The Exponential Distribution and the Central Limit Theorem

Luis A Sandino

Created on 2016-03-17 23:20:05 using R version 3.2.3 (2015-12-10)

Synopsis

This project investigates the exponential distribution in R. Particularly, the distribution of averages of 40 exponentials is compared via simulation with the Central Limit Theorem (CLM).

Simulations

Initialization:

```
set.seed(1984) #Set the seed
lambda <- 0.2 #Set the exponential rate parameter
n <- 40 #Set the number of exponentials
sim <- 1000 #Set the number of simulations</pre>
```

Results of one simulation of 40 exponentials:

One sample of 40 exponentials with rate $\lambda = 0.2$

Calculate the mean and variance of 40 exponentials in 1000 simulations and plot the distribution of the mean:

```
means <- NULL
vars <- NULL
for (i in 1:sim) {
    x <- rexp(n, lambda)
    means <- c(means, mean(x))
    vars <- c(vars, var(x))
}
hist(means, col = "red", breaks = 40, main = "Distribution of the mean of 40 exponentials",
    xlab = "Mean")</pre>
```

Distribution of the mean of 40 exponentials

Sample Mean versus Theoretical Mean

In this section the average of sample mean is compared to the theoretical mean of the distribution. The mean of exponential distribution is $\frac{1}{\lambda}$

Distribution of the mean of 40 exponentials

Sample Variance versus Theoretical Variance

In this section the average of sample variance is compared to the theoretical variance of the distribution. The variance of exponential distribution is $\left(\frac{1}{\lambda}\right)^2$

Calculate the average of sample variance

```
print(round(mean(vars), 2))
```

[1] 24.64

Calculate the theoretical variance

[1] 25

Distribution

The CLT states that, the mean of a sufficiently large number of iterates of independent random variables, each with a well-defined expected value and well-defined variance, will be approximately normally distributed, regardless of the underlying distribution.

In order to check this, plot the distribution of the mean together with the distribution of $N\left(\frac{1}{\lambda}, \frac{1}{\lambda \cdot \sqrt{n}}\right)$:

Distribution of the mean of 40 exponentials

