M378K Introduction to Mathematical Statistics Problem Set #8

Transformations of Random Variables.

Problem 8.1. Let X be a continuous random variable with the cumulative distribution function denoted by F_X and the probability density function denoted by f_X .

Let the random variable Y = 2X have the p.d.f. denoted by f_Y . Then,

- (a) $f_Y(x) = 2f_X(2x)$
- (b) $f_Y(x) = \frac{1}{2} f_X\left(\frac{x}{2}\right)$
- (c) $f_Y(x) = f_X(2x)$
- (d) $f_Y(x) = f_X\left(\frac{x}{2}\right)$
- (e) None of the above

Problem 8.2. If the continuous random variable X has the distribution function F_X , then the distribution function of the random variable Y = |X| equals

$$F_Y(y) = ?$$

Remark 8.1. The goal is to figure out the distribution of the random variable

$$X = g(Y_1, Y_2, \dots, Y_n)$$

where Y_i , i = 1, ..., n are a random sample with a common density f_Y .

- 1. Identify the objective: We want f_X .
- 2. Realize: $f_X = F_X'$
- 3. Recall the definition: $F_X(x) = \mathbb{P}[X \leq x] = \mathbb{P}[g(Y_1, \dots, Y_n) \leq x]$
- 4. Identify the region A_x in \mathbb{R}^n where

$$g(y_1,\ldots,y_n) \leq x$$

for every x, i.e., express

$$A_x = \{(y_1, \dots, y_n) : g(y_1, \dots, y_n) \le x\}$$

5. Calculate

$$F_X(x) = \int \cdots \int_{\mathbb{R}^n} \mathbf{1}_{A_x}(y_1, \dots, y_n) f_Y(y_1) \dots f_Y(y_n) dy_1 \dots dy_n.$$

- 6. Differentiate: $f_X = F'_X$.
- 7. Pat yourself on the back!

Problem 8.3. One-to-one transformations: Step-by-step Let Y be a random variable with density f_Y . Let $g: \mathbb{R} \to \mathbb{R}$ be a strictly increasing differentiable function. Define $\tilde{Y} = g(Y)$. What is the density function $f_{\tilde{Y}}$ of \tilde{Y} expressed in terms of f_Y and g?

- 1. Identify the objective: We want $f_{\tilde{Y}}$.
- 2. Realize: $f_{\tilde{Y}} = F'_{\tilde{Y}}$
- 3. Recall the definition:

$$F_{\tilde{\mathbf{V}}}(x) =$$

4. The function g is assumed to be **strictly increasing**. In which way can you modify the inequality in the probability you obtained above to *separate* the random variable Y from the transformation g?

5. Express your result from above in terms of the c.d.f. ${\cal F}_Y$ of the r.v. ${\cal Y}$.

6. Differentiate: $f_{\tilde{Y}} = F'_{\tilde{Y}}$.

Problem 8.4. The time T that a manufacturing distribution system is out of operation is modeled by a distribution with the following c.d.f.

$$F_T(t) = (1 - (2/t)^2) \mathbf{1}_{(2,\infty)}(t)$$

The resulting cost to the company is $Y = T^2$. Find the probability density function f_Y of the r.v. Y.

Problem 8.5. What if h is strictly decreasing?

Problem 8.6. The unifying formula?

Do not forget: it always makes sense to simply attack a problem without giving it a "label" Just look at the following problem:

Problem 8.7. Let T_1 and T_2 be independent shifted geometric random variables with parameters $p_1=1/2$ and $p_2=1/3$. Compute $\mathbb{E}[\min(T_1,T_2)]$.