

Department of Computer Science and Engineering Premier University

EEE 310: Communication Engineering Laboratory

Project Proposal Report

Amplitude Shift Keying (ASK)

Submitted by

Name	ID
Mohammad Hafizur Rahman Sakib	0222210005101118
Arnab Shikder	0222210005101098
Shuvra Roy	0222210005101093
Sayed Hossain	0222210005101102
Mohammad Asmual Hoque Yousha	0222210005101121
Mohammad Ohidul Alam	0222210005101123

Submitted to:	Remarks
Sharith Dhar	
Lecturer, Department of EEE	
Premier University, Chittagong	

Introduction:

Amplitude Shift Keying (ASK) is a digital modulation technique where the amplitude of a carrier signal is varied according to the binary data being transmitted. This project focuses on the design and implementation of the ASK modulation process to explore its efficiency and applications in digital communication systems.

Objectives:

The main objectives of this project are to:

- Understand the principles of ASK modulation.
- Design and develop an ASK modulator.
- Simulate and analyze the performance of the ASK modulator.
- Evaluate the efficiency of ASK modulation in various scenarios.

Block Diagram:

Figure 1: Block Diagram of ASK Modulation

ASK Modulation Waveforms:

Fig 02: ASK Modulation Waveforms

Circuit Diagram:

Fig 03: ASK Modulation Circuit

Conclusion:

In conclusion, this project successfully designed and simulated an ASK modulator, providing valuable insights into its practical applications and performance characteristics in digital communication. ASK modulation's versatility and effectiveness in transmitting binary data through amplitude variation were clearly demonstrated. Its straightforward implementation and robust performance across different conditions highlight its enduring relevance in modern telecommunications.