

Automatisation de la cryptanalyse des cryptosystèmes classiques à l'aide d'algorithmes modernes

PLAN

I - Introduction

- Éléments historiques
- Objectif du projet

II - Chiffrement par substitution

- Algorithme de Hill-climbing
- Fitness Function
- Automatisation

III - Conclusion

Histoire du chiffrement

- Les origines de l'utilisation de cryptographie remontent à l'Antiquité avec le plus vieux document chiffré datant du XVIème siècle avant notre ère.
- Plusieurs méthodes de chiffrement :
 - chiffrement par transposition (Scytale chez les Spartiate)
 - chiffrement par substitution mono-alphabétique (Atbash et César)
 - chiffrement par substitution poly-alphabétique (Vigenère)

Figure n°1 : Scytale chez les Spartiate

Figure n°2 : Illustration du code de César

Objectifs

- Étudier la méthode de chiffrement par substitution mono-alphabétique par l'intermédiaire de l'algorithme de Hill-climbing.
- Souligner les contrastes d'efficacité entres ces différents algorithmes

												Let	tre	en e	clai	r										
	Α	В	С	D	Е	F	G	н	1	J	K	L	М	N	0	Р	Q	R	s	т	U	٧	w	х	γ	2
Lettre de la clé	Le	ttres	ch	iffré	es	(au	cro	iser	ner	t de	e la	cole	onn	e L	ettre	e en	cla	ir e	t de	la	ligne	Le	ettre	de	la	clé
Α	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R	s	т	U	٧	W	х	Υ	Z
В	В	С	D	Е	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R	s	Т	U	٧	w	х	Υ	z	A
С	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	s	Т	U	٧	W	Х	Υ	z	Α	Е
D	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	s	т	U	٧	w	Х	Υ	z	Α	В	C
E	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	s	Т	U	٧	w	х	Υ	Z	Α	В	С	C
F	F	G	н	1	J	K	L	М	N	0	Р	Q	R	s	Т	U	٧	w	х	Υ	Z	Α	В	С	D	Е
G	G	н	1	J	K	L	М	N	0	Р	Q	R	s	Т	U	٧	w	Х	Υ	z	Α	В	С	D	Е	F
н	Н	1	J	K	L	М	Ν	0	Р	Q	R	s	Т	U	٧	w	х	Υ	z	Α	В	С	D	Е	F	G
1	1	J	K	L	М	Ν	0	Р	Q	R	s	Т	U	٧	W	х	Υ	Z	Α	В	С	D	Е	F	G	H
J	J	K	L	М	N	0	Р	Q	R	s	Т	U	٧	W	Х	Υ	z	Α	В	С	D	Е	F	G	н	1
к	K	L	М	Ν	0	Р	Q	R	s	т	U	٧	w	Х	Υ	z	Α	В	С	D	Е	F	G	н	1	J
L	L	М	N	0	Р	Q	R	s	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	1	J	K
M	М	N	0	Р	Q	R	s	Т	U	٧	w	х	Υ	Z	Α	В	С	D	Е	F	G	Н	1	J	K	L
N	N	0	Р	Q	R	s	Т	U	٧	W	х	Υ	z	Α	В	С	D	Е	F	G	Н	1	J	K	L	N
0	0	Р	Q	R	s	Т	U	٧	w	х	Υ	z	Α	В	С	D	Е	F	G	н	T	J	K	L	М	Ν
Р	Р	Q	R	s	Т	U	٧	w	х	Υ	z	Α	В	С	D	Е	F	G	н	1	J	K	L	М	Ν	C
Q	Q	R	s	Т	U	٧	W	Х	Υ	z	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	Ν	0	F
R	R	s	т	U	٧	w	Х	Υ	z	Α	В	С	D	Е	F	G	н	1	J	K	L	М	Ν	0	Р	C
s	s	Т	U	٧	W	х	Υ	Z	Α	В	С	D	Е	F	G	н	1	J	K	L	М	Ν	0	Р	Q	F
т	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	1	J	K	L	м	Ν	0	Р	Q	R	S
U	U	٧	w	Х	Υ	z	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R	s	T
V	٧	w	х	Υ	z	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	s	Т	ι
W	W	х	Υ	Z	Α	В	С	D	Е	F	G	н	1	J	K	L	М	N	О	Р	Q	R	s	т	U	٧
х	Х	Υ	z	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	V
Y	Υ	Z	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	О	Р	Q	R	s	Т	U	٧	W	×
z	Z	Α	В	С	D	Е	F	G	н	1	J	K	L	М	N	0	Р	Q	R	s	Т	U	٧	W	Х	Υ

Figure n°3 : chiffre de Vigenere

Algorithme de Hill-climbing

- La méthode de hill-climbing (dite méthode d'escalade) est une méthode itérative locale qui vise à rechercher un optimum local.
- Son but : se rapprocher au maximum de la solution, même si on n'y accède pas complètement

Evaluation d'un déchiffrement : La fitness function

• Permet d'évaluer le bon déchiffrement d'un texte

- 2 types de fitness function implémentés :
 - la fitness n-gramme
 - la fitness de Pearson

Fitness n-gramme

- Analyse des fréquences de n-gramme avec n∈ {2, 3, 4, 5}
- Idée de la fonction :
- Parcourir le texte déchiffré n lettres par n lettres
- Additionner les fréquences des différentes combinaisons de n lettres
- Obtenir un score de déchiffrement et le comparer au texte clair

Pseudo-code

```
def fitness_n_gramme ( texte_déchiffré , dictionnaire_n_gramme) :
 score = 0
 liste = liste(texte)
 x = 0
 Pour x allant de 0 à la (longueur du texte-n):
     score = score + fréquence_dictionnaire (liste[x : x + n])
 return score
```

Fitness Pearson

- Analyse des fréquences des mono-grammes
- Idée de la fonction :
- Calculer la fréquence Xi de chaque lettre i dans le texte déchiffré
- Calculer la fréquence Yi de chaque lettre i dans le texte clair
- Calculer le score r tel que 0 < r < 1

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

Figure 4 : Formule du coefficient de corrélation de Pearson

Génération des fréquences

• Script python permettant d'obtenir pour chaque n-gramme un fichier de fréquences de n-gramme

Dictionnaires des fréquences : lire-n gramme

 Fonction permettant de passer d'un fichier .txt à un dictionnaire python

Figure 5 : Extrait des fréquences des bi, tri, tétra, penta -gramme

Hill-Climbing

• Tester en boucle un grand nombre de clés potentielles et évaluer à chaque tour le score de la clé potentielle à l'aide d'une certaine fonction fitness, puis prendre, pour l'itération suivante, la clé au meilleur score

Pseudo- Code

```
def hillClimbing(fitness,texte chiffré,dictionnaire,NBITERGLOB,NBITERSTATIC,clé,fonction de comparaison):
 cle_parent = clé
 texte_déchiffré = decipher ( texte_chiffré, clé_parent) #Déchiffrement du texte avec la clé initiale
 score parent = fitness (texte dechiffré , dictionnaire) # Score du déchiffrement avec la fonction fitness de notre choix
 global = 0 et statique = 0
 Tant que global < NBITERGLOB et statique < NBITERSTATIC :
     clé_enfant = permutation de 2 lettres dans la clé_parent #changement de clé de déchiffrement
     score_enfant = fitness (texte_déchiffré, dictionnaire)
                                                               # On déchiffre le texte avec une nouvelle clé
    if (score_enfant est meilleur que score_parent):
                                                              # Sera determiné par la fonction compare
         score_parent = score_enfant
         clé_parent = clé_enfant
         statique = 0
     else :
         statique += 1
     global += 1
     affichage du texte déchiffré obtenu, du texte clair et du nombre de bonnes lettres dans la clé_parent
 return cle_parent # clé gagnante
```

Optimisation des paramètres et statistiques

Conclusion empirique sur la fonction de hill-climbing :

• L'efficacité du déchiffrement dépend du n choisi et de la longueur du texte

|

lancement d'une batterie de tests sur la fonction de hill-climbing

• But : trouver les paramètres permettant de bons résultats rapidement

Fonctionnement du script

- Faire varier le nombre d'itérations globales et statiques pour obtenir un couple (globale, statique) optimal.
- 1000 < global < 10000 / pas : 500
- 500 < statique < 4000 / pas 250
- 20 tests par couple
- Faire ces tests sur tous les n-gramme

Résultats texte court

Résultats bi-gramme

Iterations Globales	Iterations Locales	Clé	Score	Temps
2000	750	22.25/26	39988.600	2.037
2500	1000	22.2/26	39992.033	2.417
2500	1250	22.9/26	40036.755	2.512
3000	2500	22.2/26	39999.609	3.082
3500	750	22.65/26	39979.500	2.364
3500	1000	22.6/26	39993.850	2.608
3500	1750	22.5/26	39996.806	3.392
3500	3000	23.1/26	40043.142	3.593
4000	1750	23.05/26	40029.701	3.460
4000	2250	22.3/26	39972.386	3.903
4000	2750	22.7/26	40008.763	4.056
4000	3000	22.6/26	39999.047	4.083
4000	3250	24.15/26	40112.429	4.099
4500	2750	23.05/26	40043.188	4.283
4500	3000	24.55/26	40118.422	4.504
4500	3500	24.05/26	40048.389	4.588
4500	4000	22.2/26	39947.538	4.609
5000	1750	22.0/26	39968.217	3.704
5000	3750	22.8/26	39975.115	5.058
5000	4000	22.9/26	39985.767	5.123
5500	750	24.2/26	40118.422	2.482
5500	1750	23.75/26	40116.268	3.528
5500	2000	24.45/26	40120.036	3.921
5500	2500	22.65/26	39993.034	4.698
5500	2750	23.15/26	40041.241	4.727
5500	3000	22.7/26	39972.830	5.027
5500	3250	23.15/26	40044.702	5.093
5500	3500	22.05/26	39972.692	5.132
6000	2250	23.15/26	40042.456	4.156
6000	3500	22.3/26	39968.496	5.415
6000	3750	22.8/26	40043.822	5.487
6000	4000	23.8/26	40080.056	5.786

Resultats tri-gramme

34245.244 34218.207	2.681 2.678
	2.678
01100 001	~.570
34498.324	3.004
34277.278	3.214
34420.275	2.709
34486.696	3.094
34274.977	3.664
34258.847	3.749
34255.901	3.344
34031.815	4.279
34312.671	4.113
34247.870	4.789
34097.879	2.858
34290.460	3.365
34499.712	5.128
34649.691	2.395
34278.783	3.221
34213.551	3.865
34275.536	4.183
34261.244	4.421
34495.810	5.758
0.1100.010	0.050
34489.919	3.252
	34097.879 34290.460 34499.712 34649.691 34278.783 34213.551 34275.536 34261.244 34495.810

Résultats tétra-gramme

Iterations Globales	Iterations Locales	Clé	Score	Temps
2000	750	22.5/26	28934.638	2.083
2000	1000	23.3/26	29284.407	2.203
2000	1250	22.45/26	29046.843	2.213
2500	1250	23.0/26	29202.284	2.698
2500	2250	21.7/26	28705.755	2.758
3000	1500	22.95/26	29332.017	3.174
3000	2500	21.55/26	28819.780	3.308
3000	2750	22.8/26	29234.546	3.315
3500	750	21.55/26	28672.206	2.589
3500	1250	23.05/26	29231.535	2.998
4000	3500	21.55/26	28799.692	4.404
4500	1000	21.8/26	28780.991	2.801
4500	1500	21.3/26	28764.088	3.330
5000	2000	23.85/26	29682.348	3.929
5000	2250	22.5/26	29192.210	4.323
5500	1750	23.85/26	29684.477	3.688
6000	3250	22.65/26	29257.430	5.403
6000	4000	22.1/26	28883.534	6.242

Résultats penta-gramme

terations Globales	Iterations Locales	Clé	Score	Temps	i
2500	2000	19.1/26	22210.145	2.965	
3000	2000	19.35/26	22808.969	3.527	
3000	2250	19.3/26	22838.095	3.507	
3500	1500	19.5/26	22904.669	3.638	
3500	2250	19.1/26	22801.731	4.035	
1000	500	19.1/20	22784.414	2.054	
(000	1500	19.25/26	22873.637	3.589	
1000	1750	20.95/26	23605.558	4.080	
(000	3250	19.2/26	22862.520	4.677	
(500	1250	20.2/26	23460.553	3.448	
(500	1500	19.0/26	22891.732	3.906	
(500	2000	20.6/26	23627.060	4.337	
(500	2250	19.35/26	22893.935	4.401	
(500	2500	19.0/26	22927.946	4.571	
(500	3250	19.45/26	22898.931	5.236	
(500	3500	21.45/26	24243.010	5.262	
5000	1000	20.15/26	23584.914	3.410	ı
5000	1250	19.15/26	22857.979	3.308	
5000	1500	20.05/26	23516.637	3.881	
5000	2000	21.15/26	24287.161	4.509	
5500	750	21.4/26	24055.284	2.857	
5000	1250	20.0/26	23545.868	3.581	ı
5000	1750	20.3/26	23379.277	3.963	
5000	2250	19.45/26	22919.881	4.482	
5000	3500	19.25/26	22858,833	5.909	
5000	9750	19.0/96	99811 971	6.919	

Résultats texte long

Résultats bi-gramme

2750

4000

1000

1250

1500

1750

3750

2500

3000

3500

1000

1000

3500

4000

4000

4500

4500

4500

4500

5000

5500

5500

6000

6000

6000

6000

6000 6500

6500

6500

7000

7000

7000

7500

7500

Iteration GLOBALE | Iteration LOCAL | Cle SCORE TIME 24.65/26 133266.747 10.060 25.1/26 133300.840 9.828 24.05/26 132928.374 11.732 24.2/26 133208.932 9.215 24.7/26 133167.713 12.979 24.05/26 133059.642 13.400 24.5/26 133120.530 8.422 24.6/26 133279.965 10.705 24.5/26 133048.501 11.836 24.35/26 133162.651 14.107 24.5/26 133103.568 13.293 26.0/26 133639.957 15.388

24.9/26 133355.754 16.541

24.6/26 133133.653 11.857

24.3/26 132975.793 15.081

24.75/26 133220.516 18.126

24.75/26 133227.736 9.433

24.55/26 133180.663 10.377

25.4/26 133392.808 10.188

24.3/26 133159.829 11.636

25.2/26 133324.888 18.083

24.35/26 133144.493 14.110

24.45/26 133068.335 16.312

24.15/26 | 132977.012 | 17.193

24.9/26 133283.122 8.722

24.15/26 133093.183 15.329

25.15/26 133302.686 16.248

24.05/26 133081.095 9.493

24.75/26 133166.217 9.594 24.2/26 133150.237 12.862

24.0/26 133051.330 12.655

Resultats tri-gramme

Iterations Globales	Iterations Locales	Clé	Score	Temps
2000	750	24.7/26	114374.509	6.855
2000	1000	24.7/26	114361.450	6.992
2000	1250	24.85/26	114776.080	7.016
2000	1750	24.0/26	113874.046	7.035
3000	2500	25.65/26	115274.071	10.528
3500	750	24.7/26	114824.535	7.532
3500	3000	24.9/26	114845.925	12.281
4000	1250	24.25/26	114336.447	9.384
4000	3000	24.85/26	114835.706	14.016
4000	3500	24.8/26	114895.254	14.016
4500	500	24.65/26	114261.730	8.018
4500	1000	24.8/26	114902.984	8.851
4500	2750	24.9/26	114883.472	14.558
4500	3000	24.25/26	114329.080	15.270
5000	750	25.25/26	114882.292	9.039
5000	1250	24.7/26	114726.016	10.027
5000	2250	24.9/26	114866.893	12.885
5000	4000	24.0/26	114171.043	17.534
5500	3000	25.45/26	115125.927	15.965
6000	750	24.3/26	114300.160	8.224
6000	3000	24.0/26	114099.985	16.967
6500	500	25.7/26	115547.727	6.747
6500	1500	24.8/26	114923.019	10.708
6500	2750	24.85/26	114923.441	15.275
6500	3750	24.75/26	114410.211	19.444
7000	1500	24.8/26	114904.337	10.579
7000	2250	24.8/26	114880.958	13.877
7000	2500	25.9/26	115607.459	14.349
7500	500	24.05/26	114320.316	6.711
7500	750	24.3/26	114262.740	8.379
7500	2000	24.65/26	114809.369	12.530
8000	750	24.55/26	114421.175	7.901
8000	1250	24.9/26	114859.097	10.076

Résultats tétra-gramme

Iterations Globales	Iterations Locales	Clé	Score	Temps
8000	3000	24.8/26	114929.687	16.560
8000	3500	24.5/26	114351.949	17.710
8000	3750	26.0/26	115724.936	18.356
8500	1750	25.05/26	114909.573	11.438
8500	2750	25.4/26	115129.601	15.922
8500	3000	24.75/26	114873.000	16.385
9000	750	24.45/26	114350.001	7.471
9000	1250	24.6/26	114386.287	10.019
9000	1750	24.85/26	114924.414	11.936
9500	1000	24.85/26	114923.441	8.917
9500	3500	25.5/26	115144.665	17.931
9500	4000	24.9/26	114926.432	19.728
10000	500	25.9/26	115539.106	7.052
10000	1750	24.75/26	114638.554	12.600
10000	2000	24.9/26	114901.210	12.667
10000	2750	25.05/26	114948.405	15.896
10000	3500	24.8/26	114886.000	18.142

Résultats penta-gramme

Iteration GLOBALE	Iteration LOCAL	Cle	SCORE	TIME
3000	1250	23.45/26	81105.214	10.574
3500	1250	23.6/26	81388.341	11.025
4000	3000	24.8/26	83660.521	15.682
4500	2500	24.6/26	82713.218	16.528
4500	3250	24.75/26	83648.834	17.131
5000	750	23.45/26	81251.824	8.817
5500	2750	23.8/26	81392.992	17.462
5500	3750	24.7/26	83623.298	20.430
6500	3500	24.8/26	83653.384	20.823
7000	750	23.75/26	80862.902	8.802
7500	2250	23.6/26	81300.276	16.444
7500	3750	23.7/26	81330.953	22.243
8000	2250	24.9/26	83645.426	15.623
8000	2750	23.9/26	81272.716	17.462
8500	750	23.35/26	80424.116	9.444
9500	1250	23.65/26	81332.174	11.854
9500	2000	23.6/26	81191.380	14.141
10000	3750	23.7/26	81283.441	22.304
10000	4000	25.0/26	83662.785	21.764

N-gramme optimales

	texte court	texte long
bi-gramme	rapidité +++ efficacité +	efficacité +
tri-gramme	rapidité ++ efficacité +++	rapidité++ efficacité ++
tétra-gramme	rapidité + efficacité +	rapidité + efficacité +++
penta-gramme	rapidité - efficacité -	rapidité - efficacité ++

Résultats Pearson

clé	score obtenu
5/26	0.2918653
8/26	0.395423
9/26	0.35289
11/26	0.625217
14/26	0.7918653
2/26	0.995289

Pourquoi fitness Pearson donne-t-elle des résultats décevants ?

- N'évalue pas l'enchaînement des caractères mais seulement la fréquence des caractères.
- Le score de cette fitness reflète simplement de la "ressemblance" à la langue
- Donne seulement un indice de clarté

Combinaison de n-gramme

Idée de la démarche

- Exécuter la fonction hill-climbing avec un n
- Sauvegarder la clé trouvée (clé n° 1)
- Exécuter une nouvelle fois la fonction de hill-climbing avec comme clé de départ la clé n° 1 (avec un n différent ou pas)

Résultats

- Combiner 2 fonctions fitness avec le même n-gramme
 → pas d'augmentation sur le score final.
- Combinaison (n, n+k) avec k>0
 → parfois une augmentation, mais pas systématiquement

combinaison	itérations globales	itérations statiques	moyenne lettres 1	moyenne lettres 2	moyenne score 1	moyenne score 2	Temps
(2,2)	1500	(750,500)	22.83/26	24.0/26	40115	40115	2.406
(2,3)	1500	(750,500)	20.3/26	25.1/26	40112	34685	2.688
(2,4)	1500	(1000,1000)	22.25/26	25.17/26	40121	30128	3.951
(2,5)	1000	(750,750)	18.8/26	25.2/26	40105	25941	2.603
(3,3)	1500	(1000,750)	23.8/26	25.2/26	34714	34714	3.134
(3,3)	1000	(1000,1000)	9.8/26	12.0/26	31963	31963	2.573
(3,4)	1500	(1250,750)	20.25/26	23.33/26	34355	29380	3.538
(3,5)	1500	(1250,750)	23.2/26	24.4/26	34714	34714	3.771
(4,4)	1500	(1000,1000)	23.8/26	24.8/26	30128	30128	3.507
(4,5)	3500	(1500,1500)	26.0/26	25.6/26	30128	26373	5.434
(4,5)	3500	(1500,1500)	26.0/26	25.6/26	30128	26373	5.434
(5,5)	2000	(1750,1750)	24.0/26	25.2/26	26373	26373	5.591
(5,5)	2000	(1500,1500)	15.8/26	15.2/26	20776	20776	5.520

Conclusion

- L'efficacité du déchiffrement par substitution mono-alphabétique dépend du choix des paramètres de la fonction de hill-climbing (fitness, n-gramme, itérations)
- Pas de résultats réellement concluants sur les combinaisons de n-gramme

MERCI DE NOUS AVOIR ÉCOUTÉS!!

Et merci à notre professeur encadrant Valérie Ménissier-Morain