HOPE AI ASSIGNMENT - 5 Classification

GitHub Link for dataset:

https://github.com/JayachandraPrabha/Assignment-5-Classification/blob/main/CKD.csv

<u>Problem Statement / Requirement:</u>

A requirement from the Hospital Management asked us to create a predictive model which will predict Chronic Kidney Disease (CKD) based on several parameters. The Client has provided the dataset of the same.

- 1.) Identify your problem statement
- 2.) Tell basic info about the dataset (Total number of rows, columns)
- 3.) Mention the pre-processing method if you're doing any (like converting string to number nominal data)
- 4.) Develop a good model with a good evaluation metric. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with a final model.
- 5.) All the research values of each algorithm should be documented. (You can make a tabulation or screenshot of the results.)
 - 6.) Mention your final model, justify why you have chosen the same. .

1. Identify the Problem statement:

As the Hospital management wants to **predict Chronic Kidney Disease (CKD)** with the provided dataset.

A model has to be developed which will predict Chronic Kidney Disease (CKD). Approach:

- i) Stage-I → ML (Dataset in Numerical format)
- ii) Stage-II → Supervised Learning (requirement is clear)
- iii) Stage-III → Classification (Output is in textual format (Yes/No type))

2. Basic Information about the dataset:

Total number of rows: 399
Total number of columns: 28
Shape of the dataset: (399, 28)

3. Pre-processing method:

converting string to number→ nominal data

As the dataset contains various (yes/no, present/not present, normal/abnormal) types of data. Inorder to convert the incomparable categorical/string data to numerical data by using **one hot encoding method.**

4. Good model with good evaluation metrics (roc_auc_score)

[Reverse operating characteristics area under curve] score:

Using machine learning algorithms, finally coming up with a good model.

NaiveBayes Classifier	GaussianNB	MultinomialNB	ComplementNB	BernoulliNB
roc_auc_value	<mark>1.0</mark>	0.8776	0.8776	<mark>1.0</mark>

- 1. Support Vector Machine (SVC)
 - → roc auc score value: 0.8631863171770662
- 2. Decision Tree Classifier (DTC)
 - → roc_auc_score value: 0.97333333333333333
- 3. KNN Classifier
 - → roc_auc_score value: 0.854222222222222
- 4. K-means clustering
 - → roc_auc_score value: 0.
- 5. Random Forest (RC)
 - → roc_auc_score value: 1.0
- 6. Logistic Regression
 - → roc_auc_score: 0.9986979166666666

ML algorithms: Random Forest, Gaussian NB, Bernoulli NB whose roc_auc_score values are selected, hence declared as the final model.

<u>5. Research values (Classification_report & roc_auc_score values of the models):</u> Screen snip Link:

https://docs.google.com/document/d/13nNRpfYoaVd-t9Z5Rodirky4k559e3QnwEqHB2cIIUQ/edit?usp=sharing

6. Mention your final models, justify why you have chosen the same?

The finalized models are **Gaussian Naive Bayes(NB)**, **Bernoulli NB and Random Forest**. After analyzing with various algorithms and tuning its hyper/tuning parameters whose roc_auc_score values were as follows:

S.No	Name of the Algorithm	roc_auc_score value	Model output
1	Gaussian Naive Bayes (NB)	1.0	Good
2	Multinomial NB	0.8776	Poor
3	Complement NB	0.8776	Poor
4	Bernoulli NB	1.0	Good
5	Support Vector Machine (SVC)	0.8631863171770662	Moderate
6	Decision Tree Classifier (DTC)	0.9733333333333334	Moderate
7	Random Forest (RF)	1.0	Good
8	KNN Classifier	0.85422222222222	Moderate
9	Logistic Regression	0.9986979166666666	Moderate

Conclusion:

In conclusion, the best models obtained are

- 1. Gaussian Naive Bayes(NB)
- 2. Bernoulli NB and
- 3. Random Forest.

The Gaussian Naive Bayes(NB), Bernoulli NB and Random Forest algorithms provided the roc_auc_score values are 1.0 (nearly 100% of the accuracy). Hence Gaussian Naive Bayes(NB), Bernoulli NB and Random Forest machine learning classification algorithms were finalized as the best models.