Aufgabe 3 MergeInsertionSort:

Tabelle zu den Laufzeiten (in ms) des MergeInsertionSort-Algorithmus mit den dazugehörigen Aufrufparametern der Main-Methode (Datei und k):

Dateinam e	k=2^0	k=2^1	k=2^2	k=2^3	k=2^4	k=2^5	k=2^6	k=2^7	k=2^8	k=2^9	K=2^ 10	Durchschnit tliche Laufzeit
Desc_100 000.txt	11195	11825	10069	14368	9549	9894	9628	9702	9450	9615	9627	10447,45
Desc_250 000.txt	70871	63808	72789	66870	80920	60577	63698	65426	63305	63244	62182	61574,18

Je höher k gewählt wird, desto höher müsste die Laufzeit liegen, weil der InsertionSort im Vergleich zum MergeSort um einiges ineffektiver ist. Grund dafür ist, dass der InsertionSort bei einem Feld mit n-Zeichen im schlechtesten Fall n-1 mal vergleichen muss, was sich auf die Laufzeit auswirken würde. Kleine Werte für k hingegen würden die Laufzeit nicht stark beeinflussen, weil dann das Feld relativ klein wäre und damit − ausgehend vom schlechtesten Fall − weniger Vergleiche notwendig sind, als wenn das Feld größer wäre (Der MergeSort übernimmt den Großteil des Sortierens → kürzere Laufzeiten).