CS534 - MACHINE LEARNING FINAL EXAM

Author: Vy Bui

Email: buivy@oregonstate.edu

Contents

1	DECISION TREE		
	1.1	Mutual Information	5
2	Emsemble Methods		
	2.1	Bagging	7
	2.2	Boosting	7
3	Clu	stering	9
	3.1	Hierarchical Clustering	9
	3.2	K-means	9
		3.2.1 Limits	9
4	Mix	cture of Gaussians	11
	4.1	Maximum Likelihood	11
	4.2	Expectation Maximization (EM)	11
		4.2.1 Optimization Transfer	11
		4.2.2 Properties	11
5	Mo	del Selection and Evaluation for Clustering	13

CONTENTS

DECISION TREE

1.1 Mutual Information

Entropy

$$H(X) = -\sum_{k=1}^{K} p(X=k)log_2 p(X=k)$$
(1.1)

Entropy for Binary Random Variable

$$H(X) = -p(X=1)\log_2 p(X=1) - p(X=0)\log_2 p(X=0)$$
(1.2)

Joint Entropy

$$H(X,Y) = -\sum_{x,y} p(x,y) \log_2 p(x,y)$$
 (1.3)

Conditional Entropy

$$H(Y|X) = H(X,Y) - H(X) = -\sum_{x,y} p(x,y) \log_2 p(x,y) - \sum_x p(x) \log_2 \frac{1}{p(x)}$$
(1.4)

or more general

$$H((X_1, X_2, ..., X_n)) = \sum_{i=1}^n H(X_i | X_1, ..., X_{i-1})$$
(1.5)

(1.4)

Mutual information tells us how similar two distributions are.

$$I(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$
(1.6)

[Mur22], 6.3

Notes from [Mur22], 18

- Multi-way split might cause data fragmentation (too little data might fall into each subtree), resulting in overfitting.
- ullet
- •

[HTF17], 9.2

Emsemble Methods

Weak and Strong learners?

2.1 Bagging

refer to [Mur22], chapter 18.3 Bagging.

2.2 Boosting

[Bis06], 14.3

Clustering

3.1 Hierarchical Clustering

For Hierarchical Clustering, refer to [Mur22], chapter 21.2 Hierarchical clustering.

For Flat Clustering, refer to [Mur22], chapter 21.3 K Means Clustering.

3.2 K-means

3.2.1 Limits

- restrictive assumption that all clusters have the same sperical shape
- assumes that all clusters can be described by Gaussians in the input space, so it cannot be applied to discrete data

Mixture of Gaussians

- 4.1 Maximum Likelihood
- 4.2 Expectation Maximization (EM)
- 4.2.1 Optimization Transfer
- 4.2.2 Properties

Model Selection and Evaluation for Clustering

Bibliography

- [Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
- [HTF17] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. *The Elements of Statistical Learning*. Springer, 2017.
- [Mur22] Kevin Patrick Murphy. Probabilistic Machine Learning, An Introduction. The MIT Press, 2022.