Entropy and other thermodynamic function, Third Law

Slides taken from Internet: Prof. Cris Cramer, University of Minnesota

MANIPULATING DIFFERENTIALS

Now, consider the total differential of U with respect to T and V

$$C_{V}(T) \xrightarrow{dU} = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV$$

We can equate these two expressions for dU and solve for dS

SOLUTION FOR dS

$$TdS - PdV = C_V(T)dT + \left(\frac{\partial U}{\partial V}\right)_T dV$$

Which rearranges to:

ranges to: ideal gas
$$dS = \frac{C_V(T)}{T}dT + \frac{1}{T}\left[P + \left(\frac{\partial U}{\partial V}\right)_T\right]dV$$

Considering the total differential of S with respect to T and V

$$dS = \left(\frac{\partial S}{\partial T}\right)_{V} dT + \left(\frac{\partial S}{\partial V}\right)_{T} dV$$

We have,

$$\left(\frac{\partial S}{\partial T}\right)_{V} = \frac{C_{V}(T)}{T} \quad \text{and} \quad \left(\frac{\partial S}{\partial V}\right)_{T} = \frac{1}{T} \left[P + \left(\frac{\partial U}{\partial V}\right)_{T}\right]$$

THE DIFFERENTIAL OF ENTHALPY

$$dH = d(U + PV)$$

$$= dU + VdP + PdV$$

$$= TdS - PdV + VdP + PdV = TdS + VdP$$

Now, consider the total differential of *H* with respect to *T* and *P*

$$dH = \left(\frac{\partial H}{\partial T}\right)_P dT + \left(\frac{\partial H}{\partial P}\right)_T dP$$

We can equate these two expressions for dH and solve for dS

SOLUTION FOR dS

$$TdS + VdP = C_P(T)dT + \left(\frac{\partial H}{\partial P}\right)_T dP$$

Which rearranges to:

$$dS = \frac{C_P(T)}{T}dT + \frac{1}{T} \left[\left(\frac{\partial H}{\partial P} \right)_T - V \right] dP$$

ideal gas

Considering the total differential of *S* with respect to *T* and *P*

$$dS = \left(\frac{\partial S}{\partial T}\right)_P dT + \left(\frac{\partial S}{\partial P}\right)_T dP$$

We have,

$$\left(\frac{\partial S}{\partial T}\right)_P = \frac{C_P(T)}{T}$$
 and $\left(\frac{\partial S}{\partial P}\right)_T = \frac{1}{T}\left[\left(\frac{\partial H}{\partial P}\right)_T - V\right]$

ABSOLUTE ENTROPY VALUES

$$\left(\frac{\partial S}{\partial T}\right)_{P} = \frac{C_{P}(T)}{T}$$
 integrate with respect to T at constant P to determine entropy change with temperature change
$$\Delta S = S(T_{2}) - S(T_{1}) = \int_{0}^{T_{2}} \frac{C_{P}(T)dT}{T}$$

$$\Delta S = S(T_2) - S(T_1) = \int_{T_1}^{T_2} \frac{C_P(T)dT}{T}$$

Let $T_1 = 0 \text{ K}$

$$S(T_2) = S(0) + \int_{0}^{T_2} \frac{C_P(T)dT}{T}$$

Thus, we can calculate the entropy of a substance at *any* temperature T_2 if we know the entropy at 0 K and the constant pressure heat capacity

WHAT ABOUT 0 K?

Walther Nernst 1864-1941 Nobel Prize in Chemistry in 1920

Nernst suggested that the change in entropy for chemical reactions approached 0 as the absolute temperature approached 0

$$\Delta_r S \to 0 \text{ as } T \to 0$$

The Third Law: Every substance has a finite positive entropy, but at zero Kelvin the entropy may become 0, and it does so in the case of a perfectly crystalline substance.

Standard Entropy

THIRD-LAW ENTROPY VALUES

$$S(T) = \int_{0}^{T} \frac{C_{P}(T')dT'}{T'}$$
 Valid in so far as the third law stipulates that $S(0) = 0$

For this to be true, there must be no phase transition between 0 and T. For phase transitions (e.g., melting):

$$\Delta_{trs}S = \frac{q_{rev}}{T_{trs}} \quad \text{For a phase transition} \\ \text{that takes place at fixed } P \quad \longrightarrow \quad \Delta_{trs}S = \frac{\Delta_{trs}H}{T_{trs}}$$

$$S(T) = \int_{0}^{T_{flus}} \frac{C_{p}^{s}(T)dT}{T} + \frac{\Delta_{flus}H}{T_{flus}} + \int_{T_{flus}}^{T_{vap}} \frac{C_{p}^{l}(T)dT}{T} + \frac{\Delta_{vap}H}{T_{vap}} + \int_{T_{vap}}^{T} \frac{C_{p}^{g}(T')dT'}{T'}$$

CALORIMETRIC ENTROPY DETERMINATION

Process	S , $J \cdot K^{-1} \cdot mol^{-1}$	
0.00 – 10.00 K	2.05	200
10.00 – 35.61 K	25.79	A
solid-solid phase transition	6.43	To Question and the second sec
35.61 – 63.15 K	23.41	
solid-liquid phase transition	11.20	Y: f liquid
63.15 – 77.36 K	11.46	solid
liquid-gas phase transition	72.00	0 100 200 300 400
77.36 – 298.15 K	39.25	T / K
non-ideality	0.02	
Total:	191.61	

Values of entropies for gases given in the literature are *standard entropies*. These are by convention corrected for the non-ideality of real gases at 1 bar.

298 K STANDARD MOLAR ENTROPIES

units of J•K⁻¹•mol⁻¹

Solids

Carbon (diamond)	-	The stiffer lattice of diamond compared to graphite leads
Carbon (graphite)	5.7	to lower entropy
Sodium	51.3	Insulators have substantially lower entropies than
Potassium	64.7	conductors as the latter have many states accessible to
Silver	42.6	conduction electrons

298 K STANDARD MOLAR ENTROPIES

units of J•K⁻¹•mol⁻¹

Liquids vs Gases

	Liquid	_Gas_
Water	70.0	188.8
Bromine	152.2	245.5

The condensed nature of the liquid reduces entropy compared to the gas; the greater mass of Br_2 compared to H_2O leads to greater entropy but in the gas phase this is somewhat balanced by an additional rotational degree of freedom for the non-linear water molecules.

Entropy is additive

ENTROPY IS ADDITIVE FOR REACTIONS

Just as was true for enthalpy, one may define the entropy of rection to be

$$aA + bB \rightarrow yY + zZ$$

$$\Delta_r S^{\circ} = y S^{\circ}[Y] + z S^{\circ}[Z] - a S^{\circ}[A] - b S^{\circ}[B]$$

HYDROGEN COMBUSTION EXAMPLE

$$aA + bB \rightarrow yY + zZ$$

$$\Delta_r S^\circ = yS^\circ[Y] + zS^\circ[Z] - aS^\circ[A] - bS^\circ[B]$$

$$\Delta_r S^{\circ} = y S^{\circ}[Y] + z S^{\circ}[Z] - a S^{\circ}[A] - b S^{\circ}[B]$$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(1)$$

$$\Delta_r S^\circ = 70.0 - 130.7 - \frac{1}{2} \cdot 205.2 = -163.3 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$$

very negative because the reaction converts 1.5 moles of "very disordered" gas into 1 mole of "less disordered" liquid

WATER SHIFT REACTION EXAMPLE

$$aA + bB \rightarrow yY + zZ$$

$$\Delta_r S^{\circ} = yS^{\circ}[Y] + zS^{\circ}[Z] - aS^{\circ}[A] - bS^{\circ}[B]$$

$$\Delta_r S^{\circ} = y S^{\circ}[Y] + z S^{\circ}[Z] - a S^{\circ}[A] - b S^{\circ}[B]$$

$$C(s) + H_2O(g) \rightarrow H_2(g) + CO(g)$$

$$\Delta_r S^{\circ} = 130.7 + 197.7 - 5.7 - 188.8 = 133.9 \text{ J} \bullet \text{K}^{-1} \bullet \text{mol}^{-1}$$

very positive because the reaction converts 1 mole of "very ordered" solid into 1 mole of "very disordered" gas

Review: L13-L14

- 1. Entropy variation with temperature may be determined as $\left(\frac{\partial S}{\partial T}\right)_X = \frac{C_X}{T} \frac{(T)}{T}$ X = V, P
- 2. As integrating heat capacity determine enthalpy, integration of heat capacity divided by temperature can determine entropy
- 3. Third Law states that at non-zero temperatures, all substances have positive entropies, while at 0 K the entropy of a perfect crystal is equal to zero.

4. Entropy at a given temperature *T* can be computed as

$$S(T) = \int_{0}^{T_{flus}} \frac{C_{p}^{s}(T)dT}{T} + \frac{\Delta_{flus}H}{T_{flus}} + \int_{T_{flus}}^{T_{vap}} \frac{C_{p}^{l}(T)dT}{T} + \frac{\Delta_{vap}H}{T_{vap}} + \int_{T_{vap}}^{T} \frac{C_{p}^{g}(T')dT'}{T'}$$

Review: L13-L14

- 5. As for enthalpy (or any other state function), entropies of reaction are additive
- 6. Entropies of gases are much, much greater than those of their corresponding condensed phases

Next: Properties of pure substances & Steam table