$Br\ddot{u}ckenkurs - Tag 5 - 2016-10-10$

In der letzten Ausgabe

In der letzten Vorlesung behandelt: Primfaktorzerlegung. Weiterhin ist unbekannt, wie viele Primzahlen existieren. Ist ihre Zahl unbeschränkt?

6 Primzahlen

Satz (Euklid) Es gibt undendlich viele Primzahlen.

Beweis Seien $p_0, \dots p_{n-1}$ Primzahlen.

Dann können wir eine Primzahl p_n konstruieren mit $p_n \notin \{p_0, \dots, p_{n-1}\}$: Dazu betrachte: $e := p_0 \dots p_{n-1} + 1 = q_1 \dots q_s$ mit Primzahlen q_1, \dots, q_s (PFZ)

Da die P-i jeweils e nicht teilen (Rest 1!), die q_j aber e teilen, sind die q_j von p_i verschieden. Damit ist $p_n := q_i$ die gesuchte Primzahl.

Beispiel

Primzahlsatz Sei $\pi(x)$ die Anzahl der Primzahlen $\leq x$. Dann gilt: $\pi(x) \approx \frac{x}{\ln x}$, d.h.

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\log x} = 1$$

$$\pi(1) = 0, \pi(2) = 1, \pi(3) = 2, \pi(4) = 2, \pi(5) = 3, \pi(7, 5) = 4, \cdots$$

Riemannsche Vermutung: $\sum_{n=1}^{\infty} \frac{1}{n^s} = \zeta(s)$ Sei p_n die n-te Primzahl $(p_0 = 2, p_1 = 3, \cdots)$.

Behauptung $p_n < e^{2^n}$ (Konvention ¹)

Beweis per Induktion über n n=0

$$p_0 = 2; e^{\hat{2}^0} = e^1 = e > 2$$

 $n \implies n+1$

$$p_{n+1} \overset{\text{Euklid}}{\leq} p_0 \dots p_n + 1 = e^{2^0 + 2^1 + \dots + 2^n} + 1 = e^{2^{n+1} - 1} + 1 = e^{2^{n+1}} (\frac{1}{e} + \frac{1}{e^{2^{n+1}}}) < e^{2^{n+1}} \quad \Box$$

7 Algebraische Strukturen

7.1 Definition: Gruppe

Eine Gruppe ist eine Menge G zusammen mit einem ausgezeichneten Element $e \in G$ und einer Verknüpfung $\circ: G \times G \to G, (g,h) \mapsto g \circ h$, so dass folgende Axiome gelten:

- (G1) Die Verknüpfung ist assoziativ: $g \circ (h \circ k) = (g \circ h) \circ k$ für $g, h, k \in G$
- (G2) Das Element e ist neutrales Element: $e \circ g = g = g \circ e$ für $g \in G$
- (G3) Jedes Element besitzt ein Inverses: Für alle $g \in G$ existiert ein $h \in G$ mit $g \circ h = e = h \circ g$

Die Gruppe heißt kommutativ (oder abelsch), falls zusätzlich gilt:

(G4) Die Verknüpfung ist kommutativ: $g \circ h = h \circ g$ für alle $g, h \in G$.

$$(a^b)^c = a^{b \cdot c}, a^{b^c} =: a^{b^c}$$

7.1.1 Beispiele

Beispiel $G = \mathbb{Z}, e = 0 \in \mathbb{Z}, \circ = + : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$

(G1)
$$g + (h + k) = (g + h) + k$$
 für alle $g, h, k \in \mathbb{Z}$

(G2)
$$0+g=g=g+0$$
 für alle $g\in\mathbb{Z}$

(G3)
$$g + (-g) = 0 = (-g) + g$$
 für alle $g \in \mathbb{Z}$

$$(G4) g + h = h + g$$

Beispiel $(\mathbb{Q}, 0, +)$ ist genauso eine abelsche Gruppe.

Beispiel $(\mathbb{N}_0, 0, +)$ ist keine Gruppe.

Beispiel $(\mathbb{Z}, 1, \cdot)$ ist **keine Gruppe**, da G3 nicht erfüllt (z.B. existiert kein $n \in \mathbb{Z}mit2 \cdot n = 1$).

Beispiel $(\mathbb{Q}, 1, \cdot)$ ist keine Gruppe, da G3 nicht erfüllt (Es existiert kein $x \in \mathbb{Q}$ mit $0 \cdot x = 1$)

Beispiel $(\mathbb{Q}^*, 1, \cdot)$, wobei $\mathbb{Q}^* := \mathbb{Q} \setminus 0$ ist eine Gruppe

Beispiel $(\mathbb{Q} \setminus \mathbb{Z}, 1, \cdot)$ ist alles, aber keine Gruppe

7.1.2 Aussage

Sei G eine Gruppe mit zwei neutralen Elementen e, e'. Dann gilt e = e'.

Beweis $e = e \circ e' = e'$, da e neutral und e' neutral. \square

Bemerkung Analog zeigt sich, dass das Inverse zu einem Element eindeutig bestimmt ist.

7.1.3 Aussage

Sei G eine Gruppe. Seien $a, b \in G$ mit Inversen a^{-1} bzw. $b^{-1} \in G$. Dann ist $b^{-1} \cdot a^{-1}$ invers zu $(a \circ b)$ =: $(a \circ b)^{-1}$

Beweis

$$(b^{-1} \circ a^{-1}) \circ (a \circ b) = b^{-1} \circ (a^{-1} \circ a) \circ b = b^{-1} \circ b = e$$

Analog

$$(a \circ b) \circ (b^{-1} \circ a^{-1}) = \dots = e$$

Schreibweise Auch in abstrakten Gruppen schreiben wir häufig \cdot statt \circ für die Verknüpfung und 1 für das neutrale Element. Abkürzung $ab := a \cdot b, a^{-1} :=$ Inverses zu a.

Aussage Sei G eine (multiplikativ geschriebene) Gruppe. Für $a \in G$ gilt dann $(a^{-1})^{-1} = a$

Beweis
$$a \cdot a^{-1} = 1 = a^{-1} \cdot a$$

Beispiel [Gleichseitiges Dreieck mit gegen den Urzeigersinn nummerierten Ecken 1 - 3] Symmetrien in der Ebene: $\left\{\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}\right\} =: G$ mit e, τ, σ .

Seien $g, h \in G$. Dann sei $g \cdot h$ die Hintereinanderausführung von h und danach g.

Beispiel

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

 $\tau \circ \sigma = e$

Gruppentafel:

$a \setminus b$	e	σ	τ
e	e	σ	τ
σ	σ	τ	e
au	τ	e	σ

 $\bf Beispiel \quad [$ Gleichseitiges Dreieck mit gegen den Urzeigersinn nummerierten Ecken 1 - 3] Symmetrien im Raum:

$$\left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}$$

mit e, τ , σ , α_1 , α_2 , α_3 .

 $\alpha_1 \circ \sigma = \alpha_2, \ \sigma \circ \alpha_1 = \alpha_1 \neq \alpha_2 = \alpha_1 \circ \sigma$ Also nicht abelsch / kommutativ.

$$\alpha_1^2 = \alpha_1 \circ \alpha_1 = e \implies \alpha_1^{-1} = \alpha_1$$

Beispiel {Dreiecks-Symmetrie im Raum} = S_3

7.1.4 Definition: Untergruppe

Eine Teilmenge $U \subseteq G$ einer Gruppe G heißt **Untergruppe**, falls (U1) $e \in U$, (U2) $g, h \in U \implies g \circ h \in U$, (U3) $g \in U \implies g^{-1} \in U$

Beispiel {Dreiecks-Symmetrien in der Ebene} \subseteq {Dreiecks - SymmetrienimRaum}

Beispiel $\mathbb{Z} \subseteq (\mathbb{Q}, 0, +)$ ist Untergruppe

Beispiel $\mathbb{N}_0 \subseteq (\mathbb{Z}, 0, +)$ ist keine Untergruppe.

7.1.5 Definition: Kommutative Ringe

Ein **kommutativer Ring** ist eine Menge R zusammen mit zwei ausgezeichneten Elementen 0 und $1 \in R$ und zwei Verknüpfungen $+: R \times R \mapsto R$ und $\cdot: R \times R \mapsto R$ so dass gilt:

(R1)
$$\forall x, y, z \in R : x + (y + z) = (x + y) + z$$

(R2)
$$\forall x \in R : x + 0 = x = 0 + x$$

(R3)
$$\forall x \in R \; \exists \; y \in R : x + y = 0 = y + x$$

(R4)
$$\forall x, y \in R : x + y = y + x$$

(R5)
$$\forall x, y, z \in R : x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$(R6) \ \forall x \in R : x \cdot 1 = x = 1 \cdot x$$

(R7)
$$\forall x, y \in R : x \cdot y = y \cdot x$$

(R8)
$$\forall x, y, z \in R : x \cdot (y+z) = x \cdot y + x \cdot z \wedge (y+z) \cdot x = y \cdot x + u \cdot x$$

Beispiel $(\mathbb{Z},0,1,+,\cdot)$

Beispiel $(\mathbb{Q}, 0, 1, +, \cdot)$

Beispiel

 $\textbf{Menge der Polynome bis } X \textbf{ aus } \mathbb{Z} \quad \mathbb{Z}[X] = \{a_n X^n + \dots + a_1 X + a_0 \mid a_0, \dots, a_n \in \mathbb{Z}\}$

Beispiel $(\mathbb{Z}[X], 0, 1, +, \cdot)$ $(R[X], 0, 1, +, \cdot)$ falls R kommutativer Ring.

Bemerkung Ist $(R, 0, 1, +, \cdot)$ ein kommutativer Ring, so ist (R, 0, +) eine abelsche Gruppe.

Definition Ist R ein kommutativer Ring, so $R* := \{x \in R \mid \exists y \in R : x \cdot y = 1 = y \cdot x\}$ Es ist $(R*, 1, \cdot)$ eine kommutative Gruppe, die **Einheitengruppe von** R.

Beispiel
$$\mathbb{Z}^* = \{\pm 1\}, \mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$$

Definition: Körper Ein Körper K der Menge ist ein kommutativer Ring für den Multiplikation und Addition abelsch definiert sind. Somit gelten für ihn die Axiome der abelschen Gruppen (K, +, 0) und $(K, \cdot, 1)$ und das Distributivgesetz. Außerdem ist definiert: $K* = K \setminus \{0\}$

Beispiel \mathbb{Q} und \mathbb{R} sind Körper.

Beispiel $\mathbb{Q}(\sqrt{2}) := \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} \subseteq \mathbb{R}$ ist ein Unterkörper.

$$0 = 0 + 0\sqrt{2}$$
, $1 = 1 + 0\sqrt{2}$

$$\frac{1}{a+b\sqrt{2}} = \frac{a-b\sqrt{2}}{(a+b\sqrt{2})(a-b\sqrt{2})} = \frac{a-b\sqrt{2}}{a^2-2b^2} = \frac{a}{a^2-2b^2} - \frac{a}{a^2-2b^2} =$$