Apunte único: Álgebra I - Práctica 4

Por alumnos de Álgebra I Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

(dobleclick en los ejercicio para saltar)

- Notas teóricas
- Ejercicios de la guía:

1.	6.	11.	16.	21.	26.	31.	36.
2.	7.	12.	17.	22.	27.	32.	37.
3.	8.	13.	18.	23.	28.	33.	38.
4.	9.	14.	19.	24.	29.	34.	39.
5.	10.	15.	20.	25.	30.	35.	40.

• Ejercicios de Parciales

1 .	$\mathbf{\overset{4}{\diamond}4}.$	७ 7.	10.	13.	16.
2 .	5 .	७ 8.	11 .	14.	17 .
3 .	∆ 6.	6 9.	↓ 12.	△ 15.	∆ 18.

Disclaimer:

Dirigido para aquél que esté listo para leerlo, o no tanto. Va con onda.

¡Recomendación para sacarle jugo al apunte!

Estudiar con resueltos puede ser un arma de doble filo. Si estás trabado, antes de saltar a la solución que hizo otra persona:

- Mirar la solución ni bien te trabás, te condicionas pavlovianamente a no pensar. Necesitás darle tiempo al cerebro para llegar a la solución.
- 10 Intentá un ejercicio similar, pero más fácil.
- [0] ¿No sale el fácil? Intentá uno aún más fácil.
- Fijate si tenés un ejercicio similar hecho en clase. Y mirá ese, así no quemás el ejercicio de la guía.
- Tomate 2 minutos para formular una pregunta que realmente sea lo que **no** entendés. Decir 'no me sale' ∄+. Escribí esa pregunta, vas a dormir mejor.

Ahora sí mirá la solución.

Si no te salen los ejercicios fáciles sin ayuda, no te van a salir los ejercicios más difíciles: Sentido común.

¡Los más fáciles van a salir! Son el alimento de nuestra confiaza.

Si mirás miles de soluciones a parciales en el afán de tener un ejemplo hecho de todas las variantes, estás apelando demasiado a la suerte de que te toque uno igual, pero no estás aprendiendo nada. Hacer un parcial bien lleva entre 3 y 4 horas. Así que si vos en 4 horas "hiciste" 3 o 4 parciales, algo raro debe haber. A los parciales se va a **pensar** y eso hay que practicarlo desde el primer día.

Mirá los videos de las teóricas: de Teresa que son buenísimos .

Videos de prácticas de pandemia, complemento extra:

Prácticas Pandemia ▶.

Los ejercicios que se dan en clase suelen ser similares a los parciales, a veces más difíciles, repasalos siempre Just Do IT **!!

Esta Guía 4 que tenés se actualizó por última vez:

05/02/25 @ 19:08

Escaneá el QR para bajarte (quizás) una versión más nueva:

El resto de las guías repo en github para descargar las guías con los últimos updates.

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram 2.

Notas teóricas:

Divisibilidad:

• Definición divisibilidad y notación:

$$d$$
 divide a $a \overset{\text{es lo mismo}}{\rightleftharpoons} a$ es un múltiplo entero de d
$$d \mid a \iff \exists \, k \in \mathbb{Z} \, \text{ tal que } a = k \cdot d$$

• Conjunto de divisores de a:

$$\mathcal{D}(a) = \{-|a|, \dots, -1, 1, \dots, |a|\}.$$

- $d \mid 0$, dado que $0 = 0 \cdot d$. Se desprende que $\mathcal{D}(0) = \{\mathbb{Z} \{0\}\}\$
- A la hora de laburar con la divisibilidad "los signos no importan":

$$\left\{ \begin{array}{l} d \mid a \iff -d \mid a \text{ (pues } a = k \cdot d \iff a = (-k) \cdot (-d)) \\ d \mid a \iff d \mid -a \text{ (pues } a = k \cdot d \iff (-a) = (-k) \cdot d) \end{array} \right. \xrightarrow{\text{corta}} \left[d \mid a \iff |d| \mid |a| \right]$$

• Propiedades súper útiles para justificar los cálculos en los ejercicios:

$$\begin{cases} d \mid a \quad \text{y} \quad d \mid b \Rightarrow d \mid a \pm b \\ d \mid a \Rightarrow d \mid c \cdot a, \ \forall c \in \mathbb{Z} \\ d \mid a \overset{!!}{\Longrightarrow} d^n \mid a^n \ \forall n \in \mathbb{N} \end{cases}$$
 Error recurrente: $d \mid a \cdot b \not\Rightarrow \begin{cases} d \mid a \\ \text{o} \end{cases}$. Por ejemplo $6 \mid 3 \cdot 4 \text{ pero} \begin{cases} 6 \not\mid 3 \\ \text{ni} \\ d \mid b \end{cases}$

Definición congruencia:

■ Definición congruencia:

$$\begin{cases} 'a' \ es \ congruente \ a'b' \ m\'odulo' d' \ si \ d \ | \ a-b. \end{cases} \quad \text{Notaci\'on} \quad \boxed{a \equiv b \ (d)} \\ a \equiv b \ (d) \iff d \ | \ a-b \end{cases}$$

■ Sumar ecuaciones de congruencia de mismo módulo, conserva la congruencia:

$$\begin{cases} a_1 \equiv b_1 \ (d) \\ \vdots \Rightarrow a_1 + \dots + a_n \equiv a_b + \dots + b_n \ (d) \\ a_n \equiv b_n \ (d) \end{cases}$$

■ Multiplicar ecuaciones de congruencia de mismo módulo, conserva la congruencia:

$$\begin{cases} a_1 \equiv b_1 \ (d) \\ \vdots \\ a_n \equiv b_n \ (d) \end{cases} \Rightarrow a_1 \cdots a_n \equiv a_b \cdots b_n \ (d)$$

Un caso particular con un simpático resultado:

$$n \text{ ecuaciones} \begin{cases} a \equiv b \ (d) \\ \vdots \\ a \equiv b \ (d) \end{cases} \Rightarrow \boxed{a^n \equiv b^n \ (d)}$$

Algoritmo de división:

• Dados $a, d \in \mathbb{Z}$ con $d \neq 0$, <u>existen únicos</u> q (cociente), $r(\text{resto}) \in \mathbb{Z}$ tales que:

$$\begin{cases} a = q \cdot d + r, \\ \cos 0 \le r < |d|. \end{cases}$$

- Notación: $r_d(a)$ es el resto de dividir a a entre d
- $0 \le r < |d| \Rightarrow r = r_d(r)$. Un número que cumple condición de resto, <u>es su resto</u>.
- Así es como me gusta pensar a la congruencia. La derecha es el resto de dividir a a entre d:

$$a \equiv r_d(a) (d)$$
.

• Si d divide al número a, entonces el resto de la división es 0:

$$r_d(a) = 0 \iff d \mid a \iff a \equiv 0 \ (d)$$

• El resto es único:

$$a \equiv r \ (d) \ \text{con} \ \underbrace{0 \le r < |d|}_{\text{cumple condición de resto}} \Rightarrow r = r_d(a)$$

$$r_1 \equiv r_2 \ (d) \ \text{con} \ \underbrace{0 \le r_1, r_2 < |d|}_{\text{cumple condición de resto}} \Rightarrow r_1 = r_2$$

• Dos números que son congruentes módulo d entre sí, tienen igual resto al dividirse por d:

$$a \equiv b (d) \iff r_d(a) = r_d(b).$$

• Propiedades útiles para los ejercicios de calcular restos:

$$r_d(a+b) = r_d(r_d(a) + r_d(b))$$
 y $r_d(a \cdot b) = r_d(r_d(a) \cdot r_d(b))$

ya que si,

$$\left\{ \begin{array}{l} a \equiv r_d(a) \ (d) \\ b \equiv r_d(b) \ (d) \end{array} \right\} \xrightarrow{\text{sumo}} a + b \equiv r_d(a) + r_d(b) \ (d)$$

y,

$$\left\{\begin{array}{l} a \equiv r_d(a) \; (d) \\ b \equiv r_d(b) \; (d) \end{array}\right\} \xrightarrow[\text{ecuaciones}]{\text{multiplico}} a \cdot b \equiv r_d(a) \cdot r_d(b) \; (d)$$

Máximo común divisor:

• Sean $a, b \in \mathbb{Z}$, no ambos nulos. El MCD entre a y b es el mayor de los divisores común entre a y b y se nota:

máximo común divisor:
$$MCD = (a : b)$$

- $(a:b) \in \mathbb{N}$ (pues $(a:b) \ge 1$) siempre existe y es único.
- Propiedades del (a:b), con $a y b \in \mathbb{Z}$, no ambos nulos.

- Los signos no importan: $(a:b) = (\pm a:\pm b)$
- \bullet Es simétrico: (a:b)=(b:a)
- Entre 1 y $a \in \mathbb{Z}$ siempre (a:1) = 1
- Entre 0 y a siempre $(a:0) = |a|, \forall a \in \mathbb{Z} \{0\}$
- \bullet si $b \mid a \Rightarrow (a : b) = |b| \operatorname{con} b \in \mathbb{Z} \{0\}$
- Útil para ejercicios: $(a:b) = (a:b+na) \text{ con } n \in \mathbb{Z}$
- Útil para ejercicios: $(a:b) = (a:r_a(b)) \text{ con } n \in \mathbb{Z}$
- Útil para ejercicios: Sean $a, b \in \mathbb{Z}$ no ambos nulos, y sea $k \in \mathbb{N}$

$$(ka:kb) = k(a:b)$$

- Algoritmo de Euclides: Para encontrar el (a:b) con números o expresiones feas. Hay que saber hacer esto. Fin. ¡Se usa de acá hasta el final de la materia!.
- Combinacion Entera: Otra herramienta gloriosa que sale de hacer Euclides. Por ejemplo se usa cuando no se ve a ojo una solución en ecuaciones diofánticas. ¡Se usa de acá hasta el final de la materia!.

Sean $a, b \in \mathbb{Z}$ no ambos nulos, entonces $\exists s, t \in \mathbb{Z}$ tal que $(a : b) = s \cdot a + t \cdot b$.

♦ Todos los divisores comunes entre a y b dividen al (a:b). Sean $a,b \in \mathbb{Z}$ no ambos nulos, $d \in \mathbb{Z} - \{0\}$. Entonces:

$$d \, \big| \, a \quad \mathbf{y} \quad d \, \big| \, b \iff d \, \big| \, \underbrace{(a:b)}_{s \cdot a + t \cdot b}.$$

- Sea $c \in \mathbb{Z}$ entonces $\exists s', t' \in \mathbb{Z}$ con $c = s'a + t'b \iff (a:b) \mid c$.
- $\ \, \ \,$ Todos los números múltiplos del MCD se escriben como combinación entera de a y b.
- $\mbox{\ensuremath{\mathfrak{o}}}$ Si un número es una combinación entera de a y b entonces es un múltiplo del MCD.

Coprimos:

• Definición coprimos:

Dados $a, b \in \mathbb{Z}$, no ambos nulos, se dice que son coprimos si (a : b) = 1

$$\begin{array}{ccc} a \perp b & \Longleftrightarrow & (a:b)=1 \\ a \perp b & \Longleftrightarrow & \exists \, s, \, \, t \in \mathbb{Z} \, \text{ tal que } 1 = s \cdot a + t \cdot b \end{array}$$

• Sean $a, b \in \mathbb{Z}$ no ambos nulos. coprimizar los números es dividirlos por su máximos común divisor, para obtener un nuevo par que sea coprimo:

$$(a:b) \neq 1 \xrightarrow{\text{coprimizar}} a' = \frac{a}{(a:b)}, b' = \frac{b}{(a:b)}, \Rightarrow \boxed{(a':b') = 1}$$

• ¡Causa de muchos errores! Sean $a, c, d \in \mathbb{Z}$ con c, d no nulos. Entonces:

$$c \mid a \quad y \quad d \mid a \quad y \quad c \perp d \stackrel{!!}{\iff} c \cdot d \mid a$$

Al ser c y d coprimos, pienso a a como un número cuya factorización tiene a c, d y la coprimicidad hace que en la factorización aparezca $c \cdot d$. (no sé, así lo piensa mi \blacksquare).

• Sean $a, b, d \in \mathbb{Z}$ con $d \neq 0$. Entonces:

$$d \mid a \cdot b$$
 y $d \perp a \Rightarrow d \mid b$

- Primos y Factorización:
 - Sea p primo y sean $a, b \in \mathbb{Z}$. Entonces:

$$p \mid a \cdot b \Rightarrow p \mid a$$
 o $p \mid b$

• Si p divide a algún producto de números, tiene que dividir a alguno de los factores \rightarrow Sean $a_1, \ldots, a_n \in \mathbb{Z}$:

$$\begin{cases} p \mid a_1 \cdot a_2 \cdots a_n \Rightarrow p \mid a_i \text{ para algún } i \text{ con } 1 \leq i \leq n. \\ p \mid a^n \Rightarrow p \mid a. \end{cases}$$

• Si $a \in \mathbb{Z}$, p primo:

$$\begin{cases} (a:p) = 1 \iff p \nmid a \\ (a:p) = p \iff p \mid a \end{cases}$$

• Sea $n \in \mathbb{Z} - \{0\}$, $n = \underbrace{s}_{\{-1,1\}} \cdot \prod_{i=1}^k p_i^{\alpha_i} = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ su factorización en primos. Entonces todo divisor m positivo de n se escribe como:

$$\begin{cases} \text{Si } m \mid n \to m = p_1^{\beta_1} \cdots p_k^{\beta_k} \text{ con } 0 \le \beta_i \le \alpha_i, & \forall i \ 1 \le i \le k \\ & \text{y hay} \end{cases}$$
$$(\alpha_1 + 1) \cdot (\alpha_2 + 1) \cdots (\alpha_k + 1) = \prod_{i=1}^k \alpha_i + 1$$
$$\text{divisores positivos de } n.$$

 \bullet Sean $a y b \in \mathbb{Z}$ no nulos, con

$$\begin{cases} a = \pm p_1^{m_1} \cdots p_r^{m_r} \text{ con } m_1, \cdots, m_r \in \mathbb{Z}_0 \\ b = \pm p_1^{n_1} \cdots p_r^{n_r} \text{ con } n_1, \cdots, n_r \in \mathbb{Z}_0 \\ \Rightarrow (a:b) = p_1^{\min\{m_1, n_1\}} \cdots p_r^{\min\{m_r, n_r\}} \\ \Rightarrow [a:b] = p_1^{\max\{m_1, n_1\}} \cdots p_r^{\max\{m_r, n_r\}} \end{cases}$$

• Sean $a, d \in \mathbb{Z}$ con $d \neq 0$ y sea $n \in \mathbb{N}$. Entonces

$$d \mid a \iff d^n \mid a^n$$
.

- Sean $a, b, c \in \mathbb{Z}$ no nulos:
 - $* a \perp b \iff$ no tienen primos en común.
 - * (a:b) = 1 y $(a:c) = 1 \iff (a:bc) = 1$
 - $* (a:b) = 1 \iff (a^m:b^n) = 1, \forall m, n \in \mathbb{N}$
 - $* (a^n : b^n) = (a : b)^n \ \forall n \in \mathbb{N}$
- Si $a \mid m \wedge b \mid m$, entonces $[a:b] \mid m$
- $a (a : b) \cdot [a : b] = |a \cdot b|$

Ejercicios de la guía:

Divisibilidad

Decidir si las siguientes afirmaciones son verdaderas $\forall a, b, c \in \mathbb{Z}$

a)
$$a \cdot b \mid c \Rightarrow a \mid c$$
 y $b \mid c$

a)
$$a \cdot b \mid c \Rightarrow a \mid c \quad y \quad b \mid c$$

b)
$$4 \mid a^2 \Rightarrow 2 \mid a$$

c)
$$2 \mid a \cdot b \Rightarrow 2 \mid a$$
 o $2 \mid b$

d)
$$9 \mid a \cdot b \Rightarrow 9 \mid a$$
 o $9 \mid b$

e)
$$a \mid b + c \Rightarrow a \mid b$$
 o $a \mid c$

f)
$$a \mid c$$
 y $b \mid c \Rightarrow a \cdot b \mid c$

g)
$$a \mid b \Rightarrow a \leq b$$

h)
$$a \mid b \Rightarrow |a| \leq |b|$$

i)
$$a \mid b + a^2 \Rightarrow a \mid b$$

$$j) \ a \mid b \Rightarrow a^n \mid b^n, \ \forall n \in \mathbb{N}$$

a)
$$a \cdot b \mid c \Rightarrow a \mid c \text{ y } b \mid c$$

$$\begin{cases} c = k \cdot a \cdot b = \underbrace{b}_{k \cdot b} \cdot a \Rightarrow a \mid c \quad \checkmark \\ c = k \cdot a \cdot b = \underbrace{i}_{b \cdot c} \cdot b \Rightarrow b \mid c \quad \checkmark \end{cases}$$

b)
$$4 \mid a^2 \Rightarrow 2 \mid a$$

$$a^2 = k \cdot 4 = \underbrace{h}_{k,2} \cdot 2 \Rightarrow a^2 \mid 2 \xrightarrow{\text{si } a \cdot b \mid c} a \mid 2 \quad \checkmark$$

c)
$$2 \mid a \cdot b \Rightarrow 2 \mid a \text{ o } 2 \mid b$$

Si
$$2 \mid a \cdot b \Rightarrow \left\{ \begin{array}{c} a \text{ tiene que ser } par \\ \lor \\ b \text{ tiene que ser } par \end{array} \right\} \xrightarrow{\text{para que}} a \cdot b \text{ sea par. Por lo tanto si } 2 \mid a \cdot b \Rightarrow 2 \mid a \text{ o } 2 \mid b.$$

d)
$$9 \mid a \cdot b \Rightarrow 9 \mid a \text{ o } 9 \mid b$$

Si
$$a = 3 \land b = 3$$
, se tiene que $9 \mid 9$, sin embargo $9 \not \mid 3$

e)
$$a \mid b + c \Rightarrow a \mid b$$
 o $a \mid c$

$$12 \mid 20 + 4 \Rightarrow 12 \nmid 20 \text{ y } 12 \nmid 4$$

🖭... hay que hacerlo! 窗

Si querés mandarlo: Telegram $\rightarrow \bigcirc 0$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc 0$

🖭... hay que hacerlo! 窗

Si querés mandarlo: Telegram $\rightarrow \bigcirc 0$, o mejor aún si querés subirlo en L $^{+}$ T $_{-}$ X $\rightarrow \bigcirc 0$

🖭... hay que hacerlo! 😭

Si querés mandarlo: Telegram
$$\rightarrow \bigcirc$$
, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc$.

i)
$$a \mid b + a^2 \Rightarrow a \mid b$$

$$a \mid b + a^2 \Rightarrow b + a^2 = k \cdot a \xrightarrow{\text{acomodo}} b = (k - a) \cdot a = h \cdot a \Rightarrow a \mid b \quad \checkmark$$

$$\xrightarrow{\text{también puedo}} \left\{ \begin{array}{c} a \\ a \end{array} \middle| \begin{array}{c} a^2 \\ b - a^2 \end{array} \right\} \xrightarrow{\text{por propiedad}} a \left| \left(b - a^2 \right) + \left(a^2 \right) = b \Rightarrow a \left| b \right| \checkmark$$

 $j) \ a \mid b \Rightarrow a^n \mid b^n, \ \forall n \in \mathbb{N}$

Pruebo por inducción.

$$p(n): a \mid b \Rightarrow a^n \mid b^n$$

Caso base:

$$n = 1 \Rightarrow a \mid b \Rightarrow a^1 \mid b^1 \quad \checkmark$$

p(1) resulta verdadera.

Paso inductivo:

Asumo
$$p(h): a \mid b \Rightarrow a^h \mid b^h$$
 verdadera \Rightarrow quiero ver que $p(h+1): a \mid b \Rightarrow a^{h+1} \mid b^{h+1}$

Parto de la hipótesis inductiva y voy llegar a p(k+1). Si:

$$a \mid b \xrightarrow{\text{HI}} a^k \mid b^k \Leftrightarrow a^k \cdot c = b^k \overset{\times b}{\Longleftrightarrow} b \cdot a^k \cdot c = b^{k+1} \overset{a \mid b}{\Longleftrightarrow} a \cdot d \cdot a^k \cdot c = a^{k+1} \cdot (cd) = b^{k+1} \Leftrightarrow a^{k+1} \mid b^{k+1}.$$

Como p(1), p(k) y p(k+1) resultaron verdaderas, por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}$.

Este resultado es importante y se va a ver en muchos ejercicios:

$$a \mid b \Rightarrow a^n \mid b^n \iff b \equiv 0 \ (a) \Rightarrow b^n \equiv 0 \ (a^n) \stackrel{0 \stackrel{(a^n)}{\equiv} a^n}{\iff} b^n \equiv a^n \ (a^n)$$

$$\boxed{a \mid b \Rightarrow b^n \equiv a^n \ (a^n)}$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 📢

2. Hallar todos los $n \in \mathbb{N}$ tales que:

a)
$$3n-1 | n+7$$

c)
$$2n+1|n^2+5$$

b)
$$3n-2|5n-8$$

d)
$$n-2 \mid n^3-8$$

a) 3n-1 | n+7

Busco eliminar la *n* del *miembro* derecho.

$$\begin{cases}
3n-1 \mid n+7 \xrightarrow{a \mid c \Rightarrow} 3n-1 \mid 3 \cdot (n+7) = 3n+21 \\
\frac{a \mid b \quad y \quad a \mid c}{\Rightarrow a \mid b \pm c} 3n-1 \mid 3n+21-(3n-1) = 22
\end{cases} \rightarrow 3n-1 \mid 22$$

$$\xrightarrow{\text{busco } n \\ \text{para que}} \xrightarrow{\frac{22}{3n-1}} \in \mathcal{D}(22) = \{\pm 1, \pm 2, \pm 11, \pm 22\} \xrightarrow{\text{probando}} n \in \{1, 4\} \quad \checkmark$$

- b)
- c)
- d) $n-2 \mid n^3-8$ $\xrightarrow{a \mid b} n-2 \mid \underbrace{(n-2) \cdot (n^2+2n+4)}_{\text{para}} \text{ Esto va a dividir para todo } n \neq 2$
- 3. Sean $a, b \in \mathbb{Z}$.
 - a) Probar que $a-b\mid a^n-b^n$ para todo $n\in\mathbb{N}$ y $a\neq b\in\mathbb{Z}$
 - b) Probar que si n es un número natural par y $a \neq -b$, entonces $a + b \mid a^n b^n$.
 - c) Probar que si n es un número natural impar y $a \neq -b$, entonces $a + b \mid a^n + b^n$.
 - a) Inducción:

Proposición:

$$p(n): a-b \mid a^n-b^n \ \forall n \in \mathbb{N} \quad \text{y} \quad a \neq b \in \mathbb{Z}$$

Caso Base:

$$p(1): a-b \mid a^{1}-b^{1},$$

p(1) es verdadera. \checkmark

Paso inductivo:

Asumo que $p(k): a-b \mid a^k-b^k$ es verdadera \Rightarrow quiero probar que $p(k+1): a-b \mid a^{k+1}-b^{k+1}$ también lo sea.

$$\left\{ \begin{array}{l} a-b \mid a^k-b^k \\ a-b \mid a^k-b^k \end{array} \right. \xrightarrow{\times a \atop \times b} \left\{ \begin{array}{l} a-b \mid a^{k+1}-ab^k \\ a-b \mid ba^k-b^{k+1} \end{array} \right. \stackrel{+}{\Longrightarrow} \left\{ \left. \begin{array}{l} a-b \mid a^{k+1}-b^{k+1}. \end{array} \right. \right.$$

Como p(1), p(k) y p(k+1) resultaron verdaderas por el principio de inducción p(n) también lo es.

b) Sé que

$$a+b \mid a+b \iff a \equiv -b \ (a+b)$$

Multiplicando la ecuación de congruencia por a sucesivas veces me formo:

$$\begin{cases} a \cdot a = a^2 & \stackrel{(a+b)}{\equiv} a \cdot (-b)^{\binom{(a+b)}{\equiv}} (-1)^2 b \\ \vdots & \leftarrow \star^1 \\ a^n & \stackrel{(a+b)}{\equiv} (-1)^n \cdot b^n \to \begin{cases} a^n \equiv b^n \ (a+b) & \text{con n par} \\ a^n \equiv (-1)^n \cdot b^n \ (a+b) & \text{con n impar} \end{cases} \\ \begin{cases} \text{Con } n \text{ par:} & a^n \equiv b^n \ (a+b) & \Rightarrow a+b \ |a^n-b^n| \\ \text{Con } n \text{ impar:} & a^n \equiv -b^n \ (a+b) & \Rightarrow a+b \ |a^n+b^n| \end{cases}$$

★¹ *Inducción*:

$$p(n): a \equiv -b \ (a+b) \Rightarrow a^n \equiv (-1)^n \cdot b^n \ (a+b) \ \forall n \in \mathbb{N}.$$

Caso base:

$$p(1): a \equiv -b \ (a+b) \Rightarrow a^1 \equiv (-1)^1 \cdot b^1 \ (a+b)$$

p(1) es verdadera.

Paso inductivo:

 $p(k): a \equiv -b \ (a+b) \Rightarrow a^k \equiv (-1)^k \cdot b^k \ (a+b)$ asumo verdadera para algún $k \in \mathbb{Z}$

$$p(k): a \equiv -b \ (a+b) \Rightarrow a^k \equiv (-1)^k \cdot b^k \ (a+b) \text{ asumo verdadera para algún } k \in \mathbb{Z}$$

$$\Rightarrow \text{ quiero probar que}$$

$$p(k+1): a \equiv -b \ (a+b) \Rightarrow a^{k+1} \equiv (-1)^k \cdot b^k \ (a+b)$$

$$a \equiv -b \ (a+b) \Rightarrow a^k \equiv (-1)^k \cdot b^k \ (a+b)$$

$$\xrightarrow{\text{multiplico}} \text{por } a$$

$$a \cdot a^k = a^{k+1} \equiv (-1)^k \cdot \underbrace{a}_{(a+b)} \cdot b^k \ (a+b)$$

$$\Rightarrow a^{k+1} \equiv (-1)^{k+1} \cdot b^{k+1} \ (a+b) \iff a+b \ | \ a^{k+1} - (-1)^{k+1} b^{k+1}$$

Como p(1), p(k) y p(k+1) son verdaderas por principio de inducción lo es también p(n) $\forall n \in \mathbb{N}$

c) Hecho en el anterior 🞏

Se
a $a\in\mathbb{Z}$ impar. Probar que $2^{n+2}\,\big|\,a^{2^n}-1$ para todo
 $n\in\mathbb{N}$

Pruebo por inducción:

 $p(n): 2^{n+2} \mid a^{2^n} - 1$, con $a \in \mathbb{Z}$ e impar. $\forall n \in \mathbb{N}$.

Caso base:

$$p(1) : 2^{3} = 8 \mid a^{2} - 1 = (a - 1) \cdot (a + 1)$$

$$\xrightarrow{a \text{ es impar, si } m \in \mathbb{Z}}$$

$$a = 2m - 1$$

$$(a - 1) \cdot (a + 1) \stackrel{\bigstar^{1}}{=} (2m - 2) \cdot (2m) \stackrel{!}{=} 4 \cdot \underbrace{m \cdot (m - 1)}_{par: 2h, h \in \mathbb{Z}} = 4 \cdot 2h = 8 * h$$

$$\xrightarrow{\text{por lo}}_{\text{tanto}}$$

$$8 \mid 8h = (a - 1) \cdot (a + 1) \text{ para algún } h \in \mathbb{Z} \quad \checkmark$$

Por lo tanto p(1) es verdadera.

Paso inductivo:

hipótesis inductiva

Asumo que: $p(k): 2^{k+2} \mid a^{2^k} - 1$, es verdadera \Rightarrow Quiero ver que $p(k+1): 2^{k+3} \mid a^{2^{k+1}} - 1$, también lo sea.

$$2^{k+3} \mid a^{2^{k+1}} - 1 \stackrel{!}{\Leftrightarrow} 2^{k+2} \cdot 2 \mid (a^{2^k} - 1) \cdot \overbrace{(a^{2^k} + 1)}^{\text{par!}}$$

$$\stackrel{\text{Si } a \mid b \quad \text{y} \quad c \mid d \Rightarrow ac \mid bd}{\text{hip of tesis inductiva}}$$

$$2^{k+2} \cdot 2 \mid (a^{2^k} - 1) \cdot \underbrace{(a^{2^k} + 1)}_{\text{par}}.$$

El! es todo tuyo, hints: diferencia de cuadrados, propiedades de exponentes...

En el último paso se comprueba que p(k+1) es vedadera.

Como p(1), p(k) y p(k+1) resultaron verdaderas, por el principio de inducción también lo será $p(n) \ \forall n \in \mathbb{N}$.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 📢

5. S. hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc$.

6.

- a) Probar que el producto de n enteros consecutivos es divisible por n!
- b) Probar que $\binom{2n}{n}$ es divisible por 2.

🖭... hay que hacerlo! 窗

Si querés mandarlo: Telegram $\rightarrow \bigcirc \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

7. Proba que las siguientes afirmaciones son vedaderas para todo $n \in \mathbb{N}$.

a)
$$99 \mid 10^{2n} + 197$$

c)
$$56 \mid 13^{2n} + 28n^2 - 84n - 1$$

b)
$$9 \mid 7 \cdot 5^{2n} + 2^{4n+1}$$

d)
$$256 \mid 7^{2n} + 208n - 1$$

a)
$$99 \mid 10^{2n} + 197 \iff 10^{2n} + 197 \equiv 0 \ (99) \to 10^{2n} + 198 \equiv 1 \ (99) \to 10^{2n} + \underbrace{198}_{\stackrel{(99)}{\equiv}0} \equiv 1 \ (99) \to 100^n \equiv 10^{2n} + 198 = 1$$

$$\begin{cases} 1 & (99) \to \\ \frac{\text{sé}}{\text{que}} & 100 \equiv 1 & (99) \iff 100^2 \equiv \underbrace{100}_{\stackrel{(99)}{\equiv 1}} & (99) \to 100^2 \equiv 1 & (99) \iff \dots \iff 100^n \equiv 1 & (99) \end{cases}$$

Se concluye que $99 | 10^{2n} + 197 \iff 99 | \underbrace{100 - 1}_{99}$

b)
$$9 \mid 7 \cdot 5^{2n} + 2^{4n+1} \stackrel{\text{def}}{\iff} 7 \cdot 5^{2n} + 2^{4n+1} \equiv 0 \ (9) \xrightarrow{\text{sumo } 2 \cdot 5^{2n} \atop \text{M.A.M}} \underbrace{9 \cdot 5^{2n}}_{\stackrel{(9)}{=0}} + 2 \cdot 2^{4n} \equiv 2 \cdot 5^{2n} \ (9)$$

$$\frac{\text{simplifico}}{\text{y acomodo}} 2^{4n} \equiv 5^{2n} \ (9) \rightarrow 16^n \equiv 25^n \ (9) \xrightarrow{\text{simetria}} 25^n \equiv 16^n \ (9) \xrightarrow{25 \stackrel{\text{(9)}}{\equiv} 16} 25 \equiv 16 \ (9) = 9 \equiv 0 \ (9)$$
Se concluye que $9 \mid 7 \cdot 5^{2n} + 2^{4n+1} \iff 9 \mid 9 \leftarrow \text{¿Se concluye esto...?}$

c) 🖭... hay que hacerlo! 🔞

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc$.

d) Hermoso ejercicio en el que sin fe en el todo poderoso Gauss sencillamente uno tira la toalla. Sale por inducción:

Quiero ver que:

$$p(n): 256 \mid 49^n + 208n - 1$$

O en notación de congruencia:

$$p(n): 49^n + 208n - 1 \equiv 0 (256)$$

Caso base:

$$p(1): 256 \mid 49^1 + 208 \cdot 1 - 1 \quad \checkmark$$

Por lo tanto p(1) resulta verdadera.

Paso inductivo:

Uso la notación de congruencia de acá en adelante, porque es mucho más cómodo. Supongo que:

$$p(k): \underbrace{49^k + 208 \cdot k - 1 \equiv 0 \text{ (256)}}_{\text{hipótesis inductiva}} \quad \forall k \in \mathbb{Z}$$

es una proposición verdadera. Entonces quiere probar que:

$$p(k+1): 49^{k+1} + 208 \cdot (k+1) - 1 \equiv 0 \ (256),$$

también sea verdadera. Arranco del paso (k+1) y haciendo un poco de matemagia:

$$49^{k+1} + 208 \cdot (k+1) - 1 = 49 \cdot 49^k + 208k + 208 - 1 = 49 \cdot (-208k + 1) + 208k + 208 - 1 = 49 \cdot (48k + 1) - 48k - 48 - 1 = 2352k + 49 - 48k - 49 = 48k + 49 - 48k - 49 = 0$$

En !! y gracias a Gauss $2352 \equiv 48 \ (256)$ ¿Casualidad? No sé y no me importa.

Dado que $49^{k+1} + 208 \cdot (k+1) - 1 \equiv 0$ (256), la proposición p(k+1) resultó verdadera.

Dado que p(1), p(k) y p(k+1) resultaron verdaderas, por principio de inducción p(n) también lo es para todo $n \in \mathbb{N}$.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 😱

Algoritmo de División:

8. Calcular el cociente y el resto de la división de a por b en los casos:

a)
$$a = 133$$
, $b = -14$.

d)
$$a = b^2 - 6$$
, $b \neq 0$.

b)
$$a = 13$$
, $b = 111$.

e)
$$a = n^2 + 5$$
, $b = n + 2 \ (n \in \mathbb{N})$.

c)
$$a = 3b + 7$$
, $b \neq 0$.

f)
$$a = n + 3$$
, $= n^2 + 1 \ (n \in \mathbb{N})$.

a)
$$133: (-14) \Rightarrow 133 = (-9) \cdot (-14) + 7$$

b)

c)
$$a = 3b + 7 \rightarrow \text{me interesa:} \rightarrow \begin{cases} |b| \le |a| \checkmark \\ 0 \le r < |b| \checkmark \end{cases}$$
 \rightarrow

$$\begin{cases} \text{Si: } |b| > 7 \rightarrow (q, r) = (3, 7) \\ \text{Si: } |b| \le 7 \rightarrow (q, r) = (3, 7) \\ \hline (a, b) \mid (-14, -7) \mid (-11, -6) \mid (-8, -5) \mid (-5, -4) \mid (4, -1) \mid . \\ \hline (q, r) \mid (2, 0) \mid (2, 1) \mid (2, 2) \mid (2, 3) \mid (4, 0) \mid . \end{cases}$$

d) $a = b^2 - 6$, $b \neq 0$. Some half que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \emptyset$, o mejor aún si querés subirlo en $\Lambda T_F X \rightarrow \emptyset$.

- 9. Sabiendo que el resto de la división de un entero a por 18 es 5, calcular el resto de:
 - a) la división de $a^2 3a + 11$ por 18.
 - b) la división de a por 3.
 - c) la división de 4a + 1 por 9.
 - d) la división de $7a^2 + 12$ por 28.

a)
$$r_{18}(a) = r_{18}(\underbrace{r_{18}(a)^2}_{5^2} - \underbrace{r_{18}(3)}_{3} \cdot \underbrace{r_{18}(a)}_{5} + \underbrace{r_{18}(11)}_{11}) = r_{18}(21) = 3$$

b)
$$\begin{cases} a = 3 \cdot q + r_3(a) \\ 6 \cdot a = 18 \cdot q + \underbrace{6 \cdot r_3(a)}_{r_{18}(6a)} \end{cases} \rightarrow r_{18}(6a) = r_{18}(r_{18}(6) \cdot r_{18}(a)) = r_{18}(30) = 12$$
$$\Rightarrow 6 \cdot r_3(a) = r_{18}(6a) \rightarrow r_3(a) = 2$$

c)
$$r_9(4a+1) = \underbrace{r_9(4 \cdot r_9(a)+1)}_{*1} \rightarrow a = 18 \cdot q + 5 = 9 \cdot \underbrace{(9 \cdot q)}_{q'} + \underbrace{5}_{r_9(a)} \xrightarrow{*_1} r_9(a) = r_9(21) = 3$$

d)
$$r_{28}(7a^2 + 12) = r_{28}(7 \cdot r_{28}(a)^2 + 12) \xrightarrow{\text{i.qué es}} r_{28}(a)$$

$$\begin{cases}
a = 18 \cdot q + 5 \xrightarrow{\text{busco algo}} \\
14 \cdot a = \underbrace{252 \cdot q}_{\text{para el } 28} + 70 \xrightarrow{\text{corrijo según}} 28 \cdot 9 \cdot q + \underbrace{2 \cdot 28 + 14}_{70} = 28 \cdot (9 \cdot q + 2) + 14 \quad \checkmark \\
\xrightarrow{\text{por lo}} 14a = 28 \cdot q' + 14 \Rightarrow 14 \cdot a \equiv 14 \ (28) \iff a \equiv 1 \ (28)
\end{cases}$$
Ahora que sé que $r_{28}(a) = 1$ sale que $r_{28}(7a^2 + 12) = r_{28}(7 \cdot r_{28}(a)^2 + 12) = r_{28}(19) = 19 \quad \checkmark$

10.

- a) Si $a \equiv 22$ (14), hallar el resto de dividir a a por 14, por 2 y por 7.
- b) Si $a \equiv 13$ (5), hallar el resto de dividir a $33a^3 + 3a^2 197a + 2$ por 5.
- c) Hallar, para cada $n \in \mathbb{N}$, el resto de la división de $\sum_{i=1}^{n} (-1)^{i} \cdot i!$ por 12

a)
$$\begin{cases} a \equiv 22 \ (14) \to a = 14 \cdot q + \underbrace{22}_{14+8} = 14 \cdot (q+1) + 8 \xrightarrow{\text{el resto}} r_{14}(a) = 8 \quad \checkmark \\ a \equiv 22 \ (14) \to a = \underbrace{14 \cdot q}_{2 \cdot (7 \cdot q)} + \underbrace{22}_{2 \cdot 11} = 2 \cdot (7q+11) + 0 \xrightarrow{\text{el resto}} r_{2}(a) = 0 \quad \checkmark \\ a \equiv 22 \ (14) \to a = \underbrace{14 \cdot q}_{7 \cdot (2 \cdot q)} + \underbrace{22}_{1+7 \cdot 3} = 7 \cdot (2q+3) + 1 \xrightarrow{\text{el resto}} r_{7}(a) = 1 \quad \checkmark \end{cases}$$

- b) Dos números congruentes tienen el mismo resto. $a \equiv 13$ (5) $\iff a \equiv 3$ (5) $r_5(33a^3 + 3a^2 197a + 2) = r_5(3 \cdot r_5(a)^3 + 3 \cdot r_5(a)^2 2 \cdot r_5(a) + 2)$ $\xrightarrow{\text{como } a \equiv 13 \text{ (5)}}{r_5(a) = 3} r_5(33a^3 + 3a^2 197a + 2) = 4$
- c) 😕... hay que hacerlo! 窗

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en L $^+$ E $^-$ X $\to \bigcirc$

11.

- a) Probar que $a^2 \equiv -1$ (5) $\iff a \equiv 2$ (5) $\lor a \equiv 3$ (5)
- b) Probar que no existe ningún entero a tal que $a^3 \equiv -3$ (7)
- c) Probar que $a^7 \equiv a$ (7) $\forall a \in \mathbb{Z}$
- d) Probar que $7 \mid a^2 + b^2 \iff 7 \mid a \wedge 7 \mid b$.
- e) Probar que $5 \mid a^2 + b^2 + 1 \Rightarrow 5 \mid a$ o $5 \mid b$. ¿Vale la implicación recíproca?
- a) Me piden que pruebe una congruencia es válida solo para ciertos $a \in \mathbb{Z}$. Pensado en términos de restos quiero que el resto al poner los a en cuestión cumplan la congruencia.

$$\begin{cases} a^{2} \equiv -1 \ (5) \Leftrightarrow a^{2} \equiv 4 \ (5) \Leftrightarrow a^{2} - 4 \equiv 0 \ (5) \Leftrightarrow (a-2) \cdot (a+2) \equiv 0 \ (5) \\ \xrightarrow{\text{quiero}} r_{5}(a^{2}+1) = r_{5}(a^{2}-4) = r_{5}(r_{5}(a-2) \cdot r_{5}(a+2)) = \underbrace{r_{5}((r_{5}(a)-2) \cdot (r_{5}(a)+2))}_{\star^{1}} = 0 \\ r_{5}(a^{2}+1) = 0 \Leftrightarrow r_{5}((r_{5}(a)-2) \cdot (r_{5}(a)+2)) = 0 \end{cases} \begin{cases} r_{5}(a) = 2 \Leftrightarrow a \equiv 2 \ (5) \checkmark \\ r_{5}(a) = -2 \Leftrightarrow a \equiv 3 \ (5) \checkmark \end{cases}$$

Más aún:

Para una congruencia módulo 5 habrá solo 5 posibles restos, por lo tanto se pueden ver todos los casos haciendo una table de restos.

a	0	1	2	3	4	
$r_5(a)$	0	1	2	3	4	\rightarrow La tabla muestra que para un dado a
$r_5(a^2)$		l .	l .			
$\rightarrow r_5(a)$	=	$\left\{\begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array}\right.$	2 <	\Rightarrow	$a \\ a$	

b) 🖭 ... hay que hacerlo! 😚

Si querés mandarlo: Telegram o extstyle extstyle

c) Me piden que exista una dada congruencia para todo $a \in \mathbb{Z}$. Eso equivale a probar a que al dividir el lado izquierdo entre el divisor, el resto sea lo que está en el lado derecho de la congruencia.

$$a^7 - a \equiv 0 \ (7) \iff a \cdot (a^6 - 1) \equiv 0 \ (7) \iff a \cdot (a^3 - 1) \cdot (a^3 + 1) \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \iff a \cdot (a^3 - 1) \cdot (a^3 + 1) \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \iff a \cdot (a^3 - 1) \cdot (a^3 + 1) \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \iff a \cdot (a^3 - 1) \cdot (a^3 + 1) \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumption}} a^7 - a \equiv 0 \ (7) \xrightarrow{\text{tabla de restos consumpt$$

a	0	1	2	3	4	5	6
$r_7(a)$	0	1	2	3	4	5	6
$r_7(a^3-1)$	6	0	0	5	0	5	5
$r_7(a^3+1)$	1	2	2	0	2	0	0

 \rightarrow Cómo para todos los a,alguno de los factores del resto siempre

se anula, es decir:

$$r_7(a^7 - a) = r_7(r_7(a) \cdot r_7(a^3 - 1) \cdot r_7(a^3 + 1)) = 0 \ \forall a \in \mathbb{Z}$$

d)

e)

12.

- (a) Probar que $2^{5k} \equiv 1$ (31) para todo $k \in \mathbb{N}$.
- (b) Hallar el resto de la división de 2⁵¹⁸³³ por 31.
- (c) Sea $k \in \mathbb{N}$. Sabiendo que $2^k \equiv 39$ (31), hallar el resto de la división de k por 5.
- (d) Hallar el resto de la división de $43 \cdot 2^{163} + 11 \cdot 5^{221} + 61^{999}$ por 31.
- (a) Probémoslo por inducción.

Sea la proposición $P(k): 2^{5k} \equiv 1$ (31), $\forall k \in \mathbb{N}$

• Caso base: *P*(1)

$$P(1): 2^{5.1} \equiv 1 \ (31) \iff 32 \equiv 1 \ (31) \quad \checkmark$$

Luego, P(1) es verdadera.

• Paso inductivo $P(k) \Rightarrow P(k+1)$

Asumiendo verdadero $2^{5k} \equiv 1$ (31), queremos probar que $2^{5(k+1)} \equiv 1$ (31) es verdadero.

De la hipótesis inductiva tenemos que

$$2^{5k} \equiv 1 \ (31) \xrightarrow{32 \equiv 1 \ (31)} 2^{5k} \cdot 32 \equiv 1 \cdot 1 \ (31) \iff 2^{5k} \cdot 2^5 \equiv 1 \ (31) \iff 2^{5(k+1)} \equiv 1 \ (31)$$

Luego, P(k+1) es verdadera.

Como P(1) es verdadera y $P(k) \Rightarrow P(k+1)$, $\forall k \in \mathbb{N}$, por el principio de inducción, P(k) es verdadera para todo $k \in \mathbb{N}$

(b) Queremos hallar el resto de la división de 2^{51833} por 31, lo que es lo mismo que buscar a qué es congruente 2^{51833} módulo 31.

Observemos que $2^5 \equiv 1$ (31), con lo que dividiendo 51833 por 5, tenemos que $51833 = 5 \cdot 10366 + 3$. Luego

$$2^{51833} \equiv 2^{5 \cdot 10366 + 3} \equiv 2^{5 \cdot 10366} \cdot 2^3 \equiv (2^5)^{10366} \cdot 8 \equiv 1^{10366} \cdot 8 \equiv 8 (31)$$

Entonces, $r_{31}(2^{51833}) = 8$

(c) Como $39 \equiv 8$ (31), tenemos que $2^k \equiv 8$ (31). Busquemos ahora que valores puede tomar k.

Si van probando valores, van a darse cuenta que el 3, 8, 13, 18, ... funcionan, lo que nos permite conjetuar que k = 3 + 5q, $q \in \mathbb{N}$. Entonces podemos conjeturar que

$$2^k \equiv 8 (31) \iff k = 3 + 5q, \ q \in \mathbb{N}$$

Probemos la doble implicación.

Reemplazando k = 3 + 5q, tenemos que

$$2^k \equiv 2^{3+5q} \equiv 2^3 \cdot 2^{5q} \equiv 8 \cdot 32^q \equiv 8 \cdot 1^q \equiv 8 (31)$$
 \checkmark

• =

• =

Tenemos que probar que k solo puede ser de la forma k=3+5q. Para esto debemos verificar que si k es igual a c+5q, con $c \in \{0,1,2,4\}$ entonces $2^k \not\equiv 8$ (31). Pues así estariamos viendo todas las posibilidades. Reemplacemos entonces k=c+5q:

$$2^k \equiv 2^{c+5q} \equiv 2^c \cdot 2^{5q} \equiv 2^c \cdot 32^q \equiv 2^c \cdot 1^q \equiv 2^c (31)$$

Veamos ahora los valores de c

$$c = 0 \to 2^k \equiv 2^0 \equiv 1 \not\equiv 8 (31)$$

$$c = 1 \to 2^k \equiv 2^1 \equiv 2 \not\equiv 8 \ (31)$$

$$c = 2 \to 2^k \equiv 2^2 \equiv 4 \not\equiv 8 (31)$$

$$c = 4 \to 2^k \equiv 2^4 \equiv 16 \not\equiv 8 (31)$$

Dado que ninguno es congruente a 8 módulo 31, llegamos a la conclusión de que los únicos valores que puede tomar k son los de la forma k = 3 + 5q, $q \in \mathbb{N}$.

Por último, dado que k=3+5q, es evidente que $3+5q\equiv 3$ (5). Entonces $r_5(k)=3$

(d) Reduzcamos cada término módulo 31.

Es fundamental notar que $2^5 \equiv 1$ (31), que $5^3 \equiv 1$ (31) y que $61 \equiv -1$ (31) Entonces

$$43 \equiv 12 \ (31)$$

$$2^{163} \equiv 2^{5 \cdot 32 + 3} \equiv (2^5)^{32} \cdot 8 \equiv 8 (31)$$

$$5^{221} \equiv 5^{3 \cdot 73 + 2} \equiv (5^3)^{73} \cdot 25 \equiv 25 \ (31)$$

$$61^{999} \equiv (-1)^{999} \equiv -1 \ (31)$$

Juntando todo

$$43 \cdot 2^{163} + 11 \cdot 5^{221} + 61^{999} \equiv 12 \cdot 8 + 11 \cdot 25 - 1 \equiv 370 \equiv 29 (31)$$

Luego,
$$r_{31}(43 \cdot 2^{163} + 11 \cdot 5^{221} + 61^{999}) = 29$$

Dale las gracias y un poco de amor 💙 a los que contribuyeron! Gracias por tu aporte:

👸 Nunezca 🞧

13. Se define por recurrencia la sucesión $(a_n)_{n\in\mathbb{N}}$:

$$a_1 = 3$$
, $a_2 = -5$ y $a_{n+2} = a_{n+1} - 6^{2n} \cdot a_n + 21^n \cdot n^{21}$, para todo $n \in \mathbb{N}$.

Probar que $a_n \equiv 3^n \pmod{7}$ para todo $n \in \mathbb{N}$.

La infumabilidad de esos números me obliga a atacar a esto con el resto e inducción.

Puesto de otra forma
$$a_{n+2} \equiv a_{n+1} - a_n$$
 (7) \rightarrow

$$\begin{cases}
a_1 \equiv 3^1 \text{ (7)} \iff a_1 \equiv 3 \text{ (7)} \\
a_2 \equiv 3^2 \text{ (7)} \iff a_2 \equiv 2 \text{ (7)} \\
a_3 \equiv 3^3 \text{ (7)} \iff a_3 \equiv 6 \text{ (7)}
\end{cases}$$

Quiero probar que $a_n \equiv 3^n \pmod{7} \rightarrow \text{inducción complet}$

 $p(n): a_n \equiv 3^n \pmod{7} \ \forall n \in \mathbb{N}$

$$Casos\ base: \begin{cases} p(1): a_1 \equiv 3^1\ (7) \quad \checkmark, \quad p(1) \text{ es verdadera} \\ p(2): a_2 \equiv 3^2\ (7) \stackrel{(7)}{\equiv} 2 \stackrel{(7)}{\equiv} -5 \quad \checkmark, \quad p(2) \text{ es verdadera} \\ p(k): a_k \equiv 3^k\ (\text{mod }7) \quad \checkmark, \quad p(k) \text{ la asumo verdadera} \end{cases}$$

$$Paso\ Inductivo: \begin{cases} p(k+1): a_{k+1} \equiv 3^{k+1}\ (\text{mod }7) \quad \checkmark, \quad p(k+1) \text{ también asumo verdadera} \\ \Rightarrow p(k+2): a_{k+2} \equiv 3^{k+2}\ (\text{mod }7) \text{ quiero probar que es verdadera} \end{cases}$$

$$a_{k+1} \equiv 3^k \pmod{7}$$

$$a_{k+1} \equiv 3^{k+1}\ (\text{mod }7)$$

$$\begin{cases}
 a_k \equiv 3^k \pmod{7} \\
 a_{k+1} \equiv 3^{k+1} \pmod{7}
\end{cases}$$

Hipótesis inductiva:

p(k+2) resultó ser verdadera.

Concluyendo como p(1), p(2), p(k), p(k+1) y p(k+2) resultaron verdaderas por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}$.

14.

(a) Hallar el desarrollo en base 2 de

i. 1365

- ii. 2800
- iii. $3 \cdot 2^{12}$
- iv. $13 \cdot 2^n + 5 \cdot 2^{n-1}$

(b) Hallar el desarrollo en base 16 de 2800.

2... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 0$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc 0$

 \mathbf{Q}_{i} Aportá con correcciones, subiendo ejercicios, \star al repo, críticas, todo sirve.

15. 2... hay que hacerlo! 6

Si querés mandarlo: Telegram $\rightarrow \bigcirc 0$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc 0$

16. Enunciar y demostrar criterios de divisibilidad por 8 y por 9.

• Criterio de divisibilidad por 8:

Sea $a = (r_n r_{n-1} \dots r_3 r_2 r_1 r_0)_{10}$ el desarrollo decimal de a, con $0 \le r_k \le 9$. Entonces

$$8 \mid a \iff 8 \mid (r_2r_1r_0)_{10}$$

Es decir, a es divisible por 8 si y solo si el número formado por las 3 últimas cifras de a es divisible por 8.

Demostración:

Observemos que $10^3 \equiv 0$ (8). Probemos entonces por inducción que $P(m): 10^m \equiv 0$ (8), $m \geq 3$

- Caso Base: P(3)
 - $10^3 \equiv 0 \ (8) \quad \checkmark$
- Paso inductivo: $P(m) \Rightarrow P(m+1)$

$$10^{m+1} \equiv 10^m \cdot 10 \stackrel{\text{(HI)}}{\equiv} 0 \cdot 10 \equiv 0 \pmod{8}$$

Entonces, P(m) es verdadera para todo $m \geq 3$

Luego, como $a=10^nr_n+10^{n-1}r_{n-1}+\cdots+10^3r_3+10^2r_2+10r_1+r_0$, tomando congruencia módulo 8 tenemos que

 $a = 10^n r_n + 10^{n-1} r_{n-1} + \dots + 10^3 r_3 + 10^2 r_2 + 10 r_1 + r_0 \equiv 0 + 0 + \dots + 0 + 10^2 r_2 + 10 r_1 + r_0 \pmod{8}$ Luego,

$$8 \mid a \iff a \equiv 0 \ (8) \iff 10^2 r_2 + 10 r_1 + r_0 \equiv 0 \ (8) \iff (r_2 r_1 r_0)_{10} \equiv 0 \ (8) \iff 8 \mid (r_2 r_1 r_0)_{10}$$

• Criterio de divisibilidad por 9:

Sea $a = (r_n r_{n-1} \dots r_1 r_0)_{10}$ el desarrollo decimal de a, con $0 \le r_k \le 9$. Entonces

$$9 \mid a \iff 9 \mid r_n + r_{n-1} + \dots + r_1 + r_0$$

Es decir, a es divisible por 9 si y solo si la suma de los dígitos de a es divisible por 9.

Demostración:

Observemos que $10 \equiv 1 \ (9)$, con lo que $10^m \equiv 1 \ (9)$, $m \in \mathbb{N}_0$

Luego, como $a = 10^n r_n + 10^{n-1} r_{n-1} + \dots + 10 r_1 + r_0$, tomando congruencia módulo 9 tenemos que $a = 10^n r_n + 10^{n-1} r_{n-1} + \dots + 10 r_1 + r_0 \equiv r_n + r_{n-1} + \dots + r_1 + r_0 \pmod{9}$

Luego,

$$9 \mid a \iff a \equiv 0 \ (9) \iff r_n + r_{n-1} + \dots + r_1 + r_0 \equiv 0 \ (9) \iff 9 \mid r_n + r_{n-1} + \dots + r_1 + r_0$$

17. Some support of the second of the second

Si querés mandarlo: Telegram $\rightarrow \bigcirc 0$, o mejor aún si querés subirlo en L $^{+}$ TE $^{-}$ X $\rightarrow \bigcirc 0$

Máximo común divisor:

18. En cada uno de los siguientes casos calcular el máximo común divisor entre a y b y escribirlo como combinación lineal entera de a y b:

- i) a = 2532, b = 63.
- ii) a = 131, b = 23.
- iii) $a = n^4 3$, $b = n^2 + 2$ $(n \in \mathbb{N})$.

Hacer!

🖭... hay que hacerlo! 😚

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

- 20. Sea $a \in \mathbb{Z}$.
 - a) Probar que (5a + 8 : 7a + 3) = 1 o 41. Exhibir un valor de a para el cual da 1, y verificar que efectivamente para a = 23 da 41.
 - b) Probar que $(2a^2 + 3a : 5a + 6) = 1$ o 43. Exhibir un valor de a para el cual da 1, y verificar que efectivamente para a = 16 da 43
 - c) Probar que $(a^2 3a + 2 : 3a^3 5a^2) = 2$ o 4, y exhibir un valor de a para cada caso. (Para este item es **indispensable** mostrar que el máximo común divisor nunca puede ser 1).

i) 🖭 ... hay que hacerlo! 🔞

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en L $^{\text{MT}}_{\text{E}}X \rightarrow \bigcirc$

ii) 🖭 ... hay que hacerlo! 😭

Si querés mandarlo: Telegram $\rightarrow \bigcirc \bigcirc$, o mejor aún si querés subirlo en LATFX $\rightarrow \bigcirc$.

iii)
$$(a^2 - 3a + 2 : 3a^3 - 5a^2) \xrightarrow{\text{Euclides}} (\underline{a^2 - 3a + 2} : \underline{6a - 8})$$

iii)
$$(a^2 - 3a + 2 : 3a^3 - 5a^2) \xrightarrow{\text{Euclides}} (\underbrace{a^2 - 3a + 2}_{\star^1 par} : \underbrace{6a - 8}_{\star^1 par})$$

$$\xrightarrow{\text{busco}} \left\{ \begin{array}{c} d \mid a^2 - 3a + 2 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\times 6} \left\{ \begin{array}{c} d \mid 10a - 12 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\times 6} \left\{ \begin{array}{c} d \mid 10a - 12 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\times 6} \left\{ \begin{array}{c} d \mid 8 \end{array} \right\} \rightarrow \mathcal{D}_{+}(8) = \{1, 2, 4, 8\} \xrightarrow{\star^1} = \{2, 4, 8\}$$

$$\begin{cases} a = 1 \quad (0: -2) = 2 \\ a = 2 \quad (0: 4) = 4 \end{cases}$$
Parasida al basha an alasa

Parecido al hecho en clase.

¿Qué onda el 8? Hice mal cuentas? Si no, cómo lo descarto?

Sean $a, b \in \mathbb{Z}$ coprimes. Probar que 7a - 3b y 2a - b son coprimes.

$$\left\{ \begin{array}{ccc|c}
d \mid 7a - 3b & \xrightarrow{\cdot 2} & d \mid b & \rightarrow d \mid b \\
d \mid 2a - b & \xrightarrow{\cdot 7} & d \mid 2a - b & \rightarrow d \mid a
\end{array} \right\} \xrightarrow{\text{propiedad}} d \mid (a:b) \xrightarrow{(a:b)} d \mid 1$$

Por lo tanto (7a - 3b : 2a - b) = 1 son coprimos como se quería mostrar.

22. 2... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

23.

- i) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{b+4}{a} + \frac{5}{b} \in \mathbb{Z}$.
- ii) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{9a}{b} + \frac{7a^2}{b^2} \in \mathbb{Z}$.
- iii) Determinar todos los $a, b \in \mathbb{Z}$ tales que $\frac{2a+3}{a+1} + \frac{a+2}{4} \in \mathbb{Z}$.
- i) $\begin{array}{l} \frac{b+4}{a} + \frac{5}{b} = \frac{b^2 + 4b + 5a}{ab} \xrightarrow{\text{quiero que}} ab \mid b^2 + 4b + 5a \\ \hline \frac{\text{por}}{\text{coprimitusibilidad}} \begin{cases} a \mid b^2 + 4b + 5a \\ b \mid b^2 + 4b + 5a \end{cases} \rightarrow \begin{cases} a \mid b^2 + 4b \\ b \mid 5a \end{cases} \xrightarrow{\text{debe dividr a 5}} \begin{cases} a \mid b \cdot (b+4) \\ b \mid 5 \end{cases} \\ \text{Seguro tengo que } b \in \{\pm 1, \pm 5\} \rightarrow \text{pruebo valores de } b \text{ y veo que valor de } a \text{ queda:} \\ \begin{cases} b = 1 \rightarrow (a \mid 5, 1) \rightarrow \{(\pm 1, 1).(\pm 5, 1)\} \\ b = -1 \rightarrow (a \mid -3, 1) \rightarrow \{(\pm 1, -1).(\pm 3, 1)\} \\ b = 5 \rightarrow (a \mid 45, 5) \xrightarrow{\text{atención que}} \{(\pm 1, 5), (\pm 3, 5).(\pm 9, 5)\} \end{cases} \\ b = -5 \rightarrow (a \mid 5, -5) \xrightarrow{\text{atención que}} \{(\pm 1, -5)\} \end{cases}$
- ii) Hacer!

iii)
$$\frac{2a+3}{a+1} + \frac{a+2}{4} = \frac{a^2+11a+14}{4a+4} \star^1$$

Para que $\frac{a^2+11a+14}{4a+4} \in \mathbb{Z}$ debe ocurrir que

$$4a + 4 \mid a^2 + 11a + 14$$

Busco eliminar la a del lado derecho:

$$\left\{ \begin{array}{c|c} 4a + 4 & a^2 + 11a + 14 \\ 4a + 4 & 4a + 4 \end{array} \right. \xrightarrow{!} \left\{ \begin{array}{c|c} 4a + 4 & 16 \\ 4a + 4 & 4a + 4 \end{array} \right.$$

Las cuentas del! te las dejo a vos.

4a + 4 tiene que dividir a 16, por lo tanto mis posibles valores serán $\{\pm 1, \pm 2, \pm 4, \pm 8, \pm 16\}$.

Teniendo en cuenta que $4a + 4 \in \mathbb{Z}$ y también que $a \in \mathbb{Z}$, quedan como únicos posibles valores:

$$4(-5) + 4 = -16$$
 \checkmark $4(-2) + 4 = -4$ \checkmark

reemplazando esos valores de a en \star^1 se obtiene tiene valor $-1 \in \mathbb{Z}$.

Dale las gracias y un poco de amor V a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 🕥

Primos y factorización:

24. Probar que existen infinitos primos positivos congruentes a 3 módulo 4.

Sugerencia: probar primero que si $a \in \mathbb{N}$ satisface $a \equiv 3$ (4), entonces existe p primo con $p \equiv 3$ (4) tal que $p \mid a$. Luego probar que si existieran sólo finitos primos congruentes a 3 módulo 4, digamos p_1, p_2, \ldots, p_n , entonces $a = -1 + 4 \prod_{i=1}^{n} p_i$ sería mayor que 1 y no es divisible por ningún primo congruente a 3 módulo 4

Comencemos probando la primera parte de la sugerencia:

Dado
$$a \in \mathbb{N}, a \equiv 3$$
 (4) $\Rightarrow \exists p \text{ primo con } p \equiv 3$ (4) tal que $p \mid a$

Como $a \equiv 3$ (4) $\iff a = 4k + 3$ y dado que $a \in \mathbb{N}$, es evidente que a > 1. Luego sabemos que $\exists p$ primo tal que $p \mid a$. Ahora debemos ver que $p \equiv 3$ (4). Para esto, apliquemos el TFA:

$$a = (P_1)^{n_1} \cdot (P_2)^{n_2} \cdots (P_r)^{n_r}, \ n_1, n_2 \dots, n_r \in \mathbb{N}$$

Notemos ahora que ninguno de los primos en la factorización de a puede ser 2, pues a=4k+3=2(2k+1)+1 es impar. Esto nos descarta que $p\equiv 0$ (4) o que $p\equiv 2$ (4), pues el único primo que cumple alguna es el 2. De modo que nos quedan dos opciones:

$$p \equiv 1 \ (4)$$
 o $p \equiv 3 \ (4)$

Prestemos atención a lo siguiente. Si todos los primos en la factorización de a fueran congruentes a 1 módulo 4, esto es

$$P_1 \equiv 1 \ (4), P_2 \equiv 1 \ (4), \dots, P_r \equiv 1 \ (4) \Rightarrow (P_1)^{n_1} \equiv 1 \ (4), (P_2)^{n_2} \equiv 1 \ (4), \dots, (P_r)^{n_r} \equiv 1 \ (4)$$

tendriamos que

$$a = (P_1)^{n_1} \cdot (P_2)^{n_2} \cdots (P_r)^{n_r} \equiv 1 \ (4)$$

lo cual contradice nuestra hipótesis de que $a \equiv 3$ (4).

Así, probamos que al menos debe existir un p en la factorización de a (esto asegura que $p \mid a$), que cumpla que $p \equiv 3$ (4) si es que tenemos que $a \equiv 3$ (4), que era lo que queriamos probar.

Veamos ahora la segunda parte de la sugerencia (no voy a probar eso exactamente, pero es parecido). Supongamos que existen finitos primos congruentes a 3 módulo 4, digamos p_1, p_2, \ldots, p_n . Esto nos permite definir a como $a=-1+4\prod_{i=1}^n p_i$. Notemos que como $a\in\mathbb{N},\ a>1$ y $a\equiv 3$ (4), podemos aplicar lo que probamos en la primera parte. Esto es: existe p primo con $p\equiv 3$ (4) tal que $p\mid a$. Notemos que este p debe ser alguno de los p_i . Luego

$$\begin{cases} p_i \mid -1 + 4 \prod_{i=1}^n p_i \\ p_i \mid 4 \prod_{i=1}^n p_i \end{cases} \xrightarrow{F_2 - F_1} p_i \mid 1$$

Lo cual es absurdo. Esta contradicción proviene de la única suposición que hicimos, que existen finitos primos congruentes a 3 módulo 4.

Luego, existen infinitos primos congruentes a 3 módulo 4, que era lo que queriamos probar.

Dale las gracias y un poco de amor 💙 a los que contribuyeron! Gracias por tu aporte:

8 Nunezca 🖸

- 25. Sea p primo positivo.
 - (a) Probar que si 0 < k < p, entonces $p \mid \binom{p}{k}$.
 - (b) Probar que si $a, b \in \mathbb{Z}$, entonces $(a+b)^p \equiv a^p + b^p \pmod{p}$.
 - (a) Como 0 < k < p, tenemos que $p \not\mid k!$ y que $p \not\mid (p-k)!$, pues p es primo y no divide a ningún factor de ambos números. Por la misma razón, se tiene que $\star^1 p \not\mid k!(p-k)!$. Entonces

$$\frac{p!}{k!(p-k)!} = \binom{p}{k} \Leftrightarrow p! = \binom{p}{k} \cdot k!(p-k)! \Leftrightarrow p(p-1)! = \binom{p}{k} \cdot k!(p-k)! \xrightarrow{\underline{(p-1)!} \in \mathbb{Z}} p \bigm| \binom{p}{k} \cdot k!(p-k)!$$

$$p \mid \binom{p}{k} \cdot k! (p-k)! \xleftarrow{p \text{ primo}} p \mid \binom{p}{k} \quad \checkmark$$

(b) Usando el binomio de Newton, tenemos que

$$(a+b)^p = \sum_{k=0}^p \binom{p}{k} \cdot a^k \cdot b^{p-k} = a^p + b^p + \sum_{k=1}^{p-1} \binom{p}{k} \cdot a^k \cdot b^{p-k}$$

Como en la nueva sumatoria tenemos que 0 < k < p, podemos aplicar lo probado en el inciso (a), obteniendo que

$$\sum_{k=1}^{p-1} \binom{p}{k} \cdot a^k \cdot b^{p-k} \equiv 0 \ (p)$$

Ahora solo queda juntar todo

$$(a+b)^p = a^p + b^p + \sum_{k=1}^{p-1} {p \choose k} \cdot a^k \cdot b^{p-k} \equiv a^p + b^p \pmod{p}$$
 \checkmark

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

🞖 Nunezca 🞧

- Decidir si existen enteros a y b no nulos que satisfagan
 - a) $a^2 = 3b^3$

b)
$$7a^2 = 8b^2$$

- a) Observando que hay un 3 del lado derecho, a ojo se puede ver que, por ejemplo, $(a,b) = (3^2,3)$ cumple.
- ¿Errores? Avisá así se corrige y ganamos todos.

b) A simple vista, no parece haber una solución obvia. Veamos la factorización en primos para ver si encontramos una contradicción.

Por TFA, se tiene que

$$\left\{ \begin{array}{l} a = (P_1)^{m_1}...(P_r)^{m_r}, \ m_1,...,m_r \in \mathbb{N}_0 \\ b = (P_1)^{n_1}...(P_r)^{n_r}, \ n_1,...,n_r \in \mathbb{N}_0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} a^2 = (P_1)^{2m_1}...(P_r)^{2m_r} \\ b^2 = (P_1)^{2n_1}...(P_r)^{2n_r} \end{array} \right.$$

Entonces

$$7a^2 = 8b^2 \iff 7^1 \cdot (P_1)^{2m_1} \dots (P_r)^{2m_r} = 2^3 \cdot (P_1)^{2n_1} \dots (P_r)^{2n_r}$$

Del lado izquierdo de la igualdad, el 7 aparece con el exponente $2m_7 + 1$.

Del lado derecho de la igualdad, el 7 aparece con el exponente $2n_7$.

Entonces, por unicidad de la factorización, se deberia tener que

$$2m_7 + 1 = 2n_7$$

Lo cual es absurdo, pues un número es impar y el otro par.

Luego, $\nexists a, b \in \mathbb{Z}$ no nulos tal que $7a^2 = 8b^2$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nunezca 🖸

27. Sea $n \in \mathbb{N}, n \geq 2$. Probar que si p es un número primo positivo entonces $\sqrt[n]{p} \notin \mathbb{Q}$.

Supongamos que $\sqrt[n]{p} \in \mathbb{Q}$ y lleguemos a una contradicción.

$$\sqrt[n]{p} \in \mathbb{Q} \Rightarrow \sqrt[n]{p} = \frac{a}{b}, \ a, b \in \mathbb{Z} \quad y \quad b \neq 0$$

Tomemos $\frac{a}{b}$ como una fracción irreducible, es decir, con a y b coprimos. Luego,

$$\sqrt[n]{p} = \frac{a}{b} \Rightarrow b \cdot \sqrt[n]{p} = a \Rightarrow b^n \cdot p = a^n \Rightarrow p \mid a^n \xrightarrow{p \text{ primo}} p \mid a$$

Como $p \mid a$, entonces $a = p \cdot k$, $k \in \mathbb{Z}$. Reemplazando, tenemos que

$$b^n \cdot p = a^n \Rightarrow b^n \cdot p = (p \cdot k)^n \Rightarrow b^n \cdot p = p^n \cdot k^n \stackrel{\text{!!!}}{\Rightarrow} b^n = p^{n-1} \cdot k^n \stackrel{\text{!!!}}{\Rightarrow} b^n = p \cdot p^{n-2} \cdot k^n \Rightarrow p \mid b^n \stackrel{p \text{ primo}}{\Rightarrow} p \mid b$$

El paso en !! tiene sentido porque $n \in \mathbb{N}$ y en !!! porque $n \geq 2$. Esto asegura que las expresiones p^{n-1} y p^{n-2} pertenezcan \mathbb{N}_0 .

Así, obtuvimos que $p \mid a \ y \ p \mid b$, lo cual contradice el hecho que $a \ y \ b$ son coprimos. La contradicción proviene de la única suposición que hicimos, que $\sqrt[n]{p} \in \mathbb{Q}$. Luego, $\sqrt[n]{p} \notin \mathbb{Q}$, tal como queriamos probar.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

🞖 Nunezca 📢

28. Sean p y q primos positivos distintos. Probar que $p^{113} \cdot q^{201} \mid a^{378}$ si y sólo si $pq \mid a$.

Antes de empezar, notemos que como $p \neq q$ y ambos son primos, se tiene que (p:q) = 1

 ♠¡Aportá con correcciones, subiendo ejercicios, ★ al repo, críticas, todo sirve.

• $p^{113} \cdot q^{201} \mid a^{378} \Rightarrow pq \mid a$.

$$p^{113} \cdot q^{201} \mid a^{378} \iff a^{378} = p^{113} \cdot q^{201} \cdot k \; , \; k \in \mathbb{Z} \Rightarrow \begin{cases} p \mid a^{378} \xrightarrow{\text{p primo}} p \mid a \\ q \mid a^{378} \xrightarrow{\text{q primo}} q \mid a \end{cases} \xrightarrow{(p:q)=1} pq \mid a \quad \checkmark$$

• $pq \mid a \Rightarrow p^{113} \cdot q^{201} \mid a^{378}$

$$pq \mid a \iff a = pq \cdot k \; , \; k \in \mathbb{Z} \Rightarrow a^{378} = p^{378} \cdot q^{378} \cdot k^{378} \iff a^{378} = p^{113} \cdot q^{201} (p^{265} \cdot p^{177} \cdot k^{378})$$

$$\xrightarrow{\frac{(p^{265} \cdot p^{177} \cdot k^{378}) \in \mathbb{Z}}{=====}} p^{113} \cdot q^{201} \mid a^{378} \quad \checkmark$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nunezca 📢

29. Determinar cuántos divisores positivos tiene 9000, $15^4 \cdot 42^3 \cdot 56^5$ y $10^n \cdot 11^{n+1}$. ¿Y cuántos divisores en total?

Lo único que hay que hacer en este ejercicio es factorizar en primos cada número y utilizar la formula de cantidad de divisores (poco interesante).

• 9000

$$9000 = 2^{3} \cdot 3^{2} \cdot 5^{3} \Rightarrow \begin{cases} #Div_{+}(9000) = (3+1)(2+1)(3+1) = \boxed{48} \\ #Div(9000) = 2 \cdot 48 = \boxed{96} \end{cases}$$

• $15^4 \cdot 42^3 \cdot 56^5$

$$15^{4} \cdot 42^{3} \cdot 56^{5} = 2^{18} \cdot 3^{7} \cdot 5^{4} \cdot 7^{8} \Rightarrow \begin{cases} #Div_{+}(15^{4} \cdot 42^{3} \cdot 56^{5}) = (18+1)(7+1)(4+1)(8+1) = \boxed{6840} \\ #Div(15^{4} \cdot 42^{3} \cdot 56^{5}) = 2 \cdot 6840 = \boxed{13680} \end{cases}$$

• $10^n \cdot 11^{n+1}$

$$10^{n} \cdot 11^{n+1} = 2^{n} \cdot 5^{n} \cdot 11^{n+1} \Rightarrow \begin{cases} #Div_{+}(10^{n} \cdot 11^{n+1}) = (n+1)(n+1)(n+1+1) = \boxed{(n+2)(n+1)^{2}} \\ #Div(10^{n} \cdot 11^{n+1}) = \boxed{2(n+2)(n+1)^{2}} \end{cases}$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 Nunezca 😱

- **30.** Hallar la suma de los divisores positivos de $2^4 \cdot 5^{123}$ y de $10^n \cdot 11^{n+1}$.
- 🧔 ¿Errores? Avisá así se corrige y ganamos todos.

• $2^4 \cdot 5^{123}$

Sabemos que $Div_{+}(2^{4} \cdot 5^{123}) = \{2^{i} \cdot 5^{j}, 0 \le i \le 4 \text{ y } 0 \le j \le 123\}$

Entonces, la suma de los divisores será igual a:

$$\sum_{i=0}^{4} \sum_{j=0}^{123} 2^{i} \cdot 5^{j} = \left(\sum_{i=0}^{4} 2^{i}\right) \cdot \left(\sum_{j=0}^{123} 5^{j}\right) = \left(\frac{1-2^{4+1}}{1-2}\right) \cdot \left(\frac{1-5^{123+1}}{1-5}\right) = \boxed{\frac{31}{4}(5^{124}-1)}$$

• $10^n \cdot 11^{n+1}$

$$10^n \cdot 11^{n+1} = 2^n \cdot 5^n \cdot 11^{n+1}$$

Sabemos que $Div_{+}(10^{n} \cdot 11^{n+1}) = \left\{2^{i} \cdot 5^{j} \cdot 11^{k}, \ 0 \leq i \leq n, \ 0 \leq j \leq n \ \ \text{y} \ \ 0 \leq k \leq n+1\right\}$

Entonces, la suma de los divisores será igual a:

$$\sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{n+1} 2^{i} \cdot 5^{j} \cdot 11^{k} = \left(\sum_{i=0}^{n} 2^{i}\right) \cdot \left(\sum_{j=0}^{n} 5^{j}\right) \cdot \left(\sum_{k=0}^{n+1} 11^{k}\right) = \left(\frac{1-2^{n+1}}{1-2}\right) \cdot \left(\frac{1-5^{n+1}}{1-5}\right) \cdot \left(\frac{1-11^{n+1+1}}{1-11}\right) = \left[\frac{1}{40}(2^{n+1}-1)(5^{n+1}-1)(11^{n+2}-1)\right]$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 Nunezca 🞧

31. Hallar el menor número natural n tal que 6552n sea un cuadrado, es decir, que exista $k \in \mathbb{N}$ tal que $6552n = k^2$.

Como $k \in \mathbb{N}$ y como claramente $k \neq 1$, por TFA, se tiene que

$$k = (P_1)^{m_1} \cdot (P_2)^{m_2} \cdots (P_r)^{m_r}, \ m_1, m_2, \dots, m_r \in \mathbb{N} \Rightarrow k^2 = (P_1)^{2m_1} \cdot (P_2)^{2m_2} \cdots (P_r)^{2m_r}$$

Entonces

$$6552n = k^2 \iff 2^3 \cdot 3^2 \cdot 7 \cdot 13 \cdot n = (P_1)^{2m_1} \cdot (P_2)^{2m_2} \cdots (P_r)^{2m_r}$$

Esto nos dice que todos los primos del lado izquierdo de la igualdad deben estar elevados a un número de la forma $2k, k \in \mathbb{N}$.

Para lograr esto, notemos que es necesario que n contenga en su factorización un 2, un 7 y un 13 y como nos piden el menor n, esto resulta suficiente.

Luego, $n = 2 \cdot 7 \cdot 13 = |182|$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nunezca 🞧

Sean $a, b \in \mathbb{N}, a, b \ge 2$. Probar que si ab es un cuadrado en \mathbb{N} y (a : b) = 1, entonces, tanto a como b son cuadrados en \mathbb{N} .

ab es un cuadrado en $\mathbb{N} \iff ab = k^2, \ k \in \mathbb{N}$

Esto implica que todos los primos en la factorización de ab son de la forma 2q, con $q \in \mathbb{N}$. Es decir

$$ab = (P_1)^{2n_1} \cdots (P_r)^{2n_r}, \ n_1, \dots, n_r \in \mathbb{N}$$

Luego, usando que (a:b) = 1, se tiene que a y b no poseen primos en común, de modo que cada primo con su respectivo exponente de ab esta en la factorización de a o de b, pero no en ambas. Entonces, podemos escribir a ambos números en su factorización correspondiente:

$$a = (Q_1)^{2m_1} \cdots (Q_t)^{2m_t}, \ m_1, \dots, m_t \in \mathbb{N}$$

$$b = (S_1)^{2l_1} \cdots (S_c)^{2l_c}, \ l_1, \dots, l_c \in \mathbb{N}$$

De esta manera

$$\exists k_1, k_2 \in \mathbb{N} \text{ con } \begin{cases} k_1 = (Q_1)^{m_1} \cdots (Q_t)^{m_t} \\ k_2 = (S_1)^{l_1} \cdots (S_c)^{l_c} \end{cases} \text{ tal que } \begin{cases} a = (k_1)^2 \\ b = (k_2)^2 \end{cases}$$

Esto precisamente quiere decir que a y b son cuadrados en \mathbb{N} , que era lo que queriamos probar.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

8 Nunezca 🖸

- **33.** Hallar todos los $n \in \mathbb{N}$ tales que
 - (a) (n:945) = 63, (n:1176) = 84 y n < 2800
 - (b) (n:1260) = 70 y n tiene 30 divisores positivos.
 - (a) Trabajemos con la primera condición

$$(n:945) = 63 \iff (n:3^3 \cdot 5 \cdot 7) = 3^2 \cdot 7$$

De aca tenemos que, en su factorización, n tiene un 3^2 , no tiene un 5 y tiene un 7^m , $m \ge 1$.

Veamos ahora la segunda condición

$$(n:1176) = 84 \iff (n:2^3 \cdot 3 \cdot 7^2) = 2^2 \cdot 3 \cdot 7$$

De aca tenemos que, en su factorización, n tiene un 2^2 , tiene un 3^k , $k \ge 1$ y tiene un 7. Juntando todo, tenemos que

$$n = 2^2 \cdot 3^2 \cdot 7 \cdot (P_1)^{m_1} \cdots (P_r)^{m_r}, \ m_1, \dots, m_r \in \mathbb{N}_0$$

Veamos ahora la tercer condición.

Si n no tiene ningún primo más, tenemos que $n=2^2\cdot 3^2\cdot 7=252 \le 2800$ \checkmark

Si n tiene un primo más, sabiendo que el 5 no puede ser, probamos con el 11, que es el que le sigue al 7. Entonces, tenemos que $n=2^2\cdot 3^2\cdot 7\cdot 11=2772\leq 2800$ \checkmark

Si agregamos otro 11, ya nos pasamos, pues $n=2^2\cdot 3^2\cdot 7\cdot 11^2=30492$. Por otro lado, si no agregamos el 11 sino el que le sigue, el 13, tenemos que $n=2^2\cdot 3^2\cdot 7\cdot 13=3276$, con lo que también nos pasamos. De este modo, es evidente que con cualquier otro primo mayor a 13 también nos pasariamos. Así, solo puede haber como máximo un 11 más.

Luego, los unicos n que cumplen son

$$n = 2^2 \cdot 3^2 \cdot 7 = \boxed{252}$$

$$n = 2^2 \cdot 3^2 \cdot 7 \cdot 11 = \boxed{2772}$$

(b) Veamos la primera condición

$$(n:1260) = 70 \iff (n:2^2 \cdot 3^2 \cdot 5 \cdot 7) = 2 \cdot 5 \cdot 7$$

De aca deducimos que, en su factorización, n tiene un 2, no tiene un 3, tiene un 5^m , $m \ge 1$ y tiene un 7^k , $k \ge 1$.

Así, tenemos que

$$n = 2^1 \cdot 5^m \cdot 7^k \cdot (P_1)^{m_1} \cdots (P_r)^{m_r}, \ m_1, \dots, m_r \in \mathbb{N}_0$$

De la segunda condición tenemos que

$$\#Div_{+}(n) = 30 \iff 30 = (1+1)(m+1)(k+1)(m_1+1)\cdots(m_r+1) \iff 15 = (m+1)(k+1)(m_1+1)\cdots(m_r+1)$$

Notemos ahora que las únicas maneras de escribir a $15=3\cdot 5$ como un producto de dos o más números es haciendo $15\cdot 1$ o $3\cdot 5$

Para empezar, estos nos dice que no hay más primos en la factorización de n, además del 2, 5 y 7. Luego, tenemos que

$$15 = (m+1)(k+1)$$

Como ambos factores son mayores iguales a 2 (pues k y m son mayores a 1), tenemos que la única manera que el producto de 15 es que uno sea igual a 3 y el otro a 5. Con lo que tenemos dos opciones:

$$(m+1) = 3$$
 y $(k+1) = 5$

$$(m+1) = 5$$
 y $(k+1) = 3$

De la primera obtenemos que m=2 y que k=4. Con lo que $n=2\cdot 5^2\cdot 7^4$. De la segunda obtenemos que m=4 y que k=2. Con lo que $n=2\cdot 5^4\cdot 7^2$.

Luego, los unicos n que cumplen son

$$n = 2 \cdot 5^2 \cdot 7^4 = \boxed{120050}$$

$$n = 2 \cdot 5^4 \cdot 7^2 = 2772$$

Dale las gracias y un poco de amor 💙 a los que contribuyeron! Gracias por tu aporte:

👸 Nunezca 🞧

34. Hallar el menor número natural n tal que (n:3150)=45 y n tenga exactamente 12 divisores positivos.

Trabajemos con la primera condición:

$$(n:3150) = 45 \iff (n:2\cdot3^2\cdot5^2\cdot7) = 3^2\cdot5$$

Utilizando que el MCD se calcula como primos en común a la menor potencia, concluimos que n no tiene en su factorización al 2 ni al 7 y que si tiene en su factorización un 5 y un 3^i , con $i \ge 2$. Es decir:

$$n = 3^{i} \cdot 5 \cdot (P_{1})^{m_{1}} \dots (P_{k})^{m_{k}}, i \geq 2 \ y \ m_{i} \geq 0$$

De la segunda condición tenemos que

$$12 = 2(i+1)(m_1+1)...(m_k+1) \iff 6 = (i+1)(m_1+1)...(m_k+1)$$

Como $i \ge 2 \Rightarrow i+1 \ge 3$ y como queremos que el producto nos de 6, esto nos deja dos opciones:

- (i+1) = 6 y $(m_1+1)...(m_k+1) = 1$
- (i+1) = 3 y $(m_1+1)...(m_k+1) = 2$

De la primera tenemos que i=5 y que no hay otro primo en la factorización. De modo que $n=3^5 \cdot 5=1215$

De la segunda tenemos que i=2 y que solo puede haber otro primo en la factorización con $m_1=1$. Como nos piden el menor n, elegimos el menor primo que le sigue a 5 que no sea el 7, es decir, el 11. Entonces, $n=3^2 \cdot 5 \cdot 11=495$

Luego, elegiendo el menor entre los dos, la respuesta es n = 495

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

🞖 Nunezca 😯

35.

- (a) Sea $k \in \mathbb{N}$. Probar que $(2^k + 7^k : 2^k 7^k) = 1$.
- (b) Sea $k \in \mathbb{N}$. Probar que $(2^k + 5^{k+1} : 2^{k+1} + 5^k) = 3$ o 9, y dar un ejemplo para cada caso.
- (c) Caracterizar para cada $k \in \mathbb{N}$ el valor que toma $(12^k 1: 12^k + 1286)$.
- (a) Sea $d = (2^k + 7^k : 2^k 7^k) = 1$. Entonces

$$\left\{ \begin{array}{l} d \mid 2^k + 7^k \\ d \mid 2^k - 7^k \end{array} \right. \left\{ \begin{array}{l} \xrightarrow{F_1 + F_2} d \mid 2 \cdot 2^k \\ \xrightarrow{F_1 - F_2} d \mid 2 \cdot 7^k \end{array} \right. \Rightarrow d \mid (2 \cdot 2^k : 2 \cdot 7^k) = 2(2^k : 7^k) \stackrel{!!}{=} 2 \cdot 1 = 2 \Rightarrow d \in \{1, 2\}$$

En !! uso que $(2:7) = 1 \iff (2^k:7^k) = 1$

Ahora nos gustaria descartar que d pueda ser 2, con lo que basta ver que 2 no divide a alguna de las expresiones. Para esto, miremos la congruencia módulo 2 de $2^k + 7^k$:

$$2^k+7^k\equiv 0^k+1^k\equiv 1\pmod 2 \Rightarrow r_2(2^k+7^k)=1, \ \forall \ k\in\mathbb{N}\Rightarrow 2\not\mid 2^k+7^k, \ \forall \ k\in\mathbb{N}$$

De aca, tenemos que $2 \nmid d$. Entonces, queda que d = 1, tal como queriamos probar.

- (b) Sea $d = (2^k + 5^{k+1} : 2^{k+1} + 5^k) = 1$. Entonces
- 🧔 ¿Errores? Avisá así se corrige y ganamos todos.

$$\left\{ \begin{array}{l} d \mid 2^{k} + 5^{k+1} \\ d \mid 2^{k+1} + 5^{k} \end{array} \right. \left\{ \begin{array}{l} \overset{2 \cdot F_{1}}{\Longrightarrow} \left\{ \begin{array}{l} d \mid 2^{k+1} + 2 \cdot 5^{k+1} \\ d \mid 2^{k+1} + 5^{k} \end{array} \right. & \overset{F_{1} - F_{2}}{\Longrightarrow} d \mid 9 \cdot 5^{k} \\ \overset{5 \cdot F_{2}}{\Longrightarrow} \left\{ \begin{array}{l} d \mid 2^{k} + 5^{k+1} \\ d \mid 2^{k} + 5^{k+1} \end{array} \right. & \overset{F_{2} - F_{1}}{\Longrightarrow} d \mid 9 \cdot 2^{k} \end{array} \right. \Rightarrow d \mid (9 \cdot 5^{k} : 9 \cdot 2^{k}) = 9(5^{k} : 2^{k}) \overset{!!}{=} 9 \cdot 1 = 9$$

$$\Rightarrow d \in \{1, 3, 9\}$$

En !! uso que $(5:2) = 1 \iff (5^k:2^k) = 1$

Veamos ahora que d puede ser igual a 3 o a 9:

$$\begin{cases} k = 1 \to d = (2^1 + 5^{1+1} : 2^{1+1} + 5^1) = (27 : 9) = (9 : 0) = 9 \quad \checkmark \\ k = 2 \to d = (2^2 + 5^{2+1} : 2^{2+1} + 5^2) = (129 : 33) = (33 : 30) = (30 : 3) = (3 : 0) = 3 \quad \checkmark \end{cases}$$

En estos pasos usé el algoritmo de Euclides.

Ahors tenemos que ver que d no puede ser 1, con lo que debemos verificar que ambas expresiones son siempre divisibles por 3. Para esto, miramos la congruencia módulo 3:

$$\left\{ \begin{array}{l} 2^k + 5^{k+1} \equiv 2^k + 2^{k+1} \equiv 3 \cdot 2^k \equiv 0 \pmod{3} \Rightarrow r_3(2^k + 5^{k+1}) = 0, \ \forall \ k \in \mathbb{N} \\ 2^{k+1} + 5^k \equiv 2^{k+1} + 2^k \equiv 3 \cdot 2^k \equiv 0 \pmod{3} \Rightarrow r_3(2^{k+1} + 5^k) = 0, \ \forall \ k \in \mathbb{N} \end{array} \right.$$

Entonces, tenemos que

$$3 \mid 2^k + 5^{k+1} \quad \text{y} \quad 3 \mid 2^{k+1} + 5^k, \ \forall \ k \in \mathbb{N}$$

Con lo que d no puede ser 1. Entonces d=3 o 9, tal como queriamos ver.

(c) Sea $d = (12^k - 1: 12^k + 1286)$.

Notemos que $(12^k + 1286) - (12^k - 1) = 1287$. De modo que, haciendo Euclides, tenemos que

$$d = (12^k - 1: 12^k + 1286) = (12^k - 1: 1287) = (12^k - 1: 3^2 \cdot 11 \cdot 13)$$

Miremos ahora la congruencia módulo 3, 11 y 13 de $12^k - 1$:

• mod 3

$$12^k - 1 \equiv 0^k + 2 \equiv 2 \pmod{3} \Rightarrow r_3(12^k - 1) = 2 \Rightarrow 3 \not\mid 12^k - 1, \ \forall \ k \in \mathbb{N}$$

Luego, $3 \not\mid d$, de modo que $d \in \{11, 13, 11 \cdot 13\}$

• mod 11

$$12^k - 1 \equiv 1^k - 1 \equiv 1 - 1 \equiv 0 \pmod{11} \Rightarrow r_{11}(12^k - 1) = 0 \Rightarrow 11 \mid 12^k - 1, \ \forall \ k \in \mathbb{N}$$

Luego, $11 \mid d$, de modo que $d \in \{11, 11 \cdot 13\}$

• mod 13

$$12^k - 1 \equiv (-1)^k - 1 \pmod{13}$$

Aca se abren dos opciones, dependiendo si k es par o impar.

Si k es par, tenemos que

$$(-1)^k = 1 \Rightarrow 12^k - 1 \equiv 0 \ (13) \Rightarrow r_{13}(12^k - 1) = 0 \Rightarrow 13 \ | \ 12^k - 1$$

Luego, tenemos que $13 \mid d$, de modo que $d = 11 \cdot 13 = 143$.

Si k es impar, tenemos que

$$(-1)^k = -1 \Rightarrow 12^k - 1 \equiv 11 \ (13) \Rightarrow r_{13}(12^k - 1) = 11 \Rightarrow 13 \not\mid 12^k - 1$$

Luego, tenemos que 13 $\nmid d$, de modo que d = 11.

Resumiendo

$$\begin{cases} \boxed{d=11} \text{ si } k \text{ es impar} \\ \boxed{d=143} \text{ si } k \text{ es par} \end{cases}$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nunezca 🕥

36. Sean $a, b \in \mathbb{Z}$. Probar que si (a : b) = 1 entonces $(a^2 \cdot b^3 : a + b) = 1$.

La estrategia es suponer que $(a^2 \cdot b^3 : a + b) \neq 1$ sabiendo que (a : b) = 1 y llegar a una contradicción. Sea $d = (a^2 \cdot b^3 : a + b)$ con $d \neq 1$, entonces $\exists p$ primo positivo tal que $p \mid d$. Luego

$$\left\{ \begin{array}{l} d \mid a^2 \cdot b^3 \\ d \mid a + b \end{array} \right. \xrightarrow{\underline{\text{Transitividad}}} \left\{ \begin{array}{l} p \mid a^2 \cdot b^3 \xrightarrow{\text{p primo}} p \mid a \quad \text{o} \quad p \mid b \\ p \mid a + b \end{array} \right.$$

Esto nos deja dos opciones:

• Caso $p \mid a$

$$\begin{cases} p \mid a & \xrightarrow{F_2 - F_1} p \mid b \\ p \mid a + b & \xrightarrow{F_2} \end{cases}$$

Lo cual es absurdo, pues $p \mid a \ y \ p \mid b$, pero dijimos que (a : b) = 1.

• Caso $p \mid b$

$$\begin{cases} p \mid b & \xrightarrow{F_2 - F_1} p \mid a \\ p \mid a + b & \xrightarrow{} \end{cases}$$

Lo cual es absurdo, pues $p \mid a \ y \ p \mid b$, pero dijimos que (a : b) = 1.

Sea como fuera, en ambos casos llegamos a un absurdo suponiendo que $d \neq 1$. Luego, d = 1

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nunezca 🞧

- **37.** Sean $a, b \in \mathbb{Z}$ tales que (a : b) = 5.
 - (a) Calcular los posibles valores de (ab:5a-10b) y dar un ejemplo para cada uno de ellos.
 - (b) Para cada $k \in \mathbb{N}$, calcular $(a^{k-1}b : a^k + b^k)$.

(a) Coprimizo: defino 5a' = a y 5b' = b, con lo que (a : b) = (5a' : 5b') = 5(a' : b') = 5, de modo que (a' : b') = 1.

Reemplazo en d = (ab : 5a - 10b):

$$d = (ab : 5a - 10b) = (25a'b' : 25a' - 50b') = 25(a'b' : a' - 2b')$$

Sea ahora d' = (a'b' : a' - 2b'). Entonces, d = 25d'.

Trabajemos ahora con d'

$$\left\{ \begin{array}{l} d' \mid a'b' \\ d' \mid a' - 2b' \end{array} \right. \left\{ \begin{array}{l} \stackrel{b' \cdot F_2}{\Longrightarrow} \left\{ \begin{array}{l} d' \mid a'b' \\ d' \mid a'b' - 2(b')^2 \end{array} \right. \stackrel{F_1 - F_2}{\Longrightarrow} d' \mid 2(b')^2 \\ \stackrel{4 \cdot F_1}{\Longrightarrow} \left\{ \begin{array}{l} d' \mid 4a'b' \\ d' \mid 2(a')^2 - 4b'a' \end{array} \right. \stackrel{F_1 + F_2}{\Longrightarrow} d' \mid 2(a')^2 \end{array} \right. \Rightarrow d' \mid (2(b')^2 : 2(a')^2)$$

$$\Rightarrow d' \mid (2(b')^2 : 2(a')^2) = 2((b')^2 : (a')^2) \stackrel{!!}{=} 2 \cdot 1 = 2 \Rightarrow d' \mid 2 \Rightarrow d' \in \{1, 2\}$$

En !! uso que $(b':a')=1 \iff ((b')^2:(a')^2)=1$

Como d'=1 o 2, entonces d=25 o 50. Veamos ahora que ambos valores son posibles:

$$\begin{cases} (a,b) = (0,5) \xrightarrow{(0,5)=5} d = (0:-50) = 50 \quad \checkmark \\ (a,b) = (5,15) \xrightarrow{(5,15)=5} d = (75:25-150) = (50:-125) = 25 \quad \checkmark \end{cases}$$

Luego, d = 25 o 50

(b) Coprimizo: defino 5a' = a y 5b' = b, con lo que (a : b) = (5a' : 5b') = 5(a' : b') = 5, de modo que (a' : b') = 1.

Reemplazo en $d = (a^{k-1}b : a^k + b^k)$:

$$d = (a^{k-1}b : a^k + b^k) = ((5a')^{k-1}5b' : (5a')^k + (5b')^k) = (5^k(a')^{k-1}b' : 5^k(a')^k + 5^k(b')^k) = 5^k((a')^{k-1}b' : (a')^k + (b')^k)$$

Sea $d' = ((a')^{k-1}b' : (a')^k + (b')^k)$, entonces $d = 5^k d'$

Trabajemos ahora con d'

$$\begin{cases}
d' \mid (a')^{k-1}b' \\
d' \mid (a')^{k} + (b')^{k}
\end{cases}
\begin{cases}
\frac{a'(b')^{k-1} \cdot F_{1}}{(a')^{k} \cdot F_{2}} & d' \mid (a')^{k}(b')^{k} & \xrightarrow{F_{2} - F_{1}} d' \mid (a')^{2k} \\
\frac{a'(b')^{k-1} \cdot F_{1}}{(b')^{k} \cdot F_{2}} & d' \mid (a')^{k}(b')^{k} & \xrightarrow{F_{2} - F_{1}} d' \mid (a')^{2k}
\end{cases}
\Rightarrow d' \mid ((a')^{2k} : (b')^{2k}) \stackrel{!!}{=} 1$$

$$\Rightarrow d' \mid 1 \Rightarrow d' = 1$$

En !! uso que $(a':b') = 1 \iff ((a')^{2k}:(b')^{2k}) = 1$

Luego, como d'=1, tenemos que $d=5^k$, para cada $k\in\mathbb{N}$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

😽 Nunezca 🞧

38.

- (a) Sean $a, b \in \mathbb{Z}$ tales que (a : b) = 3. Calcular los posibles valores de $(a^2 + 15b + 57 : 4050)$ y dar un ejemplo en cada caso.
- (b) Sean $a, b \in \mathbb{Z}$. Sabiendo que $b \equiv 6$ (24) y que (a : b) = 13, calcular $(5a^2 + 11b + 117 : 624)$.
- (a) Coprimizo: defino 3x = a y 3y = b, con lo que (a : b) = (3x : 3y) = 3(x : y) = 3, de modo que (x : y) = 1.

Reemplazo en $d = (a^2 + 15b + 57 : 4050)$:

$$d = (a^2 + 15b + 57 : 4050) = (9x^2 + 45y + 57 : 2 \cdot 3^4 \cdot 5^2) = 3(3x^2 + 15y + 19 : 2 \cdot 3^3 \cdot 5^2)$$

Sea ahora $d' = (3x^2 + 15y + 19 : 2 \cdot 3^3 \cdot 5^2)$. Entonces, d = 3d'.

Sabiendo todo esto, tenemos que

$$d' \mid 2 \cdot 3^3 \cdot 5^2 \Rightarrow d' \in \{1, 2, 3, 5, 6, 9, 10, 15, 18, 25, 27, 30, 45, 50, 54, 75, 90, 135, 150, 225, 270, 450, 675, 1350\}$$

Miremos ahora la congruencia de $3x^2+15y+19$ módulo 3 y 5:

• mod 5

Notemos que $3x^2 + 15y + 19 \equiv 3x^2 + 4$ (5). Entonces, veo la tabla de restos de $3x^2 + 4$.

$r_5(x)$	0	1	2	3	4
$r_5(3x^2+4)$	4	2	1	1	2

De aca tenemos que 5 / $3x^2 + 15y + 19 \, \forall \, x \in \mathbb{Z}$. Luego, 5 / d'. Con lo que

$$d' \in \{1, 2, 3, 6, 9, 18, 27, 54\}$$

• mod 3

Acá no hace falta ver la tabla de restos, pues notemos que $3x^2 + 15y + 19 \equiv 1$ (3). Entonces $5 \nmid 3x^2 + 15y + 19 \ \forall \ x \in \mathbb{Z}$. Luego, $3 \nmid d'$. Con lo que

$$d' \in \{1,2\}$$

Como d'=1 o 2, entonces, d=3 o 6. Veamos ahora ejemplos de que cada uno es posible:

$$\begin{cases} (a,b) = (3,3) \xrightarrow{(3,3)=3} d = (111:4050) = (111:54) = (54:3) = (3:0) = 3 \quad \checkmark \\ (a,b) = (6,3) \xrightarrow{(6,3)=3} d = (138:4050) = (138:48) = (48:42) = (42:6) = (6:0) = 6 \quad \checkmark \end{cases}$$

- Luego, d = 3 o 6.
- (b) Coprimizo: defino 13x = a y 13y = b, con lo que (a : b) = (13x : 13y) = 13(x : y) = 13, de modo que (x : y) = 1.

Reemplazo en $d = (5a^2 + 11b + 117 : 624)$:

$$d = (5a^2 + 11b + 117 : 624) = (5 \cdot 13^2 \cdot x^2 + 143y + 117 : 2^4 \cdot 3 \cdot 13) = 13(65x^2 + 11y + 9 : 2^4 \cdot 3)$$

Sea ahora $d' = (65x^2 + 11y + 9 : 2^4 \cdot 3)$. Entonces, d = 13d'. Sabiendo todo esto, tenemos que

$$d' \mid 2^4 \cdot 3 \Rightarrow d' \in \{1, 2, 3, 4, 6, 8, 12, 16, 24, 48\}$$

Antes de mirar las congruencias, veamos la condición que dice que $b \equiv 6$ (24). De esta obtenemos lo siguiente

$$b \equiv 6 \ (24) \Rightarrow \begin{cases} b \equiv 0 \ (2) \\ b \equiv 0 \ (3) \\ b \equiv 2 \ (4) \\ b \equiv 6 \ (8) \end{cases}$$

Para obtener condiciones sobre y, usamos b = 13y. Entonces

$$\begin{cases}
b \equiv 0 \ (2) \Rightarrow 13y \equiv 0 \ (2) \xrightarrow{\frac{13 \equiv 1 \ (2)}{3}} y \equiv 0 \ (2) \\
b \equiv 0 \ (3) \Rightarrow 13y \equiv 0 \ (3) \xrightarrow{\frac{13 \equiv 1 \ (3)}{3}} y \equiv 0 \ (3) \\
b \equiv 2 \ (4) \Rightarrow 13y \equiv 2 \ (4) \xrightarrow{\frac{13 \equiv 1 \ (4)}{3}} y \equiv 2 \ (4) \\
b \equiv 6 \ (8) \Rightarrow 13y \equiv 6 \ (8) \xrightarrow{\frac{5 \equiv 5 \ (8)}{3}} 65y \equiv 30 \ (8) \xrightarrow{\frac{65 \equiv 1 \ (8)}{3}} y \equiv 6 \ (8)
\end{cases}$$

Miremos ahora las congruencias con la expresión $65x^2 + 11y + 9$.

• mod 3 Usando que $y \equiv 0$ (3), tenemos que $65x^2 + 11y + 9 \equiv 2x^2$ (3).

Miremos la tabla de restos con $2x^2$

Notemos que el resto es 0 si y solo $x \equiv 0$ (3), pero esto no puede ser, pues tendriamos que $3 \mid x$ y que $3 \mid y$ y no se cumpliria que (x : y) = 1. Luego, $3 \not \mid 65x^2 + 11y + 9$, con lo que $3 \not \mid d'$. Con lo que

$$d' \in \{1, 2, 4, 8, 16\}$$

• mod 8 Usando que $y \equiv 6$ (8), tenemos que $65x^2 + 11y + 9 \equiv x^2 + 3$ (8).

Miremos la tabla de restos con $x^2 + 3$

$r_8(x)$	0	1	2	3	4	5	6	7
$r_8(x^2+3)$	3	4	7	4	3	4	7	4

De aca tenemos que 8 / 65 $x^2 + 11y + 9$. Luego, 8 / d'. Con lo que

$$d' \in \{1, 2, 4\}$$

• mod 2 Usando que $y \equiv 0$ (2), tenemos que $65x^2 + 11y + 9 \equiv x^2 + 1$ (2).

Miremos la tabla de restos con $x^2 + 1$

De aca tenemos que el resto es 0 si y solo si $x \equiv 1$ (2). Notemos que en realidad esta es la unica opción, pues no puede ser que $x \equiv 0$ (2), pues tendriamos que $(x : y) \neq 1$. Luego $2 \mid 65x^2 + 11y + 9$, con lo que $2 \mid d'$. Así tenemos

$$d' \in \{2, 4\}$$

• mod 4

Usando que $y \equiv 2$ (4), tenemos que $65x^2 + 11y + 9 \equiv x^2 + 3$ (4).

Como del caso anterior obtuvimos que x debe ser impar, basta ver la congruencia módulo 1 y 3:

$$\begin{array}{|c|c|c|c|c|c|} \hline r_4(x) & 1 & 3 \\ \hline r_4(x^2+3) & 0 & 0 \\ \hline \end{array}$$

Como en ambos casos el resto es 0, tenemos que $4 \mid 65x^2 + 11y + 9$, de modo que $4 \mid d'$. Así, llegamos a que el único valor que puede tomar d' es 4.

Finalmente, tenemos que $d = 13 \cdot 4 = \boxed{52}$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

🞖 Nunezca 🖸

39. Hallar todos los $n \in \mathbb{N}$ tales que

(a)
$$[n:130] = 260$$
.

(b)
$$[n:420] = 7560$$
.

(a)

$$[n:130] = 260 \iff [n:2\cdot5\cdot13] = 2^2\cdot5\cdot13$$

Como el mínimo común múltiplo se calcula con los primos a la máxima potencia, tenemos que n tiene un 2^2 y luego tenemos que puede tener al 5 y al 13, a ambos o a ninguno, pues el 5 y el 13 ya están en la factorización del 130.

Entonces, los n que cumplen son:

$$n = 2^{2} = \boxed{4}$$

$$n = 2^{2} \cdot 5 = \boxed{20}$$

$$n = 2^{2} \cdot 13 = \boxed{52}$$

$$n = 2^{2} \cdot 5 \cdot 13 = \boxed{260}$$

(b)

$$[n:420] = 7560 \iff [n:2^2 \cdot 3 \cdot 5 \cdot 7] = 2^3 \cdot 3^3 \cdot 5 \cdot 7$$

Como el mínimo común múltiplo se calcula con los primos a la máxima potencia, tenemos que n tiene un 2^3 , un 3^3 y luego tenemos que puede tener al 5 y al 7, a ambos o a ninguno, pues el 5 y el 7 ya están en la factorización del 420.

Entonces, los n que cumplen son:

$$n = 2^3 \cdot 3^3 = \boxed{216}$$

$$n = 2^3 \cdot 3^3 \cdot 5 = \boxed{1080}$$

$$n = 2^3 \cdot 3^3 \cdot 7 = \boxed{1512}$$

$$n = 2^3 \cdot 3^3 \cdot 5 \cdot 7 = \boxed{7560}$$

Dale las gracias y un poco de amor 🤍 a los que contribuyeron! Gracias por tu aporte:

👸 Nunezca 😯

40. Hallar todos los $a, b \in \mathbb{N}$ tales que

(a)
$$(a:b) = 10 \text{ y } [a:b] = 1500.$$

(b)
$$3 \mid a, (a:b) = 20 \text{ y } [a:b] = 9000.$$

(a) Veamos la primera condición

$$(a:b) = 10 \iff (a:b) = 2 \cdot 5$$

De aca tenemos que tanto a y b poseen en su factorización, como mínimo, un 2 y un 5.

Veamos la segunda condición

$$[a:b] = 1500 \iff [a:b] = 2^2 \cdot 3 \cdot 5^3$$

De aca tenemos que alguno entre a y b tiene un 2^2 , pero nos los dos a la vez, pues en el MCD aparece un 2. Por la misma razón, alguno tiene un 3, pero no los dos y alguno tiene un 5^3 , pero no los dos.

Resumiendo, tenemos que a y b tienen un 2 y un 5 siempre y debemos repartir un 2, un 3 y un 5^2 para formar todas las combinaciones posibles. Así, todos los a y b son

$$(a,b) = (2^2 \cdot 3 \cdot 5^3, 2 \cdot 5)$$

$$(a,b) = (2^2 \cdot 3 \cdot 5, 2 \cdot 5^3)$$

$$(a,b) = (2^2 \cdot 5, 2 \cdot 3 \cdot 5^3)$$

$$(a,b) = (2^2 \cdot 5^3, 2 \cdot 3 \cdot 5)$$

$$(a,b) = (2 \cdot 5, 2^2 \cdot 3 \cdot 5^3)$$

$$(a,b) = (2 \cdot 5^3, 2^2 \cdot 3 \cdot 5)$$

$$(a,b) = (2 \cdot 3 \cdot 5^3, 2^2 \cdot 5)$$

$$(a,b) = (2 \cdot 3 \cdot 5, 2^2 \cdot 5^3)$$

(b) Veamos la segunda condición

$$(a:b) = 20 \iff (a:b) = 2^2 \cdot 5$$

De aca tenemos que tanto a y b poseen en su factorización, como mínimo, un 2^2 y un 5.

Veamos la tercera condición

$$[a:b] = 9000 \iff [a:b] = 2^3 \cdot 3^2 \cdot 5^3$$

De aca tenemos que alguno entre a y b tiene un 2^3 , pero nos los dos a la vez, pues en el MCD aparece un 2^2 . Por la misma razón, alguno tiene un 5^3 , pero no los dos.

En el caso del 3^2 , como tenemos la primera condición que nos dice que $3 \mid a$, el 3^2 debe estar en la factorización de a si o si.

Resumiendo, tenemos que a tiene un 2^2 , un 3^2 y un 5, mientras b posee un 2^2 y un 5. Ahora solo queda repartir un 2 y un 5^2 para formar todas las combinaciones posibles. Así, todos los a y b son

$$(a,b) = \boxed{(2^3 \cdot 3^2 \cdot 5^3, 2^2 \cdot 5)}$$
$$(a,b) = \boxed{(2^2 \cdot 3^2 \cdot 5, 2^3 \cdot 5^3)}$$
$$(a,b) = \boxed{(2^3 \cdot 3^2 \cdot 5, 2^2 \cdot 5^3)}$$
$$(a,b) = \boxed{(2^2 \cdot 3^2 \cdot 5^3, 2^3 \cdot 5)}$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nunezca 🕥

Ejercicios de parciales:

4400 ¿Cuántos divisores distintos tiene? ¿Cuánto vale la suma de sus divisores?

Factorizo el número a estudiar:

$$4400 = 2^4 \cdot 5^2 \cdot 11$$

Quiero encontrar los divisores m de 4400, por lo tanto:

$$m \mid 4400 \Leftrightarrow m = \pm 2^{\alpha} \cdot 5^{\beta} \cdot 11^{\gamma} \quad \text{con} \quad \left\{ \begin{array}{l} 0 \le \alpha \le 4 \\ 0 \le \beta \le 2 \\ 0 \le \gamma \le 1 \end{array} \right\}$$

Acá un poco de teoría sobre esto. Hay entonces un total de $(4+1) \cdot (2+1) \cdot (1+1) = 30$ divisores positivos y 60 enteros.

Busco ahora la suma de esos divisores:

$$\sum_{i=0}^{4} \sum_{j=0}^{2} \sum_{k=0}^{1} 2^{i} \cdot 5^{j} \cdot 11^{k} \stackrel{!}{=} \left(\sum_{i=0}^{4} 2^{i}\right) \cdot \left(\sum_{j=0}^{2} 5^{j}\right) \cdot \left(\sum_{k=0}^{1} 11^{k}\right) \stackrel{!!}{=} \frac{2^{4+1}-1}{2-1} \cdot \frac{5^{2+1}-1}{5-1} \cdot \frac{11^{1+1}-1}{11-1} = 31 \cdot 31 \cdot 12 = 11532.$$

Donde se separaran las sumatorias, porque los factores son independientes y luego se usó la fórmula geométrica.

Concluyendo hay un total de 60 divisores distintos, cuya suma es 11532.

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

- 👸 Nad Garraz 📢
- 😽 Tobia Loni 🞧

Hallar el menor $n \in \mathbb{N}$ tal que:

- i) (n:2528)=316
- ii) n tiene exáctamente 48 divisores positivos
- iii) 27 ∤ n

Analizo los números:

$$\begin{cases} \frac{\text{factorizo}}{2528} 2528 = 2^5 \cdot 79 \quad \checkmark \\ \frac{\text{factorizo}}{316} 316 = 2^2 \cdot 79 \quad \checkmark \qquad \xrightarrow{\text{quiero}} n = 2^{\alpha_2} \cdot 3^{\alpha_3} \cdot 5^{\alpha_5} \cdot 7^{\alpha_7} \cdots 79^{\alpha_7 9} \cdots \\ \frac{\text{reescribo}}{\text{condición}} (n: 2^5 \cdot 79) = 2^2 \cdot 79 \end{cases}$$

$$\xrightarrow{\text{como}} (n: 2^5 \cdot 79) = 2^2 \cdot 79 \xrightarrow{\text{tengo}} \left\{ \begin{array}{l} \alpha_2 = 2, & \text{dado que } 2^2 \cdot 79 \mid n. \text{ busco el menor } n!. \\ \alpha_{79} \geq 1, & \text{Al igual que antes.} \\ \frac{\text{notar}}{\text{que}} \alpha_3 < 3 & \text{si no } 3^3 = 27 \mid n \end{array} \right.$$

La estrategia sigue con el primo más chico que haya:

$$\begin{cases}
48 = \underbrace{(\alpha_2 + 1)}_{2+1} \cdot (\alpha_3 + 1) \cdots \\
48 = 3 \cdot (\alpha_3 + 1) \cdots \\
16 = (\alpha_3 + 1) \cdot (\alpha_5 + 1) \cdot (\alpha_7 + 1) \cdots \underbrace{(\alpha_{79} + 1)}_{=2 \text{ quiero el menor}}_{=2 \text{ quiero el menor}} \\
8 = \underbrace{(\alpha_3 + 1)}_{=2} \cdot \underbrace{(\alpha_5 + 1)}_{=2} \cdot \underbrace{(\alpha_7 + 1)}_{=2} \cdot 1 \cdots 1
\end{cases}$$

El n que cumple lo pedido sería $n=2^2\cdot 3^1\cdot 5^1\cdot 7^1\cdot 79^2$

33. Sabiendo que (a:b) = 5. Probar que $(3ab: a^2 + b^2) = 25$

Arranco comprimizando:

$$\begin{cases} a = 5c \\ b = 5d \end{cases} \Rightarrow (3ab : a^2 + b^2) = 25 \stackrel{\text{coprimizar}}{\longleftrightarrow} (3cd : c^2 + d^2) = 1$$

Esto último nos dice que las expresiones 3cd y $c^2 + d^2$ son coprimas entre sí, en otras palabras, que no hay ningún p primo que divida ambas expresiones a la vez.

Pruebo por absurdo que no existe p primo que divida a ambas expresiones, es decir que no existe un p, tal que $(3cd:c^2+d^2)=p$. Supongo que $\exists p$ primo tal que:

$$p \mid 3 \cdot c \cdot d \Leftrightarrow \begin{cases} p \mid 3 & \star^{1} \\ & \text{o} \\ & p \mid c & \star^{2} \\ & \text{o} \\ & p \mid d & \star^{3} \end{cases}$$

Si ocurre que $p \mid 3 \Leftrightarrow p = 3$. Quiero entonces ver si $3 \mid c^2 + d^2 \Leftrightarrow c^2 + d^2 \stackrel{(3)}{\equiv} 0$. Hago una tabla para estudiar esa última ecuación:

$r_3(c)$	0	1	2
$r_3(d)$	0	1	2
$r_3(c^2+d^2)$	0	2	2

De la tabla concluímos que para que $c^2+d^2\stackrel{(3)}{\equiv}0$ debe ocurrir que: $c\stackrel{(3)}{\equiv}0$ y también que $d\stackrel{(3)}{\equiv}0$, es decir que tanto c como d sean múltiplos de 3. Esto es una contradicción, ya que no puede ocurrir porque (c:d)=1. Por lo tanto no puede ser que $\star^1 p\mid 3$

Si ocurre ahora que $\star^2 p \mid c$, estudio a ver si también $p \mid c^2 + d^2$:

$$\left\{ \begin{array}{l} p \mid c \\ p \mid c^2 + d^2 \end{array} \right. \xrightarrow[F_2 - c \cdot F_1 \to F_2]{} \left\{ \begin{array}{l} p \mid c \\ p \mid d^2 \xleftarrow{p} \text{ primo} \end{array} \right. p \mid d \right.$$

Entonces si $p \mid c$ y también $p \mid c^2 + d^2$ debe ocurrir que $p \mid d$. Nuevamente contraticción ya que no puede ocurrir debido a que (c:d) = 1.

El caso \star^3 es lo mismo que el caso \star^2 .

Se concluye entonces que $(3cd:c^2+d^2)=1$ con (c:d)=1. Así probando que $(3ab:a^2+b^2)=25$ con $\begin{cases} a=5c\\b=5d \end{cases}$

♦4. Sea $n \in \mathbb{N}$. Probar que 81 | $(16n^2 + 8^{2n} - 15n - 7)^{2024}$ si y solo si 3 | n.

 $81 \mid (16n^{2} + 8^{2n} - 15n - 7)^{2024} \stackrel{!!!}{\Longrightarrow} 3 \mid (16n^{2} + 8^{2n} - 15n - 7)^{506} \stackrel{\text{def}}{\Longleftrightarrow}$ $\stackrel{\text{def}}{\Longleftrightarrow} (16n^{2} + 8^{2n} - 15n - 7)^{2024} \equiv 0 \ (3) \stackrel{!}{\Leftrightarrow} (n^{2})^{2024} \equiv 0 \ (3) \Leftrightarrow n^{4048} \equiv 0 \ (3) \stackrel{!!}{\Rightarrow} n \equiv 0 \ (3)$ $\boxed{81 \mid (16n^{2} + 8^{2n} - 15n - 7)^{2024} \Rightarrow 3 \mid n}$

En el !!! uso esto $p^n \mid a^n \Leftrightarrow p \mid a$. En ! son cuentas de congruencia. Y en !! uso esto, $p \mid a^n \Rightarrow p \mid a$.

 $3 \mid n \stackrel{\text{def}}{\iff} n \equiv 0 \ (3) \stackrel{!}{\iff} n^2 \equiv 0 \ (3) \stackrel{!}{\iff} 16n^2 + 8^{2n} - 15n - 7 \equiv 0 \ (3) \stackrel{!}{\iff}$ $\stackrel{!}{\iff} (16n^2 + 8^{2n} - 15n - 7)^4 \equiv 0 \ (3^4) \stackrel{!}{\implies} (16n^2 + 8^{2n} - 15n - 7)^{2024} \equiv 0 \ (3^4)$ $\boxed{3 \mid n \Rightarrow 81 \mid (16n^2 + 8^{2n} - 15n - 7)^{2024}}$

En el primero y último ! uso que $n \equiv 0$ $(d) \Rightarrow n^m \equiv 0$ (d) y en los otros la mismas cosas que antes... ponele

55. Determinar lso posibles valores de $d = (a^2 - 2a - 5 : a - 1)$ para $a \in \mathbb{Z}$. Exhibir un valor de a correspondiente a cada uno de los valores de d hallados.

Parecido a cosas que ya se hicieron en otros ejercicios. Simplificamos si se puede con Euclides y después con tabla de restos filtramos los máximos común divisores que quedaron.

Euclides con División de polinomios

$$\begin{array}{c|c}
X^2 - 2X - 5 & X - 1 \\
-X^2 + X & X - 1 \\
\hline
-X - 5 & X - 1 \\
\hline
-6 & X - 1
\end{array}$$

Que en el resto quede un número es una excelente noticia, podemos reescribir al mcd:

$$d = (a^2 - 2a - 5: a - 1) = (a - 1: -6)$$

Con ese resultado y dado que $d \mid a-1$ y también $d \mid 6$:

$$d \in \{1, 2, 3, 6\}$$

Tabla de restos para ver para que valores de a se divide la expresión a-1

$r_2(a) \mid 0$	1	$r_3(a)$	0	1	2	$r_6(a)$	0	1	2	3	4	5
$r_2(a-1) 1$	0	$r_3(a-1)$	2	0	1	$r_6(a-1)$	5	0	1	2	3	4

Ahora hay que elegir un valor a de forma tal que d sea un valor que cumpla con los resultados. Hay que tener cuidado, porque los conjuntos de a que salen de la tabla de restos no son disjuntos. Los siguientes valores salen a ojímetro:

si
$$a = 5 \Rightarrow d = 2$$

si $a = 4 \Rightarrow d = 3$
si $a = 7 \Rightarrow d = 6$

♦6. Sean $a, b \in \mathbb{Z}$ tal que (a : b) = 6. Hallar todos los d = (2a + b : 3a - 2b) y dar un ejemplo en cada caso.

Conviene coprimizar:
$$(a:b) = 6 \iff \begin{cases} a = 6A \\ b = 6B \end{cases}$$
 con $(A:B)^{*1} = 1$

$$d = (2 \cdot 6A + 6B : 3 \cdot 6A - 2 \cdot 6B) = (6 \cdot (2 \cdot A + B) : 6 \cdot (3 \cdot A - 2 \cdot B)) = 6 \cdot \underbrace{(2A + B : 3A - 2B)}_{D}$$

$$\Rightarrow d^{*2} = 6D \xrightarrow{\text{busco divisores}}_{\text{comunes}} \begin{cases} D \mid 2A + B \\ D \mid 3A - 2B \end{cases} \xrightarrow{\text{operaciones}}_{\dots} \begin{cases} D \mid 7B \\ D \mid 7A \end{cases} \Rightarrow D = (7A : 7B) = 7 \cdot (A : B)^{*1} = 7$$
Por lo tanto $D \in \mathcal{D}_{+}(7) = \{1, 7\}$, pero yo quiero encontrar ejemplos de a y b :
$$\begin{cases} Si: A = 2 \rightarrow a = 12 \\ B = 3 \rightarrow b = 18 \\ (7 : 0) \Rightarrow D = 7 \rightarrow d = (42 : 0) = \underbrace{42}_{6 \cdot D} \end{cases}$$

$$*^{2} \Rightarrow \begin{cases} Si: A = 0 \rightarrow a = 0 \\ B = 1 \rightarrow b = 6 \\ (1 : -2) \Rightarrow D = 1 \rightarrow d = (6 : -12) = \underbrace{6}_{6 \cdot D} \end{cases}$$

♦ 7. Sea $a \in \mathbb{Z}$ tal que $32a \equiv 17$ (9). Calcular $(a^3 + 4a + 1 : a^2 + 2)$

Simplifico un poco:

$$32a \equiv 17 \ (9) \Leftrightarrow 5a \equiv 8 \ (9) \stackrel{\times 2}{\underset{(\Leftarrow)}{\longleftrightarrow}} a \equiv 7 \ (9)^{\star^1} \quad \checkmark$$

Simplifico la exprecion del MCD con euclides:

$$\begin{array}{c|c}
 a^{3} + 4a + 1 & a^{2} + 2 \\
 -a^{3} - 2a & a \\
\hline
 2a + 1
\end{array}$$

Entonces puedo escribir:

$$d = (a^3 + 4a + 1 : a^2 + 2) = (a^2 + 2 : 2a + 1)$$

Busco potenciales d:

$$\left\{ \begin{array}{l} d \mid a^2 + 2 \\ d \mid 2a + 1 \end{array} \right. \stackrel{2F_1 - aF_2}{\longleftrightarrow} \left\{ \begin{array}{l} d \mid -a + 4 \\ d \mid 2a + 1 \end{array} \right. \stackrel{2F_1 + F_2}{\longleftrightarrow} \left\{ \begin{array}{l} d \mid -a + 4 \\ d \mid 9 \end{array} \right.$$

Por lo tanto la versión más simple quedó en: d = (-a + 4:9). Posibles $d: \{1,3,9\}$

Hago tabla de restos 9 y 3, para ver si las expresiones $(a^2 + 2 : 2a + 1)$ son divisibles por mis potenciales d. Tabla de restos para d = 9:

$r_9(a)$	0	1	2	3	4	5	6	7	8
$r_9(-a+4)$	4	3	2	1	0	-1	-2	-3	-4

Entonces los a que cumplen $a \equiv 4$ (9), son candidatos para obtener d. Tabla de restos para d = 3:

Entonces los a que cumplen $a \equiv 1$ (3), también con candidatos para obtener d.

Estos resultados deben cumplir la condición $\star^1 a \equiv 7$ (9) como se pide en el enunciado, lo cual no es compatible con el resultado de la tabla de r_9 , pero sí con la tabla r_3 . Notar que: $a = 9k + 7 \stackrel{(3)}{\equiv} 1$.

Finalmente el MCD con $a \in \mathbb{Z}$ que cumplan que $32a \equiv 17$ (9)

$$(a^3 + 4a + 1 : a^2 + 2) = 3$$

§8. Sea
$$(a_n)_{n \in \mathbb{N}_0}$$
 con
$$\begin{cases} a_0 = 1 \\ a_1 = 3 \\ a_n = a_{n-1} - a_{n-2} & \forall n \geq 2 \end{cases}$$

a) Probar que $a_{n+6} = a_n$

b) Calcular $\sum_{k=0}^{255} a_k$

(a) Por inducción:

$$p(n): a_{n+6} = a_n \ \forall n \geq \mathbb{N}_0$$

Primero notar que:

$$\left\{
\begin{array}{l}
a_{0} = 1 \\
a_{1} = 3 \\
a_{2} \stackrel{\text{def}}{=} 2 \star^{1} \\
a_{3} \stackrel{\text{def}}{=} -1 \\
a_{4} \stackrel{\text{def}}{=} -3 \\
a_{5} \stackrel{\text{def}}{=} -2
\end{array}\right\} \rightarrow
\left\{
\begin{array}{l}
a_{6} \stackrel{\text{def}}{=} 1 \\
a_{7} \stackrel{\text{def}}{=} 3 \\
a_{8} \stackrel{\text{def}}{=} 2 \star^{1} \\
a_{9} \stackrel{\text{def}}{=} -1 \\
a_{10} \stackrel{\text{def}}{=} -3 \\
a_{11} \stackrel{\text{def}}{=} -2
\end{array}\right\}$$

Se ve que tiene un período de 6 elementos.

Caso Base: $p(2): a_8 \stackrel{?}{\underset{\longleftarrow}{=}} a_2 \quad \checkmark$

Paso inductivo: Asumo que

$$p(k): \underbrace{a_{k+6} = a_k \text{ para algún } k \geq \mathbb{N}_{\geq 2}}_{\text{hipótesis inductiva}}$$

entonces quiero probar que,

$$p(k+1): a_{k+1+6} = a_{k+1}$$

también sea verdadera.

Parto desde p(k+1)

$$a_{k+7} \stackrel{\text{def}}{=} a_{k+6} - a_{k+5} \stackrel{\text{HI}}{=} a_k - a_{k+5} \stackrel{\text{def}}{=} a_k - (a_k + a_{k+4}) = -a_{k+4} \Rightarrow a_{k+7} = -a_{k+4} \quad \checkmark$$

Ahora uso la definición de manera sucesiva:

$$a_{k+7} = -a_{k+4} \stackrel{\text{def}}{=} -(a_{k+3} - a_{k+2}) \stackrel{\text{def}}{=} -(a_{k+2} - a_{k+1} - a_{k+2}) = a_{k+1} \Rightarrow a_{k+7} = a_{k+1} \quad \checkmark$$

Como p(2), p(3), p(4), p(5), p(k) y p(k+1) son verdaderas por el principio de inducción p(n) también es verdadera $\forall n \in \mathbb{N}_{\geq 2}$

(b)
$$\sum_{k=0}^{255} a_k = \underbrace{a_0 + a_1 + a_2 + a_3 + a_4 + a_5}_{=0} + \underbrace{a_6 + a_7 + a_8 + a_9 + a_{10} + a_{11}}_{=0} + \dots + a_{252} + a_{253} + a_{254} + a_{255}$$

En la sumatoria hay 256 términos. $256 = 42 \cdot 6 + 4$ por lo tanto van a haber 42 bloques que dan 0 y sobreviven los últimos 4 términos. $\sum_{k=0}^{255} a_k = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{252} + a_{253} + a_{254} + a_{255} = a_{252} + a_{254} + a_{255} + a_{2$

9. Determinar todos los $a \in \mathbb{Z}$ que cumplen que

$$\frac{2a-1}{5} - \frac{a-1}{2a-3} \in \mathbb{Z}.$$

Busco una fracción. Para que esa fracción $en \mathbb{Z}$ es necesario que el denominador divida al numerador. Fin.

$$\frac{2a-1}{5} - \frac{a-1}{2a-3} = \frac{4a^2 - 13a + 8}{10a - 15}$$

$$\star^{1} \begin{cases} 10a - 15 & | 4a^2 - 13a + 8 \\ 10a - 15 & | 10a - 15 \end{cases} \xrightarrow{\text{operaciones}} \begin{cases} 10a - 15 & | -25 \star^{2} \\ 10a - 15 & | 10a - 15 \end{cases}$$

Para que ocurra ★¹, debe ocurrir ★²

$$10a-15 \mid -25 \iff 10a-25 \in \{\pm 1, \pm 5, \pm 25\} \star^3 \text{ para algún } a \in \mathbb{Z} \,. \quad \checkmark$$

De paso observo que $|10a - 25| \le 25$. Busco a:

Caso:
$$d = 10a - 15 = 1$$
 \iff $a = \frac{8}{5}$
Caso: $d = 10a - 15 = -1$ \iff $a = \frac{8}{5}$
Caso: $d = 10a - 15 = 5$ \iff $a = 2$ \checkmark
Caso: $d = 10a - 15 = -5$ \iff $a = 1$ \checkmark
Caso: $d = 10a - 15 = 25$ \iff $a = 4$ \checkmark
Caso: $d = 10a - 15 = -25$ \iff $a = -1$ \checkmark

Los valores de $a \in \mathbb{Z}$ que cumplen \star^2 son $\{-1, 1, 2, 4\}$. Voy a evaluar y así encontrar para cual de ellos se cumple \star^1 , es decir que el númerador sea un múltiplo del denominador para el valor de a usado.

El único valor de $a \in \mathbb{Z}$ que cumple lo pedido es a = -1

Notas extras sobre el ejercicio:

Para a = -1 se obtiene $\frac{2a-1}{5} - \frac{a-1}{2a-3} = -1$. Más aún, si hubiese encarado el ejercicio con tablas de restos para ver si lo de arriba es divisible por los divisores en \star^3 , calcularía:

$$r_5(4a^2 - 13a + 8) \quad \text{y} \quad r_{25}(4a^2 - 13a + 8)$$

$$r_5(4a^2 - 13a + 8) = 0 \Leftrightarrow \begin{cases} a \equiv 3 \ (5) \\ a \equiv 4 \equiv -1 \ (5) \end{cases} \quad \text{y} \quad r_{25}(4a^2 - 13a + 8) = 0 \Leftrightarrow \begin{cases} a \equiv 23 \ (25) \\ a \equiv 24 \equiv -1 \ (25) \end{cases}$$
Se puede ver también así que el único valor de $a \in \mathbb{Z}$, que cumple \star^1 es $a = -1$

♦10. Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión dada por recurrencia:

$$\begin{cases} a_1 = 30, \\ a_2 = 16, \\ a_{n+2} = 24a_{n+1} + 65^n a_n + 96n^4 \quad \forall n \ge 1. \end{cases}$$

Probar que $a_n \equiv 3^n - 5^n$ (32), $\forall n \ge 1$.

Ejercicio intimidante a primera vista. Acomodemos un poco el enunciado así hacemos inducción.

Estoy buscando el módulo 32, a_{n+2} queda más amigable: $\star^1 a_{n+2} \stackrel{(32)}{\equiv} 24 a_{n+1} + a_n \quad \checkmark$ Inducción:

$$p(n): a_n \equiv 3^n - 5^n (32) \quad \forall n \in \mathbb{N}$$

Casos base:

$$\begin{cases} p(1): a_1 \equiv 3 - 5 \ (32) & \iff a_1 \equiv 30 \ (32) & \checkmark & p(1) \text{ result\'o verdadera.} \\ p(2): a_2 \equiv 3^2 - 5^2 \ (32) & \iff a_2 \equiv 16 \ (32) & \checkmark & p(2) \text{ result\'o verdadera.} \end{cases}$$

Pasos inductivos:

Para algún $k \in \mathbb{Z}$:

$$\begin{cases} p(k): & a_k \equiv 3^k - 5^k \text{ (32)} \\ p(k+1): & a_{k+1} \equiv 3^{k+1} - 5^{k+1} \text{ (32)} \\ & \text{también hipótesis inductiva} \end{cases}$$
 Se asume verdadera. También se asume verdadera.

Y queremos probar entonces que:

$$p(k+2): a_{k+2} \equiv 3^{k+2} - 5^{k+2}$$
 (32)

Arranco con la definición de la sucesión que se cocinó un poco en ★¹:

$$a_{k+2} \stackrel{\text{def}}{=} 24 a_{k+1} + 65^k a_k + 96 k^4 \stackrel{\text{(32)}}{=} 24 (3^{k+1} - 5^{k+1}) + 3^k - 5^k \stackrel{\text{!!}}{=} 73 \cdot 3^k - 121 \cdot 5^k \stackrel{\text{(32)}}{=} 9 \cdot 3^k - 25 \cdot 5^k = 3^{k+2} - 5^{k+2}.\checkmark$$

Si te quedaste picando en !!, seguí mirando ese paso, porque son cuentas que tenés que poder encontrar mirando fijo el tiempo que sea necesario. Por mi parte **\(\varepsilon\)**:

Y así fue como comprobamos que el enunciado ladraba pero no mordía.

Como p(1), p(2), p(k), p(k+1) y p(k+2) son verdaderas, por el principio de inducción también lo será p(n) $\forall \in \mathbb{N}$.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

8 Nad Garraz

11. Estudiar los valores parar **todos** los $a \in \mathbb{Z}$ de $(a^3 + 31 : a^2 - a + 1)$.

Simplifico la expresión $(a^3 + 31 : a^2 - a + 1)$ con el querido algoritmo de Euclides:

$$\begin{array}{c|c}
X^{3} & +31 X^{2} - X + 1 \\
-X^{3} + X^{2} - X & X + 1 \\
\hline
X^{2} - X + 31 X + 1 \\
-X^{2} + X & -1 30
\end{array}$$

Por lo tanto el mcd $d = (a^3 + 31 : a^2 - a + 1) = (a^2 - a + 1 : 30)$, es decir que:

$$d \mid 30 \Rightarrow d \in \{1, 2, 3, 5, 6, 10, 15, 30\}$$

Muchos divisores. Se pueden elimiar unos cuantos notando que $a^2 - a + 1$ es una expresión siempre impar. Una forma de mostrar esto:

$$a^2 - a + 1$$
 es impar $\Leftrightarrow a^2 - a + 1 \equiv 1 \ (2) \Leftrightarrow a \cdot (a - 1) \equiv 0 \ (2)$

La última expresión $a \cdot (a-1)$ es siempre par, dado que es un número multiplicado por su consecutivo. Otra forma de mostrar la paridad sería reemplazando por 2k y luego por 2k+1 y ver que los resultados son siempre impares.

$$a = \underbrace{2k}_{par} \Rightarrow (2k)^{2} - 2k + 1 = \underbrace{\underbrace{2 \cdot (2k^{2} - k)}_{par} + 1}_{impar} \checkmark$$

$$a = \underbrace{2k + 1}_{impar} \Rightarrow (2k + 1)^{2} - 2(k + 1) + 1 = \underbrace{\underbrace{2 \cdot (2k^{2} + 3k + 2)}_{par} + 1}_{par} \checkmark$$

Hacé lo que más te guste 😂!

Dado que esa expresión es impar podemos reducir el conjunto de divisores a:

$$d \mid 30 \quad \text{y} \quad d \equiv 1 \ (2) \Rightarrow d \in \{1, 3, 5, 15\}.$$

Tabla de restos: Siempre empezando por el menor valor

$$\begin{array}{c|cccc} r_3(a) & 0 & 1 & 2 \\ \hline r_3(a^2 - a + 1) & 1 & 1 & 0 \\ \end{array}$$

Obtenemos que 3 es un potencial mcd cuando $r_3(a) = 2$ o dicho de otro modo $a \equiv 2$ (3).

Obtenemos que 5 no es un potencial mcd, por lo que 15 tampoco será un divisor de la expresión $a^2 - a + 1$. Con la información obtenida se puede concluir que:

$$d = \begin{cases} 3 \text{ si } a \equiv 2 (3) \\ 1 \text{ si } a \not\equiv 2 (3) \end{cases}$$

Dale las gracias y un poco de amor 💙 a los que contribuyeron! Gracias por tu aporte:

8 Nad Garraz 🖸

😽 Maxi T. 🕥

12. Determinar para cada par $(a,b) \in \mathbb{Z}^2$ tal que (a:b) = 7 el valor de

$$(a^2b^4:7^5(-a+b)).$$

Coprimizar:

$$d = (a^{2}b^{4} : 7^{5}(-a+b)) \stackrel{a = 7A}{\rightleftharpoons} 7^{6} \cdot (A^{2}B^{4} : B-A) \Leftrightarrow d = 7^{6} \cdot D$$

$$\begin{cases} D \mid A^{2}B^{4} \\ D \mid B-A \stackrel{\text{def}}{\Longleftrightarrow} B \equiv A(D)^{*} \end{cases}$$

$$\begin{cases} D \mid A^{2}B^{4} \stackrel{\star^{1}}{\Longleftrightarrow} B^{6} \equiv 0(D) \\ \text{y también} \\ D \mid A^{2}B^{4} \stackrel{\star^{1}}{\Longleftrightarrow} A^{6} \equiv 0(D) \end{cases}$$

El resultado dice que $D \mid A^6$ y que $D \mid B^6$ lo cual está <u>complicado</u> porque A y B son coprimos, por lo tanto A^6 y B^6 también y $(A^6 : B^6) \stackrel{\star^2}{=} 1 = D$.

 \star^2 la factorización en primos lo muestra, mismos factores elevados a la 6, no puede cambiar la coprimisimilitubilidad.

Creo que hay que justificar con algo más, pero no sé, con algo de primos? Bueh, algo así:

Si $D \mid A^6$ entonces la descomposición en primos de $D = p_1^{i_d} \cdots p_n^{j_d}$ tiene que tener solo factores de la descomposición en primos de $A^6 = p_1^i \cdots p_n^j \cdot p_{n+1}^k \cdots p_n^l$ con los exponentes de los factores de $D(i_d, j_d, \ldots)$, menores o iguales a los exponentes de $A^6(i, j, \ldots)$ de manera que al dividir:

$$\frac{A^{6}}{D} = \frac{p_{1}^{i} \cdots p_{n}^{j} \cdot p_{n+1}^{k} \cdots p_{m}^{l}}{p_{1}^{i_{d}} \cdots p_{n}^{j_{d}} \cdot p_{n+1}^{k_{d}} \cdots p_{m}^{l_{d}}} = \frac{p_{1}^{i_{d}} \cdots p_{n}^{i_{d}} \cdots p_{n}^{i_{d}} \cdots p_{n}^{i_{d}} \cdots p_{n}^{i_{d}} \cdots p_{n}^{i_{d}}}{1},$$

es decir que se cancele todo de manera que que de un 1 en el denominador. Eso es que $D \mid A^6$ ni más ni menos.

Y sí, muy rico todo, pero esa cantinela es la misma para $D \mid B^6$, pero la descomposición en primos de B^6 tiene los p_i distintos a los de A^6 , porque $(A^6 : B^6) = 1!$ y ahí llegamos al <u>absurdo</u>. D no puede dividir a ambos a la vez, porque son coprimos \P , a menos que D = 1.

$$D=1\Rightarrow \boxed{d=7^6}$$
, para cada $(a,b)\in \mathbb{Z}^2/(a:b)=7$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 📢

\delta13. Calcular $(a \cdot b^2 : 3a^2 + 3b^2)$ para cada par de enteros $a \ y \ b$ tales que (a : b) = 3.

Hay que comprimizar, encontrar posibles divisores, interpretar resultado. Coprimizar:

$$(a:b)=3\Leftrightarrow (\frac{a}{3}:\frac{b}{3})=1 \stackrel{a=3A}{\underset{b=3B}{\Longleftrightarrow}} (A:B)=1 \Leftrightarrow A\perp B.$$

Reemplazo y acomodo:

$$d = (a \cdot b^2 : 3a^2 + 3b^2) \stackrel{!}{\Leftrightarrow} d = 27(A \cdot B^2 : A^2 + B^2) \stackrel{\text{d} = 27D}{\Longleftrightarrow} D = (A \cdot B^2 : A^2 + B^2) \text{ con } A \perp B$$

Dado que D es el mcd, tiene que cumplir que:

$$\left\{ \begin{array}{c|c} D & A \cdot B^2 \\ D & A^2 + B^2 \end{array} \right. \stackrel{\text{!!}}{\to} \left\{ \begin{array}{c} D & A^3 \\ D & B^4 \end{array} \right.$$

Oka, ahí en el !! hice lo de siempre: Multiplique una fila por A o B y resté y coso.

Lo que nos queda es algo muy parecido a lo que pasó en el ejercicio éste (click).

Interpretación:

Tenemos que D por su condición de divisor común debe dividir a dos número coprimos, dado que si $A \perp B$ también sucede que $A^3 \perp B^4$, because primos and shit, y bueh, ¿Puede ser eso posible?.. Sí! Cuando D=1.

Entonces:

$$D=1 \Rightarrow d=27$$
 para cada par $(a,b) \in \mathbb{Z}/(a:b)=3$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 📢

♦14. Calcular, para cada $n \in \mathbb{N}$, el resto de dividir por 18 a

$$6 \cdot 35^n + 73^{3021} + \sum_{k=1}^n 3^k \cdot k!$$

Simplifiquemos esa expresión espantosa calculando el r_{18} y aplicando las propiedades:

$$r_{18}(6 \cdot 35^{n} + 73^{3021} + \sum_{k=1}^{n} 3^{k} \cdot k!) \stackrel{!}{=} r_{18}(6 \cdot (-1)^{n} + 1^{3021} + r_{18}(\sum_{k=1}^{n} 3^{k} \cdot k!))$$

$$\stackrel{\star^{1}}{=} \begin{cases} r_{18}(7 + r_{18}(\sum_{k=1}^{n} 3^{k} \cdot k!)) & \text{si } n \text{ es par} \\ r_{18}(-5 + r_{18}(\sum_{k=1}^{n} 3^{k} \cdot k!)) & \text{si } n \text{ es impar} \end{cases}$$

La para está ahora en calcular: $r_{18}(\sum_{k=1}^{n} 3^k \cdot k!)$

Dado que tiene un 3 ahí dando vueltas y que la k! en algún momento tendrá el factor $6 = 3! = 2 \cdot 3$, es esperable que el término general de la sumatoria sea un múltiplo de 18. Acomodo la expresión:

$$r_{18}(\sum_{k=1}^{n} 3^k \cdot k!) = r_{18}(3 + \sum_{k=2}^{n} 3^k \cdot k!) \stackrel{\star^2}{=} 3 + r_{18}(\sum_{k=2}^{n} 3^k \cdot k!)$$

A ojo se puede ver que $r_{18}(\sum_{k=2}^n 3^k \cdot k!) = 0 \ \forall n \in \mathbb{N}_{\geq 2}$ Pero como no sabemos si el que nos corrige está de mal humor probemos eso por inducción:

Quiero probar que:

$$p(n): r_{18}(\sum_{k=2}^{n} 3^k \cdot k!) = 0 \ \forall n \in \mathbb{N}_{\geq 2}$$

Caso base:

$$p(2): r_{18}(\sum_{k=2}^{2} 3^k \cdot k!) = r_{18}(3^2 \cdot 2) = 0$$

Por lo que el caso p(2) es verdadero.

 $Paso\ inductivo:$ Asumo que para algún $k\geq 2$

$$p(h): \underbrace{r_{18}(\sum_{k=2}^{h} 3^k \cdot k!) = 0}_{\text{hipótesis inductiva}}$$

es verdadero. Y quiero probar que:

$$p(h+1): r_{18}(\sum_{k=2}^{h+1} 3^k \cdot k!) = 0$$

también lo sea.

Partiendo de p(h+1)

$$r_{18}(\sum_{k=2}^{h+1} 3^k \cdot k!) = r_{18}(\sum_{k=2}^{h} 3^k \cdot k! + 3^{h+1} \cdot (h+1)!)$$

$$\stackrel{\text{HI}}{=} r_{18}(3^{h+1} \cdot (h+1)!)$$

$$\stackrel{!}{=} r_{18}(3 \cdot 6 \cdot 3^h \cdot \frac{(h+1)!}{3!})$$

$$= 0$$

Ahí en el ! me las arreglé para que aparezca el 18 que hace que el resto de 0. Debe haber otras formas de hacerlo, tenés licencia para dibujar.

Como p(2), p(h) y p(h+1) resultaron verdaderas, por criterio de inducción p(n) también lo es para todo $n \in \mathbb{N}_{\geq 2}$

Volviendo a ★²:

$$r_{18}(\sum_{k=1}^{n} 3^k \cdot k!) = 3$$

por lo tanto en ★¹:

$$r_{18}(6 \cdot 35^n + 73^{3021} + \sum_{k=1}^n 3^k \cdot k!) = \begin{cases} r_{18}(6+1+3) = 10 & \text{si } n \text{ es par} \\ r_{18}(-6+1+3) \stackrel{!}{=} 16 & \text{si } n \text{ es impar} \end{cases}$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 🕥

🞖 Dani Tadd 🞧

♦15. Sean $a, b \in \mathbb{Z}$ tales que (a : b) = 1. Calcular los posibles valores de $(a^2 + 3b^2 : 2a^2 + 11b^2)$ y dar un ejemplo para cada uno de ellos.

Si $d = (a^2 + 3b^2 : 2a^2 + 11b^2)$ entonces deber suceder:

$$\left\{ \begin{array}{l} d \mid a^2 + 3b^2 \\ d \mid 2a^2 + 11b^2 \end{array} \right. \xrightarrow{F_2 - 2F_1 \to F_2} \left\{ \begin{array}{l} d \mid a^2 + 3b^2 \\ d \mid 5b^2 \end{array} \right. \quad \text{y} \quad \left\{ \begin{array}{l} d \mid a^2 + 3b^2 \\ d \mid 2a^2 + 11b^2 \end{array} \right. \xrightarrow{11F_1 - 3F_2 \to F_2} \left\{ \begin{array}{l} d \mid a^2 + 3b^2 \\ d \mid 5a^2 \end{array} \right.$$

De esta forma queda que el MCD:

$$d = (5a^2 : 5b^2) \Leftrightarrow d = 5(a^2 : b^2) \Leftrightarrow d = 5(a : b)^2 \stackrel{a \perp b}{\Longleftrightarrow} d = 5$$

Si el máximo común divisor de $(a^2 + 3b^2 : 2a^2 + 11b^2)$ es 5, los valores que puede potencialmente tomar la expresión son:

$$\{1, 5\}$$

División por 1:

El uno está por ejemplo para el par (a, b) = (1, 2) donde $a \perp b$.

División por 5:

$r_5(a)$	0	1	2	3	4	1 77	$r_5(b)$	0	1	2	3	4	$r = (a^2 + 3b^2)$	n	1	1	1	4
$r_5(a^2)$	0	1	4	4	1	y	$r_5(3b^2)$	0	3	2	2	3	y = 75(a + 30)	0	4	1	1	4

Ese resultado dice que para que suceda que $5 | a^2 + 3b^2$ se requiere que:

$$a \equiv 0 \ (5)$$
 y $b \equiv 0 \ (5)$

Peeeeeero, por enunciado (a:b)=1 así que se concluye que no hay par de (a,b) con $a\perp b$ tal que $5 \mid a^2 + 3b^2$.

Así que el único valor que puede tomar la expresión $(a^2 + 3b^2 : 2a^2 + 11b^2)$ es 1.

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

🞖 Ale Teran 🞧

😮 Nad Garraz 🞧

△16. Calcular el resto de dividir

$$\sum_{k=4}^{134} (k! + k^3)$$

por 7.

Nos piden calcular el resto 7 de esa porquería:

$$\sum_{k=4}^{134} (k! + k^3) = \sum_{k=4}^{134} k! + \sum_{k=4}^{134} k^3$$

Arranco por estudiar $\sum_{k=4}^{134} k^3$. Tabla de restos 7 de k^3 :

$r_7(k)$	0	1	2	3	4	5	6
$r_7(k^3)$	0	1	1	6	1	6	6

Pensar que $6 \equiv -1$ (7) y eso nos ayuda a anular muchas cosas:

$$\sum_{k=4}^{134} k^3 = \underbrace{4^3 + 5^3 + 6^3 + 7^3 + 8^3 + \dots + 130^3 + 131^3 + 132^3 + 134^3}_{131 \text{ términos}}$$

Todos esos términos tienen r_7 igual a 0, 1 o -1. Sumando 7 términos consecutivos se obtiene como resultado 0. Organizo los términos teniendo en cuenta que $131 = 18 \cdot 7 + 5$, es decir que tengo 18 sumas de 7 términos que dan 0 y me sobran los últimos 5 términos:

$$\sum_{k=4}^{134} k^3 = 4^3 + 5^3 + 6^3 + 7^3 + 8^3 + 9^3 + 10^3 + \dots + 126^3 + 124^3 + 125^3 + 126^3 + 127^3 + 128^3 + 129^3 + 130^3 + 131^3 + 132^3 + 133^3 + 134^3$$

$$\equiv \underbrace{1 + (-1) + (-1) + 0 + 1 + 1 + (-1)}_{=0} + \dots + \underbrace{1 + (-1) + (-1) + 0 + 1 + 1 + (-1)}_{=0} + \underbrace{1 + (-1) + (-1) + 0 + 1 +$$

Se concluye que:

$$r_7\left(\sum_{k=4}^{134} k^3\right) = 0 \quad \star^1$$

Ahora quiero ver qué onda con $\sum_{k=4}^{134} k!$. Noto primero que cuando $k \geq 7$ el número k! es un múltiplo de 7, es decir:

$$k! \equiv 0 \ (7) \quad \text{con } k \in \mathbb{N}_{>7}$$

Por lo tanto me quedaría con los primero 3 términos:

$$\sum_{k=4}^{134} k! = 4! + 5! + 6! + \underbrace{0 + \dots + 0}_{131 \text{ términos igual a 0}} \equiv 3 + 1 + 6 \ (7) \equiv 3 + 1 + 6 \ (7) \equiv 3 \ (7) \star^{2}$$

Por último juntando los resultados de \star^1 y \star^2 :

$$r_7 \left(\sum_{k=4}^{134} (k! + k^3) \right) = 3$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 🞧

🎖 Juan Parajó 🖸

Hallar todos los valores de $a \in \mathbb{Z}$ tales que $(3a + 6 : 7a^2 - a - 3) \neq 1$.

 $\overline{\text{Si el mcd es } d}$:

$$d = (3a + 6:7a^2 - a - 3)$$

Puedo usar Euclides para simplificar la expresión del mcd:

Por lo tanto d queda:

$$d = (3a+6:7a^2-a-3) = (3a+6:27)$$

Por lo tanto como $d \mid 27$:

$$d \in \{1, 3, 9, 27\} = \{1, 3, 3^2, 3^3\}$$

¿Para que valor de a valdrá d=1? Empiezo a ver si es divisible por 3:

Tabla de restos para d=3:

$r_3(a)$	0	1	2
$r_3(3a+6)$	0	0	0
$r_3(7a^2-a-3)$	0	0	2

Dado que el resto de los posibles divisores, 9 y 27 son potencias de 3, se concluye que:

$$d=1 \iff a \equiv 2 \ (3)$$

Dado que para esos valores de a la expresión $7a^2 - a - 3$ no divisible por ninguna potencia de 3

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 🞧

♦18. Hallar todos los pares (a, b) ∈ $\mathbb{N} \times \mathbb{N}$ que cumplen las siguientes condiciones en simultáneo:

$$27 \not\mid a$$

$$(a:b) = 42$$

$$[a:5b] = 13230$$

A lo largo de este ejercicio mucho de lo que voy a usar son esas frases del secundario:

El máximo común divisor entre 2 números son los factores (de la factorización en primos) comunes elevados al menor exponente.

El mínimo común múltiplo entre 2 números son los factores (de la factorización en primos) comunes y los no comunes elevados al mayor exponente.

Del enunciado se deduce que:

$$3^3 \not\mid a$$

o sea que quizás $3^1, 3^2$ sí divida a a. También tenemos que el máximo común divisor:

$$(a:b) = 2 \cdot 3 \cdot 7$$

Esto nos dice que en la factorización de a y de b hay factores $2^{\alpha}, 3^{\beta}$ y $7^{\gamma} \star^{1}$, donde esos exponentes son ≥ 1 . Por último el dato del mínimo común múltiplo:

$$[a:5b] = 2^1 \cdot 3^3 \cdot 5^1 \cdot 7^2$$

Como sabemos de \star^1 que tanto a como b tienen a 2 como un factor y ahora en el mcm tiene exponente 1. Esto determina que tanto a como b tienen 2^1 como factor y ninguna potencia de 2 superior en su factorización en primos.

 $\partial_{\alpha}Qu\acute{e}$ nos dice el 3³? \star^{2} :

Parecido a lo anterior. \star^1 nos dice que el 3 está en a y b. Acá hay que tener presente que $a \not\mid 3^3$. Ahora se determina el exponente exacto del factor 3 de b que será 3, y el de a será 1 sino en el máximo cómún divisor habría un exponente mayor en el factor 3.

 $\lambda Qué nos dice el 5¹?:$

Sale que b no tiene 5 es su factorización, porque de tenerlo, el 5 del mcm tendría un exponente mayor debido al 5 que se enchufó ahí de prepo en el [a:5b]. Y a su vez sale que a tiene que tener un 5^{δ} con $0 \le \delta \le 1$ en su factorización

 $\lambda Qu\acute{e}$ nos dice el 7^2 ?:

Parecido a lo que salió en \star^2 . En este caso \star^1 nos dice que el 7 está en a y b. Ahora tampoco se determina el exponente exacto, pero sí sabemos que a y b tienen un factor 7^{γ} con $1 \leq \beta \leq 2$ en su factorización en primos, pero por \star^1 no pueden tener ambos 2 a la vez.

Recopilando la información de eso:

Nota que puede ser relevante:

Suponiendo que lo que hice está bien, $a \cdot b = (a:b) \cdot [a:b]$, tiene que valer, pero acordate que en el enunciado metieron un 5 ahí que no está ni en a ni en b, ojo con eso.

Fin de nota que puede ser relevante:

Dale las gracias y un poco de amor 💙 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 🞧