CHƯƠNG III - ÁNH XA TUYẾN TÍNH

MỘT SỐ KHÁI NIỆM và TÍNH CHẤT

Giả sử X,Y là các không gian véc tơ trên \mathbb{R}

 $E=\{e_1, e_2, \dots, e_n\}$ là một cơ sở của X. $B=\{u_1, u_2, \dots, u_m\}$ là một cơ sở của Y.

* Ánh xạ f: $X \rightarrow Y$ được gọi là ánh xạ tuyến tính (hay đồng cấu)

$$\Leftrightarrow \forall x,y \in X; \ \forall a,b \in R: \qquad f(a.x+b.y) = a.f(x) + b.f(y)$$

- * $f: X \to Y$ là axtt $\Rightarrow f(0_X) = 0_Y$.
- * Ma trận A của axtt f đối với cặp cơ sở E trong X và cơ sở B trong Y:

$$A = \begin{bmatrix} f \end{bmatrix}_{E,B} = \begin{bmatrix} f(e_1) \end{bmatrix}_B & [f(e_2)]_B & \dots & [f(e_n)]_B \\ \downarrow & & \downarrow \end{bmatrix}.$$

$$Ký \text{ hiệu } [f]_{E,E} = [f]_E$$

* Liên hệ giữa tọa độ của $x \in X$ và f(x):

+ CT tổng quát:
$$[f(x)]_B = [f]_{E,B}.[x]_E$$

Ở đây $[x]_E$ là tọa độ cột của véctơ x đối với cơ sở E; $[f(x)]_B$ là tọa độ cột của véctơ f(x) đối với cơ sở B; và $[f]_{E,B}$ là ma trận của ánh xạ tuyến tính f đối với cặp cơ sở E trong X và E trong E.

+ Trường hợp $f: X \rightarrow X$ (f là phép tự đồng cấu):

$$[f(x)]_E = [f]_E [x]_E$$

- + Trường hợp f: $R^n \to R^m$, nếu ta ký hiệu [f] là ma trận của f đối với các cơ sở chính tắc trong R^n , R^m thì [f(x)]=[f].[x]. Đây cũng chính là biểu thức xác định ánh xạ tuyến tính f.
- * Ánh xạ tuyến tính f được xác định duy nhất khi và chỉ khi:

$$\Leftrightarrow$$
(1) Biết biểu thức $f(x_1,x_2,...,x_n)$ hay ma trận A: $f(X)=A.X$ (ở đây tọa độ của $X=(x_1,x_2,...,x_n)^T$ và $f(X)=[f(x_1,x_2,...,x_n)]$)

- \Leftrightarrow (2) Biết ma trận của f đối với một cặp cơ sở E trong X và B trong Y.
- \Leftrightarrow (3) Biết ảnh của một cơ sở E trong X, (tức là biết các véctơ $f(e_1)$, $f(e_2)$,..., $f(e_n)$)

Về mặt thực hành: Chúng ta xét mối liên hệ giữa (1) và (3) để giải bài toán:

Cho axtt f: $R^n \to R^m$, xác định bởi $f(e_i) = b_i$; i=1,2,...n, $E = \{e_1, e_2,..., e_n\}$ là một cơ sở của R^n . Gọi A=[f]. Tìm ma trân A.

Từ công thức thì f(X)=A.X, suy ra $[b_1 \mid b_2... \mid b_n]=A[e_1 \mid e_2... \mid e_n]$

Gọi [B] là ma trận mà các cột lần lượt là tọa độ của các vécto b_i ; [E] là ma trận mà các cột lần lượt là tọa độ của các vécto e_i thì [B] = A.[E] hay $\mathbf{A} = [\mathbf{B}] \cdot [\mathbf{E}]^{-1}$.

- * Ánh xạ tuyến tính có tính chất bảo toàn cấu trúc đại số:
 - + Nếu A là kg con của X thì f(A) là kg con của Y; dim $f(A) \le \dim A$.
 - + Nếu B là kg con của Y thì f⁻¹(B) là kg con của X.
 - + Nếu { $x_1, x_2, ..., x_n$ } là một hệ sinh của không gian con A của X thì { $f(x_1), f(x_2), ..., f(x_n)$ } là một hệ sinh của không gian con f(A).

* Ảnh và hat nhân của một ánh xa tuyến tính f:

$$+\left[\underset{\longrightarrow}{Imf} = f(X) = \{ f(x); x \in X \} \right] = \left\{ y \in Y: \exists x \in X, f(x) = y \} \right\} \text{được gọi là ảnh của f.}$$

$$\boxed{Imf = \langle f(e_1), f(e_2), \dots, f(e_n) \rangle}, \text{với } \{ e_1, e_2, \dots, e_n \} \text{ là một cơ sở bất kỳ của } X$$

= < Hê các vécto côt trong mt chính tắc của f > khi X=Rⁿ; Y=R^m.

Dim Imf = Hang của 1 ma trận (bất kỳ) của f. ($\leq \dim X$).

+ Đinh nghĩa: Hang của axtt f = dim Imf

$$+ \boxed{Kerf = f^{-1}(\{0\}) = \{ \ x \in X \colon \ f(x) = 0_Y \ \}} \ goi \ l \ hạt \ nhân của \ axtt \ f.$$

* Đơn cấu, toàn cấu và đẳng cấu (tham khảo):

$$\Leftrightarrow$$
 Kerf ={0} hay dim Kerf=0

$$+$$
 f là toàn cấu \Leftrightarrow f là đồng cấu $+$ f toàn ánh (?).

$$\Leftrightarrow$$
 Imf = Y hay dim Imf = dim Y.

+ f là đẳng cấu ⇔ f là đồng cấu + f song ánh

$$\Leftrightarrow$$
 dim X = dim Y và dim kerf =0 (hay dim Imf = dim Y).

* Liên hệ giữa các ma trận của cùng một axtt f đối với các cặp cơ sở khác nhau:

+ Giả sử $f: X \rightarrow Y$ là axtt.

 E_1 , E_2 là 2 cơ sở tùy ý của X.

S là ma trân chuyển từ cơ sở E₁ sang E₂.

 B_1 , B_2 là 2 cơ sở tùy ý của Y.

T là ma trận chuyển từ cơ sở B_1 sang B_2 .

thi
$$\begin{bmatrix} f \end{bmatrix}_{E_1,B_1} = A; \quad [f]_{E_2,B_2} = B$$

thi $\begin{bmatrix} \mathbf{B} = \mathbf{T}^{-1}\mathbf{AS} \end{bmatrix}$

$$(E_1)$$
 A (B_1)

$$(E_2)$$
 B (B_2)

+ Trường hợp riêng (thường gặp hơn):

Giả sử $f: X \rightarrow X$ là phép biến đổi tuyến tính.

 E_1 , E_2 là 2 cơ sở tùy ý của X.

S là ma trận chuyển từ cơ sở E_1 sang E_2 .

$$[f]_{E_1} = A; \qquad [f]_{E_2} = B$$
thì
$$B = S^{-1}AS$$

f: X _____ X

$$(E_1) \quad \underline{A} \quad (E_1)$$

$$S \downarrow \qquad \qquad S \downarrow$$

$$(E_1) \quad \underline{B} \quad (E_1)$$

$$(E_2)$$
 B (E_2)

(Nhắc lại cách tìm $S_{E_1 \to E_2}$: Do $\begin{bmatrix} E_1 \end{bmatrix}$. $S_{E_1 \to E_2} = \begin{bmatrix} E_2 \end{bmatrix}$ nên $S_{E_1 \to E_2} = \begin{bmatrix} E_1 \end{bmatrix}^{-1} \begin{bmatrix} E_2 \end{bmatrix}$)

* Khái niệm 2 ma trận đồng dạng:

Ta nói 2 ma trận vuông A, B là đồng dạng nếu có một ma trận P khả nghịch sao cho $B = P^{-1}AP$. Dễ thấy 2 ma trận của cùng 1 phép biến đổi tuyến tính trên R^n đối với các cơ sở khác nhau là đồng dạng.

BÀI TẬP

- **1.** Cho f: $R^2 \to R^3$ là một axtt xác định bởi f(2,3) = (0,7,8); f(1,1) = (1,4,4). Tìm f(x,y).
- **2.** Axtt f: $\mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi f(1,2,0) = (5,1,1); f(1,1,0) = (3,2,1). f(1,1,1) = (4,4,6). a) Tìm f(2,3,4) b) Tìm f(x,y,z).
- 3. Trong không gian R³, cho ánh xa tuyến tính f là phép lấy đối xứng điểm trong không gian qua mặt phẳng x+y-2z=0. Tìm biểu thức f(x,y,z).
- **4.** Axtt f: $R^3 \rightarrow R^2$ xác định bởi f(x,y,z)=(2x+5y-3z, x-4y+7z).
 - a) Tìm ma trân chính tắc của f.
 - b) Tìm ma trận của f đối với các cơ sở $E=\{x_1=(1,2,1); x_2=(1,1,0); x_3=(0,3,1)\}$ trong R^3 và $B=\{y_1=(1,3); y_2=(2,5)\}$ trong R^2 . (theo nhiều cách)
 - c) Giả sử véctor $x \in \mathbb{R}^3$ có toa đô đối với cơ sở E là (1,2,3). Tìm véctor f(x) và toa đô của f(x) đối với cơ sở B (làm theo nhiều cách).
 - d) Tìm cơ sở và chiều của Kerf; Imf.
- 5. (ĐCK) Cho axtt $f: \mathbb{R}^4 \to \mathbb{R}^3$ có ma trận chính tắc $A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 2 & -1 & 2 & -1 \\ 1 & -3 & 2 & -2 \end{pmatrix}$.

 a) Tìm f(x,y,z,t).

 - b) Xác định nhân và ảnh của axtt f (xác định cơ sở và chiều).
- **6.** Cho axtt f: $\mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi $f(x,y,z) = (x-y+z, x+z, x+y+\alpha.z)$.
 - a) Tìm giá tri của α để f không là đẳng cấu.
 - b) Với điều kiện của câu a), tìm cơ sở và chiều của Imf, Kerf.
 - c) Biết $A=\{(x,y,z): x-2y+z=0\}$. Tìm cơ sở và chiều của f(A).
- 7. Biết rằng axtt $f: \mathbb{R}^2 \to \mathbb{R}^2$ có ma trận $A = \begin{pmatrix} 5 & -3 \\ 3 & 5 \end{pmatrix}$ đối với cơ sở $E = \{(2,1); (1,3)\}$.
 - a) Tìm ma trận của f đối với cơ sở chính tắc của R².
 - b) Tìm f(4.5) bằng nhiều cách; Tìm f(x,y).
 - c) Tìm ma trận của f đối với cơ sở $B=\{(1,1);(1,2)\}$
- 8. Giả sử phép biến đổi tuyến tính f trên R^3 có ma trận $A = \begin{pmatrix} 2 & 4 & -3 \\ 1 & 3 & 0 \\ 3 & 5 & 6 \end{pmatrix}$ đối với cơ sở
 - $E=\{(0, 1, 2); (4,1,0); (1,0,2)\}.$
 - a) Tìm biểu thức f(x,y,z).
 - b) Tìm ma trân của f đối với cơ sở $B = \{ (1, 2, 3); (3, 4, 2); (0, 1, -1) \}.$
 - c) Tìm cơ sở và chiều của Imf; Kerf (làm bằng nhiều cách).
- 9. Hãy xác định một ánh xa tuyến tính f: $R^3 \rightarrow R^4$ sao cho Kerf = $\langle (1, 2, 3) \rangle$ và $Imf = \langle (1, 2, 1, 0); (2, 3, 1, 1) \rangle$. Ánh xạ tuyến tính f thỏa yêu cầu đề bài có xác đinh duy nhất hay không, vì sao?