UWAGA: W zadaniach o numerach od 1 do 8 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu.

...../1

Podczas testów układu hamowania samochodu badano zależność drogi hamowania od szybkości, przy której włączono hamulce. Przyjmij, że warunki drogowe (rodzaj, wilgotność i temperatura podłoża) nie ulegały zmianie. Szybkość samochodu, przy której włączano hamulce dla kolejnych prób, wzrastała o 20 %. Droga hamowania samochodu w drugiej próbie w stosunku do drogi hamowania w próbie pierwszej była większa

- A. 4 razy.
- B. 2 razy.
- C. 1,44 razy.
- D. 1,2 razy.

Zadanie 2. (0 – 1pkt.)

...../1

Na podstawie informacji, które można odczytać z poniższego schematu zmian stanów skupienia przyporządkuj odpowiedni stan skupienia do cyfry na schemacie.

Zadanie 3. (0 – 1pkt.)

...../1

Na etykiecie pewnego akumulatora samochodowego, dla którego napięcie na zaciskach jest równe 12 V, umieszczony jest napis 55 Ah. Informacja ta pozwala oszacować, że

- A. moc, z jaka może pracować akumulator jest równa 660 W.
- B. minimalny prąd pobierany z akumulatora może mieć wartość 55 A.
- C. maksymalny prad pobierany z akumulatora może mieć wartość 55 A.
- D. w obwodzie dołączonym do akumulatora może przepłynąć ładunek równy 198000 C.

Zadanie 4. (0 - 1pkt.)

...../1

Niezbędne do zajścia zjawiska rezonansu mechanicznego jest, aby

- A. amplitudy drgań ciała drgającego i pobudzanego były takie same.
- B. amplitudy drgań i okresy ciała drgającego i pobudzanego były takie same.
- C. częstotliwości drgań własnych ciała drgającego i pobudzanego były takie same.
- D. częstotliwość drgań własnych ciała pobudzanego była wielokrotnością częstotliwości ciała drgającego.

Zadanie 5. (0 - 1 pkt)

...../1

Na poniższym wykresie przedstawiono zależność wychylenia z położenia równowagi od czasu dla pewnego ciała drgającego.

Wartość amplitudy i okresu dla ruchu drgającego tego ciała mają wartość

A. 10 cm i 3 s.

B. 10 cm i 1,5 s.

C. 20 cm i 3 s.

D. 20 cm i 1,5 s.

Zadanie 6. (0 - 1 pkt)

...../1

W metalowym pręcie została wzbudzona fala dźwiękowa o długości 70 cm. Jej szybkość rozchodzenia się w metalu jest siedem razy większa niż w powietrzu. Długość fali, jaką drgający pręt wzbudzi w powietrzu, jest równa

A. 490 cm.

B. 70 cm.

C. 10 cm.

D. 7 cm.

Zadanie 7. (0 - 1 pkt)

...../1

Na ciało działają dwie siły o jednakowych wartościach równych 4 N i prostopadłych kierunkach. Wartość siły równoważącej ww. siły jest równa

A. 8 N.

B. $4 \cdot \sqrt{2}$ N. C. $2 \cdot \sqrt{3}$ N.

D. 2 N.

Zadanie 8. (0 - 1 pkt.)

...../1

Po poziomym podłożu pracownik przesuwa skrzynię z przyspieszeniem równym 0,2 $\frac{m}{c^2}$ Skrzynia ma masę 30 kg a siła którą pracownik działa na skrzynię ma wartość 10 N i jest skierowana poziomo. Siła oporu podczas ruchu skrzyni ma wartość

A. 30 N.

B. 16 N.

C. 6 N.

D. 4 N

Zadanie 9.

Oceń prawdziwość zdań w poniższych tabelach i zaznacz (otaczając kółkiem) P, jeżeli zdanie jest prawdziwe lub **F**, jeżeli jest fałszywe.

Zadanie 9.1. (0 - 1pkt.)

...../1

Największą procentową zmianę objętości przy ogrzaniu o jeden stopień posiadają ciecze.	P	F
Podczas zmian temperatury gazu jego objętość również zmienia się, ponieważ zmieniają się rozmiary jego cząsteczek.	P	F
Wzrost objętości ciał stałych podczas ogrzewania jest spowodowany wzrostem średniej odległości między ich cząsteczkami.	P	F

Zadanie 9.2. (0 - 1pkt.)

...../1

Opór elektryczny przewodnika zależy od napięcia przyłożonego do jego końców.	P	F
Amperomierz to miernik, który powinien mieć jak najmniejszy opór elektryczny i jest włączany szeregowo z odbiornikiem prądu.	P	F
Jeżeli moc wydzielana na oporniku ma wartość 1 W, gdy przepływa przez niego prąd o natężeniu 1 A, to opór opornika jest równy 1 Ω .	P	F

UWAGA: W zadaniach o numerach 10. i 11. wybierz i zaznacz (otaczając kółkiem odpowiednią literę i cyfrę) właściwe stwierdzenie oraz jego poprawne uzasadnienie tworzące dokończenie rozpoczętego zdania.

Zadanie 10. (0 - 1 pkt)

...../1

Podczas ruchu ciężarka zawieszonego na sprężynie występują ciągłe przemiany energii mechanicznej. Przy założeniu, że na drgający ciężarek nie działają żadne siły oporu, jego maksymalna energia kinetyczna w porównaniu z maksymalną energią potencjalną sprężystości

A	jest więks.	za,	1.	energia mechaniczna ciała nie zmienia się.
В	jest mniej	sza, ponieważ	2.	w położeniu równowagi ciało się nie porusza.
C	jest taka s	ama,	3.	dla maksymalnego wychylenia na ciało nie działa siła sprężystości.

Zadanie 11. (0 - 1 pkt.)

...../1

Z wartości ciepła właściwego wody wynika, że do ogrzania 1 kg wody od temperatury 20°C do 100°C potrzeba 336 kJ energii cieplnej. Praca prądu elektrycznego przepływającego przez grzałkę czajnika elektrycznego podczas zagotowywania 2 razy mniejszej ilości wody o temperaturze początkowej 20°C jest

Α.	równa 168 kJ,		1.	czajnik kumuluje w sobie ciepło i oddaje je ogrzewanej wodzie.
В.	mniejsza niż 168 kJ,	ponieważ	2.	oprócz wody ogrzewać trzeba dodatkowo sam czajnik.
C.	większa niż 168 kJ,		3.	ilość potrzebnej energii cieplnej jest wprost proporcjonalna do ilości wody.

Zadanie 12. (0 - 4 pkt.)

...../4

Podczas deszczu z krawędzi dachu kolejne krople deszczu odrywają się co 0,5 sekundy. Przyjmując, że krople spadają swobodnie wykaż, korzystając z odpowiednich wzorów i praw fizyki, że kolejne krople względem siebie poruszają się ruchem jednostajnym prostoliniowym oraz, że szybkość względna dwóch kolejnych kropli ma wartość $5 \, \frac{\text{m}}{\text{s}}$. Przyjmij, że przyspieszenie ziemskie ma wartość $10 \, \frac{\text{m}}{\text{s}^2}$.

	Konk	nis ju	ÇyCZH	iy i	32NO	$\mu \mu \rho$	ousi	uwc) w u	. 20	<i>)</i> 10,	/20.	17.	Lu	ир	reju	mo	'vv'	y				
	· • • • •	• • •	• • •	• •	• •				•	• •	• •		•		•	•		•	•		•	• •	
		• • •	• • •	• •	• •				•	• •	• •		•	• •	•	•		•	•		•	• •	
		• •		• •	• •				•				•	• •	•	•		•	•		•	• •	
		• • •		• •	• •				•				•		•	•		•	•		•	• •	
					• •				•				•		•			•	•		•		
															•			•	•		•		
Zadanie 13	6 (0 - 4 p	kt.)																					/4
Mały tłok w	v nrasie	hvdra	aulic	znei	nrze	esiin	ał si	ie n	ode	7 25	iei	nra	CV	o f	50 c	m	W	tv	m	C7	L asi		
-	_	_		_	_		-					_	_					-					-
tłok przesur	191 515 0	.) (11)	I. IN ()	1 Z. V.N.				1 [4]	SCAL	au		. w	arr	1151	511	VΚ	1()1			V I	1 () K		
. 1 . 71								<i>.</i> 1 <i>.</i> .		u o	0110			050	J	,,		ų	iuz	, ,	101	GZ1	uiu
na ciało, jeśl								. 1 (0110	_ ,,		000	J	,,		ų u	IUZ	, ,		C GZI	uiu
	li na ma	y tłok	dzia	ała si	iła 30	60 N	ī.																uru
		y tłok	dzia	ała si	iła 30	60 N	ī.																uru
	li na ma	y tłok	dzia	ała si 	iła 30	60 N	T. · · ·								•				•				uiu
	li na ma	y tłok	dzia	ała si 	iła 30	60 N	T. · · ·								•				•				uiu
	li na ma	y tłok	dzia	ała si	iła 30	60 N	ī. · · ·		•										-				uiu
	li na ma	y tłok	dzia	ała si	iła 30	60 N	ī. · · ·		•										-				uiu
	li na ma	y tłok	dzia		iła 30	60 N	T. 												•				uiu
	li na ma	y tłok	dzia		iła 30	60 N	T. 												•				uiu
	li na ma	y tłok	dzia		iła 30	60 N	T. 												•				
	li na ma	y tłok	dzia		iła 30	60 N	T. 												•				
	li na ma	y tłok	dzia		iła 30	60 N	T. 												•				
	li na ma	y tłok	dzia		iła 30	60 N	T. 												•				
	li na ma	y tłok	dzia		iła 30	60 N	T. 												•				
	li na ma	y tłok	dzia		iła 30	60 N	T. 												•				
	li na ma	y tłok	dzia		iła 30	60 N	T. 												•				
	li na ma	y tłok	dzia		iła 30	60 N	T. 												•				
	li na ma	y tłok	dzia		iła 30	60 N	T. 												•				

Zadanie 14. (0 - 4 pkt.)	/4
Dwie grzałki o oporach elektrycznych równych 12Ω i 3Ω są podłączone do zacisk prądu stałego. Napięcie na zaciskach grzałek ma taką samą wartość. Wykaż odpowiednie prawa i wzory fizyczne, że iloraz energii cieplnych wydzielanych w tym samym czasie jest równy 4.	, stosując
Zadanie 15 (0 - 6 pkt.)	/6
Na lekcji fizyki uczniowie dostali zadanie wyznaczyć wartość oporu elek	trycznego
przewodnika. Zapisz wzór, za pomocą którego obliczą wartość oporu przewodnik	a, narysuj
schemat obwodu elektrycznego, którego będą musieli użyć uczniowie oraz zaplanuj o	czynności,
które uczniowie musieli wykonać, aby mogli wywiązać się z postawionego im zadania.	
<u>Wzór:</u>	
Schemat obwodu:	