Math 185 Notes Complex Analysis

Professor: Christopher Ryba Scribe: Kelvin Lee

Contents

1	Com	plex Numbers	3
	1.1	Intro	3
2	Complex Differentiation		6
	2.1	Derivatives	6
	4	2.1.1 Continuity	6
	6	2.1.2 Properties of Limits	8
	2.2	Derivatives (Cont'd)	8
		2.2.1 Properties of complex-derivatives	8
3	Holomorphic Functions and Cauchy-Riemann Equations		11
	3.1	Holomorphic Functions	11
		The Cauchy-Riemann Equations	12
4	Möbius Transformation		16
	4.1	Inverse of Möbius transformation	17
5	Exponential, Trigonometric, and Logarithmic Functions		20
	5.1	Exponential Functions	20
	5.2	Trigonometric Functions	20
	5.3	Logarithmic Functions	21
6	Complex Integration		22
	6.1	Definition and Basic Properties	22
7	Complex Integration (Cont'd)		2 5
	7.1	Basic Properties	25
	,	7.1.1 Antiderivatives	26
	7.2	Cauchy's Theorem	29
		7.2.1 Cauchy Integral	

Complex Numbers

1.1 Intro

Suppose we have the a Taylor series as follows:

$$\sum_{n=0}^{\infty} a_n x^n, \quad a_n \in \mathbb{R}$$

which happens to converge absolutely for |x| < r, where r is the radius of convergence, i.e.

$$\sum_{n=0}^{\infty} |a_n| |x|^n < \infty \quad \text{when } |x| < r, \quad \text{i.e. } x \in (-r, r).$$

Example 1.1.1. The series

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

converges absolutely for |x| < 1.

Question. Now what if we replace the real variable x by the complex variable z?

Answer. If |z| < r, then

$$\sum_{n=0}^{\infty} |a_n| |z|^n < \infty.$$

so the sum converges absolutely for $z \in D(0,r)$ (disc of radius r centered at zero). This gives a wider range than the real case.

So in this situation, our real-valued series can be extended to a complex-valued series.

Example 1.1.2. Let

$$f(z) = \begin{cases} e^{-1/z^2} & z \neq 0, \\ 0 & z = 0. \end{cases}$$

When viewed as a function $\mathbb{R} \to \mathbb{R}$, f(z) is infinitely differentiable at z = 0, and all derivatives of f(z) are zero at z = 0. Hence, the Taylor series is

$$f(0) + f'(0) \cdot x + \frac{f''(0)}{2} \cdot x^2 + \dots = 0 + 0 + 0 + \dots = 0.$$

So the Taylor series converges to a function different from f(z)!

Example 1.1.3. Consider the same example as above, but with z as a complex number. Let z = it where $t \in \mathbb{R}$. Then

$$e^{-1/z^2} = e^{1/t^2}$$
.

and so

$$f(it) = \begin{cases} e^{1/t^2} & t \neq 0, \\ 0 & t = 0 \end{cases}$$

which is not continuous at z = 0 and thus not complex-differentiable at z = 0.

Example 1.1.4. Now let's set z = x + iy where $x, y \in \mathbb{R}$. Consider a suitable power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n,$$

which we may view as a function $\mathbb{R}^2 \to \mathbb{R}^2$ (instead of $\mathbb{C} \to \mathbb{C}$). Let's differentiate with respect to x:

$$\frac{\partial f(z)}{\partial x} = \frac{\partial f(z)}{\partial z} \cdot \frac{\partial z}{\partial x} = f'(z)$$
$$\frac{\partial^2 f(z)}{\partial x^2} = \frac{\partial f'(z)}{\partial x} = \frac{\partial f'(z)}{\partial z} \cdot \frac{\partial z}{\partial x} = f''(z).$$

Now with respect to y:

$$\begin{split} \frac{\partial f(z)}{\partial y} &= \frac{\partial f(z)}{\partial z} \cdot \frac{\partial z}{\partial y} = if'(z) \\ \frac{\partial^2 f(z)}{\partial y^2} &= i\frac{\partial f'(z)}{\partial y} = i\frac{\partial f'(z)}{\partial z} \cdot \frac{\partial z}{\partial y} = -f''(z). \end{split}$$

We observe that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) = 0,$$

which means (the real and imaginary parts of) f(z) satisfy the two-dimensional Laplace equation.

Thus, complex analysis is a very powerful tool for solving the 2D Laplace equation.

Example 1.1.5. Consider the integral

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \arctan(\infty) - \arctan(-\infty)$$
$$= \frac{\pi}{2} - \left(-\frac{\pi}{2}\right)$$
$$= \pi.$$

But what about

$$\int_{-\infty}^{\infty} \frac{\cos(ax)}{1+x^2} dx, \quad a \in \mathbb{R}$$

It turns out that this would be quite tricky to compute this with real-valued techniques. But it would be easier using complex techniques (contour integration). Thus, complex analysis is also a powerful too for computing integrals.

Complex Differentiation

2.1 Derivatives

Definition 2.1.1 (Derivative). The *derivative* of a complex-valued function is

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

just as in the real-valued case.

Recall that for real valued $f: \mathbb{R} \to \mathbb{R}$,

$$\lim_{x \to a} f(x) = L$$

means for every $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$

whenever $0 < |x - a| < \delta$. (For any "tolerance" ϵ , we can guarantee f(x) is within ϵ of L by forcing x to be close enough to a.)

Remark. Note that x = a doesn't satisfy 0 < |x - a|, so the value of f at x = a has no bearing on whether $\lim_{x\to a} f(x)$ exists.

2.1.1 Continuity

Definition 2.1.2 (Continuous). If $\lim_{x\to a} f(x) = f(a)$, then we say f is continuous at a.

Remark. Setting L = f(a) in the limit, $0 < |x - a| < \delta$ implies $|f(x) - f(a)| < \epsilon$ (even when x = a) when talking about continuity, we leave out the 0 < |x - a| part for convenience because x - a = 0 automatically works.

Now let's consider a function $f: \mathbb{C} \to \mathbb{C}$, $\lim_{z\to a} f(z) = L$ means for every $\epsilon > 0$, there is $\delta > 0$ such that

$$0 < |z - a| < \delta \implies |f(z) - L| < \epsilon$$
.

Remark. Now the z's that we worry about form an open disc with radius δ instead of an interval from the real case.

Similarly, if $\lim_{z\to a} f(z) = f(a)$, we say f is continuous at z=a.

Example 2.1.3. f(z) = z is continuous at any point $a \in \mathbb{C}$.

Proof. For $\epsilon > 0$, let $\delta = \epsilon$, then

$$|z - a| < \delta = \epsilon \implies |f(z) - f(a)| < \epsilon.$$

Example 2.1.4. $\lim_{z\to 0} \overline{z}/z$ (although this is undefined at z=0, this has no bearing on whether the limit exists).

Proof. Suppose $\lim_{z\to 0} \overline{z}/z = L$ for some L. Let's take $\epsilon = 1$. There is a $\delta > 0$ such that

$$0 < |z - 0| < \delta \implies \left| \frac{\overline{z}}{z} - L \right| < \epsilon = 1.$$

Let $z = \delta/2$ and so does $z = i\delta/2$. Then for $z = \delta/2$:

$$\frac{\overline{z}}{z} = \frac{\delta/2}{\delta/2} = 1 \implies |1 - L| < 1,$$

and for $z = i\delta/2$:

$$\frac{\overline{z}}{z} = \frac{-i\delta/2}{i\delta/2} = -1 \implies |-1 - L| < 1.$$

Thus, we see that the L must lie in the intersection of the two open unit discs centered at -1 and 1. However, since they are open discs, these two discs do not overlap and so L does not exist.

Remark. This implies that there is no way to extend \overline{z}/z to a continuous function at z=0.

2.1.2 Properties of Limits

If $\lim_{x\to a} f(x) = L_1$, $\lim_{x\to a} g(x) = L_2$, then

(i) $\lim_{x \to a} (f(x) + g(x)) = L_1 + L_2.$

(ii) $\lim_{x \to a} f(x)g(x) = L_1 L_2.$

(iii) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L_1}{L_2}, \quad L_2 \neq 0.$

Remark. These implies that the sum/product/quotient of continuous functions are continuous.

Proposition 2.1.5 (Composite function of continuous functions is continuous). If f(x) is continuous at x = a, and g(x) is continuous at x = f(a), then g(f(x)) is continuous at x = a.

Proof. We want $|g(f(x)) - g(f(a))| < \epsilon$. By continuity of g at x = f(a), there exists $\delta_1 > 0$ such that

$$|w - f(a)| < \delta_1 \implies |g(w) - g(f(a))| < \epsilon.$$

We want to take w = f(x), so we need

$$|f(x) - f(a)| < \delta_1.$$

But by continuity of f at x = a, we know that δ_1 will be our ϵ when $|x - a| < \delta_2$ for some $\delta_2 > 0$. Then for such x,

$$|g(f(x)) - g(f(a))| < \epsilon.$$

2.2 Derivatives (Cont'd)

Definition 2.2.1 (Differentiable). We say that f(z) is differentiable at z = a iff $\frac{f(z) - f(a)}{z - a}$ extends to a continuous function at z = a (the value there is f'(a)).

Example 2.2.2. f(z) = z is differentiable with f'(z) = 1.

Proof.

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{h \to 0} \frac{z+h-z}{h} = \lim_{h \to 0} 1 = 1.$$

Example 2.2.3 (Interesting one). $f(z) = \overline{z}$ is not differentiable but is continuous.

Proof.

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{h \to 0} \frac{\overline{z+h} - \overline{z}}{h}$$

$$= \lim_{h \to 0} \frac{\overline{z+h} - \overline{z}}{h}$$

$$= \lim_{h \to 0} \frac{\overline{h}}{h}$$

$$= \text{DNE} \qquad \text{(proved in previous example)}$$

Proposition 2.2.4 (Differentiability implies continuity). f(z) differentiable at z = a implies that f(z) is continuous at z = a.

Proof. We want to show that $\lim_{z\to a} f(z) = f(a)$.

$$\lim_{z \to a} f(z) - f(a) = \lim_{z \to a} \frac{f(z) - f(a)}{z - a} \cdot (z - a)$$

$$= \lim_{z \to a} \frac{f(z) - f(a)}{z - a} \cdot \lim_{z \to a} (z - a) \quad \text{(assume both limits exist)}$$

$$= f'(a) \cdot 0$$

$$= 0.$$

Remark. This is a common technique to show continuity by showing the limit of the difference is zero.

2.2.1 Properties of complex-derivatives

(i)
$$\frac{d}{dz}cf(z) = cf'(z), \qquad \forall c \in \mathbb{C}.$$

(ii)
$$\frac{d}{dz}(f+g) = f'(z) + g'(z).$$

(iii)
$$\frac{d}{dz}(fg) = f'g + fg'.$$

(iv)
$$\frac{d}{dz}\left(\frac{f}{g}\right) = \frac{f'g - fg'}{g^2}.$$

(v)
$$\frac{d}{dz}f(g(z)) = g'(z)f'(g(z)).$$

Proposition 2.2.5 (Power rule).

$$\frac{d}{dz}z^n = nz^{n-1}$$

for all integers n.

Proof. We induct on n. For $n \geq 0$, when n = 0,

$$\frac{d}{dz}z^0 = \frac{d}{dz}1 = 0 = 0z^{-1}.$$

By the product rule,

$$\frac{d}{dz}z^n = \frac{d}{dz}(z \cdot z^{n-1})$$

$$= 1 \cdot z^{n-1} + z \cdot (n-1)z^{n-2} \qquad \text{(inductive hypothesis)}$$

$$= nz^{n-1}.$$

For n < 0, simply apply quotient rule.

Holomorphic Functions and Cauchy-Riemann Equations

Recall

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}.$$

Being differentiable at a point says little about how "nice" a function is.

Example 3.0.1. Consider $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \backslash \mathbb{Q}. \end{cases}$$

This is nowhere continuous, and thus nowhere differentiable. But if we consider $x^2 f(x)$, it is differentiable at x = 0:

$$\lim_{h \to 0} \frac{h^2 f(h) - 0^2 f(0)}{h} = \lim_{h \to 0} h f(h) = 0.$$

Nevertheless, it's still not a very "nice" function.

3.1 Holomorphic Functions

Definition 3.1.1 (Holomorphic). A function $f: \mathbb{C} \to \mathbb{C}$ is *holomorphic* at a point a if it is differentiable at z for all z within distance r of a for some r > 0. In other words, f(z) is differentiable everywhere sufficiently close to a.

Definition 3.1.2 (Open/closed disk). The *open disk* of radius r centered at $a \in \mathbb{C}$ is

$$D(a,r) = \{ z \in \mathbb{C} \mid |z - a| < r \}.$$

The closed disk is

$$\overline{D}(a,r) = \{ z \in \mathbb{C} \mid |z - a| \le r \}.$$

Thus, we can say f(z) is holomorphic at $a \in \mathbb{C}$ if f(z) is differentiable on an open disk centered at a. (if the point is not specified, it means that f is holomorphic everywhere.)

Example 3.1.3 (Polynomials are holomorphic). We saw last time that z^n is differentiable everywhere for $n \ge 0$. Then the linear combinations

$$a_d z^d + a_{d-1} z^{d-1} + \dots + a_1 z + a_0$$

which is a polynomial, is differentiable (since multiplying by constants and summing preserves differentiability).

Example 3.1.4. $f(z) = |z|^2 = z\overline{z}$ is differentiable at zero.

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{h\overline{h} - 0}{h}$$
$$= \lim_{h \to 0} \overline{h}$$
$$= 0$$

However, this is not differentiable elsewhere (exercise). Thus, f is not holomorphic.

3.2 The Cauchy-Riemann Equations

Question. How to tell if a function is complex-differentiable?

Answer. We'll reduce this to a question about real derivatives.

Let x + iy, where $x, y \in \mathbb{R}$. If $f : \mathbb{C} \to \mathbb{C}$,

$$\frac{\partial f}{\partial x}(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$
$$= \lim_{h \to 0} \frac{f(x+h+iy) - f(x+iy)}{h}.$$

Note that h is real. Similarly,

$$\frac{\partial f}{\partial y}(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$
$$= \lim_{h \to 0} \frac{f(x+i(y+h)) - f(x+iy)}{h}.$$

Example 3.2.1. $f(z) = z^2$. Then

$$f(x+iy) = (x+iy)^2 = x^2 - y^2 + 2ixy.$$

$$\begin{split} \frac{\partial f}{\partial x}(z) &= \lim_{h \to 0} \frac{(x+h)^2 - y^2 + 2i(x+h)y - (x^2 - y^2 + 2ixy)}{h} \\ &= \lim_{h \to 0} \frac{2xh + h^2 + 2ihy}{h} \\ &= \lim_{h \to 0} 2x + h + 2iy \\ &= 2x + 2iy \\ &= 2z \\ &= f'(z). \end{split}$$

$$\frac{\partial f}{\partial y}(z) = \lim_{h \to 0} \frac{x^2 - (y+h)^2 + 2ix(y+h) - (x^2 - y^2 + 2ixy)}{h}$$

$$= \lim_{h \to 0} \frac{-2yh - h^2 + 2ixh}{h}$$

$$= \lim_{h \to 0} -2y - h + 2ix$$

$$= -2y + 2ix$$

$$= 2i(x+iy)$$

$$= if'(z).$$

Thus,

$$\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y} = -i \frac{\partial f}{\partial y}.$$

Theorem 3.2.2.

(i) If $f: \mathbb{C} \to \mathbb{C}$ is complex-differentiable, then $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and they satisfy

$$\frac{\partial f}{\partial x} = -i \frac{\partial f}{\partial y}.$$

(ii) If $f: \mathbb{C} \to \mathbb{C}$ is a function and $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist and are continuous on some open disk centered at z, and if

$$\frac{\partial f}{\partial x} = -i \frac{\partial f}{\partial y},$$

then f is complex-differentiable at z.

Proof.

(i) Since f is complex-differentiable, we have

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = f'(z).$$

This is equivalent to the statement that for every $\epsilon > 0$, there is a $\delta > 0$ such that

$$|h-0| < \delta \implies \left| \frac{f(z+h) - f(z)}{h} - f'(z) \right| < \epsilon.$$

Suppose h is real. Then

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = f'(z)$$

and since h is real, we get $\frac{\partial f}{\partial x}$ and thus

$$\frac{\partial f}{\partial x}(z) = f'(z).$$

Now suppose h is purely imaginary: h = ik for $k \in \mathbb{R}$. Then

$$\frac{f(z+h)-f(z)}{h} = \frac{f(x+iy+ik)-f(x+iy)}{ik}.$$

Then $h \to 0$ is equivalent to $k \to 0$ since |h| = |k|. Thus we have

$$\lim_{k\to 0} \frac{f(z+ik) - f(z)}{ik} = \frac{1}{i} \frac{\partial f}{\partial y} = f'(z).$$

Hence, we have

$$\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y} = -i \frac{\partial f}{\partial y}.$$

Let f(z) = u(z) + iv(z). If we choose real values for h, then the imaginary part y is kept constant, and the derivative becomes a partial derivative with respect to x. Thus we have

$$f'(z) = \frac{\partial f}{\partial x} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}.$$

Similarly, if we substitute purely imaginary values ik for h, we obtain

$$f'(z) = \lim_{k \to 0} \frac{f(z + ik) - f(z)}{ik} = -i\frac{\partial f}{\partial y} = -i\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}.$$

Since we have

$$\frac{\partial f}{\partial x} = -i \frac{\partial f}{\partial y},$$

this resolves into the following equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y},$$

or simply

$$u_x = v_y, \qquad v_x = -u_y.$$

These are known as the *Cauchy-Riemann* equations.

15

Example 3.2.3. Consider $f(z) = z^2$. Then

$$f(x + iy) = x^2 + y^2 + 2ixy.$$

Here $u(x,y) = x^2 - y^2$ and v(x,y) = 2xy. We have

$$u_x = 2x = v_y \qquad v_x = 2y = -u_y.$$

Example 3.2.4. Consider $f(z) = |z|^2$. Then $f(x + iy) = x^2 + y^2$ where $u(x, y) = x^2 + y^2$ and v(x, y) = 0. But here we have

$$u_x = 2x \neq v_y = 0$$
 $v_x = 0 \neq -u_y = -2y$.

Thus, the Cauchy-Riemann equations only hold at (x, y) = (0, 0) and as we saw previously that this function is only differentiable at z = 0 and nowhere else.

We can generalize the Cauchy-Riemann equations further to second order. Suppose we have f = u + iv. Then

$$u_{xx} = \frac{\partial}{\partial x} u_x = \frac{\partial}{\partial x} v_y = \frac{\partial}{\partial x} \frac{\partial}{\partial y} v = \frac{\partial}{\partial y} \frac{\partial}{\partial x} v = \frac{\partial}{\partial y} v_x = \frac{\partial}{\partial y} (-u_y) = -u_{yy}.$$

Thus, we have

$$u_{xx} + u_{yy} = 0$$
, or $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

Similarly, we also have

$$v_{xx} = (v_x)_x = (-u_y)_x = -u_{yx} = -u_{xy} = -(u_x)_y = -(v_y)_y = -v_{yy},$$

which gives

$$v_{xx} + v_{yy} = 0, \text{ or } \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0.$$

These are the *Laplace's equations* in 2D we saw earlier.

For $f: \mathbb{R} \to \mathbb{R}$, we know that f'(x) = 0 implies that f is constant. But for $f: \mathbb{C} \to \mathbb{C}$, we can use the Cauchy-Riemann equations. Since $f'(z) = \frac{\partial f}{\partial x}$,

$$f'(z) = 0 \implies u_x + iv_x = 0 \implies u_x = 0, v_x = 0.$$

By Cauchy-Riemann, we also have $u_y = v_y = 0$. Since $u_x = 0$, we know that for fixed y, u(x,y) is some constant that could depend on y. Thus, we have

$$u(x, y) = g(y).$$

But $u_y = 0$, so g'(y) = 0, which means g is actually a constant independent of y. Thus, u is globally constant. Similar argument applies to v as well.

Möbius Transformation

Definition 4.0.1 (Möbius transformation). A *Möbius transformation* is a function of the form

$$f(z) = \frac{az+b}{cz+d},$$

where $a, b, c, d \in \mathbb{C}$ satisfy $ad - bc \neq 0$.

Remark. If ad = bc, then $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = 0$, so rows are linearly dependent: $\lambda(a,b) + \mu(c,d) = (0,0)$, which implies that

$$a = \frac{-\mu}{\lambda}c$$
 $b = \frac{-\mu}{\lambda}d.$

Then

$$f(z) = \frac{az+b}{cz+d}$$
$$= \frac{-\frac{\mu}{\lambda}(cz+d)}{cz+d}$$
$$= -\frac{\mu}{\lambda},$$

which is a constant independent of z.

Proposition 4.0.2 (Composite Möbius transforms is Möbius). If $f_1(z)$, $f_2(z)$ are Möbius transforms, then then $f_1(f_2(z))$ is also a Möbius transform.

Proof. Suppose

$$f_1(z) = \frac{a_1 z + b_1}{c_1 z + d_1}$$
 $f_2(z) = \frac{a_2 z + b_2}{c_2 z + d_2}$.

Then

$$f_1(f_2(z)) = \frac{a_1 \frac{a_2 z + b_2}{c_2 z + d_2} + b_1}{c_1 \frac{a_2 z + b_2}{c_2 z + d_2} + d_1}$$

$$= \frac{a_1 (a_2 z + b_2) + b_1 (c_2 z + d_2)}{c_1 (a_2 z + b_2) + d_1 (c_2 z + d_2)}$$

$$= \frac{(a_1 a_2 + b_1 c_2) z + (a_1 b_2 + b_1 d_2)}{(c_1 a_2 + d_1 c_2) z + (c_1 b_2 + d_1 d_2)}$$

which is another Möbius transform.

Remark. Note that

$$\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 + b_1 c_2 & a_1 b_2 + b_1 d_2 \\ c_1 a_2 + d_1 c_2 & c_1 b_2 + d_1 d_2 \end{pmatrix}$$

and the entries coincide with the composite Möbius transform. If we denote $f_M(z)$ to be a transform associated with a 2×2 matrix M, then we have just shown that

$$f_M(f_N(z)) = f_{MN}(z).$$

Remark. Since $f_I(z) = \frac{1 \cdot z + 0}{0 \cdot z + 1} = z$, the inverse of f_M is $f_{M^{-1}}$.

Remark. Note that

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies f_M = \frac{az+b}{cz+d}.$$

Meanwhile,

$$\lambda M = \begin{pmatrix} \lambda a & \lambda b \\ \lambda c & \lambda d \end{pmatrix} \implies f_{\lambda M} = \frac{\lambda az + \lambda b}{\lambda cz + \lambda d} = \frac{az + b}{cz + d} = f_M.$$

Thus, scaling the matrices doesn't affect the resulting Möbius tranformation.

4.1 Inverse of Möbius transformation

Recall that

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Since the scaling part is redundant, we simply ignore it and obtain the inverse Möbius transform as follows:

$$f(z) = \frac{az+b}{cz+d} \implies f^{-1}(z) = \frac{dz-b}{-cz+a}.$$

Remark. Since Möbius transforms have inverses, they should be bijections. However, some details should be noted. If $c \neq 0$, then $\frac{az+b}{cz+d}$ is undefined at $z = -\frac{d}{c}$.

Let's consider the value at $z=-\frac{d}{c}$ to be infinity. It turns out that we can evaluate $\frac{az+b}{cz+d}$ at ∞ :

$$\lim_{z \to \infty} \frac{az + b}{cz + d} = \lim_{z \to \infty} \frac{a + \frac{b}{z}}{c + \frac{d}{z}}$$
$$= \frac{a}{c}.$$

When c = 0, we view $\frac{a}{c}$ as ∞ . So now we view Möbius transformations as functions from $\mathbb{C} \cup \{\infty\}$ to $\mathbb{C} \cup \{\infty\}$. This makes all Möbius transformations into bijections. Here, we call $\mathbb{C} \cup \{\infty\}$ the extended complex plane (also called Riemann sphere).

Remark. For real functions, there are multiple notions of going to infinity: $x \to +\infty$ and $x \to -\infty$. But for complex functions, we work with only one infinite point.

Fact. If we apply a Möbius transformation to a line or a circle in the complex plane, we would get a line or a circle again (circles can turn into lines and vice versa).

Example 4.1.1. Consider $f(z) = \frac{z-1}{iz+i}$, let's apply this to the unit circle, i.e. take $z = e^{i\theta}$. Then

$$f(e^{i\theta}) = \frac{e^{i\theta} - 1}{i(e^{i\theta} + 1)} = \frac{\cos \theta - 1 + i \sin \theta}{i(\cos \theta + 1 + i \sin \theta)}$$
$$= \frac{-2\sin^2 \frac{\theta}{2} + i2\sin \frac{\theta}{2}\cos \frac{\theta}{2}}{i\left(2\cos^2 \frac{\theta}{2} + i2\sin \frac{\theta}{2}\cos \frac{\theta}{2}\right)}$$
$$= \frac{2i(\cos \frac{\theta}{2} + i\sin \frac{\theta}{2})\sin \frac{\theta}{2}}{2i\left(\cos \frac{\theta}{2} + i\sin \frac{\theta}{2}\right)\cos \frac{\theta}{2}}$$
$$= \tan \frac{\theta}{2}.$$

Note that $\theta \in (-\pi, \pi)$ and we have $\tan -\frac{\pi}{2} = -\infty$ and $\tan \frac{\pi}{2} = -+\infty$. We have mapped a unit circle to a line (real line).

Fact. f sends the interior of the unit disk to the interior of the upper half-plane. If g(z) is holomorphic on the upper half-plane, then g(f(z)) is a holomorphic function on the unit disk. Taking real and imaginary parts gives a solution to the Laplace equation.

Remark. Stereographic projection φ is a bijection that maps a sphere to the extended complex plane. It doesn't preserve distance, but it preserves functions being holomorphic.

Proposition 4.1.2. Suppose $f(z) = \frac{az+b}{cz+d}$ is a Möbius transformation. If c = 0 then

$$f(z) = \frac{a}{d}z + \frac{b}{d},$$

and if $c \neq 0$, then

$$f(z) = \frac{bc - ad}{c^2} \frac{1}{z + \frac{d}{c}} + \frac{a}{c}.$$

In particular, every Möbius transformation is a composition of translations, dilations, and inversions.

Proof. Simplify. \Box

Theorem 4.1.3. Möbius transformations map circles and lines into circles and lines.

Proof. Translations and dilations certainly map circles and lines into circles and lines, so by the previous proposition, we only have to prove the statement of the theorem for the inversion $f(z) = \frac{1}{z}$.

The equation for a circle centered at $x_0 + iy_0$ with radius r is $(x - x_0)^2 + (y - y_0)^2 = r^2$, which we can transform to

$$\alpha (x^2 + y^2) + \beta x + \gamma y + \delta = 0$$

for some real numbers α, β, γ , and δ that satisfy $\beta^2 + \gamma^2 > 4\alpha\delta$. The above expression is more convenient for us, because it includes the possibility that the equation describes a line (precisely when $\alpha = 0$).

Suppose z = x + iy satisfies the above expression; we need to prove that $u + iv := \frac{1}{z}$ satisfies a similar equation. Since

$$u + iv = \frac{x - iy}{x^2 + y^2},$$

we can rewrite the transformed equation as

$$0 = \alpha + \beta \frac{x}{x^2 + y^2} + \gamma \frac{y}{x^2 + y^2} + \frac{\delta}{x^2 + y^2}$$
$$= \alpha + \beta u - \gamma v + \delta (u^2 + v^2).$$

But this equation says that u + iv lies on a circle or line.

Fact. The stereographic projection of a circle on the sphere (intersection of a plane and a sphere) is a circle in the plane. Möbius transformations take circles on the sphere to other circles of the sphere (some of these stereographically project to lines in the plane).

Exponential, Trigonometric, and Logarithmic Functions

5.1 Exponential Functions

$$e^{x+iy} = e^x e^{iy} = e^x \cos y + ie^x \sin y \implies e^z = u(x,y) + iv(x,y)$$

where

$$u(x, y) = e^x \cos y$$
$$v(x, y) = e^x \sin y$$

5.2 Trigonometric Functions

For $z \in \mathbb{C}$,

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
$$\cos z = \frac{e^{iz} + e^{-iz}}{2}.$$

Remark. $\sin z, \cos z$ are holomorphic since e^z is holomorphic and so is e^{iz} and e^{-iz} .

Trigonometric identities hold for complex numbers.

$$\sin^2 z + \cos^2 z = 1$$

$$\sin(2z) = 2\sin z \cos z$$

5.3 Logarithmic Functions

We want $\log z$ to be the unique inverse to the exponential function, i.e. we want $e^{\log z}=z$, but then we would also have

$$e^{\log z + 2\pi ik} = z$$

Definition 5.3.1 (Principal logarithm). The principal logarithm is the function defined by

$$\log (re^{i\theta}) = \log r + i\theta.$$

where $-\pi < \theta < \pi$.

Let's check if $\log z$ is differentiable. If

$$z = x + iy = re^{i\theta},$$

then $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1}(y/x)$ when $x \neq 0$.

$$\log x + iy = \frac{1}{2} \log (x^2 + y^2) + i \tan^{-1} \left(\frac{y}{x}\right)$$
$$= u(x, y) + iv(x, y).$$

Then

$$u_x = \frac{1}{2} \cdot \frac{2x}{x^2 + y^2} = \frac{x}{x^2 + y^2}$$

$$u_y = \frac{1}{2} \cdot \frac{2y}{x^2 + y^2} = \frac{y}{x^2 + y^2}$$

$$v_x = \frac{-y}{x^2} \cdot \frac{1}{1 + \left(\frac{y}{x}\right)^2} = -\frac{y}{x^2 + y^2}$$

$$v_y = \frac{1}{x} \cdot \frac{1}{1 + \left(\frac{y}{x}\right)^2} = \frac{x}{x^2 + y^2}.$$

Thus, we see that the Cauchy-Riemann equations hold for logarithms.

Complex Integration

6.1 Definition and Basic Properties

If $f: \mathbb{R} \to \mathbb{C}$, define

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \Re f(x)dx + i \int_{a}^{b} \Im f(x)dx.$$

Question. But how to integrate a function $f: \mathbb{C} \to \mathbb{C}$?

For real functions, going from a point $\gamma(a)$ to $\gamma(b)$ can only happen one way (follow the real axis) but in \mathbb{C} , we will have to specify the path from $\gamma(a)$ to $\gamma(b)$.

Definition 6.1.1 (Path/curve). A path/curve is the image of a function $\gamma:[a,b]\to\mathbb{C}$.

Definition 6.1.2 (Integral). The *integral* of the function $f: \mathbb{C} \to \mathbb{C}$ along the path parametrized by $\gamma: [a, b] \to \mathbb{C}$ is

$$\int_{a}^{b} f(\gamma(t))\gamma'(t)dt.$$

This is the integral of a function $\mathbb{R} \to \mathbb{C}$, so we already have a definition for it.

Aside,

$$\int_{g(a)}^{g(b)} f(x)dx = \int_a^b f(g(x))g'(x)dx.$$

Suppose we have a different parametrization of the image of $\gamma(t)$. Write this parametrization as $\gamma(\theta(t))$ where $\theta:[a,b]\to[a,b]$ is a continuous reparametrization of the interval [a,b] satisfying $\theta(a)=a,\,\theta(b)=b$ and θ is increasing. Then

$$\int_{a}^{b} f(\gamma(\theta(t)))\gamma'(\theta(t))\theta'(t)dt = \int_{\theta(a)}^{\theta(b)} f(\gamma(u))\gamma'(u)du$$

where $u = \theta(t)$ and $du = \theta'(t)dt$. So the integrals for $\gamma(\theta(t))$ and $\gamma(t)$ are the same, thus the integral depends on the curve in \mathbb{C} , not how we parametrize it.

We will use

$$\int_{\gamma} f(z)dz$$

to denote the integral.

Example 6.1.3. If $\gamma(t) = t$, then $\gamma'(t) = 1$ and

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(t)dt.$$

Example 6.1.4. If $\gamma(t) = t + it^2$ and f(z) = 1, then $\gamma'(t) = 1 + 2it$ and

$$\int_a^b f(\gamma(t))\gamma'(t)dt = \int_a^b (1+2it)dt$$

$$= \int_a^b 1dt + i \int_a^b 2tdt$$

$$= b - a + i(b^2 - a^2)$$

$$= (b+ib^2) - (a+ia^2)$$

$$= \gamma(b) - \gamma(a).$$

Example 6.1.5 (Very important example). Consider $\gamma(t) = e^{it}$ where $0 \le t \le 2\pi$. So $\gamma(t)$ is the counterclockwise unit circular path. If $f(z) = z^n$ for some $n \in \mathbb{Z}$. Then

$$\int_{\gamma} f(z)dz = \int_{0}^{2\pi} f(\gamma(t))\gamma'(t)dt$$
$$= \int_{0}^{2\pi} e^{int} \cdot ie^{it}dt$$
$$= i \int_{0}^{2\pi} e^{it(n+1)}dt.$$

If $n \neq -1$, then $n + 1 \neq 0$, the integral evaluates to

$$i \frac{e^{it(n+1)}}{i(n+1)} \Big|_{t=0}^{2\pi} = i \left(\frac{1}{i(n+1)} - \frac{1}{i(n+1)} \right)$$

= 0.

If n+1=0, then n=-1 and so

$$i \int_0^{2\pi} e^{it(n+1)} dt = i \int_0^{2\pi} 1 dt$$
$$= 2\pi i,$$

which is not zero.

Complex Integration (Cont'd)

7.1 Basic Properties

(i) If $\mu, \lambda \in \mathbb{C}$, then

where

$$\begin{split} \int_{\gamma} \lambda f(z) + \mu g(z) dz &= \int_{a}^{b} (\lambda f(\gamma(t) + \mu g(\gamma(t)) \gamma'(t) dt \\ &= \lambda \int_{a}^{b} f(\gamma(t) \gamma'(t) dt + \mu \int_{a}^{b} g(\gamma(t)) \gamma'(t) dt \\ &= \lambda \int_{\gamma} f(z) dz + \mu \int_{\gamma} g(z) dz. \end{split}$$

(ii)
$$\int_{\gamma_1 \gamma_2} f = \int_{\gamma_1} f + \int_{\gamma_2} f$$

(iii) $\int_{-\gamma} f = -\int_{\gamma} f$

(iv)
$$\left| \int_{\gamma} f \right| \leq \max{_{z \in \gamma}} |f(z)| \cdot \operatorname{length}(\gamma),$$

 $length(\gamma) = \int_a^b |\gamma'(t)| dt.$

View $|\gamma'(t)|$ as the speed a particle is travelling at and $\gamma(t)$ as the position of that particle at time t. Then integrating it gives the total distance.

(v) (Triangle Inequality)

$$\left| \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt \right| \leq \int_{a}^{b} \left| f(\gamma(t)) \gamma'(t) \right| dt$$

(vi) (ML-Lemma)

$$\left| \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt \right| \leq \int_{a}^{b} |f(\gamma(t))| \cdot |\gamma'(t)| dt$$
$$= ML$$

where $M = \max_{a \le t \le b} |f(\gamma(t))|$ and $L = \int_a^b |\gamma'(t)| dt$.

7.1.1 Antiderivatives

Theorem 7.1.1 (Fundamental Theorem of Calculus). If F is holomorphic on some subset $G \subseteq \mathbb{C}$ and $\frac{d}{dz}F(z) = f(z)$. Then

$$\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a)).$$

Proof. Let F(x+iy) = u(x,y) + iv(x,y) and $\gamma(t) = \alpha(t) + i\beta(t)$. Then

$$F(\gamma(t)) = u(\alpha(t), \beta(t)) + iv(\alpha(t), \beta(t)).$$

By chain rule,

$$\frac{d}{dt}F(\gamma(t)) = u_x \alpha'(t) + u_y \beta'(t) + iv_x \alpha'(t) + iv_y \beta'(t)$$

$$= u_x(\alpha'(t) + i\beta'(t)) + iv_x(\alpha'(t) + i\beta'(t)) \qquad (u_x = v_y \text{ by CR})$$

$$= F(\gamma(t))\gamma'(t).$$

Definition 7.1.2 (Closed curve). A *closed curve* is a curve where the start and end points are the same, i.e. $\gamma(a) = \gamma(b)$.

So if $f(z) = \frac{d}{dz}F(z)$, the integral of f(z) around a closed curve is zero:

$$\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a)) = 0.$$

Example 7.1.3. Let γ be the path of unit circle counterclockwise. Then

$$\int_{\gamma} \frac{1}{z} dz = 2\pi i$$

which is not zero, implying that there is no holomorphic function F(z) defined on the whole unit circle, having derivative $\frac{1}{z}$.

However, consider the principal logarithm $\log(re^{i\theta}) = \log(r) + i\theta$, we have

$$\frac{d}{dz}\log(x+iy) = \frac{x}{x^2+y^2} + \frac{-y}{x^2+y^2} = \frac{\overline{z}}{z\overline{z}} = \frac{1}{z}.$$

So $\frac{1}{z}$ does have an antiderivative on $\mathbb{C}\backslash\mathbb{R}_{\leq 0}$.

It turns out that if f(z) is continuous and $\int_{\gamma} f(z)dz = 0$ for any closed curve, then f(z) has an antiderivative, i.e. there's F(z) such that F'(z) = f(z).

We know that by fundamental theorem of calculus

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x).$$

By analogy, we want

$$F(w) = \int_{\gamma} f(z)dz$$

where γ is a curve from a fixed basepoint q to w.

First let's check that this doesn't depend on the choice of path from q to w. Suppose δ_1, δ_2 are two paths from q to w. Observe that the reverse of δ_2 is a curve from w to q, and the path obtained by following δ_1 , then the reverse of δ_2 goes from q to w to q, so it is a closed curve.

Write $\delta_1 - \delta_2$ for the closed curve above. Then by assumption, we have

$$\int_{\delta_1 - \delta_2} f(z) dz = 0.$$

This implies that

$$\int_{\delta_1} f(z)dz + \int_{-\delta_2} f(z)dz = \int_{\delta_1} f(z)dz - \int_{\delta_2} f(z)dz = 0.$$

Hence,

$$\int_{\delta_1} f(z)dz = \int_{\delta_2} f(z)dz.$$

Thus, the choice of path doesn't matter and so the formula $F(w) = \int_{\gamma} f(z)dz$ where γ is any path from q to w makes sense. Let's now check $\frac{d}{dw}F(w) = f(w)$.

$$\frac{d}{dw}F(w) = \lim_{h \to 0} \frac{F(w+h) - F(w)}{h}.$$

To evaluate F(w+h), we can choose the path of integration from q to w+h arbitrarily. Let's choose one that goes from q to w then to w+h along a line segment (only from w to w+h). This line segment has length |h|.

If our function is holomorphic at a point w, it is differentiable on a disk $D(w, \epsilon)$ for some $\epsilon > 0$. So if $|h| < \epsilon$, then the line segment ℓ from w to w + h is contained in $D(w, \epsilon)$ and hence in a region where the function is differentiable.

Now F(w+h) - F(w) is simply the integral of f(z) from w to w+h. We want

$$\lim_{h \to \infty} \frac{1}{h} \int_{\ell} f(z)dz - f(w) = 0.$$

Note that f(w) is a constant independent of z. Thus,

$$\int_{\ell} f(w)dz = f(w) \int_{\ell} 1dz = f(w)h.$$

$$\lim_{h \to \infty} \frac{\int_{\ell} f(z)dz - \int_{\ell} f(w)dz}{h} = \lim_{h \to \infty} \frac{\int_{\ell} (f(z) - f(w))dz}{h}.$$

By ML-lemma,

$$\left| \frac{\int_{\ell} (f(z) - f(w)) dz}{h} \right| = \frac{\left| \int_{\ell} (f(z) - f(w)) dz \right|}{|h|}$$

$$\leq \max_{z \in \ell} |f(z) - f(w)| \cdot \frac{\operatorname{length}(\ell)}{|h|}$$

$$= \max_{z \in \ell} |f(z) - f(w)|.$$

So it suffices to show that

$$\lim_{h \to 0} \max_{z \in \ell} |f(z) - f(w)| = 0.$$

Since f(z) is continuous at w, for any $\epsilon > 0$, there is a $\delta > 0$ such that $|z - w| < \delta$ implies $|f(z) - f(w)| < \epsilon$. So when $|h| < \delta$, any $z \in \ell$ obeys $|z - w| < \delta$. Then also $|f(z) - f(w)| < \epsilon$. So for $|h| < \delta$,

$$\left| \frac{F(w+h) - F(w)}{h} - f(w) \right| < \epsilon.$$

Hence,

$$\lim_{h \to 0} \frac{F(w+h) - F(w)}{h} = f(w).$$

as needed.

7.2 Cauchy's Theorem

Question. How do we check that $\int_{\gamma} f(z)dz = 0$ for any closed curve γ ?

Theorem 7.2.1 (Cauchy's Theorem). Suppose $\gamma : [a,b] \to \mathbb{C}$ is a closed curve and f(z) is holomorphic on γ and in the region enclosed by the curve γ . Then

$$\int_{\gamma} f(z)dz = 0.$$

Proof. Recall that a vector field is a function $\vec{F}: \mathbb{R}^2 \to \mathbb{R}^2$ where

$$\vec{F}(x,y) = (F_1(x,y), F_2(x,y)).$$

The line integral of \vec{F} along a curve γ is

$$\int_{\gamma} \vec{F} \cdot d\vec{\ell} = \int_{a}^{b} F(\gamma(t)) \cdot \gamma'(t) dt$$

where $\gamma(t) = (\alpha(t), \beta(t))$ and $\gamma'(t) = (\alpha'(t), \beta'(t))$ and so

$$\int_{\gamma} \vec{F} \cdot \vec{\ell} = \int_{a}^{b} F_1(\alpha(t), \beta(t)) \alpha'(t) + F_2(\alpha(t), \beta(t)) \beta'(t) dt.$$

Now recall the Stokes' theorem

$$\int_{\gamma} \vec{F} \cdot d\vec{\ell} = \int_{\text{region enclosed by } \gamma} \vec{\nabla} \times \vec{F} dA$$

where

$$\vec{\nabla} \times \vec{F} = \frac{\partial F_2}{\partial dx} - \frac{\partial F_1}{\partial u}.$$

Then

$$\int_{\gamma} (\vec{F} \cdot \hat{n}) d\ell = \int_{a}^{b} F_1(\alpha(t), \beta(t)) \beta'(t) + F_2(\alpha(t), \beta(t)) (-\alpha'(t)) dt.$$

The divergence theorem says that

$$\int_{\gamma} (\vec{F} \cdot \hat{n}) d\ell = \int_{\text{area enclosed by } \gamma} \vec{\nabla} \cdot \vec{F} dA$$

where

$$\vec{\nabla} \cdot \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y}.$$

Let f(x+iy) = u(x,y) + iv(x,y) and $\gamma(t) = \alpha(t) + i\beta(t)$.

$$\int_{\gamma} f(z)dz = \int_{a}^{b} (u+iv)(\alpha'(t)+i\beta'(t))dt$$
$$= \int_{a}^{b} u\alpha'(t) - v\beta'(t)dt + i\int_{a}^{b} v\alpha'(t) + u\beta'(t)dt.$$

Note that $u' - v\beta' = (u, -v) \cdot (\alpha', \beta')$ and $v\alpha' + u\beta' = (u, -v) \cdot (\beta', \alpha')$. Now let $\vec{F}(x, y) = (u(x, y), -v(x, y))$. Then

$$\int_{\gamma} f(z) dz = \int_{\gamma} \vec{F} \cdot d\vec{\ell} + i \int_{\gamma} (\vec{F} \cdot \hat{n}) d\ell.$$

$$\vec{\nabla} \times \vec{F} = \frac{\partial - v}{\partial x} - \frac{\partial u}{\partial y} = -v_x - u_y = 0 \qquad (u_y = -v_x \text{ by CR}),$$

$$\vec{\nabla} \cdot \vec{F} = \frac{\partial u}{\partial x} + \frac{\partial - v}{\partial y} = u_x - v_y = 0 \qquad (u_x = v_y \text{ by CR}).$$

So by Stokes' theorem and the divergence theorem

$$\int_{\gamma} f(z) dz = \int_{\text{area enclosed by } \gamma} 0 dA + i \int_{\text{area enclosed by } \gamma} 0 dA = 0 + i0 = 0.$$

Remark. The example of $\int_{\gamma} \frac{1}{z} dz = 2\pi i$ does not contradict the Cauchy's theorem because $\frac{1}{z}$ is not holomorphic at z = 0.

Remark. Checking that closed curves have well-defined interior regions is not a triviality: it is the content of the Jordan Curve Theorem (out of scope).

Remark. There are several formulations of Cauchy's Theorem. We will assume that f'(z) is continuous. Some formulations remove the concept of interior region and instead use the notion of a homotopy.

7.2.1 Cauchy Integral

Theorem 7.2.2 (Cauchy integral formula (1st version)). Suppose f(z) is holomorphic on the closed disk of radius R centered at $a \in \mathbb{C}$. Then

$$\int_{\gamma} \frac{f(z)}{z - a} dz = 2\pi i f(a)$$

where γ is the anticlockwise circle of radius R centered at a.

Proof. $\frac{f(z)}{z-a}$ may not be holomorphic at z=a, so to apply Cauchy's theorem we need a curve that doesn't enclose a. We can create such curve by traversing a donut-like path obtained by traversing a clockwise small circle with radius r centered at a after we reached the endpoint of the original curve and then traverse back to the endpoint. Then the enclosed area will not include a.

This curve of integration has 4 parts:

- 1. γ_1 : big circle of radius R, anticlockwise,
- 2. γ_2 : line segment connecting from the big circle to the small circle,
- 3. γ_3 : small circle of radius r, clockwise,
- 4. γ_4 : line segment connecting from the small circle to the big circle.

Note that the integrations of the two line segments cancel out each other. Then Cauchy's theorem tells us that

$$\int_{\gamma_1} + \int_{\gamma_2} + \int_{\gamma_3} + \int_{\gamma_4} = 0 \implies \int_{\gamma_1} + \int_{\gamma_3} = 0.$$

Thus,

$$\int_{\gamma_1} = -\int_{\gamma_3} = \int_{-\gamma_3},$$

which implies that the integral of the big circle anticlockwise is equal to the integral of the small circle anticlockwise. Hence,

$$\int_{\gamma_1} \frac{f(z)}{z - a} dz = \int_{-\gamma_3} \frac{f(z)}{z - a} dz.$$

for any r < R, and so we can take $r \to 0$. Now we want to show that

$$\int_{\gamma_3} \frac{f(z)}{z-a} dz = 2\pi i f(a).$$

Let $\gamma(t) = a + re^{it}$ for $0 \le t \le 2\pi$. Then

$$\begin{split} \int_{\gamma} \frac{f(a)}{z - a} dz &= f(a) \int_{\gamma} \frac{1}{z - a} dz \\ &= f(a) \int_{0}^{2\pi} \frac{1}{\gamma(t) - a} \gamma'(t) dt \\ &= f(a) \int_{0}^{2\pi} \frac{1}{re^{it}} ire^{it} dt \\ &= 2\pi i f(a). \end{split}$$

So we want

$$\int_{\gamma} \frac{f(z)}{z-a} dz = \int_{\gamma} \frac{f(a)}{z-a} dz,$$

i.e.,

$$\int_{\gamma} \frac{f(z) - f(a)}{z - a} dz = 0.$$

To show this, we apply the ML-lemma:

$$\left| \int_{\gamma} \frac{f(z) - f(a)}{z - a} dz \right| \le \max_{z \in \gamma} \left| \frac{f(z) - f(a)}{z - a} \right| \cdot \operatorname{length}(\gamma)$$

where γ is all points at distance r from a. Then $z \in \gamma \implies |z-a| = r$ and length $(\gamma) = 2\pi r$. Thus, we get

$$\left| \int_{\gamma} \frac{f(z) - f(a)}{z - a} dz \right| \le \max_{z \in \gamma} \frac{|f(z) - f(a)|}{r} \cdot 2\pi r$$
$$= 2\pi \cdot \max_{z \in \gamma} |f(z) - f(a)|.$$

Since f(z) is differentiable, it is continuous. So fro any $\epsilon > 0$. there is a $\delta > 0$ such that $|z - a| = r < \delta \implies |f(z) - f(a)| < \epsilon$. So by taking $r < \delta$, we get

$$\left| \int_{\gamma} \frac{f(z) - f(a)}{z - a} dz \right| < 2\pi\epsilon$$

for any $\epsilon > 0$, which implies that the absolute value must be zero. Hence,

$$\int_{\gamma} \frac{f(z) - f(a)}{z - a} dz = 0,$$

and this implies that

$$\int_{\gamma} \frac{f(z)}{z - a} dz = \int_{\gamma} \frac{f(a)}{z - a} dz = 2\pi i f(a).$$

Theorem 7.2.3 (Cauchy integral formula (2nd version)). Let γ be a closed curve that encloses $a \in \mathbb{C}$ exactly once anticlockwise. Suppose f(z) is holomorphic inside γ . Then

$$\int_{\gamma} \frac{f(z)}{z - a} dz = 2\pi i f(a).$$

Proof. Similar proof to previous one.

Example 7.2.4. Suppose $\omega \geq 0$ is a real number. Then

$$\int_{-\infty}^{\infty} \frac{\cos \omega x}{x^2 + 1} dx = \pi e^{-\omega}.$$

Consider

$$f(z) = \frac{e^{i\omega t}}{z^2 + 1} = \frac{\frac{e^{i\omega t}}{z + i}}{z - i} = \frac{g(z)}{z - i}$$

where $g(z) = \frac{e^{i\omega t}}{z+i}$. Consider the integral of f(z) over the semi-circle curve anticlockwise with radius R consisting of a line segment ℓ . As $R \to \infty$,

$$\int_{-R}^{R} f(x)dx = \int_{\ell} f(z)dz \to \int_{-\infty}^{\infty} f(x)dx.$$

Then use ML-lemma for semicircle in upper half plane where $\Im(z) \geq 0$, and so $\Im(\omega z) \geq 0$. So $\Re(i\omega z) \leq 0$. Hence,

$$|e^{i\omega z}| = e^{\Re(i\omega z)} \le e^0 = 1.$$

$$|z^2 + 1| \ge |z|^2 - 1 = R^2 - 1.$$

By ML-lemma, we have

$$\left| \int_{\text{semicircle}} \right| \le \frac{1}{R^2 - 1} 2\pi R$$