Modelos tradicionais

Hirruá S. da Silva

Introdução

Problema: crescente preocupação com saúde mental no setor de tecnologia; falta de clareza sobre fatores que levam profissionais a buscar tratamento.

Objetivo: construir modelo de classificação supervisionada para identificar preditores da decisão de buscar tratamento.

Dataset: Mental Health in Tech Survey 2014 (Kaggle), com dados demográficos, fatores pessoais (ex: histórico familiar) e fatores do ambiente de trabalho (ex: benefícios, cultura).

Avaliação: classificação binária; métrica inicial: acurácia, além de análise da importância relativa de fatores pessoais vs. organizacionais.

Dados

Análise exploratória: inspeção de tipos de dados, valores nulos, distribuição de variáveis categóricas e balanceamento da variável alvo (treatment).

Outliers: filtragem da coluna Age para manter apenas idades entre 18 e 72 anos.

Inconsistências: normalização de Gender em três categorias: Male, Female e Other.

Dados faltantes: preenchimento com moda em variáveis como self_employed e work_interfere.

Engenharia de atributos: mapeamento binário (yes/no), ordinal encoding (work_interfere, no_employees) e one-hot encoding para variáveis nominais.

Divisão e validação: separação treino (80%) e teste (20%) para evitar data leakage.

Modelos

Algoritmo: RandomForestClassifier.

Avaliação: train/test split (80/20) + Cross-Validation (5 folds).

Baseline: DummyClassifier (estratégia most_frequent) → acurácia 50,5%.

Hiperparâmetros

- **n_estimators =** 300
- max_depth = 10
- min_samples_leaf = 10
- min_samples_split = 20
- max_features = "sqrt"
- n_jobs = -1
- random_state = 42

Avaliação

Métricas	RandomForest	DummyClassifier
Acurácia	78,9%	50,6%
F1-SCORE	78,9%	67,2%
ROC-AUC	0.8549	0.5000

Avaliação

Interpretação

Após a validação da performance e da robustez do modelo RandomForest, a etapa final consiste em interpretar suas decisões para extrair insights e responder à pergunta central do projeto: "Quais são os principais fatores que influenciam a decisão de um profissional de tecnologia em buscar tratamento para sua saúde mental?".

Importância de features: calcula a contribuição média de cada variável para a redução do erro de classificação em todas as árvores do ensemble, fornecendo um ranking claro dos preditores mais influentes, como mostra a figura 3.

Interpretação

Refinamento

Refinamento: criação de novas features de interação para capturar relações mais complexas.

Variáveis sintéticas: high_risk_support e support_gap.

Experimento controlado: comparação entre Modelo Base e Modelo Refinado.

Justa comparação: ambos usando RandomForestClassifier com mesmos hiperparâmetros.

Refinamento

Métricas	RandomForest	RandomForest V2
Acurácia	78,9%	76,5%
F1-SCORE	78,9%	76,3%
ROC-AUC	0.8549	0.8526

Conclusão

O projeto buscou construir um modelo para identificar os principais fatores que influenciam a busca por tratamento de saúde mental em profissionais de tecnologia. As tentativas de refinamento, embora metodologicamente válidas, não superaram a performance do modelo inicial, reforçando sua eficácia. A resposta final para a pergunta de pesquisa: "Quais são os principais fatores que influenciam a decisão de um profissional de tecnologia em buscar tratamento para sua saúde mental?". Ordem de importância:

- Histórico familiar (family_history)
- A interferência da condição no trabalho (work_interfere)
- Conhecimento sobre opções de cuidado (care_options)