APPUNTI DI EDP

Manuel Deodato

Indice

1	Introduzione – Derivata e soluzioni deboli, spazi $\mathcal{E},~\mathcal{D}$	2
2	Distribuzioni	4
	2.1 Caratterizzazione	4

1 Introduzione – Derivata e soluzioni deboli, spazi ${\mathcal E},\ {\mathcal D}$

Definizione 1.1 (Definizione di derivata debole)

Sia $f \in L^1_{loc}(\Omega)$ e $\alpha \in \mathbb{N}_0^n$; allora si dice che esiste $\partial^{\alpha} f \in L^1_{loc}(\Omega)$ in senso debole se:

$$\exists g \in L^1_{\text{loc}}(\Omega) : \int_{\Omega} g \varphi \ dx = (-1)^{|\alpha|} \int_{\Omega} f \partial^{\alpha} \varphi \ dx, \ \forall \varphi \in C_0^{\infty}(\Omega)$$
 (1.0.1)

Se questo è vero, allora $\partial^{\alpha} f = g$ e si dice che g è la **derivata debole** di ordine α di f.

Teorema 1.1 (Teorema di Riemann-Lebesgue)

Sia $g \in L^1_{loc}(\Omega)$ e $\int_{\Omega} g\varphi \ dx = 0$, $\forall \varphi \in C_0^{\infty}(\Omega)$; allora g = 0 quasi ovunque in Ω.

Si applica il concetto di derivata debole alle edp; sia $P(x, \partial)$ un operatore differenziale lineare di ordine $m \in \mathbb{N}$ del tipo:

$$P(x,\partial) := \sum_{|\alpha| \le m} a_{\alpha}(x)\partial^{\alpha}, \ a_{\alpha} \in C^{|\alpha|}(\Omega), \ \alpha \in \mathbb{N}_{0}^{n}, \ |\alpha| \le m$$
 (1.0.2)

Si prende $u \in C^m(\Omega)$ come la soluzione classica di $P(x, \partial)u = f, \ f \in C^0(\Omega)$; integrando per parti per ogni $\varphi \in C_0^\infty(\Omega)$:

$$\int_{\Omega} f \varphi \, dx = \int_{\Omega} \varphi \left[\sum_{|\alpha| \le m} a_{\alpha} (\partial^{\alpha} u) \right] \, dx = \int_{\Omega} \left[\sum_{|\alpha| \le m} (-1)^{|\alpha|} \partial^{\alpha} (a_{\alpha} \varphi) \right] u \, dx$$

da cui si definisce:

$$P^{\top}(x,\partial)\varphi := \sum_{|\alpha| \le m} (-1)^{|\alpha|} \partial^{\alpha}(a_{\alpha}\varphi) \tag{1.0.3}$$

e si chiama **operatore trasposto** di $P(x, \partial)$. Si arriva alla seguente definizione.

Definizione 1.2 (Soluzione debole)

Siano $u, f \in L^1_{loc}(\Omega)$ e sia $P(x, \partial)$ come definito sopra; si dice che $P(x, \partial)u = f$ è valida debolmente se:

$$\int_{\Omega} f \varphi \, dx = \int_{\Omega} \left[P^{\top}(x, \partial) \varphi \right] u \, dx, \ \forall \varphi \in C_0^{\infty}(\Omega)$$
 (1.0.4)

Il problema con la definizione 1.1 è che mentre il lato di destra è sempre verificato, quello di sinistra potrebbe perdere senso perché non è detto che una funzione $u \in L^1_{loc}$ sia derivabile; a questo proposito, ci si concentra sul lato di destra e, data $f \in L^1_{loc}(\Omega)$, si considera la mappa:

$$g_{\alpha}: C_0^{\infty}(\Omega) \to \mathbb{C}, \ g_{\alpha}(\varphi) := (-1)^{|\alpha|} \int_{\Omega} f(\partial^{\alpha} \varphi) \ dx, \ \forall \varphi \in C_0^{\infty}(\Omega)$$
 (1.0.5)

Questo funzionale g_{α} è lineare e $\forall \varphi \in C_0^{\infty}(\Omega)$ se ne può stimare la norma:

$$|g_{\alpha}(\varphi)| \le \int_{K} |f| |\partial^{\alpha} \varphi| \, dx \le \sup_{x \in K} |\partial^{\alpha} \varphi(x)| \int_{K} |f| \, dx \tag{1.0.6}$$

dove viene fissato K compatto e tale che $K \subset \Omega$, supp $\varphi \subseteq K$ così da avere l'integrale di f indipendente dal supporto di φ e, quindi, costante. Questo fa pensare di dotare $C^{\infty}(\Omega)$ di una topologia¹ τ si definisce $\mathcal{E}(\Omega) := (C^{\infty}(\Omega), \tau)$. Allora:

 $^{^1}$ L'obiettivo per C^{∞} e poi per C^{∞}_0 è quello di definire delle topologie rispetto alle quali gli operatori differenziali con i quali si avrà a che fare risulteranno essere continui.

• una successione $\{\varphi_j\}_{j\in\mathbb{N}}\subset C^\infty(\Omega)$ converge in $\mathcal{E}(\Omega)$ a $\varphi\in C^\infty(\Omega)$ se e soltanto se:

$$\forall K \subset \Omega \text{ compatto }, \forall \alpha \in \mathbb{N}_0^n, \ \lim_{j \to \infty} \sup_{x \in K} \left| \partial^{\alpha} (\varphi_j - \varphi)(x) \right| = 0 \tag{1.0.7}$$

• $\mathcal{E}(\Omega)$ è un localmente convesso, metrizzabile e completo spazio vettoriale topologico su \mathbb{C} .

Si vuole arrivare allo stesso risultato per $C_0^{\infty}(\Omega)$; si potrebbe pensare di usare la topologia indotta da $\mathcal{E}(\Omega)$ in $C_0^{\infty}(\Omega)$, ma questa avrebbe il difetto che non assicura la compattezza di funzioni risultanti da serie di funzioni compatte.

La definizione di $\mathcal{D}(\Omega)$ si ottiene come segue: si prende $\mathcal{D}_K(\Omega)$ come lo spazio di funzioni $C^\infty(\Omega)$ a supporto in K con la topologia indotta da $\mathcal{E}(\Omega)$; si considera in $C_0^\infty(\Omega)$ la topologia indotta limite dagli spazi $\{\mathcal{D}_K(\Omega)\}$, $K \subset \Omega$ compatto e il risultante spazio vettoriale topologico è proprio $\mathcal{D}(\Omega)$. Presenta le seguenti caratteristiche:

- $\mathcal{D}(\Omega)$ è uno spazio vettoriale topologico, localmente convesso e completo, su \mathbb{C} ;
- una successione $\{\varphi_j\}_{j\in\mathbb{N}}\subset C_0^\infty(\Omega)$ converge in $\mathcal{D}(\Omega)$ a $\varphi\in C_0^\infty(\Omega)$ se e soltanto se sono verificate le due seguenti condizioni:
 - esiste K ⊂ Ω compatto tale che supp φ_i ⊆ K, $\forall j \in \mathbb{N}$ e supp ⊆ K;
 - ∀α ∈ \mathbb{N}_0^n si ha:

$$\lim_{j \to \infty} \sup_{x \in K} \left| \partial^{\alpha} (\varphi_j - \varphi)(x) \right| = 0$$
 (1.0.8)

La topologia definita su $\mathcal{D}(\Omega)$ è talmente più raffinata di quella su $\mathcal{E}(\Omega)$ che se anche la funzione limite di una successione di funzioni lisce a supporto compatto appartiene a $\mathcal{D}(\Omega)$, può ancora non avere limite nel senso di $\mathcal{D}(\Omega)$.

2 Distribuzioni

2.1 Caratterizzazione

Riprendendo la mappa definita in 1.0.5, si dà la seguente definizione.

Definizione 2.1 (Definizione di distribuzione)

La mappa $u:\mathcal{D}(\Omega)\to\mathbb{C}$ è chiamata distribuzione su Ω se è lineare e continua.

Ogni funzionale lineare e continuo è, in generale, sequenzialmente continuo, ma non vale il contrario. Tuttavia, per un funzionale lineare su $\mathcal{D}(\Omega)$, continuità e continuità sequenziale si equivalgono, quindi: $sia\ u: \mathcal{D}(\Omega) \to \mathbb{C}$ lineare; allora u è una distribuzione se e soltanto se $\forall \left\{\varphi_j\right\}_{j\in\mathbb{N}} \subset C_0^\infty(\Omega)\ t.c.\ \varphi_j \to \varphi \in C_0^\infty(\Omega)\ in\ \mathcal{D}(\Omega),\ vale\ \lim_{j\to\infty}\langle u,\varphi_j\rangle = \langle u,\varphi\rangle.$

Proposizione 2.1

Sia $u: \mathcal{D}(\Omega) \to \mathbb{C}$ lineare; allora u è una distribuzione se e soltanto se $\forall K \subset \Omega$ compatto, esiste $k \in \mathbb{N}_0$ e $C \in (0, \infty)$ tale che:

$$|\langle u, \varphi \rangle| \le C \sup_{\substack{x \in K \\ |\alpha| \le k}} |\partial^{\alpha} \varphi(x)|, \ \forall \varphi \in C_{0}^{\infty}(\Omega), \ \operatorname{supp} \varphi \subseteq K$$
 (2.1.1)

Dimostrazione. Si dimostra (\Leftarrow), assumendo che $\forall K \subset \Omega$ compatto, esistano k e C che soddisfano la relazione riportata sopra. Per mostrare che u è una distribuzione, si prende $\varphi_j \to 0$ in $\mathcal{D}(\Omega)$; allora esiste un compatto $K \subseteq \Omega$ t.c. $\operatorname{supp}(\varphi_j) \subseteq K, \ \forall j \in \mathbb{N}$ e $\partial^\alpha \varphi_j \to 0$ uniformemente in $K, \ \forall \alpha \in \mathbb{N}_0^n$ per definizione di convergenza in \mathcal{D} . Per l'assunzione di partenza, ci sono k, C per questo K che soddisfano

$$\left| \left\langle u, \varphi_j \right\rangle \right| \le C \sup_{\substack{x \in K \\ |\alpha| \le k}} \left| \partial^{\alpha} \varphi_j(x) \right| \to 0 \tag{2.1.2}$$