Lab 2: Edge Detection & Hough Transform

Tianxiao Zhao

The lab is about ...

- Derivative operators
- Thresholding for edge detection
- Differential geometry based edge detection
- Hough transform

Q1:

• Expected results:

- grey level will be around zero for most part of dxtools and dytools
- positive or negative ridges at edges (large gradient magnitude near edges)
- dxtools only emphasizes differences in x direction, gives stronger responses for vertical lines similar for dytools

Q1:

image	x-wise derivative		y-wise derivative		
	row	column	row	column	
tools	256	256	256	256	
SDO	256	254	254	256	

- dxtools smaller than tools
- conv2(..., 'valid') returns convolution without zero-padding at edges
 (SDO is a 1*3 matrix)

Q2:

Discrete Gaussian filter, sigma = 0.2, threshold = {10, 30, 50, 70, 90}

- easy to find an okay one, but hard for a perfect one
- Reason:
 - edges not consistently steep
 - lower threshold -> sharp edges become wide
 -> local maxima due to noise

higher threshold -> mild ones break or fade

Q3:

Discrete Gaussian filter, threshold = 30, sigma = {0, 0.01, 0.1, 0.5, 1}

- Smooth helps to some degree
- Reason:
 - get rid of high frequency noises
 - · even harder to choose threshold
 - lose edge information and distortion
 - a trade-off to the degree of smoothing

Q4:

Discrete Gaussian filter, scale = {0.0001, 1.0, 4.0, 16.0, 64.0}

- small scale -> noisy image, every tiny details shown by many curves
- large scale -> edge curves more sparse and clearer
- too large scale -> some curves fade and distort

Reason:

- many zero-crossings due to minute waves,
 such as texture details and noise
- smoothing -> fewer noises in 2nd-order zerocrossing contour
- too much smoothing -> distort edges

Q5:

Discrete Gaussian filter, scale = {0.0001, 1.0, 4.0, 16.0, 64.0}

- lose a clear vision of edges
- white area -> edges + pixels with negative 3rd
 order derivatives
- Image smoother -> edges milder -> wider region
- Smoothing at certain level helps emphasize the edges; too much -> erode other parts of image

threshold for Lv to get rid of minute waves

- pick out points with Lvv = 0, link them into lines
- add constrain Lvvv < 0 to avoid incorrect detection
- trivial details and noise are main problem for complex images -> do not improve much

scale = 4, threshold = 8

scale = 4, threshold = 3.5

rho (pixel)	-92.812	84.310	68.724	75.808	271.352
theta (deg)	-46.34	-22.51	-9.27	70.17	19,86
votes ranking	1	2	3	4	5

Q9:

nrho = 512, ntheta = 64

nrho = 1500, ntheta = 64

nrho = 512, ntheta = 512

- Increase cells -> longer computation time; more lines gather at sharper edges, local maxima near edge line
- Decrease cells -> shorter computation time; cannot detect edges accurately

Q10:

Points may not be from the same edge curves. That is why these lines appear.

 $h() = mag^2$

h() = log(mag)

- Incrementing with gradient magnitude reduces critical dependency on threshold
- Some parts of image have large noise -> h() = 1 -> treat noise in the same manner as other points
- h() = log(mag) -> increase the possibility of edges with lower values of gradient magnitudes