TRANSFORMERS FOR GRAPHS

INTRODUCTION

PROBLEMS OF GNNS

- The Message Passing paradigm is bounded by the Weisfeiler-Lehamn isomorphism hierarchy
- Over-smoothing problem caused by repeated local aggregation,
- Over-squashing problem due to the exponential computation cost with the increase of model depth

TRANSFORMERS

PROBLEMS OF TRANSFORMERS

 Target node neglects its local neighborhood, which causes over-fitting on large graphs

Global receptive field of Transformer is costly

MAINSTREAM METHODS

- GNNs as An Auxiliary Module
 Directly injects GNNs into Transformer architecture
- Improved Positional Embedding from Graphs
 Compresses the graph structure into positional embedding vectors
- Improved Attention Matrices from Graphs
 Injects graph bias terms into the attention computation, or narrow the receptive field

METHODS

GNNS AS AN AUXILIARY MODULE

- Pros
 - Remain the original pros of GNNs and Transformers
- Cons
 - Difficult to determine the best architecture to incorporate GNNs
 - A massive number of effort taken in hyper-parameter searching

MAIN PATTERNS

BEFORE TRANS

- [1] GraphTrans (NIPS-2021)
 - GNNs are applied to learn local representations
 - Transformer subnetwork explicitly computes all pairwise node interactions

BEFORE TRANS

- [1] GROVER (NIPS-2020)
 - Uses 2 GTransformer modules to represent node-level and edgelevel features.
 - The inputs are first fed into a GNN to extract vectors as queries, keys, and values

BEFORE TRANS

- [3] GraphiT (2021)
 - Adopts a GNN layer to produce a structure-aware representaion
 - Concatenate them as the input of Transformer Architecture

ALTERNATIVELY

- [4] Graphormer (ICCV 2021)
 - proposes a Graph Residual Block
 - MHSA is used to generate contextualized features

 A GNN is applied to improve the local interactions

PARALLEL

• [5] Graph-BERT (ICCV 2021)

PARALLEL

- [14] Coarformer (2021)
 - It coarsens an input graph into partitions which are regarded as multiple super-nodes
 - Adjancy matrix and feature matrix are constructed fro these partitions
 - A GNN and a Transformer are utilized to learn its representation
 - A fusion model is designed to fuse these information

METHODS

IMPROVED POSITIONAL EMBEDDING FROM GRAPHS

- Pros
 - Convinent
- Cons
 - Copressing graph structure into fixed-sized vectors results in information loss

DENSE EMBEDDINGS

- [6] Graph Transformer (AAAI-2021)
 - Laplacian eigenvactors are derived by the factorization of the graph matrix
 - Eigenvectors of the k smallest non-trivial eigenvalues are regarded as the positional embeddings
- [7] EGT (KDD-2022)
 - SVD are pre-computed from graph structural matrix
 - Largest k singukar values and corresponding left and right singular vectos

DENSE EMBEDDINGS

- [10] Graph Transformer (2021)
 - Rethinks the proposed Eigen PE and designs a learned positional encoding that takes advantage of full Laplacian spectrum

HEURISTIC EMBEDDINGS

- [8] Degree PE (2021)
 - proposes a degree PE that measures the degree centrality

- [9] (AAAI 2020)
 - utilizes tree structure. It adopts a distance from the root node as a flag of the importance

METHODS

IMPROVED ATTENTION MATRICES FROM GRAPHS

- Pros
 - Efficient
- Cons
 - Several pre-procession steps

RESTRICTING A NODE ONLY ATTENDING TO LOCAL NEIGHBORS

- [6] Graph Transformer (AAAI-2021)
 - The representation or the existence of an edge informs model which nodes should be attended to for a query node

- [8] Graph Transformer (ACL-2020)
 - constructs Levi graphs in accordance to an input graph
 - splits this graph into multuiple subgraphs according to edge types
 - The corresponding adjacent matrices are assigned to different attention heads

• [8] Graph Transformer (ACL-2020)

- [11] Graph-masked Transformer (2022)
 - designs 4 types of interaction graphs
 - enfore heads to attend to different subspaces

- [15] DGT (2022)
 - NodeSort module converts a graph into several sorted sequence. Several strategies can be used to generate sequences (e.g. personalized PageRank, BFS, and feature similarity)
 - DGA, a sparse attention, dynamically samples key/value pairs from the set of sorted sequences of node features

• [15] DGT (2022)

ADD SOFT GRAPH BIAS

- [8] Graph Transformer (ACL-2020)
 - proposes a Spatial Encoding Mechanism
 - measures the spatial realtion between 2 nodes
 - assigns each feasible value of the distance a learnable scale parameter as a graph bias term B^s

$$\mathbf{A} = (\frac{1}{\sqrt{d}} \mathbf{X} \mathbf{Q} (\mathbf{X} \mathbf{K})^{\top}) + \mathbf{B}^{s}$$

ADD SOFT GRAPH BIAS

- [12] Gohpormer (2021)
 - Samples ego-graphs to supplement local information
 - For each node pair, a structural encoding function is used to derived whether global node exists in this node pair

THANK YOU