Алгебра-0,5 Листок №2. Группы.

Словарик

- \circ Группа это множество G с операцией \star , которое обладает следующими свойствами:
 - (i) замкнутость: $\forall a, b \in G : a \star b \in G$;
 - (ii) ассоциативность: $\forall a, b, c \in G : (a \star b) \star c = a \star (b \star c);$
 - (iii) наличие нейтрального элемента: $\exists e \in G : \forall a \in G : e \star a = a$;
 - (iv) наличие обратного элемента: $\forall a \in G : \exists a^{-1} \in G : a \star a^{-1} = e$.
- \circ Для группы также существует обозначение: (G, \star) , если операция понятна, то она обозначается G. Если группа G конечна, то ее nopsdok |G| это количество элементов в ней. nopsdok nopsd
- \circ Множество $H \subset G$ называется *подгруппой* группы (G, \star) . Если для нее выполняются аксиомы группы (i)-(iv), то есть: (i) $\forall a, b \in H : a \star b \in H$; (ii) $\forall a, b, c \in H : (a \star b) \star c = a \star (b \star c)$; (iii) $\exists e \in H : \forall e \in H : e \star e = a$, и (iv) $\forall e \in H : \exists e = a \star e = a$. Тут важно, что вместо группы G написана группа H.
- \circ Группа называется *абелевой (коммутативной)*, если операция \star коммутативна, то есть $\forall a,b \in G: a\star b=b\star a$.
- о Таблицой Кэли называется таблица, в которой записаны все элементы группы и их композиции.
- \circ Группы называются *изоморфными*, если между ними существует взаимно однозначное соответствие, сохраняющее операцию. То есть, если $\varphi: (\mathcal{G}, \star) \to (\mathcal{H}, \star)$ изоморфизм, то $\forall a, b \in \mathcal{G}: \varphi(a \star b) = \varphi(a) \star \varphi(b)$. Только у изоморфных группы изоморфны таблицы Кэли. Неформально говоря, изоморфные группы это "одни и те же" группы.

Задачки

- 1. Сколько элементов в группе D_5 ? А сколько элементов порядка 2?
- 2. Докажите, что A_n подгруппа группы S_n .
- 3. Верно ли, что подгруппа абелевой группы всегда абелева? Если да объясните. Если нет приведите контрпример.
- 4. В группе \mathcal{D}_6 найдите композицию $r \circ s_1$, где r поворот на \mathcal{CO}° , а s_1 отражение относительно вертикальной оси.
- 5. Напишите таблицу Кэли для группы \mathcal{G}_3 . Какие из элементов коммутируют между собой?
- 6. Докажите, что в группе D_n выполняется равенство:

$$sor = r^{-1}os$$
.

Где r — поворот на $360^{\circ}/n$, а s — отражение относительно любой оси.

- 7. Пусть $H = (\{-1,1\},\times)$ в (\mathbb{R}^*,\times). Является ли H подгруппой? Является ли H абелевой?
- 8. Изоморфны ли группы: (a) S_2 и $\mathbb{Z}/(2)$; (b) S_3 и $\mathbb{Z}/(3)$; (c) \mathcal{D}_4 и S_4 ; (d) S_4 и \mathcal{D}_{12} , и (f*) S_5 и \mathcal{D}_{40} .
- 9. Найдите все подгруппы в: (a) $\mathbb{Z}/(6)$; (b) \mathcal{G}_3 ; (c) \mathcal{D}_4 ; (d) \mathcal{D}_6 ; (e*) \mathcal{D}_{42} , и (f*) \mathcal{A}_4 . Для каждой подгруппы проверьте, что ее порядок делит порядок всей группы. Подумайте над тем, каким группам изоморфны каждая из них.
- 10. Летнешкольников заставили выложить плац правильной шестиугольной плиткой². Сколько существует симметрий такого замощения плиткой? Образуют ли они группу? Если да, то какой у нее порядок?
- 11. Пусть H множество всех перестановок из S_3 , которые оставляют тройку на месте. Является ли H подгруппой группы S_3 ? Если да, то какой у нее порядок и является ли она абелевой?
- 12. Является ли множество $G = \{2^n \mid n \in \mathbb{Z}\}$ с операцией умножения группой? Если да, то является ли она абелевой? Какие в ней подгруппы?
- 13. Придумайте свой объект, например, букву "Ж". Опишите его группу симметрий. Подумайте, какой группе она изоморфна.
- 14. Пусть H подгруппа группы G. Тогда левым смежным классом называется $gH = \{gh \mid h \in H\}$.
 - (а) Докажите, что два смежных класса либо совпадают, либо не пересекаются.
 - (b)* Докажите, что все смежные классы находятся в биекции друг с другом.
 - (c) В каком соотношении находится порядок группы H, число смежных классов и порядок группы G?
 - (d) Почему в группе порядка 15 не может быть подгруппы порядка 4?

 $^{^1}$ Здесь "звёздочка" обозначает то, что нет нуля.

²Причем плитка самая обычная, на ней даже узоров никаких нет.