Today's outline - February 16, 2023

- Mermin's interpretation of parallelism
- Simon's algorithm
- Distributed computation
- The Fourier transform

Reading Assignment: Reiffel: 7.8, 8.1–8.2 Wong: 7.6–7.7

Homework Assignment #04: due Friday, February 17, 2023

Homework Assignment #05: due Thursday, March 02, 2023

Mermin's interpretation

David Mermin proposed a simpler interpretation for how quantum algorithms and the solution to the Bernstein-Vazirani problem, in particular

Consider a C_{not} acting on the Hadamard basis

$$\begin{split} C_{not}|++\rangle &= C_{not} \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle) = \frac{1}{2} (|00\rangle + |01\rangle + |11\rangle + |10\rangle) = |++\rangle \\ C_{not}|+-\rangle &= C_{not} \frac{1}{2} (|00\rangle - |01\rangle + |10\rangle - |11\rangle) = \frac{1}{2} (|00\rangle - |01\rangle + |11\rangle - |10\rangle) = |--\rangle \\ C_{not}|-+\rangle &= C_{not} \frac{1}{2} (|00\rangle + |01\rangle - |10\rangle - |11\rangle) = \frac{1}{2} (|00\rangle + |01\rangle - |11\rangle - |10\rangle) = |-+\rangle \\ C_{not}|--\rangle &= C_{not} \frac{1}{2} (|00\rangle - |01\rangle - |10\rangle + |11\rangle) = \frac{1}{2} (|00\rangle - |01\rangle - |11\rangle + |10\rangle) = |+-\rangle \end{split}$$

If we then apply the Hadamard transform to each bit the resulting truth table becomes

This is simply a C_{not} gate applied to the high order qubit controlled by the low order qubit

Mermin's interpretation

This insight leads to a simple way to look at the black box for U_{f_u}

- 1. Prepare an *n*-qubit register $|0\rangle_n$
- 2. Prepare an ancilla qubit $|a\rangle = |1\rangle$
- 3. Apply the Hadamard gate to all qubits
- **4**. Place a $C_{not}|u_i\rangle|a\rangle$ for each $u_i=1$
- 5. Apply the Hadamard gate to all qubits

The net effect is to have the ancilla bit "turn on" each qubit in the unknown, $C_{not}|a\rangle|u_i\rangle$ where $u_i=1$

From this perspective there is no quantum parallelism but simply a discrete circuit which produces the desired outcome

Of course, this presupposes that one knows what $|u\rangle$ is so we are peering into the black box

3/14

Simon's problem – description

Suppose we have a 2-to-1 function $f(x)$ such that $f(x) = f(x \oplus a)$ where a is secret and both x and a are n bit strings	X	f(x)
For example, when $n=3$ we might have the table	000	111
There are 4 values for $f(x)$, each appearing twice, once in the top	001	000
half of the table and once in the bottom		110
The goal of the algorithm is to find the the secret string a	011	010
Classically, this can be done by querying the function until we obtain two identical values for $f(x)$ and then calculate $a = x_0 \oplus x_1$ This can take up to $2^{n-1} + 1$ queries so the computation is $O(2^n)$		000
		111
		010
		110

In this case, we can see that $a=010\oplus 111=101$ and this holds for all matched pairs in the table

In contrast, Simon's quantum algorithm is a calculation which is O(n)

Simon's algorithm – quantum circuit

The problem requires two registers of n bits each which we designate with $|0\rangle_n$ and $|0\rangle_n$ as input and output registers, respectively

$$|\phi_{0}\rangle = |0\rangle_{n}|0\rangle_{n}$$

$$|\phi_{1}\rangle = |W|\otimes I(|0\rangle_{n}|0\rangle_{n}) = \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1} |x\rangle|0\rangle_{n}$$

$$|\phi_{2}\rangle = \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1} |x\rangle|f(x)\rangle$$

$$|\phi_{3}\rangle = \frac{1}{\sqrt{2}} (|x_{0}\rangle + |x_{0} \oplus a\rangle) |f(x_{0})\rangle$$

$$\begin{aligned} |\phi_{4}\rangle &= \frac{\sqrt{2}}{W} \otimes I \left[\frac{1}{\sqrt{2}} \left(|\mathbf{x}_{0}\rangle + |\mathbf{x}_{0} \oplus \mathbf{a}\rangle \right) |f(\mathbf{x}_{0})\rangle \right] = \frac{1}{\sqrt{2^{n}}} \frac{1}{\sqrt{2}} \sum_{y=0}^{2^{n}-1} \left[(-1)^{\mathbf{x}_{0} \cdot y} + (-1)^{(\mathbf{x}_{0} \oplus \mathbf{a}) \cdot y} \right] |\mathbf{y}\rangle |f(\mathbf{x}_{0})\rangle \\ &= \frac{1}{\sqrt{2^{n+1}}} \sum_{y=0}^{2^{n}-1} (-1)^{\mathbf{x}_{0} \cdot y} \left[1 + (-1)^{\mathbf{a} \cdot y} \right] |\mathbf{y}\rangle |f(\mathbf{x}_{0})\rangle \end{aligned}$$

Carlo Segre (Illinois Tech)

5 / 14

February 16, 2023

Simon's algorithm – quantum circuit

6 / 14

Dropping the $|f(x_0)\rangle$ as it has already been measured, we have

$$|\phi_4\rangle = \frac{1}{\sqrt{2^{n+1}}} \sum_{y=0}^{2^n-1} (-1)^{x_0 \cdot y} \left[1 + (-1)^{a \cdot y}\right] \frac{|y\rangle}{|y\rangle}$$

There are two cases to consider for the modulo 2 scalar product $a \cdot y$

$$y \cdot a \neq 0 \quad \longrightarrow \quad |\phi_4\rangle \equiv 0$$

The second case is for $a \cdot y = 0$, in which case

$$|\phi_4\rangle = \frac{1}{\sqrt{2^{n+1}}} \sum_{y=0}^{2^n-1} (-1)^{x_0 \cdot y} [1+1] |y\rangle = \frac{1}{\sqrt{2^{n-1}}} \sum_{y=0}^{2^n-1} (-1)^{x_0 \cdot y} |y\rangle$$

PHYS 407 - Introduction to Quantum Computing

This is a superposition of 2^n possible states, one of which will be observed when $|\phi_4\rangle$ is measured

If n-1 linearly independent $|y\rangle$ are measured, it is possible to solve $y \cdot a = 0$

Simon's algorithm – example	X	f(x)
Suppose a system with $n=4$ and $a=1001$, $f(x)$ has the truth table	0000	1111
	0001	0001
$ \phi_0\rangle = 0\rangle 0\rangle = 0000\rangle 0000\rangle$ $ \phi_0\rangle = \phi_1\rangle = \phi_2\rangle = \phi_3\rangle = \phi_4\rangle$	0010	1110
$1 \sum_{i=1}^{15} \frac{1}{i} \frac{1}{$	0011	1101
$ \phi_1\rangle = \frac{1}{4} \sum_{15} \mathbf{x}\rangle 0000\rangle$ $ 0\rangle_4 = W$	0100	0000
x=0	0101	0101
$ \phi_2\rangle = \frac{1}{4} \sum_{k=0}^{15} x\rangle f(x)\rangle$	0110	1010
$ \phi_2\rangle = \frac{1}{4} \sum_{x=0}^{ x\rangle r(x)\rangle} 0\rangle_4$	0111	1001
X=0	1000	0001
$ \phi_3\rangle=rac{1}{\sqrt{2}}\left[\mathbf{x}_0\rangle+ \mathbf{x}_0\oplus\mathbf{a}\rangle\right] f(\mathbf{x}_0)\rangle$ For example, suppose $f(\mathbf{x}_0)=1010$	1001	1111
	1010	1101
$ \phi_3\rangle=rac{[0110\rangle+ 1111\rangle]}{\sqrt{2}} f(x_0)\rangle$ now apply the Walsh transformation	1011	1110
v =	1100	0101
$ \phi_4 angle = rac{[0000 angle - 0010 angle - 0100 angle + 0110 angle + 1001 angle - 1011 angle - 1101 angle + 1111 angle]}{\sqrt{8}}$	1101	0000
·	1110	1001
Note that any value of $ f(x_0)\rangle$ measured will result in these 8 $ x_0\rangle$	1111	1010

7 / 14

Simon's algorithm – example

$$|\phi_4\rangle = \frac{1}{\sqrt{8}} [|0000\rangle - |0010\rangle - |0100\rangle + |0110\rangle + |1001\rangle - |1011\rangle - |1101\rangle + |1111\rangle]$$

The result of the final measurement, $|y\rangle$ will be one of these eight values and each of them should satisfy the linear equation $a \cdot y = 0$

Since we know that $a=|1001\rangle$ for this example, we can check this identity and the other 6 have the same properties

$$|1001\rangle \cdot |0000\rangle = 1 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 + 1 \cdot 0 = 0$$

$$|1001\rangle \cdot |1001\rangle = 1 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 + 1 \cdot 1 = 2 = 0$$

It is now necessary to collect n-1=3 independent values of $|y\rangle$ to solve for a

Trial	$ y\rangle$	Indep.?
1	0000⟩	No
1	$ 0010\rangle$	Yes
1	$ 0100\rangle$	Yes
1	$ 0110\rangle$	No
1	$ 1001\rangle$	Yes

Create a matrix from the $y \cdot a = 0$ equation and the three independent values obtained

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_3 \\ a_2 \\ a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Simon's algorithm – example

Solve this matrix equation by Gaussian elimination

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_3 \\ a_2 \\ a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Convert the matrix to an upper triangular form by swapping rows 1 and 3

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_3 \\ a_2 \\ a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Since the bottom row of the matrix is all zeros, a_0 can be either 0 or 1

$$a_0 = 0$$

 $a_1 = 0, \quad a_2 = 0, \quad a_3 + a_0 = 0$
 $a_3 = 0 \longrightarrow \quad a = |0000\rangle$

trivial, incorrect solution

$$a_0 = 1$$
 $a_1 = 0, \quad a_2 = 0, \quad a_3 + a_0 = 0$ $a_3 = -1 = 1 \quad \longrightarrow \quad a = |1001\rangle$

correct solution

Distributed computation

Alice and Bob are each provided with an $N=2^n$ bit number, u and v respectively

Alice must compute an n-bit number a and Bob must compute an n-bit number b such that

$$d_H(u, v) = 0 \longrightarrow a = b$$
 $d_H(u, v) = N/2 \longrightarrow a \neq b$
else \longrightarrow no condition on a and b

This is a challenging problem because u and v are exponentially larger than a and b

A classical solution requires a communication of at least N/2 bits but with enough entangled pairs, no additional communication is needed in a quantum solution

Start with *n* entangled pairs of particles, (a_i, b_i) in states $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ with

$$a_0, a_1, \ldots, a_{n-1}, b_0, b_1, \ldots, b_{n-1} \longrightarrow |\psi\rangle = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} |i, i\rangle$$

Distributed computation

Alice uses the phase change subroutine with $f(i) = u_i$

Bob uses the phase change subroutine with $f(i) = v_i$

$$\sum_{i=0}^{N-1} |i
angle \longrightarrow \sum_{i=0}^{N-1} (-1)^{u_i} |i
angle$$

$$\sum_{i=0}^{N-1} |i
angle \longrightarrow \sum_{i=0}^{N-1} (-1)^{\mathsf{v}_i} |i
angle$$

They each apply the Walsh transformation to get a common global state

$$|\psi
angle = rac{1}{\sqrt{N}}\sum_{i=0}^{N-1}(-1)^{u_i\oplus v_i}\left(rac{\mathcal{W}}{|i
angle}
ight)\otimes \mathcal{W}|i
angle
ight) = rac{1}{N\sqrt{N}}\sum_{i=0}^{N-1}\sum_{i=0}^{N-1}\sum_{k=0}^{N-1}(-1)^{u_i\oplus v_i}(-1)^{i\cdot j}(-1)^{i\cdot k}|jk
angle$$

The probability that the measurement results in a=x=b is the modulus squared of $\langle x,x|\psi\rangle$

$$\langle x, x | \psi \rangle = \frac{1}{N\sqrt{N}} \sum_{i=0}^{N-1} (-1)^{u_i \oplus v_i} (-1)^{i \cdot x} (-1)^{i \cdot x} = \frac{1}{N\sqrt{N}} \sum_{i=0}^{N-1} (-1)^{u_i \oplus v_i}$$

11 / 14

Distributed computation

The probability that Alice and Bob measure the same n bit value, x, is given by

If u = v, then $(-1)^{u_i \oplus v_i} = 1$ so when summed over the N possible values of x, $P_{xx} = 1$ and Alice and Bob will measure a = b with probability 1

For $d_H(u, v) = N/2$ there will be exactly the same number of 1 and -1 values in the sum so $P_{xx} = 0$ and Alice and Bob will measure a = b with probability 0

$$P_{\mathsf{x}\mathsf{x}} = |\langle \mathsf{x}, \mathsf{x} | \psi \rangle|^2 = \left| \frac{1}{N\sqrt{N}} \sum_{i=0}^{N-1} (-1)^{u_i \oplus v_i} \right|^2$$

$$\langle \mathbf{x}, \mathbf{x} | \psi \rangle = \frac{1}{\sqrt{N}}$$

$$\langle \mathbf{x}, \mathbf{x} | \psi \rangle = \mathbf{0}$$

Quantum parallelism

The action of the quantum operator U_f on a maximally superposed state appears to do more computation than a classical computation of f(x)

$$U_f|x,0\rangle = \frac{1}{\sqrt{N}}\sum_{x=0}^{N-1}|x,f(x)\rangle$$

This is not the case, as a single measurement of an m qubit system can only result in a single m-qubit value

Exponential speedups through the use of quantum computation are not possible in general and in many cases there is no speedup at all

Even an efficient quantum algorithm cannot probe the vast space of an $n \otimes m$ qubit system

The value of quantum computing lies in two general techniques

Amplification of outputs of interest: By transforming the state in a way that the output values of interest have a higher probability of being measured

Measuring properties of the set of all f(x): An example is using the quantum Fourier Transform to determine the periodicity of f(x)

Discrete Fourier transform

The quantum Fourier transform is an important building block for many quantum algorithms

In order to develop the efficient implementation of the quantum Fourier transform, it is useful to start with the classical discrete and fast Fourier transforms

The discrete Fourier transform (DFT) is a linear transformation which takes a discrete column vector a(k) to a column vector of Fourier coefficients, A(x), where $0 \le k, x \le N-1$

$$A(x) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} a(k) e^{2\pi i k x/N}$$

The DFT operator is an $N \times N$ matrix with elements

$$F_{xk} = \frac{1}{\sqrt{N}} e^{2\pi i k x/N}$$

Assume $a(k) = e^{-2\pi i u k/N}$ is a function of frequency u < N which evenly divides N

Computing the Fourier coefficients,

$$A(x) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} a(k) e^{2\pi i k x/N} = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{-2\pi i u k/N} e^{2\pi i k x/N} = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i k (x-u)/N}$$

All are zero except for when $x - u = 0 \mod N$ so the only term which survives is A(u)