FRONT PAGE

Information

- Title: Machine Learning Regression Analysis on Hedge Fund X: Financial Modeling Challenge Data
- Name: Lily (Lizheng) Zhou

Link

- Github link: https://github.com/LilyLizhengZhou/Project StatisticalLearning RegressionAnalysis
- Vimeo link: https://vimeo.com/420817512

MACHINE LEARNING METHODS REGRESSION ANALYSIS ON HEDGE FUND X: FINANCIAL MODELING CHALLENGE DATA

Lily (Lizheng) Zhou

https://github.com/LilyLizhengZhou/Project StatisticalLearning RegressionAnalysis https://vimeo.com/420817512

INTRODUCTION

Project Description

• This project is aimed to use regression analysis to predict a numeric financial response variable based on 88 predictors with 4 methods: Lasso, Elastic-net (alpha = 0.5), Ridge and Random Forrest.

Data Description

- This dataset is a sample of the training dataset used in the DeepAnalytics competition, Hedge Fund X: Financial Modeling Challenge (https://deepanalytics.jp/compe/53).
- Data Set Structure: (n = 10000, p = 88)
 - Response variable (named as y):
 - cl: numeric
 - Predictors (named as 1 88):
 - c2 c88: numeric
 - target: categorical (with levels: 0 and 1)

BOXPLOTS OF R-SQUARED TRAIN AND TEST

Boxplots of R-Squared Train and Test with 4 Methods (train size = 0.8n, 100 samples)

10-FOLD CV CURVES

10-fold CV curve for lasso

Log(\(\lambda\))

BOXPLOTS OF TRAIN AND TEST RESIDUALS

Boxplots of Train and Test Residuals with 4 Methods)

All 4 methods' mean of residuals are very close to zero

Lasso, Elastic-net and Ridge, their residual variance are also very close

Random Forest has smaller variance compared to other methods; its train variance is smaller than test residuals

VARIABLE IMPORTANCE

feature

PERFORMANCE VS. TIME

Model	Model Fitting Time (sec)	Model Performance (R-Squared Test)
Lasso	0.66	0.6731127
Elastic-net	0.67	0.6731972
Ridge	0.70	0.6616434
Random Forest	112.20	0.8332545

Lasso, Elastic-net and Ridge, their performance and fitting time are very similar

Random Forest performs decent at the cost of high time complexity

THANK YOU