

2014 VCAA Specialist Math Exam 2 Solutions © 2014 itute.com

SECTION 1

1	2	3	4	5	6	7	8	9	10	11
В	Е	D	С	A	D	Е	C	В	Α	D
12	13	14	15	16	17	18	19	20	21	22
_	Е	-	_		_	Е	~	В		

Q1 Asymptotes are
$$y = \pm \frac{2}{3}(x-3)$$

x-intercept: (3,0); y-intercepts: (0,-2) and (0,2)

Q2
$$x^2 - 6x + 2y^2 + 8y + 16 = 0$$
,

$$x^{2}-6x+9+2(y^{2}+4y+4)+16=9+8$$

$$(x-3)^2 + 2(y+2)^2 = 1$$
, $\frac{(x-3)^2}{1^2} + \frac{(y+2)^2}{\left(\frac{1}{\sqrt{2}}\right)^2} = 1$

Q3
$$f(x) = \frac{x^2 - 4x + 3}{x^2 - x - 6} = 1 - \frac{3(x - 3)}{(x + 2)(x - 3)}$$

or
$$1 - \frac{3}{x+2}$$
 where $x \neq 3$

Q4 For
$$\arcsin(2x-1)$$
, $-1 \le 2x-1 \le 1$, :: $0 \le x \le 1$

Q5
$$z^2 = (2\sqrt{2})^2 \left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right) = -8i$$

Q6
$$i^{2n+3} = i^{2n}i^2i = (i^n)^2i^2i = -ip^2$$

Q7
$$z^3 - 5z^2 + 11z - 7 = (z - \alpha)(z - \beta)(z - \gamma) = 0$$

Coefficient of z^2 : $-(\alpha + \beta + \gamma) = -5$, .: $\alpha + \beta + \gamma = 5$

Q8
$$\frac{-3\sqrt{2} - i\sqrt{6}}{2 + 2i} = \frac{A \operatorname{cis} \frac{7\pi}{6}}{B \operatorname{cis} \frac{\pi}{4}} = C \operatorname{cis} \frac{11\pi}{12}$$

Q9

Q10 After t minutes, $Q \log of$ salt is in 1500 - 2t litres of

solution, .: concentration is $\frac{Q}{1500-2t}$ kg per litre

Rate of inflow = $2 \times 8 = 16$ kg per minute (2 kg of salt per litre?)

Rate of outflow = $\frac{Q}{1500 - 2t} \times 10 = \frac{5Q}{750 - t}$ kg per minute

$$\therefore \frac{dQ}{dt} = 16 - \frac{5Q}{750 - t}$$

Q11
$$y_{n+1} \approx y_n + h \times \frac{dy}{dx}$$

$$x_0 = 1$$
 $y_0 = 2$ $\frac{dy}{dx} = x^3 - xy = -1$
 $x_1 = 1.1$ $y_1 \approx 2 + 0.1(-1) = 1.9$

$$x_1 = 1.1$$
 $y_1 \approx 2 + 0.1(-1) = 1.9$ D

Q13
$$u = \sqrt{x+1}$$
, $\frac{du}{dx} = \frac{1}{2\sqrt{x+1}}$, $u^2 + 1 = x+2$

$$\int_0^2 \frac{dx}{(x+2)\sqrt{x+1}} = 2 \int_1^{\sqrt{3}} \frac{1}{u^2+1} du$$

Q14 At
$$y = x$$
, $\frac{dy}{dx}$ is undefined; when $y < x$, $\frac{dy}{dx} < 0$;

when
$$y > x$$
, $\frac{dy}{dx} > 0$

Q15
$$|\tilde{a}| = \sqrt{20}$$
, $|\tilde{b}| = \sqrt{20}$, $\cos \theta = \frac{\tilde{a} \cdot \tilde{b}}{|\tilde{a}||\tilde{b}|} = -\frac{4}{5}$

$$\cos 2\theta = 2\cos^2 \theta - 1 = \frac{7}{25}$$

Q16
$$\tilde{a} = 4\tilde{i} + m\tilde{j} - 3\tilde{k}$$
, $\tilde{b} = -2\tilde{i} + n\tilde{j} - \tilde{k}$, where $m, n \in \mathbb{R}^+$

$$|\tilde{a}|^2 = 100$$
, .: $m = 5\sqrt{3}$; $\tilde{a}.\tilde{b} = 0$, .: $mn = 5$, .: $n = \frac{\sqrt{3}}{3}$

Q17
$$\widetilde{v}(t) = \int \left(-4\sin 2t \,\widetilde{i} + 20\cos 2t \,\widetilde{j} - 20e^{-2t} \,\widetilde{k}\right) dt$$

$$= 2\cos 2t \,\tilde{i} + 10\sin 2t \,\tilde{j} + 10e^{-2t} \,\tilde{k} + \tilde{c}$$

Given
$$\tilde{v}(0) = 0$$
, .: $\tilde{c} = -2\tilde{i} - 10\tilde{k}$ and

$$\tilde{v}(t) = (2\cos 2t - 2)\tilde{i} + 10\sin 2t \,\tilde{j} + (10e^{-2t} - 10)\tilde{k}$$

Q18 North-south:
$$1 + 2\cos 60^{\circ} + 4\cos 120^{\circ} = 0$$

East-west:
$$2\sin 60^{\circ} + 4\sin 120^{\circ} - 5 = 3\sqrt{3} - 5 > 0$$

.: the net force acts in a easterly direction.

The initial state of motion is not specified!

Assume that the body is initially at rest (or moving to the east), it will move to the east.

D

Q19
$$\tilde{v}(t) = 3\sin 2t \,\tilde{i} + 4\cos 2t \,\tilde{j}$$
, $\tilde{a}(t) = \frac{d\tilde{v}}{dt} = 6\cos 2t \,\tilde{i} - 8\sin 2t \,\tilde{j}$

Net force = $m\tilde{a} = 30\cos 2t \,\tilde{i} - 40\sin 2t \,\tilde{j}$

|Net force| =
$$\sqrt{900\cos_2 2t + 1600\sin^2 2t}$$
 = $\sqrt{900 + 700\sin^2 2t}$

.: the max. magnitude of the net force =
$$\sqrt{900 + 700} = 40$$

Q20 Net force =
$$5 \times 9.8 - 3 \times 9.8 = 19.6$$
 N

Acceleration =
$$\frac{\text{net force}}{\text{total mass}} = \frac{19.6}{8} = 2.45 \text{ m s}^{-2}$$

After 2 seconds, $v = u + at = 0 + 2.45 \times 2 = 4.9 \text{ m s}^{-1}$

After 2 seconds,
$$v = u + at = 0 + 2.45 \times 2 = 4.9 \text{ m s}^{-1}$$

Q21
$$a = -4x$$
, $\frac{1}{2} \frac{dv^2}{dx} = -4x$, $\frac{dv^2}{dx} = -8x$, $v^2 = -4x^2 + c$

Given
$$v = 0$$
 at $x = 5$, .: $c = 100$ and $v^2 = 100 - 4x^2$

At
$$x = 3$$
, $v^2 = 64$, .: $|v| = 8$

Q22 In
$$0 \le t \le 4$$
, distance $= \frac{1}{2}(2+4)(9) = 27$

In
$$4 \le t \le 8$$
, distance $= \int_4^8 \left(-\frac{9}{16} (t-4)^2 + 9 \right) dt = 24$

In
$$8 \le t \le 9$$
, distance $= -\int_{8}^{9} \left(-\frac{9}{16} (t - 4)^2 + 9 \right) dt = 2.4375$

SECTION 2

Q1a
$$y = \frac{9}{(x+2)(x-4)} = \frac{9}{x^2 - 2x - 8}, \frac{1}{y} = \frac{x^2 - 2x - 8}{9},$$

$$-\frac{1}{y^2} \frac{dy}{dx} = \frac{2x - 2}{9}.$$

Let
$$\frac{dy}{dx} = 0$$
. $\therefore x = 1$ and $y = -1$

The stationary point is (1, -1).

Q1b
$$x = -2$$
, $x = 4$, $y = 0$

Q1c

Q1di
$$V = \int_0^3 \pi y^2 dx = \int_0^3 \frac{81\pi}{(x+2)^2 (x-4)^2} dx$$

Q1dii By CAS, V = 12.85 cubic units

Q2ai
$$z_1 = \sqrt{3} - 3i$$
, $|z_1| = \sqrt{(\sqrt{3})^2 + (-3)^2} = \sqrt{12} = 2\sqrt{3}$

$$\operatorname{Arg}(z_1) = \tan^{-1}\left(\frac{-3}{\sqrt{3}}\right) = -\frac{\pi}{3}$$
, :: $z_1 = 2\sqrt{3}\operatorname{cis}\left(-\frac{\pi}{3}\right)$

Q2aii
$$z_1 = 2\sqrt{3} \operatorname{cis} \left(-\frac{\pi}{3} \right)$$
, $\arg \left(z_1^4 \right) = 4 \arg \left(z_1 \right) = -\frac{4\pi}{3}$

:
$$Arg(z_1^4) = \frac{2\pi}{3}$$

C

В

Q2aiii $z_1 = \sqrt{3} - 3i$ is a root of $z^3 + 24\sqrt{3} = 0$, .: $z = \sqrt{3} + 3i$ is also a root.

$$z^{3} + 24\sqrt{3} = (z - (\sqrt{3} - 3i))(z - (\sqrt{3} + 3i))(z - p) = 0 \text{ where } p \in R$$

$$z^{3} + 24\sqrt{3} = (z^{2} - 2\sqrt{3}z + 12)(z - p) = 0$$

$$\therefore -12p = 24\sqrt{3}, \therefore p = -2\sqrt{3}$$

The other 2 roots are $\sqrt{3} + 3i$ and $-2\sqrt{3}$.

Q2bi
$$(z_1 + 2i)(\overline{z}_1 - 2i) = (\sqrt{3} - 3i + 2i)(\sqrt{3} + 3i - 2i)$$

= $(\sqrt{3} - i)(\sqrt{3} + i) = 4$

Q2bii Let
$$z = x + yi$$
.

$$(z+2i)(z-2i) = (x+(y+2)i)(x-(y+2)i) = 4$$

$$x^2 + (y+2)^2 = 4$$

Q2biii

Q2c Let the line be y = mx + c. It passes through (k, -2) and (0, -(2+k)), where k < 0.

$$c = -(2+k)$$
 and $m = \frac{-2+(2+k)}{k-0} = 1$

: y = x - (2 + k) is a tangent line to $x^2 + (y + 2)^2 = 4$.

Solve the two equations simultaneously:

$$x^{2} + (x - (2 + k) + 2)^{2} = 4$$
, .: $2x^{2} - 2kx + k^{2} - 4 = 0$ and its

discriminant $\Delta = 0$, i.e. $(-2k)^2 - 4(2)(k^2 - 4) = 0$

$$\therefore -4k^2 + 32 = 0$$
, $\therefore k = -2\sqrt{2}$ since $k < 0$.

Q3a
$$\tilde{a} = 3\tilde{i} + 2\tilde{j} + \tilde{k}$$
, $\hat{b} = \frac{\tilde{b}}{|\tilde{b}|} = \frac{2\tilde{i} - 2\tilde{j} - \tilde{k}}{3}$, $\tilde{a} \cdot \hat{b} = \frac{1}{3}$,

.: the parallel vector resolute is $(\tilde{a}.\hat{b})\hat{b} = \frac{2}{9}\tilde{i} - \frac{2}{9}\tilde{j} - \frac{1}{9}\tilde{k}$,

and the perpendicular vector resolute is

$$\begin{aligned} \widetilde{a} - \left(\widetilde{a} \cdot \widehat{b}\right) \widehat{b} &= 3\widetilde{i} + 2\widetilde{j} + \widetilde{k} - \left(\frac{2}{9}\widetilde{i} - \frac{2}{9}\widetilde{j} - \frac{1}{9}\widetilde{k}\right) = \frac{25}{9}\widetilde{i} + \frac{20}{9}\widetilde{j} + \frac{10}{9}\widetilde{k} \\ \therefore \ \widetilde{a} &= \left(\frac{2}{9}\widetilde{i} - \frac{2}{9}\widetilde{j} - \frac{1}{9}\widetilde{k}\right) + \left(\frac{25}{9}\widetilde{i} + \frac{20}{9}\widetilde{j} + \frac{10}{9}\widetilde{k}\right) \\ &= \frac{1}{9} \left(2\widetilde{i} - 2\widetilde{j} - \widetilde{k}\right) + \frac{5}{9} \left(5\widetilde{i} + 4\widetilde{j} + 2\widetilde{k}\right) \end{aligned}$$

Q3bi
$$\overrightarrow{AP} = \alpha \overrightarrow{AD} = \alpha \left(\overrightarrow{AB} + \overrightarrow{BD} \right) = \alpha \left(\overrightarrow{OC} - \frac{1}{2} \overrightarrow{OA} \right) = \alpha \widetilde{c} - \frac{1}{2} \alpha \widetilde{a}$$

Q3bii
$$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \beta \overrightarrow{OB} - \overrightarrow{OA} = \beta \left(\overrightarrow{OA} + \overrightarrow{OC} \right) - \overrightarrow{OA}$$

= $\beta (\widetilde{a} + \widetilde{c}) - \widetilde{a} = \beta \widetilde{c} - (1 - \beta) \widetilde{a}$

Q3biii From parts i and ii, $\alpha \tilde{c} - \frac{1}{2} \alpha \tilde{a} = \beta \tilde{c} - (1 - \beta) \tilde{a}$

$$\therefore \alpha = \beta \text{ and } \frac{1}{2}\alpha = 1 - \beta, \therefore \alpha = \beta = \frac{2}{3}$$

Q4a
$$\frac{r}{h} = \frac{0.5}{1}$$
, $r = \frac{h}{2}$, $\therefore V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \left(\frac{h}{2}\right)^2 h = \frac{\pi}{12}h^3$

Q4b
$$\frac{dV}{dh} = \frac{\pi}{4}h^2$$
; $\frac{dV}{dt} = 0.02\pi - 0.01\pi\sqrt{h} = 0.01\pi(2 - \sqrt{h})$

$$\frac{dV}{dh} \times \frac{dh}{dt} = \frac{dV}{dt}, \quad \frac{\pi}{4}h^2 \times \frac{dh}{dt} = 0.01\pi \left(2 - \sqrt{h}\right), \quad \frac{dh}{dt} = \frac{0.04\left(2 - \sqrt{h}\right)}{h^2}$$

When h = 0.25, $\frac{dh}{dt} = 0.96$ m/min

Q4c
$$\frac{dh}{dt} = \frac{0.04(2 - \sqrt{h})}{h^2}, \frac{dt}{dh} = \frac{25h^2}{2 - \sqrt{h}}$$

$$t = \int_0^1 \frac{25h^2}{2 - \sqrt{h}} dh \approx 7.4 \text{ minutes (By CAS)}$$

Q4d
$$V = \frac{\pi}{48} (x^3 + 6x^2 + 12x), \frac{dV}{dx} = \frac{\pi}{16} (x^2 + 4x + 4) = \frac{\pi}{16} (x + 2)^2$$

 $\frac{dV}{dx} \times \frac{dx}{dt} = \frac{dV}{dt}, \frac{\pi}{16} (x + 2)^2 \frac{dx}{dt} = 0.05\pi$
 $\therefore \frac{dx}{dt} = \frac{4}{5(x+2)^2}, \therefore \frac{dt}{dx} = \frac{5}{4} (x+2)^2 \text{ and } x = 0 \text{ at } t = 0$
 $\therefore t = \int_0^x \frac{5}{4} (x+2)^2 dx = \left[\frac{5(x+2)^3}{12} \right]_0^x = \frac{5(x+2)^3}{12} - \frac{10}{3}$
 $\therefore \frac{12}{5} \left(t + \frac{10}{3} \right) = (x+2)^3, \therefore (x+2)^3 = 8(0.3t+1)$

Q5ai
$$T_1 - 2g = 2a$$

 $x = 2(0.3t+1)^{\frac{1}{3}} - 2$

Q5aii
$$T_2 + 5g \sin \theta - T_1 = 5a$$
; $3g \sin \theta - T_2 = 3a$

Q5aiii Add up the three equations: Sum of the left sides = sum of the right sides

$$8g \sin \theta - 2g = 10a$$
, .: $a = \frac{g(4 \sin \theta - 1)}{5}$

Q5aiv Net force is zero for the system to be in equilibrium,

$$a = 0$$
, $\frac{g(4\sin\theta - 1)}{5} = 0$, $\sin\theta = \frac{1}{4}$, $\theta \approx 14.5^{\circ}$

Q5bi normal reaction force M

Q5bii 3 kg: $3g \sin 30^{\circ} - 0.11 \times 3g \cos 30^{\circ} = 3a$, $a \approx 3.97$ m/s² 5 kg: $5g \sin 30^{\circ} - 0.01 \times 5g \cos 30^{\circ} = 5a$, $a \approx 4.82$ m/s²

Q5biii Both blocks start from rest. The 5 kg block moves 3 extra metres when it collides with the 3 kg block at time *t* seconds.

$$\therefore \frac{1}{2} \times 3.97t^2 + 3 = \frac{1}{2} \times 4.82t^2, \therefore t \approx 2.66 \text{ s}$$

Please inform mathline@itute.com re conceptual and/or mathematical errors