Group:4 ECE Section-1

Frequency detector Using STM32.

Ibrahim Essam Ibrahim	120210212
Marawan Tarek Fathy	120210225
Mohamed Mahmoud Emadeldin	120210234
Seif Hytham Ahmed	120210222
Reem Fawzy Mahmoud	120210154

Pin No.	Symbol	Level	Description
1	V_{SS}	0V	Ground
2	V_{DD}	5.0V	Supply Voltage for logic
3	VO	(Variable)	Operating voltage for LCD
4	RS	H/L	H: DATA, L: Instruction code
5	R/W	H/L	H: Read(MPU→Module) L: Write(MPU→Module)
6	Е	H,H→L	Chip enable signal
7	DB0	H/L	Data bus line
8	DB1	H/L	Data bus line
9	DB2	H/L	Data bus line
10	DB3	H/L	Data bus line
11	DB4	H/L	Data bus line
12	DB5	H/L	Data bus line
13	DB6	H/L	Data bus line
14	DB7	H/L	Data bus line
15	A	_	Supply power for LED +
16	R	_	Supply power for Red -
17	G		Supply power for Green -
18	В		Supply power for Blue -

1	VSS	Voltage Source (GND)
2	VDD	Voltage Drain (+???V)
3	V0	Contrast
4	RS	Register Select
5	RW	Read Write
6	E	Enable
7-10	D0-D3	Low-order bits
11-14	D4-D7	High-order bits
15	А	Backlight Anode (+)
16	K	Backlight Cathode (-)

11.9 Instruction Table

				Ins	tructi	ion co	ode					Execution
Instruction	RS	R W	7 7	_{DB}	5 5	ов 4	_В	^{DB} 2	DB 1	0	Description	time (fosc= 270 KHZ
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRA and set DDRAM address to "00H" from AC	1.53ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to "00H" From AC and return cursor to Its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction And blinking of entire display	39us
Display ON/ OFF control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and Blinking of cursor (B) on/off Control bit.	
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L	-	-	Set cursor moving and display Shift control bit, and the Direction, without changing of DDRAM data.	39us
Function set	0	0	0	0	1	DL	N	F	-	-	Set interface data length (DL: 8- Bit/4-bit), numbers of display Line (N: =2-line/1-line) and, Display font type (F: 5x11/5x8)	39us
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address Counter.	39us
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address Counter.	39us
Read busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal Operation or not can be known By reading BF. The contents of Address counter can also be read.	Ous
Write data to Address	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43us
Read data From RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43us

00: 0000 000 l Clear Display

00: 0000 001X Return Home

00: 0000 0100 Display /cursor on

00:000 **[00**00 (4-Bit Mode)

11.3Contents

1) Clear display

F	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	0	0	0	0	Q.	0	0	1

Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM address to "00H" into AC (address counter).

Return cursor to the original status, namely, bring the cursor to the left edge on the fist line of the display. Make the entry mode increment (I/D="High").

00: 0000 0001 Clear Display

2) Return home

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	-

Return home is cursor return home instruction.

Set DDRAM address to "00H" into the address counter.

Return cursor to its original site and return display to its original status, if shifted.

Contents of DDRAM does not change.

00:0000 000 I Clear Display

00: 0000 001X Return Home

4) Display ON/OFF control

Γ	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	0	0	0	0	1	D	С	В

Control display/cursor/blink ON/OFF 1 bit register.

D: Display ON/OFF control bit

When D="High", entire display is turned on.

When D="Low", display is turned off, but display data remains in DDRAM.

C: cursor ON/OFF control bit

When D="High", cursor is turned on.

When D="Low", cursor is disappeared in current display, but I/D register preserves its data.

B: Cursor blink ON/OFF control bit

When B="High", cursor blink is on, which performs alternately between all the "High" data and display characters at the cursor position.

When B="Low", blink is off.

00: 0000 0001 Clear Display

00: 0000 001X Return Home

00: 0000 0101 Display /cursor on

6) Function set

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	N	F	-	-

DL: Interface data length control bit

When DL="High", it means 8-bit bus mode with MPU.

When DL="Low", it means 4-bit bus mode with MPU. Hence, DL is a signal to select 8-bit or 4-bit bus mode. When 4-but bus mode, it needs to transfer 4-bit data twice.

N: Display line number control bit

When N="Low", 1-line display mode is set. When N="High", 2-line display mode is set.

F: Display line number control bit

When F="Low", 5x8 dots format display mode is set. When F="High", 5x11 dots format display mode.

00: 0000 000 | Clear Display

00:0000 00 IX Return Home

00: 0000 0100 Display /cursor on

00: 000 000 (4-Bit Mode)

7) Set CGRAM address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	11	AC5	AC4	AC3	AC2	AC1	AC0

Set CGRAM address to AC.

The instruction makes CGRAM data available from MPU.

11.6 CGRAM (Character Generator RAM)

CGRAM has up to 5 . 8 dot, 8 characters. By writing font data to CGRAM, user defined characters can be used.

00: 0000 000 l Clear Display

00:0000 00 IX Return Home

00: 0000 0100 Display /cursor on

00: 000 0000 (4-Bit Mode)

Г	(Cha	ıra	cte	r C	od	е			(CGF	RAN	1			Ch	ara	cte	r Pa	atte	rns	,
			DR/	ΑМ	Da	ita)				P	١dd	res	s			(CG	RA	ΜC)ata	1)	
b8	b7	b6	b5	b4	b3	b2	b1	b0	b5	b4	b3	b2	b1	b0	b7	b6	b5	b4	b3	b2	b1	b0
l						0	0	0				0	0	0				1	1	1	1	1
l						0	0	0				0	0	1				0	0	1	0	0
l						0	0	0				0	1	0				0	0	1	0	0
0	0	0	0	0		0	0	0	0	0	0	0	1	1				0	0	1	0	0
ľ	0	0	U	١٠	-	0	0	0	U	U	۰	1	0	0] -	-	-	0	0	1	0	0
l						0	0	0				1	0	1				0	0	1	0	0
l						0	0	0				1	1	0				0	0	1	0	0
						0	0	0				1	1	1				0	0	0	0	0
						0	0	1				0	0	0				1	1	1	1	0
l						0	0	1				0	0	1				1	0	0	0	1
l						0	0	1				0	1	0				1	0	0	0	1
0	0	0	0	0		0	0	1	0	0	1	0	1	1				1	1	1	1	0
ľ	U	U	U	١٠	-	0	0	1	U	٠	' '	1	0	0	_	-	-	1	0	1	0	0
l						0	0	1				1	0	1				1	0	0	1	0
l						0	0	1				1	1	0				1	0	0	0	1
						0	0	1				1	1	1				0	0	0	0	0

10) Write data to RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	D7	D6	D5	D4	D3	D2	D1	D0

Write binary 8-bit data to DDRAM/CGRAM.

The selection of RAM from DDRAM, and CGRAM, is set by the previous address set instruction (DDRAM address set, CGRAM address set).

RAM set instruction can also determine the AC direction to RAM.

After write operation. The address is automatically increased/decreased by 1, according to the entry mode.

Read data from RAM

RS N	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

Read binary 8-bit data from DDRAM/CGRAM.

00: 0000 0001 Clear Display

00: 0000 001X Return Home

00: 0000 0100 Display /cursor on

10: xxxx xxxx Display char

					*	
Item	Symbol	Min	Тур	Max	Unit	
Enable cycle time	$T_{\rm C}$	1200	_		ns	
Enable pulse width	T_{PW}	140	140 – –		ns	
Enable rise/fall time	T_R, T_F	_	_	25	ns	
Address set-up time (RS, R/W to E)	t_{AS}	0	_	_	ns	
Address hold time	t _{AH}	10	_	_	ns	
Data set-up time	$t_{ m DSW}$	40	_	_	ns	
Data hold time	t_{H}	10	_	_	ns	

4-Bit Ineterface 12

Instructions I will use:

RS+RW: Data

00: 0010 0000 (4-bit mode, 1 line)

00: 0000 0001 (Clear display)

00: 0000 0010 (Return home)

00: 0000 1100 (Display on, no cursor)

10: XXXX XXXX (Write data to screen)

Instructions I will use:

RS+RW: Data

0010 0000 (4-bit mode, 1 line)

0000

0001 (Clear display)

0000

0010 (Return home)

0000

1100 (Display on, no cursor)

XXXX

XXXX (Write data to screen)

ASCII Code: Character to Binary

0	0011	0000	0	0100	1111	m	0110	1101
1	0011	0001	P	0101	0000	n	0110	1110
2	0011	0010	Q	0101	0001	٥	0110	1111
3	0011	0011	R	0101	0010	P	0111	0000
4	0011	0100	S	0101	0011	. q	0111	0001
5	0011	0101	T	0101	0100	r	0111	0010
6	0011	0110	υ	0101	0101	s	0111	0011
7	0011	0111	v	0101	0110	t	0111	0100
8	0011	1000	W	0101	0111	u	0111	0101
9	0011	1001	х	0101	1000	v	0111	0110
A	0100	0001	Y	0101	1001	W	0111	0111
В	0100	0010	\mathbf{z}	0101	1010	ж	0111	1000
С	0100	0011	a	0110	0001	У	0111	1001
D	0100	0100	b	0110	0010	z	0111	1010
E	0100	0101	c	0110	0011	•	0010	1110
F	0100	0110	đ	0110	0100	,	0010	0111
G	0100	0111	e	0110	0101	:	0011	1010
H	0100	1000	£	0110	0110	;	0011	1011
I	0100	1001	g	0110	0111	?	0011	1111
J	0100	1010	h	0110	1000	1	0010	0001
K	0100	1011	I	0110	1001	,	0010	1100
L	0100	1100	j	0110	1010	u	0010	0010
M	0100	1101	k	0110	1011	(0010	1000
N	0100	1110	1	0110	1100)	0010	1001
						space	0010	0000


```
void writeHexBits(byte hexValue, bool high) {
 byte lastFourBits = (hexValue >> 4) & 0x0F; // Get the first 4 bits of the hex value
 byte firstFourBits = hexValue & 0x0F; // Get the last 4 bits of the hex value
  digitalWrite(RS, LOW);
  digitalWrite(EN, LOW);
  for (int i = 0; i < 4; i++) {
    digitalWrite(pinMap[i], (firstFourBits >> i) & 0x01); // Write the first 4 bits to pins 0 to 3
  delay(50);
  digitalWrite(EN, HIGH); delay(50); digitalWrite(EN, LOW);
  delay(100);
  if (high) {
    for (int i = 0; i < 4; i++) {
      digitalWrite(pinMap[i], (lastFourBits >> i) & 0x01); // Write the last 4 bits to pins 0 to
    delay(50);
    digitalWrite(EN, HIGH); delay(50); digitalWrite(EN, LOW);
    delay(100); // Wait for 1 second
```

```
void writeCharBits(char c) {
 digitalWrite(RS, HIGH);
 digitalWrite(EN, LOW);
 byte firstFourBits = (c >> 4) & 0x0F; // Get the first 4 bits of the ASCII character
 byte lastFourBits = c \& 0x0F; // Get the last 4 bits of the ASCII character
 for (int i = 0; i < 4; i++) {
    digitalWrite(pinMap[i], (firstFourBits >> i) & 0x01); // Write the first 4 bits to pins 0 to 3
 delay(50); // Wait for 0.1 second
 digitalWrite (EN, HIGH); delay (50); digitalWrite (EN, LOW);
 delay(100);
 for (int i = 0; i < 4; i++) {
   digitalWrite(pinMap[i], (lastFourBits >> i) & 0x01); // Write the last 4 bits to pins 0 to 3
 delay(50);
 digitalWrite(EN, HIGH); delay(50); digitalWrite(EN, LOW);
 delay(100);
 digitalWrite(RS, LOW);
```


