REPORT

Experiment 1: Parallel RLC Tuner Circuit Basic Properties

2.

f0 = 900 kHz			
f _{L3dB} (Hz)	fнзdв (Hz)	$BW = f_{H3dB} - f_{L3dB} (Hz)$	$Q = f_0 / BW$
865k	945k	80k	11.25

f0 = 1M Hz			
f _{L3dB} (Hz)	fнзdв (Hz)	$BW = f_{H3dB} - f_{L3dB} (Hz)$	$Q = f_0 / BW$
950k	1.05M	100k	10

f0 = 1M Hz, AC SWEEP waveform

f0 = 1.1M Hz			
f _{L3dB} (Hz)	fнзdв (Hz)	$BW = f_{H3dB} - f_{L3dB} (Hz)$	$Q = f_0 / BW$
1.04M	1.16M	120k	9.17

In this parallel RLC bandpass filter, the resonant frequency f_0 is given by

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

Resonant (Oscillation) Frequency:

The resonant frequency is the frequency at which the circuit will respond most strongly

Bandwidth:

the bandwidth is a measure of the range of frequencies over which the circuit responds or allows signals to pass efficiently. It is the width of the frequency band around the resonant frequency. Given by $f_{H3dB} - f_{L3dB}$ as indicated in the following figure.

Quality(Q) Factor:

The quality factor (Q) in an RLC tuner circuit is a dimensionless parameter that represents the ratio of $\frac{energy\ stored\ in\ the\ capacitor\ \&\ inductor}{energy\ dissipated}$. It is given by $\frac{Resonant\ f}{Bandwidth}$

Experiment 2: Parallel RLC Tuner Circuit with amplifier R2 1-meter-antenna 10k +10 ~L1 U1 1N60 100µ C2 CH₂ Op 100p Amp L2 C3 47µ 10k C5 1n CH1 50n 50n

NOTICE: Please add decouple capacitor between +10V, -10V, Ground

3.

	Signal Name	Carrier	Lower sideband	Upper sideband
	Frequency (Hz)	1.099M	1.095M	1.103M
	Magnitude (dB)	-12	-19.66	-22.66

4.

5.

	0.		
Signal Name Frequency (Hz)		Mod wave	
		4k	
	Magnitude (dB)	-22	

Let's take a closer look at the amplifier circuit connected to the RLC tuner. Non-inverting Amplifier:

The amplifier is connected in the non-inverting configuration, providing a gain of 10V/V.

Decoupling Capacitors:

Decoupling capacitors are connected to the power supply of the amplifier to short the AC signal to ground, preventing it from interfering with the DC bias of the amplifier.

Diode:

The diode is used as a rectifier to rectify the modulated signal. It prevents the high frequency carrier from getting through. An additional capacitor is placed at the output of the diode to filter out RF signal ($3kHz \sim 300GHz$).

Experiment 3: AM radio receiver

Why is it that most news channels use AM and most music channels use FM on the radio?

The following chart is a comparison of the different characteristics between AM & FM.

Modulation Type	АМ	FM
Noise Resistance	Poor	Strong
Audio Fidelity(保真度)	Low	High
Bandwidth	Narrow(10kHz)	Wide(200kHz)
Distance	Long	Short, limited to line of sight
Power Usage	Uses more power	Uses less power
Transmitter/Receiver Complexity	Simpler	More complex
Stereo(立體聲)	Hard to implement	Easily supported
Capture Effect	None, multiple signals can interfere with each other	Yes, Locks on to the stronger signal

You can notice that FM has the advantage of higher fidelity over AM. Additionally, stereo can be easily implemented using FM. These two main advantages make FM a better choice over AM for playing music.

On the other hand, AM's main advantage is long-distance coverage, so utility services like the Police Broadcasting Service(警廣) and Fishery Radio Station(漁業廣播電台) use AM instead.

Amplitude and Frequency Modulation

What is the capture effect?

The capture effect refers to a phenomenon in FM radio reception where a receiver locks onto the stronger of two signals on the same frequency, suppressing the weaker signal. This effect occurs because of the way FM receivers process signals using limiters and discriminators, which effectively filter out the weaker signals.

References:

- 1. http://hyperphysics.phy-astr.gsu.edu/hbase/electric/serres.html
- 2. https://www.diffen.com/difference/AM vs FM
- 3. https://www.pbs.org/wgbh/aso/tryit/radio/radiorelayer.html