Homework 3

Part A

If a|b a|c, then a|mb+nc, where $m, n \in \mathbb{Z}$

 $a|mk+nl \rightarrow a|mb+nc$

If
$$a|b$$
, then $b=ka$ for some $k \in \mathbb{Z}$,

If $a|c$, then $c=la$ for some $l \in \mathbb{Z}$.

 $mb+nc=m(ka)+n(la)=a(mk+nl)$
 $(mk+nl)\in \mathbb{Z}$

substitute k , l with b , c

If m|(a-b), then $a \mod m = b \mod m$, where $m \in Z + i \cdot a - b = km \rightarrow a = km + b$ $a \mod m = (km+b) \mod m = (km) \mod m + (b) \mod m$ $(km) \mod m = 0, \text{ therefore } a \mod m = b \mod m$

If
$$a \mod m = b \mod m$$
 for $m \in Z+$, then:
 $a = km+r$ $k \in Z$, $0 \le r < m$,
 $b = lm+r$ $l \in Z$, $0 \le r < m$,
 $a-b = (km+r)-(lm+r)$

3.
$$a-b = (km+r)-(lm+r)$$

$$= km+r-lm-r$$

$$= km-lm$$

$$= m(k-l), where $(k-l) \in \mathbb{Z}$$$

Therefore, if $a \mod m = b \mod m$ for $m \in \mathbb{Z}+$, then $m \in (a-b)$