# TP 547- Princípios de Simulação de Sistemas de Comunicação

Prof. Samuel Baraldi Mafra



Exemplos de Monte Carlo para redes

| Gerar pontos uniformemente distribuídos dentro de um círculo de raio R. |
|-------------------------------------------------------------------------|
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |

O comprimento da circunferência/número de pontos cresce linearmente com o raio.



$$C=2\pi r$$

Código=raio.py

A distribuição Poisson modela a localização de usuários em uma rede celular.



## Simulação de um processo pontual de Poisson

Em um processo pontual de Poisson, as localizações dos usuários seguem uma distribuição de Poisson com média  $\lambda$ , onde  $\lambda$  é dado em usuários por unidade de área;

#### Algoritmo

Gerar n números aleatórios Y com a distribuição de poisson com média  $\lambda*$  área, ou seja será sorteado o número N de usuários; Gerar N usuários distribuídos uniformemente.

### Simulação de um processo pontual de Poisson

Plotar uma figura mostrando as localizações dos usuários para um circulo de raio 10 metros, com  $\lambda=10$ ; Código: raiopoiss.py

### Simulação de um processo pontual de Poisson

Interferência média no centro do circulo.

$$I = \sum_{i=0}^{n} P_t / N_0 * d_i^{-\alpha} |h_i|^2,$$

onde  $P_t$  representa a potência de transmissão,  $d_i$  representa a distância entre os nós,  $\alpha$  representa o coeficiente de perda de percurso e  $|h_i|^2$  representa o desvanecimento com distribuição exponencial com média unitária para canal entre o nó i e o e o centro do circulo.

Ber para a modulação bpsk com ruído AWGN:



Os valores do ruído n seguem a função de distribuição de probabilidade gaussiana,

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$
 with  $\mu = 0$  and  $\sigma^2 = \frac{N_0}{2}$ 

#### Constelação BPSK/ Teoria de detecção





Código: berbpsk.py