Package 'psychtoolbox'

January 29, 2022
Title Tools for psychology and psychometrics
Version 0.0.0.9000
Description This package contains functions helping to analyse psychological data.
License CC BY 4.0
URL https://gitlab.com/lukas.novak/psychtoolbox
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.2
Imports coin, docxtractr, dplyr, foreign, magrittr, rmarkdown, rstatix, stats, tidyr
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
R topics documented:
clin_sig_chang
dat
RCI
two.g.comp
Index

2 clin_sig_chang

ر1	in	cia	chang
CI	_TII_	_518_	_CHang

Clinically significant change

Description

This easy function calculates Clinically significant change (clinical cut-off scores) as defined by Jacobson and Truax (1991).

Usage

```
clin_sig_chang(SD_0, SD_1, M_1, M_0)
```

Arguments

SD_0	standard deviation of the non-clinical population
SD_1	standard deviation of the clinical population
M_1	mean of the clinical population
M_0	mean of the non-clinical population

Format

numeric vector of values

Details

This function computes cut-off score differentiating between the clinical and non-clinical population based on the Jacobson and Truax (1991) formula (p. 13). The mathematical formula can be also found in Biescad & Timulak(2014), p. 150.

Value

numeric vector

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Jacobson, N. S., & Truax, P. (1991). Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59(1), 12-19, DOI: https://doi.org/10.1037/0022-006X.59.1.12

Matus Biescad & Ladislav Timulak (2014). Measuring psychotherapy outcomes in routine practice: Examining Slovak versions of three commonly used outcome instruments, European Journal of Psychotherapy & Counselling, 16:2, 140-162, DOI: https://doi.org/10.1080/13642537. 2014.895772

See Also

RCI() function for calculation of the Reliable Change Index

dat 3

Examples

```
\label{eq:clin_cut.off} \begin{split} \text{clin.cut.off=clin\_sig\_chang(SD\_0 = 3.5,} \\ \text{SD\_1 = 2.1,} \\ \text{M\_0 = 4.2,} \\ \text{M\_1 = 12.1)} \\ \text{clin.cut.off} \end{split}
```

dat

 $DATASET_TITLE$

Description

DATASET_DESCRIPTION

Usage

dat

Format

A data frame with 835 rows and 2 variables:

```
Gender integer COLUMN_DESCRIPTION IRI_EC double COLUMN_DESCRIPTION
```

Details

DETAILS

RCI

Reliable Change Index (RCI)

Description

This function calculates Reliable Change Index (RCI) as modified by Wiger and Solberg (2001, p.148).

Usage

```
RCI(SD_0, test.ret.rel)
```

Arguments

SD_0 standard deviation of the non-clinical population test.ret.rel test-retest reliability of the instrument

Format

numeric vector of values

4 two.g.comp

Details

This function computes value corresponding to "the minimum amount of change that could not be attributed to the error of measurement" (Biescad & Timulak, 2014, p. 150). If score change from before to post treatment is lower that value resulting from this function, than change in client score can be attributed to the effectiveness of the therapy but rather other factors such as a measurement error (Biescad & Timulak, 2014). This function is a result of modification of the original Jacobson and Truax (1991) formula by Wiger and Solberg (2001, p.148).

Value

numeric vector

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Jacobson, N. S., & Truax, P. (1991). Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59(1), 12-19, DOI: https://doi.org/10.1037/0022-006X.59.1.12

Matus Biescad & Ladislav Timulak (2014). Measuring psychotherapy outcomes in routine practice: Examining Slovak versions of three commonly used outcome instruments, European Journal of Psychotherapy & Counselling, 16:2, 140-162, DOI: https://doi.org/10.1080/13642537.2014.895772

See Also

clin_sig_chang() function for calculation of the clinical cut-off scores

Examples

```
re.ch.in = RCI(SD_0 = 4.87, test.ret.rel = 0.66)
re.ch.in
```

two.g.comp

Automatic two-groups comparison

Description

Automatic two-groups comparison

Usage

```
two.g.comp(df, y, group.var)
```

Arguments

df data frame or tibble with one socio-demographic variable and one continuous

variable

y continuous variable group.var binary grouping variable

word2pdf 5

Format

An object of class "tibble"

Details

This function computes either Wilcox test or t-test depending on whether homogeneity of variances assumption is met or not.

Value

data frame

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Myles Hollander and Douglas A. Wolfe (1973). Nonparametric Statistical Methods. New York: John Wiley & Sons. Pages 27–33 (one-sample), 68–75 (two-sample). Or second edition (1999).

Examples

```
# data loading
data(dat)
# running the function
two.g.comp.out.EC = two.g.comp(df = dat, y = "IRI_EC", group.var = "Gender")
# printing the output
print(two.g.comp.out.EC)
```

word2pdf

word to pdf

Description

Conversion of word document to pdf using either R Markdown package or Libre office. The latter represents higher quality approach - in general.

Usage

```
word2pdf(imp_file, out_file)
```

Arguments

Format

An object of class "pdf"

6 word2pdf

Details

this function is currently running only on windows

Value

pdf file

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

Examples

```
# example from word do pdf
#word2pdf(imp_file = "example.docx",out_file = "example1.pdf")
```

Index

```
*\ Wilcoxon
     {\tt two.g.comp}, {\tt 4}
* comparison,
     two.g.comp, 4
* datasets,
     {\tt two.g.comp}, {\tt 4}
*\ datasets
     dat, 3
* group
     {\tt two.g.comp}, {\tt 4}
* pdf,word
     word2pdf, 5
* test
     two.g.comp, 4
* two
     two.g.comp, 4
clin_sig_chang, 2
clin_sig_chang(), 4
dat, 3
RCI, 3
RCI(), 2
two.g.comp, 4
word2pdf, 5
```