

University of British Columbia Electrical and Computer Engineering ELEC291/ELEC292

Project 2: Magnetic Field Controlled Robot.

Dr. Jesús Calviño-Fraga P.Eng.
Department of Electrical and Computer Engineering, UBC
Office: KAIS 3024

E-mail: jesusc@ece.ubc.ca Phone: (604)-827-5387

March 17, 2023

Project 2 Description
opyright © 2012-2023, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

1

Requirements

- · Two Microcontrollers:
 - Robot is the receiver. It keeps a preprogrammed and configurable distance from the remote (transmitter).
 - Remote is the transmitter. It generates the magnetic field and sends commands to the Robot.
- · Programmed in C.
- · Both transmitter and receiver are battery powered.
- · Discrete MOSFET drivers.
- Remote commands:
 - Turn left.
 - Turn right.
 - Move forward.
 - Move Backward.
- Shortest maximum distance of 50 cm. An acceptable range would be 20cm (min.) to 80cm (max.).

Microcontrollers

- The two microcontroller systems MUST be from different families. Some microcontrollers are provided in the project #2 kit: MSP430G2553, PIC32MX130, ATMega328P, LPC824, and STM32L051. You have from previous kits: EFM8LB12 and AT89LP51RC2.
- 2. One <u>valid</u> combination: the transmitter using the EFM8LB12 (8051 family) and the robot using the PIC32MX130 microcontroller (MIPS family).
- One <u>invalid</u> combination: the transmitter using the LPC824 (ARM Cortex M0 family) and the robot using the STM32L051 (ARM Cortex M0 family) since both microcontrollers belong to the same family.

Project 2 Description

Copyright © 2012-2023, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Transmitter

- It is a series RLC circuit you should know from ELEC202.
- The inductor (L) is provided in the robot kit. You can use any inductor you want!
- For the capacitor (C) you can use the capacitors you already have, but they may not work very well. Optionally you can buy a much better capacitor in local electronics parts stores.
- You need a <u>safe</u>, stable, and reliable transmitter for your project.

Project 2 Description

pyright © 2012-2023, Jesus Calvino-Fraga. Not to be copied, used, or

revised without explicit written permission from the copyright owner.

9

Simplified RLC Transmitter Circuit

10

Simplified RLC Transmitter Circuit

$$R = R_S + R_C + R_L$$

$$V_S$$

For maximum voltage at the inductor, the circuit must be tuned:

$$f_{S} = \frac{1}{2\pi\sqrt{LC}}$$

Other factors affect the magnitude of VL. Use phasor analysis!

Project 2 Description
-2023, Jesus Calvino-Fraga. Not to be copied, used, or t explicit written permission from the copyright owner.

11

Simplified RLC Transmitter Circuit

$$f_{S} = \frac{1}{2\pi\sqrt{LC}}$$

$$i = \frac{V_s}{R - \frac{j}{2\pi f_s C} + j2\pi f_s L} = \frac{Vs}{R}$$

At the tuned frequency this two values are equal!

$$V_L = \frac{jV_S 2\pi f_S L}{R}$$

12

Simplified RLC Transmitter Circuit test using function generator.

 $V_L = j \times 0.2A_p \times 2\pi \times 15.92kHz \times 1mH = 20V_p$

Not good enough. You'll need about 150 V_o!

Project 2 Description
ght © 2012-2023, Jesus Calvino-Fraga. Not to be copied, used, or
ead without exclicit written permission from the copyright owner.

V_L From the Circuit Above

Project 2 Description
Copyright © 2012-2023, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

15

Maximizing V₁

- Increase V_S.
 - Con: Large source voltages are difficult to handle. Potentially dangerous.
- Increase f_s.
 - Con: It wont work because f_s is also in the denominator of the magnetic field stre $_{|B|\,pprox}$
- Increase L.
 - Con: you'll need to get new inductors. The ones you have are pretty good! Is it also in the magnetic field strength equation?!
- · Decrease R.
 - Con: None! Decrease R!

- It can be an square wave!
- The Fourier Series of a square wave is given by:

$$x(t) = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sin(2\pi(2k-1)ft)}{2k-1} = \frac{4}{\pi} \left(\sin(2\pi ft) + \frac{1}{3} \sin(6\pi ft) + \frac{1}{5} \sin(10\pi ft) + \dots \right)$$
Fundamental 3rd harmonic 5th harmonic

Bonus: The amplitude of the fundamental is $4/\pi=1.273$ times the amplitude of the square wave!

Project 2 Description
Copyright © 2012-2023, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Finding the Tuned Frequency

- At the tuned frequency the output voltage as indicated in the previous slide is at it maximum: 100s of volts! (I've seen up to 800V! 200V is more common.)
- Use the oscilloscope to CAREFULLY check the signal. The maximum voltage the oscilloscope can take is 300V. Therefore <u>you must use</u> an oscilloscope probe with <u>10x attenuation</u>.
- Use the program 'freq_gen' available in connect for each of the supported microcontrollers to find the tuned frequency.

Project 2 Description

Copyright © 2012-2023, Jesus Calvino-Fraga. Not to be copied, used, revised without explicit written permission from the convigant owner.

19

- If you use a low resistance source, like the H-bridge from the previous slides, the peak voltage at both the inductor and capacitor may increase to hundreds of volts! Calculate it using phasor analysis!
 - If you touch the circuit you will get shocked! <u>DO NOT TOUCH EITHER THE INDUCTOR OR CAPACITOR</u>
 terminals when the circuit is on. Safety tip: use an smaller voltage (<100Vp) for development and test. When design/test is done increase the voltage to its maximum.
 - The capacitor must be rated for the generated voltage.
 Putting a 50V capacitor into a 300V circuit may result in a blown capacitor and/or weak magnetic field.
 - Connect instruments to the circuit that work at the rated voltage. Make sure the oscilloscope probes are set to10X attenuation.

20

The Inductor

• DigiKey part number M8275-ND

Don't drop the inductor. The ferrite core breaks!

Туре	Wirewound
Material - Core	Ferrite
Inductance	1mH
Tolerance	±20%
Current Rating	1A
DC Resistance	0.55 Ohms

Project 2 Description
Copyright © 2012-2023, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

The Capacitor

- The peak value of the voltage across the capacitor is equal to the peak value across the inductor. The capacitor MUST be rated for the operating voltage! If not:
 - The capacitor may over heat and explode.
 - The capacitor may short circuit and catch fire.
 - The capacitor may introduce too much series resistance.
- Go to RP or Lee's and buy a good capacitor!
- I have a LIMITED stock of 0.1μF @ 300V capacitors. I can give <u>ONE</u> to each team.

The Receiver

 It requires two inductors to determine which way to move in tracker mode:

Amplifier and peak detector

- The amplifier can be made using an op-amp in a non-inverting configuration with a gain of around 50 (testing required). Single power supply op-amps (LM358, LM324) seem to work fine.
- The simplest peak detector (diode + capacitor + resistor) works great for this application.
- Select RC for the peak detector so that the ripple is small but the circuit is still fast enough to detect changes in amplitude quickly.
- Measure the output of the peak detector using the ADC of the microcontroller. The distance from the transmitter is proportional to the voltage measured.

Robot Tracking Logic

- If (d1>d) move motor 1 back.
- If (d2>d) move motor 2 back.
- If (d1<d) move motor 1 forward.
- If (d2<d) move motor 2 forward.
- d is preset after reset, but it can be changed by receiving a command from the remote if you wish.

Project 2 Description
copyright © 2012-2023, Jesus Calvino-Fraga. Not to be copied, used, or rawised without excilicit written permission from the copyright owner.

25

Receiving Commands From the Modulated Magnetic Field

- Connect one of the received signals to a voltage comparator to convert it to a logic signal.
- Assume "field present" is logic one.
- Connect the output of the comparator (don't forget the pull-up resistor) to the receive pin of UART1. (More on this later)

Sending Commands From the Remote to the Robot

- Check application note from Microchip. It describes On-Off Keying for data transmission:
 - http://ww1.microchip.com/downloads/en/AppNotes/00232B.pdf
- A minimum of four commands required:
 - Move Left. When the user pushes a push button, the robot must turn left.
 - Move Right. When the user pushes a push button, the robot must turn right.
 - Move Forward. When the user pushes a push button, the robot must move forward.
 - Move Backward. When the user pushes a push button, the robot must move backward.

Project 2 Description
copyright © 2012-2023, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Since you'll need to transmit only a few data bits, it is not a problem to assume 'field present' equal 'logic one' and 'field not present' equal 'logic zero'. The baud rate has to be very low.

Project 2 Description

Copyright © 2012-2023, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

29

Robot Construction

Part #	Description
2 x Solarbotics GM4	Gear Motor 4 - Clear Servo
2 x 3D printed wheels	6.7cm wheels (pair)
Tamiya 70144	Ball Caster
4 x AA	Battery holder
Switch	DPDT. Can be used to switch two different power sources.
1 x 9V cable	9V battery clip
Folded chassis	Aluminum box with holes!

Project 2 Description

Copyright © 2012-2023, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Using MOSFETs

- MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) are voltage controlled devices.
- There are many kinds of MOSFETs. The ones often used are channel enhancement PMOS and NMOS.
- The two parameters used to design with MOSFETs (as switches) are the Threshold Voltage V_t, and the resistance between drain and source R_{DS}.

Project 2 Description

copyright © 2012-2023, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

31

MOSFET operation modes

- As with the BJTs, there are three operating modes:
 - Cutoff: V_{GS}<V_t
 - Triode: $V_{DS} < (V_{GS} V_t)$
 - Saturation: $V_{DS} \ge (V_{GS} V_t)$
- To use the MOSFET as switch, operate it in the cutoff and triode modes. If you operate it in saturation it will get reallyreally hot!

FQU8P10 and FQU13N06 MOSFETS (or Equivalent)

D(2)

FQU8P10

FQU13N06

WARNING: Extremely sensitive to electrostatic discharges. Very easy to damage!

Project 2 Description

t © 2012-2023, Jesus Calvino-Fraga. Not to be copied, used, or d without explicit written permission from the copyright owner.

33

Optocouplers

- An optocoupler is a combination of a light source and a photosensitive element
- You can use an optocoupler when you want to isolate high or very high voltages, inductive circuits, or "noisy" circuits from the microcomputer system.
- The typical optocoupler consists of an infrared LED and a NPN BJT.
- The BJT usually doesn't have a base pin! Instead it is the light from the LED what is used to saturate the transistor.

34

Designing with Optocouplers

Some optocouplers include a base pin!

- When designing with optocouplers you take into consideration the following parameters:
 - The current transfer ratio (CTR) is a parameter similar to the DC current amplification ratio of a transistor (β) and is expressed as a percentage indicating the ratio of the output current (I_C) to the input current (I_F).
 CTR(%)=(I_C/I_F) x 100
 - The Diode forward voltage (1.2 to 1.4V).
 - The maximum diode forward current (around 50mA max).
 - The BJT saturation voltage (0.1 to 0.4V).
 - The voltage isolation between the diode and the transistors (a few hundred volts to thousands of volts)

Project 2 Description

pyright © 2012-2023, Jesus Calvino-Fraga. Not to be copied, used, or

revised without explicit written permission from the copyright owner.

LTV-847/LTV-846 Optocoupler

- CTR=50%
- Diode forward voltage=1.4 max.
- Maximum diode forward current is 50mA
- The BJT saturation voltage is less than 0.12V!
- Voltage isolation 5000V_{RMS}

40

C programmed.

- Both the robot and the remote must be programmed using the C programming language.
- You may 'inline' small portions of assembly code, but the bulk of your code must be C.

Project 2 Description
Copyright © 2012-2023, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

41

Battery powered.

- Your project must be battery powered. This includes the electronics and motors of both the transmitter and receiver
- A couple 9 volt battery strap and a 4 x AA battery holder are included in the parts kit for this project.
- You can use any kind of batteries you want, provided that you acquire the batteries and the holders yourself.
- WARNING: batteries are neither included in the parts kits nor they will be provided in the lab. You must buy your own batteries.
- TIP: Brand name batteries have lower internal resistance, but they are more expensive.

42

WARNING!

HIGH VOLTAGE CIRCUIT. DO NOT TOUCH. HANDLE WITH EXTREME CARE.

Project 2 Description
Copyright © 2012-2023, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.