 0
0 1 1

output

2
```

```
input
6
0 1 1 0 4
1 1 0 0 1 0

output
1
```

```
input

10
0 1 2 1 4 4 4 0 8
0 0 0 1 0 1 1 0 0 1

output

27
```