SC3.316: Mathematical Methods in Biology Midterm 1 solutions

1. (10 points) Solve the differential equation $\frac{dy}{dx} = 6x(y-1)^{\frac{2}{3}}$.

Solution:

Note that y = 1 is a singular solution. (2 marks).

This is a separable equation. If $y \neq 1$, separating the variables, we get

$$\frac{dy}{(y-1)^{\frac{2}{3}}} = 6xdx \ (3 \, marks) \tag{1}$$

Integrating this yields

$$3(y-1)^{\frac{2}{3}} = 3x^2 + C \ (3 \, marks) \tag{2}$$

This implies that $y(x) = 1 + (x^2 + c)^3$ (2 marks)

2. (15 points) Consider the initial value problem

$$\frac{dy}{dx} = e^x - e^{-x} + y$$
 with $y(0) = 3/2$.

Solve the initial value problem and evaluate y(2).

Solution:

We have $\frac{dy}{dx} - y = e^x - e^{-x}$. This is a first order linear equation. (2 marks)

The integrating factor is e^{-x} . (3 marks)

Multiplying by the integrating factor on both sides yields

$$d(ye^{-x}) = (1 - e^{-2x})dx$$
 (3 marks).

This gives
$$ye^{-x} = \int (1 - e^{-2x}) dx = x + \frac{e^{2x}}{2} + C$$
. Therefore $y(x) = e^x \left(x + \frac{e^{-2x}}{2} + C \right)$. (2 marks)

Since y(0) = 3/2, we get that C = 1. (2 marks)

Therefore the solution to the initial value problem is $y(x) = e^x \left(x + \frac{e^{-2x}}{2} + 1 \right)$. (2 marks)

At
$$x = 2$$
, we have $y(2) = e^2 \left(2 + \frac{e^{-4}}{2} + 1\right) = 3e^2 + \frac{1}{2}e^{-2}$. (1 mark)

3. (15 points) Consider a tank that has pure water flowing into it at 10 L/min. The contents of the tank are kept thoroughly mixed, and the contents flow out at 10 L/min. Salt is added to the tank at the rate of 0.1 kg/min. Initially, the tank contains 10 kg of salt in 100 L of water. How much salt is in the tank after 30 minutes?

Solution:

Let S(t) be the amount of salt at time t. (2 marks)

Note that the inflow rate = outflow rate = 10 L/min. This implies that the volume of the solution in the tank does not change. (2 marks)

The concentration of salt is $\frac{S}{100}$. Since contents flow out at 10 L/min, we have the rate at which salt leaves is $\frac{S}{10}$. (2 marks)

However salt is added to the tank at the rate of 0.1 kg/min. Therefore the rate of change of concentration of salt is given by

$$\frac{dS}{dt} = -\frac{S}{10} + 0.1 \text{ (3 marks)} \tag{3}$$

Integrating this equation gives

 $-10 \log |-0.1S + 0.1| = t + C$ which implies that $S = 1 + Ce^{-0.1t}$ (2 marks).

At t = 0, we have 10 kg of salt. This gives C = 9. (2 marks)

After 30 mins, the amount of salt left is $1 + 9e^{-0.1t}$. (2 marks)

4. (15 points) Show that eigenvectors corresponding to distinct eigenvalues are linearly independent.

Solution:

Let the eigenvalues be given by $\lambda_1, \lambda_2, \dots, \lambda_k$ and the eignvectors by v_1, v_2, \dots, v_k . (2 marks)

Let j be the maximal index so that that v_1, \ldots, v_j are independent. (3 marks)

This implies that there exists constants d_i such that $\sum_{i=1}^{j} d_i v_i = v_{j+1}$. (2 marks)

Applying A on the above equation yields $A \sum_{i=1}^{j} d_i v_i = A v_{j+1} = \lambda_{j+1} v_{j+1}$. (1 mark)

Further we know that $A\sum_{i=1}^{j} d_i v_i = \sum_{i=1}^{j} d_i \lambda_i v_i$. (2 marks)

This yields $\sum_{i=1}^{j} d_i \lambda_i v_i = \lambda_{j+1} v_{j+1} = \lambda_{j+1} (\sum_{i=1}^{j} d_i v_i)$. (2 marks)

Therefore, we have $\sum_{i=1}^{l} (\lambda_i - \lambda_{j+1}) d_i v_i = 0$, which is a contradiction since $\lambda_i \neq \lambda_{j+1}$. (3 marks)

- 5. (15 points) For each of (1)–(5), find an equation $\dot{x} = f(x)$ with the stated properties, or if there are no examples, explain why not. (In all cases, assume that f(x) is a smooth function.)
 - 1. Every real number is a fixed point.
 - 2. Every integer is a fixed point, and there are no others.

- 3. There are precisely three fixed points, and all of them are stable.
- 4. There are no fixed points.
- 5. There are precisely 2024 fixed points.

Solution:

- 1. f(x) = 0 for all x. (3 marks)
- 2. $f(x) = \sin n\pi$. (3 marks)
- 3. A stable or unstable fixed point implies changing the sign of the function values locally. Between any two fixed point of the same type (stable, unstable) must be a fixed point of the other type, because of the mean value theorem at a smooth function. Thus, this property cannot be fulfilled. (3 marks)
- 4. f(x) = c for any constant c. (3 marks)
- 5. f(x) = (x-1)(x-2)...(x-2024). (3 marks)
- 6. (15 points) Construct a differential equation of the form y'' + p(x)y' + q(x)y = 0, where both p and q are continuous everywhere and $y_1 = \sin(x^2)$ and $y_2 = \cos(x^2)$ are its solutions.

Solution:

We claim that there is no such differential equation. (2 marks).

For contradiction, assume that there exists such a differential equation with linearly independent solutions $y_1 = \sin(x^2)$ and $y_2 = \cos(x^2)$ (2 marks)

We calculate the Wronskian corresponding to the functions.

$$W(x) = \begin{vmatrix} \sin(x^2) & \cos(x^2) \\ 2x\cos(x^2) & -2x\sin(x^2) \end{vmatrix}.$$
 (4 marks).

The Wronskian vanishes at x = 0. (3 marks).

Therefore, there cannot exist such a differential equation, since the Wronskian of a linearly independent solutions of a differential equation is always non-zero on the interval if p and q are continuous everywhere. (4 marks)

7. (15 points) Suppose that A and B are $n \times n$ matrices satisfying AB = BA and suppose that B has n distinct eigenvalues. Then AB is diagonalizable.

Solution:

Suppose v is an eigenvector of B with eigenvalue λ . Note that $(BA)v = (AB)v = \lambda Av$. So either Av = 0 or Av is also an eigenvector of B with eigenvalue λ . (3 marks)

Since B has n distinct eigenvalues, they all have multiplicity 1 which means that all of the eigenspaces of B are one-dimensional. Since v and Av both lie in the one dimensional eigenspace of B corresponding to the eigenvalue λ , v and Av must be linearly dependent. Since $v \neq 0$, this means that $Av = \mu v$ for some scalar μ . Therefore, v is an eigenvector of A corresponding to the eigenvalue μ . (6 marks)

Since B has n distinct eigenvalues, B is diagonalizable. Therefore B has n linearly independent eigenvectors $v_1, ..., v_n$. This implies that the vectors $v_1, ..., v_n$ are also linearly independent eigenvectors of As,

and hence A is diagonalizable. (3 marks)

This implies that $A = PD_1P^{-1}$ and $B = PD_2P^{-1}$ for diagonal matrices D_1 and D_2 . This implies that $AB = PD_1D_2P^{-1}$ for the diagonal matrix D_1D_2 . Hence AB is diagonalizable. (3 marks)