Seminar 8

- 1. Prove that for any $x, y \in \mathbb{R}^n$ the following identities hold:
 - (a) $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$ (the parallelogram identity).
 - (b) $\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 \|x y\|^2).$
- 2. \bigstar For $x, y \in \mathbb{R}^n$ prove that the following statements are equivalent:

(a) $\langle x, y \rangle = 0$.

(b) ||x + y|| = ||x - y||. (c) $||x + y||^2 = ||x||^2 + ||y||^2$.

- 3. Find the orthogonal projection of a vector $v \in \mathbb{R}^2$ onto a vector $a \in \mathbb{R}^2$.
- 4. Show that $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is a rotation matrix with angle θ in \mathbb{R}^2 .
- 5. Consider the *p*-norm $||x||_p := (|x_1|^p + \ldots + |x_n|^p)^{\frac{1}{p}}, p \ge 1 \text{ and } ||x||_{\infty} := \max\{|x_1|, \ldots, |x_n|\}.$ Draw the unit ball in \mathbb{R}^2 for the *p*-norm with $p \in \{1, 2, \infty\}.$
- 6. \bigstar [Python] Represent the unit ball in \mathbb{R}^2 for the p-norm with $p \in \{1.25, 1.5, 3, 8\}$ by random sampling and plotting the points that are inside the unit ball.
- 7. Find the interior, the closure and the boundary for each of the following sets:

(a) $[0,1) \times (1,2]$.

(c) $\{(x,y) \in \mathbb{R}^2 \mid |x| + |y| < 1\}.$

(b) $\{(x,y) \in \mathbb{R}^2 \mid |x| < |y|\}.$

(d) $\{(x,y) \in \mathbb{R}^2 \mid (x-1)^2 + y^2 \le 1, x \le 1\}.$

8. Draw the level sets $L_c = \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = c\}$ and sketch the graph for the following.

(a) f(x,y) = x + y and $c \in \{0, \pm 1\}$. (b) $f(x,y) = 2x^2 + y^2$ and $c \in \{0, 1, 4\}$. (c) $f(x,y) = \sqrt{x^2 + y^2}$ and $c \in \{0, 1, 2\}$. (d) $f(x,y) = x^2 - y^2$ and $c \in \{0, \pm 1\}$.