OBJECTIFS 3

- Interpréter en situation les écritures $\{X = a\}$, $\{X \le a\}$ où X désigne une variable aléatoire et calculer les probabilités correspondantes P(X = a), $P(X \le a)$.
- Calculer et interpréter en contexte l'espérance d'une variable aléatoire discrète.

1

Généralités

À RETENIR 00

Définition

On considère une expérience aléatoire d'univers Ω .

- Définir une **variable aléatoire** sur Ω , c'est associer un nombre réel à chaque issue de Ω . On note souvent une variable aléatoire *X* ou *Y*.
- Pour tout $a \in \mathbb{R}$, on note $\{X = a\}$ l'événement « X prend la valeur a » (et on peut définir de même $\{X < a\}, \{X \le a\}, ...$) et P(X = a) sa probabilité.

EXERCICE 1

On lance deux fois de suite une pièce de monnaie équilibrée. Si on obtient Pile, on gagne $1 \in$, sinon on gagne $2 \in$. On définit la variable aléatoire X qui, à l'issue du jeu, associe la somme gagnée par le joueur.

1.	Interpréter $\{X = 2\}$ par une phrase
2	Coloridae $D(V=2)$

Ш

Loi de probabilité

À RETENIR 99

Définition

Soit X une variable aléatoire sur Ω prenant les valeurs $x_1, x_2, ..., x_n$. Lorsqu'à chaque valeur x_i , on associe la probabilité $p_i = P(X = x_i)$, on définit la **loi de probabilité** de X.

EXERCICE 2

On reprend le jeu de l'exercice précédent. Représenter la situation dans un arbre, et surpasser en vert les issues favorables à l'événement $\{X = 3\}$.

EXERCICE 3

Une boulangerie industrielle utilise une machine pour fabriquer des pains devant peser normalement 500 g. On a comptabilisé le poids des pains au cours d'une journée de production. Ils pesaient :

- 480 g dans 8 % des cas;
- 500 g dans 41 % des cas;
- 520 g dans les autres cas.

- 490 g dans 29 % des cas;
- 510 g dans 12 % des cas;

On note *X* la variable aléatoire donnant les masses possibles des pains en gramme.

1. Compléter le tableau suivant donnant la loi de probabilité de *X*.

x_i	480	490	500	510	520
$p_i = P(X = x_i)$					

- 2. a. Quelle est la probabilité qu'un pain pèse au moins 500 g?

Espérance

À RETENIR 99

Définition

Soit X une variable aléatoire sur Ω prenant les valeurs $x_1, x_2, ..., x_n$. L'**espérance** de X, notée E(X), est

$$E(X) = x_1 p_1 + x_2 p_2 + \dots x_n p_n$$

Cela correspond à la moyenne de la variable aléatoire que l'on peut espérer lorsque l'on répète l'expérience un grand nombre de fois.

EXERCICE 4

Dans un casino, il y a une machine à sous qui fonctionne à l'aide d'un lancer de pièce. Si le joueur lance la pièce et tombe sur Pile, il gagne 10 € mais si la pièce tombe sur Face, il ne gagne rien. La partie coûte 3 €. Cependant, la pièce est truquée et celle-ci a trois chances sur quatre de tomber sur Face. Les lancers de pièce sont supposés indépendants.

Un joueur joue trois fois à ce jeu. On note *X* la variable aléatoire qui modélise le gain à l'issue des parties.

- 1. Représenter la succession d'expériences aléatoires sous la forme d'un arbre de probabilités.
- 2. Donner la loi de probabilité de *X* sous forme d'un tableau.
- 3. Quelle somme peut-il espérer gagner en moyenne en jouant 3 parties?

