EEE 443/543 - Spring 2025 Project #2

Due: 02/21/2025, 11:00pm.

- You are allowed to discuss the homework problems with your classmates, but you are supposed to do your assignment individually.
- READ VERY CAREFULLY: You cannot use an existing machine learning / neural network library.
- Submit one and only one PDF file, which will consist of all written portions of your assignment to the P2-Reports folder as 02-IDNUMBER-YOURLASTNAME.pdf.
- Submit one and only one py file, which will be the requested code of your assignment to P2-Codes folder as 02-IDNUMBER-YOURLASTNAME.py. Jupyter notebook, etc are not allowed. Your code should simply run when I type python (or python3) 02-IDNUMBER-YOURLASTNAME.py
- Late submissions will be penalized according to the Syllabus.
- 1. (100 pts) Write a computer program that runs the perceptron training algorithm with the step activation function $u(\cdot)$. Implement the following steps and report your results. Upload your code that provides these results as described above.
 - (a) Pick (your code should pick it) w_0 uniformly at random on $\left[-\frac{1}{4}, \frac{1}{4}\right]$.
 - (b) Pick w_1 uniformly at random on [-1, 1].
 - (c) Pick w_2 uniformly at random on [-1,1].
 - (d) Pick n = 100 vectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ independently and uniformly at random on $[-1, 1]^2$, call the collection of these vectors \mathcal{S} .
 - (e) Let $S_1 \subset S$ denote the collection of all $\mathbf{x} = [x_1 \ x_2] \in S$ satisfying $[1 \ x_1 \ x_2][w_0 \ w_1, \ w_2]^T \geq 0$.
 - (f) Let $S_0 \subset S$ denote the collection of all $\mathbf{x} = [x_1 \ x_2] \in S$ satisfying $[1 \ x_1 \ x_2][w_0 \ w_1, \ w_2]^T < 0$.
 - (g) In one plot, show the line $w_0 + w_1x_1 + w_2x_2 = 0$, with x_1 being the "x-axis" and x_2 being the "y-axis." In the same plot, show all the points in S_1 and all the points in S_0 . Use different symbols for S_0 and S_1 . Indicate which points belong to which class. An example figure may be as shown in Fig. 1 (My labels look bad, I expect you to do a better job!).
 - (h) Use the perceptron training algorithm to find the weights that can separate the two classes S_0 and S_1 (Obviously you already know such weights, they are w_0, w_1 and w_2 above, but we will find the weights from scratch, and the training sets S_0 and S_1). In detail,
 - i. Use the training parameter $\eta = 1$.
 - ii. Pick w'_0, w'_1, w'_2 independently and uniformly at random on [-1, 1]. Write them in your report.
 - iii. Record the number of misclassifications if we use the weights $[w'_0, w'_1, w'_2]$.
 - iv. After one epoch of the perceptron training algorithm, you will find a new set of weights $[w_0'', w_1'', w_2'']$.
 - v. Record the number of misclassifications if we use the weights $[w_0'', w_1'', w_2'']$.

Figure 1: An example figure for Problem 1g.

- vi. Do another epoch of the perceptron training algorithm, find a new set of weights, record the number of misclassifications, and so on, until convergence.
- vii. Write down the final weights you obtain in your report. How does these weights compare to the "optimal" weights $[w_0, w_1, w_2]$?
- (i) Regarding the previous step, draw a graph that shows the epoch number vs the number of misclassifications.
- (j) Repeat the same experiment with $\eta = 10$. Do not change $w_0, w_1, w_2, \mathcal{S}, w'_0, w'_1, w'_2$. As in the case $\eta = 1$, draw a graph that shows the epoch number vs the number of misclassifications.
- (k) Repeat the same experiment with $\eta = 0.1$. Do not change $w_0, w_1, w_2, \mathcal{S}, w'_0, w'_1, w'_2$. As in the case $\eta = 1$, draw a graph that shows the epoch number vs the number of misclassifications.
- (l) Comment on how the changes in η effect the number of epochs needed until convergence.
- (m) Comment on whether we would get the exact same results (in terms of the effects of η on training performance) if we had started with different $w_0, w_1, w_2, \mathcal{S}, w'_0, w'_1, w'_2$.
- (n) Do the same experiments with n=1000 samples. Comment on the differences compared to n=100.