大項目	中項目	学習目標	学習項目	詳細キーワード
人工知能とは	人工知能の定義	人工知能や機械学習の定義を理解する	人工知能とは何か、人工知能のおおまかな分類、AI効果、人工知能とロボットの違い	推論、認識、判断、エージェント、古典的な人工知能、機械学習、ディー プラーニング
	人工知能研究の歴史	ブームと冬の時代を繰り返してきた 人工知能研究の歴史を学ぶ	世界初の汎用コンピュータ、ダートマス会議、人工知能研究のブームと冬 の時代	エニアック (ENIAC)、ロジック・セオリスト、トイ・プロプレム、エキスパートンステム、第五世代コンピュータ、ビッグデータ、機械学習、特徴量、ディープラーニング、推論・探索の時代、知識の時代、機械学習と特徴表現学習の時代、ディープブルー
人工知能をめぐる動向	探索・推論	第1次プームで中心的な役割を果たした 推論・探索の研究について学ぶ	迷路(探索木)、ハノイの塔、ロボットの行動計画、ボードゲーム、モン テカルロ法	保索木、幅優先探索、深さ優先探索、ブランニング、STRIPS、 SHRDLU、AlphaGo(アルファ碁)、ヒューリスティックな知識、Mini- Max法、αβ法、ブルートフォース
	知識表現	第2次プームで中心的な役割を果たした 知識表現の研究とエキスパートシステム を学ぶ	人工無能、知識ペースの構築とエキスパートシステム、知識獲得のボトルネック(エキスパートシステムの限界)、意味ネットワーク、オントロジー、概念間の関係(is-a と part-of の関係)、オントロジーの構築、ワ	
	機械学習・深層学習	機械学習、ニューラルネットワーク、 ディープラーニングの研究と歴史、 それぞれの関係について学ぶ	トソン君と東ロボくん データの増加と機械学習、機械学習と統計的自然言語処理、ニューラル ネットワーク、ディープラーニング	グ、ワトソン、Question-Answering、セマンティックWeb ビッグデータ、レコメンデーションエンジン、スパムフィルター、統計的 自然言語処理、コーパス、人間の神経回路、単純バーセプトロン、顕差遊 伝播法、自己符号化器、ILSVRC、特徴重、次元の呪い、機械学習の定
人工知能分野の問題	人工知能分野の問題	人工知能の研究で議論されている問題 や、人工知能の実現可能性を考察する	トイ・プロプレム、フレーム問題、チューリングテスト、強いAIと弱い AI、シンボルグラウンディング問題、身体性、知識獲得のボトルネック、	義、バターン認識、画像認識、特徴抽出、一般物体認識、OCR ロープナーコンテスト、中国語の部屋、機械翻訳、ルールベース機械翻訳、統計学的機械翻訳、特徴表現学習
機械学習の具体的手法	教師あり学習	教師あり学習に用いられる学習モデルを	特徴量設計、シンギュラリティ 線形回帰、ロジスティック回帰、ランダムフォレスト、ブースティング、	分類問題、回帰問題、半教師あり学習、ラッソ回帰、リッジ回帰、決定
		理解する	サポートベクトルマシン、ニューラルネットワーク、自己回帰モデル(AR)	木、アンサンブル学習、バギング、勾配プースティング、プートスラッフ サンプリング、マージン最大化、カーネル、カーネルトリック、単純バー セプトロン、多層バーセプトロン、活性化関数・シグモイド関数・フ マックス関数、誤差逆伝播法、ベクトル自己回帰モデル(VARモデ ル))、腰札層、疑似相関、重回帰分析、AdaBoost、多クラス分類、剪 定
	教師なし学習	教師なし学習の基本的な理論を理解する	k-means法、ウォード法、主成分分析、協調フィルタリング、トピックモデル	クラスタリング、クラスタ分析、レコメンデーション、デンドログラム (樹形図)、特異個分解、多次元尺度構成法、t-SNE、コールドスター ト問題、コンテンツベースフィルタリング、潜在的ディリクレ配分法 (LDA)、次元削減、次元圧縮
	強化学習	強化学習の基本的な理論を理解する	バンディットアルゴリズム、マルコフ決定過程モデル、価値関数、方策勾 配	割引率、ε-greedy方策、UCB方策、マルコフ性、状態価値関数、行動値 値関数、Q値、Q学習、REINFORCE、方策勾配法、Actor-Critic、A3C
	モデルの評価	学習されたモデルの精度の評価方法と評価指標を理解する	正解率・適合率・再現率・F値、ROC曲線とAUC、モデルの解釈、モデルの選択と情報量	交差検証、ホールドアウト検証、k・分割交差検証、混同行列、過学習、5 学習、正則化、L0正則化、L1正則化、L2正則化、、5ッソ回帰、リッ ジ回帰、LIME、SHAP、オッカムの剃刀、赤池情報置基準(AIC)、汎化 性能、平均二乗誤差、偽陽性・偽陰性、第一種の過誤・第二種の過誤、訓練 誤差、汎化誤差、学習無数、誤差関数
ディープラーニングの	ニューラルネットワークとディープ	ディープラーニングを理解する上で押さ	パーセプトロン、多層パーセプトロン、ディープラニングとは、勾配消失	誤差逆伝播法
概要	ラーニング ディープラーニングのアプローチ	えておくべき事柄を理解する ディープラーニングがどういった手法に ト・ス字理されたのかを理解する	問題、信用割当問題 事前学習、オートエンコーダ(自己符号化器)、積層オートエンコーダ、	制限付きボルツマンマシン
	ディープラーニングを実現するには	よって実現されたのかを理解する ディープラーニングを実現するために必 要ものは何か、何故ディープラニングが 実現できたかを理解する	ファインチューニング、深層信念ネットワーク CPUとGPU、GPGPU、ディープラーニングのデータ量	TPU
	活性化関数	ニューラルネットワークにおいて重要な 役割をになう活性化関数を理解する	tanh関数、ReLU関数、シグモイド関数、ソフトマックス関数	Leaky ReLU関数
	学習の最適化	ボーマブラニングの学習に用いられる アルゴリズムである勾配降下法を理解する。 そして勾配降下法にはどのような 課題があり、どうやって解決するかを理 解する	勾配降下法、勾配降下法の問題と改善	学習率、誤差関数、交差エントロピー、イテレーション、エポック、局庁 最適解、大域最適解、鞍点、ブラトー、モーメンタム、AdaGrad、 AdaDelta、RMSprop、ADAM、AdaBound、AMSBound、ハイパーパ ラメータ、ランダムサーチ、グリッドサーチ、薬率的勾配降下法、最急隊 下法、パッチ学習、ミニパッチ学習、オンライン学習、データリーケー:
	更なるテクニック	ディープラーニングの精度をさらに高め るべく考えられた数々のテクニックを理 解する	ドロップアウト、早期終了、データの正規化・重みの初期化、バッチ正規 化	過学習、アンサンブル学習、ノーフリーランチの定理、二重降下現象、正 規化、標準化、白色化
ディープラーニングの手法	畳み込みニューラルネットワーク (CNN)		CNNの基本形、畳み込み層、ブーリング層、全結合層、データ鉱張、CNNの発展形、転移学習とファインチューニング	ネオコグニトロン、LeNet、サブサンブリング層、畳み込み、フィルタ、 最大値プーリング、平均値プーリング、グローバルアベレージプーリン グ、Cutout、Random Erasing、Mixup、CutMix、MobileNet、 Depthwise Separable Convolution、Neural Architecture Search(NAS)、EfficientNet、NASNet、MassNet、転移学習、局所結 合構造、ストライト、カネル橋、ブーリング、スキップ結合、各種デー 女拡張、バディング、
	深層生成モデル	生成モデルにディープラーニングを取り 入れた深層生成モデルについて理解する	生成モデルの考え方、変分オートエンコーダ(VAE)、敵対的生成ネット	ジェネレータ (生成器)、ディスクリミネータ (識別器)、DCGAN、
	画像認識分野	イベルスを用立た。これに、これでは一般であった。 ディープラーングの画像機関への応用 事例や代表的なネットワーク構成を理解 する。	物体識別タスク、物体検出タスク、セグメンテーションタスク、姿勢推定	PixZPix、CycleGAN LSVRC、AlexNet、Inceptionモジュール、GoogLeNet、VGG、Skip connection、ResNet、Wide ResNet、DenseNet、SENet、R-CNN、 FPN、YOLO、矩形領域、SSD、Fast R-CNN、Faster R-CNN、セフ・ イックセグメンテーション、インスタンスセグメンテーション、パノフ ディックセグメンテーション、FON(Fully Convolutional Netwok)、 SogNet、U-Net、PSPNet、Dilation convolution、Atrous convolution、DeepLab、Open Pose、Parts Affinity Fields、Mask R CNN
	音声処理と自然言語処理分野		データの扱い方、RNN(リカレントニューラルネットワーク)、 Transformer、自然言語処理におけるPre-trained Models	LSTM、CEC、GRU、Bidirectional RNN(双方向RNN)、RNN Encoder-Decoder、BPTT、Attention、A-D変換、バルス符号変調器、高速フーリエ変換、スペクトル包絡、メル周波数ケブストラム係数、フォルマント、フォルマント周波数、音観、音楽、音声段膜エンジン、隠れマルコテモデル、WaveNet、メル尺度、N-gram、Bag-of-Words (BoW)、ワンホットペクトル、TF-IDF、単語理的込み、局所表現、分散表現、word2vec、スキップグラム、CBOW、fastText、ELMo、Sour言語モデル、CTC、Seq2Seq、Source-Target Attention、Encoder-Decoder Attention、Self-Attention、位置エンコーディング、GPT、GPT-2、GPT-3、BERT、GLUE、Vision Transformer、構文解析、形態要素解析
	深層強化学習分野	強化学習にディープラーニングを組み込 んだ深層強化学習の基本的な手法とその 応用分野について理解する		DQN、ダブルDQN、デュエリングネットワーク、ノイジーネットワーク、Rainbow、モンテカルロ木撰業、アルファ碁、アルファ碁ゼロ、アパファゼロ、マルチエージェント強化学質、OpenAl Five、アルファスター、状態表現学習、連続値制御、採酬成型、オフライン強化学習、simZreal、ドメインランダマイゼーション、残差強化学習
	モデルの解釈性とその対応		ディープラニングのモデルの解釈性問題、Grad-CAM	Simzreal、ドメインプンダマイセーション、残差域化子首 モデルの解釈、CAM
	モデルの軽量化	法について理解する 計算リソースが十分ではないエッジデバ	ていなれ エデル 国際の手法	蒸留、モデル圧縮、量子化、プルーニング

ディープラーニングの	AIと社会	AIを利活用するための、考えるべき論点	AIのビジネス活用と法・倫理、	AIによる経営課題の解決と利益の創出、法の順守、ビッグデータ、IoT、
社会実装に向けて		や基本となる概念を国内外の議論や事例		RPA、プロックチェーン
		を参照に理解する		
	AIプロジェクトの進め方	Alプロジェクトをどのように進めるか、	AIプロジェクト進行の全体像、AIプロジェクトの進め方、AIを運営すべき	CRISP-DM、MLOps、BPR、クラウド、Web API、データサイエン
		全体像と各フェーズで注意すべき点など	かの検討、AIを運用した場合のプロセスの再設計、AIシステムの提供方	ティスト、プライバシー・バイ・デザイン
		を理解する。	法、開発計画の策定、プロジェクト体制の構築、	
	データの収集	AIの学習対象となるデータを取得・利用	データの収集方法および利用条件の確認、法令に基づくデータ利用条件、	オープンデータセット、個人情報保護法、不正競争防止法、著作権法、特
		するときに注意すべきことや、データを	学習可能なデータの収集、データセットの偏りによる注意、外部の役割と	許法、個別の契約、データの網羅性、転移学習、サンプリング・バイア
		共有しながら共同開発を進める場合の留	責任を明確にした連携	ス、他企業や他業種との連携、産学連携、オープン・イノベーション、
		意点を理解する		AI・データの利用に関する契約ガイドライン
	データの加工・分析・学習	集めたデータを加工・分析・学習させる	データの加工、プライバシーの配慮、開発・学習環境の準備、アルゴリズ	アノテーション、匿名加工情報、カメラ画像利活用ガイドブック、ELSI、
		ときの注意点を理解する	ムの設計・調整、アセスメントによる次フェーズ以降の実施の可否検討	ライブラリ、Python、Docker、Jupyter Notebook、XAI、フィルター
				パブル、FAT、PoC
	実装・運用・評価	実際にサービスやプロダクトとしてAIシ	本番環境での実装・運用、成果物を知的財産として守る、利用者・データ	著作物、データベースの著作物、営業秘密、限定利用データ、オープン
		ステムを世に出す局面で注意すべきこと	保持者の保護、悪用へのセキュリティ対策、予期しない振る舞いへの対	データに関する運用除外、秘密管理、個人情報、GDPR、十分性制定、敵
		を理解する	処、インセンティブの設計と多様な人の巻き込み	対的な攻撃(Adversarial attacks)、ディープフェイク、フェイクニュー
				ス、アルゴリズムバイアス、ステークホルダーのニーズ
	クライシス・マネジメント	Alプロジェクトにおいてコーポレートガ	体制の整備、有事への対応、社会と対話・対応のアピール、指針の作成と	コーポレートガバナンス、内部統制の更新、シリアス・ゲーム、炎上対策
		バナンスや内部統制、予期せぬことが起	議論の継続、プロジェクトの計画への反映	とダイバーシティ、AIと安全保障・軍事技術、実施状況の公開、透明性レ
		きた場合の対応などクライシス・マネジ		ポート、よりどころとする原則や指針、Partnership on AI、運用の改善
		メント(危機管理)に備えることの重要		やシステムの改修、次への開発と循環
		性を理解する。		
数理・統計	数理・統計	機械学習を行う上で最適化は重要であ	統計検定3級程度の基礎的な知識	統計検定3級程度の基礎的キーワードと計算問題
		る。最適化に必要な必要な数学基礎知識		
		や微分を理解する。また機械学習で必要		
		となる統計学基礎も理解する。		