Phénomène de Gibbs



## Phénomène de Gibbs

On définit une application f,  $2\pi$ -périodique et impaire par :  $\begin{cases} \forall x \in ]0, \pi[, f(x) = 1\\ f(0) = f(\pi) = 0 \end{cases}$ 

- 1. Montrer que le développement en série de Fourier de f est :  $f(x) = \frac{4}{\pi} \sum_{n=0}^{+\infty} \frac{\sin(2n+1)x}{2n+1}$ . [S]
- 2. Pour tout entier  $n \ge 1$ , on pose :  $\forall x \in \mathbb{R}$ ,  $f_n(x) = \frac{4}{\pi} \sum_{k=0}^{n-1} \frac{\sin(2k+1)x}{2k+1}$ .

On sait donc que la suite  $(f_n)_{n\geq 1}$  est simplement convergente vers f sur  $\mathbb{R}$ .

- (a) La convergence de la suite  $(f_n)_{n\geq 1}$  est-elle uniforme sur  $\mathbb{R}$ ? [S]
- (b) Montrer que si  $x \in \mathbb{R} \pi \mathbb{Z}$ , et  $n \in \mathbb{N}^*$ ,  $T_n(x) = \sum_{k=0}^{n-1} \sin(2k+1)x = \frac{\sin^2 nx}{\sin x}$ . [S]
- (c) On se donne un réel a de  $\left]0, \frac{\pi}{2}\right[$ . Préciser un majorant de  $|T_n(x)|$  sur  $[a, \pi a]$ . [S]
- (d) Montrer que pour n dans  $\mathbb{N}^*$  et x dans  $[a, \pi a]$ , on  $a : |f(x) f_n(x)| \le \frac{4}{n\pi \sin a}$ . Indication: considérer  $f_{n+p}(x) - f_n(x)$  (où  $p \ge 2$ ), remarquer que  $\sin(2k+1)x = T_{k+1}(x) - T_k(x)$ , majorer en valeur absolue et faire tendre p vers  $+\infty$ . [S]
- (e) En déduire que  $(f_n)_{n\geq 1}$  converge uniformément vers f sur tout compact de  $]0,\pi[.[S]]$
- 3. Dans cette question, on étudie les variations de  $f_n$ .
  - (a) Montrer que pour l'étude de  $f_n$ , on peut se ramener à l'intervalle  $I = [0, \frac{\pi}{2}]$ . [S]
  - (b) Montrer que :  $\forall x \in \mathbb{R} \pi \mathbb{Z}, \forall n \in \mathbb{N}^*, \ f'_n(x) = \frac{2}{\pi} \frac{\sin 2nx}{\sin x}$ . [S]
  - (c) Montrer que  $f_n$  présente un premier maximum sur I en  $x_n = \frac{\pi}{2n}$ . [S]
  - (d) Montrer que  $\lim_{n \to +\infty} f_n(x_n) = \frac{2}{\pi} \int_0^{\pi} \frac{\sin t}{t} dt$ .

Indication : utiliser une somme de Riemann pour l'application  $\varphi(t) = \frac{\sin t}{t}$ . [S]

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.



## Phénomène de Gibbs

## Corrigé du problème

1. L'application f est  $2\pi$ -périodique et de classe  $\mathcal{C}^1$  par morceaux.

En chaque discontinuité  $x_0$ , on a  $f(x_0) = \frac{1}{2} (\lim_{x_0^-} f + \lim_{x_0^+} f) : f$  est sa propre "régularisée".

D'après le théorème de Dirichlet, f est la somme sur  $\mathbb{R}$  de sa série de Fourier.

L'application f étant impaire, sa série de Fourier est une série de "sinus".

On a donc, pour tout 
$$x$$
 de  $\mathbb{R}$ :  $f(x) = \sum_{n=1}^{+\infty} b_n(f) \sin nx$ , où  $b_n(f) = \frac{2}{\pi} \int_0^{\pi} f(t) \sin nt \, dt$ .

$$\forall n \ge 1, b_n(f) = \frac{2}{\pi} \int_0^{\pi} \sin nt \, dt = \frac{2}{\pi} \left[ -\frac{1}{n} \cos nt \right]_0^{\pi} = \frac{2}{n\pi} (1 - (-1)^n).$$

Autrement dit : 
$$\forall n \ge 1, b_{2n}(f) = 0$$
 et  $\forall n \ge 0, b_{2n+1}(f) = \frac{4}{(2n+1)\pi}$ .

On en déduit : 
$$\forall x \in \mathbb{R}, f(x) = \frac{4}{\pi} \sum_{n=0}^{+\infty} \frac{\sin(2n+1)x}{2n+1}$$
. [Q]

- 2. (a) La réponse à cette question est négative, car les applications  $f_n$  sont continues sur  $\mathbb{R}$  alors que f présente des discontinuités.  $[\mathbb{Q}]$ 
  - (b) On constate effectivement que, pour tout n de  $\mathbb{N}^*$  et tout x de  $\mathbb{R}$ :

$$T_n(x)\sin x = \sum_{k=0}^{n-1} \sin x \sin(2k+1)x = \frac{1}{2} \sum_{k=0}^{n-1} (\cos 2kx - \cos(2k+2)x)$$
$$= \frac{1 - \cos 2nx}{2} = \sin^2 nx$$

Si x appartient à  $\mathbb{R} - \pi \mathbb{Z}$ , le résultat s'en déduit par division par  $\sin x$ . [Q]

- (c) Pour tout x de  $[a, \pi a]$ , on a  $|T_n(x)| = \frac{\sin^2 nx}{\sin x} \le \frac{1}{\sin a}$ . [Q]
- (d) Pour tous entiers n et p, et pour tout réel x:

$$\frac{\pi}{4}(f_{n+p}(x) - f_n(x)) = \sum_{k=n}^{n+p-1} \frac{\sin(2k+1)x}{2k+1} = \sum_{k=n}^{n+p-1} \frac{1}{2k+1}(T_{k+1}(x) - T_k(x))$$

$$= \sum_{k=n}^{n+p-1} \frac{T_{k+1}(x)}{2k+1} - \sum_{k=n}^{n+p-1} \frac{T_k(x)}{2k+1} = \sum_{k=n+1}^{n+p} \frac{T_k(x)}{2k-1} - \sum_{k=n}^{n+p-1} \frac{T_k(x)}{2k+1}$$

$$= \sum_{k=n+1}^{n+p-1} T_k(x) \left(\frac{1}{2k-1} - \frac{1}{2k+1}\right) + \frac{T_{n+p}(x)}{2(n+p)-1} - \frac{T_n(x)}{2n+1}$$

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.



On en déduit, pour tous entiers n et p, et pour tout réel x de  $[a, \pi - a]$ :

$$\frac{\pi}{4} |f_{n+p}(x) - f_n(x)| \le \sum_{k=n+1}^{n+p-1} |T_k(x)| \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right) + \frac{|T_{n+p}(x)|}{2(n+p)-1} + \frac{|T_n(x)|}{2n+1} \\
\le \frac{1}{\sin a} \left( \sum_{k=n+1}^{n+p-1} \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right) + \frac{1}{2(n+p)-1} + \frac{1}{2n+1} \right)$$

Après simplification :  $\frac{\pi}{4} |f_{n+p}(x) - f_n(x)| \le \frac{1}{\sin a} \frac{2}{2n+1} \le \frac{1}{n \sin a}$ .

Cette inégalité s'écrit  $|f_{n+p}(x) - f_n(x)| \le \frac{4}{n\pi \sin a}$ .

On fait enfin tendre p vers  $+\infty$  (l'entier n et le réel x restant fixé).

On trouve:  $\forall n \ge 1, \forall x \in [a, \pi - a], |f(x) - f_n(x)| \le \frac{4}{n\pi \sin a}.$  [Q]

(e) Soit K un compact inclus dans  $]0,\pi[$ . Il existe a de  $]0,\frac{\pi}{2}[$  tel que  $K\subset [a,\pi-a].$ Le résultat précédent montre alors que  $\sup_{x\in K}|f(x)-f_n(x)|$  tend vers 0 quand  $n\to\infty$ .

Autrement dit la suite  $(f_n)_{n\geq 1}$  est uniformément convergente vers f sur K. [Q]

3. (a) L'application  $f_n$  est  $2\pi$ -périodique et impaire.

L'étude de ses variations peut donc être ramenée à l'intervalle  $[0, \pi]$ .

Mais d'autre part, pour tout x de  $[0, \pi]$ ,  $f_n(\pi - x) = f_n(x)$ .

La courbe représentative de f est donc symétrique par rapport à l'axe  $x = \frac{\pi}{2}$ .

Cette dernière propriété permet de ramener l'étude de f à l'intervalle  $I = \left[0, \frac{\pi}{2}\right]$ .

(b) Il faut prouver  $\frac{4}{\pi} \sum_{k=0}^{n-1} \cos(2k+1)x = \frac{2}{\pi} \frac{\sin 2nx}{\sin x}$ . Cela résulte du calcul suivant :

$$2\sin x \sum_{k=0}^{n-1} \cos(2k+1)x = \sum_{k=0}^{n-1} 2\sin x \cos(2k+1)x = \sum_{k=0}^{n-1} (\sin(2k+2)x - \sin 2kx)$$

$$= \sum_{k=1}^{n} \sin 2kx - \sum_{k=0}^{n-1} \sin 2kx = \sin 2nx.$$
[Q]

(c) On observe que  $f_n'(0) = \frac{4n}{\pi} > 0$ . Sur l'intervalle  $\left]0, \frac{\pi}{2}\right]$ , on a :

$$f'_n(x) = 0 \Leftrightarrow \frac{\sin 2nx}{\sin x} = 0 \Leftrightarrow x = x_{n,k} = \frac{k\pi}{2n}$$
, avec  $1 \le k \le n$ .

En chacun de ces n points,  $f'_n$  s'annule en changeant de signe :  $f_n$  présente donc extrémum relatif en chacun d'eux.

En particulier, f présente un premier extrémum (un maximum) en  $x_n = \frac{\pi}{2n}$ . [Q]

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.



(d) 
$$\forall n \ge 1$$
,  $f_n(x_n) = \frac{4}{\pi} \sum_{k=0}^{n-1} \frac{1}{2k+1} \sin \frac{(2k+1)\pi}{2n} = \frac{2}{n} \sum_{k=0}^{n-1} \frac{2n}{(2k+1)\pi} \sin \frac{(2k+1)\pi}{2n}$ .

On pose 
$$\varphi(t) = \frac{\sin t}{t}$$
 ( $\varphi$  est continue sur  $\mathbb{R}$ ) et  $x_k = \left(k + \frac{1}{2}\right) \frac{\pi}{n} \in \left[\frac{k\pi}{n}, \frac{(k+1)\pi}{n}\right]$ .

On constate que 
$$f_n(x_n) = \frac{2}{n} \sum_{k=0}^{n-1} \varphi(x_k) = \frac{2}{\pi} \sum_{k=0}^{n-1} (x_{k+1} - x_k) \varphi(x_k).$$

On reconnait une somme de Riemann dont la limite est  $\int_0^{\pi} \varphi(t) dt$  quand  $n \to +\infty$ .

Conclusion: 
$$\lim_{n \to +\infty} f_n(x_n) = \frac{2}{\pi} \int_0^{\pi} \frac{\sin t}{t} dt$$
. [Q]

## Remarques:

On montre que la suite des maximums  $\alpha_n=f_n(x_n)$  est décroissante. On trouverait :  $\alpha_1\approx 1.273239544,\ \alpha_5\approx 1.182328209,\ \alpha_{10}\approx 1.179814019$  et  $\alpha_{20}\approx 1.179188137$ . On montre que  $\alpha=\lim_{n\to+\infty}\alpha_n\approx 1.178979744$ .

Ce résultat (c'est-à-dire cette sorte de "résonance" qui ne s'atténue pas au voisinage de la discontinuité de f) est connu sous le nom de  $ph\acute{e}nom\`{e}ne$  de Gibbs.

Pour l'illustrer, voici les courbes représentatives des  $f_n$ , pour  $n \in \{1, 2, 5, 10, 15, 20\}$  sur l'intervalle  $[0, \frac{\pi}{2}]$ . Sur chaque tracé on a également représenté la fonction f (constante 1) et la valeur constante  $\alpha$  (le trait en pointillés.)



Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Phénomène de Gibbs





