

# **CREATE WITH**

# MATH













#### Foundation













LHS: √(25/4) RHS: 3/2

Solution: LHS: √(25/4)

We know that  $\sqrt{25} = 5$  and  $\sqrt{4} = 2$ Hence, LHS = 5/2



Solving RHS: RHS = 3/2

Since they're like fractions, we can compare the numerators to identify which fraction is greater.

the numerators to identify which fraction is greater.

$$5 > 3$$
, hence LHS > RHS  $\sqrt{\frac{25}{4}}$   $\geqslant \frac{3}{2}$ 













### Application







Total area covered by the painting = 125 sq. ft
There are 5 squares with each side measuring *a* ft.

#### Solution:

Total area covered by the painting = sum of area covered by 5 squares

Hence, area of each square = 125 ÷ 5 = 25 sq. ft

Side of square = a ft.

Area of a square = a ft x a ft 
$$\Rightarrow$$
 a<sup>2</sup> = 25 sq ft.

$$\Rightarrow$$
 a =  $\sqrt{25}$  = 5 ft

$$\Rightarrow$$
 a = 5 ft









Area of triangle-shaped painting =  $40 \frac{1}{2}$  sq. ft Base and height of the painting are equal i.e. b = h.

#### Solution:

Area of a triangle =  $\frac{1}{2}$  × base × height  $= \frac{1}{2} \times b \times h$ 



We know that 
$$b = h$$
,  
 $\Rightarrow$  area =  $\frac{1}{2} \times h \times h$   
=  $\frac{1}{2} \times h^2$ 

⇒ 
$$\frac{1}{2} \times h^2 = 40 \frac{1}{2} \text{ sq. ft}$$
  
⇒  $h^2 = 2 \times (40 \frac{1}{2}) = 81 \text{ sq. ft}$ 

$$\Rightarrow$$
 h<sup>2</sup> = 2 × (40 ½) = 81 sq. 1  
 $\Rightarrow$  h = √81 = 9 ft.

Height = 9 ft. Base = 9 ft.









Ratio of area of the two circular paintings: 16:25  $R_1$  is the radius of the smaller painting = 4 ft R<sub>2</sub> is the radius of the larger painting

Solution:

Area of a circle is  $\pi r^2$  where r is the radius of the circle. Area of the smaller circle =  $\pi R_1^2$ 

Area of the smaller circle =  $\pi R_2^2$  $\pi R_1^2 : \pi R_2^2 = 16:25$ 

$$\Rightarrow \pi R_1^2 / \pi R_2^2 = 16/25$$

$$\Rightarrow R_1^2 / R_2^2 = 16/25$$

$$\Rightarrow R_1/R_2 = \sqrt{(16/25)}$$

$$\Rightarrow R_1/R_2 = 4/5$$

$$\Rightarrow$$
 R<sub>2</sub> = R<sub>1</sub> × 5/4 = 4 × 5/4 = 5 ft













The walls need to be painted a suitable color to display these paintings. The amount of paint (x, in ounces) required to paint a certain area (y, in sq. inch) is given by  $y = \sqrt{49x^4} + \sqrt{9}$ . If you have 3 ounces of paint, how much area will you be able to paint?

Given:

Amount of paint = x ounces = 3 ounces Area painted = y sq. inch  $y = \sqrt{(49x^4) + \sqrt{9}}$ 

Solution:  $y = \sqrt{49x^2}$ 

$$y = \sqrt{(49x^4) + \sqrt{9}}$$

We know that  $\sqrt{49} = 7$ ,  $\sqrt{x^4} = x^2$ , and  $\sqrt{9} = 3$ 

Therefore, 
$$y = 7x^2 + 3$$

$$y = 7 \times 3^2 + 3$$

Applying PEMDAS,  

$$y = 7 \times 9 + 3 = 63 + 3 = 66$$
 sq. inch





















- Choose any 4 of the given shapes but make sure that you satisfy the condition next to it:
- Square whose area is a perfect square, 3 sq. units < area < 100 sq. units.</li>
   Rectangle with length = 2 x width, has an area < 120 sq. units.</li>
- 3) Rectangle with 3 x length = width, 200 sq. units < area < 300 sq. units.
- 4) Triangle with base = height, has an area > 50 sq. units.

  4) Triangle with base = height, has an area > 50 sq. units.
- 5) Circle with area = (Perfect square)  $\times \pi$  sq. units.

Draw the chosen shapes with the correct dimensions below.







