Continuous Random Variables

Pablo Arés Gastesi

Departamento de Matemáticas y Ciencia de Datos Universidad San Pablo CEU pablo.aresgastesi@ceu.es

Septembre 2024

Density Function

Continuos random variables take infinitely many values, so we cannot compute the probability of the variable being equal to a point; that is, P(X=x) does not make sense. Instead, we compute probabilities of intervals.

The density function f(x) of a continuos random variable X is a function satisfying the following:

- $f(x) \ge 0$ for all x.
- $\bullet \int_{-\infty}^{\infty} f(x) \, dx = 1$
- $P(a \le X \le b) = \int_a^b f(x) dx$

Cumulative Distribution Function

As in the discrete case, the **cumulative distribution function** F(x) gives the probability of the random variable X not exceeding the value x:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(s) ds$$

Important

Given the density function f(x) and the cumulative distribution function F(x) of X we have F'(x) = f(x).

We also have a relation between the cumulative distribution function and the probability of X being in an interval:

$$P(a \le X \le b) = \int_a^b f(x) dx = F(b) - F(a)$$

Expected Value and Variance

For a continuous random variable X we must integrate to compute the expected value E[X] and the variance V[X].

$$\mu_X = E[X] = \int_{-\infty}^{\infty} x f(x) dx$$
$$\sigma_X^2 = V[X] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

Important

$$\sigma_x^2 = E[X^2] - \mu^2$$

Uniform Distribution

The **uniform distribution** between a and b, with a < b, U(a, b) gives equal probabilities to all parts of the interval [a, b]. Its density function is $f(x) = \frac{1}{b-a}$ for $a \le x \le b$, and f(x) = 0 otherwise.

Important

If $X \sim U(a, b)$ we have

The density function is given by

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & otherwise \end{cases}$$

- $E[X] = \frac{a+b}{2}$
- $V[X] = \frac{(b-a)^2}{12}$

Normal Distribution

A random variable X is **normally distributed**, with mean μ and standard deviation σ , written as $X \sim N(\mu, \sigma)$ if its density function is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Do not panic!! You don't need to learn this formula.

Important

If
$$X \sim N(\mu, \sigma)$$
 then

$$E[X] = \mu, \qquad V[X] = \sigma^2$$

Normal Distribution

Change in mean

Change in standard deviation

Standardization

Important (Standardization)

If
$$Y \sim N(\mu, \sigma)$$
 then

$$X = rac{Y - \mu}{\sigma} \sim N(0, 1)$$

Central Limit Theorem

Important (Central Limit Theorem)

Let X_1, X_2, \ldots, X_n be independent, identically distributed random variables with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$ for all variables. Set $Y = \frac{1}{n}(X_1 + X_2 + \cdots + X_n)$. Then

$$\sqrt{n}(Y-\mu)\sim N(0,\sigma)$$

when n is big enough. Or, equivalently,

$$Y \sim N(\mu, \sigma/\sqrt{n})$$

The binomial and the normal distributions

Since the binomial distribution is a sum of independent Bernoulli distributions with the same probability, we can use the normal distribution to approximate the binomial distribution when the parameter n is big (probabilities for the binomial are hard to compute; for the normal, we have tables).

Important

If $X \sim B(n, p)$, with np(1-p) > 5, then the variable

$$Z = \frac{X - np}{\sqrt{np(1 - p)}}$$

is normally distributed: $Z \sim N(0,1)$. Or, equivalently, for n big enough, B(n,p) can be approximated by

$$B(n,p) \approx N(np, \sqrt{np(1-p)})$$

The binomial and the normal distributions

For example, if $X \sim B(100,0.4)$, we have np(1-p)=100(0.4)(0.6)=24>5. To compute the probability of X being between 45 and 50 (that is, X=45,46,47,48,49,50) we can do with a normal distribution, after standardization. We have np=40 and np(1-p)=24, $\sqrt{24}=4.9$, so $Z=\frac{X-40}{4.9}\sim N(0,1)$. We compute the normalized values of the end points, 45 and 50:

$$\frac{45-40}{4.9} = 1.02, \qquad \frac{50-40}{4.9} = 2.04$$

So

$$P(45 \le X \le 50) \approx P(1.02 \le Z \le 2.024) = F(2.04) - F(1.02) = 0.133$$

Computing by the binomial formula we have the probability is approximately $0.16\,$

χ^2 Distribution

The chi-squared distribution χ_n^2 with n degrees of freedom is obtained as the sum of of the squared of independent, identically distributed standard normal distributions. That is, if Z_1, Z_2, \ldots, Z_n are independent, all of the $Z_i \sim N(0,1)$, then

$$\chi_n^2 = Z_1^2 + Z_2^2 + \dots + Z_n^2$$

If $X \sim \chi_n^2$ then we have the following important facts:

Important

- X only takes only positive values.
- The density function f(x) = ... something very complicated.
- \bullet E[X] = n
- V[X] = 2n

χ^2 Distribution

Student's t Distribution

If $Z \sim N(0,1)$ and $X \sim \chi_n^2$ (with $n \ge 1$) are independent, then the **Student's t distribution** with n degrees of freedom t_n is a continuous random varible that generalizes the normal distribution. It is given by

$$t_n = \frac{Z}{\sqrt{X/n}}$$

Important

If $T \sim t_n$ then we have

- T takes all real values
- The density function is, again, complicated.
- E[T] = 0 if n > 1; undefined if n = 1
- $V[T] = \frac{n}{n-2}$ if n > 2; ∞ for n = 2; undefined for n = 1

Students' t Distribution

Snedecor's F Distribution

The Fisher-Snedecor distribution, or **Snedecor's F** distribution, with m and n degrees of freedom, $F_{m,n}$ is given by

$$F_{m,n} = \frac{X/m}{Y/n}$$

where $X \sim \chi_m^2$ and $Y \sim \chi_n^2$ are independent χ^2 distributions.

Important

If $X \sim F_{m,n}$ we have

- The order of m and n is important!
- X takes only positive values.
- $E[X] = \frac{n}{n-2}$ for n > 2
- $V[X] = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}$ for n > 4

Students' t Distribution

