SEGUNDO TESTE

Universidade Federal de Goiás (UFG) - Regional Jataí Bacharelado em Ciência da Computação Teoria de Grafos Esdras Lins Bispo Jr.

13 de junho de 2017

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro testes, uma prova e os exercícios de aquecimento;
- ullet A média final (MF) será calculada assim como se segue

$$\begin{array}{rcl} MF & = & MIN(10,S) \\ \\ S & = & (\sum_{i=1}^4 0, 2.T_i) + 0, 2.P + 0, 1.EA \end{array}$$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- P é a pontuação obtida na prova, e
- $-\ EA$ é a pontuação total dos exercícios de aquecimento.
- O conteúdo exigido compreende os seguintes pontos apresentados no Plano de Ensino da disciplina: (2) Caminhos e Circuitos, e (3) Subgrafos.

Nome:		

1. (5,0 pt) **[E 1.65]** Suponha que P é um caminho de comprimento n-1 e O um circuito de comprimento n. Quanto valem $\delta(P)$, $\Delta(P)$, $\delta(O)$ e $\Delta(O)$? Justifique sua resposta.

Resposta: Temos três casos a considerar para o caminho P em questão:

- Caso 1 :: n = 1 neste caso, temos apenas um vértice e nenhuma aresta. Logo $\delta(P) = \Delta(P) = 0$;
- Caso 2 :: n = 2 neste caso temos apenas dois vértices, ambos de grau 1. Logo $\delta(P) = \Delta(P) = 1$;
- Caso 2 :: n > 2 neste caso, admita v como sendo um vértice em P. Se v for uma ponta, d(v) = 1. Se v for um nó interno, d(v) = 2. Sendo assim, $\delta(P) = 1$ e $\Delta(P) = 2$.

Agora admita um vértice qualquer em O. Temos um caso apenas a considerar, pois O é um circuito e, por isso, 2-regular. Sendo assim, $\delta(O) = \Delta(O) = 2$.

2. (5,0 pt) **[E 1.87]** Suponha que H é um subgrafo de G. Se $V_H = V_G$, é verdade que H = G? Se $E_H = E_G$, é verdade que H = G? Justifique sua resposta.

Resposta: Não é verdade que $V_H = V_G$ implique em H = G. Podemos ter, por exemplo, G sendo um K_5 , e H sendo um $\overline{K_5}$. Mesmo que $V_H = V_G$, H não será igual a G (pois $E_H \neq E_G$).

Também não é verdade que $E_H = E_G$ implique em H = G. Podemos ter, por exemplo, G sendo um $K_3 \cup \overline{K_2}$, e H sendo um K_3 . Mesmo que $E_H = E_G$, H não será igual a G (pois $V_H \neq V_G$).