Multiple Integrals – Cheat Sheet

1. Double Integrals

Definition:

The double integral of a function f(x,y)f(x,y)f(x,y) over a region RRR is: $Rf(x,y) dx dy \in Rf(x,y) dx dy$

Evaluation:

1st

2ndIterated Integral (Cartesian Form):

 $3rd \int df(x,y) dy dx \int \{a\}^{b} \int \{c\}^{d} f(x,y) \cdot dy \cdot dx \int dx \int dx dx$

- Integrate inner integral first (fix outer variable).
- Then evaluate the **outer integral**.

•

4th Limits Based on Region:

•

- Rectangular Region: Limits are constants.
- General Region: Limits depend on one variable.

•

2. Change of Order of Integration (Cartesian Form)

When to Change Order?

- When the given order is difficult to evaluate.

Steps to Change Order:

1st Identify region RRR from given limits.

2ndSketch the integration region.

3rdRewrite limits in terms of the other order.

4th Solve the new integral.

3. Applications of Double Integrals

Area of a Region (Cartesian Form):

 $A = RdA = R1 dx dyA = \langle iint_R dA = \langle iint_R 1 \rangle, dx \rangle, dyA = RdA = R1 dx dy$

• Set f(x,y)=1 f(x,y)=1 and integrate over region RRR.

4. Triple Integrals

Definition:

The **triple integral** of f(x,y,z)f(x,y,z)f(x,y,z) over a volume VVV is:

Evaluation:

2ndFollow order of integration:

- •
- Integrate the **innermost** integral first.
- Then evaluate the **middle** integral.
- Finally, evaluate the **outer** integral.

•

5. Applications of Triple Integrals

Volume of a Region (Cartesian Form):

 $V = VdV = V1 dx dy dzV = \langle iiint_V dV = \langle iiint_V 1 \rangle, dx \rangle, dzV = VdV = V1 dx dy dz$

• Set f(x,y,z)=1 f(x, y, z) = 1 f(x,y,z)=1 and integrate over volume VVV.

Quick Summary Table

Triple Integral

Topic	Key Formula/Steps

Change of Order Sketch region, rewrite limits, swap order.

Area using Double Integral $A = R1 dx dy A = \lim_R 1 \dx dy A = R1 dx dy$

 $Vf(x,y,z) dx dy dz \in Vf(x, y, z) , dx , dy \in V$

f(x,y,z)dxdydz

Volume using Triple Integral $V = V1 dx dy dzV = \iiint_V 1 \,dx \,dy \,dzV = V$

1dxdydz