Street Recognizer

Challenge Projekt HS18

Agenda

- Aufgabenstellung
- Management Summary / Ergebnis
- Vorgehen
 - Normalisierung
 - Modell Training
 - Vorhersagen
- Challenges
- Potential und mögliche Erweiterungen
- Fazit

Aufgabenstellung


```
"features": [
       "id": "way/3847622",
       "type": "Feature",
       "properties": {
          "surface": "paved",
           "name": "Speicherstrasse",
           "highway": "secondary",
           "maxspeed": "50",
           "changeset": "19622471",
           "loc ref": "14",
           "id": "way/3847622",
           "timestamp": "2013-12-24T20:28:43Z",
           "note": "Kantonstrasse I. Klasse",
           "user": "twalter",
           "nat_ref": "463",
           "version": "48",
           "ref": "463"
       "geometry": {
           "coordinates": [
                  9.4059012,
                  47.3967295
```

das Modell für eine beliebige Strasse in der Schweiz den

«Mit einer durchschnittlichen Wahrscheinlichkeit von 92%* kann

Untergrund bestimmen»

Technologie und Problem kennenlernen Vorgehensplanung Daten Normalisieren Vorgehensplanung Daten Normalisieren Vorgehensplanung Normalisieren Modell erstellen, Vorhersagen treffen

Aufbereiten

Normalisierung

OSM

Swisstopo

OSM & Swisstopo

OSM

Swisstopo

Modell Training

Surface-Werte in der Schweiz (Top 10)

Value	Count	
asphalt	109 432	49.14%
gravel	30 418	13.66%
paved	27 821	12.49% =
ground	12 018	5.40%
unpaved	9 921	4.45%
grass	6 861	3.08%
dirt	4 539	2.04%
concrete	4 291	1.93%
compacted	2 850	1.28%
fine_gravel	2 466	1.11%

Quelle: https://taginfo.osm.ch/keys/surface#values

Inspiration: CIFAR-10

➤ Modell trainiert mit 12'000 32x32 Bilder pro Surface

Problem: Paved/Unpaved

- Paved ist unspezifische Oberkategorie von asphalt oder concrete
- Unpaved ist Oberkategorie von dirt, grass, gravel, etc.

Wie soll Modell zwischen z.B. grass und unpaved unterscheiden?

Asphalt	
Paved	
Concrete	
Dirt	
Fine gravei	
Grass	
Gravel	
Ground	
Compacted	
Unpaved	

> Für binäres Modell gleich viele "paved" und "unpaved" Bilder

Vorhersage

"unentscheidbare" Strassen sind nicht im Resultat enthalten (z.B. 1x paved, 1x unpaved)

Prediction Accuracy (model accuracy = 82.7%)

Challenges

LV95 vs WGS84 Format

Weitere Challenges

- HSR Harddisk space
- Performance Optimierungen
- osmtogeojson Tool ist sehr instabil
- Overpass API nicht geeignet für grosse Anzahl Abfragen

Potential

Potential

- Orthofotos 10cm
- Modell Variieren
 - Bildgrösse
 - Anzahl / Typ hidden layers
 - komplett anderes Modell
- Einfliessen lassen von zusätzlichen OSM Daten
 - o z.B. Strassentyp (primary, secondary, etc.)
- Bereinigung von Daten
 - o z.B. Löschen von "Rausch-Bilder"

Fazit

Fazit

- Aufwand f
 ür Normalisierung ist enorm
- Qualität der attributierten Strassen ist mässig, bzw. die Kategorien zu ähnlich
- Aufbau mit Modulen sehr gute Lösung
- Docker image hat sich bewährt
- Al Know-How Steigerung war m\u00e4ssig
- Sehr interessant

Dokumentation und Code

https://github.com/dvincenz/StreetRecognizer