

UNIVERSIDADE FEDERAL DE VIÇOSA – UFV CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS – CCE DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL

Medidas Elétricas e Magnéticas ELT210

AULA 05 – Conceitos Básicos, Generalidades sobre Medidas Elétricas e Magnéticas e Instrumentos de Bobina Móvel

Prof. Tarcísio Pizziolo

1. Instrumentos Elétricos de Medição

1.1 Instrumentos Analógicos

Possuem um conjunto móvel que é deslocado aproveitando um dos efeitos da corrente elétrica.

Exemplo:

- Uma corrente I, ao percorrer uma bobina b na presença de um campo magnético de um ímã permanente produz as forças F aplicadas aos condutores da bobina, fazendo girar a bobina em torno do eixo.

Conjugados

1. Conjugado Motor:

Surge na interação da corrente elétrica com o campo magnético (Cm).

2. **Conjugado Restaurador (Antagonista):** A mola fica sob tensão mecânica e se opõe ao movimento de rotação da bobina, originando um conjugado antagonista (**Ca**). Além da oposição ao deslocamento, a mola é responsável por "zerar" o equipamento quando é cessado o conjugado motor.

Assim:

- 1. Na posição zero ou posição de repouso: Cm = 0;
- 2. Na posição de equilíbrio do conjunto móvel: Cm = Ca.

1.2. Amortecimento do Conjunto Móvel

Atrito de sobre o ar: reação do ar sobre uma fina palheta metálica presa ao eixo de rotação.

O conjugado de amortecimento é proporcional à velocidade angular do conjunto móvel.

Atrito sobre líquido: O amortecimento é dado pela reação das paletas presas ao conjunto móvel com o líquido.

Geralmente é usado óleo mineral (isolante).

A viscosidade é escolhida de acordo com a intensidade do movimento.

Correntes de Foucault (corrente parasita): É o nome dado à corrente induzida em um condutor quando o fluxo magnético através de um material condutor varia. (Jean Bernard Léon Foucault). Em alguns casos a corrente de Foucault pode produzir resultados indesejáveis, como a dissipação por efeito Joule, o que faz com que a temperatura do material aumente. Para evitar a dissipação por efeito Joule, os materiais sujeitos a campos magnéticos variáveis são frequentemente laminados ou construídos com placas muito pequenas isoladas umas das outras.

1.3. Suspensão do Conjunto Móvel

Suspensão por fio

- Empregada em instrumentos de alta sensibilidade.
- O fio, em geral, é feito de uma liga fósforo-bronze e tem 3 finalidades:
- a) suportar o conjunto móvel na vertical;
- b) fornecer, por intermédio da torção, o conjugado antagonista;
- c) servir como condutor para levar a corrente à bobina.

Suspensão por eixo (Instrumento de "Pivot")

- Possui eixos pontiagudos nas extremidades.
- Pode ser vertical ou horizontal, devendo-se ter cuidado de utilizar o instrumento na posição correta indicada pelo fabricante.

Suspensão magnética:

- Utilizada em instrumentos de eixo vertical.
- Possui 2 pequenos ímãs permanentes, um preso ao eixo e o outro à carcaça do instrumento. Pode ser:
- a) Tipo Repulsão: mesma polaridade na parte inferior do eixo;
- **b)** Tipo Atração: polaridade contrária na parte superior do eixo.

Nota: A guia é feito de material não magnético.

Utilizada em medidores de energia elétrica (elimina atritos e aumenta vida útil).

1.4. Processos de Leitura

Indicadores: utilizam escala graduada.

- Ponteiro
- Feixe Iuminoso
- Digitais.

Registradores:

Acumuladores: acumula a grandeza a medição em um intervalo de tempo.

(medidor de energia elétrica – kWh).

- Natureza do Instrumento: caracteriza o tipo de grandeza medida.
 Ex.: amperímetro, voltímetro, wattímetro, etc.
- Natureza do Conjugado Motor: caracteriza o princípio físico de funcionamento do instrumento. (Bobina móvel, Eletrodinâmico ou Ferro-móvel).
- Calibre do Instrumento: é o valor máximo que o instrumento é capaz de medir (fundo de escala).

Ex.: um voltímetro pode medir no máximo 200 V => calibre = 200 V.

- Instrumento de um só Calibre: o valor do calibre corresponde ao valor marcado no fim da sua escala.
- Instrumento de Múltiplo Calibre: várias posições por meio de uma chave de comutação das escalas. Neste caso, o valor de uma grandeza medida num dos calibre seria:

Ex.:
$$V = \frac{300}{200} \times 148 = 222 \text{ V}$$

Valor da grandeza = $\frac{Calibre utilizado}{Valor marcado no fim da escala} \times leitura$

 Classe de Exatidão: representa o Limite de Erro (LE), garantido pelo fabricante, que se pode cometer em qualquer medida efetuada com este instrumento.

Ex.: seja um voltímetro de calibre C = 300 volts e Classe de Exatidão igual a 1,5. Qual é o Limite de Erro (LE) que se pode cometer em qualquer medida?

LE = 1,5% de 300V, ou seja: LE = $\frac{300 \times 1,5}{100} = 4,5V$

 Discrepância: é a diferença entre valores medidos para a mesma grandeza.

Ex.: um voltímetro é empregado para medir a tensão de uma fonte, dando como 1^a leitura 218 V e como 2^a leitura 220 V. Diz-se então que a entre as duas medições há uma discrepância de 2V.

 Sensibilidade: exprime o valor da grandeza medida e o deslocamento da indicação.

Ex.: dois amperímetros são postos em série para medir a mesma corrente I. No 1° observa-se uma indicação de x divisões na escala e no 2° uma indicação de 2x divisões. Diz-se então que a sensibilidade do 2° amperímetro é o dobro da sensibilidade do 1°.

- Resolução: menor incremento que se pode assegurar na leitura de um instrumento, o que corresponde à menor divisão marcada na escala do instrumento.
- Repetibilidade: propriedade de um instrumento de, em condições idênticas, indicar o mesmo valor para uma determinada grandeza medida.
- **Perda Própria:** potência consumida pelo instrumento correspondente à indicação final de escala.
 - Ex.: um amperímetro de calibre 10 A e resistência própria de 0,2 Ω tem uma perda própria de 20 W.
- Eficiência de um instrumento: é a relação entre o seu calibre e a perda própria.
 - Ex.:um amperímetro de calibre 10 A e resistência própria de 0,2 tem uma perda própria de 20 W e eficiência de 0,5 A/W.
 - No caso do voltímetro é usual exprimir a eficiência em Ω/V, pois:
 [V/W] = V/P = R.I/V.I = R/V. Assim, um voltímetro de 5.000 Ω/V tem maior eficiência que um de 800 Ω/V.

- Rigidez Dielétrica (tensão de prova ou tensão de ensaio): caracteriza a isolação entre a parte ativa e a carcaça do instrumento. Expressa em kV, pois representa a tensão máxima que se pode aplicar entre a parte ativa e a carcaça do instrumento sem lhe causar danos.
- Incerteza de uma Medição (IM): exprime a faixa de dúvida ainda presente no resultado, provocada pelos erros presentes no Sistema de Medição e/ou variações da variável medida, e deve sempre ser acompanhado da unidade do mensurando. Assim, o Resultado de uma Medição (RM) deve ser sempre expresso por:

$$RM = (Leitura \pm IM) [unidade]$$

- **Exatidão**: exprime o afastamento entre a medida nele observada e o valor de referência aceito como verdadeiro.
- Precisão: determinada através de um processo estatístico de medições, que exprime o afastamento mútuo entre as diversas medidas obtidas de uma grandeza dada, em relação à média aritmética dessas medidas.
 - Um instrumento **preciso** não necessariamente é **exato**, embora o seja na maioria dos casos.

1.6. Simbologia para Instrumentos

No mostrador dos instrumentos elétricos de medição (principalmente os analógicos), além dos símbolos que caracterizam a natureza do instrumento, a grandeza que o mesmo se destina a medir, encontramos outros símbolos, mostrados a seguir:

Símbolo		Significado
\Rightarrow	Tensão de prova de 500 V.	
\Rightarrow	Tensão de prova de 1000 V.	
72	Tensão de prova de 2000 V.	
3	Tensão de prova de 3000 V.	
55	Tensão de prova de 5000 V.	

1.6. Simbologia para Instrumentos

Símbolo	Significado
 6	Instrumento para corrente contínua.
\sim	Instrumento para corrente alternada.
\sim	Instrumento para corrente contínua e alternada.
\approx	Instrumento para correntes 3F, mas com somente um circuito de medida.
≈	Instrumento para correntes 3F, com dois circuitos de medida.
*	Instrumento para correntes 3F, com três circuitos de medida.
0	Instrumento com ajuste de zero (mecânico).
	Símbolo que indica instrumento com blindagem de ferro.
	Posição de trabalho vertical.
	Posição de trabalho horizontal.
n°	Instrumento com posição de trabalho inclinada.
	Instrumento de bobina móvel com imã permanente – para medida de tensão ou corrente contínua.
	Instrumento bimetálico.

1.6. Simbologia para Instrumentos

(·)	Instrumento de indução. Usado apenas em CA.
E	Instrumento eletromagnético ou ferromóvel. Usado para medir tanto corrente como tensão, tanto CC como CA.
	Instrumento eletrodinâmico de bobina fixa e bobina móvel, sem ferro, para medir correntes, tensões ou potências em CC ou CA. As bobinas são dimensionadas de acordo com a utilização.
<u> </u>	Voltímetro eletrostático – usado tanto em CC como em CA, mas só com valores elevados de tensão.
	Instrumento de bobina móvel.
<u>\</u>	Instrumento de vibração (freqüencímetro) – baseado no princípio da ressonância.

Exemplo

O mostrador de um instrumento de medição possui os seguinte símbolos. Caracterize-o!

Resposta

Instrumento de ferro móvel, para correntes contínuas e alternadas, devendo ser usado com o mostrador na posição horizontal, classe de exatidão 1, tensão de ensaio 2 kV.

Instrumentos de Bobina Móvel

1. Instrumentos de Bobina Móvel

Partes principais:

- 1. Imã permanente
- 2. Núcleo cilíndrico de ferro doce
- 3. Quadro retangular de metal condutor (amortecimento por corrente de Foucault)
- 4. Bobina de fio de cobre, enrolado sobre o quadro de alumínio

Como as linhas de fluxo são radiais no entreferro do imã permanente, estas são sempre perpendiculares à direção da corrente I, a medir, a qual circula através dos condutores da bobina b, qualquer que seja a posição instantânea desta. Em consequência, as forças \vec{F} são sempre tangenciais ao cilindro de ferro. Logo independem da posição da bobina.

Características:

n – número de bobinas

L – comprimento útil da bobina (concatenada

d – largura da bobina

L_{total} – comprimento total da bobina

$$(L_{total} = 2xL + 2xd)$$

I – corrente elétrica

$$\text{B}-\text{campo magn\'etico (}\text{T}=\frac{\text{V}\cdot\text{s}}{\text{m}^2}=\frac{\text{N}}{\text{A}\cdot\text{m}}=\frac{\text{J}}{\text{A}\cdot\text{m}^2}=\frac{\text{H}\cdot\text{A}}{\text{m}^2}=\frac{\text{Wb}}{\text{m}^2}=\frac{\text{kg}}{\text{C}\cdot\text{s}}=\frac{\text{N}\cdot\text{s}}{\text{C}\cdot\text{m}}=\frac{\text{kg}}{\text{A}\cdot\text{s}^2}\text{)}$$

1.2. Cálculo do Conjugado Motor

 \vec{F} será perpendicular ao plano que contém \vec{B} e \vec{I} !

A Força F causada pelo efeito eletromagnético é dada por:

$$\overrightarrow{F} = \underbrace{\overrightarrow{B} \times \overrightarrow{I}}_{B.I.sen\alpha} \cdot \underbrace{L}_{bobina} \Rightarrow |\overrightarrow{F}| = |\overrightarrow{B}|.|\overrightarrow{I}|.sen(\underbrace{\alpha}_{\angle(\overrightarrow{B}e\overrightarrow{I})}).L$$

A corrente que circula na bobina móvel corta o fluxo magnético em um ângulo $\alpha = 90^{\circ}$ qualquer que seja a posição da bobina. Então: $sen(\alpha = 90^{\circ}) = 1$!

Daí:

$$\overrightarrow{|F|} = \overrightarrow{B}/.\overrightarrow{I}/.L \Rightarrow F = B.I.L$$

1.2. Cálculo do Conjugado Motor

Conjugado Motor:

$$Cm = F \times \frac{d}{2} + F \times \frac{d}{2}$$

$$Cm = F \times d$$

Substituindo F no Conjugado Motor: $C_m = F.d \Rightarrow C_m = (B.I.L).d$

Para n bobinas:

$$C_m = F.d.n \Rightarrow C_m = (B.I.L).d.n \Rightarrow C_m = n.B.L.d.I \Rightarrow C_m = \underbrace{nBLd}_{Caracter\'{sticas}}.I \Rightarrow C_m = \underbrace{nBLd}_{do\ Insrumento}$$

$$\Rightarrow C_m = \phi.I \quad (Onde \quad \phi = nBLd)$$

1.3. Cálculo do Conjugado Restaurador (Antagonista)

- 1 Eixo do conjunto móvel
- 2 Conjunto de correção de zero
- 3 Haste
- 4 Parafuso de ajuste de zero
- 5 Ponteiro de leitura
- 6 Disposito compensador do efeito da gravidade (cuja função é fazer com que o centro de gravidade do conjunto móvel coincida com seu eixo de rotação, eliminando o efeito da gravidade sobre o conjunto)
- 7 Pivôs de sustentação

A mola **m**, que possui uma extremidade presa ao eixo do conjunto móvel (1) e outra ao conjunto de correção de zero (2), fica sob tensão mecânica, e se opõe ao movimento de rotação originado pelo Conjugado Motor. Essa oposição é o Conjugado Restaurador (Cr) ou Antagonista, cuja função é criar uma situação de equilíbrio em relação à força que gera o Conjugado Motor e fazer o conjunto móvel voltar à posição de repouso inicial quando cessar o efeito do Conjugado Motor.

A intensidade do conjugado restaurador é dada pela fórmula: $Cr = K_r \cdot \theta$

- Onde K_r é a constante de elasticidade da mola e θ é o ângulo de desvio do conjunto móvel (**deflexão**).

Posição de repouso: **Cm = Cr = 0**; Posição de equilíbrio (medição): **Cm = Cr**

1.4. Exemplo

Um Instrumento de Bobina Móvel possui as seguintes especificações:

- I_{gmáx} = 0,1 mA (corrente máxima suportável)
- L = 1,8 cm (comprimento útil da bobina)
- d =1,2 cm (largura da bobina)
- $-\theta = 1,6$ rad (ângulo máximo de fundo de escala)
- B = 0.3 T = 0.3 N/(Am) (intensidade do fluxo magnético)
- n = 1000 (número de bobinas)
- $R_b = 5 \Omega/m$ (resistência do fio da bobina)

Determinar as características básicas Φ , K_r e R_i (resistência interna total das bobinas) deste Instrumento:

a)
$$\Phi = nBLd = (10^3)x(0.3 \text{ N/(Am)}x(1.8x10^{-2} \text{ m})x(1.2x10^{-2} \text{ m}) => \Phi = 64.8x10^{-3} \text{ Nm/A (Wb)}$$

b) Cm = Cr =>
$$\Phi.I = K_r.\theta => K_r = (\Phi.I)/\theta =>$$

=> $K_r = (64.8 \times 10^{-3} \text{ Nm/A}) \times (0.1 \times 10^{-3} \text{ A})/(1.6 \text{ rad}) => K_r = 4.05 \times 10^{-6} \text{ (Nm/rad)}$

c)
$$R_i = (R_b \times L_{total}).n => R_i = R_b \times (2 \times L + 2 \times d).n =>$$

$$=> R_i = (5 \Omega/m) \times [(2 \times 1.8 \times 10^{-2} + 2 \times 1.2 \times 10^{-2})(m)].10^3 =>$$

$$=> R_i = 300 \Omega$$

1.5. Conjugado de Amortecimento

Para evitar oscilações do conjunto móvel ao redor do **Ponto de Equilíbrio** é criado, por meio de artifícios externos, um **Conjugado de Amortecimento** (**Ca**), que também evita os deslocamentos bruscos do conjunto móvel ao sair da posição de repouso e ao voltar a ela, cessado o **Conjugado Motor**. Este conjugado pode ser entendido como uma **frenagem** ou **limitação de velocidade** do conjunto móvel.

O Conjugado de Amortecimento é diretamente proporcional à velocidade angular

Do conjunto móvel.

Então:

 $C_a = K_a \cdot \frac{d\theta}{dt}$

Retorno do ponteiro de um ponto θp qualquer da escala para a posição de repouso.

θp de de conjunto móvel atinge a posição de repouso em um tempo muito longo, possuindo um coeficiente de amortecimento K_a muito elevado. Os instrumentos com essas características são chamados de sobreamortecidos.

dt

<u>Curva 2:</u> representa um coeficiente de amortecimento K_a muito menor que o anterior, sendo o tempo necessário para atingir o ponto de repouso inferior àquele . Neste caso, o instrumento é dito criticamente amortecido.

<u>Curva 3:</u> é uma função semiperiódica. A amplitude das oscilações vai decrescendo exponencialmente em torno do zero, atingindo essa posição após algum tempo. Nessa situação o conjunto móvel do instrumento fica oscilando ao redor da posição de repouso, o que significa que o seu coeficiente de amortecimento $\mathbf{K_a}$ é muito pequeno. Este tipo de instrumento é denominado **subamortecido**.

2. O Galvanômetro

- É um instrumento do tipo bobina móvel em que não há o quadro de alumínio que serve de suporte a bobina. Este quadro é substituído por outro material não condutor, ficando assim bastante reduzido o amortecimento sobre o conjunto móvel.
- O galvanômetro é largamente usado como indicador da presença ou ausência de corrente elétrica num circuito, sem contudo indicar seu valor. A Ponte de Wheatstone é um exemplo desta aplicação.

2.1. Galvanômetro Aplicado na Ponte de Wheatstone

$$V_{A} - V_{B} = r_{1} i_{1}$$
 $V_{A} - V_{D} = r_{3} i_{2}$
 $V_{B} - V_{C} = r_{2} i_{1}$
 $V_{D} - V_{C} = r_{4} i_{2}$

No equilíbrio da ponte:

$$V_{B} = V_{D}$$
 $r_{1} i_{1} = r_{3} i_{2}$
 $r_{2} i_{1} = r_{4} i_{2}$

$$\frac{r_1}{r_2} = \frac{r_3}{r_4}$$

3. Amperimetros

Os instrumentos de bobina móvel são construídos para suportarem correntes muito fracas, da ordem de mA ou μA . Para ampliar o calibre desses instrumentos, transformando-os em Amperímetros capazes de medirem correntes elevadas, colocam-se resistores externos em paralelo com os mesmos. Estes resistores têm o nome de derivador ou "shunt". Os Amperímetros devem ser conectados no circuito de medição em SERIE.

Símbolo:

I – corrente que se deseja medir (calibre desejado); I_q – corrente suportada pelo instrumento de bobina móvel; R_g – resistência interna.

 $R_p^{"}$ – resistência "shunt"

Exemplo

Consideremos que dispomos de um galvanômetro com as seguintes características:

 I_g = 1 mA e R_g = 60 Ω e que desejamos convertê-lo em um Amperímetro que meça no máximo 2 mA. Qual deve ser a resistência R_p ?

$$R_p = \frac{I_g}{I - I_g} x R_g = \frac{1 m}{2 m - 1 m} x 60 = 60 Ohms$$

3.1. Amperímetros de Múltiplos Calibres (Escalas)

Configuração Paralela

Configuração Série ou de Derivação de Ayrton

Exemplo

Consideremos que dispomos de um galvanômetro com as seguintes características:

 I_g = 1 mA e R_g = 60 Ω . Deseja-se convertê-lo em um Amperímetro constituído de um derivador Ayrton para as escalas de 1 A, 5 A e 10 A.

$$\begin{cases} I_{n} = I_{1} \Rightarrow (I_{1} - I_{g}) \times R_{Sh1} = I_{g}(R_{g} + R_{Sh2} + R_{Sh3}) \\ I_{n} = I_{2} \Rightarrow (I_{2} - I_{g}) \times (R_{Sh1} + R_{Sh2}) = I_{g}(R_{g} + R_{Sh3}) & ; para I_{1} > I_{2} > I_{3} \\ I_{n} = I_{3} \Rightarrow (I_{3} - I_{g}) \times (R_{Sh1} + R_{Sh2} + R_{Sh3}) = I_{g} \times R_{g} \end{cases}$$

4. Voltímetros

Os voltímetros podem também se originar dos instrumentos de bobina móvel pela adição de resistores externos em **série** com eles. Estes resistores são chamados de resistores adicionais. **Devem ser conectados no circuito de medição em PARALELO**.

 R_m – resistor adicional V_{AB} – tensão de calibre desejado

Símbolo:

$$V_{AB} = (R_m + R_g)I_g \qquad \Longrightarrow \qquad R_m = \frac{V_{AB}}{I_g} - R_g$$

Exemplo

Consideremos que dispomos de um galvanômetro com as seguintes características: $I_g = 1 \text{ mA}$ e $R_g = 60 \Omega$ e que desejamos convertê-lo em um voltímetro que meça no máximo 10 V. Qual deve ser a resistência R_m ?

4.1. Voltímetros de Múltiplos Calibres (Escalas)

Configuração Paralela

Configuração Série ou de Derivação de Ayrton

5. Ohmímetros

Ohmímetro é constituído essencialmente por um Galvanômetro em série com uma pilha V e um resistor variável R_v. O resistor R_v é usado para fazer o ajuste do zero.

Terminais A e B em curto

$$V = (R_V + R_g) \cdot I_g$$

$$\Rightarrow$$

$$R_{V} = \frac{V}{I_{g}} - R_{g}$$

Considerando uma Resistência R_x

$$V = (R_v + R_g) \cdot I_g \qquad \Rightarrow \qquad R_v = \frac{V}{I_g} - R_g \qquad V = (R_v + R_g + R_x) \cdot I_x \qquad \Rightarrow \qquad R_x = \frac{V}{I_x} - R_g - R_v$$

$$R_{x} = \frac{V}{I_{x}} - \frac{V}{I_{g}}$$

6. Instrumentos de Bobina Móvel em Corrente Alternada

Os instrumentos de bobina móvel medem o Valor Médio!

Para medição de sinais alternados, é necessário a **retificação** da tensão ou corrente.

6.1. Retificação da Corrente Alternada

Retificação de meia onda da tensão ou corrente alternada:

6.2. Retificação da Corrente Alternada

Retificação de onda completa da tensão ou corrente:

6.3. Cálculo do Valor Médio

Valor médio (Fav) de um sinal:

$$F_{av} = \frac{1}{T} \int_0^T f(t) dt$$

Seja a corrente instantânea:

$$i(t) = I_m.sen(wt) (A)$$

Para a retificação em onda completa:

$$I_{med} = \frac{1}{T/2} \int_{0}^{T/2} I_{m}.sen(wt).dt = -\frac{2}{T} I_{m}.\frac{T}{2\pi}.[cos(\frac{2\pi}{T}.\frac{T}{2})] - cos(0)] \Rightarrow I_{med} = \frac{2}{\pi} I_{m}$$

Então:

$$I_{\text{med}} = \frac{2}{\pi} I_{\text{m}} \Rightarrow I_{\text{med}} = 0,64 I_{\text{m}}$$

$$I_{\text{med}} = \frac{2}{\pi} I_{\text{m}} = \frac{2}{\pi} \sqrt{2} I_{\text{eficaz}} \Rightarrow I_{\text{eficaz}} = 1,11 I_{\text{med}}$$

6.4. Conclusão

A deflexão correspondente a uma Corrente Contínua (constante) é cerca de 11% maior que a deflexão correspondente a uma Corrente Alternada de valor eficaz I_{ef}.

Conclusão: Delfexão CC é cerca de 11% maior que às correspondentes em CA.

