Test report No. : 10662332H-C-R1
Page : 35 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

99% Occupied Bandwidth

11ac-80

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 36 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

26dB Emission Bandwidth

11ac-80

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 37 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

6dB Bandwidth

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 10662332H
Date 01/22/2015
Temperature/ Humidity 25deg. C / 31% RH
Engineer Shinichi Miyazono

Mode Tx

11a

Frequency	20dB Bandwidth	Limit
[MHz]	[MHz]	[kHz]
5745	16.411	> 500
5785	16.393	> 500
5825	16.368	> 500

11n-20

Frequency [MHz]	20dB Bandwidth [MHz]	Limit [kHz]
5745	17.598	> 500
5785	17.598	> 500
5825	17.635	> 500

11ac-20

Frequency [MHz]	20dB Bandwidth [MHz]	Limit [kHz]
5745	17.754	> 500
5785	17.715	> 500
5825	17.741	> 500

11n-40

Frequency	20dB Bandwidth	Limit
[MHz]	[MHz]	[kHz]
5755	36.442	> 500
5795	36.469	> 500

11ac-40

Frequency [MHz]	20dB Bandwidth [MHz]	Limit [kHz]
5755	36.546	> 500
5795	36.498	> 500

11ac-80

1140 00		
Frequency	20dB Bandwidth	Limit
[MHz]	[MHz]	[kHz]
5775	75.570	> 500

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 38 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

6dB Bandwidth

11a

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 39 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

6dB Bandwidth

11n-20

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 40 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

6dB Bandwidth

11ac-20

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 41 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

6dB Bandwidth

11n-40

11ac-40

11ac-80

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1 Page : 42 of 119 **Issued date** : July 13, 2015 : July 28, 2015 Revised date FCC ID : VPYLB1CK

Maximum Conducted Output Power

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/24/2015 23deg. C / 40% RH Kazuya Yoshioka Temperature/ Humidity

Engineer Mode 11a/n-20/ac-20 Tx

11a

11a										
Freq.	P/M	Cable	Atten.	Antenna	Result	Result	Limit	Limit	Margin	Margin
	Reading	Loss	Loss	Gain	(Cond.)	(e.i.r.p.)	(Cond.)	(e.i.r.p.)	(Cond.)	(e.i.r.p.)
[MHz]	[dBm]	[dB]	[dB]	[dBi]	[dBm]	[dBm]	[dBm]	[dBm]	[dB]	[dB]
5180.0	-0.20	1.80	10.03	0.70	11.63	12.33	23.97	29.97	12.34	17.64
5220.0	-0.62	1.80	10.03	0.70	11.21	11.91	23.97	29.97	12.76	18.06
5240.0	-0.57	1.80	10.03	0.70	11.26	11.96	23.97	29.97	12.71	18.01
5260.0	0.06	1.80	10.03	0.70	11.89	12.59	23.97	29.97	12.08	17.38
5300.0	-0.06	1.80	10.03	0.70	11.77	12.47	23.97	29.97	12.20	17.50
5320.0	-0.04	1.80	10.03	0.70	11.79	12.49	23.97	29.97	12.18	17.48
5500.0	0.19	1.40	10.03	0.70	11.62	12.32	23.97	29.97	12.35	17.65
5580.0	-0.08	1.40	10.03	0.70	11.35	12.05	23.97	29.97	12.62	17.92
5700.0	-0.47	1.40	10.04	0.70	10.97	11.67	23.97	29.97	13.00	18.30
5745.0	-0.52	1.40	10.04	0.70	10.92	11.62	30.00	36.00	19.08	24.38
5785.0	-0.58	1.40	10.04	0.70	10.86	11.56	30.00	36.00	19.14	24.44
5825.0	-0.45	1.40	10.04	0.70	10.99	11.69	30.00	36.00	19.01	24.31

11n-20

1111 20										
Freq.	P/M	Cable	Atten.	Antenna	Result	Result	Limit	Limit	Margin	Margin
	Reading	Loss	Loss	Gain	(Cond.)	(e.i.r.p.)	(Cond.)	(e.i.r.p.)	(Cond.)	(e.i.r.p.)
[MHz]	[dBm]	[dB]	[dB]	[dBi]	[dBm]	[dBm]	[dBm]	[dBm]	[dB]	[dB]
5180.0	-0.20	1.80	10.03	0.70	11.63	12.33	23.97	29.97	12.34	17.64
5220.0	-0.57	1.80	10.03	0.70	11.26	11.96	23.97	29.97	12.71	18.01
5240.0	-0.63	1.80	10.03	0.70	11.20	11.90	23.97	29.97	12.77	18.07
5260.0	0.26	1.80	10.03	0.70	12.09	12.79	23.97	29.97	11.88	17.18
5300.0	-0.09	1.80	10.03	0.70	11.74	12.44	23.97	29.97	12.23	17.53
5320.0	-0.11	1.80	10.03	0.70	11.72	12.42	23.97	29.97	12.25	17.55
5500.0	0.16	1.40	10.03	0.70	11.59	12.29	23.97	29.97	12.38	17.68
5580.0	0.10	1.40	10.03	0.70	11.53	12.23	23.97	29.97	12.44	17.74
5700.0	-0.39	1.40	10.04	0.70	11.05	11.75	23.97	29.97	12.92	18.22
5745.0	-0.43	1.40	10.04	0.70	11.01	11.71	30.00	36.00	18.99	24.29
5785.0	-0.47	1.40	10.04	0.70	10.97	11.67	30.00	36.00	19.03	24.33
5825.0	-0.24	1.40	10.04	0.70	11.20	11.90	30.00	36.00	18.80	24.10

11ac-20

Freq.	P/M	Cable	Atten.	Antenna	Result	Result	Limit	Limit	Margin	Margin
	Reading	Loss	Loss	Gain	(Cond.)	(e.i.r.p.)	(Cond.)	(e.i.r.p.)	(Cond.)	(e.i.r.p.)
[MHz]	[dBm]	[dB]	[dB]	[dBi]	[dBm]	[dBm]	[dBm]	[dBm]	[dB]	[dB]
5180.0	-0.11	1.80	10.03	0.70	11.72	12.42	23.97	29.97	12.25	17.55
5220.0	-0.57	1.80	10.03	0.70	11.26	11.96	23.97	29.97	12.71	18.01
5240.0	-0.74	1.80	10.03	0.70	11.09	11.79	23.97	29.97	12.88	18.18
5260.0	0.15	1.80	10.03	0.70	11.98	12.68	23.97	29.97	11.99	17.29
5300.0	0.03	1.80	10.03	0.70	11.86	12.56	23.97	29.97	12.11	17.41
5320.0	-0.24	1.80	10.03	0.70	11.59	12.29	23.97	29.97	12.38	17.68
5500.0	0.06	1.40	10.03	0.70	11.49	12.19	23.97	29.97	12.48	17.78
5580.0	-0.26	1.40	10.03	0.70	11.17	11.87	23.97	29.97	12.80	18.10
5700.0	-0.44	1.40	10.04	0.70	11.00	11.70	23.97	29.97	12.97	18.27
5745.0	-0.54	1.40	10.04	0.70	10.90	11.60	30.00	36.00	19.10	24.40
5785.0	-0.57	1.40	10.04	0.70	10.87	11.57	30.00	36.00	19.13	24.43
5825.0	-0.38	1.40	10.04	0.70	11.06	11.76	30.00	36.00	18.94	24.24

 $Result(Cond.) = Reading + Cable \ Loss \ (including the \ cable(s) \ customer \ supplied) + Atten. Loss \\ Result(e.i.r.p.) = Reading + Cable \ Loss \ (including the \ cable(s) \ customer \ supplied) + Atten. Loss + Antenna \\ 15.407(a)(1)(iv) \ Limit(Cond.) = 23.97dBm(250mW)$

Although the EUT operates on Master mode, more strigent limit for Client device was applied. 15.407(a)(2) Limit(Cond.) = 23.97dBm(250mW) or 11 + 10log(26dB BW) dBm

15.407(a)(3) Limit(Cond.) = 30dBm(1W)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8999 Telephone Facsimile : +81 596 24 8124

Test report No. : 10662332H-C-R1 Page : 43 of 119 **Issued date** : July 13, 2015 : July 28, 2015 Revised date FCC ID : VPYLB1CK

Maximum Conducted Output Power

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/24/2015 Temperature/ Humidity 23deg. C / 40% RH Engineer Kazuya Yoshioka Mode 11n-40/ac-40/ac-80 Tx

11n-40

Freq.	P/M	Cable	Atten.	Antenna	Result	Result	Limit	Limit	Margin	Margin
	Reading	Loss	Loss	Gain	(Cond.)	(e.i.r.p.)	(Cond.)	(e.i.r.p.)	(Cond.)	(e.i.r.p.)
[MHz]	[dBm]	[dB]	[dB]	[dBi]	[dBm]	[dBm]	[dBm]	[dBm]	[dB]	[dB]
5190.0	-0.74	1.80	10.03	0.70	11.09	11.79	23.97	29.97	12.88	18.18
5230.0	-0.76	1.80	10.03	0.70	11.07	11.77	23.97	29.97	12.90	18.20
5270.0	-1.14	1.80	10.03	0.70	10.69	11.39	23.97	29.97	13.28	18.58
5310.0	-1.24	1.80	10.03	0.70	10.59	11.29	23.97	29.97	13.38	18.68
5510.0	-0.73	1.40	10.03	0.70	10.70	11.40	23.97	29.97	13.27	18.57
5550.0	-0.71	1.40	10.03	0.70	10.72	11.42	23.97	29.97	13.25	18.55
5670.0	-1.28	1.40	10.04	0.70	10.16	10.86	23.97	29.97	13.81	19.11
5755.0	-2.06	1.40	10.04	0.70	9.38	10.08	30.00	36.00	20.62	25.92
5795.0	-1.84	1.40	10.04	0.70	9.60	10.30	30.00	36.00	20.40	25.70

11ac-40

Freq.	P/M	Cable	Atten.	Antenna	Result	Result	Limit	Limit	Margin	Margin
	Reading	Loss	Loss	Gain	(Cond.)	(e.i.r.p.)	(Cond.)	(e.i.r.p.)	(Cond.)	(e.i.r.p.)
[MHz]	[dBm]	[dB]	[dB]	[dBi]	[dBm]	[dBm]	[dBm]	[dBm]	[dB]	[dB]
5190.0	-0.73	1.80	10.03	0.70	11.10	11.80	23.97	29.97	12.87	18.17
5230.0	-0.87	1.80	10.03	0.70	10.96	11.66	23.97	29.97	13.01	18.31
5270.0	-1.16	1.80	10.03	0.70	10.67	11.37	23.97	29.97	13.30	18.60
5310.0	-1.19	1.80	10.03	0.70	10.64	11.34	23.97	29.97	13.33	18.63
5510.0	-0.64	1.40	10.03	0.70	10.79	11.49	23.97	29.97	13.18	18.48
5550.0	-0.78	1.40	10.03	0.70	10.65	11.35	23.97	29.97	13.32	18.62
5670.0	-1.17	1.40	10.04	0.70	10.27	10.97	23.97	29.97	13.70	19.00
5755.0	-1.99	1.40	10.04	0.70	9.45	10.15	30.00	36.00	20.55	25.85
5795.0	-1.77	1.40	10.04	0.70	9.67	10.37	30.00	36.00	20.33	25.63

11ac-80

Freq.	P/M	Cable	Atten.	Antenna	Result	Result	Limit	Limit	Margin	Margin
	Reading	Loss	Loss	Gain	(Cond.)	(e.i.r.p.)	(Cond.)	(e.i.r.p.)	(Cond.)	(e.i.r.p.)
[MHz]	[dBm]	[dB]	[dB]	[dBi]	[dBm]	[dBm]	[dBm]	[dBm]	[dB]	[dB]
5210.0	-1.06	1.80	10.03	0.70	10.77	11.47	23.97	29.97	13.20	18.50
5290.0	-1.03	1.80	10.03	0.70	10.80	11.50	23.97	29.97	13.17	18.47
5530.0	-0.82	1.40	10.03	0.70	10.61	11.31	23.97	29.97	13.36	18.66
5610.0	-1.21	1.40	10.03	0.70	10.22	10.92	23.97	29.97	13.75	19.05
5775.0	-1.97	1.40	10.04	0.70	9.47	10.17	30.00	36.00	20.53	25.83

 $Result(Cond.) = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supplied) + Atten. Loss$ Result(e.i.r.p.) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten.Loss + Antenna 15.407(a)(1)(iv) Limit(Cond.) = 23.97dBm(250mW)

Although the EUT operates on Master mode, more strigent limit for Client device was applied.

15.407(a)(2) Limit(Cond.) = 23.97dBm(250mW) or 11 + 10log(26dB BW) dBm 15.407(a)(3) Limit(Cond.) = 30dBm(1W)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 44 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Maximum Conducted Output Power (Reference data)

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 10662332H
Date 01/06/2015
Temperature/ Humidity 24deg. C / 42% RH
Engineer Takumi Shimada
Mode 11a/n-20/ac-20 Tx

11a, 5180MHz

Tra, Frootviriz		
Data Rate [Mbps]	Reading [dBm]	Remark
[wiops]		
6	1.78	
9	1.90	*
12	1.88	
18	1.87	
24	1.88	
36	1.78	
48	1.83	
54	1.88	

^{*} Worst Rate

All comparisons were carried out on same frequency and measurement factors.

11n-20, 5180MHz

MCS Number	Reading	Remark
	[dBm]	
0	0.95	*
1	0.89	
2	0.90	
3	0.94	
4	0.90	
5	0.91	
6	0.87	
7	0.92	

^{*} Worst Rate

All comparisons were carried out on same frequency and measurement factors.

11ac-20, 5180MHz

MCS Number	Reading [dBm]	Remark
0	-0.21	
1	-0.24	
2	-0.16	
3	-0.19	
4	-0.27	
5	-0.14	*
6	-0.22	
7	-0.20	
8	-0.18	

^{*} Worst Rate

All comparisons were carried out on same frequency and measurement factors.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 45 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

<u>Maximum Conducted Output Power</u> (Reference data)

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 10662332H
Date 01/06/2015
Temperature/ Humidity 24deg. C / 42% RH
Engineer Takumi Shimada
Mode 11n-40/ac-40/ac-80 Tx

11n-40, 5190MHz

MCS Number	Reading [dBm]	Remark
0	1.54	
1	1.68	
2	1.61	
3	1.67	
4	1.51	
5	1.63	
6	1.67	
7	1.69	*

^{*} Worst Rate

All comparisons were carried out on same frequency and measurement factors.

11ac-40, 5190MHz

1140 10,017011112							
MCS Number	Reading [dBm]	Remark					
0	0.53						
1	0.52						
2	0.61						
3	0.65						
4	0.50						
5	0.69	*					
6	0.48						
7	0.57						
8	0.51						
9	0.50						

^{*} Worst Rate

All comparisons were carried out on same frequency and measurement factors.

11ac-80, 5210MHz

MCS Number	Reading	Remark
	[dBm]	
0	0.12	*
1	-0.02	
2	0.10	
3	-0.09	
4	-0.07	
5	0.03	
6	-0.04	
7	-0.11	
8	0.03	
9	-0.02	

^{*} Worst Rate

All comparisons were carried out on same frequency and measurement factors.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 46 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 10662332H
Date 24 deg. C / 35% RH
Temperature/ Humidity Takumi Shimada
Engineer 01/26/2015
Mode 11a/n-20/ac-20 Tx

11a

Freq.	Reading	Cable	Atten.	Duty	Correction	Result	Limit	Margin
		Loss	Loss	factor	factor			
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dB]	[dBm]	[dBm]	[dB]
5180.0	-12.84	3.75	10.12	0.07	0.00	1.10	11.00	9.90
5220.0	-13.42	3.76	10.12	0.07	0.00	0.53	11.00	10.47
5240.0	-13.37	3.77	10.12	0.07	0.00	0.59	11.00	10.41
5260.0	-12.68	3.77	10.12	0.07	0.00	1.28	11.00	9.72
5300.0	-12.96	3.78	10.11	0.07	0.00	1.00	11.00	10.00
5320.0	-12.95	3.79	10.11	0.07	0.00	1.02	11.00	9.98
5500.0	-12.58	3.43	10.11	0.07	0.00	1.03	11.00	9.97
5580.0	-13.08	3.44	10.11	0.07	0.00	0.54	11.00	10.46
5700.0	-13.29	3.46	10.10	0.07	0.00	0.34	11.00	10.66
5745.0	-16.44	3.47	10.09	0.07	0.27	-2.54	30.00	32.54
5785.0	-16.42	3.47	10.09	0.07	0.27	-2.53	30.00	32.53
5825.0	-16.17	3.48	10.09	0.07	0.27	-2.26	30.00	32.26

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator + Duty factor + Correct

11n-20

Freq.	Reading	Cable	Atten.	Duty	Correction	Result	Limit	Margin
		Loss	Loss	factor	factor			
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dB]	[dBm]	[dBm]	[dB]
5180.0	-13.22	3.75	10.12	0.05	0.00	0.70	11.00	10.30
5220.0	-13.43	3.76	10.12	0.05	0.00	0.50	11.00	10.50
5240.0	-13.80	3.77	10.12	0.05	0.00	0.14	11.00	10.86
5260.0	-12.92	3.77	10.12	0.05	0.00	1.02	11.00	9.98
5300.0	-12.91	3.78	10.11	0.05	0.00	1.03	11.00	9.97
5320.0	-13.20	3.79	10.11	0.05	0.00	0.75	11.00	10.25
5500.0	-13.09	3.43	10.11	0.05	0.00	0.50	11.00	10.50
5580.0	-13.44	3.44	10.11	0.05	0.00	0.16	11.00	10.84
5700.0	-13.62	3.46	10.10	0.05	0.00	-0.01	11.00	11.01
5745.0	-16.81	3.47	10.09	0.05	0.27	-2.93	30.00	32.93
5785.0	-16.65	3.47	10.09	0.05	0.27	-2.77	30.00	32.77
5825.0	-16.50	3.48	10.09	0.05	0.27	-2.61	30.00	32.61

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator + Duty factor + Correct

11ac-20

Freq.	Reading	Cable	Atten.	Duty	Correction	Result	Limit	Margin
		Loss	Loss	factor	factor			
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dB]	[dBm]	[dBm]	[dB]
5180.0	-13.36	3.75	10.12	0.36	0.00	0.87	11.00	10.13
5220.0	-13.82	3.76	10.12	0.36	0.00	0.42	11.00	10.58
5240.0	-14.05	3.77	10.12	0.36	0.00	0.20	11.00	10.80
5260.0	-13.13	3.77	10.12	0.36	0.00	1.13	11.00	9.88
5300.0	-13.21	3.78	10.11	0.36	0.00	1.04	11.00	9.96
5320.0	-13.42	3.79	10.11	0.36	0.00	0.84	11.00	10.16
5500.0	-13.34	3.43	10.11	0.36	0.00	0.56	11.00	10.44
5580.0	-13.44	3.44	10.11	0.36	0.00	0.47	11.00	10.53
5700.0	-13.65	3.46	10.10	0.36	0.00	0.27	11.00	10.73
5745.0	-16.80	3.47	10.09	0.36	0.27	-2.61	30.00	32.61
5785.0	-16.29	3.47	10.09	0.36	0.27	-2.10	30.00	32.10
5825.0	-16.62	3.48	10.09	0.36	0.27	-2.42	30.00	32.42

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator + Duty factor + Correct

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 47 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 10662332H
Date 24 deg. C / 35% RH
Temperature/ Humidity Takumi Shimada
Engineer 01/26/2015

Mode 11n-40/ac-40/ac-80 Tx

11n-40

Freq.	Reading	Cable	Atten.	Duty	Correction	Result	Limit	Margin
		Loss	Loss	factor	factor			
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dB]	[dBm]	[dBm]	[dB]
5190.0	-16.98	3.76	10.12	0.69	0.00	-2.41	11.00	13.41
5230.0	-17.08	3.77	10.12	0.69	0.00	-2.50	11.00	13.50
5270.0	-17.72	3.78	10.11	0.69	0.00	-3.14	11.00	14.14
5310.0	-17.63	3.79	10.11	0.69	0.00	-3.04	11.00	14.04
5510.0	-17.43	3.43	10.11	0.69	0.00	-3.20	11.00	14.20
5550.0	-17.45	3.44	10.11	0.69	0.00	-3.21	11.00	14.21
5670.0	-17.55	3.45	10.10	0.69	0.00	-3.31	11.00	14.31
5755.0	-20.95	3.47	10.09	0.69	0.27	-6.44	30.00	36.44
5795.0	-21.00	3.47	10.09	0.69	0.27	-6.48	30.00	36.48

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator + Duty factor + Correct

11ac-40

Freq.	Reading	Cable	Atten.	Duty	Correction	Result	Limit	Margin
		Loss	Loss	factor	factor			
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dB]	[dBm]	[dBm]	[dB]
5190.0	-16.48	3.76	10.12	0.58	0.00	-2.02	11.00	13.02
5230.0	-17.08	3.77	10.12	0.58	0.00	-2.61	11.00	13.61
5270.0	-17.31	3.78	10.11	0.58	0.00	-2.84	11.00	13.84
5310.0	-17.32	3.79	10.11	0.58	0.00	-2.84	11.00	13.84
5510.0	-17.15	3.43	10.11	0.58	0.00	-3.03	11.00	14.03
5550.0	-17.00	3.44	10.11	0.58	0.00	-2.87	11.00	13.87
5670.0	-17.74	3.45	10.10	0.58	0.00	-3.61	11.00	14.61
5755.0	-21.02	3.47	10.09	0.58	0.27	-6.61	30.00	36.61
5795.0	-20.73	3.47	10.09	0.58	0.27	-6.32	30.00	36.32

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator + Duty factor + Correct

11ac-80

Freq.	Reading	Cable	Atten.	Duty	Correction	Result	Limit	Margin
		Loss	Loss	factor	factor			
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dB]	[dBm]	[dBm]	[dB]
5210.0	-20.30	3.76	10.12	0.21	0.00	-6.21	11.00	17.21
5290.0	-20.15	3.78	10.11	0.21	0.00	-6.05	11.00	17.05
5530.0	-20.27	3.43	10.11	0.21	0.00	-6.52	11.00	17.52
5610.0	-20.54	3.45	10.10	0.21	0.00	-6.78	11.00	17.78
5775.0	-24.37	3.47	10.09	0.21	0.27	-10.33	30.00	40.33

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator + Duty factor + Correct

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 48 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Maximum Power Spectral Density

11a

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 49 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Maximum Power Spectral Density

11a

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 50 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Maximum Power Spectral Density

11n-20

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 51 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Maximum Power Spectral Density

11n-20

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1 Page : 52 of 119 : July 13, 2015 **Issued date** Revised date : July 28, 2015 FCC ID : VPYLB1CK

Maximum Power Spectral Density

11ac-20

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 53 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Maximum Power Spectral Density

11ac-20

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 54 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Maximum Power Spectral Density

11n-40

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 55 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Maximum Power Spectral Density

11n-40

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 56 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Maximum Power Spectral Density

11ac-40

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10662332H-C-R1 Test report No. Page : 57 of 119 : July 13, 2015 **Issued date** Revised date : July 28, 2015 FCC ID : VPYLB1CK

Maximum Power Spectral Density

11ac-40

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 58 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Maximum Power Spectral Density

11ac-80

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 59 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/22/2015

Temperature/ Humidity 22 deg. C / 33% RH Engineer Tomoki Matsui

(1-10GHz)

Mode 11a Tx 5180MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5150.000	PK	55.3	31.3	3.7	31.7	58.6	73.9	15.3	
Hori	5150.000	AV	41.6	31.3	3.7	31.7	44.9	53.9	9.0	
Vert	5150.000	PK	54.6	31.3	3.7	31.7	57.9	73.9	16.0	
Vert	5150.000	AV	39.4	31.3	3.7	31.7	42.7	53.9	11.2	

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter - Distance \ factor (above \ 10 GHz)) - Gain (Amplifier)$

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

: 10662332H-C-R1 Test report No. Page : 60 of 119 **Issued date** : July 13, 2015 Revised date : July 28, 2015 FCC ID : VPYLB1CK

Radiated Spurious Emission

Ise EMC Lab. No.3 Semi Anechoic Chamber

Test place Report No. 10662332H Date 01/22/2015

22 deg. C / 33% RH Tomoki Matsui Temperature/ Humidity Engineer

(1-10GHz)

Mode 11a Tx 5320MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5350.000	PK	56.4	31.6	3.8	31.7	60.1	73.9	13.8	
Hori	5350.000	AV	42.4	31.6	3.8	31.7	46.1	53.9	7.8	
Vert	5350.000	PK	54.0	31.6	3.8	31.7	57.7	73.9	16.2	
Vert	5350.000	AV	42.1	31.6	3.8	31.7	45.8	53.9	8.1	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB Distance factor:

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8999 Telephone Facsimile : +81 596 24 8124

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Test report No. : 10662332H-C-R1
Page : 61 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/22/2015

Temperature/ Humidity 22 deg. C / 33% RH Engineer Tomoki Matsui

(1-10GHz)

Mode 11a Tx 5500MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5470.000	PK	60.8	31.8	3.8	31.8	64.6	73.9	9.3	
Hori	5470.000	AV	45.8	31.8	3.8	31.8	49.6	53.9	4.3	
Vert	5470.000	PK	62.8	31.8	3.8	31.8	66.6	73.9	7.3	
Vert	5470.000	AV	47.7	31.8	3.8	31.8	51.5	53.9	2.4	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

: 10662332H-C-R1 Test report No. Page : 62 of 119 : July 13, 2015 **Issued date** Revised date : July 28, 2015 FCC ID : VPYLB1CK

Radiated Spurious Emission

Ise EMC Lab. No.3 Semi Anechoic Chamber

Test place Report No. 10662332H Date 01/22/2015

Mode

22 deg. C / 33% RH Tomoki Matsui Temperature/ Humidity Engineer (1-10GHz)

11a Tx 5700MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5725.000	PK	61.8	32.1	3.9	31.8	66.0	73.9	7.9	
Hori	5725.000	AV	45.1	32.1	3.9	31.8	49.3	53.9	4.6	
Vert	5725.000	PK	61.9	32.1	3.9	31.8	66.1	73.9	7.8	
Vert	5725.000	AV	45.5	32.1	3.9	31.8	49.7	53.9	4.2	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8999 Telephone Facsimile : +81 596 24 8124

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Test report No. : 10662332H-C-R1
Page : 63 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/22/2015

Temperature/ Humidity 22 deg. C / 33% RH Engineer Tomoki Matsui

(1-10GHz)

Mode 11a Tx 5745MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5725.000	PK	63.6	32.1	3.9	31.8	67.8	73.9	6.1	
Hori	5725.000	AV	48.8	32.1	3.9	31.8	53.0	53.9	0.9	
Vert	5725.000	PK	64.7	32.1	3.9	31.8	68.9	73.9	5.0	
Vert	5725.000	AV	43.5	32.1	3.9	31.8	47.7	53.9	6.2	Integration Method

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

 $26.5 GHz - 40 GHz \quad 20 log (3.0 m/0.5 m) = 15.6 dB$

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Test report No. : 10662332H-C-R1
Page : 64 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/22/2015

Temperature/ Humidity 22 deg. C / 33% RH Engineer Tomoki Matsui

(1-10GHz)

Mode 11a Tx 5825MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5850.000	PK	61.5	32.2	4.0	31.8	65.9	73.9	8.0	
Hori	5850.000	AV	44.2	32.2	4.0	31.8	48.6	53.9	5.3	
Vert	5850.000	PK	59.1	32.2	4.0	31.8	63.5	73.9	10.4	
Vert	5850.000	AV	44.8	32.2	4.0	31.8	49.2	53.9	4.7	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Test report No. : 10662332H-C-R1
Page : 65 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

Date 01/22/2015 01/26/2015 01/27/2015

Temperature/ Humidity 22 deg. C / 33% RH 20 deg. C / 32% RH 22 deg. C / 37% RH Engineer Tomoki Matsui Takafumi Noguchi (1-10GHz) (10-18GHz) (22 deg. C / 37% RH Takafumi Noguchi (18-40GHz)

Mode 11n-20 Tx 5180MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]		[dB]	
Hori	5150.000	PK	65.5	31.3	3.7	31.7	68.8	73.9	5.1	
Hori	10360.000	PK	48.3	38.8	-2.3	33.6	51.2	73.9	22.7	
Hori	15540.000	PK	43.0	39.1	-0.9	32.1	49.1	73.9	24.8	Floor Noise
Hori	20720.000	PK	45.1	37.6	-1.8	32.2	48.7	73.9	25.2	Floor Noise
Hori	25900.000	PK	46.3	38.5	-0.6	30.3	53.9	73.9	20.0	Floor Noise
Hori	31080.000	PK	63.1	42.8	0.8	73.3	33.4	73.9	40.5	Floor Noise
Hori	36260.000	PK	62.0	44.0	2.5	75.7	32.8	73.9	41.1	Floor Noise
Hori	5150.000	AV	46.8	31.3	3.7	31.7	50.1	53.9	3.8	
Hori	10360.000	AV	40.4	38.8	-2.3	33.6	43.3	53.9	10.6	
Hori	15540.000	AV	34.7	39.1	-0.9	32.1	40.8	53.9	13.1	Floor Noise
Hori	20720.000	AV	37.1	37.6	-1.8	32.2	40.7	53.9	13.2	Floor Noise
Hori	25900.000	AV	38.4	38.5	-0.6	30.3	46.0	53.9	7.9	Floor Noise
Hori	31080.000	AV	54.2	42.8	0.8	73.3	24.5	53.9	29.4	Floor Noise
Hori	36260.000	AV	53.8	44.0	2.5	75.7	24.6	53.9	29.3	Floor Noise
Vert	5150.000	PK	61.5	31.3	3.7	31.7	64.8	73.9	9.1	
Vert	10360.000	PK	52.1	38.8	-2.3	33.6	55.0	73.9	18.9	
Vert	15540.000	PK	43.2	39.1	-0.9	32.1	49.3	73.9	24.6	Floor Noise
Vert	20720.000	PK	44.9	37.6	-1.8	32.2	48.5	73.9	25.4	Floor Noise
Vert	25900.000	PK	46.6	38.5	-0.6	30.3	54.2	73.9	19.7	Floor Noise
Vert	31080.000	PK	62.8	42.8	0.8	73.3	33.1	73.9	40.8	Floor Noise
Vert	36260.000	PK	62.4	44.0	2.5	75.7	33.2	73.9	40.7	Floor Noise
Vert	5150.000	AV	40.8	31.3	3.7	31.7	44.1	53.9	9.8	
Vert	10360.000	AV	44.0	38.8	-2.3	33.6	46.9	53.9	7.0	
Vert	15540.000	AV	34.8	39.1	-0.9	32.1	40.9	53.9	13.0	Floor Noise
Vert	20720.000	AV	36.7	37.6	-1.8	32.2	40.3	53.9	13.6	Floor Noise
Vert	25900.000	AV	38.5	38.5	-0.6	30.3	46.1	53.9	7.8	Floor Noise
Vert	31080.000	AV	54.2	42.8	0.8	73.3	24.5	53.9	29.4	Floor Noise
Vert	36260.000	AV	54.1	44.0	2.5	75.7	24.9	53.9	29.0	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 66 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

01/23/2015 Date 01/26/2015 01/27/2015 01/27/2015 20 deg. C / 32% RH Takafumi Noguchi Temperature/ Humidity 22deg. C / 33% RH 22 deg. C / 37% RH 25deg. C / 35% RH Takafumi Noguchi Takafumi Noguchi Koji Yamamoto Engineer (18-40GHz) (Below 1GHz) (1-10GHz) (10-18GHz)

Mode 11n-20 Tx 5260MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	91.068	QP	30.6	8.3	7.9	32.1	14.7	43.5	28.8	
Hori	102.902	QP	28.3	10.5	8.1	32.2	14.7	43.5	28.8	
Hori	229.612	QP	42.8	17.0	9.3	32.0	37.1	46.0	8.9	
Hori	275.699	QP	33.8	18.5	9.8	31.9	30.2	46.0	15.8	
Hori	303.984	QP	41.7	14.8	10.0	31.9	34.6	46.0	11.4	
Hori	342.067	QP	38.7	16.0	10.2	31.9	33.0	46.0	13.0	
Hori	10520.000	PK	47.3	38.7	-2.3	33.6	50.1	73.9	23.8	
Hori	15780.000	PK	43.4	38.4	-0.8	32.2	48.8	73.9	25.1	Floor Noise
Hori	21040.000	PK	44.2	37.6	-1.7	32.3	47.8	73.9	26.1	Floor Noise
Hori	26300.000	PK	47.9	38.5	-0.6	29.9	55.9	73.9	18.0	Floor Noise
Hori	31560.000	PK	62.6	43.3	1.1	73.3	33.7	73.9	40.2	Floor Noise
Hori	36820.000	PK	60.6	43.7	2.4	75.7	31.0	73.9	42.9	Floor Noise
Hori	10520.000	AV	38.6	38.7	-2.3	33.6	41.4	53.9	12.5	
Hori	15780.000	AV	34.4	38.4	-0.8	32.2	39.8	53.9	14.1	Floor Noise
Hori	21040.000	AV	36.0	37.6	-1.7	32.3	39.6	53.9	14.3	Floor Noise
Hori	26300.000	AV	38.3	38.5	-0.6	29.9	46.3	53.9	7.6	Floor Noise
Hori	31560.000	AV	53.1	43.3	1.1	73.3	24.2	53.9	29.7	Floor Noise
Hori	36820.000	AV	52.8	43.7	2.4	75.7	23.2	53.9	30.7	Floor Noise
Vert	47.504	QP	36.5	11.5	7.3	32.2	23.1	40.0	16.9	
Vert	102.888	QP	38.8	10.5	8.1	32.2	25.2	43.5	18.3	
Vert	229.799	QP	38.6	17.0	9.3	32.0	32.9	46.0	13.1	
Vert	275.699	QP	35.0	18.5	9.8	31.9	31.4	46.0	14.6	
Vert	314.038	QP	38.0	15.1	10.0	31.9	31.2	46.0	14.8	
Vert	342.199	QP	36.7	16.0	10.2	31.9	31.0	46.0	15.0	
Vert	10520.000	PK	50.6	38.7	-2.3	33.6	53.4	73.9	20.5	
Vert	15780.000	PK	43.4	38.4	-0.8	32.2	48.8	73.9	25.1	Floor Noise
Vert	21040.000		44.2	37.6	-1.7	32.3	47.8	73.9	26.1	Floor Noise
Vert	26300.000	PK	46.8	38.5	-0.6	29.9	54.8	73.9	19.1	Floor Noise
Vert	31560.000		62.4	43.3	1.1	73.3	33.5	73.9	40.4	Floor Noise
Vert	36820.000		61.4	43.7	2.4	75.7	31.8	73.9	42.1	Floor Noise
Vert	10520.000	AV	41.3	38.7	-2.3	33.6	44.1	53.9	9.8	
Vert	15780.000		34.4	38.4	-0.8	32.2	39.8	53.9	14.1	Floor Noise
Vert	21040.000		35.5	37.6	-1.7	32.3	39.1	53.9	14.8	Floor Noise
Vert	26300.000		38.3	38.5	-0.6	29.9	46.3	53.9	7.6	Floor Noise
Vert	31560.000		53.5	43.3	1.1	73.3	24.6	53.9		Floor Noise
Vert	36820.000	AV	52.8	43.7	2.4	75.7	23.2	53.9	30.7	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Test report No. : 10662332H-C-R1 Page : 67 of 119 : July 13, 2015 **Issued date** Revised date : July 28, 2015 FCC ID : VPYLB1CK

Radiated Spurious Emission (Plot data, Worst case)

(10-18GHz)

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

Mode

Date 01/23/2015 Temperature/ Humidity 22deg. C / 33% RH Engineer

QP

Peak

Average

Takafumi Noguchi (1-10GHz)

11n-20 Tx 5260MHz

01/26/2015 20 deg. C / 32% RH Takafumi Noguchi

22 deg. C / 37% RH Takafumi Noguchi (18-40GHz)

01/27/2015

-QP Limit ---- Peak Limit - - - Average Limit

01/27/2015 25deg. C / 35% RH Koji Yamamoto (Below 1GHz)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 68 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

Date 01/22/2015 01/26/2015 01/27/2015

Temperature/ Humidity 22 deg. C / 33% RH 20 deg. C / 32% RH 22 deg. C / 37% RH Engineer Tomoki Matsui Takafumi Noguchi (1-10GHz) (10-18GHz) (22 deg. C / 37% RH Takafumi Noguchi (18-40GHz)

Mode 11n-20 Tx 5320MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5350.000	PK	64.3	31.6	3.8	31.7	68.0	73.9	5.9	
Hori	10640.000	PK	48.0	38.7	-2.2	33.7	50.8	73.9	23.1	
Hori	15960.000	PK	43.4	37.8	-0.7	32.3	48.2	73.9	25.7	Floor Noise
Hori	21280.000	PK	43.3	37.6	-1.7	32.3	46.9	73.9	27.0	Floor Noise
Hori	26600.000	PK	67.4	44.0	-0.5	77.3	33.6	73.9	40.3	Floor Noise
Hori	31920.000	PK	62.6	43.7	1.3	73.3	34.3	73.9	39.6	Floor Noise
Hori	37240.000	PK	62.6	43.8	2.6	75.5	33.5	73.9	40.4	Floor Noise
Hori	5350.000	AV	48.1	31.6	3.8	31.7	51.8	53.9	2.1	
Hori	10640.000	AV	38.1	38.7	-2.2	33.7	40.9	53.9	13.0	
Hori	15960.000	AV	34.2	37.8	-0.7	32.3	39.0	53.9	14.9	Floor Noise
Hori	21280.000	AV	35.4	37.6	-1.7	32.3	39.0	53.9	14.9	Floor Noise
Hori	26600.000	AV	59.1	44.0	-0.5	77.3	25.3	53.9	28.6	Floor Noise
Hori	31920.000	AV	53.9	43.7	1.3	73.3	25.6	53.9	28.3	Floor Noise
Hori	37240.000	AV	53.4	43.8	2.6	75.5	24.3	53.9	29.6	Floor Noise
Vert	5350.000	PK	64.3	31.6	3.8	31.7	68.0	73.9	5.9	
Vert	10640.000	PK	50.4	38.7	-2.2	33.7	53.2	73.9	20.7	
Vert	15960.000	PK	42.7	37.8	-0.7	32.3	47.5	73.9	26.4	Floor Noise
Vert	21280.000	PK	44.3	37.6	-1.7	32.3	47.9	73.9	26.0	Floor Noise
Vert	26600.000	PK	68.9	44.0	-0.5	77.3	35.1	73.9	38.8	Floor Noise
Vert	31920.000	PK	62.1	43.7	1.3	73.3	33.8	73.9	40.1	Floor Noise
Vert	37240.000	PK	62.2	43.8	2.6	75.5	33.1	73.9	40.8	Floor Noise
Vert	5350.000	AV	48.6	31.6	3.8	31.7	52.3	53.9	1.6	
Vert	10640.000	AV	39.3	38.7	-2.2	33.7	42.1	53.9	11.8	
Vert	15960.000	AV	34.0	37.8	-0.7	32.3	38.8	53.9	15.1	Floor Noise
Vert	21280.000	AV	35.6	37.6	-1.7	32.3	39.2	53.9	14.7	Floor Noise
Vert	26600.000	AV	59.8	44.0	-0.5	77.3	26.0	53.9	27.9	Floor Noise
Vert	31920.000	AV	53.7	43.7	1.3	73.3	25.4	53.9	28.5	Floor Noise
Vert	37240.000	AV	53.7	43.8	2.6	75.5	24.6	53.9	29.3	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 69 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

Date 01/22/2015 01/26/2015 01/27/2015

Temperature/ Humidity 22 deg. C / 33% RH 20 deg. C / 32% RH 22 deg. C / 37% RH Engineer Tomoki Matsui Takafumi Noguchi (1-10GHz) (10-18GHz) (22 deg. C / 37% RH Takafumi Noguchi (18-40GHz)

Mode 11n-20 Tx 5500MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5470.000	PK	63.4	31.8	3.8	31.8	67.2	73.9	6.7	
Hori	11000.000	PK	44.3	38.8	-2.0	33.7	47.4	73.9	26.5	
Hori	16500.000	PK	33.1	38.9	-0.5	32.2	39.3	73.9	34.6	Floor Noise
Hori	22000.000	PK	44.7	37.6	-1.4	32.1	48.8	73.9	25.1	Floor Noise
Hori	27500.000	PK	68.2	43.7	-0.1	77.6	34.2	73.9	39.7	Floor Noise
Hori	33000.000	PK	63.4	43.4	1.8	74.2	34.4	73.9	39.5	Floor Noise
Hori	38500.000	PK	61.6	44.0	3.3	75.2	33.7	73.9	40.2	Floor Noise
Hori	5470.000	AV	46.2	31.8	3.8	31.8	50.0	53.9	3.9	
Hori	11000.000	AV	36.3	38.8	-2.0	33.7	39.4	53.9	14.5	
Hori	16500.000	AV	34.4	38.9	-0.5	32.2	40.6	53.9	13.3	Floor Noise
Hori	22000.000	AV	35.9	37.6	-1.4	32.1	40.0	53.9	13.9	Floor Noise
Hori	27500.000	AV	59.3	43.7	-0.1	77.6	25.3	53.9	28.6	Floor Noise
Hori	33000.000	AV	54.3	43.4	1.8	74.2	25.3	53.9	28.6	Floor Noise
Hori	38500.000	AV	52.8	44.0	3.3	75.2	24.9	53.9	29.0	Floor Noise
Vert	5470.000	PK	66.9	31.8	3.8	31.8	70.7	73.9	3.2	
Vert	11000.000	PK	45.3	38.8	-2.0	33.7	48.4	73.9	25.5	
Vert	16500.000	PK	41.1	38.9	-0.5	32.2	47.3	73.9	26.6	Floor Noise
Vert	22000.000	PK	44.3	37.6	-1.4	32.1	48.4	73.9	25.5	Floor Noise
Vert	27500.000	PK	68.2	43.7	-0.1	77.6	34.2	73.9	39.7	Floor Noise
Vert	33000.000	PK	62.8	43.4	1.8	74.2	33.8	73.9	40.1	Floor Noise
Vert	38500.000	PK	60.7	44.0	3.3	75.2	32.8	73.9	41.1	Floor Noise
Vert	5470.000	AV	49.2	31.8	3.8	31.8	53.0	53.9	0.9	
Vert	11000.000	AV	35.4	38.8	-2.0	33.7	38.5	53.9	15.4	
Vert	16500.000	AV	34.3	38.9	-0.5	32.2	40.5	53.9	13.4	Floor Noise
Vert	22000.000	AV	36.1	37.6	-1.4	32.1	40.2	53.9	13.7	Floor Noise
Vert	27500.000	AV	59.6	43.7	-0.1	77.6	25.6	53.9	28.3	Floor Noise
Vert	33000.000	AV	54.3	43.4	1.8	74.2	25.3	53.9	28.6	Floor Noise
Vert	38500.000	AV	52.8	44.0	3.3	75.2	24.9	53.9	29.0	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 70 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

Date 01/23/2015 01/26/2015 01/27/2015

Temperature/ Humidity 22deg. C / 33% RH 20 deg. C / 32% RH 22 deg. C / 37% RH Engineer Takafumi Noguchi (1-10GHz) Takafumi Noguchi (10-18GHz) (18-40GHz)

Mode 11n-20 Tx 5580MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	11160.000	PK	43.7	39.0	-1.9	33.7	47.1	73.9	26.8	
Hori	16740.000	PK	42.7	39.5	-0.5	32.2	49.5	73.9	24.4	Floor Noise
Hori	22320.000	PK	44.6	37.7	-1.3	31.9	49.1	73.9	24.8	Floor Noise
Hori	27900.000	PK	66.4	43.6	-0.1	77.7	32.2	73.9	41.7	Floor Noise
Hori	33480.000	PK	62.8	43.7	1.9	74.5	33.9	73.9	40.0	Floor Noise
Hori	39060.000	PK	60.3	43.5	3.3	75.2	31.9	73.9	42.0	Floor Noise
Hori	11160.000	AV	35.2	39.0	-1.9	33.7	38.6	53.9	15.3	
Hori	16740.000	AV	34.3	39.5	-0.5	32.2	41.1	53.9	12.8	Floor Noise
Hori	22320.000	AV	36.5	37.7	-1.3	31.9	41.0	53.9	12.9	Floor Noise
Hori	27900.000	AV	58.1	43.6	-0.1	77.7	23.9	53.9	30.0	Floor Noise
Hori	33480.000	AV	54.7	43.7	1.9	74.5	25.8	53.9	28.1	Floor Noise
Hori	39060.000	AV	52.2	43.5	3.3	75.2	23.8	53.9	30.1	Floor Noise
Vert	11160.000	PK	43.7	39.0	-1.9	33.7	47.1	73.9	26.8	
Vert	16740.000	PK	42.9	39.5	-0.5	32.2	49.7	73.9	24.2	Floor Noise
Vert	22320.000	PK	45.1	37.7	-1.3	31.9	49.6	73.9	24.3	Floor Noise
Vert	27900.000	PK	66.4	43.6	-0.1	77.7	32.2	73.9	41.7	Floor Noise
Vert	33480.000	PK	62.7	43.7	1.9	74.5	33.8	73.9	40.1	Floor Noise
Vert	39060.000	PK	60.3	43.5	3.3	75.2	31.9	73.9	42.0	Floor Noise
Vert	11160.000	AV	33.8	39.0	-1.9	33.7	37.2	53.9	16.7	
Vert	16740.000	AV	34.6	39.5	-0.5	32.2	41.4	53.9	12.5	Floor Noise
Vert	22320.000	AV	36.5	37.7	-1.3	31.9	41.0	53.9	12.9	Floor Noise
Vert	27900.000	AV	58.0	43.6	-0.1	77.7	23.8	53.9	30.1	Floor Noise
Vert	33480.000	AV	54.4	43.7	1.9	74.5	25.5	53.9	28.4	Floor Noise
Vert	39060.000	AV	52.3	43.5	3.3	75.2	23.9	53.9	30.0	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Test report No. : 10662332H-C-R1
Page : 71 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

Date 01/22/2015 01/26/2015 01/27/2015

Temperature/ Humidity 22 deg. C / 33% RH 20 deg. C / 32% RH 22 deg. C / 37% RH Engineer Tomoki Matsui Takafumi Noguchi (1-10GHz) (10-18GHz) (22 deg. C / 37% RH Takafumi Noguchi (18-40GHz)

Mode 11n-20 Tx 5700MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5725.000	PK	65.9	32.1	3.9	31.8	70.1	73.9	3.8	
Hori	11400.000	PK	43.4	39.4	-2.0	33.6	47.2	73.9	26.7	
Hori	17100.000	PK	44.4	41.0	-0.3	32.2	52.9	73.9	21.0	Floor Noise
Hori	22800.000	PK	45.4	37.8	-1.1	31.7	50.4	73.9	23.5	Floor Noise
Hori	28500.000	PK	63.8	43.8	0.1	76.0	31.7	73.9	42.2	Floor Noise
Hori	34200.000	PK	64.1	44.0	2.1	74.9	35.3	73.9	38.6	Floor Noise
Hori	39900.000	PK	58.9	44.4	3.1	74.2	32.2	73.9	41.7	Floor Noise
Hori	5725.000	AV	49.2	32.1	3.9	31.8	53.4	53.9	0.5	
Hori	11400.000	AV	34.2	39.4	-2.0	33.6	38.0	53.9	15.9	
Hori	17100.000	AV	34.8	41.0	-0.3	32.2	43.3	53.9	10.6	Floor Noise
Hori	22800.000	AV	37.4	37.8	-1.1	31.7	42.4	53.9	11.5	Floor Noise
Hori	28500.000	AV	55.1	43.8	0.1	76.0	23.0	53.9	30.9	Floor Noise
Hori	34200.000	AV	55.1	44.0	2.1	74.9	26.3	53.9	27.6	Floor Noise
Hori	39900.000	AV	50.9	44.4	3.1	74.2	24.2	53.9	29.7	Floor Noise
Vert	5725.000	PK	66.3	32.1	3.9	31.8	70.5	73.9	3.4	
Vert	11400.000	PK	44.2	39.4	-2.0	33.6	48.0	73.9	25.9	
Vert	17100.000	PK	43.6	41.0	-0.3	32.2	52.1	73.9	21.8	Floor Noise
Vert	22800.000	PK	45.7	37.8	-1.1	31.7	50.7	73.9	23.2	Floor Noise
Vert	28500.000	PK	64.3	43.8	0.1	76.0	32.2	73.9	41.7	Floor Noise
Vert	34200.000	PK	64.9	44.0	2.1	74.9	36.1	73.9	37.8	Floor Noise
Vert	39900.000	PK	59.3	44.4	3.1	74.2	32.6	73.9	41.3	Floor Noise
Vert	5725.000	AV	43.6	32.1	3.9	31.8	47.8	53.9	6.1	Integration Method
Vert	11400.000	AV	34.3	39.4	-2.0	33.6	38.1	53.9	15.8	
Vert	17100.000	AV	34.7	41.0	-0.3	32.2	43.2	53.9	10.7	Floor Noise
Vert	22800.000	AV	37.4	37.8	-1.1	31.7	42.4	53.9	11.5	Floor Noise
Vert	28500.000	AV	56.0	43.8	0.1	76.0	23.9	53.9	30.0	Floor Noise
Vert	34200.000	AV	55.3	44.0	2.1	74.9	26.5	53.9	27.4	Floor Noise
Vert	39900.000	AV	51.1	44.4	3.1	74.2	24.4	53.9	29.5	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 72 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

Date 01/22/2015 01/26/2015 01/27/2015

(1-10GHz) (10-18GHz) (18-40GHz)

Mode 11n-20 Tx 5745MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5725.000	PK	68.5	32.1	3.9	31.8	72.7	73.9	1.2	
Hori	11490.000	PK	42.9	39.6	-2.0	33.6	46.9	73.9	27.0	
Hori	17235.000	PK	43.8	42.1	-0.2	32.2	53.5	73.9	20.4	Floor Noise
Hori	22980.000	PK	45.0	37.9	-1.0	31.6	50.3	73.9	23.6	Floor Noise
Hori	28725.000	PK	62.1	43.9	0.2	75.3	30.9	73.9	43.0	Floor Noise
Hori	34470.000	PK	63.7	43.9	2.1	75.0	34.7	73.9	39.2	Floor Noise
Hori	5725.000	AV	43.2	32.1	3.9	31.8	47.4	53.9	6.5	Integration Method
Hori	11490.000	AV	34.2	39.6	-2.0	33.6	38.2	53.9	15.7	
Hori	17235.000	AV	34.9	42.1	-0.2	32.2	44.6	53.9	9.3	Floor Noise
Hori	22980.000	AV	36.9	37.9	-1.0	31.6	42.2	53.9	11.7	Floor Noise
Hori	28725.000	AV	53.5	43.9	0.2	75.3	22.3	53.9	31.6	Floor Noise
Hori	34470.000	AV	55.1	43.9	2.1	75.0	26.1	53.9	27.8	Floor Noise
Vert	5725.000	PK	68.4	32.1	3.9	31.8	72.6	73.9	1.3	
Vert	11490.000	PK	44.0	39.6	-2.0	33.6	48.0	73.9	25.9	
Vert	17235.000	PK	44.1	42.1	-0.2	32.2	53.8	73.9	20.1	Floor Noise
Vert	22980.000	PK	45.1	37.9	-1.0	31.6	50.4	73.9	23.5	Floor Noise
Vert	28725.000	PK	63.2	43.9	0.2	75.3	32.0	73.9	41.9	Floor Noise
Vert	34470.000	PK	63.3	43.9	2.1	75.0	34.3	73.9	39.6	Floor Noise
Vert	5725.000	AV	43.8	32.1	3.9	31.8	48.0	53.9	5.9	Integration Method
Vert	11490.000	AV	33.9	39.6	-2.0	33.6	37.9	53.9	16.0	
Vert	17235.000	AV	35.0	42.1	-0.2	32.2	44.7	53.9	9.2	Floor Noise
Vert	22980.000	AV	36.8	37.9	-1.0	31.6	42.1	53.9	11.8	Floor Noise
Vert	28725.000	AV	54.9	43.9	0.2	75.3	23.7	53.9	30.2	Floor Noise
Vert	34470.000	AV	55.1	43.9	2.1	75.0	26.1	53.9	27.8	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

 $26.5 GHz - 40 GHz \quad \ 20 log (3.0 m/0.5 m) = 15.6 dB$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Test report No. : 10662332H-C-R1
Page : 73 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

Date 01/23/2015 01/26/2015 01/27/2015

Temperature/ Humidity 22deg. C / 33% RH 20 deg. C / 32% RH 22 deg. C / 37% RH Engineer Takafumi Noguchi Takafumi Noguchi Takafumi Noguchi

(1-10GHz) (10-18GHz) (18-40GHz) Mode 11n-20 Tx 5785MHz

Reading Margin Polarity Detector Ant.Fac Gain Result Limit Remark Frequency Loss [MHz] [dBuV] [dB/m] [dB] [dB] dBuV/m [dBuV/m] [dB] Hori 11570.000 42.8 39.6 -1.9 33.6 46.9 73.9 27.0 Hori 17355.000 PK 41.2 43.0 -0.2 32.2 51.8 73.9 22.1 Floor Noise 23140.000 Hori PΚ 44.7 37.9 -1.0 31.5 50.1 73.9 23.8 Floor Noise 73.9 Floor Noise 28925.000 PK 60.5 44.0 Hori 0.2 74.6 30.1 43.8 Hori 34710.000 PK 63.8 43.8 2.2 75.1 34.7 73.9 39.2 Floor Noise Hori 11570.000 ΑV 34.2 39.6 -1.933.6 38.3 53.9 15.6 Hori 17355.000 ΑV 34.6 43.0 -0.2 32.2 45.2 53.9 8.7 Floor Noise 53.9 23140.000 ΑV 36.6 37.9 -1.0 31.5 42.0 11.9 Floor Noise Hori 28925.000 AV 51.5 44.0 0.2 74.6 21.1 53.9 32.8 Floor Noise Hori 34710.000 AV 54.9 53.9 28.1 Floor Noise Hori 43.8 2.2 75.1 25.8 11570.000 PΚ 43.4 39.6 -1.9 33.6 47.5 73.9 Vert 17355.000 PK 44.2 43.0 -0.2 54.8 73.9 19.1 Floor Noise Vert 32.2 Vert 23140.000 PK 44.8 37.9 -1.0 31.5 50.2 73.9 23.7 Floor Noise Vert 28925.000 PK 61.1 44.0 0.2 74.6 30.7 73.9 43.2 Floor Noise 34710.000 PK 73.9 Vert 63.7 43.8 2.2 75.1 34.6 39.3 Floor Noise 11570.000 AV -1.9 Vert 34.4 39.6 33.6 38.5 53.9 15.4 Vert 17355.000 AV 34.7 43.0 -0.2 32.2 45.3 53.9 8.6 Floor Noise 23140.000 ΑV 37.9 42.1 53.9 Floor Noise Vert 36.7 -1.0 31.5 11.8 28925.000 ΑV 52.1 44.0 53.9 32.2 Floor Noise Vert 0.2 74.6 21.7 34710.000 AV Vert 54.7 43.8 75.1 28.3 Floor Noise

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter - Distance \ factor (above \ 10 GHz)) - Gain (Amplifier)$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 74 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

Date 01/22/2015 01/26/2015 01/27/2015

Temperature/ Humidity 22 deg. C / 33% RH 20 deg. C / 32% RH 22 deg. C / 37% RH Engineer Tomoki Matsui Takafumi Noguchi (1-10GHz) (10-18GHz) (22 deg. C / 37% RH Takafumi Noguchi (18-40GHz)

Mode 11n-20 Tx 5825MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5850.000	PK	62.9	32.2	4.0	31.8	67.3	73.9	6.6	
Hori	11650.000	PK	45.4	39.6	-1.9	33.5	49.6	73.9	24.3	
Hori	17475.000	PK	44.5	44.0	-0.3	32.2	56.0	73.9	17.9	Floor Noise
Hori	23300.000	PK	44.7	37.9	-1.0	31.4	50.2	73.9	23.7	Floor Noise
Hori	29125.000	PK	58.2	44.0	0.3	74.3	28.2	73.9	45.7	Floor Noise
Hori	34950.000	PK	62.4	43.8	2.2	75.2	33.2	73.9	40.7	Floor Noise
Hori	5850.000	AV	44.6	32.2	4.0	31.8	49.0	53.9	4.9	
Hori	11650.000	AV	35.4	39.6	-1.9	33.5	39.6	53.9	14.3	
Hori	17475.000	AV	34.5	44.0	-0.3	32.2	46.0	53.9	7.9	Floor Noise
Hori	23300.000	AV	37.2	37.9	-1.0	31.4	42.7	53.9	11.2	Floor Noise
Hori	29125.000	AV	49.6	44.0	0.3	74.3	19.6	53.9	34.3	Floor Noise
Hori	34950.000	AV	54.5	43.8	2.2	75.2	25.3	53.9	28.6	Floor Noise
Vert	5850.000	PK	64.5	32.2	4.0	31.8	68.9	73.9	5.0	
Vert	11650.000	PK	45.3	39.6	-1.9	33.5	49.5	73.9	24.4	
Vert	17475.000	PK	43.2	44.0	-0.3	32.2	54.7	73.9	19.2	Floor Noise
Vert	23300.000	PK	45.7	37.9	-1.0	31.4	51.2	73.9	22.7	Floor Noise
Vert	29125.000	PK	60.8	44.0	0.3	74.3	30.8	73.9	43.1	Floor Noise
Vert	34950.000	PK	62.6	43.8	2.2	75.2	33.4	73.9	40.5	Floor Noise
Vert	5850.000	AV	48.9	32.2	4.0	31.8	53.3	53.9	0.6	
Vert	11650.000	AV	35.8	39.6	-1.9	33.5	40.0	53.9	13.9	
Vert	17475.000	AV	41.5	44.0	-0.3	32.2	53.0	53.9	0.9	Floor Noise
Vert	23300.000	AV	37.0	37.9	-1.0	31.4	42.5	53.9	11.4	Floor Noise
Vert	29125.000	AV	51.7	44.0	0.3	74.3	21.7	53.9	32.2	Floor Noise
Vert	34950.000	AV	54.5	43.8	2.2	75.2	25.3	53.9	28.6	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

 $26.5 GHz - 40 GHz \quad \ 20 log (3.0 m/0.5 m) = 15.6 dB$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Test report No. : 10662332H-C-R1
Page : 75 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/22/2015

Temperature/ Humidity
Engineer

22 deg. C / 33% RH
Tomoki Matsui
(1-10GHz)

Mode 11ac-20 Tx 5180MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5150.000	PK	57.9	31.3	3.7	31.7	-	61.2	73.9	12.7	
Hori	5150.000	AV	42.2	31.3	3.7	31.7	0.4	45.9	53.9	8.0	*1)
Vert	5150.000	PK	57.7	31.3	3.7	31.7	-	61.0	73.9	12.9	
Vert	5150.000	AV	39.9	31.3	3.7	31.7	0.4	43.6	53.9	10.3	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 76 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/22/2015

Temperature/ Humidity
Engineer

22 deg. C / 33% RH
Tomoki Matsui
(1-10GHz)

Mode 11ac-20 Tx 5320MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5350.000	PK	64.1	31.6	3.8	31.7	-	67.8	73.9	6.1	
Hori	5350.000	AV	46.9	31.6	3.8	31.7	0.4	51.0	53.9	2.9	*1)
Vert	5350.000	PK	65.7	31.6	3.8	31.7	-	69.4	73.9	4.5	
Vert	5350.000	AV	49.0	31.6	3.8	31.7	0.4	53.1	53.9	0.8	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 77 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/22/2015

Temperature/ Humidity
Engineer

22 deg. C / 33% RH
Tomoki Matsui
(1-10GHz)

Mode 11ac-20 Tx 5500MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5470.000	PK	61.7	31.8	3.8	31.8	-	65.5	73.9	8.4	
Hori	5470.000	AV	45.5	31.8	3.8	31.8	0.4	49.7	53.9	4.2	*1)
Vert	5470.000	PK	63.5	31.8	3.8	31.8	-	67.3	73.9	6.6	
Vert	5470.000	AV	47.6	31.8	3.8	31.8	0.4	51.8	53.9	2.1	*1)

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter - Distance \ factor (above \ 10 GHz)) - Gain (Amplifier) + Duty \ factor (above \ 10 GHz) - Gain (Amplifier) + Duty \ factor (above \ 10 GHz)) - Gain (Amplifier) + Duty \ f$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 78 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/22/2015

Temperature/ Humidity
Engineer

22 deg. C / 33% RH
Tomoki Matsui
(1-10GHz)

Mode 11ac-20 Tx 5700MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5725.000	PK	63.9	32.1	3.9	31.8	-	68.1	73.9	5.8	
Hori	5725.000	AV	46.3	32.1	3.9	31.8	0.4	50.9	53.9	3.0	*1)
Vert	5725.000	PK	63.5	32.1	3.9	31.8	-	67.7	73.9	6.2	
Vert	5725.000	AV	47.4	32.1	3.9	31.8	0.4	52.0	53.9	1.9	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 79 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/22/2015

Temperature/ Humidity
Engineer

22 deg. C / 33% RH
Tomoki Matsui
(1-10GHz)

Mode 11ac-20 Tx 5745MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5725.000	PK	65.5	32.1	3.9	31.8	-	69.7	73.9	4.2	
Hori	5725.000	AV	42.6	32.1	3.9	31.8	0.4	47.2	53.9	6.7	Integration Method, *1)
Vert	5725.000	PK	66.9	32.1	3.9	31.8	-	71.1	73.9	2.8	
Vert	5725.000	AV	43.2	32.1	3.9	31.8	0.4	47.8	53.9	6.1	Integration Method, *1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 80 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/22/2015

Temperature/ Humidity 22 deg. C / 33% RH Engineer Tomoki Matsui

(1-10GHz)

Mode 11ac-20 Tx 5825MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5850.000	PK	59.0	32.2	4.0	31.8	-	63.4	73.9	10.5	
Hori	5850.000	AV	42.9	32.2	4.0	31.8	0.4	47.7	53.9	6.2	*1)
Vert	5850.000	PK	62.2	32.2	4.0	31.8	-	66.6	73.9	7.3	
Vert	5850.000	AV	45.0	32.2	4.0	31.8	0.4	49.8	53.9	4.1	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 81 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/22/2015

Temperature/ Humidity
Engineer

22 deg. C / 33% RH
Tomoki Matsui
(1-10GHz)

Mode 11n-40 Tx 5190MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5150.000	PK	59.8	31.3	3.7	31.7	-	63.1	73.9	10.8	
Hori	5150.000	AV	47.0	31.3	3.7	31.7	0.7	51.0	53.9	2.9	*1)
Vert	5150.000	PK	61.3	31.3	3.7	31.7	-	64.6	73.9	9.3	
Vert	5150.000	AV	47.3	31.3	3.7	31.7	0.7	51.3	53.9	2.6	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 82 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/22/2015

Temperature/ Humidity
Engineer

22 deg. C / 33% RH
Tomoki Matsui
(1-10GHz)

Mode 11n-40 Tx 5310MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5350.000	PK	59.9	31.6	3.8	31.7	-	63.6	68.2	4.6	
Hori	5350.000	AV	43.8	31.6	3.8	31.7	0.7	48.2	53.9	5.7	*1)
Vert	5350.000	PK	61.5	31.6	3.8	31.7	-	65.2	68.2	3.0	
Vert	5350.000	AV	44.5	31.6	3.8	31.7	0.7	48.9	53.9	5.0	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 83 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/22/2015

Temperature/ Humidity
Engineer

22 deg. C / 33% RH
Tomoki Matsui
(1-10GHz)

11n-40 Tx 5510MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5470.000	PK	61.6	31.8	3.8	31.8	-	65.4	73.9	8.5	
Hori	5470.000	AV	46.1	31.8	3.8	31.8	0.7	50.6	53.9	3.3	*1)
Vert	5470.000	PK	61.6	31.8	3.8	31.8	-	65.4	73.9	8.5	
Vert	5470.000	AV	47.3	31.8	3.8	31.8	0.7	51.8	53.9	2.1	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

Mode

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 84 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/22/2015

Temperature/ Humidity
Engineer

22 deg. C / 33% RH
Tomoki Matsui
(1-10GHz)

Mode 11n-40 Tx 5670MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5725.000	PK	53.5	32.1	3.9	31.8	-	57.7	73.9	16.2	
Hori	5725.000	AV	38.8	32.1	3.9	31.8	0.7	43.7	53.9	10.2	*1)
Vert	5725.000	PK	52.4	32.1	3.9	31.8	-	56.6	73.9	17.3	
Vert	5725.000	AV	40.1	32.1	3.9	31.8	0.7	45.0	53.9	8.9	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 85 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/22/2015

Temperature/ Humidity
Engineer

22 deg. C / 33% RH
Tomoki Matsui
(1-10GHz)

Mode 11n-40 Tx 5755MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5725.000	PK	56.6	32.1	3.9	31.8	-	60.8	73.9	13.1	
Hori	5725.000	AV	41.4	32.1	3.9	31.8	0.7	46.3	53.9	7.6	*1)
Vert	5725.000	PK	58.8	32.1	3.9	31.8	-	63.0	73.9	10.9	
Vert	5725.000	AV	44.0	32.1	3.9	31.8	0.7	48.9	53.9	5.0	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 86 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H Date 01/22/2015

Temperature/ Humidity
Engineer

22 deg. C / 33% RH
Tomoki Matsui
(1-10GHz)

11n-40 Tx 5795MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5850.000	PK	46.9	32.2	4.0	31.8	-	51.3	73.9	22.6	
Hori	5850.000	AV	35.4	32.2	4.0	31.8	0.7	40.5	53.9	13.4	*1)
Vert	5850.000	PK	51.3	32.2	4.0	31.8	-	55.7	73.9	18.2	
Vert	5850.000	AV	36.9	32.2	4.0	31.8	0.7	42.0	53.9	11.9	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

Mode

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 87 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

 Date
 01/22/2015
 01/26/2015
 01/27/2015

 Temperature/ Humidity
 22 deg. C / 33% RH
 23deg. C / 36% RH
 25deg. C / 35% RH

 Engineer
 Tomoki Matsui
 Koji Yamamoto
 Koji Yamamoto

 (1-10GHz)
 (10-26.5GHz)
 (26.5-40GHz)

Mode 11ac-40 Tx 5190MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5150.000	PK	61.1	31.3	3.7	31.7	-	64.4	73.9	9.5	
Hori	10380.000	PK	49.2	38.8	-2.3	33.6	-	52.1	73.9	21.8	
Hori	15570.000	PK	44.1	39.0	-0.9	32.1	-	50.1	73.9	23.8	Floor Noise
Hori	20760.000	PK	47.6	37.6	-1.8	32.3	-	51.1	73.9	22.8	Floor Noise
Hori	5150.000	AV	47.8	31.3	3.7	31.7	0.6	51.7	53.9	2.2	*1)
Hori	10380.000	AV	40.7	38.8	-2.3	33.6	0.6	44.2	53.9	9.7	
Hori	15570.000	AV	35.7	39.0	-0.9	32.1	-	41.7	53.9	12.2	Floor Noise
Hori	20760.000	AV	38.1	37.6	-1.8	32.3	-	41.6	53.9	12.3	Floor Noise
Vert	5150.000	PK	62.7	31.3	3.7	31.7	-	66.0	73.9	7.9	
Vert	10380.000	PK	50.1	38.8	-2.3	33.6	-	53.0	73.9	20.9	
Vert	15570.000	PK	44.5	39.0	-0.9	32.1	-	50.5	73.9	23.4	Floor Noise
Vert	20760.000	PK	45.7	37.6	-1.8	32.3	-	49.2	73.9	24.7	Floor Noise
Vert	5150.000	AV	46.5	31.3	3.7	31.7	0.6	50.4	53.9	3.5	*1)
Vert	10380.000	AV	40.8	38.8	-2.3	33.6	0.6	44.3	53.9	9.6	
Vert	15570.000	AV	35.2	39.0	-0.9	32.1	-	41.2	53.9	12.7	Floor Noise
Vert	20760.000	AV	36.9	37.6	-1.8	32.3	-	40.4	53.9	13.5	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 88 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

 Date
 01/25/2015
 01/26/2015
 01/27/2015

 Temperature/ Humidity
 22deg. C / 33% RH
 23deg. C / 36% RH
 25deg. C / 35% RH

 Engineer
 Takafumi Noguchi (1-10GHz)
 Koji Yamamoto (10-26.5GHz)
 Koji Yamamoto (26.5-40GHz)

Mode 11ac-40 Tx 5270MHz

	_		w 11								
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	10540.000	PK	46.5	38.7	-2.3	33.6	-	49.3	73.9	24.6	
Hori	15810.000	PK	43.8	38.3	-0.8	32.2	-	49.1	73.9	24.8	Floor Noise
Hori	21080.000	PK	45.4	37.6	-1.7	32.3	-	49.0	73.9	24.9	Floor Noise
Hori	10540.000	AV	37.5	38.7	-2.3	33.6	0.6	40.9	53.9	13.0	*1)
Hori	15810.000	AV	35.6	38.3	-0.8	32.2	-	40.9	53.9	13.0	Floor Noise
Hori	21080.000	AV	36.8	37.6	-1.7	32.3	-	40.4	53.9	13.5	Floor Noise
Vert	10540.000	PK	47.4	38.7	-2.3	33.6	-	50.2	73.9	23.7	
Vert	15810.000	PK	44.3	38.3	-0.8	32.2	-	49.6	73.9	24.3	Floor Noise
Vert	21080.000	PK	44.4	37.6	-1.7	32.3	-	48.0	73.9	25.9	Floor Noise
Vert	10540.000	AV	38.9	38.7	-2.3	33.6	0.6	42.3	53.9	11.6	*1)
Vert	15810.000	AV	35.5	38.3	-0.8	32.2	-	40.8	53.9	13.1	Floor Noise
Vert	21080.000	AV	35.5	37.6	-1.7	32.3	-	39.1	53.9	14.8	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 89 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

 Date
 01/22/2015
 01/26/2015
 01/27/2015

 Temperature/ Humidity
 22 deg. C / 33% RH
 23deg. C / 36% RH
 25deg. C / 35% RH

 Engineer
 Tomoki Matsui
 Koji Yamamoto
 Koji Yamamoto

 (1-10GHz)
 (10-26.5GHz)
 (26.5-40GHz)

Mode 11ac-40 Tx 5310MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5350.000	PK	59.6	31.6	3.8	31.7	-	63.3	73.9	10.6	
Hori	10620.000	PK	45.6	38.7	-2.2	33.7	-	48.4	73.9	25.5	
Hori	15930.000	PK	44.0	37.9	-0.7	32.3	-	48.9	73.9	25.0	Floor Noise
Hori	21240.000	PK	44.9	37.6	-1.7	32.3	-	48.5	73.9	25.4	Floor Noise
Hori	5350.000	AV	44.1	31.6	3.8	31.7	0.6	48.4	53.9	5.5	*1)
Hori	10620.000	AV	36.8	38.7	-2.2	33.7	0.6	40.2	53.9	13.7	
Hori	15930.000	AV	35.2	37.9	-0.7	32.3	-	40.1	53.9	13.8	Floor Noise
Hori	21240.000	AV	36.0	37.6	-1.7	32.3	-	39.6	53.9	14.3	Floor Noise
Vert	5350.000	PK	60.2	31.6	3.8	31.7	-	63.9	73.9	10.0	
Vert	10620.000	PK	47.6	38.7	-2.2	33.7	-	50.4	73.9	23.5	
Vert	15930.000	PK	43.9	37.9	-0.7	32.3	-	48.8	73.9	25.1	Floor Noise
Vert	21240.000	PK	44.3	37.6	-1.7	32.3	-	47.9	73.9	26.0	Floor Noise
Vert	5350.000	AV	45.5	31.6	3.8	31.7	0.6	49.8	53.9	4.1	*1)
Vert	10620.000	AV	39.1	38.7	-2.2	33.7	0.6	42.5	53.9	11.4	
Vert	15930.000	AV	35.1	37.9	-0.7	32.3	-	40.0	53.9	13.9	Floor Noise
Vert	21240.000	AV	35.8	37.6	-1.7	32.3	-	39.4	53.9	14.5	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 90 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

 Date
 01/22/2015
 01/26/2015
 01/27/2015

 Temperature/ Humidity
 22 deg. C / 33% RH
 23deg. C / 36% RH
 25deg. C / 35% RH

 Engineer
 Tomoki Matsui
 Koji Yamamoto
 Koji Yamamoto

 (1-10GHz)
 (10-26.5GHz)
 (26.5-40GHz)

Mode 11ac-40 Tx 5510MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5470.000	PK	61.8	31.8	3.8	31.8	-	65.6	73.9	8.3	
Hori	11020.000	PK	43.5	38.8	-2.0	33.7	-	46.6	73.9	27.3	Floor Noise
Hori	16530.000	PK	44.3	39.0	-0.5	32.2	-	50.6	73.9	23.3	Floor Noise
Hori	22040.000	PK	45.3	37.6	-1.4	32.1	-	49.4	73.9	24.5	Floor Noise
Hori	5470.000	AV	46.7	31.8	3.8	31.8	0.6	51.1	53.9	2.8	*1)
Hori	11020.000	AV	34.6	38.8	-2.0	33.7	-	37.7	53.9	16.2	Floor Noise
Hori	16530.000	AV	35.5	39.0	-0.5	32.2	-	41.8	53.9	12.1	Floor Noise
Hori	22040.000	AV	36.3	37.6	-1.4	32.1	-	40.4	53.9	13.5	Floor Noise
Vert	5470.000	PK	62.5	31.8	3.8	31.8	-	66.3	73.9	7.6	
Vert	11020.000	PK	44.3	38.8	-2.0	33.7	-	47.4	73.9	26.5	Floor Noise
Vert	16530.000	PK	44.1	39.0	-0.5	32.2	-	50.4	73.9	23.5	Floor Noise
Vert	22040.000	PK	44.9	37.6	-1.4	32.1	-	49.0	73.9	24.9	Floor Noise
Vert	5470.000	AV	49.3	31.8	3.8	31.8	0.6	53.7	53.9	0.2	*1)
Vert	11020.000	AV	35.5	38.8	-2.0	33.7	-	38.6	53.9	15.3	Floor Noise
Vert	16530.000	AV	35.8	39.0	-0.5	32.2	-	42.1	53.9	11.8	Floor Noise
Vert	22040.000	AV	36.1	37.6	-1.4	32.1	-	40.2	53.9	13.7	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 91 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

 Date
 01/25/2015
 01/26/2015
 01/27/2015

 Temperature/ Humidity
 22deg. C / 33% RH
 23deg. C / 36% RH
 25deg. C / 35% RH

 Engineer
 Takafumi Noguchi (1-10GHz)
 Koji Yamamoto (10-26.5GHz)
 Koji Yamamoto (26.5-40GHz)

Mode 11ac-40 Tx 5550MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	11100.000	PK	42.9	38.9	-1.9	33.7	46.2	73.9	27.7	Floor Noise
Hori	16650.000	PK	43.7	39.3	-0.5	32.2	50.3	73.9	23.6	Floor Noise
Hori	22200.000	PK	45.8	37.6	-1.3	32.0	50.1	73.9	23.8	Floor Noise
Hori	11100.000	AV	34.6	38.9	-1.9	33.7	37.9	53.9	16.0	Floor Noise
Hori	16650.000	AV	35.0	39.3	-0.5	32.2	41.6	53.9	12.3	Floor Noise
Hori	22200.000	AV	36.8	37.6	-1.3	32.0	41.1	53.9	12.8	Floor Noise
Vert	11100.000	PK	43.7	38.9	-1.9	33.7	47.0	73.9	26.9	Floor Noise
Vert	16650.000	PK	44.2	39.3	-0.5	32.2	50.8	73.9	23.1	Floor Noise
Vert	22200.000	PK	44.6	37.6	-1.3	32.0	48.9	73.9	25.0	Floor Noise
Vert	11100.000	AV	34.9	38.9	-1.9	33.7	38.2	53.9	15.7	Floor Noise
Vert	16650.000	AV	35.1	39.3	-0.5	32.2	41.7	53.9	12.2	Floor Noise
Vert	22200.000	AV	36.5	37.6	-1.3	32.0	40.8	53.9	13.1	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Test report No. : 10662332H-C-R1
Page : 92 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

 Date
 01/22/2015
 01/26/2015
 01/27/2015

 Temperature/ Humidity
 22 deg. C / 33% RH
 23deg. C / 36% RH
 25deg. C / 35% RH

 Engineer
 Tomoki Matsui
 Koji Yamamoto
 Koji Yamamoto

 (1-10GHz)
 (10-26.5GHz)
 (26.5-40GHz)

Mode 11ac-40 Tx 5670MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5725.000	PK	53.2	32.1	3.9	31.8	-	57.4	73.9	16.5	
Hori	11340.000	PK	42.1	39.3	-2.0	33.6	-	45.8	73.9	28.1	Floor Noise
Hori	17010.000	PK	43.9	40.2	-0.3	32.2	-	51.6	73.9	22.3	Floor Noise
Hori	22680.000	PK	45.5	37.8	-1.1	31.7	-	50.5	73.9	23.4	Floor Noise
Hori	5725.000	AV	40.8	32.1	3.9	31.8	0.6	45.6	53.9	8.3	*1)
Hori	11340.000	AV	33.8	39.3	-2.0	33.6	-	37.5	53.9	16.4	Floor Noise
Hori	17010.000	AV	34.8	40.2	-0.3	32.2	-	42.5	53.9	11.4	Floor Noise
Hori	22680.000	AV	36.1	37.8	-1.1	31.7	-	41.1	53.9	12.8	Floor Noise
Vert	5725.000	PK	54.4	32.1	3.9	31.8	-	58.6	73.9	15.3	
Vert	11340.000	PK	41.5	39.3	-2.0	33.6	-	45.2	73.9	28.7	Floor Noise
Vert	17010.000	PK	43.6	40.2	-0.3	32.2	-	51.3	73.9	22.6	Floor Noise
Vert	22680.000	PK	43.8	37.8	-1.1	31.7	-	48.8	73.9	25.1	Floor Noise
Vert	5725.000	AV	41.5	32.1	3.9	31.8	0.6	46.3	53.9	7.6	*1)
Vert	11340.000	AV	33.3	39.3	-2.0	33.6	-	37.0	53.9	16.9	Floor Noise
Vert	17010.000	AV	35.3	40.2	-0.3	32.2	-	43.0	53.9	10.9	Floor Noise
Vert	22680.000	AV	36.2	37.8	-1.1	31.7	-	41.2	53.9	12.7	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

 $\begin{array}{lll} \mbox{Distance factor:} & 10\mbox{GHz-26.5GHz} & 20\mbox{log}(3.0\mbox{m}/1.0\mbox{m}) = 9.5\mbox{dB} \\ 26.5\mbox{GHz-40GHz} & 20\mbox{log}(3.0\mbox{m}/0.5\mbox{m}) = 15.6\mbox{dB} \end{array}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 93 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

 Date
 01/22/2015
 01/26/2015
 01/27/2015

 Temperature/ Humidity
 22 deg. C / 33% RH
 23deg. C / 36% RH
 25deg. C / 35% RH

 Engineer
 Tomoki Matsui
 Koji Yamamoto
 Koji Yamamoto

 (1-10GHz)
 (10-26.5GHz)
 (26.5-40GHz)

Mode 11ac-40 Tx 5755MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5725.000	PK	56.4	32.1	3.9	31.8	-	60.6	73.9	13.3	
Hori	11510.000	PK	42.0	39.6	-2.0	33.6	-	46.0	73.9	27.9	Floor Noise
Hori	17265.000	PK	44.1	42.3	-0.2	32.2	-	54.0	73.9	19.9	Floor Noise
Hori	23020.000	PK	45.5	37.9	-1.0	31.6	-	50.8	73.9	23.1	Floor Noise
Hori	5725.000	AV	40.4	32.1	3.9	31.8	0.6	45.2	53.9	8.7	*1)
Hori	11510.000	AV	33.6	39.6	-2.0	33.6	-	37.6	53.9	16.3	Floor Noise
Hori	17265.000	AV	35.9	42.3	-0.2	32.2	-	45.8	53.9	8.1	Floor Noise
Hori	23020.000	AV	37.1	37.9	-1.0	31.6	-	42.4	53.9	11.5	Floor Noise
Vert	5725.000	PK	58.1	32.1	3.9	31.8	-	62.3	73.9	11.6	
Vert	11510.000	PK	42.6	39.6	-2.0	33.6	-	46.6	73.9	27.3	Floor Noise
Vert	17265.000	PK	43.9	42.3	-0.2	32.2	-	53.8	73.9	20.1	Floor Noise
Vert	23020.000	PK	45.3	37.9	-1.0	31.6	-	50.6	73.9	23.3	Floor Noise
Vert	5725.000	AV	42.9	32.1	3.9	31.8	0.6	47.7	53.9	6.2	*1)
Vert	11510.000	AV	33.7	39.6	-2.0	33.6	-	37.7	53.9	16.2	Floor Noise
Vert	17265.000	AV	35.1	42.3	-0.2	32.2	-	45.0	53.9	8.9	Floor Noise
Vert	23020.000	AV	36.8	37.9	-1.0	31.6	-	42.1	53.9	11.8	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

 $\begin{array}{lll} \mbox{Distance factor:} & 10\mbox{GHz-26.5GHz} & 20\mbox{log}(3.0\mbox{m}/1.0\mbox{m}) = 9.5\mbox{dB} \\ 26.5\mbox{GHz-40GHz} & 20\mbox{log}(3.0\mbox{m}/0.5\mbox{m}) = 15.6\mbox{dB} \end{array}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 94 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

 Date
 01/22/2015
 01/26/2015
 01/27/2015

 Temperature/ Humidity
 22 deg. C / 33% RH
 23deg. C / 36% RH
 25deg. C / 35% RH

 Engineer
 Tomoki Matsui
 Koji Yamamoto
 Koji Yamamoto

 (1-10GHz)
 (10-26.5GHz)
 (26.5-40GHz)

Mode 11ac-40 Tx 5795MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5850.000	PK	49.1	32.2	4.0	31.8	-	53.5	73.9	20.4	
Hori	11590.000	PK	41.6	39.6	-1.9	33.5	-	45.8	73.9	28.1	Floor Noise
Hori	17385.000	PK	43.5	43.3	-0.2	32.2	-	54.4	73.9	19.5	Floor Noise
Hori	23180.000	PK	45.3	37.9	-1.0	31.5	-	50.7	73.9	23.2	Floor Noise
Hori	5850.000	AV	37.1	32.2	4.0	31.8	0.6	42.1	53.9	11.8	*1)
Hori	11590.000	AV	34.0	39.6	-1.9	33.5	-	38.2	53.9	15.7	Floor Noise
Hori	17385.000	AV	35.4	43.3	-0.2	32.2	-	46.3	53.9	7.6	Floor Noise
Hori	23180.000	AV	36.8	37.9	-1.0	31.5	-	42.2	53.9	11.7	Floor Noise
Vert	5850.000	PK	51.2	32.2	4.0	31.8	-	55.6	73.9	18.3	
Vert	11590.000	PK	41.9	39.6	-1.9	33.5	-	46.1	73.9	27.8	Floor Noise
Vert	17385.000	PK	43.8	43.3	-0.2	32.2	-	54.7	73.9	19.2	Floor Noise
Vert	23180.000	PK	45.7	37.9	-1.0	31.5	-	51.1	73.9	22.8	Floor Noise
Vert	5850.000	AV	38.4	32.2	4.0	31.8	0.6	43.4	53.9	10.5	*1)
Vert	11590.000	AV	33.8	39.6	-1.9	33.5	-	38.0	53.9	15.9	Floor Noise
Vert	17385.000	AV	35.2	43.3	-0.2	32.2	-	46.1	53.9	7.8	Floor Noise
Vert	23180.000	AV	36.6	37.9	-1.0	31.5	-	42.0	53.9	11.9	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

 $\begin{array}{lll} \mbox{Distance factor:} & 10\mbox{GHz-26.5GHz} & 20\mbox{log}(3.0\mbox{m}/1.0\mbox{m}) = 9.5\mbox{dB} \\ 26.5\mbox{GHz-40GHz} & 20\mbox{log}(3.0\mbox{m}/0.5\mbox{m}) = 15.6\mbox{dB} \end{array}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 95 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

 Date
 01/22/2015
 01/26/2015
 01/27/2015

 Temperature/ Humidity
 22 deg. C / 33% RH
 23deg. C / 36% RH
 25deg. C / 35% RH

 Engineer
 Tomoki Matsui
 Koji Yamamoto
 Koji Yamamoto

 (1-10GHz)
 (18-26.5GHz)
 (26.5-40GHz)

Mode 11ac-80 Tx 5210MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5150.000	PK	62.6	31.3	3.7	31.7	-	65.9	73.9	8.0	
Hori	10420.000	PK	44.8	38.8	-2.3	33.6	-	47.7	73.9	26.2	
Hori	15630.000	PK	43.4	38.8	-0.9	32.1	-	49.2	73.9	24.7	Floor Noise
Hori	20840.000	PK	46.2	37.6	-1.8	32.3	-	49.7	73.9	24.2	Floor Noise
Hori	5150.000	AV	48.3	31.3	3.7	31.7	0.2	51.8	53.9	2.1	*1)
Hori	10420.000	AV	36.2	38.8	-2.3	33.6	0.2	39.3	53.9	14.6	
Hori	15630.000	AV	33.6	38.8	-0.9	32.1	-	39.4	53.9	14.5	Floor Noise
Hori	20840.000	AV	37.8	37.6	-1.8	32.3	-	41.3	53.9	12.6	Floor Noise
Vert	5150.000	PK	63.0	31.3	3.7	31.7	-	66.3	73.9	7.6	
Vert	10420.000	PK	44.8	38.8	-2.3	33.6	-	47.7	73.9	26.2	
Vert	15630.000	PK	44.5	38.8	-0.9	32.1	-	50.3	73.9	23.6	Floor Noise
Vert	20840.000	PK	46.0	37.6	-1.8	32.3	-	49.5	73.9	24.4	Floor Noise
Vert	5150.000	AV	48.9	31.3	3.7	31.7	0.2	52.4	53.9	1.5	Integration Method, *1)
Vert	10420.000	AV	37.6	38.8	-2.3	33.6	0.2	40.7	53.9	13.2	
Vert	15630.000	AV	34.7	38.8	-0.9	32.1	-	40.5	53.9	13.4	Floor Noise
Vert	20840.000	AV	37.2	37.6	-1.8	32.3	-	40.7	53.9	13.2	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

*1) Not Out of Band emission (Leakage Power)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Test report No. : 10662332H-C-R1
Page : 96 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

 Date
 01/22/2015
 01/26/2015
 01/27/2015

 Temperature/ Humidity
 22 deg. C / 33% RH
 23deg. C / 36% RH
 25deg. C / 35% RH

 Engineer
 Tomoki Matsui
 Koji Yamamoto
 Koji Yamamoto

 (1-10GHz)
 (18-26.5GHz)
 (26.5-40GHz)

Mode 11ac-80 Tx 5290MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5350.000	PK	63.6	31.6	3.8	31.7	-	67.3	73.9	6.6	
Hori	10580.000	PK	44.5	38.7	-2.3	33.6	-	47.3	73.9	26.6	
Hori	15870.000	PK	43.6	38.1	-0.8	32.3	-	48.6	73.9	25.3	Floor Noise
Hori	21160.000	PK	44.6	37.6	-1.7	32.3	-	48.2	73.9	25.7	Floor Noise
Hori	5350.000	AV	47.7	31.6	3.8	31.7	0.2	51.6	53.9	2.3	*1)
Hori	10580.000	AV	35.9	38.7	-2.3	33.6	0.2	38.9	53.9	15.0	
Hori	15870.000	AV	34.5	38.1	-0.8	32.3	-	39.5	53.9	14.4	Floor Noise
Hori	21160.000	AV	36.8	37.6	-1.7	32.3	-	40.4	53.9	13.5	Floor Noise
Vert	5350.000	PK	63.5	31.6	3.8	31.7	-	67.2	73.9	6.7	
Vert	10580.000	PK	45.1	38.7	-2.3	33.6	-	47.9	73.9	26.0	
Vert	15870.000	PK	42.7	38.1	-0.8	32.3	-	47.7	73.9	26.2	Floor Noise
Vert	21160.000	PK	44.7	37.6	-1.7	32.3	-	48.3	73.9	25.6	Floor Noise
Vert	5350.000	AV	46.7	31.6	3.8	31.7	0.2	50.6	53.9	3.3	*1)
Vert	10580.000	AV	36.7	38.7	-2.3	33.6	0.2	39.7	53.9	14.2	
Vert	15870.000	AV	34.8	38.1	-0.8	32.3	-	39.8	53.9	14.1	Floor Noise
Vert	21160.000	AV	36.3	37.6	-1.7	32.3	-	39.9	53.9	14.0	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 97 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

 Date
 01/22/2015
 01/26/2015
 01/27/2015

 Temperature/ Humidity
 22 deg. C / 33% RH
 23deg. C / 36% RH
 25deg. C / 35% RH

 Engineer
 Tomoki Matsui
 Koji Yamamoto
 Koji Yamamoto

 (1-10GHz)
 (18-26.5GHz)
 (26.5-40GHz)

Mode 11ac-80 Tx 5530MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5470.000	PK	62.4	31.8	3.8	31.8	-	66.2	73.9	7.7	
Hori	11060.000	PK	43.4	38.9	-1.9	33.7	-	46.7	73.9	27.2	Floor Noise
Hori	16590.000	PK	43.9	39.2	-0.5	32.2	-	50.4	73.9	23.5	Floor Noise
Hori	22120.000	PK	44.9	37.6	-1.4	32.0	-	49.1	73.9	24.8	Floor Noise
Hori	5470.000	AV	47.6	31.8	3.8	31.8	0.2	51.6	53.9	2.3	*1)
Hori	11060.000	AV	33.8	38.9	-1.9	33.7	-	37.1	53.9	16.8	Floor Noise
Hori	16590.000	AV	34.2	39.2	-0.5	32.2	-	40.7	53.9	13.2	Floor Noise
Hori	22120.000	AV	36.3	37.6	-1.4	32.0	-	40.5	53.9	13.4	Floor Noise
Vert	5470.000	PK	64.7	31.8	3.8	31.8	-	68.5	73.9	5.4	
Vert	11060.000	PK	45.5	38.9	-1.9	33.7	-	48.8	73.9	25.1	Floor Noise
Vert	16590.000	PK	44.2	39.2	-0.5	32.2	-	50.7	73.9	23.2	Floor Noise
Vert	22120.000	PK	44.3	37.6	-1.4	32.0	-	48.5	73.9	25.4	Floor Noise
Vert	5470.000	AV	49.0	31.8	3.8	31.8	0.2	53.0	53.9	0.9	*1)
Vert	11060.000	AV	35.2	38.9	-1.9	33.7	-	38.5	53.9	15.4	Floor Noise
Vert	16590.000	AV	34.8	39.2	-0.5	32.2	-	41.3	53.9	12.6	Floor Noise
Vert	22120.000	AV	36.1	37.6	-1.4	32.0	-	40.3	53.9	13.6	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

 $\begin{array}{lll} \mbox{Distance factor:} & 10\mbox{GHz-26.5GHz} & 20\mbox{log}(3.0\mbox{m}/1.0\mbox{m}) = 9.5\mbox{dB} \\ 26.5\mbox{GHz-40GHz} & 20\mbox{log}(3.0\mbox{m}/0.5\mbox{m}) = 15.6\mbox{dB} \end{array}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 98 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

 Date
 01/22/2015
 01/26/2015
 01/27/2015

 Temperature/ Humidity
 22 deg. C / 33% RH
 23deg. C / 36% RH
 25deg. C / 35% RH

 Engineer
 Tomoki Matsui
 Koji Yamamoto
 Koji Yamamoto

 (1-10GHz)
 (18-26.5GHz)
 (26.5-40GHz)

Mode 11ac-80 Tx 5610MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5725.000	PK	47.1	32.1	3.9	31.8	-	51.3	73.9	22.6	
Hori	11220.000	PK	41.5	39.1	-1.9	33.7	-	45.0	73.9	28.9	Floor Noise
Hori	16830.000	PK	42.8	39.7	-0.3	32.2	-	50.0	73.9	23.9	Floor Noise
Hori	22440.000	PK	45.5	37.7	-1.2	31.9	-	50.1	73.9	23.8	Floor Noise
Hori	5725.000	AV	36.5	32.1	3.9	31.8	0.2	40.9	53.9	13.0	*1)
Hori	11220.000	AV	33.6	39.1	-1.9	33.7	-	37.1	53.9	16.8	Floor Noise
Hori	16830.000	AV	34.0	39.7	-0.3	32.2	-	41.2	53.9	12.7	Floor Noise
Hori	22440.000	AV	37.0	37.7	-1.2	31.9	-	41.6	53.9	12.3	Floor Noise
Vert	5725.000	PK	47.8	32.1	3.9	31.8	-	52.0	73.9	21.9	
Vert	11220.000	PK	44.4	39.1	-1.9	33.7	-	47.9	73.9	26.0	Floor Noise
Vert	16830.000	PK	42.6	39.7	-0.3	32.2	-	49.8	73.9	24.1	Floor Noise
Vert	22440.000	PK	45.1	37.7	-1.2	31.9	-	49.7	73.9	24.2	Floor Noise
Vert	5725.000	AV	37.2	32.1	3.9	31.8	0.2	41.6	53.9	12.3	*1)
Vert	11220.000	AV	34.4	39.1	-1.9	33.7	-	37.9	53.9	16.0	Floor Noise
Vert	16830.000	AV	34.2	39.7	-0.3	32.2	-	41.4	53.9	12.5	Floor Noise
Vert	22440.000	AV	36.9	37.7	-1.2	31.9	-	41.5	53.9	12.4	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

 $\begin{array}{lll} \mbox{Distance factor:} & 10\mbox{GHz-26.5GHz} & 20\mbox{log}(3.0\mbox{m}/1.0\mbox{m}) = 9.5\mbox{dB} \\ 26.5\mbox{GHz-40GHz} & 20\mbox{log}(3.0\mbox{m}/0.5\mbox{m}) = 15.6\mbox{dB} \end{array}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 99 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 10662332H

 Date
 01/22/2015
 01/26/2015
 01/27/2015

 Temperature/ Humidity
 22 deg. C / 33% RH
 23deg. C / 36% RH
 25deg. C / 35% RH

 Engineer
 Tomoki Matsui
 Koji Yamamoto
 Koji Yamamoto

 (1-10GHz)
 (18-26.5GHz)
 (26.5-40GHz)

Mode 11ac-80 Tx 5775MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5725.000	PK	57.3	32.1	3.9	31.8	-	61.5	73.9	12.4	
Hori	5850.000	PK	54.9	32.2	4.0	31.8	-	59.3	73.9	14.6	
Hori	11550.000	PK	41.5	39.6	-2.0	33.6	-	45.5	73.9	28.4	Floor Noise
Hori	17325.000	PK	43.7	42.8	-0.2	32.2	-	54.1	73.9	19.8	Floor Noise
Hori	23100.000	PK	45.4	37.9	-1.0	31.5	-	50.8	73.9	23.1	Floor Noise
Hori	5725.000	AV	40.9	32.1	3.9	31.8	0.2	45.3	53.9	8.6	*1)
Hori	5850.000	AV	39.7	32.2	4.0	31.8	0.2	44.3	53.9	9.6	*1)
Hori	11550.000	AV	32.7	39.6	-2.0	33.6	-	36.7	53.9	17.2	Floor Noise
Hori	17325.000	AV	34.1	42.8	-0.2	32.2	-	44.5	53.9	9.4	Floor Noise
Hori	23100.000	AV	36.5	37.9	-1.0	31.5	-	41.9	53.9	12.0	Floor Noise
Vert	5725.000	PK	60.9	32.1	3.9	31.8	-	65.1	73.9	8.8	
Vert	5850.000	PK	54.7	32.2	4.0	31.8	-	59.1	73.9	14.8	
Vert	11550.000	PK	41.8	39.6	-2.0	33.6	-	45.8	73.9	28.1	Floor Noise
Vert	17325.000	PK	43.4	42.8	-0.2	32.2	-	53.8	73.9	20.1	Floor Noise
Vert	23100.000	PK	44.8	37.9	-1.0	31.5	-	50.2	73.9	23.7	Floor Noise
Vert	5725.000	AV	43.1	32.1	3.9	31.8	0.2	47.5	53.9	6.4	*1)
Vert	5850.000	AV	40.9	32.2	4.0	31.8	0.2	45.5	53.9	8.4	*1)
Vert	11550.000	AV	32.5	39.6	-2.0	33.6	-	36.5	53.9	17.4	Floor Noise
Vert	17325.000	AV	34.5	42.8	-0.2	32.2	-	44.9	53.9	9.0	Floor Noise
Vert	23100.000	AV	36.9	37.9	-1.0	31.5	-	42.3	53.9	11.6	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*1)} Not Out of Band emission (Leakage Power)

Test report No. : 10662332H-C-R1
Page : 100 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Burst rate confirmation

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 10662332H
Date 01/26/2015
Temperature/ Humidity 24 deg. C / 3

Temperature/ Humidity
Engineer
Mode

24 deg. C / 35% RH
Takumi Shimada
11a/n-20/ac-20 Tx

	11a 9Mbps		11:	n-20 MCS0		
Tx on / (Tx	on + Tx off) =	0.984	Tx on / (Tx on + Tx o	off) =	0.989	
Tx on / (Tx	on + Tx off) * 100 =	98.4 %	Tx on / (Tx on + Tx o)	off) * 100 =	00 = 98.9 %	
Duty factor	= 10 * log (980.4 / 965.2) =	0.07 dB	Duty factor = 10 * lo	g (1.357 / 1.342) =	0.05 dI	
-	_					
* Agilent	R T		* Agilent	R		
ef 10_dBm	Atten 20 dB	Δ Mkr2 980.4 μs -0.79 dB	Ref 10 dBm Atten 2	0 dB	∆ Mkr2 1.357 m 0.73 dB	
eak g rapsyllution on annibus	genter programme of the state o	HATTING WATER THE PARTY OF THE	#Peak Log	radiofications of the orbital	HILDRANG HARMAN	
3/		•	10 dB/			
	2R • • • • • • • • • • • • • • • • • • •		│		Ž.	
Avg	T .	7	*PAvg		1	
S2 S2			\$1 \$2			
nter 5.180 000 GHz		Span 0 Hz	Center 5.180 000 GHz		Span 0 H	
es BW 8 MHz Marker Trace	#VBW 50 MHz Sweep Type X Axis Amplitude	1.52 ms (1201 pts)	Res BW 8 MHz Marker Trace Type	#VBW 50 MHz X Axis Amplitude	Sweep 2 ms (1201 pts	
1R (3) 1 _a (3)	Type X fixis Amplitude Time 353.4 μs -57.70 dBm Time 965.2 μs 0.88 dB		1R (3) Time 1 ₀ (3) Time	386.7 µs -51.69 dBr 1.342 ms -7.71 dB	m B	
2R (3) 2a (3)	Time 353.4 µs -57.70 dBm Time 980.4 µs -0.79 dB		2R (3) Time 2a (3) Time	386.7 µs -51.69 dBr 1.357 ms 0.73 dB	m B	
	11ac.20 MCS5					
Ty on / (Ty	11ac-20 MCS5	0.022				
	on + Tx off) =	0.922				
Tx on / (Tx	on + Tx off) = on + Tx off) * 100 =	92.2 %				
Tx on / (Tx	on + Tx off) =					
Tx on / (Tx	on + Tx off) = on + Tx off) * 100 =	92.2 %				
Tx on / (Tx Duty factor	on + Tx off) = on + Tx off) * 100 =	92.2 % 0.36 dB				
Tx on / (Tx Duty factor * Agilent ef 10 dBm	on + Tx off) = on + Tx off) * 100 = = 10 * log (225.5 / 207.8) =	92.2 % 0.36 dB				
Tx on / (Tx Duty factor * Aglient ef 10 dBm Peak	on + Tx off) = on + Tx off) * 100 = = 10 * log (225.5 / 207.8) = R T	92.2 % 0.36 dB				
Tx on / (Tx Duty factor * Agilent ef 10 dBm Peak	on + Tx off) = on + Tx off) * 100 = = 10 * log (225.5 / 207.8) =	92.2 % 0.36 dB				
Tx on / (Tx Duty factor Aglient ef 10 dBm Peak	on + Tx off) = on + Tx off) * 100 = = 10 * log (225.5 / 207.8) = R T	92.2 % 0.36 dB				
Tx on / (Tx Duty factor * Agilent ef 10 dBm Peak	on + Tx off) = on + Tx off) * 100 = = 10 * log (225.5 / 207.8) = R T	92.2 % 0.36 dB				
Tx on / (Tx Duty factor * Agilent ef 10 dBm Peak 99 98 B/	on + Tx off) = on + Tx off) * 100 = = 10 * log (225.5 / 207.8) = R T	92.2 % 0.36 dB				
Tx on / (Tx Duty factor	on + Tx off) = on + Tx off) * 100 = = 10 * log (225.5 / 207.8) = R T	92.2 % 0.36 dB				
Tx on / (Tx Duty factor Agilent ef 10 dBm Peak Peak BB	on + Tx off) = on + Tx off) * 100 = = 10 * log (225.5 / 207.8) = R T	92.2 % 0.36 dB				
Tx on / (Tx Duty factor * Aglient ef 10 dBm Peak BB/ PAV9 1 S2	on + Tx off) = on + Tx off) * 100 = = 10 * log (225.5 / 207.8) = R T	92.2 % 0.36 dB				
Tx on / (Tx Duty factor * Aglient ef 10 dEm Peak 90 90 11 \$22 enter \$5.130 000 GHz es BM 8 MHz	on + Tx off) = on + Tx off) * 100 = = 10 * log (225.5 / 207.8) = R T Atten 20 dB *VBH 50 MHz Sweet	92.2 % 0.36 dB				
Tx on / (Tx Duty factor # Aglient ef 10 dBm Peak 90 81 1 S2 enter 5.180 000 GHz es BM 8 MHz Marker Trace 1R (3)	on + Tx off) = on + Tx off) * 100 = = 10 * log (225.5 / 207.8) = R T Atten 20 dB *VBH 50 MHz Type X Rus finplitude 49.25 us -63.89 dbm 49.25 us -63.89 dbm	92.2 % 0.36 dB A Mkr2 225.5 µs 8.79 dB				
Tx on / (Tx Duty factor # Agilent ef 10 dBm eak by 1 \$22 enter 5.180 000 GHz ss BN 8 MHz Marker Trace	on + Tx off) = on + Tx off) * 100 = = 10 * log (225.5 / 207.8) = R T Atten 20 dB *VBN 50 MHz Sweet Type X Rus Replitude	92.2 % 0.36 dB A Mkr2 225.5 µs 8.79 dB				

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 101 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Burst rate confirmation

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 10662332H
Date 01/26/2015
Temperature/ Humidity 24 deg. C / 35% RH
Engineer Takumi Shimada
Mode 11n-40/ac-40/ac-80 Tx

	11n-40 MC	S7	11ac-40 MCS5					
Tx on / (Tx	x on + Tx off) =	0.852	Tx on / (Tx on + Tx off) =	0.874				
Tx on / (Tx	x on + Tx off) * 100 =	85.2	Tx on / (Tx on + Tx off) * 100 =	87.4 %				
Duty facto	or = 10 * log (121.8 / 1)	(03.8) = 0.69 0	B Duty factor = $10 * \log (141 / 123.3) =$	0.58 dE				
* Agilent		R T	* Agilent	R T				
Ref 10 dBm	Atten 20 dB	▲ Mkr2 121.8 3.01 d	Ref 10 dBm Atten 20 dB	▲ Mkr2 141 µs -0.72 dB				
Peak pg 8		A PARTY TO A PARTY AND A PARTY	ePeak Log 10 dB/	MANAGAMAN PARA				
PAvg		To the second se	aPAvg 2P					
1 S2 enter 5.190 000 GH		Span 0 H	S1 S2 Center 5.190 000 GHz	Span 0 Hz				
es BW 8 MHz Marker Trace 1R (3) 1a (3) 2R (3) 2A (3)	#VBM 50 MHz Type X fixls Tine 64.5 µs Tine 183.8 µs Tine 64.5 µs Tine 64.5 µs Tine 121.8 µs	Sweep 200 µs (1201 pts Amplitude -58.99 dBm -1.85 dB -59.99 dBm 3.01 dB	Ros BH 8 MHz	dBm 14 dB dBm				
Ty on / (Ty	11ac-80 MC x on + Tx off) =	2S0 0.954	_					
,	x on + Tx off) = x on + Tx off) * 100 =							
Duty facto	or = 10 * log (352.7 / 3)	336.3) = 0.21 d	В					
* Agilent		R T	_					
	Atten 20 dB	▲ Mkr2 352.7 1.48 d						
ef 10 dBm Peak								
Peak og 0 Hallande		manifestive the party of the control of the						
Peak og Ø Model Alagon	The second state of the se	Treatment and plants and a section and a section of the						
Peak og 0 B/	and the state of t							
Peak pg May		And the second of the second o						
Peak go	2k							
Peak og 0 B/	2k							

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10662332H-C-R1 Test report No. Page : 102 of 119 Issued date : July 13, 2015 Revised date : July 28, 2015 FCC ID : VPYLB1CK

Band Edge confirmation

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 10662332H Date 07/09/2015 Temperature/ Humidity 24 deg. C / 67% RH Engineer Keisuke Kawamura

Mode 11a Tx

11a Peak detect

^{*} Final result of band edge was measured as Radiated Spurious Emission. Refer to Radiated Spurious Emission's pages.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1 Page : 103 of 119 Issued date : July 13, 2015 Revised date : July 28, 2015 FCC ID : VPYLB1CK

Band Edge confirmation

Ise EMC Lab. No.6 Measurement Room Test place

Report No. 10662332H Date 07/09/2015 Temperature/ Humidity 24 deg. C / 67% RH Engineer Keisuke Kawamura

Mode 11a Tx

^{*} Final result of band edge was measured as Radiated Spurious Emission. Refer to Radiated Spurious Emission's pages.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10662332H-C-R1 Test report No. Page : 104 of 119 Issued date : July 13, 2015 Revised date : July 28, 2015 FCC ID : VPYLB1CK

Band Edge confirmation

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 10662332H Date 07/09/2015 Temperature/ Humidity 24 deg. C / 67% RH Keisuke Kawamura Engineer 11n-20 Tx Mode

11n-20 Peak detect

^{*} Final result of band edge was measured as Radiated Spurious Emission. Refer to Radiated Spurious Emission's pages.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10662332H-C-R1 Test report No. Page : 105 of 119 Issued date : July 13, 2015 Revised date : July 28, 2015 FCC ID : VPYLB1CK

Band Edge confirmation

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 10662332H Date 07/09/2015 Temperature/ Humidity 24 deg. C / 67% RH Keisuke Kawamura Engineer 11n-20 Tx Mode

11n-20 Average detect

^{*} Final result of band edge was measured as Radiated Spurious Emission. Refer to Radiated Spurious Emission's pages.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10662332H-C-R1 Test report No. Page : 106 of 119 Issued date : July 13, 2015 Revised date : July 28, 2015 FCC ID : VPYLB1CK

Band Edge confirmation

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 10662332H Date 07/09/2015 Temperature/ Humidity 24 deg. C / 67% RH Keisuke Kawamura Engineer 11ac-20 Tx Mode

11ac-20 Peak detect

^{*} Final result of band edge was measured as Radiated Spurious Emission. Refer to Radiated Spurious Emission's pages.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10662332H-C-R1 Test report No. Page : 107 of 119 Issued date : July 13, 2015 Revised date : July 28, 2015 FCC ID : VPYLB1CK

Band Edge confirmation

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 10662332H Date 07/09/2015 Temperature/ Humidity 24 deg. C / 67% RH Keisuke Kawamura Engineer 11ac-20 Tx Mode

11ac-20 Average detect

^{*} Final result of band edge was measured as Radiated Spurious Emission. Refer to Radiated Spurious Emission's pages.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10662332H-C-R1 Test report No. Page : 108 of 119 Issued date : July 13, 2015 : July 28, 2015 Revised date FCC ID : VPYLB1CK

Band Edge confirmation

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 10662332H Date 07/09/2015 Temperature/ Humidity 24 deg. C / 67% RH Keisuke Kawamura Engineer 11n-40 Tx Mode

11n-40 Peak detect

^{*} Final result of band edge was measured as Radiated Spurious Emission. Refer to Radiated Spurious Emission's pages.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10662332H-C-R1 Test report No. Page : 109 of 119 Issued date : July 13, 2015 Revised date : July 28, 2015 FCC ID : VPYLB1CK

Band Edge confirmation

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 10662332H Date 07/09/2015 Temperature/ Humidity 24 deg. C / 67% RH Keisuke Kawamura Engineer 11n-40 Tx Mode

11n-40 Average detect

^{*} Final result of band edge was measured as Radiated Spurious Emission. Refer to Radiated Spurious Emission's pages.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10662332H-C-R1 Test report No. Page : 110 of 119 Issued date : July 13, 2015 Revised date : July 28, 2015 FCC ID : VPYLB1CK

Band Edge confirmation

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 10662332H Date 07/09/2015 Temperature/ Humidity 24 deg. C / 67% RH Keisuke Kawamura Engineer Mode 11ac-40 Tx

11ac-40 Peak detect

^{*} Final result of band edge was measured as Radiated Spurious Emission. Refer to Radiated Spurious Emission's pages.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10662332H-C-R1 Test report No. Page : 111 of 119 Issued date : July 13, 2015 Revised date : July 28, 2015 FCC ID : VPYLB1CK

Band Edge confirmation

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 10662332H Date 07/09/2015 Temperature/ Humidity 24 deg. C / 67% RH Keisuke Kawamura Engineer 11ac-40 Tx Mode

11ac-40 Average detect

^{*} Final result of band edge was measured as Radiated Spurious Emission. Refer to Radiated Spurious Emission's pages.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10662332H-C-R1 Test report No. Page : 112 of 119 Issued date : July 13, 2015 Revised date : July 28, 2015 FCC ID : VPYLB1CK

Band Edge confirmation

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 10662332H Date 07/09/2015 Temperature/ Humidity 24 deg. C / 67% RH Keisuke Kawamura Engineer 11ac-80 Tx Mode

11ac-80 Peak detect

^{*} Final result of band edge was measured as Radiated Spurious Emission. Refer to Radiated Spurious Emission's pages.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1 Page : 113 of 119 Issued date : July 13, 2015 Revised date : July 28, 2015 FCC ID : VPYLB1CK

Band Edge confirmation

Ise EMC Lab. No.6 Measurement Room Test place

Report No. 10662332H Date 07/09/2015 Temperature/ Humidity 24 deg. C / 67% RH Engineer Keisuke Kawamura 11ac-80 Tx Mode

11ac-80 Average detect

^{*} Final result of band edge was measured as Radiated Spurious Emission. Refer to Radiated Spurious Emission's pages.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 114 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

Conducted Spurious Emission

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 10662332H
Date 01/26/2015
Temperature/ Humidity 24 deg. C / 35% RH
Engineer Takumi Shimada
Mode 11n-20 Tx

11n-20 Tx 5260MHz

	Frequency	Reading	Cable	Attenator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss		Gain	(Number			bounce	(field strength)			
	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ı	9.59	-97.3	0.10	10.0	2.0	1	-85.2	300	6.0	-23.9	67.9	91.8	
ı	150.00	-89.6	0.10	10.0	2.0	1	-77.5	300	6.0	-16.2	44.0	60.2	

 $E \!\!=\!\! EIRP\text{-}20log(D) \!\!+\!\! Ground\ bounce\ + \!104.8[dBuV/m]$

EIRP=Reading+Cable Loss+Attenator+Antenna Gain+10*log(N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 115 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

APPENDIX 2: Test instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-01	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 10m	DA-06881	CE	2014/09/01 * 12
MOS-27	Thermo-Hygrometer	CUSTOM	CTH-201	A08Q26	CE	2015/01/13 * 12
MJM-21	Measure	KOMELON	KMC-36	-	CE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	CE/RE	-
MTR-09	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	CE	2014/06/06 * 12 *1
MLS-25	LISN(AMN)	Schwarzbeck	NSLK8127	8127-731	CE	2014/07/09 * 12
MTA-30	Terminator	TME	CT-01	-	CE	2015/01/19 * 12
MCC-03	Coaxial Cable	Fujikura/Suhner/TSJ	5D-2W(20m)/3D- 2W(7.5m)/RG400u(1.5m)/RFM-E421(Switcher)	-/01068(Switcher)	CE	2014/09/12 * 12
MAT-64	Attenuator(13dB)	JFW Industries, Inc.	50FP-013H2 N	-	CE	2015/01/29 * 12
MAEC-03	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2014/02/27 * 12 *1
MOS-13	Thermo-Hygrometer	Custom	CTH-180	1301	RE/AT	2015/01/13 * 12
MJM-16	Measure	KOMELON	KMC-36	-	RE	-
MSA-04	Spectrum Analyzer	Agilent	E4448A	US44300523	RE	2014/11/12 * 12
MHA-20	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	258	RE	2014/05/26 * 12 *
MCC-167	Microwave Cable	Junkosha	MWX221	1404S374(1m) / 1405S074(5m)	RE	2014/05/26 * 12 *
MPA-11	MicroWave System Amplifier	Agilent	83017A	MY39500779	RE	2014/03/24 * 12 *
MHF-22	High Pass Filter 7- 20GHz	TOKIMEC	TF37NCCB	602	RE	2014/01/16 * 12 *
MCC-79	Microwave Cable 1G- 26.5GHz	Suhner	SUCOFLEX104	278923/4	RE	2014/12/15 * 12
MHA-16	Horn Antenna 15- 40GHz	Schwarzbeck	ВВНА9170	BBHA9170306	RE	2014/05/26 * 12 *
MHA-29	Horn Antenna 26.5- 40GHz	ETS LINDGREN	3160-10	00152399	RE	2014/09/02 * 12
MCC-54	Microwave Cable	Suhner	SUCOFLEX101	2873(1m) / 2876(5m)	RE	2014/03/11 * 12 *
MPA-22	Pre Amplifier	MITEQ, Inc	AMF-6F-2600400-33-8P / AMF-4F-2600400-33- 8P	1871355 /1871328	RE	2014/09/11 * 12
MPM-16	Power Meter	Agilent	8990B	MY51000271	AT	2014/04/04 * 12 *
MPSE-23	Power sensor	Agilent	N1923A	MY54070004	AT	2014/04/04 * 12 *
MAT-22	Attenuator(10dB) 1- 18GHz	Orient Microwave	BX10-0476-00	-	AT	2014/03/13 * 12 * 1
MOS-19	Thermo-Hygrometer	Custom	CTH-201	0001	AT	2014/12/22 * 12
MSA-13	Spectrum Analyzer	Agilent	E4440A	MY46185823	AT	2014/06/06 * 12 * 1
MAT-23	Attenuator(10dB) 1- 18GHz	Orient Microwave	BX10-0476-00	-	AT	2015/03/13 * 12
MCC-144	Microwave Cable	Junkosha	MWX221	1207S407	AT	2014/08/08 * 12
MSA-10	Spectrum Analyzer	Agilent	E4448A	MY46180655	AT	2014/02/20 * 12 * 1
MAT-58	Attenuator(10dB)	Suhner	6810.19.A	-	AT	2015/01/09 * 12
MCC-66	Microwave Cable 1G- 40GHz	Suhner	SUCOFLEX102	28636/2	AT	2014/04/09 * 12 *
MOS-14	Thermo-Hygrometer	Custom	CTH-201	1401	AT	2015/01/13 * 12
MTW-06	Torque wrench	HUBER+SUHNER	74 Z-0-0-21	72536	AT	2015/03/05 * 36
MSA-16	Spectrum Analyzer	Agilent	E4440A	MY46186390	AT	2015/02/16 * 12
MCC-138	Microwave cable	HUBER+SUHNER	SUCOFLEX 102	37953/2	AT	2014/10/02 * 12

^{*1}) This test equipment was used for the tests before the expiration date of the calibration.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10662332H-C-R1
Page : 116 of 119
Issued date : July 13, 2015
Revised date : July 28, 2015
FCC ID : VPYLB1CK

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item: CE: Conducted Emission test

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN