

#### Module IN 2111

# 3D User Interfaces - Dreidimensionale Nutzerschnittstellen -

Prof. Gudrun Klinker



**Evaluation of User Interfaces SS 2023** 



### Literature

#### Related Work:

- Ben Shneiderman and Catherine Plaisant: Designing the User Interface, Strategies for Effective Human-Computer Interaction, 4th edition, Addison Wesley, 2005, (http://wps.aw.com/aw\_shneider\_dtui\_4).
- D. Bowman, E. Kruijff, J. LaViola Jr., I. Poupyrev: *3D User Interfaces, Theory and Practice*, Addison Wesley, 2004.
- J. Bortz: Statistik für Human- und Sozialwissenschaftler, 6. Auflage, Springer, 2004.
- J. McClave, F. Dietrich II: Statistics, Dellen Publishing Company, 1985.
- J.E. Swan II, S.R. Ellis, B.D. Adelstein, Conducting Human-Subject Experiments with Virtual and Augmented Reality, VR 2007 Tutorial, (http://www.cse.msstate.edu/~swan/teaching/tutorials/Swan-VR2007-Tutorial.pdf).

### **Agenda**

- 1. Introduction
  - 2. Evaluation Design
  - 3. Usability Testing
  - 4. Statistics Tools



### 1 Introduction

#### Purposes of Evaluations

- Definition
   Analysis, assessment, and testing of an artifact
- Iterative approach
   Design evaluation redesign ...
- Goals
  - Problem identification
  - Redesign
  - Understanding of usability (to obtain design guidelines)
  - Development of performance models (to predict user performance)



### 1 Introduction

### **Terminology**

- Usability
   Encompasses everything about an artifact and everything that affects the person's use of the artifact
- Evaluation
   Measures some aspects of the usability of an interface:
   System performance, task performance, user preference

### **Agenda**

- 1. Introduction
- → 2. Evaluation Design
  - 3. Usability Testing
  - 4. Statistics Tools

# 2. Evaluation Design

- → 2.1 Planning an evaluation
  - 2.2 Evaluation approaches
  - 2.3 Evaluation metrics



2. Evaluation Design

# 2.1 Planning an Evaluation

- User task analysis
  - Generate lists of detailed task descriptions, sequences, relationships, user work information flow
- Representative scenarios
  - Must be accurate and complete
  - More than simple atomic, mechanical or physical-level tasks
  - Should include high-level, cognitive, problem-solving tasks



2. Evaluation Design

# 2.1 Planning an Evaluation

- **Prototyping** 
  - Paper-based sketch
  - Storyboard
  - Static mockup
  - Wizard of Oz (WOZ) technique: Human as a substitute for missing functionality (e.g. speech recognition)



# 2. Evaluation Design

- 2.1 Planning an evaluation
- → 2.2 Evaluation approaches
  - 2.3 Evaluation metrics





# 2.2 Evaluation Approaches

#### Phases and Strategies

- P1: before development
  - Expert reviews
  - User surveys
- P2: during development
  - Usability testing and laboratories
  - User surveys
- P3: after development
  - Acceptance tests
  - Evaluation during active use
  - User surveys

#### Methods

- Phase 1
  - Cognitive walkthrough
  - Heuristic evaluation
- Phase 2
  - Formative evaluation
  - Summative evaluation
  - Questionnaires
  - Interviews and demos
- Phase 3
  - Questionnaires
  - Interviews and demos



# 2.2 Evaluation Approaches

#### Phases and Strategies

- P1: before development
  - Expert reviews
  - User surveys
- P2: during development
  - Usability testing and laboratories
  - User surveys
- P3: after development
  - Acceptance tests
  - Evaluation during active use
  - User surveys

#### Methods

- Phase 1
  - Cognitive walkthrough
  - Heuristic evaluation
- Phase 2
  - Formative evaluation
  - Summative evaluation
  - Questionnaires
  - Interviews and demos
- Phase 3
  - Questionnaires
  - Interviews and demos

# 2.2.1 Phase 1: Before Development

#### **Expert Reviews**

- Half day to one week effort
  - A lengthy training period may sometimes be required to explain the task domain or operational procedures.
- Can be scheduled at several points in the development process
  - When experts are available
  - When the design team is ready for feedback.



# 2.2.1 Phase 1: Before Development

### **Expert Reviews**

- Different experts tend to find different problems in an interface. 2-3 expert reviewers can be highly productive.
- <u>Danger</u>: Experts may not have an adequate understanding of the task domain or the user communities.
- For successful expert reviews: Choose knowledgeable experts who are familiar with the project situation and who have a longer term relationship with the organization.
- Problem: Even experienced expert reviewers know little about how typical users, especially first-time users will really behave.



# 2.2.1 Phase 1: Before Development

### **Cognitive Walkthrough**

- Step through common tasks that a user would perform
- Evaluate the interface's ability to support each step



# 2.2.1 Phase 1: Before Development

#### **Heuristic Evaluation**

Guidelines-based expert evaluation

- Experts apply a set of heuristics or design guidelines
- NO representative users



# 2.2 Evaluation Approaches

#### Phases and Strategies

- P1: before development
  - Expert reviews
  - User surveys
- P2: during development
  - Usability testing and laboratories
  - User surveys
- P3: after development
  - Acceptance tests
  - Evaluation during active use
  - User surveys

#### Methods

- Phase 1
  - Cognitive walkthrough
  - Heuristic evaluation
- Phase 2
  - Formative evaluation
  - Summative evaluation
  - Questionnaires
  - Interviews and demos
- Phase 3
  - Questionnaires
  - Interviews and demos

# 2.2.1 Phase 1, 2 and 3

#### **User Surveys**

- Familiar, inexpensive and general
  - Complementary to usability tests and expert reviews
- Important:
  - Clear goals in advance
  - Development of focused items that help attain the goals
- Users could be asked for their subjective impressions about specific aspects of the interface.
- ! Many people prefer answering a brief survey displayed on a screen, instead of filling in and returning a printed form!





# 2.2 Evaluation Approaches

#### Phases and Strategies

- P1: before development
  - Expert reviews
  - User surveys
- P2: during development
  - Usability testing and laboratories
  - User surveys
- P3: after development
  - Acceptance tests
  - Evaluation during active use
  - User surveys

#### Methods

- Phase 1
  - Cognitive walkthrough
  - Heuristic evaluation
- Phase 2
  - Formative evaluation
  - Summative evaluation
  - Questionnaires
  - Interviews and demos
- Phase 3
  - Interviews and demos



# 2.2.2 Phase 2: During Development

- Increasingly important since the early 1980s
- Speed up in many projects plus dramatic cost savings
- Specially constructed usability laboratories
  - Typical setup: two 10 by 10 foot areas, one for the participants to do their work and another, separated by a half-silvered mirror, for the testers and observers (designers, managers, and customers).





# 2.2.2 Phase 2: During Development





[fio hotJar]

# 2.2.2 Phase 2: During Development



# 2.2.2 Phase 2: During Development



[VR Cave, Leibniz Supercomputing Centre LRZ]





# 2.2.2 Phase 2: During Development

- Participants should represent the intended user communities
  - Background in computing
  - Experience with the task
  - Motivation
  - Education
  - Knowledge of the natural language used in the interface
- Limitations
  - Emphasizes first-time usage
  - Limited coverage of the interface features
- Important
  - Detailed logging/videotaping during user tests



# 2.2.2 Phase 2: During Development

### Formative Evaluation ("Discount (cheap) usability testing")

- Observational, empirical method
- Applied during evolving stages of design
- Assess user interaction by interactively placing representative users in task-based scenarios
- Goals
  - Identify problems
  - Assess design's ability to support user exploration, learning and task performance
- Informal .. Very formal and extensive
  - Qualitative results: critical incidents, user comments, general reactions
  - Quantitative results: task timing, errors



# 2.2.2 Phase 2: During Development

### Summative Evaluation (Competitive usability testing)

- Statistical comparison of two or more configurations of UI designs, UI components, and/or UI techniques
- Representative users perform task scenarios
- Formal or informal
- Generally performed after UI designs are complete
- Factorial experimental design with multiple independent variables
- Helps evaluators compare the productivity and cost benefits associated with different UI designs
- Requires consistent set of task scenarios that compare a design's support for specific user task performance



# 2.2.2 Phase 2: During Development

#### **Questionnaires**

- Written set of questions
- Given to users before, in between or after they have participated in a usability evaluation session
- Demographic information, subjective data
- Examples
  - SUS
  - NASA-TLX
- Used frequently
  - Help to find out about degree of presence, cyber sickness





# 2.2.2 Phase 2: During Development

#### Mental workload

- NASA-TLX (Task Load Index)
  - Subjective workload assessment tool
  - For various human-machine systems
  - Multi-dimensional rating procedure
  - Score based on a weighted average of rat
    - Mental Demands
    - Physical Demands
    - Temporal Demands
    - Own Performance
    - Effort
    - Frustration



SG Hart, LE Staveland. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research, Human Mental Workload, 1988

NASA TLX Homepage: http://humansystems.arc.nasa.gov/groups/TLX/

29





# 2.2.2 Phase 2: During Development

### System Usability Scale (SUS)

- John Brooke, 1986
- Subjective determination of usability (estimation based on 10 questions) to determine:
  - <u>Effectiveness</u> (users can achieve their goals)
  - <u>Efficiency</u> (Little effort is required for the achievement of these goals)
  - <u>Satisfaction</u> (the experience was satisfactory)
- Score in range 0..100 (raw score \* 2.5)

|                                                                                                 | Strongly disagree |   |   | Strongly agree |   |
|-------------------------------------------------------------------------------------------------|-------------------|---|---|----------------|---|
| I think that I would like to use this system frequently                                         | 0                 | 0 | 0 | 0              | 0 |
| I found the system unnecessarily complex                                                        | 0                 | 0 | 0 | 0              | 0 |
| I thought the system was easy to use                                                            | 0                 | 0 | 0 | 0              | 0 |
| I think that I would need the support of<br>a technical person to be able to use this<br>system |                   | 0 | 0 | 0              | 0 |
| I found the various functions in this system were well integrated                               | 0                 | 0 | 0 | 0              | 0 |
| I thought there was too much inconsistency in this system                                       | 0                 | 0 | 0 | 0              | 0 |
| I would imagine that most people<br>would learn to use this system very<br>quickly              | 0                 | 0 | 0 | 0              | 0 |
| I found the system very cumbersome to use                                                       | 0                 | 0 | 0 | 0              | 0 |
| I felt very confident using the system                                                          | 0                 | 0 | 0 | 0              | 0 |
| I needed to learn a lot of things before I could get going with this system                     | 0                 | 0 | 0 | 0              | 0 |

J Brooke. System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information, Digital Equipment Co Ltd, Reading, UK, 1986

# 2.2 Evaluation Approaches

#### Phases and Strategies

- P1: before development
  - Expert reviews
  - User surveys
- P2: during development
  - Usability testing and laboratories
  - User surveys
- P3: after development
  - Acceptance tests
  - Evaluation during active use
  - User surveys

#### Methods

- Phase 1
  - Cognitive walkthrough
  - Heuristic evaluation
- Phase 2
  - Formative evaluation
  - Summative evaluation
  - Questionnaires
  - Interviews and demos
- Phase 3
  - Questionnaires
  - Interviews and demos

# 2.2.2 Phase 2: During Development

#### Interviews

- Oral conversation with users
  - Can gather more information than a questionnaire
  - Useful for getting subjective reactions, opinions, insights about users' reasoning
- Structured interviews
  - Predefined set of questions and responses
- Open-ended interviews
  - Interviewees can provide additional information
  - Interviewer can ask broad questions

#### Demos

Often shown in conjunction with user interviews
 Interviews and demos often used at the end of formative or summative usability evaluations

# 2.2 Evaluation Approaches

#### Phases and Strategies

- P1: before development
  - Expert reviews
  - User surveys
- P2: during development
  - Usability testing and laboratories
  - User surveys
- P3: after development
  - Acceptance tests
  - Evaluation during active use
  - User surveys

#### Methods

- Phase 1
  - Cognitive walkthrough
  - Heuristic evaluation
- Phase 2
  - Formative evaluation
  - Summative evaluation
  - Questionnaires
  - Interviews and demos
- Phase 3
  - Interviews and demos

# 2.2.3 Phase 3: After Development

#### **Acceptance Tests**

- For large implementation projects
  - In large systems: 8-10 such tests should be carried out on different components of the interface and with different user communities.
- Test after product completion
  - Further field testing before national or international distribution
- Goal: Force as much of the evolutionary development as possible into the prerelease phase, when change is relatively easy and inexpensive to accomplish.



# 2.2.3 Phase 3: After Development

#### Evaluation during active use

- Interviews and focus group discussions
  - Interviews with individual users to pursue specific issues
  - Group discussions to ascertain the universality of comments
- Continuous user-performance data logging
  - Guidance to system maintainers in optimizing performance and reducing costs for all participants
- Online or telephone consultants
- Online suggestion box or trouble reporting
- Online bulletin board or newsgroup
- User newsletters and conferences

# 2. Evaluation Design

- 2.1 Planning an evaluation
- 2.2 Evaluation strategies and phases (approaches)
- → 2.3 Evaluation metrics

## 2.3 Evaluation Metrics

- → 2.3.1 System Performance Metrics
  - 2.3.2 Task Performance Metrics
  - 2.3.3 User Preference Metrics

# 2.3.1 System Performance Metrics

- Average frame rate
- Average latency
- Network delay
- Optical distortion
- ...
- Only important insofar as they affect users' experience or task performance

# 2.3.2 Task Performance Metrics

- Time to navigate to a specific location
- Accuracy of object placement
- Number of errors a user makes in selecting an object from a set
- Speed of learning a concept
- Spatial awareness
- •
- Problem: users cannot optimize simultaneously for both speed and accuracy



# 2.3.3 User Preference Metrics

- Subjective perception of the interface by the user
  - Perceived ease of use
  - Ease of learning
  - Satisfaction
- Obtained by questionnaires or interviews



# 2.3.3 User Preference Metrics

- Presence (the "feeling of being there") (3D UIs)
  - User rating on a given scale
  - Physiological measurements
  - User's reactions to events
  - Test of memory for environment and objects
- User comfort
  - Simulator sickness
  - Physical aftereffects of being exposed to 3D systems
  - Subjective measures (rating scales)

### **Agenda**

- 1. Introduction
- 2. Evaluation Design
- 3. Usability Testing
  - 4. Statistics Tools



Overview

# 3. Usability Testing

- → 3.1 Definition
  - 3.2 Testing process
  - 3.3 Experimental structure

### 3.1 Definition

#### **Definition**

Usability is the measure of the <u>quality</u> of the <u>user experience</u> when interacting with something

 whether a Web site, a traditional software application, or any other device the user can operate in some way or another [J. Nielson].

### Ergonomic requirements (DIN ISO EN 9241):

- Pragmatic quality (PQ)
  - Effectiveness (accuracy, completeness of task performance)
  - Efficiency (operating expense, speed)
- Hedonic quality (HQ): emotional, satisfactory experience
  - Satisfaction (freedom of interference, positive attitude of using a product)

# 3.2 Testing Process

- Quantitative procedure to test against predefined goals e.g.: Initial performance, long-term performance, learnability, memorability, most-used feature set, first impression, long-term satisfaction)
  - Reference values
  - Actual values (test data)
- Process of testing a UI (randomized tests)
  - Preparation
  - Introduction of test procedure to subjects
  - Test
  - Final discussion with subjects
  - Analysis
    - Quantitative, qualitative or subjective data
  - Report

# 3.2 Testing Process

Measurement function: t = f(x, y, z,...)

- Independent variables (x, y, z,...) "factors", parameters
  - Objects / systems under investigation (e.g., UI alternatives)
  - Variables can assume any value ("level") within the defined range
- Dependent variables (t, ...)
  - Measured attributes / properties of the system (e.g., task completion time, error counts, survey answers, scores, ...)
  - Functions of the independent variables
- Confounding factors
  - Additional factors (e.g., fatigue, learning) that can have an unintended influence on the dependent variables



# **3.2 Testing Process**

### Factorial design

- One-factor tests:
  - Only one independent variable x with  $I_x$  levels
    - $\rightarrow I_x$  UI alternatives

#### Example:

Input device  $\epsilon$  {mouse, arrows on keyboard, tangible 3D-object}  $\rightarrow$  3 UI alternatives

# 3.2 Testing Process

### Factorial design

- Two-factor tests:
  - Two independent variables, x with  $I_x$  levels and y with  $I_y$  levels  $\rightarrow I_x * I_y$  UI alternatives

```
Example:
Input device \epsilon {mouse, arrows on keyboard, tangible 3D-object}
Output \epsilon {sound, 3D graphics}
\rightarrow 3*2 = 6 UI alternatives
```

N-factor tests: N independent variables ...

# 3.3 Experiment Design

Test designs (comparing several UI alternatives)

### Between-subject design

Users are divided into several groups, each working with one UI alternative (i.e., with a different level of the independent variables)

Sample process of testing a UI (per test person)

- Demographic questionnaire
- Explain test scenario to test person
- Explain UI to test person
  - If necessary, let them play with the UI
- Test
  - Quantitative test
  - Qualitative test (questionnaire)
  - Interview
- Final discussion

Note: not all steps are executed in every experiment



# 3.3 Experiment Design

Test designs (comparing several UI alternatives)

### Within-subject design

All users are exposed to all UI alternatives

- Less subjects required
- Larger statistical strength: no bias due to different users
- But: carry-over effects (learning, fatigue)
- Permutations of test sequences required (for counterbalancing)
  - → requires n! subjects to test n UI alternatives





#### Example:

Input device  $\epsilon$  {mouse, arrows on keyboard, tangible 3D-object} Output  $\epsilon$  {sound, 3D graphics}

- $\rightarrow$  6 UI alternatives
- $\rightarrow$  720 test subjects

#### Example 2:

Input device  $\varepsilon$  {mouse, tangible 3D-object} Output  $\varepsilon$  {sound, 3D graphics}

- → 4 UI alternatives
- $\rightarrow$  24 test subjects

# 3.3 Experiment Design

Test designs (comparing several UI alternatives)

Within-subject design

Sample process of testing a UI (per test person)

- Demographic questionnaire
- Explain test scenario to test person
- For every UI alternative (in randomized order):
  - Explain UI alternative to test person
    - If necessary, let them play with the UI
  - Test
    - Quantitative test
    - Qualitative test (questionnaire)
    - Interview
- Final discussion

Note: not all steps are executed in every experiment

### **Agenda**

- 1. Introduction
- 2. Evaluation Design
- 3. Usability Testing
- → 4. Statistics Tools

# 4.1 General Approach

How can we decide whether two UI alternatives are "different" with respect to some criterion x?

Hypothesis testing

- Is UI a different from UI b?
- Is the difference significant?



# 4.2. Basics

- (Normal) population
  - Mean  $\mu$
  - Variance  $\sigma^2$
  - Standard deviation  $\sigma$

| Z         | area   | ordinate |
|-----------|--------|----------|
| -0,10     | 0,4602 | 0,3970   |
| -0,09     | 0,4641 | 0,3973   |
| -0,08     | 0,4681 | 0,3977   |
| -0,07     | 0,4721 | 0,3980   |
| -0,06     | 0,4761 | 0,3982   |
| -0,05     | 0,4801 | 0,3984   |
| -0,04     | 0,4840 | 0,3986   |
| -0,03     | 0,4880 | 0,3988   |
| -0,02     | 0,4920 | 0,3989   |
| <br>-0,01 | 0,4960 | 0,3989   |
| 0,00      | 0,5000 | 0,3989   |
| 0,01      | 0,5040 | 0,3989   |
| 0,02      | 0,5080 | 0,3989   |
| 0,03      | 0,5120 | 0,3988   |
| 0,04      | 0,5160 | 0,3986   |
| 0,05      | 0,5199 | 0,3984   |
| 0,06      | 0,5239 | 0,3982   |
| 0,07      | 0,5279 | 0,3980   |
| 0,08      | 0,5319 | 0,3977   |
| 0.09      | 0,5359 | 0.3973   |

#### **Simulations**



| Tabelle B (Fortsetzung) |        |          |      |        |          |      |        |          |
|-------------------------|--------|----------|------|--------|----------|------|--------|----------|
|                         | Fläche | Ordinate | 2    | Fläche | Ordinate | 2    | Fläche | Ordinate |
| -0,30                   | 0.3821 | 0,3814   | 0.20 | 0.5793 | 0,3910   | 0,70 |        | 0,3123   |
| -0,29                   | 0,3859 | 0,3825   | 0,21 | 0,5832 | 0,3902   | 0.71 | 0,7611 | 0,3101   |
| 0,28                    | 0.3897 | 0,3836   | 0.22 | 0,5871 | 0,3894   | 0,72 |        | 0,3079   |
| -0,27                   | 0.3936 | 0,3847   | 0,23 | 0,5910 | 0,3885   | 0,73 |        | 0,3056   |
| -0,26                   | 0,3974 | 0,3857   | 0,24 | 0,5948 | 0.3876   | 0,74 | 0,7704 | 0,3034   |
| 0,25                    | 0,4013 | 0,3867   | 0,25 |        | 0,3867   | 0,75 |        | 0,5011   |
| 0,24                    | 0,4053 | 0,3876   | 0.26 | 0,6026 |          | 0,76 |        | 0,2989   |
| -0,23                   | 0,4090 | 0,3885   | 0.27 | 0,6064 | 0,3847   | 0,77 |        | 0,2966   |
| -0,22                   | 0,4129 | 0,3894   | 0,28 | 0,6103 | 0,3836   | 0,79 |        | 0,2920   |
| -0,21                   | 0,4168 | 0,3902   | 0,29 | 0,6141 | 0.3825   | 0.78 | 0.7823 | 0,2943   |
| 0.20                    | 0,4207 | 0,3910   | 0,30 | 0,6179 | 0.3834   | 0,80 |        | 0,2897   |
| -0,19                   | 0,4247 | 0,1918   | 0,31 | 0,6217 | 0,3802   | 0,81 |        | 0,2874   |
| -0,18                   | 0,4286 | 0,3925   | 0,32 | 0,6255 | 0,3790   | 0,82 |        | 0,2850   |
| -0,12                   | 0,4325 | 0,5932   | 0,33 | 0,6293 | 0,3778   | 0,83 |        |          |
| 0,16                    | 0,4364 | 0,3959   | 0.34 | 0,6331 | 0.5765   | 6,84 | 0,7995 |          |
| 0,15                    | 0,4404 | 0,3945   | 0,35 | 0,6368 |          | 0,85 |        |          |
| -0.14                   | 0,6463 | 0,3951   | 0.36 | 0,6406 | 0,3739   | 0,86 |        | 0,2756   |
| -0,13                   | 0,4483 | 0,3956   | 0.37 | 0,6443 | 0,3725   | 0,87 |        | 0,2732   |
| -0.12                   | 0.4522 | 0,3961   | 0,38 | 0,6480 | 0,3712   | 0,88 |        | 0,2709   |
| -0,11                   | 0,4562 | 0,3965   | 0,39 | 0,6517 | 0,5697   | 0,89 | 0.8133 | 0,2685   |
| -0.10                   | 0,4602 | 0.3970   | 0.40 | 0,6554 | 0,3683   | 6,90 | 0.8159 | 0,2661   |
| -0.09                   | 0.4641 | 0,3973   | 0.41 | 0,6591 | 0,3668   | 0,91 | 0.8186 | 0,2637   |
| -0,08                   | 0,4621 | 0,3977   | 0,42 | 0,6628 |          | 0,92 |        | 0,2613   |
| -0,07                   | 0,4721 | 0,3980   | 0,43 | 0,6664 | 0,1637   | 0,93 |        | 0,2589   |
| -0.06                   | 0,4761 | 0,3982   | 0,44 | 0,6700 | 0,3621   | 0,94 | 0.8264 | 0,2565   |
| -0.05                   | 0.4801 | 0,3984   | 0.45 | 0.6736 | 0,3605   | 0,95 |        |          |
| -0,04                   | 0.4840 | 0,3986   | 0.46 | 0.6772 | 0,3589   | 0,96 |        |          |
| -0,03                   | 0,4880 | 0,3988   | 0.47 | 0,6608 |          | 0,97 |        |          |
| -0,02                   | 0,4920 | 0,3989   | 0,68 | 0,6844 |          | 0,98 |        |          |
| -0,01                   | 0,4960 | 0,5989   | 0,49 | 0,6879 | 0,3538   | 0,99 | 0,8389 | 0,2444   |
| 0,00                    | 0,5000 | 0.3989   | 0,50 |        |          | 1,00 |        |          |
| 0.01                    | 0,5040 | 0.3989   | 0.51 | 0,6950 |          | 1,01 |        |          |
| 0,82                    | 0,5080 | 0,3989   | 0,52 | 0,6985 | 0,3485   | 1,02 |        |          |
| 0,03                    | 0,5120 | 0,3988   | 0,53 | 0.7019 | 0,3467   | 1,03 | 0,8485 | 0,2347   |
| 0,04                    | 0,5160 | 0,3986   | 0,54 | 0,7054 | 0,3448   | 1,04 | 0,8508 | 0,2323   |
| 0.05                    | 0,5199 | 0,3984   | 0,55 | 0,7088 | 0,3429   | 1,05 |        |          |
| 0,06                    | 0,5239 | 0,3982   | 0,56 |        | 0,5410   | 1,06 |        | 0,2275   |
| 0,07                    | 0,5279 | 0,3980   | 0,57 |        | 0,3391   | 1,07 |        | 0,2251   |
| 0,08                    | 0,5319 | 0,3977   | 0,58 | 0,7190 | 0,3372   | 1,05 |        | 0,2227   |
| 0,09                    | 0,5339 | 0,3973   | 0,59 | 0.7224 | 0,3352   | 1,09 | 0,8621 | 0,2203   |
| 0.10                    | 0,5398 | 0,3970   | 0,60 |        |          | 1,10 |        |          |
| 0.11                    | 0,5438 | 0,3965   | 0,61 |        |          | 1,11 |        |          |
| 0.12                    | 0,5478 | 0,3961   | 0,62 |        |          | 1,12 |        |          |
| 0,13                    | 0,5517 | 0,3956   | 0,63 |        |          | 1,13 |        |          |
| 0.14                    | 0,5557 | 0,3951   | 0,64 | 0,7389 | 0,3251   | 1,14 | 0,8729 | 0,2083   |
| 0.15                    | 0,5596 | 0,3945   | 0,65 |        |          | 1,15 |        |          |
| 0.16                    | 0,5636 | 0,3939   | 0,66 |        | 0,3209   | 1,16 |        |          |
| 0,17                    | 0,5675 | 0,3932   | 0,67 | 0,7480 |          | 1,17 | 0,8790 | 0,2012   |
| 0,18                    | 0,5714 | 0,3925   | 0.68 |        |          | 1,18 | 0,8510 | 0,1989   |
| 0,19                    | 0,5753 | 0,3918   | 0,69 | 0,7549 | 0,3144   | 1,19 | 0,8830 | 0,1965   |



# 4.2 Basics

- (Normal) population
  - Mean  $\mu$
  - Variance  $\sigma^2$
  - Standard deviation  $\sigma$
- Random samples
  - Observations n
  - Sample mean  $\bar{x} = \sum x_i / n$
  - Sample variance  $s^2 = \sum (x_i \overline{x})^2 / (n-1)$
  - Sample standard deviation s
- Sampling distribution (s. d.) of  $\bar{x}$ 
  - Mean of s. d.  $\mu_{\bar{x}} = \mu$
  - Standard deviation of s. d.  $\sigma_{\bar{x}} = \sigma / \sqrt{n}$
- Sample statistic
  - $-z, t, \chi^2, F$







# 4.2 Basics

Two unknown probability distributions:

$$P_a:(\mu_a,\sigma_a^2)$$
  $P_b:(\mu_b,\sigma_b^2)$ 

- Are they different?
  - Depends on shapes (variances) and positions (means) of the distributions
- Must be estimated from two sampling distributions:

$$S_a:(\overline{x}_a,s_a^2)$$
  $S_b:(\overline{x}_b,s_b^2)$ 

- Are the sample means  $\bar{x}_a$  and  $\bar{x}_b$  good estimates of  $\mu_a$  and  $\mu_b$ ?
- Probability distributions of the sample means





 $\overline{x}_a$ 



# 4.3 Test Procedure

Two sampling distributions:

$$S_a:(\bar{x}_a, s_a^2), \ S_b:(\bar{x}_b, s_b^2)$$

Null hypothesis H₀: There is only one distribution

$$P_a:(\mu_a,\sigma_a^2)$$
  $\mu_a=\mu_b$ 



Alternate hypothesis H<sub>1</sub>:

Distributions are different:

$$P_a : (\mu_a, \sigma_a^2) \qquad P_b : (\mu_b, \sigma_b^2)$$

$$P_b:(\mu_b,\sigma_b^2)$$

- Two-sided  $\mu_a \neq \mu_b$ 

- One-sided  $\mu_a < \mu_b$  or  $\mu_a > \mu_b$ 



Indirect proof:

Prove H<sub>1</sub> by showing that it is extremely unlikely that  $H_0$  is true.

Goal



# 4.3 Test Procedure

Two sampling distributions:

$$S_a:(\overline{x}_a,s_a^2), S_b:(\overline{x}_b,s_b^2)$$

#### Example:

Prove that a new interaction technique is faster (or slower) than an existing one by showing that it is extremely unlikely that both are equally fast.

Distributions are different:

 $P_a : (\mu_a, \sigma_a^2) \qquad P_b : (\mu_b, \sigma_b^2)$ 

- Two-sided  $\mu_a \neq \mu_b$
- One-sided  $\mu_a < \mu_b$  or  $\mu_a > \mu_b$



Existing

technique

Indirect proof:

New

technique

Prove  $H_1$  by showing that it is extremely unlikely that  $H_0$  is true.

Goal



# 4.3 Test Procedure

• Evaluation of the null hypothesis  $H_0$ There is only one distribution:  $\mu_a = \mu_b$ 



Indirect proof:
Prove H<sub>1</sub> by showing
that it is extremely unlikely
that H<sub>0</sub> is true.

- Define a "rejection region" for H<sub>0</sub>
- If  $x_b$  lies in the "rejection region", it is highly unlikely that  $\mu_a$ = $\mu_b$
- Reject hypothesis  $H_0$ :  $\mu_a = \mu_b$  and thus conclude that  $H_1$ :  $\mu_a \neq \mu_b$  (or  $\mu_a < \mu_b$  or  $\mu_a > \mu_b$ , resp.) is true
- Risk that we make a wrong decision (reject  $H_0$  even though it is true):  $\alpha$ -error (type I error)

  Decision at significance level  $\alpha$

### 4.3 Test Procedure

### α-error versus p-value



#### $\alpha$ -error:

- Fixed percentage (5% = 0.05) of the area under the curve
- Preselected value to indicate what kind of risk will be taken

### p-value:

- Computed percentage (depends on x<sub>b</sub>) of the area under the curve
- If p<α: reject Nullhypothesis</li>



# **4.3 Test Procedure**

#### $\alpha$ -error

|                          | "Real" H <sub>0</sub> | "Real"H <sub>1</sub> |
|--------------------------|-----------------------|----------------------|
| Estimated H <sub>0</sub> | Correct (wasted time) | ?                    |
| Estimated H <sub>1</sub> |                       |                      |





# **4.3 Test Procedure**

#### $\alpha$ -error





### 4.3 Test Procedure

New Existing Statistics Tools technique

#### Example:

Prove that a new interaction technique is faster than an existing one  $(H_1)$  by showing that it is extremely unlikely that both are equally fast  $(H_0)$ .





# 4.3 Test Procedure

New technique

Existing technique

Statistics Tools

#### Example:

Prove that a new interaction technique is faster than an existing one  $(H_1)$  by showing that it is extremely unlikely that both are equally fast  $(H_0)$ 

NOTE: WE CANNOT CONCLUDE THE INVERSE.

I.e.: If we cannot disprove  $H_0$ , we cannot conclude that  $H_1$  is not true

#### Example:

If D<sub>b</sub> is NOT in the rejection region, we cannot conclude that the new technique is NOT faster







# 4.3 Test Procedure

New Existing technique

Existing Statistics Tools technique

#### Example:

Prove that a new interaction technique is faster than an existing one  $(H_1)$  by showing that it is extremely unlikely that both are equally fast  $(H_0)$ 

NOTE: WE CANNOT CONCLUDE THE INVERSE.

I.e.: If we cannot disprove  $H_0$ , we cannot conclude that  $H_1$  is not true

#### Example:

If D<sub>b</sub> is NOT in the rejection region, we cannot conclude that the new technique is NOT faster



# 4.3 Test Procedure

- Problem: You can avoid making mistakes by always accepting  $H_0$  (by reducing  $\alpha$ -error  $\Rightarrow$  0) "no risk no fun"
- What if H<sub>0</sub> is wrongly accepted (should have been rejected)?





# **4.3 Test Procedure**

### β-error

|                          | "Real" H <sub>0</sub> | "Real"H <sub>1</sub>  |                                         |
|--------------------------|-----------------------|-----------------------|-----------------------------------------|
| Estimated H <sub>0</sub> | Correct (wasted time) | Type II error β-error |                                         |
| Estimated H <sub>1</sub> | Type I error          | Correct               |                                         |
|                          | α-error               |                       | \<br>\                                  |
|                          |                       | p(x)                  | $D_a$ $D_b$                             |
|                          |                       |                       | $\beta$ -error $\alpha$ -error $\times$ |

# 4.4 Interpretation of Test Results

#### Power

Probability that a test will reject a false null hypothesis H<sub>0</sub>

|                          | "Real" H <sub>0</sub>    | "Real"H <sub>1</sub>     |
|--------------------------|--------------------------|--------------------------|
| Estimated H <sub>0</sub> | Correct<br>(wasted time) | Type II error<br>β-error |
| Estimated H <sub>1</sub> | Type I error<br>α-error  | Correct                  |

I.e.: that it will accept a correct alternate hypothesis H<sub>1</sub>





# 4.4 Interpretation of Test Results

Dependence of power on  $\alpha$ -level Increasing  $\alpha \rightarrow$ 

- Increasing power
- Decreasing type II error
- Increasing type I error

|                          | "Real" H <sub>o</sub>    | "Real"H <sub>1</sub>     |
|--------------------------|--------------------------|--------------------------|
| Estimated H <sub>0</sub> | Correct<br>(wasted time) | Type II error<br>β-error |
| Estimated H <sub>1</sub> | Type I error α-error     | Correct                  |







# 4.4 Interpretation of Test Results

Dependence of power on **effect** (difference between  $\mu_0$  and  $\mu_1$ )

Large effect →

- Increasing power
- Decreasing type II error
- Unaffected  $\alpha$  and type I error

|                          | "Real" H <sub>0</sub> | "Real"H <sub>1</sub>     |
|--------------------------|-----------------------|--------------------------|
| Estimated H <sub>0</sub> | Correct (wasted time) | Type II error<br>β-error |
| Estimated H <sub>1</sub> | Type I error α-error  | Correct                  |





# 4.4 Interpretation of Test Results

# Dependence of power on sample size n

Increasing sample size n →

- Decreasing variance
- Increasing power
- Decreasing type II error
- Unaffected  $\alpha$  and type I error

|                          | "Real" H <sub>0</sub>    | "Real"H <sub>1</sub>     |
|--------------------------|--------------------------|--------------------------|
| Estimated H <sub>0</sub> | Correct<br>(wasted time) | Type II error<br>β-error |
| Estimated H <sub>1</sub> | Type I error<br>α-error  | Correct                  |



# Thank you!

