Costruzione omotopica della coomologia Enunciato

Teorema

Siano X un CW-complesso, G un gruppo abeliano, $n \geq 0$ un intero. Allora esiste una bijezione

$$T: \langle X, K(G, n) \rangle \xrightarrow{\simeq} \widetilde{H}^n(X; G)$$

naturale in X.

Costruzione omotopica della coomologia Enunciato

Teorema

Siano X un CW-complesso, G un gruppo abeliano, $n \geq 0$ un intero. Allora esiste una bijezione

$$T: \overline{\langle X, K(G, n) \rangle} \xrightarrow{\simeq} \widetilde{H}^n(X; G)$$

naturale in X.

Costruzione omotopica della coomologia Enunciato

Teorema

Siano X un CW-complesso, G un gruppo abeliano, $n \geq 0$ un intero. Allora esiste una bijezione

$$T: \langle X, K(G, n) \rangle \xrightarrow{\simeq} \widetilde{H}^n(X; G)$$

naturale in X.

Esiste una struttura canonica di gruppo abeliano su $\langle X, K(G, n) \rangle$ che rende T un isomorfismo di gruppi.

Teorema

Siano X un CW-complesso, G un gruppo abeliano, $n \geq 0$ un intero. Allora esiste una biiezione

$$T: \langle X, K(G, n) \rangle \xrightarrow{\simeq} \widetilde{H}^n(X; G)$$

naturale in X.

- ▶ Esiste una struttura canonica di gruppo abeliano su $\langle X, K(G, n) \rangle$ che rende T un isomorfismo di gruppi.
- T è della forma

$$T(f) = f^*(\alpha)$$

dove α è la "classe fondamentale" di $\widetilde{H}^n(K(G, n); G)$.

1. Struttura di gruppo su $\langle X, K(G, n) \rangle \Longrightarrow$ definizione di Ω -spettro.

Costruzione omotopica della coomologia Strategia dimostrativa

- 1. Struttura di gruppo su $\langle X, K(G, n) \rangle \Longrightarrow$ definizione di Ω -spettro.
- 2. Per ogni Ω -spettro $\{K_n\}$, la famiglia di funtori $h^n = \langle -, K_n \rangle$ è una teoria coomologica ridotta sulla categoria dei CW-complessi puntati.

- 1. Struttura di gruppo su $\langle X, K(G, n) \rangle \Longrightarrow$ definizione di Ω -spettro.
- 2. Per ogni Ω -spettro $\{K_n\}$, la famiglia di funtori $h^n = \langle -, K_n \rangle$ è una teoria coomologica ridotta sulla categoria dei CW-complessi puntati.
- 3. Se una teoria coomologica ridotta h^* soddisfa $h^n(S^0)=0$ per $n\neq 0$, allora esistono isomorfismi naturali $h^n(X)\simeq \widetilde{H}^n(X;h^0(S^0))$.

Ω -spettri e coomologia Definizione

Definizione

Un Ω -spettro è una famiglia di CW-complessi $\{K_n\}_{n\geq 1}$ dotata di equivalenze omotopiche deboli

$$\theta_n \colon K_n \longrightarrow \Omega K_{n+1}.$$

Definizione

Un Ω -spettro è una famiglia di CW-complessi $\{K_n\}_{n\geq 1}$ dotata di equivalenze omotopiche deboli

$$\theta_n \colon K_n \longrightarrow \Omega K_{n+1}$$
.

▶ È possibile estendere la famiglia anche a indici $n \le 0$: è sufficiente considerare come K_{n-1} un'approssimazione CW di ΩK_n .

Definizione

Un Ω -spettro è una famiglia di CW-complessi $\{K_n\}_{n\geq 1}$ dotata di equivalenze omotopiche deboli

$$\theta_n \colon K_n \longrightarrow \Omega K_{n+1}$$
.

▶ È possibile estendere la famiglia anche a indici $n \le 0$: è sufficiente considerare come K_{n-1} un'approssimazione CW di ΩK_n .

Proposizione

Siano $f\colon Y\to Z$ un'equivalenza omotopica debole, X un CW-complesso. Allora la composizione

$$f \circ -: \langle X, Y \rangle \xrightarrow{\simeq} \langle X, Z \rangle$$

è una bijezione.

Ω -spettri e coomologia Struttura di gruppo

D'ora in poi, tutti gli spazi di cui parleremo saranno CW-complessi puntati.

D'ora in poi, tutti gli spazi di cui parleremo saranno CW-complessi puntati.

Possiamo dare a $\langle X, K_n \rangle$ una struttura di gruppo imponendo che

$$\theta_n \circ -: \langle X, K_n \rangle \xrightarrow{\simeq} \langle X, \Omega K_{n+1} \rangle$$

sia un isomorfismo di gruppi.

D'ora in poi, tutti gli spazi di cui parleremo saranno CW-complessi puntati.

Possiamo dare a $\langle X, K_n \rangle$ una struttura di gruppo imponendo che

$$\theta_n \circ -: \langle X, K_n \rangle \stackrel{\simeq}{\longrightarrow} \langle X, \Omega K_{n+1} \rangle$$

sia un isomorfismo di gruppi.

▶ In questo modo, $\langle X, K_n \rangle$ risulta essere un gruppo abeliano:

$$\begin{split} \langle \Sigma X, K_{n+1} \rangle & \xrightarrow{\quad \theta_{n+1} \circ - \quad} \langle \Sigma X, \Omega K_{n+2} \rangle \\ & \downarrow \simeq \qquad \qquad \downarrow \simeq \\ \langle X, K_n \rangle & \xrightarrow{\quad \varpi \quad} \langle X, \Omega K_{n+1} \rangle & \xrightarrow{\quad \Omega \theta_{n+1} \circ - \quad} \langle X, \Omega^2 K_{n+2} \rangle \,. \end{split}$$

D'ora in poi, tutti gli spazi di cui parleremo saranno CW-complessi puntati.

Possiamo dare a $\langle X, K_n \rangle$ una struttura di gruppo imponendo che

$$\theta_n \circ -: \langle X, K_n \rangle \stackrel{\simeq}{\longrightarrow} \langle X, \Omega K_{n+1} \rangle$$

sia un isomorfismo di gruppi.

▶ In questo modo, $\langle X, K_n \rangle$ risulta essere un gruppo abeliano:

$$\begin{split} \langle \Sigma X, K_{n+1} \rangle & \xrightarrow{-\theta_{n+1} \circ -} \langle \Sigma X, \Omega K_{n+2} \rangle \\ & & \downarrow \simeq & \downarrow \simeq \\ \langle X, K_n \rangle & \xrightarrow{-\theta_n \circ -} \langle X, \Omega K_{n+1} \rangle & \xrightarrow{-\Omega \theta_{n+1} \circ -} \langle X, \Omega^2 K_{n+2} \rangle \,. \end{split}$$

▶ Di conseguenza, per ogni $n \in \mathbb{Z}$ otteniamo il funtore

$$\langle -, K_n \rangle \colon \mathbf{CW}_{\bullet} \longrightarrow \mathbf{Ab}^{\mathsf{op}}.$$

Teorie coomologiche

Teorema

Sia $\{K_n\}_{n\in\mathbb{Z}}$ un Ω -spettro. Allora i funtori $h^n=\langle -,K_n\rangle$ definiscono una teoria coomologica ridotta sulla categoria \mathbf{CW}_{\bullet} .

Teorie coomologiche

Teorema

Sia $\{K_n\}_{n\in\mathbb{Z}}$ un Ω -spettro. Allora i funtori $h^n=\langle -,K_n\rangle$ definiscono una teoria coomologica ridotta sulla categoria \mathbf{CW}_{ullet} .

Richiamo

Una teoria coomologica ridotta sulla categoria CW_{ullet} è una famiglia di funtori

$$h^n \colon \mathbf{CW}_{\bullet} \longrightarrow \mathbf{Ab}^{\mathrm{op}}, \qquad \qquad n \in \mathbb{Z}$$

che soddisfa i seguenti assiomi.

Teorie coomologiche

Teorema

Sia $\{K_n\}_{n\in\mathbb{Z}}$ un Ω -spettro. Allora i funtori $h^n=\langle -,K_n\rangle$ definiscono una teoria coomologica ridotta sulla categoria \mathbf{CW}_{ullet} .

Richiamo

Una teoria coomologica ridotta sulla categoria CW_{ullet} è una famiglia di funtori

$$h^n : \mathbf{CW}_{\bullet} \longrightarrow \mathbf{Ab}^{\mathrm{op}}, \qquad n \in \mathbb{Z}$$

che soddisfa i seguenti assiomi.

1. Per ogni coppia (X, A) esiste una successione esatta lunga

$$\dots \xrightarrow{\delta} h^n(X/A) \xrightarrow{q^*} h^n(X) \xrightarrow{i^*} h^n(A) \xrightarrow{\delta} h^{n+1}(X/A) \xrightarrow{q^*} \dots$$

naturale in (X, A).

Teorie coomologiche

Teorema

Sia $\{K_n\}_{n\in\mathbb{Z}}$ un Ω-spettro. Allora i funtori $h^n=\langle -,K_n\rangle$ definiscono una teoria coomologica ridotta sulla categoria \mathbf{CW}_{\bullet} .

Richiamo

Una teoria coomologica ridotta sulla categoria CW₀ è una famiglia di funtori

$$h^n : \mathbf{CW}_{\bullet} \longrightarrow \mathbf{Ab}^{\mathrm{op}},$$

 $n \in \mathbb{Z}$

che soddisfa i seguenti assiomi.

1. Per ogni coppia (X, A) esiste una successione esatta lunga

$$\dots \xrightarrow{\delta} h^n(X/A) \xrightarrow{q^*} h^n(X) \xrightarrow{i^*} h^n(A) \xrightarrow{\delta} h^{n+1}(X/A) \xrightarrow{q^*} \dots$$

naturale in (X, A).

2. Per ogni famiglia $\{X_{\alpha}\}_{\alpha}$, le inclusioni inducono un isomorfismo

$$h^n\left(\bigvee_{\alpha}X_{\alpha}\right)\stackrel{\simeq}{\longrightarrow}\prod_{\alpha}h^n(X_{\alpha}).$$

▶ L'assioma 2. è soddisfatto: nella categoria CW• dare un morfismo

$$\bigvee_{\alpha} X_{\alpha} \longrightarrow K_n$$

è equivalente a dare una collezione di morfismi

$${X_{\alpha} \longrightarrow K_n}_{\alpha}$$
.

▶ L'assioma 2. è soddisfatto: nella categoria CW• dare un morfismo

$$\bigvee_{\alpha} X_{\alpha} \longrightarrow K_n$$

è equivalente a dare una collezione di morfismi

$${X_{\alpha} \longrightarrow K_n}_{\alpha}$$
.

Per quanto riguarda l'assioma 1., sia (X, A) una coppia di CW-complessi; vediamo come costruire la successione esatta lunga associata.

Ω -spettri e coomologia Dimostrazione

Ω -spettri e coomologia Dimostrazione

$\Omega\text{-spettri}$ e coomologia

Dimostrazione

2

$\Omega\text{-spettri}$ e coomologia

Ω -spettri e coomologia Dimostrazione

 $\begin{array}{cccc}
1 & A \hookrightarrow X \hookrightarrow X \cup \mathcal{C}A \hookrightarrow (X \cup \mathcal{C}A) \cup \mathcal{C}X \hookrightarrow ((X \cup \mathcal{C}A) \cup \mathcal{C}X) \cup \mathcal{C}(X \cup \mathcal{C}A) \\
& \parallel & \parallel & \downarrow^{\simeq} \\
2 & A \hookrightarrow X & X/A
\end{array}$

Ω-spettri e coomologia

Applicando il funtore h^n , otteniamo una successione di gruppi abeliani:

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X/A, K_n \rangle \longleftarrow \langle \Sigma A, K_n \rangle \longleftarrow \langle \Sigma X, K_n \rangle.$$

Ω-spettri e coomologia

$$\begin{array}{ccccc}
1 & A \hookrightarrow X \hookrightarrow X \cup \mathcal{C}A \hookrightarrow (X \cup \mathcal{C}A) \cup \mathcal{C}X \hookrightarrow ((X \cup \mathcal{C}A) \cup \mathcal{C}X) \cup \mathcal{C}(X \cup \mathcal{C}A) \\
& \parallel & \parallel & \downarrow^{\simeq} & \downarrow^{\simeq} & \downarrow^{\simeq} \\
2 & A \hookrightarrow X \longrightarrow X/A \longrightarrow \Sigma A \hookrightarrow \Sigma X
\end{array}$$

Applicando il funtore h^n , otteniamo una successione di gruppi abeliani:

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X/A, K_n \rangle \longleftarrow \langle \Sigma A, K_n \rangle \longleftarrow \langle \Sigma X, K_n \rangle.$$

Per verificarne l'esattezza, è sufficiente mostrare che

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X \cup \mathcal{C}A, K_n \rangle$$

è esatta.

Ω -spettri e coomologia Dimostrazione

Applicando il funtore h^n , otteniamo una successione di gruppi abeliani:

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X/A, K_n \rangle \longleftarrow \langle \Sigma A, K_n \rangle \longleftarrow \langle \Sigma X, K_n \rangle.$$

Per verificarne l'esattezza, è sufficiente mostrare che

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X \cup \mathcal{C}A, K_n \rangle$$

è esatta. Sia $f: X \to K_n$. Allora

Ω -spettri e coomologia Dimostrazione

Applicando il funtore h^n , otteniamo una successione di gruppi abeliani:

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X/A, K_n \rangle \longleftarrow \langle \Sigma A, K_n \rangle \longleftarrow \langle \Sigma X, K_n \rangle.$$

Per verificarne l'esattezza, è sufficiente mostrare che

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X \cup CA, K_n \rangle$$

è esatta. Sia $f: X \to K_n$. Allora

$$f$$
 appartiene al nucleo di $\langle X, K_n \rangle \longrightarrow \langle A, K_n \rangle$

Applicando il funtore h^n , otteniamo una successione di gruppi abeliani:

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X/A, K_n \rangle \longleftarrow \langle \Sigma A, K_n \rangle \longleftarrow \langle \Sigma X, K_n \rangle.$$

Per verificarne l'esattezza, è sufficiente mostrare che

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X \cup \mathcal{C}A, K_n \rangle$$

è esatta. Sia $f: X \to K_n$. Allora

$$f$$
 appartiene al nucleo di $\langle X, K_n \rangle \longrightarrow \langle A, K_n \rangle$

 $\iff f|_A$ è omotopicamente banale (fissando il punto base)

Ω -spettri e coomologia Dimostrazione

Applicando il funtore h^n , otteniamo una successione di gruppi abeliani:

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X/A, K_n \rangle \longleftarrow \langle \Sigma A, K_n \rangle \longleftarrow \langle \Sigma X, K_n \rangle.$$

Per verificarne l'esattezza, è sufficiente mostrare che

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X \cup \mathcal{C}A, K_n \rangle$$

è esatta. Sia $f: X \to K_n$. Allora

$$f$$
 appartiene al nucleo di $\langle X, K_n \rangle \longrightarrow \langle A, K_n \rangle$

$$\iff f|_A$$
 è omotopicamente banale (fissando il punto base)

$$\iff f$$
 si estende a una mappa $X \cup \mathcal{C}A \longrightarrow \mathcal{K}_n$

Ω-spettri e coomologia

Applicando il funtore h^n , otteniamo una successione di gruppi abeliani:

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X/A, K_n \rangle \longleftarrow \langle \Sigma A, K_n \rangle \longleftarrow \langle \Sigma X, K_n \rangle.$$

Per verificarne l'esattezza, è sufficiente mostrare che

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X \cup \mathcal{C}A, K_n \rangle$$

è esatta. Sia $f: X \to K_n$. Allora

$$f$$
 appartiene al nucleo di $\langle X, K_n \rangle \longrightarrow \langle A, K_n \rangle$

$$\iff f|_A$$
 è omotopicamente banale (fissando il punto base)

$$\iff$$
 f si estende a una mappa $X \cup CA \longrightarrow K_n$

$$\iff f \text{ appartiene all'immagine di } \langle X \cup \mathcal{C}A, \mathcal{K}_n \rangle \longrightarrow \langle X, \mathcal{K}_n \rangle.$$

Ω -spettri e coomologia

Applicando il funtore h^n , otteniamo una successione di gruppi abeliani:

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X/A, K_n \rangle \longleftarrow \langle \Sigma A, K_n \rangle \longleftarrow \langle \Sigma X, K_n \rangle.$$

Tale successione è esatta e naturale. Posto $K = K_n$, $K' = K_{n+1}$, le due successioni corrispondenti si possono incollare.

Ω -spettri e coomologia

Applicando il funtore h^n , otteniamo una successione di gruppi abeliani:

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X/A, K_n \rangle \longleftarrow \langle \Sigma A, K_n \rangle \longleftarrow \langle \Sigma X, K_n \rangle.$$

Tale successione è esatta e naturale. Posto $K = K_n, K' = K_{n+1}$, le due successioni corrispondenti si possono incollare.

$$\langle A, K \rangle \longleftarrow \langle X, K \rangle \longleftarrow \langle X/A, K \rangle \leftarrow \langle \Sigma A, K \rangle$$

$$\downarrow^{\simeq} \qquad \qquad \downarrow^{\simeq}$$

$$\langle A, \Omega K' \rangle \leftarrow \langle X, \Omega K' \rangle$$

$$\downarrow^{\simeq} \qquad \qquad \downarrow^{\simeq}$$

$$\langle \Sigma A, K' \rangle \leftarrow \langle \Sigma X, K' \rangle$$

$$\langle X, K' \rangle \leftarrow \langle X/A, K' \rangle \leftarrow \langle \Sigma A, K' \rangle \leftarrow \langle \Sigma X, K' \rangle$$

Ω -spettri e coomologia

Applicando il funtore h^n , otteniamo una successione di gruppi abeliani:

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X/A, K_n \rangle \longleftarrow \langle \Sigma A, K_n \rangle \longleftarrow \langle \Sigma X, K_n \rangle.$$

Tale successione è esatta e naturale. Posto $K = K_n, K' = K_{n+1}$, le due successioni corrispondenti si possono incollare.

Ω-spettri e coomologia

Applicando il funtore h^n , otteniamo una successione di gruppi abeliani:

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X/A, K_n \rangle \longleftarrow \langle \Sigma A, K_n \rangle \longleftarrow \langle \Sigma X, K_n \rangle.$$

Tale successione è esatta e naturale. Posto $K = K_n, K' = K_{n+1}$, le due successioni corrispondenti si possono incollare.

$$\langle A, K \rangle \longleftarrow \langle X, K \rangle \longleftarrow \langle X/A, K \rangle \leftarrow \langle \Sigma A, K \rangle$$

$$\downarrow^{\simeq} \qquad \downarrow^{\simeq}$$

$$\langle A, \Omega K' \rangle \leftarrow \langle X, \Omega K' \rangle$$

$$\downarrow^{\simeq} \qquad \downarrow^{\simeq}$$

$$\langle X, K' \rangle \leftarrow \langle X/A, K' \rangle \leftarrow \langle \Sigma A, K' \rangle \leftarrow \langle \Sigma X, K' \rangle$$

Otteniamo così la successione esatta lunga

$$\ldots \leftarrow \langle X/A, K_{n+1} \rangle \leftarrow \langle A, K_n \rangle \leftarrow \langle X, K_n \rangle \leftarrow \langle X/A, K_n \rangle \leftarrow \ldots$$

naturale in (X, A).

Costruzione omotopica della coomologia Dimostrazione

Teorema

Siano X un CW-complesso, G un gruppo abeliano, $n \ge 0$ un intero. Allora esiste una biiezione

$$T: \langle X, K(G, n) \rangle \xrightarrow{\simeq} \widetilde{H}^n(X; G)$$

naturale in X.

Costruzione omotopica della coomologia Dimostrazione

Teorema

Siano X un CW-complesso, G un gruppo abeliano, $n \geq 0$ un intero. Allora esiste una biiezione

$$T: \langle X, K(G, n) \rangle \xrightarrow{\simeq} \widetilde{H}^n(X; G)$$

naturale in X.

Poniamo $K_n = K(G, n)$; sappiamo che è un Ω-spettro.

Dimostrazione

Teorema

Siano X un CW-complesso, G un gruppo abeliano, $n \ge 0$ un intero. Allora esiste una biiezione

$$T: \langle X, K(G, n) \rangle \xrightarrow{\simeq} \widetilde{H}^n(X; G)$$

naturale in X.

- Poniamo $K_n = K(G, n)$; sappiamo che è un Ω-spettro.
- Estendendo la successione a $n \le 0$, otteniamo la famiglia di funtori

$$h^n = \langle -, K_n \rangle \colon \mathbf{CW}_{\bullet} \longrightarrow \mathbf{Ab}^{\mathsf{op}}$$

che definisce una teoria coomologica ridotta.

Dimostrazione

Teorema

Siano X un CW-complesso, G un gruppo abeliano, $n \ge 0$ un intero. Allora esiste una biiezione

$$T: \langle X, K(G, n) \rangle \xrightarrow{\simeq} \widetilde{H}^n(X; G)$$

naturale in X.

- Poniamo $K_n = K(G, n)$; sappiamo che è un Ω-spettro.
- Estendendo la successione a $n \le 0$, otteniamo la famiglia di funtori

$$h^n = \langle -, K_n \rangle \colon \mathbf{CW}_{\bullet} \longrightarrow \mathbf{Ab}^{\mathsf{op}}$$

che definisce una teoria coomologica ridotta.

Vale

$$h^n(S^0) = \widetilde{H}^n(S^0; G) = \begin{cases} 0 & n \neq 0, \\ G & n = 0. \end{cases}$$

Dimostrazione

Teorema

Siano X un CW-complesso, G un gruppo abeliano, $n \geq 0$ un intero. Allora esiste una biiezione

$$T: \langle X, K(G, n) \rangle \xrightarrow{\simeq} \widetilde{H}^n(X; G)$$

naturale in X.

- Poniamo $K_n = K(G, n)$; sappiamo che è un Ω-spettro.
- Estendendo la successione a $n \le 0$, otteniamo la famiglia di funtori

$$h^n = \langle -, K_n \rangle \colon \mathbf{CW}_{\bullet} \longrightarrow \mathbf{Ab}^{\mathrm{op}}$$

che definisce una teoria coomologica ridotta.

Vale

$$h^n(S^0) = \widetilde{H}^n(S^0; G) = \begin{cases} 0 & n \neq 0, \\ G & n = 0. \end{cases}$$

Di conseguenza, per ogni n abbiamo un isomorfismo di funtori

$$h^n \simeq \widetilde{H}^n(-; G).$$

Classe fondamentale

Per il lemma di Yoneda, l'isomorfismo

$$T: \langle X, K(G, n) \rangle \xrightarrow{\simeq} \widetilde{H}^n(X; G)$$

è della forma

$$T(f) = f^*(\alpha) \in \widetilde{H}^n(X; G)$$

dove

$$\alpha = T(\mathrm{id}_{K(G,n)}) \in \widetilde{H}^n(K(G,n);G).$$

Classe fondamentale

Per il lemma di Yoneda, l'isomorfismo

$$T: \langle X, K(G, n) \rangle \xrightarrow{\simeq} \widetilde{H}^n(X; G)$$

è della forma

$$T(f) = f^*(\alpha) \in \widetilde{H}^n(X; G)$$

dove

$$\alpha = T(id_{K(G,n)}) \in \widetilde{H}^n(K(G,n); G).$$

▶ Se prendiamo K(G, n) in modo che abbia come (n-1)-scheletro un punto, α è rappresentata dal cociclo cellulare che a ogni n-cella associa l'elemento

$$[\varphi_{\alpha}\colon D_{\alpha}^{n}/\partial D_{\alpha}^{n}\longrightarrow K(G,n)]\in \pi_{n}(K(G,n))\simeq G$$

indotto dalla mappa caratteristica.

Classe fondamentale

Per il lemma di Yoneda, l'isomorfismo

$$T: \langle X, K(G, n) \rangle \xrightarrow{\simeq} \widetilde{H}^n(X; G)$$

è della forma

$$T(f) = f^*(\alpha) \in \widetilde{H}^n(X; G)$$

dove

$$\alpha = T(id_{K(G,n)}) \in \widetilde{H}^{n}(K(G,n); G).$$

Se prendiamo K(G, n) in modo che abbia come (n-1)-scheletro un punto, α è rappresentata dal cociclo cellulare che a ogni n-cella associa l'elemento

$$[\varphi_{\alpha}\colon D^n_{\alpha}/\partial D^n_{\alpha}\longrightarrow K(G,n)]\in \pi_n(K(G,n))\simeq G$$

indotto dalla mappa caratteristica.

Analogamente, per ogni $f: X \to K(G, n)$, T(f) è rappresentato in coomologia dal cociclo cellulare che a ogni n-cella di X associa l'elemento di $\pi_n(K(G, n))$ indotto dalla composizione

$$D^n_{\alpha}/\partial D^n_{\alpha} \xrightarrow{\varphi_{\alpha}} X^n \xrightarrow{f} K(G, n).$$