Introduction to STARKs

Alan Szepieniec 艾伦.余不涅茨

alan@neptune.cash

https://neptune.cash/

https://triton-vm.org/

https://asz.ink/presentations/2025-09-18-Introduction-to-STARKs.pdf

```
Motivation
```

```
STARK
Overview
Arithmetization
DEEP-ALI
DEEP
Low Degree Testing
BCS Transform
Fiat-Shamir Transform
```

Motivation

```
STARK
Overview
Arithmetization
DEEP-ALI
DEEP
Low Degree Testing
BCS Transform
Fiat-Shamir Transform
```

Virtual Machine

Fixed Circuit

Virtual Machine

Fixed Circuit

versatile

high one-time cost low per-application cost slower + more resources required

optimizable

 $\begin{array}{l} \mbox{high per-application cost} \\ \mbox{faster} \ + \ \mbox{fewer resources required} \end{array}$

Virtual Machine

Fixed Circuit

- versatile
 - high one-time cost low per-application cost slower + more resources required
- one prover, one verifier, many programs

- optimizable

high per-application cost faster + fewer resources required

one prover and one verifier for each application

Virtual Machine

versatile

high one-time cost low per-application cost slower + more resources required

- one prover, one verifier, many programs
- examples:
 transaction aggregation
 recursive block validation ⇒ rapid sync
 verifiable builds
 private and verifiable machine learning

Fixed Circuit

optimizable

 $\label{eq:high-per-application} \mbox{ high per-application cost} \\ \mbox{ faster } + \mbox{ fewer resources required}$

- one prover and one verifier for each application
- examples:

 $\label{eq:continuous} \mbox{zk-evaluation of UTXO-to-nullifier map} \\ \mbox{zk-verification of no-inflation} + \mbox{output-positivity} \\ \mbox{wrapping a STARK}$

Virtual Machine

Fixed Circuit

versatile

high one-time cost low per-application cost slower + more resources required

- one prover, one verifier, many programs
- examples:
 transaction aggregation
 recursive block validation ⇒ rapid sync
 verifiable builds
 private and verifiable machine learning
- stateful
 evolution across time

optimizable

 $\label{eq:high-per-application} \mbox{ high per-application cost} \\ \mbox{ faster } + \mbox{ fewer resources required} \\$

- one prover and one verifier for each application
- examples:

 $\label{eq:continuous} \mbox{zk-evaluation of UTXO-to-nullifier map} \\ \mbox{zk-verification of no-inflation} + \mbox{output-positivity} \\ \mbox{wrapping a STARK} \\$

stateless

direct relation between input and output

Virtual Machine

Fixed Circuit

versatile

high one-time cost low per-application cost slower + more resources required

- one prover, one verifier, many programs
- examples:
 transaction aggregation
 recursive block validation ⇒ rapid sync
 verifiable builds
 private and verifiable machine learning
- stateful
 evolution across time

STARKs are tailored towards proving the integral evolution of a state across time.

- optimizable

 $\label{eq:high-per-application} \mbox{ high per-application cost} \\ \mbox{ faster } + \mbox{ fewer resources required} \\$

- one prover and one verifier for each application
- examples:

 $\label{eq:continuous} \mbox{zk-evaluation of UTXO-to-nullifier map} \\ \mbox{zk-verification of no-inflation} + \mbox{output-positivity} \\ \mbox{wrapping a STARK} \\$

stateless

direct relation between input and output

zk-VMs that use STARKs

based on STARK?

				source		
zkVM	ISA	team	verifier	GPU prover	mainnet capable	Ethproofs
Pico Pico	RISC-V	Brevis	✓ ✓ dual	ETA: soon™	√	1
SP1	RISC-V	Succinct	√ ✓ dual	binaries only	✓	1
<u>Ziren</u>	MIPS	ZKM	✓ ✓ dual	closed	✓	√
<u>ZisK</u>	RISC-V	ZisK	✓ ✓ dual	✓ ✓ dual	✓	/
<u>Airbender</u>	RISC-V	Matter Labs	✓ ✓ dual	✓ ✓ dual	✓	ETA: soon™
Ceno	RISC-V	Scroll	✓ ✓ dual	ETA: soon™	1	ETA: soon™
OpenVM	RISC-V	Axiom	✓ ✓ dual	✓ ✓ dual	✓	ETA: soon™
→ Euclid	RISC-V	Scroll	✓ ✓ dual	closed	✓	ETA: soon™
→ powdr	RISC-V	powdr	✓ ✓ dual	N/A	✓	ETA: soon™
R0VM	RISC-V	RISC Zero	✓ Apache 2.0	✓ Apache 2.0	✓	ETA: soon™
<u>lx</u>	Lean 4	Argument	✓ ✓ dual	N/A	ETA: 2025 (no recursion)	ETA: 2025
<u>Jolt</u>	RISC-V	a16z	✓ ✓ dual	ETA: soon™	ETA: 2025 (no streaming)	ETA: 2025
Ligetron	WASM	Ligero	✓ Apache 2.0	✓ Apache 2.0	ETA: 2025 (no recursion)	ETA: 2025
Linea EVM	EVM	Linea	✓ ✓ dual	closed	ETA: 2025 (no MPT)	ETA: 2025
Miden VM	Miden ISA	Miden	✓ ✓ dual	✓ MIT	ETA: 2025 (no recursion)	ETA: 2025
o1VM	RISC-V	O(1) Labs	✓ ✓ dual	N/A	ETA: 2025 (no recursion)	ETA: 2025
Valida VM	Valida ISA	Lita	✓ ✓ dual	N/A	ETA: 2025 (no recursion)	ETA: 2025
<u>zkEngine</u>	WASM	ICME	✓ ✓ dual	N/A	ETA: 2025 (no recursion)	ETA: 2025
zkWASM_	WASM	Delphinus	✓ ✓ dual	GPL 3.0	ETA: 2025 (64MB limit)	ETA: 2025
			mainnet capal	ole in 2026?		
Aztec VM	Brillig ISA	Aztec	✓ Apache 2.0		ETA: 2026+	ETA: 2026+
<u>Cairo</u>	Cairo ISA	StarkWare	✓ ✓ dual	✓ Apache 2.0	ETA: 2026+	ETA: 2026+
Cairo M	Cairo ISA	Kakarot	✓ ✓ dual	N/A	ETA: 2026+	ETA: 2026+
<u>Keth</u>	EVM	Kakarot	✓ ✓ dual	N/A	ETA: 2026+	ETA: 2026+
Nock VM	Nock ISA	Zorp	✓ ✓ dual	N/A	ETA: 2026+	ETA: 2026+
Petra VM	Petra ISA	Irreducible	✓ Apache 2.0	N/A	ETA: 2026+	ETA: 2026+
Starstream	WASM	Paima	✓ ✓ dual	N/A	ETA: 2026+	ETA: 2026+
Triton VM	Triton ISA	Neptune	✓ ✓ dual	N/A	ETA: 2026+	ETA: 2026+
			permissiv			
Nexus zkVM 3.0	RISC-V	Nexus	BUSL 1.1	N/A	ETA: 2025 (no recursion)	ETA: 2025
SP1 Hypercube	RISC-V	Succinct	unlicensed	closed	1	1
StarkV	RISC-V	StarkWare	ETA: 2025	N/A	ETA: 2025 (nascent)	ETA: 2025
ZippelVM	RISC-V	Zippel	ETA: 2025	N/A	ETA: 2026+ (nascent)	ETA: 2026+
[redacted #1]	RISC-V	[redacted]	ETA: 2025	N/A	ETA: 2025 (nascent)	ETA: 2025
[redacted #2]	RISC-V	[redacted]	ETA: 2025	ETA: 2025	ETA: 2025	ETA: 2025

credit: EthProofs

Motivation

```
TARK
Overview
Arithmetization
DEEP-ALI
DEEP
Low Degree Testing
BCS Transform
Fiat-Shamir Transform
```

Motivation

```
STARK
Overview
Arithmetization
DEEP-ALI
DEEP
Low Degree Testing
BCS Transform
Fiat-Shamir Transform
```

Motivation

STARK

Overview

Arithmetization

DEEP-ALI

DEEP

Low Degree Testing

BCS Transform

Fiat-Shamir Transform

Definition

Scalable, Transparent ARgument of Knowledge

STARK¹: any proof system that is

- − transparent ⇒ no trusted setup
- succinct $\Rightarrow O(\text{poly} \log n)$ verifier
- scalable \Rightarrow succinct + $O(n \log n)$ prover
- argument ⇒ computationally sound
- of knowledge ⇒ can extract witness*
- interactive or non-interactive
- no preprocessing

^{*}in some unrealistic world, e.g., ROM or rewinding

Definition

Scalable, Transparent ARgument of Knowledge

STARK¹: any proof system that is

- − transparent ⇒ no trusted setup
- succinct $\Rightarrow O(\text{poly} \log n)$ verifier
- scalable \Rightarrow succinct + $O(n \log n)$ prover
- argument \Rightarrow computationally sound
- of knowledge ⇒ can extract witness*
- interactive or non-interactive
- no preprocessing

STARK²: a specific family of proof systems with

- algebraic execution trace (AET) and algebraic intermediate representation (AIR)
- randomized AIR with preprocessing (RAP)
- ALI / DEEP-ALI
- an interactive oracle proof of proximity such as FRI / STIR / WHIR
- Merkle trees

^{*}in some unrealistic world, e.g., ROM or rewinding

Definition

Scalable, Transparent ARgument of Knowledge

```
STARK<sup>1</sup>: any proof system that is
```

- transparent \Rightarrow no trusted setup
- succinct $\Rightarrow O(\text{poly} \log n)$ verifier
- scalable \Rightarrow succinct + $O(n \log n)$ prover
- argument ⇒ computationally sound
- of knowledge ⇒ can extract witness*
- interactive or non-interactive
- no preprocessing

STARK²: a specific family of proof systems with

- algebraic execution trace (AET) and algebraic intermediate representation (AIR)
- randomized AIR with preprocessing (RAP)
- ALI / DEEP-ALI
- an interactive oracle proof of proximity such as FRI / STIR / WHIR
- Merkle trees

STARK³: a concrete *non-interactive* proof for some STARK²

^{*}in some unrealistic world, e.g., ROM or rewinding

- 1. give Verifier superpowers
- 2. strip them away

1. interaction

1. interaction

- 1. interaction
- 2. point queries

- 1. interaction
- 2. point queries

- 1. interaction
- 2. point queries
- 3. low-degree tests

- 1. interaction
- 2. point queries
- 3. low-degree tests

STARK Compilation Pipeline

STARK Compilation Pipeline

STARK Compilation Pipeline

STARK Compilation Pipeline

Table of Contents

Motivation

STARK

Overview

Arithmetization

DEEP-ALI

DEEP

Low Degree Testing

BCS Transform

Fiat-Shamir Transform

Preview

Table of Contents

Motivation

STARK

Overview

Arithmetization

DEEP-ALI

DEEP

Low Degree Testing

BCS Transform

Fiat-Shamir Transform

Preview

STARK Compilation Pipeline (Arithmetization)

arithmetize:

describe in terms of

- finite field elements
- low degree polynomials over finite fields

arithmetize:

describe in terms of

- finite field elements
- low degree polynomials over finite fields

state space:

 \mathbb{F}_{m}

vectors of w finite field elements

arithmetize:

describe in terms of

- finite field elements
- low degree polynomials over finite fields

state space:

ightarrow e.g. initial state

 \mathbb{F}^{w} vectors of w finite field elements $(x_0,y_0)\in\mathbb{F}^2$

arithmetize:

describe in terms of

- finite field elements
- low degree polynomials over finite fields

state space:

vectors of w finite field elements

ightarrow e.g. initial state $(x_0,y_0)\in \mathbb{F}^2$

transition function:

 $F: \mathbb{F}^{\mathsf{w}} o \mathbb{F}^{\mathsf{w}}$ and $F(oldsymbol{x}) \in (\mathbb{F}[oldsymbol{x}]^{\leqslant d})^{\mathsf{w}}$

arithmetize:

describe in terms of

- finite field elements
- low degree polynomials over finite fields

state space:

ightarrow e.g. initial state

 \mathbb{F}^{w} vectors of w finite field elements $(x_0,y_0)\in\mathbb{F}^2$

transition function:

 $\rightarrow \ \text{evolution}$

 \rightarrow e.g.

 $F: \mathbb{F}^{\mathsf{w}} o \mathbb{F}^{\mathsf{w}} \quad \mathsf{and} \quad F(x) \in (\mathbb{F}[x]^{\leqslant d})^{\mathsf{w}} \ x_0 \overset{F}{ o} x_1 \overset{F}{ o} x_2 \overset{F}{ o} \cdots$

$$F(x,y) = \begin{pmatrix} 1 + xy \\ x^2 + y^2 \end{pmatrix}$$

arithmetize:

describe in terms of

- finite field elements
- low degree polynomials over finite fields

state space:

$$ightarrow$$
 $e.g.$ initial state

vectors of w finite field elements

$$(x_0, y_0) \in \mathbb{F}^2$$

transition function:

$$\rightarrow \ \text{evolution}$$

$$egin{aligned} F : \mathbb{F}^{\mathsf{W}} \ oldsymbol{x}_0 & \stackrel{F}{
ightarrow} : \end{aligned}$$

$$F: \mathbb{F}^{\mathsf{w}} o \mathbb{F}^{\mathsf{w}} \quad \mathsf{and} \quad F(x) \in (\mathbb{F}[x]^{\leqslant d})^{\mathsf{w}}$$
 $x_0 \overset{F}{ o} x_1 \overset{F}{ o} x_2 \overset{F}{ o} \cdots$

$$F(x,y) = \begin{pmatrix} 1 + xy \\ x^2 + y^2 \end{pmatrix}$$

computational claim: boundary constraints

$$ightarrow$$
 e.g.

 \rightarrow e.g.

$${x_0 = 1, y_0 = 2, x_7 = 3}$$

arithmetize:

describe in terms of

- finite field elements
- low degree polynomials over finite fields

state space:

 \rightarrow *e.g.* initial state

vectors of w finite field elements

 $(x_0, y_0) \in \mathbb{F}^2$

transition function:

 \rightarrow evolution

 \rightarrow e.g.

 $F: \mathbb{F}^{\mathsf{w}} o \mathbb{F}^{\mathsf{w}} \quad \mathsf{and} \quad F(x) \in (\mathbb{F}[x]^{\leqslant d})^{\mathsf{w}}$ $x_0 \overset{F}{\mapsto} x_1 \overset{F}{\mapsto} x_2 \overset{F}{\mapsto} \cdots$

 $F(x,y) = \begin{pmatrix} 1 + xy \\ x^2 + y^2 \end{pmatrix}$

computational claim: boundary constraints

ightarrow e.g.

 $\{x_0 = 1, y_0 = 2, x_7 = 3\}$

integrity:

1. boundary constraints ✓

2. transition constraints ✓

 $\Leftrightarrow \forall i \, \boldsymbol{x}_{i+1} = F(\boldsymbol{x}_i)$

initial state \longrightarrow $\overbrace{\hspace{1cm}}^{\text{W}}$

AIR:

set of *multivariate* polynomials of *low degree* in a *combination* of AET rows evaluates to zero ⇔ AET is integral

AIR:

set of *multivariate* polynomials of *low degree* in a *combination* of AET rows evaluates to zero ⇔ AET is integral

AIR constraint

type

AIR:

set of *multivariate* polynomials of *low degree* in a *combination* of AET rows evaluates to zero ⇔ AET is integral

AIR constraint $x_0 - x_{init} = 0$

type initial

AIR:

set of *multivariate* polynomials of *low degree* in a *combination* of AET rows evaluates to zero ⇔ AET is integral

AIR constraint $\boldsymbol{x}_0 - \boldsymbol{x}_{init} = 0$

type initial

 $a(\boldsymbol{x}_{N-1}) = 0$

terminal

AIR:

set of *multivariate* polynomials of low degree in a combination of AET rows evaluates to zero ⇔ AET is integral

AIR constraint

$$\boldsymbol{x}_0 - \boldsymbol{x}_{init} = 0$$

$$\boldsymbol{x}_{i+1} - F(\boldsymbol{x}_i) = 0$$

type

initial

$$a(\boldsymbol{x}_{N-1}) = 0$$

terminal

AIR:

set of *multivariate* polynomials of low degree in a combination of AET rows evaluates to zero ⇔ AET is integral

AIR constraint

 $\boldsymbol{x}_0 - \boldsymbol{x}_{init} = 0$

 $\boldsymbol{x}_{i+1} - F(\boldsymbol{x}_i) = 0$

type

initial

transition

 $c(\mathbf{x}_j) = 0$ $a(\mathbf{x}_{N-1}) = 0$

consistency

terminal

AIR:

set of *multivariate* polynomials of *low degree* in a *combination* of AET rows

in a combination of AET rows evaluates to zero \Leftrightarrow AET is integral

AIR constraint

 $c(\boldsymbol{x}_j) = 0$

 $a(\boldsymbol{x}_{N-1}) = 0$

$$\boldsymbol{x}_0 - \boldsymbol{x}_{init} = 0$$

$$\boldsymbol{x}_{i+1} - F(\boldsymbol{x}_i) = 0$$

initial

transition

terminal

unquantified

applies to fixed row (combination)

quantified

applies for all row combinations

$$\forall i \in \{0, \dots, N-2\} : \boldsymbol{x}_{i+1} - F(\boldsymbol{x}_i) = 0$$

$$\forall j \in \{0,\ldots,N-1\}: c(\boldsymbol{x}_j) = 0$$

AIR:

set of *multivariate* polynomials of low degree in a combination of AFT rows

evaluates to zero ⇔ AET is integral

AET

AIR constraint

$$x_0 - x_{init} = 0$$

 $\boldsymbol{x}_{i+1} - F(\boldsymbol{x}_i) = 0$

type

$$c(\boldsymbol{x_j}) = 0$$

$$a(\boldsymbol{x}_{N-1}) = 0$$

terminal

unquantified

applies to fixed row (combination)

quantified

applies for all row combinations

$$\forall i \in \{0, \dots, N-2\} : \mathbf{x}_{i+1} - F(\mathbf{x}_i) = 0$$

$$\forall j \in \{0, \dots, N-1\} : c(\boldsymbol{x}_j) = 0$$

Q: How to succinctly test quantified constraints?

1. Given a polynomial f(X)

1. Given a polynomial f(X) with zeros in $\{x_0, x_1, \ldots\}$

- 1. Given a polynomial f(X) with zeros in $\{x_0, x_1, \ldots\}$
- 2. Consider the zerofier ² $Z(X) = \prod_{i} (X x_i)$

- 1. Given a polynomial f(X) with zeros in $\{x_0, x_1, \ldots\}$
- 2. Consider the zerofier 2 $Z(X) = \prod_i (X x_i)$
- $\therefore Z(X) \mid f(X)$

- 1. Given a polynomial f(X) with zeros in $\{x_0, x_1, \ldots\}$
- 2. Consider the zerofier ² $Z(X) = \prod_{i} (X x_i)$
- $\therefore Z(X) \mid f(X)$

Proof.

Let $f(X) = k(X) \cdot Z(X) + r(X)$ with deg(r) < deg(Z).

Then $\forall i \, f(x_i) = k(x_i) \cdot Z(x_i) + r(x_i)$

$$0 = r(x_i).$$

So r(X) has more zeros than deg(r).

Therefore, r(X) = 0.

Use Divisibility as Quantifier

Q: how to *succinctly* test *quantified* constraints?

A: express as *polynomial divisibility* relation.

Table of Contents

Motivation

STARK

Overview

Arithmetization

DEEP-ALI

DEEP

Low Degree Testing

BCS Transform

Fiat-Shamir Transform

Preview

Table of Contents

Motivation

STARK

Overview

Arithmetization

DEEP-ALI

DEEP

Low Degree Testing

BCS Transform

Fiat-Shamir Transform

Preview

STARK Compilation Pipeline (DEEP-ALI)

DEEP-ALI: Intuition

- 1. **Interpolate** trace polynomials
- 2. **Compose** with AIR
- 3. **Divide** out zerofiers

- 1. Interpolate trace polynomials
- 2. **Compose** with AIR
- 3. **Divide** out zerofiers

Prover	Verifier
$trace\ T$	AIR ${\mathcal C}$

- 1. **Interpolate** trace polynomials
- 2. **Compose** with AIR
- 3. **Divide** out zerofiers

Prover	Verifier
$trace\ T$	$AIR\;\mathcal{C}$
$\boldsymbol{t}(X) \leftarrow \text{interpolate } T \\ \boldsymbol{t}(X)$	

- 1. Interpolate trace polynomials
- 2. **Compose** with AIR
- 3. **Divide** out zerofiers

- 1. **Interpolate** trace polynomials
- 2. **Compose** with AIR
- 3. **Divide** out zerofiers

Problems:

- 1. Soundness?
- 2. transition constraints $c(\boldsymbol{x}_i, \boldsymbol{x}_{i+1})$?
- Prover Verifier 3. Polynomial IOP: $\mathsf{trace}\ T \qquad \mathsf{AIR}\ \mathcal{C} \qquad -\mathsf{evaluation}\ \mathsf{queries}\ \checkmark \\ \mathsf{t}(X) \leftarrow \mathsf{interpolate}\ T \qquad \qquad -\mathsf{divisibility}\ \mathsf{checks}\ \times \\ \end{aligned}$

for all $(c(\boldsymbol{x}_i), Z(X)) \in \mathcal{C}$ and

$$Z(X)\stackrel{?}{\mid} c \circ \boldsymbol{t}(X)$$

Prover

trace T

- 1. Interpolate trace polynomials
- 2. **Compose** with AIR
- 3. **Divide** out zerofiers

Problems:

- 1. Soundness?
- 2. transition constraints $c(x_i, x_{i+1})$?
- 3. Polynomial IOP:
- evaluation queries \checkmark
- divisibility checks imes

$$\begin{array}{c} \boldsymbol{t}(X) \leftarrow \text{interpolate } T \\ & \boldsymbol{t}(X) \end{array} \longrightarrow$$

for all $(c(\boldsymbol{x}_i), Z(X)) \in \mathcal{C}$ and

$$Z(X) \stackrel{?}{\mid} c \circ t(X)$$

Verifier

AIR C

want: divisibility check have: evaluation queries

DEEP-ALI: Refinement

- 1. Interpolate trace polynomials
- 2. **Compose** with AIR
- 3. Divide out zerofiers

DEEP-ALI: Refinement

- 1. Interpolate trace polynomials
- 2. **Compose** with AIR
- 3. Divide out zerofiers

Problems:

1. Soundness?
$$\varepsilon = \frac{\deg}{|\mathbb{R}|}$$
 (1.a) what is deg?)

2. transition constraints $c(x_i, x_{i+1})$?

4. sparse zerofier

for all
$$(c(\boldsymbol{x}_i), Z(X)) \in \mathcal{C}$$
:

$$q_i(z) \cdot Z(z) \stackrel{?}{=} c \circ \boldsymbol{t}(z)$$

DEEP-ALI: Refinement

- 1. Interpolate trace polynomials
- 2. **Compose** with AIR
- 3. Divide out zerofiers

Problems:

1. Soundness?
$$\varepsilon = \frac{\deg}{|\mathbb{F}|}$$
 (1.a) what is deg?)

2. transition constraints $c(x_i, x_{i+1})$?

4. sparse zerofier

for all
$$(c(\boldsymbol{x}_i), Z(X)) \in \mathcal{C}$$
:
 $q_i(z) \cdot Z(z) \stackrel{?}{=} c \circ \boldsymbol{t}(z)$

interpolation

Q: over which domain?

 $\boldsymbol{t}(X)$

interpolation

Q: over which domain?

A: subgroup of \mathbb{F}^* of order $N=2^k$

- * complexity:
 - $O(N \log N)$ (NTT)
- * zerofiers:
 - first row: X-1
 - last row: $X-\omega^{-1}$
 - entire domain: X^N-1
 - ... except for last row: $\frac{X^N-1}{X-\omega^{-1}}$

- \star complexity: $O(N \log N)$ (NTT)
- \star zerofiers:
 - first row: X-1
 - last row: $X-\omega^{-1}$
 - entire domain: X^N-1
 - ... except for last row: $\frac{X^N-1}{X-\omega^{-1}}$
- * arithmetic shift
 - $\boldsymbol{t}(\omega X)$ rotation by 1 row
 - $(\boldsymbol{t}(X),\boldsymbol{t}(\omega X))$ consecutive pairs
 - $c(\boldsymbol{x}_i, \boldsymbol{x}_{i+1}) \circ \boldsymbol{t}(X) \stackrel{\triangle}{=} c(\boldsymbol{t}(X), \boldsymbol{t}(\omega X))$

DEEP-ALI

- 1. Interpolate trace polynomials
- 2. **Compose** with AIR
- 3. **Divide** out zerofiers

Problems:

1. Soundness?
$$\varepsilon = \frac{\deg}{|\mathbb{F}|}$$
 (1.a) what is deg?)

2. transition constraints $c(x_1, x_{2+1})$?

3. Rolynomial IOP:

— evaluation queries √

— divisibility checks ×

4. sparse zerofier

for all $(c, Z(X)) \in \mathcal{C}$:

$$q_i(z) \cdot Z(z) \stackrel{?}{=} c \circ \boldsymbol{t}(z)$$

Table of Contents

Motivation

STARK

Overview

Arithmetization

DEEP-ALI

DEEP

Low Degree Testing

BCS Transform

Fiat-Shamir Transform

Preview

Table of Contents

Motivation

STARK

Overview

Arithmetization

DEEP-ALI

DEEP

Low Degree Testing

BCS Transform

Fiat-Shamir Transform

Preview

STARK Compilation Pipeline (DEEP)

Polynomial IOP to Low-Degree IOP (1)

Polynomial IOP: polynomial oracles $p(X) \in \mathbb{F}[X]$ evaluation queries

Low-Degree IOP: codeword oracles $oldsymbol{p} \in \mathbb{F}^{N/
ho}$ pointwise maps low degree tests

Polynomial IOP to Low-Degree IOP (1)

Polynomial IOP to Low-Degree IOP (1)

Reed-Solomon Code

Reed-Solomon Code

$$\begin{array}{ccc} \mathsf{polynomial} & \mapsto & \mathsf{codeword} \\ p(X) & & \pmb{p} \\ \\ \pmb{p} = p(D) \end{array}$$

Reed-Solomon Code in STARKs

Reed-Solomon Code in STARKs

Reed-Solomon Code in STARKs

Low-Degree Extension

Low-Degree Extension

interpolation

$$t(X) \xrightarrow{\mathsf{AIR}} \mathcal{C} \circ t(X) \xrightarrow{/\mathbf{Z}(X)} q(X)$$

Low-Degree Extension

interpolation

$$egin{aligned} & \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ & t(X) & \xrightarrow{\mathsf{AIR}} & \mathcal{C} \circ t(X) & \xrightarrow{/{oldsymbol{Z}(X)}} & q(X) \end{aligned}$$

AIR

Low-Degree Extension low-degree extension ation $\xrightarrow{\mathsf{AIR}} \mathcal{C} \circ \boldsymbol{t}(X) \xrightarrow{\hspace*{1cm}/\hspace*{1cm} \boldsymbol{Z}(X)} \boldsymbol{q}(X)$ AIR

Distance Parameter

Distance Parameter

Distance Parameter

$$\Pr\left[\Delta\left(\left\lceil\frac{\boldsymbol{p}[i]-y}{D[i]-z}\right\rceil_i,\mathsf{RS}\right)<\delta\left|\,\forall f(X)\in\mathsf{list}(\boldsymbol{p})\,,\,f(z)\neq y\right\rceil\right]$$

$$\Pr\left[\Delta\left(\left\lceil\frac{\boldsymbol{p}[i]-y}{D[i]-z}\right\rceil_i,\mathsf{RS}\right)<\delta\left|\,\forall f(X)\in\mathsf{list}(\boldsymbol{p})\,,\,f(z)\neq y\right\rceil\right]\leqslant\frac{(\#\mathsf{list})^2}{2}\cdot\frac{\deg}{|\mathbb{F}|-N}$$

$$\Pr\left[\Delta\left(\left\lceil\frac{\boldsymbol{p}[i]-y}{D[i]-z}\right\rceil_i,\mathsf{RS}\right)<\delta\left|\forall f(X)\in\mathsf{list}(\boldsymbol{p})\,,\,f(z)\neq y\right\rceil\right]\leqslant\frac{(\#\mathsf{list})^2}{2}\cdot\frac{\deg}{|\mathbb{F}|-N}$$

#list depends on δ

decode an arbitrary point

for which radii δ is the resulting list ${\cal L}$

 $|L| \leqslant \mathsf{poly}?$

$$\Pr\left[\Delta\left(\left\lceil\frac{\boldsymbol{p}[i]-y}{D[i]-z}\right\rceil_i,\mathsf{RS}\right)<\delta\left|\forall f(X)\in\mathsf{list}(\boldsymbol{p})\,,\,f(z)\neq y\right\rceil\right|\leqslant\frac{(\#\mathsf{list})^2}{2}\cdot\frac{\deg}{|\mathbb{F}|-N}$$

$$\Pr\left[\Delta\left(\left[\frac{p[i]-y}{D[i]-z}\right]_i, \mathsf{RS}\right) < \delta \,\middle|\, \forall f(X) \in \mathsf{list}(\boldsymbol{p})\,,\, f(z) \neq y\right] \,\,\leqslant\, \frac{(\#\mathsf{list})^2}{2} \cdot \frac{\deg}{|\mathbb{F}|-N}$$

$\delta \in$	probability	confidence
$\left[0; \frac{1-\rho}{2}\right)$	negligible	provable security ($+$ simple analysis)
$\left[\frac{1-\rho}{2};1-\sqrt{\rho}\right)$	negligible	provable security
$\left[1-\sqrt{\rho};1-\rho\right)$	negligible?	conjectural
$[1-\rho;1]$???	insecure

DEEP-ALI + DEEP

- 1. Low degree extend the trace
- 2. Evaluate AIR
- 3. **Divide** out zerofiers
- 4. **DEEP** in out-of-domain point

DEEP-ALI + DEEP

- 1. Low degree extend the trace
- 2. Evaluate AIR
- 3. **Divide** out zerofiers
- 4. **DEEP** in out-of-domain point

 $\begin{array}{ll} \text{Soundness.} & \\ \frac{N-1}{|\mathbb{F}|} & \text{Schwartz-Zippel} \\ + \epsilon_{\mathsf{DEEP}}(\delta_0) & \text{list-decoding} \end{array}$

Table of Contents

Motivation

STARK

Overview

Arithmetization

DEEP-ALI

DEEP

Low Degree Testing

BCS Transform

Fiat-Shamir Transform

Preview

Table of Contents

Motivation

STARK

Overview

Arithmetization

DEEP-ALI

DEEP

Low Degree Testing

BCS Transform

Fiat-Shamir Transform

Preview

STARK Compilation Pipeline (Low-Degree Testing)

$$\Delta(\mathbb{x},\mathsf{RS}) \overset{?}{<} \delta_0 \quad \mathsf{for} \quad \mathbb{x} \in \{\mathbb{t},\mathbb{u},\mathbb{v},\mathbb{q},\mathbb{r}\}$$

$$\Delta(\mathbf{x},\mathsf{RS}) \stackrel{?}{<} \delta_0 \quad \mathsf{for} \quad \mathbf{x} \in \{\mathtt{t},\mathtt{u},\mathtt{v},\mathtt{q},\mathtt{r}\}$$

▶ 3w + 2#C codewords (a lot)

$$\Delta(\mathbb{x},\mathsf{RS}) \overset{?}{<} \delta_0 \quad \text{for} \quad \mathbb{x} \in \{\mathbb{t},\mathbb{u},\mathbb{v},\mathbb{q},\mathbb{r}\}$$

- ▶ 3w + 2#C codewords (a lot)
- ▶ Q: can we batch them?

$$\Delta(\mathbf{x},\mathsf{RS}) \overset{?}{<} \delta_0 \quad \text{for} \quad \mathbf{x} \in \{\mathtt{t},\mathtt{u},\mathtt{v},\mathtt{q},\mathtt{r}\}$$

- ▶ 3w + 2#C codewords (a lot)
- ▶ Q: can we batch them? A: yes!

$$\Delta(\mathbb{x},\mathsf{RS}) \overset{?}{<} \delta_0 \quad \text{for} \quad \mathbb{x} \in \{\mathbb{t},\mathbb{u},\mathbb{v},\mathbb{q},\mathbb{r}\}$$

- ▶ 3w + 2#C codewords (a lot)
- ▶ Q: can we batch them? A: yes!
- ► Strategy: random linear combination ✓

$$\Delta(\mathbb{x},\mathsf{RS}) \overset{?}{<} \delta_0 \quad \text{for} \quad \mathbb{x} \in \{\mathbb{t},\mathbb{u},\mathbb{v},\mathbb{q},\mathbb{r}\}$$

- ▶ 3w + 2#C codewords (a lot)
- ▶ Q: can we batch them? A: yes!
- ► Strategy: random linear combination ✓
- Soundness?

$$\Delta(\mathbf{x}, \mathsf{RS}) \stackrel{?}{<} \delta_0 \quad \mathsf{for} \quad \mathbf{x} \in \{\mathtt{t}, \mathtt{u}, \mathtt{v}, \mathtt{q}, \mathtt{r}\}$$

- ▶ 3w + 2#C codewords (a lot)
- ▶ Q: can we batch them? A: yes!
- ► Strategy: random linear combination ✓
- Soundness?

$$\Pr_r \left[\Delta((1-r) \cdot \boldsymbol{u} + r \cdot \boldsymbol{v}, \mathsf{RS}) < \delta \mid \Delta(\boldsymbol{u}, \mathsf{RS}) > \delta \lor \Delta(\boldsymbol{v}, \mathsf{RS}) > \delta \right]$$

Reed-Solomon Proximity Gap

Reed-Solomon Proximity Gap

consider any straight line let ε be the proportion of the line δ -close to RS then $\varepsilon \not\in (\epsilon;1)$

Reed-Solomon Proximity Gap

consider any straight line let ε be the proportion of the line δ -close to RS then $\varepsilon \not\in (\epsilon;1)$

for which δ does $\epsilon < 1$ exist?

Reed-Solomon Proximity Gap

Reed-Solomon Proximity Gap

Intermezzo: Batching

$$\Delta(x, \mathsf{RS}) \stackrel{?}{<} \delta_0 \quad \mathsf{for} \quad x \in \{t, u, v, q, r\}$$

- ▶ 3w + 2#C codewords (a lot)
- ▶ Q: can we batch them?

Intermezzo: Batching

$$\Delta(\mathbb{x},\mathsf{RS}) \stackrel{?}{<} \delta_0 \quad \mathsf{for} \quad \mathbb{x} \in \{\mathfrak{t},\mathfrak{u},\mathbb{v},\mathfrak{q},\mathbb{r}\}$$

- ▶ 3w + 2#C codewords (a lot)
- ▶ Q: can we batch them? A: yes!
- ► Strategy: random linear combination ✓
- ► Soundness?

$$\exists (\epsilon_0, \delta_0)$$
-gap

$$\Leftrightarrow$$

$$\Pr_{r} \left[\Delta((1-r) \cdot \boldsymbol{u} + r \cdot \boldsymbol{v}, \mathsf{RS}) < \delta_{0} \,|\, \Delta(\boldsymbol{u}, \mathsf{RS}) > \delta_{0} \,\vee\, \Delta(\boldsymbol{v}, \mathsf{RS}) > \delta_{0} \right] \leqslant \epsilon_{0}$$

 \rightarrow half the length; same rate

 $\mathsf{split} \; : \; \mathsf{RS}^{N/\rho} \to \mathsf{RS}^{N/2\rho} \times \mathsf{RS}^{N/2\rho}$

 \rightarrow half the length; same rate

split :
$$\mathsf{RS}^{N/\rho} \to \mathsf{RS}^{N/2\rho} \times \mathsf{RS}^{N/2\rho}$$

 $f(D) \mapsto (f_E(D^2), f_O(D^2))$

where
$$f_E(X^2) = \frac{f(X) + f(-X)}{2}$$
 and $f_O(X^2) = \frac{f(X) - f(-X)}{2X}$

 \rightarrow half the length; same rate

split :
$$\mathsf{RS}^{N/\rho} \to \mathsf{RS}^{N/2\rho} \times \mathsf{RS}^{N/2\rho}$$

$$f(D) \mapsto \left(f_E(D^2), f_O(D^2) \right)$$

$$f \mapsto \begin{pmatrix} \left[\frac{f[i] + f[i + N/2\rho]}{2} \right]_{i=0}^{N/2\rho} \\ \left[\frac{f[i] - f[i + N/2\rho]}{2D[i]} \right]_{i=0}^{N/2\rho} \end{pmatrix}$$

where
$$f_E(X^2)=rac{f(X)+f(-X)}{2}$$
 and $f_O(X^2)=rac{f(X)-f(-X)}{2X}$

 \rightarrow half the length; same rate

split :
$$\mathsf{RS}^{N/\rho} \to \mathsf{RS}^{N/2\rho} \times \mathsf{RS}^{N/2\rho}$$

$$f(D) \mapsto \left(f_E(D^2), f_O(D^2) \right)$$

$$f \mapsto \begin{pmatrix} \left[\frac{f[i] + f[i + N/2\rho]}{2} \right]_{i=0}^{N/2\rho} \\ \left[\frac{f[i] - f[i + N/2\rho]}{2D[i]} \right]_{i=0}^{N/2\rho} \end{pmatrix}$$

Soundness.

$$\Pr[\Delta(f_E(D^2), \mathsf{RS}^{N/2\rho}) < \delta \land \Delta(f_O(D^2), \mathsf{RS}^{N/2\rho}) < \delta \,|\, \Delta(f(D), \mathsf{RS}^{N/\rho}) > \delta]$$

where $f_E(X^2) = \frac{f(X) + f(-X)}{2}$ and $f_O(X^2) = \frac{f(X) - f(-X)}{2}$

 \rightarrow half the length; same rate

split :
$$\mathsf{RS}^{N/\rho} \to \mathsf{RS}^{N/2\rho} \times \mathsf{RS}^{N/2\rho}$$

$$f(D) \mapsto \left(f_E(D^2), f_O(D^2) \right)$$

$$\mathbf{f} \mapsto \begin{pmatrix} \left[\frac{\mathbf{f}[i] + \mathbf{f}[i + N/2\rho]}{2} \right]_{i=0}^{N/2\rho} \\ \left[\frac{\mathbf{f}[i] - \mathbf{f}[i + N/2\rho]}{2D[i]} \right]_{i=0}^{N/2\rho} \end{pmatrix}$$

Soundness.

$$\Pr[\Delta(f_E(D^2), \mathsf{RS}^{N/2\rho}) < \delta \, \wedge \, \Delta(f_O(D^2), \mathsf{RS}^{N/2\rho}) < \delta \, | \, \Delta(f(D), \mathsf{RS}^{N/\rho}) > \delta] \ = 0$$

- no probability variables $\Rightarrow \Pr \in \{0, 1\}$
- local map is linear over \mathbb{F}^2 and invertible, so $0 \leftrightarrow 0$

where $f_E(X^2) = \frac{f(X) + f(-X)}{2}$ and $f_O(X^2) = \frac{f(X) - f(-X)}{2X}$


```
\begin{picture}(20,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100
```

Problem: verifier work explodes exponentially

```
\log N \times
split o split o ··· o split
```

Problem: verifier work explodes exponentially

Solution: prover helps

42/60

Problem: verifier work explodes exponentially

Solution: prover helps

Problem: malicious help

Solution: verifier checks help

commit phase:

- 1. commit to all codewords
- 2. test degree of last codeword

commit phase:

- 1. commit to all codewords
- 2. test degree of last codeword

commit phase:

- 1. commit to all codewords
- 2. test degree of last codeword

2. indices cascade modulo length \downarrow

DEEP-ALI + DEEP + FRI

DEEP-ALI + DEEP + FRI

DEEP-ALI + DEEP + FRI

Table of Contents

Motivation

STARK

Overview

Arithmetization

DEEP-ALI

DEEP

Low Degree Testing

BCS Transform

Fiat-Shamir Transform

Preview

Table of Contents

Motivation

STARK

Overview

Arithmetization

DEEP-ALI

DEEP

Low Degree Testing

BCS Transform

Fiat-Shamir Transform

Preview

STARK Compilation Pipeline (BCS Transform)

IOP to IP

IOP to IP

IOP to IP

Soundness.

Soundness.

 $\Pr[\mathsf{Verifier}\checkmark \mid \mathit{bad}\ \mathit{leaf}]$

index

Soundness.

 $Pr[Verifier \checkmark \mid bad \ leaf]$

 $\leq \Pr[hash\ collision]$

Soundness.

 $\Pr[\mathsf{Verifier} \checkmark \mid \mathit{bad}\ \mathit{leaf}]$

 $\leq \Pr[hash\ collision]$

$$= \tfrac{Q\cdot (Q-1)}{2^\lambda}$$

Soundness.

 $\Pr[\mathsf{Verifier} \checkmark \mid \mathit{bad} \; \mathit{leaf}]$

 $\leqslant \Pr[hash\ collision]$

$$= \frac{Q \cdot (Q-1)}{2^{\lambda}}$$

 Q : # hash evaluations

 λ : # bits in output

algebraic execution trace

low-degree extension low-degree extended trace

composition with AIR constraints
division by zerofiers
quotients

build Merkle tree

interact with verifier

sample out-of-domain point

produce out-of-domain rows

apply DEEP update

interact with verifier

sample weights

random linear combination

build Merkle tree

interact with verifier

split-and-fold

rinse and repeat

obtain FRI indices open indicated rows

Soundness.

STARK Diagram

Soundness.

$$\begin{split} \text{DEEP-ALI} & \{ \quad \frac{N-1}{|\mathbb{F}|} + \epsilon_{\text{DEEP}}(\delta_0) \\ & \text{FRI} & \{ \quad + (3 \cdot \mathbf{w} + 2 \cdot \#\mathcal{C} + \log N) \cdot \epsilon_{\text{GAP}}(\delta_0) + (1 - \delta_0)^t \\ & \text{BCS} & \{ \quad + \frac{Q \cdot (Q - 1)}{2^{\lambda}} \end{split}$$

Motivation

STARK

Overview

Arithmetization

DEEP-ALI

DEEP

ow Degree Testing

BCS Transform

Fiat-Shamir Transform

Motivation

STARK

Overview

Arithmetization

DEEP-ALI

DEEP

Low Degree Testing

BCS Transform

Fiat-Shamir Transform

STARK Compilation Pipeline (Fiat-Shamir Transform)

Interactivity is a big problem in practice.

Can remove?

Interactivity is a big problem in practice.

Can remove?

 \rightarrow Yes! But ...

Fiat-Shamir Transform

Task: find x such that $(x, H(x)) \in \mathcal{R}$

for some *sparse* and *uniform* relation \mathcal{R} .

Task: find x such that $(x, H(x)) \in \mathcal{R}$ for some *sparse* and *uniform* relation \mathcal{R} .

```
sparse: \epsilon_{\mathcal{R}} = \frac{|\{(x,y) \mid (x,y) \in \mathcal{R}\}|}{|\{(x,y)\}|} is small uniform: \forall x,y: |\{z \mid (x,z) \in \mathcal{R}\}| \approx |\{z \mid (y,z) \in \mathcal{R}\}|
```

Task: find x such that $(x, H(x)) \in \mathcal{R}$ for some *sparse* and *uniform* relation \mathcal{R} .

sparse:
$$\epsilon_{\mathcal{R}} = \frac{|\{(x,y) \mid (x,y) \in \mathcal{R}\}|}{|\{(x,y)\}|}$$
 is small uniform: $\forall x,y: |\{z \mid (x,z) \in \mathcal{R}\}| \approx |\{z \mid (y,z) \in \mathcal{R}\}|$

Question: what is the success probability?

Task: find x such that $(x, H(x)) \in \mathcal{R}$ for some *sparse* and *uniform* relation \mathcal{R} .

sparse:
$$\epsilon_{\mathcal{R}} = \frac{|\{(x,y) \mid (x,y) \in \mathcal{R}\}|}{|\{(x,y)\}|}$$
 is small uniform: $\forall x,y: |\{z \mid (x,z) \in \mathcal{R}\}| \approx |\{z \mid (y,z) \in \mathcal{R}\}|$

Question: what is the success probability?

 \rightarrow depends on # queries

Task: find x such that $(x, H(x)) \in \mathcal{R}$ for some *sparse* and *uniform* relation \mathcal{R} .

sparse:
$$\epsilon_{\mathcal{R}} = \frac{|\{(x,y) \mid (x,y) \in \mathcal{R}\}|}{|\{(x,y)\}|}$$
 is small uniform: $\forall x,y: |\{z \mid (x,z) \in \mathcal{R}\}| \approx |\{z \mid (y,z) \in \mathcal{R}\}|$

Question: what is the success probability?

- \rightarrow depends on # queries
- for 1 query: $\epsilon_{\mathcal{R}}$
- for Q queries: $Q \cdot \epsilon_{\mathcal{R}}$

Task: find x such that $(x, H(x)) \in \mathcal{R}$

for some *sparse* and *uniform* relation \mathcal{R} .

sparse: $\epsilon_{\mathcal{R}} = \frac{|\{(x,y) \mid (x,y) \in \mathcal{R}\}|}{|\{(x,y)\}|}$ is small

uniform: $\forall x, y : |\{z \mid (x, z) \in \mathcal{R}\}| \approx |\{z \mid (y, z) \in \mathcal{R}\}|$

Question: what is the success probability?

- ightarrow depends on # queries
- for 1 query: $\epsilon_{\mathcal{R}}$
- for Q queries: $Q \cdot \epsilon_{\mathcal{R}}$

Apply to (Prover, Verifier): Find cmt such that $H(claim || cmt) \in S(cmt)$.

Task: find x such that $(x, H(x)) \in \mathcal{R}$

for some *sparse* and *uniform* relation \mathcal{R} .

sparse: $\epsilon_{\mathcal{R}} = \frac{|\{(x,y) \mid (x,y) \in \mathcal{R}\}|}{|\{(x,y)\}|}$ is small

Question: what is the success probability?

 \rightarrow depends on # queries

- for 1 query: $\epsilon_{\mathcal{R}}$
- for Q queries: $Q \cdot \epsilon_{\mathcal{R}}$

Apply to (Prover, Verifier):

Find cmt such that $H(\text{claim} || cmt) \in \mathcal{S}(cmt)$.

 $\epsilon_V = \frac{|\mathcal{S}|}{2^{\lambda}} = \Pr[V \checkmark \mid \mathsf{claim} \times]$

uniform: $\forall x, y : |\{z \mid (x, z) \in \mathcal{R}\}| \approx |\{z \mid (y, z) \in \mathcal{R}\}| \quad \checkmark \quad |\mathcal{S}| \approx |\mathcal{S}(cmt)| \approx |\mathcal{S}(cmt')|$

56/60

Task: find x such that $(x, H(x)) \in \mathcal{R}$ for some *sparse* and *uniform* relation \mathcal{R} .

Find *cmt* such that

sparse: $\epsilon_{\mathcal{R}} = \frac{|\{(x,y) \mid (x,y) \in \mathcal{R}\}|}{|\{(x,y)\}|}$ is small

 $H(\operatorname{claim} || cmt) \in \mathcal{S}(cmt)$.

 $\epsilon_V = \frac{|\mathcal{S}|}{2\lambda} = \Pr[V \checkmark \mid \mathsf{claim} \times]$

uniform: $\forall x, y : |\{z \mid (x, z) \in \mathcal{R}\}| \approx |\{z \mid (y, z) \in \mathcal{R}\}|$

 $\checkmark |\mathcal{S}| \approx |\mathcal{S}(cmt)| \approx |\mathcal{S}(cmt')|$

 \rightarrow soundness error?

Apply to (Prover, Verifier):

Question: what is the success probability? \rightarrow depends on # queries

 \rightarrow depends on # queries

 $Q \cdot \Pr[V \checkmark \mid \mathsf{claim} \times]$

- for 1 query: $\epsilon_{\mathcal{R}}$

- for Q queries: $Q \cdot \epsilon_{\mathcal{R}}$

Intuition: Q attempts $\Rightarrow Q \times \nearrow$ success prob

Soundness of Fiat-Shamir: Multiple Rounds

```
Find (cmt, rsp_1, rsp_2, ...)
such that V(\text{claim}, cmt, ch_1, rsp_1, ch_2, rsp_2, ...) = 1
where ch_1 = \mathsf{H}(\text{claim} \| cmt), ch_2 = \mathsf{H}(\text{claim} \| cmt \| rsp_1), ...
```

Soundness of Fiat-Shamir: Multiple Rounds

```
Find (cmt, rsp_1, rsp_2, \ldots)
such that V(\text{claim}, cmt, ch_1, rsp_1, ch_2, rsp_2, \ldots) = 1
where ch_1 = \mathsf{H}(\mathsf{claim} || cmt), ch_2 = \mathsf{H}(\mathsf{claim} || cmt || rsp_1), ...
        \mathcal{R} is well defined \checkmark
        sparse √
        uniformity ×
        intuition: "good start" / "bad start"
```

TRANSCRIPT PREFIXES = DOOMED ☐ NOT DOOMED

DOOMED

NOT DOOMED

TRANSCRIPT PREFIXES = $DOOMED \sqcup NOT DOOMED$

TRANSCRIPT PREFIXES = DOOMED \sqcup NOT DOOMED

TRANSCRIPT PREFIXES = DOOMED \sqcup NOT DOOMED

Motivation

STARK

Overview

Arithmetization

DEEP-AL

DEEP

Low Degree Testing

BCS Transform

Fiat-Shamir Transform

Motivation

```
STARK
Overview
Arithmetization
DEEP-ALI
DEEP
Low Degree Testing
BCS Transform
Fiat-Shamir Transform
```

```
Motivation
```

Preview

Next Lecture:

- Optimizations
 - ▶ Quotient Segments
 - ► Univariate and Multilinear Batching
 - Grinding
- ► Enhancements
 - ▶ Zero-Knowledge
 - ► Randomized AIR (without Preprocessing)
- ► VM Architecture
 - ► Example / Overview
 - ► Communication Arguments
 - Memory
- ▶ Other Topics

```
Motivation
```

```
Motivation
```

```
STARK
Overview
Arithmetization
DEEP-ALI
DEEP
```

Low Degree Testing

BCS Transform

Fiat-Shamir Transform

Introduction to STARKs

Alan Szepieniec 艾伦.余不涅茨

alan@neptune.cash

https://neptune.cash/

https://triton-vm.org/

https://asz.ink/presentations/2025-09-18-Introduction-to-STARKs.pdf