# **Historic, Archive Document**

Do not assume content reflects current scientific knowledge, policies, or practices.





# Idaho Water Supply Outlook Report May 1, 2004



In the year 2000, Atlanta Summit and Jackson Peak SNOTEL sites showed similar snowmelt rates and melt out dates as expected because they are in the same basin, at similar elevations and only 25 miles apart. However in 2004, the snow at Atlanta Summit melted at a significantly more rapid rate than the snow at Jackson Peak and it melted out nearly two full months earlier than the 30 year average melt out date. In early April, both sites held approximately 25 inches of snow water. By May 1<sup>st</sup>, Atlanta Summit held only 6.4 inches of snow water (2<sup>nd</sup> lowest value in last 55 years of data), whereas Jackson Peak still retained 15.2 inches. The difference in melt rates may be explained by a fire that burned much of the surrounding forest near the Atlanta Summit site and actually damaged some of the weather sensors in the summer of 2003. Previous years' fires across the state may have had similar effects on melt processes of local snowpacks resulting in more rapid melt and earlier melt out dates. Looking ahead to another dry summer and low water year, fire may play a large role in snow distribution and melt processes of the snowpack in years to come.

# Basin Outlook Reports and Federal - State - Private

**Cooperative Snow Surveys** 

For more water supply and resource management information, or to subscribe to this publication Contact - - Your local Natural Resources Conservation Service Office

or Natural Resources Conservation Service Snow Surveys 9173 West Barnes Drive, Suite C Boise, Idaho 83709-1574 (208) 378-5740

Internet Web Address http://www.id.nrcs.usda.gov/snow/

# How forecasts are made

Most of the annual streamflow in the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Measurements of snow water equivalent at selected manual snow courses and automated SNOTEL sites, along with precipitation, antecedent streamflow, and indices of the El Niño / Southern Oscillation are used in computerized statistical and simulation models to prepare runoff forecasts. These forecasts are coordinated between hydrologists in the Natural Resources Conservation Service and the National Weather Service. Unless otherwise specified, all forecasts are for flows that would occur naturally without any upstream influences.

Forecasts of any kind, of course, are not perfect. Streamflow forecast uncertainty arises from three primary sources: (1) uncertain knowledge of future weather conditions, (2) uncertainty in the forecasting procedure, and (3) errors in the data. The forecast, therefore, must be interpreted not as a single value but rather as a range of values with specific probabilities of occurrence. The middle of the range is expressed by the 50% exceedance probability forecast, for which there is a 50% chance that the actual flow will be above, and a 50% chance that the actual flow will be below, this value. To describe the expected range around this 50% value, four other forecasts are provided, two smaller values (90% and 70% exceedance probability) and two larger values (30%, and 10% exceedance probability). For example, there is a 90% chance that the actual flow will be more than the 90% exceedance probability forecast. The others can be interpreted similarly.

The wider the spread among these values, the more uncertain the forecast. As the season progresses, forecasts become more accurate, primarily because a greater portion of the future weather conditions become known; this is reflected by a narrowing of the range around the 50% exceedance probability forecast. Users should take this uncertainty into consideration when making operational decisions by selecting forecasts corresponding to the level of risk they are willing to assume about the amount of water to be expected. If users anticipate receiving a lesser supply of water, or if they wish to increase their chances of having an adequate supply of water for their operations, they may want to base their decisions on the 90% or 70% exceedance probability forecasts, or something in between. On the other hand, if users are concerned about receiving too much water (for example, threat of flooding), they may want to base their decisions on the 30% or 10% exceedance probability forecasts, or something in between. Regardless of the forecast value users choose for operations, they should be prepared to deal with either more or less water. (Users should remember that even if the 90% exceedance probability forecast is used, there is still a 10% chance of receiving less than this amount.) By using the exceedance probability information, users can easily determine the chances of receiving more or less water.

The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, or marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at 202-720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, D.C., 20250-9410, or call (202) 720-5964 (voice and TDD). USDA is an equal employment opportunity provider and employer.

# Idaho Water Supply Outlook Report Revision Of Mailing List Or To Sign-Up For Report

The Idaho Water Supply Outlook Report is published and distributed as a public service by the USDA, Natural Resources Conservation Service from January to May each year. The June report is not mailed to recipients and is available via the Internet. In order to maintain current mailing information, control the cost of this publication and ensure maximum use of the information, we are required to examine our circulation annually. This notice is required by the congressional joint committee for the annual revision of free mailing lists.

The Idaho Water Supply Outlook Report is available on the Internet at http://www.id.nrcs.usda.gov/snow/ and allows you to obtain the Water Supply Outlook Report several days before you receive it in the mail. Additional water supply products and most current snowpack information are also available on the Internet.

Please mark the box [ ] for the BASIN REPORT you would like to receive. If you check more than one basin you will automatically receive the report for <u>all</u> basins.



[] #1 - Panhandle Region

[] #2 - Clearwater River Basin

[]#3 - Salmon River Basin

[] #4 - Weiser, Payette, Boise River Basins

[] #5 - Wood and Lost River Basins

[] #6 - Upper Snake River Basin

[] #7 - Southside Snake River Basins

[] #8 - Bear River Basin



[] - Annual Data Summary Report - published after each water year: contains individual snow course measurements, snow water equivalent and precipitation data from SNOTEL (SNOw TELemetry) stations, and the 1971-2000 averages.

[] Check if you selected different basins than you currently receive.

[] Check if you no longer wish to receive the Idaho Water Supply Outlook Report.

[] Check if you prefer Internet access and can be removed from our mailing list.

To sign-up for report, please fill out your mailing address.

NAME:

**AFFILIATION:** 

ADDRESS:

IS YOUR ADDRESS CORRECT?
[] YES [] NO

[] LES [] NO

If NO, please make corrections.

# IMPORTANT NOTICE REVISION OF MAILING LIST

# IDAHO WATER SUPPLY OUTLOOK REPORT INSTRUCTIONS TO RECIPIENTS

- Detach this page and complete reverse side of this form.
- Please make any corrections/changes to your address on the mailing label prior to mailing.
- Fold so that the address below is outside and staple or tape.
- Stamp and mail immediately.

Fold Here

Fold Here

UNITED STATES DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE 9173 West Barnes Drive, Suite C Boise, ID 83709-1574

Postage Required

AN EQUAL OPPORTUNITY PROVIDER AND EMPLOYER

USDA Natural Resources Conservation Service Snow Survey Office 9173 West Barnes Drive, Suite C Boise, ID 83709-1574

# IDAHO WATER SUPPLY OUTLOOK REPORT May 1, 2004

# **SUMMARY**

The March and April weather was nice, but not normal. It has deteriorated Idaho's healthy snowpacks that were near average in early and mid-winter and are now well below average. Streamflow forecasts have mirrored the declining snow and decreased each month. Streamflow forecasts remain the lowest in the Bear River basin at 4% of average and are 20-50% in central Idaho. The highest are 70% of average for a few streams in northern Idaho. In some basins like the Boise and upper Snake, streamflow will be less than the past two years, but better than in 2001. However, the Big Lost basin may experience the lowest surface water supplies since the drought started four years ago unless conditions improve. This is not good news for Idaho's numerous water users that were hoping this year's encouraging snowfall would put a dent in the cumulative four year drought. The drought will continue for the fifth straight year in parts of Idaho and may be the driest year yet.

Moderate above normal mountainous temperatures in March and April gradually melted the snowpack, allowing snow measuring sites to lose a tenth to half an inch of snow water a day. These rates were slow enough to allow the melt water to infiltrate into the ground. This is good news and bad news, but really shows the dryness of soils. The water that went into the soil will be utilized at a future date as opposed to using it this year had the melt water reached the streams and reservoirs. There is still enough snow to generate another snowmelt peak in most higher elevation streams. The snowmelt peak flows will be of low magnitude and short duration, and then the streams will return to below normal baseflow levels for the rest of summer.

# **SNOWPACK**

The remaining snowpack is the lowest at 25-35% of average in the lower elevation basins of Weiser, Mann, Rathdrum, Little Lost, Portneuf and Owyhee. The highest snowpacks are 73% of average in Priest and North Fork Clearwater basins. Elsewhere, snowpacks are 40-60% of average. The snowpack is about half of last year's in west-central and central Idaho, and about three-quarters of last year in eastern Idaho.

# **PRECIPITATION**

The bad news is: April weather was the same as March — dry with above normal temperatures. April precipitation was 50-70% of average across the state except for the basins south of the Snake River which received average precipitation amounts. When the March-April precipitation amounts are combined and analyzed against the 20+ years that NRCS has been collecting daily precipitation data, 27 out of 70 SNOTEL sites in Idaho set new record low amounts for the March-April period, and another 24 sites recorded their second lowest amounts. This is not good news for Idaho's numerous water users that rely on snowmelt fed streams, nor for the dryland farmers, forest and rangelands across the state.

# RESERVOIRS

Reservoir storage is the highest along the western side of Idaho. Brownlee, Boise, Payette, and Dworshak reservoirs are all reporting above average storage. In contrast, Bear Lake remains nearly empty in terms of useable water at 23% of average. Bear Lake is not empty and contains over 5 million acre-feet of water that is not included as useable storage. On the other hand, Blackfoot Reservoir is nearly empty at 24% of average, the lowest April 30 storage since 1935. Salmon Falls, Oakley, Wildhorse, Jackson Lake and Magic reservoirs are storing half their average amounts. Owyhee and Mackay reservoir are about 70% of average, while Palisades Reservoir is 82% full. Henrys, Island Park, Grassy and Montpelier reservoirs are 85-90% of average. Some of these percentages sound encouraging, but with snowpacks that are about half of average in the high country and streams forecast well below average or near record low, reservoir releases will soon start exceeding inflows. Drafting of reservoirs will occur earlier than normal and many reservoirs will again be at their minimum storage levels later this summer.

Note: NRCS reports reservoir information in terms of usable volumes, which includes both active, inactive and in some cases, dead storage. Other operators may report reservoir contents in different terms. For additional information, see the reservoir definitions in this report.

# **STREAMFLOW**

Streamflow forecasts decreased again from the previous month and are now near or record low in the Lemhi, Middle Fork Salmon, Big Lost and Little Lost basins. The lowest streamflow forecasts remain in the Bear River at 4% of average, basically, the same flow as last year. Streams projected at 20-55% of average include: upper Bear, Salmon, Deadwood, Boise, Big and Little Wood, Big and Little Lost, Greys, Salt, Willow, American Falls inflow, Oakley, Salmon Falls, Bruneau and Owyhee. Streams in the Clearwater basin and Snake River near Heise are forecast at 65% of average. The highest forecasts are at 70% of average for Priest, Dworshak Reservoir inflow and Kootenai River. Similar to the snow water content, snowmelt streamflow peaks will occur about three weeks earlier than normal. Snowmelt streamflow peaks have already occurred on the Owyhee, Weiser, Camas (Fairfield), lower Bear, and other lower elevation streams, while higher elevation streams still have one more chance to peak with the higher elevation snowpacks.

Idaho's Surface Water Supply Index (SWSI) are also showing how severe and low the water supplies will be this year. Four basins: Salmon, Big Lost, Little Lost, Snake above Heise, and Bear are at or below a value of -3.4. A value of -3.9 is the driest for the period of record. The 1971 to present period is used in the SWSI analysis for most basins. For additional information, see following SWSI table.

Previously the SWSI was only updated during the planning season January – May. Starting this year, this index will be updated the beginning of each month throughout the summer because of increased interest it its ability to monitor drought conditions. The monthly values will be posted on the Idaho NRCS Snow Survey Water Supply web page under 'Drought and Surface Water Supply Index' at this address: <a href="http://www.id.nrcs.usda.gov/snow/watersupply/swsi-main.html">http://www.id.nrcs.usda.gov/snow/watersupply/swsi-main.html</a> Numerous graphs are available for users to access and visualize the wet and dry cycles for their basin of interest.

## RECREATION

Enjoy the higher streamflows now because they will not last. There is still enough snow to generate another snowmelt peak in the higher elevations, but the magnitude and duration will be short. Then the streams will return to below normal baseflow levels for the rest of summer. Drafting of reservoirs will occur earlier than normal as demands for water exceed inflows. Most reservoirs will be at their minimum storage levels, which are becoming more common, before summer's end.

# FOREST FIRE IMPACTS ON SNOWMELT RATES

In the year 2000, Atlanta Summit and Jackson Peak SNOTEL sites showed similar snowmelt rates and melt out dates as expected because they are in the same basin, at similar elevations and only 25 miles apart. However in 2004, the snow at Atlanta Summit melted at a significantly more rapid rate than the snow at Jackson Peak and it melted out nearly two full months earlier than the 30 year average melt out date. In early April, both sites held approximately 25 inches of snow water. By May 1<sup>st</sup>, Atlanta Summit held only 6.4 inches of snow water (2<sup>nd</sup> lowest value in last 55 years of data), whereas Jackson Peak still retained 15.2 inches. The difference in melt rates may be explained by a fire that burned much of the surrounding forest near the Atlanta Summit site and actually damaged some of the weather sensors in the summer of 2003. Previous years' fires across the state may have had similar effects on melt processes of local snowpacks resulting in more rapid melt and earlier melt out dates. Looking ahead to another dry summer and low water year, fire may play a large role in snow distribution and melt processes of the snowpack in years to come.

# IDAHO SURFACE WATER SUPPLY INDEX (SWSI) As of May 1, 2004

The Surface Water Supply Index (SWSI) is a predictive indicator of surface water availability within a watershed for the spring and summer water use season. The index is calculated by combining pre-runoff reservoir storage (carryover) with forecasts of spring and summer streamflow. SWSI values are scaled from +4.1 (abundant supply) to -4.1 (extremely dry), with a value of zero indicating a median water supply as compared to historical occurrences.

SWSI values are published January through May and provide a more comprehensive outlook of water availability than either streamflow forecasts or reservoir storage figures alone. The SWSI index allows comparison of water availability between basins for drought or flood severity analysis. Threshold SWSI values have been established for most basins to indicate the potential for agricultural water shortages.

The following agencies and cooperators provide assistance in the preparation of the Surface Water Supply Index for Idaho:

US National Weather Service US Bureau of Reclamation Idaho Water Users Association US Army Corps of Engineers Idaho Dept. of Water Resources PacifiCorp

| BASIN or REGION | SWSI<br>Value | Most Recent Year With<br>Similar SWSI Value | Agricultural Water Supply Shortage May Occur When SWSI is Less Than |
|-----------------|---------------|---------------------------------------------|---------------------------------------------------------------------|
| PANHANDLE       | -2.3          | 1988                                        | NA                                                                  |
| CLEARWATER      | -2.1          | 2000                                        | NA                                                                  |
| SALMON          | -2.6          | 1990                                        | NA                                                                  |
| WEISER          | -2.7          | 2001                                        | NA                                                                  |
| PAYETTE         | -2.0          | 1991                                        | NA                                                                  |
| BOISE           | -2.0          | 2002                                        | -2.1                                                                |
| BIG WOOD        | -2.5          | 2002                                        | -1.0                                                                |
| LITTLE WOOD     | -1.7          | 2000                                        | -2.0                                                                |
| BIG LOST        | -3.9          | 1992                                        | -0.5                                                                |
| LITTLE LOST     | -3.9          | 1994                                        | 0.0                                                                 |
| HENRYS FORK     | -2.2          | 1991                                        | -3.3                                                                |
| SNAKE (HEISE)   | -3.4          | 2002                                        | -2.0                                                                |
| OAKLEY          | -2.9          | 1990                                        | -1.0                                                                |
| SALMON FALLS    | -2.9          | 1991                                        | -1.0                                                                |
| BRUNEAU         | -2.9          | 2000                                        | NA                                                                  |
| BEAR RIVER      | -3.9          | 2003                                        | -3.8                                                                |

# SWSI SCALE, PERCENT CHANCE OF EXCEEDANCE, AND INTERPRETATION

| - 4            | -3               | -2               | -1          | 0                           | 1           | 2                 | 3                   | 4      |
|----------------|------------------|------------------|-------------|-----------------------------|-------------|-------------------|---------------------|--------|
| <br>99%        | 87%              | <b></b> -<br>75% | <br>63%<br> | <br>50%                     | <b> -</b> - | <br>25%           | <b>-</b><br>13%<br> | <br>1% |
| Much<br> Below | Below<br>  Norma |                  |             | Near Normal<br>Water Supply | 7           | Above<br>  Normal | Much<br>  Above     | 1      |

NA = Not Applicable

Note: The Percent Chance of Exceedance is an indicator of how often a range of SWSI values might be expected to occur. Each SWSI unit represents about 12% of the historical occurrences. As an example of interpreting the above scale, the SWSI can be expected to be greater than -3.0, 87% of the time and less than -3.0, 13% of the time. Half the time, the SWSI will be below and half the time above a value of zero. The interval between -1.5 and +1.5 described as "Near Normal Water Supply," represents three SWSI units and would be expected to occur about one-third (36%) of the time.

# PANHANDLE REGION MAY 1, 2004







# WATER SUPPLY OUTLOOK

April continued where March ended with precipitation that was only 61% of average for the second month in a row, and the third consecutive month with below average precipitation. The snowpack in most basins is about two-thirds of average. The Coeur d'Alene basin, which is 71% of average, is one of the few basins in the state with a better snowpack this year than last year. This is because the snowpack was only 54% of average last year. Other basins have the least snow since 2001. Water year to date precipitation is 84% of average, compared to 89% a year ago. Water users can expect water supplies to be less than last year. Streamflow runoff volumes were about 65% of the May-July average in the Moyie and Coeur d'Alene rivers last year and are forecast at 55-65% of average this year. The snow water content peaked a month early this year and moderate temperatures allowed the snow to dribble out of the pack and much was absorbed by the dry soils. Water users should plan for runoff volumes less than last year, summer baseflow levels occurring earlier than normal and remaining below normal during the normally dry summer months.

# PANHANDLE REGION Streamflow Forecasts - May 1, 2004

|                                         | =======                    |                 | ======                |         |                      |                                         |                |                      |               |                          |
|-----------------------------------------|----------------------------|-----------------|-----------------------|---------|----------------------|-----------------------------------------|----------------|----------------------|---------------|--------------------------|
|                                         |                            |                 |                       |         |                      | onditions ===                           |                |                      |               |                          |
| Forecast Point                          | Forecast<br>Period         | 90%<br>(1000AF) | 70%                   | F)   50 | 0% (Most<br>(1000AF) | xceeding * == Probable) (% AVG.)        | 30%<br>(1000AI | F) (10               | 10%<br>000AF) | 30-Yr Avg.<br>(1000AF)   |
| KOOTENAI at Leonia (1,2)                | MAY-JUL<br>MAY-SEP         | 3740<br>4490    | 4260<br>5070          |         | 4500<br>5340         | 73<br>74                                | 4740<br>5610   |                      | 5260<br>5190  | 6170<br>7250             |
| MOYIE RIVER at Eastport                 | MAY-JUL<br>MAY-SEP         | 170<br>175      | 195<br>205            |         | 215<br>225           | 65<br>65                                | 235<br>245     |                      | 260<br>275    | 330<br>345               |
| SMITH CREEK                             | MAY-JUL<br>MAY-SEP         | 51<br>52        | 62<br>65              |         | 69<br>73             | 66<br>66                                | 76<br>81       |                      | 87<br>94      | 104<br>111               |
| BOUNDARY CREEK                          | MAY-JUL<br>MAY-SEP         | 54<br>58        | 63<br>68              |         | 70<br>75             | 69<br>69                                | 77<br>82       |                      | 86<br>92      | 102<br>108               |
| CLARK FK at Whitehorse Rpds (1,2)       | MAY-JUL<br>MAY-SEP         | 4320<br>4910    | 5560<br>6 <b>3</b> 00 |         | 6130<br>6930         | 64<br>65                                | 6700<br>7560   |                      | 7940<br>8950  | 9590<br>10700            |
| PEND OREILLE Lake Inflow (2)            | MAY-JUL<br>MAY-SEP         | 5140<br>5800    | 6040<br>6800          |         | 6650<br>7480         | 63<br>63                                | 7260<br>8160   |                      | 8160<br>9160  | 10600<br>11800           |
| PRIEST near Priest River (1,2)          | MAY-JUL<br>MAY-SEP         | 315<br>325      | 390<br>420            |         | 425<br>460           | 69<br>69                                | 460<br>500     |                      | 535<br>595    | 615<br>670               |
| COEUR D'ALENE at Enaville               | MAY-JUL<br>MAY-SEP         | 155<br>180      | 225<br>255            |         | 275<br>305           | 63<br>64                                | 325<br>355     |                      | 395<br>430    | 440<br>480               |
| ST. JOE at Calder                       | MAY-JUL<br>MAY-SEP         | 375<br>410      | 460<br>495            |         | 515<br>555           | 61<br>61                                | 570<br>615     |                      | 655<br>700    | 845<br>910               |
| SPOKANE near Post Falls (2)             | MAY-JUL<br>MAY-SEP         | 650<br>690      | 880<br>935            |         | 1040<br>1100         | 62<br>62                                | 1200<br>1270   |                      | 1430<br>1510  | 1670<br>1770             |
| SPOKANE at Long Lake (2)                | MAY-JUL<br>MAY-SEP         | 810<br>940      | 1080<br>1220          |         | 1260<br>1410         | 66<br>66                                | 1440<br>1600   |                      | 1710<br>1880  | 1910<br>2130             |
| PANHAN<br>Reservoir Storage (100        | DLE REGION<br>OO AF) - Enc | of April        | ======                | ======= | <br> <br>            | <br> <br>  Watershed Sn                 | PANHANDLE I    |                      | <br>- May 1,  | 2004                     |
| ======================================= | Usable                     |                 | e======<br>le Stora   |         | =======<br>          | ======================================= |                | mber                 | <br>This      | ========<br>Year as % of |
| Reservoir                               | Capacity                   | This<br>Year    | Last<br>Year          | A∨g     | Wate                 | rshed<br>========                       |                | of<br>Sites<br>===== |               | Yr Average               |
| HUNGRY HORSE                            | 3451.0                     | 2828.0          | 2668.0                | 1954.8  | Koote                | enai ab Bonne                           | rs Ferry       | 31                   | 78            | 66                       |
| FLATHEAD LAKE                           | 1791.0                     | 1218.0          | 1206.0                | 931.9   | Moyi                 | e River                                 |                | 11                   | 79            | 66                       |
| NOXON RAPIDS                            | 335.0                      | 307.9           | 319.7                 | 272.3   | Prie                 | st River                                |                | 5                    | 79            | 69                       |
| PEND OREILLE                            | 1561.3                     | 934.5           | 925.5                 | 916.7   | Pend                 | Oreille Rive                            | •              | 91                   | 71            | 64                       |
| COEUR D'ALENE                           | 238.5                      | 156.5           | 159.9                 | 249.7   | Rath                 | drum Creek                              |                | 1                    | 81            | 38                       |
| PRIEST LAKE                             | 119.3                      | 101.5           | 104.1                 | 102.5   | Hayd                 | en Lake                                 |                | 0                    | 0             | 0                        |
|                                         |                            |                 |                       |         | Coeu                 | r d'Alene Riv                           | er             | 7                    | 133           | 71                       |
|                                         |                            |                 |                       |         | St.                  | Joe River                               |                | 4                    | 84            | 63                       |
|                                         |                            |                 |                       |         | Spok                 | ane River                               |                | 10                   | 114           | 66                       |
|                                         |                            |                 |                       |         | Palo                 | use River                               |                | 1                    | 0             | 0                        |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

<sup>(2) -</sup> The value is natural volume - actual volume may be affected by upstream water management.

# CLEARWATER RIVER BASIN MAY 1, 2004







# WATER SUPPLY OUTLOOK

April precipitation was only 56% of average, even less than the 71% of average received in March. Mountainous precipitation amounts ranged from 1.4 - 3.5 inches; normals range from 3-6 inches for April in the Clearwater basin. Water year to date precipitation sounds encouraging at 88% of average, but timing and intensity of the precipitation also determines how much infiltrates into the ground or runs off. The highest snowpack is in the North Fork Clearwater River basin at 73% of average, about three-quarters of last year's snowpack. The Selway and Locsha basin snowpacks are 55% of average, half of last year. Overall, the Clearwater River basin snowpack is 68% of average, 71% of last year. Dworshak Reservoir is 80% full, which is above average. Dworshak Reservoir inflow forecast is for 69% of average. The Selway and Lochsa river basins are forecast at 66% of average for the May-July period. There is enough remaining snow to see another rise in these streams in May, but it will not last long with below average snow in the high country. Then, the rivers will drop to below normal baseflow levels for the remaining dry summer months. River runners and water users should plan accordingly for the reduced streamflow volume projections. This year's runoff volumes will be much less than the 80-97% of average volumes observed last year.

# CLEARWATER RIVER BASIN Streamflow Forecasts - May 1, 2004

|                                        |                          | Stream to                 | w Forecas                  | .s - ma               | y 1, 2004<br>              | -<br>                                  |                                |                        |                       | =======                               |
|----------------------------------------|--------------------------|---------------------------|----------------------------|-----------------------|----------------------------|----------------------------------------|--------------------------------|------------------------|-----------------------|---------------------------------------|
|                                        |                          | <<====                    | = Drier =                  | ====                  | Future Co                  | nditions ===                           | ==== We                        | tter ===               | ==>>                  |                                       |
| Forecast Point                         | Forecast<br>Period       | ======<br>90%<br>(1000AF) | 70%                        | )   50                | 0% (Most                   | xceeding * ==<br>Probable)<br>(% AVG.) | 30%<br>(1000                   | 1                      | ====<br>10%<br>000AF) | 30-Yr Avg.<br>(1000AF)                |
| ====================================== | MAY-JUL<br>MAY-SEP       | 890<br>940                | 1030<br>1090               |                       | 1120<br>1190               | 65<br>65                               | 121<br>129                     |                        | 1350<br>1440          | 1720<br>1830                          |
| LOCHSA near Lowell                     | MAY-JUL<br>MAY-SEP       | 710<br>750                | 795<br>840                 |                       | 855<br>905                 | 68<br>68                               | 91<br>96                       |                        | 1000<br>1055          | 1250<br>1330                          |
| DWORSHAK RESV INFLOW (1,2)             | MAY-JUL<br>MAY-SEP       | 880<br>980                | 1200<br>1320               |                       | 1350<br>1470               | 69<br>69                               | 150<br>162                     | -                      | 1820<br>1960          | 1970<br>2130                          |
| CLEARWATER at Orofino (1)              | MAY-JUL<br>MAY-SEP       | 1890<br>2010              | 2320<br>2480               | <br> <br>             | 2520<br>2700               | 68<br>68                               | 272<br>292                     |                        | 3150<br>3390          | 3730<br>3990                          |
| CLEARWATER at Spalding (1,2)           | MAY-JUL<br>MAY-SEP       | 2780<br>3010              | 3520<br>3810               |                       | 3860<br>4170               | 67<br>67                               | 420<br>453                     |                        | 4940<br>5330          | 5770<br>6190                          |
| Reservoir Storage (1                   |                          |                           | =======                    | -=====                | ========<br> <br>          | Watershed Sno                          | ======<br>RWATER R<br>wpack An | alysis ·               | - May 1,              | ========<br>2004                      |
| Reservoir                              | Usable<br>Capacity       | *** Usab<br>This<br>Year  | ole Storag<br>Last<br>Year | =====<br>e ***<br>Avg | ======<br> <br>  Water<br> |                                        | N                              | umber<br>of<br>a Sites | This Y                | ear as % of<br>=========<br>r Average |
| ====================================== | ا<br>=========<br>3468.0 | ========                  |                            | <br>2421.3            | =======<br>North           | Fork Clearwa                           |                                | 8<br>8                 | 79                    | 73                                    |
|                                        |                          |                           |                            |                       | Lochs                      | sa River                               |                                | 2                      | 52                    | 56                                    |
|                                        |                          |                           |                            |                       | Selwa                      | ay River                               |                                | 4                      | 48                    | 54                                    |
|                                        |                          |                           |                            |                       | Clear                      | water Basin T                          | otal                           | 14                     | 71                    | 68                                    |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

The average is computed for the 1971-2000 base period.

'

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

<sup>(2) -</sup> The value is natural volume - actual volume may be affected by upstream water management.

# SALMON RIVER BASIN MAY 1, 2004







# WATER SUPPLY OUTLOOK

April precipitation was similar to amounts received last month at only 53% of average. The lowest amounts were 42% of average around McCall, Deadwood Summit and North Fork area. Water year to date precipitation is one of the lowest in the state at 78% of average; last year it was normal. Snowpacks are about half of average and less than half of last year. The Middle Fork Salmon basin snowpack is 46% of average, only slightly better than in 2001. The Middle Fork Salmon River is forecast at 42% of the May-July period, and will be less than the past two seasons and similar to the 2001 flows. Additional peak flows on the Lemhi River are unlikely or will not last for long as the snow is half of average, soils are dry and streams are low. The Lemhi River residual streamflow forecast is for 37% of average, which is a record low amount for the May-July period. Overall, the Salmon basin snowpack is 51% of average, down from 77% of average a month ago and only slightly better than 2001. This is the fifth lowest May 1 snowpack since 1982. The Salmon River at White Bird is forecast at 57% of average for the May-September period, which maybe optimistic because of the dry March and April, low streamflows in the Lemhi, and cumulative drought effects. There is still enough snow for one more snowmelt peak on the Middle Fork Salmon River and other higher elevation tributaries along the main Salmon River. The snowmelt peaks will be in early to mid-May and then return to below normal baseflow levels for the rest of the summer. River runners and water users should plan accordingly for the low summer streamflow conditions.

# SALMON RIVER BASIN

Streamflow Forecasts - May 1. 2004

|                                         |                                    | Streamflow       | v Forecasts         | - May 1,        | 2004                       |                                    |         |                                |                    |                        |
|-----------------------------------------|------------------------------------|------------------|---------------------|-----------------|----------------------------|------------------------------------|---------|--------------------------------|--------------------|------------------------|
|                                         | <del></del>                        | <<=====          | Drier ====          | == Futu         | ıre Co                     | nditions ===                       | ==== \  | Wetter ≕                       | ===>>              |                        |
| Forecast Point                          | Forecast<br>Period                 | 90%              | 70%<br>(1000AF)     | 50% (           | Most                       | xceeding * == Probable)   (% AVG.) | 30      | 0%                             | 10%<br>1000AF)     | 30-Yr Avg.<br>(1000AF) |
| SALMON at Salmon (1)                    | MAY-JUL<br>MAY-SEP                 | 349<br>419       | 370<br>444          | _               | 85<br>60                   | 51<br>51                           |         | =======<br>425<br>505          | 510<br>600         | 760<br>900             |
| Lemhi River nr Lemhi                    | MAY-JUL<br>MAY-SEP                 | 17.4<br>23       | 22<br>29            |                 | 26<br>33                   | 37<br>37                           |         | 30<br>38                       | 36<br>45           | 70<br>89               |
| MF Salmon at MF Lodge                   | MAY-JUL<br>MAY-SEP                 | 180<br>199       | 249<br>277          |                 | 295<br>330                 | 42<br>42                           |         | 341<br>383                     | 410<br>461         | 700<br>785             |
| SALMON at White Bird (1)                | MAY-JUL<br>MAY-SEP                 | 2724<br>3032     | 2859<br>3192        |                 | <b>9</b> 50<br><b>3</b> 00 | 57<br>57                           |         | 190<br>570                     | 3720<br>4170       | 5150<br>5780           |
| SALI<br>Reservoir Storage               | MON RIVER BASIN<br>(1000 AF) - End | of April         |                     |                 | -====                      | SA<br>Watershed Sno                |         | ======<br>IVER BAS<br>Analysis |                    | 2004                   |
| Reservoir                               | Usable  <br>Capacity               | This             | e Storage '<br>Last |                 | Water                      | ========<br>rshed                  | .=====: | Number<br>of                   | =====              | /ear as % of           |
| ======================================= |                                    | Year<br>======== | Year A              | \vg<br>==== === |                            | =========                          | D:      | ata Site<br>======             | s Last Y<br>====== | r Average              |
|                                         |                                    |                  |                     |                 | Salmo                      | on River ab Sa                     | lmon    | 8                              | 41                 | 43                     |
|                                         |                                    |                  |                     |                 | Lemhi                      | River                              |         | 7                              | 49                 | 50                     |
|                                         |                                    |                  |                     |                 | Middl                      | e Fork Salmor                      | n River | 3                              | 44                 | 46                     |
|                                         |                                    |                  |                     |                 | South                      | Fork Salmon                        | River   | 3                              | 54                 | 56                     |
|                                         |                                    |                  |                     |                 | Littl                      | e Salmon Rive                      | er      | 4                              | 42                 | 55                     |
|                                         |                                    |                  |                     |                 | Salmo                      | on Basin Total                     |         | 24                             | 47                 | 51                     |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.(2) - The value is natural volume - actual volume may be affected by upstream water management.

# WEISER, PAYETTE, BOISE RIVER BASINS MAY 1, 2004







# WATER SUPPLY OUTLOOK

April precipitation was only 49% of average. Water year to date precipitation is 80% of average, down from 84% last month, and also less than last year. Moderate temperatures in March and April gradually melted the snowpack, losing half an inch of snow water per day. These rates were slow enough to allow the melt water to infiltrate into the ground. This is good news and bad news and it shows how dry the soils are. The water will be used at a future date as opposed to using it this year if the water had reached the streams and reservoirs. The remaining snow is about half of average in the Boise and Payette basins and 25% of average in Weiser and Mann basins. The Boise and Payette reservoirs systems are 76% of full, 114% of average. The Boise system will not fill with a streamflow forecast at only 53% of average. Water supplies will be marginally adequate and shortages could occur if the minimum streamflow forecasts occur. Shortages are not expected for Payette water users even with the Payette River near Horseshoe Bend forecast at only 54% of average, but supplies could be similar to the 2001 season if the minimal forecasts occur. With the Weiser River basin snowpack the lowest since 1994 the residual streamflow forecast is for 40% of average and is not looking very promising for the Weiser River water users.

## WEISER, PAYETTE, BOISE RIVER BASINS Streamflow Forecasts - May 1, 2004

|                                          |                    | Streamflow<br>            | v Forecas                 | ts - May     | y 1, 2004      | ·<br>              |                      |                 |                                      |
|------------------------------------------|--------------------|---------------------------|---------------------------|--------------|----------------|--------------------|----------------------|-----------------|--------------------------------------|
|                                          |                    | <<=====                   | Drier =                   | =====        | Future Co      | enditions ===      | ==== Wette           | :r ====>>       | ·                                    |
| Forecast Point                           | Forecast<br>Period | 90%<br>(1000AF)           | 70%                       | 50           | 0% (Most       | Probable) (% AVG.) | 30%                  | 10%<br>(1000AF  | 30-Yr Avg                            |
| WEISER near Weiser (1)                   | MAY-JUL<br>MAY-SEP | . 71<br>81                | 90<br>101                 | === ====     | 103<br>115     | 40<br>40<br>40     | 135<br>150           | 205<br>225      | 255<br>285                           |
| SF PAYETTE at Lowman                     | MAY-JUL<br>MAY-SEP | 163<br>190                | 188<br>215                |              | 205<br>235     | 54<br>54           | 220<br>255           | 245<br>280      | 380<br>435                           |
| DEADWOOD RESERVOIR Inflow (1,2)          | MAY-JUL<br>MAY-SEP | 44<br>48                  | 59<br>64                  |              | 66<br>71       | 57<br>57           | 73<br>78             | 88<br>94        | 116<br>125                           |
| LAKE FORK PAYETTE near McCall            | MAY-JUL<br>MAY-SEP | 35<br>37                  | 41<br>43                  |              | 45<br>47       | 59<br>60           | 49<br>51             | 55<br>57        | 76<br>79                             |
| NF PAYETTE at Cascade (1,2)              | MAY-JUL<br>MAY-SEP | 134<br>150                | 200<br>225                |              | 230<br>255     | 58<br>59           | 260<br>285           | 325<br>360      | 395<br>435                           |
| NF PAYETTE nr Banks (2)                  | MAY-JUL<br>MAY-SEP | 175<br>190                | 240<br>260                |              | 280<br>305     | 55<br>56           | 320<br>350           | 385<br>420      | 505<br>550                           |
| PAYETTE nr Horseshoe Bend (1,2)          | MAY-JUL<br>MAY-SEP | 445<br>500                | 615<br>680                |              | 690<br>765     | 54<br>54           | 765<br>850           | 935<br>1030     | 1290<br>1430                         |
| BOISE near Twin Springs (1)              | MAY-JUL<br>MAY-SEP | 215<br>240                | 275<br>305                |              | 300<br>335     | 59<br>59           | 325<br>365           | 385<br>430      | 510<br>565                           |
| SF BOISE at Anderson Ranch Dam (1,2)     | MAY-JUL<br>MAY-SEP | 125<br>134                | 190<br>205                |              | 220<br>235     | 51<br>51           | 250<br>265           | 315<br>335      | 430<br>465                           |
| MORES CREEK near Arrowrock Dam           | MAY-JUL<br>MAY-SEP | 11.0<br>13.0              | 22<br>25                  |              | 30<br>33       | 38<br>39           | 38<br>41             | 49<br>53        | 79<br>85                             |
| BOISE near Boise (1,2)                   | MAY-JUL<br>MAY-SEP | 370<br>420                | 510<br>570                |              | 575<br>640     | 53<br>54           | 640<br>7 <b>1</b> 0  | 780<br>860      | 1080<br>1190                         |
| WEISER, PAYETTE, Reservoir Storage (1000 | AF) - End          |                           |                           | <br>=======  | <br> <br>      | Watershed Sno      |                      | ⁄sis - May      |                                      |
| Reservoir                                | Usable<br>Capacity | *** Usabl<br>This<br>Year | le Storag<br>Last<br>Year | e ***<br>Avg | Water          |                    | Numb<br>of<br>Data S | per Th          | nis Year as % o<br><br>ast Yr Averag |
| ======================================   | 11.1               | <b>11.</b> 0              | 11.1                      | 10.5         | ======<br>Mann | Creek              | ·=======<br><i>'</i> | ========<br>  3 | 59 27                                |
| CASCADE                                  | 693.2              | 537.6                     | 545.8                     | 462.5        | Weise          | er River           | 3                    | 3 2             | 23 25                                |
| DEADWOOD                                 | 164.0              | 107.5                     | 78.9                      | 103.4        | North          | ı Fork Payette     | e 8                  | 3 4             | 5 51                                 |
| ANDERSON RANCH                           | 450.2              | 367.9                     | 208.4                     | 302.3        | South          | n Fork Payette     | e !                  | 5 4             | 9 49                                 |
| ARROWROCK                                | 272.2              | 190.8                     | 207.3                     | 180.9        | Payet          | tte Basin Tota     | al 14                | . 4             | 7 51                                 |
| LUCKY PEAK                               | 293.2              | 223.4                     | 211.0                     | 207.9        | <br>  Middl    | le & North For     | k Boise              | 5 5             | 57 52                                |
| LAKE LOWELL (DEER FLAT)                  | 165.2              | 125.0                     | 116.9                     | 141.5        | South          | ı Fork Boise F     | River 7              | 7 5             | 54 51                                |
|                                          |                    |                           |                           |              | Mores          | s Creek            | Į.                   | 7               | <b>7</b> 5 59                        |
|                                          |                    |                           |                           |              | Boise          | e Basin Total      | 13                   | 3 5             | 58 52                                |
|                                          |                    |                           |                           |              | Canyo          | on Creek           | •                    | l               | 0 0                                  |
|                                          |                    |                           |                           |              |                |                    |                      |                 |                                      |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

<sup>(2) -</sup> The value is natural volume - actual volume may be affected by upstream water management.

# WOOD and LOST RIVER BASINS MAY 1, 2004







# WATER SUPPLY OUTLOOK

Lack of precipitation in March and April combined with above average temperatures deteriorated the healthy looking snowpack in Idaho's central mountains. April precipitation was 66% of average in these basins, but many stations record their lowest March–April total precipitation for the 20+ years that NRCS has collected daily SNOTEL precipitation data. Water year to date precipitation decreased to 80% of average, even less than last year at this time. Snowpacks are half of average in Big Wood above Hailey and Birch-Medicine Lodge basins. The Big Lost snowpack is 44% of average, same as in 2001. Little Lost basin snowpack is 37% of average, lowest since 1994. Little Wood basin snowpack is 30% of average, same as in 2001. Magic Reservoir increased to 40% full, half of average, but with the residual streamflow forecast at only 32% of average, there is not much more water to melt from the snowpack. Mackay Reservoir is 58% full, slightly better than last year. Inflow forecast is for 35% of average; last year's runoff was 48% of average. This is the third lowest runoff volume since 1926, only 1934 and 1937 had less runoff. The Little Lost River is forecast at only 40% of average, a record low amount since the data started in 1959. The early and encouraging snowfall this winter, turned sour and the four year drought will now become a five year drought in these central basins and surface water supplies may be the lowest yet.

# WOOD AND LOST RIVER BASINS

|                                          |                    | Streamflow       | Forecasts            | - May 1, 2004         | <del>,</del><br>+                 |                                            |                 |                        |
|------------------------------------------|--------------------|------------------|----------------------|-----------------------|-----------------------------------|--------------------------------------------|-----------------|------------------------|
|                                          |                    | <br>  <<=====    | Drier ====           | == Future Co          | onditions ==:                     | ==== Wetter                                | ====>>          |                        |
| Forecast Point                           | Forecast<br>Period | 90%              | 70%<br>(1000AF)      | 50% (Most<br>(1000AF) | Exceeding * == Probable) (% AVG.) | 30%                                        | 10%<br>(1000AF) | 30-Yr Avg.<br>(1000AF) |
| BIG WOOD at Hailey (1)                   | MAY-JUL            | 62               | 90                   | 104                   | 46                                | 119                                        | 156             | 225                    |
|                                          | MAY-SEP            | 73               | 104                  | 120                   | 46                                | 137                                        | 178             | 260                    |
| BIG WOOD near Bellevue                   | MAY-JUL            | 12.0             | 25                   | 37                    | 23                                | 51                                         | 75              | 163                    |
|                                          | MAY-SEP            | 15.0             | 29                   | 41                    | 23                                | 55                                         | 80              | 176                    |
| CAMAS CREEK near Blaine                  | MAY-JUL            | 1.5              | 5.0                  | 8.6                   | 20                                | 13.2                                       | 22              | 43                     |
|                                          | MAY-SEP            | 1.5              | 5.0                  | 8.6                   | 20                                | 13.2                                       | 22              | 44                     |
| BIG WOOD below Magic Dam (2)             | MAY-JUL            | 43               | 57                   | 66                    | 32                                | 96                                         | 140             | 205                    |
|                                          | MAY-SEP            | 53               | 64                   | 71                    | 32                                | 102                                        | 148             | 220                    |
| LITTLE WOOD R ab High Five Ck            | MAY-JUL            | 15.6             | 21                   | 25                    | 43                                | 29                                         | 37              | 58                     |
|                                          | MAY-SEP            | 17.4             | 23                   | 28                    | 43                                | 33                                         | 41              | 65                     |
| LITTLE WOOD near Carey (2)               | MAY-JUL            | 20               | 24                   | 27                    | 44                                | 34                                         | 45              | 62                     |
|                                          | MAY-SEP            | 23               | 28                   | 31                    | 44                                | 39                                         | 51              | 70                     |
| BIG LOST at Howell Ranch                 | MAY-JUL            | 56               | 61                   | 65                    | 40                                | 75                                         | 89              | 162                    |
|                                          | MAY-SEP            | 64               | 70                   | 74                    | 40                                | 85                                         | 102             | 186                    |
| BIG LOST below Mackay Reservoir (2)      | MAY-JUL            | 37               | 42                   | 45                    | 35                                | 55                                         | 69              | 130                    |
|                                          | MAY-SEP            | 48               | 53                   | 56                    | 35                                | 66                                         | 82              | 161                    |
| LITTLE LOST blw Wet Creek                | MAY-JUL            | 8.6              | 9.9                  | 10.8                  | 40                                | 13.4                                       | 17.4            | 27                     |
|                                          | MAY-SEP            | 10.8             | 12.7                 | 14.0                  | 40                                | 18.0                                       | 23              | 35                     |
| WOOD AND LOST<br>Reservoir Storage (1000 |                    |                  |                      |                       | Watershed Sn                      | ========<br>AND LOST RIVI<br>owpack Analys | sis - May 1     | . 2004                 |
| Reservoir                                | Usable<br>Capacity | *** Usab<br>This | le Storage *<br>Last | **                    | rshed                             | Numbo<br>Nof                               | er This         | Year as % of           |

| Reservoir S | torage (1000 AF) - End | of April                |                                     | Watershed Snowpack | May 1, 20               | 2004                       |    |                                 |
|-------------|------------------------|-------------------------|-------------------------------------|--------------------|-------------------------|----------------------------|----|---------------------------------|
| Reservoir   | Usable  <br>Capacity   | *** Usa<br>This<br>Year | ======<br>ble Stora<br>Last<br>Year | ge ***  <br>Avg    | Watershed               | Number<br>of<br>Data Sites |    | r as % of<br>=======<br>Average |
| MAGIC       | 191.5                  | 76 <b>.</b> 1           | 57 <b>.</b> 6                       | 150.4              | Big Wood ab Hailey      | 7                          | 47 | =======<br>51                   |
| LITTLE WOOD | 30.0                   | 29.5                    | 26.7                                | 24.3               | Camas Creek             | 3                          | 0  | 0                               |
| MACKAY      | 44.4                   | 25.8                    | 23.9                                | 34.6               | Big Wood Basin Total    | 10                         | 46 | 46                              |
|             |                        |                         |                                     |                    | Fish Creek              | 0                          | 0  | 0                               |
|             |                        |                         |                                     |                    | Little Wood River       | 4                          | 27 | 30                              |
|             |                        |                         |                                     |                    | Big Lost River          | 4                          | 43 | 44                              |
|             |                        |                         |                                     |                    | Little Lost River       | 3                          | 40 | 37                              |
|             |                        |                         |                                     |                    | Birch-Medicine Lodge Cr | ree 2                      | 48 | 50                              |
|             |                        |                         |                                     |                    | Camas-Beaver Creeks     | 2                          | 83 | 65                              |
|             |                        |                         |                                     |                    |                         |                            |    |                                 |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.(2) - The value is natural volume - actual volume may be affected by upstream water management.

# UPPER SNAKE RIVER BASIN MAY 1, 2004







# WATER SUPPLY OUTLOOK

April mountainous precipitation was 61% of average, ranging from 35% in Island Park area to 85% in Yellowstone National Park. Water year to date precipitation is 83% of average. Surprisingly, this is the same as last year at this time, but the snowpack is only 40-60% of average and 70-80% of last year. The Henrys Fork continues to host the highest snowpack in the region at 63% of average and the lowest are in the Portneuf and Salt basins at 35-40%. The Snake above Palisades Reservoir snowpack is 54% of average, 71% of last year. The Snake River near Heise is forecast at 64% of average for the May-September period; last year the flow was 67% of average. Surface water supplies will be less than last year, unless precipitation changes for the better. Surface irrigation supplies will be less than 2003, may be similar to 2002 and hopefully better than 2001. If the minimum streamflow forecasts occur (90 or 70 Percent Chance of Exceedance) would put this year's surface water supplies (combined reservoir and streamflow) even less than the 2001 season. Water users should be prepared for shortages; severity depends upon your water right or supplement water to finish the irrigation season. The minimum streamflow forecasts could occur because of the cumulative drought effects or with continued below average precipitation for the next month or two.

## UPPER SNAKE RIVER BASIN Streamflow Forecasts - May 1, 2004

| Farance Daint                    | Concent            | << <del></del>  | Drier ====      |             | nditions ==<br>xceeding * = | ===== Wetter    | >               |                        |
|----------------------------------|--------------------|-----------------|-----------------|-------------|-----------------------------|-----------------|-----------------|------------------------|
| Forecast Point                   | Forecast<br>Period | 90%<br>(1000AF) | 70%<br>(1000AF) | 50% (Most   |                             | 30%<br>(1000AF) | 10%<br>(1000AF) | 30-Yr Avg.<br>(1000AF) |
| HENRYS FORK near Ashton (2)      | MAY-JUL            | 235             | 280             | 310         | 69                          | 340             | 385             | 450                    |
|                                  | MAY-SEP            | 355             | 410             | 445         | 69                          | 480             | 535             | 645                    |
| HENRYS FORK near Rexburg (2)     | MAY-JUL            | 815             | 920             | 990         | 74                          | 1060            | 1160            | 1330                   |
|                                  | MAY-SEP            | 1110            | 1230            | 1310        | 74                          | 1390            | 1510            | 1780                   |
| FALLS near Squirrel (1,2)        | MAY-JUL            | 179             | 225             | 245         | 72                          | 265             | 310             | 340                    |
|                                  | MAY-SEP            | 2 <b>3</b> 0    | 275             | 295         | 72                          | 315             | 360             | 410                    |
| TETON near Driggs                | MAY-JUL            | 72              | 87              | 97          | 68                          | 107             | 122             | 143                    |
|                                  | MAY-SEP            | 97              | 116             | 128         | 68                          | 140             | 159             | 188                    |
| TETON near St. Anthony           | MAY-JUL            | 200             | 230             | 250         | 70                          | 270             | 300             | 355                    |
|                                  | MAY-SEP            | 245             | 280             | <b>30</b> 5 | 70                          | 330             | 365             | 435                    |
| SNAKE near Moran (1,2)           | MAY-JUL            | 395             | 475             | 510         | 68                          | 545             | 625             | 750                    |
|                                  | MAY-SEP            | 445             | 530             | 570         | 68                          | 610             | 695             | 840                    |
| PACIFIC CREEK at Moran           | MAY-JUL            | 81              | 97              | 108         | 68                          | 119             | 135             | 160                    |
|                                  | MAY-SEP            | 85              | 102             | 113         | 68                          | 124             | 141             | 167                    |
| SNAKE above Palisades (2)        | MAY-JUL            | 1290            | 1410            | 1490        | 69                          | 1570            | 1690            | 2160                   |
|                                  | MAY-SEP            | 1480            | 1620            | 1720        | 68                          | 1820            | 1960            | 2530                   |
| GREYS above Palisades            | MAY-JUL            | 121             | 142             | 157         | 52                          | 172             | 192             | 300                    |
|                                  | MAY-SEP            | 146             | 171             | 186         | 52                          | 201             | 226             | 355                    |
| SALT near Etna                   | MAY-JUL            | 71              | 105             | 128         | 46                          | 151             | 186             | 280                    |
|                                  | MAY-SEP            | 103             | 141             | 166         | 46                          | 191             | 231             | 360                    |
| PALISADES RESERVOIR INFLOW (1,2) | MAY-JUL            | 1520            | 1790            | 1920        | 64                          | 2050            | 2320            | 2980                   |
|                                  | MAY-SEP            | 1800            | 2120            | 2260        | 64                          | 2400            | 2720            | 3520                   |
| SNAKE near Heise (2)             | MAY-JUL            | 1700            | 1900            | 2040        | 64                          | 2180            | 2380            | 3170                   |
|                                  | MAY-SEP            | 2030            | 2260            | 2420        | 64                          | 2580            | 2810            | 3760                   |
| WILLOW CREEK nr Ririe (2)        | MAY-JUL            | 8.6             | 12.4            | 15.4        | 26                          | 18.7            | 24              | 60                     |
| BLACKFOOT RESV INFLOW            | MAY-JUN            | 16.0            | 31              | 42          | 49                          | 53              | 68              | 86                     |
| SNAKE nr Blackfoot (1,2)         | MAY-JUL            | 2130            | 2590            | 2790        | 68                          | 2990            | 3450            | 4130                   |
|                                  | MAY-SEP            | 2810            | 3270            | 3470        | 68                          | 3670            | 4130            | 5140                   |
| PORTNEUF at Topaz                | MAY-JUL            | 20              | 27              | 32          | 49                          | 37              | 44              | 65                     |
|                                  | MAY-SEP            | 32              | 37              | 41          | 49                          | 45              | 50              | 84                     |
| AMERICAN FALLS RESV INFLOW (1,2) | MAY-JUL            | 205             | 850             | 1150        | 44                          | 1450            | 2100            | 2640                   |
|                                  | MAY-SEP            | 335             | 980             | 1280        | 44                          | 1580            | 2230            | 2910                   |

| Reservoir Sto  | orage (1000 AF) - End | of April        | L                  |         | Watershed Snowpack       | 04           |                   |         |
|----------------|-----------------------|-----------------|--------------------|---------|--------------------------|--------------|-------------------|---------|
| Reservoir      | Usable<br>Capacity    | *** Usa<br>This | able Stora<br>Last | age *** | Watershed                | Number<br>of | This Year as % of |         |
|                | 0.00                  | Year            | Year               |         |                          | ata Sites    | Last Yr           | Average |
| HENRYS LAKE    | 90.4                  | 73.3            | 75.5               | 87.4    | Henrys Fork-Falls River  | 10           | 84                | 64      |
| ISLAND PARK    | 135.2                 | 114.3           | 114.1              | 123.2   | Teton River              | 8            | 80                | 62      |
| GRASSY LAKE    | 15.2                  | 10.5            | 13.3               | 12.7    | Henrys Fork above Rexbur | g 18         | 83                | 63      |
| JACKSON LAKE   | 847.0                 | 259.6           | 342.7              | 471.1   | Snake above Jackson Lake | 6            | 68                | 58      |
| PALISADES      | 1400.0                | 710.4           | 759.4              | 862.6   | Gros Ventre River        | 3            | 76                | 59      |
| RIRIE          | 80.5                  | 44.5            | 45.7               | 56.2    | Hoback River             | 5            | 78                | 54      |
| BLACKFOOT      | 348.7                 | 61.6            | 91.6               | 256.3   | Greys River              | 5            | 77                | 59      |
| AMERICAN FALLS | 1672.6                | 1163.2          | 1324.8             | 1493.8  | Salt River               | 5            | 70                | 40      |
|                |                       |                 |                    |         | Snake above Palisades    | 24           | 71                | 54      |
|                |                       |                 |                    |         | Willow Creek             | 7            | 115               | 50      |
|                |                       |                 |                    |         | Blackfoot River          | 3            | 0                 | 0       |
|                |                       |                 |                    |         | Portneuf River           | 6            | 142               | 35      |
|                |                       |                 |                    |         | Snake abv American Falls | 43           | 79                | 55      |

UPPER SNAKE RIVER BASIN

UPPER SNAKE RIVER BASIN

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table. The average is computed for the 1971-2000 base period.

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural volume - actual volume may be affected by upstream water management.

# SOUTHSIDE SNAKE RIVER BASINS MAY 1, 2004







# WATER SUPPLY OUTLOOK

The basins south of the Snake River received the highest precipitation in April in the state average, but it was only average and nothing to brag about. Timing and intensity of spring precipitation can and does make a difference in the benefits it provides. Several quarter inch storms over a four week period may just be enough to wet the surface or settle the dust, while greater precipitation amounts in a shorter time period would provide additional moisture to runoff and reach the streams. The remaining snow is 35% of average in the Owyhee, 52% in Bruneau, 56% in Salmon Falls and 60% in Oakley basins. Reservoir storage is half of average in Salmon Falls, Oakley and Wildhorse reservoirs. Owyhee Reservoir is 68% of average and will provide adequate irrigation supplies even with the residual forecast at 38% of average. Salmon Falls Creek is forecast at 35% of average, and should provide slightly better irrigation supplies than last year, but supplies will only equal last year if the minimum forecast occurs. Oakley Reservoir inflow is forecast at 28% of average which would provide irrigation supplies slightly better than last year. Supplies will be less than last year if the minimum streamflow forecast occurs and remaining snow does not produce much of streamflow peak.

# CONTROL CONTROL DIVER DAYS DAYS

## SOUTHSIDE SNAKE RIVER BASINS Streamflow Forecasts - May 1, 2004

|                                     |                    | <<=====         | = Drier ====  | == Future Cor                                 | nditions ==           | ===== Wette     | r ====>>        |                        |
|-------------------------------------|--------------------|-----------------|---------------|-----------------------------------------------|-----------------------|-----------------|-----------------|------------------------|
| Forecast Point                      | Forecast<br>Period | 90%<br>(1000AF) | 70%           | = Chance Of E)<br>  50% (Most F<br>  (1000AF) | Probable)<br>(% AVG.) | 30%<br>(1000AF) | 10%<br>(1000AF) | 30-Yr Avg.<br>(1000AF) |
| OAKLEY RESV INFLOW                  | MAY-JUL<br>MAY-SEP | 2.8<br>3.4      | 4.5<br>5.2    | 5.9<br>6.7                                    | 28<br>28              | 7.5<br>8.4      | 10.2<br>11.1    | 21<br>24               |
| OAKLEY RESV STORAGE                 | MAY-31<br>JUN-30   | 15.2<br>6.7     | 18.1<br>11.2  | 20<br>14.3                                    | 44<br>36              | 22<br>17.4      | 25<br>22        | 45<br>40               |
| SALMON FALLS CREEK nr San Jacinto   | MAY-JUL<br>MAY-SEP | 14.6<br>16.6    | 17.8<br>19.8  | 20<br>22                                      | 35<br>36              | 26<br>28        | 36<br>38        | 57<br>62               |
| SALMON FALLS RESV STORAGE           | MAY-31<br>JUL-31   | 32<br>9.2       | 38<br>11.2    | 43<br>12.6                                    | 43<br>18              | 48<br>20        | 54<br>32        | 101<br>71              |
| BRUNEAU near Hot Spring             | MAY-JUL<br>MAY-SEP | 29<br>31        | 44<br>47      | 57<br>60                                      | 35<br>35              | 71<br>75        | 95<br>99        | 162<br>173             |
| OWYHEE near Gold Creek (2)          | MAY-JUL<br>MAY-SEP | 0.2<br>0.2      | 1.7<br>1.6    | 3.5<br>3.4                                    | 29<br>32              | 6.0<br>5.8      | 10.8<br>10.4    | 12.0<br>10.7           |
| OWYHEE nr Owyhee (2)                | MAY~JUL            | 9.5             | 15.4          | 19.4                                          | 39                    | 29              | 45              | 50                     |
| OWYHEE near Rome                    | MAY-JUL<br>MAY-SEP | 26<br>32        | 52<br>59      | 75<br>83                                      | 36<br>36              | 102<br>111      | 149<br>159      | 210<br>230             |
| OWYHEE RESV INFLOW (2)              | MAY-JUL<br>MAY-SEP | 34<br>42        | 61<br>72      | <br>  85<br>  96                              | 38<br>38              | 112<br>124      | 160<br>172      | 225<br>255             |
| SUCCOR CK nr Jordan Valley          | MAY-JUL            | 0.88            | 1.73          | 2.30                                          | 32                    | 4.10            | 6.70            | 7.10                   |
| SNAKE RIVER at King Hill (1,2)      | MAY-JUL            | 336             | 944           | 1220                                          | 60                    | 1495            | 2105            | 2040                   |
| SNAKE RIVER near Murphy (1,2)       | MAY-JUL            | 345             | 988           | 1280                                          | 60                    | 1570            | 2215            | 2150                   |
| SNAKE RIVER at Weiser (1,2)         | MAY-JUL            | 1022            | 1289          | 1470                                          | 37                    | 1960            | 3040            | 3980                   |
| SNAKE RIVER at Hells Canyon Dam (1, | 2 MAY-JUL          | 1152            | 1449          | 1650                                          | 37                    | 2195            | 3390            | 4520                   |
| SNAKE blw Lower Granite Dam (1,2)   | MAY-JUL<br>MAY-SEP | 6240<br>7395    | 8502<br>10012 | 9530<br>11200                                 | 57<br>58              | 10560<br>12390  | 12820<br>15000  | 16700<br>19300         |
|                                     |                    |                 |               | l                                             |                       |                 |                 |                        |

SOUTHSIDE SNAKE RIVER BASINS Reservoir Storage (1000 AF) - End of April

SOUTHSIDE SNAKE RIVER BASINS Watershed Snowpack Analysis - May 1, 2004

| Reservoir           | Usable<br>Capacity |        | able Stora<br>Last<br>Year | age *** | Watershed            | Number<br>of<br>Data Sites | This Year as % of |    |
|---------------------|--------------------|--------|----------------------------|---------|----------------------|----------------------------|-------------------|----|
| OAKLEY              | 74.5               | 20.1   | 19.1                       | 41.0    | Raft River           | 1                          | 127               | 82 |
| SALMON FALLS        | 182.6              | 41.1   | 24.6                       | 87.9    | Goose-Trapper Creeks | 4                          | 122               | 60 |
| WILDHORSE RESERVOIR | 71.5               | 28.0   | 26.8                       | 55.8    | Salmon Falls Creek   | 7                          | 70                | 56 |
| OWYHEE              | 715.0              | 416.6  | 214.8                      | 613.6   | Bruneau River        | 5                          | 60                | 52 |
| BROWNLEE            | 1419.3             | 1327.9 | 1285.4                     | 1069.2  | Owyhee Basin Total   | 7                          | 54                | 35 |
|                     |                    |        |                            |         |                      |                            |                   |    |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

<sup>(2) -</sup> The value is natural volume - actual volume may be affected by upstream water management.

# BEAR RIVER BASIN MAY 1, 2004







# WATER SUPPLY OUTLOOK

April precipitation continued the below average precipitation with four months of below average amounts. April precipitation was 72% of average. Water year to date precipitation is 80% of average, surprisingly slightly better than last year. Snowpacks range from a high of 66% of average in Montpelier Creek to 29% in Mink Creek. Overall, the Bear River basin is 45% of average and has less snow than last year. Streamflow in the Bear River has peaked for the season. April flow at Bear River near Stewart Dam was 9,400 acre-feet, 20% of average. However, Bear Lake storage rose 40,000 acre-feet in April due mostly to subsurface flows. Residual streamflows for Bear River at Stewart Dam are for 4% of average, basically the same as last year. Bear Lake is now 16% of capacity, 23% of average and will run out of useable water in early July. Montpelier Reservoir is only 55% full, the same as in April 2001. Smith Fork is forecast at 46% of average. Water users should be prepared for more severe shortages than last year as there is 175,000 acrefeet less water in Bear Lake this year when compared to a year ago.

## BEAR RIVER BASIN Streamflow Forecasts - May 1, 2004

|                                     | ========                                 |                                                              |                                        | =====    |                            | ========                        | <b>-</b> |                                                      | =======              |                                        |
|-------------------------------------|------------------------------------------|--------------------------------------------------------------|----------------------------------------|----------|----------------------------|---------------------------------|----------|------------------------------------------------------|----------------------|----------------------------------------|
|                                     |                                          | <====== Drier ====== Future Conditions ====== Wetter =====>> |                                        |          |                            |                                 |          |                                                      |                      |                                        |
| Forecast Point                      | Forecast<br>Period                       | ======<br>90%<br>(1000AF)                                    | 70%                                    |          | 50% (Most                  | xceeding * = Probable) (% AVG.) | 30       |                                                      | 10%                  | 30-Yr Avg<br>(1000AF                   |
| Bear River nr UT-WY State Line      | APR-SEP<br>MAY-SEP                       | 42<br>33                                                     | 51<br>42                               | ===   == | 58<br>49                   | 46<br>41                        | ======   | 65<br>56                                             | 74<br>65             | 125<br>119                             |
| Bear River ab Reservoir nr Woodruff | APR-SEP                                  | 26                                                           | 31                                     |          | 34                         | 24                              |          | 47                                                   | 65                   | 142                                    |
| Smiths Fork nr Border               | APR-JUL<br>APR-SEP<br>MAY-JUL            | 39<br>46<br>29                                               | 44<br>52<br>34                         |          | 47<br>56<br>37             | 46<br>46<br>39                  |          | 50<br>60<br>40                                       | 55<br>66<br>45       | 103<br>121<br>95                       |
| Bear River at Stewart Dam           | APR-JUL<br>APR-SEP<br>MAY-JUL<br>MAY-SEP | 7.0<br>8.0<br>6.0<br>6.0                                     | 12.0<br>13.0<br>7.0<br>8.0             |          | 17.0<br>18.0<br>8.0<br>9.0 | 7<br>7<br>4<br>4                |          | 44<br>50<br>30<br>33                                 | 82<br>92<br>61<br>69 | 234<br>262<br>186<br>214               |
| BEAR RIV<br>Reservoir Storage (1000 | /ER BASIN<br>() AF) - End<br>() Usable   | of April                                                     | ====================================== | ======   | <br> <br> <br>             | Watershed Sn                    |          | ======<br>VER BASIN<br>Analysis<br>=======<br>Number | - May 1,             | ====================================== |
| Reservoir                           | Capacity                                 | This<br>Year                                                 | Last<br>Year                           | Avg      | Watershed                  |                                 | D        | of<br>ata Sites                                      | =====<br>Last Y      | r Average                              |
| BEAR LAKE                           | 1421.0                                   | 220.4                                                        | 396.7                                  | 971.0    | Smith                      | Smiths & Thomas Forks           |          | 4                                                    | 82                   | 60                                     |
| MONTPELIER CREEK                    | 4.0                                      | 2.2                                                          | 2.9                                    | 2.5      | 2.5 Bear River ab WY-ID    |                                 | ID line  | 13                                                   | 98                   | 48                                     |
|                                     |                                          |                                                              |                                        |          | Montp                      | elier Creek                     |          | 2                                                    | 91                   | 66                                     |
|                                     |                                          |                                                              |                                        |          | Mink                       | Creek                           |          | 1                                                    | 82                   | 29                                     |
|                                     |                                          |                                                              |                                        |          | Cub R                      | liver                           |          | 1                                                    | 79                   | 51                                     |
|                                     |                                          |                                                              |                                        |          | Bear                       | River ab ID-                    | UT line  | 20                                                   | 93                   | 45                                     |
|                                     |                                          |                                                              |                                        |          | Malac                      | River                           |          | 1                                                    | 0                    | 0                                      |

\_\_\_\_\_\_\_ \* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.(2) - The value is natural volume - actual volume may be affected by upstream water management.

Streamflow Adjustment List For All Forecasts Published In Idaho Basin Outlook Report

Streamflow forecasts are projections of runoff volumes that would have occurred naturally without influences from upstream reservoirs or diversions. These values are referred to as natural or adjusted flows. To make these adjustments, changes in reservoir storage, diversions, and inter-basin transfers are added or subtracted from the observed (actual) streamflow volumes. The following list documents the adjustments made to each forecast point in this report. (Revised 12/2000).

#### Panhandle River Basins

KOOTENAI R AT LEONIA, ID

+ LAKE KOOCANUSA (STORAGE CHANGE)

BOUNDARY CREEK NEAR PORTHILL, JD - No Corrections

MOYIE RIVER AT EASTPORT, ID - No Corrections

SMITH CREEK NEAR PORTHILL, ID - No Corrections

CLARK FORK AT WHITEHORSE RAPIDS, ID

- + HUNGRY HORSE (STORAGE CHANGE)
- + FLATHEAD LAKE (STORAGE CHANGE)
- + NOXON RAPIDS RESV (STORAGE CHANGE)

PEND OREILLE LAKE INFLOW, ID

- + PEND OREILLE R AT NEWPORT, WA
- + HUNGRY HORSE (STORAGE CHANGE)
- + FLATHEAD LAKE (STORAGE CHANGE)
- + NOXON RAPIDS (STORAGE CHANGE
- + PEND OREILLE LAKE (STORAGE CHANGE)
- + PRIEST LAKE (STORAGE CHANGE)

PRIEST R NR PRIEST R, ID

+ PRIEST LAKE (STORAGE CHANGE)

COEUR D'ALENE R AT ENAVILLE, ID - No Corrections

ST. JOE R AT CALDER, ID - No Corrections

SPOKANE R NR POST FALLS, ID

+ COEUR D'ALENE LAKE (STORAGE CHANGE)

SPOKANE R AT LONG LAKE, WA

- + COEUR D'ALENE LAKE (STORAGE CHANGE)
- + LONG LAKE, WA (STORAGE CHANGE)

#### Clearwater River Basin

DWORSHAK RESERVOIR INFLOW, ID

- + DWORSHAK RESV (STORAGE CHANGE)
- CLEARWATER R AT OROFINO, ID
- + CLEARWATER R NR PECK, ID

LOCHSA RIVER NR LOWELL - No Corrections

SELWAY RIVER NR LOWELL - No Corrections

CLEARWATER R AT OROFINO, ID - No Corrections

CLEARWATER R AT SPALDING, ID

+ DWORSHAK RESV (STORAGE CHANGE)

#### Salmon River Basin

SALMON R AT SALMON, ID - No Corrections SALMON R AT WHITE BIRD, ID - No Corrections

#### Weiser, Payette, Boise River Basins

WEISER R NR WEISER, ID - No Corrections

SF PAYETTE R AT LOWMAN, ID - No Corrections

DEADWOOD RESERVOIR INFLOW, ID

- + DEADWOOD R BLW DEADWOOD RESV NR LOWMAN
- + DEADWOOD RESV (STORAGE CHANGE)

LAKE FORK PAYETTE RIVER NR MCCALL, ID – No Corrections

NF PAYETTE R AT CASCADE, ID

+ CASCADE RESV (STORAGE CHANGE)

+ CASCADE RESV (STORAGE CHANGE)

PAYETTE R NR HORSESHOE BEND, ID

- + DEADWOOD RESV (STORAGE CHANGE)
- + CASCADE RESV (STORAGE CHANGE)

BOISE R NR TWIN SPRINGS, ID - No Corrections

SF BOISE R AT ANDERSON RANCH DAM, ID

+ ANDERSON RANCH RESV (STORAGE CHANGE)

BOISE R NR BOISE, ID

- + ANDERSON RANCH RESV (STORAGE CHANGE)
- + ARROWROCK RESV (STORAGE CHANGE)
- + LUCKY PEAK RESV (STORAGE CHANGE)

#### Wood and Lost River Basins

BIG WOOD R AT HAILEY, ID - No Corrections

BIG WOOD R NR BELLEVUE, ID - No Corrections

CAMAS CREEK NEAR BLAINE - No Corrections

BIG WOOD R BLW MAGIC DAM NR RICHFIELD, ID

+ MAGIC RESV (STORAGE CHANGE)

LITTLE WOOD R NR CAREY, ID

+ LITTLE WOOD RESV (STORAGE CHANGE)

BIG LOST R AT HOWELL RANCH NR CHILLY, ID - No Corrections

BIG LOST R BLW MACKAY RESV NR MACKAY, ID

+ MACKAY RESV (STORAGE CHANGE)

LITTLE LOST R BLW WET CK NR HOWE, ID - No Corrections

#### Upper Snake River Basin

HENRYS FORK NR ASHTON, ID

- + HENRYS LAKE (STORAGE CHANGE)
- + ISLAND PARK RESV (STORAGE CHANGE)

HENRYS FORK NR REXBURG, ID

- + HENRYS LAKE (STORAGE CHANGE)
- + ISLAND PARK RESV (STORAGE CHANGE)
- + DIV FM HENRYS FK BTW ASHTON & ST. ANTHONY, ID
- + DIV FM HENRYS FK BTW ST. ANTHONY & REXBURG, ID
- + GRASSY LAKE (STORAGE CHANGE)

FALLS R ABV YELLOWSTONE CANAL NR SOUIRREL, ID

+ GRASSY LAKE (STORAGE CHANGE)

TETON R ABV SO LEIGH CK NR DRIGGS, ID - No Corrections

TETON R NR ST. ANTHONY, ID

- CROSS CUT CANAL
- + SUM OF DIVERSIONS ABV GAGE

SNAKE R NR MORAN, WY

+ JACKSON LAKE (STORAGE CHANGE)

PALISADES RESERVOIR INFLOW, ID

- + SNAKE R NR IRWIN, ID
- + JACKSON LAKE (STORAGE CHANGE)
- + PALISADES RESV (STORAGE CHANGE)

#### SNAKE R NR HEISE, ID

- + JACKSON LAKE (STORAGE CHANGE)
- + PALISADES RESV (STORAGE CHANGE)
- BLACKFOOT RESVERVOIR INFLOW, ID

+ BLACKFOOT RIVER

NF PAYETTE R NR BANKS, ID

- + BLACKFOOT RESERVOIR (STORAGE CHANGE SNAKE R NR BLACKFOOT, ID
  - + PALISADES RESV (STORAGE CHANGE)
  - + JACKSON LAKE (STORAGE CHANGE)
  - + DIV FM SNAKE R BTW HEISE AND SHELLY GAGES
  - + DIV FM SNAKE R BTW SHELLY AND BLACKFT, ID

PORTNEUF R AT TOPAZ, ID - No Corrections AMERICAN FALLS RESERVOIR INFLOW, ID

- + SNAKE RIVER AT NEELEY
- + ALL CORRECTIONS MADE FOR HENRYS FK NR REXBURG, ID
- + JACKSON LAKE (STORAGE CHANGE)
- + PALISADES RESV (STORAGE CHANGE)
- + DIV FM SNAKE R BTW HEISE AND SHELLY GAGES
- + DIV FM SNAKE R BTW SHELLY AND BLACKFT GAGES

#### Southside Snake River Basins

OAKLEY RESERVOIR INFLOW, ID

- + GOOSE CK ABV TRAPPER CK NR OAKLEY, ID
- + TRAPPER CK NR OAKLEY, ID

SALMON FALLS CK NR SAN JACINTO, NV - No Corrections BRUNEAU R NR HOT SPRINGS, ID - No Corrections OWYHEE R NR GOLD CK, NV

+ WILDHORSE RESV (STORAGE CHANGE)

OWYHEE R NR OWYHEE, NV

+ WILDHORSE RESV (STORAGE CHANGE)

OWYHEE R NR ROME, OR – No Corrections

OWYHEE RESERVOIR INFLOW, OR

- + OWYHEE R BLW OWYHEE DAM, OR
- + OWYHEE RESV (STORAGE CHANGE)
- + DIV TO NORTH AND SOUTH CANALS

SUCCOR CK NR JORDAN VALLEY, OR - No Corrections

SNAKE R - KING HILL, ID - No Corrections

SNAKE R NR MURPHY, ID - No Corrections

SNAKE R AT WEISER, ID - No Corrections

SNAKE R AT HELLS CANYON DAM, ID

+ BROWNLEE RESV (STORAGE CHANGE)

#### Bear River Basin

BEAR R NR RANDOLPH, UT

- + SULPHUR CK RESV (STORAGE CHANGE)
- + CHAPMAN CANAL DIVERSION
- + WOODRUFF NARROWS RESV (STORAGE CHANGE)

SMITHS FORK NR BORDER, WY - No Corrections

THOMAS FORK NR WY-ID STATELINE - No Corrections (Disc)

BEAR R BLW STEWART DAM, ID

- + SULPHUR CK RESV (STORAGE CHANGE)
- + CHAPMAN CANAL DIVERSION
- + WOODRUFF NARROWS RESV (STORAGE CHANGE)
- + DINGLE INLET CANAL
- + RAINBOW INLET CANAL

#### MONTPELIER CK AT IRR WEIR NR MONTPELIER, ID (Disc)

+ MONTPELIER CK RESV (STORAGE CHANGE)

CUB R NR PRESTON, ID - No Corrections

RESERVOIR CAPACITY DEFINITIONS (Units in 1,000 acre-feet, KAF)

Different agencies use various definitions when reporting reservoir capacity and contents. Reservoir storage terms include dead, inactive, active, and surcharge storage. This table lists these volumes for each reservoir, and defines the storage volumes NRCS uses when reporting capacity and current reservoir storage. In most cases, NRCS reports usable storage, which includes active and inactive storage. (Revised January 2002)

| BASIN/<br>RESERVOIR           | DEAD<br>STORAGE   |         | ACTIVE<br>STORAGE |       | RGE NRCS<br>E CAPAC | NRCS CAPACITY        |
|-------------------------------|-------------------|---------|-------------------|-------|---------------------|----------------------|
| DANUANDIE RECTO               |                   |         |                   |       |                     |                      |
| PANHANDLE REGION HUNGRY HORSE | <u>N</u><br>39.73 |         | 3451.00           |       | 3451.0              | ACTIVE               |
| FLATHEAD LAKE                 | Unknowr           |         | 1791.00           |       | 1971.0              | ACTIVE               |
| NOXON RAPIDS                  | Unknowr           |         | 335.00            |       | 335.0               | ACTIVE               |
| PEND OREILLE                  | 406.20            |         | 1042.70           |       | 1561.3              | DEAD+INACTIVE+ACTIVE |
| COEUR D'ALENE                 |                   | 13.50   | 225.00            |       | 238.5               | INACTIVE+ACTIVE      |
| PRIEST LAKE                   | 20.00             | 28.00   | 71.30             |       | 119.3               | DEAD+INACTIVE+ACTIVE |
| CLEARWATER BASI               | <u>N</u>          |         |                   |       |                     |                      |
| DWORSHAK                      |                   | 1452.00 | 2016.00           |       | 3468.0              | INACTIVE+ACTIVE      |
| WEISER/BOISE/PA               | YETTE BASI        | NS      |                   |       |                     |                      |
| MANN CREEK                    | 1.61              | 0.24    | 11.10             |       |                     | ACTIVE               |
| CASCADE                       |                   | 46.70   | 646.50            |       |                     | INACTIVE+ACTIVE      |
| DEADWOOD                      |                   |         | 164.00            |       |                     | ACTIVE               |
| ANDERSON RANCH                | 24.90             | 37.00   | 413.10            |       |                     | INACTIVE+ACTIVE      |
| ARROWROCK                     |                   |         | 272.20            | 47.00 |                     | ACTIVE               |
| LUCKY PEAK                    |                   | 28.80   | 264.40            |       | 293.2               | INACTIVE+ACTIVE      |
| LAKE LOWELL                   | 7.90              | 5.80    | 159.40            |       | 165.2               | INACTIVE+ACTIVE      |
| WOOD/LOST BASIN               | <u>s</u>          |         |                   |       |                     |                      |
| MAGIC                         |                   |         | 191.50            |       |                     | ACTIVE               |
| LITTLE WOOD                   |                   |         | 30.00             |       | 30.0                | ACTIVE               |
| MACKAY                        | 0.13              |         | 44.37             |       | 44.4                | ACTIVE               |
| UPPER SNAKE BAS               | IN                |         |                   |       |                     |                      |
| HENRYS LAKE                   |                   |         | 90.40             |       |                     | ACTIVE               |
| ISLAND PARK                   | 0.40              |         | 127.30            | 7.90  | 135.2               | ACTIVE+SURCHARGE     |
| GRASSY LAKE                   |                   |         | 15.18             |       | 15.2                | ACTIVE               |
| JACKSON LAKE                  |                   |         | •                 |       | 847.0               | ACTIVE               |
| PALISADES                     | 44-10             |         | 1200.00           | _     | 1400.0              | DEAD+INACTIVE+ACTIVE |
| RIRIE                         | 4.00              | 6.00    | 80.54             | 10.00 |                     | ACTIVE               |
| BLACKFOOT                     |                   |         | 348.73            |       | 348.7<br>1672.6     | ACTIVE<br>ACTIVE     |
| AMERICAN FALLS                |                   |         | 1672.60           |       | 10/2.0              | ACTIVE               |
| SOUTHSIDE SNAKE               | BASINS            |         |                   |       |                     |                      |
| OAKLEY                        |                   |         | 74.50             |       |                     | ACTIVE               |
| SALMON FALLS                  | 48.00             |         | 182.65            |       |                     | ACTIVE               |
| WILDHORSE                     |                   |         | 71.50             |       |                     | ACTIVE               |
| OWYHEE                        | 406.83            |         | 715.00            |       |                     | ACTIVE               |
| BROWNLEE                      | 0.45              | 444.00  | 975.30            |       | 1419.3              | INACTIVE+ACTIVE      |
| BEAR RIVER BASI               |                   |         |                   |       |                     |                      |
| WOODRUFF NARROWS              |                   | 1.50    | 57.30             |       | 57.3                | ACTIVE               |
| WOODRUFF CREEK                |                   | 4.00    | 4.00              |       |                     | ACTIVE               |
| BEAR LAKE                     |                   |         | 1421.00           |       | 1421.0              | ACTIVE               |
| MONTPELIER CREEK              | 0.21              |         | 3.84              |       | 4.0                 | DEAD+ACTIVE          |

# **Interpreting Streamflow Forecasts**

#### Introduction

Each month, five forecasts are issued for each forecast point and each forecast period. Unless otherwise specified, all streamflovv forecasts are for streamflow volumes that would occur naturally without any upstream influences. Water users need to know what the different forecasts represent if they are to use the information correctly when making operational decisions. The following is an explanation of each of the forecasts.

Most Probable (50 Percent Chance of Exceeding) Forecast. This forecast is the best estimate of streamflow volume that can be produced given current conditions and based on the outcome of similar past situations, There is a 50 percent chance that the streamflow volume will exceed this forecast value. There is a 50 percent chance that the streamflow volume will be less than this forecast value.

The most probable forecast will rarely be exactly right, due to errors resulting from future weather conditions and the forecast equation itself. This does not mean that users should not use the most probable forecast; it means that they need to evaluate existing circumstances and determine the amount of risk they are willing to take by accepting this forecast value.

#### To Decrease the Chance of Having Too Little Water

If users want to make sure there is enough water available for their operations, they might determine that a 50 percent chance of the streamflow volume being lower than the most probable forecast is too much risk to take. To reduce the risk of not having enough water available during the forecast period, users can base their operational decisions on one of the forecasts with a greater chance of being exceeded (or possibly some point in-between). These include:

70 Percent Chance of Exceeding Forecast. There is a 70 percent chance that the streamflow volume will exceed this forecast value.

There is a 30 percent chance the streamflow volume will be less than this forecast value.

90 Percent Chance of Exceeding Forecast. There is a 90 percent

chance that the streamflow volume will exceed this forecast value.

There is a 10 percent chance the streamflow volume will be less than this forecast value.

#### To Decrease the Chance of Having Too Much Water

If users want to make sure they don't have too much water, they might determine that a 50 percent chance of the streamflow being higher than the most probable forecast is too much of a risk to take. To reduce the risk of having

too much water available during the forecast period, users can base their operational decisions on one of the forecasts with a smaller chance of being exceeded. These include:

30 Percent Chance of Exceeding Forecast. There is a 30 percent chance that the streamflow volume will exceed this forecast value. There is a 70 percent chance the streamflow volume will be less than this forecast value.

10 Percent Chance of Exceeding Forecast. there is a 10 percent chance that the streamflow volume will exceed this forecast value. There is a 90 percent chance the streamflow volume will be less than this forecast value.

Using the forecasts - an example

Using the Most Probable Forecast. Using the example forecasts shown below, users can reasonably expect 36,000 acre-feet to flow past the gaging station on the Mary's River near Death between March I and July 31.

Using the Higher Exceedence Forecasts. If users anticipate a somewhat drier trend in the future (monthly and seasonal weather outlooks are available from the National Weather Service every two weeks), or if they are operating at a level where an unexpected shortage of water could cause problems, they might want to plan on receiving only 20,000 acre-feet (from the 70 percent chance of exceeding forecast). In seven out of ten years with similar conditions, streamflow volumes will exceed the 20,000 acre-foot forecast.

If users anticipate extremely dry conditions for the remainder of the season, or if they determine the risk of using the 70 percent chance of exceeding forecast is too great, then they might plan on receiving only 5000 acre-feet (from the 90 percent chance of exceeding forecast). Nine out of ten years with similar conditions, streamflow volumes will exceed the 5000 acre-foot forecast.

Using the Lower Exceedance Forecasts. If users expect wetter future conditions, or if the chance that five out of every ten years with similar conditions would produce streamflow volumes greater than 36,000 acre-feet was more than they would like to risk, they might plan on receiving 52,000 acre-feet (from the 30 percent chance of exceeding forecast) to minimize potential flooding problems. Three Out of ten years with similar conditions, streamflows will exceed the 52,000 acre-foot forecast.

In years when users expect extremely wet conditions for the remainder of the season and the threat of severe flooding and downstream damage exists, they might choose to use the 76,000 acre-foot (10 percent chance of exceeding) forecast for their water management operations. Streamflow volumes will exceed this level only one year out of ten.

# WEISER, PAYETTE, BOISE RIVER BASINS Streamflow Forecasts

| Forecast Point                    | Forecast           | <<=====         |                 |            |            |                 |                 |                        |
|-----------------------------------|--------------------|-----------------|-----------------|------------|------------|-----------------|-----------------|------------------------|
|                                   | Period             | 90%<br>(1000AF) | 70%<br>(1000AF) | 50% (Most  |            | 30%<br>(1000AF) | 10%<br>(1000AF) | 30-Yr Avg.<br>(1000AF) |
| SF PAYETTE RIVER at Lowman        | APR-JUL<br>APR-SEP | 329<br>369      | 414<br>459      | 471<br>521 | 109<br>107 | 528<br>583      | 613<br>673      | 432<br>488             |
| BOISE RIVER near Twin Springs (1) | APR-JUL<br>APR-SEP | 443<br>495      | 610<br>670      | 685<br>750 | 109<br>109 | 760<br>830      | 927<br>1005     | 631                    |

For more information concerning streamflow forecasting ask your local NRCS field office for a copy of "A Field Office Guide for Interpreting Streamflow Forecasts" or visit our Web page.

1022607433

OFFICIAL BUSINESS



Issued by
Bruce I. Knight, Chief
Natural Resources Conservation Service
Washington, DC

Released by
Richard Sims, State Conservationist
Natural Resources Conservation Service
Boise, Idaho

Prepared by
Snow Survey Staff
Ron Abramovich, Water Supply Specialist
Philip Morrisey, Hydrologist
James Montesi, Hydrologist
Kelly Vick, Data Analyst
Bill Patterson, Electronics Technician
Jeff Graham, Electronics Technician

Cooperative funding for printing provided by Idaho Department of Water Resources

Numerous other agencies provide funding and/or cooperative support. Their cooperation is greatly appreciated.

