

Statistics Learning Lectures

Author: Ziyang Gong

Date: July 1, 2021

Version: 0.1.0

Contents

I	Cal	culus	1				
1	Limit Theory						
2	Diffe	rential Calculus	3				
3	Integ	gral Calculus	4				
II	Re	al Analysis	5				
4	Meas	sure Theory	6				
	4.1	Semi-algebras, Algebras and Sigma-algebras	6				
	4.2	Measure	7				
5	Lebe	sgue Integration	9				
	5.1	Properties of the Integral	9				
	5.2	Product Measures	10				
II	I Fı	unctional Analysis	11				
IV	7 Pı	robability Theory	12				
6	Ranc	dom Variables	13				
	6.1	Probability Space	13				
	6.2	Random Variables	13				
	6.3	Distributions	14				
	6.4	Expected Value	15				
	6.5	Independence	15				
	6.6	Moments	18				
	6.7	Characteristic Functions	18				

7	Conv	vergence of Random Variables	21				
	7.1	Convergence in Mean	21				
	7.2	Convergence in Probability	21				
	7.3	Convergence in Uninform	21				
	7.4	Convergence in Distribution	22				
	7.5	Almost Sure Convergence	25				
	7.6	Asymptotic Notation for Random Variables	26				
8	Law	of Large Numbers	27				
	8.1	Weak Law of Large Numbers	27				
	8.2	Strong Law of Large Numbers	28				
	8.3		29				
9	Cent	tral Limit Theorems	31				
	9.1	Central Limit Theorem	31				
	9.2	Central Limit Theorem for independent non-identical Random Variables	33				
	9.3	Central Limit Theorem for dependent Random Variables	34				
10	The	Delta Methods	35				
11	Exer	cises for Probability Theory and Examples	36				
		Measure Theory	36				
		Laws of Large Numbers	36				
		Central Limit Theorems	36				
\mathbf{V}	Sto	ochastic Process	39				
12	Martingales						
		Conditional Expectation	40				
13	Exer	cises for Probability Theory and Examples	41				
		Martingales	41				
		Markov Chains	41				
		Ergodic Theorems	41				
		Brownian Motion	41				
		Applications to Random Walk					
		Multidimensional Brownian Motion					

VI	Statistics Inference	42						
14	Introduction							
	14.1 Populations and Samples	43						
	14.2 Statistics	43						
	14.3 Estimators							
15	Maximum Likelihood Estimator	46						
	15.1 Consistency of MLE	46						
	15.2 Asymptotic Normality of MLE							
	15.3 Efficiency of MLE							
16	Minimum-Variance Unbiased Estimator	49						
17	Bayes Estimator	52						
	17.1 Single-Prior Bayes	53						
	17.2 Hierarchical Bayes							
	17.3 Empirical Bayes							
	17.4 Bayes Prediction							
18	Hypothesis Testing	57						
VI	II Convex Optimization	58						
19	Convex Sets	59						
	19.1 Affine and Convex Sets	59						
	19.2 Some Important Examples	60						
	19.3 Generalized Inequalities	60						
20	Convex Optimization Problems	62						
	20.1 Generalized Inequality Constraints	62						
	20.2 Vector Optimization							
21	Unconstrained Minimization	63						
	21.1 Definition of Unconstrained Minimization	63						
	21.2 General Descent Method							
	21.3 Gradient Descent Method							
	21.4 Steepest Descent Method							

0	TA 1	m			N 1	m	
()		Ľ	П	H,	N	Ľ	Ю

	21.5 Newton's Method	63
22	Exercises for Convex Optimization 22.1 Convex Sets	64
Vl	III Generalized Linear Model	65
23	Introduction	66
24	Binary Data	67
25	Polytomous Data	68
IX	Machine Learning	69
26	Kernel Methods	70
27	Support Vector Machine	74
28	Linear Discriminant Analysis	75
29	K-Nearest Neighbor	76
30	Decision Tree	77

Part I Calculus

Chapter 1 Limit Theory

Definition 1.1 (Mapping)

Let $X: \Omega_1 \to \Omega_2$ be a mapping.

1. For every subset $B \in \Omega_2$, the inverse image of B is

$$X^{-1}(B) = \{ \omega : \omega \in \Omega_1, X(\omega) \in B \} := \{ X \in B \}.$$

2. For every class

4

Chapter 2 Differential Calculus

Chapter 3 Integral Calculus

Part II Real Analysis

Chapter 4 Measure Theory

4.1 Semi-algebras, Algebras and Sigma-algebras

Definition 4.1 (Semi-algebra)

A nonempty class of S of subsets of Ω is an **semi-algebra** on Ω that satisfy

- 1. if $A, B \in \mathcal{S}$, then $A \cap B \in \mathcal{S}$.
- 2. if $A \in \mathcal{S}$, then A^C is a finite disjoint union of sets in \mathcal{S} , i.e.,

$$A^{C} = \sum_{i=1}^{n} A_{i}, where A_{i} \in \mathcal{S}, A_{i} \cap A_{j} = \emptyset, i \neq j.$$

Definition 4.2 (Algebra)

A nonempty class A of subsets of Ω is an **algebra** on Ω that satisfy

- 1. if $A \in \mathcal{A}$, then $A^C \in \mathcal{A}$.
- 2. if $A_1, A_2 \in \mathcal{A}$, then $A_1 \cup A_2 \in \mathcal{A}$.

Definition 4.3 (σ -algebra)

A nonempty class \mathcal{F} of subsets of Ω is a σ -algebra on Ω that satisfy

- 1. if $A \in \mathcal{F}$, then $A^C \in \mathcal{F}$.
- 2. if $A_i \in \mathcal{F}$ is a countable sequence of sets, then $\bigcup_i A_i \in \mathcal{F}$.

Example 4.1 Special σ -algebra

- 1. **Trival** σ **-algebra** := $\{\emptyset, \Omega\}$. This is smallest σ -algebra.
- 2. **Power Set** := all subsets of σ , denoted by $\mathcal{P}(\Omega)$. This is the largest σ -algebra.
- 3. The smallest σ -algebra containing $A \in \Omega := \{\emptyset, A, A^C, \Omega\}$.

It is easy to define (Lesbegue) measure on the semi-algebra S, and then easily to extend it to the algebra \overline{S} , finally, we can extend it further to some σ -algebra (mostly consider the smallest one containing S).

Lemma 4.1

If S is a semi-algebra, then

 $\overline{S} = \{ \text{finite disjoint unions of sets in } S \}$

is an algebra, denoted by A(S), called **the algebra generated by** S.

Proof Let $A, B \in \overline{S}$, then $A = \sum_{i=1}^{n} A_i, B = \sum_{j=1}^{m} B_j$ with $A_i, B_i \in S$.

Intersection: For $A_i \cap B_j \in \mathcal{S}$ by the definition of semi-algebra \mathcal{S} , thus

$$A \cap B = \sum_{i=1}^{n} \sum_{j=1}^{m} A_i \cap B_j \in \overline{\mathcal{S}}.$$

So $\overline{\mathcal{S}}$ is closed under (finite) intersection.

Complement: For DeMorgan's Law, $A_i^C \in \mathcal{S}$ by the definition of semi-algebra \mathcal{S} and $\overline{\mathcal{S}}$ closed under (finite) intersection that we just shown, thus

$$A^{C} = \left(\sum_{i=1}^{n} A_{i}\right)^{C} = \bigcap_{i=1}^{n} A_{i}^{C} \in \overline{\mathcal{S}}.$$

So $\overline{\mathcal{S}}$ is closed under complement.

Union: For DeMorgan's Law and $\overline{\mathcal{S}}$ closed under (finite) intersection and complement that we just shown, thus

$$A \cup B = (A^C \cap B^C)^C \in \overline{\mathcal{S}}.$$

So \overline{S} is closed under (finite) union.

Hence, \overline{S} is an algebra.

Theorem 4.1

For any class A, there exists a unique minimal σ -algebra containing A, denoted by $\sigma(A)$, called **the** σ -algebra generated by A. In other words,

- 1. $A \subset \sigma(A)$.
- 2. For any σ -algebra \mathcal{B} with $\mathcal{A} \subset \mathcal{B}$, $\sigma(\mathcal{A}) \subset \mathcal{B}$.

and $\sigma(A)$ is unique.

 $^{\circ}$

Proof Existence:

Uniqueness:

Example 4.2 Borel σ -algebras generated from semi-algebras

1.

4.2 Measure

Definition 4.4 (Measure)

Measure is a nonnegative countably additive set function, that is, a function $\mu: \mathcal{A} \to \mathbf{R}$ with

1.
$$\mu(A) \ge \mu(\emptyset) = 0$$
 for all $A \in \mathcal{A}$.

2. if $A_i \in A$ is a countable sequence of disjoint sets, then

$$\mu(\cup_i A_i) = \sum_i \mu(A_i).$$

Definition 4.5 (Measure Space)

If μ is a measure on a σ -algebra \mathcal{A} of subsets of Ω , the triplet $(\Omega, \mathcal{A}, \mu)$ is a **measure** space.

Note A measure space $(\Omega, \mathcal{A}, \mu)$ is a **probability space**, if $P(\Omega) = 1$.

Property Let μ be a measure on a σ -algebra \mathcal{A}

- 1. monotonieity if $A \subset B$, then $\mu(A) \leq \mu(B)$.
- 2. subadditivity if $A \subset \bigcup_{m=1}^{\infty} A_m$, then $\mu(A) \leq \sum_{m=1}^{\infty} u(A_m)$.
- 3. continuity from below if $A_i \uparrow A$ (i.e. $A_1 \subset A_2 \subset ...$ and $\bigcup_i A_i = A$), then $\mu(A_i) \uparrow \mu(A)$.
- 4. continuity from above if $A_i \downarrow A$ (i.e. $A_1 \supset A_2 \supset \dots$ and $\cap_i A_i = A$), then $\mu(A_i) \downarrow \mu(A)$.

Proof

Chapter 5 Lebesgue Integration

5.1 Properties of the Integral

Theorem 5.1 (Jensen's Inequality)

Let (Ω, A, μ) be a probability space. If f is a real-valued function that is μ -integrable, and if φ is a convex function on the real line, then:

$$\varphi\left(\int_{\Omega} f \,\mathrm{d}\mu\right) \le \int_{\Omega} \varphi(f) \,\mathrm{d}\mu.$$
 (5.1)

Proof Let $x_0 = \int_{\Omega} f d\mu$. Since the existence of subderivatives for convex functions, $\exists a, b \in R$, such that,

$$\forall x \in R, \varphi(x) \ge ax + b \text{ and } ax_0 + b = \varphi(x_0).$$

Then, we got

$$\int_{\Omega} \varphi(f) d\mu \ge \int_{\Omega} af + b d\mu = a \int_{\Omega} f d\mu + b = ax_0 + b = \varphi\left(\int_{\Omega} f d\mu\right).$$

Theorem 5.2 (Hölder's Inequality)

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let $p, q \in [1, \infty]$ with 1/p + 1/q = 1. Then, for all measurable functions f and g on Ω ,

$$\int_{\Omega} |f \cdot g| \, \mathrm{d}\mu \le \|f\|_p \|g\|_q. \tag{5.2}$$

Proof

Theorem 5.3 (Minkowski's Inequality)

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let $p \in [1, \infty]$. Then, for all measurable functions f and g on Ω ,

$$||f + g||_p \le ||f||_p + ||g||_p.$$
 (5.3)

Proof Since $\varphi(x) = x^p$ is a convex function for $p \in [1, \infty)$. By it's definition,

$$|f+g|^p = \left|2 \cdot \frac{f}{2} + 2 \cdot \frac{g}{2}\right|^p \le \frac{1}{2}|2f|^p + \frac{1}{2}|2g|^p = 2^{p-1}\left(|f|^p + |g|^p\right).$$

Therefore,

$$|f + g|^p < 2^{p-1} (|f|^p + |g|^p) < \infty.$$

By Hölder's Inequality (5.2),

$$\begin{split} \|f + g\|_{p}^{p} &= \int |f + g|^{p} d\mu \\ &= \int |f + g| \cdot |f + g|^{p-1} d\mu \\ &\leq \int (|f| + |g|) |f + g|^{p-1} d\mu \\ &= \int |f| |f + g|^{p-1} d\mu + \int |g| |f + g|^{p-1} d\mu \\ &\leq \left(\left(\int |f|^{p} d\mu \right)^{\frac{1}{p}} + \left(\int |g|^{p} d\mu \right)^{\frac{1}{p}} \right) \left(\int |f + g|^{(p-1)(\frac{p}{p-1})} d\mu \right)^{1-\frac{1}{p}} \\ &= \left(\|f\|_{p} + \|g\|_{p} \right) \frac{\|f + g\|_{p}^{p}}{\|f + g\|_{p}} \end{split}$$

which means, as $p \in [1, \infty)$,

$$||f + g||_p \le ||f||_p + ||g||_p.$$

When $p = \infty$,

а

Theorem 5.4 (Bounded Convergence Theorem)

 \mathbb{C}

Theorem 5.5 (Fatou's Lemma)

Theorem 5.6 (Monotone Convergence Theorem)

5.2 Product Measures

Theorem 5.7 (Fubini's Theorem)

Part III Functional Analysis

Part IV Probability Theory

Chapter 6 Random Variables

Introduction

- Probability Space
- Random Variables
- ☐ Distributions

- Expected Value
- Independence
- Characteristic Functions

6.1 Probability Space

Definition 6.1 (Probability Space)

A probability space is a triple (Ω, \mathcal{F}, P) consisting of:

- *1.* the sample space Ω : an arbitrary non-empty set.
- 2. the σ -algebra $\mathcal{F} \subseteq 2^{\Omega}$: a set of subsets of Ω , called events.
- 3. the probability measure $P: \mathcal{F} \to [0,1]$: a function on \mathcal{F} which is a measure function.

6.2 Random Variables

Definition 6.2 (Random Variable)

A random variable is a measurable function $X : \Omega \to S$ from a set of possible outcomes (Ω, \mathcal{F}) to a measurable space (S, \mathcal{S}) , that is,

$$X^{-1}(B) \equiv \{\omega : X(\omega) \in B\} \in \mathcal{F} \quad \forall B \in \mathcal{S}. \tag{6.1}$$

Typically, $(S, S) = (R^d, \mathbb{R}^d)$ (d > 1).

How to prove that functions are measurable?

Theorem 6.1

If $\{\omega : X(\omega) \in A\} \in \mathcal{F}$ for all $A \in \mathcal{A}$ and \mathcal{A} generates \mathcal{S} , then X is measurable.

6.3 Distributions

6.3.1 Definition of Distributions

Definition 6.3 (Distribution)

A distribution of random variable X is a probability function $P: \mathcal{R} \to \mathbb{R}$ by setting

$$\mu(A) = P(X \in A) = P(X^{-1}(A)), \quad for A \in \mathcal{R}. \tag{6.2}$$

Definition 6.4 (Distribution Function)

The distribution of a random variable X is usually described by giving its **distribution** function,

$$F(x) = P(X \le x). \tag{6.3}$$

Definition 6.5 (Density Function)

If the distribution function $F(x) = P(X \le x)$ has the form

$$F(x) = \int_{-\infty}^{x} f(y) \mathrm{d}y,$$

that X has density function f.

6.3.2 Properties of Distributions

Theorem 6.2 (Properties of Distribution Function)

Any distribution function F has the following properties,

- 1. F is nondecreasing.
- 2. $\lim_{x\to\infty} F(x) = 1$, $\lim_{x\to-\infty} F(x) = 0$.
- 3. *F* is right continuous, i.e., $\lim_{y \downarrow x} F(y) = F(x)$.
- 4. If $F(x-) = \lim_{y \uparrow x} F(y)$, then F(x-) = P(X < x).
- 5. P(X = x) = F(x) F(x-).

Proof

Theorem 6.3

If F satisfies (1), (2), and (3) in Theorem 6.2, then it is the distribution function of some random variable.

Proof

Theorem 6.4

A distribution function has at most countably many discontinuities

Proof

6.3.3 Families of Distributions

6.4 Expected Value

Definition 6.6 (Expectation)

Theorem 6.5 (Bounded Convergence theorem)

Theorem 6.6 (Fatou's Lemma)

If
$$X_n \geq 0$$
, then

$$\liminf_{n\to\infty} EX_n \geq E\left(\liminf_{n\to\infty} X_n\right).$$

(6.4)

Theorem 6.7 (Monotone Convergence theorem)

If
$$0 \le X_n \uparrow X$$
, then

$$EX_n \uparrow EX$$
.

 $(6.5)_{C}$

Theorem 6.8 (Dominated Convergence theorem)

If
$$X_n \to X$$
 a.s., $|X_n| \le Y$ for all n , and $EY < \infty$, then

$$EX_n \to EX$$
.

 $(6.6)_{\sim}$

6.5 Independence

6.5.1 Definition of Independence

Definition 6.7 (Independence)

- 1. Two events A and B are independent if $P(A \cap B) = P(A)P(B)$.
- 2. Two random variables X and Y are independent if for all $C, D \in \mathcal{R}$

$$P(X \in C, Y \in D) = P(X \in C)P(Y \in D). \tag{6.7}$$

3. Two σ -fields \mathcal{F} and \mathcal{G} are independent if for all $A \in \mathcal{F}$ and $B \in \mathcal{G}$ the events A

and B are independent.

The second definition is a special case of the third.

Theorem 6.9

- 1. If X and Y are independent then $\sigma(X)$ and $\sigma(Y)$ are independent.
- 2. Conversely, if \mathcal{F} and \mathcal{G} are independent, $X \in \mathcal{F}$ and $Y \in \mathcal{G}$, then X and Y are independent.

The first definition is, in turn, a special case of the second.

Theorem 6.10

- 1. If A and B are independent, then so are A^c and B, A and B^c , and A^c and B^c .
- 2. Conversely, events A and B are independent if and only if their indicator random variables 1_A and 1_B are independent.

The definition of independence can be extended to the infinite collection.

Definition 6.8

An infinite collection of objects (σ -fields, random variables, or sets) is said to be independent if every finite subcollection is,

1. σ -fields $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_n$ are independent if whenever $A_i \in \mathcal{F}_i$ for $i = 1, \ldots, n$, we have

$$P\left(\bigcap_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} P\left(A_i\right). \tag{6.8}$$

2. Random variables $X_1, ..., X_n$ are independent if whenever $B_i \in \mathcal{R}$ for i = 1, ..., n we have

$$P\left(\bigcap_{i=1}^{n} \{X_i \in B_i\}\right) = \prod_{i=1}^{n} P\left(X_i \in B_i\right).$$
 (6.9)

3. Sets A_1, \ldots, A_n are independent if whenever $I \subset \{1, \ldots, n\}$ we have

$$P\left(\cap_{i\in I} A_i\right) = \prod_{i\in I} P\left(A_i\right). \tag{6.10}$$

6.5.2 Sufficient Conditions for Independence

6.5.3 Independence, Distribution, and Expectation

Theorem 6.11

Suppose X_1, \ldots, X_n are independent random variables and X_i has distribution μ_i , then (X_1, \ldots, X_n) has distribution $\mu_1 \times \cdots \times \mu_n$.

Theorem 6.12

If X_1, \ldots, X_n are independent and have

- 1. $X_i \geq 0$ for all i, or
- 2. $E|X_i| < \infty$ for all i.

then

$$E\left(\prod_{i=1}^{n} X_i\right) = \prod_{i=1}^{n} EX_i \tag{6.11}$$

6.5.4 Sums of Independent Random Variables

Theorem 6.13 (Convolution for Random Variables)

1. If X and Y are independent, $F(x) = P(X \le x)$, and $G(y) = P(Y \le y)$, then

$$P(X+Y \le z) = \int F(z-y) dG(y). \tag{6.12}$$

2. If X and Y are independent, X with density f and Y with distribution function G, then X + Y has density

$$h(x) = \int f(x - y) dG(y). \tag{6.13}$$

Suppose Y has density g, the last formula can be written as

$$h(x) = \int f(x - y)g(y)dy.$$
 (6.14)

3. If X and Y are independent, integral-valued random variables, then

$$P(X + Y = n) = \sum_{m} P(X = m)P(Y = n - m).$$
 (6.15)

6.6 Moments

Lemma 6.1

If Y > 0 and p > 0, then

$$E(Y^p) = \int_0^\infty p y^{p-1} P(Y > y) dy.$$
 (6.16)

6.7 Characteristic Functions

6.7.1 Definition of Characteristic Functions

Definition 6.9 (Characteristic Function)

If X is a random variable, we define its characteristic function (ch.f) by

$$\varphi(t) = E\left(e^{itX}\right) = E\left(\cos tX\right) + iE\left(\sin tX\right). \tag{6.17}$$

Note Eular Equation.

6.7.2 Properties of Characteristic Functions

Theorem 6.14 (Properties of Characteristic Function)

Any characteristic function has the following properties:

- 1. $\varphi(0) = 1$,
- $2. \ \varphi(-t) = \overline{\varphi(t)},$
- 3. $|\varphi(t)| = |Ee^{itX}| \le E|e^{itX}| = 1$,
- 4. $\varphi(t)$ is uniformly continuous on $(-\infty, \infty)$,
- 5. $Ee^{it(aX+b)} = e^{itb}\varphi(at)$,
- 6. If X_1 and X_2 are independent and have ch.f.'s φ_1 and φ_2 , then $X_1 + X_2$ has ch.f. $\varphi_1(t)\varphi_2(t)$.

Proof

6.7.3 The Inversion Formula

The characteristic function uniquely determines the distribution. This and more is provided by:

Theorem 6.15 (The Inversion Formula)

Let $\varphi(t) = \int e^{itx} \mu(dx)$ where μ is a probability measure. If a < b, then

$$\lim_{T \to \infty} (2\pi)^{-1} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt = \mu(a, b) + \frac{1}{2} \mu(\{a, b\})$$
 (6.18)

Proof

Theorem 6.16

If $\int |\varphi(t)| dt < \infty$, then μ has bounded continuous density

$$f(y) = \frac{1}{2\pi} \int e^{-ity} \varphi(t) dt.$$
 (6.19)

Proof

6.7.4 Convergence in Distribution

Theorem 6.17 (Lèvy's Continuity Theorem)

Let μ_n , $1 \le n \le \infty$ be probability measures with ch.f. φ_n .

- 1. If $\mu_n \stackrel{d}{\to} \mu_{\infty}$, then $\varphi_n(t) \to \varphi_{\infty}(t)$ for all t.
- 2. If $\varphi_n(t)$ converges pointwise to a limit $\varphi(t)$ that is continuous at 0, then the associated sequence of distributions μ_n is tight and converges weakly to the measure μ with characteristic function φ .

Proof

6.7.5 Moments and Derivatives

Theorem 6.18

If $\int |x|^n \mu(dx) < \infty$, then its characteristic function φ has a continuous derivative of order n given by

$$\varphi^{(n)}(t) = \int (ix)^n e^{itx} \mu(\mathrm{d}x). \tag{6.20}$$

Theorem 6.19

If $E|X|^2 < \infty$ then

$$\varphi(t) = 1 + itEX - t^{2}E(X^{2})/2 + o(t^{2}). \tag{6.21}$$

Theorem 6.20

If
$$\limsup_{h\downarrow 0} \{\varphi(h) - 2\varphi(0) + \varphi(-h)\}/h^2 > -\infty$$
, then
$$E|X|^2 < \infty. \tag{6.22}$$

Chapter 7 Convergence of Random Variables

Introduction

- ☐ Convergence in Mean
- ☐ *Convergence in Probability*
- Convergence in Uninform

- ☐ Convergence in Distribution
- ☐ Almost Sure Convergence

7.1 Convergence in Mean

Definition 7.1 (Convergence in Mean)

A sequence $\{X_n\}$ of real-valued random variables **converges** in the r-th mean $(r \ge 1)$ towards the random variable X, if

- 1. The r-th absolute moments $E(|X_n|^r)$ and $E(|X|^r)$ of $\{X_n\}$ and X exist,
- 2. $\lim_{n\to\infty} E(|X_n X|^r) = 0$.

Convergence in the r-th mean is denoted by

$$X_n \xrightarrow{L^r} X. \tag{7.1}$$

7.2 Convergence in Probability

Definition 7.2 (Convergence in Probability)

A sequence $\{X_n\}$ of real-valued random variables **converges in probability** towards the random variable X, if

$$\forall \varepsilon > 0, \quad \lim_{n \to \infty} P(|X_n - X| > \varepsilon) = 0.$$
 (7.2)

Convergence in probability is denoted by

$$X_n \stackrel{p}{\to} X.$$
 (7.3)

7.3 Convergence in Uninform

Definition 7.3 (Convergence in Uninform)

7.4 Convergence in Distribution

Definition 7.4 (Convergence in Distribution)

A sequence $\{X_n\}$ of real-valued random variables is said to **converge in distribution**, or **converge weakly**, or **converge in law** to a random variable X, if

$$\lim_{n \to \infty} F_n(x) = F(x),\tag{7.4}$$

for every number at $x \in \mathbb{R}$ which F is continuous. Here F_n and F are the cumulative distribution functions of random variables X_n and X, respectively.

Convergence in distribution is denoted as

$$X_n \xrightarrow{d} X$$
, or $X_n \Rightarrow X$. (7.5)

Note

- Convergence in Distribution is the weakest form of convergence typically discussed, since it is implied by all other types of convergence mentioned in this chapter.
- Convergence in Distribution does not imply that the sequence of corresponding probability density functions will also converge. However, according to Scheffé's theorem, convergence of the probability density functions implies convergence in distribution.

Lemma 7.1

If $F_n \stackrel{d}{\to} F_{\infty}$, then there are random variables $Y_n, 1 \le n \le \infty$, with distribution F_n so that

$$Y_n \stackrel{a.s.}{\to} Y_{\infty}.$$
 (7.6)

Theorem 7.1 (Portmanteau Lemma)

 $\{X_n\}$ converges in distribution to X, if and only if any of the following statements are true,

- $P(X_n \le x) \to P(X \le x)$, for all continuity points of the distribution of X.
- $Ef(X_n) \to Ef(X)$, for all bounded, continuous (Lipschitz) functions f.
- $\liminf_{n\to\infty} P(X_n \in G) \ge P(X_\infty \in G)$, for all open sets G.
- $\limsup_{n\to\infty} P(X_n \in K) \leq P(X_\infty \in K)$, for all closed sets K.
- $\lim_{n\to\infty} P(X_n \in A) = P(X_\infty \in A)$, for all Borel sets A with $P(X_\infty \in \partial A) = 0$.

Proof

Theorem 7.2 (Continuous Mapping Theorem)

Let g be a measurable function and $D_g = \{x : g \text{ is discontinuous at } x\}$ with $P(X \in D_g) = 0$, then,

$$X_{n} \xrightarrow{d} X \Rightarrow g(X_{n}) \xrightarrow{d} g(X),$$

$$X_{n} \xrightarrow{p} X \Rightarrow g(X_{n}) \xrightarrow{p} g(X),$$

$$X_{n} \xrightarrow{a.s.} X \Rightarrow g(X_{n}) \xrightarrow{a.s.} g(X).$$

$$(7.7)$$

If in addition g is bounded, then

$$Eg(X_n) \to Eg(X).$$
 (7.8)

Proof

Theorem 7.3

If $X_n \stackrel{p}{\to} X$, then

$$X_n \stackrel{d}{\to} X,$$
 (7.9)

and that, conversely, if $X_n \xrightarrow{d} c$, where c is a constant, then

$$X_n \stackrel{p}{\to} c. \tag{7.10}$$

Proof

1. $\forall \varepsilon > 0$, at fixed point x, since if $X_n \leq x$ and $|X_n - X| \leq \varepsilon$, then $X \leq x + \varepsilon$, then

$${X \le x + \varepsilon} \subset {X_n \le x} \cup {|X_n - X| > \varepsilon},$$

similarly, if $X \leq x - \varepsilon$ and $|X_n - X| \leq \varepsilon$, then $X_n \leq x$, then

$${X_n \le x} \subset {X \le x - \varepsilon} \cup {|X_n - X| > \varepsilon},$$

then, by the union bound,

$$P(X \le x + \varepsilon) \le P(X_n \le x) + P(|X_n - X| > \varepsilon),$$

$$P(X_n \le x) \le P(X \le x - \varepsilon) + P(|X_n - X| > \varepsilon).$$

So, we got

$$P(X \le x + \varepsilon) - P(|X_n - X| > \varepsilon) \le P(X_n \le x)$$

$$\le P(X \le x - \varepsilon) + P(|X_n - X| > \varepsilon)$$

As
$$n \to \infty$$
, $P(|X_n - X| > \varepsilon) \to 0$, then
$$P(X \le x - \varepsilon) \le \lim_{n \to \infty} P(X_n \le x) \le P(X \le x + \varepsilon)$$

$$\Rightarrow F(x - \varepsilon) \le \lim_{n \to \infty} F_n(x) \le F(x + \varepsilon)$$

By the property of distribution (Theorem 6.2), as $\varepsilon \to 0$, then

$$\lim_{n\to\infty} F_n(x) = F(x),$$

which means.

$$X_n \stackrel{d}{\to} X$$
.

2. Since $X_n \stackrel{d}{\to} c$, where c is a constant, then $\forall \varepsilon > 0$,

$$\lim_{n \to \infty} P(X_n \le c + \varepsilon) = 1 \Rightarrow \lim_{n \to \infty} P(X_n > c + \varepsilon) = 0$$
$$\lim_{n \to \infty} P(X_n \le c - \varepsilon) = 0.$$

Therefore,

$$P\left(\left|X_{n}-c\right|<\varepsilon\right)=0,$$

which means

$$X_n \stackrel{p}{\to} c$$
.

Theorem 7.4 (Slutsky's Theorem)

Let X_n, Y_n be sequences of random variables. If $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{p}{\to} c$, then

- 1. $X_n + Y_n \xrightarrow{d} X + c$. 2. $X_n Y_n \xrightarrow{d} c X$.
- 3. $X_n/Y_n \xrightarrow{d} X/c$, provided that c is invertible.

Proof

Note However that convergence in distribution of $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} Y$ does in general not imply convergence in distribution of $X_n + Y_n \stackrel{d}{\to} X + Y$ or of $X_n Y_n \stackrel{d}{\to} XY$.

Theorem 7.5 (Cramér-Wold Theorem)

Theorem 7.6 (Helly's Selection Theorem)

For every sequence F_n of distribution functions, there is a subsequence $F_n(k)$ and a right continuous nondecreasing function F so that $\lim_{k\to\infty} F_{n(k)}(y) = F(y)$ at all continuity points y of F.

Theorem 7.7

Every subsequential limit is the distribution function of a probability measure if and only if the sequence F_n is tight, i.e., for all $\epsilon > 0$ there is an M_{ϵ} so that

$$\limsup_{n \to \infty} 1 - F_n(M_{\epsilon}) + F_n(-M_{\epsilon}) \le \epsilon. \tag{7.11}$$

7.5 Almost Sure Convergence

Definition 7.5 (Almost Sure Convergence)

A sequence $\{X_n\}$ of real-valued random variables converges almost sure or almost everywhere or with probability 1 or strongly towards the random variable X, if

$$P\left(\lim_{n\to\infty} X_n = X\right) = 1. \tag{7.12}$$

Almost sure convergence is denoted by

$$X_n \stackrel{a.s.}{\to} X.$$
 (7.13)

Note

Theorem 7.8

If $X_n \stackrel{a.s.}{\to} X$, then

$$X_n \stackrel{p}{\to} X.$$
 (7.14)

Proof

Theorem 7.9

 $X_n \stackrel{p}{\to} X$ if and only if for all subsequence $X_{n(m)}$ exists a further subsequence $X_{n(m_k)}$, such that

$$X_{n(m_k)} \stackrel{a.s.}{\to} X.$$
 (7.15)

① if
$$r \ge s \ge 1, X_n \xrightarrow{L^r} X \Rightarrow X_n \xrightarrow{L^s} X$$

$$② X_n \xrightarrow{L^r} X \Rightarrow X_n \xrightarrow{p} X$$

Figure 7.1: Relations of Convergence of Random Variables

7.6 Asymptotic Notation for Random Variables

Definition 7.6

A sequence $\{A_n\}$ of real-valued random variables is of smaller order in probability than a sequence $\{B_n\}$, if

$$\frac{A_n}{B_n} \stackrel{p}{\to} 0. \tag{7.16}$$

Smaller order in probability is denoted by

$$A_n = o_p(B_n). (7.17)$$

Particularly,

$$A_n = o_p(1) \iff A_n \stackrel{p}{\to} 0. \tag{7.18}$$

Definition 7.7

A sequence $\{A_n\}$ of real-valued random variables is of smaller order than or equal to a sequence $\{B_n\}$ in probability, if

$$\forall \varepsilon > 0 \ \exists M_{\varepsilon}, \quad \lim_{n \to \infty} P\left(|A_n| \le M_{\varepsilon}|B_n|\right) \ge 1 - \varepsilon.$$
 (7.19)

Smaller order than or equal to in probability is denoted by

$$A_n = O_p(B_n). (7.20)$$

Definition 7.8

A sequence $\{A_n\}$ of real-valued random variables is of the same order as a sequence $\{B_n\}$ in probability, if

$$\forall \varepsilon > 0 \ \exists m_{\varepsilon} < M_{\varepsilon}, \quad \lim_{n \to \infty} P\left(m_{\varepsilon} < \frac{|A_n|}{|B_n|} < M_{\varepsilon}\right) \ge 1 - \varepsilon.$$
 (7.21)

Same order in probability is denoted by

$$A_n \asymp_p B_n. \tag{7.22}$$

Chapter 8 Law of Large Numbers

Introduction

- ☐ Weak Law of Large Numbers
- ☐ *Uniform Law of Large Numbers*
- ☐ Strong Law of Large Numbers

8.1 Weak Law of Large Numbers

Lemma 8.1

If p > 0 and $E |Z_n|^p \to 0$, then

$$Z_n \stackrel{p}{\to} 0.$$

 $(8.1)_{\sim}$

Proof

Theorem 8.1 (Weak Law of Large Numbers with Finite Variances)

Let $X_1, X_2, ...$ be i.i.d. random variables with $EX_i = \mu$ and $Var(X_i) \leq C < \infty$. Suppose $S_n = X_1 + X_2 + ... + X_n$, then

$$S_n/n \xrightarrow{L^2} \mu, \quad S_n/n \xrightarrow{p} \mu.$$
 (8.2)

Proof

Theorem 8.2 (Weak Law of Large Numbers without i.i.d.)

Let $X_1, X_2, ...$ be random variables, Suppose $S_n = X_1 + X_2 + ... + X_n$, $\mu_n = ES_n$, $\sigma_n^2 = Var(S_n)$, if $\sigma_n^2/b_n^2 \to 0$, then

$$\frac{S_n - \mu_n}{b_n} \stackrel{p}{\to} 0. \tag{8.3}$$

Proof

Theorem 8.3 (Weak Law of Large Numbers for Triangular Arrays)

For each n, let $X_{n,m}$, $1 \le m \le n$, be independent random variables. Suppose $b_n > 0$ with $b_n \to \infty$, $\bar{X}_{n,m} = X_{n,m} I_{(X_{n,m} \le b_n)}$, if

1.
$$\sum_{m=1}^{n} P(|X_{n,m}| > b_n) \to 0$$
, and

2.
$$b_n^{-2} \sum_{m=1}^n E \bar{X}_{n,m}^2 \to 0$$
.

Suppose
$$S_n = X_{n,1} + \dots + X_{n,n}$$
 and $a_n = \sum_{m=1}^n E \bar{X}_{n,m}$, then
$$\frac{S_n - a_n}{b_n} \stackrel{p}{\to} 0. \tag{8.4}$$

Proof

Theorem 8.4 (Weak Law of Large Numbers by Feller)

Let X_1, X_2, \ldots be i.i.d. random variables with

$$\lim_{x \to 0} x P(|X_i| > x) = 0. \tag{8.5}$$

Suppose $S_n = X_1 + X_2 + ... + X_n$, $\mu_n = E(X_1 I_{(|X_1| < n)})$, then

$$S_n/n - \mu_n \stackrel{p}{\to} 0. \tag{8.6}$$

Proof

Theorem 8.5 (Weak Law of Large Numbers)

Let $X_1, X_2, ...$ be i.i.d. random variables with $E|X_i| < \infty$. Suppose $S_n = X_1 + X_2 + ... + X_n$, $\mu = EX_i$, then

$$S_n/n \stackrel{p}{\to} \mu.$$
 (8.7)

Proof

Note $E|X_i| = \infty$

8.2 Strong Law of Large Numbers

8.2.1 Borel-Cantelli Lemmas

Lemma 8.2 (Borel-Cantelli Lemma)

If
$$\sum_{n=1}^{\infty} P(A_n) < \infty$$
, then

$$P(A_n \ i.o.) = 0.$$

 $(8.8)_{\bigcirc}$

 $(8.9)_{c}$

Lemma 8.3 (The Second Borel-Cantelli Lemma)

If $\{A_n\}$ are independent with $\sum_{n=1}^{\infty} P(A_n) = \infty$, then,

$$P\left(A_{n} \ i.o.\ \right) = 1.$$

Corollary 8.1

Suppose $\{A_n\}$ are independent with $P(A_n) < 1, \forall n$. If $P(\bigcup_{n=1}^{\infty} A_n) = 1$ then

$$\sum_{n=1}^{\infty} P(A_n) = \infty, \tag{8.10}$$

and hence $P(A_n i.o.) = 1$

 \Diamond

Proof

8.2.2 Strong Law of Large Numbers

Theorem 8.6 (Strong Law of Large Numbers)

Let $X_1, X_2, ...$ be i.i.d. random variables with $E|X_i| < \infty$. Suppose $S_n = X_1 + X_2 + ... + X_n$, $\mu = EX_i$, then

$$S_n/n \stackrel{a.s.}{\to} \mu.$$
 (8.11)

8.3 Uniform Law of Large Numbers

Theorem 8.7 (Uniform Law of Large Numbers)

Suppose

- 1. Θ is compact.
- 2. $g(X_i, \theta)$ is continuous at each $\theta \in \Theta$ almost sure.
- 3. $g(X_i, \theta)$ is dominated by a function $G(X_i)$, i.e. $|g(X_i, \theta)| \leq G(X_i)$.
- 4. $EG(X_i) < \infty$.

Then

$$\sup_{\theta \in \Theta} \left| n^{-1} \sum_{i=1}^{n} g(X_i, \theta) - Eg(X_i, \theta) \right| \stackrel{p}{\to} 0. \tag{8.12}$$

Proof Suppose

$$\Delta_{\delta}\left(X_{i},\theta_{0}\right) = \sup_{\theta \in B(\theta_{0},\delta)} g\left(X_{i},\theta\right) - \inf_{\theta \in B(\theta_{0},\delta)} g\left(X_{i},\theta\right).$$

Since (i) $\Delta_{\delta}(X_i, \theta_0) \stackrel{a.s.}{\to} 0$ by condition (2), (ii) $\Delta_{\delta}(X_i, \theta_0) \le 2 \sup_{\theta \in \Theta} |g(X_i, \theta)| \le 2G(X_i)$ by condition (3) and (4). Then

$$E \Delta_{\delta} (X_i, \theta_0) \to 0$$
, as $\delta \to 0$.

So, for all $\theta \in \Theta$ and $\varepsilon > 0$, there exists $\delta_{\varepsilon}(\theta)$ such that

$$E\left[\Delta_{\delta_{\varepsilon}(\theta)}\left(X_{i},\theta\right)\right]<\varepsilon.$$

Since Θ is compact, we can find a finite subcover, such that Θ is covered by

$$\cup_{k=1}^{K} B\left(\theta_{k}, \delta_{\varepsilon}\left(\theta_{k}\right)\right).$$

$$\begin{split} \sup_{\theta \in \Theta} \left[n^{-1} \sum_{i=1}^{n} g\left(X_{i}, \theta\right) - Eg\left(X_{i}, \theta\right) \right] \\ &= \max_{k} \sup_{\theta \in B(\theta_{k}, \delta_{\varepsilon}(\theta_{k}))} \left[n^{-1} \sum_{i=1}^{n} g\left(X_{i}, \theta\right) - Eg\left(X_{i}, \theta\right) \right] \\ &\leq \max_{k} \left[n^{-1} \sum_{i=1}^{n} \sup_{\theta \in B(\theta_{k}, \delta_{\varepsilon}(\theta_{k}))} g\left(X_{i}, \theta\right) - E\inf_{\theta \in B(\theta_{k}, \delta_{\varepsilon}(\theta_{k}))} g\left(X_{i}, \theta\right) \right] \end{split}$$

Since

$$E\left|\sup_{\theta\in B(\theta_k,\delta_c(\theta_k))}g\left(X_i,\theta\right)\right|\leq EG\left(X_i\right)<\infty,$$

by the Weak Law of Large Numbers (Theorem 8.5),

$$= o_{p}(1) + \max_{k} \left[E \sup_{\theta \in B(\theta_{k}, \delta_{\varepsilon}(\theta_{k}))} g(X_{i}, \theta) - E \inf_{\theta \in B(\theta_{k}, \delta_{\varepsilon}(\theta_{k}))} g(X_{i}, \theta) \right]$$

$$= o_{p}(1) + \max_{k} E \Delta_{\delta_{\varepsilon}(\theta_{k})} (X_{i}, \theta_{k})$$

$$\leq o_{p}(1) + \varepsilon$$

By analogous argument,

$$\inf_{\theta \in \Theta} \left[n^{-1} \sum_{i=1}^{n} g(X_i, \theta) - Eg(X_i, \theta) \right] \ge o_p(1) - \varepsilon.$$

The desired result follows from the above equation by the fact that ε is chosen arbitrarily.

Chapter 9 Central Limit Theorems

Introduction

- Classic Central Limit Theorem
- Central Limit Theorem for independent non-identical Random Variables
- Central Limit Theorem for dependent Random Variables

9.1 Central Limit Theorem

9.1.1 The De Moivre-Laplace Theorem

Lemma 9.1 (Stirling's Formula)

$$n! \sim \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n} \text{ as } n \to \infty.$$
 (9.1)

Proof

Lemma 9.2

If
$$c_j \to 0$$
, $a_j \to \infty$ and $a_j c_j \to \lambda$, then
$$(1 + c_j)^{a_j} \to e^{\lambda}. \tag{9.2}$$

Proof

Theorem 9.1 (The De Moivre-Laplace Theorem)

Let
$$X_1, X_2, ...$$
 be i.i.d. with $P(X_1 = 1) = P(X_1 = -1) = 1/2$ and let $S_n = X_1 + ... + X_n$. If $a < b$, then as $m \to \infty$

$$P(a \le S_m/\sqrt{m} \le b) \to \int_a^b (2\pi)^{-1/2} e^{-x^2/2} dx.$$
 (9.3)

Proof If n and k and integers

$$P(S_{2n} = 2k) = {2n \choose n+k} 2^{-2n}$$

By lemma 9.1, we have

$$\begin{pmatrix} 2n \\ n+k \end{pmatrix} = \frac{(2n)!}{(n+k)!(n-k)!}$$

$$\sim \frac{(2n)^{2n}}{(n+k)^{n+k}(n-k)^{n-k}} \cdot \frac{(2\pi(2n))^{1/2}}{(2\pi(n+k))^{1/2}(2\pi(n-k))^{1/2}}$$

Hence,

$$P(S_{2n} = 2k) = {2n \choose n+k} 2^{-2n}$$

$$\sim \left(1 + \frac{k}{n}\right)^{-n-k} \cdot \left(1 - \frac{k}{n}\right)^{-n+k}$$

$$\cdot (\pi n)^{-1/2} \cdot \left(1 + \frac{k}{n}\right)^{-1/2} \cdot \left(1 - \frac{k}{n}\right)^{-1/2}$$

$$= \left(1 - \frac{k^2}{n^2}\right)^{-n} \cdot \left(1 + \frac{k}{n}\right)^{-k} \cdot \left(1 - \frac{k}{n}\right)^{k}$$

$$\cdot (\pi n)^{-1/2} \cdot \left(1 + \frac{k}{n}\right)^{-1/2} \cdot \left(1 - \frac{k}{n}\right)^{-1/2}$$

Let $2k = x\sqrt{2n}$, i.e., $k = x\sqrt{\frac{n}{2}}$. By lemma 9.2, we have

$$\left(1 - \frac{k^2}{n^2}\right)^{-n} = \left(1 - x^2/2n\right)^{-n} \to e^{x^2/2}$$

$$\left(1 + \frac{k}{n}\right)^{-k} = \left(1 + x/\sqrt{2n}\right)^{-x\sqrt{n/2}} \to e^{-x^2/2}$$

$$\left(1 - \frac{k}{n}\right)^k = \left(1 - x/\sqrt{2n}\right)^{x\sqrt{n/2}} \to e^{-x^2/2}$$

For this choice of $k, k/n \rightarrow 0$, so

$$\left(1+\frac{k}{n}\right)^{-1/2}\cdot\left(1-\frac{k}{n}\right)^{-1/2}\to 1.$$

Putting things together, we have

$$P(S_{2n} = 2k) \sim (\pi n)^{-1/2} e^{-x^2/2}$$
, as $\frac{2k}{\sqrt{2n}} \to x$.

Therefore,

$$P\left(a\sqrt{2n} \le S_{2n} \le b\sqrt{2n}\right) = \sum_{m \in [a\sqrt{2n}, b\sqrt{2n}] \cap 2\mathbb{Z}} P\left(S_{2n} = m\right)$$

Let $m = x\sqrt{2n}$, we have that this is

$$\approx \sum_{x \in [a,b] \cap (2\mathbb{Z}/\sqrt{2n})} (2\pi)^{-1/2} e^{-x^2/2} \cdot (2/n)^{1/2}$$

where $2\mathbb{Z}/\sqrt{2n} = \left\{2z/\sqrt{2n} : z \in \mathbb{Z}\right\}$. As $n \to \infty$, the sum just shown is

$$\approx \int_a^b (2\pi)^{-1/2} e^{-x^2/2} dx.$$

To remove the restriction to even integers, observe $S_{2n+1} = S_{2n} \pm 1$.

Let m = 2n, as $m \to \infty$,

$$P(a \le S_m/\sqrt{m} \le b) \to \int_a^b (2\pi)^{-1/2} e^{-x^2/2} dx.$$

9.1.2 Classic Central Limit Theorem

Theorem 9.2 (Classic Central Limit Theorem (i.i.d.))

Let X_1, X_2, \dots be i.i.d. with $EX_i = \mu$, $Var(X_i) = \sigma^2 < \infty$. Let $S_n = X_1 + X_2 + \dots + X_n$, then

$$\frac{S_n - n\mu}{\sigma n^{\frac{1}{2}}} \xrightarrow{d} \chi, \tag{9.4}$$

where χ has the standard normal distribution.

Proof

Theorem 9.3 (The Linderberg-Feller Central Limit Theorem)

For each n, let $X_{n,m}$, $1 \le m \le n$, be independent random variables with $EX_{n,m} = 0$. If

1.
$$\sum_{m=1}^{n} EX_{n,m}^2 \to \sigma^2 > 0$$
.

2.
$$\forall \epsilon > 0$$
, $\lim_{n \to \infty} \sum_{m=1}^{n} E(|X_{n,m}|^2; |X_{n,m}| > \epsilon) = 0$

Then $S_n = X_{n,1} + \cdots + X_{n,n} \xrightarrow{d} \sigma \chi \text{ as } n \to \infty.$

Theorem 9.4 (Berry-Esseen Theorem)

 \Diamond

Proof

9.2 Central Limit Theorem for independent non-identical Random Variables

Theorem 9.5 (The Liapounov Central Limit Theorem)

9.3 Central Limit Theorem for dependent Random Variables

Chapter 10 The Delta Methods

Theorem 10.1 (Delta Method)

Let $\{X_n\}$ be a sequence of random variables with

$$\sqrt{n}\left[X_n-\theta\right] \stackrel{d}{\to} \sigma\chi,$$

where θ and σ are finite, then for any function g with the property that $g'(\theta)$ exists and is non-zero valued,

$$\sqrt{n} \left[g\left(X_n \right) - g(\theta) \right] \xrightarrow{d} \sigma g'(\theta) \chi.$$

Proof Under the assumption that $g'(\theta)$ is continuous.

Since, $g'(\theta)$ exists, with the first-order Taylor Approximation:

$$g(X_n) = g(\theta) + g'(\tilde{\theta})(X_n - \theta),$$

where $\tilde{\theta}$ lies between X_n and θ .

Since
$$X_n \stackrel{p}{\to} \theta$$
, and $|\tilde{\theta} - \theta| < |X_n - \theta|$, then $\tilde{\theta} \stackrel{p}{\to} \theta$,

Since $g'(\theta)$ is continuous, by Continuous Mapping Theorem (7.2),

$$g'(\tilde{\theta}) \stackrel{p}{\to} g'(\theta).$$

and,

$$\sqrt{n} (g(X_n) - g(\theta)) = \sqrt{n} g'(\tilde{\theta})(X_n - \theta),$$
$$\sqrt{n} [X_n - \theta] \xrightarrow{d} \sigma \chi,$$

by Slutsky's Theorem (7.4),

$$\sqrt{n} \left[g\left(X_n \right) - g(\theta) \right] \stackrel{d}{\to} \sigma g'(\theta) \chi.$$

Chapter 11 Exercises for Probability Theory and Examples

11.1 Measure Theory

Exercise 11.1

- 1. Show that if $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \dots$ are σ -algebras, then $\cup_i \mathcal{F}_i$ is an algebra.
- 2. Give an example to show that $\cup_i \mathcal{F}_i$ need not be a σ -algebra.

Solution

1. Complement: Suppose $A \in \cup_i \mathcal{F}_i$, since $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots$, assume $A \in \mathcal{F}_i$. And each \mathcal{F}_i is σ -algebra,

$$A^c \in \mathcal{F}_i \subset \cup_i \mathcal{F}_i$$
.

Finite Union: Suppose $A_1, A_2 \in \cup_i \mathcal{F}_i$, since $\mathcal{F}_1 \subset \mathcal{F}_2 \subset ...$, assume $A_1 \in \mathcal{F}_i, A_2 \in \mathcal{F}_j$, such that,

$$A_1, A_2 \in \mathcal{F}_{\max(i,j)}$$
.

Since each \mathcal{F}_i is σ -algebra,

$$A_1 \cup A_2 \in \mathcal{F}_i \subset \cup_i \mathcal{F}_i$$
.

2. Let \mathcal{F}_i be a Borel Set of $[1, 2 - \frac{1}{i}]$. Suppose $A_i = [1, 2 - \frac{1}{i}] \in \mathcal{F}_i$, $\bigcup_i A_i = [1, 2) \notin \bigcup_i \mathcal{F}_i$.

11.2 Laws of Large Numbers

11.3 Central Limit Theorems

Exercise 11.2 Let $g \ge 0$ be continuous. If $X_n \xrightarrow{d} X_{\infty}$, then

$$\liminf_{n\to\infty} Eg(X_n) \geq Eg(X_\infty).$$

Solution Let $Y_n \stackrel{d}{=} X_n$, $1 \le n \le \infty$ with $Y_n \stackrel{a.s.}{\to} Y_\infty$ (Lemma 7.1). Since $g \ge 0$ be continuous, $g(Y_n) \stackrel{a.s.}{\to} g(Y_\infty)$ and $g(Y_n) \ge 0$ (Theorem 7.2), and the Fatou's Lemma (6.6) implies,

$$\liminf_{n \to \infty} Eg(X_n) = \liminf_{n \to \infty} Eg(Y_n) \ge E\left(\liminf_{n \to \infty} g(Y_n)\right)$$

$$= Eg(Y_\infty) = Eg(X_\infty).$$

Exercise 11.3 Suppose g, h are continuous with g(x) > 0, and $|h(x)|/g(x) \to 0$ as $|x| \to \infty$. If $F_n \stackrel{d}{\to} F$ and $\int g(x) dF_n(x) \le C < \infty$, then

$$\int h(x) dF_n(x) \to \int h(x) dF(x).$$

Solution

$$\left| \int h(x) dF_n(x) - \int h(x) dF(x) \right| = \left| \int_{x \in [-M,M]} h(x) dF_n(x) + \int_{x \notin [-M,M]} h(x) dF_n(x) - \int_{x \in [-M,M]} h(x) dF(x) - \int_{x \in [-M,M]} h(x) dF(x) \right|$$

$$\leq \left| \int_{x \in [-M,M]} h(x) dF_n(x) - \int_{x \in [-M,M]} h(x) dF(x) \right|$$

$$+ \left| \int_{x \notin [-M,M]} h(x) dF_n(x) - \int_{x \notin [-M,M]} h(x) dF(x) \right|$$

Let $X_n, 1 \le n < \infty$, with distribution F_n , so that $X_n \stackrel{a.s.}{\to} X$ (Lemma 7.1).

$$\left| \int_{x \in [-M,M]} h(x) \mathrm{d}F_n(x) - \int_{x \in [-M,M]} h(x) \mathrm{d}F(x) \right| = \left| E\left(h(X_n) - h(X)\right) I_{x \in [-M,M]} \right|.$$

By Continuity Mapping Theorem (7.2), $\lim_{n\to\infty} \left| E\left(h(X_n) - h(X)\right) I_{x\in[-M,M]} \right| = 0$. Since

$$h(x)I_{x\notin[-M,M]} \le g(x) \sup_{x\notin[-M,M]} \frac{h(x)}{g(x)},$$

and by Exercise 11.2

$$Eg(X) \leq \liminf_{n \to \infty} Eg(X_n) = \liminf_{n \to \infty} \int g(x) dF_n(x) \leq C < \infty,$$

$$\left| \int_{x \notin [-M,M]} h(x) dF_n(x) - \int_{x \notin [-M,M]} h(x) dF(x) \right| = \left| E\left(h(X_n) - h(X)\right) I_{x \notin [-M,M]} \right|$$

$$\leq 2E \max(h(X_n), h(X)) I_{x \notin [-M,M]} \leq 2C \sup_{x \notin [-M,M]} \frac{h(x)}{g(x)}.$$

Hence, let $M \to \infty$,

$$\lim_{n\to\infty}\left|\int h(x)\mathrm{d}F_n(x)-\int h(x)\mathrm{d}F(x)\right|\leq 2C\sup_{x\notin[-M,M]}\frac{h(x)}{g(x)}\to 0,$$

which means,

$$\int h(x) dF_n(x) \to \int h(x) dF(x).$$

Exercise 11.4 Let X_1, X_2, \ldots be i.i.d. with $EX_i = 0$ and $EX_i^2 = \sigma^2 \in (0, \infty)$. Then

$$\sum_{m=1}^{n} X_m / \left(\sum_{m=1}^{n} X_m^2\right)^{1/2} \stackrel{d}{\to} \chi.$$

Exercise 11.5 Show that if $|X_i| \leq M$ and $\sum_n \text{Var}(X_n) = \infty$, then

$$(S_n - E S_n) / \sqrt{\operatorname{Var}(S_n)} \xrightarrow{d} \chi.$$

Exercise 11.6 Suppose $EX_i = 0$, $EX_i^2 = 1$ and $E|X_i|^{2+\delta} \le C$ for some $0 < \delta, C < \infty$. Show that

$$S_n/\sqrt{n} \stackrel{d}{\to} \chi$$
.

Part V Stochastic Process

Chapter 12 Martingales

12.1 Conditional Expectation

Definition 12.1 (Conditional Expectation)

Example 12.1

1.

Chapter 13 Exercises for Probability Theory and Examples

- 13.1 Martingales
- 13.2 Markov Chains
- 13.3 Ergodic Theorems
- 13.4 Brownian Motion
- 13.5 Applications to Random Walk
- 13.6 Multidimensional Brownian Motion

Part VI Statistics Inference

Chapter 14 Introduction

14.1 Populations and Samples

14.2 Statistics

14.2.1 Sufficient Statistics

Definition 14.1 (Sufficient Statistics)

A statistic T is said to be sufficient for X, or for the family $\mathcal{P} = \{P_{\theta}, \theta \in \Omega\}$ of possible distributions of X, or for θ , if the conditional distribution of X given T = t is independent of θ for all t.

Theorem 14.1 (Fisher–Neyman Factorization Theorem)

If the probability density function is $p_{\theta}(x)$, then T is sufficient for θ if and only if nonnegative functions g and h can be found such that

$$p_{\theta}(x) = h(x)g_{\theta}[T(x)].$$

14.2.2 Complete Statistics

Definition 14.2 (Complete Statistics)

A statistic T is said to be complete, if Eg(T) = 0 for all θ and some function g implies that $P(g(T) = 0 \mid \theta) = 1$ for all θ .

14.3 Estimators

Definition 14.3 (Estimator)

An estimator is a real-valued function defined over the sample space, that is

$$\delta: X \to \mathbb{R}. \tag{14.1}$$

It is used to estimate an estimand, θ , a real-valued function of the parameter.

Unbiasedness

Definition 14.4 (Unbiasedness)

An estimator $\hat{\theta}$ of θ is unbiased if

$$E\hat{\theta} = \theta, \quad \forall \theta \in \Theta. \tag{14.2}$$

Note

- Unbiased estimators of θ may not exist.
- **Example 14.1 Nonexistence of Unbiased Estimator**

Consistency

Definition 14.5 (Consistency)

An estimator $\hat{\theta}_n$ of θ is consistent if

$$\lim_{n \to \infty} P\left(\left| \hat{\theta}_n - \theta \right| > \varepsilon \right) = 0, \quad \forall \varepsilon > 0, \tag{14.3}$$

that is,

$$\hat{\theta}_n \stackrel{p}{\to} \theta.$$
 (14.4)

Note

- 1. Unbiased But Consistent
- 2. Biased But Not Consistent

Example 14.2 Common Mean

Asymptotic Normality

Definition 14.6 (Asymptotic Normality)

An estimator $\hat{\theta}_n$ of θ is asymptotic normality if

$$\sqrt{n}\left(\hat{\theta} - \theta\right) \xrightarrow{d} N\left(0, \sigma_{\theta}^2\right).$$
 (14.5)

Efficiency

Definition 14.7 (Efficiency)

Robustness

Definition 14.8 (Robustness)

Chapter 15 Maximum Likelihood Estimator

Suppose that $\mathbf{X}_n = (X_1, \dots, X_n)$, where the X_i are i.i.d. with common density $p(x; \theta_0) \in \mathcal{P} = \{p(x; \theta) : \theta \in \Theta\}$.

We assume that

 θ_0 is identified in the sense that if $\theta \neq \theta_0$ and $\theta \in \Theta$, then $p(x; \theta) \neq p(x; \theta_0)$ with respect to the dominating measure μ .

For fixed $\theta \in \Theta$, the joint density of \mathbf{X}_n is equal to the product of the individual densities, i.e.,

$$p\left(\mathbf{X}_{n};\theta\right) = \prod_{i=1}^{n} p\left(x_{i};\theta\right). \tag{15.1}$$

The maximum likelihood estimate for observed \mathbf{X}_n is the value $\theta \in \Theta$ which maximizes $L(\theta; X_n) := p(\mathbf{X}_n; \theta)$, i.e.,

$$\hat{\theta}\left(\mathbf{X}_{n}\right) = \max_{\theta \in \Theta} L\left(\theta; X_{n}\right). \tag{15.2}$$

Equivalently, the MLE can be taken to be the maximum of the standardized log-likelihood,

$$\frac{l\left(\theta; \mathbf{X}_{n}\right)}{n} = \frac{\log L\left(\theta; \mathbf{X}_{n}\right)}{n} = \frac{1}{n} \sum_{i=1}^{n} \log p\left(X_{i}; \theta\right) = \frac{1}{n} \sum_{i=1}^{n} l\left(\theta; X_{i}\right). \tag{15.3}$$

Define

$$Q(\theta; \mathbf{X}_n) := \frac{1}{n} \sum_{i=1}^n l(\theta; X_i),$$

$$\hat{\theta}(\mathbf{X}_n) := \max_{\theta \in \Theta} Q(\theta; \mathbf{X}_n).$$
(15.4)

15.1 Consistency of MLE

By the Weak Law of Large Numbers (Theorem 8.5), we can get,

$$\frac{1}{n} \sum_{i=1}^{n} l(\theta; X_i) \stackrel{p}{\to} E[l(\theta; X)]. \tag{15.5}$$

Suppose $Q_0(\theta) = E[l(\theta; X)]$, then we will show that $Q_0(\theta)$ is maximized at θ_0 (i.e., the truth).

Lemma 15.1

If θ_0 is identified and $E_{\theta_0}[|\log p(X;\theta)|] < \infty$, $\forall \theta \in \Theta$, then $Q_0(\theta)$ is uniquely maximized at $\theta = \theta_0$.

Proof

Theorem 15.1 (Consistency of MLE)

Suppose that $Q(\theta; X_n)$ is continuous in θ and there exists a function $Q_0(\theta)$ such that

- 1. $Q_0(\theta)$ is uniquely maximized at θ_0 .
- 2. Θ is compact.
- 3. $Q_0(\theta)$ is continuous in θ .
- 4. $Q(\theta; X_n)$ converges uniformly in probability to $Q_0(\theta)$.

then

$$\hat{\theta}(X_n) \stackrel{p}{\to} \theta_0. \tag{15.6}$$

Proof $\forall \varepsilon > 0$, let

$$\Theta(\epsilon) = \{\theta : \|\theta - \theta_0\| < \epsilon\}.$$

Since $\Theta(\epsilon)$ is an open set, then $\Theta \cap \Theta(\epsilon)^C$ is a compact set (Assumption 2).

Since $Q_0(\theta)$ is a continuous function (Assumption 3), then

$$\theta^* := \sup_{\theta \in \Theta \cap \Theta(\epsilon)^C} \{Q_0(\theta)\}\$$

is a achieved for a θ in the compact set.

Since θ_0 is the unique maximized, let

$$Q_0(\theta_0) - Q_0(\theta^*) = \delta > 0.$$

1. For $\theta \in \Theta \cap \Theta(\epsilon)^C$. Let $A_n = \{ \sup_{\theta \in \Theta \cap \Theta(\epsilon)^C} |Q(\theta; \mathbf{X}_n) - Q_0(\theta)| < \frac{\delta}{2} \}$, then

$$A_n \Rightarrow Q(\theta; \mathbf{X}_n) < Q_0(\theta) + \frac{\delta}{2}$$

$$\leq Q_0(\theta^*) + \frac{\delta}{2}$$

$$= Q_0(\theta_0) - \frac{\delta}{2}$$

2. For $\theta \in \Theta(\epsilon)$. Let $B_n = \{\sup_{\theta \in \Theta(\epsilon)} |Q(\theta; \boldsymbol{X}_n) - Q_0(\theta)| < \frac{\delta}{2} \}$, then

$$B_n \Rightarrow Q(\theta; \boldsymbol{X}_n) > Q_0(\theta) - \frac{\delta}{2}, \forall \theta \in \Theta(\epsilon)$$

By Assumption 1,

$$Q(\theta_0; \boldsymbol{X}_n) > Q_0(\theta_0) - \frac{\delta}{2}$$

If both A_n and B_n hold, then

$$\hat{\theta} \in \Theta(\epsilon)$$
.

By Assumption 4, we can concluded that $P(A_n \cap B_n) \to 1$, so

$$P(\hat{\theta} \in \Theta(\epsilon)) \to 1,$$

which means,

$$\hat{\theta}\left(\mathbf{X}_{n}\right)\overset{p}{\to}\theta_{0}.$$

15.2 Asymptotic Normality of MLE

15.3 Efficiency of MLE

Chapter 16 Minimum-Variance Unbiased Estimator

Definition 16.1 (UMVU Estimators)

An unbiased estimator $\delta(X)$ of $g(\theta)$ is the uniform minimum variance unbiased (UMVU) estimator of $g(\theta)$ if

$$Var_{\theta}\delta(X) \le Var_{\theta}\delta'(X), \quad \forall \theta \in \Theta,$$
 (16.1)

where $\delta'(X)$ is any other unbiased estimator of $g(\theta)$.

Note If there exists an unbiased estimator of g, the estimand g will be called U-estimable.

1. If $T(\mathbf{X})$ is a complete sufficient statistic, estimator $\delta(\mathbf{X})$ that only depends on $T(\mathbf{X})$, then for any U-estimable function $g(\theta)$ with

$$E_{\theta}\delta(T(\mathbf{X})) = g(\theta), \quad \forall \theta \in \Theta,$$
 (16.2)

hence, $\delta(T(\mathbf{X}))$ is the unique UMVU estimator of $g(\theta)$.

2. If $T(\mathbf{X})$ is a complete sufficient statistic and $\delta(\mathbf{X})$ is any unbiased estimator of $g(\theta)$, then the UMVU estimator of $g(\theta)$ can be obtained by

$$E\left[\delta(\mathbf{X}) \mid T(\mathbf{X})\right]. \tag{16.3}$$

Example 16.1 Estimating Polynomials of a Normal Variance Let X_1, \ldots, X_n be distributed with joint density

$$\frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left[-\frac{1}{2\sigma^2} \sum_{i} (x_i - \xi)^2\right]. \tag{16.4}$$

Discussing the UMVU estimators of ξ^r , σ^r , ξ/σ .

Solution

1. σ is known:

Since $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is the complete sufficient statistic of X_i , and

$$E(\bar{X}) = \xi,$$

then the UMVU estimator of ξ is \bar{X} .

Therefore, the UMVU estimator of ξ^r is \bar{X}^r and the UMVU estimator of ξ/σ is \bar{X}/σ .

2. ξ is known:

Since $s^r = \sum_i (x_i - \xi)^r$ is the complete sufficient statistic of X_i .

Assume

$$E\left[\frac{s^r}{\sigma^r}\right] = \frac{1}{K_{n,r}},$$

where $K_{n,r}$ is a constant depends on n, r.

Since $s^2/\sigma^2 \sim Ga(n/2, 1/2) = \chi^2(n)$, then

$$E\left[\frac{s^r}{\sigma^r}\right] = E\left[\left(\frac{s^2}{\sigma^2}\right)^{\frac{r}{2}}\right] = \int_0^\infty x^{\frac{r}{2}} \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} x^{\frac{n}{2}-1} e^{-\frac{x}{2}} dx = \frac{\Gamma\left(\frac{n+r}{2}\right)}{\Gamma(\frac{n}{2})} \cdot 2^{\frac{r}{2}}.$$

therefore,

$$K_{n,r} = \frac{\Gamma(\frac{n}{2})}{2^{\frac{r}{2}} \cdot \Gamma\left(\frac{n+r}{2}\right)}.$$

Hence,

$$E[s^r K_{n,r}] = \sigma^r \text{ and } E[\xi s^{-1} K_{n,-1}] = \xi/\sigma,$$

which means the UMVU estimator of σ^r is $s^r K_{n,r}$ and the UMVU estimator of ξ/σ is $\xi s^{-1} K_{n,-1}$.

3. Both ξ and σ is unknown:

Since (\bar{X}, s_x^r) are the complete sufficient statistic of X_i , where $s_x^2 = \sum (x_i - \bar{X})^r$. Since $s_x^2/\sigma^2 \sim \chi^2(n-1)$, then

$$E\left\lceil \frac{s_x^r}{\sigma^r} \right\rceil = \frac{1}{K_{n-1,r}}.$$

Hence,

$$E\left[s_{x}^{r}K_{n-1,r}\right]=\sigma^{r},$$

which means the UMVU estimator of σ^r is $s_x^r K_{n-1,r}$, and

$$E(\bar{X}^r) = \xi^r,$$

which means the UMVU estimator of ξ^r is \bar{X}^r .

Since \bar{X} and s_x^r are independent, then

$$E[\bar{X}s_x^{-1}K_{n-1,-1}] = \xi/\sigma$$

which means the UMVU estimator of ξ/σ is $\bar{X}s_x^{-1}K_{n-1,-1}$.

Example 16.2 Let $X_1, ..., X_n$ be i.i.d sample from $U(\theta_1 - \theta_2, \theta_1 + \theta_2)$, where $\theta_1 \in \mathbb{R}, \theta_2 \in \mathbb{R}^+$. Discussing the UMVU estimators of θ_1, θ_2 .

Solution Let $X_{(i)}$ be the i-th order statistic of X_i , then $(X_{(1)}, X_{(n)})$ is the complete and sufficient statistic for (θ_1, θ_2) . Thus it suffices to find a function $(X_{(1)}, X_{(n)})$, which is unbiased of (θ_1, θ_2) .

Let

$$Y_i = \frac{X_i - (\theta_1 - \theta_2)}{2\theta_2} \sim U(0, 1),$$

and

$$Y_{(i)} = \frac{X_{(i)} - (\theta_1 - \theta_2)}{2\theta_2},$$

be the i-th order statistic of Y_i , then we got

$$E[X_{(1)}] = 2\theta_2 E[Y_{(1)}] + (\theta_1 - \theta_2)$$

$$= 2\theta_2 \int_0^1 ny (1 - y)^{n-1} dy + (\theta_1 - \theta_2)$$

$$= \theta_1 - \frac{3n+1}{n+1} \theta_2$$

$$E[X_{(n)}] = 2\theta_2 E[Y_{(n)}] + (\theta_1 - \theta_2)$$

$$= 2\theta_2 \int_0^1 ny^n dy + (\theta_1 - \theta_2)$$

$$= \theta_1 + \frac{n-1}{n+1} \theta_2$$

Thus,

$$\theta_1 = E \left[\frac{n-1}{4n} X_{(1)} + \frac{3n+1}{4n} X_{(n)} \right],$$

$$\theta_2 = E \left[-\frac{n+1}{4n} X_{(1)} + \frac{n+1}{4n} X_{(n)} \right],$$

which means the UMVU estimator is

$$\hat{\theta}_1 = \frac{n-1}{4n} X_{(1)} + \frac{3n+1}{4n} X_{(n)}, \quad \hat{\theta}_2 = -\frac{n+1}{4n} X_{(1)} + \frac{n+1}{4n} X_{(n)}.$$

Chapter 17 Bayes Estimator

We shall look for some estimators that make the risk function $R(\theta, \delta)$ small in some overall sense. There are two way to solve it: minimize the average risk, minimize the maximum risk.

This chapter will discuss the first method, also known as, Bayes Estimator.

Definition 17.1 (Bayes Estimator)

The Bayes Estimator δ with respect to Λ is minimizing the Bayes Risk of δ

$$r(\Lambda, \delta) = \int R(\theta, \delta) d\Lambda(\theta)$$
 (17.1)

where Λ is the probability distribution.

In Bayesian arguments, it is important to keep track of which variables are being conditioned on. Hence, the notations are as followed:

- The density of X will be denoted by $X \sim f(x \mid \theta)$.
- The prior distribution will be denoted by $\Pi \sim \pi \ (\theta \mid \lambda)$ or $\Lambda \sim \gamma \ (\lambda)$, where λ is another parameter (sometimes called a hyperparameter).
- The posterior distribution, which calculate the conditional distributions as that of θ given x and λ , or λ given x, which is denoted by $\Pi \sim \pi (\theta \mid x, \lambda)$ or $\Lambda \sim \gamma (\lambda \mid x)$, that is

$$\pi (\theta \mid x, \lambda) = \frac{f(x \mid \theta) \pi (\theta \mid \lambda)}{m(x \mid \lambda)}, \tag{17.2}$$

where marginal distributions $m(x \mid \lambda) = \int f(x \mid \theta) \pi(\theta \mid \lambda) d\theta$.

Theorem 17.1

Let Θ have distribution Λ , and given $\Theta = \theta$, let X have distribution P_{θ} . Suppose, the following assumptions hold for the problem of estimating $g(\Theta)$ with non-negative loss function $L(\theta, d)$,

- There exists an estimator δ_0 with finite risk.
- For almost all x, there exists a value $\delta_{\Lambda}(x)$ minimizing

$$E\{L[\Theta, \delta(x)] \mid X = x\}. \tag{17.3}$$

Then, $\delta_{\Lambda}(x)$ is a Bayes Estimator.

Corollary 17.1

Suppose the assumptions of Theorem 17.1 hold.

1. If $L(\theta, d) = [d - g(\theta)]^2$, then

$$\delta_{\Lambda}(x) = E[g(\Theta) \mid x]. \tag{17.4}$$

2. If $L(\theta, d) = w(\theta) [d - g(\theta)]^2$, then

$$\delta_{\Lambda}(x) = \frac{E[w(\theta) g(\Theta) \mid x]}{E[w(\theta) \mid x]}.$$
 (17.5)

- 3. If $L(\theta, d) = |d g(\theta)|$, then $\delta_{\Lambda}(x)$ is any median of the conditional distribution of Θ given x.
- 4. If

$$L(\theta, d) = \begin{cases} 0 \text{ when } |d - \theta| \le c \\ 1 \text{ when } |d - \theta| > c \end{cases},$$

then $\delta_{\Lambda}(x)$ is the midpoint of the interval I of length 2c which maxmizes $P(\Theta \in I \mid x)$.

Proof

Theorem 17.2

Necessiary condition for Bayes Estimator

 \Diamond

Methodologies have been developed to deal with the difficulty which sometimes incorporate frequentist measures to assess the choic of Λ .

- Empirical Bayes.
- Hierarchical Bayes.
- Robust Bayes.
- Objective Bayes.

17.1 Single-Prior Bayes

The Single-Prior Bayes model in a general form as

$$X \mid \theta \sim f(x \mid \theta),$$

$$\Theta \mid \gamma \sim \pi (\theta \mid \lambda),$$
(17.6)

where we assume that the functional form of the prior and the value of λ is known (we will write it as $\gamma = \gamma_0$).

Given a loss function $L(\theta, d)$, we would then determine the estimator that minimizes

$$\int L(\theta, d(x)) \pi(\theta \mid x) d\theta, \qquad (17.7)$$

where π ($\theta \mid x$) is posterior distribution given by

$$\pi (\theta \mid x) = \frac{f(x \mid \theta) \pi (\theta \mid \gamma_0)}{\int f(x \mid \theta) \pi (\theta \mid \gamma_0) d\theta}.$$

In general, this Bayes estimator under squared error loss is given by

$$E(\Theta \mid x) = \frac{\int \theta f(x \mid \theta) \pi(\theta \mid \gamma_0) d\theta}{\int f(x \mid \theta) \pi(\theta \mid \gamma_0) d\theta}.$$
 (17.8)

Example 17.1 Consider

$$X_i \stackrel{\text{i.i.d}}{\sim} N(\mu, \Gamma^{-1}), \quad i = 1, 2, \dots, n$$

 $\mu \sim N(0, 1),$
 $\Gamma \sim \text{Gamma}(2, 1),$

calculate the Single-Prior Bayes estimator under squared error loss.

Solution

$$p(X \mid \mu, \Gamma) = \Gamma^{n} (2\pi)^{-\frac{n}{2}} \exp \left[-2\Gamma^{2} \sum_{i=1}^{n} (x_{i} - \mu)^{2} \right],$$
$$p(\mu) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{\mu^{2}}{2} \right),$$
$$p(\Gamma) = \frac{1}{\Gamma(2)} \Gamma \exp \left(-\Gamma \right).$$

Therefore,

$$h(X, \mu, \Gamma) = C \Gamma^n \exp \left[-2\Gamma^2 \sum_{i=1}^n (x_i - \mu)^2 \right] \exp \left(-\frac{\mu^2}{2} \right) \Gamma \exp \left(-\Gamma \right),$$

where $C = \frac{(2\pi)^{-\frac{n+1}{2}}}{\Gamma(2)}$.

For μ , we have

$$\pi (\mu \mid X, \Gamma) = \frac{h(X, \mu, \Gamma)}{p(\mu \mid X)}$$

For exponential families

Theorem 17.3

\Diamond

17.2 Hierarchical Bayes

In a Hierarchical Bayes model, rather than specifying the prior distribution as a single function, we specify it in a **hierarchy**. Thus, the Hierarchical Bayes model in a general form

as

$$X \mid \theta \sim f(x \mid \theta),$$

 $\Theta \mid \gamma \sim \pi(\theta \mid \lambda),$
 $\Gamma \sim \psi(\gamma),$
(17.9)

\$

where we assume that ψ (·) is known and not dependent on any other unknown hyperparameters. Note We can continue this hierarchical modeling and add more stages to the model, but this is not ofthen done in practice.

Given a loss function $L(\theta, d)$, we would then determine the estimator that minimizes

$$\int L(\theta, d(x)) \pi(\theta \mid x) d\theta, \qquad (17.10)$$

where π ($\theta \mid x$) is posterior distribution given by

$$\pi (\theta \mid x) = \frac{\int f(x \mid \theta) \pi(\theta \mid \gamma) \psi(\gamma) d\gamma}{\int \int f(x \mid \theta) \pi(\theta \mid \gamma) \psi(\gamma) d\theta d\gamma}.$$

Note The posterior distribution can also be writed as

$$\pi (\theta \mid x) = \int \pi (\theta \mid x, \gamma) \pi (\gamma \mid x) d\gamma,$$

where π (γ | x) is the posterior distribution of Γ , unconditional on θ . The equation 17.10 can be writed as

$$\int L\left(\theta,d\left(x\right)\right)\pi\left(\theta\mid x\right)\mathrm{d}\theta = \int \left[\int L\left(\theta,d\left(x\right)\right)\pi\left(\theta\mid x,\gamma\right)\mathrm{d}\theta\right]\pi\left(\gamma\mid x\right)\mathrm{d}\gamma.$$

which shows that the Hierarchical Bayes estimator can be thought of as a mixture of Single-Prior estimators.

Example 17.2 Poisson Hierarchy Consider

$$X_i \mid \lambda \stackrel{\text{i.i.d}}{\sim} \text{Poisson}(\lambda), \quad i = 1, 2 ..., n$$

 $\lambda \mid b \sim \text{Gamma}(a, b), \text{ a known},$
 $\frac{1}{b} \sim \text{Gamma}(k, \tau),$ (17.11)

calculate the Hierarchical Bayes estimator under squared error loss.

Theorem 17.4

For the Hierarchical Bayes model (17.9),

$$K\left[\pi\left(\lambda\mid x\right), \psi\left(\lambda\right)\right] < K\left[\pi\left(\theta\mid x\right), \pi\left(\theta\right)\right],$$
 (17.12)

where K is the Kullback-Leibler information for discrimination between two densities.

Proof

Note

17.3 Empirical Bayes

17.4 Bayes Prediction

Chapter 18 Hypothesis Testing

Part VII Convex Optimization

Chapter 19 Convex Sets

19.1 Affine and Convex Sets

19.1.1 Affine Sets

Definition 19.1 (Affine Set)

A nonempty set C is a **affine set** that satisfy

$$\forall x_1, x_2 \in C, \theta \in \mathbf{R}, \theta x_1 + (1 - \theta) x_2 \in C.$$

19.1.2 Convex Sets

Definition 19.2 (Convex Set)

A nonempty set C is a **convex set** that satisfy

$$\forall x_1, x_2 \in C, \theta \in [0, 1], \theta x_1 + (1 - \theta)x_2 \in C.$$

Definition 19.3 (Convex Hull)

The **convex hull** of a set C, denoted by conv C is a set of all convex combinations of points in C,

conv
$$C = \{\theta_1 x_1 + \ldots + \theta_k x_k | x_i \in C; \theta_i \ge 0, i = 1, \ldots, k; \theta_1 + \ldots + \theta_k = 1\}.$$

Note The convex hull conv C is always convex, which is the minimal convex set that contains C.

19.1.3 Cones

Definition 19.4 (Cone)

A nonempty set C is a **cone** that satisfy

$$\forall x \in C, \theta \ge 0, \theta x \in C.$$

Definition 19.5 (Convex Cone)

A nonempty set C is a **convex cone** that satisfy

$$\forall x_1, x_2 \in C, \theta_1, \theta_2 \ge 0, \theta_1 x_1 + \theta_2 x_2 \in C.$$

19.2 Some Important Examples

Definition 19.6 (Hyperplane)

A hyperplane is a set of the form

$$\{x|a^Tx=b\},\,$$

where $a \in \mathbf{R}^n$, $a \neq 0, b \in \mathbf{R}$.

Definition 19.7 (Halfspace)

A hyperplane is a set of the form

$$\{x|a^Tx \le b\},\$$

where $a \in \mathbf{R}^n$, $a \neq 0$, $b \in \mathbf{R}$.

Definition 19.8 ((Euclidean) Ball)

A (Euclidean) ball in \mathbb{R}^n with center x_c and radius r has the form

$$B(x_c, r) = \{x | \|x - x_c\|_2 \le r\} = \{x_c + ru | \|u\|_2 \le 1\},$$

where r > 0.

Definition 19.9 (Ellipsoid)

A Ellipsoid in \mathbb{R}^n with center x_c has the form

$$\mathcal{E} = \{x | (x - x_c)^T P^{-1} (x - x_c) \le 1\} = \{x_c + Au | ||u_2|| \le 1\},\$$

where $P \in \mathbf{S}_{++}^n$ (symmetric positive definite).

19.3 Generalized Inequalities

19.3.1 Definition of Generalized Inequalities

Definition 19.10 (Proper Cone)

A cone $K \subseteq \mathbf{R}^n$ is proper cone, if

- K is convex.
- K is closed.
- *K* is solid (nonempty interior).
- K is pointed (contains no line).

Definition 19.11 (Generalized Inequalities)

The partial ordering on \mathbb{R}^n defined by proper cone K, if

$$y - x \in K, \tag{19.1}$$

which can be denoted by

$$x \leq_K y \text{ or } y \succeq_K x. \tag{19.2}$$

The strict partial ordering on \mathbb{R}^n defined by proper cone K, if

$$y - x \in int K, \tag{19.3}$$

which can be denoted by

$$x \prec_K y \text{ or } y \succ_K x. \tag{19.4}$$

Note When $K = \mathbf{R}_+$, the partial ordering \leq_K is the usual ordering \leq on \mathbf{R} , and the strict partial ordering \prec_K is the usual strict ordering < on \mathbf{R} .

19.3.2 Properties of Generalized Inequalities

Theorem 19.1 (Properties of Generalized Inequalities)

A generalized inequality \leq_K has the following properties:

- Preserved under addition:
- Transitive:
- Preserved under nonnegative scaling:
- Reflexive:
- Antisymmetric:
- Preserved under limits:

A strict generalized inequality \prec_K has the following properties:

Chapter 20 Convex Optimization Problems

20.1 Generalized Inequality Constraints

Definition 20.1 (With Generalized Inequality Constraints)

A convex optimization problem with generalized inequality constraints has the form

$$\min_{x} f_0(x)$$
s.t. $f_i(x) \leq K_i 0$, $i = 1, ..., m$ (20.1)
$$Ax = b$$

where $f_0: \mathbf{R}^n \to \mathbf{R}$, $K_i \in \mathbf{R}^{k_i}$ are proper conves, and $f_i: \mathbf{R}^n \to \mathbf{R}^{k_i}$ are K_i -convex.

20.1.1 Conic Form Problems

Definition 20.2 (Conic Form Problem)

A conic form problem has the form

$$\min c^T x$$

$$s.t. Fx + g \leq_K 0$$

$$Ax = b$$
(20.2)

20.1.2 Semidefinite Programming

20.2 Vector Optimization

Chapter 21 Unconstrained Minimization

21.1 Definition of Unconstrained Minimization

Definition 21.1 (Unconstrained Minimization Problem)

The unconstrained minimization problem has the form

$$\min_{x} f(x) \tag{21.1}$$

where $f: \mathbf{R}^n \to \mathbf{R}$ is convex and twice continuously differentiable.

Note We assume that the problem is solvable, i.e., there exists an optimal point x^* , such that, $f(x^*) = \inf_x f(x)$.

Example 21.1 Quadratic Minimization

Example 21.2 Least Square Estimation

Example 21.3 Unconstrained Geometric Programming

Example 21.4 Analytic Center of Linear Inequalities

21.2 General Descent Method

21.3 Gradient Descent Method

21.4 Steepest Descent Method

21.5 Newton's Method

Chapter 22 Exercises for Convex Optimization

22.1 Convex Sets

Exercise 22.1 Solution set of a quadratic inequality Let $C \subseteq \mathbb{R}^n$ be the solution set of a quadratic inequality,

$$C = \{x \in \mathbf{R}^n | x^T A x + b^T x + c \le 0\}$$

with $A \in \mathbf{S}^n$, $b \in \mathbf{R}^n$, and $c \in \mathbf{R}$.

1. Show that C is convex if A > 0.

Solution

1. We have to show that $\theta x + (1 - \theta)y \in C$ for all $\theta \in [0, 1]$ and $x, y \in C$. $(\theta x + (1 - \theta)y)^T A(\theta x + (1 - \theta)y) + b^T (\theta x + (1 - \theta)y) + c$ $= \theta^2 x^T A x + \theta (1 - \theta)(y^T A x + x^T A y) + (1 - \theta)^2 y^T A y + \theta b^T x + (1 - \theta)b^T y + c$ $= \theta^2 (x^T A x + b^T x + c) + (1 - \theta)^2 (y^T A y + b^T y + c) - \theta^2 (b^T x + c)$ $- (1 - \theta)^2 (b^T y + c) + \theta (1 - \theta)(y^T A x + x^T A y) + \theta b^T x + (1 - \theta)b^T y + c$ $\leq -\theta^2 (b^T x + c) - (1 - \theta)^2 (b^T y + c) + \theta (1 - \theta)(y^T A x + x^T A y)$ $+ \theta b^T x + (1 - \theta)b^T y + c$ $= \theta (1 - \theta)[(b^T x + c) + (b^T y + c) + x^T A x + y^T A y]$ $\leq \theta (1 - \theta)(-x^T A x - y^T A y + x^T A x + y^T A y) \leq 0$ Therefore, $\theta x + (1 - \theta)y \in C$, which shows that C is convex if A > 0.

Part VIII Generalized Linear Model

Chapter 23 Introduction

Chapter 24 Binary Data

Chapter 25 Polytomous Data

Part IX Machine Learning

Chapter 26 Kernel Methods

Definition 26.1 (Positive Definite Kernel)

Let \mathcal{X} be a set, a function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a positive definite kernel on \mathcal{X} iff it is

1. symmetric, that is,

$$K(\mathbf{x}, \mathbf{x}') = K(\mathbf{x}', \mathbf{x}), \quad \forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}$$
 (26.1)

2. positive definite, that is,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j K\left(\mathbf{x}_i, \mathbf{x}_j\right) \ge 0, \tag{26.2}$$

holds for any $x_1, \ldots, x_n \in \mathcal{X}$, given $n \in \mathbb{N}, c_1, \ldots, c_n \in \mathbb{R}$.

_

Theorem 26.1 (Morse-Aronszajn's Theorem)

For any set \mathcal{X} , suppose $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive definite, then there is a unique RKHS $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ with reproducing kernel K.

Proof

1. How to build a valid pre-RKHS \mathcal{H}_0 ?

Consider the vector space $\mathcal{H}_0 \subset \mathcal{R}^{\mathcal{X}}$ spanned by the functions $\{K(\cdot, \mathbf{x})\}_{\mathbf{x} \in \mathcal{X}}$. For any $f, g \in \mathcal{H}_0$, suppose

$$f = \sum_{i=1}^{m} a_i K(\cdot, \mathbf{x}_i), \quad g = \sum_{j=1}^{n} b_j K(\cdot, \mathbf{y}_j)$$

and let the inner product of \mathcal{H}_0 be

$$\langle f, g \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j K\left(\mathbf{x}_i, \mathbf{y}_j\right)$$
 (26.3)

Let $\mathbf{x} \in \mathcal{X}$,

$$\langle f, K(\cdot, \mathbf{x}) \rangle_{\mathcal{H}_0} = \sum_{i=1}^{m} a_i K(\mathbf{x}, \mathbf{x}_i) = f(\mathbf{x})$$

And, we also have

$$\langle f, g \rangle_{\mathcal{H}_0} = \sum_{i=1}^m a_i g(\mathbf{x}_i) = \sum_{j=1}^n b_j f(\mathbf{y}_j)$$

Suppose

$$f = \sum_{i=1}^{m} a_i K(\cdot, \mathbf{x}_i), \quad g = \sum_{j=1}^{n} b_j K(\cdot, \mathbf{y}_j), \quad h = \sum_{k=1}^{p} c_k K(\cdot, \mathbf{z}_k)$$

(a). Linearity: For any $\alpha, \beta \in \mathbb{R}$, $\langle \alpha f + \beta g, h \rangle_{\mathcal{H}_0} = \alpha \langle f, h \rangle_{\mathcal{H}_0} + \beta \langle g, h \rangle_{\mathcal{H}_0}$.

$$\langle \alpha f + \beta g, h \rangle_{\mathcal{H}_{0}} = \left[\alpha \sum_{i=1}^{m} a_{i} K(\cdot, \mathbf{x}_{i}) + \beta \sum_{j=1}^{n} b_{j} K(\cdot, \mathbf{y}_{j}) \right] \cdot \sum_{k=1}^{p} c_{k} K(\cdot, \mathbf{z}_{k})$$

$$= \alpha \sum_{i=1}^{m} \sum_{k=1}^{p} a_{i} c_{k} K(\mathbf{x}_{i}, \mathbf{z}_{k}) + \beta \sum_{j=1}^{n} \sum_{k=1}^{p} b_{j} c_{k} K(\mathbf{y}_{j}, \mathbf{z}_{k})$$

$$= \alpha \langle f, h \rangle_{\mathcal{H}_{0}} + \beta \langle g, h \rangle_{\mathcal{H}_{0}}$$

(b). Conjugate Symmetry: $\langle f, g \rangle_{\mathcal{H}_0} = \langle g, f \rangle_{\mathcal{H}_0}$.

$$\langle f, g \rangle_{\mathcal{H}_0} = \sum_{i=1}^m \sum_{j=1}^n a_i b_j K\left(\mathbf{x}_i, \mathbf{y}_j\right) = \sum_{j=1}^n \sum_{i=1}^m b_j a_i K\left(\mathbf{y}_j, \mathbf{x}_i\right)$$
$$= \langle g, f \rangle_{\mathcal{H}_0}$$

(c). Positive Definiteness: $\langle f, f \rangle_{\mathcal{H}_0} \ge 0$ and $\langle f, f \rangle_{\mathcal{H}_0} = 0$ if and only if f = 0. By positive definiteness of K, we have:

$$\langle f, f \rangle_{\mathcal{H}_0} = \|f\|_{\mathcal{H}_0}^2 = \sum_{i=1}^m \sum_{j=1}^m a_i a_j K(\mathbf{x}_i, \mathbf{x}_j) \ge 0$$

As for, $\langle f, f \rangle_{\mathcal{H}_0} = 0$ if and only if f = 0, we have,

" \Rightarrow " If f = 0, that is $f = \sum_{i=1}^{m} a_i K(\cdot, \mathbf{x}_i) = 0$, we have

$$\langle f, f \rangle_{\mathcal{H}_0} = \sum_{i=1}^m a_i f = 0$$

" \Leftarrow " For $\forall x \in \mathcal{X}$, by Cauchy-Schwarwz Inequality, we have,

$$|f(\mathbf{x})| = |\langle f, K(\cdot, \mathbf{x}) \rangle_{\mathcal{H}_0}| \le ||f||_{\mathcal{H}_0} \cdot K(\mathbf{x}, \mathbf{x})^{\frac{1}{2}}$$

therefore, if $||f||_{\mathcal{H}_0} = 0$, then f = 0

Hence, definition in equation 26.3 is a valid inner product, which is a valid pre-RKHS \mathcal{H}_0 .

Example 26.1 Common Kernels

1.
$$K(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}\right), \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^d$$

Proof

1. It is obvious that $K(\mathbf{x}, \mathbf{y})$ is symmetric, we only need to show $K(\mathbf{x}, \mathbf{y})$ is positive definite.

$$K(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}\right)$$
$$= \exp\left(-\frac{1}{2\sigma^2}\|\mathbf{x}\|^2\right) \cdot \exp\left(\frac{1}{\sigma^2}\langle \mathbf{x}, \mathbf{y}\rangle\right) \cdot \exp\left(-\frac{1}{2\sigma^2}\|\mathbf{y}\|^2\right)$$

By the Taylor expansion of the exponential function, that

$$\exp\left(\frac{x}{\sigma^2}\right) = \sum_{n=0}^{+\infty} \left\{ \frac{x^n}{\sigma^{2n} \cdot n!} \right\}$$

Hence,

$$\exp\left(\frac{1}{\sigma^2}\langle \mathbf{x}, \mathbf{y}\rangle\right) = \sum_{n=0}^{+\infty} \left\{ \frac{\langle \mathbf{x}, \mathbf{y}\rangle^n}{\sigma^{2n} \cdot n!} \right\}$$

By the Multinomial Theorem, we have

$$\langle \mathbf{x}, \mathbf{y} \rangle^{n} = \left(\sum_{i=1}^{d} x_{i} y_{i} \right)^{n} = \sum_{k_{1} + k_{2} + \dots + k_{d} = n} \left[\binom{n}{k_{1}, k_{2}, \dots, k_{d}} \prod_{i=1}^{d} (x_{i} y_{i})^{k_{i}} \right]$$

$$= \sum_{k_{1} + k_{2} + \dots + k_{d} = n} \left[\binom{n}{k_{1}, k_{2}, \dots, k_{d}} \prod_{i=1}^{\frac{1}{2}} x_{i}^{k_{i}} \cdot \binom{n}{k_{1}, k_{2}, \dots, k_{d}} \prod_{i=1}^{\frac{1}{2}} y_{i}^{k_{i}} \right]$$

Therefore,

$$K(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}\right) = \exp\left(-\frac{\|\mathbf{x}\|^2}{2\sigma^2}\right) \cdot \exp\left(-\frac{\|\mathbf{y}\|^2}{2\sigma^2}\right) \cdot \sum_{n=0}^{+\infty} \left\{\frac{\langle \mathbf{x}, \mathbf{y} \rangle^n}{\sigma^{2n} \cdot n!}\right\}$$
$$= \sum_{n=0}^{+\infty} \frac{\exp\left(-\frac{\|\mathbf{x}\|^2}{2\sigma^2}\right)}{\sigma^n \cdot \sqrt{n!}} \cdot \frac{\exp\left(-\frac{\|\mathbf{y}\|^2}{2\sigma^2}\right)}{\sigma^n \cdot \sqrt{n!}} \cdot \langle \mathbf{x}, \mathbf{y} \rangle^n$$

Let

$$c_{\sigma,n}\left(\mathbf{x}\right) = \frac{\exp\left(-\frac{\|\mathbf{x}\|^2}{2\sigma^2}\right)}{\sigma^n \cdot \sqrt{n!}}, \quad f_{n,k}\left(\mathbf{x}\right) = \binom{n}{k_1, k_2, \dots, k_d}^{\frac{1}{2}} \prod_{i=1}^d x_i^{k_i}$$

then,

$$K(\mathbf{x}, \mathbf{y}) = \sum_{n=0}^{+\infty} \sum_{k_1 + k_2 + \dots + k_d = n} c_{\sigma, n}(\mathbf{x}) f_{n, \mathbf{k}}(\mathbf{x}) \cdot c_{\sigma, n}(\mathbf{y}) f_{n, \mathbf{k}}(\mathbf{y})$$
$$= \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle$$

where $\Phi(\mathbf{x})_{\sigma,n,\mathbf{k}} = c_{\sigma,n}(\mathbf{x}) f_{n,\mathbf{k}}(\mathbf{x})$.

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} K \left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} \left\langle \Phi \left(\mathbf{x}_{i}\right), \Phi \left(\mathbf{x}_{j}\right) \right\rangle$$
$$= \left\langle \sum_{i=1}^{n} c_{i} \Phi \left(\mathbf{x}_{i}\right), \sum_{i=1}^{n} c_{i} \Phi \left(\mathbf{x}_{i}\right) \right\rangle \geq 0$$

for any $x_1, \ldots, x_n \in \mathcal{X}$, given $n \in \mathbb{N}, c_1, \ldots, c_n \in \mathbb{R}$, i.e., $K(\mathbf{x}, \mathbf{y})$ is positive definite.

Chapter 27 Support Vector Machine

Theorem 27.1

The minimizer of

$$\arg\min_{g} E\left\{ [1 - Yg(X)]_{+} \mid X = x \right\}$$

is the sign of $f(x) = \log \frac{p(x)}{1 - p(x)}$, i.e.,

$$sgn\left[p(x) - \frac{1}{2}\right]$$

where $sgn(\cdot)$ is the sign function.

Proof For the hinge loss function, that,

$$E\left\{ [1 - Yg(X)]_{+} \mid X = x \right\}$$

$$= [1 - g(x)]_{+} P\left(Y = 1 \mid X = x\right) + [1 + g(x)]_{+} P\left(Y = -1 \mid X = x\right)$$

$$= [1 - g(x)]_{+} p(x) + [1 + g(x)]_{+} [1 - p(x)]$$

$$= \begin{cases} [1 - g(x)] p(x), & g(x) < -1 \\ 1 + [1 - 2p(x)] g(x), & -1 \le g(x) \le 1 \\ [1 + g(x)] [1 - p(x)], & g(x) > 1 \end{cases}$$

When g(x) < -1,

$$\arg\min_{g} E\left\{\left[1-Yg(X)\right]_{+}\mid X=x\right\} = \arg\min_{g} \left[1-g(x)\right] p(x) = -1$$

When g(x) > 1,

$$\arg\min_{g} E\left\{ [1 - Yg(X)]_{+} \mid X = x \right\} = \arg\min_{g} \left[1 + g(x) \right] [1 - p(x)] = 1$$

When $-1 \le g(x) \le 1$,

$$\arg \min_{g} E \left\{ [1 - Yg(X)]_{+} \mid X = x \right\}$$

$$= \arg \min_{g} \left\{ 1 + [1 - 2p(x)] g(x) \right\}$$

$$= \begin{cases} -1, & p(x) < \frac{1}{2} \\ 0, & p(x) = \frac{1}{2} \\ 1, & p(x) > \frac{1}{2} \end{cases}$$

Thus, for the $g(x) \in [-1, 1]$ the minimizer of $\arg \min_g E\{[1 - Yg(X)]_+ \mid X = x\}$ is the sign of $p(x) - \frac{1}{2}$, that is the sign of $f(x) = \log \frac{p(x)}{1 - p(x)}$

Chapter 28 Linear Discriminant Analysis

Chapter 29 K-Nearest Neighbor

Chapter 30 Decision Tree

Bibliography

- [1] Stephen Boyd and Lieven Vandenberghe. *Convex Optimization*. Cambridge, UK; New York: Cambridge University Press, Mar. 8, 2004. 727 pp. ISBN: 978-0-521-83378-3.
- [2] Zdzisław Brzezniak and Tomasz Zastawniak. Basic Stochastic Processes. Oct. 16, 1998.
- [3] Luc Devroye, Laszlo Györfi, and Gabor Lugosi. *A Probabilistic Theory of Pattern Recognition*. Corrected edition. New York: Springer, Apr. 4, 1996. 653 pp. ISBN: 978-0-387-94618-4.
- [4] Rick Durrett. *Probability: Theory and Examples*. 5th Edition. Cambridge; New York, NY: Cambridge University Press, May 30, 2019. 430 pp. ISBN: 978-1-108-47368-2.
- [5] E. L. Lehmann. *Elements of Large-Sample Theory*. Springer texts in statistics. New York: Springer, 1999. 631 pp. ISBN: 978-0-387-98595-4.
- [6] E. L. Lehmann and George Casella. *Theory of Point Estimation*. 2nd Edition. Springer texts in statistics. New York: Springer, 1998. 589 pp. ISBN: 978-0-387-98502-2.
- [7] P. McCullagh and John A. Nelder. *Generalized Linear Models*. 2nd Edition. Boca Raton: Chapman and Hall/CRC, Aug. 1, 1989. 532 pp. ISBN: 978-0-412-31760-6.