#### Iterativna lokalna pretraga

Aleksa Voštić, Lazar Perišić, Anđela Križan, Anđela Janošević

> Matematički fakultet Univerzitet u Beogradu

> > Beograd, 2020.

#### Uvod

Ideja iza iterativne lokalne pretrage Implementacija iterativne lokalne pretrage Primene iterativne lokalne pretrage Efektivnost i efikasnost ILS algoritma Zakliučak

#### Uvod

- Metaheurističke metode za rešavanje teških optimizacionih problema
- Prilikom dizajniranja metaheuristike, poželjno je da bude jednostavna, efikasna, opšte namene
- Idealan slučaj je kada se metaheuristika može koristiti bez ikakvog znanja o zavisnosti od problema
- Znanje specifično za problem mora biti inkorporirano u metaheuristiku da bi se dostiglo vrhunsko stanje
- Pokušavamo da dekomponujemo metaheuristički algoritam na nekoliko delova:
  - potpuno opšti namenski deo
  - svako znanje specifično za problem ugrađeno u metaheuristiku bilo bi odvojeno u drugi deo

#### Uvod

- Iterativna lokalna pretraga pruža jednostavan način da se zadovolje svi ovi zahtevi
- Suština iterativne lokalne pretrage je da se izbegne zaglavljivanje u lokalnom minimumu tako što u više iteracija primenjuje lokalnu pretragu na novo generisano početno rešenje
- Ova ideja ima dugu istoriju, a njeno ponovno otkriće od strane mnogih autora dovelo je do mnogo različitih imena za iterativnu lokalnu pretragu poput iterativnog spusta, Markovljevi lanci velikog koraka, iterativni Lin-Kernigan, lančana lokalna optimizacija...

# ldeja iza iterativne lokalne pretrage

Koristimo samo podskup rešenja, dobijen od lokalne pretrage

#### Algoritam 1 Iterativna lokalna pretraga

```
s<sub>0</sub> = GenerišiPočetnoRešenje()
s* = LokalnaPretraga(s<sub>0</sub>)
repeat
s' = Perturbacija(s*, istorija)
s*' = LokalnaPretraga(s')
s* = KriterijumPrihvatanja(s*, s*', istorija)
until NIJE ZADOVOLJEN USLOV ZAUSTAVLJANJA<sup>1</sup>
return NAJBOLJE REŠENJE
```

# Ideja iza iterativne lokalne pretrage



- Početno rešenje
- Lokalna pretraga
- Perturbacija
- Kriterijum prihvatanja



### Početno rešenje i Perturbacija

#### Početno rešenje

- Najmanje uticaja na algoritam
- Metoda slučajnog izbora
- Metoda pohlepne heuristike

#### Perturbacija

- Veoma važna komponenta algoritma
- Služe da se pobegne od lokalnog optimuma
- Snaga perturbacije
- Adaptivne perturbacije



# Kriterijum prihvatanja i Lokalna pretraga

#### Kriterijum prihvatanja

- Prihvati svako rešenje
- Prihvati samo bolje rešenje

#### Lokalna pretraga

- Poznavanje implementacije može nam pomoći prilikom optimizacije ILS
- Najčešće važi da što je bolja pretraga to je bolji ILS
- Mnogo različitih algoritama se koristi kao lokalna pretraga

Problem trgovačkog putnika Problemi raspoređivanja

### Primene iterativne lokalne pretrage

Algoritmi iterativne lokalne pretrage su uspešno primenjeni u raznim kombinatornim optimizacionim problemima. Neki od njih su:

- problem trgovačkog putnika (eng. travelling salesman problem) tj.
   TSP
- problem rasporeda na jednoj mašini pomoću ukupnog kašnjenja sa težinskim koeficijentima (eng. single machine total weighted tardiness problem) tj. SMTWTP
- problem rasporeda n proizvoda na m mašina (eng. flow shop problem) tj. FSP
- problem raspoređivanja poslova (eng. job shop scheduling problem) tj. JSSP



# Problem trgovačkog putnika

Za dat skup gradova i cena putovanja između njih, naći najjeftiniju rutu koja obilazi svaki grad tačno jednom, i vraća se u početni grad.

- Verovatno najpoznatiji kombinatorni optimizacijski problem
- Služi za testiranje izrade novih ideja algoritama, dobre performanse na ovom problemu su dokaz vrednosti takvih ideja
- Baum je prvi testirao svoju metodu ponovljenog spusta na TSP, koristio je tehniku 2-opt kao heuristiku, nasumične 3-promene kao perturbacije, nezadovoljavajući rezultati
- Algoritam Large-step Markov chain(tj. LSMC) doneo poboljšanja, korišćeno simulirano kaljenje kao optimizacija i Lin-Kernighan (tj. LK) heuristika. Autori Martin, Otto i Felten

# Problem trgovačkog putnika

- D.S.Johnson koristio LK kao lokalnu pretragu, naziv algoritma "iterated Lin-Kernighan"
- Applegate, Bixby, Chivatal i Cook implementirali lančani LK, vršili testove na instancama do 25 miliona gradova, zaključili su da najbolje performanse daje između ostalog i pohlepna heuristika
- Katayama i Narisha u svoj algoritam uveli su novi mehanizam perturbacije-genetska transformacija koji koristi 2 obilaska
- Iterativni LK koji koristi genetsku transformaciju umesto standardnog dvostrukog mosta pokazao je bolje rezultate

### Flow shop problem



- Početno rešenje se generiše uz pomoć NEH heuristike.
- Perturbacija se generiše pomoću dva različita tipa poteza:

$$\bullet \quad \pi = (\pi(1),...,\pi(i),\pi(i+1),...,\pi(n)) \rightarrow \pi\prime = (\pi(1),...,\pi(i+1),\pi(i),...,\pi(n))$$

• 
$$\pi = (\pi(1), ..., \pi(i), ..., \pi(j), ..., \pi(n)) \rightarrow \pi' = (\pi(1), ..., \pi(j), ..., \pi(i), ..., \pi(n))$$

 Kriterijum prihvatanja: može se uvek birati stanje koje je bolje i da se ono zadrži, ili napredniji slučaj koji analizira novo stanje i prihvata ga korišćenjem odgovarajuće verovatnoće.

2.81 (4.42)

7.15 (4.38)

# Efektivnost i efikasnost ILS algoritma

% Vremenskog uvećanja u odnosu na optimalno rešenje =

$$\frac{Alg_{rez}-Opt_{rez}}{Opt_{rez}}\cdot 100$$

| Problem | SAOP         | SPIRIT        | GAChen       | GAMIT         | ILS           |
|---------|--------------|---------------|--------------|---------------|---------------|
| 20x5    | 1.39 (≤0.5)  | 5.22 (≤0.5)   | 3.82 (≤0.5)  | 4.21 (≤0.5)   | 0.24 (4.01)   |
| 20×10   | 2.66 (≤0.5)  | 5.86 (≤0.5)   | 4.89 (≤0.5)  | 5.40 (≤0.5)   | 0.77 (4.09)   |
| 20×20   | 2.31 (≤0.5)  | 4.58 (≤0.5)   | 4.17 (0.60)  | 4.53 (≤0.5)   | 0.85 (4.63)   |
| 50x5    | 0.69 (≤0.5)  | 2.03 (≤0.5)   | 2.09 (0.77)  | 3.11 (≤0.5)   | 0.12 (6.38)   |
| 50×10   | 4.25 (0.60)  | 5.88 (0.52)   | 6.60 (1.00)  | 8.38 (0.52)   | 2.01 (9.94)   |
| 50×20   | 5.13 (1.04)  | 7.21 (0.97)   | 8.03 (1.45)  | 10.65 (0.96)  | 3.29 (11.82)  |
| 100x5   | 0.40 (0.60)  | 1.06 (0.53)   | 1.32 (1.79)  | 5.41 (0.52)   | 0.11 (15.31)  |
| 100×10  | 1.88 (1.10)  | 5.07 (1.03)   | 3.75 (2.26)  | 12.05 (1.02)  | 0.66 (18.79)  |
| 100×20  | 5.21 (2.09)  | 10.15 (2.00)  | 7.94 (3.24)  | 18.24 (1.99)  | 3.17 (24.04)  |
| 200×10  | 1.56 (2.29)  | 9.03 (2.25)   | 2.70 (5.97)  | 7.52 (2.20)   | 0.49 (33.73)  |
| 200×20  | 4.83 (4.59)  | 16.17 (4.51)  | 7.07 (8.18)  | 15.35 (4.50)  | 2.74 (41.80)  |
| 500×20  | 3.40 (39.48) | 13.57 (39.70) | 4.61 (55.30) | 12.17 (37.82) | 1.29 (192.03) |

4.75 (6.77)

8.92 (4.21)

### Zaključak

- ILS poseduje mnoge poželjne karakteristike metaheuristike: jednostavan je, lagan za implementaciju, robustan i veoma efikasan
- Suštinska ideja ILS-a leži u fokusiranju pretraživanja ne na celokupnom prostoru rešenja, već na manjem potprostoru koji je definisan rešenjima koja su lokalno optimalna za datu optimizaciju
- Koliko će se ovaj pristup pokazati efikasnim, uglavnom zavisi od izbora lokalne pretrage, perturbacija i kriterijuma prihvatanja
- Zbog svojih karakteristika verujemo da je ILS obećavajući i moćan algoritam za rešavanje stvarnih kompleksnih problema

#### Literatura

- Gendreau, Michel and Potvin, Jean-Yves Handbook of metaheuristics 2010.
- R. Lourenço, Helena and Martin, Olivier and Stützle, Thomas A beginner's introduction to Iterated Local Search 2001.
- den Besten, Matthijs and Stützle, Thomas and Dorigo, Marco Design of Iterated Local Search Algorithms 2001.
  - Helena R. Lourenço
    Job-shop scheduling: Computational study of local search and large-step optimization methods
    1995.