Глава 4. Восходящий синтаксический анализ

4.6. LR-таблицы разбора

4.6.3. *LALR*(1)-грамматики

Рассмотренный SLR(1)-метод недостаточно мощный, поскольку он не учитывает левый контекст, необходимый в общем случае для принятия решения о действиях синтаксического анализатора для разрешения конфликтов. В ряде случаев левый контекст играет важную роль при решении вопроса о том, можно ли считать заданный символ действительно символом-следователем, хотя в смысле SLR(1)-метода он и является возможным символом-следователем (входит в множество, определяемое функцией Follow).

Левый контекст учитывается при построении таблицы разбора так называемым LR(1)-методом с предпросмотром (Look Ahead), или LALR(1)-методом. Грамматика, для которой все конфликты в таблице разбора разрешаются при использовании данного метода, относится к подклассу LALR(1)-грамматик.

В LALR(1)-методе, чтобы учитывать левый контекст, состояние LALR(1)-автомата должно содержать дополнительную информацию. Это достигается с помощью предпросмотра. Поэтому в этом методе используется LR(1)-пункт вида $[A \to \alpha \bullet \beta, \ a]$, где терминал a является предпросмотром пункта. Множество таких терминалов всегда является подмножеством множества, определяемого функцией Follow.

Метод построения LALR(1)-таблицы разбора, по сути, тот же, что и SLR(1)-метод. Отличия связаны с определением предпросмотров пунктов и их использованием для разрешения конфликтов. Предпросмотр не играет никакой роли в пункте вида $[A \to \alpha \bullet \beta, a]$, где $\beta \neq \varepsilon$, а важен для пункта вида $[A \to \alpha \bullet, a]$, когда выполняется свертка для продукции $A \to \alpha$, если очередным входным символом является терминал a.

Предпросмотры определяются при выполнении операции замыкания. Пусть имеется LR(1)-пункт $[A \to \alpha \bullet B\beta, a], B \in V_N$. Тогда должна существовать правосторонняя схема вывода

$$S \stackrel{*}{\Rightarrow} \delta Aax \Rightarrow \delta \alpha B \beta ax$$
, где $\delta \in (V_T \cup V_N)^*, x \in V_T^*$.

Предположим, что βax генерирует терминальную строку by, $b \in V_T$, $y \in V_T^*$. Тогда для любой продукции вида $B \to \gamma$, $\gamma \in (V_T \cup V_N)^*$, можно получить схему вывода $S \stackrel{*}{\Rightarrow} \delta \alpha B b y \Rightarrow \delta \alpha \gamma b y$,

т. е. пункт $[B \to \bullet \gamma, b]$ должен войти в это же состояние. Необходимо обратить внимание на то, что символ b может быть первым терминалом, выводимым из β ; возможно также, что β может генерировать пустую строку ϵ , в этом случае b = a. Следовательно, символ b может быть любым терминалом из множества $First(\beta a)$, где First — функция, подробно описанная при рассмотрении LL(1)-грамматик.

Таким образом, операция замыкания заключается в следующем. Если пункт вида $[A \to \alpha \bullet B\beta, a]$ входит в некоторое состояние, то все пункты вида $[B \to \bullet \gamma, b]$ для всех терминалов b из $First(\beta a)$ включаются в это же состояние. Процесс продолжается рекурсивно до тех пор, пока в состояние не будут включены все возможные пункты.

Множество первых элементов LR(1)-пунктов, входящих в одно состояние, называется *ядром* состояния. LALR(1)-метод не допускает разных состояний с одинаковыми ядрами, даже если предпросмотры пунктов отличаются. Поэтому если грамматика дает более двух состояний с одним и тем же ядром, то эти состояния должны быть объединены в одно. В остальных случаях выполнение перехода из состояния в состояние-преемник не влияет на предпросмотр пункта.

Рассмотрим *LALR*(1)-метод на примере грамматики с продукциями

- 1) $S \rightarrow AaBb$
- $2) A \rightarrow C$
- 3) $A \rightarrow db$
- 4) $B \rightarrow C$
- 5) $C \rightarrow Ccd$
- 6) $C \rightarrow d$

Для сравнения с SLR(1)-методом для всех нетерминалов определим значения функции Follow:

```
Follow(S) = \{\bot\},

Follow(A) = \{a\},

Follow(B) = \{b\},

Follow(C) = \{a, b, c\}.
```

Базовым пунктом для исходного состояния I_0 *LALR*(1)-автомата является начальный пункт $[S' \to \bullet S \bot, \epsilon]$, в котором предпросмотром является пустая строка ε , так как за S' не может следовать никакой символ. Поскольку маркерная точка стоит перед нетерминалом S, a $First(\bot) = \{\bot\}$, необходимо добавить пункт $[S \to \bullet AaBb, \bot]$. Продолжим вычисление замыкания. Поскольку $First(aBb\bot) = \{a\}$, добавляются пункты $[A \to \bullet C, a]$ и $[A \to \bullet db, a]$. Маркерная точка стоит перед нетерминалом C, $First(a) = \{a\}$, поэтому добавляются $[C \to \bullet Ccd, a]$ и $[C \to \bullet d, a]$. Опять маркерная точка перед нетерминалом C, $First(cda) = \{c\}$, добавляются пункты $[C \to \bullet Ccd, c]$ и $[C \to \bullet d, c]$. Больше никакие новые пункты добавить нельзя, операция замыкания для состояния I_0 завершена. Отметим, что в одном состоянии могут быть LR(1)-пункты с одинаковыми первыми элементами, но с разными предпросмотрами, например, $[C \to \bullet d, a]$ и $[C \to \bullet d, c]$. Для удобства записи предпросмотры пунктов будем представлять как множества, а пункты с одинаковыми первыми элементами – как один пункт (хотя формально это разные пункты), предпросмотром которого является объединение множеств их предпросмотров, например, пункты $[C \to \bullet d, a]$ и $[C \to \bullet d, c]$ будут записываться как $[C \rightarrow \bullet d, \{a, c\}].$

Состояния-преемники определяются так же, как и в ранее описанных методах, т. е. по первым элементам пунктов. LALR(1)-автомат для рассматриваемой грамматики представлен в табл. 4.10 (символы свертки указаны в столбце «символ перехода»), а LALR(1)-таблица разбора — в табл. 4.11.

Таблица 4.10

LALR(1)-автомат

C	П	Символ	Состояние-	Свертка	
Состояние	Пункты	перехода	преемник		
I_0	$S' \to \bullet S \perp, \{\epsilon\}$	S	stop		
	$S \to \bullet AaBb, \{\bot\}$	A	I_1		
	$A \to \bullet C, \{a\}$ $C \to \bullet Ccd, \{a, c\}$	C	I_2		
	$A \rightarrow \bullet db, \{a\}$	 d	I_3		
	$C \to \bullet d, \{a, c\}$	· ·	13		
I_1	$S \to A \bullet aBb, \{\bot\}$	а	I_4		
I_2	$A \to C \bullet, \{a\}$	а		R2	
	$C \to C \bullet cd, \{a, c\}$	c	I_5		
I_3	$A \to d \bullet b, \{a\}$	b	I_6		
	$C \rightarrow d\bullet, \{a, c\}$	a, c		<i>R</i> 6	
I_4	$S \to Aa \bullet Bb, \{\bot\}$	В	I_7		
	$B \to \bullet C, \{b\}$	С	I_8		
	$C \to \bullet Ccd, \{b, c\}$		-0		
	$C \to \bullet d, \{b, c\}$	d	I_9		
I_5	$C \to Cc \bullet d, \{a, b, c\}$	d	I_{10}		
I_6	$A \to db \bullet, \{a\}$	а		R3	
I_7	$S \to AaB \bullet b, \{\bot\}$	b	I_{11}		
I_8	$B \to C \bullet, \{b\}$	b		R4	
	$C \to C \bullet cd, \{b, c\}$	c	I_5		
I_9	$C \to d \bullet, \{b, c\}$	b, c		<i>R</i> 6	
I_{10}	$C \to Ccd \bullet, \{a, b, c\}$	a, b, c		R5	
I_{11}	$S \to AaBb \bullet, \{\bot\}$	1		<i>R</i> 1	

1)
$$S \rightarrow AaBb$$

$$2) A \rightarrow C$$

$$3) A \rightarrow db$$

$$4) B \rightarrow C$$

$$5) C \rightarrow Ccd$$

6)
$$C \rightarrow d$$

Follow(S) =
$$\{\bot\}$$
,
Follow(A) = $\{a\}$,
Follow(B) = $\{b\}$,
Follow(C) = $\{a, b, c\}$.

Таблица 4.11 LALR(1)-таблица разбора

<i>ЕАЕ</i> К(1)-1аолица разоора												
Номер состояния	S	A	В	C	a	b	С	d	Τ			
0	stop	<i>S</i> 1		<i>S</i> 2				<i>S</i> 3				
1					<i>S</i> 4							
2					<i>R</i> 2		<i>S</i> 5					
3					<i>R</i> 6	<i>S</i> 6	<i>R</i> 6					
4			<i>S</i> 7	<i>S</i> 8				<i>S</i> 9				
5								<i>S</i> 10				
6					<i>R</i> 3							
7						<i>S</i> 11						
8						<i>R</i> 4	<i>S</i> 5					
9						<i>R</i> 6	<i>R</i> 6					
10					<i>R</i> 5	<i>R</i> 5	<i>R</i> 5					
11				_					<i>R</i> 1			

Следует обратить внимание на то, что для состояния I_2 в соответствии с пунктом $[C \to C \bullet cd, \{a,c\}]$ по символу c образуется преемник с базовым пунктом $[C \to Cc \bullet d, \{a,c\}]$, а для состояния I_8 в соответствии с $[C \to C \bullet cd, \{b,c\}]$ – преемник с базовым пунктом $[C \to Cc \bullet d, \{b,c\}]$. Ядра этих состояний-преемников совпадают, поэтому согласно требованию LALR(1)-метода они слиты в одно состояние I_5 , а предпросмотры их пунктов объединены в единое множество, т. е. получилось состояние с пунктом $[C \to Cc \bullet d, \{a,b,c\}]$.

Все конфликты для рассматриваемой грамматики успешно разрешены, неадекватных состояний нет, следовательно, она является LALR(1)-грамматикой. Эта грамматика не обладает признаком LR(0), так как нельзя, например, поместить все элементы свертки R2 в каждый столбец для состояния I_2 . Не обладает она также и признаком SLR(1), так как в противном случае в состоянии I_3 , где выполняется свертка для продукции $C \to d$, можно было бы занести элемент свертки R6 в столбец, соответствующий терминалу b, поскольку $Follow(C) = \{a, b, c\}$. Однако это привело бы к конфликту с уже имеющимся в этой позиции элементом переноса S6, т. е. LALR(1)-метод устанавливает, что в состоянии I_3 действительными символамиследователями являются только терминалы a и c, а символ b не может быть символом-следователем. По аналогичной причине в состоянии I_9 в столбце, соответствующем терминалу a, нет элемента свертки R6, поскольку в этом состоянии действительными символами-следователями могут быть только терминалы b и c.

LALR(1)-метод важен с практической точки зрения, поскольку для стандартных синтаксических конструкций языков программирования там, где не приводит к успеху SLR(1)-метод, обычно справляется LALR(1)-метод, и достаточно редко приходится применять наиболее общий LR(1)-метод.