Teoria da Computabilidade

Subseção 2

Problema da Aceitação por MT's

seção 4.2

Introdução à Teoria da Computação. Michael Sipser. Thomson Learning, 2007.

INF/UFG - TC 2012/2 - Humberto Longo

Problema da Aceitação por MT's (159 – 188 de 759)

Introdução

- Objetivo:
 - Provar que existe um problema específico que é algoritmicamente insolúvel.
- Um dos mais importantes teoremas da Teoria da Computação.
- Teorema demonstra que computadores são limitados sob certos aspectos.
- Que tipo de problema é insolúvel com o auxílio de um computador?
 - Problemas ininteligíveis e com formulações altamente complexas?
 - Não, problemas comuns podem ser insolúveis por computadores.

Exemplo de problema insolúvel por computador

- Dados:
 - Programa de computador.
 - Especificação precisa do que o programa supostamente realiza.
- Objetivo:
 - Verificar se o programa realmente realiza o especificado.
 - Verificar se o programa está correto.
- Se programa e especificação são objetos matematicamente precisos, então é possível automatizar o processo de verificação por meio de um novo programa de computador?
 - NÃO. Este problema é insolúvel por computador!

INF/UFG - TC 2012/2 - Humberto Longo

Problema da Aceitação por MT's (161 – 188 de 759)

Problema da aceitação de uma cadeia w por uma mT M

Como escrever esse problema em forma de uma linguagem?

 $\mathcal{L}_{MT} = \{\langle M, w \rangle \mid \text{Máquina de Turing } M \text{ aceita a cadeia } w\}.$ Codificações de todos as mTs juntamente com as cadeias que as mTs aceitam. Teorema 3.10

A linguagem \mathcal{L}_{MT} não é decidível.

Testar se <M,w> pertence à linguagem LMT equivale a testar se a mt M aceita a cadeia w.

- ▶ Máquina de Turing M_{10} que **reconhece** \mathcal{L}_{MT} .
 - M_{10} simula a máquina M com a cadeia w.
 - Se M entra no estado de aceitação, M_{10} aceita. Se M entra no estado de rejeição, M_{10} rejeita.
- ▶ Porque M_{10} não decide a linguagem \mathcal{L}_{MT} ?
 - ▶ Se M cicla com a cadeia w, M_{10} cicla com a entrada $\langle M, w \rangle$.
 - Se M_{10} pudesse determinar que M não pára com w, ela poderia *rejeitar*.
 - Um algoritmo não pode determinar tal coisa!

INF/UFG – TC 2012/2 – Humberto Longo

Problema da Aceitação por MT's (162 – 188 de 759)

Lembrando que:

LDFA ={<A,w> | A é um DFA que aceita a cadeia w}

LGLC ={<G,w> | G é uma GLC que gera a cadeia w}

são decidíveis

LMT é a linguagem reconhecida pela máquina U, LMT é conhecida como Linguagem de Aceitação ou Linguagem Universal

- ► M₁₀ é uma Máquina de Turing Universal.
 - ► UTM Universal Turing Machine.
 - Máquina de Turing capaz de simular qualquer outra a partir de sua descrição.
 - As UTM exerceram importante papel no estimulo ao desenvolvimento de computadores que armazenam programas na memória principal.

Método da Diagonalização

- Georg Cantor, 1873.
- Problema da medição do tamanho de conjuntos infinitos.
 - Dados dois conjuntos infinitos, os dois são de mesmo tamanho ou um deles é maior que o outro?
 - ► Ex: $P = \{n = 2.k \mid k \in \mathbb{Z}^+\} \text{ e } S = \{s \mid s \in \{0, 1\}^*\}.$
- Cantor ⇒ dois conjuntos finitos tem o mesmo tamanho se os elementos de um conjunto podem ser "emparelhados" com os elementos do outro conjunto.
 - Método compara os tamanhos sem recorrer à contagem dos elementos.
 - Idéia pode ser extendida para conjuntos infinitos.

▶ Método da Diagonalização

- Algumas linguagens não são decidíveis e nem mesmo Turing-reconhecíveis.
 - O conjunto de linguagens n\u00e3o \u00e9 contavelmente infinito.
 - O conjunto de máquinas de Turing é contavelmente infinito.
- Como uma máquina de Turing reconhece apenas uma linguagem, alguma linguagem não é reconhecida por nenhuma máquina de Turing.

Teorema 3.11

Algumas linguagens não são Turing-reconhecíveis.

Esquema da prova.

- Mostrar que o conjunto de todas as máquinas de Turing é contavelmente infinito.
- Mostrar que o conjunto de todas as linguagens não é contavelmente infinito.
- Portanto, não há uma correspondência entre o conjunto de todas as linguagens e o conjunto de todas as máquinas de Turing.
- 4. Conclusão: algumas linguagens não são reconhecidas por nenhuma máquina de Turing!!!

Atividade
Por que problemas indecidíveis tem que existir?
Texto do Hopcroft

INF/UFG - TC 2012/2 - Humberto Longo

Problema da Aceitação por MT's (166 – 188 de 759)

Lema 3.12

1. O conjunto de todas as máquinas de Turing é contavelmente infinito.

Demonstração.

- ▶ Para qualquer alfabeto Σ , ▶ Σ^* é contavelmente infinito.
 - Existe um número finito de cadeias de cada comprimento.
 - Listar elemento por ordem de tamanho: cadeias de tamanho 0, as tamanho 1, as de tamanho 2, etc.
 - $\,\blacktriangleright\,$ Corresponder as cadeias da lista com os elementos de $\mathbb{N}.$
- ▶ Uma máquina M pode ser codificada na cadeia $\langle M \rangle$.
- Excluir da lista as cadeias que não são codificações de máquinas de Turing.
- Corresponder as demais cadeias com os elementos de N.

Lema 3.13

2. O conjunto Λ de todas as linguagens não é contavelmente infinito.

Demonstração.

- O conjunto B de todas as sequências binárias infinitas não é contavelmente infinito.
 - Prova por diagonalização similar à prova do Teorema 6.9.
- $ightharpoonup \Lambda$ é o conjunto de todas as linguagens.
- Mostrar que existe uma correspondência entre Λ e \mathcal{B} .

INF/UFG - TC 2012/2 - Humberto Longo

Problema da Aceitação por MT's (168 – 188 de 759)

Lema 3.13

2. O conjunto Λ de todas as linguagens não é contavelmente infinito.

Demonstração.

- ▶ Mostrar que existe uma correspondência entre Λ e \mathcal{B} :
 - $\Sigma^* = \{s_1, s_2, s_3, \dots\}.$

 - ► Cada $\mathcal{L} \in \Lambda$ corresponde a uma única sequência de \mathcal{B} . ► Sequência característica \mathcal{XL} de \mathcal{L} : $\mathcal{XL}_i = \left\{ \begin{array}{ll} 1 & \text{se } s_i \in \mathcal{L}, \\ 0 & \text{se } s_i \notin \mathcal{L}. \end{array} \right.$

Lema 3.13

2. O conjunto Λ de todas as linguagens não é contavelmente infinito.

Demonstração.

Mostrar que existe uma correspondência entre Λ e \mathcal{B} :

INF/UFG - TC 2012/2 - Humberto Longo

Problema da Aceitação por MT's (170 – 188 de 759)

Lema 3.13

2. O conjunto Λ de todas as linguagens não é contavelmente infinito.

Demonstração.

- ▶ Mostrar que existe uma correspondência entre Λ e \mathcal{B} :
 - Função $f: \Lambda \to \mathcal{B}$ é bijetora.
 - $f(\mathcal{L})$ é a sequência característica de \mathcal{L} .
 - ▶ Como \mathcal{B} não é contavelmente infinito, Λ também não o é.

 $\mathcal{L}_{MT} = \{\langle M, w \rangle \mid \text{Máquina de Turing } M \text{ aceita a cadeia } w\}.$

Teorema 3.10

A linguagem \mathcal{L}_{MT} não é decidível.

- Supor que \mathcal{L}_{MT} é decidível.
- Existe uma máquina de Turing H que decide \mathcal{L}_{MT} , onde:

$$H(\langle M, w \rangle) = \left\{ egin{array}{ll} aceita & ext{se } M ext{ aceita } w, \\ rejeita & ext{se } M ext{ não aceita } w. \end{array} \right.$$

 $\mathcal{L}_{MT} = \{\langle M, w \rangle \mid \text{Máquina de Turing } M \text{ aceita a cadeia } w\}.$

Teorema 3.10

A linguagem \mathcal{L}_{MT} não é decidível.

 $\mathcal{L}_{MT} = \{\langle M, w \rangle \mid \text{Máquina de Turing } M \text{ aceita a cadeia } w\}.$

Teorema 3.10

A linguagem \mathcal{L}_{MT} não é decidível.

- Construir máquina D que usa H como subrotina:
 - ▶ D chama H para determinar o que M faz quando sua entrada é a própria codificação $\langle M \rangle$.
 - Resposta da máquina D será o oposto da obtida com H.
- Funcionamento da máquina D:
 - 1. D chama máquina H com entrada $\langle M, \langle M \rangle \rangle$.
 - 2. Se H aceita, D rejeita. Se H rejeita, D aceita.

 $\mathcal{L}_{MT} = \{\langle M, w \rangle \mid \text{Máquina de Turing } M \text{ aceita a cadeia } w\}.$

Teorema 3.10

A linguagem \mathcal{L}_{MT} não é decidível.

 $\mathcal{L}_{MT} = \{\langle M, w \rangle \mid \text{Máquina de Turing } M \text{ aceita a cadeia } w\}.$

Teorema 3.10

A linguagem \mathcal{L}_{MT} não é decidível.

- Funcionamento da máquina D:
 - 1. D chama máquina H com entrada $\langle M, \langle M \rangle \rangle$.
 - 2. Se *H* aceita, *D* rejeita. Se *H* rejeita, *D* aceita.
- Resumo da máquina D:

$$D(\langle M \rangle) = \left\{ \begin{array}{ll} aceita & \text{se } M \text{ n\~ao aceita } \langle M \rangle, \\ rejeita & \text{se } M \text{ aceita } \langle M \rangle. \end{array} \right.$$

 $\mathcal{L}_{MT} = \{\langle M, w \rangle \mid \text{Máquina de Turing } M \text{ aceita a cadeia } w\}.$

Teorema 3.10

A linguagem \mathcal{L}_{MT} não é decidível.

Demonstração.

▶ O que acontece quando D é chamado com sua própria codificação $\langle D \rangle$?

$$D(\langle D \rangle) = \left\{ \begin{array}{ll} aceita & \text{se } D \text{ n\~ao aceita } \langle D \rangle, \\ rejeita & \text{se } D \text{ aceita } \langle D \rangle. \end{array} \right. \\ \rightarrow \mid \leftarrow$$

 $\mathcal{L}_{MT} = \{\langle M, w \rangle \mid \text{Máquina de Turing } M \text{ aceita a cadeia } w\}.$

Teorema 3.10

A linguagem \mathcal{L}_{MT} não é decidível.

 $\mathcal{L}_{MT} = \{\langle M, w \rangle \mid \text{Máquina de Turing } M \text{ aceita a cadeia } w\}.$

Teorema 3.10

A linguagem \mathcal{L}_{MT} não é decidível.

Demonstração.

▶ O que acontece quando D é chamado com sua própria codificação $\langle D \rangle$?

$$D(\langle D \rangle) = \left\{ \begin{array}{ll} aceita & \text{se } D \text{ n\~ao aceita } \langle D \rangle, \\ rejeita & \text{se } D \text{ aceita } \langle D \rangle. \end{array} \right. \\ \rightarrow \mid \leftarrow$$

- ► Revisão:
 - H aceita $\langle M, w \rangle$ exatamente quanto M aceita w.
 - ► D rejeita $\langle M \rangle$ exatamente quanto M aceita $\langle M \rangle$.
 - ▶ D rejeita $\langle D \rangle$ exatamente quanto D aceita $\langle D \rangle$. $\rightarrow \mid \leftarrow$

 $\mathcal{L}_{MT} = \{\langle M, w \rangle \mid \text{Máquina de Turing } M \text{ aceita a cadeia } w\}.$

Teorema 3.10

A linguagem \mathcal{L}_{MT} não é decidível.

- Não importa o que D faça, ela é forçada a fazer o oposto!
 (Contradição)
- As máquinas de Turing D e H não podem existir!
- Portanto, \mathcal{L}_{MT} não é decidível.

Onde é usado o argumento da diagonalização?

- ► Tabela do comportamento de *H* e *D*:
 - ▶ Posição [i, j] é *aceita* se M_i aceita $\langle M_j \rangle$.
 - Posição [i, j] em branco se M_i rejeita $\langle M_j \rangle$ ou cicla.
- Exemplo:

Onde é usado o argumento da diagonalização?

- ▶ Resultado de *H* com entradas da tabela anterior:
 - ▶ Posição [i, j] é o valor de H com entrada $\langle M_i, \langle M_j \rangle \rangle$.
- ► Ex.: se M_3 não aceita $\langle M_2 \rangle$, posição [i, j] é rejeita pois H rejeita entrada $\langle M_i, \langle M_j \rangle \rangle$.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 angle$	•••
	aceita				
M_2	aceita	aceita	aceita	aceita	
M_3	re jeita	re jeita	re jeita	re jeita	• • •
M_4	aceita	aceita	re jeita	re jeita	
			•		
:			•		

Onde é usado o argumento da diagonalização?

- ▶ D ocorre na lista M_1, M_2, \ldots das máquinas de Turing.
- D computa o oposto das entradas na diagonal principal da matriz.
 - Contradição ocorre na posição marcada com ?
 - Conteúdo da posição deve ser o oposto de si próprio.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 angle$		$\langle D \rangle$	• • •
M_1	aceita	re jeita	aceita	re jeita		aceita	
M_2	aceita	aceita	aceita	aceita		aceita	
M_3	re jeita	re jeita	rejeita	re jeita	• • •	re jeita	• • •
M_4	aceita	aceita	re jeita	rejeita		aceita	
•		:			٠.		
•					•		
D	re jeita	re jeita	aceita	aceita		?	
:			•				٠.
•		•	•				•

Definição 3.14

- Complemento de uma linguagem £:
 - ► Conjunto de cadeias que não pertencem a £:

$$\overline{\mathcal{L}} = \{ s \mid s \in \Sigma^*, \ \mathcal{L} \subseteq \Sigma^* \text{ e } s \notin \mathcal{L} \}.$$

Definição 3.15

- Linguagem Co-Turing-reconhecível:
 - Linguagem cujo complemento é Turing-reconhecível.

Teorema 3.16

Uma linguagem é decidível se e somente se ela é Turing-reconhecível e Co-Turing-reconhecivel (ela e seu complemento são Turing-reconhecíveis).

Demonstração (⇒).

- ► Se *A* é decidível, então *A* é Turing-reconhecível.
- ▶ Se A é Turing-reconhecível, então \overline{A} é Turing-reconhecível.

Teorema 3.16

Uma linguagem é decidível se e somente se ela é Turing-reconhecível e Co-Turing-reconhecivel (ela e seu complemento são Turing-reconhecíveis).

Demonstração (⇐=).

- ▶ Máquina de Turing M_1 reconhece A.
- ▶ Máquina de Turing M_2 reconhece \overline{A} .
- Máquina de Turing M que decide A:
 - 1. Executar, em paralelo, máquinas M_1 e M_2 com entrada w.
 - 2. Se M_1 aceita, M aceita. Se M_2 aceita, M rejeita.

Obs. Equivale a máquina M com 2 fitas, uma para simular M_1 e outra para simular M_2 . Neste caso, M simula uma passo de cada máquina e pára quando uma delas aceita.

INF/UFG - TC 2012/2 - Humberto Longo

Problema da Aceitação por MT's (186 – 188 de 759)

Teorema 3.16

Uma linguagem é decidível se e somente se ela é Turing-reconhecível e Co-Turing-reconhecivel (ela e seu complemento são Turing-reconhecíveis).

Demonstração (⇐=).

- Máquina de Turing M decide A:
 - ▶ Dada uma cadeia $w, w \in A$ ou $w \in \overline{A}$.
 - M_1 ou M_2 tem que aceitar w.
 - ► Como M pára quando M_1 ou M_2 aceita, M sempre pára.
 - lacktriangledown M aceita todas as cadeias em A e rejeita as demais.
 - ► Logo, *M* decide *A*, ou seja, *A* é decidível.

Uma linguagem que não é Turing-reconhecível

 $\mathcal{L}_{MT} = \{\langle M, w \rangle \mid \text{Máquina de Turing } M \text{ aceita a cadeia } w\}.$

Teorema 3.17

A linguagem $\overline{\mathcal{L}_{MT}}$ não é Turing-reconhecível.

Demonstração.

- \mathcal{L}_{MT} é Turing-reconhecível.
- Se $\overline{\mathcal{L}_{MT}}$ fosse Turing-reconhecível, \mathcal{L}_{MT} seria decidível.
- Portanto, $\overline{\mathcal{L}_{MT}}$ não é Turing-reconhecível.