PRÁCTICA 2

Para esta práctica, utiliza los datos de la tabla wage1.

Considera los mismos datos que en la primera parte, con $Y_i = wage_i$, $X_i = educ_i$.

- (1) Cómo se intertpreta el parámetro estimado $\hat{\alpha}$.
- (2) Cómo se intertpreta el parámetro estimado β .
- (3) De acuerdo a este modelo lineal, ¿cuánto predice que será el sueldo (wage), en promedio, para una persona con 10 años de educación?
- (4) De acuerdo a este modelo lineal, ¿cuánto predice que será el sueldo (wage), en promedio, para una persona con 16 años de educación?
- (5) De acuerdo a este modelo lineal, ¿cuánto predice que aumentará el sueldo (wage), en promedio, si una persona aumenta 1 año de educación?
- (6) De acuerdo a este modelo lineal, ¿cuánto predice que aumentará el sueldo (wage) si una persona aumenta 4 años de educación?
- (7) Calcula $\sum_{i=1}^{n} y_i^2$ (8) Calcula $\sum_{i=1}^{i=1} \hat{y}_i^2$ (9) Calcula $\sum_{i=1}^{n} \hat{u}_i^2$

- (10) Realiza un diagrama de dispersión \hat{u}_i vs X_i , con \hat{u}_i en el eje vertical.
- (11) Calcula $\hat{\sigma}^2$
- (12) Calcula $var(\hat{\beta})$
- (13) Calcula el error estándar $e.e.(\hat{\beta})$
- (14) Calcula $var(\hat{\alpha})$
- (15) Calcula $e.e(\hat{\alpha})$
- (16) La covarianza entre $\hat{\beta}$ y $\hat{\alpha}$ está dada por $cov(\hat{\alpha}, \hat{\beta}) = -\bar{X}var(\hat{\beta})$. Calcula $cov(\hat{\alpha}, \hat{\beta})$.
- (17) Compara el error estándar calculado, con las estimaciones dadas por R en el resumen (summary) de estimadores del modelo lineal.