Problem 1. Locate all relative maxima, relative minima, and saddle points for $f(x, y) = x^3 - 9xy + y^3$. (Use the second derivatives test to identify the type of each critical point.)

Solution. We first find critical points solving the equations $f_x = 3x^2 - 9y = 0$ and $f_y = -9x + 3y^2 = 0$. We obtain from the first equation that $y = \frac{x^2}{3}$, and then substitute this y to the second equation: $-9x + \frac{x^4}{3} = 0$, or equivalently, $-27x + x^4 = 0$, i.e., $x(x^3 - 27) = 0$. We obtain from here that either x = 0 or x = 3, and y = 0 or y = 3 respectively. Thus f(x,y) has two critical points: (0,0) and (3,3). Now compute the second derivatives: $f_{xx} = 6x$, $f_{xy} = f_{yx} = -9$, $f_{yy} = 6y$. We also have $D(x,y) = f_{xx}f_{yy} - f_{xy}^2 = 36xy - 81$. Next, D(0,0) = -81 < 0, therefore (0,0) is a saddle point. $f_{xx}(3,3) = 18 > 0$ and D(3,3) = 243 > 0, therefore (3,3) is a point of relative minimum.

Problem 2. Find the absolute maximum and the absolute minimum of $f(x,y) = x^2 + 2y^2 - x$ on the closed disk $x^2 + y^2 \le 4$.

Solution. We start with finding critical points of f(x,y) inside the disk. We have $f_x = 2x - 1 = 0$ and $f_y = 4y = 0$ for $x = \frac{1}{2}$ and y = 0. Thus, there is only one critical point inside the disk: $P_1(\frac{1}{2},0)$. Next, consider the function f(x,y) restricted to the boundary of the disk, the circle $x^2 + y^2 = 4$. We plug in $y^2 = 4 - x^2$ into the expression for f(x,y) and obtain the function

$$\phi(x) = x^2 + 2(4 - x^2) - x = x^2 + 8 - 2x^2 - x = -x^2 - x + 8.$$

This function is defined on the closed interval [-2,2]. We first find the critical points of $\phi(x)$ inside the interval: $\phi'(x) = -2x - 1 = 0$ at $x = -\frac{1}{2}$. We have that the corresponding y takes the values

$$y = \pm \sqrt{4 - \left(-\frac{1}{2}\right)^2} = \pm \frac{\sqrt{15}}{2}.$$

Therefore, there are two more points of the closed disk where the absolute extrema may occure: $P_2(-\frac{1}{2},\frac{\sqrt{15}}{2})$ and $P_3(-\frac{1}{2},-\frac{\sqrt{15}}{2})$. In addition, $\phi(x)$ may take the extremal values at x=-2 and x=2. The corresponding value of y is $y=\sqrt{4-(\pm 2)^2}=0$ for both points. Thus we add two more suspicious points, $P_4(-2,0)$ and $P_5(2,0)$. In order to find the absolute extrema, we evaluate f(x,y) at the points P_1,P_2,P_3,P_4 , and P_5 , and find the largest and smallest values. We have $f(\frac{1}{2},0)=-\frac{1}{4}$, $f(-\frac{1}{2},\pm\frac{\sqrt{15}}{2})=\frac{33}{4}$, f(-2,0)=6, f(2,0)=2. Therefore, f(x,y) has

the absolute minimum at $P_1(\frac{1}{2},0)$ which is equal to $-\frac{1}{4}$, and the absolute maximum at $P_2(-\frac{1}{2},\frac{\sqrt{15}}{2})$ and $P_3(-\frac{1}{2},-\frac{\sqrt{15}}{2})$ which is equal to $\frac{33}{4}$.