Análisis Matemático I

Licenciatura en Ciencias de la Computación FAMAF, UNC — Año 2017

Soluciones de la Guía de Ejercicios N°6: Gráfica de funciones

1. Haga corresponder el gráfico de cada función en (a)-(d) de la figura 1 con el de su derivada en (i)-(iv). Justifique la correspondencia. Discuta lo que ve, prestando especial atención a lo que le pasa a f(x) cuando f'(x) es positiva y cuando f'(x) es negativa. ¿Cómo se comporta f(x) cuando f'(x) se acerca a 0? ¿Está de acuerdo con la siguiente afirmación? Mientras más grande es |f'(x)|, más rápido cambia f(x).

Figura 1: (a, ii); (b, iv); (c, i); (d, iii)

- 2. La Figura 2 muestra la gráfica de la función g en el intervalo [-4,8].
 - a) ¿Qué puntos están excluídos del dominio de g? La función no está definida en x = 0.
 - b) ¿En qué puntos del dominio g es discontinua? La función es discontinua en x=-2 (evitable), x=0 (esencial), x=6 (salto).
 - c) ¿En qué puntos del dominio g no es diferenciable? La función no es derivable en x=-2,0,2,6. En tres de los casos las derivadas laterales son distintas y en x=0 no existen.
 - d) Especifique un intervalo donde g crece más rápidamente. El mayor crecimiento se da en el intervalo [-4, -2] donde el incremento de la función es 4.
 - e) Especifique un intervalo donde g decrece más rápidamente. El mayor decrecimiento se da en el intervalo [0,2] donde el la función pasa de $+\infty$ a 0.
 - f) Esboce a grandes rasgos el gráfico de f'(x).

Figura 2: Función g

Formas Indeterminadas y la Regla de L'Hôpital.

3. Calcule los límites indicados

a)
$$f(x) = \ln(1+6x) \Rightarrow f'(x) = \frac{6}{1+6x}, g(x) = x(x-7) \Rightarrow g'(x) = 2x-7.$$

Entonces $\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{f'(x)}{g'(x)} = \lim_{x\to 0} \frac{6}{(1+6x)(2x-7)} = -\frac{6}{7}$

b)
$$\lim_{x \to +\infty} \frac{e^x}{x^2} = +\infty$$
 (ver ejercicio 5)

c)
$$f(x) = 1 + x^6 + x^{12} \Rightarrow f'(x) = 5x^5 + 12x^{11}, g(x) = e^x \Rightarrow g'(x) = e^x.$$

Entonces $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \frac{6}{\lim_{x \to +\infty} \frac{e^x}{x^5}} + \frac{12}{\lim_{x \to +\infty} \frac{e^x}{x^{11}}} = 0$ (ver ejercicio 5)

d)
$$f(x) = e^x - e^{-x} - 2x \Rightarrow f'''(x) = e^x + e^{-x}, \ g(x) = x - \sin x \Rightarrow g'''(x) = \cos x.$$

Entonces $\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'''(x)}{g'''(x)} = \lim_{x \to 0} \frac{e^x + e^{-x}}{\cos x} = 2$

e)
$$f(x) = 1 - \cos x \Rightarrow f'(x) = \sin x$$
, $g(x) = x^2 \Rightarrow g'(x) = 2x$.
Entonces $\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \frac{1}{2} \lim_{x \to 0} \frac{\sin x}{x} = \frac{1}{2}$

f)
$$f(h) = \ln h \Rightarrow f'(h) = 1/h, g(h) = 1/h \Rightarrow g'(x) = -1/h^2.$$

Entonces $\lim_{x \to 0} \frac{f(h)}{g(h)} = \lim_{h \to 0} \frac{f'(h)}{g'(h)} = -\lim_{h \to 0} h = 0$

$$\begin{split} g) & \ h(r) = r^{\text{sen } r} = \exp(\text{sen } r \ln r). \\ & f(r) = \text{sen } r \Rightarrow f'(x) = \cos r, \ g(r) = 1/r \Rightarrow g'(x) = -1/r^2. \\ & \text{Entonces } \lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = -\lim_{x \to 0} r^2 \cos r = 0. \\ & \text{Por lo tanto, } \lim_{h \to 0} h(r) = e^0 = 1. \end{split}$$

h)
$$f(x) = \sqrt{1+x} - 1 \Rightarrow f'(x) = 1/2(1+x)^{-1/2}, g(x) = x \Rightarrow g'(x) = 1.$$

Entonces $\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = 1/2 \lim_{x \to 0} (1+x)^{-1/2} = \frac{1}{2}.$

i)
$$f(x) = e^{x \ln 6} - e^{x \ln 2} \Rightarrow f'(x) = \ln 6 e^{x \ln 6} - \ln 2 e^{x \ln 2}, \ g(x) = x \Rightarrow g'(x) = 1.$$

Entonces $\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \ln 6 \lim_{x \to 0} e^{x \ln 6} - \ln 2 \lim_{x \to 0} e^{x \ln 2} = \ln 6 - \ln 2 = \ln 3.$

$$\begin{array}{l} j) \ \ h(x)=x^x=e^{x\,\ln x}.\\ \ \ f(x)=\ln x\Longrightarrow f'(x)=1/x, \ g(x)=1/x\Rightarrow g'(x)=-1/x^2.\\ \ \ \text{Entonces}\ \lim_{x\to 0+}\frac{f(x)}{g(x)}=\lim_{x\to 0+}\frac{f'(x)}{g'(x)}=-\lim_{x\to 0+}x=0.\\ \ \ \text{Por lo tanto, } \lim_{x\to 0}h(x)=e^0=1. \end{array}$$

k)
$$f(x) = x^{\ln x} = e^{\ln^2 x}$$
, Entonces $\lim_{x \to 0+} f(x) = \exp\left(\lim_{x \to 0+} \ln^2 x\right) = +\infty$

l)
$$h(x) = (1 + \sin 4x)^{\cot gx} = \exp(\cot gx \ln(1 + \sin(4x))).$$

 $f(x) = \ln(1 + \sin(4x)) \Rightarrow f'(x) = \frac{4 \cos(4x)}{1 + \sin(4x)}, \ g(x) = \tan x \Rightarrow g'(x) = \sec^2 x.$
Entonces $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \cos^2 x \frac{4 \cos(4x)}{1 + \sin(4x)} = 4.$
Por lo tanto, $\lim_{x \to 0} h(x) = e^4.$

4. Compruebe que
$$\lim_{x\to\infty} \frac{\ln(x)}{x^p} = 0$$
 para cualquier número $p > 0$. Esto hace ver que la función logaritmo tiende a ∞ con mayor lentitud que cualquier potencia de x con exponente positivo.

$$f(x) = \ln x \Rightarrow f'(x) = \frac{1}{x}. \ g(x) = x^p \Rightarrow g'(x) = p \, x^{p-1}.$$

Entonces $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \lim_{x \to +\infty} \frac{1}{p \, x^p} = 0$, si $p > 0$; caso contrario diverge.

5. Compruebe que
$$\lim_{x\to +\infty}\frac{e^x}{x^n}=+\infty$$
 para cualquier entero n . Esto significa que la función exponencial tiende tiende a ∞ con mayor rapidez que cualquier potencia entera de x .

Si
$$n \le 0$$
, de manera directa se obtiene que: $\lim_{x \to +\infty} x^{-n} e^x = +\infty$.

Si n > 0, probamos por inducción. Consideremos el caso n = 1:

$$f(x) = e^x \Rightarrow f'(x) = e^x$$
. $g(x) = x \Rightarrow g'(x) = 1$.

Entonces
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \lim_{x \to +\infty} e^x = +\infty.$$

Supongamos ahora válidad la afirmación: $\lim_{x\to +\infty} \frac{e^x}{r^n} = +\infty$.

$$f(x) = e^x \Rightarrow f'(x) = e^x$$
. $g(x) = x^{n+1} \Rightarrow g'(x) = (n+1)x^n$.

$$f(x) = e^x \Rightarrow f'(x) = e^x. \ g(x) = x^{n+1} \Rightarrow g'(x) = (n+1)x^n.$$

Entonces
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \frac{1}{n+1} \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty.$$

Extremos locales y absolutos. Gráfica de funciones.

- 6. Encuentre el máximo y el mínimo de las siguientes funciones:
 - a) x = -1 punto de mínimo, x = 1 punto de máximo.
 - b) x = -1, 2 puntos de mínimo, x = -3 punto de máximo.
 - c) x = 1 punto de mínimo, x = -1 punto de máximo.
 - d) x = 2 punto de mínimo, x = 10 punto de máximo.
 - e) x = 1 punto de mínimo, x = 3 punto de máximo.
- 7. a) $x = (2/3)^3$ punto de mínimo local. La función no es deribable en x = 0 que resulta punto de máximo local. No tiene absolutos.
 - b) x=1 punto de máximo absoluto, x=5 punto de mínimo local. $\lim_{x\to\pm\infty}f(x)=\pm\frac{3\pi}{2}$.
- 8. Determine los intervalos donde la función $f(x) = \frac{2x}{1+x^2}$ es monótona.

$$f'(x) = \frac{-2x^2 + 2}{(1+x^2)^2}. \ f'(x) = 0 \Rightarrow x = \pm 1. \ f'(x) = \begin{cases} > 0 & x \in (-1,1) \\ < 0 & x \in (-\infty,1) \cup (1,\infty) \end{cases}$$

Por lo tanto, f es creciente en (-1,1) y es decreciente en $(-\infty,-1)$ y $(1,\infty)$.

9. Determine los máximos y mínimos locales de $f(x) = x^2 - |2x - 1|$.

$$f(x) = \begin{cases} x^2 - 2x + 1 & x \ge 1/2 \\ x^2 + 2x - 1 & x < 1/2 \end{cases} f'(x) = \begin{cases} 2x - 2 & x \ge 1/2 \\ 2x + 2 & x < 1/2 \end{cases}$$

La función resulta continua para todo valor de x, pero no es derivable en x=1/2: $\lim_{x\to 1/2+} f'(x)=-1$, $\lim_{x\to 1/2-} f'(x)=3$. Además, $f'(x)=0 \Rightarrow x=\pm 1$. Por lo tanto, x=-1,1 son puntos de mínimo locales y x=1/2 punto de máximo local.

10. Esboce la gráfica de las siguientes funciones y determine los puntos de inflexión y los intervalos de concavidad hacia arriba y hacia abajo.

Visualizar las gráficas las funciones utilizando Wolfram Alpha con los scripts dados en cada caso, pero sólo luego de intentar con esmero graficar las en papel.

$$a) \ f(x) = x^{1/x} = \exp\left(\frac{\ln x}{x}\right), \ \text{para} \ x > 0$$

$$g(x) = \frac{\ln x}{x}, \ g'(x) = \frac{1 - \ln x}{x^2}, \ f'(x) = g'(x) \ f(x), \ f'(x) = 0 \Rightarrow x = e, \ f(e) = e^{(1/e)} = 1,445.$$

$$\lim_{x \to 0+} g(x) = -\infty \Rightarrow \lim_{x \to 0+} f(x) = 0. \ \lim_{x \to +\infty} g(x) = 0 \Rightarrow \lim_{x \to +\infty} f(x) = 1$$
 Gráfica:
$$\text{plot[f(x) = x**(1/x), x=0 to 10]}$$

 $b) \ f(x) = x^3 - 3x^2 - 9x + 11$

Gráfica: plot[f(x) = x**3-3 *x**2-9*x+11, x=-3 to 5]

c) $f(x) = x^2 e^{-2x^2}$. Función par, definida positiva. $f'(x) = 2x (1 - 2x^2) e^{-2x^2}$. $f'(x) = 0 \Rightarrow x = 0$ (mínimo absoluto), $x = \pm \sqrt{2}/2$ (máximos absolutos). f(0) = 0, $f(\pm \sqrt{2}/2) = 0.1839$. $\lim_{x \to \pm \infty} f(x) = 0$. Gráfica: plot[f(x) = x**2*exp(-2*x**2), x=-3 to 3]

4

d)
$$f(x) = x \ln x$$
 $f'(x) = 1 + \ln x$. $\lim_{x \to 0+} f'(x) = -\infty$. $f'(x) = 0 \Rightarrow x = 1/e$ (mínimo absoluto). $f(1/e) = -1/e$. $\lim_{x \to 0+} f(x) = 0$. $\lim_{x \to +\infty} f(x) = +\infty$. Gráfica: plot[f(x) = x*ln(x), x=0 to 2]

11. Esboce la gráfica de las siguientes funciones. Previamente determine dominio, puntos críticos, intervalos de crecimiento y decrecimiento y comportamiento de la función cuando x se acerca a los bordes del dominio.

Visualizar las gráficas las funciones utilizando Wolfram Alpha con los scripts dados en cada caso, pero sólo luego de intentar con esmero graficarlas en papel.

a)
$$f(x) = x^2 + 2x$$

Gráfica: plot[f(x) = x**2+2*x, x=-3 to 2]

b)
$$f(x) = \frac{x}{x^2 + 1}$$
. Función impar.

$$f'(x) = \frac{1-x^2}{(x^2+1)^2}$$
. $f'(x) = 0 \Rightarrow x = \pm 1$ (máximo y mínimo absoluto respectivamente).

$$f(0) = 0, f(\pm 1) = \pm 1/2, \lim_{x \to +\infty} f(x) = 0(\pm).$$

Gráfica: plot[f(x) =
$$x/(x**2+1)$$
, x=-3 to 3]

c)
$$f(x) = x - 2 \arctan x$$
. Función impar.

$$f'(x) = \frac{x^2 - 1}{(1 + x^2)}$$
. $f'(x) = 0 \Rightarrow x = \pm 1$ (mínimo y máximo local respectivamente).

$$f(0) = 0, f(\pm 1) = \mp 0.57, \lim_{x \to \pm \infty} f(x) = \pm \infty.$$

Gráfica:
$$plot[f(x) = x-2*arctan(x), x=-5 to 5]$$

d)
$$f(x) = \frac{x+2}{x^2+x-2}$$

d) $f(x) = \frac{x+2}{x^2+x-2}$ $x^2+x-2=0 \Rightarrow x=-2,1.$ $f(x)=\frac{1}{x-1}, \forall x \neq -2,1.$ Sin embargo, la función puede definirse continua en x=-2. Asíntota vertical en x=1.

Gráfica: plot[f(x) =
$$(x+2)/(x**2+x-2)$$
, x=-2 to 3]

$$e) \ f(x) = \frac{x^3 - 2x}{x^2 - 3}$$
. Función impar.

Asíntotas verticales en
$$x = \pm \sqrt{3}$$
.

Asintotas verticales en
$$x = \pm \sqrt{3}$$
.
 $f'(x) = \frac{x^4 - 5x + 6}{(x^2 - 3)^2}, \ f'(x) = 0 \Rightarrow x = \pm 1, \pm \sqrt{6}$
 $f(0) = 0, \lim_{x \to \pm \infty} f(x) = \pm \infty, \lim_{x \to +\sqrt{3}\pm} f(x) = \pm \infty.$

$$f(0) = 0$$
, $\lim_{x \to \pm \infty} f(x) = \pm \infty$, $\lim_{x \to \pm \sqrt{3} \pm} f(x) = \pm \infty$.

Así, $x = -1, +\sqrt{6}$ son puntos de mínimo local y $x = 1, -\sqrt{6}$ son puntos de máximo local. Gráfica: plot[f(x) = (x**3-2x)/(x**2-3), x=-5 to 5]

$$f(x) = (x^2 - 4)^2$$
. Función par.

Gráfica: plot[f(x) =
$$(x**2-4)**2$$
, x=-3 to 3]

12. Demuestre que la ecuación $x^5 + 10x + 3 = 0$ tiene una y solo una raiz.

Consideramos $f(x) = x^5 + 10x + 3$. $f'(x) = 5x^4 + 10 > 0$, $\forall x$. Por lo tanto f(x) es una función $mon \acute{o}tona$ creciente. Además, se tiene que: f(-1) = -8 y f(0) = 3. Entonces la ecuación tiene una única raíz y se encuentra en el intervalo (-1,0).

13. A las 14:00 hs. el velocímetro de un automovil indica 30 Km/h a las 14:10 hs. indica 50 Km/h. Demuestre que en algún momento entre las 14:00 y las 14:10 hs la aceleración fue 120 Km/h².

La distancia recorrida por un objeto en función del tiempo es una función derivable dos veces. Su derivada primera es la función velocidad y su derivada segunda (la derivada de la función velocidad) es la función aceleración.

El teorema del valor medio nos permite asegurar que siendo f'(x) continua en [a, b] y derivable en (a, b), entonces existe $c \in (a, b)$ tal que:

$$f''(c) = \frac{f'(b) - f'(a)}{b - a}$$
.

Tomando a = 14:00h y b = 14:10h. Resulta b - a = 00:10hs= 1/6h y f'(b) - f'(a) = 20km/h. Por lo tanto, existe un instante $c \in (a, b)$ tal que f''(c) = 20/(1/6) = 120Km/h².

14. Dos corredores arrancan al mismo tiempo en una competencia y terminan empatados. Demuestre que en cierto momento de la carrera tuvieron la misma velocidad.

El teorema del valor medio de Cauchy nos permite asegurar que si dos funciones f y g son continuas en [a,b] y derivables en (a,b), siendo que $\forall x \in (a,b), g'(x) \neq 0$, entonces existe $c \in (a,b)$ tal que:

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

En este problema podemos notar que al inicio de la carrera en el instante a, ambos se en cuentran a distancia 0 de la partida: f(a) = g(a) = 0, mientras que al final de la carrera, por llegar empatados, ambos se encuentran en la llegada en el mismo instante b habiendo recorrido la misma distancia L: f(b) = g(b) = L. Entonces resulta que f(b)/g(b) = 1 y en consecuencia existe $c \in (a, b)$ para el cual f'(b)/g'(b) = 1.

Linealización y aplicaciones

- 15. Sea f una función tal que f(1) = 2, cuya función derivada es $f'(x) = \sqrt{x^3 + 1}$
 - a) Estime el valor de f(1,1) con una aproximación lineal. La aproximación lineal consiste en aproximar a la función en el entorno de un punto x_0 , que pertenece a su dominio, por la recta tangente a la gráfica de la función en ese punto:

$$f(x) \approx r(x) = f'(x_0) (x - x_0) + f(x_0).$$

La aproximación es válida en la medida que $f'(x_0) \neq 0$. es decir que x_0 no sea un punto crítico de la función.

Para este caso particular tenemos que: $x_0 = 1$, $x - x_0 = 0,1$, f(1) = 2, $f'(1) = \sqrt{2}$. Por lo tanto,

$$r(1,1) = \sqrt{2} \times 0, 1 + 2 = 2,1414$$
.

b) ¿Cree que el valor exacto de f(1,1) es menor o mayor que el estimado? ¿Por qué? $f''(x) = \frac{3}{2} \, x \, (x^3+1)^{-1/2} \, , f''(1) = 3/(2\sqrt{2}) > 0. \text{ Por lo tanto, la función es cóncava hacia arriba en el entorno de } x=1 \, \text{y en consecuencia la aproximación es por defecto.}$

6

16. Usando aproximaciones lineales, encuentra valores aproximado de

a)
$$\sqrt{36,1}$$
 $f(x)=\sqrt{x},\ f'(x)=1/(2\sqrt{x}),$ función cóncava hacia abajo. $x_0=36,\ x-x_0=0,1,\ f(36)=6,\ f'(36)=1/12.$ Por lo tanto la aproximación por exceso resulta:

$$r(36,1) = \frac{0,1}{12} + 6 = 6,00833$$
.

b)
$$\frac{1}{10,1}$$
 $f(x) = 1/x$, $f'(x) = -1/x^2$, función cóncava hacia arriba. $x_0 = 10$, $x - x_0 = 0.1$, $f(10) = 1/10$, $f'(10) = -1/100$. Por lo tanto la aproximación por defecto resulta:

$$r(10,1) = -\frac{0,1}{100} + \frac{1}{10} = 0,099.$$

$$c) \sin 59^{\circ}$$

Tener presente que para trabajar con las funciones trigonométricas debemos expresar los ángulos en radianes. $f(x) = \sin x$, $f'(x) = \cos x$, función cóncava hacia abajo. $x_0 = \pi/3$, $x - x_0 = -\pi/180$ (que corresponde a -1^o), $f(\pi/3) = \sqrt{3}/2$, $f'(\pi/3) = 1/2$. Por lo tanto la aproximación por exceso resulta:

$$r(59^{\circ}) = \frac{1}{2} \left(-\frac{\pi}{180} \right) + \frac{\sqrt{3}}{2} = 0.857299.$$

Comparar los valores aproximados obtenidos con los que resultan de evaluar con calculadora las expresiones dadas. Observar con cuántos decimales es correcta la aproximación.