Задача 10.1. Переносы...

Часть 1 Перенос вещества.

Для

В двух сосудах A и B находятся растворы слои в воде. Начальные концентрации растворов равны x_0 в сосуде A и y_0 в сосуде B. Объемы растворов одинаковы и равны V. Под концентрацией раствора понимается отношение массы растворенного вещества к объему раствора.

перемешивания

небольшой сосуд объема v. Этот сосуд полностью ${}^{\kappa}$ заполняют раствором из сосуда ${}^{\Lambda}$ и вливают в сосуд B , затем получившийся раствор хорошо перемешивают и заполняют им сосуд v, и вливают в сосуд ${}^{\Lambda}$. После этого цикл повторяют. Обозначим ${}^{\kappa}$, V , V - концентрации растворов в сосудах ${}^{\Lambda}$ и B , соответственно, после K циклов переливания (один цикл – два переливания из первого во второй, а затем из второго в первый).

1.7 Найдите начальные массы растворенных веществ в обоих сосудах.

растворов

- 1.8 Найдите концентрации растворов x_1 , y_1 после одного цикла переливаний.
- 1.9 Найдите разность концентраций растворов после одного переливания $(y_1 x_0)$.

используют

- 1.10 Найдите разность концентраций растворов после второго переливания $(x_1 y_1)$.
- 1.11 Найдите концентрации растворов x_k , y_k после k циклов переливания (получите явные выражения для этих концентраций чрез начальные концентрации и объемы сосудов)

Часть 2. Перенос теплоты «вручную».

В двух сосудах A и B находятся вода. Начальные температуры воды равны x_0 в сосуде A и y_0 в сосуде B. Массы воды в обоих сосудах одинаковы и равны m, удельная теплоемкость воды равна c. Для выравнивания температур используется небольшое тело теплоемкость которого равна C_0 . Первоначально это тело находится в сосуде A. Его достают и перемещают в сосуд B, после установления теплового равновесия возвращают в сосуд A, после этого цикл повторяют. Потерями теплоты в окружающую среду пренебречь.

2.1 Найдите температуры воды в сосудах x_k , y_k после k циклов переноса теплоты.

Задача 10.2. На грани...

Удельное сопротивление металлов в жидком состоянии значительно больше, чем в твердом. Например, жидкая медь или жидкий свинец приблизительно в два раза хуже проводят электрический ток. При этом их плотность увеличивается очень незначительно. В этой задаче Вам предстоит исследовать резистор,

находящийся на грани перехода из одного агрегатного состояния в другое.