Diszkrét matematika I.

Diszkrét matematika I.

4. előadás

Nagy Gábor nagygabr@gmail.com nagygabor@inf.elte.hu Mérai László diái alapján

Komputeralgebra Tanszék

2021. tavasz

Relációk Diszkrét matematika I. 2021. tavasz

Kompozíció

Definíció

Legyenek R és S binér relációk. Ekkor az $R \circ S$ kompozíció (összetétel, szorzat) reláció:

$$R \circ S = \{(x,y) \mid \exists z : (x,z) \in S \land (z,y) \in R\}.$$

Kompozíció esetén a relációkat "jobbról-balra írjuk":

Példa

Legyen
$$R_{sin} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : \sin x = y\},\$$

 $S_{log} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : \log x = y\}.$

Ekkor

$$R_{\sin} \circ S_{\log} = \{(x, y) | \exists z : \log x = z, \sin z = y\}$$

= \{(x, y) \in \mathbb{R} \times \mathbb{R} : \sin \log x = y\}.

Relációk Diszkrét matematika I. 2021. tavasz

Kompozíció

$$R \circ S = \{(x,y) | \exists z : (x,z) \in S \land (z,y) \in R\}$$

Példa

Legyen S, R két reláció, és tekintsük a $T = R \circ S$ kompozíciót:

Relációk Diszkrét matematika I. 2021. tavasz

Példa

Adott cég esetén legyenek A,B, ..., J az alkalmazottak. A cég két projekten dolgozik: BANK, JÁTÉK.

beosztás	alkalmazott
menedzser	A, B
programozó	C, D, E
tesztelő	F, G, H
HR	I
tech. dolgozó	J

projekt	alkalmazott	határidő
BANK	A, C, D, F	2014.12.31.
JÁTÉK	B, D, E, F, G, H	2015.01.31.

Legyen B a beosztás reláció: például A B menedzser.

P a projekt reláció: például A P BANK

H a határidő reláció: például BANK H 2014.12.31.

- Kik dolgoznak a BANK projekten? $P^{-1}(BANK)$.
- Kik a tesztelők? B^{-1} (tesztelő).
- Mi a BANK projekt határideje? H(BANK).
- Milyen határidejei vannak az alkalmazottaknak? *H* ∘ *P*.
- Milyen határidejei vannak a tesztelőknek? $H \circ P \circ B^{-1}$ (tesztelő).

Kompozíció

$$R \circ S = \{(x, y) | \exists z : (x, z) \in S \land (z, y) \in R\}; \quad R^{-1} = \{(y, x) | (x, y) \in R\}$$

2021. tavasz

Állítás

Legyen R, S, T binér reláció. Ekkor

- 1. $R \circ (S \circ T) = (R \circ S) \circ T$ (a kompozíció asszociatív).
- 2. $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$.

Bizonyítás

- 1. $R \circ (S \circ T) = \{(w, z) | \exists y : (w, y) \in S \circ T \land (y, z) \in R\} =$ = $\{(w, z) | \exists y : (\exists x : (w, x) \in T \land (x, y) \in S) \land (y, z) \in R\} =$ = $\{(w, z) | \exists y \exists x : ((w, x) \in T \land (x, y) \in S) \land (y, z) \in R\} =$ = $\{(w, z) | \exists x : (w, x) \in T \land (\exists y : (x, y) \in S \land (y, z) \in R)\} =$ = $\{(w, z) | \exists x : (w, x) \in T \land (x, z) \in R \circ S\} = (R \circ S) \circ T.$
- 2. $(R \circ S)^{-1} = \{(y, x) | \exists z : (x, z) \in S \land (z, y) \in R\} = \{(y, x) | \exists z : (z, x) \in S^{-1} \land (y, z) \in R^{-1}\} = S^{-1} \circ R^{-1}.$

Függvények

Definíció

Egy $f \subseteq X \times Y$ relációt függvénynek (leképezésnek, transzformációnak, hozzárendelésnek, operátornak) nevezünk, ha $\forall x, y, y' : (x, y) \in f \land (x, y') \in f \Rightarrow y = y'$. Az $(x, y) \in f$ jelölés helyett ilyenkor az f(x) = y (vagy $f : x \mapsto y$, $f_x = y$) jelölést használjuk. Az y az f függvény x helyen (argumentumban) felvett értéke.

Példa

- $f = \{(x, x^2) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}$ reláció függvény: $f(x) = x^2$.
- Az $f^{-1} = \{(x^2, x) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}$ inverz reláció nem függvény: $(4, 2), (4, -2) \in f^{-1}$.

Függvények

Definíció

Az $f\subseteq X\times Y$ függvények halmazát $X\to Y$ jelöli, így használható az $f\in X\to Y$ jelölés. Ha $\mathrm{dmn}(f)=X$, akkor az $f:X\to Y$ jelölést használjuk.

Megjegyzés

Ha $f: X \to Y$, akkor dmn(f) = X és $rng(f) \subseteq Y$.

Példa

Legyen $f(x) = \sqrt{x}$. Ekkor

- $f \in \mathbb{R} \to \mathbb{R}$, de nem $f : \mathbb{R} \to \mathbb{R}$.
- $f: \mathbb{R}_0^+ \to \mathbb{R}$.
- $f: \mathbb{R}_0^+ \to \mathbb{C}$.

Függvények

Definíció

Az $f: X \to Y$ függvény

- injektív, ha $\forall x, x', y : (f(x) = y \land f(x') = y) \Rightarrow x = x';$
- szürjektív, ha rng(f) = Y;
- bijektív, ha injektív és szürjektív.

Megjegyzés Az injektivitás máshogy is jellemezhető:

$$\forall x, x' : x \neq x' \Rightarrow f(x) \neq f(x')$$

Megjegyzés Egy f függvény pontosan akkor injektív, ha f^{-1} reláció függvény.

Megjegyzés Az, hogy egy $f: X \to Y$ függvény szürjektív-e, függ Y-tól. Ha $Y \subsetneq Y'$, akkor $f \subseteq X \times Y \subseteq X \times Y'$, így az $f: X \to Y'$ függvény biztos nem szürjektív.

Függvények

Példa

- Az $f : \mathbb{R} \to \mathbb{R}$, $f : x \mapsto x^2$ függvény nem injektív, és nem szürjektív: f(-1) = f(1), $rrg(f) = \mathbb{R}_0^+$.
- Az $f: \mathbb{R} \to \mathbb{R}_0^+$, $f: x \mapsto x^2$ függvény nem injektív, de szürjektív.
- Az $f: \mathbb{R}^+_0 \to \mathbb{R}$, $f: x \mapsto x^2$ függvény injektív de nem szürjektív.
- Az $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$, $f: x \mapsto x^2$ függvény injektív és szürjektív, tehát bijektív.

10.

Függvények kompozíciója

Emlékeztető

Relációk kompozíciója: $R \circ S = \{(a,b) \mid \exists c : (a,c) \in S \land (c,b) \in R\}$. Függvény: az f reláció függvény, ha $(a,b) \in f \land (a,c) \in f \Rightarrow b = c$.

Tétel

- 1. Ha f és g függvény, akkor $g \circ f$ is függvény.
- 2. Ha f és g függvény, akkor $(g \circ f)(x) = g(f(x))$.
- 3. Ha f és g injektív, akkor $g \circ f$ is injektív.
- 4. Ha $f: X \to Y$, $g: Y \to Z$ szürjektívek, akkor $g \circ f: X \to Z$ is szürjektív.

Bizonyítás

1. Legyen $(x, y) \in g \circ f$, $(x, y') \in g \circ f$: $\exists z : (x, z) \in f$, $(z, y) \in g$, $\exists z' : (x, z') \in f$, $(z', y') \in g$. Mivel f függény z = z', mivel g függvény y = y'.

11.

Függvények kompozíciója

Bizonyítás

- 2. Legyen $(g \circ f)(x) = y \ (\Leftrightarrow (x,y) \in g \circ f)$, tehát létezik z: $(x,z) \in f \land (z,y) \in g$. Mivel f és g függvények, ezért f(x) = z és g(z) = y, így
- g(f(x)) = y. 3. Legyen $(g \circ f)(x) = (g \circ f)(x')$, vagyis g(f(x)) = g(f(x')). Mivel g(f(x)) = g(f(x'))
- injektív, ezért f(x) = f(x'). Mivel f injektív, ezért x = x'.
- 4. HF.

12.

Monoton függvények

Definíció

Legyenek $(X; \leq_1)$, $(Y; \leq_2)$ részbenrendezett halmazok. Az $f: X \to Y$ függvény

- 1. monoton növekedő, ha $\forall x, y \in X$, $x \leq_1 y \Rightarrow f(x) \leq_2 f(y)$;
- 2. szigorúan monoton növekedő,ha $\forall x,y \in X$, $x \prec_1 y \Rightarrow f(x) \prec_2 f(y)$;
- 3. monoton csökkenő, ha $\forall x, y \in X$, $x \leq_1 y \Rightarrow f(y) \leq_2 f(x)$;
- 4. szigorúan monoton csökkenő, ha $\forall x, y \in X$, $x \prec_1 y \Rightarrow f(y) \prec_2 f(x)$.

Példa

- Legyen $X = \mathbb{R}$ a szokásos rendezéssel. Ekkor az f(x) = x; $g(x) = x^3$ szigorúan monoton növekedő függvények.
- Legyen X az $\{a,b,c\}$ hatványhalmaza a részhalmaza részbenrendezéssel.

Ekkor az
$$f(A) = A \setminus \{a\}$$
 monoton növekedő: $A \subseteq B \Rightarrow f(A) = A \setminus \{a\} \subseteq B \setminus \{a\} = f(B);$

A $g(A) = \overline{A}$ szigorúan monoton csökkenő: $A \subsetneq B \Rightarrow \overline{B} \subsetneq \overline{A}$.

13.

Monoton függvények

Megjegyzés

- Ha $(X; \preceq_1)$, $(Y; \preceq_2)$ rendezett halmazok, akkor egy szigorúan monoton növekedő (ill. csökkenő) függvény injektív is: $x \neq y \Rightarrow (x \prec_1 y \lor y \prec_1 x) \Rightarrow (f(x) \prec_2 f(y) \lor f(y) \prec_2 f(x)) \Rightarrow f(x) \neq f(y)$.
- Ha $(X; \preceq_1)$, $(Y; \preceq_2)$ rendezett halmazok, és f szigorúan monoton növekedő (ill. csökkenő) függvény, akkor f^{-1} is szigorúan monoton növekedő (ill. csökkenő) függvény: Mivel f injektív, f^{-1} is függvény. Ha $f(x) \prec_2 f(y)$, akkor nem lehet $y \preceq_1 x$, (hiszen x = y esetén f(x) = f(y), $y \prec_1 x$ esetén $f(y) \prec_2 f(x)$ következne), így $x \prec_1 y$ teljesül.

Példa

Legyen $X=\mathbb{R}$ a szokásos rendezéssel. Ekkor az $f(x)=\sqrt[3]{x}$ szigorúan monoton növekedő függvény.

Műveletek Diszkrét matematika I. 2021. tavasz

14.

Műveletek

Definíció

Egy X halmazon értelmezett binér (kétváltozós) művelet egy $*: X \times X \to X$ függvény. Gyakran *(x,y) helyett x*y-t írunk. Egy X halmazon értelmezett unér (egyváltozós) művelet egy $*: X \to X$ függvény.

Példa

- \mathbb{R} halmazon az +, · binér, $z \mapsto -z$ (ellentett) unér művelet.
- \mathbb{R} halmazon az \div (osztás) nem művelet, mert $dmn(\div) \neq \mathbb{R} \times \mathbb{R}$.
- $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ halmazon az \div binér, az $x \mapsto 1/x$ (reciprok) unér művelet.
- \bullet \mathbb{R} halmazon a 0 illetve 1 konstans kijelölése nullér művelet.