

# Operating System

Revision 1



|    | OS W.A.S DIO SW & GENERAL                                                                  |
|----|--------------------------------------------------------------------------------------------|
|    |                                                                                            |
| 1. | In memory hierarchy, the top layers have higher speed, larger capacity, and greater        |
|    | cost per bit than the lower ones. T/F                                                      |
| 2. | Program doesn't need to be brought to memory & placed within a process for it to           |
|    | be run. T/F                                                                                |
| 3. | The process may be moved between disk and memory during its execution. T/F                 |
| 4. | In a multi-programming system, RAM is divided into two parts one part for the              |
| 5. | operating system and one part for the program currently being executed. T/F                |
| 6. | In a multiprogramming system, the user part of RAM must be subdivided to                   |
|    | accommodate multiple processes. <mark>T</mark> /F                                          |
| 7. | The task of subdivision is carried out dynamically by the operating system and is          |
|    | known as                                                                                   |
|    | a)memory management b) CPU management c) a and b d) none                                   |
| 8. | Effective memory management is vital in a multiprogramming system. T/F                     |
| 9. | The part of the operating system that manages (part of) the memory hierarchy is            |
|    | called the                                                                                 |
|    | a)memory manager b) CPU scheduler c) dispatcher d) none                                    |
| 10 | . Memory manager keeps track of which parts of memory are in use. T/F                      |
| 11 | . CPU scheduling allocates memory to processes when they need it. T/F                      |
| 12 | . When a process is scheduled, the base register is loaded with the address of the         |
|    | start of its partition, and the limit register is loaded with the length of the partition. |
|    | T/F                                                                                        |
| 13 | . In time binding, code must be generated.                                                 |
|    | a)Load, Reloctable b)Compile, Reloctable c)Load, absolute                                  |
|    | d)Compile, absolute                                                                        |
| 14 | . Logical and physical addresses are the different in compile-time and load-time           |
|    | address-binding schemes. T/F                                                               |
| 15 | . Logical and physical addresses are differs at execution-time address-binding             |
|    | scheme. <mark>T</mark> /F                                                                  |
| 16 | . Logical address space is defined as the set of all logical addresses generated by a      |
|    | program. A) true B) False                                                                  |
| 17 | Logical addresses corresponding to physical addresses generated by a program is            |

18. In \_\_\_\_\_ scheme, the value in the relocation register is added to every

address generated by a user process at the time it is sent to memory.

B) False

referred to as the physical address space.

A) true

| a)TLB                | b) MMU              | c) Limit                |                          | d) none        |
|----------------------|---------------------|-------------------------|--------------------------|----------------|
| 19. The user progra  | am deals with logi  | ical addresses; it n    | ever sees the real       | physical       |
| addresses.           |                     |                         |                          |                |
| A) <mark>true</mark> |                     | B) F                    | alse                     |                |
| 20. A disadvantage   | of relocation usi   | ng base and limit re    | egisters is the ne       | ed to perform  |
| an addition and      | d a comparison or   | every memory re         | ference.                 |                |
| A) <mark>true</mark> |                     | B) F                    | alse                     |                |
| 21. In MMU, comp     | arisons can be do   | ne fast, but additio    | ons are slow due         | to carry       |
| propagation tir      | ne unless special   | addition circuits ar    | e used.                  |                |
| A) <mark>true</mark> |                     | B) F                    | alse                     |                |
| 22. Swapping is a s  | olution to the pro  | blem of limited siz     | e of RAM.                |                |
| A) <mark>true</mark> |                     | B) F                    | alse                     |                |
|                      |                     | which a process ca      |                          | _              |
| -                    | a backing store, ar | nd then brought ba      | ck into memory           | for continued  |
| execution.           |                     |                         |                          |                |
| a)Fragmentation      | on b) Co            | mpaction                | c) <mark>Swapping</mark> | d)             |
| none                 |                     |                         |                          |                |
| _                    |                     | fast disk but shou      |                          | ;n to          |
| A) true              | copies of all mem   | ory images for all u    | alsers.                  |                |
| •                    | and the user proce  | ss is 400 MB in size    |                          | storo is a     |
|                      |                     | er rate of 200 MB p     |                          |                |
| time is              |                     | in rate of 200 MB p     | er secondi The to        | otal Strap     |
| a) 2000 ms           | b) 6000 ms          | c) <mark>4000</mark> ms | s d) none                |                |
| ,                    |                     | e's iOS asks applica    | ,                        | ilv relinguish |
| allocated mem        |                     |                         |                          | , - 4          |
| A) <mark>true</mark> |                     | B) f                    | alse                     |                |
| 27. Compaction re    | fers to shuffle the | memory contents         | so as to place all       | free memory    |
| together in one      | e large block.      |                         |                          |                |
| A) <mark>true</mark> |                     | B) F                    | alse                     |                |
| 28. If the process s | ize is 3.5 KB and f | rame size= 2 KB, w      | hat is the amoun         | t of internal  |
| fragmentation        | ?                   |                         |                          |                |
| a) 1                 | b) <mark>0.5</mark> | c) 2                    | d) none                  |                |
| 29. If the process s | ize is 2.25 KB and  | frame size= 2 KB, v     | what is the amou         | nt of internal |
| fragmentation        | ?                   |                         |                          |                |
|                      |                     |                         |                          |                |

|            | a) <mark>1.75</mark>                                                                     | b) 1.5                                        |             | (                       | c) 2                  | d)        | none              |              |
|------------|------------------------------------------------------------------------------------------|-----------------------------------------------|-------------|-------------------------|-----------------------|-----------|-------------------|--------------|
| 30.        | 30. If the process size is 2.01 KB and frame size = 2 KB, what is the amount of internal |                                               |             |                         |                       |           |                   |              |
|            | fragmenta                                                                                | ition?                                        |             |                         |                       |           |                   |              |
|            | a) 1.75                                                                                  | b) 1.4                                        | 5           |                         | C                     | 1.99      | d)                | none         |
| 31.        | If a proces                                                                              | s is 209KB, compute int                       | ernal fra   | gmenta                  | ation fo              | r frame s | size = 0          | .5 KB, 1 KB, |
|            | 2 KB, 4 KB                                                                               | , and 8 KB.                                   |             |                         |                       |           |                   |              |
|            |                                                                                          | <u> </u>                                      | l           | T.                      | L                     | I.        |                   |              |
|            |                                                                                          | Frame size                                    | 0.5         | 1                       | 2                     | 4         | 8                 |              |
|            |                                                                                          | No of frames                                  | 418         | 209                     | 105                   | 53        | 27                |              |
|            |                                                                                          | Internal fragmentation                        | 0           | 0                       | 1                     | 3         | 7                 |              |
| 22         | Mavimum                                                                                  | internal fragmentation                        | n is lass t | than fra                | mo siza               |           |                   |              |
| J2.        |                                                                                          | true                                          | 1 13 1033   |                         | B) False              |           |                   |              |
| 22         | •                                                                                        |                                               | rnal frac   |                         |                       |           |                   |              |
| <b>33.</b> |                                                                                          | ame size to reduce inte                       | illai ilag  |                         |                       |           |                   |              |
| •          | •                                                                                        | true<br>· · · · · · · · · · · · · · · · · · · |             |                         | B) False              |           |                   |              |
| 34.        | -                                                                                        | on is a possible solution                     | for inte    |                         |                       |           |                   |              |
|            | •                                                                                        | true                                          |             |                         | 3) <mark>False</mark> |           |                   |              |
| 35.        | 35. Swapping is widely adopted technique in mobile operating ystems.                     |                                               |             |                         |                       |           |                   |              |
|            | •                                                                                        | true                                          |             |                         | 3) <mark>False</mark> |           |                   |              |
| 36.        |                                                                                          | is responsible for run-t                      | ime ma      | oping fr                | om virt               | ual to pl | hysical           | addresses.   |
|            | a)TLB                                                                                    | b)KLT                                         |             | c)CPU                   |                       |           | d) <mark>[</mark> | MMU          |
| 37.        | 37. Allowing the logical address space of the process to be noncontiguous is a           |                                               |             |                         |                       |           |                   |              |
|            | possible s                                                                               | olution for the                               | pr          | oblem.                  |                       |           |                   |              |
|            | a)Paging                                                                                 | b)internal fragmentation                      | on          | <mark>c)externa</mark>  | al fragme             | entation  | d)S               | wapping      |
| 38.        | Memory c                                                                                 | ompaction is a possible                       | solutio     | n for th                | ie                    |           | <b>_·</b>         |              |
|            | a)Paging                                                                                 | b)internal fragmentation                      | on          | c)externa               | al fragme             | entation  | d)S               | wapping      |
| 39.        | The                                                                                      | register specifies                            | s the rar   | nge of p                | hysical               | address   | es allo           | cated to     |
|            | the proces                                                                               | SS.                                           |             |                         |                       |           |                   |              |
|            | a)Base                                                                                   | b)Relocation                                  |             | c) <mark>Limit</mark>   | d                     | )Page-ta  | ble bas           | se           |
| 40.        |                                                                                          | occurs when there                             | is enoug    | h total                 | memoi                 | y space   | to sati           | sfy a        |
|            | request bu                                                                               | ut the available spaces                       | are not     | contigu                 | ous.                  |           |                   |              |
|            | a)Paging                                                                                 | b)internal fragmentation                      | on          | c) <mark>externa</mark> | al fragme             | entation  | d)S               | wapping      |
| 41.        | The                                                                                      | register holds th                             | e smalle    | est lega                | l physic              | al memo   | ory add           | ress of the  |
|            | process.                                                                                 |                                               |             |                         |                       |           |                   |              |
|            | a) <mark>Base</mark>                                                                     | b)Page-table                                  | length      | (                       | c)Limit               | d)F       | Page-tak          | ole base     |

| B. allows many programs to use memory simultaneously | B. a | illows | manv | programs | to use | memory | simultaneousl |
|------------------------------------------------------|------|--------|------|----------|--------|--------|---------------|
|------------------------------------------------------|------|--------|------|----------|--------|--------|---------------|

C. allows each program in turn to use the memory.

D. none

52. The OS may manipulate the contents of an MMU. T/F

53. Where does the swap space reside?

(a) RAM

(b) Disk

(c) ROM

(d) On-chip cache

54. Copying a process from memory to disk to allow space for other processes is

A. Demand paging B. Deadlock C. Page fault

D. Swapping

55. Which of the following statements are true?

- (a) External Fragmentation exists when there is enough total memory space to satisfy a request but the available space is contiguous.
- (b) Memory Fragmentation can be internal as well as external.
- (c) One solution to external Fragmentation is compaction.

A)(a) and (b) only

B)(a) and (c) only

C)(b) and (c) only

D)(a), (b) and (c)

## 56. What is compaction?

A)A technique for overcoming internal fragmentation

B)A paging technique

# C)A technique for overcoming external fragmentation

D)A technique for overcoming fatal error

57. Moving Process from main memory to disk is called:

A)Caching

B)Termination

C)Swapping

D)Interruption

58. In a single contiguous memory management approach, if the logical address of a variable is L and the beginning of the application program is A, what is the formula for binding the logical address to the physical address?

#### L + A

59. If, in a fixed partition memory management system, the current value of the base register is 42993 and the current value of the bounds register is 2031, compute the physical addresses that correspond to the following logical addresses:

a. 104

43097

b. 1755

44748

c. 3041

| Address out of bounds of partition.                      |                                                                        |                      |  |  |  |  |
|----------------------------------------------------------|------------------------------------------------------------------------|----------------------|--|--|--|--|
| 60. What is Address Binding?                             |                                                                        |                      |  |  |  |  |
| a) going to an address in memory                         | a) going to an address in memory                                       |                      |  |  |  |  |
| b) locating an address with the help                     | b) locating an address with the help of another address                |                      |  |  |  |  |
| c) binding two addresses together to                     | c) binding two addresses together to form a new address in a different |                      |  |  |  |  |
| memory space                                             |                                                                        |                      |  |  |  |  |
| d) a mapping from one address space                      | <u>ce to another</u>                                                   |                      |  |  |  |  |
| 61. Binding of instructions and data to r                | memory addresses can be o                                              | done at              |  |  |  |  |
| a) Compile time b)                                       | ) Load time                                                            |                      |  |  |  |  |
| c) Execution time <u>d) All of</u>                       | the mentioned                                                          |                      |  |  |  |  |
| 62. If the process can be moved during                   | its execution from one mer                                             | mory segment to      |  |  |  |  |
| another, then binding must be                            |                                                                        |                      |  |  |  |  |
| a) delayed until run time                                | b) preponed to compil                                                  | le time              |  |  |  |  |
| c) preponed to load time                                 | d) none of the mentio                                                  | ned                  |  |  |  |  |
| 63. The swaps processes i                                | n and out of the memory.                                               |                      |  |  |  |  |
| a) Memory manager b)                                     | ) CPU c) CPU manage                                                    | r                    |  |  |  |  |
| d) User                                                  |                                                                        |                      |  |  |  |  |
| 64. If binding is done at assembly or loa                | d time, then the process _                                             | be moved to          |  |  |  |  |
| different locations after being swap                     | ped out and in again.                                                  |                      |  |  |  |  |
| a) can b) must                                           | <u>c) <mark>can</mark> never</u>                                       | d) may               |  |  |  |  |
| 65. In a system that does not support sv                 | wapping                                                                |                      |  |  |  |  |
| a) the compiler normally binds symb                      | polic addresses (variables) to                                         | <u>o relocatable</u> |  |  |  |  |
| <u>addresses</u>                                         | )                                                                      |                      |  |  |  |  |
| b) the compiler normally binds symb                      | polic addresses to physical a                                          | addresses            |  |  |  |  |
| c) the loader binds relocatable addr                     | esses to physical addresses                                            |                      |  |  |  |  |
| d) binding of symbolic addresses to                      | physical addresses normally                                            | y takes place        |  |  |  |  |
| during execution                                         |                                                                        |                      |  |  |  |  |
| 66. The address generated by the CPU is                  | s referred to as                                                       |                      |  |  |  |  |
| a) Physical address                                      | b) Logical address                                                     |                      |  |  |  |  |
| c) Neither physical nor logical                          | d) None of the                                                         | mentioned            |  |  |  |  |
| 67. The address loaded into the memor                    | y address register of the m                                            | emory is referred    |  |  |  |  |
| to as                                                    |                                                                        |                      |  |  |  |  |
| a) Physical address                                      | b) Logical address                                                     |                      |  |  |  |  |
| c) Neither physical nor logical d) None of the mentioned |                                                                        |                      |  |  |  |  |

| 68. The run time mapping from virtual to ph                          | nysical addresses is d | one by a hardware   |
|----------------------------------------------------------------------|------------------------|---------------------|
| device called the                                                    |                        |                     |
| a) Virtual to physical mapper                                        | b) Memory n            | nanagement unit     |
| c) Memory mapping unit                                               | d) None of the men     | tioned              |
| 69. The base register is also known as the _                         |                        |                     |
| a) basic register b) regular register                                | gister <u>c) relo</u>  | cation register     |
| 70. The size of a process is limited to the siz                      | e of                   |                     |
| a) physical memory b) external storage                               |                        | a d) none           |
|                                                                      |                        |                     |
| 71. If execution time binding is being used, different memory space. | tnen a process         | _ be swapped to a   |
| a) has to be b) can never                                            | c) must                | d) may              |
| 72. Swapping requires a                                              |                        |                     |
| a) motherboard b) keyboard                                           | c) monitor             | d) backing          |
| store                                                                |                        |                     |
| 73. The backing store is generally a                                 |                        |                     |
| a) fast disk                                                         |                        |                     |
| b) disk large enough to accommodate co                               | ppies of all memory in | mages for all       |
| users                                                                |                        |                     |
| c) disk to provide direct access to the me                           | emory images           |                     |
| d) all of the mentioned                                              |                        |                     |
| 74. The time in a swap out of a r                                    | unning process and     | swap in of a new    |
| process into the memory is very high.                                |                        |                     |
| a) context – switch b) waiting                                       | c) execution           | d) all              |
| 75. The major part of swap time is                                   | time.                  |                     |
| a) waiting b) <u>transfer</u>                                        | c) execution d) nor    | e of the            |
| mentioned                                                            |                        |                     |
| 76. Swapping be done when a prod                                     | cess has pending I/O   | , or has to execute |
| I/O operations only into operating syste                             | m buffers.             |                     |
| a) must b) can                                                       | c) <u>must neve</u>    | <u>r</u> d)         |
| maybe                                                                |                        |                     |
| 77. Swap space is allocated                                          |                        |                     |
| a) as a chunk of disk                                                | b) separate from a f   | ile system          |
| c) into a file system                                                | d) all of the mention  | ned                 |
| 78. Swap space exist in                                              |                        |                     |

| <u>US</u>                                     | IVI.A.5 BIO - SW & Genera                            |  |  |
|-----------------------------------------------|------------------------------------------------------|--|--|
|                                               |                                                      |  |  |
| Primary memory                                | Secondary memory                                     |  |  |
| CPU                                           | None of mentioned                                    |  |  |
| .Swapping                                     |                                                      |  |  |
| a)Works best with many s                      | mall partitions.                                     |  |  |
| b)Allow many programs to                      | use memory simultaneously.                           |  |  |
| c)Allow each program in to                    | urn to use the memory.                               |  |  |
| ). Program always deals with                  | n                                                    |  |  |
| a) logical address                            | b) absolute address                                  |  |  |
| c) physical address                           | d) relative address                                  |  |  |
| L. What is compaction?                        |                                                      |  |  |
| a) a technique for overcon                    | ning internal fragmentation                          |  |  |
| b) a paging technique                         |                                                      |  |  |
| c) a technique for overcon                    | ning external fragmentation                          |  |  |
| d) a technique for overcon                    | ning fatal error                                     |  |  |
| 2. The relocation register hel                | ps in                                                |  |  |
| a) providing more address                     | space to processes                                   |  |  |
| b) a different address space to processes     |                                                      |  |  |
| c) to protect the address spaces of processes |                                                      |  |  |
| d) none of the mentioned                      |                                                      |  |  |
| 3. The operating system and                   | the other processes are protected from being modi    |  |  |
| by an already running prod                    | cess because                                         |  |  |
| a) they are in different me                   | mory spaces                                          |  |  |
| b) they are in different log                  | ical addresses                                       |  |  |
| c) they have a protection a                   | algorithm                                            |  |  |
|                                               | d by the CPU is being checked against the relocation |  |  |
| and limit registers                           |                                                      |  |  |
| I. In internal fragmentation,                 | memory is internal to a partition and                |  |  |
| a) is being used                              | b) is not being used                                 |  |  |
| c) is always used                             | d) none of the mentioned                             |  |  |
| 5. A solution to the problem                  | of external fragmentation is                         |  |  |
|                                               | h) largar mamaru chaca                               |  |  |
| a) <u>compaction</u>                          | b) larger memory space                               |  |  |

|          |              | logical address s    | r                 |               |             |
|----------|--------------|----------------------|-------------------|---------------|-------------|
| <b>つ</b> | I normit tho | IOGICAL ANDROCC C    | naco ot a nroc    | CCC TO NO NON | CONTIGUIOUS |
| _        |              | IUBII AI AUIUI ESS S | ווארות ביות ביותו |               |             |
|          |              |                      |                   |               |             |

- b) permit smaller processes to be allocated memory at last
- c) permit larger processes to be allocated memory at last
- d) all of the mentioned

# 87. When there is enough memory to fit a process in memory, but the space is not contiguous we need

A. Internal Fragmentation

B. Virtual Fragmentation

C. External Fragmentation

D. None of them

#### 88. In memory systems, boundary registers

A.are used for temporary program variable storage

B.are only necessary with fixed partitions

C.track page boundaries

# D.track the beginning and ending of programs

E.None of the above

#### 89. CPU can access which type of memory directly?

a. random-access memory

b. magnetic disk

c. magnetic tape

d.

None

# 90. External fragmentation exists when?

- a) enough total memory exists to satisfy a request but it is not contiguous
- b) the total memory is insufficient to satisfy a request
- c) a request cannot be satisfied even when the total memory is free
- d) none of the mentioned

| 91. The CPU sends the | of each data or instruction used in the process to |
|-----------------------|----------------------------------------------------|
| the MMU.              |                                                    |

a)Physical address

b)logical address

c)effective address d)None

92. The MMU uses the memory allocation information stored in the table to compute the corresponding \_\_\_\_\_

a)Physical address

b)logical address

c)effective address d)None

#### 93. Memory fragmentation can be defined as

a)The existence of usable area in the memory of computer system

#### b)The existence of unusable area in the memory of computer system

- c)The existence of unreachable area in the memory of computer system
- d)None of the above

## 94. External fragmentation occurs when a

a)memory area remain unused because it is too large to be allocated

b)memory area remain unused because it is too small to be allocated

- c)More memory is allocated than requested by the process
- d)less memory is allocated than requested by the process
- 95. Internal fragmentation occurs when a
  - a)memory area remain unused because it is too large to be allocated
  - b)memory area remain unused because it is too small to be allocated
  - c)More memory is allocated than requested by the process
  - d)less memory is allocated than requested by the process
- 96. Memory fragmentation results in Better Utilization of memory. T/F
- 97. Logical Address space can be larger than physical address space. T/F
- 98. The run-time mapping from virtual to physical addresses is done by a hardware device called

a.Process Management Unit

b.CPU Management

Unit

c. Memory Management Unit

d.Event Management

Unit

- 99. The total transfer time is \_\_\_\_\_\_ to the amount of memory swapped
  - a. directly proportional

b.indirectly proportional

c.equal

d.None of the above

