Introduction

In the course of developing a generalized factorial function, Bhargava introduced the notion of p-orderings of a Dedekind domain [2, 3], a combinatorial concept which, along with his generalized factorial, provided deep and perhaps unexpected results in number theory. The concepts laid down in these papers have enriched the theory of integer-valued polynomials [4] (also KJ) and have also provided a natural framework to extend many classical results in analysis to a p-adic setting, such as polynomial approximation and mapping theorems [2, 3, 4].

In this thesis, we examine how a tool based on p-orderings can extend another concept from classical analysis, namely the *valuative capacity* of a set, to non-archimedean settings.

Background

Ultrametric basics

Definition. Let (M, ρ) be a metric space. If ρ satisfies the ultrametric inequality

$$\rho(x, z) \le \max(\rho(x, y), \rho(y, z)), \forall x, y, z \in M$$

then (M, ρ) is an ultrametric space.

Definition. Let (V, N) be a normed vector space. Then N satisfies the **strong triangle** inequality if

$$N(x+y) \le \max(N(x), N(y)), \forall x, y \in V$$

Proposition. Let (V, N) be a normed vector space and suppose N satisfies the strong triangle inequality. Then the metric space, (V, ρ_N) , where ρ_N is the metric induced by N, is an ultrametric space.

Proposition. [1] All triangles in an ultrametric space (M, ρ) are either equilateral or isocoles, with at most one short side.

Proposition. [1] If S is a compact subset of an ultrametric space and Γ_S is the set of all distances occurring between points of S, then Γ_S is a discrete subset of \mathbb{R} . In particular if $|\Gamma_S| = \infty$, then the elements of Γ_S can be indexed by \mathbb{N} .

Let (M, ρ) be a compact ultrametric space and let

$$B_r(a) = \{ x \in M \mid \rho(x, a) < r \}$$

denote the open ball of radius r, centred at a for some $r \in \mathbb{R}_{\geq 0}$ and $a \in (M, \rho)$. Likewise let

$$\overline{B_r(a)} = \{ x \in M \mid \rho(x, a) \le r \}$$

denote the closed ball of radius r, centred at a for some $r \in \mathbb{R}_{\geq 0}$ and $a \in (M, \rho)$.

Proposition. Let $B_r(a)$ be a ball in an ultrametric space (M, ρ) . Then the diameter of $B, d = diam(B) = \sup_{x,y \in B} \rho(x,y)$, is less than or equal to the radius of B.

Proposition. If (M, ρ) is an ultrametric space and $B_{r_1}(x_0)$ and $B_{r_2}(y_0)$ are balls in (M, ρ) , then either $B_{r_1}(x_0) \cap B_{r_2}(y_0) = \emptyset$, $B_{r_1}(x_0) \subseteq B_{r_2}(y_0)$, or $B_{r_2}(x_0) \subseteq B_{r_1}(x_0)$. That is, in an ultrametric space, all balls are either comparable or disjoint.

Proposition. [1] The distance between any two balls in an ultrametric is constant. That is, if $B_{r_1}(x_0)$ and $B_{r_2}(y_0)$ are two balls in an ultrametric space (M, ρ) , then $\rho(x, y) = c$ for some $c \in \mathbb{R}$ and $\forall x \in B_{r_1}(x_0)$ and $\forall y \in B_{r_2}(y_0)$

Proposition. [1] Every point of a ball in an ultrametric is at its centre. That is, if $B_r(x_0)$ is a ball in an ultrametric space (M, ρ) , then $B_r(x) = B_r(x_0)$, $\forall x \in B_r(x_0)$

ρ -orderings, ρ -sequences, and valuative capacity

In what follows let S be a compact subset of an ultrametric space (M, ρ) .

Definition. [5] A ρ -ordering of S is a sequence $\{a_i\}_{i=0}^{\infty} \subseteq S$ such that $\forall n > 0$, a_n maximizes $\prod_{i=0}^{n-1} \rho(s, a_i)$ over $s \in S$.

Definition. [5] The ρ -sequence of S is the sequence whose 0^{th} -term is 1 and whose n^{th} term, for n > 0, is $\prod_{i=0}^{n-1} \rho(a_n, a_i)$.

Proposition. [5] The ρ -sequence of S is well-defined so long as S is compact and ρ is an ultrametric. That is, the ρ -sequence of a compact subset of an ultrametric spaces does not depend on the choice of ρ -ordering of S.

Definition. [5] Let $\gamma(n)$ be the ρ -sequence of S. The valuative capacity of S is

$$\omega(S) := \lim_{n \to \infty} \gamma(n)^{1/n}$$

Proposition. [5] For S and $\gamma(n)$ as above, $\lim_{n\to\infty} \gamma(n)^{1/n} = r < \infty$.

Proposition. If $S \subseteq M$ is a finite subset of an ultrametric space, then $\omega(S) = 0$.

Proposition. (upper bound) If $diam(S) := \max_{x,y \in S} \rho(x,y) = d$, then $\omega(S) < d$.

Proof. Since d is the diameter of S, the n^{th} term of the ρ -sequence of S is bounded by d^n and so $\lim_{n\to\infty} \gamma(n)^{1/n} = d$ if and only if $\gamma(n) = d^n$, $\forall n$. This implies $\rho(a_n, a_i) = d$, $\forall n$ and $\forall i < n$, but then $\rho(a_i, a_j) = d$, $\forall i, j$, since the ρ -sequence is maximized at each n. This means $\omega(S) < d$ would imply that the cover of S, $\bigcup_{a_i} B_d(a_i)$ is in fact an infinite partition, contradicting the compactness of S. Then $\omega(S) = \lim_{n\to\infty} \gamma(n)^{1/n} < d$. \square

Proposition. (translation invariance) Let (M, ρ) be a compact ultrametric space and suppose M is also a topological group. If ρ is (left) invariant under the group operation, then so is ω . That is, if $\rho(x,y) = \rho(gx,gy)$, $\forall g,x,y \in M$, then $\omega(gS) = \omega(S)$, for $S \subseteq M$.

Proof. Let $\{a_i\}_{i=0}^{\infty}$ be a ρ -ordering for S. Then $\{ga_i\}_{i=0}^{\infty}$ is a ρ -ordering for gS. Then

$$\omega(gS) = \lim_{n \to \infty} \gamma(n)^{1/n} = \lim_{n \to \infty} \left[\prod_{i=0}^{n-1} \rho(ga_n, ga_i) \right]^{1/n} = \lim_{n \to \infty} \left[\prod_{i=0}^{n-1} \rho(a_n, a_i) \right]^{1/n} = \omega(S)$$

Example 1. With the notation of the previous section, note that for $x, y \in (\mathbb{Z}_p, |\cdot|_p)$, $\rho_p(x,y) = |x-y|_p = p^{-\nu_p(x-y)} = p^{-\nu_p((a+x)-(a+y))} = |(a+x)-(a+y)|_p = \rho_p(a+x,a+y)$ so that $\omega(a+S) = \omega(S)$ for $S \in (\mathbb{Z}_p, |\cdot|_p)$.

Proposition. Let (V, N) be a normed vector space and suppose N satisfies the strong triangle identity. Then if N is multiplicative, so is ω . That is, if $N(gx) = N(g)N(x), \forall g, x \in V$, then $\omega(gS) = N(g)\omega(S)$, for $g \in V$ and $S \subseteq M$.

Proof. Let ρ be the metric induced by N, so that $\rho(x,y) = N(x-y), \forall x,y \in V$. Let $\{a_i\}_{i=0}^{\infty}$ be a ρ -ordering for S. Then since N is multiplicative, for $u,v \in gS$, $u=gs_i$ and $v=gs_j$ for some $s_i,s_j \in S$,

$$\rho(u, v) = \rho(gs_i, gs_j) = N(gs_i - gs_j) = N(g(s_i - s_j)) = N(g)N(s_i - s_j) = N(g)\rho(s_i, s_j).$$

Then $\{ga_i\}_{i=0}^{\infty}$ is a ρ -ordering for gS and

$$\omega(gS) = \lim_{n \to \infty} \left[\prod_{i=0}^{n-1} \rho(ga_n, ga_i) \right]^{1/n} = \lim_{n \to \infty} \left[\prod_{i=0}^{n-1} N(g) \rho(a_n, a_i) \right]^{1/n}$$
$$= \lim_{n \to \infty} \left[N(g)^n \prod_{i=0}^{n-1} \rho(a_n, a_i) \right]^{1/n} = N(g) \lim_{n \to \infty} \left[\prod_{i=0}^{n-1} \rho(a_n, a_i) \right]^{1/n} = N(g) \omega(S)$$

Example 2. Since $|\cdot|_p$ is multiplicative, $\omega(mS) = |m|_p \omega(S)$ for $m \in \mathbb{Z}_p$ and $S \subseteq \mathbb{Z}$. In particular, $\omega(p\mathbb{Z}) = |p|_p \omega(\mathbb{Z}) = \frac{1}{p} * p^{\frac{1}{1-p}} = p^{-p/p-1}$.

Proposition. [5](subadditivity) If $diam(S) := \max_{x,y \in S} \rho(x,y) = d$ and $S = \bigcup_{i=1}^{n} A_i$ for A_i compact subsets of M with $\rho(A_i, A_j) = d, \forall i, j$, then

$$\frac{1}{\log(\omega(S)/d)} = \sum_{i=1}^{n} \frac{1}{\log(\omega(A_i)/d)}$$

Corollary. Suppose $S = \bigcup_{i=1}^{n} S_i$ with $\rho(S_i, S_j) = d = diam(S)$ and also $\omega(S_i) = \omega(S_j)$, $\forall i, j$. Let $r \in \mathbb{R}$ be such that $\omega(S_i) = r\omega(S)$, $\forall i$. Then $\omega(S) = r^{\frac{1}{n-1}} \cdot d$. In particular if $S = \mathbb{Z}$ and $(M, \rho) = (\mathbb{Z}, |\cdot|_p)$ then $\omega(S) = (\frac{1}{p})^{1/p-1}$ for any prime p.

Corollary. (Joins of computable sets are computable) Let $\Gamma_M = \{\gamma_0, \gamma_1, \dots, \gamma_\infty = 0\}$ be the set of distances in M. Suppose that $S = B_{\gamma_i}(x)$, for some x and i, is the union of 2 or more balls of radius γ_{i+1} , i.e., $S = \bigcup_{j=1}^n B_{\gamma_{i+1}}(x_j)$ is a join in the lattice of open sets in M, then

$$\frac{1}{\log(\omega(S)/\gamma_{i+1})} = \sum_{j=1}^{n} \frac{1}{\log(\omega(B_{\gamma_{i+1}}(x_j))/\gamma_{i+1})}$$

Computing a ρ -ordering

We describe an algorithm for computing the ρ -ordering of a set recursively and discuss some immediate corollaries.

Let $S \subseteq M$ be a compact subset of an ultrametric space (M, ρ) . Let $\Gamma_S = \{\gamma_0, \gamma_1, \dots, \gamma_\infty = 0\}$ be the set of distances in S. Note that for each $k \in \mathbb{N}$, the closed balls of radius γ_k partition S, i.e., $S = S_{\gamma_k} := \bigcup_{i=1}^n \overline{B_{\gamma_k}(x_i)}$, where both n and the x_i 's depend on k. In what follows, fix a $k \in \mathbb{N}$ and let $S_{\gamma_k} = \bigcup_{i=1}^n \overline{B_{\gamma_k}(x_i)}$ be such a partition. Note that we can construct $S_{\gamma_{k+1}}$ by partitioning each of the $\overline{B_{\gamma_k}(x_i)}$, i.e.,

$$S = S_{\gamma_{k+1}} = \bigcup_{i=1}^{n} \bigcup_{j=1}^{l_i} \overline{B_{\gamma_k}(x_{i,j})}$$

where $1 \leq l_i \leq n$ and $\bigcup_{j=1}^{l_i} \overline{B_{\gamma_k}(x_{i,j})} = \overline{B_{\gamma_k}(x_i)}$, $\forall i$. We denote by $x_{i,j}$ the centre of a ball of radius γ_{k+1} partitioning the ball $B_{\gamma_k}(x_i)$. Without loss of generality, when j = 1, assume $x_{i,j} = x_i$, $\forall i$.

We now make the following observation due to [6],

Lemma. For each k, the elements of S_{γ_k} , that is, the closed balls of radius γ_k , themselves form an ultrametric space, where

$$\rho_k(\overline{B_{\gamma_k}(x)}, \overline{B_{\gamma_k}(y)}) = \begin{cases} \rho(x, y), & \text{if } \rho(x, y) > \gamma_k \\ 0, & \text{if } \rho(x, y) \le \gamma_k, \text{ i.e., } \overline{B_{\gamma_k}(x)} = \overline{B_{\gamma_k}(y)} \end{cases}$$

We note that since S is assumed to be compact, S_{γ_k} is a finite metric space $\forall k < \infty$ and $S_{\gamma_{\infty}} = \bigcup_{x \in S} \overline{B_0(x)} = \bigcup_{x \in S} x = S$ and $\rho_{\infty} = \rho$. Now view S_{γ_k} , for fixed $k < \infty$ as a finite ultrametric space and represent its $n < \infty$ elements by their centres, the x_i 's. Without loss of genearlity, we can reindex the x_i 's so that they give the first n terms of

a ρ_k -ordering of S_{γ_k} . The following proposition is the main result of this section.

Proposition. Given S a compact subset of an ultrametric space M and Γ_S , the set of distances in S, if S_{γ_k} is a partition of S as described above for $\gamma_k \in \Gamma_S$ with $k < \infty$, where the centres of the balls are indexed according to a ρ_k -ordering of S_{γ_k} , then a ρ_{k+1} -ordering of $S_{\gamma_{k+1}}$ can be found by forming a matrix, A_k , whose $(i, j)^{th}$ -entry is $x_{i,j}$, as shown below, and then concatenating the rows (where the columns are padded by * if necessary).

$$A_k = \begin{pmatrix} x_{1,1} & x_{2,1} & \dots & x_{n,1} \\ x_{1,2} & x_{2,2} & \dots & x_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1,l_1} & x_{2,l_2} & \dots & x_{n,l_n} \end{pmatrix}$$

Proof. Note that the entries in each column are points in the ball $B_{\gamma_k}(x_i)$ so that the pairwise distance between columns is constant and always exceeds the distance between elements within a column. Moreover, the columns are organized such that for any j, $x_{n,j}$ maximizes $\prod_{i=1}^{n-1} \rho(x_{n,j}, x_{i,j})$ since $\prod_{i=1}^{n-1} \rho(x_{n,j}, x_{i,j}) = \prod_{i=1}^{n-1} \rho(x_{n,1}, x_{i,1}) = \prod_{i=1}^{n-1} \rho(x_n, x_i)$ and the x_i 's are indexed according a ρ_k -ordering of S_{γ_k} .

Then a $\rho_{\gamma_{k+1}}$ -ordering of $S_{\gamma_{k+1}}$ is obtained by minimizing the number of elements from any one column and by taking the points $x_{i,j}$ (for fixed j) in sequence. For example, by concatenating the rows.

Corollary. Interweaving the bottown row of the lattice of closed balls for a set S gives a ρ -ordering of S.

Corollary. Suppose S and T are compact subsets of an ultrametric space M with $\Gamma_S = \Gamma_T$ and $|S_{\gamma_k}| = |T_{\gamma_k}|$, $\forall k$. Then $\omega(S) = \omega(T)$.

Corollary. (regularity) Suppose that S is such that $\forall k$, any $B_{\gamma_k}(x) = \bigcup_{j=1}^l B_{\gamma_{k+1}}(x_j)$, that is, every ball in S breaks into exactly l smaller balls.

product space

As a first point of departure, a natural space to consider is the product space of ultrametric spaces, for example \mathbb{Z}^n (or \mathbb{Z}_p^n or \mathbb{Q}_p^n), for some n > 1. A natural candidate for an ultrametric on the space is the L_{∞} metric, given by

$$\rho_{\infty}(x,y) = \rho_{\infty}((x_1, x_2, \dots), (y_1, y_2, \dots)) = \sup_{i} \{\rho(x_i, y_i)\}\$$

where ρ is the metric from the base space. Then ρ_{∞} is easily seen to be an ultrametric, so long as ρ is. Indeed, let (M, ρ) be an ultrametric space and consider two points, x and y, in the product space, M^n for some n > 1. Clearly, $\rho_{\infty}(x, y) \geq 0$ since each $\rho(x_i, y_i) \geq 0$, and $\rho_{\infty}(x, y) = 0 \iff \rho(x_i, y_i) = 0, \forall i \iff x_i = y_i, \forall i \iff x = y$. The fact that ρ_{∞} is symmetric is also an easy consequence of the fact that ρ is symmetric since $\rho(x_i, y_i) = \rho(y_i, x_i)$ implies $\sup_i \{\rho(x_i, y_i)\} = \sup_i \{\rho(y_i, x_i)\}$. To see that ρ_{∞} is an ultrametric, note that if $z = z_i$ is any other point of M, then

$$\begin{split} \rho_{\infty}(x,y) &= \sup_{i} \{\rho(x_{i},y_{i})\} \\ &\leq \sup_{i} \{\max(\rho(x_{i},z_{i}),\rho(y_{i},z_{i}))\} \qquad \text{since } \rho \text{ is an ultrametric} \\ &= \max(\sup_{i} \{\rho(x_{i},z_{i})\},\sup_{i} \{\rho(y_{i},z_{i})\} \\ &= \max(\rho_{\infty}(x,z),\rho_{\infty}(y,z)) \end{split}$$

In fact, in the proof that (M^n, ρ_{∞}) is an ultrametric, we see that a more general statement is true, given below.

Proposition. Let (M_i, ρ_i) for i in some finite or countably infinite index set I be a collection of ultrametric spaces. Then (M, ρ_{∞}) is an ultrametric space, where $M = M_1 \times M_2 \times M_3 \times \ldots$ and ρ_{∞} is the L_{∞} metric described above.

Proof. Above.
$$\Box$$

We show a few quick results ultrametric spaces formed as product spaces, which allows us to quickly calculate the valuative capacity of a few subsets.

Proposition. Suppose (M, ρ_{∞}) is the product of ultrametric spaces (M_i, ρ_i) . Then ρ_{∞} is (left) translation invariant if each ρ_i is, in which case valuative capacity is also (left) translation invariant.

Proof. Suppose (M, ρ_{∞}) is the product of ultrametric spaces (M_i, ρ_i) and each M_i is a topological group with operation +. Suppose also that

$$\rho(x_i, y_i) = \rho(s_i + x_i, s_i + y_i), \forall s_i, x_i, y_i \in M_i, \forall i.$$

that is, suppose each ρ_i is (left) translation invariant. Then,

$$\rho_{\infty}(s+x, s+y) = \sup_{i} \{ \rho(s_{i}+x_{i}, s_{i}+y_{i}) \} = \sup_{i} \{ \rho(x_{i}, y_{i}) \} = \rho_{\infty}(x, y).$$

so that ρ_{∞} is translation invariant. Proposition xyz implies valuative capacity is as well.

Proposition. Suppose (M, ρ_{∞}) is the product of ultrametric spaces (M_i, ρ_i) . Then ρ_{∞} is multiplicative if each ρ_i is, in which valuative capacity is also multiplicative.

Proof. Similar.
$$\Box$$

Example 3. Let $(\mathbb{Z}_p \times \mathbb{Z}_p, \rho_{p,\infty})$ be the metric space with elements $\{(x,y) \mid x,y \in \mathbb{Z}_p\}$ and metric $\rho_{p,\infty}((x_1,x_2),(y_1,y_2)) = \max(\rho_p(x_1,y_1)), \rho_p(x_2,y_2))$ for some fixed prime p. Since

 ρ_p is translation invariant and multiplicative in \mathbb{Z}_p , valuative capacity is also translation invariant and multiplicative in $(\mathbb{Z}_p \times \mathbb{Z}_p, \rho_{p,\infty})$.

Example 4. Let $(\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \dots, \rho_{p,\infty})$ be the metric space formed by taking the product of (\mathbb{Z}_p, ρ_p) for every prime p. Since ρ_p is translation invariant and multiplicative in each \mathbb{Z}_p , valuative capacity is also translation invariant and multiplicative in $(\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \dots, \rho_{p,\infty})$.

Calculate valuative capacity of some examples here.

In this section, we considered the notion of valuative capacity in product spaces, that is, spaces formed by taking copies of ultrametric spaces. In the following sections, we consider vaulative capacity in spaces formed by adding points, that is extension fields, or by both taking copies and adding (a distinguished) point, as in projective spaces. For these purposes, it will be more productive to start working over the field \mathbb{Q}_p , instead of \mathbb{Z}_p .

projective space

Background from Gerritzen and van der Put

Background results from [7]. Let k be a field that is complete with respect to a non-archimedean valuation and let K be a complete and algebraically closed field containing k.

Definition. [7] The set $\{\lambda \in k; | \lambda | \leq 1\}$, denoted k^0 , is the **valuation ring** of k. It has a unique maximal ideal, denoted k^{00} , given by $\{\lambda \in k; | \lambda | < 1\}$. The **residue field** of k is $\bar{k} := k^0/k^{00}$.

Definition. [7] The **projective line over** k, denoted $\mathbb{P}^1(k)$, is the space whose points are lines l in k^2 that intersect (0,0) and whose topology and field structure are inherited from k.

We give two equivalent representations for the points of $\mathbb{P}^1(k)$. A point $p \in \mathbb{P}^1(k)$ is an equivalence class of $k^2 \setminus (0,0)$ under the relation $(x,y) \sim (x',y')$ if there exists a $\lambda \in k \setminus 0$ such that $(x,y) = \lambda(x',y')$. Equivalently, suppose that l is a line in k^2 intersecting the origin, that is a point in $\mathbb{P}^1(k)$. We denote l by a representative $[x_0,x_1] \in k^2$ such that $l = \{\lambda(x_0,x_1); \lambda \in k\}$, called homogeneous coordinates of l.

Proposition. [7] Let $\psi : k \to \mathbb{P}^1(k)$ be the map given by $\psi(\lambda_0) = [1, \lambda_0]$, where $[1, \lambda_0]$ is the line in k^2 , $\{\lambda(1, \lambda_0); \lambda \in k\}$. Then the image of ψ is $\mathbb{P}^1(k) \setminus [0, 1]$ and is isomorphic to k, so that k is identified with projective space minus a distinguished point, [0, 1], which is denoted by ∞ .

Definition. [7] k is called a **local field** if k is locally compact.

Proposition. [7] The following are equivalent:

- 1. k is a local field.
- 2. $|k^*| \cong \mathbb{Z}$ and \bar{k} is finite, where k^* is the set of units in k, ie $k^* = \{\lambda \in k, \lambda \neq 0\}$.
- 3. k is a finite extension of either \mathbb{Q}_p or $\mathbb{F}_p((t))$.
- 4. $\mathbb{P}^1(k)$ is compact

Definition. [7] We denote by GL(2,k) the set of invertible 2×2 matrices over k. A **fractional linear automorphism**, ϕ , of $\mathbb{P}^1(k)$ is a map defined by $z \mapsto \frac{az+b}{cz+d}$ for some $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2,k)$. The set of fractional linear automorphisms of $\mathbb{P}^1(k)$ is denoted PGL(2,k). Note that $PGL(2,k) = GL(2,k)/\{\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}; \lambda \in k^*\}$. In homogeneous coordinates, we can represent the action of ϕ by $[x_0,x_1] \mapsto [cx_1+dx_0,ax_1+bx_0]$.

Definition. [7] Suppose Γ is a subgroup of PGL(2,k). A point $p \in \mathbb{P}^1(k)$ is a **limit point of** Γ , if there exists a point q in $\mathbb{P}^1(k)$ and a sequence $\{\gamma_n\}_{n\geq 1}$ in Γ such that $\lim_{n\to\infty} \gamma_n(q) = p$.

Proposition. [7] If Γ is not a discrete subgroup of PGL(2, k) then every point of $\mathbb{P}^1(k)$ is a limit point of Γ .

Proof. Since Γ is not discrete, the sequence $\{\gamma_n\}_{n\geq 1}$ has a limit γ in Γ . Let p be any point of $\mathbb{P}^1(k)$ and let $q = \gamma^{-1}(p)$. Then $\lim_{n\to\infty} \gamma_n(q) = \lim_{n\to\infty} \gamma_n(\gamma^{-1}(p)) = p$.

Definition. [7] A subgroup Γ of PGL(2, k) is **discontinuous** if the closure of every orbit of Γ in $\mathbb{P}^1(k)$ is compact and the set of all limit points of Γ is not equal to $\mathbb{P}^1(k)$.

Proposition. [7] If Γ is a discontinuous subgroup of PGL(2, k) and \mathcal{L} is the set of limit points of Γ , then \mathcal{L} is compact, no where dense and if \mathcal{L} contains more than two points, \mathcal{L} is perfect.

Definition. [7] Let A be an element of GL(2, k) and let a_1 and a_2 be the eigenvalues of A. Then A is called **elliptic** if $a_1 \neq a_2$, but $|a_1| = |a_2|$. A is called **parabolic** if $a_1 = a_2$, and A is called **hyperbolic** if $|a_1| \neq |a_2|$.

Example 5. Consider the matrix $T_s = \binom{p \ s}{0 \ 1} \in GL(2, \mathbb{Q}_p)$ for some s in $(0, \ldots, p-1)$ (note that $det(T_s) = p$ is invertible in \mathbb{Q}_p , so that $T_s \in GL(2, \mathbb{Q}_p)$, although it is not in $GL(2, \mathbb{Z}_p)$). T_s has eigenvalues p and 1 and so T_s is hyperbolic for any choice of s or p. Consider the action of T_s on $\mathbb{Z}_p \subset \mathbb{Q}_p$, where \mathbb{Z}_p is identified with the subspace $\{[1, \lambda]; \lambda \in \mathbb{Z}_p\}$ of $\mathbb{P}^1(\mathbb{Q}_p)$. In homogeneous coordinates, this action is given by $[1, \lambda] \mapsto [1, p\lambda + s]$. Since $|(p\lambda + s - s)| = |p\lambda| \le \frac{1}{p}$, T_s sends λ to $B_{\frac{1}{p}}(s)$. Also note that for s = 0, T_s has the effect of shifting the index of λ by 1, that is, if $\lambda = \sum_{i=n}^{\infty} a_i p^i$, where $n = ord(\lambda)$, then $T_0([1, \lambda]) = [1, p\lambda] \rightsquigarrow p\lambda = \sum_{i=n+1}^{\infty} a_{(i-1)} p^i$.

Computation of the capacity of some sets

(F&P, section 5)

Setup

Let $A = \{0, 1, ..., d-1\}$ be a finite alphabet and $A^{\mathbb{N}}$ be the collection of infinite sequenes with values in A. Note $A^{\mathbb{N}}$ is a Cantor set, so it is perfect, nowhere dense, and compact.

A basis for the topology is given by the cylinder set: take countably many copies of $\{0, 1, ..., d-1\}$ where each copy has the discrete topology.

Let $p \geq d$ be a prime number and let ϕ be the canonical embedding of $A^{\mathbb{N}}$ into \mathbb{Z}_p via the following continuous (under the above topology) map:

$$\phi: A^{\mathbb{N}} \to \mathbb{Z}_p \text{ by } (x_n)_{n \ge 0} \mapsto \sum_{k=0}^{\infty} x_k p^k$$

Lemma. (F&P Lemma 5.1)

Let w_1, w_2, \ldots, w_s be $s \geq 2$ words with the same length l such that all the first letters are distinct. Let $X \subset A^{\mathbb{N}}$ be the set of sequences such that any factor is a factor of a concatenation of the words w_1, w_2, \ldots, w_s . Then the set $E := \phi(X) \subset \mathbb{Z}_p$ satisfies:

$$E = \bigcup_{i=1}^{s} x_i + p^l E$$
, with $x_i = \phi(w_i 0^{\infty})$

It is a regular compact set and its valuative capacity is

$$L_p(E) = \frac{l}{s-1}$$

Notice that this provides examples of sets with empty interiors but with positive capacities.

Example 6.
$$w_1 = 0, w_2 = 2, A = \{0, 1, 2\}, p = d = 3$$

Then $\{x_n\}_{n\geq 0}\in X$ if each term in $\{x_n\}_{n\geq 0}$ is either 0 or 2. We have

$$E = 0 + 3E \cup 2 + 3E$$
 and

$$L_p(E) = \frac{1}{2-1} = 1$$

Note that we can rephrase the lemma as follows:

Let $x_1, x_2, ..., x_s$ be $s \ge 2$ points in \mathbb{Z}_p such that $|x_i - x_j|_{p} = 1$, $\forall i, j \in 1, ..., s$. Suppose also that there exists an $l \in \mathbb{N}$ such that $\forall i$,

$$x_i = \sum_{i=0}^{\infty} a_i p^i = \sum_{i=0}^{l} a_i p^i$$

Let γ_i be the fractional linear automorphism of $\mathbb{P}^1(\mathbb{Q}_p)$ given by $\binom{p^l}{0} \frac{x_i}{1}$ and let Γ be the subgroup of $PGL(2,\mathbb{Q}_p)$ generated by the γ_i .

Then Γ has a subgroup H such that the limit set \mathcal{L} of H has the property that $Z = \psi^{-1}(\mathcal{L})$ is equal to $\phi(X)$ in the original lemma. In particular Z is a regular, compact subset of \mathbb{Z}_p satisfying

$$Z = \bigcup_{i=1}^{s} x_i + p^l Z = \bigcup_{i=1}^{s} B_{\frac{1}{n^l}}(x_i)$$

and with vaulative capacity

$$L_p(Z) = \frac{l}{s-1}$$

Proof. We must show that the set Z above is equal to $E = \phi(X)$ in the original lemma. First note that if $w_1, w_2, ..., w_s$ are words in $A^{\mathbb{N}}$, then the first letter of each w_i is distinct if and only if $|\phi(w_i) - \phi(w_j)|_p = 1, \forall i, j$ (since the pairwise distance is 1 if and only if $\operatorname{ord}(\phi(w_i) - \phi(w_j)) = 0$ for any i and j, if and only if the coefficient of p^0 (i.e., the first letter each w_i) is different $\forall i, j$). So then the x_i are just the $\phi(w_i)$.

Now consider the limit set of Γ . Let $\gamma \in \Gamma$. If γ is a product of the generators γ_i , then γ is represented by a matrix of the form: $\binom{p^{lm}}{0} \binom{z_m}{1}$, where $m \in \mathbb{N}$ and z_m is an element of \mathbb{Z}_p whose coefficient vector is a concatenation of the coefficient vectors of the x_i (for $0 \le i \le ml$ and 0 for i > ml). For example, $\gamma_i \gamma_j \gamma_k =$

$$\begin{pmatrix} p^l & x_i \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p^l & x_j \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p^l & x_k \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} p^{3l} & p^{2l} x_k + p^l x_j + x_i \\ 0 & 1 \end{pmatrix}$$

The action of this map is given by

$$[a_0, a_1] \mapsto [a_0, p^{lm}a_1 + za_0] \sim [1, p^{lm}\frac{a_1}{a_0} + z_m]$$

As m tends to infinity, this point tends to [1, 0+z], where z is an element of \mathbb{Z}_p whose entire coefficient vector is a concatenation of the x_i 's. The set $\psi^{-1}([1, z])$ for all such z is exactly the set $E = \phi(X)$.

Now suppose γ is a product of the inverses of the generators γ_i^{-1} , then γ is represented by a matrix of the form: $\binom{p^{-lm}-p^{-l}z^{-1}}{1}$, where $m \in \mathbb{N}$ and z is as above. For example,

$$\left(\begin{smallmatrix} p^{-l} & -p^{-l}x_i \\ 0 & 1 \end{smallmatrix}\right) \left(\begin{smallmatrix} p^{-l} & -p^{-l}x_j \\ 0 & 1 \end{smallmatrix}\right) \left(\begin{smallmatrix} p^{-l} & -p^{-l}x_k \\ 0 & 1 \end{smallmatrix}\right) = \left(\begin{smallmatrix} p^{-3l} & -p^{-3l}x_k - p^{-2l}x_j - p^{-l}x_i \\ 0 & 1 \end{smallmatrix}\right)$$

The action of this map is given by

$$[a_0, a_1] \mapsto [a_0, p^{-lm}a_1 - p^{-lm}za_0] \sim [1, p^{-lm}(\frac{a_1}{a_0} - z)]$$

This time as m grows, the image approaches infinity and so has empty preimage under ψ .

Lastly, we consider elements of Γ made up of both generators and the inverse of generators. These elements will produce translations, either of the form $\begin{pmatrix} 1 & p^{-l}(x_i - x_j) \\ 0 & 1 \end{pmatrix}$ if $\gamma = \gamma_j^{-1} \gamma_i$ or $\begin{pmatrix} 1 & x_j - x_i \\ 0 & 1 \end{pmatrix}$ if $\gamma = \gamma_j \gamma_i^{-1}$. These elements commute with each other and so the subgroup which they generate is normal. We can quotient by the entire translation subgroup, ie the subgroup generated by $\{\gamma_i \gamma_j^{-1}, \gamma_i^{-1} \gamma_j; \forall i, j \in 1, \dots, s\}$ to obtain H. Then $\mathcal{L} = \infty \cup \{[1, z] \mid z \in \mathbb{Z}_p \text{ and the coeffecient vector of } z \text{ is a concatenation of the coefficient vectors of the } x_i\text{'s}\}$ and $\psi^{-1}(\mathcal{L}) = E = \phi(X)$, as required.

More background from [7].

Definition. [7] A **Schottky group** is a finitely-generated, free and discontinuous subgroup of PGL(2, k)

Notation: Let X be a subset of $\mathbb{P}^1(k)$ and denote by $X^{(3)}$ the set $X \times X \times X \setminus \Delta$, where Δ is the fat diagnol, that is the set $\{x_i = x_j; \text{ for some } i \neq j, i, j \in 1, 2, 3\}$

Notation: Let $a = (a_0, a_1, a_\infty)$ be an element of $X^{(3)}$ for some $X \subseteq \mathbb{P}^1(k)$. We denote by

 γ_a the element of PGL(2,k) such that $\gamma_a(a_0)=0, \ \gamma_a(a_1)=1, \ \gamma_a(a_\infty)=\infty.$

Note that given such a point a, we can calculate the map γ_a explicitly, as follows: Suppose $a=(a_0,a_1,a_\infty)$ and $a_i\neq\infty=[0,1], \forall i$. Then $\gamma_a(a_0)=0=[1,0], \gamma_a(a_1)=1=[1,1],$ and $\gamma_a(a_\infty)=\infty=[0,1],$ so that if γ_a is represented by some $\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right)$, we have:

Definition. Let x_0, x_1 be two elements of k such that $max(|x_0|, |x_1|)$, ie both x_0 and x_1 are in the valuation ring of k and at least one is in its residue field. The map R that sends $[x_0, x_1] \mapsto [\bar{x_0}, \bar{x_1}]$, that is that sends each component to its residue class in \bar{k} is called the **standard reduction**.

algebraic extensions

Type up the example Keith gave you.

Bibliography

- [1] Alain M. Robert, A course in p-adic analysis.
- [2] Manjul Bhargava, The factorial function and generlizations
- [3] P-orderings and polynomial functions on arbitrary subsets of Dedekind rings.
- [4] On P-orderings, rings of integer-valued polynomials, and ultrametric analysis
- [5] Keith Johnson, P-orderings and Fekete sets
- [6] Nate Ackerman, Completeness in Generalized Ultrametric Spaces
- [7] Lothar Gerritzen and Marius van der Put, Schottky Groups and Mumford Curves.