10/17. Hansen

NEAR FIELD GAIN CORRECTION FOR STANDARD GAIN HORN ANTENNAS

The Ohio State University

H. H. Chung and R. C. Rudduck

The Ohio State University

ElectroScience Laboratory

Department of Electrical Engineering Columbus, Ohio 43212

Technical Report 711587-1

March 1980

Contract NOO014-76-A-0039-RZ01

Approved to public released
Distributor Unlimited

2750th Air Base Wing/PMR

Specialized Procurement Branch

Building 1, Area C

Wright-Patterson Air Force Base, Ohio 45433

90 11 14 008

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED	
NEAR FIELD GAIN CORRECTION	FOR STANDARD	Technical Report	
GAIN HORN ANTENNAS		6. PERFORMING ORG. REPORT NUMBER ESL 711587-1	
AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(8)	
H. H. Chung and R. C. Ruddu	ck	N00014-76-A-0039-RZ01	
PERFORMING ORGANIZATION NAME AND ADD	DRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
The Ohio State University Elec Laboratory, Department of Elec Columbus, Ohio 43212		Project F692SB8127-0001 & 0002	
. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE	
2750th Air Base Wing/PMR, Spec		March 1980	
Procurement Branch, Building 1		13. NUMBER OF PAGES	
Wright-Patterson Air Force Bas		96 15. SECURITY CLASS. (of this report)	
MONITORING AGENCT NAME & ROOKESS(A. &	meren nom connormag circo,	Unclassified	
		15a. DECLASSIFICATION DOWNGRADING SCHEDULE	
. DISTRIBUTION STATEMENT (of the abatract e	ntered in Block 20, il different fro	m Report)	
	ntered in Block 20, it different fro	m Report)	
Supplementary notes The material contained in to The Ohio State University Master of Science.	his report is also u	sed as a thesis presented	
SUPPLEMENTARY NOTES The material contained in to The Ohio State University	his report is also u y as partial fulfill	sed as a thesis presented ment for the degree	
The material contained in t to The Ohio State Universit Master of Science.	his report is also u y as partial fulfill pary and identify by block number)	sed as a thesis presented ment for the degree Theory of Diffraction	
The material contained in to The Ohio State University Master of Science. KEY WORDS (Continue on reverse side II necess) Standard gain antennas Horn antennas Antenna gain	his report is also u y as partial fulfill eary and identify by block number) Geometrical l Corrugated ho	sed as a thesis presented ment for the degree Theory of Diffraction	
The material contained in to The Ohio State University Master of Science. KEY WORDS (Continue on reverse side II necess) Standard gain antennas Horn antennas Antenna gain Near field correction is to be measured for horn to investigate the use of the state of the	his report is also u y as partial fulfill eary and identify by block number) Geometrical l Corrugated ho ary and identify by block number) s are usually require antennas. In this re he Geometrical Theor	sed as a thesis presented ment for the degree Theory of Diffraction orns ed when the far field gain esearch, the object was	
The material contained in to The Ohio State University Master of Science. KEY WORDS (Continue on reverse side If necess) Standard gain antennas Horn antennas Antenna gain Near field correction is to be measured for horn	his report is also u y as partial fulfille eary and identify by block number) Geometrical 1 Corrugated ho ary and identify by block number) s are usually require antennas. In this re he Geometrical Theory	sed as a thesis presented ment for the degree Theory of Diffraction orns ed when the far field gain esearch, the object was	

20.

ACKNOWLEDGMENT

The authors would like to express their sincere appreciation to Dr. W. D. Burnside for his suggestions and reading of the manuscript.

The efforts of the Measurement Standards and Microwave Laboratory at Newark Air Force Station in providing measured results on coupling data are greatly appreciated.

Appliet	n Pur					
	ontil V					
U e veurrd (1) U astricata v						
Bypon ND A 164594						
À	atabiliy 2.412					
Dist	ne i sublat Brand					

TABLE OF CONTENTS

		Page
ACKNOWLEDGN	MENTS	1
Chapter		
I	INTRODUCTION	1
11	BASIC GTD THEORY	2
	Wedge Diffraction Slope Diffraction	2
111	FAR FIELD PATTERN ANALYSES	11
	E-Plane Pattern H-Plane Pattern	11 17
IV	ANALYSIS OF THE ON-AXIS NEAR FIELD BY USING GTD METHOD	22
٧	AMPLITUDE CENTER FOR ON-AXIS WAVE	28
VI	ANALYSIS OF HORN GAIN	33
VIIV	ON-AXIS COUPLING AND NEAR FIELD CORRECTION	37
IIIV	RESULTS AND DISCUSSION	41
	Procedure for Horns of Same Model Procedure for Horns of Different Models	42 43
IX	CONCLUSION	75
Appendix		
Α	EQUIVALENT LINE SOURCE INTEGRATION METHOD (LSI)	76
В	APERTURE INTEGRATION METHOD (API)	87
С	COUPLING BETWEEN NON-ISOTROPIC SOURCES	88
REFERENCES		Q.F

CHAPTER I INTRODUCTION

The customary method of measuring the gain of microwave antennas is by comparison with a standard gain pyramidal horn. The gain of the standard gain horn is determined either by calculation from the dimensions of the pyramidal horn or by measurements. If the far field gain is to be measured, near field corrections are frequently necessary for accurate gain measurements. In this research, the object was to investigate the use of the Geometrical Theory of Diffraction (GTD) for calculating near field corrections.

Both the GTD method and the equivalent line source integration (LSI) method were used for the calculation of the on-axis near fields for non-corrugated pyramidal horns. For small horn dimensions, the LSI method is recommended for somewhat better accuracy. For the corrugated horns, the aperture integration method (API) is used for better accuracy.

In most published research the range is defined as that between the two horn apertures. A more appropriate way to define the range is to use the distance between the amplitude centers of the two horns. The amplitude center of a horn is determined from its E- and H-plane phase centers. Because the range is defined as that between the amplitude centers, considerably less correction is required as compared to using the distance between the horn apertures.

The method for using the near field range correction to determine the far field gain from the measurements of coupling between two horns is discussed in Chapter VII. The measured coupling data used in this research are based on measurements taken at the Measurement Standards and Microwave Laboratory at Newark Air Force Station.

CHAPTER II BASIC GTD THEORY

Wedge Diffraction

The basic GTD analysis for horn antennas [1-5] is the diffraction by a wedge as shown in Figure 1. There are three basic contributions to the field at the observation point, namely, the incident rays and reflected rays (called the geometric optics rays) and the diffracted rays as seen in the figure. Depending on the position of the observation point there may be no incident ray or no reflected ray as seen in Figure 2.

For an isotropic point source, the incident ray at the observation point (s,ϕ) is given by

$$E^{i} = \frac{e^{-jks_{i}}}{s_{i}} \tag{1}$$

where \mathbf{s}_i is the distance between the source and observation points as shown in Figure 1b. The reflected ray at the observation point is given by

$$E^{r} = \pm \frac{e}{s_{r}}$$
 (2)

where s_r is the distance between the image and observation points. The plus (+) sign is used for E-field polarization perpendicular to ray fixed plane of incidence and the minus (-) sign is used for parallel polarization. The diffracted fields at the observation point (s,ϕ) are given by [6]

$$E_{"}^{d} = E_{"}^{i}(Q_{E}) \cdot D_{s}(L,\phi,\phi_{o},\beta_{o},n) A(s) e^{jks}$$
(3)

$$E_{1}^{d} = E_{1}^{i}(Q_{E}) \cdot D_{h}(L, \phi, \phi_{O}, \beta_{O}, n) A(s) e^{-jks}$$
 (4)

where $E_n^1(Q_E)$ is the parallel component which parallel to ray fixed plane of incidence of the incident field at the diffraction point Q_E , E_n^d is the parallel component of the diffracted field at the

- (2)
- Incident ray at the observation point. Reflected ray at the observation point. Diffracted ray at the observation point. (3)

Figure 1. Geometry for three-dimensional wedge diffraction.

Figure 2. Boundary regions for the wedge problem.

Region I: Incident + reflected + diffracted

diffracted rays.

Region II: No reflected ray.

Region III: No reflected and incident

observation point, and $E_1^i(Q_E)$ and E_1^d are the perpendicular components. For an isotropic point source located at (s', ϕ_0), the incident field at the diffraction point Q_E is given by

$$E^{i}(Q_{E}) = \frac{e^{-jks'}}{s'}$$
 (5)

where s' is the distance between the source and diffraction points. The spreading factor, A(s), describes how the amplitude of the field varies along the diffracted ray,

$$A(s) = \sqrt{\frac{s'}{s(s'+s)}} . \tag{6}$$

The diffraction coefficients, $\mathbf{D_s}$ and $\mathbf{D_h}$, for each incident polarization are given by

$$D_{s,h}(L,\phi,\phi_{0},\beta_{0},n) = D_{I}(L,\phi-\phi_{0},\beta_{0},n) + D_{I}(L,\phi+\phi_{0},\beta_{0},n)$$
(7)

where the minus (-) sign applies for D $_{\rm S}$ and the plus (+) sign for D $_{\rm h}.$ The components of the diffraction coefficients are expressed in terms of

$$D_{I}(L, \Psi, \theta_{0}, n) = \frac{e^{-j\frac{\pi}{4}}}{2n\sqrt{2\pi}k\sin\theta_{0}} \left[\cot(\frac{\pi+y}{2n})F(kLa^{+}(y)) + \cot(\frac{\pi-y}{2n})F(kLa^{-}(y))\right]$$

where $\boldsymbol{\epsilon}_{-}$ is the incident angle with respect to the edge. The wedge parameter n is given by

$$n = 2 - \frac{WA}{\pi}$$

where WA is the wedge angle in radians. The angle parameter is given by

$$\phi = \phi^{-\frac{1}{2}} \phi_0 \tag{10}$$

and

$$a^{+}(\psi) = 2 \cos^{2}(\frac{2n\pi N^{-}-\psi}{2})$$
 (11)

where N^{-} are integers which most nearly satisfy the equations,

$$2\pi n N^{+} - \Psi = \tau \tag{12}$$

and

$$2^{\pi} n N^{-} - \psi = -\pi$$
 (13)

The transition function which is basically a Fresnel integral is given by

$$F(x) = 2j \times e^{jx} \int_{/\overline{x}}^{\infty} e^{-j\tau^2} d\tau . \qquad (14)$$

For spherical wave incidence on a wedge with a flat surface, the distance parameter is given by

$$L = \frac{ss'}{s+s'} \cdot sin^{2s}_{0} \qquad (15)$$

The total field at the observation point is the sum of the incident, reflected, and diffracted fields as given by

$$\mathsf{E}^{\mathsf{t}} = \mathsf{E}^{\mathsf{i}} + \mathsf{E}^{\mathsf{r}} + \mathsf{E}^{\mathsf{d}} \quad . \tag{16}$$

For grazing incidence along the wedge surface ($^{+}_{0}$ =0) the incident and reflected terms combine to give the total geometrical optics field effectively incident at the observation point. Thus,

$$E^{GO} = E^{i} + E^{r} = 2 \frac{e}{s_{i}}$$
, (17)

and the diffraction coefficient becomes

$$D_{h} = 2D_{I} (L, h, R_{o}, n) . \tag{18}$$

It is usually more convenient to use a unit amplitude for the incident wave as given in Equation (1). Consequently, the geometrical optics field for grazing incidence is defined as

$$E^{GO} = \frac{e^{-jks}i}{s_i}, \qquad (19)$$

and hence the diffracted field for grazing incidence is given by

$$E^{d} = E^{i}(Q_{F}) D_{I}(L, b, a_{O}, n) A(s) e^{-jks}$$
, (20)

where

$$E^{\dagger}(Q_{E}) = E^{GO}(Q_{E}) = \frac{e^{-jks'}}{s'}. \tag{?1}$$

Slope Diffraction

It is well known that the tangential component of the electric field vanishes on the surface of a perfectly conducting plane. Therefore, in the case of grazing incidence on a wedge, the parallel component of the incident field vanishes, and thus one needs to use slope diffraction in order to obtain the H-plane pattern. The slope diffracted fields are calculated in a way similar to ordinary edge

diffraction except that the slope diffraction coefficients $\frac{\partial D_s}{\partial a_i}$ and $\frac{\partial D_h}{\partial b_i}$ and the slope of the incident field $\frac{\partial E^i}{\partial n}$ at the edge are used.

Slope diffraction can be derived from ordinary edge diffraction by considering a dipole source composed of two isotropic point sources as shown in Figure 3. The field of the dipole source is given by

$$E^{Si} = I \frac{e}{s_{+}} - I \frac{e}{s_{-}}$$
 (22)

where s_i and s_i are the respective slant distances from each individual source. For small spacings $e^{-c}s_i$, $s_i = s_i + \frac{1}{2}e^{-c}\sin\beta\sin\psi$

$$s_{+} = s_{i} + \frac{1}{2}$$
 sinß sinų

where 6 is the angle measured from the z-axis as shown in Figure 3a, and ψ is measured from the xz plane as shown in Figure 3b. Thus, the source field can be expressed as

$$E^{Si} = I \frac{e^{-jkS_i}}{s_i} \left[e^{+j\frac{k^2}{2}sin\beta sin\psi} - e^{-j\frac{k^2}{2}sin\beta sin\psi} \right]$$

$$= 2 j I sin(\frac{k^2}{2}sin\beta sin\psi) \frac{e^{-jks_i}}{s_i}. \tag{23}$$

Figure 3. Dipole source for slope diffraction.

For a slope diffraction source $k^{c} \rightarrow 0$, and thus

$$E^{Si} = jkl \ell sin \ell sin \psi \frac{e}{s_i} \qquad (24)$$

The slope diffracted field can be derived by superposition of the diffracted fields from the individual sources as shown in Figure 4. Thus by using Equations (3) and (4)

$$E^{Sd} = I \frac{e^{-jks'}}{s'} \left[D_{s,h}(\phi, \phi + \frac{\Delta \phi}{2}) - D_{s,h}(\phi, \phi - \frac{\Delta \phi}{2}) \right] A(s)e^{-jks}$$
(25)

where D is used for parallel polarization and D for perpendicular polarization. Since $\Delta \phi \rightarrow 0$ for a dipole source, Equation (25) can be expressed as

$$E^{sd} = I \frac{e^{-jks'}}{s'} \frac{\partial D_{s,h}}{\partial \phi_{o}} \Delta \phi_{o} A(s) e^{-jks} . \qquad (26)$$

Furthermore, the slope of the incident field at the diffraction point $\textbf{Q}_{\textrm{F}}$ can be derived from Equation (24) as

$$\frac{\partial E^{Si}}{\partial \psi}\Big|_{\pi} = -jkI\ell \sin \theta_0 \frac{e^{-jkS'}}{S'}$$
 (27)

where \bigcirc is the angle of the incident ray with respect to the edge. From Equation (27)

$$I = \frac{e^{-jks'}}{s'} = \frac{-1}{jk\ell sin\ell_0} = \frac{\partial E^{si}}{\partial \psi} \Big|_{\pi}$$
 (28)

and substituting into Equation (26) gives the slope diffracted field in terms of the slope of the incident field,

$$E^{sd} = -\frac{1}{jkcsin\beta_0} \frac{\partial E^{sj}}{\partial \psi} \Big|_{\pi} \frac{\partial D_{s,h}}{\partial \phi_0} \Delta \phi_0 A(s) e^{-jks} . \qquad (29)$$

From Figures 4a and b

$$e = e' \quad \Delta \phi = s' \sin \theta_0 \quad \Delta \phi_0 \tag{30}$$

and substituting into Equation (29) gives

$$E^{sd} = \frac{-1}{jks'sin^2P_0} \frac{\partial E^{si}}{\partial \phi} \Big|_{\pi} \frac{\partial D_{s,h}}{\partial \phi_0} A(s) e^{-jks} . \tag{31}$$

Figure 4. Slope diffraction for a wedge.

The slope of the incident field at the edge can be expressed in terms of the normal to the edge as shown in Figure 4c. Thus

$$\frac{\partial E^{Si}}{\partial \psi}\Big|_{\pi} = -\rho' \frac{\partial E^{Si}}{\partial n} = -s' \sin \beta_0 \frac{\partial E^{Si}}{\partial n}.$$
 (32)

Thus the slope diffracted field can be expressed in terms of the normal derivative of the incident field at the diffraction point \mathbf{Q}_{E} as

$$E^{sd} = \frac{1}{jksin\beta_0} = \frac{\partial E^{si}}{\partial n} = \frac{\partial D_{s,h}}{\partial \phi_0} A(s) e^{-jks}$$
(33)

For grazing incidence the parallel components of the incident and reflected waves combine to form the geometrical optics field as discussed before and, consequently,

$$E_{\parallel}^{Sd} = \frac{1}{jksin\beta_{o}} \frac{\partial E^{Si}}{\partial n} D_{PI} (L,\phi,\beta_{o},\eta) A(s) e^{-jks}$$
(34)

where

$$D_{PI}(L, \phi, \beta_0, \eta) = \frac{D_I(L, \phi, \beta_0, \eta)}{\partial \phi_0}$$
(35)

Equation (34) applies for grazing incidence where $D_{\rm PI}$ is used in the same manner as $D_{\rm I}$ was used in Equation (20).

CHAPTER III FAR-FIELD PATTERN ANALYSES

E-Plane Pattern

In the case of standard gain horn antennas, the feed waveguide dimension is small; therefore, the dominant propagating mode within the horn can be approximated as a spherical wave with a ${\rm TE}_{10}$ mode distribution,

$$E^{G.0.} = \frac{e^{-jkR_0}}{R_0} \cos \frac{\pi tan\theta_H}{2tan\theta_{oH}}$$
 (36)

where ${\rm R}_{\rm O}$ is the distance from the apex of horn to the observation point, $\theta_{\rm H}$ is the angle measured from the H-plane, and $\theta_{\rm OH}$ is the half-flare angle in the H-plane as shown in Figure 5. Here it is assumed that the source is located at the apex. From the TE $_{10}$ mode distribution, one obtains a uniform amplitude distribution in the E-plane and a cosine amplitude distribution in the H-plane.

Our purpose for calculating the far field patterns is to find the phase center in each principal plane. Then the amplitude center for the on-axis radiated field can be determined from the phase center information as will be discussed later. The E-plane pattern can be approximated by superimposing the contributions from the geometrical optics field and the first order diffracted field from the two diffraction points Q_{E_1} and Q_{E_2} shown in Figures

5 and 6. The doubly diffracted field and higher-order fields are usually small for most horns and are often neglected. For a more detailed analysis in the E-plane pattern see Reference [3]. In the E-plane $\theta_H {=} 0^{\circ}$, and thus the geometrical optics field is given by

$$E^{G.0.} = \frac{e^{-jkR_0}}{R_0} , \qquad (37)$$

where $\mathbf{R}_{\mathbf{0}}$ is the distance from the E-plane apex to the observation point. For far field distances,

$$R_o = R_{E1} + L_E \cos(\theta_{oE} - \theta) . \tag{38}$$

Since the source is located at the apex of the horn walls the E-plane diffracted fields are given by Equation (20) which applies for grazing incidence. Thus the diffracted field from the diffraction point $\mathbb{Q}_{\mathsf{E},\mathsf{l}}$ is given by

Figure 5. Horn geometry.

$$E_{1}^{d} = E^{i}(Q_{E1}) \cdot D_{I}(L, \pi - \theta_{oE} + \theta_{o}, \theta_{o}, n) \cdot A(R_{E1}) e^{-jkR_{E1}}$$
 (39)

where

$$\beta_0 = \frac{\pi}{2} \tag{40}$$

$$n = 2 \tag{41}$$

$$L = L_{c} \tag{42}$$

$$A(R_{E1}) = \int_{R_{E1}}^{L_{E}} \frac{L_{E}}{(R_{E1} + L_{E})} \approx \frac{\int_{R_{E1}}^{L_{E}}}{R_{E1}} \approx \frac{\int_{R_{E1}}^{L_{E}}}{R_{O}} \text{ for } R_{E1}^{>>} L_{E}$$
 (43)

$$R_{E1}$$
 $\approx R_o - L_E \cos(\theta_{oE}^{-\theta})$, for R_{E1} , $R_o > L_E$ (44)

and

$$E^{i}(Q_{E1}) = \frac{e^{-jkL_E}}{L_E} . \tag{45}$$

Thus the diffracted field from $\mathbf{0}_{\mathrm{El}}$ can be expressed as

$$E_{1}^{d} = \frac{e^{-jkR_{0}}}{R_{0}} \cdot \frac{e^{-jkL_{E}}}{\sqrt{L_{E}}} \cdot D_{I}(L_{E}, \pi^{-\theta} o E^{+\theta}, \frac{\pi}{2}, 2) \cdot e^{jkL_{E}\cos(\theta o E^{-\theta})}$$
(46)

Similarly, the diffracted field from the diffraction point \mathbf{Q}_{E2} is given by

$$E_{2}^{d} = \frac{e^{-jkR_{0}}}{R_{0}} \cdot \frac{e^{-jkL_{E}}}{\sqrt{L_{E}}} \cdot D_{I}(L_{E}, \pi-\theta_{0E}, \frac{\pi}{2}, 2) \cdot e^{jkL_{E}\cos(\theta_{0E}+\pi)}$$
(47)

For far field distances, the rays corresponding to the three terms, $\mathsf{E}^{G.0}\cdot$, E^d_1 and E^d_2 are almost parallel and thus the three field vectors can be summed as scalars. The total field in the E-plane pattern is given by

$$E^{TOT}(0) = E^{G.0.} + E_1^d + E_2^d$$
 (48)

Also, these three terms have a common factor $\frac{e}{R_0}$, which can be suppressed for the convenience of our E-plane pattern analysis.

Each term in Equation (48) contributes to the field only in certain regions as shown in Figure 7 because of shadowing by the horn walls. Each region and the terms used there are defined in Table 1.

Table 1
Boundary Regions for Geometrical Optics and diffracted fields

Region	min	θ max	Terms
I	- ⁰	⁰ о	$E^{G.0.} + E_1^d + E_2^d$
II	⁰ о	$\frac{\pi}{2}$	$E_1^d + E_2^d$
III	$\frac{\pi}{2}$	π -θ	Εď
i IV	π - θ _C	-π +θ O	$E_1^d + E_2^d$
V	-π + θ _o	- <mark>π</mark>	E ^d ₂
VI	<u>-</u> π/2	- ₀ o	$E_1^d + E_2^d$

An example of an E-plane pattern is shown in Figure 8 for the Scientific-Atlanta (S/A) standard gain horn antenna (model number 12-8.2) for a frequency of 10 GHz. The flare angle of the S/A horn in the E-plane is 13° and the aperture width is 14.4 cm or 4.8λ at 10 GHz.

Figure 6. E-plane cross section of horn for far-field pattern analysis.

Figure 7. Boundary regions for geometric optics and diffracted fields.

Figure 8. E-plane pattern for Scientific-Atlanta horn (model 12-8.2).

H-plane pattern

In Reference [4], GTD was used to calculate the H-plane pattern by representing the TE₁₀ waveguide mode as a pair of plane waves. The analysis is tedious because there are multiple reflections between the horn walls. This makes it necessary to consider many reflections and diffractions in the process. The use of slope diffraction in conjunction with a simple source at the H-plane apex gives a much simpler model for the H-plane. Thus the slope diffraction concept [5] will be used here.

In the H-plane, for grazing incidence along the horn walls, the tangential component of the electric field vanishes on the surfaces and thus only slope diffraction is used to obtain the H-plane pattern. The H-plane pattern can be approximated by superimposing the contributions from the geometrical optics field and the slope diffracted fields from the two diffraction points $\mathbb{Q}_{\mathsf{H}_1}$,

QH2 as shown in Figure 9. The contribution of the E-plane edge will not significantly affect the H-plane pattern shape but will slightly affect the computed front/back ratio. The contribution of doubly diffracted and higher order fields are usually small for most horns. Therefore, the contribution of the E-plane edge, doubly diffracted and higher order fields will not be included in our study.

Figure 9. H-plane cross section of horn for far-field pattern analysis.

The phase reference is taken at the H-plane apex as shown in Figure 9. The geometrical optics field is approximated as

$$E^{G.0.} = \cos(\frac{\pi}{a} L_{H} \cos^{4} O_{OH} \tan^{4} O_{OH}) \cdot \frac{e^{-jkR_{O}}}{R_{O}}$$

$$= \cos(\frac{\tan^{4} O_{OH}}{2\tan^{4} O_{OH}}) \cdot \frac{e^{-jkR_{O}}}{R_{O}}$$
(49)

where $a = 2L_H \sin\theta_{OH}$ (50)

For narrow flare angle (-0.01) .

$$E^{G.O.} \approx \cos(\frac{e^{-jkR_0}}{2^{N_0}}) \cdot \frac{e^{-jkR_0}}{R_0}.$$
 (51)

Since the source is located at the apex, the H-plane diffracted fields are given by Equation (34) which applies for grazing incidence. The slope of the field incident on the diffraction points \tilde{Q}_{H1} and Q_{H2} is given by

$$\frac{1}{100} = \frac{1}{L_{H}} \cdot \frac{E^{i}(Q_{H1}, 2)}{\frac{1}{100}}$$

$$= -\frac{1}{L_{H}} \cdot \frac{E^{i}(Q_{H1}, 2)}{\frac{1}{100}}\Big|_{\theta = 0}$$

$$= -\frac{1}{L_{H}} \cdot \frac{E^{i}(Q_{H1}, 2)}{\frac{1}{100}}\Big|_{\theta = 0}$$

$$= -\frac{e^{-jkL_{H}}}{\frac{1}{100}} \cdot \frac{E^{i}(Q_{H1}, 2)}{\frac{1}{100}}\Big|_{\theta = 0}$$
(52)

where the slope of the pattern is determined as

$$\left. \frac{1}{1000} \left(\cos \frac{\pi \tan \theta}{2 \tan \theta} \right) \right|_{\theta = 0} = \frac{1}{100} \sin 2\theta \cos \theta$$

$$(5.2)$$

Thus we get,

$$\frac{-E^{Si}}{m} = \frac{e^{-jkL}H}{\frac{2}{L_H^2}} = \frac{-jkL}{\sin 2\theta_{OH}}$$
(54)

$$A(s) = \sqrt{\frac{L_H}{R_{H1}^2 R_{H1}^2 + L_H^2}}, \quad for R_{H1}^{-1} L_H$$
 (55)

$$\dot{E}_{1}^{sd} = \frac{-jkL_{H}}{jk\sin 2\theta_{OH}} \cdot \frac{e^{-jkL_{H}}}{L_{H}^{3/2}} \cdot D_{PI}(L_{H}, \pi-\theta_{OH}^{+}, 2, 2) \cdot \frac{e^{-jkR_{HI}}}{R_{HI}}$$
(56)

Similarly,

$$E_2^{\text{sd}} = \frac{-jkL_H}{jk\sin 2} \cdot \frac{e}{oH} \cdot \frac{-jkR_{H2}}{L_H^{3/2}} \cdot D_{PI}(L_H, -oH^{-3/2}, 2) \cdot \frac{e}{R_{H2}}$$
(57)

For far field distances,

$$R_{H1} = R_0 - L_H \cos(-\omega_{OH} - \omega)$$
 (58)

$$R_{H2} = R_0 - L_H \cos(\theta_{OH} + \theta_{OH})$$
 (50)

and for narrow flare angle ($^{\rm o}{\rm oH}^{-20}{\rm ^{0}}{\rm ^{1}},$ the slope diffraction fields become

$$F_{1}^{Sd} = \frac{1}{jk20} \frac{1}{oH} \cdot \frac{e^{-jkL_{H}}}{L_{H}^{2/2}} \cdot \frac{D_{PI}(L_{H}, -\omega_{oH}, 2.2)}{\omega_{oH}^{2/2}} \cdot \frac{e^{-jkR_{O}}}{R_{O}} \cdot \frac{jkL_{H}cos': oH^{-3}}{e^{-jkR_{O}}}$$
(60)

$$E_{2}^{sd} = \frac{e^{-jkL_{H}}}{jk2\theta_{OH}} \frac{e^{-jkR_{H}}}{L_{H}^{3/2}} D_{PI}(L_{H}, \pi-\theta_{OH}-\theta, \frac{\pi}{2}, 2) \frac{e^{-jkR_{O}}}{R_{O}} e^{jkL_{H}cos(\frac{\pi}{2}OH^{++})}$$
(61)

The total field in the H-plane pattern is given by

$$E^{TOT}(e) = E^{G.0.} + E_1^{sd} + E_2^{sd}$$
 (62)

The factor, $\frac{e}{R_0}$, can be suppressed for the convenience of the H-plane pattern analysis.

The regions for the geometrical optics and the slope diffracted fields are the same as for the E-plane shown in Figure 7 and given in Table 1.

An example of an H-plane pattern is shown in Figure 10 for the S/A standard gain horn (model number 12-8.2) for a frequency of 10 GHz. The flare angle of the S/A horn in the H-plane is 16.5° and the aperture width is 19.43 cm or $6.48\,\mathrm{\AA}$ at 10 GHz.

Figure 10. H-plane pattern for Scientific-Atlanta horn (model 12-8.2).

CHAPTER IV ANALYSIS OF HORN'S ON-AXIS NEAR FIELD USING GTD

The GTD analysis of the on-axis near field radiated by a rectangular horn is similar to the far field pattern cases. As shown in Figure 11, the source is located at the apex, the total field at the observation point is the sum of incident and diffracted fields as given by

$$\overline{E}^{TOT} = \overline{E}^{G.0.} + \overline{E}_1^d + \overline{E}_2^d + \overline{E}_1^{sd} + \overline{E}_2^{sd}$$
 (63)

where $\overline{E}^{G.0.}$, \overline{E}^{d}_{1} , \overline{E}^{d}_{2} , \overline{E}^{d}_{1} and \overline{E}^{sd}_{2} are defined as before except that the distances, angle parameters, and spreading factors are modified for the near field case as will be defined later.

As shown in Figure 12, for the on-axis near field in the E-plane, the amplitudes of the two diffracted fields from $Q_{\rm E}$ and $Q_{\rm F}$ in the E-plane are equal because of symmetry in the ray geometry. Thus the diffracted fields are given by Equation (20), where

$$L = \frac{L_E R_{E1}}{L_E + R_{E1}} \tag{64}$$

$$S = R_{E1} = R_{E2}$$
 (65)

$$\Phi = \pi - \theta_{OE} - \theta' \tag{66}$$

$$\theta' = \tan^{-1} \frac{B}{2Z_{\Delta}} \tag{67}$$

$$\dot{R}(s) = \int \frac{L_E}{R_{E1}(R_{E1} + L_E)}$$
 (68)

Basic field contributions for the ovramidal horn at the observation point. Figure 11.

Figure 12. E-plane geometry.

However, the two diffracted electric field vectors are not in the same direction at the observation point as shown in Figure 13. The $\cos\theta$ 'components are in the same direction and can be added together, but the sin components are in the opposite direction and cancel each other. Thus the sum of the diffracted fields from the diffraction points ϱ_{E1} and ϱ_{E2} in the E-plane is given by

$$E_{DIF} = (E_{1}^{d} + E_{2}^{d})\cos\theta'$$

$$= 2 \cdot \frac{e^{-jkL_{E}}}{\sqrt{L_{E}}} D_{I} \left(\frac{L_{E}^{R}E_{1}}{L_{E}^{+R}E_{1}}, \pi^{-\theta}oE^{-\theta'}, \frac{\pi}{2}, 2\right) \frac{e^{-jkR_{E1}}}{\sqrt{R_{E1}(R_{E1}^{+L_{E}})}} \cos\theta'$$
(70)

Similarly, as shown in Figure 14, for the on-axis near field in the H-plane, the diffracted fields from points $\rm Q_{H1}$ and $\rm Q_{H2}$ are given by Equation (34), where

$$L = \frac{L_H R_{H1}}{L_H + R_{H1}} \tag{71}$$

$$S = R_{H1} = R_{H2}$$
 (72)

$$\Phi = \pi - \theta_{OH} - \theta''$$
 (73)

Figure 13. Analysis of the direction of EM field propagation in the E-plane.

$$\theta'' = \tan^{-1} \frac{A}{2Z_A} \tag{74}$$

$$A(s) = \int_{R_{H_1}(R_{H_1} + L_{H_1})}^{L_{H_1}}$$
 (75)

Since the two diffracted E-fields are in the same direction at the observation point as shown in Figure 15, the sum of the diffracted fields from the diffraction points ${\bf Q}_{H1}$ and ${\bf Q}_{H2}$ is given by

$$H_{DIF} = E_{1}^{sd} + E_{2}^{sd}$$

$$= 2(\frac{\pi}{2^{(1)}}) \cdot -\frac{e^{-jkL_{H}}}{j_{kL_{H}}^{3/2}} D_{PI}\left(\frac{L_{H}R_{H1}}{L_{H}+R_{H1}}, \pi^{-0}OH^{-0}, \frac{\pi}{2}, 2\right) \cdot \frac{e^{-jkR_{H1}}}{\int R_{H1}(R_{H1}+L_{H1})}$$
(77)

Figure 14. H-plane geometry.

The E-plane apex is chosen as the phase reference point such that the same phase point is used reference for both the E- and H-plane in the calculation. Therefore, in the H-plane, the diffracted field given in Equation (77) should be multiplied by the $jk(H_H-H_F)$

phase term e $^{\rm H}$ $^{\rm H}$ then the sum of the diffracted fields from the diffraction points ${\rm Q_{H2}}$ and ${\rm Q_{H2}}$ in the H-plane becomes

$$H_{DIF} = 2\left(\frac{\pi}{2\theta_{oH}}\right) \frac{e^{-jkL_{HM}}}{jkL_{H}^{3/2}} \cdot D_{PI}\left(\frac{L_{H}R_{H1}}{L_{H}+R_{H1}}, \pi^{-\theta_{oH}-\theta''}, \frac{\pi}{2}, 2\right) \cdot \frac{e^{jkR_{H1}}}{\sqrt{R_{H1}(R_{H1}+L_{H})}}$$
(78)

where

$$L_{HM} = L_{H} - (H_{H} - H_{F})\cos\theta_{OH} . \tag{79}$$

Finally, the on axis total field at the observation point is the sum of the geometrical optics and the diffracted fields from the four diffraction points as given by

Figure 15. Basic field contributions for the pyramidal horn at the observation point.

$$\begin{split} E^{TOT} &= E^{G.O.} + E_{DIF} + H_{DIF} \\ &= \frac{e^{-jkR}o}{R_o} \left[1 + 2D_I \left(\frac{L_E R_{E1}}{L_E + R_{E1}}, -\pi_{oE} - \theta', \frac{\pi}{2}, 2 \right) \frac{e^{-jkL}E}{\sqrt{L_E}} \cdot \frac{jk(R_o - R_{E1})}{e} \right] \\ &\cdot \frac{R_o}{\sqrt{R_{E1}(R_{E1} + L_E)}} - \cos\theta' + 2D_{PI} \left(\frac{L_H R_{H1}}{L_H + R_{H1}}, \pi - \theta_{oH} - \theta'', \frac{\pi}{2}, 2 \right) \\ &\cdot \frac{\pi}{2\theta_{oH}} \cdot \frac{e^{-jkL}HM}{jkL_H^{3/2}} \cdot \frac{R_o}{\sqrt{R_{H1}(R_{H1} + L_H)}} \cdot e^{jk(R_o - R_{H1})} \right] \end{split}$$

However, for small horn dimensions, the normal GTD calculations are not accurate enough. In that case, the accuracy can be improved by using the LSI method for non-corrugated horns and by using API method for corrugated horns which are discussed in Appendix A and B, respectively.

CHAPTER V AMPLITUDE CENTER FOR ON-AXIS WAVE

The on-axis gain of a horn antenna is not uniquely defined in the near field. In this research the near field gain G(R) is defined through the following equation for the incident power density at points on the horn axis:

$$S^{\dagger} = \frac{P_T G(R)}{4\pi R^2} \tag{31}$$

where P_T is the transmitted power. Still, the near field gain G(R) depends on how the range R is defined. In most published research the range is defined as that from the horn aperture. Thus the aperture to aperture distance is usually used to define the gains of two horn antennas through the coupling formula

$$\frac{P_{R}}{P_{T}} = \left(\frac{\lambda}{4^{\pi}R}\right)^{2} G_{T}(R) G_{R}(R)$$
 (82)

Then near field corrections [7-11] are applied to determine the far field gain.

A more appropriate way to define the range R is to use the concept of an astigmatic ray tube which is often used in GTD. In an astigmatic ray tube there are two caustics from which the power appears to emanate as shown in Figure 16. A spherical wave is radiated when the two caustics are coincident to form an ordinary focus.

Figure 16. Astigmatic tube of rays.

The on-axis wave of a pyramidal horn can be represented as an astigmatic ray tube in which the E- and H-plane phase centers of the horn form the caustics.

The power spread in an astigmatic ray tube is given by

$$S^{i}(s) = C_{1} \frac{\rho_{1}\rho_{2}}{(\rho_{1}+s)(\rho_{2}+s)} = \frac{C_{2}}{R^{2}}$$
 (83)

where each distance is shown in Figure 16. For the horn, $\rho_1 = D_F$ and $\rho_2 = D_H$, the distances of the E- and H-plane phase centers from the aperture. The distance s is measured from the aperture to the observation point. Thus the range R is defined through Equation (83) as

$$R^{2} = (s+D_{E})(s+D_{H}) = s^{2} + (D_{E}+D_{H})s+D_{E}D_{H}$$
 (84)

For distances s large compared to the distances of the phase centers from the aperture,

$$R \approx s + \frac{1}{2} (D_E + D_H)$$
 (85)

Thus the amplitude center is located half way between the E- and H-plane phase centers, or a distance

$$D = \frac{D_E + D_H}{2}$$
 (86)

from the horn aperture.

Thus one should first compute the phase centers for the E-and H-planes. The phase center of a horn can be determined from the far field pattern. In our calculation of the E- and H-plane patterns the horn apex was used as our phase reference. Therefore, the far field can be represented by

$$E(\theta) = |F(\theta)| e^{j \phi(\theta)} e^{-jkR_0}$$
(87)

where $\phi(\theta)$ is the phase of the calculated pattern and R represents the distance from the apex to the observation point as shown in Figure 17. The equivalent line source integration (LSI) method was used to calculate the H-plane phase centers because the slope diffraction method is not as accurate for small horns. For far distances,

$$R_{o} = R_{p} + \Delta x \cos \theta \tag{88}$$

where Δx is the distance from the apex to the phase center.

Figure 17. Phase center of the horn.

For small pattern angles the pattern will have no phase variation when referred to the phase center for the on-axis wave. Thus the far field also can be represented by

$$E(0) = |F(0)|e^{jB} e^{-jkR}p$$
(89)

where B is a constant phase and $R_{\rm p}$ represents the distance from the phase center to the observation point. From Equations (37) and (89), one obtains

$$B = \phi(\theta) - k \Delta x \cos \theta . \tag{90}$$

In free space medium,

$$k = \frac{2\pi}{\lambda}$$
 (92)

thus

$$\frac{\Delta x}{\lambda} = \frac{\phi(0) - \phi(0)}{2\pi(\cos \theta - 1)} \tag{93}$$

The distance from the aperture to the phase center is given by

$$D_{\mathbf{x}} = H_{\mathbf{x}} - \nabla \mathbf{x} , \qquad (94)$$

where H_v is the distance from the apex to the aperture.

The following examples show the calculation of the E- and H-plane phase centers for the Scientific Atlanta 12-8.2 horn at 10 GHz. The computer listings give the pattern magnitude in dB and the phase in degrees.

Example of determining the phase center of E-plane:

WIDTH=	4.801	(LAMBA)
LENGTH=		(LAHBA)
FREQUENCY		GHZ	
*** E PL			
THETA	HAG.		PHASE
-10.00	-5.7506	10	9.70596
	-4.7463	, -	7.00847
-9.00			5.53553
-8.00	-3.5231		5.42624
-7.00	-2.265		
-4.00	-1.097	-	6.31997
-5.00	-0.081		7.76276
-4.00	0.756	_	9.37060
-3.00	1.407	-	0.86202
-2.00	1.870	55 1	2.04648
-1.00	2.147	23	12.80216
0.00	2.239	24	13.06105
1.00	2.147		2.80256
2.00	1.870		12.04684
3.00	1.407		10.86237
4.00	0.756		9.37018
5.00	-0.081		7.76254
_	-1.097		6.32045
6.00			5.42597
7.00	-2.265		5.53583
8.00	-3.523	_	-
9.00	-4.746		7.00857
10.00	-5.750	7	9.70641

$$\phi (1^{\circ}) = 12.80256^{\circ}$$

$$\phi (0^{\circ}) = 13.06105^{\circ}$$

$$\triangle \times_{E} = \frac{\phi (1^{\circ}) - \phi (0^{\circ})}{360(\cos 1 - \cos 0)} = 4.724^{(\lambda)}$$

$$\therefore D_{E} = 10.397 - 4.724 = 5.67^{(\lambda)}$$

Example of determining the phase center of H-plane:

$$\phi (1^{\circ}) = 4.05762^{\circ}$$

$$\phi (0^{\circ}) = 4.29179^{\circ}$$

$$\Delta x_{H} = \frac{\phi (1^{\circ}) - \phi (0^{\circ})}{360(\cos 1 - \cos 0)} = 4.271^{(\lambda)}$$

$$\therefore D_{H} = 10.947 - 4.271 = 6.68^{(\lambda)}.$$

CHAPTER VI ANALYSIS OF HORN GAIN

The incident power density at the observation point is given

by

$$S^{\dagger}(R) = \frac{|E^{TOT}(R)|^2}{Z_0}$$
 (94)

where $E^{TOT}(R)$ is given by Equation (80) and Z is the free space intrinsic impedance. From Equations (81) and (94),

$$G(R) = \frac{4\pi R^2}{P_T} |\frac{E^{TOT}(R)|^2}{Z_0}$$
 (95)

where G(R) is the near field gain of transmitting horn at a distance R from the amplitude center of the horn. In the coupling analysis the range R is the distance between the amplitude centers of the two horns as shown in Figure 18. Thus the observation point of the transmitting horn is located at the amplitude center of the receiving horn. P_T is the transmitting power which is obtained through the geometric optics field

through the geometric optics field
$$E^{G.O.}(R_o) = \cos \frac{\pi \theta}{2\theta} \frac{y}{oy} = \frac{e}{R_o}$$
and
$$P_T = \int_{\theta}^{\theta} \int_{0}^{0} \left(\frac{e^{G.O.}}{Z_0}\right)^2 \frac{e^{G.O.}}{Z_0} = \frac{e^{C.O.}}{Z_0} \frac{e^{C.O.}}{Z_0$$

where R is the distance from the apex of one horn as shown in Figure 18. The geometric optics gain is given by

$$G^{G.O.} = \frac{4\pi R_0^2}{P_T} \frac{|E^{G.O.}(R_0)|^2}{Z_0}, \text{ or } G^{G.O.} = \frac{8\pi L_E L_H}{AB}.$$
 (28)

Dividing Equation (95) by Equation (98)

$$\frac{G(R)}{G^{G.O.}} = \left(\frac{R}{R_0}\right)^2 \left|\frac{E^{TOT}(R)}{E^{G.O.}(R_0)}\right|^2 = \left(\frac{R}{R_0}\right)^2 |E^{GTD}(R)|^2$$
(99)

Figure 18. Transmitting and receiving horn antenna geometry.

where $E^{\mbox{GTD}}(R)$ is the on-axis normalized near field and is given by

$$E^{GTD}(R) = 1+2D_{I}\left(\frac{L_{E}R_{E1}}{L_{E}R_{E1}}, \pi^{-\theta}oE^{-\theta'}, \frac{\pi}{2}, 2\right) \frac{e^{-jkL_{E}}}{\sqrt{L_{E}}} \cdot \frac{R_{o}}{\sqrt{R_{E1}(R_{E1}L_{E})}} + 2D_{PI}\left(\frac{L_{H}R_{H1}}{L_{H}R_{H1}}, \pi^{-\theta}oH^{-\theta'}, \frac{\pi}{2}, 2\right) \frac{e^{-jkL_{E}}}{2^{o}oH} \cdot \frac{je^{-jkL_{E}}}{\sqrt{R_{E1}(R_{E1}L_{E})}} \cdot \frac{R_{o}}{\sqrt{R_{H1}(R_{H1}L_{H})}} + \frac{jk(R_{o}R_{H1})}{\sqrt{R_{H1}(R_{H1}L_{H})}} \cdot \frac{jk(R_{O}R_{H1}R_{H1})}{\sqrt{R_{H1}(R_{H1}L_{H1})}} \cdot \frac{jk(R_{O}R_{H1}R_{H1}R_{H1})}{\sqrt{R_{O}R_{H1}R_{H1}}} \cdot \frac{jk(R_{O}R_{H1}R_{$$

For far distances, i.e., as R approaches infinity, the far field gain is given by $\frac{1}{2} \int_{\mathbb{R}^n} \frac{1}{2} \int_{\mathbb{R}^n} \frac{1}$

$$G(\cdots) = G^{F \cdot F \cdot} = G^{G \cdot 0} \cdot |E^{GTD}(\cdots)|^2$$
, since $\frac{R}{R_0} \cdot 1$ (101)

Then, the gain correction (gain ratio) is given by

$$R_{GAN} = \frac{G(R)}{G^{F} \cdot F} \cdot = \left(\frac{R}{R_{O}}\right)^{2} \cdot \left| \frac{E^{GTD}(R)}{E^{GTD}(...)} \right|^{2}$$
(102)

For the convenience of the reader, Tables 2 and 3 give summaries of the variables used in the horn analysis.

Table 2 Summary of Horn Parameters

Parameter	Description	Figure
a	H plane width of the waveguide	14
h	E-plane width of the waveguide	12
Α	H plane aperture width of the horn	14
В	E-plane aperture width of the horn	12
LE	E-plane slant length of the horn (length between ${\sf Q}_{\sf E1}$ and the E plane apex)	12
Ч	H-plane slant length of the horn (length between $Q_{\rm H1}$ and the H-plane apex)	14
H _E	Horn antenna length in the E-plane (length between the E-plane apex and aperture)	12
Н	Horn antenna length in the H-plane (length between the H-plane apex and the aperture)	14
θ oE	E-plane half-angle	12
⁰ оН	H-plane half-angle	11
R _{E1}	Distance between Q_{Fl} and the observation point on the axis of horn in the E plane	12
R _{H1}	Distance between O _{H1} and the observation point on the axis of horn in the H-plane	14
ZAA	Aperture separation	18
ZA	Distance between the aperture of the transmitting horn and the amplitude center of the receiving horn	18
R	Distance between the amplitude center of each horn	18
Ro	Distance between the apex of the transmittin horn and the amplitude center of the receiving horn	g 18
DE	Distance between the aperture and the phase center of the horn in the E-plane	12
DH	Distance between the aperture and the phase center of the horn in the H-plane	14

Table 3
Summary of Horn Geometry Relationships

1)	D = DE + DH
2)	$Z_A = Z_{AA} + D$
3)	$R = Z_{AA} + 2D$
4)	$R_0 = Z_{AA}^+ D + H_E$
5)	$R_{E1} = \sqrt{\left(\frac{B}{2}\right)^2 + Z_A^2}$
6)	$R_{H1} = \sqrt{\left(\frac{A}{2}\right)^2 + Z_A^2}$
7)	$\theta' = \tan^{-1} \left(\frac{B}{2Z_A} \right)$
N)	$tan^{-1}\left(\frac{A}{27}A\right)$

CHAPTER VII ON-AXIS COUPLING AND NEAR FIELD CORRECTION

The near field gain of an antenna is often defined through the coupling equation

$$\frac{P_R}{P_T} = \left(\frac{\lambda}{4\pi R}\right)^2 G_T(R)G_R(R) \tag{103a}$$

However, this definition causes the near field gain of each antenna to be dependent on the antenna with which it is measured, especially at close range. We have defined the near field gain through its on-axis power density in Equation (81). This gives a definition which is independent of the other antenna.

However, Equation (103a) is then not exact because the coupling depends on how the two antennas react. Equation (103a) is equivalent to assuming each antenna would radiate a uniform spherical wave from its amplitude center. A more accurate equation for coupling is derived in Appendix C which approximates the near axis fields of each antenna more accurately at close range. The more accurate coupling equation is given by

$$\frac{P_{R}}{P_{T}} = \left(\frac{\lambda G(R)}{4 \pi R}\right)^{2} \frac{1}{\sqrt{1+T_{E}^{2}}} \frac{1}{\sqrt{1+T_{H}^{2}}}$$
(103b)

where $G(R) = \sqrt{G_T(R)G_R(R)}$, $G_T(R)$ and $G_R(R)$ are the near field gains of the transmitting and receiving horns at distance R between the amplitude centers of the horns. The factors $[1+T_E^2,\mu]^{-\frac{1}{2}}$, derived in Appendix C, give more accuracy at close range. From Equation (103b), we get

$$G(R) = \frac{4\pi R}{\lambda} \sqrt{\frac{P_R}{P_T}} \left[(1+T_E^2)(1+T_H^2) \right]^{\frac{1}{4}}$$
 (104)

From Equation (102) and Equation (104), we get the far-field gain

$$G^{F \cdot F \cdot} = \frac{G(R)}{R_{GAN}} = \frac{4\pi R}{A_{GAN}} - \sqrt{\frac{P_R}{P_T}} \left[(1 + T_E^2)(1 + T_H^2) \right]^{\frac{1}{4}}$$
 (105)

Therefore, we can express the far field gain in dB as

$$G_{dB}^{F \cdot F \cdot} = R_{GC} + \frac{1}{2} \left(\frac{P_R}{P_T}\right)_{dB}^{Meas}.$$
 (106)

where R_{GC} includes the near field gain correction and is given in dB as

$$R_{GC} = 10 \log \left\{ \frac{4\pi R}{R_{GAN}} \left[(1+T_{E}^{2})(1+T_{H}^{2}) \right]^{\frac{1}{4}} \right\}$$
(107)

and $\left(\frac{P_R}{P_T}\right)_{dB}^{Meas}$ is the measured coupling in dB.

. It is convenient to express the range correction parameter \boldsymbol{R}_{GC} as

$$R_{GC} = R_{GH} + F_{C} \tag{108}$$

where

$$R_{GU} = 10 \log \left[\frac{4^{\pi}R}{\lambda R_{GAN}} \right]$$
 (109)

is the basic range correction parameter (assumes wide beams or large separations). The correction factor for narrow beams at close range is given by

$$F_c = 10 \log \left[(1+T_E^2)(1+T_H^2) \right]^{\frac{1}{4}} = 2.5 \log \left[(1+T_E^2)(1+T_H^2) \right]$$
 (110)

where, from Appendix C,

$$T_{E} = \frac{C_{E}}{R}$$

$$C_{E} = \begin{cases} \frac{2\lambda}{\pi} A_{E} & \text{for like horns} \\ \frac{\lambda}{\pi} (A_{E1} + A_{E2}) & \text{for different horns} \end{cases}$$
(111a)

$$T_{H} = \frac{C_{H}}{R}$$
 (112a)

and

$$C_{H} = \begin{cases} \frac{2^{x}}{3} A_{H} & \text{for like horns} \\ \frac{1}{3} (A_{H1} + A_{H2}) & \text{for different horns} \end{cases}$$

It is necessary to measure the coupling over a range of aperture separations in order to average out the ripple caused by interactions between the horn structures. For practical purposes, the coupling value—used in Equation (106) can be obtained by drawing a smooth curve through the coupling data as shown in Figure 19.

In summary, we can determine the far field gain by the following procedure:

- 1. Measure the coupling data, P_R/P_T .
- 2. Compute the range corrected gain parameter $R_{\mbox{GC}}$.
- 3. Determine the far field gain from Equation (106).

Figure 19. Measured coupling between two SA model 12-8.2 horns at 10 GHz.

CHAPTER VIII RESULTS AND DISCUSSION

The procedure for determining the far field gain from the near field measurement data of coupling between two horns, using the near field range correction (R_{CC}) data, is presented in this chapter. The measured coupling data used in the examples are based on measurements taken at the Measurement Standards and Microwave Laboratory at Newark Air Force Station. The line source integration (LSI) method is used for conventional standard gain horns and the aperture integration (API) method is used for corrugated horns because they are considered to be more accurate than the basic GTD method.

Figure 20a shows the gain ratio or gain correction (R_{GAN}) curve for the Scientific-Atlanta Model 12-8.2 standard gain from at 10 GHz. We can see here that the gain correction is small (less than 0.2 dB), because the range is measured between the amplitude centers of each horn. For example, the gain correction is less than 0.01 when the separation (distance between the horn apertures) is 300 cm (100λ at 10 GHz). Figure 20b shows the calculated coupling ($P_{\rm p}/P_{\rm T}$) between two Scientific-Atlanta standard gain horns at 10 GHz. Figure 20c shows the near field range correction of gain ($R_{\rm GC}$) for two Scientific-Atlanta standard gain horns at 10 GHz. Figures 21 and 22 shows the near field correction and coupling curves for the Narda model 640 and corrugated horns, respectively. Figures 23 and 24 show the far field gain variation with frequency for the Scientific-Atlanta and Narda standard gain horns, respectively, as calculated from Equation (105).

The range correction data are given for $10~\mathrm{GHz}$ in Tables 5 through 9 for both standard gain horns and the corrugated horn. Tables are given for both GTD and LSI for the non-corrugated horns. It is noted that the RGC values for each horn model by GTD and those by LSI (Tables 5 through 8) agree within about 0.1 dB for aperture separations greater than 200 cm. The range correction data for 11 GHz are given in Tables 10 through 12 for both standard gain horns and the corrugated horn. A list of the variables in each column is given below:

ZAA = Aperture separation in cm.

R = Distance between amplitude centers in cm.

RGAN = Ratio of near field gain to far field gain.

PRPT = Calculated coupling.

NFGAIN = G(R) = calculated near field gain.

RGU = Basic range correction parameter.

RGC = Final range correction parameter.

Note that the calculated coupling values PRPT are given only for information purposes. Only the actual measured coupling values should be used with the theoretical range correction parameter RGC to determine the gain.

Procedure for Horns of Same Model

As an example of how to use the near field range correction tables, consider the following case in which the gain is determined from the measured coupling between two Scientific-Atlanta standard gain horns. The measured coupling curve for aperture separations between 250 cm and 300 cm is shown in Figure 19. The ripple caused by interactions between the horns and their mounting structures has a period of about 1.5 cm for each cycle, which corresponds to $^{\lambda}/^{2}$ as expected. The 0.25 dB peak to peak ripple at 250 cm corresponds to a multipath level from horn interactions of about -37 dB below the direct coupling. A -37 dB multipath will cause a ripple maximum of +0.122 dB and a ripple minimum of -0.124 dB with respect to the direct coupling. Consequently the direct coupling can be accurately measured by drawing a smooth curve through the average of the ripple minima and maxima.

The procedure for determining the far field gain is outlined below:

- 1. The coupling values are sampled at 250, 275 and 300 cm and are recorded in Table 4.
- Next the theoretical range correction values are read from the appropriate table (Table 5 for SA model 12-8.2 at 10 GHz). These values are recorded in Table 4.
- 3. The far field gain values are determined for each point from Equation (106) which is repeated below:

$$G^{FF} = R_{GC} + \frac{1}{2} (P_R/P_T)_{dB}$$
 (106)

TABLE 4
Example of Procedure for Range Correction

Z _{AA} cm	Coupling dB	R _{GC} dB	G ^{FF}
250	-17.44	30.95	22.23
275	-18.12	31.29	22.23
300	-18.70	31.61	22,26

For example, the coupling at 250 cm is -17.44 dB. The RGC value from Table 5 is 30.95 dB. We set the desired far field gain from Equation (106) as

$$G_{S/A} = 30.95 + \frac{1}{2} (-17.44) = 22.23 \text{ dB}.$$

Note that the spread in gain values in Table 4 is 22.26-22.23=0.03 dB. Thus this coupling measurement indicates an effective gain for the two horns of 22.24 dB.

Procedure for Horns of Different Models

The next example shows how to use the tables to determine the range correction for coupling measured between two horns of different models. Three coupling values should be checked as was done in the previous example. However, only one coupling value is used in this example to illustrate the use of the range correction tables for coupling between horns of different models.

First, the phase center information must be used to calculate the distance between the amplitude centers of the two horns. Referring to Table: 5 and 7.

$$(D_E + D_H)_{S/A} = (16.98 + 22.55)_{S/A} = 39.53^{(CM)}$$

$$(D_E + D_H)_{NARDA} = (1.09 + 1.55)_{NARDA} = 2.64^{(CM)}$$

$$(D_E + D_H)_{AVG} = (39.53 + 2.64)/2 = 21.08^{(CM)}$$

For an aperture separation of $Z_{AA} = 150$ cm this gives an effective range between horns as

$$R = 150+21.08 = 171.1$$
 (CM)

We get the near field range correction of gain at R = 171.1^{CM} by interpolating the R_{GU} values from Tables 5 and 7 as follows:

$$(R_{GU})_{S/A} = 28.67 \text{ dB}$$

$$(R_{GU})_{NARDA} = 28.54 \text{ dB}$$

$$(R_{GII})_{AVG} = (28.67 + 28.54)/2 = 28.60 \text{ dB}$$

Note that the R $_{\rm GC}$ value cannot be directly obtained from the R $_{\rm GC}$ values of the individual horns because the F $_{\rm C}$ factor in Equation (110) has a non-linear relationship for the two horns. The values of C $_{\rm E}$ and C $_{\rm H}$ in Equations (111) and (112) can be calculated by averaging the values for the individual horns as given at the top of Tables 5 and 7. Thus

Horn	c _E	C _H
	CM	CM
S/A	66.3°	52.71
Narda	12.41	11.59
Average	39.40	32.15

Since R = 171.1 cm for this example, T_E = 0.230 and T_H = 0.188. The correction factor for close range is calculated from Equation (110) as F = 0.094 dB. The final range correction R_{GC} for the S/A to Narda coupling at ZAA = 150 cm is calculated from

$$(R_{GC})_{AVG} = R_{GU} + F_{C}$$

= 28.60 dB + 0.09 dB
= 28.69 dB.

The measured coupling for 150 cm between the Scientific-Atlanta to Narda horns was -18.80 dB. Thus the effective far field gain of the two horns is determined as

$$G_{S/A-Narda}^{Meas} = (R_{GC})_{AVG} + \frac{1}{2} \left(\frac{P_R}{P_T}\right)_{Meas}$$

= 28.69 + $\frac{1}{2}$ (-18.80) = 19.29 dB.

The results of coupling measurements taken at the Measurements Standards Laboratory at NAFS are summarized in Tables 13 through 17 for 10 GHz and Tables 18 through 22 for 11 GHz. The Scientific Atlanta model 12-8.2 and the Narda model 640 were used along with an experimental corrugated horn (Ladar Systems model CX-20). The procedure for range corrected gain was used to determine the far field gain values for aperture separations $Z_{\Lambda\Lambda}$ from 100 cm to 320 cm in each table. Tables 13 and 18 show the coupling data, the range correction $R_{\rm GC}$, and the far field gain when two horns of the same model are Measured together at 10 and 11 GHz, respectively. The next three tables in each series shows the results of measuring coupling between horns of different models. In each of these cases the basic range correction parameter $R_{\rm GU}$ is the average of those for the two individual horn models. However, the two R_{CII} values must correspond to the distance R between the amplitude centers of the two orns and not the aperture separation Z_{AA} . The correction factor F for narrow beams at close range, as calculated from Equation (110) is then used to calculate the final range correction parameter R_{GC} . The measured gain value G_{AVG} represents the mean gain (average in dB) of the two horas. The last table for each frequency summarizes the far field gain values when the three horn models are measured in the six possible combinations.

Referring to Table 17, there are six combinations of measurements, we find they are good agreement except for the corrugated to Narda horns case. There is about 0.23 dB difference between $^{\text{Meas}}$. This difference may be caused by measurement errors. The $(^{\text{Corr-Narda}})$ AVG is the average of individual horn gain measurements from columns 3 and 4; and is gotten as follows

$$Z_{AA} = 150 \text{ cm}$$
 $G_{Corr} = 20.48 \text{ dB}$
 $G_{Narda} = 16.25 \text{ dB}$

$$(G_{Corr-Narda})AVG = \frac{G_{Corr}+G_{Narda}}{2} = 18.36 \text{ dB}$$
.

	H=	19.44 (CM)
FREQUENCY= 10.000GHZ	B=	14.40 (CM)
DEON- 30 CONCM	LE=	32.00 (CM)
DEDH= 39.524CM	LH=	34.25 (CM)

Figure 20a. Gain ratio curve for Scientific-Atlanta standard gain horn at 10 GHz ($R_{\rm GAN}$).

Figure 20b. Coupling between two Scientific-Atlanta standard gain horns at 10 GHz (P_R/P_T) .

Figure 20c. Near field range correction of gain for two Scientific-Atlanta standard gain horns at 10 GHz (R_{GC}).

7.86 (CM)

FREQUENCY= 10.000GHZ

B= 5.95 (CM)

LE= 12.75 (CM)

LH= 14.25 (CM)

Figure 21a. Gain ratio curve for Narda standard gain born at 10 GHz $(R_{\mbox{GAN}})$.

Figure 21b. Coupling between two Narda standard gain horns at 10 GHz $(\mbox{P}_{\mbox{R}}/\mbox{P}_{\mbox{T}})$

Figure 21c. Near field range correction of gain for two Narda standard gain horns at 10 GHz ($\rm R_{GC}^{-1}$).

TDH= 12.42CM

A= 12.65 (CM)
B= 12.65 (CM)
LE= 22.60 (CM)
LH= 24.84 (CM)

Figure 22a. Gain ratio curve for corrugated horn at 10 GHz (${
m R}_{
m GAN}$).

Figure 22b. Coupling between two corrugated horns at 10 GHz (P_R/P_T) .

Figure 22c. Near field range correction of gain for two corrugated horns at 10 GHz (R_{GC}).

A= 19.44(CM) B= 14.40(CM) LE= 32.00(CM) LH= 34.25(CM)

Figure 23. Far field gain vs. frequency curve for Scientific-Atlanta standard gain horn.

A= 7.86 (CM) B= 5.95 (CM) LE= 12.75 (CM) LH= 14.25 (CM)

Figure 24. Far field gain vs. frequency curve for Narda standard gain horn.

Table 5: Range correction data for Scientific-Atlanta (model 12-8.2) standard gain horn by LSI method.

	****	*LSI	**** ((FREQUEN	CY=	10.000	GHZ))		
DE=	16.98	CH	BH= 22.			66.39	CH CH	= 52.71	CM
	14.40	CH(4.8000	LANDA)		19.44			MBA)
	32.00		10.6667	LAMDA)		34.25	CH(11.		MDA)
***	*****	****	******	******	****	******	******	******	*****
	ZAA		R	RGAN		PRPT	NFGAIN	RGU	RGC
	(CH)	(CM)	DB		DB	DB	DB	DB
	7558.2	7	7597.81	0.000	00 -4	15.261	22.397	45.028	45.028
	100.0	0	139.54	-0.205	58 -1	11.685	22.192	27.873	28.240
	110.0	0	149.54	-0.170	60 -1	2.128	22.227	28.139	28.461
	120.0	0	159.54	-0.142	98 -1	12.562	22.254	28.392	28.678
	130.0	0	169.54	-0.120	85 -1	2.984	22.276	28.634	28.889
	140.0	0	179.54	-0.102	89 -1	3.394	22.294	28.865	29.094
	150.0	0	189.54	-0.088	14 -1	13.790	22.309	29.086	29.293
	160.0	0	199.54	-0.075	91 -1	14.174	22.321	29.297	29.484
	170.0	0	209.54	-0.065	67 -1	4.545	22.332	29.499	29.670
	180.0	0	219.54	-0.057	04 -1	4.903	22.340	29.693	29.849
	190.0	0	229.54	-0.049	71 -1	15.250	22.348	29.879	30.022
	209.0	0	239.54		45 -1	15.585	22.354	30.058	30.190
	210.0	0	249.54	-0.038	05 -	15.909	22.359	30.230	30.352
	220.0	0	259.54	-0.033	36 -1	16.223	22.364	30.396	30.509
	230.0	0	269.54	-0.029	30 -1	16.527	22.368	30.556	30.661
	240.0	0	279.54	-0.025	79 - 1	16.822	22.372	30.711	30.809
	250.0		289.54				22.375	30.861	30.952
	260.0		299.54				22.377	31.005	31.090
	270.0		309.54				22.380	31.146	31.225
	280.0		319.54				22.382	31.281	31.356
	290.0		329.54				22.384	31.413	31.484
	300.0		339.54				22.386	31.542	31.608
	310.0		349.54				22.387	31.666	31.729
	320.0		359.54				22.388	31.787	31.847
	330.0		369.54				22.390	31.905	31.962
	340.0		379.54			9.352	22.391	32.020	32.073
	350.0		389.54			9.571	22.392	32.132	32.183
	360.0		399.54			9.784	22.393	32.241	32.290
	370.0		409.54				22.393	32.348	32.394
	380.0		419.54				22.394	32.452	32.496
	390.0		429.54				22.395	32.553	32.595
	400.0	0	439.54	-0.002	02 -2	20.591	22.395	32.653	32.693

Table 6: Range correction data for Scientific-Atlanta (model 12-8.2) standard gain horn by GTD method.

*****GTD	**** ((FREQUENCY=	10.000	GHZ))		
DE= 16.98 CM	BH= 20.0		= 66.39		= 48.51	CM
B= 14.40 CH(= 19.44			NDA)
			= 34.25	CM(11.		HDA)
***********	*******	*******	******	*****	******	*****
ZAA	R	RGAN	PRPT	NFBAIN	RGU	R6C
(CN)	(CH)	DB	DB	DB	DB	DB
7558.27	7595.29	0.00000	-45.166	22.443	45.026	45.026
100.00	137.02	-0.43439	-11.874	22.009	28.023	28.380
110.00	147.02	-0.38813		22.055	28.283	28.596
120.00	157.02	-0.35004		22.093	28.531	28.808
130.00	167.02	-0.31823		22.125	28.767	29.014
140.00	177.02	-0.29131		22.152	28.992	29.214
150.00	187.02	-0.26830		22.175	29.208	29.408
160.00	197.02	-0.24838		22.195	29.414	29.595
170.00	207.02	-0.23106		22.212	29.612	29.776
180.00	217.02	-0.21581		22.228	29.802	29.952
190.00	227.02	-0.20238		22.241	29.984	30.122
200.00	237.02	-0.19037		22.253	30.159	30.286
210.00	247.02	-0.17965		22.264	30.328	30.445
220.00	257.02	-0.16997		22.274	30.491	30.599
230.00	267.02	-0.16124		22.282	30.648	30.748
240.00	277.02	-0.15335		22.290	30.799	30.893
250.00	287.02	-0.14608		22.297	30.946	31.033
260.00	297.02	-0.13948		22.304	31.088	31.170
270.00	307.02	-0.13342		22.310	31.226	31.302
280.00	317.02	-0.12781		22.316	31.360	31.431
290.00	327.02	-0.12265		22.321	31.489	31.557
300.00	337.02	-0.11785		22.326	31.615	31.679
310.00	347.02	-0.11339		22.330	31.738	31.798
320.00	357.02	-0.10926		22.334	31.857	31.914
330.00	367.02	-0.10541	-19.167	22.338	31.973	32.027
340.00	377.02	-0.10181	-19.388	22.342	32.086	32.137
350.00	387.02		-19.603	22.345	32.197	32.245
360.00	397.02	-0.09525		22.348	32.304	32.350
370.00	407.02	-0.09226		22.351	32.409 32.512	32.453 32.554
380.00	417.02	-0.08939		22.354		
390.00	427.02	-0.08675		22.357	32.612	32.652
400.00	437.02	-0.08422	-2V.0VY	22.359	32.710	32.748

Table 7: Range correction data for Narda (model 640) standard gain horn by LSI method.

	****	*LSI*	****	((FR	EQUEN	ICY=	10.0	00	GHZ))		
DE=	1.08	CH		1.55	CH		12.4		CM	CH= 11	.59	CM
B=	5.95	CHC	1.983		MDA)		7.8		CH (2.6200		IDA)
	12.75	CHC	4.250		MDA)		14.2		CH(4.7500		DA)

	ZAA		R		RGAN		PRPT		NFGA			RGC
	(CH)	(CH)	DB		DB		DB	I	B	DB
	1235.5		1238.		0.000	00 -	40.55	6	16.8	71 37.	149	37.149
	100.0	0	102.	63	0.033	343 -	18.91	7	16.9	05 26.	300	26.330
	110.0		112.		0.031	32 -	19.71	9	16.9		706	26.730
	120.0	0	122.	63	0.029	41 -	20.45	14	16.9	01 27.	077	27.098
	130.0	0	132.	63	0.027	'60 -	21.13	12	16.8		420	27.437
	140.0	0	142.	63	0.026	01 -	21.76	2	16.8	97 27.	737	27.752
	150.0	0	152.	63	0.024	50 -	22.35	i Q	16.8	96 28.	033	28.046
	160.0	0	162.	63	0.023	119 -	22.90	0	16.8	94 28.	310	28.321
	170.0	0	172.	63	0.021	93 -	23.41	9	16.8	93 28.	570	28.580
	180.0	0	182.	63	0.020	73 -	23.90	8	16.8	92 28.	816	28.825
	190.0	0	192.	63	0.019	73 -	24.37	11	16.8	91 29.	048	29.057
	200.0	0	202.	63	0.018	180 -	24.81	1	16.8	90 29.	269	29.277
	210.0	0	212.	63	0.018	100 -	-25.23	50	16.8	89 29.	479	29.486
	220.0	0	222.	63	0.017	'02 -	25.62	29	16.8	88 29.	680	29.686
	230.0	0	232.	63	0.016	41 -	-26.01	1	16.8	88 29.	871	29.877
	240.0	0	242.	63	0.015	i61 -	-26.37	8	16.8	87 30.	055	30.060
	250.0	0	252.	63	0.014	192 -	26.72	9	16.8	86 30.	231	30.236
	260.0	0	262.	63	0.014	38 -	-27.06	6	16.8		400	30.404
	270.0	0	272.	63	0.013	185 -	27.39	1	16.8		563	30.567
	280.0	0	282.	63	0.013	115 -	27.70	5	16.8	84 30.	720	30.724
	290.0	0	292.	63	0.012	254 -	28.00	8	16.8	84 30.	871	30.875
	300.0	0	302.	63	0.012	206 -	28.30	0	16.8		018	31.021
	310.0	0	312.	63	0.011	73 -	28.58	13	16.8	83 31.	159	31.163
	320.0	0	322.	63	0.011	14 -	28.85	57	16.8	82 31.	297	31.300
	330.0	0	332.		0.010)77 -	-29.12	23	16.8	82 31.	430	31.433
	340.0		342.		0.010	40 -	29.38	30	16.8		559	31.561
	350.0		352.				.29.63		16.8		684	31.687
	360.0		362.				29.87		16.8		806	31.808
	370.0		372.				30.11		16.8		924	31.926
	380.0		382.				30.34		16.8		040	32.042
	390.0		392.				30.56		16.8		152	32.154
	400.0	0	402.	63	0.008	134 -	30.78	15	16.B	BO 32.	262	32.263

Table 8: Range correction data for Narda (model 640) standard gain horn by GTD method.

	****	*6TB*	**** ((FREQUENC	Y= 10.000	BHZ))		
DE=	1.08	CH			CE= 12.41		= 7.18	CM
3=	5.95	CHI	1.9833	LANDA)	A= 7.86			HDA)
EL=	12.75	CH(4.2500		HL= 14.25			MDA)
****	*****	****		*******		******	******	*****
	ZAA		R	RGAN	PRPT	NFGAIN	RGU	RGC
	(CH)	(CK)	DB	DB	DB	DB	DB
	1235.5	9	1244.09	0.0000	0 -39.671	17.334	37.169	37.170
	100.0	0	108.50	0.3641	3 -17.791	17.698	26.211	26.230
	110.0	0	118.50	0.3352	2 -18.609	17.669	26.623	26.639
	120.0	0	128.50	0.3102	0 -19.358	17.644	27.000	27.013
	130.0	0	138.50	0.2882	3 -20.049	17.622	27.347	27.359
	140.0	0	148.50	0.2688	1 -20.691	17.603	27.669	27.679
	150.0	0	158.50	0.2516	5 -21.289	17.586	27.969	27.978
	160.0	0	168.50	0.2361	6 -21.849	17.570	28.251	28.258
	170.0	0	178.50	0.2222	6 -22.376	17.556	28.515	28.522
	180.0	0	188.50	0.2097	4 -22.873	17.544	28.764	28.770
	190.0	0	198.50	0.1983	5 -23.343	17.532	29.000	29.006
	200.0	0	208.50	0.1878	3 -23.790	17.522	29.224	29.229
	210.0	0	218.50	0.1783	0 -24.215	17.512	29.437	29.442
	220.0	0	228.50	0.1695	0 -24.621	17.504	29.640	29.644
	230.0	0	238.50	0.1613	4 -25.009	17.495	29.834	29.838
	240.0	0	248.50	0.1540	1 -25.379	17.488	30.020	30.024
	250.0	0	258.50	0.1468	1 -25.736	17.481	30.199	30.202
	260.0	0	268.50	0.1402	6 -26.078	17.474	30.370	30.373
	270.0	0	278.50		4 -26.407	17.468	30.535	30.538
	280.0	0	288.50		2 -26.725	17.463	30.694	30.696
	290.0	0	298.50	0.1232	9 -27.031	17.457	30.847	30.850
	300.0		308.50		6 -27.327	17.452	30.995	30.998
	310.0	0	318.50		3 -27.613	17.448	31.138	31.141
	320.0	0	328.50		0 -27.890	17.443	31.277	31.279
	330.0	0	338.50	0.1048	6 -28.159	17.439	31.412	31.414
	340.0	0	348.50	0.1008	7 -28.420	17.435	31.542	31.544
	350.0		358.50		2 -28.672	17.431	31.668	31.670
	360.0		368.50		7 -28.918	17.428	31.791	31.793
	370.0		378.50		5 -29.158	17.424	31.911	31.913
	380.0		388.50		2 -29.390	17.421	32.028	32.029
	390.0		398.50		4 -29.618	17.418	32.142	32.143
	400.0	0	408.50	0.0807	1 -29.839	17.415	32.252	32.253

Table 9: Range correction data for corrugated (model CX-20) horn by API method.

****API	***** (()	FREQUENCY	= 10.000	GHZ))		
DE= 5.94	CH DH= 6	.50 CH	CE= 28.46	CM CH	= 27.73	CH
B= 12.65	CH A= 12	.65 CM	EL= 22.60	CH HL	= 24.84	CH
******	*******	*******	*******	*****	******	*****
ZAA	R	RGAN	PRPT	NFGAIN	RGU	RGC
(CN)	(CH)	DB	DB	DB	DB	DB
3200.45	3212.89	0.00000		20.470	41.290	41.290
100.00	112.44		-12.923	20.400	26.800	26.932
110.00	122.44		-13.601	20.411	27.159	27.271
120.00	132.44		-14.234	20.420	27.492	27.587
130.00	142.44		-14.827	20.427	27.801	27.884
140.00	152.44		-15.385	20.432	28.090	28.163
150.00	162.44		-15.911	20.437	28.362	28.426
160.00	172.44		-16.408	20.440	28.617	28.674
170.00	182.44		-16.879	20.443	28.859	28.910
180.00	192.44		-17.327	20.446	29.088	29.134
190.00	202.44		-17.754	20.448	29.306	29.347
200.00	212.44		-18.161	20.450	29.513	29.551
210.00	222.44		-18.551	20.452	29.711	29.746
220.00	232.44		-18.924	20.453	29.901	29.932
230.00	242.44		-19.282	20.455	30.083	30.112
240.00	252.44		-19.627	20.456	30.257	30.284
250.00	262.44		-19.958	20.457	30.425	30.449
260.00	272.44		-20.277	20.458	30.586	30.609
270.00	282.44		-20.586	20.459	30.742	30.763
280.00	292.44	-0.01091		20.459	30.892	30.912
290.00	302.44		-21.172	20.460	31.038	31.056
300.00	312.44		-21.451	20.461	31.178	31.196
310.00	322.44		-21.721	20.461	31.314	31.331
320.00	332.44		-21.983	20.462	31.447	31.462
330.00	342.44	-0.00811		20.462	31.575	31.589
340.00	352.44		-22.486	20.463	31.699	31.713
350.00	362.44		-22.726	20.463	31.821	31.834
360.00	372.44		-22.961	20.463	31.938	31.951
370.00	382.44		-23.189	20.464	32.053	32.065
380.00	392.44		-23.411	20.464	32.165	32.176
390.00	402.44		-23.628	20.464	32.274	32.284
400.00	412.44	-0.005/3	-23.840	20.465	32.380	32.390

Table 10: Range correction data for Scientific-Atlanta (model 12-8.2) standard gain horn by LSI method.

*****LSI	***** ((FREQUENCY	= 11.000	GHZ))		
DE= 20.80 CM	DH= 26.5	5 LH C	E= 71.32	CH CH	= 52.91	CM
B= 14.40 CH(5.2800	LAMBA)	A= 19.44	CH(7.	1280 LA	HDA)
EL= 32.00 CM(11.7333	LANDA) H	L= 34.25	CH(12.	5583 LA	MDA)
**********	******			******	******	******
ZAA	R	RGAN	PRPT	NFGAIN	RGU	RGC
(CM)	(CH)	DB	DB	DB	DB	DB
8314.10	B361.45	0.00000	-46.354	22.681	45.858	45.858
100.00	147.35	-0.24572	-12.486	22.435	28.564	28.924
110.00	157.35	-0.20647	-12.896	22.475	28.810	29.129
120.00	167.35	-0.17514	-13.300	22.506	29.046	29.331
130.00	177.35	-0.14976	-13.694	22.531	29.273	29.528
140.00	187.35	-0.12898	-14.079	22.552	29.490	29.721
150.00	197.35	-0.11175		22.569	29.699	29.908
160.00	207.35	-0.09735		22.584	29.899	30.089
170.00	217.35	-0.08519		22.596	30.092	30.265
180.00	227.35	-0.07489		22.606	30.277	30.436
190.00	237.35	-0.06606		22.615	30.455	30.601
200.00	247.35	-0.05844		22.623	30.626	30.762
210.00	257.35	-0.05188		22.629	30.792	30.917
220.00	267.35	-0.04613		22.635	30.952	31.068
230.00	277.35	-0.04113		22.640	31.106	31.215
240.00	287.35	-0.03669		22.644	31.256	31.357
250.00	297.35	-0.03282		22.648	31.400	31.495
260.00	307.35	-0.02941		22.652	31.541	31.629
270.00	317.35	-0.02633		22.655	31.677	31.760
280.00	327.35	-0.02362		22.657	31.809	31.887
290.00	337.35	-0.02115		22.660	31.937	32.011
300.00	347.35	-0.01898		22.662	32.061	32.131
310.00	357.35	-0.01701		22.664	32.183	32.249
320.00	367.35	-0.01526		22.666	32.301	32.363
330.00	377.35	-0.01369		22.667	32.416	32.475
340.00	387.35	-0.01229		22.669	32.528	32.584
350.00	397.35	-0.01100		22.670	32.638	32.691
360.00	407.35	-0.00977 -0.00867		22.671	32.744 32.848	32.795 32.897
370.00 380.00	417.35 427.35	-0.00775		22.673	32.950	32.997
380.00 390.00	437.35	-0.00//3		22.674	33.050	33.094
400.00	447.35	-0.00596		22.675	33.147	33.190
700.00	77/.33	. A • AA 1 4 0	41.017	42.0/J	33.17/	33.170

Table 11: Range correction data for Narda (model 640) standard gain born by ESI method.

	****	*LSI*	****	((F	REQUEN	CY≕	11.000	GHZ))		
DE =	1.34	CH	DH=	1.88	B CH	CE.=	13.56	CM CH	l [∞] 12.63	CM
) =	5.95	CM(2.18	17 L	ANDA)	A=	7.86	CH(2.	8820 LA	MDA)
t.L=	12.75	CAC	4.67	50 L	AMDA)	HL=	14.25	CM(5.	2250 LA	MDA)
***	*****	****	****	****	******	****	****	******	******	******
	ZAA			R	RGAN		PRPT	NFGAIN	RBU	RGC
	(CN		(£		DB		DB	DB	DB	DB
	1359.1		1362		0.000		0.758	17.599	37.978	37.978
	100.0		103				8.350	17.632	26.740	26.774
	110.0		113		0.031			17.630	27.143	27.172
	120.0		123				9.875	17.628	27.512	27.537
	130.0		133				0.549	17.627	27.853	27.874
	140.0	0	143		0.026		11.176	17.625	28.169	28.197
	150.0		153		0.024		1.760	17.624	28.463	28.479
	160.0		163		0.023			17.622	28.739	28.753
	170.0		173		0.022		2.824	17.621	28.998	29.011
	180.0	0	183		0.021			17.620	29.243	29.254
	190.0		193				3.772	17.619	29.475	29.485
	200.0	0	203	.22	0.019	30 -2	4.210	17.618	29.695	29.704
	210.0	0	213	.22	0.018	40 -2	4.628	17.617	29.905	29.913
	220.0	0	223	.22	0.017	65 -2	5.026	17.617	30.104	30.112
	230.0	0	233	.22	0.016	78 -2	5.407	17.616	30.296	30.303
	240.0		243				5.772	17.615	30.479	30.485
	250.0	0	253	.22	0.015	39 -2	6.122	17.614	30.654	30.660
	260.0		263		0.014	64 -2	6.459	17.614	30.823	30.829
	270.0		273		0.014	04 -2	6.784	17.613	30.986	30.991
	280.0	0	283		0.013	65 - 2	7.096	17.613	31.142	31.147
	290.0	0	293	.22	0.013	11 -2	7.398	17.612	31.294	31.298
	300.0	0	303	.22	0.012	66 -2	7.690	17.612	31.440	31.444
	310.0		313				7.972	17.611	31.581	31.585
	320.0		323				8.245	17.611	31.718	31.722
	330.0		333		0.011			17.610	31.851	31.854
	340.0	0	343		0.010	96 -2	8.768	17.610	31.980	31.983
	350.0		353				9.018	17.609	32.105	32.108
	360.0		363		0.010			17.609	32.226	32.229
	370.0		373				9.497	17.609	32.345	32.34/
	380.0		383	.22	0.009	12 - 2	9.727	17.608	32.460	32.463
	390.0		393		0.008		9.951	17.608	32.572	32.575
	400.0	0	403	.22	0.008	87 · 3	0.169	17.608	32.681	32.684

Table 12: Range correction data for corrugated (model CX20) horn by API method.

****API**	*** ((FREQUENCY	= 11.000	6HZ))		
DE= 7.15CH			CE= 30.60		= 29.65	CH
B= 12.65 CM	A= 12	.65 CM	EL= 22.60	CH HL	= 24.84	CM
**********	******	******	*******	*****	******	******
ZAA	R	RGAN	PRPT	NFGAIN	RGU	RGC
(CH)	(CH)	DB	DB	DB	DB	DB
3520.49	3535.45	0.00000	-42.142	21.048	42.119	42.119
100.00	114.96	-0.08356	-12.840	20.965	27.324	27.468
110.00	124.96	-0.07056	-13.495	20.978	27.673	27.796
120.00	134.96	-0.06042	-14.109	20.988	27.997	28.103
130.00	144.96	-0.05235	-14.686	20.996	28.300	28.391
140.00	154.96	-0.04584	-15.230	21.002	28.583	28.663
150.00	164.96	-0.04049		21.008	28.849	28.920
160.00	174.96	-0.03604	-16.231	21.012	29.100	29.164
170.00	184.96	-0.03231	-16.693	21.016	29.338	29.395
180.00	194.96	-0.02914	-17.133	21.019	29.563	29.615
190.00	204.96	-0.02643		21.022	29.778	29.824
200.00	214.96	-0.02408	-17.953	21.024	29.982	30.025
210.00	224.96	-0.02205		21.026	30.178	30.216
220.00	234.96	-0.02027		21.028	30.365	30.400
230.00	244.96	-0.01870		21.029	30.544	30.577
240.00	254.96	-0.01732		21.031	30.717	30.747
250.00	264.96	-0.01609		21.032	30.883	30.911
260.00	274.96	-0.01498		21.033	31.042	31.068
270.00	284.96	-0.01400		21.034	31.197	31.221
280.00	294.96	-0.01310		21.035	31.346	31.368
290.00	304.96	-0.01230		21.036	31.490	31.511
300.00	314.96	-0.01157		21.037	31.629	31.649
310.00	324.96	-0.01091		21.037	31.764	31.783
320.00	334.96	-0.01029		21.038	31.895	31.913
330.00	344.96	-0.00974		21.038	32.022	32.039
340.00	354.96	-0.00922		21.039	32.146	32.161
359.00	364.96	-0.00876		21.039	32.266	32.281
360.00	374.96	-0.00833	_	21.040	32.383	32.397
370.00	384.96	-0.00793		21.040	32.497	32.510
380.00	394.96	-0.00755		21.041	32.608	32.620
390.00	404.96	-0.00721		21.041	32.716	32.728
400.00	414.96	-0.00689	-23.570	21.041	32.822	32.833

Table 13: Range corrected gain measurements.

In R _{GC} Coupl. Gain R _{GC} Coupl. (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)		CE=12.4	NARDA (Model 640)	640) 59 cm	CORR CE-28.46	CORR. (Model CX-20)	CX-20)	S/A CE=66.3	S/A (Model 12-8.2)	-8.2) 52.71 cm
(dB) (dB)	۲۱ در در		Coup1.	Gain	RGC	Coupl.	Gain	RGC	Coupl.	
26.33 -20.16 16.25 26.93 -12.85 20.51 28.24 -11.96 28.05 -23.60 16.25 28.43 -15.90 20.48 29.29 -14.08 29.28 -26.06 16.25 29.55 -18.15 20.48 30.19 -15.88 30.24 -28.00 16.24 30.45 -19.92 20.49 30.95 -17.44 31.02 -29.52 16.26 31.20 -21.40 20.50 31.61 -18.70 31.20 -30.10 16.25 31.46 -21.98 20.47 31.85 -19.18 7-19-1979 -19-1979 -21.97 -21.98 20.47 31.85 -19.1979 Narda #06137 Corrugated #41 S/A #1221 -19-1979	E 5	(dB)	(gp)	(dB)	(gp)	(dB)	(dB)	(dB)	(dB)	(dB)
28.05 -23.60 16.25 28.43 -15.90 20.48 29.29 -14.08 29.28 -26.06 16.25 29.55 -18.15 20.48 30.19 -15.88 30.24 -28.00 16.24 30.45 -19.92 20.49 30.95 -17.44 31.02 -29.52 16.26 31.20 -21.40 20.50 31.61 -18.70 31.20 -30.10 16.25 31.46 -21.98 20.47 31.85 -19.18 7-19-1979 8-6-1979 7-19-1979 7-19-1979 Narda #06137 Corrugated #41 S/A #1221 Narda #07057 Corrugated #42 S/A #1222	196	26.33	-20.16	16.25	26.93	-12.85	20.51	28.24	-11.96	22.26
29.28 -26.06 16.25 29.55 -18.15 20.48 30.19 -15.88 30.24 -28.00 16.24 30.45 -19.92 20.49 30.95 -17.44 31.02 -29.52 16.26 31.20 -21.40 20.50 31.61 -18.70 31.20 -30.10 16.25 31.46 -21.98 20.47 31.85 -19.18 7-19-1979 8-6-1979 7-19-1979 7-19-1979 Narda #06137 Corrugated #41 S/A #1221 Narda #07057 Corrugated #42 S/A #1222	000	28.05	-23.60	16.25	28.43	-15.90	20.48	29.29	-14.08	22.25
30.24 -28.00 16.24 30.45 -19.92 20.49 30.95 -17.44 31.02 -29.52 16.26 31.20 -21.40 20.50 31.61 -18.70 31.20 -30.10 16.25 31.46 -21.98 20.47 31.85 -19.18 7-19-1979 Narda #06137 Corrugated #41 S/A #1221 S/A #1222	200	29.28	-26.06	16.25	29.55	-18.15	20.48	30.19	-15.88	22.25
31.02 -29.52 16.26 31.20 -21.40 20.50 31.61 -18.70 31.20 -30.10 16.25 31.46 -21.98 20.47 31.85 -19.18 7-19-1979 8-6-1979 7-19-1979 7-19-1979 7-19-1979 Narda #07057 Corrugated #41 S/A #1221 S/A #1222	250	30.24	-28.00	16.24	30.45	-19.92	20.49	30.95	-17.44	22.23
31.20 -30.10 16.25 31.46 -21.98 20.47 31.85 -19.18 7-19-1979 8-6-1979 7-19-1979 Narda #06137 Corrugated #41 S/A #1221 Narda #07057 Corrugated #42 S/A #1222	300	31.02	-29.52	16.26	31.20	-21.40	20.50	31.61	-18.70	22.26
7-19-1979 Narda #06137 Corrugated #41 S/A #122 Narda #07057 Corrugated #42	320	31.20	-30.10	16.25	31.46	-21.98	20.47	31.85	-19.18	22.26
. Narda #07057 Corrugated #42 S/A S/A	Meas. Date	7-19-197	6,			8-6-1979			7-19-197	ō,
Narda #07057 Corrugated #42	k mtr.	رم ا	16137		Corruga	ted #41		S/A #12	221	i :
	Revr.	Narda #C	7057		Corruga	ted #42		S/A #12	.22	

Table 14: Range corrected gain measurements

Frequency	cy = 10 GHz	 	ō	CE=39.39 cm,		CH≈32.15 cm		
	Meas.			D)				
2 AA (cm)	Coupling (48)	R (cn)	S/A (AIR)	Narda (8)	AVG (:4E:)	U !	RGC	GMeas
100	-16.10	121.1	27.36	27.03	27.20	0.18	27.38	19.33
150	-18.80	171.1	28.67	28.54	28.61	0.09	28.70	19.30
500	-20.92	221.1	29.72	29.66	29.69	0.06	29.75	19.29
250	-22.60	271.1	30.58	30.54	30.56	0.04	30.60	19.30
300	-24.06	321.1	31.30	31.28	31.29 0.03	0.03	31.32	19.29
02'8	-24.60	341.1	31.56	31.54	31.55 0.02	0.02	31.57	19.27
1. Tr	Transmitter:	S/A (12-8	S/A (12-8.2) #1221:		iver: Na	Receiver: Narda (640) #06137	#06137	
2. R	$R = Z_{AA} + (D_E^{+D}_H)_{AVG}$	·D _H) _{AVG}						
3. (6	$(D_E^{+0}_H)_{AVG} = [(D_E^{+0}_H)_{S/A} + (D_E^{+0}_H)_{Narda}]/2 = 21.1 \text{ cm}$	((0 _E +0 _H) s,	/A + (D _E +	[.] DH)Narda]	/2 = 21.	1 cm		
4. Me	Measurement at NAFS on 17 July, 1979	NAL'S on	17 July,	1979				

Table 15: Range corrected gain measurements.

		G _{AVG}	21.39	21.35	31.37	21.37	21.38	21.37			
		R _{GC} G	27.64 2	28.85	29.87 3	30.70 2	31.40 2	31.65 2	# 1221		
cm		L U							Receiver: S/A (12-8.2) #1221	E	
CH=40.22 cm		AVG	27.39 0.25	28.72 0.13	29.79 0.08	30.65 0.05	31.36 0.04	31.62 0.03	ver: S/A	/2 = 26 cr	
CE=47.42 cm;	ກອ	S/A	27.50	28.73	29.81	30.65	31.36	31.61	Recei	E+DH)S/A]	t, 1979
CE=47		Corr (AB)	27.28	28.70	29.77	30.64	31.36	31.62	20) #41;	orr. + (D	7 Augus
		۳ (دس)	126.0	176.0	226.0	276.0	326.0	346.0	Corr (CX2+0+) AVG) (DE+DH)C	t NAI'S on
Frequency = 10 GHz	Meas.	Coupling (dB)	-12.50	-15.00	-17.00	-18.65	-20.05	-20.56	1. Transmitter: Corr (CX20) #41; 2. R = $Z_{AA} + (D_E^{+}D_H)_{AVG}$	$(D_E^{+0}_H)_{AVG} = [(D_E^{+0}_H)_{Corr.} + (D_E^{+0}_H)_{S/A}]/2 = 26 \text{ cm}$	Measurement at NAFS on 7 August, 1979
Frequen		ZAA (cm)	100	150	000	250	300	320	2. R	3. (0	4. Me

Table 16: Range corrected gain measurements

Frequer	Frequency = 10 GHz	2	CE=20.44 cm,		CH=19.66 cm	E		
	Meas.			n :				
ZAA (cm)	Coupling (dB)	R (cm)	Corr (dls)	Narda (-II:)	AVG. (-4B.)	IT.	RGC	G _{AVG}
100	-17.00	107.5	26.61	26.50	26.56	0.07	26.63	18.13
150	-20.20	157.5	28.23	28.17	28.20	0.03	28.23	18.13
000	-22.56	207.5	29.41	29.37	29.39	0.05	29.41	18.13
250	-24.42	257.5	30.34	30.31	30.33 0.01	0.01	30.34	18.13
300	-25.95	307.5	31.11	31.09	31.10 0.01	0.01	31.11	18.14
320	-26.50	327.5	31.38	31.36	31.37 0.01	0.01	31.38	18.13
1. Tr	Transmitter: Corr $R = Z_{AA} + (D_E + D_H)_{AVG}$	Corr (C)	Corr (CX20) #41;	Receiver:		Narda (640) #06137	#06137	
3. (6	$(D_E^{+0}_H)_{AVG} = [(D_E^{+1}_H corr + (D_E^{+0}_H)_{Narda}]/2 = 7.5 cm]$	[(0 ^{E+0} +¢o)	rr + (DE+1	D _H) _{Narda}]	/2 = 7.5	E O		
4. Me	Measurement at NAFS on 7 August, 1979	t NA! S on	7 August	, 1979	-			

Table 17: Summary of range corrected gain measurements

Frequ	Frequency = 10	GHZ							
,	_			GS/A-Narda	da	GcorrS/A	-S/A	GcorrNarda	Narda
(cm)	6 _{S/A} (dB)	G _{Narda} (dB)q	G _{Corr.}	Meas. (dB)	Avg. (dB)	Meas. (dB)	Avg. (dB)	Meas. (dB)	Avg. (dB)
100	22.26	16.25	20.51	19.33	19.26	21.39	21.39	18.13	18.38
150	22.25	16.25	20.48	19.30	19.25	21.35	21.37	18.13	18.36
200	22.25	16.25	20.48	19.29	19.25	21.37	21.37	18.13	18.36
250	22.23	16.24	20.49	19.30	19.24	21.37	21.36	18.13	18.36
300	22.26	16.26	20.50	19.29	19.26	21.38	21.38	18.14	18.38
320	22.26	16.25	20.47	19.27	19.26	21.37	21.37	18.13	18.36
Meas. Date	7-19-79	7-19-79	8-6-79	7-17-79		8-7-79		8-7-79	
Xmt.r.	Xmtr.S/A#1221	Narda #06137	Corr. #41	S/A #1221	1	Corr. #41	#41	Corr. #41	41
Rovr.	Revr. S/A#1222	Narda #07057	Corr. #42	Narda #06137	5137	S/A #1221	221	Narda #	#06137
*Measu	*Measurement data	l ras	FS						
× >	(x,y)AVG = (G)	×ì	y)/2 Avg. of individual norn meas.	n lana l	orn meas.				

Table 18: Range corrected gain measurements

Frequency	cy = 11	GHz			,				
	Nar CE=13.	Narda (Model 640) CE=13.56cm, CH=12.63	640) 12.63 cm	Corr. CE=30.60	Corr. (Mcdel CZ-20) =30.60 cm, CH=29.65	Z-20) 29.65 cm	3	S/A (Model 12-8.2) ==71.32 cm, CH=52.91	2) 2.91 cm
ZAA (cm)	R _{GC} (dB)	Coupl. (dB)	Gain (dB)	R _{GC} (dB)	Coupl.	Gain (dB)	R _{GC} (dB)	Coupl. (dB)	Gain (dB)
100	26.77	-19.80	16.87	27.47	-13.04	20.95	28.92	-13.16	22.34
150	28.48	-23.30	16.83	28.92	-15.96	20.94	29.91	-15.26	22.28
200	29.70	-25.76	16.82	30.03	-18.20	20.93	30.76	-16.98	22.27
250	30.66	-27.70	16.81	30.91	-19.96	20.93	31.50	-18.50	22.25
300	31.44	-29.24	16.82	31.65	-21.54	20.88	32.13	-19.78	22.24
320	31.72	ı	ı	31.91	-22.04	20.89	32.36	-20.24	22.24
Meas. Date	11-27-197	1979		11-28-1979	626		11-27-1979	626	
X mtr.	Narda	#07057		Corrugated	ited #41		S/A #1222	22	
Revr.	Narda	#06137		Corrugated	ited #43		S/A #616	9;	
*Measur	ed Coup	Jing Data	*Measured Coupling Data from NAFS.						

Table 19: Range corrected gain measurements

	GMeas.	19.65	19.60	19.58	19.52	19.54	19.53			
	RGC	27.98	29.24	30.25	31.08	31.79	32.05	#07057		1 1 1 3 -
CH=32.77 cm	U LL	0.19	0.10	90.0	0.04	0.03	0.03	Receiver: Narda (640)	C C C	1
CH.	AVG (dB)	27.79	29.14	30.19	31.04	31.76	32.02	iver: Na	/2 = 25.3	•
CE=42.44 cm	R _{GU} Narda	27.58	29.05	30.14	31.01	31.74	32.00	1	^D H)Narda∫	, 1979
CE=42	S/A (dB)	28.00	29.22	30,24	31.07	31.78	32.03	S/A (12-8.2 #1222; D _H)AVG	/A + (DE+	27 Nov.
	R (cm)	125.3	175.3	225.3	275.3	325.3	345.3	S/A (12- +DH)AVG	[(D _E +D _H)S,	t NAFS on
ncy = 11 GHz	Meas. Coupling (dB)	-16.66	-19.28	-21.34	-23.12	-24.50	-25.04	Transmitter: S/A (1) $R = Z_{AA} + (D_E^{+}D_H)_{AVG}$	$(D_E + D_H)_{AVG} = [(D_E + D_H)_S/A + (D_E + D_H)_{Narda}]/2 = 25.3 \text{ cm}$	Measurement at NAFS on 27 Nov., 1979
Frequency =	ZAA (cm)	100	150	500	. 250	300	320	1. Tr	3. ([4 .

Table 20: Range corrected gain measurements.

•									1
Freque	Frequency - 11 GHz	7+	CE=50	CE=50.96 cm,	CH=41.28 cm	28 cm			i
	Mr.3.			11:)					
2 2.6 'THE.	Coupling also	R (c m)	Corr.	S/A	(3/2)	ι. U	R _{GC}	GAVG	
00.	-13.42	131.1	27.87	28.15	28.01 0.26	0.26	28.27	21.56	1
(;;)	-15.90	181.1	29.25	29.36	29.31 0.14	0.14	29.45	21.50	f
(9)	-17.84	231.1	30.29	30.35	30.32 0.09	60.0	30.41	21.49	-
(.62)	-19.50	281.1	31.14	31.16	31.15 0.06	90.0	31.21	21.46	₹"
300	-20.88	331.1	31.84	31.86	31.85 0.04	0.04	31.89	21.45	4
6.3	-21.38	351.1	32.10	32.11	32.11 0.04	0.04	32.15	21.46	~
1. Tr	Transmitter:	Corr. (Corr. (CX 20) #41;	ì	Receiver:	S/A (12-8.2) #1222	2) #1222		
≃	ZAR + (D + DH) AVG	DAY HO							
3. (U	$\left\{ \theta_{\rm E}^{+i\theta_{\rm H}} \right\}_{\rm AVG} = \left\{ 0.500 {\rm g}^{-1} \right\}_{\rm AVG}$	$[(0_E^{+1)}_H)_{Corr.} + (0_E^{+0}_A)_{S/A}]/2 = 31.1$	rr. + (D _E	+DA)S/A	/2 = 31.	l cm			
A. M.	Measurement at NAE's on 27 Nov., 1979	NAE'S on	27 Nov.,	1979				-	
1									

Table 21: Range corrected gain measurements.

Frequer	Frequency - 11 GHz		CE=22.09 cm,	CH=21.14 cm	4 cm			
2,4A (m)	Meas. Coupling (dB)	R (cm)	Corr.	R _{GU} Narda	AVG	U.	- RGC	GAVG
100	-16.70	109.1	27.10	26.98	27.04	0.08	27.12	18.77
150	-19.90	159.1	28.70	28.63	28.67	0.04	28.71	18.76
200	-22.20	209.1	29.87	29.82	29.85 0.02	0.02	29.87	18.77
250	-24.14	259.1	30.79	30.75	30.77 0.02	0.02	30.79	18.72
300	-25.68	309.1	31.55	31.52	31.54 0.01	0.01	31.55	18.71
0/3	-26.20	329.1	31.82	31.79	31.81	0.01	31.82	18.72
1	Transmitter:	Corr. (CX 20)	CX 20\ #41;	į.	Receiver: N	Narda (640)	#07057	
~ ∵ ≃	$R = I_{AA} + (U_E + D_H)_{AVG}$	D _H) _{AVG}						
3. (C	$(b_E^{+U_H)AVG} - [(b_E^{+U_H})_{Corr.} + (b_E^{+D_H})_{Narda}]/2 = 9.1 cm$	O (H _{O+} 3 _{O)}	orr. + (D	E ^{+D} H ⁾ Nard	$6 = 2/\sqrt{e}$.1 cm		
4. Me	Measurement at NAUS on	NALS on	27 Nov., 1979	, 197º				:

Table 22: Summary of range corrected gain measurements

Frequency	ncy = 11	GHZ							
				6S/A-Narda	rda .	Gcorr.	-S/A	GcorrN	-Narda
2 _{AA} (cm)	S/A (dB)	G _N arda (dB)	(BP)	Meas. (dB)	AVG. (dB)	Meas. (dB)	AVG. (dB)	Meas. (dB)	AVG. (dB)
100	22.34	16.87	20.95	19.65	19.61	21.56	21.65	18.77	18.91
150	22.28	16.83	20.94	19.60	19.56	21.50	21.61	18.76	18.89
200	22.27	16.82	20.93	19.58	19.55	21.49	21.60	18.77	18.88
250	22.25	16.81	20.93	19.52	29.53	21.46	21.59	18.72	18.87
300	22.24	16.82	20.88	19.54	19.53	21.45	21.56	18.71	18.85
320	22.24		20.89	19.53		21.46	21.57	18.72	ı
Meas. Date	11 27	-79	11-28-79	11-28-79 11-27-79	6,	11-27-79	79	11-27-79	
X mtr.	X mtr.S/A#1222	Narda #07057	Corr. #41	S/A #1222	.22	corr.	#41	Corr. #41	
Rcvr.	S/A#616	Narda #06137	Corr.	Narda #07057	407057	S/A #1222	222	Narda #07057	7057
*Meas	*Measurement	data from NAFS	4FS						
(G _× -	$(G_{x-y})ANG. =$	$(G_x + G_y)/2$. AVG. of individual horn meas.	AVG. of	individu	ial horn m	eas.			

CHAPTER IX CONCLUSION

In the method developed here for determining the far field gain of pyramidal horn antennas, the range is defined as that between the calculated amplitude centers of the two horns. Consequently, the correction for near field gain is very small. At 10 GHz, the near field gain ratio for aperture separations greater than 150 cm is less than 0.1 dB for the Scientific-Atlanta X band standard gain horn and is less than 0.03 dB for the Narda X band standard gain horn. The accuracy of the calculated near field range correction data is estimated to be within 0.1 dB. Therefore, the accuracy of the far field gain measurements is practically limited by the accuracy of the measured coupling data.

The following observations demonstrate the validity and accuracy of the theory and the calculated results for the finite range correction data. The calculated finite range correction data given nearly the same value for far field gain of each horn over a wide range of aperture separations. When the finite range correction data were applied to coupling between mixed horns, the effective gain of each horn pair was consistent with the gains of the two horns when measured separately.

APPENDIX A EQUIVALENT LINE SOURCE INTEGRATIO. METHOD (LSI)

The slope diffraction method described in Chapter I was used for the GTD calculations of the diffracted fields from the H-plane edges of the horn antennas. As seen from Equation (24) slope diffraction is exact for an incident wave with a sing pattern where RA90°. This is equivalent to a sin($\theta_{\rm QH}-\theta_{\rm H}$) pattern for the wave incident on the H-plane edge of the horn shown in Figure 5. However the geometrical optics or incident wave in the H-plane of

a horn has a cos $\frac{{}^{\pi}{}^{\theta}H}{2\theta}$ pattern. Furthermore, in the GTD calculations the diffracted field from each E-plane edge is calculated as that of a uniform spherical wave. Thus, the amplitude of the incident wave along the E-plane edges is assumed to be uniform when it ac-

tually varies as $\cos\frac{\pi^{\theta}H}{20}$. Nevertheless, for large norn dimensions, the normal GTD calculations are accurate. For small horn dimensions the accuracy can be improved by using LSI which inte-

grates over the cos $\frac{\pi^0 H}{2^{(0)}}$ incident wave to calculate the diffracted fields from the E-plane edges, and performs a linear integration in the H-plane of the aperture to calculate diffracted fields from the H-plane edges.

The concept of the equivalent current method states that we can get the equivalent diffracted field from the equivalent line source current. We can assume that there is an equivalent magnetic current along each E plane edge and therefore it generates the electromagnetic field at the observation point.

Referring to [12], the magnetic field from the equivalent magnetic current M at the distance r is given by

$$H_z^d = -Y_0 kM \sqrt{\frac{j}{8\pi kr}} e^{-jkr}$$
 (A-1)

$$E_{\phi}^{d} = -kM \sqrt{\frac{j}{8\pi kr}} e^{-jkr} \qquad (A-2)$$

The diffracted field at a distance r close to a wedge is given by $E^{i} = E^{i}(Q_{E})D_{I}(L, \Phi, \theta_{O}, \pi) = \frac{e^{-jkr}}{\sqrt{r}}$ (A-3)

The diffraction coefficient D_{τ} in Equation (A-3) becomes independent of the distance parameter L outside the transition regions around the shadow boundary. Furthermore, the diffraction coefficient can be approximated as that for the centerl diffraction point on the edge. Thus, comparing Equations (A-2) and (A-3), we get the equivalent magnetic current, as shown in Figure

$$M = -\frac{2}{k} / \frac{2 - k}{J} E^{j} D_{I}(L, 1, n_{0}, n)$$
 (2-4)

The magnetic vector potential is given by

$$F = \frac{1}{4} \cdot \int_{\frac{-A}{2}}^{\frac{A}{2}} \frac{Me^{-jkr}}{r} dx \qquad (A-5)$$

and the electric field is given by

$$E^{d} = -jkF \cos \theta^{\dagger}$$
 (A-6)

$$E^{d} = \frac{1}{2} \frac{\sqrt{2\pi}k}{j} D_{1}(L, :, :_{0}, n) \cos^{-1} \begin{cases} \frac{A}{2} & E^{i}e^{-jkr} \\ -A & r \end{cases} dx$$
 (A-7)

The incident or geometric optics field is given by Equation (51)

$$E^{\frac{1}{2}} = \frac{e^{-jkR}}{R} \cos \frac{\pi}{2\pi}$$
(A-8)

$$o = \frac{1}{OH}$$
, is half angle of the H-plane (A-9)

Define the Antegral
$$I = \frac{2}{\frac{1-A}{2}} \frac{E^{\frac{1}{4}}e^{-\frac{1}{2}k\cdot e}}{r} \qquad \text{dx}$$

$$\frac{A}{2} = \frac{A}{r} + \frac{1}{r} \frac{R}{r} = \frac{1}{r} \frac{R}{r} + \frac{1}{r} \frac{R}{r} = \frac{1}{r} \frac{R}{r} + \frac{1}{r} \frac{R}{r} = \frac{1}{r}$$

$$L_{EM} = \frac{H_{H}}{\cos^{9} oE}$$
 (A-11)

$$R = \sqrt{L_{EM}^2 + x^2}$$

$$\approx L_{EM} + \frac{x}{2L_{EM}}, \text{ for } L_{EM} >> x$$
(A-12)

$$r \approx R_{E1} + \frac{x^2}{2R_{E1}}$$
, for $R_{E1} >> x$ (A-13)

$$u = \tan^{-1} \frac{x}{L_{FM}} \tag{A-14}$$

$$\stackrel{\cdot}{:} I \approx \frac{1}{L_{EM}R_{E1}} e^{-jkR_{E1}} \int_{-\frac{A}{2}}^{\frac{A}{2}} \cos \frac{\pi \theta}{2\theta} e^{-j\frac{kx^2}{2R_{E1}}} e^{-jkR_{dx}}$$
 (A-15)

The convenience in checking the computer programs the following factor F_{CTP} is defined for calculating the diffracted field from the E-piane edges:

Form =
$$\frac{\frac{A}{2}}{\frac{A}{2}\cos\frac{\frac{\pi}{2}}{2}} e^{-j\frac{kx^2}{2R_{E1}}} e^{-jkR} dx$$

$$\frac{A}{?} = -j \frac{kx^{2}}{2R_{E1}}$$

$$\frac{A}{?} = cos \frac{1}{2} - e e^{-jkR} dx$$

$$\frac{A}{?} = -jkL_{EM} = -j \frac{kx^{2}}{?} \left(\frac{1}{R_{E1}} + \frac{1}{L_{EM}}\right)_{dx}$$

$$\frac{A}{?} = -jkL_{EM} = -j \frac{kx^{2}}{?} \left(\frac{1}{R_{E1}} + \frac{1}{L_{EM}}\right)_{dx}$$

$$\int_{-\infty}^{\infty} e^{-j\frac{kx^2}{2}} \left(\frac{1}{R_{E1}} + \frac{1}{L_{EM}} \right)_{dx} = e^{j\frac{\pi}{4}} \int_{\frac{R_{E1}L_{EM}}{R_{E1}+L_{EM}}}^{\frac{\pi}{2}}$$
(A-17)

The diffracted electric field on the horn axis by using LSI method can be gotten from Equation (70) multiplied by F_{CTR} ,

$$E^{d} = E_{DIF} \times F_{CTR}$$

$$= 2D_{I} \frac{e^{-jkL_{E}}}{\sqrt{L_{E}}} \cdot \frac{e^{-jkR_{E1}}}{\sqrt{R_{E1}(R_{E1}+L_{E})}} \cos^{-jkL_{EM}} \frac{\sqrt{\frac{A}{2}} \cos \frac{1}{2R_{E1}} e^{-jkR_{dx}}}{e^{-jkL_{EM}} e^{-jkL_{EM}}}$$

$$= 2D_{I} \frac{e^{-jk(L_{E} L_{EM})}}{\sqrt{L_{EM}L_{E}}} \cdot \frac{e^{-jkR_{E1}}}{R_{E1}} \sqrt{\frac{R_{E1}L_{E}}{R_{E1}L_{EM}}} \cos^{-j\frac{\pi}{4}}$$

$$x \int_{\frac{-A}{2}}^{\frac{A}{2}} \cos \frac{-j}{2k} e^{-jkR} dx$$
 (A-18)

Referring to Figure A-2, the sum of the geometric optics field and the H-plane diffracted field is given by

$$E^{G.O.} + H_{DIF} = F_H \times E_{INC.}$$

where F_{H} is defined by

$$F_{H} \stackrel{\text{1s defined by}}{\underset{A}{\overset{A}{\nearrow}}} \frac{jk \frac{x^{2}}{27}}{cos \frac{2}{0}} e \frac{jk R'}{A} d^{-jkR'} dx$$

$$F_{H} \stackrel{\text{-j}}{\underset{C}{\overset{A}{\nearrow}}} \frac{kx^{2}}{27} e^{-jkR'} dx$$

$$(A-20)$$

$$R' = \sqrt{H_H^2 + x^2}$$
 (A-21)

$$H_{H} + \frac{x^{2}}{2H_{H}}$$
 for $H_{H} \sim x$ (A-22)

$$\int_{0}^{\infty} e^{-jkR'} dx = e^{-jkH_{H}} e^{j\frac{\pi}{4}} \sqrt{\frac{H_{H}Z_{A}}{H_{H}+Z_{A}}}$$
 (A-23)

$$F_{H} = e^{-j\frac{\pi}{4}} \sqrt{\frac{H_{H}Z_{A}}{H_{H}+Z_{A}}} e^{-jkH_{H}} \int_{\frac{-A}{2}}^{\frac{A}{2}} \cos \frac{\pi\theta}{2\theta} e^{-j\frac{kx^{2}}{2Z_{A}}} e^{-jk\sqrt{H_{H}^{2}+x^{2}}} dx$$
(A-24)

Therefore, the total electric field is given by

$$E^{TOT} = E_{DIF} \times F_{CTR} + F_{H} \times E_{INC}.$$
 (A-25)

Figure A-1. Equivalent magnetic current along an E-plane edge.

Figure A-2. Equivalent magnetic current along the central part of the H-plane.

APPENDIX B APERTURE INTEGRATION METHOD (API)

The corrugated horn, as shown in Figure B-1, is formed by replacing the conventional E-plane horn walls by impedance walls which force the tangential magnetic field to zero along the walls. The effect of the capacitive corrugated surface is to modify the uniform field distribution in the E-plane to a cosine distribution in the horn aperture when the horn is properly designed, as shown in Figure B-2. The reason for using the LSI method for non-corrugated horns as discussed in Appendix A, also aplies in a similar way for corrugated horns. With corrugated horns, the aperture has a cosine distribution in both the E-plane and the H-plane. Therefore, the aperture integration method will be used here for computing the on-axis near field of the corrugated horn. The aperture field for a corrugated horn as shown in Figures B-2 and B-3 is given by

$$\overline{E}^{i} = \hat{y} \frac{e^{-jks'}}{s'} \cos \frac{\pi \theta_{x}}{2\theta_{ox}} \cos \frac{\pi \theta_{y}}{2\theta_{oy}}$$
(B-1)

where

$$s' = \sqrt{H_{AVE}^2 + x^2 + y^2}$$
 (B-2)

2
 HAVE + $\frac{x^{2}}{2H_{AVE}}$ + $\frac{y^{2}}{2H_{AVE}}$

$$H_{AVE} = \frac{1}{2} (H_E + H_H)$$
 (B-3)

$$_{\text{ox}}^{\circ} = \tan^{-1} \frac{A}{2H_{\text{H}}}$$
 (B-4)

$$H_{AVF} = \tan^{-1} \frac{x}{H_{AVF}}$$
 (B-5)

$$\theta_{\text{oy}} = \tan^{-1} \frac{B}{2H_{\text{F}}}$$
 (B-6)

$$\frac{\theta}{y} = \tan^{-1} \frac{y}{H_{AVF}}$$
 (B-7)

Figure B-1. Side view of corrugated horn.

Figure B-2. Corrugated horn model.

Figure B-3. Coordinate system.

The equivalent magnetic current is given by

$$\overline{M} = 2\overline{E}^{1} \times \hat{n}$$

$$= \hat{x} 2 \frac{e^{-jks'}}{s'} \cos \frac{\pi \theta x}{2\theta_{ox}} \cos \frac{\pi \theta y}{2\theta_{oy}}$$
(B-8)

Therefore, the total electric field on the horn axis is given by

$$E = \frac{jk}{4} \int_{-x_0}^{-x_0} \int_{-y_0}^{y_0} \frac{Me^{-jks}}{s} dx dy$$

$$= \frac{j}{\lambda} \int_{-x_0}^{x_0} \int_{-y_0}^{y_0} \frac{e^{-jks'}}{s'} \cos \frac{\pi \theta}{2\theta_{ox}} \cos \frac{\pi \theta y}{2\theta_{oy}} \cdot \frac{e^{-jks}}{s} dx dy$$
(B-9)

where

$$s = \sqrt{x^2 + y^2 + Z_A^2}$$

$$\approx Z_A + \frac{x^2}{2Z_A} + \frac{y^2}{2Z_A}$$
(B-10)

$$\cdot \cos \frac{\pi \theta}{2 \theta} \cos \frac{\pi \theta y}{2 \theta} \cos dx dy$$
 (B-11)

where

$$H_{ZA} = \frac{1}{H_{AVE}} + \frac{1}{7_A} = \frac{H_{AVE} + Z_A}{H_{AVE} Z_A}$$
 (B-12)

The geometric optics field can be expressed as

$$E^{G.0.} = \frac{je^{-jk(H_{AVE}+Z_A)}}{^{\lambda}H_{AVE}Z_A} \int_{-\infty}^{\infty} \int_{\infty}^{\infty} e^{-j\frac{kx^2H_{ZA}}{2}} e^{-j\frac{ky^2H_{ZA}}{2}} dx dy$$

$$\int_{-\infty}^{\infty} e^{-j\frac{kx^2H_{ZA}}{2}} dx = \int_{-\infty}^{\infty} e^{-j\frac{ky^2H_{ZA}}{2}} dy \qquad (B-13)$$

$$= \int_{-\infty}^{1} e^{-j\frac{\pi}{4}} e^{-j\frac{\pi}{4}} \qquad (B-14)$$

For convenience in checking the computer programs the following factors \mathbf{F}_{CX} and \mathbf{F}_{CY} are defined as

$$F_{CX} = \frac{\int_{-x_{0}}^{x_{0}} e^{-j\frac{kx^{2}H_{ZA}}{2}\cos\frac{\pi\theta}{2}x} dx}{\int_{-x_{0}}^{x_{0}} e^{-j\frac{kx^{2}H_{ZA}}{2}} dx} = \int_{-x_{0}}^{H_{ZA}} e^{j\frac{\pi}{4}} \int_{-x_{0}}^{x_{0}} e^{-j\frac{kx^{2}H_{ZA}}{2}} dx$$

$$e^{-j\frac{kx^{2}H_{ZA}}{2}} \cos\frac{\pi\theta}{20}x dx \qquad (B-15)$$

$$F_{C,y} = \frac{\int_{-y_{0}}^{y_{0}} e^{-j\frac{ky^{2}H_{ZA}}{2}} \cos \frac{\pi^{0}y}{2^{0}_{0}y} dy}{\int_{-w}^{w} e^{-j\frac{ky^{2}H_{ZA}}{2}} dy} = \int_{-y_{0}}^{H_{ZA}} e^{j\frac{\pi}{4}} \int_{-y_{0}}^{y_{0}} e^{-j\frac{ky^{2}H_{ZA}}{2}} dy$$

$$e^{-j\frac{ky^{2}H_{ZA}}{2}} \cos \frac{\pi^{0}y}{2^{0}_{0}y} dy \qquad (B-16)$$

Therefore, the total electric field on the axis is given by

$$E^{TOT} = F_{c \times x} \times F_{c y}$$
 (B-17)

APPENDIX C COUPLING BETWEEN NON ISOTROPIC SOURCES

The near field coupling between two antennas with wide beam-widths (i.e., assuming each antenna would illuminate the other antenna with a nearly uniform spherical wave from its amplitude center) can be expressed as

$$\frac{P_{Ro}}{P_{T}} = \left(\frac{\lambda}{4\pi R}\right)^{2} G_{T}(R)G_{R}(R) \tag{C-1}$$

where

 P_{ro} = Power received assuming uniform amplitude waves.

P_T = Power transmitted

R = Effective range (between amplitude centers)

 $G_T(R), G_R(R)$ = Near field gains at distance R as defined by Equation (95) for transmitting and receiving antennas, respectively.

However, Equation (C-1) is not highly accurate if the two antennas are separated by a small distance compared to their beam widths. An improved calculation of the coupling can be derived for close antenna separations by using the principle of reaction [12]. This principle is based on two sets of sources which represent the transmitting and receiving antennas as shown in Figure C-1. The current I of source a produces the fields E , H ; and I produces E_b , H_b . The reaction principle is based on the following Equation

$$-\iint_{S} (\overline{E}_{a}x\overline{H}_{h} - \overline{H}_{b}x\overline{H}_{a}) d\overline{s}$$

$$= \iiint_{V} (\overline{E}_{a} - \overline{J}_{b} - \overline{H}_{a} \cdot \overline{M}_{b} - \overline{E}_{b} \cdot \overline{J}_{a} + \overline{H}_{h} \cdot \overline{M}_{a}) dv \qquad (C-2)$$

Since each source is represented by electric currents only, the magnetic currents are zero ($M_a=M_b=0$). The volume V of integration will be taken as the right half-space as shown in Figure C-1. Thus the volume integral in Equation (C-2) reduces to

$$\iiint\limits_V \widetilde{E}_a J_h dv = \int_h \widetilde{E}_a I_h dv = V_{ah} I_h$$
 (C-2)

where V_{ab} is voltage induced by source a into source b when it is receiving.

Let both sources be identical to represent the coupling between likehorns. Also assume unit currents for both sources I_a = 1. Then Equation (C-2) can be written as

$$V_{ab} = - \iint (E_{ta}H_{tb} - E_{tb}H_{ta})ds$$
 (C-4)

where E_{ta} , H_{tb} , E_{th} and H_{ta} are the tangential field components on surface S. From Figure C-1 note that

$$E_{ta} = E_{tb}^{\circ} E_{a}$$
 (0-5)

$$H_{ta} = -H_{tb} \otimes H_{a} \tag{C-6}$$

which can be approximated as the total field components for small angles. Then the received voltage can be approximated as

$$V_{ab} \approx 2 \iint_{S} E_{a}H_{a} dS \approx \frac{2}{Z_{0}} \iint_{S} E_{a}^{2} dS \qquad (C-7)$$

where Z_0 is the impedance of free space.

As seen from Chapter VII the coupling between two horns is represented as that between two point sources located at the respective amplitude centers of each horn as shown in Figure C 2. In Equation (C-1) the spherical wave from each amplitude center is assumed to have uniform amplitude. In this derivation the spherical wave from each amplitude center is assumed to have a Gaussian amplitude. Thus a more accurate representation of the near axis pattern is given by

$$F(x) = C e^{-A^{1/2}}$$

where A is a constant which can be determined from the calculated horn patterns as follows: First, use the normalized field pattern given by

$$F_n(n) = \frac{F(n)}{F(0)} = e^{-A^{n/2}}$$
 (C-9)

Then A can be evaluated for a small angle (let's choose -1° - $^{\circ}/180$ radians). Thus

Figure C-1. Fields of source a and source b over sourface S of integration.

Figure C-2. Coupling between two horns.

$$A = \frac{-\ln F_n(1^0)}{(\pi/180)^2}$$
 (C 10)

Calculated horn paterns are usually expressed in dB as

$$F_{dB}(\theta) = 20 \log F_{n}(\theta) \tag{C-11}$$

Then

$$F_n(0) = (10)^{F_{dB}/20}$$
 (C-12)

Thus

$$A = -\left(\frac{180}{5}\right)^2 \frac{\ln 10}{20} F_{dB}(1^0)$$
 (C-13)

$$A = -378 F_{dR}(1^0)$$
 (0-14)

where $E_{\text{odB}}^{(1^0)}$ is the value of the normalized horn pattern in dB at $\theta=1$

The field of each horn on surface S as shown in Figure C-2 is given by

$$E(r,\theta,\phi) = F_E(\theta_E)F_H(\theta_H) = \frac{e^{-jkr}}{r}$$
 (C-15)

where F_E and F_H are the E- and H-plane patterns, respectively. Thus the voltage received by one horn with an identical transmitting horn is given by Equation (C-7) as

$$V_{R} = \frac{2}{Z_{O}} \iint_{S} E^{2} ds = \frac{2}{Z_{O}} \iint_{S} \left[F_{E}(\theta_{E}) F_{H}(\theta_{H}) \frac{e^{-jkr}}{r} \right]^{2} dS \qquad (C-16)$$

Because of stationary phase effects most of the contributions to the integral in Equation (C-16) will result from the rear-axis region where

$$r + h + \frac{?}{2h}$$
 (r-17)

$$y \approx h_0$$
 (C-19)

and

$$p^2 = x^2 + y^2 \approx h^2(\theta_F^2 + \theta_H^2)$$
 (C-20)

Using these approximations in Equation (C-14) gives the received voltage as

$$V_{R} = \frac{2e^{-i2kh}}{Z_{0}h^{2}} \int_{-\pi/2}^{\pi/2} e^{-(2A_{E}+jkh)\theta_{E}^{2}} h d\theta_{E}$$

$$\times \int_{-\pi/2}^{\pi/2} e^{-(2A_{H}+jkh)\theta_{H}^{2}} h d\theta_{H}$$
(C-21)

where the Gaussian pattern of Equation (C-9) has been used.

The coupling power ratio in Equation (C-1) assumes spherical waves with uniform amplitudes, i.e. $A_E = A_H = 0$. Thus the ratio of the received voltage V_R to the voltage V_{Ro} received with assumed uniform amplitude waves is given by

$$\frac{V_{R}}{V_{Ro}} = \frac{\int_{-\infty}^{\infty} e^{-(2A_{E}+jkh)\theta_{E}^{2}} d\theta_{E} \int_{-\infty}^{\infty} e^{-(2A_{H}+jkh)\theta_{H}^{2}} d\theta_{H}}{\int_{-\infty}^{\infty} e^{-jkh\theta_{E}^{2}} d\theta_{E} \int_{-\infty}^{\infty} e^{-jkh\theta_{H}^{2}} d\theta_{H}}$$
(C-22)

Because of stationary phase effects the limits of integration in Equation (C-22) can be treated as infinite. Then the integrals can be analytically evaluated by

$$\int_{-\infty}^{\infty} e^{-(2A+jB)\theta^2} d\theta = \frac{\sqrt{\pi}}{\sqrt{2(A+jB)}}$$
(C-23)

Then Equation (C-23) can be evaluated as

$$\frac{V_{R}}{V_{Ro}} = \sqrt{\frac{jkh}{2A_{E}+jkh}} \sqrt{\frac{jkh}{2A_{H}+jkh}} = \frac{1}{\sqrt{1-jT_{E}}} \frac{1}{\sqrt{1-jT_{H}}}$$
 (C-24)

where

$$T_E = \frac{2A_E}{kh} = \frac{4A_E}{kR} = \frac{C_E}{R}$$
 (C-25a)

$$C_{E} = \frac{2\lambda A_{E}}{\pi}$$
 (C-25b)

$$T_{H} = \frac{2A_{H}}{kh} = \frac{4A_{H}}{kR} = \frac{C_{H}}{R}$$
 (C-26a)

$$C_{H} = \frac{2^{\lambda}A_{H}}{\pi}$$
 (C-26b)

and R is the range between amplitude centers. Finally the ratio of the received powers is given by

$$\frac{P_{RO}}{P_{RO}} = \left| \frac{V_{R}}{V_{RO}} \right|^2 = \frac{1}{\sqrt{1 + T_{E}^2}} \frac{1}{\sqrt{1 + T_{H}^2}}$$
 (C-27)

Thus combining Equation (C-27) and (C-1) the coupling between two horns can be more accurately calculated from

$$\frac{P_{R}}{P_{T}} = \left(\frac{\lambda}{4\pi R}\right)^{2} G_{T}(R)G_{R}(R) \frac{1}{\sqrt{1+T_{E}^{2}}} \frac{1}{\sqrt{1+T_{H}^{2}}}$$
 (C-28)

where $T_{\rm E}$ and $T_{\rm H}$ are calculated by using Equations (C-25), (C-26) and (C-14).

For different horn models the patterns for each horn can be used in Equations (C-4) and (C-16). Thus coupling between horns of different dimensions can be calculated from Equation (C-27) with

$$T_E = \frac{2A_{E1} + 2A_{E2}}{kR} = \frac{C_E}{R}$$
 (C-29a)

and

$$C_{E} = \frac{\lambda}{\pi} \left(A_{E1} + A_{E2} \right) \tag{C-29b}$$

The pattern constants $A_{E\,1}$ and $A_{E\,2}$ are those for the E-plane patterns of horns 1 and 2, respectively. Similarly, for the H-plane, we have

$$T_{H} = \frac{2A_{H1} + 2A_{H2}}{kR} = \frac{C_{H}}{R}$$
 (C-30a)

and

$$C_{H} = \frac{\lambda}{\pi} (A_{H1} + A_{H2})$$
 (C-30b)

REFERENCES

- 1. R. C. Rudduck, "Application of Wedge Diffraction to Antenna Theory," Report 1691-13. 30 June 1965. The Ohio State University ElectroScience Laboratory, Department of Electrical Engineering; prepared under Grant No. NSG-448 for National Aeronautics and Space Administration. Washington, D.C. Also published as NASA Report CR-372.
- 2. P. M. Russo, R. C. Rudduck, and L. Peters, Jr.. "A Method for Computing E-Plane Patterns of Horn Antennas," IEEE Trans. on Antennas and Propagation. AP-13, No. 2 March 1965, pp. 219-224
- 3. J. S. Yu, R. C. Rudduck, and L. Peters, Jr. "Comprehensive Analysis for E Plane of Horn Antennas for Edge Diffraction Theory," IEEE Trans. Antennas and Propagation, Vol. AP-14 March 1966, pp. 138-149.
- 4. J. S. Yu and R. C. Rudduck, "H-Plane Pattern of a Pyramidal Horn," IEEE Trans. on Antennas and Propagation Comm., Vol. AP-17, No. 5, September 1969.
- 5. C. A. Mentzer, L. Peters, Jr., and R. C. Rudduck, "Slope Diffraction and Its Application to Horns," IEEE Trans. on Ant. and Prop. AP-23, No. 2, March 1975.
- 6. R. G. Kouyoumjian and P. H. Pathak, "A Uniform Geometrical Theory of Diffraction for an Edge in a Perfectly-Conducting Surface," Proc. IEEE, vol. 62, November 1974, pp. 1448-1461.
- 7. T. S. Chu and R. A. Semplak, "Gain of Electromagnetic Horns," The Bell System Technical Journal, March 1965, pp. 527-537, Vol. 14, No. 3.
- 8. R. R. Bowman, "Absolute Gain Measurements for Horn Antennas," Technical Report No. RADC-TR-68-349, November 1968, Final Report.
- 9. E. V. Jull, "Finite Range Gain of Sectoral and Pyramidal Horns," Electron. Lett., Vol. 6. October 15, 1970.
- 10. A. C. Ludwig and R. A. Norman. "A New Method of Calculating Correction Factor for Near Field Gain Measurements," IEEE Trans. on Ant. and Prop. AP-21, No. 5, September 1973, pp. 623-628.

- 11. A. C. Newell, R. Baird and P. F. Wacker, "The Accurate Measurement of Antenna Gain and Polarization at Reduced Distances by an Extrapolation Technique," IEEE Trans. on Ant. and Prop., AP-21, No. 4, July 1973, pp. 418-431.
- 12. R. F. Harrington, <u>Time-Harmonic Electromagnetic Fields</u>, McGraw-Hill, 1961.