```
In [1]: #Required imports for reading the file
   import pandas as pd

In [2]: #Problem 1: Prediction of house prices
In [3]:
```

Out[3]:

	Transaction date	House Age	Distance from nearest Metro station (km)	Number of convenience stores	latitude	longitude	Number of bedrooms	House size (sqft)	,
0	2012.916667	32.0	84.87882	10	24.98298	121.54024	1	575	
1	2012.916667	19.5	306.59470	9	24.98034	121.53951	2	1240	
2	2013.583333	13.3	561.98450	5	24.98746	121.54391	3	1060	
3	2013.500000	13.3	561.98450	5	24.98746	121.54391	2	875	
4	2012.833333	5.0	390.56840	5	24.97937	121.54245	1	491	
409	2013.000000	13.7	4082.01500	0	24.94155	121.50381	3	803	
410	2012.666667	5.6	90.45606	9	24.97433	121.54310	2	1278	
411	2013.250000	18.8	390.96960	7	24.97923	121.53986	1	503	
412	2013.000000	8.1	104.81010	5	24.96674	121.54067	1	597	
413	2013.500000	6.5	90.45606	9	24.97433	121.54310	2	1097	

414 rows × 9 columns

Dependent Variable: House price of unit area

Type: Continuous

Regression is required

In [4]: #Correlation matrix

Out[4]:

	Transaction date	House Age	Distance from nearest Metro station (km)	Number of convenience stores	latitude	longitude	Number of bedrooms
Transaction date	1.000000	0.017542	0.060880	0.009544	0.035016	-0.041065	0.061985
House Age	0.017542	1.000000	0.025622	0.049593	0.054420	-0.048520	-0.008756
Distance from nearest Metro station (km)	0.060880	0.025622	1.000000	-0.602519	-0.591067	-0.806317	-0.046856
Number of convenience stores	0.009544	0.049593	-0.602519	1.000000	0.444143	0.449099	0.043638
latitude	0.035016	0.054420	-0.591067	0.444143	1.000000	0.412924	0.043921
longitude	-0.041065	-0.048520	-0.806317	0.449099	0.412924	1.000000	0.041680
Number of bedrooms	0.061985	-0.008756	-0.046856	0.043638	0.043921	0.041680	1.000000
House size (sqft)	0.068405	-0.060361	0.001795	0.033286	0.031696	0.009322	0.752276
House price of unit area	0.087529	-0.210567	-0.673613	0.571005	0.546307	0.523287	0.050265

House Age, Distance from metro, number of convenience store, lat, long are the most influencing factors on pricing.

```
In [5]: #Split data into train and test
In [6]:
In [7]: # Model 1: Linear regression
In [8]: lr = LinearRegression()
In [9]: #Evaluate
In [10]:
In [11]:
```

The model didn't perform well probably due to intercorrelation between independent variables

2 of 6 27-11-2022, 10:07

R2 Score: 0.4717938420680332

```
In [12]: #SVM Regression: Uses kernel transformations to find the best fit
In [13]: svr = SVR(kernel="linear")
In [15]:
```

R2 score: 0.47325318904682867

SVR doesn't perform well, the next model would randomforest regression, which is an ensemble model

```
In [16]:
                    In [17]: rf = RandomForestRegressor()
In [18]:
       R2 score: 0.5982682002170312
In [20]: #Testing correlation again
```

Out[20]:

	Transaction date	House Age	Distance from nearest Metro station (km)	Number of convenience stores	latitude	longitude	Number of bedrooms
Transaction date	1.000000	0.017542	0.060880	0.009544	0.035016	-0.041065	0.061985
House Age	0.017542	1.000000	0.025622	0.049593	0.054420	-0.048520	-0.008756
Distance from nearest Metro station (km)	0.060880	0.025622	1.000000	-0.602519	-0.591067	-0.806317	-0.046856
Number of convenience stores	0.009544	0.049593	-0.602519	1.000000	0.444143	0.449099	0.043638
latitude	0.035016	0.054420	-0.591067	0.444143	1.000000	0.412924	0.043921
longitude	-0.041065	-0.048520	-0.806317	0.449099	0.412924	1.000000	0.041680
Number of bedrooms	0.061985	-0.008756	-0.046856	0.043638	0.043921	0.041680	1.000000
House size (sqft)	0.068405	-0.060361	0.001795	0.033286	0.031696	0.009322	0.752276
House price of unit area	0.087529	-0.210567	-0.673613	0.571005	0.546307	0.523287	0.050265

27-11-2022, 10:07 3 of 6

```
In [21]: #Normalising the data for better regression
In [22]:
In [23]: mm_scaler = MinMaxScaler()
In [24]:
                       In [25]:
In [26]: | lr = LinearRegression()
        lr = lr.fit(X_train,y_train)
        y_pred_lr = lr.predict(X_test)
        R2 Score: 0.5976102037734493
In [27]: svr = SVR(kernel="linear")
        svr = svr.fit(X_train,y_train)
        y_pred_svr = svr.predict(X_test)
        R2 score: 0.604292380041031
In [28]: rf = RandomForestRegressor()
        rf = rf.fit(X_train,y_train)
        y_pred_rf = rf.predict(X_test)
        R2 score: 0.7601839067632499
In [29]:
```

PART 2: PREDICTING SIMILAR TITLES

```
In [30]: ""

In [31]: ""

In [3
```

In [32]:

Out[32]:

	uniq_id	crawl_timestamp	product_url	product_na
0	c2d766ca982eca8304150849735ffef9	2016-03-25 22:59:23 +0000	http://www.flipkart.com /alisha-solid-women- s-c	Alisha € Wom Cycling Sh
1	7f7036a6d550aaa89d34c77bd39a5e48	2016-03-25 22:59:23 +0000	http://www.flipkart.com /fabhomedecor-fabric- do	FabHomeD Fabric Do Sofa
2	f449ec65dcbc041b6ae5e6a32717d01b	2016-03-25 22:59:23 +0000	http://www.flipkart.com /aw-bellies /p/itmeh4grg	AW Be
3	0973b37acd0c664e3de26e97e5571454	2016-03-25 22:59:23 +0000	http://www.flipkart.com /alisha-solid-women- s-c	Alisha € Wom Cycling Sh
4	bc940ea42ee6bef5ac7cea3fb5cfbee7	2016-03-25 22:59:23 +0000	http://www.flipkart.com /sicons-all-purpose- arn	Sicon Purpose Ar Dog Sharr
19995	7179d2f6c4ad50a17d014ca1d2815156	2015-12-01 10:15:43 +0000	http://www.flipkart.com /walldesign-small- vinyl	WALLDES SMALL VI STICI
19996	71ac419198359d37b8fe5e3fffdfee09	2015-12-01 10:15:43 +0000	http://www.flipkart.com /wallmantra-large- vinyl	WALLMAN LARGE VI STICKI STICI
19997	93e9d343837400ce0d7980874ece471c	2015-12-01 10:15:43 +0000	http://www.flipkart.com /elite-collection- mediu	EI COLLECT MED ACR\ STICI
19998	669e79b8fa5d9ae020841c0c97d5e935	2015-12-01 10:15:43 +0000	http://www.flipkart.com /elite-collection- mediu	EL COLLECT MED ACRY STICI
19999	cb4fa87a874f715fff567f7b7b3be79c	2015-12-01 10:15:43 +0000	http://www.flipkart.com /elite-collection- mediu	EL COLLECT MED ACRY STICI

20000 rows × 15 columns

```
In [33]: import math
         import re
         from collections import Counter
         WORD = re.compile(r"\w+")
         #Gets cosine similarity for given pair of strings
         def get_cosine(text1, text2):
             text1 = text1.lower()
             text2 = text2.lower()
             vec1 = text_to_vector(text1)
             vec2 = text_to_vector(text2)
              intersection = set(vec1.keys()) & set(vec2.keys())
              numerator = sum([vec1[x] * vec2[x] for x in intersection])
              sum1 = sum([vec1[x] ** 2 for x in list(vec1.keys())])
              sum2 = sum([vec2[x] ** 2 for x in list(vec2.keys())])
             denominator = math.sqrt(sum1) * math.sqrt(sum2)
              if not denominator:
                  return 0.0
              else:
                  return float(numerator) / denominator
         #Converts text to vector using count method
         def text_to_vector(text):
             words = WORD.findall(text)
In [34]: def similar_title(title):
             scores = amazon_df["product_name"].apply(lambda x: get_cosine(x,title))
In [35]:
Out[35]:
                                   uniq_id crawl_timestamp
                                                                 product_url product_name
                                                          http://www.flipkart.com
                                                                                    FDT
                                                2016-01-03
          28 171e0bcea390c17fd70e3ffa6c2cd187
                                                                /fdt-women-
                                                                               WOMEN'S
                                             20:56:50 +0000
                                                                s-leggings/p... Leggings Pants
In [ ]:
```