SOEN 341 Software Process

Lecture 07:
Software Requirements
Emad Shihab, PhD

Requirements Engineering

The process of establishing the **services that a customer requires** from a system and the **constraints** under which it operates and is developed.

- What should be implemented?
- How the system will behave?

Not how the product will be constructed

Requirements/Specification

Software Requirements

- Involve the elicitation, analysis, specification and validation of the different stakeholders
- An analyst/requirement engineer:
 - Elicits these demands/needs (raw requirements)
 - Analyzes them for consistency, feasibility, and completeness
 - Formulates them as requirements and <u>write</u> down a specification
 - Validates that the gathered requirements reflect the needs/demands of stakeholders

Requirements

Requirements are either:

A condition or capability <u>needed by a</u>
 <u>user</u> to solve a problem or achieve an objective.

A condition or capability that <u>must be met</u>
 or possessed by a system [...] to satisfy
 a contract, standard, specification, or
 other formally imposed document.

User vs. System

User requirements:

 Describe the services the system is expected to provide

System requirements:

 Detailed descriptions of system functions and operational constraints

Example of a user requirement

The system shall generate monthly management reports showing the cost of drugs prescribed by each clinic

Example System Requirement

 On the last working day of each month, a summary of the drugs prescribed, their cost and the prescribing clinics shall be generated.

 The system shall automatically generate the report for printing after 17.30 on the last working day of the month.

A report shall be created for each

Question...

Difference between system and user requirements?

Functional vs. Nonfunctional Requirements

Types of Requirements

Functional requirements:

 Describe what the system should do (from a user's or system's perspective)

Typical form: "The system shall/should do ..."

Example Functional Requirements

A user shall be able to search the appointments lists for all clinics.

 The system shall generate each day, for each clinic, a list of patients who are expected to attend appointments that day.

 Each staff member shall be uniquely identified by his or her 8-digit employee number.

Imprecision in Requirements

 Ambiguous requirements may be interpreted in different ways by developers and users.

- Consider the term 'search' in a requirement
 - User intention search for a patient name across all appointments in all clinics;
 - Developer interpretation search for a patient name in an individual clinic. User chooses clinic then search.

13

Main concern

 Development teams have a knack for addressing ambiguous requirements with the simplest solution to implement

 Imprecision may lead to a solution that does not match user expectations

Main concern

Completeness:

 Should describe all of the system features that are required

Consistency:

 Conflicts or contradictions among requirements should be avoided

Non-functional Requirements

Non-functional requirements:

- Specify properties and constraints of the system
 - e.g. reliability, response time and storage requirements. Constraints are I/O device capability, system representations, etc.
- Typical form: "The system shall/should be ..."
- Although often overlooked, NFRs may be critical to the success/failure of a system

NFR Metrics

Property	Measure
Speed	Processed transactions/second User/event response time Screen refresh time
Size	Mbytes Number of ROM chips
Ease of use	Training time Number of help frames
Reliability	Mean time to failure Probability of unavailability Rate of failure occurrence Availability
Robustness	Time to restart after failure Percentage of events causing failure Probability of data corruption on failure

Example of NFR

 The Mentcare system shall be available to all clinics during normal working hours (Mon–Fri, 0830–17.30).

 Downtime within normal working hours shall not exceed five seconds in any one day.

Example NFRs

The system should be **easy** to use by medical staff and should be organized in such a way that user errors are **minimized**.

Medical staff shall be able to use all the system functions after **four** hours of training. After this training, the average number of errors made by experienced users shall **not exceed two per hour** of system use.

Classification of NFR

Importance of NFR

Typically, functional reqs must be met (ie. mandatory)

NFRs could be:

Mandatory: eg. response time for a valve to close The system is unusable

Not mandatory: eg. response time for a UI

The system is usable but provides a non-optimal experience

NFRs are very important: 20% of the requirements, hardest to elicit and specify

NFR: importance increases as market matures

Expressing NFRs

 Functional are usually expressed in Use-Case form

- NFR cannot be expressed in Use-Case form
 - usually do not exhibit externally visible functional behaviour

The effects of NFRs on high level design and code

Their implementation does not map to a particular subsystem

- Very hard to modify a NFR since such modifications require major changes:
 - Consider making an already implemented system more secure, more reliable, etc.

Question...

Difference between functional and non-functional requirements?

Good vs. Bad Requirements

Anatomy of a bad requirement

The user quickly sees their current account balance on their laptop screen

Anatomy of a good requirement

The online banking system shall allow the user to access their current account balance in less than 5 seconds

Characteristics of good requirements

Complete sentences!

Not a list of buzzwords and acronyms

Use plain language!

- "The system shall utilize an alphabetical schematic to organize records" NO!
- "The system shall organize records alphabetically" YES!

Characteristics of good requirements

Subject and predicate:

- Subject = system being discussed
- Predicate = a condition, action, or intended result
- Verb in predicate:
 - "Shall" = mandatory
 - "May" = optional

Characteristics of Good Requirements

- Realism (Feasibility):
 - Avoid wishful thinking
- Validity (Necessity):
 - Provides the details of the desired end goal
- Verifiability (Testability):
 - Contains quantifiable success criteria
- Consistency:
 - No conflicts
- Completeness:
 - All functions

Pitfalls to Avoid

What vs. how:

- Never describe <u>how</u> the system should deliver the requirement
- Focus on <u>what</u> the system should do

The system shall use Microsoft Outlook to send a confirmation email to the customer.

The system shall inform the customer of an order confirmation within 2 minutes.

Pitfalls to Avoid

Escape clauses:

 Danger signs: "if", "but", "when", "except", "unless", "although"

Ambiguity:

Danger signs: "or", "etc", "and so on"

Vague, undefinable terms:

 Danger signs: "user-friendly", "highly versatile", "flexible", "approximately", "as much as possible" The system shall be easy-to-use <u>and</u> require minimal training <u>except</u> for professional mode.

Pitfalls to avoid

Conjunctions:

- One requirement per sentence
- Danger signs: "and", "or", "with", "also"

Speculation:

 Danger signs: "usually", "generally", "often", "normally", "typically"

Wishful thinking:

 Danger signs: "100% reliable", "bugfree", "handle all failures", "run on all platforms" The system shall be fully adaptable to all situations and often require no reconfiguration by the user.

Quiz

What is the main difference between system and user requirements?

