Dinámica Molecular regida por el paso temporal Trabajo Práctico Nro. 4

Badi Leonel, Buchhalter Nicolás Demián y Meola Franco Román

2 de mayo de 2016

Grupo 3

Que vamos a ver

Oscilador Puntual Amortiguado Formación del Sistema Solar

Parte I

Oscilador Puntual Amortiguado

Fundamentos Introducción

- Vamos a comparar los errores cometidos por distintos sistemas de integración
- Oscilador amortiguado: Sistema con sólo una partícula puntual cuya solución analítica es conocida
- Se implementaron:
 - Beeman
 - Velocity Verlet
 - Gear Predictor Corrector de orden 5

Fundamentos Variables relevantes

Parámetros

•
$$m = 70$$

•
$$k = 10000$$

•
$$\gamma = 100$$

•
$$t_f = 5$$

Condiciones iniciales

•
$$r(t=0)=1$$

•
$$v(t=0) = -\frac{2\gamma}{m}$$

Implementación Cálculo Numérico

```
void simulateGear(double time, double deltaT) {
    double simTime = 0:
    Oscilator oscilator = new Oscilator();
    oscilator.writePositionAndError();
    oscilator.makeEulerStep(deltaT);
    simTime += deltaT:
    oscilator.writePositionAndError();
    while (simTime < time) {</pre>
        oscilator.makeGearStep(deltaT);
        simTime += deltaT:
        oscilator.writePositionAndError();
```

Código 1: Método de Gear Predictor Corrector.

Implementación Detalles de precisión

- Todas las operaciones se realizan en double
- Se utilizan cinco cifras decimales como output en los archivos de salida de resultados y errores.

Error total normalizado por el número total de pasos para distintos valores de Δt

Δt	Método	E
0.01	Beeman	0,00471
0.01	Verlet	0,00663
0.01	Gear	0,33624
0.001	Beeman	0,00235
0.001	Verlet	0,00225
0.001	Gear	-0,00199
0.0001	Beeman	0,00225
0.0001	Verlet	0,00224
0.0001	Gear	0,00228

Tabla: Suma de las diferencias al cuadrado para todos los pasos temporales normalizado por el número total de pasos

Gráfico de x(t) para el oscilador puntual amortiguado con $\Delta t = 0.01$

Gráfico de x(t) para el oscilador puntual amortiguado con $\Delta t = 0{,}001$

Gráfico de E para el oscilador puntual amortiguado con $\Delta t = 0.01$

Gráfico de E para el oscilador puntual amortiguado con $\Delta t = 0{,}001$

Conclusiones

- Para una cantidad de pasos baja (500 pasos, $\Delta t = 0.01$), el error de *Gear Predictor-Corrector* aumenta, simulando un oscilador no amortiguado.
- Con un $\Delta t = 0.001$ obtuvimos resultados con errores muy bajos para los tres métodos.
- Con 50000 pasos ($\Delta t=0.0001$), los tres métodos tienen un error que varía recíen en la quinta cifra decimal.
- El esquema de integración que mejor resulta para este sistema es *Gear Predictor-Corrector* para $\Delta t=0.001$, es decir, 5000 pasos.

Parte II

Formación del Sistema Solar

Fundamentos Introducción

- Usando el esquema de integración de *Beeman* vamos a simular el nacimiento del sistema solar.
- ullet Se simularán N partículas que orbiten alrededor del Sol.
- Las partículas se irán agrupando en planetas a medida que el sistema evolucione.

Implementación Generación de los agentes

- Posiciones (x,y) aleatorias para todas las partículas
- ullet v_{0t} tal que todas las partículas tengan el mismo L
- $v_{0n} = 0$.
- Distancia al sol entre 10 a la 9 y 10 a la 10
- Angulo respecto al Sol entre 0 y 2 pi

Simulación Variables relevantes

- Δt : cantidad de pasos.
- k relación entre cantidad de pasos simulados y visualizados.
- time: Tiempo en segundos a visualizar

Simulación Detalles de implementación

- utilización del cell index method del tp anterior para calcular las colisiones de las partículas.
- Para las partículas que se alejen más de 2 x 10 a la 4 no las consideramos dentro del sistema.
- Para simplificar, luego de la colisión de dos partículas, se obtiene una nueva con un radio correspondiente a la suma de los radios de las dos.

Simulación

Problemas encontrados

- Manejo numérico de grandes dimensiones.
 - Para poder mantener en memoria números tan grandes, utilizando la precisión double.
 - Se normalizó la distancia por 10 a la 6
 - Se normalizó la masa por 10 a la 25
- El radio de las partículas en comparación con las dimensiones del sistema solar era muy chico
 - Dificultaba la visualización, sobre todo para una gran cantidad de partículas.
 - El radio de interacción es diferente al radio de visualización.

Implementación Cálculo Numérico

```
void simulateGear(double time, double deltaT) {
    double simTime = 0:
    Oscilator oscilator = new Oscilator();
    oscilator.writePositionAndError();
    oscilator.makeEulerStep(deltaT);
    simTime += deltaT:
    oscilator.writePositionAndError();
    while (simTime < time) {</pre>
        oscilator.makeGearStep(deltaT);
        simTime += deltaT:
        oscilator.writePositionAndError();
```

Código 2: Método de Gear Predictor Corrector.

Implementación

- La simulación y la visualización son independientes
- El algoritmo de simulación escribe un archivo .tsv con los siguientes datos:
 - \bullet (x,y)
 - \bullet r
 - Color RGB para indicar las velocidades, donde R es la componente en el eje Y y G es la componente en eje X
- Por último, se carga en Ovito el archivo de salida.tsv para realizar la visualización

Gráfico de las energías U, KyE_T para la simulación de N=100

Gráfico de las energías U, KyE_T para la simulación de N=1000

Gráfico de las energías U, KyE_T para la simulación de N=10000

Animación de la simulación para N=100

Animación de la simulación para $N=1000\,$

Animación de la simulación para $N=10000\,$

Animación de la simulación para $N=50000\,$

Conclusiones

• El paso temporal (Δt) óptimo para simular el sistema es ?.

Gracias