Pathogen sequences and phylogenetic analysis

Biotechnology Solutions for Infectious Disease

frederick.r.jaya@student.uts.edu.au github.com/fredjaya @fredjaya1

Previous lecture

STEC and raw milk

Outbreak of STEC O157:H7 associated with contaminated salad leaves

WGS of MRSA

Objective: To understand how pathogen genetics is applied to epidemiological investigation and studies

Assessment 2

- Journal article (1500 words)
- Presenting your results on ARGs in bacteria
- Phylogenetic tree
 - Construction
 - Presentation

Exercises

- Finding/identifying gene sequences
- Applications of phylogeny

- 1. GenBank
- 2. BLAST
- 3. Haiti outbreak
- 4. Vaccinating ebola
- 5. HIV transmission

Pathogen sequences

Bacterial whole genome

- Physical map of the Salmonella serovar Typhimurium NCTC113348 genome
- circular

Viral whole genome

- Influenza A virus genome organisation and virion structure
- Linear, segmented

Genetic sequences

Biochemistry

DNA/RNA, Protein

Sequencing

Whole genome, SNPs

File format

.FASTA, .FASTQ, .NEX

Genetic sequences (FASTA)

Salmonella enterica subsp. enterica serovar Typhimurium strain ABBSB1189-1 scaffold00001, whole genome shotgun sequence

GenBank: LAPF01000001.1

GenBank Graphics

Header

Sequence

Tools - Sequence alignment viewers

Tools - text editors

Sublime Text 3

Notepad++

Notepad

Exercise 1 - NCBI GenBank

Exercise 2 - BLAST

Phylogenetics

1. Relationships between species

2. Evolutionary changes and history

Phylogenetic tree

Darwin's notes (1837)

"Modern" phylogeny

1. Relationships between species TOPOLOGY

2. Evolutionary changes and history BRANCH LENGTH

BRANCH LENGTH

Components of a phylogenetic tree

Components of a phylogenetic tree

Variety of tree formats...

Circular/polar

Unrooted

Applications

- Wide range of applications
- Epidemiology origin, transmission, monitor outbreaks
- Clinical Drug vaccine, design
- Conservation identify diversity hotspots
- Cultural Evolution of art, music, linguistics

PHYLOGENETICS PROGRAMS

Sequence alignment

Camel ACTCGAT

Human ACTCT

Bat ACCCGT

Whale ACCCTTT

ACTCGAT

ACTCGAT

ACTCGAT

ACTCGAT

ACTCGAT

ACTCGAT

ACTCGAT

ACCCGTTT

Homologous sites aligned

Inference methods

- Parsimony
- Distance
- Maximum likelihood
- Bayesian

RAXML

IQ-TREE

Efficient software for phylogenomic inference

Maximum likelihood estimation

Evolutionary models

Base frequencies

$$\Pi_A + \Pi_C + \Pi_G + \Pi_T = 1$$

Substitution rates

Rate variation

Hierarchical model test (Posada and Crandall, 1998)

Rate variation

Codon positions mutate at different rates (3rd > 2nd > 1st)

(**+G**) The gamma distribution models rate heterogeneity

(+I) Invariant sites assumes "sites do not vary"

Statistical tests

- Bootstrap measures the certainty of a tree estimate
- Model selection tests:
 - Likelihood ratio tests
 - Akaike Information Criteria (AIC)
 - o BIC

Not all sites evolve at the same rate

P(D|H)

"Which mode of coin toss and type of coin best explains our data?"

Maximum likelihood estimation

Exercise 3. Haiti outbreak

Exercise 4. Vaccinating ebola

Exercise 5. HIV transmission