	Property	Sequence	Transform	ROC
		x[n]	X(z)	R_X
		$x_1[n]$	$X_1(z)$	R_{x_1}
		$x_2[n]$	$X_2(z)$	R_{x_2}
1.	Linearity	$a_1x_1[n] + a_2x_2[n]$	$a_1 X_1(z) + a_2 X_2(z)$	At least $R_{x_1} \cap R_{x_2}$
2.	Time shifting	x[n-k]	$z^{-k}X(z)$	R_x except $z = 0$ or ∞
3.	Scaling	$a^n x[n]$	$X(a^{-1}z)$	$ a R_x$
4.	Differentation	nx[n]	$-z\frac{dX(z)}{dz}$	R_X
5.	Conjugation	$x^*[n]$	$X^*(z^*)$	R_{x}
6.	Real-part	$Re\{x[n]\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	At least R_x
7.	Imaginary part	$Im\{x[n]\}$	$\frac{1}{2}[X(z) - X^*(z^*)]$	At least R_x
8.	Folding	x[-n]	X(1/z)	$1/R_x$
9.	Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least $R_{x_1} \cap R_{x_2}$
10.	Initial-value theorem	x[n] = 0 for n < 0	$x[0] = \lim_{z \to \infty} X(z)$	3111 32

Table 3.1 Some common z-transform pairs			
	Sequence x[n]	z-Transform X(z)	ROC
1.	$\delta[n]$	1	All z
2.	u[n]	$\frac{1}{1-z^{-1}}$	z > 1
3.	$a^nu[n]$	$\frac{1}{1-az^{-1}}$	z > a
4.	$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
5.	$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
6.	$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
7.	$(\cos \omega_0 n) u[n]$	$\frac{1 - (\cos \omega_0)z^{-1}}{1 - 2(\cos \omega_0)z^{-1} + z^{-2}}$	z > 1
8.	$(\sin \omega_0 n) u[n]$	$\frac{(\sin \omega_0)z^{-1}}{1 - 2(\cos \omega_0)z^{-1} + z^{-2}}$	z > 1
9.	$(r^n\cos\omega_0 n)u[n]$	$\frac{1 - (r\cos\omega_0)z^{-1}}{1 - 2(r\cos\omega_0)z^{-1} + r^2z^{-2}}$	z > r
10.	$(r^n\sin\omega_0 n)u[n]$	$\frac{(r\sin\omega_0)z^{-1}}{1 - 2(r\cos\omega_0)z^{-1} + r^2z^{-2}}$	z > r

Common Discrete-Time Fourier Transform Pairs

f[n]	$F(\omega)$
1	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - 2\pi k)$
u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega - 2\pi k)$
$\delta[n]$	1
$\delta[n-n_0]$	$e^{-j\omega n_0}$
$a^nu[n]$	$\frac{1}{1 - ae^{-j\omega}}, a < 1$
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 - 2\pi k)$
$p_L[n]$	$\frac{\sin\left(\left(L + \frac{1}{2}\right)\omega\right)}{\sin\left(\frac{\omega}{2}\right)}$
$\frac{L}{\pi}\operatorname{sinc}\left(\frac{Ln}{\pi}\right)$	$\sum_{k=-\infty}^{\infty} p_{2L}(\omega + 2\pi k)$
$\cos(\omega_0 n)$	$\sum_{k=-\infty}^{\infty} \pi \left[\delta(\omega + \omega_0 - 2\pi k) + \delta(\omega - \omega_0 - 2\pi k) \right]$
$\sin(\omega_0 n)$	$\sum_{k=0}^{\infty} j\pi \left[\delta(\omega + \omega_0 - 2\pi k) - \delta(\omega - \omega_0 - 2\pi k) \right]$

 $k=-\infty$

DTFT Theorems and Properties

Property	Time Domain	Frequency Domain
Notation:	x(n)	$X(\omega)$
	$x_1(n)$	$X_1(\omega)$
	$x_2(n)$	$X_1(\omega)$
Linearity:	$a_1 x_1(n) + a_2 x_2(n)$	$a_1 X_1(\omega) + a_2 X_2(\omega)$
Time shifting:	x(n-k)	$e^{-j\omega k}X(\omega)$
Time reversal	x(-n)	$X(-\omega)$
Convolution:	$x_1(n) * x_2(n)$	$X_1(\omega)X_2(\omega)$
Multiplication:	$x_1(n)x_2(n)$	$\frac{1}{2\pi} \int_{2\pi} X_1(\lambda) X_2(\omega - \lambda) d\lambda$
Correlation:	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$S_{x_1x_2}(\omega) = X_1(\omega)X_2(-\omega)$
		$=X_1(\omega)X_2^*(\omega)$ [if $x_2(n)$ real]
Frequency Differentiation:	nx(n)	$j\frac{dX(\omega)}{d\omega}$
Wiener-Khintchine:	$r_{xx}(l) = x(l) * x(-l)$	$S_{xx}(\omega) = X(\omega) ^2$

DTFT Symmetry Properties

Time Sequence	DTFT	
x(n)	$X(\omega)$	
$x^*(n)$	$X^*(-\omega)$	
$x^*(-n)$	$X^*(\omega)$	
x(-n)	$X(-\omega)$	
$x_R(n)$	$X_e(\omega) = \frac{1}{2}[X(\omega) + X^*(-\omega)]$	
$jx_I(n)$	$X_o(\omega) = \frac{1}{2}[X(\omega) - X^*(-\omega)]$	
	$X(\omega) = X^*(-\omega)$	
	$X_R(\omega) = X_R(-\omega)$	
x(n) real	$X_I(\omega) = -X_I(-\omega)$	
	$ X(\omega) = X(-\omega) $	
	$\angle X(\omega) = -\angle X(-\omega)$	
$x'_e(n) = \frac{1}{2}[x(n) + x^*(-n)]$	$X_R(\omega)$	
$x'_{o}(n) = \frac{1}{2}[x(n) - x^{*}(-n)]$	$jX_I(\omega)$	

DFT Properties

Property	Time Domain	Frequency Domain
Notation:	x(n)	X(k)
Periodicity:	x(n) = x(n+N)	X(k) = X(k+N)
Linearity:	$a_1x_1(n) + a_2x_2(n)$	$a_1 X_1(k) + a_2 X_2(k)$
Time reversal	x(N-n)	X(N-k)
Circular time shift:	$x((n-l))_N$	$X(k)e^{-j2\pi kl/N}$
Circular frequency shift:	$x(n)e^{j2\pi ln/N}$	$X((k-l))_N$
Complex conjugate:	$x^*(n)$	$X^*(N-k)$
Circular convolution:	$x_1(n) \otimes x_2(n)$	$X_1(k)X_2(k)$
Multiplication:	$x_1(n)x_2(n)$	$\frac{1}{N}X_1(k)\otimes X_2(k)$
Parseval's theorem:	$\sum_{n=0}^{N-1} x(n) y^*(n)$	$\frac{1}{N} \sum_{k=0}^{N-1} X(k) Y^*(k)$

Additional Formula

November 10, 2021

1. Discrete-time convolution

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[n]h[n-k], -\infty < n < \infty$$

2. Discrete-Time Fourier Transform

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

3. Inverse Discrete-Time Fourier Transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

4. Z-Transform

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}$$

5. Inverse Z-Transform

$$x[n] = \frac{1}{2\pi j} \oint X(z) z^{n-1} dz$$

6. Relative filter specification

$$A_p = 20 \log_{10} \left(\frac{1 + \delta_p}{1 - \delta_p} \right)$$

$$A_s = 20\log_{10}\left(\frac{1+\delta_p}{\delta_s}\right)$$