Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №1.3.1

по курсу общей физики на тему: «Определение модуля Юнга на основе исследования деформации растяжения и изгиба»

Работу выполнил: Третьяков Александр (группа Б02-206)

Долгопрудный 4 декабря 2022 г.

1 Аннотация

Цель работы: экспериментально получить зависимость между напряжением и деформацией (закон Гука) для двух простейших напряженных состояний упругих тел: одноосного растяжения и чистого изгиба; по результатам измерений вычислить модуль Юнга.

В работе используется: прибор лермантова, проволока из исследуемого материала, зрительная трубка со шкалой, набор грузов, микрометр, рулетка; во второй части - стойка для изгибания балки, индикатор для измерения величины прогиба, набор исследуемых стержней, грузы, линейка, штангенциркуль.

2 Ход работы

I Определение модуля Юнга по измерениям удлинения проволоки

2.1 Методика измерений

Для определения модуля Юнга используется прибор Лермантова, схема которого предствалена на рисунке ниже. В ходе эксперимента исследуется растяжение проволочки " Π ".

Рис. 1: схема установки для определения модуля Юнга по измерениям растяжения проволоки

2.1.1 Теоретичексая справка

1. Направляем зрительную трубу на зеркальце так, чтобы мы четко видели шкалу, тогда свет от шкалы будет падать примерно перпендикулярно шкале на зеркало, поэтому

$$\Delta l = \frac{\Delta nr}{2h}$$

$$\sigma_{\Delta l} = \Delta l \sqrt{\left(\frac{\sigma_n}{n}\right)^2 + \left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_h}{h}\right)^2}$$

где r - длина рычага, разница показаний шкалы - Δn , расстояние от шкалы до проволоки - h.

2. Коэффициент жесткости считывается с графика зависимости нагрузки (P) от удлинения проволоки (Δl) , т.е.:

$$k = \frac{P}{\Delta l}$$

3. Найдем модуль Юнга по формуле

$$E = \frac{k * l_0}{S}$$

$$\sigma_E = \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_S}{S}\right)^2 + \left(\frac{\sigma_{l_0}}{l_0}\right)^2}$$

2.1.2 Используемое оборудование

При помощи линейки измеряем длину проволочки (l) и расстояние от шкалы до проволоки (h) - погрешность измерений:

$$\sigma_l = \sigma_h = c = 0.1$$
cm

Значение отклонения по шкале (n) измеряется с погрешностью в цену деления шкалы:

$$\sigma_n = c = 0.1$$
cm

Все остальные значения измерены лаборантом.

2.1.3 Результаты измерений

- 1. Диаметр проволоки: $d = (0.73 \pm 0.01)$ мм.
- 2. Рассчитаем площадь поперечного сечения проволоки:

$$S = \frac{\pi(\overline{d})^2}{4} = 0.419 \text{ cm}^2$$

$$\sigma_S = S\sqrt{2\left(\frac{\sigma_d}{d}\right)^2} = 0,005 \text{ cm}^2$$

 $S = (0,419 \pm 0,005) \text{ cm}^2$

- 3. Исходя из того, что $\sigma_{\rm предел}=900~{\rm H/mm^2}$ получаем, что предельный вес, который можно повесить $P_{\rm предел}=0.3\sigma_{\rm предел}S\approx 113.13H$.
- 4. Длина моста r = 13мм
- 5. Измеряем длинну проволоки (l_0) и расстояние от шкалы до проволоки(h) $l_0=(176,3\pm0,1)$ см $h=(138,8\pm0,1)$ см

m	Р, Н	n1, см	n1', см	n2, см	n2', см	пср, см	Δ n, cm	$\Delta l, cm$
0	0	12,9	13,0	13,0	13,1	13,0	0	0
246,1	2,4	14,4	14,4	14,5	14,4	14,425	1,425	0,0067
245,5	4,8	15,6	15,5	15,6	15,6	15,575	2,575	0,0121
245,7	7,2	16,9	16,7	16,6	16,6	16,700	3,700	0,0173
245,6	9,6	17,9	17,9	17,8	17,9	17,875	4,875	0,0228
245,8	12,0	19,0	19,1	19,1	19,1	19,075	6,075	0,0284
245,7	14,5	20,2	20,2	20,3	20,2	20,225	7,225	0,0338
245,5	16,9	21,4	21,4	21,6	21,5	21,475	8,475	0,0397
246,1	19,3	22,4	22,6	22,7	22,4	22,525	9,525	0,0446
245,6	21,7	23,8	23,8	23,9	23,9	23,850	10,850	0,0508

Таблица 1: Зависимость удлинения проволоки от нагрузки

Рис. 2: График зависимости нагрузки от удлинения проволочки

	Значение	σ	ε
k	$4,26*10^4 \text{ H/m}$	$85,\!22~{ m H/m}$	0,016
Е	$1,79 * 10^{10} \Pi a$	$2.3 * 10^8 \Pi\text{a}$	0,013

Таблица 2: Значения k и Е

3 Вывод

Модуль Юнга исследуемой проволоки - $E=(17.9\pm0.23)$ ГПа. Табличное значение Модуля Юнга свинца - (16.2 - 17) ГПа.