Методы оптимизации. Семинар 1. Введение. Выпуклые множества. Конусы.

Александр Катруца

Московский физико-технический институт

1 сентября 2020 г.

О чём этот курс?

Первый семестр (теоретический):

- Основы выпуклого анализа
- Условия оптимальности
- Теория двойственности
- Линейное программирование: симплекс-метод

О чём этот курс?

Первый семестр (теоретический):

- Основы выпуклого анализа
- Условия оптимальности
- Теория двойственности
- Линейное программирование: симплекс-метод

Второй семестр (практический):

- Методы безусловной минимизации первого и второго порядка
- Методы условной оптимизации
- Барьерные методы
- Оптимальные методы
- **...**

▶ Семинар и лекция раз в неделю

- ▶ Семинар и лекция раз в неделю
- Домашние задания раз в неделю. Решения оформляются в РТЕХ

- Семинар и лекция раз в неделю
- Домашние задания раз в неделю. Решения оформляются в РТЕХ
- ▶ Экзамен в конце семестра. Оценка за курс среднее арифметическое:

- ▶ Семинар и лекция раз в неделю
- Домашние задания раз в неделю. Решения оформляются в LATEX
- ▶ Экзамен в конце семестра. Оценка за курс среднее арифметическое:
 - оценки за работу в семестре

- ▶ Семинар и лекция раз в неделю
- Домашние задания раз в неделю. Решения оформляются в LATEX
- ▶ Экзамен в конце семестра. Оценка за курс среднее арифметическое:
 - оценки за работу в семестре
 - ответа на экзамене

- Семинар и лекция раз в неделю
- Домашние задания раз в неделю. Решения оформляются в РТЕХ
- ▶ Экзамен в конце семестра. Оценка за курс среднее арифметическое:
 - оценки за работу в семестре
 - ответа на экзамене
- ▶ Piazza для Q&A

Литература

Основная книга

- S. Boyd and L. Vandenberghe *Convex Optimization* https://web.stanford.edu/~boyd/cvxbook/
- ▶ В.Г. Жадан Методы оптимизации. Часть 1. Введение в выпуклый анализ и теорию оптимизации
- R.T. Rockafellar Convex analysis

• Формализация задачи выбора элемента из множества

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:
 - ▶ машинное обучение
 - молекулярное моделирование

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение
 - молекулярное моделирование
 - анализ рисков

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение
 - молекулярное моделирование
 - анализ рисков
 - выбор активов (portfolio optimization)

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение
 - молекулярное моделирование
 - анализ рисков
 - выбор активов (portfolio optimization)
 - оптимальное управление

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение
 - молекулярное моделирование
 - анализ рисков
 - выбор активов (portfolio optimization)
 - оптимальное управление
 - обработка сигналов

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение
 - молекулярное моделирование
 - анализ рисков
 - выбор активов (portfolio optimization)
 - оптимальное управление
 - обработка сигналов
 - оценка параметров в статистике

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение
 - молекулярное моделирование
 - анализ рисков
 - выбор активов (portfolio optimization)
 - оптимальное управление
 - обработка сигналов
 - оценка параметров в статистике
 - и другие

Предварительные навыки

Первый семестр

- Линейная алгебра
- Математический анализ
- Элементы вычислительной математики

Второй семестр

- ▶ Программирование: Python (NumPy, SciPy, CVXPY, JAX/PyTorch)
- Элементы вычислительной математики

Основные этапы использования методов оптимизации при решении реальных задач:

1. Определение целевой функции

- 1. Определение целевой функции
- 2. Определение допустимого множества решений

- 1. Определение целевой функции
- 2. Определение допустимого множества решений
- 3. Постановка и анализ оптимизационной задачи

- 1. Определение целевой функции
- 2. Определение допустимого множества решений
- 3. Постановка и анализ оптимизационной задачи
- 4. Выбор наилучшего алгоритма для решения поставленной задачи

- 1. Определение целевой функции
- 2. Определение допустимого множества решений
- 3. Постановка и анализ оптимизационной задачи
- 4. Выбор наилучшего алгоритма для решения поставленной задачи
- 5. Реализация алгоритма и проверка его корректности

$$\min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$

$$f_j(\mathbf{x}) \le 0, \ j = p + 1, \dots, m,$$

$$\min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$

$$f_j(\mathbf{x}) \le 0, \ j = p + 1, \dots, m,$$

 $\mathbf{x} \in \mathbb{R}^n$ — искомый вектор

$$\min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$

$$f_j(\mathbf{x}) \le 0, \ j = p + 1, \dots, m,$$

- $\mathbf{x} \in \mathbb{R}^n$ искомый вектор
- $lackbox{ iny } f_0(\mathbf{x}): \mathbb{R}^n
 ightarrow \mathbb{R}$ целевая функция

$$\min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$

$$f_j(\mathbf{x}) \le 0, \ j = p + 1, \dots, m,$$

- $\mathbf{x} \in \mathbb{R}^n$ искомый вектор
- $lackbox{ iny } f_0(\mathbf{x}): \mathbb{R}^n
 ightarrow \mathbb{R}$ целевая функция
- ullet $f_k(\mathbf{x}): \mathbb{R}^n o \mathbb{R}$ функции ограничений типа равенств и неравенств

$$\min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$

$$f_j(\mathbf{x}) \le 0, \ j = p + 1, \dots, m,$$

- $\mathbf{x} \in \mathbb{R}^n$ искомый вектор
- $lackbox{ iny } f_0(\mathbf{x}): \mathbb{R}^n
 ightarrow \mathbb{R}$ целевая функция
- $ullet f_k(\mathbf{x}): \mathbb{R}^n o \mathbb{R}$ функции ограничений типа равенств и неравенств
- $ullet {f x}^*$ точка минимума (локального или глобального)

$$\min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$

$$f_j(\mathbf{x}) \le 0, \ j = p + 1, \dots, m,$$

- $\mathbf{x} \in \mathbb{R}^n$ искомый вектор
- $lackbox{} f_0(\mathbf{x}): \mathbb{R}^n
 ightarrow \mathbb{R}$ целевая функция
- $ullet f_k(\mathbf{x}): \mathbb{R}^n o \mathbb{R}$ функции ограничений типа равенств и неравенств
- $ullet {f x}^*$ точка минимума (локального или глобального)
- f^* минимальное значение (локальное или глобальное) функции на допустимом множестве

Пример формализации задачи

Дан набор активов между которыми надо распределить имеющиеся средства. Нужно определить, какую часть в какой актив вложить.

Обозначения

- x размер инвестиций в каждый актив
- $\mathbf{r}(\mathbf{x})$ суммарный риск или вариация прибыли при данном распределении \mathbf{x}
- ightharpoonup c бюджетные ограничения: ограничения по вложению в каждый актив

Возможные задачи

- Максимизация ожидаемой прибыли
- Минимизация рисков

Как решать?

В общем случае:

- NP-полные
- ▶ рандомизированные алгоритмы: время vs. стабильность

Но определённые классы задач могут быть решены быстро!

- Линейное программирование
- Линейная задача наименьших квадратов
- > Задача о малоранговом приближении матрицы
- Задача выпуклой оптимизации

Линейное программирование

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{ op} \mathbf{x}$$

s.t. $\mathbf{a}_i^{\top} \mathbf{x} \leq b_i, \ i = 1, \dots, m$

- нет аналитического решения
- существуют эффективные алгоритмы
- разработанная технология
- ▶ симплекс-метод входит в Тор-10 алгоритмов XX века¹

Линейная задача наименьших квадратов

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

где $\mathbf{A} \in \mathbb{R}^{m \times n}$ и $\mathbf{b} \in \mathbb{R}^m$, m > n.

- имеет аналитическое решение
- существуют эффективные алгоритмы для его вычисления
- разработанная технология
- имеет статистическую интерпретацию

Малоранговое приближение матрицы

$$\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \|\mathbf{A} - \mathbf{X}\|_F$$
 s.t. $\mathsf{rank}(\mathbf{X}) \leq k$

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) \\ \text{s.t. } & f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, p \\ & \mathbf{A}\mathbf{x} = \mathbf{b}, \quad \mathbf{A} \in \mathbb{R}^{m \times n}, \ m < n \end{aligned}$$

▶ f_0, f_i — выпуклые функции:

$$f(\alpha {\bf x}_1+\beta {\bf x}_2) \leq \alpha f({\bf x}_1)+\beta f({\bf x}_2),$$
 где $\alpha,\beta \geq 0$ и $\alpha+\beta=1.$

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) \le 0, \ i = 1, \dots, p$

$$\mathbf{A}\mathbf{x} = \mathbf{b}, \quad \mathbf{A} \in \mathbb{R}^{m \times n}, \ m < n$$

▶ f_0, f_i — выпуклые функции:

$$f(\alpha \mathbf{x}_1+\beta \mathbf{x}_2) \leq \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$
 где $\alpha,\beta \geq 0$ и $\alpha+\beta=1.$

нет аналитического решения

$$\begin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) \\ \text{s.t. } f_i(\mathbf{x}) &\leq 0, \ i = 1, \dots, p \\ \mathbf{A}\mathbf{x} &= \mathbf{b}, \quad \mathbf{A} \in \mathbb{R}^{m \times n}, \ m < n \end{aligned}$$

▶ f_0, f_i — выпуклые функции:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где $\alpha, \beta \geq 0$ и $\alpha + \beta = 1$.

- нет аналитического решения
- существуют эффективные методы решения

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) \\ \text{s.t. } & f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, p \\ & \mathbf{A}\mathbf{x} = \mathbf{b}, \quad \mathbf{A} \in \mathbb{R}^{m \times n}, \ m < n \end{aligned}$$

▶ f_0, f_i — выпуклые функции:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где $\alpha, \beta \geq 0$ и $\alpha + \beta = 1$.

- нет аналитического решения
- существуют эффективные методы решения
- существуют приёмы для преобразования задачи к стандартному виду

Главное в первой части

- ▶ Организация работы
- Предмет курса по оптимизации
- Общая формулировка оптимизационных задач
- ▶ Классические оптимизационные задачи

Выпуклые множества и конусы

- Для задания целевой функции необходимо задать область её определения
- Выпуклые функции определены на выпуклых множествах
- Коническое представление задачи оптимизации существенно упрощает её решение
- Большинство универсальных солверов для задач выпуклой оптимизации работают с коническими задачами

Операции с множествами

lacktriangle Линейная комбинация множеств \mathcal{G}_1 , \mathcal{G}_2

$$\alpha \mathcal{G}_1 + \beta \mathcal{G}_2 = \{ \mathbf{x} \mid \mathbf{x} = \alpha \mathbf{x}_1 + \beta \mathbf{x}_2, \ \mathbf{x}_1 \in \mathcal{G}_1, \ \mathbf{x}_2 \in \mathcal{G}_2 \},$$

где $\alpha, \beta \in \mathbb{R}$

lacktriangle Декартово произведение \mathcal{G}_1 , \mathcal{G}_2

$$\mathcal{G}_1 \times \mathcal{G}_2 = \{(\mathbf{x}_1, \mathbf{x}_2) \mid \mathbf{x}_1 \in \mathcal{G}_1, \ \mathbf{x}_2 \in \mathcal{G}_2\}$$

Аффинное множество

Аффинное множество

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1\in\mathcal A$, $\mathbf x_2\in\mathcal A$ и $\theta\in\mathbb R$ точка $\theta\mathbf x_1+(1-\theta)\mathbf x_2\in\mathcal A$.

Примеры: \mathbb{R}^n , гиперплоскость, точка.

Аффинная комбинация точек

Пусть $\mathbf{x}_1,\dots,\mathbf{x}_k\in\mathcal{G}$, тогда **точка** $\theta_1\mathbf{x}_1+\dots+\theta_k\mathbf{x}_k$ при $\sum_{i=1}^k\theta_i=1$ называется аффинной комбинацией точек $\mathbf{x}_1,\dots,\mathbf{x}_k.$

Аффинная оболочка точек

Множество $\left\{\sum\limits_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in \mathcal{G}, \sum\limits_{i=1}^k \theta_i = 1\right\}$ называется аффинной оболочкой множества \mathcal{G} и обозначается $\operatorname{aff}(\mathcal{G})$.

Факты об аффинных множествах

Утверждение 1

Множество является аффинным тогда и только тогда, когда в него входят все аффинные комбинации его точек.

Утверждение 2

Множество является аффинным тогда и только тогда, когда его можно представить в виде $\{\mathbf{x}\mid \mathbf{A}\mathbf{x}=\mathbf{b}\}$, где $\mathbf{A}\in\mathbb{R}^{m\times n}$ и $m\leq n$.

Внутренности множества

Внутренность множества

Внутренность множества ${\mathcal G}$ состоит из точек ${\mathcal G}$, таких что:

$$\operatorname{int}(\mathcal{G}) = \{ \mathbf{x} \in \mathcal{G} \mid \exists \varepsilon > 0, B(\mathbf{x}, \varepsilon) \subset \mathcal{G} \},\$$

где
$$B(\mathbf{x}, \varepsilon) = \{\mathbf{y} \mid \|\mathbf{x} - \mathbf{y}\|_2 \le \varepsilon\}$$

Относительная внутренность

Относительной внутренностью множества ${\mathcal G}$ называют следующее множество:

relint
$$(\mathcal{G}) = \{ \mathbf{x} \in \mathcal{G} \mid \exists \varepsilon > 0, B(\mathbf{x}, \varepsilon) \cap \text{aff } (\mathcal{G}) \subseteq \mathcal{G} \}$$

Q: зачем нужна концепция относительной внутренности?

Примеры

Найти относительные внутренности следующих множеств

- 1. $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$
- 2. $\{\mathbf{x} \in \mathbb{R}^n \mid \sum_{i=1}^n \alpha_i x_i^2 \le 1, \ \alpha_i > 0, i = 1, \dots, n\}$
- 3. $\{\mathbf{x} \in \mathbb{R}^n \mid \sum_{i=1}^n \alpha_i x_i^2 = 1, \ \alpha_i > 0, i = 1, \dots, n\}$
- **4.** $\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid -1 \le x_1 \le 1, -1 \le x_2 \le 1, x_3 = 0\}$

Выпуклое множество

Выпуклое множество

Множество $\mathcal X$ называется выпуклым, если

$$\forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}, \ \theta \in [0,1] \to \theta \mathbf{x}_1 + (1-\theta)\mathbf{x}_2 \in \mathcal{X}.$$

Множества \varnothing и $\{\mathbf{x}_0\}$ также считаются выпуклыми.

Примеры: \mathbb{R}^n , аффинное множество, луч, отрезок.

Выпуклое множество

Невыпуклое множество

Выпуклая оболочка множества

Выпуклая комбинация точек

Точка $\theta_1\mathbf{x}_1+\ldots+\theta_k\mathbf{x}_k$ при $\sum_{i=1}^k\theta_i=1,\;\theta_i\geq 0$ называется выпуклой комбинацией точек $\mathbf{x}_1,\ldots,\mathbf{x}_k.$

Выпуклая оболочка множества

Выпуклой оболочкой множества $\mathcal G$ называется **множество**

conv
$$(\mathcal{G}) = \left\{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in \mathcal{G}, \sum_{i=1}^{k} \theta_i = 1, \theta_i \ge 0 \right\}.$$

Выпуклая оболочка множества $\mathcal{G} = \{\mathbf{x}_1, \dots, \mathbf{x}_9\}$

Факты о выпуклых множествах

- 1. Множество $\mathcal G$ выпукло тогда и только тогда, когда любая выпуклая оболочка точек из $\mathcal G$ лежит в $\mathcal G$
- 2. Если \mathcal{X} выпуклое множество и $\bar{\mathcal{X}}\subset\mathcal{X}$, то $\mathrm{conv}\left(\bar{\mathcal{X}}\right)\subset\mathcal{X}.$

Теорема Каратеодори

Если множество $\mathcal{G}\subset\mathbb{R}^n$, тогда любая точка из $\mathrm{conv}\,(\mathcal{G})$ является выпуклой комбинацией не более чем n+1 точки из $\mathcal{G}.$

Операции, сохраняющие выпуклость множества

- Пересечение любого (конечного или бесконечного) числа выпуклых множеств выпуклое множество
- Образ аффинного отображения, $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$, выпуклого множества выпуклое множество
- Линейная комбинация выпуклых множеств выпуклое множество
- Декартово произведение выпуклых множеств выпуклое множество

Примеры

Проверьте на аффинность и выпуклость следующие множества:

- 1. Полупространство: $\{\mathbf{x} \mid \mathbf{a}^{\top} \mathbf{x} \leq c\}$
- 2. Многоугольник: $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}, \ \mathbf{C}\mathbf{x} = 0 \}$
- 3. Шар по норме в \mathbb{R}^n : $B(r, \mathbf{x}_c) = {\mathbf{x} \mid ||\mathbf{x} \mathbf{x}_c|| \le r}$
- 4. Эллипсоид:

$$\mathcal{E}(\mathbf{x}_c, \mathbf{P}, r) = \{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^{\mathsf{T}} \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \le r^2 \}$$

- 5. Множество симметричных положительно-полуопределённых матриц: $\mathbf{S}_{+}^{n} = \{\mathbf{X} \in \mathbb{R}^{n \times n} \mid \mathbf{X}^{\top} = \mathbf{X}, \ \mathbf{X} \succeq 0\}$
- 6. $\{\mathbf{X} \in \mathbb{R}^{n \times n} \mid \text{trace}(\mathbf{X}) = const\}$
- 7. Гиперболическое множество: $\{\mathbf{x} \in \mathbb{R}^n_+ \mid \prod_{i=1}^n x_i \geq 1\}$

Конус

Определение

Множество $\mathcal C$ называется

▶ конусом, если $\forall \mathbf{x} \in \mathcal{C}, \theta \geq 0 \rightarrow \theta \mathbf{x} \in \mathcal{C}$

▶ выпуклым конусом, если

$$\forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{C}, \theta_1, \theta_2 \ge 0 \to \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in \mathcal{C}$$

Примеры: аффинное множество, включающее 0; луч.

Коническая комбинация и коническая оболочка

Коническая (неотрицательная) комбинация точек

Пусть $\mathbf{x}_1,\dots,\mathbf{x}_k\in\mathcal{G}$, тогда **точка** $\theta_1\mathbf{x}_1+\dots+\theta_k\mathbf{x}_k$ при $\theta_i\geq 0$ называется конической (неотрицательной) комбинацией точек $\mathbf{x}_1,\dots,\mathbf{x}_k$.

Коническая оболочка точек

Множество $\left\{\sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in \mathcal{G}, \theta_i \geq 0\right\}$ называется конической оболочкой множества \mathcal{G} , обозначается $\mathrm{cone}\left(\mathcal{G}\right)$.

Коническая оболочка $\mathcal{G} = \{\mathbf{x}_1, \dots, \mathbf{x}_4\}$

Примеры конусов

- 1. Неотрицательный октант $\mathbb{R}^n_+ = \{ \mathbf{x} \in \mathbb{R}^n \mid x_1 \geq 0, \dots, x_n \geq 0 \}$
- 2. Множество симметричных положительно-определённых матриц ${\bf S}^n_+$
- 3. Нормальный конус: $\{(\mathbf{x},t)\in\mathbb{R}^{n+1}\mid \|\mathbf{x}\|\leq t\}$ Для ℓ_2 -нормы называется конусом второго порядка или Лоренцевым конусом
- 4. Экспоненциальный конус: $\{(x,y,z)\mid x\geq ye^{z/y},\ y>0\}$ и его замыкание

Постановка задачи

$$\begin{aligned} \min \mathbf{c}^{\top} \mathbf{x} \\ \text{s.t. } \mathbf{A} \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\in \mathcal{C}, \end{aligned}$$

где \mathcal{C} — некоторый выпуклый конус.

Постановка задачи

$$\begin{aligned} \min \mathbf{c}^{\top} \mathbf{x} \\ \text{s.t. } \mathbf{A} \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\in \mathcal{C}, \end{aligned}$$

где \mathcal{C} — некоторый выпуклый конус.

Q: Какие задачи можно представить в таком виде?

Постановка задачи

$$\min \mathbf{c}^{\top} \mathbf{x}$$
 s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$ $\mathbf{x} \in \mathcal{C},$

где \mathcal{C} — некоторый выпуклый конус.

Q: Какие задачи можно представить в таком виде?

А: Большинство задач, возникающих в приложениях

Постановка задачи

$$\begin{aligned} \min \mathbf{c}^{\top} \mathbf{x} \\ \text{s.t. } \mathbf{A} \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\in \mathcal{C}, \end{aligned}$$

где C — некоторый выпуклый конус.

Q: Какие задачи можно представить в таком виде?

А: Большинство задач, возникающих в приложениях

Q: Почему это важно?

Постановка задачи

$$\begin{aligned} \min \mathbf{c}^{\top} \mathbf{x} \\ \text{s.t. } \mathbf{A} \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\in \mathcal{C}, \end{aligned}$$

где \mathcal{C} — некоторый выпуклый конус.

Q: Какие задачи можно представить в таком виде?

А: Большинство задач, возникающих в приложениях

Q: Почему это важно?

А: Если задача представима в таком виде, то с высокой вероятностью её можно решить за полиномиальное время.

Главное во второй части

- Аффинное множество
- Выпуклое множество
- Конус
- ▶ Методы проверки свойств конкретных множеств