



# Bioinformatics Summer School Long-reads Transcriptomics

Ana Conesa & Fabian Jetzinger

I<sup>2</sup>SysBio, Valencia, Spain BioBam Bioinformatics, Valencia, Spain

LongTREC - The Long-reads TRanscriptome European Consortium Marie Skłodowska-Curie grant agreement No 101072892

#### **Course Contents**



- Biological replicates and transcriptome reconstruction
- Differential Expression vs. Differential Isoform Usage
- 3 tappAS

# Section 1 Biological replicates and transcriptome reconstruction

Understanding the biological replicates influence transcriptome reconstruction

#### Biological replicates capture natural variation and improve reproducibility



- Distinguish general patterns from sample-specific noise
- Detect and discard outliers, low-quality samples
- Increase power of statistical analyses
- Enable a wider range of tools

#### Combination of replicates influences transcriptome reconstruction



#### Join & Call

- Combine all reads → transcriptome reconstruction
- Detect lowly-expressed transcript variants

#### Call & Join

- Transcriptome reconstruction on each sample → combine annotations (e.g. TAMA Merge)
- Detect sample-specific transcript variants



Results of both strategies vary across transcriptome reconstruction tools!

#### Transcriptome diversity varies based on strategy and reconstruction tool





#### **Structural Category**



Long-reads Transcriptomics 6

#### Transcriptome diversity varies based on strategy and reconstruction tool







#### Transcriptome diversity varies based on strategy and reconstruction tool



Intron





**Antisense** 

#### Takeaways:

In Catalog

Performance of strategy depends on reconstruction tool
Majority of reads assigned to FSM (reference, known) transcripts

Consider choice of strategy and tool carefully based on research objectives

# Section 2 Differential Expression vs. Differential Isoform Usage

Understanding differential expression at isoform resolution



#### **Differential Expression**

- Gene- or transcript-level
- Compares total expression across conditions







#### **Differential Expression**

- Gene- or transcript-level
- Compares total expression across conditions





#### **Differential Expression**

- Gene- or transcript-level
- Compares total expression across conditions





#### **Differential Expression**

- Gene- or transcript-level
- Compares total expression across conditions

#### **Differential Isoform Usage**

Compares relative expression of a gene's isoforms across conditions



#### Differential Isoform Usage sheds light on relative differences



#### **Differential Isoform Usage**

Compares relative expression of a gene's isoforms across conditions



#### Differential Isoform Usage sheds light on relative differences



#### **Differential Isoform Usage**

Compares relative expression of a gene's isoforms across conditions



#### Many tools for DE, DIU, and similar types of analyses exist



- Other, similar types of analyses exist, e.g. Differential Exon Usage
- Popular tools: edgeR, DESeq2, DEXSeq, NOISeq (can simulate replicates), DRIMSeq, etc.
- Traditional tools (edgeR, DESeq2, etc.) have been shown to also work well in long reads

See:

Dong, Xueyi et al. "Benchmarking long-read RNA-sequencing analysis tools using in silico mixtures." Nature methods vol. 20,11 (2023): 1810-1821. doi:10.1038/s41592-023-02026-3



#### How would you describe the following situation of Gene A and its 3 isoforms?

- Differential Gene Expression?
- Differential Transcript Expression?
- Differential Transcript Usage?
- Major Isoform Switch?





|             | Tr. A.1 | Tr. A.2 | Tr. A.3 |
|-------------|---------|---------|---------|
| Condition 1 | 1000    | 600     | 400     |
| Condition 2 | 500     | 100     | 400     |

Long-reads Transcriptomics

### **Section 3**

## tappAS

Applying differential expression and usage analyses and much more...

#### tappAS enables expression and functional analyses and visualization



- Gene-, transcript- or CDS-level differential expression
- Transcript- or CDS-level differential usage
- Gene Set Enrichment Analysis (GSEA)
- Visualization of functional annotation

#### tappAS project configuration



### **Thank You!**



For more information about the LongTREC Summer School:

https://longtrec.eu