linear classifier => Linear decision boundary

may use Sectures expantion for complicated	distribution
	Regression dessifier
	y you know the Estate #
Perception: - Assumption => there If not => infinit loop X,U, + X, U, + b = 0	is efist linear dassifier
Shifter it provides a random	seperatur
The best line to classify When it's I to the sample when it's I to the sample	(-2, 7) cJ, 5 Un, 2, -3
relative (two dosses) + Ve Sumple => N=N+X	
> Stert with w, = v2=0	including in w and x will be 1
y (x, v, +x, u,) > 0 => correct	classify
is y (x,ω, +ω,ω,) < 0 . is y is +ve:- is y'(ε υ _{β *;}) > 0
U - 11 + W	y' ({ w; x;) < 6
	$a + b + y^i - 1$
- repeat untill all samples correctly classif	-i ed

classification f	Rule = 9 = Sign (E WX)	longest
* * of iteration that	t six take until find	a solution = (R)
* the solution of Line	eur classifier depending on	the order of samples
base % = 50% (random) 900 % = human %	-It will give us the result with a confidence rate (how n answer is correct) -It will solve the problem of running into an infinity local linear line that separates the data.	by Thoulever
hyper parameters :- learning	y-rate (if you Regulaize)	t is classifier
Jep-siz	e (docant affect accure(y)	1-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t
there is problem with W	not sure with class but it's good for some	Linear dassifier
- forther Gram decision	fields boundary => more confidence	Tut Vialet dass
	from posit	
logistic function 6Cz) = (+ e ^{-z}	+ Ve - > 0.5 + Ve - > 0.5 - Ve - > < 0.5 - \times \tag{8}	testing
Συ _i k; th		
Training &		be maximaize t go-d classifier

$- \geq \log P(yi = +/- \nu, x, b)$
A J
Coss and total coster
(ross-entropy)
J= 1 2-7 lgg-(1-g)
* There is no dosed-form solution because there is no inverse of the from.
* gradiunt descent: (Same as linear regression but with new dw and db)
1 - W to = 0
2-p 7
3 + JI JT
b a b - J = (g - g)
b at b - 3/6 m
5 to repeat 2-4 until convergence
$T^{KH} - J^{K} \leq (c^{-c})$
* Regularization is very important for Logistics Regression
O Ridge
@ Lasso
3 Cally Stopping
Whe deal with evertiting and underfitting like linear regression — Perform training and check the error:
If error is high: (werfitting)
➤ Add more features ➤ More complex model by polynomial
 ☐ If overfitting: ☐ Add more data ☐ Perform regularization

X Multiclass	
logitic regression for ex	do one vs All classification => if you have 5 classes you will get 5 classifie
* Softmax ezi	o one vs A(1 classification => if you have 5 classes
X Imbalence data sel	how accurecy is not a good indecator for it much more data than another
* normally: - the de	ass with fewer data is considered tre
* Recall and Precision	n not you with Impalance DS
Actual Actual TP P Percisi	not good with Impalance DS accuracy = TP+TN all

X				
How to deal with categorical features: one-hat encoding - adding more features - adding more features - will not work if you have 2 greenels in one image				
			K if you have 2 anemals in one image	
Enpedin)			
* Zip-code	Should be cate	egorical to	avoid weight	