Knowledge Based System: Logic and Deduction

27/01/2025

Koustav Rudra

Knowledge and Intelligence

How to act given a particular scenario in the environment?

Machine: It is mandatory to have means of representing knowledge

How to represent knowledge in a way that machine can understand?

Represent knowledge in a machine

- We need a language to **represent** <u>domain knowledge</u>
 - Expect a machine to demonstrate an intelligent behaviour when that machine is left to work in a particular environment in a particular domain, provided we empower the machine with relevant knowledge from that domain
- There must be a method to use the knowledge
 - Understand the knowledge in which it is expressed

Inference

• Interpret knowledge in response to environmental fact that has been sensed

Syntax and semantics of language

- Grammar of a language
- Laughs(Anil) == ?
- Likes(Ashok, Akash) == ?

Logic is one such formal language

Logic

- A formal system for describing states of affairs, consisting of:
 - Syntax: describes how to make sentences, and
 - Semantics: describes the relation between the sentences and states of affairs
- Propositional Logic
- First Order Logic
- Temporal Logic
- Fuzzy Logic

Logical Deduction Propositional Logic

27/01/2025

Koustav Rudra

Objective

- How to represent simple facts in the language of propositional logic?
- How can we interpret propositional logic statement?
 - Understanding the meaning of propositional logic statement
 - Unless we understand the language we can't act accordingly
- How to compute the meaning of compound proposition?
 - Collection of simple propositions and join them in some order
 - How to understand and integrate the meaning of individual propositions

Propositional Logic

Objects and Relations

- A Proposition (statement) can either be True or False
- Intelligent_Anil == Anil is intelligent
- Hardworking_Anil == Anil is hardworking

Towards the Syntax

- Let P stands for Intelligent_Anil
- Let Q stands for Hardworking_Anil
- What does $P \wedge Q$ (P and Q) mean?
- What does P V Q (P or Q) mean?
- P \(\text{Q}\) and P \(\text{V}\) Q are compound propositions

Syntactic Elements of Propositional Logic

- Vocabulary
 - A set of propositional symbols (P, Q, R, etc.) each of which can be True or False
 - Set of **logical operators**
 - \land (AND), \lor (OR), \sim (NOT), \rightarrow (implies)
 - Parenthesis () used for grouping
 - There are two special symbols
 - TRUE (T) and FALSE (F)
 - These are **logical constants**

How to form propositional sentences?

- Each symbol (a proposition or a constant) is a sentence
- If P is a sentence and Q is a sentence then
 - (P) is a sentence
 - PAQ is a sentence
 - PVQ is a sentence
 - ~P is a sentence
 - $P \rightarrow Q$ is a sentence
 - Nothing else is a sentence

Sentences are called well-formed formulae

Propositional Logic

- Given a set of atomic propositions AP
- Sentence → Atom | ComplexSentence
- Atom → True | False | AP
- ComplexSentence → (Sentence)
 - | Sentence Connective Sentence
 - | ~ Sentence
- Connective $\rightarrow \land | \lor | \rightarrow | \Leftrightarrow$

Implication \rightarrow

• $P \rightarrow Q$

• If P is true then Q is true

• If it rains then the roads are wet

Equivalence (⇔)

• $P \Leftrightarrow Q$

• If P is True then Q is True and If Q is True then P is True

• If two sides of a triangle are equal then two base angles of the triangle are equal

• $(P \rightarrow Q) \land (Q \rightarrow P)$

Example wffs

- P
- True
- P\lambda Q
- $(P \land Q) \rightarrow R$
- $(P \land Q) \lor R \rightarrow S$
- ~(PVQ)
- $\sim (P \lor Q) \rightarrow R \land S$

What does a wff mean --- Semantics?

• Interpretation in a world

• When we interpret a sentence in a world we assign meaning to it and it evaluates to either True or False

- Same proposition could be interpreted in two different worlds in two different ways
- Interpretation attributes meaning or semantics to propositions

Semantics

- We deal with two symbols P and Q
- Truth values of P and Q depend on the way we interpret it in a particular world

How do we get a meaning?

• Sentences can be compound propositions

• Steps:

- Interpret each atomic proposition in the **same world**
- Assign Truth values to each interpretation
- Compute the Truth value of compound proposition

Example

- P: likes(Akash, Aritra)
- Q: knows(Amit, Adway)
- World: Akash and Aritra are friends. Amit and Adway are known to each other.
- P = T, Q = T
- $P \wedge Q = T$
- $P \land \sim Q = F$

Validity of a sentence

- If a propositional sentence is true under all possible interpretation, it is <u>VALID</u>
- A sentence is <u>VALID</u> means it is True irrespective of the world in which we interpret it
- PV~P is always True
 - <u>Tautology</u>

Satisfiability

- An interpretation is a mapping to a world
- A sentence is satisfiable by an interpretation if
 - Under that interpretation the sentence evaluates to <u>True</u>
- If NO interpretation makes a sentence True then
 - That sentence is called **UNSATISFIABLE** or **INCONSISTENT**
 - P \(\sigma \)
- If NO interpretation makes all the sentences in the set to be True then
 - The set of sentences is **UNSATISFIABLE** or **INCONSISTENT**

Inference in Propositional Logic

27/01/2025

Koustav Rudra

Objective

- Infer the truth value of a proposition
- Reason towards new facts given a set of propositions
- Prove a proposition given a set of propositional facts

Truth Value Assignment

P	Q	P∧Q	PVQ	~P	~Q	P→Q
Т	Т	Т	Т	F	F	T
Т	F	F	Т	F	Т	F
F	Т	F	Т	Т	F	T
F	F	F	Т	Т	Т	Т

De Morgan's Theorem

•
$$\sim$$
(P \land Q) = \sim P $\lor\sim$ Q

•
$$\sim$$
(PVQ) = \sim P $\land \sim$ Q

Р	Q	PVQ
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

~(PVQ)
F
F
F
Т

~p	~Q
F	F
F	Т
Т	F
Т	Т

~P^~Q
F
F
F
Т

Problem 2

- If P and Q are True, then what is the truth value of following statements?
 - S: (~P∨Q)→P

P	Q	~PVQ	S
T	Т	Т	Т

Deduction using Propositional Logic: Steps

- Choice of Boolean variables a, b, c, d ... which can take values True or False
- Boolean Formulae developed using well defined connectors \sim , Λ , V, \rightarrow , etc, whose meaning (semantics) is given by their truth tables
- Codification of Sentences of the argument into Boolean Formulae
- Developing the <u>Deduction Process</u> as obtaining truth of a <u>Combined Formula</u> expressing the complete argument
- <u>Determining the Truth</u> or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various Interpretations.

Problem 1

• If I am the Director then I am well-known. I am the Director. So I am well-known.

Choice of Boolean variables a, b, c, d ... which can take values True or False

- Coding: Variables
- a: I am the Director
- b: I am well-known

Coding the sentences

- Boolean Formulae developed using well defined connectors \sim , Λ , V, \rightarrow , etc, whose meaning (semantics) is given by their truth tables
- >1. a→b
 - 2. a
 - 3. b

- <u>Codification of Sentences</u> of the argument into Boolean Formulae
- Developing the <u>Deduction Process</u> as obtaining truth of a <u>Combined Formula</u> expressing the complete argument
- The final formula for deduction
- $((a \rightarrow b) \land a) \rightarrow b$

<u>Determining the Truth</u> or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various Interpretations.

Proof or Otherwise

a	b	a→b	((a→b)∧a)	$((a \rightarrow b) \land a) \rightarrow b$
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	Т

Problem 2

• If I am the Director then I am well-known. I am not the Director. So I am not well-known.

Choice of Boolean variables a, b, c, d ... which can take values True or False

Boolean Formulae developed using well defined connectors \sim , Λ , V, \rightarrow , etc, whose meaning (semantics) is given by their truth tables

<u>Codification of Sentences</u> of the argument into Boolean Formulae

Developing the <u>Deduction Process</u> as obtaining truth of a Combined Formula expressing the complete argument

- Coding: Variables
- a: I am the Director
- b: I am well-known
- Coding the sentences
- 1. a→b
- 2. ~a
- 3. ~b
- The final formula for deduction
- ((a→b)∧~a)→~b

<u>Determining the Truth</u> or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various Interpretations.

Proof or Otherwise

a	b	a→b	((a→b)∧~a	((a→b)∧~a)→~b
Т	Т	Т	F	Т
Т	F	F	F	Т
F	Т	Т	Т	F
F	F	Т	Т	Т

Reasoning

- Using the given propositions which are assumed to be True
 - Trying to derive new facts which will also be True
- P: It is the month of July
- Q: It rains
- R: $P \rightarrow Q$ [If it is month of July then it rains]
- Premise: It is the month of July
- Conclude: It rains

Symbolic Deduction

Modus Ponens: One Inference Rule

- $P \rightarrow Q$
- P
- Q
- $P \rightarrow Q = \sim P \vee Q$
- P∧~P∨Q
- $(P \land \sim P) \lor Q$
- FVQ
- Q

Allows us to deduce the truth of a consequent depending on the truth of the antecedents

Inference Rule: Importance

- We want to develop some mechanical procedures using which we can make the machine infer new facts
- Inference rules can be mechanically applied

• Rules:

- If Not(Not(P)) then P
- Chain Rule:
 - If P then Q
 - If Q then R
 - If P then R

Rules of Natural Deduction

- Modus Ponens: $(a \rightarrow b)$, a :- therefore b
- Modus Tollens: $(a \rightarrow b)$, $\sim b$:- therefore $\sim a$
- Hypothetical Syllogism: $(a \rightarrow b)$, $(b \rightarrow c)$:- therefore $(a \rightarrow c)$
- Disjunctive Syllogism: (a V b), ~a:- therefore b
- Constructive Dilemma: $(a \rightarrow b) \Lambda (c \rightarrow d)$, $(a \lor c)$:- therefore $(b \lor d)$
- Destructive Dilemma: (a \rightarrow b) Λ (c \rightarrow d), (\sim b V \sim d) :- therefore (\sim a V \sim c)
- Simplification: a Λ b:- therefore a
- Conjunction: a, b:- therefore a Λ b
- Addition: a :- therefore a V b

Inference Mechanisms

- Formal way of inferencing using propositional logic
- Truth Table Method
 - We can find out the truth of any compound proposition when we know the truth values of the individual propositions

Deductive method

- Inference rules which are not dependent on any interpretation
- The propositions will evaluate to True or False based on some interpretation
- Modus Ponen is one such inference rule

Resolution

- Propositions converted into clausal form
- Negation of the goal, convert to clausal form
- Iteratively apply propositions and prove NULL

Automated Reasoning

- In general, the inference problem is NP-complete [Cook's Theorem]
- If we restrict ourselves to Horn sentences, then repeated use of Modus Ponens gives us a polytime procedure.
 - Horn sentences are of the form:
 - $F1 \wedge F2 \wedge ... \wedge Fn \rightarrow G$
 - Forward chaining
 - Backward chaining

Automated Reasoning

• Forward Chaining

Automated Reasoning

• Backward chaining

Resolution

27/01/2025

Clause: A special form

- Literal A single proposition or its negation
 - P, ~P
- A clause is a disjunction of literals
 - P V Q V ~R
- Can we convert any proposition to a clausal form?

Converting compound proposition to clausal form

- Consider the sentence (wff)
 - $\sim (A \rightarrow B) \lor (C \rightarrow A)$
- Eliminate the implication sign
 - ~(~AVB)V(~CVA)
- Eliminate double negation and reduce scope of "not" signs (De-Morgan Law)
 - $(A \land \sim B) \lor (\sim C \lor A)$
- Convert to conjunctive normal form by using distributive and associative laws
 - $(AV \sim CVA) \wedge (\sim BV \sim CVA)$
 - $(AV \sim C) \land (\sim B \lor \sim C\lor A)$

Why are we so interested in clausal form?

- Two clauses
 - (AV~C)
 - (~B V~CVA)

Helps us in applying interesting inference mechanism:

Resolution

Resolution: Inference Mechanism

- Objective:
 - Learn to prove new facts given a set of facts
 - Given a set of facts proving a fact means proving the **logical entailment**
- A sound inference mechanism

Entailment

If a sentence s1 has a value True for all interpretations

that make all sentences in a set S True then

- S |- s1
- s1 logically follows from S
- s1 is a logical consequence of S
- S logically entails s1

Inference Mechanism

Resolution

- Suppose x is a literal
- S1 and S2 are two sets of propositional sentences represented in clausal form
- If we have $(xVS1) \land (\sim xVS2)$
 - Then we get S1VS2
 - Here S1VS2 is the resolvent
 - x is resolved upon

Problem 3

- If a triangle is equilateral then it is isosceles
- If a triangle is isosceles then two sides AB and AC are equal
- If AB and AC are equal then angle B and C are equal
- ABC is an equilateral triangle
- Prove angle B is equal to angle C

Problem 3: Proposition Form

- If a triangle is equilateral then it is isosceles
 - Equilateral(ABC) \rightarrow Isosceles(ABC)
- If a triangle is isosceles then two sides AB and AC are equal
 - Isosceles(ABC) \rightarrow Equal(AB,AC)
- If AB and AC are equal then angle B and C are equal
 - Equal(AB,AC) \rightarrow Equal(B,C)
- ABC is an equilateral triangle
 - Equilateral(ABC)

Problem 3: Clausal Form

- Equilateral(ABC) \rightarrow Isosceles(ABC)
 - ~ Equilateral(ABC)VIsosceles(ABC)
- Isosceles(ABC) \rightarrow Equal(AB,AC)
 - ~Isosceles(ABC)VEqual(AB,AC)
- Equal(AB,AC) \rightarrow Equal(B,C)
 - ~ Equal(AB,AC)VEqual(B,C)
- Equilateral(ABC)

Proof by Refutation

• To Prove: Angle B is equal to Angle C: Equal(B,C)

• Let us disprove: NotEqual(B,C) = \sim Equal(B,C)

• φ : F1 \wedge F2 \wedge ... \wedge Fn \rightarrow G

• φ : ~ $(F1 \land F2 \land ... \land Fn) \lor G$

• $\sim \varphi$: F1 \land F2 \land ... \land Fn $\land \sim$ G

We have arrived in contradictory situation that is not supported by given set of facts

Thank You