7.91 / 7.36 / BE.490

第三讲

2004-03-02

DNA 模体建模与发现

Chris Burge

DNA序列比较与比对回顾

- 目标序列和错配罚分
- 真核基因结构
- 比较基因组学应用:
 - -Pipmaker (两序列比对)
 - 系统发育投影(多序列)
- DNA 序列模体介绍

主题结构

章节 模型

对象 **CACCTAACT CACCTAACT CACCTAACT**

3/2

3/4

Promoter 5'ss 3'ss Stop PolyA Signal

3/9

权矩阵 模型 无相关性

隐马尔可 夫模型 局部相关性

能量模型 共体模型 无局部相关性

DNA 模体的发现与建模

- 回顾——剪切位点的权矩阵模型
- 模体的信息量
- 模体的发现与搜索的问题
- Gibbs 抽样

Gibbs抽样算法多媒体体验

• 模体模型——权矩阵之上

见 Mount 的第四章

剪切位点 I

5'剪切位点

权矩阵模型 ||

5' 端剪接 信号		GAG	GA			
Con:	/c	/ A\	G\.	\}	}	`
可能性	-3	-2	-1		+5	+6
Α	0.3	0.6	0.1		0.1	0.1
С	0.4	0.1	0.0	· · · · · ·	0.1	0.2
G	0.2	0.2	0.8	•••	0.8	0.2
Т	0.1	0.1	0.1		0.0	0.5

背景

可能性	普通的
Α	0.25
С	0.25
G	0.25
Т	0.25

$$S = S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9$$

概率系数
$$\mathsf{R} = \frac{\mathsf{P}(\mathsf{S}|+) = \mathsf{P}_{-3}(\mathsf{S}_1)\mathsf{P}_{-2}(\mathsf{S}_2)\mathsf{P}_{-1}(\mathsf{S}_3) \cdot \cdot \cdot \mathsf{P}_{5}(\mathsf{S}_8)\mathsf{P}_{6}(\mathsf{S}_9)}{\mathsf{P}(\mathsf{S}|-)} = \mathsf{P}_{bg}(\mathsf{S}_1)\mathsf{P}_{bg}(\mathsf{S}_2)\mathsf{P}_{bg}(\mathsf{S}_3) \cdot \cdot \cdot \mathsf{P}_{bg}(\mathsf{S}_8)\mathsf{P}_{bg}(\mathsf{S}_9)}$$

背景同源模型, 假设为独立

权矩阵模型 Ⅲ

概率系数
$$R = \frac{P(S|+)}{P(S|-)} = \frac{P_{-3}(S_1)P_{-2}(S_2)P_{-1}(S_3) \cdots P_5(S_8)P_6(S_9)}{P_{bg}(S_1)P_{bg}(S_2)P_{bg}(S_3) \cdots P_{bg}(S_8)P_{bg}(S_9)}$$

$$= \prod_{k=1}^{k=9} P_{-4+k}(S_k)/P_{bg}(S_k)$$

得分
$$s = log_2 R = \sum_{k=1}^{k=9} log_2 (P_{-4+k}(S_k)/P_{bg}(S_k))$$

Neyman-Pearson 定理:

最优化判别规则的形式: R>C

因为 log 是单调函数, log2(R) > C'

权矩阵模型 IV

· 沿序列滑动 WMM

ttgacctagatgatgtcgttcacttttactgagctacagaaaa

为每个9碱基窗口赋分值

用临界值预测 5' 端潜在剪接位点

5'剪接位点柱状图

测量精度:

灵敏度: 真实位点 w/ score 百分数 > 临界值

特异性: 位点 w/score 百分数 > 临界值

为真实位点

Sn	20%	50%	90%
Sp	50%	32%	7%

这些结果告诉我们什么?

A)剪切机器也使用除 5'剪接位点模体以外的信息来确定剪接位点

或

B) 权矩阵模型不能准确捕捉到 5' 剪接位点用以识别的某些特征

(或都)

这是生物学中常常出现的情况

什么是 DNA、 RNA 模体

一组拥有共同性质的 DNA 或 RNA 序列常常出现的模式,如调节蛋白结合位点。

常见模体形容词:

精密、精确 与 退化

强 与 弱(好 与 差)

高信息量 与 低信息量

信息论

• 我们以 Shannon's 著名的公式结束

$$H = -\sum_{i=1}^{20}$$
其中 $H = 比对中每个位点包含的比特 "信息熵"$

这表示什么?

H是熵或随机性或无序性的度量

…… 它告诉我们在模体某一位置有不同氨基酸丰度的不确定度

This slide courtesy of M. Yaffe

信息论

Courtesy of M. Yaffe

假设 20 种氨基酸有同样的可能性: H_{before} =4.32, H_{after} =0

因此,该位点编码信息量为 4.32-0=4.32,

模体中另一个位置包含 **20** 种氨基酸: H_{before}=4.32, H_{after}=4.32 因此,该位点编码信息量为 **4.32-4.32=0**

DNA 模体的信息含量

- 位点j所包含的信息: I_j = H_{before} -H_{after}
- 模体概率: p_k (k = A, C, G, T)
- 背景概率: q_k = 1/4 (k = A, C, G, T)

$$I_{j} = -\sum_{k=1}^{4} q_{k} \log_{2} q_{k} - -\sum_{k=1}^{4} p_{k} \log_{2} p_{k} = 2 - H_{j}$$

$$I_{\text{motif}} = \sum_{j=1}^{w} I_j = 2w - H_{\text{motif}}$$
 (motif of width w bases)

Log base 2 gives entropy/information in 'bits'

模体的平均比特得分

- 比特分数: log₂ (p_k/q_k)
- 平均比特分数: (模体宽度 w, n = 4^w, q_k=1/4^w)

$$\sum_{k=1}^{n} p_k \log_2(\frac{p_k}{q_k}) = 2w - H_{\text{motif}} = I_{\text{motif}}$$

经验规律*:每2^mb 随机序列有 w/m 比特的模体信息

*在常规表达中大约符合,在其他模体中符合

模体搜索的问题

未比对

Cgggcactagcccatgtgagagggcaaggaccagcggaa gtaattcagggccaggatgtatctttctcttaaaaataacatatcct acagatgatgaatgcaaatcagcgtcacgagctttggcgggc aaggtgcttaaaagataatatcgaccctagcgattcgggtacc gttcataaaagtacgggaatttcgggtaggttatgttaggcgag ggcaaaagtcatatacttttaggtcaagagggcaatgcctcctc tgccgattcggcgagtgatcggatggggaaaatatgagacca ggggagggccacactgcagctgccgggctaacagacaca cgtctagggctgtgaaatctgtaggcgccgaggccaacgctg agtgtcgatgttgagaacattagtccggttccaagagggcaac tttgtatgcaccgccgcggcccagtgcgcaacgcacagggc aaggtttactgcggccacatgcgagggcaacctccctgtgttg ggcggttctgagcaattgtaaaacgacggcaatgttcggtcgc ctaccetggataaagaggggggtaggaggtcaactetteegt attaataggagtagagtagtgggtaaactacgaatgcttataac atgcgagggcaatcgggatctgaaccttctttatgcgaagactc caggaggaggtcaacgactctgcatgtctgacaacttggtcat agaattccatccgccacgcggggtaatttggacgtgtgccaac ttgtgccggggggctagcagcttcccgtcaaacgcgtttggag tgcaaacatacacagcccgggaatatagaaagatacgagttc gatttcaagagttcaaaacgtgacgggacgaaacgagggc gatcaatgcccgataggactaataagtagtacaaacccgctc acccgaaaggagggcaaataccttatatacagccaggggag acctataactcagcaaggttcagcgtatgtactaattgtggaga gcaaatcattgtccacgtg

已比对

Gcggaagaggcactagcccatgtgagagggcaaggacca atctttctcttaaaaataacataattcagggccaggatgtgtcacg agctttatcctacagatgatgaatgcaaatcagctaaaagataat atcgaccctagcgtggcgggcaaggtgctgtagattcgggtac cgttcataaaagtacgggaatttcggtatacttttaggtcgttatgtt aggcgagggcaaaagtcactctgccgattcggcgagtgatcg aagagggcaatgcctcaggatggggaaaatatgagaccagg ggagggccacactgcacacgtctagggctgtgaaatctctgcc gggctaacagacgtgtcgatgttgagaacgtaggcgccgagg ccaacgctgaatgcaccgccattagtccggttccaagagggc aactttgtctgcgggcggcccagtgcgcaacgcacagggcaa ggtttatgtgttgggcggttctgaccacatgcgagggcaacctcc cgtcgcctaccctggcaattgtaaaacgacggcaatgttcgcgt attaatgataaagaggggggtaggaggtcaactcttcaatgctta taacataggagtagagtagtgggtaaactacgtctgaaccttcttt atgcgaagacgcgagggcaatcgggatgcatgtctgacaactt gtccaggaggaggtcaacgactccgtgtcatagaattccatcc gccacgcggggtaatttggatcccgtcaaagtgccaacttgtgc cggggggctagcagctacagcccgggaatatagacgcgtttg gagtgcaaacatacacgggaagatacgagttcgatttcaagag ttcaaaacgtgcccgataggactaataaggacgaaacgaggg cgatcaatgttagtacaaacccgctcacccgaaaggaggca aatacctagcaaggttcagatatacagccaggggagacctata actcgtccacgtgcgtatgtactaattgtggagagcaaatcatt

_

模体搜索例子: Gibbs 采样

Gibbs 采样是一种蒙特卡罗方法,可以从输入序列数据中搜索最大似然率函数。 在 A 位置有模体的序列 s 的似然率函数

Lawrence et al. Science 1993

准备好

Gibbs抽样多媒体体验

Gibbs 采样算法的描述:

- •图片
- •文字
- •视频

Gibbs 采样算法 I

1. 在每条序列中选择随机位点

Gibbs 采样算法 II

2. 建立权矩阵

Gibbs 采样算法 III

3. 随机选择一条序列

Gibbs 采样算法 IV

4. 用权矩阵给序列中可能的位点打分

Gibbs 采样算法 V

5. 抽样一具有相似可能性的位点

Gibbs 采样算法 VI

6. 升级权矩阵

Gibbs 采样算法 VII

7. 迭代至收敛(位点/O 不改变)

Gibbs 采样算法文字描述 I

假设有宽度 W 期望模体,长度为 L 的序列 N:

- 步骤 1) 在每条序列中选择随机位点:序列 $1a_1$,序列 $2a_2$,…,序列 $1a_n$ 。
- 步骤 2) 在序列组中随机选择序列(比如,序列1)。
- 步骤 3) 为所有序列中宽度W的位点建立权矩阵,第2 步中选中的序列除外。
- 步骤 4) 用第三步中建立的权矩阵为序列 1 中每个位点设置概率: $p = \{ p_1, p_2, p_3, ..., p_{L-W+1} \}$

Lawrence et al., Science 1993

Gibbs 采样算法文字描述 II

- 假设有宽度W期望模体,长度为L的序列N
- 步骤 5) 根据该概率分布在序列 1 中抽样起始点,设该新位点为 a₁。
- 步骤 6) 从序列组中随机选取序列(比如说,序列2)
- 步骤 7) 为所有序列个位点建立宽度W的权矩阵模型, 第6步中选中序列除外。
- 步骤 8) 用第七步建立的权矩阵,为序列2中每个位点赋予概率
- 步骤 9) 按照该dist,为序列 2sample 起始点
- 步骤 10) 重复直至收敛

Lawrence et al., Science 1993

如果有,这个算法实现了什么(除了让我们的电脑忙于运算外)?

强模体序列输入

输入序列 (弱模体)

gcggaagaggcactagcccatgtgagagggcaaggacca atctttctcttaaaaataacataattcagggccaggatgtgtcac gagctttatcctacagatgatgaatgcaaatcagctaaaagat aatatcgaccctagcgtggcgggcaaggtgctgtagattcgggt accgttcataaaagtacgggaatttcggtatacttttaggtcgttat gttaggcgagggcaaaagtcactctgccgattcggcgagtgat cgaagagggcaatgcctcaggatggggaaaatatgagacca ggggagggccacactgcacacgtctagggctgtgaaatctctg ccgggctaacagacgtgtcgatgttgagaacgtaggcgccga ggccaacgctgaatgcaccgccattagtccggttccaagagg gcaactttgtctgcgggcggcccagtgcgcaacgcacagggc aaggtttatgtgttgggcggttctgaccacatgcgagggcaacct cccgtcgcctaccctggcaattgtaaaacgacggcaatgttcg cgtattaatgataaagaggggggtaggaggtcaactcttcaatg cttataacataggagtagagtagtgggtaaactacgtctgaacc ttctttatgcgaagacgcgagggcaatcgggatgcatgtctgac aacttgtccaggaggaggtcaacgactccgtgtcatagaattc catccgccacgcggggtaatttggatcccgtcaaagtgccaac ttgtgccgggggctagcagctacagcccgggaatatagacg cgtttggagtgcaaacatacacgggaagatacgagttcgatttc aagagttcaaaacgtgcccgataggactaataaggacgaaa cgagggcgatcaatgttagtacaaacccgctcacccgaaagg agggcaaatacctagcaaggttcagatatacagccagggga gacctataactcgtccacgtgcgtatgtactaattgtggagagc aaatcatt

Gibbs 采样概要

- 模体发现的随机(蒙特卡罗)算法
- 在少量模体实例上进行反复计算,偏离权 重矩阵,抽样更多的模体实例,进一步偏 离权矩阵,...直至收敛
- 对结果进行比较,多次运算中,并不能保证每次都收敛于统一模体
- 用于 DNA , RNA 和蛋白质模体

模体识别算法(MEME)— Multiple EM for Motif Elicitation

• 是另一种流行的模体搜索算法—用 EM(expectation maximization) 算法优化近似的似 然函数

• 不同于 Gibbs 抽样, MEME 具有确定性。

Bailey & Elkan, Proc. ISMB, 1994

权矩阵模型 II

5' 端剪接 信号		CACCTAAGI AAGI				
Con:	/c	$/$ A \setminus	G\.	\}	<u> </u>	`~~
可能性	-3	-2	-1	on 10, on	+5	+6
А	0.3	0.6	0.1		0.1	0.1
С	0.4	0.1	0.0	· · · · ·	0.1	0.2
G	0.2	0.2	0.8		0.8	0.2
Т	0.1	0.1	0.1		0.0	0.5

背景

可能性	普通
Α	0.25
С	0.25
G	0.25
T	0.25

$$S = S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9$$

概率系数:
$$\mathsf{R} = \frac{\mathsf{P}(\mathsf{S}|+) = \mathsf{P}_{-3}(\mathsf{S}_1)\mathsf{P}_{-2}(\mathsf{S}_2)\mathsf{P}_{-1}(\mathsf{S}_3) \cdot \cdot \cdot \mathsf{P}_{5}(\mathsf{S}_8)\mathsf{P}_{6}(\mathsf{S}_9)}{\mathsf{P}(\mathsf{S}|-) = \mathsf{P}_{bg}(\mathsf{S}_1)\mathsf{P}_{bg}(\mathsf{S}_2)\mathsf{P}_{bg}(\mathsf{S}_3) \cdot \cdot \cdot \mathsf{P}_{bg}(\mathsf{S}_8)\mathsf{P}_{bg}(\mathsf{S}_9)}$$

背景模型同源物, 假设具独立性

5'剪接位点柱状图

测量精度:

灵敏度: 真实位点 w/ score 百分数 > 临界值

特异性: 位点 w/score 百分数 > 临界值

为真实位点

Sn	20%	50%	90%
Sp	50%	32%	7%

这个结果说明什么?

A)剪接体也使用除 5'剪接位点模体以外的信息来确定剪接位点

或者

B) 权矩阵模型不能精确的捕捉到在识别中 气作用的5'剪接位点的某些信息

(或二者都有)

这是生物学中常见的问题

5'剪接位点是如何识别的

RNA 热力学

螺旋结构自由能

推导:

G A G

碱基配对: ↓ >↓ >↓

C U U

碱基堆积:

 $\begin{array}{ccc} G & p & A \\ | \iff & | \\ & & C \\ p & U \end{array}$

Doug Turner 能量规则:

```
...CCAUUCAUAG-5'
||||||
5'...CGUGAGU......................... 3'
```

RNA 热力学 II

多个连续碱基一好

内部环一不好

末端碱基配对不 稳定一不好

通常, A比B和C稳定

5'剪接位点的条件频率

5' 剪接位点 +5 位有 G

_				
可能性	-1	+3	+4	+6
Α	0	44	75	14
С	4	3	4	18
G	78	51	13	19
Т	9	3	9	49

5' 剪接位点 +5 位无 G

可能性	-1	+3	+4	+6
Α	2	81	51	22
С	1	3	28	20
G	97	15	9	30
Т	0	2	12	28

数据源自: Burge, 1998 "Computational Methods in Molecular Biology"

哪种模型可以使位点间相互作用得以结合?