EEE-2103: Electronic Devices and Circuits

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

BJT Switching

Diode-connected BJT:

$$I_E = I_C + I_B$$
 Total voltage drop across BJT $\rightarrow V_{BE} = 0.7 \text{ V}$

Charge carriers flow across forward-biased BE junction. External CB voltage $V_{CB} = o V$ Barrier voltage at unbiased BC junction \rightarrow +ve on n side and –ve on p side.

pulls minority charge carriers from base into collector.

BJT Switching

BJT saturation:

Switching circuit →

input = pulse waveform to base

$$V_i = o \rightarrow I_B = o$$
, $I_C = o$, $V_{CE} = V_{CC} - I_C R_2 = V_{CC}$

$$V_i = + \text{ve} \rightarrow$$

 I_B is made large so that $I_C R_2 \approx V_{CC}$

$$V_{CE} \approx V_{CC} - I_C R_2 \approx 0$$

CB junction = forward-biased = 0.7 V

carriers from emitter are repelled from *CB* junction

$$I_C = 0 \rightarrow$$

 $V_{R2} = 0$

CE junction is not forward-biased

 I_C flows but not large \rightarrow

$$V_{CE} \neq 0$$

When Q₁ is saturated $V_{\rm CE} \approx 0.2~{\rm V}$

BJT Switching

BJT saturation:

$$V_{CE} \neq 0 \Rightarrow$$

$$I_{C} \text{ flows when}$$

$$V_{CB} = 0$$

$$CB \text{ junction is partially forward-biased}$$

$$V_{BC} \approx 0.5 \text{ V} \Rightarrow V_{CE} \approx 0.2 \text{ V} = V_{CE(sat)}$$

Small I_B controls larger $I_C \rightarrow$ switch BJT between OFF and ON.

When Q₁ is saturated $V_{\rm CE} \approx 0.2 \, \rm V$

DC load line:

Straight line drawn on transistor output characteristics Shows all corresponding levels of I_C and V_{CE} for ckt.

$$V_{BE} = 0 \Rightarrow I_C = 0$$

 $V_{CE} = V_{CC} - I_C R_C$
 $= 20 - (0 \times 10 \times 10^3) = 20 \text{ V}$
Point $A = (20, 0)$

Assume
$$I_C = 2 \text{ mA} \rightarrow V_{CE} = 20 - (2 \times 10^{-3} \times 10 \times 10^{3}) = 0 \text{ V}$$

Point $B = (0, 2)$

DC load line:

$$I_C = 0 \Rightarrow$$

$$V_{CE} = V_{CC} - I_C R_C$$

$$= 20 - (0 \times 10 \times 10^3) = 20 \text{ V}$$
Point $A = (20, 0)$

$$V_{CE} = 0 \text{ V} \Rightarrow$$
 $0 = V_{CC} - I_C R_C$
 $I_C = V_{CC} / R_C = 20 / 10 \times 10^3 = 1.7 \text{ mA}$
Point $B = (0, 1.7)$

DC bias point (*Q*-point):

dc bias point = quiescent point = *Q*-point = dc operating point =

1 mA

10 kΩ

V_{CI}. 10 V

Identifies I_C and V_{CE} when $I_B = 0$

Bias conditions \rightarrow Identified by *Q*-point

$$I_B$$
 = 20 μ A

$$I_C = 1 \text{ mA}$$

$$V_{CE}$$
 = 10 V

$$I_B$$
 = 40 μ A \rightarrow
 I_C = 1.95 mA, V_{CE} = 0.5 V
 ΔV_{CE} = 10 - 0.5 = 9.5 V

$$I_B = 0 \text{ } \mu\text{A} \Rightarrow$$

$$I_C = 0.05 \text{ mA}, \ V_{CE} = 19.5 \text{ V}$$

$$\Delta V_{CE} = 19.5 - 10 = 9.5 \text{ V}$$

$$\Delta I_B = \pm 20 \ \mu\text{A} \rightarrow \Delta V_{CE} = \pm 9.5 \ \text{V}$$

$$\Delta I_B = \pm 10 \,\mu\text{A} \Rightarrow \Delta I_C = \pm 0.5 \,\text{mA}, \Delta V_{CE} = \pm 5 \,\text{V}$$

DC bias point (Q-point):

Maximum possible
$$\Delta V_{CE} \rightarrow \Delta I_C = 0 \sim V_{CC}/R_C$$

 $\Delta V_{CE} = V_{CC} \sim 0$

Q-point at center of load line \rightarrow Max possible $\Delta V_{CE} = \pm V_{CC}/2$

When used as amplifier → output voltage swing must be symmetrical

