First, second and third massive stars in Open Clusters

Alexey A. Mints

XX.12.2010

Problem description

Mass spectrum (theory)

Most massive star (observations)

Cluster mass (generally unknown)

Kroupa mass spectrum

Spectrum

According to Kroupa (2001)

$$lpha_0 = +0.30 \quad 0.01 \le m/M_{\odot} < 0.08,$$
 $lpha_1 = +1.30 \quad 0.08 \le m/M_{\odot} < 0.50,$
 $lpha_2 = +2.35 \quad 0.50 \le m/M_{\odot} < m_{\max}.$

Ignored effects

- Stellar binarity;
- Stellar evolution;
- Cluster dynamics;

Sampling algorithms

Random;

Sampling algorithms

- Random;
- Constrained;

Sampling algorithms

- Random;
- Constrained;
- Sorted;

Distribution for masses of 3 most massive stars

Building the estimator function

$$M_{\rm cl}(m_{1,2,3}) = a m_{1,2,3}^b (m_{\rm max} - m_{1,2,3})^c$$

$M_{\rm cl}(m_i)$

Estimator's error distribution

Estimator built on average values. Distribution of estimated N (real value = 1000).

Estimator's error distribution

Estimator built on median values. Distribution of estimated N (real value = 1000).

Estimator's error distribution

Estimator built on mode values. Distribution of estimated N (real value = 1000).

Conclusions

- 1. Mode or median should be used to build mass estimator;
- 2. Errors have power-law tail;
- 3. Second or third massive star is a better choice because:
 - less affected by the unknown m_{max} ;
 - have smaller errors;