MAT1110

Obligatorisk oppgave 2 av 2

Innleveringsfrist

Torsdag 11. MAI 2017, klokken 14:30 i obligkassen, som står i gangen utenfor ekspedisjonen i 7. etasje i Niels Henrik Abels hus.

Instruksjoner

Du velger selv om du skriver besvarelsen for hånd eller på datamaskin (for eksempel ved bruk av LATEX). Alle besvarelser skal inkludere følgende offisielle forside:

www.uio.no/studier/admin/obligatoriske-aktiviteter/mn-math-obligforside.pdf

Det forventes at man har en klar og ryddig besvarelse med tydelige begrunnelser. Husk å inkludere alle relevante plott og figurer. Studenter som ikke får sin opprinnelige besvarelse godkjent, men som har gjort et reelt forsøk på å løse oppgavene, vil få én mulighet til å levere en revidert besvarelse. Samarbeid og alle slags hjelpemidler er tillatt, men den innleverte besvarelsen skal være skrevet av deg og reflektere din forståelse av stoffet. Er vi i tvil om du virkelig har forstått det du har levert inn, kan vi be deg om en muntlig redegjørelse.

I oppgaver der du blir bedt om å programmere må du skrive ut programkoden og levere denne sammen med resten av besvarelsen. Det er viktig at programkoden du leverer inneholder et kjøreeksempel, slik at det er lett å se hvilket resultat programmet gir. For å skrive ut programkoden fra en av UiOs Linux-maskiner kan du gå til mappen hvor programmet ditt ligger og skrive

lpr -P pullprint_produsent filnavn

der filnavn er navnet på filen du ønsker å skrive ut og pullprint_produsent er navnet på produsenten av skriveren du ønsker å hente utskriften fra. Det er vanlig å enten bruke pullprint_Ricoh eller pullprint_HP.

Søknad om utsettelse av innleveringsfrist

Hvis du blir syk eller av andre grunner trenger å søke om utsettelse av innleveringsfristen, må du ta kontakt med studieadministrasjonen ved Matematisk institutt (7. etasje i Niels Henrik Abels hus, e-post: studieinfo@math.uio.no) i god tid før innleveringsfristen. For å få adgang til avsluttende eksamen i dette emnet, må man bestå alle obligatoriske oppgaver i ett og samme semester.

For fullstendige retningslinjer for innlevering av obligatoriske oppgaver, se her:

www.uio.no/studier/admin/obligatoriske-aktiviteter/mn-math-oblig.html

Oppgave 1. Anta at vi har et antall kuler som flytter seg mellom tre skåler; A, B og C. Hver tidsenhet vil halvparten av kulene i A flytte seg til B, halvparten av kulene i B flytte seg til C og halvparten av kulene i C flytte seg til A. La x_n , y_n og z_n betegne antall kuler i hhv. A, B og C etter n tidsenheter, og sett $\mathbf{x}_n = (x_n, y_n, z_n)$ (som kolonnevektor).

a) Finn en matrise M slik at

$$\mathbf{x}_{n+1} = \frac{1}{2} M \mathbf{x}_n.$$

- b) Finn egenverdiene og de tilhørende egenvektorene til M.
- c) Anta at $x_0 = 100$, $y_0 = z_0 = 0$. Uttrykk \mathbf{x}_0 som en lineærkombinasjon av egenvektorene og finn \mathbf{x}_5 .
- **d)** Finn $\lim_{n\to\infty} \mathbf{x}_n$.

Oppgave 2. La A_n være $n \times n$ (n > 2) matrisen med elementer a_{ij} der

$$a_{ij} = \begin{cases} -2 & j = i, \\ 1 & j = i \pm 1 \text{ eller } i = 1, j = n \text{ eller } i = n, j = 1, \\ 0 & \text{ellers.} \end{cases}$$

- a) Skriv ned A_5 , og forklar hvorfor 0 er en egenverdi for A_n . Finn en egenvektor \mathbf{v}^0 med egenverdi 0.
- **b)** La $\mathbf{v}^k \in \mathbb{R}^n$ $k = 0, \dots, n-1$ være gitt ved $\mathbf{v}^k = (v_1^k, \dots, v_n^k)$, der

$$v_j^k = \sqrt{2} \sin(\frac{2\pi}{n}kj + \frac{\pi}{4}), \qquad j = 0, \dots, n - 1.$$

Vis at \mathbf{v}^k er en egenvektor til A_n og finn den tilhørende egenverdien.

- c) Forklar hvor
for mengden $\{\mathbf{v}^k\}_{k=0}^{n-1}$ er en basis for \mathbb{R}^n .
- d) La $\mathbf{y} \in \mathbb{R}^n$ være gitt og definer følgen

$$\mathbf{x}_{l+1} = \left(I_n + \frac{1}{2}A_n\right)\mathbf{x}_l, \quad \mathbf{x}_0 = \mathbf{y}.$$

Hva blir grensen $\lim_{l\to\infty} \mathbf{x}_l$? (Hint: Skriv \mathbf{y} som en lineærkombinasjon av \mathbf{v}^k -ene, bruk at disse er ortogonale.)

Oppgave 3. Finn maksimum for funksjonen

$$f(x, y, z) = \log(x) + \log(y) + 3\log(z),$$

under bibetingelsene

$$x > 0$$
, $y > 0$, $z > 0$, $x^2 + y^2 + z^2 = 5r^2$,

der r er gitt. Bruk dette til å vise ulikheten

$$abc^3 \le 27 \left(\frac{a+b+c}{5}\right)^5,$$

for alle positive tall a, b og c.

Oppgave 4. Sett

$$f(x,y) = \begin{pmatrix} x^2 - y^2 + \alpha \\ 2xy + \beta \end{pmatrix},$$

der α og β er konstanter. Vi ønsker å løse ligningen $f(\mathbf{x}) = \mathbf{x}$.

a) Vis at for alle α og β fins to løsninger; \mathbf{x}_{\pm} , som er slik at

$$\mathbf{x}_{\pm} = \begin{pmatrix} x_{\pm} \\ y_{\pm} \end{pmatrix}, \qquad x_{-} < \frac{1}{2} < x_{+}, \quad y_{\pm} = \frac{\beta}{1 - 2x_{+}}.$$

Vi prøver å finne de to løsningene \mathbf{x}_{+} og \mathbf{x}_{-} ved enkel iterasjon;

$$\mathbf{x}_{n+1} = f(\mathbf{x}_n), \ n \ge 0, \quad \mathbf{x}_0 \text{ gitt}$$

Vi observerer at dette ikke alltid konvergerer, og forsøk med forskjellige startverdier \mathbf{x}_0 gir ikke mye informasjon om hvilke startverdier som gir konvergens. Vi ønsker å lage et plot som viser hvilke startverdier som gir konvergens. For å gjøre dette trenger vi noen hjelpresultater.

b) Vis at

$$|\mathbf{x}_{n+1}| \ge |\mathbf{x}_n|^2 - |\mathbf{c}|,$$

 $\det \mathbf{c} = (\alpha, \beta).$

c) Vis at dersom $|\mathbf{x}_n| > M = (1 + \sqrt{1 + 4|\mathbf{c}|})/2$ for en n, så vil $\{\mathbf{x}_n\}_{n>0}$ divergere.

Vi kan altså bruke $|\mathbf{x}_n| > M$ som en test på om iterasjonen konvergerer eller ikke. Vi kan også få et mål på hvor fort følgen divergerer ved å måle hvor mange iterasjoner skal til før $|\mathbf{x}_n| \geq M$.

d) Skriv et program (kalt f.eks. oppg4d(x,y,c1,c2,M,N)), i f.eks. Matlab eller python, som gitt initialdata (x_0, y_0) , M og N, returnerer n/N, der

$$n = \min \{ N, \min \{ j \le N \mid |\mathbf{x}_j| \ge M \} \}.$$

Som en test skal x = 0.325, y = 0.35, $\mathbf{c} = (-0.8, 0.156)$ og N = 800 gi at at n/N = 0.0138.

e) Skriv et program som tester initialdata i et rektiangel $[a,b] \times [c,d]$ for punkter på formen $(x_i,y_j)=(a+i(b-a)/K,c+j(d-c)/K)$ for $i=0,\ldots,K$ og $j=0,\ldots,K$, sett C(i,j)= oppg4d (x_i,y_j,\ldots) . Bruk Matlab kommandoen pcolor eller lignende for å visualisere matrisen C for verdiene: $a=c=-1,\ b=d=1,\ K=800,\ N=800,\ \alpha=-0.8025,\ \beta=0.156.$

Hint: Det kan være morsomt å eksperimentere med andre verdier på a, b, c, d og (spesielt) α og β .

SLUTT