Chapter 21 Suites de nombres réels et complexes

21.1 L'ensemble des suites

Exercice 21.1

Soit (u_n) une suite réelle. Traduire à l'aide de quantificateurs

- 1. La suite (u_n) est constante à partir d'un certain rang.
- **2.** La suite (u_n) est croissante à partir d'un certain rang.
- **3.** La suite (u_n) ne converge pas vers 0.
- **4.** La suite (u_n) n'est pas croissante à partir d'un certain rang.

Exercice 21.2

Montrer que la suite de terme général $u_n = \sum_{k=0}^n \frac{1}{n+k}$, $n \ge 1$, est décroissante.

21.2 Limite d'une suite

Exercice 21.3

En revenant à la définition de la limite, montrer que la suite de terme général $u_n = \frac{n+1}{2n+3}$ a pour limite 1/2.

Exercice 21.4

Démontrer, en utilisant la définition que la suite (v_n) définie par $v_n = \frac{n^2 - 1}{2n^2 + 3}$ est convergente.

Exercice 21.5

Soit (u_n) la suite définie par $u_n = \frac{3n}{2n^2 - 1}$.

Trouver $N_1 \in \mathbb{N}$ tel que pour tout $n \ge N_1$, $|u_n| \le 10^{-4}$.

Puis trouver $N_2\in\mathbb{N}$ tel que pour tout $n\geq N_2,$ $|u_n|\leq \varepsilon$ avec $\varepsilon>0$ donné.

Exercice 21.6

Démontrer, en utilisant la définition que la suite (u_n) définie par $u_n = 3n - 17$ tend vers $+\infty$.

Exercice 21.7

Démontrer, en utilisant la définition que la suite (u_n) définie par $u_n = 3n^2 - 9n + 7$ tend vers $+\infty$.

Exercice 21.8

Soit (u_n) une suite numérique et ℓ un nombre. Montrer que les assertions suivantes sont équivalentes.

- **1.** (u_n) converge vers ℓ .
- **2.** $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies |u_n \ell| \leq 2023\varepsilon.$
- $\textbf{3.} \ \forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies \left| u_n \ell \right| < \varepsilon.$
- **4.** $\forall \varepsilon \in]0, 1[, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_0 \implies |u_n \ell| \le \varepsilon.$
- 5. $\forall k \in \mathbb{N}^{\star}, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies |u_n \ell| < \frac{1}{k}$.

Exercice 21.9

Montrer qu'une suite convergente d'entiers est une suite stationnaire.

Suite et relations d'ordres 21.3

Exercice 21.10

Pour tout $n \in \mathbb{N}^*$, on pose

$$a_n = \sum_{k=1}^n \frac{n}{n^2 + k}$$
 $b_n = \sum_{k=1}^{2n} \frac{n}{n^2 + k}$ $c_n = \sum_{k=1}^{n^2} \frac{n}{n^2 + k}$

$$b_n = \sum_{k=1}^{2n} \frac{n}{n^2 + k}$$

$$c_n = \sum_{k=1}^{n^2} \frac{n}{n^2 + k}$$

1. Établir que, pour tout $n \in \mathbb{N}^*$,

$$\frac{n^2}{n^2+n} \le a_n \le \frac{n^2}{n^2+1}.$$

En déduire que la suite $(a_n)_{n\in\mathbb{N}^*}$ converge et calculer sa limite.

2. En s'inspirant de la question précédente, établir que $\lim_{n\to\infty} b_n = 2$ et $\lim_{n\to\infty} c_n = +\infty$.

Exercice 21.11

Étudier la suite de terme général

$$u_n = \sum_{k=1}^n \sqrt{k}.$$

Exercice 21.12

Étudier la suite de terme général

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}.$$

Exercice 21.13

Soit $x \in \mathbb{R}$. On désigne par |x| la partie entière de x. Déterminer

$$\lim_{n \to +\infty} \frac{\lfloor x \rfloor + \lfloor 2x \rfloor + \dots + \lfloor nx \rfloor}{n^2}.$$

Exercice 21.14

Étudier la convergence de la suite (u_n) définie pour $n \in \mathbb{N}^*$ par

$$u_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}.$$

Exercice 21.15

Soit (u_n) une suite telle que $u_0 > 0$ et pour tout entier $n, u_{n+1} \ge ku_n$; k désignant un nombre donné, k > 1. Montrer que $\lim_{n\to+\infty} u_n = +\infty$. **Exercice 21.16**

Soit (u_n) une suite possédant la propriété suivante: il existe un entier naturel α et une nombre k, 0 < k < 1, tels que, pour tout entier $n \ge \alpha$, on ait $|u_{n+1}| \le k|u_n|$. Montrer que $\lim_{n \to +\infty} u_n = 0$.

Soit (u_n) une suite telle que $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \ell$, où $-1 < \ell < 1$. Montrer que $\lim_{n \to +\infty} u_n = 0$.

Exercice 21.18

Soit u et v deux suites du segment [0, 1] telles que

$$u_n v_n \xrightarrow[n \to +\infty]{} 1.$$

Montrer

$$u_n \xrightarrow[n \to +\infty]{} 1$$
 et $v_n \xrightarrow[n \to +\infty]{} 1$.

21.4 **Opérations algébriques**

Exercice 21.19

Étudier la suite de terme général

$$u_n = \frac{1+3+5+\dots+(2n-1)}{1+2+\dots+n}.$$

Exercice 21.20

Étudier la convergence des suites suivantes, données par leurs termes généraux.

1.
$$u_n = \frac{\sin n}{n}$$
;

2.
$$u_n = \frac{n^2}{n(n-1)} + (0.7)^n$$
;

3.
$$u_n = n^3 + 2n^2 - 5n + 1$$
;

4.
$$u_n = 3^n - n^2 2^n$$
;

5.
$$u_n = (-1)^n$$

5.
$$u_n = (-1)^n$$
;
6. $u_n = \sqrt{n^2 + n} - \sqrt{n}$.

Exercice 21.21

Soit (u_n) une suite géométrique telle que

$$u_0 = 90$$
 et $\lim_{n \to +\infty} (u_0 + u_1 + \dots + u_n) = 150$.

Quelle est sa raison?

Exercice 21.22

On considère la suite positive (u_n) définie par

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1}^2 = 2u_n$

et (v_n) la suite définie par $v_n = \ln u_n - \ln 2$.

- 1. Montrer que (v_n) est une suite géométrique.
- **2.** Calculer la limite de la suite (v_n) , puis celle de (u_n) .

Exercice 21.23

Étudier la convergence et la limite éventuelle de la suite (u_n) définie par

$$\mathbf{1.} \ u_n = \frac{\sin(n^2)}{n}.$$

$$2. \ u_n = \frac{n^3 + 5n}{5n^3 + \cos n + \frac{1}{n^2}}.$$

3.
$$u_n = \frac{2n + (-1)^n}{5n + (-1)^{n+1}}$$
.

4.
$$u_n = \frac{a^n - b^n}{a^n + b^n}$$
 avec $(a, b) \in (\mathbb{R}_+^*)^2$.

5.
$$u_n = \frac{5n^2 + \sin n}{3(n+2)^2 \cos(\frac{n\pi}{5})}$$
.

$$\mathbf{6.} \ \ u_n = \sqrt{n + \cos(n)} - \sqrt{n}$$

Exercice 21.24 Théorème de Cesàro, banque PT 2003

Pour toute suite réelle $(u_n)_{n\in\mathbb{N}^*}$, on note $a_n=\frac{u_1+u_2+\cdots+u_n}{n}$ la moyenne arithmétique de ses n premiers termes.

1. On se propose de montrer que si la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers le réel ℓ , alors la suite $(a_n)_{n\in\mathbb{N}^*}$ converge vers ℓ . Soit $\epsilon > 0$.

3

(a) Montrer qu'il existe $n_0 \in \mathbb{N}$ tel que, pour tout $n \in \mathbb{N}$, $n > n_0$ entraı̂ne $|u_n - \ell| < \frac{\varepsilon}{2}$.

(b) Montrer que pour tout entier $n > n_0$ on a

$$|a_n-\ell|\leq \frac{|u_1-\ell|+|u_2-\ell|+\cdots+|u_{n_0}-\ell|}{n}+\frac{|u_{n_0+1}-\ell|+\cdots+|u_n-\ell|}{n}.$$

(c) Montrer qu'il existe un entier $n_1 > n_0$ tel que, pour tout $n \in \mathbb{N}$, $n > n_1$ entraîne

$$\frac{|u_1-\ell|+|u_2-\ell|+\cdots+|u_{n_0}-\ell|}{n}<\frac{\varepsilon}{2}.$$

- (d) Conclure.
- **2.** On suppose ici que la suite $(a_n)_{n\in\mathbb{N}^*}$ converge vers le réel ℓ . On se propose d'étudier une réciproque du résultat précédent.
 - (a) Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ n'est pas nécessairement convergente. On pourra considérer la suite de terme général $(-1)^n$.
 - (b) Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ n'est pas nécessairement bornée.

On pourra considérer la suite
$$(u_n)_{n\in\mathbb{N}^*}$$
 définie par $u_n = \begin{cases} p & \text{si } n = p^3 \\ 0 & \text{sinon.} \end{cases}$

(c) On suppose en outre que la suite $(u_n)_{n\in\mathbb{N}^*}$ est monotone ; on pourra considérer, par exemple, qu'elle est croissante.

Montrer alors par l'absurde que la suite $(u_n)_{n\in\mathbb{N}^*}$ est majorée par ℓ . Conclure.

Exercice 21.25

- **1.** Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que $\lim_{n\to\infty}(u_{n+1}-u_n)=\ell$, avec $\ell\in[-\infty,+\infty]$. Montrer que $\lim_{n\to\infty}\frac{u_n}{n}=\ell$.
- **2.** Soit $(x_n)_{n\in\mathbb{N}}$ une suite strictement positive.
 - (a) Montrer que si $\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = \ell$ avec $\ell \in [0, +\infty]$, alors

$$\lim_{n\to\infty} x_n^{1/n} = \ell.$$

(b) Montrer par un exemple que la réciproque de (2.a) est fausse.

21.5 Comparaison des suites de référence

21.6 Suites monotones

Exercice 21.26

Démontrer que la suite de terme général $u_n = (1 + (-1)^n)/n$ pour $n \ge 1$ est positive ou nulle et tend vers zéro, mais n'est pas décroissante.

Exercice 21.27

Soit $(u_n)_{n>0}$ la suite réelle définie pour n>0 par

$$u_n = \sum_{k=1}^n \frac{1}{k!}.$$

1. Montrer que $(u_n)_{n>0}$ est croissante.

- **2.** Montrer que, pour tout $n \in \mathbb{N}^*$, $\frac{1}{n!} \leq \frac{1}{2^{n-1}}$.
- 3. En déduire que $(u_n)_{n>0}$ est convergente.

Exercice 21.28

Soit (u_n) une suite croissante de limite $\ell \in \mathbb{R}$. Pour tout $n \ge 1$, on pose

$$v_n = \frac{u_1 + u_2 + \dots + u_n}{n}.$$

- 1. Montrer que la suite (v_n) est croissante.
- **2.** Montrer que (v_n) est majorée et en déduire que (v_n) est convergente vers un réel $L \leq \ell$.
- **3.** Établir que pour tout $n \ge 1$, $v_{2n} \ge \frac{u_n + v_n}{2}$.
- **4.** En déduire que $\ell = L$.

La suite (v_n) s'appelle la suite des moyennes de Cesàro de la suite (u_n) et on vient de prouver le théorème de Cesàro dans le cas particulier où la suite (u_n) est croissante.

Exercice 21.29

Montrer qu'une suite monotone dont une suite extraite converge est convergente.

Exercice 21.30

Montrer que les suites $(u_n)_{n\geq 2}$ et $(v_n)_{n\geq 2}$ définies ci-dessous sont adjacentes.

$$\forall n \ge 2, u_n = \sum_{k=1}^{n-1} \frac{1}{k^2(k+1)^2} \text{ et } v_n = u_n + \frac{1}{3n^2}.$$

Exercice 21.31

Montrer que les suites (u_n) , (v_n) et (w_n) définies par

$$u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$
 $v_n = u_n + \frac{1}{n!}$ $w_n = u_n + \frac{1}{n \cdot n!}$

sont convergentes et ont même limite.

Exercice 21.32

Soient a_0 et b_0 deux réels fixés. On définit par récurrence les suites (a_n) et (b_n) par

$$a_{n+1} = \frac{2a_n + b_n}{3}$$
 et $b_{n+1} = \frac{a_n + 2b_n}{3}$.

- 1. Montrer que ces deux suites sont adjacentes.
- **2.** En calculant $a_{n+1} + b_{n+1}$, montrer que (a_n) et (b_n) convergent vers $\frac{a_0 + b_0}{2}$.

Exercice 21.33

Soient a,b deux réels vérifiant 0 < a < b. On considère les deux suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ définies par $u_0 = a, v_0 = b$ et pour tout $n \in \mathbb{N}$

$$u_{n+1} = \frac{2u_n v_n}{u_n + v_n};$$
 $v_{n+1} = \frac{u_n + v_n}{2}.$

5

- **1.** Montrer que pour tout $n \in \mathbb{N}$, on a $v_n > u_n$.
- **2.** Montrer que pour tout $n \in \mathbb{N}$, on a $v_{n+1} u_{n+1} < \frac{1}{2}(v_n u_n)$.

- **3.** Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, on note ℓ leur limite commune.
- **4.** Calculer $u_n v_n$. En déduire ℓ en fonction de a et b.

Exercice 21.34 Suites de Cauchy

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle qui vérifie la propriété

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall (n, p) \in \mathbb{N}^2, \left(n \ge n_0 \text{ et } p \ge n_0 \implies \left| u_n - u_p \right| \le \varepsilon \right). \tag{1}$$

- 1. Montrer que la suite est bornée.
- 2. Montrer qu'elle est convergente.

21.7 Suite extraites

Exercice 21.35

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que les suites extraites $(u_{2p})_{p\in\mathbb{N}}$, $(u_{2p+1})_{p\in\mathbb{N}}$ et $(u_{3p})_{p\in\mathbb{N}}$ convergent. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge.

Exercice 21.36

1. Montrer que pour tout x, y réels, on a

$$0 < x < y \implies x < \sqrt{xy} < \frac{x+y}{2} < y.$$

2. Soit a et b réels tels que 0 < a < b. On considère les suites récurrentes définies par

$$u_0=a, \qquad \qquad v_0=b \qquad \qquad \text{et} \qquad \qquad \forall n \in \mathbb{N}, \left\{ \begin{array}{ll} u_{n+1} &= \sqrt{u_n v_n}, \\ v_{n+1} &= \frac{u_n+v_n}{2}. \end{array} \right.$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante, $(v_n)_{n\in\mathbb{N}}$ décroissante et que $u_n < v_n$ pour tout $n \in \mathbb{N}$.

- **3.** En déduire que les suites (u_n) et (v_n) sont convergentes.
- **4.** Montrer que les suites (u_n) et (v_n) ont même limite.

Cette limite commune s'appelle la moyenne arithmético-géométrique de a et b, mais on ne sait pas la calculer en général.

Exercice 21.37

arque

Montrer que la suite de terme général $u_n = n \sin^2\left(\frac{n\pi}{10}\right)$ diverge, et que la suite de terme général $v_n = \left(1 + \frac{1}{2}\sin(n)\right)^{1/n}$ converge.

Exercice 21.38

Montrer que la suite $(\tan(n))_{n\in\mathbb{N}}$ est divergente.

Exercice 21.39

Soit $v = (v_n)$ la suite définie, pour $n \ge 1$, par

$$v_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}.$$

1. Montrer que : $\forall n \geq 1, v_{2n} - v_n \geq \frac{1}{2}$.

2. En déduire que v diverge et qu'elle admet $+\infty$ pour limite.

Exercice 21.40 lim sup *et* lim inf

Soit (u_n) une suite réelle bornée. On définit deux suites (a_n) et (b_n) par

$$a_n = \inf \{ u_k \mid k \ge n \}$$
 et $b_n = \sup \{ u_k \mid k \ge n \}$

- 1. Montrer que les suite (a_n) et (b_n) convergent. On note $\liminf u_n$ la limite de (a_n) et $\limsup u_n$ la limite de (b_n) .
- 2. Montrer que si a est une valeur d'adhérence de (u_n) , alors

$$\liminf u_n \le a \le \limsup u_n$$
.

- 3. Montrer que $\lim \inf u_n$ (resp. $\lim \sup u_n$) est la plus petite (resp. plus grande) valeur d'adhérence de la suite (u_n) . Montrer que (u_n) converge si, et seulement si $\lim \inf u_n = \lim \sup u_n$.
- **4.** Montrer que cette notion coïncide avec

$$\limsup u_n = \sup \left\{ x \in \mathbb{R} \mid u_n > x \text{ pour un nombre infini de } n \right\}.$$

Exercice 21.41

Soit (x_n) une suite réelle bornée divergente. Montrer que l'on peut trouver deux suites extraites de (x_n) convergeant vers des limites distinctes.

21.8 Caractérisations séquentielles

Exercice 21.42

Soit A une partie non vide, majorée de \mathbb{R} et M un *majorant* de A. Montrer que les assertions suivantes sont équivalentes.

- (i) M est la borne supérieure de A.
- (ii) Il existe une suite d'éléments de A convergente vers M.
- (iii) Il existe une suite croissante d'éléments de A convergente vers M.

On a une propriété analogue pour les bornes inférieures.

Exercice 21.43

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle, on note $U=\left\{u_n\mid n\in\mathbb{N}\right\}$ l'ensemble de ses valeurs. On suppose que $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$. Déterminer l'adhérence \overline{U} de U.

7

Exercice 21.44

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle, on note $U=\{u_n\mid n\in\mathbb{N}\}$ l'ensemble de ses valeurs.

- 1. Montrer que l'ensemble des valeurs d'adhérence A de la suite (u_n) est fermé.
- **2.** On pose pour tout $n \in \mathbb{N}$, $U_n = \{ k \in \mathbb{N} \mid k \ge n \}$. Montrer que $A = \bigcap_{n \in \mathbb{N}} \overline{U_n}$.
- 3. Montrer que $\overline{U} = A \cup U$.

21.9 Exemples de suites complexes