CONCORDIA UNIVERSITY

Department of Computer Science & Software Engineering COMP 232/2 Mathematics for Computer Science Fall 2016

Assignment 1 Solutions

1. For each of the following statements use a truth table to determine whether it is a tautology, a contradiction, or a contingency.

(a)
$$\left(\underbrace{(p \lor r)}_{\mathbf{a}} \land \underbrace{(q \lor r)}_{\mathbf{b}}\right) \leftrightarrow \underbrace{\left((p \land q) \lor r\right)}_{\mathbf{c}}$$

Solution: Tautology.

			a	b			c	
p	q	r	$\bigcap p \lor r$	$\widehat{q \vee r}$	$\mathbf{a} \wedge \mathbf{b}$	$p \wedge q$	$\overbrace{(p \land q) \lor r}$	$(\mathbf{a} \wedge \mathbf{b}) \leftrightarrow \mathbf{c}$
T	T	T	T	T	T	T	T	T
T	T	F	T	T	T	T	T	T
T	F	T	T	T	T	F	T	T
F	T	T	T	T	T	F	T	T
T	F	F	T	F	F	F	F	T
F	T	F	F	T	F	F	F	T
F	F	T	T	T	T	F	T	T
F	F	F	F	F	F	F	F	T

(b)
$$(p \oplus q) \land (p \oplus \neg q)$$

Solution: Contradiction.

p	q	$\neg q$	$\widehat{p \oplus q}$	$\overbrace{p \oplus \neg q}^{\mathbf{b}}$	$\mathbf{a} \wedge \mathbf{b}$
T	T	F	F	T	F
T	F	T	T	F	F
F	T	F	T	F	F
F	F	T	F	T	F

(c)
$$(p \to (q \to r)) \leftrightarrow (p \to (q \land r))$$

Solution: Contingency.

			a	b	c	d	
p	q	r	$q \rightarrow r$	$\widehat{q \wedge r}$	$\widetilde{p \to \mathbf{a}}$	$\widetilde{p \to \mathbf{b}}$	$\mathbf{c}\leftrightarrow\mathbf{d}$
T	T	T	T	T	T	T	T
T	T	F	F	F	F	F	T
T	F	T	T	F	T	F	F
F	T	T	T	T	T	T	T
T	F	F	T	F	T	F	F
F	T	F	F	F	T	T	T
F	F	T	T	F	T	T	T
F	F	F	T	F	T	T	T

(d)
$$\left(p \wedge \underbrace{\left(\neg q \to \neg p\right)}_{\mathbf{a}}\right) \to q$$

Solution: Tautology.

p	q	$\neg p$	$\neg q$	$\overbrace{\neg q \to \neg p}^{\mathbf{a}}$	$\overbrace{p \wedge \mathbf{a}}^{\mathbf{b}}$	$\mathbf{b} o q$
T	T	F	F	T	T	T
T	$\mid F \mid$	F	T	F	F	T
F	$\mid T \mid$	T	F	T	F	T
F	F	T	T	T	F	T

2. For each of the following logical equivalences state whether it is valid or invalid. If invalid then give a counterexample (e.g., based on a truth table). If valid then give an algebraic proof using logical equivalences from Tables 6, 7, and 8 from Section 1.3 of textbook.

(a)
$$(p \to r) \land (q \to r) \equiv (p \land q) \to r$$

Solution: Invalid.

If p = T, q = F, and r = F then the LHS is False, while the RHS is True.

(b)
$$(p \to q) \lor (p \to r) \equiv (p \lor q) \to r$$

Solution: Invalid.

If p = T, q = T, and r = F then the LHS is True, while the RHS is False.

(c)
$$((p \lor q) \land (p \to r) \land (q \to r)) \to r) \equiv T$$

Solution: Valid.

(d)
$$((p \to q) \land (q \to r)) \to (p \to r)) \equiv T$$

Solution: Valid.

We shall instead prove $\neg ((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)) \equiv F$. The claim then follows since $\neg A \equiv F$ if and only if $A \equiv T$.

$$\neg \left(((p \to q) \land (q \to r)) \to (p \to r) \right)$$

$$\equiv \qquad \neg \left(\neg ((p \to q) \land (q \to r)) \lor (p \to r) \right) \quad \text{law for conditional}$$

$$\equiv \qquad \neg \neg ((p \to q) \land (q \to r)) \land \neg (p \to r) \quad \text{De Morgan}$$

$$\equiv \qquad ((p \to q) \land (q \to r)) \land \neg (p \to r) \quad \text{double negation}$$

$$\equiv \qquad ((\neg p \lor q) \land (\neg q \lor r)) \land \neg (\neg p \lor r) \quad \text{law for conditional, trice}$$

$$\equiv \qquad ((\neg p \lor q) \land (\neg q \lor r)) \land (\neg p \land \neg r) \quad \text{De Morgan}$$

$$\equiv \qquad ((\neg p \lor q) \land (\neg q \lor r)) \land (p \land \neg r) \quad \text{double negation}$$

$$\equiv \qquad (\neg p \lor q) \land ((\neg q \lor r) \land p) \land \neg r \quad \text{associativity}$$

$$\equiv \qquad (\neg p \lor q) \land (p \land (\neg q \lor r)) \land \neg r \quad \text{commutativity}$$

$$\equiv \qquad ((\neg p \lor q) \land p) \land ((\neg q \lor r) \land \neg r) \quad \text{associativity, twice}$$

$$\equiv \qquad (F \lor (q \land p)) \land ((\neg q \land \neg r) \lor F) \quad \text{excluded middle, twice}$$

$$\equiv \qquad (p \land q) \land (\neg q \land \neg r) \quad \text{identity, twice}$$

$$\equiv \qquad (p \land q) \land (\neg q \land \neg r) \quad \text{commutativity}$$

$$\equiv \qquad (p \land q) \land (\neg q \land \neg r) \quad \text{commutativity}$$

$$\equiv \qquad p \land (q \land \neg q) \land \neg r \quad \text{associativity}$$

$$\equiv \qquad p \land F \land \neg r \quad \text{excluded middle}$$

$$\equiv \qquad (p \land F) \land \neg r \quad \text{associativity}$$

$$\equiv \qquad p \land F \land \neg r \quad \text{domination}$$

$$\equiv \qquad F \land \text{domination}$$

- 3. Which of the following conditions is *necessary* for the natural number n to be divisible by 6. The natural numbers are $\mathbb{N} = \{0, 1, 2, \dots, \}$.
 - (a) n is divisible by 3.
 - (b) n is divisible by 9.
 - (c) n is divisible by 12.
 - (d) n = 24
 - (e) n^2 is divisible by 3.
 - (f) n is even and divisible by 3.

Solution:

Necessary means If n is divisible by 6, then condition. Conditions (a), (e), and (f) are necessary. We have

- (a) If n is divisible by 6, then n is divisible by 3.
- (e) If n is divisible by 6, then n^2 is divisible by 3.
- (f) If n is divisible by 6, then n is even and divisible by 3.

Sufficient means If condition, then n is divisible by 6. Conditions (c), (d), and (f) are sufficient. We have

- (c) If n is divisible by 12, then n is divisible by 6.
- (d) If n = 24, then n is divisible by 6.
- (f) If n is even and divisible by 3, then n is divisible by 6.

- 4. A set of propositions is *consistent* if there is an assignment of truth values to each of the variables in the propositions that makes each proposition true. Is the following set of propositions consistent?
 - (a) If the file system is not locked, then new messages will be queued.
 - (b) If the file system is not locked, then the system is functioning normally, and conversely.
 - (c) If new messages are not queued, then they will be sent to the message buffer.
 - (d) If the file system is not locked, then new messages will be sent to the message buffer.
 - (e) New messages will not be sent to the message buffer.

Solution:

Let us define the following propositions:

 $FL =_{\texttt{def}} The file system is locked.$

 $NQ =_{\texttt{def}} New messages will be queued.$

 $FN =_{\mathtt{def}} The \ system \ is \ functioning \ normally.$

 $NQ =_{\texttt{def}} New \ messages \ will \ be \ queued.$

 $NB =_{\mathtt{def}} New \ messages \ will \ be \ sent \ to \ the \ message \ buffer.$

We can now formalize propositions (a) - (e):

- (a) $\neg FL \to NQ$
- (b) $\neg FL \leftrightarrow FN$
- (c) $\neg NQ \rightarrow NB$
- (d) $\neg FL \to NB$
- (e) $\neg NB$

The set (a) - (e) of propositions (the conjunction of the proposition in the set) is indeed satisfiable. A satisfying truth assignment is

$$FL = True, NQ = True, FN = False, NB = False$$

- 5. Suppose the domain of the propositional function P(x, y) consists of pairs x and y, where x = 1, 2, or 3, and y = 1, 2, or 3. Write out the propositions below using disjunctions and conjunctions only.
 - (a) $\exists x P(x,3)$

Solution:
$$P(1,3) \vee P(2,3) \vee P(3,3)$$

(b) $\forall y \neg P(2, y)$

Solution:
$$\neg P(2,1) \land \neg P(2,2) \land \neg P(2,3)$$

(c) $\forall x \exists y P(x, y)$

Solution:

$$\forall x \,\exists y \, P(x, y)$$

$$\equiv \qquad \left(\exists y \, P(1, y)\right) \, \bigwedge \left(\exists y \, P(2, y)\right) \, \bigwedge \left(\exists y \, P(3, y)\right)$$

$$\equiv \qquad \left(P(1, 1) \vee P(1, 2) \vee P(1, 3)\right)$$

$$\wedge \qquad \left(P(2, 1) \vee P(2, 2) \vee P(2, 3)\right)$$

$$\wedge \qquad \left(P(3, 1) \vee P(3, 2) \vee P(3, 3)\right)$$

(d) $\exists x \, \forall y \, \neg P(x, y)$

Solution:

$$\exists x \, \forall y \, \neg P(x, y)$$

$$\equiv \qquad \left(\forall y \, \neg P(1, y) \right) \, \bigvee \left(\forall y \, \neg P(2, y) \right) \, \bigvee \left(\forall y \, \neg P(3, y) \right)$$

$$\equiv \qquad \left(\neg P(1, 1) \wedge \neg P(1, 2) \wedge \neg P(1, 3) \right)$$

$$\bigvee \left(\neg P(2, 1) \wedge \neg P(2, 2) \wedge \neg P(2, 3) \right)$$

$$\bigvee \left(\neg P(3, 1) \wedge \neg P(3, 2) \wedge \neg P(3, 3) \right)$$

- 6. Let the domain for x be the set of all students in this class and the domain for y be the set of all countries in the world. Let P(x,y) denote student x has visited country y and Q(x,y) denote student x has a friend in country y. Express each of the following using logical operations and quantifiers, and the propositional functions P(x,y) and Q(x,y).
 - (a) Carlos has visited Bulgaria.

Solution: P(Carlos, Bulgaria)

(b) Every student in this class has visited the United States.

Solution: $\forall x \ P(x, UnitedStates)$

(c) Every student in this class has visited some country in the world.

Solution: $\forall x \; \exists y \; P(x,y)$

(d) There is no country that every student in this class has visited.

Solution: $\forall y \; \exists x \; \neg P(x,y)$

(e) There are two students in this class, who between them, have a friend in every country in the world.

Solution: $\exists x \ \exists y \ \Big(x \neq y \land \forall z [Q(x,z) \lor Q(y,z)] \Big)$

(f) Nobody in this class has visited a country in which they did not have a friend.

Solution: $\forall x \, \forall y \, \Big(P(x,y) \to Q(x,y) \Big)$

Equivalent solution: $\neg \left[\exists x \, \exists y \, \Big(P(x,y) \land \neg Q(x,y) \Big) \right]$

7. For each part in the previous question, form the negation of the statement so that all negation symbols occur immediately in front of predicates. For example:

$$\neg \Big(\forall x \big(P(x) \land Q(x) \big) \Big) \ \equiv \ \exists x \Big(\neg \big((P(x) \land Q(x) \big) \Big) \ \equiv \ \exists x \Big(\big(\neg P(x) \big) \lor \big(\neg Q(x) \big) \Big)$$

(a) Solution: $\neg P(Carlos, Bulgaria)$

Carlos has not visited Bulgaria

(b) Solution: $\neg \Big(\forall x \ P(x, UnitedStates) \Big) \equiv \exists x \Big(\neg P(x, UnitedStates) \Big)$

There is a student in this class who has not visited the United States

(c) Solution: $\neg \left(\forall x \left[\exists y \ P(x,y) \right] \right) \equiv \exists x \ \neg \left[\exists y \ P(x,y) \right] \equiv \exists x \ \forall y \left[\neg P(x,y) \right]$

There is a student in this class who has not visited any country

(d) Solution:

$$\neg \left(\forall y \left[\exists x \neg P(x, y) \right] \right) \equiv \\
\exists y \neg \left[\exists x \neg P(x, y) \right] \equiv \\
\exists y \forall x \neg \left[\neg P(x, y) \right] \equiv \\
\exists y \forall x \left[\neg \neg P(x, y) \right] \equiv \\
\exists y \forall x P(x, y)$$

There is a country that every student in this class has visited

(e) Solution:

$$\neg \left[\exists x \left(\exists y \left(x \neq y \land \forall z \Big[Q(x, z) \lor Q(y, z) \Big] \right) \right) \right] \equiv \\
\forall x \left[\neg \left(\exists y \left(x \neq y \land \forall z \Big[Q(x, z) \lor Q(y, z) \Big] \right) \right) \right] \equiv \\
\forall x \left[\forall y \neg \left(x \neq y \land \forall z \Big[Q(x, z) \lor Q(y, z) \Big] \right) \right] \equiv \\
\forall x \left[\forall y \left(x = y \lor \neg \left(\forall z \Big[Q(x, z) \lor Q(y, z) \Big] \right) \right] \equiv \\
\forall x \left[\forall y \left(x = y \lor \exists z \Big(\neg \Big[Q(x, z) \lor Q(y, z) \Big] \right) \right) \right] \equiv \\
\forall x \left[\forall y \left(x = y \lor \exists z \Big(\neg Q(x, z) \land \neg Q(y, z) \Big) \right) \right]$$

For every pair of distinct students in this class, there is a country where neither one of them has a friend

(f) Solution:

$$\neg \Big[\forall x \, \forall y \, \Big(P(x,y) \to Q(x,y) \Big) \Big] \quad \equiv \\
\exists x \, \Big[\neg \Big(\forall y \, \Big(P(x,y) \to Q(x,y) \Big) \Big) \Big] \quad \equiv \\
\exists x \, \Big[\exists y \, \Big(\neg \Big(P(x,y) \to Q(x,y) \Big) \Big) \Big] \quad \equiv \\
\exists x \, \Big[\exists y \, \Big(\neg \Big(\neg P(x,y) \lor Q(x,y) \Big) \Big) \Big] \quad \equiv \\
\exists x \, \Big[\exists y \, \Big(\neg \neg P(x,y) \land \neg Q(x,y) \Big) \Big] \quad \equiv \\
\exists x \, \Big[\exists y \, \Big(P(x,y) \land \neg Q(x,y) \Big) \Big]$$

Somebody in this class has visited a country in which he/she doesn't have a friend.

8. Negate the following statements and transform the negation so that negation symbols immediately precede predicates. (See example in Question 7.)

(a)
$$\exists x \exists y (P(x,y)) \lor \forall x \forall y (Q(x,y))$$

Solution:

$$\neg \left[\exists x \, \exists y \, \Big(P(x,y) \Big) \, \bigvee \, \forall x \, \forall y \, \Big(Q(x,y) \Big) \right]$$

$$\equiv \neg \left[\exists x \, \exists y \, \Big(P(x,y) \Big) \right] \, \bigwedge \neg \left[\forall x \, \forall y \, \Big(Q(x,y) \Big) \right]$$

$$\equiv \forall x \, \forall y \, \Big(\neg P(x,y) \Big) \, \bigwedge \, \exists x \, \exists y \, \Big(\neg Q(x,y) \Big)$$

(b)
$$\forall x \forall y \Big(Q(x,y) \leftrightarrow Q(y,x) \Big)$$

Solution:

$$\neg \Big[\forall x \, \forall y \, \Big(Q(x,y) \leftrightarrow Q(y,x) \Big) \Big] \\
\equiv \exists x \, \exists y \, \Big[\neg \Big(Q(x,y) \leftrightarrow Q(y,x) \Big) \Big] \\
\equiv \exists x \, \exists y \, \Big[\neg \Big(Q(x,y) \rightarrow Q(y,x) \Big) \, \wedge \, \Big(Q(y,x) \rightarrow Q(x,y) \Big) \Big] \Big] \\
\equiv \exists x \, \exists y \, \Big[\neg \Big(Q(x,y) \rightarrow Q(y,x) \Big) \, \vee \, \neg \Big(Q(y,x) \rightarrow Q(x,y) \Big) \Big] \\
\equiv \exists x \, \exists y \, \Big[\neg \Big(\neg Q(x,y) \vee Q(y,x) \Big) \, \vee \, \neg \Big(\neg Q(y,x) \vee Q(x,y) \Big) \Big] \\
\equiv \exists x \, \exists y \, \Big[\Big(\neg \neg Q(x,y) \wedge \neg Q(y,x) \Big) \, \vee \, \Big(\neg \neg Q(y,x) \wedge \neg Q(x,y) \Big) \Big] \\
\equiv \exists x \, \exists y \, \Big[\Big(Q(x,y) \wedge \neg Q(y,x) \Big) \, \vee \, \Big(Q(y,x) \wedge \neg Q(x,y) \Big) \Big] \\
\equiv \exists x \, \exists y \, \Big[Q(x,y) \oplus Q(y,x) \Big) \Big]$$

(c)
$$\forall y \exists x \exists z \Big(T(x, y, z) \land Q(x, y) \Big)$$

Solution:

$$\neg \Big[\forall y \,\exists x \,\exists z \, \Big(T(x, y, z) \land Q(x, y) \Big) \Big]$$

$$\equiv \exists y \,\forall x \,\forall z \,\neg \Big(T(x, y, z) \land Q(x, y) \Big)$$

$$\equiv \exists y \,\forall x \,\forall z \, \Big(\neg T(x, y, z) \lor \neg Q(x, y) \Big)$$