Statistics MCQ Question Bank

Second Paper

Abdullah Al Mahmud

www.statmania.info

Contents

1	Inti	roduction to Probability	2
	1.1	Permutation-Combination	2
	1.2	Conceptual Questions	2
	1.3	Numbers	4
	1.4	Coin-Die	4
	1.5	Balls-Cards	
	1.6	Set-Problems	6
	1.7	Situation Set	8
	1.8	Multiple Completion	8
2	Rar	ndom Variables	9
	2.1	Concept of Random Variable	9
	2.2	Situation Set	1
	2.3	Multiple Completion	4
3	Ma	thematical Expectation 15	5
	3.1	Situation Set	8
	3.2	Multiple Completion	9
4	Bin	omial Distribution	9
	4.1	Situation Set	1
	4.2	Multiple Completion	
5	Poi	sson Distribution 22	2
	5.1	Multiple Completion	4
	5.2	Problems	
6	Vita	al Statistics 25	5
	6.1	Growth Rates	6

1 Introduction to Probability

1.1 Permutation-Combination

1. Three objects can be placed in 2 positions in – ways.

	(a) 3	(b) 4	(c) 6	(d) 8		
2.	2. In how many ways can a team of 2 be formed from 4 people?					
	(a) 4	(b) 6	(c) 8	(d) 12		
3.	$^{n}p_{r}=$					
	(a) $\frac{n!}{(n-r)!}$	(b) $\frac{n!}{(n+r)!}$	(c) $\frac{n!}{r!}$	(d) $\frac{n!}{(r-n)!}$		
4.	$^{n}C_{r} =$					
	(a) $\frac{n!}{(n-1)!(n+r)!}$	(b) $\frac{r!}{n!(n-r)!}$	(c) $\frac{n!(n-1)!}{r!}$	(d) $\frac{n!}{(r-n)!}$		
	1.2 Conceptual	Questions				
5.	What is the probabi	lity that at least one	item in a sample spac	e will occurr?		
	(a) 0	(b) 0.5	(c) 1	(d) Undefined		
6.	The probability of tw	vo disjoint sets happe	ning together is:			
	(a) 0.5	(b) 0	(c) 1	(d) $0 \le x < 1$		
7.	How many additive	laws of probability are	e there?			
	(a) 1	(b) 2	(c) 3	(d) 4		
8.	$P(A \cup B) = P(A) + P($	B) implies A & B are	_			
	(a) Disjoint	(b) Independent	(c) Joint	(d) Independent		
9.	$P(A\cap B)=P(A)\times P($	B) implies A & B are	_			
	(a) Disjoint	(b) Independent	(c) Joint	(d) Independent		
10.		a of classical approach				
	(a) $P = \frac{\text{No. of favorable}}{\text{Total no. of possible}}$		(b) $P = \frac{\text{No. of total out}}{\text{No. of favorable of}}$			
	(c) $P = \lim_{n(S) \to \infty} \frac{n(A)}{n(S)}$		(d) $P = \lim_{n(A) \to \infty} \frac{n(A)}{n(S)}$	<u>)</u>		
11.	Which is the formula	a of empirical/relative	e frequency approach	of probability?		
	(a) $P = \frac{\text{No. of favorable}}{\text{Total no. of possible}}$	outcomes ble outcomes	(b) $P = \frac{\text{No. of total out}}{\text{No. of favorable of}}$	comes utcomes		
	(c) $P = \lim_{n(S) \to \infty} \frac{n(A)}{n(S)}$		(d) $P = \lim_{n(A) \to \infty} \frac{n(A)}{n(S)}$			
12.	What is the correct	formula for condition	al probability?			
	(a) $P(A B) = \frac{P(A \cap B)}{P(B A)}$	(b) $P(A B) = \frac{P(A \cap B)}{P(A)}$	(c) $P(A B) = \frac{P(A \cap B)}{P(B)}$	(d) $P(A B) = \frac{P(B A)}{P(B A)}$		
13.	The third axiom of p	orobability is –				
	(a) $0 \le P(A) \le 1$		(b) $P(S) = 1$			
	(c) $P(A_1UA_2U\cdots UA_n)$	$) = \sum_{i=1}^{\infty} P(A_i)$	(d) $P(A) = 1 - P(A)$			

14.	Possible value of pro	bability			
	i1 ii. 0.5 iii. 0				
	Which one is correct	?			
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
15.	An act repeated und	ler some specific cond	itions is called –		
	(a) Event	(b) Experiment	(c) Sample	(d) Sample space	
16.	P(0) implies –				
	(a) A certain event	(b) An uncertain event	(c) An impossible event	(d) A probable event	
17.	Events having some	common elements are	called –		
	(a) Complementary ever	nts	(b) Mutually exclusive e	events	
	(c) Exhaustive events		(d) Non-Mutually exclu	sive events events	
18.	The minimum value	of probability is			
	(a) $-\alpha$	(b) 1	(c) 0	(d) -1	
19.	Each element of sam	ple space is called–			
	(a) Trial	(b) Experiment	(c) Variable	(d) Sample Point	
20.	Two events not ocur	ring together are calle	$\mathrm{ed}-$		
	(a) dependent Events		(b) Independent Events		
	(c) Mutually Exclusive	Events	(d) Marginal Events		
21.	If A and B are indep	pendent, which formul	a is correct?		
	(a) $P(A \cap B) = P(A) \cdot A$	P(B)	(b) $P(A \cap B) = P(\bar{A}) \cdot P(B)$		
	(c) $P(A \cap B) = P(A) \cdot A$	$P(ar{B})$	(d) $P(A \cap \bar{B}) = P(A) \cdot P(B)$		
22.	Which of the following	ng are disjoint events	?		
	(a) $A = \{1, 2, 3\}, B = \{4, 2, 3\}, $	$4,5$ }	(b) $A = \{a, b\}, B = \{b, c\}$,	
	(c) $A = \{0\}, B = \{0, 1\}$		(d) $A = \{x, y\}, B = \{x, y\}$	y }	
23.	Which of the following	ng are disjoint events	?		
	(a) $P = \{1, 2\}, Q = \{2, 3\}$		(b) $P = \{x\}, Q = \{x, y\}$		
	(c) $P = \{1, 3\}, Q = \{3, 5\}$	5}	(d) $P = \{m, n\}, Q = \{p, q\}$	q	
24.	Let the sample space disjoint?	e be $S = \{1, 2, 3, \dots, 1\}$	0}. Which of the following	lowing pairs of events are	
	i. A: Number is prime,ii. A: Number is even,	B: Number is greater B: Number is divisible han 5, B: Number is g	by 3		
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
25.	Let $S = \{1, 2, \dots, 10\}$.	Which of the following	ng event pairs are disj	oint?	
	ii. A : Number is less th	le by 2, B: Number is an 7, B: Number is one, B: Number is a mu	ld		
	Which one is correct				
	(a) i and iii	(b) i and ii	(c) ii and iii	(d) i, ii and iii	

26.	6. Let the sample space be $S=\{1,2,3,\ldots,10\}$. Which of the following pairs of events are disjoint?			
	i. A: Number is a multiii. A: Number is less thiii. A: Number is a squa		eater than 8	
	Which one is correct	?		
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
27.	Let $S = \{1, 2, 3, \dots, 10\}$. Which of the follow	ing pairs of events ar	e disjoint?
	(a) A : Multiples of 3, E	3: Multiples of 5		
	(b) A : Prime numbers,	B: Even numbers greate	r than 2	
	(c) A: Numbers less tha	an 4, B: Numbers greate	r than 6	
	(d) All of the above			
	1.3 Numbers			
28.		v	reater than the averag	itive integers. What is the ge (arithmetic mean) of all
	(a) $\frac{1}{3}$	(b) $\frac{3}{4}$	(c) $\frac{4}{10}$	(d) $\frac{1}{2}$
29.		eople in a city walk to does not walk to the		picked randomly, what is
	(a) 0.95	(b) 0.10	(c) 0.90	(d) 0.01
30.	-	_	online classes over in-pity that they prefer in	person classes. If a student a-person classes?
	(a) 0.15	(b) 0.85	(c) 0.75	(d) 0.25
31.			manufactured items a that it is not defective	are defective. If an item is ve?
	(a) 0.08	(b) 0.92	(c) 0.80	(d) 0.12
32.	_	_	-	appointments. If a patient evening appointments?
	(a) 0.12	(b) 0.78	(c) 0.88	(d) 0.18
33.			stomers in a store pay y that they pay using	y with cash. If a customer another method?
	(a) 0.050	(b) 0.500	(c) 0.975	(d) 0.025
	1.4 Coin-Die			
34.	Tossing a die r times	generates how many	outcomes?	
	(a) $6 \times r$	(b) r^6	(c) 6^r	(d) 2^r
35.	Tossing a coin r time	es generates how man	y outcomes?	
	(a) $2 \times r$	(b) r^2	(c) 2^r	(d) 6^r

36.	A coin is thrown thr	ice. How many outco	mes are generated?	
	(a) 3	(b) 4	(c) 8	(d) 9
37.	A coin is thrown twi	ce. What is the proba	ability of getting 2 hea	ads?
	(a) $\frac{1}{4}$	(b) $\frac{1}{3}$	(c) $\frac{1}{2}$	(d) $\frac{2}{4}$
38.	A fair coin is tossed	twice. What is the pr	obability of getting a	t least one tail?
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{3}{4}$	(d) $\frac{1}{3}$
39.	Two fair coins are to head?	ossed simultaneously.	What is the probabi	lity of getting exactly one
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{3}{4}$	(d) $\frac{1}{3}$
40.	A coin is flipped twice	ce. What is the proba	ability of getting head	s first and tails second?
	(a) $\frac{1}{4}$	(b) $\frac{1}{3}$	(c) $\frac{1}{2}$	(d) $\frac{2}{4}$
41.	If two fair coins are	tossed together, what	is the probability of	getting at least one head?
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{3}{4}$	(d) $\frac{1}{4}$
42.	A fair coin is tossed	twice. What is the pr	obability of getting to	wo tails?
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{1}{4}$	(d) $\frac{2}{4}$
43.	Two fair coins are to	ssed. What is the pro	bability that at least o	one of them lands on tails?
	(a) $\frac{3}{4}$	(b) $\frac{1}{2}$	(c) $\frac{1}{4}$	(d) $\frac{1}{3}$
44.	A die is thrown twice	e. This is called –		
	(a) An experiment	(b) sample space	(c) A random experiment	-(d) A trial
45.	If a neutral die is the	rown, the probability	of having a digit grea	ter than 6 is
	(a) $\frac{1}{6}$	(b) $\frac{0}{6}$	(c) $\frac{2}{3}$	(d) $\frac{3}{6}$
46.	· ·	(b) $\frac{0}{6}$ generates how many		(d) $\frac{3}{6}$
46.	· ·	. , 0		(d) $\frac{3}{6}$ (d) 2
	Tossing a coin twice (a) 4	generates how many	outcomes? (c) 8	•
	Tossing a coin twice (a) 4	generates how many (b) 16	outcomes? (c) 8	•
	Tossing a coin twice (a) 4 A die is rolled twice.	generates how many (b) 16 How many possible	outcomes? (c) 8 outcomes are there?	(d) 2
47.	Tossing a coin twice (a) 4 A die is rolled twice. (a) 6 1.5 Balls-Cards There are 3 red, 4 b	generates how many (b) 16 How many possible (b) 12	outcomes? (c) 8 outcomes are there? (c) 36	(d) 2
47.	Tossing a coin twice (a) 4 A die is rolled twice. (a) 6 1.5 Balls-Cards There are 3 red, 4 b	generates how many (b) 16 How many possible (b) 12 black, and 5 white ba	outcomes? (c) 8 outcomes are there? (c) 36	(d) 2 (d) 18
47. 48.	Tossing a coin twice (a) 4 A die is rolled twice. (a) 6 1.5 Balls-Cards There are 3 red, 4 h what is the probabilit (a) $\frac{1}{66}$ There are 3 red, 4 h	generates how many (b) 16 How many possible (b) 12 black, and 5 white backy that both are red? (b) $\frac{1}{22}$	outcomes? (c) 8 outcomes are there? (c) 36 lls in an urn. If two (c) $\frac{2}{22}$ lls in an urn. If two	(d) 2 (d) 18 balls are randomly taken,
47. 48.	Tossing a coin twice (a) 4 A die is rolled twice. (a) 6 1.5 Balls-Cards There are 3 red, 4 h what is the probabilit (a) $\frac{1}{66}$ There are 3 red, 4 h	generates how many (b) 16 How many possible (b) 12 black, and 5 white batty that both are red? (b) $\frac{1}{22}$ black, and 5 white bath	outcomes? (c) 8 outcomes are there? (c) 36 lls in an urn. If two (c) $\frac{2}{22}$ lls in an urn. If two	 (d) 2 (d) 18 balls are randomly taken, (d) 3/11
47. 48.	Tossing a coin twice (a) 4 A die is rolled twice. (a) 6 1.5 Balls-Cards There are 3 red, 4 be what is the probabilit (a) $\frac{1}{66}$ There are 3 red, 4 be what is the probabilit (a) $\frac{1}{66}$	generates how many (b) 16 How many possible (b) 12 black, and 5 white backy that both are red? (b) $\frac{1}{22}$ black, and 5 white backy that neither is red (b) $\frac{6}{11}$ e and 4 green marbles	outcomes? (c) 8 outcomes are there? (c) 36 lls in an urn. If two (c) $\frac{2}{22}$ lls in an urn. If two? (c) $\frac{3}{11}$	 (d) 2 (d) 18 balls are randomly taken, (d) 3/11 balls are randomly taken,

	(a) $\frac{24}{91}$	(b) $\frac{58}{91}$	(c) $\frac{48}{91}$	(d) $\frac{72}{91}$
53.	A box contains 9 bl probability that at le		If two balls are rand	omly picked, what is the
	(a) $\frac{3}{11}$	(b) $\frac{1}{3}$	(c) $\frac{18}{33}$	(d) $\frac{5}{11}$
	Answer the next que	estions based on the fo	ollowing information.	
	A card is drawn from of	f pack of playing cards.		
54.	What is the probabil	lity that the card is a	King?	
	(a) 0.0192	(b) 0.25	(c) 0.5	(d) 0.0769
55.	P(The card is not from	om Diamonds)–		
	(a) $\frac{1}{2}$	(b) 0	(c) $\frac{3}{4}$	(d) $\frac{1}{4}$
56.	P(The card is red or	Clubs)		
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{2}{3}$	(d) $\frac{3}{4}$
	Answer the next TW	O questions based or	the following inform	ation.
	An urn contains 5 red, '	7 blue, and 8 green balls.		
57.	What is the probabil	lity that the ball draw	n is red?	
	(a) 0.26	(b) 0.25	(c) 0.2	(d) 0.4
58.	P(The ball drawn is	${f not} {f blue})-$		
	(a) $\frac{13}{20}$	(b) 0.5	(c) $\frac{7}{20}$	(d) $\frac{8}{20}$
	1.6 Set-Problems	S		
59.	For two independent	events A and B , which	ch one is correct?	
	(a) $P(A \cap B) = P(A) \times$	P(B)	(b) $P(A \cup B) = P(A) +$	P(B)
	(c) $P(A \cap B) = P(A) -$	P(B)	(d) $P(A \cup B) = P(A) \times$	P(B)
60.	For two mutually exc	clusive events A and B	B, which one is correc	t?
	(a) $P(A \cap B) = P(A) \times$	P(B)	(b) $P(A \cup B) = P(A) +$	P(B)
	(c) $P(A \cap B) = P(A) -$	P(B)	(d) $P(A \cup B) = P(A) \times$	P(B)
61.	Which of the following	ng correct?		
	(a) $\frac{P(A)}{P(B)} = \frac{P(B A)}{P(A B)}$	(b) $\frac{P(A)}{P(A B)} = \frac{P(B A)}{P(B)}$	(c) $\frac{P(A)}{P(B)} = \frac{P(B A)}{P(B)}$	(d) $\frac{P(A)}{P(B)} = \frac{P(A B)}{P(B A)}$
62.	The probability of rawill rain on both Mo		day next week. What	t is the probability that it
	(a) $\frac{1}{6}$	(b) $\frac{1}{36}$	(c) $\frac{5}{6}$	(d) $\frac{1}{17}$

51. A box has 7 black and 5 white balls. If one ball is drawn at random, what is the probability

52. A bag contains 8 red and 6 white balls. If two balls are drawn at random, what is the

(c) $\frac{1}{2}$

(d) $\frac{1}{3}$

that it is not black?

(b) $\frac{5}{12}$

probability that they are of different colors?

(a) $\frac{7}{12}$

63. Given $P(A \cup B) = 0.7$, $P(A \cap B) = 0.2$, what are $P(A)$ and $P(B)$?				
	(a) $P(A) = 0.5 \text{ and } P(A)$	(3) = 0.4	(b) $P(A) = 0.4$ and $P(A) = 0.4$	(3) = 0.6
	(c) $P(A) = 0.4$ and $P(B) = 0.4$	B) = 0.3	(d) $P(A) = 0.7$ and $P(A) = 0.7$	(3) = 0.3
64.	If $P(A) = 0.4$, $P(B) =$	0.5, and $P(A \cup B) = 0.7$	7, what is $P(A \cap B)$?	
	(a) 0.2	(b) 0.1	(c) 0.3	(d) 0.4
65.	Given $P(A) = 0.3, P(A) = 0.3$	$A \cup B) = 0.6$, and $P(A \cap B) = 0.6$	P(B) = 0.1, what is $P(B)$	3)?
	(a) 0.6	(b) 0.4	(c) 0.3	(d) 0.2
66.	If $P(A) = 0.5$, $P(B) =$	0.6, and $P(A \cap B) = 0.3$	B, what is $P(A \cup B)$?	
	(a) 0.8	(b) 0.9	(c) 0.7	(d) 1
67.	If $P(A) = 0.2$, $P(B) =$	0.3, and $P(A \cup B) = 0.4$	4, what is $P(A \cap B)$?	
	(a) 0.9	(b) 0.2	(c) 0.3	(d) 0.1
68.	Given $P(A) = 0.7, P(A) = 0.7$	$A \cup B) = 0.9$, and $P(A \cap B) = 0.9$	P(B) = 0.5, what is $P(B)$	3)?
	(a) 0.8	(b) 0.6	(c) 0.7	(d) 0.5
	Answer the next two	questions based on t	he following informati	ion
	For	two exhaustive evenst A	& B, $P(A) = 0.7$ and P	(B) = 0.4
69.	$P(A \cap B) = ?$			
	(a) 0.1	(b) 0.3	(c) 0.6	(d) 1
70.	The events A & B ar	re –		
	i. independentii. dependentiii. not mutually exclusi	ve		
	Which one is correct	?		
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
		-	e following information	1
	$P(A) = \frac{1}{3}, P(B) = \frac{1}{2} \& F$	$P(A \cup B) = \frac{7}{12}$		
71.	$P(A \cap B) = ?$			
	(a) $\frac{5}{12}$	(b) $\frac{1}{2}$	(c) $\frac{1}{4}$	(d) $\frac{15}{16}$
72.	$P(A \cap \bar{B}) = ?$		_	
	(a) $\frac{1}{4}$	(b) $\frac{3}{4}$	(c) $\frac{5}{6}$	(d) $\frac{1}{12}$
73.		lity that B occurs or A		
	(a) $\frac{3}{4}$	(b) $\frac{7}{12}$	(c) $\frac{5}{12}$	(d) $\frac{11}{12}$
	Answer the next three $P(C) = \frac{2}{5}, P(D) = \frac{3}{4} \& F$		e following information	1
74		(0 0 2) 10		
14.	$P(C \cap D) = ?$ (a) $\frac{1}{10}$	(b) $\frac{1}{4}$	(c) $\frac{7}{20}$	(d) $\frac{4}{5}$
75		(~/ 4	(~) 20	(~ / 5
10.	$P(C \cap \bar{D}) = ?$ (a) $\frac{1}{10}$	(b) $\frac{2}{5}$	(c) $\frac{2}{20}$	(d) $\frac{3}{10}$
	10	\~/ 5	(-) 20	10

76.	What is the probabi	lity that D occurs or	C does not occur?	
	(a) $\frac{17}{20}$	(b) $\frac{7}{10}$	(c) $\frac{3}{4}$	(d) $\frac{11}{20}$
	Answer the next thr	ee questions using the	e following information	n:
	$P(E) = \frac{1}{3}, P(F) = \frac{1}{4} \& F$	$P(E \cap F) = \frac{1}{10}$		
77.	$P(E \cup F) = ?$			
	(a) $\frac{1}{58}$	(b) $\frac{3}{10}$	(c) $\frac{58}{60}$	(d) $\frac{58}{120}$
78.	$P(E \cap \bar{F}) = ?$			
	(a) $\frac{7}{40}$	(b) $\frac{7}{30}$	(c) $\frac{3}{10}$	(d) $\frac{1}{30}$
79.	What is the probabi	lity that F occurs or	E does not occur?	
	(a) $\frac{11}{30}$	(b) $\frac{19}{30}$	(c) $\frac{13}{40}$	(d) $\frac{23}{30}$
80.	An un contains 10 regetting two red balls		Two balls are drawn;	what is the probability of
	(a) $\frac{3}{7}$	(b) $\frac{4}{7}$	(c) $\frac{20}{21}$	(d) $\frac{2}{21}$
	.			
	1.7 Situation Set	t		
	Answer the next two	o questions based on t	the following informat	ion
	For two	o comprehensive events 2	A and $B, P(A) = 0.8$, and	P(B) = 0.6;
81.	What is the value of	$P(A \cap B)$?		
	(a) 0.1	(b) 0.2	(c) 0.3	(d) 0.4
82.	The events A and B	are –		
	i. independentii. dependentiii. non-disjoint			
	Which one is correct	?		
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
	1.8 Multiple Con	mpletion		
83.	P(A) = 0 implies			
	i. A is an impossible ev ii. A would ocurr in ext iii. $P(\bar{A})$ is a certain ev	treme cases		
	Which one is correct	: ?		
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
84.	If A is an uncertain	event, which one is po	ossible?	
	i. $0 < P(A) < 1$ ii. $P(A) = 0.1$ iii. $P(A) = 0$			
	Which one is correct	:?		
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii

85.	5. If a die is thrown once, the probability of getting even numbers is –					
	i. A certain eventii. A composite eventiii. An uncertain event					
	Which one is correc	t?				
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii		
	2 Random Va	ariables				
	2.1 Concept of	Random Variable				
86.	Which is a discrete	random variable?				
	(a) Age of students		(b) Amount of Produc	tion in a factory		
	(c) Height of workers		(d) Page size in word p	processing softwares		
87.	A set of sample poir	nts tabulated along wi	th their respective pr	obabilities is an example of		
(a) Probability distribution (b) Probability function				n		
	(c) Frequency distribut	ion	(d) Marginal probabili	ty distribution		
88.	How many condition	ns does a probability	density function have	?		
	(a) 2	(b) 3	(c) 4	(d) 5		
89.	A coin is tossed twivalues of X are ther		appeared is denoted	by X. How many possible		
	(a) 1	(b) 2	(c) 0	(d) 3		
90.	A die is thrown thri possible values can		f times a 6 appears is	denoted by X . How many		
	(a) 1	(b) 2	(c) 3	(d) 4		
91.	Which one is a prop	erty of marginal prob	pability density functi	on?		
	(a) $\int_x f(x^2) dx = 1$	(b) $\int_x f(x^2) dx = 0.5$	(c) $\int_{x} f(x) dx = 1$	(d) $P(x \ge 1)$		
92.	Which one is NOT a	an example of a conti	nuous random variabl	le –		
	(a) Weight	(b) Height	(c) Time	(d) Size of television		
93.	Integrated value of	$\frac{1}{4}x^4$ -				
	(a) $\frac{1}{20}x^5$	(b) $\frac{1}{20}x^5 + c$	(c) $\frac{1}{5}x^4$	(d) $\frac{5}{4}x^5$		
94.	The conditions of a	probability distribution	on are-			
	i. $\sum P(X) = 1$					
	ii. $\sum P(X) = 0$					
	iii. $0 \le P(X) \le 1$					
	Which one is correc					
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii		

95.	The conditions for a cumulative distribution function (CDF) are—				
	i. $F(x)$ is non-decrease	sing.			
	ii. $0 \le F(x) \le 1$				
	iii. $\lim_{x \to \infty} F(x) = 1$				
	Which one is corre	ct?			
	(a) i and ii	(b) ii and iii	(c) i and iii	(d) i, ii, and iii	
96.	The properties of a	a discrete probability	y distribution table a	re-	
	i. $\sum P(X) = 1$				
	ii. $P(X) \ge 0$ for all X				
	iii. Each probability of	corresponds to a discret	e value.		
	Which one is corre				
	(a) i and ii	(b) ii and iii	(c) i and iii	(d) i, ii, and iii	
97.	What is $F(\infty)$ for a	a distribution function	on $F(x)$?		
	(a) $-\infty$	(b) -1	(c) 0	(d) 1	
98.	What is $F(-\infty)$ for	a distribution funct	tion $F(x)$?		
	(a) $-\infty$	(b) -1	(c) 0	(d) 1	
99.	How many types o	f random variables a	are there?		
	(a) 2	(b) 3	(c) 4	(d) 5	
100	. Which of the follo	owing is not a discre	te random variable?		
	(a) umber of students	\$	(b) Weight		
	(c) Number of heads	in coin toss	(d) Population		
101	. Which one is a pr	operty of a probabil	ity distribution?		
	(a) $P(x_i) = 0$	(b) $P(x_i \neq 1)$	(c) $\Sigma P(x_i) = 1$	(d) $\int_x P(X)dx \le 1$	
102	. Which one is not	a discrete random v	ariable?		
	(a) Summation two d	ie throw outcome	(b) Weight		
	(c) Number of heads	in five coin tosses	(d) Released version	n number of a software	
103	. Which one is not	a discrete random v	ariable?		
	(a) Number of studen	ts in a class	(b) Weight of a pac	kage	
	(c) Shoe size		(d) Total goals scor	ed in a match	
104	. Which variable ty	pe can skip certain	whole numbers?		
	(a) Number of chapte	rs read in a day	(b) Weight of a per	son	
	(c) Number of floors i	in a building	(d) Number of peop	ble boarding a train	
105	. Which one is an e	example of a discrete	e random variable?		
	(a) The amount of liq	uid in a glass	(b) Temperature re	adings at noon	
	(c) Number of defecti	ve items in a batch	(d) Exact age in year	ars	
106	. Identify which one	e is not a discrete va	ariable.		
	(a) Number of cookie	s eaten	(b) Height of studen	nts	
	(c) Total cars in a par	rking lot	(d) Number of sibli	ngs	
107	. Which one is a pr	operty of joint prob	ability distribution?		
	(a) $P(X_i, Y_j) < 1$	(b) $P(X_i, Y_j) = 0$	(c) $P(X_i, Y_j) < 0$	(d) $0 \le P(X_i, Y_j) \le 1$	

2.2 Situation Set

Answer the next two questions based on the following information

	108.	What	is	\mathbf{F}	(1)	Ì
--	------	------	----	--------------	-----	---

(a) 0.65

(b) 0.75

(c) 0.5

(d) 1

109. $P(X \le 1 \le 3) = -$

(a) 0.75

(b) 0.70

(c) 0.95

(d) 1

Answer the next three questions based on the following information

110. What is the value of m?

(a) $\frac{1}{3}$

(b) $\frac{5}{12}$

(c) $\frac{1}{4}$

(d) $\frac{1}{6}$

111. **Find** F(2).

(a) $\frac{1}{2}$

(b) $\frac{3}{4}$

(c) $\frac{5}{6}$

(d) $\frac{2}{3}$

112. What is P(X > 1)?

(a) $\frac{1}{2}$

(b) $\frac{5}{12}$

(c) $\frac{1}{3}$

(d) $\frac{7}{12}$

Answer the next three questions based on the following information

113. What is the value of c?

(a) $\frac{1}{3}$

(b) $\frac{1}{4}$

(c) $\frac{1}{20}$

(d) $\frac{1}{6}$

114. Find $P(2 < X \le 4)$.

(a) $\frac{5}{12}$

(b) $\frac{1}{2}$

(c) $\frac{5}{6}$

(d) $\frac{2}{3}$

115. What is $P(X \le 3)$?

(a) $\frac{9}{20}$

(b) $\frac{7}{10}$

(c) $\frac{1}{2}$

(d) $\frac{3}{4}$

Answer the next three questions based on the following information

116. What is the value of a?

(a) $\frac{2}{3}$

(b) $\frac{5}{6}$

(c) $\frac{1}{2}$

(d) 1

117. **Find** $P(2 < X \le 3)$

(a) $\frac{5}{6}$

(b) $\frac{2}{3}$

(c) $\frac{1}{2}$

(d) $\frac{1}{6}$

118. What is P(X<3	3)?		
(a) $\frac{5}{6}$	(b) $\frac{2}{5}$	(c) $\frac{1}{9}$	(d) $\frac{1}{7}$
Answer the next	t two questions base	d on the following in	nformation
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
110 What is E(2)?			
119. What is $F(2)$? (a) $\frac{2}{3}$	(b) $\frac{5}{6}$	(c) $\frac{1}{2}$	(d) 1
120. $P(1 < X \le 2)$			
(a) $\frac{5}{6}$	(b) $\frac{2}{3}$	(c) $\frac{1}{2}$	(d) $\frac{1}{6}$
Answer the next	t two questions base	d on the following in	nformation
		f(x) = kx; 0 < x < 5	
121. What is the val	lue of $P(2 < x < 3)$		
(a) $\frac{4}{5}$	(b) $\frac{3}{5}$	(c) $\frac{2}{5}$	(d) $\frac{1}{5}$
122. $P(X > 0)$			
(a) 0.99	(b) 0.5	(c) 1	(d) 0
Answer the next	t two questions using	g the following infor	mation
	$\begin{array}{c c} x & 1 \\ \hline P(x) & k \end{array}$	2 3 4 5 0 2k 3k 4k 5k 0	6 6k
123. What is the val	lue of k?		
(a) $\frac{7}{21}$	(b) $\frac{5}{21}$	(c) $\frac{1}{21}$	(d) 1
124. What is the typ	pe of variable X?		
(a) Discrete	(b) Discrete rand	om (c) Continuous	(d) Continuous randon
Answer the next	t THREE questions	using the following	information
	P(a)	$(x) = \frac{x+1}{k}; x = 1, 2, 3, 4$	ı
125. What is the val	lue of k?		
(a) 10	(b) 11	(c) 14	(d) 15
126. $F(2) = -$			
(a) $\frac{2}{14}$	(b) $\frac{3}{11}$	(c) $\frac{5}{14}$	(d) $\frac{5}{11}$
127. $P(x)$ is a -			
(a) Joint probabilit	ty distribution	(b) Cumulative	probability distribution
(c) Probability mas	ss function	(d) Probability	Density function

i. Binomial variate	a discrete random var	iable is–	
ii. Poisson variate			
iii. Normal variateWhich one is corn	enet?		
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
	. ,	(6) 11 6116 111	(a) 1, 11 and 111
129. $f(x) = 2x; 0 < X <$ (a) 3	(b) 0	(c) 1	(d) 0
130. $f(x) = 3x; 0 < X <$	<2; What is $F(2)$?		
(a) 6	(b) 3	(c) 1	(d) 0
131. $f(x) = x^2; 0 < X <$	<4; What is $F(4)$?		
(a) 16	(b) 0	(c) 4	(d) 1
132. $f(x) = 4 - x; 1 < X$	X < 5; What is $F(5)$?		
(a) 3	(b) 0	(c) 1	(d) 4
		on the following inform	nation:
$P(x,y) = \frac{1}{21}(x+y);$	x = 1, 2, 3 and y = 1, 2		
133. P (x)=?			
(a) $P(x) = \frac{2x+3}{21}$	(b) $P(x) = \frac{x+3}{27}$	(c) $P(x) = \frac{4x+3}{21}$	(d) $P(x) = \frac{2x+5}{21}$
134. P (y)=?			
(a) $\frac{y+2}{7}$	(b) $\frac{y+3}{7}$	(c) $\frac{3y+2}{7}$	(d) $\frac{y+2}{9}$
135. If $f(x) = kx^3; -1$	$\leq x \leq 1$, then k is		
i) positiveii) negativeiii) lies from -1 to 1			
(a) i	(b) ii	(c) iii	(d) i and ii
Answer the next	two questions based of	on the following inform	nation.
	$\begin{array}{ c c c }\hline x & 4 \\\hline P(X) & \frac{1}{6}\\\hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
136. The value of $P(3)$	< X < 5) is:		
(a) $\frac{1}{2}$	(b) $\frac{1}{6}$	(c) $\frac{1}{3}$	(d) 0
137. $P(x \neq 2)is$:			
(a) $\frac{5}{6}$		(b) 0	
(c) 1		(d) Can't be found f	rom this information

Multiple Completion 2.3

138. For a continuous random variable X with PDF f(x) = 2x, defined on [0,1]:

- i. $f(x) \ge 0$ for all $x \in [0,1]$ ii. $\int_0^1 f(x) dx = 1$ iii. P(X > 1) = 0

Which one is correct?

- (a) i and ii
- (b) i and iii
- (c) ii and iii
- (d) i, ii and iii

139. For a continuous random variable X with PDF f(x) = k(2-x) defined on $0 \le x \le 2$:

- i. The value of k is 1.
- ii. The cumulative distribution function $F(x) = x \frac{x^2}{4}$ for $0 \le x \le 2$.
- iii. $P(1 < X < 2) = \frac{3}{8}$

Which one is correct?

(a) i

- (b) i and ii
- (c) ii

(d) i, ii and iii

3 Mathematical Expectation

140. $E(X+Y) = ?$			
(a) $E(X) - E(Y)$	(b) $E(X) + E(Y)$	(c) $2E(X) - E(Y)$	(d) $E(X) \times E(Y)$
141. $E(4x+2Y) = ?$			
(a) $E(X) - E(Y)$	(b) $4E(X) + 2E(Y)$	(c) 2E(X) + 4E(Y)	(d) $E(X) \times E(Y)$
142. What is the expect from their mean?	sed value of of the squa	ared deviation of the v	alue of the random variable
(a) Arithmetic Mean	(b) Expectation	(c) Variance	(d) Co-variance
143. What is the minim	num value of variance	a random variable?	
(a) $-\infty$	(b) 1	(c) 0	(d) -1
144. If $y = ax + b$, what	is the value of $V(y)$?		
(a) $aV(X)$	(b) $a^2V(X)$	(c) $V(X)$	(d) a^2
145. If $y = ax + b$, what	is the value of $E(y)$?		
(a) $aE(X) + b$	(b) $a^2 E(X)$	(c) $E(X)$	(d) b
146. What is the value	of $V(5)$?		
(a) 0	(b) 25	(c) 5	(d) 1
147. If $P(x) = \frac{1}{n}$; $x = 1, 2$	$3, \cdots, n$, what is the v	value of $E(X)$?	
(a) $\frac{n}{2}$	(b) $\frac{n-1}{2}$	(c) $\frac{n+1}{2}$	(d) $n+1$
148. If $P(x) = \frac{4 - 5 - x }{k}$	$x; x = 2, 3, 4, \dots 8, \text{ what } 1$	is the value of k?	
(a) 5	(b) 8	(c) 16	(d) 24
149. Expected value of	a constant a is –		
(a) 1	(b) Variance	(c) a	(d) a+1
150. The variance of a	constant m is –		
(a) 0	(b) 1	(c) m	(d) m^2
151. What is $V(X - Y)$	equal to?		
(a) $V(X) + V(Y)$		(b) $V(X) + V(Y) - 2C$	Cov(X,Y)
(c) $V(X) - V(Y)$		(d) $V(X) + V(Y) + 2C$	Cov(X,Y)
152. What is the value	of $V(2X+5)$?		
(a) $4V(X) - 5$	(b) 20	(c) $4V(X)$	(d) 0
153. If $P(x) = \frac{1}{20}$; $x = 1, 2$	$2, 3, \cdots, 20$, what is the	standard deviation?	
(a) 1	(b) 5.77	(c) 7.75	(d) 12.57
154. Expectation measu	ires –		
(a) Dispersion	(b) Skewness	(c) Kurtosis	(d) Central tendency
155. If $E(X) = -0.5$, the	en $E(1-2X) = ?$		
(a) 0	(b) -1	(c) 2	(d) 1

	$E = 1, 2, \dots 10, \text{ then } E(X)$		(2) 11
(a) 10	(b) 5.5	(c) 0	(d) 11
	a of variance is correc		
			= V(X) + V(Y) + 2Cov(X, Y)
(c) $V(X + Y) =$	V(X) + V(Y) - 2Cov(X)	(Y) (d) $V(X+Y)$	= V(X) - V(Y) + 2Cov(X, Y)
158. X is a constar	nt; what is the value of	f $V(\frac{X}{2})$?	
i) 0 ii) $\frac{1}{2}$ iii) $\frac{1}{4}$			
(a) ii	(b) i	(c) iii	(d) i and iii
159. If $E(X) = 2$, $E(X) = 1$	$(X^2) = 8, V(X) =$		
(a) 0	(b) 2	(c) 4	(d) 8
160. If $E(X) = 3$. $E(X) = 3$.	$(X^2) = 11, V(X) =$		
(a) 2	(b) 5	(c) 6	(d) 4
161. If $E(X) = 4$, w	that is $E(3X-2)$?		
(a) 10	(b) 8	(c) 7	(d) 6
162. If $E(X) = 5$, $E(X) = 5$	$(X^2) = 30, V(X) =$		
(a) 3	(b) 5	(c) 4	(d) 6
163. If $E(X) = 6$, w	that is $E(\frac{X}{2}+1)$?		
(a) 4	(b) 3	(c) 2	(d) 5
• •	$(X^2) = 10, V(X) =$	· /	、 /
(a) 5	(b) 6	(c) 7	(d) 4
165. If $E(X) = 7$, w	what is $E(4X+3)$?	· /	<i>、,</i>
(a) 28	(b) 30	(c) 31	(d) 29
166. If $E(X) = 3$, w	what is $E(5-X)$?	· /	、 /
(a) 2	(b) 3	(c) 4	(d) 5
	ad $V(X) = 5$, what is E		· /
(a) 9	(b) 16	(c) 21	(d) 25
	ad $V(X) = 7$, what is E	(X^2) ?	<i>、,</i>
(a) 9	(b) 10	(c) 16	(d) 18
	ad $E(X^2) = 34$, what is	. ,	<i>、,</i>
(a) 6	(b) 9	(c) 10	(d) 7
	ad $E(X^2) = 14$, what is	V(X)?	· ,
(a) 10	(b) 9	(c) 8	(d) 7
	ad $V(X) = 12$, what is if	. ,	. ,
(a) 36	(b) 40	(c) 48	(d) 50
* *		* *	

179 If $D(x) = 4- 5-x $	2 2 4 0 mbot is th	o realize of E(V)?	
172. If $P(x) = \frac{4- 5-x }{k}$; $x =$ (a) 3	(b) 8	(c) 16	(d) 5
. ,	,	` ,	(3)
173. If $P(x) = \frac{6 - 7 - x }{k}$; $x = $ (a) 6	(b) 9	(c) 13	(d) 36
	` '	•	(2)
174. If $P(x) = \frac{3- 4-x }{k}$; $x =$ (a) 6	(b) 9	(c) 10	(d) 40
175. If the variance of X	· /	` ,	(4) 10
(a) 1	(b) 2	(c) 3	(d) 0
176. If $V(X) = 5$, what is	V(X+5)?	, ,	` /
(a) 0	(b) 5	(c) 10	(d) 25
177. If $V(X) = 5$,, what is	V(2X+5)?		
(a) 20	(b) 5	(c) 10	(d) 25
178. If $E(X) = 2$ and $E(X) = 2$	$(X^2) = 8$, then the value	e of the $V(X) = ?$	
(a) 0	(b) 2	(c) 4	(d) 8
179. If $E(X^2) = 20$ and V	E(X) = 11, what is $E(X)$)?	
(a) 3	(b) 4	(c) 5	(d) 6
180. If $E(X^2) = 50$ and V			(1)
(a) 5	(b) 6	(c) 7	(d) 8
181. If $E(X^2) = 25$ and V			(1) =
(a) 2	(b) 3	(c) 4	(d) 5
182. If $E(X^2) = 45$ and V (a) $4\sqrt{3}$	(X) = 21, what is $E(X)(b) 2\sqrt{6}$)? (c) $6\sqrt{2}$	(d) 7. \(\bar{2} \)
` '			(d) $7\sqrt{2}$
183. If $E(X^2) = 13$ and V (a) 2	(A) = 4, what is E(A) $(b) 3$	(c) 4	(d) 5
184. If $E(X) = 3$, what is	· /		(4) 0
(a) 1	(b) 3	(c) 5	(d) 7
185. If $E(X) = 4$, what is	$E(\frac{X}{2}+3)$?		
(a) 4	(b) 5	(c) 6	(d) 7
186. If $E(X) = -2$, what	is $E(3X + 7)$?		
(a) 1	(b) -1	(c) -2	(d) 4
187. If $E(X) = 6$, what is	E(5-X)?		
(a) 1	(b) 0	(c) -1	(d) 2
188. If $E(X) = 10$, what i	s $E(4X - 8)$?		
(a) 12	(b) 40	(c) 28	(d) 32
189. If $P(x) = \frac{1}{15}$; $x = 1, 2$	$,3,\cdots 15,$ what is the v	alue of the expectatio	n?

(b) 7.5

(c) 7

(d) 8

(a) 8.5

3.1 Situation Set

Answer the next THREE questions based on the following information

$$\begin{array}{cccccc} X & 0 & 1 & 2 \\ \hline P(x) & \frac{1}{3} & \frac{1}{4} & \frac{5}{12} \end{array}$$

		$P(x) = \frac{1}{3} = \frac{1}{4} = \frac{5}{12}$	
190. What is the valu	$\mathbf{e} \mathbf{of} E(X)$		
(a) $\frac{15}{12}$	(b) $\frac{13}{12}$	(c) $\frac{1}{12}$	(d) $\frac{11}{13}$
191. What is the valu	$\mathbf{e} \mathbf{of} E(X^2)$		
(a) $\frac{25}{12}$	(b) $\frac{13}{12}$	(c) $\frac{23}{12}$	(d) $\frac{25}{13}$
192. What is $V(2X)$?			
(a) 2.93	(b) 2.91	(c) 1.97	(d) 2.97
Answer the next	THREE question	s based on the following	g information
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
193. What is the valu	ue of $E(X)$?		
(a) 2.00	(b) 2.17	(c) 2.33	(d) 2.50
194. What is the valu	ue of $E(X^2)$?		
(a) 5.17	(b) 4.83	(c) 5.00	(d) 5.33
195. What is $V(3X)$?			
(a) 9.67	(b) 11.33	(c) 12.67	(d) 4.25
Answer the next	two questions bas	sed on the following inf	formation
	The probability fur	nction of random variable $P(x) = \frac{x}{k}; x = 1, 2, 3, 4$	x is given below:
196. What is the valu	\mathbf{k}^{2}		
(a) 6	(b) 10	(c) 15	(d) 20
197. What is $E(X)$?	` '	· /	· /
(a) 2.25	(b) 3.5	(c) 2.5	(d) 3.0
` '	* *	pased on the following i	, ,
		nction of random variable $P(x) = \frac{2x+1}{k}$; $x = 1, 2, 3, 4$	x is given below:
108 What is the value		10	
(a) 18	ie or κ: (b) 25	(c) 12	(d) 24
	(5) 20	(0) 12	(a) 24
199. What is $E(X)$? (a) 1.75	(b) 2.92	(c) 3.25	(d) 2.25
(ω) 1.10	(8) 2.02	(0) 0.20	(a) 2.20

200. What is $V(X)$?	?		
(a) 1.05	(b) 3.0	(c) 1.5	(d) 1.25
Answer the nex	kt two questions based	on the following info	rmation
	The probability funct	ion of random variable x	is given below
	P(z)	$x) = \frac{x-1}{k}; x = 2, 3, 4, 5$	
201. What is the va	alue of k?		
(a) 2	(b) 5	(c) 10	(d) 25
202. What is $E(X)$?	?		
(a) 0.425	(b) 0.525	(c) 0.725	(d) 0.625
3.2 Multiple	e Completion		
203. The possible r	elationship between E	$\mathcal{E}(X)$ and $\mathcal{E}(X^2)$	
i. $E(X) \ge E(X^2)$ ii. $E(X) \le E(X^2)$ iii. $E(X) = E(X^2)$)		
Which one is co			
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
	al Distribution	a binomial distributio	n?
(a) 1	(b) 2	(c) 3	(d) 4
205. What is the M	Iean of Binomial Dist	ribution?	
(a) np	(b) npq	(c) nq	(d) \sqrt{npq}
206. What is the V	ariance of Binomial D	distribution?	
(a) np	(b) npq	(c) nq	(d) \sqrt{npq}
207. What is the S	tandard Deviation of	Binomial Distribution	?
(a) np	(b) npq	(c) nq	(d) \sqrt{npq}
208. What is the C	oefficient of Variation	of Binomial Distribut	cion?
(a) np	(b) npq	(c) $\frac{q}{np}$	(d) \sqrt{npq}
209. Which is true	of mean (np) of Binor	mial Distribution?	
(a) $np = 0$	(b) $np < 0$	(c) $np > 0$	(d) $np \neq 0$
210. In a Binomial	distribution, how are	mean and variance re	lated?
(a) $Mean > Vara$	iance	(b) $Mean < Variable$	ance
(c) $Mean = Vari$	iance	(d) $Mean = 2 \times V$	Tariance

211. When does Bi	nomial distribution ter	nd to Poisson distrib	ution?
(a) $n \to \infty$ and p	$\rightarrow \infty$ (b) $n \rightarrow 0$ and $p -$	0 (c) $n \to \infty$ and p	$\rightarrow 0$ (d) $n \rightarrow 0$ and $p \rightarrow \infty$
Answer the nex	t two questions based	on the following info	ormation.
X is a binomial va	ariate with expectation 4	and standard deviation	$\sqrt{3}$.
212. What are the	values of the paramete	ers (mean and probab	oility)?
(a) $16, \frac{1}{4}$	(b) $16, \frac{3}{4}$	(c) $15, \frac{1}{4}$	(d) $10, \frac{1}{4}$
213. What is $P(X \neq$	€ 0)?		
(a) 0	(b) 0.01	(c) 0.99	(d) 1
214. The characteri	stics of binomial distr	ibution–	
i. $E(X) > V(X)$ ii. $E(X) = V(X)$ iii. $E(X) = np$			
Which one is co	orrect?		
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
215. What is true of	of binomial distribution	n?	
(a) There is one p	(a) There is one parameter (b) Number of trial is fixed		
(c) Mean is greater than variance (d) Skewness is negative			
	tewness of binomial dis		
(a) $\frac{(q-p)^2}{nn}$	(b) $\frac{(q-p)^2}{nn}$	(c) $\frac{(p+1)^2}{nna}$	(d) $\frac{(q+p)^2}{npq}$
217. When is a bine	omial distribution posi	itively skewed?	
(a) $p > q$	(b) p = q	(c) p < q	(d) $p+q < 1$
Answer the nex	t two questions based	on the following info	ormation
	In a binomial distrib	oution, $P(x=4) = \frac{1}{2}P(x)$	(x=5); n=10
218. What is the m	ean?		
(a) 6.25	(b) 5.15	(c) 8.52	(d) 5.22
219. $P(x=2) = -$			
(a) 0.0053	(b) 0.0069	(c) 0.0085	(d) 0.94
220. In a binomial	distribution with $p = 0$.3 and $n = 10$, what is	P(2)?
(a) 0.2335	(b) 0.2668	(c) 0.3828	(d) 0.1211
221. In a binomial	distribution with $p = 0$.4 and $n = 12$, what is	s P(3)?
(a) 0.0896	(b) 0.2131	(c) 0.1419	(d) 0.2942
222. In a binomial	distribution with $p = 0$.5 and $n = 8$, what is	P(4)?
(a) 0.2734	(b) 0.3125	(c) 0.2070	(d) 0.0898
223. In a binomial	distribution with $p = 0$.2 and $n=15$, what is	P(5)?
(a) 0.1789	(b) 0.1887	(c) 0.1032	(d) 0.2413

224. In a binomial di	${f stribution \ with \ } p =$	= 0.6 and $n = 9$, what is $n = 1$	P(6)?
(a) 0.2007	(b) 0.2508	(c) 0.2311	(d) 0.7682
225. In a binomial di	${f stribution\ with\ } p$ =	= 0.3 and $P(x) = 0.2508, n$	= 9, x = ?
(a) 18	(b) 10	(c) 13	(d) 6
226. In a binomial di	${f stribution\ with\ } p$ =	= 0.4 and $P(x) = 0.1419$, v	what is n ?
(a) 5	(b) 6	(c) 12	(d) 15
227. In a binomial di	${f stribution\ with\ } p =$	= 0.5 and $P(2) = 0.1093$, w	what is n ?
(a) 15	(b) 1	(c) 8	(d) 12
228. In a binomial di	${f stribution\ with\ } p$ =	= 0.2 and $P(x) = 0.9389$, n	a = ?
(a) 7	(b) 12	(c) 11	(d) 15
229. In a binomial di	${f stribution\ with\ } p$ =	= 0.6 and $P(5) = 0.02449$,	n = ?
(a) 3	(b) 9	(c) 10	(d) 15
4.4 (0.1)	G .		
4.1 Situation	Set		
Answer the next	THREE questions	based on the following	information
Tl	ne mean of a Binomia	al distribution is 40 and sta	ndard deviation 6.
230. What is the valu	ue of n ?		
(a) 200	(b) 300	(c) 400	(d) 500
231. What is the valu	ue of $1 - q$?		
(a) 0.5	(b) 0.2	(c) 0.3	(d) 0.1
232. What is the valu	ue of $P(X \le 40)$?		
(a) 0.52	(b) 0.54	(c) 0.45	(d) 0.91
4.2 Multiple	Completion		
233. In a binomial di	stribution with pa	rameters n and p :	
ii. The variance is g	ue is given by $E(X) = np(X)$ given by $V(X) = np(X)$ eviation is given by $V(X) = np(X)$	(1-p).	
Which one is cor			
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
234. Which of the fol	lowing statements	about a binomial distri	bution are true?
ii. The trials are de	f success remains con pendent on each othe trials is fixed in advan	er.	
Which one is cor	rect?		
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii

235	6. Consider a binomia	l experiment. Which	of the following states	ments is/are true?
	ii. The expected value i	exactly one of two possibles always greater than the sum of a binomial description of a binomial description.	e variance.	ted using the binomial formula.
	Which one is correct	t?		
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
236	6. Which of the follow	ving is/are correct abo	out the binomial distri	ibution?
		mized when $p = 0.5$. Ition becomes degenerate tion is given by $\sqrt{np(1-p)}$		
	Which one is correct	:?		
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
	5 Poisson Dis	stribution		
237	7. The no. of paramet	ers in a Poisson distri	ibution is —	
	(a) 1	(b) 2	(c) 3	(d) 4
238	3. What is the mean o	of Poisson distribution	ı	
	(a) $\frac{1}{\sqrt{m}}$	(b) <i>m</i>	(c) $\frac{1}{m}$	(d) $1 + \frac{1}{m}$
239	. Which relationship	between mean and va	ariance of Poisson Dis	tribution is correct?
	(a) $Mean > Variance$	(b) $Mean < Variance$	(c) $Mean = Variance$	(d) $Mean \neq Variance$
240	. What is the Varian	ce of Poisson Distribu	tion(with parameter	m)?
	(a) $\frac{1}{\sqrt{m}}$	(b) $\frac{1}{m}$	(c) m	(d) $\frac{1}{m+1}$
241	. What is the Standa	ard Deviation of Poisso	on Distribution(with]	parameter m)?
	(a) $\frac{1}{\sqrt{m}}$	(b) $\frac{1}{m}$	(c) \sqrt{m}	(d) $\frac{1}{m+1}$
242	2. Which one is true of	of the parameter (m)	of Poisson Distributio	n?
	(a) $m = 0$	(b) $m < 0$	(c) $m > 0$	(d) $m = 1$
243	3. The parameter of a	Poisson Distribution	is 5. What is its mea	n?
	(a) 2	(b) 5	(c) 2.24	(d) 25
244	. When does Binomia	al Distribution tend to	o Poisson Distribution	n?
	(a) $n \to \infty, p \to 0 \& np$	is finite	(b) $n \to \infty, p \to 0 \& np$	is infinite
	(c) $n \to \infty, p \to \infty \& n$	p is finite	(d) $n \to 0, p \to \infty \& np$	is infinite
245	The parameter of a	Poisson variate is 2.	What is its variance?	
	(a) 0	(b) 4	(c) $\sqrt{2}$	(d) 2
246	6. The parameter of a	Poisson variate is 5.	What is its variance?	
	(a) 10	(b) 5	(c) $\sqrt{5}$	(d) 25
247	7. A Poisson distribut	ion has a mean of 3.	What is the variance?	
	(a) 9	(b) 3	(c) $\sqrt{3}$	(d) 0

248. X is a Poisson	variate. $P(2) = P(4)$. What is the value of	of the parameter?	
(a) 12	(b) 3.46	(c) 3.6	(d) 4	
249. X is a Poisson	variate. $P(3) = P(5)$. What is the value of	f the parameter?	
(a) 4.5	(b) 5	(c) 2.3	(d) 4.1	
250. For a Poisson	variate X , if $P(1) = 1$	P(3), what is the varia	ance?	
(a) 2.5	(b) 3.2	(c) 2.45	(d) 4.5	
251. For a Poisson	variate X , if $P(2) = P$	y(3), what is the varian	nce?	
(a) 3	(b) 4	(c) 5	(d) 6	
Answer the nex	xt two questions base	d on the following info	ormation	
For a Poisson var	riate X, if $P(2) = P(5)$.			
252. What is stand	lard deviation?			
(a) 1.978	(b) 1.998	(c) 1.989	(d) 1.889	
253. What is the v	alue of $P(2)$?			
(a) 0.25	(b) 0.14	(c) 0.15	(d) 0.02	
254. The standard	deviation of a poisson	n distribution is 2. W	hat is the parameter?	
(a) 2	(b) 3	(c) 4	(d) 5	
255. Mean of a Poi	isson variate is a. Wh	at is its standard dev	iation?	
(a) 0	(b) a	(c) $a^{\frac{1}{2}}$	(d) a^2	
256. The standard	deviation of a Poisson	n distribution is 3. W	hat is the parameter?	
(a) 6	(b) 9	(c) 3	(d) 4	
257. For a Poisson	distribution with a m	nean of 5, what is the	variance?	
(a) 5	(b) 10	(c) 25	(d) 15	
258. If the variance	e of a Poisson distribu	ition is 4, what is $P(2)$?	
(a) 0.1465	(b) 0.1954	(c) 0.1839	(d) 0.2184	
259. If the variance	e of a Poisson distribu	ition is 3.5, what is P	(1)?	
(a) 0.1465	(b) 0.1057	(c) 0.1839	(d) 0.2184	
260. A Poisson dist	tribution has a mean	of 7. What is the star	ndard deviation?	
(a) 3.2	(b) 4.1	(c) 2.65	(d) 1.78	
261. If $P(2)$ in a Po λ ?	oisson distribution wi	th parameter λ equal	s 0.2240 , what is the par	ameter
(a) 2.4551	(b) 1.2515	(c) 1.2115	(d) 2.5112	
262. A Poisson dist	tribution has a mean	of 4. What is $P(3)$?		
(a) 0.1465	(b) 0.1954	(c) 0.1839	(d) 0.2381	
263. If the variance	e of a Poisson distribu	ition is 3, what is the	mean?	
(a) 3	(b) $\sqrt{3}$	(c) 2	(d) 6	
264. For a Poisson	distribution with mea	an 6, what is the prob	pability of $P(0)$?	
(a) 0.0895	(b) 0.012	(c) 0.0454	(d) 0.0024	

265. The mean of a Poisson distribution is 10. What is its standard deviation?				
(a) 5	(b) $\sqrt{10}$	(c) 10	(d) $\sqrt{20}$	
266. Given that	the parameter of a Poiss	son distribution is 8, v	what is the variance?	
(a) 4	(b) 8	(c) $\sqrt{8}$	(d) 16	
- A 7.6 1.				
5.1 Mult	iple Completion			
267. For a Poiss	son-distributed variable w	with mean $\lambda = 4$, which	of the following is true?	
i. $E(X) = 4$ ii. $V(X) = 2$ iii. $E(X^2) =$	18			
Which one	is correct?			
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
268. If $X \sim \mathbf{Pois}$	son(m=3), which of the	following holds?		
i. $E(X) = 3$ ii. $V(X) = 3$ iii. $E(X^2) =$	12			
Which one	is correct?			
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
269. For a Poiss	son distribution, which of	the following stateme	ents are true?	
ii. The distrib	and variance are always equa oution is always symmetric. ability of zero occurrences is			
Which one	is correct?			
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
270. A Poisson-	distributed random varia	able has mean $\lambda = 6$.	Among the following proper	rties
i. $E(X) = 6$ ii. $V(X) = 6$ iii. $P(X = 0)$	$=e^{-6}$			
Which one	is correct?			
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
271. For a Poiss	son process with $\lambda = 5$, where $\lambda $	hich of the following is	true?	
i. The standa ii. $P(X \ge 1)$ iii. $E(X^2) = 1$	and deviation is $\sqrt{5}$. = $1 - e^{-5}$.			
Which one	is correct?			
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
5.2 Prob	lems			
	e, 1 in 1000 houses in a ci probability that, in a cer		a year.If there are 2000 hou	ises,
(a) 0.036	(b) 0.040	(c) 0.027	(d) 0.091	

6 Vital Statistics

(a) Dependency rat			$\mathbf{tion} \ \mathbf{to} \ \mathbf{the} \ \mathbf{earnin}$ on density $\mathbf{(d)} \ \mathbf{Gro}$	
274. Which of the fo	llowing best descril	hes the dependenc	v ratio?	
	e elderly population to	-		
` '	e combined non-worki			king-age (15-64) pop-
(c) The proportion	of young dependents	(0-14) in the populat	ion	
(d) The total popu	lation divided by the	number of children (0)-14)	
275. City A has 12,0 is the dependence	_	d 0-14, 35,000 aged	i 15-64, and 5,00	0 aged 65+. What
(a) 0.31	(b) 0.48	(c) 0.60	(d) 0.25	
(a) 15,600	ependency ratio of number of depend (b) 20,000 wing 2 questions ba	ents (0-14 and 65-) (c) 26,000	(d) 30,0	000
1				
	City Population	on (in thousands)	Area (in km ² 400	
	Delta	800	320	
277. What is the pop	•	•	(1) 2	
(a) 2 people/km ²	(b) 4 people/km	(c) 2.5 peopl	e/km^2 (d) 2.2	$ m people/km^2$
278. Which city is le	ss densely populate			
(a) Gamma		(b) Delta		
(c) Both are equal		` '	be determined	
	wing two questions		_	
the population was	number of live births i 48,000.	n a year was 2,400. T	The number of wome	en aged 15-49 years ir
279. Calculate the G	eneral Fertility Rat	te (GFR) for the c	ity.	
(a) 40 per 1,000 wo	omen (b) 50 per 1,000	women (c) 60 per 1,0	000 women (d) 30 p	oer 1,000 women
280. If live births inc what is the new	-	le the number of w	omen aged 15-49	remains the same
(a) 55 per 1,000 wo	omen (b) 65 per 1,000	women (c) 50 per 1,0	000 women (d) 62.5	per 1,000 women
281. The population 8,000. What is the	of a city is 500,000 he Crude Birth Ra		of live births re-	corded in a year is
(a) $12 per 1,000$	(b) 16 per 1,000	(c) 20 per 1,0	000 (d) 22 p	per 1,000
282. What is the for:	mula of population	density?		
(a) $\frac{M}{F} \times 100$	(b) $\frac{F}{M} \times 100$	(c) $\frac{B}{P} \times 100$	(d) $\frac{P}{A}$	

	Age	0-14	15-24	25-34	35-44	45-54	55-64	65+	
	Populatation	31,500	40,000	48,000	41,000	32,000	25,000	16,000	
002 T 41	£-11:1-4-		. 411	1	<u>1:</u> -9				
(a) 35.54	$rac{1}{2} ext{following data}$	a, wnat is (b) 25.54%	_		y ratio: 23.24%		(d) 31	25%	
` /	Birth Rate (C	` /	O	(0)	20.2170		(4) 01	.2070	
(a) $\frac{B}{P} \times 1$,	(b) $\frac{B}{D} \times 10$	000	(c)	$\frac{P}{B} \times 100$		(d) $\frac{F}{P}$	× 100	
	one is a meas	· / 1			B ~ 100		(a) p	,, 100	
i) CBR ii) CDR iii) NRR		or or re	product						
(a) i		(b) ii		(c)	iii		(d) i a	nd ii	
286. The number of people living per unit area is called—									
(a) Popu	(a) Population Index			(b)	(b) Population Density				
(c) Huma	(c) Human Development Index				(d) Dependency Ratio				
	formula of G: $= \frac{B}{P} \times 1000$	FR is acc	urate?	(b)	GFR =	$\frac{B}{F_{15-49}} \times 1$	1000		
(c) GFR	(c) $GFR = \frac{B_i}{F_i} \times 1000$				(d) $GFR = \frac{G_i}{F15-49} \times 1000$				
		dren bor	n to eac	h 1000 ր	people in	n any co	untry or	region is called –	
(a) TFR		(b) GFR		(c)	CBR		(d) G]	RR	
289. A city has a dependency ratio of 0.48. If the working-age population (15–64) is 62,500, what is the number of dependents (ages 0–14 and 65+)?									
(a) 30,00	0	(b) 25,000		(c)	22,000		(d) 20	,000	
290. The dependency ratio of a town is 0.60. If there are 40,000 people aged 15–64, how many individuals are considered dependents?									
(a) 22,00	0	(b) 26,500		(c)	24,000		(d) 25	,000	
6.1 G	rowth Rate	${f s}$							
291. If n in $P_n = P_o(1+r)^n$ is split into infinite parts and r adjusted accordingly, what type of growth do we have?									
(a) Simp	le growth	(b) Arithm	netic grov	wth (c)	Exponen	tial growt	th (d) Ge	eometric growth	
Answer the next two questions based on the following information									
			Year pulation	1 100 1	2 3 10 120	130			
292. Which type of growth is seen here?									
	metic growth			vth (c)	Exponen	tial growt	th (d) No	one	
293. What is the rate of increase?									
(a) 1		(b) 0.1		(c)	10		(d) 1%	Ó	

295. If a population exponentially declines, when is it reduced to half?								
(a) $\frac{\log_{10} 2}{r}$	(b) $\frac{\log_e 2}{r}$	(c) $\frac{\log_e 2}{r^2}$	(d) $\frac{\log_e 3}{r}$					
296. How long does it take for a population to triple in exponential growth?								
(a) $\frac{\log_{10} 3}{r}$	(b) $\frac{\log_e 3}{r}$	(c) $\frac{\log_e 3}{r^2}$	(d) $\frac{\log_e 2}{r}$					
Answer the next two questions based on the following information								
	S	tatement						
297. Vital statistics reco	ords –							
i. marriageii. birthiii. sickness and death								
Which one is correct	t?							
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii					

(d) $\frac{\log_e 3}{r}$

294. In exponential growth, when is a population doubled?

(b) $\frac{\log_e 2}{r}$

(a) $\frac{\log_{10} 2}{r}$

Answer Key:

23. (d)
$$P = \{m, n\}, Q = \{p, q\}$$

48. (b)
$$\frac{1}{22}$$

3. (a)
$$\frac{n!}{(n-r)!}$$

49. (b)
$$\frac{6}{11}$$

$$(n-r)!$$

50. (b)
$$\frac{1}{3}$$

4. (a)
$$\frac{n!}{(n-1)!(n+r)!}$$

51. (b)
$$\frac{5}{12}$$

28. (d)
$$\frac{1}{2}$$

52. (c)
$$\frac{48}{91}$$

53. (d)
$$\frac{5}{11}$$

55. (c)
$$\frac{3}{4}$$

56. (d)
$$\frac{3}{4}$$

10. (a)
$$P = \frac{\text{No. of favorable outcomes}}{\text{Total no. of possible outcomes}} 33.$$
 (c) 0.975

11. (a)
$$P = \frac{\text{No. of favorable outcomes}}{\text{Total no. of possible outcomes}} 34.$$
 (c) 6^r

58. (a)
$$\frac{13}{20}$$

62. (b) $\frac{1}{36}$

64. (a) 0.2

65. (b) 0.4

66. (c) 0.7

67. (d) 0.1

12. (a)
$$P(A|B) = \frac{P(A \cap B)}{P(B|A)}$$

35. (c)
$$2^r$$

59. (a)
$$P(A \cap B) = P(A) \times P(B)$$

13. (c)
$$P(A_1UA_2U\cdots UA_n) = \sum_{i=1}^{\infty} P(A_i)(a)^{\frac{1}{4}}$$

60. (b)
$$P(A \cup B) = P(A) + P(B)$$

63. (a) P(A) = 0.5 and P(B) = 0.4

61. (d) $\frac{P(A)}{P(B)} = \frac{P(A|B)}{P(B|A)}$

38. (c)
$$\frac{3}{4}$$

39. (b)
$$\frac{1}{2}$$

40. (a)
$$\frac{1}{4}$$

41. (c)
$$\frac{3}{4}$$

42. (c)
$$\frac{1}{4}$$

43. (a)
$$\frac{3}{4}$$

21. (a)
$$P(A \cap B) = P(A) \cdot P(B)$$

22. (a) $A = \{1, 2, 3\}, B = \{4, 5\}$

45. (b)
$$\frac{0}{6}$$

71. (c) $\frac{1}{4}$ 120. (c) $\frac{1}{2}$ 95. (d) i, ii, and iii 96. (d) i, ii, and iii 72. (a) $\frac{1}{4}$ 121. (d) $\frac{1}{5}$ 97. (d) 1 122. (c) 1 73. (d) $\frac{11}{12}$ 98. (c) 0 123. (c) $\frac{1}{21}$ 74. (b) $\frac{1}{4}$ 99. (a) 2 124. (b) Discrete random 75. (c) $\frac{2}{20}$ 100. (b) Weight 125. (c) 14 76. (a) $\frac{17}{20}$ 101. (c) $\Sigma P(x_i) = 1$ 126. (c) $\frac{5}{14}$ 77. (c) $\frac{58}{60}$ 102. (d) Released version number of 125 of ware obability mass function 78. (b) $\frac{7}{30}$ 103. (b) Weight of a package 128. (a) i and ii 79. (d) $\frac{23}{30}$ 104. (c) Number of floors in a building (c) 1 80. (a) $\frac{3}{7}$ 105. (c) Number of defective items in 30 bacch 81. (d) 0.4 131. (d) 1 106. (b) Height of students 132. (c) 1 82. (c) ii and iii 107. (d) $0 \le P(X_i, Y_j) \le 1$ 133. (a) $P(x) = \frac{2x+3}{21}$ 83. (b) i and iii 108. (b) 0.75 134. (c) $\frac{3y+2}{7}$ 84. (a) i and ii 109. (a) 0.75 135. (a) i 85. (b) i and iii 110. (c) $\frac{1}{4}$ 86. (d) Page size in word processing softwares 136. (b) $\frac{1}{6}$ 137. (a) $\frac{5}{6}$ 87. (a) Probability distribution 112. (a) $\frac{1}{2}$ 138. (d) i, ii and iii 88. (b) 3 113. (c) $\frac{1}{20}$ 139. (c) ii 89. (d) 3 114. (a) $\frac{5}{12}$ 140. (b) E(X) + E(Y)90. (d) 4 115. (c) $\frac{1}{2}$ 141. (b) 4E(X) + 2E(Y)91. (c) $\int_{x} f(x) dx = 1$ 116. (c) $\frac{1}{2}$ 142. (c) Variance 92. (d) Size of television 117. (d) $\frac{1}{6}$ 143. (c) 0 118. (a) $\frac{5}{6}$ 93. (b) $\frac{1}{20}x^5 + c$ 144. (b) $a^2V(X)$

145. (a) aE(X) + b

119. (b) $\frac{5}{6}$

94. (b) i and iii

146. (a) 0 171. (c) 48 196. (b) 10 197. (d) 3.0 147. (c) $\frac{n+1}{2}$ 172. (d) 5 198. (d) 24 173. (d) 36 148. (c) 16 199. (b) 2.92 174. (b) 9 149. (c) a 200. (a) 1.05 175. (d) 0 150. (a) 0 201. (c) 10 176. (b) 5 151. (c) V(X) - V(Y)202. (c) 0.725 177. (a) 20 152. (c) 4V(X)203. (b) i and iii 178. (c) 4 153. (a) 1 204. (b) 2 179. (a) 3 154. (d) Central tendency 205. (a) np 180. (b) 6 206. (b) npq 155. (c) 2 207. (d) \sqrt{npq} 181. (c) 4 156. (b) 5.5 208. (c) $\frac{q}{np}$ 157. (b) $V(X+Y) = V(X) + V(Y) \frac{1}{8} 2C(N)(X\sqrt{p})$ 209. (c) np > 0183. (c) 4 158. (b) i 210. (a) Mean > Variance184. (a) 1 159. (c) 4 211. (c) $n \to \infty$ and $p \to 0$ 185. (b) 5 160. (a) 2 212. (a) $16, \frac{1}{4}$ 186. (a) 1 161. (a) 10 213. (c) 0.99 187. (c) -1 162. (b) 5 214. (b) i and iii 188. (d) 32 163. (a) 4 215. (c) Mean is greater than variance 189. (d) 8 164. (b) 6 216. (a) $\frac{(q-p)^2}{np}$ 190. (b) $\frac{13}{12}$ 165. (c) 31 217. (c) p < q191. (b) $\frac{13}{12}$ 166. (a) 2 218. (a) 6.25 167. (c) 21 192. (d) 2.97 219. (b) 0.0069 168. (c) 16 193. (b) 2.17 220. (c) 0.3828 169. (b) 9 194. (a) 5.17 221. (c) 0.1419

222. (a) 0.2734

195. (d) 4.25

170. (a) 10

223. (c) 0.1032	249. (a) 4.5	274. (b) The ratio of the combined non-working population
224. (b) 0.2508	250. (c) 2.45	
225. (b) 10	251. (a) 3	275. (b) 0.48
226. (c) 12	252. (a) 1.978	276. (c) 26,000
227. (c) 8	. ,	277. (b) 4 people/km 2
228. (d) 15	253. (c) 0.15	278. (b) Delta
,	254. (c) 4	279. (b) 50 per 1,000 women
229. (b) 9	255. (c) $a^{\frac{1}{2}}$	280. (d) 62.5 per 1,000 women
230. (c) 400	256. (b) 9	281. (b) 16 per 1,000
231. (d) 0.1	257. (a) 5	· · · · · · · · · · · · · · · · · · ·
232. (b) 0.54	258. (a) 0.1465	282. (d) $\frac{P}{A}$
233. (a) i and ii	259. (b) 0.1057	283. (b) 25.54%
234. (b) i and iii	. ,	284. (b) $\frac{B}{P} \times 1000$
235. (d) i, ii and iii	260. (c) 2.65	285. (c) iii
236. (d) i, ii and iii	261. (b) 1.2515	286. (b) Population Density
237. (a) 1	262. (b) 0.1954	. ,
238. (b) m	263. (a) 3	287. (b) $GFR = \frac{B}{F_{15-49}} \times 1000$
239. (c) Mean = Variance	264. (d) 0.0024	288. (c) CBR
. ,	265. (b) $\sqrt{10}$	289. (a) 30,000
240. (c) m	266. (b) 8	290. (c) 24,000
241. (c) \sqrt{m}	. ,	291. (c) Exponential growth
242. (c) $m > 0$	267. (b) i and iii	292. (a) Arithmetic growth
243. (b) 5	268. (d) i, ii and iii	293. (b) 0.1
244. (a) $n \to \infty, p \to 0 \& np$ is fini	ite ^{269.} (b) i and iii	. ,
245. (d) 2	270. (d) i, ii and iii	294. (b) $\frac{\log_e 2}{r}$
246. (b) 5	271. (d) i, ii and iii	295. (b) $\frac{\log_e 2}{r}$
247. (b) 3	272. (a) 0.036	296. (b) $\frac{\log_e 3}{r}$
248. (b) 3.46	273. (a) Dependency ratio	297. (d) i, ii and iii