

planetmath.org

Math for the people, by the people.

proof that products of connected spaces are connected

 ${\bf Canonical\ name} \quad {\bf ProofThat Products Of Connected Spaces Are Connected}$

Date of creation 2013-03-22 14:10:05 Last modified on 2013-03-22 14:10:05

Owner yark (2760) Last modified by yark (2760)

Numerical id 13

Author yark (2760)

Entry type Proof

Classification msc 54D05

Let $\{X_{\alpha} \text{ for } \alpha \in A\}$ be topological spaces, and let $X = \prod X_{\alpha}$ be the product, with projection maps π_{α} .

Using the Axiom of Choice, one can straightforwardly show that each π_{α} is surjective; they are continuous by definition, and the continuous image of a connected space is connected, so if X is connected, then all X_{α} are.

Let $\{X_{\alpha} \text{ for } \alpha \in A\}$ be connected topological spaces, and let $X = \prod X_{\alpha}$ be the product, with projection maps π_{α} .

First note that each π_{α} is an open map: If U is open, then it is the union of open sets of the form $\bigcap_{\beta \in F} \pi_{\beta}^{-1} U_{\beta}$ where F is a finite subset of A and U_{β} is an open set in X_{β} . But $\pi_{\alpha}(U_{\beta})$ is always open, and the image of a union is the union of the images.

Suppose the product is the disjoint union of open sets U and V, and suppose U and V are nonempty. Then there is an $\alpha \in A$ and an element $u \in U$ and an element $v \in V$ that differ only in the α place. To see this, observe that for all but finitely many places γ , both $\pi_{\beta}(U)$ and $\pi_{\beta}(V)$ must be X_{γ} , so there are elements u and v that differ in finitely many places. But then since U and V are supposed to cover X, if $\pi_{\beta}(u) \neq \pi_{\beta}(v)$, changing u in the β place lands us in either U or V. If it lands us in V, we have elements that differ in only one place. Otherwise, we can make a $u' \in U$ such that $\pi_{\beta}(u') = \pi_{\beta}(v)$ and which otherwise agrees with u. Then by induction we can obtain elements $u \in U$ and $v \in V$ that differ in only one place. Call that place α .

We then have a map $\rho: X_{\alpha} \to X$ such that $\pi_{\alpha} \circ \rho$ is the identity map on X_{α} , and $(\rho \circ \pi)(u) = u$. Observe that since π_{α} is open, ρ is continuous. But $\rho^{-1}(U)$ and $\rho^{-1}(V)$ are disjoint nonempty open sets that cover X_{α} , which is impossible.

Note that if we do not assume the Axiom of Choice, the product may be empty, and hence connected, whether or not the X_{α} are connected; by taking the discrete topology on some X_{α} we get a counterexample to one direction of the theorem: we have a connected (empty!) space that is the product of non-connected spaces. For the other direction, if the product is empty, it is connected; if it is not empty, then the argument below works unchanged. So without the Axiom of Choice, this theorem becomes "If all X_{α} are connected, then X is."