

Übungen zur Quantentheorie 1, Sommersemester 2023

Dr. J. M. Link, Prof. Dr. C. Timm

Blatt 8

Präsenzübungen

Aufgabe 1:

Ein Teilchen der Masse m bewege sich in einem Potential $V(\vec{r})$, das eine homogene Funktion vom Grad n sein möge:

$$V(\alpha \vec{r}) = \alpha^n V(\vec{r}) \quad \forall \alpha \in \mathbb{R}^+.$$

Betrachten Sie die Observable

$$A = \frac{1}{2} (\vec{r} \cdot \vec{p} + \vec{p} \cdot \vec{r}),$$

die uns zum quantenmechanischen Analogon des klassischen Virialsatzes führen wird.

(a) Verifizieren Sie die Beziehungen

$$A = \vec{r} \cdot \vec{p} + \frac{3}{2} \frac{\hbar}{i},$$

$$\sum_{i=1}^{3} x_i \frac{\partial V}{\partial x_i} = nV.$$

(b) Beweisen Sie den Virialsatz im Heisenberg-Bild:

$$\frac{d}{dt}A_H = 2T_H - nV_H.$$

(c) Das System befinde sich nun in einem Eigenzustand $|\psi\rangle$ von H. Zeigen Sie, dass dann

$$2\langle T\rangle = n\langle V\rangle$$

gilt. Das ist dieselbe Beziehung wie für die Mittelwerte der klassischen Bewegung.

Aufgabe 2:

Betrachten Sie zwei harmonische Oszillatoren mit gleichen Massen der Teilchen, aber unterschiedlichen Schwingungsfrequenzen ω und ω' . Alle Größen, die den ersten bzw. zweiten Oszillator beschreiben, werden ohne bzw. mit Strich geschrieben.

- (a) Skizzieren Sie die Potentiale, die Lage der Grundzustandsenergien in den Potentialen und die Grundzustands-Eigenfunktionen der beiden Oszillatoren. Sie können o. B. d. A. $\omega' > \omega$ annehmen.
- (b) Zeigen Sie, dass sich der Absteigeoperator \hat{a}' für den zweiten Oszillator als

$$\hat{a}' = \frac{1}{\sqrt{1 - \gamma^2}} \left(\hat{a} - \gamma \, \hat{a}^{\dagger} \right)$$

schreiben lässt. Was ergibt sich für γ ?

Bitte wenden

Hausaufgaben (zu besprechen ab 12.06.2023)

Aufgabe 3:

Von den Eigenzuständen $|n\rangle$ des harmonischen Oszillators besitzt nur der Grundzustand (n=0) minimale Unschärfe, $\Delta x \Delta p = \hbar/2$, für die übrigen ist $\Delta x \Delta p = (2n+1) \hbar/2$. Es gibt aber weitere Zustände, die die Unschärfe minimieren, die sogenannten kohärenten Zustände. Diese sind, wie alle Zustände im Hilbert-Raum, Linearkombinationen der Eigenzustände. Es stellt sich heraus, dass die kohärenten Zustände Eigenzustände des Absteigeoperators \hat{a} sind:

$$\hat{a}|\alpha\rangle = \alpha|\alpha\rangle,\tag{1}$$

hier ist α eine beliebige komplexe Zahl. Bemerkung: Der Aufsteigeoperator \hat{a}^{\dagger} hat keine Eigenzustände.

- (a) Bestimmen Sie $\langle \hat{x} \rangle$, $\langle \hat{x}^2 \rangle$, $\langle \hat{p} \rangle$ und $\langle \hat{p}^2 \rangle$ im Zustand $|\alpha \rangle$. Hinweis: Stellen Sie \hat{x} und \hat{p} durch \hat{a} und \hat{a}^{\dagger} dar und benutzen Sie Gl. (1).
- (b) Bestimmen Sie Δx und Δp und zeigen Sie, dass $\Delta x \Delta p = \hbar/2$ gilt.
- (c) Zeigen Sie, dass man die kohärenten Zustände gemäß

$$|\alpha\rangle = \sum_{n=0}^{\infty} c_n |n\rangle$$
 mit $c_n = \frac{\alpha^n}{\sqrt{n!}} c_0$

durch die Eigenzustände $|n\rangle = (1/\sqrt{n!}) (\hat{a}^{\dagger})^n |0\rangle$ darstellen kann.

(d) Zeigen Sie durch Normierung von $|\alpha\rangle$, dass gilt

$$c_0 = e^{-|\alpha|^2/2}$$
.

(e) Untersuchen Sie die Zeitentwicklung der kohärenten Zustände. Die Zeitentwicklung der Eigenzustände ist natürlich

$$|n(t)\rangle = e^{-iE_n t/\hbar} |n\rangle.$$

Zeigen Sie, dass $|\alpha(t)\rangle$ Eigenzustände des Absteigeoperators \hat{a} bleiben, sich aber die Eigenwerte entwickeln wie

$$\alpha(t) = e^{-i\omega t}\alpha.$$

(Also bleibt ein kohärenter Zustand ein solcher.) Was folgt daraus für $\langle x \rangle$ als Funktion der Zeit?

(f) Ist der Grundzustand $|0\rangle$ ein kohärenter Zustand? Wenn ja, was ist der zugehörige Eigenwert von \hat{a} ?

Aufgabe 4:

- (a) Bestimmen Sie explizit die Matrixdarstellung der Komponenten \hat{J}_x , \hat{J}_y , \hat{J}_z für einen Drehimpuls der Länge j=2 in der Eigenbasis $\{|j,m\rangle\}$ zu $\hat{\vec{J}}^2$ und \hat{J}_z . Überprüfen Sie mit Hilfe diese Matrixdarstellung, dass $[\hat{J}_x,\hat{J}_y]=i\hbar\,\hat{J}_z$ gilt.
- (b) Bestimmen Sie mit Hilfe von Teil (a) die Matrixdarstellung von $\hat{\vec{J}}^2$ und überzeugen Sie sich, dass $\hat{\vec{J}}^2$ mit den Komponenten vertauscht (keine Rechnung erforderlich).
- (c) Bestimmen Sie die Matrixdarstellung von \hat{J}_{\pm} .