

APPENDIX I:

THE LISTING OF CLAIMS (version with markings):

1. (currently amended) A 3-heterocyclyl-substituted benzoyl compound of formula I

where the variables have the following meanings:

R¹, R² are hydrogen, nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl or C₁-C₆-haloalkylsulfonyl;

R³ is hydrogen, halogen or C₁-C₆-alkyl;

R⁴, R⁵ are hydrogen, halogen, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, di(C₁-C₄-alkoxy)-C₁-C₄-alkyl, di(C₁-C₄-alkyl)-amino-C₁-C₄-alkyl, [2,2-di(C₁-C₄-alkyl)-1-hydrazino]-C₁-C₄-alkyl, C₁-C₆-alkyliminoxy-C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-cyanoalkyl, C₃-C₈-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy, hydroxyl, C₁-C₄-alkylcarbonyloxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio, di(C₁-C₄-alkyl)amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substituents to be fully or partially halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy; or

R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl; or

R⁴ and R⁵ together with the corresponding carbon form a carbonyl or thiocarbonyl group;

R⁶ is hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy, C₃-C₆-alkenyloxy, C₃-C₆-alkynyoxy or NR⁷R⁸;

R⁷ is hydrogen or C₁-C₄-alkyl;
 R⁸ is C₁-C₄-alkyl;
 X is O, S, NR⁹, CO or CR¹⁰R¹¹;
 Y is O, S, NR¹² or CO;
 R⁹, R¹² are hydrogen or C₁-C₄-alkyl;
 R¹⁰, R¹¹ are hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy-carbonyl, C₁-C₄-haloalkoxycarbonyl or CONR⁷R⁸; or
 R⁴ and R⁹ or R⁴ and R¹⁰ or R⁵ and R¹² together form a C₂-C₆-alkane-diyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl;
 R¹⁵ is a pyrazole of the formula II which is linked in the 4-position

II

where

R¹⁶ is C₁-C₆-alkyl;Z is [H or] SO₂R¹⁷;R¹⁷ is C₁-C₄-alkyl, C₁-C₄-haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;R¹⁸ is hydrogen or C₁-C₆-alkyl;

where X and Y are not simultaneously sulfur;

[with the exception of][4-[2-chloro-3-(4,5-dihydrothiazol-2-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole and][4-[2-chloro-3-(thiazoline-4,5-diene-2-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole;]

or an agriculturally useful salt thereof.

2. (currently amended) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 1, where the variables have the following meanings:

R¹, R² are hydrogen, nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl or C₁-C₆-haloalkylsulfonyl;

R³ is hydrogen, halogen or C₁-C₆-alkyl;

R⁴, R⁵ are hydrogen, halogen, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, di(C₁-C₄-alkoxy)-C₁-C₄-alkyl, di(C₁-C₄-alkyl)-amino-C₁-C₄-alkyl, [2,2-di(C₁-C₄-alkyl)-1-hydrazino]-C₁-C₄-alkyl, C₁-C₆-alkyliminooxy-C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-cyanoalkyl, C₃-C₈-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio, di(C₁-C₄-alkyl)amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substituents to be fully or partially halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy; or

R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl; or

R⁴ and R⁵ together with the corresponding carbon form a carbonyl or thiocarbonyl group;

R⁶ is C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy, C₃-C₆-alkenyloxy, C₃-C₆-alkynylloxy or NR⁷R⁸;

R⁷ is hydrogen or C₁-C₄-alkyl;

R⁸ is C₁-C₄-alkyl;

X is O, S, NR⁹, CO or CR¹⁰R¹¹;

Y is O, S, NR¹² or CO;

R⁹, R¹² are hydrogen or C₁-C₄-alkyl;

R¹⁰, R¹¹ are hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy-carbonyl, C₁-C₄-haloalkoxycarbonyl or CONR⁷R⁸; or

R⁴ and R⁹ or R⁴ and R¹⁰ or R⁵ and R¹² together form a C₂-C₆-alkane-diyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl;

R^{15} is a pyrazole of the formula II which is linked in the 4-position

II

where

R^{16} is C_1-C_6 -alkyl;

Z is [H- or] SO_2R^{17} ;

R^{17} is C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

R^{18} is hydrogen or C_1-C_6 -alkyl;

where X and Y are not simultaneously sulfur;

[with the exception of]

[~~4-[2-chloro-3-(4,5-dihydrothiazol-2-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole and]~~

[~~4-[2-chloro-3-(thiazoline-4,5-diene-2-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole,~~]

or an agriculturally useful salt thereof.

3. (previously presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 1 or 2, where R^3 is hydrogen.
4. (previously presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 1 or 2, where R^1 , R^2 are nitro, halogen, cyano, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, C_1-C_6 -alkoxy, C_1-C_6 -haloalkoxy, C_1-C_6 -alkylthio, C_1-C_6 -haloalkylthio, C_1-C_6 -alkylsulfinyl, C_1-C_6 -haloalkylsulfinyl, C_1-C_6 -alkylsulfonyl or C_1-C_6 -haloalkylsulfonyl.
5. (canceled)
6. (canceled)
7. (canceled)
8. (previously presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 1 or 2, where

R⁴ is halogen, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-cyanoalkyl, C₃-C₈-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio, di(C₁-C₄-alkyl)amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substituents to be partially or fully halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R⁵ is hydrogen or C₁-C₄-alkyl; or

R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl.

9. (previously presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 1 or 2, where

R⁴ is C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxycarbonyl or CONR⁷R⁸;

R⁵ is hydrogen or C₁-C₄-alkyl; or

R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl.

10. (previously presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 1 or 2, where R⁴ and R⁵ are hydrogen.

11. (previously presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 1 or 2, where R¹⁸ is hydrogen.

12. (canceled)

13. (canceled)

14. (previously presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 1 or 2, where

X is S, NR⁹, CO or CR¹⁰R¹¹.

15. (canceled)

16. (*previously presented*) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 1 or 2, where

R⁴ is halogen, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-cyanoalkyl, C₃-C₈-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio, di(C₁-C₄-alkyl)amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substituents to be partially or fully halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R⁵ is hydrogen or C₁-C₄-alkyl; or

R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl; or

R⁴ and R⁹ or R⁴ and R¹⁰ or R⁵ and R¹² together form a C₂-C₆-alkane-diyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl;

R¹⁸ is C₁-C₆-alkyl.

17. (*canceled*)

18. (*canceled*)

19. (*canceled*)

20. (*canceled*)

21. (*previously presented*) A composition comprising a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of formula I as defined in claim 1 or 2 or of an agriculturally useful salt thereof, and auxiliaries conventionally used for the formulation of crop protection products.

22. (*previously presented*) A process for the preparation of the composition defined in claim 21, which comprises mixing a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of formula I or of the agriculturally useful salt there-

of and auxiliaries conventionally used for the formulation of crop protection products.

23. (previously presented) A method of controlling undesirable vegetation, which comprises allowing a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of formula I as defined in claim 1 or 2 or of an agriculturally useful salt thereof to act on plants, their environment and/or on seeds.
24. (new) A 3-heterocyclyl-substituted benzoyl compound of formula I

where the variables have the following meanings:

- R¹, R² are hydrogen, nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl or C₁-C₆-haloalkylsulfonyl;
- R³ is hydrogen, halogen or C₁-C₆-alkyl;
- R⁴ is halogen, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-cyanoalkyl, C₃-C₈-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio, di(C₁-C₄-alkyl)amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substituents to be partially or fully halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;
- R⁵ is hydrogen or C₁-C₄-alkyl; or
- R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl.
- R⁶ is hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy, C₃-C₆-alkenyloxy, C₃-C₆-alkynyoxy or NR⁷R⁸;
- R⁷ is hydrogen or C₁-C₄-alkyl;

R^8 is C_1-C_4 -alkyl;
 X is O, S, NR⁹, CO or CR¹⁰R¹¹;
 Y is O, S, NR¹² or CO;
 R^9 , R^{12} are hydrogen or C_1-C_4 -alkyl;
 R^{10} , R^{11} are hydrogen, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy-carbonyl, C_1-C_4 -haloalkoxycarbonyl or CONR⁷R⁸;
 R^{15} is a pyrazole of the formula II which is linked in the 4-position

where

R^{16} is C_1-C_6 -alkyl;
 Z is H;
 R^{17} is C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;
 R^{18} is hydrogen or C_1-C_6 -alkyl;
 where X and Y are not simultaneously sulfur;
 or an agriculturally useful salt thereof.

25. (new) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 24 where the variables have the following meanings:

R^1 , R^2 are hydrogen, nitro, halogen, cyano, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, C_1-C_6 -alkoxy, C_1-C_6 -haloalkoxy, C_1-C_6 -alkylthio, C_1-C_6 -haloalkylthio, C_1-C_6 -alkylsulfinyl, C_1-C_6 -haloalkylsulfinyl, C_1-C_6 -alkylsulfonyl or C_1-C_6 -haloalkylsulfonyl;
 R^3 is hydrogen, halogen or C_1-C_6 -alkyl;
 R^6 is C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy, C_1-C_4 -alkoxy-C₂-C₄-alkoxy, C_1-C_4 -haloalkoxy, C_3-C_6 -alkenyloxy, C_3-C_6 -alkynylloxy or NR⁷R⁸;
 R^7 is hydrogen or C_1-C_4 -alkyl;
 R^8 is C_1-C_4 -alkyl;

X is O, S, NR⁹, CO or CR¹⁰R¹¹;
Y is O, S, NR¹² or CO;
R⁹, R¹² are hydrogen or C₁-C₄-alkyl;
R¹⁰, R¹¹ are hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy-carbonyl, C₁-C₄-haloalkoxycarbonyl or CONR⁷R⁸; or
R¹⁵ is a pyrazole of the formula II which is linked in the 4-position

where

R¹⁶ is C₁-C₆-alkyl;

Z is H;

R¹⁷ is C₁-C₄-alkyl, C₁-C₄-haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R¹⁸ is hydrogen or C₁-C₆-alkyl;

where X and Y are not simultaneously sulfur;

or an agriculturally useful salt thereof.

26. (new) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 24, where R³ is hydrogen.

27. (new) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 24, where

R¹, R² are nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl or C₁-C₆-haloalkylsulfonyl.

28. (new) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 24, where

R⁴ is C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxycarbonyl or CONR⁷R⁸;

R⁵ is hydrogen or C₁-C₄-alkyl; or

R^4 and R^5 together form a C_2-C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1-C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1-C_4 -alkyl.

29. (new) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 24, where R^{18} is hydrogen.

30. (new) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 24, where

X is S, NR⁹, CO or CR¹⁰R¹¹.

31. (new) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 24, where

R^4 is halogen, cyano, nitro, C_1-C_4 -alkyl, C_1-C_4 -alkoxy- C_1-C_4 -alkyl, C_1-C_4 -alkoxycarbonyl- C_1-C_4 -alkyl, C_1-C_4 -alkylthio- C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -cyanoalkyl, C_3-C_8 -cycloalkyl, C_1-C_4 -alkoxy, C_1-C_4 -alkoxy- C_2-C_4 -alkoxy, C_1-C_4 -haloalkoxy, C_1-C_4 -alkylthio, C_1-C_4 -haloalkylthio, di(C_1-C_4 -alkyl)amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substituents to be partially or fully halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

R^5 is hydrogen or C_1-C_4 -alkyl; or

R^4 and R^5 together form a C_2-C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1-C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1-C_4 -alkyl; or

R^4 and R⁹ or R^4 and R¹⁰ or R^5 and R¹² together form a C_2-C_6 -alkane-diyl chain which can be mono- to tetrasubstituted by C_1-C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1-C_4 -alkyl;

R^{18} is C_1-C_6 -alkyl.

32. (new) A composition comprising a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of formula I as defined in claim 1 or 2 or of an agriculturally useful salt thereof, and auxiliaries conventionally used for the formulation of crop protection products.

33. (new) A process for the preparation of the composition defined in claim 32, which comprises mixing a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of formula I or of the agriculturally useful salt thereof and auxiliaries conventionally used for the formulation of crop protection products.
34. (new) A method of controlling undesirable vegetation, which comprises allowing a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of formula I as defined in claim 24 or of an agriculturally useful salt thereof to act on plants, their environment and/or on seeds.