Statistical Natural Language Processing

Introduction

- ☐ Long sentences most often give rise to ambiguity when conventional grammars are used to process the same
 ☐ Processing may yield large no of analyses
- ☐ Processing may yield large no of analyses
- ☐ It is here statistical notion help to avoid/ resolve ambiguity

Corpus

- ☐ Corpus: Collection of written text or spoken words of language
- > Types of Corpus
- Textual Corpus: Content of a complete book, newspaper, magazine, web pages, journals, speeches etc..
- Corpus of spoken words
- Corpus for a specific domain: Tourism, law etc..
- Annoted Corpus: Rather than being a collection of raw text some corpus contain extra information regarding their content
- Parallel Corpus: A collection of texts which have been translated into one or several other languages
 - Use in language translation activities

Concordance and Collocation

- ☐ Concordance: An index or list of important words in a text (how often a word occurs (frequency))
- ☐ Collocation: Collection of words observed together e.g.
 - Rakhi gifts
 - Chrimas gifts
 - Chain smoker
 - Chain pulling
 - Exteremely beautiful

Counting the elements in a corpus

- ☐ It yields valuable information regarding the probability of the occurrence of a word
- ☐ Probability can be use to predict a word that will follow
- > Issues:
 - Should the punctuation marks be treated as a word
 - Case sensitization (IN an in) and (books and book) singular, plural considered distinct one
- ☐ Types: The no of distinct words in the corpus
- ☐ Tokens: Total no of words in corpus

Counting the elements in a corpus

Sentence

The former means the no of distinct words in the corpus while the latter stands for the total number of words in the corpus

Types: 14

Tokens : 24

Why Statistical/Probabilistic language models?

- ☐ Assign a probability to a sentence
- **☐** Machine Translation:
 - P(high winds tonight) > P(large winds tonight)
- **□** Spell Correction
 - The office is about fifteen minuets from my house

 $P(about fifteen \underline{minutes} from) > P(about fifteen \underline{minuets} from)$

- **□** Speech Recognition
 - P(I saw a van) >> P(eyes awe of an)
- ☐ Summarization, question-answering, etc., etc.!!

Probabilistic Language Modeling

$$P(W) = P(W_1, W_2, W_3, W_4, W_5...W_n)$$

☐ Probability of an upcoming word

$$P(W_5|W_1,W_2,W_3,W_4)$$

☐ A model that computes either of these:

$$P(W)$$
 or $P(W_n | W_1, W_2...W_{n-1})$

is called a language model

How to compute P(W)

- ☐ How to compute this joint probability:
 - P(its, water, is, so, transparent, that)
- ☐ Intuition: let's rely on the Chain Rule of Probability
 - Definition of conditional probabilities

$$P(B|A) = P(A,B)/P(A)$$

Rewriting: P(A,B) = P(A)P(B|A)

More variables

$$P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)$$

The Chain Rule in General

$$P(x_1,x_2,x_3,...,x_n) = P(x_1)P(x_2|x_1)P(x_3|x_1,x_2)......$$

$$P(x_n|x_1,...,x_{n-1})$$

Compute joint probability of words

☐ The Chain Rule applied to compute joint probability of words in sentence

P("its water is so transparent")

- $= P(its) \times P(water \mid its) \times P(is \mid its water)$
- \times P(so | its water is) \times P(transparent | its water is so)

How to estimate these probabilities

Could we just count and divide?

P(the | its water is so transparent that) =

Count(its water is so transparent that the)

Count(its water is so transparent that)

- Not, possible computationally, two many possible sentences
- ☐ Markov Assumption: The probability of a word depends on the probability of a limited history
- ☐ Generalization: The probability of a word depends on the probability of n previous words

Markov Assumption

P (the | its water is so transparent that)

$$\approx P \text{ (the | that)}$$

$$\approx$$
 P (the | transparent that)

> Generalize Formula

$$P(w_1, w_2, w_3, ..., w_n) = \pi P(w_i | w_{i-k}, ..., w_{i-1})$$

In other words,

$$P(w_i | w_1, w_{2,...,w_{i-1}}) \approx P(w_i | w_{i-k},...,w_{i-1})$$

N- gram Models and its Applications

- ☐ It is about predicting the nth word from n-1 words
- ☐ What would be the next word in the following sentence

 He is going to ______
- ☐ Here predicting 5th word from previous 4 words so it is 5-gram
- > Applications
 - In OCR
 - Correcting a sentence
 - Speech Recognition
 - In translation

Simplest case: Unigram model

$$P(w_1, w_2, w_3, ..., w_n) \approx \pi P(w_i)$$

$$P(w_i | w_1, w_2, ..., w_{i-1}) = P(w_i)$$

> Some automatically generated sentences from a unigram model

thrift did eighty said(random sequence of words)

e.g.

This is a sentence

Unigrams: This,

is,

a,

sentence

Bigram model

$$P(w_1, w_2, w_3, ..., w_n) = \pi P(w_i | w_{i-1})$$

$$P(w_i | w_1, w_{2,...,w_{i-1}}) \approx P(w_i | w_{i-1})$$

> Some automatically generated sentences from a Bigram model

outside new car parking lot of the agreement......

e.g.

This is a sentence

Bigrams: This is,

is a,

a sentence

Estimating Bigram probabilities

The Maximum Likelihood Estimate

$$P(w_i \mid w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Example 1: Estimating bigram probabilities on toy corpus

 ~~I am Sam~~
$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$
 ~~I do not like green eggs and ham~~

$$P(I | ~~) = \frac{2}{3} = .67~~$$
 $P(Sam | ~~) = \frac{1}{3} = .33~~$ $P(am | I) = \frac{2}{3} = .67$ $P(| Sam) = \frac{1}{2} = 0.5$ $P(Sam | am) = \frac{1}{2} = .5$ $P(do | I) = \frac{1}{3} = .33$

How to check one sentence is more probable than other?

<s> I am Sam </s>
 P(I | <s>) * P(am | I)* P(Sam | am) * P(</s> | Sam)
 = 2/3 * 2/3 * 1/2 * 1/2
 = 1/9

<s> Sam I am </s>

P (Sam | <s>) * P(I | Sam) * P(am | I) * P (</s> | am)
= 1/3 * 1/2 * 2/3 * 1/2
= 1/18

I am Sam is more probable than Sam I am