

DATA SCIENCE RESEARCH GROUP

RECENT ADVANCES IN NATURAL LANGUAGE PROCESSING

TOPIC: ENTITY ENABLED RELATION LINKING

Introduction

Relation Linking

Natural Langauge

Question

Knowledge

Graph

Task

Relation

Identification

Popular Knowledge Graphs :

Source: https://bit.ly/2L5wlBB

Source: https://bit.ly/3apSska

Source: https://en.wikipedia.org/wiki/YAGO_(database)

Source: https://www.wikidata.org/wiki/Wikidata:Main_Page

Existing Approaches (a)

- Development of end-to-end Question Answering Systems (QA)
- Mapping / Linking entites and relations
- Freebase Knowledge Graph
- Extract correct answers

- Why Freebase Knowledge Graph?
 - Availabilty of large training Data in benchmarks.

Existing Approaches (b)

Development of end-to-end Question Answering Systems focused on Semantic

Parsing (SQA)

- Semantics associated with Input Question
- QA pipeline
- Extract correct answers

Existing Challenges:

- o HOW?
 - o extraction of entity and relation candidates in given input question?
 - o link the relation and entity candidates to knowledge graphs?

Novel Approach

- Collaborative QA systems
- Main idea: Much focus on relation linking, than entity linking.
 - o Existing Frameworks for QA systems: Qanary, OKBQA, Frankenstein
- Reuse QA components.
- Embedding in Frankenstein frameworks.
- Compare state-of-art approaches : failure in precision and runtime.
- Because, ignoring Context of entities.

Novel Approach (continued..)

- Hence, Candidate Property List is used to support relation linking over Dbpedia knowledge graph.
- This property list is used in constructing SPARQL Queries.
- Improved precision and runtime.

Background:

Knowledge Graph:

- Given data sub-graph A and schema sub-graph T
- \circ we define knowledge Graph, $\mathcal{G} = T U A$
- Facts in data sub-graph A is represented as triples :
 - 1. Relation Insertion (h,r,t), where h(t) is head(tail) entity and r is relation
 - 2. Type Assertion (e, rdf:type, C), where e is entity, rdf:type is relation instance and C is type.
- \circ Schema sub-graph au incudes Type Inclusion Axioms and Relation Axioms.

Background (Contnued..)

- Problem Statement
 - \circ Given Knowledge Graph G, an input question q, set of entities Eq.
 - Identify: set of Relations Rq.

Related Work

- Resoursces and Systems for relation linking over Dbpedia
 - 1. **PATTY**: Textual patterns denoting binary relations.
 - **2. BOA** : Predicate representations.
 - 3. SIBKB : Searching mechanisms for linking the natural language to
 - knowledge graphs.
 - **4. EARL** : Joint entity and Relation linking.
 - **5. Rematch**: Dependency parsing.

Approach

- Analysis of 100 randomly chosen QA pairs.
- Preliminary Observations
 - Most predicates SPARQL queries associated with input question are properties of entities in natural question.
 - ONo natural language label of relation in the question given.

Which comic characters are painted by Bill Finger?

o Hidden Relations in question given.

How many shows does HBO have?

Hypothesis: "The relations in questions are properties of the entities occurring in the question or properties of the types of these entities."

Developing Hypotheses on EERL Framework:

1. Relation Keyword Extraction – extract relation keywords.

Example:
$$q = "Which comic characters are painted by Bill Finger?"$$

relation phrase = "painted by"

2. Keyword based Relation Expansion – expand extracted relation keywords using background knowledge

```
relation\ phrase = "painted\ by" \\ + \qquad \rightarrow "painter\ "\ (most\ suitable\ relation\ pharse) background knowldge = "PATTY"
```


- 3. Entity linking link entities to DBpedia IRIs.
- \circ Given Knowledge Graph, G = T UA
- o 2 types:
- Explicit Relation → (A)
- \circ q = "The spouse of Barack Obama is Michelle Obama"
- Represented as Triplet in RDF

(dbr: Barack_Obama, dbo:spouse, dbr:Michelle_Obama)

- Implicit Relation → (T)
- \circ q = "Barack Obama is born in Honolulu"
- dbo:birthPlace (explicit relation)
- o dbo: Agent → dbo: HomeTown
- o dbr:Barack: (dbr:Barack_Obama,rdfs:type,dbo:Agent)

and

(dbo:HomeTown,rdfs:domain, dbo:Agent).

4.Entity-Based relation Expansion – to form candidate property list (by 2 Expansions)

- <u>Expansion</u> 1 Explicit Property List (EPL)
- Fetch property set from the instance triples A.
- Only ontologies with respect to entity.
- o q = "Which comic characters are painted by Bill Finger?"
- o dbo:painter (i.e most suitable relation phrase)
- Expansion 1 on dbo

EPL - dbr:Bill_Finger
result - dbo:creator

- Expansion 2 Implicit Property List (IPL)
- Iteration based on reasoning from T
- $_{\odot}$ Get domain and ranges from schema T. **Global** domain and ranges + **Local** Domain and ranges
- o q = "How many shows does HBO have?"
- o dbr:HBO (EPL)
- dbo:producer ((i.e most suitable relation phrase)
- on dbr:HBO : (local)
 rdf:type (dbr:HBO) → dbo:Broadcaster
- o dbo:Broadcaster → dbo:channel (global)

- **5.** Relation linking To get best relation Rq (SIBKB approach).
 - Re-rank candidates from EPL or IPL list.
 - Three approaches
 - 1. Existence Re-ranking and Extending existence of relations (SIBKB)
 - 2. **LD** Re-ranking and Extending calculate Levenshtein Distance
 - 3. **Synonym** Re-ranking and Extending calculate distance between Synonyms set and Property Candidate list.

Experimental Setup

Data Sets

- Question Answering over Linked Datta challenge (QALD): 58% of simple questions.
 - QALD-5 has 340 questions and QALD-7 has 215 questions
- o LC-QuAd: 5000 questions, with 20% simple questions

SOTA systems

- SIBKB
- Rematch
- o EARL

Experimental Settings

- \circ 1 virtual server, with 8 cores and 32 GB RAM running on Ubuntu 16.04.3 operating system
- Frankenstein Resource Platform

Results

- Proposed Novel Approach out performs baseline systems in all 3 datasets.
- Does not have major performance drop for complex questions.

Table 1: Performance of EERL Framework compared to various Relation Linking tools

QA Component	Dataset	Precision	Recall	F-score
SIBKB	QALD-5	0.27	0.34	0.29
ReMatch	QALD-5	0.36	0.39	0.37
EARL	QALD-5	0.17	0.21	0.19
EERL	QALD-5	0.43	0.49	0.45
SIBKB	QALD-7	0.33	0.35	0.34
ReMatch	QALD-7	0.35	0.38	0.37
EARL	QALD-7	0.30	0.31	0.30
EERL	QALD-7	0.42	0.46	0.43
SIBKB	LC-QuAD	0.15	0.18	0.16
ReMatch	LC-QuAD	0.18	0.20	0.19
EARL	LC-QuAD	0.20	0.25	0.21
EERL	LC-QuAD	0.53	0.58	0.55

Source: https://bit.ly/2MCiU1Y

Discussion

o Pro's

- Much focus on Contextual properties about entities increased performance.
- Using Property Candidate list: speeds up retrieving relations.
- Also, prevent filtering of candidates in Re-ranking step.

o Con's

- o limited performance when, Ontology is not defined.
- o KGs with no clear and correct definition.

Table 2 : Run Time (average_seconds/question)

system	QALD-7	LC-QuAD
SIBKB	1.1	2.2
ReMatch	110	130
EERL	1.3	1.8

Source: https://bit.ly/3cC8kmH

Thank you ©

HARSHITH SRINIVAS | 6896703