Contents

1 Basic

1.1 .vimrc

\$

2 Math

2.1 Euclidean's Algorithm

2.2 Big Integer

National Taiwan University DanGan			
National Taiwan University Dangan			
3 Data Structure 3.1 Disjoint Set			
	3.3 Copy on Write Segement Tree		
3.2 Segement Tree with Lazy Tag			

National Taiwan University DanGan		
	'	
	3.5 Rope	
	I	
3.4 Persistent Segement Tree		

 $3.6 ext{ pb_ds}$

std::priority_queue pairing_heap_tag binary_heap_tag binomial_heap_tag	$ \begin{array}{c} \operatorname{push} \\ \lg(n) \\ 1 \\ \lg(n) \\ 1 \end{array} $	$ \begin{array}{c c} \operatorname{pop} \\ \operatorname{lg}(n) \\ \operatorname{lg}(n) \\ \operatorname{lg}(n) \end{array} $	$ \begin{array}{c} \text{modify} \\ n \lg(n) \\ \lg(n) \\ n \\ \lg(n) \end{array} $	$\begin{array}{c} \operatorname{erase} \\ n \lg(n) \\ \lg(n) \\ n \\ \lg(n) \end{array}$	$ \begin{array}{c c} \text{join} \\ n \lg(n) \\ 1 \\ n \\ \lg(n) \end{array} $
binomial_heap_tag	$\lg(n)$	$\lg(n)$	$\lg(n)$	$\lg(n)$	$\lg(n)$
rc_binomial_heap_tag thin_heap_tag	1	$\lg(n)$ $\lg(n)$	$\lg(n) \ \lg(n)[\mathrm{ps}]$	$\lg(n)$ $\lg(n)$	

ps: 1 if increased_key only else $\lg(n)$

4 graph

4.1 Dijkstra's Algorithm

4.2 Tarjan's Algorithm

National Taiwan University DanGan 6		
5.2 MaxFlow (ISAP)		

Natio	National Taiwan University DanGan 7		
5.3	${ m MinCostMaxFlow}$		
^			
5.4	${\bf Bounded Max Flow}$		
I~			
1~			