Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа № 3

"Выполнение циклических программ"

Вариант № 1314

Выполнил:

Сандов Кирилл Алекссевич

Группа:

P3113

Проверила:

преподаватель Блохина Елена Николаевна

Санкт-Петербург

Задание

По выданному преподавателем варианту восстановить текст заданного варианта программы (Рисунок 1), определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

546:	055A	I 554:	2EF4
547:	A000	555:	0400
548:	4000	556:	EEF2
549:	E000	557:	8548
54A:	+ 0200	558:	CEF7
54B:	EEFD	559:	0100
54C:	AF03	55A:	5550
54D:	EEFA	55B:	0501
54E:	AEF7	55C:	F100
54F:	EEF7	İ	
550:	AAF6	İ	
551:	0480	İ	
552:	0200	İ	
553:	0280	İ	
		-	

Рисунок 1

Запишем исходную программу в виде таблицы (Таблица 1).

Адрес	Код команды	Мнемоника	Комментарии
54A	0200	CLA	Записать значение 0 в аккумулятор
54B	EEFD	ST IP-3	Сохранить значение аккумулятора в
			ячейку 54В+1-3=549
54C	AF03	LD #0x03	Загрузить значение 3 в аккумулятор
54D	EEFA	ST IP-6	Сохранить значение аккумулятора в
			ячейку 54D+1-6=548
54E	AEF7	LD IP-9	Загрузить значение из ячейки
			памяти 54Е+1-9=546 в аккумулятор
54F	EEF7	ST IP-9	Сохранить значение аккумулятора в
			ячейку 54F+1-9=547
550	AAF6	LD (IP-10)+	Перейти в ячейку по адресу,
			хранимому в ячейке 550+1-10=547,
			загрузить из неё значение в
			аккумулятор и инкрементировать
			значение адреса
551	0480	ROR	Циклический сдвиг аккумулятора
			вправо (получение во флаге С
			первого бита числа)
552	0200	CLA	Записать значение 0 в аккумулятор
553	0280	NOT	Инверсия битов аккумулятора (16
			нулей перейдут в 16 единиц)
554	2EF4	AND IP-12	Логическое И аккумулятора и
			значения из ячейки 554+1-С=549
			(так как в аккумуляторе все биты –
			единицы, то результат совпадёт со
			значением из ячейки)
555	0400	ROL	Циклический сдвиг аккумулятора
			влево
556	EEF2	ST IP-14	Сохранить значение аккумулятора в
			ячейку 556+1-Е=549
557	8548	LOOP 548	Декрементировать значение в
			ячейке 548, и если оно стало равным
			0, то перейти в ячейку 557+2=559
558	CEF7	JUMP IP-9	Установить значение регистра
			адреса равным 558+1-9=550
559	0100	HLT	Останов

Таблица 1

Описание программы:

- **Назначение программы:** программа последовательно проходит по элементам массива, которые являются битовыми наборами, и составляет битовый набор, беря первый бит из каждого элемента. Составленный таким образом набор является результатом работы программы.
- Описание и назначение исходных данных, область представления и область допустимых значений исходных данных и результата:
 - R переменная, хранящая результат работы программы битовый набор, составленный из первых битов элементов массива;
 - I переменная-счётчик, показывающая, сколько итераций цикла осталось. Изначально равняется размеру массива;
 - S переменная, содержащая адрес текущей рассматриваемой ячейки массива

Область представления:

- R набор из 16-ти логических однобитовых значений, $0 \le R \le 2^{16} 1$;
- о I число, не превышающее общее количество ячеек памяти, $0 \le I \le 2047$;
- \circ S адрес ячейки памяти, $0 \le S \le 2047$:

Область допустимых значений:

$$\circ$$
 $R_i \in \{0, 1\}$, где $0 \le i \le 15$
$$\begin{cases} 0 \le I \le 16 \\ 1370 \le S \le 2031 \end{cases}$$

- Расположение в памяти ЭВМ программы, исходных данных и результатов: программа располагается в ячейках 54А-559, исходные данные в ячейке 546, массив в ячейках 55А-55С, результаты в ячейках 547, 548, 549.
- **Адреса первой и последней выполняемой команд программы:** первая 54A, последняя 559.

4

Новые исходные данные для таблицы трассировки в 10-формате:

$$A = 109_{(10)}$$

$$B = -567_{(10)}$$

$$C = -890_{(10)}$$

Переведём их в 16-формат, преобразуя в дополнительный код отрицательные числа, и обозначим ячейки памяти в таблице, в которые они будут записаны (Таблица 2):

$$A = 109_{(10)} = 0000\ 0000\ 0110\ 1101_{(2)} = 6D_{(16)}$$

$$B = -567_{(10)} \rightarrow (2^{16} - 567)_{(10)} = FDC9_{(16)}$$

$$C = -890_{(10)} \rightarrow (2^{16} - 890)_{(10)} = FC86_{(16)}$$

Адрес	Значение
131	006D
130	FDC9
134	FC86

Таблица 2

Запишем таблицу трассировки программы (Таблица 3):

Выпол ая ком		Содержимое регистров процессора после выполнения команды							Ячейка, содержим ое которой изменило сь после выполнен ия		
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZ VC	ком : Адр ес	анды Новы й код
128	0200	129	0200	128	0200	000	0128	0000	0100	-	-
129	4131	12A	4131	131	006D	000	0129	006D	0000	-	_
12A	4130	12B	4130	130	FDC9	000	012A	FE36	1000	-	-
12B	E133	12C	E133	133	FE36	000	012B	FE36	1000	133	FE36
12C	A134	12D	A134	134	FC86	000	012C	FC86	1000	-	-
12D	3133	12E	3133	133	FE36	000	012D	FEB6	1000	-	-
12E	E132	12F	E132	132	FEB6	000	012E	FEB6	1000	132	FEB6
12F	0100	130	0100	12F	0100	000	012F	FEB6	1000	-	-

Таблица 3

Запишем вариант программы с меньшим числом команд в виде таблицы (Таблица 4).

Адрес	Код команды	Мнемоника	Комментарии
129	4131	ADD 131	Добавить содержимое ячейки
			памяти 131 к аккумулятору
12A	4130	ADD 130	Добавить содержимое ячейки
			памяти 130 к аккумулятору
12D	3133	OR 133	Выполнить побитовое ИЛИ для
			ячейки памяти 133 и аккумулятора и
			результат записать в аккумулятор
12E	E132	ST 132	Записать значение из аккумулятора
			в ячейку памяти 132
12F	0100	HLT	Останов

Таблица 4

Заключение

В результате выполнения данной лабораторной работы были расширены знания о командах БЭВМ. Во-первых, был рассмотрен пример программы, использующей циклы. Во-вторых, получен навык организации данных в одномерном массиве и перебора его элементов в цикле. Также были изучены дополнительные режимы адресации: относительная прямая, косвенная, автоинкрементная, автодекрементная и с прямой загрузкой операнда.