Chapter 1- Polynomial Functions

WORKBOOK

MHF4U

W1 – 1.1 – Power Functions

MHF4U

Jensen

1) Identify

mial functions:

a)
$$p(x) =$$

b)
$$h(x) = \dots$$

c)
$$f(x) = 2x^4$$

d)
$$y = 3x^5 - 2x^3 + x^2 - 1$$

e)
$$k(x) = 8^x$$

f)
$$y = x^{-3}$$

2) State the degree and the leading coefficient of each polynomial

Polynomial	Degree	Leading Coefficient
$y = 5x^4 - 3x^3 + 4$		
y = -x + 2		
$y = 8x^2$		
$y = -\frac{x^3}{4} + 4x - 3$		
y = -5		
$y = x^2 - 3x$		

3) Complete the following table

Graph of Function	Even or Odd Degree?	Sign of Leading Coefficient	Domain and Range	Symmetry	End Behaviour
0 **					
0 *					
0 *					
0					
0 **					

4) Match each function to its end behavior

$$y = -x^3$$

$$y = \frac{3}{7}x^2$$

$$y = 5x$$

$$v = 4x^5$$

$$y = -x^6$$

$$y = -0.1x^{11}$$

$$y = 2x^4$$

$$y = -9x^{10}$$

End Behaviour	Functions
Q3 to Q1	
Q2 to Q4	
Q2 to Q1	
Q3 to Q4	

5) Determine whether each graph represents a power function, exponential function, a periodic function, or none of these.

a)

W2 – 1.2 – Characteristics of Polynomial Functions MHF4U

1) Complete the following table

Graph	Sign of Leading Coefficient	Even or Odd Degree?	End Behaviour	Symmetry	Number of turning points	Number of x-intercepts	Least Possible Degree
y							
0 0							
3 ³							
y 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							
0							

2) Complete the following table

Graph	Sign of Leading Coefficient	Even or Odd Degree?	End Behaviour	Symmetry	Number of turning points	Number of x-intercepts	Least Possible Degree
0 **							
0 0							
2 V							

3) Complete the following table

Equation	Degree	Sign of Leading Coefficient	Even or Odd Degree?	End Behaviour	Possible number of turning points	Possible number of x-intercepts
$f(x) = -4x^4 + 3x^2 - 15x + 5$						
$g(x) = 2x^5 - 4x^3 + 10x^2 - 13x + 8$						
$p(x) = 4 - 5x + 4x^2 - 3x^3$						
h(x) = 2x(x-5)(3x+2)(4x-3)						

4) Use end behaviours, turning points, and zeros to match each equation with the most likely graph. Write the letter of the equation beneath the graph.

A)
$$y = 2x^3 - 4x^2 + 3x + 2$$
 B) $y = -4x^4 + 3x^2 + 4$ **C)** $y = x^2 + 3x - 5$

B)
$$y = -4x^4 + 3x^2 + 4x^2 + 4x^2$$

C)
$$y = x^2 + 3x - 5$$

D)
$$y = x^4 - x^3 - 4x^2 + 5x$$

D)
$$y = x^4 - x^3 - 4x^2 + 5x$$
 E) $y = -2x^5 + 3x^4 + 6x^3 - 10x^2 + 2x + 5$

$$F) y = 3x^3 + 5x^2 - 3x + 1$$

- 5) State the degree of the polynomial function that corresponds to each constant finite difference. Then determine the value of the leading coefficient for each polynomial function.
- a) second differences = -8

b) fourth differences = 24

6) Use finite differences to determine the degree and value of the leading coefficient for each polynomial function.

	•
2	1
a	,

×	у
-3	-45
-2	-16
-1	-3
0	0
1	-1
2	0
3	9
4	32

b)

X	У
-2	-40
-1	12
0	20
1	26
2	48
3	80
4	92
5	30

7) By analyzing the impact of growing economic conditions, a demographer establishes that the predicted population, P, of a town t years from now can be modelled by the function

$$P(t) = 6t^4 - 5t^3 + 200t + 12000$$

a) What is the value of the constant finite differences

b) What is the current population of the town

c) What will the population of the town be 10 years from now

W3 – 1.3 – Factored Form Polynomial Functions MHF4U

1) Match each equation with the most suitable graph. Write the letter of the equation beneath the matching graph.

A)
$$f(x) = 2(x+1)^2(x-3)$$
 B) $f(x) = (x+1)^2(x-3)^2$

B)
$$f(x) = (x+1)^2(x-3)^2$$

c)
$$f(x) = -2(x+1)(x-3)^2$$

c)
$$f(x) = -2(x+1)(x-3)^2$$
 D) $f(x) = x(x+1)(x-3)(x-5)$

2) Complete the table

Equation	Degree	Leading Coefficient	End Behaviour	x-intercepts
f(x) = (x-4)(x+3)(2x-1)				
g(x) = -2(x+2)(x-2)(1+x)(x-1)				
$h(x) = (3x + 2)^{2}(x - 4)(x + 1)(2x - 3)$				
$p(x) = -(x+5)^3(x-5)^3$				

- 3) For each graph, state...
 - i) the least possible degree and the sign of the leading coefficient
 - ii) the x-intercepts (specify order of zero) and the factors of the function
 - iii) the intervals where the function is positive/negative

- i) degree: leading coefficient:
- **ii)** *x*-intercepts: factors:

iii)	Interval		
	Sign		

- i) degree: leading coefficient:
- **ii)** *x*-intercepts: factors:

iii)	Interval		
	Sign		

- i) degree: leading coefficient:
- **ii)** *x*-intercepts: factors:

iii)	Interval		
	Sign		

- i) degree: leading coefficient:
- **ii)** *x*-intercepts: factors:

iii)	Interval		
	Sign		

۸۱	\ For	each function	, complete the char	t and skatch a	nossible granh	of the function	a lahalling ka	w naints
4)	POI	each function,	, complete the char	i anu skeitn a	possible graph	of the function	i labelling ke	y pomis

a)
$$f(x) = -2(x-3)(x+2)(4x-3)$$

Degree	Leading Coefficient	End Behaviour	x-intercepts	y-intercept

b)
$$g(x) = (x-1)(x+3)(1+x)(3x-9)$$

Degree	Leading Coefficient	End Behaviour	<i>x</i> -intercepts	y-intercept

c) $h(x)$	=-(x+4)	$(x-1)^2$	$(x + 2)^2$	(2)(2x-3))
-----------	---------	-----------	-------------	-----------	---

Degree	Leading Coefficient	End Behaviour	x-intercepts	<i>y</i> -intercept

d)
$$p(x) = 3(x+6)(x-5)^2(3x-2)^3$$

Degree	Leading Coefficient	End Behaviour	<i>x</i> -intercepts	<i>y</i> -intercept

5) Write the equation of each function

b)

6) Determine an equation for a quintic function with zeros -1 (order 3) and 3 (order 2) that passes through the point (-2, 50)

7) Determine the zeros of $f(x) = (2x^2 - x - 1)(x^2 - 3x - 4)$

W4 - 1.4 - Transformations MHF4U

1) Match each graph with the corresponding function.

A)
$$y = 2(x-3)^3 + 1$$

B)
$$y = -\frac{1}{3}(x+1)^3 - 1$$

c)
$$y = 0.2(x - 4)^4 - 3$$

A)
$$y = 2(x-3)^3 + 1$$
 B) $y = -\frac{1}{3}(x+1)^3 - 1$ **C)** $y = 0.2(x-4)^4 - 3$ **D)** $y = -1.5(x+3)^4 + 4$

2) List a good set of key points for the following parent functions:

$=x^2$
у

$f(x) = x^3$				
x	у			

$f(x) = x^4$	
x	у

$f(x) = x^5$	
x	у

3) Identify the a, k, d and c values and explain what transformation is occurring to the parent function:

a)
$$f(x) = -2(x-1)^2$$

b)
$$g(x) = [-\frac{1}{3}(x+5)]^4 - 1$$

4) Write the full equation given the parent function and the transforming function:

a)
$$f(x) = x^5$$
, $g(x) = -3f[2(x+5)] - 1$

a)
$$f(x) = x^5$$
, $g(x) = -3f[2(x+5)] - 1$ **b)** $f(x) = x^3$, $g(x) = \frac{1}{2}f\left[-\frac{1}{4}(x-4)\right] + 7$

5) For the following questions, use the key points of the parent function to perform transformations. Graph the parent and transformed function. Write the equation of the transformed function.

a)
$$f(x) = x^4$$
 $g(x) = \frac{1}{2}f[-(x-5)] + 1$

b)
$$f(x) = x^3$$
 $g(x) = -f[-2(x+1)] + 6$

- **6)** Write an equation for the function that results from the given transformations.
- a) The function $f(x) = x^4$ is translated 2 units to the left and 3 units up.
- **b)** The function $f(x) = x^5$ is stretched horizontally by a factor of 5 and translated 12 units to the left.
- c) The function $f(x) = x^4$ is stretched vertically by a factor of 3, reflected vertically in the x-axis, and translated 6 units down and 1 unit to the left.
- d) The function $f(x) = x^6$ is reflected vertically in the x-axis, stretched horizontally by a factor of 5, reflected horizontally in the y-axis, and translated 3 units down and 1 unit to the right.

W5 – 1.3 – Symmetry in Polynomial Functions

MHF4U

1) Determine whether each function is even, odd, or neither. Does it have line symmetry about the y-axis, point symmetry about the origin, or neither?

a)
$$y = x^4 - x^2$$

b)
$$y = -2x^3 + 5x$$

c)
$$y = -4x^5 + 2x^2$$

d)
$$y = x(2x+1)^2(x-4)$$

e)
$$y = -2x^6 + x^4 + 8$$

2) State whether each function is even or odd. Verify algebraically.

a)
$$f(x) = x^4 - 13x^2 + 36$$

b)
$$g(x) = 6x^5 - 7x^3 - 3x$$

- 3) Use the given graph to state:
- a) x-intercepts
- **b)** number of turning points
- c) least possible degree
- d) any symmetry present; even or odd function?

e) the intervals where f(x) < 0

4) Label each function as even, odd, or neither

