

SEQUENCE LISTING

<110> Allen, Stephen M.
Rafalski, J. Antoni
Sakai, Hajime

<120> Nitrogen Transport Metabolism

<130> BB-1210

<140>

<141>

<150> 60/098,248

<151> 28 August 1998

<160> 14

<170> Microsoft Office 97

<210> 1

<211> 1037

<212> DNA

<213> Zea mays

<400> 1

gcacgagggtt	cgcggccatc	acggccgggt	gcagcgtgg	ggagccgtgg	gcggccgtca	60
tctcggggtt	cgtgtcccgcg	tgggtgctca	tccggcgccaa	cgcgcgtcg	gcgcgcgttc	120
ggttcgacga	cccgcctggag	gccccgcacgc	tgcacggcg	gtgtggcgcc	ttggggcggtcc	180
tcttcacggg	gctttcgcg	aggcggaaagt	acgtggagga	gatctacggc	gccggggaggc	240
cctacgggt	gttcatgggc	ggcggcggg	agctccctcg	cgcgcagatc	atccagatcc	300
tggtgatcgc	cgggtgggt	agctgacca	tggggcccgct	cttctacgcg	ctcaagaagc	360
tgggcctgt	gccccatctcg	gccgacgacg	agatgtcccg	catggacctg	acccggcacg	420
ggggcttcgc	ctacgtctac	cacgacgagg	accctggcg	caaggccggg	gttggtggtt	480
tcatgctcaa	gtccgcgcag	aaccgtgtcg	agccggcg	ggcgggtgg	gcggcgacca	540
gcagccagg	gtaaaaaaaa	aatcaggagc	aaattgaaac	cgagctgaag	ttacgtgtt	600
gccttttca	gtatgttgtc	gcgtatcacg	tttgaggtgg	atcgatatctg	ccggtcagta	660
cgcagtgtt	ggccaaatac	ttggctactt	gggagtcgca	agaaatttgt	taaatttat	720
agaggaggat	ggcgacgaag	cacgcatgt	ttacgttagtt	ggggtttgg	tgcacatgg	780
ggggggcagg	ggctaggaga	gggttatct	ttaggttatt	ttcgttagtgg	aatgaatctt	840
atgatcgat	atccatcg	ggaagggtgt	gccccgtgt	ggtcaagata	ggggcttct	900
atgactatga	gggttgaaac	aacaagtgg	cgattctgtc	ctgtggtac	tgctcatcat	960
ccaaatctagc	ggcttgacg	gtcgtgcctt	tttagtatca	ataatattat	tccaagttt	1020
aaaaaaaaaa	aaaaaaa					1037

<210> 2

<211> 183

<212> PRT

<213> Zea mays

<400> 2

Thr Arg Phe Ala Ala Ile Thr Ala Gly Cys Ser Val Val Glu Pro Trp
1 5 10 15

Ala Ala Val Ile Cys Gly Phe Val Ser Ala Trp Val Leu Ile Gly Ala
20 25 30

Asn Ala Leu Ala Ala Arg Phe Arg Phe Asp Asp Pro Leu Glu Ala Ala
35 40 45

Gln Leu His Gly Gly Cys Gly Ala Trp Gly Val Leu Phe Thr Gly Leu
50 55 60

Phe Ala Arg Arg Lys Tyr Val Glu Glu Ile Tyr Gly Ala Gly Arg Pro
65 70 75 80

Tyr Gly Leu Phe Met Gly Gly Gly Lys Leu Leu Ala Ala Gln Ile
85 90 95

Ile Gln Ile Leu Val Ile Ala Gly Trp Val Ser Cys Thr Met Gly Pro
100 105 110

Leu Phe Tyr Ala Leu Lys Lys Leu Gly Leu Leu Arg Ile Ser Ala Asp
115 120 125

Asp Glu Met Ser Gly Met Asp Leu Thr Arg His Gly Gly Phe Ala Tyr
130 135 140

Val Tyr His Asp Glu Asp Pro Gly Asp Lys Ala Gly Val Gly Gly Phe
145 150 155 160

Met Leu Lys Ser Ala Gln Asn Arg Val Glu Pro Ala Ala Ala Val Ala
165 170 175

Ala Ala Thr Ser Ser Gln Val
180

<210> 3

<211> 1706

<212> DNA

<213> Glycine max

<400> 3

gcacgagcac tcccaacccc caccctgtgt ttctaccacc ttcaagtcacg gcgttaataca 60
ctaaccacc accatgtcg ctgcgtgtt gtcggccga acaactggcc caacttctcg 120
gccaaacac cacagacgcc tccggcccg cttcccttat ctgcggccat ttgcggcccg 180
tggacagcaa gttcggtcgac acggcctcg ccgtcgacaa cacctacctc ctctttccg 240
cctacctcg ttttctatg cagctcggt tcgccccgt ctgcggcccg tccgtcccg 300
ccaagaacac catgaacatc atgctcacca acgtcctgga cgctgcccggc ggcggccct 360
tctactaccc ttccggcttc gccttcgtt tcggctcccc ctccaaacggc ttcatcgta 420
aacatttctt cggcctcaag gacatccctt catccctcta cgactacagc tacttcctct 480
accaatgggc cttcgccatc gccggcccg gcatcaccag cgaaaggcatc gccgaacgc 540
cacagttcg tgcctatctc atctactct ctttcctcac cggcttcgtc tatccgggt 600
tctcccaactg gttctggtcc ccagacggct gggcctctgc cttaagatc accgaccggc 660
tatttccac cggcgtataa gacttcggc gttccgggt agtccacatg gtcggcgaa 720
tagccggct atggggagcg ctgatcgaa gccaagaat gggacgtttc gatcatcgag 780
gacgagctgt ggccttgca ggcacacagcg cgtccttagt agtccctggaa accttcttc 840
tttgggtcgg ttggtaacgga tttaaccccg gttcattaa caaaatcta ttacttacg 900
gtaactcagg aaattactac ggtcaatgga ggcgggttgg cagaaccgcg gtcaccacta 960
ccctagcggg gtcaacagct gccttgacca cgctattcgg taaacgggtg atatccggtc 1020
actggAACGT gaccgatgtc tgcaacgggc tgtagggcgt tttcgccggc ataacagccg 1080
gttgctccgt gggtgagcca tggcagcca tcgtatgcgg ttttgtgtct tctatagat 1140
taatagcttgc caacaaatta gcagagaagg ttaagttcga cgatcctctg gaggcggcgc 1200
agttgcacgg tgggtgtggc acgtgggggg tgatattcac ggcgttggc gaaaaaaagg 1260
agtatgtgaa ggaggtttac gggtggggg gggcgacagg gttgctcatg ggggggtgg 1320
ggaagttgt ggcggcgcac gtgattcaga ttctgggtat tgctgggtgg gttagtgca 1380
ccatgggacc ctgttttgg gggtaata aactgaagct gttgaggatt tcttcagagg 1440
atgagcttgc gggatggac atgactcgcc atggaggctt tgctttagtct tatgaggatg 1500
atgagacgcgca caagcatggg atgcagttga gtaggggtgg gcccaacgcg tcttccacac 1560
ccaccactgta tgaatgtatct tttttccca tatgcatgtc tcattagtca aacattaaat 1620

ttggatacat attccttgcg aggattcaaa ccttggtac ttgttacttc tgtaaaaaaa 1680
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaa 1706

<210> 4
<211> 500

<212> PRT

<213> Glycine max

<400> 4

Met Ser Leu Pro Ala Cys Pro Ala Glu Gln Leu Ala Gln Leu Leu Gly
1 5 10 15

Pro Asn Thr Thr Asp Ala Ser Ala Ala Ser Leu Ile Cys Gly His
20 25 30

Phe Ala Ala Val Asp Ser Lys Phe Val Asp Thr Ala Phe Ala Val Asp
35 40 45

Asn Thr Tyr Leu Leu Phe Ser Ala Tyr Leu Val Phe Ser Met Gln Leu
50 55 60

Gly Phe Ala Met Leu Cys Ala Gly Ser Val Arg Ala Lys Asn Thr Met
65 70 75 80

Asn Ile Met Leu Thr Asn Val Leu Asp Ala Ala Gly Gly Leu Phe
85 90 95

Tyr Tyr Leu Phe Gly Phe Ala Phe Gly Ser Pro Ser Asn Gly
100 105 110

Phe Ile Gly Lys His Phe Phe Gly Leu Lys Asp Ile Pro Ser Ser Ser
115 120 125

Tyr Asp Tyr Ser Tyr Phe Leu Tyr Gln Trp Ala Phe Ala Ile Ala Ala
130 135 140

Ala Gly Ile Thr Ser Gly Ser Ile Ala Glu Arg Thr Gln Phe Val Ala
145 150 155 160

Tyr Leu Ile Tyr Ser Ser Phe Leu Thr Gly Phe Val Tyr Pro Val Val
165 170 175

Ser His Trp Phe Trp Ser Pro Asp Gly Trp Ala Ser Ala Phe Lys Ile
180 185 190

Thr Asp Arg Leu Phe Ser Thr Gly Val Ile Asp Phe Ala Gly Ser Gly
195 200 205

Val Val His Met Val Gly Gly Ile Ala Gly Leu Trp Gly Ala Leu Ile
210 215 220

Glu Gly Pro Arg Met Gly Arg Phe Asp His Ala Gly Arg Ala Val Ala
225 230 235 240

Leu Arg Gly His Ser Ala Ser Leu Val Val Leu Gly Thr Phe Leu Leu
245 250 255

Trp Phe Gly Trp Tyr Gly Phe Asn Pro Gly Ser Phe Asn Lys Ile Leu
260 265 270

Leu Thr Tyr Gly Asn Ser Gly Asn Tyr Tyr Gly Gln Trp Ser Ala Val
275 280 285

Gly Arg Thr Ala Val Thr Thr Leu Ala Gly Ser Thr Ala Ala Leu
290 295 300

Thr Thr Leu Phe Gly Lys Arg Val Ile Ser Gly His Trp Asn Val Thr
305 310 315 320

Asp Val Cys Asn Gly Leu Leu Gly Gly Phe Ala Ala Ile Thr Ala Gly
325 330 335

Cys Ser Val Val Glu Pro Trp Ala Ala Ile Val Cys Gly Phe Val Ala
340 345 350

Ser Ile Val Leu Ile Ala Cys Asn Lys Leu Ala Glu Lys Val Lys Phe
355 360 365

Asp Asp Pro Leu Glu Ala Ala Gln Leu His Gly Gly Cys Gly Thr Trp
370 375 380

Gly Val Ile Phe Thr Ala Leu Phe Ala Lys Lys Glu Tyr Val Lys Glu
385 390 395 400

Val Tyr Gly Leu Gly Arg Ala His Gly Leu Leu Met Gly Gly Gly
405 410 415

Lys Leu Leu Ala Ala His Val Ile Gln Ile Leu Val Ile Ala Gly Trp
420 425 430

Val Ser Ala Thr Met Gly Pro Leu Phe Trp Gly Leu Asn Lys Leu Lys
435 440 445

Leu Leu Arg Ile Ser Ser Glu Asp Glu Leu Ala Gly Met Asp Met Thr
450 455 460

Arg His Gly Gly Phe Ala Tyr Ala Tyr Glu Asp Asp Glu Thr His Lys
465 470 475 480

His Gly Met Gln Leu Arg Arg Val Gly Pro Asn Ala Ser Ser Thr Pro
485 490 495

Thr Thr Asp Glu
500

<210> 5

<211> 1991

<212> DNA

<213> Triticum aestivum

<400> 5

gccaatcccc gcttcccgat tccgatcgct gaacgccaac cactttccta agcagggggg 60
cgccgcggag atgtcgccga cgtgcgcggc ggacctgggg ccgctgctgg gggcggcggc 120
ggcgaacgcc acggactacc tgtcaaacag gttcgccgac accacgtccg cggtggaactc 180
cacctacctg ctcttctcggt cctacctcggt cttcgccatg cagctcggt tcgccatgct 240
ctgcgcggc tccgtccggg ccaagaacac catgaacatc atgctcacca acgtgctcga 300
cgccgcccgc ggcgcgctct tctactacct cttcggttc gccttcgcct tcgggacgccc 360
gtcgaacggc ttcatcgaaa agcacttctt cggcctcaag gacatgccgc agaccggctt 420
cgactacaggc ttcttcctct tccagtgggc cttcgccatc gccgcccggc gcatcacctc 480
cggctccatc gccgagagga cgcaattcggt cgcgtatctc atctactcggt ctttccttac 540

gggatttcgtc	tacccggctcg	tgtcccactg	gatctggtcc	gtcgacggct	gggcctccgc	600
ggccccgacg	tccggcccg	tgctttcaa	gtccggcggt	atcgacttcg	ccggctccgg	660
cgtcgtgcac	atggtcggcg	gcatgcgg	cttctgggg	gchgctcatcg	agggcccccg	720
catcgccgg	ttcgaccacg	ccggccgctc	ggtggcgctc	aagggccaca	gchgctcgct	780
cgtcgtgtcg	ggacattcc	tgctctgggt	cggctggta	gggttcaacc	ccgggtccctt	840
cgtcaccatc	ctcaagtctg	acggccgc	ccggagcatc	aacgggcagt	ggtcgccggt	900
gggcccgcacc	gccgtgacga	cgacgctggc	ggcagcgtg	gcggcgctca	cgacgctgtt	960
cgggaaagcgg	ctccagacgg	ggcaactggaa	cgtgggtggac	gtctgcaacg	gcctgctcgg	1020
cggggttcg	gcacatcac	ccgggtgcag	cgtggtcgac	ccgtggccg	ccgtcatctg	1080
cggttgc	tccgcctggg	tgctcatcg	gtcaacgcg	ctcgccggcc	gcctaaga	1140
cgacgacccg	ctggaggcgg	cgcagctgca	ccgcggctgc	ggcgcgtggg	gatcatctt	1200
cacggcgctg	ttcgccaaga	agcagta	ggaggagatc	tacggcgccg	gcaggccgta	1260
cgggctgttc	ctggggcggcg	gcggggcgct	getggcg	cacatcg	agatcctcg	1320
catcgccggc	ttcgtgagct	gcacca	tttgcgttca	agaagctgg	1380	
cctgtccgc	atctcgccg	aggacgagat	ggccggcatg	gac	gcacgg	1440
gttcgcctac	gtctaccacg	acgacgacga	gcacgaca	tcgg	tcgtcg	1500
cagg	tcgagccggc	ggcggcggcg	aacaggccagg	tctaaccat	1560	
caagccggac	tacgtaacaa	gaaatccagt	ggaaatcgcc	tttctgttct	cgcg	1620
atcacatatg	tgtatccgatc	atgggatcaa	tatttccgt	gctgttggg	ccaatactt	1680
ggcgctt	tgttcgttca	caagattgt	aaattattac	actaggacga	gttatttt	1740
tttaccttt	tttgtatcat	gcgtgcgtt	agaggagat	tgtgggtgt	gatggaa	1800
tgcagg	gggtttttt	tttcttgg	atatcttgc	at	tttgg	1860
tgtatcatgag	ggtgtgg	caagatagg	ctgctcaagg	ttgaattgtt	gagatttgc	1920
ctctagtagc	ggccacc	tctatcaaaa	cttggcg	tttctcgat	cgaaaaaaa	1980
aaaaaaaaaa	a					1991

<210> 6

<211> 494

<212> PRT

<213> Triticum aestivum

<400> 6

Met Ser Ala Thr Cys Ala Ala Asp Leu Gly Pro Leu Leu Gly Ala Ala
 1 5 10 15

Ala Ala Asn Ala Thr Asp Tyr Leu Cys Asn Arg Phe Ala Asp Thr Thr
 20 25 30

Ser Ala Val Asp Ser Thr Tyr Leu Leu Phe Ser Ala Tyr Leu Val Phe
35 40 45

Ala Met Gln Leu Gly Phe Ala Met Leu Cys Ala Gly Ser Val Arg Ala
50 55 60

Lys Asn Thr Met Asn Ile Met Leu Thr Asn Val Leu Asp Ala Ala Ala
65 70 75 80

Gly Ala Leu Phe Tyr Tyr Leu Phe Gly Phe Ala Phe Ala Phe Gly Thr
85 90 95

Pro Ser Asn Gly Phe Ile Gly Lys His Phe Phe Gly Leu Lys Asp Met
 100 105 110

Pro Gln Thr Gly Phe Asp Tyr Ser Phe Phe Leu Phe Gln Trp Ala Phe
115 120 125

Ala Ile Ala Ala Gly Ile Thr Ser Gly Ser Ile Ala Glu Arg Thr
130 135 140

2 3 4 5 6 7 8 9 10 11 12 13 14

Gln Phe Val Ala Tyr Leu Ile Tyr Ser Ala Phe Leu Thr Gly Phe Val
145 150 155 160

Tyr Pro Val Val Ser His Trp Ile Trp Ser Val Asp Gly Trp Ala Ser
165 170 175

Ala Ala Arg Thr Ser Gly Pro Leu Leu Phe Lys Ser Gly Val Ile Asp
180 185 190

Phe Ala Gly Ser Gly Val Val His Met Val Gly Gly Ile Ala Gly Phe
195 200 205

Trp Gly Ala Leu Ile Glu Gly Pro Arg Ile Gly Arg Phe Asp His Ala
210 215 220

Gly Arg Ser Val Ala Leu Lys Gly His Ser Ala Ser Leu Val Val Leu
225 230 235 240

Gly Thr Phe Leu Leu Trp Phe Gly Trp Tyr Gly Phe Asn Pro Gly Ser
245 250 255

Phe Val Thr Ile Leu Lys Ser Tyr Gly Pro Pro Gly Ser Ile Asn Gly
260 265 270

Gln Trp Ser Gly Val Gly Arg Thr Ala Val Thr Thr Leu Ala Gly
275 280 285

Ser Val Ala Ala Leu Thr Thr Leu Phe Gly Lys Arg Leu Gln Thr Gly
290 295 300

His Trp Asn Val Val Asp Val Cys Asn Gly Leu Leu Gly Gly Phe Ala
305 310 315 320

Ala Ile Thr Ala Gly Cys Ser Val Val Asp Pro Trp Ala Ala Val Ile
325 330 335

Cys Gly Phe Val Ser Ala Trp Val Leu Ile Gly Leu Asn Ala Leu Ala
340 345 350

Gly Arg Leu Lys Tyr Asp Asp Pro Leu Glu Ala Ala Gln Leu His Gly
355 360 365

Gly Cys Gly Ala Trp Gly Ile Ile Phe Thr Ala Leu Phe Ala Lys Lys
370 375 380

Gln Tyr Val Glu Glu Ile Tyr Gly Ala Gly Arg Pro Tyr Gly Leu Phe
385 390 395 400

Leu Gly Gly Gly Arg Leu Leu Ala Ala His Ile Val Gln Ile Leu
405 410 415

Val Ile Ala Gly Phe Val Ser Cys Thr Met Gly Pro Leu Phe Leu Ala
420 425 430

Leu Lys Lys Leu Gly Leu Leu Arg Ile Ser Ala Glu Asp Glu Met Ala
435 440 445

Gly Met Asp Leu Thr Arg His Gly Gly Phe Ala Tyr Val Tyr His Asp
450 455 460

Asp Asp Glu His Asp Lys Ser Val Gly Gly Phe Met Leu Arg Ser Ala
465 470 475 480

Gln Thr Arg Val Glu Pro Ala Ala Ala Asn Ser Gln Val
485 490

<210> 7
<211> 376
<212> DNA
<213> Zea mays

<220>
<221> unsure
<222> (40)

<220>
<221> unsure
<222> (272)

<220>
<221> unsure
<222> (276)

<220>
<221> unsure
<222> (294)

<220>
<221> unsure
<222> (339)

<220>
<221> unsure
<222> (341)

<220>
<221> unsure
<222> (359)

<220>
<221> unsure
<222> (361)

<400> 7
gctaagagag agagagagag agaggataac gtaggaccgn cggcaactag ctaactaaca 60
tgtcgtcgtc gtccgggacg acgatgccgc tggcgtacca gacgtcggcg tcgtctcccg 120
agtggctgaa caagggcgcac aacgcgtggc agctgacggc ggcgacgctg gtggggctgc 180
agagcttccc gggctctggtg gtcctgtacg gcggcgtggt gaagaagaag tggccctgtga 240
actcggcctt catggcgctg tacgcgttcg cnngcnngtg tggatctgct gggngacctg 300
ggcctacaac atgtcctttg gcgaacacagg ctgctgtcng ntgtggggca aaggcggcng 360
ncggtgctta atccag 376

<210> 8
<211> 63
<212> PRT
<213> Zea mays

<400> 8
Met Pro Leu Ala Tyr Gln Thr Ser Ala Ser Ser Pro Glu Trp Leu Asn
1 5 10 15

Lys Gly Asp Asn Ala Trp Gln Leu Thr Ala Ala Thr Leu Val Gly Leu
20 25 30

Gln Ser Phe Pro Gly Leu Val Val Leu Tyr Gly Gly Val Val Lys Lys
35 40 45

Lys Trp Ala Val Asn Ser Ala Phe Met Ala Leu Tyr Ala Phe Ala
50 55 60

<210> 9
<211> 1883
<212> DNA
<213> *Oryza sativa*

<210> 10
<211> 497
<212> PRT
<213> Oryza sativa

<400> 10
Met Ala Ser Pro Thr Arg Pro Gly Pro Tyr Met Pro Arg Pro Pro Ala
1 5 10 15

Val Pro Glu Trp Leu Asn Thr Gly Asp Asn Gly Trp Gln Leu Ala Ala
20 25 30

Ala Thr Phe Val Gly Leu Gln Ser Met Pro Gly Leu Val Val Leu Tyr
35 40 45

Gly Ser Ile Val Lys Lys Trp Ala Val Asn Ser Ala Phe Met Ala
50 55 60

Leu Tyr Ala Tyr Ala Ser Thr Leu Ile Val Trp Val Leu Val Gly Phe
65 70 75 80

Arg Met Ala Phe Gly Asp Arg Leu Leu Pro Phe Trp Gly Lys Ala Gly
85 90 95

Ala Ala Leu Thr Glu Gly Phe Leu Val Ala Arg Ala Ser Val Pro Ala
100 105 110

Thr Ala His Tyr Gly Lys Asp Gly Ala Leu Glu Ser Pro Arg Thr Glu
115 120 125

Pro Phe Tyr Pro Glu Ala Ser Met Val Leu Phe Gln Phe Glu Leu Ala
130 135 140

Ala Ile Thr Leu Val Leu Leu Ala Gly Ser Leu Leu Gly Arg Met Asn
145 150 155 160

Ile Lys Ala Trp Met Ala Phe Thr Pro Leu Trp Leu Leu Phe Ser Tyr
165 170 175

Thr Val Cys Ala Phe Ser Leu Trp Gly Gly Phe Leu Tyr Gln Trp
180 185 190

Gly Val Ile Asp Tyr Ser Gly Gly Tyr Val Ile His Leu Ser Ser Gly
195 200 205

Ile Ala Gly Phe Thr Ala Ala Tyr Trp Val Gly Pro Arg Leu Lys Ser
210 215 220

Asp Arg Glu Arg Phe Ser Pro Asn Asn Ile Leu Leu Met Ile Ala Gly
225 230 235 240

Gly Gly Leu Leu Trp Leu Gly Trp Ala Gly Phe Asn Gly Gly Ala Pro
245 250 255

Tyr Ala Pro Asn Ile Thr Ala Ser Ile Ala Val Leu Asn Thr Asn Val
260 265 270

Ser Ala Ala Ala Ser Leu Leu Thr Trp Thr Cys Leu Asp Val Ile Phe
275 280 285

Phe Gly Lys Pro Ser Val Ile Gly Ala Val Gln Gly Met Met Thr Gly
290 295 300

Leu Val Cys Ile Thr Pro Gly Ala Gly Leu Val His Thr Trp Ala Ala
305 310 315 320

Ile Leu Met Gly Ile Cys Gly Ser Leu Pro Trp Phe Ser Met Met
325 330 335

Ile Leu His Lys Arg Ser Ala Leu Leu Gln Lys Val Asp Asp Thr Leu
340 345 350

Ala Val Phe His Thr His Ala Val Ala Gly Leu Leu Gly Gly Phe Leu
355 360 365

Thr Gly Leu Phe Ala Leu Pro Asp Leu Thr Ala Val His Thr His Ile
370 375 380

Pro Gly Ala Arg Gly Ala Phe Tyr Gly Gly Ile Ala Gln Val Gly
385 390 395 400

Lys Gln Ile Ala Gly Ala Leu Phe Val Val Val Trp Asn Val Val Ala
405 410 415

Thr Thr Val Ile Leu Leu Gly Val Gly Leu Val Val Pro Leu Arg Met
420 425 430

Pro Asp Glu Gln Leu Lys Ile Gly Asp Asp Ala Ala His Gly Glu Glu
435 440 445

Ala Tyr Ala Leu Trp Gly Asp Gly Glu Arg Phe Asp Val Thr Arg His
450 455 460

Glu Gly Ala Arg Gly Gly Ala Trp Gly Ala Ala Val Val Asp Glu Ala
465 470 475 480

Met Asp His Arg Leu Ala Gly Met Gly Ala Arg Gly Val Thr Ile Gln
485 490 495

Leu

<210> 11

<211> 1961

<212> DNA

<213> Glycine max

<400> 11

gcacgagtca cgatcagaca ttaaatgtaa acacttctct atcaaaaatt tgaacttagt 60
tcgcctcaca cttttgtttt gtcacccgtt gagagactaa ttccctctaa taaacgcaac 120
gttgttcatc agtggcacat acatatacag catcacaatt ctttgaaggg tgaaaaagct 180
tgatcaagaa ttgaagcata ttgatctca gccatggcta cacccttggc ctaccaagag 240
caccttccgg cggcaccccg aatggctgaac aaaggtgaca acgcatggca gctaacagca 300
gccaccctcg tcggtcttca aagcatgccc ggtctctgtc tcctctacgc cagcatagt 360
aagaaaaat gggcagtgaa ctcagtttc atggctctt acgcctttgc ggcgggttcta 420
atatgttggg tgcgtgtgtt ttacccaatg gcctttggag aagaactttt ccccttctgg 480
ggaaagggtt ctccagcact aggccagaag ttccctcacga aaagagccat agtcattgaa 540
accatccacc actttgatata tggcactgtt gaatcaccc tcgaggaacc cttttaccc 600
atggcctcgc ttgtgtattt ccaattcaact ttgtctgtca ttactttat ttgtgtggct 660
ggctctgtcc ttggccgaat gaacatcaag gcttggatgg cttttgtgcc tctttgggt 720
atcttttcct acacagtccgg ggcttttagt ctttgggggt gtggctttct ctaccaatgg 780
ggcggttattt attattctgg cggctatgtc atacacccctt cttctggaa cgctggctc 840
actgctgtt actgggttgg accaagggtt aaggtgata gggagaggaa cccaccaaac 900
aatgtgttcc tcatgtttgc ttgtgtggg ttgtgtgaa tgggtggc aagggttcaac 960
ggtgaggcac catatgttgc aaacatttgc tttcaattt cggtgttggaa cacaaacatt 1020
tgtgcagcca ctggccttcc tttgtggaca actttggatg tcattttttt tgggaaacct 1080
tcggtgattt gagctgttgc gggcatgtt actggacttg tatgtcatcac cccaggggca 1140
gggcttgc aatcatgggc tgctatagtg atggaaat tatctggag cattccatgg 1200
gtgactatga tgatgttgc taaaaagtca actttgttac agaaggttga tgacaccctt 1260
ggtgttttc acacatgtc tttgtggc cttttgggt gtctctcac aggtcttat 1320
gcagaaccag cccttgcacttccatttgc cagtaacaa attcaagggg tgcattctat 1380

ggtgagggtg gtgggtgc caatttcgaag caattggtgg cggccatgtt tgttatttgg 1440
tggacttgg tggccaccac cattattctc ctgtcataa aattgttcat acccttgagg 1500
atgcggacg agcagctgg aatcggtgac gacgccgtcc acggtgagga agcttatgcc 1560
cttgggggtg atggagaaaa atatgaccca actaggcatg gttccttgca aagtggcaac 1620
actactgtct caccttatgt taatggtgca agaggggtga ctataaactt atgagtcaag 1680
aaatttaggct gtgccttgct cacacatgca tgtgtataaa ttatatgtat taacaaatgt 1740
gatgaatccg tgagtggat aagtagatat ttgattttgt catgaaaagaa aatttccaaa 1800
ttttqagatc tgatgttctt ctggtcatct tgcatcgaa gacctggtca tatatttctg 1860
gcacagaatg tcttggcatg tgtataaaat ttagatttgt caaattttaa aggaacttat 1920
gattagttt tttcacttag aaaaaaaaaaaaaaaa aaaaaaaaaa a 1961

<210> 12

<211> 486

<212> PRT

<213> Glycine max

<400> 12

Met Ala Thr Pro Leu Ala Tyr Gln Glu His Leu Pro Ala Ala Pro Glu
1 5 10 15

Trp Leu Asn Lys Gly Asp Asn Ala Trp Gln Leu Thr Ala Ala Thr Leu
20 25 30

Val Gly Leu Gln Ser Met Pro Gly Leu Val Ile Leu Tyr Ala Ser Ile
35 40 45

Val Lys Lys Lys Trp Ala Val Asn Ser Ala Phe Met Ala Leu Tyr Ala
50 55 60

Phe Ala Ala Val Leu Ile Cys Trp Val Leu Val Cys Tyr Arg Met Ala
65 70 75 80

Phe Gly Glu Glu Leu Phe Pro Phe Trp Gly Lys Gly Ala Pro Ala Leu
85 90 95

Gly Gln Lys Phe Leu Thr Lys Arg Ala Ile Val Ile Glu Thr Ile His
100 105 110

His Phe Asp Asn Gly Thr Val Glu Ser Pro Pro Glu Glu Pro Phe Tyr
115 120 125

Pro Met Ala Ser Leu Val Tyr Phe Gln Phe Thr Phe Ala Ala Ile Thr
130 135 140

Leu Ile Leu Leu Ala Gly Ser Val Leu Gly Arg Met Asn Ile Lys Ala
145 150 155 160

Trp Met Ala Phe Val Pro Leu Trp Leu Ile Phe Ser Tyr Thr Val Gly
165 170 175

Ala Phe Ser Leu Trp Gly Gly Phe Leu Tyr Gln Trp Gly Val Ile
180 185 190

Asp Tyr Ser Gly Gly Tyr Val Ile His Leu Ser Ser Gly Ile Ala Gly
195 200 205

Phe Thr Ala Ala Tyr Trp Val Gly Pro Arg Leu Lys Ser Asp Arg Glu
210 215 220

Arg Phe Pro Pro Asn Asn Val Leu Leu Met Leu Ala Gly Ala Gly Leu
225 230 235 240

Leu Trp Met Gly Trp Ser Gly Phe Asn Gly Gly Ala Pro Tyr Ala Ala
245 250 255

Asn Ile Ala Ser Ser Ile Ala Val Leu Asn Thr Asn Ile Cys Ala Ala
260 265 270

Thr Ser Leu Leu Val Trp Thr Thr Leu Asp Val Ile Phe Phe Gly Lys
275 280 285

Pro Ser Val Ile Gly Ala Val Gln Gly Met Met Thr Gly Leu Val Cys
290 295 300

Ile Thr Pro Gly Ala Gly Leu Val Gln Ser Trp Ala Ala Ile Val Met
305 310 315 320

Gly Ile Leu Ser Gly Ser Ile Pro Trp Val Thr Met Met Ile Leu His
325 330 335

Lys Lys Ser Thr Leu Leu Gln Lys Val Asp Asp Thr Leu Gly Val Phe
340 345 350

His Thr His Ala Val Ala Gly Leu Leu Gly Gly Leu Leu Thr Gly Leu
355 360 365

Leu Ala Glu Pro Ala Leu Cys Arg Leu Leu Leu Pro Val Thr Asn Ser
370 375 380

Arg Gly Ala Phe Tyr Gly Gly Gly Gly Val Gln Phe Phe Lys Gln
385 390 395 400

Leu Val Ala Ala Met Phe Val Ile Gly Trp Asn Leu Val Ser Thr Thr
405 410 415

Ile Ile Leu Leu Val Ile Lys Leu Phe Ile Pro Leu Arg Met Pro Asp
420 425 430

Glu Gln Leu Glu Ile Gly Asp Asp Ala Val His Gly Glu Glu Ala Tyr
435 440 445

Ala Leu Trp Gly Asp Gly Glu Lys Tyr Asp Pro Thr Arg His Gly Ser
450 455 460

Leu Gln Ser Gly Asn Thr Thr Val Ser Pro Tyr Val Asn Gly Ala Arg
465 470 475 480

Gly Val Thr Ile Asn Leu
485

<210> 13

<211> 1656

<212> DNA

<213> Triticum aestivum

<400> 13

ctcggtgccga attcggcacg aggctacgtg gcccggac ggcgaggaca agcaactgag 60
caaggtatag gttaggtatag cagtccggca agatgtcggt gcccgtggcg taccaggaa 120
acacgtcggc ggcgggtggcc gactggctga acaaggcgaa caacgcgtgg cagctgacgg 180

cgtccacgct ggtgggcctc atgagcgtgc cgggcattgtt ggtgctgtac ggccggcgtgg 240
 tgaagaagaa gtgggcggtc aactccgcct tcattggcgt ctacgccttc gcccggctct 300
 ggatctgctg ggtcgctctgg gcctacaaca tgccttcgg cgaggagctg ctccccgttct 360
 gggcaaggc cggccggcg ctcgaccagg cttccctcg cggccgcgc tcgctccgg 420
 ccaccgcga ctaccgcga gacggcacgc tcgagacgc catggtgag ccctacttcc 480
 ccatggccac cgtcgctac ttccagtgcg tgccgcgc catcacgctc atccctggtgg 540
 ccgggtcgct gctggccgc atgagcttc tggcgtgat gctttcgat cgcctctggc 600
 tcacccatctc ctacaccgtc ggcgccttc ccgtgtggg cggccgttc ctcttcact 660
 gggcgtcat cgactactgc ggcggctacg tcattccat ccccgccgc gtcggccgct 720
 tcaccgcgc gtaactgggtc gggccaaggc ccaagaagga cagggagagc ttcccgccca 780
 acaacatctt gtcgcgcgc accggcgcgc ggctgtgtg gatgggggtgg gccgggttca 840
 acggggcg gccgtacgcg gccaatgtcg actcgccat ggcacatctg aacaccaaca 900
 ttcgcacggc ggcgagccctc atcgctgttca ctcgcctcgat tgccgttcc ttcaagaagc 960
 ctcgggtgtt cggccgcgc caggccgtga tcaccggctc cgtcgatc acggccaggcg 1020
 cagggtcgat gcaagggtgg gcccgcgtt ttatgggtgt gtcggccgc agtgtgcccgt 1080
 ggtacaccat gatgggtcgat cacaacgcgtt ccaagcttct tcacgcgtc gacgacaccc 1140
 ttggcgtcat ccacacccac ggcgtcccg gcctgtggg cggcgttcc acggccctct 1200
 tcgcgcgcgc gaaacctctgc aatctattcc ttccggtcat caactcccg ggcgccttct 1260
 acgggtgtt aa cgggtggccgc cagtcggga agcagatcg cggagcgtc ttctgtatcg 1320
 ggtggAACGT gtcgtcaccg tccattatct gcgtcgatc ccgccttgc gtcccgatcg 1380
 gcatgtccga ggagaagctc gccattggcg acgacgcgt gcacggcgag gaggcctacg 1440
 cgttggggg cgatggcgag cactacgtt acaccaagca cggccgcgc gtcgtgccc 1500
 tgtgattttc tctgcgttgc ttccattgtt tggttgccc gtctatattt gtcctgttt 1560
 tattttctct tgcgttgc ttccaaatgt taaatttgc gctcatgtat aatgtgacca 1620
 aaatttcat agataaaaaaa aaaaaaaaaa aaaaaaaa 1656

<210> 14

<211> 470

<212> PRT

<213> Triticum aestivum

<400> 14

Met Ser Val Pro Val Ala Tyr Gln Gly Asn Thr Ser Ala Ala Val Ala
 1 5 10 15

Asp Trp Leu Asn Lys Gly Asp Asn Ala Trp Gln Leu Thr Ala Ser Thr
 20 25 30

Leu Val Gly Leu Met Ser Val Pro Gly Met Val Val Leu Tyr Gly Gly
 35 40 45

Val Val Lys Lys Lys Trp Ala Val Asn Ser Ala Phe Met Ala Leu Tyr
 50 55 60

Ala Phe Ala Ala Val Trp Ile Cys Trp Val Val Trp Ala Tyr Asn Met
 65 70 75 80

Ser Phe Gly Glu Glu Leu Leu Pro Phe Trp Gly Lys Ala Gly Pro Ala
 85 90 95

Leu Asp Gln Ala Phe Leu Val Gly Arg Ala Ser Leu Pro Ala Thr Ala
 100 105 110

His Tyr Arg Ala Asp Gly Thr Leu Glu Thr Ala Met Val Glu Pro Tyr
 115 120 125

Phe Pro Met Ala Thr Val Val Tyr Phe Gln Cys Val Phe Ala Ala Ile
 130 135 140

Thr Leu Ile Leu Val Ala Gly Ser Leu Leu Gly Arg Met Ser Phe Leu
 145 150 155 160
 Ala Trp Met Leu Phe Val Pro Leu Trp Leu Thr Phe Ser Tyr Thr Val
 165 170 175
 Gly Ala Phe Ser Val Trp Gly Gly Phe Leu Phe His Trp Gly Val
 180 185 190
 Ile Asp Tyr Cys Gly Gly Tyr Val Ile His Ile Pro Ala Gly Val Ala
 195 200 205
 Gly Phe Thr Ala Ala Tyr Trp Val Gly Pro Arg Thr Lys Lys Asp Arg
 210 215 220
 Glu Ser Phe Pro Pro Asn Asn Ile Leu Phe Ala Leu Thr Gly Ala Gly
 225 230 235 240
 Leu Leu Trp Met Gly Trp Ala Gly Phe Asn Gly Gly Pro Tyr Ala
 245 250 255
 Ala Asn Val Asp Ser Ser Met Ala Ile Leu Asn Thr Asn Ile Cys Thr
 260 265 270
 Ala Ala Ser Leu Ile Val Trp Thr Cys Leu Asp Ala Val Phe Phe Lys
 275 280 285
 Lys Pro Ser Val Val Gly Ala Val Gln Ala Val Ile Thr Gly Leu Val
 290 295 300
 Cys Ile Thr Pro Gly Ala Gly Val Val Gln Gly Trp Ala Ala Leu Val
 305 310 315 320
 Met Gly Val Leu Ala Gly Ser Val Pro Trp Tyr Thr Met Met Val Leu
 325 330 335
 His Lys Arg Ser Lys Leu Leu Gln Arg Val Asp Asp Thr Leu Gly Val
 340 345 350
 Ile His Thr His Gly Val Ala Gly Leu Leu Gly Gly Val Leu Thr Gly
 355 360 365
 Leu Phe Ala Glu Pro Asn Leu Cys Asn Leu Phe Leu Pro Val Thr Asn
 370 375 380
 Ser Arg Gly Ala Phe Tyr Gly Gly Asn Gly Ala Gln Leu Gly Lys
 385 390 395 400
 Gln Ile Ala Gly Ala Leu Phe Val Ile Gly Trp Asn Val Val Thr
 405 410 415
 Ser Ile Ile Cys Val Val Ile Arg Leu Val Val Pro Leu Arg Met Ser
 420 425 430
 Glu Glu Lys Leu Ala Ile Gly Asp Asp Ala Val His Gly Glu Glu Ala
 435 440 445
 Tyr Ala Leu Trp Gly Asp Gly Glu His Tyr Asp Asp Thr Lys His Gly
 450 455 460

Ala Ala Val Val Pro Val
465 470

the end of the peptide chain in the middle of the molecule.