Guiding Questions:

Guiding Questions:

1. How do we **encode relationships** between random variables?

Guiding Questions:

- 1. How do we **encode relationships** between random variables?
- 2. How do we **infer** something about one random variable given the value of another related one?

Plausibility

A,B

A > B

A ~ B

A ~ B

- Universal Comparibility Exactly one holds

- Transitivity

if
$$A \ge B$$
 and $B \ge C$ then $A \ge C$
 $P(A) > P(B)$ iff $A > B$
 $P(A) = P(B)$ iff $A > B$

What is a Random Variable?

Happy Meal

Variable
- finite set of vals
- Probability for each
val

Chipotle

Variable
-continuous/discrete
-related to other R.V.s

P(X|Y)

Filet Man

$$(\Omega, F, P)$$

$$X: \Omega \to E$$

Term Definition Coinflip Example Uniform Example

Bernoulli(0.5)

Term Definition Coinflip Example Uniform Example

 $Bernoulli(0.5) \hspace{1cm} \mathcal{U}(0,1) \\$ Term Definition Coinflip Example Uniform Example

Definition

Term

support(*X*)

Bernoulli(0.5)

 $\mathcal{U}(0,1)$

Term

support(*X*)

Definition

All the values that *X* can take

Bernoulli(0.5)

 $\mathcal{U}(0,1)$

Definition

All the values that *X*

can take

Term

support(*X*)

 $x \in X$

Bernoulli(0.5)

 $\mathcal{U}(0,1)$

Definition

All the values that *X*

can take

Term

support(*X*)

$$x \in X$$

$$X \in [0,1]$$

Bernoulli(0.5)

 $\mathcal{U}(0,1)$

Term

support(*X*)

$$x \in X$$

$$X \in [0,1]$$

Definition

All the values that *X* can take

Bernoulli(0.5)

 $\{h, t\}$ or $\{0, 1\}$

 $\mathcal{U}(0,1)$

Term

support(X)

$$x \in X$$

$$X \in [0,1]$$

Definition

All the values that *X* can take

Bernoulli(0.5)

 $\{h, t\}$ or $\{0, 1\}$

 $\mathcal{U}(0,1)$

Coinflip Example Uniform Example

[0, 1]

Term

support(X)

$$x \in X$$

$$X \in [0,1]$$

Definition

All the values that *X* can take

Bernoulli(0.5)

Coinflip Example Uniform Example

$$\{h,t\}$$
 or $\{0,1\}$

 $\mathcal{U}(0,1)$

[0, 1]

Distribution

Term

support(X)

$$x \in X$$

$$X \in [0,1]$$

Definition

All the values that X can take

Bernoulli(0.5)

 $\mathcal{U}(0,1)$

Coinflip Example Uniform Example

 $\{h,t\}$ or $\{0,1\}$

[0, 1]

Distribution

• Discrete: PMF

Continuous: PDF

Term

support(*X*)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Bernoulli(0.5)

 $\mathcal{U}(0,1)$

Coinflip Example

 $\{h, t\}$ or $\{0, 1\}$

Uniform Example

[0, 1]

Distribution

• Discrete: PMF

Continuous: PDF

Maps each value in the support to a real number indicating its probability

Term

support(*X*)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Maps each value in the support to a real number indicating its probability

Bernoulli(0.5)

Coinflip Example

$$\{h,t\} \text{ or } \{0,1\}$$

[0, 1]

 $\mathcal{U}(0,1)$

Uniform Example

Distribution

• Discrete: PMF

Continuous: PDF

P(X = 1) = 0.5

Term

$$x \in X$$

 $X \in [0,1]$

Distribution

• Discrete: PMF

Continuous: PDF

Definition

All the values that *X* can take

Maps each value in the support to a real number indicating its probability

Bernoulli(0.5)

 $\mathcal{U}(0,1)$

Uniform Example

[0, 1]

Coinflip Example

$$\{h, t\}$$
 or $\{0, 1\}$

$$\{h,t\}$$
 or $\{0,1\}$

$$P(X=1)=0.5$$

P(X) is a table

X	P(X)
0	0.5
1	0.5

support(*X*)

$$x \in X$$

$$X \in [0,1]$$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

Discrete: PMF

Continuous: PDF

Maps each value in the support to a real number indicating its probability

Bernoulli(0.5)

$$\{h,t\} \text{ or } \{0,1\}$$

$$P(X = 1) = 0.5$$

$$P(X) \text{ is a table}$$

 $\mathcal{U}(0,1)$

Coinflip Example Uniform Example

[0, 1]

P(X=1)=0.5 $p(x)=egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

Discrete: PMF

Continuous: PDF

Maps each value in the support to a real number indicating its probability

Bernoulli(0.5)

Coinflip Example

$$\{h, t\}$$
 or $\{0, 1\}$

$$P(X = 1) = 0.5$$

 $P(X)$ is a table

 $\mathcal{U}(0,1)$

$$[0,1]$$

$$P(X=1)=0.5 \qquad p(x)=egin{cases} 1 ext{ if } x\in[0,1] \ 0 ext{ o.w.} \end{cases}$$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

Discrete: PMF

Continuous: PDF

Maps each value in the support to a real number indicating its probability

Bernoulli(0.5)

Coinflip Example

$$\{h,t\} \text{ or } \{0,1\}$$

$$P(X=1)=0.5$$
 $P(X)$ is a table

 $\mathcal{U}(0,1)$

$$[0,1]$$

$$p(x) = egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X = 1) = ?$$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that *X* can take

Distribution

Discrete: PMF

Continuous: PDF

Maps each value in the support to a real number indicating its probability

Bernoulli(0.5)

 $\mathcal{U}(0,1)$

Coinflip Example

 $\{h, t\}$ or $\{0, 1\}$

$$P(X = 1) = 0.5$$

X	P(X)
0	0.5
1	0.5

$$[0,1]$$

$$P(X=1)=0.5 \qquad p(x)=egin{cases} 1 ext{ if } x\in[0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X = 1) = ?0$$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

Discrete: PMF

• Continuous: PDF

Maps each value in the support to a real number indicating its probability

Bernoulli(0.5)

Coinflip Example

$$\{h,t\} \text{ or } \{0,1\}$$

$$P(X=1)=0.5$$

 $P(X)$ is a table

X	P(X)
0	0.5
1	0.5

$$\mathcal{U}(0,1)$$

$$[0,1]$$

$$p(x) = egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X = 1) = ?0$$

$$P(X \in [a,b]) = \int_a^b p(x) dx$$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

• Discrete: PMF

Continuous: PDF

Maps each value in the support to a real number indicating its probability

Bernoulli(0.5)

Coinflip Example

$$\{h,t\} \text{ or } \{0,1\}$$

$$P(X=1)=0.5$$
 $P(X)$ is a table

X	P(X)
0	0.5
1	0.5

 $\mathcal{U}(0,1)$

Uniform Example

$$[0,1]$$

$$p(x) = egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X = 1) = ?0$$

$$P(X \in [a,b]) = \int_a^b p(x) dx$$

Expectation

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

• Discrete: PMF

Continuous: PDF

Maps each value in the support to a real number indicating its probability

Expectation

Single representative value of the random variable, "mean"

Bernoulli(0.5)

Coinflip Example

$$\{h,t\} \text{ or } \{0,1\}$$

$$P(X = 1) = 0.5$$

 $P(X)$ is a table

X	P(X)
0	0.5
1	0.5

 $\mathcal{U}(0,1)$

$$p(x) = egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X = 1) = ?0$$

$$P(X \in [a,b]) = \int_a^b p(x) dx$$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

• Discrete: PMF

• Continuous: PDF

Maps each value in the support to a real number indicating its probability

Expectation

E[X]

Single representative value of the random variable, "mean"

Bernoulli(0.5)

Coinflip Example

$$\{h, t\}$$
 or $\{0, 1\}$

$$P(X = 1) = 0.5$$

 $P(X)$ is a table

X	P(X)
0	0.5
1	0.5

 $\mathcal{U}(0,1)$

$$[0,1]$$

$$p(x) = egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X = 1) = ?0$$

$$P(X \in [a,b]) = \int_a^b p(x) dx$$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

• Discrete: PMF

• Continuous: PDF

Maps each value in the support to a real number indicating its probability

Expectation

E[X]

Single representative value of the random variable, "mean"

Bernoulli(0.5)

Coinflip Example

$$\{h, t\}$$
 or $\{0, 1\}$

$$P(X=1)=0.5$$
 $P(X)$ is a table

X	P(X)
0	0.5
1	0.5

$$E[X] = \sum_{x \in X} x P(x)$$

 $\mathcal{U}(0,1)$

$$p(x) = egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X = 1) = ?0$$

$$P(X \in [a,b]) = \int_a^b p(x) dx$$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

Discrete: PMF

Continuous: PDF

Maps each value in the support to a real number indicating its probability

Expectation

E[X]

Single representative value of the random variable, "mean"

Bernoulli(0.5)

Coinflip Example

$$\{h, t\}$$
 or $\{0, 1\}$

$$P(X = 1) = 0.5$$

 $P(X)$ is a table

X	P(X)
0	0.5
1	0.5

 $\mathcal{U}(0,1)$

$$p(x) = egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X = 1) = ?0$$

$$P(X \in [a,b]) = \int_a^b p(x) dx$$

$$E[X] = \sum_{x \in X} x P(x)$$
 $= 0.5$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

• Discrete: PMF

Continuous: PDF

Maps each value in the support to a real number indicating its probability

Expectation

E[X]

Single representative value of the random variable, "mean"

Bernoulli(0.5)

Coinflip Example

$$\{h,t\} \text{ or } \{0,1\}$$

$$P(X = 1) = 0.5$$

 $P(X)$ is a table

X	P(X)
0	0.5
1	0.5

$$egin{aligned} E[X] &= \sum_{x \in X} x P(x) \ &= 0.5 \end{aligned}$$

 $\mathcal{U}(0,1)$

$$P(X = 1) = ?0$$

$$P(X \in [a,b]) = \int_a^b p(x) dx$$

$$E[X] = \int_{x \in X} x p(x) dx$$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

• Discrete: PMF

Continuous: PDF

Maps each value in the support to a real number indicating its probability

Expectation

E[X]

Single representative value of the random variable, "mean"

Bernoulli(0.5)

Coinflip Example

$$\{h, t\}$$
 or $\{0, 1\}$

$$P(X=1)=0.5$$
 $P(X)$ is a table

X	P(X)
0	0.5
1	0.5

$$egin{aligned} E[X] &= \sum_{x \in X} x P(x) \ &= 0.5 \end{aligned}$$

$$\mathcal{U}(0,1)$$

$$[0,1]$$

$$p(x) = egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X = 1) = ?0$$

$$P(X \in [a,b]) = \int_a^b p(x) dx$$

$$egin{aligned} E[X] &= \int_{x \in X} x p(x) dx \ &= 0.5 \end{aligned}$$

Joint Distribution

Joint Distribution

Joint Distribution

\overline{X}	Υ	Z	P(X,Y,Z)
0	0	0	0.08
0	0	1	0.31
0	1	0	0.09
0	1	1	0.37
1	0	0	0.01
1	0	1	0.05
1	1	0	0.02
1	1	1	0.07

Joint Distribution Conditional Distribution

X	Υ	Z	P(X,Y,Z)
0	0	0	0.08
0	0	1	0.31
0	1	0	0.09
0	1	1	0.37
1	0	0	0.01
1	0	1	0.05
1	1	0	0.02
1	1	1	0.07

Joint Distribution

\overline{X}	Υ	Z	P(X,Y,Z)
0	0	0	0.08
0	0	1	0.31
0	1	0	0.09
0	1	1	0.37
1	0	0	0.01
1	0	1	0.05
1	1	0	0.02
1	1	1	0.07

Conditional Distribution

$$P(X \mid Y, Z)$$

Joint Distribution

\overline{X}	Υ	Z	P(X,Y,Z)
0	0	0	0.08
0	0	1	0.31
0	1	0	0.09
0	1	1	0.37
1	0	0	0.01
1	0	1	0.05
1	1	0	0.02
1	1	1	0.07

Conditional Distribution

$$P(X \mid Y, Z)$$

(Distribution - valued function)

Joint Distribution

X	Υ	Z	P(X,Y,Z)
0	0	0	0.08
0	0	1	0.31
0	1	0	0.09
0	1	1	0.37
1	0	0	0.01
1	0	1	0.05
1	1	0	0.02
1	1	1	0.07

Conditional Distribution

$$P(X \mid Y, Z)$$

(Distribution - valued function)

Joint Distribution

X	Υ	Z	P(X,Y,Z)
0	0	0	0.08
0	0	1	0.31
0	1	0	0.09
0	1	1	0.37
1	0	0	0.01
1	0	1	0.05
1	1	0	0.02
1	1	1	0.07

Conditional Distribution

$$P(X \mid Y, Z)$$

(Distribution - valued function)

$$\frac{X}{0} = \frac{P(X|Y=1,Z=1)}{0.888...}$$

Joint Distribution

\overline{X}	Υ	Z	P(X,Y,Z)
0	0	0	0.08
0	0	1	0.31
0	1	0	0.09
0	1	1	0.37
1	0	0	0.01
1	0	1	0.05
1	1	0	0.02
1	1	1	0.07

Conditional Distribution

$$P(X \mid Y, Z)$$

(Distribution - valued function)

Joint Distribution

X	Υ	Z	P(X,Y,Z)
0	0	0	0.08
0	0	1	0.31
0	1	0	0.09
0	1	1	0.37
1	0	0	0.01
1	0	1	0.05
1	1	0	0.02
1	1	1	0.07

Conditional Distribution

$$P(X \mid Y, Z)$$

(Distribution - valued function)

$$\begin{array}{c|ccccc}
X & P(X) & Y & P(Y) \\
\hline
0 & 0.85 & 0 & 0.45 \\
1 & 0.15 & 1 & 0.55 \\
\hline
\hline
Z & P(Z) \\
\hline
0 & 0.20 \\
1 & 0.80 \\
\end{array}$$

Joint Distribution

Conditional Distribution

$$P(X \mid Y, Z)$$

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules

(Burrito-level)

(Filet Minion Level: Axioms of Probability)

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules (Burrito-level)

1)

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

1) a)
$$0 \le P(X \mid Y) \le 1$$

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

1) a)
$$0 \le P(X \mid Y) \le 1$$

b)
$$\sum_{x \in X} P(x \mid Y) = 1$$

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

- 1) a) $0 \leq P(X \mid Y) \leq 1$ b) $\sum_{x \in X} P(x \mid Y) = 1$
- 2) "Law of total probability"

$$P(X) = \sum_{y \in Y} P(X,y)$$

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules (Burrito-level)

- 1) a) $0 \le P(X \mid Y) \le 1$ b) $\sum_{x \in X} P(x \mid Y) = 1$
- 2) "Law of total probability"

$$P(X) = \sum_{y \in Y} P(X,y)$$

Joint → Marginal

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules (Burrito-level)

- 1) a) $0 \leq P(X \mid Y) \leq 1$ b) $\sum_{x \in X} P(x \mid Y) = 1$
- 2) "Law of total probability"

$$P(X) = \sum_{y \in Y} P(X,y)$$

3) Definition of Conditional Probability

$$P(X \mid Y) = rac{P(X,Y)}{P(Y)}$$

Joint → Marginal

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules (Burrito-level)

- 1) a) $0 \leq P(X \mid Y) \leq 1$ b) $\sum_{x \in X} P(x \mid Y) = 1$
- 2) "Law of total probability"

$$P(X) = \sum_{y \in Y} P(X,y)$$

3) Definition of Conditional Probability

$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Joint → Marginal

Joint + Marginal → Conditional

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules (Burrito-level)

- 1) a) $0 \le P(X \mid Y) \le 1$ b) $\sum_{x \in X} P(x \mid Y) = 1$
- 2) "Law of total probability"

$$P(X) = \sum_{y \in Y} P(X,y)$$

3) Definition of Conditional Probability

$$P(X \mid Y) = rac{P(X,Y)}{P(Y)}$$

Joint → Marginal

Joint + Marginal o Conditional Marginal + Conditional o Joint $P(X,Y)=P(X|Y)\,P(Y)$

Breakout Rooms

Filse total Yourself2

Next, Answer Question: $\begin{cases} P(a|B)=1 \end{cases}$

- $P \in \{0,1\}$: Powder Day
- $C \in \{0,1\}$: Pass Clear
- 1 in 5 days is a powder day
- The pass is clear 8 in 10 days
- If it is a powder day, there is a 50% chance the pass is blocked
- What is the probability that there is a powder day and the pass is clear?
- What is the probability that the pass is blocked on a non-powder day

$$P(P=1) = 0.2 \qquad P(P=0) = 0.8$$

$$P(c=1) = 0.8 \qquad P(c=0) = 0.2$$

$$P(c=0|P=1) = 0.5 \qquad P(c=1|P=1) = (-P(c=0|P=1) = 0.5)$$

$$P(c=1, P=1) = P(c=1|P=1) P(P=1)$$

$$O.S \qquad o.Z$$

$$P(C=0|P=0) = P(C=0, P=0)$$

$$C \qquad P(C=0|P=0) = P(C=0, P=0)$$

• Know: $P(B \mid A)$ • Want: $P(A \mid B)$

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

$$P(B|A) = \frac{P(A,B)}{P(A)}$$

$$P(A|B)P(B) = P(A,B) = P(B|A)P(A)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(A|B,C) = \frac{P(B|A,C)P(A|C)}{P(B|C)}$$

Definition: X and Y are *independent* iff $\underline{P(X,Y)} = P(X) \, \underline{P(Y)}$

Definition: X and Y are *independent* iff P(X,Y) = P(X) P(Y)

Definition: X and Y are independent iff P(X,Y) = P(X) P(Y)

$$P(X|Y) = P(X)$$

Definition: X and Y are *independent* iff P(X,Y) = P(X) P(Y)

$$P(X|Y) = P(X)$$

Definition: X and Y are conditionally independent given Z iff

$$P(X,Y \mid Z) = P(X \mid Z) P(Y \mid Z)$$

Definition: X and Y are *independent* iff P(X,Y) = P(X) P(Y)

$$P(X|Y) = P(X)$$

Definition: X and Y are conditionally independent given Z iff $P(X,Y\mid Z)=P(X\mid Z)\,P(Y\mid Z)$

Guiding Questions:

Guiding Questions:

1. How do we **encode relationships** between random variables?

Guiding Questions:

- 1. How do we **encode relationships** between random variables?
- 2. How do we **infer** something about one random variable given the value of another related one?

Bayes Rule