Markov Models

Uncertainty and Time

- Often, we want to reason about a sequence of observations where the state of the underlying system is changing
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
 - Global climate

Need to introduce time into our models

Markov Models (aka Markov chain/process)

$$P(X_t = x \mid X_{t-1} = y) = S(xy)$$

$$X_0$$
 X_1 X_2 X_3 X_4 X_5 X_4 X_5 X_5 X_5 X_5 X_5 X_6 X_6

- Value of X at a given time is called the state
- The transition model $P(X_t \mid X_{t-1})$ specifies how the state evolves over time
- Stationarity assumption: transition probabilities are the same at all times
- Markov assumption: "future is independent of the past given the present"
 - X_{t+1} is independent of X_0, \ldots, X_{t-1} given X_t

Example: Random walk in one dimension

- State: location on the unbounded integer line
- Initial probability: starts at 0
- Transition model: $P(X_t = k | X_{t-1} = k\pm 1) = 0.5$
- Applications: particle motion in crystals, stock prices, etc.

Example: n-gram models

- State: word at position t in text (can also build letter n-grams)
- Transition model (probabilities come from empirical frequencies):
 - Unigram (zero-order): P(Word_t = i)
 - "logical are as are confusion a may right tries agent goal the was . . . "
 - Bigram (first-order): P(Word_t = i | Word_{t-1} = j)
 - "systems are very similar computational approach would be represented . . ."
 - Trigram (second-order): P(Word_t = i | Word_{t-1} = j, Word_{t-2} = k)
 - "planning and scheduling are integrated the success of naive bayes model is .
 .."
- Applications: text classification, spam detection, author identification, language classification, speech recognition

Example: Web browsing

- State: URL visited at step t
- Transition model:
 - With probability p, choose an outgoing link at random
 - With probability (1-p), choose an arbitrary new page
- Question: What is the stationary distribution over pages?
 - I.e., if the process runs forever, what fraction of time does it spend in any given page?
- Application: Google page rank

Example: Weather

• States {rain, sun}

Initial	distribu	tion <i>P</i> (X_{\cap}
---------------------------	----------	-----------------	------------

P(X _o)		
sun	rain	
0.5	0.5	

• Transition model $P(X_t \mid X_{t-1})$

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

Two ways to represent Markov chains

Weather prediction

• Time 0: <0.5,0.5>

				Mary in	
X _{t-1}	P(X	(X _{t-1}	 P(X-1,X+)		$P(x_t)$
	sun	rain			
sun	0.9	0.1			
rain	0.3	0.7			

What is the weather like at time 1?

$$P(X_1) = \sum_{X_0} P(X_1, X_0 = X_0)$$

$$= \sum_{X_0} P(X_0 = X_0) P(X_1 | X_0 = X_0)$$

$$= 0.5 < 0.9, 0.1 > + 0.5 < 0.3, 0.7 > = <0.6, 0.4 > 0.0$$

Weather prediction, contd.

• Time 1: <0.6,0.4>

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

What is the weather like at time 2?

$$P(X_2) = \sum_{X_1} P(X_2, X_1 = X_1)$$

$$= \sum_{X_1} P(X_1 = X_1) P(X_2 \mid X_1 = X_1)$$

$$= 0.6 < 0.9, 0.1 > + 0.4 < 0.3, 0.7 > = < 0.66, 0.34 >$$

Weather prediction, contd.

• Time 2: <0.66,0.34>

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

What is the weather like at time 3?

$$P(X_3) = \sum_{X_2} P(X_3, X_2 = x_2)$$

$$= \sum_{X_2} P(X_2 = x_2) P(X_3 \mid X_2 = x_2)$$

$$= 0.66 < 0.9, 0.1 > + 0.34 < 0.3, 0.7 > = < 0.696, 0.304 >$$

Forward algorithm (simple form)

What is the state at time *t*?

$$P(X_t) = \sum_{X_{t-1}} P(X_t, X_{t-1} = X_{t-1})$$

$$= \sum_{X_{t-1}} P(X_{t-1} = X_{t-1}) P(X_t | X_{t-1} = X_{t-1})$$

Forward algorithm in Matrices

What is the weather like at time 2?

$$P(X_2) = 0.6 < 0.9, 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 >$$

• In matrix-vector form:

$$P(X_2) = \begin{pmatrix} 0.9 & 0.3 \\ 0.1 & 0.7 \end{pmatrix} \begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} = \begin{pmatrix} 0.66 \\ 0.34 \end{pmatrix}$$

\mathbf{X}_{t-1}	P(X _t X _{t-1})		
	sun	rain	
sun	0.9	0.1	
rain (0.3	0.7	

Stationary Distributions

- The limiting distribution is called the *stationary distribution* P_{∞} of the chain
- It satisfies $P_{\infty} = P_{\infty+1} = T^{\mathsf{T}} P_{\infty}$ Stationary distribution is <0.75,0.25> regardless of starting distribution

$$\begin{pmatrix} 0.9 & 0.3 \\ 0.1 & 0.7 \end{pmatrix} \quad \begin{pmatrix} p \\ 1-p \end{pmatrix} = \begin{pmatrix} p \\ 1-p \end{pmatrix}$$

Hidden Markov Models

Hidden Markov Models

- Usually the true state is not observed directly
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe evidence E at each time step
 - X_t is a single discrete variable; E_t may be continuous and may consist of several variables

Example: Weather HMM

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

An HMM is defined by:

• Initial distribution: $P(X_0)$

• Transition model: $P(X_t|X_{t-1})$

• Sensor model: $P(E_t|X_t)$

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

HMM as probability model

- Joint distribution for Markov model: $P(X_0, ..., X_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1})$
- Joint distribution for hidden Markov model:

$$P(X_0, E_0, X_1, E_1, ..., X_T, E_T) = P(X_0) \prod_{t=1:T} P(X_t | X_{t-1}) P(E_t | X_t)$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

Real HMM Examples

- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options
- Robot tracking:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)
- Molecular biology:
 - Observations are nucleotides ACGT
 - States are coding/non-coding/start/stop/splice-site etc.

Inference tasks

Useful notation:

$$X_{a:b} = X_a, X_{a+1}, ..., X_b$$

- Filtering: $P(X_t|e_{1:t})$
 - **belief state**—input to the decision process of a rational agent
- **Prediction**: $P(X_{t+k}|e_{1:t})$ for k > 0
 - evaluation of possible action sequences; like filtering without the evidence
- **Smoothing**: $P(X_k|e_{1\cdot t})$ for $0 \le k < t$
 - better estimate of past states, essential for learning
- Most likely explanation: arg max_{X1:t} P(x_{1:t} | e_{1:t})
 - speech recognition, decoding with a noisy channel

Inference tasks

Filtering: $P(X_t|e_{1:t})$

Smoothing: $P(X_k|e_{1:t})$, k<t

Prediction: $P(X_{t+k}|e_{1:t})$

Explanation: $P(X_{1:t}|e_{1:t})$

Filtering / Monitoring

- Filtering, or monitoring, or state estimation, is the task of maintaining the distribution $f_{1:t} = P(X_t|e_{1:t})$ over time
- We start with f_0 in an initial setting, usually uniform
- Filtering is a fundamental task in engineering and science
- The Kalman filter (continuous variables, linear dynamics, Gaussian noise) was invented in 1960 and used for trajectory estimation in the Apollo program; core ideas used by Gauss for planetary observations; >1,000,000 papers on Google Scholar

Example from Michael Pfeiffer

Prob

Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake Transition model: action may fail with small prob.

Prob

