Random sampling

- It is impractical to count every individual, e.g. dandelions in a field or limpets on a rocky shore so a quadrat can be used for random sampling of small areas.
- It is assumed that the area in the quadrat is representative of the whole area.
- The quadrat position can be determined using random coordinates generated by a computer.
- The species under the quadrat are identified, and the abundance measured in a number of ways:
 - O Density of a species count the number of individuals in all the quadrats then calculate the mean number per unit area, e.g. 10 / m².
 - o **Frequency of occurrence** if a species occurs in 10 out of 20 quadrats, the frequency of occurrence is 50%.
 - o Percentage cover estimate the quadrat area covered by a species.
 - o ACFOR & DAFOR scales:

	Limpets		% cover
Abundant	5 or more / 0.01 m ²	Dominant	76 – 100
Common	$1 - 4 / 0.01 \text{ m}^2$	Abundant	51 – 75
Frequent	$5 - 9 / m^2$	Frequent	26 – 50
Occasional	$1-4/m^2$	Occasional	6-25
Rare	Fewer than 1 / m ²	Rare	1 - 5

• Use the quadrat in many random locations in the area, and calculate the mean.

A grid made by dividing a one-metre quadrat into 100 squares. The stippled areas represent patches of grass. Grids can be made any size to suit the particular habitat being studied.