- 1. 极限 $\lim_{\substack{x \to 0 \\ x \to 0}} \frac{xy^2}{4(\sqrt{xy+4}-2)} = \underline{\hspace{1cm}}$
- 2. 函数 $f(x,y) = xy + x \ln y$ 在点(2,1)处沿梯度方向的方向导数为:_____。
- 3. 直线 $\begin{cases} x+y+z+1=0 \\ x-2y+z+4=0 \end{cases}$ 的方向向量为______。
- 4. 化二次积分 $I = \int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f(x,y) dy$ 为极坐标的二次积分,则 I =______。
- 5. 设 $z = f(xy, \frac{y}{y})$, 其中f具有二阶连续导数,则 $\frac{\partial^2 z}{\partial y^2} = \frac{\partial^2 z}{\partial y^2}$
- 6. 利用斯托克斯公式,将曲线积分 $I = \int 3ydx + zdy + 2xdz$ 化为曲面积分,则 *I* = ∫∫ _____∘
- 7. 设 $\overrightarrow{A} = vz \overrightarrow{i} + zx \overrightarrow{j} + xy \overrightarrow{k}$,则旋度 $rot \overrightarrow{A} = \underline{}$ 。
- 8. $\overrightarrow{v} \stackrel{\rightarrow}{A} = x^3 \stackrel{\rightarrow}{i} + 2e^z \stackrel{\rightarrow}{j} + \cos(xy) \stackrel{\rightarrow}{k}$, 则在点(1, 0, 0) 的散度 $\overrightarrow{div} \stackrel{\rightarrow}{A} =$
- 9. 级数 $\sum_{n=1}^{\infty} (-1)^{(n-1)} \frac{(x+1)^n}{2n}$ 的收敛区间是______。
- 10. 函数 $f(x) = \ln(1-x)$ 的麦克劳林级数为_____。
- 11. 设函数 z = z(x, y)由方程组 $\begin{cases} z = uv , \\ x = e^{u+v},$ 确定,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ 。
- 12. 求抛物面 $z = x^2 + y^2$ 与锥面 $z = 6 \sqrt{x^2 + y^2}$ 所围立体的体积和表面积。
- 13. 求 $\int_{I} (e^{x} \sin y 2y) dx + (e^{x} \cos y 2x) dy$, 其中 L 为上半圆周 $(x-a)^{2} + y^{2} = a^{2}$, $y \ge 0$, 沿逆时针方向.
- 14. 计算第一类曲面积分 $I = \iint y^2 dS$, 其中 Σ 是

 $z = \sqrt{x^2 + v^2}$ 与z = 3所围成的空间体的整个边界曲面。

- 15. 求 $\iint_{\Sigma} (y^2 z) dy dz + (z^2 x) dz dx + (x^2 y) dx dy$, 其中 \sum 为锥面 $z = \sqrt{x^2 + y^2}$ (0 \le z \le a) 的外侧;
- 16. 在收敛区间上求级数 2019 + $\sum_{n(n+1)}^{\infty}$ 的和函数。
- 17. 将函数 $f(x) = \pi x$, $(0 \le x < \pi)$ 展开成余弦级数。