EE2331 Data Structures and Algorithms

Heap

Compare two applications

- Dictionary:
 - Look-up (very frequent)
 - Insertion of a new word (not so frequent)
 - Print-all, deletion
- Job scheduling:

 new jobs ______scheduler The job with the highest priority

- Insert new job (frequently)
- Extract the most urgent job (frequently)
- Delete the completed job (frequently)

Compare several applications

- Examples:
- Printer; CPU(O.S.); routes; I/O; embedded systems

	Balanced BST	Sorted array	Unordered array
Find max	O(log(n))	O(1)	O(n)
insert	O(log(n))	O(n)	O(1)
Delete (given a key)	O(log(n))	O(n)	O(n)
search	O(log(n))	O(log(n))	O(n)

What is a Heap?

- Efficiently support Insertion / FindMax / Extraction
- A max tree is a tree in which the key value in each node is no smaller than the key values in its children (if any).
- Similarly, a min tree is a tree in which the key value in each node is <u>no bigger</u> than the key values in its children (if any).
- A max heap (descending heap) is a complete binary tree that is also a max tree.
- A min heap (ascending heap) is a complete binary tree that is also a min tree.

Review of complete binary tree

- Complete binary tree is a tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.
- It can have between 1 and 2^{m-1} nodes at the last level m.
- Exercise: Which is complete binary tree?

How to store a complete binary tree?

With node and tree structure

Node index in array

- There is a strong connection between the node index of parent-child node-pair
- Index of each left child = 2* index of its parent
- Index of each right child = 2* index of its parent +1

dapth=d y i's left child >i's left wild (W-1)*2+1 d=0

Node index in array

What can be done with these properties?

Using Heap as Priority Queue

- In Priority Queue, the element to be deleted (dequeue) is the one with the highest priority.
- Max Heap always has the largest element in root

Using Heap as Priority Queue

- Frequent operations in Priority Queue (Heap):
- A) Find the element with highest priority
- B) Insert new element and keep the property
- C) Delete the element with highest priority and keep the property
- D) Build a priority queue (heap) from a disordered array

Find Max

- The root of a heap always has the largest key (in maxheap)
- H[1] should be the maximum
- where H denote the heap, and 1 represent the index

■ Time ~ O(1)

Insert Node Into Heap

- Step 1) push back the new element to the array (what is this position in the tree?)
- Step 2) Percolate up
 - Swap with its parent node <u>recursively</u> until it satisfies the property of heap

Example: Percolate Up

A new element was added here (and the property 2 has been violated!)

Example: Percolate Up

Example: Percolate Up

Insert Node Into max-Heap

- Time ~ O(log(n))
- n: number of nodes

In-class exercise:

Insert 95 into heap H={100, 90, 40, 50,
55, 20, 19}. Apply Heap_insert(H,95) and
show H in each iteration of the while
loop and the final H.

This is the pseudocode, don't directly copy this code. It won't work.

Does this part ring a bell? (similar to sth. We learned before?)

Remove Node From Heap

In heap, remove the largest element. What is your algorithm/strategy?

Remove Node From Heap

In heap, remove the largest element. What is your algorithm/strategy?

- Step 1) Replace the root node with the bottom rightmost element
- Step 2) Percolate down(Heapify)
 - Swap with the its greater child node recursively until it satisfies the heap property

move node 29 to replace root

Remove root Node From Heap

```
Def Heap_Extraction(H)
    if heap_size(H)<=0:
        throw Error "heap_underflow"
    max = H[1]
    H[1] = H[Heapsize(H)] //move last element to root
    Heap_size(H)-=1 //Heap_size minus 1
    Heapify(H,1)
    return max</pre>
```

- Heapify(H,i): Given an array with left(i) and right(i) being heaps, make i a heap
- \blacksquare left(i) = 2*i, right(i) = 2*i+1
- Time ~ Time(Heapify(H,1))

Heapify

- Heapify(H,i): Given an array with left(i) and right(i) being heaps, make i a heap
- Time \sim O(log(n))

root

Heapify

```
root
                                                             Heap
Def Heapify(H,i)
                                          Heap
        l = left(i)
        r = right(i)
        if l<=Heap_size(H) and H[l]>H[i]:
                 largest = 1
        else:
                 largest = i
        if r<=Heap_size(H) and H[r]>H[largest]:
                 largest = r
        if largest!=i:
                 swap(H[i],H[largest])
                 Heapify(H,largest)
```

Exercise: show H during the process of calling Heapify(H,1)

Build a Heap

■ Convert an array into a heap using insertion. Input array: 1 5 6 3 2

Build a Heap

Convert an array into a heap using insertion

Build a Heap

- Convert an array into a heap using insertion
- Time ~ O(n logn) where n denotes the number nodes
- Heap construction using insertion is not the fastest heap construction algorithm. A faster algorithm builds the heap using "heapify" operation in a bottom-up fashion. That algorithm can reach O(n).

Heap construction with O(n)

```
Def Build-Heap(H) for i = \left\lfloor \frac{N}{2} \right\rfloor down to 1 do Heapify(H,i)
```

 $\left|\frac{N}{2}\right|$: the last non-leaf node

```
Example

Input array: 1 5 6 3 2 N=5, N/2 rounds to 2

Heapify(H,2) 1 \frac{5}{5} 6 \frac{3}{5} \frac{2}{7} 5 6 3 2 //no change

Heapify(H,1) \frac{1}{5} \frac{5}{6} 3 2 \frac{2}{7} 6 5 1 3 2
```

```
Rough running time analysis: O(\left\lfloor \frac{N}{2} \right\rfloor \log N) = O(N \log N)
```

In-class exercise: Build a heap for input array: 3 4 1 9 2 8 0
using the above pseudocode. Show the output of each Heapify
operation

Tighter build-heap running time

- We build the heap (tree) from the bottom
- Tree starts small and grows bigger
- The worst case for any "heapify" is moving i to bottom. This is the height of i
- Total time is thus $\sum_{i=1}^{N/2} height(i)$

```
Def Build-Heap(H) for i = \left\lfloor \frac{N}{2} \right\rfloor down to 1 do Heapify(H,i)
```

Question about heap construction's running time

- ■Q1: What is the tight running time? Is it the sum of the **depths** or **heights** of all nodes?
- **Q2**:
- Is the sum of depths equal to the sum of heights of all nodes?

Depth of the root = 0

Height of a leaf = 0

Exercise: compute the sum of depths and heights of all nodes, respectively.

Tighter build-heap running time - continued

Assume a maximum tree of length
$$h$$

I node at Reght $h-0$

2 nodes $a+----h-1$

4 mdes $----h-1$
 $S = \sum_{i=0}^{n} (h-i) 2^{i}$
 $S = h+2(h+1)+4(h-2)+8(h-3)+---+2(1)$
 $S = -h+2+4+8+---+2^{h-1}$

Makeheap

 $S = -h+2+4+8+---+2^{h-1}$

Makeheap

 $S = -h+2+4+8+---+2^{h-1}$
 $S = -h+2+4+8+---+2^{h-1}$

Other operation(maxHeap)

- Increasekey(H,i,key): insertion
- Decreasekey(H,i,key): Heapify(H,i)
- Delete(H,i): Heapify(H,i)

In-class exercises

- 1. What is the heap after we perform extractMax on this input: {92, 80, 50, 70, 30, 8, 40, 6, 15, 12}
- ■2. Is this following array a heap: {100, 80, 40, 50, 70, 2, 3}
- 3. What is the heap after we insert job with priority 100 to the current job system: {92, 80, 50, 70, 30, 8, 40, 6, 15, 12}?
- 4. How do you convert max-heap into min-heap?

Applications

1st Applications: Heap Sort

- Easy to find that, with the deletion operation: we can easily sort the whole array
- Strategy:
- Step1: Swap the top element with last element in the array
- Step2: minus the size of Heap(H) by 1
- Step3: Heapify(H,1), where the size = k-1
- recursively do step 1~3 until Heap_size=1

1st Applications: Heap Sort

■ Time ~ O(N*log(N))

```
In-class exercise 4.
Let H={100, 90, 95, 20, 30}. Apply Heap_sort(H). Show the
output of Heapify(H,1) for i=length(H) to 2.
```

1st Applications: Heap Sort

1st Applications' extension

- Selection algorithm: find the K-th largest (smallest) elements
- Strategy: ExtractMin/Max for k times O(k*log(N))
- Heap is NOT designed for search