Exercício 4.1

Em cada um itens abaixo s é a posição no instante t de um objeto se movendo sobre uma reta. Determine a velocidade no instante t_0 .

(1)
$$s = t^2 + 1$$
 em $t_0 = 1$ (3) $s = \sqrt{t}$ em $t_0 = 4$

(1)
$$s = t^2 + 1$$
 em $t_0 = 1$ (3) $s = \sqrt{t}$ em $t_0 = 4$ (2) $s = \frac{1}{t}$ em $t_0 = 2$ (4) $s = \frac{1}{2}t^2$ em $t_0 = 2$.

Exercício 4.2

Em cada um dos itens abaixo encontre a reta tangente pelo ponto (x_0, y_0) .

(1)
$$y = 1 + x^2$$
 (3) $y = x^3$ (5) $y = x|x|$

(2)
$$y = \frac{x^2}{2}$$
 (4) $y = \sqrt{x}$

Exercício 4.3

Em cada um dos itens abaixo determine os intervalos onde o gráfico da função está subindo e em quais intervalos está descendo:

(1)
$$y = 2x^2$$
 (2) $y = 1 - x^2$ (3) $y = x^4$

Exercício 4.4

Uma bola é atirada para cima do topo de um edificio. Depois de t segundos sua altura é h = $30 + 5t - 5t^2$ (em metros).

- (i) Qual a altura do edifício?
- (ii) Qual a velocidade da bola no instante t? Qual a velocidade inicial?
- (iii) Qual a altura máxima que a bola atinge? Quando é que ela atinge esta altura?
- (iv) Quando é que a bola atinge o chão? Com que velocidade?

Exercício 4.5

Suponha que um objeto oscila (para cima e para baixo) preso a uma mola de maneira que sua distância d ao ponto de repouso inicial no instante t é dada $d = \operatorname{sen} t$.

- (i) Onde o objeto está quando $t = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$, e 2π ?
- (ii) Calcule a velocidade do objeto num instante t_0 .
- (iii) Qual a velocidade e qual a direção que o objeto tem quando $t=0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$ e 2π ?

Exercício 4.6

Calcular f'(x) nos seguintes casos:

a)
$$f(x) = 37$$
, b) $f(x) = 17x - 65$ c) $f(x) = x^3 + x$
d) $f(x) = (1 + \sqrt{x})^2$ e) $f(x) = \frac{6}{x^2}$ f) $f(x) = \frac{3x^3 - 2x^2 + 4}{4x^3 + 5x^2}$
g) $f(x) = \frac{\cos(x)\cot(x)}{\sec(x) - \cos(x)}$ h) $f(x) = \frac{2\cos(x)}{x^2 + \frac{1}{2}x + 1}$ i) $f(x) = \frac{x^3\sec(x)\tan(x)}{(x^2 + 1)\cos(x)}$

Exercício 4.7

Verifique se as funções abaixo são diferenciáveis no ponto x=2.

$$a) f(x) = \begin{cases} x^2 & \text{, se } x \le 2 \\ x+2 & \text{, se } x < 2 \end{cases} \qquad b) f(x) = \begin{cases} x \operatorname{sen}(\pi x) & \text{, se } x \le 2 \\ (x^2+1) \cos(\pi x) & \text{, se } x < 2 \end{cases}$$

4ª Lista de Cálculo I 2/??

Exercício 4.8

Considere a função $f(x) = \begin{cases} x^2 \operatorname{sen}(\frac{1}{x}) & , \text{ se } x \neq 0 \\ 0 & , \text{ se } x = 0 \end{cases}$. Encontre f'(x), para todo $x \in R$.

Pergunta-se: f' é contínua em R?

Exercício 4.9

Seja $f: R \to R$ tal que f(x+h) = f(x)f(h), para todo $x, h \in R$ com $f(0) \neq 0$.

- a) Calcule f(0), se existir.
- b) Mostre que se existir f'(0) então f é diferenciável em R e f'(x) = f'(0)f(x), para todo $x \in R$.

Exercício 4.10

Seja $f: R \to R$ uma função diferenciável em R. Mostre que:

- a) Se f é par então f' é impar.
- b) Se f é impar então f' é par.
- c) Se f é τ -periódica então f' é τ -periódica.

Exercício 4.11

Mostre que a reta tangente à curva $y=\frac{1}{x}$ não intersecciona esta curva com exceção do ponto de tangência.

Exercício 4.12

Considere a função $y = x^3 - x$.

- (1) Quais são os pontos onde o gráfico intersecciona o eixo dos x.
- (2) Quais são os pontos onde o gráfico intersecciona o eixo dos y.
- (3) Calcule a inclinação da reta tangente ao gráfico num ponto (x_0, y_0) .
- (4) Para quais x_0 a inclinação é positiva? O que significa isto para o gráfico?
- (5) Para quais x_0 a inclinação é negativa? O que significa isto para o gráfico?
- (6) Para quais x_0 a reta tangente é horizontal? O que significa isto para o gráfico?
- (7) Usando as informações obtidas de (1) a (6) você consegue esboçar o gráfico de $y = x^3 x$.

Exercício 4.13

Sejam f e g duas funções tais que f(2) = 5, $f'(2) = \frac{1}{2}$, g(0) = 2 e g'(0) = 3. Determine a reta tangente ao gráfico de g = f(g(x)) em g = g(x) em g = g(x) em g = g(x).

Exercício 4.14

Determine $(f \circ g)'(3)$ se f(1) = 0, f'(1) = 2g(2)g(3) = 1 e $g'(3) = \frac{3}{2}$.