MAC239

Lógica de Predicados (sintaxe)

Agenda

- Motivação:
 - necessidade de uma linguagem mais expressiva
- Lógica de Predicados como uma linguagem formal
 - Termos (variáveis, funções)
 - Fórmulas (predicados, quantificadores)
 - Variáveis livres e ligadas
- Teoria de Prova da Lógica de Predicados
 - Regras de dedução natural

MOTIVAÇÃO

A Lógica proposicional não é suficientemente expressiva

Lógica Proposicional

Suponha que queremos representar o fato que

"Toda pessoa que está na chuva fica molhada."

 $P \wedge C \rightarrow M$

para depois usar esse fato. Por exemplo, suponha que nós também sabemos que

"Pedro é uma pessoa e está na chuva."

PAC

e gostariamos de concluir que "Pedro ficará molhado."

Então, dado P \(\lambda \) C, podemos de fato concluir \(M \).

A Lógica proposicional não é suficientemente expressiva

- Agora suponha que nos contaram que "Larissa está na chuva."
- Gostariamos de concluir que "Larissa ficará molhada", porém ...
 - ... nada do que declaramos antes nos ajuda a fazer isso!
- O problema é que não somos capazes de representar os detalhes dentro dessas proposições:
 - O raciocínio válido (que nós humanos fazemos) é feito pela estrutura interna dessas proposições.
 - Mas na Lógica Proposicional, nós não temos nada além de proposições!
- ⇒ Precisamos de uma lógica mais expressiva

Lógica de Predicados, também chamada de Lógica de Primeira Ordem (LPO), do inglês, *First-order logic* (FOL).

Precisamos de uma lógica mais expressiva

Lógica Proposicional

- lida bem com elementos de sentenças: não, e, ou, se ... então, ...
- mas é limitada para lidar com elementos modificadores: existe, para todo, somente ...

Exemplo: "Todo aluno é mais jovem que algum instrutor"

- Podemos identificar a frase inteira com o símbolo proposicional p.
- No entanto, isso n\u00e3o revela a estrutura interna da frase que declara as seguintes propriedades:
 - ser um aluno
 - ser um instrutor
 - ser mais jovem que alguém

Essas são *propriedades* de elementos de um conjunto de objeto, que . expressamos na lógica de predicados usando *predicados*.

Lógica de Predicados

Sintaxe

Predicados, Variáveis e Quantificadores

Propriedades são expressas por *predicados* sobre indivíduos: *A, I, J A(carlos):* Carlos é um aluno. *I(paulo):* Paulo é um instrutor. *J(carlos, paulo):* Carlos é mais jovem que Paulo.

Variáveis podem ser usadas no lugar dos valores concretos: *A(x): x* é um aluno. *I(x): x* é um instrutor. *J(x,y): x* é mais jovem que y.

- Como expressar: "Todo aluno"?
- Precisamos de *variáveis* que possam ficar no lugar de valores constantes, e um símbolo de *quantificador* que denote "*Todo*".
- Como expressar: "algum instrutor"?
 - Precisamos de um símbolo de quantificador que denote "Algum".

Predicados, Variáveis e Quantificadores

Quantificadores permitem modificar a abrangência dos predicados e representar formalmente a frase:

"Todo aluno é mais jovem que algum instrutor"

Dois quantificadores: Universal (♥) e Existential (∃)

∀x : para todo x e

∃y : existe um y (ou existe algum y)

$$\forall x(A(x) \rightarrow (\exists y(I(y) \land J(x,y))))$$

"Para todo x, se x é um aluno então existe algum y tal que y é um instrutor e x é mais jovem que y"

Exemplo: argumento e função

"Nenhum livro é gasoso. Dicionários são livros. Portanto, nenhum dicionário é gasoso."

Denotamos por:

B(x): x é um livro

G(x): x é gasoso

D(x): x é um dicionário

 $\neg \exists x \ (B(x) \land G(x)), \ \forall x \ (D(x) \rightarrow B(x)) \vdash \neg \exists x (D(x) \land G(x))$

Exemplo: argumento e função

"Todo filho é mais jovem que sua mãe."

Denotamos por:

F(x): x é um filho

M(y,x): y é mãe de x

J(x,y): x é mais jovem que y

$$\forall x \ \forall y \ (F(x) \land M(y,x) \rightarrow J(x,y))$$

Note que y foi usado para denotar a mãe de x.

Podemos representar a frase acima de uma outra forma, definindo a função m(x): mãe de x

$$\forall x (F(x) \rightarrow J(x, m(x)))$$

Usar a função m(x) para denotar " $m\tilde{a}e de$ " é mais adequado, uma vez que toda pessoa tem apenas uma mãe.

Exemplo: igualdade

"Carlos e Paulo tem a mesma avó materna."

$$\forall x \ \forall y \ \forall u \ \forall v \ (M(x,y) \land M(y,carlos) \land M(u,v) \land M(v,paulo) \rightarrow x=u)$$

Introduzimos um predicado especial: igualdade.

Na representação alternativa com funções, teriamos:

$$m(m(carlos) = m(m(paulo))$$

Obs: Nem todo predicado pode ser transformado numa função. Por exemplo, a relação x é irmão de y, deve ser codificada como um predicado, B(x,y), uma vez que uma pessoa pode ter mais do que um irmão.

Predicados

Def1. (Relação). Seja $D_1,D_2,...D_n$ conjuntos, não necessariamente disjuntos. R é uma relação de aridade n sobre os conjuntos $D_1,D_2,...D_n$ se R é um subconjunto do produto cartesiano $D_1 \times D_2 \times \cdots \times D_n$.

Def2. (Predicado da LPO). Seja $D_1, D_2, ...D_n$ conjuntos, e R uma relação de aridade n sobre os conjuntos $D_1, D_2, ...D_n$. O predicado P associado à R é a *função total* de $D_1 \times D_2 \times ... \times D_n$ para $\{T, F\}$, ou seja, $P: D_1 \times D_2 \times ... \times D_n \rightarrow \{T, F\}$, sendo P(X) = T sse $X \in R$.

Na LPO, consideramos um único conjunto de objetos de discurso D, ou seja $D_1, D_2, ...D_n$ são idênticos.

Um predicado nada mais é que uma proposição paramétrica, cujo valor é verdadeiro para alguns elementos de um determinado conjunto, e falso para os demais.

13

Funções da LPO

Def2. (Função da LPO). Seja D o conjunto de objetos de discurso, e R uma relação de aridade n sobre D. A função f associada à R é a **função total** de Dⁿ para D, ou seja, $f: D^n \to D$.

.

Lógica de Predicados como uma linguagem formal

O vocabulário define o repertório de símbolos da linguagem da lógica de predicados:

- — P = {p, q, r, ...} é um conjunto de símbolos de predicados (cada um com uma aridade fixa);
- F = {a, a1, b, ..., f, f', g, ...} é um conjunto de símbolos de funções (cada um com sua aridade);
- C = {c₁, c₂, ...} é um conjunto de símbolos chamados de constantes (também visto como uma função de aridade 0); e
- $-X = \{x, x_1, ..., x', ...y, z, ...\}$ é um conjunto de símbolos chamados de variáveis.

Existem dois tipos de elementos em uma fórmula de predicados:

- Objetos tais como carlos (Carlos) e paulo (Paulo)., sendo que símbolos de funções também se referem a objetos. Objetos e funções são modelados por termos.
- Expressões para as quais podemos atribuir valores verdade. Expressões são modeladas por fórmulas.

Termos

Termos são definidos como:

- Qualquer variável x ∈ X é um termo;
- Qualquer constante em c ∈ C é um termo;
- Se t_1 , ..., t_n , são termos e $f \in \mathcal{F}$ tem aridade n, então $f(t_1, ..., t_n)$ é um termo;
- Nada mais é um termo.

BNF:

$$t := x | c | f(t, ..., t)$$

onde x representa variáveis em x; c representa constantes em x; c representa uma função com aridade x.

Exemplo: Suponha que *n*, *f* e g são símbolos de função de aridade respetivamente igual a 0, 1 e 2. Então g(f(n), n) e f(g(n), f(n))) são termos, mas g(n) e f(f(n), n) não são termos por violarem as aridades dos símbolos.

Exemplo de termo

Se 0, 1 e 2 são constantes, s é uma função unária, e +, -, e * são funções binários, então a expressão:

$$*(-(2,+(s(x),y)),x)$$

é um termo. Podemos usar a notação infixa para funções:

$$(2 - (s(x) + y)) * x$$

Formulas

Definimos o conjunto de fórmulas sobre (\mathcal{P} , \mathcal{F} , \mathcal{C} , \mathcal{X}) indutivamente, usando a definição anterior de termos.

- –Se P é um predicado com n≥1 argumentos, e t_1 , ..., t_n , são termos sobre F, então $P(t_1, ..., t_n)$ é uma fórmula (denotada por *fórmula atômica*).
- -Se Φ e Ψ são fórmulas, então Φ ∧ Ψ , Φ ∨ Ψ , Φ → Ψ também são fórmulas.
- -Se Φ e Ψ são fórmulas e x é uma variável, então $\forall x \Phi$ e $\exists x \Phi$ também são fórmulas.

BNF:

$$\Phi ::= P(t_1, \ldots, t_n) \mid (\neg \Phi) \mid (\Phi \wedge \Psi) \mid (\Phi \vee \Psi) \mid (\Phi \to \Phi) \mid \forall x \Phi \mid \exists x \Phi$$

onde P é um predicado de aridade n; t_i são termos, $i \in \{1, ..., n\}$, x é uma variável.

Convenção: Adotaremos a seguinte prioridade entre os operadores:

- $1. \neg, \forall, \exists$
- 2. A, V
- 3. →

Árvore de análise

$$\forall x \; ((P(x) \to Q(x)) \land S(x,y))$$

Tem a árvore de análise (parse)

Exemplo: equivalências

Exemplo 8. Considere a sentença:

"Nem todos os pássaros podem voar."

Escolhemos os seguintes predicados para expressar esta sentença:

```
passaro(x): x é um pássaro . voa(x): x pode voar.
```

Esta sentença pode ser codificada da seguinte forma:

$$\neg(\forall x (passaro(x) \rightarrow voa(x)))$$

Exemplo: equivalências

Uma outra maneira de expressar a mesma idéia da sentença anterior é dizer que:

" Existem alguns pássaros que não podem voar. "

$$\exists x (passaro(x) \rightarrow \neg voa(x)))$$

Veremos que as duas codificações são semanticamente equivalentes. De fato, existem transformações que convertem uma na outra.

```
\neg(\forall x (passaro(x) \rightarrow voa(x))) \equiv \exists x (passaro(x) \rightarrow \neg voa(x)))
```

Exemplo: uso de funções

Como expressar a sentença:

"Todo filho de meu pai é meu irmão."

Duas alternativas:

```
I.) "Pai de" é codificada codificado como um predicado F(x,y): x é filho de y
P(x,y): x é o pai de y
B(x,y): x é irmão de y
me: constante
Tradução: ∀x ∀y (P(x,me) ∧ F(y,x) → B(y,me))
II.) "Pai de" codificada como uma função
Tradução: ∀x (F(x,p(me)) → B(x,me))
```

Escopo das variáveis: como em linguagens de programação, as variáveis da LPO possuem um escopo determinado pelos quantificadores.

Abrangência dos quantificadores

Definição: A abrangência de $\forall x \Phi$ (ou $\exists x \Phi$) é Φ . Uma ocorrência de uma variável ligada ou presa (bound) numa fórmula Φ é uma ocorrência de uma variável x dentro do campo de abrangência de um quantificador $\forall x$ ou $\exists x$. Uma ocorrência de uma variável livre é uma ocorrência de uma variável x não ligada.

Exemplo 1:
$$\exists x (p(f(x),y) \rightarrow q(x))$$

As 2 ocorrências da variável x são ligadas, enquanto a ocorrência da variável y é livre.

Exemplo 2:
$$\exists xp(f(x),y) \rightarrow q(x)$$

A 1^a ocorrência da variável x é ligada, enquanto a 2^a é livre.

Variáveis livres e variáveis ligadas

Definição: Seja Φ uma fórmula na lógica de predicados. Uma ocorrência de x é *livre em* Φ se ela é um nó folha na árvore de análise de Φ tal que não há um caminho que vai do nó x para um nó $\forall x\Phi$ ou $\exists x\Phi$. Caso contrário, ela é chamada de *ligada* (*bound*).

Fórmula:

x é ligada e y é livre

Exemplo de uma variável livre e ligada

Fórmula: $(\forall x (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$

Árvore de análise:

As 2 primeiras ocorrências de x são ligadas; a 3ª ocorrência de x é livre.

Variáveis livres e variáveis ligadas

 Uma fórmula sem variáveis livres é chamada de fórmula fechada (closed formula)

• Exemplo: $\forall x \forall y (P(f(x)) \rightarrow \neg (P(x)) \rightarrow Q(f(y), x)))$

Substituição

Variáveis podem ser substituídas por termos: isso é fundamental para a aplicação de regras de inferência.

Definição: Dada uma variável x, um termo t e uma fórmula Φ , definimos $\Phi[t/x]$ como a fórmula obtida após substituir cada ocorrência livre da variável x em Φ por t.

Por exemplo, considere a fórmula Φ :

$$(\forall x (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$$

Nesse caso, temos uma ocorrência livre de x e portanto $\Phi[f(x,y)/x]$ resulta em:

$$(\forall x (P(x) \land Q(x))) \rightarrow (\neg P(f(x,y)) \lor Q(y))$$

Substituição (2)

Exemplo:

$$\forall x ((P(x) \rightarrow Q(x)) \land S(x,y))$$

Considere a substituição $\Phi[f(x,y)/x]$

Observe que, como todas as ocorrências de x são ligadas, essa substituição não tem nenhum efeito em Φ .

Substituição (3)

As substituições podem produzir efeitos indesejados. Considere o termo f(x,y) e a fórmula $\Phi \equiv \forall y (P(x,y))$. Então $\Phi[f(x,y)/x]$ resulta na fórmula:

$$\forall y \ (P(f(x,y),y)).$$

Observe que o termo resultante possui uma semântica diferente da esperada porque a variável y do termo f(x,y) não corresponde à variável y quantificada universalmente na fórmula dada. Como resolver este problema?

Substituição (4)

Definição: Dada uma variável x, um termo t e uma fórmula Φ , dizemos que t é livre para x em Φ se nenhuma ocorrência livre de x está no escopo de \forall y ou \exists y para qualquer variável y que ocorra em t.

Exemplo: Considere a fórmula $S(x) \land \forall y(P(x) \rightarrow Q(y))$, que possui duas ocorrências livres de x. A ocorrência de x mais a esquerda poderia, por exemplo, ser substituída pelo termo f(x,y), no entanto a outra ocorrência não poderia ser substituída por este termo porque tal substituição acarretaria *captura* da variável y (isto é, o termo t=f(x,y) NÃO é livre para x em Φ .)

Quando precisamos realizar uma substituição de um termo t que não está livre para uma variável x em uma fórmula Φ , o que fazemos é renomear as variáveis ligadas para evitar capturas.

Substituição (5)

No caso do exemplo anterior, a substituição de x pelo termo f(x,y), em $S(x) \land \forall y(P(x) \rightarrow Q(y))$,

pode ser resolvida renomeando a variável ligada y da fórmula para algum nome novo, por exemplo w, tornando a fórmula:

$$S(x) \land \forall w(P(x) \rightarrow Q(w)).$$

Agora a substituição pode ser realizada sem provocar *captura de variáveis* no escopo de quantificadores:

$$S(x) \land \forall w(P(f(x,y)) \rightarrow Q(w))$$

BNF para sentenças da FOL (resumo)

```
\Phi := \langle Sentence \rangle
<Sentence> := <AtomicSentence>
                     | <Sentence> <Connective> <Sentence>
                     <Quantifier> <Variable>,... <Sentence>
                     ¬ <Sentence>
                    ( <Sentence> )
<AtomicSentence> := <Predicate> ( <Term>, ... )
<Term> :=
                    <Function> ( <Term>, ... )
                    | <Constant>
                     | <Variable>
<Connective> := \land | \lor | \rightarrow | \leftrightarrow
<Quantifier> := \exists \mid \forall
<Constant> := "c" | "x1" | "john" | ...
<Variable> := "a" | "x" | "s" | ...
<Pre><Predicate> := "before" | "hasColor" | "raining" | ...
<Function> := "mother" | "leftLegOf" | ...
```

Próxima aula

- Teoria de Prova para LPO
 - Regras de inferência
 - Exemplos de provas de argumentos