

BREAST CANCER ULTRASOUND IMAGE ANALYSIS

Jack McMorrow, Alejandra Mejia

Source: Google

Why breast cancer detection is so relevant?

- Every 29 secs breast cancer is diagnosed (National Context)
- **1 in 8 women** will develop breast cancer in her lifetime (Norcal Think Pink)
- 25% of women with breast cancer are younger than
 50 years old (Practis inc)
- **85% of women** diagnosed have no family history (Virginia Breast Cancer Foundation)
- 98% of women survive with early detection of breast cancer(Practis inc)
- Ultrasound is highly accurate, research suggesting it can correctly detect around 80% of breast cancers (nbcf)

Source: Norcal Think Pink

About our dataset

- The dataset used in the current project was retrieved from <u>Kaggle</u> and contains 780 images collected from 2018.
- Ground truth images are also contained named masks
- Overall, the dataset contains more than 1,500 images
- Unbalanced dataset
- Breast ultrasound images among women in ages between 25 and 75 years old
- Images are categorized in three categories: normal, benign, malignant

Raw dataset overview

Pre-processing

- Dataset Creation:
 - Dataset were separated into original, masked and a new dataset was created overlaying the images
- Data was split into training, validation (0.2) and test sets (0.3)
- Dataset exploration:
 - Class distribution
 - Sample Images
- Resizing of images to 224 (ResNet alignment)
- Std and mean exploration for normalization
- Labels changed to:
 - 0: Benign
 - 1: Malignant
 - 2: Normal

Source: Google

Overview of overlayed dataset

What are masks and why are they important?

- Mask: Ground truth (image boundary) used Matlab an consisting of a freehand segmentation for each image.
- Using mask advantages:
 - Provide information about the spatial extent and location of abnormalities within medical images.
 - Enhance the interpretability of model predictions
 - Helps models generalize well to new patients and unseen variations in imaging conditions.

Normal US image Ground truth image (Normal)

Ground truth image (Malignant)

Source: Walid Al-Dhabvani et Al.(2020)

Augmentation techniques implemented

- When properly implemented augmentation techniques help improve model's performance, generalization, and robustness.
- Five techniques were used
- Given the unbalanced data set augmentation techniques were only implemented in the minority classes (malignant,normal) of the training dataset

Source: AlMultiple

Our approach

- Capitalize in Pytorch recent years popularity
- Tested out two different approaches:
 - Only use the actual image files and ignore the mask files to classify.
 - Overlay the actual image and the masks and use the overlayed images to classify to try improve model performance
- Used pretrained Resnet 101, benefits include:
 - Hierarchical feature learning
 - Transfer learning
 - Performance
 - Spatial Hierarchies
- Model architecture:
 - Adam, 20 epochs, CrossEntropyLoss, ReduceLROnPlateau

RESNET-101 Architecture

Source: Research Gate + Authors

Model 1: Original images with no mask

METRICS O		DATASET precision	recall	f1-score	support
	Θ	0.83	0.74	0.78	125
	1	0.60	0.66	0.62	61
	2	0.67	0.77	0.72	48
accur	асу			0.73	234
macro	avg	0.70	0.72	0.71	234
weighted	avg	0.74	0.73	0.73	234

Accuracy: 0.7265, Precision: 0.7372, Recall: 0.7265, F1: 0.7295

Model 1: Original images with no mask

Model 2: Original with mask

METRICS ON T	EST DATASET			
	precision	recall	f1-score	support
0	0.98	0.99	0.98	141
1	0.97	0.95	0.96	62
2	1.00	1.00	1.00	31
accuracy			0.98	234
macro avg	0.98	0.98	0.98	234
weighted avg	0.98	0.98	0.98	234

Accuracy: 0.9786, Precision: 0.9786, Recall: 0.9786, F1: 0.9786

Model 2: Original with mask

Limitations and future work

- Strategies such as class weighting or data augmentation may be insufficient to address severe imbalances.
- The model's performance could be constrained by a limited dataset size, especially in medical imaging where acquiring labeled data is often resource-intensive.
- The model may struggle to generalize to diverse and rare cases not well-represented in the training set.
- Model performance may be sensitive to the quality of input images, and variations in imaging conditions might affect predictions.

- Exploring ensemble learning techniques, combining predictions from multiple models, can enhance overall model performance and provide more robust predictions.
- Incorporating explainability techniques such as SHAP (SHapley Additive exPlanations) or Grad-CAM (Gradient-weighted Class Activation Mapping) for better model interpretability.
- Evaluating the model's performance in real-world clinical settings and ensuring its seamless integration into the existing healthcare infrastructure.
- Consider ethical implications, privacy concerns, and regulatory compliance in healthcare Al applications.

Streamlit Demo