Circuitos Electrónicos I

Topologías de Amplificadores Realimentados

TOPOLOGÍAS DE AMPLIFICADORES ELECTRÓNICOS REALIMENTADOS

- ✓ Resumen de las distintas topologías de amplificadores realimentados.
- ✓ Efecto de la realimentación sobre las impedancias de entrada y salida.
- ✓ Método para determinar la ganancia y las impedancias de entrada y salida de un amplificador realimentado.

REALIMENTACIÓN DE SEÑALES ELECTRÓNICAS

Realimentación a la entrada: Medida a la salida: suma **Amplificador** Medida Señal Carga Realimentación Paralelo: Paralelo: medición realimentación de tensión de corriente Obsérvese que: Realimentación paralelo inyecta corriente Medición en paralelo mide tensión Realimentación serie inyecta tensión Medición en serie mide corriente Serie: realimentación Serie: medición

de corriente

de tensión

TOPOLOGÍAS DE AMPLIFICADORES REALIMENTADOS

Realimentación a la entrada:

Medida a la salida:

TOPOLOGÍAS DE AMPLIFICADORES REALIMENTADOS

TOPOLOGÍA	Variable	Variable	Amplificación	Unidades
	realimentada	medida		
serie-paralelo	$\mathcal{V}r$	$\mathcal{V}o$	Tensión	(V/V)
paralelo- paralelo	i_r	Vo	Trans-impedancia	(V/A)
paralelo-serie	ir	i_{o}	Corriente	(A/A)
serie-serie	Vr	i_{o}	Trans-admitancia	(A/V)

Ejemplos:

El amplificador de tensión ideal tiene una ganancia que es insensible a los efectos de carga, tanto a la entrada como a la salida.

$$z_i = \infty \\ z_o = 0$$
 \Rightarrow $\frac{v_o}{v_S} = a_V$

En un amplificador de tensión real, con Zi finita y Zo no nula, la ganancia es afectada por dos divisores de tensión:

$$\frac{v_o}{v_S} = \frac{z_i}{z_S + z_i} \cdot a_V \cdot \frac{z_L}{z_o + z_L} = \frac{1}{1 + \frac{z_S}{z_i}} \cdot a_V \cdot \frac{1}{1 + \frac{z_o}{z_L}}$$

¿Cuál es la ganancia que se desensibiliza respecto a variación de parámetros y no-linealidades?

¿Cuál es el efecto de las cargas sobre la ganancia de un amplificador realimentado?

 A_{Vr} ? Z_{ir} ? Z_{or} ?

Ganancia realimentada sin carga:

$$\begin{vmatrix} v_o = a_V \cdot v_e \\ v_r = \beta_V \cdot v_o \\ v_e = v_i - v_r \end{vmatrix} \Rightarrow A_{Vr} \triangleq \frac{v_o}{v_i} = \frac{a_V}{1 + a_V \cdot \beta_V}$$

Vs Zir Zor Vo ZL

Impedancia de entrada:

$$Z_{ir} \triangleq \frac{v_i}{i_i}$$

$$\begin{vmatrix} v_e = i_i z_i \\ v_i = v_e + v_r \\ v_r = \beta_V \cdot v_o \\ v_o = a_V \cdot v_e \end{vmatrix} \Rightarrow v_i = v_e (1 + a_V \cdot \beta_V)$$

$$Z_{ir} = z_i(1 + a_V \cdot \beta_V)$$

(Deberíamos haber tenido en cuenta a Z_L)

Impedancia de salida:

$$Z_{or} \triangleq \frac{v_o}{i_o}$$

$$\begin{vmatrix} i_o z_o = v_o - a_V \cdot v_e \\ v_e = -v_r \\ v_r = \beta_V \cdot v_o \end{vmatrix} \Rightarrow i_o z_o = v_o (1 + a_V \cdot \beta_V)$$

$$Z_{or} \cong \frac{z_o}{(1+a_V\cdot\beta_V)}$$

(Deberíamos haber tenido en cuenta a Z_S)

$$\frac{v_{O}}{v_{S}} = \frac{1}{1 + \frac{z_{S}}{Z_{ir}}} \cdot A_{Vr} \cdot \frac{1}{1 + \frac{Z_{Or}}{z_{L}}} \qquad \frac{v_{O}}{v_{S}} \cong \frac{1}{1 + \frac{z_{S}}{z_{i}(1 + a_{V} \cdot \beta_{V})}} \cdot \frac{a_{V}}{1 + a_{V} \cdot \beta_{V}} \cdot \frac{1}{1 + \frac{z_{O}}{z_{L}(1 + a_{V} \cdot \beta_{V})}}$$

La topología serie-paralelo estabiliza la **ganancia de tensión** frente a variaciones de parámetros y no-linealidades del amplificador, como así también frente a las cargas externas.

12

El amplificador de transimpedancia ideal tiene una ganancia que es insensible a los efectos de carga, tanto a la entrada como a la salida.

$$z_i = 0 \\ z_o = 0$$
 \Rightarrow
$$\frac{v_o}{i_S} = a_Z$$

En un amplificador de transimpedancia real, con Zi y Zo no nulas, la ganancia es afectada por dos divisores:

$$\frac{v_o}{i_S} = \frac{z_S}{z_S + z_i} \cdot a_Z \cdot \frac{z_L}{z_o + z_L} = \frac{1}{1 + \frac{z_i}{z_S}} \cdot a_Z \cdot \frac{1}{1 + \frac{z_o}{z_L}}$$

Ganancia realimentada sin carga:

Impedancia de entrada:

Impedancia de salida:

Ganancia realimentada sin carga:

$$\left. egin{aligned} v_o &= a_Z \cdot i_e \ i_r &= eta_V \cdot v_o \ i_e &= i_i - i_r \end{aligned}
ight\} = 0$$

$$\begin{vmatrix} v_o = a_Z \cdot i_e \\ i_r = \beta_V \cdot v_o \\ i_e = i_i - i_r \end{vmatrix} \Rightarrow A_{Zr} \triangleq \frac{v_o}{i_i} = \frac{a_Z}{1 + a_Z \cdot \beta_Y}$$

Impedancia de entrada:

$$i_{e} = v_{i}/z_{i}$$

$$i_{i} = i_{e} + i_{r}$$

$$i_{r} = \beta_{Y} \cdot v_{o}$$

$$v_{o} = a_{Z} \cdot i_{e}$$

$$\Rightarrow$$

$$i_{i} = i_{e}(1 + a_{Z} \cdot \beta_{Y})$$

$$i_{z} = \frac{z_{i}}{1 + a_{Z} \cdot \beta_{Y}}$$

$$i_i = i_e(1 + a_Z \cdot \beta_Y)$$

$$Z_{ir} \cong \frac{z_i}{1 + a_Z \cdot \beta_Y}$$

 $Z_{or} \triangleq \frac{v_o}{i_o}$

Impedancia de salida:

$$\begin{vmatrix} i_o z_o = v_o - a_Z \cdot i_e \\ i_e = -i_r \\ i_r = \beta_Y \cdot v_o \end{vmatrix} \Rightarrow i_o z_o = v_o (1 + a_Z \cdot \beta_Y)$$

$$i_o z_o = v_o (1 + a_Z \cdot \beta_Y)$$

$$Z_{or} \cong \frac{z_o}{(1 + a_Z \cdot \beta_Y)}$$

$$A_{Zr} = \frac{a_Z}{1 + a_Z \cdot \beta_Y} \qquad \qquad Z_{ir} \cong \frac{z_i}{1 + a_Z \cdot \beta_Y}$$

$$Z_{ir} \cong \frac{z_i}{1 + a_Z \cdot \beta_Y}$$

$$Z_{or} \cong \frac{z_o}{(1 + a_Z \cdot \beta_Y)}$$

$$\frac{v_o}{i_S} = \frac{1}{1 + \frac{Z_{ir}}{Z_S}} \cdot A_{Zr} \cdot \frac{1}{1 + \frac{Z_{or}}{Z_L}}$$

$$\frac{v_o}{i_S} = \frac{1}{1 + \frac{Z_{ir}}{Z_S}} \cdot A_{Zr} \cdot \frac{1}{1 + \frac{Z_{or}}{Z_I}} \qquad \frac{v_o}{i_S} \cong \frac{1}{1 + \frac{Z_i}{Z_S(1 + a_Z \cdot \beta_Y)}} \cdot \frac{a_Z}{1 + a_Z \cdot \beta_Y} \cdot \frac{1}{1 + a_Z \cdot \beta_Y}$$

La topología paralelo-paralelo estabiliza la **ganancia de trans-impedancia** frente a variaciones de parámetros y no-linealidades del amplificador, como así también frente a las cargas externas.

Ejemplos:

El amplificador de corriente ideal tiene una ganancia que es insensible a los efectos de carga, tanto a la entrada como a la salida.

$$z_i = 0 \\ z_o = \infty$$
 \Rightarrow $\frac{i_o}{i_S} = a_I$

En un amplificador de corriente, con Zi no nula y Zo finita, la ganancia es afectada por dos divisores:

$$\frac{i_o}{i_S} = \frac{z_S}{z_S + z_i} \cdot a_I \cdot \frac{z_o}{z_o + z_L} = \frac{1}{1 + \frac{z_i}{z_S}} \cdot a_I \cdot \frac{1}{1 + \frac{z_L}{z_o}}$$

Ganancia realimentada sin carga:

$$\begin{vmatrix} i_o = a_I \cdot i_e \\ i_r = \beta_I \cdot i_o \\ i_e = i_i - i_r \end{vmatrix} \Rightarrow$$

$$\begin{vmatrix} i_o = a_I \cdot i_e \\ i_r = \beta_I \cdot i_o \\ i_e = i_i - i_r \end{vmatrix} \Rightarrow A_{Ir} \triangleq \frac{i_o}{i_i} = \frac{a_I}{1 + a_I \cdot \beta_I}$$

 $Z_{ir} \triangleq \frac{v_i}{i}$

Impedancia de entrada:

$$\begin{aligned} i_e &= v_i/z_i \\ i_i &= i_e + i_r \\ i_r &= \beta_I \cdot i_o \\ i_o &= a_I \cdot i_e \end{aligned} \Rightarrow$$

$$\begin{aligned} i_i &= i_e(1 + a_I \cdot \beta_I) \\ \\ Z_{ir} &\cong \frac{z_i}{1 + a_I \cdot \beta_I} \end{aligned}$$

Impedancia de salida: $Z_{or} \triangleq \frac{v_o}{i}$

$$A_{Ir} = \frac{a_I}{1 + a_I \cdot \beta_I}$$

$$Z_{ir} \cong \frac{z_i}{1 + a_I \cdot \beta_I}$$

$$Z_{or} \cong z_o(1 + a_I \cdot \beta_I)$$

$$\frac{i_o}{i_S} = \frac{1}{1 + \frac{Z_{ir}}{Z_S}} \cdot A_{Ir} \cdot \frac{1}{1 + \frac{Z_L}{Z_{or}}}$$

$$\frac{i_o}{i_S} = \frac{1}{1 + \frac{Z_{ir}}{Z_c}} \cdot A_{Ir} \cdot \frac{1}{1 + \frac{Z_L}{Z_{or}}} \qquad \qquad \frac{i_o}{i_S} \cong \frac{1}{1 + \frac{Z_i}{Z_S(1 + a_I \cdot \beta_I)}} \cdot \frac{a_I}{1 + a_I \cdot \beta_I} \cdot \frac{1}{1 + \frac{Z_L}{Z_o(1 + a_I \cdot \beta_I)}}$$

La topología paralelo-serie estabiliza la **ganancia de corriente** frente a variaciones de parámetros y no-linealidades del amplificador, como así también frente a las cargas externas.

El amplificador de trans-admitancia ideal tiene una ganancia que es insensible a los efectos de carga, tanto a la entrada como a la salida.

$$z_i = \infty \\ z_o = \infty$$
 \Rightarrow $\frac{i_o}{v_S} = a_Y$

En un amplificador de transadmitancia, con Zi y Zo finitas, la ganancia es afectada por dos divisores:

$$\frac{i_o}{v_S} = \frac{z_i}{z_S + z_i} \cdot a_Y \cdot \frac{z_o}{z_o + z_L} = \frac{1}{1 + \frac{z_S}{z_i}} \cdot a_Y \cdot \frac{1}{1 + \frac{z_L}{z_o}}$$

Ganancia realimentada sin carga:

$$\begin{vmatrix} i_o = a_Y \cdot v_e \\ v_r = \beta_Z \cdot i_o \\ v_e = v_i - v_r \end{vmatrix} \Rightarrow A_{Yr} \triangleq \frac{i_o}{v_i} = \frac{a_Y}{1 + a_Y \cdot \beta_Z}$$

$$A_{Yr} \triangleq \frac{i_o}{v_i} = \frac{a_Y}{1 + a_Y \cdot \beta_Z}$$

Impedancia de entrada:

$$v_{e} = i_{i} z_{i}$$

$$v_{i} = v_{e} + v_{r}$$

$$v_{r} = \beta_{Z} \cdot i_{o}$$

$$i_{o} = a_{Y} \cdot v_{e}$$

$$\Rightarrow$$

$$z_{ir} \approx z_{i} (1 + a_{Y} \cdot \beta_{Z})$$

Impedancia de salida:
$$Z_{or} \triangleq \frac{v_o}{i_o}$$

$$\frac{v_o}{z_o} = i_o - a_Y \cdot v_e
v_e = -v_r
v_r = \beta_Z \cdot i_o$$

$$v_o = i_o z_o (1 + a_Y \cdot \beta_Z)
Z_{or} \cong z_o (1 + a_Y \cdot \beta_Z)$$

$$A_{Yr} = \frac{a_Y}{1 + a_Y \cdot \beta_Z}$$

$$Z_{ir} \cong z_i (1 + a_Y \cdot \beta_Z)$$

$$Z_{or} \cong z_o (1 + a_Y \cdot \beta_Z)$$

$$\frac{i_o}{v_S} = \frac{1}{1 + \frac{z_S}{Z_{ir}}} \cdot A_{Yr} \cdot \frac{1}{1 + \frac{z_L}{Z_{or}}} \qquad \qquad \frac{i_o}{v_S} \cong \frac{1}{1 + \frac{z_S}{z_i(1 + a_Y \cdot \beta_Z)}} \cdot \frac{a_Y}{1 + a_Y \cdot \beta_Z} \cdot \frac{1}{1 + \frac{z_L}{z_o(1 + a_Y \cdot \beta_Z)}}$$

La topología serie-serie estabiliza la **ganancia de trans-admitancia** frente a variaciones de parámetros y no-linealidades del amplificador, como así también frente a las cargas externas.

REDUCCIÓN DE LOS EFECTOS DE CARGA EN AMPLIFICADORES REALIMENTADOS

TOPOLOGÍA	Ganancia	Entrada	Salida
serie-paralelo (tensión)	$A_{Vr} = \frac{a_V}{1 + a_V \cdot \beta_V}$	$Z_{ir} = z_i(1 + a_V \cdot \beta_V)$	$Z_{or} = \frac{z_o}{(1 + a_V \cdot \beta_V)}$
paralelo-paralelo (transimpedancia)	$A_{Zr} = \frac{a_Z}{1 + a_Z \cdot \beta_Y}$	$Z_{ir} = \frac{z_i}{(1 + a_Z \cdot \beta_Y)}$	$Z_{or} = \frac{z_o}{(1 + a_Z \cdot \beta_Y)}$
paralelo-serie (corriente)	$A_{Ir} = \frac{a_I}{1 + a_I \cdot \beta_I}$	$Z_{ir} = \frac{z_i}{(1 + a_I \cdot \beta_I)}$	$Z_{or} = z_o(1 + a_I \cdot \beta_I)$
serie-serie (transadmitancia)	$A_{Yr} = \frac{a_Y}{1 + a_Y \cdot \beta_Z}$	$Z_{ir} = z_i(1 + a_Y \cdot \beta_Z)$	$Z_{or} = z_o(1 + a_Y \cdot \beta_Z)$

✓La realimentación estabiliza la ganancia correspondiente a la topología empleada frente a los efectos de carga sobre el amplificador.

Esta propiedad es utilizada en muchos casos para construir circuitos adaptadores de impedancia.