1. (a) Sea $\mathbf{X} = (X_1, \dots, X_n)$ una muestra aleatoria con distribución P_{θ} . Supongamos una distribución a priori T para θ , donde $T \sim \tau$. Sea $\delta_{\Lambda}(\mathbf{X})$ el estimador Bayes para θ . Supongamos que $\delta_{\Lambda}(\mathbf{X})$ es un estimador insesgado para θ . Probar que

$$E((\delta_{\Lambda}(\mathbf{X}) - T)^2) = 0$$

.

- (b) Mostrar que \bar{X} no es un estimador de Bayes de θ para ninguna distribución a priori Λ cuando $X|_{T=\theta} \sim N\left(\theta,1\right)$ y cuando se usa la pérdida cuadrática.
- 2. Consideremos una m.a. X_1, \ldots, X_n tal que $X_i|_{=\theta} \sim \mathcal{P}(\theta)$ y $\sim \Gamma(r, \lambda)$, con $r, \lambda > 0$.
 - (a) Encontrar el estimador Bayes δ_{Λ} y calcular $r(\delta_{\Lambda}, \Lambda)$ el riesgo de Bayes.
 - (b) Mostrar que δ_{Λ} puede escribirse como un promedio pesado entre \bar{X} y $\frac{r}{\lambda}$. Interpretar.
- 3. (Empirical Bayes)
 - (a) Vamos a trabajar con el dataset Batting del paquete Lahman. Solo vamos a considerar las columnas playerID, H (Hits) y AB (Intentos). Para empezar, obtener el dataset que contenga el numero total de hits y de intentos por jugador.
 - (b) Si tuviera que elegir el mejor jugador (en terminos del que hittea mas frecuentemente), ¿elegiria a los que tienen promedio 1? ¿Por que?
 - (c) Considerando unicamente a los jugadores con mas de 1000 intentos, estimar la distribución de los promedios de hitteo de los jugadores usando una distribución Beta. Llamemos Λ a esta distribucion. Sugerencia: función fitdistr del paquete MASS, o usar método de momentos.
 - (d) Supongamos que la probabilidad REAL de hitteo del jugador i es p_i . Fijar la distribucón estimada del item anterior como la priori de los valores p_i . (Notar que en esta versión de Bayes, la distribución a priori no genera un único parámetro a estimar, sino que genera muchos parámetros, uno para cada jugador). Para cada jugador i, obtener el estimador Bayes del parámetro p_i .
 - (e) Rankear a los jugadores con las probabilidades estimadas p_i (usando los estimadores Bayes del item anterior).
 - (f) Hacer un grafico comparando dos estimaciones de p_i : primero, usando la estimación frecuentista (proporción de hitteos) y segundo, usando la estimación de Empirical Bayes del item anterior.