TU Dortmund

V301 - Leerlaufspannung und Innenwiderstand von Spannungsquellen

Markus Stabrin markus.stabrin@tu-dortmund.de

Kevin Heinicke kevin.heinicke@tu-dortmund.de

Versuchsdatum: 7. Mai 2013

Abgabedatum: 14. Mai 2013

1 Einleitung

2 Theorie

3 Versuchsaufbau und Durchführung

4 Auswertung

4.1 Klemmspannungskurven

Zunächst wird für jede Spannungsquelle eine lineare Ausgleichsrechnung mit Hilfe von phython für die Funktion (??) durchgeführt. Der y-Achsenabschnitt entpricht dabei der Leerlaufspannung U_0 und die Steigung dem Innenwiderstand R_i der jeweiligen Spannungsquelle. Abbildungen 1 bis 3 zeigen die Graphen, Tabelle 1 beinhaltet die Messwerte. Die Ungenauigkeit der Messgeräte liegt bei

$$\Delta I = \pm 1.5 \%,$$

$$\Delta U = \pm 2 \%.$$

Zudem gilt für die Leistung P:

$$\begin{array}{rcl} P & = & UI \,, \\ \Delta P & = & \sqrt{(I\Delta U)^2 + (U\Delta I)^2} \,. \end{array}$$

Tabelle 1: Strom- und Spannungswerte der verschiedenen Spannungsquellen bei variierten Lastwiderständen R_a .

Monozelle			Rechteckspannung			Sinusspannung		
I[mA]	$U_{\rm k}[{ m V}]$	P[mW]	I[mA]	$U_{\rm k}[{ m mV}]$	$P[\mu W]$	I[mA]	$U_{\rm k}[{ m V}]$	$P[\mu W]$
84	0,083	$6,97 \pm 0,17$	7,7	40	308 ± 8	1,80	0,09	162 ± 4
76	0,240	$18,24 \pm 0,46$	6,5	50	325 ± 8	1,50	0,12	180 ± 4
66	0,280	$18,48 \pm 0,46$	5,1	65	332 ± 8	1,00	0,17	170 ± 4
58	0,570	$33,06 \pm 0,83$	4,2	70	294 ± 7	0,70	0,20	140 ± 4
54	0,640	$34,56 \pm 0,86$	3,5	75	263 ± 7	0,60	0,22	132 ± 3
47	0,750	$35,25 \pm 0,88$	3,1	80	248 ± 6	0,55	0,23	127 ± 3
43	0,770	$33,11 \pm 0,83$	2,7	85	230 ± 6	0,45	0,24	108 ± 3
41	0,780	$31,98 \pm 0,80$	2,3	85	196 ± 5	0,38	0,24	91 ± 2
38	0,810	$30,78 \pm 0,77$	2,0	90	180 ± 4	0,32	$0,\!25$	80 ± 2
36	0,820	$29,52 \pm 0,74$	1,8	90	162 ± 4	0,27	$0,\!25$	68 ± 2
34	0,820	$27,88 \pm 0,70$	1,7	90	153 ± 4	0,25	$0,\!25$	62 ± 2

Abbildung 1: Spannungs- Stromkurve der Monozelle.

Abbildung 2: Spannungs- Stromkurve der Rechteckspannung

Abbildung 3: Spannungs- Stromkurve der Sinusspannung

4.2 Innenwiderstand $R_{\rm i}$ und Leerlaufspannung U_0

Die Ausgleichsrechnung in Kapitel 4.1 liefert die Werte für die jeweiligen Innenwiderstände R_i und Leerlaufspannungen U_0 der verschiedenen Spannungsquellen. Tabelle 2 beinhaltet die Werte.

Tabelle 2: Innenwiderstand R_i und Leerlaufspannung U_0 .

Spannungsquelle	$R_{ m i}[\Omega]$	$U_0[V]$
Monozelle	$15,7 \pm 1,1$	$1,418 \pm 0,060$
Monozelle, Gegenspannung	$20,1 \pm 0,6$	$1,676 \pm 0,034$
Rechteckspannung	$107,6 \pm 3,0$	$0,106 \pm 0,001$
Sinusspannung	$8,5 \pm 0,2$	$0,282 \pm 0,003$

4.3 Systematische Fehler

Der Systematische Fehler $\Delta_{\rm s}U_0$ bei der direkten Messung der Leerlaufspannung beträgt nach Umstellen von Gleichung (??):

$$\Delta_{\rm s} U_0 = U_{\rm k} \frac{R_{\rm i}}{R_{\rm a}} \,.$$

Mit einem Außenwiderstand im Voltmeter von $R_{\rm a}\approx 10\,{\rm M}\Omega$ und der direkt gemessenen Spannung

$$U_0 = 1.65 \,\mathrm{V}$$
,

folgt der Fehler

$$\Delta_{\rm s}U_0=2.59\,\mu\Omega$$
.

Das entspricht einem relativen Fehler δ_s von $\delta_s = 1.57 \cdot 10^{-4} \%$. Schließt man das Voltmeter nicht wie vorgegeben an, sondern hinter dem Amperemeter, fällt in diesem – zusätzlich zur Leerlaufspannung U_0 – eine Spannung U_A ab.

4.4 Leistungsdiagramm

Im folgenden Diagramm 4 ist die Leistung P, die im Belastungswiderstand R_a umgesetzt wird, aufgetragen. Zusätzlich ist der Graph der theoretisch errechneten Leistungskurve $N = f(R_a)$ eingetragen. Die Leistungskurve berechnet sich mit Gleichung (??) nach

$$N = I^2 R_a = -I^2 R_i + I U_0$$
.

Hierbei werden die Werte des Innenwiderstandes R_i und der Leerlaufspannung U_0 ohne Gegenspannung aus Kapitel 4.2 verwendet.

Abbildung 4: Leistungsdiagramm der Monozelle mit theoretischer Leistungskurve.

5 Diskussion

Literatur

[1] Physikalisches Anfängerpraktikum der TU Dortmund: Versuch Nr.301 - Leerlaufspannung und Innenwiderstand von Spannungsquellen. http://129.217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/V301.pdf. Stand: Mai 2013.