Computer Networks Second Partial Exam April 17, 2020

Department of Computer Science and Engineering - CIIC4070 Department of Electrical and Computer Engineering - ICOM5026 University of Puerto Rico at Mayagüez

Name	
Student ID	

Instructions:

- Write your name (or initial) on top of each page.
- Write your answers in English.

Problem	Page	Points	Score
(I)	2	5	
(II)	2	15	
(III)	3	15	
(IV)	4	15	
(V)	4	10	
(VI)	5	15	
(VII)	5	15	
(VIII)	6	10	
Total		100	

(I). The following data fragment occurs in the middle of a data stream, for which the character-stuffing algorithm described in the textbook is used:

What is the output after stuffing?

(II). Suppose a complete code consists of four codes:

• Code 1: 00000000

• Code 2: 00001111

• Code 3: 11110000

• Code 4: 11111111

(1) Using the following table, determine the Hamming distance of each pair of codes:

_	Code 1	Code 2	Code 3	Code 4
Code 1	-			
Code 2		-		
Code 3			-	
Code 4				_

- (2) What is the Hamming distance of this complete code?
- (3) How many bit errors can be detected?
- (4) How many bit errors can be corrected?

(III).	Using Hamming coding to encode bit stream:	10101011110.

(IV). Using CRC with general polynomial $x^3 + x + 1$ to encode 11001	(1	olynomia	nial $x^3 + x + 1$ to	encode 110	001010.
---	----	----------	-----------------------	------------	---------

- (V). Medium Access Control (MAC) Sublayer.
 - (1) What is the main purpose of the medium access control (MAC) sublayer?
 - (2) In Dr. Kejie Lu's videos, find three IEEE standards that include the MAC sublayer. For each standard, write the code of the standard and the title of video below.

- (VI). A large number of stations in a slotted ALOHA network generate 50 requests per second on average, where the requests include originals and retransmissions. Suppose the duration of a time slot is 20 ms.
 - (1) What is the arrival rate G when the unit is the number of arrival per time slot?
 - (2) What is the probability that a message is successfully transmitted on an attempt?
 - (3) What is the expected number of transmission attempts needed for a successful delivery?
- (VII). Answering the following questions about Ethernet.
 - (1) Why the Manchester encoding is used in Ethernet?
 - (2) Sketch the Manchester encoding for the bit stream 1010111001.

(3) Suppose a CSMA/CD network is operating at 100Mbps, and suppose there are no repeaters and the length of the cable is 1.0km. Determine the minimum frame size. (Hint: The signal propagation speed is 200km/ms in cable).

(VIII).	List four main collision avoidance schemes used in IEEE 802.11 DC Then briefly explain how each scheme can help to avoid collision.	F (CSMA/CA).