BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE PILANI K K BIRLA GOA CAMPUS

INSTRUCTION DIVISION FIRST SEMESTER 2017-2018 Course Handout (Part-II)

Date: 01/08/2017

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MATH F211

Course Title : MATHEMATICS III

Instructor In-charge: MANOJ KUMAR PANDEY

Instructors : Anil Kumar, Akshay Sakharam Rane, Gauranga Charan

Samanta, Manoj Kumar Pandey, Pradeep Boggarapu, Jajati K.

Sahoo, Danumjaya Palla.

1. Objective of the Course:

The Course reviews and continues the study of differential equations with the objective of introducing classical methods for solving ordinary differential equations as well as partial differential equations. This course serves as a basis for the applications of differential equations, Fourier series and Laplace transform in various branches of engineering and sciences. The course emphasizes the role of orthogonal polynomials in dealing with Sturm-Liouville problems.

2. Learning Outcomes

Upon completing this course students should be able to:

- (i) Solve first-order separable and linear differential equations, and use these methods to solve applied problems.
- (ii) Solve higher-order constant-coefficient linear differential equations and systems of differential equations, and use these methods to solve applied problems.
- (iii) Obtain power series solutions for certain classes of linear ordinary differential equations.
- (iv) Find Laplace transforms and inverse Laplace transforms, and apply these to solve linear differential equations.

3. Text-Book:

G. F. Simmons, Differential Equations with Applications and Historical Notes, TMH, 2nd Ed., 1991.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & sons, 8th Ed., 2005.
- **2.** W. E. Boyce and R. C. Diprima, *Elementary Differential Equations and Boundary Value Problems*, John Wiley & sons, 9th edition, 2013.
- 3. Earl A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall, 2013.
- **4.** C. H. Edwards and David E. Penney, *Elementary Differential Equations*, Pearson, 6th Ed. 2008.

4. Course Plan: (Sections/Articles refer to Text-Book)

Lect. No.	Learning Objectives	Topic	Sections	Assignments (Page No-Problems)	
1	9	First order equations	1-6	Self Study	
	To introduce the				
2	classical methods to solve 1 st order	First order equations	7-10	49- 1, 3-5, 53 -All, 59 -All 61- 1 to 4	
3	differential equations (DEs)	Reduction of order	11	65 -1 to 3	
4-5		Second order equations	14, 15	86 -4 to 10, 91 -1 to 9	
6	To introduce the classical methods to	Use of a known solution	16	94 -All	
7-11	solve 2 nd order DEs	Various methods to solve differential equations	17, 18, 19	97-All, 103-All, 106- All	
12-13		Higher order equations and operator methods	22, 23	127 -1 to 8, 135 -All	
14-17		Series solutions	26 to 30	175 -1, 2, 182 -1 to 7. 191 -1 to 5, 198 -1 to 5	
18-19		Hypergeometric equation	31	203 -All	
20-22	To introduce power	Legendre polynomials	44, 45	340 -1, 2, 4 347 -1 to 5	
23-25	series solutions to 2 nd order DEs with	Bessel functions	46, 47	356 -1 to 6, 363 -1 to 5	
26-28	variable coefficients	Eigenvalues and Eigen functions, Sturm Liouville Problems	40, 43	308-1	
29-30	To introduce systems of equations	Systems of equations	54, 55, 56	420 -1, 2; 426 -5 to 9 433 -1 to 5	
31-34	Use Laplace transform to solve differential equations	Laplace transforms	48, 49, 50, 51, 52	384 -All, 388 -All, 394 -1 to 5, 397 -1 to 8, 410 -2, 3, 4	
35-40	To introduce Fourier series	Fourier series	33, 34, 35, 36	256 -1 to 6, 263 -1 to 5 269 -All, 274 -1 to 7	
41	To introduce partial differential equations (PDEs)	Partial differential equations		Review	
42	To introduce	One dim. Wave eqn.	40		
43	classical methods to	One dim. Heat eqn.	41		
44	solve PDEs	Laplace eqn.	42		

5. Evaluation Scheme:

S. No.	Evaluation	Duration	Weightage	Date and time	Remarks
	Component		(%)		
1	Mid-Semester Exam	1 hour 30 minutes	30	11/10/2017, 9:00AM – 10:30 AM	Closed Book
2	Quizzes, Attendance and Assignments		20	To be announced	Open Book
3	Comprehensive Exam	3 hours	50	06/12/2017 (FN)	Closed Book

- **6. Make-up:** Make-up will be given only in genuine cases of absence.
- 7. Chamber consultation hour: To be announced in the class.
- **8. Notices:** All notices regarding MATH F211 will be displayed on LMS.

Instructor In-charge MATH F211