# Лекция 12

### Ilya Yaroshevskiy

# January 13, 2021

## Contents

| _ | Экспонента           1.1 Замечания о тригонометрических функциях | 1<br>1   |
|---|------------------------------------------------------------------|----------|
| 2 | Ряды Тейлора                                                     | 2        |
|   | Теория меры           3.1 Объем                                  | <b>3</b> |

## 1 Экспонента

**Теорема 1.**  $\exp(z+w) = \exp(z) \cdot \exp(w)$ 

Proof.

$$\exp(z) \cdot \exp(w) = \sum_{n=0}^{+\infty} \frac{z^n}{n!} \cdot \sum_{n=0}^{+\infty} \frac{w^n}{n!} = \sum_{n=0}^{+\infty} c_n$$
 (1)

, где 
$$c_n = \frac{1}{n!} \sum_{k=0}^n \frac{z^k}{k!} \cdot \frac{w^{n-k}}{(n-k)!} \cdot n! = \frac{(z+w)^n}{n!}$$
 (2)

$$\sum c_n = \sum \frac{(z+w)^n}{n!} = \exp(z+w)$$
(3)

Следствие 1.  $\forall z \in \mathbb{C} \quad \exp(z) \neq 0$ 

4.  $\overline{\exp(z)} = \exp(\overline{z})$ 

*Proof.*  $\overline{w_1 + w_2} = \overline{w_1} + \overline{w_2}$ 

Потому что коэффицент вещественный:

$$\overline{\sum_{n=0}^{N} \frac{z^n}{n!}} = \sum_{n=0}^{N} \frac{(\overline{z})^n}{n!} \tag{4}$$

# 1.1 Замечания о тригонометрических функциях

Пусть  $\exp(ix) = \cos(x) + i\sin(x), \ x \in \mathbb{R}$ Тогда  $\exp(-ix) = \cos(x) - i\sin(x)$ 

$$Cos(x) = \frac{\exp(ix) + \exp(-ix)}{2} \quad Sin(x) = \frac{\exp(ix) - \exp(-iz)}{2i}$$
 (5)

Следовательно:

$$Cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots \quad Sin(x) = x - \frac{x^3}{3!} + \dots$$
 (6)

Пусть  $T(x) = \exp(ix)$  Тогда T(x+y) = T(x)T(y)

$$Cos(x+y) + iSin(x+y) = (Cos(x) + iSin(x))(Cos(y) + iSin(y))$$
(7)

Cos(x + y) = Cos(x)Cos(y) - Sin(x)Sin(y)Sin(x + y) = Cos(x)Sin(y) + Sin(x)Cos(y)

$$|T(x)|^2 = T(x) \cdot \overline{T(x)} = \exp(ix) \cdot \exp(-ix) = \exp(0) = 1 \tag{8}$$

т.е.  $(\cos(x), \sin(x))$  — точка на единичной окружности

T' = iT, т.е.  $x \mapsto T(x)$  — движение по единичной окружности с единичным вектором скорости, вектор скорости  $\bot$  радуис-вектору



# 2 Ряды Тейлора

#### Все вещественно

Определение. f — разлагается в степенной ряд в окрестности  $x_0$  если:

$$\exists \varepsilon > 0 \ \exists C_n$$
 — вещественная последовательность  $\forall x \in (x_0 - \varepsilon, x_0 + \varepsilon) \ f(x) = \sum_{n=0}^{+\infty} C_n (x - x_0)^n$  (\*)

 $\Pi$ римечание. Тогда  $f \in C^{\infty}(x_0 - \varepsilon, x_0 + \varepsilon)$  по следствию

**Теорема 2** (единственности). f — разлагается в сепенной ряд в окресности  $x_0$  Тогда разложение единственно

Proof. выполняется (\*)

$$c_0 = f(x_0), \quad f'(x) = \sum_{n=1}^{+\infty} nC_n(x - x_0)^{n-1}$$
 (9)

$$c_1 = f'(x_0), \quad f''(x) = \dots$$
 (10)

$$f^{(k)}(x) = \sum_{n=k}^{+\infty} n(n-1)\dots(n-k+1)C_n(x-x_0)^{n-k}$$
(11)

$$c_k = \frac{f^{(k)}(x_0)}{k!} \tag{12}$$

**Определение.** Ряд Тейлора функции f в точке  $x_0$  — формальный ряд  $\sum_{n=0}^{+\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ 

 ${\it Примечание.}\ {\it Ряд}\ {\it Тейлора}\ {\it может}\ {\it оказаться}\ {\it сходящимся}\ {\it только}\ {\it в}\ {\it точке}\ x_0$ 

Примечание. Ряд Тейлора может сходится не туда

Пример. 
$$f(x)=\begin{cases} e^{\frac{-1}{x^2}} &, x\neq 0 \\ 0 &, x=0 \end{cases}$$
. Тогда  $f\in C^\infty(\mathbb{R})$ 

при x=0  $\forall n \ f^{(n)}(0)=0$  — мы это доказывали  $\Rightarrow$  Ряд Тейлора в  $x_0=0$  тождественно равен нулю

#### 3 Теория меры

Определение.  $\sigma$  - алгебра  $\mathfrak{A} \subset 2^X$ 

1.  $\mathfrak{A}$  — алгебра

2. 
$$A_1, A_2, \dots \in \mathfrak{A} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}$$

Примечание.  $A_1,A_2,\dots\in\mathfrak{A}$  Тогда  $\bigcap_{i=1}^\infty A_i\in\mathfrak{A}$ 

$$X \setminus \bigcap_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} (X \setminus A_i)$$

 $\Pi$ римечание.  $E\in\mathfrak{A}_{\sigma ext{-алгебра}}$  Тогда  $\mathfrak{A}_E:=\{A\in\mathfrak{A}\,\big|\,A\subset R\}$  —  $\sigma$  - алгебра подмножеств множества E

 $\Pi$ ример.  $2^X$ 

 $\Pi puмер. \,\, {
m X}$  - бесконечное множество  ${\mathfrak A}=$  не более чем счетные множества и их дополнения Аналогично примеру 2 для алгебр

*Пример.*  $X = \mathbb{R}^2 \mathfrak{A}$  — ограниченое множество и их дополнение — не  $\sigma$ -алгебра

#### 3.1 Объем

Определение.  $\mu:\mathcal{P}_{\text{полукольно}} o \overline{\mathbb{R}}$  — аддитивная функция множества, если:

- 1.  $\mu$  не должна принимать значение  $\pm\infty$  одновременно(если принимает одно на каком либо множестве, не должно принимать другое на любом другом множестве)
- 3.  $\forall A_1,\ldots,A_n\in\mathcal{P}$  дизъюнктны. Если  $A=\bigsqcup A_i\in\mathcal{P}$ , то  $\mu(A)=\sum_{i=1}^n\mu(A_i)$

Определение.  $\mu: \mathcal{P} \to \mathbb{R}$  — объем, если  $\mu \geq 0$  и  $\mu$  — аддитивная

Примечание. Если  $X \in \mathcal{P}$ ,  $\mu(X) < +\infty$ , то говорят, что  $\mu$  — конечный объем

Примечание.  $\mu$  — задано на  $\mathfrak{A}$ : свойство 3 можно заменить на 3'

3'. 
$$\forall A, B \in \mathfrak{A}, A \cap B = \emptyset \quad \mu(A \cup B) = \mu(A) = \mu(B)$$

**Обозначение.**  $\mu(A) = \mu A$ 

 $\Pi$ ример.  $\mathcal{P}^1$  — ячейки в  $\mathbb{R}$ ,  $\mu[a,b)=b-a,\ b\geq a$ 



3

$$a = x_0 < x_1 < \dots < x_n = b$$

$$[a,b) = \bigsqcup_{i=1}^{n} [x_{i-1}, x_i)$$

$$a = x_0 < x_1 < \dots < x_n = b$$

$$[a,b) = \bigsqcup_{i=1}^n [x_{i-1}, x_i]$$

$$\sum_{i=1}^n \mu[x_{i-1}, x_i) = \sum_{i=1}^n (x_i - x_{i-1}) \xrightarrow{\text{телескоп.}} x_n - x_0 = b - a = \mu[a, b)$$

 $\Pi$ ример. Классический объем в  $\mathbb{R}^m$   $\mu: \mathcal{P}^m \to \mathbb{R}$ 

$$\mu[a,b) = \prod_{i=1}^{m} (b_i - a_i)$$

 $\mu$  не является конечным объемом

Определение.  $A \subset B \Rightarrow \mu A \leq \mu B$  — монотонность объема

**Теорема 3** (о свойствах объема).  $\mu: \mathcal{P} \to \overline{\mathbb{R}}$  — объем Тогда он имеет свойства:

$$\forall A, \underbrace{A_1, A_2, \dots, A_n}_{\text{дизъюнктны}} \in \mathcal{P} \quad \bigsqcup_{i=1}^n A_i \subset A \quad \sum_{i=1}^n \mu A_i \leq \mu A$$

- 2. Конечная полуаддитивность  $\forall A,A_1,A_2,\dots,A_n\in\mathcal{P}\quad A\subset\bigcup_{i=1}^nA_i\quad \mu A\leq\sum_{i=1}^nA_i$
- 3.  $\forall A,B\in\mathcal{P}$  пусть еще известно:  $A\setminus B\in\mathcal{P},\ \mu B$  конечный Тогда  $\mu(A\setminus B)\geq \mu A-\mu B$

Примечание.

- в пунктах 1 и 2 не предполагается, что  $\bigcup A_i \in P$
- в пункте 3 если  $\mathcal{P}-$  алгебра то условие  $A\backslash B\in P$  можно убрать(оно выполняется автоматически)

Proof.

- 1. Усиление аксиомы 3 из определения полукольца:  $A\setminus (\bigcup_{i=1}^n A_i)=\bigsqcup_{l=1}^S B_l$  доказано ранее таким образом  $A=(\bigsqcup A_i)\cup (\bigsqcup B_l)$  дизъюнктное объединение конечного числа множеств  $\mu A=\sum \mu A_i+\sum B_l\geq \sum \mu A_i$
- 2. объем ⇒ конечная полуаддитивность

$$A \subset \bigcup_{\text{KOH}} A_k \mu A \le \sum \mu A_k \quad (A, A_1, \dots, A_n \in \mathcal{P})$$
 (13)

$$B_k := A \cap A_k \in \mathcal{P} \quad A = \bigcup_{\text{KOH}} B_k \tag{14}$$

Сделаем эти множества дизъюнктными

$$C_1 := B_1, \dots, C_k := B_k \setminus (\bigcup_{i=1}^{k-1} B_i) \quad A = \bigsqcup_{\text{KOH.}} C_k$$
 (15)

Но эти  $C_k$  вообще говоря  $\notin \mathcal{P}$ 

$$C_k = B_k \setminus (\bigcup_{i=1}^{k-1} B_i) = \bigsqcup_i D_{kj}, \ D_{kj} \in \mathcal{P}$$

$$\tag{16}$$

Тогда:

$$A = \bigsqcup_{k,j} D_{kj} \qquad \mu A = \sum \mu D_{kj} \tag{17}$$

При этом  $\forall k$ :

$$\sum_{j} \mu D_{kj} = \mu C_k \le \mu A_k \tag{18}$$

Неравенство в (18) в силу монотонности объема(п.1 теоремы). Итого

$$\mu A = \sum_{k} \sum_{j} \mu D_{kj} = \sum_{j} \mu C_k \le \sum_{j} \mu A_k \tag{19}$$

3. (a)  $B \subset A$   $A = B \sqcup (A \setminus B)$   $\mu A = \mu B + \mu (A \setminus B)$ 

(b) 
$$B \not\subset A$$
  $A \setminus B = A \setminus \underbrace{(A \cap B)}_{\in \mathcal{D}}$   $\mu(A \setminus B) \xrightarrow{\text{(a)}} \mu A - \mu(A \cap B) \underset{\text{MOHOT.}}{\geq} \mu A - \mu B$