1. (Amended) A permanent magnet rotary electric machine having a rotor and a stator, one of said rotor and said stator comprising a plurality of permanent magnets disposed such that polarities of edjacent magnets are different from each other, the other of said rotor and said stator comprising a plurality of electrical coils wound around cores juxtaposed to said permanent magnets for cooperation therewith, said coil windings being arranged in groups of coll windings, the coil windings of said groups having their windings connected to each other and common ends, no two coll windings of each group being circumferentially adjacent to the other.

Amond Claim 2 as follows:

(Amended) A permanent magnet rotary electric machine as set forth in claim 1
wherein one of the come and the permanent magnets are disposed in nonsymmetrical relation
to the axis of rotation of said machine.

CLAIM 3 HAS BEEN CANCELLED

- 4. (Amended) A permanent magnet rotary electric machine as set forth in claim 2 wherein all the permanent magnets are of substantially of the same shape a circumferential offset angle of each permanent magnet from a regularly disposed position is set such that a cogging number per rotation of the rotor is equivalent to as the least common multiple of the number S of slots between the electrical winding cores and the number P of magnetic poles.
- 5. (Amended) A permanent magnet rotary electric machine as set forth in claim 2, wherein the magnitude of the torque exerted on each permanent magnet is determined separately by a computer numerical analysis and peaks or bottoms of the torque curves of said permanent magnets are offset from each other with respect to the rotation angle of the roter so that the cogging number is increased.

CLAIM 6 HAS BEEN CANCELLED

7. (Amended) A permanent magnet rotary electric machine as set forth in claim 4, wherein the number S of slots is eighteen, the number P of magnetic poles is twelve, and the twelve permanent magnets are divided into four sets, each set comprising three circumferentially adjacent permanent magnets, the circumferential pitch angle of the three permanent magnets of each set is 26.7°, and the circumferential pitch angle of adjacent two permanent magnets between the sets is 36.60°.

CLAIM 8 IS CANCELLED

9. (Amended) A permanent magnet rotary electric machine as set forth in claim 4, wherein the number S of slots is eighteen, the number P of magnetic poles is twelve, and the twelve permanent magnets are divided into four sets, two of said four sets comprising three circul ferentially adjacent permanent magnets, the circumferential pitch angle of the three permanent magnets of each set is 26.7°, and the circumferential pitch angle of permanent magnets within the other two sets disposed at a symmetrical position is 33.3°.

CLAIM 10 IS CANCELLED

11. (Amended) A permanent magnet rotary electric machine as set forth in claim 4, wherein the number S of close is eighteen, the number P of magnetic poles is twelve, and the

twelve permanent magnets are divided into four sets of three circumferentially adjacent permanent magnets, the circumferential pitch angle of the time permanent magnets of each set is 28.3°, and circumferential pitch angles of adjacent permanent magnets between adjacent different sets are set to 33.3°, 28.3°, 33.3° and 28.3° circumferentially in this order.

CLAIM 12 IS CANCELLED

13. (New A) A permanent magnet rotary electric machine as set forth in claim 5 wherein the coil windings of each group are circumferentially separated from each other by at least one coil winding of another group.

14. (New A) A permanent magnet rotary electric machine as set forth in claim 1 wherein coll windings are formed around each of the cores.