Enro	11 '	No	

MARWADI UNIVERSITY

MU-FOT

Date: 25-Aug-2021

ICT-FOT1 (MU)

Semester 3 - Winter

Subject : SS (01CT0302)

Total Marks: 30 Time: 1 Hours 15 Minutes

Instructions:

1. Attempt all questions.

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

Que.1 Answer the following questions.

(A)

[6]

- Determine whether continuous time LTI system with impulse response $h(t) = e^{-4t}u(t-2)$ is stable or not.
- (2) What is meant by linear system?
- (3) Define invertible system.
- (4) Prove that $\delta[n] = u[n] u[n-1]$.
- (5) Distinguish between energy and power signal.
- (6) Define Nyquist rate and Nyquist interval.

Que.2

(A) Sketch the following signals: [6]
(i) u(-t+2), (ii) -2u(t+2) and (iii) 2r(t-2)

(B) Calculate and plot response of LTI system with impulse response h(t) = u(t) for input $x(t) = e^{-at}u(t), a > 0$. [6]

OR

(B) Draw block diagram representations for causal LTI systems described by following differential equations: [6] i. y(t) = -(1/2)(dy(t)/dt) + 4x(t) ii. (dy(t)/dt) + 3y(t) = x(t)

Que.3

- (A) Determine whether following statements concerning LTI systems are True or False: [8]
 - i. If h(t), impulse response of LTI system is periodic and non-zero then the system is unstable.
 - ii. The inverse of a causal LTI system is always causal.
 - iii. If LTI system is causal, it is stable.
 - iv. A continuous time LTI system is stable if and only if its step response s(t) is absolutely integratable.
- (B) Define Signal. With example explain classification of signal in detail.

- (A) Discuss Aliasing and demonstate solution for Aliasing during sampling and reconstruciton. [8]
- (B) Discuss properties of continuous time LTI systems. [4]

---Best of Luck---

MARWADI UNIVERSITY MU-FOT ICT-FOT1 (MU)

Semester 3 - Winter

Subject : SS (01CT0302)

Total Marks: 30

Date: 25-Aug-2021

Time: 1 Hours 15 Minutes

Difficulty Level	Weightage		No of Question	Total Marks	Question List	
	Recommended	Actual	140 of Question	Total Marks	Question List	
High	20	29.17	2	14	2(B), 3(A)	
Low	20	20.83	3	10	1(A), 3(A)	
Medium	60	50.00	8	24	1(A), 2(A), 2(B), 3(B)	

Module Name	Weight Recommended	age Actual	No of Question	Total Marks	Question List
Continuous time and discrete time signals and systems	50	45.83	7	22	1(A), 2(A), 3(A), 3(B)
Analysis of Continuous Time Signals and Systems	50	54.17	6	26	1(A), 2(B), 3(A), 3(B)

Blooms Taxonomy	Weightage Recommended Actual		No of Question	Total Marks	Question List
Remember / Knowledge	20	2.08	1	1	1(A)
Understand	30	12.50	3	6	1(A), 3(B)
Apply	25	37.50	3	18	2(B), 3(A), 3(B)
Analyze	15	20.83	3	10	1(A), 3(A)
Evaluate	10	27.08	3	13	1(A), 2(A), 2(B)
Higher order Thinking	0	0.00	0	0	

