Kapitel 1

Körpererweiterungen

1.1 Einführung in die Körpererweiterungen

Definition Transzenddenzbasis [vlg. Anhang A1 David Eisenbud 1994] Sei $L \supset k$ eine Körpererweiterung. Dann definieren wir:

• Eine endliche Teilmenge $\{l_1, \ldots, l_n\} \subseteq L$ heißt <u>algebraisch abhängig</u> über k, falls gilt:

$$\exists P(x_1, \dots, x_n) \in k[x_1, \dots, x_n] : P(l_1, \dots, l_n) = 0$$

• Eine endliche Teilmengen $\{l_1, \ldots, l_n\} \subseteq L$ heißt <u>algebraisch unabhängig</u> über k, falls gilt:

$$\forall P(x_1, ..., x_n) \in k[x_1, ..., x_n] : P(l_1, ..., l_n) \neq 0$$

- Eine Teilmenge $B \subseteq L$ heißt <u>transzendent</u> über k, falls jede ihrer endlichen Teilmengen $\{b_1, \ldots, b_n\}$ algebraisch unabhängig über k ist.
- Eine Teilmenge $B \subseteq L$ ist eine <u>Transzendenzbasis</u> von L über k, falls sie transzendent über k und die Körpererweiterung $L \supset k(B)$ algebraisch ist.

Transzendenzbasis ist maximale transzendente Menge [Lemma 22.1 Christian Karpfinger, Kurt Meyberg 2009]

Lemma 1. Sei $L \supset k$ ein Körpererweiterung und $B \subseteq L$ eine über k transzendente Teilmenge. Dann gilt:

B ist genau dann eine Transzendenzbasis von L über k, wenn B bezüglich der Inklusion ein maximales Element der Menge aller über k transzendenten Elemente aus L ist.

Bemerkung 2. Für jede Körpererweiterung $L \subseteq k$ existiert eine Transzendenzbasis $B \subseteq L$ von L über k.

De []

Erinnerung: Eine Algebraische Körpererweiterung $L\supset k$ heißt seperabel, falls für alle $\alpha\in L$ das Minimalpolynom $f(x)\in k[x]$ von α über L[x] in Linearfaktoren zerfällt.

Definition 3. Sei $L \supset k$ eine Körpererweiterung. Dann definieren wir:

- L ist seperabel generiert über k, falls eine Transzendenzbasis B von L über k existiert, sodass L/k(B) eine seperable Körpererweiterung ist.
- k ist <u>seperabel</u> über k, falls jeder über k endlich genierte Teilkörper von L über k <u>seperabel</u> generiert ist.

Definition 4. Sei k ein Körper mit charakteristik p und sei weiter L/k eine Körpererweiterung. Dann definieren wir:

• Eine endliche Teilmenge $B \subseteq L$ heißt p-Basis von L über k, falls $W := \{\prod_{b \in B} b^i | i < p\}$ eine Vektorraumbasis von K über $k * K^p$ bildet.

1.2 Differential von Körpererweiterungen

Definition der Differenzialbasis [vlg. Chapter 16.5 David Eisenbud 1994]

Definition 5. Sei $L \supset k$ eine Körpererweiterung. Dann nennen wir eine Teilmenge $\{b_i\}_{i\in\Lambda}\subseteq L$ eine <u>Differenzialbasis</u> von L über k, falls $\{d_K(b_i)\}_{i\in\Lambda}$ eine Vektorraumbasis von $\Omega_{L/R}$ über L ist.

Differential von rationalen Funktionen 1 [vlg. Chapter 16.5 David Eisenbud 1994]

Beispiel 6. Sei k ein Körper und $L = k(\{x_i\}_{i \in \{1,...,n\}})$ der Körper der rationalen Funktionen in n Varablen über k.

Dann gilt:

$$\Omega_{L/k} \simeq L \langle d_{k[x_1, \dots x_n]}(x_i) \rangle$$

Insbesondere ist $\{x_i\}_{i\in\{1,\ldots,n\}}$ eine Differenzialbasis von $\Omega_{L/k}$.

Differential von rationalen Funktionen 2 [Aufgabe 16.6 David Eisenbud 1994]

Korrolar 7. Sei k ein Körper und $L \supset k$ eine Körpererweiterung und $T = L(\{x_i\}_{i \in \{1,...,n\}})$ der Körper der rationalen Funktionen in n Varablen über L. Dann gilt:

$$\Omega_{T/k} \simeq (T \otimes_L \Omega_{L/R}) \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle$$

Cotangent Sequenz von Koerpern 1 [Aufgabe 16.6 David Eisenbud 1994]

Bemerkung 8. Sei $L \supset k$ eine Körpererweiterung und $T = L(x_1, \ldots, x_n)$ der Körper der rationalen Funktionen in n Variablen über L. Dann ist die COTAN-GENT SEQUENZ (??) von $k \hookrightarrow L \hookrightarrow T$ eine kurze Exakte Sequenz:

$$0 \longrightarrow T \otimes_L \Omega_{L/k} \longrightarrow \Omega_{T/k} \longrightarrow \Omega_{T/L} \longrightarrow 0$$

Im Genauen ist $\varphi: T \otimes_L \Omega_{L/k} \longrightarrow \Omega_{T/k}$, $t \otimes d_L(l) \longmapsto t \cdot d_T(l)$ injektiv.

Aufbaulemma Koerperdifferenzial /vlg. Lemma 16.15 David Eisenbud 1994]

Lemma 9. Sei $L \subset T$ eine seperable und algebraische Körpererweiterung und $R \longrightarrow L$ ein Ringhomomorphismus. Dann gilt:

$$\Omega_{T/R} = T \otimes_L \Omega_{L/R}$$

Insbesondere ist in diesem Fall die COTANGENT SEQUENZ (??) von $R \rightarrow L \hookrightarrow T$ eine kurze Exakte Sequenz:

$$0 \longrightarrow T \otimes_L \Omega_{L/R} \longrightarrow \Omega_{T/R} \longrightarrow \Omega_{T/L} \longrightarrow 0$$

Transzendenzbasis ist Differenzialbasis [vlg. Theorem 16.4 David Eisenbud 1994]

Theorem 10. Sei $T \supset k$ eine seperabel generierte Körpererweiterung und $B = \{b_i\}_{i \in \Lambda} \subseteq T$. Dann ist B genau dann eine Differenzialbasis von T über k, falls eine der folgedenen Bedingungen erfüllt ist:

- 1. char(k) = 0 und B ist eine Transzendenzbasis von T über k.
- **2.** char(k) = p und B ist eine p-Basis von T über k.