MATH 5301 Elementary Analysis - Final Exam

Jonas Wagner

2021, December 7th

Problem 1

For each $n \in \mathbb{N}$ define the set

$$Q_n := \left\{ \frac{1}{pq} : 0 n; \ \gcd(p, q) = 1 \right\}$$

Let f(n) be the sum of all elements of Q_n . Find $\inf_n f(n)$.

Definition 1. Let the set Q_n be defined for all $n \in \mathbb{N}$ as

$$Q_n := \left\{ \frac{1}{pq} : 0 n; \ \gcd(p, q) = 1 \right\}$$

Definition 2. Let f(n) be the sum of all elements within Q_n .

Definition 3. A lower bound of subset A in the partially ordered set (S, \leq) is defined by

$$a \in S : a < x \forall_{x \in A}$$

A lower bound of a is called an <u>infimum</u> of set $A \in (S, \leq)$, denoted as $a = \inf A$, is the greatest lower bound. i.e.

$$\forall_{y \in S: a < x \forall_{x \in A}} y \leq a$$

Definition 4. The Greatest Common Divisor of two nonzero integers $a, b \in \mathbb{Z} \neq 0$, gcd(a, b), is defined as the largest positive integer, $d \in \mathbb{Z}_+$, so that d is a divisor of both a and b. i.e:

$$\gcd(a,b) := d \in \mathbb{Z}_+ \ : \ (a \stackrel{.}{\cdot} d) \wedge (b \stackrel{.}{\cdot} d) \wedge (\forall \qquad d \geq x)$$

Additionally, a and b are considered coprime if gcd(a, b) = 1.

Assumption 1. For this problem it is assumed that gcd is only defined within \mathbb{Z}_+ , although I believe this can also be expanded to other less-strict ordered sets in the same way.

Assumption 2. It is assumed that the sum of all elements in the empty set is 0, i.e. $\sum_{i} \emptyset = 0$.

Theorem 1.

$$\inf_{n \in \mathbb{N}} f(n) = 0$$

Proof. Proof by induction.

For $n=1, \ \neg \exists_{p,q\in\mathbb{Z}\ :\ 0< p< q\leq 1}$ meaning that $Q_1=\emptyset$. This implies that $f(1)=\sum_i\emptyset=0$ and that $f(1)\geq 0$.

For n=2,

$$(p,q) \in \{(p,q) \ : \ 0 n; \ \gcd(p,q) = 1\} = \{(1,2)\}$$

The set Q_2 is then defined as

$$Q_2 = \left\{ \frac{1}{pq} : (p,q) \in \{(1,2)\} \right\} = \left\{ \frac{1}{(1)(2)} \right\} = \left\{ \frac{1}{2} \right\}$$

Therefore,

$$f(2) = \sum_{i} \left\{ \frac{1}{2} \right\} = \frac{1}{2}$$

It is clear that $f(2) = \frac{1}{2} \ge 0$.

For n=3,

$$(p,q) \in \{(p,q) : 0 n; \ \gcd(p,q) = 1\} = \{(1,3),(2,3)\}$$

The set Q_3 is then defined as

$$Q_3 = \left\{ \frac{1}{pq} : (p,q) \in \{(1,3),(2,3)\} \right\} = \left\{ \frac{1}{(1)(3)}, \frac{1}{(2)(3)} \right\} = \left\{ \frac{1}{3}, \frac{1}{6} \right\}$$

Therefore,

$$f(3) = \sum_{i} \left\{ \frac{1}{3}, \frac{1}{6} \right\} = \frac{1}{3} + \frac{1}{6} = \frac{2+1}{6} = \frac{3}{6} = \frac{1}{2}$$

It is clear that $f(3) = \frac{1}{2} \ge 0$. For n=4,

$$(p,q) \in \{(p,q) : 0 n; \gcd(p,q) = 1\} = \{(1,4), (2,3), (3,4)\}$$

The set Q_4 is then defined as

$$Q_4 = \left\{ \frac{1}{pq} : (p,q) \in \{(2,3), (3,4)\} \right\} = \left\{ \frac{1}{(1)(4)}, \frac{1}{(2)(3)}, \frac{1}{(3)(4)} \right\} = \left\{ \frac{1}{4}, \frac{1}{6}, \frac{1}{12} \right\}$$

Therefore,

$$f(4) = \sum_{i} \left\{ \frac{1}{6}, \frac{1}{12} \right\} = \frac{1}{4} + \frac{1}{6} + \frac{1}{12} = \frac{3+2+1}{12} = \frac{6}{12} = \frac{1}{2}$$

It is clear that $f(4) = \frac{1}{2} \ge 0$. For an arbitrary $n \in \mathbb{N}$,

$$(p,q) \in \{(p,q) : 0 n; \ \gcd(p,q) = 1\} = \{(1,n), (2,n-\star), (3,n-\star), \dots, (n-2,n-1), (n-1,n)\}$$

$$Q_n = \left\{ \frac{1}{pq} : (p,q) \in \{(1,n), (2,n-\star), \dots, (n-2,n-1), (n-1,n)\} \right\}$$

$$= \left\{ \frac{1}{(1)(n)}, \frac{1}{(2)(n-1)}, \dots, \frac{1}{(n-2)(n-1)}, \frac{1}{(n-1)(n)} \right\}$$

$$= \left\{ \frac{1}{n}, \frac{1}{2(n-\star)}, \dots, \frac{1}{(n-2)(n-1)}, \frac{1}{n(n-1)} \right\}$$

where \star is dependent for on divisibility properties between n and 2, 3, 4, etc. It is important to note that each increase of n will cause every term to decrease in magnitude individually but additional elements are added that result to adding up to $\frac{1}{2}$ again.

However, eventually this will reach a point where a lack of prime numbers in a region makes it so that the only coprime numbers satisfying the conditions are adjacent to one another, which leads to the following:

$$f(n) = \sum_{i} Q_{n} = \frac{1}{n} + \dots + \frac{1}{\left(\frac{n}{2}\right)\left(\frac{n}{2} + 1\right)} + \dots + \frac{1}{n(n-1)}$$

$$f(n+1) = \left(\sum_{i} Q_{n}\right) \left(\frac{n!}{(n+1)!}\right) + \frac{1}{(n+1)}$$

$$= \frac{1}{n} \frac{n!}{(n+1)!} + \dots + \frac{1}{\left(\frac{n}{2}\right)\left(\frac{n}{2} + 1\right)} \frac{n!}{(n+1)!} + \dots + \frac{1}{n(n-1)} \frac{n!}{(n+1)!} + \frac{1}{n+1}$$

$$= \frac{n!}{n(n+1)n!} + \dots + \frac{n!}{\frac{n}{2}\left(\frac{n}{2} - 1\right)(n+1)n!} + \dots + \frac{n!}{n(n-1)(n+1)n!} + \frac{1}{n+1}$$

$$= \sum_{i} Q_{n+1} = \frac{1}{n+1} + \dots + \frac{1}{\left(\frac{n+1}{2}\right)\left(\frac{n+1}{2} + 1\right)} + \dots + \frac{1}{n(n+1)}$$

essentially every (p,q) becomes (q,q+1) and the new $\frac{1}{(n+1)}$ is added.

Anyway, the point is that $\forall_{n \in \mathbb{N} : n > 1} f(n) \geq \frac{1}{2}$; however, because f(n) is included, $\frac{1}{2} \leq f(n) \forall_{n \in \mathbb{N}}$ since $Q_1 = \emptyset \implies f(1) = 0$.

Therefore,

$$\inf_{n} f(n) = 0$$

Problem 2

Let (X, d) be a metric space. Let $B_r(a)$ denote the open ball of radius r centered at a. i.e. Can it happen that $B_{r_1}(a) \subset B_{r_2}(a)$ but $r_1 > r_2$?

Definition 5. Within the metric space (X,d), the open ball of radius $r \in X$ centered at $a \in X$, denoted as $B_r(a)$, is defined as:

$$B_r(a) := \{ x \in X : d(a, x) < r \}$$

Assumption 3. First it will be assumed that (X, d) is a normed vector space in which the triangle inequality holds. i.e.

$$\forall_{x,y,z\in X} d(x,z) \le d(x,y) + d(y,z)$$

This can also be denoted as $(X, \|\cdot\|)$ to distinguish between them. It is also assumed that X is complete.

Theorem 2. For $r_1 > r_2$ then it is not possible for $B_{r_1}(a) \subset B_{r_2}(b)$ within $(X, \|\cdot\|)$:

Proof. Proof by contradiction.

Let

$$B_{r_1}(a), B_{r_2}(b) \subset X$$

with $0 < r_2 < r_1$ and $a \in B_{r_2}(b)$.

To minimize the amount of the set existing outside of the set, we need to set a = b. Next, let c be a point within the punctured open ball $B_{r_2}(b)$. i.e.

$$c \in B_{r_2}(b) \setminus \{b\}$$

c can then be used to construct a point that is contained in $B_{r_2}(b)$ but not in $B_{r_1}(a)$:

$$p + \frac{r_1 + r_2}{2} \frac{ac}{\|ac\|} \in B_{r_1}(a) \backslash B_{r_2}(b)$$

Meaning that there is no possible way for an open ball of greater radius (within a normed metric space). \Box

Assumption 4. The previous assumption, Assumption 3, is now relax the metric so that d is not restricted by completeness or

Theorem 3. It is possible for $B_{r_1}(a) \subset B_{r_2}(b)$ within (X,d) when $r_1 > r_2$:

Proof. Proof by example:

Let metric space (X, d) be defined by

$$X := 0 \cup [5, \infty)$$

$$d(x,y) := |x - y|$$

For $r_1 = 4$, $r_2 = 3$,

Let $B_4(0)$ be defined as

$$B_4(0) := \{4x \in X : d(0,x) < 4\} = \{0\} \cup [2,4)$$

Let $B_3(2)$ be defined as

$$B_3(2) := \{x \in X : d(2,x) < 3\} = \{0\} \cup [2,5)$$

Clearly, $B_3(2) \subset B_4(0)$. Since $r_1 = 4 > r_2 = 3$, this exists as an example that satisfies the conditions.

Problem 3

Let M be the set of all bounded sequences

$$M = \{ \{a_j\}_{j=1}^{\infty} : |a_j| < \infty \}$$

Define $\rho(\{a_n\},\{b_n\}) = \max_{n \in \mathbb{N}} |a_n - b_n|$

- a) Show that (M, ρ) is a metric space.
- b) Show that M does not contain a dense