```
In [1]: import pandas as pd
   import numpy as np
   from sklearn.model_selection import train_test_split
   from sklearn.tree import DecisionTreeClassifier
   from sklearn.metrics import accuracy_score
   from sklearn import tree
   import matplotlib.pyplot as plt
In [2]: df = pd.read_csv(r"C:\Users\Prithviraj Ghorpade\Downloads\Loans_Dataset.csv",
```

Exploratory Data Analysis

```
print ("Dataset Lenght: ", len(df))
        print ("Dataset Shape: ", df.shape)
        Dataset Lenght: 1000
        Dataset Shape: (1000, 6)
In [4]: | df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1000 entries, 0 to 999
        Data columns (total 6 columns):
             Column
                             Non-Null Count Dtype
            -----
        ---
                             -----
                                             ----
            initial_payment 1000 non-null
         0
                                             int64
             last_payment
                             1000 non-null
                                             int64
         1
         2
             credit_score
                             1000 non-null
                                           int64
                             1000 non-null int64
         3
             house_number
         4
                             1000 non-null
                                             int64
             sum
         5
             result
                             1000 non-null
                                             object
        dtypes: int64(5), object(1)
        memory usage: 47.0+ KB
```

```
In [5]: df
```

Out[5]:

_		initial_payment	last_payment	credit_score	house_number	sum	result
	0	201	10018	250	3046	13515	yes
	1	205	10016	395	3044	13660	yes
	2	257	10129	109	3251	13746	yes
	3	246	10064	324	3137	13771	yes
	4	117	10115	496	3094	13822	yes
	995	413	14914	523	4683	20533	No
	996	359	14423	927	4838	20547	No
	997	316	14872	613	4760	20561	No
	998	305	14926	897	4572	20700	No
	999	168	14798	834	4937	20737	No

1000 rows × 6 columns

Data Transformation

```
In [6]: df.drop(columns=['sum'], inplace=True)
In [7]: df["result"] = np.where(df["result"] == "yes", 1, 0)
In [8]: X = df.drop(columns=['result'])
Y = df['result']
In [9]: X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, rar
```

Decision Tree Classification

```
In [11]:
         y_pred = clf_entropy.predict(X_test)
         y_pred
Out[11]: array([1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1,
                0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0,
                0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1,
                1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1,
                1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1,
                                                                0, 1, 1, 1,
                1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1,
                0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0,
                0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1,
                                                                   1, 0, 1,
                1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1,
                1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
                1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1,
                0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
                1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1,
                0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1
         print('Training set score: {:.2f}'.format(clf_entropy.score(X_train, y_train))
In [12]:
         print('Test set score: {:.2f}'.format(clf_entropy.score(X_test, y_test)))
```

Training set score: 0.96 Test set score: 0.94

Here, the training-set accuracy score is 0.96 while the test-set accuracy to be 0.94. These two values are quite comparable. So, there is no sign of overfitting.

Decision Tree Visualization

```
In [13]: plt.figure(figsize=(16,8))
                                                                    tree.plot tree(clf entropy.fit(X train, y train))
Out[13]: [Text(0.5, 0.875, 'x[1] \le 12545.0 \setminus 9.997 \setminus
                                                                     [374, 326]'),
                                                                           Text(0.25, 0.625, 'x[1] \le 11566.5 \neq 0.534 \le 345 \le 45
                                                                      [42, 303]'),
                                                                            Text(0.125, 0.375, x[0] \le 485.5\nentropy = 0.045\nsamples = 204\nvalue =
                                                                      [1, 203]'),
                                                                           Text(0.0625, 0.125, 'entropy = 0.0 \times 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 
                                                                           Text(0.1875, 0.125, 'entropy = 0.722\nsamples = 5\nvalue = [1, 4]'),
                                                                           Text(0.375, 0.375, 'x[3] \leftarrow 4343.5 \neq 0.87 = 0.87 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 141 = 14
                                                                      [41, 100]'),
                                                                           Text(0.3125, 0.125, 'entropy = 0.302\nsamples = 93\nvalue = [5, 88]'),
                                                                           Text(0.4375, 0.125, 'entropy = 0.811\nsamples = 48\nvalue = [36, 12]'),
                                                                           Text(0.75, 0.625, 'x[1] \le 13235.5 \cdot entropy = 0.346 \cdot nsamples = 355 \cdot nvalue =
                                                                      [332, 23]'),
                                                                           Text(0.625, 0.375, 'x[3] <= 3588.5\nentropy = 0.788\nsamples = 89\nvalue =
                                                                      [68, 21]'),
                                                                           Text(0.5625, 0.125, 'entropy = 0.811\nsamples = 24\nvalue = [6, 18]'),
                                                                           Text(0.6875, 0.125, 'entropy = 0.27\nsamples = 65\nvalue = [62, 3]'),
                                                                           Text(0.875, 0.375, 'x[0] \leftarrow 128.5 \neq 0.064 = 266 \neq 0.064
                                                                      [264, 2]'),
                                                                           Text(0.8125, 0.125, 'entropy = 0.402\nsamples = 25\nvalue = [23, 2]'),
                                                                           Text(0.9375, 0.125, 'entropy = 0.0\nsamples = 241\nvalue = [241, 0]')
```


Make Predictions