BANK LOAN CASE STUDY

Final Project-2

Description:

Imagine you're a data analyst at a finance company that specializes in lending various types of loans to urban customers. Your company faces a challenge: some customers who don't have a sufficient credit history take advantage of this and default on their loans. Your task is to use Exploratory Data Analysis (EDA) to analyze patterns in the data and ensure that capable applicants are not rejected.

Problems:

When a customer applies for a loan, your company faces two risks:

- 1. If the applicant can repay the loan but is not approved, the company loses business.
- 2. If the applicant cannot repay the loan and is approved, the company faces a financial loss.

The dataset you'll be working with contains information about loan applications. It includes two types of scenarios:

- 1. Customers with payment difficulties: These are customers who had a late payment of more than X days on at least one of the first Y installments of the loan.
- 2. All other cases: These are cases where the payment was made on time.

When a customer applies for a loan, there are four possible outcomes:

Approved: The company has approved the loan application.

Cancelled: The customer cancelled the application during the approval process.

Refused: The company rejected the loan.

Unused Offer: The loan was approved but the customer did not use it.

Business Objectives:

The main aim of this project is to identify patterns that indicate if a customer will have difficulty paying their installments. This information can be used to make decisions such as denying the loan, reducing the amount of loan, or lending at a higher interest rate to risky applicants. The company wants to understand the key factors behind loan default so it can make better decisions about loan approval.

Approach:

- Download the given dataset
- Clean the dataset.
- Analayse the task with Microsoft excel
- Use functions to find satistics.
- Use graphs and charts for better results.

Tech Stack Used: Microsoft Excel

Insights:

Data Analytics Tasks:

A. Identify Missing Data and Deal with it Appropriately: As a data analyst, you come across missing data in the loan application dataset. It is essential to handle missing data effectively to ensure the accuracy of the analysis.

Task: Identify the missing data in the dataset and decide on an appropriate method to deal with it using Excel built-in functions and features.

B. Identify Outliers in the Dataset: Outliers can significantly impact the analysis and distort the results. You need to identify outliers in the loan application dataset.

Task: Detect and identify outliers in the dataset using Excel statistical functions and features, focusing on numerical variables.

C. Analyze Data Imbalance: Data imbalance can affect the accuracy of the analysis, especially for binary classification problems. Understanding the data distribution is crucial for building reliable models.

Task: Determine if there is data imbalance in the loan application dataset and calculate the ratio of data imbalance using Excel functions.

D. Perform Univariate, Segmented Univariate, and Bivariate Analysis: To gain insights into the driving factors of loan default, it is important to conduct various analyses on consumer and loan attributes.

Task: Perform univariate analysis to understand the distribution of individual variables, segmented univariate analysis to compare variable distributions for different scenarios, and bivariate analysis to explore relationships between variables and the target variable using Excel functions and features.

E. Identify Top Correlations for Different Scenarios:

Understanding the correlation between variables and the target variable can provide insights into strong indicators of loan default.

Task: Segment the dataset based on different scenarios (e.g., clients with payment difficulties and all other cases) and identify the top correlations for each segmented data using Excel functions.

Results:

1. Identify Missing Data and Deal with it Appropriately:

- To handle missing data we need to count blank cells in each column using COUNTBLANK(range) function.
- After we need to find percentage of blank cells and to delete columns which are 30% above.
- Delete text columns.
- After deleting the unwanted columns and replace the numeric column of missing data with median using MEDIAN(range) function.
- I have provided statistics of 30% missing data.

Highlighted columns are unwanted and also removed to handle data.

Final Data Set

I have attached the handling of missing datasets and final dataset. Full view of excel sheet is provided in google drive link.

2. Identify Outliers in the Dataset:

- Find Quartile, IQR and conditional format.
- Visualize data of outliers using scatter plot.

Functions performed:

```
Quartile 1 = Quartile.inc(range,value)
```

Quartile 2 = Quartile.inc(range,value)

IQR = Quartile 1 – Quartile 2

Upper limit = BD4+(1.5*BD5)

Lower limit = BD3-(1.5*BD5)

Function results:

Quartile 1	112500
Quartile 3	202500
IQR	90000
Upper limit	337500
lower limit	-22500

3. Analyze Data Imbalance:

- I have selected Target column to find data imbalance.
- Using pivot table analysis count no.of classes and total.
- To count no. of classes use COUNTIF(range, criteria) function.
- To sum use Sum(range) function.
- Visualize data imbalance frequence using bar chart.

Target	Count of Targets	ratio
0	459	973 11.42
1	40)26
total	499	999

4. Perform Univariate, Segmented Univariate, and Bivariate Analysis:

- I have analysed univariate analysis for individual variables using pivot table and count function.
- I have analysed bivariate analysis to explore relationships between variables and the target variables using pivot table analysis and count function. I have analysed the target for each variables.
- I have analysed segmented analysis to compare variable distributions for different scenarios.

Univariate analysis:

Credit-bin	Count of AMT_CREDIT
1045000-1145000	2152
1145000-1245000	853
1245000-1345000	1361
1345000-1445000	739
1445000-1545000	466
145000-245000	6337
1545000-1645000	483
1645000-1745000	188
1745000-1845000	328
1845000-1945000	99
1945000-2045000	164
2045000-2145000	40
2145000-2245000	43
2245000-2345000	79
2345000-2445000	14
2445000-2545000	44
245000-345000	8073
2545000-2645000	2
2645000-2745000	11
2845000-2945000	2
2945000-3045000	1
3145000-3245000	1
345000-445000	3027
3945000-4045000	1
4045000-4145000	2
445000-545000	6850
45000-145000	2818
545000-645000	4008
645000-745000	3547
745000-845000	3909

Grand Total	49999
945000-1045000	1817
845000-945000	2540

income bin	Count of AMT_INCOME_TOTAL
25650-125650	17440
125650-225650	24827
225650-325650	5126
325650-425650	1592
425650-525650	569
525650-625650	169
625650-725650	165
725650-825650	34
825650-925650	35
925650-1025650	2
1025650-1125650	17
1225650-1325650	1
1325650-1425650	10
1525650-1625650	1
1725650-1825650	2
1825650-1925650	1
1925650-2025650	3
2225650-2325650	2
3525650-3625650	1
3725650-3825650	1
116925650-117025650	1
Grand Total	49999

CNT_children	Count of CNT_CHILDREN
0-2	49276
3-5	712
6-8	9
9-11	2
Grand Total	49999

Bivariate Analysis:

Count of TARGET	Column Labels		
Row Labels	0	1	Grand Total
25650-125650	15975	1465	17440
125650-225650	22768	2059	24827
225650-325650	4794	332	5126
325650-425650	1494	98	1592
425650-525650	528	41	569
525650-625650	155	14	169
625650-725650	155	10	165
725650-825650	32	2	34
825650-925650	34	1	35
925650-			
1025650	1	1	2
1025650-			
1125650	16	1	17
1225650-			
1325650	1		1

1325650-			
1425650	10		10
1525650-			
1625650	1		1
1725650-			
1825650	2		2
1825650-			
1925650		1	1
1925650-			
2025650	3		3
2225650-			
2325650	2		2
3525650-			
3625650	1		1
3725650-			
3825650	1		1
116925650-117025650		1	1
Grand Total	45973	4026	49999

(Count of			
٦	TARGET	Column Labels		
	Row Labels	0	1	Grand Total
ı	tow Labels	U	Т.	TOTAL
F	=	30559	2264	32823
ſ	M	15412	1762	17174
)	KNA	2		2
(Grand Total	45973	4026	49999

Count of TARGET	Column Labels		Grand
Row Labels	0	1	Total
45000-145000	2654	164	2818
145000-245000	5850	487	6337
245000-345000	7388	685	8073
345000-445000	2697	330	3027
445000-545000	6207	643	6850
545000-645000	3537	471	4008
645000-745000	3300	247	3547
745000-845000	3585	324	3909
845000-945000	2375	165	2540
945000-			
1045000	1698	119	1817
1045000-			
1145000	1999	153	2152
1145000-			
1245000	805	48	853
1245000-	4202	70	1261
1345000	1283	78	1361
1345000- 1445000	708	31	739
1445000	708	31	739
1545000	451	15	466
1545000-	431	13	400
1645000	457	26	483
1645000-	137	_5	.55
1745000	179	9	188
1745000-	317	11	328

1945000- 2045000 2045000-	155	9	164
2145000 2145000-	39	1	40
2245000 2245000-	41	2	43
2345000 2345000-	79	4	79
2445000 2445000- 2545000	13 43	1	14 44
2545000- 2645000	2	_	2
2645000- 2745000	11		11
2845000- 2945000 2945000-	2		2
3045000 3145000-		1	1
3245000 3945000-	1		1
4045000	1		1
4045000- 4145000	2		2

Segmented Analysis:

Row Labels	Count of NAME_CONTRACT_TYPE	
Cash loans		45276
Revolving		
loans		4723
Grand Total		49999

Row Labels	Count of NAME_EDUCATION_TYPE	
Academic degree		20
Higher education		12167
Incomplete higher		1620
Lower secondary		620
Secondary / secondary		
special		35572
Grand Total		49999

Row Labels	Count of NAME_HOUSING_TYPE	
Co-op apartment		191
House / apartment		44368
Municipal		
apartment		1845
Office apartment		427
Rented apartment		769
With parents		2399
Grand Total		49999

Row Labels	Count of TARGET	
0		45973
1		4026
Grand Total		49999

Row Labels	Count of NAME_TYPE_SUITE	
Children		542
Family		6549
Group of		
people		36
Other_A		137
Other_B		259
Spouse, partner		1849
Unaccompanied		40435
Grand Total		49807

	Count of	
Row Labels	WEEKDAY_APPR_PROCESS_START	
SUNDAY		2616
MONDAY		8385
TUESDAY		8741
WEDNESDAY		8355
THURSDAY		8149

Grand Total	49999
SATURDAY	5467
FRIDAY	8286

5. Identify Top Correlations for Different Scenarios:

• Take Top Correlations and Find Correlation with Target Variable with different Scenerious.

Top Correlations:

CNT_CHILDREN

AMT_INCOME_TOTAL

AMT_CREDIT

REGION_POPULATION_RELATIVE

DAYS_BIRTH

DAYS_EMPLOYED
DAYS_REGISTRATION
DAYS_ID_PUBLISH
REGION_RATING_CLIENT

I have attached excel sheets on google drive for your reference.

Google drive link:

https://drive.google.com/drive/folders/1apAaHnXkVSYJnnocDSztwg TiDi64v95r?usp=sharing