

Table of contents

Modeling

04

Conclusion

05

Next Steps

01 Business Problem

Steam wants to improve their recommendation system, to attract more users to use their platform

Our tasks:

- 1. Analyze current gaming trends through ratings
- 2. Create models that will predict what users will rate a game they don't already own

02 Data Analysis

Dataset consists of over 40 million rows of data

- Games.csv
 - o Title, Positive Ratio, Price, ...
- Recommendations.csv
 - Helpful, funny, is_recommended, ...
- Games_metadata.json
 - Description and Tags
- Users.csv
 - Products, Reviews

Stratified sample of ~100,000 rows

+ Data Filtering

Notes:

- More games released lately
- Highly rated games are more recent
- 1. Filtered dataset from 2010 Present

Positive Ratio of Games Over Time

+ Data Filtering

Sampled dataset:

- ~ 100,000 rows
- Decent representation of data
- Majority of ratings are higher
- 1. Train test split using "stratify"
- 2. Train test split (1) for models

03 Modeling

Goal: Predict ratings of games users don't already have

Metrics:

- Main Metric: Root Mean Squared Error (RMSE)
 - How far predictions are from the actual values
- Mean Absolute Error (MAE)
 - Difference between the predicted and actual ratings
- Precision at *k* (P@k)
 - Proportion of recommended games in the top k that are relevant
- Recall at k (R@k)
 - Shows how well the recommender system is at capturing all relevant items within a limited list of recommendations

Collaborative-based Filtering Pipeline

- 1. Combine Data: Recommendations.csv & Games.csv
 - Columns: user_id, app_id, positive_ratio (scaled → 0 1)
 - ~ 40 million rows of data
- 2. Train Test Split the data to get ~100,000 rows of the data
- 3. Used Surprise library to Train Test Split
 - a. Baseline and SVD: directly train/tune model
 - b. KNN: Train Test Split again because of insufficient memory ~30,000 rows
- 4. Grid search to find best parameters
- 5. Evaluate the models
 - RSME, MAE, P@k, R@k
 - Sorted the ratings from best to worst

Collaborative-based Filtering Models

Baseline Model (not tuned)

- Acts as a baseline model to compare other models to
- Uses ALS as base model

Singular Value Decomposition ("n_factors": 10, "n_epochs": 40, "lr_all": 0.02, "reg_all": 0.1)

- Matrix Factorization technique
- Reduces the number of features of a dataset by reducing the space dimension

K-Nearest Neighbors ("k": 10, "min_k": 1, "sim_options": {"name": cosine, "user_based": True})

- Finds the K nearest neighbors to a given data point based on distance metrics
 - Cosine, Pearson, Mean Squared Difference
- To run KNN I had to take a sample of the sampled dataset, which was ~ 30,000 rows

Collaborative-based Filtering Metrics

Baseline Model (not tuned)

Train RMSE: 0.052	Test RMSE: 0.060	Ave. Train P@10: 1.0	Ave. Test P@10: 1.0	
Train MAE: 0.024	Test MAE: 0.028	Ave. Train R@10: 0.89	Ave. Test R@10: 0.88	

Singular Value Decomposition ("n_factors": 10, "n_epochs": 40, "lr_all": 0.02, "reg_all": 0.1)

Train RMSE: 0.013	Test RMSE: 0.048	Ave. Train P@10: 0.99	Ave. Test P@10: 0.99
Train MAE: 0.008	Test MAE: 0.023	Ave. Train R@10: 0.96	Ave. Test R@10: 0.93

K-Nearest Neighbors ("k": 80, "min_k": 8, "sim_options": {"name": cosine, "user_based": True})

Train RMSE: 0.076	Test RMSE: 0.114	Ave. Train P@10: 0.99	Ave. Test P@10: 0.99
Train MAE: 0.031	Test MAE: 0.083	Ave. Train R@10: 0.99	Ave. Test R@10: 0.93

- 1. Create Dataset: Games.csv & Games_metadata.csv
 - Columns: app_id, title, description, tags
 - ~ 50,000 rows of data
- 2. Combine all text data into one column
- 3. Preprocess the combined features using NLTK
- 4. Sklearn Train Test Split
- 5. Vectorize combined_features (TF-IDF)
- 6. Calculate Cosine Similarity through batches, because of memory issue
- 7. Evaluate the model
 - RSME, MAE, P@k, R@k
 - Sorted the similarity scores from best to worst

Content-based Filtering Model

NLTK & TF-IDF & Cosine Similarity

- NLTK (Natural Language Toolkit)
 - o Tokenization, Lemmatization, Stopwords
- TF-IDF (Term Frequency-Inverse Document Frequency)
 - measures how important a word is to a document in a collection or corpus of documents
- Cosine Similarity determines the distance between the neighbors

Content-based Filtering Model

NLTK & TF-IDF & Cosine Similarity

Train RMSE: 0.084	Test RMSE: 0.090	Ave. Train P@10: 0.72	Ave. Test P@10: 0.73
Train MAE: 0.068	Test MAE: 0.067	Ave. Train R@10: 0.91	Ave. Test R@10: 0.89

04 Conclusion

Suggestion: SVD Collaborative Model

- Lowest RMSE (main metric)
- All other metrics scored well
- Was able to run the most number of rows (more variability)

- 1. Create a Hybrid Models / Explore other models
- 2. Deploy and test on the web for real users
- 3. Get more RAM!!

Do you have any questions?

brianhwwoo@gmail.com

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon** and infographics & images by **Freepik**