1: Communication

Xin Wang

I. COMMUNICATION

- Transmission of information from one point to another
- · Basic elements:
 - Information source
 - Transmitter
 - Channel
 - Receiver

A. Communication channels

- Propagation loss: Signal strength decay with distance
- Bandwidth: Frequency range used for communication
- Time variation: Channel characteristic variation in time
- Nonlinearity: Introduced by some elements e.g. repeaters
- Multi-path interference: Deteriorates signal contents

B. Noise

- Unwanted signals in communication system
- Two types:
 - External noise: Natural noise, man-made noise
 - Internal noise: Thermal noise due to channel
- Signal-to-noise ratio (SNR):

$$SNR = \frac{Signal\ power}{Noise\ power}$$

II. TRANSMITTER AND RECEIVER

- Transmitter: Convert source into transmissible format
 - Modulation: Carrier-wave parameter based on signal
 - **Up-conversion**: Modulated f(x) convert to final RF
- Receiver: Reconstruct original signal from modulated
 - Down-conversion: Convert to original RF
 - Demodulation: Convert to original signal
- Some degradation depending on channel and modulation

III. OBJECTIVES OF SYSTEM DESIGN

- Primary resources in communication design:
 - Transmitted power
 - Channel bandwidth
- Deliver message efficiently and reliably within constraints
 - Efficiency: Number of transmitted bits in unit power
 - Reliability: SNR or Error Probability

A. Shannon capacity formula

• Maximum rate of reliable transmission:

$$C = W \log(1 + \text{SNR})$$

where W (Hz) is the bandwidth of a channel

• Almost 0 error probability if signal rate less than C