Neural Fourier Transform: Learning group representation from data

Kenji Fukumizu

The Institute of Statistical Mathematics / Preferred Networks

Workshop: Mathematics of data streams: signatures, neural differential equations, and diffusion models

April 11, 2024 @ Greifswald, Germany

Outline

1. Group actions in machine learning
A quick review of two major existing approaches

- 2. A new approach: Neural Fourier Transform
 - 1. Representation learning
 - 2. Neural Fourier Transform: Equivariant representation learning
 - 3. Theory
 - 4. Experiments

Symmetry/group action exits in nature

[Thürlemann et al. J. Chem. Theory Comput. 2022]

Reflection

Crystal lattice

Atomic configuration/static potential

<u>Def.</u>

G: group, X: set. An <u>action</u> of G on X is a mapping $\alpha: G \times X \to X$ such that

- i) $\alpha(e, x) = x$
- ii) $\alpha(hg, x) = \alpha(h, \alpha(g, x))$

for any $x \in X$ and $g, h \in G$.

Denoted by $g \circ x \coloneqq \alpha(g, x)$.

Invariance and equivariance in machine learning

Invariant
Object classification

$$\varphi: X \to Y, G \curvearrowright X,$$

 $\varphi(g \circ x) = \varphi(x)$
 $(\forall g \in G, \forall x \in X)$

EquivariantSegmentation

$$G \curvearrowright X, G \curvearrowright Y,$$

 $\varphi(g \circ x) = g \circ \varphi(x)$
 $(\forall g \in G, \forall x \in X)$

- Group actions in machine learning
 - Various data naturally has symmetry and group actions.
 - Image: shifts, SO(2)-rotation, ···
 - Spherical data: SO(3)-rotations
 - Graphs: permutation/graph isomorphism
 - Incorporating such group actions should be useful for the compact representation:
 - Data: Low dimensional expression
 - Model: Smaller models, efficient learning

A remark: Invariance vs Equivariance

- Equivariance is usually more focused in machine learning/deep learning.
 - Invariance can be added only at the end.

If Ψ_{ℓ} 's are all equivariant, adding an invariant layer Φ in final layer $\Phi \circ \Psi_{L} \circ \cdots \circ \Psi_{1}(x)$

makes an invariant mapping.

Two major approaches to equivariance in machine learning

1) Data augmentation:

Augment the training data with the known group actions.

- Easy. Extendable to non-group cases.
- Needs many training data.
- In addition to supervised learning, self-supervised learning often uses data augmentation.

e.g. SimCLR (Chen et al 2020), CPC (Oord et al 2018), etc.

* Self-supervised learning:
 learning of features without
 class-labels/teaching data.
 It avoids the cost of labeling/annotation.

SimCLR

2) Architecture:

Convolutional Neural Networks (CNN)

Imposes the symmetry in the architecture.

 Original CNN considers translation equivariance by convolution layers.

?ig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of unit whose weights are constrained to be identical.

LeCun 1998

- Convolutional layer:
 - 2D gray-scale image f of $W \times H$ pixels.
 - $\psi_{[a,b]}: \mathbb{Z}^2 \to \mathbb{R}$. A spatial filter of small size (e.g. 3×3). $h^{out} = \psi * f^{In}$ i.e., $h^{out}_{[i,j]} = \sum_{i-a \in \{0,\pm 1\}} \sum_{j-b \in \{0,\pm 1\}} \psi_{[i-a,j-b]} f^{In}_{[a,b]}$ $f^{out}_{[i,j]} = \phi(h^{out}_{[i,j]} + \theta)$
 - Equivariance:

Def.
$$(L_S f)[i,j] \coloneqq f(i-s_W, j-s_H), \ (s = (s_W, s_H)).$$

Then, $L_S(\psi * f^{In}) = \psi * (L_S f^{In})$

- More general groups
 - Group CNN: SO(2), SE(2), SO(3), etc.

 (Cohen & Welling ICML 2016; Cohen & Welling ICLR 2017; Weiler&Cesa NeurIPS 2019; Weiler et al NeurIPS 2018)
 - Competitive results in applications e.g. Medical images

(Weiler, Hamprecht, Storath. CVPR 2018; Lafarge et al, *Medical Image Analysis* 2021)

Our study: Equivariant Representation Learning

In ML, "representation" refers to a useful expression of data, which is often learned as a mapping of data.

In Math, "representation" refers to a homomorphism between the relations of two different (algebraic) objects, such as representation of a group.

Autoencoder: a typical model for representation learning

Model for data compression

$$\min_{w,\theta} \sum_{x} ||x - \Psi_w(\Phi_{\theta}(x))||^2$$

 $z = \Phi_{\theta}(x)$: encoder (Neural)

 $\tilde{x} = \Psi_w(z)$: decoder (Neural)

Latent representation

Representation learning

The latent variable z is expected to encode meaningful expression/representation of data.

Factorized representation

- Factorized/disentangled representations $z = (z_1, ..., z_d)$: each z_i has a specific role.
 - Easier interpretation
 - Control of each factor
 - Imposing factorization β -VAE (Higgins et al 2017), FactorVAE (Duan et al 2022) etc

 β -VAE (Higgins et al 2017)

 We use "group representation" for factorized/disentangled representation learning.

Neural Fourier Transform: Learning group representation from data

Miyato, Koyama, Fukumizu. NeurIPS 2022; Koyama, Fukumizu., Hayashi, Miyato. ICLR 2024

Takeru Miyato
(U Tubingen/
Preferred Networks)

Masanori Koyama (Preferred Elements)

Kohei Hayashi (Preferred Elements)

Review: Fourier Transform

- Group representation $\rho: G \to GL(V)$, group homomorphism, V: vector space.
- LCA (locally compact Abelian) group G

$$\Phi: L^2(G) \to L^2(\widehat{G}), \quad f \mapsto \widehat{f}(\rho) \coloneqq \int_G f(x) \overline{\rho(x)} dx.$$
 Isometry.

 \hat{G} : the set of continuous characters (1-dim irreducible representations).

Compact group

 $[\rho] \in \widehat{G} := \{\text{equivalence classes of irreducible unitary representations of } G\}$

Unitary map
$$\Phi: L^2(G) \to \mathcal{B}^2(\widehat{G}) \coloneqq \ell^2\left(\bigoplus_{[\rho] \in \widehat{G}} \mathcal{B}_2(H_\rho)\right)$$
, $f \mapsto \widehat{f}(\rho) \coloneqq \int_G f(g) \rho(g)^* dg = \int_G f(g) \rho(g^{-1}) dg$ (ρ, H_ρ) ; unitary repr. $\mathcal{B}_2(H_\rho)$: Hilbert space of Hilbert-Schmidt operators on $H_{\rho, 1}$

Equivariance of Fourier Transform

 $f \in \mathcal{F}(G)$ function on G (compact or LCA group) L_g : shift operation on $\mathcal{F}(G)$. $(L_g f)(h) \coloneqq f(g^{-1}h)$. $\rho: G \to GL(V)$ representation of G.

$$\mathcal{F}(G) \xrightarrow{\mathsf{FT} \ \Phi} \mathcal{B}^{2}(\widehat{G}))$$

$$L_{g} \downarrow \qquad \qquad \downarrow A_{g}$$

$$\mathcal{F}(G) \xrightarrow{\mathsf{FT} \ \Phi} \mathcal{B}^{2}(\widehat{G})$$

$$\mathsf{FT} \ \Phi$$

Prop. (Equivariance of Fourier transform)

$$\Phi \circ L_g = A_g \circ \Phi,$$

where A_g acts on $\ell^2\left(\bigoplus_{[\rho]}\mathcal{B}_2(H_\rho)\right)$ by $A_g\left(B_\rho\right)_{\rho\in\widehat{G}}=\left(B_\rho\rho(g^{-1})\right)_{\rho\in\widehat{G}}$.

$$\because \int_{G} f(g^{-1}h) \rho(h^{-1}) dh = \int_{G} f(\tilde{h}) \rho(\tilde{h}^{-1}g^{-1}) d\tilde{h} = \int_{G} f(\tilde{h}) \rho(\tilde{h}^{-1}) \rho(g^{-1}) d\tilde{h} = \Phi(f)(\rho) \rho(g^{-1})$$

We use the objective function of NN training to approximately realize this equivariance relation.

Equivariant Representation Learning

(Miyato, Koyama, F. NeurIPS 2022; Koyama, F., Hayashi, Miyato ICLR 2024)

- General setting of data
 - Some group G acts on data space X.
 - Data: many examples of group action
 - Paired data: $(x_i, g_i \circ x_i)$ $x_i \in \mathcal{X}, g_i \in G$
 - Sequences: $(x_i, g_i \circ x_i, g_i^2 \circ x_i, g_i^3 \circ x_i, ...)$
 - Triplet: $(x_i, g_i \circ x_i, g_i^2 \circ x_i)$

Encoder: $\Phi: \mathcal{X} \to \mathbb{R}^{m \times a}$,

Decoder: $\Psi: \mathbb{R}^{m \times a} \to \mathcal{X}$

M: matrix applied to the latent space

$$\Psi\left(M_g^t\Phi(s)\right)\approx g^t\circ s$$

Existing approaches to equivariant learning

- Group G and its action are explicitly known
 - CNN: Built-in architecture to a specific group
 - Data augmentation: augmentation using the group action

This work

- Group action does exist, but may not be known explicitly
 - Not acting on the data space
 - May be observed with unknown nonlinearity

Approach:

Learn the group representation from data by equivariance constraint.

Rotation in the *latent* space

Nonlinear observation (fisheye lens)

Various scenarios

	G	element g	Action	M_g
U-NFT	Unknown	Unknown	Unknown	Learning
G-NFT	Known	Unknown	Unknown	Harmonic functions
g-NFT	Known	Known	unknown	Harmonic functions Learn only Φ,Ψ

Hardest setting: Unsupervised Learning of Equivariant Structure from Sequences (Miyato et al. NeurIPS 2022)

- <u>U-NFT</u>: Neither G or $g \in G$ is known
- Data: many sequences $\{\mathbf{s}^{(i)}\}_{i=1}^{N}$ $\mathbf{s}^{(i)} = (s_0^{(i)}, s_1^{(i)}, s_2^{(i)}, \dots, s_T^{(i)}). \ s_t^{(i)} \in \mathcal{X}$
- Sequence is driven by group action G: group (unknown) acting on X.

$$\exists g^{(i)} \in G \text{ s.t. } s_t^{(i)} = (g^{(i)})^t \circ s_0^{(i)}.$$

- Each seq $\mathbf{s}^{(i)}$ has its own $g^{(i)} \in G$, but unknown.
- Stationarity: $g^{(i)} \in G$ is the same in a sequence.

Rotation, Shifts, Color rotation

A sequence **s** is generated given an initial image s_0 and a group element $g \in G$.

Model: Linear latent transition with AE

- · Autoencoder.
 - Encoder $\Phi: \mathcal{X} \to \mathbb{R}^{a \times m}$, Decoder $\Psi: \mathbb{R}^{a \times m} \to \mathcal{X}$
- Linear transform for latent:
 - $M_{\mathbf{s}} \in GL(\mathbb{R}^a)$ depends on sequence \mathbf{s} . $\Phi(s_{t+1}) = M_{\mathbf{s}}\Phi(s_t)$
- Matrix latent: $\Phi(s) \in \mathbb{R}^{a \times m}$ Can have a small matrix M_s . Can incorporate multiplicities of representation.
- Objective function $\min E \| M_{\mathbf{s}} \Phi(s_t) \Phi(s_{t+1}) \|^2 \qquad \text{[Equivariance]}$ $\min E \left\| \Psi \left(M_{\mathbf{s}}^{\ell} \Phi(s_t) \right) s_{t+\ell} \right\|^2 \qquad \text{[Pred./Reconst.]}$

Estimation of M_s

End-to-end algorithm:

$$\mathbf{S} = (s_0, ..., s_L, s_{L+1}, ..., s_{L+P})$$

$$\mathbf{S}_0^L \coloneqq (s_0, ..., s_L) \text{ for estimating } M_s, \quad (s_{L+1}, ..., s_{L+P}) \text{ for prediction}$$

- LS estimator $M: \widehat{M}(\mathbf{S}_0^L|\Phi) \coloneqq \arg\min_{M} \sum_{t=0}^{L-1} ||M\Phi(s_t) \Phi(s_{t+1})||^2 = H_{+1}H_{+0}^{\dagger}$ $H_{+1} \coloneqq (\Phi(s_1); \dots; \Phi(s_L)), H_{+0} \coloneqq (\Phi(s_0); \dots; \Phi(s_{L-1})), \widehat{M_s} \text{ depends on sequence } \mathbf{s}.$
- Learning of Φ , Ψ : $\min_{\Phi,\Psi} \sum_{\mathbf{S}} \sum_{p=1}^{P} \left\| \Psi \left(\widehat{M} (\mathbf{S}_0^L | \Phi)^p \Phi(s_L) \right) s_{L+p} \right\|^2$ Plug-in and auto-grad!
- 3-time steps are sufficient:

We use
$$L = 1, P = 1$$
. $\mathbf{s} = (s_0, s_1, s_2)$ (3 points) $\widehat{M}_s = \Phi(s_1)\Phi(s_0)^{\dagger}$

2. Solve linear problem:

Rollout and

decode by:

 $\widetilde{s}_{t+2}=\Psi((M^*)^t\Phi(s_2))$

 $M^*=\Phi(s_1)\Phi(s_2)^{\dagger}$

1. Encode

 S_1, S_2

Irreducible decomposition of M_s

- Assume \widehat{M}_s depend only on g. Then, $g \mapsto \widehat{M}(g)$ is a group representation. (See next slide)
- Try irreducible decomposition. It will work if the representation is completely reducible.
- Algorithmically, simultaneous block-diagonalization is applicable.
 A common change of basis over all the sequences.

U is common.

Disentangled representation by irreducible decomposition

Theory about M_s

Denote $M(g, s_0) := M_{\mathbf{s}} (g \in G, s_0)$: initial point of \mathbf{s} .)

Prop. Suppose $\Phi(s)$ is of full-rank, and the linear map $M(g,s_0)$ satisfies the equivariant condition: $M(g,s_0)\Phi(s) = \Phi(g \circ s_0) \ (\forall s_0 \in \mathcal{X}, \forall g \in G)$. If $M(g,s_0) = M(g)$, then, $M: g \mapsto M(g)$ is a group representation of G.

Proof) Easy from the equivariant condition.

- For the moment, there is no theoretical guarantee that the proposed algorithm realizes the condition $M(g, s_0) = M(g)$.
- We have some partial results on this condition.

• Partial theoretical results on " $M(g, s_0) = M(g)$?".

Prop. 1. (Intra-orbits.)

G: commutative compact Lie group, $M(g,h \circ s) = M(g,s) \quad (\forall h \in G, s \in \mathcal{X}).$

Prop. 2. (inter-orbits) Existence is guaranteed G: connected Lie group. We can find matrices P_s such that $\widetilde{\Phi}(s) \coloneqq P_s \Phi(s), \ \widetilde{M}(g,s) \coloneqq P_s M(g,x)$ give $\widetilde{M}(g,s) = \widetilde{M}(g)$ (does not depend on s)

Experiment 1: Effective representation

- Linear classification with learned latent variable $\Phi(x)$
 - MSP model is trained with only "4"
 - $G = SE(2) \times \{Color change\}$
 - Using the features $\Phi(x)$, we made 10 class linear classifier for "0",...,"9".

^{*} SimCLR, CPC: standard methods of self-supervised learning

Experiment 2: disentanglement

Rendered image sequences:

 $G = \text{product group of 5 types of changes. } g \in G \text{ generates a sequence.}$

Blocks obtained by simultaneous block diagonalization

Reconstruction by each block

$$\hat{s}_t \coloneqq \Psi \Big(M_b^t \Phi(s_0) \Big)$$

Neural Fourier Transform (Koyama et al ICLR 2024)

- Proposed method: a nonlinear generalization of Fourier transform
 - Learning by the equivariance constraint.

$$L_g x \approx \Psi \circ M(g) \circ \Phi(x) = \Psi \circ P^{-1} \circ \begin{pmatrix} \rho_1(g) & 0 \\ \rho_2(g) & 0 \end{pmatrix} \circ \underbrace{P \circ \Phi(x)}_{\text{Fourier Transform}} \circ \underbrace{P \circ \Phi(x)}_{\text{Irreducible}} \circ \underbrace{P \circ \Phi(x)}_{\text{representations}} \circ \underbrace{P \circ \Phi(x)}_{\text{Fourier Transform}} \circ \underbrace{P \circ \Phi(x)}_{\text{Fourier$$

• *c.f.* Classical Fourier transform on function $\{0, \frac{1}{N}, \dots, \frac{N-1}{N}\} \subset \mathbb{S}^1$.

$$\hat{f}_n = \Phi(f)(n) = \sum_{k=0}^{N-1} e^{-i2\pi \frac{k}{N}} f\left(\frac{k}{N}\right)$$

Equivariance:
$$\Phi \big(f(\cdot - a/N) \big) = e^{i2\pi \frac{a}{N}n} \hat{f}_n$$
 or
$$L_{a/N} f = \Phi^{-1} \circ \begin{pmatrix} 1 & \cdots & O \\ \vdots & \ddots & \vdots \\ O & \cdots & e^{i2\pi a \frac{N-1}{N}} \end{pmatrix} \circ \Phi(f)$$

Properties of Neural Fourier Transform

- NFT works for "data", while the standard FT works for functions on a group.
- Group action may not be known:
 NFT learns the transforms though data (examples of actions). It may not know the group or group actions.
- Training-based FT
 It uses only necessary frequencies to express the data.

Abstract construction

$$\mathcal{E} \coloneqq \{\Phi \colon \mathcal{X} \to V \mid V \colon \text{vector space, } G\text{-equivariant }$$
 with unitary repr. $\rho \colon G \to \operatorname{GL}(V), \ V = \operatorname{Cl Span}\{\Phi(x) \mid x \in \mathcal{X}\}\}$ $\mathcal{K} \coloneqq \{k \colon G\text{-invariant positive definite kernel on} \mathcal{X}\}$ $k(g \circ x, g \circ y) = k(x, y)$

<u>Theorem</u> $\mathcal E$ has one-to-one correspondence with $\mathcal K$ up to G-isomorphism.

- If $\Phi: \mathcal{X} \to V$ is in \mathcal{E} , then $k(x,y) \coloneqq \langle \Phi(x), \Phi(y) \rangle$ gives an invariant pd kernel.
- Conversely, if K is an invariant pd kernel, the feature map $\Phi: \mathcal{X} \to \mathcal{H}_K$, $x \mapsto K(\cdot, x)$, is equivariant w.r.t. the left regular repr. $L_g f = f(g^{-1} \cdot)$ on \mathcal{H}_K .
- An invariant pd kernel is obtained by $k_G(x,y) = \int_G k(gx,gy) d\mu(g)$, for example.
- In general, \mathcal{H}_K is infinite dimensional. We need to approximate it with a finite dimensional latent space.

Experiments

1) Nonlinear observation of 1 dim signal (G unknown, U-NFT)

2) g-NFT: Novel view synthesis from 2D training images

- Training with 2D images, which are projected from rendered 3D images.
- Data: Paired 2D images and 3D rotation (S, S', R). $R \in SO(3), S, S'$: 2D images, $S' = R \circ S$
- M(g): fixed by spherical harmonics. Only encoder Φ and decoder Ψ are trained.
- Testing: Provide a new 2D image X_0 (not in the training data) and apply arbitrary 3D rotation g by $\widehat{\Psi}(M(g)\widehat{\Phi}(X_0))$.

Perspective projection (P)

Arbitrary 3D rotation can be applied in the latent space for "unseen" 2D image (not within training data).

Conclusions

- Group actions are useful in machine learning.
 - Conventional methods:
 - Data augmentation
 - Built-in architecture: (Group) convolutional neural networks
- A new method: equivariant representation learning.
 - Group representation is learned in the latent space.
 - Group action may not be known.
 - Neural Fourier Transform
 - Training-based Fourier transform.
 - Useful in representation learning
 - Disentanglement, adaptivity of frequencies, etc.