MEMORY

ECE 2534

Solid-state Memory: Fundamental Types

□ RAM: Random-Access Memory

- Can read/write any memory word
- "Random": access time is the same for all locations
- Volatile
- Can be used for storing variables
- Can also store instructions and constants, but these must be loaded into memory after power-up

□ **ROM**: Read-Only Memory

- Can <u>read</u> any memory word
- Access is also "random": (read time is the same for all locations)
- Nonvolatile
- Cannot be used to store variables (!)
- Great for storing things that never change, esp. instructions and constants
- Code placed here is sometimes called "firmware"

Close Relatives

- □ RAM: Random-Access Memory
 - SRAM: Static RAM
 - DRAM: Dynamic RAM
 - . . .
 - DDR SDRAM:Double Data RateSynchronous Dynamic RAM

- □ **ROM**: Read-Only Memory
 - Can only be written once, in the factory
 - Economically viable only for large quantities
- □ PROM: Programmable ROM
 - Can only be written once
 - •Can be written essentially <u>anywhere</u>, using special (but inexpensive) equipment
- EPROM: Erasable Programmable ROM (typically erased using UV light)
- EEPROM: Electrically Erasable Programmable ROM (typically erased and re-written <u>without</u> removing from circuit board)
- FLASH MEMORY

SRAM vs. DRAM

■ Static random access memory (SRAM)

- Integrated circuits that are memory arrays, usually with a single access port that is used for write/read
- Low density, high power, expensive, fast
- "Static": contents will last "forever" (until power is lost)

■Dynamic random access memory (DRAM)

- Value is stored as a charge on a capacitor (must be refreshed)
- High density, low power, cheap, slow (factor of 5 to 10)
- "Dynamic": contents need to be refreshed regularly, with special circuitry

6-transistor SRAM bit

Flash memory relies on "floating gates"

A normal transistor loses its charge (and therefore any 0/1 info) whenever the power supply is removed.

A floating-gate transistor is surrounded by insulating oxide layers that allow it to retain its charge after power is removed.

EEPROM and Flash Transistor

Comparison

More comparison

Memory Type	Features
FLASH	Low-cost, high-density, high-speed architecture; low power; high reliability
ROM Read-Only Memory	Mature, high-density, reliable, low cost; time-consuming mask required, suitable for high production with stable code
SRAM Static Random-Access Memory	Highest speed, high-power, low-density memory; limited density drives up cost
EPROM Electrically Programmable Read-Only Memory	High-density memory; must be exposed to ultraviolet light for erasure
EEPROM or E ² Electrically Erasable Programmable Read-Only Memory	Electrically byte-erasable; lower reliability, higher cost, lowest density
DRAM Dynamic Random Access Memory	High-density, low-cost, high-speed, high-power

Flash Memory on the Digilent Board

- ☐ Microchip 24LC256
 - 256 Kbit (32K x 8)
 - I2C-compatible
 - SCK can operate up to 400 kHz
 - 64-byte "pages"
 - 5 ms maximum write cycle

- ☐ In addition, our **PIC32** processor contains . . .
 - 512 KByte internal program flash memory
 - 12 KByte boot flash memory
 - (also 128 KByte internal SRAM)

Warning

- * Flash memories can wear out.
- * Flash cycle: changing a bit from a '1' to a '0'
- * Microchip guarantees that the 24LC256 will function properly for at least 1,000,000 write/erase cycles
- * Not a good idea to put your code in a tight loop that cycles memory!

SUMMARY

- ☐ In the beginning, there was RAM and ROM
- ☐ Today, several choices are available
 - Consider trade-offs
 - Some of the nonvolatile alternatives resemble RAM more and more
- ☐ Flash memory:
 - A good choice for low-cost, nonvolatile storage when memory updates (=writes) are relatively rare
 - Write cycles involve additional complexity, and the number of cycles is limited
 - Serial designs are attractive for low-speed applications (e.g., audio)