Raport z projektu

06-DUMAUI0 2025/SL

Cel projektu

Celem projektu było stworzenie modelu, który przewiduje sentyment tekstu (czy dany tekst jest pozytywny czy negatywny).

Dane

Dane pochodzą z gotowego zbioru przygotowanego przez Hugging Face, zawierającego zbalansowaną liczbę 25 000 tekstów o pozytywnym lub negatywnym wydźwięku. Dane zostały podzielone na zbiór uczący (25 000 przykładów) oraz zbiór testowy (również 25 000 przykładów). (link: https://huggingface.co/datasets/stanfordnlp/imdb).

Modele

W projekcie porównano działanie 3 modeli:

- Naiwny klasyfikator bayesowski: wykorzystano rozkład wielomianowy na danych po transformacji TF-IDF.
- Model LSTM oparty na embeddingach GloVe: dane wejściowe przekształcono w embeddingi 300-wymiarowe, a następnie przetworzono przez jednokierunkową warstwę LSTM i klasyfikator.
- Model transformerowy BERT: użyto wstępnie wytrenowanego modelu distilbert-baseuncased-finetuned-sst-2-english z biblioteki Hugging Face, dostrojonego na zadaniu klasyfikacji sentymentu.

Ewaluacja

Do ewaluacji wykorzystano metryki *accuracy, precision, recall* i *F1-score*. Wyniki ewaluacji przedstawia poniższa tabelka:

Accuracy	Precision	Recall	F1-score
0,86	0,86	0,86	0,86
0,8064	0,8065	0,8064	0,8064
0,93	0,93	0,93	0,93
	0,86	0,86 0,86 0,8064 0,8065	0,86 0,86 0,8064 0,8065 0,8064 0,8065

Wnioski

Najlepsze wyniki pod względem wszystkich metryk osiągnął model typu transformer (BERT). Wysoka skuteczność wynika z faktu, że BERT jest modelem głębokim, wstępnie wytrenowanym na dużej liczbie danych i uwzględnia kontekst słów. Model LSTM oparty na embeddingach GloVe poradził sobie znacznie gorzej niż transformer, co może być związane z brakiem kontekstu i trudnością w trenowaniu sieci od zera na ograniczonym zbiorze danych. Naiwny klasyfikator bayesowski, mimo swojej prostoty, uzyskał zaskakująco dobre wyniki – lepsze niż LSTM – co potwierdza skuteczność klasycznych metod na zadaniach z dobrze dobranymi cechami (TF-IDF). Może to świadczyć o przetrenowaniu LSTM lub niedostatecznym czasie trenowania.