第十章 控制单元的设计

10.1 组合逻辑设计

10.2 微程序设计

10.1 组合逻辑设计

- 一、组合逻辑控制单元框图
 - 1. CU 外特性

采用 同步控制方式

一个机器周期内有3个节拍(时钟周期)

CPU 内部结构采用非总线方式

1. 安排微操作时序的原则

10.1

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作 尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作 尽量 安排在一个节拍 内完成并允许有先后顺序

2. 取指周期 微操作的 节拍安排

10.1

$$T_0$$
 PC \longrightarrow MAR $1 \longrightarrow R$

原则二

 T_1 M (MAR) \longrightarrow MDR (PC) + 1 \longrightarrow PC

原则二

 $\frac{T_2}{\text{OP (IR)}} \rightarrow \text{IR}$

原则三

3. 间址周期 微操作的 节拍安排

 T_0 Ad (IR) \longrightarrow MAR $1 \longrightarrow R$

 T_1 M (MAR) \longrightarrow MDR

 T_2 MDR \longrightarrow Ad (IR)

4. 执行周期 微操作的 节拍安排

10.1

① CLA
$$T_0$$
 T_1
 T_2 $0 \longrightarrow AC$
② COM T_0
 T_1
 T_2 $\overline{AC} \longrightarrow AC$
③ SHR T_0
 T_1
 T_1
 T_2 $\overline{AC} \longrightarrow AC$

10.1 4 CSL T_0 T_1 $R(AC) \longrightarrow L(AC)$ $AC_0 \longrightarrow AC_n$ (5) STP T_0 T_2 0 \longrightarrow G **6** ADD X T_0 Ad (IR) \longrightarrow MAR $M(MAR) \longrightarrow MDR$ T_2 (AC) + (MDR) \longrightarrow AC $\bigcirc STA \times T_0 \quad Ad(IR) \longrightarrow MAR \quad 1 \longrightarrow W$ $AC \longrightarrow MDR$ $MDR \longrightarrow M (MAR)$

(8) LDA X T_0 Ad (IR) \rightarrow MAR $1 \rightarrow$ R 10.1

 T_1 M (MAR) \longrightarrow MDR

 T_2 MDR \longrightarrow AC

 T_1

 T_2 Ad (IR) \longrightarrow PC

1 BAN X T_0

 T_1

 T_2 $A_0 \cdot Ad (IR) + \overline{A_0} \cdot PC \longrightarrow PC$

5. 中断周期 微操作的 节拍安排

10.1

$$T_0 \longrightarrow MAR$$

1→w 硬件关中断

$$T_1$$
 PC \longrightarrow MDR

T₂ MDR → M (MAR) 向量地址 → PC

中断隐指令完成

1. 列出操作时间表

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	SAT	LDA	JMP
	T		PC → MAR						
	T_0		1 → R						
	T_1		$M(MAR) \rightarrow MDR$						
FE			$(PC)+1 \longrightarrow PC$						
取指	T		MDR→ IR						
			OP(IR)→ ID						
	T_2	ĮΙ	1→ IND						
		// ī	$1 \longrightarrow EX$						

间址特征

1. 列出操作时间表

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	SAT	LDA	JMP
	T_0		$Ad (IR) \rightarrow MAR$						
TATE			1 → R						
IND 间址	T_1		$M(MAR) \rightarrow MDR$						
門址	T_2		MDR→Ad (IR)						
		IND	1 → EX						

间址周期标志

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	SAT	LDA	JMP
			$Ad(IR) \rightarrow MAR$						
	T_0		$1 \rightarrow R$						
	v		$1 \longrightarrow W$,		
EX	T_1		$M(MAR) \longrightarrow MDR$						
执行			AC → MDR						
	T_2	T_2	(AC)+(MDR)→AC						
			$MDR \rightarrow M(MAR)$						
			$MDR \rightarrow AC$						
			$0 \longrightarrow AC$						

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	SAT	LDA	JMP
	T_0		PC → MAR	1	1	1	1	1	1
			1 → R	1	1	1	1	1	1
	T_1		$M(MAR) \rightarrow MDR$	1	1	1	1	1	1
FE			$(PC)+1 \longrightarrow PC$	1	1	1	1	1	1
取指	T_2		MDR→ IR	1	1	1	1	1	1
			OP(IR)→ID	1	1	1	1	1	1
		I	1→ IND			1	1	1	1
		Ī	1 → EX	1	1	1	1	1	1

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	SAT	LDA	JMP
	T	T	Ad (IR) → MAR			1	1	1	1
	T_0		1→ R			1	1	1	1
IND 间址	T_1		$M(MAR) \rightarrow MDR$			1	1	1	1
问证	T		MDR→Ad (IR)			1	1	1	1
	T_2	IND	1 → EX			1	1	1	1

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	COM	ADD	SAT	LDA	JMP
			Ad (IR)→MAR			1	1	1	
	T_0		1→ R			1		1	
	v		$1 \longrightarrow W$				1		
EX	T_1		$M(MAR) \rightarrow MDR$			1		1	
执行			AC→MDR				1		
	T_2		(AC)+(MDR)→AC			1			
			$MDR \rightarrow M(MAR)$				1		
			$MDR \rightarrow AC$					1	
			$0 \longrightarrow AC$	1					

采用 同步控制方式

一个机器周期内有3个节拍(时钟周期)

CPU 内部结构采用非总线方式

10.1 组合逻辑设计

- 一、组合逻辑控制单元框图
 - 1. CU 外特性

2. 写出微操作命令的最简表达式

10.1

```
M (MAR) \longrightarrow MDR
= FE \cdot T_1 + IND \cdot T_1 (ADD + STA + LDA + JMP + BAN) + EX \cdot T_1 (ADD + LDA)
= T_1 \{ FE + IND (ADD + STA + LDA + JMP + BAN) + EX (ADD + LDA) \}
```

3. 画出逻辑图

10.1

特点

- >思路清晰 简单明了
- >庞杂 调试困难 修改困难
- ▶速度快 (RISC)

10.2 微程序设计

一、微程序设计思想的产生 1951 英国剑桥大学教授 Wilkes

> 完成 一条机器指令

一条机器指令对应一个微程序 存储逻辑

二、微程序控制单元框图及工作原理

10.2

1. 机器指令对应的微程序

2. 微程序控制单元的基本框图

10.2

二、微程序控制单元框图及工作原理

10.2

3. 工作原理

主存

LDA 用户程序 **ADD STA**

X Z **STP**

	24	
M		M+1
M+1		M+2
M+2		
P		P+1
P+1		P+2
P+2		M
	:	
Q		Q+1
Q+1		Q+2
Q+1 Q+2		M
	:	
K		K+1
K+1		K+2
K+2		M

地方

10.2

取指周期

对应 LDA 操

作的微程序

对应 ADD 操

作的微程序

对应 STA 操

作的微程序

微程序

3. 工作原理

10.2

(1) 取指阶段 执行取指微程序 M → CMAR

CM (CMAR) → CMDR由 CMDR 发命令形成下条微指令地址

M+1 Ad (CMDR) → CMAR
CM (CMAR) → CMDR
由 CMDR 发命令
形成下条微指令地址

形成下条微指令地址
M+2 Ad (CMDR) → CMAR
CM (CMAR) → CMDR
由 CMDR 发命令
M+2
0010

 $\overline{PC} \longrightarrow \overline{MAR}$

(2) 执行阶段 执行LDA 微程序

10.2

CM (CMAR) → CMDR 由 CMDR 发命令

形成で条微指令地址MAR
CM (CMAR) → CMDR
由 CMDR 发命令

形成下條微指令地址CMIAR
CM (CMAR) — CMDR
由 CMDR 发命令
形成下條微指令地址CMIAR

 $(M \longrightarrow CMAR)$

10.2

M → CMAR

CM (CMAR) → CMDR

由 CMDR 发命令

全部微指令存在 CM 中,程序执行过程中 只需读出

- 关键 〉微指令的操作控制字段如何形成微操作命令
 - >微指令的 后继地址如何形成

三、微指令的编码方式(控制方式)

10.2

1. 直接编码(直接控制)方式

在微指令的操作控制字段中每一位代表一个微操作命令

速度最快

某位为"1"表示该控制信号有效

2. 字段直接编码方式

10.2

将微指令的控制字段分成若干"段"

每段经译码后发出控制信号

每个字段中的命令是 互斥 的

缩短了微指令字长,增加了译码时间

3. 字段间接编码方式

10.2

4. 混合编码

直接编码和字段编码(直接和间接)混合使用

5. 其他

10.2

- 1. 微指令的 下地址字段 指出
- 2. 根据机器指令的 操作码 形成
- 3. 增量计数器

 $(CMAR) + 1 \longrightarrow CMAR$

4. 分支转移

操作控制字段 转移方式 转移地址

转移方式 指明判别条件

转移地址 指明转移成功后的去向

5. 通过测试网络

6. 由硬件产生微程序入口地址 第一条微指令地址 由专门 硬件 产生 中断周期 由 硬件 产生 中断周期微程序首地址

7. 后继微指令地址形成方式原理图

10.2

五、微指令格式

- 1. 水平型微指令
 - 一次能定义并执行多个并行操作
- 如 直接编码、字段直接编码、字段间接编码、 直接和字段混合编码
- 2. 垂直型微指令

类似机器指令操作码 的方式

由微操作码字段规定微指令的功能

3. 两种微指令格式的比较

- 10.2
- (1) 水平型微指令比垂直型微指令并行操作能力强灵活性强
- (2) 水平型微指令执行一条机器指令所要的 微指令 数目少,速度快
- (3) 水平型微指令 用较短的微程序结构换取较长的 微指令结构
- (4) 水平型微指令与机器指令 差别大

六、静态微程序设计和动态微程序设计

静态 微程序无需改变,采用 ROM

动态 通过 改变微指令 和 微程序 改变机器指令 有利于仿真,采用 EPROM

七、毫微程序设计

1. 毫微程序设计的基本概念

微程序设计 用 微程序解释机器指令

毫微程序设计 用 毫微程序解释微程序

毫微指令与微指令 的关系好比 微指令与机器指令 的关系

2、毫微程序控制存储器的基本组成

10.2

八、串行微程序控制和并行微程序控制

10.2

串行 微程序控制

取第i条微指令

执行第 / 条微指令

取第 i+1 条微指令 执行第 i+1 条微指令

并行 微程序控制

取第 / 条微指令

执行第;条微指令

取第 i+1 条微指令 执行第 i+1 条微指令

取第 i+2 条微指令 执行第 i+2 条微指令

九、微程序设计举例

- 1. 写出对应机器指令的微操作及节拍安排 假设 CPU 结构与组合逻辑相同
- (1) 取指阶段微操作分析 3条微指令

```
T_0 \quad PC \longrightarrow MAR \qquad 1 \longrightarrow R
```

 $T_1 \quad M(MAR) \longrightarrow MDR \quad (PC) + 1 \longrightarrow PC$

 T_2 MDR → IR OP (IR) → 微地址形成部件

港需考虑如何安排这条線號脂令?

则取指操作需3条微指令

OP(IR)→微地址形成部件 → CMAR

(2) 取指阶段的微操作及节拍安排

考虑到需要 形成后继微指令的地址

```
1 \longrightarrow R
      PC \longrightarrow MAR
T_0
      Ad (CMDR) --- CMAR
T_1
   M(MAR) \longrightarrow MDR (PC)+1 \longrightarrow PC
T_2
T_3
       Ad (CMDR) \longrightarrow CMAR
T_{A}
       MDR \longrightarrow IR
                                  OP (IR) → 微地址形成部件
T_5
       OP(IR) \longrightarrow CMAR
```

考虑到需形成后继微指令的地址

- 非访存指令
 - ① CLA 指令

$$T_0 \longrightarrow AC$$

 T_1 Ad (CMDR) \longrightarrow CMAR

② COM 指令

$$T_0 \longrightarrow AC$$

 T_1 Ad (CMDR) \longrightarrow CMAR

取指微程序的入口地址 M 由微指令下地址字段指出

③ SHR 指令

$$T_0$$
 L (AC) \longrightarrow R (AC) AC₀ \longrightarrow AC₀
 T_1 Ad (CMDR) \longrightarrow CMAR

④ CSL 指令

$$T_0$$
 R (AC) \longrightarrow L (AC) AC₀ \longrightarrow AC_n
 T_1 Ad (CMDR) \longrightarrow CMAR

⑤ STP 指令

$$T_0$$
 0 \longrightarrow G
$$T_1$$
 Ad (CMDR) \longrightarrow CMAR

• 访存指令

10.2

⑥ ADD 指令

```
T_0 Ad (IR) \longrightarrow MAR 1 \longrightarrow R

T_1 Ad (CMDR) \longrightarrow CMAR

T_2 M (MAR) \longrightarrow MDR

T_3 Ad (CMDR) \longrightarrow CMAR

T_4 (AC) + (MDR) \longrightarrow AC

T_5 Ad (CMDR) \longrightarrow CMAR
```

⑦ STA 指令

```
T_0 Ad (IR) \longrightarrow MAR 1 \longrightarrow W

T_1 Ad (CMDR) \longrightarrow CMAR

T_2 AC \longrightarrow MDR

T_3 Ad (CMDR) \longrightarrow CMAR

T_4 MDR \longrightarrow M(MAR)

T_5 Ad (CMDR) \longrightarrow CMAR
```

8 LDA 指令

```
T_0 Ad (IR) \longrightarrow MAR 1 \longrightarrow R
```

 T_1 Ad (CMDR) \longrightarrow CMAR

 T_2 M (MAR) \longrightarrow MDR

 T_3 Ad (CMDR) \longrightarrow CMAR

 T_4 MDR \longrightarrow AC

 T_5 Ad (CMDR) \longrightarrow CMAR

• 转移类指令

⑨ JMP 指令

$$T_0$$
 Ad (IR) \longrightarrow PC
$$T_1$$
 Ad (CMDR) \longrightarrow CMAR

⑩ BAN 指令

$$T_0$$
 $A_0 \cdot Ad (IR) + \overline{A_0} \cdot (PC) \longrightarrow PC$

$$T_1 \quad Ad (CMDR) \longrightarrow CMAR$$

全部微操作 20个 微指令 38条

- (1) 微指令的编码方式 采用直接控制
- (2) 后继微指令的地址形成方式 由机器指令的操作码通过微地址形成部件形成 由微指令的下地址字段直接给出
- (3) 微指令字长
 由 20 个微操作
 确定 操作控制字段 最少 20 位
 由 38 条微指令
 确定微指令的下地址字段 为 6 位
 微指令字长 可取 20 + 6 = 26 位

38条微指令中有19条

是关于后继微指令地址 — CMAR

其中
$$\left\{ 1 \right\}$$
 OP(IR) \longrightarrow CMAR $\left\{ 18 \right\}$ Ad(CMDR) \longrightarrow CMAR

若用 Ad (CMDR) 直接送控存地址线

则 省去了打入 CMAR 的时间,省去了 CMAR

同理 OP(IR) → 微地址形成部件 → 控存地址线

可省去19条微指令,2个微操作

$$38 - 19 = 19$$
 $20 - 2 = 18$

下地址字段最少取 5 位 操作控制字段最少取 18 位

(5) 省去了 CMAR 的控制存储器

10.2

考虑留有一定的余量

取操作控制字段 下地址字段

18位 →24位

5位 → 6位 ∫

· 共30位

(6) 定义微指令操作控制字段每一位的微操作

0 1 2 ... 23 24 ... 29

3. 编写微指令码点

微程序 名称	微指令 地址	微指令 (二进制代码)														
	(八进制)	操作控制字段										下地址字段				
取指		0	1	2	3	4	•••	10	•••	23	24	25	26	27	28	29
	00	1	1								0	0	0	0	0	1
	01			1	1						0	0	0	0	1	0
	02					1					×	×	×	×	×	×
CLA	03										0	0	0	0	0	0
COM	04										0	0	0	0	0	0
ADD	10		1					1			0	0	1	0	0	1
	11			1							0	0	1	0	1	0
	12										0	0	0	0	0	0
LDA	16		1					1			0	0	1	1	1	1
	17			1							0	1	0	0	0	0
	20										0	0	0	0	0	0