XIV. Arithmetic Hierarchy

Yuxi Fu

BASICS, Shanghai Jiao Tong University

We introduce a hierarchy of sets in terms of logical formula and prove its relationship to the hierarchy $0, 0', 0'', \ldots$ of Turing degree.

Synopsis

- 1. Arithmetic Hierarchy
- 2. Post Theorem
- 3. Σ_n -Complete Set
- 4. Relative Arithmetic Hierarchy

Arithmetic Hierarchy

Arithmetic Hierarchy

A set B is in Σ_0 (Π_0) if B is recursive.

A set B is in Σ_n , where $n \ge 1$, if there is a recursive relation $R(x, y_1, y_2, \dots, y_n)$ such that

$$x \in B \text{ iff } \exists y_1. \forall y_2. \exists y_3. \dots \mathbf{Q}_n y_n. R(x, y_1, y_2, \dots, y_n).$$

A set B is in Π_n , where $n \ge 1$, if there is a recursive relation $R(x, y_1, y_2, \dots, y_n)$ such that

$$x \in B \text{ iff } \forall y_1.\exists y_2.\forall y_3.\dots \mathbf{Q}_n y_n.R(x,y_1,y_2,\dots,y_n).$$

$$\Delta_n = \Sigma_n \cap \Pi_n$$
.

Arithmetic Set

B is arithmetical if $B \in \bigcup_{n \in \omega} (\Sigma_n \cup \Pi_n)$.

Basic Property

Theorem. The following hold:

- (i) $A \in \Sigma_n$ iff $\overline{A} \in \Pi_n$.
- (ii) If $A \in \Sigma_n$ (Π_n) then $\forall m > n.A \in \Sigma_m \cap \Pi_m$.
- (iii) If $A, B \in \Sigma_n$ (Π_n) then $A \cup B, A \cap B \in \Sigma_n$ (Π_n) .
- (iv) If $R \in \Sigma_n \wedge n > 0 \wedge A = \{x : (\exists y) R(x, y)\}$ then $A \in \Sigma_n$.
- (v) If $B \leq_m A \land A \in \Sigma_n$ then $B \in \Sigma_n$.
- (vi) If $R \in \Sigma_n$ (Π_n) and A, B are defined by

$$\langle x, y \rangle \in A \Leftrightarrow \forall z < y.R(x, y, z),$$

 $\langle x, y \rangle \in B \Leftrightarrow \exists z < y.R(x, y, z),$

then $A, B \in \Sigma_n (\Pi_n)$.

Fin $\in \Sigma_2$

Fact.
$$Fin \in \Sigma_2$$
.

$$x \in Fin \Leftrightarrow W_x \text{ is finite}$$

 $\Leftrightarrow \exists s. \forall t. (t \leq s \lor W_{x,t} = W_{x,s}).$

Fact. $Inf \in \Pi_2$.

$Cof \in \Sigma_3$

Fact. $Cof \in \Sigma_3$.

$$\begin{array}{ll} x \in Cof & \Leftrightarrow & \overline{W_x} \text{ is finite} \\ & \Leftrightarrow & \exists y. \forall z. \left(z \leq y \lor z \in W_x\right) \\ & \Leftrightarrow & \exists y. \forall z. \exists s. \left(z \leq y \lor z \in W_{x,s}\right). \end{array}$$

$Tot \in \Pi_2$

Fact.
$$\{\langle x,y\rangle\mid W_x\subseteq W_y\}\in\Pi_2$$
.

$$W_{x} \subseteq W_{y} \Leftrightarrow \forall z. (z \in W_{x} \Rightarrow z \in W_{y})$$

$$\Leftrightarrow \forall z. (z \notin W_{x} \lor z \in W_{y})$$

$$\Leftrightarrow \forall z. (\forall s.z \notin W_{x,s} \lor \exists t.z \in W_{y,t})$$

$$\Leftrightarrow \forall z. \forall s. \exists t. (z \notin W_{x,s} \lor z \in W_{y,t})$$

$$\Leftrightarrow \forall w. \exists t. ((w)_{0} \notin W_{x,(w)_{1}} \lor (w)_{0} \in W_{y,t}).$$

Fact.
$$\{\langle x,y\rangle\mid W_x=W_y\}\in\Pi_2$$
.

Fact.
$$Tot = \{x \mid W_x = \omega\} \in \Pi_2$$
.

$Rec \in \Sigma_3$

Fact. $Rec \in \Sigma_3$.

$$x \in Rec \Leftrightarrow W_x \text{ is recursive}$$

$$\Leftrightarrow \exists y. \left(W_x = \overline{W_y}\right)$$

$$\Leftrightarrow \exists y. \left(W_x \cap W_y = \emptyset \land W_x \cup W_y = \omega\right)$$

$$\Leftrightarrow \exists y. \left((\forall s. W_{x,s} \cap W_{y,s} = \emptyset) \land (\forall z. \exists s. z \in W_{x,s} \cup W_{y,s})\right).$$

$$Ext \in \Sigma_3$$

Fact. $Ext \in \Sigma_3$.

$$x \in Ext \Leftrightarrow \exists y. (\phi_x \subseteq \phi_y \land W_y = \omega) \Leftrightarrow \exists y. \forall z. \exists s. \exists t. ((z \notin W_{x,s} \lor \phi_{x,s}(z) = \phi_{y,s}(z)) \land z \in W_{y,t}).$$

$Crt \in \Sigma_3$

Fact. $Crt = \{x \mid W_x \text{ is creative}\} \in \Sigma_3.$

$$x \in Crt \Leftrightarrow \overline{W_x} \text{ is productive}$$

$$\Leftrightarrow \exists y. \forall z. \left(W_z \subseteq \overline{W_x} \Rightarrow (\phi_y(z) \downarrow \land \phi_y(z) \in \overline{W_x} \setminus W_z)\right)$$

$$\Leftrightarrow \exists y. \forall z. \left(W_z \cap W_x = \emptyset \Rightarrow (\phi_y(z) \downarrow \land \phi_y(z) \notin W_x \cup W_z)\right)$$

$$\Leftrightarrow \exists y. \forall z. \left(W_z \cap W_x \neq \emptyset \lor (\phi_y(z) \downarrow \land \phi_y(z) \notin W_x \cup W_z)\right)$$

Now $W_z \cap W_x \neq \emptyset$ iff

$$\exists s. W_{z,s} \cap W_{x,s} \neq \emptyset$$
,

and
$$\phi_y(z) \downarrow \land \phi_y(z) \notin W_x \cup W_z$$
 iff

$$\exists s.z \in W_{y,s} \land \forall s.(z \notin W_{y,s} \lor \phi_{y,s}(z) \notin W_{x,s} \cup W_{z,s}).$$

Let P_{TM} be $\{x \mid P_x \text{ runs in polynomial time}\}$.

$$x \in P_{TM} \Leftrightarrow \exists c. \forall z. (P_x(z) \text{ terminates in } cz^c)$$

Hence $P_{TM} \in \Sigma_2$.

Completeness

A set $A \in \Sigma_n$ is Σ_n -complete if $B \leq_1 A$ for every $B \in \Sigma_n$.

A set $A \in \Pi_n$ is Π_n -complete if $B \leq_1 A$ for every $B \in \Pi_n$.

(i) $B \in \Sigma_{n+1}$ iff B is r.e. in a Π_n set iff B is r.e. in a Σ_n set.

Proof.

If $B \in \Sigma_{n+1}$, then $x \in B$ iff $\exists y.R(x,y)$ for some $R \in \Pi_n$. So B is r.e. in $\{\langle x,y \rangle \mid R\} \in \Pi_n$.

Suppose *B* is r.e. in some $C \in \Pi_n$. Then for some *e*,

$$x \in B \text{ iff } x \in W_e^C \text{ iff } \exists s. \exists \sigma. (\sigma \subset C \land x \in W_{e,s}^{\sigma}).$$

Now $x \in W_{e,s}^{\sigma}$ is recursive, and $\sigma \subset C$ is C-recursive since

$$\sigma \subset C$$
 iff $\forall y < |\sigma|.(\sigma(y) = 1 \land y \in C \lor \sigma(y) = 0 \land y \notin C).$

Hence
$$B \in \Sigma_{n+1}$$
.

(ii)
$$\emptyset^{(n)}$$
 is Σ_n -complete for all $n > 0$.

Proof.

 $\emptyset' = K$ is Σ_1 -complete.

Now assume $\emptyset^{(n)}$ is Σ_n -complete. Then

$$B \in \Sigma_{n+1}$$
 iff B is r.e. in some Σ_n set iff B is r.e. in $\emptyset^{(n)}$ iff $B <_1 \emptyset^{(n+1)}$.

Hence $\emptyset^{(n+1)}$ is Σ_{n+1} -complete.

(iii)
$$B \in \Sigma_{n+1}$$
 iff B is r.e. in $\emptyset^{(n)}$.

(iv)
$$B \in \Delta_{n+1}$$
 iff $B \leq_T \emptyset^{(n)}$.

Proof.

We have the following equivalence:

$$B \in \Delta_{n+1}$$
 iff $B, \overline{B} \in \Sigma_{n+1}$
iff B, \overline{B} are r.e. in $\emptyset^{(n)}$
iff $B <_{\mathcal{T}} \emptyset^{(n)}$.

Hierarchy Theorem. $\forall n > 0.\Delta_n \subset \Sigma_n \wedge \Delta_n \subset \Pi_n$.

Proof.

$$\emptyset^{(n)} \in \Sigma_n \setminus \Pi_n \text{ and } \overline{\emptyset^{(n)}} \in \Pi_n \setminus \Sigma_n.$$

A Comment on Completeness

$$B \leq_m \emptyset^{(n)} \Rightarrow B \in \Sigma_n$$

$$\Rightarrow B \text{ is r.e. in } \emptyset^{(n-1)}$$

$$\Rightarrow B \leq_1 \emptyset^{(n)}$$

$$\Rightarrow B \leq_m \emptyset^{(n)}.$$

The following is the relativized version of " $K \leq_m A$ iff $K \leq_1 A$ ":

$$\emptyset^{(n)} \leq_m A \text{ iff } \emptyset^{(n)} \leq_1 A.$$

Σ_n -Complete Set

Let (A_1, A_2) and (B_1, B_2) be two pairs of sets such that $A_1 \cap A_2 = \emptyset$ and $B_1 \cap B_2 = \emptyset$.

Then $(A_1, A_2) \leq_m (B_1, B_2)$ if there is a recursive function f such that $f(A_1) \subseteq B_1$, $f(A_2) \subseteq B_2$ and $f(\overline{A_1 \cup A_2}) \subseteq \overline{B_1 \cup B_2}$.

We write $(A_1, A_2) \leq_1 (B_1, B_2)$ if f is one-one.

For n > 0 we write $(\Sigma_n, \Pi_n) \leq_m (C, D)$ if $(A, \overline{A}) \leq_m (C, D)$ for some Σ_n -complete set A. The notation $(\Sigma_n, \Pi_n) \leq_1 (C, D)$ is defined similarly.

Fin is Σ_2 -Complete, Tot is Π_2 -Complete

Theorem. $(\Sigma_2, \Pi_2) \leq_1 (Fin, Tot)$.

Proof.

 $Fin \in \Sigma_2$ and $Tot \in \Pi_2$.

Let A be in Σ_2 . There is a recursive relation R such that

$$x \in \overline{A} \text{ iff } \forall y. \exists z. R(x, y, z).$$

By S-m-n Theorem there is a one-one recursive function s s.t.

$$\phi_{s(x)}(u) = \begin{cases} 0, & \text{if } \forall y \leq u. \exists z. R(x, y, z), \\ \uparrow, & \text{otherwise.} \end{cases}$$

Now
$$x \in \overline{A} \Rightarrow W_{s(x)} = \omega \Rightarrow s(x) \in Tot$$

and $x \in A \Rightarrow W_{s(x)}$ is finite $\Rightarrow s(x) \in Fin$.

Cof and Rec are Σ_3 -Complete

Let Cmp be $\{x \mid W_x \equiv_T K\}$, the set of Turing complete r.e. sets.

Theorem. $(\Sigma_3, \Pi_3) \leq_1 (Cof, Cmp) \leq_1 (Rec, Cmp)$.

Corollary. *Cof* is Σ_3 -complete.

Corollary. (Rogers) *Rec* is Σ_3 -complete.

$$(\Sigma_3, \Pi_3) \leq_1 (Cof, Cmp)$$

Fix an $A \in \Sigma_3$. Then some $R \in \Pi_2$ exists such that

$$x \in A \text{ iff } \exists y.R(x,y).$$

Since Inf is Π_2 -complete, a one-one recursive function g exists s.t.

$$R(x, y)$$
 iff $W_{g(x,y)}$ is infinite.

We will construct an r.e. set $W_{f(x)} = \bigcup_{s \in \omega} W_{f(x)}^s$ in stages s.t.

$$x \in A$$
 iff $W_{f(x)}$ is cofinite.

$$(\Sigma_3, \Pi_3) \leq_1 (Cof, Cmp)$$

Let the elements of the cofinite set $\overline{W_{f(x)}^s}$ be denoted by

$$b_{x,0}^s < b_{x,1}^s < b_{x,2}^s < \ldots < b_{x,k}^s < \ldots$$

Let $W_{f(x)}^0 := \emptyset$.

Let $W^{s+1}_{f(x)}:=W^s_{f(x)}$. Additionally put $b^s_{x,k}$ in $W^{s+1}_{f(x)}$ if $k\leq s$ and

$$W_{g(x,k),s} \neq W_{g(x,k),s+1} \lor k \in K_{s+1} \setminus K_s.$$

So we have constructed some programme $P_{f(x)}$ that enumerates $W_{f(x)}$, from which we can calculate f(x).

$$(\Sigma_3, \Pi_3) \leq_1 (Cof, Cmp)$$

If $x \in A$, then $W_{g(x,k)}$ is infinite for some k; and $|\overline{W_{f(x)}}| \le k$.

If $x \notin A$, then $W_{g(x,k)}$ is finite for all k. There is a stage when the first k+1 elements $b_{x,0} < b_{x,1} < b_{x,2} < \ldots < b_{x,k}$ of $\overline{W_{f(x)}}$ have all been fixed. So $\overline{W_{f(x)}}$ is infinite. Conclude that $A \leq_1 Cof$.

To prove $\overline{A} \leq_1 Cmp$, we show that if $x \notin A$ then $K \leq_T W_{f(x)}$. For each k we can $W_{f(x)}$ -recursively calculate a stage s(k) such that $b_{x,k}^{s(k)} = b_{x,k}$. Notice that $k \in K$ iff $k \in K_{s(k)}$.

Relative Arithmetic Hierarchy

Relative Post Theorem

Relative Post Theorem. For every $n \ge 0$, the following hold:

- (i) $A^{(n+1)}$ is Σ_{n+1}^A -complete.
- (ii) $B \in \Sigma_{n+1}^A$ iff B is r.e. in $A^{(n)}$.
- (iii) $B \leq_{\mathcal{T}} A^{(n)}$ iff $B \in \Delta_{n+1}^A$.

Low Degree and High Degree

A degree $\mathbf{a} \leq \mathbf{0}'$ is low if $\mathbf{a}' = \mathbf{0}'$.

A degree $a \leq 0'$ is high if a' = 0''.

Low Degree

Theorem. For $A \leq_{\mathcal{T}} \emptyset'$, the following are equivalent:

- (i) A is low.
- (ii) $\Sigma_1^A \subseteq \Pi_2$.
- (iii) $A' \leq_1 \overline{\emptyset^{(2)}}$.

Proof.

The following equivalences hold:

A is low iff
$$A' \leq_{\mathcal{T}} \emptyset'$$

iff $A' \in \Delta_2$, Post Theorem,
iff $\Sigma_1^A \subseteq \Delta_2$, A' is Σ_1^A complete,
iff $\Sigma_1^A \subseteq \Pi_2$, $\Sigma_1^A \subseteq \Sigma_1^{\emptyset'} = \Sigma_2$,
iff $A' \leq_1 \overline{\emptyset^{(2)}}$, $\overline{\emptyset^{(2)}}$ is Π_2 complete.

High Degree

Theorem. For $A \leq_{\mathcal{T}} \emptyset'$, the following are equivalent:

- (i) A is high.
- (ii) $\Sigma_2 \subseteq \Pi_2^A$.
- (iii) $\emptyset^{(2)} \leq_1 \overline{A^{(2)}}$.

Proof.

The following equivalences hold:

A is high iff
$$\emptyset'' \leq_T A'$$

iff $\emptyset'' \in \Delta_2^A$,
iff $\Sigma_2 \subseteq \Delta_2^A$, \emptyset'' is Σ_2 complete,
iff $\Sigma_2 \subseteq \Pi_2^A$, $\Sigma_2 \subseteq \Sigma_2^A$,
iff $\emptyset^{(2)} <_1 \overline{A^{(2)}}$, $\overline{A^{(2)}}$ is Π_2^A complete.