(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-152941

(43)公開日 平成9年(1997)6月10日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
G06F	3/06	301		G06F	3/06	301G	
	9/06	540			9/06	540A	
						540M	
	13/10	320			13/10	320A	

審査請求 有 請求項の数3 OL (全 6 頁)

(21)出願番号	特顧平7-310364	(71)出顧人 000004237 日本電気株式会社
(22)出顧日	平成7年(1995)11月29日	東京都港区芝五丁目7番1号 (72)発明者 相合 孝雄 東京都港区芝五丁目7番1号 日本電気株
		式会社内 (74)代理人 弁理士 高橋 勇

(54) 【発明の名称】 磁気ディスク装置

(57) 【要約】

【課題】 磁気ディスクドライブに搭載されたファーム ウェアの更新を迅速かつ正確に行うのに好適な磁気ディ スク装置を提供すること。

【解決手段】 個別に装備した書替可能な不揮発性メモリ2Eからファームウェアを読み出して起動する複数の磁気ディスクドライブを有する。また、所定の記憶媒体から読み出した新ファームウェアを単位データD毎に区切って送信するファームウェア送信手段1と、複数の磁気ディスクドライブの各々に装備されファームウェア送信手段1から受信した単位データDを不揮発性メモリ2Eに逐次更新する複数のファームウェア更新手段2が、単位データDの更新処理が終了する毎に所定レベルの送信要求信号Txをファームウェア送信手段1に出力する送信要求機能を備えている。また、ファームウェア送信手段1が、所定レベルの送信要求信号Txを受信する毎に単位データDを送信する応答送信機能を備えたこと。

10

20

30

40

1

【特許請求の範囲】

【請求項1】 個別に装備した書替可能な不揮発性メモリからファームウェアを読み出して起動する複数の磁気 ディスクドライブを有すると共に、

所定の記憶媒体から読み出した新ファームウェアを単位 データ毎に区切って送信するファームウェア送信手段 と、前記複数の磁気ディスクドライブの各々に装備され 前記ファームウェア送信手段から受信した単位データを 前記不揮発性メモリに逐次更新する複数のファームウェ ア更新手段とを備えた磁気ディスク装置において、 前記ファームウェア更新手段が、前記単位データの更新 処理が終了する毎に所定レベルの送信要求信号を前記ファームウェア送信手段に出力する送信要求機能を備える と共に、

前記ファームウェア送信手段が、前記所定レベルの送信 要求信号を受信する毎に前記単位データを送信する応答 送信機能を備えたことを特徴とする磁気ディスク装置。

【請求項2】 前記複数のファームウェア更新手段は、 前記ファームウェア送信手段と直列に接続されていることを特徴とした請求項1記載の磁気ディスク装置。

【請求項3】 前記複数のファームウェア更新手段の全 てから前記所定レベルの送信要求信号が出力された場合 に前記ファームウェア送信手段に当該所定レベルの送信 要求信号を伝達するアンド回路を備えたことを特徴とし た請求項2記載の磁気ディスク装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁気ディスク装置 に係り、特に、磁気ディスクドライブのファームウェア の更新を必要とする磁気ディスク装置に関する。

[0002]

【従来の技術】従来、この種の磁気ディスク装置にあっては、ファームウェアを記憶したROM(Read・Only・Memory)が磁気ディスクドライブに着脱自在なコネクタを介して搭載されていた。また、技術進歩が急速に進む今日では、性能が向上したファームウェアの開発が早期に成され、これに伴って、メーカーでは既に販売した磁気ディスクドライブのファームウェアの更新サービスを実施する例が増えている。ここに、このサービスを受ける対象となる装置数は膨大なものである。

[0003]

【発明が解決しようとする課題】しかしながら、上記従来例にあっては、ファームウェアのバージョンアップに際し、磁気ディスクドライブに搭載されたファームウェア用のROMを人力により交換しなければならない事態が生じる。かかる場合、その交換対象となる装置数は前述のように膨大であり、単一のシステムだけに注目しても搭載されている複数の磁気ディスクドライブの個々に行う必要があるため、多数のエンジニアを動員するか又 50

2

は充分な作業時間を確保しなければならないという不都 合があった。また、実際には、この種の磁気ディスク装 置は例えば金融端末を統合する大型汎用機などに用いら れることが多く、装置を長時間停止させることは一企業 だけでなく社会に与える影響も大きいため、せっかく開 発されたファームウェアの更新サービスが円滑に促進さ れないという不都合があった。

【0004】更に、更新にあたるエンジニアは、ROM 交換の作業及び確認に非常な労力と時間とを必要とし、その過程では、ROMの挿入ミスやモジュールの組立ミスといった人為的ミスも生じ得るために作業の信頼性に欠けるという不都合があった。

[0005]

【発明の目的】本発明は、かかる従来例の有する不都合を改善し、特に、磁気ディスクドライブに搭載されたファームウェアの更新を迅速かつ正確に行うのに好適な磁気ディスク装置を提供することを、その目的とする。

[0006]

【課題を解決するための手段】請求項1記載の発明では、個別に装備した書替可能な不揮発性メモリからファームウェアを読み出して起動する複数の磁気ディスクドライブを有する。また、所定の記憶媒体から読み出した新ファームウェアを単位データ毎に区切って送信するファームウェア送信手段と、複数の磁気ディスクドライブの各々に装備されファームウェア送信手段から受信した単位データを不揮発性メモリに逐次更新する複数のファームウェア更新手段が、単位データの更新処理が終了する毎に所定レベルの送信要求信号をファームウェア送信手段に出力する送信要求機能を備えている。また、ファームウェア送信手段が、所定レベルの送信要求信号を受信する毎に単位データを送信する応答送信機能を備えた、という構成を採っている。

【0007】本発明では、上位メモリに記憶された新ファームウェアが単位データ毎に区切られてファームウェア更新手段に送信される。ファームウェア更新手段は、受信した単位データを不揮発性メモリに更新し、更新が終了すると、直ちに所定レベルの送信要求信号を出力する。この所定レベルの送信要求信号を受信したファームウェア送信手段は、直ちに次の単位データを送信する。この繰り返しにより不揮発性メモリに新ファームウェアが更新される。

【0008】また、請求項2記載の発明では、上記複数のファームウェア更新手段は、ファームウェア送信手段と直列に接続されている、という構成を採っている。更に、請求項3記載の発明では、複数のファームウェア更新手段の全てから所定レベルの送信要求信号が出力された場合にファームウェア送信手段に当該所定レベルの送信要求信号を伝達するアンド回路を備えた、という構成を採っている。これらにより、前述した目的を達成しよ

10

うとするものである。

[0009]

【発明の実施の形態】以下、本発明の一実施形態を図1 乃至図2に基づいて説明する。

【0010】図1に示す磁気ディスク装置は、個別に装備した書替可能な不揮発性メモリ2Eからファームウェアを読み出して起動する複数の磁気ディスクドライブを有する。また、所定の記憶媒体から読み出した新ファームウェアを単位データD毎に区切って送信するファームウェア送信手段1と、複数の磁気ディスクドライブの各々に装備されファームウェア送信手段1から受信した単位データDを不揮発性メモリ2Eに逐次更新する複数のファームウェア更新手段2は、単位データDの更新処理が終了する毎に所定レベルの送信要求信号Txをファームウェア送信手段1に出力する送信要求機能を備えている。また、ファームウェア送信手段1は、所定レベルの送信要求信号Txを受信する毎に単位データDを送信する応答送信機能を備えている。

【0011】本実施形態において、上記複数のファームウェア更新手段2,2,…は、ファームウェア送信手段1と直列に接続されている(以下、「ワイヤード接続」という)。更に、ファームウェア送信手段1には、複数のファームウェア更新手段2,2,…の全てから所定レベルの送信要求信号Txが出力された場合に当該ファームウェア送信手段1に該所定レベルの送信要求信号Txを伝達するアンド回路3が並設されている。

【0012】これを更に詳述すると、本実施形態において、ファームウェア送信手段1は、磁気テープ等の所定の記憶媒体から読み出された新ファームウェアを予め記 30 憶した上位メモリ1Aと、この上位メモリ1Aから読み出した新ファームウェアを単位データ毎に区切ってファームウェア更新手段2に送信する送信制御部1Bと、ファームウェア更新手段2に所定レベルのアテンション信号Sを出力するアテンション制御部1Cと、ファームウェア更新手段2から出力される送信要求信号Txを監視する送信要求監視部1Dとを備えている。

【0013】このうち、上位メモリ1はランダムアクセスメモリ(RAM)である。また、送信制御部1Bは、マイクロコンピュータで構成され、送信要求監視部1Dがハイレベルの送信要求信号Txを受信するごとに新ファームウェアを1バイト毎の単位データDに区切って送信する機能を備えている。アテンション制御部1Cは、送信制御部1Bが単位データDを送信する前にアテンション信号Sをローレベルに設定する機能と、ファームウェア更新部2からの送信要求信号Txがローレベルに設定される毎にアテンション信号Sをハイレベルに設定する機能とを備えている。ここで、単位データDはシリアルデータである。

【0014】一方、ファームウェア更新手段2は、例え 50 ームウェア更新手段2に出力する(図2の符号a)。フ

ば磁気ディスクドライブ毎に設けられたドライブ制御回路に装備され、ファームウェア送信手段1から送信された単位データDを受信する受信部2Aと、ファームウェア送信手段1からのアテンション信号Sを監視するアテンション監視部2Bと、ファームウェア送信手段1に送信要求信号Txを出力する送信要求出力部2Cと、受信部2Aで受信した単位データDを不揮発性メモリ2Eに

【0015】このうち、送信要求出力部2Cは、受信部2Aで単位データDが受信されると送信要求信号Txをローレベルに設定し、単位データDの更新処理が終了すると送信要求信号Txをハイレベルに設定するようになっている。また、更新制御部2Dは、マイクロコンピュータで構成され、単位データDの更新処理の他、送信要求出力部2Cの動作制御を行う。ここで、ファームウェア更新手段2の不揮発性メモリ2Eとしては、電気的に消去、書換が可能なEEPROMを採用している。

逐次更新する更新制御部2Dとを備えている。

【0016】図1に示す実施形態では、1つのファームウェア送信手段1と4つのファームウェア更新手段2が直列に接続されている。特に、送信要求信号Txは、ワイヤードのアンド回路3(接続されている送信要求出力部2Cの内1つでもローレベルを出力するとローレベル、全てがハイレベルを出力した時にハイレベルとなる)を介してファームウェア送信手段1に伝達される。また、送信制御部1Bは、シリアルデータ用の信号線によりファームウェア更新手段2の各受信部2と直列に接続されている。更に、アテンション制御部1Cは、ファームウェア更新手段2の各アテンション監視部2Bと直列に接続され、送信要求監視部1Dは、各送信要求出力部2Cと直列に接続されている。

【0017】次に、上記実施形態の全体動作を図2に基づいて説明する。この図2は、図1に示す実施形態において各接続信号線に伝送される信号のタイムチャートを示す。ここで、送信要求信号#1、送信要求信号#2は、4つのファームウェア更新手段2の内の任意の2つの送信要求出力部から出力された送信要求信号を示す。

【0018】ファームウェア更新処理の実行段になると、まず、ファームウェア送信手段1は、送信制御部1 Bから全てのファームウェア更新手段2に対し、不揮発性メモリ2Eに記憶されている現ファームウェアを消去するコマンドを出力する。この消去コマンドを受信したファームウェア更新手段2は、EEPROM2Eの内容を消去し、消去が終了するとその旨を送信要求出力部2 Cを介してファームウェア送信手段1に報告する。

【0019】接続された全てのファームウェア更新手段 2から消去の報告を受けると、ファームウェア送信手段 1は、アテンション制御部1Cによりアテンション信号 Sをローレベルに設定し、上位メモリ1Aから新ファー ムウェア1バイトを読み出し、送信制御部1Bからファ ームウェア更新手段2に出力する(図2の符号a)。フ

10

30

6

ァームウェア更新手段2の受信部2Aが1バイト分の単位データDを受信すると、それぞれの送信要求出力部2Cは、送信要求信号Txをローレベルに設定する(符号b)。更新制御部2Dは、受信部2Aが受信した単位データDをそれぞれの不揮発性メモリ2Eに書き込む。一方、送信要求監視部1Dにより送信要求信号Txがローレベルに設定されたのを確認したアテンション制御部1Cは、アテンション信号Sをハイレベルに設定する(符号c)。

【0020】更新制御部2Dが不揮発性メモリ2Eに1バイト書き込み終了すると、送信要求出力部2Cは、送信要求信号Txをハイレベルにする。しかし、ワイヤードアンド回路3で接続されているため、1つでもローレベルを出力している送信要求出力部2Cがあると、送信要求監視部1Dで受信される送信要求信号Txはハイレベルに設定されない(符号d)。一方、全ての送信要求出力部2Cがハイレベルを出力すると、送信要求監視部1Dで受信される送信要求信号Txがハイレベルに設定される(符号e)。

【0021】送信要求監視部1Dにより送信要求信号Txがハイレベルになったのを確認したファームウェア送信手段1は、アテンション制御部1Cによりアテンション信号Sをローレベルに設定し、上位メモリ1Aから次の1バイト分の単位データDを読み出し、先の1バイトデータと同様にファームウェア更新手段2は、そのデータを先の1バイトデータと同様にそれぞれの不揮発性メモリ2Eに書き込む。以降、同様にして、上位メモリ1Aに記憶された新ファームウェアデータが全てファームウェア更新手段2に転送されるまで、同一の処理が繰り返される。

【0022】これにより、新ファームウェアの更新が終了すると、各磁気ディスクドライブは、次回のシステム立ち上げにおいて、更新された新ファームウェアにより起動される。

【0023】このように、本実施形態によれば、ファームウェア更新手段2により上位メモリ1Aに記憶された新ファームウェアが不揮発性メモリ2Eに更新されるので、不揮発性メモリ2Eを人力により交換する必要がなく、ファームウェアの更新作業を迅速且つ正確に行うこ 40とができる。

【0024】特に、単位データDのやり取りを送信要求信号Txに基づきハンドシェイク手続きで行っているため、ファームウェア送信手段は、ファームウェア更新手段がデータ更新処理を終了し、データの受信が可能な状態になると、直ちに次のデータを送信することができ通信時間を短縮することができる。これにより、磁気ディスク装置のファームウェアのレビジョンアップ (版番の更新) に要する時間の短縮を図ることができる。

【0025】また、ファームウェア送信手段1は、直列 50

接続された複数のファームウェア更新手段2,2,…に対して同時に新ファームウェアを更新することができるので、接続された磁気ディスクドライブの台数によらずおよそ1台分の更新時間で全ての磁気ディスクドライブに新ファームウェアを更新することができ、これがため、ファームウェアの更新作業をより迅速に行うことができる。

【0026】更に、ファームウェア送信手段は、全てのファームウェア更新手段が受信可能な状態になってから次のデータを送信するので、各ファームウェア更新部が確実にデータを受信でき、シリアル通信の確実性を向上することができる。

【0027】これに加え、不揮発メモリとしてEEPR OMを採用したので、技術進展の加速化から度々新ファームウェアの開発が成された場合でも、一度だけでなくその都度、最新のファームウェアに更新することができる。また、送信制御部1Bは、ファームウェアデータを1バイトづつ転送するので、これを受信するファームウェア更新手段2の受信部2Aは、1バイト分のバッファを備えていれば良く、磁気ディスクドライブ2を比較的安価に提供することができる。

【0028】ここで、ファームウェア送信手段とファー ムウェア更新手段は同一筐体内に搭載されていることを 要しない。例えば、ディスク制御装置とこれに接続され た複数の磁気ディスク装置から構成される大規模磁気デ ィスクシステムにおいて、ファームウェア更新手段がデ ィスク制御装置や上位のホスト装置に搭載されていても 良い。本発明は係る構成をも意図しているものである。 また、各磁気ディスクドライブにアドレスを付け、ファ ームウェア送信手段が新ファームウェアデータのヘッダ として更新を行う磁気ディスクドライブのアドレスを指 定し、当該指定された磁気ディスクドライブのファーム ウェア更新手段のみに対してファームウェアの更新が行 われる構成としても良い。係る場合、複数の磁気ディス クドライブを選択的に更新することができ、特に、1台 だけに更新ミスが生じた場合のやり直し更新処理におい ても便利である。また、上位メモリは、ROMカードや フロッピディスク等でもよい。

[0029]

【発明の効果】本発明は、以上のように構成され機能するので、これによると、シリアル通信をアテンション信号により送信部と受信部ハンドシェイクで行っているため、送信部は全ての受信部がデータ処理を終了し、受信可能な状態になったらすぐ次のデータを送信でき、通信時間を短縮することができる。これにより、磁気ディスク装置のファームウェアのレビジョンアップに要する時間を短縮することができる。このことは、この種の磁気ディスク装置が大型汎用機のシステムに使用され、長時間装置を停止させることが困難であることからも、重要な効果であり、送信するデータの量が大きくなればなる

ほど、効果も大きくなる。

【0030】請求項2記載の発明では、ファームウェア 送信手段1は、直列接続された複数のファームウェア更 新手段2,2,…に対して同時に新ファームウェアを更 新することができるので、接続された磁気ディスクドライブの台数によらずおよそ1台分の更新時間で全ての磁気ディスクドライブに新ファームウェアを更新することができ、これがため、ファームウェアの更新作業をより 迅速に行うことができる。

【0031】更に、請求項3記載の発明では、ファーム 10 ウェア送信手段は、全てのファームウェア更新手段が受信可能な状態になってから次のデータを送信するので、各ファームウェア更新手段が確実にデータを受信でき、シリアル通信の確実性を向上することができる。これにより、ファームウェアのレビジョンアップがより確実に行われるので、信頼性の向上につながるとともに、失敗したときの再実効を考慮すれば、保守時間の短縮にもつながる、という従来にない優れた磁気ディスク装置を提*

*供することができる。

【図面の簡単な説明】

【図1】本発明の一実施形態を示すプロック図である。

8

【図2】図1に示す実施形態のファームウェア更新動作 を説明するタイムチャートである。

【符号の説明】

- 1 ファームウェア送信手段
- 1A 上位メモリ
- 1 B 送信制御部
- 10 1 C アテンション制御部
 - 1D 送信要求監視部
 - 2 ファームウェア更新手段
 - 2A 受信部
 - 2 B アテンション監視部
 - 2 C 送信要求出力部
 - 2D 更新制御部
 - 2E 不揮発性メモリ (EEPROM)
 - 3 アンド回路

[図1]

. . .

【図2】

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 09152941 A

(43) Date of publication of application: 10 . 06 . 97

(51) Int. CI

G06F 3/06 G06F 9/06 G06F 13/10

(21) Application number: 07310364

(22) Date of filing: 29 . 11 . 95

(71) Applicant:

NEC CORP

(72) Inventor:

SOGO TAKAO

(54) MAGNETIC DISK DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a magnetic disk device suitable for quickly and accrately updating firmware loaded on each magnetic disk drive.

SOLUTION: The magnetic disk device has plural magnetic disk drives for reading out firmware from individually loaded rewritable non-volatile memories 2E to start it. The device is also provided with a firmware transmitting means 1 for transmitting new firmware read out from a prescribed recording medium dividedly in each unit data D and plural firmware updating means 2 loaded on respective magnetic disk drives, receiving the unit data D from the means 1 and sequentially updating the contents of their corresponding memories 2E. Each firmware updating means 2 is provided with a transmission request function for outputting a transmission request signal Tx with a prescribed level to the means 1 in each end of the updating processing of the unit data D. The means 1 is provided with a response transmitting function for transmitting the unit data D in each reception of the request signal Tx.

COPYRIGHT: (C)1997,JPO

