Theory of Automata and Formal Language Lecture-25

Dharmendra Kumar (Associate Professor) Department of Computer Science and Engineering United College of Engineering and Research, Prayagraj June 4, 2021

Elimination of null productions

Null Production: A production rule is said to be null production if it is of the following form:-

$$A \rightarrow \epsilon$$

Nullable Variable: A variable A is said to be nullable if it derives empty string i.e.

$$\mathsf{A} {\Rightarrow} \; \epsilon, \; \forall \mathsf{A} \in \mathsf{V}$$

Procedure:

Consider a grammar $G=(V,\,\Sigma,\,S,\,P).$ Let G' is a grammar having no null productions such that $L(G')=L(G)-\{\epsilon\}.$

G' is constructed as following:-

$$\mathsf{G'} = \big(\mathsf{V},\, \Sigma,\, \mathsf{S},\, \mathsf{P'}\big)$$

Step-1: Determination of the set of nullable variables

Let W_i is the set of nullable variables. W_i is calculated as following:-

$$W_1 = \{ A \mid A \rightarrow \epsilon \in P \}$$

 $W_2 = W_1 \cup \{A \mid \exists \text{ a production } A \to \alpha \in P \text{ and } \alpha \in W_1^*\}$

 $W_{i+1} = W_i \cup \{A \mid \exists \text{ a production } A \to \alpha \in P \text{ and } \alpha \in W_i^* \}$

Repeat this process until $W_{i+1} = W_i$

Now, we terminate this process.

Step-2: Determination of P'

- (i) We add the production rules of P into P' whose RHS does not include any nullable variable.
- (ii) Consider the remaining production rules of P.

If $A \to X_1 X_2 \dots X_n \in P$ then we add $A \to \alpha_1 \alpha_2 \dots \alpha_n$ into P', where $\alpha_i = X_i$ or ϵ but not all α_i equal to ϵ if X_i is nullable variable otherwise put $\alpha_i = X_i$.

Example: Consider the following grammar

$$S \rightarrow aS/AB$$

$$A \rightarrow \epsilon$$

$$\mathsf{B}\!\to \epsilon$$

$$D\!\!\to b$$

Eliminate the null productions.

Elimination of Unit Productions

Unit Production: A production rule is said to be unit production if it is of the following form:-

 $A \rightarrow B$, where A, $B \in V$.

Example: Consider the following grammar

 $\mathsf{S}{\to}\;\mathsf{AB}$

 $A \rightarrow a$

 $B\rightarrow C/b$

 $\mathsf{C}\!\to\mathsf{D}$

 $\mathsf{D}\!\to\mathsf{E}$

 $\mathsf{E}{\to}\;\mathsf{a}$

Eliminate the unit productions.

Chomosky Normal Form (CNF)

A grammar G is said to be in Chomosky nomal form if every prodution rules are of the following form:-

$$\label{eq:alphabeta} A {\to} BC \text{ or } A {\to} \text{ a,}$$
 where A,B,C $\in V$ and a $\in \Sigma.$

Reduction into Chomosky Normal Form

Step-1: Elimination of null productions and unit productions In this step, we eliminate the null production and unit productions from the grammar. Let the resultant grammar is $G=(V,\Sigma,S,P)$.

Step-2: Elimination of terminals from RHS if rule is not in CNF

Let $G_1 = (V_1, \Sigma, S, P_1)$ be the grammar obtained in this step.

All the productions of P which are in CNF, must also belong into P_1 and all the variables of V must also belong into V_1 .

Consider the remaining production rules.

Add the new variables into V_1 equal to the number of terminals on the right hand side of these production rules. And if the terminals are a_1, a_2, \ldots, a_n , then add variables X_1, X_2, \ldots, X_n into V_1 and add $X_1 \to a_1, X_2 \to a_2, \ldots, X_n \to a_n$ rules into P_1 .

Step-3: Restricting the number of variables on the RHS

Let $G_2 = (V_2, \Sigma, S, P_2)$ be the grammar obtained in this step.

Add all the elements of V_1 into V_2 . Add the production rules of P_1 into P_2 which are in CNF.

Consider those production rules of P_1 which are not in CNF. These production rules contains at least three elements on the right hand side.

Consider production rules $A \to X_1 X_2 X_n$, where $n \ge 3$. Then we add n-2 variable into V_2 . Let these are $Y_1, Y_2,, Y_{n-2}$. Add production rules $A \to X_1 Y_1, Y_{\to} X_2 Y_2,, Y_{n-2} \to X_{n-1} X_n$ to P_2 .

Now, the grammar G_2 is the resultant grammar which is in CNF.

Example: Reduce the following grammar into CNF:-

- (1) $S \rightarrow aAD$, $A \rightarrow aB/bAB$, $B \rightarrow b$, $D \rightarrow d$.
- (2) $S \rightarrow aAbB$, $A \rightarrow a/aA$, $B \rightarrow b/bB$.
- (3) $S \rightarrow \text{``}S/[S \supset)S]/p/q$.