Indian Institute of Space Science and Technology

Thiruvananthapuram

MA 211 - Integral Transforms

Instructor: Dr. Kaushik Mukherjee Tutorial-1

1. Using the definition of the Fourier transform verify whether the Heaviside unit step function H, defined by

$$H(x) = \begin{cases} 1, & \text{for } x \ge 0, \\ 0, & \text{otherwise,} \end{cases}$$

possess the Fourier transform.

2. Let a>0. Do the following functions $f:\mathbb{R}\to\mathbb{R}$ possess the Fourier transform? Explain. If it is, then find it. Also find f(0).

(a) (One-sided exponential functions) $f(x) = e^{-ax}H(x)$ and $f(x) = e^{ax}H(-x)$.

(b) (Rectangular function of height 1, width 2a and centre at 0) $\mathbf{rect}_a(x) = \begin{cases} 1, & \text{for } |x| \leq a, \\ 0, & \text{otherwise.} \end{cases}$

(c) (Hat function) $f(x) = \begin{cases} 1 - \frac{|x|}{a}, & \text{for } |x| \le a, \\ 0, & \text{otherwise.} \end{cases}$

(d) (Gaussian function) $f(x) = e^{-ax^2}$.

3. Consider a rectangular function of height H, width W and centre at C. Using the Fourier transform of the rectangular function \mathbf{rect}_a , determine its Fourier transform.

4. Consider the "off-on-off" pulse f(x), defined by

$$f(x) = \begin{cases} 0, & \text{for } x < -2, \\ -1, & \text{for } -2 \le x < -1, \\ 1, & \text{for } -1 \le x \le -1, \\ -1, & \text{for } 1 < x \le 2, \\ 0, & \text{for } x > 2. \end{cases}$$

(a) Use suitable "rectangular functions" g and h, such that f(x) = a g(x) + b h(x), for some $a, b \in \mathbb{R}$.

(b) Determine the Fourier transform of f using the Fourier transform of the rectangular functions g and h.

1

5. Let a > 0.

(a) Find the Fourier transform of $\frac{1}{a^2 + x^2}$. (b) Find the Fourier transforms of $\frac{x}{a^2 + x^2}$.

(c) Let $b \in \mathbb{R}$. Find the Fourier transforms of $\frac{\cos bx}{a^2 + x^2}$ (Hint: Use the frequency shift property)

6. Find
$$F^{-1}\left(\frac{e^{4iw}}{3+iw}\right)$$
 and $F^{-1}\left(we^{-w^2/8}\right)$.

7. Compute the convolution (f * g) for the following pair of functions and also sketch the graph of it in each case.

(a)
$$f(x) = \begin{cases} \frac{1}{2}, & \text{for } 0 \le x \le \frac{1}{2}, \\ 0, & \text{otherwise}, \end{cases}$$
, $g(x) = \begin{cases} 1, & \text{for } 0 \le x \le 1, \\ 0, & \text{otherwise}, \end{cases}$

(b)
$$f(x) = \begin{cases} 1, & \text{for } 0 \le x \le 1, \\ 0, & \text{otherwise,} \end{cases}$$
, $g(x) = \begin{cases} 1, & \text{for } 0 \le x \le 1, \\ 0, & \text{otherwise,} \end{cases}$

(c)
$$f(x) = \begin{cases} 2, & \text{for } 0 \le x \le 2, \\ 0, & \text{otherwise.} \end{cases}$$
, $g(x) = \begin{cases} 1, & \text{for } 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$

(b)
$$f(x) = \begin{cases} 1, & \text{for } 0 \le x \le 1, \\ 0, & \text{otherwise,} \end{cases}$$
, $g(x) = \begin{cases} 1, & \text{for } 0 \le x \le 1, \\ 0, & \text{otherwise,} \end{cases}$, $g(x) = \begin{cases} 1, & \text{for } 0 \le x \le 1, \\ 0, & \text{otherwise,} \end{cases}$, $g(x) = \begin{cases} 1, & \text{for } 0 \le x \le 1, \\ 0, & \text{otherwise,} \end{cases}$, $g(x) = \begin{cases} 1, & \text{for } 0 \le x \le 1, \\ 0, & \text{otherwise,} \end{cases}$, $g(x) = \begin{cases} e^{-|x|}, & \text{for } |x| \le 1, \\ 0, & \text{otherwise,} \end{cases}$

8. Assume that $f \in L_1(\mathbb{R})$ such that f is piecewise-smooth on every finite interval [a, b] and is continuous on IR. Then, solve the following integral equation:

(a)
$$\int_{-\infty}^{\infty} f(t-x)f(x) dx = e^{-t^2}$$
.

9. Use the Fourier Convolution Theorem, for the followings:

(a)
$$F^{-1}\left(\frac{1}{3+4iw-w^2}\right)$$

(b)
$$F^{-1}\left(\frac{4}{(1+w^2)^2}\right)$$

- 10. Let a > 0.
 - (a) Find the Fourier cosine and sine transforms of e^{-ax} . (Hint: Use the Fourier transform of $e^{-a|x|}$.)
 - (b) Find the Fourier cosine transform of $\frac{1}{a^2+x^2}$ and the Fourier sine transform of $\frac{x}{a^2+x^2}$
- 11. Let $\mathbb{R}^+ = [0, \infty)$. Assume that $f \in L_1(\mathbb{R}^+)$ such that f is piecewise-smooth on every finite interval [a,b](a < b) and is continuous on \mathbb{R}^+ . Then, solve the following integral equation:

(a)
$$\int_0^\infty f(x)\cos wx \, dx = e^{-w}.$$

- 12. Use suitable transform (Fourier/Cosine/Sine transform) to solve the following differential equations:
 - (a) $u' 2u = H(x)e^{-2x}$, $-\infty < x < \infty$, where H(x) is the unit step function and $u(x) \to 0$ as

(b)
$$u'' - u = -f(x)$$
, $-\infty < x < \infty$, where $f \in L_1(\mathbb{R})$ and $u(x) \to 0$, $u'(x) \to 0$ as $x \to \pm \infty$

(c)
$$u'' - u = e^{-2x}$$
, $0 < x < \infty$, where $u(x) = 0$, and $u(x) \to 0$, $u'(x) \to 0$ as $x \to \infty$