Devoir surveillé n°1 MPSI 2 heures

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

EXERCICE 1.

- 1. Déterminer le terme général de la suite (u_n) de premier terme $u_0=3$ et telle que $u_{n+1}=u_n^2$ pour tout $n\in\mathbb{N}.$
- 2. Soit (u_n) la suite de premier terme $u_0=1$ et telle que $u_{n+1}=\frac{u_n}{1+u_n^2}$ pour tout $n\in\mathbb{N}$. Déterminer le sens de variation de (u_n) et montrer que (u_n) converge vers un réel à préciser.
- 3. Déterminer la limite de la suite de terme général $u_n=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+2}-\sqrt{n}}.$
- 4. Soit $n \in \mathbb{N}^*$. Calculer $S_n = \sum_{k=1}^n 2k = 2+4+6+\cdots+2n$.
- 5. Soit $n\in\mathbb{N}^*.$ Calculer $S_n=\sum_{k=1}^n2^k=2+4+8+16\cdots+2^n.$
- **6.** Mettre sous forme algébrique le complexe $z = \overline{\left(\frac{5-3i}{-2+i}\right)}$.
- 7. Mettre sous forme trigonométrique le complexe $z=-\sqrt{6}+\mathrm{i}\sqrt{2}$.
- 8. Résoudre sur $[-\pi, \pi]$ l'équation $\sin(x)\cos(x) = \frac{1}{4}$.
- **9.** Résoudre sur \mathbb{R} l'inéquation $\frac{2x+1}{x+2} \geqslant \frac{3x-1}{x+1}$.
- **10.** Résoudre sur \mathbb{R} l'inéquation $|x+3| \leq |2x-1|$.
- 11. Déterminer les variations de la fonction f telle que $f(x)=(2x^2+2x-31)e^{2x}$ pour tout $x\in\mathbb{R}$.
- 12. Déterminer les variations de la fonction f telle que $f(x) = \ln(1 + |x^2 1|)$ pour tout $x \in \mathbb{R}$.
- 13. Déterminer le nombre de solutions réelles de l'équation $2x^3 9x^2 + 12x = \frac{9}{2}$.
- 14. A l'aide de formules trigonométriques, déterminer les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

- **15.** Calculer $I = \int_0^1 \frac{2t+1}{t^2+t+1} dt$.
- **16.** Soit f la fonction telle que $f(x) = e^{\cos(2x)}\sin(2x)$ pour tout $x \in \mathbb{R}$. Déterminer une primitive de f.
- 17. Soit f la fonction telle que $f(x)=\frac{\sin(x^3)}{x}$ pour tout $x\in\mathbb{R}^*$. Déterminer la limite de f en 0.
- **18.** Soit f la fonction telle que $f(x)=\frac{e^x-1}{\sin(x)}$ pour tout $x\in\mathbb{R}\setminus\pi\mathbb{Z}$. Déterminer la limite de f en 0.
- **19.** Une urne contient $\mathfrak n$ boules numérotées de 1 à $\mathfrak n$. On tire successivement et avec remise $\mathfrak n-1$ boules de l'urne. Quelle est la probabilité d'obtenir au moins une fois la boule numéro $\mathfrak n$? Même question lorsque le tirage s'effectue sans remise.
- **20.** Un joueur tire une boule dans une urne contenant des boules numérotées de 1 à 2n. Si le numéro de la boule est pair, il *gagne* autant d'euros que le numéro inscrit sur la boule. Si le numéro est impair, il *perd* autant d'euros que le numéro inscrit sur la boule. Calculer l'espérance du gain du joueur.