BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI- HYDERABAD CAMPUS INSTRUCTION DIVISION, FIRST SEMESTER 2016-2017 <u>Course Handout (Part II)</u>

Date: 01/08/2016

In addition to Part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : ME F211, MF F211
Course Name : Mechanics of Solids
Instructor-in-charge : AMIT KUMAR GUPTA
Instructors : Amit Kumar Gupta

1. Course Description:

Fundamental principles of mechanics; Introduction to the mechanics of deformable bodies; Forces and Moments transmitted by slender members; Stress- Strain; Stress-Strain Temperature relations; Torsion; stresses and deflections due to bending; Stability of equilibrium.

2. Scope and Objective:

The subject of mechanics of solids deals with determination of strength, deformation and stability of structural and machine elements. The methods are based on Laws of Newtonian mechanics, applied to bodies in static equilibrium, geometry and experimentation. These laws are applied to simple situations with engineering judgment to arrive at results of significance to the designer.

At the end of the course the student will be in a position to design and analyze simple structural elements, which involve calculation of stress, strain and deformation. This is an essential feature in any design process.

3. Text Books:

S. H. Crandall et al., An Introduction to the Mechanics of Solids (in SI units) TMH, 2nd ed., 1978

4. Reference Books:

- 1. Mechanics of Materials; F. P. Beer, E. R. Johnston and J. T. DeWolf, Third Edition, 2002, McGraw-Hill International Edition.
- Mechanics of Solids, AN INTRODUCTION, T. J. Lardner, R R Archer, International Edition, 1994, McGraw-Hill
- Introduction to Solid Mechanics by I. H. Shames, 2nd Edition, 1980, Prentice Hall of India Private Ltd. New Delhi
- 4. Mechanics of Materials, Madhukar Vable, 2002, Oxford University,

5. Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Reference Chap./Sec.# (Book)
1-3	Fundamental principles of mechanics	Introduction, principles of mechanics, concept of force & moment, equilibrium conditions, concept of two & three force members, free body diagram, friction	1.1-1.9 (TB)
4-5	Fundamental principles of mechanics	Numerical problems	Ch.1 (TB)
6-8	Introduction to mechanics of deformable bodies	Analysis of deformable bodies, uniaxial loading & deformation, statically determinate & indeterminate situations, Castigliano's theorem.	2.1-2.4 2.6-2.7 (TB)
9-10	Introduction to mechanics of deformable bodies	Numerical problems	Ch.2 (TB)
11-12	Forces & moments transmitted by slender members	Introduction forces & moments acting on a section of a member, distributed loads & resultant of distributed loads	3.1-3.4 (TB)
13-14	Forces & moments transmitted by slender members	Differential equilibrium approach, Singularity functions	3.5-3.6 (TB)

15-16	Forces & moments	Numerical problems	Ch.3 (TB)	
	transmitted by slender members			
17-18	Stress & Strain	Introduction, stress, plane stress, equilibrium of a	4.1-4.7	
		element in plane stress, Mohr circle representation of	(TB)	
		a plane stress, general state of stress.		
19-20	Stress & Strain	Analysis of deformations, strain components, relation		
		between strain & displacement, strain component	(TB)	
		associated with arbitrary set of axis, Mohr circle		
		representation of plane strain, general state of strain		
21-22	Stress & Strain	Numerical problems	Ch.4 (TB)	
23-24	Stress-Strain-Temperature	Introduction, tensile test, idealization of stress strain	5.1-5.4	
	relations	curve, elastic stress strain relation	(TB)	
25-26	Stress-Strain-Temperature	Thermal strain, complete equations of elasticity, strain	5.5-5.6,	
	relations	energy in a elastic body, criteria of initial yielding	5.8,5.11	
25			(TB)	
27	Stress-Strain-Temperature	Numerical problems	Ch.5 (TB)	
20.20	relations		(1.60	
28-30	Torsion	Introduction, geometry of deformation of a twisted	6.1-6.9	
		circular shaft, stress strain relations, equilibrium	(TB)	
		requirements, stresses & deformations in twisted		
		elastic circular shaft, torsion of elastic hollow circular		
		shaft, combined stresses, strain energy due to torsion, yielding in torsion & Numerical		
31	Torsion	Numerical problems	Ch.6 (TB)	
32-33	Stresses due to bending	Introduction, deformation in pure bending, stress-	7.1-7.6	
32-33	Stresses due to bending	strain relations, equilibrium requirements, stresses &	(TB)	
		deformations in pure bending	(15)	
34-35	Stresses due to bending	Stresses due to shear force and bending moment,	7.7-7.9	
3 . 30	success and to comming	combined stresses, strain energy due to bending,	(TB)	
		yielding in bending	()	
36	Stresses due to bending	Numerical problems	Ch. 7	
37-38	Deflections due to bending	Introduction, moment-curvature-relations, integration	8.1-8.4	
		of moment-curvature relations, superposition	(TB)	
39-40	Deflections due to bending	Load-deflection differential equation,	8.5-8.6	
		Energy Methods, Numerical problems	(TB)	
41	Deflections due to bending	Numerical problems	Ch. 8	
42-43	Stability of equilibrium	Introduction, elastic stability, examples of instability,	9.1-9.4	
	buckling	elastic stability of flexible columns	(TB)	
44	Stability of equilibrium	Numerical problems	Ch.9	
	buckling			

6. Evaluation Scheme:

o. D. widawich denome.							
EC No.	Evaluation Component	Duration	Weightage	Date & Time	Nature of EC		
1.	Test I	1 hr	20%	8/9, 2.303.30PM	СВ		
2.	Test II	1 hr	20%	25/10, 2.303.30PM	OB		
3.	Quizzes/Assignments		20%		CB/OB		
4.	Compre. Exam.	3 hrs	40%	06/12 AN	СВ		

- **7. Chamber Consultation Hour:** Will be announced by instructors individually in the class.
- **8.** Notices: Notice, if any, will be displayed on the CMS.
- 9. Make up Policy: Make-up will be granted only to genuine cases with prior permission from the IC. For cases related to illness, proper documentary evidence is essential. No makeup is allowed for assignments.