MSO202A: Assignment-IV

1. Evaluate

- (a) $\int_C |z| \frac{z}{\overline{z}} dz$ where C is the clockwise oriented boundary of the part of the annulus $2 \le |z| \le 4$ lying in the third and fourth quadrants.
- (b) $\int_C \frac{1}{\sqrt{z}} dz$ where C is the counterclockwise oriented semicircular part of the circle |z| = 1 in the lower half plane and \sqrt{z} is defined such that $\sqrt{1} = -1$.
- (c) $\int_C (z-a)^m dz$, where $m \in \mathbb{Z}$ and C is the semicircle $|z-a|=r, \ 0 \leq \arg(z-a) \leq \pi$
- (d) $\int_C (z-a)^m dz$, where $m \in \mathbb{Z}$ and C is the circle $|z-a|=r, \ 0 \le \arg(z-a) \le 2\pi$
- 2. Without actually evaluating the integral, prove that
 - (a) $|\int_{\gamma} \frac{dz}{z^2 1}| \le \pi/3$, where $\gamma(t) = 2e^{it}$ for $0 \le t \le \pi/2$.
 - (b) $\left| \int_C \frac{dz}{z^2 + 1} \right| \le 2\pi/(3 2\sqrt{2})$, where C is the circle |z 1| = 1.
- 3. Let γ_1 be a semicircular path joining -1 and 1 with centre at 0 and γ_2 a rectangular path with vertices -1, -1+i, 1+i and 1. Find $\int_{\gamma_1} \bar{z} dz$ and $\int_{\gamma_2} \bar{z} dz$ (observe path dependence).
- 4. Evaluate

(a)
$$\int_{|z|=2} \frac{z}{z^2 - 1} dz$$
 (b) $\int_{|z|=2} \frac{z}{(z^2 - 1)^2} dz$ (c) $\int_{|z|=2} \frac{e^{2z}}{z(z+1)^4} dz$

5. Show that $\int_{\gamma} \frac{e^z}{z} dz = 2\pi i$, where $\gamma(t) = e^{it}$ for $0 \le t \le 2\pi$. Using this, evaluate

(a)
$$\int_0^{2\pi} e^{k\cos\theta} \cos(k\sin\theta) d\theta$$
 (b)
$$\int_0^{2\pi} e^{k\cos\theta} \sin(k\sin\theta) d\theta$$

- 6. Let $P(z) = a_0 + a_1 z + \dots + a_n z^n$. Find $\int_C P(z)/z^k dz$ where C: |z| = R and $k \in \mathbb{N} \cup \{0\}$.
- 7. Let C:|z|=2. Find the values of $\int_C z^n (1-z)^m dz$ for $m\in\mathbb{N}\cup\{0\}, n\in\mathbb{Z}$ and $n\in\mathbb{N}\cup\{0\}, m\in\mathbb{Z}$
- 8. Evaluate the integral $\int_C \frac{dz}{z(z^2+1)}$ for all possible choice of the closed contour C that does not pass through 0, i, -i.
- 9. Show that $\int_{-\infty}^{\infty} e^{-\pi x^2} e^{-2\pi x\xi} dx = e^{-\pi \xi^2}$ for $\xi \in \mathbb{R}$ by integrating $f(z) = e^{-z^2}$ along the lines of a rectangle with vertices $R, R + i\xi, -R + i\xi, -R$
- 10. Show that $\int_{|z|=2} \frac{e^{az}}{z^2+1} dz = 2\pi i \sin a$
- 11. Let $f: \mathbb{C} \to \mathbb{C}$ be a function which is analytic on $\{z \in \mathbb{C} : z \neq 0\}$ and bounded on the set $\{z \in \mathbb{C} : |z| \leq 1/2\}$. Prove that $\int_{|z|=R} f(z)dz = 0$ for every R > 0.

- 12. Show that $|\int_{|z|=R} \frac{\log z}{z^2} dz| \le 2\sqrt{2\pi} \frac{\ln R}{R}, R > e^{\pi}$.
- 13. Let $f: \mathbb{D} \to \mathbb{C}$ be an analytic function where \mathbb{D} is the open unit disk. If $d = \sup_{z,w \in \mathbb{D}} |f(z) f(w)|$, then show that $2|f'(0)| \leq d$.
- 14. Prove Mean Value Theorem: Let Ω be an open set and $f: \Omega \to \mathbb{C}$ be an analytic function. Then $f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$ for every r > 0 such that the open ball $B(z_0, r)$ is contained in Ω . Further show that if $f(z_0) = 0$ for some $z_0 \in \Omega$, then Re(f) takes both positive and negative values on the circle which is the boundary of $B(z_0, r)$ for every r > 0.
- 15. Let $f: \mathbb{C} \to \mathbb{C}$ be an analytic function such that $|f(z)| \leq A + B|z|^k$ for some $k \in \mathbb{N}$ where A > 0, B > 0. Show that f is a polynomial of degree at most k.
- 16. Let $f: \mathbb{C} \to \mathbb{C}$ be an analytic function such that $\lim_{z\to\infty} \frac{|f(z)|}{|z|} = 0$. Show that f is constant.
- 17. Let $f: \mathbb{C} \to \mathbb{C}$ be a non-constant entire function. Show that the image of the function has to necessarily meet the real axis and imaginary axis.
- 18. Let $f: \mathbb{D} \to \mathbb{D}$ be an analytic function such that f(0) = 0. Show that (a) $|f(z)| \le |z|$ for all $z \in \mathbb{C}$ and $|f'(0)| \le 1$, (b) If $|f(z_0)| = |z_0|$ for some $z_0 \in \mathbb{D}$ or |f'(0)| = 1, then there exists $c \in \mathbb{C}$ such that |c| = 1 and f(z) = cz for all $z \in \mathbb{D}$.
- 19. Let $f_j: \mathbb{C} \to \mathbb{C}$, j = 1, 2 be analytic functions such that $f_1(a_n) = f_2(a_n)$ for a bounded sequence of complex numbers. Show that the functions are same.
- 20. Find the maximum of the function |f| on $\overline{\mathbb{D}}$ (closed unit disk) for (a) $f(z) = z^2 z$ and (b) $f(z) = \sin z$.