An Exploration of Housing Sales in Washington D.C. and King County

By: Garrett Yamane
Springboard--DSC Program
Capstone Project 2

Problem Statement

Target Client

Real estate agents and prospective house buyers

Goals

- Build individual accurate predictive machine learning model for both Washington D.C.
 and King County
- Closely examine what housing features heavily impact the price of a house sale
- Help prospective buyers understand the market they are buying into

Data Acquisition and Wrangling

- Sources:
 - Washington D.C. data (7160 rows)
 - King County data (21613 rows)
- Filtered D.C. data to only contain sales from May 2014-May 2015 and by the columns both sets had in common
- Converted columns to have same type and imputed values in columns where missing values were present

price	0.0
date	0.0
bathrooms	0.0
bedrooms	0.0
sqft_living	0.0
sqft_lot	0.0
floors	0.0
condition	0.0
grade	0.0
<pre>yr_built</pre>	0.0
yr_renovated	0.0
location	0.0
dtype: float64	

Missing Value % in Final Data Frame

Snapshot of Final Data Frame for Washington D.C

	price	date	bathrooms	bedrooms	sqft_living	sqft_lot	floors	condition	grade	yr_built	yr_renovated	location
1	993500.0	2014- 10-08	5.0	3	1148.0	814	2.0	Very Good	Average	1907	2014	DC
2	1280000.0	2014- 08-19	2.5	3	1630.0	1000	2.0	Good	Good Quality	1906	2004	DC
4	1440000.0	2015- 04-22	3.5	4	1686.0	1424	2.0	Very Good	Above Average	1908	2015	DC
5	1050000.0	2014- 12-23	2.0	2	1440.0	1800	2.0	Average	Above Average	1885	1984	DC
8	900000.0	2014- 06-05	1.5	2	1728.0	900	3.0	Good	Average	1880	2003	DC

Initial Findings

- Focus Questions:
 - Are houses more likely to sell at specific times of the year?
 - Does condition and grade affect the selling price?
 - What features are highly correlated?

Correlation Heatmap for Housing Features

Application of Inferential Statistics

- Average Housing Price: Is there a statistical significant difference between the average housing sale price between Washington D.C. and King County?
 - \circ H_0 : The true mean housing sale price between the Washington D.C. and King County are the same
 - \circ H_1 : The true mean housing sale price between the Washington D.C. and King County are not the same

count	7160.000000	count	21613.000000
mean	627126.845391	mean	540088.141767
std	510667.841622	std	367127.196483
min	5185.000000	min	75000.000000
25%	345000.000000	25%	321950.000000
50%	517000.000000	50%	450000.000000
75%	749600.000000	75%	645000.000000
max	7395000.000000	max	7700000.000000

Washington D.C. sale price summary statistics

King County sale price summary statistics

Application of Inferential Statistics: Results

- Results: *p-value* was less than 0.05
- Conclude that the observed difference in the means is statistically significant
- Informally, this means that the observed difference is likely not to be due to chance.

```
# Compute t-statistic
t_stat = test_stat / standard_err

# Degrees of freedom
dof = dc_size + kc_size - 2

# Compute p-value
p_val = 1 - stats.t.cdf(t_stat,df=dof)
print("p-value:", p_val)
p-value: 0.0
```

Baseline Model: Linear Regression

- First, I built out a linear regression model using all housing features for each data set
- Below are the model coefficients for each

Washington D.C. Model Coefficients

King County Model Coefficients

```
# King County linear regression model coefficients
lm kc.params
Intercept
               -0.002498
bathrooms
                0.139652
bedrooms
               -0.170795
sqft living
                0.751963
sqft lot
               -0.036162
floors
                0.079607
condition
               -0.000993
               -0.014047
grade
yr built
               -0.258198
yr renovated
                0.011617
               -0.022038
month
dtype: float64
```

Feature Selection: Lasso Regression

• Benefit of Lasso Regression: zeros out coefficients for features with a high penalty

	features	estimatedCoefficients
0	bathrooms	0.400750
1	bedrooms	0.000000
2	sqft_living	0.351308
3	sqft_lot	0.059128
4	floors	0.049667
5	condition	0.034085
6	grade	0.086690
7	yr_built	-0.073350
8	yr_renovated	-0.007563
9	month	-0.000000

	features	estimatedCoefficients
0	bathrooms	0.114235
1	bedrooms	-0.141313
2	sqft_living	0.749540
3	sqft_lot	-0.021016
4	floors	0.070464
5	condition	0.000000
6	grade	-0.000000
7	yr_built	-0.238361
8	yr_renovated	0.018938
9	month	-0.013999

Baseline Model Extension: Random Forest

- Random Forest Regressor benefits:
 - Avoids overfitting on training data
 - Aggregates multiple independently built models into a single optimal model
- OOB Error
 - Main metric used to determine the strength of each random forest model
- Hyperparameter Tuning
 - o max_features: how many random different features to consider in order to decide how to proceed down the decision tree
 - n_estimators: the number of trees that are made in the forest

Random Forest Models: Washington D.C.

Random Forest Models: King County

Random Forest: Feature Importance

	Features	Importance Value
0	bathrooms	0.234591
1	bedrooms	0.070417
2	sqft_living	0.237226
3	sqft_lot	0.099992
4	floors	0.039018
5	condition	0.032830
6	grade	0.108064
7	yr_built	0.095940
8	yr_renovated	0.039032
9	month	0.042889

Washington D.C. Random Forest Regressor Feature Importance Values

	Features	Importance Value
0	bathrooms	0.156772
1	bedrooms	0.037921
2	sqft_living	0.360064
3	sqft_lot	0.088141
4	floors	0.025835
5	condition	0.019109
6	grade	0.150021
7	yr_built	0.105644
8	yr_renovated	0.016768
9	month	0.039724

King County Random Forest Regressor Feature Importance Values

Evaluation of the Baseline and Extension Models

- R-squared Value: Proportion of the variance explained by the model
 - o D.C. Linear Regression R-squared value: 0.51
 - KC Linear Regression R-squared value: 0.56
 - o D.C. Random Forest R-squared value: 0.82
 - KC Random Forest R-squared value: 0.65
- Mean Absolute Value: Average magnitude of the errors for a set of predictions by a model
 - o D.C. Linear Regression MAE: 0.4
 - KC Linear Regression MAE: 0.44
 - o D.C. Random Forest MAE: 0.25
 - KC Random Forest MAE: 0.36

Conclusion

Big Takeaways

- Models that offer more flexibility to fit a dataset like the Random Forest model made more accurate and precise predictions for both Washington D.C. and King County
- Building individual models for geographically different locations highlighted housing features that carried more "importance" or affected the price heavier
- No one model can encompass all housing data

Future Work and Recommendations

- Future Work
 - Feature Engineering
 - Build out customized features from the raw data to see how R-squared and MAE is affected
 - In-depth hyperparameter tuning for Random Forest Regressors
 - Increase range of *n_esimators*
 - Test a wider variety of max_features for each model
- Recommendations
 - Prospective Buyers
 - Target focus on what is a hot commodity when it comes to buying a house in their area of interest
 - Some features can heavily impact the sale price: should always keep in mind what is most important to them and if it is worth the price difference
 - Real estate agents
 - Monitor housing sale trends
 - Study how specific geographic locations have been changing and if housing prices are increasing/decreasing due to these changes