Insper

Computação Embarcada - Aula 03 - Estudo - Periféricos

Rafael Corsi - rafael.corsi@insper.edu.br

Fevereiro 2018

Para a aula do dia 5/3

Table of Contents

- Periféricos
- PMC Gerenciador de energia
- Parallel Input Output (PIO)
 - Configurações
 - Funcionalidade

Periféricos

 $(Utilize\ o\ manual\ encontrado\ em\ :\ Manuais/SAME70.pdf\ para\ resolução\ dessa\ secção.)$

Periféricos são hardwares auxiliares encontrados no uC que fornecem funcionalidades extras tais como : gerenciador de energia (SUPC), comunicação serial UART (UART), comunicação a dois fios (TWI), controlador de saída e entrada paralela (PIO), dentre muitos outros.

Pergunta 1

Liste as principais funcionalidade dos periféricos listados a seguir

- RTC Real time clock
- TC Timer/Counter
- ISI Image Sensor Interface

Os periféricos são configuráveis via escrita/leitura nos registradores do microcontrolador, cada periférico possui um endereço único mapeado em memória. A Fig. Mapa de memória SAME70 define os endereços de memórias reservado para cada funcionalidade do uC.

Pergunta 2

- Qual endereço de memória reservado para os periféricos ?
- qual o tamanho (em endereço) dessa secção ?
- O diagrama completo do mapeamento de memória pode ser encontrado na página 41.

Pergunta 3

Encontre os endereços de memória referentes aos seguintes periféricos : 1. PIOA 2. PIOB 3. ACC 4. UART1 5. UART2

PMC - Gerenciador de energia

O Power Management Controller (PMC) é um periférico responsável por gerenciar a energia e clock dos demais periféricos. Para utilizarmos um periférico é necessário primeiramente ativarmos o mesmo no PMC.

Cada periférico é referenciado no PMC via um número único (ID), esse ID

também será utilizado para o gerenciamento de interrupções. Os IDs estão listados na Tabela : 13.1 do datasheet Cortex-M7-SAM-E70.pdf.

Table 13-1. Peripheral Identifiers

Instance ID	Instance Name	NVIC Interrupt	PMC Clock Control	Description
0	SUPC	X	-	Supply Controller
1	RSTC	Х	_	Reset Controller
2	RTC	X	_	Real Time Clock
3	RTT	X	_	Real Time Timer
4	WDT	X	_	Watchdog Timer
5	PMC	×	-	Power Management Controller
6	EFC	X	_	Enhanced Embedded Flash Controller
7	UART0	×	×	Universal Asynchronous Receiver/Transmitter
8	UART1	X	×	Universal Asynchronous Receiver/Transmitter

Figure 1: Lista de periféricos e IDs

Pergunta 4

• Qual ID do TC0?

Parallel Input Output (PIO)

Secção 32 datasheet

Leitura obrigatória, Secção 32 do datasheet.

No ARM-Atmel os pinos são gerenciados por um hardware chamado de Parallel Input/Output Controller (PIO), esse dispositivo é capaz de gerenciar até 32 diferentes pinos (I/Os).

Além do controle direito do pino pelo PIO, cada I/O no ARM-Atmel pode ser associado a uma função diferente (periférico), por exemplo: o I/O PA20 pode ser controlador pelo periférico do PWM enquanto o PA18 pode ser controlador pela UART.

Isso fornece flexibilidade ao desenvolvimento de uma aplicação, já que os I/Os não possuem uma funcionalidade fixa. Porém não possuímos tanta flexibilidade assim, existe uma relação de quais I/Os os periféricos podem controlar.

Podemos interpretar a tabela como : o pino **102** do microcontrolador identificado como **PA0** (PIOA_0) pode ser utilizado como **WKUP0** (wakeup) ou mapeado para um dos tres perifericos :

• Periferico A: PWM (Pulse width modulation)

- Periferico B: TIOA0 (Timer 0)
- Periferico C: I2C_MCL (I2C master clear)

A tabela na página 16 do datasheet (Table 5-1) ilustra quais periféricos podem ser associados aos respectivos pinos, a Fig. Mux PIOA mostra as opções para o PIOA0 até PIOA9.

	LFBGA	UFBGA	Power Rail	I I/O Type	Primary		Alternate		PIO Peripheral A		PIO Peripheral B		PIO Peripheral C		PIO Peripheral D		Reset State
	Ball	Ball			Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal, Dir, PU, PD, HiZ, ST
102	C11	E11	VDDIO	GPIO_AD	PA0	VO	WKUP0 ⁽¹⁾	1	PWMC0_PWMH0	0	TIQA0	I/O	A17/BA1	0	I2SC0_MCK	-	PIO, I, PU, ST
99	D12	F11	VDDIO	GPIO_AD	PA1	VO	WKUP1 ⁽¹⁾	1	PWMC0_PWML0	0	TIOBO	ΙÆ	A18	0	12SC0_CK	-	PIO, I, PU, ST
93	E12	G12	VDDIO	GPIO	PA2	VO	WKUP2 ⁽¹⁾	1	PWMC0_PWMH1	0	-	-	DATRG	1	-	-	PIO, I, PU, ST
91	F12	G11	VDDIO	GPIO_AD	PA3	VO	PIOD CO ⁽²⁾	1	TWD0	1/0	LONCOL1	1	PCK2	0	-	-	PIO, I, PU, ST
77	K12	L12	VDDIO	GPIO	PA4	VO	WKUP3/PIODC1 ⁽³⁾	1	TWCK0	0	TCLK0	1	UTXD1	0	-	-	PIO, I, PU, ST
73	M11	N13	VDDIO	GPIO_AD	PA5	VO	WKUP4/PIODC2 ⁽³⁾	1	PWMC1_PWML3	0	ISI_D4	1	URXD1	1	-	-	PIO, I, PU, ST
114	B9	B11	VDDIO	GPIO_AD	PA6	VO	-	-	-	-	PCK0	0	UTXD1	0	-	-	PIO, I, PU, ST
35	L2	N1	VDDIO	CLOCK	PA7	VO	XIN32 ⁽⁴⁾	1	-	-	PWMC0_PWMH3	0	-	-	-	-	PIO, HIZ
36	M2	N2	VDDIO	CLOCK	PA8	VO	XOUT32 ⁽⁴⁾	0	PWMC1_PWMH3	0	AFE0_ADTRG	1	-	-	-	-	PIO, HIZ
75	M12	L11	VDDIO	GPIO AD	PA9	VO	WKUP6/PIODC3 ⁽¹⁾	1	URXD0	1	ISI_D3	1	PWMC0 PWMFI0	1	-	-	PIO, I, PU, ST

Figure 2: Mux PIOA - periféricos vs pinos pg. 16

Pergunta 5

Verifique quais periféricos podem ser configuráveis nos I/Os :

- 1. PC1
- 2. PB6

O SAME70 possui internamente 5 PIOs: PIOA, PIOB, PIOC, PIOD e PIOE. Cada um é responsável por gerenciar até 32 pinos.

Os I/Os são classificados por sua vez em grandes grupos: A, B,C (exe: PA01, PB22, PC12) e cada grupo é controlado por um PIO (PIOA, PIOB, PIOC, ...).

Configurações

O PIO suporta as seguintes configurações :

- Interrupção em nível ou borda em qualquer I/O
- Filtragem de "glitch"
- Deboucing
- Open-Drain
- Pull-up/Pull-down
- Capacidade de trabalhar de forma paralela

Pergunta 6

- O que é deboucing ?
- Porque deve ser utilizado?
- Descreva um algorítimo que implemente o deboucing.

Funcionalidade

O diagrama de blocos do PIO é ilustrado na Fig. Block Diagram, onde :

- 1. Peripheral DMA (direct memmory access) controller (PDC) : O P/IO pode receber dados via DMA.
- 2. Interrup Controller : Já que o PIO suporta interrupções nos I/Os o mesmo deve se comunicar com o controlador de interrupções para informar a CPU (NVIC) que uma interrupção ocorreu.
- 3. PMC : A energia e clock desse periférico é controlado pelo PMC (Power management controller).
- 4. Embedded peripheral : O acesso aos pinos dos periféricos é realizado via PIO.

Figure 3: Block Diagram - pg. 346

Um diagrama lógico mais detalhado é encontrado no datasheet (I/O Line Control Logic), esse diagrama mostra as funções dos registradores e seu impacto no PIO.

Figure 4: Datasheet pg. 571 - I/O Line Control Logic