Metody probabilistyczne

13. Elementy statystki matematycznej II

Wojciech Kotłowski

Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/

16.01.2018

Parametryczna rodzina rozkładów

Założymy teraz, że znany jest typ rozkładu cechy X w populacji, ale nie są znane jego parametry.

Parametryczna rodzina rozkładów

Założymy teraz, że znany jest typ rozkładu cechy X w populacji, ale nie są znane jego parametry.

Przykłady:

- X ~ B(p), ale nie znamy wartości parametru p
 (jak w wyborach z dwoma kandydatami)
- X ~ Exp(λ), ale nie znamy wartości λ
 (np. czas oczekiwania na zdarzenie)
- $X \sim N(\mu, \sigma^2)$, ale nie znamy wartości μ i σ^2 (np. rozkład wzrostu w populacji)

Mamy więc rodzinę rozkładów $\{P_{\theta} \colon \theta \in \Theta\}$ różniących się tylko wartością parametru θ , gdzie Θ jest zbiorem możliwych wartości parametru.

Niech cecha X ma rozkład P_{θ} należący do parametrycznej rodziny rozkładów.

Załóżmy, że w próbie zaobserwowaliśmy dane $\mathbf{x} = (x_1, x_2, \dots, x_n)$.

Niech cecha X ma rozkład P_{θ} należący do parametrycznej rodziny rozkładów.

Załóżmy, że w próbie zaobserwowaliśmy dane $\mathbf{x} = (x_1, x_2, \dots, x_n)$.

Funkcją wiar**o**godności $L(x; \theta)$ nazywamy:

 Dla dyskretnej zmiennej X: łączne prawdopodobieństwo zaobserwowanych danych x:

$$L(\mathbf{x};\theta) = P_{\theta}(\mathbf{X} = \mathbf{x}) = p_{\theta}(x_1)p_{\theta}(x_2) \cdot \ldots \cdot p_{\theta}(x_n),$$

gdzie używamy skrótowo $p_{\theta}(x_i) = P_{\theta}(X_i = x_i)$

Niech cecha X ma rozkład P_{θ} należący do parametrycznej rodziny rozkładów.

Załóżmy, że w próbie zaobserwowaliśmy dane $\mathbf{x} = (x_1, x_2, \dots, x_n)$.

Funkcją wiar**o**godności $L(x; \theta)$ nazywamy:

 Dla dyskretnej zmiennej X: łączne prawdopodobieństwo zaobserwowanych danych x:

$$L(\mathbf{x};\theta) = P_{\theta}(\mathbf{X} = \mathbf{x}) = p_{\theta}(x_1)p_{\theta}(x_2) \cdot \ldots \cdot p_{\theta}(x_n),$$

gdzie używamy skrótowo $p_{\theta}(x_i) = P_{\theta}(X_i = x_i)$

 Dla ciągłej zmiennej losowej X: łączną gęstość prawdopodobieństwa zaobserwowanych danych x:

$$L(\mathbf{x};\theta) = f_{\mathbf{X};\theta}(\mathbf{x}) = f_{\theta}(x_1)f_{\theta}(x_2) \cdot \ldots \cdot f_{\theta}(x_n)$$

Niech cecha X ma rozkład P_{θ} należący do parametrycznej rodziny rozkładów.

Załóżmy, że w próbie zaobserwowaliśmy dane $\mathbf{x} = (x_1, x_2, \dots, x_n)$.

Funkcją wiar**o**godności $L(x; \theta)$ nazywamy:

 Dla dyskretnej zmiennej X: łączne prawdopodobieństwo zaobserwowanych danych x:

$$L(\mathbf{x};\theta) = P_{\theta}(\mathbf{X} = \mathbf{x}) = p_{\theta}(x_1)p_{\theta}(x_2) \cdot \ldots \cdot p_{\theta}(x_n),$$

gdzie używamy skrótowo $p_{\theta}(x_i) = P_{\theta}(X_i = x_i)$

 Dla ciągłej zmiennej losowej X: łączną gęstość prawdopodobieństwa zaobserwowanych danych x:

$$L(\mathbf{x};\theta) = f_{\mathbf{\chi};\theta}(\mathbf{x}) = f_{\theta}(x_1)f_{\theta}(x_2)\cdot\ldots\cdot f_{\theta}(x_n)$$

Uwaga: funkcja wiarogodności jest funkcją danych i parametru θ

Estymacja metodą największej wiarogodności

Estymatorem największej wiarogodności (NW) parametru θ nazywamy estymator równy parametrowi, który maksymalizuje funkcję wiarogodności:

$$\widehat{\theta}(\mathbf{x}) = \underset{\theta}{\operatorname{argmax}} L(\mathbf{x}; \theta)$$

Estymator NW szacuje nieznany parametr poprzez wybór wartości parametru, przy którym zaobserwowane dane są najbardziej prawdopodobne!

Estymacja metodą największej wiarogodności

Estymatorem największej wiarogodności (NW) parametru θ nazywamy estymator równy parametrowi, który maksymalizuje funkcję wiarogodności:

$$\widehat{\theta}(\mathbf{x}) = \underset{\theta}{\operatorname{argmax}} L(\mathbf{x}; \theta)$$

Estymator NW szacuje nieznany parametr poprzez wybór wartości parametru, przy którym zaobserwowane dane są najbardziej prawdopodobne!

Uwaga: zwykle znacznie wygodniejsze bywa działanie na ujemnym logarytmie wiarogodności – $\ln L(x;\theta)$. Ponieważ L ma maksimum wtedy i tylko wtedy gdy – $\ln L$ ma minimum, możemy alternatywnie zdefiniować:

$$\widehat{\theta}(\mathbf{x}) = \underset{\theta}{\operatorname{argmin}} - \ln L(\mathbf{x}; \theta)$$

- $X \sim N(\mu, \sigma^2)$ i chcemy estymować nieznaną wartość oczekiwaną μ .
- Funkcja wiarogodności:

$$L(\mathbf{x};\mu) = \prod_{i=1}^{n} f_{\mu}(x_i)$$

- $X \sim N(\mu, \sigma^2)$ i chcemy estymować nieznaną wartość oczekiwaną μ .
- Funkcja wiarogodności:

$$L(\mathbf{x}; \mu) = \prod_{i=1}^{n} f_{\mu}(x_{i}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}}$$

- $X \sim N(\mu, \sigma^2)$ i chcemy estymować nieznaną wartość oczekiwaną μ .
- Funkcja wiarogodności:

$$L(\mathbf{x}; \mu) = \prod_{i=1}^{n} f_{\mu}(x_{i}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}}$$
$$-\ln L(\mathbf{x}; \mu) = -n\ln\left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right) + \sum_{i=1}^{n} \frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}$$

- $X \sim N(\mu, \sigma^2)$ i chcemy estymować nieznaną wartość oczekiwaną μ .
- Funkcja wiarogodności:

$$L(\mathbf{x}; \mu) = \prod_{i=1}^{n} f_{\mu}(x_{i}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}}$$
$$-\ln L(\mathbf{x}; \mu) = -n\ln\left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right) + \sum_{i=1}^{n} \frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}$$

• Aby znaleźć minimum funkcji — In $L(x; \mu)$ liczymy pochodną po μ i przyrównujemy ją do zera:

$$\frac{\partial}{\partial \mu} - \ln L(\mathbf{x}; \mu) = \sum_{i=1}^{n} \frac{\mu - x_i}{\sigma^2}$$

- $X \sim N(\mu, \sigma^2)$ i chcemy estymować nieznaną wartość oczekiwaną μ .
- Funkcja wiarogodności:

$$L(\mathbf{x}; \mu) = \prod_{i=1}^{n} f_{\mu}(x_{i}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}}$$
$$-\ln L(\mathbf{x}; \mu) = -n\ln\left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right) + \sum_{i=1}^{n} \frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}$$

• Aby znaleźć minimum funkcji — In $L(x; \mu)$ liczymy pochodną po μ i przyrównujemy ją do zera:

$$\frac{\partial}{\partial \mu} - \ln L(\mathbf{x}; \mu) = \sum_{i=1}^{n} \frac{\mu - x_i}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (\mu - x_i)$$

- $X \sim N(\mu, \sigma^2)$ i chcemy estymować nieznaną wartość oczekiwaną μ .
- Funkcja wiarogodności:

$$L(\mathbf{x}; \mu) = \prod_{i=1}^{n} f_{\mu}(x_{i}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}}$$
$$-\ln L(\mathbf{x}; \mu) = -n\ln\left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right) + \sum_{i=1}^{n} \frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}$$

• Aby znaleźć minimum funkcji $-\ln L(x; \mu)$ liczymy pochodną po μ i przyrównujemy ją do zera:

$$\frac{\partial}{\partial \mu} - \ln L(\mathbf{x}; \mu) = \sum_{i=1}^{n} \frac{\mu - x_i}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (\mu - x_i)$$

$$\frac{1}{\sigma^2} \sum_{i=1}^{n} (\mu - x_i) = 0 \iff \mu = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}_n$$

- $X \sim N(\mu, \sigma^2)$ i chcemy estymować nieznaną wartość oczekiwaną μ .
- Funkcja wiarogodności:

$$L(\mathbf{x}; \mu) = \prod_{i=1}^{n} f_{\mu}(x_{i}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}}$$
$$-\ln L(\mathbf{x}; \mu) = -n\ln\left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right) + \sum_{i=1}^{n} \frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}$$

• Aby znaleźć minimum funkcji — In $L(x; \mu)$ liczymy pochodną po μ i przyrównujemy ją do zera:

$$\frac{\partial}{\partial \mu} - \ln L(\mathbf{x}; \mu) = \sum_{i=1}^{n} \frac{\mu - x_i}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (\mu - x_i)$$

$$\frac{1}{\sigma^2} \sum_{i=1}^{n} (\mu - x_i) = 0 \iff \mu = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}_n$$

• Wniosek: estymatorem NW parametru μ w rozkładzie normalnym jest średnia arytmetyczna z próby $\widehat{\mu} = \overline{X}_n$.

- $X \sim \text{Exp}(\lambda)$ i chcemy estymować nieznany parametr λ .
- Funkcja wiarogodności:

$$L(x;\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i}$$

- $X \sim \text{Exp}(\lambda)$ i chcemy estymować nieznany parametr λ .
- Funkcja wiarogodności:

$$L(\mathbf{x};\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda(x_1 + \dots + x_n)}$$

- $X \sim \text{Exp}(\lambda)$ i chcemy estymować nieznany parametr λ .
- Funkcja wiarogodności:

$$L(\mathbf{x};\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda(x_1 + \dots + x_n)} = \lambda^n e^{-n\lambda \overline{x}_n}$$

- $X \sim \text{Exp}(\lambda)$ i chcemy estymować nieznany parametr λ .
- Funkcja wiarogodności:

$$L(\mathbf{x}; \lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda(x_1 + \dots + x_n)} = \lambda^n e^{-n\lambda \overline{x}_n}$$
$$-\ln L(\mathbf{x}; \lambda) = -n \ln \lambda + n\lambda \overline{x}_n$$

- $X \sim \text{Exp}(\lambda)$ i chcemy estymować nieznany parametr λ .
- Funkcja wiarogodności:

$$L(\mathbf{x};\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda(x_1 + \dots + x_n)} = \lambda^n e^{-n\lambda \overline{x}_n}$$
$$-\ln L(\mathbf{x};\lambda) = -n \ln \lambda + n\lambda \overline{x}_n$$

• Przyrównanie pochodnej do zera:

$$\frac{\partial}{\partial \lambda} - \ln L(\mathbf{x}; \lambda) = -\frac{n}{\lambda} + n\overline{\mathbf{x}}_n$$

- $X \sim \text{Exp}(\lambda)$ i chcemy estymować nieznany parametr λ .
- Funkcja wiarogodności:

$$L(\mathbf{x}; \lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda(x_1 + \dots + x_n)} = \lambda^n e^{-n\lambda \overline{x}_n}$$
$$-\ln L(\mathbf{x}; \lambda) = -n \ln \lambda + n\lambda \overline{x}_n$$

• Przyrównanie pochodnej do zera:

$$\frac{\partial}{\partial \lambda} - \ln L(\mathbf{x}; \lambda) = -\frac{n}{\lambda} + n\overline{x}_n$$

$$\frac{\partial}{\partial \lambda} - \ln L(\mathbf{x}; \lambda) = 0 \iff \lambda = \frac{1}{\overline{x}_n}$$

- $X \sim \text{Exp}(\lambda)$ i chcemy estymować nieznany parametr λ .
- Funkcja wiarogodności:

$$L(\mathbf{x}; \lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda(x_1 + \dots + x_n)} = \lambda^n e^{-n\lambda \overline{x}_n}$$
$$-\ln L(\mathbf{x}; \lambda) = -n \ln \lambda + n\lambda \overline{x}_n$$

• Przyrównanie pochodnej do zera:

$$\frac{\partial}{\partial \lambda} - \ln L(\mathbf{x}; \lambda) = -\frac{n}{\lambda} + n\overline{x}_n$$

$$\frac{\partial}{\partial \lambda} - \ln L(\mathbf{x}; \lambda) = 0 \iff \lambda = \frac{1}{\overline{x}_n}$$

• Wniosek: estymator NW parametru λ w rozkładzie wykładniczym:

$$\hat{\lambda} = \frac{1}{\overline{X}_n}$$

- $X \sim B(p)$ i chcemy estymować nieznany parametr p.
- Załóżmy że wśród n obserwacji jest k jedynek i n k zer

- $X \sim B(p)$ i chcemy estymować nieznany parametr p.
- Załóżmy że wśród n obserwacji jest k jedynek i n-k zer

$$L(\mathbf{x};p) = \prod_{i=1}^{n} p(x_i)$$

- $X \sim B(p)$ i chcemy estymować nieznany parametr p.
- Załóżmy że wśród n obserwacji jest k jedynek i n k zer

$$L(x; p) = \prod_{i=1}^{n} p(x_i) = p(1)^k p(0)^{n-k}$$

- $X \sim B(p)$ i chcemy estymować nieznany parametr p.
- Załóżmy że wśród n obserwacji jest k jedynek i n k zer

$$L(x; p) = \prod_{i=1}^{n} p(x_i) = p(1)^k p(0)^{n-k} = p^k (1-p)^{n-k}$$

- $X \sim B(p)$ i chcemy estymować nieznany parametr p.
- Załóżmy że wśród n obserwacji jest k jedynek i n k zer

$$L(x; p) = \prod_{i=1}^{n} p(x_i) = p(1)^k p(0)^{n-k} = p^k (1-p)^{n-k}$$
$$-\ln L(x; p) = -k \ln p - (n-k) \ln(1-p)$$

- $X \sim B(p)$ i chcemy estymować nieznany parametr p.
- Załóżmy że wśród n obserwacji jest k jedynek i n k zer

$$L(x; p) = \prod_{i=1}^{n} p(x_i) = p(1)^k p(0)^{n-k} = p^k (1-p)^{n-k}$$
$$-\ln L(x; p) = -k \ln p - (n-k) \ln(1-p)$$

Przyrównanie pochodnej do zera:

$$\frac{\partial}{\partial p} - \ln L(x; p) = -\frac{k}{p} + \frac{n-k}{1-p}$$

- $X \sim B(p)$ i chcemy estymować nieznany parametr p.
- Załóżmy że wśród n obserwacji jest k jedynek i n-k zer

$$L(x; p) = \prod_{i=1}^{n} p(x_i) = p(1)^k p(0)^{n-k} = p^k (1-p)^{n-k}$$
$$-\ln L(x; p) = -k \ln p - (n-k) \ln(1-p)$$

Przyrównanie pochodnej do zera:

$$\frac{\partial}{\partial p} - \ln L(x; p) = -\frac{k}{p} + \frac{n - k}{1 - p}$$

$$\frac{\partial}{\partial p} - \ln L(x; p) = 0 \iff \frac{k}{p} = \frac{n - k}{1 - p}$$

- $X \sim B(p)$ i chcemy estymować nieznany parametr p.
- Załóżmy że wśród n obserwacji jest k jedynek i n k zer

$$L(x; p) = \prod_{i=1}^{n} p(x_i) = p(1)^k p(0)^{n-k} = p^k (1-p)^{n-k}$$
$$-\ln L(x; p) = -k \ln p - (n-k) \ln(1-p)$$

Przyrównanie pochodnej do zera:

$$\frac{\partial}{\partial p} - \ln L(x; p) = -\frac{k}{p} + \frac{n - k}{1 - p}$$

$$\frac{\partial}{\partial p} - \ln L(x; p) = 0 \iff \frac{k}{p} = \frac{n - k}{1 - p} \iff p = \frac{k}{n}$$

- $X \sim B(p)$ i chcemy estymować nieznany parametr p.
- Załóżmy że wśród n obserwacji jest k jedynek i n k zer

$$L(x; p) = \prod_{i=1}^{n} p(x_i) = p(1)^k p(0)^{n-k} = p^k (1-p)^{n-k}$$
$$-\ln L(x; p) = -k \ln p - (n-k) \ln(1-p)$$

• Przyrównanie pochodnej do zera:

$$\frac{\partial}{\partial p} - \ln L(x; p) = -\frac{k}{p} + \frac{n - k}{1 - p}$$

$$\frac{\partial}{\partial p} - \ln L(x; p) = 0 \iff \frac{k}{p} = \frac{n - k}{1 - p} \iff p = \frac{k}{n}$$

 Wniosek: estymator NW parametru p w rozkładzie dwupunktowym jest częstość empiryczna

$$\widehat{p} = \frac{|\{i \colon X_i = 1\}|}{n}$$

- $X \sim B(p)$ i chcemy estymować nieznany parametr p.
- Załóżmy że wśród n obserwacji jest k jedynek i n k zer

$$L(x; p) = \prod_{i=1}^{n} p(x_i) = p(1)^k p(0)^{n-k} = p^k (1-p)^{n-k}$$
$$-\ln L(x; p) = -k \ln p - (n-k) \ln(1-p)$$

• Przyrównanie pochodnej do zera:

$$\frac{\partial}{\partial p} - \ln L(x; p) = -\frac{k}{p} + \frac{n - k}{1 - p}$$

$$\frac{\partial}{\partial p} - \ln L(x; p) = 0 \iff \frac{k}{p} = \frac{n - k}{1 - p} \iff p = \frac{k}{n}$$

 Wniosek: estymator NW parametru p w rozkładzie dwupunktowym jest częstość empiryczna

$$\widehat{p} = \frac{|\{i \colon X_i = 1\}|}{n} = \overline{X}_n$$

- $X \sim N(\mu, \sigma^2)$ i chcemy estymować zarówno μ jak i σ^2 .
- Funkcję wiarogodności policzyliśmy już wcześniej:

$$-\ln L(\mathbf{x}; \mu, \sigma^2) = -n \ln \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) + \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}$$

- $X \sim N(\mu, \sigma^2)$ i chcemy estymować zarówno μ jak i σ^2 .
- Funkcję wiarogodności policzyliśmy już wcześniej:

$$-\ln L(\mathbf{x}; \mu, \sigma^{2}) = -n \ln \left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right) + \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}$$
$$= \frac{1}{2} n \ln \sigma^{2} + n \ln \sqrt{2\pi} + \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}$$

- $X \sim N(\mu, \sigma^2)$ i chcemy estymować zarówno μ jak i σ^2 .
- Funkcję wiarogodności policzyliśmy już wcześniej:

$$-\ln L(\mathbf{x}; \mu, \sigma^{2}) = -n \ln \left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right) + \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}$$
$$= \frac{1}{2} n \ln \sigma^{2} + n \ln \sqrt{2\pi} + \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}$$

• Aby znaleźć minimum funkcji – In $L(x; \mu, \sigma^2)$ przyrównujemy pochodne po μ i σ^2 do zera.

Przykład: rozkład normalny

- $X \sim N(\mu, \sigma^2)$ i chcemy estymować zarówno μ jak i σ^2 .
- Funkcję wiarogodności policzyliśmy już wcześniej:

$$-\ln L(\mathbf{x}; \mu, \sigma^2) = -n \ln \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) + \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}$$
$$= \frac{1}{2} n \ln \sigma^2 + n \ln \sqrt{2\pi} + \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}$$

• Aby znaleźć minimum funkcji – In $L(x; \mu, \sigma^2)$ przyrównujemy pochodne po μ i σ^2 do zera.

Pochodną po μ policzyliśmy już wcześniej:

$$\frac{\partial}{\partial \mu} - \ln L(\mathbf{x}; \mu, \sigma^2) = 0 \quad \iff \quad \mu = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}_n$$

Przykład: rozkład normalny

- $X \sim N(\mu, \sigma^2)$ i chcemy estymować zarówno μ jak i σ^2 .
- Funkcję wiarogodności policzyliśmy już wcześniej:

$$-\ln L(\mathbf{x}; \mu, \sigma^{2}) = -n \ln \left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right) + \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}$$
$$= \frac{1}{2} n \ln \sigma^{2} + n \ln \sqrt{2\pi} + \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}$$

• Aby znaleźć minimum funkcji – In $L(x; \mu, \sigma^2)$ przyrównujemy pochodne po μ i σ^2 do zera.

Pochodną po μ policzyliśmy już wcześniej:

$$\frac{\partial}{\partial \mu} - \ln L(\mathbf{x}; \mu, \sigma^2) = 0 \quad \iff \quad \mu = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}_n$$

Pozostaje nam policzyć pochodną po σ^2 .

Przykład: rozkład normalny – c.d.

$$-\ln L(x; \mu, \sigma^2) = \frac{1}{2} n \ln \sigma^2 + n \ln \sqrt{2\pi} + \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2}$$

Przykład: rozkład normalny – c.d.

$$-\ln L(\mathbf{x}; \mu, \sigma^{2}) = \frac{1}{2} n \ln \sigma^{2} + n \ln \sqrt{2\pi} + \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}$$
$$\frac{\partial}{\partial \sigma^{2}} - \ln L(\mathbf{x}; \mu, \sigma^{2}) = \frac{1}{2} \frac{n}{\sigma^{2}} - \frac{1}{2\sigma^{4}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

Przykład: rozkład normalny - c.d.

$$-\ln L(\mathbf{x}; \mu, \sigma^{2}) = \frac{1}{2} n \ln \sigma^{2} + n \ln \sqrt{2\pi} + \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}$$
$$\frac{\partial}{\partial \sigma^{2}} - \ln L(\mathbf{x}; \mu, \sigma^{2}) = \frac{1}{2} \frac{n}{\sigma^{2}} - \frac{1}{2\sigma^{4}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

Przyrównując pochodną do zera dostajemy:

$$\frac{1}{2}\frac{n}{\sigma^2} = \frac{1}{2\sigma^4}\sum_{i=1}^n (x_i - \mu)^2$$

Przykład: rozkład normalny – c.d.

$$-\ln L(\mathbf{x}; \mu, \sigma^{2}) = \frac{1}{2} n \ln \sigma^{2} + n \ln \sqrt{2\pi} + \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}$$
$$\frac{\partial}{\partial \sigma^{2}} - \ln L(\mathbf{x}; \mu, \sigma^{2}) = \frac{1}{2} \frac{n}{\sigma^{2}} - \frac{1}{2\sigma^{4}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

Przyrównując pochodną do zera dostajemy:

$$\frac{1}{2}\frac{n}{\sigma^2} = \frac{1}{2\sigma^4}\sum_{i=1}^n (x_i - \mu)^2 \iff \sigma^2 = \frac{1}{n}\sum_{i=1}^n (x_i - \mu)^2$$

Przykład: rozkład normalny – c.d.

$$-\ln L(\mathbf{x}; \mu, \sigma^{2}) = \frac{1}{2} n \ln \sigma^{2} + n \ln \sqrt{2\pi} + \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}$$
$$\frac{\partial}{\partial \sigma^{2}} - \ln L(\mathbf{x}; \mu, \sigma^{2}) = \frac{1}{2} \frac{n}{\sigma^{2}} - \frac{1}{2\sigma^{4}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

Przyrównując pochodną do zera dostajemy:

$$\frac{1}{2}\frac{n}{\sigma^2} = \frac{1}{2\sigma^4}\sum_{i=1}^n (x_i - \mu)^2 \iff \sigma^2 = \frac{1}{n}\sum_{i=1}^n (x_i - \mu)^2$$

Wniosek: estymatory NW parametrów μ i σ^2 w rozkładzie normalnym:

$$\widehat{\mu} = \overline{X}_n, \qquad \widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

Estymator wariancji jest obciążony

Zadanie

Zadanie 1

Wyznacz estymator największej wiarogodności parametru λ dla rozkład Poissona

Własności estymatora największej wiarogodności

Estymatory największej wiarogodności mogą być czasem kłopotliwe do wyznaczenia (wymagają rozwiązania problemu optymalizacji), mają jednak pożądane własności asymptotyczne (tzn. dla $n \to \infty$):

- Zgodność
- Asymptotyczna nieobciążoność
- Asymptotyczna efektywność

Estymacja przedziałowa

Dotychczas rozważaliśmy tzw. estymatory punktowe, które szacują wartość parametru θ za pomocą jednej liczby $\widehat{\theta}$.

Estymacja przedziałowa

Dotychczas rozważaliśmy tzw. estymatory punktowe, które szacują wartość parametru θ za pomocą jednej liczby $\widehat{\theta}$.

Często chcemy mieć nie tylko oszacowanie parametru θ , ale również przedział, w którym (z dużym prawdopodobieństwem) θ się znajdzie:

$$[\widehat{\theta}_L, \ \widehat{\theta}_P]$$

Taki przedział nazywamy przedziałem ufności, a zadanie jego wyznaczenia nazywamy estymacją przedziałową.

Estymacja przedziałowa

Dotychczas rozważaliśmy tzw. estymatory punktowe, które szacują wartość parametru θ za pomocą jednej liczby $\widehat{\theta}$.

Często chcemy mieć nie tylko oszacowanie parametru θ , ale również przedział, w którym (z dużym prawdopodobieństwem) θ się znajdzie:

$$[\widehat{\theta}_L, \ \widehat{\theta}_P]$$

Taki przedział nazywamy przedziałem ufności, a zadanie jego wyznaczenia nazywamy estymacją przedziałową.

Zaletą przedziału ufności jest wskazanie stopnia dokładności oszacowania parametru.

$$P\left(\widehat{\theta}_L \leqslant \theta \leqslant \widehat{\theta}_P\right) = 1 - \alpha$$

Przedziałem ufności dla parametru θ na poziomie ufności $1-\alpha$ nazywamy przedział $[\widehat{\theta}_L, \widehat{\theta}_P]$ taki, że $\widehat{\theta}_L$ i $\widehat{\theta}_P$ są statystykami wyznaczonymi z próby, oraz:

$$P\left(\widehat{\theta}_L \leqslant \theta \leqslant \widehat{\theta}_P\right) = 1 - \alpha$$

• Z prawdopodobieństwem $1-\alpha$ prawdziwa wartość parametru znajduje się w przedziale

$$P\left(\widehat{\theta}_L \leqslant \theta \leqslant \widehat{\theta}_P\right) = 1 - \alpha$$

- Z prawdopodobieństwem $1-\alpha$ prawdziwa wartość parametru znajduje się w przedziale
- Uwaga: to przedział jest losowy, a nie wartość parametru!

$$P\left(\widehat{\theta}_L \leqslant \theta \leqslant \widehat{\theta}_P\right) = 1 - \alpha$$

- Z prawdopodobieństwem $1-\alpha$ prawdziwa wartość parametru znajduje się w przedziale
- Uwaga: to przedział jest losowy, a nie wartość parametru!
- ullet Czasem lpha (zamiast 1-lpha) nazywa się poziomem ufności

$$P\left(\widehat{\theta}_L \leqslant \theta \leqslant \widehat{\theta}_P\right) = 1 - \alpha$$

- Z prawdopodobieństwem $1-\alpha$ prawdziwa wartość parametru znajduje się w przedziale
- Uwaga: to przedział jest losowy, a nie wartość parametru!
- ullet Czasem lpha (zamiast 1-lpha) nazywa się poziomem ufności
- Czasem używam się przedziału otwartego $(\widehat{ heta}_L,\widehat{ heta}_P)$

$$P\left(\widehat{\theta}_L \leqslant \theta \leqslant \widehat{\theta}_P\right) = 1 - \alpha$$

- Z prawdopodobieństwem $1-\alpha$ prawdziwa wartość parametru znajduje się w przedziale
- Uwaga: to przedział jest losowy, a nie wartość parametru!
- ullet Czasem lpha (zamiast 1-lpha) nazywa się poziomem ufności
- Czasem używam się przedziału otwartego $(\widehat{\theta}_L, \widehat{\theta}_P)$
- Przykład: W problemie szacowania poparcia kandydata A, estymacja przedziałowa dała przedział ufności na poziomie 95% równy [0.58, 0.62], tzn. z prawdopodobieństwem 95% prawdziwy parametr p znajduje się między 0.58 a 0.62.

Metody wyznaczania przedziałów ufności

Zwykle rozpinamy przedział symetrycznie wokół pewnego estymatora punktowego $\widehat{\theta}$:

$$[\widehat{\theta} - \Delta, \ \widehat{\theta} + \Delta], \qquad \text{tzn.} \ \ \widehat{\theta}_L = \widehat{\theta} - \Delta, \quad \widehat{\theta}_P = \widehat{\theta} + \Delta$$

Rozpiętość przedziału Δ wyznaczana jest w oparciu o docelowy poziom ufności, tzn. rozwiązując równanie (ze względu na Δ):

$$1 - \alpha = P(\widehat{\theta} - \Delta \leqslant \theta \leqslant \widehat{\theta} + \Delta)$$

Metody wyznaczania przedziałów ufności

Zwykle rozpinamy przedział symetrycznie wokół pewnego estymatora punktowego $\widehat{\theta}$:

$$[\widehat{\theta} - \Delta, \ \widehat{\theta} + \Delta], \qquad ext{tzn.} \ \ \widehat{\theta}_L = \widehat{\theta} - \Delta, \quad \widehat{\theta}_P = \widehat{\theta} + \Delta$$

Rozpiętość przedziału Δ wyznaczana jest w oparciu o docelowy poziom ufności, tzn. rozwiązując równanie (ze względu na Δ):

$$1 - \alpha = P(\widehat{\theta} - \Delta \leq \theta \leq \widehat{\theta} + \Delta)$$
$$= P(-\Delta \leq \theta - \widehat{\theta} \leq \Delta)$$

Metody wyznaczania przedziałów ufności

Zwykle rozpinamy przedział symetrycznie wokół pewnego estymatora punktowego $\widehat{\theta}$:

$$[\widehat{\theta} - \Delta, \ \widehat{\theta} + \Delta], \qquad ext{tzn.} \ \ \widehat{\theta}_L = \widehat{\theta} - \Delta, \quad \widehat{\theta}_P = \widehat{\theta} + \Delta$$

Rozpiętość przedziału Δ wyznaczana jest w oparciu o docelowy poziom ufności, tzn. rozwiązując równanie (ze względu na Δ):

$$\begin{array}{rcl} 1 - \alpha & = & P\left(\widehat{\theta} - \Delta \leqslant \theta \leqslant \widehat{\theta} + \Delta\right) \\ & = & P\left(-\Delta \leqslant \theta - \widehat{\theta} \leqslant \Delta\right) \\ & = & P\left(-\Delta \leqslant \widehat{\theta} - \theta \leqslant \Delta\right) \end{array}$$

Niech $X \sim N(\mu, \sigma^2)$, gdzie σ^2 jest znana

Niech $X \sim N(\mu, \sigma^2)$, gdzie σ^2 jest znana

Konstruujemy estymator wartości oczekiwanej μ na podstawie próby X_1, \ldots, X_n :

$$\widehat{\mu} = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Niech $X \sim N(\mu, \sigma^2)$, gdzie σ^2 jest znana

Konstruujemy estymator wartości oczekiwanej μ na podstawie próby X_1,\ldots,X_n :

$$\widehat{\mu} = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Ponieważ \overline{X}_n jest kombinacją liniową niezależnych zmiennych o rozkładzie normalnym, \overline{X}_n ma rozkład normalny z parametrami:

$$E(\overline{X}_n) = \mu, \qquad D^2(\overline{X}_n) = \frac{\sigma^2}{n}, \qquad \text{czyli } \overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Niech $X \sim N(\mu, \sigma^2)$, gdzie σ^2 jest znana

Konstruujemy estymator wartości oczekiwanej μ na podstawie próby X_1,\ldots,X_n :

$$\widehat{\mu} = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Ponieważ \overline{X}_n jest kombinacją liniową niezależnych zmiennych o rozkładzie normalnym, \overline{X}_n ma rozkład normalny z parametrami:

$$E(\overline{X}_n) = \mu, \qquad D^2(\overline{X}_n) = \frac{\sigma^2}{n}, \qquad \text{czyli } \overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Konstruujemy następnie przedział ufności na poziomie ufności $1-\alpha$:

$$1 - \alpha = P\left(-\Delta \leqslant \overline{X}_n - \mu \leqslant \Delta\right)$$

Rozkład estymatora \overline{X}_n

Rozkład estymatora \overline{X}_n

Skoro
$$\overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
, to $Z = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

Skoro
$$\overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
, to $Z = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

$$1 - \alpha = P\left(-\Delta \leqslant \overline{X}_n - \mu \leqslant \Delta\right)$$

Skoro
$$\overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
, to $Z = \frac{X_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

$$\begin{array}{rcl} 1 - \alpha & = & P\left(-\Delta \leqslant \overline{X}_n - \mu \leqslant \Delta\right) \\ & = & P\left(-\frac{\Delta}{\sigma}\sqrt{n} \leqslant \frac{\overline{X}_n - \mu}{\sigma}\sqrt{n} \leqslant \frac{\Delta}{\sigma}\sqrt{n}\right) \end{array}$$

Skoro
$$\overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
, to $Z = \frac{X_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

$$1 - \alpha = P\left(-\Delta \leqslant \overline{X}_n - \mu \leqslant \Delta\right)$$

$$= P\left(-\frac{\Delta}{\sigma}\sqrt{n} \leqslant \frac{\overline{X}_n - \mu}{\sigma}\sqrt{n} \leqslant \frac{\Delta}{\sigma}\sqrt{n}\right)$$

$$= P\left(-\frac{\Delta}{\sigma}\sqrt{n} \leqslant Z \leqslant \frac{\Delta}{\sigma}\sqrt{n}\right)$$

Skoro
$$\overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
, to $Z = \frac{X_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

$$\begin{array}{rcl} 1-\alpha & = & P\left(-\Delta \leqslant \overline{X}_n - \mu \leqslant \Delta\right) \\ & = & P\left(-\frac{\Delta}{\sigma}\sqrt{n} \leqslant \frac{\overline{X}_n - \mu}{\sigma}\sqrt{n} \leqslant \frac{\Delta}{\sigma}\sqrt{n}\right) \\ & = & P\left(-\frac{\Delta}{\sigma}\sqrt{n} \leqslant Z \leqslant \frac{\Delta}{\sigma}\sqrt{n}\right) \\ & = & \Phi\left(\frac{\Delta}{\sigma}\sqrt{n}\right) - \Phi\left(-\frac{\Delta}{\sigma}\sqrt{n}\right) \end{array}$$

Skoro
$$\overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
, to $Z = \frac{X_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

$$1 - \alpha = P\left(-\Delta \leqslant \overline{X}_n - \mu \leqslant \Delta\right)$$

$$= P\left(-\frac{\Delta}{\sigma}\sqrt{n} \leqslant \frac{\overline{X}_n - \mu}{\sigma}\sqrt{n} \leqslant \frac{\Delta}{\sigma}\sqrt{n}\right)$$

$$= P\left(-\frac{\Delta}{\sigma}\sqrt{n} \leqslant Z \leqslant \frac{\Delta}{\sigma}\sqrt{n}\right)$$

$$= \Phi\left(\frac{\Delta}{\sigma}\sqrt{n}\right) - \Phi\left(-\frac{\Delta}{\sigma}\sqrt{n}\right)$$

$$= 2\Phi\left(\frac{\Delta}{\sigma}\sqrt{n}\right) - 1$$

$$\Phi(-x) = 1 - \Phi(x)$$

Skoro
$$\overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
, to $Z = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

$$1 - \alpha = 2\Phi\left(\frac{\Delta}{\sigma}\sqrt{n}\right) - 1$$

Skoro
$$\overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
, to $Z = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

$$1 - \alpha = 2\Phi\left(\frac{\Delta}{\sigma}\sqrt{n}\right) - 1$$

$$\Phi\left(\frac{\Delta}{\sigma}\sqrt{n}\right) = 1 - \frac{\alpha}{2}$$

Skoro
$$\overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
, to $Z = \frac{X_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

$$1 - \alpha = 2\Phi\left(\frac{\Delta}{\sigma}\sqrt{n}\right) - 1$$

$$\Phi\left(\frac{\Delta}{\sigma}\sqrt{n}\right) = 1 - \frac{\alpha}{2}$$

$$\frac{\Delta}{\sigma}\sqrt{n} = \Phi^{-1}\left(1 - \frac{\alpha}{2}\right)$$

$$\frac{z_{1-\alpha/2}}{z_{1-\alpha/2}}$$

Skoro
$$\overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
, to $Z = \frac{X_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

$$1 - \alpha = 2\Phi\left(\frac{\Delta}{\sigma}\sqrt{n}\right) - 1$$

$$\Phi\left(\frac{\Delta}{\sigma}\sqrt{n}\right) = 1 - \frac{\alpha}{2}$$

$$\frac{\Delta}{\sigma}\sqrt{n} = \Phi^{-1}\left(1 - \frac{\alpha}{2}\right)$$

$$\Delta = z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}$$

Skoro
$$\overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
, to $Z = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

$$1 - \alpha = 2\Phi\left(\frac{\Delta}{\sigma}\sqrt{n}\right) - 1$$

$$\Phi\left(\frac{\Delta}{\sigma}\sqrt{n}\right) = 1 - \frac{\alpha}{2}$$

$$\frac{\Delta}{\sigma}\sqrt{n} = \Phi^{-1}\left(1 - \frac{\alpha}{2}\right)$$

$$\Delta = z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}$$

Uwaga: $z_{1-\alpha/2}$ jest kwantylem rzędu $1-\frac{\alpha}{2}$ rozkładu normalnego standardowego

Kwantyl (uproszczona definicja!)

Rozważmy zmienną losową X ze ściśle rosnącą dystrybuantą. Kwantylem rzędu p zmiennej X nazywamy liczbę $x_p \in \mathbb{R}$ taką, że:

$$F_X(x_p) = P(X \leqslant x_p) = p,$$
 czyli $x_p = F_X^{-1}(p)$

Kwantyl x_p otrzymujemy poprzez wyznaczenia wartości dystrybuanty odwrotnej (tzw. funkcji kwantylowej) w p

Kwantyl z_p dla $Z \sim N(0,1)$ a tablica wartości $\Phi(z)$

	- 1			•	· /					
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.00	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.10	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5674	0.5714	0.5753
0.20	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.30	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.40	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.50	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.60	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.70	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.80	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.90	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.6315	0.8340	0.8365	0.8389
1.00	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.10	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.20	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.30	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.40	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.50	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.60	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.70	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.80	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.90	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.00	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.10	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.20	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.30	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.40	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.50	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.60	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.70	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.80	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.90	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.00	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.10	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.20	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.30	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.40	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Kwantyl z_p dla $Z \sim \mathit{N}(0,1)$ a tablica wartości $\Phi(z)$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.00	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.10		0.5438	0.5478	0.5517	0.5557	ſ	Drzy	kkada		rtości:
0.20			0.5871	0.5910	0.5948		FIZY	Kiauoi	ive vva	itosci.
0.30			0.6255	0.6293	0.6331					
0.40		0.6591	0.6628	0.6664	0.6700					
0.50	0.6915	0.6950	0.6985	0.7019	0.7054		p	7.	$\phi = \Phi$	$^{-1}(n)$
0.60	0.7257	0.7291	0.7324	0.7357	0.7389	1	Ρ	-) — т	(P)
0.70	0.7580	0.7611	0.7642	0.7673	0.7704					
0.80	0.7881	0.7910	0.7939	0.7967	0.7995		0.95		1.6	4
0.90	0.8159	0.8186	0.8212	0.8238	0.8264		0.07	_	1.0	_
1.00	0.8413	0.8438	0.8461	0.8485	0.8508		0.97	5	1.9	O
1.10	0.8643	0.8665	0.8686	0.8708	0.8729	1	0.99		2.3	2
1.20	0.8849	0.8869	0.8888	0.8907	0.8925		0.99		2.5	3
1.30	0.9032	0.9049	0.9066	0.9082	0.9099		0.99	5	2.5	2
1.40	0.9192	0.9207	0.9222	0.9236	0.9251		0.55	J	2.5	O
1.50	0.9332	0.9345	0.9357	0.9370	0.9382					
1.60	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.70	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.80	0.9641		0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.90	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.00	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.10	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.20	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.30	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.40	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.50	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.60	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.70	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.80	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.90	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.00	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.10	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.20	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.30	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.40	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
		•								

Kwantyl z_p dla $Z \sim N(0,1)$ a tablica wartości $\Phi(z)$

,	P			(, ,						\ /	
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09		
0.00	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359		
0.10	0.5398	0.5438	0.5478	0.5517	0.5557		Dravil	kada,		rtościi	,	1
0.20	0.5793	0.5832	0.5871	0.5910	0.5948		FIZY	Maduo	ve wa	rtości:		l
0.30	0.6179	0.6217	0.6255	0.6293	0.6331							
0.40	0.6554	0.6591	0.6628	0.6664	0.6700						-	
0.50	0.6915	0.6950	0.6985	0.7019	0.7054		p	7.	$\phi = 0$	$^{-1}(p)$		
0.60	0.7257	0.7291	0.7324	0.7357	0.7389		۲		, .	(P)	_	
0.70	0.7580	0.7611	0.7642	0.7673	0.7704		0.05		1.0	4		
0.80	0.7881	0.7910	0.7939	0.7967	0.7995		0.95		1.6	4		
0.90	0.8159	0.8186	0.8212	0.8238	0.8264		0.07	_	1 0	6		
1.00	0.8413	0.8438	0.8461	0.8485	0.8508		0.97	3	1.9	O		
1.10	0.8643	0.8665	0.8686	0.8708	0.8729		0.99		2.3	3		
1.20	0.8849	0.8869	0.8888	0.8907	0.8925		0.55		2.5	5		
1.30	0.9032	0.9049	0.9066	0.9082	0.9099		0.99	5	2.5	8		l
1.40	0.9192	0.9207	0.9222	0.9236	0.9251	l .	0.55			•		
1.50	0.9332	0.9345	0.9357	0.9370	0.9382							,
1.60	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545		
1.70	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633		
1.80	0.9641	0.9649	0.9656	0.9664	0.9		Drzyl	khaday		rtości:		
1.90	0.9713	0.9719	0.9726	0.9732	0.9		FIZY	Kiauov	ve vva	i tosci.		
2.00	0.9772	0.9778	0.9783	0.9788	0.9							
2.10	0.9821	0.9826	0.9830	0.9834	0.9							-
2.20	0.9861	0.9864	0.9868	0.9871	0.9	α	Z ₁	0/2	$= \Phi^{-}$	(1 - c)	$\chi/2$	
2.30	0.9893	0.9896	0.9898	0.9901	0.9		-1.	$-\alpha/2$		(-/ -/	_
2.40	0.9918	0.9920	0.9922	0.9925	0.9	0.1			1 (4		
2.50	0.9938	0.9940	0.9941	0.9943	0.9	0.1			1.64	+		
2.60	0.9953	0.9955	0.9956	0.9957	0.9	0.05	-		1.96	S.		
2.70	0.9965	0.9966	0.9967	0.9968	0.9	0.00	,		1.90	,		
2.80	0.9974	0.9975	0.9976	0.9977	0.9	0.02)		2.33	3		
2.90 3.00	0.9981	0.9982	0.9982	0.9983	0.9							
	0.9987	0.9987	0.9987	0.9988	0.9	0.01	L		2.58	3		
3.10 3.20	0.9990	0.9991	0.9991	0.9991 0.9994	0.9 0.9							
3.20	0.9995	0.9995	0.9994	0.9994	0.9996	0,9996	0.9996	0.9996	0.9996	0.9997		
3.30	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997		
3.40	0.9997	0.5997	0.9997	0.5997	0.5997	0.5997	0.5997	0.5997	0.3997	0.7798		

Próba o liczności n=16 pomiarów pewnej cechy o rozkładzie normalnym ze znaną wariancją $\sigma^2=16$ dała wartość statystyki $\overline{x}_n=2$. Wyznacz przedział ufności dla wartości oczekiwanej na poziomie ufności $1-\alpha$ dla $\alpha=0.05$.

Próba o liczności n=16 pomiarów pewnej cechy o rozkładzie normalnym ze znaną wariancją $\sigma^2=16$ dała wartość statystyki $\overline{x}_n=2$. Wyznacz przedział ufności dla wartości oczekiwanej na poziomie ufności $1-\alpha$ dla $\alpha=0.05$.

$$\left[\overline{x}_n - \Delta, \ \overline{x}_n + \Delta\right], \qquad ext{gdzie} \ \Delta = z_{1-lpha/2} rac{\sigma}{\sqrt{n}}$$

Próba o liczności n=16 pomiarów pewnej cechy o rozkładzie normalnym ze znaną wariancją $\sigma^2=16$ dała wartość statystyki $\overline{x}_n=2$. Wyznacz przedział ufności dla wartości oczekiwanej na poziomie ufności $1-\alpha$ dla $\alpha=0.05$.

$$\left[\overline{x}_n - \Delta, \ \overline{x}_n + \Delta\right], \qquad \text{gdzie} \ \Delta = z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$z_{1-\alpha/2} = z_{0.975} = \Phi^{-1}(0.975) = 1.96$$

Próba o liczności n=16 pomiarów pewnej cechy o rozkładzie normalnym ze znaną wariancją $\sigma^2=16$ dała wartość statystyki $\overline{x}_n=2$. Wyznacz przedział ufności dla wartości oczekiwanej na poziomie ufności $1-\alpha$ dla $\alpha=0.05$.

$$[\overline{x}_n - \Delta, \overline{x}_n + \Delta], \quad \text{gdzie } \Delta = z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$z_{1-\alpha/2} = z_{0.975} = \Phi^{-1}(0.975) = 1.96$$

$$\Delta = 1.96 \frac{4}{\sqrt{16}} = 1.96$$

Próba o liczności n=16 pomiarów pewnej cechy o rozkładzie normalnym ze znaną wariancją $\sigma^2=16$ dała wartość statystyki $\overline{x}_n=2$. Wyznacz przedział ufności dla wartości oczekiwanej na poziomie ufności $1-\alpha$ dla $\alpha=0.05$.

$$[\overline{x}_n - \Delta, \overline{x}_n + \Delta], \quad \text{gdzie } \Delta = z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$z_{1-\alpha/2} = z_{0.975} = \Phi^{-1}(0.975) = 1.96$$

$$\Delta = 1.96 \frac{4}{\sqrt{16}} = 1.96$$
 $[\overline{x}_n - \Delta, \overline{x}_n + \Delta] = [2 - 1.96, 2 + 1.96] = [0.04, 3.96]$

Niech $X \sim B(p)$. Znajdziemy przedział ufności dla parametru p.

Niech $X \sim B(p)$. Znajdziemy przedział ufności dla parametru p. Estymator parametru p na podstawie próby X_1, \ldots, X_n :

$$\widehat{p} = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i = \frac{\# \text{ sukcesów}}{n}$$

Niech $X \sim B(p)$. Znajdziemy przedział ufności dla parametru p. Estymator parametru p na podstawie próby X_1, \ldots, X_n :

$$\widehat{p} = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i = \frac{\# \text{ sukcesów}}{n}$$

$$E(\widehat{p}) = p, \qquad D^2(\widehat{p}) = \frac{D^2(X)}{n} = \frac{p(1-p)}{n},$$

Niech $X \sim B(p)$. Znajdziemy przedział ufności dla parametru p.

Estymator parametru p na podstawie próby X_1, \ldots, X_n :

$$\widehat{p} = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i = \frac{\# \text{ sukcesów}}{n}$$

$$E(\widehat{p}) = p,$$
 $D^2(\widehat{p}) = \frac{D^2(X)}{n} = \frac{p(1-p)}{n},$

Z Centralnego Twierdzenia Granicznego mamy:

$$\frac{\widehat{p} - E(\widehat{p})}{D(\widehat{p})} = \frac{\widehat{p} - p}{\sqrt{p(1-p)}} \sqrt{n} \stackrel{D}{\to} Z \sim N(0,1)$$

Niech $X \sim B(p)$. Znajdziemy przedział ufności dla parametru p.

Estymator parametru p na podstawie próby X_1, \ldots, X_n :

$$\widehat{p} = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i = \frac{\# \text{ sukcesów}}{n}$$

$$E(\hat{p}) = p,$$
 $D^{2}(\hat{p}) = \frac{D^{2}(X)}{n} = \frac{p(1-p)}{n},$

Z Centralnego Twierdzenia Granicznego mamy:

$$\frac{\widehat{p} - E(\widehat{p})}{D(\widehat{p})} = \frac{\widehat{p} - p}{\sqrt{p(1-p)}} \sqrt{n} \stackrel{D}{\to} Z \sim N(0,1)$$

Z kolei z Prawa Wielkich Liczb mamy $\widehat{p} \xrightarrow{P} p$, a tym samvm*:

$$\frac{\widehat{p}-p}{\sqrt{\widehat{p}(1-\widehat{p})}}\sqrt{n} \stackrel{D}{\to} Z \sim N(0,1)$$

Założymy, że n jest wystarczająco duże aby skorzystać z tego przybliżenia.

^{*}nietrywialne: jeśli $X_n \stackrel{D}{\to} X$ i $Y_n \stackrel{P}{\to} c$ to $X_n f(Y_n) \stackrel{D}{\to} X f(c)$ dla ciągłej f.

Konstruujemy przedział ufności na poziomie ufności $1-\alpha$:

$$1-\alpha \ = \ P\left(-\Delta \leqslant \widehat{p}-p \leqslant \Delta\right)$$

Konstruujemy przedział ufności na poziomie ufności $1-\alpha$:

$$1 - \alpha = P(-\Delta \leqslant \widehat{p} - p \leqslant \Delta)$$

$$= P\left(-\frac{\Delta\sqrt{n}}{\sqrt{\widehat{p}(1-\widehat{p})}} \leqslant \underbrace{\frac{\widehat{p} - p}{\sqrt{\widehat{p}(1-\widehat{p})}}\sqrt{n}}_{\simeq Z} \leqslant \frac{\Delta\sqrt{n}}{\sqrt{\widehat{p}(1-\widehat{p})}}\right)$$

Konstruujemy przedział ufności na poziomie ufności $1-\alpha$:

$$1 - \alpha = P\left(-\Delta \leqslant \widehat{p} - p \leqslant \Delta\right)$$

$$= P\left(-\frac{\Delta\sqrt{n}}{\sqrt{\widehat{p}(1-\widehat{p})}} \leqslant \underbrace{\frac{\widehat{p} - p}{\sqrt{\widehat{p}(1-\widehat{p})}}\sqrt{n}}_{\simeq Z} \leqslant \frac{\Delta\sqrt{n}}{\sqrt{\widehat{p}(1-\widehat{p})}}\right)$$

$$\simeq \Phi\left(\frac{\Delta\sqrt{n}}{\sqrt{\widehat{p}(1-\widehat{p})}}\right) - \Phi\left(-\frac{\Delta\sqrt{n}}{\sqrt{\widehat{p}(1-\widehat{p})}}\right) = 2\Phi\left(\frac{\Delta\sqrt{n}}{\sqrt{\widehat{p}(1-\widehat{p})}}\right) - 1$$

Konstruujemy przedział ufności na poziomie ufności $1-\alpha$:

$$\begin{array}{rcl} 1-\alpha & = & P\left(-\Delta \leqslant \widehat{p}-p \leqslant \Delta\right) \\ & = & P\left(-\frac{\Delta\sqrt{n}}{\sqrt{\widehat{p}(1-\widehat{p})}} \leqslant \underbrace{\frac{\widehat{p}-p}{\sqrt{\widehat{p}(1-\widehat{p})}}\sqrt{n}}_{\simeq Z} \leqslant \frac{\Delta\sqrt{n}}{\sqrt{\widehat{p}(1-\widehat{p})}}\right) \\ & \simeq & \Phi\left(\frac{\Delta\sqrt{n}}{\sqrt{\widehat{p}(1-\widehat{p})}}\right) - \Phi\left(-\frac{\Delta\sqrt{n}}{\sqrt{\widehat{p}(1-\widehat{p})}}\right) = 2\Phi\left(\frac{\Delta\sqrt{n}}{\sqrt{\widehat{p}(1-\widehat{p})}}\right) - 1 \end{array}$$

Rozwiązując równanie otrzymujemy:

$$\Delta = z_{1-\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}$$

Konstruujemy przedział ufności na poziomie ufności $1-\alpha$:

$$\begin{array}{rcl} 1-\alpha & = & P\left(-\Delta \leqslant \widehat{p}-p \leqslant \Delta\right) \\ & = & P\left(-\frac{\Delta\sqrt{n}}{\sqrt{\widehat{p}(1-\widehat{p})}} \leqslant \underbrace{\frac{\widehat{p}-p}{\sqrt{\widehat{p}(1-\widehat{p})}}\sqrt{n}}_{\simeq Z} \leqslant \frac{\Delta\sqrt{n}}{\sqrt{\widehat{p}(1-\widehat{p})}}\right) \\ & \simeq & \Phi\left(\frac{\Delta\sqrt{n}}{\sqrt{\widehat{p}(1-\widehat{p})}}\right) - \Phi\left(-\frac{\Delta\sqrt{n}}{\sqrt{\widehat{p}(1-\widehat{p})}}\right) = 2\Phi\left(\frac{\Delta\sqrt{n}}{\sqrt{\widehat{p}(1-\widehat{p})}}\right) - 1 \end{array}$$

Rozwiązując równanie otrzymujemy:

$$\Delta = z_{1-\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}$$

Zadanie 2

Rozwiąż powyższe zagadnienie krok po kroku

W celu oszacowania poparcia kandydata A w drugiej turze wyborów prezydenckich pobrano losowo próbę o liczności n=1000 osób, odnotowując czy dana osoba głosuje na kandydata A (X=1), czy na jego konkurenta B (X=0). Uzyskano 550 głosów za A i 450 głosów za B. Wyznacz przedział ufności dla poparcia kandydata A dla $\alpha=0.05$.

W celu oszacowania poparcia kandydata A w drugiej turze wyborów prezydenckich pobrano losowo próbę o liczności n=1000 osób, odnotowując czy dana osoba głosuje na kandydata A (X=1), czy na jego konkurenta B (X=0). Uzyskano 550 głosów za A i 450 głosów za B. Wyznacz przedział ufności dla poparcia kandydata A dla $\alpha=0.05$.

$$\hat{p} = \frac{550}{1000} = 0.55$$

W celu oszacowania poparcia kandydata A w drugiej turze wyborów prezydenckich pobrano losowo próbę o liczności n=1000 osób, odnotowując czy dana osoba głosuje na kandydata A (X=1), czy na jego konkurenta B (X=0). Uzyskano 550 głosów za A i 450 głosów za B. Wyznacz przedział ufności dla poparcia kandydata A dla $\alpha=0.05$.

$$\hat{p} = \frac{550}{1000} = 0.55$$
 $z_{1-\alpha/2} = z_{0.975} = \Phi^{-1}(0.975) = 1.96$

W celu oszacowania poparcia kandydata A w drugiej turze wyborów prezydenckich pobrano losowo próbę o liczności n=1000 osób, odnotowując czy dana osoba głosuje na kandydata A (X=1), czy na jego konkurenta B (X=0). Uzyskano 550 głosów za A i 450 głosów za B. Wyznacz przedział ufności dla poparcia kandydata A dla $\alpha=0.05$.

$$\hat{\rho} = \frac{550}{1000} = 0.55$$

$$z_{1-\alpha/2} = z_{0.975} = \Phi^{-1}(0.975) = 1.96$$

$$\Delta = z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 1.96 \sqrt{\frac{0.55 \cdot 0.45}{1000}} \simeq 0.031$$

W celu oszacowania poparcia kandydata A w drugiej turze wyborów prezydenckich pobrano losowo próbę o liczności n=1000 osób, odnotowując czy dana osoba głosuje na kandydata A (X=1), czy na jego konkurenta B (X=0). Uzyskano 550 głosów za A i 450 głosów za B. Wyznacz przedział ufności dla poparcia kandydata A dla $\alpha=0.05$.

$$\widehat{\rho} = \frac{550}{1000} = 0.55$$

$$z_{1-\alpha/2} = z_{0.975} = \Phi^{-1}(0.975) = 1.96$$

$$\Delta = z_{1-\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}} = 1.96 \sqrt{\frac{0.55 \cdot 0.45}{1000}} \simeq 0.031$$

$$[\widehat{p} - \Delta, \widehat{p} + \Delta] = [0.55 - 0.031, 0.55 + 0.031] = [0.519, 0.581]$$

Niech $X \sim N(\mu, \sigma^2)$, ale teraz nie znamy σ^2

Niech $X \sim N(\mu, \sigma^2)$, ale teraz nie znamy σ^2

Jak poprzednio, jako estymator wartości oczekiwanej μ wybieramy $\widehat{\mu} = \overline{X}_n$

Niech $X \sim N(\mu, \sigma^2)$, ale teraz nie znamy σ^2 Jak poprzednio, jako estymator wartości oczekiwanej μ wybieramy $\widehat{\mu} = \overline{X}_n$ Ponieważ nie znamy wariancji σ^2 , estymujemy ją z próby:

$$\hat{\sigma}_*^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

Niech $X \sim N(\mu, \sigma^2)$, ale teraz nie znamy σ^2

Jak poprzednio, jako estymator wartości oczekiwanej μ wybieramy $\widehat{\mu} = \overline{X}_n$ Ponieważ nie znamy wariancji σ^2 , estymujemy ją z próby:

$$\hat{\sigma}_*^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

Wprowadzamy nową zmienną:

$$T = \frac{\overline{X}_n - \mu}{\widehat{\sigma}_*} \sqrt{n}$$

Niech $X \sim N(\mu, \sigma^2)$, ale teraz nie znamy σ^2

Jak poprzednio, jako estymator wartości oczekiwanej μ wybieramy $\hat{\mu} = \overline{X}_n$ Ponieważ nie znamy wariancji σ^2 , estymujemy ją z próby:

$$\hat{\sigma}_*^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

Wprowadzamy nową zmienną:

$$T = \frac{\overline{X}_n - \mu}{\widehat{\sigma}_*} \sqrt{n}$$

Można pokazać, że zmienna T ma rozkład t-Studenta o n-1 stopniach swobody

Rozkład *t*-Studenta o *k* stopniach swobody

Rozkład *t*-Studenta o *k* stopniach swobody

Dla $k \to \infty$ rozkład t zbiega do rozkładu N(0,1)

$$1 - \alpha = P\left(-\Delta \leqslant \overline{X}_n - \mu \leqslant \Delta\right)$$

$$\begin{array}{rcl} 1 - \alpha & = & P \left(-\Delta \leqslant \overline{X}_n - \mu \leqslant \Delta \right) \\ \\ & = & P \left(-\frac{\Delta}{\widehat{\sigma}_*} \sqrt{n} \leqslant \frac{\overline{X}_n - \mu}{\widehat{\sigma}_*} \sqrt{n} \leqslant \frac{\Delta}{\widehat{\sigma}_*} \sqrt{n} \right) \end{array}$$

$$\begin{array}{rcl} 1 - \alpha & = & P \left(-\Delta \leqslant \overline{X}_n - \mu \leqslant \Delta \right) \\ \\ & = & P \left(-\frac{\Delta}{\widehat{\sigma}_*} \sqrt{n} \leqslant \frac{\overline{X}_n - \mu}{\widehat{\sigma}_*} \sqrt{n} \leqslant \frac{\Delta}{\widehat{\sigma}_*} \sqrt{n} \right) \\ \\ & = & P \left(-\frac{\Delta}{\widehat{\sigma}_*} \sqrt{n} \leqslant T \leqslant \frac{\Delta}{\widehat{\sigma}_*} \sqrt{n} \right) \end{array}$$

$$\begin{split} 1 - \alpha &= P\left(-\Delta \leqslant \overline{X}_n - \mu \leqslant \Delta\right) \\ &= P\left(-\frac{\Delta}{\widehat{\sigma}_*} \sqrt{n} \leqslant \frac{\overline{X}_n - \mu}{\widehat{\sigma}_*} \sqrt{n} \leqslant \frac{\Delta}{\widehat{\sigma}_*} \sqrt{n}\right) \\ &= P\left(-\frac{\Delta}{\widehat{\sigma}_*} \sqrt{n} \leqslant T \leqslant \frac{\Delta}{\widehat{\sigma}_*} \sqrt{n}\right) \\ &= F_T\left(\frac{\Delta}{\widehat{\sigma}_*} \sqrt{n}\right) - F_T\left(-\frac{\Delta}{\widehat{\sigma}_*} \sqrt{n}\right) = 2F_T\left(\frac{\Delta}{\widehat{\sigma}_*} \sqrt{n}\right) - 1, \end{split}$$

gdzie użyliśmy symetrii rozkładu t-Studenta: $F_T(-x) = 1 - F_T(x)$.

$$\begin{split} 1 - \alpha &= P\left(-\Delta \leqslant \overline{X}_n - \mu \leqslant \Delta\right) \\ &= P\left(-\frac{\Delta}{\widehat{\sigma}_*} \sqrt{n} \leqslant \frac{\overline{X}_n - \mu}{\widehat{\sigma}_*} \sqrt{n} \leqslant \frac{\Delta}{\widehat{\sigma}_*} \sqrt{n}\right) \\ &= P\left(-\frac{\Delta}{\widehat{\sigma}_*} \sqrt{n} \leqslant T \leqslant \frac{\Delta}{\widehat{\sigma}_*} \sqrt{n}\right) \\ &= F_T\left(\frac{\Delta}{\widehat{\sigma}_*} \sqrt{n}\right) - F_T\left(-\frac{\Delta}{\widehat{\sigma}_*} \sqrt{n}\right) = 2F_T\left(\frac{\Delta}{\widehat{\sigma}_*} \sqrt{n}\right) - 1, \end{split}$$

gdzie użyliśmy symetrii rozkładu t-Studenta: $F_T(-x) = 1 - F_T(x)$. Postępując analogicznie do przypadku znanej wariancji dostajemy:

$$\Delta = t_{1-\alpha/2;n-1} \frac{\widehat{\sigma}_*}{\sqrt{n}}, \quad \text{gdzie} \quad t_{1-\alpha/2;n-1} = F_T^{-1} \left(1 - \frac{\alpha}{2} \right)$$

jest kwantylem rzędu $1-\frac{\alpha}{2}$ rozkładu $t ext{-Studenta}$ o n-1 stopniach swobody

Przykładowa tablica kwantyli rozkładu t-Studenta

			,		
df	t.90	t _{.95}	t _{.975}	t _{.99}	t.995
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
32	1.309	1.694	2.037	2.449	2.738
34	1.307	1.691	2.032	2.441	2.728
36	1.306	1.688	2.028	2.434	2.719
38	1.304	1.686	2.024	2.429	2.712
∞	1.282	1.645	1.960	2.326	2.576

Przykładowa tablica kwantyli rozkładu t-Studenta

(df)	t.90	t _{.95}	t.975	t.99	t.995
1	3.078	6.314	12.706	31.821	63.657
2	Liczba	ctonni c	wobody k	6.965	9.925
3	LICZDa	Stopin St	wobody k	4.541	5.841
4	(15 1		C	3.747	4.604
5	(ar - a	egrees of	freedom	3.365	4.032
6	1.440	1.945	Z.44/	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
32	1.309	1.694	2.037	2.449	2.738
34	1.307	1.691	2.032	2.441	2.728
36	1.306	1.688	2.028	2.434	2.719
38	1.304	1.686	2.024	2.429	2.712
∞	1.282	1.645	1.960	2.326	2.576

Rozkład t-Studenta

Rozkład t-Studenta

Kwantyle rozkładu *t*-Studenta są nieznacznie większe od odpowiadających im kwantyli rozkładu normalnego (rozkład *t*-Studenta ma grubsze ogony). Jest to spowodowane estymowaniem wariancji z danych (zwiększa niepewność przy konstrukcji przedziału ufności)

Próba o liczności n=16 pomiarów pewnej cechy o rozkładzie normalnym statystyki $\overline{x}_n=1$ oraz $\widehat{s}_*^2=9$. Wyznacz przedział ufności dla wartości oczekiwanej na poziomie ufności $1-\alpha$ dla $\alpha=0.05$.

Próba o liczności n=16 pomiarów pewnej cechy o rozkładzie normalnym statystyki $\bar{x}_n=1$ oraz $\hat{s}_*^2=9$. Wyznacz przedział ufności dla wartości oczekiwanej na poziomie ufności $1-\alpha$ dla $\alpha=0.05$.

$$\left[\overline{x}_n - \Delta, \ \overline{x}_n + \Delta\right], \quad \text{gdzie } \Delta = t_{1-\alpha/2; n-1} \frac{\widehat{s}_*}{\sqrt{n}}$$

Próba o liczności n=16 pomiarów pewnej cechy o rozkładzie normalnym statystyki $\overline{x}_n=1$ oraz $\widehat{s}_*^2=9$. Wyznacz przedział ufności dla wartości oczekiwanej na poziomie ufności $1-\alpha$ dla $\alpha=0.05$.

$$\left[\overline{x}_n - \Delta, \ \overline{x}_n + \Delta\right], \quad \text{gdzie } \Delta = t_{1-\alpha/2; n-1} \frac{\widehat{s}_*}{\sqrt{n}}$$

$$t_{1-\alpha/2;n-1} = t_{0.975;15} = 2.131$$

Próba o liczności n=16 pomiarów pewnej cechy o rozkładzie normalnym statystyki $\bar{x}_n=1$ oraz $\hat{s}_*^2=9$. Wyznacz przedział ufności dla wartości oczekiwanej na poziomie ufności $1-\alpha$ dla $\alpha=0.05$.

$$\left[\overline{x}_n - \Delta, \ \overline{x}_n + \Delta\right], \quad \text{gdzie } \Delta = t_{1-\alpha/2; n-1} \frac{\widehat{s}_*}{\sqrt{n}}$$

$$t_{1-\alpha/2;n-1} = t_{0.975;15} = 2.131$$

$$\Delta = 2.145 \frac{3}{\sqrt{16}} = 1.609$$

Próba o liczności n=16 pomiarów pewnej cechy o rozkładzie normalnym statystyki $\bar{x}_n=1$ oraz $\hat{s}_*^2=9$. Wyznacz przedział ufności dla wartości oczekiwanej na poziomie ufności $1-\alpha$ dla $\alpha=0.05$.

$$\left[\overline{x}_n - \Delta, \ \overline{x}_n + \Delta\right], \quad \text{gdzie } \Delta = t_{1-\alpha/2; n-1} \frac{\widehat{s}_*}{\sqrt{n}}$$

$$t_{1-\alpha/2;n-1} = t_{0.975;15} = 2.131$$

$$\Delta = 2.145 \frac{3}{\sqrt{16}} = 1.609$$
 $[\overline{x}_n - \Delta, \overline{x}_n + \Delta] = [1 - 1.609, 1 + 1.609] = [-0.609, 2.609]$