Support Vectors

LINEAR CLASSIFIERS IN PYTHON

Michael (Mike) Gelbart
Instructor, The University of British
Columbia

What is an SVM?

- Linear classifiers (so far)
- Trained using the hinge loss and L2 regularization

- Support vector: a training example **not** in the flat part of the loss diagram
- Support vector: an example that is incorrectly classified **or** close to the boundary
- If an example is not a support vector, removing it has no effect on the model
- Having a small number of support vectors makes kernel SVMs really fast

Max-margin viewpoint

- The SVM maximizes the "margin" for linearly separable datasets
- Margin: distance from the boundary to the closest points

Max-margin viewpoint

- The SVM maximizes the "margin" for linearly separable datasets
- Margin: distance from the boundary to the closest points

Let's practice!

LINEAR CLASSIFIERS IN PYTHON

LINEAR CLASSIFIERS IN PYTHON

Michael (Mike) Gelbart
Instructor, The University of British
Columbia

transformed feature =

 $(original feature)^2$

transformed feature =

 $(original feature)^2$

transformed feature =

 $(original feature)^2$

```
from sklearn.svm import SVC

svm = SVC(gamma=1) # default is kernel="rbf"
```



```
from sklearn.svm import SVC
```

```
svm = SVC(gamma=0.01) # default is kernel="rbf"
```


• smaller gamma leads to smoother boundaries

```
from sklearn.svm import SVC

svm = SVC(gamma=2) # default is kernel="rbf"
```


larger gamma leads to more complex boundaries

Let's practice!

LINEAR CLASSIFIERS IN PYTHON

Comparing logistic regression and SVM

LINEAR CLASSIFIERS IN PYTHON

Michael (Mike) Gelbart
Instructor, The University of British
Columbia

Logistic regression:

- Is a linear classifier
- Can use with kernels, but slow
- Outputs meaningful probabilities
- Can be extended to multiclass
- All data points affect fit
- L2 or L1 regularization

Support vector machine (SVM):

- Is a linear classifier
- Can use with kernels, and fast
- Does not naturally output probabilities
- Can be extended to multiclass
- Only "support vectors" affect fit
- Conventionally just L2 regularization

Use in scikit-learn

Logistic regression in sklearn:

• linear_model.LogisticRegression

Key hyperparameters in sklearn:

- C (inverse regularization strength)
- penalty (type of regularization)
- multi_class (type of multi-class)

SVM in sklearn:

• svm.LinearSVC and svm.SVC

Use in scikit-learn (cont.)

Key hyperparameters in sklearn:

- C (inverse regularization strength)
- kernel (type of kernel)
- gamma (inverse RBF smoothness)

SGDClassifier

SGDClassifier : scales well to large datasets

```
from sklearn.linear_model import SGDClassifier
logreg = SGDClassifier(loss='log')
linsvm = SGDClassifier(loss='hinge')
```

• SGDClassifier hyperparameter alpha is like 1/C

Let's practice!

LINEAR CLASSIFIERS IN PYTHON

Conclusion

LINEAR CLASSIFIERS IN PYTHON

Michael (Mike) Gelbart
Instructor, The University of British
Columbia

How does this course fit into data science?

- Data science
- \rightarrow Machine learning
- $\rightarrow \rightarrow$ Supervised learning
- $\rightarrow \rightarrow \rightarrow$ Classification
- $\rightarrow \rightarrow \rightarrow \rightarrow$ Linear classifiers (this course)

Congratulations & thanks!

LINEAR CLASSIFIERS IN PYTHON

