Gráficos multivariados

Glifo: Objeto gráfico para visualizar datos multivariados (representar simultáneamente varias variables

Base de datos (matriz de datos)

individuos	Variables				
maividuos	X1	X2	Х3		N
1					$$ \rangle
2					
3					N
					$ \rangle$

Atención: Los individuos a representar están en las filas

En ocasiones estos gráficos ayudan a esclarecer relaciones en los problemas de las pruebas de hipótesis de independencia (Aunque la técnica es más general, obviamente)

Gráficos de perfiles

Descripción de los valores medios utilizando diagramas de perfiles

Trabajaremos perfiles con proporciones

En un estudio sobre las moscas de arena se utilizaron unas trampas que fueron colocadas a tres alturas respecto al suelo del bosque (0.5, 1 y 3 metros). Después de concluida la recolección de los especímenes para el estudio a los investigadores les pareció que la especie de las moscas capturadas dependía de la altura de la trampa

Fi-		altura	
Especie	0.5	1	3
Α	110	115	50
В	90	80	70
С	20	15	20
total	220	210	140

Construya un diagrama perfiles de líneas (utilizando segmentos) para representar las alturas a las que vuelan las especies

Haga el gráfico como ejercicio (a continuación veremos los aspectos computacionales). Ahora interprete los resultados

El grupo de investigación de mercado de una importante compañía productora de cervezas realizó un estudio de mercado. Al analizar los segmentos de mercado de cada uno de los tipos de cerveza que producen estaban interesados en determinar si las preferencias por un tipo específico de cerveza dependía del género del consumidor. En caso de que las preferencias fueran independientes del género del consumidor, iniciarían una campaña publicitaria para todas las cervezas de la compañía. Pero, si las preferencias por los distintos tipos de cerveza dependían del género del consumidor, la empresa ajustaría sus promociones a los mercados. Para analizar este problema tomaron una muestra de consumidores con los resultados siguientes:

Explore utilizando los perfiles (de hombres y mujeres) si se observan diferencias en las preferencias entre los sexos

			Cerveza I	oreferida
		Ligera	Clara	Oscura
	Hombre	20	40	30
Género	Muier	30	30	10

Recuerde: Las proporciones son promedios

Datos procesados

Variables dicotómicas (3) Procesadas con sus totales

Los totales deben estandarizarse: como porcentajes (promedios)

Se caracterizan hombres / mujeres para describir los grupos que deseo comparar

Macro: líneas cerveza Paso 1: digitar los datos

Paso 2: Los estandarizo, en este caso como proporciones (por columna)

		Cerveza preferida				
		Ligera	Clara	Oscura		
Name of the last	Hombre	20	40	30		
Género	Mujer	30	30	10		

```
#perfiles con grafico de lineas (poligonal)

#M matriz con los datos cerveza
#digitar los datos.
M=matrix(nr=2 , nc= 3 )
data.entry(M)

#nombres
rownames(M)=c("hombres","mujeres")
colnames(M)=c("ligera","clara","oscura")

#calculo proporciones por columna| (valores por sexo)
T1=round(prop.table(M,2),3)

#al escribir prop.table(M,2) indico que las
#proporciones son por columna
#por fila seria prop.table(M,1)
#datos a representar
T1[1,]
T1[2,]
```

> M			
	ligera	clara	oscura
hombres	20	40	30
mujeres	30	30	10
> T1			
	ligera	clara	oscura
hombres	0.4	0.571	0.75
mujeres	0.6	0.429	0.25

Base de datos cerveza

Macro: líneas cerveza

Paso 3: Construir el gráfico

#para los perfiles con líneas:
#cargar paquete profileR y activarlo:
library(profileR)

#el comando con matrices
T1=as.matrix(T1)

el gráfico.

Atencion: No se estandariza porque los datos ya lo están, # si no hay habría que hacerlo

profileplot(T1,person.id=rownames(T1),standardize=FALSE)

Se realiza un estudio para ver cómo los niveles de dióxido de azufre en la atmósfera influyen sobre el número de cloroplastos por célula en las hojas de los árboles.

Para el estudio se muestrean hojas de árboles tomadas en zonas (3) con niveles de SO_2 que se clasifican cómo alto, normales o bajos siguiendo los criterios de las autoridades ambientales del país

Tabla 12.20. Datos utilizados para contrastar asociación entre nivel de cforoplasto y exposición al dióxido de azufre

_	Nivel de cloroplastos			
Nivel de SO ₂	Alto	Normal	Bajo	
Alto	3	4	13	
Normal	5	10	5	
Bajo	7	11	2	

Construya un diagrama de perfiles (de líneas) para representar los niveles medios de cloroplastos según los niveles de SO₂ de la zona

Paso 1: digite los datos

Tabla 12.20. Datos utilizados para contrastar asociación entre nivel de cforoplasto y exposición al dióxido de azufre

_	Ni	vel de cloroplas	tos
Nivel de SO ₂	Alto	Normal	Bajo
Alto	3	4	13
Normal	5	10	5
Bajo	7	11	2

Muestra de individuos agrupada

... muestrean hojas de árboles tomadas en zonas (3)

... A cada árbol se le evalúan las 3 variables dicotómicas que aparecen en la tabla....los resultados son totales en cada caso

Datos: examenes

Problema de rendimiento académico Estudio de resultados docentes en un curso de estadística Interés del estudio: ver si se observandiferencias en los resultados en dos parciales en dependencia de si la nota final fue superior a 80 puntos o no

Variables

grupo: 1 (nota final > 80) 2 (nota final \leq 80)

P1: nota parcial 1 P2: nota parcial 2

Paso 1 debe resumir los resultados (promedios) en los grupos

Crunos	Variables		
Grupos	P1	P2	
1	75.3	72.7	
2	87.1	89.8	

Paso 3 se hace una matriz con los resultados (para los perfiles de los grupos)

```
M=matrix(nr=2 , nc= 2 )
data.entry(M)

rownames(M)=c("grupo 1","grupo 2")
colnames(M)=c("Parcial 1","Parcial 2")
```

#el grafico
library(profileR)
profileplot(M,person.id=rownames(M),standardize=FALSE)

No es necesario porque las dos variables se miden en la misma escala. Si las escalas de medición fueran diferentes (como ocurre usualmente) hay que estandarizar las variables.

$$0 \le \frac{x - \min}{\max - \min} \le 1$$
$$0 \le \frac{x - \overline{x}}{\max - \min} \le 1$$

Otra forma de representar los datos multivariados:
Los diagramas de radar

Base de datos (matriz de datos)

individuos	Variables				
iliuiviuuos	X1	X2	Х3		
1					
2					
3					

Estructura de los datos

Nombre de fila	Variables			
Nombre de ma	X1	X2		
Max				
Min				
1				
2				
3				
n				

			Cerveza	oreferida
		Ligera	Clara	Oscura
10.00	Hombre	20	40	30
Género	Mujer	30	30	10

Archivo gráficos de radar plantilla

```
#M matriz del ejemplo
 2 M=matrix(c(20,40,30,30,30,10),nr=2,nc=3,byrow=TRUE)
 3 rownames(M)=c("hombres","mujeres")
4 colnames(M)=c("ligera","clara","oscura")
 5 M1=round(prop.table(M,2),3)
 7 #desde acá es el procedimiento:
 8 #M1 en este caso es proporciones
 9 #en general debe ser una matriz normalizada
11 #defino máximos y mínimos, en el caso de las cervezas
12 # como son proporciones
13 #los pongo a 0,1. utilizo el comando de repetir
14 f1=rep(1,3)
15 f2=rep(0,3)
16 #datos finales
17 MF=rbind(f1,f2,M1)
18 #lo convierto a marco de datos
19 D=as.data.frame(MF)
21 #le pongo nombre a las filas que añadí
22 rownames(D)[1]="max"
23 rownames(D)[2]="min"
```

Preparación de la base de datos

Nombre de		Variables	
fila	ligera	clara	oscura
Max			
Min			
hombres			
mujeres			

```
#cargo el paquete
library(fmsb)

#para poner los graficos juntos (decido la posición)
par(mfrow=c(2,1))

#grafico de los hombres (filas 1,2 y 3)
radarchart(D[1:3,],pcol="red",plwd=3,vlcex = 1.2,title="hombres")

#grafico de las mujeres (filas1,2,4)
x=c(1,2,4)
radarchart(D[x,],pcol="blue",plwd=3,vlcex = 1.2,title="mujeres")

#significado
#pcol: color de la linea
#plwd: ancho de la linea
#plwd: ancho de la linea
#vlcex:tamaño fuente etiqueta
```


La tabla siguiente muestra los resultados de promedios de 4 grupos de estudiantes de una misma escuela en 5 exámenes finales

Estudiante	A1	A2	A3	A4	A5
a	5	23	4	75	2.1
b	2	50	1.2	94	4.8
f	1.5	48	1.9	92	4.4
j	0.5	7	0.4	20	1.2

Problema: Construya un diagrama de radar para representar el desempeño de los grupos y analice semejanzas y deferencias.

Los exámenes A1, A3 y A5 se califican de 0 a 5

El examen A2 se califica de 0 a 50

El examen A4 se califica de 0 a 100

Los datos deben estandarizarse

```
#digitar
M=matrix(nr=4,nc=5)
data.entry(M)

#nombres
rownames(M)=c("a", "b","c","d")
colnames(M)=c("A1","A2","A3","A4","A5")

#los datos deben estandarizarse
library(BBmisc)

#los estandarizo
M1=normalize(M,method="range",range=c(0.5,1.5),margin=2)
```

```
> M
A1 A2 A3 A4 A5
a 5.0 23 4.0 75 2.1
b 2.0 50 1.2 94 4.8
c 1.5 48 1.9 92 4.4
d 0.5 7 0.4 20 1.2
```

Trabajando con los datos estandarizados continuar la construcción del gráfico