1) Результаты

Построим графики зависимости $T=\pi v^2$ для пяти различных сумм.

график суммирования типа double(5)

Из графиков мало что следаует, однако видно, что сильных отклонений нет. Для более точного исследование рассмотрим значение $\frac{T}{v^2}$ каждой из суммы при $T=11,\ T=496$ и полученное из аппроксимации графиков.

function	при Т = 11	при Т = 496	при <Т>	истинное π
recursive_sum	3,141565262	3,141591633	3,141591657	3,141592654
close_variables	3,141565262	3,141592114	3,141591723	3,141592654
kehen_sum	3,141564862	3,14159211	3,141591757	3,141592654
fma_sum	3,141568464	3,141599263	3,141608239	3,141592654
double_sum	3,141600936	3,141592132	3,141591733	3,141592654

2) Вывод:

Cамый точный способ оценки при малых Т это double_sum. При больших Т это double_sum, kehen_sum и close_variables. Самым точным оказался double_sum, что ожидаемое(из опр. типа double). Самым не точным оказался fma_sum.