The SWIFT pipeline: from zero to hero halo

Swiftcon

Victor Forouhar & Rob McGibbon September 18, 2024

Overview

General Ideas	Codes
IC generation	MONOFONIC
Gravity integration	SWIFT
Halo finding	HBT+
Halo properties	SOAP

Initial conditions

1. Create a grid / glass (homogenous) particle distribution.

Initial conditions

- 1. Create a grid / glass (homogenous) particle distribution.
- 2. Perturb positions and velocities to reflect fluctuations given power spectrum.

Initial conditions

- 1. Create a grid / glass (homogenous) particle distribution.
- 2. Perturb positions and velocities to reflect fluctuations given power spectrum.

Gravity integration

- 1. Compute forces.
 - Long range
 - Short range
- 2. Carefully integrate the orbit of particles, e.g. timestep limiting

Gravity integration

- 1. Find field haloes (Friends-of-Friends).
- 2. Identify substructures candidates in FoF groups.

- 1. Find field haloes (Friends-of-Friends).
- 2. Identify substructures candidates in FoF groups.

- 1. Find field haloes (Friends-of-Friends).
- 2. Identify substructures candidates in FoF groups.

- 1. Find field haloes (Friends-of-Friends).
- 2. Identify substructures candidates in FoF groups.

- 1. Find field haloes (Friends-of-Friends).
- 2. Identify substructures candidates in FoF groups.

- 1. Find field haloes (Friends-of-Friends).
- 2. Identify substructures candidates in FoF groups.
 - HBT uses past memberships to identify candidates.
- 3. Check self-boundness of objects.
 - Recursively within a FoF.
 - Subsampling if subhalo is large.

Halo properties

- 1. Inclusive spherical apertures:
 - All particles within aperture.
- 2. Exclusive spherical apertures
 - Bound particles within aperture.
- 3. Bound halo properties
 - Particles bound to a subhalo.

Halo properties

- 1. Inclusive **spherical apertures**:
 - All particles within aperture.
- 2. Exclusive spherical apertures
 - Bound particles within aperture.
- 3. Bound halo properties
 - Particles bound to a subhalo.

Physical or spherical overdensities

Runtime overview

- 1. IC generation ~ 1 minute.
- 2. SWIFT ~ 80 Cpu-minutes.
- 3. HBT+ ~ 1 minute.
- 4. SOAP ~ 10 seconds.

T = 0

Unique ID	Parent
0	-
1	-
2	<u>-</u>

Unique ID	Parent
0	-
1	-
2	-

T = 0

Unique ID	Parent
0	-
1	0
2	-
3	-

T = 1

HBT: more robust structure finding

HBT: merger events

 Force merging of subhaloes based on the 'normalised phase-space distance' between their 'most bound cores'

