姓名:	2	0										班
-----	---	---	--	--	--	--	--	--	--	--	--	---

题号	1	2	3	4	5	6	7	8	9	Σ
得分										
题分										

1. 判断 (请使用0、X)

.....

.....

□ ·······

.....

.....

2. 填空

- A)(...)
- B)(...)
- C)(...)
- D)(...)
- E)(...)
- F)(...)

3. RPN: 试将中缀表达式 "(0!+1)*2^(3!+4)-(5!/6+(7-(8-9)))" 转换为逆波兰表达式

4. KMP: 试分别给出如下模式串对应的next[]表和改进后的next[]表

j	0	1	2	3	4	5	6	7	8	9	10	11	12
P[j]	С	В	С	В	Α	С	D	С	В	F	В	E	Α
next[j]													
<pre>improvedNext[j]</pre>													

5. Recurrence:试给出如下T(n)的解析解,并说明理由

$$\mathsf{A)} \ \ T(n) = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \leq 1) \\ 2020 \cdot T(n^{1/2020}) + \mathcal{O}(\log n) & (n \geq 2) \end{array} \right. \\ \left. \mathsf{B)} \ \ T(n) = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \leq 1) \\ 2^{47} \cdot T(n/2^{2021}) + \mathcal{O}(\sqrt[43]{n}) & (n \geq 2) \end{array} \right. \\ \left. \mathsf{C}(n) \right\} = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \leq 1) \\ 2^{47} \cdot T(n/2^{2021}) + \mathcal{O}(\sqrt[43]{n}) & (n \geq 2) \end{array} \right\} \\ \left. \mathsf{C}(n) \right\} = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \leq 1) \\ 2^{47} \cdot T(n/2^{2021}) + \mathcal{O}(\sqrt[43]{n}) & (n \geq 2) \end{array} \right\} \\ \left. \mathsf{C}(n) \right\} = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \leq 1) \\ 2^{47} \cdot T(n/2^{2021}) + \mathcal{O}(\sqrt[43]{n}) & (n \geq 2) \end{array} \right\} \\ \left. \mathsf{C}(n) \right\} = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \leq 1) \\ 2^{47} \cdot T(n/2^{2021}) + \mathcal{O}(\sqrt[43]{n}) & (n \geq 2) \end{array} \right\} \\ \left. \mathsf{C}(n) \right\} = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \leq 1) \\ 2^{47} \cdot T(n/2^{2021}) + \mathcal{O}(\sqrt[43]{n}) & (n \geq 2) \end{array} \right\} \\ \left. \mathsf{C}(n) \right\} = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \leq 1) \\ 2^{47} \cdot T(n/2^{2021}) + \mathcal{O}(\sqrt[43]{n}) & (n \geq 2) \end{array} \right\} \\ \left. \mathsf{C}(n) \right\} = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \leq 1) \\ 2^{47} \cdot T(n/2^{2021}) + \mathcal{O}(\sqrt[43]{n}) & (n \geq 2) \end{array} \right\} \\ \left. \mathsf{C}(n) \right\} = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \leq 1) \\ 2^{47} \cdot T(n/2^{2021}) + \mathcal{O}(\sqrt[43]{n}) & (n \geq 2) \end{array} \right\} \\ \left. \mathsf{C}(n) \right\} = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \geq 1) \\ 2^{47} \cdot T(n/2^{2021}) + \mathcal{O}(\sqrt[4]{n}) & (n \geq 2) \end{array} \right\} \\ \left. \mathsf{C}(n) \right\} = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \geq 1) \\ 2^{47} \cdot T(n/2^{2021}) + \mathcal{O}(\sqrt[4]{n}) & (n \geq 1) \end{array} \right\} \\ \left. \mathsf{C}(n) \right\} = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \geq 1) \\ 2^{47} \cdot T(n/2^{2021}) + \mathcal{O}(\sqrt[4]{n}) & (n \geq 1) \end{array} \right\} \\ \left. \mathsf{C}(n) \right\} = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \geq 1) \\ 2^{47} \cdot T(n/2^{2021}) + \mathcal{O}(\sqrt[4]{n}) & (n \geq 1) \end{array} \right\} \\ \left. \mathsf{C}(n) \right\} = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \geq 1) \\ 2^{47} \cdot T(n/2^{2021}) + \mathcal{O}(\sqrt[4]{n}) & (n \geq 1) \end{array} \right\} \\ \left. \mathsf{C}(n) \right\} = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \geq 1) \\ 2^{47} \cdot T(n/2^{2021}) + \mathcal{O}(\sqrt[4]{n}) \\ \left. \mathsf{C}(n) \right\} \\ \left. \mathsf{C}(n) \right\} = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \geq 1) \\ 2^{47} \cdot T(n/2^{2021}) + \mathcal{O}(\sqrt[4]{n}) \\ \left. \mathsf{C}(n) \right\} \\ \left. \mathsf{C}(n) \right\} \\ \left. \mathsf{C}(n) \right\} \\ \left. \mathsf{C}(n) \right\} = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \geq 1) \\ \mathcal{O}(1) & (n \geq 1) \\ \mathcal{O}(1) & (n \geq 1) \end{array} \right\} \\ \left. \mathsf{C}(n) \right\} \\ \left. \mathsf{C}(n) \right\} = \left\{ \begin{array}{ll} \mathcal{O}(1) & (n \geq 1) \\ \mathcal{O}(1) & (n \geq 1) \\ \mathcal{O}(1) & (n \geq 1) \end{array} \right\} \\ \left. \mathsf{C}(n) \right\} \\ \left. \mathsf{C$$

6. 简答(至多两行文字作答)
A)?
B) "在线"算法与"脱机"算法有何区别?
c)?
D) 如何从B-树中删除一个属于内部节点而非叶节点的关键码?
E)?
F)按照Tarjan的定义,由n个节点组成的伸展树所具有的最大势能是多少?这类树是什么姿势?
G)?
7. Bidirectional Quadratic Probing (Two-Square Theorem of Fermat)
若采用"双向平方试探"策略的散列表长度取作 $M=2021$,则关键码 0 及其同义词所对应的试探链可记作:
$a_0 = b_0 = 0, \ a_1 = 1, \ b_1 = 2020, \ a_2 = 4, \ b_2 = 2017, \ a_3 = 9, \ , b_3 = 2012, \ a_4 = 16, \ , b_4 = 2005, \ \dots$
试问:{ $a_i \mid i=0,1,2,3,\dots$ } \cap { $b_j \mid j=0,1,2,3,\dots$ }除 \emptyset 以外,还包含哪些试探位置?为什么?

试问: $\{\ a_i\ |\ i=0,1,2,3,\dots\}\cap \{\ b_j\ |\ j=0,1,2,3,\dots\}$ 除 o 以外,还包含哪些试探位置?为什么?

8. Reconstruction

A)试补全递归调用处缺失的参数;B)设每次search()的返回值随机分布于[0,n),试估计算法的期望时间复杂度。

9. Bitmap & QuadTree

各像素或黑或白的图像,也称作**位图**;正方形的位图,可用**四叉树**来表示和存储——其节点可定义如下:

```
struct QuadNode {
   bool black; //若是叶节点,则非黑即白;对于内部节点,无意义
   QuadNode* child[4]; //按象限排序
   QuadNode( bool b ) //按指定颜色创建叶节点
   { black = b; for ( int i = 0; i < 4; i++) child[i] = NULL; }
};
```

(子)位图与(子)四叉树的对应规则为:

- 如果**位图**中的所有像素同色,则对应于一个该颜色的QuadNode
- 否则,将该**位图**平均划分为4块**子位图**(依次对应于四个象限),分别对应于一棵**子四叉树**
- A) 试画出如下中间那幅**位图**所对应的四叉树(内部节点用 \times 标识,黑、白叶节点分别用1、0标识):

B) 试完成如下算法(关键之处需注释说明; 伪代码即可,不必拘泥于C++的语法细节;如有必要,可补充子程序)

QuadNode* XOR(QuadNode* A, QuadNode* B);

//A、B为大小相同的两幅**位图**对应的四叉树,试计算出二者的叠合位图所对应的四叉树

//所谓叠合,即两幅位图中对应的像素分别做一次异或运算(如上的中图,即为左图、右图的叠合)

