CSULB CECS225 Lab3

Show your work

No work, no credit even if the answer is correct Type your final answers

(Overflow occurs when the result of an addition/subtraction using 2's complement arithmetic is too large or too small to be expressed using the number of bits of the representation used. This results in the overflow flag OF being set to 1.)

1. Add the following unsigned 4-bit binary numbers to get a possible 5-bit result.

Addend 1	Addend 2	5-bit Binary Sum
1001	0101	
1100	0110	
0011	1100	
0101	0111	
1011	0010	

2. Add the following signed 4-bit binary numbers. Indicate if there is overflow by setting the OF flag.

Addend 1	Addend 2	4-bit Binary Sum	OF
1001	0101		
1100	0110		
0011	1100		
0101	0111		
0001	1111		

3. Add the following decimals by adding their 8-bit 2's complement representations. Indicate if OF.

Addend 1	Addend 2	8-bit Binary Sum									
58	-100										
-35	-69										
89	75										
-126	-13										
-105	80										

4. Convert each decimal to 8-bit binary then find the negative 2's complement by going from the rightmost bit and inverting every digit beyond the first 1 found as you continue to the left.

Decimal	8-bit binary representation										2's complement value							
44																		
81																		
113																		
62																		
125																		

5. Perform the sum of pair of hexadecimal numbers (unsigned).

num1	num2	Sum
6B4 ₁₆	3FE ₁₆	
A49 ₁₆	6BD ₁₆	
7C4 ₁₆	3BE ₁₆	
B69 ₁₆	7AD ₁₆	

6. What is the sum of each pair of **12-bits binary signed numbers** represented in hexadecimal? Convert the result to its equivalent singed integer?

num1	num2	Sum	Decimal
6B4 ₁₆	3FE ₁₆		
A49 ₁₆	6BD ₁₆		
7C4 ₁₆	3BE ₁₆		
B69 ₁₆	7AD ₁₆		

7. Repeat 5 but perform the subtraction of each pair of the 12-bits binary signed numbers represented in hexadecimal.

num1	num2	Difference	Decimal
6B4 ₁₆	3FE ₁₆		
A49 ₁₆	6BD ₁₆		
7C4 ₁₆	3BE ₁₆		
B69 ₁₆	7AD ₁₆		

8. Write your initials in ASCII code decimal, hex, oct, binary and in Unicode

Initials	5	Dec	hex	Binary	Oct	Unicode

A floating-point decimal contains three components: a sign, a significand -mantissa- and an exponent. Single precision uses 32 bits.

9. Convert the following number to IEEE single-precision real

num																
+10.75																
-76.0625																

10. Convert the following IEEE single-precision real numbers -given in Hex- to its Decimal equivalent 41 86 00 00