```
import os
# Create a directory for Kaggle config
os.makedirs("/root/.kaggle", exist_ok=True)
# Upload `kaggle.json`
from google.colab import files
files.upload() # Select and upload the downloaded kaggle.json file
# Move `kaggle.json` to the correct directory
!mv kaggle.json /root/.kaggle/
# Set permissions
!chmod 600 /root/.kaggle/kaggle.json
# Verify Kaggle API works
!kaggle datasets list
    Choose Files kaggle.json

    kaggle.json(application/json) - 67 bytes, last modified: 3/20/2025 - 100% done

     Saving kaggle.json to kaggle.json
     ref
                                                                               title
     atharvasoundankar/chocolate-sales
                                                                               Chocolate Sales Data 📊 🦠
     abdulmalik1518/mobiles-dataset-2025
                                                                               Mobiles Dataset (2025)
                                                                               Student Performance & Behavior Dataset
     {\tt mahmoudelhemaly/students-grading-dataset}
     atharvasoundankar/global-water-consumption-dataset-2000-2024
                                                                               Global Water Consumption Dataset (2000-2024)
     adilshamim8/student-depression-dataset
                                                                               Student Depression Dataset
                                                                               ● Global Food Wastage Dataset (2018-2024) 1
     atharvasoundankar/global-food-wastage-dataset-2018-2024
                                                                               Global Energy Consumption (2000-2024) 6 +
     atharvasoundankar/global-energy-consumption-2000-2024
     parsabahramsari/wdi-education-health-and-employment-2011-2021
                                                                               WDI: Education, Health & Employment (2011-2021)
     bhargavchirumamilla/netflix-movies-and-tv-shows-till-2025
                                                                               Netflix Movies and TV shows till 2025
     aniruddhawankhede/mental-heath-analysis-among-teenagers
                                                                               Mental_Heath_Analysis_Among_Teenagers
     salahuddinahmedshuvo/ecommerce-consumer-behavior-analysis-data
                                                                               Ecommerce Consumer Behavior Analysis Data
     \verb|smayanj/netflix-users-database| \\
                                                                               Netflix Users Database
     willianoliveiragibin/grocery-inventory
                                                                               Grocery Inventory
     atharvasoundankar/global-music-streaming-trends-and-listener-insights
                                                                               Global Music Streaming Trends & Listener Insights

√ Viral Social Media Trends & Engagement Analysis

     atharvasoundankar/viral-social-media-trends-and-engagement-analysis
     anandshaw2001/imdb-movies-and-tv-shows
                                                                               IMDb Movies and TV Shows
     brsahan/genomic-data-for-cancer
                                                                               Genomic Data for Cancer
     amanrajput16/olympics-medal-list-1896-2024
                                                                               Olympic Medal List (1896-2024)
     miadul/brain-tumor-dataset
                                                                               Brain Tumor Dataset
                                                                               Student Performance on an Entrance Examination
     adilshamim8/student-performance-on-an-entrance-examination
!kaggle datasets download -d jaiharish11499/wastedata
    Dataset URL: <a href="https://www.kaggle.com/datasets/jaiharish11499/wastedata">https://www.kaggle.com/datasets/jaiharish11499/wastedata</a>
     License(s): CC0-1.0
import zipfile
with zipfile.ZipFile("wastedata.zip", 'r') as zip_ref:
    zip_ref.extractall("waste_data")
import os
print(os.listdir("/content/"))
['.config', 'wastedata.zip', 'waste_data', 'sample_data']
train_folder = "/content/waste_data/d/Train"
test_folder = "/content/waste_data/d/Test"
import pandas as pd
import numpy as np
import glob
import os
from datetime import datetime
from packaging import version
import tensorflow as tf
from tensorflow import keras
from \ tensorflow.keras.applications \ import \ EfficientNetB0
from tensorflow.keras.preprocessing import image_dataset_from_directory
from tensorflow.keras.preprocessing.image import load_img, img_to_array
```

from tensorflow.keras.callbacks import ModelCheckpoint, History

Size

14

1

20314

520428

467026

136185

6471169

177089

44265

362559

50801

97474

1072

9134

11101 872531

4400

2548638

1086

258

```
from tensorflow.keras.models import Sequential, load model
from tensorflow.keras.layers import Conv2D, Lambda, MaxPooling2D, Dense, Dropout, Flatten
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.utils import to_categorical
from skimage.io import imread, imshow
from skimage.transform import resize
from IPython import display
import matplotlib.pyplot as plt
import seaborn as sns
from seaborn import heatmap
from sklearn.metrics import confusion_matrix
from tensorflow.keras.applications.efficientnet import preprocess_input
# Data augmentation for training
train_datagen = ImageDataGenerator(
    preprocessing_function=preprocess_input, # EfficientNetBO-specific preprocessing
    rotation range=30,
    width shift range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom range=0.2,
    horizontal_flip=True,
    fill_mode='nearest'
)
 # No augmentation for validation
test_datagen = ImageDataGenerator(preprocessing_function=preprocess_input)
# Load dataset
train_generator = train_datagen.flow_from_directory(
    train_folder,
    target_size=(224, 224),
    batch size=32.
    class_mode='binary')
Found 336 images belonging to 2 classes.
test_generator = test_datagen.flow_from_directory(
    test_folder,
    target_size=(224, 224),
    batch size=32,
    class_mode='binary',
    shuffle=False)
Found 64 images belonging to 2 classes.
from sklearn.utils.class_weight import compute_class_weight
# Compute class weights to address imbalance
class_labels = np.array(train_generator.classes)
class\_weights = compute\_class\_weight(class\_weight='balanced', classes=np.unique(class\_labels), y=class\_labels)
class_weight_dict = {i: class_weights[i] for i in range(len(class_weights))}
# Load EfficientNetB0 base model (pre-trained on ImageNet)
base_model = EfficientNetB0(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
     Downloading data from <a href="https://storage.googleapis.com/keras-applications/efficientnetb0_notop.h5">https://storage.googleapis.com/keras-applications/efficientnetb0_notop.h5</a>
     16705208/16705208
base_model.trainable = False
model = keras.Sequential([
   base model,
    {\tt keras.layers.GlobalAveragePooling2D(),}
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dropout(0.5),
    keras.layers.Dense(1, activation='sigmoid')
1)
from tensorflow.keras.optimizers import Adam
#Compile the model
```

```
model.compile(optimizer=Adam(learning_rate=0.0001), loss='binary_crossentropy', metrics=['accuracy'])
# Train model
history = model.fit(
   train_generator,
   epochs=10,
    validation_data=test_generator,
    class_weight=class_weight_dict)
🚁 /usr/local/lib/python3.11/dist-packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:121: UserWarning: Your `PyDataset` cl
       self._warn_if_super_not_called()
     Epoch 1/10
                               - 55s 4s/step - accuracy: 0.7120 - loss: 0.7327 - val_accuracy: 0.7188 - val_loss: 0.5745
     11/11
     Epoch 2/10
     11/11
                               - 39s 3s/step - accuracy: 0.7916 - loss: 0.5690 - val_accuracy: 0.8594 - val_loss: 0.5083
     Epoch 3/10
     11/11
                                43s 4s/step - accuracy: 0.8416 - loss: 0.6057 - val_accuracy: 0.8594 - val_loss: 0.4598
     Epoch 4/10
     11/11
                               - 37s 3s/step - accuracy: 0.8762 - loss: 0.4989 - val_accuracy: 0.8750 - val_loss: 0.4247
     Epoch 5/10
     11/11
                               - 42s 4s/step - accuracy: 0.9229 - loss: 0.4073 - val accuracy: 0.8750 - val loss: 0.3905
     Epoch 6/10
     11/11
                               - 38s 3s/step - accuracy: 0.9439 - loss: 0.4057 - val accuracy: 0.8906 - val loss: 0.3687
     Epoch 7/10
     11/11
                               - 37s 4s/step - accuracy: 0.9272 - loss: 0.3505 - val accuracy: 0.8906 - val loss: 0.3390
     Epoch 8/10
     11/11
                               - 37s 3s/step - accuracy: 0.9409 - loss: 0.3186 - val_accuracy: 0.8906 - val_loss: 0.3171
     Epoch 9/10
     11/11
                               - 45s 4s/step - accuracy: 0.9550 - loss: 0.2778 - val_accuracy: 0.8906 - val_loss: 0.3020
     Epoch 10/10
     11/11 ·
                               - 39s 4s/step - accuracy: 0.9411 - loss: 0.2749 - val accuracy: 0.8906 - val loss: 0.2893
# Plot accuracy and loss
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
axes[0].plot(history.history['accuracy'], label='Train Accuracy')
axes[0].plot(history.history['val_accuracy'], label='Validation Accuracy')
axes[0].set_title('Model Accuracy')
axes[0].legend()
axes[1].plot(history.history['loss'], label='Train Loss')
axes[1].plot(history.history['val_loss'], label='Validation Loss')
axes[1].set_title('Model Loss')
axes[1].legend()
plt.show()
→
                               Model Accuracy
                                                                                                    Model Loss
                  Train Accuracy
                                                                                                                       Train Loss
      0.95
                                                                                                                       Validation Loss
                  Validation Accuracy
                                                                          0.7
      0.90
                                                                          0.6
      0.85
                                                                          0.5
      0.80
                                                                          0.4
      0.75
                                                                          0.3
              0
                         2
                                    4
                                                          8
                                                                                0
                                                                                                                  6
                                                                                                                              8
# Confusion matrix
y_true = test_generator.classes
y_pred = model.predict(test_generator) > 0.5
cm = confusion_matrix(y_true, y_pred)
→ 2/2 -
                            - 9s 2s/step
# Display confusion matrix with labels and percentages
fig, ax = plt.subplots(figsize=(6, 6))
cm_percent = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] * 100
sns.heatmap(cm_percent, annot=True, fmt='.2f', cmap='Blues', xticklabels=['Pred Non-Recyclable', 'Pred Recyclable'],
```

yticklabels=['Actual Non-Recyclable', 'Actual Recyclable'])

nl+ vlahal/'Dnadicted Lahal'\

plt.ylabel('True Label')
plt.title('Confusion Matrix')

→ Text(0.5, 1.0, 'Confusion Matrix')

from sklearn.metrics import classification_report
Classification report
print("Classification Report:")
print(classification_report(y_true, y_pred, target_names=['Non-Recyclable', 'Recyclable']))

→ Classification Report:

	precision	recall	f1-score	support
Non-Recyclable	0.89	0.57	0.70	14
Recyclable	0.89	0.98	0.93	50
accuracy			0.89	64
macro avg	0.89	0.78	0.81	64
weighted avg	0.89	0.89	0.88	64

Convert accuracy and loss to percentage
train_acc = [x * 100 for x in history.history['accuracy']]
val_acc = [x * 100 for x in history.history['val_accuracy']]
train_loss = [x * 100 for x in history.history['loss']]
val_loss = [x * 100 for x in history.history['val_loss']]
Print accuracy and loss values
print("Final Training Accuracy: {:.2f}%".format(train_acc[-1]))
print("Final Validation Accuracy: {:.2f}%".format(val_acc[-1]))
print("Final Validation Loss: {:.2f}%".format(val_loss[-1]))

Final Training Accuracy: 94.35%
Final Validation Accuracy: 89.06%
Final Training Loss: 27.48%
Final Validation Loss: 28.93%