# 電腦視覺 Assignment 2: Kagle Plant Classification

### 流程

#### 大致如下

- 1. 資料前處理(移動資料、image resizing)
- 2. Feature Extraction
- 3. Nearest Neighbor classification
- 4. Output

#### 資料前處理

## 移動資料

透過data\_separation.m的matlab script來將原本資料夾中的 train資料分割成training data以及validation data。 其中 training data是由主辦方提供的train資料,將12種分類的前一半作為training data, 剩下的一半做為validation data。 在資料分割的同時,將image都resize成 256 \* 256



# 執行環境

CPU: AMD Ryzen 5600x

RAM: 16GB DDR4 3600MHz

GPU: 3060-Ti Matlab: R2019b

# **Method Description**

# Raw image

- 1. 透過imread()將12個class的資料分別存成12個3-D array
- 2. 讀取測試資料,透過test image train image來計算 SSD。最後加總後去比對與哪一個class較相近

# Color histogram

- 1. 透過imread()讀取資料
- 2. 使用imhist()取得image histogram
- 3. 將12個class分別儲存成12個2D array(256 \* 3 \* image\_count)
- 4. 透過測試資料計算SSD,取得分類

# **Local Binary Patern**

- 1. 透過imread()讀取資料
- 2. 使用rgb2gray()將training images從RGB channel轉成gray scale
- 3. 使用extracLBPFeatures()取得training images的features (1 \* 59)
- 4. 將features存成2-D array (image\_number \* 59)
- 5. 讀取validation images與test data,做正規化以及feature extraction
- 6. NN classification

#### Co-occurence Matrix

- 1. imread() 讀取資料
- 2. rgb2gray()轉成gray scale
- 3. graycomatrix()取得co-occurence matrix
- 4. 將training data的co-occurence matrix儲存成3-D array(image\_number \* 8 \* 8)
- 5. 重複上述1~3步驟,得到validation data以及testing data 的co-occurence matrix
- 6. 計算SSD,並分類以及計算validation accuracy

#### **Gabor Filters**

- 1. imread()讀取資料
- 2. rgb2gray()轉成gray scale
- 3. imgaborfilt()使用gabor filter
- 4. 計算SSD以及nn classification

# Histogram of Oriented Gradient(HoG)

1. imread()讀取資料

- 2. extractHOGFeatures()取得HoG Features並存成2-D array(number \* feature length)
- 3. 重複上述步驟,取得validation以及testing data的feature
- 4. 計算SSD以及NN classification

# **Bag-of-Features**

- 1. 將每個class的training image存成image set的資料結構
- 2. 透過bagOfFeatures(image set)取得預設的SURF feature center point(總共500的vocabulary)
- 3. 儲存vocabulary
- 4. 計算SSD

# **Experimental results**

# **Validation Accuracy**

#### **RAW IMAGE**

| Size      | Time     | Accuracy |
|-----------|----------|----------|
| 512 * 512 | 2108 sec | 4.6%     |
| 256 * 256 | 799 sec  | 4.6%     |

#### **COLOR HISTOGRAM**

| Size      | Time     | Accuracy |
|-----------|----------|----------|
| 512 * 512 | 37.3 sec | 19.99%   |
| 256 * 256 | 35 sec   | 20.4%    |
| 128 * 128 | 34 sec   | 20.03%   |
| 64 * 64   | 33.2 sec | 17.5%    |

#### **LBP**

| Size      | Time   | Accuracy |
|-----------|--------|----------|
| 512 * 512 | 86 sec | 9.07%    |
| 256 * 256 | 44 sec | 12.86 %  |
| 128 * 128 | 33 sec | 10.42%   |

#### **CO-OCCURENCE MATRIX**

| Size      | Time   | Accuracy |
|-----------|--------|----------|
| 512 * 512 | 82 sec | 11.64%   |
| 256 * 256 | 45 sec | 11.85%   |
| 128 * 128 | 38 sec | 13.03%   |

## **GABOR FILTER**

| Size      | scale, orientation | Time    | Accuracy |
|-----------|--------------------|---------|----------|
| 256 * 256 | 4, 0               | 709 sec | 4.01%    |

## HoG

| Size      | Time     | Accuracy |
|-----------|----------|----------|
| 512 * 512 | 2108 sec | 4.6%     |
| 256 * 256 | 618 sec  | 5.61%    |

## **BAG OF FEATURES**

| Size      | Time     | Accuracy |
|-----------|----------|----------|
| 256 * 256 | 2852 sec | 8.01%    |

# **Kagle Plant Seedlings Classification Submission Score**

| Method                         | Private Score | Public Score |
|--------------------------------|---------------|--------------|
| Raw Image                      | 0.10516       | 0.10516      |
| Color Histogram                | 0.20843       | 0.20843      |
| Local Binary Patern            | 0.12972       | 0.12972      |
| Co-occurence Matrix            | 0.13224       | 0.13224      |
| Gabor Filter                   | 0.05415       | 0.05415      |
| Histogram of Oriented Gradient | 0.11209       | 0.11209      |
| Bag of Features                | 0.09319       | 0.09319      |



#### Discussion

#### 資料前處理

原本想透過在不同方法的code對image下去重新resize,但在使用bagOfFeatures()時,遇到image size不同的時候,在feature extraction時,維度會有所不同,所以最後統一在data separation那邊同一resize成256 \* 256整體來說,應該還是以color histogram的效果會來的比較好,畢竟不同種植物,葉子的成色以及面積都有所不同,直接影響histogram的分布。 其他的方法如果轉成gray scale,在做feature extraction時,效果就沒那麼好。或許使用機器學習的方法,能夠更有效提升準確率。

#### **Problem and difficulties**

# validation準確率以及資料的乾淨程度

有些資料可能大部分都是土壤或石頭,實際上有植物的部分很少,在做image resizing之後,對於資料的丟失會有影響嗎? 例如1024 \* 1024的資料降成256 \* 256,其中影像pixel資訊應該會被捨棄,不分資訊可能就會在降維過程中丟失,影響準確率。

# 參數對於準確率的影響

像是gabor filter,scale以及orientation的數值對於feature extraction都有影響。若知道不同品種的feature,透過參數的調整,或許可以精準抓取特徵並提升準確率。

#### 效能

使用CPU計算的話,如果有核心數越多,則運算更快。或許可以透過GPU加速來完成。單純靠CPU去運算,在跑bag of features的部分,feature extraction就占用大量的時間。

#### Reference

LBP:

 $\frac{https://www.mathworks.com/help/vision/ref/extractlb}{pfeatures.html}_{\underline{(https://www.mathworks.com/help/vision/ref/extractlbpfeatures.html)}}$ 

Co-occurence matrix:

https://www.mathworks.com/help/images/ref/graycomatrix.html (https://www.mathworks.com/help/images/ref/graycomatrix.html)

Gabor filter:

 $\frac{https://www.mathworks.com/help/images/ref/imgabo}{rfilt.html}_{(https://www.mathworks.com/help/images/ref/imgaborfilt.html)}$ 

HoG:

https://www.mathworks.com/help/vision/ref/extracthogfeatures.html (https://www.mathworks.com/help/vision/ref/extracthogfeatures.html)

Bag of feature:

https://www.mathworks.com/help/vision/ref/bagoffea tures.html#d124e98665

(https://www.mathworks.com/help/vision/ref/bagoffeatures.html#d124e98665)