

Natural Language Processing & Word Embeddings $_{\rm Quiz,\ 10\ questions}$

1 point	
1.	
	words. Then the embedding vectors should be 10000 dimensional, words.
True	
False	
1 point	
2. What is t-SNE?	
A linear transformation that allows us to solve analogies	on word vectors
A non-linear dimensionality reduction technique	
A supervised learning algorithm for learning word ember	ddings
An open-source sequence modeling library	
1 point 3. Suppose you download a pre-trained word embedding which ha embedding to train an RNN for a language task of recognizing if set.	s been trained on a huge corpus of text. You then use this word someone is happy from a short snippet of text, using a small training
x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1
Then even if the word "ecstatic" does not appear in your small tracestatic" as deserving a label $y=1. \label{eq:y}$	aining set, your RNN might reasonably be expected to recognize "I'm
True False	

Natural Language Processing & Word Embeddings Quiz, 10 questions

4.

Which of these equations do you think should hole	for a good word embedding? (Che	eck all that apply)
---	---------------------------------	---------------------

 $e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$

 $e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$

 $e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$

 $e_{boy} - e_{brother} pprox e_{sister} - e_{girl}$

1 point

5.

Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E * o_{1234}$ in Python?

It is computationally wasteful.

The correct formula is $E^T * o_{1234}$.

This doesn't handle unknown words (<UNK>).

None of the above: calling the Python snippet as described above is fine.

1 point

6.

When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.

True

False

1 point

7.

In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.

c and t are chosen to be nearby words.

c is the sequence of all the words in the sentence before t.

c is a sequence of several words immediately before t.

igcap c is the one word that comes immediately before t.

Natural Language Processing & Word Embeddings

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:

$P(t \mid c) = \frac{e^{\theta_t^T e_c}}{\sum_{t'=1}^{10000} e^{\theta_t^T e_c}}$
Which of these statements are correct? Check all that apply.
$ heta_t$ and e_c are both 500 dimensional vectors.
$ heta_t$ and e_c are both 10000 dimensional vectors.
$ heta_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.
After training, we should expect $ heta_t$ to be very close to e_c when t and c are the same word.
1 point
9. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:
$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - \log X_{ij})^2$
Which of these statements are correct? Check all that apply.
$ heta_i$ and e_j should be initialized to 0 at the beginning of training.
$ heta_i$ and e_j should be initialized randomly at the beginning of training.
X_{ij} is the number of times word i appears in the context of word j.
The weighting function $f(.)$ must satisfy $f(0)=0$.
1 point
10. You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?
$m_1 \gg m_2$
$\bigcap m_1 \leqslant m_2$
I, HIN-WENG WAN , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.
Learn more about Coursera's Honor Code
Submit Quiz

Natural Language Processing & Word Embeddings Quiz, 10 questions