NOMBRE Y APELLIDO:

CARRERA:

Segundo Parcial

Justificar claramente todas las respuestas.

PARTE PRÁCTICA

Ejercicio 1. Sea $V=M^{2\times 2}(\mathbb{R})$ el espacio de las matrices 2×2 con coeficientes en \mathbb{R} , y sea

$$\beta = \{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \}$$

una base ordenada de V.

(a) Dar la matriz de cambio de base de β a C, donde

$$C = \{E_{11}, E_{12}, E_{21}, E_{22}\}$$

es la base canónica de $M^{2\times 2}(\mathbb{R})$.

- (b) Dar las coordenandas de una matriz $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ en la base β .
- (c) Determinar la matriz D cuyas coordenadas son $[D]_{\beta} = [1, 2, 3, 4]_{\beta}$.

Ejercicio 2. Sea P_2 el espacio de los polinomios de grado menor o igual que 2 con coeficientes reales, y sea $T: P_2 \to M^{2\times 2}(\mathbb{R})$ definida por

$$T(a+bx+cx^2)=\left[\begin{smallmatrix}a-b&c\\c&b-a\end{smallmatrix}\right]$$

- (a) Describir el núcleo de T mediante ecuaciones y dar una base.
- (b) Describir la imagen de T mediante ecuaciones y dar una base.
- (c) Sean

$$\beta = \{1, x - x^2, x + x^2\}, \quad \beta' = \{\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\}$$

bases ordenandas de P_2 y $M^{2\times 2}(\mathbb{R})$ respectivamente. Dar la matriz de T con respecto a β y β' .

PARTE TEÓRICA

Ejercicio 1. Decidir si las siguientes afirmaciones son verdaderas o falsas:

- (i) Si S es un conjunto linealmente dependiente y \widetilde{S} es un subconjunto de S entonces \widetilde{S} es linealmente dependiente.
- (ii) Si V es espacio vectorial sobre $\mathbb K$ de dimensión n entonces V es isomorfo a $\mathbb K^n$.

(iii) Existe una transformación lineal $T: \mathbb{R}^4 \to \mathbb{R}^4$ tal que dim $\operatorname{Im}(T) = 3$ y dim $\operatorname{Nu}(T) = 3$.

Ejercicio 2. Sea V un espacio vectorial sobre un cuerpo \mathbb{K} , de dimensión n. Demostrar que si $\beta = \{\alpha_1, \ldots, \alpha_n\}$ es un conjunto linealmente independiente entonces β es una base.

Parte/Ejercicio	1	2	Total
Práctico			
Teórico			da komaten i

os la base canónico de M^{dos (}(R).

Das las escademendas de una matria e L'obsessivar la materia D curva coordes