REMARKS

Claims 128-145 are cancelled herein and it is respectfully requested that claims 146-161 be entered. The first page of the present application incorporates by reference U.S. Patent Application Serial No. 08/027,146 (the '146 application), which was filed 5 March 1993. A substitute specification is submitted herewith as Exhibit A which incorporates the text from the '146 application. A marked version of the substitute specification is attached herewith as Exhibit B. No new matter has been added. In addition, a copy of the '146 application as filed is also attached for reference. Citations to the text below refer to the '146 application.

The new claims are fully described in the application. The '146 application as filed describes a process in which potential epitopes are identified by scanning the amino acid sequence of an antigen using a motif and then synthesizing the epitope sequence on page 10, lines 23-26. Also, nucleotide sequences which encode peptides comprising an HLA-A2.1 epitope are described on page 19, line 17 to page 20, line 13. The specification also describes methods for testing whether peptide fragments bind an HLA-A2.1 molecule and induce a CTL on page 36, line 1 to page 38, line 24 and on page 72, line 35 to page 76, line 30. Peptide epitopes consisting of 9 to 10 amino acids are described throughout the specification, for example, on page 4, lines 31-36. Peptide fragments consisting of 9 to 10 amino acids are described on page 3, line 4 and line 33, and peptides having a length of less than 15 amino acids are described on page 3, lines 31-32. Amino acid anchors at position 2 and the carboxyl terminus of the epitope are set forth in Table 5 on page 42; L, M, V, I, T and A are all tolerated at position 2 (see also page 39, line 29) and V, L, I, A and M are tolerated at the C-terminus (see also, page 39, line 34). The application also discloses that certain amino acids are preferably not permitted in positions 1, 3, 6 and 7 in instances where the binding motif is a 9-mer and certain amino acids are preferred in positions 1, 3, 4, 5 and 7 of these 9-mers. These data are shown in Table 8 on page 48. They form the basis for claims 147-148 and 156-157. Similarly, amino acids which are preferably not permitted in positions 1, 3-5, and 7-9 of 10-mers, and amino acids that are preferred in positions 1, 3, 4, 6 and 8 of 10-mers are set forth in Table 13 on page 55.

This table forms the basis for claims 86-87 and 96-97. Support for claims 152-153 is found on page 10, line 32-page 11, line 9. Support for the particular peptide in claim 161 is found in the present application (not the '146 application) in Table 3 on page 41. Claim 160 is consistent with the support for tolerated amino acids at anchor positions 2 and the C-terminus in 9-mers and 10-mers but does not include any coincidentally disclosed peptides of which applicants are aware.

Thus, the claims do not add new matter as they find a full description in present application, including the '146 specification filed 5 March 1993.

Applicants appreciate that considerable time and effort has been expended in arriving at the appropriate subject matter to be examined. It is believed that the proposed claims are consistent with the restriction requirement. Election between claims drawn to peptides and claims drawn to nucleic acids was required. The claims as presently drawn relate to peptides.

The requirement for a species election is requested to be withdrawn in view of the present submission. The claims do not relate to a different invention, and it is believed that prosecution is advanced by focusing on the appropriate aspects of the invention. Linkage to a T helper epitope is no longer included in the claims; any particular peptide species misses the point of the invention. The consideration of the Examiner in reviewing the explanation of the invention set forth below and in examining the claims as presented is respectfully requested.

The Invention

The invention provides at least two advances in the art of designing immunogenic peptides and the nucleic acids encoding them. The application is based on an article published by the inventors subsequent to the filing of the '146 application, Ruppert, J., et al., Cell (1993) 74:929-937. A copy is enclosed as Exhibit C. First, the invention expands the possible candidates by identifying additional residues that are tolerated in the primary anchor positions at position 2 and the C-terminus of the immunogenic peptide. Previous studies by Falk, et al., Nature (1991) 351:290-296 and by Hunt, et al., Science (1992) 255:1261-1266 had identified an

HLA-A2.1 motif defined as L and M in position 2 and L, V or I in position 9. The inventors have demonstrated, as shown in the specification, that in addition, immunogenic peptides may include I, V, A or T in the 2 position and may include A and M at the C-terminus. Claims 146 and 154 are directed to taking advantage of these newly discovered motifs; it will be noted that in these claims, either A or M must be at the C-terminus or I, V, A or T must be at the 2 position. The specific peptides of claim 160 have been verified to be immunogenic.

In addition, the invention has contributed an understanding of a way to enhance the predictability of the immunogenicity of the peptides by recognizing the importance of, and identifying the nature of, the secondary anchors. This aspect is claimed in dependent claims 147-151 and 156-158.

Thus, additional immunogenic peptides which would not have been contemplated from the knowledge of the art have been found. This is verified in the declaration of Dr. Sette attached hereto. In addition, the amount of routine screening needed to verify immunogenicity has been diminished by the identification of the secondary residues.

Claim 160 is directed to peptides of less than 15 amino acids which are described by the newly discovered primary anchor generated motifs; claim 161 claims a specific peptide.

The following comments address the specific rejections and objections raised by the Office.

Rejection of Claims Under 35 U.S.C. §112, First Paragraph, for Alleged Lack of Written

Description Support in the Specification

A number of claims were rejected under 35 U.S.C. §112, first paragraph as the specification allegedly did not provide an adequate written description for those claims. It is submitted that the rejection is not applicable to the presently submitted claims. Location in the application of this support is described above. Furthermore, the new claims lack the terms objected to in the Office action. For example, the new claims do not include the term "epitope

consisting of about 8-11 amino acids" and "Pan DR" epitope. Thus, it is submitted that the new claims find a written description in the application.

Rejection of Claims Under 35 U.S.C. §112, First Paragraph, for Alleged Lack of Possession of the Invention

Claims 128,129,137, and 145 were rejected under 35 U.S.C. §112, first paragraph, as the Office asserts that the subject matter was not described so as reasonably to convey to own skilled in the art that the inventors had possession of the invention - *i.e.*, that although the claimed peptides were described as "immunogenic" in reality there is no assurance that they are. The Office asserts that it would take "undue experimentation" to determine which peptides encompassed by the formulas in the claims actually are immunogenic. It is this point that applicants dispute.

The Office bases its view on several cited documents. Celis is cited as teaching that an immunogenicity assay *per se* is needed to establish peptide immunogenicity because besides MHC binding, other factors such as antigen processing, peptide transport and the composition of the T cell repertoire could determine whether the peptides can be effective as CTL antigens. Rammansee is quoted as teaching the inadequacy of MHC peptide binding assays and Ochoa-Garay, similarly is said to state that variables such as CTL precursor frequency, peptide hydrophobicity and stability can influence even the *in vitro* induction of CTL responses.

There is no question that not all peptides which bind to an MHC Class I antigen will elicit a CTL response restricted by that Class I antigen and that additional assays would be required to verify immunogenicity. The point is that such verification is routine and was routine at the time the application from which priority was claimed was filed. The disclosures of Celis, Ochoa-Garay, and Rammansee do not contradict this. Indeed, Celis is supportive of the points made here by stating on page 1424:

Several observations support the notion that the immunogenic potential of a peptide is directly correlated with the peptide's binding affinity to the MHC molecule (citations omitted).

Celis further states:

The HLA-A motifs mentioned above have been recently validated by showing that using these motifs, one can predict the majority of the peptides that exhibit a significant binding potential to its respective MHC molecule. (Citation omitted.)

Thus, the Celis document itself supports the nexus between immunogenic character and HLA binding and the nexus between a particular motif and HLA binding.

The Sette Declaration, provided herewith, demonstrates that as of March 1993, only routine experimentation would be required to identify immunogenic peptides having an HLA-A2.1 motif since methods for screening any particular peptide for CTL induction and recognition were well known and routinely practiced. In addition, it was understood that it would not be expected that every single peptide tested would prove to be immunogenic and this is considered acceptable. This is also consistent with the legal standard enunciated by *In re Wands*, discussed below, which specifically takes account of the "Foreman factors" alluded to by the Office in the citation of *Ex parte Foreman*. Thus, the specification enables the methods of claims 146-153 and 154-159 as well as the peptides of claims 160-161 without requiring undue experimentation.

In addition, it has been established that 9-mers and 10-mers lacking the expanded motif described herein have zero possibility of binding HLA-A2.1 molecules. This is shown, for example, in figure 1 of the Ruppert, *et al.*, article attached hereto. Thus, by confining further experimentation to peptides comprising the expanded motif, considerable screening, albeit routine screening, can be avoided.

As further discussed below, the Board of Patent Appeals and the Court of Appeals for the Federal Circuit have articulated a standard for enablement which does not require a high degree of predictability when routine screening methods are available. Thus, it is clear that the teachings of the specification and the teachings in the art were sufficient for allowing the skilled artisan to routinely practice the claimed subject matter as of March 1993.

A. <u>Declaration of Alessandro Sette</u>

Applicants request that the Examiner refer to the Declaration by Alessandro Sette for the following discussion. Attached to Dr. Sette's declaration is a table showing later published results employing the expanded motif. The documents set forth in the table are submitted along with a PTO 1449 form listing them. Also listed on the PTO 1449 form and submitted with it are the papers listed in paragraph 2 of Dr. Sette's declaration.

The Sette Declaration explains that numerous publications predating the March 1993 effective filing date describe the routine use of both HLA binding assays for identifying potential immunogens (paragraph 6), as well as *in vitro* and *in vivo* methods for confirming whether a peptide is immunogenic or not immunogenic (paragraphs 4 and 5). Exemplary studies in which researchers routinely utilized these assays are described in the declaration in paragraphs 7 and 8.

The declaration also demonstrates that the motif itself reduces the amount of experimentation required to determine whether a peptide is immunogenic. Knowledge of a particular motif, such as the HLA-A2.1 motifs described in the specification, can reduce the number of peptides required for testing in immunogenicity assays by 10.8-fold (paragraph 9). Furthermore, the declaration makes it clear that the skilled artisan was prepared as of March 1993 to screen multiple peptides to determine which of those were immunogenic (paragraph 12, referring to Hill), and that the procedures utilized by the skilled artisan before the filing date of the application are similar to those described in the application (paragraph 13). The approach of using the tolerated motifs to screen for and confirm immunogenic peptides was repeatedly confirmed subsequent to March of 1993 as shown in paragraphs 15-16.

Moreover, because the peptides described in paragraph 11 of the declaration were recognized by CTLs from infected patients, immunized individuals, and naturally exposed individuals, the factors noted by the Office as being potentially problematic are not major obstacles to practicing the claimed subject matter (paragraph 17).

Thus, the Sette declaration demonstrates that the claimed methods can be practiced without undue experimentation due to the predictive value of the HLA-A2.1 motif and the routine application of screening procedures taught in the '146 specification.

B. Post-Filing Evidence that the Claimed Subject Matter is Enabled

Paragraphs 15-16 of the Sette declaration describe studies performed after March 1993 in which researchers utilized the HLA-A2.1 motifs and methods disclosed in the specification to identify immunogenic peptides. As can be seen in the table attached to the declaration, many researchers utilized these motifs to identify multiple immunogenic epitopes from a wide variety of antigens. It is therefore clear that the methods set forth in the specification and claimed herein could be routinely practiced by the skilled artisan without undue experimentation at the time the application was filed.

C. Peptide Processing and Peptide Length Are Not Significant Obstacles to Practicing the Claimed Subject Matter

As noted above, paragraph 17 in the Sette declaration establishes that antigen processing and other factors mentioned in the Office action are not significant obstacles to practicing the claimed subject matter. In addition, other studies provide further evidence that these factors are not a significant barriers to practicing the claimed subject matter.

CTL responses are induced as a consequence of naïve T cells recognizing a complex between antigenic peptides and class I molecules. These peptides, which range in length from 8-11 amino acids, are the result of proteolytic degradation of intact antigen (Niedermann, *et al.*, *Immunol. Rev.* (1999) 172:29-48). These processed peptides then bind to class I molecules and are presented on the cell surface of the cell. While longer fragments of the antigen may be utilized to induce CTL responses, ultimately it is the presentation of the minimal epitope by the corresponding class I molecule that results in the differentiation and expansion of the naïve T cell.

Further, the binding of the minimal epitope'is dictated by the sequences within the epitope itself and not the surrounding amino acids (Sette & Sidney, Curr. Opin. Immunol. (1998) 10:478-482; Medden, Ann. Rev. Immunol. (1995) 13:587), and therefore, the motif set forth in the claimed methods provides for HLA binding and the resulting immune response. In the case of longer peptides, the presence of additional amino acids does prevent complex formation, but these epitopes are typically processed by intracellular proteosomes that recognize cleavage sites adjacent to the minimal epitope (Del Val, et al., Cell (1991) 66:1145-1153; Eisenlohr, et al., J. Exp. Med. (1992) 175:481-487). Using variable length fragments, it has been demonstrated that efficient epitope processing can occur irrespective of the fragment's length (Niedermann, et al., Proc. Natl. Acad. Sci. USA (1996) 93:8572-8577; Niedermann, et al., Immunol.

Rev. (1999) 172:29-48).

Additionally, epitope processing is not limited exclusively to intracellular proteosomes. Several studies have shown that serum and membrane associated proteases can effectively process longer peptides resulting in the generation of the minimal epitope capable of being presented bound to the corresponding HLA class I molecule (Sherman, et al., J. Exp. Med. (1992) 175:1221-1226; Kozlowski, et al., J. Exp. Med. (1992) 175:1417-1422). Thus, the presence of additional residues besides the minimal epitope might influence the degree of immunogenicity or antigenicity, defined as the amount of peptide necessary to achieve a given level of response. However, antigen length is not a major variable with regard to practicing the claimed methods in the sense that longer peptides are clearly active in various in vitro and in vivo models (see for example Kast, et al., Eur. J. Immunol. (1993) 23:1189-1192).

Moreover, other studies have demonstrated that multi-epitope polypeptides and minigenes can be effectively used to induce cellular immune responses, in particular by enhancing the efficiency of epitope processing. Binding of the optimal epitopes remains constant. In fact, armed with the knowledge of the certain CTL-inducing epitopes, researchers were able to augment immune responses. For example, Shastri, *et al.*, *J. Immunol.* (1995) 155:4339-4346 and Bergmann, *et al.*, *J. Virol.* (1994) 68:5306-5310 demonstrated increasingly

efficient epitope processing resulting from changing the amino acids that flank an epitope. Moreover, Ishioka, et al., J. Immunol. (1999) 162:3915-3925 demonstrated that it is possible to induce CTL responses that are stronger than those induced by an intact antigen when multiple epitopes are delivered as a string of peptides.

These examples further illustrate that antigen processing and other factors do not significantly impact binding between the epitope and the HLA class I molecule or impact the immunogenicity of the component epitopes once generated. Thus, applicants submit that claims 146-150, 154, and 156-161, which for example may require the peptide to be processed from a longer polypeptide before contacting the HLA molecules, are fully enabled.

D. The Rejection is Analogous to the Rejection at Issue in *In re Wands*

The routine screening procedure for identifying CTL-inducing peptides is analogous to a screening procedure that the Federal Circuit deemed did not require undue experimentation. The claims at issue in *In re Wands*, 8 USPQ.2d 1400 (Fed. Cir. 1988) were directed to an assay method that required IgM antibodies having affinity for a specific antigen. At issue in *Wands* was whether screening a large number of antibodies to select those required represented undue experimentation. Because the present rejection raises this precise issue - *i.e.*, whether screening multiple peptides to select those that are immunogenic represents undue experimentation, the holding in *Wands* is believed controlling.

The Court in *Wands* determined that screening multiple hybridomas to select particular monoclonal antibodies did <u>not</u> require undue experimentation because 1) screening procedures were taught in the specification and 2) researchers in the field were prepared to screen a large number of hybridomas. Thus, while these hybridoma screening procedures required a significant amount of experimentation, the procedures were routine and the claims were therefore in accordance with 35 U.S.C. §112, first paragraph.

The Wands Court noted that Wands used a commercially available radioimmunoassay kit to screen clones in a preliminary screen which identified a subset of candidates that, in order to

satisfy the limitation of the claims, "require further screening to select those which have an IgM isotype and have a binding affinity constant of at least 10⁹ M." The Court noted that the results of the test kit do not provide a numerical affinity constant, which must be measured using the more laborious Schatchard analysis. Similarly here, the specification teaches several stages of testing whereby a particular motif is first selected, binding to the appropriate HLA-A2.1 antigen is used to identify a subset that binds and this subset is used in the slightly more laborious assay for immunogenicity. As demonstrated in the Sette declaration, a person of ordinary skill in the art is prepared to screen a number of peptides that correspond to a motif.

Thus, experimentation for practicing the claimed methods and making the claimed nucleic acids is not undue because (1) the specification teaches motifs and screening procedures for identifying CTL-inducing peptides, (2) the screening procedures can be practiced in a routine manner, and (3) researchers are prepared to use these methods to screen a large group of peptides. The facts here are directly analogous to those in *Wands*.

E. The Rejection is Analogous to the Rejection at Issue in Ex parte Mark

The situation in the present application is also analogous to that in *Ex parte Mark*, 12 USPQ.2d 1905 (BPAI 1989). In particular, the reasoning set forth in the present Office action is similar to the Examiner's reasoning in *Mark*. The relevant claims at issue were directed to a method for producing DNA encoding a synthetic mutein of <u>any</u> protein by substituting other amino acids for cysteine, wherein the mutein had the biological activity of the parent protein. The claims were rejected as being non-enabled, based on the prior art disclosure that eight such muteins of two different proteins lacked or were substantially reduced in the biological activity of the parent proteins. The examiner reasoned that:

it would require undue further experimentation to construct . . . the *innumerable muteins* encompassed by the instant claims . . . and to screen the muteins produced for any of those which exhibit biological activity after modification.

Id. at 1906 (emphasis added). Additionally, the examiner asserted that most of the muteins "would be inoperative," and that there was an established unpredictability as to how many muteins would have to be produced in order to obtain even one biologically active embodiment.

On appeal, the Board reversed the enablement rejection, holding that the claims were enabled because they all required "that the mutein retain the biological activity of the native protein." *Id.* at 1906-7. The prior art muteins lacking activity were "merely examples of work which is *outside* the claims." *Id.* at 1907. The Board was persuaded that only routine experimentation was required to determine whether a cysteine substitution or replacement would result in a mutein within the scope of the claims. Importantly, the Board stated:

[t]o the extent that the examiner is concerned that undue experimentation would be required to determine other proteins suitable for use in the present invention, we find . . . that only routine experimentation would be needed for one skilled in the art to practice the claimed invention for a given protein. The fact that a given protein may not be amenable for use in the present invention in that the cysteine residues are needed for the biological activity of the protein does not militate against a conclusion of enablement. One skilled in the art is clearly enabled to perform such work as needed to determine whether the cysteine residues of a given protein are needed for retention of biological activity.

Id. at 1907 (emphasis added).

The Board found persuasive the fact that (a) muteins having activity could be routinely identified through the methods disclosed in the specification and the general knowledge in the art, and (b) the claimed method had successfully identified three proteins for which muteins could be made that had the required activity.

Mark is entirely analogous. Claim 146 requires that the peptide is immunogenic in a subject comprising an HLA-A2.1 molecule and that it binds an HLA-A2.1 molecule; claim 154 has a similar limitation as does claim 160. Thus, as in Mark, any inoperative embodiments are "merely examples of work which is outside the claims." Just as in Mark, where "one skilled in the art is clearly enabled to perform such work as needed to determine whether the cysteine residues of a given protein are needed for retention of biological activity," one skilled in the art is

clearly enabled to "perform such work as needed to determine whether" the peptides bearing the required motifs are immunogenic. And just as in *Mark* (and in *Wands*), routine assays are described in the specification. And as in *Mark*, the claimed methods also have successfully identified immunogenic peptides. This is confirmed in the Sette declaration paragraphs 15-16.

F. Conclusion

The Sette Declaration and legal precedent make it clear that the claimed methods and compositions may be practiced without undue experimentation, and the rejection under 35 U.S.C. § 112, first paragraph, may properly be withdrawn.

Rejection Under 35 U.S.C. §112, Second Paragraph

A number of claims were rejected under 35 U.S.C. §112, second paragraph, as the terms "at the carboxyl terminus" and "c-terminal position" in the context of the previous claims were allegedly indefinite. As presented in the new claims, the term "C-terminus" is definite as it is referenced to the subsequence or motif. Accordingly, the rejection under 35 U.S.C. § 112, second paragraph, may be withdrawn.

Rejection Under 35 U.S.C. § 103(a)

Claims 128, 129, and 137 were rejected under 35 U.S.C. §103(a) as allegedly being unpatentable over Boon *et al.*, Cheever *et al.*, or Kubo, *et al.* in view of Sette, *et al.* The new claims are supported in the '146 application which was filed 5 March 1993, so the Sette patent filed 14 September 1993 is not prior art. Thus, on a purely formal basis, the rejection as framed is inapplicable to the new claims.

Furthermore, a *prima facie* case for obvious may not be maintained because the cited documents do not result in the claimed subject matter. Claims 146-161 require the steps of (a) providing an amino acid sequence of an antigen of interest, (b) identifying a specific subsequence within that antigen characterized by the motifs described in step (b), and (c) identifying a fragment of the antigen which contains this subsequence. Neither Boon, Cheever,

nor Kubo carries out this set of steps. In particular, neither document discloses identifying subsequence as required by step (b).

Boon describes cloning experiments leading to the nucleic acid sequence of MAGE-1 (column 5) and particular CTL epitopes known in the art (see for example column 14) which is an entirely different method. There is no consideration of identifying a motif specific for a particular HLA antigen, much less HLA-A2.1. Thus, step (b) of claim 146 is completely missing and therefore is not taught or suggested by Boon.

Similarly, Cheever fails to carry out step (b). Instead, Cheever is concerned with identifying peptides derived from the Her2/Neu oncogene that induce an antibody response. There is no teaching or suggestion of scanning the amino acid sequence of the Her2/Neu oncogene for the motif in step (b).

Furthermore, Kubo does not mention the motif set forth in step (b). While Kubo describes methods for scanning antigens for subsequences which correspond to a particular motif, there is no teaching or suggestion of utilizing the particular motifs set forth in the claims. Thus, a teaching or suggestion of step (b) is also missing from Kubo.

Thus, the cited documents fail to describe a method for identifying a specific subsequence within that antigen characterized by the motifs described in step (b), and also fail to describe the motif required by all of the claims. The cited documents therefore may not establish a basis for a *prima facie* case of obviousness.

Conclusions

Formal rejections have been addressed by amendment, and a rejection for lack of an enabling written description has been shown by the declaration of Dr. Sette to be misplaced. As demonstrated by declaratory evidence, only routine experimentation is required to determine which peptides fall within the scope of the claims. Such routine experimentation is recognized as acceptable by the holdings in *In re Wands* and *Ex parte Mark*. Further, no suggestion of the claims as presently proposed is found in the cited documents. For these reasons, it is believed

that claims 146-161 are in a position for allowance and passage of these claims to issue is respectfully requested.

In the unlikely event that the transmittal letter is separated from this document and the Patent Office determines that an extension and/or other relief is required, applicants petition for any required relief including extensions of time and authorize the Commissioner to charge the cost of such petitions and/or other fees due in connection with the filing of this document to **Deposit Account No. 03-1952** referencing docket No. <u>399632000623</u>.

Respectfully submitted,

Dated:

November 15, 2001

By:

Bruce Grant

Registration Mo. 47,608

Morrison & Foerster LLP 3811 Valley Centre Drive,

Suite 500

San Diego, California 92130-2332

Telephone: (858) 720-7962 Facsimile: (858) 720-5125

HLA-A2.1 BINDING PEPTIDES AND THEIR USES

Cross-Reference to Related Applications

[0001] The present application is a continuation in part of USSN 08/159,184, filed 29

November 1993, Gray, et al. (abandoned), which is a continuation in part of USSN 08/073,205, filed 4 June 1993, Gray et al. (abandoned), which is a continuation in part of 08/027,146, filed 5 March 1993, Gray, et al. (abandoned). [It is related to USSN 08/205,13.]

All of which are incorporated herein by reference.

Technical Field

[0002] The present invention relates to compositions and methods for preventing, treating or diagnosing a number of pathological states such as viral diseases and cancers. In particular, it provides novel peptides capable of binding selected major histocompatibility complex (MHC) molecules and inducing an immune response.

Background Art

MHC molecules are expressed primarily on cells involved in initiating and sustaining immune responses, such as T lymphocytes, B lymphocytes, macrophages, etc. Class II MHC molecules are recognized by helper T lymphocytes and induce proliferation of helper T lymphocytes and amplification of the immune response to the particular immunogenic peptide that is displayed. Class I MHC molecules are expressed on almost all nucleated cells and are recognized by cytotoxic T lymphocytes (CTLs), which then destroy the antigenbearing cells. CTLs are particularly important in tumor rejection and in fighting viral infections. The CTL recognizes the antigen in the form of a peptide fragment bound to the MHC class I molecules rather than the intact foreign antigen itself. The antigen must normally be endogenously synthesized by the cell, and a portion of the protein antigen is degraded into small peptide fragments in the cytoplasm. Some of these small peptides translocate into a pre-Golgi compartment and interact with class I heavy chains to facilitate proper folding and association with the subunit o2 microglobulin. The peptide-MHC class I

complex is then routed to the cell surface for expression and potential recognition by specific CTLs.

[0004] Investigations of the crystal structure of the human MHC class I molecule, HLA-A2.1, indicate that a peptide binding groove is created by the folding of the α1 and α2 domains of the class I heavy chain (Bjorkman et al., Nature 329:506 (1987). In these investigations, however, the identity of peptides bound to the groove was not determined.

[0005] Buus et al., Science 242:1065 (1988) first described a method for acid elution of bound peptides from MHC. Subsequently, Rammensee and his coworkers (Falk et al., Nature 351:290 (1991) have developed an approach to characterize naturally processed peptides bound to class I molecules. Other investigators have successfully achieved direct amino acid sequencing of the more abundant peptides in various HPLC fractions by conventional automated sequencing of peptides eluted from class I molecules of the B type (Jardetzky, et al., Nature 353:326 (1991) and of the A2.1 type by mass spectrometry (Hunt, et al., Science 225:1261 (1992). A review of the characterization of naturally processed peptides in MHC Class I has been presented by Rötzschke and Falk (Rötzschke and Falk, Immunol. Today 12:447 (1991).

[0006] Sette et al., <u>Proc. Natl. Acad. Sci. USA</u> 86:3296 (1989) showed that MHC allele specific motifs could be used to predict MHC binding capacity. Schaeffer et al., <u>Proc. Natl. Acad. Sci. USA</u> 86:4649 (1989) showed that MHC binding was related to immunogenicity. Several authors (De Bruijn et al., <u>Eur. J. Immunol.</u>, 21:2963-2970 (1991); Pamer et al., 991 Nature 353:852-955 (1991)) have provided preliminary evidence that class I binding motifs can be applied to the identification of potential immunogenic peptides in animal models. Class I motifs specific for a number of human alleles of a given class I isotype have yet to be described. It is desirable that the combined frequencies of these different alleles should be high enough to cover a large fraction or perhaps the majority of the human outbred population.

[0007] Despite the developments in the art, the prior art has yet to provide a useful human peptide-based vaccine or therapeutic agent based on this work. The present invention provides these and other advantages.

Disclosure of the Invention

[0008] The present invention provides compositions comprising immunogenic peptides having binding motifs for HLA-A2.1 molecules. The immunogenic peptides, which bind to the appropriate MHC allele, are preferably 9 to 10 residues in length and comprise conserved residues at certain positions such as positions 2 and 9. Moreover, the peptides do not comprise negative binding residues as defined herein at other positions such as positions 1, 3, 6 and/or 7 in the case of peptides 9 amino acids in length and positions 1, 3, 4, 5, 7, 8 and/or 9 in the case of peptides 10 amino acids in length. The present invention defines positions within a motif enabling the selection of peptides which will bind efficiently to HLA A2.1.

[0009] Epitopes on a number of immunogenic target proteins can be identified using the peptides of the invention. Examples of suitable antigens include prostate cancer specific antigen (PSA), hepatitis B core and surface antigens (HBVc, HBVs) hepatitis C antigens, Epstein-Barr virus antigens, human immunodeficiency type-1 virus (HIV1) and papilloma virus antigens. The peptides are thus useful in pharmaceutical compositions for both in vivo and ex vivo therapeutic and diagnostic applications.

Definitions

[0010] The term "peptide" is used interchangeably with "oligopeptide" in the present specification to designate a series of residues, typically L-amino acids, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of adjacent amino acids. The oligopeptides of the invention are less than about 15 residues in length and usually consist of between about 8 and about 11 residues, preferably 9 or 10 residues.

[0011] An "immunogenic peptide" is a peptide which comprises an allele-specific motif such that the peptide will bind an MHC molecule and induce a CTL response. Immunogenic peptides of the invention are capable of binding to an appropriate HLA-A2.1 molecule and inducing a cytotoxic T cell response against the antigen from which the immunogenic peptide is derived.

[0012] Immunogenic peptides are conveniently identified using the algorithms of the invention. The algorithms are mathematical procedures that produce a score which enables the selection of immunogenic peptides. Typically one uses the algorithmic score with a "binding threshold" to enable selection of peptides that have a high probability of binding at

a certain affinity and will in turn be immunogenic. The algorithm is based upon either the effects on MHC binding of a particular amino acid at a particular position of a peptide or the effects on binding of a particular substitution in a motif containing peptide.

[0013] A "conserved residue" is an amino acid which occurs in a significantly higher frequency than would be expected by random distribution at a particular position in a peptide. Typically a conserved residue is one where the MHC structure may provide a contact point with the immunogenic peptide. One to three, preferably two, conserved residues within a peptide of defined length defines a motif for an immunogenic peptide. These residues are typically in close contact with the peptide binding groove, with their side chains buried in specific pockets of the groove itself. Typically, an immunogenic peptide will comprise up to three conserved residues, more usually two conserved residues.

[0014] As used herein, "negative binding residues" are amino acids which if present at certain positions (for example, positions 1, 3 and/or 7 of a 9-mer) will result in a peptide being a nonbinder or poor binder and in turn fail to be immunogenic i.e. induce a CTL response.

[0015] The term "motif" refers to the pattern of residues in a peptide of defined length, usually about 8 to about 11 amino acids, which is recognized by a particular MHC allele. The peptide motifs are typically different for each human MHC allele and differ in the pattern of the highly conserved residues and negative residues.

[0016] The binding motif for an allele can be defined with increasing degrees of precision. In one case, all of the conserved residues are present in the correct positions in a peptide and there are no negative residues in positions 1, 3 and/or 7.

[0017] The phrases "isolated" or "biologically pure" refer to material which is substantially or essentially free from components which normally accompany it as found in its native state. Thus, the peptides of this invention do not contain materials normally associated with their in situ environment, e.g., MHC I molecules on antigen presenting cells. Even where a protein has been isolated to a homogenous or dominant band, there are trace contaminants in the range of 5-10% of native protein which co-purify with the desired protein. Isolated peptides of this invention do not contain such endogenous co-purified protein.

[0018] The term "residue" refers to an amino acid or amino acid mimetic incorporated in an oligopeptide by an amide bond or amide bond mimetic.

Description of the Preferred Embodiments

[0019] The present invention relates to the determination of allele-specific peptide motifs for human Class I MHC (sometimes referred to as HLA) allele subtypes, in particular, peptide motifs recognized by HLA-A2.1 alleles. These motifs are then used to define T cell epitopes from any desired antigen, particularly those associated with human viral diseases, cancers or autoiummune diseases, for which the amino acid sequence of the potential antigen or autoantigen targets is known.

[0020] Epitopes on a number of potential target proteins can be identified in this manner. Examples of suitable antigens include prostate specific antigen (PSA), hepatitis B core and surface antigens (HBVc, HBVs) hepatitis C antigens, Epstein-Barr virus antigens, melanoma antigens (e.g., MAGE-1), human immunodeficiency virus (HIV) antigens and human papilloma virus (HPV) antigens.

[0021] Autoimmune associated disorders for which the peptides of the invention may be employed to relieve the symptoms of, treat or prevent the occurrence or reoccurrence of include, for example, multiple sclerosis (MS), rheumatoid arthritis (RA), Sjogren syndrome, scleroderma, polymyositis, dermatomyositis, systemic lupus erythematosus, juvenile rheumatoid arthritis, ankylosing spondylitis, myasthenia gravis (MG), bullous pemphigoid (antibodies to basement membrane at dermal-epidermal junction), pemphigus (antibodies to mucopolysaccharide protein complex or intracellular cement substance), glomerulonephritis (antibodies to glomerular basement membrane), Goodpasture's syndrome, autoimmune hemolytic anemia (antibodies to erythrocytes), Hashimoto's disease (antibodies to thyroid), pernicious anemia (antibodies to intrinsic factor), idiopathic thrombocytopenic purpura (antibodies to platelets), Grave's disease, and Addison's disease (antibodies to thyroglobulin), and the like.

[0022] The autoantigens associated with a number of these diseases have been identified. For example, in experimentally induced autoimmune diseases, antigens involved in pathogenesis have been characterized: in arthritis in rat and mouse, native type-II collagen is identified in collagen-induced arthritis, and mycobacterial heat shock protein in adjuvant arthritis; thyroglobulin has been identified in experimental allergic thyroiditis (EAT) in mouse; acetyl choline receptor (AChR) in experimental allergic myasthenia gravis (EAMG); and myelin basic protein (MBP) and proteolipid protein (PLP) in experimental allergic

encephalomyelitis (EAE) in mouse and rat. In addition, target antigens have been identified in humans: type-II collagen in human rheumatoid arthritis; and acetyl choline receptor in myasthenia gravis.

[0023] Peptides comprising the epitopes from these antigens are synthesized and then tested for their ability to bind to the appropriate MHC molecules in assays using, for example, purified class I molecules and radioiodonated peptides and/or cells expressing empty class I molecules by, for instance, immunofluorescent staining and flow microfluorometry, peptide-dependent class I assembly assays, and inhibition of CTL recognition by peptide competition. Those peptides that bind to the class I molecule are further evaluated for their ability to serve as targets for CTLs derived from infected or immunized individuals, as well as for their capacity to induce primary in vitro or in vivo CTL responses that can give rise to CTL populations capable of reacting with virally infected target cells or tumor cells as potential therapeutic agents.

[0024] The MHC class I antigens are encoded by the HLA-A, B, and C loci. HLA-A and B antigens are expressed at the cell surface at approximately equal densities, whereas the expression of HLA-C is significantly lower (perhaps as much as 10-fold lower). Each of these loci have a number of alleles. The peptide binding motifs of the invention are relatively specific for each allelic subtype.

[0025] For peptide-based vaccines, the peptides of the present invention preferably comprise a motif recognized by an MHC I molecule having a wide distribution in the human population. Since the MHC alleles occur at different frequencies within different ethnic groups and races, the choice of target MHC allele may depend upon the target population. Table 1 shows the frequency of various alleles at the HLA-A locus products among different races. For instance, the majority of the Caucasoid population can be covered by peptides which bind to four HLA-A allele subtypes, specifically HLA-A2.1, A1, A3.2, and A24.1. Similarly, the majority of the Asian population is encompassed with the addition of peptides binding to a fifth allele HLA-A11.2.

TABLE 1

A Allele/Subtype	<u>N(69)*</u>	<u>A(54)</u>	<u>C(502)</u>
A1	10.1(7)	1.8(1)	27.4(138)
A2.1	11.5(8)	37.0(20)	39.8(199)
A2.2	10.1(7)	0	3.3(17)
A2.3	1.4(1)	5.5(3)	0.8(4)
A2.4	- '	-	-
A2.5	-	-	-
A3.1	1.4(1)	0	0.2(0)
A3.2	5.7(4)	5.5(3)	21.5(108)
A11.1	0 .	5.5(3)	0
A11.2	5.7(4)	31.4(17)	8.7(44)
A11.3	0	3.7(2)	0
A23	4.3(3)	-	3.9(20)
A24	2.9(2)	27.7(15)	15.3(77)
A24.2	-		·
A24.3	-	-	-
A25	1.4(1)	•	6.9(35)
A26.1	4.3(3)	9.2(5)	5.9(30)
A26.2	7.2(5)	-	1.0(5)
A26V	-	3.7(2)	-
A28.1	10.1(7)	-	1.6(8)
A28.2	1.4(1)	-	7.5(38)
A29.1	1.4(1)	•	1.4(7)
A29.2	10.1(7)	1.8(1)	5.3(27)
A30.1	8.6(6)	-	4.9(25)
A30.2	1.4(1)	-	0.2(1)
A30.3	7.2(5)	-	3.9(20)
A31	4.3(3)	7.4(4)	6.9(35)
A32	2.8(2)	-	7.1(36)
Aw33.1	8.6(6)	-	2.5(13)
Aw33.2	2.8(2)	16.6(9)	1.2(6)
Aw34.1	1.4(1)	-	-
Aw34.2	14.5(10)	÷	0.8(4)
Aw36	5.9(4)	-	-

Table compiled from B. DuPont, <u>Immunobiology of HLA</u>, Vol. I, Histocompatibility Testing 1987, Springer-Verlag, New York 1989.

[0026] The nomenclature used to describe peptide compounds follows the conventional practice wherein the amino group is presented to the left (the N-terminus) and the carboxyl group to the right (the C-terminus) of each amino acid residue. In the formulae representing

N - negroid; A = Asian; C = caucasoid. Numbers in parenthesis represent the number of individuals included in the analysis.

selected specific embodiments of the present invention, the amino- and carboxyl-terminal groups, although not specifically shown, are in the form they would assume at physiologic pH values, unless otherwise specified. In the amino acid structure formulae, each residue is generally represented by standard three letter or single letter designations. The L-form of an amino acid residue is represented by a capital single letter or a capital first letter of a three-letter symbol, and the D-form for those amino acids having D-forms is represented by a lower case single letter or a lower case three letter symbol. Glycine has no asymmetric carbon atom and is simply referred to as "Gly" or G.

Modes of Carrying Out the Invention

[0027] The procedures used to identify peptides of the present invention generally follow the methods disclosed in Falk et al., Nature 351:290 (1991), which is incorporated herein by reference. Briefly, the methods involve large-scale isolation of MHC class I molecules, typically by immunoprecipitation or affinity chromatography, from the appropriate cell or cell line. Examples of other methods for isolation of the desired MHC molecule equally well known to the artisan include ion exchange chromatography, lectin chromatography, size exclusion, high performance ligand chromatography, and a combination of all of the above techniques.

[0028] In the typical case, immunoprecipitation is used to isolate the desired allele. A number of protocols can be used, depending upon the specificity of the antibodies used. For example, allele-specific mAb reagents can be used for the affinity purification of the HLA-A, HLA-B₁, and HLA-C molecules. Several mAb reagents for the isolation of HLA-A molecules are available. The monoclonal BB7.2 is suitable for isolating HLA-A2 molecules. Affinity columns prepared with these mAbs using standard techniques are successfully used to purify the respective HLA-A allele products.

[0029] In-addition to allele-specific mAbs, broadly reactive anti-HLA-A, B, C mAbs, such as W6/32 and B9.12.1, and one anti-HLA-B, C mAb, B1.23.2, could be used in alternative affinity purification protocols as described in the example section below. The peptides bound to the peptide binding groove of the isolated MHC molecules are eluted typically using acid treatment. Peptides can also be dissociated from class I molecules by a variety of standard denaturing means, such as heat, pH, detergents, salts, chaotropic agents, or a combination thereof. Peptide fractions are further separated from the MHC molecules by

reversed-phase high performance liquid chromatography (HPLC) and sequenced. Peptides can be separated by a variety of other standard means well known to the artisan, including filtration, ultrafiltration, electrophoresis, size chromatography, precipitation with specific antibodies, ion exchange chromatography, isoelectrofocusing, and the like.

[0030] Sequencing of the isolated peptides can be performed according to standard techniques such as Edman degradation (Hunkapiller, M.W., et al., Methods Enzymol. 91, 399 [1983]). Other methods suitable for sequencing include mass spectrometry sequencing of individual peptides as previously described (Hunt, et al., Science 225:1261 (1992), which is incorporated herein by reference). Amino acid sequencing of bulk heterogenous peptides (e.g., pooled HPLC fractions) from different class I molecules typically reveals a characteristic sequence motif for each class I allele.

[0031] Definition of motifs specific for different class I alleles allows the identification of potential peptide epitopes from an antigenic protein whose amino acid sequence is known. Typically, identification of potential peptide epitopes is initially carried out using a computer to scan the amino acid sequence of a desired antigen for the presence of motifs. The epitopic sequences are then synthesized. The capacity to bind MHC Class molecules is measured in a variety of different ways. One means is a Class I molecule binding assay as described in Example 8, below. Other alternatives described in the literature include inhibition of antigen presentation (Sette, et al., <u>J. Immunol.</u> 141:3893 (1991), in vitro assembly assays (Townsend, et al., <u>Cell</u> 62:285 (1990), and FACS based assays using mutated ells, such as RMA.S (Melief, et al., <u>Eur. J. Immunol.</u> 21:2963 (1991)).

[0032] Next, peptides that test positive in the MHC class I binding assay are assayed for the ability of the peptides to induce specific CTL responses in vitro. For instance, [A]antigen-presenting cells that have been incubated with a peptide can be assayed for the ability to induce CTL responses in responder cell populations. Antigen-presenting cells can be normal cells such as peripheral blood mononuclear cells or dendritic cells (Inaba, et al., <u>J. Exp. Med.</u> 166:182 (1987); Boog, <u>Eur. J. Immunol</u>. 18:219 [1988]).

[0033] Alternatively, mutant mammalian cell lines that are deficient in their ability to load class I molecules with internally processed peptides, such as the mouse cell lines RMA-S (Kärre, et al., Nature, 319:675 (1986); Ljunggren, et al., Eur. J. Immunol. 21:2963-2970 (1991)), and the human somatic T cell hybrid, T-2 (Cerundolo, et al., Nature 345:449-452 (1990)) and which have been transfected with the appropriate human class I genes are

conveniently used, when peptide is added to them, to test for the capacity of the peptide to induce in vitro primary CTL responses. Other eukaryotic cell lines which could be used include various insect cell lines such as mosquito larvae (ATCC cell lines CCL 125, 126, 1660, 1591, 6585, 6586), silkworm (ATTC CRL 8851), armyworm (ATCC CRL 1711), moth (ATCC CCL 80) and Drosophila cell lines such as a Schneider cell line (see Schneider J. Embryol. Exp. Morphol. 27:353-365 [1927]).

[0034] Peripheral blood lymphocytes are conveniently isolated following simple venipuncture or leukapheresis of normal donors or patients and used as the responder cell sources of CTL precursors. In one embodiment, the appropriate antigen-presenting cells are incubated with $10\text{-}100~\mu\text{M}$ of peptide in serum-free media for 4 hours under appropriate culture conditions. The peptide-loaded antigen-presenting cells are then incubated with their responder cell populations in vitro for 7 to 10 days under optimized culture conditions. Positive CTL activation can be determined by assaying the cultures for the presence of CTLs that kill radiolabeled target cells, both specific peptide-pulsed targets as well as target cells expressing endogenously processed form of the relevant virus or tumor antigen from which the peptide sequence was derived.

[0035] Specificity and MHC restriction of the CTL is determined by testing against different peptide target cells expressing appropriate or inappropriate human MHC class I. The peptides that test positive in the MHC binding assays and give rise to specific CTL responses are referred to herein as immunogenic peptides.

[0036] The immunogenic peptides can be prepared synthetically, or by recombinant DNA technology or from natural sources such as whole viruses or tumors. Although the peptide will preferably be substantially free of other naturally occurring host cell proteins and fragments thereof, in some embodiments the peptides can be synthetically conjugated to native fragments or particles.

[0037] The polypeptides or peptides can be a variety of lengths, either in their neutral (uncharged) forms or in forms which are salts, and either free of modifications such as glycosylation, side chain oxidation, or phosphorylation or containing these modifications, subject to the condition that the modification not destroy the biological activity of the polypeptides as herein described.

[0038] Desirably, the peptide will be as small as possible while still maintaining substantially all of the biological activity of the large peptide. When possible, it may be

desirable to optimize peptides of the invention to a length of 9 or 10 amino acid residues, commensurate in size with endogenously processed viral peptides or tumor cell peptides that are bound to MHC class I molecules on the cell surface.

[0039] Peptides having the desired activity may be modified as necessary to provide certain desired attributes, e.g., improved pharmacological characteristics, while increasing or at least retaining substantially all of the biological activity of the unmodified peptide to bind the desired MHC molecule and activate the appropriate T cell. For instance, the peptides may be subject to various changes, such as substitutions, either conservative or nonconservative, where such changes might provide for certain advantages in their use, such as improved MHC binding. By conservative substitutions is meant replacing an amino acid residue with another which is biologically and/or chemically similar, e.g., one hydrophobic residue for another, or one polar residue for another. The substitutions include combinations such as Gly, Ala; Val, Ile, Leu, Met; Asp, Glu; Asn, Gln; Ser, Thr; Lys, Arg; and Phe, Tyr. The effect of single amino acid substitutions may also be probed using D-amino acids. Such modifications may be made using well known peptide synthesis procedures, as described in e.g., Merrifield, Science 232:341-347 (1986), Barany and Merrifield, The Peptides, Gross and Meienhofer, eds. (N.Y., Academic Press), pp. 1-284 (1979); and Stewart and Young, Solid Phase Peptide Synthesis, (Rockford, Ill., Pierce), 2d Ed. (1984), incorporated by reference herein.

[0040] The peptides can also be modified by extending or decreasing the compound's amino acid sequence, e.g., by the addition or deletion of amino acids. The peptides or analogs of the invention can also be modified by altering the order or composition of certain residues, it being readily appreciated that certain amino acid residues essential for biological activity, e.g., those at critical contact sites or conserved residues, may generally not be altered without an adverse effect on biological activity. The non-critical amino acids need not be limited to those naturally occurring in proteins, such as L- α -amino acids, or their D-isomers, but may include non-natural amino acids as well, such as β - δ -8-amino acids, as well as many derivatives of L- α -amino acids.

[0041] Typically, a series of peptides with single amino acid substitutions are employed to determine the effect of electrostatic charge, hydrophobicity, etc. on binding. For instance, a series of positively charged (e.g., Lys or Arg) or negatively charged (e.g., Glu) amino acid substitutions are made along the length of the peptide revealing different patterns of

sensitivity towards various MHC molecules and T cell receptors. In addition, multiple substitutions using small, relatively neutral moieties such as Ala, Gly, Pro, or similar residues may be employed. The substitutions may be homo-oligomers or hetero-oligomers. The number and types of residues which are substituted or added depend on the spacing necessary between essential contact points and certain functional attributes which are sought (e.g., hydrophobicity versus hydrophilicity). Increased binding affinity for an MHC molecule or T cell receptor may also be achieved by such substitutions, compared to the affinity of the parent peptide. In any event, such substitutions should employ amino acid residues or other molecular fragments chosen to avoid, for example, steric and charge interference which might disrupt binding.

[0042] Amino acid substitutions are typically of single residues. Substitutions, deletions, insertions or any combination thereof may be combined to arrive at a final peptide. Substitutional variants are those in which at least one residue of a peptide has been removed and a different residue inserted in its place. Such substitutions generally are made in accordance with the following Table 2 when it is desired to finely modulate the characteristics of the peptide.

TABLE 2

Original Residue	Exemplary Substitution	
Ala		
	Ser	
Arg	Lys, His	
Asn	Gln	
Asp	Glu	
Cys	Ser	
Gln .	Asn	
Glu	Asp	
Gly	Pro	
His	Lys; Arg	
Ile	Leu; Val	
Leu	Ile; Val	
Lys	Arg; His	
Met	Leu; Ile	
Phe _	Tyr; Trp	
Ser	Thr	
Thr _.	Ser	
Trp	Тут; Phe	
Тут	Trp; Phe	
Val	Ile; Leu	

[0043] Substantial changes in function (e.g., affinity for MHC molecules or T cell receptors) are made by selecting substitutions that are less conservative than those in Table 2, i.e., selecting residues that differ more significantly in their effect on maintaining (a) the structure of the peptide backbone in the area of the substitution, for example as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site or (c) the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in peptide properties will be those in which (a) hydrophilic residue, e.g. seryl, is substituted for (or by) a hydrophobic residue, e.g. leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a residue having an electropositive side chain, e.g., lysl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g. glutamyl or aspartyl; or (c) a residue having a bulky side chain, e.g. phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine.

[0044] The peptides may also comprise isosteres of two or more residues in the immunogenic peptide. An isostere as defined here is a sequence of two or more residues that can be substituted for a second sequence because the steric conformation of the first sequence fits a binding site specific for the second sequence. The term specifically includes peptide backbone modifications well known to those skilled in the art. Such modifications include modifications of the amide nitrogen, the α-carbon, amide carbonyl, complete replacement of the amide bond, extensions, deletions or backbone crosslinks. See, generally, Spatola, Chemistry and Biochemistry of Amino Acids, peptides and Proteins, Vol. VII (Weinstein ed., 1983).

[0045] Modifications of peptides with various amino acid mimetics or unnatural amino acids are particularly useful in increasing the stability of the peptide in vivo. Stability can be assayed in a number of ways. For instance, peptidases and various biological media, such as human plasma and serum, have been used to test stability. See, e.g., Verhoef et al., Eur. J. Drug Metab. Pharmacokin. 11:291-302 (1986). Half life of the peptides of the present invention is conveniently determined using a 25% human serum (v/v) assay. The protocol is generally as follows. Pooled human serum (Type AB, non-heat inactivated) is delipidated by centrifugation before use. The serum is then diluted to 25% with RPMI tissue culture media and used to test peptide stability. At predetermined time intervals a small amount of reaction solution is removed and added to either 6% aqueous trichloracetic acid or ethanol. The cloudy reaction sample is cooled (4°C) for 15 minutes and then spun to pellet the precipitated serum proteins. The

presence of the peptides is then determined by reversed-phase HPLC using stability-specific chromatography conditions.

[0046] The peptides of the present invention or analogs thereof which have CTL stimulating activity may be modified to provide desired attributes other than improved serum half life. For instance, the ability of the peptides to induce CTL activity can be enhanced by linkage to a sequence which contains at least one epitope that is capable of inducing a T helper cell response. Particularly preferred immunogenic peptides/T helper conjugates are linked by a spacer molecule. The spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selected from, e.g., Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will usually be at least one or two residues, more usually three to six residues. Alternatively, the CTL peptide may be linked to the T helper peptide without a spacer. The immunogenic peptide may be linked to the T helper peptide either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide. The amino terminus of either the immunogenic peptide or the T helper peptide may be acylated. Exemplary T helper peptides include tetanus toxoid 830-843, influenza 307-319, malaria circumsporozoite 382-398 and 378-389.

[0047] In some embodiments it may be desirable to include in the pharmaceutical compositions of the invention at least one component which primes CTL. Lipids have been identified as agents capable of priming CTL in vivo against viral antigens. For example, palmitic acid residues can be attached to the alpha and epsilon amino groups of a Lys residue and then linked, e.g., via one or more linking residues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an immunogenic peptide. The lipidated peptide can then be injected directly in a micellar form, incorporated into a liposome or emulsified in an adjuvant, e.g., incomplete Freund's adjuvant. In a preferred embodiment a particularly effective immunogen comprises palmitic acid attached to alpha and epsilon amino groups of Lys, which is attached via linkage, e.g., Ser-Ser, to the amino terminus of the immunogenic peptide.

[0048] As another example of lipid priming of CTL responses, <u>E. coli</u> lipoproteins, such as tripalmitoyl-S-glycerylcysteinlyseryl-serine (P₃CSS) can be used to prime virus specific CTL when covalently attached to an appropriate peptide. See, Deres et al., <u>Nature</u> 342:561-564 (1989), incorporated herein by reference. Peptides of the invention can be coupled to P₃CSS, for example, and the lipopeptide administered to an individual to specifically prime a CTL response to the target antigen. Further, as the induction of neutralizing antibodies can also be primed with P₃CSS conjugated to a peptide which displays an appropriate epitope, the two compositions can be combined to more effectively elicit both humoral and cell-mediated responses to infection.

[0049] In addition, additional amino acids can be added to the termini of a peptide to provide for ease of linking peptides one to another, for coupling to a carrier support, or larger peptide, for modifying the physical or chemical properties of the peptide or oligopeptide, or the like. Amino acids such as tyrosine, cysteine, lysine, glutamic or aspartic acid, or the like, can be introduced at the C- or N-terminus of the peptide or oligopeptide. Modification at the C terminus in some cases may alter binding characteristics of the peptide. In addition, the peptide or oligopeptide sequences can differ from the natural sequence by being modified by terminal-NH₂ acylation, e.g., by alkanoyl (C₁-C₂₀) or thioglycolyl acetylation, terminal-carboxyl amidation, e.g., ammonia, methylamine, etc. In some instances these modifications may provide sites for linking to a support or other molecule.

[0050] The peptides of the invention can be prepared in a wide variety of ways. Because of their relatively short size, the peptides can be synthesized in solution or on a solid support in accordance with conventional techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. See, for example, Stewart and Young, Solid Phase Peptide Synthesis, 2d. ed., Pierce Chemical Co. (1984), supra.

[0051] Alternatively, recombinant DNA technology may be employed wherein a nucleotide sequence which encodes an immunogenic peptide of interest is inserted into an expression vector, transformed or transfected into an appropriate host cell and cultivated under conditions suitable for expression. These procedures are generally known in the art, as described generally in Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, New York (1982), which is incorporated herein by reference. Thus, fusion

proteins which comprise one or more peptide sequences of the invention can be used to present the appropriate T cell epitope.

synthesized by chemical techniques, for example, the phosphotriester method of Matteucci et al., J. Am. Chem. Soc. 103:3185 (1981), modification can be made simply by substituting the appropriate base(s) for those encoding the native peptide sequence. The coding sequence can then be provided with appropriate linkers and ligated into expression vectors commonly available in the art, and the vectors used to transform suitable hosts to produce the desired fusion protein. A number of such vectors and suitable host systems are now available. For expression of the fusion proteins, the coding sequence will be provided with operably linked start and stop codons, promoter and terminator regions and usually a replication system to provide an expression vector for expression in the desired cellular host. For example, promoter sequences compatible with bacterial hosts are provided in plasmids containing convenient restriction sites for insertion of the desired coding sequence. The resulting expression vectors are transformed into suitable bacterial hosts. Of course, yeast or mammalian cell hosts may also be used, employing suitable vectors and control sequences.

[0053] The peptides of the present invention and pharmaceutical and vaccine compositions thereof are useful for administration to mammals, particularly humans, to treat and/or prevent viral infection and cancer. Examples of diseases which can be treated using the immunogenic peptides of the invention include prostate cancer, hepatitis B, hepatitis C, AIDS, renal carcinoma, cervical carcinoma, lymphoma, CMV and condlyloma acuminatum.

[0054] For pharmaceutical compositions, the immunogenic peptides of the invention are administered to an individual already suffering from cancer or infected with the virus of interest. Those in the incubation phase or the acute phase of infection can be treated with the immunogenic peptides separately or in conjunction with other treatments, as appropriate. In therapeutic applications, compositions are administered to a patient in an amount sufficient to elicit an effective CTL response to the virus or tumor antigen and to cure or at least partially arrest symptoms and/or complications. An amount adequate to accomplish this is defined as "therapeutically effective dose." Amounts effective for this use will depend on, e.g., the peptide composition, the manner of administration, the stage and severity of the disease being treated, the

weight and general state of health of the patient, and the judgment of the prescribing physician, but generally range for the initial immunization (that is for therapeutic or prophylactic administration) from about 1.0 μ g to about 5000 μ g of peptide for a 70 kg patient, followed by boosting dosages of from about 1.0 μ g to about 1000 μ g of peptide pursuant to a boosting regimen over weeks to months depending upon the patient's response and condition by measuring specific CTL activity in the patient's blood. It must be kept in mind that the peptides and compositions of the present invention may generally be employed in serious disease states, that is, life-threatening or potentially life threatening situations. In such cases, in view of the minimization of extraneous substances and the relative nontoxic nature of the peptides, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these peptide compositions.

[0055] For therapeutic use, administration should begin at the first sign of viral infection or the detection or surgical removal of tumors or shortly after diagnosis in the case of acute infection. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter. In chronic infection, loading doses followed by boosting doses may be required.

[0056] Treatment of an infected individual with the compositions of the invention may hasten resolution of the infection in acutely infected individuals. For those individuals susceptible (or predisposed) to developing chronic infection the compositions are particularly useful in methods for preventing the evolution from acute to chronic infection. Where the susceptible individuals are identified prior to or during infection, for instance, as described herein, the composition can be targeted to them, minimizing need for administration to a larger population.

[0057] The peptide compositions can also be used for the treatment of chronic infection and to stimulate the immune system to eliminate virus-infected cells in carriers. It is important to provide an amount of immuno-potentiating peptide in a formulation and mode of administration sufficient to effectively stimulate a cytotoxic T cell response. Thus, for treatment of chronic infection, a representative dose is in the range of about 1.0 μ g to about 5000 μ g, preferably about 5 μ g to 1000 μ g for a 70 kg patient per dose. Immunizing doses followed by boosting doses at established intervals, e.g., from one to four weeks, may be required, possibly for a prolonged period of time to effectively immunize an individual. In the case of chronic infection,

administration should continue until at least clinical symptoms or laboratory tests indicate that the viral infection has been eliminated or substantially abated and for a period thereafter.

[0058] The pharmaceutical compositions for therapeutic treatment are intended for parenteral, topical, oral or local administration. Preferably, the pharmaceutical compositions are administered parenterally, e.g., intravenously, subcutaneously, intradermally, or intramuscularly. Thus, the invention provides compositions for parenteral administration which comprise a solution of the immunogenic peptides dissolved or suspended in an acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers may be used, e.g., water, buffered water, 0.8% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well known sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, wetting agents and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, etc.

[0059] The concentration of CTL stimulatory peptides of the invention in the pharmaceutical formulations can vary widely, i.e., from less than about 0.1%, usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected.

[0060] The peptides of the invention may also be administered via liposomes, which serve to target the peptides to a particular tissue, such as lymphoid tissue, or targeted selectively to infected cells, as well as increase the half-life of the peptide composition. Liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations the peptide to be delivered is incorporated as part of a liposome, alone or in conjunction with a molecule which binds to, e.g., a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the selected therapeutic/immunogenic peptide compositions.

Liposomes for use in the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), U.S. Patent Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369, incorporated herein by reference.

[0061] For targeting to the immune cells, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a peptide may be administered intravenously, locally, topically, etc. in a dose which varies according to, inter alia, the manner of administration, the peptide being delivered, and the stage of the disease being treated.

[0062] For solid compositions, conventional nontoxic solid carriers may be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10-95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of 25%-75%.

[0063] For aerosol administration, the immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are 0.01%-20% by weight, preferably 1%-10%. The surfactant must, of course, be nontoxic, and preferably soluble in the propellant. Representative of such agents are the esters or partial esters of fatty acids containing from 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute 0.1%-20% by weight of the composition, preferably 0.25-5%. The balance of the composition is ordinarily propellant. A carrier can also be included, as desired, as with, e.g., lecithin for intranasal delivery.

[0064] In another aspect the present invention is directed to vaccines which contain as an active ingredient an immunogenically effective amount of an immunogenic peptide as described herein. The peptide(s) may be introduced into a host, including humans, linked to its own carrier or as a homopolymer or heteropolymer of active peptide units. Such a polymer has the advantage of increased immunological reaction and, where different peptides are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that react with different antigenic determinants of the virus or tumor cells. Useful carriers are well known in the art, and include, e.g., thyroglobulin, albumins such as human serum albumin, tetanus toxoid, polyamino acids such as poly(lysine: glutamic acid), influenza, hepatitis B virus core protein, hepatitis B virus recombinant vaccine and the like. The vaccines can also contain a physiologically tolerable (acceptable) diluent such as water, phosphate buffered saline, or saline, and further typically include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum are materials well known in the art. And, as mentioned above, CTL responses can be primed by conjugating peptides of the invention to lipids, such as P₃CSS. Upon immunization with a peptide composition as described herein, via injection, aerosol, oral, transdermal or other route, the immune system of the host responds to the vaccine by producing large amounts of CTLs specific for the desired antigen, and the host becomes at least partially immune to later infection, or resistant to developing chronic infection.

[0065] Vaccine compositions containing the peptides of the invention are administered to a patient susceptible to or otherwise at risk of viral infection or cancer to elicit an immune response against the antigen and thus enhance the patient's own immune response capabilities. Such an amount is defined to be an "immunogenically effective dose." In this use, the precise amounts again depend on the patient's state of health and weight, the mode of administration, the nature of the formulation, etc., but generally range from about 1.0 μ g to about 5000 μ g per 70 kilogram patient, more commonly from about 10 μ g to about 500 μ g mg per 70 kg of body weight.

[0066] In some instances it may be desirable to combine the peptide vaccines of the invention with vaccines which induce neutralizing antibody responses to the virus of interest, particularly to viral envelope antigens.

[0067] For therapeutic or immunization purposes, the peptides of the invention can also be expressed by attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use

of vaccinia virus as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into an acutely or chronically infected host or into a non-infected host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits a host CTL response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848, incorporated herein by reference. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al. (Nature 351:456-460 (1991)) which is incorporated herein by reference. A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, e.g., Salmonella typhi vectors and the like, will be apparent to those skilled in the art from the description herein.

[0068] Antigenic peptides may be used to elicit CTL ex vivo, as well. The resulting CTL, can be used to treat chronic infections (viral or bacterial) or tumors in patients that do not respond to other conventional forms of therapy, or will not respond to a peptide vaccine approach of therapy. Ex vivo CTL responses to a particular pathogen (infectious agent or tumor antigen) are induced by incubating in tissue culture the patient's CTL precursor cells (CTLp) together with a source of antigen-presenting cells (APC) and the appropriate immunogenic peptide. After an appropriate incubation time (typically 1-4 weeks), in which the CTLp are activated and mature and expand into effector CTL, the cells are infused back into the patient, where they will destroy their specific target cell (an infected cell or a tumor cell).

[0069] The peptides may also find use as diagnostic reagents. For example, a peptide of the invention may be used to determine the susceptibility of a particular individual to a treatment regimen which employs the peptide or related peptides, and thus may be helpful in modifying an existing treatment protocol or in determining a prognosis for an affected individual. In addition, the peptides may also be used to predict which individuals will be at substantial risk for developing chronic infection.

[0070] The following examples are [is] offered by way of illustration, not by way of limitation.

Example 1

Class I antigen isolation

[0071] A flow diagram of an HLA-A antigen purification scheme is presented in Figure 1.

Briefly, the cells bearing the appropriate allele were grown in large batches (6-8 liters yielding ~5 x 109 cells), harvested by centrifugation and washed. All cell lines were maintained in RPMI 1640 media (Sigma) supplemented with 10% fetal bovine serum (FBS) and antibiotics. For large-scale cultures, cells were grown in roller bottle culture in RPMI 1640 with 10% FBS or with 10% horse serum and antibiotics. Cells were harvested by centrifugation at 1500 RPM IEC-CRU5000 centrifuge with 259 rotor and washed three times with phosphate-buffered saline (PBS) (0.01 M P04, 0.154 M NaCl, pH 7.2).

[0072] Cells were pelleted and stored at -70°C or treated with detergent lysing solution to prepare detergent lysates. Cell lysates were prepared by the addition of stock detergent solution [1% NP-40 (Sigma) or Renex 30 (Accurate Chem. Sci. Corp., Westbury, NY 11590), 150 mM NaCl, 50 mM Tris, pH 8.0] to the cell pellets (previously counted) at a ratio of 50-100 x 10⁶ cells per ml detergent solution. A cocktail of protease inhibitors was added to the premeasured volume of stock detergent solution immediately prior to the addition to the cell pellet. Addition of the protease inhibitor cocktail produced final concentrations of the following: phenylmethylsulfonyl fluoride (PMSF), 2 mM; aprotinin, 5 μg/ml; leupeptin, 10 μg/ml; pepstatin, 10 μg/ml; iodoacetamide, 100 μM; and EDTA, 3 ng/ml. Cell lysis was allowed to proceed at 4°C for 1 hour with periodic mixing. Routinely 5-10 x 10⁹ cells were lysed in 50-100 ml of detergent solution. The lysate was clarified by centrifugation at 15,000 x g for 30 minutes at 4°C and subsequent passage of the supernatant fraction through a 0.2 μ filter unit (Nalgene).

[0073] The HLA-A antigen purification was achieved using affinity columns prepared with mAb-conjugated Sepharose beads. For antibody production, cells were grown in RPMI with 10% FBS in large tissue culture flasks (Corning 25160-225). Antibodies were purified from clarified tissue culture medium by ammonium sulfate fractionation followed by affinity chromatography on protein-A-Sepharose (Sigma). Briefly, saturated ammonium sulfate was added slowly with stirring to the tissue culture supernatant to 45% (volume to volume) overnight

at 4°C to precipitate the immunoglobulins. The precipitated proteins were harvested by centrifugation at 10,000 x g for 30 minutes. The precipitate was then dissolved in a minimum volume of PBS and transferred to dialysis tubing (Spectro/Por 2, Mol. wt. cutoff 12,000-14,000, Spectum Medical Ind.). Dialysis was against PBS (≥0 times the protein solution volume) with 4-6 changes of dialysis buffer over a 24-48 hour period at 4°C. The dialyzed protein solution was clarified by centrifugation (10,000 x g for 30 minutes) and the pH of the solution adjusted to pH 8.0 with 1N NaOH. Protein-A-Sepharose (Sigma) was hydrated according to the manufacturer's instructions, and a protein-A-Sepharose column was prepared. A column of 10 ml bed volume typically binds 50-100 mg of mouse IgG.

[0074] The protein sample was loaded onto the protein-A-Sepharose column using a peristaltic pump for large loading volumes or by gravity for smaller volumes (<100 ml). The column was washed with several volumes of PBS, and the eluate was monitored at A280 in a spectrophotometer until base line was reached. The bound antibody was eluted using 0.1 M citric acid at suitable pH (adjusted to the appropriate pH with 1N NaOH). For mouse IgG-1 pH 6.5 was used for IgG2a pH 4.5 was used and for IgG2b and IgG3 pH 3.0 was used. 2 M Tris base was used to neutralize the eluate. Fractions containing the antibody (monitored by A280) were pooled, dialyzed against PBS and further concentrated using an Amicon Stirred Cell system (Amicon Model 8050 with YM30 membrane). The anti-A2 mAb, BB7.2, was useful for affinity purification.

[0075] The HLA-A antigen was purified using affinity columns prepared with mAb-conjugated Sepharose beads. The affinity columns were prepared by incubating protein-A-Sepharose beads (Sigma) with affinity-purified mAb as described above. Five to 10 mg of mAb per ml of bead is the preferred ratio. The mAb bound beads were washed with borate buffer (borate buffer: 100 mM sodium tetraborate, 154 mM NaCl, pH 8.2) until the washes show A280 at based line. Dimethyl pimelimidate (20 mM) in 200 mM triethanolamine was added to covalently crosslink the bound mAb to the protein-A-Sepharose (Schneider et al., J. Biol. Chem. 257:10766 (1982). After incubation for 45 minutes at room temperature on a rotator, the excess crosslinking reagent was removed by washing the beads twice with 10-20 ml of 20 mM ethanolamine, pH 8.2. Between each one the slurry was placed on a rotator for 5 minutes at room temperature. The beads were washed with borate buffer and with PBS plus 0.02% sodium azide.

affinity column (flow rate of 0.1-0.25 ml per minute) to allow the binding of the antigen to the immobilized antibody. After the lysate was allowed to pass through the column, the column was washed sequentially with 20 column volumes of detergent stock solution plus 0.1% sodium dodecyl sulfate, 20 column volumes of 0.5 M NaCl, 20 mM Tris, pH 8.0, and 10 column volumes of 20 mM Tris, pH 8.0. The HLA-A antigen bound to the mAb was eluated with a basic buffer solution (50 mM diethylamine in water). As an alternative, acid solutions such as 0.15-0.25 M acetic acid were also used to elute the bound antigen. An aliquot of the eluate (1/50) was removed for protein quantification using either a colorimetric assay (BCA assay, Pierce) or by SDS-PAGE, or both. SDS-PAGE analysis was performed as described by Laemmli (Laemmli, U.K., Nature 227:680 (1970)) using known amounts of bovine serum albumin (Sigma) as a protein standard. Allele specific antibodies were used to purify the specific MHC molecule. In the case of HLA-A2, the mAb BB7.2 was used.

Example 2

Isolation and sequencing of naturally processed peptides

[0077] For the HLA-A preparations derived from the base (50 mM diethylamine) elution protocol, the eluate was immediately neutralized with 1 N acetic acid to pH 7.0-7.5. The neutralized eluate was concentrated to a volume of 1-2 ml in an Amicon stirred cell [Model 8050, with YM3 membranes (Amicon)]. Ten ml of ammonium acetate (0.01 M, pH 8.0) was added to the concentrator to remove the non-volatile salts, and the sample was concentrated to approximately 1 ml. A small sample (1/50) was removed for protein quantitation as described above. The remainder was recovered into a 15 ml polypropylene conical centrifuge tube (Falcon, 2097) (Becton Dickinson). Glacial acetic acid was added to obtain a final concentration of 10% acetic acid. The acidified sample was placed in a boiling water bath for 5 minutes to allow for the dissociation of the bound peptides. The sample was cooled on ice, returned to the concentrator and the filtrate was collected. Additional aliquots of 10% acetic acid (1-2 ml) were added to the concentrator, and this filtrate was pooled with the original filtrate. Finally, 1-2 ml of distilled water was added to the concentrator, and this filtrate was pooled as well.

[0078] The retentate contains the bulk of the HLA-A heavy chain and β_2 -microglobulin, while the filtrate contains the naturally processed bound peptides and other components with molecular weights less than about 3000. The pooled filtrate material was lyophilized in order to concentrate the peptide fraction. The sample was then ready for further analysis.

[0079] For HPLC (high performance liquid chromatography) separation of the peptide fractions, the lyophilized sample was dissolved in 50 μ l of distilled water, or into 0.1% trifluoracetic acid (TFA) (Applied Biosystems) in water and injected to a C18 reverse-phase narrow bore column (Beckman C18 Ultrasphere, 10 x 250 mm), using a gradient system described by Stone and Williams (Stone, K.L. and Williams K.R., in, Macromolecular Sequencing and Synthesis; Selected Methods and Applications, A.R. Liss, New York, 1988, pp. 7-24. Buffer A was 0.06% TFA in water (Burdick-Jackson) and buffer B was 0.052% TFA in 80% acetonitrile (Burdick-Jackson). The flow rate was 0.250 ml/minute with the following gradient: 060 min., 2-37.5% B; 60-95 min., 37.5-75% B; 95-105 min., 75-98% B. The Gilson narrow bore HPLC configuration is particularly useful for this purpose, although other configurations work equally well.

[0080] A large number of peaks were detected by absorbance at 214 nm, many of which appear to be of low abundance. Whether a given peak represents a single peptide or a peptide mixture was not determined. Pooled fractions were then sequenced to determine motifs specific for each allele as described below.

[0081] Pooled peptide fractions, prepared as described above were analyzed by automated Edman sequencing using the Applied Biosystems Model 477A automated sequencer. The sequencing method is based on the technique developed by Pehr Edman in the 1950s for the sequential degradation of proteins and peptides to determine the sequence of the constituent amino acids.

[0082] The protein or peptide to be sequenced was held by a 12-mm diameter porous glass fiber filter disk in a heated, argon-purged reaction chamber. The filter was generally pretreated with BioBrene PlusTM and then cycled through one or more repetitions of the Edman reaction to reduce contaminants and improve the efficiency of subsequent sample sequencing. Following the pre-treatment of the filter, a solution of the sample protein or peptide (10 pmol-5 nmol range) was loaded onto the glass filter and dried. Thus, the sample was left embedded in the film of the

pre-treated disk. Covalent attachment of the sample to the filter was usually not necessary because the Edman chemistry utilized relatively apolar solvents, in which proteins and peptides are poorly soluble.

[0083] Briefly, the Edman degradation reaction has three steps: coupling, cleavage, and conversion. In coupling step, phenylisothiocyanate (PITC) is added. The PITC reacts quantitatively with the free amino-terminal amino acid of the protein to form the phenylthiocarbamyl-protein in a basic environment. After a period of time for the coupling step, the excess chemicals are extracted and the highly volatile organic acid, trifluoroacetic acid, TFA, is used to cleave the PITC-coupled amino acid residue from the amino terminus of the protein yielding the anilinothiazolinone (ATZ) derivative of the amino acid. The remaining protein/peptide is left with a new amino terminus and is ready for the next Edman cycle. The ATZ amino acid is extracted and transferred to a conversion flask, where upon addition of 25% TFA in water, the ATZ amino acid is converted to the more stable phenylthiohydantoin (PTH) amino acid that can be identified and quantified following automatic injection into the Model 120 PTH Analyzer which uses a microbore C-18 reverse-phase HPLC column for the analysis.

[0084] In the present procedures, peptide mixtures were loaded onto the glass filters. Thus a single amino acid sequence usually does not result. Rather, mixtures of amino acids in different

increased yield for that amino acid is observed.

Example 3

Definition of an A2.1 specific motif

[0085] In one case, pooled peptide fractions prepared as described in Example 2 above were obtained from HLA-A2.1 homozygous cell lines, for example, JY. The pooled fractions were HPLC fractions corresponding to 7% to 45% CH₃CN. For this class I molecule, this region of the chromatogram was most abundant in peptides. Data from independent experiments were averaged as described below.

[0086] The amino acid sequence analyses from four independent experiments were analyzed and the results are shown in Table 3. For each position except the first, the data were analyzed by modifying the method described by Falk et al., supra, to allow for comparison of experiments

from different HLA types. This modified procedure yielded quantitative yet standardized values while allowing the averaging of data from different experiments involving the same HLA type.

[0087] The raw sequenator data was converted to a simple matrix of 10 rows (each representing one Edman degradation cycle) and 16 columns (each representing one of the twenty amino acids; W, C, R and H were eliminated for technical reasons. The data corresponding to the first row (first cycle) was not considered further because, this cycle is usually heavily contaminated by free amino acids.). The values of each row were summed to yield a total pmoles value for that particular cycle. For each row, values for each amino acid were then divided by the corresponding total yield value, to determine what fraction of the total signal is attributable to each amino acid at each cycle. By doing so, an "Absolute Frequency" table was generated. This absolute frequency table allows correction for the declining yields of each cycle.

TABLE 3

A2.1: POOL SEQUENCING FREQUENCY

	pos. 1	pos. 2	pos. 3	pos. 4	pos. 5	pos. 6	pos. 7	pos. 8	pos. 9	pos. 10
A	-	0.65	1.25	0.85	0.95	0.77	1.21	1.16	1.15	1.25
G		0.84	0.98	1.29	1.22	0.89	0.78	1.05	0.98	1.48
D	l -	0.84	1.11		1.03	0.83	0.82	0.84	0.82	1.19
E		0.38	0.59		1.10	0.82	1.05	1.45	0.87	0.88
R				•	. :		-			
Н					-		-			
К	 • .	0.53	0.65	0.89		1.09	0.89	1.35	0.82	0.87
L	-		1.11	0.45	0.57	1.00	0.89	0.59	0.92	0.77
V	-	0.78	0.69	0.60	0.79	1.38	1.24	0.84	黑色	1.27
1	-	1.08	1.20	0.53	0.93	1.49	1.15	0.76	0.88	0.54
M				0.62	0.71	0.68	0.88	0.54	0.73	0.22
Υ		0.28	1.41	0.65	1.32	0.78	1.34	1.21	1.00	0.79
F		0.76	1.46	0.69	1.16	1.00	1.07	1.09	0.78	0.73
W	-	•		-	. 1	-		•		
a	•	0.60	0.84	0.92	0.95	0.90	1.16		1.00	1.00
N	•	0.39	0.76	1.17	1.28	1.08	1.07	1.28	0.96	0.42
S	-	1.13		1.33	0.87	0.77	0.71	0.92	0.77	0.58
T	•	0.82	0.90	0.94	0.95	1.21		100	0.71	0.57
С	-		. [-	- 1			· CHARLES HAVE		
Р	•	0.54	0.78	1.44	1.15	1.09	1.30	0.87	0.81	1.01

algnificant increase

generated to allow comparisons among different amino acids. To do so the data from each column was summed, and then averaged. Then, each value was divided next by the average column value to obtain relative frequency values. These values quantitate, in a standardized manner, increases and decreases per cycle, for each of the different sixteen amino acid types.

Tables generated from data from different experiments can thus be added together to generate average relative frequency values (and their standard deviations). All standard deviations can then be averaged, to estimate a standard deviation value applicable to the samples from each table. Any particular value exceeding 1.00 by more than two standard deviations is considered to correspond to a significant increase.

Example 4

Quantitative Binding Assays

[0089] Using isolated MHC molecules prepared as described in Example 2, above, quantitative binding assays were performed. Briefly, indicated amounts of MHC as isolated above were incubated in 0.05% NP40-PBS with ~5 nM of radiolabeled peptides in the presence of 1-3 μM β₂M and a cocktail of protease inhibitors (final concentrations 1 mM PMSF, 1.3 mM 1.10 Phenanthroline, 73 μM Pepstatin A, 8 mM EDTA, 200 μM N-α-p-tosyl-L-Lysine Chloromethyl ketone). After various times, free and bound peptides were separated by TSK 2000 gel filtration, as described previously in A. Sette et al., J. Immunol. 148:844 (1992), which is incorporated herein by reference. Peptides were labeled by the use of the Chloramine T method Buus et al., Science 235:1352 (1987), which is incorporated herein by reference. [0090] The HBc 18-27 peptide HLA binding peptide was radiolabeled and offered (5-10 nM) to 1 μ M purified HLA A2.1. After two days at 23°C in presence of a cocktail of protease inhibitors and 1-3- μ M purified human β_2 M, the percent of MHC class I bound radioactivity was measured by size exclusion chromatography, as previously described for class II peptide binding assays in Sette et al., in Seminars in Immunology, Vol. 3, Gefter, ed. (W.B. Saunders, Philadelphia, 1991), pp 195-202, which is incorporated herein by reference. Using this protocol, high binding (95%) was detected in all cases in the presence of purified HLA A2.1 molecules.

inhabitable by excess unlabeled peptide, and if so, what the 50% inhibitory concentration (IC50%) might be. The rationale for this experiment was threefold. First, such an experiment is crucial in order to demonstrate specificity. Second, a sensitive inhibition assay is the most viable alternative for a high throughput quantitative binding assay. Third, inhibition data subjected to Scatchard analysis can give quantitative estimates of the equilibrium constant (K) of interaction and the fraction of receptor molecules capable of binding ligand (% occupancy). For instance, in analysis of an inhibition curve for the interaction of the peptide HBc 18-27 with A2.1, the IC50% was determined to be 25 nM. Further experiments were conducted to obtain Scatchard plots.

For HBc 18-27/A2.1, six different experiments using six independent MHC preparations yielded a Kp Of 15.5 ± 9.9 x 10⁻⁹ M and occupancy values of 6.2% (±1.4).

[0092] Several reports have demonstrated that class I molecules, unlike class II, are highly selective with regard to the size of the peptide epitope that they recognize. The optimal size varies between 8 and 10 residues for different peptides and different class I molecules, although MHC binding peptides as long as 13 residues have been identified. To verify the stringent size requirement, a series of N- and C-terminal truncation/extension analogs of the peptide HBc 18-27 were synthesized and tested for A2.1 binding. Previous studies had demonstrated that the optimal size for CTL recognition of this peptide was the 10-mer HBc18-27 (Sette et al. supra). It was found that removal or addition of a residue at the C terminus of the molecule resulted in a 30 to 100-fold decrease in binding capacity. Further removal or addition of another residue completely obliterated binding. Similarly, at the N-terminus of the molecule, removal or deletion of one residue from the optimal HBc 18-27 peptide completely abrogated A2.1 binding.

[0093] Throughout this disclosure, results have been expressed in terms of IC50's. Given the conditions in which our assays are run (i.e., limiting MHC and labeled peptide concentrations). these values approximate K_D values. It should be noted that IC50 values can change, often dramatically, if the assay conditions are varied, and depending on the particular reagents used (e.g., Class I preparation, etc.). For example, excessive concentrations of MHC will increase the apparent measured IC50 of a given ligand.

[0094] An alternative way of expressing the binding data, to avoid these uncertainties, is as a relative value to a reference peptide. The reference peptide is included in every assay. As a

particular assay becomes more, or less, sensitive, the IC50's of the peptides tested may change somewhat. However, the binding relative to the reference peptide will not change. For example, in an assay run under conditions such that the IC50 of the reference peptide increases 10-fold, all IC50 values will also shift approximately ten-fold. Therefore, to avoid ambiguities, the assessment of whether a peptide is a good, intermediate, weak, or negative binder should be based on it's IC50, relative to the IC50 of the standard peptide.

[0095] The reference peptide for the HLA-A2.1 assays described herein is referred to as 941.01 having a sequence of FLPSDYFPSV. An average IC50 of 5 (nM) was observed under the assay conditions utilized.

reported in the table, then it should be understood that the threshold values used to determine good, intermediate, weak, and negative binders should be modified by a corresponding factor.

For example, if in an A2.1 binding assay, the IC50 of the A2.1 standard (941.01) were to be measured as 8 nM instead of 5 nM, then a peptide ligand would be called a good binder only if it had an IC50 of less than 80 nM (i.e., 8nM x 0.1), instead of the usual cut-off value of 50 nM.

Example 5

HLA-A2.1 Binding Motif and Algorithm

[0097] The structural requirements for peptide binding to A2.1 have been defined for both, 9-mer and 10-mer peptides. Two approaches have been used. The first approach referred to as the "poly-A approach" uses a panel of single amino acid substitutions of a 9-mer prototype poly-A binder (ALAKAAAAV) that is tested for A2.1' binding using the methods of Example 4 above to examine the degree of degeneracy of the anchor-positions and the possible influence of non-anchor positions on A2.1 binding.

[0098] The second approach, the "Motif-Library approach", uses a large library of peptides selected from sequences of potential target molecules of viral and tumor origin and tested for A2.1 binding using the methods in Example 4 above. The frequencies by which different amino-acids occurred at each position in good binders and non-binders were analyzed to further define the role of non-anchor positions in 9-mers and 10-mers.

A2.1 binding of peptide 9-mers

[0099] Poly A Approach A poly-A 9-mer peptide, containing the A2.1 motif L (Leu) in position 2 and V (Val) in position 9 was chosen as a prototype binder. A K (Lys) residue was included in position 4 to increase solubility. A panel of 91 single amino-acid substitution analogues of the prototype parental 9-mer was synthesized and tested for A2.1 binding (Table 4). Shaded areas mark analogs with a greater than 10-fold reduction in binding capacity relative to the parental peptide. A reduction in binding greater than 100-fold is indicated a dash.

substitutions at the anchor positions 2 and 9 was examined first. Most substitutions in these positions had profound detrimental effects on binding capacity, thus confirming their role for binding. More specifically, in position 2 only L and M bound within a 10-fold range ("preferred residues"). Residues with similar characteristics, such as I, V, A, and T were tolerated, but bound 10 to 100-fold less strongly than the parental peptide. All the remaining substitutions (residues S, N, D, F, C, K, G, and P) were not tolerated and decreased binding by more than 100-fold. Comparably stringent requirements were observed for position 9, where V, L and I were preferred and A and M are tolerated, while the residues T, C, N, F, and Y virtually abolished binding. According to this set of peptides, an optimal 2-9 motif could be defined with L, M in position 2 and V, I, or L in position 9.

TABLE 4

A2.1 blinding of analogs of a motif-containing poly A peptide

									,
	pos. 1	pos. 2	pos. 3	pos. 4	pos. 5	pos. 6	pas. 7	pos. 8	pos. 9
	Α	<u> </u>	Α	K	A	Α	Α_	Α	v
Α	1.00	ED1143	1.00		1.00	1.00	1.00	1.00	主要
C	0.46				0.63	0.12		0.57	
ם			0.93	0.74	0.51				[
E	3352		0.68	1.53	0.62	. 0.15	0.28	0.26	
R						0.080			
Н								0.24	
К	0.54		0.002	1.00	0.39		0.50	0.11	
L	Ì	1.00	0.46		0.99		0.76	0.90	0.11
V	0.47		0.15	1.12		0.44	0.49	0.30	1.00
1	0.41	37.63				1,12			0.18
М	}	0.43	0.66						3030
Υ	0.75	VV	0.62		0.94	0.41	1.40	0.43	
F	1.10		0.95			1.76		0.49	
W								ĺ	
Q			,		0.32		0.19	0.41	
N			0.34		1.24	ļ	0.97	0.31	
S	0.44		0.37	0.97					"
T	0.28	0.0		0.98		[0.28	0.37	
С		-	,	1.53		0.84		ļ	
Р			0.25	1.07		0.84	0.63	0.55	

Ratio

Ratio ≤ 0.01

≤ 0.1

Mon-Anchor Positions 1 and 3-8 in poly-A Analogs All non-anchor positions were more permissive to different substitutions than the anchor-positions 2 and 9, i.e. most residues were tolerated. Significant decreases in binding were observed for some substitutions in distinct positions. More specifically, in position 1 a negative charge (residues D and E) or a P greatly reduced the binding capacity. Most substitutions were tolerated in position 3 with the exception of the residue K. Significant decreases were also seen in position 6 upon introduction of either a negative charge (D, E) or a positively charged residue (R). A summary of these effects by different single amino acid substitutions is given in Table 5.

Summary	A2.1	Poly-A	
AA position	(+)	(+/-)	(-)
2	FAYKVGSIT		EDP
3	LM	VITA	SNDFCKGP
	AFDEMYLSNPV	K	
4	CEVPATSD		
. 5	NALYGEDKQ		
6	FIAPCVYEG	DR .	
7	YANLPVETQ		
8	ALGPFYQTNVEHK		
9	VIL	AM	70454
	Ratio>0.1		TCNFY
		Ratio 0.01-0.1	Ratio<0.01

The Motif-Library Approach To further evaluate the importance of non-anchor positions for binding, peptides of potential target molecules of viral and tumor origin were scanned for the presence of sequences containing optimal 2-9 anchor motifs. A set of 161 peptides (appendix I) containing a L or M in position 2 and a V, L or I in position 9 was selected, synthesized and tested for binding (see Table 17). Only 11.8% of these peptides bind with high affinity (ratio ≥0.10; 22.4% were intermediate binders (ratio ≥0.1). As many as 36% were weak binders (ratio <0.01 - 0.0001), and 31% were non-binders (ratio <0.0001). The high number of non-binders containing optimal anchor-motifs indicates that in this set of peptides positions other than the 2-9 anchors influence A2.1 binding capacity. Appendix 1 sets forth all of the peptides having the 2-9 motif used for this analysis and the binding data for those peptides.

of occurrence of each amino acid in each of the non-anchor positions was calculated for the good and intermediate binders on one hand and non-binders on the other hand. Amino acids of similar chemical characteristic were grouped together (Table 6). Weak binders were not considered for the following analysis. The frequency of occurrence of each amino acid in each of the non-anchor positions was calculated for the good binders and non-binders (Table 6).

[00104] Several striking trends become apparent. For example in position 1, only 3.6% of the A2.1 binders and as much as 35% of the non-binders carried a negative charge (residues D and E). This observation correlates well with previous findings in the set of poly-A analogs, where a D or E substitution greatly affected binding. Similarly, the residue P was 8 times more frequent in non-binders than in good binders. Conversely, the frequencies of aromatic residues (Y, F, W) were greatly increased in A2.1 binders as compared to non-binders.

A2.1 9-mer PEPTIDES

161	19 11.8%	36 22.4%	58 36.0%	48 29.8%
NUMBERIOF PEPTIDES	GOOD BINDERS	NTERMEDIATEBINDERS	WEAK BINDERS	NON-BINDERS

	_										-
9-	6) c) c) (0.0	100.0	0.0	C	2 6) (0.0
+6	0	2 6) c)))	0.0	100.0	0.0		,	2 6	200
æ	12 5	2 6	3 5	÷ .	2.5	18.8	2.1	16.7	9	2	200
· 8+	3.8) t) +	,	4.0.4	32.7	5.5	10	200	2.0	0.00
7.	- 2		16.3		9 6	25.0	8.3	6	12.5	9	100
+/	- 6	. LC) -	- c	٠ ا ا	30.8	14.5	5.5	14.5		100 0
9	6.3	6		5 6	9 6	6.22	8.3	10.4	12.5	-	1000
+ 9	5.5	10.9) a	<u>.</u>	30°3	16.4	10.9	14.5	e e	100.0
5-	8.3	C.	12.5	2 6	? 6	7.67	2.1	10.4	18.7	-	100.0
÷	5.5	9.1	· 6	; ,	, ,	50.0	18.2	9.1	14.5	10	100.0
+	8.3	.69	18.7	16.7		?	8.3	10.4	4.2	12.5	100.0
+	5.5	9.1	10.9	18.4	2 6	-	7.3	12.7	20.0	1.6	100.0
င်္	4.2	8.3	12.5	16.7	9	9.	4.2	14.8	10.4	10.4	100.0
ტ +	3.6	3.6	0.0	8	34 5		21.8	5.5	20.0	7.3	100.0
2.	0.0	0.0	0.0	0.0	1000		0.0	0.0	0.0	0.0	100.0
5 +	0.0	0.0	0.0	0.0	100 0	5	0.0	0.0	0.0	0.0	100.0
1-	2.1	2.1	35.4	4.2	12.5		Z.	14.8	12.5	14.8	100.0
<u>+</u>	5.5	7.3	3.6	12.7	38.2		14.0	7.3	9.1	1 .8	100.0
	Y	O	D,E	H,HK	LV	7	A :	Z O	S,T,C	۵.	

[00105] Following this approach, amino acids of similar structural characteristics were grouped together. Then, the frequency of each amino acid group in each position was calculated for binders versus non-binders. Finally, the frequency in the binders group was divided by the frequency in the non-binders to obtain a "frequency ratio". (Table 7) This ratio indicates whether a given amino-acid or group of residues occurs in a given position preferentially in good binders (ratio >1) or in non-binders (ratio <1).

A2.1 9-mer PEPTIDES

NUMBER OF PEPTIDES 161

GOOD BINDERS

INTERMEDIATE BINDERS

WEAK BINDERS

19 11.8%

36 22.4%

WEAK BINDERS 58 36.0% NON-BINDERS 48 29.8%

	T-11								
A	pos. 1 ratio 2.6	pos. 2 ratio	pos. 3	pos. 4 ratio	pos. 5 ratio	pos. 6 ratio	pos. 7	pos. 8 ratio	pos. 9
G	3.5	NA	0.9	0.9	0.7	0.9	4.4	0.3	NA
D,E	0.1	NA	0.4	1.1	1.1	1.3	0.4	0.4	NA
R,H,K	3.1	NA	0.0	0.7	0.3	0.7	0.1	0.9	NA
L,V,I,M	3.1	NA	0.2	1.0	0.9	0.1	0.0	1.3	NA
Y,F,W	7.0	1.0	1.8	0.5	0.9	1.3	1.2	1.7	1.0
Q,N		NA	5.2	0.9	8.7	2.0	2.3	2.6	NA
S,T,C	0.5	NA	0.4	1.2	0.9	1.0	0.7	0.3	NA
P P	0.7	NA	1.9	4.8	0.9	1.2	1.2	1.1	NA
+++ indicate	0.1	NA	0.7	0.7	2.6	1.7	2.9	+++	NA

⁺⁺⁺ indicatos that there were no negative binders

[00106] Different Residues Influence A2.1 Binding In order to analyze the most striking influences of certain residues on A2.1 binding, a threshold level was set for the ratios described in Table 7. Residues showing a more than 4-fold greater frequency in good binders were regarded as preferred residues (+). Residues showing a 4-fold lower frequency in A2.1 binders than in non-binders were regarded as disfavored residues (-). Following this approach, residues showing the most prominent positive or negative effects on binding are listed in Table 8.

significantly in each of the non-anchor positions. In general, the most negative effects were observed with charged amino acids. In position 1, negatively charged amino acids were not observed in good binders, i.e., those amino acids were negative binding residues at position 1. The opposite was true for position 6 where only basic amino acids were detrimental for binding i.e., were negative binding residues. Moreover, both acidic and basic amino acids were not observed in A2.1 binders in positions 3 and 7. A greater than 4-fold increased frequency of non-binders was found when P was in position 1.

Summary of A2.1 Motif-Library, 9-mers

AA position	(+)	(-)
1	(YFW)	P, (DE)
2	Anchor	
3	(YFW)	(DE), (RKH)
4	(STC)	
5	(YFW)	
6		(RKH)
7	Α	(RKH), (DE)
8		
9	Anchor	

(+) = Ratio \geq 4-fold

(-) = Ratio ≤ 0.25

[00108] Aromatic residues were in general favored in several of the non-anchor positions, particularly in positions 1, 3, and 5. Small residues like S, T, and C were favored in position 4 and A was favored in position 7.

[00109] An Improved A2.1 9-mer Motif The data described above was used to derive a stringent A2.1 motif. This motif is based in significant part on the effects of the non-anchor positions 1 and 3-8. The uneven distribution of amino acids at different positions is reflective of specific dominant negative binding effects of certain residues, mainly charged ones, on binding affinity. A series of rules were derived to identify appropriate anchor residues in positions 2 and 9 and negative binding residues at positions 1 and 3-8 to enable selection of a high affinity binding immunogenic peptide. These rules are summarized in Table 9.

[00110] To validate the motif defined above and shown in Table 9 published sequences of peptides that have been naturally processed and presented by A2.1 molecules were analyzed (Table 10). Only 9-merpeptides containing the 2-9 anchor residues were considered.

[00111] When the frequencies of these peptides were analyzed, it was found that in general they followed the rules summarized in Table 9. More specifically, neither acidic amino acids nor P were found in position 1. Only one acidic amino acid and no basic amino acids were found in position 3. Positions 6 and 7 showed no charged residues. Acidic amino acids, however, were frequently found in position 8, where they are tolerated, according to our definition of the A2.1 motif. The analysis of the sequences of naturally processed peptides therefore reveals that >90% of the peptides followed the defined rules for a complete motif.

[00112] Thus the data confirms a role of positions other than the anchor positions 2 and 9 for A2.1 binding. Most of the deleterious effects on binding are induced by charged amino acids in non-anchor positions, i.e. negative binding residues occupying positions 1, 3, 6 or 7.

A2.1 Motif for 9-mer peptides

1	1	
AA Position	(+)	(-)
		estackiowanilnocakete ente e
2	And the Complex And	
4		
5		
		basic amino acida
		acidic and sasic emine acids
8		

TABLE 10

A2.1 naturally processed peptides

l .			ŗ	POSITION	s .	•			
1	2	3	4	5	6	7	8	. 9	A2.1 binding
Α	L	X	G	G	X	٧	N	V	ND
L	L	D ·	V	Р	T	· A	Α.	V	ND
G	X	٧	P	F	X	V	S	V	0.41
S	L	L	P	A		V	E	L	0.19
S	X	Х	V	R.	Α	X	E	V	ND
Y	M	N	G	T	M	S	Q	V	ND
K	X	N	Ε	Р	V	X	Х	X	ND
Υ	L	L	Р	Α	1	٧	Н	1	0.26
A	X	W	G	F	F	P	V	X	ND
T	L	W	٧	D	Р	Y	E	V	0.23
G	X	٧	Р	F	X	٧	S	V	0.41

A2.1 Binding of Peptide 10-mers

- [00113] The "Motif-Library" Approach Previous data clearly indicated that 10-mers can also bind to HLA molecules even if with a somewhat lower affinity than 9-mers. For this reason we expanded our analysis to 10-mer peptides.
- [00114] Therefore, a "Motif-Library" set of 170 peptide 10-mers containing optimal motif-combinations was selected from known target molecule sequences of viral and tumor origin and analyzed as described above for 9-mers. In this set we found 5.9% good binders, 17.1% intermediate binders, 41.2% weak binders and 35.9% non-binders. The actual sequences, origin and binding capacities of this set of peptides are included as Appendix 2. This set of 10-mers was used to determine a) the rules for 10-mer peptide binding to A2.1, b) the similarities or differences to rules defined for 9-mers, and c) if an insertion point can be identified that would allow for a superimposable common motif for 9-mers and 10-mers.
- [00115] Amino-acid frequencies and frequency ratios for the various amino-acid groups for each position were generated for 10-mer peptides as described above for 9-mer peptides and are also shown in Tables 11 and 12, respectively for grouped residues.
- [00116] A summary of preferred versus disfavored residues and of the rules derived for the 10-mers in a manner analogous to that used for 9-mers, is also listed in Tables 13 and 14, respectively.
- [00117] When the frequency-ratios of different amino-acid groups in binders and non-binders at different positions were analyzed and compared to the corresponding ratios for the 9-mers, both striking similarities and significant differences emerged (Table 15). At the N-terminus and the C-termini of 9-mers and 10-mers, similarities predominate. In position 1 for example, in 10-mers again the P residue and acidic amino acids were not tolerated. In addition at position 1 in 10-mers aromatic residues were frequently observed in A2.1 binders. In position 3, acidic amino acids were frequently associated with poor binding capacity in both 9-mers and 10-mers. Interestingly, however, while in position 3 aromatic residues were preferred in 9-mers, aliphatic residues (L, V, I, M) were preferred in 10-mers.

A2.1 10-mer Peptides

170	10 6.9%	29 17.1%	70 41.2%	61 35.9%
NUMBER OF PEPTIDES	GOOD BINDERS	INTERMEDIATE BINDERS	WEAK BINDERS	NONBROENS

	10.	0.0
	10+	0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
	6	4.9 9.8 13.1 18.4 18.4 9.8 11.5 11.5
	+6	2.8 7.7 5.1 2.8 12.8 20.5 7.7 7.7
	8	4.0 11.5 16.4 29.5 4.0 1.8 8.8 16.4 8.2
	B+	7.7 7.7 0.0 0.0 23.1 23.1 2.8 20.5 15.4
	-/	8.6 6.6 16.4 14.8 18.0 8.2 13.1 6.2
	7+	10.3 17.0 5.1 2.8 25.8 12.8 17.0 17.0
		13.1 1.6 0.8 19.7 14.8 13.1 3.3 10.7
	÷9	7.7 10.3 7.7 30.8 7.7 2.6 17.9 5.1
	က်	3.3 8.6 0.8 1.4.8 24.6 4.9 9.8 10.7
	÷	5.1 5.1 2.6 10.3 30.8 17.9 7.7 20.5 0.0
ŀ	÷	11.5 3.3 13.1 13.1 14.0 23.0 23.0 11.5 11.5
	4	2.6 15.4 7.7 2.8 23.1 15.4 7.7 12.8 12.8
·	<u>.</u>	3.3 16.4 16.4 3.3 4.6 8.2 18.0 19.1
3.5	5	10.3 7.7 2.6 5.1 33.3 12.6 7.7 15.4 5.1
ć	,	0.0 0.0 0.0 0.0 0.0 0.0 0.0
¢	i	0.0 0.0 0.0 100.0 0.0 0.0 0.0
÷		0.0 8.8 6.8 1.6.4 0.0 0.0 11.6 23.0
<u>+</u>		2.8 7.7 0.0 7.7 48.7 12.8 10.3 0.0
		A DE RHK LV.IM Y.F.W S.T.C S.T.C

Table 12

A2.1 10-mer Peptides

-		
NUMBER OF PEPTIDES	170	
GOOD BINDERS	10	10 5.9%
INTERMEDATE BINDERS	29	29 17.1%
WEAK BINDERS	7.0	70 41.2%
NON-BINDERS	61	61 35.9%

	508.	pos. 2	pos. 3	pos. 4		pos. 6	7 .sod	pos. 8	D03. 9	008. 10
	ratio	ratio	ratio	ratio		ratio	ratio	ratio	ratio	ratio
∢	‡	AN AN	3.1	0.2	1	0.6	1.3	1.6	5.5	NA
ၒ	0.8	¥	0.5	4.7	0.8	6.3	2.7	0.7	8	X X
D,	0.0	Š	0.5	9.0		1.0	0.3	0.0	0.4	. Y
Д,Н,К Ж,Н,К	1.2	¥ X	0.3	0.1		0.4	0.2	0.0	0.0	Y Z
L,V,1,M	3.0	1.0	10.2	1.0		2.1	4.	4.7	8	
Y,F,W	+++	A A	2.6	3.1		9.0	1.6	14.1	2.1	? X
S.	0	Y V	0.9	0.8		8.0	9.0	0.4	7.0	Ž
S,T,C	6.0	Y X	6.0	+:+		0.9	7.4	1.3	2.9	ž
Ь	0.0	¥	0.4	2.6		1.0	0.4	6.	1.2	ž

+++ Indicates that there were no negative binders.

TABLE 13

Summary of A2.1 Motif-Library , 10-mers

AA position	(+)	(-)
1	(YFW), A	(DE), P
2	Anchor	
3	(LVIM)	(DE)
4	G	A,(RKH)
5		Р
6	G	
7		(RKH)
8	(YFW), (LVIM)	(DE), (RKH)
9		(RKH)
10	Anchor	

(+) = Ratio ≥ 4-fold

 $(-) = Ratio \le 0.25$

A2.1 Motif for 10-mer peptides

1	1	
AA Position		
אא י טאוווטוו	(+)	1 (-)
		SCILIC STREET BOOK STOP
=======================================	And the second second	
		3
		CONTRACTOR OF THE PARTY OF THE
	,	
CY.		
	·	The state of the s
		THE PERSON NAMED IN THE PE
		7-2-17-13-17-13-17-17-17-17-17-17-17-17-17-17-17-17-17-
===		
6	·	1
		1
		Decree Broken Broken
	<u>.</u>	THE PROPERTY OF THE PARTY OF TH
		The poly limbs are a second and the
		Selection and a selection of the selecti
		·
	2000	

TABLE 15

Comparison

of A2.1 binding of 9-mers and of 10-mers

9-mers

10-mers

AA Position	(+)	(+)
1		Eddler, Caralland
2		in the second
3	(YFW)	(LVIM)
4	(STC)	G
5	(YFW)	
6		G
7	Section 18	4
8		
9	ELECTRIC DESCRIPTION	A STATE OF THE PARTY OF THE PAR
10		

9-mers

10-mers

AA Position	(-)	(-)
.1	PATRICK STATE	
2		
3		
4		A,(RKH)
5		75,000.7
	<u> </u>	1 P 1
6		p
6 7		р 2-20
6 7 8		P
6 7 8 9		(BKH) (BKH)

- [00118] At the C-terminus of the peptides, basic amino acids are not favored in position 7, and both acidic and basic amino acids are not favored in position 8 for 10-mers. This is in striking agreement with the observation that the same pattern was found in 9-mers at positions 6 and 7. Interestingly, again the favored residues differ between two peptide's sizes. Aromatic (Y, F, W) or aliphatic (L, V, I, M) residues were preferred in 10-mers at position 8, while the A residue was preferred by 9-mers in the corresponding position 7.
- [00119] By contrast, in the center of the peptide no similarities of frequency preferences were observed at positions 4, 5, and 6 in 10-mers and positions 4 and 5 in the 9-mers.
- [00120] Most interestingly, among the residues most favored in the center of the tested peptides were G in position 4 and 6, P in position 5 was not observed in binders. All of these residues are known to dramatically influence the overall secondary structure of peptides, and in particular would be predicted to strongly influence the propensity of a 10-mer to adopt a "kinked" or "bulged" conformation.
- [00121] Charged residues are predominantly deleterious for binding and are frequently observed in non-binders of 9-mers and 10-mers.
- [00122] However, favored residues are different for 9-mers and 10-mers. Glycine is favored while Proline is disfavored in the center of 10-mer peptides but this is not the case for 9-mers.
- [00123] These data establish the existence of an "insertion area" spanning two positions (4, 5) in 9-mers and 3 positions (4, 5, 6) in 10-mers. This insertion area is a more permissive region where few residue similarities are observed between the 9-mer and 10-mer antigenic peptides.

 Furthermore, in addition to the highly conserved anchor positions 2 and 9, there are "anchor areas" for unfavored residues in positions 1 and 3 at the N-terminus for both 9-mer and 10-mer and positions 7-10 or 6-9 at the C-terminus for 10-mers and 9-mers, respectively.

Example 6

Algorithm to Predict Binding of 9-mer Peptides to HLA-A2.1

[00124] Within the population of potential A2.1 binding peptides identified by the 2,9 motif, as shown in the previous example, only a few peptides are actually good or intermediate

binders and thus potentially immunogenic. It is apparent from the data previously described that the residues present in positions other than 2 and 9 can influence, often profoundly, the binding affinity of a peptide. For example, acidic residues at position 1 for A2.1 peptides do not appear to be tolerated. Therefore, a more exact predictor of binding could be generated by taking into account the effects of different residues at each position of a peptide sequence, in addition to positions 2 and 9.

[00125] More specifically, we have utilized the data bank obtained during the screening of our collection of A2.1 motif containing 9-mer peptides to develop an algorithm which assigns a score for each amino acid, at each position along a peptide. The score for each residue is taken as the ratio of the frequency of that residue in good and intermediate binders to the frequency of occurrence of that residue in non-binders.

similarity. This avoids the problem encountered with some rare residues, such as tryptophan, where there are too few occurrences to obtain a statistically significant ratio. Table 16 is a listing of scores obtained by grouping for each of the twenty amino acids by position for 9-mer peptides containing perfect 2/9 motifs. A peptide is scored in the "Grouped Ratio" algorithm as a product of the scores of each of its residues. In the case of positions other than 2 and 9, the scores have been derived using a set of peptides which contain only preferred residues in positions 2 and 9. To enable us to extend our "Grouped Ratio" algorithm to peptides which may have residues other than the preferred ones at 2 and 9, scores for 2 and 9 have been derived from a set of peptides which are single amino acid substitutions at positions 2 and 9. Figure 2 shows a scattergram of the log of relative binding plotted against "Grouped Ratio" algorithm score for our collection of 9-mer peptides from the previous example.

TABLE 16

	1	2	3	4	5	6	7	8	9
Α	2.6	0.03	0.87	0.87	0.65	0.87	4.4	0.29	0.16
С	0.73	0.01	1.9	4.8	0.87	1.2	1.2	1.1	0.01
D	0.10	0.01	0.10	0.65	0.29	0.65	0.11	0.87	0.01
E	0.10	0.01	0.10	0.65	0.29	0.65	0.11	0.87	0.01
F	7.0	0.01	5.2	0.87	8.7	2.0	2.3	2.6	0.01
G	3.5	.0.01	0.44	1.1	1.1	1.3	0.44	0.44	0.01
ПН	3.1	0.01	0.22	1.0	0.87	0.09	0.10	1.3	0.01
1	3.1	0.14	1.8	0.55	0.87	1.4	1.2	1.8	0.40
K	3.1	0.01	0.22	1.0	0.87	0.09	0.10	1.3	0.01
L	3.1	1.00	1.8	0.55	0.87	1.4	1.2	1.8	0.09
M	3.1	2.00	1.8	0.55	0.87	1.4	1.2	1.8	0.06
N	0.50	0.01	0.37	1.2	0.87	1.1	0.65	0.33	0.01
P	0.12	0.01	0.70	0.73	2.6	1.8	2.9	0.10	0.01
Q	0.50	0.01	0.37	1.2	0.87	1.1	0.65	0.33	0.01
R	3.1	0.01	0.22	1.0	0.87	0.09	0.10	1.3	0.01
S	0.73	0.01	1.9	4.8	0.87	1.2	1.2	1.1	0.01
T	0.73	0.01	1.9	4.8	0.87	1.2	1.2	1.1	0.01
TV	3.1	0.08	1.8	0.55	0.87	1.4	1.2	1.8	1.00
W	7.0	0.01	5.2	0.87	8.7	2.0	2.3	2.6	0.01
Y	7.0	0.01	5.2	0.87	8.7	2.0	2.3	2.6	0.01

The present "Grouped Ratio" algorithm can be used to predict a population of peptides with the highest occurrence of good binders. If one were to rely, for example, solely on a 2(L,M) and 9(L,I, and V) motif for predicting A2.1 binding 9-mer peptides, it would have been predicted that all 161 peptides in our database would be good binders. In fact, as has already been described, only 12% of these peptides would be described as good binders and only 22% as intermediate binders; 66% of the peptides predicted by such a 2,9 motif are either weak or non-binding peptides. In contrast, using the "Grouped Ratio" algorithm described above, and selecting a score of 1.0 as threshold, 20 peptides were selected. Of this set, 50% are good binders, and 45% are intermediate, while only 5% are weak and 0% are non-binders (Table 17).

[00128] The present example of an algorithm has used the ratio of binders/non-binders to measure the impact of a particular residue at each position of a peptide. It is immediately apparent to one of ordinary skill that there are alternative ways of creating a similar algorithm.

An algorithm using the average binding affinity of all the peptides with a certain [00129] amino acid (or amino acid type) at a certain position has the advantage of including all of the peptides in the analysis, and not just good/intermediate binders and non-binders. Moreover, it gives a more quantitative measure of affinity than the simpler "Grouped Ratio" algorithm. We have created such an algorithm by calculating for each amino acid, by position, the average log of binding when that particular residue occurs in our set of 161 2,9 motif containing peptides. These values are shown in Table 18. The algorithm score for a peptide is then taken as the sum of the scores by position for each residues. Figure 3 shows a scattergram of the log of relative binding against the average "Log of Binding" algorithm score. Table 17 shows the ability of the two algorithms to predict peptide binding at various levels, as a function of the cut-off score used. The ability of a 2,9 motif to predict binding in the same peptide set is also shown for reference purposes. It is clear from this comparison that both algorithms of this invention have a greater ability to predict populations with higher frequencies of good binders than a 2,9 motif alone. Differences between the "Grouped Ratio" algorithm and the "Log of Binding" algorithm are small in the set of peptides analyzed here, but do suggest that the "Log of Binding" algorithm is a better, if only slightly, predictor than the "Grouped Ratio" algorithm.

Example 7

Use of an Algorithm to Predict Binding of 10-mer Peptides to HLA-A2.1

Using the methods described in the proceeding example, an analogous set of algorithms has been developed for predicting the binding of 10-mer peptides. Table 19 shows the scores used in a "Grouped Ratio" algorithm, and Table 20 shows the "Log of Binding" algorithm scores, for 10-mer peptides. Table 21 shows a comparison of the application of different algorithmic methods to select binding peptides. Figures 4 and 5 show, respectively, scattergrams of a set of 10-mer peptides containing preferred residues in positions 2 and 10 as scored by the "Grouped Ratio" and "Log of Binding" algorithms.

Example 8

Binding of A2.1 Algorithm Predicted Peptides

[00131] The results of Examples 6 and 7 indicate that an algorithm can be used to select peptides that bind to HLA-A2.1 sufficiently to have a high probability of being immunogenic.

[00132] To test this result, we tested our algorithm on a large (over 1300) non-redundant, independent set of peptides derived from various sources. After scoring this set with our algorithm, we selected 41 peptides (Table 22) for synthesis, and tested them for A2.1 binding. This set of peptides was comprised of 21 peptides with high algorithm scores, and 20 peptides with low algorithm scores.

Criteria	Cut-off	Good	Good Binders		Intermediate Binders	Weak	Weak Binders	Negativ	Negative 3Inders	Į,	101919
2,9 motif		19	(12%)	36	1 (22%)	5.8	(36%)	48	130%)	161	(100%)
Grouped Ratio		ĸ	(83%)		(17%)		10%)	٥	(0%)	9	(100%)
Algorithm	1.25	•	(67%)	•	(30%)	٥	(%0)	0	(0%)	12	
	-	10	(50%)	6	(45%)	•	(2%)	0	(%)	20	
	0.5	12	(32%)	17	(46%)	7	(%61)		(3%)	37	(100%)
	0	12	(23%)	26	(49%)	12	(23%)	e	[%9]	53	(100%)
	.	17	(18%)	35	(37%)	33	(35%)	5	(111%)	95	(100%)
	?	10	(15%)	36	(28%)	50	(40%)	21	(17%)	126	(100%)
	ů	2	(13%)	36	(24%)	56	(38%)	38	(26%)	140	(100%)
	5	2	(12%)	35	(22%)	28	(36%)	48	(30%)	161	(100%)
Log of Binding	-19	ĸ	(100%)	0	(0%)	0	(0%)		(0%)	ĸ	(100%)
Algorithm	-20	43	(73%)	C	(27%)	0	(0X)	0	(0%)	Ξ	(3001)
	-21	1.5	(43X)	15	(43%)	ĸ	(14%)	•	(0%)	35	(100%)
	-22	17	(26%)	27	(41%)	. 21	(32%)	-	(2%)	90	(100%)
	-23	- 9	(10%)	35	(37%)	34	(36%)	7	(7%)	94	(100%)
	-24	10	(16X)	36	(30%)	47	(39%)	17	(14%)	119	(100%)
	-25	18	(14%)	90	(26%)		(39%)	30	(21%)	140	(100%)
	5	18	12%1	2	1224.1	6 0	(36%)	4	13061	171	100

TABLE 18

	1	2	3	4	5	1 6			
				 	3	6	7	8	9
A	-2.38	-3.22	1 2 90	0.60	<u> </u>	<u> </u>	<u> </u>		
-c	-2.94	-4.00	-2.80	-2.68	-2.89	-2.70	-2.35	-3.07	-2.49
D	-3.69	-4.00	-2.58	-1.96	-3.29	-2.22	-2.97	-2.37	-4.00
E	-3.64	-4.00	-3.46	-2.71	-2.26	-2.63	-3.61	-3.03	-4.00
F	-1.89		-3.51	-2.65	-3.39	-3.41	-3.21	-2.63	-4.00
_ G_	-2.32	-4.00	-2.35	-2.50	-1.34	-2.43	-2.18	-1.71	-4.00
H	· ·	-4.00	-3.04	-2.63	-2.56	-2.30	-3.13	-2.96	-4.00
··	-2.67	-4.00	-2.58	-2.58	-2.05	-3.32	-3.13	-2.16	-4.00
	-1.65	<u>-2.55</u>	-2.80	-3.44	-2.74	-2.79	-2.20	-2.69	-2.10
<u>K</u>	-2.51	-4.00	-3.65	-2.93	-3.34	-3.77	-3.13	-3.27	-4.00
	-2.32	-1.70	2.02	-2.49	-2.71	-2.63	-2.62	-2.01	-2.74
M	-0.39	-1.39	-1.79	-3.07	-3.43	-1.38	-1.33	-0.97	
N	-3.12	-4.00	-3.52	-2.22	-2.36	-2.30	-3.14	-3.31	-2.96
P	-3.61	-4.00	-2.97	-2.64	-2.42	-2.31	-1.83	-2.42	-4.00
<u> </u>	-2.76	-4.00	·2.81	-2.63	-3.06	-2.84	-2.12		-4.00
R_	-1.92	-4.00	-3.41	-2.61	-3.05	-3.76	-3.43	-3.05	-4.00
<u>S</u>	-2.39	-3.52	-2.04	-2.12	-2.83	-3.04		-3.02	4.00
T _	-2.92	-4.00	-2.60	-2.48	-2.17	-2.58	-2.73	-2.02	-4.00
V	-2.44	-2.64	-2.68	-3.29	-2.49		-2.67	-3.14	-3.70
W	-0.14	-4.00	-1.01	-2.94		-2.24	-2.68	-2.83	-1.70
X	-1.99	-2.13	-2.41	-2.97	-1.63	-2.77	-2.85	-2.13	-4.00
Y	-1.46	-4.00	-1.67		-2.72	_2.70	-2.41	-2.35	-2.42
	<u> </u>	7.00	-1.07	-2.70	-1.92	-2.39	-1.35	-3.37	-4:00

TABLE 19

	1	2	3	4	5	6	7	8	9	10
<u> </u>	<u> </u>									
LA_	3.00	0.01	3.10	0.20	1.60	0.60	1.30	1.60	0.50	0.01
<u> </u>	0.90	0.01	0.90	1.10	1.00	0.90	1.40	1.30		
D	0.01	0.01	0.20	0.60	0.30	1.00	0.30	0.01	0.40	
E	0.01	0.01	0.20	0.60	0.30	1.00	0.30	0.01	0.40	0.01
F	3.00	0.01	2.60	3.10	3.60	0.60	1.60	14.1	2.10	
G	0.80	0.01	0.50	4.70	0.80	6.30	2.70	0.70		0.01
H	1.20	0.01	0.30	0.10	0.70	0.40	0.20	0.01		0.01
	3.00	0.50	10.2	1.00	1.30	2.10	1.40		0.20	0.01
K	1.20	0.01	0.30	0.10	0.70	0.40	0.20	4.70	0.80	1.00
L	3.00	1.10	10.2	1.00	1.30	2.10	1.40	0.01	0.20	0.01
М	3.00	0.60	10.2	1.00	1.30	2.10		4.70	0.80	0.50
N	1.00	0.01	0.90	0.80	0.80		1.40	4.70	0.80	0.01
P -	0.00	0.01	0.40			0.80	0.60	0.40	0.70	0.01
Q	1.00	0.01		2.60	0.01	1.00	0.40	1.90	1.20	0.01
R	1.20	0.01	0.90	0.80	0.80	0.80	0.60	0.40	0.70	0.01
S	0.90		0.30	0.10	0.70	0.40	0.20	0.01	0.20	0.01
T		0.01	0.90	1.10	1.00	0.90	1.40	1.30	2.90	0.01
V	0.90	0.01	0.90	1.10	1.00	0.90	1.40	1.30	2.90	0.01
	3.00	0.10	10.2	1.00	1.30	2.10	1.40	4.70	0.80	2.30
W	3.00	0.01	2.60	3.10	3.60	0.60	1.60	14.1	2.10	0.01
_ Y	3.00	0.01	2.60	3.10	3.60	0.60	1.60	14.1	2.10	0.01

TABLE 20

	1	2	3	4	5	6	7	8	9	10
							<u> </u>		-	10
A	-2.40	-4.00	-2.54	-3.42.	-3.07	-3.30	-2.98	-2.69	-3.29	4.00
С	-3.64	-4.00	-2.47	-2.48	-1.76	-3.94	-1.28	-3.10	-2.43	-4.00
D	-3.65	-4.00	-2.76	-3.26	-2.76	-3.03	-3.43	-3.68	-3.63	-4.00
E	-3.92	-4.00	-3.63	-3.34	-3.73	-2.82	-3.54	-3.71	-2.95	4.00
_ F	-1.52	-4.00	-1.96	-3.03	-2.01	-3.11	-2.67	-1.61	-2.43	-4.00
G	-2.91	-4.00	-3.40	-2.63	-2.98	-2.45	-2.52	-3.18	-3.03	-4.00
H	-3.61	-4.00	-3.10	-3.03	-2.33	-2.99	-3.70	-3.55	-4.00	-4.00
1	-2.26	-4.00	-2.82	-3.05	-2.38	-2.61	-2.38	-3.34	-3.18	-4.00
K	-2.53	-4.00	-3.65	-3.42	-3.14	-3.58	-3.50	-3.53	-4.00	-1.47
L	-2.00	-2.93	-2.21	-2.48	-2.88	-2.53	-2.57	-1.83		-4.00
M	-2.41	-3.11	-2.00	-3.33	-3.70	-2.56	-3.27		-3.23	-3.20
N	-3.21	-4.00	-3.09	-2.61	-2.93	-2.89	-3.52	-2.25	-3.00	-4.00
Р	-3.90	-4.00	-3.21	-2.27	•3.72	-3.06	· ——	-3.01	-2.88	-4.00_
Q	-2.92	-4.00	-2.97	-4.00	-2.98		-3.35	-2.58	-2.94	-4.00
R	-3.01	-4.00	-3.44			-3.46	-2.20	-3.23	-3.45	-4.00
S	-2.47	-4.00	-3.17	-3.50	-3.23	-3.32	-3.72	<u>-3.</u> 59	-2.97	-4.00
7	-3.59	-4.00	-3.07	-3.11	-3.23	-2.64	-3.19	-2.79	-2.26	-4.00
v	-2.97	-4.00	-2.46	-2.88	-2.89	-3.16	-2.43	3.11	-2.58	-4.00
w	-2.10	-4.00		-3.14	<u>·3.27</u>	-2.53	-3.14	-3.02	-2.90	-2.61
Y	-2.37		-2.72	-1.79	-2.65	-1.92	<u>-1</u> .80	-2.24	-2.11	-4.00
	-2.37	-4.00	-2.42	-2.85	-3.03	-3.76	-2.82	-2.34	-2.74	·4.00

	Cutoti	8	Good Binders	Intermed	Intermediate Binders	Weak	Weak Binders	Negativ	Negative Binders	Ţ	Totals
2,10 motif		5	10 (6%)	8	29 (17%)	7.0	70 (41%)	19	(36%)	170	(100%)
Grouped Ratio	•	-	(100%)	·	0 (0%)		(9%)	•	(0%)	-	(100%)
Algorithm	ຕ	-	(25%)	•••	2 (50%)	-	(25%)	•	(%0)	7	(100%)
٠.	8	9	(24%)	13		9	(24%)	•	(%)	25	
	-	9	(21%)	7	(45%)	16	(34%)	0	(%0)	47	
	0	10	(15%)	28	8 (42%)	26		8	(3%)	99	_
	-	10	(11%)	28	3 (32%)	42	(46%)	==	(12%)	92	
	?	\$	(3%6)	29	(25%)	64	(47%)	23	(20%)	116	
	6 -	-	(7%)	29	(22%)	63	(47%)	32	_	134	
	e E	9	(6%)	28	(17%)	70	(41%)	61	(36%)	170	
Log of Binding	-24	~	(50%)	N	(50%)	0	(%)	0	(4,0)	.4	(100%)
Algorithm	-25	40	(%95)	6	(33%)	-	32	•	(0.4)	· c	(100%)
	-28	7	(47%)	va	(33%)	c	(20%)	•	(0%)	+ ·	(100%)
	-27	-	(32%)	0	(20%)	. 12	(38%)	0	(0%)	31	(100%)
	-28	0	(17%)	10	(33%)	29	(%0%)	0	(%)	28	(100%)
	-29	ō	(12%)	25	(30%)	4 8	(28%)	٥	(0%)	83	(100%)
	-30 -	2	(10%)	29	(28%)	59	(27%)	S	(5%)	103	(100%)
	-3-	2	(8%)	20	(22%)	99	(21%)	. 24	(10%)	120	(100%)
	-32	<u>•</u>	(7%)	29	(10%)	70	(47%)	4	(27%)	140	(7001)
	5 2	2	(e%)	28	(17%)	70	(4) %)	61	(36%)	170	(100%)

respectively. The correlation between binding and algorithm score was 0.69. The striking difference between peptides with high algorithm scores is immediately apparent from Table 22, and those with low algorithm scores. Respectively, 76% of the high scorers and none of the low scorers were either good or intermediate binders. This data demonstrates the utility of the algorithm of this invention.

Table 22

	SCURCE	A2.1 Binding	Algorithm
MMWFVVLTV	CW	0.76	
YLLLYFDA	CMV	0.75	346 312
YLYFLUFOL	CMV	0.72	169
FMWTYLVTL	CMV	0.68	336
LLWWITLL	CMV	0.49	356
CTMCATŁA	CMV	0.47	1989
LYTRGYLEV	CMV	0.45	296
UTCUTE!	CMV	0.42	1358
RLLTSLFFL	HSV	0.34	859
TITALDARF	HSV	0.28	390
AMSANLFRY	OW	0.15	1748
AMLTACVEV	CMV	0.089	411
RLOPNVPLV	CVIV	0.048	392
VLARTFTPV .	CWV	0.044	196
PLLAGUEL	CNIV	0.037	494
WMWFPSVLL	OMV	0.038	362
Arcceurt	CMV	0.021	1043
DALGRYFFY .	HSV	0.011	1422
ALGRYCOOLV	CMV	0.0089	
LMPPPVAEL	CVIV	0.0066	184
LHCRYTPRL	CMV	0.0055	415
PLTWPLTWL	CMV	0.0052	414 250
AMPRRVLHV	CYL	0.0032	628
ALLLVLALL	CHV	0.0014	635
AMSGTGTTL	CAN	0.0005	602
MLNVMKEAV	CAN	0.0039	0.00031
TMELMIRTY	CMV	0.0029	0.00031
TLAAMHSKL	HSV	0.0008	0.0013
TUNIVROHY	CHY	0.0005	0.00021
ELSFREEL	HSV	0.0002	0.00021
FLRVOOKAL	HSV	0.0002	0.0020
ELOMMOCHYV	CHIV	0.0001	0.00033
CLNAMOPOL	k(T	0.0001	
GLROLKGAL	CNIV	0.0001	0.0017
TURMSSKAV	HSV	0.0001	
STENSET	CMV	. 0	0.00085
DUKOMERVV	CMV		0.00041
PLRVTPSOL	CAN	٥	0.00025
OLDYEKOVL	CWV	•	0.0019
WUKLEDAL	CMV	0	0.0012
PMEAVRHPL	CMV	0	0.0012
ELKOTRYNL	CMV	0	0.0011
NLEVIHDAL	CWV	0	0.00053
ELIOKVIKSVL		0	0.00050
PLAYERDIK.	HSV	0	0.00033
	O.∧ €:	0	0.00017
•			

Set	Good Binders	Intermediate Binders	Weak Binders	Negative Binders	Totals
HI Scorers	11 (52.4%)	5 (23.8%)	5 (23.8%)	0 (0.0%)	21 (100%)
Low Scorers	0 (0.0%)	(%0.0)	10 (50.0%)	10 (50.0%)	20 (100%)
Totals	11 (26.8%)	5 (12.2%)	15 (38.6%)	10 (24.4%)	41 (100%)

Example 9

Ex vivo induction of Cytotoxic T Lymphocytes (CTL)

[00134] Peripheral blood mononuclear cells (PBMC) are isolated from an HLA-typed patient by either venipuncture or apheresis (depending upon the initial amount of CTLp required), and purified by gradient centrifugation using Ficoll-Paque (Pharmacia). Typically, one can obtain one million PBMC for every ml of peripheral blood, or alternatively, a typical apheresis procedure can yield up to a total of 1-10 X 10¹⁰ PBMC.

[00135] The isolated and purified PBMC are co-cultured with an appropriate number of antigen presenting cell (APC), previously incubated ("pulsed") with an appropriate amount of synthetic peptide (containing the HLA binding motif and the sequence of the antigen in question). PBMC are usually incubated at 1-2 X 10⁶ cells/ml in culture medium such as RPMI-1640 (with autologous serum or plasma) or the serum-free medium AIM-V (Gibco).

[00136] APC are usually used at concentrations ranging from IX10⁴ to 2X10⁵ cells/ml, depending on the type of cell used. Possible sources of APC include: 1) autologous dendritic cells (DC), which are isolated from PBMC and purified as described (Inaba, et al., J. Exp. Med. 166:182 (1987)); and 2) mutant and genetically engineered mammalian cells that express "empty" HLA molecules (which are syngeneic [genetically identical] to the patient's allelic HLA form), such as the, mouse RMA-S cell line or the human T2 cell line. APC containing empty HLA molecules are known to be potent inducers of CTL responses, possibly because the peptide can associate more readily with empty MHC molecules than with MHC molecules which are occupied by other peptides (DeBruijn, et al., Eur. J. Immunol. 21:2963-2970 (1991)).

[00137] In those cases when the APC used are not autologous, the cells will have to be gamma irradiated with an appropriate dose (using, e.g., radioactive cesium or cobalt) to prevent their proliferation both ex vivo, and when the cells are re-introduced into the patients.

[00138] The mixture cultures, containing PBMC, APC and peptide are kept in an appropriate culture vessel such as plastic T-flasks, gas-permeable plastic bags, or roller bottles, at 37° centigrade in a humid air/CO₂ incubator. After the activation phase of the culture, which usually occurs during the first 3-5 days, the resulting effector CTL can be further expanded, by the addition of recombinant DNA-derived growth factors such as interleukin-2 (IL-2),

interleukin-4 (IL-4), or interleukin-7 (IL-7) to the cultures. An expansion culture can be kept for an additional 5 to 12 days, depending on the numbers of effector CTL required for a particular patient. In addition, expansion cultures may be performed using hollow fiber artificial capillary systems (Cellco), where larger numbers of cells (up to IXIO) can be maintained.

Before the cells are infused into the patient, they are tested for activity, viability, toxicity and sterility. The cytotoxic activity of the resulting CTL can be determined by a standard ⁵¹Cr-release assay (Biddison, W.E. 1991, Current Protocols in Immunology, p7,17.1-7.17.5, Ed. J. Coligan et al., J. Wiley and Sons, New York), using target cells that express the appropriate HLA molecule, in the presence and absence of the immunogenic peptide. Viability is determined by the exclusion of trypan blue dye by live cells. Cells are tested for the presence of endotoxin by conventional techniques. Finally, the presence of bacterial or fungal contamination is determined by appropriate microbiological methods (chocolate agar, etc.). Once the cells pass all quality control and safety tests, they are washed and placed in the appropriate infusion solution (Ringer/glucose lactate) and infused intravenously into the patient.

Example 10

Assays for CTL Activity

[00140] 1. Peptide synthesis: Peptide syntheses were carried out by sequential coupling of N-α-Fmoc-protected amino acids on an Applied Biosystems (Foster City, CA) 430A peptide synthesizer using standard Fmoc coupling cycles (software version 1.40). All amino acids, reagents, and resins were obtained from Applied Biosystems or Bachem. Solvents were obtained from Burdick & Jackson. Solid-phase synthesis was started from an appropriately substituted Fmoc-amino acid-Sasrin resin. The loading of the starting resin was 0.5-0.7 mmol/g polystyrene, and 0.1 or 0.25 meq were used in each synthesis. A typical reaction cycle proceeded as follows: 1) The N-terminal Fmoc group was removed with 25% piperidine in dimethylformamide (DMF) for 5 minutes, followed by another treatment with 25% piperdine in DMF for 15 minutes. The resin was washed 5 times with DMF. An N-methylpyrolidone (NMP) solution of a 4 to 10 fold excess of a pre-formed 1-hydroxybenzotriazole ester of the appropriate Fmoc-amino acid was added to the resin and the mixture was allowed to react for 30-90 min. The resin was washed with DMF in preparation for the next elongation cycle. The fully

protected, resin bound peptide was subjected to a piperidine cycle to remove the terminal Fmoc group. The product was washed with dichloromethane and dried. The resin was then treated with trifluoroacetic acid in the presence of appropriate scavengers [e.g. 5% (v/v) water] for 60 minutes at 20°C. After evaporation of excess trifluoroacetic acid, the crude peptide was washed with dimethyl ether, dissolved in water and lyophilized. The peptides wee purified to >95% homogeneity by reverse-phase HPLC using H₂0/CH₃CN gradients containing 0.2% TFA modifier on a Vydac. 300Å pore-size, C-18 preparative column. The purity of the synthetic peptides was assayed on an analytical reverse-phase column, and their composition ascertained by amino acid analysis and/or sequencing. Peptides were routinely dissolved in DMSO at the concentration of 20 mg/ml.

- [00141] 2. Media: RPMI-1640 containing 10% fetal calf serum (FCS) 2 mM
 Glutamine, 50 μg/ml Gentamicin and 5X10⁻⁵M 2-mercaptoethanol served as culture medium and will be referred to as R10 medium.
- [00142] RPMI-1640 containing 25 mM Hepes buffer and supplemented with 2% FCS was used as cell washing medium.
- [00143] 3. Rat Concanavalin A supernatant: The spleen cells obtained from Lewis rats (Sprague-Dawley) were resuspended at a concentration of 510^6 cells/ml in R10 medium supplemented with 5 μ g/ml of ConA in 75 cm2 tissue culture flasks. After 48 hr at 37°C, the supernatants were collected, supplemented with 1% α -methyl-D-mannoside and filter sterilized (.45 μ m filter). Aliquots were stored frozen at -20°C.
- [00144] 4. LPS-activated lymphoblasts: Murine splenocytes were resuspended at a concentration of 1-1.5xlO⁶/ml in R10 medium supplemented with 25 μ g/ml LPS and 7 μ g/ml dextran sulfate in 75 cm² tissue culture flasks. After 72 hours at 37°C, the lymphoblasts were collected for use by centrifugation.
- [00145] 5. Peptide coating of lymphoblasts: Coating of the LPS activated lymphoblasts was āchieved by incubating 30x10⁶ lymphoblasts with 100 μg of peptide in 1 ml of R10 medium for 1 hr at 37°C. Cells were then washed once and resuspended in R10 medium at the desired concentration for use in in vitro CTL activation.
- [00146] 6. Peptide coating of Jurkat A2/K^b cells: Peptide coating was achieved by incubating 10xlO⁶ irradiated 20,000 rads) Jurkat A2.1/K^b cells with 20 µg of peptide in 1 ml of

- R10 medium for 1 hour at 37°C. Cells were washed three times and resuspended at the required concentration in R10 medium.
- [00147] 7. In Vitro CTL activation: One to four weeks after priming spleen cells (5 x 10⁶ cells/well or 30xl0⁶ cells/T25 flask) were concultured at 37°C with syngeneic, irradiated (3,000 rads), peptide coated lymphoblasts (2xl0⁶ cells/well or 10X10⁶ cells/T25 flask) in R10 medium to give a final volume of 2 ml in 24-well plates or 10 ml in T25 flasks.
- [00148] 8. Restimulation of effector cells: Seven to ten days after the initial in vitro activation, described in paragraph 8 above, a portion of the effector cells were restimulated with irradiated (20,000 rads), peptide-coated Jurkat A2/K^b cells (0.2xlO⁶ cells/well) in the presence of 3xlO⁶ "feeder cells"/well (C57Bl/6 irradiated spleen cells) in RIO medium supplemented with 5% rat ConA supernatant to help provide all of the cytokines needed for optimal effector cell growth.
- in the presence of 200 μ l of sodium ⁵¹Cr chromate. After 60 minutes, cells were washed three times and resuspended in R10 medium. Peptide 875.15 was added at the required concentration. For the assay, 10^4 ⁵¹Cr-labeled target cells wee added to different concentrations of effector cells (final volume of 200 μ l) in U-bottom 96-2311 plates. After a 6-hour incubation period at 37°C, 0.1 ml aliquots of supernatant were removed from each well and radioactivity was determined in a Micromedic automatic gamma counter. The percent specific lysis was determined by the formula: percent specific release = 100x(experimental release spontaneous release)/(maximum release spontaneous release). Where peptide titrations wee performed, the antigenicity of a given peptide (for comparison purposes) was expressed as the peptide concentration required to induce 40% specific ⁵¹Cr release at a given E:T.
- [00150] Transgenic mice were injected subcutaneously in the base of the tail with an incomplete Freund's adjuvant emulsion containing 50 nM of the putative CTL epitopes containing the AZ.1 motifs, and 50 nM of the hepatitis B core T helper epitope, Cytel No. 875.23. Eight to 20 days later, animals were sacrificed and spleen cells were restimulated in vitro with syngeneic LPS lymphoblasts coated with the purative CTL epitope. A source of IL-2 (rat con A supernatant) was added at day 6 of the assay to a final concentration of 5% and CTL activity was measured on day 7. The capacity of these effector T cells to lyse peptide-coated target cells that

express the A2 KB molecule (Jurkat A2 KB) was measured as lytic units. The results are presented in Table 23.

[00151] The results of this experiment indicate that those peptides having a binding of at least 0.01 are capable of inducing CTL. All of the peptides in Appendices 1 and 2 having a binding of at least about 0.01 would be immunogenic.

TABLE 24

Binding and Immunogenicity HBV Polymerase (ayw)

Peptide	Binding**	CTL Activity	Algorithm
1 2 3 4 5 6 7 8 9			-
F L L S L G I H L G L Y S S T V P V H L Y S H P I I L W I L R G T S F V N L S W L S L D V L L S S N L S W L N L Q S L T N L L H L L V G S S G L L L D D E A G P L P L E E E L P R L D L N L G N L N V N L Y V S L L L L P L P I H T A E L	0.52 0.15 0.13 0.018 0.013 0.005 0.003 0.002 0.0002 0.0001 -*	63 10 10 -+ 6 - - - -	-20.8 -21.9 -21.1 -20.9 -24.7 -21.7 -23.9 -24.7 -25.5 -26.1 -25.7 -23.6 -25.04

^{*-=&}lt;0.0001

^{**} Relative binding capacity compared to std with IC₅₀ = 52mM xxx Lytic units/10⁶ cells; 1 lytic unit = the number of effector cells required to give 30% Cr⁵¹ release.

-,-+ no measurable cytotoxic activity.

Example 11[1]

- [00152] Class I antigen isolation was carried out as described in the parent applications. Naturally processed peptides were then Isolated and sequenced as described there. An allelespecific motif and algorithms were determined and quantitative binding assays were carried.
- [00153] Using the motifs identified above for HLA-A2.1 allele amino acid sequences from a tumor-related proteins, Melanoma Antigen-1,-2, and -3 (MAGE-1, -2, and -3), were analyzed for the presence of these motifs. Sequences for the target antigen are obtained from the GenBank data base (Release No. 71.0; 3/92). The identification of motifs is done using the "FINDPATTERNS" program (Devereux et al., Nucleic Acids Research 12:387-395 (1984)).
- [00154] Other viral and tumor-related proteins can also be analyzed for the presence of these motifs. The amino acid sequence or the nucleotide sequence encoding products is obtained from the GenBank database in the cases of Human Papilloma Virus (HPV), Prostate Specific antigen (PSA), p53 oncogene, Epstein Barr Nuclear Antigen-1 (EBNA-1), and c-erb2 oncogene (also called HER-2/neu).
- [00155] In the cases of Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), and Human Immunodeficiency Virus (HIV) several strains/isolates exist and many sequences have been placed in GenBank.
- [00156] For HBV, binding motifs are identified for the adr, adw and ayw types. In order to avoid replication of identical sequences, all of the adr motifs and only those motifs from adw and ayw that are not present in adr are added to the list of peptides.
- [00157] In the case of HCV, a consensus sequence from residue 1 to residue 782 is derived from 9 viral isolates. Motifs are identified on those regions that have no or very little (one residue) variation between the 9 isolates. The sequences of residues 783 to 3010 from 5 viral isolates were also analyzed. Motifs common to all the isolates are identified and added to the peptide list.
- [00158] Finally, a consensus sequence for HIV type 1 for North American viral isolates (10-12 viruses) was obtained from the Los Alamos National Laboratory database (May 1991 release) and analyzed in order to identify motifs that are constant throughout most viral isolates.

Motifs that bear a small degree of variation (one residue, in 2 forms) were also added to the peptide list.

[00159] Table 14 provides the results of searches of the following antigens cERB2, EBNA1, HBV, HCV, HIV, HPV, MAGE, p53, and PSA. Only peptides with binding affinity of at least 1% as compared to the standard peptide in assays described in Example 5 are presented. Binding as compared to the standard peptide is shown in the far right column. The column labeled "Pos." indicates the position in the antigenic protein at which the sequence occurs.

[00160] Tables $\underline{15}$ [3] and $\underline{16}$ [4] provide the results of these searches. Binding affinities are expressed as percentage of binding compared to standard peptide in the assays as described in the parent applications are presented.

[00161] Although the present invention has been described in some detail by way of illustration and example for purposes of clarity and understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims.

Table 14

Peptide	Sequence	ΛΑ	Virus	Strain	Molecule	Pos.	A2.1
1.0841	ILSPFLPLL	9	HBV	adr	ENV	371	
1.0240	TLQDIVLHIL	9	· HPV	18	E7		2.9
1.0838	WLSLLVPFV	9	HBV	adr	ENV	7	0.76
1.0851	FLLSLCIHIL	9	HBV	adr .	POL	335	0.72
1.0306	QLFEDNYAL	9	c-ERB2		1 101 _	1147	0.52
1.0814	LMVTVYYGV	9	HIV		ENV .	106	0.46
1.0878	MMWFWGTSL	9	HBY	adw	BNV	2182	0.44
1.0839	MMWYWGPSL	9	HBV	adr.	ENV.	360	0.41
1.0384	FLTKQYLNL	9	HBV	adw	POL	360 1279	0.41
1.0321	ILHNGAYSL	9	c-ERB2		-	435	0.29
1.0834	LLLCLIPLL	9	HBV	adr	ENV	250	<u> </u>
1.0167	GLYSSTVPV .	9	HBV	adr	POL		0.19
1.0849	HLYSHPIL.	9	HBV	adr	POL	635	0.15
1.0275	RMPEAAPPV	9	p53	#GF	- FUL	1076	0.13
1.0854	LLMGTLGIV	ا و ا	HPV	16	D7	65	0.12
1.0880	ILSPEMPLL	9	HBV	■d₩	E7	82	0.11
1.0127	YLVAYQATV	9	HCV	<u></u>	ENV	371	0.11
1.0151	VLLDYQGML	9	HEV		LORF	1585	0.11
1.0018	VLAEAMSQV	9	VIII	<u>odr</u> .	ENV	259	0.11
1.0330	KLLQETELV	9	c-ERB2		GAG	367	0.11
1.0209	SLYAVSPSV	9	HBV			689	0.091
1.0816	DLMCYIPLV	9	HCV	<u>edr</u>	POL	1388	0.078
1.0835	LLCLIFLLY	9	HBV .	·····	CORE	132	0.055
1.0852	FLCQQYLHL	9	 . <u>L</u>	adr	ENV	251	0.049
t.0882	NLYVSLMLL	9	HBV	<u>adr</u>	POL	1250	0.048
1.0537	GMIPVCPLL	9	VEV	<u>adw</u>	POL	1068	0.046
1.0819	ILPOSFITE	9	HBA	<u>adr</u>	ENV	265	0.046
1.0109	ALSTGLIFIL	·· ·	HCV		NSI/ENV2	676	0.045
1.0833	ILLICLIFL	- 9	HCV		NS1/ENV2	686	0.042
1.0301	HLYQGCQVV	9	HBV	adr	ENV	249	0.035
1.0337	CLTSTVQLV		c-ERB2			48	0.034
1.0812	PLLPIFFCL	9	c-ERB2			789	0.034
1.0861		9	HBV	adr	ENV	377	0.031
1.0309	ALCRWCLLL	9	c-ERB2		<u> </u>	5	0.031
1.0828	VLIQKNPQL	9	c-EKR5	<u> </u>		153	0.029
	VLQACFFLL	9	HBA	adr	ENV	177	0.024
1.0844	LLWFHISCL	9	HRA	_ adr	CORE	490	0.024
1.0135	ILAGYGAGV	9	HCV		LORF	1851	0.024
1.0870	QLMPYGCLL	9	c-ERB2			799	0.023
1.0075	LLWKGEGAV	9	HIV		POL	1496	0.023
1.0873	FLGGTPVCL	9	HBV	edw	ENV	204	0.021
1.0323	ALIHHNTHL	9	c-ERB2			466	0.021
1.0859	VLVIIPQWVL	9	PSA	• • ————		49	0.020
1.0267	KLQCVDLHV	9	PSA .			166	0.019
1.0820	VLPCSFTTL	9	HCV	•	NSI/ENV2	676	0.017
1.0111	HLHQNIVDV	9	HCV		NS1/ENV2	693	0.016
1.0103	SMVGNWAKV	9	HCV	· ··	ENV1	364	0.016
1.0283	LLGRNSFEV	9	p53			264	0.014
1.0207	GLYRPLLSL	+ تُو	HBV	adr	POL		
1.0389	CLYRPLLRL	9	IBV	adw	POL	1370	0.014
1.0185	NLSWLSLDV	9	HBV	adr	······································		0.014
1.0113	FLLLADARY	9	HCV +		POL NS1/ENV2	725	0.013

Table 14

Peptide Sequence AA Virus Strain Molecule Pos. A2.1								
1.0846 CLTHIVNIL								
10846 CLTHIVNILL 9 HBV adr POL 512 0.010	Peptide	Sequence	AA	Virus	Strain	Molecule	Pos.	A2.1
LOISE ELMNLATWY 9	1.0846		9	HEV			-	
1.0256 KLPDLCTEL 0	1.0156	ELMNLATWY	9	HBV		- · ·		
1.0056	1.0236	KLPDLCTEL	9		 			
1.0375	1.0056	ALQDSCLEV	9	HIV	-	<u></u>		
10129 T.H.G.TTLL 9 H.CV LORF 1617 0.0070	1.0375	LLSSDLSWL		ा ।उ∨	adw	1 		
1.0041 KLLRGTKAL 9 HIV POL 976 0.0069 1.0131 CMSADLEVV 9 HCV LONF 1648 0.0067 1.0228 TLHEYMLDL 9 TIPV 16 EF 7 0.0066 1.0228 TLHEYMLDL 9 TIPV 16 EF 7 0.0069 1.0224 KLLPENNVL 9 PS3 24 0.0058 1.0043 TLKEPVHGV 9 HTV POL 1006 0.0055 1.0043 TLKEPVHGV 9 HTV POL 1006 0.0055 1.0056 RIGLYRITL 9 HBV adr POL 1027 0.0050 1.0188 GLPRYVARL 9 TIDV adr POL 1027 0.0050 1.0188 GLPRYVARL 9 HBV adr POL 1366 0.0050 1.0318 TLALESCI 9 HEV adr POL 1317 0.0020 1.0318 LLSSNLSWL 9 HBV adr POL 992 0.0046 1.0318 LLSSNLSWL 9 HBV adr POL 992 0.0046 1.0318 LLSSNLSWL 9 HEV ENVI 337 0.0039 1.0014 GLRDLAVAV 9 HCV ENVI 337 0.0039 1.0005 TLNAWVKVI 9 HBV adr POL 993 0.0034 1.0005 TLNAWVKVI 9 HBV adr POL 995 0.0025 1.0359 QLGRKFTPL 9 HBV adr POL 995 0.0025 1.0350 GLGRKFTPL 9 HBV adr ENV 89 0.0025 1.0362 ILSSTCDPV 9 HBV adr ENV 130 0.0021 1.0364 ILLVAVLGV 9 ERREZ ERREZ 447 0.0018 1.0365 GLGSWLGL 9 ERREZ 447 0.0018 1.0366 HLEGKTILV 9 ERREZ 447 0.0018 1.0367 HLLVOSSCI 9 HBV adr POL 1020 0.0018 1.0368 HLEGKTILV 9 ERREZ 442 0.0018 1.0368 HLEGKTILV 9 ERREZ 442 0.0018 1.0369 VLHKKTLGL 9 HBV adr POL 1020 0.0018 1.0368 HLEGKTILV 9 HBV adr ENV 133 0.0021 1.0368 HLEGKTILV 9 HBV adr ENV 130 0.0005 1.0368 HLEGKTILV 9 HBV adr ENV 130 0.0005 1.0368 HLEGKTILV 9 HBV adr ENV 130 0.0006 1.0055 HLEGKTILV 9 HBV adr ENV 130 0.0006 1.0056 HLEGKTILV 9 HBV	1.0094	ALAHGVRVL	9	HCV		CORE	150	0.0072
1.0131	1.0129	TLHGITTLL	9	HCV	-	LORF	1617	0.0070
1.0872 GLLGPLLVL 9 HBV adw ENV 170 0.0066 1.0228 TLHEYMLDL 9 IFPV 16 E7 7 0.0059 1.0274 KLLPENNVL 9 PS3 24 0.0055 1.0206 RIGLYMPL 9 HBV adr POL 1024 0.0055 1.0206 RIGLYMPL 9 HBV adr POL 1368 0.0050 1.0318 GLPRYVARL 9 HBV adr POL 1027 0.0050 1.0328 KLIGTDNSV 9 HBV adr POL 1317 0.0050 1.0318 FLUALISCL 9 IIEV adr POL 1317 0.0050 1.0518 FLUALISCL 9 IIEV adr POL 1317 0.0050 1.0518 FLUALISCL 9 HBV adr POL 972 0.0046 1.0518 GLERDLAVAV 9 HCV LORF 963 0.0034 1.0514 GLRDLAVAV 9 HCV LORF 963 0.0034 1.0515 MLQSLITILL 9 HBV adr POL 985 0.0032 1.0516 NLQSLITILL 9 HBV adr POL 985 0.0032 1.0516 NLQSLITILL 9 HBV adr POL 985 0.0032 1.0516 SLDSWWTSL 9 HBV adr ENV 89 0.0025 1.0516 ILLENTICDPV 9 HBV adr ENV 153 0.0021 1.0316 ILLENTICDPV 9 HBV adr ENV 153 0.0021 1.0316 ILLENTICDPV 9 HBV adr ENV 153 0.0021 1.0316 TLEITTYL 9 CERR2 447 0.0018 1.0317 HLLVGSSCL 9 HBV adr TX 1533 0.0019 1.0318 TLEITTYL 9 CERR2 447 0.0018 1.0320 LLGCUTSL 9 HBV adr TX 1533 0.0019 1.0321 LLGCUTSL 9 HBV adr TX 1533 0.0019 1.0322 LLGCUTSL 9 HBV adr TX 1533 0.0019 1.0323 TLEITTYL 9 CERR2 447 0.0018 1.0324 LLGCUTSL 9 HBV adr TX 1533 0.0019 1.0325 GLGSWICL 9 CERR2 447 0.0018 1.0326 GLGSWICL 9 CERR2 447 0.0018 1.0327 ALNKMRCQL 9 P\$3 129 0.0015 1.0326 GLGSWICL 9 P\$3 129 0.0015 1.0326 GLGSWICL 9 P\$3 129 0.0015 1.0326 GLGSWICL 9 HBV adr TX 1539 0.0005 1.0326 HLECKWILV 9 HIV POL 1322 0.0016 1.0326 HLECKWILV 9 HIV GAG 350 0.0006 1.0326 HLECKWILV 9 HIV GAG 350 0.0006 1.0326 G	1.0041	KLIRGTKAL	9	HIV		POL	976	0.0069
1.0228	1.0131	CMSADLEVV	9	HCV		LORF	1648	0.0067
1.0274 KLLPENNVL 9	1.0872	GLLCPLLVL	9	HBV	adw	ENV	170	0.0066
1.0043 ILKEFVHGV 9 HIV Rdr POL 1004 0.0055 1.0206 RLGLYKPIL 9 HBV Rdr POL 1368 0.0050 1.0188 CLPRYVARL 9 HBV Rdr POL 1027 0.0050 1.0188 CLPRYVARL 9 HBV Rdr POL 1317 0.0050 1.0818 FLALLSCL 9 HBV Rdr POL 1317 0.0050 1.0818 FLALLSCL 9 HBV Rdr POL 992 0.0046 1.0702 QLLRPQAV 9 HCV ENVI 337 0.0034 1.0702 QLLRPQAV 9 HCV LORF 963 0.0034 1.0014 GRDLAVAV 9 HFV GAG 156 0.0032 1.0718 NLQSLINLL 9 HBV Rdr POL 895 0.0025 1.0359 QLGRKPIPL 9 HBV Rdr ENV 895 0.0025 1.0359 QLGRKPIPL 9 HBV Rdr ENV 194 0.0023 1.0350 QLGRKPIPL 9 HBV Rdr ENV 194 0.0023 1.0366 ILLVVVLGV 9 C-ERIZ 661 0.0021 1.0366 ILLVVVLGV 9 C-ERIZ 661 0.0021 1.0362 ILSKTGDPV 9 HBV Rdr ENV 153 0.0021 1.0362 ILSKTGDPV 9 HBV Rdr ENV 153 0.0021 1.0362 GLGISVHGL 9 ERRE 447 0.0018 1.0362 GLGISVHGL 9 C-ERIZ 447 0.0018 1.0362 GLGISVHGL 9 C-ERIZ 447 0.0018 1.0362 GLGISVHGL 9 C-ERIZ 447 0.0018 1.0362 TLLVGSSGL 9 HBV Rdr POL 1020 0.0019 1.0366 HLLGKITILV 9 C-ERIZ 447 0.0018 1.0368 PLTSISAV 9 C-ERIZ 447 0.0018 1.0366 HLEGKITILV 9 FIFV POL 1322 0.0010 1.0366 HLEGKITILV 9 FIFV POL 1322 0.0010 1.0366 HLEGKITILV 9 HBV Rdr ENV 140 0.0005 1.0366 HLEGKITILV 9 HBV Rdr ENV 120 0.0006 1.0368 HLEGKITILV 9 HBV Rdr ENV 120 0.0006 1.0365 HLEGKUTLV 9 HBV Rdr ENV 120 0.0006 1.0366 HLEGKITILV 9 HBV Rdr ENV 120 0.0006 1.0366 HLEGKTTLV 9 HBV Rdr ENV 120 0.0006 1.0366 HLEGKTTLV 9 HBV Rdr ENV 120 0.0006 1.0366 HLEGKTTLV 9 HBV Rdr ENV 120 0.0006 1.0365 HLEGKVILV 9 HBV Rdr ENV 120 0.0006 1.0365 HLEGKVILV 9 HBV Rdr ENV 120 0.0006 1.0365 HLEGKVILV 9 HBV Rdr ENV 140	1.0228	TLHEYMLDL	9	IIPV	16	E7	7	0.0059
Licolo	1.0274	KLLPENNVL I	9	p53			24	0.0058
1.0188 GLPRYVARL 9 1-1EV adr POL 1027 0.0050 1.0202 KLIGTONSV 9 HBV adr POL 1317 0.0060 1.0618 FLLALLSCL 9 11CV CORE 177 0.0064 1.0184 LLSSNLSWL 9 HBV adr POL 972 0.0046 1.0102 QLLRIPQAV 9 HCV ENVI 337 0.0039 1.0114 GLRDLAVAV 9 HCV LORF 963 0.0034 1.0005 TLNAWVKVI 9 HIV GAG 156 0.0022 1.0055 TLNAWVKVI 9 HBV adr POL 985 0.0025 1.0159 QLGRKPTPL 9 HBV adr ENV 98 0.0025 1.0359 QLGRKPTPL 9 HBV adr ENV 194 0.0023 1.0366 ILLVVVLGV 9 CERE2 661 0.0020 1.0366 ILLVVVLGV 9 CERE2 661 0.0020 1.0216 CLFKDWEEL 9 HBV adr TX 1510 0.0019 1.0216 CLFKDWEEL 9 1.1BV adr TX 1533 0.0019 1.0318 TLEEITCYL 9 CERE2 402 0.0018 1.0228 FLTSISAV 9 CERE2 402 0.0018 1.0227 ALNKMFCQL 9 ALV POL 1.322 0.0010 1.0006 HLECKITIL 9 CERE2 1.0007 1.0006 HLECKITIL 9 CERE2 1.0007 1.0006 HLECKITIL 9 CERE2 1.0007 1.0006 HLECKITIL 9 HBV adw X 1539 0.0007 1.0006 HLECKITIL 9 CERE2 1.0007 1.0006 HLECKITIL 9 HBV adw X 1.539 0.0007 1.0006 HLECKITIL 9 CERE2 1.0007 1.0006 HLECKITIL 9 HBV adw ENV 246 0.0007 1.0005 HLECKITIL 9 HBV adw FOL 1.165 0.0006 1.0005	1.0043	ILKEPVHGV	9	HIV		POL	1004	0.0055
LO202 KLIGTONSV 9 HBV adr POL 1317 0.0050	1.0206	RLGLYKPLL	9	HBA	adr	POL	1368	0.0050
1.0618	1.0188	GLPRYVARL	9	I-IBV	adr	POL	1027	0.0050
1.0184 LLSSNLSWL 9	1.0202	KLIGTONSV	9	HRA	adr	POL	1317	0.0050
1.0102 QLERPQAV 9 HCV ENVI 337 0.0039 1.0114 GLRDLAVAV 9 HCV LORF 963 0.0034 1.0005 TLNAWVKVI 9 HIV GAC 156 0.0022 1.0159 NLQSLINLL 9 HBV adr POL 985 0.0025 1.0359 QLGRKPTPL 9 HBV adw ENV 89 0.0025 1.0150 SLDSWWTSL 9 HBV adw ENV 194 0.0023 1.0362 ILSKTGDPV 9 HBV adw ENV 153 0.0021 1.0366 ILLVVVLGV 9 CERRE 661 0.0020 1.0214 LLHKRTLGL 9 HBV adr TX 1510 0.0019 1.0216 CLFKDWEEL 9 IBFV adr TX 1533 0.0019 1.0462 GLGISWLGL 9 CERB2 447 0.0018 1.0187 HLLVGSSGL 9 HBV adr POL 1020 0.0018 1.0187 HLLVGSSGL 9 HBV adr POL 1020 0.0018 1.0318 TLEEITGVL 9 CERB2 402 0.0018 1.0328 PLTSIISAV 9 CERB2 402 0.0018 1.0022 LLGCUITSL 9 HCV LORF 1039 0.0015 1.0227 ALNKMFQL 9 PS3 129 0.0013 1.0066 HLECKITILV 9 FITV POL 1322 0.0010 1.0308 QLRSLTEIL 9 CERB2 141 0.0008 1.0319 VLHKRTLGL 9 HBV adw TX 1539 0.0007 1.0366 FLGILLCL 9 HBV adw ENV 246 0.0007 1.0367 FLGILLCL 9 HBV adw ENV 246 0.0007 1.0367 FLGILLCL 9 HBV adw ENV 246 0.0007 1.0367 FLGILLCL 9 HBV adw ENV 246 0.0007 1.0368 VLHKRTLGL 9 HBV adw ENV 246 0.0007 1.0366 FLGILLCL 9 HBV adw ENV 246 0.0007 1.0366 FLGILLCL 9 HBV adw ENV 246 0.0007 1.0366 FLGILLCL 9 HBV adw ENV 246 0.0007 1.0367 FLGILLCL 9 HBV adw ENV 246 0.0007 1.0368 VLHKRTLGL 9 HBV adw ENV 246 0.0006 1.0368 VLHKRTLGL 9 HBV Adw ENV 246	1.0818	FLLALLSCL	9	IICV		CORE	177	0.0046
1.0114 GLRDLAVAV 9 HCV	1.0184	LLSSNLSWL	9	HRV	adr	POL	992	0.0046
1.003	1.0102	QLLRPQAV	9	HCV		ENVI	337	0.0039
1.01R3	1.0114	GLRDLAVAV	9	HCV		LORF	963	0.0034
1.0359 QLGRKPTPL 9	1.0005	TLNAWVXVI	9	HIV		GAG	156	0.0032
1.0150 SLDSWWTSL 9	1.01R3	NLQSLINLL	9	HBV	adr	POL	985	0.0025
1.0862	<u> </u>	QLCRKPTPL	·	HUV	adw	ENV	89	0.0025
1.0866	1.0150	SLDSWWTSL	9	1-IIIV	adr	ENV	194	0.0023
1.0214	1.0362			HBV	wba	ENV	153_	0.0021
1.0216	1.0866	ILLVVVLGV	 -	c-ERIX	l		661	0.0020
1.0862 GLGISWLCL 9	<u> </u>			HBV	adr '		1510	0.0019
1.0187 HLLVGSSCL 9 HBV adr POL 1020 0.0018 1.0318 TLEEITCYL 9 c-ERB2 402 0.0018 1.0328 FLTSIISAV 9 c-ERB2 650 0.0015 1.0822 LLGCIITSL 9 HCV LORF 1039 0.0015 1.0277 ALNKMFCQL 9 p53 129 0.0013 1.0066 HLECKIII.V 9 FIIV POL 1322 0.0010 1.0308 QLRSLTEIL 9 c-ERB2 141 0.0008 1.0115 DLAVAVEFV 9 HCV LORF 966 0.0008 1.0391 VLHKKTLGL 9 HBV adw "X" 1539 0.0007 1.0876 FLCILLCL 9 IIIIV adw ENV 246 0.0007 1.0148 LLDPRVRGL 9 HBV adr ENV 120 0.0006 1.0221 KLPQLCTEL 9 HIPV 16 E6 18 0.0006 1.0055 HLEGKVILV 9 HIV POL 1322 0.0006 1.0055 HLALQDSGL 9 HIV POL 1178 0.0005 1.0868 VLGVVRGIL 9 c-ERB2 666 0.0005 1.0038 HLESLYAAV 9 HBV adw POL 1165 0.0005 1.0038 HLESLYAAV 9 HBV adw POL 1165 0.0005 1.0128 CLIRLKPTL 9 HCV LORF 1610 0.0006 1.0255 CLGLSYDGL 9 MAGE 1/3 174 0.0004 1.0272 HLSLRGLPV 9 HBV adv TX 1470 0.0004 1.0272 HLSLRGLPV 9 HBV adv TX 1470 0.0004 1.0274 HLSLRGLPV 9 MAGE 1 93 0.0006 1.0007 1.0247 HLSLRGLPV 9 MAGE 1 93 0.0004 1.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004 1.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004 1.0004			-	I·BV	odr	-x-	1533	0.0019
1.0318 TLEEITCYL 9 C-ERB2 402 0.0018 1.0328 FLTSIISAV 9 C-ERB2 650 0.0015 1.0822 LLGCIITSL 9 HCV LORF 1039 0.0015 1.0277 ALNKMFCQL 9 p53 129 0.0013 1.0066 HLECKIII.V 9 FIIV POL 1322 0.0010 1.0308 QLRSLTEIL 9 C-ERB2 141 0.0008 1.0115 DLAVAVEFV 9 HCV LORF 966 0.0008 1.0391 VLHKKTLGL 9 HBV adw "X" 1539 0.0007 1.0876 FLCILLLCL 9 IIIIV adw ENV 246 0.0007 1.0148 LLDPRVRGL 9 HBV adr ENV 120 0.0006 1.0221 KLPQLCTEL 9 HIPV 16 E6 18 0.0006 1.0065 HLECKVILV 9 HIV POL 1322 0.0006 1.0017 EMMTACQGV 9 HIV GAG 350 0.0006 1.0055 HLALQDSGL 9 HIV POL 1178 0.0005 1.0868 VLGVVPGIL 9 C-ERB2 666 0.0005 1.0034 TLNAWVKVV 9 HIV GAG 156 0.0005 1.0035 CLIRLKPTL 9 HCV LORF 1610 0.0006 1.0036 CLIRLKPTL 9 HCV LORF 1610 0.0006 1.0212 HLSLRGLPV 9 HBV adv POL 1165 0.0006 1.0212 HLSLRGLPV 9 HBV adv TX 1470 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004 1.0248 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004 1.0248 1.0247 1.0247 1.0247 1.0247 1.0247 1.0247 1.0247 1.0247 1.0247 1		·	 		<u> </u>		447	0.0018
1.0328	I		1	HBV	adr	POL	1020	0.001B
1.0822 LLGCUTSL 9			·	c-ERH2	<u> </u>		402	0.0018
1.0277 ALNKMFCQL 9 p53 129 0.0013 1.0066 HLECKHILV 9 HIV POL 1322 0.0010 1.0308 QLRSLTEIL 9 c-ERB2 141 0.0008 1.0115 DLAVAVEPV 9 HCV LORF 966 0.0008 1.0391 VLHKRILGL 9 HBV adw X* 1539 0.0007 1.0876 FLCILLCL 9 HBV adw ENV 246 0.0007 1.0148 LLDPRVRGL 9 HBV adr ENV 120 0.0006 1.0221 KLPQLCTEL 9 HIV POL 1322 0.0006 1.0055 HLEGKVILV 9 HIV POL 1322 0.0006 1.0055 HLALQDSGL 9 HIV POL 1178 0.0005 1.0868 VLGVVRGIL 9 c-ERB2 666 0.0005 1.0031 HLESLYAAV 9 HBV adw POL 1165 0.0005 1.0381 HLESLYAAV 9 HBV adw POL 1165 0.0005 1.0255 CLIRLKPTL 9 HCV LORF 1610 0.0004 1.0272 HLSLRGLPV 9 HBV ade TX* 1470 0.0004 1.0272 HLSLRGLPV 9 HBV ade TX* 1470 0.0004 1.0247 ILESLERAV 9 MAGE 1 93 0.0004	<u> </u>		<u> </u>	CERB2			650	0.0015
1.0066 HLECKITI.V 9	- 		9	HCV _		LORF	1039	0.0015
1.0308 QLRSLTEIL 9 c-ERB2 LORF 966 0.0008 1.0115 DLAVAVEPV 9 HCV LORF 966 0.0008 1.0391 VLHKKTLGL 9 HBV adw X* 1539 0.0007 1.0876 FLCILLCL 9 IIBV adw ENV 246 0.0007 1.0148 LLDPRVRGL 9 HBV adr ENV 120 0.0006 1.0221 KLPQLCTEL 9 HPV 16 E6 18 0.0006 1.0055 HLEGKVILV 9 HIV POL 1322 0.0006 1.0017 EMMTACQCV 9 HIV GAG 350 0.0006 1.0055 HLALQDSGL 9 HIV POL 1178 0.0005 1.0868 VLGVVRGIL 9 e-ERB2 666 0.0005 1.0031 HLESLYAAV 9 HBV adw POL 1165 0.0005 1.0128 CLIRLKPTL 9 HCV LORF 1610 0.0004 1.0255 CLGLSYDGL 9 MAGE 1/3 174 0.0004 1.0212 HLSLRGLPV 9 HBV ade X* 1470 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004	1.0277	ALNKMPCQL	9	p\$3			129	0.0013
1.0115 DLAVAVEPV 9 HCV LORF 966 0.0008 1.0391 VLHKRILCL 9 HBV adw TX 1539 0.0007 1.0876 FLCILLCL 9 IIIIV adw ENV 246 0.0007 1.0148 LLDPRVRGL 9 HBV adr ENV 120 0.0006 1.0221 KLPQLCTEL 9 HIPV 16 E6 18 0.0006 1.0065 HLEGKVILV 9 HIV POL 1322 0.0006 1.0017 EMMTACQGV 9 HIV GAG 350 0.0006 1.0055 HLALQDSGL 9 HIV POL 1178 0.0005 1.0868 VLGVVRGIL 9 e-ERB2 666 0.0005 1.0031 HLESLYAAV 9 HBV adw POL 1165 0.0005 1.0128 CLIRLKPTL 9 HCV LORF 1610 0.0004 1.0255 CLGLSYDGL 9 MAGE 1/3 174 0.0004 1.0212 HLSLRGLPV 9 HBV adr TX 1470 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004			1	FIIV		POL	1322	0.0010
1.0391 VLHKRTLGL 9 HBV adw "X" 1539 0.0007 1.0876 FLCILLCL 9 IIIIV adw ENV 246 0.0007 1.0148 - ILDPRVRGL 9 HBV adr ENV 120 0.0006 1.0221 KLPQLCTEL 9 HIPV 16 E6 18 0.0006 1.0055 HLEGKVILV 9 HIV POL 1322 0.0006 1.0017 EMMTACQGV 9 HIV GAG 350 0.0006 1.0055 HILALQDSGL 9 HIV POL 1178 0.0005 1.0868 VLGVVPGIL 9 EERB2 666 0.0005 1.0031 HLESLYAAV 9 HBV adw POL 1165 0.0005 1.0128 CLIRLKPTL 9 HCV LORF 1610 0.0004 1.0212 HILSLRGLPV 9 HBV adr "X" 1470 0.0004		· · · · · · · · · · · · · · · · · · ·						
1.0876 FLCILLCL 9 1 1 1 1 2 2 4 0.0007 1.0148 LLDPRVRGL 9 HBV adr ENV 120 0.0006 1.0221 KLPQLCTEL 9 HIPV 16 E6 18 0.0006 1.0065 HLECKVILV 9 HIV POL 1322 0.0006 1.0017 EMMTACQGV 9 HIV GAG 350 0.0006 1.0055 HLALQDSGL 9 HIV POL 1178 0.0005 1.0868 VLGVVRGIL 9 e-ERB2 666 0.0005 1.004 TLNAWVKVV 9 HIV GAG 156 0.0005 1.0381 HLESLYAAV 9 HBV adw POL 1165 0.0005 1.0128 CLIRLKPTL 9 HCV LORF 1610 0.0004 1.0255 CLIGLSYDGL 9 MAGE 1/3 174 0.0004 1.0212 HLSLRGLPV 9 HBV adr "X" 1470 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004			1		J		966	
1.0148 - ILIDPRVRGL 9 HBV adr ENV 120 0.0006 1.0221 KLPQLCTEL 9 HIPV 16 E6 18 0.0006 1.0065 HLEGKVILV 9 HIV POL 1322 0.0006 1.0017 EMMTACQGV 9 HIV GAG 350 0.0006 1.0055 HLALQDSGL 9 HIV POL 1178 0.0005 1.0868 VLGVVPGIL 9 e-ERB2 666 0.0005 1.0034 TLNAWVKVV 9 HIV GAG 156 0.0005 1.0381 HLESLYAAV 9 HBV adw POL 1165 0.0005 1.0128 CLIRLKPTL 9 HCV LORF 1610 0.0004 1.0212 HLSLRGLPV 9 HBV adr "X" 1470 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004		·			adw	-X-	1539	
1.0221 KLPQLCTEL 9 HPV 16 E6 18 0.0006 1.0065 HLEGKVILV 9 HIV POL 1322 0.0006 1.0017 EMMTACQGV 9 HIV GAG 350 0.0006 1.0055 HLALQDSGL 9 HIV POL 1178 0.0005 1.0868 VLCVVPGIL 9 e-ERB2 666 0.0005 1.0004 TLNAWVKVV 9 HIV GAG 156 0.0005 1.0381 HLESLYAAV 9 HBV adw POL 1165 0.0005 1.0128 CLIRLKPTL 9 HCV LORF 1610 0.0004 1.0255 CLGLSYDGL 9 MAGE 1/3 174 0.0004 1.0212 HLSLRGLPV 9 HBV adr "X" 1470 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004			ı→		adw .	ENV	246	
1.0065 HIEGKVILV 9 HIV POL 1322 0.0006 1.0017 EMMTACQGV 9 HIV GAG 350 0.0006 1.0055 HILALQDSGL 9 HIV POL 1178 0.0005 1.0868 VLGVVPGIL 9 e-ERB2 666 0.0005 1.0004 TLNAWVKVV 9 HIV GAG 156 0.0005 1.0381 HLESLYAAV 9 HBV adw POL 1165 0.0005 1.0128 CLIRLKPTL 9 HCV LORF 1610 0.0004 1.0255 CLGLSYDGL 9 MAGE 1/3 174 0.0004 1.0212 HLSLRGLPV 9 HBV adr "X" 1470 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004			 	. HRA	edr		120	
1.0017 EMMTACQGV 9 HIV GAG 350 0.0006 1.0055 HILALQDSGL 9 HIV POL 1178 0.0005 1.0868 VLGVVPGIL 9 c-ERB2 666 0.0005 1.0004 TLNAWVKVV 9 HIV GAG 156 0.0005 1.0381 HLESLYAAV 9 HBV adw POL 1165 0.0005 1.0128 CLIRLKPTL 9 HCV LORF 1610 0.0004 1.0255 CLGLSYDGL 9 MAGE 1/3 174 0.0004 1.0212 HLSLRGLPV 9 HBV adr "X" 1470 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004	1.0221	-· · <u> </u>	 ⋅۱		16	E6	18	0.0006
1.0055 HLALQDSGL 9 HIV POL 1178 0.0005 1.0868 VLGVVRGIL 9 e-ERB2 666 0.0005 1.0004 TLNAWVKVV 9 HIV GAG 156 0.0005 1.0381 HLESLYAAV 9 HBV adw POL 1165 0.0005 1.0128 CLIRLKPTL 9 HCV LORF 1610 0.0004 1.0255 CLGLSYDGL 9 MAGE 1/3 174 0.0004 1.0212 HLSLRGLPV 9 HBV adr "X" 1470 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004	1.0065		9	HIV		POL	1322	0.0006
1.0868 VLCVVPGIL 9 c-ERB2 666 0.0005 1.0004 TLNAWVKVV 9 HTV GAG 156 0.0005 1.0381 HLESLYAAV 9 HBV adw POL 1165 0.0005 1.0128 CLIRLKPTL 9 HCV LORF 1610 0.0004 1.0255 CLGLSYDGL 9 MAGE 1/3 174 0.0004 1.0212 HLSLRGLPV 9 HBV adr "X" 1470 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004	1.0017	EMMTACQCV	9	ШΛ		GAG	350	0.0006
1.0004 TLNAWVKVV 9 HIV GAG 156 0.0005 1.0381 HLESLYAAV 9 HBV adw POL 1165 0.0005 1.0128 CLIRLKPTL 9 HCV LORF 1610 0.0004 1.0255 CLGLSYDGL 9 MAGE 1/3 174 0.0004 1.0212 HLSLRGLPV 9 HBV adr "X" 1470 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004	1.0055	HLALQDSGL	9	HIV		POL	1178	0.0005
1.0381 HLESLYAAV 9 HBV adw POL 1165 0.0005 1.0128 CLIRLKPTL 9 HCV LORF 1610 0.0004 1.0255 CLGLSYDGL 9 MAGE 1/3 174 0.0004 1.0212 HLSLRGLPV 9 HBV adr "X" 1470 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004	1.0868	VLGVVPGIL	9	c-ERB2			665	0.0005
1.0128 CLIRLKPTL 9 HCV LORF 1610 0.0004 1.0255 CLIGLSYDGL 9 MAGE 1/3 174 0.0004 1.0212 HLSLRGLPV 9 HBV adr "X" 1470 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004	1.0004	TLNAWVKVV	9	HIV		GAG	156	0.0005
1.0255 CI.GLSYDGL 9 MACE 1/3 174 0.0004 1.0212 HILSLRGLPV 9 HBV ad: "X" 1470 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004	1.0381	HLESLYAAV	9	HBV	adw	POL	1165	0.0005
1.0255 CI.GLSYDGL 9 MAGE 1/3 174 0.0004 1.0212 HILSLRGLPV 9 HBV adr "X" 1470 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004	1.0128	CLIRLKPTL	9	HCY	T	LORF	1610	0.0004
1.0212 HILSLRGLPV 9 HBV 2d- "X" 1470 0.0004 1.0247 ILESLFRAV 9 MAGE 1 93 0.0004	1.0255	CI.GLSYDCL	9		1/3	· ·	174	0.0004
1.0247 ILESLFRAV 9 MAGE 1 93 0.0004	1.0212	HLSLRGLPV	9	· ·		-X-	-	0.0004
	1.0247	ILESLFRAV	9	MAGE	1		93	
	1.0092	TILTOGFADL	9	HCV	T:	CORE	125	0.0003

Table 14

					1	r	Γ
Danks	Caauanaa	, ,	•••				
Peptide		AA	Virus	Strain	Molecule	Pos.	A2.1
1.0108	TLPALSTGL	9	HCV		NS1/ENV2	683	0.0003
1.0294	ALAIPQCRL	9	EBNAI			525	0.0003
1.0101	DLCCSVFLV	9	HCV		ENVI	280	0.0003
1.0231	RLCVQSTHV	9	HPV	16	<u> E7 </u>	66	0.0003
1.0162	CLERFIIFL	9	HBV	adr	POL	587	0.0002
1.0126	CLPVCQDHL.	- 3	HBV	adr	ENV	239	0.0002
1.0163	PLEKELPRL	9	. HCV		LORF	1547	0.0001
1.0130	PLLYRLGAV	9	FIEV	adr	POL	594	0.0001
1.0042	ELAENREIL	9	HCV		LORF	1623	0.0001
1.0054	ELQAIHLAL	9	HIV		POL	997	0
1.0069	LIPRKGPKL	9			POL	1173	0
1.0091	NLGKVIDTL	9	HCV		CORE	36	0
	· PLGGAARAL	9	HCV		CORE	118	0
1.0093		F 1 - 1	HCV		CORE	143	0
1.0154	DLLDTASAL	9	FIBV	. adr	CORE	419	0
1.0178	QLKQSRLGL	9	HBV	echr ,	POL	791	0
1.0179	CLQPQQCSL	9	HBV	adr	POL	798	0
1.0256	PLDGEYPTL	9	p53		<u> </u>	322	0 .
1.0296	VLKDAIKDL	9	EBNAI		ļ	574	0
1.0310	QLCYQDTIL	9	c-ERB2		<u> </u>	160	0
1.0007	DINTMINTV	9	HIV		GAG	188	0
1.0037	ELHPDKWTV	9	HIV	<u></u>	POL	928	. 0
1.0070	ELKKUCQV	9.	HIV		POL	1412	. 0
1.0157	ELVVSYVNV	9	HBV	adr	CORE	473	0
1.0160	CLTPCRETV	9	IIBV	adr	CORE	497	C
1.0164	DLNLCNLNV	9	HBA	ढक	POL	614	0 .
1.0867	נגעעענטע	9	c-ERB2			662	0
1.0159	NMGLKIRQL	9	HBA	adr	CORE	482	0
1.0322	SLRELGSGL	9	c-ERB2			457	<0.0002
1.0350	DLLEKGERL	J. 9.	c-ERII2	<u></u>		\$33	<0.0002
1.0352	DLVDAEPYL	9	c-ERB2			1016	40.0002
1.0366	PLEEELPI IL	9	HBV	whe	POL	623	<0.0002
1.0372	DLQHGRLVL	9	HBV	adw	IOL	781	₹
1.0390	PLPGPLGAL	9	HBV .	aqw .	X	1476	<0.0002
1.0811	נגדקוהכדו.	9	HIV		POL	685	€0.0002
1.0812	PLVKLWYQL	_ 9 _	HIV		POL	1116	4 0.0005
1.0832	FLFILLLCL	9	FBA	adr	ENV	246	40.0002
1.0847	NLYVSLLLL	9	HBV	adr	POL	1059	₹0.0002
1.0316	PLQPEQLQV	9	c-ERB2		·	391	<0.0002
1.0342	DLAARNVLV	9	c-EKB2			845	€0.0002
1.0343	VLVKSPNHV	9	c-ERB2		 	851	<0.0002
1.0356	TLSPCKNCV	9	c-ERB2			1172	<0.0002
1.0376	DLSWLSLDV	9	HGV	adw	POL	1025	<0.0002
1.0363	NMENTASGL	9	HBV	adw	ENV	163	<0.0002
1.0195	TLPQEHIVL	9	HIIV	adr	POL	1179	400003
1.0196	KLKQCFRKI,	9	VIII	adr	POL	1188	<0.0003
1.0201	PLPIHTAEL	9	HBV	adr .	POL	1296	<0.0003
1.0210	QLDPARDVL	- i +	HBV	edr	'X' -	1426	40.0003
1.0220	VLGGCRHKL	9	HBV -	adr	-	1551	€0.0003
1.0229	DLQPETTDL	9	HPV	16	E7	14	€0.0003
1.0245	ALEAQQEAL	- é-	MAGE	1		15	<0.0003
1.0266	DLPTQEPAL	9	PSA		·	136	<0.0003
		لـــــــــــــــــــــــــــــــــــــ			L		

Table 14

Peptide	Sequence	AA	Virus	Strain	Molecule	Pos	A2.1
1.0279	HLIRVEGNL	9	p53		1	193	<0.0003
1.0252	TLEDSSCNL.	19	p53		 	256	₹0.0003
1.0238	ELRHYSDSV	9	IPV	18	E.6	77	€0.0003
1.0268	DLIVISNDV	9	PSA			171	40.0003
1.0836	CLIFLLVLL	9	HBV	actr	ENV	253	<0.000€

Table 14

· ·		i					
							j
Peptide	<u> </u>	AΛ	Virus	Strain	Moleculo	Pos.	A2,1
1.0890	LLFNILGGWV	10	HCV		LOKF	1807	3.5
1.0930	LLVPFVQWFV	10	HBV	adw	ENV	338	1.5
1.0884	LLALLSCLTV	10	HCV		CORE	178	0.61
1.0895	ILLLCLIFLL	10	HBV	adr	ENV	249	0.30
1.0518	GLSPTVWL5V	10	IIRA	adr	ENV	348	0.28
1.0902	SLYNILSPFI.	10	HEV	adr	ENV	367	0.23
1.0892	LLVLQAGFFL	10	HBV	sdr .	ENV	175	0.21
1.0686	FLQTHIFAEV	10	EENA1			365	0.17
1.0628	QLFLNTLSFV	10	HIV	18	E7	88	0.11
1.0904	LLPIFFCLWV	10	HBV	edr	ENV	378	0.10
1.0897	LITCHLTA	10	HBV	adr	ENV	250	0.099
1.0516	LLDYQGMLPV	10	HBV	aute	ENV	260	0.085
1.0901	WMMWYWGPSL	10	HBA	adr	ENV	359	0.084
1.0533	GLYSSTYPYL .	10	HBV	adr	POL	635	0.080
1.0469	YLLPRRGPRL	10	· HCV		CORE	35	0.073
1.0888	GLLGCITSL	10	HCV	 	LORF	1038	0.061
1.0907	ILCWGELMNL	10	HBV	ade	CORE	449	0.051
1.0927	LLCICLTSTV	10	c-ERB2			785	0.049
1.0452	LLWKGEGAVV	10	HIV		POI.	1496	0.036
1.0885	LLALLSCLTI	10	HCV		CORE		
1.0620	KLTNTGLYNL	10	IIIV	18	E6	178	0.034
1.0502	RIJVFPDLGV	10	HCV	10		92	0.032
1.0659	FLTI'KKLQCV	10	PSA		LORF	2578	0.032
1.0932	WMMWFWGISL	10	HBV		50.00	161	0.031
1.0772	SLNFLGGTPV	10	HUV	- #dw	ENV	359	0.029
1.0609	SLQDIETTCV	10	HEA	adw	ENV	201	0.027
1.0525	ILSTLPETTV	10		18	E6	24	0.025
1.0508	RLI-IGLSAFSL	10	HBV	adr	CORE	529	0.022
1.0493	ILGGWVAAQL	10	HCV	ļ	LORF	2885	0.020
1.0738	VMACVCSPYV	10	HCV		LORF	1811	0.018
1.0460	QLMVTVYYGV	10	c-EXB3			773	0.018
1.0573	ILKCTSPVYV	10	HIV		ENV	2181	0.017
1.07/3	SLTEILKGGV		HBV	•dr	I'OL .	1345	0.016
1.0743	LLGCAANWIL	10	e-ERB2			144	0.015
		10	HBV	ad:	POL	1337	0.014
1.0798	ALPPASPSAV	10	HBV	edw	"X"	1483	0.013
1.0908	QLLWPHISCI.	10	I-IBV	adr	CORE	489	0.013
1.0677	NLLGRNSFEV	10	p53		ļ	263	0.013
1.0889	VLAALAAYCL	10	HCV		LORF	1666	0.011
1,0528	LLLDDEAGTL	10	HBV	adr .	POL	586	0.011
1.0500	LMAKNBYFCV	10	HCV	<u> </u>	LORP	2558	0.0088
1.0492	VLVGGVLAAL	10	HCV		LORF	1661	0.0031
1.0898	LLCLIFLLVL	10	TIBV	adr	ENV	251	0.0075
1.0458	KLMVTVYYGV	10	HIV		ENV	2181	0.0069
1.0459	NLMVTVYYGV	10	ΙŧīV		ENV	2181	0.0067
1.0530	CLSPTVWLSA	10	I-IBV	adw	ENV	348	0.0067
1.0759	SLITHOPSPL	10	c-ERB2			1100	0.0059
1.0419	VLPEKDSWTV	10	HIV		POL	940	0.0056
1.0666	FLHSGTAKSV	10	<u>p53</u>			113	0.0050
1.0473	GUHLHQNIV	10	HCV	<u> </u>	NS1/ENV2	690	0.0047
1.0792	SLYAAVINFL	10	HBV	adw	POI.	1168	0.0046
1.0780	IMI'ARFYPNV	10	HBV	adw	POL		
1.0507	YLTROFTTPL	10	HCV	EGW	LORF	713	0.0013
			-1-4		L WINE	2803	0.0042

Table 14

Peptide Sequence AA Virus Strain Molecule Pos. A21		·					<u> </u>	
1.0944 CLYNTLIRGL 10)			}
1.0544 CLYNCLIRCL 10	Peptide	Sequence	AA	Virus	Strain	Molecule	Pos	A21
1.0569	1.0914		10				-	
1.0561 SLFTSTINFL 10	1.0649	YLEYGRORTV	10			- -		
1.0758 N.L.SSDLSWL 10	1.0561	SLFTSTTNPL	10		adr	POL	· —	
1.0538 RMARDPORFY 10 C-PRE2 978 0.0020 1.0568 RMRGTFVVIT 10 HBV adr POL 1288 0.0020 1.0562 SLQLVFGIDV 10 MAGE 1 150 0.0020 1.0562 KLLHKRTLCL 10 HBV adr X' 1509 0.0019 1.0713 CLGMEFILREV 10 C-PRE2 944 0.0017 1.0549 NLLSNLSWI 10 C-PRE2 822 0.0016 1.0459 NLLSNLSWI 10 HBV adr POL 991 0.0016 1.0459 NLLSNLSWI 10 HBV adr POL 991 0.0016 1.0459 NLLSNLSWI 10 HBV adr CORE 505 0.0015 1.0544 VLFYLVSFGV 10 HBV adr POL 988 0.0014 1.0451 VLFYLVSFGV 10 HBV adr POL 988 0.0014 1.0451 VLFYLVSFGV 10 HBV adr POL 988 0.0014 1.0548 SLTNLLSSNL 10 HBV adr POL 988 0.0014 1.0512 ALLDERVRGL 10 HBV adr POL 988 0.0014 1.0576 TLEDSSGNLL 10 PS3 2256 0.0011 1.0576 TLEDSSGNLL 10 PS3 2256 0.0011 1.0577 TLEDSGNLL 10 PS3 2256 0.0011 1.0577 DLRAPQUIEL 10 HBV adr POL 988 0.0014 1.0577 TLEDSGNLL 10 PS8 444 0.0011 1.0573 VLQCLPREVV 10 C-RRE2 444 0.0011 1.0573 VLQCLPREVV 10 EBNA1 EFF 82 0.0009 1.0599 DLSDGSWSTV 10 HGV LGRF 2399 0.0008 1.0599 DLSDGSWSTV 10 HGV LGRF 2399 0.0008 1.0539 TLATWVCSNL 10 HBV adr POL 1118 0.0008 1.0520 NLATWVCSNL 10 HGV EARL POL 1118 0.0008 1.0530 NLATWVCSNL 10 HGV POL 684 0.0007 1.0530 NLATWVCSNL 10 HGV POL 684 0.0007 1.0530 NLATWVCSNL 10 HGV POL 1425 0.0006 1.0530 NLATWVCSNL 10 HGV POL 1426 0.0006 1.0530 NLATWVCSNL 10 HGV POL 142	1.0788	NLLSSDLSWL	10					
1.0542 SLQLYFGIDV 10	1.0733	RMARDPQRFV	10	c-ERB2				
1.0642 SLQLVFGIDV 10 MAGE 1 150 0.0020 1.0773 CLGMEFILERY 10 CERRIZ 344 0.0071 1.0742 CMSYLEDVRI 10 CERRIZ 344 0.0071 1.0743 CLGMEFILERY 10 CERRIZ 344 0.0071 1.0744 CMSYLEDVRI 10 CERRIZ 882 0.0077 1.0549 NLLENLSWL 10 HBV edr POL 991 0.0016 1.0455 QLTVWGIKQL 10 HBV edr CORE 505 0.0015 1.0453 VLINISVAATL 10 HBV edr CORE 505 0.0015 1.0483 VLINISVAATL 10 HBV edr POL 988 0.0071 1.0548 SLTNLLSSNL 10 HBV edr POL 988 0.0071 1.0512 ALLDPRVRCL 10 HBV edr ENV 119 0.0011 1.0607 TLEDSSGNLL 10 E33 2256 0.0011 1.0607 TLQCLGISWL 10 CERRIZ 444 0.0011 1.0627 DLRAPQQLFL 10 HFV 18 E7 82 0.0010 1.0793 TLQCLGISWL 10 CERRIZ 444 0.0009 1.0830 DLSDCSWSTV 10 CERRIZ 444 0.0009 1.0830 DLSDCSWSTV 10 HCV LORF 2399 0.0008 1.0630 DLSDCSWSTV 10 HGV edr POL 1118 0.0008 1.0630 TLYLGICISWL 10 HBV edr POL 1118 0.0008 1.0630 TLYLGICISWL 10 HBV edr POL 1118 0.0008 1.0630 NLATWVCSNL 10 HBV edr POL 1118 0.0008 1.0630 NLATWVCSNL 10 HBV edr CORR 457 0.0008 1.0630 NLATWVCSNL 10 HFV EDR 1219 0.0006 1.0631 KLLWKCEGAM 10 HTV POL 644 0.0007 1.0631 KLLWKCEGAM 10 HTV POL 1419 0.0006 1.0631 KLLWKCEGAM 10 HTV POL 1419 0.0006 1.0631 KLLWKCEGAM 10 HTV POL 1419 0.0006 1.0631 KLLWKCEGAM 10 HTV POL 1426 0.0003 1.0641 DLMYTYYCV 10 CERRIZ 661 0.0003 1.0641 DLMYTYYCV 10 HBV edr TX 1517 0.0003 1.0641 DLMYTYYCV 10 HBV edr TX 1517 0.0003 1.0652 VLYASRGRAV 10 HBV edr TX 1517 0.0003 1.0652 VLYASRGRAV 10 HBV edr TX 1517 0.0003 1.077 PLTSISAVV 10 HEV edr TX 1517 0.0003 1.079 TLECLLMGTL 10 HBV edr TX 1517	1.0568	RMRGTPVVPL	10	HHV	adr	POL	; 	
1.0582	1.0642	SLQLVFGIDV	10	MAGE	1			
1.0713 GLGMERILERY 10 CREB2 S44 0.0017 1.0742 CMSYLEDVRL 10 CREB2 E82 0.0017 1.0549 NILESNILSWL 10 HBV adr FOL 991 0.0016 1.0465 QLTVWGIKQL 10 HBV adr CORE 505 0.0015 1.0465 VLNISVAATL 10 HEV adr CORE 505 0.0015 1.0463 VLNISVAATL 10 HEV adr POL 988 0.0014 1.0512 ALLDPRVRGL 10 HBV adr POL 988 0.0014 1.0512 ALLDPRVRGL 10 HBV adr POL 988 0.0014 1.0513 ALLDPRVRGL 10 HBV adr ENV 119 0.0011 1.0576 TLEDSSCRIL 10 P33 256 0.0011 1.0677 DLRAFQQLF 10 HFV 18 F7 82 0.0010 1.0678 DLRAFQQLF 10 HFV 18 F7 82 0.0010 1.0719 TLQCLGESWL 10 CERB2 CERB2 CERB2 CERB2 1.0918 DLPPWFPPMV 10 CERB2 CERB2 CERB2 CERB2 1.0918 DLPPWFPPMV 10 CERB2 CERB2 CERB2 CERB2 1.0939 DLSDGSWSTV 10 HCV CORF 2399 0.0008 1.0632 PLYLGTLEEV 10 MAGE 1 377 0.0008 1.0539 CLAFSYMDDV 10 HBV adr POL 1118 0.0008 1.0539 DLSDGSWSTV 10 HEV adr CORR 457 0.0008 1.0530 NLATWYCSNL 10 HBV adr CORR 457 0.0008 1.0530 NLATWYCSNL 10 HEV POL 664 0.0007 1.0430 CLTHIDAHPL 10 HCV LORF 1544 0.0007 1.0431 KLLWKGRGAV 10 HIV POL 1495 0.0006 1.0431 KLLWKGRGAV 10 HIV POL 1317 0.0006 1.0432 CLTHIDAHPL 10 HCV ENVI 364 0.0005 1.0433 KLLWKGRGAV 10 HIV POL 1316 0.0006 1.0443 LLKLACRWPV 10 HIV POL 1316 0.0006 1.0443 LLKLACRWPV 10 HIV POL 1316 0.0006 1.0443 LLKLACRWPV 10 HIV ENV ENV 2181 0.0006 1.0443 LLKLACRWPV 10 HBV adr CORE 465 0.0003 1.0443 LLKLACRWPV 10 HBV adr CORE 465 0.0003 1.0441 LLKLACRWPV 10 HBV adr CORE 465 0.0003 1.0452 CLTGERTVL 10 HBV adr CORE 465 0.0003 1.0451 CLLWATGRAV 10 HBV adr CORE 465 0.0003 1.0452 CLTGERTVL	1.0582	KLLHKRTLCL	10	HBV	adr	7.	<u>} </u>	
10.549 NLLSNILSWI	1.0713	GLGMEI-ILREV	10	c-BRB2	·-			
1.0465	1.0742	CMSYLEDVRL	10	o-ERB2			832	0.0017
1.0524	1.0549	NLLSENLSWL	10	HEV	ndr	rol	991	0.0016
1.0524	1.0465	QLTVWGIKQL	10	HIV		ENV	2760	0.0015
1.0548 SLTNLLSSNL	1.0524	VLEYLVSFCV	10	HUV	adr	CORE	505	
1.0512	1.0483	VLNISVAATL	10	HCV	· -	LORF	1253	0.0015
1.0676 TLEDSSCINL 10	1.0548	SLTNLLSSNL	10	. HBA	adr	POL	988	0.0014
1.0719 TLQCLGISWL 10	1.0512	ALLDPRVRGL	10	HRV	adr	ENV	119	
1.0627 DLRAPQQLFL 10	1.0676	TLEDSSGNLL	10	p53		 	256	0.0011
1.0725	1.0719	TLQGLGISWL	10	c-ERB2			444	0.0011
1.0918 DLPPWFPPMV 10 EBNA1 E65 0.0009 1.0499 DLSDCSWSTV 10 HCV LORF 2399 0.0008 1.0659 CLAFSYMDDV 10 HBV adr POL 1118 0.0008 1.0632 PLVLGTLEEV 10 MAGE 1 37 0.0008 1.0632 PLVLGTLEEV 10 HBV adr CORR 457 0.0008 1.0630 NLATWYCSNL 10 HBV adr CORR 457 0.0008 1.0400 NLLTQIGCTL 10 HIV POL 664 0.0007 1.0438 CLTHIDAHPL 10 HCV LORF 1564 0.0007 1.0438 CLTHIDAHPL 10 HCV LORF 1564 0.0007 1.0431 VLGSGAFGTV 10 C-ERB2 POL 1219 0.0006 1.0431 KLLWKGEGAV 10 HIV POL 1495 0.0006 1.0451 KLLWKGEGAV 10 HCV ENVI 364 0.0006 1.0570 SMYGRWAKVL 10 HCV EVI 364 0.0006 1.0570 KLIGTDNSVV 10 HBV adr POL 1317 0.0006 1.0397 LLDTGADDTV 10 HTV POL 619 0.0005 1.0440 HLKTAVQMAV 10 HTV POL 619 0.0005 1.0441 LLKLAGRWPV 10 HPV 16 E7 81 0.0005 1.0443 LLKLAGRWPV 10 HPV 16 E7 81 0.0005 1.0443 LLKLAGRWPV 10 HPV 16 E7 81 0.0005 1.0443 LLKLAGRWPV 10 HPV 18 E6 89 0.0004 1.0577 SLTNLLSSDL 10 HBV adw POL 1017 0.0004 1.0581 RLEDPASREL 10 HBV adv POL 1017 0.0004 1.0582 VLVASRGRAV 10 PSA Adw POL 1017 0.0004 1.0521 NLEDPASREL 10 HBV adr CORE 465 0.0003 1.0715 DLSVFQNLQV 10 C-ERB2 484 0.0003 1.0716 DLSVFQNLQV 10 C-ERB2 484 0.0003 1.0717 PLTSILSAVV 10 C-ERB2 484 0.0003 1.0717 PLTSILSAVV 10 C-ERB2 484 0.0003 1.0717 PLTSILSAVV 10 C-ERB2 484 0.0003 1.0603 TLEDLLMGTL 10 HEV adr CORE 457 0.0002 1.0603 TLEDLLMGTL 10 HBV adr CORE 459 0.0002 1.0603 TLEDLLMGTL 10 HBV adr CORE 459 0.0002 1.0603 TLEDLLMGTL 10 HBV adr CORE 457 0.0002 1.0603 TLEDLLMGTL 10 HACV 16 E7 78 0.0002 1.0611 SLHCKPEEAL 10 MAGE 1 TO 0.0002	1	DLRAPQQLFL	10	HPV	18	E7	82	0.0010
1.0499 DLSDCSWSTV 10	·		10	←BRD2		i -	546	0.0009
1.0559	1.0918	—	10	EBNAI]	605	0.0009
1.0632 PLYLGTLEEV 10 MAGE 1 37 0.0008		DLSDGSWSTV	10	HCV		LORF	2399	0.0008
1.0520	[CLAFSYMDDV	10	Hgv	adr	POL	1118	0.0008
1.0400			10	MAGE	1		37	0.0008
1.0438 GLTHIDAHPL 10 HCV LORF 1564 0.0007 1.0733 VLCSCAFGTV 10 C-ERB2 725 0.0007 1.0434 QLIKKBKVYL 10 HIV POL 1219 0.0006 1.0451 KLLWKCEGAV 10 HIV POL 1495 0.0006 1.0470 SMVGNWAKVL 10 HCV ENVI 364 0.0006 1.0570 KLIGTDNSVV 10 HBV adr POL 1317 0.0006 1.0570 KLIGTDNSVV 10 C-ERB2 661 0.0006 1.0570 KLIGTDNSVV 10 HIV POL 619 0.0005 1.0571 ILDTGADDTV 10 HIV POL 619 0.0005 1.0446 HIKTAVQMAV 10 HIV POL 1426 0.0005 1.0446 HIKTAVQMAV 10 HPV 16 E7 81 0.0005 1.0443 LLKLAGRWPV 10 HIV POL 1336 0.0004 1.0461 DLMYTYYCV 10 HIV ENV 2181 0.0004 1.0619 TLEKLINTCIL 10 HPV 18 E6 B9 0.0004 1.0571 NLEDPASREL 10 HBV adw POL 1017 0.0004 1.0521 NLEDPASREL 10 HBV adr CORE 465 0.0003 1.0522 VLVASRGRAV 10 PSA 36 0.0003 1.0723 QLFRNPHQAL 10 C-ERB2 421 0.0003 1.0727 PLTSISAVV 10 C-ERB2 464 0.0003 1.0727 PLTSISAVV 10 C-ERB2 464 0.0003 1.0479 YLKCSSGGPL 10 HCV LORF 2159 0.0002 1.0497 QLICEPEPDV 10 HCV LORF 2159 0.0002 1.0403 TLEDLLMGTL 10 HBV adr CORE 447 0.0002 1.0523 CLTFGRETVL 10 HBV adr CORE 447 0.0002 1.0503 TLEDLLMGTL 10 HBV adr CORE 497 0.0002 1.0503 TLEDLLMGTL 10 HBV adr CORE 497 0.0002 1.0503 TLEDLLMGTL 10 HPV 16 E7 78 0.0002 1.0503 TLEDLLMGTL 10 MAGE 1 7 0.00002 1.0503 TLEDLLMGTL 10 MAGE 1 7 0.00002 1.0503 TLEDLLMGTL 10 MAGE 1 7 0.00002 1.0504 TLEMEDAT TLEMED			10	HBA	adr	CORR	457	0.0008
1.0733						POL	684	0.0007
1.0434 QLIKKBKVYL 10				HCV		LORF	1564	0.0007
1.0451 KLLWKGEGAV 10	<u></u>		10	c-ERB2			725	0.0007
1.0470 SMVGNWAKVL 10				HIV		POL	1219	0.0006
1.0570 KLIGTDNSVV 10			10			POL	1495	0.0006
1.0924 ILLVVVLGVV 10 C-ERB2 661 0.0006	I ————			HCV		ENVI	364	0.0006
1.0397 LLDTGADDTV 10	<u> </u>		10		adr .	POL	1317	0.0006
1.0446 HILKTAVQMAV 10 HIV FOL 1426 0.0005 1.0601 DLLMGTLGIV 10 HPV 16 E7 81 0.0005 1.0443 LILKLAGRWPV 10 HIV POL 1356 0.0004 1.0461 DLMYTYYCV 10 HIV ENV 2181 0.0004 1.0619 TLEKLTNTGL 10 HPV 18 E6 89 0.0004 1.0787 SLTNLLSSDL 10 HBV adw POL 1017 0.0004 1.0521 NLEDPASREL 10 HBV adr CORE 465 0.0003 1.0583 GLSAMSTIDL 10 HBV adr X 1517 0.0003 1.0583 GLSAMSTIDL 10 HBV adr X 1517 0.0003 1.0652 VLVASRGRAV 10 PSA 36 0.0003 1.0716 DLSVFQNLQV 10 CERB2 421 0.0003 1.0727 PLTSISAVV 10 CERB2 484 0.0003 1.0727 PLTSISAVV 10 CERB2 650 0.0003 1.0479 YLKCSSGGPL 10 HCV LORF 1160 0.0002 1.0497 QLPCEPEPDV 10 HCV LORF 2159 0.0002 1.0523 CLTFGRETVL 10 HBV adr CORE 497 0.0002 1.0603 TLEDLLMGTL 10 HPV 16 E7 78 0.0002 1.0603 TLEDLLMGTL 10 HPV 16 E7 78 0.0002) 			c-EKB2			661	0.0006
1.060 DLLMGTLGIV 10 HPV 16 E7 81 0.0005 1.0443 LLKLACRWPV 10 HIV ENV 2181 0.0004 1.0461 DLMVTVYYGV 10 HIV ENV 2181 0.0004 1.0619 TLEKLTNTGL 10 HPV 18 E6 89 0.0004 1.0787 SLTNLLSSDL 10 HBV adw POL 1017 0.0004 1.0521 NLEDPASREL 10 HBV adr CORE 465 0.0003 1.0583 GLSAMSTIDL 10 HBV adr X 1517 0.0003 1.0632 VLVASRGRAV 10 PSA 36 0.0003 1.0716 DLSVFQNLQV 10 C-ERB2 421 0.0003 1.0723 QLFRNPHQAL 10 C-ERB2 484 0.0003 1.0727 PLTSISAVV 10 C-ERB2 484 0.0003 1.0479 YLKCSSGGPL 10 HCV LORF 2159 0.0002 1.0497 QLPCEPEPDV 10 HCV LORF 2159 0.0002 1.0523 CLTFGRBTVL 10 HBV adr CORE 497 0.0002 1.0603 TLEDLLMGTL 10 HPV 16 E7 78 0.0002 1.0631 SLHCKPEEAL 10 MAGE 1 7 0.0002	I———		10	HIV		POL	619	0.0005
1.0443 LLKLACRWPV 10 HIV POL 1356 0.0004 1.0461 DLMVTVYYCV 10 HIV ENV 2181 0.0004 1.0619 TLEKLTNTGL 10 HPV 18 E6 89 0.0004 1.0787 SLTNLLSSDL 10 HBV adw POL 1017 0.0004 1.0521 NLEDPASREL 10 HBV adr CORB 465 0.0003 1.0521 NLEDPASREL 10 HBV adr CORB 465 0.0003 1.0523 GLSAMSTIDL 10 HBV adr CORB 465 0.0003 1.0652 VLVASRGRAV 10 PSA 36 0.0003 1.0716 DLSVFQNLQV 10 c-ERB2 484 0.0003 1.0723 QLFRNPHQAL 10 c-ERB2 484 0.0003 1.0479 YLKCSSGGPL 10 HCV LORF 1160 0.0002 1.0623	· — — — — —		10	VII-t		POL	1426	0.0005
1.0461 DLMVTVYYCV 10				HPV	16	E7	81	0.0005
1.0619 TLEKLTNTCIL 10 HPV 18 E6 89 0.0004		~				เงเ	1356	0.0004
1.0787 SLTNLLSSDL 10 HBV adw POL 1017 0.0004 1.0521 NLEDPASREL 10 HBV adr CORB 465 0.0003 1.0583 GLSAMSTIDL 10 HBV adr X' 1517 0.0003 1.0522 VLVASRGRAV 10 PSA 36 0.0003 1.0716 DLSVFQNLQV 10 c-ERB2 421 0.0003 1.0723 QLFRNPHQAL 10 c-ERB2 484 0.0003 1.0727 PLTSUSAVV 10 c-ERB2 650 0.0003 1.0479 YLKCSSGGPL 10 HCV LORF 1160 0.0002 1.0497 QLI*CEPEPDV 10 HCV LORF 2159 0.0002 1.0603 TLEDLLMGTL 10 HPV 16 E7 78 0.0002 1.0631 SLHCKPEEAL 10 MACE 1 7 0.0002	l 		10			ENV	2181	0.0004
1.0521 NLEDPASREL 10 HBV adr CORE 465 0.0003 1.0583 GLSAMSTIDL 10 HBV adr X 1517 0.0003 1.0652 VLVASRGRAV 10 PSA 36 0.0003 1.0716 DLSVFQNLQV 10 c-ERB2 421 0.0003 1.0723 QLFRNPHQAL 10 c-ERB2 484 0.0003 1.0727 PLTSIISAVV 10 c-ERB2 650 0.0003 1.0479 YLKCSSGGPL 10 HCV LORF 1160 0.0002 1.0497 QLI*CEPEPDV 10 HCV LORF 2159 0.0002 1.0633 TLEDLLMGTL 10 HPV 16 E7 78 0.0002 1.0631 SLHCKPEEAL 10 MACE 1 7 0.0002			10	HPV	18	EG	89	0.0004
1.0583 GLSAMSTIDL 10 HBV adr X 1517 0.0003 1.0652 VLVASRGRAV 10 PSA 36 0.0003 1.0716 DLSVFQNLQV 10 c-ERB2 421 0.0003 1.0723 QLFRNPHQAL 10 c-ERB2 484 0.0003 1.0727 PLTSUSAVV 10 c-ERB2 650 0.0003 1.0479 YLKGSSGGPL 10 HCV LORF 1160 0.0002 1.0497 QLICEPEPDV 10 HCV LORF 2159 0.0002 1.0523 CLTFGRBTVL 10 HBV adr CORE 497 0.0002 1.0603 TLEDLLMGTL 10 HPV 16 E7 78 0.0002 1.0631 SLHCKPEEAL 10 MACE 1 7 0.0002		SLTNLLSSDL	10	HBV	adw	POL	1017	0.0004
1.0652 VLVASRGRAV 10 PSA 36 0.0003 1.0716 DLSVFQNLQV 10 c-ERB2 421 0.0003 1.0723 QLFRNPHQAL 10 c-ERB2 484 0.0003 1.0727 PLTSUSAVV 10 c-ERB2 650 0.0003 1.0479 YLKCSSGGPL 10 HCV LORF 1160 0.0002 1.0497 QLI*CEPEPDV 10 HCV LORF 2159 0.0002 1.0523 CLTFGRETVL 10 HBV adr CORE 497 0.0002 1.0603 TLEDLLMGTL 10 HPV 16 E7 78 0.0002 1.0631 SLHCKPEEAL 10 MACE 1 7 0.0002	1.0521	NLEOPASREL	10	HBV	a dr	CORE	465	0.0003
1.0716 DLSVFQNLQV 10 c-ERB2 421 0.0003 1.0723 QLFRNPHQAL 10 c-ERB2 484 0.0003 1.0727 PLTSIISAVV 10 c-ERB2 650 0.0003 1.0479 YLKCSSGGPL 10 HCV LORF 1160 0.0002 1.0497 QLI*CEPEPDV 10 HCV LORF 2159 0.0002 1.0523 CLTFGRETVL 10 HBV adr CORE 497 0.0002 1.0603 TLEDLLMGTL 10 HPV 16 E7 78 0.0002 1.0631 SLHCKPEEAL 10 MACE 1 7 0.0002	1.0583	GLSAMSTIDL	10	HBV	∌dr	x	1517	0.0003
1.0723 QLFRNPHQAL 10 cerre 484 0.0003 1.0727 PLTSUSAVV 10 cerre 650 0.0003 1.0479 YLKCSSGGPL 10 HCV LORF 1160 0.0002 1.0497 QLI*CEPEPDV 10 HCV LORF 2159 0.0002 1.0523 CLTFGRETVL 10 HBV adr CORE 497 0.0002 1.0603 TLEDLLMGTL 10 HPV 16 E7 78 0.0002 1.0631 SLHCKPEEAL 10 MACE 1 7 0.0002	1.0652		10	PSA			36	0.0003
1.0727 PLTSUSAVV 10 c-ERB2 650 0.0003 1.0479 YLKGSSGGPL 10 HCV LORF 1160 0.0002 1.0497 QLIPCEPEPDV 10 HCV LORF 2159 0.0002 1.0523 CLTFGRBTVL 10 HBV adr CORE 497 0.0002 1.0603 TLEDLLMGTL 10 HPV 16 E7 78 0.0002 1.0631 5LHCKPEEAL 10 MACE 1 7 0.0002	1.0716	DLSVFQNLQV	10	c-ERB2			421	0.0003
1.0727 PLTSIISAVV 10 c-ERB2 650 0.0003 1.0479 YLKCSSGGPL 10 HCV LORF 1160 0.0002 1.0497 QLI*CEPEPDV 10 HCV LORF 2159 0.0002 1.0523 CLTFGRBTVL 10 HBV adr CORE 497 0.0002 1.0603 TLEDLLMGTL 10 HPV 16 E7 78 0.0002 1.0631 5LHCKPEEAL 10 MACE 1 7 0.0002	1.0723	QLFRNPHQAL	10	c-ERB2			484	0.0003
1.0479 YLKCSSGGPL 10 HCV LORF 1160 0.0002 1.0497 QLI*CEPEPDV 10 HCV LORF 2159 0.0002 1.0523 CLTFGRETVL 10 HBV adr CORE 497 0.0002 1.0603 TLEDLLMGTL 10 HPV 16 E7 78 0.0002 1.0631 SLHCKPEEAL 10 MACE 1 7 0.0002	1.0727	PLTSUSAVV	10	c-ERB2	-			
1.0497 QLI*CEPEPDV 10 HCV LORF 2159 0.0002 1.0523 CLTFGRETVL 10 HBV adr CORE 497 0.0002 1.0603 TLEDLLMGTL 10 HPV 16 E7 78 0.0002 1.0631 SLHCKPEEAL 10 MACE 1 7 0.0002	1.0479	YLKOSSGGPL	10	HCV		LORF		
1.0523 CLTFGRETVL 10 HBV adr CORE 497 0.0002 1.0603 TLEDLLMGTL 10 HPV 16 E7 78 0.0002 1.0631 SLHCKPEEAL 10 MACE 1 7 0.0002	1.0497	QLICEPEPDV	10	• • • • • • • • • • • • • • • • • • • •				
1.0603 TLEDLLMGTL 10 HPV 16 E7 78 0.0002 1.0631 5LHCKPEEAL 10 MACE 1 7 0.0002	1.0523				adr		 }	
1.0631 SLHCKPEEAL 10 MACE 1 7 0.0002	1.0603		10					
2000 51451014 504	1.0631	5LHCXPEPAL	10					
	1.0660	EMPRELNEAL	10	p53			339	0.0002

Table 14

		į.				1 1	
Peptide	Sequence	AA	Virus	Strain	Molecule	Pos.	A2.1
1.0689	VLKDAIKDLY	10	EBNA1			574	0.0002
1.0757	DLVDAEEYLV	10	c-ERB2		,	1016	0.0002
1.0796	RMRGTFVSFL	10	HBV	adw	POL	1317	0.0002
1.0669	QIAKTCPVQL	10	p53			136	0.0001
1.0717	NLQVIRGRIL	10	c-ERB2			427	0.0001
1.0721	WLGLRSLREL	10	e-ERB2			452	0.0001
1.0522	NMGLKIRQLL	10	HBV	adr	CORE	482	0
1.0527	PLSYQHFRKL	10	HBV	adr	POL	576	0
1.0529	ELPRLADEGL	10	NEV	<u>adr</u> .	POL	598	0
1.0531	GLNRRVAEDL	10	HBV	adr	rol	606	0
1.0536	PLTVNEKRRL	10	HBV	इ टोर	POL	672	0
1.0539	IMPARFYFNL	10	HBA	ed i	POL	684	0
1.0550	PLHPAAMPHL	10	NEA	<u>adr</u>	POL	1012	0
1.0552	DLHIDSCSKNL	10	HBV	adr	POL	1051	0
1.0555	LLYKTFGRKL	10	FIGA	adr	POL	1066	0
1.0557	PMGVGLSPFL	10	HEV	adr	POL	1090	_0
1.0560	VLCAKSVQHL	10	Huv	adr	POL	1128	0
1.0569	PLPIHTAELL	10	HBV	adr	POL	1296	0
1.0579	PLPSLAPSAV	10	HBA	adr	X	1454	0
1.0583	DLEAYFKTXCL	10	VEH	actr	×	1525	0
1.0587	ELGEEIRLKY	10	HBV	adr	<u>x</u>	1540	0
1.0589	VLGGCRHKLV	10	H3V	a di	<u> </u>	1551	0
1.0597	TLEQQYNKPL	10	HPV	16	EK	94	0
1.0608	DLCTELNTSL	10	IIPV	18	E6	16	0
1.0616	RLQRRRETQV	10	HPV	18	E6	4.9	0
1.0621	HLEPQNEIPV	10	1PV	18	I D	14	0
1.0639	LLKYRAREPV	10	MAGE	1/3		114	0
1.0643	CLCLSYDCLL	10	MAGE	1/3		174	0
1.0657	DMSLLKNRFL	10	ľ5Λ			98	0
1.0658	LLRLSEPAEL	10	PSA			119	0
1.0663	PLSQETPSDL	10	p53			13	0
1.0664	PLPSOAMDDL	10	p53			34	0
1.0690	ELAALCHWGL	10	c-ER32			2	U
1.0692	RLPASPETTIL	10	c-ERB2			34	0
1.0699	RLRIVEGTQL	10	c-ERB2			98	0
1.0701	GLRELQLRSL	10	c-ERB2			136	0
1.0730	QMRILKETEL	10	c-ERII2	†	İ	711	0
1.0732	ILKETELRKV	10	c-ERB2			714	0
1.0754	PLOSTFYRSL	10	c-ERB2			. 999	0
1.0755	LLEDDDMGDL	10	c-ERB2	· 	- 	1008	0
1.0758	DIGMGAAKGL	+	c-ERB2			1089	0
	PLPSETDGYV	10	c-ERB2	 	_	1119	0
1.0761		10	c-ERB2			1172	1-0
1.0763	· · · · · · · · · · · · · · · · · · ·	10	HBV	adw	ENV	119	0
1.0765		+	HBV	adw	ENV	163	0
1.0768	1 : =:=	10			POL	627	0
1.0775		10	HBA	adw	POL	635	0
1.0776			VEF1	adw		701	1 0
1.0777		10	HEV	adw	POL	1095	<u> </u>
1.0790		10	1187	adw .	POL		
1.0801		10	HBV	adw	<u>x</u>	1546	_
1.0602			HBV	adw	х.	1554	
1.0803	TLQDPRVRGL	10	VEH	ayw	ENV	119	0

Table 14

Peptido	Sequence	AA	Virus	Strain	Molecule	Pos.	477
1.0804	NMENITSCFL	10	HBV			-	A2.1
1.0891	DLVNLLPAIL	10	HCV	ayw	ENV	163	0
1.0404	PLTERKIKAL			 	LORF	1578	0
		10		<u> </u>	POL	720	40.0002
1.0409	QLGIPHPAGL	10	HIV	<u>}</u>	POL	786	€0.0002
L0411	CLKKKKSVTV	10	I-IIV		POL	794	40,0002
1.0450	PIWKCPAKLL	10	IUV		POL	1488	₹0.0002
1.0476	DLAVAVEPVV	10	HCV		LORF	966	40.0003
1.0478	SLTGRDKNQV	10	HCV		LORF	1046	€0.0002
1.0490	DLEVVISTWV	10	HCV		LORF	1652	€0.0002
1.0494	GLGKVLIDIL.	10	HCV	†··	LORF	1843	40,0002
1.0505	VLTTSCGNTL	10	HCV		LORF	2704	€0.0002
1.0506	ELITSCSSNV	10	HCV	 	LORF	2781	
1.0510	CLRKLCVPPL	10	· HCV	_	LORF	2908	<0.0002 <0.0002
1.0571	PLGFFPDHQL	10	HBV	adr	ENV	10	<0.0002
1.0514	NMENTTSGFL	10	HBV	adr .	ENV	163	€0.0002

Y	Kage Strain	Mol.	Pos.	Notif	1	A 1			
9 1			15	2.1		0000	A3.2	AII	A24
9 1			93	2.1		0000			
9 1			101	2.1		<0.000			
9 1/3			174	2.1		0.0004			
9 1			187	2.1		0 000			
10 1			,	2.1		0 0000			
10 1			37	2.1		0.0008			
10 1			92	2.1		2000			
10 . 1			100	2.1					
10 1			101	2.1					
10 1/3			114	2.1		0 0			
10 1			142	•		0 0	-		
10 1/3			174	2.1					
9 2			101	2.1		5000			
9 2			105	2.1		91.0			
9 2			106	2.1		0.0031			
9 2			143	2.1		0			
9 2			147	2.1		0.0001			
9 3			101	2.1		0.0050			
9 3			167	2.1		0.0003			
9 3			169	2.1		0.018			
9 3			187	2.1		0			
							1		

Page 1 of 15

Sequence	*	Mage	Mol.	Pos.	Motif) 14	A2.1	A3.2	All	A24
AISROWELV	10	2		101	2.1		0			
MVELVHFLLL	10	2		106	2.1		0.0017			
KLPGLLSRDL	10	2		135	2.1		. 0			
LLSRDLQQSL	10	7		139	2.1		0.0007			
SLPTTMNYPL	10	3		63	2.1		0.0035			
DLESEFQAAL	10	3		93	2.1		0.0001			
ALSRKVAELV	10	3		101	2.1		0.0001			
KVAELVHFLL	10	3		105	2.1		0.012			
VIFSKASSSL	10	3		142	2.1		0			
SLQLVFGIEL	10	Э		150	2.1		0.0049			
LMEVDPIGHL	10	В		159	2.1	-	0.0005			
FLIIVLVMI	6			194	2.1		0.0005			·
GLLGDNQIM	6	1		181	2.1		0.0051			
SLHCKPEEA	6	1		7	2.1		0.013	<0.0002	0	
ALGLVCVQA	6	1	·	22	2.1		0.015	<0.0002	<0.0002	
CKPEEALEA	9	1		10	Random		<0.0002			١
QQEALGLVC	6	н		19	Random		<0.0002			
VQAATSSSS	6	1		28	Random		<0.0002			
PLVLGTLEE	6	1	·	37	Random		<0.0002			
VPTAGSTDP	9	1		46	Random		<0.0002		·	٠
POSPOGASA	5	1		55	Random		<0.0002			
FPTTINFTR	9	r.		64	Random		<0.0002			

2ago 2 of 15

<0.0002
<0.0002
0>
Dandom
154 Dar
7

Page 3 of 15

i sa				. A.	::-					
Sequence	2	Strain	Mol.	Ров	Motif	۸1	A2.1	A3.2	A11	A24
GVQGPSLKPA	10	1		266	2.1		0.0001			
QLVFGIDV	8	1		152	2.1		0			
KLLTQDLV	8	1		237	2.1		0.0004			
GLLGDNQI	0	1		181	2.1		0			
DLVGFLLL	8	1		108	2.1		0			
GLSYDGLL	8	1		176	2.1		0.0001			
DLVQEKYL	89	1		242	2.1		0			
LLGDNQIM	8	1		182	2.1		0			
FLIIVLVM	8	1		194	2.1		0			
ALBAQQEA	8	1		15	2.1		0			
TLEEVPTA	8	1		42	2.1		0			
IMPKTGFL	8	1		188	2.1		0.0001			
PUTKAEML	8	1		122	2.1		0			
IVLVMIAM	8	1		197	2.1		0.0001			
AVITKKVA	8	1		100	2.1		0			
EIWEELSV	8	1		213	2.1		0			
LIIVLVMI	8	1		195	2.1		0.0001			
IIVLVMIA	æ	1		196	2.1		0.0002			
SLFRAVITKKV	7	-1		96	2.1		0.0001			
LLLKYRAREPV	7	7		113	2.1		0.0001			
YLEYGRCRTVI	17	1		248	2.1		0.0006			
ALEAQQEALGL	11	1		15	2.1		0.0001			
									_	

7

Page 4 of 15

	Į									
Sequence	\$	Mage	Mol.	Pos.	Motif	A1	A2.1	A3.2		ACK
FLIIVLVMIAM	11	1		194	2.1		0 0041			
VLGTLEEVPTA	11	1		39	2.1		0 0002			
QLVFGIDVKEA	11	1		152	2.1		1000			
AVITKKVADLV	11	1		100	2.1					
PVTKAEMLESV	11	ι		122	2.1		, c			
KVADLVGFLLL '	7	1		105	2.1		0.020			
GVQGPSLKPAM	7	. 1		266	2.1		c			
LVGFLLLKYRA	11	1		109	2.1		0.0004			
LVMIAMEGGHA	11	1		199	2.1		0.0005			
CILESLFRAVI	11	1		92	2.1		0.00.0			
EALEAQQEA	9	1		14	2.1		c	2000		
EAQQEALGL	9	1		17	2.1			70.00		
AATSSSSPL	6	1		30	2 1					<0.0002
ATSSSSPLV	6	1		31	2 1		0 0			<0.0002
GTLEEVPTA	9	1		41	2.1		0.000	0000		
GASAFPTTI	6	1		09			0.013	×0.0002	0	
STSCILESL	6	1		89	2.1		2000			<0.0002
RAVITKKVA	6	1		99	2.1		0.0002	000		
ITKKVADLV	6	1		102	2.1			50.000	0	
RAREPVTKA	6	1		118						
KAEMLESVI	6	1		125	2.1		0 0			
KASESLQLV	6	1		146	2.1		0.0009			<0.0002

Sequence	্ব	Mage Strain	Mol.	Pos.	Motif	٨1	A2.1	A3.2	A11	A24
PTGHSYVLV	6	1	-	164	2.1		0			
KTGFLIIVL	6	1		191	2.1		9000.0		•	
LIIVLVMIA	6	1		195	2.1		0	0.0022	9000.0	
IIVLVMIAM	6	1		196	2.1		0.0007			
MIAMEGGHA	9	1		201	2.1		0.0005	<0.0002	0.0002	
EIWEELSVM	6	1		213	2.1		0			
SAYGEPRKL	6	1		230	2.1		0.0002			<0.0002
YLEYGRCRT	6			248	2.1		0			
EALGLVCVQA	10	1		21	2.1		0.0005	<0.0002	0	
QAATSSSSPL	10	1		29	2.1		0			<0.0002
VTKAEMLESV	10	1		123	2.1		0			
EADPTGHSYV	10	ı		191	2.1		0			
VLGTLEEVPT	10	1		39	2.1		0.0004			
SAFPTTINFT	10	1		62	2.1		0			
GIDVKEADPT	10	1		156	2.1		0			
PTGHSYVLVT	10			164	2.1		0			
FLWGPRALA	6	1	new	265	2.1		0.042	0.0017	0	
LAETSYVKV	6	1	new	272	2.1		0			
YVKVLEYVI	6	1	new	277	2.1		0.0002			
RVRFFFPSL	6	1	new	290	2.1		0.0001			
LAETSYVKVL	10	1	new .	272	2.1		0			<0.0002
VLEYVIKVSA	10	1	new	280	2.1		0.0002	0.0002	0	

Page 6 of 15

Sequence	2	Mage Strain	Mo1.	Pos.	Motif	λ1	A2.1	A3.2	All	A24
AALREEEEGV	10	1	new	301	2.1		0			
SMHCKPEEV	6	1	new (a)	7	2.1		0.018			
AMGLVCVQV	6	-	new (a)	22	2.1		0.012			
LMGTLEEV	6	н	new (a)	38	2.1		0.13			
LQLVFGIDV	6	п	new	151	2.1		0.0004			
GLSYDGLLG	6	ч	new	176	2.1		0			
GLSYDGLLV	6	н	new (a)	176	2.1		0.0047			
LLGDNQIMP	6	н	new	182	2.1		0.0001			
- LLGDNQIMV	6	1	new (a)	182	2.1		0.043			
WEELSVMEV	6	1	new	215	2.1		. 0			
WMELSVMEV	6	1	new (a)	215	2.1		0.041			
RKLLTQDLV	9	1	new	236	2.1		0			
YEFLWGPRA	6	г	new	262	2.1		0			
YMFLWGPRV	6	1	new (a)	262	2.1		0.22			
AATSSSSPLV	10	1	new	30	2.1		0			
ATSSSSPLVL	10	1	new	31	2.1		0			
KMADLVGFLV	10	1	new (a)	105	2.1		1.5			
VADLVGFLLL	10	1	new	106	2.1		0.0008			0.0003
SESLQLVFGI	10	1	nev	148	2.1		0			
VMVTCLGLSV	10	1	new (a)	170	2.1		0.30			
QIMPKTGFLI	10	1	new	187	2.1		0.0009			
QMMPKTGFLV	10	1	new (a)	187	2.1		0.050			

age 7 of 15

\$ \$ \$	****	Mage								
AA Stra	Stra	9	Mol.	Pos.	Motif	11	λ2.1	A3.2	A11	A24
10 1	1		пем	191	2.1		0.0012			
10 1	1		new	195	2.1		0.0003			
10 1	1	\rightarrow	new (a)	200	2.1		0.053			
10 1	1		new	230	2.1		0			0
11 1 N		_		270	2.1		0.012			0.00
11 2	7			52	2.1		0.67			
11 3	м	'		105	2.1		0.026			
11 3	Э	_ ,		114	2.1		0.041			
11 3	3			60	2.1		0.0001			
11 3	3	1		99	2.1		0.34			
11 3	3	- 1		135	2.1		0.013			
13 1 n	- (- 1	R6	170	2.1		0.0017			
13 1 n	- 1	i	B6	237	2.1		0.0060			
13 1 n		1	E6	242	2.1		0			
15 1 n		ľ	POL	96	2.1		0.0004			
15 2	2	•	POL	40	2.1		0			
15 3	3		POL	75	2.1		0.012			
9 2	2			09	2.1		0			. 000
9 2,3	2,3			93	2.1		c			0.000
9 2	2			99	2.1		c			
9 2	2			125	2.1		0			
9 2	2			146	2.1		0.011			
						•				•

Page 8 of 15

Sequence	**	Mage Strain	Mol.	Pos.	Motif	N1	A2.1	A3.2	X11	A24
QLVFGIEVV	6	2		152	2.1		0.0038			
VVPISHLYI	6	2		162	2.1		0.0002			
PISHLYILV	6	2		164	2.1		0.0005			
HLYILVTCL	6	2		167	2.1		0.0034			
YILVTCLGL	6	2		169	2.1		0.0014			
GLLGDNQVM	6	2		181	2.1		0.0038			
QVMPKTGLL	6	2		187	2.1		0			
VMPKTGLLI	6	7		188	2.1		0.0010			0.230
KTGLLIVL	9	2		191	2.1		0.0002			
GLLIIVLAI	6	2,3		193	2.1		0.0002			
LLIIVLAII	6	2,3		194	2.1		0.0001			
LIIVLAIIA	6	2,3		195	2.1		0.0008		,	
IIVLAIIAI	9	2		196	2.1		0.0009			
IIAIEGDCA	6	2	·	201	2.1		0			
GASSLPTTM	6	3		09	2.1		0			0.0010
QAALSRKVA	9	3		99	2.1	-	0			
VAELVHFLL	6	3		106	2.1		0			0.039
KAEMLGSVV	6	3		125	2.1		0			
KASSSLQLV	6	3		146	2.1		0.0005		,	
QLVFGIELM	6	3		152	2.1		0.0010			
PIGHLYIFA	6	3	-	164	2.1		0			
IMPKAGLLI	6	Э		188	2.1		0.0064			

:_=

Page 9 of 15

AA Strain Mol. Pos. Mo	1. Pos.	Here is a second of the second		Motif	A1.	A2.1	A3.2	A11	A24
6	3		191	2.1	·	0.0002			0
9 3	Ī		201	2.1		0			
10 1	1	new	14	2.1		0			0
10 1	. 1	new	17	2.1		0			
10 2			93	2.1		0			
10 2			100	2.1		0			0
10 2			142	2.1		0.0014			
10 2			150	2.1		0.37			
10 2			153	2.1		0.012			
10 2			156	2.1		<0.000			
10 2			159	2.1	·	<0.0002			
10 2	J		161	2.1		<0.0002			
10 2			162	2.1		0.0002			
10 2	_		164	2.1		0.0003			
10 2			187	2.1		0.0002			
10 2			188	2.1	-	0.000.0			0.058
10 2	- 1		191	2.1	·	<0.0002			
10 2,3	- 1		193	2.1		0.0005			
10 2,3			194	2.1		<0.0002			
10 2			195	2.1	·	0.0013			
10 2	- 1		200	2.1		0.0023			
10 3	- 1		100	2.1		0.0007			0
•									

Page 10 of 15

quence	্হ	Strain	Mo1.	Pos.	Motif	- X		C C	-	
VAELVHPLLL	10	677		104	2.1			W3: 5	ALL	A24
VTKAEMLGSV	10	3		193			6000			0.0010
GIELMEVDPT	9			123	7.7		<0.0002			
	3	7		156	2.1		<0.0002			
EVDPIGHLYI	22	6		161	2.1		<0.0002			
PIGHLYIFAT '	10	3		164	2.1		0 0003			
QIMPKAGLLI	10	3	·	187	2.1		0 0006			
IMPKAGLLII	10	3		188	2.1		2000			
KAGLLIVLA	10	3		191	2.1		0.000			
AIIAREGDCA	10	Э		200	2 1		7000.07			
FLWGPRALI	6	2		271	A02		20.000			
GLEARGEAL	6	ж		15	200					
EARGEALGL	6	'n		2	202					
ALGLVGAQA	6	m		;	2007					
GLVGAQAPA	6	3		2.4	202/202					
LVGAQAPAT	6	3		, ,	202/203					
PATEEQEAA	6	m		7 7	A02 (A03					
EAASSSSTL		3		37	A02					
AASSSSTLV	6	Э		38	NO.2					
LVEVTLGEV	6	3		45	A02		+			
EVTLGEVPA	6	3		47	A02/A03					
VTLGEVPAA	6	3		48	A02/A03					
KIWEELSVL	6	3		220						
					707				-	

Page 11 of 15

eauenbes	X	Mage Strain	Mol.	Pog.	Motif	λ1	A2.1	A3.2	A11	A24
SILGDPKKL	6	3		237	A02					
ILGDPKKLL	9	3		238	A02					
FLWGPRALV	6	3		271	A02					
RALVETSYV	9	3		276	A02					
LVETSYVKV	9	3		278	A02					
YVKVLHHMV	9	3		283	A02					
KVLHHMVKI	9	3		285	A02					
EARGEALGLV	10	3		17	A02					
EALGLVGAQA	10	3		21	A02/A03					
GLVGAQAPAT	10	3		24	A02					
QAPATEEQEA	10	3		29	A02/A03					
EAASSSSTLV	10	3		37	A02					
TLVEVTLGEV	10	3		44	A02 .					
EVTLGEVPAA	10	3		47	A02/A03					
EVFEGREDSI	10	3		229	A02					
SILGDPKKLL	10	3	:	237	A02					
ILGDPKKLLT	10	3		238	A02					
ALVETSYVKV	10	3		277	A02					
LVETSYVKVL	21	3		278	A02					
MVKISGGPHI	ន	3		290	A02					
LVLGTLEEV	6	п		38	2.1	<0.0006	0.032	0	0	0.0003
KVADLVGFLL	21	1		105		0.0005	0.041	0.0039	0.0030	0.00

age 12 of 15

Sequence	2	Strain	Mol.	Pog.	Motif	- X				
LVFGIELMEV	10	3		153	2 1	-	77,7	A3.2	A11	A24
ILLWOPIPV	6	3			7.3		0.17			
EVDPIGHLY	l °	,				<0.0007	1.4	0.0048	0.0048	0
		7				3.7			0.0022	
MAKEDVHFL	6	2				<0.0007	0.13	0 000		
KMVELVHFLL	10	2		105		0000	$oldsymbol{ol}}}}}}}}}}}}}}}}}$	1000		0.0043
LVFGIELMEV	10	٣		·			4	0.0004	0.0001	0.0008
KVAELVHFL	9	3		100		0.0030	0.065	0.0007	0	0
CILESLFRA	G	-		COT	2.1	0	0.073	0.011	0.0047	.0.0005
VMIAMEGGHA				92	2.1	0.0001	0.073	0	0.0002	0
MESITION	3 3	7		200	2.1	<0.00008	0.0023	0	0	6
VINTACTOR						0	0	0.034	0 0045	
ETSYVKVLEY	2	-				0.075	c	0000		
KVLEYVIKV	6	Н	new	279	2 1	2000		0.0009	0.0004	0
FLWGPRALA	6	-			•	5000.05	0.095	0.022	0.015	0
ALREBEGY						<0.0006	0.027	0.0015	0	0
AL DEPOSITION		7		302	2.1	<0.0006	0.0056	0	0	
ALMET STANA	2	-		271		<0.000.	0.017	0.0011	0,000	
TVIKVSARV	6	-1		283	2.1	0.0005	8100		٠,	
RALAETSYV	6	1		270	2.1	2000	310.0	5	0	0
ALAETSYVK	6	-		-		0000	0.014	0.0003	0.0005	0
VLGTLEEV	8	-				<0.0006	0.0002	0.17	0.39	0
SLQLVFGI	- a	-		4	2.1	<0.0007	0.0088	0	0	0
ILESLFRA	-	1 -		150	2.1	<0.0007	0.0094	0	0.0001	,o
FLLLKYRA) a			93	2.1	<0.0004	0.0017	0.0003	. 0	0.0001
	•	1		112	2.1	0.0036	0.0007	0.0003		
-							-		T000.0	٥

:_=

Table 3 Page 13 of 15

Sequence	*	Mage	Mol.	Pog.	Motif	A1	A2.1	A3.2	114	A24
GLVCVQAA	8	1		24	2.1	0.0016	0.0008	0.000	٥	c
· VLVTCLGL	8	1		170	2.1	<0.0007	0.0010	0.0001	0	
KVADLVGFL	6	1		105	2.1	<0.0008	0.0091	6.00.0	0 0008	
YVLVTCLGL	6	1		169	2.1					
IMPKTGFLI	9	1		188	2.1	<0.0008	0.0035	0	c	3 2
GLLGDNQIM	6	1			A2.1	<0.0008	0.0054	0) c	· =
GLVCVQAAT	6	1		24	2.1	0.0030	0.0007	0.0026	0	1000
VADLVGFLL	6	1		106	2.1	0.032	0.0011	0.0054	8000.0	2000
YLEYGRCRTV	10	1		248	2.1	0.0008	0.0097	1000 0		
SLQLVFGIDV	10	ı		150	2.1	0.0028	0.0047	0.0013	1000	2 0
IMPKTGFLII	10	1		188	2.1	<0.0008	0.0007	6		0 050
ALGLVCVQAA	10	1		22	A2.1	0.0011	0.0002	0 0003		0.0
EIWEELSVMEV	11	1		213	N2.1	0.0007	0.013	0 0001	1000	
FLIIVLVMIAM	11	1			A2.1	0.023	1,000	0 016	4100	
VIPHAMSSCGV	11	1		257	2.1	<0.000	1.4		0.001	
CILESCFRAVI	11	1			A2.1	0.079	0 0017	0 050	2000	
QIMPKTGFLII	11	1		187	2.1	<0.000	0 0003			0000
GFLLLKYRA	6	1						2000	2000	0.0030
CFPRIFGKA	6	1		-					2000	
FFFPSLREA	6	п						0		
FFPSLREAA	6	1	·					0	0	
RSLHCKPEEA	10	1						0.0001	0.0008	

Page 14 of 15

		0 0	10 1	0.0004 0	
Mage AA Strai	10		10 1		- C
Sequence	EFLWGPRALA		RFFFPSLREA		FFFFSLKEAA

F: VERF SOL WOCS NO 1922.1

		- خ									
	ungem v	otrain	Strain Molecule	Position	Motif	A1	A7	4.3			
AI EI ODI ON						Rinding	: 8	6	- ! .	A 24	Max.
OFF LGFA	HIV	ZZ	<u>e</u> <u>0</u> 160	815	200	9		Binding	Binding	Binding	Binding
MLQLTVWGI	HIV	Τ	09100	010	7007		0.4950			†	0.1050
RVIEVLORA	HIV	П	00170	000	A02		0.2-150				05/0
KLTPLCVTL	HIV		ON LANGE	678	A02		0.1963			-	0.27.0
LLIAARIVEL	HIV	\top	00160	071	A02		0.1600	:	!!!!		0.031.0
SLLNATDIAV	HIV	T	on I KO	0//	A02		0.1550	:			0.1000
ALFLGFLGA	VIII	Т	09100	910	A012		0.1050		!		0.001.0
HMLQLTVWGI	HIV	T	00100	918	A02		0.09.15	:		 -	0.00.0
LLNATDIAV	HIV	T	09100	200	A02		0.0677				C1-70-0
ALLYKLDIV	NII	Г	09100	Clo	A02		0.0607	: -			CONTRACT
WLWYIKIFI	HIV	T	001/	61	A02		0.0362			•	0.000
T		Ī	<u>E</u> p160	629	A02		25500			 -	0.0362
T	٨١٤		<u>gp</u> 160	288	A02		- 0200				0.0355
THO LANGUEL	AIE.	MN	8p160	800	A(1)		00000	: : : : : : : : : : : : : : : : : : : :	. !		0.0350
	- II	MN	Pp 160	- 689			0.0265			:	1 59000
I	HIV	NN	(Jy ua	/00	700		0.0252				0.0250
	HIV	Г	09100		7017		0.0245	: ! !	:		20.00
PLOCKIKOII	HIV	T	1001		A02	_	0.0233	:	:		0.0243
Ť	- NIH	T	00143		A02		0.0200	-			0.023.5
Τ		- 1	gp100		A02		0.0105			- - :	0.0200
T	1	Ī	<u>gp</u> 160	523	Λ02		00100				0.0195
1			gp160	107	A02		02100			- : - :	06100
Ť		MN Ep	gp160	570	A02		2000		 :: :		0.0179
		MN .gp	gp160		A (1)		000	:		=	0.0150
AVLSIVNRV	HIV VI	MN	Pp 160	!	700		0.0142		:		cr100
				_	700	0	0.0132	-	:		00132

44

Page 1 of 2

Sed February	Amelia					!						
	Amilgen	Strain Mole	مالاز	Pocition	. NA colf							
				. 631(101)	INOINI	٧I	A2	A3	11	17C V	A.4.	_
						Dinging		1			VINX.	
FIMIVGGLV	HIN	MM	051.50		_[guinina	Binding	Binding	Binding	Binding	Rinding	
T T NIN CONT.		NIM	Epron	989	A02		00121	1	c	9	300000	
PENATUTANA	· AIH	ZΣ	ep 160	815	100		10.00	: :			0.0131	
FLYGALLLA	pi p	Human	200	013	704		0.0117		:	:	51100	
CT (MCMT)		TIME IN THE		08 8	A02		1 0000	i : :		:	/ 1 1 1 1 1	_
SHLIFMIAA	PLP	Human		253	AOS		0000				1.9000	
FMIAATYNFAV	PLP	Human		250	7007		0.5500				0.5300	
RMYGVI. PMT	0.10			/67	A02		0.4950			• ! ! ! !		
THIRD		Human		205	AU		10000	:::::::::::::::::::::::::::::::::::::::			0.4950	
1 AA'TYNFAV	PLP	Human		250	3		0001.0				05910	
GLLECCARCLY	DI D			43%	A02		0.0540			:		
	3	ruman		2	A02		21300	:::::::::::::::::::::::::::::::::::::::			0.0540	
YAL'I'VVWLL	PLP	Human		157	1		CICON				0.0515	
ALTVVWLLV	PLP	Himan		100	7007		0.0415				SIFUU	
FLYGALLI.	DI D			801	A02		0.0390					
	<u>ו</u>	ruman		<u></u>	A02		0.0345				0.03.0.0	
30	PLP	Human		1001	1 2		0.034	•			0.03.15	
LLVFACSAV	d id	Himan			7117		0.01.40					
1		- Innian		164	A02		0.0107	-			07-1070	
							7777				0.0107	
•												

Page 2 of

-

-i

Claims

- 1. A composition comprising an immunogenic peptide having an HLA-A2.1 binding motif, which immunogenic peptide has 9 residues and the following residues:
- a first conserved residue at the second position from the N-terminus selected from the group consisting of I, V, A and T;
- a second conserved residue at the C-terminal position selected from the group consisting of V, L, I, A and M.
- 2. A composition comprising an immunogenic peptide having an HLA-A2.1 binding motif, which immunogenic peptide has 9 residues:
- a first conserved residue at the second position from the N-terminus selected from the group consisting of L, M, I, V, A and T;
- a second conserved residue at the C-terminal position selected from the group consisting of A and M.
- 3. The composition of claim 1, wherein the amino acid at position 1 is not an amino acid selected from the group consisting of D, and P.
- 4. The composition of claim 2, wherein the amino acid at position 1 is not an amino acid selected from the group consisting of D, and P.
- 5. The composition of claim 0, wherein the amino acid at position 3 from the N-terminus is not an amino acid selected from the group consisting of D, E, R, K and H.
- 6. The composition of claim 2, wherein the amino acid at position 3 from the N-terminus is not an amino acid selected from the group consisting of D, E, R, K and H.
- 7. The composition of claim 1, wherein the amino acid at position 6 from the N-terminus is not an amino acid selected from the group consisting of R, K and H.

- 8. The composition of claim 2, wherein the amino acid at position 6 from the N-terminus is not an amino acid selected from the group consisting of R, K and H.
- 9. The composition of claim 0, wherein the amino acid at position 7 from the N-terminus is not an amino acid selected from the group consisting of R, K, H, D and E.
- 10. The composition of claim 2, wherein the amino acid at position 7 from the N-terminus is not an amino acid selected from the group consisting of R, K, H, D and E.
- 11. A composition comprising an immunogenic peptide having an HLA-A2.1 binding motif, which immunogenic peptide has about 10 residues:
- a first conserved residue at the second position from the N-terminus selected from the group consisting of L, M, I, V, A, and T; and
- a second conserved residue at the C-terminal position selected from the group consisting of V, I, L, A and M;

wherein the first and second conserved residues are separated by 7 residues.

- 12. The composition of claim 11, wherein the amino acid at position 1 is not an amino acid selected from the group consisting of D, E and P.
- 13. The composition of claim 11, wherein the amino acid at position 3 from the N-terminus is not an amino acid selected from the group consisting of D and E.
- 14. The composition of claim 11, wherein the amino acid at position 4 from the N-terminus is not an amino acid selected from the group consisting of A, K, R and H.
- 15. The composition of claim 11, wherein the amino acid at position 5 from the N-terminus is not P.
- 16. The composition of claim 11, wherein the amino acid at position 7 from the N-terminus is not an amino acid selected from the group consisting of R, K and H.

- 17. The composition of claim 11, wherein the amino acid at position 8 from the N-terminus is not an amino acid selected from the group consisting of D, E, R, K and H.
- 18. The composition of claim 11, wherein the amino acid at position 9 from the N-terminus is not an amino acid selected from the group consisting of R, K and H.

Abstract of the Disclosure

The present invention provides the means and methods for selecting immunogenic peptides and the immunogenic peptide compositions capable of specifically binding glycoproteins encoded by HLA-A2.1 allele and inducing T cell activation in T cells restricted by the A2.1 allele. The peptides are useful to elicit an immune response against a desired antigen.