Erasmus School of Economics

MOOC Econometrics

Lecture 2.1 on Multiple Regression:
 Motivation

Christiaan Heij

Erasmus University Rotterdam

Gender difference in wage

Test

- For which question should education be included in the analysis?
- For which question should it be excluded?
- Total gender effect including education effects:
 - \rightarrow Education should be excluded from model!
- Partial gender effect excluding education effects:
 - \rightarrow Education should be <u>included</u> in model!
- Coming lectures will explain the why and how.

Ezafus

Introduction

- Compare wage of males and females.
- They may differ, for example, in education level.
- Research Question 1: What is <u>total</u> gender difference in wage, including differences caused by education?
- Research Question 2: What is <u>partial</u> gender difference in wage, excluding differences caused by education?

Ezafus,

Lecture 2.1, Slide 2 of 11, Erasmus School of Economics

Wage data set

- Data set for 500 employees on wages (indexed, median = 100).
 - \rightarrow Random sample from much larger population of employees.
- Wage is much more skewed than log-wage ('log' denotes natural logarithm).

Boxplots of wage and log-wage

- Females have lower wage than males.
- Research questions:
 - \rightarrow How large is this difference?
 - \rightarrow What are the causes of this difference?

Ezafus,

Lecture 2.1, Slide 5 of 11, Erasmus School of Economics

Multiple explanatory factors

- Wage depends on factors as age, education level, and part-time jobs.
- Simple regressions give:

Age =
$$40.05 - 0.11$$
Female + e ($R^2 = 0.00, t_b = -0.11$)
Educ = $2.26 - 0.49$ Female + e ($R^2 = 0.05, t_b = -5.16$)

$$Lade = 2.20 \quad 0.491 \text{ emale} \quad (N = 0.05, t_b = 3.1)$$

Parttime =
$$0.20 + 0.25$$
Female + e ($R^2 = 0.07, t_b = 6.15$)

• Females: same age, lower education, more often part-time job.

Simple regression

•
$$log(Wage) = 4.73 - 0.25$$
Female $+ e$
($R^2 = 0.07, b = -0.25, t_b = -6.25$)

• 'Female': gender dummy, 1 for females, 0 for males.

Test

What is the estimated gender difference in wage level?

• Answer:
$$log(Wage_{Female}) - log(Wage_{Male}) = -0.25$$

$$Wage_{Female} = Wage_{Male} \times e^{-0.25} = Wage_{Male} \times 0.78$$

 \rightarrow Females earn on average 22% less than males.

Ezafus,

Lecture 2.1, Slide 6 of 11, Erasmus School of Economics

Gender differences in education

		Education level				
		1	2	3	4	Total
Count	Male Female	108 88	77 57	72 33		316 184
Percentage	Male Female	34 48	24 31	23 18	19 3	100 100

Gender differences in part-time jobs

		Part-		
		Yes	No	Total
Count	Male	62	254	316
	Female	82	102	184
Percentage	Male	20	80	100
	Female	45	55	100

(Zafing

Lecture 2.1, Slide 9 of 11, Erasmus School of Economics

TRAINING EXERCISE 2.1

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Ezafus

Lecture 2.1, Slide 11 of 11, Erasmus School of Economics

Partial effects

- Partial effect: if all other variables remain 'fixed'.
- Research question: What is partial gender effect on wage?
- So: Gender difference in wage after correction for differences in education and part-time jobs.
- Answer obtained by multiple regression.

 \rightarrow Methods: Lectures 2.2-2.4

 \rightarrow Outcomes: Lecture 2.5

(zafus

Lecture 2.1, Slide 10 of 11, Erasmus School of Economics

Erasmus School of Economics

MOOC Econometrics

Lecture 2.2 on Multiple Regression: Representation

Christiaan Heij

Erasmus University Rotterdam

Notation

• $y_i = \log(Wage)_i$

$$x_{1i} = 1$$
 $x_{2i} = \mathsf{Female}_i$ $x_{3i} = \mathsf{Age}_i$

 $x_{4i} = \mathsf{Educ}_i$ $x_{5i} = \mathsf{Parttime}_i$

• Let x_i be (5×1) vector with components (x_{1i}, \ldots, x_{5i}) .

Let β be (5×1) vector with components $(\beta_1, \ldots, \beta_5)$.

• Then wage equation can be written as

$$y_i = \sum_{j=1}^5 \beta_j x_{ji} + \varepsilon_i = x_i' \beta + \varepsilon_i$$

• Symbol ' (prime): transposition (see Building Blocks).

Erafus

Example

• $log(Wage)_i =$

$$\beta_1 + \beta_2$$
Female_i + β_3 Age_i + β_4 Educ_i + β_5 Parttime_i + ε_i

'Wage': yearly wage (index, median = 100)

'Female': gender dummy (1 for females, 0 for males)

'Age': age (in years)

'Educ': education (4 levels, from 1 for low to 4 for high)

'Parttime': part-time job dummy (1 if work on 3 or less days

per week, 0 if more than 3 days per week)

Ezafus,

Lecture 2.2, Slide 2 of 13, Erasmus School of Economics

Matrix notation

• Write $y_i = x_i'\beta + \varepsilon_i$ for 500 observations in database:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{500} \end{pmatrix} = \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_{500}' \end{pmatrix} \beta + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_{500} \end{pmatrix}$$

• Let y: (500 \times 1) vector with components y_i

X: (500×5) matrix with rows x_i'

 ε : (500 × 1) vector with components ε_i

• Then wage equation for 500 observations becomes:

$$y = X\beta + \varepsilon$$

Multiple regression model

• Model with *k* explanatory factors:

$$y_i = \beta_1 + \beta_2 x_{2i} + \ldots + \beta_k x_{ki} + \varepsilon_i = \sum_{j=1}^k x_{ji} \beta_j + \varepsilon_i$$
 (with $x_{1i} = 1$).

 \bullet y_i is dependent or explained variable,

 x_{1i}, \ldots, x_{ki} are regressor variables or explanatory factors.

• First 'explanatory' factor is the constant $x_{1i} = 1$.

Ezafus,

Lecture 2.2, Slide 5 of 13, Erasmus School of Economics

Set of linear equations

- $y = X\beta + \varepsilon$
 - $\rightarrow X\beta$ is 'explained' part of y
 - ightarrow arepsilon is 'unexplained' part of y
- X explains much of y if $y \approx X\beta$ for some choice of β .
- $y = X\beta$ is set of *n* equations in *k* unknown parameters β .

Test

Let X be $(n \times k)$ matrix with rank(X) = r. What is the number of solutions of the equations $y = X\beta$?

Ezafus

Multiple regression model

- Let database contain *n* observations for all variables.
- As before, let

y: $(n \times 1)$ vector with components y_i

X: $(n \times k)$ matrix with elements x_{ji}

 β : $(k \times 1)$ vector with components β_i

 ε : $(n \times 1)$ vector with components ε_i

• Then model can be written as

$$y = X\beta + \varepsilon$$

Ezafus

Lecture 2.2, Slide 6 of 13, Erasmus School of Economics

Test answers

- $y = X\beta$ where X is $(n \times k)$ with rank(X) = r.
 - \rightarrow Always r < k and r < n.
 - \rightarrow If r = n = k: $y = X\beta$ has unique solution.
 - \rightarrow If r = n < k: $y = X\beta$ has multiple solutions.
 - \rightarrow If r < n: $y = X\beta$ has (in general) no solution.
- (Nearly always) n > k.

We assume r = k < n.

So $y = X\beta$ has (in general) no exact solution.

Interpretation of model coefficients

- Model: $y_i = \beta_1 + \beta_2 x_{2i} + \ldots + \beta_k x_{ki} + \varepsilon_i$.
- What happens to y if x_j increases by one unit while all other x-variables x_h (with $h \neq j$) remain fixed?
- Partial effect: $\frac{\partial y}{\partial x_j} = \beta_j$ (if x_h remains fixed for all $h \neq j$).
- Only possible as thought-experiment, called the 'ceteris paribus' assumption.

(Zafung

Lecture 2.2, Slide 9 of 13, Erasmus School of Economics

Testing for model restrictions

- Factor x_i in model if (relevant) effect on y.
- Test for single factor j: Test $H_0: \beta_j = 0$ against $H_1: \beta_j \neq 0$.
- Test for two factors j and h: Test $H_0: \beta_j = \beta_h = 0$ against $H_1: \beta_i \neq 0$ and/or $\beta_h \neq 0$.
- General: Test $H_0: R\beta = r$ against $H_1: R\beta \neq r$ $\rightarrow R$ is given $(g \times k)$ matrix with rank(R) = g $\rightarrow r$ is given $(g \times 1)$ vector

Test

If $\beta_j = 0$, does this mean that x_j has no effect on y? Motivate your answer.

Decomposition of total effect

• Total effect if factors are mutually dependent (and $x_{1i} = 1$):

$$\frac{dy}{dx_j} = \frac{\partial y}{\partial x_j} + \sum_{h=2, h \neq j}^{k} \frac{\partial y}{\partial x_h} \frac{\partial x_h}{\partial x_j} = \beta_j + \sum_{h=2, h \neq j}^{k} \beta_h \frac{\partial x_h}{\partial x_j}$$

- Indirect effects $x_j \to x_h \to y$ combined: $\sum_{h=2, h \neq j}^k \beta_h \frac{\partial x_h}{\partial x_i}$
- So: Total effect = Partial effect + Indirect effect
- Example if part-time jobs more common for higher education:

Direct: Educ $\uparrow \Rightarrow Wage \uparrow$

Indirect: Educ $\uparrow \Rightarrow$ Parttime $\uparrow \Rightarrow$ Wage \downarrow

Total: Sum of \uparrow and \downarrow effect, need effect sizes

Lecture 2.2, Slide 10 of 13, Erasmus School of Economics

Test answers $(\beta_i = 0 \Rightarrow x_i \text{ no effect on } y?)$

- Yes, in sense that x_j has no partial effect (assuming all other explanatory factors remain fixed).
- No, in sense that x_j may have indirect effect (via other factors $x_j \to x_h \to y$).
- Example: $log(Wage)_i = \beta_1 + \beta_2 Educ_i + \beta_3 Parttime_i + \varepsilon_i$

If $\beta_2 = 0$ and $\beta_3 \neq 0$, then higher education still has indirect effect on wage if having part-time job is related to education level.

Lapus

TRAINING EXERCISE 2.2

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Lafins

Lecture 2.2, Slide 13 of 13, Erasmus School of Economics

MOOC Econometrics

Lecture 2.3 on Multiple Regression: Estimation

Christiaan Heij

Erasmus University Rotterdam

OLS criterion

• We assume that $(n \times k)$ matrix X has rank(X) = k.

Test

Prove that $\#(parameters) = k \le n = \#(observations)$.

- Answer: X is $(n \times k)$ matrix, hence $k = \text{rank}(X) \le n$.
- Wish: small vector of residuals $y-Xb=e=\left(\begin{array}{c} e_1\\ e_2\\ \vdots\\ e_n \end{array}\right)$.
- Least squares criterion ('ordinary least squares', OLS):

$$\rightarrow$$
 minimize $S(b) = e'e = \sum_{i=1}^{n} e_i^2$.

Ezafus,

OLS criterion

- Model: $y = X\beta + \varepsilon$
- Dimensions: y ($n \times 1$), X ($n \times k$): observed data β ($k \times 1$), ε ($n \times 1$): unobserved
- Objective:
 - \rightarrow Estimate β by $(k \times 1)$ vector b so that Xb is 'close' to y.

Ezafus,

Lecture 2.3, Slide 2 of 10, Erasmus School of Economics

OLS estimation

•
$$S(b) = e'e = (y - Xb)'(y - Xb)$$

= $y'y - y'Xb - b'X'y + b'X'Xb$
= $y'y - 2b'X'y + b'X'Xb$

Test

We used y'Xb = b'X'y. Prove this result.

- Answer: y'Xb is (1×1) , so y'Xb = (y'Xb)' = b'X'y.
- Facts of matrix derivatives (see Building Blocks):

$$\frac{\partial b'a}{\partial b}=a$$

$$\frac{\partial b'Ab}{\partial b} = (A + A')b$$

OLS estimation

• First order conditions for S(b) = y'y - 2b'X'y + b'X'Xb:

$$\frac{\partial S}{\partial b} = -2X'y + (X'X + X'X)b = -2X'y + 2X'Xb = 0.$$

• So: X'Xb = X'y.

Test

Prove that rank(X) = k implies that X'X is invertible.

- Answer: X'X is $(k \times k)$ matrix, and $X'Xa = 0 \Rightarrow a'X'Xa = (Xa)'Xa = 0 \Rightarrow Xa = 0 \Rightarrow a = 0.$ Last step follows from $\operatorname{rank}(X) = k$.
- So: $b = (X'X)^{-1}X'y$

Ezafus,

Lecture 2.3, Slide 5 of 10, Erasmus School of Economics

Relation between y, X, b, and e

The 'X-plane' is k-dimensional subspace spanned by columns of X, that is, set of vectors Xa with a arbitrary $(k \times 1)$ vector.

Lecture 2.3, Slide 7 of 10, Erasmus School of Economics

Geometric aspects

- y is $(n \times 1)$, X is $(n \times k)$
- Define $H = X(X'X)^{-1}X'$ $M = I - H = I - X(X'X)^{-1}X'$

Test

Show that M' = M, $M^2 = M$, MX = 0, MH = 0.

- Answer: Direct calculations. Use $(X'X)^{-1}$ symmetric and $(X'X)^{-1}X'X = I$.
- Fitted values: $\hat{y} = Xb = X(X'X)^{-1}X'y = Hy$. Residuals: e = v - Xb = v - Hv = Mv.
- e and \hat{y} orthogonal: $e'\hat{y} = (My)'Hy = y'M'Hy = 0$.

 Lecture 2.3, Slide 6 of 10, Erasmus School of Economics

Estimation of error variance σ^2

• $\sigma^2 = E(\varepsilon_i^2)$

Estimate unknown $\varepsilon = y - X\beta$ by residuals e = y - Xb.

• Sample variance of residuals: $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (e_i - \overline{e})^2$.

Test

Check that the $(n \times 1)$ vector of residuals e satisfies k linear restrictions, so that e has (n - k) 'degrees of freedom'.

- Answer: rank(X) = k, and X'e = X'(y Xb) = X'y X'Xb = 0.
- OLS estimator: $s^2 = \frac{1}{n-k} e' e = \frac{1}{n-k} \sum_{i=1}^{n} e_i^2$
- Unbiased under standard assumptions (see next lecture). Lamb

Lecture 2.3, Slide 8 of 10, Erasmus School of Economics

R-squared (R^2)

- Definition: $R^2 = \left(\operatorname{cor}(y,\hat{y})\right)^2 = \frac{\left(\sum (y_i \overline{y})(\hat{y}_i \overline{\hat{y}})\right)^2}{\sum (y_i \overline{y})^2 \sum (\hat{y}_i \overline{\hat{y}})^2}$, where 'cor' is correlation coefficient and $\hat{y} = Xb$.
- Higher R^2 means better fit of Xb to observed y.
- If model contains constant term $(x_{1i} = 1 \text{ for all } i = 1, \dots n)$:

$$R^2 = 1 - \frac{e'e}{\sum_{i=1}^{n} (y_i - \overline{y})^2}.$$

Ezafus,

Lecture 2.3, Slide 9 of 10, Erasmus School of Economics

TRAINING EXERCISE 2.3

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Ezafus

Lecture 2.3, Slide 10 of 10, Erasmus School of Economics

MOOC Econometrics

Lecture 2.4.1 on Multiple Regression: Evaluation - Statistical Properties

Christiaan Heij

Erasmus University Rotterdam

A1,2,3,6: *b* unbiased, $E(b) = \beta$

Under A1, A2, A3, and A6, OLS is unbiased: $E(b) = \beta$.

Test

Express OLS estimator b in terms of ε .

- Answer: $b = (X'X)^{-1}X'y \stackrel{\text{(A1)}}{=} (X'X)^{-1}X'(X\beta + \varepsilon)$ = $\beta + (X'X)^{-1}X'\varepsilon$.
- $E(b) \stackrel{\text{(A6)}}{=} \beta + E((X'X)^{-1}X'\varepsilon) \stackrel{\text{(A2)}}{=} \beta + (X'X)^{-1}X'E(\varepsilon)$ • $A30 = \beta + (X'X)^{-1}X'0 = \beta$.

(zafus

Six DGP assumptions

- A1 Linear model: $y = X\beta + \varepsilon$.
- A2 Fixed regressors: X non-random.
- A3 Random error terms with mean zero: $E(\varepsilon) = 0$.
- A4 Homoskedastic error terms: $E(\varepsilon_i^2) = \sigma^2$ for all i = 1, ..., n.
- A5 Uncorrelated error terms: $E(\varepsilon_i \varepsilon_i) = 0$ for all $i \neq j$.
- A6 Parameters β and σ^2 are fixed and unknown.

Test

Prove that A4 and A5 imply that $E(\varepsilon \varepsilon') = \sigma^2 I$.

• Answer: Direct calculation of variance-covariance matrix.

Lecture 2.4.1, Slide 2 of 8, Erasmus School of Economics

A1-A6:
$$var(b) = \sigma^2(X'X)^{-1}$$

- Seen before: $b = \beta + (X'X)^{-1}X'\varepsilon$.
- $\operatorname{var}(b) = E\left((b Eb)(b Eb)'\right) \stackrel{(A1,2,3,6)}{=} E\left((b \beta)(b \beta)'\right) = E\left((X'X)^{-1}X'\varepsilon\varepsilon'X(X'X)^{-1}\right) \stackrel{(A2)}{=} (X'X)^{-1}X' \ E(\varepsilon\varepsilon') \ X(X'X)^{-1} \stackrel{(A4,5)}{=} (X'X)^{-1}X' \ \sigma^{2}I \ X(X'X)^{-1} = \sigma^{2}(X'X)^{-1}X'X(X'X)^{-1} = \sigma^{2}(X'X)^{-1}.$
- Let a_{jh} be (j, h)-th element of $(k \times k)$ matrix $(X'X)^{-1}$, then $var(b_i) = \sigma^2 a_{ii}$ and $cov(b_i, b_h) = \sigma^2 a_{ih}$.

OLS estimator of σ^2

Under A1-A6, $s^2 = e'e/(n-k)$ is unbiased: $E(s^2) = \sigma^2$.

- Idea of proof: (a) Express e in ε .
 - (b) Compute E(ee').
 - (c) Use 'trace trick' to get E(e'e).
- (a) Previous lecture: e=My where $M=I-X(X'X)^{-1}X'$ with $M'=M=M^2$ and MX=0. Then $e=My\stackrel{\text{(A1)}}{=}M(X\beta+\varepsilon)=MX\beta+M\varepsilon=M\varepsilon$.
- (b) $E(ee') = E(M\varepsilon\varepsilon'M') \stackrel{\text{(A2)}}{=} ME(\varepsilon\varepsilon')M \stackrel{\text{(A4,5)}}{=} M\sigma^2IM = \sigma^2M.$
- (c) 'Trace trick': $E(e'e) = \operatorname{trace}(E(ee')) = \sigma^2 \operatorname{trace}(M) = (n-k)\sigma^2$.

Lecture 2.4.1, Slide 5 of 8, Erasmus School of Economics

Efficiency of OLS

- A1-A6: OLS b is Best Linear Unbiased Estimator (BLUE).
- This is the so-called Gauss-Markov theorem.
- If $\hat{\beta} = Ay$ is linear estimator, A non-random $(k \times n)$ matrix, and if $\hat{\beta}$ is unbiased, $E(\hat{\beta}) = \beta$, then $\text{var}(\hat{\beta}) \text{var}(b)$ is positive semi-definite (PSD). (see Building Blocks for PSD)
- As b has smallest variance of all linear unbiased estimators,
 OLS is efficient (in this class).

Details of 'trace trick' (optional)

- trace(AB) = trace(BA), where 'trace' is sum of diagonal elements of square matrix (see Building Blocks).
- Trace trick:

$$E(e'e) = E(\sum_{i=1}^{n} e_i^2) = E(\operatorname{trace}(ee')) = \operatorname{trace}(E(ee'))$$

$$= \operatorname{trace}(\sigma^2 M) = \sigma^2 \operatorname{trace}(I_n - X(X'X)^{-1}X')$$

$$= \sigma^2 \operatorname{trace}(I_n) - \sigma^2 \operatorname{trace}(X(X'X)^{-1}X')$$

$$= n\sigma^2 - \sigma^2 \operatorname{trace}((X'X)^{-1}X'X)$$

$$= n\sigma^2 - \sigma^2 \operatorname{trace}(I_k) = (n-k)\sigma^2.$$

• As $E(e'e) = (n-k)\sigma^2$, it follows that $E(s^2) = \sigma^2$.

Ezafus

Lecture 2.4.1, Slide 6 of 8, Erasmus School of Economics

TRAINING EXERCISE 2.4.1

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Erafus,

MOOC Econometrics

Lecture 2.4.2 on Multiple Regression: Evaluation - Statistical Tests

Christiaan Heij

Erasmus University Rotterdam

t-test

• Test for relevance of single explanatory factor j:

Test $H_0: \beta_j = 0$ against $H_1: \beta_j \neq 0$.

• A1-A7: $b_i \sim N(\beta_i, \sigma^2 a_{ii})$, a_{ii} is element (j, j) of $(X'X)^{-1}$.

If $H_0: \beta_j = 0$ holds, then $z_j = \frac{b_j - \beta_j}{\sigma \sqrt{a_{jj}}} = \frac{b_j}{\sigma \sqrt{a_{jj}}} \sim \mathcal{N}(0,1)$.

• Replace unknown σ by s, square root of $s^2 = e'e/(n-k)$.

Test statistic: $t_j = \frac{b_j}{s\sqrt{a_{jj}}} = \frac{b_j}{\mathsf{SE}(b_j)}$, with $\mathsf{SE}(b_j) = s\sqrt{a_{jj}}$.

• A1-A7: $t_i \sim t(n-k)$ (close to normal unless n-k small).

- Eafus

Test for a single restriction: t-test

• Under assumptions A1-A6:

 $E(b) = \beta$ and $var(b) = \sigma^2(X'X)^{-1}$.

• A7: ε is normally distributed.

Test

Check that A1-A7 imply $b \sim N(\beta, \sigma^2(X'X)^{-1})$.

• Answer: $b = (X'X)^{-1}X'(X\beta + \varepsilon) = \beta + (X'X)^{-1}X'\varepsilon$ is linear function of $\varepsilon \sim N(0, \sigma^2 I)$.

Lecture 2.4.2, Slide 2 of 8, Erasmus School of Economic

Test for multiple restrictions: *F*-test

• Test for multiple linear restrictions:

Test $H_0: R\beta = r$ against $H_1: R\beta \neq r$.

- $\rightarrow R$ is given $(g \times k)$ matrix with rank(R) = g
- $\rightarrow r$ is given $(g \times 1)$ vector
- A1-A7 imply $b \sim N(\beta, \sigma^2(X'X)^{-1})$.

Test

Under H_0 : $Rb \sim N(m, \sigma^2 V)$. Compute m and $\sigma^2 V$.

• Answer: $m = E(Rb) = RE(b) = R\beta = r$.

$$\sigma^2 V = \operatorname{var}(Rb) = R \operatorname{var}(b) R' = \sigma^2 R(X'X)^{-1} R'.$$

F-test

- Then $(1/\sigma)(Rb r) \sim N(0, V)$.
- Facts: $(1/\sigma^2)(Rb-r)'V^{-1}(Rb-r) \sim \chi^2(g)$. $F = (1/s^2)(Rb-r)'V^{-1}(Rb-r)/g \sim F(g,n-k).$
- F can be computed from residual sums of squares:

$$F = \frac{(e_0'e_0 - e_1'e_1)/g}{e_1'e_1/(n-k)}$$

- $ightarrow e_0'e_0$: sum of squared residuals of restricted model (H_0)
- $ightarrow e_1'e_1$: sum of squared residuals of unrestricted model (H_1)

Ezafus,

Lecture 2.4.2, Slide 5 of 8, Erasmus School of Economics

F-test

- $y = X_1\beta_1 + X_2\beta_2 + \varepsilon$.
- Test $H_0: \beta_2 = 0$ against $H_1: \beta_2 \neq 0$.
- If H_0 holds, then $F=rac{(e_0'e_0-e_1'e_1)/g}{e_1'e_1/(n-k)}\sim F(g,n-k)$
 - $ightarrow e_0'e_0$: sum of squared residuals of restricted model (OLS in model $y=X_1eta_1+arepsilon$)
 - $ightarrow e_1'e_1$: sum of squared residuals of unrestricted model (OLS in model $y=X_1eta_1+X_2eta_2+arepsilon$)

Erafus

Test for removing a set of explanatory factors

- Restricted model: remove set of g explanatory factors.
- Re-order *k* factors so that last *g* are removed:

Re-order
$$X=(X_1\ X_2),\ eta=\left(egin{array}{c} eta_1\ eta_2 \end{array}
ight),\ {\sf and}\ b=\left(egin{array}{c} b_1\ b_2 \end{array}
ight)$$

 X_2 : last g columns of X (factors removed in restricted model)

 β_2 : last g elements of β

 b_2 : last g elements of b

• Then $y = X_1\beta_1 + X_2\beta_2 + \varepsilon = X_1b_1 + X_2b_2 + e$

Ezafus,

Lecture 2.4.2, Slide 6 of 8, Erasmus School of Economics

TRAINING EXERCISE 2.4.2

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Erasmus School of Economics

MOOC Econometrics

Lecture 2.5 on Multiple Regression:
Application

Christiaan Heij

Erasmus University Rotterdam

Regression outcomes

Dependent variable: log(Wage)

Sample size: 500

Sample size: 500				
	Coefficient	Standard error	t-Statistic	p-value
	b_j	$SE(b_j)$	t_j	$H_0: \beta_j = 0$
Constant	3.053	0.055	55.168	0.000
Female	-0.041	0.025	-1.663	0.097
Age	0.031	0.001	24.041	0.000
Educ	0.233	0.011	21.874	0.000
Parttime	-0.365	0.032	-11.576	0.000
R-squared	0.704			
SE of regression	0.245			

Erafus

Wage equation

- Wage data of Lecture 2.1 with model of Lecture 2.2.
- Model: $log(Wage)_i = \beta_1 + \beta_2 Female_i + \beta_3 Age_i + \beta_4 Educ_i + \beta_5 Parttime_i + \varepsilon_i$
- OLS gives: $log(Wage)_i = 3.05 0.04$ Female_i +0.03Age_i + 0.23Educ_i - 0.37Parttime_i + e_i
- $R^2 = 0.704$ and s = 0.245.
- Data are random sample from population of employees.

OLS results depend on these data, hence also random.

Ezafus

Lecture 2.5, Slide 2 of 14, Erasmus School of Economics

Two scatter diagrams

- Left diagram: Actual log-wage against fitted log-wage.
- Right diagram: Residuals against fitted log-wage.

Regression outcomes

- Age, Education, and Parttime are significant (p-values 0.000).
 Female is not significant at 5% level (p-value 0.097).
- Interpretation in terms of average wage effects:

Extra year of age: $e^{0.031} - 1 = 3\%$

Extra level of education: $e^{0.233} - 1 = 26\%$

Part-time job: $e^{-0.365} - 1 = -31\%$

- After controlling for age, education, and part-time job effects, the (partial) gender effect of -4% for females is not significant.
- Lecture 2.1: Significant gender effect of -25% for females: total effect, including education and part-time jobs.

Lecture 2.5, Slide 5 of 14, Erasmus School of Economics

Wage or log-wage?

• Age, Education, and Parttime are significant (p-values 0.000). Female is not significant at 5% level (p-value 0.501).

Test

Why can we not choose between the two models (with log-wage and wage) on the basis of \mathbb{R}^2 and \mathbb{S} ?

- Answer: R^2 and s are based on sum of squares of y and e = y Xb, and y differs in the two models.
- Graphical check of regression assumptions:
 scatter diagram of residuals against fitted values.

Ezafus,

Model with absolute (instead of relative) effects

• If explained variable is log-wage, parameters

$$\beta_i = \partial \log(\text{Wage})/\partial x_i = (\partial \text{Wage}/\partial x_i)/\text{Wage}$$

measure relative wage effects of each factor.

- If explained variable is wage (instead of log-wage), parameters $\beta_i = \partial \mathsf{Wage}/\partial x_i$ measure wage level effects.
- OLS in this model gives:

Wage_i =
$$-77.87 - 2.12$$
Female_i
+3.62Age_i + 29.47Educ_i - 43.10Parttime_i + e_i.

• $R^2 = 0.681$ and s = 31.276.

- Eafus

Lecture 2.5, Slide 6 of 14, Erasmus School of Economics

Scatter diagrams of residuals against fitted values

- Left for wage: nonlinear and heteroskedastic
- Right for log-wage: no indication violation regression assumptions

Testing for constant education effects

• Allow that education effect varies per education level:

$$\begin{split} \log(\mathsf{Wage})_i &= \beta_1 + \beta_2 \mathsf{Female}_i + \beta_3 \mathsf{Age}_i \\ &+ \beta_4 \mathsf{DE2}_i + \beta_5 \mathsf{DE3}_i + \beta_6 \mathsf{DE4}_i + \beta_7 \mathsf{Parttime}_i + \varepsilon_i \end{split}$$

- DE2_i = 1 if employee i has education level 2
 DE2_i = 0 if employee i has education level 1, 3, or 4
 (similar definitions for DE3 and DE4)
- Effect of education is constant if $\beta_5 = 2\beta_4$ and $\beta_6 = 3\beta_4$.
- Test H_0 : $\beta_5 = 2\beta_4$ and $\beta_6 = 3\beta_4$ against H_1 : H_0 not true.

Lecture 2.5, Slide 9 of 14, Erasmus School of Economics

Outcomes

• OLS in unrestricted model (under H_1) gives:

$$log(Wage)_i = 3.32 - 0.03$$
Female_i + 0.03Age_i
+0.17DE2_i + 0.38DE3_i + 0.77DE4_i - 0.37Parttime_i + e_i.

- $R^2 = 0.716$ and s = 0.241.
- All factors are significant, except for 'Female' (p-value 0.206).
- Test for constant education effects:

Test H_0 : $\beta_5 = 2\beta_4$, $\beta_6 = 3\beta_4$ against H_1 : H_0 not true.

Test

Compute the F-test, using $R_1^2 = 0.716$ and $R_0^2 = 0.704$.

Regression outcomes

Dependent variable: log(Wage)

Sample size: 500

	Coefficient b_j	Standard error $SE(b_j)$	t-Statistic t_j	p-value $H_0: \beta_j = 0$
Constant	3.318	0.051	64.554	0.000
Female	-0.031	0.024	-1.267	0.206
Age	0.030	0.001	24.269	0.000
DE2	0.171	0.027	6.308	0.000
DE3	0.380	0.029	12.996	0.000
DE4	0.767	0.035	21.610	0.000
Parttime	-0.366	0.031	-11.813	0.000
R-squared	0.716			
SE of regression	0.241			

Crafus

Lecture 2.5, Slide 10 of 14, Erasmus School of Economics

Computation of F-test

- $R_1^2 = 0.716$ and $R_0^2 = 0.704$
- g = 2, n = 500, k = 7 (under H_1), n k = 500 7 = 493 $F = \frac{(R_1^2 R_0^2)/g}{(1 R_1^2)/(n k)} = \frac{(0.716 0.704)/2}{(1 0.716)/493} = 10.4$
- 5% critical value of F(2,493) is 3.0. As F = 10.4 > 3.0, H_0 is rejected (at 5% level).
- Conclusion: Wage effect of one extra level of education differs significantly across education levels.

Wage effect of extra education

• Coefficients of education dummies:

level 2: 0.171

level 3: 0.380

level 4: 0.767

• Wage increase for higher education level:

$$1 \rightarrow 2$$
: $e^{0.171} - 1 = 0.19 = 19\%$

$$2 \rightarrow 3$$
: $e^{(0.380-0.171)} - 1 = e^{0.209} - 1 = 23\%$

$$3 \rightarrow 4$$
: $e^{(0.767-0.380)} - 1 = e^{0.387} - 1 = 47\%$

• Effect much larger for highest education level.

Ezafus,

Lecture 2.5, Slide 13 of 14, Erasmus School of Economics

TRAINING EXERCISE 2.5

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

(zafus

Lecture 2.5, Slide 14 of 14, Erasmus School of Economics