The integer-antimagic spectra of dumbbell graphs

Wai Chee Shiu^{a1} and Richard M. Low^b

^aDepartment of Mathematics,
Hong Kong Baptist University,
224 Waterloo Road, Hong Kong, P.R. China,
e-mail: wcshiu@hkbu.edu.hk

^bDepartment of Mathematics
San José State University
San José, CA 95192, USA.
e-mail: richard.low@sjsu.edu

1. Introduction

Let G be a connected simple graph. For any non-trivial abelian group A (written additively), let $A^* = A \setminus \{0\}$, where 0 is the additive identity of A. Let a function $f: E(G) \to A^*$ be an edge labeling of G. Any such labeling induces a map $f^+: V(G) \to A$, defined by $f^+(v) = \sum_{uv \in E(G)} f(uv)$. If there exists an edge labeling f whose induced map f^+ on V(G) is one-to-one, we say that f is an A-antimagic labeling and that G is an A-antimagic graph. The integer-antimagic spectrum of a graph G is the set IAM(G) = $\{k \mid G \text{ is } \mathbb{Z}_k\text{-antimagic and } k \geq 2\}$.

The concept of the A-antimagicness property for a graph G (introduced in [1]) naturally arises as a variation of the A-magic labeling problem (where the induced vertex labeling is a constant map). \mathbb{Z} -magic (or \mathbb{Z}_1 -magic) graphs were considered by Stanley [24, 25], where he pointed out that the theory of magic labelings could be studied in the general context of linear homogeneous diophantine equations. Doob [2, 3, 4] and others [7, 9, 15, 16, 21] have studied A-magic graphs and \mathbb{Z}_k -magic graphs were investigated in [5, 6, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 22].

2. Some Known Results

The following two lemmas (found in [1]) will be used throughout this paper.

¹This work is partially supported by Faculty Research Grant, Hong Kong Baptist University.

Lemma 2.1 ([1, Lemma 1]). For $m \ge 1$, a graph of order 4m + 2 is not \mathbb{Z}_{4m+2} -antimagic.

Lemma 2.2 ([1, Theorem 4]). For $m \geq 1$, C_{4m+r} and P_{4m+r} are \mathbb{Z}_k -antimagic, for all $k \geq 4m+r$ if r=0,1,3; C_{4m+2} and P_{4m+2} are \mathbb{Z}_k -antimagic, for all $k \geq 4m+3$.

Also, we will use the following \mathbb{Z}_k -antimagic labelings g of cycles, found in [1].

Remark 2.1. Let $C_n = v_1 v_2 \cdots v_n v_1$ and $e_1 = v_1 v_2$, $e_2 = v_2 v_3$, ..., $e_n = v_n v_1$ be its edges. For integers $a \leq b$, [a, b] denotes the set of integers from a to b inclusive.

Case 1.
$$n = 4m$$
:
$$g(e_i) = \begin{cases} i & \text{if } 1 \le i \le 2m; \\ 3 + 2(2m - \lceil \frac{i}{2} \rceil) & \text{if } 2m + 1 \le i \le 4m. \end{cases}$$
The range of g is $[1, 2m + 1]$.

Case 2.
$$n = 4m + 1$$
:
$$g(e_i) = \begin{cases} i & \text{if } 1 \le i \le 2m; \\ 3 + 2(2m - \lceil \frac{i}{2} \rceil) & \text{if } 2m + 1 \le i \le 4m + 1. \end{cases}$$
The range of g is $[1, 2m + 1]$.

Case 3.
$$n = 4m + 2$$
:

$$g(e_i) = \begin{cases} i & \text{if } 1 \le i \le 2m + 3; \\ 3 + 2(2m - \lceil \frac{i-2}{2} \rceil) & \text{if } 2m + 4 \le i \le 4m + 2. \end{cases}$$
The range of g is $[1, 2m + 3]$.

Case 4.
$$n = 4m - 1$$
:
$$g(e_i) = \begin{cases} i & \text{if } 1 \le i \le 2m + 1; \\ 3 + 2(2m - \lceil \frac{i+1}{2} \rceil) & \text{if } 2m + 2 \le i \le 4m - 1. \end{cases}$$
The range of g is $[1, 2m + 1]$.

In this paper, we focus on the image of the induced mapping g^+ . We denote the image of g^+ by $I_g(G)$, that is,

$$I_g(G) = \{g^+(v) \mid v \in V(G)\},\$$

where G is the graph under consideration. Note that if we label the edges of C_3 by 1,2,3, then $I_g(C_3) = [3,5]$. Hence, C_3 is \mathbb{Z}_k -antimagic for $k \geq 4$.

Let S and T be multi-sets. If S and T are equal (as sets) modulo k, then this is denoted by $S \equiv T \pmod{k}$.

Example. From the labelings g provided in [1], we have the following \mathbb{Z}_k -antimagic labelings of C_6 and C_7 , for $k \geq 7$.

First, we view all labels on edges as integers. Then,

$$I_g(C_6) = [3, 9] \setminus \{6\}$$
 and $I_g(C_7) = [3, 9]$.

After taking modulo k for $k \ge 10$, the numbers do not change. For k = 9, we have $I_g(C_6) \equiv [0,8] \setminus \{1,2,6\} \pmod 9$ and $I_g(C_7) \equiv [0,8] \setminus \{1,2\} \pmod 9$. For k = 8, $I_g(C_6) \equiv [0,7] \setminus \{2,6\} \pmod 8$ and $I_g(C_7) \equiv [0,7] \setminus \{2\} \pmod 8$. For k = 7, $I_g(C_6) \equiv [0,5] \pmod 7$ and $I_g(C_7) \equiv [0,6] \pmod 7$. So, C_6 and C_7 are \mathbb{Z}_k -antimagic for $k \ge 7$.

Corollary 2.3. For $m \ge 1$ and labelings g for cycles provided in Remark 2.1, we have $I_g(C_{4m-1}) = [3, 4m+1]$, $I_g(C_{4m}) = [3, 4m+2]$, $I_g(C_{4m+1}) = [2, 4m+2]$ and $I_g(C_{4m+2}) = [3, 4m+5] \setminus \{4m+2\}$.

Proposition 2.4. All elements in [a,b] are distinct after taking modulo k, for $k \ge b - a + 1$.

3. Some Useful Lemmas

Throughout this paper, we use the labelings g (defined in Remark 2.1) and view all values of g as integers first. The notation in the preceding section will also be used. For $S \subset \mathbb{Z}$ and $a \in \mathbb{Z}$, we let the set $a + S = \{a + s \mid s \in S\}$.

Lemma 3.1. For $n \geq 3$, suppose $g: E(C_n) \to \mathbb{Z}$ be a labeling and $c \in \mathbb{Z}$. Then, there is a labeling h such that $I_h(C_n) = 2c + I_g(C_n)$. Note that the range of h is the set $[c+1, c+\lfloor n/2\rfloor +1]$ if $n \equiv 0, 1 \pmod 4$, and $[c+1, c+\lfloor n/2\rfloor +2]$ otherwise.

Proof. The required labeling is h = g + c.

Lemma 3.2. Suppose that $n \geq 2$ and let $g: E(C_{2n}) \to \mathbb{Z}$, $c \in \mathbb{Z}$. Then, there is a labeling h such that $I_h(C_{2n}) = c + I_g(C_{2n})$. Note that the range of h is a subset of $[1, n+2] \cup [c+2, c+n+1]$.

Proof. Relabel the edge e_i by $g(e_i)+c$ for even i, and unchanged for odd i. Let this new labeling be h. When n is even, the maximum label of g is n+1. So, the range of h is a subset of $[1,n+1] \cup [c+2,c+n+1]$. When n=2m+1, the maximum label of g is 2m+3 which is labeled at e_{2m+3} only. So, the range of h is a subset of $[1,n+2] \cup [c+2,c+n+1]$.

Let G and H be connected simple graphs. Let $u \in V(G)$ and $v \in V(H)$. The graph $G^{uv}H$ is obtained from G and H by add a new edge (bridge) uv.

Theorem 3.3. Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \equiv 2 \pmod{4}$ such that $f^+: V(G) \to [b-p,b] \setminus \{a\}$ is bijective, where $1 \le b-p < a < b$. Then, b-a is odd.

Proof. Assume that b-a is even. We choose an integer m such that $b-p \leq 2m$. Let g be the labeling of C_{4m} provided in Remark 2.1. Recall that $g: E(C_{4m}) \to [1, 2m+1]$ and $I_g(C_{4m}) = [3, 4m+2]$. By putting c=b-3 into Lemma 3.2, we have a labeling h of C_{4m} such that $I_h(C_{4m}) = [b, 4m+b-1]$. Choose the vertex u from G with $f^+(u) = (b+a)/2$ [which exists, since b-a is even] and the vertex v from C_{4m} with $h^+(v) = b$. Join u and v by a bridge uv with label (a-b)/2. Let the final labeling be ϕ . Note that $b \geq p+1 \geq 7$ [since $p \geq 6$ and thus, $b-p \geq 1 \geq 7-p$] and hence, $c \geq 4$. The set of edge-labels is a subset of $[1,p-1] \cup \{\frac{a-b}{2}\} \cup [1,2m+2] \cup [b-1,b-2+2m]$. Note that $b-p \leq 2m < 2m+1$ and thus, $b-2+2m \leq 4m+p-1$. Hence, all of the edge-labels of ϕ are non-zero (mod k), for all $k \geq p+4m$. Also, $I_{\phi}(G^{uv}C_{4m}) = [b-p,b] \setminus \{b\} \cup [b,4m+b-1] = [b-p,4m+b-1]$. Hence, $G^{uv}C_{4m}$ is \mathbb{Z}_{4m+p} -antimagic, which contradicts Lemma 2.1.

Lemma 3.4. For $d \in [2, 4m + 2]$ and any integer c, there is a labeling h such that $I_h(C_{4m+1})$ is the multiset $([c, 4m + c] \setminus \{c + d - 2\}) \cup \{d\}$. Note that the range of h is a subset of $[1, 2m + 1] \cup [c - 1, c - 1 + 2m]$.

Proof. Let g be the labeling of C_{4m+1} defined in Remark 2.1 and let $v = g^{-1}(d)$. We modify the edge labeling under g in the following way: Note that $C_{4m+1} - v \cong P_{4m}$ and let $e_1, e_2, e_3, \ldots, e_{4m-1}$ be the consecutive

adjacent edges of $C_{4m+1}-v$. Relabel edges $e_1,e_3,e_5,\ldots,e_{4m-1}$ by adding c-2 to the original labels under g. Keep the original edge labels (under g) for e_2,e_4,\ldots,e_{4m-2} , as well as for the two edges adjacent to v in C_{4m+1} . Now, let this new edge labeling of C_{4m+1} be called h. Note that the induced vertex labels (under g) have now been increased by c-2 (under h), except at vertex v. Thus, the range of h is a subset of $[1,2m+1]\cup[c-1,c-1+2m]$ and $I_h(C_{4m+1})$ is the multiset $([c,4m+c]\setminus\{c+d-2\})\cup\{d\}$.

Example. Consider C_9 . Suppose we choose d=8 and c=7. We have

Lemma 3.5. For $d \in [3, 4m + 1]$ and any integer c, there is a labeling h such that $I_h(C_{4m-1})$ is the multiset $([c, 4m + c - 2] \setminus \{c + d - 3\}) \cup \{d\}$. Note that the range of h is a subset of $[1, 2m + 1] \cup [c - 2, c - 2 + 2m]$.

Proof. Let g be the labeling of C_{4m-1} defined in Remark 2.1 and let $v=g^{-1}(d)$. We modify the edge labeling under g in the following way: Note that $C_{4m-1}-v\cong P_{4m-2}$ and let $e_1,e_2,e_3,\ldots,e_{4m-3}$ be the consecutive adjacent edges of $C_{4m-1}-v$. Relabel edges $e_1,e_3,e_5,\ldots,e_{4m-3}$ by adding c-3 to the original labels under g. Keep the original edge labels (under g) for e_2,e_4,\ldots,e_{4m-4} , as well as for the two edges adjacent to v in C_{4m-1} . Now, let this new edge labeling of C_{4m-1} be called h. Note that the induced vertex labels (under g) have now been increased by c-3 (under h), except at vertex v. Thus, the range of h is a subset of $[1,2m+1]\cup[c-2,c-2+2m]$ and $I_h(C_{4m-1})$ is the multiset $([c,4m+c-2]\setminus\{c+d-3\})\cup\{d\}$. \square

Lemma 3.6. Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \not\equiv 2 \pmod{4}$ such that $f^+: V(G) \to [b-p+1,b]$ is bijective, where $b-p \leq 4m+1+p$, and b is odd. Then, there are vertices $u \in V(G)$ and $v \in V(C_{4m+1})$ such that $G^{uv}C_{4m+1}$ is \mathbb{Z}_k -antimagic, for $k \geq p+4m+1$.

Proof. By putting c=(b-3)/2 into Lemma 3.1, we have a labeling h such that $I_h(C_{4m+1})=[b-1,4m+b-1]$. Note that the range of h is the set $\lfloor \frac{b-3}{2}+1,\frac{b-3}{2}+\lfloor \frac{4m+1}{2}\rfloor+1\rfloor=\lfloor \frac{b-1}{2},\frac{b-1}{2}+\lfloor \frac{4m+1}{2}\rfloor\rfloor$. Choose $u\in V(G)$ with $f^+(u)=b$ and $v\in V(C_{4m+1})$ with $h^+(v)=b-1$. Join u and v by a bridge uv with label -p. Let the final labeling be ϕ . Then, $I_\phi(G^{uv}C_{4m+1})=[b-p+1,b-1]\cup\{b-p\}\cup\{b-p-1\}\cup[b-2,4m+b-1]=[b-p-1,4m+b-1]$. The set of edge-labels of ϕ is the set $[1,p-1]\cup\{-p\}\cup[\frac{b-1}{2},\frac{b-1}{2}+\lfloor \frac{4m+1}{2}\rfloor]$. Note that $b-p\leq 4m+1+p$ which implies $\frac{b-1}{2}\leq 2m+p$. Thus, $\frac{b-1}{2}+\lfloor \frac{4m+1}{2}\rfloor$ $\leq \frac{b-1}{2}+2m+1\leq (2m+p)+(2m+1)=4m+p+1$. Thus, all of the edge-labels are non-zero, after taking modulo $k\geq p+4m+1$. Hence, $G^{uv}C_{4m+1}$ is \mathbb{Z}_k -antimagic for $k\geq p+4m+1$.

Theorem 3.7. Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \equiv 1 \pmod{4}$ such that $f^+: V(G) \to [b-p+1, b]$ is bijective. Then, b must be even.

Proof. Assume that b is odd. There exists an integer m such that $b-p \le 4m+1+p$. By Lemma 3.6, there exist vertices $u \in V(G)$ and $v \in V(C_{4m+1})$ such that $G^{uv}C_{4m+1}$ is \mathbb{Z}_k -antimagic, for $k \ge p+4m+1$. In particular, $G^{uv}C_{4m+1}$ is \mathbb{Z}_{p+4m+1} -antimagic. But the order of $G^{uv}C_{4m+1}$ is $p+4m+1 \equiv 2 \pmod{4}$. This contradicts Lemma 2.1.

Lemma 3.8. Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \not\equiv 2 \pmod{4}$ such that $f^+: V(G) \to [b-p+1,b]$ is bijective, where $b-p \leq 4m-2+p$. Let b be even. Then, there are vertices $u \in V(G)$ and $v \in V(C_{4m-1})$ such that $G^{uv}C_{4m-1}$ is \mathbb{Z}_k -antimagic, for $k \geq p+4m-1$.

Proof. By putting c=b/2-2 into Lemma 3.1, we have a labeling h such that $I_h(C_{4m-1})=[b-1,4m+b-3]$. Note that the range of h is the set $[\frac{b}{2}-2+1,\frac{b}{2}-2+\lfloor\frac{4m-1}{2}\rfloor+2]=[\frac{b}{2}-1,\frac{b}{2}+\lfloor\frac{4m-1}{2}\rfloor]$. Choose $u\in V(G)$ with $f^+(u)=b$ and $v\in V(C_{4m-1})$ with $h^+(v)=b-1$. Join u and v by a bridge uv with label -p. Let the final labeling be ϕ . Then, $I_\phi(G^{uv}C_{4m-1})=[b-p+1,b-1]\cup\{b-p\}\cup[b,4m+b-3]\cup\{b-p-1\}=[b-p-1,4m+b-3]$. The set of edge-labels of ϕ is the set $[1,p-1]\cup\{-p\}\cup[\frac{b}{2}-1,\frac{b}{2}+\lfloor\frac{4m-1}{2}\rfloor]$. Note that $b-p\leq 4m-2+p$ which implies that $\frac{b}{2}\leq 2m+p-1$. Thus, $\frac{b}{2}+\lfloor\frac{4m-1}{2}\rfloor<\frac{b}{2}+2m-1\leq (2m+p-1)+(2m-1)=4m+p-2<4m+p-1$. Hence, $G^{uv}C_{4m-1}$ is \mathbb{Z}_k -antimagic for $k\geq p+4m-1$.

Theorem 3.9. Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \equiv 3 \pmod{4}$ such that $f^+: V(G) \to [b-p+1, b]$ is bijective. Then, b must be odd.

Proof. Assume that b is even. There exists an integer m such that $b-2p \le 4m-2$. By Lemma 3.8, there exists a graph of order $p+4m-1 \equiv 2 \pmod{4}$, which is \mathbb{Z}_{p+4m-1} -antimagic. This contradicts Lemma 2.1.

4. \mathbb{Z}_{k} -ANTIMAGICNESS OF $G^{uv}C_{s}$

In this section, we want to construct some group-antimagic graphs from other group-antimagic graphs. Throughout this paper, we assume that G has an edge labeling $f: E(G) \to [1,p-1]$, where $p \geq 3$ is the order of G. In addition, we assume that the induced labeling is $f^+: V(G) \to [b-p+1,b]$ when $p \not\equiv 2 \pmod 4$, and $f^+: V(G) \to [b-p,b] \setminus \{a\}$ when $p \equiv 2 \pmod 4$, where b-p < a < b. Since all values of f are positive and G is connected, $b \geq p$ and $b \geq p+1$ for $p \not\equiv 2 \pmod 4$ and $p \equiv 2 \pmod 4$, respectively.

We use the following construction in this paper: First, we relabel some edges of C_s obtained from g (defined in Remark 2.1) to get a new labeling h. Then, we choose suitable vertices $u \in V(G)$ and $v \in V(C_s)$ to construct the graph $G^{uv}C_s$. Lastly, we label this bridge uv to construct a \mathbb{Z}_k -antimagic labeling ϕ of $G^{uv}C_s$.

4.1. \mathbb{Z}_k -antimagic Labelings of $G^{uv}C_{4m}$.

Theorem 4.1. Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \not\equiv 2 \pmod{4}$ such that $f^+: V(G) \to [b-p+1, b]$ is bijective, where $b-p \leq 2m+2$. Then, there are vertices $u \in V(G)$ and $v \in V(C_{4m})$ such that $G^{uv}C_{4m}$ is \mathbb{Z}_k -antimagic, for $k \geq p+4m$.

Proof. By putting c=b-4 into Lemma 3.2, we have a labeling h such that $I_h(C_{4m})=[b-1,4m+b-2]$. Note that the range of h is a subset of $[1,2m+2]\cup[b-2,b+2m-3]$. Choose $u\in V(G)$ with $f^+(u)=b$ and $v\in V(C_{4m})$ with $h^+(v)=b-1$. Join u and v with a bridge uv and label it -p. Then, $I_\phi(G^{uv}C_{4m})=[b-p+1,b-1]\cup\{b-p\}\cup\{b-p-1\}\cup[b,4m+b-2]=[b-p-1,4m+b-2]$. The set of edge-labels of ϕ is a subset of $[1,p-1]\cup\{-p\}\cup[1,2m+2]\cup[b-2,b+2m-3]$. Note that $b-p\leq 2m+2<2m+3$ which implies that b+2m-3<4m+p. Hence, $G^{uv}C_{4m}$ is \mathbb{Z}_k -antimagic, for $k\geq 4m+p$.

Example. Here are \mathbb{Z}_k -antimagic labelings for the dumbbell graph $D(8,4) = C_8^{uv}C_4$, for $k \geq 12$. In this case, p = 8, b = 10 and m = 1. We choose h (defined in Lemma 3.2) with c = 6.

Labeling for C_8 under g. Labeling for C_4 under h.

 \mathbb{Z}_{k} -antimagic labeling for D(8,4) under ϕ .

Theorem 4.2. Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \equiv 2 \pmod{4}$ such that $f^+: V(G) \to [b-p,b] \setminus \{a\}$ is bijective, where $b-p \leq 2m+1$. Then, there are vertices $u \in V(G)$ and $v \in V(C_{4m})$ such that $G^{uv}C_{4m}$ is \mathbb{Z}_k -antimagic, for $k \geq p+4m+1$.

Proof. By Theorem 3.3, b-a is odd. Putting c=b-2 into Lemma 3.2 yields a labeling h of C_{4m} such that $I_h(C_{4m})=[b+1,4m+b]$. Note that the range of h is a subset of $[1,2m+2]\cup[b,b+2m-1]$. Choose $u\in V(G)$ with $f^+(u)=(b+a+1)/2$ and $v\in V(C_{4m})$ with $h^+(v)=b+1$. Join u and v with a bridge and label it (a-b-1)/2. Then, $I_\phi(G^{uv}C_{4m})=[b-p,b]\setminus\{(a+b+1)/2\}\cup[b+2,4m+b]\cup\{(a+b+1)/2\}=[b-p,4m+b]\setminus\{b+1\}$, since we have $(a+b+1)/2\neq b+1$. The set of edge-labels of ϕ is a subset of $[1,p-1]\cup\{(a-b-1)/2\}\cup[1,2m+2]\cup[b,b+2m-1]$. Note that $b-p\leq 2m+1<2m+2$ which implies that b+2m-1< p+4m+1. Hence, $G^{uv}C_{4m}$ is \mathbb{Z}_k -antimagic, for $k\geq p+4m+1$.

Example. Here are \mathbb{Z}_k -antimagic labelings for D(6,4) following the procedure of Theorem 4.2, for $k \geq 11$. In this case, p = 6, b = 9, a = 6 and m = 1. We choose h (defined in Lemma 3.2) with c = 7.

Labeling for C_6 under g. Labeling for C_4 under h.

 \mathbb{Z}_k -antimagic labeling for D(6,4) under ϕ .

4.2. \mathbb{Z}_{k} -antimagic Labelings of $G^{uv}C_{4m+2}$.

Theorem 4.3. Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \equiv 1$ or $3 \pmod 4$ such that $f^+: V(G) \to [b-p+1, b]$ is bijective, where $b-p \leq 2m+2$. Then, there are vertices $u \in V(G)$ and $v \in V(C_{4m+2})$ such that $G^{uv}C_{4m+2}$ is \mathbb{Z}_k -antimagic, for $k \geq p+4m+2$.

Proof. Putting c=b-3 into Lemma 3.2 yields a labeling h of C_{4m+2} such that $I_h(C_{4m+2})=c+I_g(C_{4m+2})=(b-3)+[3,4m+5]\setminus\{4m+2\}=[b,4m+b+2]\setminus\{4m+b-1\}$. Note that the range of h is a subset of $[1,2m+1+2]\cup[b-3+2,b-3+2m+1+1]=[1,2m+3]\cup[b-1,b-1+2m]$. Choose $u\in V(G)$ with $f^+(u)=b-4$ (this label exists, since $p\geq 5$) and $v\in V(C_{4m+2})$ with $h^+(v)=b$. Join u and v with a bridge and label it 4m+3. Then, $I_\phi(G^{uv}C_{4m+2})=[b-p+1,b]\setminus\{b-4\}\cup\{b-4+4m+3\}\cup[b+1,4m+b+2]\setminus\{4m+b-1\}\cup\{4m+b+3\}=[b-p+1,4m+b+3]\setminus\{b-4\}$. The set of edgelabels of ϕ is a subset of $[1,p-1]\cup\{4m+3\}\cup[1,2m+3]\cup[b-1,b-1+2m]$.

Note that $b-p \le 2m+2 < 2m+3$, which implies that b-1+2m < p+4m+2. Hence, $G^{uv}C_{4m+2}$ is \mathbb{Z}_k -antimagic for $k \ge p+4m+3$.

Now, let k = p + 4m + 2. Choose $u \in V(G)$ with $f^+(u) = b - (p+3)/2$ (note that $b - (p+3)/2 \in [b-p+1,b]$) and $v \in V(C_{4m+2})$ with $h^+(v) = b$. Define $\phi(uv) = -(p+3)/2$. Then, $\phi^+(u) = b - p - 3 \equiv 4m + b - 1$ (mod p + 4m + 2) and $\phi^+(v) = b - (p+3)/2$. Hence, $I_{\phi}(G^{uv}C_{4m+2}) = [b-p+1,b] \setminus \{b-(p+3)/2\} \cup \{b-p-3\} \cup [b+1,4m+b+2] \setminus \{4m+b-1\} \cup \{b-(p+3)/2\} = [b-p+1,4m+b+2] \setminus \{4m+b-1\} \cup \{b-p-3\}$. Note that 4m+b-1=b-p-3 (mod 4m+p+2). Thus, all of the elements of $I_{\phi}(G^{uv}C_{4m+2})$ are distinct, modulo 4m+p+2. The set of edge-labels of ϕ is a subset of $[1,p-1] \cup \{-(p+3)/2\} \cup [1,2m+3] \cup [b-1,b-1+2m]$. Note that b-1+2m < p+4m+2 (as before). Thus, ϕ gives a \mathbb{Z}_{4m+p+2} -antimagic labeling of $G^{uv}C_{4m+2}$. Hence, $G^{uv}C_{4m+2}$ is \mathbb{Z}_k -antimagic, for all $k \geq p+4m+2$.

Example. Here are \mathbb{Z}_k -antimagic labelings for D(9,6) following the procedure of Theorem 4.3. In this case, p=9, b=10 and m=1. We choose h (defined in Lemma 3.2) with c=7. So, we have

Labeling for C_9 under g. Labeling for C_6 under h.

The following are \mathbb{Z}_k -antimagic labelings for D(9,6) under ϕ :

k = 15.

Theorem 4.4. Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \equiv 0 \pmod{4}$ such that $f^+: V(G) \to [b-p+1, b]$ is bijective, where $b-p \leq 2m+4$. Then, there are vertices $u \in V(G)$ and $v \in V(C_{4m+2})$ such that $G^{uv}C_{4m+2}$ is \mathbb{Z}_k -antimagic, for $k \geq p+4m+3$.

Proof. Putting c = b - 4 into Lemma 3.2 yields a labeling h of C_{4m+2} such that $I_h(C_{4m+2}) = c + I_g(C_{4m+2}) = (b-4) + [3,4m+5] \setminus \{4m+2\} = [b-1,4m+b+1] \setminus \{4m+b-2\}$. Note that the range of h is a subset of $[1,2m+1+2] \cup [b-4+2,b-4+2m+1+1] = [1,2m+3] \cup [b-2,b-2+2m]$. Choose $u \in V(G)$ with $f^+(u) = b$ and $v \in V(C_{4m+2})$ with $h^+(v) = b-1$. Join u and v with a bridge and label it -p. Then, $I_\phi(G^{uv}C_{4m+2}) = [b-p+1,b-1] \cup \{b-p\} \cup [b,4m+b+1] \setminus \{4m+b-2\} \cup \{b-p-1\} = [b-p-1,4m+b+1] \setminus \{4m+b-2\}$. The set of edge-labels of ϕ is a subset of $[1,p-1] \cup \{-p\} \cup [1,2m+3] \cup [b-2,b-2+2m]$. Note that $b-p \leq 2m+4 < 2m+5$ which implies that b-2+2m < 4m+p+3. Hence, $G^{uv}C_{4m+2}$ is \mathbb{Z}_k -antimagic, for $k \geq p+4m+3$.

Theorem 4.5. Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \equiv 2 \pmod{4}$ such that $f^+: V(G) \to [b-p,b] \setminus \{a\}$ is bijective, where $b-p \leq 2m+2$. Then, there are vertices $u \in V(G)$ and $v \in V(C_{4m+2})$ such that $G^{uv}C_{4m+2}$ is \mathbb{Z}_k -antimagic, for $k \geq p+4m+3$.

Proof. Putting c=b-2 into Lemma 3.2 yields a labeling h of C_{4m+2} such that $I_h(C_{4m+2})=c+I_g(C_{4m+2})=(b-2)+[3,4m+5]\setminus\{4m+2\}=[b+1,4m+b+3]\setminus\{4m+b\}$. Note that the range of h is a subset of $[1,2m+1+2]\cup[b-2+2,b-2+2m+1+1]=[1,2m+3]\cup[b,b+2m]$. Choose $u\in V(G)$ with $f^+(u)=b-p$ and $v\in V(C_{4m+2})$ with $h^+(v)=2m+b-p/2$. Join u and v with a bridge and label it 2m+p/2. Then, $I_\phi(G^{uv}C_{4m+2})=[b-p+1,b]\setminus\{a\}\cup\{b-p+2m+p/2\}\cup[b+1,4m+b+3]\setminus\{a\}\cup\{b-p+2m+p/2\}\cup[b+1,4m+b+3]$

 $\{4m+b,2m+b-p/2\} \cup \{2m+b-p/2+2m+p/2\} = [b-p+1,b] \setminus \{a\} \cup \{b+2m-p/2\} \cup [b+1,4m+b+3] \setminus \{4m+b,b+2m-p/2\} \cup \{4m+b\} = [b-p+1,b] \setminus \{a\} \cup [b+1,4m+b+3] = [b-p+1,4m+b+3] \setminus \{a\}. \text{ The set of edge-labels of } \phi \text{ is a subset of } [1,p-1] \cup \{2m+p/2\} \cup [1,2m+3] \cup [b,b+2m]. \text{ Note that } b-p \leq 2m+2 < 2m+3 \text{ which implies that } b+2m < p+4m+3. \text{ Hence, } G^{uv}C_{4m+2} \text{ is } \mathbb{Z}_k\text{-antimagic, for } k \geq p+4m+3. \text{ } \square$

4.3. \mathbb{Z}_{k} -antimagic Labelings of $G^{uv}C_{4m+1}$.

Theorem 4.6. Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \equiv 0$ or $3 \pmod 4$ such that $f^+: V(G) \to [b-p+1, b]$ is bijective, where $b-2p \leq 4m+1$. Then, there are vertices $u \in V(G)$ and $v \in V(C_{4m+1})$ such that $G^{uv}C_{4m+1}$ is \mathbb{Z}_k -antimagic, for $k \geq p+4m+1$.

Proof. For odd b, the claim follows from Lemma 3.6.

For even b, the contrapositive of Theorem 3.9 implies that $p \equiv 0 \pmod 4$. Hence, $b-2p \le 4m$. Putting c=b/2-1 into Lemma 3.1 yields a labeling b of C_{4m+1} such that $I_h(C_{4m+1})=b-2+[2,4m+2]=[b,4m+b]$. Note that the range of b is $\lfloor \frac{b}{2}, \frac{b}{2}+\lfloor \frac{4m+1}{2} \rfloor \rfloor$. Choose $u \in V(G)$ with $f^+(u)=b-p/2$ and $v \in V(C_{4m+1})$ with $h^+(v)=b$. Let $\phi(uv)=-p/2$. Then, $I_\phi(G^{uv}C_{4m+1})=[b-p+1,b]\setminus\{b-p/2\}\cup\{b-p\}\cup[b+1,4m+b]\cup\{b-p/2\}=[b-p,4m+b]$. The set of edge-labels of ϕ is $[1,p-1]\cup\{-p/2\}\cup[\frac{b}{2},\frac{b}{2}+\lfloor \frac{4m+1}{2}\rfloor]$. Note that $b-2p \le 4m+1 < 4m+2$. This implies that b+4m < 2p+8m+2 and hence, $\frac{b}{2}+2m < p+4m+1$. Thus, $\frac{b}{2}+\lfloor \frac{4m+1}{2}\rfloor < p+4m+1$. Therefore, $G^{uv}C_{4m+1}$ is \mathbb{Z}_k -antimagic, for $k \ge p+4m+1$.

Example. Here are \mathbb{Z}_k -antimagic labelings for D(7,5) following the procedure of Theorem 4.6, for $k \geq 12$. In this case, p = 7, b = 9 and m = 1. We choose h (defined in Lemma 3.1) with c = 3. So, we have

Labeling for C_7 under g. Labeling for C_5 under h.

 \mathbb{Z}_k -antimagic labeling for D(7,5) under ϕ .

Theorem 4.7. Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \equiv 1 \pmod{4}$ such that $f^+: V(G) \to [b-p+1, b]$ is bijective, where $b-2p \leq 4m+2$. Then, there are vertices $u \in V(G)$ and $v \in V(C_{4m+1})$ such that $G^{uv}C_{4m+1}$ is \mathbb{Z}_k -antimagic, for $k \geq p+4m+2$.

Proof. By Theorem 3.7, b is even. Putting c = b/2 - 1 into Lemma 3.1 yields a labeling h such that $I_h(C_{4m+1}) = (b-2) + [2, 4m+2] = [b, 4m+b]$. Note that the range of h is $[\frac{b}{2}, \frac{b}{2} + \lfloor \frac{4m+1}{2} \rfloor]$. Choose $u \in V(G)$ with $f^+(u) = b - (p+1)/2$ and $v \in V(C_{4m+1})$ with $h^+(v) = b$. Let $\phi(uv) = -(p+1)/2$. Then, $I_{\phi}(G^{uv}C_{4m+1}) = [b-p+1,b] \setminus \{b-(p+1)/2\} \cup \{b-p-1\} \cup [b, 4m+b] \setminus \{b\} \cup \{b-(p+1)/2\} = [b-p-1, 4m+b] \setminus \{b-p\}$. The set of edge-labels of ϕ is $[1, p-1] \cup \{-(p+1)/2\} \cup [\frac{b}{2}, \frac{b}{2} + \lfloor \frac{4m+1}{2} \rfloor]$. Note that $b-2p \leq 4m+2 < 4m+4$. This implies that $\frac{b}{2} + 2m . Thus, <math>\frac{b}{2} + \lfloor \frac{4m+1}{2} \rfloor . Therefore, <math>G^{uv}C_{4m+1}$ is \mathbb{Z}_k -antimagic, for $k \geq p + 4m + 2$.

Example. Here are \mathbb{Z}_k -antimagic labelings for D(5,5) following the procedure of Theorem 4.7, for $k \geq 11$. In this case, p = 5, b = 6 and m = 1. We choose h (defined in Lemma 3.1) with c = 2. So, we have

Labeling for C_5 under g. Labeling for C_5 under h.

 \mathbb{Z}_k -antimagic labeling for D(5,5) under ϕ .

Theorem 4.8. Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \geq 6$ such that $f^+: V(G) \to [b-p,b] \setminus \{a\}$ is bijective, where $p \equiv 2 \pmod{4}$ and $b-p \leq 2m+2$. Then, there are vertices $u \in V(G)$ and $v \in V(C_{4m+1})$ such that $G^{uv}C_{4m+1}$ is \mathbb{Z}_k -antimagic, for $k \geq 4m+p+1$.

Proof. Suppose that $a \geq 2$ is even. Putting d = 2 and c = b - a into Lemma 3.4 yields a labeling q, where $I_q(C_{4m+1})$ is the multi-set $([b-a, 4m+b-a] \setminus \{b-a\}) \cup \{2\} = \{2\} \cup [b-a+1, 4m+b-a]$. The range of q is a subset of $[1, 2m+1] \cup [b-a-1, b-a-1+2m]$. Using Lemma 3.1 (with q in place of g, and (a/2) - 1 in place of c) yields a labeling h, where $I_h(C_{4m+1}) = 2(a/2-1) + ([b-a+1, 4m+b-a] \cup \{2\}) = \{a\} \cup [b-1, 4m+b-2]$. The range of h is a subset of $[a/2, 2m+a/2] \cup [b-a/2-2, b-a/2-2+2m]$. Note that $b-p \leq 2m+2 < 2m+a/2+3$, which implies that b-a/2-2+2m < 4m+p+1. Now, choose $u \in V(G)$ with $f^+(u) = b$ and $v \in V(C_{4m+1})$ with $h^+(v) = b-1$. Let $\phi(uv) = 4m$. Then, $I_{\phi}(G^{uv}C_{4m+1}) = [b-p, b-1] \setminus \{a\} \cup \{b+4m\} \cup [b, 4m+b-2] \cup \{a\} \cup \{b-1+4m\} = [b-p, 4m+b]$. Thus, $G^{uv}C_{4m+1}$ is \mathbb{Z}_k -antimagic, for $k \geq p+4m+1$.

Suppose that $a \geq 3$ is odd. Putting d = 3 and c = b-a+2 into Lemma 3.4 yields a labeling q, where $I_q(C_{4m+1})$ is the multi-set $([b-a+2, 4m+b-a+2] \setminus \{b-a+3\}) \cup \{3\}$. The range of q is a subset of $[1, 2m+1] \cup [b-a+1, b-a+1+2m]$. Using Lemma 3.1 (with q in place of g, and (a-3)/2 in place of c) yields a labeling h, where $I_h(C_{4m+1}) = 2((a-3)/2) + ([b-a+2, 4m+b-a+2] \setminus \{b-a+3\} \cup \{3\}) = [b-1, 4m+b-1] \setminus \{b\} \cup \{a\}$. The range of h is a subset of $[(a-1)/2, 2m+(a-1)/2] \cup [b-(a+1)/2, 2m+b-(a+1)/2]$. Since $a \geq 3$ is odd, we have $b-p \leq 2m+2 < 2m+1+(a+1)/2$. This implies that 2m+b-(a+1)/2 < 4m+p+1. Now, choose $u \in V(G)$ with $f^+(u) = b-1-(p/2)$ and $v \in V(C_{4m+1})$ with $h^+(v) = b-1$. Let

 $\begin{array}{l} \phi(uv) = -p/2. \ \ \text{Then,} \ I_{\phi}(G^{uv}C_{4m+1}) = [b-p,b] \setminus \{a,b-1-p/2\} \cup \{b-p-1\} \cup [b,4m+b-1] \setminus \{b\} \cup \{a\} \cup \{b-1-p/2\} = [b-p-1,4m+b-1]. \\ \text{Thus,} \ G^{uv}C_{4m+1} \ \ \text{is} \ \mathbb{Z}_k\text{-antimagic, for} \ k \geq p+4m+1. \end{array}$

4.4. \mathbb{Z}_k -antimagic Labelings of $G^{uv}C_{4m-1}$.

Theorem 4.9. Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \equiv 0$ or $1 \pmod 4$ such that $f^+: V(G) \to [b-p+1, b]$ is bijective, where $b-2p \leq 4m-2$. Then, there are vertices $u \in V(G)$ and $v \in V(C_{4m-1})$ such that $G^{uv}C_{4m-1}$ is \mathbb{Z}_k -antimagic, for $k \geq p+4m-1$.

Proof. If b is even, then the claim follows from Lemma 3.8.

Now, suppose that b is odd. Then, $b-2p \le 4m-3$. By Theorem 3.7, $p \ne 1 \pmod{4}$. Hence, $p \equiv 0 \pmod{4}$. Putting c = (b-3)/2 into Lemma 3.1 yields a labeling h, where $I_h(C_{4m-1}) = (b-3) + [3, 4m+1] = [b, 4m+b-2]$. Note that the range of h is the set $[1+(b-3)/2, 2+(b-3)/2+\lfloor\frac{4m-1}{2}\rfloor] = [(b-1)/2, (b+1)/2+2m-1]$. Now, choose $u \in V(G)$ with $f^+(u) = b-p/2$ and $v \in V(C_{4m-1})$ with $h^+(v) = b$. Let $\phi(uv) = -p/2$. Then, $I_{\phi}(G^{uv}C_{4m-1}) = [b-p, 4m+b-2]$. The set of edge-labels of ϕ is $[1, p-1] \cup \{-p/2\} \cup [(b-1)/2, (b+1)/2+2m-1]$. Note that $b-2p \le 4m-2 < 4m-1$. This implies that (b+1)/2+2m-1 < 4m+p-1. Thus, $G^{uv}C_{4m-1}$ is \mathbb{Z}_k -antimagic, for $k \ge p+4m-1$

Example. Here are \mathbb{Z}_k -antimagic labelings for D(7,7) following the procedure of Theorem 4.9, for $k \geq 15$. In this case, p = 7, b = 9 and m = 2. We choose h (defined in Lemma 3.1) with c = 3. So, we have

Labeling for C_7 under g. Labeling for C_7 under h.

 \mathbb{Z}_k -antimagic labeling for D(7,7) under ϕ .

Theorem 4.10. Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \equiv 3 \pmod{4}$ such that $f^+: V(G) \to [b-p+1, b]$ is bijective, where $b-2p \leq 4m-1$. Then, there are vertices $u \in V(G)$ and $v \in V(C_{4m-1})$ such that $G^{uv}C_{4m-1}$ is \mathbb{Z}_k -antimagic, for $k \geq p+4m$.

Proof. By Theorem 3.9, b is odd. As in the proof of Theorem 4.9, there is a labeling h, where $I_h(C_{4m-1}) = [b, 4m + b - 2]$. Note that the range of h is [(b-1)/2, (b+1)/2 + 2m - 1]. Now, choose $u \in V(G)$ with $f^+(u) = b - (p+1)/2$ and $v \in V(C_{4m-1})$ with $h^+(v) = b$. Let $\phi(uv) = -(p+1)/2$. Then, $I_{\phi}(G^{uv}C_{4m-1}) = [b-p+1, b] \setminus \{b-(p+1)/2\} \cup \{b-p-1\} \cup [b+1, 4m+b-2] \cup \{b-(p+1)/2\} = [b-p-1, 4m+b-2] \setminus \{b-p\}$. The set of edge-labels of φ is $[1, p-1] \cup \{-(p+1)/2\} \cup [(b-1)/2, (b+1)/2 + 2m-1]$. Note that $b-2p \le 4m-1 < 4m+1$. This implies that (b+1)/2 + 2m-1 < 4m+p. Hence, $G^{uv}C_{4m-1}$ is \mathbb{Z}_k -antimagic, for $k \ge p + 4m$. □

Theorem 4.11. Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \equiv 2 \pmod 4$ such that $f^+: V(G) \to [b-p,b] \setminus \{a\}$ is bijective, where $b-p \leq 2m$. Then, there are vertices $u \in V(G)$ and $v \in V(C_{4m-1})$ such that $G^{uv}C_{4m-1}$ is \mathbb{Z}_k -antimagic, for $k \geq p+4m-1$.

Proof. Suppose that $a \ge 3$ is odd. Putting d = 3 and c = b - a + 1 into Lemma 3.5 yields a labeling q, where $I_q(C_{4m-1})$ is the multi-set $\{3\} \cup [b-a+1,4m+(b-a+1)-2] \setminus \{b-a+1\} = [b-a+2,4m+b-a-1] \cup \{3\}$. The range of q is a subset of $[1,2m+1] \cup [b-a+1-2,b-a+1-2+2m] = [1,2m+1] \cup [b-a-1,b-a-1+2m]$. Using Lemma 3.1 (with q in place of g, and (a-3)/2 in place of c) yields a labeling h, where $I_h(C_{4m-1}) = 2((a-3)/2) + ([b-a+2,4m+b-a-1] \cup \{3\}) = [b-1,4m+b-4] \cup \{a\}$. The range of h is a subset of $[(a-3)/2+1,(a-3)/2+2m+1] \cup [(a-3)/2+b-a-1,(a-3)/2+b-a-1+2m] = [a-1,4m+b-a-1] \cup \{a-1,4m+b-a-1\} \cup \{a-1,4m+b-a-$

$$\begin{split} &[(a-1)/2,(a-1)/2+2m] \cup [b-(a+5)/2,2m+b-(a+5)/2]. \text{ Note that } b-p \leq 2m < (a+5)/2-1+2m \text{ (since } a \geq 3 \text{ is odd), which implies that } 2m+b-(a+5)/2 < 4m+p-1. \text{ Now, choose } u \in V(G) \text{ with } f^+(u)=b \text{ and } v \in V(C_{4m-1}) \text{ with } h^+(v)=b-1. \text{ Let } \phi(uv)=4m-2. \text{ Then, } I_{\phi}(G^{uv}C_{4m-1})=[b-p,b-1] \cup \{b+4m-2\} \cup [b,4m+b-4] \cup \{b+4m-3\}=[b-p,4m+b-2]. \text{ Thus, } G^{uv}C_{4m-1} \text{ is } \mathbb{Z}_k\text{-antimagic, for all } k \geq p+4m-1. \end{split}$$

Suppose that $a \geq 2$ is even. Putting d = 4 and c = b - a + 3 into Lemma 3.5 yields a labeling q, where $I_q(C_{4m-1})$ is the multi-set $\{4\} \cup [b-a+3, 4m+(b-a+3)-2] \setminus \{b-a+4\} = [b-a+3, 4m+b-a+1] \setminus \{b-a+4\} \cup \{4\}$. The range of q is a subset of $[1, 2m+1] \cup [b-a+3-2, b-a+3-2+2m] = [1, 2m+1] \cup [b-a+1, b-a+1+2m]$. Using Lemma 3.1 (with q in place of g, and a/2-2 in place of c) yields a labeling b, where $I_b(C_{4m-1}) = 2(a/2-2)+([b-a+3, 4m+b-a+1] \setminus \{b-a+4\} \cup \{4\}) = [b-1, 4m+b-3] \setminus \{b\} \cup \{a\}$. The range of b is a subset of $[a/2-2+1, a/2-2+2m+1] \cup [a/2-2+b-a+1, a/2-2+b-a+1+2m] = [(a-2)/2, (a-2)/2+2m] \cup [b-(a+2)/2, 2m+b-(a+2)/2]$. Note that $b-p \leq 2m < (a+2)/2-1+2m$ (since $a \geq 2$ is even), which implies that 2m+b-(a+2)/2 < 4m+p-1. Now, choose $u \in V(G)$ with $f^+(u) = b-1-p/2$ and $v \in V(C_{4m-1})$ with $h^+(v) = b-1$. Let $\phi(uv) = -p/2$. Then, $I_{\phi}(G^{uv}C_{4m-1}) = [b-p,b] \setminus \{a,b-1-p/2\} \cup \{b-p-1\} \cup [b,4m+b-3] \setminus \{b\} \cup \{a\} \cup \{b-1-p/2\} = [b-p-1,4m+b-3]$. Thus, $G^{uv}C_{4m-1}$ is \mathbb{Z}_k -antimagic, for all $k \geq p+4m-1$.

5. APPLICATION TO DUMBBELL GRAPHS

The dumbbell graph D(p, s) is obtained by joining two cycles C_p and C_s by a bridge, where $p, s \geq 3$.

Theorem 5.1. If $p \not\equiv 2 \pmod{4}$, then D(p, 4m) is \mathbb{Z}_k -antimagic, for $k \geq p + 4m$. If $p \equiv 2 \pmod{4}$, then D(p, 4m) is \mathbb{Z}_k -antimagic, for $k \geq p + 4m + 1$.

Proof. Using the labelings from Lemma 2.2 and Corollary 2.3, we see that $b-p \le 3 \le 2m+1$. Combining Theorems 4.1 and 4.2, the result follows. \square

Theorem 5.2. If $p \not\equiv 0 \pmod{4}$, then D(p, 4n + 2) is \mathbb{Z}_k -antimagic, for $k \geq p + 4n + 2$.

Proof. From Corollary 2.3, we see that $b-p \le 3 \le 2n+2$. By Theorem 4.3, the result follows for $r \equiv 1$ or $-1 \pmod 4$.

Suppose p = 4m + 2 for some $m \ge 1$. In this case, $I_f(C_{4m+2}) = [3, 4m + 5] \setminus \{4m+2\}$, where f is the labeling defined in Remark 2.1 for C_{4m+2} . By putting c = 4m + 2 into Lemma 3.2, we get a labeling h of C_{4n+2} such that $I_h(C_{4n+2}) = [4m+5, 4n+4m+7] \setminus \{4n+4m+4\}$. Choose $u \in V(C_{4m+2})$ with $f^+(u) = 4m+5$ and $v \in V(C_{4n+2})$ with $h^+(v) = 4n+4m+7$. Let $\phi(uv) = -3$. Then, $I_{\phi}(C_{4m+2}^{uv}C_{4n+2}) = [3, 4n+4m+6]$. Hence, D(4m+2, 4n+2) is \mathbb{Z}_k -antimagic, for $k \ge 4n+4m+4$.

Example. Here are \mathbb{Z}_k -antimagic labelings for D(6,6) following the procedure of Theorem 5.2, for $k \geq 12$. In this case, p = 6, b = 9 and n = 1. We choose h (defined in Lemma 3.2) with c = 6. So, we have

Labeling for C_6 under g. Labeling for C_6 under h.

 \mathbb{Z}_k -antimagic labeling for D(6,6) under ϕ .

Theorem 5.3. D(4m-1,4n+1) is \mathbb{Z}_k -antimagic, for $k \geq 4m+4n$ and D(4m+1,4n+1) is \mathbb{Z}_k -antimagic, for $k \geq 4m+4n+3$.

Proof. From Corollary 2.3 we see b-2p<0. Combining Theorems 4.6 and 4.7, the result follows.

Theorem 5.4. For $m, n \geq 1$, D(4m-1, 4n-1) is \mathbb{Z}_k -antimagic, for $k \geq 4m + 4n - 1$.

Proof. From Corollary 2.3, we see b-2p<0. The result follows from Theorem 4.10.

Combining Theorems 5.1, 5.2, 5.3 and 5.4, we have

Theorem 5.5. For $r, s \geq 3$,

$$\mathrm{IAM}(D(r,s)) = \begin{cases} [r+s,\infty) & \text{if } r+s \not\equiv 2 \pmod{4}; \\ [r+s+1,\infty) & \text{if } r+s \equiv 2 \pmod{4}. \end{cases}$$

6. Application to Heavy Dumbbell Graphs and Semi-Heavy Dumbbell Graphs

The heavy dumbbell graph HD(p, s) is obtained by joining two complete graphs K_p and K_s by a bridge, where $p, s \geq 3$. The semi-heavy dumbbell graph SD(p, s) is obtained by joining a cycle C_p and a complete graph K_s by a bridge, where $p, s \geq 3$. Note that HD(3, s) = SD(3, s).

Chan et al. [1] proved that any regular Hamiltonian graph of order p is \mathbb{Z}_k -antimagic, for all $k \geq p$ or p+1, when $p \not\equiv 2 \pmod 4$ or $p \equiv 2 \pmod 4$, respectively. Here, we provide another labeling of K_p so that the image of the induced labeling is the same as that of C_p (given by Lemma 2.2). The results in the preceding sections of this paper are then used to determine the integer-antimagic spectra of heavy dumbbell and semi-heavy dumbbell graphs.

Let the vertex set of K_p be $\{u_1,\ldots,u_p\}$. Let z be an integer with $1 \leq z \leq \lfloor p/2 \rfloor$. We construct a spanning subgraph $K_p(z)$ of K_p in which two vertices u_i and u_j are adjacent if $j \equiv i+z \pmod{p}$. Then, $K_p(z)$ is a union of $\gcd(z,p)$ cycles (each of order $p/\gcd(z,p)$). Note that if z=p/2, then $K_p(z)$ is a perfect matching. Also, observe that $K_p = \bigcup_{z=1}^{\lfloor p/2 \rfloor} K_p(z)$.

Antimagic labeling for K_{4m} :

 $K_{4m} = \bigcup_{z=1}^{2m} K_{4m}(z)$. We label $K_{4m}(1)$, using g+1. All edges of $K_{4m}(z)$ are labeled by -1 for even z, except z=2m. All edges of $K_{4m}(z)$ are labeled by 1 for odd z, except z=1. All edges of $K_{4m}(2m)$ are labeled by -2. Let this labeling be f. Then, $I_f(K_{4m}) = I_g(C_{4m})$.

Antimagic labeling for K_{4m+2} :

 $K_{4m+2} = \bigcup_{z=1}^{2m+1} K_{4m+2}(z)$. We label $K_{4m+2}(1)$, using g. All edges of $K_{4m+2}(z)$ are labeled by 1 for even z. All edges of $K_{4m+2}(z)$ are labeled

by -1 for odd z, except z=1 and 2m+1. All edges of $K_{4m+2}(2m+1)$ are labeled by -2. Let this labeling be f. Then, $I_f(K_{4m+2})=I_g(C_{4m+2})$. Antimagic labeling for K_{4m-1} :

 $K_{4m-1}=\bigcup_{z=1}^{2m-1}K_{4m-1}(z)$ for $m\geq 2$. We label $K_{4m-1}(1)$, using g. All edges of $K_{4m-1}(z)$ are labeled by 1 for even z. All edges of $K_{4m-2}(z)$ are labeled by -1 for odd z, except z=1. Let this labeling be f. Then, $I_f(K_{4m-1})=I_g(C_{4m-1})$.

Antimagic labeling for K_{4m+1} :

 $K_{4m+1} = \bigcup_{z=1}^{2m} K_{4m+1}(z)$. We label $K_{4m+1}(1)$, using g+1. All edges of $K_{4m+1}(z)$ are labeled by -1 for even z. All edges of $K_{4m-2}(z)$ are labeled by 1 for odd z, except z=1. Let this labeling be f. Then, $I_f(K_{4m+1}) = I_g(C_{4m+1})$.

Observe that in all of these cases, the domain of f is a subset of $[-2, p-1] \setminus \{0\}$, where p is the order of the graph under consideration.

Example. K_{10} can be decomposed into $K_{10}(1) = C_{10}$, $K_{10}(2)$, $K_{10}(3)$, $K_{10}(4)$ and $K_{10}(5)$. The labeling of these graphs are:

Labeled under g.

Labeled with 1.

Labeled with -1.

Labeled with 1.

Labeled with -2.

Combining all of the subgraphs, we obtain a labeling for K_{10} . Clearly, the image of this labeling is $I_g(C_{10}) = [3, 13] \setminus \{10\}$.

If we change the domain of f (described in the lemmas and theorems in Sections 3 and 4) to $[-2, p-1] \setminus \{0\}$, then those results continue to hold. By substituting G by K_r or C_r and H by K_s and using these results and similar arguments as in Section 5, we see that

Theorem 6.1. For $r, s \geq 3$,

$$\mathrm{IAM}(HD(r,s)) = \mathrm{IAM}(SD(r,s)) = \begin{cases} [r+s,\infty) & \textit{if } r+s \not\equiv 2 \pmod 4; \\ [r+s+1,\infty) & \textit{if } r+s \equiv 2 \pmod 4. \end{cases}$$

REFERENCES

- [1] W.H. Chan, R.M. Low and W.C. Shiu, Group-antimagic labelings of graphs, Congressus Numerantium, 217 (2013), 21–31.
- [2] M. Doob, On the construction of magic graphs, Proc. Fifth S.E. Conference on Combinatorics, Graph Theory and Computing (1974), 361-374.
- [3] M. Doob, Generalizations of magic graphs, Journal of Combinatorial Theory, Series B, 17 (1974), 205-217.
- [4] M. Doob, Characterizations of regular magic graphs, Journal of Combinatorial Theory, Series B, 25 (1978), 94-104.

- [5] M.C. Kong, S-M Lee, and H. Sun, On magic strength of graphs, Ars Combinatoria, 45 (1997), 193-200.
- [6] S-M Lee, Yong-Song Ho and R.M. Low, On the integer-magic spectra of maximal planar and maximal outerplanar graphs, *Congressus Numerantium*, 168 (2004), 83-90.
- [7] S-M Lee, A. Lee, Hugo Sun, and Ixin Wen, On group-magic graphs, JCMCC, 38 (2001), 197-207.
- [8] S-M Lee and F. Saba, On the integer-magic spectra of two-vertex sum of paths, Congressus Numerantium, 170 (2004), 3-15.
- [9] S-M Lee, F. Saba, E. Salehi, and H. Sun, On the V₄-group magic graphs, Congressus Numerantium, 156 (2002), 59-67.
- [10] S-M Lee, F. Saba, and G.C. Sun, Magic strength of the k-th power of paths, Congressus Numerantium, 92 (1993), 177-184.
- [11] S-M Lee and E. Salehi, Integer-magic spectra of amalgamations of stars and cycles, Ars Combinatoria, 67 (2003), 199-212.
- [12] S-M Lee, E. Salehi and H. Sun, Integer-magic spectra of trees with diameters at most four, JCMCC, 50 (2004), 3-15.
- [13] S-M Lee, L. Valdes, and Yong-Song Ho, On group-magic spectra of trees, double trees and abbreviated double trees, JCMCC, 46 (2003), 85–95.
- [14] R.M. Low and S-M Lee, On the integer-magic spectra of tessellation graphs, Australas. J. Combin., 34 (2006), 195–210.
- [15] R.M. Low and S-M Lee, On the products of group-magic graphs, Australas. J. Combin., 34 (2006), 41-48.
- [16] R.M. Low and S-M Lee, On group-magic eulerian graphs, JCMCC, 50 (2004), 141– 148.
- [17] R.M. Low and L. Sue, Some new results on the integer-magic spectra of tessellation graphs, Australas. J. Combin., 38 (2007), 255-266.
- [18] E. Salehi, Zero-sum magic graphs and their null sets, Ars Combinatoria, 82 (2007), 41-53.
- [19] E. Salehi, On zero-sum magic graphs and their null sets, Bulletin of the Institute of Mathematics, Academia Sinica, 3 (2008), 255-264.
- [20] E. Salehi and P. Bennett, On integer-magic spectra of caterpillars, JCMCC, 61 (2007), 65-71.
- [21] W.C. Shiu and R.M. Low, Group-magicness of complete N-partite graphs, JCMCC, 58 (2006), 129-134.
- [22] W.C. Shiu and R.M. Low, Integer-magic spectra of sun graphs, J. Comb. Optim., 14 (2007), 309–321.
- [23] W.C. Shiu and R.M. Low, Z_k-magic labelings of fans and wheels with magic-value zero, Australas. J. Combin., 45 (2009), 309–316.
- [24] R.P. Stanley, Linear homogeneous diophantine equations and magic labelings of graphs, Duke Math. J., 40 (1973), 607-632.
- [25] R.P. Stanley, Magic labeling of graphs, symmetric magic squares, systems of parameters and Cohen-Macaulay rings, Duke Math. J., 40 (1976), 511-531.
- [26] W.D. Wallis, Magic Graphs, Birkhauser Boston, (2001).