Lecture 28: Logistic Regression

Chapter 8.4

Binary Outcome Variables

Instead of numerical outcome variables, we have observations Y_i where

- $ightharpoonup Y_i = 1$ with probability p_i
- $Y_i = 0$ with probability $1 p_i$

Binary Outcome Variables

Instead of numerical outcome variables, we have observations Y_i where

- $Y_i = 1$ with probability p_i
- $Y_i = 0$ with probability $1 p_i$

Logistic regression: we are modeling p_i , the probability associated with the i^{th} observation for i = 1, ..., n

Let

$$X_{1,i}, \ldots X_{k,i}$$

be the k predictor variables associated with the i^{th} observation

Let

$$X_{1,i}, \ldots X_{k,i}$$

be the k predictor variables associated with the i^{th} observation

One's first thought might be to model the p_i 's using linear regression:

$$p_i = \beta_0 + \beta_1 x_{1,i} + \ldots + \beta_k x_{k,i}$$

Let

$$X_{1,i}, \ldots X_{k,i}$$

be the k predictor variables associated with the i^{th} observation

One's first thought might be to model the p_i 's using linear regression:

$$p_i = \beta_0 + \beta_1 x_{1,i} + \ldots + \beta_k x_{k,i}$$

However, you may end up fitting p_i 's that are either

- less than 0
- greater than 1

Rather, what is modeled is the logit transformation or log-odds of p_i

$$logit(p_i) = log\left(\frac{p_i}{1 - p_i}\right) = \beta_0 + \beta_1 x_{1,i} + \ldots + \beta_k x_{k,i}$$

Rather, what is modeled is the logit transformation or log-odds of p_i

$$logit(p_i) = log\left(\frac{p_i}{1 - p_i}\right) = \beta_0 + \beta_1 x_{1,i} + \ldots + \beta_k x_{k,i}$$

Why this transformation? It maps the [0,1] interval to a $(-\infty,\infty)$ interval.

First, convert p_i into odds:

"Two to one odds for event X" \equiv "There is a 66% chance of event X occurring."

 $^{^1}$ Not defined actually, we need to state $\lim_{p_i \to 1} \frac{p_i}{1-p_i} = \infty$

First, convert p_i into odds:

"Two to one odds for event X" \equiv "There is a 66% chance of event X occurring."

 $^{^1 \}text{Not defined}$ actually, we need to state $\lim_{p_i \to 1} \frac{p_i}{1-p_i} = \infty$

First, convert p_i into odds:

"Two to one odds for event X" \equiv "There is a 66% chance of event X occurring."

• for
$$p_i = 0 \Rightarrow \log\left(\frac{p_i}{1-p_i}\right) = \log\left(\frac{0}{1}\right) = -\infty$$

 $^{^{1}}$ Not defined actually, we need to state $\lim_{
ho_{i}
ightarrow1}rac{
ho_{i}}{1ho_{i}}=\infty$

First, convert p_i into odds:

"Two to one odds for event X" \equiv "There is a 66% chance of event X occurring."

• for
$$p_i = 0 \Rightarrow \log\left(\frac{p_i}{1-p_i}\right) = \log\left(\frac{0}{1}\right) = -\infty$$

• for
$$p_i = 0.5 \Rightarrow \log\left(\frac{p_i}{1-p_i}\right) = \log\left(\frac{0.5}{0.5}\right) = 0$$

 $^{^{1}}$ Not defined actually, we need to state $\lim_{
ho_{i}
ightarrow1}rac{
ho_{i}}{1ho_{i}}=\infty$

First, convert p_i into odds:

"Two to one odds for event X" \equiv "There is a 66% chance of event X occurring."

• for
$$p_i = 0 \Rightarrow \log\left(\frac{p_i}{1-p_i}\right) = \log\left(\frac{0}{1}\right) = -\infty$$

• for
$$p_i = 0.5 \Rightarrow \log\left(\frac{p_i}{1-p_i}\right) = \log\left(\frac{0.5}{0.5}\right) = 0$$

• for
$$p_1=1\Rightarrow \log\left(\frac{p_i}{1-p_i}\right)=\log\left(\frac{1}{0}\right)^1=\log(\infty)=\infty$$

 $^{^{1}}$ Not defined actually, we need to state $\lim_{p_{i} o 1} rac{p_{i}}{1-p_{i}} = \infty$

Figure 8.14 from page 369

Simple Logistic Regression Example

So say we fit a logistic regression with (n = 3921):

- ► Y_i is spam: binary variable of whether message was classified as spam (1 if spam)
- x is to_multiple: binary variable indicating if more than one recipient listed

Simple Logistic Regression Example

So say we fit a logistic regression with (n = 3921):

- ► Y_i is spam: binary variable of whether message was classified as spam (1 if spam)
- x is to_multiple: binary variable indicating if more than one recipient listed

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-2.1161	0.0562	-37.67	0.0000
to_multiple	-1.8092	0.2969	-6.09	0.0000

The regression equation is

$$\log\left(rac{p_i}{1-p_i}
ight) = -2.12 - 1.81 imes exttt{to_multiple}$$

Inverse Logit Transformation

How do we convert back into p_i 's?

Inverse Logit Transformation

How do we convert back into p_i 's?

Say
$$x = \log\left(\frac{p_i}{1 - p_i}\right)$$
 then $p_i = \frac{\exp(x)}{1 + \exp(x)}$

is the inverse logit transformation.

Inverse Logit Transformation

How do we convert back into p_i 's?

Say
$$x = \log\left(\frac{p_i}{1-p_i}\right)$$
 then $p_i = \frac{\exp(x)}{1+\exp(x)}$

is the inverse logit transformation.

So to convert the regression equation to probabilities, we compute

$$p_{i} = \frac{\exp(\beta_{0} + \beta_{1}x_{1,i} + \ldots + \beta_{k}x_{k,i})}{1 + \exp(\beta_{0} + \beta_{1}x_{1,i} + \ldots + \beta_{k}x_{k,i})}$$

Fitted Probabilities

To compute the fitted probabilities \hat{p}_i :

▶ to_multiple= 0 (only one recipient):

$$\widehat{p}_i = \frac{\exp(-2.12 - 1.81 \times 0)}{1 + \exp(-2.12 - 1.81 \times 0)} = 0.11$$

to_multiple= 1 (many recipients):

$$\widehat{p}_i = \frac{\exp(-2.12 - 1.81 \times 1)}{1 + \exp(-2.12 - 1.81 \times 1)} = 0.02$$

Fitted Probabilities

To compute the fitted probabilities \hat{p}_i :

▶ to_multiple= 0 (only one recipient):

$$\widehat{p}_i = \frac{\exp(-2.12 - 1.81 \times 0)}{1 + \exp(-2.12 - 1.81 \times 0)} = 0.11$$

to_multiple= 1 (many recipients):

$$\widehat{p}_i = \frac{\exp(-2.12 - 1.81 \times 1)}{1 + \exp(-2.12 - 1.81 \times 1)} = 0.02$$

Note: 11% and 2% are not dramatically different. In an ideal world of binary predictors, we'd have fitted probabilities of 100% and 0%.

Fitted Model Using Backwards Regression

The following model was selected in the text using backwards selection using $\alpha=0.05$.

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.8057	0.0880	-9.15	0.0000
to_multiple?	-2.7514	0.3074	-8.95	0.0000
word winner used?	1.7251	0.3245	5.32	0.0000
special formatting?	-1.5857	0.1201	-13.20	0.0000
'RE:' in subject?	-3.0977	0.3651	-8.48	0.0000
attachment?	0.2127	0.0572	3.72	0.0002
word password used?	-0.7478	0.2956	-2.53	0.0114

Fitted Model Using Backwards Regression

The following variables increase the probability that the email is spam, since $\beta>0$

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.8057	0.0880	-9.15	0.0000
to_multiple?	-2.7514	0.3074	-8.95	0.0000
word winner used?	1.7251	0.3245	5.32	0.0000
special formatting?	-1.5857	0.1201	-13.20	0.0000
'RE:' in subject?	-3.0977	0.3651	-8.48	0.0000
attachment?	0.2127	0.0572	3.72	0.0002
word password used?	-0.7478	0.2956	-2.53	0.0114

Fitted Model Using Backwards Regression

The following variables decrease the probability that the email is spam, since $\beta<0$

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.8057	0.0880	-9.15	0.0000
to_multiple?	-2.7514	0.3074	-8.95	0.0000
word winner used?	1.7251	0.3245	5.32	0.0000
special formatting?	-1.5857	0.1201	-13.20	0.0000
'RE:' in subject?	-3.0977	0.3651	-8.48	0.0000
attachment?	0.2127	0.0572	3.72	0.0002
word password used?	-0.7478	0.2956	-2.53	0.0114

Fitted Probabilities

These are all 3921 fitted probabilities:

Say we use a cutoff of 65% to classify an email spam or not:

Using a cutoff of 65%:

		Classification		
		Not Spam Spam		
Truth	Not Spam	3351	3	
	Spam	357	10	

Using a cutoff of 65%:

		Classification		
		Not Spam Spam		
Truth	Not Spam	3351	3	
	Spam	357	10	

▶ Of the emails classified as spam: $\frac{10}{10+3} = 76\%$ correct

▶ Of the emails classified not as spam: $\frac{3351}{3351+357} = 90.3\%$ correct

Now say we use a cutoff of 30% to classify an email spam or not:

Using a cutoff of 30%:

		Classification		
		Not Spam Spam		
Truth	Not Spam	3138	416	
	Spam	166	201	

Using a cutoff of 30%:

		Classification		
		Not Spam Spam		
Truth	Not Spam	3138	416	
	Spam	166	201	

▶ Of the emails classified as spam: $\frac{201}{201+416} = 32.6\%$ correct

▶ Of the emails classified not as spam: $\frac{3138}{3138+166} = 95.0\%$ correct

Moral of the Story: most classifiers (like hypothesis tests) are never perfect. There will almost always be a trade-off between:

- ▶ Type I errors: labeling an email spam when it is not
- ▶ Type II errors: failing to label an email as spam when it is

▶ You mean to say there is a roughly linear relationship between each of the predictors and $\log\left(\frac{p}{1-p}\right)$.

- You mean to say there is a roughly linear relationship between each of the predictors and $\log \left(\frac{p}{1-p}\right)$.
- ▶ Each outcome Y_i is independent of the other outcomes. This can be verified using the residuals $e_i = Y_i \hat{p}_i$

- ▶ You mean to say there is a roughly linear relationship between each of the predictors and $\log \left(\frac{p}{1-p}\right)$.
- ▶ Each outcome Y_i is independent of the other outcomes. This can be verified using the residuals $e_i = Y_i \hat{p}_i$

Please read pages 375 and 376 from the text.

Next Time

Bayes Theorem, Bayesian statistics, False Discovery Rate