3.3.2a) Prove that $1 + p_1p_2$ is always a perfect square given that p_1, p_2 are twin primes.

Proof. We have $p_1 + 2 = p_2$.

This means we can show p_1 as n-1 and p_2 as n+1.

We have

$$p_1p_2 + 1$$

= $(n-1)(n+1) + 1$
= $n^2 + 1 - 1$
= n^2 .

Therefore, the square of any integer is one more than the product of the numbers on either side of it, implying $1 + p_1p_2 = n^2$ for all twin primes p_1, p_2 .

3.3.2b) Prove that the sum of twin primes p_1, p_2 is divisible by 12 given $p_1, p_2 > 3$.

Proof. We have $p_1 + 2 = p_2$.

We know by the division algorithm all primes p > 3 can be shown as p = 6k + 1 or p = 6k + 5 for some $k \in \mathbb{Z}$.

We know $p_1 + 2 = p_2$ so $p_1 \neq 6k + 1$ because $6k + 1 + 2 = 6k + 3 \neq 6s + 1$ or $6s + 5 \ \forall \ s \in \mathbb{Z}$.

Therefore we know $p_1 = 6k + 5$.

This implies

$$p_2 = p_1 + 2 = 6k + 5 + 2 = 6k + 7 = 6(k+1) + 1$$

which can represent a prime number.

We have

$$p_1 + p_2$$

$$= p_1 + p_1 + 2$$

$$= 2(6k + 5) + 2$$

$$= 12k + 10 + 2$$

$$= 12k + 12$$

$$= 12(k + 1).$$

It is clear that $12 \mid 12(k+1) \implies 12 \mid p_1 + p_2$.