Ao LIU

Ph.D. in Computer Science

Cambridge, MA

Summary

Research Machine Learning (Recommendation Systems, Learning to Rank, Algorithm Design, etc.),

Interests Differential Privacy, Computational Social Choice, and Quantum Computation

Experience 1+ years of industry experience in personalization, recommendation systems, LLM, theoretical

computer science, differential privacy, and adversarial robustness

Academia Published 20+ papers and received 250+ citations to date.

Reviewed 50+ papers for top AI conferences or journals.

Education

01/2018 – 05/2023 **Ph.D. in Computer Science**, Rensselaer Polytechnic Institute (RPI) Troy, NY

Thesis: Group Decision Makings from Partial Preferences [Link]

08/2015 - 05/2018 M.Eng. in Material Engineering, Rensselaer Polytechnic Institute (RPI) Trov. NY Focus on optics and polymer physics, received Presidential Graduate Research Fellowship

08/2010 - 05/2014 B.S. in Mathematics and Physics, Tsinghua University Beijing, China

Minor in Computer Technology, and in Academic Talent Program

Experience

07/2023 - Present Research Software Engineer at Google Core ML Mountain View, CA

Design and Research More Efficient Transformers for Recommendation Systems

Mountain View, CA 05/2022 – 08/2022 Research Intern at Google Core ML Project: A More Accurate Position Bias Estimator for Unbiased Learning to Rank

 \circ Significant prediction accuracy improvement (\sim 8%) v.s. state-of-the-art without any cost

- Proposed a novel probabilistic model to more accurately estimate position bias. (user-modeling) - Designed an unbiased recommendation system based on the proposed probabilistic model and
- two-tower model. (algorithm design, machine learning modeling) - Implemented the data pipeline and machine learning algorithm for the proposed unbiased recom-
- mendation system. Integrated all into Google codebase. (Python, TensorFlow, C/C++)

08/2018 – 12/2018 Visiting Scholar at MIT-IBM Watson AI Lab

Project: Certifiably Robust Interpretation via Rényi Differential Privacy

and

- 05/2019 08/2019 \circ Significant robustness improvement ($\sim 12\%$) plus accuracy improvement v.s. state-of-the-art
 - Yes! We improved both robustness and accuracy, which usually are trade-offs in machine learning.
 - Theoretically proved Rényi differential privacy results in top-k robustness.
 - Designed the first algorithm in the world with theoretically guaranteed top-k robustness against ℓ_{∞} -norm attacks. (differential privacy analysis, robustness analysis, theoretical computer science)
 - Implemented the proposed algorithm and tested its robustness, accuracy, and computational efficiency on image classification and objective detection. (Python, PyTorch, TorchRay, TensorFlow)
 - O Delivered one academic paper (on top AI journal and conference) and two patents.

Skills

Implementation Programming languages: Python, C/C++, MATLAB

Tools and platforms: TensorFlow, PyTorch, TorchRay, LATEX

Design/ Theory Algorithm design, Statistics, Time/Sample-complexity analysis, User-modeling, Markov chain

Mount-Carlo, Privacy analysis, Robustness analysis, Model identifiability, Smoothed analysis

Review Services

Journal Information Sciences, TMLR, ACM ToIS, Sankhya B

Conference NeurIPS (20,21,22&23), ICML (22,23&24), ICLR (23&24), AAAI (21&22), IJCAI-22

	Selected Publication
TMLR	Smoothed Differential Privacy [PDF] <u>Ao Liu</u> , Yu-Xiang Wang, and Lirong Xia
UAI-23	Accelerating Voting by Quantum Computation [PDF] <u>Ao Liu</u> , Qishen Han, Lirong Xia, and Nengkun Yu
	Certifiably Robust Interpretation via Rényi Differential Privacy [Link] [ArXiv] <u>Ao Liu</u> , Xiaoyu Chen, Sijia Liu, Lirong Xia, and Chuang Gan
AAAI-23 (oral)	Differentially Private Condorcet Voting [PDF] Zhechen Li, <u>Ao Liu</u> , Lirong Xia, Yongzhi Cao, and Hanpin Wang
AAAI-22	The Semi-Random Likelihood of Doctrinal Paradoxes [PDF] <u>Ao Liu</u> and Lirong Xia
IJCAI-22 (oral)	Learning Mixtures of Random Utility Models with Features from Incomplete Preference Zhibing Zhao, <u>Ao Liu</u> , and Lirong Xia [PDF]
	Learning to Design Fair and Private Voting Rules [PDF] Farhad Mohsin, <u>Ao Liu</u> , Pin-Yu Chen, Francesca Rossi, and Lirong Xia
UAI-20 (oral)	How Private Are Commonly-Used Voting Rules? [PDF] Farhad Mohsin, <u>Ao Liu</u> , Pin-Yu Chen, Francesca Rossi, and Lirong Xia
ETRA-20 $Adjunct$	Let It Snow: Adding Pixel Noise to Protect the Users Identity [Link] Brendan John, <u>Ao Liu</u> , Lirong Xia, Sanjeev Koppal, and Eakta Jain
AAAI-19 (oral)	Near-Neighbor Methods in Random Preference Completion [PDF] <u>Ao Liu</u> , Qiong Wu, Zhenming Liu, and Lirong Xia
AAAI-19 (oral)	Learning Plackett-Luce Mixture from Partial Preferences [PDF] <u>Ao Liu</u> , Zhibing Zhao, Chao Liao, Pinyan Lu, and Lirong Xia
ETRA-19 (oral)	Differential Privacy for Eye-Tracking Data [PDF] <u>Ao Liu</u> , Lirong Xia, Andrew Duchowski, Reynold Bailey, Kenneth Holmqvist, and Eakta Jain
US Patent	Certifiably Robust Interpretation [PDF] <u>Ao Liu</u> , Sijia Liu, Bo Wu, Lirong Xia, Qi Cheng Li, and Chuang Gan
US Patent	Interpretation Maps with Guaranteed Robustness [PDF] <u>Ao Liu</u> , Sijia Liu, Abhishek Bhandwaldar, Chuang Gan, Lirong Xia, and Qi Cheng Li
•	Simulation of Pulse Responses of Lithium Salt-Doped Poly-Ethyleneoxide [Link <u>Ao Liu</u> , F. Zeng, Y. Hu, S. Lu, W. Dong, X. Li, C. Chang, and D. Guo
	Controlling Ion Conductance and Channels to Achieve Synaptic-like Frequency Selectivity Siheng Lu, Fei Zeng, Wenshuai Dong, <u>Ao Liu</u> , Xiaojun Li, and Jingting Luo [Link]
	Awards and Teaching
09/2019 - 05/2022	RPI-IBM AI Horizon Scholarship
09/2016 - 05/2017	RPI Presidential Graduate Research Fellowship [Certificate]
01/2023 - 05/2023	Teaching Assistant of CSCI 4150: Introduction to AI
04/2021	Guest Lecture at CSCI 4967/6967: Economics and Computation

08/2017 – 12/2017 $\,$ Teaching Assistant of MATH 1020: Calculus II