Basic Statistics for the Pediatric Hospitalist

Jack McDonnell, MD

Variables

-continuous

-BP, LDL, height

-categorical

-ordinal

-likert scale

-nominal

-sex, race

-ratio

- -meaningful "0" value
- -division/multiplication and subtraction/addition makes sense
- -response time

-interval

- -no meaningful "0" value
- -only subtraction/addition makes sense
- -temperature

Distribution

-normal (parametric)

- -mean (average)
- -standard deviation (how far are points from the mean?)

Standard Deviation =
$$s = \sqrt{\frac{\Sigma(y - \bar{y})^2}{n - 1}}$$

-skew (tail behavior)

Figure 5.3: Negative (Left) Skew and Positive (Right) Skew

-nonnormal (nonparametric)

Hypothesis Testing

The Two Types of Hypothesis Testing Errors

-	H _A is true	H₀ is true
Test Rejects H₀	Correct Decision	Type I Error (False Positive
Test Retains H₀	Type II Error (False Negative)	Correct Decision

- A Type I error can only be made if the null hypothesis is actually true.
- A Type II error can only be made if the alternative hypothesis is actually true.
 - -significance level (alpha) is probability of a type I error
 - -probability of avoiding a type II error (1-beta) is power

P-values

- -statisticians HATE these
- -WHY?
- 1. Very rarely does a situation emerge in which a *p* value can be available in which looking at the associated confidence interval isn't far more helpful for making a comparison of interest.
- 2. The use of a *p* value requires making at least as many assumptions about the population, sample, individuals and data as does a confidence interval.
- 3. Most null hypotheses are clearly not exactly true prior to data collection, and so the test summarized by a *p* value is of questionable value most of the time.
- 4. No one has a truly adequate definition of a *p* value, in terms of both precision and parsimony. Brief, understandable definitions always fail to be technically accurate.
- 5. Bayesian approaches avoid some of these pitfalls, but come with their own issues.
- 6. Many smart people agree with me, and use p values sparingly.

Common Statistical Tests (DO NOT MEMORIZE!!!)

FIGURE 1.1. Example decision tree, or flowchart, for selecting an appropriate statistical procedure. Beginning at the top, the user answers a series of questions about measurement and intent, arriving eventually at the name of a procedure. Many such decision trees are possible.

- -Tests worth knowing a bit about
 - -T Test (parametric) / Wilcoxon (nonparametric)
 - -Chi Square /Fisher's Exact (very small cell frequencies)
 - -ANOVA (think T-test for >2 groups)

Models - THE BIG THREE

- 1. Linear regression
 - a. Think: continuous outcome

```
summary(lm(recov.score ~ dose, data = hydrate))
```

```
Call:
lm(formula = recov.score ~ dose, data = hydrate)
Residuals:
   Min 1Q Median
                         30
                                  Max
-22.336 -7.276 0.063 8.423 23.903
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
              63.90
                         3.97 16.09 <2e-16 ***
dose
               4.88
                         2.17
                                 2.25
                                        0.031 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 12.2 on 34 degrees of freedom
Multiple R-squared: 0.129, Adjusted R-squared: 0.104
F-statistic: 5.05 on 1 and 34 DF, p-value: 0.0313
```

2. Logistic regression

a. Think: binary outcome

logit admit gre gpa i.rank

```
Iteration 0: log likelihood = -249.98826

Iteration 1: log likelihood = -229.66446

Iteration 2: log likelihood = -229.25955

Iteration 3: log likelihood = -229.25875

Iteration 4: log likelihood = -229.25875
```

admit	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
gre gpa	.0022644 .8040377	.001094 .3318193	2.07 2.42	0.038 0.015	.0001202 .1536838	.0044086 1.454392
rank 2 3 4	6754429 -1.340204 -1.551464	.3164897 .3453064 .4178316	-2.13 -3.88 -3.71	0.033 0.000 0.000	-1.295751 -2.016992 -2.370399	0551346 6634158 7325287
_cons	-3.989979	1.139951	-3.50	0.000	-6.224242	-1.755717

logit , or

Logistic regre		5		Number LR chi Prob > Pseudo	chi2	= = = =	400 41.46 0.0000 0.0829
admit	Odds Ratio	Std. Err.	z	P> z	[95%	Conf.	Interval]
gre gpa	1.002267 2.234545	.0010965 .7414652	2.07 2.42	0.038 0.015	1.00 1.166		1.004418 4.281877
rank 2 3 4	.5089309 .2617923 .2119375	.1610714 .0903986 .0885542	-2.13 -3.88 -3.71	0.033 0.000 0.000	.2736 .1330 .0934	551	.9463578 .5150889 .4806919

3. Cox proportional hazards

a. Think: time to event/censoring

Call:

```
coxph(formula = Surv(months, alive == 0) ~ age + pblasts + pinf +
    plab + maxtemp, data = leukem)
```

```
        coef
        exp(coef)
        se(coef)
        z
        p

        age
        0.03308
        1.03363
        0.01016
        3.26
        0.0011

        pblasts
        0.00945
        1.00950
        0.01396
        0.68
        0.4983

        pinf
        -0.01710
        0.98304
        0.01224
        -1.40
        0.1625

        plab
        -0.06600
        0.93613
        0.03865
        -1.71
        0.0877

        maxtemp
        0.15545
        1.16818
        0.11198
        1.39
        0.1651
```

Likelihood ratio test=18.5 on 5 df, p=0.00241 n= 51, number of events= 45

Measures of Association and Effect

-we've seen both odds ratios and risk ratios above, because they feature in regression model interpretation

-in general, for ratios:

- -ratio >1 = increased probability or odds of something happening
- -ratio 1 = probability/odds neither increased nor decreased
- -ratio <1 = decreased probability or odds of something happening

OR and RR, part 3

If we started with a defined population, assessed exposure and subsequently collected incident cases...

N=400	Cases	Controls	Total
Exposed	120	100	220
Not exposed	80	100	180

Total Total cases Total controls

$$OR_{disease} = \frac{120/100}{80/100} = 1.5$$
 $RR = \frac{120/220}{80/180} = 1.23$

Disease not rare... so OR does not approximate RR well

- -Case control studies use ODDS
- -Cohort studies tend to use RELATIVE RISK
- -RELATIVE RISK is always better, if you can swing it -but for rare diseases OR is fairly equivalent

Diagnostic Tests

Sensitivity and specificity

Truth/Gold Standard

Sensitivity = 80/100 = 80% Specificity = 800/900 = 89%

Predictive value

Truth

		Has disease	Does not have disease	
Test result	Positive	80	100	180
	Negative	20	800	820
		100	900	

Positive predictive value = 80/180 = 0.44 or 44% Negative predictive value = 800/820 = 0.98 or 98%

REMEMBER: sensitivity = "PID" = positive in disease, specificity = "NIH" = negative in health

AUC Curves

-generally pertain to logistic models, to show overall model performance (yes/no questions)

Sometimes people grasp for a rough guide as to the accuracy of a model's predictions based on the area under the ROC curve. A common thought is to assess the C statistic much like you would a class grade.

C statistic	Interpretation
0.90 to 1.00	model does an excellent job at discriminating "yes" from "no"
	(A)
0.80 to 0.90	model does a good job (B)
0.70 to 0.80	model does a fair job (C)
0.60 to 0.70	model does a poor job (D)
0.50 to 0.60	model fails (F)
below 0.50	model is worse than random guessing

A Bad Model: ROC Curve w/ AUC=0.263

A Mediocre Model: ROC Curve w/ AUC=0.702

A Pretty Good Model: ROC Curve w/ AUC=0.899

References

- 1. Dr. Thomas E. Love's PQHS 431-432 Course Notes
- 2. Dr. Farren Briggs' Introduction to Epidemiology Course Notes from Fall 2017
- 3. UCLA Institute for Digital Research and Education website
- 4. Dr. Danielle Navarro's Learning Statistics with R
- 5. Dr. Richard McElreath's <u>Statistical Rethinking: A Bayesian Course with Examples in R and Stan</u>