

Lora簡介

LoRa技術是什麼?

LoRa技術是為了創建長距離通信連結的物理層無線調製方式。許多傳統的無線系統使用物理層頻移鍵控(FSK)調製,因為它是十分高效的低功耗方案。

LoRa技術基於線性Chirp擴頻調製,延續了移頻鍵控調製的低功耗特性,但是大大增加了通信範圍。Chirp擴頻調製已經在軍事和航天通信方面應用了幾十年,因為它具有長距離傳輸,以及很好的抗干擾性,而LoRa則是它第一次用作商業用途。

LoRa來源於Long Range這個單詞,所以它的最大優點就是長距離傳輸。單個網關或者基站可以覆蓋整個城市或者數百千米。

LPWAN的優點是什麼?

一項技術無法覆蓋所有的物聯網應用場景。WiFi和BTLE主要應用於個人設備相關的應用。蜂窩技術主要應用於需要高數據吞吐量,以及需要供電的應用場景。LPWAN的應用場景包括:長電池壽命,並且傳感器和應用在長距離下,只需要每小時只要傳遞幾次數據。

LPWAN物聯網網絡的要素有哪些?

- 網絡架構
- 通信範圍
- 電池壽命和功耗
- 抗干擾性
- 網絡容量 (網絡結點的最大數目)
- 網絡安全性
- 單向或者雙向傳播
- 服務的應用

LoRaWAN是什麼呢?

• 網絡架構

許多部署好的網絡都採用網狀架構。在一個網狀網絡中,每個單獨的端結點傳遞信息到其他結點,增加通信範圍以及網絡的小區容量。當結點增加的時候,它也增加了複雜度,減少了網絡容量也減少了電池壽命,因為結點要收發從他們不相干的結點傳遞來的信息。長距離星型架構,由於長距離連接性,從而減少了電池壽命。

LoRaWan的網絡節點不和特定網關相綁定。相反,通過結點傳輸的數據,被多個網關接受。

每個網關,通過一些信號隧道(例如蜂窩網,乙太網,衛星網,Wi-Fi) 將從端結點收到的數據包發向雲端。

由網絡伺服器理解和處理複雜任務,包括管理網絡,過濾冗餘數據包,進行安全性檢查,通過優化的網關進行調度確認,執行自適應數據率,等等。

如果一個結點是移動的,或者運動的時候沒有網關之間的切換,這就需要啟用資源追蹤應用,一個基於垂直物聯網目標應用程式。

• 電池壽命

LoRaWAN網絡的結點是異步通信的,並且當它們有數據準備發送的時候,會採用事件驅動,或者調度機制進行通信。這個協議採用了阿羅哈法。在一個網狀網絡或者一個異步網絡中,例如蜂窩網,結點必須頻繁的被喚醒,來同步網絡和檢查消息。這種同步,大大的消耗了能量,成為電池壽命減少的一個重要原因。在最近的GSMA對於LPWAN空間的各項技術研究和對比中,LoRaWan比其他技術要優3到5倍。

• 網絡容量

為了保證星型網絡的可行,網關必須有能力處理大量來自各個結點的信息。LoRaWAN的高網絡容量通過利用自適應的數據率,以及網關內多通道多數據機的收發器,來實現。

最重要的因素,是並發通道數,數據率,負載長度,已經結點間傳輸數據頻度。因為LoRa是擴頻基礎上的調製,所以每個信號基本上是正交的。當擴展因子變化的時候,有效的數據率也跟著改變。網關利用這種性能,能夠在同時在同一信道上接受不同的數據率。如果一個結點具有一個好的連接,並且靠近網關,網關當然可以利用最小的數據率,並且填充必須要更長的可用的頻譜。通過將數據率提高,空中的時間將被縮短,開放更多的潛在時間來傳輸。自適應的數據率也優化了結點的電池壽命。

為了應用自適應數據率,需要對稱的上下行連接,並且有足夠的下行能力。這些功能讓LoRaWAN能夠有很高的容量,並且讓網絡可擴展。一個網絡通過最少數量的設施部署,在擴容的時候,可添加更多的網關,調整數據率,減少對於其他網關的串擾,並且擴大能力6-8倍。其他LPWAN方案沒有LoRaWan的擴容新,因為技術取捨的緣故,限制了下行能力,或者讓下行範圍和上行範圍不對稱。

• 設備分類

不同應用的端設備具有不同的要求。在為了優化端應用配置, LoRaWAN使用了不同的設備類型。設備分類,權衡了網絡下行通 信的延時和電池壽命。在一個執行器類型的應用中,下行通信演 示是十分重要的因素。

雙向終端設備(類型A):A類型端設備,允許雙向通信,每個端設備的上行傳輸,伴隨兩個端的下行接收窗口,根據自身的傳輸需要,以及採取ALOHA類型協議的小變化。A類型操作是最低功耗的端系統。

雙向終端設備具有固定接受時間槽(類型B):對於A類型設備隨機接受窗口來說,B類型設備具有固定時間接受窗口。它根據來自網關的接受指示,來決定何時打開接受窗口。伺服器就可以知道端設備何時再傾聽數據。

雙向終端設備具有最大接受時間槽(類型C):C類型設備具有連續打開的接受窗口,只有在數據傳輸時才關閉。

•安全性

安全性自然是十分重要的因素。LoRaWan具有兩層安全防護:一個是網絡,一個是應用。網絡安全保證了結點的合法性,應用的安全保證了網絡操作不能訪問用戶的應用數據。它使用AES加密來交換IEEE EUI64標誌符。

與傳統的物聯網網絡對比的情況?

Long Range

- · Greater than cellular
- Deep indoor coverage
- Star topology

Max Lifetime

- Low power optimized
- 10-20yr lifetime
- >10x vs cellular M2M

Multi-Usage

- · High capacity
- · Multi-tenant
- Public network

Low Cost

- Minimal infrastructure
- · Low cost end node
- · Open SW

程式碼架構

首先需要先下載必要的檔案:

https://goo.gl/b9nd78

https://goo.gl/YnUWK2

• 透過 IDE 的 草稿碼->匯入程式庫->加入.ZIP程式庫 ,選擇下載的檔案


```
•加入函式庫:
  #include <SPI.h>
  #include <RH RF95.h>
• 建立Lora實體:
  RH RF95 rf95;
• 宣告群組及設備代表字元:
  char head = '@'; // 群組代表字元
  char ID = '1'; // 設備代表字元
• 初始化(setup):
  Serial.begin(9600); // 開啟序列埠
  while (!Serial); // 等待序列埠開啟完成
  //Lora初始化
  if (!rf95.init()) // lora模組初始化並回傳是否成功
   Serial.println("init failed"); // 初始化失敗回傳訊息
```

• 訊息發送的函式: 在函式呼叫時,將字串透過Lora發送

```
void loraSend(String d){  // 將要發送的訊息儲存到 d 發送變數
d = String(head) + String(ID) + d;
          // 在發送變數前面加上群組及設備代表字元
uint8 t data[dl+1]; // 宣告 uint8 8 格式變數
for(int i = 0;i < dl;i++){ // 將發送變數儲存到 uint8_t 變數
 data[i]=d[i];
data[dl] = 0;
            // 結束字元為0
rf95.send(data, sizeof(data)); // 發送Lora訊息
rf95.waitPacketSent();
                // 等待發送
```

訊息接收的函式:輸入設備代表字元,回傳該設備發送的訊息字串

```
String loraRead(char id){  // 將設備代表字元儲存到 id 代表變數
uint8 t buf[RH RF95 MAX MESSAGE LEN]; // 宣告接收訊息變數
uint8_t len = sizeof(buf); // 宣告變數儲存接收訊息變數長度
if (rf95.waitAvailableTimeout(3000)){
                // 設定等待訊息時間3秒,沒有訊息回傳false
 if (rf95.recv(buf, &len)){ // 接收Lora訊息,訊息接收失敗回傳false
  Serial.print("//got reply: ");
  Serial.println((char*)buf); // 顯示接收到的訊息
  String s = String((char*)buf); // 將訊息轉換為字串
  if(s[0]==head){ // 檢查群組代表字元是否符合格式
   if(s[1]==id){ // 檢查設備代表是否與代表變數相同
   s.remove(0,2); // 移除群組及設備代表字元
             // 回傳
    return s;
```

```
}else{
    Serial.println("//ID does not match"); // 設備代表字元不符
    return "ID does not match";
  }else{
   Serial.println("//Format does not match"); // 格式不符
   return "Format does not match";
 }else{
  Serial.println("//recv failed");
                                             // 接收訊息失敗
  return "failed";
}else{
 Serial.println("//No reply, is rf95_server running?"); //沒有訊息
 return "No reply";
```

命令格式:

- loraSend("發送訊息")
 將訊息透過Lora發送,發送時會在開頭附加群組及設備代表字元: loraSend("Hello world!"); //發送 Hello wrold
- loraRead('2') 接收訊息,如果為相同群組且設備代表字元為 2 則回傳訊息字串:
 String message = loraRead('2');
 //宣告 message 字串變數接收訊息:
 //群組及設備字元相同回傳訊息字串
 //沒有訊息回傳 No reply 字串
 //沒有訊息回傳 Rormat does not match 字串
 //設備字元不符回傳 Format does not match 字串
 //設備字元不符回傳 ID does not match 字串

發送時同群組才有可能接收到訊息:

接收時可選擇接收哪個設備的訊息:

Lora訊息回傳

• 首先將Lora擴展板裝上天線之後,安裝到Arduino MEGA上。 注意針腳對齊後再按壓,避免針腳損壞,如下圖為接收端:

接收端

- 準備另一塊lora擴展板裝上天線,安裝到Arduino MEGA。
- 將溫濕度模組接上杜邦線連接擴展版腳位,作為感測端:

溫濕度 擴展板

DAT -> pin4

VCC -> 5V

GND -> GND

感測端

• 接收端程式碼:

```
1 //Lora 函式庫
2 #include <SPI.h>
3 #include <RH_RF95.h>
4
5 //建立Lora
6 RH_RF95 rf95;
8 //通訊設定
  char head = '@'; // 群組代表字元
  char ID = '1'; // 設備代表字元
10
11
12 □ void setup() {
    Serial.begin(9600); // 開啟序列埠
13
14 while (!Serial); // 等待序列埠開啟完成
15 //Lora初始化
16 if (!rf95.init()) // lora模組初始化並回傳是否成功
17
      Serial.println("init failed"); // 初始化失敗回傳訊息
18
19
20 □ void loop() {
   // 接收訊息
21
22
    String s = loraRead('2'); // 宣告變數儲存代表字元為'2'的Lora設備發送的訊息
    Serial.println(s); // 輸出顯示變數
23
24 }
25
```

```
26 //Lora接收
27回String loraRead(char id){ // 將設備代表字元儲存到 id 代表變數
     uint8_t buf[RH_RF95_MAX_MESSAGE_LEN]; // 宣告接收訊息變數
29
     uint8_t len = sizeof(buf);
                                         // 宣告變數儲存接收訊息變數長度
    if (rf95.waitAvailableTimeout(3000)){ // 設定等待訊息時間3秒,沒有訊息回傳false
30⊟
      if (rf95.recv(buf, &len)){
                                           // 接收Lora訊息,訊息接收失敗回傳false
31⊟
32
        Serial.print("//got reply: ");
33
        Serial.println((char*)buf);
                                           // 顯示接收到的訊息
        String s = String((char*)buf);
34
                                          // 將訊息轉換為字串
35 FI
        if(s[0]==head){
                                           // 檢查群組代表字元是否符合格式
36⊟
          if(s[1]=id){
                                          // 檢查設備代表是否與代表變數相同
37
            s.remove(0,2);
                                          // 移除群組及設備代表字元
38
            return s:
                                           // 回傳
39⊟
          }else{
        Serial.println("//ID does not match"): // 設備代表字元不符
40
            return "ID does not match":
41
42
43 FI
        }else{
        Serial.println("//Format does not match"); // 格式不符
44
          return "Format does not match";
45
46
```

• 感測端程式碼:

```
1 // 函式庫
2 #include <SPI.h>
3 #include <RH_RF95.h>
  #include "dht.h"
5
  // 溫濕度模組設定
  #define DHTPIN 4 // 連接4腳位
  dht DHT:
           // 建立DHT實體
9
10
  //建立Lora實體
11
  RH_RF95 rf95;
12
13
  //通訊設定
14 char head = '@'; // 群組代表字元
  char ID = '2'; // 設備代表字元
15
16
17 □ void setup() {
18
   //序列埠
19 Serial.begin(9600); // 開啟序列埠
20 while (!Serial); // 等待序列埠開啟完成
21 //Lora初始化
22 if (!rf95.init()) // lora模組初始化並回傳是否成功
      Serial.println("init failed"); // 初始化失敗回傳訊息
23
24 }
```

```
26⊟void loop(){
27
     //回傳感測訊息
28
     Serial.println("Send:");
     DHT.read11(DHTPIN);
29
                                // 讀取溫濕度
30
     String a = "temp: ";
                                // 建立字串加入溫濕度
31
     a += DHT.temperature;
32
     a += " C, Humi: ";
     a += DHT.humidity;
33
34
     a += " \%";
35
     loraSend(a);
                                // 將訊息透過Lora發送
36
     delay(400);
                                // 延遲0.4秒
37
38
39
   //Lora發送
40回void loraSend(String d){ // 將要發送的訊息儲存到 d 發送變數
41
     d = String(head) + String(ID) + d; // 在發送變數前面加上群組及設備代表字元
42
     int dl = d.length();
                                     // 宣告變數存放發送長度
43
     uint8_t data[dl+1];
                                     // 宣告 uint8_8 格式變數
     for(int i = 0; i < dl; i++){
44 FI
                                     // 將發送變數儲存到 uint8_t 變數
45
       data[i]=d[i];
46
47
     data[dl] = 0;
                                     // 結束字元為0
48
     rf95.send(data, sizeof(data));
                                     // 發送Lora訊息
     rf95.waitPacketSent();
49
                                     // 等待發送
50
```

• 回傳結果:

傳送 Humidity: 21.00 % //No reply, is rf95_server running? No reply //got reply: @2Humidity: 24.00 % Humidity: 24.00 % //No reply, is rf95_server running? No reply //got reply: @2Humidity: 24.00 % Humidity: 24.00 % //No reply, is rf95_server running? No reply //got reply: @2Humidity: 26.00 % Humidity: 26.00 % //No reply, is rf95_server running? No reply //got reply: @2Humidity: 26.00 % Humidity: 26.00 % //No reply, is rf95_server running? No reply //got reply: @2Humidity: 22.00 % Humidity: 22.00 % //No reply, is rf95_server running? No reply //got reply: @2Humidity: 23.00 % Humidity: 23.00 % NL(newline) 9600 baud 自動捲動

Lora命令發送

- 硬體沿用上個範例,使用內建的LED作為顯示。
- 使用接收端作為命令發送, 感測端作為LED顯示。

• 接收端增加命令發送程式碼:

```
1 //Lora 函式庫
 2 #include <SPI.h>
 3 #include <RH RF95.h>
 4
  //建立Lora
  RH_RF95 rf95;
  //通訊設定
   char head = '@'; // 群組代表字元
   char ID = '1'; // 設備代表字元
10
11
  //命令發送
12
13 String command = ""; // 宣告暫存變數
14
15 □ void setup() {
16
     Serial.begin(9600); // 開啟序列埠
   while (!Serial); // 等待序列埠開啟完成
17
18
   //Lora初始化
19 if (!rf95.init()) // lora模組初始化並回傳是否成功
      Serial.println("init failed"); // 初始化失敗回傳訊息
20
21
22
```

```
23 □ void loop() {
24
    // 接收訊息
25
    String s = loraRead('2'); // 宣告變數儲存代表字元為'2'的Lora設備發送的訊息
26
    Serial.println(s); // 輸出顯示變數
27
    // 發送命令
28⊟
    if(Serial.available()){ // 如果序列埠有資料
      char c = Serial.read(); // 宣告變數儲存字元
29
30 □
      if(c=='\n'){
                    // 如果為換行字元
        loraSend(command); // 透過Lora發送命令訊息
31
        while(s != "OK"){ // 重複執行直到接收到OK
32⊟
33
         loraSend(command); // 透過Lora發送命令訊息
          s = loraRead('2'); // 接收設備'2'的回傳訊息
34
35
36
        command = "":
                          // 清空命令暫存變數
37⊟
      }else{
38
        command+=String(c); // 將字元加到命令暫存變數
39
40
41
```

```
//Lora翳镁
43
44回 void loraSend(String d) { // 將要發送的訊息儲存到 d 發送變數
    d = String(head) + String(ID) + d; // 在發送變數前面加上群組及設備代表字元
45
    int dl = d.length();
46
                                  // 宣告變數存放發送長度
    uint8_t data[dl+1];
                                // 宣告 uint8 8 格式變數
47
48F
    for(int i = 0;i<dl;i++){
                                  // 將發送變數儲存到 uint8_t 變數
      data[i]=d[i]:
49
50
    data[dl] = 0;
51
                                // 結束字元為0
52
    rf95.send(data, sizeof(data)); // 發送Lora訊息
53
    rf95.waitPacketSent();
                                  // 等待發送
54
55
56 //Lora接收
57回String loraRead(char id){ // 將設備代表字元儲存到 id 代表變數
    uint8_t buf[RH_RF95_MAX_MESSAGE_LEN]; // 宣告接收訊息變數
58
59
    uint8_t len = sizeof(buf);
                                       // 宣告變數儲存接收訊息變數長度
60
61 FI
    if (rf95.waitAvailableTimeout(3000)){ // 設定等待訊息時間3秒,沒有訊息回傳false
62 E
     if (rf95.recv(buf, &len)){
                                        // 接收Lora訊息,訊息接收失敗回傳false
63
        Serial.print("//got reply: ");
        Serial.println((char*)buf);
                                     // 顯示接收到的訊息
64
        String s = String((char*)buf); // 將訊息轉換為字串
65
```

```
if(s[0]==head){
                                             // 檢查群組代表字元是否符合格式
66⊟
67 E
          if(s[1]=id){
                                             // 檢查設備代表是否與代表變數相同
68
            s.remove(0,2);
                                             // 移除群組及設備代表字元
69
            return s;
                                             // 回傳
70 □
          }else{
71
        Serial.println("//ID does not match"); // 設備代表字元不符
            return "ID does not match":
72
73
74□
        }else{
        Serial.println("//Format does not match"); // 格式不符
75
          return "Format does not match";
76
77
      }else{
78⊟
        Serial.println("//recv failed");
79
                                           // 接收訊息失敗
        return "failed":
80
81
82 FI
     }else
83
       Serial.println("//No reply, is rf95_server running?"); //沒有訊息
       return "No reply";
84
85
86
```

• 感測端增加LED控制程式碼:

```
1 // 函式庫
2 #include <SPI.h>
3 #include <RH_RF95.h>
4 #include "dht.h"
6 // 溫濕度模組設定
7 #define DHTPIN 4 // 連接4腳位
           // 建立DHT實體
  dht DHT;
  //建立Lora實體
  RH_RF95 rf95;
12
13
14 //通訊設定
15 char head = '@'; // 群組代表字元
  char ID = '2'; // 設備代表字元
17
  //LED
18
  int led = 13; // 使用內建LED
20
```

```
21 □ void setup() {
22
    //LED
23
     pinMode(led, OUTPUT);
     digitalWrite(led, LOW);
24
25
    //序列埠
26
     Serial.begin(9600); // 開啟序列埠
27
     while (!Serial); // 等待序列埠開啟完成
28
    //Lora初始化
29
    if (!rf95.init()) // lora模組初始化並回傳是否成功
       Serial.println("init failed"); // 初始化失敗回傳訊息
30
31
32
33 □ void loop(){
    //回傳感測訊息
34
35
     Serial.println("Send:");
36
     DHT.read11(DHTPIN);
                           // 讀取溫濕度
     String a = "temp: ";
37
                              // 建立字串加入溫濕度
38
    a += DHT.temperature;
     a += " C, Humi: ";
39
40
     a += DHT.humidity;
41
     a += " \%";
     loraSend(a);
42
                               // 將訊息透過Lora發送
```

```
43
44
    //命令辨識
    String r = loraRead('1'); // 宣告變數接收儲存設備代號'1'的Lora訊息
45
    if(r!="No reply"&&r!="failed"&&r!="Format does not match"
46
47 E
      &&r!="ID does not match"){ // 如果成功街接收訊息
      Serial.println("receive:");
48
      Serial.println(r); // 顯示接收資料
49
     50
                         // 如果訊息為"on"
51□
       digitalWrite(led,HIGH); // LED亮起
52
53
54 □
      if(r=="off"){
                  // 如果訊息為"off"
       digitalWrite(led,LOW); // LED熄滅
55
56
57
58
    delay(400);
                            // 延遲0.4秒
59
60
```

```
61 //Lora發送
62回void loraSend(String d){ // 將要發送的訊息儲存到 d 發送變數
    d = String(head) + String(ID) + d; // 在發送變數前面加上群組及設備代表字元
64 int dl = d.length();
                                 // 宣告變數存放發送長度
65
    uint8_t data[dl+1];
                                 // 宣告 uint8_8 格式變數
66 ☐ for(int i = 0;i<dl;i++){
                                 // 將發送變數儲存到 uint8_t 變數
67
      data[i]=d[i];
68
    data[dl] = 0;
69
                                  // 結束字元為0
70
    rf95.send(data, sizeof(data)); // 發送Lora訊息
    rf95.waitPacketSent();
71
                                 // 等待發送
72
73
74
   //Lora接收
75回 String loraRead(char id){ // 將設備代表字元儲存到 id 代表變數
76
    uint8_t buf[RH_RF95_MAX_MESSAGE_LEN]; // 宣告接收訊息變數
77
    uint8_t len = sizeof(buf);
                                         // 宣告變數儲存接收訊息變數長度
78
79 E
    if (rf95.waitAvailableTimeout(3000)){
                                         // 設定等待訊息時間3秒,沒有訊息回傳false
80 E
      if (rf95.recv(buf, &len)){
                                          // 接收Lora訊息,訊息接收失敗回傳false
        Serial.print("//got reply: ");
81
        Serial.println((char*)buf);
82
                                         // 顯示接收到的訊息
        String s = String((char*)buf);
83
                                          // 將訊息轉換為字串
```

```
if(s[0]==head){}
84 □
                                               // 檢查群組代表字元是否符合格式
85 E
           if(s[1]==id){
                                               // 檢查設備代表是否與代表變數相同
             s.remove(0,2);
86
                                              // 移除群組及設備代表字元
 87
             return s;
                                               // 回傳
88E
           }else{
          Serial.println("//ID does not match"); // 設備代表字元不符
89
             return "ID does not match";
 90
91
         }else{
92 F
          Serial.println("//Format does not match"); // 格式不符
93
           return "Format does not match";
94
95
96□
       }else{
97
          Serial.println("//recv failed");
                                             // 接收訊息失敗
98
          return "failed";
99
100 □
      }else{
101
        Serial.println("//No reply, is rf95_server running?"); //沒有訊息
102
        return "No reply";
103
104
```

LED控制:

- 1. 開啟監控視窗選擇NL做為命令的結尾
- 2. 再輸入on或off控制LED

沒有行結尾

√ NL(newline)

CR(carriage return)

NL & CR

on

Lora gateway

閘道器(英語:Gateway),大陸譯作「網關」、臺灣及香港譯作「閘道器」,區別於路由器(由於歷史的原因,許多有關TCP/IP的文獻曾經把網路層使用的路由器(英語:Router)稱為閘道器,在今天很多區域網路採用都是路由來接入網路,因此現在通常指的閘道器就是路由器的IP),經常在家庭中或者小型企業網路中使用,用於連線區域網路和Internet。閘道器也經常指把一種協定轉成另一種協定的裝置,比如語音閘道器,在這裡可以作為網路及Lora的通道。

© PRAGINO

Lora gateway 設定: wifi請連接 dragino-xxxxxx

或是使用網路線連接 gateway 的 LAN

在瀏覽器輸入 10.130.1.1

Username: root password: dragino

接下來要開啟 Arduino IDE,點選 檔案 -> Preference 填入網址 http://www.dragino.com/downloads/downloads/YunShield/p ackage_dragino_yun_test_index.json

開啟 工具 -> 板子 -> 板子管理 搜尋並安裝 Dragino Yun

開啟 工具 -> 板子 選擇 Arduino Uno - Dragino Yun

開啟 工具 - > 序列埠 選擇 10.130.1.1(Arduino Yun)

開啟 檔案 -> 範例 -> Dragino -> Basic -> Blink , 點選上傳燒錄,gateway上的愛心燈號會開始閃爍。

接來介紹 gateway 與擴充板的通訊,首先下載程式庫:

http://www.airspayce.com/mikem/arduino/RadioHead/RadioHead-1.63.zip

下載後透過 IDE 的 草稿碼->匯入程式庫->加入.ZIP程式庫,選擇下載的檔案

硬體方面可以是 Arduino+擴充板 與 gateway:

或是兩個gateway:

上傳 gateway 接收端程式碼:

檔案 -> 範例 -> Dragino -> LoRa -> LoRa_Simple_Server_Yun

Arduino+擴充板接收端選擇 LoRa_Simple_Client_Arduino

雲端資料分析

• ThingSpeak是"物聯網(IoT)的雲端平台,可以讓您在雲端收集和存儲感測器數據並開發IoT應用程序",是由Mathworks(MATLAB®的創建者)研發。IoT設備可以將數據上傳到ThingSpeak(例如Arduino及Raspberry Pi等相關設備)。收集的數據可以在雲端分析。

在網頁輸入https://thingspeak.com/開啟網頁按下右上 Login

• 如果已經有ThingSpeak帳號,直接輸入帳號密碼,新使用者請點選下方 Sign up for the first time 或是右上的 Sign Up

在登入頁面輸入資料

到信箱收信認證

Thank you for registering with MathWorks!

To complete the registration process, verify your email address by clicking this link:

Verify your email

Verify Your MathWorks Account

To finish creating your account, complete the following steps:

- Go to your inbox for ibuildertw003@gmail.com.
- 2. Click the link in the email we sent you.

Once you've done this, click Continue.

Didn't get the email?

- 1. Check your spam folder.
- 2. Send me the email again.
- Contact Customer Support if you still do not have the email

Sincerely, MathWorks Customer Service Team

Privacy policy

回到網頁按下

Continue

再按

OK

使用前要同意使用條款

會跳轉到 My Channels 按下 New Channle

輸入資料建立新通道

☐ ThingSpeak™	Channels +	Apps	Com	munity	Support
New Chann	nel				
Name	iBuilder_Lora 2				
Description	Temperature & H	Humidity		描刻	
Field 1	Temperature			· -	医資料
Field 2	Humidity		✓	濕度	麦 資料
Field 3					

往下拉按下

Save Channel

點選API Keys:

會顯示寫入及讀取的金鑰(Key), 請紀錄下來,稍後程式碼需要金鑰

硬體設備: gateway 接收端 及 Arduino+擴充板 感測端

接下來要對 Lora gateway 進行設定: wifi請連接 dragino-xxxxxx

或是使用網路線連接 gateway 的 LAN

在瀏覽器輸入 10.130.1.1

Username: root password: dragino

下載 ThingSpeak 的程式庫:

https://github.com/mathworks/thingspeak-arduino

下載後透過 IDE 的 草稿碼->匯入程式庫->加入.ZIP程式庫,選擇下載的檔案


```
Arduino+擴充板感測端程式碼:
```

檔案 --> 範例 --> Dragino --> IoTServer --> ThingSpeak --> dht11_client

上傳到Arduino板子

gateway接收端程式碼:

檔案 --> 範例 --> Dragino --> IoTServer --> ThingSpeak --> dht11_dht11_server

修改 myChannelNumber 及 myWriteAPIKey 的資訊

上傳到 gateway

開啟Thingspeak頁面顯示資料圖表:

Channel Stats

Created: about 2 hours ago Updated: 16 minutes ago Last entry: 16 minutes ago

Entries: 77

