-הוכחה אורטונורמלית אורטונורמלית אורטונורמלית אורטונורמלית לפי סעיף אורטונורמלית הקודם נזכיר כי לפי התרגיל הקודם כי לפי התרגיל הקודם נזכיר כי לפי התרגיל הקודם אורטונורמלית מכאן

$$b_{k+1} = \frac{C_0 b_k}{\|C_0 b_k\|} = \frac{V D^2 V^T b_k}{\|V D^2 V^T b_k\|} = \frac{V D^2 V^T \frac{V D^2 V^T b_{k-1}}{\|V D^2 V^T \frac{V D^2 V^T b_{k-1}}{\|V D^2 V^T \frac{V D^2 V^T b_{k-1}}{\|V D^2 V^T b_{k-1}\|}\|}$$

ניעזר בכך ש V אורטונורמלית ולכן $\|u\|=\alpha$. בנוסף בנוסף בנוסף ולכן ולכן ניתן לצמצם את בכך ש $\|VD^2V^Tb_{k-1}\|\in\mathbb{R}$ בנוסף בנוסף.

$$b_{k+1} = \frac{VD^4V^Tb_{k-1}}{\|VD^4V^Tb_{k-1}\|}$$

ניפתח באופן איטרטיבי (אינדוקצה).

$$b_{k+1} = \frac{VD^{2k}V^Tb_0}{\|VD^{2k}V^Tb_0\|}$$

נפעיל כמה טריקים, אם $\mathcal{D} \sim \mathcal{D}$ אז גם $V^Tb_0 \sim \mathcal{D}$ (כפל של גודל דטרמינסטי במשתנה מקרי משמר התפלגות). בנוסף מאורטונורמליות $b_0 \sim \mathcal{D}$ משמרת נפעיל כמה טריקים, אם $b_0 \sim \mathcal{D}$ את הקורדינטה ה b_{k+1} ונצטמצם ל- $b_0 = V^Tb_0$ וב- b_{k+1} את הקורדינטה ה

$$\begin{split} b_{k+1} &= \frac{V D^{2k} \tilde{b_0}}{\left\|V D^{2k} \tilde{b_0}\right\|} = \frac{V D^{2k} \tilde{b_0}}{\left\|D^{2k} \tilde{b_0}\right\|} \\ \Rightarrow b_{k+1}^{(l)} &= \sum_{j} V_{l,j} \frac{\lambda_j^k b_0^{\tilde{(j)}}}{\left(\sum_{i}^n \left(\lambda_i^k b_0^{\tilde{(i)}}\right)^2\right)^{\frac{1}{2}}} = \sum_{j} V_{l,j} \frac{\left[\frac{\lambda_j}{\lambda_m}\right]^k \frac{b_0^{\tilde{(i)}}}{b_0^{(m)}}}{\left(1 + \sum_{i \neq m}^n \left(\left[\frac{\lambda_i}{\lambda_m}\right]^k \frac{b_0^{\tilde{(i)}}}{b_0^{(m)}}\right)^2\right)^{\frac{1}{2}}} \end{split}$$

כאשר ונקבל שלכל v_m בדיוק v_m (כי V היא המטריצה $b_{k+1}=V_{l,m}$ כלומר בדיוק $b_{k+1}=V_{l,m}$ (כי v_m היא המטריצה $j \neq m$ באשר ונקבל שלכל הביטוי $j \neq m$ המלכסנת את a_m

שלב שני, הורדת מימד ,נגריל עכשיו וקטור חדש כאשר $b_0^{(\tilde{m})}=0$ ונשים לב כי $\lambda_m^k b_0^{(\tilde{m})}=0$ את הע"ע השני בגודלו ונקבל בדיוק שלב שני, הורדת מימד ,נגריל עכשיו וקטור חדש כאשר $b_0^{(\tilde{m})}=0$ ונשים לב כי $\lambda_m^k b_0^{(\tilde{m})}=0$ מתכנס ל $\lambda_m^k b_0^{(\tilde{m})}=0$ נמשיך באופן איטרטיבי ונמצא כך את $\lambda_m^k b_0^{(\tilde{m})}=0$ באות הדרך כי $\lambda_m^k b_0^{(\tilde{m})}=0$ מתכנס ל

.Uאת כדי למצוא ב $U=D^{-1}VC_0$ ב נישתמש ה.Dאת גם את ולכן מצאנו לכ $U=D^2V^T\Rightarrow V^TC_0V=D^2$ כמובן כמובן כמובן

אבון ויצוו:

 $||b_k,v_m||$ נחסום את

$$\begin{split} ||b_{k},v_{m}|| &= ||\sum_{j} V_{m,j} \frac{\left[\frac{\lambda_{j}}{\lambda_{m}}\right]^{k} \frac{b_{0}^{\tilde{(i)}}}{b_{0}^{\tilde{(m)}}}}{\left(1 + \sum_{i \neq m}^{n} \left(\left[\frac{\lambda_{i}}{\lambda_{m}}\right]^{k} \frac{b_{0}^{\tilde{(i)}}}{b_{0}^{\tilde{(m)}}}\right)^{2}\right)^{\frac{1}{2}}} - V_{m,j}|| \leq \\ &\leq ||\sum_{j} V_{m,j} \left[\frac{\lambda_{j}}{\lambda_{m}}\right]^{k} \frac{b_{0}^{\tilde{(i)}}}{b_{0}^{\tilde{(m)}}} - V_{m,j}|| \leq \\ &\stackrel{*}{\leq} \sqrt{(n-1) \left(V_{m',j} \left[\frac{\lambda_{m'}}{\lambda_{m}}\right]^{k} \frac{b_{0}^{\tilde{(m')}}}{b_{0}^{\tilde{(m)}}}\right)^{2}} \end{split}$$

 $V_{m',j} rac{b_0^{(m')}}{b_0^{(m)}}$ כאשר m' הוא האינדקס של הע"ע השני הכי גדול. * כמובן שהאי-שיוון נכון אחל ממקום מסויים (צריך לבחור k מספיק גדול כדי לבטיח שהפקטור m' כאשר m' יהי יחסית לא משמעותי ביחס לm' אינפי 1). נמשיך :

$$\leq \sqrt{n} V_{m',j} \left[\frac{\lambda_{m'}}{\lambda_m} \right]^k \frac{b_0^{(\tilde{m}')}}{b_0^{(\tilde{m})}} \leq \varepsilon$$

arepsilon נידרוש arepsilon ולכן עבור דיוק של לפחות

$$k \geq \log_{\frac{\lambda_{m'}}{\lambda_m}} \left(\frac{b_0^{\tilde{(m)}}}{b_0^{\tilde{(m')}} V_{m',j} \sqrt{n}} \varepsilon \right) = \log_{\frac{\lambda_m}{\lambda_{m'}}} \left(\frac{b_0^{\tilde{(m')}} V_{m',j} \sqrt{n}}{b_0^{\tilde{(m)}} \varepsilon} \right) \geq \log_{\frac{\lambda_m}{\min \lambda}} \left(\frac{b_0^{\tilde{(m')}} V_{m',j} \sqrt{n}}{b_0^{\tilde{(m)}} \varepsilon} \right) = \mathcal{O}\left(\ln\left(\frac{\sqrt{n}}{\varepsilon}\right) \right)$$

ההיפוך בסיסים ב \log היה חיוני מאחר ו- $1 < \frac{\lambda_{m'}}{\lambda_m} \leq 1$ בהצגה זאת אנחנו לא מרוויחים אינפורמציה אינטואטיבית. נסחיש כרגע את ההשפעות של שגיאת ε על האיטרציות הבאות. חישוב b^k מ b^{k+1} מ b^{k+1} מור במכנה אנו מחשבים רק פעם אחת עבור כל הקורדינטות של b^k), ולכן נבקבל שאת b^k ניתן לחשב ב $0 < b^k$ מורכבת מ העע"מ של b^k , נעבור עמודה עמודה ב b^k וניפתור את b^k את b^k מיתן לחשב באותו אופן, נפעיל את אותה וריאציה על b^k ב b^k b^k מורכבת מ העע"מ של b^k .

דורש $\lambda_m=\frac{\sum A_0^i v_m^i}{v_m^0}$ כלומר האשונה שאינה שווה ל- 0 כלומר לפתור רק עבור לפתור רק עבור הקורדינטנה הראשונה אינה שווה ל- $\lambda_m=\lambda v_m$ $\mathcal{O}\left(n^2\ln\left(\frac{\sqrt{n}}{arepsilon}
ight)
ight)$ ולכן דורש למן הכל נישאר עם זמן ריצה אסימפטוטי של $\mathcal{O}\left(n^2\right)$ ולכן דורש $\mathcal{O}\left(n\right)$