

Cairo University - Faculty of Engineering Computer Engineering Department

M-ARY AMPLITIUDE SHIFT MODULATION

Subject: Digital Communication

Submitted to:

Dr. Mai BADAWI

Presented by:

Evram Youssef: Sec: 1 BN: 9

 $\operatorname*{Year}_{2019/2020}$

Contents

0.1	Part 1 .															1
	0.1.1 P	roblem 1														1
	0.1.2 P	roblem 2														1
		roblem 3														
	0.1.4 P	robelm 4														2
0.2	Section 2	2														2
	0.2.1 S	${\it ubsection}$	2.1													3
0.3	Math															3
0.4	Figures .															9

List of Figures

1	Symbols Boundary	1
	BER vs Eb/N0	2
3	The same meme, Two times	3

List of Tables

0.1 Part 1

Digital Communication

0.1.1 Problem 1

Figure 1 below showing the comparison between simulated BER and theoritical (analytical) BER VS the Eb/N0 in db.

Please notice, you'll have to input the no. of bits you wish to be transmitted, and it has to be divisible by 3.

0.1.2 Problem 2

The constellation of the 8-ary with decision region pf each symbol.

Figure 1: Symbols Boundary

0.1.3 Problem 3

The derivation of theoritical bit error rate.

$$Pe = \frac{1}{8} \sum_{i=0}^{7} P(e|Si)$$
 (1)

$$Pe(e|S0) = Pe(e|S7) \tag{2}$$

$$Pe(e|S1) = Pe(e|S2) = Pe(e|S3) = Pe(e|S4) = Pe(e|S5) = Pe(e|S6)$$
 (3)

Using Union bound S0, S7 only one neighbour and S1, S2,...S6 has two neighbours.

$$Pe(e|S0) = \frac{1}{2} erfc(\frac{\sqrt{E}}{\sqrt{N}}) \tag{4}$$

$$Pe(e|S1) = \frac{1}{2}erfc(\frac{\sqrt{E}}{\sqrt{N}}) + \frac{1}{2}erfc(\frac{\sqrt{E}}{\sqrt{N}})$$
 (5)

$$Pe(e|S1) = erfc(\frac{\sqrt{E}}{\sqrt{N}}) \tag{6}$$

$$Pe = \frac{1}{8*3} \left(2 * \frac{1}{2} erfc(\frac{\sqrt{E}}{\sqrt{N}}) + 6 * erfc(\frac{\sqrt{E}}{\sqrt{N}})\right)$$
 (7)

$$Pe = \frac{7}{24} (erfc(\frac{\sqrt{E}}{\sqrt{N}})) \tag{8}$$

0.1.4 Probelm 4

Figure 2: BER vs Eb/N0

0.2 Section 2

Hello World 2!

Subsection 2.1 0.2.1

Equations:

$$\frac{n!}{k!(n-k)!} = \binom{n}{k} \tag{9}$$

$$x^{\frac{1}{2}} \tag{10}$$

$$x^{\frac{1}{2}}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(kg(x))$$

$$f(x) = x^{2}$$
(10)

Math 0.3

... This formula $f(x) = x^2$ is an example. ...

$$f(x) = x^{2}$$

$$g(x) = \frac{1}{x}$$

$$F(x) = \int_{b}^{a} \frac{1}{3}x^{3}$$

Figures 0.4

(a) Meme. (b) Same Meme.

Figure 3: The same meme, Two times.