Pizzaseminar

1. Übungsblatt

Aufgabe 1. Diskretheit der natürlichen Zahlen

Zeige für alle natürlichen Zahlen $n \in \mathbb{N}$:

$$n = 0 \quad \lor \quad \neg (n = 0).$$

Verwende dazu nur die fünf Peano-Axiome:

- 1. 0 ist eine natürliche Zahl.
- 2. Jede natürliche Zahl n hat eine Zahl S(n) als Nachfolger.
- 3. Die Zahl 0 ist Nachfolger einer Zahl.
- 4. Natürliche Zahlen mit gleichem Nachfolger sind gleich.
- 5. Enthält eine Teilmenge der natürlichen Zahlen die Zahl 0 und mit jeder Zahl auch ihren Nachfolger, so enthält sie schon alle natürlichen Zahlen.

Aufgabe 2. Konstruktive Tautologien

Zeige für beliebige Aussagen φ, ψ und mache dir ggf. Gedanken über die Rückrichtung:

- a) $\varphi \Longrightarrow \neg \neg \varphi$
- b) $(\varphi \Rightarrow \psi) \Longrightarrow (\neg \psi \Rightarrow \neg \varphi)$
- c) $\neg \neg (\varphi \lor \neg \varphi)$
- d) $\neg \neg \exists x \in A : \psi(x) \iff \neg \forall x \in A : \neg \psi(x)$

Tipp: Die Negation ist als $\neg \varphi :\equiv (\varphi \Rightarrow \bot)$ definiert. Wahrheitstafeln haben hier nichts zu suchen.

Aufgabe 3. Doppelnegationselimination

Zeige, dass folgende zwei Prinzipien äquivalent sind:

- 1. Für alle Aussagen φ gilt: $\varphi \vee \neg \varphi$.
- 2. Für alle Aussagen ψ gilt: $\neg \neg \psi \Rightarrow \psi$.

 $Tipp \ f\ddot{u}r \ 2. \Rightarrow 1.:$ Verwende die Voraussetzung $nicht \ f\ddot{u}r \ \psi := \varphi.$

Aufgabe 4. Teilmengen von $\{\star\}$

Klassisch gilt:

Jede Teilmenge von $X := \{\star\}$ ist gleich \emptyset oder gleich X.

Konstruktiv lässt sich das nicht zeigen, die Potenzmenge von X hat (potenziell) viel mehr Struktur. Beweise das durch ein brouwersches Gegenbeispiel: Zeige, dass aus dieser Aussage das Prinzip vom ausgeschlossenen Dritten folgt.