Compression of First-Order Resolution Proofs by Partial Regularization

Jan Gorzny
1 * and Bruno Woltzenlogel Paleo
2 **

 $^1\,$ jgorzny@uvic.ca, University of Victoria, Canada $^2\,$ bruno@logic.at, Vienna University of Technology, Austria

Abstract. This paper describes a generalization of the recently developed RecyclePivotsWithIntersection algorithm applicable to first-order logic proofs generated by automated theorem provers. RecyclePivotsWithIntersection removes inferences with a node η when its pivot literal occurs as the pivot of another inference located below in the path from η to the root of the proof. The algorithm is then combined with GreedyLinearFirstOrderLowerUnits in order to compress first-order proofs further. A preliminary empirical evaluation of the combination of these compression algorithms is presented.

1 Introduction

Fist-order automated theorem provers have recently achieved a high degree of maturity, commonly using the resolution and superposition proof calculi. Although proof production is a key feature of such provers and proofs are crucial for applications where the prover is required to certify its answer, proof production is non-trivial. The best, most efficient provers do not necessarily generate the best, least redundant proofs.

For proofs using propositional resolution generated by SAT- and SMT-solvers, there is a wide variety of proof compression techniques. Algebraic properties of the resolution operation that might be useful for compression were investigated in [5]. Compression algorithms based on rearranging and sharing chains of resolution inferences have been developed in [2] and [10]. Cotton [4] proposed an algorithm that compresses a refutation by repeatedly splitting it into a proof of a heuristically chosen literal ℓ and a proof of $\bar{\ell}$, and then resolving them to form a new refutation. The Reduce&Reconstruct algorithm [9] searches for locally redundant subproofs that can be rewritten into subproofs of stronger clauses and with fewer resolution steps. A linear time proof compression algorithm based on partial regularization was proposed in [3] and improved in [6].

There has been less work on simplifying first-order proofs. There are algorithms aimed at simplifying first-order sequent calculus tree-like proofs, based on cut-introduction [8, 7]. There is also an algorithm [12] that looks for terms

^{*} Supported by the Google Summer of Code 2014 program.

^{**} Supported by the Austrian Science Fund, project P24300.

that occur often in any TSTP [11] proof (including first-order resolution DAG-proofs) and introduces abbreviations for these terms. However, as the definitions of the abbreviations are not part of the output proof, it cannot be checked by a pure first-order resolution proof checker.

Recently, it has been shown that propositional proof compression algorithms can be lifted to compress first-order proofs. In [], it was shown that LowerUnits could be lifted in this manner to produce GreedyLinearFirstOrderLowerUnits (GFOLU) with positive results. We continue this process by lifting the RecyclePivotsWithIntersection (RPI) algorithm described in []. RPI removes inferences with a node η when its pivot literal occurs as the pivot of another inference located below in the path from η to the root of the proof. RPI is a modification of the RecyclePivots (RP) algorithm [?], which provides better compression on proofs where nodes have several children.

Section 2 introduces the first-order resolution calculus and notation used. Section 3 shows the challenges that arise from unification during resolution which are not present the propositional case. Section 4 describes an algorithm that overcomes these challenges. Section 5 concludes the paper by presenting preliminary experimental results obtained by applying this algorithm along with GFOLU on hundreds of proofs generated with the SPASS theorem prover.

2 The Resolution Calculus

We assume that there are infinitely many variable symbols (e.g. X, Y, Z, X_1, X_2) \ldots), constant symbols (e.g. $a, b, c, a_1, a_2, \ldots$), function symbols of every arity (e.g. f, g, f_1, f_2, \ldots) and predicate symbols of every arity (e.g. p, q, p_1, p_2, \ldots). A term is any variable, constant or the application of an n-ary function symbol to nterms. An atomic formula (atom) is the application of an n-ary predicate symbol to n terms. A literal is an atom or the negation of an atom. The complement of a literal ℓ is denoted $\overline{\ell}$ (i.e. for any atom $p, \overline{p} = \neg p$ and $\overline{\neg p} = p$). The set of all literals is denoted \mathcal{L} . A clause is a multiset of literals. \perp denotes the empty clause. A unit clause is a clause with a single literal. Sequent notation is used for clauses (i.e. $p_1, \ldots, p_n \vdash q_1, \ldots, q_m$ denotes the clause $\{\neg p_1, \ldots, \neg p_n, q_1, \ldots, q_m\}$). FV(t) (resp. $FV(\ell)$, $FV(\Gamma)$) denotes the set of variables in the term t (resp. in the literal ℓ and in the clause Γ). A substitution $\{X_1 \setminus t_1, X_2 \setminus t_2, \ldots\}$ is a mapping from variables $\{X_1, X_2, \ldots\}$ to, respectively, terms $\{t_1, t_2, \ldots\}$. The application of a substitution σ to a term t, a literal ℓ or a clause Γ results in, respectively, the term $t\sigma$, the literal $\ell\sigma$ or the clause $\Gamma\sigma$, obtained from t, ℓ and Γ by replacing all occurrences of the variables in σ by the corresponding terms in σ . The set of all substitutions is denoted \mathcal{S} . A unifier of a set of literals is a substitution that makes all literals in the set equal. A resolution proof is a directed acyclic graph of clauses where the edges correspond to the inference rules of resolution and contraction (as explained in detail in Definition 1). A resolution refutation is a resolution proof with root \perp .

Definition 1 (First-Order Resolution Proof).

A directed acyclic graph $\langle V, E, \Gamma \rangle$, where V is a set of nodes and E is a set

of edges labeled by literals and substitutions (i.e. $E \subset V \times 2^{\mathcal{L}} \times \mathcal{S} \times V$ and $v_1 \xrightarrow[\sigma]{\ell} v_2$ denotes an edge from node v_1 to node v_2 labeled by the literal ℓ and the substitution σ), is a proof of a clause Γ iff it is inductively constructible according to the following cases:

- **Axiom:** If Γ is a clause, $\widehat{\Gamma}$ denotes some proof $\langle \{v\}, \varnothing, \Gamma \rangle$, where v is a new (axiom) node.
- **Resolution:** If ψ_L is a proof $\langle V_L, E_L, \Gamma_L \rangle$ with $\ell_L \in \Gamma_L$ and ψ_R is a proof $\langle V_R, E_R, \Gamma_R \rangle$ with $\ell_R \in \Gamma_R$, and σ_L and σ_R are substitutions such that $\ell_L \sigma_L = \overline{\ell_R} \sigma_R$ and $\mathrm{FV}((\Gamma_L \setminus \{\ell_L\}) \sigma_L) \cap \mathrm{FV}((\Gamma_R \setminus \{\ell_R\}) \sigma_R) = \emptyset$, then $\psi_L \odot_{\ell_L \ell_R}^{\sigma_L \sigma_R} \psi_R$ denotes a proof $\langle V, E, \Gamma \rangle$ s.t.

$$V = V_L \cup V_R \cup \{v\}$$

$$E = E_L \cup E_R \cup \left\{ \rho(\psi_L) \xrightarrow{\{\ell_L\}} v, \rho(\psi_R) \xrightarrow{\{\ell_R\}} v \right\}$$

$$\Gamma = (\Gamma_L \setminus \{\ell_L\}) \sigma_L \cup (\Gamma_R \setminus \{\ell_R\}) \sigma_R$$

where v is a new (resolution) node and $\rho(\varphi)$ denotes the root node of φ . The resolved atom ℓ is such that $\ell = \ell_L \sigma_L = \overline{\ell_R} \sigma_R$ or $\ell = \overline{\ell_L} \sigma_L = \ell_R \sigma_R$.

- Contraction: If ψ' is a proof $\langle V', E', \Gamma' \rangle$ and σ is a unifier of $\{\ell_1, \ldots \ell_n\}$ with $\{\ell_1, \ldots \ell_n\} \subseteq \Gamma'$, then $\lfloor \psi \rfloor_{\{\ell_1, \ldots \ell_n\}}^{\sigma}$ denotes a proof $\langle V, E, \Gamma \rangle$ s.t.

$$V = V' \cup \{v\}$$

$$E = E' \cup \{\rho(\psi') \xrightarrow{\{\ell_1, \dots \ell_n\}} v\}$$

$$\Gamma = (\Gamma' \setminus \{\ell_1, \dots \ell_n\}) \sigma \cup \{\ell\}$$

where v is a new (contraction) node, $\ell = \ell_k \sigma$ (for any $k \in \{1, ..., n\}$) and $\rho(\varphi)$ denotes the root node of φ .

When we write $\psi_L \odot_{\ell_L \ell_R} \psi_R$, we assume that the omitted substitutions are such that the resolved atom is most general. When the literals and substitutions are irrelevant or clear from the context, we may write simply $\psi_L \odot \psi_R$. The \odot operator is assumed to be left-associative. In the propositional case, we omit contractions (treating clauses as sets instead of multisets) and $\psi_L \odot_{\ell\bar\ell}^{\emptyset\emptyset} \psi_R$ is abbreviated by $\psi_L \odot_{\ell} \psi_R$.

If $\psi = \varphi_L \odot \varphi_R$ or $\psi = \lfloor \varphi \rfloor$, then φ , φ_L and φ_R are direct subproofs of ψ and ψ is a child of both φ_L and φ_R . The transitive closure of the direct subproof relation is the subproof relation. A subproof which has no direct subproof is an axiom of the proof. V_{ψ} , E_{ψ} and Γ_{ψ} denote, respectively, the nodes, edges and proved clause (conclusion) of ψ . If ψ is a proof ending with a resolution node, then ψ_L and ψ_R denote, respectively, the left and right premises of ψ .

3 First-Order Challenges

In this section, we describe challenges that have to be overcome in order to successfully adapt RPI to the first-order case. The first example illustrates the

need to take unification into account. The other two examples discuss complex issues that can arise when unification is take into account in a naive way.

Example 1. Consider the following irregular proof ψ . Naively computed, the safe literals for η_3 are $\{\vdash q(c), p(a, X)\}$. η_1 and η_5 and these two literals are unifiable. Further, the safe literals for η_1 includes η_5 . Thus the proof can be regularized by recycling η_1 .

Regularization of the proof by recycling η_1 results in removing the inference between η_2 and η_3 , which in turn replaces η_3 by η_1 . Since η_1 cannot be resolved against η_4 , and η_1 contained safe literals, η_5 is replaced by η_1 . The result is the much shorter proof below.

$$\frac{\eta_1\colon \vdash p(W,X) \qquad \eta_6\colon p(Y,b)\vdash}{\psi'\colon \bot}$$

Unlike in the propositional case, where the pivots and their corresponding safe literal list are all syntactically equal, in the first-order case, this is not necessarily the case. As illustrated above, p(W, X) and p(a, X) are not syntactically equal. Nevertheless, they are unifiable, and the proof can be regularized.

Example 2. There are cases, as shown below, that require more careful care when attempting to regularize. Again, naively computed, the safe literals for η_3 are $\{\vdash q(c), p(a, X)\}$, and so η_1 and η_2 appear to be candidates for regularization.

However, if we attempt to regularize the proof, the same series of actions as in Example 1 would result in the following resolution, which cannot be completed.

$$\frac{\eta_1 \colon \vdash p(a,c) \quad \eta_6 \colon p(Y,b) \vdash}{\psi' \colon ??}$$

The observations above lead to the idea of requiring pivots to satisfy the following property before collecting them to be reused.

Definition 2. Let η be a clause with literal ℓ' with corresponding safe literal ℓ which is resolved against literals ℓ_1, \ldots, ℓ_n in a proof ψ . η is said to satisfy the pre-regularization unifiability property in ψ if ℓ_1, \ldots, ℓ_n , and $\overline{\ell'}$ are unifiable.

One technique to ensure this property is met is to apply the unifier of a resolution to each resolvent before computing the safe literals. In the case of Example 2, this would result in η_3 having the safe literals $\{\vdash q(c), p(a,b)\}$, and now it is clear that the literal in η_1 is not safe.

Example 3. Satisfying the pre-regularization unifiability property is not sufficient to attempt regularization. Consider the proof of ψ below. After collecting the safe literals, η_3 's safe literals are $\{q(T,V), p(c,d) \vdash q(f(a,e),c)\}$.

$$\begin{array}{c|c} \eta_{1} \colon p(U,V) \vdash q(f(a,V),U) & \eta_{2} \colon q(f(a,X),Y), q(T,X) \vdash q(f(a,Z),Y) \\ & \eta_{3} \colon p(U,V), Q(T,V) \vdash q(f(a,Z),U) \quad \eta_{4} \colon \vdash q(R,S) \\ \hline \eta_{6} \colon \vdash p(c,d) & \eta_{5} \colon p(U,V) \vdash q(f(a,Z),U) \\ \hline \eta_{8} \colon q(f(a,e),c) \vdash & \eta_{7} \colon \vdash q(f(a,Z),c) \\ \hline & \psi \colon \bot & \end{array}$$

Since $q(f(a,X),Y) \in \eta_2$ and q(T,V) (in η_3 's safe literals) are unifiable, regularization would be attempted. In this case, the inference between η_2 and η_3 for would be removed, and as a result, η_3 will be replaced with η_1 . η_1 does not contain the required pivot for η_5 , and so η_5 is also replaced with η_1 , and resolution is attempted before η_1 and η_6 , which results in η_7' , and an inability to complete the proof, as shown below.

In order to avoid these scenarios, we perform an additional check during inference removal. The node $\eta*$ which will replace a resolution η (because η would have a deleted parent), must be entirely contained, via unification which modifies only η^* 's variables, in the safe literals of η . In the case of this example, η_1 would not satisfy this property: in order to unify with η_3 's safe literals, it would be necessary to send $V \to Z$ due to η_1 's second literal, but leave V unchanged due η_1 's first literal, which is not possible. This check is not necessary in the propositional case, as the replacement node would be contained exactly in the set of safe literals, and would not change lower in the proof.

4 First-Order RecyclePivotsWithIntersection

This section presents FirstOrderRecyclePivotsWithIntersection (FORPI), Algorithm 1, a first order generalization of RPI. FORPI traverses the proof in a bottom-up manner, storing for every node a set of *safe literals* that are resolved in all paths below it in the proof (or that already occurred in the root clause of the original proof). If one of the node's resolved literals can be unified to a literal in the set of safe literals, then it may be possible to regularize the node by replacing it by one of its parents.

```
input: A first-order proof \psi
output: A possibly less-irregular first-order proof \psi'

1 \psi' \leftarrow \psi;

2 traverse \psi' bottom-up and foreach node \eta in \psi' do

3 if \eta is a resolvent node then

4 setSafeLiterals(\eta);

5 regularizeIfPossible(\eta)

6 \psi' \leftarrow \text{fix}(\psi');

7 return \psi';
```

Algorithm 1: FORPI

```
input : A node \psi = \psi_L \odot_{\ell_L \ell_R}^{\sigma_L \sigma_R} \psi_R output: nothing (but the proof containing \psi may be changed)

1 if \exists \sigma and l \in \psi.safeLiterals such that \sigma l = l_R or l = \sigma l_R then

2 if \exists \sigma' such that \sigma' \psi_R \subseteq \psi.safeLiterals then

3 replace \psi_L by deletedNodeMarker;

4 mark \psi as regularized

5 else if \exists \sigma and l \in \psi.safeLiterals such that \sigma l = l_L or l = \sigma l_L then

6 if \exists \sigma' such that \sigma' \psi_L \subseteq \psi.safeLiterals then

7 replace \psi_R by deletedNodeMarker;

8 mark \psi as regularized
```

Algorithm 2: regularizeIfPossible

In the propositional case, regularization of a node replaces it by the parent whose clause contains the resolved literal that is safe. In the first order case, because unification introduces complications like those seen in Example 3, we ensure that the replacement parent is (possibly after unification) contained entirely in the safe literals. This ensures that the remainder of the proof does not expect a variable to be unified to different values simultaneously. After regularization, all nodes below the regularized node may have to be fixed. Similar to RPI, instead of replacing the irregular node by one of its parents immediately, its other parent is replaced by deletedNodeMarker, as shown in Algorithm 2. As in the propositional case, fixing of the proof is postponed to another (single) traversal, as regularization proceeds bottom up and only nodes below a regularized node may require fixing. During fixing, the irregular node is actually replaced by the parent that is not deletedNodeMarker. With careful bookkeeping, it is often possible to contract nodes during proof fixing to compress the proof further.

The RPI and the RP algorithms differ from each other mainly in the computation of the safe literals of a node that has many children. While the former returns the intersection as shown in Algorithm 3, the latter returns the empty set. Further, while in RPI the safe literals of the root node contain all the literals of the root clause, in RP the root node is always assigned an empty set of literals. This is easy accomplished in the first order case by changing lines 11 and 2,

```
input: A first order resolution node \psi
     output: nothing (but the node \psi gets a set of safe literals)
 1 if \psi is a root node with no children then
            \psi.safeLiterals \leftarrow \psi.clause
 3
     else
            foreach \psi' \in \psi.children do
 4
                  if \psi' is marked as regularized then
 5
                         safeLiteralsFrom(\psi') \leftarrow \psi'.safeLiterals;
 6
                  else if \psi' = \psi \odot_{\ell_L \ell_R}^{\sigma_L \sigma_R} \psi_R for some \psi_R then safeLiteralsFrom(\psi') \leftarrow \psi'.safeLiterals \cup \{ \sigma_R l_R \}
 7
 8
                  else if \psi' = \psi_L \odot_{\ell_L \ell_R}^{\sigma_L \sigma_R} \psi for some \psi_L then safeLiteralsFrom(\psi') \leftarrow \psi'.safeLiterals \cup \{ \sigma_L l_L \}
 9
10
            \psi.safeLiterals \leftarrow \bigcap_{\psi' \in \psi.\text{children}} \text{safeLiteralsFrom}(\psi')
11
```

Algorithm 3: setSafeLiterals

respectively, of Algorithm 3. This makes a difference only when the proof is not a refutation.

The set of safe literals for a node ψ is computed from the set of safe literals of its children (cf. Algorithm 3), similar to the propositional case, but additionally applies unifiers to the resolved pivots (cf. Example 2).

5 Experiments

A prototype¹ version of FORPI has been implemented in the functional programming language Scala as part of the Skeptik library. Evaluation of this algorithm was performed on the same 308 real first-order proofs generated to evaluate GFOLU, and for consistency, the same system and metrics were used (see []).

Figure 1 (a) shows the compression results of applying FORPI and GFOLU to the same proof (in both application orders), as well as each of these algorithms individually. Unsurprisingly, applying both algorithms generally does better than either algorithm alone. Figure 1 (b) shows that the order of compression matters, and applying FORPI after GFOLU is more successful than the alternative. This is consistent with propositional results for these algorithms.

SPASS required approximately 40 minutes (running on a cluster and proof generation time for each problem) to solve the generated proofs. The total time for GFOLU and FORPI to be executed on all 308 proofs was just under 5 seconds on a simple laptop. Both times including parsing time. These compression algorithms continue to be very fast, and may simplify the proof considerably for a relatively quick time cost.

¹ Source code available at https://github.com/jgorzny/Skeptik

- (a) Compressed length against input length
- (b) FORPI-FOLU vs. FOLU-FORPI

Fig. 1: Experimental results

References

- Logic for Programming, Artificial Intelligence, and Reasoning 16th Intl. Conf., Dakar, Senegal, Rev. Selected Papers, LNCS. Springer, 2010.
- Hasan Amjad. Compressing propositional refutations. Electr. Notes Theor. Comput. Sci., 185:3–15, 2007.
- 3. O. Bar-Ilan, O. Fuhrmann, S. Hoory, O. Shacham, and O. Strichman. Linear-time reductions of resolution proofs. In *Haifa Verif. Conf.*, LNCS, pages 114–128. Springer, 2008.
- Scott Cotton. Two techniques for minimizing resolution proofs. In Ofer Strichman and Stefan Szeider, editors, Theory and Applications of Satisfiability Testing SAT 2010, volume 6175 of LNCS, pages 306–312. Springer, 2010.
- P. Fontaine, S. Merz, and B. Woltzenlogel Paleo. Exploring and exploiting algebraic and graphical properties of resolution. In 8th Intl. Wkshp. on SMT, Edinburgh, 2010.
- P. Fontaine, S. Merz, and B. Woltzenlogel Paleo. Compression of propositional resolution proofs via partial regularization. In *CADE*, LNCS, pages 237–251. Springer, 2011.
- S. Hetzl, A. Leitsch, G. Reis, and D. Weller. Algorithmic introduction of quantified cuts. Theor. Comput. Sci., 549:1–16, 2014.
- 8. B. Woltzenlogel Paleo. Atomic cut introduction by resolution: Proof structuring and compression. In LPAR-16 [1], pages 463–480.
- 9. S. F. Rollini, R. Bruttomesso, and N. Sharygina. An efficient and flexible approach to resolution proof reduction. In *Hardware and Software: Verification and Testing*, LNCS, pages 182–196. Springer, 2011.
- Carsten Sinz. Compressing propositional proofs by common subproof extraction.
 In Roberto Moreno-Díaz, Franz Pichler, and Alexis Quesada-Arencibia, editors, *EUROCAST*, volume 4739 of *LNCS*, pages 547–555. Springer, 2007.

- 11. G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0. *Journal of Automated Reasoning*, 43(4):337–362, 2009.
- 12. J. Vyskocil, D. Stanovský, and J. Urban. Automated proof compression by invention of new definitions. In LPAR-16 [1], pages 447–462.