Фрагмент текста диссертации

Романов, А.Ю. Методы автоматизации проектирования сетей на кристалле на основе квазиоптимальных топологий [Текст]: дис. канд. тех. наук: 05.13.12: защищена 24.12.15: утв. 06.06.16 / Романов Александр Юрьевич. - М.: ИППМ, 2015. - 188 с.

2.4. Постановка задачи синтеза топологий с заданными параметрами и определение критериев оптимальности топологии СтнК

Отображение топологии СтнК возможно несколькими способами. Первый способ — графический, применялся нами в предыдущей главе для иллюстрации примеров топологий СтнК. Однако он недостаточно удобен, поскольку не является цифровым, а потому не может быть интерпретирован компьютером напрямую. Кроме того, одна и та же топология может быть представлена в совершенно разном виде, так что даже сложно допустить, что это одна и та же топология (например, spidergon на рис. 2.12).

Другой способ отображения топологии — это составление бинарной матрицы смежности. Матрица смежности имеет размер NxN: на пересечении столбца x и строки y размещается 1, если вершины x и y имеют общее ребро, или 0 — в противном случае (рис. 2.22a). Матрица является симметричной и содержит нули на главной диагонали. Таким образом, информационными являются или верхний правый или нижний левый треугольники матрицы, состоящие из N(N-1)/2 ячеек. Данное представление графа топологии является простым, наглядным и удобным для реализации алгоритмов нахождения степеней вершин и минимального расстояния между узлами.

Еще одним способом представления графов топологий является составление матрицы инцидентности, в которой строки соответствуют вершинам, а столбцы – ребрам. Единицы размещают напротив вершин, к которым ребро инцидентно (рис. 2.226). В других ячейках ставят нули. Иногда эту матрицу представляют в виде пар номеров вершин, связанных между собой ребром. Например, граф на рис. 2.22в можно описать следующим образом: (0, 1), (0, 2), (1, 2), (1, 3), (2, 4), (2, 5), (3, 4), (3, 5). Такое представление графа топологии также является довольно удобным и информативным, хотя и избыточным по сравнению с матрицей смежности.

011000 100100 100011 010011 001100	1100000 1011000 0110110 0001001 0000100	
001100	0000011	
a	б	В

Рис. 2.22. Матрица смежности (а) и матрица инцидентности (б) для графа топологии с 6 вершинами (в)

Дадим формальное математическое описание топологии СтнК. Граф T(R, Ch) из общего кортежа (1.1), описывающего процесс проектирования СтнК, можно представить в виде бинарной матрицы коэффициентов A, задающей матрицу смежности:

$$A = (a)_{i,j}^{N-1,N-1} = \begin{bmatrix} a_{0,0} & \dots & a_{0,j} & \dots & a_{0,N-1} \\ \dots & \dots & \dots & \dots \\ a_{i,0} & \dots & a_{i,j} & \dots & a_{i,N-1} \\ \dots & \dots & \dots & \dots \\ a_{N-1,0} & \dots & a_{N-1,j} & \dots & a_{N-1,N-1} \end{bmatrix},$$
(2.3)

где $a_{i,j} = 0/1$ (i = 1...N-1, j = 1...N-1) в случае отсутствия/наличия связи между соответствующими вершинами;

N – количество узлов.

Свойства матрицы A:

- 1) $a_{i,j} = 0$, если i = j. Главная диагональ матрицы A содержит 0.
- 2) $a_{i,j} = a_{j,i}$, для $\forall i,j$. Матрица A является треугольной и симметричной.

Сформулируем ряд ограничений, налагаемых на матрицу A и обусловленных особенностями СтнК:

1) Суммы элементов в столбцах матрицы должны быть меньше либо равны заданной степени вершин СтнК:

для
$$\forall i: \sum_{i=0}^{N-1} a_{i,j} \le St_{\max}$$
. (2.4)

2) Суммы элементов в строках матрицы – меньше либо равны заданной степени вершин СтнК:

для
$$\forall j: \sum_{i=0}^{N-1} a_{i,j} \leq St_{\text{max}}$$
. (2.5)

3) Сумма элементов матрицы равна удвоенному количеству соединений между узлами в СтнК:

$$\frac{\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} a_{i,j}}{2} = Ed.$$
 (2.6)

Кроме количества соединений между узлами (Ed), характеристики матрицы топологии СтнК задаются диаметром (D) и средним расстоянием (L_{av}), формулы для нахождения которых определены ранее (2.1, 2.2).

Как уже было отмечено, минимизация таких параметров графа топологии СтнК, как его диаметр и среднее расстояние между узлами, позволяет уменьшить время доставки пакетов и увеличить пропускную способность сетей, а также влияет на их надежность и структурную устойчивость [191]. Минимизация количества соединений между узлами непосредственно влияет на ресурсозатраты.

В связи с этим, одной из фундаментальных задач теории графов применительно к построению сетей на кристалле является синтез **оптимальных графов топологий СтнК** с минимальным средним расстоянием и минимальным количеством соединений между узлами при заданных диаметре, степени и количестве узлов.

Определение критерия оптимальности топологии СтнК. Базовыми критериями оптимальности СтнК являются минимизация среднего расстояния между узлами и уменьшение количества соединений между ними. Дополнительно можно рассматривать критерии достижения минимума диаметра и степени вершин для заданного количества узлов [45]. Предложенные критерии являются противоположными, и поэтому

Примечание [RA1]: Монахова Э.А Структурные и коммуникативные свойства циркулянтных сетей существует необходимость в определении интегрального критерия, который будет объединять однофакторные критерии.

Для нами предложено применение принципа минимизации взвешенной суммы однофакторных критериев [192], что позволяет сформулировать аддитивный интегральный критерий оптимальности топологии СтнК [35]:

$$optK = k_1 \cdot St_{max \ norm} + k_2 \cdot D_{norm} + k_3 \cdot L_{av \ norm} + k_4 \cdot Ed_{norm}, \ optK \rightarrow min,$$
 (2.7)

где $\sum_{i=1}^{4} k_i = 1$ — коэффициенты важности критериев, которые избираются

эмпирическим путем на основе экспертных оценок;

$$St_{\max_norm} = \frac{St_{\max}}{St_{\max_reg}}, \quad D_{norm} = \frac{D}{D_{reg}}, \quad L_{av_norm} = \frac{L_{av}}{L_{av_reg}}, Ed_{norm} = \frac{Ed}{Ed_{reg}}$$

нормированные значения величин среднего расстояния, количества соединений, диаметра и максимальной степени вершин, приведенные к известным значениям данных характеристик регулярных топологий (например, torus или mesh).

Предложенный критерий является универсальным, поскольку, задавая соответствующие коэффициенты важности, можно выбирать стратегию оптимизации и даже пренебречь некоторыми неважными в определенной ситуации однофакторными критериями, выведя их в область ограничений.

Оптимальные топологии, которые в наибольшей степени соответствуют критерию оптимальности (2.7) при заданных коэффициентах важности, предлагается называть предельно квазиоптимальными [43, 45]. Приставка «квази-» указывает на то, что данные топологии являются оптимальными для определенных коэффициентов важности заданного критерия оптимальности. Выбор других коэффициентов важности или критерия оптимальности может привести к тому, что оптимальными будут другие топологии. Определение «предельно» отражает тот факт, что такие топологии наиболее соответствуют критерию оптимальности и являются синтезированными путем применения методов, которые гарантируют нахождение глобального оптимума.

К сожалению, формулировка задачи нелинейного программирования для синтеза предельно квазиоптимальных топологий на основе матричного описания топологий СтнК, их характеристик и ограничений затруднена ввиду невозможности четкого математического формулирования нахождения среднего расстояния между узлами. Согласно (2.2) среднее расстояние между узлами находят из кратчайших расстояний между всеми узлами графа, которые, в свою очередь, рассчитывают по специальным алгоритмам (например, поиском в ширину [56]). Таким образом, задача синтеза оптимальных топологий СтнК относится к «сложнорешаемым» [193, 194], а синтез предельно квазиоптимальных решений возможен лишь с применением оптимизационных методов нулевого порядка.

В связи с вышеизложенным нами предложено ввести понятие квазиоптимальной (субоптимальной, псевдооптимальной) топологии СтнК. Квазиоптимальная топология СтнК – это топология для заданного количества вершин и ограничений, которая приближена к теоретически возможной оптимальной по определенным критериям [35]. К критериям оптимальности относятся: уменьшение количества соединений, уменьшение среднего расстояния между узлами, уменьшение диаметра и максимальной степени вершин согласно интегральному критерию (2.7). Этот же критерий применяется и при синтезе предельно квазиоптимальных топологий, но следует отметить, что методы, используемые для синтеза квазиоптимальных топологий, хотя и обеспечивают возможность нахождения локального оптимума, вместе с тем, не гарантируют достижение наиболее оптимального результата. Они дают лишь приближенный к оптимальному результат. Принципиально подчеркнуть, что каждая предельно квазиоптимальная топология является квазиоптимальной, но не каждая квазиоптимальная является предельной.

Генетический алгоритм — это эволюционный алгоритм поиска, используемый для решения задач оптимизации и моделирования путем последовательного подбора, комбинирования и вариации искомых параметров с использованием механизмов, напоминающих биологическую эволюцию (скрещивание, мутацию, селекцию). Классический генетический алгоритм был впервые предложен Д. Холландом еще в 1975 году [202]. Более подробная информация о генетических алгоритмах и эволюционном программировании содержится в работах [203, 204].

Основой генетического алгоритма является кодирование возможных экземпляров решений оптимизационной задачи в виде хромосом. Применительно к задаче синтеза квазиоптимальных топологий последняя может быть описана с помощью матрицы смежности. При этом мы предлагаем использовать верхнюю правую значимую часть матрицы, представленную в виде последовательности N(N-1)/2 битов в качестве хромосомы, для описания определенного экземпляра-образца топологии возможных соединений СтнК с N узлами.

В начале алгоритма случайным образом генерируется начальная популяция хромосом-топологий. Для улучшения результата в первоначальную популяцию, кроме случайных хромосом, включаются известные реализации регулярных топологий для заданного количества узлов.

Каждая хромосома-топология оценивается на приспособленность с помощью целевой функции. Применительно к задаче синтеза квазиоптимальных топологий, реализации, описывающие несвязный граф, могут быть исключены сразу. Другие хромосомы-топологии можно оценивать с помощью интегральной целевой функции, которая учитывает характеристики диаметра, среднего расстояния, максимальной степени вершин и количества соединений в зависимости от их значимости в соответствии с критерием оптимальности (2.7).

Отобранная часть хромосом-топологий участвует в создании новой популяции хромосом-топологий путем применения операций мутации, кроссовера (скрещивания) и селекции. Представление хромосомы-топологии в виде последовательности битов позволяет легко реализовать указанные операции с помощью битовых операций и сдвига.

Новая популяция участвует в следующем цикле генетического алгоритма. Условием останова алгоритма может быть исчерпание заданного количества поколений или отсутствие улучшения результата в течение заданного количества поколений.

Предложенный выше генетический алгоритм синтеза квазиоптимальных топологий был реализован в среде Matlab 7 [205] в виде проекта GeNoC [35, 61]. Выбор именно Matlab 7 обусловлен тем, что этот пакет прикладных программ ориентирован на решение широкого круга математических и технических задач, и он имеет много инструментов визуализации результатов. Кроме того, Matlab — С-подобный язык, для которого разработано много библиотек, и существует возможность интеграции библиотек, реализованных на других языках программирования, что значительно облегчает моделирование.

Проект GeNoC состоит из набора *m*-файлов, назначение которых: GR CreateGraphStruct.m – создание структуры, описывающей GR CreateSparse.m - создание матрицы смежности; GR Diameter.m нахождение диаметра графа; GR EdgesCount.m - нахождение количества ребер графа; GR MaxGraphPower.m - нахождение максимальной степени вершин GR Size.m графа; нахождение размера графа; GR medianDistance.m – нахождение минимального среднего расстояния между вершинами графа; GR View.m – визуальное отображение графа; GR WorstMat.m – создание графа худшей конфигурации; GR mat2vector.m – преобразование матрицы смежности в хромосому; GR vector2mat.m воспроизведение матрицы смежности ИЗ хромосомы; GA CostF MDistMDiamMEdge .m – расчет целевой функции; GR Filter.m –

фильтрация графов по параметрам в GR OPTIONS (отбрасывание заведомо неоптимальных экземпляров); GR rand.m - генерация случайного числа в заданном диапазоне; GA FilterTwins.m - удаление одинаковых экземпляров из популяции; GA FindBestIndivid.m - поиск лучших экземпляров в заданной популяции; GA GenerateStartPop.m – генерация начальной популяции; GA Crossover.m – реализация генетического оператора кроссовера; GA Inversion.m – реализация генетического оператора инверсии; GA Mutation.m реализация генетического оператора мутации; GA SaveResult.m – сохранение результатов поиска; GA startEvolution.m – запуск генетического алгоритма; Shuffle.m, Shuffle.c, Shuffle.mexw32, Shuffle.mexw64 – обеспечение работы GA GenerateStartPop.m; init gr.m – настройка параметров генетического поиска.

Генетические операторы реализованы следующим образом:

- 1) Оператор мутации GA_Mutation (individ, chr2changes). Инвертирует определенную хромосому индивида (individ). Предоставляет возможность задавать количество хромосом-топологий для инвертирования (chr2changes).
- 2) *Оператор инверсии* GA_Inversion (individ) реализован как циклический сдвиг содержимого хромосомы индивида.
- 3) Оператор кроссовера GA_Crossover (individ1, individ2, childCount, CR_type). Генерирует новую популяцию на основе двух индивидов. Параметры: childCount размер новой популяции (по умолчанию 1); CR_type тип кроссовера (1 одноточечный, 2 двухточечный, 3 медианный, по умолчанию 1).
- 4) Оператор селекции реализован в функции GA_startEvolution.m. Для новой популяции выбирается определенное количество лучше приспособленных индивидов из стартовой и генерируемой популяции, а также добавляется заданное количество произвольно выбранных индивидов (для улучшения восхождения целевой функции).

Начальные настройки содержатся в файле init gr.m и имеют следующее назначение: grSize – количество вершин графа (N); grPowLim – максимальная степень вершин графа; grEdgesLim - ограничение по максимальному количеству ребер; grDiamLim – максимальный диаметр графа; BEST START - процент лучших индивидов из начальной популяции, которые будут отобраны для следующего цикла; BEST GENERATED – процент лучших индивидов из созданной популяции, которые будут отобраны для новой популяции; WORST GENERATED – процент индивидов, которые будут выбраны случайно из новой созданной популяции; start pop с – размер начальной популяции; generated_pop_c - размер генерируемой популяции; EPOCH С - количество циклов эволюции; CROSSOVER GENERATE количество индивидов, которое будет генерироваться кроссовером; MUTATION CHANCE – вероятность мутации; INVERSION CHANCE – вероятность инверсии. В файле init gr.m также содержится структура COST F OPT, которая задает важность диаметра, степени вершин, среднего расстояния и количества соединений при расчете целевой функции в соответствии с формулой (2.7). В структуре GR OPTIONS содержатся верхнее и нижнее ограничение по диаметру, количеству ребер и степени вершин, которые необходимы для отбрасывания заведомо неоптимальных топологий.

Визуализация работы алгоритма реализована путем вывода в командной строке информации о текущем состоянии эволюции, например:

Generation of start population

Start of genetic algorithm

1 evolution:

Goal function: 8.705474e-01 Evolution time is 6.327844 seconds

2 evolution:

Goal function: 8.685965e-01 Evolution time is 6.065170 seconds

100 evolution:

Goal function: 6.863480e-01 Evolution time is 6.141921 seconds

Genetic evolution finished Number of evolutions: 100 Time 615.849595 seconds Goal function: 6.863480e-01

Vertex Count: 64 Diameter: 5 Edge Count: 119 Max power: 4

Median distance: 3.301742e+00

Значение целевой функции и ее изменение между двумя итерациями также отображается графически (рис. 3.5). Это позволяет отслеживать процесс работы генетического алгоритма и прервать его выполнение, если в течении нескольких итераций результат не улучшается.

Рис. 3.5. Графическое изображение изменения значения целевой функции

После завершения работы генетического алгоритма выводится изображение графа с лучшей найденной конфигурацией (рис. 3.6).

Рис. 3.6. Изображение графа синтезированной топологии

История работы алгоритма и конечный результат после окончания его выполнения сохраняются в соответствующую директорию, находящуюся в папке с проектом. Если работа алгоритма не завершена или необходимо уточнение результата, алгоритм можно перезапустить, указав исходный файл с предыдущими результатами, и продолжить синтез других решений.

3.6. Анализ синтезированных квазиоптимальных топологий, полученных с помощью разработанного генетического алгоритма GeNoC

Проект GeNoC позволяет синтезировать топологии СтнК с количеством вершин до 100. Так, в GeNoC с параметрами grSize = 100, start_pop_c = 1000, generated_pop_c = 2000, EPOCH_C = 100 синтез длился более 8 часов. Для размеров графа менее 50 при тех же размерах популяции процедура синтеза длится не более 10 минут. При синтезе топологий параметры диаметра, степени вершин, среднего расстояния и количества соединений считаются одинаково важными, в соответствии с чем в формуле нахождения целевой функции (2.7) установлены следующие коэффициенты важности $k_1 = k_2 = k_3 = k_4 = 0.25$.

Для сравнения результатов синтеза генетического алгоритма и алгоритма ScaNoC были использованы топологии с количеством вершин N=10-13 и диаметром 2 и 3 (табл. 3.8). Их матрицы смежности приведены в табл. 3.9, 3.10. Для количества вершин N=14 топологию с диаметром 2 синтезировать не удалось, что подтверждает результаты, полученные с помощью ScaNoC.

При сравнении полученных результатов было установлено, что топология с $N=10,\ D=2$ имеет на 2 соединения меньше, а топология с N = 12, D = 3 — на 0,05 меньшее среднее расстояние между узлами, чем у топологий, полученных с помощью алгоритма сканирования. Этот факт объясняется тем, что при синтезе с помощью алгоритма ScaNoC для уменьшения объема вычислений был применен метод Монте-Карло, когда еще до начала поиска для нескольких вершин случайным образом фиксировались некоторые соединения. Было сделано предположение о наличии вершин с числом соединений, равным 4. Однако с помощью алгоритма GeNoC была синтезирована топология, у которой вершины имеют степень не более 3 и количество соединений, наименьшее для такого количества узлов. Данный факт свидетельствует о том, что процедура фиксирования соединений ДЛЯ вершин может приводить квазиоптимальным результатам.

N	10	11	12	13	10	11	12	13
D	2	2	2	2	<mark>3</mark>	<mark>3</mark>	3	3
St	3	<mark>4</mark>	4	<mark>5</mark>	<mark>3</mark>	<mark>3</mark>	3	<mark>4</mark>
Ed	15	<mark>20</mark>	21	<mark>26</mark>	15	<mark>16</mark>	16	<mark>25</mark>
L_{av}	1,67	1,64	1,68	1,67	1,76	1,85	2,09	1,69

Характеристики синтезированной топологии для Ed = 12, D = 2 совпали с предыдущим результатом [52, 56], при этом для других топологий минимального количества соединений достичь не удалось; в то же время

было уменьшено среднее расстояние между узлами. Данный факт объясняется тем, что при синтезе топологий были установлены коэффициенты важности (2.7) параметров целевой функции $k_1=k_2=k_3=k_4=0,25$, отличные от тех, что использовались при синтезе топологий с помощью ScaNoC.

Таблица <mark>3.9</mark> Примечание [RA2]:

Матрицы смежности квазиоптимальных топологий для N=10-13 и D=2

N	10	11	12	13
Матрица	0010001100	00101100001	000100010011	0010000110000
смежности	0000100101	00001001110	001000100110	0000101100001
	1000110000	10010000011	010000011000	1001000010001
	0000010110	00100110100	100000001100	0010011001100
	0110000010	11000010000	000001001010	0100000011010
	0011000001	10010001000	000010010101	0001000100010
	1000000011	00011001001	010000001001	0101000010000
	1101000000	01000110010	101001000001	1100010001100
	0001101000	01010000001	001110100000	1010101000010
	0100011000	01100001000	010101000000	0001100100001
		10100010100	110010000000	0001000100010
			100001110000	0000110010101
				0110000001010

Таблица $\frac{3.10}{1.0}$ Матрицы смежности квазиоптимальных топологий для N=10-13 и D=3

N	10	11	12	13
Матрица	0010010100	00000010101	000101001000	0000000110011
смежности	0001000101	00000001110	000010000001	0000110000110
	1000100001	00010010010	000010001000	0001100010010
	0100110000	00100001001	100010010000	0010000001101
	0011000010	00000100011	011100000000	0110000100001
	1001001000	00001011000	100000100000	0100001011000
	0000010110	10100100000	000001000011	0000010101010
	1100001000	01010100000	000100000101	1000101000100
	0000101001	11000000000	101000000010	1010010000000
	0110000010	01101000000	000000010010	0001011000001
		10011000000	000000101100	0101000100000
			010000110000	1110001000000
				1001100001000

Синтез с помощью алгоритма GeNoC выполняется значительно быстрее и за приемлемое время дает возможность получить квазиоптимальные топологии с количеством вершин до 100 и более [35]. Так, например, были синтезированы топологии для количества вершин

25, 36, 49, 64, 81 и 100 с приоритетом на уменьшение расстояния между узлами (табл. 3.11).

Таблица 3.11

Характеристики квазиоптимальных топологий для N=25, 36, 49, 64, 81, 100, полученные с помощью алгоритма GeNoC

N N	25	36	49	64	81	100
$\frac{D}{D}$	4	5	5	5	6	8
St_{max}	4	4	4	4	4	4
Ed	38	58	85	119	156	192
L_{av}	2,61	2,87	3,06	3,30	3,61	4,07

Выбор именно такого количества вершин объясняется наличием для них топологий mesh и torus квадратной формы, характеристики которых, рассчитанные в главе 2, приведены в табл. 3.12, 3.13.

Хромосомы-топологии, соответствующие синтезированным квазиоптимальным топологиям, приведены в приложении А и представляют собой верхние значимые части матриц смежности, которые могут быть легко восстановлены из них.

Примечание [RA3]:

ПРИЛОЖЕНИЕ А

ХРОМОСОМЫ, ОПИСЫВАЮЩИЕ НАЙДЕННЫЕ ТОПОЛОГИИ ДЛЯ КОЛИЧЕСТВА УЗЛОВ, РАВНОГО 25, 36, 49,64, 81, 100

Квазиоптимальная топология СтнК для N = 25, Ed = 38:

Квазиоптимальная топология СтнК для N = 36, Ed = 58:

Квазиоптимальная топология СтнК для N = 49, Ed = 85:

Квазиоптимальная топология СтнК для N = 64, Ed = 119:

Квазиоптимальная топология СтнК для N = 81, Ed = 156:

Квазиоптимальная топология СтнК для N = 100, Ed = 192:

приложение Б

ХРОМОСОМЫ, ОПИСЫВАЮЩИЕ НАЙДЕННЫЕ ТОПОЛОГИИ ДЛЯ КОЛИЧЕСТВА УЗЛОВ, РАВНОГО 50 И 99

Квазиоптимальная топология СтнК для N = 50, Ed = 60:

Квазиоптимальная топология СтнК для N = 50, Ed = 72:

Квазиоптимальная топология СтнК для N = 50, Ed = 99:

Квазиоптимальная топология СтнК для N = 99, Ed = 189: