

Appendix II Useful Data

A. Atomic Colors

B. Standard Thermodynamic Quantities for Selected Substances at 25 °C

Substance	$\Delta H_{ m f}^{\circ}({ m kJ/mol})$	$\Delta G_{ m f}^{\circ}({ m kJ/mol})$	S°(J/mol·K)
Aluminum			
AI(s)	0	0	28.32
AI(g)	330.0	289.4	164.6
Al ³⁺ (aq)	-538.4	-483	-325
AICI ₃ (s)	-704.2	-628.8	109.3
Al ₂ O ₃ (s)	-1675.7	-1582.3	50.9
Barium			
Ba(s)	0	0	62.5
Ba(g)	180.0	146.0	170.2
Ba ²⁺ (<i>aq</i>)	-537.6	-560.8	9.6
BaCO _a (s)	-1213.0	-1134.4	112.1

BaCl ₂ (s)	-855.0	-806.7	123.7
BaO(<i>s</i>)	-548.0	-520.3	72.1
Ba(OH) ₂ (s)	-944.7		
BaSO ₄ (s)	-1473.2	-1362.2	132.2
Beryllium			
Be(s)	0	0	9.5
BeO(s)	-609.4	-580.1	13.8
	-902.5	-815.0	45.5
Be(OH) ₂ (s)	-302.5	-815.0	45.5
Bismuth			
Bi(<i>s</i>)	0	0	56.7
BiCl ₃ (s)	-379.1	-315.0	177.0
Bi ₂ O ₃ (s)	-573.9	− 493.7	151.5
Bi ₂ S ₃ (s)	-143.1	-140.6	200.4
Boron			
B(<i>s</i>)	0	0	5.9
B(<i>g</i>)	565.0	521.0	153.4
$BCl_3(g)$	-403.8	-388.7	290.1
BF ₃ (g)	-1136.0	−1119 ₄ 4	254.4
$B_2H_6(g)$	36.4	87.6	232.1
B ₂ O ₃ (s)	−1273.5	- 1194.3	54.0
H ₃ BO ₃ (s)	-1094.3	-968.9	90.0
Bromine			
Br(<i>g</i>)	111.9	82.4	175.0
Br ₂ (/)	0	0	152.2
Br ₂ (g)	30.9	3.1	245.5
Br (aq)	−121.4	-102.8	80.71
HBr(g)	-36.3	-53.4	198.7
Cadmium			
Cd(s)	0	0	51.8
Cd(g)	111.8	77.3	167.7
Cd ²⁺ (<i>aq</i>)	−75.9	-77.6	−73.2
CdCl ₂ (s)	-391.5	-343.9	115.3
CdO(s)	-258.4	-228.7	54.8
CdS(s)	-161.9	-156.5	64.9
CdSO ₄ (s)	-933.3	-822.7	123.0
Calcium			
Ca(s)	0	0	41.6
Ca(<i>g</i>)	177.8	144.0	154.9
Ca ²⁺ (<i>aq</i>)	-542.8	-553.6	−53.1
CaC ₂ (s)	-59.8	-64.9	70.0
CaCO ₃ (s)	-1207.6	-1129.1	91.7
CaCl ₂ (s)	-795.4	-748.8	108.4

	z				
	CaF ₂ (s)	-1228.0	-1175.6	68.5	
	CaH ₂ (s)	-181.5	-142.5	41.4	
	Ca(NO ₃) ₂ (<i>s</i>)	-938.2	-742.8	193.2	
	CaO(<i>s</i>)	-634.9	-603.3	38.1	
	Ca(OH) ₂ (s)	-985.2	-897.5	83.4	
	CaSO ₄ (s)	-1434.5	-1322.0	106.5	
	Ca ₃ (PO ₄) ₂ (s)	-4120.8	-3884.7	236.0	
	Carbon				
	C(s, graphite)	0	0	5.7	
	C(s, diamond)	1.88	2.9	2.4	
	C(g)	716.7	671.3	158.1	
	CH₄(<i>g</i>)	-74.6	-50.5	186.3	
	CH ₃ CI(g)	-81.9	-60.2	234.6	
	CH ₂ Cl ₂ (g)	-95.4		270.2	
	CH ₂ CI ₂ (I)	-124.2	-63.2	177.8	
ľ	CHCI ₃ (/)	-134.1	-73.7	201.7	
	$CCI_4(g)$	-95.7	-62.3	309.7	
	CCI ₄ (1)	-128.2	-66.4	216.4	
	CH ₂ O(<i>g</i>)	-108.6	-102.5	218.8	
	CH ₂ O ₂	-425.0	-361.4	129.0	
	(I, formic acid)				
	$CH_3NH_2(g, methylamine)$	−22.5	32.7	242.9	
	CH ₃ OH(<i>I</i>)	-238.6	-166.6	126.8	
	CH₃OH(g)	-201.0	-162.3	239.9	
	C ₂ H ₂ (g)	227.4	209.9	200.9	
	$C_2H_4(g)$	52.4	68.4	219.3	
	$C_2H_6(g)$	-84.68	-32.0	229.2	
	C ₂ H ₅ OH(I)	-277.6	-174.8	160.7	
	$C_2H_5OH(g)$	-234.8	-167.9	281.6	
	C ₂ H ₂ Cl(g, vinyl chloride)	37.2	53.6	264.0	
	C ₂ H ₄ Cl ₂ (<i>I</i> , dichloroethane)	-166.8	-79.6	208.5	
	$C_2H_4O(g,$ acetaldehyde)	-166.2	-133.0	263.8	
	C ₂ H ₄ O ₂ (<i>I</i> , acetic acid)	-484.3	-389.9	159.8	
	C ₃ H ₈ (g)	-103.85	-23.4	270.3	
	C ₃ H ₆ O (<i>I</i> , acetone)	-248.4	-155.6	199.8	
	C ₃ H ₇ OH (<i>I</i> , isopropanol)	-318.1		181.1	
	C ₄ H ₁₀ (/)	-147.3	-15.0	231.0	
	$C_4H_{10}(g)$	-125.7	-15.71	310.0	
	C ₆ H ₆ (1)	49.1	124.5	173.4	
		-			

C ₆ H ₅ NH ₂ (I, aniline)	31.6	149.2	191.9
C ₆ H ₅ OH (<i>s</i> , phenol)	-165.1	-50.4	144.0
C ₆ H ₁₂ O ₆ (<i>s</i> , glucose)	-1273.3	-910.4	212.1
C ₁₀ H ₈ (<i>s,</i> naphthalene)	78.5	201.6	167.4
C ₁₂ H ₂₂ O ₁₁ (<i>s</i> , sucrose)	-2226.1	-1544.3	360.24
CO(<i>g</i>)	-110.5	-137.2	197.7
$CO_2(g)$	-393.5	-394.4	213.8
CO ₂ (aq)	-413.8	-386.0	117.6
CO ₃ 2-(aq)	-677.1	-527.8	-56.9
HCO ₃ -(aq)	-692.0	-586.8	91.2
H ₂ CO ₃ (aq)	-699.7	-623.2	187.4
CN⁻(aq)	151	166	118
HCN(/)	108.9	125.0	112.8
HCN(g)	135.1	124.7	201.8
CS ₂ (1)	89.0	64.6	151.3
CS ₂ (g)	116.7	67.1	237.8
COCI ₂ (g)	-219.1	-204.9	283.5
C ₆₀ (s)	2327.0	2302.0	426.0
Cesium			
Cs(s)	0	0	85.2
Cs(g)	76.5	49.6	175.6
Cottool	-258.0	-292.0	132.1
Cs ⁺ (<i>aq</i>)	200.0		
Cs*(aq) CsBr(s)	400	-387	117
		−387 −414	117 101.2
CsBr(s)	400		
CsBr(s) CsCl(s)	400	-414	101.2
CsBr(s) CsCl(s) CsF(s)	400 -438 -553.5	-414 -525.5	101.2 92.8
CsBr(s) CsCl(s) CsF(s) Csl(s)	400 -438 -553.5	-414 -525.5	101.2 92.8
CsBr(s) CsCl(s) CsF(s) Csl(s) Chlorine	400 -438 -553.5 -342	-414 -525.5 -337	101.2 92.8 127
CsBr(s) CsCl(s) CsF(s) Csl(s) Chlorine Cl(g)	400 -438 -553.5 -342 121.3	-414 -525.5 -337	101.2 92.8 127 165.2
CsBr(s) $CsCl(s)$ $CsF(s)$ $Csl(s)$ $Chlorine$ $Cl(g)$ $Cl2(g)$	400 -438 -553.5 -342 121.3 0	-414 -525.5 -337 105.3	101.2 92.8 127 165.2 223.1
$CsBr(s)$ $CsCl(s)$ $CsF(s)$ $Csl(s)$ $Chlorine$ $Cl(g)$ $Ci_2(g)$ $Cl^-(aq)$	400 -438 -553.5 -342 121.3 0 -167.1	-414 -525.5 -337 105.3 0 -131.2	101.2 92.8 127 165.2 223.1 56.6
$CsBr(s)$ $CsCl(s)$ $CsF(s)$ $Csl(s)$ $Chlorine$ $Cl(g)$ $Cl_{2}(g)$ $Cl^{-}(aq)$ $HCl(g)$	400 -438 -553.5 -342 121.3 0 -167.1 -92.3	-414 -525.5 -337 105.3 0 -131.2 -95.3	101.2 92.8 127 165.2 223.1 56.6 186.9
CsBr(s) CsCl(s) CsF(s) Csl(s) Chlorine Cl(g) $\mathbb{C}1_2(g)$ Cl ⁻ (aq) HCl(g) HCl(aq)	400 -438 -553.5 -342 121.3 0 -167.1 -92.3 -167.2	-414 -525.5 -337 105.3 0 -131.2 -95.3 -131.2	101.2 92.8 127 165.2 223.1 56.6 186.9 56.5
$CsBr(s)$ $CsCl(s)$ $CsF(s)$ $CsI(s)$ $Chlorine$ $Cl(g)$ $Cl_2(g)$ $Cl^-(aq)$ $HCl(g)$ $HCl(aq)$ $ClO_2(g)$	400 -438 -553.5 -342 121.3 0 -167.1 -92.3 -167.2 102.5	-414 -525.5 -337 105.3 0 -131.2 -95.3 -131.2 120.5	101.2 92.8 127 165.2 223.1 56.6 186.9 56.5 256.8
CsBr(s) CsCl(s) CsF(s) Csl(s) Chlorine Cl(g) $Cl_2(g)$ $Cl^-(aq)$ $HCl(g)$ $HCl(aq)$ $ClO_2(g)$ $Cl_2O(g)$	400 -438 -553.5 -342 121.3 0 -167.1 -92.3 -167.2 102.5	-414 -525.5 -337 105.3 0 -131.2 -95.3 -131.2 120.5	101.2 92.8 127 165.2 223.1 56.6 186.9 56.5 256.8
$CsBr(s)$ $CsCl(s)$ $CsF(s)$ $CsI(s)$ $Chlorine$ $Cl(g)$ $Cl_2(g)$ $Cl^-(aq)$ $HCl(g)$ $HCl(aq)$ $ClO_2(g)$ $Cl_2O(g)$ $Chromium$	400 -438 -553.5 -342 121.3 0 -167.1 -92.3 -167.2 102.5 80.3	-414 -525.5 -337 105.3 0 -131.2 -95.3 -131.2 120.5 97.9	101.2 92.8 127 165.2 223.1 56.6 186.9 56.5 256.8 266.2
$CsBr(s)$ $CsCl(s)$ $CsF(s)$ $CsI(s)$ $Chlorine$ $Cl(g)$ $Cl_2(g)$ $Cl^-(aq)$ $HCl(g)$ $HCl(aq)$ $Cl_2(g)$ $Cl_2O(g)$ $Chromium$ $Cr(s)$	400 -438 -553.5 -342 121.3 0 -167.1 -92.3 -167.2 102.5 80.3	-414 -525.5 -337 105.3 0 -131.2 -95.3 -131.2 120.5 97.9	101.2 92.8 127 165.2 223.1 56.6 186.9 56.5 256.8 266.2
$CsBr(s)$ $CsCl(s)$ $CsF(s)$ $CsI(s)$ $Chlorine$ $Cl(g)$ $Cl_2(g)$ $Cl^-(aq)$ $HCl(aq)$ $ClO_2(g)$ $Cl_2O(g)$ $Chromium$ $Cr(s)$	400 -438 -553.5 -342 121.3 0 -167.1 -92.3 -167.2 102.5 80.3 0 396.6	-414 -525.5 -337 105.3 0 -131.2 -95.3 -131.2 120.5 97.9	101.2 92.8 127 165.2 223.1 56.6 186.9 56.5 256.8 266.2

Cr ₂ O ₇ ²⁻ (aq)	-1476	-1279	238
Cobalt			
Co(s)	0	0	30.0
Co(<i>g</i>)	424.7	380.3	179.5
CoO(s)	-237.9	-214.2	53.0
Co(OH) ₂ (s)	-539.7	-454.3	79.0
Copper			
Cu(s)	0	0	33.2
Cu(<i>g</i>)	337.4	297.7	166.4
Cu ⁺ (aq)	51.9	50.2	-26
Cu ²⁺ (<i>aq</i>)	64.9	65.5	-98
CuCI(s)	-137.2	-119.9	86.2
CuCl ₂ (s)	-220.1	-175.7	108.1
CuO(s)	-157.3	-129.7	42.6
CuS(s)	-53.1	-53.6	66.5
CuSO ₄ (s)	-771.4	-662.2	109.2
Cu ₂ O(s)	-168.6	-146.0	93.1
Cu ₂ S(s)	-79.5	-86.2	120.9
Fluorine		•. (
F(g)	79.38	62.3	158.75
F ₂ (g)	0	97	202.79
F ⁻ (<i>aq</i>)	−335.35 [®]	-278.8	-13.8
HF(g)	-273.3	-275.4	173.8
Gold	. 6		
Au(<i>s</i>)	0	0	47.4
Au(<i>g</i>)	366.1	326.3	180.5
Helium	,		
He(g)	0	0	126.2
Hydrogen			
H(<i>g</i>)	218.0	203.3	114.7
H+(aq)	0	0	0
H ⁺ (g)	1536.3	1517.1	108.9
H ₂ (g)	0	0	130.7
lodine			
I(<i>g</i>)	106.76	70.2	180.79
l ₂ (s)	0	0	116.14
I ₂ (g)	62.42	19.3	260.69
l⁻(<i>aq</i>)	-56.78	-51.57	106.45
HI(<i>g</i>)	26.5	1.7	206.6
Iron			
Fe(s)	0	0	27.3
Fe(g)	416.3	370.7	180.5
Fe ²⁺ (<i>aq</i>)	-87.9	-84.94	113.4
Fe ³⁺ (aa)	-47.69	-10.54	293.3

FeCO ₃ (s)	-740.6	-666.7	92.9
FeCl ₂ (s)	-341.8	-302.3	118.0
FeCl ₃ (s)	-399.5	-334.0	142.3
FeO(s)	-272.0	-255.2	60.75
Fe(OH) ₃ (<i>s</i>)	-823.0	-696.5	106.7
FeS ₂ (s)	-178.2	-166.9	52.9
Fe ₂ O ₃ (s)	-824.2	-742.2	87.4
Fe ₃ O ₄ (s)	-1118.4	-1015.4	146.4
Lead			
Pb(s)	0	0	64.8
Pb(<i>g</i>)	195.2	162.2	175.4
Pb ²⁺ (<i>aq</i>)	0.92	-24.4	18.5
PbBr ₂ (s)	-278.7	-261.9	161.5
PbCO ₃ (s)	-699.1	-625.5	131.0
PbCl ₂ (s)	-359.4	-314.1	136.0
Pbl ₂ (s)	-175.5	-173.6	174.9
Pb(NO ₃) ₂ (s)	-451.9		
PbO(s)	-217.3	-187.9	68.7
PbO ₂ (s)	-277.4	-217.3	68.6
PbS(s)	-100.4	-98.7	91.2
PbSO ₄ (s)	-920.0	813.0	148.5
Lithium			
Li(s)	0	0	29.1
Li(<i>g</i>)	159.3	126.6	138.8
Li ⁺ (<i>aq</i>)	-278.47	-293.3	12.24
LiBr(s)	-351.2	-342.0	74.3
LiCI(s)	-408.6	-384.4	59.3
LiF(s)	-616.0	-587.7	35.7
Lil(s)	-270.4	-270.3	86.8
LiNO ₃ (s)	-483.1	-381.1	90.0
LiOH(s)	-487.5	-441.5	42.8
Li ₂ O(s)	-597.9	-561.2	37.6
Magnesium			
Mg(s)	0	0	32.7
Mg(<i>g</i>)	147.1	112.5	148.6
Mg ²⁺ (<i>aq</i>)	-467.0	-455.4	-137
MgCl ₂ (s)	-641.3	-591.8	89.6
MgCO ₃ (s)	-1095.8	-1012.1	65.7
MgF ₂ (s)	-1124.2	-1071.1	57.2
MgO(s)	-601.6	-569.3	27.0
Mg(OH) ₂ (s)	-924.5	-833.5	63.2
$MgSO_{4}(s)$	-1284.9	-1170.6	91.6
Ma N (a)	1204.5	401	00

ıvıg ₃ ıv ₂ (<i>5)</i>	-40 I	-4UI	00
Manganese			
Mn(s)	0	0	32.0
Mn(<i>g</i>)	280.7	238.5	173.7
Mn²+(<i>aq</i>)	-219.4	-225.6	-78.8
MnO(s)	-385.2	-362.9	59.7
MnO ₂ (<i>s</i>)	-520.0	-465.1	53.1
MnO ₄ -(<i>aq</i>)	-529.9	-436.2	190.6
Mercury			
Hg(<i>I</i>)	0	0	75.9
Hg(<i>g</i>)	61.4	31.8	175.0
Hg ²⁺ (<i>aq</i>)	170.21	164.4	-36.19
Hg ₂ ²⁺ (<i>aq</i>)	166.87	153.5	65.74
HgCl ₂ (s)	-224.3	-178.6	146.0
HgO(s)	-90.8	-58.5	70.3
HgS(s)	-58.2	-50.6	82.4
Hg ₂ Cl ₂ (s)	-265.4	-210.7	191.6
Nickel			
Ni(s)	0	0	29.9
Ni(g)	429.7	384.5	182.2
NiCl ₂ (s)	-305.3	-259.0	97.7
NiO(s)	-239.7	-211.7	37.99
NiS(s)	-82.0	-79.5	53.0
Nitrogen	,X	, ,	
N(<i>g</i>)	472.7	455.5	153.3
$N_2(g)$	0)	0	191.6
$NF_3(g)$	-132.1	-90.6	260.8
$NH_3(g)$	-45.9	-16.4	192.8
NH ₃ (aq)	-80.29	-26.50	111.3
NH ₄ +(aq)	-133.26	-79.31	111.17
NH Br(s)	-270.8	-175.2	113.0
NH _₄ CI(s)	-314.4	-202.9	94.6
NH ₄ CN(s)	0.4		
$NH_4F(s)$	-464.0	-348.7	72.0
$NH_4HCO_3(s)$	-849.4	-665.9	120.9
NH ₄ I(<i>s</i>)	-201.4	-112.5	117.0
$NH_4NO_3(s)$	-365.6	-183.9	151.1
$NH_4NO_3(aq)$	-339.9	-190.6	259.8
$HNO_{\scriptscriptstyle 3}(g)$	-133.9	-73.5	266.9
HNO₃(aq)	-207	-110.9	146
NO(g)	91.3	87.6	210.8
$NO(g)$ $NO_2(g)$	91.3 33.2	87.6 51.3	210.8 240.1

NOBr(g)	82.2	82.4	2/3./
NOCI(g)	51.7	66.1	261.7
N ₂ H ₄ (1)	50.6	149.3	121.2
$N_2H_4(g)$	95.4	159.4	238.5
$N_2O(g)$	81.6	103.7	220.0
N ₂ O ₄ (/)	-19.5	97.5	209.2
$N_2O_4(g)$	9.16	99.8	304.4
N ₂ O ₅ (s)	-43.1	113.9	178.2
N ₂ O ₅ (g)	13.3	117.1	355.7
Oxygen			
O(<i>g</i>)	249.2	231.7	161.1
O ₂ (g)	0	0	205.2
O ₃ (g)	142.7	163.2	238.9
OH ⁻ (aq)	-230.02	-157.3	-10.90
H ₂ O(<i>I</i>)	-285.8	-237.1	70.0
$H_2O(g)$	-241.8	-228.6	188.8
H ₂ O ₂ (1)	-187.8	-120.4	109.6
$H_2O_2(g)$	-136.3	-105.6	232.7
Phosphorus		. (
P(s, white)	0	DV.	41.1
P(s, red)	-17.6	-12,1	22.8
P(<i>g</i>)	316.5	280.1	163.2
P ₂ (g)	144.0	103.5	218.1
P ₄ (g)	58.9	24.4	280.0
PCI ₃ (/)	319.7	-272.3	217.1
PCI ₃ (g)	-287.0	-267.8	311.8
PCI ₅ (s)	-443.5		
$PCl_{5}(g)$	-374.9	-305.0	364.6
PF ₅ (g)	-1594.4	-1520.7	300.8
PH ₃ (g)	5.4	13.5	210.2
POCI ₃ (I)	-597.1	-520.8	222.5
POCI ₃ (g)	-558.5	-512.9	325.5
PO ₄ 3-(aq)	-1277.4	-1018.7	-220.5
HPO ₄ ²⁻ (aq)	-1292.1	-1089.2	-33.5
H ₂ PO ₄ -(aq)	-1296.3	-1130.2	90.4
H ₃ PO ₄ (s)	-1284.4	-1124.3	110.5
H ₃ PO ₄ (aq)	-1288.3	-1142.6	158.2
P ₄ O ₆ (s)	-1640.1		
P ₄ O ₁₀ (s)	-2984	-2698	228.9
Platinum			
Pt(s)	0	0	41.6
Pt(g)	565.3	520.5	192.4

K(s)	0	0	64.7
K(<i>g</i>)	89.0	60.5	160.3
K ⁺ (aq)	-252.14	-283.3	101.2
KBr(s)	-393.8	-380.7	95.9
KCN(s)	-113.0	-101.9	128.5
KCI(s)	-436.5	-408.5	82.6
KCIO ₃ (s)	-397.7	-296.3	143.1
KCIO ₄ (s)	-432.8	-303.1	151.0
KF(s)	-567.3	-537.8	66.6
KI(s)	-327.9	-324.9	106.3
KNO ₃ (s)	-494.6	-394.9	133.1
KOH(s)	-424.6	-379.4	81.2
KOH(aq)	-482.4	-440.5	91.6
KO ₂ (s)	-284.9	-239.4	116.7
K ₂ CO ₃ (s)	-1151.0	-1063.5	155.5
K ₂ O(s)	-361.5	-322.1	94.14
K ₂ O ₂ (s)	−494.1	-425.1	102.1
K ₂ SO ₄ (s)	-1437.8	-1321.4	175.6
Rubidium) '
Rb(s)	0	0	76.8
Rb(<i>g</i>)	80.9	53.1	170.1
Rb ⁺ (<i>aq</i>)	-251.12	283.1	121.75
RbBr(s)	-394.6	-381.8	110.0
RbCI(s)	-435.4	-407.8	95.9
RbCIO ₃ (s)	-392.4	-292.0	152
RbF(s)	557.7		
RbI(s)	-333.8	-328.9	118.4
Scandium			
Sc(s)	0	0	34.6
(Sc(g)	377.8	336.0	174.8
Selenium			
Se(s, gray)	0	0	42.4
Se(g)	227.1	187.0	176.7
H ₂ Se(g)	29.7	15.9	219.0
Ciliaan			I
Silicon	2	0	10.0
Si(s)	0	0	18.8
Si(g)	450.0	405.5	168.0
SiCl ₄ (/)	-687.0	-619.8	239.7
$SiF_4(g)$	-1615.0	-1572.8	282.8
SiH ₄ (g)	34.3	56.9	204.6
SiO ₂ (s, quartz)	-910.7	-856.3	41.5
$Si_2H_6(g)$	80.3	127.3	272.7

Silver			
Ag(s)	0	0	42.6
Ag(<i>g</i>)	284.9	246.0	173.0
Ag ⁺ (<i>aq</i>)	105.79	77.11	73.45
AgBr(s)	-100.4	-96.9	107.1
AgCI(s)	-127.0	-109.8	96.3
AgF(s)	-204.6	-185	84
Agl(s)	-61.8	-66.2	115.5
AgNO ₃ (s)	-124.4	-33.4	140.9
Ag ₂ O(<i>s</i>)	-31.1	-11.2	121.3
Ag ₂ S(s)	-32.6	-40.7	144.0
Ag ₂ SO ₄ (s)	-715.9	-618.4	200.4
Sodium			
Na(s)	0	0	51.3
Na(<i>g</i>)	107.5	77.0	153.7
Na ⁺ (<i>aq</i>)	-240.34	-261.9	58.45
NaBr(s)	-361.1	-349.0	86.8
NaCI(s)	-411.2	-384.1	72.1
NaCI(aq)	-407.2	-393 ₀ 1	115.5
NaCIO ₃ (s)	-365.8	-262.3	123.4
NaF(s)	-576.6	546.3	51.1
NaHCO ₃ (s)	−950.8 •	- 851.0	101.7
NaHSO ₄ (s)	-1125.5	-992.8	113.0
Nal(s)	-287.8	-286.1	98.5
NaNO ₃ (s)	467,9	-367.0	116.5
NaNO ₃ (aq)	-447.5	-373.2	205.4
NaOH(s)	-425.8	-379.7	64.4
NaOH(aq)	-470.1	-419.2	48.2
NaO ₂ (s)	-260.2	-218.4	115.9
Na,CO ₃ (s)	-1130.7	-1044.4	135.0
Na ₂ O(s)	-414.2	-375.5	75.1
Na ₂ O ₂ (s)	-510.9	-447.7	95.0
Na ₂ SO ₄ (s)	-1387.1	-1270.2	149.6
Na ₃ PO ₄ (s)	-1917	-1789	173.8
Strontium			
Sr(<i>s</i>)	0	0	55.0
Sr(<i>g</i>)	164.4	130.9	164.6
Sr ²⁺ (<i>aq</i>)	-545.51	-557.3	-39
SrCl ₂ (s)	-828.9	-781.1	114.9
SrCO ₃ (s)	-1220.1	-1140.1	97.1
SrO(s)	-592.0	-561.9	54.4
SrSO ₄ (s)	-1453.1	-1340.9	117.0
Sulfur			

	1		
S(s, rhombic)	0	0	32.1
S(s, monoclinic)	0.3	0.096	32.6
S(g)	277.2	236.7	167.8
S ₂ (g)	128.6	79.7	228.2
S ₈ (g)	102.3	49.7	430.9
S ²⁻ (aq)	41.8	83.7	22
SF ₆ (g)	-1220.5	-1116.5	291.5
HS ⁻ (aq)	-17.7	12.4	62.0
$H_2S(g)$	-20.6	-33.4	205.8
H₂S(<i>aq</i>)	-39.4	-27.7	122
SOCI ₂ (I)	-245.6		
SO ₂ (g)	-296.8	-300.1	248.2
SO ₃ (g)	-395.7	-371.1	256.8
SO ₄ ²⁻ (aq)	-909.3	-744.6	18.5
HSO ₄ -(aq)	-886.5	-754.4	129.5
H ₂ SO ₄ (I)	-814.0	-690.0	156.9
H ₂ SO ₄ (aq)	-909.3	-744.6	18.5
S ₂ O ₃ ²⁻ (aq)	-648.5	-522.5	67
Tin)
Sn(s, white)	0	0	51.2
Sn(s, gray)	-2.1	0.1	44.1
Sn(<i>g</i>)	301.2	266.2	168.5
SnCl ₄ (/)	-511.3	-440.1	258.6
SnCl₄(g)	-471.5	-432.2	365.8
SnO(s)	-280.7	-251.9	57.2
SnO ₂ (s)	577.6	-515.8	49.0
Titanium	>		
Ti(s)	0	0	30.7
Ti(g)	473.0	428.4	180.3
	004.0	707.0	252.2
TiCL (d)	-804.2 -762.2	-737.2 -736.3	252.3
$TiO_{_2}(g)$ $TiO_{_2}(s)$	-763.2 -944.0	-726.3 -888.8	353.2 50.6
Tungsten	-344.0	-000.0	50.0
W(s)	0	0	32.6
W(g)	849.4	807.1	174.0
WO ₃ (s)	-842.9	-764.0	75.9
Uranium			
U(s)	0	0	50.2
U(g)	533.0	488.4	199.8
	000.0		
UF ₆ (s)	-2197.0	-2068.5	227.6
UF ₆ (s) UF ₆ (g)		-2068.5 -2063.7	227.6 377.9

vanaarani			
V(s)	0	0	28.9
V(<i>g</i>)	514.2	754.4	182.3
Zinc			
Zn(s)	0	0	41.6
Zn(g)	130.4	94.8	161.0
Zn ²⁺ (<i>aq</i>)	-153.39	-147.1	-109.8
ZnCl ₂ (s)	-415.1	-369.4	111.5
ZnO(s)	-350.5	-320.5	43.7
ZnS (s, zinc blende)	-206.0	-201.3	57.7
ZnSO ₄ (s)	-982.8	-871.5	110.5

C. Aqueous Equilibrium Constants

1. Ionization Constants for Acids at 25 °C

Name	Formula	K_{a_1}	K_{a_2}	$ extbf{\emph{K}}_{ extbf{a}_3}$
Acetic	HC ₂ H ₃ O ₂	1.8×10^{-5}	X	
Acetylsalicylic	HC ₉ H ₇ O ₄	3.3 × 10 ⁻⁴		
Adipic	H ₂ C ₆ H ₈ O ₄	3.9×10^{-5}	3.9×10^{-6}	
Arsenic	H ₃ AsO ₄	515 × 10 ⁻³	1.7 × 10 ⁻⁷	5.1×10^{-12}
Arsenous	H ₃ AsQ ₃	5.1)× 10 ⁻¹⁰		
Ascorbic	H ₂ C ₆ H ₆ O ₆	8.0 × 10 ⁻⁵	1.6×10^{-12}	
Benzoic	HC,H ₅ O ₂	6.5 × 10 ⁻⁵		
Boric	H ₃ BO ₃	5.4 × 10 ⁻¹⁰		
Butanoic	HC ₄ H ₇ O ₂	1.5 × 10 ⁻⁵		
Carbonic	H ₂ CO ₃	4.3 × 10 ⁻⁷	5.6 × 10 ⁻¹¹	
Chloroacetic	HC ₂ H ₂ O ₂ CI	1.4 × 10 ⁻³		
Chlorous	HCIO ₂	1.1 × 10 ⁻²		
Citric	H ₃ C ₆ H ₅ O ₇	7.4 × 10 ⁻⁴	1.7 × 10 ⁻⁵	4.0 × 10 ⁻⁷
Cyanic	HCNO	2 × 10 ⁻⁴		
Formic	HCHO₂	1.8 × 10 ⁻⁴		
Hydrazoic	HN ₃	2.5 × 10 ⁻⁵		
Hydrocyanic	HCN	4.9×10^{-10}		
Hydrofluoric	HF	3.5 × 10⁻⁴		
Hydrogen chromate ion	HCrO ₄ ⁻	3.0 × 10 ⁻⁷		
Hydrogen peroxide	H ₂ O ₂	2.4 × 10 ⁻¹²		
Hydrogen selenate ion	HSeO ₄ -	2.2 × 10 ⁻²		
Hydrosulfuric	H ₂ S	8.9 × 10 ⁻⁸	1 × 10 ⁻¹⁹	
	I			ı

Hyarotelluric	H ₂ Ie	2.3 × 10 ²³	1.6 × 10 ⁻ ''	
Hypobromous	HBrO	2.8 × 10 ⁻⁹		
Hypochlorous	HCIO	2.9 × 10 ⁻⁸		
Hypoiodous	HIO	2.3×10^{-11}		
lodic	HIO₃	1.7×10^{-1}		
Lactic	HC ₃ H ₅ O ₃	1.4 × 10 ⁻⁴		
Maleic	H ₂ C ₄ H ₂ O ₄	1.2 × 10 ⁻²	5.9 × 10 ⁻⁷	
Malonic	H ₂ C ₃ H ₂ O ₄	1.5 × 10 ⁻³	2.0 × 10⁻6	
Nitrous	HNO ₂	4.6 × 10 ⁻⁴		
Oxalic	H ₂ C ₂ O ₄	6.0×10^{-2}	6.1 × 10 ⁻⁵	
Paraperiodic	H₅IO ₆	2.8×10^{-2}	5.3 × 10 ⁻⁹	
Phenol	HC _e H₅O	1.3×10^{-10}		
Phosphoric	H ₃ PO ₄	7.5×10^{-3}	6.2 × 10 ⁻⁸	4.2×10^{-13}
Phosphorous	H ₃ PO ₃	5 × 10 ⁻²	2.0 × 10 ⁻⁷	
Propanoic	HC ₃ H ₅ O ₂	1.3 × 10 ⁻⁵		
Pyruvic	HC ₃ H ₃ O ₃	4.1 × 10 ⁻³		
Pyrophosphoric	H ₄ P ₂ O ₇	1.2 × 10 ⁻¹	7.9×10^{-3}	2.0 × 10 ⁻⁷
Selenous	H ₂ SeO ₃	2.4×10^{-3}	4.8 × 10 ⁻⁹	
Succinic	H ₂ C ₄ H ₄ O ₄	6.2 × 10 ⁻⁵	2.3 × 10 ⁻⁶	
Sulfuric	H ₂ SO ₄	Strong acid	1.2×10 ⁻²	
Sulfurous	H ₂ SO ₃	1.6 × 10 ⁻²	$)6.4 \times 10^{-8}$	
Tartaric	H ₂ C ₄ H ₄ O ₆	1.0 × 10 ⁻³	4.6×10^{-5}	
Trichloroacetic	HC ₂ CI ₃ O ₂	2.2 × 10 ⁻¹		
Trifluoroacetic acid	HC ₂ F ₃ O ₂	3.0×10^{-1}		

2. Dissociation Constants for Hydrated Metal Ions at 25 °C

Cation	Hydrated Ion	K _a	
AI ³⁺	AI(H ₂ O) ₆ 3+	1.4 × 10 ⁻⁵	
Be ²⁺	Be(H ₂ O) ₆ ²⁺	3 × 10 ⁻⁷	
Co ²⁺	Co(H ₂ O) ₆ ²⁺	1.3 × 10 ⁻⁹	
Cr³+	Cr(H ₂ O) ₆ ³⁺	1.6 × 10 ⁻⁴	
Cu ²⁺	Cu(H ₂ O) ₆ ²⁺	3 × 10 ⁻⁸	
Fe ²⁺	Fe(H ₂ O) ₆ ²⁺	3.2×10^{-10}	
Fe ³⁺	Fe(H ₂ O) ₆ ³⁺	6.3 × 10⁻³	
Ni ²⁺	Ni(H ₂ O) ₆ ²⁺	2.5×10^{-11}	
Pb ²⁺	Pb(H ₂ O) ₆ 2+	3×10 ⁻⁸	
Sn ²⁺	Sn(H ₂ O) ₆ ²⁺	4×10 ⁻⁴	
Zn ²⁺	Zn(H ₂ O) ₆ ²⁺	2.5 × 10 ⁻¹⁰	

3. Ionization Constants for Bases at 25 °C

Name	Formula	$K_{ m b}$
Ammonia	NH ₃	1.76 × 10 ⁻⁵
Aniline	C ₆ H ₅ NH ₂	3.9×10^{-10}
Bicarbonate ion	HCO ₃ -	2.3 × 10 ^{−8}
Carbonate ion	CO ₃ ²⁻	1.8×10^{-4}
Codeine	C ₁₈ H ₂₁ NO ₃	1.6×10^{-6}
Diethylamine	(C ₂ H ₅) ₂ NH	6.9 × 10 ⁻⁴
Dimethylamine	(CH ₃) ₂ NH	5.4 × 10 ⁻⁴
Ethylamine	C ₂ H ₅ NH ₂	5.6 × 10⁻⁴
Ethylenediamine	C ₂ H ₈ N ₂	8.3 × 10 ⁻⁵
Hydrazine	H ₂ NNH ₂	1.3 × 10 ⁻⁶
Hydroxylamine	HONH ₂	1.1 × 10 ^{−8}
Ketamine	C ₁₃ H ₁₆ CINO	3×10 ⁻⁷
Methylamine	CH ₃ NH ₂	4.4×10 ⁻⁴
Morphine	C ₁₇ H ₁₉ NO ₃	1.6 × 10 ⁻⁶
Nicotine	C ₁₀ H ₁₄ N ₂	1.0 × 10 ⁻⁶
Piperidine	C ₅ H ₁₀ NH	1.33×10^{-3}
Propylamine	C ₃ H ₇ NH ₂	3.5×10^{-4}
Pyridine	C ₅ H ₅ N	1.7 × 10 ⁻⁹
Strychnine	C ₂ H ₂₂ N ₂ O ₂	1.8 × 10 ⁻⁶
Triethylamine	(C ₂ H ₅) ₃ N	5.6 × 10 ^{−4}
Trimethylamine	(CH ₃) ₃ N	6.4 × 10 ⁻⁵

4. Solubility Product Constants for Compounds at 25 °C

Compound	Formula	$K_{ m sp}$
Aluminum hydroxide	AI(OH) ₃	1.3 × 10 ⁻³³
Aluminum phosphate	AIPO ₄	9.84 × 10 ⁻²¹
Barium carbonate	BaCO ₃	2.58 × 10 ⁻⁹
Barium chromate	BaCrO ₄	1.17×10^{-10}
Barium fluoride	BaF ₂	2.45 × 10 ⁻⁵
Barium hydroxide	Ba(OH) ₂	5.0 × 10 ⁻³
Barium oxalate	BaC ₂ O ₄	1.6 × 10 ⁻⁶
Barium phosphate	Ba ₃ (PO ₄) ₂	6 × 10 ⁻³⁹
Barium sulfate	BaSO ₄	1.07×10^{-10}

	Cadmium carbonate	CdCO ₃	1.0×10^{-12}
	Cadmium hydroxide	Cd(OH) ₂	7.2×10^{-15}
	Cadmium sulfide	CdS	8 × 10 ⁻²⁸
	Calcium carbonate	CaCO ₃	4.96 × 10 ^{−9}
	Calcium chromate	CaCrO ₄	7.1×10^{-4}
	Calcium fluoride	CaF ₂	1.46×10^{-10}
	Calcium hydroxide	Ca(OH) ₂	4.68×10^{-6}
	Calcium hydrogen phosphate	CaHPO ₄	1 × 10 ⁻⁷
	Calcium oxalate	CaC ₂ O ₄	2.32×10^{-9}
	Calcium phosphate	Ca ₃ (PO ₄) ₂	2.07×10^{-33}
	Calcium sulfate	CaSO ₄	7.10 × 10 ⁻⁵
	Chromium(III) hydroxide	Cr(OH) ₃	6.3 × 10 ⁻³¹
	Cobalt(II) carbonate	CoCO ₃	1.0×10^{-10}
	Cobalt(II) hydroxide	Co(OH) ₂	5.92 × 10 ⁻¹⁵
	Cobalt(II) sulfide	CoS	5 × 10 ⁻²²
	Copper(I) bromide	CuBr	6.27 × 10 ⁻⁹
	Copper(I) chloride	CuCl	1.72 × 10 ⁻⁷
	Copper(I) cyanide	CuCN	3.47 × 10 ⁻²⁰
	Copper(II) carbonate	CuCO ₃	2.4×10^{-10}
	Copper(II) hydroxide	Cu(OH) ₂	2.2×10^{-20}
	Copper(II) phosphate	Cu ₃ (PO ₄) ₂	1.40×10^{-37}
	Copper(II) sulfide	CuS	1.27×10^{-36}
	Iron(II) carbonate	FeCO ₃	3.07×10^{-11}
	Iron(II) hydroxide	Fe(OH) ₂	4.87×10^{-17}
	Iron(II) sulfide	FeS	3.72×10^{-19}
	Iron(III) hydroxide	Fe(OH) ₃	2.79×10^{-39}
	Lanthanum fluoride	LaF ₃	2×10^{-19}
7	Lanthanum iodate	La(IO ₃) ₃	7.50×10^{-12}
	Lead(II) bromide	PbBr ₂	$4.67 imes 10^{-6}$
	Lead(II) carbonate	PbCO ₃	7.40×10^{-14}
	Lead(II) chloride	PbCl ₂	1.17×10^{-5}
	Lead(II) chromate	PbCrO ₄	2.8×10^{-13}
	Lead(II) fluoride	PbF ₂	3.3×10^{-8}
	Lead(II) hydroxide	Pb(OH) ₂	1.43×10^{-20}
	Lead(II) iodide	Pbl ₂	9.8 × 10 ⁻⁹
	Lead(II) phosphate	Pb ₃ (PO ₄) ₂	1 × 10 ⁻⁵⁴
	Lead(II) sulfate	PbSO ₄	1.82×10^{-8}
	Lead(II) sulfide	PbS	9.04×10^{-29}
	N.4	M-00	0.00 \ 40-6

Magnesium carbonate	IVIGCO ₃	6.82 × 10 ^{-∞}
Magnesium fluoride	MgF ₂	5.16 × 10 ⁻¹¹
Magnesium hydroxide	Mg(OH) ₂	2.06 × 10 ⁻¹³
Magnesium oxalate	MgC ₂ O ₄	$4.83 imes 10^{-6}$
Manganese(II) carbonate	MnCO ₃	2.24 × 10 ⁻¹¹
Manganese(II) hydroxide	Mn(OH) ₂	1.6 × 10 ⁻¹³
Manganese(II) sulfide	MnS	2.3 × 10 ⁻¹³
Mercury(I) bromide	Hg ₂ Br ₂	6.40 × 10 ⁻²³
Mercury(I) carbonate	Hg ₂ CO ₃	3.6 × 10 ⁻¹⁷
Mercury(I) chloride	Hg ₂ Cl ₂	1.43 × 10 ⁻¹⁸
Mercury(I) chromate	Hg ₂ CrO ₄	2 × 10 ⁻⁹
Mercury(I) cyanide	Hg ₂ (CN) ₂	5 × 10 ⁻⁴⁰
Mercury(I) iodide	Hg ₂ l ₂	5.2 × 10 ⁻²⁹
Mercury(II) hydroxide	Hg(OH) ₂	3.1 × 10 ⁻²⁶
Mercury(II) sulfide	HgS	1.6 × 10 ⁻⁵⁴
Nickel(II) carbonate	NiCO ₃	1.42 × 10 ⁻⁷
Nickel(II) hydroxide	Ni(OH) ₂	5.48 × 10 ⁻¹⁶
Nickel(II) sulfide	NiS	3 × 10 ⁻²⁰
Silver bromate	AgBrO ₃	5.38 × 10 ⁻⁵
Silver bromide	AgBr	5.35 × 10 ⁻¹³
Silver carbonate	Ag.CO	8.46 × 10 ⁻¹²
Silver chloride	AgCl	1.77×10^{-10}
Silver chromate	Ag ₂ CrO ₄	1.12×10^{-12}
Silver cyanide	AgCN	5.97 × 10 ⁻¹⁷
Silver iodide	Agl	8.51×10^{-17}
Silver phosphate	Ag ₃ PO ₄	8.89×10^{-17}
Silver sulfate	Ag ₂ SO ₄	1.20×10^{-5}
Silver sulfide	Ag ₂ S	6 × 10 ⁻⁵¹
Strontium carbonate	SrCO ₃	5.60×10^{-10}
Strontium chromate	SrCrO ₄	$3.6 imes 10^{-5}$
Strontium phosphate	Sr ₃ (PO ₄) ₂	1 × 10 ⁻³¹
Strontium sulfate	SrSO ₄	3.44 × 10⁻ ⁷
Tin(II) hydroxide	Sn(OH) ₂	5.45 × 10 ⁻²⁷
Tin(II) sulfide	SnS	1 × 10 ⁻²⁶
Zinc carbonate	ZnCO ₃	1.46×10^{-10}
Zinc hydroxide	Zn(OH) ₂	3 × 10 ⁻¹⁷
Zinc oxalate	ZnC ₂ O ₄	2.7 × 10⁻8
Zinc sulfide	ZnS	2×10^{-25}

5. Complex Ion Formation Constants in Water at 25

Complex Ion	$K_{ m f}$
[Ag(CN) ₂] ⁻	1 × 10 ²¹
[Ag(EDTA)] ³⁻	2.1 × 10 ⁷
$[Ag(en)_2]^+$	5.0 × 10 ⁷
[Ag(NH ₃) ₂] ⁺	1.7 × 10 ⁷
[Ag(SCN) ₄] ³⁻	1.2×10^{10}
[Ag(S ₂ O ₃) ₂] ³⁻	2.8 × 10 ¹³
[AI(EDTA)] ⁻	1.3 × 10 ¹⁶
[AIF ₆] ³⁻	7 × 10 ¹⁹
[AI(OH) ₄] ⁻	3×10³³
[Al(ox) ₃] ³⁻	2 × 10 ¹⁶
[CdBr ₄] ²⁻	5.5 × 10 ³
[Cd(CN) ₄] ²⁻	3×10 ^{1β}
[CdCl ₄] ²⁻	6.3 × 10 ²
[Cd(en) ₃] ²⁺	1,2 × 10 ¹²
[Cdl ₄] ²⁻	2×10 ⁶
[Co(EDTA)] ²⁻	2.0 × 10 ¹⁶
[Co(EDTA)]	1 × 10 ³⁶
[Co(en) ₃] ²⁺	8.7 × 10 ¹³
[Co(en) ₃] ³⁺	4.9 × 10 ⁴⁸
[Co(NH ₃) ₆] ²⁺	1.3 × 10 ⁵
[Co(NH ₃) ₆] ³⁺	2.3 × 10 ³³
[Cd(OH) ₄] ²⁻	5 × 10 ⁹
[Co(ox) ₃] ⁴⁻	5 × 10 ⁹
[Co(ox) ₃] ³⁻	1 × 10 ²⁰
[Co(SCN) ₄] ²⁻	1 × 10³
[Cr(EDTA)] ⁻	1 × 10 ²³
[Cr(OH) ₄] ⁻	8.0 × 10 ²⁹
[CuCl ₃] ²⁻	5 × 10 ⁵
[Cu(CN) ₄] ²⁻	1.0 × 10 ²⁵
[Cu(EDTA)] ²⁻	5 × 10 ¹⁸
[Cu(en) ₂] ²⁺	1 × 10 ²⁰
[Cu(NH ₃) ₄] ²⁺	1.7 × 10 ¹³
ICu(ox) ₂] ²⁻	3 × 10 ⁸

[/-/2]	
[Fe(CN) ₆] ⁴⁻	1.5 × 10 ³⁵
[Fe(CN) ₆] ³⁻	2 × 10 ⁴³
[Fe(EDTA)] ²⁻	2.1 × 10 ¹⁴
[Fe(EDTA)] ⁻	1.7×10^{24}
[Fe(en) ₃] ²⁺	5.0 × 10 ⁹
[Fe(ox) ₃] ⁴⁻	1.7 × 10 ⁵
[Fe(ox) ₃] ³⁻	2 × 10 ²⁰
[Fe(SCN)] ²⁺	8.9 × 10 ²
[Hg(CN) ₄] ²⁻	1.8 × 10 ⁴¹
[HgCl ₄] ²⁻	1.1×10^{16}
[Hg(EDTA)] ²⁻	6.3 × 10 ²¹
[Hg(en) ₂] ²⁺	2 × 10 ²³
[Hgl ₄] ²⁻	2 × 10 ³⁰
[Hg(ox) ₂] ²⁻	9.5 × 10 ⁶
[Ni(CN) ₄] ²⁻	2 × 10³¹
[Ni(EDTA)] ²⁻	3.6 × 10 ¹⁸
$[Ni(en)_3]^{2+}$	2.1 × 10 ¹⁸
$[Ni(NH_3)_6]^{2+}$	2.0 × 10 ⁸
[Ni(ox) ₃] ⁴⁻	3×10 ⁸
[PbCl ₃] ⁻	2.4 × 10 ¹
[Pb(EDTA)] ²⁻	2 × 10 ¹⁸
[Pbl ₄] ²⁻	3.0 × 10 ⁴
[Pb(OH) ₃]	8 × 10 ¹³
[Pb(ox) ₂] ²⁻	3.5 × 10 ⁶
[Pb(S ₂ O ₃) ₃] ⁴⁻	2.2 × 10 ⁶
[PtCl ₄] ²⁻	1 × 10 ¹⁶
[Pt(NH ₃) ₆] ²⁺	2 × 10 ³⁵
[Sn(OH) ₃] ⁻	3 × 10 ²⁵
[Zn(CN) ₄] ²⁻	2.1 × 10 ¹⁹
[Zn(EDTA)] ²⁻	$3 imes10^{16}$
[21(2517)]	
[Zn(en) ₃] ²⁺	1.3 × 10 ¹⁴
	1.3×10^{14} 2.8×10^{9}
$[Zn(en)_3]^{2+}$	1.3 × 10 ¹⁴

D. Standard Electrode Potentials at 25 °C

Half-Reaction	E°(V)
$F_2(g) + 2 e^- \longrightarrow 2 F^-(aq)$	2.87
$O_3(g) + 2 H^+(aq) + 2 e^- \longrightarrow O_2(g) + H_2(I)$	2.08
$Ag^{2+}(aq) + e^{-} \longrightarrow Ag^{+}(aq)$	1.98
$Co^{3+}(aq) + e^- \longrightarrow Co^{2+}(aq)$	1.82
$H_2O_2(aq) + 2 H^+(aq) + 2 e^- \longrightarrow 2 H_2O(I)$	1.78
$PbO_{2}(s) + 4 H^{+}(aq) + SO_{4}^{2-}(aq) + 2 e^{-} \longrightarrow PbSO_{4}(s) + 2 H_{2}O(I)$	1.69
$MnO_4^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow MnO_2(s) + 2 H_2O(I)$	1.68
$2 \text{ HCIO}(aq) + 2 \text{ H}^+(aq) + 2 \text{ e}^- \longrightarrow \text{CI}_2(g) + 2 \text{ H}_2\text{O}(I)$	1.61
$MnO_4^{-}(aq) + 8 H^{+}(aq) + 5 e^{-} \longrightarrow Mn^{2+}(aq) + 4 H_2O(I)$	1.51
$Au^{3+}(aq) + 3 e^{-} \longrightarrow Au(s)$	1.50
2 BrO ₃ ⁻ (aq) + 12 H ⁺ (aq) + 10 e ⁻ \longrightarrow Br ₂ (I) + 6 H ₂ O(I)	1.48
$PbO_2(s) + 4 H^+(aq) + 2 e^- \longrightarrow Pb^{2+}(aq) + 2 H_2O(I)$	1.46
$Cl_2(g) + 2 e^- \longrightarrow 2 Cl^-(aq)$	1.36
$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \rightarrow$ 2 $Cr^{3+}(aq) + 7 H_2O(I)$	1.33
$O_2(g) + 4 H^+(aq) + 4 = 2 H_2O(I)$	1.23
$MnO_2(s) + 4 H^+(aq) + 2 e^{-} \longrightarrow Mn^{2+}(aq) + 2 H_2O(I)$	1.21
$IO_3^-(aq) + 6 H^+(aq) + 5 e^- \longrightarrow \frac{1}{2}I_2(aq) + 3 H_2O(I)$	1.20
$Br_2(I) + 2e^- \longrightarrow 2 Br^-(aq)$	1.09
$AuCl_4(aq) + 3 e^- \longrightarrow Au(s) + 4 Cl^-(aq)$	1.00
$VO_2(aq) + 2 H^+(aq) + e^- \longrightarrow VO^{2+}(aq) + H_2O(I)$	1.00
$HNO_2(aq) + H^+(aq) + e^- \longrightarrow NO(g) + 2 H_2O(I)$	0.98
$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(I)$	0.96
$CIO_2(g) + e^- \longrightarrow CIO_2^-(aq)$	0.95
$2 \text{ Hg}^{2^+}(aq) + 2 e^- \longrightarrow 2 \text{ Hg}_2^{2^+}(aq)$	0.92
$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	0.80
$Hg_2^{2+}(aq) + 2 e^- \longrightarrow 2 Hg(I)$	0.80
$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	0.77
$PtCl_4^{2-}(aq) + 2 e^- \longrightarrow Pt(s) + 4 Cl^-(aq)$	0.76
$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$	0.70
$MnO_4^-(aq) + e^- \longrightarrow Mno_4^{2-}(aq)$	0.56

$I_2(s) + 2 e^- \longrightarrow 2 I^-(aq)$	0.54
$Cu^+(aq) + e^- \longrightarrow Cu(s)$	0.52
$O_2(g) + 2 H_2O(I) + 4 e^- \longrightarrow 4 OH^-(aq)$	0.40
$Cu^{2+}(aq) + 2 e^{-} \longrightarrow Cu(s)$	0.34
$BiO^{+}(aq) + 2 H^{+}(aq) + 3 e^{-} \longrightarrow Bi(s) + H_{2}O(I)$	0.32
$Hg_2CI_2(s) + 2 e^- \longrightarrow 2 Hg(I) + 2 CI^-(aq)$	0.27
$AgCI(s) + e^{-} \longrightarrow Ag(s) + CI^{-}(aq)$	0.22
$SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^- \longrightarrow H_2SO_3(aq) + H_2O(I)$	0.20
$Cu^{2+}(aq) + e^{-} \longrightarrow Cu^{+}(aq)$	0.16
$\operatorname{Sn}^{4+}(aq) + 2 e^{-} \longrightarrow \operatorname{Sn}^{2+}(aq)$	0.15
$S(s) + 2 H^{+}(aq) + 2 e^{-} \longrightarrow H_{2}S(g)$	0.14
$AgBr(s) + e^{-} \longrightarrow Ag(s) + Br^{-}(aq)$	0.071
$2 H^{+}(aq) + 2 e^{-} \longrightarrow H_{2}(g)$	0.00
$Fe^{3+}(aq) + 3 e^{-} \longrightarrow Fe(s)$	-0.036
$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Sn}(s)$	-0.14
$Agl(s) + e^- \longrightarrow Ag(s) + l^-(aq)$	-0.15
$N_2(g) + 5 H^+(aq) + 4 e^- \longrightarrow N_2 H_5^+(aq)$	-0.23
$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$	-0.23
$Co^{2+}(aq) + 2e^{-} \longrightarrow Co(s)$	-0.28
$PbSO_4(s) + 2 e^- \longrightarrow Pb(s) + SO_4^{2-}(aq)$	-0.36
$Cd^{2+}(aq) + 2e^{-} \longrightarrow Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.45
$2 \operatorname{CO}_2(g) + 2 \operatorname{H}^+(aq) + 2 \operatorname{e}^- \longrightarrow \operatorname{H}_2\operatorname{C}_2\operatorname{O}_4(aq)$	-0.49
$\operatorname{Cr}^{3+}(aq) + \operatorname{e}^{-} \longrightarrow \operatorname{Cr}^{2+}(aq)$	-0.50
$\operatorname{Cr}^{3}(ag) + 3 e^{-} \longrightarrow \operatorname{Cr}(s)$	-0.73
$Zn^{2+}(aq) + 2 e^{-} \longrightarrow Zn(s)$	-0.76
$2 \text{ H}_2\text{O}(I) + 2 \text{ e}^- \longrightarrow \text{H}_2(g) + 2 \text{ OH}^-(aq)$	-0.83
$Mn^{2+}(aq) + 2 e^- \longrightarrow Mn(s)$	-1.18
$AI^{3+}(aq) + 3 e^{-} \longrightarrow AI(s)$	-1.66
$H_2(g) + 2 e^- \longrightarrow 2 H^-(aq)$	-2.23
$Mg^{2+}(aq) + 2 e^{-} \longrightarrow Mg(s)$	-2.37
$La^{3+}(aq) + 3 e^{-} \longrightarrow La(s)$	-2.38
$Na^{+}(aq) + e^{-} \longrightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \longrightarrow Ca(s)$	-2.76
$Ba^{2+}(aq) + 2 e^{-} \longrightarrow Ba(s)$	-2.90

$K^+(aq) + e^- \longrightarrow K(s)$	-2.92
$Li^{+}(aa) + e^{-} \longrightarrow Li(s)$	-3.04

E. Vapor Pressure of Water at Various **Temperatures**

T(°C)	P(torr)	T(°C)	P(torr)	T(°C)	P(torr)
0	4.58	21	18.65	35	42.2
5	6.54	22	19.83	40	55.3
10	9.21	23	21.07	45	71.9
12	10.52	24	22.38	50	92.5
14	11.99	25	23.76	55	118.0
16	13.63	26	25.21	60	149.4
17	14.53	27	26.74	65	187.5
18	15.48	28	28.35	70	233.7
19	16.48	29	30.04	80	355.1
20	17.54	30	31.82	90	525.8