习题 4.12

本习题讨论流水线对处理器时钟周期的影响。表中给出了数据通路中不同阶段延迟的两种情况,试根据这两种情况分别回答下列问题。

	IF	ID	EX	MEM	WB
a.	300ps	400ps	350ps	500ps	100ps
b.	200ps	150ps	120ps	190ps	140ps

- 4.12.1 [5] <4.5>流水线处理器与非流水线处理器的时钟周期分别是什么?
- 4.12.2 [10] <4.5>lw 指令在流水线处理器和非流水线处理器中的总延迟分别是多少?
- **4.12.3** [10] <**4.5**>如果可以将原流水线数据通路的一级划分为两级,每级的延迟是原级的一半,会选择哪一级进行划分?划分后处理器的时钟周期为多少?

假设处理器执行的指令比例下表两种情况所示,试根据每种情况分别回答下列问题。

	ALU	beq	lw	sw
a.	50%	25%	15%	10%
b.	30%	25%	30%	15%

- 4.12.4 [10] <4.5>假设没有阻塞和冒险,数据存储器的利用率是多少(占总周期数的百分比)?
- 4.12.5 [10] <4.5>假设没有阻塞和冒险,寄存器堆的写寄存器端口的利用率是多少?

习题 4.13

本习题讨论数据相关如何影响 4.5 节中基本五级流水线的运行。试根据下表的两种指令序列情况分别回答下列问题。

	指令序列		指令序列
a.	lw \$1,40(\$6)	b.	lw \$5, -16(\$5)
	add \$6, \$2, \$2		sw \$5, -16(\$5)
	sw \$6,50(\$1)		add \$5, \$5, \$5

- 4.13.1 [10]<4.5>指出指令序列中存在的相关及其类型。
- 4.13.2 [10]<4.5>假设该流水线处理器没有转发,指出指令序列中存在的冒险并加入 nop 指令以消除冒险。
- 4.13.3 [10]<4.5>假设该流水线处理器中有充分的转发。指出指令序列中存在的冒险并加入 nop 指令以消除冒险。

根据下表的两种时钟周期情况,分别回答下列问题

	无转发	充分的转发	仅 ALU 至 ALU 的转发
а.	300ps	400ps	360ps
b.	200ps	250ps	220ps

- **4.13.4** [10]<**4.5**>该指令序列在无转发和充分的转发时总执行时间分别是多少?后者相对于前者的加速比是多少。
- 4.13.5 [10]<4.5>如果仅有 ALU 至 ALU 的转发(没有从 MEM 到 EX 的转发),如何加入 nop 指令以消除可能的冒险?
- 4.13.6 [10]<4.5>该指令序列在仅有 ALU 至 ALU 的转发时总执行时间分别是多少?与无转发的情况相比,加速比是多少?

习题 4.15

本习题讨论指令集对流水线设计的影响。试根据下表的两条新指令回答下列问题。

a.	bezi (Rs), Label	if Mem[Rs] = 0 then PC = PC + Offs		
b.	swi Rd,Rs(Rt)	Mem[Rs+Rt] = Rd		

- 4.15.1 [20]<4.5>为了将这条新指令增加到 MIPS 指令集,必须对流水线数据通路做什么改动?
- 4.15.2 [10]<4.5>需要在习题 4.15.1 的数据通路上增加哪些控制信号?
- 4.15.3 [20]<4.5, 4.13>对新指令的支持是否会引入新的冒险?已有冒险导致的阻塞是否会更加严重?

习题 4.21

本习题讨论转发、冒险检测和指令集设计之间的关系。分别根据下表的两个指令序列回答下列问题。假设其在一个五级流水线上执行。

	the A charact	· · · · · · ·	tta & Sanat
	指令序列		指令序列
a.	lw \$1,40(\$6)	b.	add \$1, \$5, \$3
	add \$2, \$3, \$1		sw \$1, 0(\$2)
	add \$1, \$6, \$4		lw \$1, 4(\$2)
	sw \$2,20(\$4)		add \$5, \$5, \$1
	and \$1, \$1, \$4		sw \$1, 0(\$2)

- 4.21.1 [5]<4.7>如果没有转发或冒险检测电路,请插入 nop 指令以保证正确执行。
- 4.21.2[10]<4.7>重做习题 4.21.1, 这次仅当通过改变或重排序指令都也不能避免冒险时才插入 nop 指令。假设可以使用寄存器 R7 作为临时寄存器。
- **4.21.3[10]<4.7>**如果处理器中存在转发,但忘了实现冒险检测单元(以为实现了),代码执行时会发生什么情况?
- 4.21.5[10] <4.7>如果没有转发,对图 4-60 中的冒险检测单元来说还需要哪些新的输入输出信号?以该指令序列为例,说明为什么需要这些信号。

图 4-60 流水线控制概述,其中包括两个转发多选器、一个冒险检测单元和一个转发单元