Algebra IIR, list 1.

Students choose 3 homework problems from each list. Each item from a problem from list counts as a separate homework problem. Students can not choose as their homework problem more than one item from each problem from a list. Exceptionally in the first list two homework problems are already assigned and marked with D. Students choose additionally the third problem.

- 1. D Prove that $\mathbb{C} = \mathbb{R}[z]$ for every complex number $z \in \mathbb{C} \setminus \mathbb{R}$.
- 2. Assume that $K \subset L$ are fields and $a, b \in L$. For a rational function $f(X) \in L$ K(X) define f(a) as g(a)/h(a), where $g,h \in K[X]$, f=g/h and $h(a) \neq 0$, provided such q, h exist. If not, f(a) is undetermined. Prove that
 - (a) if $f(X) \in K(X)$ and f(a) is defined, then f(a) is determined uniquely (does not depend on the choice of q, h),
 - (b) $K(a) = \{f(a) : f \in K(X) \text{ and } f(a) \text{ is defined}\},$
 - (c) K(a,b) = (K(a))(b).
- 3. Assume that $K \subset L$ are fields and $f_1, \ldots, f_m \in K[X_1, \ldots, X_n]$ have degree 1. (a)D Prove that if the system of equations $f_1 = \cdots = f_m = 0$ has a solution in L, then it has a solution in K. (hint: use linear algebra).
 - (b) Does K contain a generic solution of this system (over K)?
- 4. Prove in detail that the definition of h in Remark 1.2 is correct.
- 5. Which of the following solutions of the equation $X_1^2 X_2^3 = 0$ in the field of rational functions $\mathbb{C}(X)$ are generic over the field \mathbb{Q} ?
 - (a) (1,1), (b) $(\sqrt[6]{8}, \sqrt[6]{4})$, (c) $(1, \cos \frac{2}{3}\pi + i \sin \frac{2}{3}\pi)$, (d) (X^3, X^2) , (e) $(\frac{X^3}{(X-1)^3}, \frac{X^2}{(X-1)^2})$.

hint: in (d) you need to work a bit with polynomials, in (e) consider some automorphisms.

- 6. Assume that $f \in K[X]$ is irreducible, of degree n > 0, char K = 0, L is the splitting field of polynomial f over K. Prove that the field L has at least ndistinct automorphisms.
- 7. Assume that $K_1 \subset K_2 \subset K_3 \subset \ldots$ is an increasing sequence of fields. Verify in detail that $\bigcup_n K_n$ is also a field, containing K_1, K_2, K_3, \ldots as subfields.
- 8. Prove that the set $\{\sqrt{p}: p \text{ is a prime number}\}$ is linearly independent over the field \mathbb{Q} .