Тема 3.4. Деревья. Остов графа. Экстремальные графы

План: Выделение минимального остовного дерева связного графа. Метод ветвей и границ. Экстремальные графы.

Задачи с решением

Для графа G, заданного матрицей весов, построить минимальный по весу остов и найти его вес:

	x_1	x_2	x_3	X_4	X_5	X_6	x_7
x_1	8	7	15	12	∞	10	8
x_2	7	8	13	9	∞	8	8
x_3	15	13	8	7	15	7	8
x_4	12	9	7	8	9	8	11
x_5	8	8	15	9	∞	10	8
x_6	10	8	7	8	10	8	12
<i>x</i> ₇	8	8	8	11	8	12	8

Решение:

Воспользуемся алгоритмом Краскала. Найдем ребро минимального веса (есть три варианта: x_1x_2 , x_3x_4 и x_3x_6 имеют вес 7. Выберем, например x_3x_4). На каждом следующем шаге будем брать ребро минимального веса, инцидентное вершинам, уже включенным в остов и при этом не образующего цикла.

Покажем последовательно, как добавлялись ребра на матрице графа (Включенные ячейки закрасим черным, добавляемые – серым). Поскольку граф не ориентирован, то его матрица симметрична и мы возьмем только ту часть матрицы, что находится над главной диагональю.

	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇
x_1	8	7	15	12	8	10	8
x_2	7	8	13	9	8	~	8
x_3	15	13	8	7	15	7	8
X_4	12	9	7	8	9	8	11
x_5	8	8	15	9	8	10	8
x_6	10	∞	7	∞	10	∞	12
<i>x</i> ₇	8	8	8	11	8	12	8

	\mathcal{X}_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	<i>x</i> ₇
x_1	∞	7	15	12	∞	10	∞
x_2	7	8	13	9	8	8	8
x_3	15	13	8	7	15	7	8
x_4	12	9	7	8	9	8	11
x_5	8	8	15	9	8	10	8
x_6	10	8	7	8	10	8	12
x_7	8	8	8	11	∞	12	8

	x_1	x_2	x_3	X_4	<i>X</i> ₅	<i>x</i> ₆	<i>x</i> ₇
x_1	8	7	15	12	∞	10	8
x_2	7	8	13	9	8	8	8
x_3	15	13	8	7	15	7	8
X_4	12	9	7	∞	9	∞	11
x_5	8	∞	15	9	8	10	8
x_6	10	8	7	8	10	8	12
x_7	8	8	∞	11	8	12	8

	x_1	x_2	X_3	X_4	<i>X</i> ₅	<i>x</i> ₆	<i>x</i> ₇
x_1	8	7	15	12	∞	10	8
x_2	7	8	13	9	8	8	8
x_3	15	13	8	7	15	7	8
x_4	12	9	7	8	9	8	11
x_5	8	8	15	9	∞	10	8
x_6	10	8	7	8	10	8	12
x_7	8	8	8	11	8	12	8

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
\mathcal{X}_1	8	7	15	12	∞	10	8
x_2	7	∞	13	9	∞	8	8
x_3	15	13	∞	7	15	7	8
X_4	12	9	7	∞	9	∞	11
x_5	8	∞	15	9	∞	10	8
x_6	10	8	7	8	10	8	12
x_7	8	8	∞	11	∞	12	8

При таком решении трудно отследить образование циклов. Поэтому предлагаем еще один вариант решения. Построим сначала этот граф (Задание 18 сведется к заданию 17).

Получим:

Теперь, возьмем ребро x_3x_4 и будем последовательно добавлять к нему ребра в соответствии с алгоритмом Краскала, как это указано в таблицах выше.

Задачи для самостоятельного решения

1. В заданном графе выделить остов

1.1.

	1	2	3	4	5	6	7	8	9
1		5	7	5			3		
2				6	4				
3					3	4		6	
4						2	4		
5							8		7
6									6
7								7	
8									5
9									

1.2.

	1	2	3	4	5	6	7	8	9
1		4	5	2			7		
2				5	5				
3					5	4		2	
4						3	4		
5							2		7
6									6
7								7	
8									5
9									

1.3.

	1	2	3	4	5	6	7	8	9
1		3	2	5	7				
2				5	6				
3					3	5			
4						6	4		
5							8		7
6								5	6
7								7	
8									3
9									

2. Определить совершенное максимальное паросочетание в двудольном графе.

2.1.

	1	2	3	4	5	6
1	3	5	6	5	2	1
2	2	4	7	6	4	3
3	4	5	4	3	3	4
4	1	2	1	2	3	3
5	2	4	3	4	5	3
6	3	2	3	4	2	2

2.2.

	1	2	3	4	5	6
1	3	5	3	3	2	1
2	2	4	3	6	4	3
3	4	5	2	4	3	4
4	3	2	1	2	2	1
5	3	4	3	4	5	3
6	4	2	2	4	2	2

2.3.

	1	2	3	4	5	6
1	2	3	1	5	2	1
2	2	4	4	6	4	3
3	1	5	4	2	3	4
4	1	2	1	6	3	3
5	2	4	3	1	5	3
6	1	4	3	4	1	2

2.4.

	1	2	3	4	5	6
1	2	5	6	5	2	1
2	1	4	7	6	4	3
3	3	3	6	4	3	4
4	1	2	3	2	3	3
5	3	2	3	4	2	3
	2	4	1	4	5	2

2.5.

	1	2	3	4	5	6
1	3	5	6	5	2	1
2	8	4	7	6	4	3
3	6	5	4	4	3	4
4	1	2	1	2	3	3
5	2	4	3	4	5	3
6	3	6	3	4	2	2