Solution to P.S. 1

February 28, 2012

1. Prove that an ordinal utility function preserves the preference orderings for any strictly increasing transformation.

Proof:

Suppose \succeq is a preference relation on the consumption space which is represented by $u(\boldsymbol{x})$. Namely

$$\forall \boldsymbol{x}^1, \, \boldsymbol{x}^2 \in X, \, \, \boldsymbol{x}^1 \succeq \boldsymbol{x}^2 \Leftrightarrow u\left(\boldsymbol{x}^1\right) \geq u\left(\boldsymbol{x}^2\right)$$

since f is strictly increasing in the range of u, then

$$u(\mathbf{x}^1) \ge u(\mathbf{x}^2) \Leftrightarrow f(u(\mathbf{x}^1)) \ge f(u(\mathbf{x}^2)), i.e. v(\mathbf{x}^1) \ge v(\mathbf{x}^2)$$

Hence v(x) could fully represent the preference relation \succeq .

- 2. Prove that the **von Neumann-Morgenstern expected utility function is unique up to a linear monotonic transformation**, which is a cardinal property .
 - Suppose that the vNM utility function $U(\cdot)$ represents \succeq .

• Then the vNM utility function, $V(\cdot)$, represents the same preferences if and only if for some scalar α and $\beta,\beta>0$, s.t. $V(p)=\alpha+\beta U(p)$, for all lotteries p.

Proof:

1. Sufficiency

we are to prove if $V(p) = \alpha + \beta U(p)$, for all lotteries $p, \alpha, \beta \in \mathbb{R}$ and $\beta > 0$, then $V(\cdot)$ is a vNM expected utility function that represents the same preference order.

• for $\forall p^1$, p^2 lottery, and $p^1 \succeq p^2$, since $U(\cdot)$ is the vNM expected utility function that represents this preference order, thus

$$p^1 \succeq p^2 \Leftrightarrow U(p^1) \geq U(p^2) \Leftrightarrow \sum_{i=1}^N p_i^1 u_i \geq \sum_{i=1}^N p_i^2 u_i$$

• on the other hand, since $V(p) = \alpha + \beta U(p)$ and $\beta > 0$,

$$U(p^1) \geq U(p^2) \Leftrightarrow \alpha + \beta U(p^1) \geq \alpha + \beta U(p^2) \Leftrightarrow V(p^1) \geq V(p^2)$$

and besides

$$\alpha + \beta \sum_{i=1}^{N} p_i^1 u_i \geq \alpha + \beta \sum_{i=1}^{N} p_i^2 u_i \Leftrightarrow \sum_{i=1}^{N} p_i^1 (\alpha + \beta u_i) \geq \sum_{i=1}^{N} p_i^2 (\alpha + \beta u_i)$$

• namely, $p^1 \succeq p^2 \Leftrightarrow V(p^1) \geq V(p^2)$, and $V(\cdot)$ is linear in probability, thus $V(\cdot)$ is also a vNM expected utility function.

2. Necessity.

We are to show that if u and v are vNM expected utility functions, then they are linearly related for elementary lottery, and thus for all gambles. As before, we assume that

- All lotteries have possible payoffs that are contained in the set $X = \{x_1, ..., x_n\}$ with corresponding probability $P = \{p_1, ..., p_n\}$.
- define an "elementary" or "primitive" lottery, e_i , which returns outcome x_i with probability 1 and all other outcomes with probability zero, that is,

$$e_i = \{p_1, ..., p_{i-1}, p_i, p_{i+1}, ..., p_n\} = \{0, ..., 0, 1, 0, ...0\}$$

where $p_i = 1$ and $p_j = 0 \ \forall j \neq i$.

• Without loss of generality, suppose that the outcomes are ordered such that

$$e_n \succeq e_{n-1} \succeq ... \succeq e_1$$

and $e_n \succ e_1$ (otherwise $e_n \sim \cdots \sim e_i \sim \cdots \sim e_1$, then every utility function is a constant and the result follows immediately). Because $u(\cdot)$ represents \succeq , we have $u(e_n) \geq \ldots \geq u(e_i) \geq \ldots \geq u(e_1)$, and $u(e_n) > u(e_1)$. Then for any $i = 1, \ldots, n, \exists \lambda_i \in [0, 1]$ s.t.

$$u(e_i) = \lambda_i u(e_n) + (1 - \lambda_i) u(e_1)$$
(1)

• Now, because $u(\cdot)$ has the expected utility property, (1) implies that if we regard $\lambda_i e_n + (1 - \lambda_i) e_1$ as a compound lottery, we have

$$u(e_i) = \lambda_i u(e_n) + (1 - \lambda_i) u(e_1) = u(\lambda_i e_n + (1 - \lambda_i) e_1)$$

which, because $u(\cdot)$ represents \succeq , means that

$$e_i \sim \lambda_i e_n + (1 - \lambda_i) e_1 \tag{2}$$

• On the other hand, because $v(\cdot)$ also represents \succeq , we must have

$$v(e_i) = v(\lambda_i e_n + (1 - \lambda_i) e_1)$$

since $v(\cdot)$ has the expected utility property,

$$v(e_i) = v(\lambda_i e_n + (1 - \lambda_i) e_1) = \lambda_i v(e_n) + (1 - \lambda_i) v(e_1)$$
 (3)

• Together, (1) and (3) imply that

$$\frac{u(e_n) - u(e_i)}{u(e_i) - u(e_1)} = \frac{1 - \lambda_i}{\lambda_i} = \frac{v(e_n) - v(e_i)}{v(e_i) - v(e_1)}$$
(4)

for any $i=1,\ldots,n$ such that $e_i \succ e_1$ (i.e., such that $\lambda_i > 0$).

• From (4) we may conclude that

$$[u(e_n) - u(e_i)][v(e_i) - v(e_1)] = [v(e_n) - v(e_i)][u(e_i) - u(e_1)]$$
(5)

whenever $e_n \succ e_1$.

• Rearranging, (5) can be expressed in the form

$$v(e_i) = \alpha + \beta u(e_i)$$
, for all $i = 1, \dots, n$. (6)

where

$$\alpha \equiv \frac{u(e_n)v(e_1) - v(e_n)u(e_1)}{u(e_n) - u(e_1)}$$

and

$$\beta \equiv \frac{v(e_n) - v(e_1)}{u(e_n) - u(e_1)}$$

Notice that both α and β are constants (i.e., independent of i), and that β is strictly positive.

• So, for any other arbitrary lottery p, if (p_1, \ldots, p_n) is the simple gamble induced by p, then

$$v(p) = \sum_{i=1}^{n} p_i v(e_i)$$

$$= \sum_{i=1}^{n} p_i (\alpha + \beta u(e_i))$$

$$= \alpha + \beta \sum_{i=1}^{n} p_i u(e_i)$$

$$= \alpha + \beta u(p)$$

where the first and last equalities follow because $v(\cdot)$ and $u(\cdot)$ have the expected utility property and the second equality follows from (6).