Lab 3

Team members: Kerim Amansaryyev,

Muneeb Ahmed, Mahri Ilmedova.

Question 1:

```
public static int beautiful(int[] A, int n){
  int sum = 0;
  for(int i = 0; i < n; i++){
     sum+=A[i];
  }
  return sum;
}</pre>
```

Algorithm analysis:

Here, as we loop through all the elements in an array the worst case is n, and the best case is also n as we will loop through all items.

Question 2:

```
2^n, 2^(n + 1), 2^(2n), 2^(2^n)
```

Question 3:

O(1) – constant operation, it can be any operation that costs constant

O(log n) - binary search

O(n) – linear search

O(n log n) - merge sort

O(n2) - insertion sort, bubble sort, selection sort

O(n3) - matrix multiplication

O(2n) - creating new array of size 2k

Question 4.

We cannot apply Master Theorem on Fibonacci Series. In order to get the Time Complexity for Fibonacci Series, consider the following: f(n) is equal to sum of f(n-1) and f(n-2), then:

$$T(n) = T(n-1) + T(n-2)$$

Now let's illustrate this formula so that it's more easy to understand it:

So, now as you can see on the illustration, you can easily now that the Time Complexity for T(n) is O(2n).

Question 5:

Example 1 (Case 1):

Consider the recurrence relation T(n) = 2T(n/2) + n. In this case, we have a = 2, b = 2, and f(n) = n.

We notice that n is $O(n^(\log_b a))$, where $\log_2 2 = 1$. So, this fits into Case 1 of the Master Theorem.

According to the Master Theorem, when T(n) falls into Case 1, the solution is $T(n) = Theta(n^{(\log_b a)})$. Therefore, for our example, T(n) = Theta(n).

Example 2 (Case 2):

Let's look at the recurrence relation $T(n) = 2T(n/2) + n^2$. Here, a = 2, b = 2, and $f(n) = n^2$.

Comparing n^2 with $n^(\log_b a)$ ($\log_2 2 = 1$), we find that $f(n) = n^2$ is Theta($n^(\log_b a)$), satisfying Case 2.

According to the Master Theorem, when T(n) falls into Case 2, the solution is $T(n) = Theta(n^{(\log b a) \log n})$. So, for our example, $T(n) = Theta(n \log n)$.

Example 3 (Case 3):

Now, let's consider $T(n) = 2T(n/2) + n^3$. In this case, a = 2, b = 2, and $f(n) = n^3$.

When we compare n^3 with $n^(\log b a)$ (log 2 2 = 1), we see that $f(n) = n^3$

is Omega(n^(log_b a)).

Additionally, we check if a $f(n/b) \le kf(n)$ for some $k \le 1$ and sufficiently large n. Here, $2(n/2)^3 = n^3/2 \le (1/2)n^3$, which holds.

So, our recurrence relation falls into Case 3 of the Master Theorem.

According to the Master Theorem, when T(n) is in Case 3, the solution is T(n) = Theta(f(n)). Therefore, for our example, $T(n) = Theta(n^3)$.