M5218AL/P/FP

DUAL LOW-NOISE OPERATIONAL AMPLIFIERS (DUAL POWER SUPPLY TYPE)

DESCRIPTION

The M5218 are semiconductor integrated circuits designed for a low noise preamplifier in audio equipment and a general-purpose operational amplifier in other electronic equipment. Two low noise operational amplifier circuits displaying internal phase-compensated high gain and low distortion are contained in an 8-pin SIP, DIP or FP for application over a wide rage as a general-purpose dual amplifier in general electronic equipment.

The devices have virtually the same characteristics as the 4557, 4558, 4559 and 741 operational amplifiers.

The units can also be used as a single power supply type and amplifier in portable equipment. It is also suitable as a headphone amplifier because of its high load current.

FEATURES

APPLICATION

General-purpose amplifier in stereo equipment, tape decks, and radio stereo cassette recorders; active filters, servo amplifiers, operational circuits in other general electronic equipment.

RECOMMENDED OPERATING CONDITINONS

Supply voltage range $\pm 2 \sim \pm 16 \text{V}$ Rated supply voltage $\pm 15 \text{V}$

ABSOLUTE MAXIMUM RATINGS $(T_a=25^{\circ}C, unless otherwise noted)$

Symbol	Parameter	Conditions Ratings	Unit
V _{CC}	Supply voltage	±18	V
I _{LP}	Load current	±50	mA
V _{id}	Differential input voltage	±30	٧
Vic	Common input voltage	±15	V
Pd	Power dissipation	800(SIP)/625(DIP)/440(FP)	mW
Kθ	Thermal dirating	$T_a \ge 25^{\circ}C$ 8(SIP)/6. 25(DIP)/4. 4(FP)	mW/℃
Topr	Ambient temperature	-20~+75	c
Tstg	Storage temperature	_55~+125	°C

ELECTRICAL CHARACTERISTICS $(T_a=25^{\circ}C, V_{CC}=\pm15V)$

Symbol	Parameter	Test conditions	No.	Limits		
			Min.	Тур.	Max.	Unit
Icc	Circuit current	V _{in} =0		3.0	6.0	mA
Vio	Input offset voltage	R _S ≤10kΩ		0.5	6.0	mV
l _{io}	Input offset current			5	200	nA
I _{IB}	Input bias current				500	nA
Rin	Input resistance		0.3	5		МΩ
G _{vo}	Open loop voltage gain	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	86	110		dB
V _{OM}	Maximum output voltage	R _L ≥10kΩ	±12	±14		V
		R _L ≧2kΩ	±10	±13	400000 0000	
V _{CM}	Common input voltage range		±12	±14		V
CMRR	Common mode rejection ratio	R _S ≦10kΩ	70	90		dB
SVRR	Sypply voltage	R _s ≦10kΩ		30	150	μV/V
Pd	Power dissipation		*	90	180	mW
SR	Slew rate	$G_V=0dB, R_L=2k\Omega$		3.0		V/µs
f _T	Gain bandwidth product			7		MHz
V _{NI}	Input referred noise voltage	R _S =1kΩ, BW:10Hz~30kHz		2.0		μVrms

TYPICAL CHARACTERISTICS

TERMAL DERATING (MAXIMUM RATING)

VOLTAGE GAIN VS. FREQUENCY RESPONSE

FREQUENCY f (Hz)

APPLICATION EXAMPLES

(1) Stereo Equalizer amplifier circuit

TYPICAL CHARACTERISTICS (Vcc=±15V, RIAA)

- $\cdot G_V = 35.6 dB(f=1 kHz)$
- \cdot V_{NI}=1/2</sub>Vrms(R_S=1k Ω , BW=20Hz \sim 30kHz)
- · Signal-to-noise=72.5dB (IHF-A network, shorted input,
- 2.5mVrms input sensitivity)
- · THD=0.0015%(f=1kHz, Vo=3Vrms)

TOTAL HARMONIC DISTORTION VS. OUTPUT VOLTAGE % 0.1 THD $V_{CC} = \pm 15V$ RIAA 0.05 DISTORTION 0.02 20Hz 0.01 HARMONIC 0.005 20kHz 0.002 =1kHz 101AL 0.001 10 20

OUTPUT VOLTAGE Vo (Vrms)

Left channel circuit constants are identical to those of right channel. C_{B1} , C_{B2} : Capacitors for buzz prevention, use if required, $R_{\rm O}$: Resistor used to prevent parasitic oscillation for capacitive loads and current limiting with shorted and other abnormal load conditions.

OUTPUT NOISE VOLTAGE VS. SIGNAL SOURCE RESISTANCE

SIGNAL-TO-NOISE RATIO VS. SIGNAL SOURCE RESISTANCE

SIGNAL SOURCE RESISTANCE R_S ($\tilde{\Omega}$)

(2) High S / N stereo DC ICL equalizer

M5218/ M5R4558P 8 470 3 ^{1k} R_{ch} ₩⊸OUT 470p ## 1/2 3300p 2SK109A 0.01 µ 0.033 ≥ 160 100k G –V_{cc} –15V) O 7.5k 91k 220 µ 2mA ↓ ₹ 7.5k Go M5218/M5R4558P 2SK109A -(6) OUT 2/2

Units Resistance : Ω

Capacitance : F

Left channel circuit constants are identical to those of right channel.

TYPICAL CHARACTERISTICS (Vcc=±15V, RIAA)

- Signal-to-noise=72.5dB (IHF-A network, shorted input, 2.5mVrms input sensitivity)
- (+15V) V_{Ni} =0.77 μVrms(R_S=5.1kΩ, BW=5Hz~100kHz)
 - · G_v=35.6dB(f=1kHz)

(3) Headphone amplifier

(Output resistance R_O is made the parameter)
POWER OUTPUT / POWER

