Introducción al aprendizaje automático

•••

#2. Modelos probabilísticos y no paramétricos

Regresión

Disponemos de N pares de entrenamiento (observaciones)

$$\{(x_i, y_i)\}_{i=1}^N = \{(x_1, y_1), \cdots, (x_N, y_N)\}$$

 El problema de regresión consiste en estimar f(x) a partir de estos datos

Regresión polinomial

- En verde se ilustra la función "verdadera" (inaccesible)
- Las muestras son uniformes en x y poseen ruido en y
- Utilizaremos una <u>función de costo</u> (error cuadrático)
 que mida el error en la predicción de y mediante f(x)

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Error cuadrático en clasificación

- Mínimo global único y solución en forma cerrada
- Pero, ¿es una medida del error de clasificación? ¿es adecuada?

Error cuadrático en clasificación

$$y_{\pm} \in \{-1, 1\}$$

$$l(y, f(x)) = (y - f(x))^{2}$$

$$y_{\pm}^{2=1} \quad y^{2}(y - f(x))^{2}$$

$$= (y^{2} - yf(x))^{2}$$

$$y_{\pm}^{2=1} \quad (1 - yf(x))^{2}$$

- No es robusta frente a outliers
- Penaliza predicciones que son muy buenas

Regresión polinomial. Solución por MV

Distribución gaussiana

$$\mathcal{N}(x|\mu,\sigma^2)$$

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} exp \left\{ -\frac{1}{2\sigma^2} (x-\mu)^2 \right\}$$

- Siempre positiva, integra a 1
- precisión $\beta = 1/\sigma^2$
- valor esperado $\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x \, dx = \mu$
- varianza $var[x] = \mathbb{E}[x^2] \mathbb{E}[x]^2 = \sigma^2$

Máxima verosimilitud (MV)

- Muestras iid
- Función de verosimilitud $p(\mathbf{x}|\mu,\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu,\sigma^2)$
- Logaritmo de la función de verosimilitud $\ln p(\mathbf{x}|\mu,\sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n \sigma)^2 \frac{N}{2} \ln \sigma^2 \frac{N}{2} \ln(2\pi)$
- Media muestral por MV $\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$
- Varianza muestral por MV $\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n \mu_{ML})^2$

Revisando el ajuste de curvas

• Objetivo: predecir valores de salida t para nuevas entradas x, en base a un conjunto de pares de entrenamiento $(x_1,t_1), \ldots, (x_N,t_N)$.

 Para capturar la incertidumbre sobre los valores de salida, podemos asumir que, dado un x, el valor de t se genera a partir de una gaussiana de media y(x; w) (la curva polinomial)

$$p(t|x, \mathbf{w}, \beta) = \mathcal{N}(t|y(x, \mathbf{w}), \beta^{-1})$$

Probabilidades bayesianas

- Conocimiento "a priori" sobre los parámetros en p(w) (prior)
- Efecto de las observaciones $D=\{t_1, \dots t_N\}$ en el proceso de inferencia sobre w se expresa mediante p(w|D) (likelihood)
- La incertidumbre sobre w después de observar D (posterior)

$$p(\mathbf{w}|\mathcal{D}) = \frac{p(\mathcal{D}|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D})}$$
posterior \propto likelihood \times prior

• El denominador p(D) es un factor de normalización

Revisando el ajuste de curvas

• Entrenamiento por MV, asumiendo muestras iid y distribución $p(t|x,w,\beta)$:

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|y(x_n, \mathbf{w}, \beta^{-1}))$$

$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln (2\pi)$$

 La solución por MV, después de notar que los últimos dos términos no dependen de w y que β es un factor de escala, se obtiene de forma equivalente minimizando el error cuadrático medio:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(n_n, \mathbf{w}) - t_n)^2$$

Revisando el ajuste de curvas

También podemos utilizar MV para estimar β:

$$\frac{1}{\beta_{ML}} = \frac{1}{N} \sum_{n=1}^{N} \{ y(x_n, \mathbf{w}_{ML}) - t_n \}^2$$

 Con w y β podemos hacer predicciones sobre x mediante la "distribución predictiva"

$$p(t|x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}(t|y(x, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1})$$

• Si consideramos un *prior* Gaussiano sobre w

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|0, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^T\mathbf{w}\right\}$$

Máximo a posteriori (MAP)

Posterior ∞ likelihood x prior

$$p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)$$

Tomando el logaritmo de la función de verosimilitud de p(w|x, t, α, β) y considerando como antes sólo los términos que dependen de w

$$\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^T \mathbf{w}$$

resulta en error cuadrático con regularización L, de parámetro $\lambda = \alpha/\beta$

Regresión logística

Clasificación basada en probabilidades

• Objetivo: dar la probabilidad de que una instancia x sea de una clase y, es decir, aprender p(y|x)

Recordar:

$$0 \le p(evento) \le 1$$

 $p(evento) + p(\neg evento) = 1$

Regresión logística

- Aproximación probabilística al problema de clasificación
- La función de predicción $h_w(x)$ debe dar una aproximación de p(y=1|x,w)

$$\bullet \quad 0 \le h_{w}(x) \le 1$$

$$h_w(x) = g(w^T x) = \frac{1}{1 + \exp(-w^T x)}$$

Regresión logística

- Given $\left\{\left(\boldsymbol{x}^{(1)}, y^{(1)}\right), \left(\boldsymbol{x}^{(2)}, y^{(2)}\right), \ldots, \left(\boldsymbol{x}^{(n)}, y^{(n)}\right)\right\}$ where $\boldsymbol{x}^{(i)} \in \mathbb{R}^d, \ y^{(i)} \in \{0, 1\}$
- Model: $h_{m{ heta}}(m{x}) = g\left(m{ heta}^{\intercal}m{x}
 ight)$ $g(z) = \frac{1}{1+e^{-z}}$

Regresión logística. Función de costo

Can't just use squared loss as in linear regression:

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

Using the logistic regression model

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

results in a non-convex optimization

Regresión logística. Función de costo

Training set: $\{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)\}, \mathbf{x} \in \mathbb{R}^M, y \in \{0, 1\}$

y: discrete observations: model as samples from Bernoulli distribution

$$P(y = 1|\mathbf{x}, \mathbf{w}) = f(\mathbf{x}, \mathbf{w})$$

$$P(y = 0|\mathbf{x}, \mathbf{w}) = 1 - f(\mathbf{x}, \mathbf{w})$$

$$P(y|\mathbf{x}) = (f(\mathbf{x}, \mathbf{w}))^y (1 - f(\mathbf{x}, \mathbf{w}))^{1-y}$$

Find w that maximizes the likelihood of labels in the training set

$$-L(\mathbf{w}) = C(\mathbf{w}) = \log P(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \sum_{i=1}^{N} \log P(y^i|\mathbf{x}^i, \mathbf{w})$$
$$= \sum_{i} y^i \log f(\mathbf{x}^i, \mathbf{w}) + (1 - y^i) \log(1 - f(\mathbf{x}^i, \mathbf{w}))$$

Intuition Behind the Objective

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

Cost of a single instance:

$$cost (h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$

Can re-write objective function as

$$J(\boldsymbol{\theta}) = \sum_{i=1}^{n} \operatorname{cost}\left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), y^{(i)}\right)$$

Compare to linear regression:
$$J(\pmb{\theta}) = \frac{1}{2n} \sum_{i=1}^n \left(h_{\pmb{\theta}} \left(\pmb{x}^{(i)} \right) - y^{(i)} \right)^2$$

Intuition Behind the Objective

$$cost (h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

If y = 1

- Cost = 0 if prediction is correct
- As $h_{\boldsymbol{\theta}}(\boldsymbol{x}) \to 0, \cos t \to \infty$
- Captures intuition that larger mistakes should get larger penalties
 - e.g., predict $h_{\theta}(x) = 0$, but y = 1

Intuition Behind the Objective

$$cost (h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

If y = 0

- Cost = 0 if prediction is correct
- As $(1 h_{\theta}(\boldsymbol{x})) \to 0$, $\cos t \to \infty$
- Captures intuition that larger mistakes should get larger penalties

Regularized Logistic Regression

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

• We can regularize logistic regression exactly as before:

$$J_{\text{regularized}}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda \sum_{j=1}^{d} \theta_j^2$$
$$= J(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}_{[1:d]}\|_2^2$$

[1:d] => exclude the bias!

$$\theta^* = \arg\min_{\theta} J(\theta)$$

Logistic vs Linear Regression

Multi-Class Logistic Regression

For 2 classes:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})} = \underbrace{\frac{\exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}}_{\text{weight assigned to y = 0}} \underbrace{\frac{\exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}}_{\text{weight assigned to y = 1}}$$

• For C classes {1, ..., C}:

$$p(y = c \mid \boldsymbol{x}; \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_C) = \frac{\exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}{\sum_{c=1}^C \exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}$$

Called the softmax function

Implementing Multi-Class Logistic Regression

• Use
$$h_c(\boldsymbol{x}) = \frac{\exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}{\sum_{c=1}^C \exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}$$
 as the model for class c

- Gradient descent simultaneously updates all parameters for all models
 - Same derivative as before, just with the above $h_c(\mathbf{x})$
- Predict class label as the most probable label

$$\max_{c} h_c(\boldsymbol{x})$$

Naïve Bayes

Regla de Bayes

Dos formas de factorizar una distribución en dos variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Operando:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- ¿Porqué es útil?
 - Nos permite "revertir" el condicional
 - A veces una dirección es difícil de calcular, pero la otra no
 - Es la base de muchos modelos

El clasificador de Bayes

• Distribución conjunta sobre X_1, \ldots, X_n e Y

• Podemos definir una función de predicción de la forma:

$$\operatorname{arg} \max_{Y} P(Y|X_1,\ldots,X_n)$$

 por ejemplo: ¿cuál es la probabilidad de que una imagen represente un "5" dado el valor de sus píxeles?

• Problema: ¿cómo computamos $P(Y|X_1, ..., X_n)$? ...

El clasificador de Bayes

... ¡Usando regla de Bayes!

$$P(Y|X_1,\ldots,X_n) = \frac{P(X_1,\ldots,X_n|Y)P(Y)}{P(X_1,\ldots,X_n)}$$
Normalization Constant

 Ahora podemos pensar en modelar cómo los píxeles de la imágen son "generados" dado el número "5".

Naïve Bayes

Hipótesis: los X_i son independientes dado Y

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$

= $P(X_1|Y)P(X_2|Y)$

• O en forma más general:

$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

• Si los X_i consisten en n valores binarios, ¿cuántos parámetros necesito especificar para $P(X_i | Y)$?

El clasificador naïve Bayes

- Dado:
 - Distribución a priori P(*Y*)
 - \circ n features X_i condicionalmente independientes dada la clase Y

• Para cada X_i , especificar $P(X_i | Y)$

 (\mathbf{Y}) (\mathbf{X}_1) (\mathbf{X}_2) \cdots (\mathbf{X}_n)

Función de decisión:

$$y^* = h_{NB}(\mathbf{x}) = \arg \max_{y} P(y) P(x_1, \dots, x_n \mid y)$$
$$= \arg \max_{y} P(y) \prod_{i} P(x_i \mid y)$$

Ejemplo: reconocimiento de dígitos

· Input: pixel grids

Output: a digit 0-9

Pregunta: ¿cuán realista es la hipótesis del clasificador naïve Bayes en este ejemplo?

Ejemplo: reconocimiento de dígitos

Estimación de parámetros por MV

- Dado un conjunto de datos, obtener Count(A=a, B=b), es decir, el número de ejemplos en donde A=a y B=b.
- MV para naïve Bayes sobre variables discretas:
 - Prior:

$$P(Y = y) = \frac{Count(Y = y)}{\sum_{y'} Count(Y = y')}$$

Distribución condicionales (observación):

$$P(X_i = x | Y = y) = \frac{Count(X_i = x, Y = y)}{\sum_{x'} Count(X_i = x', Y = y)}$$

Ejemplo: estimación de parámetros por MV

 El entrenamiento consiste en promediar los ejemplos para cada clase

MAP estimation for NB

- Given dataset
 - Count(A=a,B=b) ← number of examples where A=a and B=b
- MAP estimation for discrete NB, simply:
 - Prior:

$$P(Y = y) = \frac{Count(Y = y)}{\sum_{y'} Count(Y = y')}$$

– Observation distribution:

$$P(X_i = x | Y = y) = \frac{Count(X_i = x, Y = y) + \mathbf{a}}{\sum_{x'} Count(X_i = x', Y = y) + |\mathbf{X_i}|^* \mathbf{a}}$$

Called "smoothing". Corresponds to Dirichlet prior!

Estimación de parámetros por MAP

- Dado un conjunto de datos, obtener Count(A=a, B=b), es decir, el número de ejemplos en donde A=a y B=b.
- MV para naïve Bayes sobre variables discretas:
 - O Prior:

$$P(Y = y) = \frac{Count(Y = y)}{\sum_{y'} Count(Y = y')}$$

Distribución condicionales (observación):

$$P(X_i = x | Y = y) = \frac{Count(X_i = x, Y = y) + a}{\sum_{x'} Count(X_i = x', Y = y) + a |X_i|}$$

Estimación de parámetros por MAP

- Dado un conjunto de datos, obtener Count(A=a, B=b), es decir, el número de ejemplos en donde A=a y B=b.
- MV para naïve Bayes sobre variables discretas:
 - o Prior:

$$P(Y = y) = \frac{Count(Y = y)}{\sum_{y'} Count(Y = y')}$$

smoothing

(Dirichlet prior)

o Distribución condicionales (observación):

$$P(X_i = x | Y = y) = \frac{Count(X_i = x, Y = y) + a}{\sum_{x'} Count(X_i = x', Y \neq y) + a|X_i|}$$

Modelos no paramétricos: vecinos más cercanos

Classification

Suppose we are given a training set of N observations

$$(x_1,\ldots,x_N)$$
 and $(y_1,\ldots,y_N), x_i\in\mathbb{R}^d, y_i\in\{-1,1\}$

• Classification problem is to estimate f(x) from this data such that

$$f(x_i) = y_i$$

K Nearest Neighbour (K-NN) Classifier

Algorithm

- For each test point, x, to be classified, find the K nearest samples in the training data
- Classify the point, x, according to the majority vote of their class labels

e.g.
$$K = 3$$

 applicable to multi-class case

Voronoi diagram:

- · partitions the space into regions
- boundaries are equal distance from training points

• non-linear

A sampling assumption: training and test data

- Assume that the training examples are drawn independently from the set of all possible examples.
- This makes it very unlikely that a strong regularity in the training data will be absent in the test data.

Properties and training

As K increases:

- Classification boundary becomes smoother
- Training error can increase

Choose (learn) K by cross-validation

- Split training data into training and validation
- Hold out validation data and measure error on this

Summary

Advantages:

- K-NN is a simple but effective classification procedure
- Applies to multi-class classification
- Decision surfaces are non-linear
- Quality of predictions automatically improves with more training data
- Only a single parameter, K; easily tuned by cross-validation

Summary

Disadvantages:

- What does nearest mean? Need to specify a distance metric.
- Computational cost: must store and search through the entire training set at test time. Can alleviate this problem by thinning, and use of efficient data structures like KD trees.

