GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA		
	Sistemas de Control	

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Séptimo Semestre	40704	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al alumno los conocimientos necesarios para el análisis de sistemas lineales así como el diseño de sistemas de control.

TEMAS Y SUBTEMAS

- 1. Fundamentos matemáticos
- 1.1. Componentes básicos de un sistema de control
- 1.2. Clasificación de tipos de sistemas de control
- 1.3. Ejemplos de sistemas de control
- 1.4. Ecuaciones diferenciales
- 1.5. Transformada de Laplace
- 1.6. Expansión en fracciones parciales empleando la computadora.
- 2. Modelado matemático de sistemas físicos.
- 2.1. Función de transferencia y respuesta impulso
- 2.2. Diagrama a bloques
- 2.3. Gráficos de flujo de señal y ganancia de Mason
- 2.4. Representación en variables de estado
- 2.5. Sistemas eléctricos
- 2.6. Sistemas mecánicos
- 2.7. Sistemas térmicos
- 2.8. Sistemas de nivel de liquid
- 2.9. Detectores y codificadores en sistemas de control
- 2.10. Sistemas no lineales y linealización
- 3. Análisis en el dominio del tiempo.
- 3.1. Respuesta transitoria de un sistema de primer orden
- 3.2. Respuesta transitoria de un sistema prototipo de segundo orden
- 3.3. Análisis de la respuesta transitoria con software especializado.
- 3.4. Efectos de adición de polos y ceros
- 3.5. Error en estado estable
- 4. Estabilidad de sistemas lineales.
- 4.1. Método de Routh-Hurtwitz
- 4.2. Método del lugar de las raíces empleando algún programa.
- 5. Análisis en el dominio de la frecuencia.
- 5.1. Introducción
- 5.2. Criterio de estabilidad de Nyquist
- 5.3. Obtención de la traza de Nyquist con ayuda de algún paquete.
- 5.4. Trazas de Bode
- 5.5. Graficación de la trazas de Bode con algún programa.
- 5.6. Efectos de la adición de un polo y un cero en la función de trayectoria directa
- 6. Diseño de controladores.
- 6.1. Consideraciones de diseño

GENERAL DE EDUCACIÓN
MEDIA SUPERIOR Y SUPERIOR

- 6.2. Control PD, Pl y PID
- 6.3. Control de adelanto, atraso, y adelanto-atraso de fase
- 6.4. Filtro de muesca
- 6.5. Control robusto
- 6.6. Control realimentado en lazos menores
- 6.7. Control mediante realimentación de estados

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor, en donde presente conceptos y resuelva ejercicios. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y los retroproyectores. Investigación bibliográfica en libros de texto y otras fuentes de consulta.

Asignación de tareas que refuerzan el material visto en el salón de clases.

Diseño y simulación de circuitos usando paquetes computacionales.

Prácticas de Laboratorio.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

La evaluación del curso comprenderá tres calificaciones parciales y una calificación final.

Para cada calificación parcial se deberá considerar un examen oral o escrito, tareas y prácticas de laboratorio. La calificación final deberá incluir un examen oral o escrito y un proyecto final de aplicación o de investigación, con temas estrictamente afines a la materia.

Los porcentajes correspondientes, en los aspectos considerados para las calificaciones parciales y la final, se definirán el primer día de clases, con la participación de los alumnos.

BIBLIOGRAFÍA

Libros básicos:

- Sistemas de control automático. Kuo, Benjamin c. Mexico : Prentice-Hall Hispanoamericana, 1996.
- Ingeniería de control moderna. Ogata, Katsuhiko. Mexico : Prentice-Hall Hispanoamericana, 1998.
- Ingeniería de control: analógica y digital. Navarro Viadana, Rina m. Mexico: McGraw-Hill Interamericana , 2004.
- Sistemas modernos de control. Dorf, richard c. Usa :addison-wesley iberoamericana, 1989.

Libros de consulta:

- Basic Control Systems Engineering Lewis, Paul H. \ Yang Chang. Usa: Prentice-Hall, 1997.
- Computational Aids In Control Systems Using Matlab Saadat, Hadi. Usa: Mcgraw-Hill, 1993.
- Control In An Information Rich World: Report Of The Panel On Future Directions In Control, Dynamics, And Systems. USA: Society For Industrial And Applied Mathematics 2003.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero en Electrónica con Maestría o Doctorado en Electrónica, con especialidad en control.

