I PROTISTI COME BIOINDICATORI

VANTAGGI DEI PROTISTI COME BIOINDICATORI

• Si riproducono a ciclo continuo.

• Reagiscono immediatamente agli agenti perturbatori e altrettanto rapidamente si adeguano alle condizioni ristabilite.

• Mostrano un'ampia gamma di risposte diverse ai diversi fattori ambientali.

I PROTOZOI CILIATI NEGLI IMPIANTI DI DEPURAZIONE

Vorticelle

Euplotes

CONTRIBUTO DEGLI ORGANISMI VIVENTI NELL'AMBIENTE SUOLO

Specie di protozoi ciliati ritrovate nei campioni di muschio

Specie	Lung. µm	Specie	Lung. µm
Aspidisca cicada	30	Arcuospathidium muscorum	120
Blepharisma sp.	100	Bryometopus sphagni	90
Bresslaua vorax	95	Colpoda inflata	40
Colpoda cucullus	60	Dileptus sp.	90
Cyclidium muscicola	30	Enchelys terricola	65
Enchelyodon terrens	75	Histriculus muscorum	140
Euplotes muscicola	50	Keronopsis muscicola	60
Kahliella sp.	36	Keronopsis sp.	120
Keronopsis muscorum	180	Microthorax sp.	55
Metopus sp.	70	Oxytricha setigera	60
Oxytricha granulifera	90	Phacodinium sp.	100
Paracolpoda steinii	25	Spathidium longicaudatum	120
Platyophrya vorax	40	Steinia muscorum	46
Steinia candens	90	Uroleptus sp.	70
Tetrahymena pyriformis	20	ALL STREET, ST	7.000

Numero medio di specie ritrovate nelle singole stazioni

Numero totale di protozoi ciliati suddiviso per stazioni e mesi di raccolta

Stazioni	Mesi							
	febbraio	marzo	aprile	maggio	giugno	luglio	agosto	
S1	935	1021	362	1176	1395	1103	1415	
S2	179	296	526	1157	1254	886	1135	
S3	489	538	121	525	55	341	219	
54	190	243	130	921	1068	797	1259	
S5	64	295	142	515	168	218	64	
S6	186	612	554	857				

Quantità media di Pb (mg/Kg) presente in ogni stazione

FIORITURE ALGALI

LAGO DI TOVEL

Glenodinium sanguineum

LAGO DI GARDA

Stentor amethystinus

Lago Hillier (Australia)

Dunaliella salina

Pronti per il maxi esperimento? State per estrarre il DNA dalla vostra saliva! Basterà agire sempre con molta delicatezza ed ecco che...

1 contenitore graduato da 100 cc, 3 g di sale, 10 cc di detersivo per piatti, 1 siringa, 1 bicchiere, 4 cucchiaini, 1 cucchiaio, 1 provetta da 10 ml, 1 bottiglietta di plastica, acqua demineralizzata (quella che si usa per stirare), alcol etilico.

Mettete un po' d'alcol nella bottiglietta e tenetelo in freezer per qualche ora.

Preparate la soluzione che romperà le cellule per scovare il DNA, contenuto nel nucleo. In un beaker da 100 cc versate 80 cc di acqua demineralizzata e il sale. Mescolate fino alla scomparsa del sale.

Aggiungete il detersivo liquido per i piatti alla soluzione con la siringa.

Aggiungete altra acqua fino ad arrivare a 100 cc.

Con un cucchiaino mescolate LENTA-MENTE la soluzione, SENZA PRODURRE BOLLE, fino a che non diventa omogenea. Ora, la soluzione "spacca-cellule" è pronta.

Avete scoperto che...

Le cellule contengono il DNA all'interno di un corpuscolo chiamato nucleo. La soluzione con sale e detersivo rompe la protezione della cellula e del nucleo. Inoltre, il DNA non si scioglie nell'alcol, quindi si forma un sale di DNA che comincia a precipitare: è quello il batuffolo bianco.

Intanto, nei laboratori di ricerca...

I geni sono sezioni di DNA. La modifica, replicazione (cioè la clonazione), sostituzione o introduzione di geni in un altro organismo sono tutte operazioni dell'ingegneria genetica. Gli obiettivi sono tanti: dallo sviluppo di nuovi antibiotici e vaccini, alla produzione, ad esempio, di organismi cosiddetti transgenici, cioè piante o animali che possono essere molto utili in agricoltura.