```
# Đọc ảnh xám
img_gray = cv2.imread(image_path + '/hoacuc.jpg', 0)
# Làm mờ bằng GaussianBlur
img_blur = cv2.GaussianBlur(img_gray, (9, 9), 0)
# Hiển thị ảnh gốc và ảnh làm mờ
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
ax1.imshow(img_gray, cmap='gray')
ax1.set_title("Ånh gốc (xám)")
ax2.imshow(img_blur, cmap='gray')
ax2.set_title("Ånh đã làm mờ")
plt.show()
# Vẽ histogram so sánh
plt.figure(figsize=(10, 5))
plt.hist(img_gray.ravel(), bins=256, color='blue', alpha=0.6, label='Ånh gốc')
plt.hist(img_blur.ravel(), bins=256, color='orange', alpha=0.6, label='Ånh làm mờ')
plt.title("So sánh histogram ảnh gốc và ảnh làm mờ")
plt.xlabel("Giá tri pixel")
plt.ylabel("Số lượng")
plt.legend()
plt.grid()
plt.show()
```


import cv2 import numpy as np import matplotlib.pyplot as plt # Đọc ảnh màu image = cv2.imread(image_path + '/hoacuc.jpg') image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Tách 3 kênh R, G, B r, g, b = image_rgb[:, :, 0], image_rgb[:, :, 1], image_rgb[:, :, 2] # Hiển thị ảnh gốc và từng kênh màu fig, axs = plt.subplots(1, 4, figsize=(20, 5)) axs[0].imshow(image_rgb) axs[0].set_title("Anh gốc (RGB)") axs[0].axis('off') axs[1].imshow(r, cmap='Reds') axs[1].set_title("Kênh Red") axs[1].axis('off') axs[2].imshow(g, cmap='Greens') axs[2].set_title("Kênh Green") axs[2].axis('off') axs[3].imshow(b, cmap='Blues')
axs[3].set_title("Kênh Blue") axs[3].axis('off') plt.tight_layout() plt.show()

Ve histogram cda 3 kenh
plt.figure(figsize=(10, 5))
plt.title("Histogram cac kenh mau (R, G, B)")
plt.hist(r.ravel(), bins=256, color='red', alpha=0.5, label='Red')
plt.hist(g.ravel(), bins=256, color='green', alpha=0.5, label='Green')
plt.hist(b.ravel(), bins=256, color='blue', alpha=0.5, label='Blue')
plt.xlabel("Giá tri pixel")
plt.ylabel("Số lượng")
plt.legend()
plt.grid()

plt.show()

 $\overline{\Rightarrow}$

Part 1: Mounting Google Drive and listing files import os from google.colab import drive

drive.mount('/content/drive')

Mount Google Drive

Define the image path
image_path = "/content/drive/My Drive/Colab Notebooks/ImageProcessing/images"

Print the list of files in the image directory
print(os.listdir(image_path))

Part 2: Image loading, displaying, and histogram plotting

import cv2
import matplotlib.pyplot as plt

Load an image (assuming 'salat.jpg' exists in the specified path)

The '0' argument loads the image in grayscale
img = cv2.imread(image_path + '/embe.jpg', 0)

Create a figure with a specific size (16:9 aspect ratio)

fig = plt.figure(figsize=(16, 9))

Create subplots: 2 rows, 1 column
(ax1, ax2) = fig.subplots(2, 1)

Plot the original image in the first subplot (ax1)
ax1.imshow(img, cmap='gray') # Display as grayscale
ax1.set_title("Anh goc") # Set title for the original image plot

Plot the histogram of the original image in the second subplot (ax2)
ax2.hist(img.ravel(), 256, [0, 256]) # .ravel() flattens the image array, 256 bins, range 0-256
ax2.set_title("Histogram and goc") # Set title for the histogram plot

https://colab.research.google.com/drive/1Zu2d0BznLaLAPcadhRUyoA7XUy-LKM9d#scrollTo=cJKMj1ocoj73&printMode=true

Display the plots
plt.show()

plt.legend()
plt.grid()
plt.show()

Mounted at /content/drive
['thuthao.jpg', 'hoahong.jpg', 'hoahong.jpg', 'hoahong_red.jpg', 'hoahong_green.jpg', 'hoahong_green.jpg', 'hoahong_blue.jpg', 'hoahong_jpg', 'hoahong_jpg', 'hoacuc.jpg', 'huongduong_50.jpg', 'thuthao_75.jpg', 'thuthao_25.jpg', 'thuthao_25.jpg', 'thuthao_10.jpg', 'thuthao_20.jpg', 'thuthao_30.jpg', 'thuthao_40.jpg', 'thuthao_5 (ipython-input-2-6047d88ce4e7>:33: MatplotlibDeprecationWarning: Passing the range parameter of hist() positionally is deprecated since Matplotlib 3.9; the parameter will become keyword-only in 3.11.

ax2.hist(img.ravel(), 256, [0, 256]) # .ravel() flattens the image array, 256 bins, range 0-256

import cv2 import matplotlib.pyplot as plt # Đọc ảnh xám img = cv2.imread(image_path + '/hoacuc.jpg', 0) # Làm mờ ảnh bằng GaussianBlur blurred = cv2.GaussianBlur(img, (9, 9), 0) # === Nhận xét trước === print(" Nhận xét sự thay đổi giữa ảnh gốc và ảnh làm mờ:") print("- Histogram ảnh gốc có nhiều đỉnh sắc nét, biểu thị độ tương phản và chi tiết cao.") print("- Histogram ảnh làm mờ trở nên mượt hơn, ít dao động, do ảnh đã mất chi tiết và giảm nhiễu.") print("- Gaussian Blur làm giảm biên sắc nét => histogram bớt phân tán và 'dịu' hơn.\n") # Hiển thị ảnh gốc và ảnh làm mờ fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5)) ax1.imshow(img, cmap='gray') ax1.set_title("Ånh gốc") ax1.axis('off') ax2.imshow(blurred, cmap='gray') ax2.set_title("Anh lam mood (Gaussian)") ax2.axis('off') plt.tight_layout() plt.show() # Vẽ histogram của ảnh gốc và ảnh làm mờ plt.figure(figsize=(10, 5)) plt.hist(img.ravel(), bins=256, color='blue', alpha=0.5, label='Anh gốc') plt.hist(blurred.ravel(), bins=256, color='red', alpha=0.5, label='Ånh làm mờ') plt.title("Histogram ảnh gốc vs ảnh làm mờ") plt.xlabel("Giá trị mức xám") plt.ylabel("Số lượng điểm ảnh")

Nhận xét sự thay đổi giữa ảnh gốc và ảnh làm mờ:

- Histogram ảnh gốc có nhiều đỉnh sắc nét, biểu thị độ tương phản và chi tiết cao.

- Histogram ảnh làm mờ trở nên mượt hơn, ít dao động, do ảnh đã mất chi tiết và giảm nhiễu.

- Gaussian Blur làm giảm biên sắc nét => histogram bớt phân tán và 'dịu' hơn.

