Лабораторная работа № 6 ДО

ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ И ЕГО ПРИМЕНЕНИЕ

4. Рабочее задание.

4.1. Собрать схему для получения амплитудной и амплитудно-частотной характеристик операционного усилителя.

4.2. Снять амплитудную характеристику операционного усилителя — зависимость $U_{\text{вых}}(U_{\text{вх}})$. Для активного участка характеристики определить коэффициент усиления дифференциального напряжения $K_{uд}$. Определить также напряжение смещения $U_{\text{см}}$ и допустимые пределы изменения выходного напряжения $U_{\text{вых макс}}$ и $U_{\text{вых мин}}^-$.

$$U_{\text{CM}} = -19.252 \text{ мкВ}$$
 $Ku_{\text{Д}} = \frac{\Delta U_{\text{Вых}}}{\Delta U_{\text{Bx}}} = \frac{2.3564 - 0}{-5.6497 * 10^{-6} + 19.252 * 10^{-6}} = \frac{2.3564}{13.6023 * 10^{-6}}$
 $= 0.1732 * 10^6 = 173200$
 $LK(\text{ДБ}) = 20 lgK = 20 lg(173200) \approx 104.771$

K_{u д	$U_{ ext{cm}}$ мк B	$U^{\scriptscriptstyle +}_{\scriptscriptstyle m BMX\ Makc},{ m B}$	U^- вых мин, ${ m B}$
0.1732	-19.252	14.532	-14.592

4.3. Снять амплитудно-частотную характеристику операционного усилителя $K_{u_{\rm I}}(f)$. По характеристике определить коэффициент усиления дифференциального напряжения $K_{u_{\rm I}}$ при f=0, граничную частоту $f_{\rm B}$ и частоту единичного усиления $f_{\rm I}$.

$K_{u{f I}}$	$f_{ exttt{ iny B}},$ Гц	f_1 , М Γ ц
104.634	5.651	0.853

4.4. Собрать схему неинвертирующего усилителя с параметрами, рассчитанными в подготовке к работе. На вход подать синусоидальный сигнал с амплитудой 100 мВ и частотой 1 кГц. Определить коэффициент усиления инвертирующего усилителя.

	Задание	Эксперимент
K_u	10.1	10.0955

4.5. Собрать схему инвертирующего усилителя с параметрами, рассчитанными в подготовке к работе. На вход подать синусоидальный сигнал с амплитудой 100 мВ и частотой 1 кГц. Определить коэффициент усиления инвертирующего усилителя.

	Задание	Эксперимент
K_u	10.1	10.0945

4.6. Собрать схему сумматора. Установить параметры элементов сумматора, рассчитанные в подготовке к работе. На входы схемы подать постоянные напряжения U_1 , U_2 согласно варианту. Определить напряжение на выходе схемы.

	Расчет	Эксперимент
$U_{\scriptscriptstyle m BMX},{ m B}$	-1.7000	-1.693

4.7. Собрать схему мультивибратора с параметрами элементов, рассчитанными в подготовке к работе. Запустить схему на расчет, определить период следования прямоугольных импульсов.

	Задание	Эксперимент
T, MKC	410	503.5

4.8. Разработать схему несимметричного мультивибратора, работающего с той же частотой, но со скважностью Q=5 (для четных N) и Q=0,2 (для нечетных N). Собрать схему и запустить на расчет. Определить период и скважность следования прямоугольных импульсов.

$$\gamma = \frac{R_2}{R_1 + R_2} = \frac{30 * 10^3}{30 * 10^3 + 30 * 10^3} = 0.5$$

$$1 + \gamma = 1 + 0.5 = 1.5$$

$$1 - \gamma = 1 - 0.5 = 0.5$$

$$\ln\left(\frac{1 + \gamma}{1 - \gamma}\right) = \ln\left(\frac{1.5}{0.5}\right) = \ln(3) \approx 1.0986$$

$$Q = \frac{T}{t_{\text{H}+}} = \frac{410 * 10^{-6}}{t_{\text{H}+}} = 5$$

$$t_{\text{H}+} = \frac{410 * 10^{-6}}{5} = 82 * 10^{-6}$$

$$R_3 = \frac{t_{\text{H}+}}{C * \ln\left(\frac{1 + \gamma}{1 - \gamma}\right)} = \frac{82 * 10^{-6}}{2.0733 * 10^{-9} * 1.0986} = 36 * 10^3 = 36 \text{ kOm}$$

$$t_{\text{H}-} = T - t_{\text{H}+} = (410 - 82) * 10^{-6} = 328 * 10^{-6} = 328 \text{mkc}$$

$$R_4 = \frac{328 * 10^{-6}}{2.0733 * 10^{-6} * 1.0986} = 144 \text{kOm}$$

График переходного процесса

$$T = t - t' = 1.3558 * 10^{-3} - 804.37 * 10^{-6} = 0.5514 * 10^{-3} = 551.4$$
 мкс $\tau = (934.771 - 804.37) * 10^{-6} = 130.401$ мкс $Q = \frac{T}{\tau} = \frac{551.4 * 10^{-6}}{130.401 * 10^{-6}} = 4.347$

	Задание	Эксперимент
Q	5	4.347