

 $\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}}$

 $\exists_{x \in \Re} \exists_{y \in \Re} (x = y)$

 $\forall_x (\Re/x)$

The Foundations: Logic and Proofs

RIZOAN TOUFIQ

ASSISTANT PROFESSOR

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

RAJSHAHI UNIVERSITY OF ENGINEERING & TECHNOLOGY

Predicates and Quantifiers

Section 1.4

Section Summary

- Predicates
 - Variables
- Quantifiers
 - Universal Quantifier
 - Existential Quantifier
 - The Uniqueness Quantifier
- Quantifiers with Restricted Domains
- Precedence of Quantifiers
- Binding Variables
- Logical Equivalences Involving Quantifiers

Section Summary

- Negating Quantifiers
 - De Morgan's Laws for Quantifiers
- Translating English to Logic
- Using Quantifiers in System Specifications
- Examples from Lewis Carroll
- Logic Programming (optional)

Propositional Logic Not Enough

- If we have:
 - "All men are mortal."
 - "Socrates is a man."
- Does it follow that "Socrates is mortal?"
- Can't be represented in propositional logic.
- Need a language that talks about objects, their properties, and their relations.
- Later we'll see how to **draw inferences**.

Introducing Predicate Logic

- Predicate logic uses the following new features:
 - Variables: x, y, z
 - Predicates: P(x), M(x)
 - Quantifiers (to be covered in a few slides):
- Propositional functions are a generalization of propositions.
 - They contain **variables** and a **predicate**, e.g., P(x)
 - Variables can be replaced by elements from their domain.

Propositional Functions

• **Propositional functions** become propositions (and have truth values) when their variables are each replaced by a value from the **domain** (or **bound** by a **quantifier**, as we will see later).

A proposition, \rightarrow "x is greater than 3"

 $x \rightarrow variable$ is greater than $3 \rightarrow predicate$ (P) $P(x) \rightarrow "x$ is greater than 3"

The statement P(x) is also said to be the value of the propositional function P at x.

Examples

• Let "x + y = z" be denoted by R(x, y, z) and U (for all three variables) be the **integers**. Find these truth values:

 $R(2,-1,5) \rightarrow T/F/Not a proposition?$

Solution: F

 $R(3,4,7) \rightarrow T/F/Not a proposition?$

Solution: T

 $R(x, 3, z) \rightarrow T/F/Not a proposition?$

Solution: Not a Proposition

• Now let "x - y = z" be denoted by Q(x, y, z), with U as the integers. Find these truth values:

 $Q(2,-1,3) \rightarrow T/F/Not a proposition?$

Solution: T

 $Q(3,4,7) \rightarrow T/F/Not a proposition?$

Solution: F

 $Q(x, 3, z) \rightarrow T/F/Not a proposition?$

Solution: Not a Proposition

Compound Expressions

- Connectives from propositional logic carry over to predicate logic.
- If P(x) denotes "x > 0," find these truth values:

```
P(3) \lor P(-1) Solution: T

P(3) \land P(-1) Solution: F

P(3) \rightarrow P(-1) Solution: T

P(3) \rightarrow \neg P(-1) Solution: T
```

• Expressions with variables are not propositions and therefore do not have truth values. For example,

```
P(3) \wedge P(y)

P(x) \rightarrow P(y)
```

• When used with quantifiers (to be introduced next), these expressions (propositional functions) become propositions.

Preconditions and postconditions

- **Predicates** are also **used** to establish the correctness of computer programs.
- The statements that describe valid input are known as preconditions
- The conditions that the output should satisfy when the program has run are known as postconditions

Consider the following program, designed to interchange the values of two variables x and y.

$$temp := x$$

$$x := y$$

$$y := temp$$

Find predicates that we can use as the **precondition** and the **postcondition** to verify the correctness of this program. Then explain how to use them to verify that for all valid input the program does what is intended.

Preconditions and postconditions

Precondition \rightarrow P(x,y) predicate \rightarrow "x = a and y = b," **Postcondition** \rightarrow Q(x,y) predicate \rightarrow "x = b and y = a,"

verify

```
Suppose that the precondition P(x,y) holds. "x = a and y = b" is true.
```

First step:

temp:=x

Holds x = a, temp = a, and y = b

Second Step:

x := y

Holds x = b, temp = a, and y = b

Third Step:

y:=temp

Holds x = b, temp = a, and y = a

The **postcondition** Q(x, y) holds, that is, the statement "x = b and y = a" is true.

Quantifiers

Charles Peirce (1839-1914)

- "All men are Mortal."
- "Some cats do not have fur."

The two most important quantifiers are:

Universal Quantifier, "For all," symbol: ∀ Existential Quantifier, "There exists," symbol: 3

We write as in $\forall x P(x)$ and $\exists x P(x)$.

 $\forall x P(x)$ asserts P(x) is true for every x in the domain.

 $\exists x P(x)$ asserts P(x) is true for some x in the domain.

Universal Quantifier

- $\forall x P(x)$ is read as 'For all x, P(x)" or "For every x, P(x)" Examples:

If P(x) denotes "x > 0" and U is the integers, then $\forall x P(x) = ?$ Solution: false.

If P(x) denotes "x > 0" and U is the positive integers, then $\forall x P(x) = ?$ Solution: true.

If P(x) denotes "x is even" and U is the integers, then $\forall x P(x) = ?$ Solution: false.

Existential Quantifier

 $\exists x \ P(x) \ is \ read \ as "For some x, P(x)", \ or \ as "There is an x such that P(x)," \ or "For at least one x, P(x)."$

Examples:

If P(x) denotes "x > 0" and U is the integers, then $\exists x P(x) = ?$

Solution: true.

If P(x) denotes "x < 0" and U is the positive integers, then $\exists x P(x) = ?$

Solution: false.

If P(x) denotes "x is even" and U is the integers, then $\exists x P(x) = ?$

Solution: true.

Uniqueness Quantifier

- $\exists ! x \ P(x)$ means that P(x) is true for <u>one and only one</u> x in the universe of discourse.
- This is commonly expressed in English in the following equivalent ways:
 - "There is a unique x such that P(x)."
 - "There is one and only one x such that P(x)"
- Examples:
 - If P(x) denotes "x + 1 = 0" and U is the integers, then $\exists ! x P(x) = ?$ Solution: true.
 - But if P(x) denotes "x > 0," then $\exists ! x P(x) = ?$ Solution: false.

Quantifiers with Restricted Domains

- Used to restrict the domain of a quantifier.
- Examples:

Quantifiers with Restricted Domains

What do the statements $\forall x < 0 \ (x^2 > 0), \forall y \neq 0 \ (y^3 \neq 0), \text{ and } \exists z > 0 \ (z^2 = 2) \text{ mean, where the domain in each case consists of the real numbers?}$

"The square of a negative real number is positive."

 \rightarrow Equivalent Statement: $\forall x(x < 0 \rightarrow x^2 > 0)$

"The cube of every nonzero real number is nonzero."

 \rightarrow Equivalent Statement : $\forall y(y \neq 0 \rightarrow y^3 \neq 0)$.

"There is a positive square root of 2."

 \rightarrow Equivalent Statement : $\exists z(z > 0 \land z^2 = 2)$

Precedence of Quantifiers

The **quantifiers ∀ and ∃** have **higher** precedence than all logical operators from propositional calculus.

Binding Variables

- →When a quantifier is used on the variable x, we say that this occurrence of the variable is **bound**.
- →An occurrence of a variable that is not bound by a quantifier or set equal to a particular value is said to be **free**.

$$\exists x(x+y=1)$$

- •The variable x is **bound** by the existential quantification $\exists x$,
- •The variable y is **free**

Thinking about Quantifiers

- When the domain of discourse is finite, we can think of quantification as looping through the elements of the domain.
- To evaluate $\forall x P(x)$ loop through all x in the domain.
 - If at every step P(x) is true, then $\forall x P(x)$ is true.
 - If at a step P(x) is false, then $\forall x P(x)$ is false and the loop terminates.
- To evaluate $\exists x P(x)$ loop through all x in the domain.
 - If at some step, P(x) is true, then $\exists x \ P(x)$ is true and the loop terminates.
 - If the loop ends without finding an x for which P(x) is true, then $\exists x P(x)$ is false.
- Even if the domains are infinite, we can still think of the quantifiers this fashion, but the loops will not terminate in some cases.

Translating from English to Logic

Example 1: Translate the following sentence into predicate logic: "Every student in this class has taken a course in Java."

Solution:

First decide on the domain *U*.

Solution 1: If U is all students in this class, define a propositional function J(x) denoting "x has taken a course in Java" and translate as $\forall x J(x)$.

Solution 2: But if *U* is all people, also define a propositional function S(x) denoting "x is a student in this class" and translate as $\forall x \ (S(x) \rightarrow J(x))$.

 $\forall x (S(x) \land J(x))$ is not correct. What does it mean?

Translating from English to Logic

Example 2: Translate the following sentence into predicate logic: "Some student in this class has taken a course in Java."

Solution:

First decide on the domain *U*.

Solution 1: If U is all students in this class, translate as

 $\exists X J(X)$

Solution 2: But if *U* is all people, then translate as $\exists x (S(x) \land J(x))$

 $\exists x \ (S(x) \rightarrow J(x)) \text{ is not correct.}$ What does it mean?

Equivalences in Predicate Logic

- Statements involving predicates and quantifiers are *logically equivalent* if and only if they have the same truth value
 - for every predicate substituted into these statements and
 - for every domain of discourse used for the variables in the expressions.
- The notation $S \equiv T$ indicates that S and T are logically equivalent.
- Example: $\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$.

Thinking about Quantifiers as Conjunctions and Disjunctions

• If *U* consists of the integers 1,2, and 3:

$$\forall x P(x) \equiv P(1) \land P(2) \land P(3)$$

$$\exists x P(x) \equiv P(1) \lor P(2) \lor P(3)$$

Negating Quantified Expressions

• Consider $\forall x J(x)$

"Every student in your class has taken a course in Java."

- -J(x) is "x has taken a course in Java"
- -The domain is students in your class.
- Negating the original statement gives "It is not the case that every student in your class has taken Java." This implies that "There is a student in your class who has not taken Java."
- The negation of $\forall x \ J(x) \ is \ \exists x \ \neg J(x)$ Symbolically $\neg \forall x \ J(x) \equiv \exists x \ \neg J(x)$

De Morgan's Laws for Quantifiers

• The reasoning in the table shows that:

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

• These are important. You will use these.

Translation from English to Logic

Examples:

1. "Some student in this class has visited Mexico."

Solution: Let M(x) denote "x has visited Mexico" and S(x) denote "x is a student in this class," and U be all people.

$$\exists x \ (S(x) \land M(x))$$

2. "Every student in this class has visited Canada or Mexico."

Solution: Add C(x) denoting "x has visited Canada."

$$\forall x (S(x) \rightarrow (M(x) \lor C(x)))$$

System Specification Example

- Predicate logic is used for specifying properties that systems must satisfy.
- For example, translate into predicate logic:
 - "Every mail message larger than one megabyte will be compressed."
 - "If a user is active, at least one network link will be available."
- Decide on predicates and domains (left implicit here) for the variables:
 - Let L(m, y) be "Mail message m is larger than y megabytes."
 - Let C(m) denote "Mail message m will be compressed."
 - Let A(u) represent "User u is active."
 - Let S(n, x) represent "Network link n is state x.
- Now we have:

$$\forall m(L(m,1) \to C(m))$$

 $\exists u \, A(u) \to \exists n \, S(n, available)$

Lewis Carroll Example

- The first two are called *premises* and the third is called the *conclusion*.
 - 1. "All lions are fierce."
 - 2. "Some lions do not drink coffee."
 - 3. "Some fierce creatures do not drink coffee."

Let P(x), Q(x), and R(x) be the propositional functions "x is a lion," "x is fierce," and "x drinks coffee," respectively. Assuming that the domain consists of all creatures, express the statements in the argument using quantifiers and P(x), Q(x), and R(x).

Solution:

Logic Programming (optional)

- Prolog (from *Pro*gramming in *Log*ic) is a programming language developed in the 1970s by researchers in artificial intelligence (AI).
- Prolog programs include *Prolog facts* and *Prolog rules*.
- As an example of a set of Prolog facts consider the following:

```
instructor(chan, math273).
instructor(patel, ee222).
instructor(grossman, cs301).
enrolled(kevin, math273).
enrolled(juana, ee222).
enrolled(juana, cs301).
enrolled(kiko, math273).
enrolled(kiko, cs301).
```

- Here the predicates
 - instructor(p,c) represents "professor p is the instructor of course c."
 - enrolled(s,c) represents "student s is enrolled in course c."

- In Prolog, names beginning with an uppercase letter are variables.
- If we have apredicate teaches(p,s) representing "professor p teaches student s," we can write the rule:

```
teaches(P,S) :- instructor(P,C), enrolled(S,C).
```

• This Prolog rule can be viewed as equivalent to the following statement in logic (using our conventions for logical statements).

$$\forall p \ \forall c \ \forall s(I(p,c) \land E(s,c)) \rightarrow T(p,s))$$

- Prolog programs are loaded into a *Prolog interpreter*. The interpreter receives *queries* and returns answers using the Prolog program.
- For example, using our program, the following query may be given:

?enrolled(kevin, math273).

Prolog produces the response:

yes

• Note that the ? is the prompt given by the Prolog interpreter indicating that it is ready to receive a query.

```
The query:
   ?enrolled(X,math273).
produces the response:
   X = kevin;
    X = kiko;
    no
 The query:
      ?teaches(X, juana).
produces the response:
   X = pate1;
    X = grossman;
    no
```

- •The Prolog interpreter tries to find an instantiation for X. It does so and returns X = kevin.
- •Then the user types the ; indicating a request for another answer.
- When Prolog is unable to find another answer it returns no.

The query:
 ?teaches(chan,X).
produces the response:
 X = kevin;
 X = kiko;
no

- A number of very good Prolog texts are available. *Learn Prolog Now!* is one such text with a free online version at http://www.learnprolognow.org/
- There is much more to Prolog and to the entire field of logic programming.

Query???

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}}$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sum_{x=1}^{\infty} x = ?$$

$$\forall_{\mathbf{x}} (\Re / \mathbf{x}) = ?$$

 $\sum_{x=1}^{\infty} \frac{1}{x} = ?$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}} = ?$$

$$1 - 1 + 1 - 1 + 1 \dots = ?$$

$$\sum_{x=1}^{\infty} \frac{1}{x} = ?$$