HW3 SUPPLEMENT

MOTION ESTIMATION

reference frame

target frame

target frame

reference frame

target frame

reference frame

target frame

reference frame

target frame

reference frame

target frame

reference frame

target frame

Find block with min. SAD

reference frame

target frame

reference frame

next non-overlapping macroblock

target frame

prediction

reference frame

2-D LOGARITHM SEARCH METHOD

$$m = p/2 = 2$$

Search 5 locations: (x, y) (x+m, y) (x, y+m) (x-m, y) (x, y-m)

2-D LOGARITHM SEARCH METHOD

(Please implement the algorithm as slide p.48)

Q1 (B) MOTION VECTORS IMAGE

- Save the motion vectors matrix
- Show motion vectors image

Q1 (C) RESIDUAL IMAGE

The difference between target image and predicted image

Q1 (D) PLOT TOTAL SAD & PSNR

- Total SAD: the sum of minimum SAD of every microblocks

$$PSNR = 10 \cdot \log_{10}(\frac{MAX_{I}^{2}}{MSE})$$

$$= 20 \cdot \log_{10}(\frac{MAX_{I}}{\sqrt{MSE}})$$

$$= 20 \cdot \log_{10}(MAX_{I}) - 10 \cdot \log_{10}(MSE)$$

$$MSE = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [I(i, j) - K(i, j)]^{2}$$

Q1 (D) PLOT TOTAL SAD & PSNR

- Total SAD: the sum of minimum SAD of every microblocks
- PSNR: refer to HW1

$$PSNR = 10 \cdot \log_{10}(\frac{MAX_{I}^{2}}{MSE})$$

$$= 20 \cdot \log_{10}(\frac{MAX_{I}}{\sqrt{MSE}})$$

$$= 20 \cdot \log_{10}(MAX_{I}) - 10 \cdot \log_{10}(MSE)$$

$$MSE = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [I(i, j) - K(i, j)]^{2}$$

Q1 (D) PLOT TOTAL SAD & PSNR

SEARCH RANGE

