Unit II Symmetric Ciphers

International Data Encryption Algorithm (IDEA)

Er. Kobid Karkee Himalaya College of Engineering

IDEA: Overview

- DES algorithm has been a popular secret key encryption algorithm and is used in many commercial and financial applications.
- However, its key size is too small by current standards and its entire 56 bit key space can be searched in approximately 22 hours
- ► IDEA is a block cipher designed by Xuejia Lai and James L. Massey in 1991
- ▶ It is a minor revision of PES (Proposed Encryption Standard)
- IDEA was originally called IPES (Improved PES) and was developed to replace DES
- It entirely avoids the use of any lookup tables or S-boxes
- IDEA was used as the symmetric cipher in early versions of the Pretty Good Privacy cryptosystem

IDEA: Concept

- ▶ IDEA operates on 64-bit blocks using a 128- bit key.
- Completely avoid substitution boxes and table lookups used in the block ciphers
- The algorithm structure has been chosen such that when different key sub-blocks are used, the encryption process is identical to the decryption process
- It consists of a series of eight identical transformations (a round) and an output transformation (the half-round).
- ▶ IDEA derives much of its security by interleaving operations from different groups modular addition and multiplication, and bitwise eXclusive OR (XOR) which are algebraically "incompatible" in some sense.

IDEA: Concept

- In more detail, these operators, which all deal with 16-bit quantities, are:
 - ▶ Bitwise eXclusive OR (\oplus) .
 - ▶ Addition modulo 2¹⁶ (⊞)
 - Multiplication modulo $2^{16}+1$ (\odot), where the all-zero word (0x0000) in inputs is interpreted as 2^{16} and 2^{16} in output is interpreted as the all zero word (0x0000)
- ▶ After the eight rounds comes a final —"half round", for the output.

4

Structure

- XOR is used for both subtraction and add in round function.
- To work with 16 bit words (meaning four inputs instead of two for the 64 bit block size), IDEA uses the Lai-Massey scheme twice in parallel, with the two parallel round functions being interwoven with each other.
- To ensure sufficient diffusion, two of the subblocks are swapped after each round.

Fig. 1. Encryption scheme of IDEA block cipher.

Key Generation

- The 64-bit plaintext block is partitioned into four 16bit sub-blocks.
- Six 16-bit key are generated from the 128-bit key for each round.
- Since a further four 16-bit key-sub-blocks are required for the subsequent output transformation, a total of 52 (= 8 x 6 + 4) different 16-bit sub-blocks have to be generated from the 128-bit key.

Key Generation Process

The 52 16-bit key sub-blocks which are generated from the 128-bit key are produced as follows:

- I. First, the 128-bit key is partitioned into eight 16-bit subblocks which are then directly used as the first eight key subblocks
- 2. The 128-bit key is then cyclically shifted to the left by 25 positions, after which the resulting 128-bit block is again partitioned into eight 16-bit sub-blocks to be directly used as the next eight key sub-blocks
- 3. The cyclic shift procedure described above is repeated until all of the required 52 16-bit key sub-blocks have been generated

Key Generation Process

Generation of subkey bits from the master key bits of IDEA.

<i>i</i> -th round	$Z_1^{(i)}$	$Z_2^{(i)}$	$Z_3^{(i)}$	$Z_4^{(i)}$	$Z_5^{(i)}$	$Z_6^{(i)}$
1	$0\!-\!15$	16 – 31	32 – 47	48 – 63	64 - 79	80 – 95
2	96 - 111	112 – 127	25 – 40	41 - 56	57 - 72	73 – 88
3	89 - 104	105 – 120	121 - 8	9 – 24	50 – 65	66 – 81
4	82 – 97	98 - 113	114 - 1	2 - 17	18 – 33	34 – 49
5	75 – 90	91 - 106	107 - 122	123 – 10	11-26	27 – 42
6	43 – 58	59 – 74	100 – 115	116 - 3	4 - 19	20 – 35
7	36 – 51	52 – 67	68 – 83	84 - 99	125 - 12	13 - 28
8	29 – 44	45 – 60	61 - 76	77 - 92	93 - 108	109 - 124
OT	22 - 37	38 – 53	54 – 69	70 – 85		

IDEA: Encryption

- The process consists of eight identical encryption steps (known as encryption rounds) followed by an output transformation.
- The structure of IDEA encryption is shown in detail.

Bitwise eXclusive OR (⊕)
Addition modulo 2¹⁶ (⊞)
Multiplication modulo 2¹⁶+1 (⊙)

Fig. 1. Encryption scheme of IDEA block cipher.

IDEA: Encryption

▶ The key sub-blocks used for the encryption and the decryption in the individual rounds are shown as:

Round	Key Schedule
Round I	$Z_1^{(1)}Z_2^{(1)}Z_3^{(1)}Z_4^{(1)}Z_5^{(1)}Z_6^{(1)}$
Round 2	$Z_1^{(2)}Z_2^{(2)}Z_3^{(2)}Z_4^{(2)}Z_5^{(2)}Z_6^{(2)}$
Round 3	$Z_1^{(3)}Z_2^{(3)}Z_3^{(3)}Z_4^{(3)}Z_5^{(3)}Z_6^{(3)}$
Round 4	$Z_1^{(4)}Z_2^{(4)}Z_3^{(4)}Z_4^{(4)}Z_5^{(4)}Z_6^{(4)}$
Round 5	$Z_1^{(5)}Z_2^{(5)}Z_3^{(5)}Z_4^{(5)}Z_5^{(5)}Z_6^{(5)}$
Round 6	$Z_1^{(6)}Z_2^{(6)}Z_3^{(6)}Z_4^{(6)}Z_5^{(6)}Z_6^{(6)}$
Round 7	$Z_1^{(7)}Z_2^{(7)}Z_3^{(7)}Z_4^{(7)}Z_5^{(7)}Z_6^{(7)}$
Round 8	$Z_1^{(8)}Z_2^{(8)}Z_3^{(8)}Z_4^{(8)}Z_5^{(8)}Z_6^{(8)}$
Output Transform	$Z_1^{(9)}Z_2^{(9)}Z_3^{(9)}Z_4^{(9)}$

IDEA: Encryption

- The first four 16-bit key sub-blocks are combined with two of the 16-bit plaintext blocks using addition modulo 2¹⁶, and with the other two plaintext blocks using multiplication modulo 2¹⁶ + 1
- At the end of the first encryption round four 16-bit values are produced which are used as input to the second encryption round
- The process is repeated in each of the subsequent 7 encryption rounds
- The four 16-bit values produced at the end of the 8th encryption round are combined with the last four of the 52 key sub-blocks using addition modulo 2¹⁶ and multiplication modulo 2¹⁶ + 1 to form the resulting four 16-bit ciphertext blocks

IDEA: Decryption

- The computational process used for decryption of the ciphertext is essentially the same as that used for encryption
- The only difference is that each of the 52 16-bit key sub-blocks used for decryption is the inverse of the key sub-block used during encryption
- In addition, the key sub-blocks must be used in the reverse order during decryption in order to reverse the encryption process

12 1/12/23

Applications of IDEA

- Today, there are hundreds of IDEA-based security solutions available in many market areas, ranging from Financial Services, and Broadcasting to Government
- The IDEA algorithm can easily be embedded in any encryption software. Data encryption can be used to protect data transmission and storage. Typical fields are:
 - Audio and video data for cable TV, pay TV, video conferencing, distance learning
 - Sensitive financial and commercial data
 - Email via public networks
 - Smart cards

3 1/12/23

Conclusion

- As electronic communications grow in importance, there is also an increasing need for data protection
- When PGP was designed, the developers were looking for maximum security. IDEA was their first choice for data encryption
- The fundamental criteria for the development of IDEA were military strength for all security requirements and easy hardware and software implementation

14 1/12/23