

Utterance-final high vowel diphthongization in Chongqing Mandarin

Hailang Jiang hailang.jiang.22@ucl.ac.uk University College London

Phonology of Chongqing Mandarin

Chongqing Mandarin (a dialect of Mandarin spoken in Southwestern China)

Syllable template: (C)(G)V(X)

C: consonant onset

G: glide [j], [v], [y]

V: vowel nucleus

X: ending sound; nasal or [i, u]

Falling sonority in VX

'Yunmu' (G)V(X) in Chongqing Mandarin

V	GV	VX	GVX
i Į		in	
uσ			
y		yn	
e	je ue ye	ei ən	ŭei ŭən
o	jo jo	şu oŋ	işu ioŋ
a	ja ya	ai au an aŋ	yai jau jen yen yan jan yan

Moraity

Non-moraic:

(C)

(G): glide [i], [u], [y]

• Moraic:

V: vowel nucleus – all short

(X): ending sound; nasal or [i, u]

'Yunmu' (G)V(X) in Chongqing Mandarin

V	GV	VX	GVX
i Į		in	
uυ			
y		yn	
e	je ue ye	ei ən	ŭei ŭən
o	jo vo	şu oŋ	işu ioŋ
a	ia ua	ai au an aŋ	uai iau ien yen uan ian uan

Vowel inventory

- Six vowel phonemes: /i/, /y/, /u/, /e/, /o/, /a/
- a minimal 'sextuplet':

```
li<sup>31</sup> 'pear' ly<sup>31</sup> 'donkey' lu<sup>31</sup> 'six' lo<sup>31</sup> 'to fall' le<sup>31</sup> 'rib' la<sup>31</sup> 'spicy'
```

• High vowels:

```
/i/: [i]
        [i] after /ts/, /tsh/, /s/, /z/
/y/: [y]
/u/: [u]
        [ប]~[v] after /f/, /v/
```


On the apical vowel

```
[ts<sup>35</sup>.tein<sup>33</sup>]
```

'funds'

'to invest'

- A vowel, syllabic, despite its transcription
- [subjection squared by sounds like [subjection squared by subjection squared by sounds like [subjection squared by subjection sq
- Allophone of /i/ after /ts/, /tsh/, /s/, /z/

[sumix] <simi> 'Smith'

Phonologically high

Today's topic

(1)

Utterance-medial

 $[pi^{33}.xo^{31}]$

 $[ly^{34}.zən^{31}]$

[ts³⁵.tein³³]

[f<mark>ʊ</mark>²².muo̞⁴²]

[su³⁵.tsəu³³]

'pen case'

'female'

'funds'

'parents'

'Suzhou (city)'

Utterance-final diphthongized

[mau³³.p<mark>iɪ</mark>³¹]

[mei³⁴.lyɪ⁴²]

[thəu33.tsµe35]

[iaŋ³⁴.f<mark>ʊo</mark>̞²¹]

[t͡ɕi̪ɑŋ³⁵.suo̞³³]

'writing brush'

'beauty'

'to invest'

'foster father'

'Jiangsu (province)'

Data: sentence-level utterance

```
(2)
fʊ.mu thəu³³.t͡supe³⁵.
*muo
Parents invest
```

Parents invest.

Data: not diphthongized

```
(3)
```

- Non-high monophthongs
 [pe³¹] 'white'; [kho²¹³] 'class'; [pa³¹] 'eight'
- a vowel in a closed syllable [sin³⁵] 'heart'
- the second part of an underlying diphthong [pai²¹³] 'failure'

'Yunmu' (G)V(X) in Chongqing Mandarin

V	GV	VX	GVX
i Į		in	
uσ			
y		yn	
e	je ue ye	ei ən	uei uən
o	jo vo	ąu oŋ	iau ion
a	ia ua	ai au an aŋ	yai jau jen yen yan jan yan

Acoustics

- high vowels: [i, y, μ, υ, u] as monophthongs
- second part of the diphthongized vowel
 lower than the high vowels acoustically
 - → phonological [-high] centralized towards [ə]
 - → least sonorous in the V inventory

red: 5 diphthongized vowels

black: monophthongs (5 non-final high vowels & 3 non-high vowels)

Summary

$$i \rightarrow iI$$

$$y \rightarrow yI$$

$$\downarrow \rightarrow \downarrow e$$

$$v \rightarrow vo$$

$$u \rightarrow uo$$

$$\downarrow f$$

$$rucleus$$

1. boundary floating moras make them bimoraic

- Fission, rather than epenthesis
- · a floating mora at the right edge of every utterance, which needs association

1. boundary floating moras make them bimoraic (cont.)

- Fission, rather than epenthesis
- · a floating mora at the right edge of every utterance, which needs association
- High vowels undergo diphthongization utterance-finally

μ μ#	*FLOAT	INTEGRITY
pi ₁		
µ µ#	*!	
pi ₁		
μ μ#		*
© pi₁ <mark>I₁</mark>		

2. boundary moras gain different quality

high vowels do not fission into identical parts due to an undominated OCP constraint

bans other [+high][+high]:
 [li̞əu i̞o] *[li̞u i̞o] 'New York'
 *i̯u *u̯i *yu *yi *ui *iu

• bans identical high vowels *ii *yy *גְגְ *טט, *uu

'Yunmu' (G)V(X) in Chongqing Mandarin

V	GV	VX	GVX
i Į		in	
uσ			
y		yn	
e	je ue ye	ei ən	uei uən
o	jo vo	şu oŋ	igu ioŋ
a	ia ua	ai au an aŋ	uai iau ien yen uan ian uan

2. boundary moras gain different quality

high vowels do not fission into identical parts due to an undominated OCP constraint

μ μ #	*[+hi][+hi]	*FLOAT	INTEGRITY
pi ₁			
μ μ#	*!		*
pi ₁ i ₁			
μ μ#			*
₽pi₁ <mark>I</mark> 1			

3. deriving quality of boundary moras

$$i \rightarrow iI$$
 $y \rightarrow yi$
 $\downarrow \rightarrow \downarrow e$
 $u \rightarrow uo$

- Minimally different: [+high] → [-high]
 all other FAITHFULNESS ≫ IDENT(high)
- Evidence for fission, rather than epenthesis

μ μ #	IDENT(low)	IDENT(high)
pi ₁		
þ þ#	*!	*
pi ₁ a ₁		
μ μ#		*
⊯pi₁ <mark>i</mark> ₁		

Eliminating potential candidate: Falling sonority in VX

- Why [iɪ]#, not *[ɪi]#?
- Reduce the second part, not the first
- prominence alignment (Crosswhite 2004)
- Scale 1: Syllabic prominence peak > margin

Scale 2: Segmental prominence (sonority)

a > e, o > i, u, y,
$$\downarrow$$
, υ > I, ϱ , ϱ > r > n, m, η > etc.

[ə] as the least sonorous vowel

[I, O, e] are all centralized

'Yunmu'	(G)	Y) in	Chongaina	Mandarin
Tullillu	10111	ΔI	Chongqing	Manuann

V	GV	VX	GVX
i Į		in	
uσ			
y		yn	
e	ie ue ye	ei ən	ŭei ŭən
o	jo jo	şu oŋ	işu ioŋ
a	ja ya	ai au an aŋ	uai jau jen yen uan jan uan

Eliminating potential candidate: prominence alignment (cont.)

- Why [iɪ]#, not *[ɪi]#?
- Reduce the second part, not the first

Falling sonority in VX, modelled by a set of 'prominence alignment (PA)' constraints:

μ μ#	PA	*FLOAT	INTEGRITY
pi ₁			
μ μ#	*!		*
pi ₁ i ₁			
μ μ#			*
⊯pi ₁ I ₁			

Restricting diphthongization

- High vowels undergo diphthongization utterance-finally
- non-high vowels do not

μ μ#	INT(-hi)	*FLOAT	INT(+hi)
pa₁			
μ μ #		*	
r pa 1			
μ μ#	*!		
pa ₁ V ₁			

Restricting diphthongization (cont.)

• Syllables that are underlyingly bimoraic like [pai] and [sin] cannot host floating moras

μμ μ#	*superheavy	*FLOAT	INTEGRITY
εi₁n₂			
µµ µ#		*	
⊯βi₁n₂			
μμ μ#	*!		*
gi ₁ n ₂ X ₂			

Restricting diphthongization (cont.)

• Syllables that are underlyingly bimoraic like [pai] and [sin] cannot host floating moras

µµ µ#	*superheavy	*FLOAT	INTEGRITY
pa₁i₂			
μμ μ#		*	
r pa₁i₂			
hh h#	*!		*
$pa_1i_2V_2$			

Conclusion: /pi/# → [piɪ]#

- Boundary floating moras are associated*pi #
- OCP constraint bans [+high][+high] sequences
 *pii #
- Only minimal difference is tolerable
 *pie # *pip # *pin #
- Prominence alignment leaves the lowered part at the less prominent position
 *pɪi #

References

- Bidwell, Charles E. 1969. Outline of Slovenian morphology.
- Crosswhite, Katherine. 2004. Vowel reduction. Phonetically based phonology 191–231.
- Duanmu, San. 1990. A formal study of syllable, tone, stress and domain in Chinese languages: Massachusetts Institute of Technology dissertation.
- Duanmu, San. 2007. The phonology of standard chinese. OUP Oxford.
- Fery, Caroline. 2003. Markedness, faithfulness, vowel quality and syllable structure in french. Journal of French Language Studies 13(2). 247–280.
- Gong, Shuxiao & Jie Zhang. 2021. Modelling mandarin speakers phonotactic knowledge. Phonology 38(2). 241–275.
- Gordon, Matthew, Edita Ghushchyan, Bradley McDonnell, Daisy Rosenblum & Patricia A Shaw. 2012. Sonority and central vowels: A cross-linguistic phonetic study. The sonority controversy 219–256.
- Ji, Feng. 2020. Experimental research on the first-class vowel patterns of Chongqing urban dialect. Modern Chinese 1.
- Lehiste, Ilse. 1961. The phonemes of Slovene. International journal of Slavic linguistics and poetics 4. 48–66.
- Qing, Wei. 2015. An analysis on the disyllabic tone sandhi of chongqing dialect from the perspective of word stress and tonal coarticulation.
- Thompson, Laurence C & M Terry Thompson. 1966. A fresh look at tillamook phonology. International Journal of American Linguistics 32(4). 313–319.
- Wang, Yunjia, Siwei Liu & Wei Qing. 2017. Tonal patterns and categorical perception of Yinping and Yangping in Chongqing Mandarin: Implications to historical Chongqing of Yinping and Shangsheng. Chinese Journal of Phonetics 7. 18–27.
- Yi, Li & San Duanmu. 2015. Phonemes, features, and syllables: Converting onset and rime inventories to consonants and vowels. Language and Linguistics 16(6). 819–842.
- Zhu, Hongyin. 2018. A study of the phonological system of the yubei dialect of chongqing: youth as an example. Northern Literature 4. 202–204.