期末练习卷(三)

-,	单项选择题	(每小题3分,	共15分)	得分	1

1、设A、B为随机事件,则P(A) = P(B)的充分必要条件是(

(A) $P(A \cup B) = P(A) + P(B)$ (B) P(AB) = P(A)P(B)

- (C) $P(A\overline{B}) = P(\overline{A}B)$ (D) $P(AB) = P(\overline{A}\overline{B})$
- 2、随机地向长方形区域: $\{0 < x < 2a, 0 < y < a\}(a)$ 为正数)内扔一个质点,质点 落在长方形任何区域内的概率与区域面积成正比,则原点与落点的连线与 x 轴正向 的夹角小于 $\frac{\pi}{4}$ 的概率为 ()。

- (A) $\frac{1}{2}$ (B) $\frac{1}{4}$ (C) $\frac{3}{4}$ (D) $\frac{\pi}{4}$
- 3、对于任意随机变量 X,若 E(X)存在,则 $E\{E[E(X)]\}$ 的值为(

(A) $E^3(X)$ (B) E(X) (C) $E^2(X)$ (D) D(X)

- 4、记 z_{α} (0 < α < 1)表示标准正态分布的上 α 分为点,以下说法正确的是()。

- (A) $z_{\alpha} = z_{-\alpha}$ (B) $z_{\alpha} = -z_{\alpha}$ (C) $z_{\alpha} = z_{1-\alpha}$ (D) $z_{\alpha} = -z_{1-\alpha}$

5、设 $X_1, X_2, ..., X_n$ 为来自总体 X 的一个随机样本, $E(X) = \mu, D(X) = \sigma^2$,为了使 $c\sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$ 为 σ^2 的无偏估计,c 的值为 ()。 $(A) \frac{1}{2(n-1)} \qquad (B) \frac{1}{n-2} \qquad (C) \frac{1}{n-1} \qquad (D) \frac{1}{2(n+1)}$

- 1、设三次独立试验中,事件 A 出现的概率相等。若已知 A 至少出现一次的概率 为 $\frac{19}{27}$ 则事件 A 的概率 P(A)=_____。
 - 2、设随机变量 $X \sim \pi(\lambda), \lambda > 0$,且 $P\{X = 2\} = 2P\{X = 1\}$,则 $\lambda = _____$ 。
 - 3、设连续型随机变量 X 的密度函数 $f(x) = \begin{cases} bx^a, \ 0 < x < 1 \\ 0, \ \text{其它} \end{cases}$,其中 a,b > 0,

且
$$F\left(\frac{1}{2}\right) = \frac{1}{8}$$
,则 $a =$ ______, $b =$ ______。

4、设总体 X 的密度函数为 $f(x) = \begin{cases} |x|, & |x| < 1 \\ 0, & \text{其它} \end{cases}$, $X_1, X_2, ... X_{50}$ 为取自 X 的一个样本, X表示样本均值,则 $D(X-50) = ______$ 。

设随机变量 X 与 Y 相互独立,且 $P\{X=1\}=P\{Y=1\}=\frac{1}{3}, P\{X=0\}=P\{Y=0\}=\frac{2}{3}$,定义 $Z=\left\{\begin{array}{ll}1,\ X+Y$ 为偶数 $0,\ X+Y$ 为奇数 $1,\ X+Y$

四、(本题6分)

得分

从大批发芽率为0.9的种子中随机抽取10000粒,试用中心极限定理估计这10000粒,对用中心极限定理估计这10000粒,对用中心极限定理估计这10000粒,对用中心极限定理估计这10000粒,对用中心极限定理估计这10000粒,可用中心极限定理估计这10000粒,可能够可能的可能。

五、(本题 15 分)

得分

设随机变量(X,Y)的概率密度为 $f(x,y) = \begin{cases} xe^{-x} \frac{1}{(1+y)^2}, & x > 0, y > 0 \\ 0, & else \end{cases}$

求(1) $f_X(x)$, $f_Y(y)$; (2) X 与 Y 是否相互独立? 说明理由。(3) $f_{X|Y}(x|y)$; (4) ρ_{XY} 。

六、(本题15分)

X	-1	0	1	2
-2	0.2	0.25	0.1	0.1
1	0.1	0	0.25	0.1

设随机变量(X,Y)的分布律如右图:

 \vec{x} : (1) 关于 Y 的边缘分布律; (2)关于 Y 的分布函数 $F_{\gamma}(y)$; (3) $Z = X + Y^2$ 的分布律; (4) E(X+Y)。

得分

七、(本题8分)

设总体 $X\sim b(k,p)$, k 为正整数,0< p<1, k, p 均未知,设 $X_1,X_2,...X_n$ 为来自该总体的随机样本,求 k, p 的矩估计量

八、(本题6分)

得分

为了估计海尔某型号洗衣机使用时间的方差,某日测试了 10 台洗衣机,测得 $\overline{\chi}=1500$ 小时,s=20 小时。已知洗衣机使用时间服从正态分布 $N(\mu,\sigma^2)$,求出 σ^2 的置信水平为 0.95 的置信区间。 $(\chi^2_{0.025}(9)=2.7,\chi^2_{0.975}(9)=19.0,\sqrt{10}=3.16)$ (结果保留一位小数)

得分

九、(本题 5 分)

利用切比雪夫不等式证明伯努利大数定律: 设 n_A 是n 重伯努利试验中A发生的次数,p是A发生的概率,则对任何 $\epsilon > 0$,有

$$\lim_{n\to\infty}P\{|\frac{n_A}{n}-p|<\varepsilon\}=1$$

十、(本题9分) 得分

(1) 设某产品的某项质量指标 X 服从正态分布 $N(\mu,150^2)$,现从中随机地抽取了25个,测得该项指标的**平均值**为 1637。问能否认为这批产品的该项指标值为 1600。 $(\alpha=0.05,\ Z_{0.025}=1.96)$ (先假设在检验)

(2)对某总体 $N(\mu,6^2)$,在显著水平为α = 0.05 下用 Z 检验法检验假设 H_0 : μ = 0, H_1 : μ ≠ 0 时,如果拒绝域为{ $|\overline{X}| \ge 1.96$ },问样本容量n 应取多大?($Z_{0.025}$ = 1.96)