CBSE SAMPLE PAPER -2016-17

NAME OF THE UNIT	TOTAL WEIGH TAGE	VSA (1 mark)	SA (2 marks)	SA (3 marks)	VBQ (4marks	LA (5 marks)	WEIG HTA GE
Solid State	23	1 (1) Rememberi		3 (1) Understanding			4 (2)
Solutions			2 (1) Rememberi ng	3 (1) Evaluation			5 (2)
Electrochemistry						5 (1) Application	5 (1)
Chemical Kinetics			2 (1) Application	3 (1) Application			5 (2)
Surface Chemistry		1 (1) Rememberi		3 (1) Evaluation			4 (2)
General Principles and Processes of Isolation of Elements	19			3 (1) Application			3 (1)
p - Block Elements			2 (1) Understand ing	3 (1) Application			5 (2)
d - and f - Block Elements		1 (1) HOTS				5 (1) Understanding	6 (2)
Coordination Compounds			2 (1) Application	3 (1) HOTS			5 (2)
Haloalkanes and Haloarenes	28	1 (1) Evaluation		3 (1) Understanding			4 (2)
Alcohols, Phenols and Ethers		1 (1) HOTS		3 (1) understanding			4 (2)
Aldehydes, Ketones and Carboxylic acids						5 (1) HOTS	5 (1)
Amines			2 (1) Understand ing	3 (1) Application			5 (2)
Biomolecules				3 (1) Remembering			3 (1)
Polymers	1			3 (1) Understanding			3 (1)
Chemistry in Everyday Life					4 (1)* Value based question		4 (1)
TOTAL		5 (5)	10 (5)	36 (12)	4(1)	15 (3)	70 (26)

^{*} Value based question

A(B) WHERE; A = NUMBER OF QUESTIONS; B= MARKS HENCE 26 (70)

Sample Question Paper Chemistry class XII 2016-17

MM:70 TIME 3 HRS

1.	Define Kraft temperature.	1
2.	The electronic configuration of a transition element in +3 oxidation state is [Ar]3d ⁷ . Find out its atomic number.	1
3.	Draw the structure of 4-tertbutyl-3-iodoheptane.	1
4.	Give the equation of reaction for the preparation of phenol from cumene.	1
5.	Name the type of semiconductor obtained when silicon is doped with boron.	1
6.	The two complexes of nickel, [Ni(CN)4] ²⁻ and [Ni(CO)4], have different structures but possess same magnetic behaviour. Explain. OR	2
	A chloride of fourth group cation in qualitative analysis gives a green coloured complex [A] in aqueous solution which when treated with ethane -1 , 2 – diamine (en) gives pale - yellow solution [B] which on subsequent addition of ethane -1 , 2 – diamine turns to blue/purple [C] and finally to violet [D]. Write the structures of complexes [A], [B], [C] and [D].	
7.	Account for the following: (i) XeF ₂ is linear molecule without a bend. The electron gain enthalpy with negative sign for fluorine is less than that of chlorine, still fluorine is a stronger oxidizing agent than chlorine.	2
8.	Derive the relationship between relative lowering of vapour pressure and mole fraction of the volatile liquid.	2
9.	After 24 hrs, only 0.125 gm out of the initial quantity of 1 gm of a radioactive isotope remains behind. What is its half life period?	2
10.	Write the IUPAC names of the following: ${\rm CH_3-N} \atop {\rm CH_3-N} \atop {\rm CH_3}$	2
11.	The edge length of a unit cell of a metal having molecular mass 75 g/mol is 5 A° which crystallises in a cubic lattice. If the density is 2g/cc, then find the radius of the metal atom.	3
12.	 (i) A mixture of X and Y was loaded in the column of silica. It was eluted by alcohol water mixture. Compound Y eluted in preference to compound X. Compare the extent of adsorption of X and Y on column. (ii) Why copper matte is put in silica lined converter? Write reactions involved (iii) Name the method used for the refining of Zr. 	3

1.2		Ι 2
13.		3
	(a) NH ₄ Cl (aq.)+ NaNO ₂ (aq.) \rightarrow	
	(b) $P_4 + 3NaOH + 3H_2O \rightarrow$	
	(ii) Why is $Ka_2 \ll Ka_1$ for H_2SO_4 in water?	
14.	Write the correct formulae for the following coordination compounds:	3
	(i) CrCl ₃ .6H ₂ O (violet with 3 chloride ions precipitated as AgCl)	
	(ii) CrCl ₃ .6H ₂ O (light green colour, with 2 chloride ions precipitated as AgCl)	
	(iii)CrCl ₃ .6H ₂ O (dark green colour, with 1 chloride ion precipitated as AgCl)	
15.		3
	(i) p-dichlorobenzene has higher melting point than those of o and m –isomers.	
	(ii) Haloarenes are less reactive than haloalkanes towards nucleophillic	
	substitution reaction.	
	(iii) The treatment of alkyl chloride with aqueous KOH leads to the formation of	
	alcohol but in the presence of alcoholic KOH, alkene is the major product,	
16.	(i) Why does leather get hardened after tanning?	3
	(ii) On the basis of Hardy-Schulze rule explain why the coagulating power of	
	phosphate is higher than chloride.	
	(iii)Do the vital functions of the body such as digestion get affected during	
	fever? Explain your answer.	
17.	Calculate the mass of a non-volatile solute (molar mass40 g/mol) which should	3
	be dissolved in 114 g octane to reduce its vapour pressure to 80%.	
	OR 1 1	
	At 300 K, 36 g of glucose, C ₆ H ₁₂ O ₆ present per litre in its solution has an	
	osmotic pressure of 4.98 bar. If the osmotic pressure of another glucose solution	
	is 1.52 bar at the same temperature, calculate the concentration of the other	
	solution.	
18.	Carry out the following conversions:	3
	i) Phenol to benzoquinone.	
	ii) Propanone to 2-Methylpropan-2-ol.	
	iii) Propene to propan-2-ol.	
19.	(i) Illustrate the following reactions:	3
	a) Hoffmann bromamide degradation reaction.	
	b) Coupling reaction.	
	(ii) Write a chemical test to distinguish between aniline and methylamine.	
20.	(i) Name the common types of secondary structure of proteins and give one	3
	point of difference.	
	(ii) Give one structural difference between amylose and amylopectin	
	(11) Sive one structural difference between annylose and annylopeetin	
	Observe the graph in diagram and answer the following questions.	_

		1
	(i) If slope is equal to -2.0x10 ⁻⁶ sec ⁻¹ , what will be the value of rate constant? (ii) How does the half-life of zero order reaction relate to its rate constant?	
22.	 (i) Classify the following as addition and condensation polymers: Terylene, Bakelite, Polyvinyl chloride, Polythene. (ii) Explain the difference between Buna – N and Buna – S. 	3
23.	Ali's brother likes taking medicines. He sometimes even takes cough syrups even when he is not ill. One such day, he took cough syrup when he was healthy. After some time he started feeling nausea, headache and his body started itching. Ali's father did not take him to the doctor and wanted to give medicine on his own. Ali insisted that his father should not give medicine to his brother on his own but should take him to a doctor. After reading the above passage, answer the following questions: (i) Mention the values shown by Ali. (ii) Why did his body start itching and what kind of medicine will doctor prescribe him? (iii) Why medicines should not be taken without consulting doctor? (iv) Give one point of difference between agonist and antagonist.	4
24.	 (i) State the relationship amongst cell constant of a cell, resistance of the solution in the cell and conductivity of the solution. How is molar conductivity of a solution related to conductivity of its solution? (ii) A voltaic cell is set up at 25°C with the following half cell; A1 / A1³+ (0.001 M) and Ni /Ni²+ (0.50 M) Calculate the cell voltage. [E° Ni²+/Ni = - 0.25V, E°AI³+/AI = -1.66V] OR (i) Calculate the potential of hydrogen electrode in contact with a solution whose pH is 10. (ii) State Faraday's laws of electrolysis. How much charge in terms of Faraday is required for reduction of 1 mol of Cr2O7²- to Cr³+? 	5
25.	 (i) Is the variability in oxidation number of transition elements different from that of non – transition elements? Illustrate with examples. (ii) Give reasons: (a) d- block elements exhibit more oxidation states than f-block elements. (b) Orange solution of potassium dichromate turns yellow on adding sodium hydroxide to it. (c) Zirconium (Z= 40) and Hafnium (Z = 72) have almost similar atomic radii. 	5

OR (i) Describe the preparation of potassium permanganate from pyrolusite ore. Write balanced chemical equation for one reaction to show the oxidizing nature of potassium permanganate. (ii) Draw the structures of chromate and dichromate ions. A ketone A which undergoes haloform reaction gives compound B on reduction. B on heating with sulphuric acid gives compound C, which forms mono-ozonide D. The compound D on hydrolysis in presence of zinc dust gives only acetaldehyde. Write the structures and IUPAC names of A, B and C. Write down the reactions involved. Predict the products formed when cyclohexanecarbaldehyde reacts with following reagents. (a) PhMgBr and then H₃O⁺. (b) Tollens' reagent. OR Complete each synthesis by giving missing starting material, reagent or products: $HO-NH_2$ H^+ (a) CH₃ $KMnO_{4}$ (b) KOH, heat SOCl₂ (c) Δ ÓН

26. (i)

(ii)

(i)

(d)

(e)

MARKING SCHEME

1.	The formation of micelle takes place only above a particular temperature called	1
2.	Kraft temperature.	1
2.		1
3.		1
	$ \overset{1}{\text{CH}_3} - \overset{2}{\text{CH}_2} - \overset{3}{\text{CH}} - \overset{4}{\text{CH}} - \overset{5}{\text{CH}_2} - \overset{6}{\text{CH}_2} - \overset{7}{\text{CH}_3} $	
	СН ₃ — С—СН ₃	
	CH ₃	
4		1
4.	оон	1
	O_2 H_2O O_2	
	H_2SO_4	
5.	P type semiconductor	1
	1 type semiconductor	1
6.	$[Ni(CN)_4]^{2-}$	¹ / ₂ +1/2+
	dsp ² hybridisation, Ni in +2 state all electrons are paired, so diamagnetic.	1/2+1/2
	[Ni(CO) ₄] sp ³ hybridisation, Ni in 0 state	
	all electrons are paired so diamagnetic	
	OR	
	$A = [Ni(H_2O)_6]^{2+}$	
	$B=[Ni(H_2O)_4(en)]^{2+}$	
	$C=[Ni(H_2O)_2(en)_2]^{2+}$ $D=[Ni(en)_3]^{2+}$	
7.	(i) The electron arrangement is trigonal bipyramidal. The shape is linear because the lone pairs prefer the equatorial positions.	1+1
	The moleculeXeF ₂ has 3lone-pairs and 2bond-pairs.	
0	(ii) Low bond dissociation enthalpy and high hydration enthalpy of flourine.	
8.	Let us assume a binary solution in which the mole fraction of the solvent be	
	x1 and that of the solute be x2, p1 be the vapour pressure of the solvent and p10 be the vapour pressure of the solvent in pure state.	
	According to Raoult's Law:	
	$p_1 = X_1 p_1^{\circ} \dots (1)$	1/2

	The decrease in vapour pressure of the solvent (Δ p1) is given by:	
	$\Rightarrow \Delta p_1 = p_1 \circ - p_1$	
	$\Rightarrow \Delta p_1 = p_1 \circ - p_1 \circ x_1 $ [using equation (1)]	1/2
	$\Rightarrow \Delta p_1 = p_1^{\circ} (1 - x_1)$	
	Since we have assumed the solution to be binary solution, $x2=1-x1$	1/
	$\Rightarrow \Delta p_1 = p_1 \circ x_2$	1/2
	$\Rightarrow x_2 = \Delta p_1/p_{1^0}$	1/2
9.		
9.	a=1g, a-x= 0.125g, t=24hours	17
	$k = \frac{2.303}{t} log \frac{a}{a-x}$	1/2
	$\int a-x$	
	$k = \frac{2.303}{t} log \frac{1}{0.125}$	1/2
	$=0.0866hr^{-1}$.	
		1/2
	$t_{1/2} = \frac{0.693}{k}$	
	$t_{1/2} = \frac{0.693}{k}$ $t_{1/2} = \frac{0.693}{0.0866}$	1/2
	$t_{1/2} = \frac{1}{0.0866}$	
	=8hours	
10.	(i) 1-Phenylmethanamine.	1
10.	(ii) N,N-Dimethylmethanamine.	1
11.		
	$\rho = \frac{Z X M}{a3 X N a}$	1/2
	22	
	$Z = \frac{2x(5x10^{-8})^3 x 6x10^{23}}{75}$	1/2
	=2	1
	$r=\sqrt{\frac{3}{4}}a$	1/2

	$r=\sqrt{\frac{3}{4}}x$	5	
	4		
	=2.165	$5A^0$	1/2
	2.100		
1	2. (i) X is	s more strongly adsorbed than Y.	1
	\ /	pper matte contains small amount of FeO as impurity which is removed	1/2
		FeSiO3 slag when reacts with silica.	
		O + SiO2> FeSiO3 (slag)	1/2
	(iii) Var	n Arkel Method	1
1	(a) NIII	$C(1/\alpha g) + N\alpha NO(\alpha g g) + NA(\alpha) + 2H\alpha O(1) + N\alpha O(\alpha g g)$	1
1		$_{4}Cl(aq.) + NaNO_{2}(aq.) \rightarrow N_{2}(g) + 2H_{2}O(l) + NaCl(aq.)$	1
	(b) P ₄ -	$+3$ NaOH $+3$ H ₂ O $\rightarrow 3$ NaH ₂ PO ₂ $+$ PH ₃	1
			1
	(iii) H ₂	SO ₄ is a very strong acid in water because of its first ionisation to H ₃ O ⁺ .	1
	an	d HSO ₄ ⁻ . The ionization of HSO ₄ ⁻ to H ₃ O ⁺ and SO ₄ ² - is very small (it is	
		fficult to remove a proton from a negatively charged ion).	
1		$r(H_2O)_6]Cl_3$	1
		r(H ₂ O) ₅ Cl]Cl ₂ H ₂ O	1
1		$r(H_2O)_4(Cl)_2]Cl(H_2O)_2$	1
		is due to the symmetry of para-isomers that fits in the crystal better as	1
		mpared to ortho and meta-isomers. sonance effect / Difference in hybridization of carbon atom in C-X bond /	1
		stability of phenyl cation / because of the repulsion, it is less likely for the	1
		ectron rich nucleophile to approach electron rich arenes .	
		toxide ion present in alcoholic KOH, is not only a strong nucleophile but	1
	` '	a strong base.	
1		imal hides are colloidal in nature, havig positively charged particles,	1
	whe	en soaked in tannin, which contains negatively charged colloidal	
	1	ticles, mutual coagulation occurs.	
		eater the valency of flocculating ion added, greater is its power to cause	1
	_	cipitation.	
		e optimum temperature range for enzymatic activity is 298-310 K i.e	1
		ymes are active beyond this temp. range, thus during fever the activity of ymes may be affected.	
1		apour pressure of pure liquid is = P_0	
1		% of pure liquid $Ps = 80 \times P_0 / 100 = 0.8P_0$	1
		$=$ P _o \times X _{solute}	
	mas	ss of solute = x gram	1/2
	And	d mass of solvent = $114g$	
		lar mass of solute= 40 g/mol	
		lar mass of solvent (octane C_8H_{18}) = 114g/mol	
		mber of moles of solute = $x/40 = 0.025x$	
		mber of moles of solvent = $114/114=1$ moles	
		le fraction of solvent = $1/(1+0.025x)$	
		$P_0 = P_0 \times 1/(1+0.025x)$ ss multiply we get	1
		$(0.025x)(0.8P_0 = P_0)$	
L	(1)	0.025Ajj0.01 () 1 ()	

	Divide by 0.8 Po we get	
	1+0.025x = 1.25	
	Subtract 1 both side we get	
	0.025x = 0.25	
	Now divide by 0.025 we get	
		1/2
	x = 10g	/2
	OR	
	$\pi V = CRT$	1
	$4.98 = 36/180 \times R \times 300 = 60 R$ (i)	1/2
	$1.52 = C \times R \times 300 \qquad(ii)$	1/2
	1.52 C X K X 500(II)	
	Divide (ii) by (i)	
	C=0.061M	1/2
	C- 0.001W	½ for
		unit
18.	ÓН О	
	Na ₂ Cr ₂ O ₇	1
	H ₂ SO ₄	
	0	
	(i) Benzoquinone	
	□ CH ₃ □	
	H ₃ C	1
	$C = O + CH_3 - MgBr$ $CH_3 - C - OMgBr$	
	Methymagnesium ☐ CH ₃ ☐	
	Propanone bromide Adduct	
	H_2O	
	▼ ОН	
	Mg (OH) $Br + CH_3 - C - CH_3$	
	CU	
	CH ₃	
	(ii) 2-methylpropan-2-ol	
	$CH_3 - CH = CH_2$ $HBr / Peroxide$ $CH_3 - CH_2 - CH_2 - Br$	1
	Propene (Ani - Markovnikov 1 - Bromopropane	-
	addition	
	(Nucleophilic substitution) Aq. KOH / Δ	
	Substitution) 🔻	
	$CH_3 - CH_2 - CH_2 - OH$	
	(iii) Propan – 1 – ol	
19.	Q	1
	R — C — $NH_2 + Br_2 + 4NaOH$ \longrightarrow $RNH_2 + Na_2CO_3$	
	$+2NaBr + 2H_2O$	
	$+2NaBr+2H_2O$	
		•

		1
	Benzenediazonium chioride Phenoi	
	\downarrow	
	O → N=N → O → OH + HCI	
	4-Phenylazophenol	
•	(iii) Aniline will give azo dye test whereas methylamine will not	1
20.	(i) α helix-Intramolecular H bonding. β pleated-Intermolecular H bonding.	1
	(ii) Amylose is a straight chain polymer of D glucose whereas amylopectin is a	1/2
	branched polymer.	1/2
21.	(i) Slope = $-\frac{k}{2.303}$	1
	$k = -2.303 \text{ x} - 2.0 \text{x} 10^{-6} \text{ sec}^{-1}$	1
	$= 4.606 \times 10^{-6} \text{ sec}^{-1}.$	
	A_0	1
	(ii) $t_{1/2} = \frac{A_0}{2k}$	
22.	(i) Addition polymers: Polyvinyl chloride, Polythene.	$\frac{1}{2}+1/2$
	Condensation polymers: Terylene, Bakelite.	¹ / ₂ +1/2
	(ii) Buna- N: 1,3-Butadiene + Acrylonitrile.	1/2+1/2
23.	Buna -S: 1,3-Butadiene + Styrene. (i) Caring, empathetic, awareness, application of knowledge at right place.	½+1/2
23.	(i) Because of production of histamine. Doctor will prescribe antihistamine.	$\frac{1}{2} + \frac{1}{2}$
	(iii) Medicines can be potent poisons.	1
	(iv) An agonist is a chemical that binds to a receptor and activates the receptor to produce a biological response.	¹ / ₂ +1/2
	Antagonist is a drug that blocks a receptor.	
24.	(i) $\kappa = \frac{G^*}{R}$	1
	R	
	$\Lambda_m = \frac{1000 \kappa}{C}$	1
		1
	$E_{Ni^{2+}/Ni} = -0.25 - \frac{0.0591}{2} \log \frac{1}{0.50}$	1
	= -0.259V	
	$E_{Al^{3+}/Al} = -1.66 - \frac{0.0591}{3} \log \frac{1}{0.001}$	1
	= -1.719V	
	$E_{cell} = 0.259V - (-1.719V) = 1.46V$	1
	OR	
	(i) $E_{H^{+/1/2}H2} = E^{0}_{H^{+/1/2}H2} - \frac{0.0591}{n} log \frac{1}{[H^{+}]}$	1

	$E_{H+/1/2 H2} = 0 - \frac{0.0591}{1} \log \frac{1}{10^{-10}}$	1/2
	= -0.591 V	1/2
	(ii) First law-the chemical deposition due to flow of current through an electrolyte is directly proportional to the quantity of electricity (coulombs) passed through it.	1
	Faraday's second law of electrolysis states that, when the same quantity of electricity is passed through several electrolytes, the mass of the substances deposited are proportional to their respective chemical equivalent or equivalent weight.	1
	3F	1
25.	 (i) In transition elements, the oxidation state differ by 1 e.g Cu⁺ and Cu²⁺. In non-transition elements, the oxidation state differ by 2 e.g Pb⁺² and Pb⁴⁺ (ii) 	1 +1
	(a) d- block elements exhibit more oxidation states because of comparable energy gap between d and s subshell whereas f-block elements have large energy gap between f and d subshell. (b)	1
	$Cr_2O_7^{2-} + H_2O \Longrightarrow 2CrO_4^{-} + 2H^+$ orange yellow	1
	(c) Lanthanoid contraction.	1
	OR (i) 2 MnO ₂ + 4 KOH + O ₂ > 2K ₂ MnO ₄ + 2H ₂ O	1
	3 MnO ₄ ²⁻ + 4H ⁺ > 2MnO ₄ ⁻ + MnO ₂ + 2H ₂ O	1
	$MnO_4^- + 5Fe^{2+} + 8H^+ - \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$	1
	O C C C C C C C C C	1
	(ii) Chromate Ion	
	0- 0	1

26		1
26.	CH ₃ CH = CHCH ₃ 2-butene (C)	1
	The compound C is obtained by dehydration of B, thus the latter should be $CH_3 \longrightarrow CH \longrightarrow CH_2 \longrightarrow CH_3$	
	OH 2-butanol	1
	(B) Finally, B is obtained by the reduction of A. Hence, the compound A should be	
	CH ₃ — C — CH ₂ — CH ₃ O 2-butanone	
	(A)	1
	The equations involved are as follows: $CH_3 - C - CH_2 - CH_3 $	
	OH	
	The equations involved are as follows: $CH_3 - C - CH_2 - CH_3 \xrightarrow{[H]} CH_3 - CH - CH_2 - CH_3 \xrightarrow{H_2SO_4} OH \xrightarrow{H_2SO_4} OH \xrightarrow{H_2O} OH \xrightarrow{H_2O} CH_3 - CH - CH_3 \xrightarrow{C_3} CH_3 - CH$	
	2CH₃CHO (D)	
	(ii)	
	OMgBr OH	
	$CH=0$ Ph MoBr C $H_{\bullet}O^{+}$ C	
	Ph - MgBr Dry ether Ph - MgBr Ph H Hydrolysis	1
	Cyclohexane – carbaldehyde Cyclohexylphenylcarbinol	
	(b)	
	CH=0	
	+ 2 [Ag(NH ₃) ₂] ⁺ + 3OH ⁻	
	Cyclohexane – Tollens' reagent carbaldehyde	
	O II	
	$C - O^-$ + 2 Ag $1 + 4NH_3 + 2H_2O$	
	Silver mirror	1
	Cyclohexane – carboxylate ion	
	OR	
	(a)	
	H^+ $N-OH$	
	\ + HO−NH ₂ — H ·	1

