

Schletter, Inc.		20° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>		
Height =	1700 mm	Height =	1550 mm		
Width =	1050 mm	Width =	970 mm		
Dead Load =	3.00 psf	Dead Load =	1.75 psf		

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, $P_g =$
(ASCE 7-05, Eq. 7-2)	20.62 psf	Sloped Roof Snow Load, $P_s =$
	1.00	I _s =
	0.91	$C_s =$
	0.90	$C_e =$

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	85 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 11.34 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.400	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.05	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	722.78	3902.09	k
Compressive Load =	4218.36	<u>4527.40</u>	k
Lateral Load =	<u>350.77</u>	1803.09	k
Moment (Weak Axis) =	<u>0.71</u>	0.39	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 98169.5 in-lbs Resisting Force Required = 1487.42 lbs A minimum 132in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2479.03 lbs to resist overturning. Minimum Width = Weight Provided = 4186.88 lbs Sliding Force = 433.16 lbs Use a 132in long x 21in wide x 18in tall Friction = 0.4 Weight Required = 1082.90 lbs ballast foundation to resist sliding. Resisting Weight = 4186.88 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 433.16 lbs Cohesion = 130 psf Use a 132in long x 21in wide x 18in tall 19.25 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2093.44 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width					
	<u>21 in</u>	22 in	23 in	24 in		
$P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(1.75 \text{ ft}) =$	4187 lbs	4386 lbs	4586 lbs	4785 lbs		

ASD LC	1.0D + 1.0S 1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W									
Width	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in
FA	1630 lbs	1630 lbs	1630 lbs	1630 lbs	1200 lbs	1200 lbs	1200 lbs	1200 lbs	1989 lbs	1989 lbs	1989 lbs	1989 lbs	-341 lbs	-341 lbs	-341 lbs	-341 lbs
F _B	1665 lbs	1665 lbs	1665 lbs	1665 lbs	1431 lbs	1431 lbs	1431 lbs	1431 lbs	2185 lbs	2185 lbs	2185 lbs	2185 lbs	-1870 lbs	-1870 lbs	-1870 lbs	-1870 lbs
F _V	187 lbs	187 lbs	187 lbs	187 lbs	788 lbs	788 lbs	788 lbs	788 lbs	717 lbs	717 lbs	717 lbs	717 lbs	-866 lbs	-866 lbs	-866 lbs	-866 lbs
P _{total}	7483 lbs	7682 lbs	7881 lbs	8081 lbs	6818 lbs	7017 lbs	7216 lbs	7416 lbs	8361 lbs	8560 lbs	8760 lbs	8959 lbs	301 lbs	421 lbs	541 lbs	660 lbs
M	4121 lbs-ft	4121 lbs-ft	4121 lbs-ft	4121 lbs-ft	3510 lbs-ft	3510 lbs-ft	3510 lbs-ft	3510 lbs-ft	5384 lbs-ft	5384 lbs-ft	5384 lbs-ft	5384 lbs-ft	1603 lbs-ft	1603 lbs-ft	1603 lbs-ft	1603 lbs-ft
е	0.55 ft	0.54 ft	0.52 ft	0.51 ft	0.51 ft	0.50 ft	0.49 ft	0.47 ft	0.64 ft	0.63 ft	0.61 ft	0.60 ft	5.32 ft	3.81 ft	2.97 ft	2.43 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft
f _{min}	271.9 psf	269.5 psf	267.2 psf	265.1 psf	254.7 psf	253.0 psf	251.5 psf	250.1 psf	281.8 psf	278.8 psf	276.2 psf	273.7 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	505.5 psf	492.4 psf	480.4 psf	469.5 psf	453.6 psf	442.9 psf	433.1 psf	424.1 psf	586.9 psf	570.1 psf	554.8 psf	540.7 psf	640.2 psf	90.5 psf	74.2 psf	71.7 psf

Maximum Bearing Pressure = 640 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 1701.4 \text{ ft-lbs}$

Resisting Force Required = 1944.49 lbs S.F. = 1.67

Weight Required = 3240.81 lbs Minimum Width = 21 in in Weight Provided = 4186.88 lbs A minimum 132in long x 21in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E				
Width		21 in			21 in			21 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	274 lbs	671 lbs	226 lbs	926 lbs	2704 lbs	889 lbs	97 lbs	196 lbs	50 lbs		
F _V	221 lbs	217 lbs	224 lbs	164 lbs	159 lbs	174 lbs	222 lbs	219 lbs	222 lbs		
P _{total}	5457 lbs	5854 lbs	5410 lbs	5860 lbs	7639 lbs	5823 lbs	1612 lbs	1712 lbs	1565 lbs		
М	886 lbs-ft	878 lbs-ft	894 lbs-ft	668 lbs-ft	665 lbs-ft	701 lbs-ft	883 lbs-ft	875 lbs-ft	887 lbs-ft		
е	0.16 ft	0.15 ft	0.17 ft	0.11 ft	0.09 ft	0.12 ft	0.55 ft	0.51 ft	0.57 ft		
L/6	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft		
f _{min}	125.7 psf	147.8 psf	121.8 psf	185.5 psf	278.4 psf	177.6 psf	0.0 psf	0.0 psf	0.0 psf		
f _{max}	441.3 psf	460.5 psf	440.2 psf	423.4 psf	515.2 psf	427.4 psf	298.6 psf	285.0 psf	307.5 psf		

Maximum Bearing Pressure = 515 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	3.245 k	Maximum Axial Load =	3.294 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>44%</u>	Utilization =	<u>44%</u>
Diagonal Strut			
Maximum Axial Load =	1.252 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for	or double she
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>17%</u>		
	0	Struts under compression are	shown to de
	1.	•	

to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 40.12 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 0.802 in Max Drift, Δ_{MAX} = 0.578 in $0.578 \le 0.802$, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 126 \text{ in}$$

$$J = 0.432$$

$$348.575$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.2 \text{ ksi}$

3.4.16.1

 $\begin{aligned} \text{Rb/t} &= \\ S1 &= \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2 \\ \text{S1} &= 1.1 \\ S2 &= C_t \\ \text{S2} &= 141.0 \\ \text{ϕF}_L &= 1.17 \phi \text{yFcy} \\ \text{ϕF}_L &= 38.9 \text{ ksi} \end{aligned}$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 126 \\ \mathsf{J} &= & 0.432 \\ & & 221.673 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi \mathsf{b}[\mathsf{Bc-1.6Dc*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} &= & 28.5 \end{split}$$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$k = 897074 \text{ mm}^4$$

2.155 in⁴

41.015 mm

1.335 in³

2.788 k-ft

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

1.152 k-ft

 $M_{max}Wk =$

 $M_{max}St =$

Sx=

Compression

3.4.9

$$b/t = 32.195 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = 25.1 \text{ ksi} \\ b/t = 37.0588 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = (\phi c k2^* \sqrt{(BpE))}/(1.6b/t) \\ \end{cases}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Weak Axis: Strong Axis: 3.4.14 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

 $\phi F_1 =$

29.2

3.4.16

 $\phi F_1 = 29.4 \text{ ksi}$

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b [Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

 $\phi F_L =$

3.4.16.1 N/A for Weak Direction

3.4.18

h/t =

Bbr -

3.4.18 7.4 h/t = $Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy$ S1 = 35.2 m = 0.68 $C_0 = 41.067$ Cc = 43.717 $S2 = \frac{k_1 Bbr}{}$ mDbrS2 = 73.8 $\phi F_L = 1.3 \phi y F c y$ $\phi F_L =$ 43.2 ksi

29.4 ksi

2.366 in⁴

1.375 in³

3.363 k-ft

43.717 mm

 $lx = 984962 \text{ mm}^4$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$V = 923544 \text{ mm}^4$$

$$2.219 \text{ in}^4$$

$$X = 40 \text{ mm}$$

$$Sy = 1.409 \text{ in}^3$$

3.904 k-ft

 $M_{max}Wk =$

16.2

Compression

 $M_{max}St =$

y =

Sx =

 $\phi F_L St =$

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$

33.3 ksi

3.4.10

 $\phi F_L =$

Rb/t =18.1 S1 = S2 = 131.3 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$ $\phi F_L =$ 31.09 ksi $\phi F_L =$ 31.09 ksi $A = 1215.13 \text{ mm}^2$ 1.88 in²

58.55 kips

 $P_{max} =$

Rev. 11.05.2015

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

 $\phi F_L =$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

31.4 ksi

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi \varphi F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$V = 27.5 \text{ mm}$$

0.621 in³

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\psi = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

24.5

Sx=

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_b = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$
$\varphi F_L = 29.6 \text{ ksi}$	$\phi F_{L} = 29.6$

SCHLETTER

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$$

$\varphi F_L = 28.2 \text{ ksi}$

3.4.16.1 Not Used Rb/t =
$$0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$\underline{\text{Compression}}$

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$\begin{split} \text{h/t} &= 24.5 \\ S1 &= \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr} \\ \text{S1} &= 36.9 \\ \text{m} &= 0.65 \\ \text{C}_0 &= 27.5 \\ \text{Cc} &= 27.5 \\ \text{S2} &= \frac{k_1 Bbr}{mDbr} \\ \text{S2} &= 77.3 \\ \text{\phiF}_L &= 1.3 \text{\phiyFcy} \\ \text{\phiF}_L &= 43.2 \text{ ksi} \end{split}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 55.91 \text{ in}$$

$$J = 0.942 \\ 87.2529$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

Weak Axis:

$$L_b = 55.91$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = \frac{1.6Dp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$S2 = C_t$$

 $S2 = 141.0$

$$φF_L$$
= 1.17 $φyFcy$
 $φF_L$ = 38.9 ksi

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$
 0.672 in^4
 $y = 27.5 \text{ mm}$

$$Sx = 0.621 \text{ in}^3$$

 $M_{max}St = 1.460 \text{ k-ft}$

3.4.7

$$λ =$$
 1.29339
 $r =$ 0.81 in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* =$ 0.33515
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* =$ 1.23671
 $φcc =$ 0.76107

3.4.9
$$b/t = 24.5$$

 $\phi F_L = (\phi cc Fcy)/(\lambda^2)$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

S1 = 12.21

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-54.031	-54.031	0	0
2	M14	Υ	-54.031	-54.031	0	0
3	M15	Υ	-54.031	-54.031	0	0
4	M16	Y	-54 031	-54 031	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-33.217	-33.217	0	0
2	M14	V	-33.217	-33.217	0	0
3	M15	V	-52.198	-52.198	0	0
4	M16	V	-52.198	-52.198	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	75.924	75.924	0	0
2	M14	٧	58.208	58.208	0	0
3	M15	V	31.635	31.635	0	0
4	M16	У	31.635	31.635	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Z	6.693	6.693	0	0
2	M14	Ζ	6.693	6.693	0	0
3	M15	Ζ	6.693	6.693	0	0
4	M16	Ζ	6.693	6.693	0	0
5	M13	Ζ	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations

	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	<u>Fa</u>	
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Y		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Y		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	317.966	2	1021.233	1	.951	1	.005	1	0	1	0	1
2		min	-440.618	3	-910.872	3	-65.952	5	297	4	0	1	0	1
3	N7	max	.049	1	1162.163	1	444	12	0	12	0	1	0	1
4		min	065	2	-148.834	3	-269.826	4	543	4	0	1	0	1
5	N15	max	.027	9	3244.895	1	0	1	0	1	0	1	0	1
6		min	924	2	-555.984	3	-258.747	4	528	4	0	1	0	1
7	N16	max	1328.28	2	3482.614	1	0	1	0	2	0	1	0	1
8		min	-1386.993	3	-3001.608	3	-65.638	5	3	4	0	1	0	1
9	N23	max	.049	1	1162.163	1	10.4	1	.022	1	0	1	0	1
10		min	065	2	-148.834	3	-263.112	4	531	4	0	1	0	1
11	N24	max	317.966	2	1021.233	1	047	12	0	12	0	1	0	1
12		min	-440.618	3	-910.872	3	-66.509	5	3	4	0	1	0	1
13	Totals:	max	1963.157	2	11094.3	1	0	1						
14		min	-2268.519	3	-5677.004	3	-984.268	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	_LC_
1	M13	1	max	110.463	1	463.881	1	-6.516	12	0	3	.263	1	0	4
2			min	4.721	12	-458.572	3	-169.942	1	012	1	.011	12	0	3
3		2	max	110.463	1	325.118	1	-5.091	12	0	3	.099	4	.456	3
4			min	4.721	12	-322.722	3	-130.72	1	012	1	.005	12	46	1
5		3	max	110.463	1	186.356	1	-3.665	12	0	3	.051	5	.753	3
6			min	4.721	12	-186.872	3	-91.499	1	012	1	042	1	759	1
7		4	max	110.463	1	47.593	1	-2.24	12	0	3	.026	5	.892	3
8			min	4.721	12	-51.022	3	-52.277	1	012	1	125	1	895	1
9		5	max	110.463	1	84.828	3	814	12	0	3	.004	5	.872	3
10			min	4.721	12	-91.17	1	-21.214	4	012	1	164	1	87	1
11		6	max	110.463	1	220.678	3	26.166	1	0	3	006	12	.694	3
12			min	4.192	15	-229.933	1	-15.853	5	012	1	156	1	682	1
13		7	max	110.463	1	356.528	3	65.387	1	0	3	004	12	.357	3
14			min	-5.468	5	-368.696	1	-13.648	5	012	1	102	1	333	1
15		8	max	110.463	1	492.378	3	104.609	1	0	3	0	10	.178	1
16			min	-17.444	5	-507.458	1	-11.442	5	012	1	049	4	138	3
17		9	max	110.463	1	628.228	3	143.83	1	0	3	.142	1	.851	1
18			min	-29.42	5	-646.221	1	-9.237	5	012	1	06	5	792	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC		LC		LC	z-z Mome	LC
19		10	max	110.463	1	764.078	3	183.052	1	.005	14	.332	1	1.686	1
20			min	4.721	12	-784.984	1	-106.219		012	1	.01	12	-1.604	3
21		11	max	110.463	1	646.221	_1_	-4.888	12	.012	1	.142	1	.851	1
22			min	4.721	12	-628.228		-143.83	1	0	3	.004	12	792	3
23		12	max	110.463	1	507.458	1_	-3.462	12	.012	1	.047	4	.178	1
24		10	min	4.721	12	-492.378	3	-104.609		0	3	003	1	138	3
25		13		110.463	1	368.696	1	-2.037	12	.012	1	.021	5	.357	3
26		4.	min	4.721	12			-65.387	1	0	3	102	1	333	1
27		14		110.463	1	229.933	1_	611	12	.012	1	001	15	.694	3
28		4.5	min	3.827	15	-220.678	3	-26.166	1	0	3	1 <u>56</u>	1	682	1
29		15	max	110.463	1	91.17	1	13.056	1	.012	1	006	12	.872	3
30		4.0	min	-6.108	5	-84.828	3	-16.569	5	0	3	164	1	87	1
31		16	max		1	51.022	3	52.277	1	.012	1	004	12	.892	3
32		47	min	-18.084	5	-47.593	1	-14.363	5	0	3	125	1	895	1
33		17	max	110.463	1	186.872	3	91.499	5	.012	3	0	12	.753	3
34		18	min	-30.061	5	-186.356	1	-12.158		0		066	4	759	_
35		18		110.463	1	322.722	3	130.72	1	.012	1	.088	1	.456	3
36		40	min	-42.037	5	-325.118		-9.952	5	0	3	069	5	46	1
37		19		110.463	1	458.572	3	169.942	1	.012	1	.263	1	0	1
38	N4.4	1	min	-54.013	5	-463.881	1	-7.747	5	0	3	079	5	0	3
39	M14		max	63.806	4	487.488	1	-6.695	12	.005	3	.299	1	0	1
40		2	min	2.017	12	-355.644	3	-174.996	1	01	1	.013	12		3
41		2	max	51.83	4	348.725	1	-5.269	12	.005	3	.14	4	.355	3
42		2	min	2.017	12	-252.864	3	-135.775		01	1	.006	12	<u>488</u>	_
43		3	max	49.87	1	209.962	1	-3.844	12	.005	3	.075	5	.59	3
44		4	min	2.017	12		3	-96.553	1	01	_	018	1	814	_
45		4	max	49.87	1	71.199	1	-2.418	12	.005	3	.04	5	.705	3
46		_	min	2.017	12		3	-57.332	1	01	1	108	1	<u>978</u>	1
47		5	max	49.87	1	55.476	3	993	12	.005	3	.007	5		3
48 49		6	min	2.017 49.87	12 1	-67.564 158.256	3	-31.218 21.112	1	01 .005	3	1 <u>52</u> 006	12	98 .576	3
50		0	max	-6.586	5	-206.326		-24.596	5	01	1	006 15	1	82	1
		7	min				1				3				3
51 52			max	49.87	1	261.036	3	60.333	5	.005	1	004	12	.331	1
		0	min	-18.562	5	-345.089	1	-22.391	1	01		103	_	<u>498</u>	_
53 54		8	max	49.87 -30.538	5	363.816 -483.852	<u>3</u>	99.555 -20.185	5	.005 01	3	0 079	10	0 033	15 3
55		9	min	49.87	1	466.597	3	138.776	1	.005	3	.13	1	<u>033</u> .631	1
56		9	max min	-42.514	5	-622.615	1	-17.98	5	005	1	097	5	518	3
57		10	max	70.182	4	569.377	3	177.998	1	.005	3	.315	1	1.438	1
58		10	min	2.017	12	-761.377	1	-108.042	14	005	1	.01	12	-1.122	3
59		11		58.206		622.615			12	.01	1	.141	4	.631	1
60			min	2.017	12	-466.597	3	-138.776		005	3	.003	12	518	3
61		12	1	49.87	1	483.852	1	-3.284	12	.01	1	.074	5	<u>516</u> 0	15
62		12	min	2.017	12	-363.816		-99.555	1	005	3	009	1	033	3
63		13		49.87	1	345.089	1	-1.858	12	.01	1	.038	5	.331	3
64		13	min	2.017	12	-261.036	3	-60.333	1	005	3	103	1	498	1
65		1/	max		1	206.326	1	433	12	.01	1	.006	5	.576	3
66		14	min	2.017	12	-158.256		-31.909	4	005	3	15	1	82	1
67		15	max	49.87	1	67.564	1	18.11	1	.01	1	005	12	<u>02</u> .7	3
68		13	min	082	15	-55.476	3	-24.744	5	005	3	152	1	98	1
69		16	max		1	47.304	3	57.332	1	<u>005</u> .01	1	003	12	<u>96</u> .705	3
70		10	min	-12.043	5	-71.199	1	-22.538	5	005	3	003 108	1	978	1
71		17	max	49.87	1	150.084	3	96.553	1	<u>005</u> .01	1	<u>108</u> 0	3	<u>978</u> .59	3
72		17	min	-24.02	5	-209.962	1	-20.333	5	005	3	083	4	814	1
73		18		49.87	1	252.864	3	135.775	1	.005 .01	1	063 .117	1	.355	3
74		10	min	-35.996	5	-348.725	1	-18.127	5	005	3	1 <i>17</i>	5	488	1
75		10	max		1	355.644	3	174.996	1	.01	1	.299	1	466 0	1
10		ו ט	шах	₹9.01		000.044	J	177.330	1	.∪ ı		.∠33		U	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
76			min	-47.972	5	-487.488	1	-15.922	5	005	3	119	5	0	3
77	M15	1	max	84.958	5	547.256	1	-6.669	12	.01	1	.299	1	0	2
78			min	-52.569	1	-188.374	3	-174.966	1	004	3	.012	12	0	12
79		2	max	72.982	5	390.777	1	-5.243	12	.01	1	.176	4	.189	3
80			min	-52.569	1	-135.196	3	-135.745	1	004	3	.006	12	547	1
81		3	max	61.006	5	234.299	1	-3.818	12	.01	1	.101	5	.315	3
82			min	-52.569	1	-82.019	3	-96.523	1	004	3	018	1	912	1
83		4	max	49.03	5	77.821	1	-2.392	12	.01	1	.056	5	.38	3
84			min	-52.569	1	-28.842	3	-57.302	1	004	3	108	1	-1.094	1
85		5	max	37.054	5	24.335	3	967	12	.01	1	.013	5	.383	3
86			min	-52.569	1	-78.658	1	-39.976	4	004	3	152	1	-1.093	1
87		6	max	25.078	5	77.512	3	21.141	1	.01	1	006	12	.323	3
88			min	-52.569	1	-235.136	1	-33.34	5	004	3	15	1	91	1
89		7	max	13.102	5	130.689	3	60.363	1	.01	1	004	12	.202	3
90			min	-52.569	1	-391.614	1	-31.135	5	004	3	103	1	545	1
91		8	max	1.126	5	183.867	3	99.585	1	.01	1	0	10	.018	3
92			min	-52.569	1	-548.093	1	-28.929	5	004	3	103	4	003	9
93		9	max	-2.289	12	237.044	3	138.806	1	.01	1	.13	1	.734	1
94			min	-52.569	1	-704.571	1	-26.724	5	004	3	132	5	227	3
95		10	max	-2.289	12	314.199	14	178.028	1	.01	1	.315	1	1.647	1
96			min	-52.569	1	-861.05	1	-112.502	14	004	3	.01	12	535	3
97		11	max	4.655	5	704.571	1	-4.735	12	.004	3	.176	4	.734	1
98			min	-52.569	1	-237.044	3	-138.806	1	01	1	.003	12	227	3
99		12	max	-2.289	12	548.093	1	-3.31	12	.004	3	.098	5	.018	3
100			min	-52.569	1	-183.867	3	-99.585	1	01	1	009	1	003	9
101		13	max	-2.289	12	391.614	1	-1.884	12	.004	3	.053	5	.202	3
102			min	-52.569	1	-130.689	3	-60.363	1	01	1	103	1	545	1
103		14	max	-2.289	12	235.136	1	459	12	.004	3	.01	5	.323	3
104			min		1	-77.512	3	-40.687	4	01	1	15	1	91	1
105		15	max	-2.289	12	78.658	1	18.08	1	.004	3	005	12	.383	3
106			min	-54.878	4	-24.335	3	-33.49	5	01	1	152	1	-1.093	1
107		16	max	-2.289	12	28.842	3	57.302	1	.004	3	003	12	.38	3
108			min	-66.854	4	-77.821	1	-31.285	5	01	1	108	1	-1.094	1
109		17	max	-2.289	12	82.019	3	96.523	1	.004	3	0	3	.315	3
110			min	-78.83	4	-234.299	1	-29.079	5	01	1	109	4	912	1
111		18	max	-2.289	12	135.196	3	135.745	1	.004	3	.117	1	.189	3
112			min	-90.806	4	-390.777	1	-26.874	5	01	1	136	5	547	1
113		19	max	-2.289	12	188.374	3	174.966	1	.004	3	.299	1	0	2
114			min		4	-547.256	1	-24.668	5	01	1	166	5	0	5
115	M16	1	max	83.875	5	523.803	1	-6.433	12	.011	1	.265	1	0	1
116			min	-117.213	1	-176.987	3	-170.139	1	007	3	.011	12	0	3
117		2	max	71.899	5	367.324	1	-5.008	12	.011	1	.133	4	.175	3
118			min	-117.213	1	-123.809	3	-130.917	1	007	3	.004	12	52	1
119		3	max	59.922	5	210.846	1	-3.582	12	.011	1	.075	5	.289	3
120			min	-117.213	1	-70.632	3	-91.696	1	007	3	041	1	857	1
121		4	max	47.946	5	54.368	1	-2.157	12	.011	1	.041	5	.34	3
122			min	-117.213	1	-17.455	3	-52.474	1	007	3	125	1	-1.012	1
123		5	max	35.97	5	35.722	3	731	12	.011	1	.01	5	.33	3
124				-117.213	1	-102.111	1	-29.123	4	007	3	163	1	984	1
125		6	max	23.994	5	88.899	3	25.969	1	.011	1	006	12	.257	3
126			min		1	-258.589	1	-23.668	5	007	3	156	1	774	1
127		7	max		5	142.076	3	65.19	1	.011	1	004	12	.122	3
128				-117.213		-415.067	1	-21.462	5	007	3	103	1	381	1
129		8	max		15	195.254	3	104.412	1	.011	1	0	10	.195	1
130			min	-117.213	1	-571.546	1	-19.257	5	007	3	071	4	075	3
131		9	max		12	248.431	3	143.633	1	.011	1	.141	1	.953	1
132				-117.213	1	-728.024	1	-17.051	5	007	3	09	5	333	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
133		10	max	-4.846	12	323.444	14	182.855	1	.011	1	.331	1	1.894	1
134			min	-117.213	1	-884.503	1	-110.145	14	007	3	.011	12	654	3
135		11	max	604	15	728.024	1	-4.971	12	.007	3	.141	1	.953	1
136			min	-117.213	1	-248.431	3	-143.633	1	011	1	.004	12	333	3
137		12	max	-4.846	12	571.546	1	-3.545	12	.007	3	.069	4	.195	1
138			min	-117.213	1	-195.254	3	-104.412	1	011	1	004	1	075	3
139		13	max	-4.846	12	415.067	1	-2.12	12	.007	3	.034	5	.122	3
140			min	-117.213	1	-142.076	3	-65.19	1	011	1	103	1	381	1
141		14	max	-4.846	12	258.589	1	694	12	.007	3	.001	5	.257	3
142			min	-117.213	1	-88.899	3	-32.41	4	011	1	156	1	774	1
143		15	max	-4.846	12	102.111	1	13.253	1	.007	3	006	12	.33	3
144			min	-117.213	1	-35.722	3	-24.371	5	011	1	163	1	984	1
145		16	max	-4.846	12	17.455	3	52.474	1	.007	3	004	12	.34	3
146			min	-117.213	1	-54.368	1	-22.165	5	011	1	125	1	-1.012	1
147		17	max	-4.846	12	70.632	3	91.696	1	.007	3	0	12	.289	3
148			min	-117.213	1	-210.846	1	-19.96	5	011	1	09	4	857	1
149		18	max	-4.846	12	123.809	3	130.917	1	.007	3	.089	1	.175	3
150			min	-117.213	1	-367.324	1	-17.754	5	011	1	102	5	52	1
151		19	max	-4.846	12	176.987	3	170.139	1	.007	3	.265	1	0	1
152			min	-122.506	4	-523.803	1	-15.548	5	011	1	121	5	0	5
153	M2	1		1018.373	1	2.07	4	1.029	1	0	3	0	3	0	1
154	IVIZ		min	-813.012	3	.507	15	-62.957	4	0	4	0	1	0	1
155		2		1018.752	1	2.037	4	1.029	1	0	3	0	1	0	15
156			min	-812.728	3	.499	15	-63.286	4	0	4	016	4	0	4
157		3		1019.132	1	2.003	4	1.029	1	0	3	0	1	0	15
158		3	min	-812.443	3	.491	15	-63.616	4	0	4	032	4	001	4
159		4		1019.511	1	1.97	4	1.029	1		3	0	1	0	15
160		4	min	-812.159	3	.483	15	-63.945	4	0	4	049	4	002	4
		5			1	1.937	4	1.029	1		3	.001	1	002	15
161		5	max	1019.89			15			0			_	_	
162		6	min	-811.874	3	.475	4	-64.275	4	0	3	065 .001	4	002	4
163		6		1020.269	1	1.903		1.029	1	0			1	0	15
164		7	min	-811.59	3	.467	15	-64.604	4	0	4	082	4	003	4
165		7		1020.649	1	1.87	4	1.029	1	0	3	.002	1	0	15
166			min	-811.306	3	.46	15	-64.934	4	0	4	098	4	003	4
167		8		1021.028	1	1.836	4	1.029	1	0	3	.002	1	0	15
168			min	-811.021	3	.452	15	-65.263	4	0	4	115	4	004	4
169		9		1021.407	1	1.803	4	1.029	1	0	3	.002	1	0	15
170		10	min	-810.737	3	.444	15	-65.593	4	0	4	132	4	004	4
171		10		1021.787	1	1.77	4	1.029	1	0	3	.002	1	001	15
172			min	-810.452	3	.436	15	-65.922	4	0	4	149	4	004	4
173		11		1022.166	1	1.736	4	1.029	1	0	3	.003	1	001	15
174			min		3	.428	15	-66.251	4	0	4	166	4	005	4
175		12		1022.545		1.703	4	1.029	1	0	3	.003	1	001	15
176			min		3	.42	15	-66.581	4	0	4	183	4	005	4
177		13		1022.924	1	1.669	4	1.029	1	0	3	.003	1	001	15
178			min		3	.412	15	-66.91	4	0	4	2	4	006	4
179		14	1	1023.304	1	1.636	4	1.029	1	0	3	.003	1	002	15
180				-809.314	3	.405	15	-67.24	4	0	4	217	4	006	4
181		15	max	1023.683	1	1.603	4	1.029	1	0	3	.004	1	002	15
182			min	-809.03	3	.397	15	-67.569	4	0	4	234	4	007	4
183		16	max	1024.062	1	1.569	4	1.029	1	0	3	.004	1	002	15
184				-808.746	3	.389	15	-67.899	4	0	4	251	4	007	4
185		17		1024.441	1	1.536	4	1.029	1	0	3	.004	1	002	15
186			min		3	.381	15	-68.228	4	0	4	269	4	007	4
187		18		1024.821	1	1.502	4	1.029	1	0	3	.004	1	002	15
188			min		3	.373	15	-68.558	4	0	4	286	4	008	4
189		19	max		1	1.469	4	1.029	1	0	3	.005	1	002	15
							<u> </u>		<u> </u>				<u> </u>		

Model Name

: Schletter, Inc. : HCV

: 1101

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

190	Member	Sec	min	Axial[lb] -807.892	LC 3	y Shear[lb]	LC 15	z Shear[lb] -68.887	LC 4	Torque[k-ft]	LC 4	y-y Mome	LC 4	z-z Mome	LC 4
191	M3	1	max	274.349	2	8.008	4	1.335	4	0	3	0	1	.008	4
192	IVIO	-	min	-399.792	3	1.895	15	.003	12	0	4	022	4	.002	15
193		2	max	274.179	2	7.239	4	1.876	4	0	3	0	1	.005	4
194			min	-399.92	3	1.714	15	.003	12	0	4	021	4	.001	12
195		3	max	274.009	2	6.469	4	2.416	4	0	3	0	1	.002	2
196			min	-400.047	3	1.533	15	.003	12	0	4	02	4	0	12
197		4	max		2	5.699	4	2.957	4	0	3	0	1	0	2
198			min	-400.175	3	1.352	15	.003	12	0	4	019	4	001	3
199		5	max	273.668	2	4.929	4	3.497	4	0	3	0	1	0	15
200		_ J	min	-400.303	3	1.171	15	.003	12	0	4	018	4	003	6
201		6	max	273.498	2	4.159	4	4.038	4	0	3	0	1	001	15
202			min	-400.431	3	.99	15	.003	12	0	4	016	4	005	6
203		7	max	273.327	2	3.389	4	4.579	4	0	3	0	1	001	15
204		'	min	-400.558	3	.809	15	.003	12	0	4	014	4	006	6
205		8	max	273.157	2	2.619	4	5.119	4	0	3	0	1	002	15
206			min	-400.686	3	.628	15	.003	12	0	4	012	4	007	6
207		9	max		2	1.849	4	5.66	4	0	3	0	1	002	15
208		T T	min	-400.814	3	.447	15	.003	12	0	4	01	5	008	6
209		10	max	272.816	2	1.079	4	6.2	4	0	3	0	1	002	15
210		10	min	-400.942	3	.266	15	.003	12	0	4	007	5	009	6
211		11	max	272.646	2	.324	2	6.741	4	0	3	0	1	002	15
212		- ' '	min	-401.069	3	.019	12	.003	12	0	4	005	5	009	6
213		12	max	272.476	2	096	15	7.281	4	0	3	0	1	002	15
214		12	min	-401.197	3	463	6	.003	12	0	4	002	5	002	6
215		13	max	272.305	2	403	15	7.822	4	0	3	.002	4	003	15
216		13	min	-401.325	3	-1.233	6	.003	12	0	4	0	12	002	6
217		14	max	272.135	2	458	15	8.362	4	0	3	.005	4	003	15
218		17	min	-401.453	3	-2.003	6	.003	12	0	4	0	12	002	6
219		15	max	271.965	2	639	15	8.903	4	0	3	.008	4	002	15
220		13	min	-401.581	3	-2.772	6	.003	12	0	4	0	12	002	6
221		16	max	271.794	2	82	15	9.444	4	0	3	.012	4	001	15
222		10	min	-401.708	3	-3.542	6	.003	12	0	4	0	12	006	6
223		17	max	271.624	2	-1.001	15	9.984	4	0	3	.016	4	0	15
224		17	min	-401.836	3	-4.312	6	.003	12	0	4	0	12	004	6
225		18	max	271.453	2	-1.182	15	10.525	4	0	3	.021	4	0	15
226		10	min	-401.964	3	-5.082	6	.003	12	0	4	0	12	002	6
227		19	max	271.283	2	-1.363	15	11.065	4	0	3	.025	4	0	1
228		10	min	-402.092	3	-5.852	6	.003	12	0	4	0	12	0	1
229	M4	1		1159.096	1	0.002	1	443	12	0	1	.016	4	0	1
230	IVI-T	•		-151.133		0	1	-268.831	4	0	1	0	12	0	1
231		2		1159.267	1	0	1	443	12	0	1	0	12	0	1
232		_		-151.006		0	1	-268.979		0	1	015	4	0	1
233		3		1159.437	1	0	1	443	12	0	1	0	12	0	1
234				-150.878		0	1	-269.127		0	1	046	4	0	1
235		4		1159.607	1	0	1	443	12	0	1	0	12	0	1
236					3	0	1	-269.274		0	1	077	4	0	1
237		5		1159.778	1	0	1	443	12	0	1	0	12	0	1
238				-150.622	3	0	1	-269.422		0	1	108	4	0	1
239		6		1159.948	1	0	1	443	12	0	1	0	12	0	1
240				-150.495	3	0	1	-269.57	4	0	1	139	4	0	1
241		7		1160.118	1	0	1	443	12	0	1	0	12	0	1
242				-150.367	3	0	1	-269.717		0	1	17	4	0	1
243		8		1160.289	1	0	1	443	12	0	1	0	12	0	1
244		Ť		-150.239		0	1	-269.865		0	1	201	4	0	1
245		9		1160.459	1	0	1	443	12	0	1	0	12	0	1
246		Ť		-150.111	3	0	1	-270.013		0	1	232	4	0	1
				1001111	_	_		0.010		•		0_			

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

0.47	Member	Sec	T	Axial[lb]						Torque[k-ft]					
247		10		1160.629	1	0	1	443	12	0	<u>1</u> 1	263	12	0	1
248 249		11		-149.984 1160.8	<u>3</u> 1	0	1	-270.16 443	<u>4</u> 12	0	1	263 0	<u>4</u> 12	0	1
250		11		-149.856	3	0	1	-270.308	4	0	1	294	4	0	1
251		12		1160.97	<u>ა</u> 1	0	1	443	12	0	1	0	12	0	1
252		12		-149.728	3	0	1	-270.455	4	0	1	325	4	0	1
253		13		1161.14	1	0	1	443	12	0	1	0	12	0	1
254		13		-149.6	3	0	1	-270.603	4	0	1	356	4	0	1
255		14		1161.311	<u> </u>	0	1	443	12	0	1	0	12	0	1
256		17		-149.473	3	0	1	-270.751	4	0	1	387	4	0	1
257		15		1161.481	1	0	1	443	12	0	1	0	12	0	1
258		10		-149.345	3	0	1	-270.898	4	0	1	418	4	0	1
259		16		1161.652	1	0	1	443	12	0	1	0	12	0	1
260		- 10		-149.217	3	0	1	-271.046	4	0	1	449	4	0	1
261		17		1161.822	1	0	1	443	12	0	1	0	12	0	1
262		- ' '		-149.089	3	0	1	-271.194	4	0	1	48	4	0	1
263		18		1161.992	1	0	1	443	12	Ö	1	0	12	0	1
264				-148.962	3	0	1	-271.341	4	0	1	511	4	0	1
265		19		1162.163	1	0	1	443	12	0	1	0	12	0	1
266				-148.834	3	0	1	-271.489	4	0	1	543	4	0	1
267	M6	1		3286.947	1	2.255	2	0	1	Ö	1	0	4	0	1
268				-2675.782	3	.309	12	-63.573	4	0	4	0	1	0	1
269		2		3287.326	1	2.229	2	0	1	0	1	0	1	0	12
270				-2675.497	3	.296	12	-63.902	4	0	4	016	4	0	2
271		3		3287.705	1	2.203	2	0	1	0	1	0	1	0	12
272				-2675.213	3	.283	12	-64.232	4	0	4	033	4	001	2
273		4		3288.084	1	2.177	2	0	1	0	1	0	1	0	12
274				-2674.928	3	.27	12	-64.561	4	0	4	049	4	002	2
275		5	max	3288.464	1	2.151	2	0	1	0	1	0	1	0	12
276			min	-2674.644	3	.257	12	-64.891	4	0	4	066	4	002	2
277		6	max	3288.843	1	2.125	2	0	1	0	1	0	1	0	12
278			min	-2674.359	3	.244	12	-65.22	4	0	4	082	4	003	2
279		7	max	3289.222	1_	2.099	2	0	1	0	1	0	1	0	12
280			min	-2674.075	3	.231	12	-65.55	4	0	4	099	4	003	2
281		8		3289.601	1	2.073	2	0	1	0	1	0	1	0	12
282			min	-2673.791	3	.218	12	-65.879	4	0	4	116	4	004	2
283		9		3289.981	<u>1</u>	2.047	2	0	_1_	0	_1_	0	1_	0	12
284				-2673.506	3	.205	12	-66.209	4	0	4	133	4	004	2
285		10	max	3290.36	1_	2.021	2	0	1	0	1	0	1	0	12
286			min	-2673.222	3	.192	12	-66.538	4	0	4	15	4	005	2
287		11		3290.739	_1_	1.995	2	0	_1_	0	_1_	0	1_	0	12
288				-2672.937	3	.179	12	-66.868	4	0	4	167	4	005	2
289		12		3291.118	_1_	1.969	2	0	1	0	1_	0	1	0	12
290				-2672.653	3	.166	12	-67.197	4_	0	4	184	4	006	2
291		13		3291.498	_1_	1.943	2	0	_1_	0	1	0	1	0	12
292				-2672.368	3	.153	12	-67.526	4_	0	4	202	4	006	2
293		14		3291.877	1_	1.917	2	0	1	0	1	0	1	0	12
294		4.5		-2672.084	3	.14	12	-67.856	4_	0	4	219	4	007	2
295		15		3292.256	1_	1.891	2	0	1_	0	1	0	1	0	12
296		40		-2671.799	3_	.127	12	-68.185	4	0	4	236	4	007	2
297		16		3292.636	1_	1.865	2	0	1_	0	1_	0	1	0	12
298		47		-2671.515	3_	.114	12	-68.515	4_	0	4_	254	4	008	2
299		17		3293.015	1	1.839	2	0	1_4	0	1_4	0	1_4	0	12
300		40		-2671.231	3	.101	12	-68.844	4_	0	4	271	4	008	2
301		18		3293.394 -2670.946	1	1.813	2	0	1_4	0	1_4	0	1	0	12
302		10		3293.773	3	.083	2	-69.174	<u>4</u> 1	0	<u>4</u> 1	289	<u>4</u> 1	009	12
303		19	шах	3283.113	1	1.787		0		U	<u> </u>	0		0	12

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	v Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
304			min	-2670.662	3	.064	3	-69.503	4	0	4	307	4	009	2
305	M7	1	max	1200.124	2	8.022	6	1.196	4	0	1	0	1	.009	2
306			min	-1249.738	3	1.882	15	0	1	0	4	022	4	0	12
307		2		1199.954	2	7.252	6	1.737	_4_	0	1_	0	1	.007	2
308			min	-1249.866	3	1.701	15	0	1	0	4	021	4	0	3
309		3		1199.783	2	6.482	6	2.277	4	0	1_1	0	1	.004	2
310		4	min	-1249.993	3	1.52	15	0	1_1	0	4	02	4	002	3
311		4		1199.613 -1250.121	2	5.712	6	2.818	4	0	1_1	0	1	.002	2
312		_	min		3	1.339	15	0 3.358	1_1	0	<u>4</u> 1	019	1	003	3
313		5	min	1199.443	3	4.942 1.158	6 15	3.358	<u>4</u> 1	0	4	018	4	004	3
315		6		1199.272	2	4.172	6	3.899	4	0	1	0	1	004	15
316		-	min	-1250.377	3	.977	15	0	1	0	4	016	4	005	3
317		7		1199.102	2	3.402	6	4.439	4	0	1	0	1	001	15
318				-1250.504	3	.796	15	0	1	0	4	015	4	006	4
319		8		1198.932	2	2.632	6	4.98	4	0	1	0	1	002	15
320			min	-1250.632	3	.615	15	0	1	0	4	013	4	007	4
321		9	max	1198.761	2	1.862	6	5.52	4	0	1	0	1	002	15
322			min	-1250.76	3	.417	12	0	1	0	4	011	4	008	4
323		10	max	1198.591	2	1.232	2	6.061	4	0	1	0	1	002	15
324			min	-1250.888	3	.117	12	0	1	0	4	008	4	009	4
325		11		1198.421	2	.632	2	6.602	4	0	_1_	0	1	002	15
326			min	-1251.015	3	304	3	0	1_	0	4	005	4	009	4
327		12	max		2	.032	2	7.142	4	0	_1_	0	1	002	15
328			min	-1251.143	3_	754	3	0	1_	0	4	003	4	009	4
329		13	max		2	29	15	7.683	4	0	1	0	4	002	15
330			min	-1251.271	3	-1.218	4	0	_1_	0	4_	0	1	009	4
331		14	max		2	471	15	8.223	4_	0	1	.004	4	002	15
332		4.5	min	-1251.399	3	-1.988	4	0	1_1	0	4	0	1	008	4
333		15		1197.739 -1251.527	3	652	<u>15</u>	8.764 0	<u>4</u> 1	0	<u>1</u> 4	.007	1	002	15
334		16	min	1197.569	2	-2.758 833	4 15	9.304	4	0	_ 4 _	.011	4	007 001	15
336		10	min	-1251.654	3	-3.528	4	9.304	1	0	4	.011	1	006	4
337		17		1197.399	2	-1.014	15	9.845	4	0	1	.015	4	001	15
338		- '		-1251.782	3	-4.298	4	0	1	0	4	.013	1	004	4
339		18		1197.228	2	-1.195	15	10.385	4	0	1	.02	4	0	15
340				-1251.91	3	-5.068	4	0	1	0	4	0	1	002	4
341		19		1197.058	2	-1.376	15	10.926	4	0	1	.024	4	0	1
342				-1252.038	3	-5.838	4	0	1	0	4	0	1	0	1
343	M8	1	max	3241.829	1	0	1	0	1	0	1	.015	4	0	1
344			min	-558.283	3	0	1	-261.502	4	0	1	0	1	0	1
345		2		3241.999	_1_	0	1	0	1	0	1	0	1	0	1
346				-558.156	3	0	1	-261.649	4	0	1	015	4	0	1
347		3		3242.169	1_	0	1	0	1	0	1	0	1	0	1
348				-558.028	3	0	1	-261.797	4	0	1	045	4	0	1
349		4		3242.34	1	0	1	0	1	0	1	0	1	0	1
350		_		-557.9	3_	0	1	-261.945	4	0	1_	075	4	0	1
351		5		3242.51	1	0	1	0	1_1	0	1	105	1	0	1
352		G		-557.772	3	0	1	-262.092	<u>4</u> 1	0	<u>1</u> 1	105	1	0	1
353 354		6		3242.68 -557.645	<u>1</u> 3	0	1	0 -262.24	4	0	1	135	4	0	1
355		7		3242.851	<u>ა</u> 1	0	1	0	_ 4 _	0	1	0	1	0	1
356		-		-557.517	3	0	1	-262.388	4	0	1	165	4	0	1
357		8		3243.021	<u> </u>	0	1	0	1	0	1	0	1	0	1
358		J		-557.389	3	0	1	-262.535	4	0	1	196	4	0	1
359		9		3243.191	1	0	1	0	1	0	1	0	1	0	1
360				-557.261	3	0	1	-262.683	4	0	1	226	4	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
361		10	max	3243.362	1	0	1	0	1	0	1	0	1	0	1
362			min	-557.134	3	0	1	-262.831	4	0	1	256	4	0	1
363		11	max	3243.532	1	0	1	0	1	0	1	0	1	0	1
364			min	-557.006	3	0	1	-262.978	4	0	1	286	4	0	1
365		12	max	3243.702	1	0	1	0	1	0	1	0	1	0	1
366			min		3	0	1	-263.126	4	0	1	316	4	0	1
367		13	max	3243.873	1	0	1	0	1	0	1	0	1	0	1
368			min	-556.75	3	0	1	-263.273	4	0	1	347	4	0	1
369		14		3244.043	1	0	1	0	1	0	1	0	1	0	1
370			min	-556.623	3	0	1	-263.421	4	0	1	377	4	0	1
371		15		3244.213	1	0	1	0	1	0	1	0	1	0	1
372		10	min	-556.495	3	0	1	-263.569	4	0	1	407	4	0	1
373		16		3244.384	1	0	1	0	1	0	1	0	1	0	1
374		10	min		3	0	1	-263.716	4	0	1	437	4	0	1
375		17		3244.554	<u></u>	0	1	0	1	0	1	0	1	0	1
376		17	min		3	0	1	-263.864	4	0	1	468	4	0	1
377		18		3244.724	<u> </u>		1		1		1		1	0	1
		10				0	1	0		0	1	0			1
378		40	min	-556.112	3	0		-264.012	4	0		498	4	0	
379		19		3244.895	1_	0	1	0	1	0	1	0	1	0	1
380	1440		min	-555.984	3	0	1	-264.159	4	0	1_	528	4	0	1
381	M10	1_		1018.373	_1_	1.983	6	041	12	0	1	0	1	0	1
382			min	-813.012	3_	.448	15	-63.503	4	0	5	0	3	0	1
383		2		1018.752	1_	1.949	6	041	12	0	1	0	10	0	15
384			min		3	.44	15	-63.832	4	0	5	016	4	0	6
385		3	max	1019.132	_1_	1.916	6	041	12	0	_1_	0	12	0	15
386			min		3_	.432	15	-64.162	4	0	5	033	4	0	6
387		4	max	1019.511	_1_	1.882	6	041	12	0	1	0	12	0	15
388			min	-812.159	3	.424	15	-64.491	4	0	5	049	4	001	6
389		5	max	1019.89	1	1.849	6	041	12	0	1	0	12	0	15
390			min	-811.874	3	.416	15	-64.82	4	0	5	066	4	002	6
391		6	max	1020.269	1	1.816	6	041	12	0	1	0	12	0	15
392			min	-811.59	3	.409	15	-65.15	4	0	5	082	4	002	6
393		7	max	1020.649	1	1.782	6	041	12	0	1	0	12	0	15
394			min	-811.306	3	.401	15	-65.479	4	0	5	099	4	003	6
395		8	max	1021.028	1	1.749	6	041	12	0	1	0	12	0	15
396			min	-811.021	3	.393	15	-65.809	4	0	5	116	4	003	6
397		9		1021.407	1	1.715	6	041	12	0	1	0	12	0	15
398			min	-810.737	3	.385	15	-66.138	4	0	5	133	4	004	6
399		10		1021.787	1	1.682	6	041	12	0	1	0	12	0	15
400		10	min		3	.377	15	-66.468	4	0	5	15	4	004	6
401		11		1022.166	1	1.649	6	041	12	_	1	0	12		15
402			min		3	.369	15	-66.797	4	0	5	167	4	005	6
403		12		1022.545	1	1.615	6	041	12	0	1	0	12	001	15
404		14		-809.883	3	.362	15	-67.127	4	0	5	184	4	005	6
405		13		1022.924	<u> </u>	1.582	6	041	12	0	<u>5</u> 1	0	12	003	15
406		13		-809.599	3	.354	15	-67.456	4	0	5	201	4	005	6
407		14		1023.304	<u> </u>	1.548	6	041	12	0	<u> </u>	0	12	003	15
407		14	min		3	.346	15	-67.786	4	0	5	219	4	001	6
		4.5			_					_					
409		15		1023.683	1	1.515	6	041	12	0	1	0	12	001	15
410		40	min		3	.338	15	-68.115	4	0	5	236	4	006	6
411		16		1024.062	1_	1.482	6	041	12	0	1_	0	12	001	15
412		-	min		3	.33	15	-68.445	4	0	5	254	4	007	6
413		17		1024.441	_1_	1.448	6	041	12	0	_1_	0	12	002	15
414				-808.461	3_	.322	15	-68.774	4	0	5	271	4	007	6
415		18		1024.821	1_	1.415	6	041	12	0	_1_	0	12	002	15
416			min		3	.314	15	-69.103	4	0	5	289	4	007	6
417		19	max	1025.2	1	1.381	6	041	12	0	1	0	12	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
418			min	-807.892	3	.307	15	-69.433	4	0	5	307	4	008	6
419	M11	1	max	274.349	2	7.955	6	1.293	4	0	1	0	12	.008	6
420			min	-399.792	3	1.859	15	081	1	0	4	022	4	.002	15
421		2	max	274.179	2	7.185	6	1.833	4	0	1	0	12	.005	6
422			min	-399.92	3	1.678	15	081	1	0	4	021	4	0	15
423		3	max	274.009	2	6.415	6	2.374	4	0	1	0	12	.002	2
424			min	-400.047	3	1.497	15	081	1	0	4	02	4	0	12
425		4	max	273.838	2	5.645	6	2.914	4	0	1	0	12	0	2
426			min	-400.175	3	1.316	15	081	1	0	4	019	4	001	3
427		5	max	273.668	2	4.875	6	3.455	4	0	1	0	12	0	15
428			min	-400.303	3	1.135	15	081	1	0	4	018	4	003	4
429		6	max	273.498	2	4.105	6	3.995	4	0	1_	0	12	001	15
430			min	-400.431	3	.954	15	081	1	0	4	016	4	005	4
431		7	max	273.327	2	3.335	6	4.536	4	0	1	0	12	002	15
432			min	-400.558	3	.773	15	081	1	0	4	014	4	006	4
433		8	max	273.157	2	2.565	6	5.076	4	0	1_	0	12	002	15
434			min	-400.686	3	.592	15	081	1	0	4	012	4	008	4
435		9	max	272.987	2	1.795	6	5.617	4	0	1	0	12	002	15
436			min	-400.814	3	.411	15	081	1	0	4	01	4	009	4
437		10	max	272.816	2	1.025	6	6.157	4	0	1	0	12	002	15
438			min	-400.942	3	.23	15	081	1	0	4	008	4	009	4
439		11	max	272.646	2	.324	2	6.698	4	0	1	0	12	002	15
440			min	-401.069	3	.019	12	081	1	0	4	005	4	01	4
441		12	max	272.476	2	132	15	7.239	4	0	1	0	12	002	15
442			min	-401.197	3	516	4	081	1	0	4	002	4	009	4
443		13	max	272.305	2	313	15	7.779	4	0	1	.001	5	002	15
444			min	-401.325	3	-1.286	4	081	1	0	4	0	1	009	4
445		14	max	272.135	2	494	15	8.32	4	0	1	.005	5	002	15
446			min	-401.453	3	-2.056	4	081	1	0	4	0	1	008	4
447		15	max	271.965	2	675	15	8.86	4	0	1	.008	5	002	15
448			min	-401.581	3	-2.826	4	081	1	0	4	0	1	007	4
449		16	max	271.794	2	856	15	9.401	4	0	1	.012	4	001	15
450			min	-401.708	3	-3.596	4	081	1	0	4	0	1	006	4
451		17	max	271.624	2	-1.037	15	9.941	4	0	1	.016	4	001	15
452			min	-401.836	3	-4.366	4	081	1	0	4	0	1	004	4
453		18	max	271.453	2	-1.218	15	10.482	4	0	1	.02	4	0	15
454			min	-401.964	3	-5.136	4	081	1	0	4	0	1	002	4
455		19	max	271.283	2	-1.399	15	11.022	4	0	1	.025	4	0	1
456			min	-402.092	3	-5.906	4	081	1	0	4	0	1	0	1
457	M12	1	max	1159.096	_1_	0	1	10.779	1	0	1	.015	4	0	1
458				-151.133	3	0	1	-263.097	4	0	1	0	1	0	1
459		2	max	1159.267	1	0	1	10.779	1	0	1	0	1	0	1
460			min			0	1	-263.245		0	1	015	4	0	1
461		3		1159.437	1	0	1	10.779	1	0	1	.002	1	0	1
462				-150.878	3	0	1	-263.392	4	0	1	045	4	0	1
463		4		1159.607	1	0	1	10.779	1	0	1_	.003	1_	0	1
464				-150.75	3	0	1	-263.54	4	0	1	075	4	0	1
465		5		1159.778	1	0	1	10.779	1	0	1	.004	1	0	1
466				-150.622	3	0	1	-263.688	4	0	1	106	4	0	1
467		6		1159.948		0	1	10.779	1	0	1	.006	1	0	1
468				-150.495		0	1	-263.835	4	0	1	136	4	0	1
469		7	max	1160.118	1	0	1	10.779	1	0	1	.007	1	0	1
470			min	-150.367	3	0	1	-263.983	4	0	1	166	4	0	1
471		8	max	1160.289	1	0	1	10.779	1	0	1	.008	1	0	1
472			min	-150.239	3	0	1	-264.131	4	0	1	196	4	0	1
473		9	max	1160.459	1	0	1	10.779	1	0	1	.009	1	0	1
474			min	-150.111	3	0	1	-264.278	4	0	1	227	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1160.629	1	0	1	10.779	1	0	1_	.011	1	0	1
476			min	-149.984	3	0	1	-264.426	4	0	1	257	4	0	1
477		11	max	1160.8	1	0	1	10.779	1	0	1	.012	1	0	1
478			min	-149.856	3	0	1	-264.574	4	0	1	287	4	0	1
479		12	max	1160.97	1	0	1	10.779	1	0	1	.013	1	0	1
480			min	-149.728	3	0	1	-264.721	4	0	1	318	4	0	1
481		13	max	1161.14	1	0	1	10.779	1	0	1	.014	1	0	1
482			min	-149.6	3	0	1	-264.869	4	0	1	348	4	0	1
483		14		1161.311	1	0	1	10.779	1	0	1	.016	1	0	1
484			min	-149.473	3	0	1	-265.016	4	0	1	379	4	0	1
485		15		1161.481	1	0	1	10.779	1	0	1	.017	1	0	1
486		1.0	min	-149.345	3	0	1	-265.164	4	0	1	409	4	0	1
487		16		1161.652	1	0	1	10.779	1	0	1	.018	1	0	1
488		10	min	-149.217	3	0	1	-265.312	4	0	1	44	4	0	1
489		17		1161.822		0	1	10.779	1	0	1	.019	1	0	1
490		17	min	-149.089	3	0	1	-265.459	4	0	1	47	4	0	1
491		18		1161.992		0	1	10.779	1	0	1	.02	1	0	1
492		10	min		3	0	1	-265.607	4	0	1	501	4	0	1
493		19		1162.163	<u> </u>	0	1	10.779	1	0	1	.022	1	0	1
		19				0	1		4		1			0	1
494 495	M1	1	min	-148.834 169.946	3	458.559	3	<u>-265.755</u> 53.993	5	0	1	<u>531</u> .263	4	0	3
	IVI I		max	-7.747		-462.578		-110.332		0			1	_	
496		2	min		5_		1		1	0	3	079	5	012	1
497		2	max		_1_	457.55	3	55.234	5	0	1	.205	1	.232	1
498			min	-7.518	5	-463.924	1	-110.332	1_	0	3	05	5	242	3
499		3	max	236.489	3_	511.303	1	-3.271	15	0	3	.147	1	.466	1
500		-	min	-149.207	2	-325.323	3	-109.562	1_	0	1	022	5	473	3
501		4	max		3_	509.957	1	-2.435	15	0	3	.089	1	.196	1
502			min	-148.717	2	-326.333	3	-109.562	1_	0	1_	024	5	301	3
503		5	max	237.224	3	508.611	1	-1.6	15	0	3	.031	1	003	15
504		_	min	-148.227	2	-327.342	3	-109.562	1_	0	1_	026	5	129	3
505		6	max		3	507.265	1	764	15	0	3	001	12	.044	3
506			min	-147.737	2	-328.352	3	-109.562	1	0	_1_	032	4	34	1
507		7	max		<u>3</u>	505.919	1_	.072	15	0	3	004	12	.218	3
508			min	-147.247	2	-329.361	3	-109.562	1	0	1	084	1	608	1
509		8	max	238.327	3_	504.573	1_	1.208	5	0	3	006	12	.392	3
510			min	-146.757	2	-330.371	3	-109.562	1	0	1	142	1	874	1
511		9	max	248.769	3_	30.705	2	50.345	5	0	9	.083	1	.459	3
512			min	-77.396	2	.406	15		1	0	3	13	5	996	1
513		10	max	249.136	_3_	29.359	2	51.587	5	0	9	0	12	.446	3
514			min	-76.906	2	0	5	-159.457	1	0	3	104	4	-1.005	1
515		11	max	249.504	3_	28.013	2	52.828	5	0	9	004	12	.433	3
516			min		2	-1.674	4	-159.457	1	0	3	093	4	-1.013	1
517		12	max		3_	211.536	3	145.058	5	0	_1_	.14	1	.377	3
518			min	-58.601	5	-536.872	1	-106.954		0	3	194	5	894	1
519		13			3_	210.527	3	146.299	5	0	_1_	.084	1	.265	3
520			min	-58.372	5	-538.218	1	-106.954		0	3	117	5	61	1
521		14	max	260.639	3_	209.517	3	147.54	5	0	<u>1</u>	.027	1	.155	3
522			min	-58.143	5	-539.564	1	-106.954		0	3	04	5	326	1
523		15	max		3	208.508	3	148.782	5	0	_1_	.038	5	.044	3
524			min	-57.915	5	-540.91	1	-106.954		0	3	029	1	041	1
525		16	max		3	207.498	3	150.023	5	0	1	.117	5	.245	1
526			min	-57.686	5	-542.256	1	-106.954	1	0	3	086	1	065	3
527		17	max		3	206.488	3	151.265	5	0	1	.197	5	.532	1
528			min	-57.457	5	-543.603	1	-106.954		0	3	142	1	175	3
529		18	max	15.32	5	526.383	1	-4.846	12	0	5	.173	5	.266	1
530			min	-170.626	1	-176.01	3	-123.832	4	0	1	203	1	087	3
531		19	max	15.548	5	525.037	1	-4.846	12	0	5	.121	5	.007	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
532			min	-170.136	1	-177.02	3	-122.591	4	0	1	265	1	011	1
533	M5	1	max	366.096	1	1528.11	3	95.218	5	0	1	0	1	.024	1
534			min	12.627	12	-1562.139	1	0	1	0	4	179	4	0	3
535		2	max	366.586	1	1527.1	3	96.459	5	0	1	0	1	.849	1
536			min	12.872	12	-1563.485	1	0	1	0	4	129	4	806	3
537		3	max	760.08	3	1572.462	1	39.76	4	0	4	0	1	1.636	1
538			min	-555.622	2	-1053.598	3	0	1	0	1	079	4	-1.581	3
539		4	max	760.448	3	1571.116	1	41.002	4	0	4	0	1	.807	1
540			min	-555.132	2	-1054.607	3	0	1	0	1	058	4	-1.025	3
541		5	max	760.815	3	1569.77	1	42.243	4	0	4	0	1	.009	9
542			min	-554.642	2	-1055.617	3	0	1	0	1	036	4	468	3
543		6	max	761.182	3	1568.424	1	43.485	4	0	4	0	1	.089	3
544			min	-554.152	2	-1056.626	3	0	1	0	1	013	5	85	1
545		7	max	761.55	3	1567.078	1	44.726	4	0	4	.01	4	.647	3
546			min	-553.662	2	-1057.636	3	0	1	0	1	0	1	-1.677	1
547		8	max	761.917	3	1565.732	1	45.967	4	0	4	.034	4	1.205	3
548			min	-553.172	2	-1058.646	3	0	1	0	1	0	1	-2.503	1
549		9	max	780.624	3	101.311	2	161.685	4	0	1	0	1	1.39	3
550			min	-411.318	2	.407	15	0	1	0	1	18	4	-2.831	1
551		10	max	780.992	3	99.965	2	162.926	4	0	1	0	1	1.344	3
552			min	-410.828	2	.001	15	0	1	0	1	094	5	-2.859	1
553		11	max	781.359	3	98.619	2	164.168	4	0	1	0	1	1.299	3
554			min	-410.338	2	-1.497	6	0	1	0	1	01	5	-2.887	1
555		12	max	800.148	3	674.381	3	204.184	4	0	1	0	1	1.139	3
556			min	-268.491	2	-1675.084	1	0	1	0	4	279	4	-2.572	1
557		13	max	800.515	3	673.371	3	205.425	4	0	1	0	1	.783	3
558			min	-268.001	2	-1676.43	1	0	1	0	4	17	4	-1.688	1
559		14	max	800.883	3	672.362	3	206.667	4	0	1	0	1	.428	3
560			min	-267.511	2	-1677.776	1	0	1	0	4	062	4	803	1
561		15	max	801.25	3	671.352	3	207.908	4	0	1	.048	4	.127	2
562			min	-267.021	2	-1679.122	1	0	1	0	4	0	1	004	13
563		16	max	801.618	3	670.343	3	209.15	4	0	1	.158	4	.969	1
564			min	-266.531	2	-1680.468	1	0	1	0	4	0	1	28	3
565		17	max	801.985	3	669.333	3	210.391	4	0	1	.268	4	1.856	1
566			min	-266.042	2	-1681.814	1	0	1	0	4	0	1	634	3
567		18	max	-13.037	12	1777.719	1	0	1	0	4	.277	4	.96	1
568			min	-366.205	1	-602.415	3	-35.971	5	0	1	0	1	331	3
569		19	max	-12.792	12	1776.373	1	0	1	0	4	.26	4	.022	1
570			min	-365.715	1	-603.424	3	-34.729	5	0	1	0	1	013	3
571	M9	1	max	169.946	1	458.559	3	110.332	1	0	3	011	12	0	3
572			min	6.516	12	-462.578	1	4.72	12	0	4	263	1	012	1
573		2		170.435	1	457.55	3	110.332	1	0	3	009	12	.232	1
574			min	6.761	12			4.72	12	0	4	205	1	242	3
575		3	max	236.489	3	511.303	1	109.562	1	0	1	006	12	.466	1
576			min	-149.207	2	-325.323	3	4.678	12	0	3	147	1	473	3
577		4	max	236.857	3	509.957	1	109.562	1	0	1	004	12	.196	1
578			min	-148.717	2	-326.333	3	4.678	12	0	3	089	1	301	3
579		5		237.224	3	508.611	1	109.562	1	0	1	001	12	003	15
580				-148.227	2	-327.342	3	4.678	12	0	3	036	4	129	3
581		6		237.592	3	507.265	1	109.562	1	0	1	.026	1	.044	3
582				-147.737	2	-328.352	3	4.678	12	0	3	024	5	34	1
583		7		237.959	3	505.919	1	109.562	1	0	1	.084	1	.218	3
584				-147.247	2	-329.361	3	4.678	12	0	3	017	5	608	1
585		8		238.327	3	504.573	1	109.562	1	0	1	.142	1	.392	3
586			min	-146.757	2	-330.371	3	4.678	12	0	3	011	5	874	1
587		9		248.769	3	30.705	2	159.457	1	0	3	003	12	.459	3
588				-77.396	2	.412	15	6.693	12	0	9	158	4	996	1
							_								

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	249.136	3	29.359	2	159.457	1	0	3	.001	1	.446	3
590			min	-76.906	2	.006	15	6.693	12	0	9	103	4	-1.005	1
591		11	max	249.504	3	28.013	2	159.457	1	0	3	.085	1	.433	3
592			min	-76.416	2	-1.628	6	6.693	12	0	9	066	5	-1.013	1
593		12	max	259.905	3	211.536	3	181.718	4	0	3	006	12	.377	3
594			min	-48.749	10	-536.872	1	4.406	12	0	1	242	4	894	1
595		13	max	260.272	3	210.527	3	182.96	4	0	3	003	12	.265	3
596			min	-48.34	10	-538.218	1	4.406	12	0	1	146	4	61	1
597		14	max	260.639	3	209.517	3	184.201	4	0	3	001	12	.155	3
598			min	-47.932	10	-539.564	1	4.406	12	0	1	049	4	326	1
599		15	max	261.007	3	208.508	3	185.443	4	0	3	.049	4	.044	3
600			min	-47.524	10	-540.91	1	4.406	12	0	1	.001	12	041	1
601		16	max	261.374	3	207.498	3	186.684	4	0	3	.147	4	.245	1
602			min	-47.116	10	-542.256	1	4.406	12	0	1	.003	12	065	3
603		17	max	261.742	3	206.488	3	187.925	4	0	3	.246	4	.532	1
604			min	-46.707	10	-543.603	1	4.406	12	0	1	.006	12	175	3
605		18	max	-6.678	12	526.383	1	117.339	1	0	1	.241	4	.266	1
606			min	-170.626	1	-176.01	3	-85.252	5	0	3	.008	12	087	3
607		19	max	-6.433	12	525.037	1	117.339	1	0	1	.265	1	.007	3
608			min	-170.136	1	-177.02	3	-84.011	5	0	3	.011	12	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.1	1	.004	3	7.968e-3	1	NC	1	NC	1
2			min	601	4	01	3	001	10	-8.014e-4	3	NC	1	NC	1
3		2	max	0	1	.241	3	.046	1	9.209e-3	1	NC	5	NC	2
4			min	601	4	134	1	02	5	-8.193e-4	3	1003.94	3	5817.027	1
5		3	max	0	1	.445	3	.109	1	1.045e-2	1	NC	5	NC	3
6			min	601	4	319	1	023	5	-8.372e-4	3	554.793	3	2364.41	1
7		4	max	0	1	.568	3	.164	1	1.169e-2	1	NC	5	NC	3
8			min	601	4	423	1	016	5	-8.551e-4	3	436.341	3	1558.969	1
9		5	max	0	1	.596	3	.193	1	1.293e-2	1	NC	5	NC	3
10			min	601	4	433	1	003	5	-8.73e-4	3	415.882	3	1324.131	1
11		6	max	0	1	.532	3	.187	1	1.417e-2	1	NC	5	NC	3
12			min	601	4	35	1	.008	15	-8.909e-4	3	465.299	3	1367.232	1
13		7	max	0	1	.394	3	.148	1	1.541e-2	1	NC	5	NC	3
14			min	601	4	195	1	.01	10	-9.088e-4	3	624.199	3	1734.265	1
15		8	max	0	1	.219	3	.087	1	1.665e-2	1	NC	4	NC	3
16			min	601	4	011	9	.004	10	-9.267e-4	3	1101.886	3	2968.84	1
17		9	max	0	1	.164	1	.027	1	1.789e-2	1	NC	4	NC	1
18			min	601	4	.005	15	003	10	-9.446e-4	3	3599.065	3	9442.513	4
19		10	max	0	1	.24	1	.014	3	1.913e-2	1	NC	3	NC	1
20			min	601	4	011	3	008	2	-9.625e-4	3	1795.246	1	NC	1
21		11	max	0	12	.164	1	.027	1	1.789e-2	1	NC	4	NC	1
22			min	601	4	.005	15	016	5	-9.446e-4	3	3599.065	3	NC	1
23		12	max	0	12	.219	3	.087	1	1.665e-2	1_	NC	4	NC	3
24			min	601	4	011	9	016	5	-9.267e-4	3	1101.886	3	2968.84	1
25		13	max	0	12	.394	3	.148	1	1.541e-2	1_	NC	5	NC	3
26			min	601	4	195	1	005	5	-9.088e-4	3	624.199	3	1734.265	
27		14	max	0	12	.532	3	.187	1	1.417e-2	1_	NC	5	NC	3
28			min	601	4	35	1	.006	15	-8.909e-4	3	465.299	3	1367.232	1
29		15	max	0	12	.596	3	.193	1	1.293e-2	1_	NC	5	NC	3
30			min	601	4	433	1	.012	12	-8.73e-4	3	415.882	3	1324.131	1
31		16	max	0	12	.568	3	.164	1	1.169e-2	1_	NC	5	NC	3
32			min	601	4	423	1	.01	12	-8.551e-4	3	436.341	3	1558.969	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
33		17	max	0	12	.445	3	.109	1	1.045e-2	1_	NC	5_	NC	3
34			min	601	4	319	1	.008	12	-8.372e-4	3	554.793	3	2364.41	1
35		18	max	0	12	.241	3	.046	1	9.209e-3	_1_	NC	_5_	NC	2
36			min	601	4	134	1	.003		-8.193e-4	3	1003.94	3	5817.027	1
37		19	max	0	12	1	1	.004	3	7.968e-3	_1_	NC	_1_	NC	1
38			min	601	4	01	3	001	10	-8.014e-4	3	NC	_1_	NC	1
39	M14	1_	max	0	1	135	3	.004	3	5.022e-3	1_	NC	1_	NC	1
40		_	min	4 <u>61</u>	4	326	1	001	10		3_	NC	_1_	NC NC	1
41		2	max	0	1	369	3	.032	1	6.049e-3	1_	NC	_5_	NC 0.450.40	2
42			min	4 <u>61</u>	4	68	1	028	5	-2.995e-3	3	712.977	1_	8458.12	1
43		3	max	0	1	.566	3	.088	1	7.077e-3	1_	NC	<u>15</u>	NC	3
44		-	min	461	4	<u>982</u>	1	034	5	-3.542e-3	3	384.342	1_	2933.235	
45		4	max	0	1		3	.141	1	8.104e-3	1_	NC 000 470	<u>15</u>	NC 4040.74	3
46		_	min	4 <u>61</u>	4	<u>-1.198</u>	1	022	5	-4.089e-3	3	289.172	1_	1813.71	1
47		5	max	0	1	.759	3	.172	1	9.132e-3	1_	9260.991	<u>15</u>	NC 4 407 500	3
48			min	461	4	-1.309	1	003	5	-4.635e-3	3	256.332	1_	1487.592	1
49		6	max	0	1	.744	3	.17	1	1.016e-2	1_	9228.063	<u>15</u>	NC 4500 000	3
50		+ -	min	461	4	<u>-1.316</u>	1	.012		-5.182e-3	3	254.451	1_	1502.326	
51		7	max	0	1	.667	3	.137	1	1.119e-2	1_	NC 070.704	15	NC	3
52			min	461	4	<u>-1.237</u>	1	.01	10	-5.729e-3	3	276.764	1_	1875.873	1
53		8	max	0	1	.556	3	.082	1	1.221e-2	1	NC	<u>15</u>	NC 0460 640	3
54			min	461	4	<u>-1.104</u>	1	.004	10	-6.276e-3	3	323.782	1_	3169.618	
55		9	max	0	1	.45	3	.039	4	1.324e-2	1	NC 200 422	<u>15</u>	NC CEOO COO	1
56		40	min	4 <u>61</u>	4	972	1	002	10	-6.822e-3	3	390.133	1_	6528.983	
57		10	max	0	1	4	3	.012	3	1.427e-2	1	NC	5	NC NC	1
58		44	min	461	4	909	1	008	2	-7.369e-3	3	432.146	1_	NC NC	•
59		11	max	0	12	.45	3	.026	1	1.324e-2	1_	NC 200 422	<u>15</u>	NC 0000 000	1
60		40	min	<u>461</u>	4	<u>972</u>	1	028	5	-6.822e-3	3	390.133	1_	9298.292	
61		12	max	0	12	.556	3	.082	1	1.221e-2	1	NC	<u>15</u>	NC 24 CO C4 O	3
62 63		13	min	<u>461</u> 0	12	<u>-1.104</u> .667	3	032 .137	<u>5</u>	-6.276e-3 1.119e-2	<u>3</u> 1	323.782 NC	<u>1</u> 15	3169.618 NC	3
64		13	max	461	4	-1.237	1	02	5	-5.729e-3	3	276.764	1	1875.873	
65		14	min	461 0	12	<u>-1.237</u> .744	3	<u>02</u> .17	1	1.016e-2		9227.713	15	NC	3
66		14	max	461	4	-1.316	1	0		-5.182e-3	<u>1</u> 3	254.451	1	1502.326	
67		15		461 0	12	.759	3	.172	1	9.132e-3	<u>3</u> 1	9260.55	15	NC	3
68		15	max	461	4	-1.309	1	.011	12	-4.635e-3	3	256.332	1	1487.592	
69		16	max	0	12	<u>-1.309 </u>	3	.141	1	8.104e-3	<u> </u>	NC	15	NC	3
70		10	min	461	4	-1.198	1	.009	12	-4.089e-3	3	289.172	1	1813.71	1
71		17	max	0	12	.566	3	.088	1	7.077e-3	<u> </u>	NC	15	NC	3
72		17	min	461	4	982	1	.006	12	-3.542e-3	3	384.342	1	2933.235	
73		18	max	0	12	.369	3	.04		6.049e-3		NC	5		2
74		10	min	461	4	68	1	.002	10		3	712.977	1	6290.567	
75		19		0	12	.135	3	.004	3	5.022e-3	1	NC	1	NC	1
76		10	min	461	4	326	1	001		-2.449e-3	3	NC	1	NC	1
77	M15	1	max	0	12	.138	3	.004	3	2.054e-3	3	NC	1	NC	1
78	IVITO		min	381	4	326	1	001	10	-5.122e-3	1	NC	1	NC	1
79		2	max	0	12	.281	3	.032	1	2.516e-3	3	NC	5	NC	2
80			min	381	4	712	1	039	5	-6.176e-3	1	652.821	1	6217.04	5
81		3	max	0	12	.405	3	.089	1	2.978e-3	3	NC	15	NC	3
82			min	381	4	-1.04	1	048	5	-7.23e-3	1	352.657	1	2925.416	
83		4	max	0	12	.495	3	.142	1	3.44e-3	3	NC	15	NC	3
84			min	381	4	-1.272	1	034	5	-8.284e-3	1	266.302	1	1809.995	
85		5	max	0	12	.544	3	.172	1	3.901e-3	3	9271.126	15	NC	3
86		Ť	min	381	4	-1.387	1	008	5	-9.338e-3	1	237.399	1	1484.862	
87		6	max	0	12	.553	3	.17	1	4.363e-3	3	9240.17	15	NC	3
88		Ť	min	381	4	-1.386	1	.011	12		1	237.678	1	1499.502	
89		7	max	0	12	.527	3	.137	1	4.825e-3	3	NC	15		3
											_				<u> </u>

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	381	4	-1.288	1	.01	10 -1.145e-2	1_	261.864	_1_	1871.607	
91		8	max	0	12	.481	3	.082	1 5.287e-3	3	NC	<u>15</u>	NC	3
92			min	<u>381</u>	4	<u>-1.133</u>	1	.004	10 -1.25e-2	1_	312.187	1_	3158.103	
93		9	max	0	12	.432	3	.048	4 5.749e-3	3	NC 205.000	<u>15</u>	NC FOAC OFF	1
94		40	min	381	4	98	1	002	10 -1.355e-2	1	385.263	1_	5216.355	
95		10	max	0	1	.409	3	.011	3 6.211e-3	3	NC	5	NC NC	1
96		11	min	381	1	<u>907</u>	3	007	2 -1.461e-2 1 5.749e-3	<u>1</u> 3	433.044 NC	1_	NC NC	1
97			max	<u> </u>	4	.432	1	.026	5 -1.355e-2	<u> </u>	385.263	<u>15</u> 1		1
98		12	min	<u>381</u> 0	1	<u>98</u> .481	3	038 .082		3	NC	15	6656.508 NC	3
100		12	max min	381	4	-1.133	1	044	1 5.287e-3 5 -1.25e-2	<u> </u>	312.187	15 1	3158.103	
101		13	max	361 0	1	<u>-1.133 </u>	3	.137	1 4.825e-3	3	NC	15	NC	3
102		13	min	381	4	-1.288	1	029	5 -1.145e-2	1	261.864	1	1871.607	1
103		14		<u>361</u> 0	1	.553	3	<u>029</u> .17	1 4.363e-3	3	9239.911	15	NC	3
104		14	max min	381	4	-1.386	1	002	5 -1.039e-2	1	237.678	1	1499.502	1
105		15	max	<u>361</u> 0	1	.544	3	.172	1 3.901e-3	3	9270.801	15	NC	3
106		13	min	381	4	-1.387	1	.011	12 -9.338e-3	1	237.399	1	1484.862	1
107		16	max	0	1	.495	3	.142	1 3.44e-3	3	NC	15	NC	3
108		10	min	381	4	-1.272	1	.009	12 -8.284e-3	1	266.302	1	1809.995	
109		17	max	<u>361</u> 0	1	.405	3	.089	1 2.978e-3	3	NC	15	NC	3
110		11/	min	381	4	-1.04	1	.006	12 -7.23e-3	1	352.657	1	2925.416	
111		18	max	0	1	.281	3	.051	4 2.516e-3	3	NC	5	NC	2
112		10	min	381	4	712	1	.002	10 -6.176e-3	1	652.821	1	4933.914	
113		19	max	0	1	.138	3	.004	3 2.054e-3	3	NC	1	NC	1
114		13	min	381	4	326	1	001	10 -5.122e-3	1	NC	1	NC	1
115	M16	1	max	<u>301</u> 0	12	.098	1	.003	3 3.587e-3	3	NC	1	NC	1
116	IVITO	-	min	15	4	045	3	001	10 -7.516e-3	1	NC	1	NC	1
117		2	max	0	12	.04	3	.045	1 4.257e-3	3	NC	5	NC	2
118			min	15	4	169	1	03	5 -8.645e-3	1	944.728	1	5855.756	
119		3	max	0	12	.107	3	.108	1 4.927e-3	3	NC	5	NC	3
120			min	15	4	381	1	037	5 -9.774e-3	1	526.113	1	2372.253	
121		4	max	0	12	.144	3	.163	1 5.596e-3	3	NC	5	NC	3
122			min	15	4	503	1	027	5 -1.09e-2	1	419.793	1	1561.359	
123		5	max	0	12	.144	3	.192	1 6.266e-3	3	NC	5	NC	3
124			min	15	4	516	1	009	5 -1.203e-2	1	410.446	1	1324.282	1
125		6	max	0	12	.109	3	.187	1 6.936e-3	3	NC	5	NC	3
126			min	15	4	425	1	.008	15 -1.316e-2	1	481.832	1	1365.195	
127		7	max	0	12	.047	3	.148	1 7.606e-3	3	NC	5	NC	3
128			min	15	4	252	1	.011	12 -1.429e-2	1	719.723	1	1727.22	1
129		8	max	0	12	.001	13	.088	1 8.275e-3	3	NC	3	NC	3
130			min	15	4	063	2	.005	10 -1.542e-2				2938.324	
131		9	max	0	12	.149	1	.035	4 8.945e-3	3	NC	4	NC	2
132			min	15	4	094	3	001	10 -1.655e-2	1	4862.527	1	7222.543	4
133		10	max	0	1	.235	1	.01	3 9.615e-3	3	NC	5	NC	1
134			min	15	4	123	3	007	2 -1.768e-2	1	1841.139	1	NC	1
135		11	max	0	1	.149	1	.028	1 8.945e-3	3	NC	4	NC	2
136			min	15	4	094	3	024	5 -1.655e-2	1	4862.527	1	9823.606	1
137		12	max	0	1	.001	13	.088	1 8.275e-3	3	NC	3	NC	3
138			min	15	4	063	2	025	5 -1.542e-2	1	1796.872	2	2938.324	1
139		13	max	0	1	.047	3	.148	1 7.606e-3	3	NC	5	NC	3
140			min	15	4	252	1	012	5 -1.429e-2	1	719.723	1	1727.22	1
141		14	max	0	1	.109	3	.187	1 6.936e-3	3	NC	5	NC	3
142			min	15	4	425	1	.006	15 -1.316e-2	1	481.832	1	1365.195	1
143		15	max	0	1	.144	3	.192	1 6.266e-3	3	NC	5	NC	3
144			min	15	4	516	1	.011	12 -1.203e-2	1	410.446	1	1324.282	1
145		16	max	0	1	.144	3	.163	1 5.596e-3	3	NC	5	NC	3
146			min	15	4	503	1	.009	12 -1.09e-2	1	419.793	1	1561.359	1

Model Name

: Schletter, Inc. : HCV

:

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC					(n) L/z Ratio	
147		17	max	0	1	.107	3	.108	1	4.927e-3	3	NC 500 440	5	NC	3
148		40	min	<u>149</u>	4	<u>381</u>	1	.007	12	-9.774e-3	1_	526.113	1_	2372.253	1
149		18	max	.001	1	.04	3	.046	4	4.257e-3	3	NC 044.700	5_	NC FF40.070	2
150		40	min	<u>149</u>	4	169	1	.003	10	-8.645e-3	1_	944.728	1_	5519.972	4
151 152		19	max	.001	1	.098	3	.003	3	3.587e-3	<u>3</u>	NC NC	<u>1</u> 1	NC NC	1
153	M2	1	min	149 .005	1	045 .003	2	001 .008	10	-7.516e-3 1.381e-3	5	NC NC	1	NC NC	2
154	IVIZ		max	004	3	005 006	3	565	4	-2.29e-4	1	NC NC	1	97.93	4
155		2	max	.005	1	.002	2	.008	1	1.483e-3	5	NC	+	NC	2
156			min	004	3	006	3	519	4	-2.136e-4	1	NC	1	106.669	4
157		3	max	.005	1	.002	2	.007	1	1.585e-3	5	NC	1	NC	2
158			min	004	3	006	3	473	4	-1.982e-4	1	NC	1	117.053	4
159		4	max	.005	1	.001	2	.006	1	1.687e-3	5	NC	1	NC	2
160			min	004	3	005	3	427	4	-1.828e-4	1	NC	1	129.513	4
161		5	max	.004	1	0	2	.006	1	1.788e-3	5	NC	1	NC	2
162			min	003	3	005	3	383	4	-1.675e-4	1	NC	1	144.631	4
163		6	max	.004	1	0	2	.005	1	1.89e-3	5	NC	1	NC	1
164			min	003	3	005	3	339	4	-1.521e-4	1	NC	1	163.217	4
165		7	max	.004	1	0	15	.004	1	1.992e-3	5	NC	1	NC	1
166			min	003	3	005	3	297	4	-1.367e-4	1	NC	1	186.42	4
167		8	max	.003	1	0	15	.004	1	2.094e-3	5	NC	1	NC	1
168			min	003	3	005	3	256	4	-1.213e-4	1	NC	1	215.917	4
169		9	max	.003	1	0	15	.003	1	2.2e-3	4	NC	1	NC	1
170			min	002	3	004	3	218	4	-1.059e-4	1	NC	1	254.23	4
171		10	max	.003	1	0	15	.003	1	2.307e-3	4	NC	1_	NC	1_
172			min	002	3	004	3	181	4	-9.052e-5	1_	NC	1	305.306	4
173		11	max	.002	1	0	15	.002	1	2.414e-3	4	NC	1	NC	1
174			min	002	3	004	3	147	4	-7.513e-5	1_	NC	1_	375.604	4
175		12	max	.002	1	0	15	.002	1	2.522e-3	4_	NC	_1_	NC	1
176		4.0	min	002	3	004	3	<u>116</u>	4	-5.974e-5	_1_	NC	1_	476.302	4
177		13	max	.002	1	0	15	.001	1	2.629e-3	_4_	NC	1	NC	1
178		1.	min	001	3	003	3	088	4	-4.436e-5	1_	NC	1	628.163	4
179		14	max	.002	1	0	15	0	1	2.737e-3	4	NC NC	1	NC 070 400	1
180		4.5	min	001	3	003	3	063	4	-2.897e-5	1	NC NC	1_	873.462	4
181		15	max	.001	3	0 002	15	0 042	1	2.844e-3	4_	NC NC	<u>1</u> 1	NC	4
182 183		16	min	<u> </u>	1	<u>002</u> 0	15	<u>042</u> 0	1	-1.358e-5 2.952e-3	<u>1</u> 4	NC NC	1	1309.768 NC	1
184		10	max	0	3	002	6	025	4	-1.892e-7	3	NC NC	1	2207.274	4
185		17	min max	0	1	<u>002</u> 0	15	<u>025</u> 0	1	3.059e-3	<u>3</u>	NC NC	1	NC	1
186		1/	min	0	3	001	6	012	4	5.506e-7	12	NC	1	4570.601	4
187		18	max	0	1	0	15	0	1	3.167e-3		NC	1	NC	1
188		10	min	0	3	0	6	004	4	1.216e-6		NC	1	NC	1
189		19	max	0	1	0	1	<u>.004</u>	1	3.274e-3	4	NC	1	NC	1
190		1.0	min	0	1	0	1	0	1	1.881e-6		NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-5.969e-7	12	NC	1	NC	1
192			min	0	1	0	1	0	1	-7.707e-4		NC	1	NC	1
193		2	max	0	3	0	15	.016	4	1.079e-5	1	NC	1	NC	1
194			min	0	2	002	6	0	12	-8.724e-5	5	NC	1	NC	1
195		3	max	0	3	0	15	.03	4	5.999e-4	4	NC	1	NC	1
196			min	0	2	003	6	0	12	1.495e-6	12	NC	1	NC	1
197		4	max	0	3	001	15	.044	4	1.285e-3	4	NC	1	NC	1
198			min	0	2	005	6	0	12	2.542e-6	12	NC	1	8617.972	4
199		5	max	0	3	002	15	.057	4	1.97e-3	4	NC	1	NC	1
200			min	0	2	007	6	0	12	3.588e-6	12	NC	1	7390.55	5
201		6	max	0	3	002	15	.069	4	2.656e-3	4	NC	1	NC	1
202			min	0	2	009	6	0	12	4.634e-6	12	NC	1	6848.374	5
203		7	max	.001	3	002	15	.081	4	3.341e-3	4	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
204			min	0	2	01	6	0	12	5.68e-6	12	9082.49	6	6718.377	5
205		8	max	.001	3	002	15	.092	4	4.026e-3	4	NC	_1_	NC	1_
206			min	0	2	011	6	0	12	6.727e-6	12	8115.637	6	6912.69	5
207		9	max	.002	3	003	15	.102	4	4.712e-3	4	NC	2	NC	1
208			min	001	2	012	6	0	12	7.773e-6	12	7539.713	6	7437.247	5
209		10	max	.002	3	003	15	.112	4	5.397e-3	4	NC	3	NC	1
210			min	001	2	013	6	0	12	8.819e-6	12	7253.115	6	8379.469	5
211		11	max	.002	3	003	15	.121	4	6.082e-3	4	NC	3	NC	1_
212			min	001	2	013	6	0	12	9.865e-6	12	7213.156	6	9948.217	5
213		12	max	.002	3	003	15	.13	4	6.767e-3	4	NC	2	NC	1_
214			min	001	2	012	6	0	12	1.091e-5	12	7419.628	6	NC	1
215		13	max	.002	3	003	15	.14	4	7.453e-3	4	NC	_1_	NC	1_
216			min	002	2	012	6	0	12	1.196e-5	12	7916.766	6	NC	1
217		14	max	.003	3	002	15	.149	4	8.138e-3	4	NC	1_	NC	1
218			min	002	2	011	6	0	12	1.3e-5	12	8816.602	6	NC	1
219		15	max	.003	3	002	15	.158	4	8.823e-3	4	NC	1_	NC	1
220			min	002	2	009	6	0	12	1.405e-5	12	NC	1	NC	1
221		16	max	.003	3	001	15	.168	4	9.508e-3	4	NC	1	NC	1
222			min	002	2	008	1	0	12	1.51e-5	12	NC	1	NC	1
223		17	max	.003	3	0	15	.179	4	1.019e-2	4	NC	1	NC	1
224			min	002	2	006	1	0	12	1.614e-5	12	NC	1	NC	1
225		18	max	.003	3	0	15	.19	4	1.088e-2	4	NC	1	NC	1
226			min	002	2	005	1	0	12	1.719e-5	12	NC	1_	NC	1
227		19	max	.004	3	0	5	.202	4	1.156e-2	4	NC	1	NC	1
228			min	002	2	003	1	0	12	1.823e-5	12	NC	1	NC	1
229	M4	1	max	.003	1	.002	2	0	12	2.057e-5	1	NC	1	NC	3
230			min	0	3	004	3	202	4	-7.457e-4	4	NC	1	122.815	4
231		2	max	.003	1	.002	2	0	12	2.057e-5	1	NC	1	NC	3
232			min	0	3	003	3	186	4	-7.457e-4	4	NC	1	133.654	4
233		3	max	.002	1	.002	2	0	12	2.057e-5	1	NC	1	NC	3
234			min	0	3	003	3	169	4	-7.457e-4	4	NC	1	146.547	4
235		4	max	.002	1	.002	2	0	12	2.057e-5	1	NC	1	NC	2
236			min	0	3	003	3	153	4	-7.457e-4	4	NC	1	162.029	4
237		5	max	.002	1	.001	2	0	12	2.057e-5	1	NC	1	NC	2
238			min	0	3	003	3	137	4	-7.457e-4	4	NC	1	180.826	4
239		6	max	.002	1	.001	2	0	12	2.057e-5	1	NC	1	NC	2
240			min	0	3	003	3	122	4	-7.457e-4	4	NC	1	203.947	4
241		7	max	.002	1	.001	2	0	12	2.057e-5	1	NC	1	NC	2
242			min	0	3	002	3	107	4	-7.457e-4	4	NC	1	232.821	4
243		8	max	.002	1	.001	2	0	12	2.057e-5	1	NC	1	NC	2
244			min	0	3	002	3	092	4	-7.457e-4	4	NC	1	269.534	4
245		9	max	.002	1	.001	2	0	12	2.057e-5	1	NC	1	NC	2
246			min	0	3	002	3	078	4	-7.457e-4	4	NC	1	317.228	4
247		10	max	.001	1	0	2	0	12	2.057e-5	1	NC	1	NC	2
248			min	0	3	002	3	065	4	-7.457e-4	4	NC	1	380.811	4
249		11	max	.001	1	0	2	0	12	2.057e-5	1	NC	1	NC	1
250			min	0	3	002	3	053	4	-7.457e-4	4	NC	1	468.318	4
251		12	max	.001	1	0	2	0	12	2.057e-5	1	NC	1	NC	1
252			min	0	3	001	3	042	4	-7.457e-4	4	NC	1	593.643	4
253		13	max	0	1	0	2	0	12	2.057e-5	1	NC	1	NC	1
254			min	0	3	001	3	032	4	-7.457e-4	4	NC	1	782.581	4
255		14	max	0	1	0	2	0	12	2.057e-5	1	NC	1	NC	1
256			min	0	3	0	3	023	4	-7.457e-4	4	NC	1	1087.614	4
257		15	max	0	1	0	2	0	12	2.057e-5	1	NC	1	NC	1
258			min	0	3	0	3	015	4	-7.457e-4	4	NC	1	1629.735	4
259		16	max	0	1	0	2	0	12	2.057e-5	1	NC	1	NC	1
260			min	0	3	0	3	009	4	-7.457e-4	4	NC	1	2743.456	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

261	Member	Sec 17	max	x [in]	LC 1	y [in] 0	LC 2	z [in]	LC 12	x Rotate [r 2.057e-5	LC 1	(n) L/y Ratio	LC 1	(n) L/z Ratio	LC 1
262		1 '	min	0	3	0	3	004	4	-7.457e-4	4	NC	1	5669.297	4
263		18	max	0	1	0	2	<u>.00+</u>	12	2.057e-5	1	NC	1	NC	1
264		- 10	min	0	3	0	3	001	4	-7.457e-4	4	NC	1	NC	1
265		19	max	0	1	0	1	0	1	2.057e-5	1	NC	1	NC	1
266		10	min	0	1	0	1	0	1	-7.457e-4	4	NC	1	NC	1
267	M6	1	max	.018	1	.013	2	0	1	1.456e-3	4	NC	3	NC	1
268	1010		min	014	3	018	3	57	4	0	1	4330.166	2	97.044	4
269		2	max	.017	1	.012	2	0	1	1.556e-3	4	NC	3	NC	1
270			min	013	3	017	3	524	4	0	1	4780.697	2	105.705	4
271		3	max	.016	1	.01	2	<u>.02</u> -	1	1.656e-3	4	NC	1	NC	1
272			min	013	3	016	3	477	4	0	1	5330.92	2	115.997	4
273		4	max	.015	1	.009	2	0	1	1.757e-3	4	NC	1	NC	1
274		•	min	012	3	015	3	431	4	0	1	6011.74	2	128.347	4
275		5	max	.014	1	.008	2	0	1	1.857e-3	4	NC	1	NC	1
276			min	011	3	014	3	386	4	0	1	6867.498	2	143.331	4
277		6	max	.013	1	.007	2	0	1	1.957e-3	4	NC	1	NC	1
278			min	01	3	013	3	342	4	0	1	7963.709	2	161.754	4
279		7	max	.012	1	.006	2	0	1	2.057e-3	4	NC	1	NC	1
280			min	009	3	013	3	3	4	0	1	9400.641	2	184.754	4
281		8	max	.011	1	.005	2	0	1	2.157e-3	4	NC	1	NC	1
282			min	009	3	012	3	259	4	0	1	NC	1	213.992	4
283		9	max	.01	1	.004	2	0	1	2.257e-3	4	NC	1	NC	1
284			min	008	3	011	3	22	4	0	1	NC	1	251.972	4
285		10	max	.009	1	.003	2	0	1	2.358e-3	4	NC	1	NC	1
286		10	min	007	3	01	3	183	4	0	1	NC	1	302.607	4
287		11	max	.008	1	.002	2	0	1	2.458e-3	4	NC	1	NC	1
288			min	006	3	009	3	149	4	0	1	NC	1	372.302	4
289		12	max	.007	1	.002	2	0	1	2.558e-3	4	NC	1	NC	1
290		12	min	006	3	008	3	117	4	0	1	NC	1	472.145	4
291		13	max	.006	1	.000	2	0	1	2.658e-3	4	NC	1	NC	1
292		- 10	min	005	3	007	3	089	4	0	1	NC	1	622.731	4
293		14	max	.005	1	0	2	0	1	2.758e-3	4	NC	1	NC	1
294			min	004	3	005	3	064	4	0	1	NC	1	866.002	4
295		15	max	.004	1	0	2	0	1	2.859e-3	4	NC	1	NC	1
296			min	003	3	004	3	043	4	0	1	NC	1	1298.785	4
297		16	max	.003	1	0	2	0	1	2.959e-3	4	NC	1	NC	1
298		1.0	min	002	3	003	3	025	4	0	1	NC	1	2189.298	
299		17	max	.002	1	<u>.000</u>	2	0	1	3.059e-3	4	NC	1	NC	1
300			min	002	3	002	3	012	4	0	1	NC	1	4535.364	
301		18	max	0	1	0	2	0	1	3.159e-3	4	NC	1	NC	1
302			min	0	3	001	3	004	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	3.259e-3	4	NC	1	NC	1
304		1.0	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306			min	0	1	0	1	0	1	-7.655e-4	4	NC	1	NC	1
307		2	max	0	3	0	15	.016	4	0	1	NC	1	NC	1
308			min	0	2	002	3	0	1	-9.605e-5	4	NC	1	NC	1
309		3	max	.001	3	0	15	.03	4	5.734e-4	4	NC	1	NC	1
310			min	001	2	004	3	0	1	0	1	NC	1	NC	1
311		4	max	.002	3	001	15	.044	4	1.243e-3	4	NC	1	NC	1
312			min	002	2	006	3	0	1	0	1	NC	1	8138.135	_
313		5	max	.002	3	002	15	.057	4	1.912e-3	4	NC	1	NC	1
314		Ť	min	002	2	007	4	0	1	0	1	NC	1	6944.786	_
315		6	max	.003	3	002	15	.069	4	2.582e-3	4	NC	1	NC	1
316		—	min	003	2	009	4	0	1	0	1	NC	1	6403.42	4
317		7	max	.004	3	002	15	.08	4	3.251e-3	4	NC	1	NC	1
U 17			max	.001	_	.002				3.20100	_	.,0		.,0	<u> </u>

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
318			min	003	2	01	4	0	1	0	<u>1</u>	9173.392	4	6243.857	
319		8	max	.004	3	003	15	.091	4	3.92e-3	4	NC	_1_	NC	1
320			min	004	2	012	4	0	1	0	<u>1</u>	8190.612	4_	6376.054	
321		9	max	.005	3	003	15	101	4	4.59e-3	4	NC	1_	NC NC	1
322		40	min	005	2	<u>013</u>	4	0	1	0	<u>1</u>	7604.587	4_	6793.991	4
323		10	max	.005	3	003	15	11	4	5.259e-3	4	NC	1	NC	1
324		1.	min	005	2	013	4	0	1	0	1	7311.699	4_	7557.96	4
325		11	max	.006	3	003	15	.12	4	5.929e-3	4	NC		NC	1
326		40	min	006	2	013	4	0	1	0	1_	7268.238	4	8817.35	4
327		12	max	.007	3	003	15	.129	4	6.598e-3	4	NC	1_	NC NC	1
328		40	min	006	2	013	4	0	1	0	1_	7473.546	4	NC NC	1
329		13	max	.007	3	003	15	.137	4	7.268e-3	4	NC	1_	NC NC	1
330		4.4	min	007	2	012	4	0	1	0	1	7971.852	4	NC NC	1
331		14	max	.008	3	003	15	.146	4	7.937e-3	4	NC	1_	NC NC	1
332		4.5	min	008	2	011	4	0	1	0	1	8875.695	4_	NC NC	1
333		15	max	.009	3	002	15	.155	4	8.606e-3	4	NC NC	1_	NC NC	1
334		40	min	008	2	011	1 1	0	1	0	1	NC NC	1_	NC NC	1
335		16	max	.009	3	002	15	.165	4	9.276e-3	4	NC NC	1_	NC NC	1
336		47	min	009	2	01	1	0	1	0	1_	NC NC	1_	NC NC	1
337		17	max	.01	3	001	15	.175	4	9.945e-3	4	NC NC	1	NC NC	1
338		40	min	009	2	009	1	0	1	0	1_1	NC NC	_	NC NC	•
339		18	max	.01	3	0	15	.185	4	1.061e-2	4	NC NC	1	NC NC	1
340		40	min	01		008	1	0	1	0	1_1	NC NC	1_	NC NC	1
341		19	max	.011	3	0	15	.197	4	1.128e-2	4	NC	<u>1</u> 1	NC NC	1
342	MO	1	min	01	2	006	2	<u> </u>	1	0	<u>1</u> 1	NC NC		NC NC	1
343	<u>M8</u>		max	.008	1	.009				_	<u> </u>		1		
344		2	min	001	3	<u>011</u>	3	197	1	-7.953e-4	4	NC NC	<u>1</u> 1	126.119 NC	4
345			max	.007	3	.009	2	0	4	7.0520.4	1_1		1		1
346		3	min	001	1	01	3	181 0	1	-7.953e-4	<u>4</u> 1	NC NC	1	137.253 NC	1
347		3	max	.007 001	3	.008 01	3	165	4	-7.953e-4	4	NC NC	1	150.497	4
349		4	min	.006	1	.008	2	165 0	1	0	1	NC NC	1	NC	1
350		4	max	001	3	009	3	149	4	-7.953e-4	4	NC NC	1	166.4	4
351		5	max	.006	1	.009	2	<u>149</u> 0	1	0	1	NC NC	1	NC	1
352		5	min	001	3	009	3	134	4	-7.953e-4	4	NC	1	185.709	4
353		6	max	.006	1	.007	2	134 0	1	0	1	NC	1	NC	1
354		0	min	0	3	008	3	118	4	-7.953e-4	4	NC	1	209.458	4
355		7	max	.005	1	.006	2	0	1	0	1	NC	1	NC	1
356			min	0	3	007	3	104	4	-7.953e-4	4	NC	1	239.117	4
357		8	max	.005	1	.006	2	0	1	0	1	NC	1	NC	1
358			min		3	007	3	09		-7.953e-4	_	NC	1	276.829	
359		9	max	.004	1	.005	2	0	1	0	1	NC	1	NC	1
360			min	0	3	006	3	076	4	-7.953e-4	4	NC	1	325.819	4
361		10	max	.004	1	.005	2	0	1	0	1	NC	1	NC	1
362			min	0	3	005	3	063	4	-7.953e-4	4	NC	1	391.131	4
363		11	max	.003	1	.004	2	0	1	0	1	NC	1	NC	1
364			min	0	3	005	3	052	4	-7.953e-4	4	NC	1	481.017	4
365		12	max	.003	1	.004	2	0	1	0	1	NC	1	NC	1
366			min	0	3	004	3	041	4	-7.953e-4	4	NC	1	609.75	4
367		13	max	.003	1	.003	2	0	1	0	1	NC	1	NC	1
368			min	0	3	004	3	031	4	-7.953e-4	4	NC	1	803.827	4
369		14	max	.002	1	.003	2	0	1	0	1	NC	1	NC	1
370			min	0	3	003	3	022	4	-7.953e-4	4	NC	1	1117.158	
371		15	max	.002	1	.002	2	0	1	0	1	NC	1	NC	1
372			min	0	3	002	3	015	4	-7.953e-4	4	NC	1	1674.03	4
373		16	max	.001	1	.002	2	0	1	0	1	NC	1	NC	1
374			min	0	3	002	3	009	4	-7.953e-4	4	NC	1	2818.067	4
											_				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

075	Member	Sec	T	x [in]	LC	y [in]	LC	z [in]			LC			(n) L/z Ratio	
375		17	max	0	1	.001	2	0	1	7.050- 4	1_4	NC NC	1	NC F000 F00	1
376		40	min	0	3	<u>001</u>	3	004	4	-7.953e-4	4_	NC NC	1_	5823.589	4
377		18	max	0	3	0	2	0	1	0 -7.953e-4	1_1	NC NC	<u>1</u> 1	NC NC	1
378		10	min	0		0	3	001	4		4	NC NC	•	NC NC	
379		19	max	0	1	0	1	0	1	0 -7.953e-4	1_1	NC NC	1	NC NC	1
380	MAO	1	min	0		0	-	0	•		4	NC NC		NC NC	_
381	M10	1	max	.005	1	.003	2	0	12	1.461e-3	4	NC NC	1	NC 07.454	2
382			min	004	3	006	3	<u>57</u>	4	1.009e-5	12	NC NC	1_	97.154	4
383		2	max	.005	1	.002	2	0	12	1.561e-3	4	NC	1_	NC 405.005	2
384			min	004	3	006	3	523	4	9.426e-6	12	NC NC	1_	105.825	4
385		3	max	.005	1	.002	2	0	12	1.66e-3	4	NC NC	1	NC 440.400	2
386		_	min	004	3	006	3	477	4	8.761e-6	12	NC	1_	116.129	4
387		4	max	.005	1	.001	2	0	12	1.759e-3	4	NC NC	1	NC 100,100	2
388		_	min	004	3	005	3	<u>431</u>	4	8.096e-6	12	NC	1	128.493	4
389		5	max	.004	1	0	2	0	12	1.859e-3	4	NC	1_	NC 4.40.405	2
390			min	003	3	005	3	386	4	7.431e-6	12	NC NC	1_	143.495	4
391		6	max	.004	1	0	2	0	12	1.958e-3	4	NC	1	NC 404.000	1
392		-	min	003	3	005	3	342	4	6.766e-6	12	NC NC	1_	161.939	4
393		7	max	.004	1	0	2	0	12	2.057e-3	4	NC	1	NC	1
394			min	003	3	<u>005</u>	3	299	4	6.101e-6	12	NC	1_	184.965	4
395		8	max	.003	1	0	10	0	12	2.156e-3	4	NC	1	NC	1
396			min	003	3	005	3	258	4	5.436e-6	12	NC	1_	214.238	4
397		9	max	.003	1	0	10	0	12	2.256e-3	4	NC	1_	NC	1
398			min	002	3	004	3	219	4	4.77e-6	12	NC	1_	252.262	4
399		10	max	.003	1	001	10	0	12	2.355e-3	4	NC	1	NC	1
400			min	002	3	004	3	183	4	4.105e-6	12	NC	_1_	302.957	4
401		11	max	.002	1	001	15	0	12	2.454e-3	_4_	NC	_1_	NC	1
402			min	002	3	004	3	148	4	3.44e-6	12	NC	_1_	372.735	4
403		12	max	.002	1	001	15	0	12	2.553e-3	4	NC	_1_	NC	1
404			min	002	3	004	4	117	4	2.775e-6	12	NC	_1_	472.698	4
405		13	max	.002	1	0	15	0	12	2.653e-3	_4_	NC	1_	NC	1
406			min	001	3	003	4	089	4	2.11e-6	12	NC	_1_	623.467	4
407		14	max	.002	1	0	15	0	12	2.752e-3	4	NC	_1_	NC	1
408			min	001	3	003	4	064	4	1.445e-6	12	NC	1_	867.04	4
409		15	max	.001	1	0	15	0	12	2.851e-3	4	NC	1	NC	1
410		10	min	0	3	003	4	043	4	7.797e-7	12	NC	1_	1300.372	4
411		16	max	0	1	0	15	0	12	2.951e-3	_4_	NC	1	NC	1
412			min	0	3	002	4	025	4	-1.808e-6	_1_	NC	_1_	2192.056	4
413		17	max	0	1	0	15	0	12	3.05e-3	_4_	NC	_1_	NC	1
414			min	0	3	002	4	012	4	-1.72e-5	_1_	NC	_1_	4541.398	4
415		18	max	0	1	0	15	0	12		4_	NC	_1_	NC	1
416			min	0	3	0	4	004	4	-3.258e-5		NC	_1_	NC	1
417		19	max	0	1	0	1	0	1	3.248e-3	_4_	NC	_1_	NC	1
418			min	0	1	0	1	0	1	-4.797e-5		NC	1_	NC	1
419	M11	1	max	0	1	0	1	0	1	1.509e-5	_1_	NC	1_	NC	1
420			min	0	1	0	1	0	1	-7.626e-4		NC	_1_	NC	1
421		2	max	0	3	0	15	.016	4	-4.493e-7	12	NC	_1_	NC	1
422			min	0	2	002	4	0	1	-9.11e-5	4_	NC	<u>1</u>	NC	1
423		3	max	0	3	0	15	.03	4	5.804e-4	4_	NC	1	NC	1
424			min	0	2	004	4	0	1	-3.667e-5	1_	NC	_1_	NC	1
425		4	max	0	3	<u>001</u>	15	.044	4	1.252e-3	4_	NC	1	NC	1
426			min	0	2	006	4	0	1	-6.255e-5		NC	_1_	8372.29	4
427		5_	max	0	3	002	15	.057	4	1.923e-3	_4_	NC	1_	NC	1
428			min	0	2	007	4	001	1	-8.843e-5		NC	1_	7167.02	4
429		6	max	0	3	002	15	.069	4	2.595e-3	4_	NC	1_	NC	1
430			min	0	2	009	4	001	1	-1.143e-4		NC	1_	6632.812	4
431		7	max	.001	3	003	15	.08	4	3.266e-3	4	NC	_1_	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
432			min	0	2	011	4	002	1	-1.402e-4	1_	8763.091	4	6496.338	
433		8	max	.001	3	003	15	.09	4	3.938e-3	4	NC	_1_	NC	1
434			min	0	2	012	4	002	1	-1.661e-4	1_	7851.293	4_	6670.169	4
435		9	max	.002	3	003	15	.101	4	4.609e-3	4	NC	2	NC	1
436		40	min	001	2	013	4	002	1	-1.919e-4	1_	7310.332	4_	7156.402	4
437		10	max	.002	3	003	15	11	4	5.281e-3	4	NC	3_	NC	1
438		44	min	001	2	013	4	003	1	-2.178e-4	1_	7045.48	4	8032.673	
439		11	max	.002	3	003	15	.119	4	5.952e-3	4	NC	3_	NC 0405.704	1
440		40	min	001	2	014	4	003	1	-2.437e-4	1_	7017.546	4_	9485.761	4
441		12	max	.002	3	003	15	.128	4	6.624e-3	4	NC 7227.833	<u>2</u> 4	NC NC	1
442		13	min	001 .002	3	013 003	15	004 .137	4	-2.696e-4	1_1	NC	<u>4</u> 1	NC NC	1
444		13	max min	002	2	003 013	4	004	1	7.295e-3 -2.955e-4	<u>4</u> 1	7720.54	4	NC NC	1
445		14		.002	3	013 003	15	.146	4	7.967e-3	4	NC	1	NC NC	1
446		14	max min	002	2	003 011	4	005	1	-3.213e-4	1	8605.859	4	NC NC	1
447		15	max	.002	3	002	15	.155	4	8.638e-3	4	NC	1	NC	1
448		10	min	002	2	002	4	005	1	-3.472e-4	1	NC	1	NC	1
449		16	max	.002	3	002	15	.165	4	9.31e-3	4	NC	1	NC	1
450		10	min	002	2	008	4	006	1	-3.731e-4	1	NC	1	NC	1
451		17	max	.003	3	002	15	.175	4	9.981e-3	4	NC	1	NC	1
452		<u> </u>	min	002	2	006	1	007	1	-3.99e-4	1	NC	1	NC	1
453		18	max	.003	3	0	15	.186	4	1.065e-2	4	NC	1	NC	1
454			min	002	2	005	1	007	1	-4.249e-4	1	NC	1	NC	1
455		19	max	.004	3	0	15	.198	4	1.132e-2	4	NC	1	NC	1
456			min	002	2	003	1	008	1	-4.507e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.002	2	.008	1	-9.625e-7	12	NC	1	NC	3
458			min	0	3	004	3	198	4	-7.564e-4	4	NC	1	125.492	4
459		2	max	.003	1	.002	2	.007	1	-9.625e-7	12	NC	1	NC	3
460			min	0	3	003	3	182	4	-7.564e-4	4	NC	1	136.566	4
461		3	max	.002	1	.002	2	.007	1	-9.625e-7	12	NC	1_	NC	3
462			min	0	3	003	3	166	4	-7.564e-4	4	NC	1_	149.74	4
463		4	max	.002	1	.002	2	.006	1	-9.625e-7	12	NC	1_	NC	2
464			min	0	3	003	3	15	4	-7.564e-4	4	NC	1_	165.559	4
465		5	max	.002	1	.001	2	.005	1	-9.625e-7	12	NC	_1_	NC	2
466			min	0	3	003	3	134	4	-7.564e-4	4_	NC	1_	184.765	4
467		6	max	.002	1	.001	2	.005	1	-9.625e-7	12	NC	_1_	NC	2
468		<u> </u>	min	0	3	003	3	<u>119</u>	4	-7.564e-4	4	NC	1_	208.389	4
469		7	max	.002	1	.001	2	004	1	-9.625e-7	12	NC	1_	NC	2
470			min	0	3	002	3	104	4	-7.564e-4	4	NC	1_	237.891	4
471		8	max	.002	1	.001	2	.004	1	-9.625e-7	12	NC NC	1_	NC 075 400	2
472			min		3	002	3	09		-7.564e-4		NC NC	1	275.403	4
473		9	max	.002	3	.001	2	.003	1	-9.625e-7	<u>12</u>	NC	1_1	NC 224 424	2
474		10	min	0	1	002	2	077	1	-7.564e-4	4	NC NC	<u>1</u> 1	324.134	4
475 476		10	max	.001 0	3	0 002	3	.003 064	4	-9.625e-7 -7.564e-4	<u>12</u> 4	NC NC	1	NC 389.1	2
477		11	min max	.001	1	<u>002</u> 0	2	.002	1	-7.364e-4 -9.625e-7	12	NC NC	1	NC	1
478			min	0	3	002	3	052	4	-7.564e-4	4	NC	1	478.51	4
479		12	max	.001	1	<u>002</u> 0	2	.002	1	-7.504e-4 -9.625e-7	12	NC	1	NC	1
480		12	min	0	3	001	3	041	4	-7.564e-4	4	NC	1	606.561	4
481		13	max	0	1	<u>001</u> 0	2	.001	1	-7.504e-4 -9.625e-7	12	NC	1	NC	1
482		13	min	0	3	001	3	031	4	-7.564e-4	4	NC	1	799.608	4
483		14	max	0	1	0	2	<u>031</u> 0	1	-9.625e-7	12	NC	1	NC	1
484		14	min	0	3	0	3	022	4	-7.564e-4	4	NC	1	1111.274	
485		15	max	0	1	0	2	<u>022</u> 0	1	-9.625e-7	12	NC	1	NC	1
486		10	min	0	3	0	3	015	4	-7.564e-4	4	NC	1	1665.182	4
487		16	max	0	1	0	2	<u>013</u> 0	1	-9.625e-7	12	NC	1	NC	1
488		1.0	min	0	3	0	3	009	4	-7.564e-4	4	NC	1	2803.118	
+ 00			11/011	<u> </u>	J		J	.003		7.0046-4		110		2000.110	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

May May	489	Member	Sec 17	max	x [in]	LC 1	y [in] 0	LC 2	z [in]	LC 1	x Rotate [r -9.625e-7	LC 12	(n) L/y Ratio	LC 1	(n) L/z Ratio	LC 1
1891			17						•							-
## ## ## ## ## ## ## #			18													
199			10													
494			19						_					_		
A95			10													
A96		M1	1					•		•				_		•
498		1411								+						
A98			2						-							
Section Sect			1											1		
Sol			3							_				5		-
Soli																
502			4													
503			•													
504			5											•		1
505			T -													5
506			6											_		
507																
508			7											•		
509 8 max																
510			8					_						•		_
STILL 9 max .004 3 .142 3 .448 4 2.641e-2 1 8034.912 15 NC 1																
512			9													
513																
514			10													
515			10													
Single			11						_							
517										+						
518 min 001 10 311 1 001 1 -9.738e-3 3 278.437 1 2603.71 4 519 13 max .004 3 .112 3 .337 4 2.117e-2 1 9682.242 15 NC 1 520 min 001 10 262 1 0 1 7794e-3 3 315.932 1 3072.219 4 521 14 max .003 3 .087 3 .303 4 1.602e-2 1 NC 15 NC 1 522 min 001 10 202 1 0 12 -5.85e-3 3 379.928 1 4034.061 4 523 15 mx .003 3 .059 3 .268 4 1.087e-2 1 NC 15 NC 1 525 16 max .003			12						-							
519			1-													
S20			13					-		-						_
521 14 max .003 3 .087 3 .303 4 1.602e-2 1 NC 15 NC 1 522 min 001 10 202 1 0 12 5.85e-3 3 379.928 1 4034.061 4 523 15 max .003 3 .059 3 .268 4 1.087e-2 1 NC 15 NC 1 524 min 001 10 135 1 0 12 3.905e-3 3 489.752 1 6103.546 4 525 16 max .003 3 .002 3 .234 4 9.788e-3 4 NC 5 NC 1 526 min 001 10 067 1 0 12 -1.961e-3 3 692.281 1 NC 1 527 17 max .003 3 <td></td> <td></td> <td>1.0</td> <td></td> <td>-</td>			1.0													-
522			14						_							
523 15 max .003 3 .059 3 .268 4 1.087e-2 1 NC 15 NC 1 524 min 001 10 135 1 0 12 -3.905e-3 3 489.752 1 6103.546 4 525 16 max .003 3 .03 3 .234 4 9.788e-3 4 NC 5 NC 1 526 min 001 10 067 1 0 12 -1.961e-3 3 692.281 1 NC 1 527 17 max .003 3 .002 3 .203 4 1.082e-2 4 NC 5 NC 1 528 min 001 10 004 2 0 12 -1.654e-5 3 1123.4 1 NC 1 530 min 001 10 022 3 0																
524 min 001 10 135 1 0 12 -3.905e-3 3 489.752 1 6103.546 4 525 16 max .003 3 .03 3 .234 4 9.788e-3 4 NC 5 NC 1 526 min 001 10 067 1 0 12 -1.961e-3 3 692.281 1 NC 1 527 17 max .003 3 .002 3 .203 4 1.082e-2 4 NC 5 NC 1 528 min 001 10 004 2 0 12 -1.654e-5 3 1123.4 1 NC 1 529 18 max .003 3 .05 1 .175 4 1.002e-2 1 NC 1 530 min 001 10 022 3 0			15											15		
525 16 max .003 3 .03 3 .234 4 9.788e-3 4 NC 5 NC 1 526 min 001 10 067 1 0 12 -1.961e-3 3 692.281 1 NC 1 527 17 max .003 3 .002 3 .203 4 1.082e-2 4 NC 5 NC 1 528 min 001 10 004 2 0 12 -1.654e-5 3 1123.4 1 NC 1 529 18 max .003 3 .05 1 .175 4 1.002e-2 1 NC 4 NC 1 530 min 001 10 022 3 0 12 -3.131e-3 3 2371.815 1 NC 1 531 19 max .014 3 <td< td=""><td></td><td></td><td>1.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td></td<>			1.0													4
526 min 001 10 067 1 0 12 -1.961e-3 3 692.281 1 NC 1 527 17 max .003 3 .002 3 .203 4 1.082e-2 4 NC 5 NC 1 528 min 001 10 004 2 0 12 -1.654e-5 3 1123.4 1 NC 1 529 18 max .003 3 .05 1 .175 4 1.002e-2 1 NC 4 NC 1 530 min 001 10 022 3 0 12 -3.131e-3 3 2371.815 1 NC 1 531 19 max .003 3 .098 1 .149 4 1.982e-2 1 NC 1 NC 1 532 min 001 10 045			16					3						5		1
527 17 max .003 3 .002 3 .203 4 1.082e-2 4 NC 5 NC 1 528 min 001 10 004 2 0 12 -1.654e-5 3 1123.4 1 NC 1 529 18 max .003 3 .05 1 .175 4 1.002e-2 1 NC 4 NC 1 530 min 001 10 022 3 0 12 -3.131e-3 3 2371.815 1 NC 1 NC 1 531 19 max .003 3 .098 1 .149 4 1.982e-2 1 NC 1 NC 1 532 min 001 10 045 3 001 1 082e-2 1 NC 1 NC 1 534 min 004			1													
528 min 001 10 004 2 0 12 -1.654e-5 3 1123.4 1 NC 1 529 18 max .003 3 .05 1 .175 4 1.002e-2 1 NC 4 NC 1 530 min 001 10 022 3 0 12 -3.131e-3 3 2371.815 1 NC 1 531 19 max .003 3 .098 1 .149 4 1.982e-2 1 NC 1 NC 1 532 min 001 10 045 3 001 1 -6.363e-3 3 NC 1 NC 1 533 M5 1 max .014 3 .24 1 .601 4 0 1 NC 1 NC 1 534 min 008 2 011 <td></td> <td></td> <td>17</td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td>.203</td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td>1</td>			17					3	.203					5		1
529 18 max .003 3 .05 1 .175 4 1.002e-2 1 NC 4 NC 1 530 min 001 10 022 3 0 12 -3.131e-3 3 2371.815 1 NC 1 531 19 max .003 3 .098 1 .149 4 1.982e-2 1 NC 1 NC 1 532 min 001 10 045 3 001 1 -6.363e-3 3 NC 1 NC 1 533 M5 1 max .014 3 .24 1 .601 4 0 1 NC 1 NC 1 534 min 008 2 011 3 0 1 -3.194e-6 4 NC 1 NC 1 535 2 max .014 3										12		3		1		1
530 min 001 10 022 3 0 12 -3.131e-3 3 2371.815 1 NC 1 531 19 max .003 3 .098 1 .149 4 1.982e-2 1 NC 1 NC 1 532 min 001 10 045 3 001 1 -6.363e-3 3 NC 1 NC 1 533 M5 1 max .014 3 .24 1 .601 4 0 1 NC 1 NC 1 534 min 008 2 011 3 0 1 -3.194e-6 4 NC 1 NC 1 535 2 max .014 3 .117 1 .587 4 7.587e-3 4 NC 5 NC 1 536 min 008 2 004			18	max	.003									4		1
531 19 max .003 3 .098 1 .149 4 1.982e-2 1 NC 1 NC 1 532 min 001 10 045 3 001 1 -6.363e-3 3 NC 1 NC 1 533 M5 1 max .014 3 .24 1 .601 4 0 1 NC 1 NC 1 534 min 008 2 011 3 0 1 -3.194e-6 4 NC 1 NC 1 535 2 max .014 3 .117 1 .587 4 7.587e-3 4 NC 5 NC 1 536 min 008 2 004 3 0 1 0 1 930.897 1 NC 1 537 3 max .014 3 .02 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td>1</td> <td></td> <td>1</td>								3				3		1		1
532 min 001 10 045 3 001 1 -6.363e-3 3 NC 1 NC 1 533 M5 1 max .014 3 .24 1 .601 4 0 1 NC 1 NC 1 534 min 008 2 011 3 0 1 -3.194e-6 4 NC 1 NC 1 535 2 max .014 3 .117 1 .587 4 7.587e-3 4 NC 5 NC 1 536 min 008 2 004 3 0 1 0 1 930.897 1 NC 1 537 3 max .014 3 .02 3 .57 4 1.494e-2 4 NC 1 NC 1 538 min 009 2 022 1 <td></td> <td></td> <td>19</td> <td></td> <td>.003</td> <td>3</td> <td>.098</td> <td>1</td> <td>.149</td> <td>4</td> <td></td> <td>1</td> <td>NC</td> <td>1</td> <td>NC</td> <td>1</td>			19		.003	3	.098	1	.149	4		1	NC	1	NC	1
533 M5 1 max .014 3 .24 1 .601 4 0 1 NC 1 NC 1 534 min 008 2 011 3 0 1 -3.194e-6 4 NC 1 NC 1 535 2 max .014 3 .117 1 .587 4 7.587e-3 4 NC 5 NC 1 536 min 008 2 004 3 0 1 0 1 930.897 1 NC 1 537 3 max .014 3 .02 3 .57 4 1.494e-2 4 NC 1 NC 1 538 min 009 2 022 1 0 1 0 1 435.183 1 5964.644 4 539 4 max .013 3 .073								3		1		3		1		1
534 min 008 2 011 3 0 1 -3.194e-6 4 NC 1 NC 1 535 2 max .014 3 .117 1 .587 4 7.587e-3 4 NC 5 NC 1 536 min 008 2 004 3 0 1 0 1 930.897 1 NC 1 537 3 max .014 3 .02 3 .57 4 1.494e-2 4 NC 15 NC 1 538 min 009 2 022 1 0 1 0 1 435.183 1 5964.644 4 539 4 max .013 3 .073 3 .551 4 1.217e-2 4 9121.389 15 NC 1 540 min 008 2 192 1		M5	1							4		1		1		1
535 2 max .014 3 .117 1 .587 4 7.587e-3 4 NC 5 NC 1 536 min 008 2 004 3 0 1 0 1 930.897 1 NC 1 537 3 max .014 3 .02 3 .57 4 1.494e-2 4 NC 15 NC 1 538 min 009 2 022 1 0 1 0 1 435.183 1 5964.644 4 539 4 max .013 3 .073 3 .551 4 1.217e-2 4 9121.389 15 NC 1 540 min 008 2 192 1 0 1 0 1 264.074 1 4464.517 4 541 5 max .013 3 .146 3 .531 4				min				3		1	-3.194e-6	4		1		1
536 min 008 2 004 3 0 1 0 1 930.897 1 NC 1 537 3 max .014 3 .02 3 .57 4 1.494e-2 4 NC 15 NC 1 538 min 009 2 022 1 0 1 0 1 435.183 1 5964.644 4 539 4 max .013 3 .073 3 .551 4 1.217e-2 4 9121.389 15 NC 1 540 min 008 2 192 1 0 1 0 1 264.074 1 4464.517 4 541 5 max .013 3 .146 3 .531 4 9.406e-3 4 6386.097 15 NC 1 542 min 008 2 379 1			2			3			.587	4		4		5		1
537 3 max .014 3 .02 3 .57 4 1.494e-2 4 NC 15 NC 1 538 min 009 2 022 1 0 1 0 1 435.183 1 5964.644 4 539 4 max .013 3 .073 3 .551 4 1.217e-2 4 9121.389 15 NC 1 540 min 008 2 192 1 0 1 0 1 264.074 1 4464.517 4 541 5 max .013 3 .146 3 .531 4 9.406e-3 4 6386.097 15 NC 1 542 min 008 2 379 1 0 1 0 1 184.594 1 3711.194 4 543 6 max .013 3								3		1		1				1
538 min 009 2 022 1 0 1 0 1 435.183 1 5964.644 4 539 4 max .013 3 .073 3 .551 4 1.217e-2 4 9121.389 15 NC 1 540 min 008 2 192 1 0 1 264.074 1 4464.517 4 541 5 max .013 3 .146 3 .531 4 9.406e-3 4 6386.097 15 NC 1 542 min 008 2 379 1 0 1 0 1 184.594 1 3711.194 4 543 6 max .013 3 .229 3 .511 4 6.638e-3 4 4918.289 15 NC 1 544 min 008 2 564 1 0			3				.02		.57	4	1.494e-2	4		15		1
539 4 max .013 3 .073 3 .551 4 1.217e-2 4 9121.389 15 NC 1 540 min 008 2 192 1 0 1 0 1 264.074 1 4464.517 4 541 5 max .013 3 .146 3 .531 4 9.406e-3 4 6386.097 15 NC 1 542 min 008 2 379 1 0 1 0 1 184.594 1 3711.194 4 543 6 max .013 3 .229 3 .511 4 6.638e-3 4 4918.289 15 NC 1 544 min 008 2 564 1 0 1 0 1 141.966 1 3244.597 4										1		1		1		4
540 min 008 2 192 1 0 1 0 1 264.074 1 4464.517 4 541 5 max .013 3 .146 3 .531 4 9.406e-3 4 6386.097 15 NC 1 542 min 008 2 379 1 0 1 0 1 184.594 1 3711.194 4 543 6 max .013 3 .229 3 .511 4 6.638e-3 4 4918.289 15 NC 1 544 min 008 2 564 1 0 1 0 1 141.966 1 3244.597 4			4				.073	3	.551	4	1.217e-2	4		15		
541 5 max .013 3 .146 3 .531 4 9.406e-3 4 6386.097 15 NC 1 542 min 008 2 379 1 0 1 0 1 184.594 1 3711.194 4 543 6 max .013 3 .229 3 .511 4 6.638e-3 4 4918.289 15 NC 1 544 min 008 2 564 1 0 1 0 1 141.966 1 3244.597 4										1	_	1				4
542 min 008 2 379 1 0 1 0 1 184.594 1 3711.194 4 543 6 max .013 3 .229 3 .511 4 6.638e-3 4 4918.289 15 NC 1 544 min 008 2 564 1 0 1 141.966 1 3244.597 4			5								9.406e-3	4		15		
543 6 max .013 3 .229 3 .511 4 6.638e-3 4 4918.289 15 NC 1 544 min 008 2 564 1 0 1 0 1 141.966 1 3244.597 4																4
544 min008 2564 1 0 1 141.966 1 3244.597 4			6							4	6.638e-3	4		15		
																4
	545		7	max	.013	3	.311	3	.49	4	3.87e-3	4	4070.301	15	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

547 8 max .012 3 .379 3 .469 4 1.103e-3 4 3577.093 15 548 min 008 2 868 1 0 1 0 1 103.033 1 26 549 9 max .012 3 .423 3 .448 4 0 1 324.108 15 550 min 007 2 953 1 0 1 -2.008e-6 5 95.697 1 23 551 10 max .012 3 .439 3 .424 4 0 1 3247.878 15 552 min 007 2 982 1 0 1 -1.923e-6 5 93.51 1 23 553 11 max .011 3 .428 3 .397 4 0 1 3324.175 15 <td< th=""><th>02.83 NC 13.008 NC 93.332 NC 64.423 NC 87.367 NC 90.733 NC 23.902 NC 37.971 NC 94.309 NC</th><th>1 4 1</th></td<>	02.83 NC 13.008 NC 93.332 NC 64.423 NC 87.367 NC 90.733 NC 23.902 NC 37.971 NC 94.309 NC	1 4 1
548 min 008 2 868 1 0 1 0 1 103.033 1 26 549 9 max .012 3 .423 3 .448 4 0 1 3324.108 15 550 min 007 2 953 1 0 1 -2.008e-6 5 95.697 1 23 551 10 max .012 3 .439 3 .424 4 0 1 3247.878 15 552 min 007 2 982 1 0 1 -1.923e-6 5 93.51 1 23 553 11 max .011 3 .428 3 .397 4 0 1 3324.175 15 554 min 007 2 953 1 0 1 -1.839e-6 5 95.81 1 24 5	13.008 NC 93.332 NC 64.423 NC 87.367 NC 60.733 NC 23.902 NC 87.971 NC 94.309 NC	4 1 4 1 4 1 4 1 4 1 4
549 9 max .012 3 .423 3 .448 4 0 1 3324.108 15 550 min 007 2 953 1 0 1 -2.008e-6 5 95.697 1 23 551 10 max .012 3 .439 3 .424 4 0 1 3247.878 15 552 min 007 2 982 1 0 1 -1.923e-6 5 93.51 1 23 553 11 max .011 3 .428 3 .397 4 0 1 3324.175 15 554 min 007 2 953 1 0 1 -1.839e-6 5 95.81 1 24 555 12 max .011 3 .391 3 .37 4 7.742e-4 4 3577.254 15 556	NC 93.332 NC 64.423 NC 87.367 NC 60.733 NC 23.902 NC 87.971 NC 94.309 NC	1 4 1 4 1 4 1 4 1 4
550 min 007 2 953 1 0 1 -2.008e-6 5 95.697 1 23 551 10 max .012 3 .439 3 .424 4 0 1 3247.878 15 552 min 007 2 982 1 0 1 -1.923e-6 5 93.51 1 23 553 11 max .011 3 .428 3 .397 4 0 1 3324.175 15 554 min 007 2 953 1 0 1 -1.839e-6 5 95.81 1 24 555 12 max .011 3 .391 3 .37 4 7.742e-4 4 3577.254 15 556 min 007 2 866 1 0 1 0 1 103.408 1 25	93.332 NC 64.423 NC 87.367 NC 60.733 NC 23.902 NC 87.971 NC 94.309 NC	1 4 1 4 1 4 1 4
551 10 max .012 3 .439 3 .424 4 0 1 3247.878 15 552 min 007 2 982 1 0 1 -1.923e-6 5 93.51 1 23 553 11 max .011 3 .428 3 .397 4 0 1 3324.175 15 554 min 007 2 953 1 0 1 -1.839e-6 5 95.81 1 24 555 12 max .011 3 .391 3 .37 4 .7742e-4 4 .3577.254 15 556 min 007 2 866 1 0 1 0 1 103.408 1 25 557 13 max .011 3 .331 3 .338 4 2.718e-3 4 4070.636 15	NC 54.423 NC 87.367 NC 60.733 NC 23.902 NC 87.971 NC 94.309 NC	4 1 4 1 4 1 4
553 11 max .011 3 .428 3 .397 4 0 1 3324.175 15 554 min 007 2 953 1 0 1 -1.839e-6 5 95.81 1 24 555 12 max .011 3 .391 3 .37 4 7.742e-4 4 3577.254 15 556 min 007 2 866 1 0 1 0 1 103.408 1 25 557 13 max .011 3 .331 3 .338 4 2.718e-3 4 4070.636 15 558 min 007 2 727 1 0 1 0 1 118.322 1 30 559 14 max .011 3 .256 3 .302 4 4.662e-3 4 4918.955 15	NC 37.367 NC 60.733 NC 23.902 NC 37.971 NC 94.309 NC	1 4 1 4 1 4
554 min 007 2 953 1 0 1 -1.839e-6 5 95.81 1 24 555 12 max .011 3 .391 3 .37 4 7.742e-4 4 3577.254 15 556 min 007 2 866 1 0 1 0 1 103.408 1 25 557 13 max .011 3 .331 3 .338 4 2.718e-3 4 4070.636 15 558 min 007 2 727 1 0 1 0 1 118.322 1 30 559 14 max .011 3 .256 3 .302 4 4.662e-3 4 4918.955 15 560 min 007 2 555 1 0 1 0 1 144.14 14 14 14	37.367 NC 50.733 NC 23.902 NC 37.971 NC 94.309 NC	1 4 1 4 1
555 12 max .011 3 .391 3 .37 4 7.742e-4 4 3577.254 15 556 min 007 2 866 1 0 1 0 1 103.408 1 25 557 13 max .011 3 .331 3 .338 4 2.718e-3 4 4070.636 15 558 min 007 2 727 1 0 1 0 1 118.322 1 30 559 14 max .011 3 .256 3 .302 4 4.662e-3 4 4918.955 15 560 min 007 2 5555 1 0 1 0 1 144.16 1 4 144.16 1 4 144.16 1 4 144.16 1 4 144.16 1 4 144.16 1 4	NC 60.733 NC 23.902 NC 37.971 NC 94.309 NC	1 4 1 1
556 min 007 2 866 1 0 1 0 1 103.408 1 25 557 13 max .011 3 .331 3 .338 4 2.718e-3 4 4070.636 15 558 min 007 2 727 1 0 1 0 1 118.322 1 30 559 14 max .011 3 .256 3 .302 4 4.662e-3 4 4918.955 15 560 min 007 2 555 1 0 1 0 1 144.16 1 41 561 15 max .01 3 .172 3 .266 4 6.606e-3 4 6387.428 15 562 min 007 2 366 1 0 1 0 1 189.345 1 73	60.733 NC 23.902 NC 37.971 NC 94.309 NC	1 4 1
557 13 max .011 3 .331 3 .338 4 2.718e-3 4 4070.636 15 558 min 007 2 727 1 0 1 0 1 118.322 1 30 559 14 max .011 3 .256 3 .302 4 4.662e-3 4 4918.955 15 560 min 007 2 555 1 0 1 0 1 144.16 1 41 561 15 max .01 3 .172 3 .266 4 6.606e-3 4 6387.428 15 562 min 007 2 366 1 0 1 0 1 189.345 1 73 563 16 max .01 3 .087 3 .23 4 8.55e-3 4 9124.194 15	NC 23.902 NC 37.971 NC 94.309 NC	1 4 1
558 min 007 2 727 1 0 1 0 1 118.322 1 30 559 14 max .011 3 .256 3 .302 4 4.662e-3 4 4918.955 15 560 min 007 2 555 1 0 1 0 1 144.16 1 41 561 15 max .01 3 .172 3 .266 4 6.606e-3 4 6387.428 15 562 min 007 2 366 1 0 1 0 1 189.345 1 73 563 16 max .01 3 .087 3 .23 4 8.55e-3 4 9124.194 15 564 min 007 2 179 1 0 1 0 1 274.69 1 565 17<	23.902 NC 37.971 NC 94.309 NC	4
559 14 max .011 3 .256 3 .302 4 4.662e-3 4 4918.955 15 560 min 007 2 555 1 0 1 0 1 144.16 1 41 561 15 max .01 3 .172 3 .266 4 6.606e-3 4 6387.428 15 562 min 007 2 366 1 0 1 0 1 189.345 1 73 563 16 max .01 3 .087 3 .23 4 8.55e-3 4 9124.194 15 564 min 007 2 179 1 0 1 0 1 274.69 1 565 17 max .01 3 .007 3 .197 4 1.049e-2 4 NC 15 566 min 007 2 012 1 0 1 0 1 460.916 1 567 18 max	NC 37.971 NC 94.309 NC	1
560 min 007 2 555 1 0 1 0 1 144.16 1 41 561 15 max .01 3 .172 3 .266 4 6.606e-3 4 6387.428 15 562 min 007 2 366 1 0 1 0 1 189.345 1 73 563 16 max .01 3 .087 3 .23 4 8.55e-3 4 9124.194 15 564 min 007 2 179 1 0 1 0 1 274.69 1 565 17 max .01 3 .007 3 .197 4 1.049e-2 4 NC 15 566 min 007 2 012 1 0 1 0 1 460.916 1 567 18 max	NC 94.309 NC	
561 15 max .01 3 .172 3 .266 4 6.606e-3 4 6387.428 15 562 min 007 2 366 1 0 1 0 1 189.345 1 73 563 16 max .01 3 .087 3 .23 4 8.55e-3 4 9124.194 15 564 min 007 2 179 1 0 1 0 1 274.69 1 565 17 max .01 3 .007 3 .197 4 1.049e-2 4 NC 15 566 min 007 2 012 1 0 1 0 1 460.916 1 567 18 max .01 3 .121 1 .171 4 5.329e-3 4 NC 5 568 min 007<	NC 94.309 NC	4
562 min 007 2 366 1 0 1 0 1 189.345 1 73 563 16 max .01 3 .087 3 .23 4 8.55e-3 4 9124.194 15 564 min 007 2 179 1 0 1 0 1 274.69 1 565 17 max .01 3 .007 3 .197 4 1.049e-2 4 NC 15 566 min 007 2 012 1 0 1 0 1 460.916 1 567 18 max .01 3 .121 1 .171 4 5.329e-3 4 NC 5 568 min 007 2 061 3 0 1 0 1 NC 1 570 min 007 2 <t< td=""><td>94.309 NC</td><td>1</td></t<>	94.309 NC	1
563 16 max .01 3 .087 3 .23 4 8.55e-3 4 9124.194 15 564 min 007 2 179 1 0 1 0 1 274.69 1 565 17 max .01 3 .007 3 .197 4 1.049e-2 4 NC 15 566 min 007 2 012 1 0 1 0 1 460.916 1 567 18 max .01 3 .121 1 .171 4 5.329e-3 4 NC 5 568 min 007 2 061 3 0 1 0 1 999.663 1 569 19 max .01 3 .235 1 .15 4 0 1 NC 1 570 min 007 2 <td< td=""><td>NC</td><td>-</td></td<>	NC	-
564 min 007 2 179 1 0 1 0 1 274.69 1 565 17 max .01 3 .007 3 .197 4 1.049e-2 4 NC 15 566 min 007 2 012 1 0 1 0 1 460.916 1 567 18 max .01 3 .121 1 .171 4 5.329e-3 4 NC 5 568 min 007 2 061 3 0 1 0 1 999.663 1 569 19 max .01 3 .235 1 .15 4 0 1 NC 1 570 min 007 2 123 3 0 1 -1.591e-6 4 NC 1 571 M9 1 max .004 3 <td></td> <td>1</td>		1
565 17 max .01 3 .007 3 .197 4 1.049e-2 4 NC 15 566 min 007 2 012 1 0 1 0 1 460.916 1 567 18 max .01 3 .121 1 .171 4 5.329e-3 4 NC 5 568 min 007 2 061 3 0 1 0 1 999.663 1 569 19 max .01 3 .235 1 .15 4 0 1 NC 1 570 min 007 2 123 3 0 1 -1.591e-6 4 NC 1 571 M9 1 max .004 3 .1 1 .601 4 1.86e-2 3 NC 1		1
566 min 007 2 012 1 0 1 460.916 1 567 18 max .01 3 .121 1 .171 4 5.329e-3 4 NC 5 568 min 007 2 061 3 0 1 0 1 999.663 1 569 19 max .01 3 .235 1 .15 4 0 1 NC 1 570 min 007 2 123 3 0 1 -1.591e-6 4 NC 1 571 M9 1 max .004 3 .1 1 .601 4 1.86e-2 3 NC 1	NC	1
567 18 max .01 3 .121 1 .171 4 5.329e-3 4 NC 5 568 min 007 2 061 3 0 1 0 1 999.663 1 569 19 max .01 3 .235 1 .15 4 0 1 NC 1 570 min 007 2 123 3 0 1 -1.591e-6 4 NC 1 571 M9 1 max .004 3 .1 1 .601 4 1.86e-2 3 NC 1	NC	1
568 min 007 2 061 3 0 1 0 1 999.663 1 569 19 max .01 3 .235 1 .15 4 0 1 NC 1 570 min 007 2 123 3 0 1 -1.591e-6 4 NC 1 571 M9 1 max .004 3 .1 1 .601 4 1.86e-2 3 NC 1	NC	1
569 19 max .01 3 .235 1 .15 4 0 1 NC 1 570 min 007 2 123 3 0 1 -1.591e-6 4 NC 1 571 M9 1 max .004 3 .1 1 .601 4 1.86e-2 3 NC 1	NC	1
571 M9 1 max .004 3 .1 1 .601 4 1.86e-2 3 NC 1	NC	1
	NC	1
572 min001 10 01 3 001 1 -1.735e-2 1 NC 1	NC	1
	NC	1
573 2 max .004 3 .049 1 .586 4 9.202e-3 3 NC 3	NC	1
574 min001 2004 3 0 12 -8.43e-3 1 2251.688 1	NC	1
575 3 max .004 3 .006 3 .569 4 1.49e-2 4 NC 5	NC OF 74	1
	65.74	4
577 4 max .004 3 .025 3 .551 4 1.168e-2 5 NC 5 578 min 001 2 07 1 0 12 -4.665e-3 1 671.539 1 44	NC 97.108	4
578 min001 2 07 1 0 12 -4.665e-3 1 671.539 1 44 579 5 max .004 3 .05 3 .531 4 8.77e-3 5 NC 15	NC	1
	07.015	_
581 6 max .004 3 .078 3 .511 4 9.622e-3 3 NC 15	NC	1
	22.143	
583 7 max .004 3 .105 3 .49 4 1.28e-2 3 9666.594 15	NC	1
	77.185	4
585 8 max .004 3 .128 3 .469 4 1.598e-2 3 8585.214 15	NC	1
586 min001 10312 1 0 1 -2.402e-2 1 277.557 1 25	7.848	4
587 9 max .004 3 .142 3 .448 4 1.598e-2 3 8021.697 15	NC	1
	38.947	4
589 10 max .004 3 .148 3 .424 4 1.388e-2 3 7850.139 15	NC	1
	19.411	4
591 11 max .004 3 .144 3 .397 4 1.178e-2 3 8021.509 15	NC	1
	20.049	
593 12 max .004 3 .132 3 .369 4 9.738e-3 3 8584.861 15	NC 20.400	1
	30.198	
595	NC 73.776	4
596 111111001 10262 1 0 12 -2.1176-2 1 313.932 1 30 597 14 max	NC	1
	33.073	
599		1
601 16 max .003 3 .03 3 .23 4 8.323e-3 5 NC 5	NC	
602 min001 10067 1008 1 -5.719e-3 1 692.281 1		

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
603		17	max	.003	3	.002	3	.198	4	1.053e-2	4	NC	5	NC	1
604			min	001	10	004	2	008	1	-5.702e-4	1	1123.4	1	NC	1
605		18	max	.003	3	.05	1	.172	4	4.944e-3	5	NC	4	NC	1
606			min	001	10	022	3	006	1	-1.002e-2	1	2371.815	1	NC	1
607		19	max	.003	3	.098	1	.15	4	6.363e-3	3	NC	1	NC	1
608			min	001	10	045	3	0	12	-1.982e-2	1	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 14-42 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	2/5					
Project:	Standard PVMax - Worst Case, 14-42 Inch Width							
Address:								
Phone:								
E-mail:								

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	3/5					
Project:	Standard PVMax - Worst Case, 14-42 Inch Width							
Address:								
Phone:								
E-mail:								

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle extstyle NA} arPhi_{ extstyle ec,Na} arPhi_{ extstyle p,Na} extstyle N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.