

TL071, TL071A, TL071B TL072, TL072A, TL072B, TL074, TL074A, TL074B, TL072M, TL074M

SLOS080N - SEPTEMBER 1978-REVISED JULY 2017

TL07xx Low-Noise JFET-Input Operational Amplifiers

Features

- Low Power Consumption
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- **Output Short-Circuit Protection**
- Low Total Harmonic Distortion: 0.003% (Typical)
- Low Noise
 - $V_n = 18 \text{ nV}/\sqrt{\text{Hz}}$ (Typical) at f = 1 kHz
- High-Input Impedance: JFET Input Stage
- Internal Frequency Compensation
- Latch-Up-Free Operation
- High Slew Rate: 13 V/μs (Typical)
- Common-Mode Input Voltage Range Includes V_{CC+}

2 Applications

- Motor Integrated Systems: UPS
- Drives and Control Solutions: AC Inverter and VF **Drives**
- Renewables: Solar Inverters
- **Pro Audio Mixers**
- **DLP Front Projection System**
- Oscilloscopes

3 Description

TL07xx JFET-input operational amplifiers incorporate well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low-input bias offset currents, and low offset-voltage temperature coefficient. The low harmonic distortion and low noise make the TL07x series ideally suited for high-fidelity and audio pre-amplifier applications. The TL071 device has offset pins to support external input offset correction.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TL07xxD	SOIC (14)	8.65 mm × 3.91 mm
TLU/XXD	SOIC (8)	4.90 mm x 3.90 mm
TL07xxJG	CDIP (8)	9.59 mm x 6.67 mm
TL074xJ	CDIP (14)	19.56 mm × 6.92 mm
TL07xxP	PDIP (8)	9.59 mm x 6.35 mm
TL07xxPS	SO (8)	6.20 mm x 5.30 mm
TL074xN	PDIP (14)	19.3 mm × 6.35 mm
TL074xNS	SO (14)	10.30 mm × 5.30 mm
TL07xxPW	TSSOP (8)	4.40 mm x 3.00 mm
TL074xPW	TSSOP (14)	5.00 mm × 4.40 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Symbols

Table of Contents

1	Features 1		TL07xBC, TL07xI	19
2	Applications 1		6.18 Typical Characteristics	20
3	Description 1		6.1 Parameter Measurement Information	25
4	Revision History2	7	Detailed Description	26
5	Pin Configuration and Functions 4		7.1 Overview	26
6	Specifications 10		7.2 Functional Block Diagram	26
•	6.1 Absolute Maximum Ratings		7.3 Feature Description	<mark>27</mark>
	6.2 ESD Ratings		7.4 Device Functional Modes	<mark>27</mark>
	6.3 Recommended Operating Conditions	8	Application and Implementation	28
	6.4 Thermal Information: TL071x		8.1 Application Information	28
	6.5 Thermal Information: TL072x		8.2 Typical Application	28
	6.6 Thermal Information: TL072x (cont.)		8.3 Unity Gain Buffer	29
	6.7 Thermal Information: TL074x		8.4 System Examples	30
	6.8 Thermal Information: TL074x (cont)	9	Power Supply Recommendations	32
	6.9 Thermal Information: TL074x (cont)	10	Layout	32
	6.10 Electrical Characteristics: TL071C, TL072C,		10.1 Layout Guidelines	32
	TL074C		10.2 Layout Example	
	6.11 Electrical Characteristics: TL071AC, TL072AC,	11	Device and Documentation Support	34
	TL074AC 14		11.1 Documentation Support	
	6.12 Electrical Characteristics: TL071BC, TL072BC,		11.2 Related Links	
	TL074BC		11.3 Community Resources	34
	6.13 Electrical Characteristics: TL071I, TL072I, TL074I		11.4 Trademarks	
	6.14 Electrical Characteristics: TL071M, TL072M 17		11.5 Electrostatic Discharge Caution	34
	6.15 Electrical Characteristics: TL074M		11.6 Glossary	34
	6.16 Switching Characteristics: TL07xM	12	Mechanical, Packaging, and Orderable	
	6.17 Switching Characteristics: TL07xC, TL07xAC,		Information	35
	5 5			

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

 Updated data sheet text to latest documentation and translation standards Added TL072M and TL074M devices to data sheet Rewrote text in <i>Description</i> section Changed TL07x 8-pin PDIP package to 8-pin CDIP package in <i>Device Information</i> table Deleted 20-pin LCCC package from <i>Device Information</i> table Added 2017 copyright statement to front page schematic Deleted TL071x FK (LCCC) pinout drawing and pinout table in <i>Pin Configurations and Functions</i> section Updated pinout diagrams and pinout tables in <i>Pin Configurations and Functions</i> section Deleted differential input voltage parameter from <i>Absolute Maximum Ratings</i> table Deleted table notes from <i>Absolute Maximum Ratings</i> table Added new table note to <i>Absolute Maximum Ratings</i> table Changed minimum supply voltage value from –18 V to –0.3 V in <i>Absolute Maximum Ratings</i> table Changed maximum supply voltage from 18 V to 36 V in <i>Absolute Maximum Ratings</i> table Changed minimum input voltage value from –15 V to V_{CC} – 0.3 V in <i>Absolute Maximum Ratings</i> table Changed maximum input voltage from 15 V to V_{CC} – 4 0 V in <i>Absolute Maximum Ratings</i> table Changed common-mode voltage maximum value from V_{CC+} – 4 V to V_{CC+} in the <i>Recommended Operating Conditions</i> table 	C	hanges from Revision M (February 2014) to Revision N	Page
 Rewrote text in Description section Changed TL07x 8-pin PDIP package to 8-pin CDIP package in Device Information table Deleted 20-pin LCCC package from Device Information table Added 2017 copyright statement to front page schematic Deleted TL071x FK (LCCC) pinout drawing and pinout table in Pin Configurations and Functions section Updated pinout diagrams and pinout tables in Pin Configurations and Functions section Deleted differential input voltage parameter from Absolute Maximum Ratings table Deleted table notes from Absolute Maximum Ratings table Added new table note to Absolute Maximum Ratings table Changed minimum supply voltage value from -18 V to -0.3 V in Absolute Maximum Ratings table Changed maximum supply voltage from 18 V to 36 V in Absolute Maximum Ratings table Changed minimum input voltage value from -15 V to V_{CC} - 0.3 V in Absolute Maximum Ratings table Changed maximum input voltage from 15 V to V_{CC} - 0.3 V in Absolute Maximum Ratings table Changed maximum input voltage from 15 V to V_{CC} - 4 36 V in Absolute Maximum Ratings table Added input clamp current parameter to Absolute Maximum Ratings table Changed common-mode voltage maximum value from V_{CC+} - 4 V to V_{CC+} in the Recommended Operating 	•	Updated data sheet text to latest documentation and translation standards	1
 Changed TL07x 8-pin PDIP package to 8-pin CDIP package in <i>Device Information</i> table Deleted 20-pin LCCC package from <i>Device Information</i> table Added 2017 copyright statement to front page schematic Deleted TL071x FK (LCCC) pinout drawing and pinout table in <i>Pin Configurations and Functions</i> section Updated pinout diagrams and pinout tables in <i>Pin Configurations and Functions</i> section Deleted differential input voltage parameter from <i>Absolute Maximum Ratings</i> table Deleted table notes from <i>Absolute Maximum Ratings</i> table Added new table note to <i>Absolute Maximum Ratings</i> table Changed minimum supply voltage value from –18 V to –0.3 V in <i>Absolute Maximum Ratings</i> table Changed maximum supply voltage from 18 V to 36 V in <i>Absolute Maximum Ratings</i> table Changed minimum input voltage value from –15 V to V_{CC} – 0.3 V in <i>Absolute Maximum Ratings</i> table Changed maximum input voltage from 15 V to V_{CC} + 36 V in <i>Absolute Maximum Ratings</i> table Changed common-mode voltage maximum value from V_{CC+} – 4 V to V_{CC+} in the <i>Recommended Operating</i> 	•	Added TL072M and TL074M devices to data sheet	1
 Deleted 20-pin LCCC package from <i>Device Information</i> table Added 2017 copyright statement to front page schematic Deleted TL071x FK (LCCC) pinout drawing and pinout table in <i>Pin Configurations and Functions</i> section Updated pinout diagrams and pinout tables in <i>Pin Configurations and Functions</i> section Deleted differential input voltage parameter from <i>Absolute Maximum Ratings</i> table Deleted table notes from <i>Absolute Maximum Ratings</i> table Added new table note to <i>Absolute Maximum Ratings</i> table Changed minimum supply voltage value from –18 V to –0.3 V in <i>Absolute Maximum Ratings</i> table Changed maximum supply voltage from 18 V to 36 V in <i>Absolute Maximum Ratings</i> table Changed minimum input voltage value from –15 V to V_{CC} – 0.3 V in <i>Absolute Maximum Ratings</i> table Changed maximum input voltage from 15 V to V_{CC} + 36 V in <i>Absolute Maximum Ratings</i> table Changed common-mode voltage maximum value from V_{CC+} – 4 V to V_{CC+} in the <i>Recommended Operating</i> 	•	Rewrote text in <i>Description</i> section	1
 Added 2017 copyright statement to front page schematic Deleted TL071x FK (LCCC) pinout drawing and pinout table in <i>Pin Configurations and Functions</i> section Updated pinout diagrams and pinout tables in <i>Pin Configurations and Functions</i> section Deleted differential input voltage parameter from <i>Absolute Maximum Ratings</i> table Deleted table notes from <i>Absolute Maximum Ratings</i> table Added new table note to <i>Absolute Maximum Ratings</i> table Changed minimum supply voltage value from –18 V to –0.3 V in <i>Absolute Maximum Ratings</i> table Changed maximum supply voltage from 18 V to 36 V in <i>Absolute Maximum Ratings</i> table Changed minimum input voltage value from –15 V to V_{CC} – 0.3 V in <i>Absolute Maximum Ratings</i> table Changed maximum input voltage from 15 V to V_{CC} + 36 V in <i>Absolute Maximum Ratings</i> table Changed common-mode voltage maximum value from V_{CC+} – 4 V to V_{CC+} in the <i>Recommended Operating</i> 	•	Changed TL07x 8-pin PDIP package to 8-pin CDIP package in Device Information table	1
 Deleted TL071x FK (LCCC) pinout drawing and pinout table in <i>Pin Configurations and Functions</i> section Updated pinout diagrams and pinout tables in <i>Pin Configurations and Functions</i> section Deleted differential input voltage parameter from <i>Absolute Maximum Ratings</i> table Deleted table notes from <i>Absolute Maximum Ratings</i> table Added new table note to <i>Absolute Maximum Ratings</i> table Changed minimum supply voltage value from –18 V to –0.3 V in <i>Absolute Maximum Ratings</i> table Changed maximum supply voltage from 18 V to 36 V in <i>Absolute Maximum Ratings</i> table Changed minimum input voltage value from –15 V to V_{CC} – 0.3 V in <i>Absolute Maximum Ratings</i> table Changed maximum input voltage from 15 V to V_{CC} + 36 V in <i>Absolute Maximum Ratings</i> table Added input clamp current parameter to <i>Absolute Maximum Ratings</i> table Changed common-mode voltage maximum value from V_{CC+} – 4 V to V_{CC+} in the <i>Recommended Operating</i> 	•	Deleted 20-pin LCCC package from Device Information table	1
 Updated pinout diagrams and pinout tables in <i>Pin Configurations and Functions</i> section Deleted differential input voltage parameter from <i>Absolute Maximum Ratings</i> table Deleted table notes from <i>Absolute Maximum Ratings</i> table Added new table note to <i>Absolute Maximum Ratings</i> table Changed minimum supply voltage value from –18 V to –0.3 V in <i>Absolute Maximum Ratings</i> table Changed maximum supply voltage from 18 V to 36 V in <i>Absolute Maximum Ratings</i> table Changed minimum input voltage value from –15 V to V_{CC} – 0.3 V in <i>Absolute Maximum Ratings</i> table Changed maximum input voltage from 15 V to V_{CC} + 36 V in <i>Absolute Maximum Ratings</i> table Added input clamp current parameter to <i>Absolute Maximum Ratings</i> table Changed common-mode voltage maximum value from V_{CC+} – 4 V to V_{CC+} in the <i>Recommended Operating</i> 	•	Added 2017 copyright statement to front page schematic	1
 Deleted differential input voltage parameter from <i>Absolute Maximum Ratings</i> table Deleted table notes from <i>Absolute Maximum Ratings</i> table Added new table note to <i>Absolute Maximum Ratings</i> table Changed minimum supply voltage value from –18 V to –0.3 V in <i>Absolute Maximum Ratings</i> table Changed maximum supply voltage from 18 V to 36 V in <i>Absolute Maximum Ratings</i> table Changed minimum input voltage value from –15 V to V_{CC} – 0.3 V in <i>Absolute Maximum Ratings</i> table Changed maximum input voltage from 15 V to V_{CC} + 36 V in <i>Absolute Maximum Ratings</i> table Added input clamp current parameter to <i>Absolute Maximum Ratings</i> table Changed common-mode voltage maximum value from V_{CC+} – 4 V to V_{CC+} in the <i>Recommended Operating</i> 	•	Deleted TL071x FK (LCCC) pinout drawing and pinout table in Pin Configurations and Functions section	4
 Deleted table notes from Absolute Maximum Ratings table Added new table note to Absolute Maximum Ratings table Changed minimum supply voltage value from -18 V to -0.3 V in Absolute Maximum Ratings table Changed maximum supply voltage from 18 V to 36 V in Absolute Maximum Ratings table Changed minimum input voltage value from -15 V to V_{CC} - 0.3 V in Absolute Maximum Ratings table Changed maximum input voltage from 15 V to V_{CC} + 36 V in Absolute Maximum Ratings table Added input clamp current parameter to Absolute Maximum Ratings table Changed common-mode voltage maximum value from V_{CC+} - 4 V to V_{CC+} in the Recommended Operating 	•	Updated pinout diagrams and pinout tables in Pin Configurations and Functions section	5
 Added new table note to <i>Absolute Maximum Ratings</i> table	•	Deleted differential input voltage parameter from Absolute Maximum Ratings table	10
 Changed minimum supply voltage value from -18 V to -0.3 V in <i>Absolute Maximum Ratings</i> table	•	Deleted table notes from Absolute Maximum Ratings table	10
 Changed maximum supply voltage from 18 V to 36 V in <i>Absolute Maximum Ratings</i> table	•	Added new table note to Absolute Maximum Ratings table	10
 Changed minimum input voltage value from -15 V to V_{CC} - 0.3 V in <i>Absolute Maximum Ratings</i> table	•	Changed minimum supply voltage value from -18 V to -0.3 V in Absolute Maximum Ratings table	10
 Changed maximum input voltage from 15 V to V_{CC-} + 36 V in <i>Absolute Maximum Ratings</i> table	•	Changed maximum supply voltage from 18 V to 36 V in Absolute Maximum Ratings table	10
 Added input clamp current parameter to Absolute Maximum Ratings table	•	Changed minimum input voltage value from -15 V to V _{CC} - 0.3 V in <i>Absolute Maximum Ratings</i> table	10
• Changed common-mode voltage maximum value from V _{CC+} – 4 V to V _{CC+} in the <i>Recommended Operating</i>	•	Changed maximum input voltage from 15 V to V _{CC} + 36 V in Absolute Maximum Ratings table	10
	•	Added input clamp current parameter to Absolute Maximum Ratings table	10
	•		10

Revision History (continued)

 Changed devices in Recommended Operating Conditions table from TL07xA and TL07xB to TL07xAC and TL07xBC 	10
 Added TL07xI operating free-air temperature minimum value of -40°C to Recommended Operating Conditions to 	
Added U (CFP) package thermal values to Thermal Information: TL072x (cont.) table	
Added W (CFP) package thermal values to Thermal Information: TL074x (cont.) table	12
Added Figure 20 to Table 1	20
Added Figure 20 to Typical Characteristics section	24
Added second Typical Application section application curves	29
Reformatted document references in Layout Guidelines section	32
Updated formatting of document reference in Related Documentation section	34
Changes from Revision L (February 2014) to Revision M	Page
 Added Device Information table, Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section 	
Moved Typical Characteristics into Specifications section.	20
Changes from Revision K (January 2014) to Revision L	Page
Moved T _{stg} to <i>Handling Ratings</i> table	10
Added Device and Documentation Support section	34
Added Mechanical, Packaging, and Orderable Information section	34
Changes from Revision J (March 2005) to Revision K	Page
Updated document to new TI datasheet format - no specification changes	1
Added ESD warning	34

5 Pin Configuration and Functions

NC- no internal connection

Pin Functions: TL071x

PIN			DECODINE	
NAME	NO.	1/0	DESCRIPTION	
IN-	2	I	Inverting input	
IN+	3	I	Noninverting input	
NC	8	_	Do not connect	
OFFSET N1	1	_	Input offset adjustment	
OFFSET N2	5	_	Input offset adjustment	
OUT	6	0	Output	
VCC-	4		Power supply	
VCC+	7	_	Power supply	

TL072x D, JG, P, PS and PW Package 8-Pin SOIC, CDIP, PDIP, SO Top View

Pin Functions: TL072x

PIN		1/0	DECODINE
NAME	NO.	1/0	DESCRIPTION
1IN-	2	I	Inverting input
1IN+	3	I	Noninverting input
1OUT	1	0	Output
2IN-	6	I	Inverting input
2IN+	5	I	Noninverting input
2OUT	7	0	Output
VCC-	4	_	Power supply
VCC+	8	_	Power supply

NC- no internal connection

Pin Functions: TL072x

PIN		1/0	DECORPOTION
NAME	NO.	I/O	DESCRIPTION
1IN-	3	1	Inverting input
1IN+	4	I	Noninverting input
1OUT	2	0	Output
2IN-	7	I	Inverting input
2IN+	6	I	Noninverting input
2OUT	8	0	Output
NC	1, 10	_	Do not connect
VCC-	5	_	Power supply
VCC+	9	_	Power supply

NC- no internal connection

Pin Functions: TL072x

	PIN		
NAME	NO.	I/O	DESCRIPTION
1IN-	5	I	Inverting input
1IN+	7	I	Noninverting input
1OUT	2	0	Output
2IN-	15	I	Inverting input
2IN+	12	I	Noninverting input
2OUT	17	0	Output
NC	1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19	_	Do not connect
VCC-	10	_	Power supply
VCC+	20	_	Power supply

TL074 D, N, NS, PW, J, and W Packages 14-Pin SOIC, PDIP, SO, TSSOP, CDIP and CFP Top View

Pin Functions: TL074x

PIN		1/0	DECORPORA	
NAME	NO.	I/O	DESCRIPTION	
1IN-	2	1	Inverting input	
1IN+	3	I	Noninverting input	
1OUT	1	0	Output	
2IN-	6	1	Inverting input	
2IN+	5	1	Noninverting input	
2OUT	7	0	Output	
3IN-	9	I	Inverting input	
3IN+	10	I	Noninverting input	
3OUT	8	0	Output	
4IN-	13	1	Inverting input	
4IN+	12	1	Noninverting input	
4OUT	14	0	Output	
V _{CC} -	11	_	Power supply	
V _{CC+}	4	_	Power supply	

NC- no internal connection

Pin Functions: TL074x

	PIN	1/0	DESCRIPTION
NAME	NO.	I/O	DESCRIPTION
1IN-	3	I	Inverting input
1IN+	4	I	Noninverting input
10UT	2	0	Output
2IN-	9	I	Inverting input
2IN+	8	I	Noninverting input
2OUT	10	0	Output
3IN-	13	I	Inverting input
3IN+	14	I	Noninverting input
3OUT	12	0	Output
4IN-	19	I	Inverting input
4IN+	18	I	Noninverting input
4OUT	20	0	Output
NC	1, 5, 7, 11, 15, 17	_	Do not connect
VCC-	16	_	Power supply
VCC+	6	_	Power supply

6 Specifications

6.1 Absolute Maximum Ratings

SLOS080N - SEPTEMBER 1978 - REVISED JULY 2017

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
V _{CC+} - V _{CC-}	Supply voltage	-0.3	36	V
VI	Input voltage (2)	V _{CC} - 0.3	V _{CC} - + 36	V
I _{IK}	Input clamp current		- 50	mA
	Duration of output short circuit ⁽³⁾	Unlin	nited	
TJ	Operating virtual junction temperature		150	°C
	Case temperature for 60 seconds - FK package		260	°C
	Lead temperature 1.8 mm (1/16 inch) from case for 10 seconds		300	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Differential voltage only limited by input voltage.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC+}	Supply voltage (1)		5	15	V
V _{CC} -	Supply voltage ⁽¹⁾		-5	-15	V
V_{CM}	Common-mode voltage	V _{CC} - + 4	V_{CC+}	V	
		TL07xM	– 55	125	
_	Operating free-air temperature	TL08xQ	-40	125	°C
T _A		TL07xI	-40	85	
		0	70		

⁽¹⁾ V_{CC+} and V_{CC-} are not required to be of equal magnitude, provided that the total V_{CC} (V_{CC+} – V_{CC-}) is between 10 V and 30 V.

The output may be shorted to ground or to either supply. Temperature and supply voltages must be limited to ensure that the dissipation rating is not exceeded.

JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information: TL071x

THERMAL METRIC ⁽¹⁾		D (SOIC)	P (PDIP)	PS (SO)	UNIT
		8 PINS	8 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	97	85	95	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	_	_	_	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Thermal Information: TL072x

			TL072x					
THERMAL METRIC ⁽¹⁾		D (SOIC)	JG (CDIP)	P (PDIP)	PS (SO)	UNIT		
		8 PINS	8 PINS	8 PINS	8 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	97	_	85	95	°C/W		
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	_	15.05	_	_	°C/W		

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.6 Thermal Information: TL072x (cont.)

			TL072x				
THERMAL METRIC ⁽¹⁾		PW (TSSOP)	U (CFP)	FK (LCCC)	UNIT		
		8 PINS	10 PINS	20 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	150	169.8	_	°C/W		
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	_	62.1	5.61	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	_	176.2	_	°C/W		
ΨЈТ	Junction-to-top characterization parameter	_	48.4	_	°C/W		
ΨЈВ	Junction-to-board characterization parameter	_	144.1	_	°C/W		
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	_	5.4	_	°C/W		

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.7 Thermal Information: TL074x

THERMAL METRIC ⁽¹⁾		D (SOIC)	N (PDIP)	NS (SO)	UNIT
		14 PINS	14 PINS	14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	86	80	76	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	_			°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

www.ti.com

6.8 Thermal Information: TL074x (cont).

SLOS080N - SEPTEMBER 1978-REVISED JULY 2017

			TL074x		
THERMAL METRIC ⁽¹⁾		J (CDIP)	PW (TSSOP)	W (CFP)	UNIT
		14 PINS	14 PINS	14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	_	113	128.8	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	14.5	_	56.1	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	_	_	127.6	°C/W
ΨЈТ	Junction-to-top characterization parameter	_	_	29	°C/W
ΨЈВ	Junction-to-board characterization parameter	_	_	106.1	°C/W
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	_	_	0.5	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.9 Thermal Information: TL074x (cont).

		TL074x	
THERMAL METRIC ⁽¹⁾		FK (LCCC)	UNIT
		20 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	_	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	5.61	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.10 Electrical Characteristics: TL071C, TL072C, TL074C

 $V_{CC\pm} = \pm 15 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS (1) (2)	MIN	MIN TYP		
\/	Innut offeet veltege	V _O = 0	T _A = 25°C		3	10	mV
V_{IO}	Input offset voltage	$R_S = 50 \Omega$	T _A = Full range			13	mv
α	Temperature coefficient of input offset voltage	$V_O = 0$ $R_S = 50 \Omega$	T _A = Full range		18		μV/°C
	Innut offeet ourrent	V 0	T _A = 25°C		5	100	рА
I _{IO}	Input offset current	$V_O = 0$	T _A = Full range			10	nA
	Input bigg gurrant (3)	V 0	T _A = 25°C		65	200	рА
I _{IB}	Input bias current (3)	V _O = 0	T _A = Full range			7	nA
V _{ICR}	Common-mode input voltage range	T _A = 25°C		±11	-12 to 15		V
V _{OM}	Maximum peak output voltage swing	$R_L = 10 \text{ k}\Omega$	T _A = 25°C	±12	±13.5		
		R _L ≥ 10 kΩ	T. Full reason	±12			V
		R _L ≥ 2 kΩ	T _A = Full range	±10			
^	Large-signal differential	V _O = ±10 V	T _A = 25°C	25	200		\//\/
A_{VD}	voltage amplification	R _L ≥ 2 kΩ	T _A = Full range	15			V/mV
B ₁	Utility-gain bandwidth	T _A = 25°C			3		MHz
r _l	Input resistance	T _A = 25°C			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR(min)}$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	70	100		dB
k _{SVR}	Supply voltage rejection ratio $(\Delta V_{CC} \cancel{1}/\Delta V_{IO})$	V_{CC} = ±9 V to ±15 V V_{O} = 0 R_{S} = 50 Ω	T _A = 25°C	70	100		dB
I _{CC}	Supply current (each amplifier)	V _O = 0; no load	T _A = 25°C		1.4	2.5	mA
V _{O1} / V _{O2}	Crosstalk attenuation	A _{VD} = 100	$T_A = 25^{\circ}C$		120		dB

⁽¹⁾ All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified.

⁽²⁾ Full range is $T_A = 0$ °C to 70°C.

⁽³⁾ Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 1. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

www.ti.com

ISTRUMENTS

6.11 Electrical Characteristics: TL071AC, TL072AC, TL074AC

 $V_{CC\pm} = \pm 15 \text{ V}$ (unless otherwise noted)

SLOS080N - SEPTEMBER 1978-REVISED JULY 2017

	PARAMETER	TEST COM	NDITIONS (1) (2)	MIN	TYP	MAX	UNIT
V	Input offset voltage	V _O = 0	T _A = 25°C		3	6	mV
V_{IO}	input onset voitage	$R_S = 50 \Omega$	T _A = Full range			7.5	IIIV
α	Temperature coefficient of input offset voltage	$V_O = 0$ $R_S = 50 \Omega$	T _A = Full range		18		μV/°C
_	Innut offeet ourrent	V 0	$T_A = 25^{\circ}C$		5	100	pА
I _{IO}	Input offset current	$V_O = 0$	T _A = Full range			2	nA
	Input bias current (3)	V 0	T _A = 25°C		65	200	pА
I _{IB}	input bias current	$V_O = 0$	T _A = Full range			7	nA
V _{ICR}	Common-mode input voltage range	T _A = 25°C		±11	-12 to 15		V
	Maximum peak output voltage swing	R _L = 10 kΩ	T _A = 25°C	±12	±13.5		
V_{OM}		R _L ≥ 10 kΩ	T	±12			V
		R _L ≥ 2 kΩ	T _A = Full range	±10			
۸	Large-signal differential	V _O = ±10 V	T _A = 25°C	50	200		V/mV
A_{VD}	voltage amplification	R _L ≥ 2 kΩ	T _A = Full range	25			V/IIIV
B ₁	Utility-gain bandwidth	T _A = 25°C			3		MHz
r _l	Input resistance	T _A = 25°C			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR(min)}$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	75	100		dB
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$	V_{CC} = ±9 V to ±15 V V_{O} = 0 R_{S} = 50 Ω	T _A = 25°C	80	100		dB
Icc	Supply current (each amplifier)	V _O = 0; no load	T _A = 25°C		1.4	2.5	mA
V _{O1} / V _{O2}	Crosstalk attenuation	A _{VD} = 100	T _A = 25°C		120		dB

All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified.

Full range is $T_A = 0$ °C to 70°C.

Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 1. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

6.12 Electrical Characteristics: TL071BC, TL072BC, TL074BC

 $V_{CC\pm} = \pm 15 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS (1) (2)	MIN	TYP	MAX	UNIT
	lanut affact valtage	V _O = 0	T _A = 25°C		2	3	\/
V_{IO}	Input offset voltage	$R_S = 50 \Omega$	T _A = Full range			5	mV
α	Temperature coefficient of input offset voltage	$V_O = 0$ $R_S = 50 \Omega$	T _A = Full range		18		μV/°C
	Innut offeet ourrent	V 0	$T_A = 25^{\circ}C$		5	100	pА
I _{IO}	Input offset current	$V_O = 0$	T _A = Full range			2	nΑ
	Input bias current (3)	V 0	$T_A = 25^{\circ}C$		65	200	pА
I _{IB}	input bias current (9)	$V_O = 0$	T _A = Full range			7	nΑ
V _{ICR}	Common-mode input voltage range	T _A = 25°C		±11	-12 to 15		V
V_{OM}	Maximum peak output voltage swing	$R_L=10 \text{ k}\Omega$	T _A = 25°C	±12	±13.5		
		R _L ≥ 10 kΩ	T. Full serve	±12			V
		R _L ≥ 2 kΩ	T _A = Full range	±10			
٨	Large-signal differential	V _O = ±10 V	$T_A = 25^{\circ}C$	50	200		V/mV
A_{VD}	voltage amplification	$R_L \ge 2 k\Omega$	T _A = Full range	25			V/IIIV
B ₁	Utility-gain bandwidth	T _A = 25°C			3		MHz
r _l	Input resistance	T _A = 25°C			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR(min)}$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	75	100		dB
k _{SVR}	Supply-voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})	$V_{CC} = \pm 9 \text{ V to } \pm 15 \text{ V}$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	80	100		dB
I _{CC}	Supply current (each amplifier)	V _O = 0; no load	T _A = 25°C		1.4	2.5	mA
V _{O1} / V _{O2}	Crosstalk attenuation	A _{VD} = 100	$T_A = 25^{\circ}C$		120		dB

⁽¹⁾ All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified.

⁽²⁾ Full range is $T_A = 0$ °C to 70°C.

⁽³⁾ Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 1. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

www.ti.com

6.13 Electrical Characteristics: TL071I, TL072I, TL074I

 $V_{CC\pm} = \pm 15 \text{ V}$ (unless otherwise noted)

SLOS080N - SEPTEMBER 1978-REVISED JULY 2017

	PARAMETER	TEST CONI	DITIONS (1) (2)	MIN	TYP	MAX	UNIT
V	Innut offeet veltege	V _O = 0	T _A = 25°C		3	6	mV
V_{IO}	Input offset voltage	$R_S = 50 \Omega$	T _A = Full range			8	IIIV
α	Temperature coefficient of input offset voltage	$V_O = 0$ $R_S = 50 \Omega$	T _A = Full range		18		μV/°C
	Innut offeet ourrent	V 0	T _A = 25°C		5	100	pА
I _{IO}	Input offset current	V _O = 0	T _A = Full range			2	nA
	Lancet bins account (3)	V 0	T _A = 25°C		65	200	рА
I _{IB}	Input bias current (3)	$V_O = 0$	T _A = Full range			7	nA
V _{ICR}	Common-mode input voltage range	T _A = 25°C		±11	-12 to 15		V
	Maximum peak output voltage swing	R _L = 10 kΩ	T _A = 25°C	±12	±13.5		
V_{OM}		R _L ≥ 10 kΩ	T. Full ronge	±12			V
		R _L ≥ 2 kΩ	T _A = Full range	±10			
٨	Large-signal differential	V _O = ±10 V	T _A = 25°C	50	200		\ //\ /
A_{VD}	voltage amplification	R _L ≥ 2 kΩ					V/mV
B ₁	Utility-gain bandwidth	T _A = 25°C			3		MHz
r _l	Input resistance	T _A = 25°C			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR(min)}$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	75	100		dB
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{CCz}/\Delta V_{IO})$	V_{CC} = ±9 V to ±15 V V_{O} = 0 R_{S} = 50 Ω	T _A = 25°C	80	100		dB
Icc	Supply current (each amplifier)	V _O = 0; no load	T _A = 25°C		1.4	2.5	mA
V ₀₁ / V ₀₂	Crosstalk attenuation	A _{VD} = 100	T _A = 25°C		120		dB

⁽¹⁾ All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified.

⁽²⁾ $T_A = -40^{\circ}C$ to 85°C.

⁽³⁾ Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 1. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

6.14 Electrical Characteristics: TL071M, TL072M

 $V_{CC\pm} = \pm 15 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST COND	OITIONS (1) (2)	MIN	TYP	MAX	UNIT	
V	Input offeet voltage	V _O = 0	T _A = 25°C		3	6	mV	
V _{IO}	Input offset voltage	$R_S = 50 \Omega$	T _A = Full range			9	IIIV	
α_{VIO}	Temperature coefficient of input offset voltage	$V_O = 0$ $R_S = 50 \Omega$	T _A = Full range		18		μV/°C	
	Innut offeet ourrent	V 0	T _A = 25°C		5	100	рА	
I _{IO}	Input offset current	$V_O = 0$	T _A = Full range			20	nA	
	Innut bigg gurrant	V 0	T _A = 25°C		65	200	рА	
I _{IB}	Input bias current	$V_O = 0$	T _A = Full range			50	nA	
V _{ICR}	Common-mode input voltage range	T _A = 25°C		±11 -	-12 to 15		V	
	Maximum peak output voltage swing	$R_L = 10 \text{ k}\Omega$	T _A = 25°C	±12	±13.5			
V_{OM}		R _L ≥ 10 kΩ	T. F. II	±12			V	
		R _L ≥ 2 kΩ	T _A = Full range	±10				
	Large-signal differential	Large-signal differential V _O = ±10 V	T _A = 25°C	35	200		V/mV	
A _{VD}	voltage amplification	$R_L \ge 2 k\Omega$	T _A = Full range	15			- V/mV	
B ₁	Unity-gain bandwidth		·		3		MHz	
r _i	Input resistance				10 ¹²		Ω	
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR(min)},$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	80	86		dB	
k _{SVR}	Supply-voltage rejection ratio ($\Delta V_{CC\pm}/\Delta V_{IO}$)	V_{CC} = ±9 V to ±15 V V_{O} = 0 R_{S} = 50 Ω	T _A = 25°C	80	86		dB	
Icc	Supply current (each amplifier)	V _O = 0; no load	T _A = 25°C		1.4	2.5	mA	
V _{O1} / V _{O2}	Crosstalk attenuation	A _{VD} = 100	T _A = 25°C		120	-	dB	

⁽¹⁾ Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 1. Pulse techniques that maintain the junction temperature as close to the ambient temperature as possible must be

⁽²⁾ All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified. Full range is $T_A = -55^{\circ}\text{C}$ to +125°C.

www.ti.com

NSTRUMENTS

6.15 Electrical Characteristics: TL074M

 $V_{CC\pm} = \pm 15 \text{ V}$ (unless otherwise noted)

SLOS080N - SEPTEMBER 1978-REVISED JULY 2017

	PARAMETER	TEST CONI	MIN	TYP	MAX	UNIT	
\/	lanut offeet voltege	V _O = 0	T _A = 25°C		3	9	mV
V_{IO}	Input offset voltage	$R_S = 50 \Omega$	T _A = Full range			15	IIIV
α_{VIO}	Temperature coefficient of input offset voltage	$V_{O} = 0, R_{S} = 50 \Omega$	T _A = Full range		18		μV/°C
	land affect comment	V 0	T _A = 25°C		5	100	pА
I _{IO}	Input offset current	$V_O = 0$	T _A = Full range			20	nA
	Innut high ourrent	V 0	T _A = 25°C		65	200	pА
I _{IB}	Input bias current	$V_O = 0$	T _A = Full range			20	nA
V _{ICR}	Common-mode input voltage range	T _A = 25°C	±11	-12 to 15		V	
	Maximum peak output voltage swing	$R_L = 10 \text{ k}\Omega$	T _A = 25°C	±12	±13.5		
V_{OM}		R _L ≥ 10 kΩ	T _A = Full range	±12			V
		$R_L \ge 2 k\Omega$		±10			
^	Large-signal differential voltage amplification	V _O = ±10 V	T _A = 25°C	35	200		V/mV
A_{VD}		$R_L \ge 2 k\Omega$	T _A = Full range	15			
B ₁	Unity-gain bandwidth		,		3		MHz
r _i	Input resistance				10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR(min)}$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	80	86		dB
k _{SVR}	Supply-voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})	$V_{CC} = \pm 9 \text{ V to } \pm 15 \text{ V}$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	80	86		dB
I _{CC}	Supply current (each amplifier)	V _O = 0; no load	T _A = 25°C		1.4	2.5	mA
V _{O1} / V _{O2}	Crosstalk attenuation	A _{VD} = 100	T _A = 25°C		120		dB

⁽¹⁾ Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 1. Pulse techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

⁽²⁾ All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified. Full range is $T_A = -55^{\circ}\text{C}$ to +125°C.

6.16 Switching Characteristics: TL07xM

 $V_{CC\pm} = \pm 15 \text{ V}, T_A = 25^{\circ}\text{C}$

VCC 10 V, 14 - 20 C									
PARAMETER		TEST CONDI	MIN	TYP	MAX	UNIT			
SR	Slew rate at unity gain	V _I = 10 V C _L = 100 pF	$R_L = 2 k\Omega$ See Figure 21	5	13		V/μs		
Die die eerste eers	Rise-time overshoot factor	V _I = 20 V C _L = 100 pF	$R_L = 2 k\Omega$		0.1		μS		
t _r Rise-time overshoot factor		C _L = 100 pF	See Figure 21		20%				
.,	Equivalent input noise	R _S = 20 Ω	f = 1 kHz		18		nV/√ Hz		
V _n voltage	voltage		f = 10 Hz to 10 kHz		4		μV		
In	Equivalent input noise current	$R_S = 20 \Omega$	f = 1 kHz		0.01		pA/√ Hz		
THD	Total harmonic distortion	$V_l rms = 6 V$ $R_L \ge 2 k\Omega$ $f = 1 kHz$	A _{VD} = 1 RS ≤ 1 kΩ		0.003%				

6.17 Switching Characteristics: TL07xC, TL07xAC, TL07xBC, TL07xI

 $V_{CC+} = \pm 15 \text{ V}, T_A = 25^{\circ}\text{C}$

VCC± - ±10 V, 1 _A - 20 U									
	PARAMETER	TEST CONDI	MIN	TYP	MAX	UNIT			
SR	Slew rate at unity gain	V _I = 10 V C _L = 100 pF	$R_L = 2 k\Omega$ See Figure 21	8	13		V/μs		
Biological Control	Dies time averaheat factor	V _I = 20 V	$R_L = 2 k\Omega$		0.1		μS		
t _r Rise-time overshoot factor		V _I = 20 V C _L = 100 pF	See Figure 21		20%				
.,	Equivalent input noise voltage	D 20 0	f = 1 kHz		18		nV/√ Hz		
I V		$R_S = 20 \Omega$	f = 10 Hz to 10 kHz		4		μV		
In	Equivalent input noise current	$R_S = 20 \Omega$	f = 1 kHz		0.01		pA/√ Hz		
THD	Total harmonic distortion	$\begin{aligned} &V_{l}rms = 6 \ V \\ &R_{L} \geq 2 \ k\Omega \\ &f = 1 \ kHz \end{aligned}$	$A_{VD} = 1$ RS $\leq 1 \text{ k}\Omega$		0.003%				

www.ti.com

6.18 Typical Characteristics

SLOS080N - SEPTEMBER 1978 - REVISED JULY 2017

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Table 1. Typical Characteristics: Table of Graphs

			FIGURE
I _{IB}	Input bias current	versus free-air temperature	Figure 1
			Figure 2
		versus frequency	Figure 3
V	Maximum peak output voltage		Figure 4
V_{OM}	Maximum peak output voltage	versus free-air temperature	Figure 5
		versus load resistance	Figure 6
ĺ		versus supply voltage	Figure 7
^	Large signal differential voltage	versus free-air temperature	Figure 8
A_{VD}	amplification	versus load resistance	Figure 9
	Phase shift	versus frequency	Figure 9
	Normalized unity-gain bandwidth	versus free-air temperature	Figure 10
	Normalized phase shift	versus free-air temperature	Figure 10
CMRR	Common-mode rejection ratio	versus free-air temperature	Figure 11
	Input offset voltage change	versus common-mode voltage	Figure 20
	Complex compact	versus free-air temperature	Figure 13
I _{CC}	Supply current	versus supply voltage	Figure 12
P_{D}	Total power dissipation	versus free-air temperature	Figure 14
	Normalized slew rate	versus free-air temperature	Figure 15
V _n	Equivalent input noise voltage	versus frequency	Figure 16
THD	Total harmonic distortion	versus frequency	Figure 17
	Large-signal pulse response	versus time	Figure 18
Vo	Output voltage	versus elapsed time	Figure 19

6.18.1 Typical Characteristics

Figure 1. Input Bias Current vs Free-Air Temperature

Figure 3. Maximum Peak Output Voltage vs Frequency

Figure 5. Maximum Peak Output Voltage vs Free-Air Temperature

Typical Characteristics (continued)

Temperature

Typical Characteristics (continued)

Figure 13. Supply Current Per Amplifier vs Free-Air Temperature

Figure 14. Total Power Dissipation vs Free-Air Temperature

Figure 15. Normalized Slew Rate vs Free-Air Temperature

Figure 16. Equivalent Input Noise Voltage vs Frequency

Figure 17. Total Harmonic Distortion vs Frequency

Figure 18. Voltage-Follower Large-Signal Pulse Response

Typical Characteristics (continued)

6.1 Parameter Measurement Information

Figure 21. Unity-Gain Amplifier

Figure 22. Gain-of-10 Inverting Amplifier

Figure 23. Input Offset-Voltage Null Circuit

SLOS080N - SEPTEMBER 1978-REVISED JULY 2017

7 Detailed Description

7.1 Overview

The JFET-input operational amplifiers in the TL07xx series are similar to the TL08x series, with low input bias and offset currents, and a fast slew rate. The low harmonic distortion and low noise make the TL07xx series ideally suited for high-fidelity and audio preamplifier applications. Each amplifier features JFET inputs (for high input impedance) coupled with bipolar output stages integrated on a single monolithic chip.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to +85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to +125°C.

7.2 Functional Block Diagram

All component values shown are nominal.

COM	COMPONENT COUNT [†]									
COMPONENT TYPE	TL071	TL072	TL074							
Resistors	11	22	44							
Transistors	14	28	56							
JFET	2	4	6							
Diodes	1	2	4							
Capacitors	1	2	4							
epi-FET	1	2	4							

[†] Includes bias and trim circuitry

7.3 Feature Description

7.3.1 Total Harmonic Distortion

Harmonic distortions to an audio signal are created by electronic components in a circuit. Total harmonic distortion (THD) is a measure of harmonic distortions accumulated by a signal in an audio system. These devices have a very low THD of 0.003% meaning that the TL07x device adds little harmonic distortion when used in audio signal applications.

7.3.2 Slew Rate

The slew rate is the rate at which an operational amplifier can change the output when there is a change on the input. These devices have a $13-V/\mu s$ slew rate.

7.4 Device Functional Modes

These devices are powered on when the supply is connected. These devices can be operated as a single-supply operational amplifier or dual-supply amplifier depending on the application.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

A typical application for an operational amplifier is an inverting amplifier. This amplifier takes a positive voltage on the input, and makes the voltage a negative voltage. In the same manner, the amplifier makes negative voltages positive.

8.2 Typical Application

Copyright © 2016, Texas Instruments Incorporated

Figure 24. Inverting Amplifier

8.2.1 Design Requirements

The supply voltage must be selected so the supply voltage is larger than the input voltage range and output range. For instance, this application scales a signal of ±0.5 V to ±1.8 V. Setting the supply at ±12 V is sufficient to accommodate this application.

8.2.2 Detailed Design Procedure

Determine the gain required by the inverting amplifier:

$$A_{V} = \frac{VOUT}{VIN}$$

$$A_{V} = \frac{1.8}{-0.5} = -3.6$$
(2)

Once the desired gain is determined, select a value for RI or RF. Selecting a value in the kilohm range is desirable because the amplifier circuit uses currents in the milliamp range. This ensures the part does not draw too much current. This example uses 10 k Ω for RI which means 36 k Ω is used for RF. This is determined by Equation 3.

$$A_{V} = -\frac{RF}{RI} \tag{3}$$

Typical Application (continued)

8.2.3 Application Curve

Figure 25. Input and Output Voltages of the Inverting Amplifier

8.3 Unity Gain Buffer

Figure 26. Single-Supply Unity Gain Amplifier

8.3.1 Design Requirements

- V_{CC} must be within valid range per Recommended Operating Conditions. This example uses a value of 12 V for V_{CC}.
- Input voltage must be within the recommended common-mode range, as shown in Recommended Operating
 Conditions. The valid common-mode range is 4 V to 12 V (V_{CC}+ 4 V to V_{CC+}.
- Output is limited by output range, which is typically 1.5 V to 10.5 V, or V_{CC-} + 1.5 V to V_{CC+} 1.5 V.

8.3.2 Detailed Design Procedure

- Avoid input voltage values below 1 V to prevent phase reversal where output goes high.
- Avoid input values below 4 V to prevent degraded V_{IO} that results in an apparent gain greater than 1. This
 may cause instability in some second-order filter designs.

Unity Gain Buffer (continued)

8.3.3 Application Curves

8.4 System Examples

Figure 29. 0.5-Hz Square-Wave Oscillator

Figure 30. High-Q Notch Filter

System Examples (continued)

Figure 31. 100-kHz Quadrature Oscillator

Figure 32. AC Amplifier

9 Power Supply Recommendations

CAUTION

Supply voltages larger than 36 V for a single-supply or outside the range of ±18 V for a dual-supply can permanently damage the device (see the Absolute Maximum Ratings).

Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or highimpedance power supplies. For more detailed information on bypass capacitor placement, see Layout.

10 Layout

10.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Take care to physically separate digital and analog grounds, paying attention to the flow of the ground current. For more detailed information, see Circuit Board Layout Techniques.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace.
- Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in Layout Example.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

Submit Documentation Feedback

Copyright © 1978-2017, Texas Instruments Incorporated

10.2 Layout Example

Figure 33. Operational Amplifier Board Layout for Noninverting Configuration

Figure 34. Operational Amplifier Schematic for Noninverting Configuration

11 Device and Documentation Support

11.1 Documentation Support

SLOS080N - SEPTEMBER 1978 - REVISED JULY 2017

11.1.1 Related Documentation

For related documentation, see the following:

Circuit Board Layout Techniques (SLOA089)

11.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	ORDER NOW	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
TL071	Click here	Click here	Click here	Click here	Click here
TL071A	Click here	Click here	Click here	Click here	Click here
TL071B	Click here	Click here	Click here	Click here	Click here
TL072	Click here	Click here	Click here	Click here	Click here
TL072A	Click here	Click here	Click here	Click here	Click here
TL072B	Click here	Click here	Click here	Click here	Click here
TL072M	Click here	Click here	Click here	Click here	Click here
TL074	Click here	Click here	Click here	Click here	Click here
TL074A	Click here	Click here	Click here	Click here	Click here
TL074B	Click here	Click here	Click here	Click here	Click here
TL074M	Click here	Click here	Click here	Click here	Click here

11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

www.ti.com

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

Copyright © 1978–2017, Texas Instruments Incorporated

Submit Documentation Feedback

2-Jun-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
81023052A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	81023052A TL072MFKB	Samples
8102305HA	ACTIVE	CFP	U	10	1	TBD	A42	N / A for Pkg Type	-55 to 125	8102305HA TL072M	Samples
8102305PA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	8102305PA TL072M	Samples
81023062A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	81023062A TL074MFKB	Samples
8102306CA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	8102306CA TL074MJB	Samples
8102306DA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	8102306DA TL074MWB	Samples
JM38510/11905BPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510 /11905BPA	Samples
M38510/11905BPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510 /11905BPA	Samples
TL071ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	071AC	Samples
TL071ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	071AC	Samples
TL071ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	071AC	Samples
TL071ACP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL071ACP	Samples
TL071ACPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL071ACP	Samples
TL071BCD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	071BC	Samples
TL071BCDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	071BC	Samples
TL071BCDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	071BC	Samples
TL071BCDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	071BC	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TL071BCP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL071BCP	Samples
TL071BCPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL071BCP	Samples
TL071CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL071C	Samples
TL071CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL071C	Samples
TL071CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL071C	Samples
TL071CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL071C	Samples
TL071CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL071CP	Samples
TL071CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL071CP	Samples
TL071CPSR	ACTIVE	so	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T071	Samples
TL071CPSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T071	Samples
TL071ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL071I	Samples
TL071IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL071I	Samples
TL071IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL071I	Samples
TL071IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TL071IP	Samples
TL071IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type -40 to 85		TL071IP	Samples
TL072ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM 0 to 70		072AC	Samples
TL072ACDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	072AC	Samples
TL072ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	072AC	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TL072ACDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	072AC	Samples
TL072ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	072AC	Samples
TL072ACP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL072ACP	Samples
TL072ACPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL072ACP	Samples
TL072BCD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	072BC	Samples
TL072BCDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	072BC	Samples
TL072BCDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	072BC	Samples
TL072BCDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	072BC	Samples
TL072BCDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	072BC	Samples
TL072BCDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	072BC	Samples
TL072BCP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL072BCP	Samples
TL072BCPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL072BCP	Samples
TL072CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL072C	Samples
TL072CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL072C	Samples
TL072CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL072C	Samples
TL072CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM 0 to 70		TL072C	Samples
TL072CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL072C	Samples
TL072CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL072C	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TL072CP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL072CP	Samples
TL072CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL072CP	Samples
TL072CPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	Samples
TL072CPSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	Samples
TL072CPSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	Samples
TL072CPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	Samples
TL072CPWRE4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	Samples
TL072CPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	Samples
TL072ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	Samples
TL072IDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	Samples
TL072IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	Samples
TL072IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	Samples
TL072IDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	Samples
TL072IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	Samples
TL072IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TL072IP	Samples
TL072IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TL072IP	Samples
TL072MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	81023052A TL072MFKB	Samples
TL072MJG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	TL072MJG	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TL072MJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	8102305PA TL072M	Samples
TL072MUB	ACTIVE	CFP	U	10	1	TBD	A42	N / A for Pkg Type	-55 to 125	8102305HA TL072M	Samples
TL074ACD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074AC	Samples
TL074ACDE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074AC	Samples
TL074ACDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074AC	Samples
TL074ACDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074AC	Samples
TL074ACDRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074AC	Samples
TL074ACDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074AC	Samples
TL074ACN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL074ACN	Samples
TL074ACNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL074ACN	Samples
TL074ACNSR	ACTIVE	so	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074A	Samples
TL074BCD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074BC	Samples
TL074BCDE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074BC	Samples
TL074BCDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074BC	Samples
TL074BCDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074BC	Samples
TL074BCDRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074BC	Samples
TL074BCDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074BC	Samples
TL074BCN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL074BCN	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TL074BCNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL074BCN	Samples
TL074CD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074C	Samples
TL074CDE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074C	Samples
TL074CDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074C	Samples
TL074CDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	0 to 70	TL074C	Samples
TL074CDRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074C	Samples
TL074CDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074C	Samples
TL074CN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL074CN	Samples
TL074CNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL074CN	Samples
TL074CNSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074	Samples
TL074CNSRG4	ACTIVE	so	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074	Samples
TL074CPW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T074	Samples
TL074CPWG4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T074	Samples
TL074CPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T074	Samples
TL074CPWRE4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T074	Samples
TL074CPWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T074	Samples
TL074ID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL074I	Samples
TL074IDE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL074I	Samples

2-Jun-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TL074IDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL074I	Samples
TL074IDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL074I	Samples
TL074IDRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL074I	Samples
TL074IDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL074I	Samples
TL074IN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TL074IN	Samples
TL074INE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TL074IN	Samples
TL074MFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	TL074MFK	Samples
TL074MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	81023062A TL074MFKB	Samples
TL074MJ	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	TL074MJ	Samples
TL074MJB	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	8102306CA TL074MJB	Samples
TL074MWB	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	8102306DA TL074MWB	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

2-Jun-2017

- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TL072, TL072M, TL074, TL074M:

• Enhanced Product: TL072-EP, TL072-EP, TL074-EP, TL074-EP

Military: TL072M, TL074M

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Apr-2017

TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity AO

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL071ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL071BCDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL071CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL071CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL071CPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
TL071IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072BCDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072CPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
TL072CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TL072IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL074ACDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL074ACNSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
TL074BCDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL074CDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Apr-2017

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL074CDRG4	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL074CPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TL074IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL071ACDR	SOIC	D	8	2500	340.5	338.1	20.6
TL071BCDR	SOIC	D	8	2500	340.5	338.1	20.6
TL071CDR	SOIC	D	8	2500	367.0	367.0	35.0
TL071CDR	SOIC	D	8	2500	340.5	338.1	20.6
TL071CPSR	SO	PS	8	2000	367.0	367.0	38.0
TL071IDR	SOIC	D	8	2500	340.5	338.1	20.6
TL072ACDR	SOIC	D	8	2500	340.5	338.1	20.6
TL072BCDR	SOIC	D	8	2500	340.5	338.1	20.6
TL072CDR	SOIC	D	8	2500	340.5	338.1	20.6
TL072CDR	SOIC	D	8	2500	367.0	367.0	35.0
TL072CPSR	SO	PS	8	2000	367.0	367.0	38.0
TL072CPWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TL072IDR	SOIC	D	8	2500	340.5	338.1	20.6
TL072IDR	SOIC	D	8	2500	367.0	367.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Apr-2017

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL074ACDR	SOIC	D	14	2500	333.2	345.9	28.6
TL074ACNSR	SO	NS	14	2000	367.0	367.0	38.0
TL074BCDR	SOIC	D	14	2500	333.2	345.9	28.6
TL074CDR	SOIC	D	14	2500	333.2	345.9	28.6
TL074CDRG4	SOIC	D	14	2500	333.2	345.9	28.6
TL074CPWR	TSSOP	PW	14	2000	367.0	367.0	35.0
TL074IDR	SOIC	D	14	2500	333.2	345.9	28.6

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

U (S-GDFP-F10)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F14

CERAMIC DUAL IN LINE PACKAGE

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040083-5/G

CERAMIC DUAL IN LINE PACKAGE

- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- His package is remitted by sealed with a ceramic its using glass mit.
 Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.

CERAMIC DUAL IN LINE PACKAGE

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PS (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

SMALL OUTLINE PACKAGE

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.