Ordinary character table of $G \cong C2 \times (C3 : Q8)$:

$T_{1} = \frac{1}{2} + \frac{1}{2$																	
Trivial source character table of $G \cong C2$ x (C3 : Q8) at $p = 2$:	1 17	1 17	1 17	1 1	N.T	1 17	1 17	1 1/7	1 1/7	N 7 N7	17	1.77	N7	A 7	17		N 7
Normalisers N_i	$\frac{N_1}{P_1}$	$\frac{N_2}{P_2}$	N_3	$\frac{N_4}{P_4}$	$\frac{N_5}{P_5}$	$\frac{N_6}{P_6}$		N_8		$\begin{array}{c cc} N_{10} & N_{11} \\ \hline P_{10} & P_{11} \end{array}$				$\frac{P_{15}}{P_{15}}$	N_{16}		
p-subgroups of G up to conjugacy in G Propresentatives $n = G \cdot N$	+	+	$\begin{array}{ c c c }\hline P_3 \\\hline 1a & 3a \end{array}$			$\frac{r_6}{1 \cdot 1a}$								$\frac{r_{15}}{1a 3a}$			
Representatives $n_j \in N_i$	1a 3a								1 <i>a</i>	$\begin{array}{c cc} 1a & 1a \\ \hline 0 & 0 \\ \end{array}$		$\frac{1a}{0}$		$\frac{1a}{0}$		$\begin{vmatrix} 1a \\ 0 \end{vmatrix}$	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 2 \cdot \chi_{13} + 2 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot $					-	~	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$0 \mid 0$		0 0	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$		0
$\frac{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18}}{1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_$			0 0	+			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) 0	0	0 0	<u> </u>	0	0	0 0	$\frac{0}{0}$	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot $	1	8 8					$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$		$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$			0 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$		0
$\frac{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 2 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0 0			0 0	0	$\begin{array}{c c} 0 & 0 \\ \hline 0 & 0 \end{array}$	0		0	$\frac{0}{0}$	0 0	0	0
	1	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$					$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$			0 0				0 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$		0
$\frac{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18}}{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 2 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$		0 0	_		0 0		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0 0	0	0	0	0 0	0 0	0	0
$ \begin{vmatrix} 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 2 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 $	1	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	"	1	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	1	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$			0 0			0	0 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$		0
$\frac{0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}{1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 1 \cdot \chi_{3} + 0 \cdot \chi_{4} + 1 \cdot \chi_{5} + 0 \cdot \chi_{6} + 1 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$		4 4			4 4			0 0	0	0 0	0	0	0	0 0		0	0
$ \begin{vmatrix} 1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0$	1	$\begin{vmatrix} 4 & 4 \\ 4 & -2 \end{vmatrix}$	1 -	1			$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$			0 0	0			0 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$		0
$\frac{0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}{1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 1 \cdot \chi_{4} + 1 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 1 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$		4 4	.	4 4				$\frac{0}{0}$	0	$\begin{array}{c c} 0 & 0 \\ \hline 0 & 0 \end{array}$	0	0	0	$\frac{0}{0}$	0 0	0	0
$ \begin{vmatrix} 1 & \chi_1 + 6 & \chi_2 + 6 & \chi_3 + 1 & \chi_4 + 1 & \chi_5 + 6 & \chi_6 + 6 & \chi_7 + 1 & \chi_8 + 6 & \chi_9 + 6 & \chi_{10} + 6 & \chi_{11} + 6 & \chi_{12} + 6 & \chi_{13} + 6 & \chi_{14} + 6 & \chi_{15} + 6 & \chi_{16} + 6 & \chi_{17} + 6 & \chi_{18} + 6 & \chi_{18} + 6 & \chi_{17} + 6 & \chi_{18} + 6$		$\begin{vmatrix} 4 & 4 \\ 4 & -2 \end{vmatrix}$			-		- -	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$		0 0	0			0 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$		0
$\frac{1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}{1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$		4 4			0 0				0	$\begin{array}{c c} 0 & 0 \\ \hline 0 & 0 \\ \end{array}$	0	0	0	0 0	, ,	0	0
$ \begin{vmatrix} 1 & \chi_1 + 1 & \chi_2 + 0 & \chi_3 + 0 & \chi_4 + 1 & \chi_5 + 1 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 0 & \chi_{12} + 0 & \chi_{13} + 0 & \chi_{14} + 0 & \chi_{15} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{$	1	$\begin{vmatrix} 1 & 1 \\ 4 & -2 \end{vmatrix}$						$\begin{array}{c c} \cdot 2 & 0 \\ \hline \cdot 2 & 0 \end{array}$		0 0	0		0	0 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$		0
$\frac{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$		4 4		0 0			$\frac{0}{0}$ 0 (0	0 0	0	 	0	$\frac{0}{0}$, ,	0	0
$\frac{1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 1 \cdot \chi_{6} + 1 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}{1 \cdot \chi_{1} + 1 \cdot \chi_{2} + 0 \cdot \chi_{3} + 1 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 1 \cdot \chi_{7} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$		4 4	$\frac{0}{0}$					0	4	0 0	0	0	0	0 0		0	0
$\frac{1 \cdot \chi_{1} + 1 \cdot \chi_{2} + 0 \cdot \chi_{3} + 1 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 1 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}{1 \cdot \chi_{1} + 1 \cdot \chi_{2} + 1 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 1 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$		4 4	$\frac{0}{0}$			<u> </u>		$\frac{3}{0}$	0	4 0	0	0	0	$\frac{0}{0}$		0	0
$\frac{1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}{1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$		4 4	0 0					0	0	0 4	0	0	0	0 0		0	0
$\frac{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$		2 2	$\frac{1}{2}$ $\frac{3}{2}$	2 2			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{3}{2}$	0	2 0	2	0	0	$\frac{0}{0}$	0 0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}$		2 2) 2	2	0 0	0	2	0	0 0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}$		2 2	0 0				0 2 2	2 2	0	0 2	0	0	2	0 0	0 0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}$		2 2	2 2	2 2	2 2	2	2 2 2	2 0	0	0 0	0	0	0	2 2	2 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}$	1	$\begin{vmatrix} 2 & -1 \end{vmatrix}$		$\begin{vmatrix} 2 & -1 \end{vmatrix}$!	. _		$\cdot 1 \mid 0$	0	$0 \mid 0$	0	0	0	$2 - \frac{1}{2}$	$\cdot 1 \mid 0$	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}$		2 2	2 2	2 2	0 0	2	2 0 0	0 0	2	0 2	0	0	0	0 0) 2	0	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$				_				0 0	0	2 2	0	0	0	0 0	0 0	2	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}$				0 0	0 0	0	0 2 2	2 0	2	2 0	0	0	0	0 0	0 0	0	2
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}$						1	1 1 1	1 1	1	1 1	1	1	1	1 1	1	1	1
		1			1				1	1							
$P_{i} = C_{roun}([()]) \simeq 1$																	

 $P_2 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48)]) \cong C2$ $P_3 = Group([(1,3)(2,7)(4,11)(5,12)(6,13)(8,18)(9,19)(10,20)(14,25)(15,26)(16,27)(17,28)(21,32)(22,33)(23,34)(24,35)(29,39)(30,40)(31,41)(36,43)(37,44)(38,45)(42,47)(46,48)]) \cong C2$ $P_4 = Group([(1,12)(2,19)(3,5)(4,25)(6,27)(7,9)(8,32)(10,34)(11,14)(13,16)(15,39)(17,41)(18,21)(20,23)(22,43)(24,45)(26,29)(28,31)(30,47)(33,36)(35,38)(37,48)(40,42)(44,46)]) \cong \mathbb{C}_2$ $P_5 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(2,8,9,21)(3,11,12,25)(6,15,16,29)(7,18,19,32)(10,22,33,36)(13,26,27,39)(17,30,31,42)(20,33,34,43)(24,37,38,46)(28,40,41,47)(35,44,45,48)]) \\ \cong C_4 = C_4 + C_4 +$ $P_6 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(27,34)(38,45)(27,34)(38,45)(27,34)(38,45)(27,34)(38,45)(27,34)(38,45)(27,34)(38,45)(27,34)(38,45)(27,34)(38,45)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28,34)(28$ $P_7 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,48)(35,45)(37,46)(40,47)(44,48), (1,11,5,25)(2,18,9,32)(3,4,12,14)(6,26,16,39)(7,8,19,21)(10,33,23,43)(13,15,27,29)(17,40,31,47)(20,22,34,36)(24,44,38,48)(28,30,41,42)(35,37,45,46)] \cong CAP(3,23,23,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(13,12,23)(1$ $P_8 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(25,39)(28,41)(30,42)(33,43)(35,45)(37,45)(15,46,29,37)(20,41,34,28)(22,30,36,42)(26,48,39,44)(33,40,43,47)] \\ \cong C4 + C_{10}(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,10,12)(1,1$ $P_{10} = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48), (1,7,5,19)(2,12,9,3)(4,32,14,18)(6,35,16,45)(37,46)(40,47)(44,48), (1,7,5,19)(2,12,9,3)(4,32,14,18)(6,35,16,45)(37,46)(40,47)(44,48), (1,7,5,19)(2,12,9,3)(4,32,14,18)(6,35,16,45)(37,46)(40,47)(44,48), (1,7,5,19)(2,12,9,3)(4,32,14,18)(6,35,16,45)(37,46)(40,47)(44,48), (1,7,5,19)(2,12,9,3)(4,32,14,18)(6,35,16,45)(37,46)(40,47)(44,48), (1,7,5,19)(2,12,9,3)(4,32,14,18)(6,35,16,45)(47,48)(47,48), (1,7,5,19)(2,12,9,3)(4,32,14,18)(6,35,16,45)(47,48)(47,48), (1,7,5,19)(2,12,9,3)(43,24,18)(47,48)(47,48), (1,7,5,19)(47,48)(47,48), (1,7,5,19)(47,48)(47,48), (1,7,5,19)(47,48)(47,48), (1,7,5,19)(47,48)(47,48), (1,7,5,19)(47,48)(47,48), (1,7,5,19)(47,48)(47,48), (1,7,5,19)(47,48)(47,48), (1,7,5,19)(47,48)(47,48), (1,7,5,19)(47,48)(47,48), (1,7,5,19)(47,48)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48)(47,48), (1,7,5,19)(47,48)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1,7,5,19)(47,48), (1$ $P_{11} = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48), (1,32,5,18)(2,11,9,25)(3,21,12,8)(4,19,14,7)(6,48,16,44)(10,40,23,47)(15,45,29,35)(17,43,31,33)(20,30,34,42)(22,28,36,41)(24,26,38,39)] \cong C4$ $P_{12} = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(15,29)(37,42)(22,33)(23,34)(24,35)(29,39)(30,40)(31,41)(36,43)(37,44)(38,45)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48), (1,2,5,9)(3,7,12,19)(4,21,14,8)(6,24,16,38)(10,31,23,17)(11,32,25,18)(13,35,27,45)(15,46,29,37)(20,41,34,28)(22,30,36,42)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24,38)(24$ $P_{13} = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(27,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(2,8,9,21)(3,11,12,25)(6,15,16,29)(7,18,19,32)(10,22,23,36)(13,26,27,39)(17,30,31,42)(20,33,34,43)(24,37,38,46)(28,40,41,47)(35,44,45,48), (1,2,5,9)(3,7,12,19)(4,21,14,8)(6,24,16,38)(10,31,23,17)(11,32,25,18)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45)(13,35,27,45$ $P_{14} = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(27,34)(22,36)(24,44,38,48)(28,30,41,42)(35,37,45,46)(17,18,32)(27,38)(28,41)(37,48)(28,38)(28,38)(28,41)(38,48)(28,38,41)(38,48)(28,38,41)(38,48)(28,38,41)(38,48)(28,38,41)(38,48)(28,38,41)(38,48)(28,38,41)(38,48)(28,38,41)(38,48)(28,38,41)(38,48)(28,38,41)(38,48)(28,38,41)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,48)(38,4$ $P_{15} = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(24,35)(29,39)(30,40)(31,41)(36,43)(37,44)(38,45)(42,47)(46,48)]) \cong C4 \times C2$ $P_{17} = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48), (1,7,5,19)(2,12,9,3)(4,32,14,18)(6,35,16,45)(8,11,21,25)(6,15,16,29)(7,18,19,32)(10,22,23,36)(13,24,27,38)(15,48,29,44)(17,20,31,34)(22,40,36,47)(26,46,39,37)(30,43,42,33)]) \\ \cong Q8$ $\ln([(1.5)(2.9)(3.12)(4.14)(6.16)(7.19)(8.21)(10.23)(11.25)(13.27)(15.29)(17.31)(18.32)(20.34)(22.36)(24.38)(26.39)(28.41)(30.42)(33.43)(35.45)(37.46)(40.47)(44.48), (1.11.5.25)(2.18.9.32)(3.4.12.14)(6.26,16.39)(7.8,19.21)(10.33,23.43)(13.15.27.29)(17.31)(18.32)(20.34)(22.36)(24.38)(26.39)(28.41)(30.42)(33.43)(35.45)(37.46)(40.47)(44.48), (1.11.5.25)(2.18.9.32)(3.4.12.14)(6.26,16.39)(7.8,19.21)(10.33,23.43)(13.15.27.29)(17.31)(18.32)(20.34)(22.36)(24.38)(26.39)(28.41)(30.42)(33.43)(35.45)(37.46)(40.47)(44.48), (1.11.5.25)(2.18.9.32)(3.4.12.14)(6.26,16.39)(7.8,19.21)(10.33,23.43)(13.15.27.29)(17.31)(18.32)(20.34)(22.36)(24.38)(26.39)(28.41)(30.42)(33.43)(35.45)(37.46)(40.47)(44.48), (1.11.5.25)(2.18.9.32)(3.4.12.14)(6.26,16.39)(28.41)(30.42)(33.43)(35.45)(37.46)(40.47)(44.48), (1.11.5.25)(2.18.9.32)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.34)(20.$ $P_{19} = Group([(1,5)(2,9)(3,12)(4,14)(6,15)(2,9)(3,12)(4,14)(6,15)(2,9)(3,12)(4,14)(6,15)(2,33)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,35)(23,34)(24,34)(24,34)(24,34)(24,34)(24,34)(24,34)(24,34)(24,34)(24,34)(24,34)(24,34)(24,34)(24,34)(24,34)(24,34)(2$

3, 3, 4, 1, 1, 2, 5, 1, 3, 4, 4, 1, 4, 5, 1, 4(23, 34)(24, 35)(24, 34)(35, 34)(24, 35)(24, 34)(35, 34)(24, 35)(24, $2.5 \times 1.5 \times 1.5$ G(3)(1,1) = G(3)(1,1) + G(3)(1,2) + G(3)

 $N_{12} = Group([(1,2,5,9)(3,7,12,19)(4,21,14,8)(2,33,43)(24,35)(29,39)(21,41)(35,43)(22,33,43)(24,35)(29,39)(23,41)(35,43)(24,35)(29,39)(33,43)(24,35)(29,39)(33,43)(24,35)(29,39)(33,43)(24,35)(29,39)(33,43)(24,35)(29,39)(33,43)(24,35)(29,39)(33,43)(24,35)(29,39)(33,43)(24,35)(29,39)(33,43)(24,35)(29,39)(33,43)(24,35)(29,39)(33,43)(24,35)(29,39)(33,43)(24,35)(29,39)(33,43)(24,35)(29,39)(33,43)(35,45)(37,46)(49,47)(49,48)(19,49)(19,$ $N_{13} = Group([(1,2,5,9)(3,7,12,19)(4,21,14,8)(2,39,12)(1,2,5,9)(3,7,12,19)(4,21,14,8)(2,39,12)(1,32,12)(1,3$ $N_{14} = Group([(1,2,5,9)(3,7,12,19)(4,21,32)(22,33)(23,34)(24,35)(22,33)(23,34)(24,35)(22,33)(23,34)(24,35)(24,$ $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{5},$ $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{5},$

 $|\chi_3|$ 1 -1 -1 1 1 1 1 -1 -1 -1 1 1 1 1

 $|\chi_6|$ 1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 $|\chi_7|$ 1 1 -1 1 1 1 -1 1 -1 -1 1 1 1 -1

 $|\chi_9|$ 2 0 -2 -2 2 -1 0 0 2 -2 1 1 -1 0 $|\chi_{10}|$ 2 0 -2 2 2 -1 0 0 -2 -2 1 -1 -1 0 $\begin{vmatrix} \chi_{11} \end{vmatrix} 2 & 0 & 2 & -2 & 2 & -1 & 0 & 0 & -2 & 2 & -1 & 1 & -1 & 0 \end{vmatrix}$

 $|\chi_{12}|$ 2 0 2 2 2 -1 0 0 2 2 -1 -1 -1 0 -1 $|\chi_{13}|$ 2 0 2 0 -2 2 0 0 0 -2 2 0 0 -2 0 0

 $\begin{vmatrix} \chi_{14} \end{vmatrix} 2 \quad 0 \quad -2 \quad 0 \quad -2 \quad 2 \quad 0 \quad 0 \quad 0 \quad 2 \quad -2 \quad 0 \quad 0 \quad -2 \quad 0 \quad 0 \quad 2$

-1 1 1

 $|\chi_4|$ 1 -1 1 -1 1 1 -1 1 1

 $|\chi_8|$ 1 1 1 -1 1 1 1 -1 1 1

 $S_{1}(3)_{1}(3)_{2}(3)_{3}(3)_{4}(3)_{5}(3)_{5}(4)_{5}(4)_{5}(3)_{5}(4$