

Inteligência Artificial

Machine Learning – Conceitos Introdutórios

Profº - Dr. Thales Levi Azevedo Valente thales.l.a.valente@gmail.com.br

Grupo da turma 2024.2

https://chat.whatsapp.com/JFB6CgOI7IMCoYmoIKEK62

Sejam Bem-vindos!

Os celulares devem ficar no silencioso ou desligados

Pode ser utilizado apenas em caso de emergência

Boa tarde/noite, por favor e com licença DEVEM ser usados

Educação é essencial

Introdução

- A aprendizagem de máquina é o estudo dos algoritmos de aprendizado.
- Diz-se que um programa de computador aprende com a experiência (E) em relação a uma classe de tarefas (T) e medida de desempenho (D) se seu desempenho nas tarefas, conforme medido por D , melhora com a experiência.

<u>Introdução</u>

Machine Learning vs Sistemas baseados em regras

- Explicit programming is used to solve problems.
- Rules can be manually specified.

- Samples are used for training.
- The decision-making rules are complex or difficult to describe.
- Rules are automatically learned by machines.

Cenários

■ A solução para um problema é complexa, ou o problema pode envolver uma grande quantidade de dados sem uma função de distribuição de dados clara.

Cenários

■ A solução para um problema é complexa, ou o problema pode envolver uma grande quantidade de dados sem uma função de distribuição de dados clara.

<u>Idéia</u>

- A função alvo f é desconhecida. Os algoritmos de aprendizado não conseguem obter uma função f perfeita.
- Assuma que a função hipótese g aproxima a função f, mas pode ser diferente da função f.

Principais tipos de problemas

Classificação

- \checkmark Um programa de computador precisa especificar a qual das k categorias um determinado input pertence.
- ✓ Para realizar essa tarefa, os algoritmos de aprendizado geralmente geram uma função $f:X \rightarrow \{1,2,...,k\}$. Por exemplo, o algoritmo de classificação de imagens em visão computacional é desenvolvido para lidar com tarefas de classificação.

Principais tipos de problemas

Regressão

- ✓ um programa de computador prevê a saída para um dado input. Os algoritmos de aprendizado normalmente geram uma função $f:X \rightarrow Y$, onde Y é um valor contínuo.
- ✓ Um exemplo desse tipo de tarefa é prever o valor de uma ação.

Principais tipos de problemas

Clusterização

✓ Uma grande quantidade de dados de um conjunto de dados não rotulados é dividida em várias categorias com base na semelhança interna dos dados.

✓ Dados na mesma categoria são mais semelhantes entre si do que os dados em

categorias diferentes.

<u>Tipos de Aprendizado</u>

Supervisionado

- ✓ Obter um modelo ótimo com o desempenho necessário através do treinamento e aprendizado com base nas amostras de categorias conhecidas.
- ✓ Em seguida, usa-se o modelo para mapear todas as entradas para as saídas e verificar a saída com o objetivo de classificar dados desconhecidos.

<u>Tipos de Aprendizado</u>

Não-Supervisionado

- ✓ Para amostras não rotuladas, os algoritmos de aprendizado modelam diretamente os conjuntos de dados de entrada. O agrupamento (clustering) é uma forma comum de aprendizado não supervisionado.
- ✓ Nesse caso, precisamos apenas agrupar amostras altamente semelhantes, calcular a similaridade entre novas amostras e as existentes, e classificá-las com base nessa similaridade.

<u>Tipos de Aprendizado</u>

Aprendizado por reforço

- ✓ Se preocupa com a forma como os agentes devem tomar ações em um ambiente para maximizar uma noção de recompensa acumulada.
- ✓ A diferença entre o aprendizado por reforço e o aprendizado supervisionado está no sinal do professor. O sinal de reforço fornecido pelo ambiente no aprendizado por reforço é usado para avaliar a ação em vez de dizer ao sistema de aprendizado como realizar as ações corretas.

<u>Tipos de Aprendizado</u>

Aprendizado por reforço – curiosidade – Experimento de Pavlov

- ✓ O experimento de Pavlov é um dos mais famosos estudos de condicionamento clássico na psicologia.
- ✓ Ivan Pavlov, fez uma descoberta acidental que acabou sendo fundamental para o desenvolvimento da teoria do condicionamento clássico.
 - ✓ Pavlov estava realizando uma pesquisa sobre o sistema digestivo
 - ✓ Observou que, ao apresentar comida aos cães, eles começavam a salivar antes mesmo de ingerir o alimento
 - ✓ Esse reflexo antecipado da salivação não era esperado e despertou seu interesse

- Investigação

✓ Por que os cães salivavam em resposta a estímulos que estavam associados à comida, como a visão do alimento ou o som de um sino?

<u>Tipos de Aprendizado</u>

Aprendizado por reforço – curiosidade – Experimento de Pavlov

- ✓ Pavlov começou a realizar experimentos controlados com uso de um sino como estímulo neutro (um estímulo que, inicialmente, não causava resposta nos cães)
- ✓ Fase de aquisição (condicionamento)
 - ✓ Pavlov tocava o sino antes de apresentar a comida aos cães.
 - ✓ Depois de várias repetições, os cães começaram a associar o som do sino com a chegada do alimento

✓ Fase de teste

- ✓ Após várias associações, Pavlov tocava o sino sem apresentar comida, e os cães começavam a salivar, mesmo sem a presença do alimento.
- ✓ Isso demonstrou que eles haviam aprendido a associar o som do sino à comida.
- ✓ Seu trabalho foi publicado em 1904, quando ele recebeu o Prêmio Nobel de Fisiologia ou Medicina

<u>Tipos de Aprendizado</u>

■ Aprendizado por reforço – curiosidade – Experimento de Pavlov

<u>Tipos de Aprendizado</u>

Aprendizado por reforço – curiosidade – Experimento de Pavlov

- ✓ No aprendizado por reforço, um agente aprende a tomar decisões em um ambiente para maximizar a recompensa acumulada ao longo do tempo
 - ✓ A idéia de associar ações a recompensas é fundamental
 - ✓ Pavlov, portanto, contribuiu para o entendimento de como os sistemas podem aprender e se adaptar com base no feedback do ambiente
- ✓ Assim como Pavlov mostrou que um estímulo condicionado (o sino) pode provocar uma resposta automática (salivação), no aprendizado por reforço, as ações do agente podem se tornar condicionadas a certos estados do ambiente, dependendo das recompensas que o agente recebe ao longo do tempo.
- ✓ Mais tarde seria formalizado em modelos de aprendizado por reforço, como os de Qlearning ou os algoritmos de política, que associam ações a recompensas específicas para maximizar a performance do agente ao longo do tempo

<u>Tipos de Aprendizado</u>

Aprendizado por reforço – curiosidade – Experimento de Skinner

- ✓ Enquanto Pavlov focou no condicionamento clássico, que se baseia em associar um estímulo a uma resposta, Skinner se concentrou no condicionamento operante
 - ✓ Se refere ao processo pelo qual as consequências de uma ação influenciam a probabilidade dessa ação ser repetida
 - ✓ A ação do organismo é vista de maneira ativa sobre o ambiente e é recompensado ou punido com base nas suas ações
- ✓ Skinner acreditava que o comportamento humano e animal é controlado por suas consequências e que comportamentos podem ser reforçados ou desencorajados com base nos resultados que seguem as ações.
 - ✓ Reforços e punições são usados para aumentar ou diminuir a probabilidade de um comportamento ocorrer novamente

Tipos de Aprendizado

■ Aprendizado por reforço – curiosidade – Experimento de Skinner

- ✓ A caixa de Skinner consistia em uma câmara fechada onde um animal podia realizar uma ação (por exemplo, pressionar uma alavanca) para obter uma recompensa (geralmente comida)
- ✓ A caixa permitia que ele manipulasse variáveis como o tipo de reforço (positivo ou negativo), o intervalo de tempo entre a ação e a recompensa, e a frequência de reforços. Skinner identificou três tipos de consequências para o comportamento
- ✓ Skinner acreditava que o comportamento humano e animal é controlado por suas consequências e que comportamentos podem ser reforçados ou desencorajados com base nos resultados que seguem as ações.
 - ✓ Reforços e punições são usados para aumentar ou diminuir a probabilidade de um comportamento ocorrer novamente

<u>Tipos de Aprendizado</u>

Aprendizado por reforço – curiosidade – Experimento de Skinner

✓ A caixa permitia que ele manipulasse variáveis como o tipo de reforço (positivo ou negativo), o intervalo de tempo entre a ação e a recompensa, e a frequência de reforços. Skinner identificou três tipos de consequências para o comportamento

Caixa de Skinner

<u>Tipos de Aprendizado</u>

Aprendizado por reforço – curiosidade – Experimento de Skinner

- ✓ **Reflexos positivos**: Quando um comportamento é seguido por uma recompensa (reforço positivo), a probabilidade de o comportamento ser repetido aumenta.
- ✓ **Punições**: Quando um comportamento é seguido por uma consequência desagradável, a probabilidade de esse comportamento ocorrer novamente diminui.
- ✓ **Reflexos negativos**: Quando um comportamento é seguido pela remoção de um estímulo aversivo (reforço negativo), também aumenta a probabilidade de o comportamento ser repetido.

Aprendizado Supervisionado

Classificação

- Mapeia amostras em um conjunto de dados amostral para uma categoria específica usando um modelo de classificação.
- Responde a perguntas como:
 - ✓ Haverá um engarrafamento na estrada XX durante o horário de pico da manhã amanhã?
 - ✓ Qual método é mais atraente para os clientes: um voucher de 5 yuan ou 25% de desconto?

Conceitos básicos - pipeline geral

Data collection

Data cleansing

Feature extraction and selection

Model training Model evaluation

Model deployment and integration

Conceitos básicos – pipeline de construção do modelo

Conceitos básicos - dataset

Conjunto de dados (Dataset)

- ✓ Uma coleção de dados usada em tarefas de aprendizado de máquina.
- ✓ Cada registro de dados é chamado de amostra.
- ✓ Os eventos ou atributos que refletem o desempenho ou a natureza de uma amostra em um determinado aspecto são chamados de características (features).
- ✓ Labels refletem a resposta esperada para cada amostra.

		Feature 1	Feature 2	Feature 3	Label
	No.	Area	School Districts	Direction	House Price
Training set	1	100	8	South	1000
	2	120	9	Southwest	1300
	3	60	6	North	700
	4	80	9	Southeast	1100
Test set	5	95	3	South	850

Conceitos básicos – divisão de dados

Hold-out

- ✓ É o método mais simples de validação. Consiste em separar os dados em duas (ou três) partes: Treino, Teste e possível terceira subdivisão (Validação) [opcional]
- ✓ Como é feito? Escolhe-se uma proporção de partição (ex: 80-20 ou 60-20-20)
- ✓ Vantagens
 - ✓ Simplicidade: fácil de implementar; basta dividir os dados uma única vez.
 - ✓ Rapidez: ideal quando o conjunto de dados é grande e o treinamento precisa ser mais ágil.

✓ Desvantagens

- ✓ Dependência da partição: se os dados forem divididos de forma desfavorável (por exemplo, desbalanceados em alguma parte), a avaliação pode não refletir bem o desempenho real.
- ✓ Menor aproveitamento dos dados para treino: se você separa 30% ou mais para teste, está "perdendo" dados que poderiam ajudar no treinamento.

Divisão de dados – hold-out

		Feature 1	Feature 2	Feature 3	Label
	No.	Area	School Districts	Direction	House Price
	1	100	8	South	1000
Training set	2	120	9	Southwest	1300
	3	60	6	North	700
	4	80	9	Southeast	1100
Test set	5	95	3	South	850

Divisão de dados – hold-out

Conjunto de treinamento (Training set)

- ✓ Um conjunto de dados usado no processo de treinamento, onde cada amostra é chamada de amostra de treinamento.
- ✓ O processo de criação de um modelo a partir dos dados é chamado de aprendizado (treinamento).
- ✓ Geralmente é subdividido em 2 grupos: treino e validação, onde o primeiro é usado para ajustar o modelo e o segundo para simular **desempenho em dados novos**.

		reature r	reature 2	reature 5	Labei
	No.	Area	School Districts	Direction	House Price
Training set	1	100	8	South	1000
	2	120	9	Southwest	1300
	3	60	6	North	700
	4	80	9	Southeast	1100
Test set	5	95	3	South	850

Ou tomar decisões sobre ajustes de parâmetros

Divisão de dados – hold-out

Conjunto de teste (Test set)

- ✓ O teste refere-se ao processo de usar o modelo obtido após o treinamento para fazer previsões.
- ✓ O conjunto de dados usado para esse propósito é chamado de conjunto de teste, e cada amostra é chamada de amostra de teste.
- ✓ O teste nunca é utilizado para ajuste de modelos ou parâmetros. É usado para simular a aplicação do modelo em dados que você ainda não tem.

		Feature 1	Feature 2	Feature 3	Label
	No.	Area	School Districts	Direction	House Price
Training set	1	100	8	South	1000
	2	120	9	Southwest	1300
	3	60	6	North	700
	4	80	9	Southeast	1100
Test set	5	95	3	South	850

Divisão de dados – Cross-Validation

Conceitos

✓ Faz várias partições e garantindo que, em alguma iteração, cada dado seja usado tanto para treino quanto para teste.

Divisão de dados – Cross-Validation

Conceitos

- √ Vantagens da Cross-Validation
 - ✓ Melhor uso dos dados: cada observação figura no conjunto de teste exatamente uma vez e no conjunto de treino k-1 vezes.
 - ✓ Estimativa mais estável do desempenho: reduz a dependência de uma única divisão train/test.
 - ✓ Robustez estatística: ao relatar a média e o desvio padrão do desempenho, temos uma ideia mais confiável da variância do estimador.

✓ Desvantagens da Cross-Validation

- ✓ Maior custo computacional: é necessário treinar o modelo k vezes, o que pode ser pesado se o modelo for complexo ou se o dataset for muito grande.
- ✓ Complexidade de implementação: um pouco mais difícil do que um simples hold-out.

Divisão de dados – Cross-Validation

Como funciona (K-Fold Cross-Validation)

- ✓ Defina um valor k (por exemplo, k=5 ou k=10).
- ✓ Divida o dataset em k partes (folds) de tamanhos aproximadamente iguais.
- ✓ Para cada uma das k iterações:
 - ✓ Reserve 1 fold como conjunto de teste. Use as k-1 partes restantes como conjunto de treinamento.
 - ✓ Treine e avalie o modelo.
 - ✓ Calcule uma medida de desempenho (por exemplo, acurácia ou MSE) para cada iteração.
- ✓ A métrica final será a média (e desvio padrão, opcionalmente) dos desempenhos obtidos nas k iterações.

Divisão de dados – Cross-Validation

Exemplo

- ✓ Dividimos o dataset em 5 pastas (folds): F1, F2, F3, F4, F5.
- ✓ Iteração 1: Treino = (F2, F3, F4, F5) | Teste = (F1)
- ✓ Iteração 2: Treino = (F1, F3, F4, F5) | Teste = (F2)
- ✓ Iteração 3: Treino = (F1, F2, F4, F5) | Teste = (F3)
- ✓ Iteração 4: Treino = (F1, F2, F3, F5) | Teste = (F4)
- ✓ Iteração 5: Treino = (F1, F2, F3, F4) | Teste = (F5)
- ✓ Métrica final: média dos valores de cada iteração.

Conceitos básicos - O que é um bom modelo?

Capacidade de Generalização

✓ Pode prever com precisão os dados reais do serviço?

Interpretabilidade

✓ O resultado da previsão é fácil de interpretar?

Velocidade de Previsão

✓ Quanto tempo leva para prever cada dado?

Praticidade

✓ A taxa de previsão ainda é aceitável quando o volume de serviço aumenta significativamente?

Conceitos básicos – Validade do Modelo

- Erro: Diferença entre o resultado previsto pelo modelo após o aprendizado e o resultado real da amostra
 - ✓ Erro de treinamento: erro obtido ao executar o modelo nos dados de treinamento.
 - ✓ Erro de generalização: erro obtido ao executar o modelo em novas amostras. Obviamente, preferimos um modelo com um erro de generalização menor.
- Underfitting (Subajuste)
 - ✓ Ocorre quando o modelo não se ajusta bem o suficiente aos dados de treinamento.
- Overfitting (Sobreajuste)
 - ✓ Ocorre quando o erro de treinamento do modelo, após o aprendizado, é pequeno, mas o erro de generalização é grande (indicando baixa capacidade de generalização)

Conceitos básicos – Validade do Modelo

- Capacidade do modelo: capacidade do modelo de ajustar funções, também chamada de complexidade do modelo.
 - ✓ Modelos com capacidade insuficiente não conseguem resolver tarefas complexas, podendo ocorrer subajuste (underfitting).
 - ✓ Um modelo de alta capacidade pode resolver tarefas complexas, mas o sobreajuste (overfitting) pode ocorrer se a capacidade for maior do que a necessária para a tarefa.

Conceitos básicos – Validade do Modelo

- Geralmente, o erro de previsão pode ser dividido em dois tipos: Erro de Variância e Erro de Viés
 - ✓ Baixo viés & baixa variância → Bom modelo
 - ✓ Baixo viés & alta variância
 - ✓ Alto viés & baixa variância
 - ✓ Alto viés & alta variância → Modelo ruim
 - ✓ Idealmente, queremos um modelo que possa capturar com precisão as regras nos dados de treinamento e resumir os dados invisíveis (novos dados). No entanto, geralmente é impossível para o modelo realizar ambas as tarefas ao mesmo tempo

Conceitos básicos – Validade do Modelo

Complexidade do Modelo e Erro

- ✓ À medida que a complexidade do modelo aumenta, o erro de treinamento diminui.
- ✓ À medida que a complexidade do modelo aumenta, o erro de teste diminui até certo ponto e depois começa a aumentar novamente, formando uma curva convexa.

<u>Avaliação do modelo – Regressão</u>

■ MAE (Mean Absolute Percentage Error)

- ✓ É a média dos valores absolutos das diferenças entre o valor real e o valor predito.
- ✓ Quanto mais próximo de 0, melhor o modelo se ajusta aos dados de treinamento.
- ✓ Indica, em média, o tamanho do erro (sem sinal) entre predição e valor real.
 - ✓ É fácil de interpretar, pois está na mesma escala da variável-alvo (por exemplo, se você estiver prevendo preços em Reais, a MAE estará em Reais).
 - ✓ **Exemplo:** Se você tem um modelo que prediz o preço de imóveis em uma cidade e descobre que o MAE é de R\$ 5.000, isso significa que, em média, o modelo erra cerca de R\$ 5.000 em cada previsão de preço.
 - ✓ Mais robusto a outliers em comparação ao MSE, pois não eleva ao quadrado as diferenças.

$$MAE = \frac{1}{m} \sum_{i=1}^{m} |y_i - \hat{y}_i|$$

Avaliação do modelo - Classificação

Erro Médio Quadrático (MSE)

- ✓ É a média dos quadrados das diferenças entre o valor real e o valor predito.
- ✓ O MSE penaliza mais fortemente erros grandes (outliers) em comparação ao MAE.
 - ✓ Muito utilizado como função de custo em regressão linear e outros modelos de Machine Learning (por exemplo, Redes Neurais)
 - ✓ Se existirem valores atípicos extremamente altos ou baixos, o MSE aumentará consideravelmente, chamando atenção para esses grandes erros
- ✓ Se o MSE é de 2,5×10^8, significa que em média (ao quadrado) o erro é de 15.811 (raiz de 2,5×10^8). Essa interpretação não está diretamente na escala do preço (por isso muitas vezes preferimos também analisar o RMSE, como veremos adiante).

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

Avaliação do modelo - Classificação

■ RMSE (Root Mean Squared Error)

- ✓ É simplesmente a raiz quadrada do MSE
- ✓ Interpretação na mesma unidade dos valores de saída, porém preservando a ideia de penalizar mais erros grandes.
 - ✓ É frequentemente utilizado para ter uma noção de erro na mesma escala do problema.
 - ✓ Útil em tarefas onde erros maiores devam pesar mais, mas ainda se deseje uma métrica "na unidade" do que se está prevendo.
- ✓ Exemplo: Na previsão de temperatura (em graus Celsius), o RMSE de 2°C indica, aproximadamente, que no "quadrado médio" das previsões, o desvio gira em torno de 2 graus em relação ao valor real.

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{m}\sum_{i=1}^{m}(y_i - \hat{y}_i)^2}$$

Avaliação do modelo - Classificação

■ MAPE (Mean Absolute Percentage Error)

- ✓ Calcula a média dos erros em termos percentuais, ou seja, leva em conta o quão grande é o erro em relação ao valor real.
 - ✓ Indica, em média, qual a porcentagem de desvio em relação ao valor real
 - ✓ Cuidado: se *yi* for muito próximo de zero, o MAPE pode explodir ou ficar impreciso.
- ✓ **Quando usar**: cenários em que o tamanho relativo do erro interessa mais do que o erro absoluto (em vendas é importante saber se erramos 10% ou 50% das vendas)
 - ✓ Na previsão de vendas de uma loja, podemos dizer que o modelo erra em média 8% das vendas diárias. Independentemente de a loja vender 100 ou 1000 itens por dia, essa taxa de erro percentual mantém a comparação coerente.

$$MAPE = \frac{1}{m} \sum_{i=1}^{m} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

Avaliação do modelo - Classificação

Conclusão e Escolha da Métrica

- ✓ Não existe "melhor" métrica absoluta: a escolha depende do contexto.
- ✓ Se você quer simplicidade e não deseja penalizar erros grandes excessivamente, MAE ou MAPE (se preferir porcentagens) podem ser mais apropriados.
- ✓ Se você quer focar na minimização de grandes erros ou usar métodos tradicionais de otimização de regressão, opte por MSE ou RMSE.
- ✓ Se comparações relativas são importantes (por exemplo, comparar erros em diferentes escalas ou em diferentes produtos/projetos), MAPE pode ser o mais intuitivo.

Avaliação do modelo - Classificação

Predito			Total
Real	SIM	NAO	TOtal
SIM	TP	FN	
NAO	FP	TN	
Total	P	N	P+N

Termos e definições

- ✓ P: Positivo, indicando o número de casos realmente positivos nos dados.
- ✓ N: Negativo, indicando o número de casos realmente negativos nos dados.
- ✓ TP (True Positive ou Verdadeiro Positivo): número de casos positivos que são classificados corretamente pelo classificador.
- ✓ TN (True Negative ou Verdadeiro Negativo): número de casos negativos que são classificados corretamente pelo classificador.
- ✓ FP (False Positive ou Falso Positivo): número de casos positivos classificados incorretamente (ou seja, deveriam ser "não", mas classificou-se como "sim").
- ✓ FN (False Negative ou Falso Negativo): número de casos negativos que são classificados incorretamente (ou seja, deveriam ser "sim", mas classificou-se como "não").

Avaliação do modelo - Classificação

Matriz de confusão

✓ Uma tabela de dimensão 2×2 . O valor cij das primeiras 2 linhas e 2 colunas indica quantos casos que de fato pertencem à classe i foram classificados como classe j pelo classificador.

✓ Idealmente, para um classificador com alta exatidão, a maior parte das predições deve estar concentrada na diagonal que vai de c1,1 a c2,2. Ou seja, desejamos que

FP e FN sejam próximos de 0.

Predito			
Real	SIM	NAO	Total
SIM	TP	FN	
NAO	FP	TN	
Total	Р	N	P+N

Avaliação do modelo - Classificação

Predito Real	SIM	NAO	Total
SIM	TP	FN	
NAO	FP	TN	
Total	P	N	P+N

Medida	Fórmula
Acurácia ou Taxa de Reconhecimento	$\frac{TP + TN}{P + N}$
Taxa de Erro ou Taxa de Misclassificação	$\frac{FP + FN}{P + N}$
Sensibilidade, Taxa de Verdadeiros Positivos ou Recall	$\frac{TP}{P}$
Especificidade ou Taxa de Verdadeiros Negativos	$\frac{TN}{N}$
Precisão	$\frac{TP}{TP+FP}$
F1, média harmônica de Recall e Precisão	2 x
Fβ , onde β é um número real não negativo	$(1+\beta^2) x \frac{Precisão x Recall}{\beta^2 x Precisão + Recall}$

Avaliação do modelo - Classificação

Exemplo

✓ Treinamos um modelo de machine learning para identificar se o objeto em uma imagem é um gato. Utilizamos 200 imagens para verificar o desempenho do modelo. Das 200 imagens, em 170 há gatos (positivo real) e em 30 não há gatos (negativo real). O modelo classificou 160 imagens como contendo gatos (classe "sim"), errando em 20 delas e 40 como não contendo gatos (classe "não"), mas somente 10 não continham gatos.

✓ A matriz de confusão resultante (linhas = classe real; colunas = classe prevista)

ficou.

	Predito: Gato	Predito: Não Gato	Total
Real: Gato	TP = 140	FN = 30	170
Real: Não Gato	FP = 20	TN = 10	30
Total	160	40	200

Avaliação do modelo - Classificação

Exemplo

✓ A matriz de confusão resultante (linhas = classe real; colunas = classe prevista) ficou.

✓ A partir disso, temos:

/	Precisão:	TP	_ 140	= 87,5%
•	i iecisao.	$\overline{TP+FP}$	$-{140+20}$	- 67,570

✓ Recall:
$$\frac{TP}{P} = \frac{140}{170} = 82,4\%$$

/	El Scoro: 2 x	0.875×0.824 _	Q/1 Q0/2
•	F1-Score: 2 <i>x</i>	0.875+0.824	04,9%

✓ Acurácia:
$$\frac{TP+TN}{P+N} = \frac{140+10}{170+30} = 75\%$$

✓ Taxa de Erro:
$$\frac{FP+FN}{P+N} = \frac{20+30}{200} = 25\%$$

	Predito: Gato	Predito: Não Gato	Total
Real: Gato	TP = 140	FN = 30	170
Real: Não Gato	FP = 20	TN = 10	30
Total	160	40	200

Dúvidas?

Até a próxima...

Apresentador

Thales Levi Azevedo Valente

E-mail:

thales.l.a.valente@gmail.com