

TP I - Métodos Numéricos

Métodos Numéricos

Grupo 2

Integrante	LU	Correo electrónico
Alejandro Danós	381/10	adp007@msn.com
Franco		
Fernando		

Reservado para la cátedra

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (54 11) 4576-3359 http://www.fcen.uba.ar

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Introducción Teórica	9
2.	Desarrollo	3
3.	Resultados	3
4.	Discusión	9
5 .	Conclusiones	9
6.	Apéndices	9
7.	Referencias	9

1. Introducción Teórica

2. Desarrollo

Decidimos pensar al problema como si un sistema lineal de ecuaciones o, equivalentemente, buscar el vector x que cumpla Ax = b, siendo éstas las siguientes:

- Matriz A: es una matriz cuadrada con cantidad de filas y de columnas igual a $n \times m$ está dividida en 3 partes según las filas. Sean i,j tal que $1 \le i, j \le (n \times m)$.
 - Caso $i \le n$ ó Caso $(n \times m) n < i$:

$$A_{ij} = \begin{cases} 1 & \text{si } i = j; \\ 0 & \text{si } i \neq j. \end{cases}$$

• Caso $n < i \le (n \times m) - n$:

$$A_{ij} = \begin{cases} \frac{-2}{(\Delta r)^2} + \frac{1}{r \times \Delta r} - \frac{2}{r^2 \times (\Delta \theta)^2} & \text{si } i = j; \\ \frac{1}{(\Delta r)^2} - \frac{1}{r \times (\Delta r)} & \text{si } j = i - n; \\ \frac{1}{(\Delta r)^2} & \text{si } j = i + n; \\ \frac{1}{r^2 \times (\Delta \theta)^2} & \text{si } j = i - 1; \\ \frac{1}{r^2 \times (\Delta \theta)^2} & \text{si } j = i + 1; \\ 0 & \text{en otro caso.} \end{cases}$$

- Vector x: es un vector con $n \times m$ incógnitas que representarían las temperaturas de los puntos en nuestra pared. Para que sea más fácil el cálculo y que sea consistente con lo propuesto en la matriz A, están ordenados de forma alfabética primero según el radio (r) y después según el ángulo (θ). Es decir, X_1 representa a T(1,1), X_n representa a T(1,n), X_{n+1} a T(2,1), etc.
- Vector b: es un vector con $n \times m$ valores y representarían lo que sabemos sobre las temperaturas. En el caso de los primeros n y últimos n valores, son las temperaturas internas y externas respectivamente. En los puntos intermedios entre ellos, todos los valores son 0. De esta forma, en las partes que son
- submatrices inducidas de A en las que hay una matriz **Identidad**, los 2 casos en la primera definición de $A_i j$ arriba, se igualaría el respectivo X_i con su temperatura fija. En los puntos de la submatriz inducida de A en los que no hay una Matriz **Identidad**, están igualados a 0 para aplicar la ecuación con derivadas con los multiplicadores de las incógnitas debidamente indicados por cada fila.

Menos formalmente, sean $M_{i,j}, M_{i,i-n}, M_{i,i+n}, M_{i,i-1}$ y $M_{i,i+1}$ los multiplicadores en las filas de A "del medio" respectivamente según los enunciamos.

/ I		0	• • •	0		0	/
:	٠			0		0	
:	:		i		i		:
:	1.1		1.1	3.6	3.6	3.6	
1 .	$M_{i,j-n}$		$M_{i,j-1}$	$M_{i,j}$	$M_{i,j+1}$	$\cdots M_{i,j+i}$	$_{i}$ \cdots
:	:		÷	$M_{i,j}$	$M_{i,j+1}$ \vdots	$\cdots M_{i,j+i}$	· · · · · · · · · · · · · · · · · · ·
:	:		:	0	:	$M_{i,j+i}$ I	· · · ·

- 3. Resultados
- 4. Discusión
- 5. Conclusiones
- 6. Apéndices
- 7. Referencias