Dynamika kwantowa naladowanej czastki w pudle w zmiennym polu elektrycznym

Program napisano w języku C++ wszelkie metody i parametry symulacji umieszczając w jednej klasie. Wykresy wygenerowano za pomocą ROOTa.

Na początku przeprowadzono symulację z różnymi wartościami długości kroku czasowego dtau: 0.001, 0.0001 oraz 0.00001. Jak widać poniżej dla najdłuższego kroku wygenerowane wykresy są błędne, natomiast dla pozostałych dwóch jednakowe. Zdecydowano się zatem na dt=0.0001, aby symulacje trwały możliwie krótko.

Wykresy dla dtau=0.001

Wykresy dla dtau=0.0001

Wykresy dla dtau=0.00001

Następnie wykonano symulacje dla różnych początkowych stanów energetycznych n: 1, 5 oraz 9. Najpierw z wyłączonym polem elektrycznym. Wyniki poniżej:

n=1 bez pola el.

n=5 bez pola el.

n=9 bez pola el.

A następnie z włączonym polem elektrycznym:

n=1 z polem el.

n=5 z polem el.

n=9 z polem el.

Kolejnym krokiem było zbadanie zachowania się elektronu w studniu w zależności od parametrów pola elektrycznego. W tym celu najpierw zasymulowano sytuację z polem o częstości $\omega=3\pi^2/4$ oraz zmieniając κ : 1, 3 oraz 5. Wyniki poniżej pokazują, że κ będąca amplitudą pola wraz ze wzrostem oddziałuje na elektron mocniej zagęszczając jego zachowania rezonansowe.

Pole: $\kappa=1$ $\omega=3\pi^2/4$

$$\kappa=3 \omega=3\pi^2/4$$

Dalszym etapem badania wpływu różnego rodzaju pól elektrycznych na elektron były symulacje przy niezmiennym $\kappa=3$ lecz z różną częstością ω : $3\pi^2/4$, $2\pi^2$, $3\pi^2$ oraz $4\pi^2$. Nietrudno zauważyć, że pierwsza spośród wybranych częstości jest częstością rezonansową, średnia wartość położenia jak i średnia energia oprócz okresowości gęstej wykazują się też innego rodzaju okresowymi zmianami w czasie.

Pole: $\kappa = 3 \omega = 3\pi^2/4$

Pole: κ =3 ω =2 π ²

Pole: κ =3 ω =3 π ²

Pole: κ =3 ω =4 π ²

Dla częstości rezonansowej można wyznaczyć maksymalną wartość energii. Aby dokładniej zbadać to zjawisko wykonano 11 kolejnych symulacji dla pola o parametrach $\kappa=3$ oraz ω w przedziale $<0.9~\omega_0$; $1,1\omega_0>$. Z każdej z symulacji wyciągnięto wartość energii maksymalnej i zebrano je na wspólnym wykresie. Największą wartość energii osiągnął elektron w polu elektrycznym o $\omega=1,02\omega_0$. Zestaw wykresów dla tej symulacji również przedstawiono poniżej.

Pole: $\kappa=3 \omega=1.2 \omega_0$

Energia maksymalna w funkcji częstości pola