PROBLEM STATEMENT:- TO PREDICT THE RAIN FALL BASED ON VARIOUS FEATURES OF THE DATASET

import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns

In [2]:

 $\label{thm:csv} $$ df=pd.read_csv(r"C:\Users\samit\oneDrive\Desktop\jupyter\rainfall in india 1901-2015 csv.csv") $$ df $$$

Out[2]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	J
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	13
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	15
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	15
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	2
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	1
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	6
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	6
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	

4116 rows × 19 columns

In [3]: ▶

df.head()

Out[3]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Feb	
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	136.3	
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	159.8	4
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	156.7	1
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	24.1	ţ
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	1.3	;
4																•	•

In [4]:

df.tail()

Out[4]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Fet
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	7.9
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	19.3
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	60.6
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	69.3
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	2.7
4																•

```
M
In [5]:
df.isnull().any()
Out[5]:
SUBDIVISION
                False
YEAR
                False
JAN
                 True
                 True
FEB
MAR
                 True
APR
                 True
                 True
MAY
JUN
                 True
JUL
                 True
AUG
                 True
SEP
                 True
OCT
                 True
NOV
                 True
DEC
                 True
ANNUAL
                 True
Jan-Feb
                 True
Mar-May
                 True
Jun-Sep
                 True
Oct-Dec
                 True
dtype: bool
In [6]:
                                                                                                                     H
df.fillna(method='ffill',inplace=True)
In [7]:
                                                                                                                     H
df.isnull().sum()
Out[7]:
SUBDIVISION
               0
YEAR
                0
JAN
               0
FEB
               0
MAR
               0
                0
APR
               0
MAY
JUN
               0
JUL
                0
               0
AUG
               0
SEP
OCT
                0
               0
NOV
DEC
               0
ANNUAL
               0
Jan-Feb
               0
Mar-May
               0
Jun-Sep
               0
Oct-Dec
                0
dtype: int64
```

```
In [8]:
df.describe()
```

Out[8]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AU
count	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.00000
mean	1958.218659	18.957240	21.823251	27.415379	43.160641	85.788994	230.567979	347.177235	290.23979
std	33.140898	33.576192	35.922602	47.045473	67.816588	123.220150	234.896056	269.321089	188.78563
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.400000	0.000000	0.00000
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.475000	175.900000	155.85000
50%	1958.000000	6.000000	6.700000	7.900000	15.700000	36.700000	138.900000	284.800000	259.40000
75%	1987.000000	22.200000	26.800000	31.400000	50.125000	97.400000	306.150000	418.325000	377.80000
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.900000	2362.800000	1664.60000
4									•

In [9]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):
                 Non-Null Count Dtype
    Column
#
                  -----
0
    SUBDIVISION 4116 non-null
                                 object
1
    YEAR
                 4116 non-null
                                 int64
                 4116 non-null
                                 float64
2
     JAN
3
    FEB
                 4116 non-null
                                 float64
                                 float64
                 4116 non-null
4
    MAR
```

5 APR 4116 non-null float64 6 MAY 4116 non-null float64 7 JUN 4116 non-null float64 4116 non-null float64 8 JUI 9 AUG 4116 non-null float64 10 SEP 4116 non-null float64 4116 non-null float64 11 OCT 12 NOV 4116 non-null float64 13 DEC 4116 non-null float64 14 ANNUAL 4116 non-null float64

15 Jan-Feb 4116 non-null float64

16 Mar-May 4116 non-null float64 17 Jun-Sep 4116 non-null float64

17 Jun-Sep 4116 non-null float64 18 Oct-Dec 4116 non-null float64

dtypes: float64(17), int64(1), object(1)

memory usage: 611.1+ KB

```
In [10]:
```

```
df.columns
```

Out[10]:

```
In [11]:
                                                                                                                   M
df.shape
Out[11]:
(4116, 19)
In [12]:
                                                                                                                   H
df['ANNUAL'].value_counts()
Out[12]:
ANNUAL
790.5
          4
770.3
          4
          4
1836.2
1024.6
          4
1926.5
          3
443.9
          1
689.0
          1
605.2
509.7
          1
1642.9
          1
Name: count, Length: 3712, dtype: int64
In [13]:
                                                                                                                   M
df['Jan-Feb'].value_counts()
Out[13]:
Jan-Feb
0.0
        238
0.1
         80
0.2
         52
0.3
         38
0.4
         32
23.3
          1
95.2
          1
76.9
          1
66.5
          1
69.3
          1
Name: count, Length: 1220, dtype: int64
In [14]:
                                                                                                                   M
df['Mar-May'].value_counts()
Out[14]:
Mar-May
0.0
         29
0.1
         13
0.3
         11
8.3
         11
11.5
         10
246.3
          1
248.1
          1
151.3
          1
249.5
          1
223.9
          1
Name: count, Length: 2262, dtype: int64
```

```
In [15]:
                                                                                                                H
df['Jun-Sep'].value_counts()
Out[15]:
Jun-Sep
434.3
334.8
          4
573.8
613.3
          4
1082.3
         3
301.6
          1
380.9
          1
409.3
229.4
958.5
         1
Name: count, Length: 3683, dtype: int64
                                                                                                                M
In [16]:
df['Oct-Dec'].value_counts()
Out[16]:
Oct-Dec
         16
0.0
0.1
         15
0.5
         13
0.6
         12
0.7
         11
191.5
124.5
          1
139.1
          1
41.5
          1
555.4
          1
```

EXPLORATORY DATA analysis:

Name: count, Length: 2389, dtype: int64

```
In [17]:

df=df[['JAN','FEB','MAR','DEC']]
sns.heatmap(df.corr(),annot=True)
plt.show()
```



```
In [18]:

df.columns
```

```
Out[18]:
```

Index(['JAN', 'FEB', 'MAR', 'APR', 'DEC'], dtype='object')

```
In [19]:

x=df[["FEB"]]

y=df["JAN"]
```

LINEARREGRESSION:-

```
In [20]:

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

```
In [21]:

from sklearn.linear_model import LinearRegression
reg=LinearRegression()
reg.fit(X_train,y_train)
print(reg.intercept_)
coeff_=pd.DataFrame(reg.coef_,x.columns,columns=['coefficient'])
coeff_
```

9.650666612303553

Out[21]:

coefficient

FEB 0.442278

In [22]:

score=reg.score(X_test,y_test)
print(score)

0.1793580786264921

In [23]:

predictions=reg.predict(X_test)

In [24]: ▶

plt.scatter(y_test,predictions)

Out[24]:

<matplotlib.collections.PathCollection at 0x23740ebd3d0>


```
In [25]:

df500=df[:][:500]
sns.lmplot(x="FEB",y="JAN",order=2,ci=None,data=df500)
plt.show()
```



```
In [26]:
```

X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33)
reg.fit(X_train,y_train)
reg.fit(X_test,y_test)

Out[26]:

v LinearRegression
LinearRegression()

```
In [27]:

y_pred=reg.predict(X_test)
plt.scatter(X_test,y_test,color='black')
plt.plot(X_test,y_pred,color='red')
plt.show()
```



```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(X_train,y_train)
y_pred=model.predict(X_test)
r2=r2_score(y_test,y_pred)
print("R2 Score:",r2)
```

R2 Score: 0.1661333137628389

RIDGE MODEL:-

```
In [29]:
from sklearn.linear_model import Lasso,Ridge
from sklearn.preprocessing import StandardScaler

In [46]:
features= df.columns[0:1]
target= df.columns[-5]

In [47]:
x=np.array(df['JAN']).reshape(-1,1)
y=np.array(df['FEB']).reshape(-1,2)
```

```
In [48]:
                                                                                                                M
x= df[features].values
y= df[target].values
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=17)
In [49]:
ridgeReg=Ridge(alpha=10)
ridgeReg.fit(x_train,y_train)
train_score_ridge=ridgeReg.score(x_train,y_train)
test_score_ridge=ridgeReg.score(x_test,y_test)
In [50]:
                                                                                                                M
print("\n Ridge Model:\n")
print("the train score for ridge model is{}".format(train_score_ridge))
print("the test score for ridge model is{}".format(test_score_ridge))
 Ridge Model:
the train score for ridge model is0.999999999904551
the test score for ridge model is0.999999999994435
In [51]:
                                                                                                                H
lr=LinearRegression()
```

```
In [52]:

pure(figsize= (10,10))
t(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=5,color='red',label=r'Ridge;$\alpha=10
t(features,alpha=0.4,linestyle='none',marker='o',markersize=7,color="green",label='LinearRegression')
cks(rotation = 90)
gend()
w()
```


LASSO MODEL:-

In [53]:

```
print("\n Lasso Model:\n")
lasso=Lasso(alpha=10)
lasso.fit(x_train,y_train)
train_score_ls=lasso.score(x_train,y_train)
test_score_ls=lasso.score(x_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is{}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.9999207747038827 The test score for ls model is0.9999206791315256

In [54]:

pd.Series(lasso.coef_,features).sort_values(ascending=True).plot(kind="bar")

Out[54]:

<Axes: >


```
In [55]:
```

```
from sklearn.linear_model import LassoCV
lasso_cv=LassoCV(alphas=[0.0001,0.001,0.01,1,10],random_state=0).fit(x_train,y_train)
print(lasso_cv.score(x_train,y_train))
print(lasso_cv.score(x_test,y_test))
```

0.9999999999991

0.999999999999921

```
In [56]:
                                                                                                                   M
plt.figure(figsize= (10,10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=5,color="blue",label=r'Ridge;$
plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='green',label=r'lasso;$\alpha=16
plt.plot(features,alpha=0.4,linestyle='none',marker='o',markersize=7,color="green",label='LinearRegression')
plt.xticks(rotation = 90)
plt.legend()
plt.show()
                                                                                     Ridge; \alpha = 10
                                                                                     lasso;\alpha = 10
                                                                                     LinearRegression
 JAN
```

ΜĀ

ELASTIC NET

```
In [57]:

from sklearn.linear_model import ElasticNet
eln=ElasticNet()
eln.fit(x,y)
print(eln.coef_)
print(eln.intercept_)
print(eln.score(x,y))
```

[0.99911315] 0.01681222287140116 0.9999992134975881

```
In [58]:
```

```
y_pred_elastic = reg.predict(x_train)
mean_squared_error=np.mean((y_pred_elastic - y_train)**2)
print(mean_squared_error)
```

431.73307573428445

C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\base.py:439: User
Warning: X does not have valid feature names, but LinearRegression was fitted with feature names
 warnings.warn(

conclusion:-

```
THE SCORE OF LINEAR REGRESSION IS :- 0.1793580786264921
THE SCORE OF RIDGE MODEL IS :- 0.9999999998833
THE SCORE OF LASSO MODEL IS :- 0.999999999992
THE SCORE OF ELASTIC NET IS :- 0.9999992160905338
AMONG ALL MODELS LASSO YEILD HIGHEST ACCURACY.SO, WE PREFER LASSO MODEL FOR THIS DATASET
```