

Menu

- Interrupt motivation (polling example)
- Interrupt description
- Interrupt-driven I/O
 - > Interrupt Protocol
 - > Preemptive-Resume Priority Interrupts
 - > Vectored Interrupt
- Resets and Interrupts in XMEGA, 68HC11-12
 - > Resets and Interrupts Priority
 - > Interrupt and Reset Vector Assignments
 - Pseudo-vector assignments
 - > Reset and Interrupt Processing
 - > Interrupt vector and pseudo-vector examples
- XMEGA interrupt details

doc8385 (sec 14), External_Interrupt.asm

See readings & examples on web-site: Textbook (ch 10), doc8331 (sec 12-14),

University of Florida, EEL 3744 – File 10 © Drs. Schwartz & Arroyo

Polling Example

- You used polling in lab 2 when you were tasked to change some outputs based on the value of a specific input
- In the polling method, the µP "polls" an input or the status of a bit (or group of bits)
 - >If the bit(s) have the proper value(s), then an action should be taken
 - >If the bit(s) do not have the proper value(s), then the bit(s) will be polled again, and again, and again, ...

University of Florida, EEL 3744 - File 10

Polling Example

Example:

Read in a 4-bit value from PB7-PB4, when PB2=0; CPU indicates ready status by setting PC2. CPU writes value of PB7-PB4 to PC7-PC4.

- Processor sets PC₂ to indicate ready for new data
- Wait for PB₂ to go true, then read the 4-bits at PB₇-PB₄
- Copy the read values at PB₇-PB₄ to at PC₇-PC₄
- Processor sets PC₂ to indicate ready for new data

3

EEL 3744 Interrupt Description

- In the interrupt-driven alternative to polling, a peripheral or an I/O device that is ready for service indicates so by "interrupting" the μP
- If the device is allowed to interrupt, then the µP will complete the execution of the current instruction, save the processor status (the CPU registers, except the SP) on the stack, and branch to a special location (interrupt vector address) to execute a special subroutine (ISR) that will service the interrupting device. For XMEGA*: PCL, PCM, PCH

 Careful! XMEGA stores NO status info

For 68HC11/12: PCL, PCH, YL, YH, XL, XH, A, B, and CCR

EEL 3744 Interrupt Description

- At the completion of the interrupt-service routine, the processor status is restored from the stack by executing a return from interrupt (e.g., RETI [or RTI or IRET]) instruction
 - >This returns control to the program instruction that was originally scheduled to be executed before the interrupt was acknowledged
- The μP then resumes its normal processing

5

EEL 3744 Interruptdriven I/O

• Processing interrupts

Doty: Fig 6.7-6

University of Florida, EEL 3744 - File 10

7

Interrupt-driven I/O

• Daisy-chain priority and polling logic

University of Florida, EEL 3744—File 10
© Drs. Schwartz & Arroyo

Interrupt-driven I/O

• Generation of a device interrupt vector address

University of Florida, EEL 3744 – File 10

 Determining interrupting device through software polling

Start Save Will not be needed if the rocesso hardware automatically does this. State Clear Device 0 Interrupt Flag Device 0 Branch to Device 0 Service Routine No Clear Device 1 Interrupt Flag Device Interrupt Branch to Device 1 Service Routine Clear Device n Device n Interrupt Flag Interrupt Branch to Device Service Routine No False Interrupt Return from Service Routine Restore Processor Enable Interrupts Return

University of Florida, EEL 3744 – File 10 © Drs. Schwartz & Arroyo

EEL 3744

Interrupt-driven I/O

- Interrupt service routine flowchart
 - >Vectored interrupts (a)
 - >Software polling (b)

University of Florida, EEL 3744 – File 10 © Drs. Schwartz & Arroyo

10

68HC11

Interrupt Promotion Table

Reset & Interrupt
 Priority
 >HPRIO - Highest
 priority I-Bit
 interrupt using
 (PSELi)

PSEL[3:0]	Interrupt Source Promoted	
0000	Timer Overflow	
0001	Pulse Accumulator Overflow	
0010	Pulse Accumulator Input Edge	
0011	SPI Serial Transfer Complete	
0100	SCI Serial System	
0101	Reserved (Default to IRQ)	
0110	IRQ (External Pin or Parallel I/O)	
0111	Real-Time Interrupt	
1000	Timer Input Capture 1	
1001	Timer Input Capture 2	
1010	Timer Input Capture 3	
1011	Timer Output Compare 1	
1100	Timer Output Compare 2	
1101	Timer Output Compare 3	
1110	Timer Output Compare 4	
1111	Timer Input Capture 4/Output Compare 5	

University of Florida, EEL 3744 – File 10 © Drs. Schwartz & Arroyo

11

EEL 3744

Resets and Interrupts in 68HC11

EEL 3744	Vec Addr	Interrupt Source	•
	FFD6, D7 FFD8, D9	Serial Comm. Interface (SCI) Serial Peripheral Interface (SPI)	
	FFDA, DB	Pulse Accumulator Input Edge	
	•	1 0	
	FFDC, DD	Pulse Accumulator Overflow	
	FFDE, DF	Timer Overflow	
(011/011	FFE0, E1	Timer Output Compare 5	
68HC11	FFE2, E3	Timer Output Compare 4	
_	FFE4, E5	Timer Output Compare 3	
Interrupt	FFE6, E7	Timer Output Compare 2	
_	FFE8, E9	Timer Output Compare 1	
and Reset	FFEA, EA	Timer Input Capture 3	
and reset	FFEC, ED	Timer Input Capture 2	
Vectors	FFEE, EF	Timer Input Capture 1	
V CCIOIS	FFF0, F1	Real Time Interrupt	
	FFF2, F3	IRQ	
	FFF4, F5	XIRQ	
	FFF6, F7	Software Interrupt (SWI)	
Bible: Page 3	FFF8, F9	Illegal Opcode	
	FFFA, FB	Computer Operating Properly (COP)	
TD: Table 5-4	FFFC, FD	Clock Monitor	
University of Florida, EEL 3744 – File 10 © Drs. Schwartz & Arroyo	FFFE, FF	RESET	13

68HC11 EVBU

Interrupt Pseudo-Vectors (with BUFFALO)

BUFFALO memory dump: FFD6: 00 C4 FFD8: 00 C7 00 CA 00 CD 00 D0 FFE0: 00 D3 00 D6 00 D9 00 DC FFE8: 00 DF 00 E2 00 E5 00 E8 FFF0: 00 EB 00 EE 00 F1 00 F4 FFF8: 00 F7 00 FA 00 FD B6 00

Reset
Pseudo
Vector

Pseudo Vector	Interru
\$00C4-\$00C6	Serial
\$00C7-\$00C9	Serial
\$00CA-\$00CC	Pulse.
\$00CD-\$00CF	Pulse .
\$00DO-\$00D2	Timer
\$00D3-\$00D5	Timer
\$00D6-\$00D8	Timer
\$00D9-\$00DB	Timer
\$00DC-\$00DE	Timer
\$00DF-\$00E1	Timer
\$00E2-\$00E4	Timer
\$00E5-\$00E7	Timer
\$00E8-\$00EA	Timer
\$00EB-\$00ED	Real T
\$00EE-\$00F0	IRO
\$00F1-\$00F3	XIRQ
\$00F4-\$00F6	Softw
\$00F7-\$00F9	Illegal
\$00FA-\$00FC	Compu
\$00FD-\$00FF	Clock
Vector Addr	Interrup

Vector Addr FFD6, D7 FFE0, E1 FFF0, F1 FFF2, F3 FFFE, FF upt Source Comm. Interface (SCI) Peripheral Interface (SPI) Accumulator Input Edge Accumulator Overflow Overflow Output Compare 5 Output Compare 4 Output Compare 3 Output Compare 2 Output Compare 1 Input Capture 3 Input Capture 2 Input Capture 1 Γime Interrupt are Interrupt (SWI) l Opcode iter Operating Properly (COP) Monitor

Interrupt Source
Serial Comm. Interface (SCI)
Timer Output Compare 5
Real Time Interrupt
IRQ
RESET

14

University of Florida, EEL 3744 – File 10 © Drs. Schwartz & Arroyo

EEL 3744 Interrupt Vectors & Interrupt Pseudo-vectors for **68HC11**with BUFFALO

68HC11 SCI Interrupts

• Make a pseudo-vector (for BUFFALO) for the SCI interrupt service routine:

ORG \$???? JMP SCI_ISR Pseudo-vector (with BUFFALO): \$00C4

• Make vector (for no BUFFALO) for the SCI interrupt service routine:

ORG \$???? Vector without BUFFALO: \$FFD6

University of Florida, EEL 3744 – File 10 © Drs. Schwartz & Arroyo

68HC11 Interrupt Priority Resolution (1/2)

• Interrupt priority resolution

University of Florida, EEL 3744 – File 10 © Drs. Schwartz & Arroyo

19