Trabajo práctico N° 3

Representación de la información - Números enteros

FECHA DE FINALIZACIÓN: 22 DE ABRIL DE 2022

Introducción a la computación Departamento de Ingeniería de Computadoras Facultad de Informática - Universidad Nacional del Comahue

Objetivo: comprender la representación binaria de números enteros.

Recursos Web:

■ Wikipedia: Complemento a 2: https://en.wikipedia.org/wiki/Two%27s_complement

Lectura obligatoria:

- Apuntes de cátedra. Capitulo 3: Representación de la Información. Disponible en: https://egrosclaude.github.io/IC/IC-notes.pdf
- 1. Completar la siguiente tabla en el sistema binario. Para ello, convierta cada número del sistema decimal al sistema binario considerando que en:
 - la columna **Sin Signo** debe utilizar la cantidad mínima de dígitos para expresar el número, y en
 - la columna Sin Signo en 8 bits, siempre se deben utilizar 8 dígitos para expresar el número.

De esta manera, por ejemplo, si el número en sistema decimal es 8, entonces en binario sin signo es 1000 y en binario sin signo en 8 bits es 00001000.

	Sistema Binario		
Sistema	Sin Signo	Sin Signo en 8 bits	
Decimal		en 8 bits	
0			
40			
80			
147			
255			

2. Completar la siguiente tabla con la representación en 8 bits de los siguientes números en Signo Magnitud y Complemento a 2. Indique con un guion aquellos casos donde no sea posible.

Decimal	Signo Magnitud	Complemento a 2
3		
-3		
66		
-66		
-128		

3. Complete la siguiente tabla que representa enteros de **3 bits**. Indique con un guion aquellos casos donde no sea posible.

	Sistema Binario		
Sistema	Complemento a 2	Signo Magnitud	Sin Signo
Decimal			
3			
2			
1			
0			
-1			
-2			
-3			
-4			

- a) Una vez completada la tabla, a cada valor de la columna Complemento a 2 aplique la operación de complemento a 2 y responda: ¿Cuál es el significado aritmético de lo que observamos?
- b) ¿Cuál es el rango de números representables para 3 bits en:
 - 1) Sin signo?
- 2) Signo magnitud?
- 3) Complemento a 2?
- 4. En cada caso indique cuál es la **fórmula** para obtener el rango de números representables para **n** bits si la representación se trata de:
 - a) Sin signo?
- b) Signo magnitud?
- c) Complemento a 2?
- 5. Indicar el rango de los números representables con 4, 8, 16 y 32 bits utilizando la notación de la siguiente tabla:

	Sin Signo	Complemento a 2	Signo Magnitud
4 bits			
8 bits			
16 bits			
32 bits			

6. Representar en Complemento a 2 los siguientes números enteros decimales. Utilizar representaciones de 8, 16 o 32 bits según sea necesario.

Sistema	Complemento a 2
Decimal	
-50	
-128	
-256	
-542	
-40090	

7. Complete la siguiente tabla para los números hexadecimales representados en 8 bits de la siguiente manera: una vez haya expresado el numero hexadecimal en binario, *interprete* la secuencia de bits como un numero decimal *Sin signo* y en *Complemento a 2*.

Hex.	Binario	Sin Signo	Complemento a 2
A3	1010 0011	163	-93
2B			
9F			
F9			