Q1: (PLD)

Tabulate the PLA programming table for the four Boolean functions listed below. <u>Minimize</u> the number of product terms.

$$A(x,y,z) = \Sigma (2,3,4,6) = x'y + xz'$$

$$B(x,y,z) = \Sigma (1,3,4,6) = x'z + xz'$$

$$C(x,y,z) = \Sigma (1,2,3) = x'z + x'y$$

$$D(x,y,z) = \Sigma (2,3,4,5) = x'y + xy'$$

Product Term	1	Inputs		Outputs			
A Commence of the Commence of	X	У	Z	Α	В	С	D
x'y	0	1	-	1	-	1	1
xz'	1	- 1	0	1	1	_	-
x'z	0	*	1	_	1	1	_
xy'	•	0	<u>-</u>		, - , w	-	1
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			(
	1 1 1	le sa	1	1.	v v		1
A CONTRACTOR OF THE PROPERTY O				4	1 H Y		

Specify the size of a ROM (number of words and number of bits per word) that will accommodate the truth table for the following combinational circuit components:

i. A magnitude comparator that compares two 8-bit binary numbers and generates 1 if they are equal and 0 if they are not.

2¹⁶ X 1 ROM

ii. A 16-bit adder-subtractor (including a carry-in/carry-borrow)

2³³ X 17 ROM

Q2: (Basic Computer)

(a) Memory and register contents of the Basic Computer is as follows (everything is in base 16):

011	0000
021	0083
022	7800
083	B8F2
084	7400
8F2	F800

RSF2	= 1011	1000	1111	0010

A937= 1010 1001 0011 0111

^____

A832= 1010 1000 0011 0010

PC: 021

AC: A937

Go over the Fetch and execute cycles and determine the content of the following registers at the end of the execute cycle:

PC:

Memory:

022

AC:

A832

IR:

0083

Cery232 Final - Meta 2019-2020 Spring Questione learly indicates changes occur only on rising edges. So a moore machine is begigned) SI 1 3 (50) (uput independent) Next State input=0 input=1 Carrent able are equivalent because their contests are the same AND their target states are equivalent. Notice how their de same if you snapped a Re. Next iteration: Potentially equivalent states are alc, bld. Hovever target states differ No further redux. Binary encoded state toutput table:

2019-2020 Meta Cerg232 Final Q4 Soln 1 Dotogoth PAR 16+01 00 OUT= ! PARITY OUT=PARITY) 00T= '0' 00T= '1'

(eng232 Final Q4 Soln2 (afternative) my opinion) 8to1 DUT=11 outsel 7=8 *count * cut lin can OUT be used on its OUT=Tx(court) own to drede count += 1 if count higher . PTJE OUT = ! PAR(TX)

a)

b)

Present State			Next State		Inputs						
Q_2	Q_1	Q_0	Q_2^*	Q_1^*	Q_0^*	J_2	K_2	J_1	K_1	J_0	K_0
0	0	0	1	1	1	1	X	1	X	1	X
0	0	1	0	0	0	0	X	0	X	X	1
0	1	0	0	0	1	0	X	X	1	1	X
0	1	1	0	1	0	0	X	X	0	X	1
1	0	0	0	1	1	X	1	1	X	1	X
1	0	1	1	0	0	X	0	0	X	X	1
1	1	0	1	0	1	X	0	X	1	1	X
1	1	1	1	1	0	X	0	X	0	X	1

Note that J_0 and K_0 are either 1 or X (don't care), so they may be set high; $J_0 = K_0 = 1$.

Also note that J_1 and K_1 are 1 or X whenever $Q_0 = 0$. Thus $J_1 = K_1 = \overline{Q_0}$. This could also be determined from a 3-variable K-map of J_1 , with variables Q_2 , Q_1 and Q_0 .

Similarly, note that J_2 and K_2 are both 1 or X whenever both Q_1 and Q_0 are 0. Their equation is thus found as $J_2 = K_2 = \overline{Q_1} \cdot \overline{Q_0}$. Again, this could also be found from a 3-variable K-map of J_2 , with variables Q_2 , Q_1 and Q_0 .

