Relatório de Análise VIII

Identificando e Removendo Outliers

```
In [88]: %matplotlib inline
   import pandas as pd
   import matplotlib.pyplot as plt
   # configura a plotagem nas dimensões desejadas
   plt.rc('figure', figsize=(14, 6))
In [89]: dados = pd.read_csv('../dados/aluguel_residencial_final.csv', sep=';')
```

Representação Box-Plot

Usando o Boxplot

```
In [90]: dados.boxplot('Valor')
Out[90]: <AxesSubplot:>
```

visualização é comprometida por haver dados muitos discrepantes

Fazendo uma seleção para verificar alguns dados discrepantes

```
In [91]: dados[dados['Valor'] >= 500000]
Out[91]:
```

	Tipo	Bairro	Quartos	Vagas	Suites	Area	Valor	Condominio	IPTU
7629	Apartamento	Barra da Tijuca	1	1	0	65	600000.0	980.0	120.0
10636	Casa de Condomínio	Freguesia (Jacarepaguá)	4	2	3	163	800000.0	900.0	0.0
12661	Apartamento	Freguesia (Jacarepaguá)	2	2	1	150	550000.0	850.0	150.0
13846	Apartamento	Recreio dos Bandeirantes	3	2	1	167	1250000.0	1186.0	320.0
15520	Apartamento	Botafogo	4	1	1	300	4500000.0	1100.0	0.0
4									•

Criando uma Series

```
In [92]: valor = dados['Valor']
```

Removendo Outliers

Observando o Modelo do Boxplot e Calculando os quartis

```
In [93]: Q1 = valor.quantile(.25)
  Q3 = valor.quantile(.75)
  IIQ = Q3 - Q1
  limite_inferior = Q1 - 1.5 * IIQ
  limite_superior = Q3 + 1.5 * IIQ
```

Remeovendo os Outliers através de uma seleção

```
In [94]: selecao = (valor >= limite_inferior) & (valor <= limite_superior)
dados_new = dados[selecao]
dados_new.boxplot('Valor')</pre>
```

Out[94]: <AxesSubplot:>

· O Boxplot ficou muito mais visível com a remoção dos outliers

Comparando com histogramas

- o histogrma mostra a distribuição da frequência dos dados
- observando as duas variáveis, é possível ver um comportamento melhor da segunda, após o tratamento, com a remoção dos outliers

```
In [95]: dados.hist('Valor')
  dados_new.hist('Valor')
```

Out[95]: array([[<AxesSubplot:title={'center':'Valor'}>]], dtype=object)

Exercício

Obtenha o conjunto de estatísticas representado na figura acima.

Para isso, utilize o arquivo aluguel_amostra.csv, e realize suas análises utilizando como variável alvo o Valor m2 (valor do metro quadrado).

Lembrando que Q1 representa o 1º quartil e Q3 o 3º quartil, selecione o item com a resposta correta (considere somente duas casas decimais):

```
In [96]: data = pd.read_csv('../dados/aluguel_amostra.csv', sep=';')
         Q1 = data['Valor m2'].quantile(.25)
         Q3 = data['Valor m2'].quantile(.75)
         IIQ = Q3 - Q1
         limite_inferior = Q1 - 1.5 * IIQ
         limite_superior = Q3 + 1.5 * IIQ
In [97]: data['Valor m2'].describe().round(2)
Out[97]: count
                  10000.00
         mean
                     37.08
                     175.30
         std
         min
                      2.78
         25%
                     21.25
         50%
                     30.00
         75%
                     42.31
         max
                  15000.00
         Name: Valor m2, dtype: float64
```

Resposta

```
In [98]: print(f'[Q1] -> {Q1}')
    print(f'[Q3] -> {Q3}')
    print(f'[IIQ] -> {IIQ:.2f}')
    print(f'[Q1 - 1.5 * IIQ] -> {limite_inferior:.2f}')
    print(f'[Q3 + 1.5 * IIQ] -> {limite_superior:.2f}')

[Q1] -> 21.25
[Q3] -> 42.31
[IIQ] -> 21.06
[Q1 - 1.5 * IIQ] -> -10.34
[Q3 + 1.5 * IIQ] -> 73.90
```

Observando o Boxplot

```
In [99]: data.boxplot('Valor m2')
Out[99]: <AxesSubplot:>

14000
12000
10000
4000
2000
0
Valor m2
```

Excluindo os outliers e observando o boxplot

Comparando a visualização com o Seaborn

```
In [102]: import seaborn as sns
```

```
In [103]: sns.boxplot(x=data['Valor m2'])
```

Out[103]: <AxesSubplot:xlabel='Valor m2'>

