

Measure Space

1 Why

We want to generalize the notions of length, area, and volume.

2 Definition

A measurable space is a sigma algebra. We call the distinguished subsets the measurable sets.

A measure on a measurable space is a function from the sigma algebra to the positive extended reals. A measure space is a measurable space and a measure.

2.1 Notation

2.2 Properties

Proposition 1. Let (A, A) be a measurable space and $m : A \to [0, \infty]$ be a measure.

If $B \subset C \subset A$, then $m(B) \leq m(C)$. We call this property the of measures monotonicity of measure.

Proposition 2. For a measure space (A, A, m).

If
$$B \subset C \subset A$$
, then $m(B) \leq m(C)$.

We call this property the monotonicity of measure.

Proposition 3. For a measure space (A, A, m).

If
$$\{A_n\} \subset \mathcal{A}$$
 a countable family, then $m(\cup A_n) \leq \sum_i m(A_i)$.

We this property the sub-additivty of measure.

Proposition 4. For a measure space (A, A, m).

If
$$\{A_n\} \subset \mathcal{A}$$
 a countable family, then $m(\cup A_n) \leq \sum_i m(A_i)$.

We this property the sub-additivty of measure.

Proposition 5. For a measure space (A, A, m).

$$m(\bigcup_{n=1}^{\infty} A_i) = \lim_{n \to \infty} m(A_i)$$

Proposition 6. For a measure space (A, A, m).

$$m(\bigcap_{n=1}^{\infty} A_i) = \lim_{n \to \infty} m(A_i)$$

2.3 Examples

Example 7. counting measure