

房产定价Hackathon Final-term 项目汇报

财政金融学院 王晨曦 2024年12月26日

数据处理

✓ 数据获取:

兴趣点Point of Interest

API接口?邮件?图书馆?盈利机构?同学?✓

✓ Inspiration:

Mid-term中发现经纬度信息不好利用 + 葛老师引导

✓ Challenges:

Pandas DataFrame → MomeryError 内存报错

➤ Dask库: Partitioning & Lazy Evaluation

运行速度过慢:

▶ 计算复杂度:

依据小样本运行速度判断:至少需要3500个小时

数据更新问题:

▶ 交易年份涉及 2018-2022 共五年

65,271,054 \times (102117+17908) \times geopy.distance.geodesic \times n_features

数据处理

✓ 运行速度及数据更新解决措施:

最终数据选取:选择样本中**2022年的POI数据**(购买)对数据进行预处理——只考虑样本中五个城市附近的POI最终:

样本城市名	真实城市名	POI数目	Train	Predict	Details
冰城	哈尔滨	250,042	13,735	1,405	266
近畿	廊坊	172,491	5,009	1,269	127
津门	天津	409,020	26,583	5,604	683
江城	武汉	4,306,553	5,864	2,972	536
长安	西安	398,638	19,102	2,576	453
天府	重庆	892,261	31,824	4,082	600
合计:		2,553,105	102,117	17,908	2,665

Code: 1.1.3, 1.1.4, 1.1.5

细类(中类)特征共136个 Code: 1.1.1 Postscript: 数据同样已上传至datahub上,感兴趣的同学可以联系我开共享~

- ▶ 什么信息对我们是**有用的**?
- ✓ 最近POI的距离?
- ✓ 距离<3km的POI点的个数?

joblib 并行计算

test-四个特征

○ 运行成功·开始时间: 2024/12/08 23:27·运行时长: 6小时12分46秒

模型Xgboost

- > 网格调参
- > 手动调参

+ 贝叶斯优化

```
# 定义XGBoost训练的参数
params = {
   'objective': 'reg:squarederror', # 回归问题,使用均方误差作为损失函数
   'max_depth': 7, # 树的最大深度,控制模型的复杂度 7
   'eta': 0.034, # 学习率,控制每次迭代更新的步长 0.033
   'subsample': 0.8, # 训练时使用80%的样本, 防止过拟合 0.8
   'colsample bytree': 0.8 # 每棵树训练时,随机选择80%的特征 0.8
# 设置训练的最大迭代轮数和早停轮数
num_boost_round = 30000 # 最大训练轮数
early stopping rounds = 1000 # 如果在1000轮内验证集的误差没有改善,则提前停止训练
evals_result = {} # 存储每轮训练的评估结果
bst = xgb.train(
   params, # 使用上述定义的参数
   xgb.DMatrix(X train, label=y train), # 训练集数据
   num_boost_round, # 最大迭代次数
   evals=[(xgb.DMatrix(X_test, label=y_test), 'eval')], # 验证集
   early_stopping_rounds=early_stopping_rounds, # 设置早停机制
   evals_result=evals_result # 存储训练过程中的评估结果
```

图3.1: 手动调整 Xgboost 超参数

Test RMSE: 335335.939194466

Predict Score: 83.112

```
def objective(trial):

# 贝叶斯优化的参数空间

param = {

    'objective': 'reg:squarederror',
    'eval_metric': 'rmse',
    'max_depth': trial.suggest_int('max_depth', 5, 9),
    'learning_rate': trial.suggest_float('learning_rate', 0.03, 0.038, log=True),
    'subsample': trial.suggest_float('subsample', 0.75, 0.85),
    'colsample_bytree': trial.suggest_float('colsample_bytree', 0.75, 0.85),
    'n_estimators': trial.suggest_int('n_estimators', 100, 1000, step=100),
    'gamma': trial.suggest_float('gamma', 0, 3), # 控制是否后剪枝
    'lambda': trial.suggest_float('lambda', 0, 1),
    'alpha': trial.suggest_float('alpha', 0, 1)
}
```

图3.2: 贝叶斯优化使用的超参数范围空间

```
# 使用交叉验证(K折交叉验证)
kfold = KFold(n_splits=5, shuffle=True, random_state=42)
scores = cross_val_score(model, X, y, cv=kfold, scoring='neg_root_mean_squared_error', n_jobs=-1)
# 返回平均的负RMSE作为优化目标(注意我们需要最小化RMSE、所以使用负值)
rmse = -np.mean(scores)
return rmse
```

图3.3: 贝叶斯优化 5 折交叉验证

▶ 特征标准化 + 对价格取对数处理

Train RMSE: 0.12112

Score: 83.646

Code: 2.4 优化后的Xgboost模型

模型keras ANN

> 对于Price, 实行对数变换

$$Price_{log} = ln(1 + Price)$$

```
# 确保目标变量不具有太大的偏差(对数变换)
y_train_log = np.log1p(y_train) # 取对数处理目标变量
y_test_log = np.log1p(y_test) # 同样处理测试集
```

- ▶ 构建神经网络, 共五层
- ➤ 标准化和对数变换 restate
 - ✓ 价格明显右偏 —— 对数变换

- ✓ 各变量度量标准统一 —— 标准化
- ✓ ANN中为避免出现梯度消失或梯度爆炸的 情况 —— 标准化 (BatchNormalization)

```
model = Sequential()
# 第一层,加入BatchNormalization和Dropout
model.add(Dense(512, input_dim=X_train_scaled.shape[1], activation='gelu')) # 第一个隐藏层,使用 GELU 激活函数
model.add(BatchNormalization()) # 添加批标准化层
model.add(Dropout(0.13)) # 添加Dropout层,防止过拟合
model.add(Dense(256, activation='gelu'))
model.add(BatchNormalization()) # 添加批标准化层
model.add(Dropout(0.13)) # 添加Dropout层
model.add(Dense(128, activation='gelu'))
model.add(BatchNormalization()) # 添加批标准化层
model.add(Dropout(0.13)) # 添加Dropout层
# 第四层
model.add(Dense(64, activation='gelu'))
model.add(BatchNormalization()) # 添加批标准化层
model.add(Dropout(0.13)) # 添加Dropout层
model.add(Dense(32, activation='gelu'))
model.add(BatchNormalization()) # 添加批标准化层
model.add(Dropout(0.13)) # 添加Dropout层
# 输出层,注意使用线性激活,因为目标是连续值
model.add(Dense(1)) # 输出层,预测房产价格
```

Train_RMSE: 0.18755 Predict Score: 77.606

模型结果及改进

Xgboost 特征重要性排名:

- Weight
- > Permutation Importance

Code: 2.2.1 Xgboost-手动调参 & Code: 2.4 改进后的Xgboost

未来的改进:

- > 数据处理
 - 」利用**交易年份**寻找对应年份的POI数据
 - 」 对于details中没有的小区,应重新搜索
 - 」 对文本的利用,课程学习的**语义向量**等知识
 - □ **交互项**的改进
- ▶ 模型训练
 - □ ANN 可以考虑更改参数、激活函数
 - □ **交叉验证**优化可能能够提升参数的同时,兼 顾模型的**泛化能力**,防止overfitting

作业结果

谢谢大家!

Thank the experts for listening and welcome the criticism!