Any signal $s_i(t)$ in a set of M energy signals $\{s_i(t)|1 \le i \le M\}$ can be represented by a linear combination of a set of N orthonormal functions $\{\phi_j(t)|1 \le j \le N\}$ where $N \le M$ as

$$s_i(t) = \sum_{j=1}^{N} s_{ij} \phi_j(t)$$
 , $i = 1, 2, ..., M$, $0 \le t \le T$ (1)

where
$$s_{ij} = \langle s_i(t), \phi_j(t) \rangle = \int_0^T s_i(t) \phi_j(t) dt$$

Note: $\int_0^T s_i(t)\phi_j(t)dt$ gives s_{ij} which is the projection of $s_i(t)$ on $\phi_j(t)$.

The representation (1) has the following matrix form:

$$s_{i}(t) = \left(s_{i1}, s_{i2}, \dots, s_{iN}\right) \begin{pmatrix} \phi_{1}(t) \\ \phi_{2}(t) \\ \vdots \\ \phi_{N}(t) \end{pmatrix}$$

Thus, using the set of the basis functions, each signal $s_i(t)$ maps to a set of N real numbers, which is a N dimensional real-valued vector

$$\mathbf{s}_i = \left(s_{i1}, s_{i2}, \dots, s_{iN}\right)$$

This is a 1-1 correspondence between the signal set (or equivalently, the message symbol set) and the N dimensional vector space.

Input:

M signals $\{s_i(t)\}\$ for $0 \le t < T$ and i = 1,...,M

Output:

 $\{\phi_j(t)\}: N \leq M$ orthonormal basis functions

for $0 \le t < T$ and j = 1,...,N such that

$$S_i(t) = \sum_{j=1}^N S_{ij} \phi_j(t)$$

where
$$s_{ij} = \langle s_i(t), \phi_j(t) \rangle = \int_0^T s_i(t) \phi_j(t) dt$$

Step 1.

$$g_1(t) = s_1(t)$$
 (direction)
 $\phi_1(t) = \frac{g_1(t)}{\|g_1(t)\|}$ (unit length)
 $= \frac{s_1(t)}{\sqrt{E_1}}$ $E_1 = \int_0^T s_1^2(t) dt$

$$\Rightarrow s_1(t) = \sqrt{E_1}\phi_1(t) = s_{11}\phi_1(t)$$
where $s_{11} = \sqrt{E_1}$
and $\phi_1(t)$ has unit energy.

Step 2.

Compute:

$$s_{21} = \int_0^T s_2(t)\phi_1(t)dt$$

Set

$$g_2(t) = s_2(t) - s_{21}\phi_1(t)$$
 $(g_2(t) \perp \phi_1(t))$

$$\Rightarrow \langle g_2(t), \phi_1(t) \rangle = 0$$
 (direction)

 $(\phi_2(t))$ is the normalized version of $g_2(t)$

Compute the norm of $g_2(t)$:

$$E_2 = \int_0^T s_2^2(t) dt$$

$$\begin{aligned} \|g_2(t)\| &= \sqrt{\int_0^T g_2^2(t)dt} \\ &= \sqrt{E_2 - 2s_{21}^2 + s_{21}^2} \\ &= \sqrt{E_2 - s_{21}^2} \end{aligned}$$

Set

$$\phi_2(t) = \frac{g_2(t)}{\|g_2(t)\|} = \frac{s_2(t) - s_{21}\phi_1(t)}{\sqrt{E_2 - s_{21}^2}}$$

Now,
$$\int_{0}^{T} g_{2}(t) \phi_{1}(t) dt = \int_{0}^{T} [s_{2}(t) - s_{21} \phi_{1}(t)] \phi_{1}(t) dt$$
$$= \int_{0}^{T} s_{2}(t) \phi_{1}(t) dt - s_{21} \int_{0}^{T} \phi_{1}(t) \phi_{1}(t) dt$$

$$=s_{21}-s_{21}=0$$

 $g_2(t)$ is orthogonal to $\phi_1(t)$

$$g_{2}(t) = \int_{0}^{T} [s_{2}(t) - s_{21} \phi_{1}(t)]^{2} dt$$

$$g_{2}(t) = \int_{0}^{T} [s_{2}(t) - s_{21} \phi_{1}(t)]^{2} dt$$

$$g_{2}(t) = \int_{0}^{T} s_{2}^{2}(t) dt - 2.s_{21} \int_{0}^{T} s_{2}(t) \phi_{1}(t) + s_{21}^{2} \int_{0}^{T} \phi_{1}^{2}(t) dt$$

$$\int_{0}^{T} g_{2}^{2}(t) dt = E_{2} - 2.s_{21}s_{21} + s_{21}^{2}$$

$$=E_2-s_{21}^2$$

Similarly, third basis function for i = 3,

$$g_{3}(t) = s_{3}(t) - \sum_{j=1}^{2} s_{3j} \phi_{j}(t) \quad 0 \le t < T$$

$$= s_{3}(t) - [s_{31} \phi_{1}(t) + s_{32} \phi_{2}(t)]$$
where $s_{31} = \int_{0}^{T} s_{3}(t) \phi_{1}(t) dt$ and $s_{32} = \int_{0}^{T} s_{3}(t) \phi_{2}(t) dt$

Now
$$\phi_3(t) = \frac{g_3(t)}{\text{Energy of } g_3(t)} = \frac{g_3(t)}{\sqrt{\int_{0}^{T} g_3^2(t) dt}}$$

Step n. Compute:
$$s_{nj} = \langle s_n(t), \phi_j(t) \rangle, j = 1,...,n-1$$

$$g_n(t) = s_n(t) - \sum_{j=1}^{n-1} s_{nj} \phi_j(t)$$
 (direction)

$$||g_n(t)|| = \sqrt{E_n - \sum_{j=1}^{n-1} s_{nj}^2}$$

$$||g_n(t)|| = \sqrt{E_n - \sum_{j=1}^{n-1} s_{nj}^2}$$
 $(E_n = ||s_n(t)||^2 = \int_0^T s_n^2(t) dt)$

$$\phi_n(t) = \frac{g_n(t)}{\|g_n(t)\|}$$
 (unit length)

$$= \frac{s_n(t) - \sum_{j=1}^{n-1} s_{nj} \phi_j(t)}{\sqrt{E_n - \sum_{j=1}^{n-1} s_{nj}^2}}$$

components of $s_n(t)$ already accounted for by $\phi_1(t),...,\phi_{n-1}(t)$

• The dimension N is less than or equal to the number of given signals, M depending on two possibilities:

i. For N=M, the signals $s_1(t), s_2(t), ..., s_M(t)$ are linearly independent

i. For N < M, the signals $s_1(t), s_2(t), ..., s_M(t)$ are not linearly independent

This procedure is proceeded until all signals $s_1(t),...,s_M(t)$ are processed.

It may happen that $s_n(t) - \sum_{j=1}^{n-1} s_{nj} \phi_j(t) = 0$

So, $\phi_n(t) = 0$ because $s_n(t)$ has no component not already accounted for by a combination of $\phi_1(t),...,\phi_{n-1}(t)$. In this case, just skip any signal $s_n(t)$ that gives $\phi_n(t) = 0$.

GSOP -Numerical

Example. A set of four waveform is illustrated as below.

Find an orthonormal set for this set of signals by applying the

Gram-Schmidt procedure.

GSOP - Numerical

GSOP -Numerical

2) To find
$$\phi_{2}(t)$$

$$5_{21} = \int_{0}^{1} 5_{2}(t) \phi_{1}(t) dt = \int_{0}^{1} \frac{1}{\sqrt{2}} dt + \int_{0}^{2} \frac{1}{\sqrt{2}} dt$$

$$= \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = 0$$

$$g_{2}(t) = 5_{2}(t) - 5_{21} \phi_{1}(t) = 5_{2}(t)$$

$$\phi_{2}(t) = \int_{0}^{2} \frac{1}{\sqrt{2}} dt + \int_{0}^{2} \frac$$

GSOP - Numerical

3) To
$$\int_{1}^{1} dt = \int_{1}^{1} \int_{1}^{2} dt = \int_{1}^{2} \int_{1}^{2} \int_{1}^{2} dt = \int_{1}^{2$$

GSOP - Numerical

4) To find
$$Q_{4}(t)$$
 $g_{41} = \int_{0}^{g_{4}(t)} \varphi_{1}(t) dt = \int_{0}^{2} \frac{1}{\sqrt{2}} dt = \sqrt{2}$
 $g_{42} = \int_{0}^{g_{4}(t)} \varphi_{2}(t) dt = \int_{0}^{2} \frac{1}{\sqrt{2}} dt - \int_{1}^{2} \frac{1}{\sqrt{2}} dt = 0$
 $g_{43} = \int_{0}^{g_{4}(t)} \varphi_{1}(t) dt = \int_{0}^{3} 1 dt = 1$
 $g_{44}(t) = g_{44}(t) - g_{44}(t) - g_{44}(t) - g_{44}(t) - g_{44}(t) = 0$
 $g_{44}(t) = g_{44}(t) - g_{44}(t) - g_{44}(t) - g_{44}(t) = 0$
 $g_{44}(t) = g_{44}(t) - g_{44}(t) = 0$
 $g_{44}(t) = g_{44}(t) - g_{44}(t) = 0$

GSOP -Numerical

- Orthogonalization continues till N≤M
- If $g_i(t) = 0$ at any step, then there is no further basis function.
- Here, No. of orthonormal basis functions

$$N = 3 < 4$$
 (No. of signals)

• This implies $s_4(t)$ can be expressed as the linear combination of other basis functions:

$$s_4(t) = \sqrt{2}\emptyset_1(t) + \emptyset_3(t)$$

