A Book of Abstract Algebra (2nd Edition)

Chapter 29, Problem 4EB

Bookmark

Show all steps: ON

Problem

Let F be a field of characteristic \neq 2. Let $a \neq b$ be in F.

Using parts 1 to 3, find an uncomplicated basis for (d) over (d), where d is a root of x^4 – $14x^2 + 9$. Then find a basis for $\mathbb{Q}(\sqrt{7 + 2\sqrt{10}})$ over \mathbb{Q} .

Step-by-step solution

Step 1 of 3

Consider a field F of characteristic $\neq 2$. Suppose that $a \neq b \in F$. Let d is the root of quartic equation $x^4 - 14x^2 + 9 = 0$. Objective is to determine the uncomplicated basis for Q(d) over Q.

Compare
$$x^4 - 14x^2 + 9 = 0$$
 with $x^4 - 2(a+b)x^2 + (a-b)^2 = 0$ and get,

$$(a+b)=7, (a-b)^2=9.$$

Or, a+b=7, a-b=3. On adding and subtracting both the equations, one get a=5, b=2respectively.

Comment

Step 2 of 3

Since $x = \sqrt{a} + \sqrt{b}$ and $x = \sqrt{a+b+2\sqrt{ab}}$ satisfy $x^4 - 2(a+b)x^2 + (a-b)^2 = 0$. Therefore, $x = \sqrt{5} + \sqrt{2}$ and $x = \sqrt{7+2\sqrt{10}}$ are the roots of $x^4 - 14x^2 + 9 = 0$. Let $d = \sqrt{5} + \sqrt{2}$.

Consider the result that any field F containing $\sqrt{a} + \sqrt{b}$ also contains \sqrt{a} and \sqrt{b} . So, field F containing $\sqrt{5} + \sqrt{2}$ also contains $\sqrt{5}, \sqrt{2}$.

Also, $x^2 - 2$ and $x^2 - 5$ are minimal polynomials of $\sqrt{2}$, $\sqrt{5}$ because both are irreducible (by Eisenstein's criterion).

Now by the result: if $b \neq x^2 a$ for any $x \in F$, then $\sqrt{b} \notin F(\sqrt{a})$; one have $\sqrt{5} \notin Q(\sqrt{2})$.

Comment

Step 3 of 3

Thus the basis for Q(d) over Q will be:

$$\{1, \sqrt{2}, \sqrt{5}, \sqrt{10}\}$$

Since $x = \sqrt{7 + 2\sqrt{10}}$ satisfies $x^4 - 14x^2 + 9 = 0$, therefore

$$Q\left(\sqrt{7+2\sqrt{10}}\right) = Q\left(\sqrt{2},\sqrt{5}\right).$$

Hence, the basis for $Q(\sqrt{7+2\sqrt{10}})$ over Q will be $\{1, \sqrt{2}, \sqrt{5}, \sqrt{10}\}$.

Comment