

Charles W. Davidson College of Engineering

Department of Computer Engineering

Real-Time Embedded System
Co-Design
CMPE 146 Section 1
Fall 2024

MCU Digital Interfaces

Serial Communication

- Sending digital data one bit at a time over a communication channel
 - Contrast to parallel communication: multiple bits are sent in parallel at the same time over multiple channels
- Traditionally used for long-distance (> tens of feet) communication
 - Fewer conductors compared to parallel communication
 - Cable cost is much less
 - Cable occupies less space
 - No synchronization issue among multiple data channels
 - Crosstalk issue is not as severe due to fewer conductors
- Has become choice of communication even for short distances
 - Demand for increasing higher bandwidth makes parallel communication not practical
 - Keeping parallel channels aligned requires careful channel implementation
 - Crosstalk issue becomes more severe
 - Improvements in electronics make implementation more practical
 - Serialization and deserialization overheads much reduced
 - Much higher frequency can be used
 - Improvements in the physical materials allows higher frequencies to be used

Serial Communication (cont'd)

- Well suited for embedded applications
 - On-board chip-to-chip communication as well as off-board situations
 - Space is much limited
 - MCUs have very limited number of pins
 - Most systems are small; connectors cannot be big
 - Very high bandwidth is not needed for many applications
 - Less cost in components and cables
- Various physical media can be used for the actual transmission
 - Different characteristics in bandwidth, delay, cost, and ease of installation and maintenance
 - Guided media
 - Copper wires, optical fibers, etc.
 - Unguided media
 - Air, vacuum, water, etc.

Serial Communication Basics

We focus on digital communications using wire conductors

- Transmission means sending digital data as a series of voltage levels down a wire to a receiver
- Asynchronous vs. synchronous
 - Synchronous: both sender and receiver use the same clock signal when send to and read from the data line
 - Asynchronous: Reading of the data line is initiated by detecting a signal pattern
 - No sharing of clock signal
- Modes of transmission
 - Simplex: Data are transferred from transmitter to receiver and not vice versa
 - Half Duplex: Transmission can occur in only one direction at a time
 - Full Duplex: Transmission and reception of data can occur at the same time
 - Requires separate and independent physical data channels
- Baud Rate
 - Number of voltage level changes per unit time
 - Each level can represent multiple bits
 - For communication schemes under discussion, bit rate = baud rate

Signaling Methods

- Single-ended signaling
 - There is a reference signal (typically ground) to all signals carried on the lines
 - Both transmitting and receiving devices share the same reference
 - Noise can be picked up along the signal path
 - Using higher Logic-1 voltage or lower Logic-0 can improve noise immunity

- Differential signaling
 - There is no reference signal as in single-ended signaling
 - Each signal is carried by two wires: one is the "negative" of the other

Signaling Methods (cont'd)

- Differential signaling
 - Inherent ability to reject noise picked up along the signal path

- Wires in the pair are twisted
 - Induced voltages on both lines would be close in magnitude
- Drawbacks
 - Higher cost: Number of lines doubled
 - More circuitry

Logic Value Encoding

Two common methods to encode a logic value on a signal line

- Non-return-to-zero Encoding (NRZ non-polar)
 - Logic 1: High voltage level
 - Logic 0: Low voltage level

- Manchester Encoding
 - Logic 1: Falling voltage transition
 - Logic 0: Rising voltage transition

- A self-clocking scheme: Do not need a separate clock signal to locate data
 - A transition within a clock period indicates valid data

Logic Value Encoding (cont'd)

- Manchester Encoding
 - Easy to encode data: Data XOR clock

Drawback: Need twice of the bandwidth of NRZ

Frame

For asynchronous communication

- Data are transmitted in a well-defined frame over the media (wires)
- A frame is a stream of contiguous bits that has three parts

- Header
 - Certain bit pattern to indicate the beginning of a frame
 - May contain some additional info, e.g., destination address, data length
- Payload (data)
 - The actual information to be transferred from one device to another
- Trailer
 - Typically contains checksum to ensure data integrity
 - To create a gap to the next frame
- Receiver constantly looks for the header to identify the presence of a frame on the media

SJSU SAN JOSÉ STATE UNIVERSITY

UART

- UART (Universal Asynchronous Receiver/Transmitter)
- Asynchronous, full-duplex, NRZ
- Most basic configuration
 - Three wires: Transmit, receive and ground

- Frame
 - Start bit, data, parity bit, stop bit

- Two common encoding methods
 - TTL (Transistor-Transistor Logic): Logic 1: +5 V, Logic 0: 0 V
 - RS-232: Logic 1: −15 V to −3 V, Logic 0: +3 V to +15 V

- Universal Serial Bus (USB)
 - We will focus our discussion on USB 2.0
- Widely used for connecting peripherals devices to computers
- 1.5, 12 or 480 Mbps
- Asynchronous, half-duplex
- Four wires
 - Power: V_{BUS} (5 V)
 - Capable of delivering up to 500-mA to the peripheral
 - Ground
 - Two differential signaling lines: D+ and D-
- NRZI (Non-Return-to-Zero Inverted) encoding
 - Logic 1: Transition occurs
 - Logic 0: No transition

USB - Architecture

- Single-Master-Multiple-Slave architecture
 - Link is point-to-point
 - A hub is needed for configuration with more than one slave

- Master periodically polls slaves to check if there is a need to transmit or receive data
 - Slaves cannot initiate any transactions

USB - Transceiver

- Transceiver
 - D+ and D- can be driven and sensed independently

USB - Frame

- Frame structure
 - Start of Frame (SOF)
 - One or more transactions
 - Each transaction is made up of a series of packets
- Transaction
 - Exchange of packets between master and slave
 - Must start with a token packet followed optionally by
 - Data and/or handshake packets

USB - Packet

Packet structure

- Preceded with a synchronization (SYNC) pattern (part of header)
 - A bit pattern for receiver to synchronize with transmitter
- Ends with an End-of-Packet (EOP) pattern (part of trailer)
 - A bit pattern to indicate the end of packet
- Packet format

- PID: Packet ID, 8 bits
 - Identifies the type of packet being sent
- ADDR: Address, 7 bits, optional
 - Packet destination device address
- EP: End point address, 4 bits, optional
 - To address some portion within the device
- PAYLOAD: Data, up to 1024 bytes, optional
- CRC: checksum, 5 or 16 bits (for data packets), optional

- Packet types
 - Token packets
 - Initiate transaction, e.g., read, write, setup
 - Identify device involved in transaction
 - Always sourced by the master
 - Data packets
 - Delivers payload data
 - Sourced by master or slave
 - Handshake packets
 - Reply the transaction status or report device status
 - Sourced by receiver of data
 - Special packets
 - Facilitates bus control
 - Sourced by master

USB – Transaction Examples

- Example of write transaction
 - Three packets: Token, data and handshake

- Example of read transaction
 - Three packets: Token, data and handshake

CAN

- Controller Area Network (CAN)
- Asynchronous, half-duplex, NRZ
- Maximum data rate: 1 Mbit/s
- Typically used for connecting various standalone modules in large embedded systems
 - Widely used in industrial automation, vehicles, aircrafts, etc.
- Designed for distributed real-time control with high level of reliability
 - Data frames are prioritized for timely delivery of control messages
 - Differential signaling is adopted for handling noisy environment
- Original motivation was to save wires in automobiles
 - Facilitates communication between electronic control units (ECUs), sensors and actuators
 - ECUs communicate with each other without dedicated wiring in between

CAN - Application

Without CAN

• With CAN

CAN - Architecture

- Two-wire bus
 - Wires: CAN_H and CAN_L
- Multi-master-multi-slave architecture
 - All messages are broadcast; all nodes receive the same messages

CAN – Signaling Method

- Differential signaling
- Two logic states
 - Recessive (Logic 1): $V_{CAN H} \approx V_{CAN L} \approx 2.5 V$; $\Delta V \approx 0 V$
 - − Dominant (Logic 0): V_{CAN} H ≈ 3.5 V, V_{CAN} L ≈ 1.5 V; ΔV ≈ 2 V
 - If a node outputs a 0, the state of the bus changes to 0
 - That is, a dominant bit always overwrites a recessive bit on the bus
 - Essentially an AND operation on all individual output states

CAN - Frame

Frame structure

- SOF: Start of Frame, one bit, Logic 0
- 11-bit identifier: Priority of message
 - Lower value means higher priority
 - Also serves as node ID if RTR (see below) is 0
- RTR: Remote Transmission Request, 0 if designated node needs to reply information
- IDE: IDentifier Extension, 0 if no extension of identifier is used
- r0: Reserved bit
- DLC: Data Length Code, 4 bits, the number of bytes being transmitted
 - Nine possible values: 0, 1, 2, ..., 8
- Data: Up to 8 bytes
- CRC: Cyclic Redundancy Check (CRC) checksum on data, 16 bits
 - Includes one bit of delimiter

CAN - Frame (cont'd)

S O F	11-bit Identifier	R T R	I D E	r0	DLC	08 Bytes Data	CRC	ACK	E O F	I F S
-------------	----------------------	-------------	-------------	----	-----	---------------	-----	-----	-------------	-------------

- Frame structure (cont'd)
 - ACK: Acknowledge, 2 bits
 - Nodes set first bit to dominant (Logic 0) if no error is detected in the message
 - Second bit is a delimiter, must be 1
 - EOF: End of Frame, 7 bits, set to all 1's
 - Transmitter monitors those bits and retransmits if they are not all 1's
 - IFS: InterFrame Space, 7 bits, set to all 1's
- To ensure correct sampling up to the last bit, nodes re-synchronize data sampling clock throughout the entire frame
 - To avoid large accumulation error due to small differences of sampling clocks in various modules
 - Done on each 1-to-0 bit transition

CAN - Arbitration

Arbitration

- Relies on the scheme that outputting a 0 will force a 0 on the bus
- Each attempting master starts sending out the frame as if it's the bus master
- Compares what it drives bus and what it reads from it
- Whoever sees a mismatch stops driving the bus and just listens
- Winning master goes on to complete its transaction
 - No corruption on the message by losing nodes
- Higher-priority messages (likely with more zeros) get transmitted first

CAN – Data Sampling

- Bit sampling (when to read in a data bit)
 - A bit time slot is divided into 4 segments
 - SYNC_SEG: Synchronization segment, used for synchronization when bit changes from 1 to 0
 - PROP_SEG: Propagation segment, extra time used to compensate for the propagation delays within the network due to the line and electronics
 - PHASE_SEG1 and PHASE_SEG2: Phase segments, time buffers used to compensate for errors in the position of the beginning bit edge
 - Sample point: Point of time at which the bus level is read into bit value

