基于 Numpy 的手写数字分类 MLP

1. 数据预处理

对于原始灰度图像素 [0, 255],将其零中心归一化为 [-0.5, 0.5]。实验表明多数情况下,归一化有助于提高模型精度。

```
PIXEL_DEPTH = 255

data = (data - (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH
```

2. 模型建立

以下实验中使用的模型为一个四层的 MLP,神经元数分别为128-64-64-10。在前三层神经元后使用了 sigmoid 激活函数,在最后一层神经元后使用 softmax 获取模型分类置信度向量。该模型架构仅在为证明MLP实现正确,在本作业中并未探究模型深度与宽度对最优准确率的影响。

此外,为研究正则化方法对模型的影响,本作业中也实现了 dropout 层的正向与反向传播,并把 dropout 层添加在前三层神经元和激活函数之间。

关于超参数:本作业设置初始学习率为 0.02, batchsize为 16, 回合数为10。

3. 对比不同的参数初始化方法

本作业实现了三种参数初始化方法:

- 1. Zero:将线性层的所有参数 (weight & bias)均初始化为0。
- 2. Normal:根据均值为 0,标准差为 0.02 的高斯分布随机初始化线性层所有参数。
- 3. Xavier: Xavier 随机初始化线性层所有参数。Xavier 初始化的基本思想是,若单层网络的输入和输出可以保持正态分布且方差相近,这样就可以避免输出趋向于 0,从而避免梯度弥散情况。 具体实现方法为:

```
std = np.sqrt(2. / (self.in_channel + self.out_channel))
self.weight = np.random.normal(loc=0., scale=std, size=[self.in_channel,
self.out_channel])
self.bias = np.random.normal(loc=0., scale=std, size=[self.out_channel])
```

实验结果如下:

初始化	损失 函数	学习率 调整	正则化 方法	训练集最终准 Acc.	测试集最终 Acc.	测试集最优 Acc.
Zero	交叉 熵	Const.	无	-	-	-
Normal	交叉 熵	Const.	无	0.959	0.950	0.956
Xavier	交叉 熵	Const.	无	0.980	0.969	0.974

训练集与测试集的准确率曲线如下:

Zero初始化:

Normal初始化:

Xavier初始化:

- 1. Zero 初始化是失败的。如图所示,模型准确率随迭代次数增加保持不变。这归因于模型在 forward 和 backward 时,activation 和 gradient 都是相同的数值,所以模型对任意输入只会预测相同的结果。
- 2. Xavier 初始化可以加快模型收敛。如图所示,在第一次测试模型精度时就已经达到 > 0.8 的准确率。
- 3. Xavier 初始化可以得到更高的精度。

4. 对比不同的损失函数

本作业实现了交叉熵损失函数。在模型存在 softmax 的基础上,根据公式推导(参考: https://blog.cs dn.net/qian99/article/details/78046329) ,梯度可以化简为 "激活值 - 真值"。

5. 对比不同的学习率调整方法

本作业实现了四种学习率调整方法:

1. Constant: 学习率恒定为 0.02。

2. Step: 计算出总迭代次数后, 每迭代 1/3 就将学习率降低为原来的 0.1 倍。

3. Cosine: 使得学习率以余弦函数型变化。具体实现如下:

```
self.lr = 0.5 * (1 + math.cos(math.pi * iter / self.total_iter)) * self.init_lr
```

4. Cycle: 设定一个学习率上限和下限,迭代时学习率的值在上限和下限的区间里周期性地变化。具体实现如下:

```
max_lr = self.init_lr
base_lr = self.init_lr * 0.01
cycle = np.floor(1 + iter / (2 * stepsize))
x = np.abs(iter / stepsize - 2 * cycle + 1)
self.lr = base_lr + (max_lr - base_lr) * np.maximum(0, (1-x))
```

初始化	损失 函数	学习率 调整	正则化 方法	训练集最终准 Acc.	测试集最终 Acc.	测试集最优 Acc.
Normal	交叉 熵	Const.	无	0.959	0.950	0.956
Normal	交叉 熵	Step	无	0.970	0.955	0.962
Normal	交叉 熵	Cosine	无	0.967	0.955	0.959
Normal	交叉 熵	Cycle	无	0.941	0.937	0.939

Const学习率策略:

Step学习率策略:

Cosine学习率策略:

Cycle学习率策略:

实现发现:

- 1. Step 学习策略获得了最优的效果。这是因为在训练后期,更小的学习率可以让模型进一步趋近最 优解。
- 2. Step 学习策略还可以加速模型收敛。
- 3. Cycle 学习策略由于存在学习率循环周期、最大最小学习率等超参数,调参较困难,在收敛速度和最终模型性能上都低于 baseline。

6. 对比不同的正则化方法

本作业实现了两种正则化方法:

- 1. Dropout:随机置零一些神经元的 activation,用一个与 activation 相同大小的二值 mask 张量记录 dropout 的值用于正向与反向传播。
- 2. L2 正则化 (权重衰减)

初始化	损失 函数	学习率 调整	正则化方法	训练集最终 准Acc.	测试集最 终Acc.	测试集最 优Acc.
Normal	交叉 熵	Cosine	无	0.967	0.955	0.959
Normal	交叉 熵	Cosine	dropout(0.2)	0.958	0.949	0.954
Normal	交叉 熵	Cosine	dropout(0.5)	-	-	-
Normal	交叉 熵	Cosine	L2(1e-5)	0.984	0.964	0.971
Normal	交叉 熵	Cosine	L2(1e-7)	0.983	0.966	0.967

Dropout(rate=0.2)

Dropout(rate=0.5)

L2 正则化 (weight decay = 1e-5)

L2 正则化 (weight decay = 1e-7)

实验发现:

- 1. 添加正则化方法(dropout, L2)后模型收敛变慢,迭代相同次数后模型准确率低于 baseline。 所以,本节涉及的模型都训练了 20 个回合。
- 2. 添加 L2 正则化方法后模型准确率增加。
- 3. 添加 dropout 的模型准确率低于 baseline。这说明当前模型的计算复杂度(模型capacity)与当前 MNIST 分类任务数据集的体量相当,添加 dropout 后会使模型出现不同程度的欠拟合。当 dropout rate 过大(比如 0.5)时,模型几乎无法学习到"知识"。

7. 最优识别结果

根据以上实验结果,组合初始化,损失函数,学习率调整,正则化方法的最优策略,得到最优的识别结果:

初始化	损失	学习率	正则化	训练集最终准	测试集最终	测试集 最 优
	函数	调整	方法	Acc.	Acc.	Acc.
Xavier	交叉 熵	Step	L2(1e-5)	0.992	0.976	0.977

本次作业全部用 Numpy 实现。

请把 MNIST 数据保存在 raw_data 文件夹中。

运行代码的命令是:

python main.py

如要调整模型的超参数请修改 main.py 的 get_config 函数。