Day3-Lab-Exercises

Armand BANDIANG

January 27, 2021

1 Exercise

Implement the following function

$$h(t) = \exp^{-t}\sin(\pi t).$$

Print out h(0) and h(1)

2 Exercise

Now we extend the function h(t) in exercise 1 to

$$g(t) = \exp^{-a}\sin(\pi t)$$

where a is a parameter. Print out g(0) and g(1) for a = 10

3 Exercise

Make a Python function $\operatorname{normal}(x, m=0, s=1)$ for computing the Gaussian function

$$f(x) = \frac{1}{\sqrt{2\pi} s} \exp\left[-\frac{1}{2} \left(\frac{x-m}{s}\right)^2\right].$$

Write out a nicely formatted table of x and f(x) values for n uniformly spaced x values in [m-5s, m+5s]. Choose m, s, and n as you like.

4 Exercise

Write a function that does the following:

$$n! = n(n-1)(n-2)\cdots 2\cdot 1$$

5 Exercise

Write a function that returns the minimum and maximum of a function g(x) on [a, b]. Test the function for $g(x) = \sin x$ and $x \in [-\pi/2, 2\pi]$

Hint: The evaluation points x can be uniformly distributed: $x_i = a + ih$, $i = 1, 2, \ldots, n-1, h = (b-a)/n-1$

6 Exercise

Write a function $get_pair(dna, pair)$ that counts the number of occurrences of a pair of characters (pair) in a DNA string (dna). For example, $get_pair('ACTGCTATCCATT', 'AT')$ will return 2.

7 Exercise

Write a function that takes a DNA strand and produces it complementary. **Note:** The mecanism will be explain in class.