МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка параметров надежности программ по временным моделям обнаружения ошибок

Студент гр. 8304	 Мешков М.А.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2022

Цель работы.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Ход выполнения.

1. Равномерное распределение, n=30 (100%)

Интервалы между обнаружением ошибок см. в табл. 1.

Таблица 1 — Интервалы между обнаружением ошибок (равн. распр., n=30)

i	Xi	i	X_{i}	i	Xi
1	0.616	11	8.871	21	11.588
2	3.849	12	8.99	22	11.813
3	4.371	13	9.268	23	14.379
4	5.185	14	9.873	24	15.653
5	5.917	15	9.894	25	15.84
6	7.381	16	10.133	26	16.009
7	7.815	17	10.858	27	16.239
8	7.83	18	11.013	28	16.61
9	8.456	19	11.124	29	16.643
10	8.551	20	11.167	30	18.445

Проверка единственности решения оценки максимального правдоподобия:

$$A > (n+1)/2, \qquad A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

18.92 > 15.5

Таким образом оценка максимального правдоподобия имеет единственное решение.

Расчет значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; g_n(m,A) = \frac{n}{m-A}$ представлен в

табл. 2. Таблица 2 — Значения функций (равн. распр., n=30)

m	f	g	f-g
31	3.994	2.483	1.511
32	3.027	2.293	0.734
33	2.558	2.130	0.428
34	2.255	1.989	0.266
35	2.034	1.865	0.169
36	1.863	1.756	0.107
37	1.724	1.659	0.065
38	1.608	1.572	0.036
39	1.510	1.494	0.016
40	1.4245	1.4232	0.0013
41	1.349	1.358	0.009

$$\hat{B} = m - 1 = 39$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}} = 0.00452718$$

Вычисление
$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$
 представлено в табл. 3.

Таблица 3 — Среднее время оставшееся до обнаружения i-ой ошибки (равн. pacпр., n=30)

i	31	32	33	34	35	36	37	38	39
X_{i}	24.543	27.611	31.555	36.814	44.177	55.222	73.629	110.444	220.888

Время до полного завершения тестирования: 624.884

Полное время тестирования: 939.265

2. Равномерное распределение, n=24 (80%)

Интервалы между обнаружением ошибок см. в табл. 4.

Таблица 4 — Интервалы между обнаружением ошибок (равн. распр., n=24)

i	Xi	i	Xi	i	X_{i}
1	0.346	11	9.681	21	14.933
2	0.625	12	10.093	22	17.041
3	1.516	13	11.018	23	19.016
4	1.861	14	11.093	24	19.027
5	3.969	15	12.286		
6	4.2	16	12.3		
7	5.258	17	12.463		
8	5.559	18	12.649		
9	6.196	19	12.678		
10	7.717	20	13.732		

$$A > (n+1)/2, \quad A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

Таким образом оценка максимального правдоподобия имеет единственное решение.

Расчет значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i};$ $g_n(m,A) = \frac{n}{m-A}$ представлен в табл. 5.

Таблица 5 — Значения функций (равн. распр., n=24)

m	f	g	f-g
25	3.775	2.824	0.951
26	2.815	2.527	0.288
27	2.354	2.286	0.068
28	2.058	2.087	0.029
29	1.843	1.920	0.077

$$\hat{B} = m - 1 = 27$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}} = 0.00926808$$

Вычисление
$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$
 представлено в табл. 6.

Таблица 6 — Среднее время оставшееся до обнаружения i-ой ошибки (равн. pacпр., n=24)

i	25	26	27
X_{i}	35.965	53.948	107.897

Время до полного завершения тестирования: 197.811

Полное время тестирования: 423.068

3. Равномерное распределение, n=18 (60%)

Интервалы между обнаружением ошибок см. в табл. 7.

Таблица 7 — Интервалы между обнаружением ошибок (равн. распр., n=18)

i	Xi	i	X_{i}
1	0.884	11	14.467
2	1.676	12	14.519
3	2.281	13	17.086
4	4.193	14	17.571
5	5.063	15	17.754
6	5.671	16	17.879
7	6.011	17	19.673
8	10.764	18	19.677
9	14.118		
10	14.255		

Проверка единственности решения оценки максимального правдоподобия:

$$A > (n+1)/2, \quad A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

Таким образом оценка максимального правдоподобия имеет единственное решение.

Расчет значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; g_n(m,A) = \frac{n}{m-A}$ представлен в

табл. 8.
Таблица 8 — Значения функций (равн. распр., n=18)

m	f	g	f-g
19	3.495	2.734	0.760
20	2.547	2.373	0.173
21	2.0977	2.0972	0.0005
22	1.812	1.878	0.066

 $\hat{B} = m - 1 = 20$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}} = 0.01030390$$

Вычисление
$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$
 представлено в табл. 9.

Таблица 9 — Среднее время оставшееся до обнаружения i-ой ошибки (равн. pacпр., n=18)

i	19	20
X_{i}	48.525	97.050

Время до полного завершения тестирования: 145.575

Полное время тестирования: 349.117

<u>4. Экспоненциальное распределение, n=30 (100%)</u>

Интервалы между обнаружением ошибок см. в табл. 10.

Таблица 10 — Интервалы между обнаружением ошибок (эксп. распр., n=30)

i	Xi	i	X_{i}	i	Xi
1	0.341	11	5.25	21	11.517
2	0.4	12	5.858	22	12.172
3	0.555	13	6.101	23	12.596
4	0.847	14	6.362	24	14.477

5	1.266	15	7.446	25	15.396
6	1.724	16	9.16	26	19.526
7	1.733	17	9.752	27	21.656
8	1.946	18	9.922	28	26.259
9	2.043	19	9.929	29	36.307
10	2.187	20	10.612	30	46.687

$$A > (n+1)/2, \qquad A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

Таким образом оценка максимального правдоподобия имеет единственное решение.

Расчет значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i};$ $g_n(m,A) = \frac{n}{m-A}$ представлен в табл. 11.

Таблица 11 — Значения функций (эксп. распр., n=30)

m	f	g	f-g
31	3.994	3.863	0.131
32	3.027	3.422	0.395

$$\hat{B} = m - 1 = 30$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}} = 0.01246253$$

Время до полного завершения тестирования: 0

Полное время тестирования: 310.027

<u>5. Экспоненциальное распределение, n=24 (80%)</u>

Интервалы между обнаружением ошибок см. в табл. 12.

Таблица 12 — Интервалы между обнаружением ошибок (эксп. распр., n=24)

i	Xi	i	Xi	i	Xi
1	1.183	11	4.84	21	13.481
2	1.26	12	6.998	22	17.296
3	1.368	13	7.817	23	22.621
4	1.594	14	9.151	24	27.484
5	1.773	15	9.78		
6	2.51	16	10.946		
7	2.747	17	10.988		
8	2.996	18	11.627		
9	3.406	19	11.708		
10	3.602	20	13.034		

$$A > (n+1)/2, \quad A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

Таким образом оценка максимального правдоподобия имеет единственное решение.

Расчет значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A}$ представлен в табл. 13.

Таблица 13 — Значения функций (эксп. распр., n=18)

m	f	g	f-g
25	3.775	3.323	0.452
26	2.815	2.919	0.103
27	2.354	2.602	0.248

$$\hat{B} = m - 1 = 25$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}} = 0.01458108$$

Вычисление
$$X_{n+1}=\frac{1}{\hat{z}(t_n)}=\frac{1}{\hat{K}(\hat{B}-n)}$$
 представлено в табл. 14.

Таблица 14 — Среднее время оставшееся до обнаружения і-ой ошибки (эксп. распр., n=24)

i	25
X_{i}	68.582

Время до полного завершения тестирования: 68.582

Полное время тестирования: 268.792

<u>5. Экспоненциальное распределение, n=18 (60%)</u>

Интервалы между обнаружением ошибок см. в табл. 15.

Таблица 15 — Интервалы между обнаружением ошибок (эксп. распр., n=18)

i	Xi	i	X_{i}
1	0.209	11	11.071
2	1.337	12	11.676
3	1.572	13	12.357
4	1.777	14	13.398
5	2.281	15	16.099
6	2.341	16	21.444
7	4.526	17	27.458
8	7.399	18	31.994
9	10.075		
10	10.56		

Проверка единственности решения оценки максимального правдоподобия:

$$A > (n+1)/2, \quad A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

13.672 > 9.5

Таким образом оценка максимального правдоподобия имеет единственное решение.

Расчет значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; g_n(m,A) = \frac{n}{m-A}$ представлен в

табл. 16.

Таблица 16 — Значения функций (эксп. распр., n=18)

m	f	g	f-g
19	3.495	3.378	0.117
20	2.547	2.844	0.297

$$\hat{B} = m - 1 = 18$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}} = 0.01801394$$

Время до полного завершения тестирования: 0

Полное время тестирования: 187.574

6. Релеевское распределение, n=30 (100%)

Интервалы между обнаружением ошибок см. в табл. 17.

Таблица 17 — Интервалы между обнаружением ошибок (рел. распр., n=30)

i	Xi	i	X_{i}	i	Xi
1	2.718	11	7.517	21	12.806
2	3.544	12	8.218	22	14.114
3	4.441	13	8.224	23	14.299
4	5.066	14	9.939	24	14.873
5	5.143	15	10.986	25	15.577
6	5.253	16	11.114	26	16.324
7	5.688	17	12.133	27	16.365
8	5.754	18	12.453	28	17.061
9	5.77	19	12.525	29	17.138
10	7.333	20	12.697	30	17.239

Проверка единственности решения оценки максимального правдоподобия:

$$A > (n+1)/2, \qquad A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

19.265 > 15.5

Таким образом оценка максимального правдоподобия имеет единственное решение.

Расчет значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i};$ $g_n(m,A) = \frac{n}{m-A}$ представлен в табл. 18.

Таблица 18 — Значения функций (рел. распр., n=30)

m	f	g	f-g
31	3.994	2.556	1.438
32	3.027	2.355	0.672
33	2.558	2.184	0.374
34	2.255	2.036	0.219
35	2.034	1.906	0.128
36	1.863	1.792	0.071
37	1.724	1.691	0.033
38	1.608	1.601	0.007
39	1.510	1.520	0.010

$$\hat{B} = m - 1 = 37$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}} = 0.00512735$$

Вычисление
$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$
 представлено в табл. 19.

Таблица 19 — Среднее время оставшееся до обнаружения i-ой ошибки (рел. pacпр., n=30)

i	31	32	33	34	35	36	37
X_{i}	27.861	32.505	39.006	48.758	65.010	97.516	195.032

Время до полного завершения тестирования: 505.691

Полное время тестирования: 818.003

7. Релеевское распределение, n=24 (80%)

Интервалы между обнаружением ошибок см. в табл. 20.

Таблица 20 — Интервалы между обнаружением ошибок (рел. распр., n=24)

i	Xi	i	Xi	i	X_{i}
1	1.865	11	8.653	21	13.265
2	3.133	12	8.96	22	14.194
3	4.287	13	9.04	23	15.234
4	5.575	14	9.63	24	15.773
5	5.877	15	9.643		
6	6.002	16	9.788		
7	6.08	17	10.718		
8	6.303	18	11.182		
9	6.838	19	12.33		
10	8.157	20	12.383		

$$A > (n+1)/2, \quad A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

Таким образом оценка максимального правдоподобия имеет единственное решение.

Расчет значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i};$ $g_n(m,A) = \frac{n}{m-A}$ представлен в табл. 21.

Таблица 21 — Значения функций (рел. распр., n=24)

m	f	g	f-g
25	3.775	2.472	1.303
26	2.815	2.241	0.574
27	2.354	2.049	0.304
28	2.058	1.888	0.169
29	1.843	1.750	0.093
30	1.678	1.631	0.046

31	1.544	1.527	0.017
32	1.4343	1.4363	0.002
33	1.340	1.355	0.014

$$\hat{B} = m - 1 = 31$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}} = 0.00668363$$

Вычисление
$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$
 представлено в табл. 22.

Таблица 22 — Среднее время оставшееся до обнаружения i-ой ошибки (рел. pacпр., n=24)

i	25	26	27	28	29	30	31
X_{i}	21.374	24.936	29.923	37.404	49.873	74.809	149.619

Время до полного завершения тестирования: 387.941

Полное время тестирования: 602.851

9. Релеевское распределение, n=18 (60%)

Интервалы между обнаружением ошибок см. в табл. 23.

Таблица 23 — Интервалы между обнаружением ошибок (рел. распр., n=18)

i	Xi	i	X_{i}
1	2.141	11	10.464
2	4.702	12	12.453
3	5.209	13	13.011
4	5.278	14	13.74
5	5.794	15	14.013
6	7.798	16	14.655
7	8.363	17	15.214
8	8.392	18	15.74
9	10.185		
10	10.321		

Проверка единственности решения оценки максимального правдоподобия:

$$A > (n+1)/2, \qquad A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

11.592 > 9.5

Таким образом оценка максимального правдоподобия имеет единственное решение.

Расчет значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i};$ $g_n(m,A) = \frac{n}{m-A}$ представлен в табл. 24.

Таблица 24 — Значения функций (рел. распр., n=18)

m	f	g	f-g
19	3.495	2.429	1.065
20	2.547	2.140	0.406
21	2.097	1.913	0.184
22	1.812	1.729	0.082
23	1.607	1.577	0.029
24	1.4509	1.4506	0.0003
25	1.325	1.3424	0.016

$$\hat{B} = m - 1 = 23$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}} = 0.00817408$$

Вычисление
$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$
 представлено в табл. 25.

Таблица 25 — Среднее время оставшееся до обнаружения і-ой ошибки (рел. pacпр., n=18)

i	19	20	21	22	23
X_{i}	24.467	30.584	40.779	61.168	122.338

Время до полного завершения тестирования: 279.338

Полное время тестирования: 456.811

10. ИтогиОценку первоначального числа ошибок см. в табл. 26.

Таблица 26 - Оценка первоначального числа ошибок

Закон распределения \ кол-во данных	n = 30	n = 24	n = 18
Равномерный	39	27	20
Экспоненциальный	30	25	18
Релеевский	37	31	23

Оценку полного времени проведения тестирования см. в табл. 27.

Таблица 27 - Оценка полного времени проведения тестирования

Закон распределения \ кол-во данных	n = 30	n = 24	n = 18
Равномерный	939.265	423.068	349.117
Экспоненциальный	310.027	268.792	187.573
Релеевский	818.002	602.851	456.811

Выводы.

В ходе выполнения лабораторной работы были исследованы показатели надежности программ, характеризуемые моделью обнаружения ошибок Джелинского-Моранды для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. В времени было получено, что оценка полного тестирования и оценка первоначального количества ошибок для данных, сгенерированных по экспоненциальному закону распределения, являются объясняется предположением наименьшими, что модели Джелинского-Моранды – время до следующего отказа программы распределено экспоненциально.