

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: Goodman et al.

Group Art Unit: 1644

Serial No. 08/971,172

Examiner: S. Turner

Filed: November 14, 1997

Attorney Docket No. B98-006-2

For: *Robo: A Novel Family of Polypeptides
and Nucleic Acids*

DECLARATION UNDER RULE 132

I, Tito Serafini, declare and state as follows:

1. I am an Associate Professor in the Department of Molecular and Cell Biology at the University of California, Berkeley. The Regents of the University of California is the assignee of the subject patent application. I am knowledgeable and experienced in the field of molecular biology. I have read and am familiar with the contents of the above application.

2. In my opinion, the phrase "flanked by fewer than 500 bp of native flanking sequence" is clear and definite to those of ordinary skill in the art in view of the specification. For example, on p.19, lines 27-33 the specification explains: "The subject recombinant nucleic acids comprising the nucleotide sequence of SEQ ID NO:1, 3, 5, 7, 9 or 11, or fragments thereof, contain such sequence or fragment at a terminus, immediately flanked by (i.e. contiguous with) a sequence other than that which it is joined to on a natural chromosome, or flanked by a native flanking region fewer than ... 500 bp, which is at a terminus or is immediately flanked by a sequence other than that which it is joined to on a natural chromosome."

This usage clearly conveys to those skilled in the art that (a) a strand "flanked by fewer than 500 bp of native flanking sequence" is contiguous with, on at least one end, fewer than 500 bp of native flanking sequence; (b) fewer than 500 bp includes zero bp and (c) native flanking sequence is sequence to which the strand is joined on a natural chromosome. Furthermore, native flanking sequences are readily determined from corresponding natural chromosome sources, which are identified in the specification (e.g. p.4, lines 1-3).

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements are made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful, false statements may jeopardize the validity of the application and any patent issuing therefrom.

Date: February 3, 2000

Prof. Tito Serafini

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: Goodman et al.

Group Art Unit: 1644

Serial No. 08/971,172

Examiner: S. Turner

Filed: November 14, 1997

Attorney Docket No. B98-006-2

For: *Robo: A Novel Family of Polypeptides
and Nucleic Acids*

SECOND DECLARATION UNDER 37 CFR 1.131

Assistant Commissioner for Patents
Washington D.C. 20231

Dear Commissioner:

1. We are coinventors of the subject patent application.
2. Attached is a printout of a Word file dated April 24, 1997 which contains the Human Robo 1 cDNA sequence we isolated in 1996. The sequence includes the 5' UTR of Human Robo 1 (bases 1-509) and Human Robo 1 coding sequence (bases 510-5366) encoding amino acids 1-1619 of Human Robo 1. The file is archived on Compact Disc and is supported by raw sequence files. This work was performed in the United States.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Title §1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Aug 30, 2000

Corey S. Goodman

Thomas Kidd

Aug 30, 2000

Kevin J. Mitchell

Aug 30, 2000

Guy Tazz

Aug 30, 2000

Human Robo-I Sequence 4.24.97

TTGACGGAATCCCTAACATCGCAGCAGGCATTACAATACCAGAGGTAACGAATCAATT
AAATCCAWTTCCTCGCGTCTCMAAAGCTGCGKGCCTAGTGTGCTGTGTTAG
ACCGGRGCAGTAGGACCMCAGGGCCTCCGCAGCCMCAAATAGAAGCGCACACTTGGVCC
TATTTGTATGCAATGCCTTCTGCTCGCATTAWATAGTDAATACAGATAACGGGTT
GAAAGAAWTTCTACTGAAGARGGATTGAATTTCAGGGTGCTGATACAGAGAAGAA
ACCGACTTCACTCTCCCTATTCCTTCACTCTTAGGTTAAAAGTCTGTACACCTTCG
CTTGGTTAAACTCGGAAAGGTCTAGTGCACAGCAAAGTTGCAGGGCTGCGTCTGACT
ACGGAGTCTCTAGATTGCTGAAACAGTCTTATGGAAGGATAACACATTGTCTGTCACTG
GCTGGTTGTAATGCAAGGAAGGGACAAAGATGAAATGGAAACATGTTCTTTGGTCA
TGATATCACTCCTCAGTTATCCCCAAATCACCTGTTCTGGCCCAGCTTATTCCAGACC
CTGAAGATGTAGAGAGGGGAACGACCACGGGACGCCAATCCCCACCTCTGATAACGATG
ACAATTGCTGGGCTATACAGGCTCCGCTTCGTCAAGGAAGATTTCCACCTCGCATTG
TTGAAACACCCTCAGACCTGATTGTCTAAAAGGAGAACCTGCAACTTGAACTGCAAAG
CTGAAGGCCGCCCCACACCCACTATTGAATGGTACAAAGGGGAGAGAGAGTGGAGACAG
ACAAAGATGACCCCTCGCTCACACCGAATGTTGCTGCCAGTGGATCTTATTTCCTAC
GTATAGTACATGGACGGAAAAGTAGACCTGATGAAGGAGTCTATGTCTGTGAGCAAGGA
ATTACCTGGAGAGGCTGTGAGCCACAATGCATCGCTGGAAGTAGCCATACTCGGGATG
ACTTCAGACAAAACCCTCGGATGTCATGGTGCAGTAGGAGAGCCTGCAGTAATGGAAT
GCCAACCTCCACGAGGCCATCTGAGGCCACCATTGATGGAAGAAAGATGGCTCTCCAC
TGGATGATAAAGATGAAAGAATAACTATACGAGGAGGAAAGCTCATGATCACTTACACCC
GTAAAAGTGACGCTGGCAAATATGTTGTTGGTACCAATATGGTGGGAACGTGAGA
GTGAAGTAGCCGAGCTGACTGTCTTAGAGAGACCATTGTAAGAGAGACCCAGTAAC
TGGCAGTAACTGTGGATGACAGTGCAGAAATTAAATGTGAGGCCGAGGTGACCCCTGTAC
CTACAGTACGATGGAGGAAAGATGATGGAGAGCTGCCAAATCCAGATATGAAATCCGAG
ATGATCATACCTTGAAAATTAGGAAGGTGACAGCTGGTGACATGGGTTCATACACTTGTG
TTGCAGAAAATATGGTGGCAAAGCTGAAAGCATCTGCTACTCTGACTGTTCAAGAACCTC
CACATTGTTGTGAAACCCCGTGACCAGGTTGTTGGACGGACTGTAACCTTC
AGTGTGAAGCAACGGAAATCTCAACCAGCTATTCTGGAGGAGAGAAGGGAGTCAGA
ATCTACTTTCTCATATCAACCACACAGTCATCCAGCGATTTCTAGTCTCCCAGACTG
GCGACCTCACAATTACTAATGTCCAGCGATCTGATGTTGGTTATTACATCTGCCAGACTT
TAAATGTTGCTGGAAGCATCATACAAAGGCATATTGGAAGTTACAGATGTGATTGAG
ATCGGCCCTCCCCAGTTATCGACAAGGTCCTGTGAATCAGACTGTAGCCGTGGATGGCA
CTTCGTCCTCAGCTGTGGCCACAGGCAGTCCAGTGCCACCATTCTGTGGAGAAAGG
ATGGAGTCCTCGTTCAACCCAAGACTCTGAAATCAAACAGTTGGAGAATGGAGTACTGC
AGATCCGATATGCTAAGCTGGGTGATACTGGTCGGTACACCTGCATTGCATCAACCCCCA
GTGGTGAAGCAACATGGAGTGTCTACATTGAAGTTCAAGAAATTGGAGTCCAGTCAGC
CTCCAAGACCTACTGACCCAAATTAAATCCCTAGTGCCCCATCAAACCTGAAGTGCAG
ATGTCAGCAGAAATACAGTCACATTATCGTGGCAACCAATTGAAATTCAAGGAGCAACTC
CAACATCTTATATTATAGAAGCCTCAGCCATGCATCTGGTAGCAGCTGGCAGACCGTAG
CAGAGAATGTGAAAACAGAAACATCTGCCATTAAAGGACTCAAACCTAATGCAATTAC
TTTCCTGTGAGGGCAGCTAATGCATATGGAATTAGTGTATCCAAGCCAAATATCAGATC
CACTGAAAACACAAGATGCTTACCAACAAGTCAGGGGGTGGACCACAAGCAGGTCCAGA
GAGAGCTGGAAATGCTGTTCTGCACCTCCACAACCCACCGTCCTTCTTCTTCCA
TCGAAGTGCAGTGGACAGTAGATCAACAGTCAGTATATAACAGGATATAAAATTCTCT
ATCGGCCATCTGGAGCCAACCACGGAGAAATCAGACTGGTTAGTTTGAAAGTGAGGAGCG
CAGCCAAAAACAGTGTGTAATCCCTGATCTCAGAAAGGGAGTCAGTATGAAATTAGG
CTCGCCCTTTTAATGAATTCAAGGAGCAGATAGTGAATCAAGTTGCCAAACCC
TGGAAGAAGCACCAGTGCCTTACCCACCCAAAGGTGTAACTGTATCCAAGAATGATGGAAACG
GAAGTCAATTCTAGTTAGTGTGGCAGCCACCTCCAGAAAGACACTCAAATGGAATGGTCC
AAGAGTATAAGGTTGGTGTGGCAATGAAACTCGATACCACATCAACAAAACAGTGG
ATGGTCCACCTTCCGTGGTATTCCCTTCTGTTCTGGAATCCGATACAGTGTGG

AAGTGGCAGCCAGCACTGGGGCTGGGTCTGGGTAAGAGTGAGCCTCAGTTCATCCAGC
TGGATGCCCATGGAAACCCCTGTGCACCTGAGGACCAAGTCAGCCTCGCTCAGCAGATT
CAGATGTGGTGAAGCAGCCGGCCTTCATAGCAGGTATTGGAGCAGCCTGTTGGATCATCC
TCATGGTCTTCAGCATCTGGCTTATCGACACCGCAAGAAGAGAAACGGACTTACTAGTA
CCTACCGCGGTATCAGAAAAGTCCCCTTACCTTACACCAACAGTAACCTACCAGA
GAGGAGGCAGACTGTCACTGGAGGGAGGCCTGGACTTCTCAACATCAGTGAACCTG
CCGCAGCCATGGCTGGCAGACACGTGGCTTAATACTGGCAACAACCACAATGACTGCT
CCATCAGCTGCTGCACGGCAGGCAATGAAACAGCGACAGCAACCTCACTACCTACAGTC
GCCAGCTGATTGTATAAGCAAATTATAACAACCAACTGGATAACAAACAAACAAATCTGA
TGCTCCCTGAGTCAACTGTTATGGTGTGGACCTTAGTAACAAATCAATGAGATGA
AAACCTTCAATAGCCAAATCTGAAGGATGGGCTTTGTCAATCCATCAGGGCAGCCTA
CTCCTTACGCCACCACTCAGCTCATCCAGTCAAACCTCAGCAACAACATGAACAATGGCA
GCGGGGACTCTGGCGAGAACGACTGGAAACCACTGGGACAGCAGAAACAAAGAAGTGGCAC
CAGTTCACTGACACATCGTGGAGCAAAACAAGCTGAACAAAGATTATCGAGCAAATGACA
CAGTTCTCCAACATCCCATAACACCAATCATACGACCAACACAGGAGGATCCTACAC
ACAGCTCAGACCGGGCAGTAGTACATCTGGAGTCAGGGCACAAGAAAGGGGCAAGAA
CACCCAAGGTACCAAAACAGGGTGGCATGAACTGGCAGACCTGCTCCTCCCTCCCCAG
CACATCCTCTCCACACAGCAATAGCGAAGAGTACAACATTCTGTAGATGAAAGCTATG
ACCAAGAAATGCCATGTCCCGTGCACCAGCAAGGATGTATTYGCAACAAGATGAATTAG
AAGAGGAGGAAGATGAACGAGGCCACTCCCCCTGTTGGGAGCAGCTTCTCTCCAG
CTGCCGTGTCCTATAGCCATCAGTCCACTGCCACTCTGACTCCCTCCCCACAGGAAGAAC
TCCAGCCCATGTTACAGGATTGTCAGGAGACTGGCCACATGCAGCACCAGCCGACA
GGAGACGGCAGCCTGTGAGTCCTCCACACCACGGCCATCTCCCTCCACATACCT
ATGGCTACATTTCAGGACCCCTGGTCTCAGATATGGATACGGATGCCAGAAGGAGGAAG
AAGACGAAGCCGACATGGAGGTAGCCAAGATGCAAACCAGAAGGCTTGTACGTGGC
TTGAGCAGACACCTGCCTCAGTGTGGGACCTGGAGAGCTGTACGGGTCCATGA
TCAACGGCTGGGCTCAGCCTCAGAGGAGGACAACATTCCAGCGGAGCCTCAGTGT
GTTCTCGGACGGCTCCTTTCACTGATGCTGACTTGCCTCAGGAGTCGCAGCAGCGG
CAGAGTATGCTGGTCTGAAAGTAGCACGACGGCAAATGCAGGATGCTGCTGGCGTCGAC
ATTTTCATGCGTCTCAGGCCCTAGGCCACAAGTCCGTCTACAGACAGCAACATGA
GTGCCGCCATAATGCAGAAAACCAGACCGAGCCAAGAAACTGAAACACCAGCCAGGACATC
TGCGCAGAGAAACCTACACAGATGATCTTCCACACCTCTGCTGCCACCTGCTATAA
AGTCACCTACTGCCAATCCAAGACACAGCTGGAAGTACGACCTGTAGTGGTCCAAAAC
TCCCTCTATGGATGCAAGAACAGACAGATCATCAGACAGAAAAGGAAGCAGTTACAAGG
GGAGAGAAGTGTGGATGGAAGACAGGTTGACATGCGAACAAATCCAGGTGATCCA
GAGAAGCACAGGAACAGCAAATGACGGGAAAGGACGTGGAAACAAGGCAGCAAACGAG
ACCTTCCACCGAGCAAAGACTCATCTCATCCAAGAGGATATTCTACCTTATTGTAGACCTA
CTTTCCAACATCAAATAATCCCAGAGATCCAGTCTCAAGCTCAATGTCAAGAG
GATCAGGAAGCAGACAAAGAGAACAGGATCAACTAATACTCCAGAAGAAGCATAATAAAT
CTAAAACAATAAAACTAACASTGTAATATAAAGTAATGTTAACTCACATTGGACAC
CTGATTAAACTCAGCTAAAAGTACAGVBAAVVVVBATATATACTCGTTGTGACATT
ATTTCAGGACCAAGGCAAAGAGAGACTCACCTCTCATTAAAGTACCAATTGCCTAT
GGCADABATTCGCMCVATATCATATAAAAGTCAAGBXDBGAAATTACATAAGCAAATT
CAAATCACAGTGCT

3' diffus.