```
import pandas as pd
import plotly.express as px
from IPython.display import display
from typing import List
px.set_mapbox_access_token(open(".mapbox_token").read())
pd.options.display.max_rows = 10

from helpers import _load_synthetic_clinics, _load_at_risk_zip3, _k_closest_cl
draw_status_treemap()
```

Abortion Protections Status by State | Scaled by Total Population Source: Washington Post


```
[_k_closest_clinics(zip3, clinics, k=k) for zip3 in origin_zip3]
).reset_index(drop=True)
return dist_matrix

at_risk = _load_at_risk_zip3(adi_floor=20) # I could use alternate perspective clinics = _load_synthetic_clinics(n=500) # see helpers.py for "Why Synthetic"

at_risk_distances = build_distance_matrix(at_risk['_zip3'], clinics)
at_risk_distances
```

572 zip3 Location{} at risk with ADI above 20

Out[]:		_state	_clinic_zip5	_lat	_lng	_type	_origin_zip3	_distance
	0	IL	62995	37.419275	-88.879937	synthetic_clinic	301**	293
	1	IL	62967	37.584276	-88.735808	synthetic_clinic	301**	296
	2	IL	62902	37.674381	-89.112452	synthetic_clinic	301**	315
	3	IL	62833	38.340234	-88.167646	synthetic_clinic	301**	320
	4	IL	62809	38.278964	-88.337811	synthetic_clinic	301**	321
	•••		•••			•••	•••	•••
	5715	СО	80722	40.476059	-103.200495	synthetic_clinic	828**	347
	5716	СО	80260	39.866988	-105.001354	synthetic_clinic	828**	348
	5717	СО	80744	40.873626	-102.391968	synthetic_clinic	828**	349
	5718	СО	80701	40.125042	-103.817561	synthetic_clinic	828**	353
	5719	СО	80207	39.761385	-104.916696	synthetic_clinic	828**	356

5720 rows × 7 columns

```
In [ ]: def _get_at_risk_stats(at_risk_distances: pd.DataFrame) -> pd.DataFrame:
    at_risk_stats = at_risk_distances.groupby(['_origin_zip3']).agg(
        k=("_distance","count"),
        distance_mean=("_distance","mean"), # mean distance to closest k clinic
        distance_min=("_distance","min"),
        distance_max=("_distance","max")
    ).reset_index()

    def _geocode_zip3(at_risk_stats):
        zip3_geo = _load_zip3_census()[['_zip3','_lat','_lng']]
        return at_risk_stats.rename(columns={"_origin_zip3":"_zip3"}).merge(_load_risk_stats)
        return at_risk_stats
    at_risk_stats = _geocode_zip3(at_risk_stats)
    return at_risk_stats
    at_risk_stats = _get_at_risk_stats(at_risk_distances)
    at_risk_stats # hmmm something messed up with NY and PA upstream
```

Out[]:		_zip3	k	distance_mean	distance_min	distance_max	_state	_lat	_lng	_(
	0	127**	10	36.4	9	57	NY	41.695786	-74.773225	
	1	127**	10	36.4	9	57	PA	41.485554	-74.892326	
	2	147**	10	37.9	20	63	NY	42.211762	-78.852733	
	3	147**	10	37.9	20	63	PA	42.046328	-79.669830	
	4	150**	10	138.3	81	164	PA	40.457488	-80.065227	
	•••						•••			
	638	979**	10	218.4	127	257	OR	43.801827	-117.543657	
	639	990**	10	125.9	67	180	ID	47.635828	-117.094140	
	640	990**	10	125.9	67	180	WA	47.619646	-117.441078	
	641	991**	10	125.5	68	196	ID	47.097949	-117.081329	
	642	991**	10	125.5	68	196	WA	47.840974	-118.012785	

643 rows × 10 columns

```
In [ ]: px.box(
    at_risk_stats, x="_state", y="distance_mean",
    title="Range of Mean Distance to 10 Closest Clinics | by State"
).show(renderer="notebook")
```

Range of Mean Distance to 10 Closest Clinics | by State

Unprotected Origin Locations | n=643 Zip3 | ADI Mean: 67.588

On average, a protection seeker would need to travel 273.3292.

NB: a good goal here is to find a way to strategically deploy resources to minimize harm

```
In []:
    def draw_at_risk_vs_clinic_locations_map() -> None:
        """
        Illustrative of Areas with Protections, vs those without
        Why syntethic clinics
        """
        at_risk = _load_at_risk_zip3()
        clinics = _load_synthetic_clinics(n=500)
        locations = pd.concat([clinics,at_risk]).fillna(at_risk['_census_total'].me
        px.scatter_mapbox(
            locations, lat="_lat", lon="_lng", size_max=15, mapbox_style="open-streetheight=700, zoom=3, color='_state', hover_data=['_state','_zip3'],
            size='_census_total',
            title=f"At Risk Areas (3-Digit Zipcode) vs (Synthetic) Clinic Locations
).show(renderer='notebook')
    return locations

draw_at_risk_vs_clinic_locations_map()
```

498 zip3 Location{} at risk with ADI above 50

At Risk Areas (3-Digit Zipcode) vs (Synthetic) Clinic Locations |

Out[]:	_state		_zip5 _clinic_geo		_lat	_lng	_type	i
	0	ME	04276	(44.5599203, -70.6252639)	44.559920	-70.625264	synthetic_clinic	275284.80
	1	WA	99109	(48.2924161, -117.6986398)	48.292416	-117.698640	synthetic_clinic	275284.80
	2	MN	55129	(44.8834738, -92.8927678)	44.883474	-92.892768	synthetic_clinic	275284.80
	3	СА	93618	(36.5221175, -119.3866282)	36.522118	-119.386628	synthetic_clinic	275284.80
	4	СО	81653	(40.8957476, -107.2422296)	40.895748	-107.242230	synthetic_clinic	275284.80
	•••		•••	•••		•••	•••	
	493	WV	275284.803213	275284.803213	38.966814	-78.995744	at_risk	955.000
	494	WY	275284.803213	275284.803213	42.338740	-104.575799	at_risk	961.000
	495	WY	275284.803213	275284.803213	41.804052	-106.980921	at_risk	962.000
	496	WY	275284.803213	275284.803213	44.438020	-108.408179	at_risk	963.000
	497	WY	275284.803213	275284.803213	43.103802	-108.847958	at_risk	964.000

998 rows × 10 columns

_archive

below is archive and wip

Simulation: Distance Traveled

Goal is to learn what the range of experiences will be as the experience of someone seeking care from an origin point in PA for example...

```
In []: def draw_closest_clinics_by_state(states: list):
    at_risk = _load_at_risk_zip3()
    _at_risk = at_risk[at_risk['_state'].isin(states)]
    locations = pd.concat([_at_risk, _load_synthetic_clinics()])

px.scatter_mapbox(
    locations, lat="_lat", lon="_lng", size_max=15,
    height=600, zoom=3, color='_type',
    title=f"At Risk Areas vs (Simulated) 10 Closest Clinic Locations"
    ).show(renderer='notebook')

draw_closest_clinics_by_state(["PA",'LA'])
```

498 zip3 Location{} at risk with ADI above 50

At Risk Areas vs (Simulated) 10 Closest Clinic Locations

