Spectral Bundle Methods for Primal and Dual Semidefinite Programs

Feng-Yi Liao¹, Lijun Ding², Yang Zheng¹

¹ Electrical and Computer Engineering, UC San Diego
² Industrial and Systems Engineering, Texax A & M University

IOS 2024, Houston, Texas March 22, 2023

Semidefinite Program

Primal SDP

$$\min_{X} \langle C, X \rangle$$

subject to
$$\langle A_i, X \rangle = b_i, i = 1, ..., m,$$

 $X \in \mathbb{S}_+^n.$

Dual SDP

$$\max_{y,Z} b^{\mathsf{T}} y$$

subject to
$$Z + \sum_{i=1}^{m} A_i y_i = C$$
,

$$Z \in \mathbb{S}_{+}^{n}$$
.

- Applications: Control theory, combinatorial problem, polynomial optimization, neural network verification, robotics, etc.
- (Boyd et al. 1994, Sotirov 2012, Blekherman, Parrilo, and Thomas 2012, Lanckriet et al. 2014.)

Existing algorithms

- Interior-point method: Suitable for small or median-size problems
 - Solvers: MOSEK, SEDUMI, SDPA, SDP3
- First-order method: Speeds up the computation but suffers from moderate accuracy
 - Based on ADMM: SCS, CDCS, COSMO ('Donoghue et al. 2016, Zheng et al. 2020, Garstka et al. 2021)
- Today's talk: Spectral Bundle Method (SBM) Key references:
 - Ohristoph Helmberg and Franz Rendl (2000). "A spectral bundle method for semidefinite programming". In: SIAM Journal on Optimization 10.3, pp. 673–696.
 - 2 Lijun Ding and Benjamin Grimmer (2023). "Revisiting Spectral Bundle Methods: Primal-Dual (Sub) linear Convergence Rates". In: SIAM Journal on Optimization 33.2, pp. 1305–1332.
 - § Feng-Yi Liao, Lijun Ding, and Yang Zheng (2023). "An Overview and Comparison of Spectral Bundle Methods for Primal and Dual Semidefinite Programs". In: arXiv preprint arXiv:2307.07651.

Spectral Bundle Method - Overview

- First Proposed by Helmberg and Rendl in 2000¹
 - Well suited for combinatorial problems
 - Further developed by Helmberg et al. 2002, Helmberg et al. 2014
- Revisited by Lijun and Benjamin in 2023²
 - Discovered the linear convergence
 - SBM works well when the primal SDP has low-rank solutions
- However, all of the existing results focus on dual SDPs

$$\max_{y,Z} \ b^{\mathsf{T}} y$$
 subject to $Z + \sum_{i=1}^{m} A_{i} y_{i} = C$, $Z \in \mathbb{S}_{+}^{n}$.

- We show SBM also works for primal SDPs
- Primal SBM is very suitable for SDPs that have low-rank dual solutions

¹Christoph Helmberg and Franz Rendl (2000). "A spectral bundle method for semidefinite programming". In: *SIAM Journal on Optimization* 10.3, pp. 673–696.

²Lijun Ding and Benjamin Grimmer (2023). "Revisiting Spectral Bundle Methods: Primal-Dual (Sub) linear Convergence Rates". In: *SIAM Journal on Optimization* 33.2, pp. 1305–1332.

Main results

• Contribution 1: We develop SBM for primal SDPs

- Contribution 2: Extend the analysis of bundle methods from unconstrained to constrained problems
- Contribution 3: The algorithm enjoys linear convergence after some number of iterations $\operatorname{dist}(X_{t+1}, \mathcal{P}^*) \leq \theta_t \cdot \operatorname{dist}(X_t, \mathcal{P}^*)$, where $\theta_t < 1$.
- Contribution 4: Comparison of primal and dual SBMs

Penalized formulation: under strong duality

$$\min_{X} \langle C, X \rangle$$

$$\min_{X} \langle C, X \rangle$$

$$\text{subject to } \langle A_{i}, X \rangle = b_{i}, \ i = 1, \dots, m,$$

$$X \in \mathbb{S}^{n}_{+}.$$

$$\lim_{X \to \infty} \langle C, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\}$$

$$\lim_{X \to \infty} \langle C, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\}$$

$$\lim_{X \to \infty} \langle C, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\}$$

$$\lim_{X \to \infty} \langle C, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\}$$

$$\lim_{X \to \infty} \langle C, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\}$$

$$\lim_{X \to \infty} \langle C, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\}$$

$$\lim_{X \to \infty} \langle C, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\}$$

$$\lim_{X \to \infty} \langle C, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\}$$

$$\lim_{X \to \infty} \langle C, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\}$$

$$\lim_{X \to \infty} \langle C, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\}$$

$$\lim_{X \to \infty} \langle C, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\}$$

$$\lim_{X \to \infty} \langle C, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\}$$

$$\lim_{X \to \infty} \langle C, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\}$$

$$\lim_{X \to \infty} \langle C, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\}$$

$$\lim_{X \to \infty} \langle C, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\}$$

$$\lim_{X \to \infty} \langle C, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\}$$

- Primal: constrained eigenvalue optimization problem
- Dual: unconstrained eigenvalue optimization problem
- We are going to iteratively approximate the nonsmooth nonlinear penalty function

$$\max\{\lambda_{\max}(-X),0\}$$

Consider

$$\min_{X \in \mathcal{X}_{\mathbf{0}}} \ f(X) = \langle \mathcal{C}, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\}$$
 Proximal mapping
$$\widehat{f_t}(X) + \frac{\alpha}{2} \|X - X_t\|^2$$
 Update

Lower model:

$$\hat{f}_t(X) \le f(X), \ \forall X \in \mathcal{X}_0$$

• Piece-wise linear model: given X_i (one eigenvector (subgradient) at a time)

$$f(X_i) + \langle g_i, X - X_i \rangle = \langle v_i v_i^\mathsf{T}, -X \rangle \leq \max\{\lambda_{\max}(-X), 0\}$$

In general, the iteration complexity³ is

Lipschitz	Lipschitz + Quadratic Growth
$\mathcal{O}(rac{1}{\epsilon^3})$ or $\mathcal{O}(rac{1}{\epsilon^2})$	$\mathcal{O}(rac{1}{\epsilon})$

- Can we do better? What if we compute $r \ge 1$ eigenvectors at a time?
- Lower approximation model using r eigenvectors:

$$\left\langle v_i v_i^\mathsf{T}, -X \right\rangle \leq \max_{S \in \mathbb{S}_+', \operatorname{tr}(S) \leq 1} \left\langle PSP^\mathsf{T}, -X \right\rangle \leq \max\{\lambda_{\max}(-X), 0\},$$

where $P \in \mathbb{R}^{n \times r}$ contains r top eigenvectors of $-X_i$.

- This contains infinitely many lower linear approximation at a time
- Does it improve the iteration complexity?
 - Yes! Choosing a certain number of r improves the iteration complexity.
 - $\mathcal{O}(1/\epsilon) \to \mathcal{O}(\log(1/\epsilon))$

³Mateo Díaz and Benjamin Grimmer (2023). "Optimal convergence rates for the proximal bundle method". In: *SIAM Journal on Optimization* 33.2, pp. 424–454.

Theorem (Simplified, Sublinear convergence) Primal SBM with $r \ge 1$ eigenvector produces iterates X_t, Z_t , and y_t that satisfy

cost value gap:
$$f(X_t) - f^* \le \epsilon$$
,

approximate primal feasibility:
$$A(X_t) - b = 0$$
, $\lambda_{\min}(X_t) \ge -\epsilon$,

approximate dual feasibility:
$$\|Z_t + A^*(y_t) - C\|^2 \le \epsilon$$
, $Z_t \succeq 0$,

approximate primal-dual optimality:
$$|\langle C, X_t \rangle - \langle b, y_t \rangle| \leq \sqrt{\epsilon}$$
,

in at most $\mathcal{O}(1/\epsilon^3)$ iterations.

- If additionally, strict complementarity holds $(\operatorname{rank}(X^*) + \operatorname{rank}(Z^*) = n)$, then these conditions hold in at most $\mathcal{O}(1/\epsilon)$ iterations.
- Assuming
 - 1 strict complementarity $(\operatorname{rank}(X^*) + \operatorname{rank}(Z^*) = n)$
 - 2 bounded solution set

then given any sublevel set $[f \le f^* + \epsilon]$, there exists $\mu > 0$ such that

$$\mu \cdot \operatorname{dist}^{2}(X, \mathcal{P}^{*}) \leq f(X) - f(X^{*}), \ \forall X \in [f \leq f^{*} + \epsilon].$$

Theorem. (Simplified, Linear convergence) Under certain regularity conditions, primal SBM with $r \ge \text{rank}(Z^*)$ eigenvectors generates $\{X_t\}$ that satisfies

$$\operatorname{dist}(X_{t+1}, \mathcal{P}^{\star}) \leq \theta_t \cdot \operatorname{dist}(X_t, \mathcal{P}^{\star}), \text{ with } \theta_t < 1,$$

for every $t \geq T_0$.

- If $rank(Z^*)$ is small, r can be chosen small! \Rightarrow Faster computation!
- Similar results also hold for the dual SBM (Lijun and Benjamin 2023)
- Key difference: $r \ge \operatorname{rank}(X^*)$

Descriptions	Primal	Dual		
Primal feasibility	$\mathcal{A}(X_t) = b, \lambda_{\min}(X_t) \geq -\epsilon$	$\ \mathcal{A}(X_t) - b\ ^2 \le \epsilon, X_t \succeq 0$		
Dual feasibility	$ Z_t + A^*(y_t) - C ^2 \le \epsilon, Z_t \succeq 0$	$C - \mathcal{A}^*(y_t) = Z_t, \lambda_{min}\left(Z_t ight) \geq -\epsilon$		
Duality gap	$ \langle C, X_t \rangle - \langle b, y_t \rangle \leq \sqrt{\epsilon}$	$ \langle C, X_t \rangle - \langle b, y_t \rangle \leq \sqrt{\epsilon}$		
Well-suited	Z* low rank	X^* low rank		

Numerical Experiments

Open-source implementation: https://github.com/soc-ucsd/SpecBM

Figure: Random generated SDPs with dimension n = 1000.

- SBMP (primal) performs well when Z^* is low rank
- SBMD (dual) performs well when X^* is low rank
- A significant improvement when $r \ge 3 = \operatorname{rank}(Z^*) = \operatorname{rank}(X^*)$

Numerical Experiments

$$\label{eq:problem} \begin{aligned} \min_{x \in \mathbb{R}^d} & q(x) \\ \text{subject to} & x^\mathsf{T} x = 1 \end{aligned}$$

- q(x) is a multi-variables polynomial
- Sum-of-square relaxation to a standard primal SDP
- The dual problem has low-rank solutions empirically
- Accuracy is set $\epsilon < 10^{-4}$

Dimension	Case	Metric	SDPT3	MOSEK	CDCS	SDPNAL+	SBMP
Dimension	case		30713	9.2e-11		2.1e-11	
		ϵ_{p}		9.2e-11 2.0e-9	9.9e-5 4.1e-5	2.1e-11 9.5e-5	5.9e-14 9.2e-5
		ϵ_{d}					
	<i>q</i> 1	ϵ_{g}	oom	5.9e-12 -25.074	9.0e-6 -25.073	1.0e-2 -42.850	6.8e-6 -25.074
		cost		-25.074 887.1	-25.073 100.9	-42.850 1209	17.5
	_			8.2e-10	1.5e-5	4.7e-5	5.4e-14
d: 30		€p €d		1.9e-8	9.3e-5	8.1e-5	8.9e-5
n: 496	q ₂	$\epsilon_{\rm d}$	oom	2.9e-10	3.9e-5	6.7e-3	5.3e-5
	42	cost		-32.136	-32.137	-32.137	-32.135
m: 45,879		time		583	45.1	17.3	12.8
		ϵ_{D}		9.1e - 9	1.0e-4	3.2e-16	1.9e-14
		€d		2.0e-7	1.5e-6	5.2e-4	8.7e-5
	<i>q</i> ₃	$\epsilon_{\rm g}$	oom	4.9e-9	2.4e-6	3.5e-3	2.2e-5
	45	cost		2.023	2.023	2.021	2.023
		time		645.2	55.3	548.6	16.9
		ϵ_{p}			9.6e-5	1.1e-15	9.9e-14
		ϵ_d	i		1.9e-5	6.8e-5	9.9e-5
	<i>q</i> ₁	ϵ_{g}	oom	oom	2.1e-5	2.7e-4	9.4e-6
	'-	cost			-30.053	-30.070	-30.050
	i	time			289.6	3449.4	41.4
d: 35		ϵ_{p}			2.2e-5	4.2e-5	1.3e-13
a: 35	i	ϵ_d	i		9.4e-5	9.5e-5	8.8e-5
n: 666	92	$\epsilon_{\rm g}$	oom	oom	7.7e-5	2.4e-3	2.0e-5
m: 81.584		cost	İ		-37.100	-37.221	-37.091
m: 81,584		time	İ		112.3	100.5	42.7
		ϵ_{p}			1.0e-4	9.3e-13	1.9e-14
		ϵ_{d}	1		6.9e - 5	6.5e-7	9.4e-5
	<i>q</i> ₃	$\epsilon_{\rm g}$	oom	oom	3.5e - 5	6.2e-3	2.5e-6
		cost			2.121	2.039	2.121
		time			170.1	1208.4	44.5
		ϵ_{p}			1.0e-4	$3.6e{-12}$	7.4e-14
	l	ϵ_{d}	İ		3.2e - 6	$1.0e{-4}$	9.6e-5
	91	ϵ_{g}	oom	oom	$1.4e{-5}$	4.9e - 2	5.2e-6
		cost	İ		-35.037	-47.792	-35.034
1		time			738.9	1881.1	84.8
d: 40		ϵ_{p}			1.7e-5	3.3e-14	1.3e-13
		ϵ_{d}			9.3e-5	9.9e-5	5.5e-5
n: 861	q ₂	ϵ_{g}	oom	oom	5.8e-5	2.8e-5	1.6e-5
m: 134.889		cost			-42.041	-41.997	-42.050
224,005		time			254.9	187.6	82.1
		ϵ_{p}			1.0e-4	9.1e-16	2.0e-14
		ϵ_{d}			1.6e-6	7.5e-5	8.2e-5
1	<i>q</i> ₃	ϵ_{g}	oom	oom	4.9e-5	2.4e-3	1.0e-4
		cost			2.681	2.695	2.681 93.1
		time			144.5	1339.6	93.1

Takeaways

Penalized formulation:

$$\begin{split} f(X) &= \langle C, X \rangle + \rho \max\{\lambda_{\max}(-X), 0\} & (\rho > \max_{Z^{\star}} \operatorname{tr}(Z^{\star})) \\ f(y) &= -b^{\mathsf{T}} y + \rho \max\left\{\lambda_{\max}\left(\sum_{i=1}^{m} A_{i} y_{i} - C\right), 0\right\} & (\rho > \max_{X^{\star}} \operatorname{tr}(X^{\star})) \end{split}$$

Sublinear → Linear!

$$\operatorname{dist}(X_{t+1}, \mathcal{P}_{\star}) \leq \theta_t \cdot \operatorname{dist}(X_t, \mathcal{P}_{\star}), \text{ with } \theta_t < 1.$$

Comparison

SBM	Primal	Dual		
Usage	Z* low rank	X* low rank		

- Choose the right formulation!
- Check out our paper: Feng-Yi Liao, Lijun Ding, and Yang Zheng (2023). "An Overview and Comparison of Spectral Bundle Methods for Primal and Dual Semidefinite Programs". In: arXiv preprint arXiv:2307.07651.

Thank you for your attention!

Q & A