CSE 211: Discrete Mathematics

(Due: 07/12/20)

Homework #2

Student: Yakup Talha Yolcu

Number: 1801042609

Problem 1: Relations (15 points)

Draw the Hasse diagram for the "greater than or equal to" relation on $\{0, 1, 2, 3, 4, 5\}$.

(Solution)

Relation is:

 $\{ \; (0.0) \; , \; (1.0) \; , \; (1.1) \; , \; (2.0) \; , \; (2.1) \; , \; (2.2) \; , \; (3.0) \; , \; (3.1) \; , \; (3.2) \; , \; (3.3) \; , \; (4.0) \; , \; (4.1) \; , \; (4.2) \; , \; (4.3) \; , \; (4.4) \; , \; (5.0) \; , \; (5.1) \; , \; (5.2) \; , \; (5.2) \; , \; (5.3) \; , \; (5.4) \; , \; (5.5) \; \}$

Hasse diagram for $(\{0, 1, 2, 3, 4, 5\}, \leq)$ is:

Figure 1: Original Graph

Since we know that a poset MUST provide reflexivity, we also do not need the reflexive relations in A. Hence A can be updated as: $A = \{ (1,0), (2,0), (2,1), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2), (4,3), (5,0), (5,1), (5,2), (5,2), (5,3), (5,4) \}$ In the next step, remove the self-loops in Figure 2:

Remove the transivite edges and the hasse diagram is obtained in Figure 3:

- Homework #2

Figure 2: The graph without self-loops

Figure 3: The hasse diagram of ({ 0 , 1 , 2 , 3 , 4 , 5}, $\leq)$

3 - Homework #2

Problem 2: Relations (15 points)

Answer these questions for the poset ($\{\{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\},$

Before the solution, we can draw a Hasse diagram for the POSET to determine maximal and minimal elements etc...

Figure 4: Hasse Diagram

(a) Find the maximal elements.

(Solution) Maximal elements are : $\{1,3,4\}$ and $\{2,3,4\}$ They are at the top of the diagram.

(b) Find the minimal elements.

(Solution) Minimal elements are: {1}, {2} and {4} They are at the bottom of the diagram.

(c) Is there a greatest element?

(Solution) There is no greatest element because there is more than one maximal element.

(d) Find all upper bounds of $\{\{2\}, \{4\}\}$. (Solution) Upper bounds of $\{\{2\}, \{4\}\}$ are $\{2,4\}$ and $\{2,3,4\}$.

(e) Find the least upper bound of $\{\{2\}, \{4\}\}\$, if it exists.

(Solution) Least upper bound of $\{\{2\}, \{4\}\}$ exists and its $\{2,4\}$.

(f) Find all lower bounds of $\{\{1, 3, 4\}, \{2, 3, 4\}\}$.

(Solution) Lower bounds of $\{1, 3, 4\}$ are : $\{1\}$, $\{4\}$, $\{1, 4\}$ and $\{3, 4\}$

Lower bounds of $\{2, 3, 4\}$ are : $\{2\}$, $\{4\}$, $\{3,4\}$, $\{2,4\}$

(h) Find the greatest lower bound of $\{\{1, 3, 4\}, \{2, 3, 4\}\}$, if it exists.

(Solution) Greatest lower bound of $\{1, 3, 4\}$ does not exists.

Greatest lower bound of $\{2,3,4\}$ does not exists.

- Homework #2

Problem 3: Relations (70 points)

Remember that a relation R on a set A can have the properties reflexive, symmetric, anti-symmetric and transitive.

- Reflexive: R is reflexive if $(a, a) \in R, \forall a \in A$.
- Symmetric: R is symmetric if $(b, a) \in R$ whenever $(a, b) \in R, \forall a, b \in A$.
- Anti-symmetric: R is antisymmetric if \forall a, b \in A, (a, b) \in R and (b, a) \in R implies that a = b.
- Transitive: R is transitive if \forall a, b, c \in A, (a, b) \in R and (b, c) \in R implies that (a, c) \in R.