MATH 271: Chapter 7 homework

Micah Sherry

November 18, 2024

2. Prove that $\{6n|n\in\mathbb{Z}\}=\{2n|n\in\mathbb{Z}\}\cap\{3n|n\in\mathbb{Z}\}$

Proof. (\subseteq) first we will show that $\{6n|n\in\mathbb{Z}\}\subseteq\{2n|n\in\mathbb{Z}\}\cap\{3n|n\in\mathbb{Z}\}$. Assume that $x\in\{6n|n\in\mathbb{Z}\}$. Therefore x=6n for some $n\in\mathbb{Z}$. So, x=2(3n) and because $3n\in\mathbb{Z},\ x\in\{2n|n\in\mathbb{Z}\}$. Similarly x=3(2n) and since $2n\in\mathbb{Z},\ x\in\{3n|n\in\mathbb{Z}\}$. Therefore $\{6n|n\in\mathbb{Z}\}\subseteq\{2n|n\in\mathbb{Z}\}\cap\{3n|n\in\mathbb{Z}\}$.

 (\supseteq) Next we will show that $\{2n|n\in\mathbb{Z}\}\cap\{3n|n\in\mathbb{Z}\}\subseteq\{6n|n\in\mathbb{Z}\}.$

Assume that $x \in \{2n|n \in \mathbb{Z}\} \cap \{3n|n \in \mathbb{Z}\}$. This implies that 2|x and 3|x. Which implies that x = 6n for some $n \in \mathbb{Z}$ (because 2 and 3 share no factors other than 1). Thus, $\{2n|n \in \mathbb{Z}\} \cap \{3n|n \in \mathbb{Z}\} \subseteq \{6n|n \in \mathbb{Z}\}$. Therefore the original equality holds.

6. Suppose A,B and C are sets. Prove that if $A \subseteq B$, then $A - C \subseteq B - C$

Proof. Assume that $A \subseteq B$ and let $x \in A - C$. Therefore $x \in A$ and $x \notin \mathbb{C}$. Since $A \subseteq B$ if $x \in A$ then $x \in B$

8. If A,B and C are sets, then $A \cup (B \cap C) = (A \cap B) \cup (A \cap C)$.

Proof. Assuming A,B, and C are sets.

$$A \cup (B \cap C) = \{x | x \in A \lor x \in (B \cap C)\}$$
 (definition of union)
$$= \{x | x \in A \lor x \in (x \in B \land x \in C)\}$$
 (definition of intersection)
$$= \{x | x \in (A \lor x \in x \in B) \land (x \in A \lor x \in x \in C)\}$$
 (distributive property)
$$= \{x | x \in (A \cup B) \land x \in (A \cup C)\}$$
 (definition of union)
$$= \{x | x \in (A \cup B) \cap (A \cup C)\}$$
 (definition of union)
$$= \{x | x \in (A \cup B) \cap (A \cup C)\}$$
 (definition of union)

Therefore the equality holds.

10. If A and B are sets in a universal set U, then $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Proof. Assuming A and B are subsets of U. Then

$$\overline{A \cap B} = \{x \in U | x \notin A \cap B\}$$
 (by definition of complement)
$$= \{x \in U | \sim (x \in A \cap B)\}$$
 (by definition of intersection)
$$= \{x \in U | \sim (x \in A \land x \in B)\}$$
 (by definition of intersection)
$$= \{x \in U | \sim (x \in A) \lor \sim (x \in B)\}$$
 (by De Morgan's law $\sim (p \land q) = \sim p \lor \sim q$)
$$= \{x \in U | x \notin A \lor x \notin B\}$$
 (by definition of complement)
$$= \{x \in U | x \in \overline{A} \lor x \in \overline{B}\}$$
 (by definition of union)
$$= \{x \in U | x \in \overline{A} \cup \overline{B}\}$$
 (by definition of union)

Therefore the implication holds.

16. If A,B and C are sets, then $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Proof. Assuming A,B and C are sets. Then,

$$A \times (B \cup C) = \{(x,y) | x \in A \land y \in (B \cup C)\}$$
 (definition of Cartesian product)
$$= \{(x,y) | x \in A \land (y \in B \lor y \in C)\}$$
 (definition of union)
$$= \{(x,y) | (x \in A \land y \in B) \lor (x \in A \land y \in C)\}$$
 (the distributive property)
$$= \{(x,y) | (x,y) \in A \times B \lor (x,y) \in A \times C\}$$
 (definition of Cartesian product)
$$= \{(x,y) | (x,y) \in (A \times B) \cup (A \times C)\}$$
 (definition of union product)
$$= (A \times B) \cup (A \times C).$$

Therefore the the implication holds.

20. Prove that $\{9^n | n \in \mathbb{Q}\} = \{3^n | n \in \mathbb{Q}\}.$

Proof. (\subseteq) First we will show that $\{9^n|n\in\mathbb{Q}\}\subseteq\{3^n|n\in\mathbb{Q}\}$. Assume that $x\in\{9^n|n\in\mathbb{Q}\}$, then $x=9^n=3^{2n}$ for some $n\in\mathbb{Q}$. Since $x=3^{2n}$ and $2n\in\mathbb{Q}$, $x\in 9\{3^n|n\in\mathbb{Q}\}$. Therefore $\{9^n|n\in\mathbb{Q}\}\subseteq\{3^n|n\in\mathbb{Q}\}$.

(\supseteq) Next, we will show that $\{3^n|n\in\mathbb{Q}\}\subseteq\{9^n|n\in\mathbb{Q}\}$. Assume that $x\in\{3^n|n\in\mathbb{Q}\}$, then $x=3^n=9^{\frac{n}{2}}$ for some $n\in\mathbb{Q}$. Since $x=9^{\frac{n}{2}}$ and $\frac{n}{2}\in\mathbb{Q}$, $x\in\{9^n|n\in\mathbb{Q}\}$. Therefore $\{3^n|n\in\mathbb{Q}\}\subseteq\{9^n|n\in\mathbb{Q}\}$. Therefore since both subset relations hold so does the original equality.

26. Prove that $\{4k + 5 | k \in \mathbb{Z}\} = \{4k + 1 | k \in \mathbb{Z}\}\$

Proof. (\subseteq) First, we will show $\{4k+5|k\in\mathbb{Z}\}\subseteq\{4k+1|k\in\mathbb{Z}\}$. Assume that $x\in\{4k+5|k\in\mathbb{Z}\}$ then x=4k+5=4(k+1)+1 for some $k\in\mathbb{Z}$. Since x=4(k+1)+1 and $k+1\in\mathbb{Z}$. So, $x\in\{4k+1|k\in\mathbb{Z}\}$. Therefore, $\{4k+5|k\in\mathbb{Z}\}\subseteq\{4k+1|k\in\mathbb{Z}\}$.

(\supseteq) Next, we will show $\{4k+1|k\in\mathbb{Z}\}\subseteq\{4k+5|k\in\mathbb{Z}\}$. Assume that $x\in\{4k+1|k\in\mathbb{Z}\}$ then x=4k+1=4(k-1)+5 for some $k\in\mathbb{Z}$. Since x=4(k-1)+5 and $k-1\in\mathbb{Z}$. So, $x\in\{4k+1|k\in\mathbb{Z}\}$. Therefore, $\{4k+5|k\in\mathbb{Z}\}\subseteq\{4k+1|k\in\mathbb{Z}\}$. Therefore since both subset relations hold so does the original equality.