Laboratorio 4: Estabilidad y Respuesta en el Tiempo

Este laboratorio se desarrollará en 2 sesiones.

Objetivos

- Analizar la estabilidad y la respuesta en el tiempo de varios sistemas.
- Estudiar los efectos de la ubicación de los polos de los sistemas.
- Estudiar la respuesta en estado transitorio de un circuito eléctrico.
- Comparar respuestas simuladas y físicas de circuitos eléctricos.

Primera Parte: Estudio de Distintas Funciones de Transferencia

En esta parte, analizarán sistemas LTI descritos por las siguientes funciones de transferencia:

$G_1 = \frac{1}{s-1}$	$G_2 = \frac{4}{s+2}$	$G_3 = \frac{10}{s+10}$
$G_4 = \frac{1}{s^2 + s - 12}$	$G_5 = \frac{5000}{s^2 + 150s + 5000}$	$G_6 = \frac{5000s}{s^2 + 150s + 5000}$
$G_7 = \frac{100}{s^2 + 20s + 100}$	$G_8 = \frac{8}{s^2 + 4s + 8}$	$G_9 = \frac{80}{s^2 + 4s + 68}$
$G_{10} = \frac{80s + 80}{s^2 + 4s + 68}$	$G_{11} = \frac{8000}{s^2 + 6s + 10009}$	$G_{12} = \frac{1}{s^2 + 1}$
$G_{13} = \frac{1}{s^2 - 16s + 164}$	$G_{14} = \frac{250s + 250000}{s^3 + 140s^2 + 5300s + 130000}$	

Para cada uno de los sistemas anteriores:

- a. Encuentren los polos y los ceros.
- b. Grafiquen el diagrama de polos y ceros. Activen o desactiven la opción Grid, según cómo se vea mejor el diagrama.
- c. Determinen la estabilidad (estable, inestable, marginalmente estable). Justifiquen su elección.
- d. Grafiquen la respuesta al escalón unitario. <u>De ser posible</u>, calculen el valor en estado estable de la salida. ¿Coincide dicho valor con lo observado en la gráfica?

<u>Ayuda:</u> En las notas de clase (Lección 5) encuentran funciones de Matlab que les serán útiles. <u>Sugerencia:</u> Organicen sus resultados en tablas.

Segunda Parte: Estudio del Circuito Eléctrico, Simulación

En esta parte y la siguiente, trabajarán nuevamente con el circuito usado en los laboratorios anteriores (Figura 1), aunque usarán diversos valores de resistencias y capacitancias.

Figura 1. Circuito a analizar en el laboratorio 4, y función de transferencia correspondiente.

Para los casos 1 – 7 siguientes, deberán:

- a. Encontrar los polos.
- b. Graficar la respuesta a un escalón de 5 V.
- 1. **Circuito Original:** Usen los valores de resistencias y capacitancias usadas anteriormente: $R_1 = 4.7 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $C_1 = 10 \text{ }\mu\text{F}$, $C_2 = 0.1 \text{ }\mu\text{F}$.

En los casos a continuación, deberán variar los valores de resistencias y/o capacitancias con el fin de cambiar la ubicación de los polos del sistema. Esto permitirá observar el efecto que dicha ubicación tiene en las respuestas. Usen valores de resistencias y capacitancias estándar, es decir, valores típicos que se puedan obtener usando los resistores, potenciómetros y capacitores a disposición en el laboratorio. Pueden usar combinaciones (serie/paralelo), pero que no sean muy complejas. Eviten valores de capacitancia muy pequeños o grandes (valores entre $0.01 \mu F y 10 \mu F$ deberían ser los adecuados). Similarmente, eviten valores de resistencia muy extremos (valores entre $1 k\Omega y 50 k\Omega$ deberían funcionar). Esto es importante, ya que deberán armar los circuitos físicos para la Tercera y Sexta Parte de esta guía. Indiquen claramente los valores usados. Ayuda: encuentren una expresión para los polos en función de R_1 , R_2 , C_1 y C_2 . Para cada caso, se dan ayudas/sugerencias adicionales.

2. Polos complejos conjugados, más cercanos al eje real: la parte real de los polos debe permanecer igual a la de los polos del circuito original, y el valor absoluto de la parte imaginaria de los polos debe ser menor que la mitad del valor absoluto de la parte imaginaria de los polos del circuito original.

Ayuda: prueben variar únicamente C_2 .

3. Polos complejos conjugados, más alejados del eje real: la parte real de los polos debe permanecer igual a la de los polos del circuito original, y el valor absoluto de la parte imaginaria de los polos debe ser más del doble del valor absoluto de la parte imaginaria de los polos del circuito original.

Ayuda: prueben variar únicamente C_2 .

4. Polos complejos conjugados, más alejados del eje imaginario: la parte imaginaria de los polos debe ser parecida a la de los polos del circuito original (diferencia de 15 o menos), y el valor absoluto de la parte real de los polos debe ser más del doble del valor absoluto de la parte real de los polos del circuito original.

Ayuda: prueben variar R_1 y C_2 . Si no encuentran una buena combinación, podrían variar también C_1 .

5. Polos complejos conjugados, más cercanos al eje imaginario: la parte imaginaria de los polos debe ser parecida a la de los polos del circuito original (diferencia de 15 o menos), y el valor absoluto de la parte real de los polos debe ser menor que la mitad del valor absoluto de la parte real de los polos del circuito original.

Ayuda: prueben variar R_1 y C_2 .

- 6. **Polos reales iguales**: los polos del sistema deben ser estrictamente reales, y deben ser iguales (polo de multiplicidad 2). Deben ser muy parecidos a la parte real de los polos del circuito original (diferencia menor a 5).
 - **Ayuda:** Consideren la expresión que encontró para los polos. ¿Qué condición se requiere para que los polos sean iguales? Posiblemente necesiten variar R₁, R₂ y C₂ respecto a los originales.
- 7. **Polos reales distintos**: Los polos del sistema deben ser estrictamente reales, y deben ser distintos. El valor absoluto de uno de los polos debe ser menor a 20, y la diferencia entre los polos debe ser mayor a 500.

Ayuda: prueben variar R_1 , C_1 y C_2 respecto a los originales.

Tercera Parte: Estudio de Circuito Eléctrico, Verificación Física

En esta parte, armarán los circuitos de la Segunda Parte. Usen el generador de funciones para excitar los circuitos y obtener las respuestas al **escalón de 5 V**, tal como se simularon anteriormente. Observen en el osciloscopio tanto la entrada como la salida del circuito. Ajusten las escalas para que sean lo más parecido posible a las escalas de las respuestas de la simulación. **Exporten las imágenes, las cuales deberán ser incluidas en el reporte.**

Nota: si esta parte la realizan en la segunda sesión, realicen de una vez la Sexta Parte.

La respuesta al escalón del caso 1 (circuito original) se obtuvo en el laboratorio 1. Pueden usar las gráficas obtenidas en ese laboratorio (**deben incluirlas en el reporte de este laboratorio**). Si quieren volver a generar la respuesta, pueden hacerlo, por supuesto.

Cuarta Parte: Parámetros del Sistema de Segundo Orden

En la Segunda y Tercera Parte se trabajó con un circuito eléctrico que tiene la característica de ser un sistema de segundo orden (notar la función de transferencia). Se variaron los valores de resistencias y capacitancias para obtener sistemas con polos en distintas ubicaciones.

Para cada uno de los siete casos que trabajaron, determinen:

- a. Si el sistema es subamortiguado, sobreamortiguado, o críticamente amortiguado.
- b. La frecuencia natural no amortiguada, ω_n .
- c. El coeficiente de amortiguamiento, ζ .
- d. De existir, la frecuencia amortiguada, ω_d .

Quinta Parte: Estado Transitorio y Especificaciones en el Dominio del Tiempo, Simulación

En esta parte usarán Matlab/Simulink para obtener parámetros en el dominio del tiempo. Se asume una entrada de **escalón de 5 V**.

Para cada uno de los siete casos, determinen:

- a. El tiempo de subida, t_r .
- b. El tiempo de establecimiento, t_s .
- c. El tiempo de pico, t_p .
- d. El porcentaje de sobreoscilación, M_p .

<u>Ayuda:</u> Pueden usar la función linearSystemAnalyzer (clic derecho sobre el fondo blanco en donde aparece la gráfica, *Characteristics*) También pueden usar la herramienta "*Cursor Measurement*" del bloque *Scope* en Simulink. Ésta permite hacer mediciones de las gráficas, como en los osciloscopios físicos.

Usen el *Cursor Measurement* para <u>al menos uno de los siete casos</u>, y comparen sus mediciones con lo obtenido con el linearSystemAnalyzer. <u>Indiquen para qué caso(s) hicieron la comparación</u>.

<u>Nota</u>: algunos parámetros no aplican para todos los casos. En el reporte, deben indicar cuando eso ocurra. Recuerden indicar las <u>unidades</u> en sus resultados.

<u>Sexta Parte: Estado Transitorio y Especificaciones en el Dominio del Tiempo,</u> Verificación Física

En esta parte, medirán los parámetros en el dominio del tiempo para los circuitos físicos.

Para cada uno de los siete casos, usen el osciloscopio para medir (los que apliquen):

- a. El tiempo de subida, t_r .
- b. El tiempo de establecimiento, t_s .
- c. El tiempo de pico, t_p .
- d. El porcentaje de sobreoscilación, M_p .

<u>Ayuda:</u> usen los cursores y la funcionalidad de medición de los osciloscopios. Si no saben cómo usarlos, pregunten al instructor o auxiliar.

Asegúrense de guardar todas sus imágenes y sus resultados, y tomar notas de sus observaciones. Eviten dejar imágenes/archivos en el escritorio de la PC del laboratorio. Esto ayudará a mantener el escritorio "limpio".

Evaluación:

A más tardar una semana después de la segunda sesión (el día de inicio del laboratorio 5), deberán subir un reporte a Canvas.

El reporte deberá incluir:

- 1) **Identificación**: su nombre, carné, nombre del curso, sección de laboratorio (11, 12, 21 o 22), número y título del laboratorio, fecha.
- 2) Una sección de **Resultados**, en la que incluyan todas las gráficas, parámetros, mediciones y demás resultados obtenidos. También deben incluir las respuestas a las preguntas planteadas en la guía (breves, al punto). **Asegúrense de incluir todo lo requerido en esta guía. Se verificará que esté todo lo indicado en color azul.**

Como se ha pedido en laboratorios anteriores, **USEN LA NUMERACIÓN DE LA GUÍA PARA ORGANIZAR SUS RESULTADOS.** Los incisos de la guía que no requieran resultados (nada en azul) no necesitan aparecer en el reporte.

Usen tablas para organizar parámetros y resultados numéricos. Asegúrense de numerar y titular todas las gráficas, figuras, tablas, etc.

Asistencia y trabajo durante las sesiones: 30% Reporte: 70%