Current Copier based Mixed-Signal Multiplier for Machine Learning Applications

Guide: Prof. Rajesh Zele

Mihir Kavishwar (17D070004)
Advanced Integrated Circuits and Systems Lab
Electrical Engineering, IIT Bombay

Outline

- Introduction
- System Architecture
- 3 Current Copier Principle
- Current Copier Based Multiplier
- Sources of Error
- Schematics and Simulation Results
- Conclusion
- References

 Most Machine Learning algorithms can be characterized as a sequence of Matrix Vector Multiplications (MVMs) interposed with non-linear transforms

- Most Machine Learning algorithms can be characterized as a sequence of Matrix Vector Multiplications (MVMs) interposed with non-linear transforms
- Multiply and Accumulate (MAC) is the fundamental operation which gets repeated in MVMs: $y_i = \sum_{j=1}^{N} w_{ij}.x_j$

- Most Machine Learning algorithms can be characterized as a sequence of Matrix Vector Multiplications (MVMs) interposed with non-linear transforms
- Multiply and Accumulate (MAC) is the fundamental operation which gets repeated in MVMs: $y_i = \sum_{j=1}^{N} w_{ij}.x_j$
- For Edge Device applications where we need to operate at very low power but still get high performance, Analog/Mixed-Signal implementations of MAC are proving to be much better alternative to the Digital counterpart

- Most Machine Learning algorithms can be characterized as a sequence of Matrix Vector Multiplications (MVMs) interposed with non-linear transforms
- Multiply and Accumulate (MAC) is the fundamental operation which gets repeated in MVMs: $y_i = \sum_{j=1}^{N} w_{ij}.x_j$
- For Edge Device applications where we need to operate at very low power but still get high performance, Analog/Mixed-Signal implementations of MAC are proving to be much better alternative to the Digital counterpart
- In this work, I have explored a Current-Copier based Mixed-Signal Multiplier circuit in an attempt to come up with a novel implementation of MAC

System Architecture

Figure: Mixed-Signal Matrix Vector Multiplier

- Weights are stored digitally in local registers while the input and output currents are Analog
- Same multiplier cell is replicated several times
- Connecting multiplier output currents in parallel gives us the addition operation

Current Copier Principle

Phase ϕ_1

- M acts as an input device with it's gate and drain connected to input current source
- I_{in} charges C until V_{gs} reaches a value which corresponds to $I_{in} = I_{ds}$

Figure: Basic Current Copier Cell

Current Copier Principle

Figure: Basic Current Copier Cell

Phase ϕ_1

- M acts as an input device with it's gate and drain connected to input current source
- I_{in} charges C until V_{gs} reaches a value which corresponds to $I_{in} = I_{ds}$

Phase ϕ_2

- M acts as an output device with it's drain disconnected from gate and connected to output node
- M sinks I_{out} which is controlled by same V_{gs} and thus equal to I_{in}

Current Copier Based Multiplier

Figure: Multiplier Cell

Assuming V_{gs} remains constant across the 2 phases,

$$I_{out,\phi_2} = w \times I_{in,\phi_1}$$

where,

$$w := \frac{2^0.S_{0,\phi_2} + 2^1.S_{1,\phi_2} + \dots + 2^{N-1}.S_{N-1,\phi_2}}{2^0.S_{0,\phi_1} + 2^1.S_{1,\phi_1} + \dots + 2^{N-1}.S_{N-1,\phi_1}}$$

Figure: Possible values of w for N=3

Current Copier Based Multiplier - Alternate Architecture

Figure: Alternate architecture of Multiplier Cell

- While avoiding switches in current path, this architecture brings other problems
- The net value of gate capacitor depends heavily on the configuration of switches
- A large external capacitor needs to be connected at the gate which results in more charging time and hence lesser speed

• Gate Switch Charge Injection

- Gate Switch Charge Injection
 - ► Dummy switch compensation

- Gate Switch Charge Injection
 - Dummy switch compensation
- Drain Switch Charge Feedthrough

- Gate Switch Charge Injection
 - Dummy switch compensation
- Drain Switch Charge Feedthrough
 - Complementary switches

- Gate Switch Charge Injection
 - Dummy switch compensation
- Drain Switch Charge Feedthrough
 - Complementary switches
- Channel Length Modulation

- Gate Switch Charge Injection
 - Dummy switch compensation
- Drain Switch Charge Feedthrough
 - Complementary switches
- Channel Length Modulation
 - Cascode configuration and larger channel length

- Gate Switch Charge Injection
 - Dummy switch compensation
- Drain Switch Charge Feedthrough
 - Complementary switches
- Channel Length Modulation
 - Cascode configuration and larger channel length
- Incomplete settling of Gate Voltage

- Gate Switch Charge Injection
 - Dummy switch compensation
- Drain Switch Charge Feedthrough
 - Complementary switches
- Channel Length Modulation
 - Cascode configuration and larger channel length
- Incomplete settling of Gate Voltage
 - ▶ Either increase input current range or decrease operating frequency

- Gate Switch Charge Injection
 - Dummy switch compensation
- Drain Switch Charge Feedthrough
 - Complementary switches
- Channel Length Modulation
 - Cascode configuration and larger channel length
- Incomplete settling of Gate Voltage
 - ► Either increase input current range or decrease operating frequency
- Junction Leakage

- Gate Switch Charge Injection
 - Dummy switch compensation
- Drain Switch Charge Feedthrough
 - Complementary switches
- Channel Length Modulation
 - Cascode configuration and larger channel length
- Incomplete settling of Gate Voltage
 - ▶ Either increase input current range or decrease operating frequency
- Junction Leakage
 - Don't leaving gate capacitor floating for a long time

Schematics

Figure: Final schematic of 4-bit Current Copier Multiplier

Schematics

Figure: Complementary Switch

Figure: Unit Cell

Testbench

Figure: 4-bit Multiplier Testbench

Figure: Transient Analysis with w varying from 1 to 15

Figure: I_{out} value in phase ϕ_2 with w varying from 1 to 15 for different I_{in}

Figure: Error Analysis

Figure: Average Power vs Input Current

For input current range of 500nA to 5μ A, average power consumed by multiplier plus biasing circuit is **2.5** μ W to **13** μ W

Figure: Transient Analysis with fractional w

Weight	$I_{out,actual}$ (μA)	$ I_{\text{out,ideal}} (\mu A)$	% Error
2/2 = 1	4.994	5	0.12
1/2 = 0.5	2.484	2.5	0.64
1/3 = 0.333	1.648	1.667	1.14
2/3 = 0.667	3.314	3.333	0.58
1/4 = 0.25	1.231	1.25	1.52
3/4 = 0.75	3.731	3.75	0.51
7/2 = 3.5	17.978	17.5	2.73

Table: Error Analysis with fractional w for $I_{in} = 5 \mu A$

MAC Testbench

Figure: 4 Multipliers connected in parallel for testing MAC operation

Figure: MAC Transient Simulation

w ₁	I _{in,1} (μΑ)	w ₂	Ι _{in,2} (μΑ)	w ₃	Ι _{in,3} (μΑ)	w ₄	I _{in,4} (μA)	$\begin{array}{c c} I_{out,actual} \\ (\mu A) \end{array}$	$I_{out,ideal} \ (\mu A)$	% Error
8 4.667	3 3	2 10	1.5 1.5	11 6	4 4	1.5	1 1	78.506 56.621	75 54.5	4.675 3.892

Table: MAC Error Analysis

Conclusion

- A new architecture of Mixed-Signal Multiplier based on Current-Copier principle was explored
- The 4-bit Multiplier operating at 1 MHz consumes < 13 μ W power and has < 7% output error for input current range of 500 nA 5 μ A
- Achieving high resolution is difficult with this architecture due to input dependent charge feedthrough from drain switches
- Future work includes:
 - Exploring ways to increase multiplier speed, resolution of weights and support for negative weights
 - Incorporating transistor level design in place of behavioural models in the image classifier system
 - ▶ Designing storage elements and circuits for non-linear transforms

References

- S.J. Daubert, D. Vallancourt. and Y.P. Tsividis, "Current Copier Cells", Electronics Letters, vol. 24, no. 25, pp. 1560-1562, 8 Dec. 1988.
- D. Vallancourt, Y. P. Tsividis and S. J. Daubert, "Sampled-current circuits," IEEE International Symposium on Circuits and Systems,, 1989, pp. 1592-1595 vol.3, doi: 10.1109/ISCAS.1989.100665.
- W. Groeneveld, H. Schouwenaars and H. Termeer, "A self calibration technique for monolithic high-resolution D/A converters," IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers, 1989, pp. 22-23, doi: 10.1109/ISSCC.1989.48217.