Lab: Differential Expression via RNA-Seq Analysis

Genomic Technologies Workshop 2024 (PLPTH885)

Sanzhen Liu

6/5/2024

Outline

- Differential expression test using DESeq2
- Result visualization

Course webpage

RNA-seq DE analysis

OnDemand at Beocat

ondemand

login with eID

Select RStudio

Request resources

RStudio

This app will launch RStudio Server an IDE for R.

Connect to RStudio

Rstudio interface

Package installation

```
if (!require("BiocManager", quietly=T))
  install.packages("BiocManager")

# to solve a version issue, install matrixStats to update the version
# suggested by Adam Tygart from Beocat

install.packages("matrixStats", repos="http://cran.us.r-project.org")

if (!require("DESeq2", quietly=T))
  BiocManager::install("DESeq2") # DESeq2
```

preload modules

```
data_url <- "https://raw.githubusercontent.com/liu3zhenlab/teaching/r
pls <- paste0(data_url, "/utils/load.R")
source(pls)</pre>
```

- panel.cor2
- rnaseq.pca
- normalization

codes

Read expression data (Read counts per gene)

```
rc_file <- paste0(data_url, "/data/rc.txt")
grc <- read.delim(rc_file)
nrow(grc) # the number of rows/lines</pre>
```

[1] 22697

first entry:

Gene	ExonSize	ck_rep1	ck_rep2	ck_rep3	trt_rep1	trt_rep2	trt_rep
AC147602.5_FG004	483	5480	6075	5934	3370	5784	643

last entry:

	Gene	ExonSize	ck_rep1	ck_rep2	ck_rep3	trt_rep1	trt_rep2 t
22697	GRMZM5G899985	615	267	327	348	83	342

RPKM normalization

Gene	ExonSize	ck_rep1	ck_rep2	ck_rep3	trt_rep1	trt_rep2	trt_rep
AC147602.5_FG004	483	5480	6075	5934	3370	5784	643
AC148152.3_FG005	1422	187	295	377	169	158	56

data organization for DESeq2

• count information

```
geneid <- grc$Gene
in.data <- as.matrix(grc[, 3:8])</pre>
```

ck_rep1	ck_rep2	ck_rep3	trt_rep1	trt_rep2	trt_rep3
5480	6075	5934	3370	5784	6432

sample names and grouping information (treatment)

```
sample.ids <- colnames(in.data)
treatment <- c("ck", "ck", "ck", "trt", "trt", "trt")
sample.info <- data.frame(row.names=sample.ids, trt=treatment)</pre>
```

```
ck_rep1 ck
ck_rep2 ck
ck_rep3 ck
trt_rep1 trt
trt_rep2 trt
trt_rep3 trt
```

Differential expression test

DE output

```
res <- results(object = dds)
res <- data.frame(res)
res$Gene <- geneid
res <- res[,c("Gene","baseMean","log2FoldChange","pvalue","padj")]
nrow(res)</pre>
```

[1] 22697

DE + normalized data

```
### Merge the normalized result with the DE result
out <- merge(grcn, res, by = "Gene")
out <- data.frame(out)</pre>
```

Gene	ExonSize of	k_rep1 ck	_rep2	ck_rep3	trt_rep1	trt_rep	2
AC147602.5_FG004	483	5480	6075	5934	3370	578	34
AC148152.3_FG005	5 1422	187	295	377	169	15	8
trt_rep3 ck_rep	1.RPKM ck_r	ep2.RPKM	ck_re	p3.RPKM	trt_rep1	.RPKM	
6432	854.123	895.760		904.373	Į	567.493	
563	9.900	14.775		19.516		9.666	
trt_rep2.RPKM t	rt_rep3.RPKM	I baseMea	n log2	2FoldCha	nge pv	alue	
915.326	916.971	5441.657	9	-0.1490	702 0.464	2180 0	.80
8.493	27.262	2 285.549	3	0.0431	574 0.925	8171 0	.98

significant gene sets at different FDRs

```
sum(!is.na(out$padj) & out$padj < 0.05)</pre>
```

[1] 1261

problem

Please revise the code to calculate the number of significant genes with the FDR smaller than 10% and 15%?

significantly DEG

```
sig <- out[!is.na(out$padj) & out$padj < 0.05, ]</pre>
```

p-value histogram

```
pvals <- out$pvalue
hist(pvals, main="Histogram",xlab="p-values",ylab="Number of genes")</pre>
```


problem

Please modify the plot code to change the figure title to "DE"

scatter plot - raw counts

scatter plot - RPKM

log of RPKM

pair-wise scatter plots

```
logrpkm <- log(out[, 9:14])
pairs(logrpkm, lower.panel=panel.smooth, upper.panel=panel.cor2)</pre>
```


Principal Component Analysis (PCA)

PCA is a mathematical algorithm that reduces the dimensionality of the data while retaining most of the variation in the data set.

	Control			Treatment			
Gene	Rep1	Rep2	Rep3	Rep1	Rep2	Rep3	
1	2679	2360	2573	2563	3398	3012	
2	177	161	171	154	137	152	
3	381	371	397	541	723	635	
20000	990	1073	1236	850	672	859	

Normalized and standardized data

function / module

You can write your own function: fun_name <- function (...) { ... }

[1] 4.00 3.96 3.36 3.72

```
gpa_improve <- function(gpa, rate) {</pre>
### gpa: a numeric vector for GPAs
### rate: percentage for the improvement
     new.gpa <- gpa * (1 + rate)
     new.gpa[new.gpa > 4] <- 4</pre>
     return(new.gpa)
### running the function
our.gpa \leftarrow c(3.8, 3.3, 2.8, 3.1)
gpa_improve(our.gpa, 0.1)
[1] 4.00 3.63 3.08 3.41
gpa_improve(our.gpa, 0.2)
```

PCA function

principal component analysis and ploting

```
rnaseq.pca <- function(norm.data,
  norm.feature="RPKM",
     group.feature,
     title="",
  shape.code=NULL,
     mean.cutoff=0.1,
     colors=NULL,
     scaling=T, ...) {
     ...
}</pre>
```

PCA plotting

MA plot

Volcano plot

```
log2val <- out$log2FoldChange # log2 fold change
mlogP <- -log10(out$pvalue) # transformed p-values
### plot
plot(log2val, mlogP, main="Volcano plot", xlab="log2FC", ylab="-log10"
        pch=19, cex=0.4, col="grey", xlim=c(-6,6), ylim=c(0,16))
### highlight
up <- which(out$padj<0.05 & log2val > 0) # up
down <- which(out$padj<0.05 & log2val < 0) # down
points(log2val[up], mlogP[up], pch=19,cex=0.4,col="brown")
points(log2val[down], mlogP[down],pch=19,cex=0.4,col="blue")</pre>
```

Volcano plot

log2FC

Summary of the analyzing procedure

- 1. Read counts per gene
- 2. DE analysis based on the experimental design
- 3. Examine results (p-value distribution, number of significant genes)
- 4. Gene Ontology enrichment test

DESeq2 tutorial

Contact information

Sanzhen Liu Plant Pathology 4729 Throckmorton Plant Sciences Center Manhattan, KS 66506-5502 phone: 785-532-1379

liu3zhen@ksu.edu twitter (X): liu3zhen

Bioinformatics Applications

PLPTH813, Spring 2025