МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) МАИ

Институт № 8 «Информационные технологии и прикладная математика» Кафедра 805 «Математическая кибернетика»

Курсовая Работа

по дисциплине

БАЗЫ ДАННЫХ

Работу выполнили студенты группы М8О-303Б-18 и М8О-304Б-18 Хахин М.С., Мукин Ю.Д. и Сыроежкин К.Г.

Работу приняли

кандидат технических наук,

Доцент Киндинова В. В., Кузнецова Е.В.

MOCKBA, 2020

1. Задание

1.1 Анализ предметной области

С ростом рынка компьютерных комплектующих стало сложнее вести складской учет на предприятиях занимающихся сборкой ПК. Это вылилось в расхождение ожидаемых расходов с реальными расходами, в проблемы с учетом гарантийных случаев и в воровство на предприятии.

Накопившийся объем возможных конфигураций сильно усложняет задачу подбора комплектующих для покупателей. Раньше, в связи с ограниченностью развития технологий, полный список доступных комплектующих легко умещался в небольшой журнальчик, и не составляло труда подобрать конфигурацию. Так как с каждым годом технологии шагают вперед, объем журналов вырос до неприемлемых размеров, что привело к их почти полному исчезновению. Поэтому появилась необходимость в создании удобного инструмента для проектирования конфигурации вычислительных систем. Таким инструментом стала реляционная база данных.

База данных имеет множество преимуществ перед бумажными носителями. Основные преимущества БД:

- Удобное иерархическое устройство;
- Возможность проверки комплектующих на совместимость;
- Моментальный доступ к информации;
- Возможность получить необходимую информацию в любой момент из любой точки мира по сети;

Наше приложение позволяет работать с базой данных трем типам пользователей - клиент, сборщик, менеджер. У каждого типа свои потребности в работе с БД. Так, к примеру, клиент должен знать, какие готовые конфигурации предприятие может предложить,а также полный список доступных комплектующих и состояние своего заказа. Сборщик в свою очередь должен иметь доступ к списку доступных для выполнения заказов и их конфигурациям. Менеджер имеет доступ ко всем существующим таблицам, что позволяет эффективнее управлять предприятием.

1.2 Постановка задачи

Разработать прикладное программное обеспечение для компании по осуществлению сборки компьютеров, объединяющее в себе 3 приложения

для каждой из категорий пользователей: клиент, сборщик, менеджер. Оно должно иметь следующий функционал:

Приложение для клиента:

- Внести свою конфигурацию компьютера в базу данных.
- Посмотреть существующую конфигурацию, которая удовлетворяет требованиям клиента.
- Посмотреть доступные запчасти.
- Информацию по сборке компьютера по его конфигурации.

Приложение для сборщика:

- Посмотреть существующую конфигурацию для последующей сборки.
- Занести собранный компьютер в базу данных.

Приложение для менеджера:

- Информацию о собранных компьютерах.
- Информацию о запчастях на складах
- Информацию о сборщиках.

Таблицы и схема данных

В разработанной базе данных присутствуют таблицы: «case», «disc», «mother», «power_supply», «ram», «gpu», «cpu», «components», «final product», «assemblers».

В каждом финальном продукте (final_product) содержится pc_id (номер компьютера), ass_id (номер сборщика), conf_id (номер конфигурации), ok (исправность), ass_date (дата сборки).

При сборке компьютера, покупатель может выбрать:

- 1) case (корпус): case_id (номер корпуса), standart (форм-фактор корпуса), coast (цена);
- 2) disk (жесткий диск): disk_id (номер диска), size (объём в Гб), type (ssd/hdd), coast (цена);
- 3) motherboard (материнская плата): motherboard_id (номер материнской платы), soket (тип разъема), chipset (код южного моста), coast (цена);

- 4) power_supply (блок питания): power_supply_id (номер блока питания), power (мощность в Вт), standart (форм-фактор), coast (цена);
- 5) ram (оперативная память): ram_id (номер оперативной памяти), quantity (частота), size (оъём в Гб), coast (цена);
- 6) gpu (видео карта): gpu_id (номер видео карты), cores (кол-во ядер), rt (поддерживается ли трассировка лучей), frequency (частота ядер), coast (цена);
- 7) сри (процессор): сри_id (номер процессора), soket (код разъема на материнской плате), frequency (частота ядер), cores (кол-во ядер), threads (кол-во потоков), coast (цена).

Все компоненты хранятся в таблице components: conf_id (номер конфигурации), type (тип по назначению), case_id (номер корпуса), disk_id (номер диска), motherboard_id (номер материнской платы), power_supply_id (номер блока питания), ram_id (номер оперативной памяти), gpu id (номер видео карты), cpu id (номер процессора).

У каждого сборщика (assemblers) есть: ass_id (номер сборщика), name (имя), pc_count (кол-во собранных компьютеров), marriag_rate (рейтинг сборщика).

Поля таблиц и их характеристики представлены в таблице 1.

Таблица 1. Поля таблиц базы данных и их характеристики

Поле	Тип данных Длина		Дополнительно					
«case»								
case_id	Intefer	4						
standart	Character	10						
coast	Double	8						
«disk»								
disk_id	Integer	4						

size	Numeric	10						
type	Character	3						
coast	Double	8						
«motherboard»								
motherboard_id	Iteger	4						
soket	Character	10						
chipzet	Character	10						
coast	Double	8						
«power_supply»								
power_suply_id	Integer	4						
power	Integer	4						
standart	Character	10						
coast	Double	8						
	«ram»							
ram_id	Integer	4						
quanntity	Numeric	2						
size	Numeric	10						
coast	Character	10						
	«gp	ou»						
gpu_id	Integer	4						
cores	Memo	4						
rt	Character	1						

frequency	Numeric	10						
coast	Double	8						
«cpu»								
cpu_id	Integer	4						
soket	Integer	4						
frequency	Numeric	4						
cores	Numeric	2						
threads	Numeric	3						
coast	Double	8						
«components»								
conf_id	Integer	4						
type	Character	10						
cpu_id	Character	10						
gpu_id	Character	10						
ram_id	Character	10						
disk_id	Character	10						
motherboard_id	Character	10						
power_supply_id	Character	10						
case_id	Character	10						
	«final_p	roduct»						
pc_id	Integer	4						
ass_id	Integer	4						
conf_id	Integer	4						

ok	Character	1	
ass_date	Character	1	
	«assem	blers»	
ass_id	Integer	4	
name	Character	10	
pc_count	Integer	4	
marriag_rate	Integer	4	

2. Проект системы

2.1 Информационная часть:

Схема в ERWin

Результаты построения разработанной базы данных в ERWin

продемонстрированы на рис. 1 - 3.

Рис. 1. Логическая схема в ERWin

Рис. 2. Физическая схема в ERWin

```
CREATE TABLE assembler
                                        CREATE TABLE case
                  CHAR(18) NOT
                                                           CHAR(18) NOT
     ass id
                                              case id
NULL,
                                        NULL,
     name
                  CHAR(18) NULL,
                                              standard
                                                           CHAR(18) NULL
                   CHAR(18) NULL
     pc count
                                                          CHAR(18) NULL
                                              coast
     marriag rate
                    CHAR(18)
                                        );
NULL
);
                                        CREATE UNIQUE INDEX XPKcase ON
CREATE UNIQUE INDEX
XPKassembler ON assembler
                                        case
(ass id ASC);
                                        (case id ASC);
ALTER TABLE assembler
      ADD CONSTRAINT
XPKassembler PRIMARY KEY (ass id);
                                        ALTER TABLE case
                                              ADD CONSTRAINT XPKcase
                                        PRIMARY KEY (case_id);
```

```
CREATE UNIQUE INDEX XPKcpu ON
                                       cpu
                                       (cpu_id ASC);
CREATE TABLE components
     conf id
                  CHAR(18) NOT
NULL,
                                       ALTER TABLE cpu
                                             ADD CONSTRAINT XPKcpu
                 CHAR(18) NULL,
     type
                                       PRIMARY KEY (cpu id);
     cpu id
                  INTEGER NULL,
                  CHAR(18) NOT
     gpu_id
NULL,
                  CHAR(18) NULL
     ram id
                                       CREATE TABLE disk
     disk id
                  CHAR(18) NULL,
     motherboard id
                     CHAR(18)
                                             disk id
                                                          CHAR(18) NOT
NOT NULL,
                                       NULL,
     power supply id
                      CHAR(18)
                                             size
                                                         CHAR(18) NULL,
                                                         CHAR(18) NULL,
NOT NULL,
                                             type
                  CHAR(18) NOT
                                                         CHAR(18) NULL
     case id
                                             coast
NULL
                                       );
);
                                       CREATE UNIQUE INDEX XPKdisk ON
CREATE UNIQUE INDEX
                                       disk
XPK components ON components
                                       (disk id ASC);
(conf id ASC);
                                       ALTER TABLE disk
ALTER TABLE components
                                             ADD CONSTRAINT XPKdisk
     ADD CONSTRAINT
                                       PRIMARY KEY (disk id);
XPK components PRIMARY KEY
(conf id);
                                       CREATE TABLE final product
                                                         CHAR(18) NOT
CREATE TABLE cpu
                                             pc_id
                                       NULL.
                  INTEGER NOT
                                                        CHAR(18) NULL,
     cpu id
                                             ok
NULL,
                                             assembly at
                                                            DATE NULL,
     frequency
                   INTEGER NULL
                                             conf id
                                                          CHAR(18) NULL
                                             ass id
                                                         CHAR(18) NOT
                 INTEGER NULL,
     cores
     threads
                  CHAR(18) NULL,
                                       NULL
                 INTEGER NULL
     coast
                                       );
);
```

CREATE UNIQUE INDEX XPKfinal_product ON final_product (pc_id_ASC);	CREATE UNIQUE INDEX XPKmotherboard ON motherboard (motherboard_id_ASC);			
ALTER TABLE final_product ADD CONSTRAINT XPKfinal_product PRIMARY KEY (pc_id);	ALTER TABLE motherboard ADD CONSTRAINT XPKmotherboard PRIMARY KEY (motherboard_id);			
CREATE TABLE gpu (gpu_id CHAR(18) NOT NULL, cores CHAR(18) NULL, rt CHAR(18) NULL, frequency CHAR(18) NULL, coast CHAR(18) NULL);	CREATE TABLE power_supply (power_supply_id CHAR(18) NOT NULL, power CHAR(18) NULL , standard CHAR(18) NULL , coast CHAR(18) NULL);			
CREATE UNIQUE INDEX XPKgpu ON gpu (gpu_id ASC); ALTER TABLE gpu ADD CONSTRAINT XPKgpu PRIMARY KEY (gpu_id);	CREATE UNIQUE INDEX XPKpower_supply ON power_supply (power_supply_id ASC); ALTER TABLE power_supply ADD CONSTRAINT XPKpower_supply PRIMARY KEY (power_supply_id);			
CREATE TABLE motherboard (motherboard_id CHAR(18) NOT NULL, soket CHAR(18) NULL, chipset CHAR(18) NULL, coast CHAR(18) NULL);	CREATE TABLE ram (ram_id			

Рис. 3. Описание сгенерированной базы данных на SQL

Схема в FoxPro

Рис. 4. Схема базы данных в FoxPro

3. Реализация проекта

3.1 Заполненная БД

Примеры заполнения таблиц приведены на рис. 5–14.

C	ase_id	Standard	Coast
	121	ATX	35
- Cooking	122	mATX	40
	123	mini-ITX	50
	124	E-ATX	120
	1211	ATX	40
	1221	mATX	85
	1231	mini-ITX	135
	1241	E-ATX	120
	1212	ATX	139
	1222	mATX	93
	1232	mini-ITX	86
	1242	E-ATX	111
	1213	ATX	87
	1223	mATX	146
	1233	mini-ITX	75
	1243	E-ATX	55
	1214	ATX	141
	1224	mATX	160
	1234	mini-ITX	124
	1244	E-ATX	68
	1215	ATX	86
	1225	mATX	131
7	1235	mini-ITX	70
	1245	E-ATX	99

Рис. 5. Таблица «case»

	Disk_id	Size	Туре	Coast
	115121	512	SSD	120
	112561	256	SSD	60
T	1110242	1024	HHD	70
T	1110241	1024	SSD	240
	1120481	2048	SSD	480
T	111281	128	SSD	30
	1140961	4096	SSD	960
Γ	1115361	1536	SSD	360
	1125681	2568	SSD	600
	1146081	4608	SSD	1080
	1181921	8192	SSD	1920
	115122	512	HHD	35
	112562	256	HHD	18
Γ	1120482	2048	HHD	140
	111282	128	HHD	9
Γ	1140962	4096	HHD	280
	1115362	1536	HHD	105
T	1125682	2568	HHD	175
	1146082	4608	HHD	315
Т	1181922	8192	HHD	560

Рис. 6. Таблица «disk»

	Motherboard_id	Soket	Chipset	Coast
I	14133665	1336	65	70
	14120085	1200	85	120
	14105697	1056	97	200
	14133667	1336	67	75
	14133631	1336	31	35
	141200270	1200	270	330
	141200250	1200	250	300
	141056100	1056	100	150
	14105625	1056	25	30
	141151150	1151	150	170
	141151170	1151	170	180
	141151110	1151	110	165

Рис. 7. Таблица «motherboard»

	Power_supply_id	Power	Standard	Coast
ł	105501	550	ATX	80
	106501	650	ATX	100
	104502	450	SFX	85
	104501	450	ATX	60
	107501	750	ATX	120
	108501	850	ATX	140
	109501	950	ATX	160
	1010501	1050	ATX	180
	1011501	1150	ATX	200
	1012501	1250	ATX	220
2	1013501	1350	ATX	240
	1014501	1450	ATX	260
	1015501	1550	ATX	280
	104002	400	SFX	75
	105002	500	SFX	95
	105502	550	SFX	105
	106002	600	SFX	115
	106502	650	SFX	125
	107002	700	SFX	135
Γ	107502	750	SFX	145

Рис. 8. Таблица «power_supply»

	Ram_id	Quanntity	Size	Coast
•	1336008	36	8	105
	13400016	40	16	125
	1324008	24	8	45
T	13200016	20	16	25
T	1320008	20	8	20
Г	1322008	22	8	30
Г	13220016	22	16	35
	13240016	24	16	40
Т	1326008	26	8	50
	13260016	26	16	55
Γ	1328008	28	8	60
	13280016	28	16	65
	1330008	30	8	70
	13300016	30	16	75
	1332008	32	8	80
Γ	13320016	32	16	85
T	1334008	34	8	90
T	13340016	34	16	95
	13360016	36	16	100
Т	1338008	38	8	110
T	13380016	38	16	115
Г	1340008	40	8	120

Рис. 9. Таблица «ram»

1	Gpu_id	Cores	Rt	Frequency	Coast
	159801	3564	n	1000	399
	1520702	2578	у	2500	450
	1510301	1567	n	1500	230
_	159701	2564	n	1000	350
	159601	1996	n	1000	300
	1520602	2078	у	2000	320
	1516601	2078	n	2000	299
	1516501	2000	n	2000	250
2	1520802	3000	y	2000	550
	1530702	2500	у	1900	600
	1530602	2128	y	1900	500
	1530802	3500	y	1900	700

Рис. 10. Таблица «gpu»

I	Cpu_id	Soket	Frequency	Cores	Threads	Coast
	1613368	1336	4700	8	8	250
	1612008	1200	3400	8	16	300
	1610564	1056	4300	4	8	200
	1611514	1151	3500	4	8	150
	1611518	1151	3700	8	16	200
	16115112	1151	4000	12	24	250
	16115116	1151	4200	16	32	300
	1610568	1056	4600	8	8	250
	16105612	1056	4700	12	12	300
	16105616	1056	4900	16	16	350
	1612004	1200	3100	4	8	250
	16120012	1200	3600	12	24	350
	16120016	1200	3900	16	32	400
	1613364	1336	4300	4	4	200
	16133612	1336	5000	12	12	300
•	16133616	1336	5300	16	16	350

Рис. 11. Таблица «сри»

	Conf_id	Туре	Cpu_id	Gpu_id	Ram_id	Disk_id	Motherboard_id	Power_supply_id	Case_id
\blacksquare	1	gaming	1613368	159801	1336008	115121	14133665	105501	121
П	2	wkstation	1612008	1510301	13240032	115121	14120085	106501	121
П	3	multimedia	1610564	159801	1336008	1125621	14105697	105501	121
П	4	gaming	16120016	1530802	1340001	1181921	14105697	1015501	1224
П	5	wkstation	16115116	159601	13400016	118192	14115117	107501	1215
П	6	multimedia	1610564	1516601	13200016	1110242	14105625	105501	1211
П	7	gaming	1612001	1530702	13380016	1146081	141200270	1014501	1223
П	8	wkstation	16120016	159701	13380016	1140961	141200270	10650	1245
П	9	multimedia	1613364	1516501	1320008	115122	1413363	104501	1211

Рис. 12. Таблица «components»

	Pc_id	Ass_id	Conf_id	Ok	Ass_date
	1	2	2	у	10/10/20
	2	1	3	y	10/12/20
П	3	7	1	n	10/15/20
П	4	4	6	у	10/18/20
П	5	6	5	у	10/20/20
П	6	6	7	у	10/23/20
	7	6	4	у	10/25/20
	8	3	9	у	10/28/20
П	9	2	8	у	10/30/20

Рис. 13. Таблица «final product»

	Assembler	5		
	Ass_id	Name	Pc_count	Marriag_rate
Þ	1	Василий	23	7
	2	Сооронбоой	34	10
	3	Шавкат	45	8
	4	Виталий	36	6
	5	Дмитрий	70	5
	6	Юрий	146	10
	7	Никита	47	1

Рис. 14. Таблица «assemblers»

3.2.1 Отлаженная программа (формы)

При запуске программы нам представляется меню выбора "роли". 3 роли : сборщик assembler, покупатель customer и менеджер manager.

Кнопка start! содержит код запускающий форму соответствующую выбранному типу пользователя.

```
код кнопки:
```

```
DO FORM forms/ass
ENDIF
ENDIF
thisform.release()
```

Далее рассмотрим в отдельности функции предоставляемые различным типам пользователей.

Покупатель.

Рассмотрим сущность "Покупатель". Когда мы заходим в сущность "Покупатель", у нас есть 4 кнопки для дальнейших действий:

1)"View order status"- посмотреть статус заказа. Данная кнопка переводит нас в следующее окно, в котором мы вводим номер компьютера. Код кнопки:

DO FORM Forms/**Status**;

Данная форма просит на вход id компьютера (pc_id) и в зависимости от готовности компьютера выводит соответствующий ответ. Код кнопки:

```
tx1 = thisform.text1.Text

SELECT final_product.ok as ok;

From final_product;

where final_product.pc_id = CAST(tx1 as I) into cursor tmp

if tmp.ok = 'y'
```

Messagebox("Your order is verified and ready for delivery")
Else
Messagebox("Your order is not ready")
ENDIF

2)"View a list of existing configurations" - Посмотреть список существующих конфигураций. Данная кнопка переводит нас в следующее окно, в котором мы можем выбрать одну из нескольких видов поиска конфигураций. Код кнопки:

DO FORM Forms/configuration

Данная форма дает покупателю выбрать разные виды списков с конфигурациями:

a) "View all configurations" - посмотреть список всех конфигураций.

Код кнопки:

SELECT components.*; From components;

б) "Novelties"- конфигурации, которые отсортированы по дате сборки.

Код кнопки:

SELECT components.*, final_product.ass_date;

From components, final_product;

where components.conf_id = final_product.ass_id into cursor tmp

select tmp.*;

from tmp;

order by tmp.ass_date desc

в) "Gaming" - конфигурации, у которых тип "игровой".

Код кнопки:

SELECT components.*;

From components;

```
where components.type = 'gaming'
```

г) "Wkstation" - конфигурации, у которых тип "рабочая станция".

Код кнопки:

```
SELECT components.*;
From components;
where components.type = 'wkstation'
```

д) "Multimedia" - конфигурации, у которых тип "мультимедийный".

Код кнопки:

```
SELECT components.*;
From components;
where components.type = 'multimedia'
```

3) "Create your own configuration"- Создать собственную конфигурацию. Данная кнопка переводит нас в следующее окно, в котором мы можем выбрать одну из 3 функций данного окна.

Код кнопки:

DO FORM forms/create

Данная форма выполняет 3 функции:

a) "Find a specific configuration" - Найти выбранную конфигурацию но её номеру. Код кнопки:

```
tx1 = thisform.text1.Text

SELECT components.*;

From components;

where components.conf_id = CAST(tx1 as I)
```

б) "Create your own configuration" - создать свою собственную конфигурацию. Данная кнопка переводит нас в следующую форму, которая нам дает возможность создать нашу собственную конфигурацию. Код кнопки:

В данной форме мы выбираем компоненты из базы данных. Для удобства можно посмотреть каталог каждого комплектующего. Для добавления конфигурации в базу данных нужно нажать на кнопку "Add your configuration" Код для этой кнопки: GO bottom

```
tx2 = this form.combo2.value
tx3 = this form.combo3.value
tx4 = this form.combo4.value
tx5 = this form.combo5.value
tx6 = this form.combo6.value
tx7 = this form.combo7.value
tx8 = this form.combo 8. value
tx9 = this form.combo 9.value
select components.conf id;
from components;
where components.conf id = (select MAX(components.conf id) from components) into cursor tx1
INSERT INTO components
(conf id,type,cpu id,gpu id,ram id,disk id,motherboard id,power supply id,case id);
VALUES (tx1.conf id +1, tx2, cast(tx3 as I), cast(tx4 as I), cast(tx5 as I), cast(tx6 as I), cast(tx7 as
I),cast(tx8 as I),cast(tx9 as I))
select components.conf id as cunt;
from components;
where components.conf id = tx1.conf id + 1 into cursor cf
nm = STR(cf.cunt)
if cf.cunt = tx1.conf id + 1
MESSAGEBOX("Sucessful. Your conf id is: "+nm)
MESSAGEBOX("Fail")
ENDIF
```

```
Код для просмотра одного из каталогов (для остальных аналогично): SELECT cpu.*; From cpu;
```

в) "Order" - заказать. Для заказа мы вводим id выбранной конфигурации и получаем в ответ pc_id, по которому в дальнейшем мы можем отслеживать наш заказ. Код кнопки:

```
tx1 = thisform.text2.Text

select final_product.pc_id;
from final_product;
where final_product.pc_id = (select MAX(final_product.pc_id) from final_product) into cursor tx2
insert into final_product(pc_id,conf_id);
values (tx2.pc_id+1,cast(tx1 as I))
select final_product.pc_id as pc;
from final_product;
where final_product.pc_id = tx2.pc_id + 1 into cursor cf
nm = STR(cf.pc)
if cf.pc = tx2.pc_id + 1
MESSAGEBOX("Sucessful. Your pc_id is: "+nm)
else
MESSAGEBOX("Fail")
ENDIF
```

4) "Check out" - Выдать чек покупателю. Данная кнопка выдает чек покупателю в зависимости от введенного id компьютера.

Код кнопки:

```
tx1 = this form.text1.Text
SELECT fp.pc id as pc id,fp.conf id,fp.ass date as ass date, (gpu.coast + cpu.coast + ram.coast +
dk.coast + ce.coast + ps.coast + mb.coast) as coast, components.case id as case id, components.ram id
as ram id, components.power supply id as power supply id, components.motherboard id as
motherboard id components.gpu id as gpu id components.disk id as disk id components.cpu id as
cpu id ,gpu.coast as gpu coast , cpu.coast as cpu coast , ram.coast as ram coast, dk.coast as dk coast ,
ce.coast as ce coast, ps.coast as ps coast, mb.coast as mb coast;
FROM final product as fp, components as com, gpu, cpu, ram, disk as dk, case as ce, power supply as ps,
motherboard as mb;
WHERE fp.conf id = com.conf id AND gpu.gpu id = com.gpu id AND cpu.cpu id = com.cpu id AND
ram.ram id = com.ram id AND dk.disk id = com.disk id AND ce.case id = com.case id AND
ps.power supply id = com.power supply id AND mb.motherboard id = com.motherboard id into cursor
tmp
SELECT tmp.*;
from tmp;
WHERE tmp.pc id = CAST(tx1 AS I) into cursor tmp1
SELECT tmp1
REPORT FORM REPORTS/cheque preview
```

Сборщик.

При входе в систему как "сборщик" запустится форма содержащая 5 кнопок:

1) "available orders" - позволяет ознакомиться с списком сформированных заказов, которые еще никто не выполняет.

Код кнопки:

SELECT final_product.*, cm.type, cm.cpu_id, cm.gpu_id, cm.ram_id, cm.disk_id, cm.motherboard_id, cm.power_supply_id, cm.case_id **FROM** final_product, components **as** cm; WHERE final_product.ass_id = 0 AND final_product.conf_id = cm.conf_id

2) "get order" - вызывает вспомогательную форму, с помощью которой сборщик может закрепить заказ за собой.

Код кнопки:

DO FORM Forms/getting order

В данной форме пользователь может ввести свой id в соответствующее поле и выбрать заинтересовавший его заказ из списка доступных, а затем обновить его статус в таблице нажав кнопку "get order".

Код кнопки:

```
GO bottom

tx1 = thisform.text1.Text

tx2 = thisform.Combo1.Value

UPDATE final_product;

SET final_product.ass_id = CAST(tx1 AS I);

WHERE final_product.pc_id = CAST(tx2 AS I) AND final_product.ass_id = 0

SELECT final_product.ass_id as ai;

FROM final_product;
```

WHERE final_product.pc_id = CAST(tx2 AS I) INTO CURSOR tmp
IF tmp.ai = CAST(tx1 AS I)
 MESSAGEBOX("Sucessful")

ELSE
 MESSAGEBOX("FAIL")

ENDIF

SELECT final_product.pc_id;
from final_product;
WHERE final_product.ass_id = 0 INTO CURSOR tmp
thisform.combo1.RowSource = "tmp.pc_id"

3) "view my orders" - вызывает форму предназначенную для мониторинга статуса принятых сборщиком заказов.

Код кнопки:

DO FORM Forms/vievmyorders

В этой форме, введя свой id в соответствующее поле, по нажатию кнопки "view" сборщик может просмотреть принятые заказы. С помощью переключателя "all/only not finished" осуществляется фильтрация выдачи. Код кнопки:

GO bottom

tx1 = this form.text1.Text

SELECT fp.pc_id **as** pc_id, (gpu.coast + cpu.coast + ram.coast + dk.coast + ce.coast + ps.coast + mb.coast) **as** coast;

FROM final_product as fp, components as com, gpu, cpu, ram, disk as dk, case as ce, power_supply as ps, motherboard as mb;

WHERE fp.conf_id = com.conf_id AND gpu.gpu_id = com.gpu_id AND cpu.cpu_id = com.cpu_id AND ram.ram_id = com.ram_id AND dk.disk_id = com.disk_id AND ce.case_id = com.case_id AND ps.power_supply_id = com.power_supply_id AND mb.motherboard_id = com.motherboard_id into cursor tmp

```
Thisform.grid1.columncount=-1
Thisform.grid1.recordsourcetype=1

IF thisform.optiongroup1.Option1.Value = 1

SELECT final_product.*, tmp.coast;

FROM tmp, final_product;

WHERE tmp.pc_id = final_product.pc_id AND final_product.ass_id = CAST(tx1 AS I) into cursor tmp2

ELSE

SELECT final_product.*, tmp.coast;

FROM tmp, final_product;

WHERE tmp.pc_id = final_product.pc_id AND final_product.ass_id = CAST(tx1 AS I) AND final_product.ok = ' ' into cursor tmp2

ENDIF

Thisform.grid1.recordsource = 'tmp2'
```

4) "finish order" - запускает форму позволяющую сборщику завершить выбранный заказ.

Код кнопки:

DO FORM Forms/finish_order

Для изменения статуса заказа сборщику необходимо ввести свой id, id заказа, дату сдачи заказа в соответствующие поля, а так же отметить его состояние на момент сдачи с помощью переключателя, после чего по нажатию кнопки "update status" данные в таблице будут обновлены. Отслеживать статус заказа можно в таблице размещенной на форме.

Код кнопки:

```
tx1 = thisform.text1.Text
tx2 = thisform.text2.Text
tx3 = thisform.text3.Text
Thisform.grid1.columncount=-1
Thisform.grid1.recordsourcetype=1
IF thisform.optiongroup1.Option1.Value = 1

UPDATE final_product;
SET final_product.ass_date = CAST(tx3 AS D), final_product.ok = 'y';
WHERE final_product.pc_id = CAST(tx2 AS I) AND final_product.ass_id = CAST(tx1 AS I)
AND final_product.ok = ''
```

```
UPDATE final_product;
SET final_product.ass_date = CAST(tx3 AS D), final_product.ok = 'y';
WHERE final_product.pc_id = CAST(tx2 AS I) AND final_product.ass_id = CAST(tx1 AS I)
AND final_product.ok = ' '
ENDIF
SELECT final_product.*;
from final_product;
WHERE final_product.ass_id = CAST(tx1 AS I) INTO CURSOR tmp
Thisform.grid1.recordsource = 'tmp'
```

5) "calculate income" - вызывает форму позволяющую сборщику рассчитать его приблизительный доход за выбранный период и получит расчет в виде отчета. Код кнопки:

DO FORM forms/incomecalc

Для получения расчета пользователь должен ввести промежуток дат за который необходимо произвести расчет и свой id, после чего по нажатию кнопки "check out" будет сформирован отчет.

Код кнопки:

tx1 = this form.text1.Text

tx2 = this form.text2.Text

tx3 = this form.text3.Text

 $\begin{tabular}{ll} SELECT & fp.pc_id & as & pc_id, fp.ass_date & as & ass_date, fp.ass_id & as & ass_id \\ , & (gpu.coast + cpu.coast + ram.coast + dk.coast + ce.coast + ps.coast + mb.coast) & as & coast; \\ \end{tabular}$

FROM final_product as fp, components as com, gpu, cpu, ram, disk as dk, case as ce, power_supply as ps, motherboard as mb;

WHERE fp.conf_id = com.conf_id AND gpu.gpu_id = com.gpu_id AND cpu.cpu_id = com.cpu_id AND ram.ram_id = com.ram_id AND dk.disk_id = com.disk_id AND ce.case_id = com.case_id AND ps.power_supply_id = com.power_supply_id AND mb.motherboard_id = com.motherboard_id into cursor tmp

SELECT tmp.*;

from tmp;

WHERE tmp.ass_id = CAST(tx3 AS I) AND tmp.ass_date between CAST(tx1 AS D) and CAST(tx2 AS D) into cursor tmp1

SELECT tmp1

REPORT FORM REPORTS/income preview

Менеджер.

При входе в систему как "менеджер" запустится форма содержащая 4 кнопки:

1) "info about assemblers" вызывает форму, в которой можно посмотреть различную информацию о сборщиках.

a) "assembler general info" позволяет посмотреть всю основную информацию о выбранном сборщике (сборщик выбирается в combobox assembler ID).

```
assembler = thisform.assemb.Value

SELECT ass.ass_id, ass.name, ass.marriag_rate FROM assemblers as ass;

WHERE ass.ass_id = CAST(assembler as I) INTO CURSOR tmp

Thisform.grid1.columncount=-1

Thisform.grid1.recordsourcetype=1

Thisform.grid1.recordsource = 'tmp'
```

б) "assembler general info" позволяет всю основную информацию о всех сборщиках

SELECT a.* FROM assemblers as a INTO CURSOR tmp4

Thisform.grid1.columncount=-1

Thisform.grid1.recordsourcetype=1

Thisform.grid1.recordsource = 'tmp4'

в) "assembler stats" позволяет посмотреть кол-во собранных компьютеров, выбранным сборщиком, а также их общая стоимость

ssembler = thisform.assemb.value

SELECT fp.pc_id **as** pc_id, (gpu.coast + cpu.coast + ram.coast + dk.coast + ce.coast + ps.coast + mb.coast) **as** coast;

FROM final_product as fp, components as com, gpu, cpu, ram, disk as dk, case as ce, power_supply as ps, motherboard as mb;

WHERE fp.conf_id = com.conf_id AND gpu.gpu_id = com.gpu_id AND cpu.cpu_id = com.cpu_id AND ram.ram_id = com.ram_id AND dk.disk_id = com.disk_id AND ce.case_id = com.case_id AND ps.power_supply_id = com.power_supply_id AND mb.motherboard_id = com.motherboard_id INTO CURSOR tmp_coast

SELECT ass.ass_id, fp.pc_id, tmp.coast;

FROM tmp_coast as tmp, assemblers as ass, final_product as fp;

WHERE fp.pc_id = tmp.pc_id AND fp.ass_id = ass.ass_id INTO CURSOR tmp3

SELECT tmp3.ass_id, SUM(tmp3.coast) as sum_sell, COUNT(tmp3.pc_id) as count_pc FROM tmp3;

WHERE tmp3.ass_id = CAST(ssembler as I);

GROUP BY tmp3.ass id INTO CURSOR tmp5

Thisform.grid1.columncount=-1

Thisform.grid1.recordsourcetype=1

This form.grid1.recordsource = 'tmp5'

г) "assemblers stats" позволяет посмотреть кол-во собранных компьютеров, всеми сборщиками, а также их общая стоимость

ssembler = thisform.assemb.value

SELECT fp.pc_id **as** pc_id, (gpu.coast + cpu.coast + ram.coast + dk.coast + ce.coast + ps.coast + mb.coast) **as** coast;

FROM final_product as fp, components as com, gpu, cpu, ram, disk as dk, case as ce, power_supply as ps, motherboard as mb;

WHERE fp.conf_id = com.conf_id AND gpu.gpu_id = com.gpu_id AND cpu.cpu_id = com.cpu_id AND ram.ram_id = com.ram_id AND dk.disk_id = com.disk_id AND ce.case_id = com.case_id AND ps.power_supply_id = com.power_supply_id AND mb.motherboard_id = com.motherboard_id INTO CURSOR tmp_coast

SELECT ass.ass_id, fp.pc_id, tmp.coast;

FROM tmp coast as tmp, assemblers as ass, final product as fp;

WHERE fp.pc id = tmp.pc id AND fp.ass id = ass.ass id INTO CURSOR tmp3

SELECT tmp3.ass_id, SUM(tmp3.coast) as sum_sell, COUNT(tmp3.pc_id) as count_pc FROM tmp3;

```
GROUP BY tmp3.ass_id INTO CURSOR tmp5

Thisform.grid1.columncount=-1
Thisform.grid1.recordsourcetype=1
Thisform.grid1.recordsource = 'tmp5'
```

2) "info about components" вызывает форму, в которой можно посмотреть различную информацию о компонентах.

a) "count sell" позволяет посмотреть статистику по продажам среди всех запчастей РС выбранного типа (количество продаж, общая сумма выручки).

```
element = thisform.component.Value
SELECT fp.conf id as conf id, COUNT(fp.conf id) as count conf;
FROM final product as fp;
GROUP BY fp.conf id INTO CURSOR tmp1
Thisform.grid1.columncount=-1
Thisform.grid1.recordsourcetype=1
DO CASE
      CASE element = "gpu"
             SELECT com.gpu id as gpu id, SUM(tmp1.count conf) as count sell FROM
components as com, tmp1;
             WHERE com.conf id = tmp1.conf id GROUP BY com.gpu id INTO CURSOR tmp2
             SELECT g.gpu id, g.coast, tmp2.count sell, g.coast*tmp2.count sell as total coast
FROM tmp2, gpu as g;
             WHERE g.gpu id = tmp2.gpu id INTO CURSOR tmp
             This form. grid 1. records ource = 'tmp'
      CASE element = "case"
             SELECT com.case id as case id, SUM(tmp1.count conf) as count sell FROM
components as com, tmp1;
             WHERE com.conf id = tmp1.conf id GROUP BY com.case id INTO CURSOR tmp2
             SELECT c.case id, c.coast, tmp2.count sell, c.coast*tmp2.count sell as total coast
FROM tmp2, case as c;
```

WHERE c.case id = tmp2.case id INTO CURSOR tmp This form.grid1.recordsource = 'tmp' CASE element = "disk" SELECT com.disk id as disk id, SUM(tmp1.count conf) as count sell FROM components as com, tmp1; WHERE com.conf id = tmp1.conf id GROUP BY com.disk id INTO CURSOR tmp2 SELECT d.disk id, d.coast, tmp2.count sell, d.coast*tmp2.count sell as total coast FROM tmp2, disk as d; WHERE d.disk id = tmp2.disk id INTO CURSOR tmp This form. grid 1. records ource = 'tmp' CASE element = "power supply unit" SELECT com.power supply id as power supply id, SUM(tmp1.count conf) as count sell FROM components as com, tmp1; WHERE com.conf id = tmp1.conf id GROUP BY com.power supply id INTO CURSOR tmp2 SELECT p.power supply id, p.coast, tmp2.count sell, p.coast*tmp2.count sell as total coast FROM tmp2, power supply as p; WHERE p.power supply id = tmp2.power supply id INTO CURSOR tmp Thisform.grid1.recordsource = 'tmp' CASE element = "cpu" SELECT com.cpu id as cpu id, SUM(tmp1.count conf) as count sell FROM components as com, tmp1; WHERE com.conf id = tmp1.conf id GROUP BY com.cpu id INTO CURSOR tmp2 SELECT c.cpu id, c.coast, tmp2.count sell, c.coast*tmp2.count sell as total coast FROM tmp2, cpu as c; WHERE c.cpu id = tmp2.cpu id INTO CURSOR tmp This form. grid 1. records ource = 'tmp' CASE element = "ram" SELECT com.ram id as ram id, SUM(tmp1.count conf) as count sell FROM components as com, tmp1; WHERE com.conf id = tmp1.conf id GROUP BY com.ram id INTO CURSOR tmp2 SELECT r.ram id, r.coast, tmp2.count sell, r.coast*tmp2.count sell as total coast **FROM** tmp2, ram as r; WHERE r.ram id = tmp2.ram id INTO CURSOR tmp This form. grid 1. records ource = 'tmp' CASE element = "motherboard" SELECT com.motherboard id as motherboard id, SUM(tmp1.count conf) as count sell **FROM** components **as** com, tmp1; WHERE com.conf id = tmp1.conf id GROUP BY com.motherboard id INTO CURSOR tmp2 SELECT m.motherboard id, m.coast, tmp2.count sell, m.coast*tmp2.count sell as total_coast FROM tmp2, motherboard as m;

б) "general info" показывает общую информацию по о запчастях выбранного типа.

WHERE m.motherboard id = tmp2.motherboard id INTO CURSOR tmp

Thisform.grid1.recordsource = 'tmp'

ENDCASE

```
element = thisform.component.Value
Thisform.grid1.columncount=-1
Thisform.grid1.recordsourcetype=1
DO CASE
      CASE element = "gpu"
             SELECT g.* FROM gpu as g INTO CURSOR tmp
             This form. grid 1. records ource = 'tmp'
      CASE element = "case"
             SELECT c.* FROM case as c INTO CURSOR tmp
             This form. grid 1. records ource = 'tmp'
      CASE element = "disk"
             SELECT d.* FROM disk as d INTO CURSOR tmp
             Thisform.grid1.recordsource = 'tmp'
      CASE element = "power supply unit"
             SELECT p.* FROM power supply as p INTO CURSOR tmp
             Thisform.grid1.recordsource = 'tmp'
      CASE element = "cpu"
             SELECT c.* FROM cpu as c INTO CURSOR tmp
             This form. grid 1. records ource = 'tmp'
      CASE element = "ram"
             SELECT r.* FROM ram as r INTO CURSOR tmp
             Thisform.grid1.recordsource = 'tmp'
      CASE element = "motherboard"
             SELECT m.* FROM motherboard as m INTO CURSOR tmp
             This form.grid1.recordsource = 'tmp'
ENDCASE
```

3) "info about PC" позволяет посмотреть различную информацию о заказах, которые компания уже выполнила или собирается выполнить.

a) "view interval cash" выдает информацию о выполненных заказах за выбранный период.

```
date1 = thisform.text1.Text
date2 = thisform.text2.Text
```

SELECT fp.pc_id **as** pc_id, (gpu.coast + cpu.coast + ram.coast + dk.coast + ce.coast + ps.coast + mb.coast) **as** coast;

FROM final_product as fp, components as com, gpu, cpu, ram, disk as dk, case as ce, power_supply as ps, motherboard as mb;

WHERE fp.conf_id = com.conf_id AND gpu.gpu_id = com.gpu_id AND cpu.cpu_id = com.cpu_id AND ram.ram_id = com.ram_id AND dk.disk_id = com.disk_id AND ce.case_id = com.case_id AND ps.power_supply_id = com.power_supply_id AND mb.motherboard_id = com.motherboard_id INTO CURSOR tmp

SELECT fp.pc id, fp.ass id, fp.ok, tmp.coast, fp.ass date;

FROM final product as fp, tmp;

WHERE tmp.pc_id=fp.pc_id AND fp.ass_id <> 0 AND fp.ass_date between CAST(date1 as D) AND CAST(date2 as D) INTO CURSOR tmp2

Thisform.grid1.recordsource = 'tmp2'

б) "view interval total cash" выдает общее количество средств, которое компание получила за данный период.

date1 = thisform.text1.Text

date2 = this form.text2.Text

SELECT fp.pc_id **as** pc_id, (gpu.coast + cpu.coast + ram.coast + dk.coast + ce.coast + ps.coast + mb.coast) **as** coast;

FROM final_product as fp, components as com, gpu, cpu, ram, disk as dk, case as ce, power_supply as ps, motherboard as mb;

WHERE fp.conf_id = com.conf_id AND gpu.gpu_id = com.gpu_id AND cpu.cpu_id = com.cpu_id AND ram.ram_id = com.ram_id AND dk.disk_id = com.disk_id AND ce.case_id = com.case_id AND ps.power_supply_id = com.power_supply_id AND mb.motherboard_id = com.motherboard_id INTO CURSOR tmp

SELECT SUM(tmp.coast);

FROM final product as fp, tmp;

WHERE tmp.pc_id=fp.pc_id AND fp.ass_id <> 0 AND fp.ass_date between CAST(date1 as D) AND CAST(date2 as D) INTO CURSOR tmp2

This form.grid1.recordsource = 'tmp2'

в) "total cash" выдает количество денег, которое компание получила в целом.

SELECT (gpu.coast + cpu.coast + ram.coast + dk.coast + ce.coast + ps.coast + mb.coast) **as** coast; FROM final_product as fp, components as com, gpu, cpu, ram, disk as dk, case as ce, power_supply as ps, motherboard as mb;

WHERE fp.conf_id = com.conf_id AND gpu.gpu_id = com.gpu_id AND cpu.cpu_id = com.cpu_id AND ram.ram_id = com.ram_id AND dk.disk_id = com.disk_id AND ce.case_id = com.case_id AND ps.power_supply_id = com.power_supply_id AND mb.motherboard_id = com.motherboard_id INTO CURSOR tmp

SELECT SUM(tmp.coast) FROM tmp into CURSOR tmp

This form. grid 1. records ource = 'tmp'

д) "free projects" показывает свободные проекты (которые еще никто не собирает).

SELECT final_product.pc_id, final_product.ass_id **FROM** final_product; WHERE final_product.ass_id = 0 INTO CURSOR tmp

This form.grid1.recordsource = 'tmp'

e) "general information" дает всю информацию по всем заказам.

SELECT fp.* **FROM** final_product **as** fp **INTO CURSOR** tmp Thisform.grid1.recordsource = 'tmp'

4) "get a report" вызывает форму в которой можно сгенерировать отчет о прибыли компании за заданный период.

date1 = this form.text1.Text

date2 = this form.text2.Text

SELECT fp.pc_id **as** pc_id, (gpu.coast + cpu.coast + ram.coast + dk.coast + ce.coast + ps.coast + mb.coast) **as** coast;

FROM final_product as fp, components as com, gpu, cpu, ram, disk as dk, case as ce, power_supply as ps, motherboard as mb;

WHERE fp.conf_id = com.conf_id AND gpu.gpu_id = com.gpu_id AND cpu.cpu_id = com.cpu_id AND ram.ram_id = com.ram_id AND dk.disk_id = com.disk_id AND ce.case_id = com.case_id AND ps.power_supply_id = com.power_supply_id AND mb.motherboard_id = com.motherboard_id INTO CURSOR tmp

SELECT fp.pc_id **as** pc, fp.ass_id **as** assembler, fp.ok **as** OK, tmp.coast **as** coast, fp.ass_date **as** asb date;

FROM final product as fp, tmp;

WHERE tmp.pc_id=fp.pc_id AND fp.ass_id <> 0 AND fp.ass_date between CAST(date1 as D) AND CAST(date2 as D) INTO CURSOR tmp2

SELECT tmp2.assembler as assembler, SUM(tmp2.coast*1.1) as coast;

FROM tmp2;

GROUP BY tmp2.assembler INTO CURSOR tmp3

SELECT tmp3.assembler, tmp3.coast, asmb.marriag rate;

FROM assemblers as asmb, tmp3;

WHERE asmb.ass id = tmp3.assembler INTO CURSOR tmp10

SELECT tmp10

REPORT FORM REPORTS/reportmanager PREVIEW

3.2.2 Отлаженная программа (отчеты)

У покупателя отчет - это чек. В чеке содержится информация о компонентах компьютера (id и стоимость каждой детали), плата за услуги сборки, дата сборки и итоговая сумма. Пример:

```
Cheque

12/15/20

Case_id and coast 121 40$

RAM id and coast 133600 20$

Power_supply id and coast 105501 60$

Disk id and coast 115121 35$

Motherboard id and coast 14133665 35$

GPU id and coast 159801 250$

CPU id and coast 161336 200$

Fee for assembly 96.00 $

The build date 10/28/20

Total coast 736.00 $
```

Для сборщика отчетом является форма содержащая отчет о проделанной им работе за выбранный период, на основе которой он может рассчитать свою заработную плату. Отчет содержит іd собранных за выбранный период компьютеров, их стоимость и часть наценки, которую получает сборщик. Пример отчета:

pc_id	cost:	my income:	
1 13	945	47.25	
	945	47.25	
33	885	44.25	
9	2354	117.70	
A	CO 02 250 Tubber	Le serve consider	
our income wage	is 256.45	net of tax of 30%	

Отчетом менеджера служит доходность за выбранный период, на основе которой можно получить всю необходимую информацию для выработки стратегии дальнейшего управления. Отчет содержит ID каждого сборщика, деньги, которые он принес компании, его рейтинг, а также весь заработок за этот период. Пример отчета:

assembler:	1	
income:	1186.9	
race:	7	
assembler:	2	
income:	3620.9	
race:	10	
assembler:	3	
income:	704.0	
race:		
seemolers	4	
income	818.4	
ratei	6	
assembler:	6	
income:	8949.6	
rate:	10	
ussembler:	7	
	1164.9	
income:		

Работу выполнили:

Мукин Юрий Дмитриевич - реализация клиентского приложения сборщика, сборка проекта.

Хахин Максим Сергеевич - реализация клиентского приложения покупателя, заполнение таблиц.

Сыроежкин Кирилл Геннадьевич - реализация клиентского приложения менеджера, написание технического задания.