This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Citation 1

Japanese Patent Application No.: 262013/1985

Application Date: November 20, 1985

2. Japanese Patent Disclosure No.: 120553/1987

Disclosure Date: June 1, 1987

ার. Inventor: Masakazu MITSUSE; Tokyo, Japan

4. Applicant: NIPPON DENKI Kabushiki Kaisha; Tokyo, Japan

5. Title: An Instruction Cache Memory Method

Fig. 1 is a block diagram showing the instruction cache memory method according to the embodiment of the present invention.

Fig. 2 is a block diagram showing the circuit construction of the dual port RAM. Fig. 3 shows the 512 KB main memory module embodied by the dual port RAM. Fig. 4 is a block diagram showing a conventional instruction cache memory method.

The instruction cache memory method is constructed by using a plurality of dual port memories (RAM) having a parallel input/output data port and a serial input data port as a main memory element. The serial output port of the main memory is connected to an input end of a high peed cache memory. A dedicated signal line is provided between the main processor and the the main memory. The dedicated signal line comprises an instruction block address line which consists of a series of instructions for the transmission control of the instruction block, a block transmission indicating line and a shift clock line for the data transmission.

main memory

SD: serial output data

为 2 図

⑩日本国特許庁(JP)

①特許出頭公開

母公開特許公報(A)

昭62-120553

@Int.Cl.4

ু

識別記号

庁内整理番号

③公開 昭和62年(1987)6月1日

G 06 F 12/08

310

U - 8219-5B Z - 8219-5B

審査請求 未請求 発明の数 1 (全5頁)

Q発明の名称 命令キャッシュメモリ方式

②特 顧 昭60-262013

20出 顧 昭60(1985)11月20日

砂 明 者 三 瀬 雅 一 切出 顋 人 日本電気株式会社 東京都港区芝5丁目33番1号 日本電気株式会社内

式会社 東京都港区芝5丁目33番1号

20代理人 弁理士草野 卓

明 相 書

1. 発明の名称

命令キャッシュメモリ方式

2. 特許請求の範囲

メインメモリ来子としてペラレル入出力データポートとシリアル出力データポートとを有するデュアルポートメモリの複数個を用いて構成され、そのメインメモリのシリアル出力データポートは高速キャッシュメモリの入力領に接続され、

上記メインプロセッサとメインメモリとの間に、 複数の一連の命令により構成される命令プロック の転送を創御するための命令プロックアドレス線。 プロック転送指示譲及びデータ転送用のシフトク ロック線より構成される専用の信号線を有するこ とを毎畝とする命令キャッシュメモリ方式。

3.発明の詳細な説明

〔産業上の利用分野〕

との発明は情報処理装置に用いられ、常時はキャッシュメモリの命令を利用し、キャッシュメモリ の命令を利用し、キャッシュメモリ に でふい 場合はメイジメモリのアータ中の命令

域のプロックをキャッシュメモリに転送して利 するようにした命令キャッシュメモリ方式に関 る。

〔従来の技術〕

、とのような点から、比較的小型の情報処理を

では命令キャッシュのみに限定し、前述の制御の 複雑さを排除し、経済的で命令実行性能(ペフォ ーマンス)の向上を図ったキャッシュメモリを構 成する場合がある。

との発明はこの命令キャッシュに関するもので、 あり、第4図に従来方式の一例を示す。アドレス パスAB、アーチパスDB、制御パス CONT よりな るシステムペス上にメインメモリ(MM)が接続 されてかり、メインプロセッサ(CPU) はローカ ルアドレスペス(LAB) 、ローカルデータペス (LDB)を通じ、更にパスドライパを介してシス テムペスに接続される。 今、メインプロセッサ CFU が命令フェッチサイクル (MIC)を実行すると、 CPUより MIC 信号がアドレス比較等 (ADC) に出 力され、アドレス比較器 ADC はキャッシュメモリ の各プロックアドレスを保持しているアドレスタ グレジスタ (ADTAG) とローガルアドレスパス LABとのアドレス情報を高速に比較し、放当する 命令がキャッシュメモリ上に存在するか否かテコ クする。アドレス比較が一致すればアドレスタグ

BTRC はシステムパスをロックし保持し続け、メインプロセッサ CPU はア ドレス比較器 ADC より出力されるウェイト信号 (WAIT) により待ち状態となり、プロック転送後又はプロック転送途中に目的の命令がメインプロセッサ CPU に与えられるとウエイトが解除される。

[発明が解決しようとする問題点]

レジスタ ADTAD はヒット 信号(HIT)をアドレス 比較器 ADC に出力すると共に該当プロックのキャッシュアータを読出すため、キャッシュアクセス 信号(CAC)を出力する。アドレス比較器 ADC は ヒット状態となるとシステムペスアクセスを禁止 し、キャッシュメモリより読み出した命令をメインプロセッサ CPU に与える。

他方ローカルアドレスペス LAB の情報とブドレスタグレジスタ ADTAG の情報とが不一致の場合
(ノン・ヒット)は、プロック転送制御回路(BTRC)
に合令プロック転送要求(BTR)を発行する。プロック転送制御回路 BTRC はシステムペス制御回路
(BUSC) にシステムペス獲得要求(SBRQ)を出力し、システムペスを獲得するとシステムペス制御回路 BUSC はシステムペス取得通知 SBACK を返す。プロック転送制御回路 BTRC はこれ以後メインメモリ M M よりローカルアドレスペス LAB で示されるアドレスの命令プロックをキャッシュメモリにペースト転送すると共にアドレスタグレジスタ ADTAG の更新を行なう。この間、プロック転送制御回路

テムパス上の高速 DMA (直接メモリング・セス)デバイスの待ちが長くなり、テーチのオーパラン、アンダーランの恐れがあり、これに対する対策が必要となる。

[問題点を解決するための手取]

この発明は①メインメモリのメモリ素子としてアルボートとといりアルボートを有するとなったが、のシステムがスといりアルボスとなった接続し、②システムがススというとなったが、ない、キャッシュメモリノンを選択示を接続のファムをはなったというが、は、カーンと

〔实施例〕

次にこの発明について図面を参照して説明する

第1図はとの発明の一実施例を示し、第2図にと の発明でメインメモリ素子として使用するデュア ルポート読み も可能なメモリ(RAM)を示し、 との RAM はもともとは CRT(陰極線管)の表示用のビデ オ RAM として開発されたものであり、具体的には 日本電気株式会社製の APD 41264Cがある。との RAM はパラレルポート 101~104、アドレス Ao~! A,、メイミング信号 RAS (行丁ドレス選択)、CAS (列丁ドレス選択)、WE(書込みイネーブル) をもち、通常のメイナミック RAM と同様の動作を する。この RAM のセル 構造は 1024列×256行 で あり、1024列はさらに4分割され、64k×4b 構成となっている。列データ転送要求信号(DT) が与えられると、アドレス A。~ A,で推定される ROW アドレスにより特定行の1024ピットが選択 され、内部のアーメレジスタに一括転送される。 さらに、シリアルシフトクロック(SC)を入力 することにより 256×4blt の列ナータが順次、シ リアル出力ペッファを介してシリアルポート出力 ナーメ SO, ~ SO, として出力される。さらにまく

れ、アドレス比較器 ADC からのプロック 転送要求 (DTR)、シリアルシフトクロック (S C)、及 びプロックアドレス (LABT) がシステムパスとは 独立にメインメモリ M M K 直接供給されていることである。

今、メインプロセッサ CPU の命令フェッチサイクルが起動され、命令フェッチサイクル(MIC) 信号が出力され、ローカルアドレスパス LAB に命令アドレスが出力され、アドレス比較器(ADC) にてアドレスタグレジスタ(ADTAG)の情報と比較がなされる。その比較が一致した時、即ちキャッシュヒット時にはシステムパスへのアクセスを中止し、キャッシュメモリより命令を引取る。

前記比較で一致が得られない時(キャッシュノンヒット時)はアドレス比較器 ADC がプロック転送要求 (DTR)をメインメモリ M M に発行し、メインメモリ M M に発行し、メインメモリ M M に発行し、メインメモリ M M に発行し、メインメモリ M M に見けし、アドレス ペス LAB で示される指定アドレスのプロックデータをシリアルポートに取出し、アドレス比較器 ADC より出力されるシリアルシフトクロック 8 C により命令プロ

ンタコントロール根能により列アータ転送要求作号DI入力時のカラムアドレスの指定により 256列の任意のポイントよりシリアル出力データの配出しが可能である。

このデュアルポートメモリの大きを特徴は① D タイミングを除きパラレルポートとシリアルポートとは競合することなく互いに独立動作が可能、②シリアルポートの転送が高速であり、40 m a / ピット転送が可能である。この発明では以上の年数を有効に活用する。

次に第3回にとのデュアルポートメモリにより 構成した512kパイト(256kワード×16ピット) のメインメモリの例を示す。実験にはとの512k パイトメモリを複数個組合わせて最大4MBのメ インメモリを構成する。第3回においてLL、LU UL、UUは128kパイト単位のメモリモジュー ル選択信号である。

第1図に戻って説明する。第4図の従来方式ド 比べ回路構成上の特徴はメインメモリMMのシリ アル出力テータSDがキャッショメモリに供給で

ァクがメインメモリ M M からキャァシュメモリド 高速に転送される。

プロック転送時間をデュアルポート RAM とジングルポート BAM とで比較する。

- (1) アュアルボート RAM (a) データトランスファサイクル 150n (a) シリアル転送 40 ns/ワー
- (2) シングルポート RAM
 - . (a) 通常リードモード

RAMリードサイクル 120 ns 200 ns/ワード RAS-CAS 切替え 40 ns システムパス選延 40 ns

(6)ページモードリードサイクル

1回目……… 200ms ((a)と同じ)

2回目以後…RAMリードサイクル120 as

従って、キャッシュプロックサイズ 1 6 ワー の時

- (1) ··· ··· ·· 7 9 0 ns
- (2) (a) 3,2 0 0 ns
- (2) (b) ··· ··· 2,000 n s

プロック 転送時間はページモードサイクルの:

特開昭 62-120553 (4)

高速シングルポート RAM ((2) - (b)) に比較しても2.5 倍以上高速である。且つ、従来方式に比ペプロックサイズを2~3 倍に拡張してもプロック 転送によるオーパヘッドは増加しないことは明らかである。

さらに、従来方式の場合はシステムパス獲得後 にプロック転送を行うためシステムパス獲得待ち 時間が性能低下要因となることも自明である。 【発明の効果】

以上説明したようにこの発明は①メインメモリにアュアルポート RAM を採用し、②アュアルポート RAM を採用し、②アュアルポート RAM のシリアル出力回路をキャッシュメモリのプロックデータ転送経路とし、③キャッシュプロの情報なを採ることにより、キャッシュヒット率が高くシステムパスオーパヘッドの少い命令キャッシュメモリ方式を経済的に実現できる効果がある。4.図面の簡単な説明

第1図はこの発明による命令キャッシュメモリ 方式の一実施例を示すプロック図、第2図はデュ アルポート RAM の回路構成図、集3 図はデュアルポート RAM により実現した512KBメインメモリモジュールを示す図、第4 図は従来の命令キャッシュメモリ方式を示すプロック図である。

特許出願人 日本電気株式会社 代 理 人 草 野 卓

岁 1 図

≯ 2 図

≯ 3 월

