Facultad de Ciencias Exactas, Ingeniería y Agrimensura Departamento de Matemática - Escuela de Ciencias Exactas y Naturales Álgebra Lineal - LCC, LM, PM - 2024

Primera Evaluación Parcial - 22/04/2024

Apellido y nombre: Carrera:

1. Sean

un conjunto
$$V = \left\{ A \in \mathbb{R}^{2 \times 2} : A = \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \text{ donde } x, y \in \mathbb{R} \right\},$$
 una función $T : \mathbb{R}_2[x] \to V$ definida por $T(ax^2 + bx + c) = \begin{pmatrix} c & -a - b \\ a + b & c \end{pmatrix}.$

- (a) Pruebe que V es un \mathbb{R} -espacio vectorial con la suma y producto por escalar usuales de matrices.
- (b) Dé una base ${\mathfrak B}$ de V y su dimensión. Justifique su respuesta.
- (c) Pruebe que T es una transformación lineal.
- (d) Calcule $\ker T$ y $\operatorname{Im} T$. Determine si T es un monomorfismo, un epimorfismo o un isomorfismo. Justifique su respuesta.
- (e) Dadas las bases $\mathcal{C} = \{1, 1+x, 1+2x^2\}$ de $\mathbb{R}_2[x]$ (pruebe que es base) y \mathfrak{B} (del ítem 1b), calcule $[T]_{\mathcal{CB}}$.
- 2. Sea la base de \mathbb{R}^3 (no justifique esto)

$$\mathfrak{B}_1 = \{(1,0,0), (1,1,0), (1,1,1)\},\$$

y la función $\langle \cdot, \cdot \rangle : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ dada por

$$\langle x, y \rangle = x_1 y_1 - x_1 y_2 - x_2 y_1 + 2x_2 y_2 + x_3 y_3.$$

- (a) Pruebe que la función $\langle \cdot, \cdot \rangle$ define un producto interno en \mathbb{R}^3 . Dé su matriz en la base \mathfrak{B}_1 .
- (b) Sea $S = \text{span}\{(1,0,0), (1,1,0)\}$. Calcule S^{\perp} y dé una base ortonormal de S y S^{\perp} , para el producto interno $\langle \cdot, \cdot \rangle$.
- (c) Calcule la proyección de v = (3, 1, 4) sobre S.
- 3. Determine si las siguientes afirmaciones son verdaderas o falsas. Justifique su respuesta.
 - (a) Sea V un F-ev de dimensión 3. Sean U y W dos subespacios de V de dimensión 1 con intersección trivial. Entonces $(U \oplus W)^0 = U^0 \oplus W^0$.
 - (b) Sea V un espacio vectorial real con producto interno $\langle \cdot, \cdot \rangle$. Sean B_1 y B_2 bases de V, sea g_2 la matriz del producto interno con respecto a la base B_2 y sea $A = C_{B_1 \to B_2} g_2$. Entonces $\langle x, y \rangle = [x]_{B_1} A[y]_{B_2}^t$.
 - (c) Si U y W son dos subespacios de un espacio euclídeo V de dimensión finita que se suman de manera directa entonces son ortogonales.
 - (d) Sea $T \in L(\mathbb{R})$. Entonces la función $b : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dada por b(x,y) = T(x)T(y) es una forma bilineal simétrica en \mathbb{R}^2 .