ESALO

Hachine Learning

Prof. Dr. Wilson Tarantin Junior

*A responsabilidade pela idoneidade, originalidade e licitude dos conteúdos didáticos apresentados é do professor.

Proibida a reprodução, total ou parcial, sem autorização. Lei nº 9610/98

Machine learning

- Definição
 - Podem ser encontradas muitas definições para o conceito machine learning
 - Porém, em termos de seus objetivos, pode-se entender como a utilização dos dados e de algoritmos para a produção de informações que serão relevantes para a tomada de decisão
 - Informações úteis para uma melhor tomada de decisão (data-driven decision making)
 - Por exemplo: criando modelos preditivos e/ou analisando a interdependência entre os dados

Banco de dados

- Definição e composição
 - O banco de dados é o objeto onde estão armazenadas as informações de interesse para a análise ou estudo em questão
 - Em muitos casos, o banco de dados contém uma **amostra**, ou seja, é um subconjunto extraído da população
 - O banco de dados é composto por variáveis e por observações
 - Observações: as unidades que têm suas características e atributos medidos
 - Variáveis: características/atributos observados, medidos ou categorizados

Banco de dados: exemplos

- Bancos de dados sobre:
 - Pessoas
 - Países
 - Empresas
 - Tarefas
 - Ações da bolsa
 - ...

Banco de dados

- Estrutura para uso
 - Normalmente, o banco de dados é estruturado com as variáveis em colunas e as observações em linhas em uma estrutura tabular

	Idade	Altura	Cidade	Profissão	Renda	
Pessoa 1						
Pessoa 2		013				
Pessoa 3						
Pessoa 4						
Pessoa 5						
Pessoa 6						
Pessoa 7						
Pessoa 8						
Pessoa 9						
Pessoa 10						

Tipos de variáveis

- As variáveis podem ser divididas em
 - **Métricas**: são as variáveis quantitativas, isto é, apresentam características que podem ser mensuradas ou contadas
 - Não métricas: são as variáveis qualitativas, sendo que indicam características que não podem ser medidas. Tais variáveis contêm categorias, por isto, muitas vezes, são chamadas de variáveis categóricas
 - A identificação do tipo de variável é fundamental para a escolha da técnica que será utilizada na análise dos dados

Tipos de variáveis: exemplos

Métricas (quantitativas)

- Idade em anos
- Renda mensal em Reais
- Número de habitantes no município
- Distância em metros entre duas cidades
- Rentabilidade percentual diária de uma ação na bolsa

• Não métricas (qualitativas)

- Nacionalidade
- Cor do veículo
- Profissão
- Grau de escolaridade
- Respostas sim ou não a um questionário
- Escalas likert

Variáveis qualitativas

- Características principais
 - As variáveis qualitativas têm sua representação feita por meio de tabelas de distribuição de frequências ou gráficos
 - Não é possível calcular medidas de resumo como média ou desvio padrão para variáveis qualitativas
 - As tabelas de frequências apresentam as contagens observadas por categoria da variável

Variáveis quantitativas

- Características principais
 - As variáveis quantitativas podem ser representadas por diversas ferramentas, como gráficos, medidas de posição e dispersão
 - A seguir, alguns exemplos de estatísticas descritivas
 - Medidas de posição: média, mediana, quartis
 - Medidas de dispersão: variância e desvio padrão

Detalhando as variáveis

- Outras características relevantes
 - Variáveis qualitativas: dicotômica ou policotômica; nominal ou ordinal
 - Dicotômica: duas categorias (binária); Policotômica: mais de duas categorias
 - Nominal: não estabelece relação de grandeza/ordem; Ordinal: estabelece ordem
 - Variáveis quantitativas: discretas ou contínuas
 - Discretas: possuem conjunto finito e numerável de valores, em geral, são obtidas a partir de dados de contagem (0, 1, 2, 3, 4, 5...)
 - Contínuas: assumem valores pertencentes ao intervalo de números reais

Introdução ao Spyder IDE

Apresentação

- Python: é a linguagem de programação que vamos utilizar
- Neste curso, vamos implementá-lo por meio do Spyder (IDE)
 - Software que torna o uso do Python mais simples para o usuário

Ajuste: View > Window layouts > Rstudio

Acessando um project

• Sempre que acessar um projeto em execução, acesse o project:

- 1. Retire a pasta do arquivo compactado (caso esteja);
- 2. No Spyder acesse: Projects > Open Project > Selecione a pasta
- 3. Os arquivos contidos no project aparecerão no ambiente

Pacotes

- Alguns pacotes que utilizaremos:
 - Pandas: manipulação e análise de dados
 - Numpy: funções matemáticas e dados
 - Matplotlib: visualização de dados em gráficos
 - Seaborn: também é um pacote gráfico
 - Plotly: gráficos interativos

Documentação

- Leituras e documentação para consulta
 - https://pandas.pydata.org/docs/index.html
 - https://numpy.org/doc/stable/
 - https://matplotlib.org/
 - https://seaborn.pydata.org/
 - https://plotly.com/python/

Modelos Lineares de Regressão Simples e Múltipla

Modelos lineares de regressão

- Modelos supervisionados de machine learning
 - Conhecidos como modelos confirmatórios ou técnicas de dependência
 - O objetivo é estimar modelos, equações, com o intuito de elaborar previsões
 - Portanto, há inferência dos resultados para outras observações fora da amostra
 - Define-se uma relação Y = f(X)
 - Y: chamada de variável dependente, é a variável a ser explicada (target)
 - X: chamadas de variáveis explicativas, são as preditoras (features)

Quando aplicar o modelo

- A regressão linear é aplicada quando a variável dependente é quantitativa
 - O objetivo é explicar o comportamento de Y em função de um conjunto de X
 - Estabelece-se uma relação linear entre as variáveis
- Regressão linear simples e múltipla
 - A regressão linear simples contém <u>apenas uma</u> variável explicativa
 - A regressão linear múltipla contém mais de uma variável explicativa

Modelo geral de regressão linear

$$Y_i = a + b_1 \cdot X_{1i} + b_2 \cdot X_{2i} + \dots + b_k \cdot X_{ki} + u_i$$

- Y é a variável dependente quantitativa
- a representa a constante (intercepto)
- b_k representam os coeficientes para cada variável explicativa
- X_k representam as variáveis explicativas do modelo
- u_i representa o termo de erro do modelo (resíduo)
 - k é o número de variáveis explicativas e i refere-se às observações em análise
- As variáveis explicativas (X) podem ser métricas ou categóricas

Mínimos quadrados ordinários (MQO)

• O algoritmo estimará os parâmetros α e β do modelo

$$\widehat{Y}_i = \alpha + \beta . X_i$$

Pode-se definir o resíduo do modelo para dada observação i

$$u_i = Y_i - \widehat{Y}_i$$

- Condições para a estimação dos parâmetros do modelo (MQO)
 - 1. A somatória dos resíduos deve ser igual a zero
 - 2. A somatória dos resíduos ao quadrado é a mínima possível

Pode ser visto como P.O.

Visualizando graficamente

Elementos de um modelo

- Interpretaremos
 - Coeficientes estimados
 - Significância geral do modelo (teste F ANOVA)
 - Significância dos parâmetros (testes t)
 - Intervalos de confiança
 - Poder explicativo do modelo (R2)

Parâmetros do modelo

- Interpretação dos parâmetros α e β
 - α é o coeficiente linear, ou seja, o valor de Y caso todas as X=0
 - Muitas vezes, o α pode ser interpretado como a projeção da reta no eixo Y, uma vez que não encontram-se observações da amostra com todas as variáveis X=0
 - β são os coeficientes angulares, ou seja, a inclinação da reta
 - Na regressão múltipla, os β são interpretados na condição ceteris paribus, ou seja, o efeito daquela X sobre Y mantidas todas as demais variáveis constantes
 - Destaca-se que a interpretação dos parâmetros do modelo deve ocorrer sem a extrapolação dos dados, isto é, vale dentro do limite de variação das variáveis

Teste F (ANOVA)

• Avalia a significância geral do modelo de regressão, ou seja, se pelo menos um dos β estimados é estatisticamente diferente de zero

$$F = \frac{\frac{SQR}{(k-1)}}{\frac{SQU}{(n-k)}}$$

SQR: Soma dos Quadrados da Regressão SQU: Soma dos Quadrados dos Resíduos k: nº de parâmetros do modelo (inclui α) n: tamanho da amostra

- H_0 : $\beta 1 = \beta 2 = ... = \beta k = 0$
- H_1 : existe pelo menos um $\beta j \neq 0$
- Normalmente, adota-se o nível de significância de 5% para o teste
 - Se o p-valor do teste F < 0.05, rejeita-se H₀

Teste F (ANOVA)

$$SQT = SQR + SQU$$

- Soma dos Quadrados Totais (SQT): variação de Y em torno de sua média
- Soma dos Quadrados da Regressão (SQR): variação de Y considerando as variáveis X
- Soma dos Quadrados dos Resíduos (SQU): variação de Y que não é explicada pelo modelo

$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2 + \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

$$\downarrow SQT \qquad SQR \qquad SQU$$

Teste t

• Avalia a significância individual dos parâmetros estimados

$$t_{\alpha} = \frac{\alpha}{s.e.(\alpha)}$$
 $t_{\beta_j} = \frac{\beta_j}{s.e.(\beta_j)}$

- H_0 : $\alpha = 0$
- $H_1: \alpha \neq 0$
- H_0 : $\beta_j = 0$ H_1 : $\beta_j \neq 0$
- Adota-se o nível de significância de 5% para o teste
 - Se o p-valor do teste t < 0.05, rejeita-se H₀
 - Mesmo que não tenha significância, o α não deve ser removido do modelo!

Intervalos de confiança

• Para o nível de confiança escolhido, é o intervalo de valores que contém o verdadeiro parâmetro populacional

$$\alpha \pm t \times s.e.(a)$$

$$\alpha \pm t \times s.e.(a)$$

$$\beta_j \pm t \times s.e.(\beta_j)$$

- t é o valor crítico bicaudal da distribuição t de Student para o nível de confiança escolhido na análise, com n – k graus de liberdade
 - Normalmente, observa-se o nível de confiança de 95% (nível de significância de 5%)

Coeficiente de explicação (R2)

 O R² apresenta o poder explicativo do modelo, ou seja, o percentual da variabilidade de Y que é explicado pela variação das variáveis X

$$R^2 = \frac{SQR}{SQR + SQU}$$

- O R² varia entre 0 e 1: valores mais próximos de 1 indicam maior capacidade preditiva
 - O R² não deve ser analisado no sentido de validar ou não o modelo, pois, em muitos campos do conhecimento, é comum não obter valores muito elevados
- R² ajustado para comparação entre modelos: $R^2_{ajust} = 1 \frac{n-1}{n-k} (1 R^2)$
 - Ajusta-se a quantidade k de parâmetros (incluindo o α) e o tamanho da amostra n

Variáveis explicativas categóricas

- Quando há variáveis X categóricas, é necessário transformá-las em dummies
 - Dummy: variável binária (1 ou 0) indicando a presença ou ausência do atributo

ID	Variá	vel A	Variável B			
	Categ. 1	Categ. 2	Categ. 1	Categ. 2	Categ. 3	
1	1	0	0	1	0	
2	0	1	0	0	1	
3	0	(11)	1	0	0	
4	1 0	0	0	0	1	
5	0	1	0	1	0	
6	1	0	1	0	0	

Na regressão, utiliza-se o procedimento de **n-1** *dummies*, ou seja, uma das categorias de cada variável categórica fica como a referência de sua variável no intercepto

Referência

Fávero, Luiz Paulo; Belfiore, Patrícia. (2024). Manual de análise de dados: estatística e machine learning com Excel®, SPSS®, Stata®, R® e Python®. 2 ed. Rio de Janeiro: LTC.

a duardo Ferreira Lina duardo Ferreira Lina de Constante de Constante

OBRIGADO!