

cysteine. The exception is L217C-**c** which is only 2.5-fold lower than WT, possibly due to favorable binding of substrate to the phenyl ring of the aromatic side chain introduced by modification. Figure 4C: From the small reduction caused by mutation to S156C (R=H), k_{cat}/K_M s decrease monotonically to 6-fold lower than WT for S156C-**d**. The k_{cat}/K_M of S156C-**e** is partially restored. Figure 4D: k_{cat}/K_M decreases only 2.5-fold upon mutation to S166C (R=H) but decreases dramatically to 11-fold lower than WT when the negatively charged sulfonatoethyl side chain **a** is introduced. In parallel to N62C and L217C CMMs, k_{cat}/K_M for S166C CMMs does not decrease further to any significant extent as the level of negative charge increases. R group key: **a** = sulfonatoethyl; **b** = 4-carboxybutyl; **c** = 3,5-dicarboxybenzyl; **d** = 3,3-dicarboxybutyl; **e** = 3,3,4-tricarboxybutyl.—

A2 cont
Please replace the paragraph beginning at 12:17 with the following rewritten paragraph:

A3
Figures 8A, 8B, 8C and 8D show altered specificity patterns for N62C (Fig. 8A), L271C (Fig. 8B), S156C (Fig. 8C), and S166C (Fig. 8D) CMMs: variations in $\ln(k_{cat}/K_M)$, with suc-AAPF-pNA as the substrate, for cysteine mutants and positively charged CMMs relative to WT. R group key: **a** = 2-aminoethyl; **b** = 2-(trimethylammonium)ethyl; **c** = 5,5-bis(aminomethyl)-3-oxo-hexyl; **d** = 2,2-bis(aminomethyl)-3-aminopropyl.—

A4
Please replace the paragraph beginning at 14:25 with the following rewritten paragraph:

Preferred serine hydrolases comprising this invention include the trypsin-chymotrypsin proteases, the subtilisin proteases, and the alpha/beta hydrolases. In a particularly preferred embodiment the enzyme is protease, more preferably a subtilisin (e.g. a *Bacillus lenthus* subtilisin). Subtilisin is a serine endoprotease (MW ~27,500) which is secreted in large amounts from a wide variety of *Bacillus* species. The protein sequence of subtilisin has been determined from at least four different species of *Bacillus* (see, e.g., Markland *et al.* (1971) pages 561-608 In: *The Enzymes*, ed. Boyer P. D., Acad Press, New York, Vol. III, pp.; Nedkov *et al.* (1983) *Hoppe-Seyler's Z. Physiol. Chem.* 364: 1537-1540). The three-dimensional crystallographic structure of subtilisin BPN' (from *B. amyloliquefaciens*) to 2.5 Å resolution has also been reported (Wright *et al.* (1969) *Nature* 221, 235-242; Drenth *et al.* (1972) *Eur. J. Biochem.* 26: 177-181. These studies indicate that although subtilisin is genetically unrelated to the mammalian serine proteases, it has a similar active site structure. The x-ray crystal structures of subtilisin containing covalently bound peptide inhibitors (Robertus, *et al.* (1972) *Biochemistry* 11: 2439-2449), product complexes (Robertus *et al.* (1972) *Biochemistry* 11: 4293-4303), and transition state analogs (Matthews *et al.* (1975) *J. Biol. Chem.* 250: 7120-7126; Poulos *et al.* (1976) *J. Biol. Chem.* 251, 1097-1103), which have been reported have also provided information regarding the active site and putative substrate binding cleft of subtilisin. In addition, a large number of kinetic and chemical modification studies have been reported for subtilisin (Philipp *et al.* (1983) *Mol. Cell. Biochem.* 51:5-32; Svendsen (1976) *Carlsbera Res. Comm.* 41: 237-291; Markland, *Id.*) as well as at least one report wherein the side chain of methionine at residue 222 of subtilisin was converted by hydrogen peroxide to methionine-sulfoxide (Stauffer *et al.* (1965) *J. Biol. Chem.* 244: 5333-5338).—

Please replace the Table beginning at 33:21 with the following rewritten Table:

Table 1. Kinetic Parameters^a for Modified Enzymes

Entry	Enzyme	Pocket	R ^c	Level of Charge	k _{cat} (s ⁻¹)	K _M (mM)	k _{cat} /K _M (s ⁻¹ mM ⁻¹)
1	SBL-WT	-	-	-	153 ± 4	0.73 ± 0.05	209 ± 15
2	N62C	S ₂	H	0	174 ± 9	1.90 ± 0.20	92 ± 11
3			a	1	119 ± 4	0.93 ± 0.07	128 ± 11
4			b	1	106 ± 2	1.01 ± 0.05	105 ± 6
5			c	2	113 ± 7	1.00 ± 0.10	113 ± 13
6			d	2	90 ± 4	1.47 ± 0.14	61 ± 6
7			e	3	129 ± 3	1.46 ± 0.06	88 ± 4
8	L217C	S _{1'}	H	0	41 ± 1	0.80 ± 0.04	51 ± 3
9			a	1	89 ± 6	1.80 ± 0.20	50 ± 6
10			b	1	54 ± 1	1.03 ± 0.06	52 ± 3
11			c	2	69 ± 2	0.81 ± 0.06	85 ± 7
12			d	2	63 ± 2	1.65 ± 0.11	38 ± 3
13			e	3	55 ± 2	1.48 ± 0.08	37 ± 3
14	S156C	S ₁	H	0	125 ± 4	0.85 ± 0.06	147 ± 11
15			a	1	87 ± 2	1.20 ± 0.07	73 ± 5
16			b	1	76 ± 1	1.08 ± 0.04	70 ± 3
17			c	2	61 ± 1	1.39 ± 0.10	44 ± 3
18			d	2	53 ± 1	1.67 ± 0.06	32 ± 1
19			e	3	74 ± 2	1.87 ± 0.08	39 ± 2
20	S166C		H	0	42 ± 1	0.50 ± 0.05	84 ± 9
21			a	1	25 ± 1	1.34 ± 0.08	19 ± 1
22			b	1	48 ± 1 ^b	1.52 ± 0.06	31 ± 1 ^b
23			c	2	47 ± 3	1.60 ± 0.20	29 ± 4
24			d	2	67 ± 2	2.26 ± 0.10	30 ± 2
25			e	3	76 ± 2	2.46 ± 0.11	31 ± 2

^a Michaelis-Menten constants were measured at 25°C according to the initial rates method in 0.1 M Tris-HCl buffer at pH 8.6, 0.005% Tween 80, 1% DMSO, Suc-AAPF-pNA as the substrate.

^b Based on total protein concentration. Certain inconsistencies between active enzyme concentration as determined by active site titration with PMSF (Hsia *et al.* (1996) *J. Anal. Biochem.* 242: 221-227) and total protein concentration have been reported for negatively charged mutants of SBL. These are characterized by sluggish fluoride ion concentration bursts and high rates of background PMSF hydrolysis. Active enzyme concentration values for S166C-b were low and gave rise to an anomalous value for kcat (270 ± 5 s⁻¹). Consequently the value shown was calculated using total protein concentration as determined by absorbance at 280 nm (ε₂₈₀ = 23000 M⁻¹ cm⁻¹) (Grøn *et al.* (1990) *Eur. J. Biochem.* 194 :897-901). The KM value determined (1.52 ± 0.06 mM) is not concentration dependent.

^c a = sulfonatoethyl; b = 4-carboxybutyl; c = 3,5-dicarboxybenzyl; d = 3,3-dicarboxybutyl; e = 3,3,4-tricarboxybutyl.—

Please replace the Table beginning at 48:25 with the following rewritten Table:

—Table 2. Kinetic Parameters^a for Modified Enzymes

Entry	Enzyme	Pocket	R ^b	Level of Charge	k_{cat} (s ⁻¹)	K_M (mM)	k_{cat}/K_M (s ⁻¹ mM ⁻¹)
1	SBL-WT	-	-	-	153 ± 4	0.73 ± 0.05	209 ± 15
2	N62C	S ₂	H	0	174 ± 9	1.90 ± 0.20	92 ± 11
3			a	1	103 ± 5	1.00 ± 0.10	103 ± 11
4			b	1	73 ± 2	0.86 ± 0.05	85 ± 5
5			c	2	92 ± 3	1.06 ± 0.07	87 ± 6
6			d	3	98 ± 3	1.17 ± 0.08	84 ± 6
7	L217C	S _{1'}	H	0	41 ± 1	0.80 ± 0.04	51 ± 3
8			a	1	38 ± 1	0.64 ± 0.06	59 ± 6
9			b	1	43 ± 1	0.69 ± 0.03	62 ± 3
10			c	2	8.0 ± 0.2	2.94 ± 0.28	2.7 ± 0.3
11			d	3	23 ± 3	2.90 ± 0.16	7.8 ± 1.2
12	S156C	S ₁	H	0	125 ± 4	0.85 ± 0.06	147 ± 11
13			a	1	90 ± 2	0.73 ± 0.04	123 ± 7
14			b	1	68 ± 2	0.74 ± 0.04	92 ± 5
15			c	2	64 ± 1	0.76 ± 0.04	85 ± 5
16			d	3	46 ± 1	0.81 ± 0.05	57 ± 4
17	S166C		H	0	42 ± 1	0.50 ± 0.05	84 ± 9
18			a	1	50 ± 1	0.68 ± 0.04	74 ± 5
19			b	1	33 ± 2	1.42 ± 0.13	23 ± 2
20			c	2	55 ± 2	1.27 ± 0.10	43 ± 4
21			d	3	9.3 ± 0.2	1.16 ± 0.05	8.0 ± 0.4

^a Michaelis-Menten constants were measured at 25° C according to the initial rates method in 0.1 M Tris-HCl buffer at pH 8.6, 0.005% Tween 80, 1% DMSO, Suc-AAPF-pNA as the substrate.

^b a = 2-aminoethyl; b = 2-(trimethylammonium)ethyl; c = 5,5-bis(aminomethyl)-3-oxo-hexyl; d = 2,2-bis(aminomethyl)-3-aminopropyl.—

Please replace the Table beginning at 63:22 with the following rewritten Table:

—Table 3: Kinetic Evaluation^(a) of Altered S₁ Pocket Specificity

Entry	Enzyme	Substrate	K _M mM	k _{cat} s ⁻¹	k _{cat} /K _M s ⁻¹ mM ⁻¹
1	WT	suc-AAPF-pNA	0.73 ± 0.08	153 ± 4	209 ± 15
2	S166C-S-a	suc-AAPF-pNA	0.68 ± 0.04	50 ± 1	74 ± 5
3	S166C-S-b	suc-AAPF-pNA	1.34 ± 0.08	25.0 ± 0.7	19 ± 1
4	S166C-S-c	suc-AAPF-pNA	1.17 ± 0.06	23.1 ± 0.5	20 ± 1
5	S166C-S-d	suc-AAPF-pNA	1.6 ± 0.2	47 ± 3	29 ± 4
6	S166C-S-e	suc-AAPF-pNA	1.09 ± 0.07	82 ± 2	75 ± 5
7	S166C-S-f	suc-AAPF-pNA	0.70 ± 0.05	4.8 ± 0.1	6.90 ± 0.05
8	S166C-S-g	suc-AAPF-pNA	0.74 ± 0.07	29 ± 1	41 ± 4
9	S166C-S-h ^(b)	suc-AAPF-pNA	1.52 ± 0.06	48 ± 1	31 ± 1
10	S166C-S-i ^(b)	suc-AAPF-pNA	2.26 ± 0.10	67 ± 2	30 ± 2
11	S166C-S-j ^(b)	suc-AAPF-pNA	2.46 ± 0.11	76 ± 2	31 ± 2
12	WT	suc-AAPA-pNA	2.0 ± 0.1	17.7 ± 0.3	8.8 ± 0.4
13	S166C-S-c	suc-AAPA-pNA	0.8 ± 0.1	6.8 ± 0.3	9 ± 1
14	S166C-S-e	suc-AAPA-pNA	1.90 ± 0.03	6.8 ± 0.4	3.6 ± 0.6
15	S166C-S-f	suc-AAPA-pNA	1.90 ± 0.07	28.2 ± 0.4	14.8 ± 0.6
16	S166C-S-g	suc-AAPA-pNA	1.74 ± 0.04	9.65 ± 0.07	5.54 ± 0.3
17	WT	suc-AAPR-pNA	7.2 ± 0.7	0.16 ± 0.01	0.022 ± 0.002
18	S166C-S-b	suc-AAPR-pNA	3.4 ± 0.3	0.17 ± 0.01	0.050 ± 0.005
19	S166C-S-d	suc-AAPR-pNA	5.5 ± 1.1	0.68 ± 0.08	0.12 ± 0.03
20	S166C-S-h	suc-AAPR-pNA	8.2 ± 0.9	0.35 ± 0.02	0.041 ± 0.005
21	S166C-S-i	suc-AAPR-pNA	5.3 ± 0.5	0.43 ± 0.02	0.080 ± 0.008
22	S166C-S-j	suc-AAPR-pNA	5.2 ± 0.6	1.06 ± 0.07	0.20 ± 0.03
23	WT	suc-AAPE-pNA	4.4 ± 0.4	1.75 ± 0.08	0.40 ± 0.04
24	S166C-S-a	suc-AAPE-pNA	1.9 ± 0.1	14.5 ± 0.3	7.6 ± 0.4

(a) Michaelis-Menten constants were measured by the initial rates method in pH 8.6 Tris-HCl buffer at 25° C with suc-AAPF-pNA as the substrate.

(b) Based on total protein concentration. Certain inconsistencies between active enzyme concentration as determined by active site titration with PMSF (Hsia *et al.* (1996) J. Anal. Biochem. 242: 221-227) and total protein concentration have been reported for negatively charged mutants of SBL. These are characterized by sluggish fluoride ion concentration bursts and high rates of background PMSF hydrolysis. Active enzyme concentration values for S166C-S-h, S166C-S-i, and S166C-S-j were low and gave rise to anomalous values for k_{cat}. Consequently the values shown were calculated using total protein concentration as determined by absorbance at 280 nm ($\epsilon_{280} = 23000 \text{ M}^{-1} \text{ cm}^{-1}$) (Grøn *et al.* (1990) Eur. J. Biochem. 194 :897-901). The K_M values determined are not concentration dependent.

(c) **a** = 2-aminoethyl; **b** = sulfonatoethyl; **c** = CH₂C₆H₅; **d** = CH₂C₆H₄-3,5-(COO)₂; **e** = CH₂(CH₂)₈CH₃; **f** = CH₂C₆H₁₁; **g** = steroidyl; **h** = CH₂(CH₂)₂CH₂COO⁻; **i** = CH₂C(CH₃)(COO)₂; **j** = CH₂CH₂C(COO)₃.—

AMENDMENTS TO SPECIFICATION

The specification has been amended to update the Cross-Reference to Related Applications Section.

The specification has been amended to correct spelling errors (“lentis” has been corrected to “lentus” and “amyloligoefaciens” has been corrected to “amyloliquefaciens”).

Support for the amendments to Table 1 and the description of Figure 4 may be found at, for example, 38:15 – 43:28. Support for the amendments to Table 2 and the description of Figure 8 may be found at, for example, 51:8 – 57:29. Support for the amendments to Table 3 may be found at, for example, 61:25 - 62:13 and 64:15 – 66:26. The amendments therefore add no new matter.

IN THE CLAIMS

~~Prior to calculating the filing fee, please CANCEL claims 1-17, 35, 69, 71-84.~~ ^(NED)
Following entry of the Amendment, claims 18-34, 36-68, and 70 will be pending and at issue.

If the Examiner has any questions regarding this material, the Examiner is encouraged to Telephone Michael J. Shuster, Ph.D. at (415) 393-2651.

DATE: February 11, 2002

Respectfully submitted,

By: Michael J. Shuster
Michael J. Shuster, Ph.D.
Registration No.: 41,310

McCutchen, Doyle, Brown & Enersen, LLP
Three Embarcadero Center, Suite 1800
San Francisco, California 94111
Telephone: (415) 393-2000
Telefax: (415) 393-2286