ADVANCED ANALYSIS OF ALGORITHMS CPS 5440

OMAR DIB

MEDIAN AND ORDER STATISTICS

The k-th order statistic is the k-th smallest element of an array.

The lower median is the $\left\lfloor \frac{n}{2} \right\rfloor - th$ order statistic floor() The upper median is the $\left\lceil \frac{n}{2} \right\rceil - th$ order statistic ceil() If n is odd, lower and upper median are the same

- \Box Selecting i-th ranked item from a collection
 - First: i = 1
 - Last: i = n
- \square Median (s): $i = \left| \frac{n}{2} \right|$, $\left[\frac{n}{2} \right]$

- Assume collection is unordered, otherwise trivial
 - find i th order stat = A[i]
- \square Can sort first $-\Theta(n \lg n)$, but can do better $-\Theta(n)$
- \square I can find max and min in $\Theta(n)$ time (obvious)
- ☐ Can we find any order statistic in linear time? (not obvious!)

 \square How can we modify Quicksort to obtain expected-case $\Theta(n)$?

☐ Pivot, partition, but recur only on one set of data. No join.

RANDOMIZED SELECTION

```
RAND-SELECT (A, p, q, i) // i - th smallest of A[p . . q]
   if p = q then return A [p]
   r \leftarrow RAND-PARTITION(A, p, q)
   k \leftarrow r - p + I // k = rank(A[r])
   if i = k then // i - th smallest element is found
       return A [r]
   if i < k then // search on the left array
       return RAND-SELECT (A, p, r - 1, i)
                  // search on the right array
   else
       return RAND-SELECT (A, r + 1, q, i - k)
```


RAND-SELECT | EXAMPLE

 \Box Select the i = 6th smallest element

```
RAND-SELECT (A, p, q, i) // i - th smallest of A[p . . q]

if p = q then return A [p]

r \leftarrow \text{RAND-PARTITION } (A, p, q)

k \leftarrow r - p + l // k = \text{rank}(A[r])

if i = k then // i - th smallest element is found

return A [r]

if i < k then // search on the left array

return RAND-SELECT (A, p, r - 1, i)

else // search on the right array

return RAND-SELECT (A, r + 1, q, i - k)
```


partition (A, p = 1, q = 8, i = 6)

A 2 5 3 6 8 13 10 11

$$p = 1$$
 $r = 4$ $q = 8$
 $k = r - p + 1 = 4$

- $i > k \rightarrow$ Search on the right partition \rightarrow Select the (i k) = 6 4 = 2 nd smallest in the right \rightarrow partition (A, r + 1, q, i k)
- \rightarrow partition (A, p = 4 + 1, q = 8, i = 6 4)
- \rightarrow partition (A, p = 5, q = 8, i = 2)

RAND-SELECT | EXAMPLE

 \square Select the i=2th smallest in the right partition(A, p=5, q=8, i=2)

```
RAND-SELECT (A, p, q, i) // i - th smallest of A[p . . q]

if p = q then return A [p]

r \leftarrow \text{RAND-PARTITION } (A, p, q)

k \leftarrow r - p + l // k = \text{rank}(A[r])

if i = k then // i - th smallest element is found

return A [r]

if i < k then // search on the left array

return RAND-SELECT (A, p, r - 1, i)

else // search on the right array

return RAND-SELECT (A, r + 1, q, i - k)
```


$$r = 7$$

 $k = 7 - 5 + 1 = 3$

 $i < k \rightarrow$ Search on the left partition \rightarrow Select the (i - th) = 2 - nd smallest in the left

- \rightarrow partition (A, p, r-1, i)
- → partition (A, p = 5, q = 7 1, i = 2)
- \rightarrow partition (A, p = 5, q = 6, i = 2)

RAND-SELECT | EXAMPLE

 \square Select the i th = 2th smallest partition (A, p = 5, q = 6, i = 2)

```
RAND-SELECT (A, p, q, i) || i - th smallest of A[p . . q]

if p = q then return A [p]

r \leftarrow \text{RAND-PARTITION } (A, p, q)

k \leftarrow r - p + l || k = \text{rank}(A[r])

if i = k then || i - th smallest element is found return A [r]

if i < k then || search on the left array return RAND-SELECT (A, p, r - 1, i)

else || search on the right array return RAND-SELECT (A, r + 1, q, i - k)
```


$$i=k=2$$
 if $i=k$ then $//i-th$ smallest element is found return A $\begin{bmatrix} r \end{bmatrix}$

```
RAND-SELECT (A, p, q, i) // i -th smallest of A[p..q]
   if p = q then return A [p]
                                          O(I)
   r \leftarrow RAND-PARTITION(A, p, q)
                                          O(n)
   k \leftarrow r - p + I //k = rank(A [r])
                                        O(1)
   if i = k then //ith smallest element is found
                                                      O(1)
      return A [r]
   if i < k then // search on the left array
                                                            T(problem of smaller size)
      return RAND-SELECT (A, p, r - I, i)
                                                            T(problem of smaller size)
                // search on the right array
   else
      return RAND-SELECT (A, r + I, q, i - k)
```

 $\Box If$ the selected pivot leads to two partitions of size $\frac{9}{10}n$ and $\frac{1}{10}n$ and the i-th element is located in the $\frac{9}{10}n$ partition then

$$T(n) = T(\frac{9}{10}n) + O(n)$$

How to solve the recursion?

- Master Theorem?
- Substitution?
- Recursion tree?

☐ Master Theorem

$$T(n) = T(\frac{9}{10}n) + O(n)$$

The master method applies to recurrences of the form

$$T(n) = a T(n/b) + f(n),$$

where $a \geq 1, b > 1$,

and f is asymptotically positive.

$$a = 1; b = \frac{10}{9}; f(n) = n$$

Master theorem can be applied!

Compare f(n) with $n^{\log_b a}$:

Case I:

If $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$. Then: $T(n) = \Theta(n^{\log_b a})$

Case 2:

If $f(n) = \Theta(n^{\log_b a})$. Then: $T(n) = \Theta(n^{\log_b a} \lg n)$

Case 3:

If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$. and $a f(\frac{n}{b}) \le c f(n)$ for some constant $c < 1 \ \forall n$. Then: $T(n) = \Theta(f(n))$

$$a = 1; b = \frac{10}{9}; f(n) = n$$

$$log_b a = log_{\frac{10}{9}} 1 = 0$$

$$f(n) = n = \Omega\left(n^{\log_b a + \varepsilon}\right) = \Omega\left(n^{0+\varepsilon}\right) \text{ for } \varepsilon = 1 > 0.$$

$$and$$

$$a f\left(\frac{n}{b}\right) = 1 * f\left(\frac{9n}{10}\right) = \frac{9n}{10} \le \frac{9}{10} f(n) \text{ for } c = \frac{9}{10} < 1 \ \forall \ n.$$

$$Then:$$

$$T(n) = \Theta(f(n)) = \Theta(n)$$

We will get linear time for the RandSelect algorithm even if we always look at the longest $\frac{9}{10}n$ partition

But ...?

What if we select the worst pivot?

The selected pivot is always the min (or max) or the array is already sorted

 \square Worst case: One partition of size 0 and another of size n-1

$$\Box T(n) = T(n-1) + O(n)$$

Master theorem does not apply?

Recursion tree?

Substitution method?

$$(n) + (n-1) + (n-2) + (n-3) + \dots + 1 =$$

Arithmetic series

Sum =
$$n * (\frac{a_1 + a_n}{2})$$

= $n * (\frac{1+n}{2}) = O(n^2)$ = Worse than sorting!

Is there an algorithm that runs in linear time in the worst case?

Yes, due to Blum, Floyd, Pratt, Rivest, and Tarjan [1973].

Generate a good pivot recursively. This algorithm has a large constants though and therefore is not efficient in practice!!!!

MEDIAN-OF-MEDIAN ALGORITHM

MEDIAN-OF-MEDIAN ALGORITHMS

```
RAND-SELECT2(A, p, q, i) // i - th smallest of A[p..q]
    if p = q then return A [ p ]
    x \leftarrow GOOD\_PIVOT(A, p, q)
    r \leftarrow PARTITION_WITH_PIVOT(A, p, q, x)
    k \leftarrow r - p + I //k = rank(A [r])
    if i = k then // i - th smallest element is found
         return A [r]
    if i < k then // search on the left array
         return RAND-SELECT (A, p, r - I, i)
                      // search on the right array
    else
         return RAND-SELECT (A, r + I, q, i - k)
```

```
RAND-SELECT (A, p, q, i) // i - th smallest of A[p .. q]

if p = q then return A [p]

r \leftarrow \text{RAND-PARTITION } (A, p, q)

k \leftarrow r - p + l // k = \text{rank}(A[r])

if i = k then // i - th smallest element is found return A [r]

if i < k then // search on the left array return RAND-SELECT (A, p, r - 1, i)

else // search on the right array return RAND-SELECT (A, r + 1, q, i - k)
```

```
Good-Pivot(A, p, r)

B \leftarrow \text{array of length } [(r - p + I)/5]

for j \leftarrow p to r by 5

B[I + (j - p)/5] \leftarrow \text{median of A}[j... \min(j + 4, r)]

return RAND-SELECT2(B, I, B.length, [B.length/2])
```

4
8
2
3
I

5	
4	
7	
4	
7	

9	
8	
I	
3	
3	

5	
I	
4	
3	
6	

6	
6	
9	
10	
4	

I
2
3
4
8

4
4
5
7
7

I	
3	
3	
8	
9	

I
2
4
4
10

I	
3	
4	
5	
6	

4
6
6
9
10

I	
2	
3	
4	
8	

4	
4	
5	
7	
7	

ı	
3	
3	
8	
9	

I
2
4
4
10

I	
3	
4	
5	
6	

4	
6	
6	
9	
10	

I
2
3
4
8

4	
4	
5	
7	
7	

I	
3	
3	
8	
9	

I	
2	
4	
4	
10	

3	
4	
5	
6	

4	
6	
6	
9	
10	

3	5	3	4	4	6	8

What is the median of medians?

Input is too small → Sort and get the median

median of medians?

[4, 8, 2, 3, 1, 5, 4, 7, 4, 7, 9, 8, 1, 3, 3, 2, 4, 1, 4, 10, 5, 1, 4, 3, 6, 6, 6, 9, 10, 4, 10, 6, 7, 9, 8], k = 25

median of medians?

Left: 17

Right: 18

 $K = 25 \ge 17$ we must search on the right side.

The new index we are looking for is: $25 - 17 = 8 \rightarrow 8^{th}$ smallest element in the Right array

8	5	7	7	9	8	10	5	6	6	6	9	10	10	6	7	9	8	k
			I	1			1	l	1		I			l			1	

k = 8

Search for a good pivot → median of medians

Sorting

8	5	7	7	9	8	10	5	6	6	6	9	10	10	6	7	9	8	k = 8
---	---	---	---	---	---	----	---	---	---	---	---	----	----	---	---	---	---	-------

Computing medians

8 5 7 7 9 8 10 5 6 6 6 9 10 10 6 7 9
--

k = 8

7 6 9 8

What is the median of median?

k = 8

5
7
7
8
9

7 8 9

6 7 8 9

6 7 8 9

Input is too small → Sort and get Arr[n/2]
Otherwise, recursively apply median of median algorithm on the Arr

k = 8

/

median of medians?

 $K = 8 \le 9$ we must search on the left side.

The new index we are looking for is: $8 \rightarrow 8^{th}$ smallest element in the left array

5 7 7 5 6 6 6 6 7 *k* = 8

Search for a good pivot → median of medians

5 7 7 5 6 6 6 6 7 *k* = 8

Sorting

5 7 7 5 6 6 6 6 7

k = 8

Computing medians

5 7 7 5 6 6 6 6 7

k = 8

6 6

What is the median of median?

6

median of medians?

k = 8

 $K = 8 \ge 6$ we must search on the right side.

The new index we are looking for is: 8-6 \rightarrow 2th smallest element in the right array

7 | 7 | 7 | k = 2

The input is too small now, → Sort

The 25th smallest element in the original list is: 7

If we were to sort the original array!!

4	8	2	3	I	5	4	7	4	7	9	8	I	3	3	2	4	ı	4	10	5	I	4	3	6	6	6	9	10	4	10	6	7	9	7

ı	2	3	4	5	6	7	8	9	10	Ш	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
I	I	I	I	2	2	3	3	3	3	4	4	4	4	4	4	4	5	5	6	6	6	6	7	7	7	7	8	8	9	9	9	10	10	10

99 is median \implies 99 > 7, 2

110 is median \rightarrow 110 > 41, 18

111 is median \rightarrow 111 is > 110, 110

111 is median of median \rightarrow 111 > 110, 99

 \rightarrow 111 > 110, 110, 110, 41, 18, 99, 7, 2 \geq 9/25

- •Top left: Every item in this quadrant is strictly less than the median
- •Bottom left: These items may be bigger (or smaller!) than the median
- •Top right: These items may be bigger (or smaller!) than the median
- •Bottom right: Every item in this quadrant is strictly greater than the median

- Every item in the top left is strictly less than our pivot.
- How many items are there as a function of n?
- Each column has 5 items, of which we'll take 3;
- We're taking half of the columns, thus: $((n/5)/2) \times 3 = (3/10) n$ elements

Therefore, at minimum, at each step, we will remove 30% of the elements.

- \rightarrow In the worst case, we will always look at (7/10) elements which is < (9/10)
- → Linear time for the Rand-Select algorithm

```
RAND-SELECT2 (A, p, q, i) // i -th smallest of A[p..q]

if p = q then return A [p]

x \leftarrow GOOD\_PIVOT (A, p, q)

r \leftarrow PARTITION\_WITH\_PIVOT (A, p, q, x)

k \leftarrow r - p + I //k = rank(A [r])

if i = k then //ith smallest element is found

return A [r]

if i < k then // search on the left array

return RAND-SELECT (A, p, r - I, i)

else // search on the right array

return RAND-SELECT (A, r + I, q, i - k)
```

```
Good-Pivot(A, p, r)
B \leftarrow \text{array of length } [(r - p + 1)/5]
\text{for } j \leftarrow p \text{ to r by 5}
B[I + (j - p)/5] \leftarrow \text{median of A}[j.. \min(j + 4, r)]
\text{return RAND-SELECT2}(B, I, B.length, [B.length/2])
```

- $\bullet \theta(n)$ work to partition the elements
- •Solve 1 subproblem (1/5) the size of the original to compute the median of medians
- •Solve 1 subproblem (7/10) the size of the original as the recursive step
- •This yields the following equation for the total runtime:

$$T(n) = \theta(n) + T(\frac{1}{5}n) + T(\frac{7}{10}n)$$

- •It's not straightforward to prove why this is O(n)
- •The master theorem can not be used to show that this recurrence equals O(n)
- •Proof by substitution/induction?

$$T(n) = \theta(n) + T(\frac{1}{5}n) + T(\frac{7}{10}n)$$

- •It's not straightforward to prove why this is O(n)
- •To prove T(n) = O(n), we must prove that there exists constants c > 0, $n_0 > 0$,
- •such that $0 \le T(n) \le c.n \ \forall \ n \ge n_0$

$$0 \le \theta(n) + T(\frac{1}{5}n) + T(\frac{7}{10}n) \le c.n \ \forall \ n \ge n_0, \ c > 0, n_0 > 0 ?$$

•By Induction: Suppose it is true for any $k < n \rightarrow T(k) \le c.k$, then prove it is true for n

• T(k) ≤ c.k → T(
$$\frac{1}{5}n$$
) ≤ c $\frac{1}{5}n$ (k = $\frac{1}{5}n$)
• T(k) ≤ c.k → T($\frac{7}{10}n$) ≤ c $\frac{7}{10}n$ (k = $\frac{7}{10}n$)
• T(n) ≤ θ(n) + c $\frac{1}{5}n$ + c $\frac{7}{10}n$
≤ θ(n) + $\frac{9c}{10}n$
≤ θ(n) + $\frac{10c}{10}n - \frac{c}{10}n$
≤ cn - ($\frac{c}{10}n - \theta(n)$)
≤ cn if (($\frac{c}{10}n - \theta(n)$) ≥ 0), true for some constant c > 0

QUESTIONS/ANSWERS

