CPSC 313 Spring 2016

Strings, sets and languages

- 1. a) Prove that $\{\epsilon\} \cdot L = L \cdot \{\epsilon\} = L$ for any language L.
 - b) Prove that $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, for all languages A, B, and C.
 - c) Prove that $|A \cdot B| = |A| \cdot |B|$, for all languages A and B. (The second \cdot is multiplication).
 - d) Prove that L^* is finite if and only if $L = \emptyset$ or $L = \{\epsilon\}$.
 - e) Prove that AB = BC implies $A^*B = BC^* = A^*BC^*$, for all languages A, B, and C.
- **2.** Let *L* be a language. Prove that $L^+ = L^*$ if and only if $\epsilon \in L$.
- **3.** The reversal L^R of any language L is the set of reversals of all strings in L.
 - a) Prove that $(AB)^R = B^R A^R$ for all languages A and B.
 - b) Prove that $(L^R)^R = L$ for every language L.
 - c) Prove that $(L^*)^R = (L^R)^*$ for every language L.
 - d) Prove or disprove the following claim: for any languages A and B it holds that $(A \cup B)^R = A^R \cup B^R$.
- **4.** Let *L* be a language. Prove that $L = L^+$ if and only if $LL \subseteq L$.
- **5.** Consider the following recursively-defined sets of strings of left brackets (and right brackets):
 - A string *x* is balanced if it satisfies one of the following conditions:
 - -x is the empty string, or
 - x = (y)z, where y and z are balanced strings.
 - A string *x* is erasable if it satisfies one of two conditions
 - -x is the empty string, or

CPSC 313 Spring 2016

– x = y()z, where yz is an erasable string.

Prove the following statements.

- a) For any erasable strings x and y, the string xy is also erasable.
- b) Every balanced string is erasable.