## Problem Set 5 — Due Friday, November 29, before class starts For the Exercise Sessions on Nov 15 and Nov 22

| First name    | SCIPER Nr   | Points               |
|---------------|-------------|----------------------|
| 1 1150 Hailie | SOII LICIVI | 1 011105             |
|               |             |                      |
|               |             | .                    |
|               |             | .                    |
|               | First name  | First name SCIPER Nr |

## Problem 1: Poisson Sampling

Assume that we have given a distribution p on  $\mathcal{X} = \{1, \dots, k\}$ . Let  $X^n$  denote a sequence of n iid samples. Let  $T_i = T_i(X^n)$  be the number of times symbol i appears in  $X^n$ . Then

$$\mathbb{P}\{T_i = t_i\} = \binom{n}{t_i} p_i^{t_i} (1 - p_i)^{n - t_i}.$$

Note that the random variables  $T_i$  are dependent, since  $\sum_i T_i = n$ . This dependence can sometimes be inconvenient.

There is a convenient way of getting around this problem. This is called *Poisson* sampling. Let N be a random variable distributed according to a Poisson distribution with mean n. Let  $X^N$  be then an iid sequence of N variables distributed according to p.

Conditioned on N = n, what is the induced distribution of the Poisson sampling scheme?

Now, show that:

- 1.  $T_i(X^N)$  is distributed according to a Poisson random variable with mean  $p_i n$ .
- 2. The  $T_i(X^N)$  are independent.

## Problem 2: Add- $\beta$ Estimator

The add- $\beta$  estimator  $q_{+\beta}$  over [k], assigns to symbol i a probability proportional to its number of occurrences plus  $\beta$ , namely,

$$q_i \stackrel{\text{def}}{=} q_i(X^n) \stackrel{\text{def}}{=} q_{+\beta,i}(X^n) \stackrel{\text{def}}{=} \frac{T_i + \beta}{n + k\beta}$$

where  $T_i \stackrel{\text{def}}{=} T_i(X^n) \stackrel{\text{def}}{=} \sum_{j=1}^n \mathbf{1}(X_j = i)$ . Prove that for all  $k \geq 2$  and  $n \geq 1$ ,

$$\min_{\beta \ge 0} r_{k,n}^{l_2^2}(q_{+\beta}) = r_{k,n}^{l_2^2}(q_{+\sqrt{n}/k}) = \frac{1 - \frac{1}{k}}{(\sqrt{n} + 1)^2}$$

Furthermore,  $q_{+\sqrt{n}/k}$  has the same expected loss for every distribution  $p \in \Delta_k$ .

## Problem 3: Uniformity Testing

Let us reconsider the problem of testing against uniformity. In the lecture we saw a particular test statistics that required only  $O(\sqrt{k}/\epsilon^2)$  samples where  $\epsilon$  was the  $\ell_1$  distance.

Let us now derive a test from scratch. To make things simple let us consider the  $\ell_2^2$  distance. Recall that the alphabet is  $\mathcal{X} = \{1, \dots, k\}$ , where k is known. Let U be the uniform distribution on  $\mathcal{X}$ , i.e.,  $u_i = 1/k$ . Let P be a given distribution with components  $p_i$ . Let  $X^n$  be a set of n iid samples. A pair of samples  $(X_i, X_j)$ ,  $i \neq j$ , is said to *collide* if  $X_i = X_j$ , if they take on the same value.

- 1. Show that the expected number of collisions is equal to  $\binom{n}{2} ||p||_2^2$ .
- 2. Show that the uniform distribution minimizes this quantity and compute this minimum.
- 3. Show that  $||p u||_2^2 = ||p||_2^2 \frac{1}{k}$ .

NOTE: In words, if we want to distinguish between the uniform distribution and distributions P that have an  $\ell_2^2$  distance from U of at least  $\epsilon$ , then this implies that for those distributions  $\|p\|_2^2 \geq 1/k + \epsilon$ . Together with the first point this suggests the following test: compute the number of collisions in a sample and compare it to  $\binom{n}{2}(1/k + \epsilon/2)$ . If it is below this threshold decide on the uniform one. What remains is to compute the variance of the collision number as a function of the sample size. This will tell us how many samples we need in order for the test to be reliable.

4. Let  $a = \sum_i p_i^2$  and  $b = \sum_i p_i^3$ . Show that the variance of the collision number is equal to

$$\binom{n}{2}a + \binom{n}{2}\left[\binom{n}{2} - \left(1 + \binom{n-2}{2}\right)\right]b + \binom{n}{2}\binom{n-2}{2}a^2 - \binom{n}{2}^2a^2$$

$$= \binom{n}{2}\left[2b(n-2) + a(1+a(3-2n))\right]$$

by giving an interpretation of each of the terms in the above sum.

NOTE: If you don't have sufficient time, skip this step and go to the last point.

For the uniform distribution this is equal to

$$\binom{n}{2} \frac{(k-1)(2n-3)}{k^2} \le \frac{n^2}{2k}.$$

NOTE: You don't have to derive this from the previous result. Just assume it.

5. Recall that we are considering the  $\ell_2^2$  distance which becomes generically small when k is large. Therefore, the proper scale to consider is  $\epsilon = \kappa/k$ . Use the Chebyshev inequality and conclude that if we have  $\Theta(\sqrt{k}/\kappa^2)$  samples then with high probability the empirical number of collisions will be less than  $\binom{n}{2}(1/k + \kappa/(2k))$  assuming that we get samples from a uniform distribution.

NOTE: The second part, namely verifying that the number of collisions is with high probability no smaller than  $\binom{n}{2}(1/k + \kappa/(2k))$  when we get  $\Theta(\sqrt{k}/\kappa^2)$  samples from a distribution with  $\ell_2^2$  distance at least  $\kappa/k$  away from a uniform distribution follows in a similar way.

HINT: Note that if p represents a vector with components  $p_i$  then  $||p||_1 = \sum_i |p_i|$  and  $||p||_2^2 = \sum_i p_i^2$ .