MATH 2080

Section 2.3 Algebra of limits

As with convergence of sequences of the forms $\{a_n + b_n\}_{n=1}^{\infty}$, $\{a_n b_n\}_{n=1}^{\infty}$, $\{a_n b_n\}_{n=1}^{\infty}$, these operations also behave predictably with respect to limits of functions. Recall that if $f,g:D \to \mathbb{R}$ then $(f\pm g)(x):D \to \mathbb{R}$ is $(f\pm g)(x)=f(x)\pm g(x)$ $(fg)(x):D \to \mathbb{R}$ is (fg)(x)=f(x)g(x) $f:D \to \mathbb{R}$ is (fg)(x)=f(x)g(x)

Theorem: Suppose $f,g:D\to\mathbb{R}$ and x_0 is an accumulation point of D. Suppose $\lim_{x\to x_0} f(x)$ and $\lim_{x\to x_0} g(x)$ exist. Then:

- 1) fry has a limit at x_0 , and $\lim_{x\to x_0} (f+g)(x) = \lim_{x\to x_0} f(x) + \lim_{x\to x_0} g(x)$
- 2) fg has a limit at x, and $\lim_{x\to x_0} (fg)(x) = \lim_{x\to x_0} \lim_{x\to x_0} (\lim_{x\to x_0} g(x))$
- (3) If $g(x) \neq 0$ for all $x \in D$ and $\lim_{x \to x_0} g(x) \neq 0$, then $(\frac{f}{g})(x)$ has a limit at x_0 and $\lim_{x \to x_0} (\frac{f}{g})(x) = \lim_{x \to x_0} (\frac{f}{g})(x) = \lim_{x \to x_0} (\frac{f}{g})(x)$

follows: If {x,1,000 is any sequence converging to xo with x, ED for all n and x07xn for all n. Then we need only show that $\{(f+g)(x_n)\}_{n=1}^{\infty}$ converges to lim f(x) + lim g(x). By assumption, lim f(x) and x>x. by x-x, so $\{f(x_n)\}_{n=1}^{\infty}$ and $\{g(x_n)\}_{n=1}^{\infty}$ converge to these limits respectively. Since a sum of sequences converges to a sum of limits, $\{(f+g)(x_n)\}_{n=1}^{\infty}$ converges to the same thing as $\{f(x_n)\}_{n=1}^{\infty}$ which converges to lim f(x) + lim g(x). This proves the x>x.

claim.

An alternative proof goes as follows: Suppose lam f(x) = L and $\lim_{x \to x_0} g(x) = M$; and let $\varepsilon > 0$. $x \to x_0$.

Choose S' and S'' puch that $0 < |x - x_0| < S'$ implies $|f(x) - L| < \varepsilon_2$ and $0 < |x - x_0| < S''$ implies $|g(x) - M| < \varepsilon_2$.

Set $S = \min\{S', S''\}$. Then for $0 < |x - x_0| < S$, we compute |(f+g)(x) - (M+L)| = |f(x) - L + g(x) - M|

< |f(x)-L| + |g(x)-M|

< = + E2 FE.

Set $A = \lim_{x \to \infty} f(x)$ and $B = \lim_{x \to \infty} g(x)$. Let $\epsilon > 0$.

We need $\delta > 0$ such that $0 < |x - \infty| < \delta$ implies $|(fg)(x) - AB| = |f(x)g(x) - AB| < \epsilon$. Last day we saw that there exists $\delta_1 > 0$ and M > 0 such that $0 < |x - \infty| < \delta_1$ and $\alpha \in D$ implies $|f(x)| \le M$. Set $\epsilon' = \frac{\epsilon}{|B| + M} > 0$.

Now since $\lim_{x\to x} f(x) = A$ and $\lim_{x\to x_0} g(x) = B$, we can choose $S_2 > 0$ such that $0 < |x-x_0| < S_2$ and $x \in D$ implies $|f(x) - A| < \varepsilon'$, and $S_3 > 0$ such that $0 < |x-x_0| < S_3$ and $x \in D$ implies $|g(x) - B| < \varepsilon'$. Set $S = \min\{S_1, S_2, S_3\}$ so that all inequalities above hold when $0 < |x-x_0| < S$ and $x \in D$. Then for such x, we calculate:

 $\begin{aligned} |(fg)(x) - AB| &= |f(x)g(x) - AB| \\ &\leq |f(x)g(x) - f(x)B| + |f(x)B - AB| \\ &= |f(x)||g(x) - B| + |B||f(x) - A| \\ &\leq M\epsilon' + |B|\epsilon' \\ &= \frac{\epsilon}{|B|+M} (M+|B|) = \epsilon. \end{aligned}$

Remark: Return to the analogous proof for sequences and compare!

(3) Again, as in (1) thus can be proved using Sequences or directly. We use sequences. Suppose 1x n 3 n=1 is a sequence convergne to x. and that $x_n \in D$, $x_n \neq x_0$ for all n. Then by our assumptions (and a theorem from last week) $\{f(x_n)\}_{n=1}^{\infty}$ and $\{g(x_n)\}_{n=1}^{\infty}$ converge to $\lim_{x\to\infty} f(x)$ and lun g(x) respectively. Since $g(x) \neq 0$ for all $x \in D$, $x \to x \circ 0$ we know g(xn) ≠0 \ Xn, and by assumption we also know $\lim_{x\to x} g(x) \neq 0$, so $\{g(x_n)\}_{n=1}^{\infty}$ converges to something nonzero. Thuse $\left\{ \left(\frac{f}{g} \right) (\chi_n) \right\}_{n=1}^{\infty} = \left\{ \frac{f(\chi_n)}{g(\chi_n)} \right\}_{n=1}^{\infty} \quad \text{converges to} \quad \lim_{\chi \to \chi_0} f(\chi) \\ \lim_{\chi \to \chi_0} g(\chi) \right\}_{n=1}^{\infty} = \left\{ \frac{f(\chi_n)}{g(\chi_n)} \right\}_{n=1}^{\infty} \quad \text{converges to} \quad \lim_{\chi \to \chi_0} f(\chi) \\ \lim_{\chi \to \chi_0} g(\chi) \right\}_{n=1}^{\infty} = \left\{ \frac{f(\chi_n)}{g(\chi_n)} \right\}_{n=1}^{\infty} \quad \text{converges to} \quad \lim_{\chi \to \chi_0} f(\chi) \\ \lim_{\chi \to \chi_0} g(\chi) \\ \lim_{\chi \to \chi_0} g(\chi)$ and so $\lim_{x\to\infty} \left(\frac{f}{g}\right)(x) = \lim_{x\to\infty} f(x)$ $\lim_{x\to\infty} g(x)$ as required.

As with sequences, we can compare limits of the functions can be compared:

Proof: Exercise, it can be done noing sequences or directly.

Example: Consider $f:(0,1) \to \mathbb{R}$ defined by $f(x) = x \sin(\frac{1}{x})$.

In MATH 1500, you could show $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$ using the squeeze theorem. We can argue directly by observing that $-1 \le \sin(x) \le 1$, so $|f(x)| = |x \sin(\frac{1}{x})| \le |x|$,

therefore if 0 < |x| < S then with $S = \varepsilon$ we get $|f(x) - O| = |f(x)| \le |x| < S = \varepsilon$. So $\lim_{x \to 0} f(x) = 0$.

In fact in this example there is nothing special about $sin(\frac{1}{x})$ aside from being bounded, and nothing special about x aside from lim x = 0. This suggests a theorem:

Theorem: Suppose $f,g:D\to\mathbb{R}$ and x_0 is an accumulation point of D. Suppose f is bounded in a neighbourhood of x_0 and $\lim_{x\to x_0} g(x) = 0$. Then $\lim_{x\to x_0} (fg)(x) = 0$.

Proof: Let 200. Then there is Si>0 and M>0 such that If(x) | M whenever & x & D and |x-xo| < Si.

Set E' = E. Then other exists S, such that if x ∈ D and 0 < 1x-x. 1 < S2 Then 1g(x):-01 $= |g(x)| < \varepsilon'$ Choose 8=min 88, 823. Then O < 1x-xol < 8 and x ED implies $|\{f_g\}(x)| = |f(x)g(x)| = |f(x)||g(x)| \le M\epsilon' = \epsilon.$

So fg has the required limit at X=Xo.

Section 2.3 continued.

Using the previous theorem we can handle a large class of functions. First note:

Example: If f(x) = x, then $\lim_{x\to x_0} f(x) = x_0$, because if $\varepsilon > 0$ then $\delta = \varepsilon$ gives $0 < |x-x| < \delta$ implies $|f(x) - x_0| = |x - x_0| < \delta = \varepsilon$. Similarly easy is: If $c \in \mathbb{R}$ and g(x) = c for all $x \in \mathbb{R}$, then $\lim_{x\to x_0} g(x) = c$.

Non we can prove:

· Since x" is a product of x with itself n times, and since the limit of a product is the product of the limits,

 $\lim_{\chi \to \chi_o} \chi^n = \chi_o^n$

o Since $c \times^n$ is the product of functions g(x) = c and $f(x) = x^n$, the limit is

 $\lim_{x \to x_0} cx^2 = \lim_{x \to x_0} c \cdot \lim_{x \to x_0} x^2 = cx_0^2$

• If $p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$, where $a_i \in \mathbb{R}$, then as the limit of a sum of the limits we get

lim
$$(a_0 + a_1x + ... + a_nx^n) = \sum_{i=0}^n \left(\lim_{x \to x_0} a_ix^i\right)$$

 $x \to x$.

$$= a_0 + a_1x_0 + ... + a_nx_0^n = p(x_0).$$

of $p(x)$ and $q(x)$ are polynomials, and $p(x_0) = p(x_0)$ for each $p(x_0) = p(x_0)$, then $p(x_0) = p(x_0)$ provided that $p(x_0) = p(x_0)$ equal to $p(x_0) = p(x_0)$ provided that $p(x_0) = p(x_0)$ and $p(x_0) = p(x_0)$ and $p(x_0) = p(x_0)$ and $p(x_0) = p(x_0)$ and $p(x_0) = p(x_0)$ applies on that $p(x_0) = p(x_0)$ applies on that

neighbourhood. At $x_0 = r_i$, the limit is more subtle and we must deal with this later in the course. We can also prove.

Theorem: Suppose $f:D \to \mathbb{R}$ with x, an accumulation point of D. If $\lim_{x\to x} f(x) = L$, then $x\to x$.

 $\lim_{x\to x_{s}} \sqrt{f(x)} = \sqrt{L}$

provided f(x) > 0 for all x in DnQ, where

a is a neighbourhood of xo. Proof: We use the fact that if {an}_=: converges to L, then { Jan In=1 converges to VI, and mimic the other sequence/limit proofs. Example: We can now do most "MATH 1500" climits in a rigourous way. For example, if $h'(0,1) \rightarrow \mathbb{R}$ has formula $h(x) = \sqrt{4+x^2-2}$ then we can calculate lim h(x) via: $\lim_{x\to 0} \frac{\sqrt{4+x}-2}{x} = \lim_{x\to 0} \frac{\sqrt{24+x'}-2}{x} \cdot \frac{\sqrt{4+x'}+2}{\sqrt{4+x'}+2}$ = $\lim_{x\to 0} \frac{x}{x(\sqrt{4+x}+2)}$ Now the denominator is a function which, by our previous remarks and theorems, has limit lin * \(\frac{4+x}{4+x} + 2 = \sqrt{0+4} + 2 = 4. This is nonzero, so lim $\frac{1}{x \to 0}$ = $\frac{\lambda \to 0}{\sqrt{4+x} + 2}$ = $\frac{\lambda \to 0}{\sqrt{4+x} + 2}$ = 4.

\$2.4 Limits of monotone functions.

Not surprisingly, just as monotone sequences exhibited special behaviour with respect to convergence, so do monotone functions with respect to dimits.

Definition: Let $f: D \to \mathbb{R}$. A function f is increasing if for all $x,y \in D$ with $x \leq y$ we have $f(x) \leq f(y)$

decreasing if for all $x, y \in D$ with $x \leq y$ we have $f(x) \geq f(y)$.

A hunchon which is either increasing or decreasing or decreasing

For sequences, the result was: monotone bounded sequences have a limit.

For functions, will the result be similar? Do monotone bounded functions always have a limit at some point? At every point?

Example: If f(x) = [x], the greatest integer function, then f(x) is increasing. However $\lim_{x \to \infty} f(x)$ does not exist whenever $x \in \mathbb{Z}$. So clearly f(x) is not required + have a limit at every x_0 .

What if we bound f(x)? Still no, because we could just use $f: [0,2] \rightarrow \mathbb{R}$, f(x) = [x] to produce a bounded increasing function with a problem at x = 1.

It turns out that f monotone implies that lim f(x) can only fail to exist in a particular way: $x \rightarrow x$. There must be a "jump". Specifically, if $f: [\alpha, \beta] \rightarrow \mathbb{R}$ and $\alpha < x < \beta$, set $U(x) = \inf \{ f(y) \mid x < y \}$ and $L(x) = \sup \{ f(y) \mid y < x \}$.

Then $f(\alpha) \leq f(x) \leq f(\beta)$ for all $x \in [x, \beta]$ when f is increasing, U(x) and L(x) are always defined. Now U(x) - L(x) measures the size of the "jump" at x, and it will turn out that $\lim_{x \to x} f(x) = xirts$ if and only if $U(x_0) - L(x_0) = 0$. Then set $J_n = \{x \in (\alpha, \beta) \mid U(x_0) - L(x_0) > \frac{1}{n}\}$

ie. $J_n = all x's in (a, \beta)$ where f(x) jumps by more than t_n .

Each J_n will be finite, since the sum of all the jumps should be less than $f(\beta) - f(\alpha)$ since f is increasing:

We will prove this next day.