T.D. XIV - Nombres complexes

I - Écritures

Exercice 1. Écrire sous forme algébrique les nombres complexes suivants:

1.
$$(2+6i)(6+i)$$
.

2.
$$(4-3i)^2$$

2.
$$(4-3i)^2$$
.
3. $(1-2i)(1+2i)$.

4.
$$(2-3i)^4$$
.

5.
$$\frac{1}{3-i}$$

6.
$$\frac{1-\sqrt{3}i}{-1-\sqrt{3}i}$$

7.
$$\frac{1-i}{1+\sqrt{3}i}$$

Exercice 2. Déterminer le module et un argument des nombres complexes suivants:

2.
$$\frac{3}{2}$$
 i.

4.
$$-\frac{1}{2} + \frac{\sqrt{3}}{2}$$
 i.

5.
$$-2 i$$
.

6.
$$\frac{1+i}{1-i}$$
.

7.
$$\left(\frac{i}{1+i}\right)^4$$
.

8.
$$-3(\cos(\theta) + \sin(\theta)i)$$
.

9.
$$2(\cos(2\theta) - \sin(2\theta) i)$$
.

8.
$$-3(\cos(\theta) + \sin(\theta) i)$$
.
9. $2(\cos(2\theta) - \sin(2\theta) i)$.
10. $\left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i\right) (1 - i)$.

11.
$$\frac{\sqrt{2}-\sqrt{2}i}{1-\sqrt{3}i}$$
.

12.
$$\sin(\theta) + \cos(\theta) i$$
).

Exercice 3. Soit $z = \frac{1+\sqrt{2}+i}{1+\sqrt{2}-i}$.

1. Calculer
$$|z|$$
.

2. Mettre
$$z$$
 sous forme algébrique.

3. Calculer
$$z^{2021}$$
.

Exercice 4. (Angle moitié) Soit $a, b \in \mathbb{C}$ de modules 1 tels que $a \neq b$. Montrer que $\frac{a+b}{a-b}$ est un nombre imaginaire pur.

On pourra écrire $a={\rm e}^{\theta\,{\rm i}}$ et $b={\rm e}^{\varphi\,{\rm i}}$ sous forme trigonométrique puis factoriser $par e^{\frac{\theta+\varphi}{2}i}$.

Exercice 5. Soit $x \in \mathbb{R} \setminus \pi\mathbb{Z}$ et $n \in \mathbb{N}$.

1. Calculer
$$\sum_{k=0}^{n} e^{kx}$$
 i.

2. En déduire
$$\sum_{k=0}^{n} \cos(kx)$$
 et $\sum_{k=0}^{n} \sin(kx)$.

II - Résolution d'équations

Exercice 6. Déterminer les nombres complexes z solutions des équations suivantes:

1.
$$z^2 + 9 = 0$$

2.
$$z^2 - z + 1 = 0$$

1.
$$z^2 + 9 = 0$$

2. $z^2 - z + 1 = 0$.
3. $z^2 + z + 1 = 0$.

4.
$$3z^2 - 6z + 6 = 0$$

5.
$$z^4 + z^2 + 1 = 0$$

6.
$$z^2 - 2\cos(\theta)z + 1 = 0$$

Exercice 7. Soit $n \ge 2$ un entier naturel. Soit z un nombre complexe tel que $z^n = 1$.

- **1.** Montrer que |z|=1. On pose dans la suite $z=e^{\theta i}$.
- 2. Déterminer les valeurs possibles pour θ .
- 3. Représenter graphiquement les solutions des équations :

a)
$$z^2 = 1$$
.

c)
$$z^4 = 1$$

b)
$$z^3 = 1$$
.

III - Géométrie

Exercice 8. Soit z un nombre complexe de module 1.

a) Calculer
$$|1+z|^2 + |1-z|^2$$
.

b) Représenter géométriquement les points d'affixes 1, z, 1-z et 1+zpuis interprétez le résultat obtenu.

Exercice 9. Décrire les transformations du plan complexe définies par :

- 1. $z \mapsto e^{\frac{\pi}{4}i}(z (1+i)) + 1 + i$.
- **2.** $z \mapsto z + 12 + 16 i$.
- **3.** $z \mapsto iz + 1$.

Exercice 10. Déterminer l'ensemble des nombres complexes $z \in \mathbb{C} \setminus \{1\}$ tels que $\left(\frac{z+1}{z-1}\right)^2$ soit réel.