Advanced Topics in Statistical Process Control

The Power of Shewhart's Charts

Second Edition

Donald J. Wheeler

	Preface to the Second Edition Preface The Shewhart Catechism			
Chapter One	Shewhart's Control Charts			
	 1.1 Shewhart's Definition of Statistical Control 1.2 Shewhart's "Operation of Statistical Control" 1.3 The Four Possibilities for Any Process 1.4 Process Behavior Charts and the Probability Approach 1.5 Enumerative Studies and Analytic Studies 1.6 The Uses of Shewhart's Charts 1.7 The Four Foundations of Shewhart's Charts 1.8 Process Behavior Charts and Chaos Theory 1.9 The Transformation of Data 	2 4 6 14 18 19 21 25 28		
Chapter Two	Statistics Versus Parameters			
	 2.1 Measures of Location and Dispersion 2.2 The Notion of a Probability Distribution 2.3 Statistics, Parameters, and Process Behavior Chart Limits 2.4 Skewness and Kurtosis 	31 33 37 46		
Chapter Three	Estimating Dispersion Parameters			
	 3.1 Estimators of SD(X) and V(X) for One Subgroup of Size n 3.2 Three Ways to Estimate SD(X) for k Subgroups of Size n 3.3 The Second Foundation of Shewhart's Charts 3.4 Within-Subgroup Estimates of Dispersion 3.5 Time Series Data (Subgroups of Size One) 3.6 Degrees of Freedom 3.7 Summary 	56 60 71 74 79 80 83		
Chapter Four	Process Behavior Charts for Measurements			
	 4.1 Average and Range Charts 4.2 Average and Root Mean Square Deviation Charts 4.3 Average and Standard Deviation Charts 4.4 Average and Variance Charts 4.5 So What's the Difference? 4.6 Charts for Individual Values 4.7 Median and Range Charts 	88 92 96 103 106 108 113		

Chapter Five	Three Sigma Limits	
	 5.1 Why Three-Sigma Limits? 5.2 But What About the Central Limit Theorem? 5.3 The Recalculation of Limits 5.4 The Role of the Normal Distribution 5.5 Calculating Limits With Small Amounts of Data 5.6 Inadequate Measurement Units 5.7 Detecting Assignable Causes 5.8 Summary 	116 120 122 123 126 128 135 140
Chapter Six	Rational Sampling and Rational Subgrouping	
	 6.1 Rational Sampling 6.2 Rational Subgrouping 6.3 Principles for Subgrouping 6.4 Three-Way Charts 6.5 Summary 	142 143 155 157 165
Chapter Seven	The Quality of the Limits	167
	 7.1 The Distribution of the Average Range Statistic 7.2 The Distribution of the Average Root Mean Square Statistic 7.3 The Distribution of the Average Standard Deviation Statistic 7.4 The Distribution of the Pooled Variance Statistic 7.5 The Distribution of the Median Range Statistic 7.6 The Distribution of the Average Moving Range 7.7 Degrees of Freedom 7.8 Effective Degrees of Freedom 7.9 Using Degrees of Freedom 7.10 The Quality of Process Behavior Chart Limits 7.11 Summary 	168 170 172 174 176 178 180 182 183 185
Chapter Eight	Capability Confusion	187
	 8.1 Capability, Capability Ratios, and Performance Ratios 8.2 The Capability of a Predictable Process 8.3 Capability Measures 8.4 Converting Capabilities Into Fraction Nonconforming 8.5 Performance Ratios 8.6 World-Class Quality 8.7 Summary 	188 188 191 194 197 197 204
Chapter Nine	Power Functions for Process Behavior Charts	205
	 9.1 The Power of Charts for Location 9.2 The Formulas for the Power Functions 9.3 The Average Run Length for a Procedure 9.4 Summary 	206 212 221 224

Chapter Ten	Comparing Different Types of Process Behavior Charts	225
	 10.1 Process Behavior Charts for Subgroup Averages 10.2 Charts for Moving Averages 10.3 Moving Averages or Individual Values? 10.4 Contra Two-Sigma Limits 10.5 Summary 	227 237 239 245 250
Chapter Eleven	Charts for Count Data	251
	 11.1 Charts for Count Data 11.2 np-Charts 11.3 p-Charts 11.4 A Problem With Binomial Counts 11.5 c-Charts 11.6 u-Charts 11.7 A Problem With Poisson Counts 11.8 Degrees of Freedom 11.9 Process Behavior Charts for Rare Events 11.10 Summary 	252 255 256 257 259 261 262 267 267
Chapter Twelve	Charts for Autocorrelated Data	273
	 12.1 Correlation 12.2 Significant Correlations 12.3 Autocorrelation 12.4 What Does Autocorrelation Say About the Process? 12.5 The Effect of Autocorrelation 12.6 Autocorrelation's Effect Upon Chart Limits 12.7 So What Shall I Do With My Autocorrelated Data? 	273 275 276 278 279 282 287
Chapter Thirteen	The Cumulative Sum Technique	289
	 13.1 Cumulative Sums for Individual Values 13.2 Cumulative Sums for Subgroup Averages 13.3 Average Run Lengths for Selected Cusum Procedures 13.4 Summary 	290 299 307 311
Chapter Fourteen	Exponentially Weighted Moving Averages	313
	 14.1 The EWMA Algorithm 14.2 EWMA for Individual Values 14.3 Average Run Lengths for the EWMA 14.4 Then What Does an EWMA Do? 14.5 Summary 	313 315 320 323 327

Chapter	Fifteen	Multivariate Charts	329
		 15.1 Simple Multivariate Charts 15.2 Charts for Hotelling's T² Statistic 	329 334
Chapter	Sixteen	Miscellaneous Techniques	341
		16.1 Zone Charts16.2 Modified Control Charts16.3 PreControl16.4 Summary	341 346 347 354
Chapter	Seventeen	The Characterization of Product	355
		 17.1 Characterizing the Measured Item 17.2 Characterizing Product Which Has Not Been Measured 17.3 The Fallacy of Acceptance Sampling 17.4 Estimating the Fraction Nonconforming 17.5 Summary 	356 366 368 369 371
Chapter	Eighteen	The Analysis of Means	373
		 18.1 Comparing k Treatments Using Average Charts 18.2 Experimental Data vs. Production Data 18.3 The Decision Limits for ANOM 18.4 The Role of the Range Chart with ANOM 18.5 ANOM With Multifactor Studies 18.6 Interaction Effects and ANOM 18.7 ANOM With Unequal Subgroup Sizes 18.8 The Analysis of Mean Ranges 18.9 Range-Based Analysis of Means 18.10 Summary 	374 375 379 382 386 388 390 392 395 397
Chapter	Nineteen	Some Differences Between Theory and Practice	399
		 19.1 The Scientific Process 19.2 Statistical Tests of Hypotheses 19.3 Enumerative Studies 19.4 Analytical Studies 19.5 Shewhart on Probability Models and Processes 19.6 Finding Decision Rules for Analytic Studies 19.7 Conclusions 	400 402 404 406 407 408 409

Appendix			411
11	Glossary o Bibliograp Tables		412 414 416-464
	Table 1: Table 2: Table 3:	Bias Correction Factors Bias Correction Factors for Estimating $V(X)$ Charts for Individual Values and Moving Ranges	416 417 418
	Table 4: Table 5: Table 6:	Average and Range Charts Using the Average Range Average and Range Charts Using the Median Range Average and Range Charts Based on <i>Sigma(X)</i>	419 420 421
	Table 7: Table 8: Table 9:	Average and RMS Dev. Charts Using Average RMS Dev. Average and RMS Dev. Charts Using Median RMS Dev. Average and RMS Dev. Charts Based on $Sigma(X)$	422 423 424
	Table 10: Table 11: Table 12: Table 13:	Average and Std. Dev. Charts Using Average Std. Dev. Average and Std. Dev. Charts Using Median Std. Dev. Average and Std. Dev. Charts Based on $Sigma(X)$ Average and Std. Dev. Charts Using Pooled Variance	425 426 427 428
	Table 14: Table 15: Table 16:	Median and Range Charts Using the Average Range Median and Range Charts Using the Median Range Median and Range Charts Based on <i>Sigma(X)</i>	430 431 432
	Table 17:	Average and Variance Charts	433
	Table 18: Table 19: Table 20:	Moments for Range Distributions Moments for Distributions of the RMS Deviation Moments for Distributions of the Standard Deviation	434 436 438
	Table 21: Table 22:	Degrees of Freedom for Average Ranges Degrees of Freedom for Median Ranges	442 444
	Table 23: Table 24:	Degrees of Freedom for Average Moving Ranges Degrees of Freedom for Median Moving Ranges	446 447
	Table 25: Table 26:	Degrees of Freedom for Average Std. Dev. and RMS Dev. Degrees of Freedom for Median Std. Dev. and RMS Dev.	448 450
	Table 27: Table 28:	The Standard Normal Distribution ANOM Critical Values, <i>H</i>	452 454
	Table 29: Table 30: Table 31:	Range-Based ANOM Critical Values Range-Based ANOME Critical Values Range-Based ANOMR Critical Values	458 459 460
	Table 32: Table 33: Table 34:	Central Lines and Upper Limits for Hotelling's T^2 37 Reference Tables and Figures Located Within Text Alpha Levels for Average Charts	462 463 464
Index			465

The Shewhart Catechism

- What if a state of predictability is beyond the capability of our process?
 This cannot happen. A process is operating predictably when it is being operated as consistently as it can—no more, and no less.
 See Sections 1.1, 1.2
- Is quality defined by conformance to specifications?
 No. Today world-class quality is defined as "on-target with minimum variance."
 Conformance to specifications is merely the starting point, not the finish line.

See Section 8.6

- 3. What do capability ratios do?

 Capability ratios may be used to compare the Voice of the Process with the Voice of the Customer. However, it is easy to go overboard with this. Some other measures are also useful, and no numerical summary is an adequate replacement for the basic graphs of the data.

 See Section 8.3
- 4. How do Dr. Deming's 14 Points relate to Statistical Process Control?
 They may be thought of as corollaries to the observation that organizations do not behave in a rational manner and therefore cannot effectively use the knowledge gained from the charts.
 See Section 1.6
- 5. How do Shewhart's process behavior charts differ from tests of hypotheses? Shewhart's charts characterize a time series as being either predictable or unpredictable. When a test of hypotheses is applied to a time series it presumes the timeseries to be predictable, and looks for changes in parameters of the predictable timeseries.
 See Sections 1.3 through 1.5 and Chapter 19
- 6. Does it matter how we calculate the limits of a process behavior chart? Yes. There are right and wrong ways of computing limits. While all of the right ways will yield essentially the same limits, the wrong ways will result in incorrect limits and faulty decisions.
 See Section 3.2
- Do we have to remove the "outliers" from the data before we calculate the limits?
 No. The correct computational procedures for process behavior chart limits are not severely affected by outliers.
 See Sections 3.2 and 4.1
- 8. Must the data "be in control" prior to placing them on a process behavior chart?

 No. One purpose of a process behavior chart is to detect the presence or absence of a state of predictability. Therefore, you do not have to wait for "pristine" data, nor do you have to clean up the data prior to computing the limits.

See Section 3.2 and Chapter 4

- 9. How can we calculate good limits from data which are "out of control?"
 The correct approaches to computing limits will minimize the impact of exceptional variation upon the limits.
 See Chapter 4
- 10. Should we calculate limits for the Average Chart when the Range Chart is unpredictable? Yes. You will not discover anything by not calculating limits!

See Sections 4.1 and 5.4

- 11. Can we use two-sigma limits?

 No. Two-sigma limits are inappropriate for a process behavior chart. See Section 10.4
- 12. Do three-sigma limits depend upon having normally distributed data?

 No. Three-sigma limits are sufficiently general to work with virtually any distribution.

 See Sections 5.1 and 5.2
- 13. Are the process behavior chart constants dependent upon having normally distributed data? No. These constants are remarkably similar for a wide range of different distributions.
 See Section 5.4
- 14. Do we have to wait until we have 25 or 30 subgroups before calculating limits?

 No. Limits may be calculated using small amounts of data. The degrees of freedom will characterize just how "reliable" the calculated limits have become.

See Sections 3.6, 5.4, and 7.9

- 15. What about data which display autocorrelation?

 Shewhart placed autocorrelated data on charts. You can too.

 See Chapter 12
- 16. Do we have to use subgroups of size 5?
 No. The subgroup size is not the most important characteristic of the chart. Rational subgrouping is more important than the subgroup size, even if that requires subgroups of size one.
 See Sections 1.6, 10.1, and Chapter 6
- 17. What is a rational subgrouping?

 Among other things, a rational subgrouping is one in which the measurements inside each subgroup are judged to have been obtained under essentially the same conditions. Moreover, the subgrouping must respect the structure of the data.

See Section 1.2 and Chapter 6

18. Does the Central Limit Theorem require charts to use subgroups of size 4 or 5?

While the Central Limit Theorem is true, it is not the basis on which the process behavior chart is built. Therefore, this theorem cannot require anything of a process behavior chart. The charts will work with subgroups of size 1, and they will do so even when the data are not normally distributed.

See Sections 5.2, 10.1, and 10.3

19. Does a subgroup always consist of consecutive measurements?

No. While many processes may be tracked using subgroups of consecutive measurements, this is not a requirement of the chart. Once again, it is more important that the subgrouping be rational.

See Section 1.6 and Chapter 6

20. What happens to a process behavior chart when the measurement units are too large to detect the variation in the data?

False alarms will proliferate. This problem is easy to spot, but it must be considered if you are to avoid looking for nonexistent assignable causes. See Section 5.5

21. Why do we use so many symbols for dispersion?

There is a multiplicity of dispersion statistics as well as a plurality of dispersion parameters. A lack of a standard nomenclature here is a real source of confusion.

See Sections 3.1 through 3.4

22. *Is the standard deviation statistic better than the range?*Not for small subgroup sizes. See Sections 4.1, 4.3, and Appendix Tables 18, 19, and 20

23. Is not the Pooled Variance a better measure of dispersion than the Average Standard Deviation or the Average Range?

Yes and No. The Pooled Variance will have more degrees of freedom than the other measures, but it will be more severely affected by a lack of homogeneity than will the other measures.

See Sections 3.4 and 7.7

24. What are Degrees of Freedom?

Degrees of Freedom is the name given to a characterization of the variation of a measure of dispersion. The greater the Degrees of Freedom, the smaller the variation of the measure of dispersion.

See Sections 3.6, 7.7, 7.8, and 7.9

25. How do we measure dispersion when our subgroup size is one?

We must use a two-point moving range to measure dispersion when placing a time series of individual values on a process behavior chart. See Sections 3.5 and 4.6

26. What role does the Moving Range Chart play with an Individual Value Chart?

It signals that the user knows the correct way of computing limits, it identifies breaks in the original time series, and it provides those who look at the chart with the ability to easily check that the computation of the limits is correct.

See Section 4.6

27. Are "unbiased" estimators better than "biased" estimators?

No. The property of being unbiased does not imply closeness to the parameter.

See Section 3.1

28. Should I be using the skewness and kurtosis values from my printout?

No. You will never have enough data to make these "shape statistics" useful.

See Section 2.4

29. Will Chaos Theory replace process behavior charts?

No. Since Dr. Shewhart's approach is holistic and empirical, it can accommodate the paradigm shift represented by the new theories of quasi-chaotic variation.

See Section 1.7

- 30. What about transforming the data prior to placing them on a chart?

 Transformations to achieve a quasi-normal histogram or transformations to achieve other statistical properties are not recommended. They introduce more complexity than they are worth. Transformations to achieve clarity of interpretation are always appropriate.

 See Sections 1.8, 6.1, 11.9, and Chapter 19
- 31. *Is a Moving Average Chart better than a chart for Individual Values?*Only occasionally. Most times the Individual Value Chart will be the better chart.

See Section 10.3

32. What is the difference between Attribute Charts and XmR Charts?

XmR Charts use empirical limits while Attribute Charts use theory to construct limits.

Therefore, with Attribute Charts you must check to see if the theory is appropriate.

See Chapter 11

33. How can we chart rare events?

Counts of rare events will result in weak charts. It is better to measure the area of opportunity between the rare events and use these measurements on the charts.

See Section 11.9

- 34. Is it true that the Cumulative Sum (Cusum) is better than a process behavior chart?

 No. The Cusum technique may be easier to program than a process behavior chart, but contrary to much of what has been written, it does not really work any better than process behavior charts. Moreover, by transforming the original data, the Cusum technique can actually obscure that which is easily seen in the running records of the process behavior charts.

 See Chapter 13
- 35. Can we use an Exponentially Weighted Moving Average instead of a process behavior chart? An EWMA attempts to model a time series. Such models may be used for process monitoring. However, EWMAs are no more sensitive than a process behavior chart, they will always lag behind a chart, and they are more complex than a chart.

See Chapter 14

- 36. Can we use PreControl instead of a process behavior chart?

 No. PreControl is totally different from a process behavior chart, and inferior as well.

 See Section 16.3
- 37. Are Zone Charts a valid alternative to a process behavior chart?

 No. Zone charts result in too many false alarms. In addition, they are actually more complex than a process behavior chart, while providing nothing more than a parody of the process behavior chart.

See Section 16.1