Clustering II

Lecture 15

Hierarchical Clustering

agglomerative (bottom-up) clustering divisive (top-down) clustering

Agglomerative clustering components

Distance metric

How we measure distance/dissimilarity

Euclidean distance (L₂ norm)

$$D(\boldsymbol{a},\boldsymbol{b}) = \|\boldsymbol{a} - \boldsymbol{b}\|_2$$

Squared Euclidean distance

$$D(\boldsymbol{a},\boldsymbol{b}) = \|\boldsymbol{a} - \boldsymbol{b}\|_2^2$$

Manhattan distance (L₁ norm)

$$D(\boldsymbol{a},\boldsymbol{b}) = \|\boldsymbol{a} - \boldsymbol{b}\|_1$$

Maximum distance

$$D(\boldsymbol{a}, \boldsymbol{b}) = \|\boldsymbol{a} - \boldsymbol{b}\|_{\infty}$$
$$= \max_{i} |a_{i} - b_{i}|$$

Linkage criterion

How to measure distance/dissimilarity between groups or sets

Complete = maximum intercluster dissimilarity

Single = minimum intercluster dissimilarity

Average = average intercluster dissimilarity (calculate the dissimilarity between all pairs of points, take the average)

Centroid = dissimilarity between cluster centroids

Agglomerative clustering

With complete linkage and Euclidean distance

Data in 2-D feature space

Algorithm:

- 1. Select a measure of dissimilarity and linkage
- 2. Set each observation as a unique cluster
- 3. Group the two closest clusters together
- 4. Repeat until there is only one cluster

Dendrogram

Image from James et al., Introduction to Statistical Learning, 2013

Agglomerative clustering

With complete linkage and Euclidean distance

Data in 2-D feature space

Algorithm:

- 1. Select a measure of dissimilarity and linkage
- 2. Set each observation as a unique cluster
- 3. Group the two closest clusters together
- 4. Repeat until there is only one cluster

Dendrogram

Image from James et al., Introduction to Statistical Learning, 2013

Agglomerative clustering

With complete linkage and Euclidean distance

Data in 2-D feature space

Algorithm:

- 1. Select a measure of dissimilarity and linkage
- 2. Set each observation as a unique cluster
- 3. Group the two closest clusters together
- 4. Repeat until there is only one cluster

Image from James et al., Introduction to Statistical Learning, 2013

Example of agglomerative clustering

With complete linkage and Euclidean distance

Image from James et al., Introduction to Statistical Learning, 2013

Examples: Agglomerative clustering

Need to choose where to cut the dendrogram

Can be slow since all pairwise distances between clusters need to be evaluated

Performs well when clusters are well-separated

Struggles when intercluster distance is not sufficient to distinguish between clusters

DBSCAN Clustering

Density-based spatial clustering of applications with noise

By Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu, 1996

Parameters:

- 1. Distance measure
- 2. The radius of a neighbor, ϵ
- 3. 'minPts': The number of neighbors for a point to be considered a core point

Types of points:

- **Core**: a point with at least minPts neighbors
- **Border**: a non-core point that neighbors a core point
- Noise: Other points

Algorithm:

- 1. Label core and border points
- 2. Group neighboring core points
- 3. Add border points that are neighbors of core points

Parameters:

- 1. Distance measure
- 2. The radius of a neighbor, ϵ
- 3. 'minPts': The number of neighbors for a point to be considered a core point

Types of points:

- Core: a point with at least minPts neighbors
- **Border**: a non-core point that neighbors a core point
- Noise: Other points

Algorithm:

- 1. Label core and border points
- 2. Group neighboring core points
- 3. Add border points that are neighbors of core points

Parameters:

- 1. Distance measure
- 2. The radius of a neighbor, ϵ
- 3. 'minPts': The number of neighbors for a point to be considered a core point

Types of points:

- Core: a point with at least minPts neighbors
- Border: a non-core point that neighbors a core point
- Noise: Other points

Algorithm:

- 1. Label core and border points
- 2. Group neighboring core points
- 3. Add border points that are neighbors of core points

Parameters:

- 1. Distance measure
- 2. The radius of a neighbor, ϵ
- 3. 'minPts': The number of neighbors for a point to be considered a core point

Types of points:

- Core: a point with at least minPts neighbors
- **Border**: a non-core point that neighbors a core point
- Noise: Other points

Algorithm:

- 1. Label core and border points
- 2. Group neighboring core points
- 3. Add border points that are neighbors of core points

Parameters:

- 1. Distance measure
- 2. The radius of a neighbor, ϵ
- 3. 'minPts': The number of neighbors for a point to be considered a core point

Types of points:

- Core: a point with at least minPts neighbors
- **Border**: a non-core point that neighbors a core point
- Noise: Other points

Algorithm:

- 1. Label core and border points
- 2. Group neighboring core points
- 3. Add border points that are neighbors of core points

Parameters:

- 1. Distance measure
- 2. The radius of a neighbor, ϵ
- 3. 'minPts': The number of neighbors for a point to be considered a core point

Types of points:

- Core: a point with at least minPts neighbors
- Border: a non-core point that neighbors a core point
- Noise: Other points

Algorithm:

- 1. Label core and border points
- 2. Group neighboring core points
- 3. Add border points that are neighbors of core points

Parameters:

- 1. Distance measure
- 2. The radius of a neighbor, ϵ
- 3. 'minPts': The number of neighbors for a point to be considered a core point

Types of points:

- Core: a point with at least minPts neighbors
- Border: a non-core point that neighbors a core point
- Noise: Other points

Algorithm:

- 1. Label core and border points
- 2. Group neighboring core points
- 3. Add border points that are neighbors of core points

Parameters:

- 1. Distance measure
- 2. The radius of a neighbor, ϵ
- 3. 'minPts': The number of neighbors for a point to be considered a core point

Types of points:

- Core: a point with at least minPts neighbors
- Border: a non-core point that neighbors a core point
- Noise: Other points

Algorithm:

- 1. Label core and border points
- 2. Group neighboring core points
- 3. Add border points that are neighbors of core points

- The number of clusters is chosen as part of the algorithm
- Can find arbitrarily shaped clusters
- Robust to outliers

- Cannot handle significant variation in cluster density
- Not entirely deterministic (border points reachable from more than one cluster may be assigned to either)

Examples: DBSCAN

Need to choose the density parameters

Does not require selecting the number of clusters beforehand

Clustering in a low dimensional space based on data similarity

Focuses on **connectedness** instead of compactness

The location alone does not determine **similarity** or "**affinity**"

These two points are likely connected by a cluster

These two points are NOT likely connected by a cluster

feature 1

Concept from Sebastian Thrun and Peter Norvig

feature

Define **similarity** or **affinity** as the opposite of distance:

$$A(\boldsymbol{a},\boldsymbol{b}) = -D(\boldsymbol{a},\boldsymbol{b})$$

For example, using Euclidean distance, we could define affinity as:

$$A(a, b) = -\|a - b\|_2$$

feature 1

Concept from Sebastian Thrun and Peter Norvig

Algorithm

- Construct an affinity
 matrix based on the data
 (works best when this
 matrix is sparse)
- 2. Reduce dimensions of the data using the affinity matrix
- 3. Perform clustering in this new lower dimensional space

feature 1

Concept from Sebastian Thrun and Peter Norvig

Affinity Matrix

Concept from Sebastian Thrun and Peter Norvig

Affinity matrix

Spectral Clustering

- 1. Project into lower dimension using the affinity matrix
- Perform clustering in the lower dimension (often K-means)

Concept from Sebastian Thrun and Peter Norvig

Examples: Spectral Clustering

Makes few assumptions about data, so often produces good clustering results

Slow for large datasets

Requires specifying number of clusters

Types of clustering algorithms

Methods

```
Centroid-based clustering (e.g. K-Means)
```

Distribution-based clustering (e.g. Gaussian mixture model)

Density-based clustering (e.g. **DBSCAN**, mean-shift)

Hierarchical clustering (e.g. agglomerative clustering)

a.k.a. connectivity-based clustering

Graph-based clustering (e.g. spectral clustering, affinity propagation)

Cluster assignment

Hard clustering
Soft clustering (a.k.a. fuzzy clustering)

Clustering choices:

- 1. How should the data be scaled?
- 2. For K-means and GMMs: how many clusters to estimate?
- 3. For hierarchical clustering: dissimilarity measure, linkage, where to cut dendrogram

Approach: try multiple options, and select the one with the most useful or interpretable solution

Kyle Bradbury Clustering II Lecture 15 28

Image from James et al., Introduction to Statistical Learning,