Drzewa klasyfikacyjne

Kamil Kukiełka

2023-05-22

Przygotowanie danych

Na początek zaimportujmy naszą bazę danych oraz potrzebne bibilioteki

```
library(readxl)
dane <- read_excel("data.xlsx")
library(MASS)
library(maptree)
library(rpart)
library(rpart.plot)
library(party)
library(class)</pre>
```

Tworzymy ramkę danych a następnie usuwamy braki danych

```
raw_data <- data.frame(dane)
data <- na.omit(data.frame(raw_data))
head(data)</pre>
```

```
##
      Age Income Marital.Status Education.Level Approved.Loan
## 1 Young
           High
                         Single
                                           High
## 2 Young Medium
                         Single
                                           High
                                                          Yes
                                         Medium
                                                          Yes
## 3 Young Medium
                        Single
## 4 Young Medium
                        Married
                                         Medium
                                                           No
## 5
    Old High
                        Married
                                            Low
                                                           No
## 6
      Old Medium
                        Married
                                            Low
                                                          Yes
```

Tworzenie zbioru uczącego oraz testowego

Aby utworzyć nasze zbiry uczący bierzemy w sposób losowy rekordy z naszej ramki danych i przydzielamy je do naszych zbiorów

```
indexes <- sample(1:nrow(dane),nrow(dane)/2,replace = FALSE)

ZU = dane[indexes, ]
ZT = dane[-indexes, ]
head(ZU)</pre>
```

```
## # A tibble: 6 x 5
##
            Income 'Marital Status' 'Education Level' 'Approved Loan'
     Age
            <chr> <chr>
##
     <chr>>
                                     <chr>>
                                                        <chr>>
## 1 Old
            High
                   Married
                                     High
                                                        No
## 2 Young High
                   Single
                                     Medium
                                                        Yes
## 3 Young High
                   Married
                                     Medium
                                                        No
## 4 Young High
                   Married
                                                        No
                                     High
## 5 Medium Medium Married
                                     Medium
                                                        Yes
## 6 Medium High
                   Married
                                     Low
                                                        Yes
head(ZT)
## # A tibble: 6 x 5
            Income 'Marital Status' 'Education Level' 'Approved Loan'
##
     Age
     <chr>>
            <chr>
                  <chr>
                                     <chr>
                                                        <chr>>
## 1 Young
            High
                   Single
                                     High
                                                        No
## 2 Old
                                                        No
            High
                   Married
                                     Low
                                                        Yes
## 3 Medium Low
                   Married
                                     High
## 4 Old
            Medium Single
                                     Low
                                                        No
```

Tworzymy model drzewa

6 Medium Medium Married

Married

5 Medium High

Tworzymy go za pomocą funkcji rpart, wykorzystyjąc zbiór uczący. Jak że nasze zmienne są jakościowe wybieramy metodę "class"

Low

Low

Yes

Yes

```
drzewo <- rpart(ZU$`Approved Loan`~.,ZU,method = "class")</pre>
```

Dla naszego drzewa możemy sprawdzić jego parametry oraz liczbę gałęzi

drzewo\$parms

```
## $prior
## 1 2
## 0.5 0.5
##
## $loss
## [,1] [,2]
## [1,] 0 1
## [2,] 1 0
##
## $split
## [1] 1
```

drzewo\$numresp

[1] 4

Jako że wygenerowane potrafią być bardzo rozległe możemy spróbować je przyciąć. W naszym przypadku liczba gałęzi jest dość mała, jednak i tak możemy sprawdzić czy przycięcie go nie sprawi że będzie lepsze

```
model.opt<-which.min(drzewo$cptable[,4])
cp.opt<-drzewo$cptable[model.opt,1]
drzewo2<-prune(drzewo,cp=1)</pre>
```

Weryfikacja naszych modeli

Teraz kiedy mamy już nasze modele możemy sprawdzić ich dopasowanie do zbioru uczącego dla naszego pierwotnego drzewa

```
Pred1<-predict(drzewo,ZU,type = "class")</pre>
print("tabela dobroci klasyfikacji")
table(predykacja=Pred1,prawdziwe=ZU$`Approved Loan`)
print("obliczanie błędu predykcji")
blad1<-mean(Pred1 != ZU$`Approved Loan`)</pre>
blad1
## [1] "tabela dobroci klasyfikacji"
##
             prawdziwe
## predykacja No Yes
          No 11
          Yes 14 21
##
## [1] "obliczanie błędu predykcji"
## [1] 0.36
oraz dla przyciętego drzewa
Pred2<-predict(drzewo2,ZU,type = "class")</pre>
print("tabela dobroci klasyfikacji")
table(predykacja=Pred2,prawdziwe=ZU$`Approved Loan`)
print("obliczanie błędu predykcji")
blad2<-mean(Pred2 != ZU$`Approved Loan`)</pre>
blad2
## [1] "tabela dobroci klasyfikacji"
##
             prawdziwe
## predykacja No Yes
         No 25 25
##
          Yes 0
## [1] "obliczanie błędu predykcji"
## [1] 0.5
```

Jak możemy zauważyć nasze przycięte drzewo daje wiekszy bład predykcji, jednak nie pozbywajmy się go jeszcze, gdyż może mieć znacznie mniejszy błąd predykcji na zbiorze testowym ## Testowanie na zbiorze testowym

```
TPred1<-predict(drzewo,ZT,type = "class")
bladT1<-mean(TPred1 != ZT$`Approved Loan`)
print("Błąd predykcji drzewa")
bladT1

TPred2<-predict(drzewo2,ZT,type = "class")
bladT2<-mean(TPred2 != ZT$`Approved Loan`)
print("Błąd predykcji drzewa Przyciętego")
bladT2</pre>
```

```
## [1] "Błąd predykcji drzewa"
## [1] 0.48
## [1] "Błąd predykcji drzewa Przyciętego"
## [1] 0.4
```

Teraz możemy ocenić który z naszych modeli mamy wybrać. Nalezy jednak pamiętać, że podział na zbior uczący i testowy jest losowy więc po ponownym odpaleniu kodu możemy uzyskać inny rezultat

Rysowanie drzewa

Kiedy zdecydujemy, który model jest lepszy możemy go narsyować, aby bardziej zwizualizować sobie jak działa dany model

```
rpart.plot(drzewo,type = 4,extra="auto")
```


rpart.plot(drzewo2,type = 4,extra="auto")

