

I키포인트

- 고유값 분해와 주성분.
- 특이값 분해와 주성분.
- 고유값 분해와 특이값 분해의 관계.

FAST CAMPUS ONLINE

• 다음과 같이 분포된 2차원 데이터로 주성분에 대해서 알아본다.

• PC_1 과 PC_2 는 서로 직교함.

• PC_1 에 해당하는 변동은 σ_1 으로 나타낼 수 있다. 가장 큰 변동에 해당한다.

• PC_2 에 해당하는 변동은 σ_2 이며 $\sigma_2 < \sigma_1$ 이다.

1고유값 분해와 주성분

• X가 centering된 관측값으로 이루어진 행렬이라면, 분산공분산행렬에 비례하는 행렬 M은 다음과 같이 구할 수 있다.

$$M = X X^t$$

- 이제는 행렬 M에 고유값 분해를 적용하여 $M = Q \land Q^t$ 과 같이 표현한다.
 - \Rightarrow Q의 개개 컬럼은 서로 직교하는 주성분 (PC)이 된다.
 - \Rightarrow Λ 의 대각선 원소는 개개 주성분의 분산 σ_i^2 에 해당된다.

I 특이값 분해와 주성분

- X가 centering된 관측값으로 이루어진 행렬이라면 이것에 특이값 분해를 적용하여 $X = U\Sigma V^t$ 과 같이 표현한다.
 - \Rightarrow U의 개개 컬럼은 서로 직교하는 주성분 (PC)이 된다.
 - \Rightarrow Σ 의 대각선 원소는 개개 주성분의 표준편차 σ_i 에 해당된다.

1고유값 분해와 특이값 분해의 관계

- X가 centering된 관측값으로 이루어진 행렬이라면 이것에 특이값 분해를 적용하여 $X = U\Sigma V^t$ 과 같이 표현한다.
- 분해된 X로 분산공분산행렬을 표현한다.

$$egin{aligned} M &= X \, X^t = U \Sigma V^t (U \Sigma V^t)^t \ &= U \Sigma V^t \, V \Sigma^t U^t \ &= U \Sigma \Sigma^t U^t \end{aligned}$$
 직교성 $V^t V = I$

- $\Rightarrow \Sigma \Sigma^t$ 는 분산 σ_i^2 을 원소로 갖는 대각행렬이다. 고유값 행렬 Λ 와 같다는 것이다.
- \Rightarrow 그리고 왼쪽 특이벡터 행렬 U가 바로 고유벡터 행렬 Q의 역할을 한다.

Fast campus

FAST CAMPUS ONLINE

1고유값 분해와 특이값 분해의 관계

• 그러면 다음과 같이 정리해 본다.

고유값 분해	특이값 분해
$X X^t = Q \Lambda Q^t$	$X = U \Sigma V^t$
	$XX^t = U\Sigma\Sigma^tU^t$
$\Lambda = \Sigma \Sigma^t$	
Q = U	

감사합니다.

FAST CAMPUS ONLINE

