粒子物理简介第四节量子电动力学

余钊焕

中山大学物理学院

https://yzhxxzxy.github.io

更新日期: 2024年10月7日

U(1) 整体对称性

U(1) 整体对称性

於 时空坐标的函数称为场。在量子场论中,场被量子化,而<mark>粒子</mark>是场的激发态,粒子间相互作用来源于各种场之间的相互作用。场的运动规律由最小作用量原理决定,作用量 $S=\int \mathrm{d}^4x\,\mathcal{L}(x)$,其中拉氏量 $\mathcal{L}(x)$ 是用场表达出来的。

 ${\color{blue}iggledown}$ 对于不参与相互作用的<mark>狄拉克旋量场</mark> $\psi(x)$,运动规律用洛伦兹不变的拉氏量

$$\mathcal{L}_{\text{free}}(x) = \bar{\psi}(x)i\gamma^{\mu}\partial_{\mu}\psi(x) - m\bar{\psi}(x)\psi(x)$$

描述,其中狄拉克矩阵 γ^μ 是满足 $\{\gamma^\mu,\gamma^\nu\}=2g^{\mu\nu}$ 的 4×4 常数矩阵,时空导数 $\partial_\mu\equiv\partial/\partial x^\mu$,m 为相应<mark>费米子</mark>的质量, $\bar\psi\equiv\psi^\dagger\gamma^0$

U(1) 规范对称性

● 时空坐标的函数称为场。在量子场论中,场被量子化,而粒子是场的激发态,粒子间相互作用来源于各种场之间的相互作用。场的运动规律中是小作用最原理决定。

子间相互作用来源于各种场之间的相互作用。场的运动规律由最小作用量原理决定,作用量 $S=\int \mathrm{d}^4x\,\mathcal{L}(x)$,其中拉氏量 $\mathcal{L}(x)$ 是用场表达出来的。

 ${\color{blue}iggledown}$ 对于不参与相互作用的<mark>狄拉克旋量场</mark> $\psi(x)$,运动规律用洛伦兹不变的拉氏量

$$\mathcal{L}_{\text{free}}(x) = \bar{\psi}(x)i\gamma^{\mu}\partial_{\mu}\psi(x) - m\bar{\psi}(x)\psi(x)$$

描述,其中狄拉克矩阵 γ^{μ} 是满足 $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$ 的 4×4 常数矩阵,时空导数 $\partial_{\mu} \equiv \partial/\partial x^{\mu}$,m 为相应<mark>费米子</mark>的质量, $\bar{\psi} \equiv \psi^{\dagger}\gamma^{0}$

ightharpoonup 对 ψ 作 U(1) 整体变换 $\psi(x) \to \psi'(x) = \mathrm{e}^{\mathrm{i}Q\theta}\psi(x)$ (整体指变换参数 θ 不是时空 坐标的函数,Q 是 $\psi(x)$ 场携带的 U(1) 荷),则 $\bar{\psi}(x) \to \bar{\psi}'(x) = \bar{\psi}(x)\mathrm{e}^{-\mathrm{i}Q\theta}$,而

$$\mathcal{L}_{\text{free}}(x) \to \mathcal{L}'_{\text{free}}(x) = \bar{\psi}'(x)(i\gamma^{\mu}\partial_{\mu} - m)\psi'(x)$$
$$= \bar{\psi}(x)e^{-iQ\theta}(i\gamma^{\mu}\partial_{\mu} - m)e^{iQ\theta}\psi(x) = \mathcal{L}_{\text{free}}(x)$$

- 🥕 可见,自由狄拉克旋量场的拉氏量具有 U(1) 整体对称性
- 根据诺特定理,相应的 U(1) 荷是守恒的

 $lue{lue{w}}$ 若变换参数 heta 是时空坐标的函数,则上述变换变成局域的 $\mathrm{U}(1)$ 规范变换

$$\psi(x) \to \psi'(x) = e^{iQ\theta(x)}\psi(x)$$

ず 从而 $\partial_{\mu}\psi'(x) = e^{iQ\theta(x)}[\partial_{\mu} + iQ\partial_{\mu}\theta(x)]\psi(x)$ 导致 $\mathcal{L}'_{free}(x) \neq \mathcal{L}_{free}(x)$

 \mathcal{M} 为了重新得到对称性,引入<mark>规范场 $A_{\mu}(x)$ </mark> ,令它的 $\mathrm{U}(1)$ <mark>规范变换</mark>为

$$A_{\mu}(x) \rightarrow A'_{\mu}(x) = A_{\mu}(x) - \frac{1}{2} \partial_{\mu} \theta(x)$$

以此补偿变换参数 $\theta(x)$ 的时空导数引起的差异

 $D_{\mu} \equiv \partial_{\mu} + iQeA_{\mu}(x)$, 就可以得到 $\mathcal{L}'(x) = \mathcal{L}(x)$

因此 $\mathcal{L}(x)$ 具有 $\mathbf{U}(1)$ 规范对称性,描述 $\mathbf{U}(1)$ 规范理论

U(1) 规范对称性

$$\psi(x) \to \psi'(x) = e^{iQ\theta(x)}\psi(x)$$

- ず 从而 $\partial_{\mu}\psi'(x) = e^{iQ\theta(x)}[\partial_{\mu} + iQ\partial_{\mu}\theta(x)]\psi(x)$ 导致 $\mathcal{L}'_{free}(x) \neq \mathcal{L}_{free}(x)$
- \mathcal{M} 为了重新得到对称性,引入<mark>规范场 $A_{\mu}(x)$ </mark> ,令它的 $\mathrm{U}(1)$ <mark>规范变换</mark>为

$$A_{\mu}(x) \rightarrow A'_{\mu}(x) = A_{\mu}(x) - \frac{1}{e} \partial_{\mu} \theta(x)$$

以此补偿变换参数 $\theta(x)$ 的时空导数引起的差异

- 終 将拉氏量修改为 $\mathcal{L}(x) = \bar{\psi}(x) \mathrm{i} \gamma^{\mu} D_{\mu} \psi(x) m \bar{\psi}(x) \psi(x)$,其中协变导数的定义是 $D_{\mu} \equiv \partial_{\mu} + \mathrm{i} QeA_{\mu}(x)$,就可以得到 $\mathcal{L}'(x) = \mathcal{L}(x)$
- 因此 $\mathcal{L}(x)$ 具有 $\mathbf{U}(1)$ 规范对称性,描述 $\mathbf{U}(1)$ 规范理论
- kgap代价是拉氏量中多了一项 $\mathcal{L}_{\mathrm{int}}(x) = \mathcal{L}(x) \mathcal{L}_{\mathrm{free}}(x) = -QeA_{\mu}(x)\bar{\psi}(x)\gamma^{\mu}\psi(x)$
- igoplus 此项将旋量场 $\psi(x)$ 和规范场 $A_{\mu}(x)$ 耦合起来,<mark>耦合常数</mark>为 e
- $\stackrel{\bullet \bullet}{m \omega}$ 规范场 $A_{\mu}(x)$ 是洛伦兹矢量场,对应的粒子称为<mark>规范玻色子</mark>,自旋为 1
- Σ $\mathcal{L}_{\mathrm{int}}$ 导致费米子与规范玻色子发生规范相互作用

量子电动力学

量子电动力学(Quantum Electrodynamics)简称 QED,是 $\mathrm{U}(1)_{\mathrm{EM}}$ 规范理论,规范玻色子为光子,描述电磁相互作用,相应拉氏量为

$$\mathcal{L}_{\text{QED}} = \sum_{f} (\bar{f} i \gamma^{\mu} D_{\mu} f - m_{f} \bar{f} f) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$
$$= \sum_{f} \left[\bar{f} (i \gamma^{\mu} \partial_{\mu} - m_{f}) f - Q_{f} e A_{\mu} \bar{f} \gamma^{\mu} f \right] - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

- 协变导数 $D_{\mu} = \partial_{\mu} + iQ_{f}eA_{\mu}$,电磁耦合常数 e 就是单位电荷量
- f 代表标准模型中各种带电的旋量场, Q_f 为 f 所携带的电荷, m_f 是 f 的质量, $\mathcal{L}_{OED} \mapsto \bar{f}(\mathrm{i}\gamma^{\mu}\partial_{\mu} m_f)f$ 项描述旋量场在时空中传播的过程
- ightharpoonup 电磁场 A_{μ} 的场强张量定义为 $F_{\mu\nu} \equiv \partial_{\mu} A_{\nu} \partial_{\nu} A_{\mu}$;可以验证, $-F_{\mu\nu}F^{\mu\nu}/4$ 项在 $\mathrm{U}(1)_{\mathrm{EM}}$ 规范变换下不变,它描述电磁场在时空中传播的过程
- $leve{lap}_{-Q_f e A_\mu ar{f}} \gamma^\mu f$ 项描述旋量场与电磁场的电磁相互作用

费米子 f 上型夸克 u,c,t 下型夸克 d,s,b 带电轻子 e^-,μ^-,τ^- 电荷 Q_f +2/3 -1/3 -1

旋量系数和极化矢量

 $\mathcal{L}_{\mathrm{QED}}$ 中 $ar{f}(\mathrm{i}\gamma^{\mu}\partial_{\mu}-m_f)f$ 项与自由旋量场拉氏量 $\mathcal{L}_{\mathrm{free}}$ 形式相同,描述远离相互作用顶点的费米子;根据<mark>最小作用量原理</mark>,此项对应于旋量场 f(x) 的狄拉克方程

$$(i\gamma^{\mu}\partial_{\mu} - m_f)f(x) = 0$$

> 经过傅立叶变换之后,动量空间中的旋量系数 $u(p,\lambda)$ 和 $v(p,\lambda)$ 满足

$$(\not p - m_f)u(p,\lambda) = 0, \quad (\not p + m_f)v(p,\lambda) = 0, \quad \not p \equiv \gamma^\mu p_\mu$$

 $\lambda = +1 (-1)$ 对应于右旋 (左旋) 极化的费米子,螺旋度求和关系为

$$\sum_{\lambda=\pm 1} u(p,\lambda) \bar{u}(p,\lambda) = \not p + m_f, \quad \sum_{\lambda=\pm 1} v(p,\lambda) \bar{v}(p,\lambda) = \not p - m_f$$

旋量系数和极化矢量

 $ightharpoonup \mathcal{L}_{\mathrm{QED}}$ 中 $ar{f}(\mathrm{i}\gamma^{\mu}\partial_{\mu}-m_f)f$ 项与自由旋量场拉氏量 $\mathcal{L}_{\mathrm{free}}$ 形式相同,描述远离相互作用顶点的费米子;根据<mark>最小作用量原理</mark>,此项对应于旋量场 f(x) 的狄拉克方程

$$(i\gamma^{\mu}\partial_{\mu} - m_f)f(x) = 0$$

> 经过傅立叶变换之后,动量空间中的旋量系数 $u(p,\lambda)$ 和 $v(p,\lambda)$ 满足

$$(\not p - m_f)u(p,\lambda) = 0, \quad (\not p + m_f)v(p,\lambda) = 0, \quad \not p \equiv \gamma^\mu p_\mu$$

 \bigwedge $\lambda = +1$ (-1) 对应于右旋 (左旋) 极化的费米子,螺旋度求和关系为

$$\sum_{\lambda=\pm 1} u(p,\lambda) \bar{u}(p,\lambda) = \not\!{p} + m_f, \quad \sum_{\lambda=\pm 1} v(p,\lambda) \bar{v}(p,\lambda) = \not\!{p} - m_f$$

 $\mathcal{L}_{QED} + -F_{\mu\nu}F^{\mu\nu}/4$ 项描述远离相互作用顶点时的光子

🦬 在动量空间中用 $oldsymbol{\mathsf{K}}$ 化矢量 $arepsilon_{\mu}(p,\lambda)$ 描写光子的运动,光子的螺旋度可取 $\lambda=\pm 1$

 $\lambda = +1 \ (-1)$ 对应于右旋 (左旋) 极化的光子,螺旋度求和关系为

$$\sum_{\lambda=\pm 1} \varepsilon_{\mu}(p,\lambda) \varepsilon_{\nu}^{*}(p,\lambda) \to -g_{\mu\nu}$$

$\bar{f}(i\gamma^{\mu}\partial_{\mu}-m_f)f$ 项和 $-F_{\mu\nu}F^{\mu\nu}/4$ 项分别提供费米子与光子的初末态和传播子的费曼规则,而 $-Q_feA_{\mu}\bar{f}\gamma^{\mu}f$ 项提供<mark>电磁相互作用顶点</mark>的费曼规则

🚣 光子用波浪线表示

费米子用带箭头的实线表示,线上的箭头方向是费米子数的方向;正粒子的动量方向与费米子数方向相同,反粒子则相反

$e^+e^- ightarrow \mu^+\mu^-$ 散射振幅

 \triangle 右图为 QED 散射过程 $e^+e^- \to \mu^+\mu^-$ 的领头 阶费曼图,利用费曼规则将它表达成<mark>不变振幅</mark>

$$i\mathcal{M} = \bar{v}(k_2, \lambda_2)(ie\gamma^{\mu})u(k_1, \lambda_1) \frac{-ig_{\mu\nu}}{q^2}$$
$$\times \bar{u}(p_1, \lambda_1')(ie\gamma^{\nu})v(p_2, \lambda_2')$$

$e^+e^ightarrow \mu^+\mu^-$ 散射振幅

$$i\mathcal{M} = \bar{v}(k_2, \lambda_2)(ie\gamma^{\mu})u(k_1, \lambda_1) \frac{-ig_{\mu\nu}}{q^2}$$
$$\times \bar{u}(p_1, \lambda'_1)(ie\gamma^{\nu})v(p_2, \lambda'_2)$$

igoplus 通常考虑没有极化的初态,需对初态螺旋度f n平均,即 $rac{1}{2}\sum_{\lambda_1}rac{1}{2}\sum_{\lambda_2}$; 对末态螺旋度则通过<mark>求和</mark>包括所有情况,即 $\sum_{\lambda_1}\sum_{\lambda_2}$ 。因而非极化振幅模方为

$$\frac{1}{4} \sum_{\lambda_1 \lambda_2 \lambda_1' \lambda_2'} |\mathcal{M}|^2 = \frac{e^4}{4q^4} \sum_{\lambda_1 \lambda_2 \lambda_1' \lambda_2'} \left[\bar{v}(k_2, \lambda_2) \gamma^{\mu} u(k_1, \lambda_1) \bar{u}(k_1, \lambda_1) \gamma^{\rho} v(k_2, \lambda_2) \right. \\
\left. \times \bar{u}(p_1, \lambda_1') \gamma_{\mu} v(p_2, \lambda_2') \bar{v}(p_2, \lambda_2') \gamma_{\rho} u(p_1, \lambda_1') \right] \\
= \frac{e^4}{4q^4} \operatorname{Tr} \left[(\rlap/k_2 - m_e) \gamma^{\mu} (\rlap/k_1 + m_e) \gamma^{\rho} \right] \operatorname{Tr} \left[(\rlap/p_1 + m_\mu) \gamma_{\mu} (\rlap/p_2 - m_\mu) \gamma_{\rho} \right]$$

 \clubsuit 每个电磁相互作用顶点贡献一个耦合常数 e ,故 $\mathcal{M} \propto e^2$, $|\mathcal{M}|^2 \propto e^4$

$e^+e^ightarrow \mu^+\mu^-$ 散射截面

🦮 对狄拉克矩阵乘积作求迹运算,得

$$\frac{1}{4} \sum_{\lambda_1 \lambda_2 \lambda_1' \lambda_2'} |\mathcal{M}|^2 = \frac{8e^4}{q^4} [(k_1 \cdot p_1)(k_2 \cdot p_2) + (k_1 \cdot p_2)(k_2 \cdot p_1) + m_e^2(p_1 \cdot p_2) + m_\mu^2(k_1 \cdot k_2) + 2m_e^2 m_\mu^2]$$

 \mathbf{k} 在质心系中,设 \mathbf{p}_1 与 \mathbf{k}_1 的夹角为 $\mathbf{\theta}$,则 \mathbf{p}_2 与 \mathbf{k}_2 的夹角也为 $\mathbf{\theta}$,有

$$q^{2} = (k_{1} + k_{2})^{2} = (p_{1} + p_{2})^{2} = s, \quad k_{1} \cdot k_{2} = \frac{s}{2} - 2m_{e}^{2}, \quad p_{1} \cdot p_{2} = \frac{s}{2} - 2m_{\mu}^{2}$$
$$k_{1} \cdot p_{1} = k_{2} \cdot p_{2} = \frac{s}{4}(1 - \beta_{e}\beta_{\mu}\cos\theta), \quad k_{1} \cdot p_{2} = k_{2} \cdot p_{1} = \frac{s}{4}(1 + \beta_{e}\beta_{\mu}\cos\theta)$$

其中 $\beta_e \equiv \sqrt{1-4m_e^2/s}$, $\beta_\mu \equiv \sqrt{1-4m_\mu^2/s}$,从而<mark>散射截面</mark>为

$$\sigma = \frac{1}{2E_{\mathcal{A}}2E_{\mathcal{B}}|\mathbf{v}_{\mathcal{A}} - \mathbf{v}_{\mathcal{B}}|} \int d\Omega_{1} \frac{|\mathbf{p}_{1}|}{(2\pi)^{2}4E_{\mathrm{CM}}} \frac{1}{4} \sum_{s_{1}s_{2}s_{1}'s_{2}'} |\mathcal{M}|^{2}$$

$$= \frac{\alpha^{2}\beta_{\mu}}{4s\beta_{e}} \int_{0}^{2\pi} d\phi \int_{0}^{\pi} d\theta \sin\theta \left[1 + \beta_{e}^{2}\beta_{\mu}^{2} \cos^{2}\theta + \frac{4(m_{e}^{2} + m_{\mu}^{2})}{s} \right]$$

$$= \frac{4\pi\alpha^{2}\beta_{\mu}}{3s\beta_{e}} \left(1 + \frac{2m_{e}^{2}}{s} \right) \left(1 + \frac{2m_{\mu}^{2}}{s} \right)$$

与实验数据对比

= 将 $\alpha = 1/137.036$ 、 $m_{\mu} = 105.658$ MeV 、 $m_e = 0.510999$ MeV 代入以上公式,得到 QED 领头阶预言的 $e^+e^- \to \mu^+\mu^-$ 散射截面

¥ 1988 年,德国 DESY 研究中心 PETRA 对撞机上的 **TASSO** 探测器测量了多个 质心能 \sqrt{s} 处的 $e^+e^- \to \mu^+\mu^-$ 散射截面数据,与 QED 预言比较**符合**

$e^+e^- ightarrow \mu^+\mu^-$ 过程 QED 次领头阶费曼图

库仑散射 $e^-p \rightarrow e^-p$

 $igodelow{igoplus}$ 在非相对论性的经典物理学中,如果电子动量远小于 m_p ,则可取 $m_p o\infty$ 的极

限,从而质子在散射前后都是静止的,初末态 电子的运动速率相同,记为v,运动方向相差 散射角 θ ,那么库仑力引起的微分散射截面为

$$rac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = rac{lpha^2}{4m_e^2v^4\sin^4(heta/2)}$$
 (卢瑟福公式)

库仑散射 $e^-p \rightarrow e^-p$

igoplus在非相对论性的经典物理学中,如果电子动量远小于 m_p ,则可取 $m_p o \infty$ 的极

限,从而质子在散射前后都是静止的,初末态 电子的运动速率相同,记为v,运动方向相差 散射角 θ ,那么库仑力引起的微分散射截面为

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{lpha^2}{4m_e^2v^4\sin^4(heta/2)}$$
 (卢瑟福公式)

QED 理论会修正这条公式

 \blacksquare 当能标远小于 m_p 时,质子在相互作用过程中就像没有结构的点粒子一样,此时可以用旋量场描述质子,并使用 $Q_p=+1$ 的 QED 相互作用顶点

QED 领头阶给出的非极化振幅模方为

$$e^{-}$$
 $k_{1}^{\mu} = (E, \mathbf{k}_{1})$
 p
 $k_{2}^{\mu} = p_{2}^{\mu} = (m_{p}, 0)$

 $\overline{|\mathcal{M}|^2} = \frac{8e^4}{(a^2)^2} \left[(k_1 \cdot p_2)(p_1 \cdot k_2) + (k_1 \cdot k_2)(p_1 \cdot p_2) - m_p^2(k_1 \cdot p_1) - m_e^2(p_2 \cdot k_2) + 2m_e^2 m_p^2 \right]$

莫特公式

 $m{\ell}$ 在 $m_p \to \infty$ 的极限下,初末态电子的能量相等,记为 E ,初末态电子的动量大小也相等,记为 $Q \equiv |\mathbf{k}_1| = |\mathbf{p}_1| = \sqrt{E^2 - m_e^2}$,初末态电子的运动速率为 $v = Q/E = \sqrt{1 - m_e^2/E^2}$

(故
$$k_1 \cdot p_1 = E^2(1 - v^2 \cos \theta)$$
, $k_2 \cdot p_2 = m_p^2$
 $k_1 \cdot p_2 = p_1 \cdot k_2 = k_1 \cdot k_2 = p_1 \cdot p_2 = m_p E$
 $q^2 = -2Q^2(1 - \cos \theta)$

○ 由此得到 QED 领头阶微分散射截面

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2[1-v^2\sin^2(\theta/2)]}{4v^2Q^2\sin^4(\theta/2)} \quad \textbf{(莫特公式)}$$

ightharpoonup 在非相对论极限下, $v \ll 1$, $Q \simeq m_e v$, **莫特公式**退化为卢瑟福公式

其它 QED 两体散射过程

初末态相同的过程可以具有多个费曼图,它们对应的振幅之间相互干涉

余钊焕 (中山大学)

康普顿散射

- $\ \ \$ 电子与光子的散射过程 $e^-\gamma \to e^-\gamma$ 称为康普顿散射
- → 1923 年,康普顿发现 X 射线照射核外电子之后波长变长。他用的 X 射线光子能量约为 17 keV,远大于原子结合能,核外电子可看作自由的

康普顿散射

- → 1923 年,康普顿发现 X 射线照射核外电子之后波长变长。他用的 X 射线光子能量约为 17 keV,远大于原子结合能,核外电子可看作自由的

$$m_e^2 = p_1^2 = (k_1 + k_2 - p_2)^2$$

$$= m_e^2 + 2m_e(\omega - \omega') - 2\omega\omega'(1 - \cos\theta)$$

$$m_e(\omega - \omega') = \omega\omega'(1 - \cos\theta)$$

$$\Delta\lambda = \lambda' - \lambda = \frac{2\pi}{\omega'} - \frac{2\pi}{\omega} = \frac{2\pi}{m_e}(1 - \cos\theta)$$

$$k_1^{\mu} = (m_e, \mathbf{0})$$

- $ot \longrightarrow$ 康普顿在实验中证实了波长变化 $\Delta \lambda$ 与散射角 heta 的这个关系

康普顿散射截面

☑ 对于低能电磁辐射与电子散射的过程,汤姆逊根据经典电磁学推导出微分散射截面

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} = \frac{\pi\alpha^2}{m_e^2} \left(1 + \cos^2\theta\right)$$

(汤姆逊公式)

■ QED 领头阶给出的非极化振幅模方为

$$\overline{|\mathcal{M}|^2} = 2e^4 \left[\frac{Y}{X} + \frac{X}{Y} + 2m_e^2 \left(\frac{1}{X} - \frac{1}{Y} \right) + m_e^4 \left(\frac{1}{X} - \frac{1}{Y} \right)^2 \right]$$

$$X \equiv k_1 \cdot k_2, \quad Y \equiv k_1 \cdot p_2$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} = \frac{\pi\alpha^2\omega'^2}{m_e^2\omega^2} \left(\frac{\omega'}{\omega} + \frac{\omega}{\omega'} - \sin^2\theta\right)$$

(克莱因-仁科公式)

e^+e^- 湮灭到双光子

 $\overrightarrow{ \mathbf{b} }$ 对于 $e^+e^- o \gamma \gamma$,设质心系中某个末态光子与初态电子运动方向的夹角为 θ ,

QED 领头阶给出的微分散射截面为

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{s\beta_e} \left[\frac{1 + \beta_e^2 \cos^2 \theta}{1 - \beta_e^2 \cos^2 \theta} + \frac{8m_e^2}{s(1 - \beta_e^2 \cos^2 \theta)} - \frac{32m_e^4}{s^2(1 - \beta_e^2 \cos^2 \theta)^2} \right]$$

 $\ref{1}$ 1983 年,PETRA 对撞机上的 JADE 探测器测量了 $e^+e^- \to \gamma\gamma$ 微分散射截面,与 QED 符合得比较好

