Communication-Aware Collaborative Learning

Avrim Blum ¹ Shelby Heinecke ² Lev Reyzin ³

¹Toyota Technological Institute at Chicago

²Salesforce Research

³University of Illinois at Chicago

January 7, 2021

Motivating Example

- Each hospital serves a different neighborhood
 - Different distributions on X
- Need highly accurate models for every hospital
 - Hospitals can collaborate
 - Harder than traditional distributed learning

Motivating Example

- Issue #1: Communicating data is costly
- Issue #2: Data can be noisy
 - clerical errors
 - misdiagnoses
- Can the hospitals collaboratively train accurate classifiers efficiently?
 - sample complexity
 - communication complexity

Learning Model: Collaborative PAC Learning

- Formalized as a PAC framework in (Blum et al., 2017).
- Personalized learning: learn a classifier for each player that has generalization error $<\epsilon$, with probability $1-\delta$
- Centralized learning: learn one classifier that works for each player

Our Work

Challenge #1: Communication cost

- Communication efficient personalized learning
- Key ingredient: distributed boosting

Challenge #2: Noisy data

- Communication efficient personalized learning with noise
- Key ingredient: distributed agnostic boosting

Assumptions

- k players
- d = VC-dim of H
- All players know ϵ, δ, H
- ullet Fix δ be a constant

Assumptions

- Realizable PAC setting:
 h* ∈ H
- Broadcast Model: all players can observe data transmitted to center

Baseline

- No previous work on communication efficiency of collaborative PAC learning
 - Compare sample and communication complexities to Baseline and Personalized Learning
- Baseline: Each player learns their own classifier individually
 - ▶ Each player draws $\tilde{O}(\frac{d}{\epsilon})$ samples locally
 - ► Each player learns their own classifier (standard PAC learning)

Baseline

Sample Complexity: $\tilde{O}(k\frac{d}{\epsilon})$

Communication Complexity: $\tilde{O}(1)$

Personalized Learning (Blum et al., 2017)

For $O(\log(k))$ rounds:

- lacktriangle Draw samples, S, from uniform mixture of remaining players
- 2 Learn consistent hypothesis h on S
- For each remaining player, compute empirical error of ERM on their distribution:
 - ▶ Low error ⇒ assign ERM to player
- Repeat with players without assigned classifiers

Personalized Learning

Sample Complexity: $\tilde{O}(\log(k)\frac{d}{\epsilon})$

Communication Complexity: $\tilde{\tilde{O}}(\log(k)\frac{d}{\epsilon})$

Summary

Baseline

Personalized Learning

Sample Complexity	Samples Communicated
$\tilde{O}(k\frac{d}{\epsilon})$	$ ilde{O}(1)$
$\tilde{O}(\log(k) \frac{d}{\epsilon})$	$\tilde{O}(\log(k)\frac{d}{\epsilon})$

- Personalized Learning logarithmic in k, k >> 0
- Can we achieve optimal sample complexity <u>and</u> reduced communication complexity?
 - ▶ Highly accurate classifiers, $\epsilon << 0$
 - ▶ Can we improve ϵ dependence?

Distributed Boosting (Balcan et al., 2012)

For $\tilde{O}(\log(\frac{1}{\epsilon}))$ rounds:

- Center gets points from players
- Center trains weak learner and sends to players
- Players amplify or reduce weights on their points based on performance of weak learner

Distributed Boosting

Sample Complexity: $\tilde{O}(\frac{d}{\epsilon})$

Communication Complexity: $\tilde{O}\left(d\log\left(\frac{1}{\epsilon}\right)\right)$

PL + Boosting

For $O(\log(k))$ rounds:

- 1 Draw samples, S, from uniform mixture of remaining players
- ② Use Distributed Boosting to learn consistent h on S
- For each remaining player, compute empirical error of h on their distribution:
 - ightharpoonup Low error \implies assign h to player
- Repeat with players without assigned classifiers

PL + Boosting

Sample Complexity: $\tilde{O}(\log(k)\frac{d}{\epsilon})$

Communication Complexity: $\tilde{O}(\log(k)d\log(\frac{1}{\epsilon}))$

Summary

Baseline

PL

PL + Boosting

Sample Complexity	Samples Communicated
$\tilde{O}(k\frac{d}{\epsilon})$	$ ilde{O}(1)$
$\tilde{O}(\log(k)\frac{d}{\epsilon})$	$ ilde{O}(\log(k) rac{d}{\epsilon})$
$\tilde{O}(\log(k)\frac{d}{\epsilon})$	$\tilde{O}(\log(k)d\log(\frac{1}{\epsilon}))$

- √ Achieves optimal sample complexity
- \checkmark Improved communication cost **logarithmic** in $rac{1}{\epsilon}$

Our Work

Challenge #1: Communication cost

- Communication efficient personalized learning
- Key ingredient: distributed boosting

Challenge #2: Noisy data

- Communication efficient personalized learning with noise
- Key ingredient: distributed agnostic boosting

Collaborative PAC Learning with Noise

- Previous work: adversarial noise model (Qiao 2018)
- Our work: classification noise, not previously analyzed
 - Personalized and centralized learning are possible
- To achieve communication efficiency and robustness to noise:
 - 4 Adapt Personalized Learning to handle classification noise
 - Use Distributed Agnostic Boosting in noise-robust personalized learning to improve communication cost

Assumptions and Key Classic Result

- Classification noise: each player has error rate $\eta_i < \frac{1}{2}$
- Center knows error rates
- Theorem (Angluin and Laird, 1988): PAC learning in the presence of classification noise is achieved by learning an ERM given at least

$$O\left(\frac{d\log(\frac{1}{\delta})}{\epsilon(1-2\eta_i)^2}\right)$$

Player 3

Player 2 $D_3 \sim X$ η_3 Player 1

Player 1

Player k $D_1 \sim X$ η_1 $D_1 \sim X$ η_2 Center

samples.

Noisy Baseline

- Analogous to the noiseless baseline sample cost by Angluin-Laird theorem
- Noisy Baseline: Each player learns their own classifier individually
 - ▶ Each player draws $O\left(\frac{d}{\epsilon(1-2\eta_i)^2}\right)$ samples locally
 - ► Each player learns their own classifier (ERM)

Noisy Baseline

Sample Complexity: $\tilde{O}\left(k\frac{d}{\epsilon(1-2\eta_{MAX})^2}\right)$

Communication Complexity: $\tilde{O}(1)$

Personalized Learning with Classification Noise

For $O(\log(k))$ rounds:

Step 1: Draw samples from uniform mixture

• Draw $O\left(\frac{d}{\epsilon(1-2\eta_{\text{MAX}})^2}\ln\left(\frac{1}{\delta}\right)\right)$ samples so that ERM has error $<\frac{\epsilon}{4}$ on the mixture

Personalized Learning with Classification Noise

Step 2: Learn ERM

- Learn ERM hypothesis
- By noisy-PAC learning,

$$err_{rac{1}{k}\sum_{i=1}^k D_i}(h_{\mathsf{ERM}}) < rac{\epsilon}{4}$$

• By Markov's inequality, at least half of players have error $<\frac{\epsilon}{2}$

Personalized Learning with Classification Noise

Step 3: Test ERM on players

This step should identify players for which h_{ERM} performs well.

Problem

Want to generalize on underlying clean player distributions but only have access to noisy data from players.

Step 3: Test ERM on players

Noisy to Clean Distribution (Angluin and Laird 1988)

$$err_{D,\eta}(h) = \eta + err_D(h)(1-2\eta)$$

By above and multiplicative Chernoff bounds, center draws

$$T = O\left(rac{d}{\epsilon(1-2\eta_i)}\ln\left(rac{1}{\delta}
ight)
ight)$$

samples from each player and computes the empirical error of h_{ERM} .

Noisy PL

Sample Complexity: $\tilde{O}\left(\log(k)\frac{d}{\epsilon(1-2\eta_{\text{MAX}})^2}\right)$

Communication Complexity: $\tilde{O}\left(\log(k)\frac{d}{\epsilon(1-2\eta_{MAX})^2}\right)$

Summary

Noisy Baseline

Sample Complexity	Samples Communicated
$\tilde{O}\left(k\frac{d}{\epsilon(1-2\eta_{MAX})^2}\right)$	$ ilde{O}(1)$
$\tilde{O}(\log(k) \frac{d}{\epsilon(1-2\eta_{MAX})^2})$	$\tilde{O}(\log(k) \frac{d}{\epsilon(1-2\eta_{MAX})^2})$

√ Achieves improved sample complexity

Is it possible to achieve improved sample complexity $\underline{\text{and}}$ reduced communication complexity? Yes.

Distributed Agnostic Boosting (Chen, Balcan, and Chau 2016)

- Distributed implementation of agnostic boosting
- Classification noise is a special case of agnostic learning

Distributed Agnostic Boosting

Restrict to the classification noise setting.

Sample Complexity:
$$\tilde{O}\left(\frac{d}{\epsilon(1-2\eta_{MAX})^2}\right)$$

Communication Complexity:
$$\tilde{O}\left(d\log\left(\frac{1}{\epsilon(1-2\eta_{MAX})}\right)\right)$$

Communication Efficient Noisy PL

For $O(\log(k))$ rounds:

- 1 Draw samples, S, from uniform mixture of remaining players
- $oldsymbol{0}$ Use Distributed Agnostic Boosting to learn h on S
- For each remaining player, compute empirical error of h on their distribution:
 - ▶ Low error \implies assign h to player (using classification noise modifications)
- Repeat with players without assigned classifiers

Noisy PL with Boosting

Sample Complexity: $\tilde{O}(\log(k) \frac{d}{\epsilon(1-2\eta_{MAX})^2})$

Communication Complexity: $\tilde{O}(\log(k)d\log(\frac{1}{\epsilon(1-2\eta_{MAX})}))$

Summary

Noisy PL
Noisy PL + Boosting

Sample Complexity	Samples Communicated
$\tilde{O}\left(k\frac{d}{\epsilon(1-2\eta_{MAX})^2}\right)$	$ ilde{O}(1)$
$\tilde{O}(\log(k) \frac{d}{\epsilon(1-2\eta_{MAX})^2})$	$\tilde{O}(\log(k) \frac{d}{\epsilon (1-2\eta_{MAX})^2})$
$\tilde{O}(\log(k) \frac{d}{\epsilon(1-2\eta_{MAX})^2})$	$\tilde{O}(\log(k)d\log(\frac{1}{\epsilon(1-2\eta_{MAX})}))$

- ✓ Achieves improved sample complexity
- \checkmark Improved communication cost **logarithmic** in $rac{1}{\epsilon}$

Conclusion

- ✓ Using Distributed Boosting improves communication cost of collaborative learning at no penalty to sample complexity
- ✓ With classification noise, Agnostic Distributed Boosting does the same
- ✓ Results hold analogously for the Centralized Learning setting

Acknowledgements: This work was supported in part by the National Science Foundation under grants CCF-1815011, CCF-1934915, and CCF-1848966. This work was done while Shelby Heinecke was a student at UIC.

