Sample Mathematica Problems

Andy Rothstein arothstein@princeton.edu

January 2022

Contents

1	Tip	s for Debugging	2
2	Algebra and Calculus		
	2.1	Basic Derivative	2
	2.2	Finding a Maximum	2
	2.3	Definite Integral	3
	2.4	Solve for x	3
	2.5	Indefinite Integral	3
	2.6	Solve for normalizing constant	4
	2.7	Solve using Assumptions	4
	2.8	Solve complex integral problem	4
3	Taylor Series		
	3.1	Basic Taylor Series	5
	3.2	Fun Plotting	5
4	Differential Equations		
	4.1	Diff Eq with Boundary Conditions	5
	4.2	Solve for General Solution	6
	4.3	Solve and Plot Differential Equation	6
5	Linear Algebra		
	5.1	Basic Eigenvalue and Eigenvector Problem	7
	5.2	Finding Eigenvalues and Eigenvectors	7
	5.3	Matrix Multiplication and Powers	8
	5.4	Solving System of Equations	8
	5.5	Matrix Exponential	8
6	Cool Plotting		
	6.1	Polar Coordinate Plot	9
	6.2	3D Spherical Plot	10

1 Tips for Debugging

Note: most of these examples are from past sets I found, so you can't tell me you'll never use this stuff (although I did make some up when I got lazy of looking for examples). Feel free to email me if you get stuck on some code syntax! I also found and wrote this all up real quick, so if you get something that doesn't agree I could definitely be wrong.

- 1. Make sure you clear your variables!
- 2. Check for any missing spaces between variables
- 3. When defining functions, don't forget the _ after the variable. It has to be $x(t_{-}) = \text{not } x(t) =$
- 4. Check parenthesis and brackets and make sure you're using them in the right places (although the latest Mathematica update looks like it generally does this for you)

2 Algebra and Calculus

2.1 Basic Derivative

Find the derivative of the following and evaluate it at x = 5:

$$\frac{x^3 e^x}{\log x \tan x}$$

Answer:

$$-\frac{e^x x^2 \csc(x) (-((x+3)\log(x)) + x \log(x) \cot(x) + 1)}{\log^2(x)}$$

$$-209.793$$

2.2 Finding a Maximum

Defining the functions

$$A(f) = \frac{1}{1 - \left(\frac{f}{f_{pend}}\right)^2}$$
$$S(f) = \frac{10^{-6}}{f^2}$$

For both $f_{pend} = \frac{1}{2\pi}$ and $f_{pend} = \frac{\sqrt{9.8}}{2\pi}$, find the local maximum value of the following for $f > 10^{-2}$:

$$ASD(f) = A(f)^2 S(f)$$

Answer:

$$f_{max} = \frac{1}{2\pi\sqrt{3}}$$

$$f_{max} = 0.287$$

2.3 Definite Integral

Evaluate the integral:

$$\int_{-\infty}^{\infty} x^6 e^{-x^2} \cos(x) \mathrm{d}x$$

Answer:

$$\int_{-\infty}^{\infty} x^6 e^{-x^2} \cos(x) dx = -\frac{31\sqrt{\pi}}{64\sqrt[4]{e}}$$

2.4 Solve for x

Solve for x:

$$(ax + xe^{5t} + 2)(x + 2) = \tan(2t)$$

Answer:

$$x = -\frac{\pm\sqrt{(a+e^{5t}-1)^2 + (a+e^{5t})\tan(2t)} + a + e^{5t} + 1}{a+e^{5t}}$$

2.5 Indefinite Integral

Solve the indefinite integral:

$$\int x^2 \cos(x) e^x \mathrm{d}x$$

Answer:

$$\int x^2 \cos(x) e^x dx = \frac{1}{2} e^x (x - 1)((x - 1)\sin(x) + (x + 1)\cos(x))$$

2.6 Solve for normalizing constant

Assume a > 0, find A such that

$$1 = A^2 \int_0^a \left(\sin^2 \left(\frac{\pi x}{a} \right) + \sin^2 \left(\frac{2\pi x}{a} \right) \right) dx$$

Answer:

$$A = \pm \frac{1}{\sqrt{a}}$$

2.7 Solve using Assumptions

Knowing that a > 0 and $n \in \mathbb{Z}$, simplify this as much as possible:

$$\frac{2}{a} \int_0^a \left(\sin\left(\frac{n\pi x}{a}\right) \left(\frac{1}{\sqrt{a}}\right) \sin\left(\frac{\pi x}{a}\right) \sin\left(\frac{2\pi x}{a}\right) \right) \mathrm{d}x$$

My best simplification:

$$-\frac{8((-1)^n+1)n}{\pi\sqrt{a}(n^4-10n^2+9)}$$

Hint: Use our assumptions on a and n.

2.8 Solve complex integral problem

Take this wave function:

$$\psi(x) = \sqrt[1/4]{\frac{2a}{\pi}} e^{-\frac{amx^2}{1+2i\hbar at}} \sqrt{\frac{m}{1+2i\hbar at}}$$

You can assume a, m, \hbar, t are real and > 0. Find:

$$\int_{-\infty}^{\infty} \psi^*(x)\psi''(x)\mathrm{d}x$$

where $\psi^*(x)$ is the complex conjugate of $\psi(x)$ and $\psi''(x) = \frac{d^2\psi(x)}{dx^2}$.

Answer:

$$\int_{-\infty}^{\infty} \psi^*(x)\psi''(x)dx = -am^{3/2}$$

Hints: This one is a bit difficult and I found it easiest to go one step at a time, copy paste, and adjust things as needed. Here is how I suggest to approach this:

1. Find $\psi^*(x)\psi''(x)$. I had to manually set $\sqrt{|a|} = \sqrt{a}$ and also

$$\left(\frac{1}{\sqrt{1 + \frac{2ia\hbar t}{m}}}\right)^* = \frac{1}{\sqrt{1 - \frac{2ia\hbar t}{m}}}$$

- 2. Integrate the expression. I got a conditional expression that has the conditions satisfied.
- 3. Simplify again using our assumptions

3 Taylor Series

3.1 Basic Taylor Series

Take the functions:

$$x(t) = e^{-\frac{t}{2}}$$
$$y(t) = \log(2t)$$

Find the 2nd order Taylor Series around $t = \frac{1}{2}$ of

$$\frac{x(t)}{y(t)}$$

Answer:

$$\boxed{\frac{1}{2\sqrt[4]{e}\left(t-\frac{1}{2}\right)} + \frac{1}{4\sqrt[4]{e}} - \frac{17\left(t-\frac{1}{2}\right)}{48\sqrt[4]{e}} + \frac{29\left(t-\frac{1}{2}\right)^2}{96\sqrt[4]{e}} + O\left(\left(t-\frac{1}{2}\right)^3\right)}}$$

3.2 Fun Plotting

Let's see why $\sin x = x$ and how Taylor Series' converge. Plot $\sin x$ as well as the Taylor Series of $\sin x$ around x = 0 with an increasing number of terms. The plot is in Fig. 1.

4 Differential Equations

4.1 Diff Eq with Boundary Conditions

Solve:

$$t^{2}y''(t) - 2y(t) = 3t^{2} - 1$$
$$y'(1) = 0$$
$$y(1) = 3$$

Figure 1: Taylor Series of $\sin x$ plot.

Answer:

$$y(t) = \frac{4 + t + t^3 + 2t^3 \log(t)}{2t}$$

4.2 Solve for General Solution

Find the general solution:

$$y'''(x) - 3y''(x) + 3y'(x) - y(x) = 0$$

Answer:

$$y(x) = c_3 e^x x^2 + c_2 e^x x + c_1 e^x$$

4.3 Solve and Plot Differential Equation

Solve the following differential equation and then plot for a couple of the constant.

$$y'(x) = 1 - y(x)^2$$

Answer and plot:

$$y(x) = \frac{e^{2x} - e^{2c}}{e^{2x} + e^{2c}}$$

Plot in Fig. 2.

Figure 2: Solution to 3.2 for a few c values.

5 Linear Algebra

5.1 Basic Eigenvalue and Eigenvector Problem

Find the eigenvalues and eigenvectors of A:

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Answer:

$$\lambda_{1,2,3} = 1, 2, 3$$
$$\vec{u}_1 = (-1, 1, 0)$$
$$\vec{u}_2 = (0, 0, 1)$$
$$\vec{u}_3 = (1, 1, 0)$$

5.2 Finding Eigenvalues and Eigenvectors

Find the eigenvectors and eigenvalues of

$$\begin{pmatrix} \cos(\theta) & e^{-i\phi}\sin(\theta) \\ e^{i\phi}\sin(\theta) & -\cos(\theta) \end{pmatrix}$$

Answer:

$$\lambda_1 = 1 \qquad \lambda_2 = -1$$

$$\vec{u}_1 = \begin{pmatrix} -e^{-i\phi} \tan\left(\frac{\theta}{2}\right) \\ 1 \end{pmatrix} \qquad \vec{u}_2 = \begin{pmatrix} e^{-i\phi} \left(\cot(\theta) + \csc(\theta)\right) \\ 1 \end{pmatrix}$$

5.3 Matrix Multiplication and Powers

This problem I made up, but it has all the useful matrix manipulations you'll need. Take this matrix A:

$$A = \left(\begin{array}{ccc} 1 & 2 & 1\\ 3 & -4 & 2\\ 5 & 1 & 1 \end{array}\right)$$

 A^{\top} is the transpose of A. Find:

$$A^2A^{\top}A^{-1}$$

Answer:

$$A^{2}A^{\top}A^{-1} = \begin{pmatrix} \frac{143477}{961} & -\frac{163787}{961} & \frac{183539}{961} \\ -\frac{73682}{31} & -\frac{15835}{961} & \frac{61301}{31} \\ -\frac{1200445}{961} & -\frac{503218}{961} & \frac{1378561}{961} \end{pmatrix}$$

This is a lot grosser than I expected, but hopefully you get the idea.

5.4 Solving System of Equations

You can also use matrices in Solve[] to find values in the matrices. Let x+y+z=1, find x,y,z:

$$\begin{pmatrix} \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{9} \\ \frac{1}{4} & \frac{1}{3} & \frac{5}{9} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Answer:

$$x = \frac{4}{13}$$
$$y = \frac{27}{91}$$
$$z = \frac{36}{91}$$

Hint: use the other equation that x + y + z = 1

5.5 Matrix Exponential

Find e^{At} where A is given by

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Answer:

$$e^{At} = \begin{pmatrix} 1 & t & \frac{t^2}{2} \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}$$

6 Cool Plotting

I will let you figure these out for yourself, but they make really cool looking plots!

6.1 Polar Coordinate Plot

Use PolarPlot[] to plot the following functions from $\phi \in [0, 2\pi]$ and θ ranging in 15° steps (ie $\theta = 15^{\circ}, \theta = 30^{\circ},$ etc):

$$r_1(\theta, \phi) = \frac{1}{2} (3 + \cos(2\theta)) \cos(2\phi)$$
$$r_2(\theta, \phi) = -4 \cos \theta \sin \phi$$

Plots are given in Figs. 3 and 4.

Figure 3: First polar plot

Figure 4: Second polar plot

6.2 3D Spherical Plot

Now take the same 2 functions from before and instead of picking specific θ , we will plot in 3D for continuous $\theta \in [0,\pi]$. Use the function SphericalPlot3D[]. This gives us the following plots Figs. 5 and 6. Note: these are fun and you can drag around the perspective.

Figure 5: Spherical plot for r_1

Figure 6: Spherical plot for r_2