

Bloque 5 Análisis de circuitos en régimen transitorio

Teoría de Circuitos

5.1 Análisis de circuitos de primer orden en régimen transitorio

Régimen transitorio de los circuitos eléctricos

- En los capítulos anteriores se han analizado los circuitos en RÉGIMEN PERMANENTE: ESTADO DE EQUILIBRIO impuesto por los parámetros de la red.
- Ante cualquier maniobra (conmutación / encendido / apagado / fallos / variaciones de la carga...), antes de alcanzar el equilibrio: RÉGIMEN TRANSITORIO
- Las variables del circuito están sometidas a factores EXPONENCIALES DECRECIENTES cuyos valores dependen de los parámetros del circuito
- De corta duración (del orden de milisegundos) pero pueden ocasionar problemas en los circuitos y máquinas eléctricas.

Régimen transitorio de los circuitos eléctricos

- Al aplicar los lemas de Kirchhoff a los circuitos con bobinas y condensadores (elementos dinámicos) resultan ecuaciones diferenciales que deben resolver para conocer u, i.
- Estudiaremos únicamente circuitos de primer orden (=con un solo elemento dinámico)

$$a \cdot \frac{df(t)}{dt} + b \cdot f(t) = g(t)$$

Circuito RL serie

$$u = u_R + u_L \begin{cases} u_R = Ri \\ u_L = L \frac{di}{dt} \end{cases}$$

$$u = Ri + L\frac{di}{dt}$$

 $u = Ri + L \frac{di}{dt}$ Ecuación diferencial de primer orden

Solución de la ecuación homogénea: Respuesta natural del sistema Solución es la que hemos Solución particular: Respuesta forzada estudiado hasta el momento

Solución de la ecuación homogénea

$$Ri + L\frac{di}{dt} = 0$$
 $\int \frac{di}{i} = \int -\frac{R}{L}dt$ $\ln i = -\frac{R}{L}t + K$

$$|i_h = Ae^{-\frac{R}{L}t}|$$
 Exponencial decreciente con constante de $\tau = \frac{L}{R}$

La respuesta natural del sistema está superpuesta a la forzada durante un cierto tiempo

Función exponencial decreciente

- f(0+)=K
- f(inf)=0
- •Para t= τ f=0,368f(0) (decae un 63,2%)
- Para $t=5\tau$ fin del transitorio (<1% del valor inicial)
- •Cuanto menor sea τ, más rápido pasa el transitorio

τ es el tiempo que tarda la función f(t) en decaer un 63,2%

 Solución particular: es la respuesta del sistema a una excitación

$$i_p = i_\infty(t)$$

Solución de la ecuación diferencial: i(t)=i_h+i_p

$$i(t) = Ae^{-t/\tau} + i_{\infty}(t)$$

Para hallar la constante A hay que imponer una condición de contorno

 $i(t_0^+) = i(t_0^-)$ La corriente no puede variar bruscamente en el momento de cerrar el interruptor

$$i(t) = Ae^{-t/\tau} + i_{\infty}(t)$$

Aplicando la condición de contorno:

$$i(t_0^+) = Ae^{-t_0/\tau} + i_{\infty}(t_0^+)$$
 $A = (i(t_0^+) - i_{\infty}(t_0^+))e^{t_0/\tau}$

$$i(t) = \left(i(t_0^+) - i_{\infty}(t_0^+)\right)e^{-(t-t_0)/\tau} + i_{\infty}(t)$$

 Cualquier circuito de primer orden, por complejo que sea se puede sustituir por un circuito como el analizado mediante el cálculo de su equivalente Thevenin

$$\tau = \frac{L}{R_{th}}$$

$$v_{th}$$

Simulación conexión de una bobina en continua

Simulación conexión de una bobina en continua

Al disminuir la resistencia aumenta la constante de tiempo

 $\tau = 0.02s$

Carga y descarga de una bobina

comporta como una fuente de

corriente)

Circuito RC paralelo

$$i_{N} = i_{R} + i_{C} \quad \begin{cases} i_{R} = \frac{u}{R_{th}} \\ i_{C} = C \frac{du}{dt} \end{cases}$$

$$i_{N} = \frac{u}{R_{th}} + C\frac{du}{dt}$$

$$u(t) = u_h + u_p$$

Solución de la ecuación homogénea

$$C\frac{du}{dt} + \frac{u}{R_{th}} = 0 \qquad \int \frac{du}{u} = \int -\frac{1}{R_{th}C} dt \qquad \left| u_h = Ae^{-\frac{t}{CR_{th}}} \right| \qquad \boxed{\tau = CR_{th}}$$

$$u_h = Ae^{-\frac{t}{CR_{th}}}$$

$$\tau = CR_{th}$$

Solución particular

$$u_p = u_\infty(t)$$

Solución de la ecuación diferencial: i(t)=i_h+i_p

$$u(t) = Ae^{-t/\tau} + u_{\infty}(t)$$

condición de contorno

 $u(t_0^+) = u(t_0^-)$ La tensión en un condensador no puede variar bruscamente

$$u(t) = Ae^{-t/\tau} + u_{\infty}(t)$$

Aplicando la condición de contorno:

$$u(t_0^+) = Ae^{-t_0/\tau} + u_{\infty}(t_0^+) \qquad A = \left(u(t_0^+) - u_{\infty}(t_0^+)\right)e^{t_0/\tau}$$

$$|u(t) = (u(t_0^+) - u_{\infty}(t_0^+))e^{-(t-t_0)/\tau} + u_{\infty}(t) |$$

$$\tau = CR_{th}$$

Carga de un condensador

En t=0s se cierra el interruptor y en t=0.2s se vuelve a abrir

Carga de un condensador

Aunque un condensador en continua se comporta como un circuito abierto durante el transitorio circula corriente

Carga de un condensador

Aunque un condensador en continua se comporta como un circuito abierto durante el transitorio circula corriente

Carga y descarga de un condensador

Al abrir el interruptor el condensador se descarga por la resistencia de 5 Ω

Resolución sistemática de circuitos en régimen transitorio

 Dibujar el circuito para t<t₀ y calcular el valor de la corriente en régimen permanente en la bobina o de la tensión en régimen permanente en el condensador.

$$i(t_0^+) = i(t_0^-)$$

 $u(t_0^+) = u(t_0^-)$

2. Dibujar el circuito para $t>t_0$ y calcular la Rth vista en bornes de la bobina o del condensador. Calcular τ

$$\tau_{RL} = \frac{L}{R_{th}} \qquad \tau_{RC} = CR_{th}$$

Resolución sistemática de circuitos en régimen transitorio

- 3. Calcular la respuesta en régimen permanente y particularizar para t=t₀
- 4. Escribir la solución completa

$$i(t) = \left(i(t_0^+) - i_{\infty}(t_0^+)\right)e^{-(t-t_0)/\tau} + i_{\infty}(t)$$

$$u(t) = \left(u(t_0^+) - u_{\infty}(t_0^+)\right)e^{-(t-t_0)/\tau} + u_{\infty}(t)$$

5. Calcular otras variables de interés del circuito