| BTS- | V(SS)  | -09-22-                | 1 | 06 | ,  |
|------|--------|------------------------|---|----|----|
| DIO" | V ( DD | ,-v <i>j-<u>L</u>L</i> | 1 | v  | ,, |

| Reg. No.   | ì |
|------------|---|
| 2208, 2131 |   |

# B

# B. Tech. Degree V Semester Special Supplementary Examination September 2022

### CS 19-202-0502 SYSTEM PROGRAMMING

(2019 Scheme)

Time: 3 Hours

Maximum Marks: 60

Course Outcomes

On successful completion of the course, the students will be able to:

- CO1: Familiarise the basics of system programs like assemblers, macro processors, linkers, loaders and operating systems.
- CO2: Design, analyze and implement one pass, two or multi pass assembler.
- CO3: Design and implement macro processors, linkers and loaders.
- CO4: Compare different types of operating systems

Bloom's Taxonomy Levels (BL): L1 – Remember, L2 – Understand, L3 – Apply, L4 – Analyze,

L5 - Evaluate, L6 - Create

PO - Programme Outcome

#### PART A

(Answer ALL questions)

|    |            | (8                                                       | $\times 3 = 24$ ) | Marks | BL | CO  | PO  |
|----|------------|----------------------------------------------------------|-------------------|-------|----|-----|-----|
| ĭ  | (a)        | Discuss assemblers. List the functions of an assembler   | •                 | 3     | L1 | 1   | 1   |
| ١. | (b)        | Explain the significance of SYMTAB and OPTAB in assemb   | olers.            | 3     | L2 | 2   | 1   |
|    | (c)        | Discuss the design of absolute programs                  |                   | 3     | L2 | 2   | 1,2 |
|    | (d)        | Compare linking loader and linkage editor                |                   | 3     | L2 | 2   | 1   |
|    | (e)        | Discuss on macro. How is it different from a subroutine? |                   | 3     | L1 | 3   | 2   |
|    | (f)        | Discuss on conditional macro expansion                   |                   | 3     | L2 | - 3 | 1.  |
|    |            | Discuss on run-time environment and user-interfaces      |                   | 3     | L1 | 4   | 1   |
|    | (g)<br>(h) | Elucidate on virtual machines.                           |                   | 3     | L2 | 4   | 1   |
|    | 1111       | Liucidate on virtual machines.                           |                   |       |    |     |     |

#### PART B

 $(4 \times 12 = 48)$ 

- II. (a) Discuss how forward references are handled in a one pass assembler.

  4 L2 1 2,3

  (b) Concrete the object code for the following SIC/XE program. Given 8 L3 1 2,3
  - (b) Generate the object code for the following SIC/XE program. Given that:

CLEAR = B4, LDA = 00, LDB = 68, ADD = 18, TIX = 2C, JLT = 38, STA = 0C.

| FIRST        | <b>START</b> | 1000   |
|--------------|--------------|--------|
|              | LDA          | #0     |
|              | +LDB         | #TOTAL |
| LOOP         | ADD          | TABLE  |
|              | TIX          | COUNT  |
|              | JLT          | LOOP   |
|              | STA          | TOTAL  |
| COUNT        | RESW         | 1      |
| <b>TABLE</b> | RESW         | 2000   |
| TOTAL        | RESW         | 1      |
|              | END          | FIRST  |
|              |              | Ω      |



OR

III. (a) Discuss on machine independent assembler features.

(b) Discuss the algorithm for a two pass assembler with the necessary data

5 L2 1 1
7 L2 1 2
8 Tructures.

(P.T.O.)

## BTS-V(SS)-09-22-1061

| IV.        | (a)      | An SIC program is loaded in a location different from the starting                                                                                        | Marks | BL  | CO | PO |
|------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|----|----|
|            | (a)      | An SIC program is loaded in a location different from the starting address specified in the program. Will the program work properly? Justify your answer. | 5     | L2  | 2  | 3  |
|            | (b)      | Discuss the algorithm and necessary data structures for linking loaders.                                                                                  | 7     | L2  | 2  | 2  |
|            |          | OR                                                                                                                                                        |       |     |    |    |
| <b>V</b> . | (a)      | Is there a need to use modification records for the given SIC/XE program segment? Explain your answer. If yes, show the contents of modification record.  | 5     | L3  | 2  | 2  |
|            | Tanaga . | 0000 COPY START 0                                                                                                                                         |       |     |    |    |
| *          |          | 0006 +JSUB RDREC                                                                                                                                          | •     |     |    |    |
|            |          | 000A LDA LENGTH                                                                                                                                           |       |     |    |    |
|            |          |                                                                                                                                                           |       |     |    |    |
|            |          | 0033 LENGTH RESW 1                                                                                                                                        |       |     |    |    |
|            |          | 1036 RDREC CLEAR X                                                                                                                                        |       |     |    |    |
|            | (b)      | Discuss on the design of bootstrap loaders                                                                                                                | 7     | L2  | 2  | 1  |
| VI.        | (a)      | Discuss on the algorithm for a single pass macro processor with the                                                                                       | 9     | L2  | 3  | 2  |
|            | (h)      | different data structures.                                                                                                                                | 2     | τ ο | 2  | 2  |
|            | (b)      | Discuss how nested macro definitions are handled <b>OR</b>                                                                                                | 3     | L2  | 3  | 2  |
| VII.       |          | Discuss on machine independent macro-processor features.                                                                                                  | 12    | L2  | 3  | 1  |
|            |          | · · · · · · · · · · · · · · · · · · ·                                                                                                                     | •     |     | -  | -  |
| VIII.      | (a)      | Compare multiprocessor operating system and distributed operating                                                                                         | 6     | L2  | 4  | 1  |
|            | 41       | systems.                                                                                                                                                  |       |     |    |    |
|            | (b)      | Discuss on the functions of an operating system.  OR                                                                                                      | 6     | L2  | 4  | l  |
| IX.        | (a)      | Discuss on object oriented operating systems.                                                                                                             | 6     | L2  | 4  | 1  |
| •          | (b)      | Discuss on the different types of Operating systems.                                                                                                      | 6     | L2  | 4  | 1  |
|            |          |                                                                                                                                                           |       |     |    |    |

Bloom's Taxonomy Levels L1 = 13%, L2 = 78%, L3 = 9%.

\*\*\*