Esercizio 2 (10 punti) Abbiamo n programmi da eseguire sul nostro computer. Ogni programma j, dove $j \in \{1,2,\ldots,n\}$, ha lunghezza ℓ_j , che rappresenta la quantità di tempo richiesta per la sua esecuzione. Dato un ordine di esecuzione $\sigma=j_1,j_2,\ldots,j_n$ dei programmi (cioè, una permutazione di $\{1,2,\ldots,n\}$), il tempo di completamento $C_{j_i}(\sigma)$ del j_i -esimo programma è dato quindi dalle somma delle lunghezze dei programmi j_1,j_2,\ldots,j_i . L'obiettivo è trovare un ordine di esecuzione σ che minimizza la somma dei tempi di completamento di tutti i programmi, cioè $\sum_{j=1}^n C_j(\sigma)$.

- (a) Dare un semplice algoritmo greedy per questo problema, e valutarne la complessità.
- (b) Dimostrare la proprietà di scelta greedy dell'algoritmo del punto (a), cioè che esiste un ordine di esecuzione ottimo σ^{\star} che contiene la scelta greedy.

 $GREEDY(C, MAX) \rightarrow MAX = Somma prevista di completamento$

n = size(C)
last = 1 // indice ultima posizione scelta
SORT(C) // ordino crescente
OPT = {C_1} // primo = minore → OPT = greedy
while C_i + C_last ≤ MAX
OPT = OPT U C_i;

return OPT

Esercizio 2 (10 punti) Abbiamo n programmi da eseguire sul nostro computer. Ogni programma j, dove $j \in \{1, 2, \ldots, n\}$, ha lunghezza ℓ_j , che rappresenta la quantità di tempo richiesta per la sua esecuzione. Dato un ordine di esecuzione $\sigma = j_1, j_2, \ldots, j_n$ dei programmi (cioè, una permutazione di $\{1, 2, \ldots, n\}$), il tempo di completamento $C_{j_i}(\sigma)$ del j_i -esimo programma è dato quindi dalle somma delle lunghezze dei programmi j_1, j_2, \ldots, j_i . L'obiettivo è trovare un ordine di esecuzione σ che minimizza la somma dei tempi di completamento di tutti i programmi, cioè $\sum_{j=1}^n C_j(\sigma)$.

a) Dare un semplice algoritmo greedy per questo problema, e valutarne la complessità.

- (SLAUSTT A)
- 1. Prendi una soluzione ottima (resta ottima perché l'insieme dei valori è ordinato)
- 2. Attacco la soluzione ottima che resta ottima sempre perché se ne attacco una fuori dall'ordine crolla tutto 3. That's it.

Esercizio 2 (9 punti) Lungo una strada ci sono, in vari punti, n parcheggi liberi e n auto. Un posteggiatore ha il compito di parcheggiare tutte le auto, e lo vuole fare minimizzando lo spostamento totale da fare. Formalmente, dati n valori reali p_1, p_2, \dots, p_n e altri n valori reali a_1, a_2, \dots, a_n , che rappresentano

le posizioni lungo la strada rispettivamente di parcheggi e auto, si richiede di assegnare ad ogni auto a_i un parcheggio $p_{h(i)}$ minimizzando la quantità

DISTARZA $\sum_{i=1}^{n} |a_i - p_{h(i)}|.$

L'idea di questo algoritmo, se fosse in codice sarebbe simile a Metric Matching, quindi cerco di minimizzare la differenza partendo dalla fine (quindi, vedendo quante auto e quanti parcheggi ci sono) e verificando quale, a coppie, ha la minima differenza.

Si consideri il seguente algoritmo greedy. Si individui la coppia (auto, parcheggio) con la minima differenza. Si assegni quell'auto a quel parcheggio. Si ripeta con le auto e i parcheggi restanti fino a quando tutte le auto sono parcheggiate. Dimostrare che questo algoritmo non è corretto, esibendo un controesempio.

 Si consideri il seguente algoritmo greedy. Si assuma che i valori p₁, p₂,..., p_n e a₁, a₂,..., q siano ordinati in modo non decrescente. Si produca l'assegnazione $(a_1, p_1), (a_2, p_2), \dots, (a_n, p_n)$. Dimostrare la correttezza di questo algoritmo per il caso n=2.

Questo significa che l'assegnazione parte dagli ultimi parcheggi e dalle ultime auto (quindi, massima somma al contrario significa minima differenza). coppia, si possono ' mischiare" le assegnazioni come si

Soluzione:

1. Si consideri il seguente input:

L'algoritmo produce l'assegnazione $(a_1, p_2), (a_2, p_1)$, che ha costo 1+9=10, mentre l'assegnazione

 $(a_1, p_1), (a_2, p_2)$ ha costo 4 + 4 = 8.

2. Ci sono vari casi possibili:

Dal ragionamento detto, matematicamente, si vede che basta prendere un qualsiasi ordinamento tra le due auto e i due parcheggi di due generiche differenze e si esprime la somma in termini matematici (l'idea concreta è quella spiegata da me).

- (a) Caso $a_1 \le p_1 \le p_2 \le a_2$
 - l'assegnazione $(a_1, p_1), (a_2, p_2)$ ha costo $p_1 a_1 + a_2 p_2 = (a_2 a_1) (p_2 p_1)$
 - l'assegnazione $(a_1, p_2), (a_2, p_1)$ ha costo $p_2 a_1 + a_2 p_1 = (a_2 a_1) + (p_2 p_1)$; siccome $p_2 - p_1 \ge 0$, questa assegnazione ha costo non inferiore rispetto alla precedente
- (b) Caso $a_1 \le p_1 \le a_2 \le p_2$
 - l'assegnazione $(a_1, p_1), (a_2, p_2)$ ha costo $p_1 a_1 + p_2 a_2 = (p_2 a_1) (a_2 p_1)$
 - l'assegnazione $(a_1, p_2), (a_2, p_1)$ ha costo $p_2 a_1 + a_2 p_1 = (p_2 a_1) + (a_2 p_1)$; siccome $a_2 - p_1 \ge 0$, questa assegnazione ha costo non inferiore rispetto alla precedente
- (c) Caso $a_1 \le a_2 \le p_1 \le p_2$
 - l'assegnazione $(a_1, p_1), (a_2, p_2)$ ha costo $p_1 a_1 + p_2 a_2 = (p_2 a_1) + (p_1 a_2)$
 - l'assegnazione $(a_1, p_2), (a_2, p_1)$ ha costo $p_2 a_1 + p_1 a_2 = (p_2 a_1) + (p_1 a_2)$, uguale a quello precedente

Tutti gli altri casi sono simmetrici e si dimostrano nella stessa maniera.

Esercizio 2 (9 punti) Data una stringa $X=\langle x_1,x_2,\ldots,x_n\rangle$, si consideri la seguente quantità $\ell(i,j)$, definita per $1\leq i\leq j\leq n$:

$$\ell(i,j) = \begin{cases} 1 & \text{se } i = j \\ 2 & \text{se } i = j - 1 \\ 2 + \ell(i+1,j-1) & \text{se } (i < j-1) \text{ e } (x_i = x_j) \\ \sum_{k=i}^{j-1} (\ell(i,k) + \ell(k+1,j)) & \text{se } (i < j-1) \text{ e } (x_i \neq x_j). \end{cases}$$
coppia di algoritmi INIT L(X) e RECL(X; i, i) = 0.

- (a) Scrivere una coppia di algoritmi INIT $\mathbb{L}(X)$ e REC $\mathbb{L}(X,i,j)$ per il calcolo memoizzato di $\ell(1,n)$.
- (b) Determinarne la complessità al caso migliore $T_{\text{best}}(n)$, supponendo che le uniche operazioni di costo unitario e non nullo siano i confronti tra caratteri.