









CS8391

DATA STRUCTURES (Common to CSE & IT)

# **UNIT NO 4**

**NON LINEAR DATA STRUCTURES - GRAPHS** 

**4.4 TOPOLOGICAL SORT** 

**COMPUTER SCIENCE & ENGINEERING** 















### **TOPOLOGICAL SORT**

Topological sorting of vertices of a Directed Acyclic Graph is an ordering of the vertices v1,v2,...vn in such a way, that if there is an edge directed towards vertex vj from vertex vi, then vi comes before vj.

#### **EXAMPLE**







### TOPOLOGICAL SORT ALGORITHM

```
Algorithm TSort(G)
Input: a directed acyclic graph G
Output: a topological ordering of vertices
    initialize Q to be an empty queue;
2.
    for each vertex v
3.
        do if indegree(v) = 0
4.
              then enqueue(Q, v);
    while Q is non-empty
5.
6.
       do v := dequeue(Q);
7.
           output v;
          for each arc (v, w)
8.
              do indegree(w) = indegree(w) - 1;
9.
                  if indegree(w) = 0
10.
                    then enqueue(w)
11.
```





# **EXAMPLE**

**Step 1:** Write in-degree of each vertex









# Step 2:

- Vertex-A has the least in-degree.
- So, remove vertex-A and its associated edges.
- Now, update the in-degree of other vertices.







# Step 3:

- Vertex-B has the least in-degree.
- So, remove vertex-B and its associated edges.
- Now, update the in-degree of other vertices.







# Step 4:

There are two vertices with the least in-degree.

#### In Case 1

- Remove vertex-C and its associated edges.
- Then, update the in-degree of other vertices

### In Case 2

- Remove vertex-D and its associated edges.
- Then, update the in-degree of other vertices.













# Step 5:

Now, the above two cases are continued separately in the similar manner.

### In case 1

- Remove vertex-D since it has the least in-degree.
- Then, remove the remaining vertex-E.

#### In case 2

- Remove vertex-C since it has the least in-degree.
- Then, remove the remaining vertex-E.









For the given graph, following 2 different topological orderings are possible:

- 1. ABCDE
- 2. ABDCE



# **THANK YOU**

