CERTIFICATE OF TRANSLATION

I, SHUSAKU YAMAMOTO, patent attorney of Fifteenth Floor, Crystal Tower, 1-2-27 Shiromi, Chuo-ku, Osaka 540-6015, Japan HEREBY CERTIFY that I am acquainted with the English and Japanese languages and that the attached English translation is a true English translation of what it purports to be, a translation of Japanese Laid-open Publication No. 60-32565, entitled "Power Source Circuit", laid-opened on February 19, 1985.

Additionally, I verify under penalty of perjury under the laws of the United States of America that the foregoing is true and correct.

Executed this // day of June, 1998.

SHUSAKU YAMAMOTO

Your Ref: 02445.037

Translation of Japanese Laid-Open Publication

Laid-Open Publication Number: 60-32565

Laid-Open Publication Date: February 19, 1985

Title of the Invention: POWER SOURCE CIRCUIT

Application Number: 58-139639

Filing Date: July 30, 1983

Inventor: J. TAKERA

Applicant: MATSUSHITA ELECTRIC WORKS LTD.

1. TITLE OF THE INVENTION

POWER SOURCE CIRCUIT

2. CLAIM

(1) A power source circuit comprising: a first capacitor to be charged with a voltage obtained by rectifying and smoothing a voltage of an AC power source; a second capacitor connected to the first capacitor via a switching element and an inductance element; and a switch control circuit for turning OFF the switching element when a charging voltage of the second capacitor reaches a prescribed upper limit voltage value and for turning ON the switching element when the charging voltage reaches a prescribed lower limit voltage value.

3. DETAILED DESCRIPTION OF THE INVENTION

[Field of the Invention]

The present invention relates to a power source circuit for obtaining a DC power for a control circuit such as a sequencer from a commercial power source.

[Prior Art]

Conventionally, a power source circuit of this type obtains a DC voltage from the voltage of the commer-

Your Ref: 02445.037

cial power source of AC 100 V. In this case, the input voltage has been set so as to be variable within an allowable range of about -15% to about +10%. However, in general, a control circuit such as a sequencer is not only supplied to meet a domestic demand, but also exported to various foreign countries. Thus, in order to adapt such a control circuit to be compatible with foreign power sources of 110 V, 120 V, 220 V and the like, the components used must be replaced and various tests must be performed as necessitated. Since such tasks are troublesome, it has been desired to solve this problem.

[Objective of the Invention]

In view of the above-described respects, the present invention has been devised for the purpose of providing a power source circuit which can enlarge the allowable varying range of an input voltage from the commercial power source, can obtain a DC low voltage with a minimum loss, and is configured so as to be accommodated to not only domestic demands but also overseas demands.

[Disclosure of the Invention]

Hereinafter, the configuration according to the present invention will be described by way of an example illustrated in the drawings. Figure 1 is a circuit diagram showing the entire configuration of the power source circuit in an example of the present invention, and Figure 2 is a circuit diagram of the principal section thereof. As shown in Figure 1, the AC input voltage from a commercial power source 1 is reduced by a power transformer 2, full-wave rectified by a diode bridge 3 and then

Your Ref: 02445.037

charged in a capacitor C_0 . The charging voltage of the capacitor Co is charged into a capacitor Co via a switching element 6 (the ON/OFF states of which are controlled by a switch control circuit section 4) and an inductance element L. The charging voltage $V_{\mathbf{z}}$ (= 8 V) of the capacitor C_1 is used as power for driving the relays in a sequencer. A three-terminal regulator 6 generates a power source voltage Vcc (= 5V) for driving the sequencer IC as a charging voltage of a capacitor C_2 (the charging voltage of the capacitor C_1 is assumed to be a constant voltage). This three-terminal regulator is a series regulator generally used as a constant voltage circuit. regulator is widely available as an IC package. Figure 2 Such a is a circuit diagram showing the configuration of a switching type pre-regulator. In the circuit shown in Figure 2, a transistor Tr_1 is used as the switching element 5. The switch control circuit 4 is implemented as a hysteresis circuit including a comparator 7. charging voltage of the capacitor Co is applied to a Zener diode Z via a current-limiting resistor. The cathode of the Zener diode Z is connected to the positive input terminal of the comparator 7 via a resistor r. positive input terminal of the comparator 7 is also connected to the output terminal of the comparator 7 via another resistor r. Thus, the voltage applied to the positive input terminal of the comparator 7 equals a voltage obtained by dividing a voltage difference between a reference voltage generated on the cathode of the Zener diode Z and the output voltage of the comparator 7 by a pair of resistors r. A voltage obtained by dividing the charging voltage of the capacitor C_1 by the resistors R_1 and

Your Ref: 02445.037

 R_2 is applied to the negative input terminal of the comparator 7. The operating voltage of the comparator 7 is supplied from the capacitor C_{o} . When the output of the comparator 7 reaches the H level, a transistor Tr_2 is turned ON and the transistor Tr, is also turned ON via base current flowing through a resistor r_b . On the other hand, when the output of the comparator 7 reaches the L level, the transistor Tr2 is turned OFF and the transistor Tr1 is also turned OFF. It is noted that when the output of the comparator 7 is at the H level, the upper limit value of the voltage thereof is limited to the base-emitter voltage $V_{\rm BZ}$ (= 0.7 V) of the transistor ${\rm Tr}_2$. The pre-regulator circuit shown in Figure 2 has a very simple circuit configuration utilizing the hysteresis characteristics of the comparator 7. That is to say, the feature of the circuit according to the present invention lies in setting ripple voltage and circuit constants, conventional variable frequency or constant frequency switching regulator having a variable duty ratio.

Hereinafter, the operation of this circuit will be described with reference to Figure 3. Figure 3(a) shows the variation of the charging voltage V_R of the capacitor C_1 . In Figure 3(a), V_{TP} denotes a ripple voltage and V_{RE} and V_{RL} denote the upper limit value and the lower limit value of the charging voltage V_R of the capacitor C_1 , respectively. Figure 3(b) shows the variations of the voltage applied to the positive input terminal of the comparator 7, in which Vh denotes the higher applied voltage and Vl denotes the lower applied voltage. In the circuit shown in Figure 2, in the period after the power is

Your Ref: 02445.037

supplied and until the voltage $V_{\mathtt{R}}$ reaches the voltage $V_{\mathtt{RB}}$ shown in Figure 3, the transistor Tr₁ is conductive (i.e., in the ON state). When the voltage $V_{\mathbf{z}}$ reaches the voltage $V_{\mbox{\tiny MB}}$, the output of the comparator 7 becomes low, so that the transistor Tr_2 is turned OFF and the transistor Tr_1 is also turned OFF. While the transistor Tr, is OFF, power is supplied from the capacitor C_1 to a load. Thus, the charge in the capacitor C_1 is discharged and the voltage $V_{\mathbf{z}}$ becomes At this time, the voltage V1 is being applied to the positive input terminal of the comparator 7. When the charging voltage $V_{\scriptscriptstyle R}$ of the comparator 7 reaches the voltage V_{RL} , the capacitor 7 is turned OFF, the transistor Tr2 is turned ON and the transistor Tr1 is also turned As a result, the capacitor C_1 is charged again from the capacitor C_{o} . At this time, the voltage Vh is being applied to the positive input terminal of the comparator 7. Thereafter, when the charging voltage $\mathbf{V}_{\mathbf{z}}$ of the capacitor $\mathbf{C}_{\mathbf{o}}$ reaches the voltage $\mathbf{V}_{\mathbf{RB}}$, the transistor $\mathbf{Tr_1}$ is turned OFF again. In this way, every time the voltage $\mathbf{V}_{\mathbf{R}}$ reaches the voltage $V_{\tiny{NR}}$ or $V_{\tiny{NL}}$, the transistor Tr_1 is turned ON/OFF, as shown in the waveform chart in Figure 3.

Hereinafter, a method for setting the respective constants of the circuit shown in Figure 2 will be described. First, $V_{\rm m}$ is set so as to satisfy the following equation.

$$\frac{R_2}{R_1 + R_2} V_{RL} = \frac{V_Z - V_{CE}}{2 r} \cdot r + V_{CE} = \frac{V_Z}{2}$$

where V_{cz} is an output voltage at the open collector of the comparator 7 and is approximately equal to zero, and V_{z} is

Your Ref: 02445.037

a Zener voltage of the Zener diode Z. The voltages Vl and Vh are given by the following equations.

$$V\ell = \frac{Vz - VcE}{2r} \cdot r + VcE - \frac{Vz}{2}$$

$$V_h = \frac{Vz - V_{DE}}{2r} \cdot r + V_{BE}$$

$$= \frac{Vz - 0.7}{2} + 0.7 - \frac{Vz}{2} + \frac{0.7}{2}$$

where V_{me} is the base-emitter voltage of the transistor Tr when the output of the comparator 7 is at the H level and is approximately equal to 0.7 V. The ripple voltage Vrp may be calculated based on the following equation.

$$V_{rp} = V_{RE} - V_{RL} = \frac{R_1 + R_2}{R_2} (V_h - V_\ell)$$

Moreover, the constants of the inductance element L and the capacitor C_1 can be determined based on the following equations, where V_p is a charging voltage of the capacitor C_0 ; t_1 is an ON time period of the transistor Tr_1 ; t_2 is an OFF time period of the transistor Tr_1 ; I_p is current flowing through the inductance element L while the transistor Tr_1 is ON; I_0 is a load current; I is an effective current; I_{C1} is a current flowing through the capacitor C_1 ; and P_2 is the wattage of the load.

$$I_p = \frac{V_D - V_{RL}}{L} \cdot t_1 \tag{1}$$

$$(Ip - I_e) t_i = C_i \cdot V_{PP} \qquad (2)$$

$$\left(\frac{V_{D}-V_{RL}}{L}t_{1}-I_{\bullet}\right) t_{i}=C_{1}\cdot V_{rp} \qquad (3)$$

Your Ref: 02445.037

$$t^{2} = \frac{\frac{1}{2}LI^{2} + \frac{1}{2}C_{1} (Vh^{2} - V\ell^{2})}{PZ} = \frac{C_{1}}{2PZ} (Vh^{2} - V\ell^{2})$$
(4)

$$I = Ip \frac{t_1}{t_1 + t_2} \qquad (5)$$

 $I = I_0 + I_C$

Based on equations (1) and (2) among the above equations, the ON time period t_1 of the transistor Tr_1 can be calculated. The load current I is determined in accordance with the wattage P_{z} of the load. In this case, since the voltage $V_{\mbox{\scriptsize D}}$ is a rectified and smoothed output of the transformer 2, a voltage $\boldsymbol{V}_{\boldsymbol{D}}$ corresponding to the maximum value of the input voltage is determined and then the duty ratio at this voltage is set at 1/2. That is to say, the load current I_p is calculated from equations (2) through (4) under the condition $t_1 = t_2$. Moreover, the value of L is set based on equation (1), and t_i is obtained from equation (1). The value of C_1 is set based on equation (2). Furthermore, by setting $I_{max} = I_p \cdot 1/2$ based on equation (5), the current capacitance of the transistor $\mathtt{Tr_1}$ and the inductance element L is obtained. power source circuit having the above-described configuration, the operation can be guaranteed at input voltages ranging from about AC 85 V to about 150 V. Thus, the power source circuit of the present invention can meet both domestic demands and overseas demands that require different power source voltages.

[Effect of the Invention]

The power source circuit of the present invention

Your Ref: 02445.037

has the above-described configuration and includes: a first capacitor to be charged with a voltage obtained by rectifying and smoothing a voltage of an AC power source;

a second capacitor connected to the first capacitor via a switching element and an inductance element; and a switch control circuit for turning OFF the switching element when a charging voltage of the second capacitor reaches a prescribed upper limit voltage value and for turning ON the switching element when the charging voltage reaches a prescribed lower limit voltage value. Thus, even when the charging voltage of the first capacitor greatly varies because of large variations of the commercial power source voltage in a wide range, the charging voltage of the second capacitor varies between the prescribed upper and lower limit voltage values which have been determined by the switch control circuit. Thus, the power source circuit of the present invention can be used in a wide voltage range and can advantageously meet both domestic demands and overseas demands requiring different power source voltages. Furthermore, according to the present invention, since the current limiting element serially connected to the switching element is an inductance element, the loss caused during the current limitation can be reduced to a low level, and the amount of generated heat can also be advantageously reduced.

4. BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a circuit diagram showing an example of the power source circuit according to the present invention; Figure 2 is a circuit diagram showing the principal section thereof; and Figure 3 is a diagram

Your Ref: 02445.037

illustrating the operation thereof.

1: commercial power source; 2: voltage step down transformer; 3: diode bridge; 4: switch control circuit; 6: switching element; L: inductance element; and C_1 and C_2 : capacitors.

はた本発明にかいてはスイッテングポ子と巡列保 既された限度製器はインタクタンス無子であるので、 限沈時に生じる出失も小さく如えることがで も、 社創立も少なくすることができるという利点 もある。

4.図面の毎単な説明

第1日は本発明の一実施例の回路図、第2区は 同上の姿部回路図、第3日は同上の動作説明図で ある。

(I) は胚用電板、(2) は昨日トランス、(3) はダイオードブリッジ、(4) はスイッチコントロール回路、(5) はスイッチング素子、しはインタクタンス素子、 C₁, C₂はコンチンサでもる。

代理人 升度士 石 田 安 七

他日本国特許 厅(JP)

20 特許出版公開

®公開特許公報(A) 昭60-32565

Spint Ci.4

識別記号

厅内整理委员

❷公開 □昭和60年(1985)2月19日

H 02 M G 05 F 3/155

6957-5H 6945-5H

審査請求 未請求 発明の数 1 (全4頁)

砂発明の名称 **建原回路**

> 创特 ■ 昭58-139639

> > 丈 治

母出 順 昭58(1983)7月30日

砂発 明 者 武 良 砂出 屛 人 松下電工株式会社

門真市大字門其1048番地 松下電工株式会社内

門真市大字門真1048番地

砲代 理 人 弁理士 石田 長七

1.発明の名数

可见避路

2.付許額束の範囲

(I) 交流電影電圧の整度平滑電圧を充電される第 1のコンダンりと、スイツテンク素子がよびイン ダクスンスボデを介して毎1のコンチンテに改蔵 される邪 2 のコンチンサと、 郷 2 のコンチッサの 売和塩圧が折定の上限電圧値に適したときドスイ ツァングボチをようし、約記元電電圧が折走の下 **収収圧低に進したときにスイツチングボ子をオン** ナるスイファコントロール回覧とを有して収ると となわなとする症候回路。

3. 発明の詳細な説明

〔弦術分野〕

本先別はシーケンサのような斡儺道路の単仏電 新と明用電水から取り出す電板過略に向するもの てある。

(背景技術)

を示いこの後の電気図集はAC100Vの解別型 悪電圧から低度度圧を持るようだしていた。 そし てとの場合、入力電圧としては-15g~+10g程 反の電圧変勢が許容能器として数定されていた。 しかしたがら、一般ドシーケッテのような無縁脳 略は、国内の背景に供されるのみならず、外国に 特出されるととも多く、110V, 120V, 220V 🕸 の国外問電紙仕様のものだついては使用部尚を更 - 見したり、それに伴う様々の武教学を行なり必要 があつて、乗貸上頭しさが多く、その解決が遅ま れていた。

〔発労の目内〕

本発明は上述のような点に魅みてみされたもの でもり、海州電板からの入力電圧の気制作存電器 を吹くして、しから延貫失て母佐社包括を得ると とがてき、田内向の世襲化も国外向の領勢化も对 応できるようだした健康回路を提供することを目 切とするものである。

〔 発明の関示〕

以下本先明の雑蔵を超示実施例だついて説明ナ

つ、オンを辿り返す。

以下、気を図の図像における各定数の数定方法 だついて近べる。まず、 VRL は決式だよつて 民定

$$\frac{R_r}{R_r + R_r} V_{RL} = \frac{V_Z - V_{CE}}{2r} - r + V_{CE} = \frac{V_Z}{2}$$

ただし、上式Kコいて VCE はコンパレータ(1)の オーブンコレクタ出力電圧であつて、ほぼりでも る。またVzはツエナダイオードでのツェナ電圧で ろる。また、常圧 Vℓ , Vb は次式によつて放定さ

$$V\ell = \frac{Vz - Vcz}{2r} \cdot r + Vcs = \frac{Vz}{2}$$

$$V_h = \frac{Vz - Vos}{2r} \cdot r + Vbz$$

$$-\frac{v_2-0.7}{2}+0.7-\frac{v_2}{2}+\frac{0.7}{2}$$

ただし、 Vaz はコッパレータ(f)の出力がHレベ シの場合にかけるトランジスタでに のペースエニ ツタ間電圧でもり、な圧 0.7 V である。また、リッ ブル鬼庄 Vrp は灰式だよつて無出てきる。

$$V_{TP} = V_{RB} - V_{RL} = \frac{R_I + R_2}{R_2} (V_h - V_\ell)$$

さらにインダクタンスボデレヤよびコンテンサ Ciの定数は広式だよつて広足される。九だし、VD にコンチンサCiの元電電圧、いはトランジスタTri のオン時間、 5はトランジスタブル のオフ井间、 IPはトランジスまTriのオン料ドインダクミンス ボ子しに成れる電圧、 Ioは負荷電圧、 I は 共効な 就、 IG はコンチンサ Ciに成れる電便、Pz に負行

$$(I_P - I_S) t_I = C_I \cdot V_{PB} \qquad \dots \dots t_S$$

$$(\frac{\mathbf{V}_{D} - \mathbf{V}_{RL}}{L} \mathbf{t}_{i} + \mathbf{I}_{\bullet}) \mathbf{t} = \mathbf{C}_{i} \cdot \mathbf{V}_{PP} \qquad \dots \dots (\mathbf{g})$$

$$\frac{\frac{1}{2}LI^{1} + \frac{1}{2}C_{1}(Vh^{2} - V\ell^{2})}{Pz}$$

$$=\frac{C_1}{2 PZ} (V b^1 - V \ell^2) \qquad \cdots \cdots \textcircled{9}$$

$$I = Ip \frac{t_1}{t_1 + t_2} \qquad \dots \dots (a)$$

上式のうち、①式と②式よりトランジスタでは のよう時間にが禁出てきる。魚荷電波がは魚荷の つット&PEK応じて定められる。ととて電圧VDは トランス(3)の変貨予費出力であるため、入力電圧 と最大似化改定したとりの電圧VDを求めて、この とをデューティ比が $\frac{1}{2}$ 化なるように設定する。つ まり、 いっいとして、 国一回式により負荷を反打 されむる。また①式よりLの値を数定し、いを求 むて、包式よりCiの包を設定する。さらに包式よ ウ、imax=1p・1/2としてトランジスタTriかよび インタフタンスポテレの電圧容量を求める。以上 のようにして検収した健保回路にあつては、入力 祖正としてAC 85 V~150 V 程度の電圧範囲だか いて創作促延が可能であつて、国内間の需要にも

、せた電視電圧の異なる製外向の噂響にも供する

(発例の効果)

本発明は鉄上のように鉄以されており、火坑堰 銀電圧の生徒平角電圧を充電される前1のコンデ ンサと、スイサテンク菓子をよびインタクランス ボチを介して第1のコンチンツに供給される第2 のコンチンサと、鬼2のコンチンサの尤指ほぼが 所定の上段電圧曲に進したときにスイッテング法 子をオフし、前紀光電電圧が所定の下展飛圧製化 違したとまにスイツテングホテをオンナるスイツ チコントロール回路とも有するものであるから、 商用電源電圧が広い軌道で気動して知りのコンデ ンテの元間電圧がかたり大きく実制しても、 57.2 のコンチンリの光電電圧はスイツテコントロール 回路によつて収定された所定の上限電圧値と下限 **電圧貨との間で変動することになり、したがつて** 広い電圧引聞にかいて世界可能となり、 国川内の 背景だら、また電氣電圧の其なる国外的の情長だ も供することがでまるという利点がもり、さらに