ECE/CS 584: Embedded and cyberphysical system verification

Fall 2019

Dawei Sun, daweis2

Homework 3: Temporal logics and composition

Due October 17th

Typeset your solutions using \LaTeX zip your writeup (.pdf) and code (.py) in a single file called nedid-584-F19. zip and upload this file through Compass.

Problem 1. CTL reductions (20 points) Convert the following CTL formulas to equivalent formulas that use only E, X, and U:

- **AF** f_1 (infinitely often)
- $\mathbf{AG} f_1$ (invariance)
- **AFAG** f_1 (stabilization)
- **A** f_1 **U** f_2 ,

Solution

- (a) **AF** $f_1 \equiv \neg \mathbf{EG} \neg f_1$
- (b) **AG** $f_1 \equiv \neg \mathbf{E}(\text{true}\mathbf{U}\neg f_1)$
- (c) AFAG $f_1 \equiv \neg \mathbf{EG} \neg (\mathbf{AG} f_1) \equiv \neg \mathbf{EG} \mathbf{E}[\mathsf{true} \mathbf{U} \neg f_1]$
- (d) $\mathbf{A} f_1 \mathbf{U} f_2 \equiv \neg \mathbf{E}[(\neg f_2) \mathbf{U}(\neg (f_1 \vee f_2))] \vee \mathbf{E} \mathbf{G} \neg f_2$

Problem 2. CTL to automata (8 points) Draw a finite automaton with labeled states that satisfies the CTL formula: $\mathbf{AF}(a \wedge \mathbf{AX}a)$.

Solution

Problem 3. CTL model checking (32 points) Consider the following automaton $= \langle Q, Q_0, T, L \rangle$. The set of states $Q = \{s_0, \dots, s_4\}$, initial states $Q_0 = \{s_0, s_3\}$, the set of atomic propositions $AP = \{a, b\}$, transitions T, and the state labels L are shown in the figure.

Consider the following CTL formulas:

Figure 1: Automaton with state $Q = \{s_1, \ldots, s_4\}$. State labels (atomic propositions) are shown under each state.

- 1. $\phi_1 = \mathbf{A}(a\mathbf{U}b) \vee \mathbf{EX}(\mathbf{AG}b)$
- 2. $\phi_2 = \mathbf{AGA}(a \mathbf{U} b)$
- 3. $\phi_3 = (a \wedge b) \Rightarrow \mathbf{E} \mathbf{G} \mathbf{E} \mathbf{X} \mathbf{A} (a \mathbf{U} b \vee \mathbf{G} a)$
- 4. $\phi_4 = A G E F \phi_3$.

For each formula ϕ_i , determine the set of states that satisfy it, and state whether satisfies it. (Problem 6.3 from [?])

Solution

1. For every sub-formula we write the states satisfing it.

AGb: s_4 ;

EXAGb: s_0 , s_4 ;

A(aUb): s_1, s_2, s_3, s_4 ;

 ϕ_1 : s_0 , s_1 , s_2 , s_3 , s_4 ; The automaton satisfies it.

2. For every sub-formula we write the states satisfing it.

A(aUb): s_1, s_2, s_3, s_4 ;

 ϕ_2 : s_4 ; The automaton doesn't satisfy it.

3. For every sub-formula we write the states satisfing it.

 $A(aUb \vee Ga)$: s_1, s_2, s_3, s_4 ; $EXA(aUb \vee Ga)$: s_0, s_1, s_2, s_3, s_4 ;

EGEXA(a**U**b \vee **G**a): s_0 , s_1 , s_2 , s_3 , s_4 ;

 $\phi_3 = \neg(a \land b) \lor \mathbf{EGEXA}(a\mathbf{U}b \lor \mathbf{G}a)$: s_0, s_1, s_2, s_3, s_4 ; The automaton satisfies it.

4. For every sub-formula we write the states satisfing it.

 ϕ_4 : s_0 , s_1 , s_2 , s_3 , s_4 ; The automaton satisfies it.

Problem 4. CTL equivalences (30 points) Let ϕ, ψ be arbitrary CTL formulas. Which of the following equivalences for CTL formulas are correct. Either give a proof or a counterexample.

- 1. **AXAF** $\phi \equiv$ **AFAX** ϕ
- 2. $\neg \mathbf{A}(\phi \mathbf{U} \psi) \equiv \mathbf{E}(\phi \mathbf{U} \neg \psi)$
- 3. $(\phi \Rightarrow \mathbf{A}\mathbf{X}\phi) \wedge (\psi \Rightarrow \mathbf{A}\mathbf{X}\psi) \equiv (\phi \wedge \psi) \Rightarrow \mathbf{A}\mathbf{X}(\phi \wedge \psi)$

Solution

1. True. First, for state q, we write the semantic of the LHS and RHS. LHS \iff " $\forall \alpha$ such that $\alpha[0] = q$ and $\forall \beta$ such that $\beta[0] = \alpha[1]$, we have $\exists i \geq 0$, $\beta[i] \models \phi$ " \iff " $\forall \alpha$ such that $\alpha[0] = q$, we have $\exists i \geq 1$, $\alpha[i] \models \phi$ ". RHS \iff " $\forall \alpha$ such that $\alpha[0] = q$, $\exists i \geq 0$, $\forall \beta$ such that $\beta[0] = \alpha[i]$, we have $\beta[1] \models \phi$ ".

Then we prove RHS \implies LHS. For all path starting from q, suppose for some $i \ge 0$, $\forall \beta$ such that $\beta[0] = \alpha[i]$, we have $\beta[1] \models \phi$. We can simplify choose β as the suffix of α , then we get $\alpha[i+1] \models \phi$, which implies the LHS.

Finally, we prove LHS \implies RHS. We preceds by contradiction. Suppose there exists a path α such that $\forall i \geq 0$, $\alpha[i]$ always has a next state which doesn't satisfy ϕ . Then, we can always follow these next states which don't satisfy ϕ , and thus we find a path where ϕ is never satisfied, which is contradicted to the LHS. Thus, we proved LHS \implies RHS.

2. False. This is a counterexample satisfying the RHS while not satisfying the LHS.

3. False. This is a counterexample satisfying the RHS while not satisfying the LHS.

Problem 5. Composition (10 points) Give an example of a pair of compatible HIOAs whose composition is a not an HIOA.

Figure 2: Composition of two HIOA's is not an HIOA.

Solution As shown in Fig. 2, "Plant" and "Controller" are two compatible HIOA's. However, after composition, we have $x_1 = x_1 + 1$, which is because there is a cyclic dependence in the variables.