

CCNA Discovery
Introducing Routing and Switching in the Enterprise

Cisco Networking Academy®

Lab 4.2.5 Calculating a VLSM Addressing Scheme

Objectives

- Determine the number of subnets needed.
- Determine the number of hosts needed for each subnet.
- Design an appropriate addressing scheme using VLSM.
- Assign IP configurations to device interfaces.
- Examine the use of the available network address space.

Background / Preparation

This lab explores the use of VLSM to meet the needs of a network topology. In this lab, you will assess the topology, determine the addressing scheme to meet its needs, and prepare documentation for the addressing. You have been assigned the 192.168.1.0/24 network to address this network.

Step 1: Examine the network requirements

Use the topology diagram to determine the answers to the questions below. Remember that IP addresses will be needed for each LAN and WAN interface.

nat is the maximum number of IP addresses that are needed for a single subnet?
w many host IP addresses are needed for the next-largest LAN? w many host IP addresses are needed for the smallest LAN? w many host IP addresses are needed for each WAN link?
w many host IP addresses are needed for the smallest LAN?
w many host IP addresses are needed for each WAN link?
·
part is the total number of host IP addresses that are needed for these networks?
iat is the total number of host in addresses that are needed for these networks:
nat is the total number of host IP addresses that are available in the 192.168.1.0/24 network?
he network is subnetted to provide 7 usable subnets, can the addressing requirements be met
r

Step 2:

а	Determine	the	subnet	informati	on for	the	largest	subnet	needed
u.	DCtCIIIIIC	uic	Subilet	IIIIOIIIIau	011 101	uic	iai gost	Subilct	niccaca.

What is the smallest size subnet that can be used to meet this requirement?

Will a subnet of this size allow for future growth of 10 – 15%? ___

Fill in the chart below with the appropriate information. Assign the first available subnet on the 192.168.1.0 network to this LAN.

LAN_A Subnet

Network	Decimal Subnet	CIDR Subnet	First Usable IP	Last Usable IP	Broadcast
Address	Mask	Mask	Address	Address	Address

- b. Assign the next available subnet to the next-largest LAN.
- c. Fill in the chart below with the appropriate information.

LAN_C Subnet

Network	Decimal Subnet	CIDR Subnet	First Usable IP	Last Usable IP	Broadcast
Address	Mask	Mask	Address	Address	Address

d. Continue assigning subnets of appropriate sizes to the remaining LANs.

LAN_D Subnet

Network	Decimal Subnet	CIDR Subnet	First Usable IP	Last Usable IP	Broadcast
Address	Mask	Mask	Address	Address	Address

LAN_B Subnet

Network	Decimal Subnet	CIDR Subnet	First Usable IP	Last Usable IP	Broadcast
Address	Mask	Mask	Address	Address	Address

Step 3: Assign subnets to the WAN links between routers

Start with the next available subnet. Complete the chart below with the addressing information.

Network Address	Decimal Subnet Mask	CIDR Subnet Mask	First Usable IP Address	Last Usable IP Address	Broadcast Address
	WA	AN link between Ro	outer0 and Router	1	
	WA	N link between Ro	outer1 and Router	2	
WAN link between Router2 and Router0					

Step 4: Assign IP configurations to router interfaces

Complete the chart below with IP assignments for router interfaces. Use the first available host IP address for the router's LAN interface.

Device	Interface	IP Address	Subnet Mask
Router0	Fa0/0		
	Fa0/1		
	S0/0/0		
	S0/0/1		
Router1	Fa0/0		
	S0/0/0		
	S0/0/1		
Router2	Fa0/0		
	S0/0/0		
	S0/0/1		

Step 5: Assign IP configurations to workstations

One workstation has been provided to represent each LAN. Complete the chart below with IP configuration information for each representative workstation.

LAN	IP Address	Subnet Mask	Default Gateway
LAN_A			
LAN_B			
LAN_C			
LAN_D			

Step	6:	Ref	lecti	on

a.	What is the last host IP address that will be used by this VLSM scheme?
b.	Your largest LAN can accommodate 15% growth with your VLSM scheme. Which of the other LANs can also accomplish this goal?
C.	If you decided to change the masks on those LANs that did not meet the 15% growth goal, would you have enough addresses to complete your scheme?
d.	What would the new network addresses be for the four LANs?
	LAN_A:
	LAN_C:
	LAN_D:
	LAN_B:
e.	If you wanted to provide redundant backup WAN links between your routers, how many more subnets would you need?
f.	Could you do it with this VLSM scheme?
g.	Summarize the advantages of using VLSM for network addressing schemes: