(BMEGEPTBM01) v1.1.3

Polimertechnika minimumkérdések

Sándor Tibor

2022. január 13.

kovalens kötéssel kapcsolódnak egymáshoz.

1– Mi a polimer?

2– Mi a polimertechnika? A polimertechnika (polymer engineering) minden olyan **műszaki tevékenység**, amelyet polimerekkel végzünk. A polimertechnika körébe tartozik: • előállítás, feldolgozás, vizsgálat,

A polimer molekula olyan **nagyméretű molekula** (makromolekula), amelyet nagyon sok (poli) láncszerűen összekapcsolt **ismétlődő egység** (mer) alkot. A gyakorlatban ez több száz, általában minimum ezer ismétlődő egység összekapcsolását jelenti, melyek

anyagtudomány,

3 – Mi a monomer? A monomer polimerizációra alkalmas kisméretű mulekula. Kovalens kötésekkel

módosítás,

- kapcsolódnak össze ismétlődő egységekké.

Nedves keverés

SB, SBS HiPS, ABS

- # 4 Mit jelent az ismétlődő egység?
- Az ismétlődő egységek, polimerizációra alkalmas kisméretű molekulákból, ún. momomerekből származtatottak és kovalens kötésekkel kapcsolódnak össze.

műszaki feladatok.

5 – Mi a kompaund? Adott célra előállított **keverék**, keveréssel állítjuk őket elő.

Keverés

Szakaszos

Száraz keverés

(szilárd) (folyadék) Szakaszos Folyamatos Folyamatos

Vándorcsigával ellátott Hengerszék Buktatott hordó Extrúder Statikus Belső kúpos siló keverő Lehet továbbá disztributív (komponensek méretcsökkenésével nem járó, eloszlató, extenzív keverés) és **diszperzív** (az összetartozó komponensek méretcsökkenésével járó, intenzív keverés) # 6 – Mi a polimer blend? A blend egy polimer-polimer **keverék**. Csak **fizikai** kapcsolat alakul ki, kémiai nem. Az anyagokat melegen összekeverjük, majd lehűtjük. Az anyagoknak kompatibilisnek (összeférhetőnek) kell lenni egymással, hogy blend legyen készíthető. Pl. PC-ABS. # 7 – Mi a kopolimer? Többféle ismétlődő egységet tartalmazó polimer, pl.: ABS. Típusai: -A-B-A-B-A-B-A-Alternáló -A-A-B-B-B-B-BRPP, EVA, SBR Random (statisztikus)

-A-A-...-A-B-...-B- -A-A-A-A-...-A-A-A-A- ...-B-B B-B-...

Polimereknél nagy jelentőségű **elsőrendű** (kémiai, intermolekuláris) kötés. A kapcsolódó

H-H $\langle O=O \rangle$ $|C\equiv O|$

atomok megosztják a vegyértékelektronjaikat.

8 – Mi a kovalens kötés?

Blokk

Ojtott

1. ábra. Polietilén

#9 – Mit jelent a polimerizációs fok? A polimerizációs fok (**DP**, degree of polymerization) azt fejezi ki, hogy hány monomerből polimerizáltuk az adott molekulaláncot. # 10 – Sorolja fel a tömegműanyagokat és rajzolja fel az ismétlő egységeiket.

• Amorf:

A szferolit mikroszkóp alatt látható **szuperkristály**. Gömbszerű szerkezet, nem csak polimerekben figyelhető meg. Az anyagban az **inhomogenitás** (pl. szennyeződés) környékén indul meg a lamellák (**krisztallitok**) kialakulása. Kisszögű elágazások mentén lévő lamellacsoportosulásokat fibrilláknak nevezzük. Lehet sünis és kévés szerkezetű.

- PVC (Polivinil-klorid)

- ABS (Akrilnitril-butadién-sztirol)

- PMMA (Polimetil-metakrilát)

- PS (Polisztirol)

PC (Polikarbonát)

– Hogyan számítható a polimerek húzószilárdsága? A húzószilárdság a szakítógörbe **első lokális maximumánál** ébredő mérnöki feszültség.

Írja fel a Hooke-törvényt (szilárd testekre vonatkozólag)!

Mit jelent az üveges átmeneti hőmérséklet-tartomány?

Mit jelent az, hogy egy polimer viszkoelasztikus?

– Hooke-törvényt ($\sigma = E \cdot \varepsilon$) követő ideális rugó.

Molekulaláncok egymáshoz képest elcsúsznak.

- Mechanikailag és termodinamikailag is irreverzibilis.

 Atomtávolságok és vegyértékszögek megváltozása. Mechanikailag és termodinamikailag is reverzibilis.

– Newton-törvényt ($\sigma = \eta \cdot \dot{\varepsilon}$) követő ideális viszkózus elem.

Kelvin-Voigt elem (rugó és viszkózus elem páthuzamos kapcsolása).

állapotból nagyrugalmas amorf állapotba lép át.

• ε_{pr} – pillanatnyi rugalmas komponens

• ε_m – maradó deformáció

Mi a DM(T)A?

25 – Definiálja a viszkozitást!

Newton-törvény folyadékokra:

 $\tan \gamma = \gamma$ közelítéssel élve:

ensnek is szokás nevezni?)

sűrűbben folyik.

24 -

• Részben kristályos:

- PE (Polietilén)

- PA (Poliamid)

- PTFE (Teflon)

16 – Mi a szferolit?

18

20

vődik össze:

PP (Polipropilén)

- PET (Polietilén-tereftalát)

A húzási rugalmassági modulus a **szakítógörbe meredeksége**. A feszültség és az alakváltozás közötti kapcsolatot fejezi ki. Megmutatja, hogy adott terhelésre milyen nyúlással reagál az anyag. Fajtái: • kezdeti rug. mod. • húr mod. • érintő mod.

Az üvegesedési átmeneti hőmérséklet tartományában a polimer anyag **üvegesen amorf**

Viszkoelasztikus anyagoknál rugalmas (elasztikus) és viszkózus viselkedés is megfigyelhető. A feszültség-deformáció kapcsolat **nemlineáris**, a tulajdonságok a terhelési szinttől, terhelés időtartamától és a hőmérséklettől függenek. Összetett viselkedésüket ideális tulajdonságok kombinációjaként írjuk le. Az összdeformáció 3 komponensből te-

A Hooke-törvény az feszültég és az alakváltozás közötti egyenes arányosságot fejezi ki.

 $\sigma = E \cdot \varepsilon$

19 – Hogyan határozhatjuk meg egy polimer húzási rugalmassági modulusát?

Molekulaláncok ki- és visszagöngyölődése. Szegmensmozgások, konformációváltozások - Mechanikailag reverzibilis, de termodinamikailag nem. Hiszterézishurok jellemzi.

• ε_{kr} – **késleltetett rugalmas** komponens

 $= \sigma_0 \left(\cos \delta \sin(\omega t) + \sin \delta \cos(\omega t)\right)$ $= \sigma_0' \sin(\omega t) + \sigma_0'' \cos(\omega t)$

hetjük. Az alakváltozás és a feszültség között fáziskésés figyelhető meg:

 $\varepsilon(t) = \varepsilon_0 \cdot \sin(\omega t)$ $\sigma(t) = \sigma_0 \cdot \sin(\omega t + \delta)$

Írja fel a Newton törvényt folyadékok esetére!

- # 27 Mi az MFI?Az MFI (Melt flow index) a folyóképesség gyakorlati jellemzésére használt szabványos
- $meg(I, L, F, Z, \dots).$

létre. Egyszerű karbantartás, tisztitás, hőmérséklet pontosan beállíthtó.

A viselkedés a **Burgers-féle négyparaméteres modellel** írható le. Mi a kúszás? # 22A kúszás (nyúlásrelaxáció) vizsgálat egy statikus vizsgálat, ahol a próbatestre ugrásszerűen egy bizonyos időre **állandó nagyságú feszülséget** kapcsolunk. Megfigyelhetjük, hogy a próbatest alakváltozása az idő függvényében folyamatosan nő. Mi a feszültségrelaxáció? A feszültségrelaxáció vizsgálat szintén egy statikus vizsgálat, hiszen itt is állandó a gerjesztés. Megfigyelhetjük, hogy állandó alakváltozás fenntartásához egyre kisebb húzófeszültségre van szükség.

A DMA (dinamikus mechanikai analízis) egy **fárasztóvizsgálat**. Egy $4 \times 10 \times 60 \,\mathrm{mm}$ méretű hasábot **ciklikusan** (szinuszosan) **terheljük** és a feszültséget, alakváltozást az idő függvényében vizsgáljuk. A próbatestet csavaró vagy nyíró igénybevétellel is terhel-

A viszkozitás egy közeg ellenállásának mértéke a csúsztatófeszültség okozta alakváltozással szemben. Egy közeg **belső súrlódásaként** is felfogható. Nagyobb viszkozitású anyag

A Newton-törvényt követő ideálisan viszkózus folyadékkal töltött dugattyús henger:

 $\sigma = \eta \cdot \dot{\varepsilon}$

 $\dot{\gamma} = \lim_{\Delta t \to 0} \frac{\Delta \gamma}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta l}{\Delta t \cdot d} = \frac{v}{d}$

Ahol v a felső lap sebessége, $\dot{\gamma}$ a deformáció sebessége/nyírósebesség. (?sebességgradi-

A hengerszék eljárás **nagy viszkozitású** anyagokat és adalékanyagokat kever. **Szaka**szos üzemű, nyitott eljárás. Két azonos átmérőjű, temperált fémhenger különböző sebességgel egymással szemben forog. Az anyag az érdesebb, gyorsabban forgó, melegebb hengerre tapad. Szakállképződés jellemző, amely az anyag feltorlódását jelenti. A frikció a két henger szögsebességének hányadosa $(f = \omega_1/\omega_2 \approx 1, 1 \dots 1, 4)$. Nagy emberi tényező: veszélyes, **kézi etetés**, tapasztalat szükséges. Jó homogenitású keverék hozható

A kalanderezés a **hengerszék** tenchnológiájából alakult ki. 3, 4, 5 hengerből álló **hen-**

folyási mutatószám, megadja azt a grammokban kifejezett anyagmennyiséget, amely a vizsgálati és anyagszabványban előírt hőmérséklet és nyomás mellett a szabványos mérőkészülék kifolyónyílásán 10 perc alatt kifolyik.

28 – Mi a hengerszék?

 $\# \overline{29}$ – Mi a kalander?

30 – Mi az extrúzió? Tipikusan termoplasztikus (hőre lágyuló) polimert az extrúder képlékeny állapotba hozza, majd a viszkózusan folyós ömledéket komprimálja (nyomás alá helyezi), homogenizálja, adott, változatlan keresztmetszetű, nyitott szerszámon keresztülsajtolja, méretállandóságot követőberendezésekkel biztosítva lehűti, és így állandó keresztmetszetű polimer terméket gyárt tetszőleges hosszúságban, folytonos üzemben. A kijövő termék kiterjedése tehát az egyik dimenzióban végtelen, ami lehet cső, síklap, profilos

a **termoplasztikus** (hőre lágyuló) polimer alapanyagot olvadáspontja fölé, vagyis *visz*kózusan folyós ömledékállapotba hozzuk, majd ezt nagy sebességgel és nyomással, szűk beömlőnyíláson át egy zárt, **temperált** (szabályozott hőmérsékletű) **szerszámba** juttatjuk. **Tetszőlegesen bonyolult**, 3D-s, nagy méretpontosságú alkatrész alakítható ki gyakolatilag **hulladékmentesen**. # 32 -Mi a kompozit? A kompozit **többfázisú** (alkotóiban fázishatárokkal elválasztott), több alkotóból álló összetett szerkezeti anyag, amely erősítőanyagból (szálerősítő) és befoglaló mátrixanyagból áll, és az jellemzi, hogy a **nagy szilárdságú** és **nagy rugalmassági modolusú** (szálas) erősítőanyag és a rendszerint kisebb szilárdságú mátrix között kitűnő első vagy másodrendű kötések általi adhéziós kapcsolat van, amely a deformáció magas szintjén is **tartósan fennmarad**. A kompozitok kialakítása abból a felismerésből jött létre, hogy az alkatrészek terhelésének iránya meghatározható, ebbe az irányba nagyobb

1 / 1

hasáb, fólia, stb. Az alapanyag por vagy granulátum, adalékanyagokkal. Mi a fröccsöntés? Polimer késztermékek előállítására alkalmas szakaszos (ciklikus) eljárás. Alapelve, hogy

gersor, mellyel folytonos gyártás valósítható meg. Az eljárással fóliákat, vékony lemezeket gyárthatunk. A hengerek felülete tükrös, edzett, nitridált. A hengerek temperáltak, egymással ellentétes irányba forognak. Különböző elrendezések valósíthatóak

szilárdságra van szükség.