Statistics 206

Homework 1

Due: October 2, 2019, In Class

- 1. Review Appendix A3 and the matrix notes on canvas under "Files/Reading".
- 2. **Z** is an n-dimensional random vector with expectation $\mathbf{E}(\mathbf{Z})$ and variance-covariance matrix:

$$Var(\mathbf{Z}) = Cov(\mathbf{Z}, \mathbf{Z}) = \Sigma.$$

A is an $s \times n$ nonrandom matrix and B is a $t \times n$ nonrandom matrix. Show the following:

- (a) $\mathbf{E}(A\mathbf{Z}) = A\mathbf{E}(\mathbf{Z})$.
- (b) $\mathbf{Cov}(A\mathbf{Z}, B\mathbf{Z}) = A\Sigma B^T$. In particular, $\mathbf{Var}(A\mathbf{Z}) = A\Sigma A^T$.
- 3. Derive the following.
 - (a) $\sum_{i=1}^{n} (X_i \overline{X}) = 0$, $\sum_{i=1}^{n} (X_i \overline{X})^2 = \sum_{i=1}^{n} (X_i \overline{X}) X_i = \sum_{i=1}^{n} X_i^2 n(\overline{X})^2$.
 - (b) $\sum_{i=1}^{n} (X_i \overline{X})(Y_i \overline{Y}) = \sum_{i=1}^{n} (X_i \overline{X})Y_i = \sum_{i=1}^{n} X_i Y_i n\overline{X} \overline{Y}$.
- 4. Least-squares principle.
 - (a) State the least-squares principle.
 - (b) Derive the LS estimators for simple linear regression model.
 - (c) Assume the observations follow:

$$Y_i = \exp(a + bX_i) + \epsilon_i, \quad i = 1, \dots, n,$$

where $a,b \in \mathbb{R}$ are unknown parameters and ϵ_i s are uncorrelated random variables with $E(\epsilon_i) = 0, Var(\epsilon_i) = \sigma^2$. Describe how to estimate the regression function (equivalently, a,b) by least-squares principle. (Notes: You only need to provide a description. This is an example of a nonlinear regression model.)

- 5. Tell true or false (with a brief explanation) of the following statements with regard to simple linear regression.
 - (a) The least squares line always passes the center of the data $(\overline{X}, \overline{Y})$.
 - (b) The true regression line fits the data the best.
 - (c) If $\overline{X} = 0$, $\overline{Y} = 0$, then $\hat{\beta}_0 = 0$ no matter what is $\hat{\beta}_1$.
 - (d) Given the sample size, the larger the range of X_i s, the smaller the standard errors of $\hat{\beta}_0, \hat{\beta}_1$ tend to be.

- (e) If the correlation coefficient r_{XY} between X_i s and Y_i s is such that $|r_{XY}| < 1$, then we will observe regression effect.
- 6. Properties of the residuals under simple linear regression model. Recall that

$$e_i = Y_i - \widehat{Y}_i = Y_i - (\widehat{\beta}_0 + \widehat{\beta}_1 X_i), \quad i = 1, \dots n.$$

= $(Y_i - \overline{Y}) - \widehat{\beta}_1 (X_i - \overline{X}).$

Show that

- (a) $\sum_{i=1}^{n} e_i = 0$.
- (b) $\sum_{i=1}^{n} X_i e_i = 0$.
- (c) $\sum_{i=1}^{n} \widehat{Y}_i e_i = 0$.
- 7. Under the simple linear regression model, show the following.
 - (a) The LS estimator $\hat{\beta}_0$ is an unbiased estimator of β_0 and derive the formula for its variance.
 - (b) \overline{Y} and $\hat{\beta}_1$ are uncorrelated. (Hint: Write them as linear combinations of Y_i s.)
- 8. Under the simple linear regression model:
 - (a) Show that

$$SSE = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 - \hat{\beta}_1^2 \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

- (b) Derive $E(\hat{\beta}_1^2)$.
- (c) Show that

$$E((Y_i - \bar{Y})^2) = \beta_1^2 (X_i - \bar{X})^2 + E((\epsilon_i - \bar{\epsilon})^2),$$

where
$$\bar{\epsilon} = \frac{1}{n} \sum_{i=1}^{n} \epsilon_i$$
.

(d) Show that $E(SSE) = (n-2)\sigma^2$. (Hint: What is $E(\sum_{i=1}^n (\epsilon_i - \bar{\epsilon})^2)$?)