

Fast Recovery Diodes (Stud Version), 6 A, 12 A, 16 A

PRIMARY CHARACTERISTICS					
I _{F(AV)}	6 A, 12 A, 16 A				
Package	DO-4 (DO-203AA)				
Circuit configuration	Single				

FEATURES

- Short reverse recovery time
- · Low stored charge
- · Wide current range
- Excellent surge capabilities
- Standard JEDEC® types
- · Stud cathode and stud anode versions
- Fully characterized reverse recovery conditions
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

TYPICAL APPLICATIONS

- DC power supplies
- Inverters
- Converters
- Choppers
- Ultrasonic systems
- Freewheeling diodes

MAJOR RATINGS AND CHARACTERISTICS								
PARAMETER	TEST CONDITIONS	6FL	12FL	16FL	UNITS			
1		6	12	16	Α			
I _{F(AV)}	T _C	100	100	100	°C			
I _{F(RMS)}		9.5	19	25	Α			
1	50 Hz	110	145	180	Α			
I _{FSM} 60 Hz	60 Hz	115	150	190	A			
I ² t	50 Hz	60	103	160	A ² s			
1-1	60 Hz	55	94	150	A-S			
I ² √t		1452	1452	2290	l ² √s			
V _{RRM}	Range	50 to 1000	50 to 1000	50 to 1000	V			
t _{rr}		See Recovery Characteristics table	See Recovery Characteristics table	See Recovery Characteristics table	ns			
TJ	Range	-65 to +150	-65 to +150	-65 to +150	°C			

ELECTRICAL SPECIFICATIONS

VOLTAG	VOLTAGE RATINGS							
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE V	I _{RRM} MAXIMUM AT T _J = 25 °C μA	I _{RRM} MAXIMUM AT T _J = 100 °C mA	I _{RRM} MAXIMUM AT T _J = 150 °C mA		
	5	50	75					
	10	100	150		50 -			
VS-6FL,	20	200	275					
VS-12FL,	40	400	500	50		6.0		
VS-16FL	60	600	725					
	80	800	950					
	100	1000	1250					

Vishay Semiconductors

FORWARD CONDUCTION								
PARAMETER	SYMBOL	TEST CONDITIONS			6FL	12FL	16FL	UNITS
Maximum average forward current	I	180° condu	uction, half sine	wave	6	12 ⁽¹⁾	16	Α
at case temperature	I _{F(AV)}	DC			100	100	100	°C
Maximum RMS current	I _{F(RMS)}				9.5	19	25	
		t = 10 ms	No voltage		130	170	215	
Maximum peak, one-cycle	I _{FSM}	t = 8.3 ms	reapplied		135	180	225	Α
non-repetitive forward current		t = 10 ms	100 % V _{RRM}	Sinusoidal	110	145	180	
		t = 8.3 ms		half wave,	115	150 ⁽¹⁾	190	
		t = 10 ms	No voltage	initial	86	145	230	
Maximum 12t for fusions	l ² t	t = 8.3 ms	reapplied	$T_J = 150 ^{\circ}\text{C}$	78	130	210	A ² s
Maximum I ² t for fusing	1-1	t = 10 ms	100 % V _{RRM}		60	103	160	A-S
		t = 8.3 ms	reapplied		55	94	150	
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms to 10 ms, no voltage reapplied		856	1452	2290	A²√s	
Maximum forward voltage drop	V	T _J = 25 °C	; I _F = Rated I _{F(A}	_{V)} (DC)	1.4	1.4 ⁽¹⁾	1.4	V
waximum forward voitage drop	V_{FM}	T _C = 100 °	C; $I_{FM} = \pi \times rate$	ed I _{F(AV)}	1.5	1.5 ⁽¹⁾	1.5	V

Note

(1) JEDEC® registered values

RECOVER	RECOVERY CHARACTERISTICS												
PARAMETER SYMBOL	SVMBOL	TEST CONDITIONS	6FL,		12FL,		16FL		UNITS				
PANAMETER	STWIDOL	WIBOL TEST CONDITIONS	S02	S05	S10	S02	S05	S10	S02	S05	S10	UNITS	
Maximum		$T_J = 25$ °C, $I_F = 1$ A to $V_R = 30$ V, $dI_F/dt = 100$ A/ μ s	110	285	490	100	250	430	90	225	390		
recovery time	t _{rr}	$T_J = 25$ °C, $dI_F/dt = 25$ A/ μ s, $I_{FM} = \pi \times \text{rated } I_{F(AV)}$	200	500	1000	200	500	1000	200	500	1000	ns	I _{FM}
Maximum peak recovery current	I _{RM(REC)}	$I_{FM} = \pi \times \text{rated } I_{F(AV)}$	-	-	-	-	-	-	-	-	-	- dir/ dt Q _{rr}	
Maximum reverse	0	$T_J = 25 ^{\circ}\text{C},$ $I_F = 1 \text{A to V}_R = 30 \text{V},$ $dI_F/dt = 100 \text{A/}\mu\text{s}$	230	1700	5000	200	1300	3800	150	1100	3000	20	
recovery charge	ery Q _{rr}	$T_J = 25$ °C, $dI_F/dt = 25$ A/ μ s, $I_{FM} = \pi \times \text{rated } I_{F(AV)}$	200	1200	5000	200	1200	5000	200	1200	5000	nC	

Note

(1) JEDEC® registered values

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	6FL	12FL	16FL	UNITS	
Maximum junction operating temperature range	TJ		-6	65 to +15	50	°C	
Maximum storage temperature range	T _{Stg}		-6	65 to +17	'5	°C	
Maximum thermal resistance, junction to case	R _{thJC}	R _{thJC} DC operation		2.0	1.6	°C/W	
Maximum thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth, flat, and greased	0.5		C/VV		
Allowable mounting targue		Not lubricated threads		1.5 ^{+ 0 - 10} % (13)		N · m	
Allowable mounting torque		Lubricated threads	1.	.2 + 0 - 10 (10)	%	(lbf · in)	
Approximate weight			7			g	
Approximate weight		<u> </u>		0.25		oz.	
Case style		JEDEC®		DO-4 (D	D-203AA	A)	

Vishay Semiconductors

△R _{thJC} CONDUCTION									
CONDUCTION ANGLE	6FL	12FL	16FL	6FL	12FL	16FL	TEST CONDITIONS	LIMITO	
CONDUCTION ANGLE	SINUSOID	DAL COND	UCTION	RECTAN	GULAR CON	DUCTION	TEST CONDITIONS	UNITS	
180°	0.58	0.46	0.37	0.33	0.26	0.21	T _J = 150 °C		
120°	0.60	0.48	0.39	0.58	0.46	0.37		K/W	
60°	1.28	1.02	0.82	1.28	1.02	0.82		rv vv	
30°	2.20	1.76	1.41	2.20	1.76	1.41			

Note

The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Fig. 1 - Average Forward Current vs.

Maximum Allowable Case Temperature, 6FL Series

Fig. 2 - Average Forward Current vs. Maximum Allowable Case Temperature, 12FL Series

Fig. 3 - Average Forward Current vs.

Maximum Allowable Case Temperature, 16FL Series

 $\mathbf{I}_{\mathrm{F}},\,\mathbf{I}_{\mathrm{FM}}$ - Peak forward current prior to commutation

-dl_F/dt - Rate of fall of forward current l_{RM(REC)} - Peak reverse recovery current

t_{rr} - Reverse recovery time Q_{rr} - Reverse recovered charge

Fig. 4 - Reverse Recovery Time Test Waveform

Conduction angle - Ø	ΔR - K/W
180°	0.58
120°	0.60
60°	1.28
30°	2.20

Fig. 5 - Current Rating Nomogram (Sinusoidal Waveforms), 6FL Series

Conduction angle - Ø	∆R - K/W
DC	0
180°	0.33
120°	0.58
60°	1.28
30°	2.20

Fig. 6 - Current Rating Nomogram (Rectangular Waveforms), 6FL Series

Conduction angle - Ø	WX - A∆
180°	0.46
120°	0.48
60°	1.02
30°	1.76

Fig. 7 - Current Rating Nomogram (Sinusoidal Waveforms), 12FL Series

Sonduction angle - Ø	8 - K/W
Cor	∆R -
DC	0
180°	0.26
120°	0.46
60°	1.02
30°	1.76

Fig. 8 - Current Rating Nomogram (Rectangular Waveforms), 12FL Series

Conduction angle - Ø	∆R - K/W
180°	0.37
120°	0.39
60°	0.82
30°	1.41

Fig. 9 - Current Rating Nomogram (Sinusoidal Waveforms), 16FL Series

Conduction angle - Ø	∆R - K/W
DC	0
180°	0.21
120°	0.37
60°	0.82
30°	1.41

Fig. 10 - Current Rating Nomogram (Rectangular Waveforms), 16FL Series

www.vishay.com

Fig. 11 - Maximum Forward Voltage vs. Forward Current, 6FL Series

Fig. 12 - Maximum High Level Forward Power Loss vs. Average Forward Current, 6FL Series

Fig. 13 - Maximum Forward Voltage vs. Forward Current, 12FL Series

Fig. 14 - Maximum High Level Forward Power Loss vs. Average Forward Current, 12FL Series

Fig. 15 - Maximum Forward Voltage vs. Forward Current, 16FL Series

Fig. 16 - Maximum High Level Forward Power Loss vs. Average Forward Current, 16FL Series

Fig.17a - Typical Reverse Recovery Time vs. Rate of Fall of Forward Current, All Series...S02

Fig. 17b - Typical Recovered Charge vs. Rate of Fall of Forward Current, All Series...S02

Fig. 18a - Typical Reverse Recovery Time vs. Rate of Fall of Forward Current, All Series...S05

Fig. 18b - Typical Recovered Charge vs. Rate of Fall of Forward Current, All Series...S05

Fig. 19a - Typical Reverse Recovery Time vs.
Rate of Fall of Forward Current, All Series...S10

Fig. 19b - Typical Recovered Charge vs.
Rate of Fall of Forward Current, All Series...S10

Fig. 20 - Maximum Non-Repetitive Surge Current vs. Number of Current Pulses, 6FL Series

Fig. 21 - Maximum Non-Repetitive Surge Current vs. Number of Current Pulses, 12FL Series

Fig. 22 - Maximum Non-Repetitive Surge Current vs. Number of Current Pulses, 16FL Series

Fig. 23 - Maximum Transient Thermal Impedance, Junction to Case vs. Pulse Duration, All Series

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

Current code I_(AVG) = exact current rating

3 - F = diode

Omit = standard recovery diode

L = only for fast diode

5 - Omit = stud forward polarity

R = stud reverse polarity

6 - Voltage code x 10 = V_{RRM} (see Voltage Ratings table)

7 - Outlines:

Omit = stud base UNF thread

M = stud base metric thread

8 - t_{rr} code only for fast diode (see Recovery Characteristics table)

LINKS TO RELATED DOCUMENTS	
Dimensions	www.vishay.com/doc?95311

DO-203AA (DO-4)

DIMENSIONS in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.