Reaktorfizikai mérések

I. Termikus Neutronfluxus Mérés

Asztalos Bogdán, Kadlecsik Ármin, Körtefái Dóra

Mérés dátuma: 2020.03.10.

1. Bevezetés

A mérés célja a BME Tanreaktor termikus neutronfluxusának mérése. Ez kétféle módszerrel történik, először egy Dy-Al ötvözetből készült huzal besugárzásából mért β -spektrumból következtetünk a neutronfluxus eloszlására. A másik módszer során egy csupasz és egy Cd-vel borított arany-fóliát sugárzunk be, melyek aktivitás arányából az abszolút fluxus meghatározható.

2. A mérés leírása

2.1. Dy-Al huzal besugárzása

A mérés során egy 800 mm hosszú Dy-Al ötvözetből készült huzalt sugárzunk be a reaktor E6 zónájában. A Dy abszorpciós hatáskeresztmetszete a termikus neutronokra nagy, és csak azokra (ezt az állítást a későbbiekben részletesebben megvizsgáljuk). Az alumínium ötvözésre azért van szükség, mert a Dy önmagában túl rideg, és nem lehetne huzalt gyártani belőle. A besugárzás ideje 6 perc, 1 kW-os reaktorteljesítmény mellett, ezután a huzal 20 percig pihentető zónában van, hogy az 27 Al (n,γ) reakcióban keletkezett 28 Al nagy része elbomoljon (ennek felezési ideje körülbelül 2 perc).

A huzal eloszlását ezután egy léptetőmotorral ellátott szcintillációs detektorral mérjük. Ez $\Delta l=5$ mm lépésköz széles ablakokban tudja "letapogatni" a huzalból érkező beütésszámot, így készítve térbeli eloszlást. A lépésközt úgy kell ehhez hangolni, hogy mindig új rész essen az érzékeny ablakba, és ne is fedjen át korábban mért régióval. Egy ablak mérési ideje $t_m=10$ s. A 800 mm hosszú huzal teljes mérése ilyen beállítások mellett 1600 s, a Dy felezési ideje viszont $T_{1/2}^{\rm Dy}=2.334$ óra [1]. Mivel ezek összemérhetők, ez azt jelenti, hogy jelentős mennyiségű Dy fog elbomlani a mérésre váró ablakokban, mire a detektor odaér, ezért a mért adatokon bomláskorrekciót kell végezni. A felezési időből a bomlásállandó:

$$\lambda^{\rm Dy} = \frac{\ln(2)}{T_{1/2}^{\rm Dy}}.\tag{1}$$

A bomlástörvényből következik, hogy a mért N beütésszámból a bomláskorrigált N_0 beütésszám:

$$N_0 = N \cdot e^{\lambda^{\mathrm{Dy.}\Delta t}},\tag{2}$$

ahol Δt a detektor indításától számított eltelt idő. Ez az első ablakra definíció szerint nulla, így az első ablak a referenciapont a bomláskorrekcióhoz.

2.1.1. A várt eloszlás alak

Mivel a reaktor hasáb alakú, azt a Descartes-koordinátákban felírt Helmholtz-egyenlet jellemzi:

$$\Delta\Phi + B^2\Phi = 0, (3)$$

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} + B^2 \Phi = 0, \tag{4}$$

ahol B^2 a görbületi paraméter. A megoldást szorzat alakban keressük: $\Phi(x, y, z) = \alpha(x)\beta(y)\gamma(z)$. Ezt behelyettesítve azt kapjuk, hogy:

$$\frac{1}{\alpha} \frac{\partial^2 \alpha}{\partial x^2} + \frac{1}{\beta} \frac{\partial^2 \beta}{\partial y^2} + \frac{1}{\gamma} \frac{\partial^2 \gamma}{\partial z^2} + B^2 = 0.$$
 (5)

Ez az egyenlet csak úgy teljesülhet, ha az összes parciális derivált tag külön-külön egy (konvenció szerint negatív) konstans, és ezen konstansok összege éppen $B^2 = -B_x^2 - B_y^2 - B_z^2$. Ez így összesen 4 egyenlet. A huzal geometriájának megfelelően a z irányt kiválasztva:

$$\frac{\mathrm{d}^2 \gamma}{\mathrm{d}z^2} + B_z^2 \gamma = 0. \tag{6}$$

Ennek az egyenletnek az általános megoldása trigonometrikus:

$$\gamma(z) = A \cdot \sin(B_z \cdot z) + C \cdot \cos(B_z \cdot z). \tag{7}$$

Peremfeltételünk, hogy szimmetrikus tartományon szimmetrikus megoldást várunk, ezért A=0 triviálisan. A C együttható azonban nem normálható. A peremfeltétel az, hogy a tartomány határán (a) a megoldás csengjen le, azaz $C \cdot \cos(B_z \cdot a) = 0$. Mivel a C=0 fizikailag nem releváns megoldás, ezért a koszinusznak kell eltűnnie, mely esetben C tetszőleges.

Az eredmény, azaz a szabadon normálható fluxus fizikai jelentése az, hogy a reaktor bármekkora teljesítményen kritikussá tehető, hiszen $|\Phi|$ nem számít, azaz a reaktor teljesítménye bármekkora lehet, a fluxuseloszlás alakja nem fog változni.

A peremfeltételből $B_z = \frac{\pi}{2a}$ -t meghatározva a várt fluxusalak:

$$\gamma(z) = C \cdot \cos(\frac{\pi}{2a} \cdot z). \tag{8}$$

2.1.2. A mért eloszlás

Fontos megjegyezni, hogy a huzalból általunk detektált eloszlás nem egyenlő a keresett fluxus eloszlással. Utóbbi a reaktor neutronzónáját jellemzi, míg mi a huzalból származó hozamot mérjük, ami a Dy valamilyen típusú β -spektrumának felel meg. Emellett a detektornak is van egy ismeretlen hatásfoka, a huzalnak pedig egy ismeretlen önárnyékolási tényezője.

Amennyiben a reaktor homogén, a mért eloszlás arányos lesz a keresett fluxus eloszlással, így annak alakját kezelhetjük kvalitatív eredményként, azonban az arányossági tényezőben rengeteg egyéb ismeretlen paraméter játszik szerepet.

2.2. Abszolútfluxus-mérés

Az abszolútfluxus-mérése során a reaktor teljesítménye $P=10\,$ kW, a besugárzás ideje pedig pár másodperc. Csőpostán egy-egy arany és diszprózium fóliapár kerül besugárzásra. A pár egyike egyszerű aluminium borításban van csupaszon, a másik viszon Cd-borítást kapott¹. Ennek lényege, hogy a Cd a Dy-hoz hasonlóan erős neutron abszorber. Ekkor az egyes fóliák aktivitása:

$$A_{\text{csupasz}} = A_{\text{termikus}} + A_{\text{gyors}},\tag{9}$$

$$A_{\rm Cd} = 0 + A_{\rm gyors}. (10)$$

Ebből következik, hogy a termikus neutronok általi aktivitás:

$$A_{\text{termikus}} = A_{\text{csupasz}} - A_{\text{Cd}}.$$
 (11)

A fóliák beütésszámából az aktivitás meghatározható, melyből a termikus neutronfluxus kiszámolható.

A detektor egy összetett műszer, mely áll egy β -detektorból, egy γ -detektorból, és egy koincidencia számlálóból, mellyel így három mennyiséget tudunk mérni: n_{β} , n_{γ} beütésszámokat és az n_{ko} koincidenciák számát. Ezekre az alábbi összefüggések igazak [1]:

$$n_{\beta} = \eta_{\beta} \cdot A,\tag{12}$$

$$n_{\gamma} = \eta_{\gamma} \cdot k_{\gamma} \cdot A,\tag{13}$$

$$n_{ko} = \eta_{\beta} \cdot \eta_{\gamma} \cdot k_{\gamma} \cdot A, \tag{14}$$

ahol η a β és γ detektorok hatásfokai, k_{γ} a γ -vonal frekvenciája, A a másodpercenkénti bomlások száma a fóliában, azaz az aktivitás. Ez alapján levezethető, hogy:

$$A = \frac{n_{\beta} \cdot n_{\gamma}}{n_{ko}}.\tag{15}$$

¹A fóliák távolsága legalább 3 cm, hogy a csupasz "kellően csupasz legyen", és a két minta ne zavarja egymást.

Figyelembe kell venni továbbá a β detektor γ érzékenységét. Ehhez egy egy β -abszorbens réteget helyezünk a fólia fölé, majd megismételjük a mérést: az ekkor mért β beütések tisztán félreazonosított γ -k lesznek, ezzel kapjuk meg $n_{\beta\gamma}$ -t.

Egy másik szükséges korrekció még a a véletlen koincidenciák száma:

$$n_{rnd} = 2\tau n_{\beta} n_{\gamma},\tag{16}$$

ahol τ a koincidencia műszer feloldási ideje, ami egyenlő az áramkör bemenetén megjelenő jelek idejeinek összegével, mely ebben az esetben $\tau=0.5~\mu s$ -nek tekinthető [1]. Ezt figyelembe véve, az aktivitás:

$$A [Bq] = \frac{(n_{\beta} - n_{\beta\gamma}) \cdot (n_{\gamma} - h_{\gamma})}{n_{co} - n_{rnd} - n_{\beta\gamma,co}}, \tag{17}$$

ahol h_{γ} a háttérből mért γ , $n_{\beta\gamma,co}$ pedig az árnyékolt mérés során mért koincidenciák száma.

Azonban, a 12. egyenlet alapján látható, a véletlenszerű koincidenciák száma akkor lesz összemérhető az igaziakkal, ha az $A=\frac{1}{2\tau}$ feltétel igaz. A mi esetünkben ehhez 0.51 MBq aktivitás lenne szükséges. Mivel a használt forrás aktivitása ennél több nagyságrenddel kisebb, ezért ez egy elhanyagolhatóan kicsi faktor.

A kiszámolt aktivitásból következik a termikus neutronfluxus t_b besugárzási idő után[1]:

$$\Phi = \frac{1}{N_T \sigma_{\text{v.act}}(T_n) G} \frac{e^{\lambda t_b}}{1 - e^{-\lambda t_b}} [A_{\text{csupasz}}(t_b) - A_{\text{Cd}}(t_b)], \tag{18}$$

ahol N_T a target nukleonok száma:

$$N_T = \frac{m\alpha L}{A},\tag{19}$$

ahol m a minta tömege, A az izotóp tömegszáma, α az izotóp természetes előfordulása, valamint $L=6.02\cdot 10^{23}$. Az aranynak egy stabil természetes izotópja van, a ¹⁶⁴Dy természetes előfodulása pedig 28.18% [2].

Ezenkívül a 18. egyenletben a $\sigma_{\rm v,act}$ az aktivációs hatáskeresztmetszet, melynek kiszámítási módja:

$$\sigma_{\text{v,act}}(T) = \sigma_0 \frac{\sqrt{\pi}}{2} \sqrt{\frac{293 \text{ K}}{T}}.$$
 (20)

A BME reaktorára ez a mennyiség:

$$\sigma_{\text{vact}} = 86.82 \text{ barn.} \tag{21}$$

Emellett szükség van még a G önárnyékolási együtthatóra:

$$G = \frac{1 - 2E_3(d \cdot \Sigma_t)}{d \cdot \Sigma_t},\tag{22}$$

ahol d a detektor vastagsága, Σ_t a detektor makroszkopikus totális hatáskeresztmetszete, $E_3(x)$ pedig a harmadrendű exponenciális-integrál függvény. Az általunk használt detektorhoz az önárnyékolási együtthatót:

$$G = 0.94 \pm (3\%) \tag{23}$$

közelítjük.

2.2.1. Statisztikus hibák

Amennyiben a beütésszámok a Poisson-eloszlást követik, akkor az n_{rnd} elhanyagolása után a 17. egyenlet statisztikus hibája [1]:

$$\Delta A = \sqrt{(n_{\beta} + n_{\beta\gamma}) \left(\frac{n_{\gamma} - h_{\gamma}}{n_{ko} - n_{\beta\gamma,co}}\right)^{2} + (n_{\gamma} + h_{\gamma}) \left(\frac{n_{\beta} - n_{\beta\gamma}}{n_{ko} - n_{\beta\gamma,co}}\right)^{2} + (n_{ko} + n_{\beta\gamma,co}) \left(\frac{(n_{\beta} - n_{\beta\gamma})(n_{\gamma} - h_{\gamma})}{(n_{ko} - n_{\beta\gamma,co})^{2}}\right)^{2}}.$$
(24)

A termikus neutronfluxus standard relatív hibája a 18. egyenlet alapján:

$$\delta\Phi = \frac{\Delta\Phi}{\Phi} = \sqrt{\left(\frac{\Delta M}{M}\right)^2 + \frac{\Delta A_{\text{csupasz}}^2 + \Delta A_{\text{Cd}}^2}{(A_{\text{csupasz}} - A_{\text{Cd}})^2}}.$$
 (25)

2.2.2. Szisztematikus hibák

A termikus neutronfluxus statisztikus hibáját 1-2% nagyságrendben várjuk, azonban a szisztematikus hibákat nehezebb kiküszöbölni, melyek nagyságrendje a 10%-ot is elérheti. Ezek miatt végül nem beszélhetünk pontos, numerikus neutron fluxus mérésről. Helyette annak egy közelítő meghatározását tudjuk elérni, ami nagyon erősen függ a számolások során tett feltevéseinktől és különböző feltételektől.

3. Eredmények

3.1. Dy-Al huzal mérése

A mérés során a programnak meghatározott ROI a (13;513) csatornaszám tartomány volt. A mért adatok és a számolt bomláskorrekció utáni adatok láthatóak az 1. ábrán. Látható, hogy ahogy haladunk az egyre nagyobb hossz felé és ezzel telt az idő, egyre jelentősebb a korrekció mennyisége.

Az elméletben levezetett 8. egyenlet alapján a (250; 550) mm tartományra illesztett illesztett görbe egyenlete:

$$y(x) = C \cdot \cos(\frac{\pi}{2a} \cdot x + b) + d, \tag{26}$$

az illesztési paraméterek pedig:

$$a = (311.265 \pm 98.3) \frac{1}{\text{mm}}$$
 (27)

$$b = -2.14078 \pm 0.6757 \tag{28}$$

$$C = 51483.5 \pm 3.084 \cdot 10^4 \tag{29}$$

$$d = 0.400276 \pm 3.09 \cdot 10^4 \tag{30}$$

Fluxusmeres eloszlasa Bomlaskorrigalt adatok + Mert adatok × Illesztett gorbe 40000 20000 10000

1. ábra: A mért beütésszám-eloszlás és a csupasz (250; 550) mm-es tartományra illesztett koszinusz görbe.

400

L[mm]

500

300

3.2. Abszolútfluxus-mérés

3.2.1. Mérési adatok

0

100

200

A deketorból leolvasott adatok láthatóak az 1. táblázatban. A fóliák egyéb szükséges adatai:

$$m^{\text{Au}} = (5.47 \pm 0.16) \text{ mg},$$
 (31)

$$m^{\rm Dy} = (16.26 \pm 0.49) \text{ mg},$$
 (32)

$$t_b^{\text{Au}} = 40 \text{ s},$$
 (33)

700

800

600

$$t_b^{\rm Dy} = 10 \text{ s}, \tag{34}$$

Az adatokra a 2. egyenletnek megfelelően bomláskorrekciót kell számolni a Dy és Au bomlásállandóival a kiolvasási időnek megfelelően, a besugárzás befejezésének idejét (9:44) referenciának választva. Ezeket elvégezve a korrigált adatok láthatóak a 2. táblázatban.

A bomláskorrigált adatokból a véletlen koincidenciák elhanyagolása után a 17. egyenlet alapján az aktivitások a 33. egyenletben feltüntetett besugárzási idők után:

$$A_{\text{Au,csupasz}} = (3.3812 \pm 0.0471) \cdot 10^6 \text{ Bq},$$
 (35)

$$A_{\text{Au,Cd}} = (5.22303 \pm 0.19518) \cdot 10^5 \text{ Bq},$$
 (36)

$$A_{\text{Dy,csupasz}} = (5.3521 \pm 0.3799) \cdot 10^7 \text{ Bq},$$
 (37)

$$A_{\rm Dy,Cd} = (2.0973 \pm 6.5926) \cdot 10^6 \text{ Bq},$$
 (38)

ahol a hiba a 24. egyenlet alapján lett számolva. A kapott nagyságrend alapján látható, hogy a fóliák 20 perces pihentetése a besugárzás után valóban szükséges intézkedés.

Minta	n_{ko}	n_{β}	n_{γ}	Kiolvasás ideje
Háttér	5	45	1387	-
Dy(Cd)	2	5541	1403	10:23
Dy(Cd)+árnyék	6	46	1486	10:27
Dy(csupasz)	196	1021262	8785	10:30
Dy(csupasz)+árnyék	12	1127	8715	10:33
Au(csupasz)	5681	270380	72159	10:37
Au(csupasz)+árnyék	16	2331	73169	10:40
Au(Cd)	801	40537	11636	10:43
Au(Cd)+árnyék	3	353	11879	10:46

Az abszolútfluxus-mérés adatai. A deketor feszültsége 1 kV volt. A besugárzás befejezésének időpontja 9:44.

Minta	n_{ko}	n_{eta}	n_{γ}
Dy(Cd)	2.425	6720.824	1701.735
Dy(Cd)+árnyék	7.423	56.910	1838.449
Dy(csupasz)	246.114	1282386.024	11031.215
Dy(csupasz)+árnyék	15.293	1436.330	11107.026
Au(csupasz)	5735.033	272951.649	72845.321
Au(csupasz)+árnyék	16.160	2354.431	73904.517
Au(Cd)	809.485	40966.435	11759.267
Au(Cd)+árnyék	3.033	356.930	12011.276

2. táblázat: Az bomláskorrigált beütésszámok.

3.3. A fóliák aktivitás aránya

Hasonlítsuk össze a fóliapárok aktivitás arányát:

$$\frac{A_{\text{Au,csupasz}}}{A_{\text{Au,Cd}}} = 0.154 \tag{39}$$

$$\frac{A_{\text{Au,csupasz}}}{A_{\text{Au,Cd}}} = 0.154$$

$$\frac{A_{\text{Dy,csupasz}}}{A_{\text{Dy,Cd}}} = 0.039$$
(39)

Láthatjuk, hogy az arany esetében a csupasz és Cd-vel bevont fóliák közt egy nagyságrenddel nagyobb az arányos különbség, mint Dy esetén. Ebből is látható, hogy a Dy valóban csak termikus neutronokra érzékeny, és a Dy-huzal mérése során felesleges lett volna egy Cd borítású huzal a gyors neutronok kezelésére.

3.4. Abszolút-fluxus számolása az Au fóliapárból

A fluxus kiszámításához szükség van a mintában található target atomok számára, melyet a 19. egyenlet alapján számítunk ki a minták tömege, az izotópok tömegszáma és előfordulási aránya alapján:

$$N_T^{\text{Au}} = 4.943 \cdot 10^{16}. (41)$$

(42)

Mivel a számolás során csak a tömegmérés hibája ismert, ezért a target nukleonok számának hibáját is $\sim 3\%$ -ra tehetjük. A kiszámolt aktivitásokból, a target nukleonok számából és a megadott adatokból az abszolút-fluxus a 18. egyenlet alapján:

$$\Phi = (2.3805 \pm 0.0831) \cdot 10^{-8} \frac{\text{Bq}}{\text{barn}},$$
(43)

ahol az eredmény hibája a 25. egyenletből 3.5%-nak adódik, de tudjuk, hogy a 2.2.2. fejezetben tárgyalt szisztematikus hibák miatt az eredmény csak a feltevéseinknek megfelelő közelítések erejéig pontos.

4. Összefoglalás

Összességében sikeresen megvizsgáltuk a Dy-huzal beütésszám eloszlása alapján a fluxus eloszlást, és a kapott eredmény jól illeszkedik az elméletből levezethető alakra (a csupasz tartományon).

Az abszolútfluxus-mérése során az Dy-fóliapár aktivitás arányából láthattuk, hogy a huzal mérése során szükségtelen lett volna a Cd borítás, mivel a Dy valóban a termikus neutronokra érzékeny.

Az arany fóliapár vizsgálatával meghatároztuk az abszolút-fluxust a szisztematikus hibák erejéig. Ezek közül a legfontosabbak:

- Az önárnyékolási tényező nehezen számolható mennyiség. Ennek oka egyrész az, hogy a 22. képlet csak közelítő (különösen a kadmiumborítású fólia esetében), másrészt bonyolult kiszámítani a képletben szereplő hatáskeresztmetszetet.
- Csak számításból ismerjük a képletekbe helyettsítendő neutronspektrumot, az arány hatáskeresztmetszét csak véges pontossággal ismerjük.
- A bomlási állandókat csak véges pontossággal ismerjük. Ennek hatása azonban legfeljebb ezrelékes nagyságrendű (pl. a 198 Au felezési ideje [1] alapján: 2.6948 ± 0.0012 nap). További pontatlanság, hogy az aktiválási tényező feltételezi, hogy az aktiválás kezdetén a minta pillanatszerűen kerül a besugárzási pozícióba, majd onnan vissza.

Végeredményben látjuk, hogy a neutronfluxust numerikusan csak közelítőleg tudtuk meghatározni, mely eredmény erősen függ a kiértékelésben tett feltevésektől.

Hivatkozások

```
[1] Mérésleírás
```

http://atomfizika.elte.hu/haladolabor/docs/NeuFluxEN.pdf https://fizipedia.bme.hu/index.php/

 $Termikus_neutronfluxus_meghatározása_aktivációs_módszerrel$

[2] https://hu.wikipedia.org/wiki/Diszprózium https://hu.wikipedia.org/wiki/Arany (kémiai elem)