ANGOMP. 250 TO INTRODUCTION TO COMPUTER SCIENCE

AddWeek 9-1: Induction oder

Giulia Alberini, Fall 2020

WHAT ARE WE GOING TO DO IN THIS VIDEO?

- Inductive/Recarsivende tintilons ect Exam Help
- Inductive/Recursiverproofsowcoder.com
 - Mathematical Induction Add WeChat powcoder

PROOFS

For all $n \ge 1$,

How can we prove such a statement hat powcoder

- By "proof", we mean a formal logical argument that convincingly demonstrate the truth of a given proposition.
- Note that "convincingly" is itself not well defined.

$$1 + 2 + ... + (n-1) + n$$

Rewrite by considering n/2 pairs: Assignment Project Exam Help

$$1 + 2 + \frac{\text{https}_{n}^{n}}{2} / p(\frac{w}{2} + \frac{\text{coder.com}}{2} - 1) + n$$

$$- Add WeChat powcoder$$

If n is even, then adding up the n/2 pairs gives

$$n/2*(n+1)$$

• What if n is odd?

• What if n is odd? Then, n-1 is even. So,

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

=
$$(\frac{n-1}{2} + 1) * n$$

= $\frac{n+1}{2} * n$

which is the same formula as before.

RECURSIVE (INDUCTIVE) DEFINITION

Some set of elements can be define recursively/inductively.

Assignment Project Exam Help

A recursive/inductive definition consists of the following:

- A base clause https://powcoder.com
 - Which one or more basic/initial element of the set.

 Add WeChat powcoder

 One or more inductive clauses
 - One or more inductive clauses
 Rules on how to generate "new" elements of the set from "old" ones.
 - A final clause
 which simply states that no other element is part of the set.

EXAMPLE – NATURAL NUMBERS

The set of natural numbers can be defined as follows:

Base clause: Assignment Project Exam Help
 0 is a natural number

https://powcoder.com

Inductive clause: Add WeChat powcoder

If n is a natural number, then n + 1 is also a natural number.

• Final clause: Nothing else is a natural number.

MATHEMATICAL INDUCTION

Consider a statement of the form:

AsFografien Project Paiatrugelp

where n_0 is some constant and proposition P(n) has value true or false for each n.

Add WeChat powcoder

If n is an element of an inductively defined set, then the statement above can be proven using a technique called *mathematical induction*.

(WEAK) MATHEMATICAL INDUCTION

To prove a property by mathematical induction, we proceed as follows:

Base case Assignment Project Exam Help Show that the property holds for the basic/initial elements of the set.

https://powcoder.com

Induction step

Assume the property hold for some element n. (Induction Hypothesis) Show that the property also holds for any element generated from n using the inductive clauses.

Conclusion

The property holds for all elements.

"For all $n \ge n_0$, P(n) is true"

Assignment Project Exam Help

For all $n \ge 1$,

https://powcoder.com

$$1 + 2 + 3 + \dots + (n-1) + n = \frac{n(n+1)}{2}$$

Add WeChat powcoder

This is a property of natural numbers. Since this is a set that can be defined inductively, we can use mathematical induction to prove such property!

PROOF BY MATHEMATICAL INDUCTION

We need to prove the following:

- Base case:

 Assignment Project Exam Help $P(n_0)$ is true, i.e. the property holds for n_0 which in this case is 1.

 https://powcoder.com
- Induction step: Add WeChat powcoder IH: Assume P(k) is true, i.e. the property holds for an element k. Prove that P(k+1) is true, i.e. the property holds for k+1.

Base case:

Induction step:

 $P(n_0)$ is true.

For any $k \ge n_0$, if P(k) is true then P(k+1) is true.

2 Assignment Project Exam Helpk+1

https://powcoder.com

Thus we have proved:
Add WeChat powcoder

For any $n \ge n_0$, P(n) is true.

BACK TO THE PROOF

For all
$$n \ge 1$$
, $1+2+3+\ldots+(n-1)+n=\frac{n(n+1)}{2}$

Assignment Project Exam Help

■ Base case: n = 1, to prove https://powcoder.com

Add $We Chat_2 pow coder$

$$1 = \frac{2}{2} = 1$$

BACK TO THE PROOF

Induction step:

Add WeChat powcoder

BACK TO THE PROOF

Induction step:

IH: Assume that it holds for k, that is

Assignment Project Exam Help $1 + 2 + \cdots + k = \frac{k(k+1)}{\text{https://powcoder.com}}$

Prove it for k + 1:

$$=\frac{k(k+1)}{2}+(k+1)$$
, by IH

$$= (k+1) * \left(\frac{k}{2} + 1\right) = \frac{(k+1)(k+2)}{2}$$

Prove the following statement:

For all n Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Statement: For all $n \ge 3$, $2n + 1 < 2^n$.

Assignment Project Exam Help

Note: P(n) is false for n=1,2.

But that has nothing to do with what we need to prove.

Add WeChat powcoder

Statement: For all $n \ge 3$, $2n + 1 < 2^n$.

Assignment Project Exam Help

Proof: (by mathematical induction) https://powcoder.com

Base case (n = 3):

Add WeChat powcoder

• Induction step:

IH: Assume 2 * k + 1 Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Induction step:

IH: Assume 2 * k + 1 Assignment Project Exam Help

Prove it for k + 1:

https://powcoder.com 2*(k+1)+1 Add WeChat powcoder

• Induction step:

IH: Assume 2 * k + 1 Assignment Project Exam Help

Prove it for k + 1:

https://powcoder.com 2*(k+1)+1=2k+2+1Add WeChat powcoder

$$< 2^{k} + 2$$
, by IH
 $< 2^{k} + 2^{k}$, for $k \ge 3$
 $= 2^{k+1}$

Statement: For all $n \ge 5$, $n^2 < 2^n$.

Assignment Project Exam Help

Proof: (by mathematical induction) https://powcoder.com

■ Base case (n = 5):

Add We Chat 3 powcoder

Statement: For all $n \ge 5$, $n^2 < 2^n$.

Induction step.
 Assignment Project Exam Help

What should we assume? https://powcoder.com

Add WeChat powcoder

What do we need to prove?

Statement: For all $n \ge 5$, $n^2 < 2^n$.

Induction step. Assignment Project Exam Help

What should we assume? https://powcoder.gons 5

Add WeChat powcoder

What do we need to prove? $(k+1)^2 < 2^{(k+1)}$

Statement: For all $n \ge 5$, $n^2 < 2^n$.

Induction step.
 Assignment Project Exam Help

IH: $k^2 < 2^k$ for a $k \ge 5$

https://powcoder.com

Add WeChat powcoder

Statement: For all $n \ge 5$, $n^2 < 2^n$.

Induction step.

Assignment Project Exam Help

IH: $k^2 < 2^k$ for a $k \ge 5$

https://powcoder.com

Add WeChat powcodeby IH

$$< 2^k + 2^k$$
, by Example 2
= 2^{k+1}

(STRONG) MATHEMATICAL INDUCTION

- Sometimes one would like to assume the induction hypothesis not only for the previous element, but also for smaller elements. This leads to a logically equivalent proof method called strong (or complete) mathematical induction.
- To prove a property by strong http://picalcolor.ion.jwe proceed as follows:
 - Induction step

 Add WeChat powcoder

 Assume the property hold for all elements less than an arbitrary k. (Induction Hypothesis)

 Show that the property also holds for the k element which was generated using the inductive clauses.
 - Conclusion
 The property holds for all elements.

FIBONACCI NUMBERS

Consider the following settlesic Polymanses:

Add WeChat powcoder 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Let f_n denote the nth Fibonacci number. How can we define the sequence above?

FIBONACCI NUMBERS – INDUCTIVE DEFINITION

• Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Assignment Project Exam Help

Base clause:

 $f_0 = f_1 = 1$ are Fibonacci rhumber spowcoder.com

Add WeChat powcoder

Inductive clause:

If f_{n-1} and f_{n-2} are Fibonacci numbers, then $f_n = f_{n-1} + f_{n-2}$ is a Fibonacci number.

Statement: For all $n \ge 0$, $f_n \le \left(\frac{7}{4}\right)^n$

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Statement: For all $n \ge 0$, $f_n \le \left(\frac{7}{4}\right)^n$

Proof: (by strong mathematical induction)

Assignment Project Exam Help

Induction step

https://powcoder.com

IH: Let k be ≥ 0 , and assume that for any number i such that $0 \leq i < k$ then Add WeChat powcoder

$$f_i \leq \left(\frac{7}{4}\right)^t$$

Statement: For all $n \ge 0$, $f_n \le \left(\frac{7}{4}\right)^n$

Proof: (by strong mathematical induction)

Assignment Project Exam Help

Induction step

https://powcoder.com

IH: Let k be ≥ 0 , and assume that for any number i such that $0 \leq i < k$ then Add WeChat powcoder

$$f_i \le \left(\frac{7}{4}\right)^n$$

To show: $f_k \leq \left(\frac{7}{4}\right)^k$

There are 3 possible cases:

1.
$$k = 0$$
 Assignment Project Exam Help

$$f_0 = 1$$
 and $\left(\frac{7}{4}\right)^0 = 1$, so the claim holds. https://powcoder.com

2.
$$k = 1$$
 Add WeChat powcoder

$$f_1 = 1$$
 and $\left(\frac{7}{4}\right)^1 > 1$, so the claim holds.

There are 3 possible cases:

3. k > 1

Assignment Project Exam Help

https://powcoder.com, by IH

Add WeChat powcqder
$$\left(\frac{7}{4}\right)^{k-2}$$

$$= \left(\frac{7}{4}\right)^{k-2} \left(\frac{44}{16}\right)$$

$$< \left(\frac{7}{4}\right)^{k-2} \left(\frac{49}{16}\right) = \left(\frac{7}{4}\right)^{k-2} \left(\frac{7}{4}\right)^2$$

$$= \left(\frac{7}{4}\right)^k$$

RECOMMENDED EXERCISES

- 1. Prove that for all $n \ge 0$, $\sum_{i=0}^{n} 2^i = 2^{n+1} 1$
- 2. Prove that for all $n \ge 0$, $\sum_{i=0}^{n} i^3 = \left(\frac{n(n+1)}{Project}\right)^2$ ect Exam Help
- 3. Consider the following recursive definition of addition ('+') on natural numbers: https://powcoder.com
 - Base clause:

Add WeChatpowcoder

Inductive clause:

$$(n+1) + m = (n+m) + 1$$

Prove that addition is associative, i.e. for all natural numbers (a + b) + c = a + (b + c)Hint: use mathematical induction on a

Assignment Project Exam Help In the next videos:

https://powcoder.com
Recursive algorithms #1

Add WeChat powcoder