Problems (Due Nov 15 at 11:59 pm)

- Prove that the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{2+3x}{x^2+4}$ is continuous at x=2 by checking the $\varepsilon-\delta$ definition of a function continuous at a point.
- ② Prove that there does not exist any continuous function $f: \mathbb{R} \to \mathbb{R}$ such that f(f(x)) + x = 0 for every $x \in \mathbb{R}$.
- 3 Let $f: \mathbb{R} \to \mathbb{R}$ be continuous such that $|f(x) f(y)| \le \frac{1}{2}|x y|$ for every $x, y \in \mathbb{R}$.
 - Show that $\chi_1, \chi_2, \chi_3, \dots$ is a Cauchy sequence.

(6) Show that there is XER such that f(x)=x. No need to give a solution!