Psychophysics: Experiment Report

The Role of Categorization in Visual Search for Orientation: 'Left' as a category

No. of Subjects who completely the survery satisfactorily: 8

Experiment Description

Experiment 1

Target = 'Left': -30 degree orientation.

Distractors = 10, 90 degree

Experiment 2

Target = 'Steep': 10 degree.

Distractors = -50, 50 degree.

Experiment 3

Target = 'Steep-Left': -20 degree.

Distractors = 20, -80 degree.

Average Reaction Time vs Set Size Plots

Reaction Time Statistics

Experiment 1

Set size	Mean	Median	Mode	Std. Dev.
6	679.575	620.5	629.412	299.859
12	727.127	616.0	559.46	389.43
18	817.25	687.0	545.45	360.0
24	895.038	776.0	573.33	407.857

Experiment 2

Set size	Mean	Median	Mode	Std. Dev.
6	728.125	564.0	474.074	363.399
12	940.962	784.0	680.0	507.805
18	886.387	670.5	575.0	619.54
24	821.887	686.5	588.88	453.911

Experiment 3

Set size	Mean	Median	Mode	Std. Dev.
6	834.544	657.0	477.777	530.9
12	1034.35	865.5	650.0	611.10
18	912.810	735.0	570.0	534.93

Set size	Mean	Median	Mode	Std. Dev.
24	917.844	786.0	655.55	546.257

Subject Reliability

No. of correct non-responses in target-absent trials:

Set size	Exp1	Exp2	Exp3
6	39	37	39
12	37	35	39
18	40	39	38
24	40	37	38

No. of correct responses in target-present trials:

	Set size	Exp1	Exp2	Exp3
	6	80	80	79
	12	79	79	80
	18	80	80	79
•	24	80	80	77

Code Snippets

Reading Exp Data

```
data = pd.read_csv("data/data.csv", sep=",").values
exp_data = []
for i in range(len(data)):
   val = pd.read_csv("data/" + data[i, 4], sep=" ", header=None).values
   exp_data.append(val)
```

Preprocessing, separating trials by type and set size

```
data = []
for i in range(len(exp_data)):
    for j in range(len(exp_data[i])):
        data.append(exp_data[i][j][1:])

tar_sets = [[],[],[],[]]
emp_sets = [[],[],[],[]]
for i in range(len(data)):
```

```
if(data[i][0] < 100):
    tar_sets[int((data[i][0]-6)/6)].append(data[i][1:])
else:
    emp_sets[int((data[i][0]-106)/6)].append(data[i][1:])</pre>
```

Filtering correct trials

```
right_tar = [[],[],[],[]]
right_emp = [[],[],[],[]]
for i in range(len(tar_sets)):
    c = 0
    w = 0
    for j in range(len(tar_sets[i])):
        if(tar_sets[i][j][0] == 1):
            c = c + 1
             right_tar[i].append(tar_sets[i][j][1])
    for j in range(len(emp_sets[i])):
        if(emp_sets[i][j][0] != 1):
            w = w + 1
                  right_emp[i].append(emp_sets[i][j][1])
    print(c, w)
```

Getting statistics

```
for i in range(len(right_tar)):
    print(right_tar[i].sort())
    bins = [i for i in range(0, 4100, 100)]
    labels = ['{}-{}'.format(x, y-.1) for x, y in zip(bins[:], bins[1:])]
    frame = pd.Series(right_tar[i])
    ncut = pd.cut(frame, bins=bins, labels=labels, right=False)
    freq = lambda x: len(x) / x.sum()
    freq.__name__ = 'freq'
    out = pd.concat([ncut, frame], axis=1).groupby(0).agg(['size', 'std', 'mean', freq])
    print(frame.mean())
    print(frame.median())
    print(frame.std())
    print(out)
```