Method	Accuracy	# Params
VGGNet(16L)	91.4	138m
$VGGNET(Enhanced-16L)^*$	92.45	138m
ResNet-110*	93.57	$1.7 \mathrm{m}$
ResNet-1202	92.07	$10.2 \mathrm{m}$
Stochastic depth-110L	94.77	$1.7 \mathrm{m}$
Stochastic depth-1202L	95.09	$10.2 \mathrm{m}$
Wide Residual Net	95.19	11m
Wide Residual Net	95.83	$36\mathrm{m}$
Highway Network	92.40	-
FitNet	91.61	1M
SqueezNet-(tested by us)	79.58	1.3M
ALLCNN	92.75	-
Fractional Max-pooling* (1 tests)	95.50	12M
Max-out(k=2)	90.62	6M
Network in Network	91.19	1M
Deeply Supervised Network	92.03	1M
Batch normalized Max-out NIN	93.25	-
All you need is a good init (LSUV)	94.16	-
Generalizing Pooling Functions in CNN	93.95	-
Spatially-Sparse CNNs	93.72	-
Scalable Bayesian Optimization Using DNN	93.63	-
Recurrent CNN for Object Recognition	92.91	-
RCNN-160	92.91	-
SimpleNet-Arch1	94.75	$5.4\mathrm{m}$
SimpleNet-Arch1 using data augmentation	95.32	$5.4 \mathrm{m}$