

Design of Embedded Hardware and Firmware Software Optimizations

Andrea Guerrieri HES-SO//Genève

andrea.guerrieri@hesge.ch

Problem specifications

We need real-time edge-detection on a live video stream

Problem specifications

Initial implementation

Function	Cycles/image	Cycles/pixel		
conv_grayscale	127336549	~648		
sobel_x	729624798	~3711		
sobel_y	729677739	~3711		
sobel_threshold	102849150	~523		
TOTAL	1689488236	8593		
	Camera: • RGB565 • 512x384 • 5-15 fps	VS. 17 cycles/pixel (~505x improvement)		

et d'architecture de Genève

Naive approach

Software Optimizations

et d'architecture de Genève

SW optimization

What do we need to optimize?

SW optimization

- What do we need to optimize?
- Do we need to understand completely the algorithm?

et d'architecture de Genève

SW optimization

- What do we need to optimize?
- Do we need to understand completely the algorithm?
- Which tools can we use?

SW optimization

- What do we need to optimize?
- Do we need to understand completely the algorithm?
- Which tools can we use?
- ➤ Where do we focus?

SW optimization

- What do we need to optimize?
- Do we need to understand completely the algorithm?
- Which tools can we use?
- ➤ Where do we focus?
- Which details are more important?

Naive approach

Compiler optimizations (Out-of-the-box)

Compilation Flags (CFLAGS)

- Generic
 -00 -01 -03 -Ofast -Omax -Omin...
- Architecture Specific
 -mthumb -march -mfloatabi...
- Debugging options-g...

et d'architecture de Genève

«Out-of-the-box» optimization

Function	-00	-01	-02	-O3
conv_grayscale	127336549	44161114	41296763	41194172
(Time)	(2.547 s)	(0.883 s)	(0.826 s)	(0.824 s)
sobel_x	729624798	129966322	109616923	29727206
(Time)	(14.592 s)	(2.599 s)	(2.192 s)	(0.595 s)
sobel_y	729677739	129964177	109607580	27249940
(Time)	(14.594 s)	(2.599 s)	(2.192 s)	(0.545 s)
sobel_threshold	102849150	33664258	32015554	32126201
(Time)	(2.057 s)	(0.673 s)	(0.64 s)	(0.643 s)
TOTAL	1689488236	337755871	292536820	130297519
(Time)	(33.79 s)	(6.754 s)	(5.85 s)	(2.607 s)

«Out-of-the-box» optimization

Function	-O0	-01	-02	-O3
conv_grayscale	127336549	44161114	41296763	41194172
(Time)	(2.547 s)	(0.883 s)	(0.826 s)	(0.824 s) 3.9
sobel_x	729624798	129966322	109616923	29727206
(Time)	(14.592 s)	(2.599 s)	(2.192 s)	(0.595 s)
sobel_y	729677739	129964177	109607580	27249940
(Time)	(14.594 s)	(2.599 s)	(2.192 s)	(0.545 s) 26.
sobel_threshold	102849150	33664258	32015554	32126201
(Time)	(2.057 s)	(0.673 s)	(0.64 s)	(0.643 s) _{3.7}
TOTAL	1689488236	337755871	292536820	130297519
(Time)	(33.79 s)	(6.754 s)	(5.85 s)	(2.607 s)

Solution

Power consumption

Solution

Naive approach

Is this enough?

Better to have a look inside...

What do we need to optimize?

et d'architecture de Genève

> How do we get the data for the previous chart?

- > How do we get the data for the previous chart?
- > We could count instructions (even automatically in the compiler)

- > How do we get the data for the previous chart?
- > We could count instructions (even automatically in the compiler)
- > However:
 - ➤ Data dependent loops or jumps
 - > Pointers and dynamic memory management

- ➤ How do we get the data for the previous chart?
- We could count instructions (even automatically in the compiler)
- > However:
 - ➤ Data dependent loops or jumps
 - > Pointers and dynamic memory management
- > We need to check the dynamic behaviour

- ➤ How do we get the data for the previous chart?
- We could count instructions (even automatically in the compiler)
- > However:
 - ➤ Data dependent loops or jumps
 - > Pointers and dynamic memory management
- > We need to check the dynamic behaviour
- Inserting "counters" in the code for each section of interest: **Profiling**
- ➤ Tools like: gprof, valgrind, k(q)cachegrind...

Profiling with kcachegrind (on PC)

> Relatively easy to set-up and good results

> Relatively easy to set-up and good results

- > However:
 - > Results specific for the used data set. Representative?

> Relatively easy to set-up and good results

- > However:
 - > Results specific for the used data set. Representative?
 - ➤ Different compiler, architecture. Will it be the same in the HW?

Profiling with kcachegrind (on PC)

- ➤ Try to understand the generated assembly by the compiler
- ➤ Depends on the processor architecture and compiler, but we can have a quick look to what it looks like...

et d'architecture de Genève

et d'architecture de Genève

et d'architecture de Genève

et d'architecture de Genève

et d'architecture de Genève

■ Output (0/0) MIPS gcc 5.4 1 - cached (6595B)

■ Output (0/0) MIPS gcc 5.4 1 - cached (6595B)

et d'architecture de Genève

et d'architecture de Genève

```
Editor Diff View More ▼
                                                                                \square \times
C source #1 ×
A ▼ B Save/Load + Add new... ▼
        short sobel_mac( unsigned char *pixels,
   2
                         int x,
   3
                         int y,
                         const char *filter,
   4
                         unsigned int width ) {
   5
           short dy,dx;
   7
           short result = 0;
           for (dy = -1; dy < 2; dy++) {
   8
   9
              for (dx = -1; dx < 2; dx++) {
  10
                 result += filter[(dy+1)*3+(dx+1)]*
                           pixels[(y+dy)*width+(x+dx)];
  11
  12
             }
  13
  14
           return result;
  15
```

Function	Cycles
Compute address filter	9
Filter value	8
Compute address pixels	14
Pixels value	5
Combine into result	9
TOTAL	45

Function	Cycles
Check loop dx	5*
Compute address filter	9
Filter value	8
Compute address pixels	14
Pixels value	5
Combine into result	9
Increment loop dx	6
TOTAL	173*

Function	Cycles
Check loop dy	5*
Check loop dx	5*
Compute address filter	9
Filter value	8
Compute address pixels	14
Pixels value	5
Combine into result	9
Increment loop dx	6
Increment loop dy	6
TOTAL	557*

Function	Cycles
Start function	7
Set initial result	1
Initialize loop dy	4*
Initialize loop dx	4*
Check loop dy	5*
Check loop dx	5*
Compute address filter	9
Filter value	8
Compute address pixels	14
Pixels value	5
Combine into result	9
Increment loop dx	6
Increment loop dy	6
Save result	1
End function	5
TOTAL	579*

Function	Cycles
Start function	7
Set initial result	1
Initialize loop dy	4*
Initialize loop dx	4*
Check loop dy	5*
Check loop dx	5*
Compute address filter	9
Filter value	8
Compute address pixels	14
Pixels value	5
Combine into result	9
Increment loop dx	6
Increment loop dy	6
Save result	1
End function	5
194820x TOTAL	579*

➤ If we remove the inner loop?

➤ If we remove the inner loop?

Function	Cycles
Start function	7
Set initial result	1
Initialize loop dy	4*
Check loop dy	5*
Computing result	115
Increment loop dy	6
Save result	1
End function	5
T	OTAL 401*

Improvement: 579/401 = 1.44x

➤ If we remove the inner loop?

Function	-O0	-O0 (dx removed)
conv_grayscale	127336549	127082760
(Time)	(2.547 s)	(2.542 s)
sobel_x	729624798	551850939
(Time)	(14.592 s)	(11.037 s)
sobel_y	729677739	551818999 ¹ , 34
(Time)	(14.594 s)	(11.036 s)
sobel_threshold	102849150	105069463
(Time)	(2.057 s)	(2.101 s)
TOTAL	1689488236	1335822161
(Time)	(33.79 s)	(26.72 s)

Function		Cycles
Start function		7
Set initial result		1
Initialize loop dy		4*
Check loop dy		5*
Computing result	-	115
Increment loop dy		6
Save result		1
End function		5
	TOTAL	401*

Improvement: 579/401 = 1.44x

➤ If we remove the inner loop?

Function	-O0	-O0 (dx removed)
conv_grayscale	127336549	127082760
(Time)	(2.547 s)	(2.542 s)
sobel_x	729624798	551850939
(Time)	(14.592 s)	(11.037 s)
sobel_y (Time)	729677739 (14.594 s)	551818999 \(\frac{3}{1}\) (11.036 s)
sobel_threshold	102849150	105069463
(Time)	(2.057 s)	(2.101 s)
TOTAL	1689488236	1335822161
(Time)	(33.79 s)	(26.72 s)

Function		Cycles
Start function		7
Set initial result		1
Initialize loop dy		4*
Check loop dy		5*
Computing resu	lt	115
Increment loop dy		6
Save result		1
End function		5
	TOTAL	401*

1.26x

Improvement: 579/401 = 1.44x

- ➤ If we remove the inner loop?
- ➤ If we remove the outer loop?
 - ightharpoonupImprovement (MIPS): 579/275 = 2.11x

Function	-O0	-O0 (dx removed)	-O0 (no loops)
conv_grayscale	127336549	127082760	127071260
(Time)	(2.547 s)	(2.542 s)	(2.541 s)
sobel_x	729624798	551850939	425314676
(Time)	(14.592 s)	(11.037 s)	(8.506 s)
sobel_y	729677739	551818999	425378323
(Time)	(14.594 s)	(11.036 s)	(8.508 s)
sobel_threshold	102849150	105069463	105635977
(Time)	(2.057 s)	(2.101 s)	(2.113 s)
TOTAL	1689488236	1335822161	1083400236
(Time)	(33.79 s)	(26.72 s)	(21.67 s)
		1.26x	1.56x

> Pros:

- ➤ No need much knowledge of the algorithm
- ➤ Save on overhead operations
- ➤ Branch penalty

> Cons:

- Improvement depends on the number of operations spent inside the loop
- ➤Only works when having a "perfect loop": Number of iterations is predefined, does not depend on data
- ➤ Worsen code readability

Can we do better?

Function	Cycles
Start function	7
Set initial result	1
Initialize loop dy	<u>4*</u>
Initialize loop dx	4 *
Check loop dy	5*
Check loop dx	5*
Compute address filter	9
Filter value	8
Compute address pixels	14
Pixels value	5
Combine into result	9
Increment loop dx	6
Increment loop dy	6
Save result	1
End function	5
TOTAL	579* 275

Can we do better?

Function	Cycles
Start function	7
Set initial result	1
Initialize loop dy	4 *
Initialize loop dx	4*
Check loop dy	5*
Check loop dx	5*
Compute address filter	9
Filter value	8
Compute address pixels	14
Pixels value	5
Combine into result	9
Increment loop dx	6
Increment loop dy	6
Save result	1
End function	5
TOTAL	579 * 275

Can we do better?

In-lining

> Removing the function

Function	-00	-O0 (no loops)	-O0 (no loops, inline)
conv_grayscale	127336549	127071260	125935754
(Time)	(2.547 s)	(2.541 s)	(2.519 s)
sobel_x (Time)	729624798 (14.592 s)	425314676 (8.506 s)	325845850 \ (6.517 s)
sobel_y	729677739	425378323	320545780
(Time)	(14.594 s)	(8.508 s)	(6.411 s)
sobel_threshold	102849150	105635977	104956605
(Time)	(2.057 s)	(2.113 s)	(2.099 s)
TOTAL	1689488236	1083400236	877283989
(Time)	(33.79 s)	(21.67 s)	(17.55 s)
		1.56x	

