

μ

 $^{\prime\prime}$ μ

>>

: ,

μ μ μμ μ μ μ μ μ μ μμ μ μ μ μ μ μ μ μ μ μ μ μ, μ μ μ

 $: customer/consumer\ behavio(u)r,\ tipping\ behavio(u)r,\ gratuity,\ tipping\ in\ restaurants,\ services$

•	

	1:						 5
1.1		μ					 5
	2:						 7
2.1							 7
2.2					μ		 7
	3:						 22
3.1							 22
3.2	ŀ	ıı					 22
3.3			μ	•			 23
3.4		μ					 25
	4:						 27
4.1						•••••	 27
4.1.1				μ		•••••	 27
4.1.2		μ			μμ	ı	 28
4.1.3		μ				•••••	 31
4.1.4					μ		 34
4.1.5		μ -		μ			 35
4.1.6		μ -	μ				 39
4.1.7		μ -	-			•••••	 40
4.2						•••••	 43
4.2.1						•••••	 43
4.2.2		-		2	2		 43
4.2.3	μ	μ		μ	ι		 45
	6:	_			•••••		 54
							 56
	1						 58
	2						 60

1:

1.	1			μ					
		μ		μ	(pourboire)	μ	
		μ		μ		μ	μ .		
		μ		μ	μ	μ			
	μ				•	μ		μ	
	μ	,							
							μ	μ	
								μ.	
				μ		μ,			
		μ					μ		
			μ			\$2	21 μμ	1	
				μ		μ		μμ	
				(Lynn, 20	006)				
				μ			μ	μ	
		,						μ	
	μ					\$40	μμ		
		(Cho,2013).				μ			
		μ	μμ			μ		I	μ
μ				μ	(Cł	no,2013).			
					μ	μ		μ	
							μ		
	μ			μ	μ	μμ		μ	
							μ		
		•							
					μ			,	
					•				
			μ	μ	μ		•	,	
							μ	,	
		- 11				- 11			

μ ,

.

2:

2.1

μ			μ	μ					
	μ								
								μ	
		μ							
,					μ			μ	
	μ			,					
	μ					μ.	Ī		
							9		
	μ			19	990	20	016.	ŀ	ı
			,		μ			μ	
			μ						,
	,		·					μ	μ
				μ		μ	μ		•
				•		•	•		
	μ								
μ		μ							
μ		٣			God	ogleScho	alar	μ	
	μ			: cus	tomer/cor				tinning
hahavi		uity tinnin	a in racta				ocna		upping
UCHAV1	o(u)r, gradı	uity, uppin				,		μ	
			199	/ U	μ	μ			
			μ		μ				•

2.2

Garrity and Degelman(1990) μ μ μμ μ 21 42 μ, Charley Brown's Restaurant Huntingt on μ Beach. μ μ μ μ μ. μ μ μ

μ

```
μ
                         μ
                                                      μμ
                                                      2
                                           μ
                μ
                                                             μ
                                             21
                        μ
                                                        μ
                                                       : «
          μ,
                                        μ
                                                              μ
             Kim,
  μμ
                          μ
                                                ».
                                                                  μ
    μ
                           μ
                                               μ.
                                                μ
                 μ
            μ
       μ
                     μ
                           μ
                                               μ
                                                       μ (M= $5.44,
          \mu ,
                 μ
S.D. =$1.75),
                                                   (M = \$3.49, SD =
                                           μ
$1.13).
         μ
     μ,
                                 μ
       \mu (M = $5.24, SD = $1.84)
                                                      μμ
                                                                (M =
$3.68, SD = $1.29).
        Lynn and Grassman (1990),
                  μ
                           μ
μ
                       μ
                     μ
                                             μ
             μ
                      μ
                     μ
                                             μ
                                                       μ
      106
             μ
  μ
  μ
                                       μ
                  μ
                             μ
              (
                                                    ),
                                                  μ
                                                1=
                                                            5=
       μ
                               μ
                               μ
    μ
                                                             «
                                                                   >>
```

μ

μ μ μ. μ μ μ μ μ μ μ μ μ μ μ. μ μ μ μ μ μ μ μ μ μ μ μ μ μ 1). μ (μ μ μ μ μ μ μ , μ μ μ μ μ μ μ μ μ μ (μ μ μ) μ μ Harris (1995), μ μ μ 107 μ μ

9

μ

μ μ μ μ μ μ 15% μ μ μ μ μ μ μ μ μ μ μ , μ μ μμμ μ μ μ μ μ μ μ μ μ μ μ μ μ μ, μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ Lynn(2006) μ μ μ μ μ μ μ μ μ 1. μ μ.

```
2.
                                                               μ
                μ
                    μ
                   μ
                                                           μ
                μ.
      3.
                                                                      μ
  μ
                                                                     μ
                                                       μ
                                                     μ
                              μ,
                                         μ
                             μ
                    «
                                                                μ
                  15-20%
                                                                   Lynn and
                                                 μ
                                                           μ,
McCall μ
                                36 μ
                                                            5.016
                μ
                                                     μ
40
                               69%
                                       μ
                                                  μ
                                                                      μ
μ
                  μ
                              μ
                                                  μ
                μ
                                       μ
                                  \mu .
                          μ
                                                 μ
                                                                      μ
                   μ
                                               μ
                                                                    μ
        μ
                                      μ
                                     μ
                                                                       μ
                                                   μ
                                                           μ
                       μ
                                           μ
                                                                 μ
                                                                      (Lynn
                       μμ
        μ
and Grassman, 1990), µ
                                                            μ
                                                                   μ
(LynnandThomas-Haysbert, 2003)
        μ
                                             μ
                                                    μ
(LynnandThomas-Haysbert, 2003).
                         μ
                                   μ
                                                            (Feinberg, 1986;
        μ
                                                  μμ
                      μ
Garrity and Degelman, 1990; Lynn and Latane, 1984, Lynn and Mynier, 1993).
      ✓
                 μ
                           μ
```

```
μ
                              μ
                                                                   μ
                                                              μ
                           μ
                                          μ
                                                    μ
                                                                   μ
     (Freeman, Walker, Borden and Latane, 1975; Lynn and Latane, 1984; May,
μ
1980).
                         μ
                                                         μ
                                            μ
                       (LynnandMcCall, 2000a).
                                                  Conlinetal.(2003)
   μ
              μ
                                 μ
                            μ
            Bodvarsson and Gibson (1999)
                      μ
                                          μ
                                                       μ
             Lynn and McCall(2000a)
                                               μ
                                       μ
                              20-40%
                                                       (Lynn, 1996; 2003b).
                    μ
                Garrity and Degelman(1990)
                                                                    μ
                                                               μ
  Lynnetal. (1998),
                                        μ
                                                                         μ
                                                                μ
           Crusco and Wetzel(1984),
                                                            Davisetal. (1998)
                              μ
                                          μ
  μ
                 μ
                                                                   Lynn and
        μ
                     μ
McCall (2000b) \mu
                              μ
                 μ
                                                                 μ
μ
                                       μ
                                                      μ
                                                             μ
                  μ
μ
```

```
μ
                                               μ
          μ
                                                     μ
        μ
                      μ
                                μ
                                                          - μ
                               μ
                                                                      μ
    μ
         Seiter (2007)
                           μ
                                      μ
                  μ
«
                                                              μ
                                                              μ 94
                                             μ
                                                    2
                188
                      μμ
  μ
                                                            22
                μ
              μ
                           μ -
                                          μ
                                    μ
  μ
                                                 μμ
                                 μ
                                                                         μ
                          μ
                                                  ».
                     μ,
                   μ
                                                 μ
                    μ
                  μ
                                           μ
                                                                  μ
                               μ.
                                           μ
               μ
«
                   μ
                                     μ
                                 μ
                                                   \boldsymbol{\mu} .
                   Hsiehetal. (2007),
        μ
                                                                      μ
                     μ
                                                                 μ
                                 236
                     μ
                                                        μ
```

μ

μ

μμ

```
μ
                                              μ
                        μ
              Jacobaetal. (2010)
                                μ
              μ«
                                μ
             μ.
μ «
                        μ
                                    μ
                                                 μ
                                            μ
                    μ
                                       μ
                             μ
                         μ
                                       μ
                                                 786
         μ
                                  μ
               (432
                          354
                                  ),
                                                 326
                                  (2
                                       5
                    460
                              μ
                                          μ ).
        μ
                     μ
                                  μ
   μ
        μ
                , μ
                      μ
     , μ
                                   32
             μ
                      μ
                            μ
                      56 μ
     μ
        μ
                 95
           μ
                            μ
               μ (0=
                                9=
                                             ).
           μ
                                        =0
        μ
  9=μ
                 ). μ
                                         15
                                 μ
                                                 μ
                                         2
             15
                  μ
                           μ
                                            μ
                    :
                             μ
                                 μ
                                         \mu (\mu
                  \mu (6)
                                 2
                          6
                             μ
       μ
             μ
                                          72
                             ).
                                                  (6
     μ μ
              x 2 ).
    x 6 µ
                          72
μ
              , 24
    3 μ
                                         , 24
                             μ «
μ
```

«

μ

24 μ

>>

μ«

```
μ
                                             μ
                                                          μ
                             μ
                                                    μ
                μ
                                             μ
      μ
                            μ
                                           μ
(
               μ
                  ).
                      μ
                                                            μ
                   μ
                      μ
        μ
                     μ
                             «
                        μ
                     μ μ
                                     μ
                                                     μ
       μ.
                                                 μ «
          μ
               μμ
                                        μ
                                                                 μ
                                       (Greitemeyer, 2009a,b).
                                   μ
       μ
                μ
                                                       μ
                                                                μ
                                  «
                 μ
       Cho(2013)
                    μ
                               μ
                                   μ
       μ
             μ
                                        μ
                                                          μ,
                                                  μ
               μ
                                                               μ
                                                          μ
 μ
                                      μ.
                                 μ.
                         μ,
                                                       μ
       μ
                  μ
                                             68
                μ
                                                         μ
                               μ
    μ
                                   μ.
                                           μ
```

μ μ μ μ μ μ), (), μ , μ 1 μ

Cho(2013).

	μ	
Cho (2013)		
	-	μ
	μ	
	-	
	-	
		ıı.
		μ
		μ
1.	II.	

1: μ

Lynn and McCall(2016)

μ

. μ

22 μ μ 14 μ μ μ

. μ

μ

•

, μ ,

μ μ, μ

, μ μ

 μ . μ μ μ μ

μ . μ

 μ μ :

1. μ

 $\mu \qquad \mu \qquad \mu \ .$

 $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$.

	1	1	2	3
μ μμ	μ	μ	μ	μ
 	15-20%	μ μ μ	μ	μ
			1 1 1 1 1	
2:	 μ		 μ	

	2	4	5	6	7	8
	μ	μ μ μ μ	μ μ	μ	μ μ μ	μ μ μ
,	3:	μ	'			

2.

μ, μ, μ

.

:

3	9	10	11
μ μ	μ μ μ μ	μ μ μ μ μ	μ μ μ μ μ /
4: μ	μ	 	

τ. μ

3.

μ μ . μ μ

 μ μ μ .

4		12		13
			μ	
μ	i 			
μ	μ	μ	 	μ μ
,	,		μ	μ
5: μ	; ! !		 	

4. -

6 16

μ
μ
μ
μ
μ
μ
μ
γ

5.

. μ μ μ μ . **7 17 18 19**

7	17	18	19
			μ
μ	μ	μ	μ
μ	μ	μ	
μ	μ	μ	
	μ		
μ ΄ '	μ		
8: μ		μ	i j

		μ	μ	μ											
				μ											
			μ			μ			ļ	ı	(1-		
1).						μ			μ				μ		
μ			μ		μ		μ								
μ				μ					(2).			
μ				μ		μ	μ			μ					
	(4).						(5),			
		(5)				(6)				μ
					μ			μ.							
	μ				μ					μ		μ		μ	
	μ	/							(11).			
												μ	-		
					μ -	-			(7	⁷).			

	μ	
Lynn and McCall(2016)	μ	
		μ μ
0.	μ	

9:

3: 3.1 μ μ μ μ μ μ (Babbie, μ 2011). μ μ μ μ μ μ μ μ μ μ 3.3) μ μ μμ μ μ μ μ μ μ 3.4) μ (μ μ μ 3.2 μ

μ 22 2017 4 μ 2017. μ μ μ -μ μ μ μ μ μ μ μ μ μ μ μ 84 μ μμ μ 66 μ μμ μ μ 56% 44% 150 μ μ 91 -μ μ μ μ 59 μ μ μ

HMEPOMHNIA	ΩΡΑ ΗΜΕΡΑΣ	ΦΥΛΟ ΣΕΡΒΙΤΟΡΟΥ	ΑΡΙΘΜΟΣ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ
22/09/2017			15
23/09/2017			28
25/09/2017			26
25/09/2017			8
26/09/2017			22
26/09/2017			11
29/09/2017			25
04/10/2017			15
			150
10:	μ	μμ	,

3.3 μ

μ μ μ, μ μ

μ .

μ μ μ μ μ μ μ μ , 2015:263). ((. μ 1- μ) 12 μ μ 1. μ 2. 3. μ μ , μ μ μ μ μ 6 : « », «1-3 μ »,«1-2 μ μ () 5 : « μ μ μ », « μ μ », « μ μ », « μ **«** μ μ μ μ μ μ μ μ (LynnandMcCall, 2016). μ μ 5 », « μ ». », « 4 , μ μ μ μ

μ

μ

```
μ
                                              », «
                  », «
                            ».
              5
                    », «
                                      », «µ
     », «
                   ».
                    5
                                                 μ
                μμ
                               μ
    6),
(
                     (
                            7),
     μ
                                        (
8),
                                               10)
                                       11).
                               (
                μ
               μ
                             μ μ
                                                μ
                         μμ
     (
           9),
                                             μ
     μ
                               12)
                         (
μ
                               , μ
                                                   : «
          », «µ
3.4
               μ
                                             μμ
       μ
                 μ
                            μ
            μ
                                             μ
      μ
                       μ
                             μ
     μ
           μμ
                        μ
                                                    μ
                                    μ
                                                       μ
                              μ
           μ
                    μ.
         μ
                    μ
         μ
                                                       12
                          μμ
                                          μ
                                               μ
                      μ
                          μ
                         μ
                                   μ
```

μ μ

4:

4.1

```
4.1.1
                                            μ
                                                                 μμ Stata.
                       μ
                                   μ
              μ
                                                                       μ
                               μμ
                                                   μ
                                        μ
                                             excel.
  μ
                   μ
                                    μ
       μ
                             μ μ
                                          μ
           μ
                 μ
          μ
        μ
                                            μ
                                                           μ
                               μ
                                                                μ
              μ
                                         μ 1)
                          2(
      μμ
                                                                    «
               μ
                                                    μ
                                   \mu »
                                                                    «
                                                   μ
         μ
                             \mu »
                                        μ
                                                                    «
                     μ
                                   » µ
«
                  μ
                            μ
                                                                    μ
    μ
                           μ
               μ
                                                                    μ
   μ
                          3(
                                          μ 1)
                       μ
                                                                       μ
                     μ
                               μ
                                                       >>
                                                               μ
μ
                                         μ
                                                               ».
                         μ
                                   μ
                                                               μ
          «
                                                    «
μ
                                      μ
                          4(
                                           1)
                                         μ
                                                              μ
                                                                        μ
                          μ
                                       μ
                                                          «
               «
                     >>
    /
          ».
```

```
7(
                                 μ 1)
                                 46-55
             μμ
                                                     μ
                                             μ
                                 46
        56
                  μ
                           μ
                    8(
                                  μ 1)
         μμ
                                        μ
                                                        μ
                             «
          «
                           μ
                                    μ
 μ
                    10(
                                 \mu 1)
                                                       μ
                         μμ
                                                   μ
μ
                                   μ
                                    μ
                         «
                                             μ
                μ
                                          ».
                     11(
                                     1)
                         μμ
                                               «
μ
                         «
                                      >>
                                          μ
          μ
                                                    μ
                     /
                                 μ
            \mu 1)
12(
                                           μ
                                                        μ
                                     μ
                                           μ
               μ
                        μ
                                     «
                                                    ».
4.1.2
              μ
                                            μμ
                                  μ
                             :
μμ
                   μ
            μ
                            μ
     μ
                             35,33%
           64,67%
     μ
           μ 1
                                           μ
    μμ
           μ
```


μ 1. μ

μμ μ , μ , μ 33,78% , 31,08% μ , μ μ 27,03% μ / μ μ 8,11% μ / μ 3 μ μμ μ K O μ N 27.52%

μ 3.
 μ 10
 μ (μ 1)
 μ μμ 44,97%
 μ , 27,52%
 μ 27,52%

> , μ 42,28% 57,72% .

μ μ 4, μ μ μμ 28,67% 3-4 μ μ μ μ 1-2 25,33% μ / 21,33% 5-6 / 16,67% μ 8% μ $/\mu$ 1-3 μ 2(μ 1) 66% μμ 26,67% μ 7,33% / μ μ

3)

μ

μ 5

(

μ

μ

μ 5. μ μμ μμ μ μ 3, 12,08% 32,21% μ 55,70% μ μ 12 μ (74,67% μ 1) μ μ 19,33% « 6% $\mu \quad \ll \mu$ ».' μ μ 6 μ μ

μ

Academinate nos motormes

μ 6 μ μ 1) 18%

/ , μ
 μ 52%
 , 30%
 .
 * 5(μ 1)

μ

μ 6.

 $$\mu $$, 47,33% $$\mu $$ 32,67% $$\mu $$. $$\mu $$ % .

4.1.4 μ μ μ μ $, \qquad \qquad \mu \qquad \qquad .$

Total_bill	75	11,12	7,89	2,5	36
Indiv_bill	150	5,48	4,08	2,5	32
11:	μ	((€)		
		μ			
75	, 75	(1-5	μ),	36€	
	2,5€ μ			μ	
11,12€					
	μ	μ		150	,
μ	11	μ	μ		32€
2,5€	€ μ	μ		μ	5,48 €
	12				μ
	μ				

Total_tip	75	1	,00	1,03	0,00		6,00	
Indiv_tip	150	0	,50	0,54	0,00		3,00	
12:		μ	μ (€)					
						μ		
75	()	μ		μ			μ
	6€	μ				μ	μ	
1€		μ	μ	þ	ι, 1	50		
		0€	μ	3€	μ	μ		
μ	0,5	0€						

4.1.5 μ . μ . μ . μ .

μ (€)

μ

Total_bill 6,7	21	0,43	0,39	0,00	1,30
6,7 <total_bill 7,4<="" td=""><td>17</td><td>0,71</td><td>0,67</td><td>0,00</td><td>2,70</td></total_bill>	17	0,71	0,67	0,00	2,70
7,4 <total_bill 13,8<="" td=""><td>19</td><td>0,95</td><td>0,90</td><td>0,00</td><td>3,20</td></total_bill>	19	0,95	0,90	0,00	3,20
Total_bill> 13,8	18	2,01	1,25	0,70	6,00
	75	-	-	-	-
13:	u u	4	и (‡	E)	

0,43 \in μ 0 \in μ 1,3 \in μ μ (>) 6,7 \in μ ()

μ

7,4€ μ μ 0,71€, μ 0€ μ 2,7€ ,

13,8€ μ μ 2,01€,

μ 0,7€ μ 6€

,

14 μ μ μ μ μ 22 .

μ (€)

Total_bill 9,3	6	0,82	0,69	0,00	1,80
9,3 <total_bill 15,6<="" td=""><td>5</td><td>0,96</td><td>0,62</td><td>0,50</td><td>2,00</td></total_bill>	5	0,96	0,62	0,50	2,00
15,6 <total_bill 27,5<="" td=""><td>6</td><td>1,28</td><td>0,65</td><td>0,70</td><td>2,50</td></total_bill>	6	1,28	0,65	0,70	2,50
Total_bill>27,5	5	3,38	1,52	2,00	6,00
	22	-	-	-	-
14:	μμ		(€)		

μ μ () 9,3€ μ μ 0,82**€**, μ μ μ 1,8€ μ μ 9,3€ μ 15,6€ μ μ 0,96€, μ 0,5€ μ 15,6€ 27,5€ μ μ μ 2€ 1,28€, μ μ 0,7€ 2,5€ , 27,5€ μ μ 3,38€, μ μ 2€ μ 6€ , μ μ 2,10€ μ , μ 12 μ μ, μ

μ

μ μ

μ (€)

Total_bill 6,25	14	0,44	0,38	0,00	1,00
6,25 <total_bill 7,2<="" td=""><td>18</td><td>0,57</td><td>0,48</td><td>0,00</td><td>1,30</td></total_bill>	18	0,57	0,48	0,00	1,30
7,2 <total_bill 10,5<="" td=""><td>11</td><td>0,62</td><td>0,81</td><td>0,00</td><td>2,70</td></total_bill>	11	0,62	0,81	0,00	2,70
Total_bill>10,5	13	1,95	1,47	0,30	6,00
	56	-	-	-	-
15:	μ μ		(€)		
	14				μ
56				μ	'
() 6,25€	μ			μ	0,44€,
0€ μ	1€			μ μ	6,25€
7,20€ μ			μ	0,57€,	
μ	μ		μ	1,3€	,
μ	μ	(>)	7,20€	μ	()
10,5€ μ			μ		0,62€,
0€ μ	u 2,7€	,			μ
μ (>)	10,5€	μ			
μ 1,	,95€,		0,3€	μ 6€	
μ μ	, μ				μ
μ μ μ				μ	

16 μ μ μ μ

•

μ	(€)
	` '

μ (સ)					
Total_bill 7,3	3	1,13	1,40	0,00	2,70
7,3 <total_bill 11,5<="" td=""><td>3</td><td>1,27</td><td>1,08</td><td>0,50</td><td>2,50</td></total_bill>	3	1,27	1,08	0,50	2,50
11,5 <total_bill 16<="" td=""><td>3</td><td>1,43</td><td>0,12</td><td>1,30</td><td>1,50</td></total_bill>	3	1,43	0,12	1,30	1,50
Total_bill>16	4	2,67	2,34	0,70	6,00
	13	-	-	-	-
16:	μ μ		(€)		
	(15)			
	13				

13 () 7,3€ μ μ 1,13€, 0€ μ 2,7€ μ 7,3€ 11,5€ μ μ 1,27€, μ 0,5€ μ 2,5€ , (>) 11,5€ μ μ μ () 16€ μ μ μ μ 1,5€ 1,43€, 1,3€ . 16€ μ μ (>) μ 2,67€, 0,7€ μ 6€ μ μ μ μ μ

 μ μ μ .

μ. μ

μ

μ

4.1.6	μ-	μ				1.50
	17	μ	μ		μ	. 150
μ		μ			μ	μ /
1	16	0,76	0,00	3,00	0,76	
μ 2 μ	85	0,89	0,00	2,50	0,44	
3	27	1,08	0,00	3,00	0,36	
μ 4	12	1,97	0,70	3,20	0,49	
μ 5	10	4,00	2,00	6,00	0,80	
μ	150	-	-	-	-	
	17:	μ μ		μ		(€)
				μ		
	μ μ	μ		μ		
0,76€,	0€	μ 3€			μ	μ
		89€,		u 2,5≢	€ ,	0.0
μ	μ 3€		1,078€,			0€ 4
μ μ	3€	μ		μ 1.97€		4
٣	,			μ	3,2€	,
	5 μ μ			2€		
	6€					
	μ ,		μ	μ		
μ		μ		٠		μ
	μ	μ				
	μ .					
	μ μ	μ	μ,	μ,	μ	
μ		ι μ	μ		μ.	
	μ	μ		5 μ		

μμ
 97
 0,54
 53
 0,42
 μ μ
 μμ (€)

μμ μ
0,54€, 0,42€ μ
μ μ

0,12€ (19) μ μ

0,69 0,48 0,33 μ μ

μ μ μ μ 0,69€ μ 0,46€ μμ μ 0,33€ 0,48€ μ μ μμ μ μ μ μ μμ μ μ μ

•

- -

150 μ μμ 72%

, 27,33% , 8,67%

6% .

- .

	Κατ	Κατανάλωση φαγητού						
Κατανάλωση								
καφέ								
NAI	8	2	98	108				
	61,54%	22,22%	76,56%	72%				
'OXI	5	7	30	42				
	38,46%	77,78%	23,44%	28%				
ΣΥΝΟΛΟ	13	9	128	150				
	100%	100%	100%	100%				

20:

8

150 μμ 72%

2 ,

 μ .

	Κατ			
Κατανάλωση αλκοόλ				
NAI	3	7	31	41
	23,08%	77,78%	24,22%	27,33%
OXI	10	2	97	42
	76,92%	22,22%	75,78%	72,67%
ΣΥΝΟΛΟ	13	9	128	150
	100%	100%	100%	100%
21:			-	

150 μμ , 27,33% 41 μ

, 3

μ.

μ μ (2, 10) μ μ 95,33% μμ μμ μ μ 4,67% μ μ 22 μ 150 μ μ μμ

Total_minutes	150	88,26	30	300
22:	μ			

•

4.2.1

μ μ μ μ μ μ μ μ μ 4.1. μ 2 4.2.2 ². To ² $\begin{pmatrix} 0 \end{pmatrix}$ $(1) \mu \mu$ μ (,2010). μ μ μ μ μ $\it price~($. μ μ 1, 12) - μ μ μ income (. μ 1, 10) μ work (. μ 1, μ μ 11) μ income (. μ1, 10) \checkmark

 μ μ *income* (.

μ

1)

μ

 $monthly_freq (. \mu 1,$

μ 1, 10) -

			P-value	:	Pearson	. 2		
price,	income			0,338	4	,537		
work,	income,			0,001	29	9,938		
incom	ne,montl	hly_freq		0,743	5	,139		
	23:	μ		\mathbf{x}^2				
		μ	μ		(0)			
	,		μ	,				(1)
	•	p volue	ı >0,005,	μ		:		
	0:	r-value	>0,003,	(μ	μ),		
μ				`		,,		
	1:	P-value	<0,005,				μ	,
		μ		٠				
		μ	<u>-</u>					
			, F	P=0,338	,P>0,		μ	
	μμ	μ		(₀), μ	μ		μ	
,	μμ			μ	μ			
,		-	μ	· 				
			, P=0,0	,I	P<0,005	μ		
μ		(0),	μ	μ	μ	μ		
		μμ			μ			
		٠						
		μ		² , P=0,7	143	P>0.005		
		μ		(0)		,1 / 0,000	μ	
	μμ	•		μ				

4.2.3 μ μ μ μ μ μ μ μ μ μ μ. μ 24 μ μ . μ

μ						
Gender		μμ	, 1	=	0=	
Age ₁ *			μμ	,	1=18-25	
	0=					
Age ₂			μμ	,	1=26-35	
	0=					
Age ₃	0		μμ	,	1=36-45	
	0=					
Age ₄	0		μμ	,	1= 46	
	0=					
Education ₁ *		,	μμ	,	1=	
	μ	/	0=			
Education ₂		0	μμ	,	1=	
		0=				
Education ₃			μμ	,	1=	
		μ	0=			
Education ₄		1	μμ	,	1=	
T		/		0=		
Income ₁ *			μ		0	
-	μμ	,	1=		0=	
Income ₂			μ		0	
T	μμ	,	1=		μ 0=	
Income ₃			μ	/	0	
XX 7 X 46	μμ	,	1=	/	0=	
Work ₁ *	0			μμ	, 1=	
***	0=					
Work ₂	1	/	/	μμ	,	
***	1=	/	/		0=	
Work ₃				μμ	,	

	1=	μ				0=		
Work4	1				μμ	,		
W	1=	μμ				0=		1
Work_Experience	0=	Į.	иμ				,	1=
Monthly_freq ₁ *	0_					,	1=1-3	/μ
	0=					7		7
Monthly_freq2						,	1=1-2	
	/	μ	0=					
Monthly_freq3	/		0=			,	1=3-4	
Monthly_freq4	/	μ	0-				1=5-6	
Wionumy_freq4	/	μ	0=			,	1-5-0	
Monthly_freq5	·	ļ.				,	1=	μ
	0=							•
stability ₁ *			μ	(,	•),
C4 . 1. '11'4	1=		/	-			0=	
Stability ₂	1=		μ	(0=	=	,),
Stability ₃	1-		μ	(-	,),
	1=	,	/	•	μ	,		/ / /
	0=				·			
frequen ₁ *		μμ		,				
Enggrana	,	1=		/		μ	()=
Frequen ₂		μμ 1=			0=			
Frequen ₃	,	μμ						
•	,	1=		/		0=		
Service_qual ₁ *					,	1=		
	/	0:	=			1		
Service_qual ₂	0=				,	1=		
Service_qual3	0–					1=		
Service_quars	0=				,	1-		
Server_frien1*					,	1=		
	0=							
Server_frien2	0				,	1=		
Server_frien3	0=					1=		
Sei vei _IITeil3	0=				,	1—		
Price ₁ *	<u> </u>	μ						
	μμ	,	1=		0=			
Price2		μ						
D:	μμ	,	1=		0=			
Price3	1111	μ	1=	/			0=	
Waiter_gender	μμ	,	1-	/		μμ		
,, and _Schider	1=	0=	1			μμ		,

Coffee_con			,	1=	0=		
Alcohol_con			,	1=	0=	1	
24:		μ					
		μ	,		μ	μ	
	μ						(
25).							

Total_bill			μ		μμ	
Total_minutes			μ	μμ		
Total_indiv	μ		μ		μμ	
nperson	μ	μ				
25:	Ļ	l				

μ μ μ 24 μ μ 25.

μ μ μ, μ total_tip, μ . H μ μ μ μ

total_tip μ $total_tip = \ _{0}+ \ _{1}gender + \ _{2}Age_{2} + \ _{3}Age_{3} + \ _{4}Age_{4} + \ _{5}Education_{2}$

 $+ \ _6Education_3 + \ _7Education_4 + \ _8Income_2 + \ _9Income_3 + \ _{10}Work_2 + \ _{11}Work_3 + \ _{12}Work_4$

+ 13Work_Experience+ 14Monthly_freq2 + 15Monthly_freq3 + 16Monthly_freq4

 $+ \frac{17}{10}$ Monthly_freq₅ + $\frac{18}{18}$ Stability₂ + $\frac{19}{19}$ Stability₃ + $\frac{20}{10}$ Frequen₂ + $\frac{21}{10}$ Frequen₃

+ 22Service_qual₂+ 23Service_qual₃+ 24Server_frien₂+ 25Server_frien₃+ 26Price₂

+ $_{27}Price_3 +$ $_{28}Nperson +$ $_{29}Waiter_gender +$ $_{30}coffee_con +$ $_{31}alcohol_con$

+ 32total_minutes + 33total_bill + u

μ

```
μ
                        μ
                                                μ
                                                                    μ,
                                                                                      μ
                                                                                            μ
               indiv_tip,
                                              μ
                                                                 μ
                  . Н μ
                                                  μ
                                                                        μ
                                                                                 μ
                                                                                               μ
              indiv_tip
μ
indiv_tip = _{0}+_{1}gender +_{2}Age_2 +_{3}Age_3 +_{4}Age_4 +_{5}Education_2
+ \ _6Education_3 + \ _7Education_4 + \ _8Income_2 + \ _9Income_3 + \ _{10}Work_2 + \ _{11}Work_3 + \ _{12}Work_4
+ 13Work_Experience+ 14Monthly_freq2 + 15Monthly_freq3 + 16Monthly_freq4
+ \frac{17}{10}Monthly_freq<sub>5</sub> + \frac{18}{10}Stability<sub>2</sub> + \frac{19}{10}Stability<sub>3</sub> + \frac{19}{10}Frequen<sub>2</sub> + \frac{11}{10}Frequen<sub>3</sub>
+ 22Service_qual<sub>2</sub>+ 23Service_qual<sub>3</sub>+ 24Server_frien<sub>2</sub>+ 25Server_frien<sub>3</sub>+ 26Price<sub>2</sub>
+ 27Price3 + 28Nperson + 29Waiter_gender + 30coffee_con+ 31alcohol_con
 32total_minutes + 33indiv_bill + u
            μ
                                                       μ
                                                                              μ
        μ
                                                              μ
           μ
                                          μ
                                                               μ
                                                                    μ
                                                                                 μ
                                                                                        μ
                        μ (total_tip),
                                                 μ
                                                                         (total_bill).
          μ
                                        μ
                            μ
                                                      μ
                                                                    μ
                                                                            μ
                                                                                                    μ
                                                 μ
            μ (indiv_tip),
                                      μ
                                                  μ
                                                            (indiv_bill).
μ
                      μ
                            μ
                                                 26
                                                                                             μ
        μ
                                                                                μ
                                                                                                μ
                                                    μ
               (**)
                                                                      μμ
(coefficient)
                                                                                        p=0.05
                                        μ
                                                                      μ
                                           (*)
μ
                μ
                                                                             μ
```

p=0,10.

μ	Total_tip			Indiv_tip			
r	Coef.	Std. Err.	P> t	Coef.	Std. Err.	P> t	
Gender	0,123	0,157	0,434	0,119	0,074	0,111	
Age ₂	0,191	0,181	0,295	0,001	0,090	0,99	
Age ₃	-0,084	0,226	0,711	0,058	0,145	0,689	
Age4	0,325	0,215	0,132	0,088	0,113	0,437	
Education ₂	-0,111	0,192	0,564	0,015	0,108	0,889	
Education ₃	-0,227	0,183	0,218	0,003	0,099	0,974	
Education4	0,037	0,298	0,902	0,037	0,143	0,798	
Income ₂	-0,226	0,216	0,298	0,015	0,105	0,883	
Income ₃	-0,252	0,194	0,196	0,012	0,087	0,889	
Work ₂	0,188	0,342	0,584	0,020	0,163	0,904	
Work ₃	0,184	0,243	0,451	0,040	0,130	0,76	
Work4	0,069	0,294	0,816	0,159	0,145	0,277	
Work_experience	0,267*	0,153	0,082	0,075	0,069	0,277	
Monthly_freq2	0,128	0,263	0,627	0,064	0,138	0,64	
Monthly_freq3	0,408	0,254	0,11	0,218*	0,131	0,099	
Monthly_freq4	0,318	0,277	0,253	0,170	0,149	0,256	
Monthly_freq5	0,369	0,303	0,226	0,272	0,177	0,128	
Stability ₂	0,363	0,325	0,265	0,197	0,177	0,262	
Stability ₃	0,160	0,298	0,592	0,102	0,179	0,524	
Frequen ₂	-0,128	0,242	0,596	0,046	0,120	0,701	
Frequen ₃	-0,128	0,242	0,390	0,040	0,120	0,701	

-0,179	0,227	0,43	0,189	0,119	0,114
-0,245	0,269	0,364	0,128	0,145	0,379
0,333	0,223	0,138	0,217**	0,086	0,013
0,318	0,205	0,123	0,243**	0,097	0,013
-0,445*	0,264	0,093	0,285	0,189	0,135
-0,596*	0,301	0,05	0,315	0,207	0,131
0,227**	0,094	0,017	0,030	0,051	0,564
0,176	0,139	0,206	0,055	0,085	0,516
0,424	0,280	0,132	0,112	0,160	0,484
-0,175	0,300	0,56	0,243	0,183	0,186
0.004**	0.002	0.024	0.003**	0.001	0,031
,	•		-	-	-
-	-	-	0,079**	0,011	<0,001
	-0,245 0,333 0,318 -0,445* -0,596* 0,227** 0,176 0,424	-0,245 0,269 0,333 0,223 0,318 0,205 -0,445* 0,264 -0,596* 0,301 0,227** 0,094 0,176 0,139 0,424 0,280 -0,175 0,300 0,004** 0,002	-0,245 0,269 0,364 0,333 0,223 0,138 0,318 0,205 0,123 -0,445* 0,264 0,093 -0,596* 0,301 0,05 0,227** 0,094 0,017 0,176 0,139 0,206 0,424 0,280 0,132 -0,175 0,300 0,56 0,004** 0,002 0,024	-0,245 0,269 0,364 0,128 0,333 0,223 0,138 0,217** 0,318 0,205 0,123 0,243** -0,445* 0,264 0,093 0,285 -0,596* 0,301 0,05 0,315 0,227** 0,094 0,017 0,030 0,176 0,139 0,206 0,055 0,424 0,280 0,132 0,112 -0,175 0,300 0,56 0,243 0,004** 0,002 0,024 0,003** 0,097** 0,012 <0,001 -	-0,245 0,269 0,364 0,128 0,145 0,333 0,223 0,138 0,217** 0,086 0,318 0,205 0,123 0,243** 0,097 -0,445* 0,264 0,093 0,285 0,189 -0,596* 0,301 0,05 0,315 0,207 0,227** 0,094 0,017 0,030 0,051 0,176 0,139 0,206 0,055 0,085 0,424 0,280 0,132 0,112 0,160 -0,175 0,300 0,56 0,243 0,183 0,004** 0,002 0,024 0,003** 0,001 0,097** 0,012 <0,001 - -

26: μ μ

μ : gender μ μ 0,12€ μ μ μ μ μ age μ 26-35 46 μ μμ 0,19€ 0,33€ μ μ μμ μ 18-25 education μ μμ μ μμ 0,23€ μ μ μ μ μ income μ μ μ μμ μ 0,25€

```
μ
                           μ
                                       μ
     μ
 μ
                                              μ
            μ
                                   0,23€ μ
                                                                  μ
           μ
       μ
                  work
        μ
 μμ
                                                          μ,
                                μ
 μμ
                                     μ
0,18€
                              μ
                                        μ
                 work_experience
                                                   μ
        μ
             p=0,10.
                                               μμ
 μ
                                     μ
                                              0,27€
        μ
                  μ
                                                monthly_freq
                                      μ
                                     μμ
           μ
                 3-4
μ
                                 μ
                                                       0,41€
                      5-6
                                                                0,32€
                                       μ
                                  μ
                                                μ
                              1-3
                    μ
                                                             μ
                                            μ
 μμ
                                                               μ
              0,37€
                                             μ
                                                        μ
                1-3
                                μ
                  stability,
                                                          μ
        μ
                                         )
 μμ
                                             μ
           μ
0,36€
                               μ
                                          μ
                 frequen,
                                                      μμ
        μ
                                               μ
                                                           μμ
                                                                0,13€
                  μ
 μ
                          μ
                                     μ
```

```
, μ service_qual μ
                                     μ
   μ
     0,25€ μ
                           μ
                                   μ
                  server_frien μ
         μ
μ
    . μ
                     , μμ
    μμ
                   μ
                        0,33€
                                            μ
                        μ
     μ
           price<sub>2</sub>,price<sub>3</sub>
    μ
                                         μ
               μμ ,
                                         μ
               p=0,10.
            μ
                          0,45€ μ
               μ ,
  μ
                      μ
                                       μμ
                                   0,60€ μ
            μ
    μ
           μ
     μμ
    0,42€
                          μ
                                  μ
                                          0,17€
       . μμ
μ
               μ
                         μ
        nperson
                                μ
       p=0,05. μ
μ
                           μ
                                μ
                                μ μ
                                         1
         μ
                                0,23€
μ,
                          μ
          waiter_gender
    μ
                                         μ
                          0,18€
                                          μ
μ
                  total_minutes
          μ
        μ
                            1
μμ
        0,004€
                        μ.
                            μ
                                μ
                                            μ
                                60
              μ
         μ 0,24€
```

```
total_bill
                                μ
                                                                           μ
                                          μ
                                                               1€
        μ
                                         0,10€.
                              μ
                                                                          indiv_tip
                                          μμ
                                                               μ
                          μ
                                                       μ
                                                          , gender, age, education,
                                       μ μ
               μ
income, work, stability, service_qual, waiter_gender, coffe_con
                                                                       alcohol_con
                                                       μ
                                                                   price<sub>2</sub>, price<sub>3</sub>
    μ
                       μ
                             μ
nperson
                                       μ
                                                                   μ, μ
             μ
                        μ
                                                  μ
                                                       μ
                                                                    , μ
                                     monthly_freq3, server_frien2
                                                                      server_frien<sub>3</sub>.
             μ
                         μ
                                                                                3-4
                              monthly_freq3,
            μ
                  μ
                                                   μμ
                                  0,22€
               μ
                                                        μ
                                                                       μ
                                         1-3
                                                  /\mu
μ
                                                                  μ
                                                                        μ
server_frien2
                server_frien3,
                                   μμ
                                                                         0,22€
0,24€
                                  μ
                                                  μ
                                                                 μ
                  μ
                                                  total_minutes,
                  μ
                                     μ
                                                                          total_bill/
    μ
                   μμ
                                                             μ
indiv_bill
                                       μ
                                            μ
                                                                  μ
                      μ
                                                               μ
                                       μ
  μ
                               μ
```

6: μ μ , μ μ μ μ μ, μ μ μ μ μ μ μμ μ μ μ μ μ, μ μ μ : Cho(2013) μ Lynn(2016). μμ μ μμ μ μμ μ μ Crusco and Wetzel, (1984). μ μ μ

```
μ
                                                 μ
Davisetal. (1998)
       μ
                   μ
                                                              μ
   μ
                    μ
                                          μ
     μ
 μ
                           μ.
                                 μ
                                                 μ
                                                      μ
             μ
                            μ
                                     μ
                                                     μ,
                                     , μ
                                                              μ
                     μ
                            μ
                                                            μ
                                                           μ
           μ
                                              μ
                 μ
                                                             μ
                  μ
                        μ
                                                      μμ
 μμ
                                          μ
                                                                 μ
                   μ
                                    μ
                              μ
           μ
                     μ
               μ
                                                          μ
       μ
```

- Artuger, S., &Burcin C., 2013. Factors influencing the tipping propensity of restaurant customers: A study in 5 star hotels a la carte restaurants. International Journal of Business and Social Science, 4 (17), 70-78.
- Azar, Ofer H., 2005. Who Do We Tip and Why? An Empirical Investigation. Applied Economics, 37 (16), 1871-1879.
- Azar, Ofer H., 2005. The Social Norm of Tipping: Does it Improve Social Welfare? Journal of Economics, 85 (2), 141-173.
- Azar, Ofer H., 2007. *The Social Norm of Tipping: A Review*, Journal of Applied Social Psychology, 37.(2), 380-402.
- Arnould, E., Thompson C., 2005. Consumer Culture Theory (CCT) Twenty Years of Research. Oxford University Press, Journal of Consumer Research
- Babbie, E., 2011.
- Bodvarsson, O., GibsonW., 1999. *AnEconomic Approach to Tips and Service Quality:* Results of a Survey," The Social Science Journal, 36(1), 137-147.
- Chiang, A., 2009. μ
- Dillon, T., ReifH., 2002. *Factors influencing consumers' e-commerce commodity purchases*. Information Technology Learning and Performance Journal.
- Grønhøj, A., 2007. *The consumer competence of young adults: a study of newly formed households*. Department of Marketing and Statistics, Aarhus School of Business, University of Aarhus, Aarhus, Denmark.
- Harris, M., 1995. *Waiters, Customers and Service: Some Tips About Tipping*. Journal of Applied Social Psychology, 25(8), 725-744.
- Hsieh, A., & Der-Huang W. 2007. "The relationship between Timing of Tipping and Service Effort. Service Industries Journal, 27(1), 1-14.
- Garrity, K., Degelman, D.,1990. *Effect of Server Introduction on Restaurant Tipping*. Journal of Applied social psychology, 20 (February), 168-172
- Jacoba, C., Guéguenb, N., &Boulbryc, G., 2010. *Effects of songs with prosocial lyrics on tipping behavior in a restaurant*. International Journal of Hospitality Management 29(2010) 761-763
- Koku, P., 2005. Is There a Difference in Tipping in Restaurant versus Non-Restaurant Service Encounters, and Do Ethnicity and Gender Matter. Journal of Services Marketing, 19 (7), 445-452.
- Liu, C., 2008. *The Perceptions of waiters and Customers on Restaurant Tipping*. Journal of Services Marketing, 22 (2), 95-103.
- Lynn, M., 1988. *The Effects of Alcohol Consumption on Restaurant Tipping*. Personality and Social Psychology Bulletin, 14 (March), 87-91.

- Lynn, M., 1994. *Neuroticism and the Prevalence of Tipping: A Cross-Country Study*. Personality and Individual Differences, 17(1), 137-138.
- Lynn, M., 2000. *National Personality and Tipping Customs*, Personality and IndividualDifferences, 28, 395-404.
- Lynn, M., 2000. The Relationship Between Tipping and Service Quality: A Comment on Bodvarsson and Gibson's Article, The Social Science Journal, 37, 131-13
- Lynn, M., 2004. *Black-White Differences in Tipping of Various Service Providers*, Journal of Applied Social Psychology, 34 (11), 2261-2271.
- Lynn, M., 2006. *Tipping in restaurants and Around the Globe: An Interdisciplinary Review*. Ch. 31, pp. 626-643. In Morris Altman (Ed.) Handbook of Contemporary Behavioral Economics: Foundations and Developments, M.E. Sharpe Publishers.
- Lynn, M., 2006. Race Differences in Restaurant Tipping: A Literature Review and Discussion of Practical Implications, Journal of Foodservice Business Research, 9 (4), 99-113.
- Lynn, M., &McCall, M., 2000. Gratitude and Gratuity: A Meta-Analysis of Research on the Service-Tipping Relationship, Journal of Socio-Economics, 29, 203-214.
- Lynn, M., &Sturman, M., 2010. Tipping and service quality: A within-subjects analysis. Journal of Hospitality & Tourism Research, 34 (2), 269-275.
- Lynn, M., Sturman, M., Ganley, C., Adams, E., Douglas, M., & McNeal, J., 2008. *Consumer Racial Discrimination in Tipping: A Replication and Extension*, Journal of Applied Social Psychology, 38 (4), 1045-1060.
- Lynn, M., Zinkhan, G., & Harris, J., 1993. Consumer Tipping: A Cross-Country Study. Journal of Consumer Research, 20 (December), 478-485.
- Lynn, M., 2006. *Tipping in Restaurants and Around the Globe: An Interdisciplinary Review*. Cornell University, School of Hospitality Administration
- Lynn, M., & McCall, M., 2016. Beyond Gratitude and Gratuity: A Meta-Analytic Review of the Predictors of Restaurant Tipping. Cornell University, School of Hospitality Administration
- Lynn, M., &Grassman, A., 1990. Restaurant tipping: An examination of three 'rational' explanations. Cornell University, School of Hospitality Administration
- Seiter, J., 2007. Ingratiation and Gratuity? The Effect of Complimenting Customers on Tipping Behavior in Restaurants. Journal of Applied Social Psychology37: 478–485
- Sun Bai, C., 2013. Factors Affecting Restaurant Consumers 'Tipping Behavior. The Korean Society for Quality Management (March), 15-32

: :

 μ μ : $\qquad \qquad \mu \qquad :$

μ , μ μ , μμ μ & μ μ

μ μ .

			,			
		1-3	1-2	3-4	5-6	μ
		$/\mu$	/ μ	/ μ	/ μ	
-	1	2	3	4	5	6

5.								;				
ŀ	1		2		3	}		4		5		
6												
6.	1		,	2								
7	1			2								
7.	10	1	8-25	26	5-35	36	5-45	;	46-55	<u> </u>	56	
	18 1		2		3		4		4	5	6)
8.				;		1						
	μ	μ	l							μ	/	
	1		2	3	3	4			5			6
9.						J.	μ /		;			
	1			2		, ,	,		,			
10	. μ		μ 1	2.300€	€;				μ	μ		
					μ							
	1		2		3			4		5		
11					μ	;		Ļ	 I		μ	
			·					·		μ	r	
	1		2			3		4			5	
12			μ	μ	:				,			
ļ	1			2		3			4			5
Į			1					_1			I	

(2)

 μ μ :

:

1. μ (μ): |_____|

2. (€)(μ): |____|

3. μ (€)(μ): |_____|

4. μ (€)(μ):|____|

5. μ μ (€)(μ):|_____|

1 2 3 4 5

9	9.					
	1	2	3			

1	0.	μ	
	1		2

11. μ

: : μ :

12. 1 2