Definite Integra

CHAPTER 2 DEFINITE INTEGRALS

2.1 Definite Integral

If F(x) is an integral of f(x), Then we define $\int_a^b f(x) dx$ as F(b) - F(a). $\int_a^b f(x) dx$ is called the definite integral of f(x) between the limits a and b. b is called the upper limit and a the lower limit.

We can use the above definition to evaluate a definite integral. To evaluate $\int_a^b f(x) dx$, we first find the indefinite integral F(x) of $\int_a^b f(x) dx$.

Then we substitute b and a for x and subtract F(a) from F(b).

Examples worked out

1.
$$I = \int_{0}^{\pi/2} \cos^{4} x \, dx = \int_{0}^{\pi/2} \left[\frac{1 + \cos 2x}{2} \right]^{2} \, dx$$

$$= \frac{1}{4} \int_{0}^{\pi/2} dx + \frac{1}{2} \int_{0}^{\pi/2} \cos 2x \, dx + \frac{1}{8} \int_{0}^{\pi/2} (1 + \cos 4x) \, dx$$

$$= \frac{1}{4} \left[x \right]_{0}^{\pi/2} + \frac{1}{2} \left[\frac{\sin 2x}{2} \right]_{0}^{\pi/2} + \frac{1}{8} \left[x \right]_{0}^{\pi/2} + \frac{1}{8} \left[\frac{\sin 4x}{4} \right]_{0}^{\pi/2}$$

$$= \frac{1}{4} \left(\frac{\pi}{2} - 0 \right) + \frac{1}{4} \left(\sin \pi - \sin 0 \right) + \frac{1}{8} \left(\frac{\pi}{2} - 0 \right) + \frac{1}{32} \left(\sin 2\pi - \sin 0 \right)$$

$$= \frac{\pi}{8} + \frac{\pi}{16} = \frac{3\pi}{16}.$$
2.
$$I = \int_{0}^{1} \frac{1 - x^{2}}{1 + x^{2}} \, dx = \int_{0}^{1} \frac{2 - (1 + x^{2})}{1 + x^{2}} \, dx$$

$$= \int_0^1 \left(\frac{2}{1+x^2} - 1\right) dx = \left[2\tan^{-1}x - x\right]_0^1$$

$$= (2\tan^{-1}1 - 1) - (2\tan^{-1}0 - 0) = 2\left(\frac{\pi}{4}\right) - 1 = \frac{\pi}{2} - 1.$$

When the variable in a definite integral is changed, we usual change the limits also. The method will be illustrated below.

3.
$$I = \int_0^{\pi/4} \frac{\sin 2\theta}{\sin^4 \theta + \cos^4 \theta} d\theta$$

$$= \int_0^{\pi/4} \frac{2 \sin \theta \cos \theta \, d\theta}{\sin^4 \theta + \cos^4 \theta} = \int_0^{\pi/4} \frac{2 \tan \theta \sec \theta}{\tan^4 \theta + 1}$$

Put $\tan^2 \theta = T$. Then 2 $\tan \theta \sec^2 \theta d\theta = dt$

When $\theta = 0$, $t = \tan^2 0 = 0$.

When
$$\theta = \frac{\pi}{4}$$
, $t = \tan^2 \frac{\pi}{4} = 1$.

$$I = \int_0^1 \frac{dt}{t^2 + 1} = \left[\tan^{-1} t \right]_0^1 = \tan^{-1} 1 - \tan^{-1} 0 = \frac{\pi}{4} - 0 = \frac{\pi}{4}.$$

4.
$$I = \int_{1}^{2} \frac{dx}{(x+1)\sqrt{x^2-1}}$$

Put
$$x + 1 = \frac{1}{t}$$
, Then $dx = -\frac{1}{t^2} dt$.

When
$$x = 1$$
, $t = \frac{1}{x + 1} = \frac{1}{2}$

When
$$x = 2$$
, $t = \frac{1}{2+1} = \frac{1}{3}$

$$I = \int_{1/2}^{1/3} \frac{-\frac{1}{\ell^2} dt}{\frac{1}{t} \sqrt{(\frac{1}{t} - 1)^2 - 1}}$$

$$= -\int_{1/2}^{1/3} \frac{d}{\sqrt{(1-t)^2 - t^2}} = -\int_{1/2}^{1/3} \frac{d}{\sqrt{1-2t}}$$

$$= -\left[\frac{(1-2t)^{1/2}}{\frac{1}{2}(-2)}\right]_{1/2}^{1/3} = \left[\sqrt{1-2t}\right]_{1/2}^{1/3}$$

$$= \sqrt{1-\frac{2}{3}} - \sqrt{1-1} = \frac{1}{\sqrt{3}}$$
5. $I = \int_{\beta}^{\alpha} \sqrt{(x-\alpha)(\beta-x)} dx$

$$= \int_{\beta}^{\alpha} \sqrt{\left(\frac{\beta+\alpha}{2}\right)^2 - \alpha\beta - \left[x^2 - (\alpha+\beta)x + \left(\frac{\beta+\alpha}{2}\right)^2\right]} dx$$

$$= \int_{\beta}^{\alpha} \sqrt{\left(\frac{\beta-\alpha}{2}\right)^2 - \left(x - \frac{\beta+\alpha}{2}\right)^2} dx$$
Put $\frac{\beta-\alpha}{2} = a$ and $x - \frac{\beta+\alpha}{2} = y$
Then $dx = dy$
When $x = \alpha, y = \alpha - \frac{\beta+\alpha}{2} = \frac{\alpha-\beta}{2} = -a$.
When $x = \beta, y = \beta - \frac{\beta+\alpha}{2} = \frac{\beta-\alpha}{2} = a$

$$\therefore I = \int_{-a}^{a} \sqrt{a^2 - y^2} dy = \left[\frac{y \sqrt{a^2 - y^2}}{2} + \frac{a^2}{2} \sin^{-1} \frac{y}{a}\right]_{-a}^{a}$$

$$= \left(0 + \frac{a^2}{2} \sin^{-1} 1\right) - \left[0 + \frac{a^2}{2} \sin^{-1} (-1)\right]$$

$$= \frac{a^2}{2} \cdot \frac{\pi}{2} - \frac{a^2}{2} \left(-\frac{\pi}{2}\right) = \frac{\pi}{2} a^2 = \frac{\pi}{2} \left(\frac{\beta-\alpha}{2}\right)^2 = \frac{\pi}{8} (\beta-\alpha)^2.$$
Note: It can also be integrated if we put $x = \alpha \cos^2 \theta + \beta \sin^2 \theta$.

8.
$$I = \int_{0}^{a} \frac{dx}{x + \sqrt{a^2 - x^2}}$$

Put $x = a \sin \theta$. Then $dx = a \cos \theta d\theta$.

When
$$x = a$$
, $\sin \theta = 1$ or $\theta = \frac{\pi}{2}$.

When
$$x = 0$$
, $\sin \theta = 0$ or $\theta = 0$.

$$I = \int_{0}^{\pi/2} \frac{a \cos \theta \, d\theta}{a \sin \theta + a \cos \theta}$$

$$= \frac{1}{2} \int_{0}^{\pi/2} \frac{(\cos \theta + \sin \theta) + (\cos \theta - \sin \theta)}{\sin \theta + \cos \theta} d\theta$$

$$= \frac{1}{2} \int_{0}^{\pi/2} d\theta + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cos \theta - \sin \theta}{\sin \theta + \cos \theta} d\theta$$

$$= \frac{1}{2} [\theta]_{0}^{\pi/2} + \frac{1}{2} [\log (\sin \theta + \cos \theta)]_{0}^{\pi/2}$$

$$=\frac{1}{2} \times \frac{\pi}{2} + \frac{1}{2} (\log 1 - \log 1) = \frac{\pi}{4}$$
.

Examples 2

$$\int_0^1 \tan^{-1} x \, dx$$

Evaluate:
1.
$$\int_{0}^{1} \tan^{-1} x \, dx$$
 2. $\int_{1}^{e} \frac{dx}{x \sqrt{1 - (\log x)^{2}}}$ 3. $\int_{0}^{\pi/2} \sin^{4} x \, dx$

4.
$$\int_{0}^{\pi/2} \sqrt{\cos \theta} \sin^{3} \theta \, d\theta$$
 5. $\int_{0}^{1/2} \frac{dx}{(1-2x^{2})\sqrt{1-x^{2}}} = -\sin \theta$

6.
$$\int_{0}^{1} x \tan^{-1} x \, dx$$
 7. $\int_{0}^{1} \frac{1-x}{1+x} dx$

$$8. \int_{1}^{2} \frac{dx}{x(1+x^4)}$$

47.
$$-\frac{1}{2} \log (1 + \cos x) + \frac{1}{16} \log (1 - \cos x) + \frac{2}{5} \log (3 + 2 \cos x)$$
48. $\frac{1}{2} \log \tan \frac{x}{5} + \frac{1}{5} \cos^2 x$

48.
$$\frac{1}{2} \log \tan \frac{x}{2} + \frac{1}{4} \sec^2 \frac{x}{2} + \tan \frac{x}{2}$$
 49. $\frac{1}{\sqrt{2}} \tan^{-1} \frac{x^2 - 1}{\sqrt{2} x}$

50. $\cos \alpha \cos^{-1} (\cos x \sec \alpha) - \sin \alpha \log \left(\sin x + \sqrt{\sin^2 x - \sin^2 \alpha} \right)$

Examples 2

1.
$$\frac{\pi}{4}$$
 - $\frac{1}{2}$ log 2 2. $\frac{\pi}{2}$ 3. $\frac{3\pi}{16}$ 4. $\frac{8}{21}$ 5. $\frac{1}{2}$ log $(2 + \sqrt{3})$ 6. $\frac{\pi - 2}{4}$ 7. -1 + 2 log 2 8. $\frac{1}{4}$ log $\frac{32}{17}$

9.
$$e^{\pi/2}$$
 10. 0 11. $\frac{\pi}{4\sqrt{5}}$ 12. $\frac{1}{24}$

13.
$$2 - \frac{\pi}{2}$$
 14. $\frac{3a^4\pi}{16}$ 15. $\frac{\pi}{3\sqrt{3}}$

16.
$$\frac{1}{\sqrt{3}} \log \left(2 + \sqrt{3}\right)$$
 17. $\frac{1}{3} \log 2$ 18. $\frac{2}{3} \tan^{-1} \frac{1}{3}$

19.
$$\frac{\alpha}{\sin \alpha}$$
 20. $\frac{\pi (a^2 + b^2)}{4a^3b^3}$ 21. $\frac{\pi}{4}$

22.
$$\frac{\log 3}{20}$$
 23. $\pi \sqrt{2}$ 24. $\frac{\pi}{4ab^2(a+b)}$ 25. $\frac{\pi}{3}$ 26. $\frac{\pi}{6}$ 27. $\frac{\pi}{2\sqrt{2}}$ 28. $\log \frac{4}{3}$

Examples 3

Examples 3

1.
$$\frac{1}{3}$$

2. $e^{-a} - e^{-b}$

3. $\frac{1}{m}$ ($e^{mb} - e^{ma}$)

4. $\frac{27}{2}$

5. $\frac{1}{4}$ ($b^{4} - a^{4}$)

6. $\cos a - \cos b$

7. $\frac{1}{2}$

11. $\frac{1}{2}$ $a + b$

12. $\frac{\pi}{8} - \frac{1}{4}$

9. $\frac{2}{3}$

10. 2

15. $\frac{3}{2}$

16. $\frac{1}{2} \log 2 + \frac{\pi}{4}$