GIẢI BÀI TẬP TOÁN RỜI RẠC 2 – CHƯƠNG 2

Câu hỏi 1

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh dưới dạng ma trận kề như sau:

	5011			111 0		. u.i.			or évir	110	-
	1	2	<mark>3</mark>	4	<mark>5</mark>	<mark>6</mark>	<mark>7</mark>	8	9	O	
1	0	1	0	0	1		0	1	0	1	
2	1	0	1	1	0	1	0	0	0		
3	0	1	0	0	0			0	0	0	
4	0	1	0	0	0	1	0	1	0	0	
5	1	0	0	0		1	1	0	1	1	
6	0	1	0	1	1	0	1	0	0	1	
7	0	0	0	0	1	1	0	1	1	1	
8	1	0	0	1	0		1	0	1	0	
9	0	0	0	0	1	0	1	1	0	1	
0	1	0	0	0	1	1	1	0	1	0	
	1 2 3 4 5 7 8	1 1 0 2 1 3 0 4 0 5 1 6 0 7 0 8 1	1 2 1 0 1 2 1 0 3 0 1 4 0 1 5 1 0 6 0 1 7 0 0 8 1 0	1 2 3 1 0 1 0 2 1 0 1 3 0 1 0 4 0 1 0 5 1 0 0 6 0 1 0 7 0 0 0 8 1 0 0	1 2 3 4 1 0 1 0 0 2 1 0 1 1 3 0 1 0 0 4 0 1 0 0 5 1 0 0 0 6 0 1 0 1 7 0 0 0 0 8 1 0 0 0 9 0 0 0 0	I 2 3 4 5 I 0 1 0 0 1 2 1 0 1 1 0 3 0 1 0 0 0 4 0 1 0 0 0 5 1 0 0 0 0 6 0 1 0 1 1 7 0 0 0 0 1 8 1 0 0 0 1 9 0 0 0 0 1	1 2 3 4 5 6 1 0 1 0 0 1 0 2 1 0 1 0 1 0 1 3 0 1 0 0 0 0 0 4 0 1 0 0 0 1 1 5 1 0 0 0 0 1 1 0 6 0 1 0 1 1 0 0 7 0 0 0 0 1 1 0 8 1 0 0 0 1 0 9 0 0 0 0 1 0	1 2 3 4 5 6 7 1 0 1 0 0 1 0 0 2 1 0 1 0 1 0 1 0 3 0 1 0 0 0 0 0 0 4 0 1 0 0 0 1 1 0 5 1 0 0 0 0 1 1 0 1 6 0 1 0 1 0 1 0 1 7 0 0 0 0 1 0 0 1 8 1 0 0 0 1 0 1 0 9 0 0 0 0 1 0 1 0	1 2 3 4 5 6 7 8 1 0 1 0 0 1 0 0 1 2 1 0 1 1 0 1 0 0 0 3 0 1 0 0 0 0 0 0 0 4 0 1 0 0 0 1 1 0 1 5 1 0 0 0 0 1 1 0 1 0 6 0 1 0 1 0 1 0 1 0 1 8 1 0 0 0 0 1 0 1 0 9 0 0 0 0 1 0 1 0 1 1	1 2 3 4 5 6 7 8 9 1 0 1 0 0 1 0 0 1 0 2 1 0 1 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 4 0 1 0 0 0 1 0 1 0 1 5 1 0 0 0 0 1 1 0 1 0 0 7 0 0 0 0 1 1 0 1 0 1 8 1 0 0 0 1 0 1 0 1 0 9 0 0 0 0 1 0 1 0 1 0	1 2 3 4 5 6 7 8 9 0 1 0 1 0 0 1 0 1 0 1 0 1 2 1 0 1 1 0 1 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 4 0 1 0 0 0 1 0 1 0 0 0 5 1 0 0 0 0 1 1 0 1 1 1 1 6 0 1 0 1 1 0 1 1 1 1 7 0 0 0 0 1 0 1 0 1 0 1 0 9 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0

- a) Sử dụng thuật toán duyệt theo chiều sâu tìm một đường đi từ đỉnh 3 đến đỉnh 9 của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?
- b) Sử dụng thuật toán duyệt theo chiều rộng tìm một đường đi từ đỉnh 3 đến đỉnh 9 của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?

<u>Giải</u>

Số đỉnh của G là n= 10.

a) Tìm đường đi từ đỉnh 3 đến đỉnh 9 của G sử dụng DFS : u= 3, v= 9.

 $Dfs(3) = \{3(0); 2(3); 1(2); 5(1); 6(5); 4(6); 8(4); 7(8); 9(7); 10(9)\}.$

Kết luận: Đường đi từ đỉnh 3 đến đỉnh 9 là $9 \leftarrow 7 \leftarrow 8 \leftarrow 4 \leftarrow 6 \leftarrow 5 \leftarrow 1 \leftarrow 2 \leftarrow 3$.

b) Tìm đường đi từ đỉnh 3 đến đỉnh 9 của G sử dụng BFS : u= 3, v= 9

Bfs(3) = $\{3(0); 2(3); 1(2), 4(2), 6(2); 5(1), 8(1), 10(1); 7(6); 9(5)\}.$

Kết luận : Đường đi từ đỉnh 3 đến đỉnh 9 là $9 \leftarrow 5 \leftarrow 1 \leftarrow 2 \leftarrow 3$.

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh và 12 cạnh dưới dạng danh sách cạnh như sau:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
1	2	2	6
1	5	4	6
1	8	5	7
1	10	5	9
2	3	7	9
2	4	8	10

- a) Sử dụng thuật toán tìm kiếm theo chiều sâu tìm một đường đi từ đỉnh 6 đến đỉnh 7 của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?
- b) Sử dụng thuật toán tìm kiếm theo chiều rộng tìm một đường đi từ đỉnh 6 đến đỉnh 7 của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?

<u>Giải</u>

 $\overline{\text{Số d}}$ inh của đồ thị vô hướng G là n= 10.

a) Tìm đường đi từ đỉnh 6 đến đỉnh 7 của G sử dụng DFS : u = 6, v = 7

 $Dfs(6) = \{6(0); 2(6); 1(2); 5(1); 7(5); 9(7); 8(1); 10(8); 3(2); 4(2)\}.$

Kết luận: Đường đi từ đỉnh 6 đến đỉnh 7 là $7 \leftarrow 5 \leftarrow 1 \leftarrow 2 \leftarrow 6$.

b) Tìm đường đi từ đỉnh 6 đến đỉnh 7 của G sử dụng BFS : u = 6, v = 7

Bfs(6) = $\{6(0); 2(6), 4(6); 1(2), 3(2); 5(1), 8(1), 10(1); 7(5), 9(5)\}.$

Kết luận: Đường đi từ đỉnh 6 đến đỉnh 7 là $7 \leftarrow 5 \leftarrow 1 \leftarrow 2 \leftarrow 6$.

Cho đồ thi vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh dưới dang danh sách kề như sau:

$Ke(1) = \{2, 9, 10\}$	$Ke(6) = \{5, 7, 8\}$
$Ke(2) = \{1, 3, 4\}$	$Ke(7) = \{6\}$
$Ke(3) = \{2, 4\}$	$Ke(8) = \{6\}$
$Ke(4) = \{2, 3, 5\}$	$\operatorname{Ke}(9) = \{1, 10\}$
$Ke(5) = \{4, 6\}$	Ke (10)= {1, 9}

- a) Sử dụng thuật toán tìm kiếm theo chiều sâu tìm một đường đi từ đỉnh 1 đến đỉnh 8 của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?
- b) Sử dụng thuật toán tìm kiếm theo chiều rộng tìm một đường đi từ đỉnh 1 đến đỉnh 8 của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?

<u>Giải</u>

 $\overline{\text{Số d}}$ inh của G là n= 10.

a) Tìm đường đi từ đỉnh 1 đến đỉnh 8 của G sử dụng DFS: u= 1, v= 8

 $Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 5(4); 6(5); 7(6); 8(6); 9(1); 10(9)\}\$

Kết luận : Đường đi từ đỉnh 1 đến đỉnh 8 là $8 \leftarrow 6 \leftarrow 5 \leftarrow 4 \leftarrow 3 \leftarrow 2 \leftarrow 1$

b) Tìm đường đi từ đỉnh 1 đến đỉnh 8 của G sử dụng BFS : u= 1, v= 8

Bfs(1) = $\{1(0); 2(1), 9(1), 10(1); 3(2), 4(2); 5(4); 6(5); 7(6), 8(6)\}$

Kết luận: Đường đi từ đỉnh 1 đến đỉnh 8 là $8 \leftarrow 6 \leftarrow 5 \leftarrow 4 \leftarrow 2 \leftarrow 1$

Cho đồ thị có hướng $G = \langle V, E \rangle$ gồm 10 đỉnh dưới dạng ma trận kề như sau:

-	٠.	5011		. 411			. u.i.		1100 .		
		1	2	<mark>3</mark>	4	<mark>5</mark>	<mark>6</mark>	<mark>7</mark>	8	9	O
	1	0	1	1	0	0	0	0	0	0	0
	2	0	0	1	1	1	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	1	1
	4	0	0	0	0	0		1	0	0	0
	<u>5</u>	0	0	0	0	0	1	0			0
	6	0	0	0	0	0	0	1	1	0	0
	7	0	0	0	1	0	0	0	1	0	0
	8	1	1	0	0	0	0	0	0	0	0
	9	0	0	0	0	0	0	0	0	0	1
	0	1	1	0	0	0	0	0	0	0	0

- a) Sử dụng thuật toán duyệt theo chiều sâu tìm một đường đi từ đỉnh 2 đến đỉnh 8 của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?
- b) Sử dụng thuật toán duyệt theo chiều rộng tìm một đường đi từ đỉnh 2 đến đỉnh 8 của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?

<u>Giải</u>

 $\overline{\text{Số d}}$ inh của G là n= 10.

a) Tìm đường đi từ đỉnh 2 đến đỉnh 8 của G sử dụng DFS : u=2, v=8

 $Dfs(2) = \{2(0); 3(2); 9(3); 10(9); 1(10); 4(2); 6(4); 7(6); 8(7); 5(2)\}.$

Kết luận: Đường đi từ đỉnh 2 đến đỉnh 8 là $8 \leftarrow 7 \leftarrow 6 \leftarrow 4 \leftarrow 2$.

b) Tìm đường đi từ đỉnh 2 đến đỉnh 8 của G sử dụng BFS: u= 2, v= 8

Bfs(2) = $\{2(0); 3(2), 4(2), 5(2); 9(3), 10(3); 6(4), 7(4); 1(10); 8(6)\}.$

Kết luận: Đường đi từ đỉnh 2 đến đỉnh 8 là $8 \leftarrow 6 \leftarrow 4 \leftarrow 2$.

Cho đồ thị có hướng $G = \langle V, E \rangle$ gồm 10 đỉnh và 16 cạnh dưới dạng danh sách cạnh như sau:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
1	2	5	9
1	5	5	10
2	3	6	7
2	4	7	2
3	4	7	8
3	6	8	5
4	6	9	10
4	7	10	8

- a) Sử dụng thuật toán duyệt theo chiều sâu tìm một đường đi từ đỉnh 1 đến đỉnh 10 của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?
- b) Sử dụng thuật toán duyệt theo chiều rộng tìm một đường đi từ đỉnh 1 đến đỉnh 10 của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?

<u>Giải</u>

Số đỉnh của G là n=10.

a) Tìm đường đi từ đỉnh 1 đến đỉnh 10 của G sử dụng DFS: u= 1, v= 10

 $Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 6(4); 7(6); 8(7); 5(8); 9(5); 10(9)\}.$

Kết luận: Đường đi từ đỉnh 1 đến đỉnh 10 là $10 \leftarrow 9 \leftarrow 5 \leftarrow 8 \leftarrow 7 \leftarrow 6 \leftarrow 4 \leftarrow 3 \leftarrow 2 \leftarrow 1$.

b) Tìm đường đi từ đỉnh 1 đến đỉnh 10 của G sử dụng BFS : $u=1,\,v=10$

Bfs(1) = $\{1(0); 2(1), 5(1); 3(2), 4(2); 9(5), 10(5); 6(3); 7(4); 8(10)\}$

Kết luận: Đường đi từ đỉnh 1 đến đỉnh 10 là $10 \leftarrow 5 \leftarrow 1$.

Cho đồ thị có hướng $G = \langle V, E \rangle$ gồm 10 đỉnh dưới dạng danh sách kề như sau:

$Ke(1) = \{4, 10\}$	Ke (6) = {7}
$Ke(2) = \{4, 5, 6\}$	$Ke(7) = \{3, 9\}$
$Ke(3) = \{8\}$	$Ke(8) = \{9\}$
$Ke(4) = \{2, 10\}$	$Ke(9) = \{8\}$
$Ke(5) = \{7, 8\}$	$Ke(10) = \{1\}$

- a) Sử dụng thuật toán tìm kiếm theo chiều sâu tìm một đường đi từ đỉnh 10 đến đỉnh 9 của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?
- b) Sử dụng thuật toán tìm kiếm theo chiều rộng tìm một đường đi từ đỉnh 10 đến đỉnh 9 của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?

<u>Giải</u>

Số đỉnh của G là n= 10.

a) Tìm đường đi từ đỉnh 10 đến đỉnh 9 của G sử dụng DFS: u= 10, v= 9

 $Dfs(10) = \{10(0); 1(10); 4(1); 2(4); 5(2); 7(5); 3(7); 8(3); 9(8); 6(2)\}$

Kết luận: Đường đi từ đỉnh 10 đến đỉnh 9 là $9 \leftarrow 8 \leftarrow 3 \leftarrow 7 \leftarrow 5 \leftarrow 2 \leftarrow 4 \leftarrow 1$ \(\times 10\).

b) Tìm đường đi từ đỉnh 10 đến đỉnh 9 của G sử dụng BFS : u= 10, v= 9

Bfs(10) = $\{10(0); 1(10); 4(1); 2(4); 5(2), 6(2); 7(5), 8(5); 3(7), 9(7)\}.$

Kết luận: Đường đi từ đỉnh 10 đến đỉnh 9 là $9 \leftarrow 7 \leftarrow 5 \leftarrow 2 \leftarrow 4 \leftarrow 1 \leftarrow 10$.

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh dưới dạng ma trận kề như sau:

	gon	11 1 (, an	1111	iuoi	. uụ	us.	IIIu	ri dii	ILC
	1	2	<mark>3</mark>	4	<mark>5</mark>	<mark>6</mark>	<mark>7</mark>	8	<mark>9</mark>	0
1	0	0	0	1	0	0	0	0	1	1
2	0	0	0	1	1	0	0	0	0	0
3	0	0	0	0	0	1	1	0	0	0
4	1	1	0	0	1	0	0	0	0	0
5	0	1	0	1	0	0	0	0	0	0
<u>6</u>	0	0	1	0	0	0	1	0	0	0
7	0	0	1	0	0	1	0	0	0	0
8	0	0	0	0	0	0	0	0	1	1
9	1	0	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0

- a) Sử dụng thuật toán duyệt theo chiều sâu tìm số thành phần liên thông của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?
- b) Sử dụng thuật toán duyệt theo chiều sâu tìm số thành phần liên thông của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?

<u>Giải</u>

 $\overline{\text{Số }}$ đỉnh của G là n= 10.

a) Tìm số thành phần liên thông của G sử dụng DFS:

 $Dfs(1) = \{1(0); 4(1); 2(4); 5(2); 9(1); 8(9); 10(8)\}$

 $Dfs(3) = \{3(0); 6(3); 7(6)\}$

Kết luận: Số thành phần liên thông k= 2

Thành phần liên thông $1 = \{1, 2, 4, 5, 8, 9, 10\}$

Thành phần liên thông $2 = \{3, 6, 7\}$

b) Tìm số thành phần liên thông của G sử dụng BFS:

 $Dfs(1) = \{1(0); 4(1); 2(4); 5(2); 9(1); 8(9); 10(8)\}$

 $Dfs(3) = \{3(0); 6(3); 7(6)\}$

Kết luận: Số thành phần liên thông k= 2

Thành phần liên thông $\hat{I} = \{1, 2, 4, 5, 8, 9, 10\}$

Thành phần liên thông $2 = \{3, 6, 7\}$

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh và 12 cạnh dưới dạng danh sách cạnh như sau:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
1	2	4	5
1	10	4	9
2	4	5	9
2	5	5	10
3	6	6	7
3	7	9	10

- a) Sử dụng thuật toán tìm kiếm theo chiều sâu tìm số thành phần liên thông của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?
- b) Sử dụng thuật toán tìm kiếm theo chiều sâu tìm số thành phần liên thông của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?

Giải

Số đỉnh của G là n= 10.

a) Tìm số thành phần liên thông của G sử dụng DFS:

 $Dfs(1) = \{1(0); 2(1); 4(2); 5(4); 9(5); 10(9)\}.$

 $Dfs(3) = \{3(0); 6(3); 7(6)\}$

 $Dfs(8) = \{8(0)\}$

Kết luận: Số thành phần liên thông k= 3

Thành phần liên thông $1 = \{1, 2, 4, 5, 9, 10\}$

Thành phần liên thông $2 = \{3, 6, 7\}$

Thành phần liên thông $3 = \{8\}$

b) Tìm số thành phần liên thông của G sử dụng BFS:

Bfs(1) = $\{1(0); 2(1), 10(1); 4(2), 5(2); 9(10)\}$

Bfs(3) = $\{3(0); 6(3), 7(3)\}$

Bfs(8) = $\{8(0)\}$

Kết luận: Số thành phần liên thông k= 3

Thành phần liên thông $1 = \{1, 2, 4, 5, 9, 10\}$

Thành phần liên thông $2 = \{3, 6, 7\}$ Thành phần liên thông $3 = \{8\}$

Cho đơn đồ thị có hướng G = <V, E> gồm 10 đỉnh được biểu diễn dưới dạng danh sách kề như sau:

$Ke(1) = \{3, 7\}$	$Ke(6) = \{4, 5, 7\}$
$Ke(2) = \{9, 10\}$	$Ke(7) = \{1, 6\}$
$Ke(3) = \{4, 5\}$	$Ke(8) = \{9, 10\}$
$Ke(4) = \{3, 5, 6\}$	$Ke(9) = \{2, 8, 10\}$
$Ke(5) = \{3, 6\}$	$Ke(10) = \{2, 9, 8\}$

- a) Sử dụng thuật toán duyệt theo chiều sâu tìm số thành phần liên thông của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?
- b) Sử dụng thuật toán duyệt theo chiều sâu tìm số thành phần liên thông của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?

<u>Giải</u>

 $\overline{\text{Số d}}$ inh của G là n= 10.

a) Tìm số thành phần liên thông của G sử dụng DFS:

 $Dfs(1) = \{1(0); 3(1); 4(3); 5(4); 6(5); 7(6)\}$

 $Dfs(2) = \{2(0); 9(2); 8(9); 10(8)\}$

Kết luận: Số thành phần liên thông k=2

Thành phần liên thông $1 = \{1, 3, 4, 5, 6, 7\}$

Thành phần liên thông $2 = \{2, 8, 9, 10\}$

b) Tìm số thành phần liên thông của G sử dụng BFS:

Bfs(1) = $\{1(0); 3(1), 7(1); 4(3), 5(3); 6(7)\}$

Bfs(2) = $\{2(0); 9(2), 10(2); 8(9)\}$

Kết luận: Số thành phần liên thông k= 2

Thành phần liên thông $1 = \{1, 3, 4, 5, 6, 7\}$

Thành phần liên thông $2=\{2, 8, 9, 10\}$

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh dưới dạng ma trận kề như sau:

	1	2	<mark>3</mark>	4	<mark>5</mark>	<mark>6</mark>	<mark>7</mark>	8	9	0
1	0	0	0	0	0	1	0	0	0	0
2	0	0	0	1	1	0	0	0	0	0
3	0	0	0	1	1	0	0	0	1	1
4	0	1	1	0	1	0	0	0	0	0
<u>5</u>	0	1	1	1	0	0	0	0	0	0
<u>6</u>	1	0	0	0	0	0	1	0	0	0
7	0	0	0	0	0	1	0	0	0	0
8	0	0	0	0	0	0	0	0	1	1
9	0	0	1	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	1	1	0

- a) Sử dụng thuật toán tìm kiếm theo chiều sâu tìm tất cả các đỉnh trụ của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?
- b) Sử dụng thuật toán tìm kiếm theo chiều rộng tìm tất cả các đỉnh trụ của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?

Giải

Số đỉnh của G là n= 10.

a) Tìm số đỉnh trụ của G sử dụng DFS:

Tìm số thành phần liên thông k của G sử dụng DFS:

 $Dfs(1) = \{1(0); 6(1); 7(6)\}$

 $Dfs(2) = \{2(0); 4(2); 3(4); 5(3); 9(3); 8(9); 10(8)\}$

 \Rightarrow k= 2

Lập bảng:

Đỉnh u	Số thành phần liên thông l của G\{u}	l> k ?	Đỉnh trụ
1	$Dfs(2)=\{2(0);4(2);3(4);5(3);9(3);8(9);10(8)\}, Dfs(6)=\{6(0);7(6)\} \Rightarrow l=2$	No	υų
2	$Dfs(1)=\{1(0);6(1);7(6)\}, Dfs(3)=\{3(0);4(3);5(4);9(3);8(9);10(8)\}\Rightarrow l=2$	No	
3	$Dfs(1) = \{1(0); 6(1); 7(6)\}, Dfs(2) = \{2(0); 4(2); 5(4)\}, Dfs(8) = \{8(0); 9(8); 10(9)\} \implies l = 3$	Yes	3
4	$Dfs(1)=\{1(0);6(1);7(6)\}, Dfs(2)=\{2(0);5(2);3(5);9(3);8(9);10(8)\} \Rightarrow l=2$	No	
5	$Dfs(1) = \{1(0); 6(1); 7(6)\}, Dfs(2) = \{2(0); 4(2); 3(4); 9(3); 8(9); 10(8)\} \Rightarrow 1=2$	No	
6	$Dfs(1) = \{1(0)\}, Dfs(2) = \{2(0); 4(2); 3(4); 5(3); 9(3); 8(9); 10(8)\}, Dfs(7) = \{7(0)\} \Rightarrow l = 3$	Yes	6
7	$Dfs(1) = \{1(0); 6(1)\}, Dfs(2) = \{2(0); 4(2); 3(4); 5(3); 9(3); 8(9); 10(8)\} \Rightarrow l=2$	No	
8	$Dfs(1) = \{1(0); 6(1); 7(6)\}, Dfs(2) = \{2(0); 4(2); 3(4); 5(3); 9(3); 10(9)\} \Rightarrow l=2$	No	
9	$Dfs(1) = \{1(0); 6(1); 7(6)\}, Dfs(2) = \{2(0); 4(2); 3(4); 5(3); 10(3); 8(10)\} \Rightarrow l=2$	No	·
10	$Dfs(1) = \{1(0); 6(1); 7(6)\}, Dfs(2) = \{2(0); 4(2), 5(2); 3(4); 5(3); 9(3); 8(9)\} \Rightarrow l=2$	No	

Kết luận: G có 2 đỉnh trụ 3 và 6.

b) Tìm số đỉnh trụ của G sử dụng BFS:

Tìm số thành phần liên thông k của G sử dụng BFS:

Bfs(1) = $\{1(0); 6(1); 7(6)\}$

Bfs(2) = $\{2(0); 4(2), 5(2); 3(4); 9(3), 10(3); 8(9)\}$

 \Rightarrow k= 2

Lập bảng :

Đỉnh u	Số thành phần liên thông l của G/{u}	l> k ?	Đỉnh trụ
1	$Bfs(2) = \{2(0); 4(2), 5(2); 3(4); 9(3), 10(3); 8(9)\}, Bfs(6) = \{6(0); 7(6)\} \Rightarrow l = 2$	No	
2	Bfs(1)= $\{1(0);6(1);7(6)\}$, Bfs(3)= $\{3(0);4(3),5(3);9(3),10(3);8(9)\}\Rightarrow 1=2$	No	
3	Bfs(1)= $\{1(0);6(1);7(6)\}$, Bfs(2)= $\{2(0);4(2),5(2)\}$, Bfs(8)= $\{8(0);9(8),10(8)\}$ \Rightarrow l= 3	Yes	3
4	Bfs(1)= $\{1(0);6(1);7(6)\}$, Bfs(2)= $\{2(0);5(2);3(5);9(3),10(3);8(9)\}\Rightarrow 1=2$	No	
5	Bfs(1)= $\{1(0);6(1);7(6)\}$, Bfs(2)= $\{2(0);4(2);3(3);9(3),10(3);8(9)\}\Rightarrow l=2$	No	
6	Bfs(1)={1(0)}, Bfs(2)={2(0);4(2),5(2);3(4);9(3),10(3);8(9)}, Bfs(7)={7(0)} \Rightarrow l= 3	Yes	6
7	Bfs(1)= $\{1(0);6(1)\}$, Bfs(2)= $\{2(0);4(2),5(2);3(4);9(3),10(3);8(9)\} \Rightarrow l=2$	No	
8	Bfs(1)= $\{1(0);6(1);7(6)\}$, Bfs(2)= $\{2(0);4(2),5(2);3(4);9(3),10(3)\}\Rightarrow 1=2$	No	
9	Bfs(1)= $\{1(0);6(1);7(6)\}$, Bfs(2)= $\{2(0);4(2),5(2);3(4);10(3);8(10)\}\Rightarrow 1=2$	No	
10	Bfs(1)= $\{1(0);6(1);7(6)\}$, Bfs(2)= $\{2(0);4(2),5(2);3(4);9(3),8(9)\}\Rightarrow l=2$	No	

Kết luận: G có 2 đỉnh trụ 3 và 6.

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh và 12 cạnh dưới dạng danh sách cạnh như sau:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
1	2	2	6
1	5	4	6
1	8	5	7
1	10	5	9
2	3	7	9
2	4	8	10

- a) Sử dụng thuật toán tìm kiếm theo chiều sâu tìm tất cả các đỉnh trụ của đồ thị G, chỉ rõ kết quả tai mỗi bước thực hiện theo thuật toán?
- b) Sử dụng thuật toán tìm kiếm theo chiều rộng tìm tất cả các đỉnh trụ của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?

Giải

Số đỉnh của đồ thị vô hướng G là n= 10.

a) Tìm số đỉnh trụ của G sử dụng DFS:

Tìm số thành phần liên thông k của G sử dụng DFS:

 $Dfs(1) = \{1(0); 2(1); 3(2); 4(2); 6(4); 5(1); 7(5); 9(7); 8(1); 10(8)\} = V$

 \Rightarrow k= 1

Lập bảng:

Đỉnh u	Số thành phần liên thông l của G/{u}	l> k ?	Đỉnh trụ
1	$Dfs(2)=\{2(0);3(2);4(2);6(4)\}, Dfs(5)=\{5(0);7(5);9(7)\}, Dfs(8)=8(0);10(8)\}$ $\Rightarrow 1=3$	Yes	1
2	Dfs(1)= $\{1(0);5(1);7(5);9(7);8(1);10(8), Dfs(3)=\{3(0)\}, Dfs(4)=\{4(0);6(4)\}$ $\Rightarrow 1=3$	Yes	2
3	$Dfs(1) = \{1(0); 2(1); 4(2); 6(4); 5(1); 7(5); 9(7); 8(1); 10(8)\} \Rightarrow l=1$	No	
4	$Dfs(1) = \{1(0); 2(1); 3(2); 6(2); 5(1); 7(5); 9(7); 8(1); 10(8)\} \Rightarrow l=1$	No	
5	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 6(4); 8(1); 10(8)\}, Dfs(7) = \{7(0); 9(7)\} \Rightarrow l=2$	Yes	5
6	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 5(1); 7(5); 9(7); 8(1); 10(8)\} \Rightarrow l=1$	No	
7	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 6(4); 5(1); 9(5); 8(1); 10(8)\} \Rightarrow l=1$	No	
8	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 6(4); 5(1); 7(5); 9(7); 10(1)\} \Rightarrow l=1$	No	
9	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 6(4); 5(1); 7(5); 8(1); 10(8)\} \Rightarrow l=1$	No	
10	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 6(4); 5(1); 7(5); 9(7); 8(1)\} \Rightarrow l=1$	No	

Kết luận: G có 3 đỉnh trụ 1, 2 và 5.

b) Tìm số đỉnh tru của G sử dung BFS:

Tìm số thành phần liên thông k của G sử dụng BFS:

Bfs(1) = $\{1(0); 2(1), 5(1), 8(1), 10(1); 3(2), 4(2), 6(2); 7(5), 9(5)\} = V$

 \Rightarrow k= 1

Lập bảng:

Đỉnh u	Số thành phần liên thông l của G/{u}	l> k ?	Đỉnh trụ
1	Bfs(2)={2(0);3(2),4(2),6(2)}, Bfs(5)={5(0);7(5),9(5)}, Bfs(8)={8(0);10(8)} \Rightarrow l=3	Yes	1
2	Bfs(1)= $\{1(0);5(1));7(5),9(5);8(1),10(8)\}$, Bfs(3)= $\{3(0)\}$, Bfs(4)= $\{4(0);6(4)\}$ $\Rightarrow l=3$	Yes	2

3	Bfs(1)= $\{1(0);2(1),5(1),8(1),10(1);4(2),6(2);7(5),9(5)\}\Rightarrow l=1$	No	
4	Bfs(1)= $\{1(0);2(1),5(1),8(1),10(1);3(2),4(2),6(2);7(5),9(5)\} \Rightarrow l=1$	No	
5	Bfs(1)={ $1(0)$; $2(1)$, $8(1)$, $10(1)$; $3(2)$, $4(2)$, $6(2)$ }, Bfs(7)={ $7(0)$; $9(7)$ } \Rightarrow l=2	Yes	5
6	Bfs(1)= $\{1(0);2(1),5(1),8(1),10(1);3(2),4(2);7(5),9(5)\}\Rightarrow l=1$	No	
7	Bfs(1)= $\{1(0);2(1),5(1),8(1),10(1);3(2),4(2),6(2);9(5)\}\Rightarrow l=1$	No	
8	Bfs(1)= $\{1(0);2(1),5(1),10(1);3(2),4(2),6(2);7(5),9(5)\}\Rightarrow l=1$	No	
9	Bfs(1)= $\{1(0);2(1),5(1),8(1),10(1);3(2),4(2),6(2);7(5)\}\Rightarrow l=1$	No	
10	Bfs(1)= $\{1(0);2(1),5(1),8(1);3(2),4(2),6(2);7(5),9(5)\}\Rightarrow l=1$	No	

Kết luận: G có 3 đỉnh trụ 1, 2 và 5.

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh dưới dạng danh sách kề như sau:

$Ke(1) = \{2, 9, 10\}$	$Ke(6) = \{5, 7, 8\}$
$Ke(2) = \{1, 3, 4\}$	$Ke(7) = \{6\}$
$Ke(3) = \{2, 4\}$	$Ke(8) = \{6\}$
$Ke(4) = \{2, 3, 5\}$	$Ke(9) = \{1, 10\}$
$Ke(5) = \{4, 6\}$	Ke (10)= {1, 9}

- a) Sử dụng thuật toán tìm kiếm theo chiều sâu tìm tất cả các đỉnh trụ của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?
- b) Sử dụng thuật toán tìm kiếm theo chiều rộng tìm tất cả các đỉnh trụ của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?

<u>Giải</u>

Số đỉnh của G là n= 10.

a) Tìm số đỉnh trụ của G sử dụng DFS:

Tìm số thành phần liên thông k của G sử dung DFS:

 $Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 5(4); 6(5); 7(6); 8(6); 9(1); 10(9)\} = V$

 \Rightarrow k= 1

Lập bảng:

Đỉnh u	Số thành phần liên thông l của G/{u}	l> k ?	Đỉnh trụ
1	$Dfs(2) = \{2(0); 3(2); 4(3); 5(4); 6(5); 7(6); 8(6)\}, Dfs(9) = \{9(0); 10(9)\} \Rightarrow l = 2$	Yes	1
2	$Dfs(1) = \{1(0); 9(1); 10(9)\}, Dfs(3) = \{3(0); 4(3); 5(4); 6(5); 7(6); 8(6)\} \Rightarrow l=2$	Yes	2
3	$Dfs(1) = \{1(0); 2(1); 4(2); 5(4); 6(5); 7(6); 8(6); 9(1); 10(9)\} \Rightarrow l=1$	No	
4	$Dfs(1) = \{1(0); 2(1); 3(2); 9(1); 10(9)\}, Dfs(5) = \{5(0); 6(5); 7(6); 8(6)\} \Rightarrow 1=2$	Yes	4
5	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 9(1); 10(9)\}, Dfs(6) = \{6(0); 7(6); 8(6)\} \Rightarrow 1=2$	Yes	5
6	Dfs(1)= $\{1(0);2(1); 3(2);4(3);5(4); 9(1);10(9)\}$, Dfs(7)= $\{7(0)\}$, Dfs(8)= $\{8(0)\} \Rightarrow l=3$	Yes	6
7	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 5(4); 6(5); 8(6); 9(1); 10(9)\} \Rightarrow l=1$	No	
8	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 5(4); 6(5); 7(6); 9(1); 10(9)\} \Rightarrow l=1$	No	
9	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 5(4); 6(5); 7(6); 8(6); 9(1)\} \Rightarrow l=1$	No	
10	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 5(4); 6(5); 7(6); 8(6); 10(1)\} \Rightarrow l=1$	No	

Kết luận: G có 5 đinh trụ 1, 2, 4, 5 và 6.

b) Tìm số đỉnh trụ của G sử dụng BFS:

Tìm số thành phần liên thông k của G sử dụng BFS: Bfs(1) = $\{1(0); 2(1), 9(1), 10(1); 3(2), 4(2); 5(4); 6(5); 7(6), 8(6)\} = V.$ \Rightarrow k= 1

Lập bảng:

Đỉnh u	Số thành phần liên thông l của G\{u}	l> k ?	Đỉnh trụ
1	$Bfs(2)=\{2(0);3(2),4(2);5(4);6(5);7(6),8(6)\}, Bfs(9)=\{9(0);10(9)\} \Rightarrow l=2$	Yes	1
2	$Bfs(1)=\{1(0);9(1),10(1)\}, Bfs(3)=\{3(0);4(3);5(4);6(5);7(6),8(6)\} \Rightarrow l=2$	Yes	2
3	Bfs(1)= $\{1(0);2(1),9(1),10(1);4(2);5(4);6(5);7(6),8(6)\}\Rightarrow l=1$	No	
4	$Bfs(1)=\{1(0);2(1),9(1),10(1);3(2)\}, Bfs(5)=\{5(0);6(5);7(6),8(6)\}\Rightarrow l=2$	Yes	4
5	$Bfs(1)=\{1(0);2(1),9(1),10(1);3(2),4(2)\}, Bfs(6)=\{6(0);7(6),8(6)\} \Rightarrow l=2$	Yes	5
6	$Bfs(1)=\{1(0);2(1),9(1),10(1); 3(2);4(2);5(4)\}, Bfs(7)=\{7(0)\}, Bfs(8)=\{8(0)\}$ $\Rightarrow l=3$	Yes	6
7	Bfs(1)= $\{1(0);2(1),9(1),10(1);3(2),4(2);5(4);6(5);8(6)\}\Rightarrow l=1$	No	
8	Bfs(1)= $\{1(0);2(1),9(1),10(1);3(2),4(2);5(4);6(5);7(6)\}\Rightarrow l=1$	No	
9	Bfs(1)= $\{1(0);2(1),10(1);3(2),4(2);5(4);6(5);7(6),8(6)\}\Rightarrow l=1$	No	
10	Bfs(1)= $\{1(0);2(1),9(1);3(2),4(2);5(4);6(5);7(6),8(6)\}\Rightarrow l=1$	No	

Kết luận: G có 5 đỉnh trụ 1, 2, 4, 5 và 6.

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh dưới dạng ma trận kề như sau:

1	2	<mark>3</mark>	4	<mark>5</mark>	<mark>6</mark>	7	8	9	0
0	0	0	1	0	0	0	0	1	1
0	0	0	1	1	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0
1	1	0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0
0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	1	
1	0	0	0	0	0	0	1	0	1
1	0	0	0	0	0	0	1	1	0
	1 0 0 0 1 0 0 0	1 2 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0	1 2 3 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0	1 2 3 4 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0	1 2 3 4 5 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0	1 2 3 4 5 6 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0	1 2 3 4 5 6 7 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0	1 2 3 4 5 6 7 8 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0	1 2 3 4 5 6 7 8 9 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 <td< th=""></td<>

- a) Sử dụng thuật toán tìm kiếm theo chiều sâu tìm tất cả các cạnh cầu của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?
- b) Sử dụng thuật toán tìm kiếm theo chiều rộng tìm tất cả các cạnh cầu của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?

<u>Giải</u>

 $\overline{\text{Số d}}$ inh của G là n= 10.

a) Tìm số cạnh cầu của G sử dụng DFS:

Tìm số thành phần liên thông k của G sử dung DFS:

 $Dfs(1) = \{1(0); 4(1); 2(4); 5(2); 9(1); 8(9); 10(8)\}, Dfs(3) = \{3(0); 6(3); 7(6)\}$

 \Rightarrow k= 2

Lập bảng:

cạnh e	Số thành phần liên thông l của G/{e}	l> k ?	Cạnh cầu
(1,4)	Dfs(1)={1(0);9(1);8(9);10(8)},Dfs2)={2(0);4(2);5(4)}, Dfs(3)={3(0);6(3);7(6)} \Rightarrow l=3	Yes	(1,4)
(1,9)	$Dfs(1) = \{1(0); 4(1); 2(4); 5(2); 10(1); 8(10); 9(8)\}, Dfs(3) = \{3(0); 6(3); 7(6)\} \Rightarrow l=2$	No	
(1,10)	$Dfs(1) = \{1(0); 4(1); 2(4); 5(2); 9(1); 8(9); 10(8)\}, Dfs(3) = \{3(0); 6(3); 7(6)\} \Rightarrow l=2$	No	
(2,4)	$Dfs(1) = \{1(0); 4(1); 5(4); 2(5); 9(1); 8(9); 10(8)\}, Dfs(3) = \{3(0); 6(3); 7(6)\} \Rightarrow 1 = 2$	No	
(2,5)	$Dfs(1) = \{1(0); 4(1); 2(4); 5(2); 9(1); 8(9); 10(8)\}, Dfs(3) = \{3(0); 6(3); 7(6)\} \Rightarrow 1 = 2$	No	
(3,6)	$Dfs(1) = \{1(0); 4(1); 2(4); 5(2); 9(1); 8(9); 10(8)\}, Dfs(3) = \{3(0)\}$ $Dfs(6) = \{6(0); 7(6)\} \Rightarrow 1=3$	Yes	(3,6)
(4,5)	$Dfs(1) = \{1(0); 4(1); 2(4); 5(2); 9(1); 8(9); 10(8)\}, Dfs(3) = \{3(0); 6(3); 7(6)\} \Rightarrow 1 = 2$	No	
(6,7)	$Dfs(1) = \{1(0); 4(1); 2(4); 5(2); 9(1); 8(9); 10(8)\}, Dfs(3) = \{3(0); 6(3)\}$ $Dfs(7) = \{7(0)\} \Rightarrow 1=3$	Yes	(6,7)
(8,9)	$Dfs(1) = \{1(0); 4(1); 2(4); 5(2); 9(1); 10(1); 8(10)\}, Dfs(3) = \{3(0); 6(3); 7(6)\} \Rightarrow l=2$	No	
(8,10)	$Dfs(1) = \{1(0); 4(1); 2(4); 5(2); 9(1); 8(9); 10(9)\}, Dfs(3) = \{3(0); 6(3); 7(6)\} \Rightarrow l=2$	No	·
(9,10)	$Dfs(1) = \{1(0); 4(1); 2(4); 5(2); 9(1); 8(9); 10(8)\}, Dfs(3) = \{3(0); 6(3); 7(6)\} \Rightarrow l=2$	No	

Kết luận: G có 3 cạnh cầu (1,4), (3,6) và (6,7).

b) Tìm số cạnh cầu của G sử dụng BFS:

Tìm số thành phần liên thông k của G sử dụng BFS: $Bfs(1) = \{1(0); 4(1), 9(1), 10(1); 2(4); 5(4); 8(9)\}$

Bfs(3) = $\{3(0); 6(3); 7(6)\}$

 \Rightarrow k= 2

Lập bảng:

cạnh e	Số thành phần liên thông l của G/{e}	l> k ?	Cạnh cầu
(1,4)	Bfs(1)= $\{1(0);9(1),10(1);8(9)\}$, Bfs(2)= $\{2(0);4(2),5(2)\}$,	Yes	(1,4)
(1,4)	Bfs(3)= $\{3(0);6(3);7(6)\} \Rightarrow l=3$	168	(1,4)
(1,9)	Bfs(1)= $\{1(0);4(1),10(1);2(4),5(4);8(10);9(8)\}$,Bfs(3)= $\{3(0);6(3);7(6)\}\Rightarrow$ l=2	No	
(1,10)	Bfs(1)= $\{1(0);4(1),9(1);2(4),5(4);8(9);10(9)\}$,Bfs(3)= $\{3(0);6(3);7(6)\}\Rightarrow l=2$	No	
(2,4)	Bfs(1)= $\{1(0);4(1),9(1),10(1);5(4);8(9);2(5)\}$,Bfs(3)= $\{3(0);6(3);7(6)\}\Rightarrow$ l=2	No	
(2,5)	Bfs(1)= $\{1(0);4(1),9(1),10(1);2(4),5(4);8(9)\}$,Bfs(3)= $\{3(0);6(3);7(6)\}\Rightarrow$ l=2	No	
(2.6)	Bfs(1)= $\{1(0);4(1),9(1),10(1);2(4),5(4);8(9)\}$, Bfs(3)= $\{3(0)\}$,	Vac	(2.6)
(3,6)	Bfs(6)= $\{6(0);7(6)\} \Rightarrow 1=3$	Yes	(3,6)
(4,5)	Bfs(1)= $\{1(0);4(1),9(1),10(1);2(4);8(9);5(2)\}$,Bfs(3)= $\{3(0);6(3);7(6)\}\Rightarrow$ l=2	No	
(6.7)	Bfs(1)= $\{1(0);4(1),9(1),10(1);2(4),5(4);8(9)\}$, Bfs(3)= $\{3(0);6(3)\}$,	Yes	(6,7)
(6,7)	$Bfs(7) = \{7(0)\} \Rightarrow 1 = 3$	168	(0,7)
(8,9)	$Bfs(1) = \{1(0); 4(1), 9(1), 10(1); 2(4), 5(4); 8(10)\}, Bfs(3) = \{3(0); 6(3); 7(6)\} \Rightarrow l=2$	No	
(8,10)	Bfs(1)= $\{1(0);4(1),9(1),10(1);2(4),5(4);8(9)\}$,Bfs(3)= $\{3(0);6(3);7(6)\}\Rightarrow l=2$	No	
(9,10)	Bfs(1)= $\{1(0);4(1),9(1),10(1);2(4),5(4);8(9)\}$,Bfs(3)= $\{3(0);6(3);7(6)\}\Rightarrow$ l=2	No	

Kết luận: G có 3 cạnh cầu (1,4), (3,6) và (6,7).

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh và 12 cạnh dưới dạng danh sách cạnh như sau:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
1	2	2	6
1	5	4	6
1	8	5	7
1	10	5	9
2	3	7	9
2	4	8	10

- a) Sử dụng thuật toán tìm kiếm theo chiều sâu tìm tất cả các cạnh cầu của đồ thị G, chỉ rõ kết quả tai mỗi bước thực hiện theo thuật toán?
- b) Sử dụng thuật toán tìm kiếm theo chiều rộng tìm tất cả các cạnh cầu của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?

<u>Giải</u>

 $S\hat{o}$ đỉnh của G là n= 10.

a) Tìm số cạnh cầu của G sử dụng DFS:

Tìm số thành phần liên thông k của G sử dụng DFS:

 $Dfs(1) = \{1(0); 2(1); 3(2); 4(2); 6(4); 5(1); 7(5); 9(7); 8(1); 10(8)\} = V$

 \Rightarrow k= 1

Lập bảng:

cạnh e	Số thành phần liên thông l của G/{e}	l> k ?	Cạnh cầu
(1,2)	$Dfs(1) = \{1(0); 5(1); 7(5); 9(7); 8(1); 10(8)\}, Dfs(2) = \{2(0); 3(2); 4(2); 6(4)\} \Rightarrow l=2$	Yes	(1,2)
(1,5)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(2); 6(4); 8(1); 10(8)\}, Dfs(5) = \{5(0); 7(5); 9(7)\} \Rightarrow l=2$	Yes	(1,5)
(1,8)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(2); 6(4); 5(1); 7(5); 9(7); 10(1); 8(10)\} \Rightarrow l=1$	No	
(1,10)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(2); 6(4); 5(1); 7(5); 9(7); 8(1); 10(8)\} \Rightarrow l=1$	No	
(2,3)	$Dfs(1) = \{1(0); 2(1); 4(2); 6(4); 5(1); 7(5); 9(7); 8(1); 10(8), Dfs(3) = \{3(0)\} \Rightarrow l=2$	Yes	(2,3)
(2,4)	$Dfs(1) = \{1(0); 2(1); 3(2); 6(2); 4(6); 5(1); 7(5); 9(7); 8(1); 10(8)\} \Rightarrow l=1$	No	
(2,6)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(2); 6(4); 5(1); 7(5); 9(7); 8(1); 10(8)\} \Rightarrow l=1$	No	
(4,6)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(2); 6(2); 5(1); 7(5); 9(7); 8(1); 10(8)\} \Rightarrow l=1$	No	
(5,7)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(2); 6(4); 5(1); 9(5); 7(9); 8(1); 10(8)\} \Rightarrow l=1$	No	
(5,9)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(2); 6(4); 5(1); 7(5); 9(7); 8(1); 10(8)\} \Rightarrow l=1$	No	
(7,9)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(2); 6(4); 5(1); 7(5); 9(5); 8(1); 10(8)\} \Rightarrow l=1$	No	
(8,10)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(2); 6(4); 5(1); 7(5); 9(7); 8(1); 10(1)\} \Rightarrow l=1$	No	

Kết luận: G có 3 cạnh cầu (1,2), (1,5) và (2,3).

b) Tìm số cạnh cầu của G sử dụng DFS:

Tìm số thành phần liên thông k của G sử dụng DFS:

$$Dfs(1) = \{1(0); 2(1), 5(1), 8(1), 10(1); 3(2), 4(2), 6(2); 7(5), 9(5)\} = V$$

Lập bảng:

cạnh e	Số thành phần liên thông l của G/{e}	l> k ?	Cạnh cầu
(1,2)	Bfs(1)= $\{1(0);5(1),8(1),10(1);7(5),9(5)\}$,Bfs(2)= $\{2(0);3(2),4(2),6(2)\}$ \Rightarrow l=2	Yes	(1,2)
(1,5)	Bfs(1)= $\{1(0);2(1),8(1),10(1);3(2),4(2),6(2)\}$,Bfs(5)= $\{5(0);7(5),9(5)\}$ \Rightarrow l=2	Yes	(1,5)
(1,8)	Bfs(1)= $\{1(0);2(1),5(1),10(1);3(2),4(2),6(2);7(5),9(5);8(10)\}\Rightarrow l=1$	No	
(1,10)	Bfs(1)= $\{1(0);2(1),5(1),8(1);3(2),4(2),6(2);7(5),9(5);10(8)\} \Rightarrow l=1$	No	
(2,3)	Bfs(1)= $\{1(0);2(1),5(1),8(1),10(1);4(2),6(2);7(5),9(5)\}$,Bfs(3)= $\{3(0)\}\Rightarrow 1=2$	Yes	(2,3)
(2,4)	Bfs(1)= $\{1(0);2(1),5(1),8(1),10(1);3(2),6(2),4(6);7(5),9(5)\}\Rightarrow l=1$	No	
(2,6)	Bfs(1)= $\{1(0);2(1),5(1),8(1),10(1);3(2),4(2),6(4);7(5),9(5)\} \Rightarrow l=1$	No	
(4,6)	Bfs(1)= $\{1(0);2(1),5(1),8(1),10(1);3(2),4(2),6(2);7(5),9(5)\} \Rightarrow l=1$	No	
(5,7)	Bfs(1)= $\{1(0);2(1),5(1),8(1),10(1);3(2),4(2),6(2);9(5),7(9)\} \Rightarrow l=1$	No	
(5,9)	Bfs(1)= $\{1(0);2(1),5(1),8(1),10(1);3(2),4(2),6(2);7(5),9(7)\}\Rightarrow l=1$	No	
(7,9)	Bfs(1)= $\{1(0);2(1),5(1),8(1),10(1);3(2),4(2),6(2);7(5),9(5)\} \Rightarrow l=1$	No	
(8,10)	Bfs(1)= $\{1(0);2(1),5(1),8(1),10(1);3(2),4(2),6(2);7(5),9(5)\} \Rightarrow l=1$	No	

Kết luận: G có 3 cạnh cầu (1,2), (1,5) và (2,3).

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh dưới dạng danh sách kề như sau:

• 0 , 0	. 0
$Ke(1) = \{2, 9, 10\}$	$Ke(6) = \{5, 7, 8\}$
$Ke(2) = \{1, 3, 4\}$	$Ke(7) = \{6\}$
$Ke(3) = \{2, 4\}$	$Ke(8) = \{6\}$
$Ke(4) = \{2, 3, 5\}$	$Ke(9) = \{1, 10\}$
$Ke(5) = \{4, 6\}$	Ke (10)= {1, 9}

- a) Sử dụng thuật toán tìm kiếm theo chiều sâu tìm tất cả các cạnh cầu của đồ thị G, chỉ rõ kết quả tai mỗi bước thực hiện theo thuật toán?
- b) Sử dụng thuật toán tìm kiếm theo chiều rộng tìm tất cả các cạnh cầu của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?

<u>Giải</u>

 $\overline{\text{Số d}}$ inh của G là n= 10, m= 11.

a) Tìm số cạnh cầu của G sử dụng DFS:

Tìm số thành phần liên thông k của G sử dung DFS:

 $Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 5(4); 6(5); 7(6); 8(6); 9(1); 10(9)\} = V.$

 \Rightarrow k= 1

Lập bảng:

Cạnh e	Số thành phần liên thông l của G\{e}	l> k ?	Cạnh cầu
(1,2)	$Dfs(1) = \{1(0); 9(1); 10(9)\}, Dfs(2) = \{2(0); 3(2); 4(3); 5(4); 6(5); 7(6); 8(6)\} \Rightarrow l=2$	Yes	(1,2)
(1,9)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 5(4); 6(5); 7(6); 8(6); 10(1); 9(10)\} \Rightarrow l=1$	No	
(1,10)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 5(4); 6(5); 7(6); 8(6); 9(1); 10(9)\} \Rightarrow l=1$	No	
(2,3)	$Dfs(1) = \{1(0); 2(1); 4(2); 3(4); 5(4); 6(5); 7(6); 8(6); 9(1); 10(9)\} \Rightarrow l=1$	No	
(2,4)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 5(4); 6(5); 7(6); 8(6); 9(1); 10(9)\} \Rightarrow l=1$	No	
(3,4)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 5(4); 6(5); 7(6); 8(6); 9(1); 10(9)\} \Rightarrow l=1$	No	
(4,5)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 9(1); 10(9)\}, Dfs(5) = \{5(0); 6(5); 7(6); 8(6)\} \Rightarrow l=2$	Yes	(4,5)
(5,6)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 5(4); 9(1); 10(9)\}, Dfs(6) = \{6(0); 7(6); 8(6)\} \Rightarrow l=2$	Yes	(5,6)
(6,7)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 5(4); 6(5); 8(6); 9(1); 10(9)\}, Dfs(7) = \{7(0)\} \Rightarrow l=2$	Yes	(6,7)
(6,8)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 5(4); 6(5); 7(6); 9(1); 10(9)\}, Dfs(8) = \{8(0)\} \Rightarrow l=2$	Yes	(6,8)
(9,10)	$Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 5(4); 6(5); 7(6); 8(6); 9(1); 10(1)\} \Rightarrow l=1$	No	

Kết luận: G có 5 cạnh cầu (1,2), (4,5), (5,6), (6,7) và (6,8).

b) Tìm số cạnh cầu của G sử dụng BFS: Tìm số thành phần liên thông k của G sử dụng BFS: Bfs(1) = {1(0); 2(1), 9(1), 10(1); 3(2), 4(2); 5(4); 6(5); 7(6);,8(6)}

Lập bảng:

cạnh e	Số thành phần liên thông l của G/{e}	l> k ?	Cạnh cầu
(1,2)	Bfs(1)= $\{1(0);9(1),10(1)\}$, Bfs(2)= $\{2(0);3(2),4(2);5(4);6(5);7(6);8(6)\}\Rightarrow l=2$	Yes	(1,2)
(1,9)	Bfs(1)= $\{1(0);2(1),10(1);3(2),4(2);5(4);6(5);7(6),8(6);9(10)\}\Rightarrow l=1$	No	
(1,10)	Bfs(1)= $\{1(0);2(1),9(1),3(2),4(2);5(4);6(5);7(6),8(6);10(9)\}\Rightarrow l=1$	No	
(2,3)	Bfs(1)= $\{1(0);2(1),9(1),10(1);4(2),3(4);5(4);6(5);7(6),8(6)\}\Rightarrow l=1$	No	
(2,4)	Bfs(1)= $\{1(0);2(1),9(1),10(1);3(2);4(3);5(4);6(5);7(6),8(6)\}\Rightarrow l=1$	No	
(3,4)	Bfs(1)= $\{1(0);2(1),9(1),10(1);3(2),4(2);5(4);6(5);7(6),8(6)\}\Rightarrow l=1$	No	
(4,5)	Bfs(1)= $\{1(0);2(1),9(1),10(1);3(2),4(2)\}$, Bfs(5)= $\{5(0);6(5);7(6),8(6)\}\Rightarrow l=2$	Yes	(4,5)
(5,6)	Bfs(1)= $\{1(0);2(1),9(1),10(1);3(2),4(2);5(4)\}$, Bfs(6)= $\{6(0);7(6),8(6)\}\Rightarrow l=2$	Yes	(5,6)
(6,7)	Bfs(1)= $\{1(0);2(1),9(1),10(1);3(2),4(2);5(4);6(5);8(6)\}$, Bfs(7)= $\{7(0)\}\Rightarrow l=2$	Yes	(6,7)
(6,8)	Bfs(1)= $\{1(0);2(1),9(1),10(1);3(2),4(2);5(4);6(5);7(6)\}$, Bfs(8)= $\{8(0)\}\Rightarrow l=2$	Yes	(6,8)
(9,10)	Bfs(1)= $\{1(0);2(1),9(1),10(1);3(2),4(2);5(4);6(5);7(6),8(6)\}\Rightarrow l=1$	No	·

Kết luận: G có 5 cạnh cầu (1,2), (4,5), (5,6), (6,7) và (6,8).

Cho đồ thi có hướng $G = \langle V, E \rangle$ gồm 10 đỉnh dưới dang ma trân kề như sau:

		\								
	1	2	3	4	<mark>5</mark>	<mark>6</mark>	7	8	9	0
1	0	1	1	0	0	0	0	0	0	0
2	0	0	1	1	1	0	0	0	0	0
3	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	1	1	0	0	0
5	0	0	0	0	0	1	0	0	0	0
6	0	0	0	0	0	0	1	1	0	0
7	0	0	0	1	0	0	0	1	0	0
8	1	1	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	1
0	1	1	0	0	0	0	0	0	0	0

- a) Sử dụng thuật toán tìm kiếm theo chiều sâu chứng minh rằng G là đồ thị liên thông mạnh?
- b) Sử dụng thuật toán tìm kiếm theo chiều rộng chứng minh rằng G là đồ thị liên thông mạnh?

Giải

Số đỉnh của G là n=10.

```
a) Sử dụng DFS chứng minh G liên thông mạnh:
```

```
Dfs(1)= \{1(0); 2(1); 3(2); 9(3); 10(9); 4(2); 6(4); 7(6); 8(7); 5(2)\} = V.

Dfs(2)= \{2(0); 3(2); 9(3); 10(9); 1(10); 4(2); 6(4); 7(6); 8(7); 5(2)\} = V.

Dfs(3)= \{3(0); 9(3); 10(9); 1(10); 1(2); 4(2); 6(4); 7(6); 8(7); 5(2)\} = V.

Dfs(4)= \{4(0); 6(4); 7(6); 8(7); 1(8); 2(1); 3(2); 9(3); 10(9); 5(2)\} = V

Dfs(5)= \{5(0); 6(5); 7(6); 4(7); 8(7); 1(8); 2(1); 3(2); 9(3); 10(9); 5(2)\} = V

Dfs(6)= \{6(0); 7(6); 4(7); 8(7); 1(8); 2(1); 3(2); 9(3); 10(9); 5(2)\} = V

Dfs(7)= \{7(0); 4(7); 6(4); 8(6); 1(8); 2(1); 3(2); 9(3); 10(9); 5(2)\} = V

Dfs(8)= \{8(0); 1(8); 2(1); 3(2); 9(3); 10(9); 4(2); 6(4); 7(6); 5(2)\} = V

Dfs(9)= \{9(0); 10(9); 1(10); 2(1); 3(2); 9(3); 4(2); 6(4); 7(6); 8(7); 5(2)\} = V

Kết luân: G liên thông mạnh.
```

a) Sử dụng BFS chứng minh G liên thông mạnh:

```
\begin{array}{l} Bfs(1) = \{1(0); 2(1), 3(1); 4(2), 5(2); 9(3), 10(3); 6(4), 7(4); 8(6)\} = V \\ Bfs(2) = \{2(0); 3(2), 4(2), 5(2); 9(3), 10(3); 6(4), 7(4); 1(10); 8(6)\} = V \\ Bfs(3) = \{3(0); 9(3), 10(3); 1(10); 2(1), 4(2), 5(2); 6(4), 7(4); 8(6)\} = V \\ Bfs(4) = \{4(0); 6(4), 7(4); 8(6); 1(8); 2(1), 3(1); 5(2); 9(3), 10(3)\} = V \\ Bfs(5) = \{5(0); 6(5); 7(6), 8(6); 4(7); 1(8); 2(1), 3(1); 9(3), 10(3)\} = V \\ Bfs(6) = \{6(0); 7(6), 8(6); 1(8); 2(1), 3(1); 4(2), 5(2); 9(3), 10(3)\} = V \\ Bfs(7) = \{7(0); 4(7), 8(7); 1(8); 2(1), 3(1); 5(2); 9(3), 10(3); 6(5)\} = V \\ Bfs(8) = \{8(0); 1(8), 2(8); 3(1); 4(2), 5(2); 9(3), 10(3); 6(4), 7(4)\} = V \\ Bfs(9) = \{9(0); 10(9); 1(10), 2(10); 3(1); 4(2), 5(2); 9(3); 6(4), 7(4); 8(6)\} = V \\ Bfs(10) = \{10(0); 1(10), 2(10); 3(1); 4(2), 5(2); 9(3); 6(4), 7(4); 8(6)\} = V \\ \end{array}
```

Kết luận: G liên thông mạnh.

Cho đồ thi có hướng $G = \langle V, E \rangle$ gồm 10 đỉnh và 16 canh dưới dang danh sách canh như sau:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
1	2	5	8
1	5	5	9
2	3	6	9
2	4	7	1
3	6	7	2
3	10	8	9
4	6	9	10
4	7	10	1

- a) Sử dung thuật toán tìm kiếm theo chiều sâu chứng minh rằng G là đồ thi liên thông manh?
- b) Sử dụng thuật toán tìm kiếm theo chiều rộng chứng minh rằng G là đồ thị liên thông mạnh?

<u>Giải</u>

Số đỉnh của đồ thi có hướng G là n= 10.

a) Sử dụng DFS chứng minh G liên thông mạnh :

```
\begin{array}{l} \text{Dfs}(1) = \{1(0); \, 2(1); \, 3(2); \, 6(3); \, 9(6); \, 10(9); \, 4(2); \, 7(4); \, 5(1); \, 8(5)\} = V \\ \text{Dfs}(2) = \{2(0); \, 3(2); \, 6(3); \, 9(6); \, 10(9); \, 1(10); \, 5(1); \, 8(5); \, 4(2); \, 7(4)\} = V \\ \text{Dfs}(3) = \{3(0); \, 6(3); \, 9(6); \, 10(9); \, 1(10); \, 2(1); \, 4(2); \, 7(4); \, 5(1); \, 8(5)\} = V \\ \text{Dfs}(4) = \{4(0); \, 7(4); \, 1(7); \, 2(1); \, 3(2); \, 6(3); \, 9(6); \, 10(9); \, 5(1); \, 8(5)\} = V \\ \text{Dfs}(5) = \{5(0); \, 8(5); \, 9(8); \, 10(9); \, 1(10); \, 2(1); \, 3(2); \, 6(3); \, 4(2); \, 7(4)\} = V \\ \text{Dfs}(6) = \{6(0); \, 9(6); \, 10(9); \, 1(10); \, 2(1); \, 3(2); \, 4(2); \, 7(4); \, 5(1); \, 8(5)\} = V \\ \text{Dfs}(7) = \{7(0); \, 1(7); \, 2(1); \, 3(2); \, 6(3); \, 9(6); \, 10(9); \, 4(2); \, 7(4); \, 5(1)\} = V \\ \text{Dfs}(8) = \{8(0); \, 9(8); \, 10(9); \, 1(10); \, 2(1); \, 3(2); \, 6(3); \, 4(2); \, 7(4); \, 5(1); \, 8(1)\} = V \\ \text{Dfs}(9) = \{9(0); \, 10(9); \, 1(10); \, 2(1); \, 3(2); \, 6(3); \, 4(2); \, 7(4); \, 5(1); \, 8(1)\} = V \\ \text{Dfs}(10) = \{10(0); \, 1(10); \, 2(1); \, 3(2); \, 6(3); \, 9(6); \, 4(2); \, 7(4); \, 5(1); \, 8(1)\} = V \\ \end{array}
```

a) Sử dung BFS chứng minh G liên thông manh:

Kết luận: G liên thông mạnh.

```
\begin{array}{l} Bfs(1) = \{1(0); 2(1), 5(1); 3(2); 4(2); 8(5), 9(5); 6(3), 10(3); 7(4)\} = V \\ Bfs(2) = \{2(0); 3(2), 4(2); 6(3), 10(3); 7(4); 9(6); 1(10); 5(1); 8(5)\} = V \\ Bfs(3) = \{3(0); 6(3), 10(3); 9(6); 1(10); 2(1), 5(1); 4(2); 8(5); 7(4)\} = V \\ Bfs(4) = \{4(0); 6(4), 7(4); 9(6); 1(7), 2(7); 10(9); 5(1); 3(2), 4(2)\} = V \\ Bfs(5) = \{5(0); 8(5), 9(5); 9(6); 10(9); 1(10); 2(1), 5(1); 3(2), 4(2)\} = V \\ Bfs(6) = \{6(0); 9(6); 10(9); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5); 7(4)\} = V \\ Bfs(7) = \{7(0); 1(7), 2(7); 5(1); 3(2), 4(2); 8(5), 9(5); 6(3), 10(3)\} = V \\ Bfs(8) = \{8(0); 9(8); 10(9); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5); 6(3); 7(4)\} = V \\ Bfs(9) = \{9(0); 10(9); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5); 6(3); 7(4)\} = V \\ Bfs(10) = \{10(1); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5), 9(5); 6(3); 7(4)\} = V \\ Bfs(10) = \{10(1); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5), 9(5); 6(3); 7(4)\} = V \\ Bfs(10) = \{10(1); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5), 9(5); 6(3); 7(4)\} = V \\ Bfs(10) = \{10(1); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5), 9(5); 6(3); 7(4)\} = V \\ Bfs(10) = \{10(1); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5), 9(5); 6(3); 7(4)\} = V \\ Bfs(10) = \{10(1); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5), 9(5); 6(3); 7(4)\} = V \\ Bfs(10) = \{10(1); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5), 9(5); 6(3); 7(4)\} = V \\ Bfs(10) = \{10(1); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5), 9(5); 6(3); 7(4)\} = V \\ Bfs(10) = \{10(1); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5), 9(5); 6(3); 7(4)\} = V \\ Bfs(10) = \{10(1); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5), 9(5); 6(3); 7(4)\} = V \\ Bfs(10) = \{10(1); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5), 9(5); 6(3); 7(4)\} = V \\ Bfs(10) = \{10(1); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5), 9(5); 6(3); 7(4)\} = V \\ Bfs(10) = \{10(1); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5), 9(5); 6(3); 7(4)\} = V \\ Bfs(10) = \{10(1); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5), 9(5); 6(3); 7(4)\} = V \\ Bfs(10) = \{10(1); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5); 6(3); 7(4)\} = V \\ Bfs(10) = \{10(1); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5); 6(3); 7(4)\} = V \\ Bfs(10) = \{10(1); 1(10); 2(1), 5(1); 3(2), 4(2); 8(5); 6(3); 7(4)\} = V \\ Bfs(10) =
```

Câu hỏi 18
Cho đồ thị có hượng G = <V, E> gồm 10 đỉnh dưới dạng danh sách kề như sau:

$Ke(1) = \{4, 10\}$	$Ke(6) = \{7\}$
$Ke(2) = \{4, 5, 6\}$	$Ke(7) = \{3, 9\}$
$Ke(3) = \{8\}$	$Ke(8) = \{9\}$
$Ke(4) = \{2, 10\}$	$Ke(9) = \{8\}$
$Ke(5) = \{7, 8\}$	$Ke(10) = \{1\}$

- c) Sử dụng thuật toán tìm kiếm theo chiều sâu chứng minh rằng G là đồ thị liên thông mạnh?
 d) Sử dụng thuật toán tìm kiếm theo chiều rộng chứng minh rằng G là đồ thị liên thông mạnh?

Cho đồ thị có hướng $G = \langle V, E \rangle$ gồm 10 đỉnh dưới dạng ma trận kề như sau:

_	0									
	1	2	3	4	<mark>5</mark>	<mark>6</mark>	<mark>7</mark>	8	9	0
1	0	0	0	1	0	0	0	0	0	1
2	0	0	0	1	0	0	0	0	0	0
3	0	1	0	0	0	0	0	1	1	0
4	0	1	0	0	0	0	0	0	0	1
5	0	0	0	0	0	1	1	0	0	0
6	0	0	0	0	1	0	1	1	0	0
7	0	0	1	0	0	0	0	1	1	0
8	0	0	0	0	1	1	1	0	1	0
9	0	0	0	0	1	0	0	1	0	0
0	1	1	0	0	0	0	0	0	0	0

- a) Sử dụng thuật toán tìm kiếm theo chiều sâu, chứng minh rằng G là đồ thị liên thông yếu nhưng không liên thông mạnh?
- b) Sử dụng thuật toán tìm kiếm theo chiều rộng, chứng minh rằng G là đồ thị liên thông yếu nhưng không liên thông mạnh?
- c) Sử dụng thuật toán tìm kiếm theo chiều sâu tìm số thành phần liên thông mạnh của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?
- d) Sử dụng thuật toán tìm kiếm theo chiều rộng tìm số thành phần liên thông mạnh của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?

Giải

Số đỉnh của G là n=10.

a) Sử dụng DFS chứng minh G là đồ thị liên thông yếu nhưng không liên thông mạnh:

Dfs(1)= $\{1(0); 4(1); 2(4); 10(4)\} \neq V \implies G$ không liên thông mạnh.

Xét đồ thi vô hướng nền của G:

 $Dfs(1) = \{1(0); 4(1); 2(4); 3(2); 7(3); 5(7); 6(5); 8(6); 9(8); 10(2)\}$

Kết luận: G là đồ thị liên thông yếu nhưng không liên thông mạnh.

b) Sử dụng BFS chứng minh G là đồ thị liên thông yếu nhưng không liên thông mạnh:

Bfs(1)= $\{1(0); 4(1), 10(1); 2(4); 10(4)\} \neq V \implies G$ không liên thông mạnh.

Xét đồ thị vô hướng nền của G:

Bfs(1)= $\{1(0); 4(1), 10(1); 2(4); 3(2); 7(3), 8(3), 9(3); 5(7), 6(7)\} = V$

Kết luận: G là đồ thị liên thông yếu nhưng không liên thông mạnh.

c) Sử dụng thuật toán tìm kiếm theo chiều sâu tìm số thành phần liên thông mạnh của đồ thị G:

Dfs(1)= $\{1(0); 4(1); 2(4); 10(4)\}$

 $Dfs(2) = \{2(0); 4(2); 10(4); 1(10)\}$

 $Dfs(3) = \{3(0); 2(3); 4(2); 10(4); 1(10); 8(3); 5(8); 6(5); 7(6); 9(7)\}$

 $Dfs(4) = \{4(0); 2(4); 10(4); 1(10)\}$

 $Dfs(5) = \{5(0); 6(5); 7(6); 3(7); 2(3); 4(2); 10(4); 1(10); 8(3); 9(8)\}$

 $Dfs(6) = \{6(0); 5(6); 7(5); 3(7); 2(3); 4(2); 10(4); 1(10); 8(3); 9(8)\}$

Dfs(7)= $\{7(0); 3(7); 2(3); 4(2); 10(4); 1(10); 8(3); 5(8); 6(5); 7(6)\}$ Dfs(8)= $\{8(0); 5(8); 6(5); 7(6); 3(7); 2(3); 4(2); 10(4); 1(10); 9(7)\}$

Dfs(9)= {9(0); 5(9); 6(5); 7(6); 3(7); 2(3); 4(2); 10(4); 1(10); 8(9)}

 $Dfs(10) = \{10(0); 1(10); 4(1); 2(4)\}$

```
k=1 \Rightarrow \{1, 4, 2, 10\}

k=2 \Rightarrow \{3, 8, 5, 6, 7, 9\}
```

Kết luận:

Số thành phần liên thông mạnh của G là k=2; Thành phần liên thông $1=\{1,2,4,10\}$ Thành phần liên thông $2=\{3,5,6,7,8,9\}$

d) Sử dụng thuật toán tìm kiếm theo chiều rộng tìm số thành phần liên thông mạnh của đồ thị G: $Bfs(1) = \{1(0); 4(1), 10(1); 2(4)\}$ $Bfs(2) = \{2(0); 4(2); 10(4); 1(10)\}$ $Bfs(3) = \{3(0); 2(3), 8(3), 9(3); 4(2); 5(8), 6(8), 7(8); 10(4); 1(10)\}$ $Bfs(4) = \{4(0); 2(4), 10(4); 1(10)\}$ $Bfs(5) = \{5(0); 6(5), 7(5); 8(6); 3(7), 9(7); 2(3); 4(2); 10(4); 1(10)\}$ $Bfs(6) = \{6(0); 5(6), 7(6), 8(6); 3(7), 9(7); 2(3); 4(2); 10(4); 1(10)\}$ $Bfs(7) = \{7(0); 3(7), 8(7), 9(7); 2(3); 5(8), 6(8); 4(2); 10(4); 1(10)\}$ $Bfs(8) = \{8(0); 5(8), 6(8), 7(8), 9(8); 3(7); 2(3); 4(2); 10(4); 1(10)\}$

 $k=1 \Rightarrow \{1, 4, 10, 2\}$ $k=2 \Rightarrow \{3, 8, 9, 5, 6, 7\}$

Bfs(10)= $\{10(0); 1(10), 2(10); 4(1)\}$

Kết luận:

Số thành phần liên thông mạnh của G là k=2; Thành phần liên thông $1=\{1,2,4,10\}$ Thành phần liên thông $2=\{3,5,6,7,8,9\}$

Bfs(9)= $\{9(0); 5(9), 8(9); 6(5), 7(5); 3(7); 2(3); 4(2); 10(4); 1(10)\}$

Cho đồ thi có hướng $G = \langle V, E \rangle$ gồm 10 đỉnh và 16 canh dưới dang danh sách canh như sau:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
1	2	5	9
1	5	5	10
2	3	6	7
2	4	7	2
3	4	7	8
3	6	8	5
4	6	9	10
4	7	10	8

- a) Sử dụng thuật toán tìm kiếm theo chiều sâu, chứng minh rằng G là đồ thị liên thông yếu nhưng không liên thông mạnh?
- b) Sử dụng thuật toán tìm kiếm theo chiều rộng, chứng minh rằng G là đồ thị liên thông yếu nhưng không liên thông mạnh?
- c) Sử dụng thuật toán tìm kiếm theo chiều sâu tìm số thành phần liên thông mạnh của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?
- d) Sử dụng thuật toán tìm kiếm theo chiều rộng tìm số thành phần liên thông mạnh của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán?

Giải

Số đỉnh của G là n=10.

a) Sử dụng DFS chứng minh G là đồ thị liên thông yếu nhưng không liên thông mạnh:

 $Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 6(4); 7(6); 8(7); 5(8); 9(5); 10(9)\} = V$

 $Dfs(2) = \{2(0); \, 3(2); \, 4(3); \, 6(4); \, 7(6); \, 8(7); \, 5(8); \, 9(5); \, 10(9)\} \neq \ V \Rightarrow G \ không \ liên \ thông \ mạnh.$

Xét đồ thị vô hướng nền của G:

 $Df_{S}(1) = \{1(0); 2(1); 3(2); 4(3); 6(4); 7(6); 8(7); 5(8); 9(5); 10(9)\} = V$

Kết luận: G là đồ thị liên thông yếu nhưng không liên thông mạnh.

b) Sử dụng BFS chứng minh G là đồ thị liên thông yếu nhưng không liên thông mạnh:

Bfs(1)= $\{1(0); 2(1), 5(1); 3(2), 4(2); 9(5), 10(5); 6(3); 7(4); 8(7)\} = V$

Bfs(2)= $\{2(0); 3(2), 4(2); 6(3); 7(4); 8(7); 5(8); 9(5), 10(5)\} \neq V \Rightarrow G$ không liên thông mạnh. Xét đồ thị vô hướng nền của G:

Bfs(1)= $\{1(0); 2(1), 5(1); 3(2), 4(2), 7(2); 8(5), 9(5), 10(5); 6(3)\}=V \Rightarrow G$ không liên thông **Kết luân**: G là đồ thi liên thông yếu nhưng không liên thông manh

c) Sử dụng thuật toán tìm kiếm theo chiều sâu tìm số thành phần liên thông mạnh của đồ thị G:

 $Dfs(1) = \{1(0); 2(1); 3(2); 4(3); 6(4); 7(6); 8(7); 5(8); 9(5); 10(9)\}\$

 $Dfs(2) = \{2(0); 3(2); 4(3); 6(4); 7(6); 8(7); 5(8); 9(5); 10(9)\}$

 $Dfs(3) = \{3(0); 4(3); 6(4); 7(6); 2(7); 8(7); 5(8); 9(5); 10(9)\}$

 $Dfs(4) = \{4(0); 6(4); 7(6); 2(7); 3(2); 8(7); 5(8); 9(5); 10(9)\}$

 $Dfs(5) = \{5(0); 9(5); 10(9); 8(10)\}$

 $Dfs(6) = \{6(0); 7(6); 2(7); 3(2); 4(3); 8(7); 5(8); 9(5); 10(9)\}$

 $Dfs(7) = \{7(0); 2(7); 3(2); 4(3); 6(3); 8(7); 5(8); 9(5); 10(9)\}$

 $Dfs(8) = \{8(0); 5(8); 9(5); 10(9)\}$

 $Dfs(9) = \{9(0); 10(9); 8(10); 5(8)\}$

Dfs(10)= $\{10(0); 8(10); 5(8); 9(5)\}$

```
k=1 \Rightarrow \{1\}

k=2 \Rightarrow \{2, 3, 4, 6, 7\}

k=3 \Rightarrow \{5, 9, 10, 8\}
```

Kết luận:

Số thành phần liên thông mạnh của G là k=3; Thành phần liên thông $1=\{1\}$ Thành phần liên thông $2=\{2,3,6,7\}$ Thành phần liên thông $3=\{5,8,9,10\}$

d) Sử dụng thuật toán tìm kiếm theo chiều rộng tìm số thành phần liên thông mạnh của đồ thị G:

```
\begin{array}{l} Bfs(1) = \{1(0); 2(1), 5(1); 3(2), 4(2); 9(5), 10(5); 6(3); 7(4); 8(7)\} \\ Bfs(2) = \{2(0); 3(2), 4(2); 6(3); 7(4); 8(7); 5(8); 9(5), 10(5)\} \\ Bfs(3) = \{3(0); 4(3), 6(3); 7(4); 2(7), 8(7); 5(8); 9(5), 10(5)\} \\ Bfs(4) = \{4(0); 6(4), 7(4); 2(7), 8(7); 3(2); 5(8); 9(5), 10(5)\} \\ Bfs(5) = \{5(0); 9(5), 10(5); 8(10); \\ Bfs(6) = \{6(0); 7(6); 2(7), 8(7); 3(2), 4(2); 5(8); 9(5), 10(5)\} \\ Bfs(7) = \{7(0); 2(7), 8(7); 3(2), 4(2); 5(8); 6(3); 9(5), 10(5)\} \\ Bfs(8) = \{8(0); 5(8); 9(5), 10(5)\} \\ Bfs(9) = \{9(0); 10(9); 8(10); 5(8)\} \\ Bfs(10) = \{10(0); 8(10); 5(8); 10(5)\} \\ k = 1 \Rightarrow \{1\} \\ k = 2 \Rightarrow \{2, 3, 4, 6, 7\} \\ k = 3 \Rightarrow \{5, 9, 10, 8\} \end{array}
```

Kết luận:

Số thành phần liên thông mạnh của G là k=3; Thành phần liên thông $1=\{1\}$ Thành phần liên thông $2=\{2,3,6,7\}$ Thành phần liên thông $2=\{5,8,9,10\}$