Curs: Statistică (2019-2020) Instructor: A. Amărioarei, S. Cojocea

Proiect

Grupele 311, 312, 321, 322

Notă: Raportul poate fi scris în $Microsoft\ Word$ sau LaTeX (pentru ușurință recomand folosirea pachetului rmarkdown din R - mai multe informații găsiți pe site la secțiunea Link- $uri\ utile$). Toate simulările, figurile și codurile folosite trebuie incluse în raport. Se va folosi doar limbajul R.

1 Problema 1

Generați 100000 de variabile aleatoare folosind **metoda transformării inverse** pentru repartițiile definite mai jos:

- a) Repartiția logistică are densitatea de probabilitate $f(x) = \frac{e^{-\frac{x-\mu}{\beta}}}{\beta\left(1+e^{-\frac{x-\mu}{\beta}}\right)^2}$ și funcția de repartiție $F(x) = \frac{1}{1+e^{-\frac{x-\mu}{\beta}}}.$
- b) Repartiția Cauchy are densitatea de probabilitate $f(x) = \frac{1}{\pi\sigma} \frac{1}{1 + \left(\frac{x-\mu}{\sigma}\right)^2}$ și funcția de repartiție $F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan\left(\frac{x-\mu}{\sigma}\right)$.

Comparați rezultatele obținute cu valorile date de funcțiile rlogis și respectiv rcauchy (funcțiile de repartiție predefinite în R pentru repartițiile logistică și respectiv Cauchy). Ilustrați grafic aceste rezultate.

2 Problema 2

Folosiți **metoda respingerii** pentru a genera observații din densitatea de probabilitate definită prin $f(x) \propto e^{-\frac{x^2}{2}} \left[\sin(6x)^2 + 3\cos(x)^2 \sin(4x)^2 + 1 \right]^1$ parcurgând paşii următori:

- a) Reprezentați grafic f(x) și arătați că aceasta este mărginită de Mg(x) unde g(x) este densitatea de probabilitate a repartiției normale standard. Determinați o valoare potrivită pentru constanta M, chiar dacă nu este optimă. (Indiciu: Folosiți funcția optimise din R).
- b) Generați 25000 de observații din densitatea de mai sus folosind metoda respingerii.
- c) Deduceți, pornind de la rata de acceptare a acestui algoritm, o aproximare a *constantei de normalizare* a lui f(x), apoi comparați histograma valorilor generate cu reprezentarea grafică a lui f(x) normalizată.

3 Problema 3

Construiți două funcții în R frcpois și respectiv frcexp care să calculeze marginea inferioară Rao-Cramer (MIRC) pentru varianța estimatorilor parametrilor repartițiilor Poisson și respectiv Exponențială pentru un eșantion de dimensiune n (generați voi un asemenea eșantion într-o manieră corespunzătoare și folosiți-l în apelul funcției!).

Grupele: 301, 311, 321 Pagina 1

 $^{^{1}}$ Notația \propto înseamnă că f(x)este proporțională cu expresia din dreapta

Curs: Statistică (2019-2020) Instructor: A. Amărioarei, S. Cojocea

4 Problema 4

Folosind funcția check.convergence din pachetul R ConvergenceConcepts verificați dacă pentru următoarele exemple sunt verificate convergența în lege (în distribuție), în probabilitate și respectiv convergența aproape sigură. Interpretați și comentați rezultatele obținute.

- a) Fie X_1, X_2, \ldots, X_n variabile aleatoare i.i.d. $X_i \sim \text{Beta}\left(\frac{1}{n}, \frac{1}{n}\right)$ și $X \sim \text{Bin}\left(1, \frac{1}{2}\right)$. Verificați dacă $X_n \stackrel{d}{\longrightarrow} X$. Dar în cazul în care $X_i \sim \text{Beta}\left(\frac{a}{n}, \frac{b}{n}\right)$ cu a > 0, b > 0?
- b) Fie X_1, X_2, \ldots, X_n variabile aleatoare i.i.d. uniform repartizate pe mulțimea $\left\{\frac{1}{n}, \frac{2}{n}, \ldots, 1\right\}$ și $X \sim \mathcal{U}[0, 1]$. Verificați dacă $X_n \stackrel{d}{\longrightarrow} X$. Dar $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$?
- c) Fie X_1, X_2, \ldots, X_n variabile aleatoare i.i.d. Notăm cu m și respectiv M infimumul și respectiv supremumul mulțimii valorilor pe care le poate lua X_1 , i.e. $\mathbb{P}(m \le X_1 \le M) = 1$, $\mathbb{P}(X_1 < a) > 0$ și $\mathbb{P}(X_1 > b) > 0$ pentru a > m și respectiv b < M. Verificați că $X_{(1)} \xrightarrow{a.s.} m$ și că $X_{(n)} \xrightarrow{a.s.} M$.

5 Problema 5

- a) Pentru repartițiile logistică și respectiv Cauchy (vezi problema 1) construiți funcția de verosimilitate pentru parametrul μ considerând că parametrii β și respectiv σ sunt cunoscuți (alegeți valori potrivite pentru aceștia).
- b) Reprezentați grafic funcțiile de verosimilitate pentru cele două cazuri și folosind funcția optimise determinați o estimare pentru μ în baza unui eșantion de dimensiune 1000 pe care l-ați construit în prealabil. Explicați modul în care ați generat valorile din eșantion. Comentați și interpretați rezultatele.

Grupele: 301, 311, 321 Pagina 2