Peptides And Proteins

from chapter(s) _____ in the recommended text

A. Introduction

B. Nomenclature And Conventions

by amide bonds. on the left, right.

triglycine

amine, acid.

ammonium and a C-terminal carboxylate.

trans (based on the peptide polyamide backbone alkenes.

local conformations

like ϕ (the *N*- $C\alpha$ dihedral o because of amide

C. Primary Structures

sequence of amino sequence of similarity fold into similar shapes.

Elucidation Of Primary Peptide Structure Via The Edman Degradation

primary structure

Chromatographic analysis does require

It is possible. It is not

Elucidation Of Primary Structure Via Enzymatic Cleavage And Mass Spectroscopy

mass spectrometry so proteases at predictable sites within of a chain.

Positions of cleavage vary

fragment 1: H-Pro-Ala-Pro-Gly-Arg-OH fragment 2: H-Trp-Ala-His-Gln-Met-Val-Lys-OH fragment 3: H-His-Lys-OH H-Pro-Trp-Pro-Ser-Tyr-Thr-Ala-OH fragment 4:

Chymotrypsin

fragment 1: H-Pro-Ala-Pro-Gly-Arg-Trp-OH

fragment 2: H-Ala-His-Gln-Met-Val-Lys-His-Lys-Pro-Trp-OH

fragment 3: H-Pro-Ser-Tyr-OH

fragment 4: H-Thr-Ala-OH

Elastase

fragment 1: H-Pro-Ala-OH

fragment 2: H-Pro-Gly-OH

fragment 3: H-Arg-Trp-Ala-OH

fragment 4: H-His-Gln-Met-Val-Lys-His-Lys-Pro-Trp-Pro-Ser-Tyr-Thr-Ala-OH

Elucidation Of Primary Structure Via Cyanogen Bromide Cleavage And Mass Spectroscopy

methionine methionine C_Y atom

iminolactone produced

$$Ac-Met-Ala-NH_2$$
 $Br-CN$
 $Br-CN$

H-Pro-Ala-Pro-Gly-Arg-Trp-Ala-His-Gln-Met-Val-Lys-His-Lys-Pro-Trp-Pro-Ser-Tyr-Thr-Ala-OH

H-Val-Lys-His-Lys-Pro-Trp-Pro-Ser-Tyr-Thr-Ala-OH

shielding of hydrophobic residues from aqueous surroundings

placing hydrophilic residues at the periphery

D. Secondary Structures

entropy gains

hydrogen bonding between residues

placing hydrophilic residues at the core

ionic interactions between charged side-chains stacking of aromatic rings packing of one chain against another overlap of orbitals containing CO lone pairs with other CO π^* orbitals increased temperature addition of high concentrations of guanidine hydrochloride secondary structure. primary structures. are called helices. right handed the N-terminus. *most* common 3.6 amino acid **Pro** is rarely in collagen. in the same directions. in *opposite* directions. the strand loops back on itself. β -turns, while γ -turns antiparallel β-sheets. Different protein, Ha! **a** $_\beta$ -strand $_$ **b** $_$ sheet-turn-sheet $_$ **c** $_$ parallel β -sheet $_$ **d** $_$ antiparallel β -sheet $_$

E. Tertiary And Quaternary Structures

these protein units usually are not covalently

F. Constraints On Peptide And Protein Structures

do not fold

cyclo(-Val-Orn-Leu-D-Phe-Pro-)2

gramicidin S

Cys residues.

oxidizing agents.

It is necessary could be done