Departamento de Matemática e Aplicações

Universidade do Minho

duração: duas horas

Álgebra 1º teste - 14 nov 2018

Licenciatura em Ciências de Computação - 2º ano

- 1. Considere o semigrupo (\mathbb{Z}_6, \times) , os grupos (\mathbb{Z}_7^*, \times) , onde $\mathbb{Z}_7^* = \mathbb{Z}_7 \setminus \{[0]_7\}$, $(\mathbb{Z}_8, +)$ e o produto direto $(\mathbb{Z}_7^*, \times) \otimes (\mathbb{Z}_8, +)$.
 - (a) Indique, sem justificar:
 - (i) a identidade de $\mathbb{Z}_7^* \otimes \mathbb{Z}_8$; (ii) o inverso do elemento $([3]_7, [2]_8)$;
 - (iii) o elemento $([4]_7, [3]_8)([2]_7, [4]_8)^{-1}$; (iv) a ordem dos elementos $([2]_7, [4]_8)$ e $([6]_7, [1]_8)$.
 - (b) Considere agora o produto direto $(\mathbb{Z}_8,+)\otimes(\mathbb{Z},+)$ e o morfismo $\theta:(\mathbb{Z},+)\to(\mathbb{Z}_8,+)\otimes(\mathbb{Z},+)$ definido por $\theta(n)=([n]_8,n)$, para qualquer $n\in\mathbb{Z}$.
 - (i) Calcule $\theta(-58)$, $\theta^{\leftarrow}(([5]_8, 13))$ e $\theta^{\leftarrow}(([3]_8, 0))$.
 - (ii) Determine $\operatorname{Nuc} \theta$ e justifique se θ é um monomorfismo.
 - (iii) Diga, justificando, se o morfismo θ é sobrejetivo.
 - (c) Determine, caso existam, $[a]_6, [b]_6 \in \mathbb{Z}_6$, com $[a]_6 \neq [0]_6$, de tal modo que a equação $[a]_6 [x]_6 = [b]_6$
 - (i) não tenha solução em \mathbb{Z}_6 ;
 - (ii) tenha pelo menos uma solução em \mathbb{Z}_6 .
- 2. Seja $G = \mathbb{R} \times (\mathbb{R} \setminus \{0\})$. Considere em G a operação binária * definida por (a,b)*(c,d) = (a+bc,bd), para quaisquer $(a,b),(c,d) \in G$.
 - (a) Sabendo que a operação * é associativa, mostre que (G,*) é um grupo não abeliano.
 - (b) Sendo $K = \{(a, b) \in G : b = 1\}$, mostre que (K, *) é um subgrupo de (G, *).
 - (c) i. Determine os elementos de G que têm ordem 2.
 - ii. Os elementos de G com ordem 2 formam um sugbrupo de G? Porquê?
- 3. Sejam G um grupo de ordem 42 e $b \in G \setminus \{1_G\}$ tal que $b^{85} = b^{134}$.
 - (a) Determine a ordem de b.
 - (b) Determine os subgrupos $< b^7 >$ e $< b^6 >$ de G e indique, justificando, outro gerador do subgrupo $< b^6 >$.
- 4. Seja G um grupo. Mostre que a aplicação $\phi: G \longrightarrow G$, definida por $\phi(x) = x^{-1}$, para todo $x \in G$,
 - (i) é uma bijeção;
 - (ii) é um isomorfismo (i.e., um morfismo bijetivo), se e só se G é abeliano.
- 5. Mostre que se K é um subgrupo normal de um grupo G então existe um morfismo ϕ tal que $K = \operatorname{Nuc} \phi$.
- 6. Diga, sem justificar, quais das seguintes afirmações são verdadeiras e quais são falsas:
 - (a) Se G=< a> é um grupo cíclico não trivial tal que $a^{16}=a^{30}$, então $G=< a^5>$;
 - (b) Se $G = \langle g \rangle$ é um grupo cíclico e H é um subgrupo de G então H é normal em G;
 - (c) O grupo $\mathbb{Z}_2 \otimes \mathbb{Z}_2$, produto direto dos grupos aditivos $(\mathbb{Z}_2, +)$, é cíclico;
 - (d) Para quaisquer grupos G e H, os grupos $G\otimes H$ e $H\otimes G$ são isomorfos;
 - (e) o grupo $(\mathbb{Z}_6, +)$ tem dois geradores distintos;
 - (f) um grupo de ordem prima não tem subgrupos próprios não triviais.

Cotação: 1. 5 valores; 2. 4 valores; 3. 3 valores; 4. 3 valores; 5. 2 valores; 6. 3 valores