NUMERICAL METHODS

Dr. P V Ramana

Open Methods

Simple **MATLAB Newton-**Secant Raphson function: Fixed-Methods Method **Point** fzero Iteration

Open Methods

There exist open methods which do not require bracketed intervals

Newton-Raphson method, Secant Method, Muller's method, fixed-point iterations

First one to consider is the fixed-point method

Converges
faster but
not
necessary
converges

Bracketing and Open Methods

Fixed-Point Iteration

First open method is fixed point iteration

Idea: <u>rewrite</u> original equation f(x) = 0 into another form x = g(x)

Use iteration $x_{i+1} = g(x_i)$ to find a value that reaches convergence

Example:

$$x^{2} - 2x + 3 = 0 \Rightarrow x = \frac{x^{2} + 3}{2}$$

$$\sin x = 0 \Rightarrow x = \sin x + x$$

Simple Fixed-point Iteration

• Rearrange the function so that x is on the left-hand side of the equation:

$$f(x) = 0 \implies g(x) = x$$

 $x_k = g(x_{k-1}) \quad x_o \text{ is given, } k = 1, 2, ...$

- Bracketing methods are "convergent" if you have a bracket to start with
- Fixed-point methods may sometimes "converge", depending on the starting point (initial guess) and how the function behaves.

EXAMPLE: 1

$$f(x) = x^{2} - x - 2 = 0$$
Rewrite it as: $x = g(x)$

$$x = x^{2} - 2$$
or
$$x = \sqrt{x + 2}$$
or
$$x = 1 + \frac{2}{x}$$

Find a root of $x^4-x-10=0$

Consider $g1(x) = 10 / (x^3-1)$ and the fixed point iterative scheme $x_{i+1}=10 / (x_i^3-1)$, i = 0, 1, 2, ... let the initial guess x_0 be 2.0

i	0	1	2	3	4	5	6	7	8
Xi	2	1.429	5.214	0.071	-10.004	-9.978E-3	-10	-9.99E-3	-10

Consider another function $g2(x) = (x + 10)^{1/4}$ and the fixed point iterative scheme $x_{i+1} = (x_i + 10)^{1/4}$, i = 0, 1, 2, ... let the initial guess x_0 be 1.0, 2.0 and 4.0

i	0	1	2	3	4	5	6
Xi	1.0	1.82116	1.85424	1.85553	1.85558	1.85558	
Xi	2.0	1.861	1.8558	1.85559	1.85558	1.85558	
Xi	4.0	1.93434	1.85866	1.8557	1.85559	1.85558	1.85558

That is for **g2** the iterative process is converging to **1.85558 with** any initial guess.

Consider $g3(x) = (x+10)^{1/2}/x$ and the fixed point iterative scheme $x_{i+1} = (x_i+10)^{1/2}/x_i$, i = 0, 1, 2, ... let the initial guess x_0 be 1.8,

i	0	1	2	3	4	5	6	 98
Xi	1.8	1.9084	1.80825	1.90035	1.81529	1,89355	1.82129	 1.8555

Simple Fixed-Point Iteration

Two Alternative Graphical Methods

$$f(x) = f_1(x) - f_2(x) = 0$$

$$f(x) = 0$$

$$f_1(x) = f_2(x)$$

Fixed-Point Iteration

Convergent

Divergent

