

模式识别与深度学习 (27-28) 卷积神经网络-1

左旺孟

综合楼309 视觉感知与认知组 哈尔滨工业大学计算机学院 cswmzuo@gmail.com 13134506692

卷积神经网络

- 历史和动机
- 基本操作
 - 卷积、池化、归一化、卷积神经网络
- 新进展
 - 3x3 Dilated Convolution
- 典型网络架构
 - LeNet, AlexNet, VGGNet, Inception
 - ResNet, SENet, DenseNet, Attention

Why Deep CNNs

"在使用RNN之前,一定要先尝试CNN。你会惊讶于你能走多远"。——特斯拉人工智能主管Andrej Karpathy

Why Deep CNNs (vs RNN)

- Facebook: A novel convolutional neural network (CNN) approach for language translation that achieves state-of-the-art accuracy at nine times the speed of recurrent neural systems.
- https://code.fb.com/ml-applications/a-novel-approach-to-neural-machine-translation/

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, Yann N. Dauphin. Convolutional Sequence to Sequence Learning. ArXiv, 2017

Why Deep CNNs (vs Transformer)

- Large Kernel
- Layer Norm
- Nonlinear Activations
- Optimization: AdamW、LAMB
- ConvNeXts compete favorably with Transformers in terms of accuracy and scalability

Simple Baselines for Image Restoration, Arxiv 2022
A ConvNet for the 2020s, Arxiv 2022
Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs, Arxiv 2022

- D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981)
 - 视觉皮层: 包括 *simple*, *complex*, and *hyper-complex* 细胞

Neocognitron

[Hubel & Wiesel 1962]:

• 简单细胞: 局部特征检测

• 复杂细胞: 简单特征输出的聚合

Cognitron & Neocognitron [Fukushima 1974-1982]

卷积神经网络(上半场)

• LeCun et al., NIPS 1989

• 2个卷积层一个全连接层

深度卷积神经网络(下半场)

• Krizhevsky et al. NIPS 2012

• 5个卷积层、3个全连接层

动机:

• 稀疏交互 (sparse interactions)

- 参数共享 (parameter sharing)
- 等变表示 (equivariant representation)
 - 不变表示 (invariant representation)

稀疏交互 (稀疏连接)

感受野(Receptive Field)

• 层1:

• 层2:

参数共享

等变表示 (Equivariant Representation)

如果一个函数满足输入改变,输出也以同样方式进行改变的话,我们称它是等变的

• 卷积: 平移等变

• 变换不敏感

卷积神经网络

- 历史和动机
- 基本操作
 - 卷积、池化、归一化、卷积神经网络
- 新进展
 - 3x3、空洞卷积 (dilated convolution)
- 典型网络架构
 - LeNet, AlexNet, VGGNet, Inception
 - ResNet、SENet、DenseNet、Attention

卷积:参数共享和稀疏连接

• 连续卷积

$$s(t) = \int x(a)w(t-a)da$$

$$s(t) = (x * w)(t).$$

- 输入、核函数
- 离散卷积

$$s(t) = (x * w)(t) = \sum_{a = -\infty}^{\infty} x(a)w(t - a)$$

二维卷积

• 二维卷积

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

直观展示

- 卷积核(Conv. Kernel)
- 特征图(Feature Map)

Input

Feature Map

拓展:多通道卷积

• 多通道卷积

$$\boldsymbol{F}_i = \sum_{j=1}^C \boldsymbol{w}_{j,i} * \boldsymbol{x}_j$$

拓展: 步幅(Stride)

• 步幅为1

a ₁₁	a ₁₂	a ₁₃	a ₁₄	
a ₂₁	a ₂₂	a ₂₃	a ₂₄	
a ₃₁	a ₃₂	a ₃₃	a ₃₄	
a ₄₁	a ₄₂	a ₄₃	a ₄₄	

 k_{13} k_{11} k₁₂ * k₂₂ ! k_{21} k_{23} k_{33} k_{31} k₃₂ K

 $a_{11}k_{11}+a_{12}k_{12}+a_{13}k_{13}$ $a_{12}k_{11}+a_{13}k_{12}+a_{14}k_{13}$ $a_{21}k_{21}+a_{22}k_{22}+a_{23}k_{23}$ $a_{22}k_{21}+a_{23}k_{22}+a_{24}k_{23}$ • • • $a_{31}k_{31}+a_{32}k_{32}+a_{33}k_{33}$ $a_{32}k_{31}+a_{33}k_{32}+a_{34}k_{33}$

a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅				
a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅				
a ₃₁	a ₃₂	a ₃₃	a ₃₄	a ₃₅				
a ₄₁	a ₄₂	a ₄₃	a ₄₄					
I								

 k_{12} k_{13} k_{11} * k_{22} k_{21} k_{23} k_{32} k_{33} k_{31} K

S

拓展: 边界条件

• 特征图尺寸逐渐减小

• 零填充(Zero Padding)、镜像填充

• 其他方式: Partial Conv.

Guilin Liu, Kevin J. Shih, Ting-Chun Wang, Fitsum A. Reda, Karan Sapra, Zhiding Yu, Andrew Tao, Bryan Catanzaro, Partial Convolution based Padding, arXiv:1811.11718.

卷积神经网络

- 历史和动机
- 基本操作
 - 卷积、池化、 归一化、卷积神经网络
- 新进展
 - 3x3、空洞卷积 (dilated convolution)
- 典型网络架构
 - LeNet, AlexNet, VGGNet, Inception
 - ResNet、SENet、DenseNet、Attention

池化:形变不敏感

• 池化

a ₁₁	a ₁₂	a ₁₃	a ₁₄	ins	max(a ₁₁ ,a ₁₂ ,a ₂₁ ,a ₂₂)	max(a ₁₂ ,a ₁₃ ,a ₂₂ ,a ₂₃)	• •				
a ₂₁	a ₂₂	a ₂₃	a ₂₄	roat podings	• (• •					
a ₃₁	a ₃₂	a ₃₃	a ₃₄								
a ₄₁	a ₄₂	a ₄₃	a ₄₄	Thean Pooling							
				18	$(a_{11}+a_{12}+a_{21}+a_{22})/4$	(a ₁₂ +a ₁₃ +a ₂₂ +a ₂₃)/4	• •				
		I		I	• • •						

• 下采样

- Max Pooling
- Average Pooling

Max

Sum

- 作用: 增大感受野、形变不敏感
- Hinton (reddit, 2014): The pooling operation used in convolutional neural networks is a big mistake and the fact that it works so well is a disaster.
- https://mirror2image.wordpress.com/2014/11/11/geoffrey-hinton-on-max-pooling-reddit-ama/
- 思考:如何去掉池化但仍保持感受野和不敏感性特性?

归一化: 光照不敏感

- 每个channel或所有channel归一化
- 池化前或池化后归一化

Feature Maps

Feature Maps
After Contrast Normalization

• 已不太常用或结合Batch Normalization

总结: CNN网络层

- 1. 卷积
- 2. 非线性激活函数
- 3. 池化
- 4. 归一化

卷积神经网络

- 历史和动机
- 基本操作
 - 卷积、池化、 归一化、 卷积神经网络
- 新进展
 - 3x3、空洞卷积 (dilated convolution)
- 典型网络架构
 - LeNet, AlexNet, VGGNet, Inception
 - ResNet, SENet, DenseNet, Attention

典型的卷积神经网络层

卷积神经网络示例: LeNet5 (1998)

• 输入: 32x32图像

• Cx: 卷积层

• Sx: 下采样层

• Fx: 全连接层

LeNet 5, Layer C1

- C1: 卷积层,通道数为6,特征图大小 28x28. 卷积 核 5x5.
 - 稀疏连接
 - 参数共享: 参数量: (5*5+1)*6=156 非参数共享: 28*28*(5*5+1)*6=122304

LeNet 5, Layer S2

- S2: 下采样层, 6通道, 特征图大小14x14
- 2x2 感受野
- 学习参数: 6 * 2 = 12.
- 全连接: 14*14*(2*2+1)*6=5880

LeNet 5, Layer C3

• C3: 卷积层,通道数16, 特征图大小 10x10

• Each unit in C3 is connected to several! 5x5 receptive fields at identical

locations in S2

• 参数量: 1516.

• 全连接: 151600

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	X				Χ	Χ	Χ			Χ	X	Χ	Χ		Χ	X
1	X	\mathbf{X}				\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		Х
2	X	\mathbf{X}	\mathbf{X}				\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}		\mathbf{X}	\mathbf{X}	Х
3		\mathbf{X}	Χ	\mathbf{X}			X	X	X	X			\mathbf{X}		\mathbf{X}	Х
4			\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}		Х
5				\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}	Х

TABLE I

Each column indicates which feature map in S2 are combined by the units in a particular feature map of C3.

LeNet 5, Layer S4

- S4: 下采样层,with 16 feature maps of size 5x5
- 感受野: 2x2
- 参数量: 16*2=32.
- 全连接: 5*5*(2*2+1)*16=2000

LeNet 5, Layer C5

- C5: 卷积层, 通道数120, 特征图大小1x1
- 感受野 5x5
- 参数量: 120*(16*25+1) = 48120

LeNet 5, Layer F6

- Layer F6: 全连接层, 特征位数84
- 参数量: 84*(120+1)=10164.
- 输出: 10 RBF (One for each digit)
- 学习算法: BP

LeNet 5, Shift invariance

LeNet 5, Unusual Patterns

卷积神经网络

- 历史和动机
- 基本操作
 - 卷积、池化、归一化、卷积神经网络
- 新进展: 操作
 - 3x3, dilated convolution
- 典型网络架构: 思想和网络结构
 - LeNet, AlexNet, VGGNet, Inception
 - ResNet、SENet、DenseNet、Attention

