3.15 Stability ratio

The stability ratio R_{ρ} is the ratio of the vertical contribution from Conservative Temperature to that from Absolute Salinity to the static stability N^2 of the water column. From (3.10.1) above we find

$$R_{\rho} = \frac{\alpha^{\Theta} \Theta_{z}}{\beta^{\Theta} (S_{A})_{z}} \approx \frac{\alpha^{\theta} \theta_{z}}{\beta^{\theta} (S_{A})_{z}}.$$
 (3.15.1)

3.16 Turner angle

The Turner angle Tu, named after J. Stewart Turner, is defined as the four-quadrant arctangent (Ruddick (1983) and McDougall $et\ al.$ (1988), particularly their Figure 1)

$$Tu = \tan^{-1} \left(\alpha^{\Theta} \Theta_z + \beta^{\Theta} \left(S_{A} \right)_z, \ \alpha^{\Theta} \Theta_z - \beta^{\Theta} \left(S_{A} \right)_z \right)$$

$$\approx \tan^{-1} \left(\alpha^{\theta} \theta_z + \beta^{\theta} \left(S_{A} \right)_z, \ \alpha^{\theta} \theta_z - \beta^{\theta} \left(S_{A} \right)_z \right)$$
(3.16.1)

where the first of the two arguments of the arctangent function is the "y"-argument and the second one the "x"-argument, this being the common order of these arguments in Fortran and Matlab. The Turner angle Tu is quoted in degrees of rotation. Turner angles between 45° and 90° represent the "salt-finger" regime of double-diffusive convection, with the strongest activity near 90° . Turner angles between -45° and -90° represent the "diffusive" regime of double-diffusive convection, with the strongest activity near -90° . Turner angles between -45° and 45° represent regions where the stratification is stably stratified in both Θ and $S_{\rm A}$. Turner angles greater than 90° or less than -90° characterize a statically unstable water column in which $N^2 < 0$. As a check on the calculation of the Turner angle, note that $R_{\rho} = -\tan(Tu + 45^{\circ})$. The Turner angle and the stability ratio are available in the GSW software library from the function $gsw_Turner_Rsubrho_CT25$.