Spatiotemporal Modeling of Extreme Events

Samuel Morris and Brian Reich

North Carolina State University

Motivation

- ▶ Average behavior is important to understand, but it does not paint the whole picture.
 - e.g. When constructing river levees, engineers need to be able to estimate a 100-year or 1000-year flood levels.
- ▶ In geostatistical analysis, kriging uses spatial correlation to help inform prediction at unknown locations.
- Want to explore computationally easy methods that are available in higher dimensions

Standard non-spatial analysis

- ▶ Block maxima:
 - Uses yearly maxima
 - Discards many observations
 - ▶ Models are fit using the generalized extreme value distribution
- Generalized extreme value distribution (GEV):

$$\Pr(Y_j < y) = G_j(y) = \exp\left\{-\left[\left(1 + \xi_j \frac{y - \mu_j}{\sigma_j}\right)_+^{-1/\xi_j}\right]\right\}$$

Standard non-spatial analysis

- Peaks-over-threshold:
 - Incorporates more data than block maxima
 - ► Select a threshold, *T*, and fit data above the threshold using the generalized Pareto distribution
 - Autocorrelation may be an issue between observations (e.g. flood levels don't dissipate overnight)
- Generalized Pareto distribution (GPD):

$$\Pr(Y_j > y | Y_j > T) = F_j(y) = \left(1 + \xi_j \frac{y - T}{\sigma_j}\right)_+^{-1/\xi_j}$$

Multivariate analysis

- Multivariate max-stable and GPD models have nice features, but they are
 - computationally hard to work with
 - joint distribution only available in low dimension
- ▶ Pairwise likelihood approach (Huser and Davison, 2014)

Model objectives

- Our objective is to build a model that
 - has a flexible tail
 - has asymptotic spatial dependence
 - computation on the order of Gaussian models for large space-time datasets

Thresholding data

- \blacktriangleright We threshold the observed data at a high threshold \mathcal{T} .
- ► Thresholded data:

$$Y_t^*(\mathbf{s}) = \begin{cases} Y_t(\mathbf{s}) & Y_t(\mathbf{s}) > T \\ T & Y_t(\mathbf{s}) \leq T \end{cases}$$

▶ Allows tails of the distribution to speak for themselves.

Spatial skew-t distribution

Assume observed data $Y_t(\mathbf{s})$ come from a skew-t (Zhang and El-Shaarawi, 2012)

$$Y_t(\mathbf{s}) = X_t(\mathbf{s})\beta + \alpha z_t + v_t(\mathbf{s})$$

where

- $\alpha \in \mathcal{R}$ controls the skewness
- $ightharpoonup z_t \stackrel{iid}{\sim} N_{(0,\infty)}(0,\sigma_t^2)$ is a random effect
- $v_t(\mathbf{s})$ is a Gaussian process with variance σ_t^2 and Matérn correlation

Spatial skew-t distribution

- ▶ Conditioned on z_t and σ_t^2 , $Y_t(\mathbf{s})$ is Gaussian
- ▶ Can use standard geostatistical methods to fit this model.
- Predictions can be made through kriging.
- ▶ Marginalizing over z_t and σ_t^2 (via MCMC),

$$Y_t(\mathbf{s}) \sim \text{skew-t}(\mu, \Sigma^*, \alpha, \text{df} = 2a)$$

where

- \blacktriangleright μ is the location
- a, b are the IG parameters for σ_t^2
- $\Sigma^* = \frac{b}{a} \Sigma$ is a scale matrix, and Σ is a Matérn covariance matrix
- $\alpha \in \mathcal{R}$ controls the skewness

Long-range dependence

 \blacktriangleright The χ coefficient is a measure of extremal spatial correlation

$$\chi(\mathbf{h}) = \Pr(Y_t(\mathbf{s}) > c \mid Y_t(\mathbf{s} + \mathbf{h}) > c)$$

- ▶ This value shows asymptotic dependence that does not approach 0 as $\mathbf{h} \to \infty$ (Padoan, 2011)
- ▶ Deal with this through a daily random partition.

Simulated χ plots

Random daily partition

▶ Daily random partition allows z_t and σ_t^2 to vary by site.

$$Y_t(\mathbf{s}) = X_t(\mathbf{s})\beta + \alpha z_t(\mathbf{s}) + \sigma(\mathbf{s})v_t(\mathbf{s})$$

▶ Consider a set of daily knots $\{w_{t1}, \ldots, w_{tK}\}$ that define a daily partition P_{t1}, \ldots, P_{tK} such that

$$P_{tk} = \{s : k = \arg\min_{\ell} ||\mathbf{s} - w_{t\ell}||\}$$

▶ For $\mathbf{s} \in P_{tk}$

$$z_t(\mathbf{s}) = z_{tk}$$

 $\sigma_t^2(\mathbf{s}) = \sigma_{tk}^2$

▶ Within each partition $Y_t(\mathbf{s})$ has the same MVT distribution as before.

Example daily partition

Two sample partitions

MCMC details

- ► Three main steps:
 - 1. Impute missing observations and data below T
 - 2. Update parameters with standard random walk Metropolis Hastings or Gibbs sampling
 - 3. Make spatial predictions
- Priors are selected to be conjugate when possible.

Data analysis

Ozone monitoring station locations

Data analysis

Max 8-hour ozone measurements at 85 sites in NC, SC, and GA for days 5 and 34.

Exploratory data analysis

 χ -plot for residuals selected ozone sample quantiles

Model comparisons

- 9 different analysis methods incorporating
 - Gaussian vs t vs skew-t marginal distribution
 - ightharpoonup K = 1 partition vs K = 5 partitions
 - No thresholding vs thresholded
 - ▶ Thresholded data at T = 0.90 sample quantile
- All methods use a Matérn or exponential covariance $(\nu = 0.5)$
- Compare quantile and Brier scores using 5-fold cross validation (Gneiting and Raftery, 2007)
- ▶ Mean function modeled using a first-order spatial trend

Quantile score

ightharpoonup The quantile score for the auth quantile is

$$2\{I[y<\widehat{q}(\tau)]-\tau\}(\widehat{q}-y)$$

where:

- ▶ y is a test set value
- $ightharpoonup \widehat{q}(au)$ is the estimated auth quantile

Brier score

▶ Brier score for predicting exceedance of threshold *c*

$$[e(c) - P(c)]^2$$

where

- ▶ y is a test set value
- $\bullet \ e(c) = I[y > c]$
- ightharpoonup P(c) is the predicted probability of exceeding c

Five-fold cross-validation results

			Quantile				
Marginal	K	T	0.900	0.950	0.990	0.995	0.999
Gaussian	1	0	16.38	15.76	14.52	14.08	13.22
t	1	0	16.15	15.51	14.00	13.43	12.32
t	5	0	13.61	12.66	10.96	10.40	9.34
skew t	1	0	9.24	7.27	4.13	3.27	1.96
skew t	5	0	15.81	14.46	11.57	10.57	8.60
t	1	0.9	5.52	3.58	1.77	1.47	1.10
t	5	0.9	5.98	4.27	2.41	2.03	1.49
skew t	1	0.9	4.91	3.16	1.45	1.16	0.82
skew t	3	0.9	5.58	3.78	1.93	1.58	1.11

▶ Brier score results are similar.

Simulation study

- ▶ 6 different data settings:
 - ► Gaussian vs t vs skew-t marginal distribution
 - K = 1 partition vs K = 5 partitions
- ▶ Results are similar to the results from the data analysis
- Biggest gains come from thresholding.
- Using skew models give additional gain, but small relative to gain for thresholding.

Future work

- ▶ Comparison with extreme value analysis methods
- Including time in the model
 - $AR(1): Y_t(\mathbf{s}) = X_t(\mathbf{s})\beta + \phi Y_{t-1}(\mathbf{s}) + \alpha z_t(\mathbf{s}) + v_t(\mathbf{s})$

Questions

- ► Any questions?
- ▶ Thank you for your attention.

References

- ▶ Huser, R. and Davison, A. C. (2014) Space-time modelling of extreme events. *Journal of the Royal Statistical Society:* Series B (Statistical Methodology), **76**, 439–461.
- ▶ Padoan, S. A. (2011) Multivariate extreme models based on underlying skew-t and skew-normal distributions. *Journal of Multivariate Analysis*, **102**, 977–991.
- ► Zhang, H. and El-Shaarawi, A. (2010) On spatial skew-Gaussian processes and applications. *Environmetrics*, **21**, 33–47.