# Math Refresher

## **Basic Statistics and Probability**

### Random Variables

- A random variable is a variable whose value is determined by the outcome of a random experiment.
  - For example, if we toss a coin, the outcome is random, but the possible values of X are 0 and 1.
  - If we roll a die, the outcome is random with possible values 1, 2, 3, 4, 5, and 6.
  - Exact temperature in a room

There are two kinds of random variables:

- Discrete random variables can only take on a finite number of values. For example, the number of heads in 10 coin tosses is a discrete random variable.
  - The probability of observing a particular value is not always zero
- Continuous random variables can take on any value in a range. For example, the height of a randomly selected person is a continuous random variable.
- If X is discrete random variable, then P(X = c) is the probability that X takes on the value c. It can be any value between 0 and 1. ()
- By definition, the sum of all probabilities for all feasible values of X is 1. That is,  $\sum_{c} P(X=c) = 1$ .
- If X is continuous random variable, then P(X = c) = 0 for any value c.
  - The probability to observe a particular number is zero.
  - Instead, when using continuous data, we focus on the probability of observing a value in a range. For example,  $P(1.7 \le X \le 1.8)$  is the probability that X is between 1.7 and 1.8, which can be any value between 0 and 1.

### Stata and Random Variables

- Computers **CANNOT** generate random numbers. They can only generate pseudorandom numbers.
  - Random numbers cannot be reproduced.
  - Pseudo-random numbers can be reproduced, if we know initial conditions. (seed)
    - \* For most purposes, pseudo-random numbers are good enough.
- Stata has many built-in function to generate random numbers.
  - help random for more information.

# **Probability Distributions**

- A probability distribution is a function that assigns probabilities to the values of a random variable.
  - For discrete random variables, we can use a table to describe the probability distribution. For example, the probability distribution of the number of heads in 5 coin tosses is:

| Number of heads | Probability |
|-----------------|-------------|
| 0               | 0.03125     |
| 1               | 0.15625     |
| 2               | 0.3125      |
| 3               | 0.3125      |
| 4               | 0.15625     |
| 5               | 0.03125     |

In this case, the sum of all probabilities is 1.

### **Probability Density Functions**

- For continuous random variables, we can use a function to describe the probability distribution.
  - For example, we can say that the probability distribution of the height of a randomly selected person is:

This function has important properties:

- $f(x) \ge 0$  for all x.  $\int_{-\infty}^{\infty} f(x)dx = 1$ .
- $P(a \le X \le b) = \int_a^b f(x)dx$ .  $P(X \le a) + P(X > a) = 1$ .
- $P(a \le X \le b) = P(X < b) P(X < a)$ .

# Stata and Empirical Distributions

### Theory

- Given a dataset, you can use different tools to estimate the probability distribution or the probability density function of a random variable.
  - For example, you can use histograms, or frequency tables, to estimate the probability distribution of a discrete random variable.
  - You can use kernel density plots to estimate the probability density function of a continuous random variable.

### **Discrete**

```
sysuse nlsw88.dta, clear
replace grade = 11 if grade <11</pre>
fre grade
```

<IPython.core.display.HTML object>

(NLSW, 1988 extract) (211 real changes made)

grade -- Current grade completed

|       |    |           | Freq. | Percent | Valid | Cum.  |
|-------|----|-----------|-------|---------|-------|-------|
| Valid |    | <br> <br> | 334   | 14.87   | 14.88 | 14.88 |
|       | 12 | ı         | 943   | 41.99   | 42.02 | 56.91 |
|       | 13 | 1         | 176   | 7.84    | 7.84  | 64.75 |

|         | 14    |   | 187  | 8.33   | 8.33   | 73.08  |
|---------|-------|---|------|--------|--------|--------|
|         | 15    |   | 92   | 4.10   | 4.10   | 77.18  |
|         | 16    |   | 252  | 11.22  | 11.23  | 88.41  |
|         | 17    |   | 106  | 4.72   | 4.72   | 93.14  |
|         | 18    |   | 154  | 6.86   | 6.86   | 100.00 |
|         | Total |   | 2244 | 99.91  | 100.00 |        |
| Missing |       |   | 2    | 0.09   |        |        |
| Total   |       | I | 2246 | 100.00 |        |        |

\_\_\_\_\_

# **Continuous**

kdensity wage, scale(1.25) title("Wage Density f(X)")



# Joint Probability Distributions

• The joint probability distribution of X and Y is a function that assigns probabilities to the values of X and Y.

• For discrete random variables, we can use a table to describe the joint probability distribution.

### tab race married, cell nofreq

|       | Married |        |         |  |        |  |
|-------|---------|--------|---------|--|--------|--|
| Race  | <br>    | Single | Married |  | Total  |  |
| White |         | 21.68  | 51.20   |  | 72.89  |  |
| Black |         | 13.76  | 12.20   |  | 25.96  |  |
| Other | <br>    | 0.36   | 0.80    |  | 1.16   |  |
| Total |         | 35.80  | 64.20   |  | 100.00 |  |

- It must be the case that the sum of all probabilities is 1.
- For continuous variables, estimation and graphical representation is tricky
- it must be the case that:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$$

• You may be able to use scatter plots, or contour plots, to represent the joint probability distribution of two continuous random variables.

### **Scatter Plot**



# Heatplot

qui:ssc install heatplot
heatplot wage ttl\_exp ,



# **BiDensity**

qui:ssc install bidensity
bidensity wage ttl\_exp, levels(10)



# **Conditional Probability**

The conditional probability of X given Y is:

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

or, the conditional probabilty density function:

$$f(x|y) = \frac{f(x,y)}{f(y)}$$

And if X and Y are independent, then:

$$P(x|y) = P(x) \text{ or } f(x|y) = f(x).$$

## Marginal Probability Distributions

The marginal probability distribution of X is the probability distribution of X ignoring/regardless the values of Y. This can be expressed as:

$$P(x) = \sum_{z=-\infty}^{\infty} P(X=x,y=z) \text{ or } f_x(x) = \int_{z=-\infty}^{\infty} f(x,z) dz$$

This is also refer to "integrating out" the variable Y or averaging over Y.

$$P(x) = \sum_{z=-\infty}^{\infty} P(X=x|y=z) P_y(z) \text{ or } f_x(x) = \int_{z=-\infty}^{\infty} f(x|z) f_y(z) dz$$

## Independence

Two random variables X and Y are independent if and only if:

$$P(x,y) = P(x)P(y)$$
 or  $f(x,y) = f(x) * f(y)$ 

That means the conditional probability of X given Y is the same as the marginal probability of X.

$$P(x|y) = P(x)$$
 or  $f(x|y) = f(x)$ .

### **Summary Statistics**

Given a random variable X, there are several summary statistics that can be used to describe the distribution of X, without describing the entire distribution

### **Central Tendency**

• Mean: average value of X.

$$\bar{x} = E(X) = \sum_{x} x P(X = x) \text{ or } E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

- Median: middle value of X.
- Percentile: values that identify the boundaries of the distribuion. Median is the 50th percentile.

$$Q_y(p) = E(Y \le Q_y) = p$$

• Mode: most frequent value of X.

sum var,d in Stata will give you the mean, median, and selected quantiles.

mode can be estimated using egen, or based on empirical distribution.

## Dispersion

• Variance: Average squared deviation from the mean.

$$Var(X) = E(X-\mu)^2 = \sum_x (x-\mu)^2 P(X=x) \text{ or } Var(X) = \int_{-\infty}^{\infty} (x-\mu)^2 f(x) dx$$

- Standard deviation: square root of the variance. Easier to interpret.
- Range: difference between the maximum and minimum values of X.
- Interquartile range: difference between the 75th and 25th percentiles of X.

sum var,d and tabstat can provide you with most of this information.

### Some useful distributions

#### Discrete distributions

- Bernoulli distribution:  $X \sim Bernoulli(p)$ , where  $p \in [0,1]$ .
  - -E(X) = p and variance Var(X) = p(1-p).
  - Flip a coin with probability p of getting heads.
  - rbinomial(1, p)
- Binomial distribution:  $X \sim Binomial(n, p)$ , where  $p \in [0, 1]$  and n > 0
  - -E(x) = np and Var(X) = np(1-p).
  - Distribution of the number of successes in n independent Bernoulli trials.
  - rbinomial(n, p)
- Poisson distribution:  $X \sim Poisson(\lambda)$ , where  $\lambda > 0$ 
  - $-E(X) = Var(x) = \lambda$ , Typically used for counts.
  - For example, the number of customers arriving at a store in a given hour.
  - rpoisson(lambda)

### **Continuous distributions**

- Uniform distribution:  $X \sim Uniform(a, b)$ 
  - $f(x)=\frac{1}{b-a}$  for  $a\leq x\leq b,$  and f(x)=0 otherwise.  $E(X)=\frac{a+b}{2}$  and  $Var(X)=\frac{(b-a)^2}{12}.$  runiform(a, b)
- Normal distribution:  $X \sim Normal(\mu, \sigma^2)$

$$\begin{split} &-f(x)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}.\\ &-E(X)=\mu \text{ and } Var(X)=\sigma^2.\\ &-\text{rnormal(mu, sigma)} \end{split}$$

Other useful distributions include:

- t-distribution, Chi-squared distribution, F-distribution
- help density\_functions help random\_number\_functions