Comenzado en Sunday, 4 de September de 2022, 07:00

Estado Terminados

Finalizado en Sunday, 4 de September de 2022, 08:59

Tiempo 1 hora 59 mins

empleado

Calificación 80.00 de un total de 100.00

Pregunta 1

Correcta

Puntúa 15.00 sobre 15.00

Dados los siguientes vectores:

$$\vec{A} = 3.00 \,\hat{i} + 4.00 \,\hat{j}$$

$$|\vec{B}| = 10.0$$
 $\theta = 30.0$ ° de X⁺a Y⁺

$$\vec{C} = 2.00 \,\hat{i} + 5.00 \,\hat{j}$$

$$|\vec{D}| = 20.0$$
 $\theta = 40.0$ ° de X⁺a Y⁺

Determine:

a)
$$|2\vec{A} + \vec{B}| =$$

b)
$$\vec{A} \cdot \vec{B} =$$

$$46.0$$

c)
$$|\vec{A} \times \vec{B}| =$$

Parcialmente correcta

Puntúa 10.00 sobre 15.00

Un helicóptero sube a una velocidad constante de 70.0 m/s, cuando se encuentra a una altura de 40.0 m, deja caer una caja. Determine:

a) El tiempo, en s, que permanece en el aire la caja. R/

14.8

V

b) La rapidez de la caja, en m/s, en el momento de llegar al suelo. R/

Incorrecta La respuesta correcta es: 75.4 Puntúa 0.00 sobre 5.00

×

c) Altura máxima de la caja, en m, desde el suelo. R/

290

V

Pregunta 3

Correcta

Puntúa 15.00 sobre 15.00

Para la gráfica posición tiempo que se muestra, determine:

a) La distancia recorrida, en m, entre t = 0 y t = 10.0s R/

80

~

b) La magnitud del desplazamiento, en m, entre t= 0 y t = 10.0s. R/

0

.

c) La rapidez, en m/s, en t = 5.00s. R/

10

~

Parcialmente correcta

Puntúa 5.00 sobre 15.00

La posición de un dron está descrita por:

$$\vec{r} = \left[5.00 \frac{m}{s} t\right] \hat{\imath} + \left[7.00 \frac{m}{s}\right] \hat{\jmath} + \left[4.00 \frac{m}{s^2} t^2\right] \hat{k}$$

Determine:

a) La magnitud de la velocidad media, en m/s, entre t = 0 y t = 7.00s. R/

Incorrecta La respuesta correcta es: 28.4 Puntúa 0.00 sobre 5.00

×

b) La rapidez, en m/s, en t = 5.00s. R/

Incorrecta La respuesta correcta es: 40.3 Puntúa 0.00 sobre 5.00

×

c) La magnitud de la aceleración, en m/s², en t = 3.00s. **R/**

8

V

Correcta

Puntúa 15.00 sobre 15.00

Para la gráfica velocidad-tiempo que se muestra, determine.

a) La distancia recorrida, en m, entre t = 20.0s y t = 30.0s. R/

200

V

b) La magnitud de la aceleración, en m/s^2 , entre t = 0 y t = 5.00s. R/

8

V

c) El desplazamiento, en m, entre t= 0 y t = 10.0s. R/

300

~

23/9/22, 9:43 Primer Examen Parcial: Revisión del intento Pregunta 6 Parcialmente correcta Puntúa 20.00 sobre 25.00 Un auto A se desplaza a velocidad constante de 15.0 m/s hacia la derecha, un auto B, que se encuentra en la misma posición inicial del auto A, parte del reposo 2.00 s después que A y acelera a 2.50 m/s², determine: El tiempo, en s, que tarda B en encontrarse con A, medido desde que parte el auto B. R/ 13.7 La magnitud de la velocidad, en m/s, de B en el instante que alcanza a A. R/ 34.4 La distancia de separación, en m, entre A y B a los 4.00s de haber arrancado B R/ c) 70 La magnitud del desplazamiento, en m, de B en el momento que se encuentran. R/ 236 El tiempo, en s, en el cual B tiene la misma rapidez que A. R/ Incorrecta La respuesta correcta es: 6 Puntúa 0.00 sobre 5.00

→ Actividad 14

Ir a...

Comenzado en	Sunday, 9 de October de 2022, 09:15	
Estado	Terminados	
Finalizado en	Sunday, 9 de October de 2022, 11:13	
Tiempo empleado	1 hora 57 mins	
Calificación	65.00 de un total de 100.00	
Pregunta 1 Correcta Puntúa 5.00 sobre 5.00		
María empuja un carruaje de bebé con una fuerza de magnitud 5.00N con dirección de 60.0° medidos desde la vertical, si el carruaje se desplaza 3.00m horizontalmente. Determine el trabajo efectuado por la fuerza aplicada por María sobre el carruaje, medido en N·m		

La respuesta correcta es: 13

Respuesta:

Pregunta 2 Correcta Puntúa 10.00 sobre 10.00

Un punto se localiza el borde de la rueda de una bicicleta de radio 25.0 cm, si la rapidez tangencial del punto es de 3.00 m/s. Determine.

2) El período del movimiento en segundos. **R/**0.52

3) La magnitud de la aceleración radial del punto, en m/s². **R/**36

Incorrecta

Puntúa 0.00 sobre 20.00

Un sistema formado por dos bloques de masas m1 = 8.00 kg y m2 = 3.00 kg , sobre planos inclinados de ángulos θ 1 = 30.0° y θ 2 = 45.0°, conectados por medio de un cable que pasa por una polea ideal, la superficie donde se encuentra el bloque 1 carece de fricción y la superficie donde se encuentra el bloque 2 tiene un coeficiente de fricción cinético μ = 0.100 . Si el sistema se libera del reposo. Determine.

Pregunta 4 Correcta Puntúa 25.00 sobre 25.00

Una pelota de futbol es pateada a un ángulo de 30.0° respecto a la horizontal, llegando al travesaño de la portería que se encuentra a una altura de 2.44m y una distancia horizontal de 15.0m. Determine

	teresis having and de 50.0 respecto a la nonzontal, negarido al travesano
altura de 2.44m y una di	stancia horizontal de 15.0m. Determine
4) El tiempo, en s, que	permanece en el aire. R/
1.13	
~	
5) La rapidez inicial, er	m/s. R/
15.4	
~	
6) La rapidez de la pel	ota al llegar al travesaño de la portería, en m/s. R/
~	
7) La altura máxima, n	nedida en m, desde el suelo. R/
~	
8) La magnitud de la v	elocidad media, en m/s, entre t = 0 y el punto donde llega a la portería. R/
13.4	
~	

Correcta

Puntúa 15.00 sobre 15.00

La caja tiene un peso de 550 N. Determine :

13) La magnitud de la tensión AD, en N. **R/**

550

V

14) La magnitud de la tensión AC, en N. R/

518

V

15) La magnitud de la tensión AB, en N. R/

478

V

	Cogaria Diament a care tovición de miente	
Pregunta 6		
Pregunta 6 Incorrecta		
Puntúa 0.00 sobre 15.00		

La posición de un auto A está descrita por $\vec{r}(t)=(10.0\frac{m}{s}t)\hat{\imath}+(8.00\frac{m}{s}t)\hat{\imath}$ y la posición de un auto B está descrita por $\vec{r}(t)=(15.0\frac{m}{s}t)\hat{\imath}+(9.00\frac{m}{s}t)\hat{\imath}$, determine:

16) La magnitud de la velocidad, en m/s, del auto A respecto al auto B. R/

Incorrecta
La respuesta correcta
es: 5.1
Puntúa 0.00 sobre
5.00

17) La magnitud de la posición, en m, del auto A en t = 3.00s. R/

La respuesta correcta es: 38.4

Puntúa 0.00 sobre 5.00

18) La distancia, en m, entre los autos en t = 3.00s. R/

Incorrecta

La respuesta correcta es: 15.3

Puntúa 0.00 sobre 5.00

Pregunta	7
Correcta	

Puntúa 10.00 sobre 10.00

19) Determine la rapidez máxima, en m/s, con la cual se puede mover un vehículo sobre una curva de radio 100m, con un coeficiente de fricción estática de 0.400. **R/**

19.8

20) Si la curva no cuenta con coeficiente de fricción, determine el ángulo de peralte, en grados, con respecto a la horizontal, necesario para que los vehículos no derrapen de la curva. R/

21.8

■ Primer Examen Parcial

Ir a...

Examen Final -

Comenzado en	Tuesday, 15 de November de 2022, 10:30
Estado	Terminados
Finalizado en	Tuesday, 15 de November de 2022, 12:30
Tiempo empleado	1 hora 59 mins
Calificación	80.00 de un total de 100.00
Pregunta 1	
Correcta	

Puntúa 10.00 sobre 10.00

Determine la energía consumida, en Joules, por un aparato de 400W que permanece conectado durante 72.0 horas.

R/ 1.04 ✓ x10⁸ J

Si el costo de energía eléctrica es de Q11.0 cada kw-h, determine el consumo de energía en quetzales durante el tiempo que permaneció conectado el aparato.

R/Q. 317

Correcta

Puntúa 15.00 sobre 15.00

El trabajo efectuado por una fuerza está descrito por:

$$W\left(t
ight)=8.00~rac{N\cdot m}{s^{2}}t^{2}+3.00~N\cdot~m$$

Determine:

1. El trabajo efectuado por la fuerza, en N·m en t = 4.00s.

R/

✓ N·m

La potencia media, en Watts, entre t = 0 y t = 3.00s.

✓ W

3. La potencia instantánea, en Watts, en t = 8.00s.

R/ 128 ✔ W

Parcialmente correcta

Puntúa 10.00 sobre 20.00

Un sistema formado por tres masas es empujado por una fuerza F de magnitud 100N, sobre una superficie sin fricción, como se muestra en la figura. Determine:

La magnitud de la aceleración, en m/s².

R/

✓ m/s².

7. La magnitud de la fuerza de contacto, en N, entre M1 y M2.

R/ 70

V N

8. El trabajo efectuado por F, en N·m, sobre el sistema de tres bloques para desplazarlos 3.00m.

R/Incorrecta

La respuesta correcta es: 450

Puntúa 0.00 sobre 5.00

× N·m

9. El cambio en la energía cinética, en J, del bloque M3, después de desplazarse 3.00m.

R/Incorrecta

La respuesta correcta es: 60 Puntúa 0.00 sobre 5.00

× J

Correcta

Puntúa 20.00 sobre 20.00

Un bloque de masa M1 = 7.00 kg parte del reposo desde una altura h = 10.0 m, choca elásticamente con un bloque de masa M2 = 4.00 kg. Si el riel carece de fricción. Determine:

10. La rapidez del bloque M1, en m/s, cuando está en la base del riel, antes de la colisión.

11. La rapidez del bloque M1, en m/s, después de la colisión.

12. La rapidez del bloque M2, en m/s, después de la colisión.

✓ m/s

13. Si el bloque de masa M2 después de la colisión elástica, choca con un resorte de constante K = 4000 N/m, ¿Cuál es la compresión máxima, en m, en el resorte?.

Correcta

Puntúa 15.00 sobre 15.00

La gráfica muestra una fuerza variable que es aplicada sobre un bloque de masa M = 3.00 kg, determine:

14. El trabajo, en N·m, efectuado por la fuerza F entre X = 0 y X = 17.0 m.

R/ 132

✓ N·m

15. Si el trabajo realizado entre X = 17.0m y X = 21.0 es de -8.00N·m, ¿Cuál es la magnitud de la fuerza, en N, aplicada en ese tramo?

R/ 2

✓ N

16. Si el bloque parte del reposo en X = 0, ¿Cuál es la rapidez en X = 17.0m?

P/ 9.38 ✓ m/s

Parcialmente correcta

Puntúa 10.00 sobre 20.00

En un espectáculo de patinaje sobre hielo, un patinador A de masa M_A = 60.0 Kg, se mueve con una velocidad $\vec{V}_A = 8.00 \frac{m}{s} \ \hat{i} + 10.0 \frac{m}{s} \ \hat{j}$, y un patinador B de masa M_B = 75.0 kg, se mueve con una velocidad $\vec{V}_B = -5.00 \frac{m}{s} \ \hat{i} - 12.0 \frac{m}{s} \ \hat{j}$, si forman parte de una colisión perfectamente inelástica .Determine.

17. La magnitud de la velocidad final, en m/s, del sistema formado por los dos patinadores.

R/ 2.35

√ m/s

18. El porcentaje de energía cinética perdida durante la colisión.

96.11

19. La magnitud del impulso sobre el patinador A, en N·s, durante la colisión.

R Incorrecta

La respuesta correcta es: 850
Puntúa 0.00 sobre 5.00

× N·s

20. La magnitud de la fuerza sobre el patinador A, en N, si la colisión tiene una duración de 3.00 ms.

R/Incorrecta

La respuesta correcta es: 2.83 Puntúa 0.00 sobre 5.00

x 10⁵ N

Ir a...

Examen de Primera Retrasada >