Brendan **Ke**i

Numerical Analysis · Computational Science & Engineering · Applied Mathematics

Research Interests

In order to bridge the gaps between observation, theory, and prediction, modern science relies heavily on sophisticated computational methods. From simulating star formation to proton transport, from climate change and sea level rise to turbulence and combustion, and from optimized structural design to the development of personalized treatment pathways in state-of-the-art medical practice, complex computer simulations are indispensable, regardless of scale. By studying the mathematics behind computer simulations, I try to bring clarity and insight to otherwise intractable problems like these.

I am currently interested in applying my work to problems at the frontiers of science and engineering research by expanding on state-of-the-art techniques in optimal control, uncertainty quantification, and high performance computing.

Appointments_

Chair of Numerical Mathematics Technische Universität München

Garching, Germany

Postdoctoral Researcher Sept. 2018 - present

 Supported by the European Union's Horizon 2020 research and innovation program under grant agreement No 800898: Exascale Quantification of Uncertainties for Technology and Science Simulation (ExaQUte).

Education

Oden Institute for Computational Engineering and Sciences University of Texas at Austin

Austin, Texas

Ph.D. Computational Science, Engineering, & Mathematics

2018

Supervisor: Leszek Demkowicz

Dissertation: New ideas in adjoint methods for PDEs: A saddle-point paradigm for finite element analysis and its role in the DPG methodology

Department of Mathematics and Statistics McGill University

Montréal, Quebec

M.Sc. Applied Mathematics

2013

Supervisor: George Haller

Thesis: Lagrangian coherent structures in three-dimensional steady flows

Departments of Applied Mathematics, Pure Mathematics, and Physics **University of Waterloo**

Waterloo, Ontatio

B.Math Honours Applied Mathematics with Physics Option

2011

B.Math Honours Pure Mathematics

2011

Teaching and Supervision Experience

TU Munich Garching, Germany

Postdoctoral mentor

2018 - present

- · Work alongside and offer advice to Ph.D. students in the chair.
- Co-supervise and direct Master's students' six-month research projects.

UT Austin Austin, Texas 2014-2016

Graduate Teaching Assistant

Some grading responsibilities and teaching of tutorials.

- CSE 386M, Functional Analysis in Theoretical Mechanics (graduate course)
- CSE 380, Tools and Techniques for Computational Science (graduate course)
- M 408N, Differential Calculus for Science

McGill University

Montréal, Québec

Graduate Teaching Assistant

Grading responsibilities and exam supervision.

· Math 376, Honours Nonlinear Dynamics

University of Waterloo

Undergraduate Teaching Assistant

Solely grading responsibilities.

- Math 124, Calculus and Vector Algebra for Kinesiology
- Math 135, Algebra for Honours Mathematics
- Math 136, Linear Algebra for Honours Mathematics

- Math 137, Calculus 1 for Honours Mathematics
- Math 138, Calculus 2 for Honours Mathematics
- Math 239, Introduction to Combinatorics

Authorship

Preprints

- 1. Drzisga, D., Keith, B., and Wohlmuth, B. (2019). *The surrogate matrix methodology: Accelerating isogeometric structural mechanics*. (In preparation.)
- 2. Drzisga, D., Keith, B., and Wohlmuth, B. (2019). *The surrogate matrix methodology: A reference implementation for low-cost assembly in isogeometric analysis*. (Submitted.)
- 3. Drzisga, D., Keith, B., and Wohlmuth, B. (2019). *The surrogate matrix methodology: Low-cost assembly for iso-geometric analysis*. arXiv:1904.06971 [math.NA].
- 4. Drzisga, D., Keith, B., and Wohlmuth, B. (2019). *The surrogate matrix methodology: a priori error estimation*. arXiv:1902.07333 [math.NA].
- 5. Demkowicz, L., Gopalakrishnan, J., and Keith, B. (2018). *The DPG-star method*. arXiv:1809.03153 [math.NA].

Peer-Reviewed Journal Articles

- 6. Keith, B., Vaziri Astaneh, A., and Demkowicz, L. (2019). *Goal-oriented adaptive mesh refinement for discontinuous Petrov–Galerkin methods*. SIAM J. Numer. Anal., **57**(4), 1649–1676. DOI: 10.1137/18M1181754.
- 7. Vaziri Astaneh, A., Keith, B., and Demkowicz, L. (2019). *On perfectly matched layers for discontinuous Petrov–Galerkin methods*. Comput. Mech., **63**(6), 1131–1145. DOI: 10.1007/s00466-018-1640-3.
- 8. Keith, B., Petrides, S., Fuentes, F., and Demkowicz, L. (2017). *Discrete least-squares finite element methods*. Comput. Methods Appl. Mech. Engrg., **327**, 226–255. DOI: 10.1016/j.cma.2017.08.043.
- 9. Keith, B., Knechtges, P., Roberts, N., Elgeti, S., Behr, M., and Demkowicz, L. (2017). *An ultraweak DPG method for viscoelastic fluids*. J. Non-Newton. Fluid Mech., **247**, 107–122. DOI: 10.1016/j.jnnfm.2017.06.006.
- 10. Fuentes, F., Keith, B., Demkowicz, L., and Le Tallec, P. (2017). *Coupled variational formulations of linear elasticity and the DPG methodology*. J. Comput. Phys., **348**, 715–731. DOI: 10.1016/j.jcp.2017.07.051.
- 11. Keith, B., Fuentes, F., and Demkowicz, L. (2016). *The DPG methodology applied to different variational formula*tions of linear elasticity. Comput. Methods Appl. Mech. Engrg., **309**, 579–609. DOI: 10.1016/j.cma.2016.05.034.
- 12. Fuentes, F., Keith, B., Demkowicz, L., and Nagaraj, S. (2015). *Orientation embedded high order shape functions for the exact sequence elements of all shapes*. Comput. Math. Appl., **70**(4), 353–458. DOI: 10.1016/j.camwa. 2015.04.027.

Other

- 13. Keith, B. (2018). *New ideas in adjoint methods for PDEs: A saddle-point paradigm for finite element analysis and its role in the DPG methodology.* PhD thesis. Austin, Texas: University of Texas at Austin.
- 14. Keith, B., Demkowicz, L., and Gopalakrishnan, J. (2017). *DPG* method*. ICES Report 17-25. The University of Texas at Austin.
- 15. Keith, B., Fuentes, F., and Demkowicz, L. (2015). *The Exact Sequence for Elements of All Shapes (ESEAS) software library*. URL: https://github.com/libESEAS/ESEAS.
- 16. Keith, B. (2014). *Lagrangian Coherent Structures in Three-dimensional Steady Flows*. Master's Thesis. Montreal, Ouebec: McGill University.
- 17. Robison¹, B. K. (2011). *The Wave Equation and Multi-Dimensional Time*. The Waterloo Mathematics Review, **1**(1), 32–42.

2012

Waterloo Ontario

2009-2011

¹Personal name legally changed by the Government of Ontario to Brendan Keith on February 22, 2012.

Selected Conference Presentations and Invited Talks

Presented at well over 20 scientific meetings since 2015

2019	IGA2019, International Conference on Isogeometric Analysis	München, DE
2019	FrontUQ19, Workshop on Frontiers of Uncertainty Quantification in Fluid Dynamics	Pisa, ITL
2019	USNCCM15, US National Congress on Computational Mechanics	Austin, TX
2018	Oberwolfach , Workshop on Computational Engineering	Oberwolfach, DE
2018	WCCM13, World Congress on Computational Mechanics	New York, NY
2018	SIAM AN18, SIAM Annual Meeting	Portland, OR
2018	ETAMM2, Emerging Trends in Applied Mathematics and Mechanics	Kraków, PL
2017	MRLSFEM2, Minimum Residual & Least-Squares Finite Element Methods	Portland, OR
2017	USNCCM14, US National Congress on Computational Mechanics	Montréal, QC
2017	ACSE , Advances in Computational Science and Engineering (in honor of the 80th birthday of Prof. J.T. Oden)	Austin, TX
2017	SIAM CSE17, SIAM Conference on Computational Science and Engineering	Atlanta, GA
2016	MAFELAP 2016, Mathematics of Finite Elements and Applications	Uxbridge, UK
2016	AMFE , Advances in Mathematics for Finite Elements (in honor of the 90th birthday of Prof. Ivo Babuška)	Austin, TX
2015	POEMs, Polytopal Element Methods in Mathematics and Engineering	Atlanta, GA
2015	Oberwolfach , Workshop on Computational Engineering	Oberwolfach, DE
2015	USNCCM13, US National Congress on Computational Mechanics	San Diego, CA

Selected Seminars and Training Programs_

2018	ATPESC2018, Argonne Training Program on Extreme-Scale Computing	Chicago, IL
2017	Oberwolfach, Seminar on Discontinuous Petrov–Galerkin Methods	Oberwolfach, DE
2016	GPDE2016, Winter school on geometric PDEs and their approximations	College Station, TX

Academic Service

Peer Review (Journals)

(Five to ten manuscripts per year)

Computer Methods in Applied Mechanics and Engineering Computers and Mathematics with Applications IMA Journal of Numerical Analysis

Mathematics of Computation

Peer Review (Funding Agencies)

National Science Center, Poland (Panel ST8)

Conference Organizing

Texas Applied Mathematics and Engineering Symposium

Student Government

Vice-President: UT Austin SIAM chapter. (01/2018 - 08/2018) President: UT Austin SIAM chapter. (09/2015 - 12/2017) Treasurer: UT Austin SIAM chapter. (09/2013 - 08/2015)

Graduate Student Assembly Representative: UT Austin (09/2016 - 08/2017) Graduate Student Council Member: McGill University (09/2012 - 08/2013)

Societal Membership

Society for Industrial and Applied Mathematics (SIAM)

United States Association for Computational Mechanics (USACM)

Selected Honors & Awards

2018	Finalist, Student Poster Competition for the 13th World Congress on Computational Mechanics	New York, NY
2017	Recognition of service, SIAM Student Certificate of Recognition for 2017	Austin, TX
2017	2nd Place, Best Mathematically Oriented Poster at USNCCM14	Montréal, QC
2017	Fellowship, University of Texas at Austin University Graduate Continuing Fellowship	Austin, TX
2013	Award, University of Texas at Austin College Recruitment Fellowship Award	Austin, TX
2011	USRA, Undergraduate student research award. Supervisor: Ray McLenaghan	Waterloo, ON
2010	USRA, Undergraduate student research award. Supervisor: David Siegel	Waterloo, ON