

Antonio Virdis

University of Pisa - Italy

Simulating device-to-device communications in OMNeT++ with SimuLTE: scenarios and configurations

Giovanni Nardini, Antonio Virdis, Giovanni Stea University of Pisa - Italy

Outline

- LTE Context
- Simulator structure
- Examples
 - LTE
 - LTE-Advanced
 - Towards 5G: D2D

- OMNeT-based system-level simulator of LTE networks
- Focused on testing algorithms for resource scheduling at large scale
- INET based
- Built as an additional NIC interface
- Follow the evolution of cellular communications

UE

Common Structure: Inheritance

Goal: algorithms

- Aim at implementing and testing resource-scheduling algorithms
- Model resources.
- Model resource management
- Provide an API to users

Tx/Rx modeling

Scheduling

Scheduling Hierarchy

Scheduler Type and

Scheduling Policy

Example 1: ~2010 rel 8-9

Simple network

- Common parameters
 - Mobility
 - Application type

- SimuLTE Parameters
 - Number of RBs
 - Scheduler type

Example 1: ~2010 rel 8-9

```
# connect each UE to the eNB
**.ue[*].macCellId = 1
                                 Association
**.ue[*].masterId = 1
**.deployer.numRbDl = 6
                                 # Resources
**.deployer.numRbUl = 6
**.nic.phy.channelModel = xmldoc("config channel.xml")
**.mac.schedulingDisciplineDl = "MAXCI"
```


Custom Scheduling

- Inherit a scheduling policy (LteScheduler Class)
- Two stages scheduling
 - Prepare schedule list
 - Commit schedule list

Example 2: ~2013 rel 10-11

- LTE-advanced
 - Multiple cells
 - CoMP techniques
 - X2 Communication

Heterogeneous Networks

Dense Networks

Example 2: ~2013 rel 10-11

```
**.ue1*.macCellId = 1
**.ue1*.masterId = 1
**.ue2*.macCellId = 2
**.ue2*.masterId = 2
**.ue3*.macCellId = 3
**.ue3*.macCellId = 3
**.ue3*.masterId = 3
```

Association

Transmission Power

In config_channel.xml

<parameter name="multiCell-interference" type="bool" value="true"/>

Interference?

Coordination! (CoMP)

Allocation Flexibility

External Cells: lightweight eNBs

```
*.numExtCells = 2
#====== Configuration ========
*.extCell[*].txPower = 20
*.extCell[*].txDirection = "ANISOTROPIC"
*.extCell[*].bandAllocationType = "RANDOM ALLOC"
*.extCell[*].bandUtilization = 0.5
#======= Positioning ========
*.extCell[0].position x = 100m
*.extCell[0].position y = 600m
*.extCell[0].txAngle = 315
*.extCell[1].position x = 600m
*.extCell[1].position y = 600m
*.extCell[1].txAngle = 225
```


Example 2: ~2013 rel 10-11


```
**.x2Enabled = true
```

- *.eNodeB*.numX2Apps = 2
- *.eNodeB*.x2App[*].server.localPort = 5000 + ancestorIndex(1)

Example 3: NOW towards 5G

- Infrastructure vs D2D
- Multicast or Unicast

- Scheduling remains under control of the eNB
- UEs still need to request resources to the eNB

Enables frequency reuse

Data Flow

- Data in the UL direction travels the whole stack
 - Segmentation/concatenation
 - Error control
- It follows a reverse path during reception
- D2D is given a separated path

D2D: one-2-one

- Enabling D2D
- AMC mode: D2D
- Peering relation
 - Static peering
 - Dynamic peering not available
- Channel measurement
 - Dynamic
 - Static

```
1  # enable D2D capabilities
```

- 2 *.eNodeB.d2dCapable = true
- *.ueD2D*[*].d2dCapable = true
- 4 # select the AMC mode
- 5 *.eNodeB.nic.mac.amcMode = "D2D"
- 6 # set peering relationship
- 7 | *.ueD2DTx[0].nic.d2dPeerAddresses= "ueD2DRx[0]"
- 8 # select the CQI for D2D transmissions
- 9 *.eNodeB.nic.phy.enableD2DCqiReporting = true
- 10 **.usePreconfiguredTxParams = false
- 11 # set Tx Power
- 12 *.ueD2DTx[0].nic.phy.ueTxPower = 26 # in dB
- 13 *.ueD2DTx[0].nic.phy.d2dTxPower = 20 # in dB

Simultaneous Transmissions

- Transmitting UE can reuse the same frequencies
- Interference between pairs can occur
- Infra or D2D? [Switch?]
- Decide if 2 pairs can transmit simultaneously

?

Data TX/RX

- Data is sent in unicast
- Interference is broadcast
- Infra: each used RBs is tagged with the ID of a UE
- <u>D2D</u>: each RB has a **list** of the UEs' IDs
- SINR is computed taking interference into account

Mode selection: custom algorithms

- Read status
- Decides whether to switch or not

D2D: multicast

Predefined CQIs only


```
<multicast-group hosts="ueD2D[*]"</pre>
    interfaces="wlan" address="224.0.0.10"/>
*.ueD2D[0].udpApp[*].destAddress = "224.0.0.10"
# select the COI for D2D transmissions
*.eNodeB.nic.phy.enableD2DCqiReporting = false
**.usePreconfiguredTxParams = true
**.d2dCqi = 7
# set Tx Power
*.ueD2DTx[0].nic.phy.ueTxPower = 26 # in dB
*.ueD2DTx[0].nic.phy.d2dTxPower = 20 # in dB
```

Controlling the TX Range

Larger range Lower data rate

**.d2dCqi = 7

Smaller range Higher data rate

```
UE3
UE4
```

```
# set Tx Power

*.ueD2DTx[0].nic.phy.ueTxPower = 26  # in dB

*.ueD2DTx[0].nic.phy.d2dTxPower = 20  # in dB
```

D2D: layering and new modules

An additional data path

No HARQ

Send Broadcast

Further Developments

- Handover (actually released)
- Native support to Veins
- Moving towards 5G
 - CRAN deployments
 - Mobile Edge Computing applications

Conclusions

- SimuLTE: focused on resource scheduling
- Modeling
 - Layering
 - Resources
 - Scheduling
- Case studies
 - Simple LTE network
 - LTE Advanced
 - D2D communications towards 5G

Thanks for your attention

