Outline

[read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6]

- Learning from examples
- General-to-specific ordering over hypotheses
- Version spaces and candidate elimination algorithm
- Picking new examples
- The need for inductive bias

Note: simple approach assuming no noise, illustrates key concepts

Training Examples for EnjoySport

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

What is the general concept?

Representing Hypotheses

Many possible representations

Here, h is conjunction of constraints on attributes Each constraint can be

- a specific value (e.g., Water = Warm)
- don't care (e.g., "Water = ?")
- no value allowed (e.g., "Water=0")

For example,

Sky AirTemp Humid Wind Water Forecst $\langle Sunny \mid ? \mid Strong \mid ? \mid Same \rangle$

Prototypical Concept Learning Task

• Given:

- Instances X: Possible days, each described by the attributes Sky, AirTemp, Humidity, Wind, Water, Forecast
- Target function c: $EnjoySport: X \rightarrow \{0,1\}$
- Hypotheses H: Conjunctions of literals. E.g.

$$\langle ?, Cold, High, ?, ?, ? \rangle$$
.

- Training examples D: Positive and negative examples of the target function

$$\langle x_1, c(x_1) \rangle, \ldots \langle x_m, c(x_m) \rangle$$

• **Determine:** A hypothesis h in H such that h(x) = c(x) for all x in D.

The inductive learning hypothesis: Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples.

Instance, Hypotheses, and More-General-Than

 $x_1 = \langle Sunny, Warm, High, Strong, Cool, Same \rangle$ $x_2 = \langle Sunny, Warm, High, Light, Warm, Same \rangle$ $h_1 = \langle Sunny, ?, ?, Strong, ?, ? \rangle$ $h_2 = \langle Sunny, ?, ?, ?, ?, ? \rangle$ $h_3 = \langle Sunny, ?, ?, ?, Cool, ? \rangle$

FIND-S 算法

- 1. 将 h 初始化为 H 中最特殊假设
- 2. 对每个正例 x
- 如果 $h(x) \neq c(x)$,则用覆盖 x 的 h 的极小普 化式替代 h
- 3. 输出假设 h

Find-S **Algorithm**

- 1. Initialize h to the most specific hypothesis in H
- 2. For each positive training instance x
 - For each attribute constraint a_i in hIf the constraint a_i in h is satisfied by xThen do nothing

 Else replace a_i in h by the next more general constraint that is satisfied by x
- 3. Output hypothesis h

Hypothesis Space Search by Find-S

 $x_1 = \langle Sunny\ Warm\ Normal\ Strong\ Warm\ Same \rangle, +$ $x_2 = \langle Sunny\ Warm\ High\ Strong\ Warm\ Same \rangle, +$ $x_3 = \langle Rainy\ Cold\ High\ Strong\ Warm\ Change \rangle, x_4 = \langle Sunny\ Warm\ High\ Strong\ Cool\ Change \rangle, +$

 $\begin{array}{l} h_0 = <\varnothing,\varnothing,\varnothing,\varnothing,\varnothing,\varnothing,\varnothing>\\ h_1 = <Sunny\ Warm\ Normal\ Strong\ Warm\ Sam\\ h_2 = <Sunny\ Warm\ ?\ Strong\ Warm\ Same>\\ h_3 = <Sunny\ Warm\ ?\ Strong\ Warm\ Same>\\ h_4 = <Sunny\ Warm\ ?\ Strong\ ?\ ?> \end{array}$

Complaints about Find-S

- Can't tell whether it has learned concept
- Can't tell when training data inconsistent
- Picks a maximally specific h (why?)
- \bullet Depending on H, there might be several!

Version Spaces

A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if h(x) = c(x) for each training example $\langle x, c(x) \rangle$ in D.

$$Consistent(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \ h(x) = c(x)$$

The **version space**, $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

$$VS_{H,D} \equiv \{h \in H | Consistent(h, D)\}$$

列表后消除算法

列表后消除算法

- 1. 变型空间 VersionSpace ← 包含 H 所有假设的列表
- 2. 对每个训练样例〈x, c(x)〉 从变型空间中移除所有 h(x)≠c(x)的假设 h
- 3. 输出 VersionSpace 中的假设列表

The List-Then-Eliminate Algorithm:

- 1. $VersionSpace \leftarrow$ a list containing every hypothesis in H
- 2. For each training example, $\langle x, c(x) \rangle$ remove from VersionSpace any hypothesis h for which $h(x) \neq c(x)$
- 3. Output the list of hypotheses in VersionSpace

Example Version Space

Representing Version Spaces

The **General boundary**, G, of version space $VS_{H,D}$ is the set of its maximally general members

The **Specific boundary**, S, of version space $VS_{H,D}$ is the set of its maximally specific members

Every member of the version space lies between these boundaries

$$VS_{H,D} = \{ h \in H | (\exists s \in S)(\exists g \in G)(g \ge h \ge s) \}$$

where $x \ge y$ means x is more general or equal to y

候选消除算法

将 G 集合初始化为 H 中极大一般假设 将 S 集合初始化为 H 中极大特殊假设 对每个训练样例 d,进行以下操作:

- · 如果 d 是一正例
 - 从 G 中移去所有与 d 不一致的假设
 - •对S中每个与d不一致的假设s
 - ·从S中移去s
- 把 s 的所有的极小泛化式 h 加入到 S 中,其中 h 满足
 - h 与 d 一致, 而且 G 的某个成员比 h 更一般
- •从S中移去所有这样的假设:它比S中另一假设 更一般
- 如果 d 是一反例
 - 从 S 中移去所有与 d 不一致的假设
 - 对 G 中每个与 d 不一致的假设 g
 - · 从 G 中移去 g
- 把 g 的所有的极小特殊化式 h 加入到 5 中,其中 h 满足
 - h 与 d 一致, 而且 S 的某个成员比 h 更特殊
- 从 G 中移去所有这样的假设: 它比 G 中另一假设更特殊

Candidate Elimination Algorithm

 $G \leftarrow$ maximally general hypotheses in H $S \leftarrow$ maximally specific hypotheses in HFor each training example d, do

- If d is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d
 - * Remove s from S
 - * Add to S all minimal generalizations h of s such that
 - 1. h is consistent with d, and
 - 2. some member of G is more general than h
 - * Remove from S any hypothesis that is more general than another hypothesis in S
- If d is a negative example

- Remove from S any hypothesis inconsistent with d
- For each hypothesis g in G that is not consistent with d
 - * Remove g from G
 - * Add to G all minimal specializations h of g such that
 - 1. h is consistent with d, and
 - 2. some member of S is more specific than h
 - * Remove from G any hypothesis that is less general than another hypothesis in G

Example Trace

What Next Training Example?

How Should These Be Classified?

 $\langle Sunny \ Warm \ Normal \ Strong \ Cool \ Change \rangle$

⟨Rainy Cool Normal Light Warm Same⟩

 $\langle Sunny \ Warm \ Normal \ Light \ Warm \ Same \rangle$

What Justifies this Inductive Leap?

- + $\langle Sunny \ Warm \ Normal \ Strong \ Cool \ Change \rangle$
- + $\langle Sunny Warm Normal Light Warm Same \rangle$

 $S: \langle Sunny \ Warm \ Normal ? ? ? \rangle$

Why believe we can classify the unseen $\langle Sunny\ Warm\ Normal\ Strong\ Warm\ Same \rangle$

An UNBiased Learner

Idea: Choose H that expresses every teachable concept (i.e., H is the power set of X)

Consider H' = disjunctions, conjunctions, negations over previous H. E.g.,

 $\langle Sunny Warm Normal???? \rangle \lor \neg \langle ??????Change \rangle$

What are S, G in this case?

 $S \leftarrow$

 $G \leftarrow$

Inductive Bias

Consider

- \bullet concept learning algorithm L
- instances X, target concept c
- training examples $D_c = \{\langle x, c(x) \rangle\}$
- let $L(x_i, D_c)$ denote the classification assigned to the instance x_i by L after training on data D_c .

Definition:

The **inductive bias** of L is any minimal set of assertions B such that for any target concept c and corresponding training examples D_c

$$(\forall x_i \in X)[(B \land D_c \land x_i) \vdash L(x_i, D_c)]$$

where $A \vdash B$ means A logically entails B

Inductive Systems and Equivalent Deductive Systems

Three Learners with Different Biases

- 1. Rote learner: Store examples, Classify x iff it matches previously observed example.
- $2.\ Version\ space\ candidate\ elimination\ algorithm$
- 3. Find-S

Summary Points

- 1. Concept learning as search through H
- 2. General-to-specific ordering over H
- 3. Version space candidate elimination algorithm
- 4. S and G boundaries characterize learner's uncertainty
- 5. Learner can generate useful queries
- 6. Inductive leaps possible only if learner is biased
- 7. Inductive learners can be modelled by equivalent deductive systems