

# Licenciatura Engenharia Informática e Multimédia Instituto Superior de Engenharia de Lisboa Ano letivo 2022/2023

## Sensores e Atuadores

Relatório: Trabalho Lab03 (Parte experimental)

Turma: 11D Grupo: 0

Nome: Daniel Silva Número: 50781

Nome: João Ramos Número: 50730

Nome: Miguel Alcobia Número: 50746

Data: 24 de Outubro 2022

### Objetivo:

Esta experiência teve em vista os alunos saberem ligeiramente mais complexo do que o anterior, em especial, usarão pela primeira vez potenciómetros um LDR e também um LED. Além do grau de complexidade aumentar, também desejável que os alunos percebam para que serve cada componente e qual a sua interferência no circuito.

Nesta parte experimental, compararemos os valores calculados na parte teórica com os obtidos em laboratório.

#### Material:

- · Breadboard,
- · Resistências,
- · Fonte dc da bancada,
- · Multímetro da bancada,
- · Interruptores,
- · Cabos

### Preparação teórica:



Figura 1 - Circuito montado pelos alunos

1-

R1 - 10.4 k $\Omega$ a 100%

 $R2 - 9,97 \text{ k}\Omega$ 

R3 LDR - 100 k $\Omega$  (sombra) / 1k $\Omega$  (luz)

R4 -  $100k\Omega$  (Para a experiência o potenciómetro foi posto de forma a atingir os  $10k\Omega$  para fins de comparação com os valores teóricos.)

R5 - 100 Ω

R6 - 218  $\Omega$  a 100%

D1 – LED de cor vermelha com tensão de 1.99V

3-

A montagem dos circuitos foi feita por malhas, simplesmente pelo facto de ser mais simples e deste modo haveria mais espaço de trabalhar na breadboard. Tal como referido em cima, trabalhou-se com R4 com  $10 \mathrm{k}\Omega$  como valor máximo para depois comparar com os valores antes calculados.

| Malha 1 | U (V) | I (mA) | P (mW) |
|---------|-------|--------|--------|
| R1      | 4,96  | 0,470  | 2,33   |

| Malha 2 - S1 aberto | U (V) | I (mA) | P (mW) |
|---------------------|-------|--------|--------|
| R2                  | 0,00  | 0,00   | 0,00   |
| S1                  | 4,96  | 0,00   | 0,00   |

| Malha 2 - S1 fechado | U (V) | I (mA) | P (mW) |
|----------------------|-------|--------|--------|
| R2                   | 4,96  | 0,470  | 2,33   |
| S1                   | 0,00  | 0,499  | 0,00   |

| Malha 3 - R3 min | U (V) | I (mA) | P (mW) |
|------------------|-------|--------|--------|
| R3               | 0,455 | 0,452  | 0,206  |
| R4 100%          | 4,55  | 0,452  | 2,06   |

| Malha 3 - R3 máx | U (V) | I (mA) | P (mW) |
|------------------|-------|--------|--------|
| R3               | 4,55  | 0,0454 | 0,207  |

| R4             | 0,455 | 0,0454 | 0,0207 |
|----------------|-------|--------|--------|
| N <del>4</del> | D,433 | U,U434 | 0,0207 |

| Malha 4 | U (V) | I (mA) | P (mW) |
|---------|-------|--------|--------|
| R5      | 1,01  | 9,43   | 9,52   |
| R6      | 2,00  | 9,43   | 18,9   |
| D1      | 1,99  | 9,43   | 18,8   |

Também foram feitas medidas para as várias posições dos vários potenciómetros.

| R1      | U (V) | I (mA) | P (mW) |
|---------|-------|--------|--------|
| R1 100% | 4,96  | 0,470  | 2,33   |
| R1 75%  | 4,96  | 0,353  | 1,75   |
| R1 50%  | 4,96  | 0,253  | 1,25   |
| R1 25%  | 4,96  | 0,118  | 0,585  |
| R1 0%   | 4,96  | 0,00   | 0,00   |

| R4 c/   | U (V) | I (mA) | P (mW) |
|---------|-------|--------|--------|
| R3min   |       |        |        |
| R4 100% | 4,55  | 0,452  | 2,06   |
| R4 75%  | 4,55  | 0,399  | 1,82   |
| R4 50%  | 4,55  | 0,226  | 1,03   |
| R4 25%  | 4,55  | 0,113  | 0,51   |
| R4 0%   | 4,55  | 0,00   | 0,00   |

| R4 c/   | U (V) | I (mA) | P (mW)  |
|---------|-------|--------|---------|
| R3máx   |       |        |         |
| R4 100% | 0,455 | 0,0454 | 0,0207  |
| R4 75%  | 0,455 | 0,0341 | 0,0155  |
| R4 50%  | 0,455 | 0,0227 | 0,0103  |
| R4 25%  | 0,455 | 0,0114 | 0,00519 |
| R4 0%   | 0,455 | 0,00   | 0,00    |

| R6      | U (V) | I (mA) | P (mW) |
|---------|-------|--------|--------|
| R6 100% | 2,00  | 9,43   | 18,9   |
| R6 75%  | 2,00  | 7,07   | 14,1   |
| R6 50%  | 2,00  | 4,72   | 9,44   |
| R6 25%  | 2,00  | 2,36   | 4,72   |
| R6 0%   | 2,00  | 0,00   | 0,00   |

| Malha 1 |      | (T. T.) | / A \ | 1     |      | Pexperimental (mW) |
|---------|------|---------|-------|-------|------|--------------------|
| R1      | 5,00 | 4,96    | 0,500 | 0,470 | 2,50 | 2,33               |

| Malha 2 - S1 aberto | Uteórico | Uexperimental | Iteórico | Iexperimental | Pteórico | Pexperimental |
|---------------------|----------|---------------|----------|---------------|----------|---------------|
|                     | (V)      | (V)           | (mA)     | (mA)          | (mW)     | (mW)          |
| R2                  | 0,00     | 0,00          | 0,00     | 0,00          | 0,00     | 0,00          |
| S1                  | 5,00     | 4,96          | 0,00     | 0,00          | 0,00     | 0,00          |

| Malha 2 - S1 | Uteórico | Uexperimental | Iteórico | Iexperimental | Pteórico | Pexperimental |
|--------------|----------|---------------|----------|---------------|----------|---------------|
| fechado      | (V)      | (V)           | (mA)     | (mA)          | (mW)     | (mW)          |
| R2           | 5,00     | 4,96          | 0,500    | 0,470         |          | 2,33          |
| S1           | 0,00     | 0,00          | 0,500    | 0,499         | 0,00     | 0,00          |

| Malha 3 - R3 min | Uteórico | Uexperimental | Iteórico | Iexperimental | Pteórico | Pexperimental |
|------------------|----------|---------------|----------|---------------|----------|---------------|
|                  | (V)      | (V)           | (mA)     | (mA)          | (mW)     | (mW)          |
| R3               | 0,455    | 0,455         | 0,455    | 0,452         | 0,207    | 0,206         |
| R4 100%          | 4,55     | 4,55          | 0,455    | 0,452         | 2,07     | 2,06          |

| Malha 3 - R3 máx | Uteórico | Uexperimental | Iteórico | Iexperimental | Pteórico | Pexperimental |
|------------------|----------|---------------|----------|---------------|----------|---------------|
|                  | (V)      | (V)           | (mA)     | (mA)          | (mW)     | (mW)          |
| R3               | 4,55     | 4,55          | 0,0455   | 0,0454        | 0,207    | 0,207         |
| R4 100%          | 0,455    | 0,455         | 0,0455   | 0,0454        | 0,0207   | 0,0207        |

| Malha 4 | Uteórico | Uexperimental | Iteórico | Iexperimental | Pteórico | Pexperimental |
|---------|----------|---------------|----------|---------------|----------|---------------|
|         | (V)      | (V)           | (mA)     | (mA)          | (mW)     | (mW)          |
| R5      | 0,938    | 1,01          | 9,38     | 9,43          | 8,80     | 9,52          |
| R6      | 2,06     | 2,00          | 9,36     | 9,43          | 19,3     | 18,9          |
| D1      | 2,00     | 1,99          | 9,38     | 9,43          | 18,8     | 18,8          |

# Conclusão:

Acreditamos que a experiência tenha atingido os seus objetivos, mesmo que na parte teórica tenha ocorrido alguns erros durante os cálculos. Aprendemos a trabalhar com os novos

| componentes. No início achámos o circuito muito complexo, mas ao seguir-mos o conselho do professor de montar o circuito consoante as malhas, tudo ficou mais fácil. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
| 6                                                                                                                                                                    |