ALGA — Agrupamento IV (ECT, EET, TSI)

Época normal – Exame final 13 de janeiro de 2014 — Duração: 2h30

60 pontos

- 1. Indique o que é pedido em cada alínea. Se precisar, pode colocar observações e cálculos auxiliares no espaço livre ao fundo desta página.
 - (a) Sejam A e B matrizes reais 4×4 tais que $\det(A) = -3$ e $\det(B) = 7$.
 - i. det(2A) =
 - ii. $\det(A^{-1}B) + \det(AA^T) =$
 - iii. Sabendo que $det(AC^{-1}) = 24$, det(C) =
 - - iii. Uma equação vetorial da reta ${\mathcal R}$ ortogonal ao plano ${\mathcal P}$ e que passa no ponto D é:
 - (c) Considere os vetores u = (1, -1, 1) e $v = (1, -1, \theta)$ de \mathbb{R}^3 .
 - i. Seja $\theta = 0$. Os vetores u e v são linearmente independentes?

Sim Não

ii. Seja $\theta = 1$. $\langle u, v \rangle$ é um subespaço vetorial real?

Sim | e tem dimensão

Não

iii. Seja $\theta = 2$. O vetor k = (2, -2, 0) é combinação linear dos vetores u e v?

Não

(d) Identifique os conjuntos definidos pelas seguintes equações.

i.
$$2x - y^2 + \frac{1}{3}y = -1$$
 em \mathbb{R}^2 :

ii.
$$2x^2 - y^2 + \frac{1}{3}z^2 = -1 \text{ em } \mathbb{R}^3$$
:

53 pontos 2. Considere o sistema AX = B que, por eliminação de Gauss, conduziu à seguinte matriz ampliada, onde α , β e γ são parâmetros reais.

 $\begin{bmatrix} 1 & 1 & 3 & -1 & 1 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & \beta - 2 & \alpha - 1 & 2 \\ 0 & 0 & 0 & 0 & \gamma \end{bmatrix}$

Responda às seguintes questões,

justificando devidamente as suas respostas.

- (a) Determine para que valores dos parâmetros α, β e γ o sistema AX = B é
 - i. possível e determinado;
- ii. possível e indeterminado;
- iii. impossível.

- (b) Considere $\alpha = 2$, $\beta = 2$ e $\gamma = 0$. Determine
 - i. o conjunto de soluções de AX = B;
 - ii. o espaço nulo de A, $\mathcal{N}(A)$;
 - iii. uma base e a dimensão do espaço das linhas de A, $\mathcal{L}(A)$.

42 pontos 3. Considere a matriz simétrica $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ e seja $P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$ uma matriz diagonalizante de A.

Responda às seguintes questões, justificando devidamente as suas respostas.

- (a) Calcule os valores próprios de A.
- (b) Obtenha a matriz D diagonal tal que $P^{-1}AP = D$.
- (c) Determine a equação reduzida da seguinte superfície $x^2 + 2y^2 + z^2 + 2xz x + 2y + z = 0$.

45 pontos

- 4. Considere os vetores u=(1,1) e v=(1,-1) de \mathbb{R}^2 e $\phi:\mathbb{R}^2\to\mathbb{R}^3$ uma transformação linear definida por $\phi(u) = (0, 1, 2)$ e $\phi(v) = (2, -1, 0)$. Responda às seguintes questões, justificando devidamente as suas respostas.
 - (a) Determine a matriz representativa de ϕ relativamente às bases ordenadas

$$S = (u, v)$$
 e $T = ((-1, 1, 0), (0, 1, 1), (-1, 2, 0)).$

- (b) Determine $im(\phi)$ e indique a sua dimensão.
- (c) Sem determinar $\ker(\phi)$, diga se ϕ é, ou não, injetiva.