PSC7475: Introduction to Causality Lecture 1

Prof. Weldzius

Villanova University

Slides Updated: 2025-01-22

Factual vs. Counterfactual

• Does the minimum wage increase the unemployment rate?

PSC7475: Introduction to Causality

2/19

- Does the minimum wage increase the unemployment rate?
 - Unemployment rate went up after the minimum wage increased
 - Would it have gone up if the minimum wage increase not occurred?

- Does the minimum wage increase the unemployment rate?
 - Unemployment rate went up after the minimum wage increased
 - Would it have gone up if the minimum wage increase not occurred?
- Does having girls affect a judge's rulings in court?

- Does the minimum wage increase the unemployment rate?
 - Unemployment rate went up after the minimum wage increased
 - Would it have gone up if the minimum wage increase not occurred?
- Does having girls affect a judge's rulings in court?
 - A judge with a daughter gave a pro-choice ruling.
 - Would they have done that if had a son instead?

- Does the minimum wage increase the unemployment rate?
 - Unemployment rate went up after the minimum wage increased
 - Would it have gone up if the minimum wage increase not occurred?
- Does having girls affect a judge's rulings in court?
 - A judge with a daughter gave a pro-choice ruling.
 - Would they have done that if had a son instead?
- Fundamental problem of causal inference:

- Does the minimum wage increase the unemployment rate?
 - Unemployment rate went up after the minimum wage increased
 - Would it have gone up if the minimum wage increase not occurred?
- Does having girls affect a judge's rulings in court?
 - A judge with a daughter gave a pro-choice ruling.
 - Would they have done that if had a son instead?
- Fundamental problem of causal inference:
 - Can never observe counterfactuals, must be inferred.

- Does having a criminal record affect job prospects?
- Experimental setting:

- Does having a criminal record affect job prospects?
- Experimental setting:
 - Randomly assign 4 hired "confederates" (2 White, 2 Black) to apply to different jobs in Milwaukee.

- Does having a criminal record affect job prospects?
- Experimental setting:
 - Randomly assign 4 hired "confederates" (2 White, 2 Black) to apply to different jobs in Milwaukee.
 - Men were matched on physical appearance, self-presentation, age, etc.

- Does having a criminal record affect job prospects?
- Experimental setting:
 - Randomly assign 4 hired "confederates" (2 White, 2 Black) to apply to different jobs in Milwaukee.
 - Men were matched on physical appearance, self-presentation, age, etc.
 - Confederates would alternate indicating they had a criminal record.

- Does having a criminal record affect job prospects?
- Experimental setting:
 - Randomly assign 4 hired "confederates" (2 White, 2 Black) to apply to different jobs in Milwaukee.
 - Men were matched on physical appearance, self-presentation, age, etc.
 - Confederates would alternate indicating they had a criminal record.
- Outcome of interest: receiving a callback from a potential employer.

3/19

- Does having a criminal record affect job prospects?
- Experimental setting:
 - Randomly assign 4 hired "confederates" (2 White, 2 Black) to apply to different jobs in Milwaukee.
 - Men were matched on physical appearance, self-presentation, age, etc.
 - Confederates would alternate indicating they had a criminal record.
- Outcome of interest: receiving a callback from a potential employer.

A tale of two applications

	Criminal Record	Callback?
Applicant 1		
Applicant 2		

A tale of two applications

A tale of two applications

	Criminal Record	Callback?
Applicant 1		
Applicant 2		

 Did the first applicant not callback the applicant because they had a criminal record?

• **Unit** (indexed by *i*): job application for employer

- **Unit** (indexed by *i*): job application for employer
- Treatment variable T_i : criminal record or not

- **Unit** (indexed by *i*): job application for employer
- Treatment variable T_i : criminal record or not
- Treatment group (treated units): applications with criminal record

- **Unit** (indexed by *i*): job application for employer
- Treatment variable T_i: criminal record or not
- Treatment group (treated units): applications with criminal record
- Control group (untreated units): applications without criminal record

- **Unit** (indexed by *i*): job application for employer
- Treatment variable T_i: criminal record or not
- Treatment group (treated units): applications with criminal record
- Control group (untreated units): applications without criminal record
- Outcome variable Y_i: callback

- **Unit** (indexed by *i*): job application for employer
- Treatment variable T_i: criminal record or not
- Treatment group (treated units): applications with criminal record
- Control group (untreated units): applications without criminal record
- Outcome variable Y_i: callback

	T_i (ex-felon)	Y_i (callback)
Ex-felon applicant	1	0
Non-ex-felon applicant	0	1

• What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would an employer treat criminal & noncriminal applicants differently?

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would an employer treat criminal & noncriminal applicants differently?
- Two potential outcomes:

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would an employer treat criminal & noncriminal applicants differently?
- Two potential outcomes:
 - $Y_i(1)$: would applicant i get a callback if applied as an ex-felon?

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would an employer treat criminal & noncriminal applicants differently?
- Two potential outcomes:
 - $Y_i(1)$: would applicant i get a callback if applied as an ex-felon?
 - $Y_i(0)$: would applicant i get a callback if applied not as an ex-felon?

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would an employer treat criminal & noncriminal applicants differently?
- Two potential outcomes:
 - $Y_i(1)$: would applicant i get a callback if applied as an ex-felon?
 - $Y_i(0)$: would applicant i get a callback if applied not as an ex-felon?
- Causal effect: $Y_i(1) Y_i(0)$

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would an employer treat criminal & noncriminal applicants differently?
- Two potential outcomes:
 - $Y_i(1)$: would applicant i get a callback if applied as an ex-felon?
 - $Y_i(0)$: would applicant i get a callback if applied not as an ex-felon?
- Causal effect: $Y_i(1) Y_i(0)$
 - $Y_i(1) Y_i(0) = 0 \rightsquigarrow$ criminal record has no impact on callback

6/19

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would an employer treat criminal & noncriminal applicants differently?
- Two potential outcomes:
 - $Y_i(1)$: would applicant i get a callback if applied as an ex-felon?
 - $Y_i(0)$: would applicant i get a callback if applied not as an ex-felon?
- Causal effect: $Y_i(1) Y_i(0)$
 - $Y_i(1) Y_i(0) = 0 \rightsquigarrow$ criminal record has no impact on callback
 - $Y_i(1) Y_i(0) = -1 \Leftrightarrow$ criminal record prevents callback

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would an employer treat criminal & noncriminal applicants differently?
- Two potential outcomes:
 - $Y_i(1)$: would applicant i get a callback if applied as an ex-felon?
 - $Y_i(0)$: would applicant i get a callback if applied not as an ex-felon?
- Causal effect: $Y_i(1)$ $Y_i(0)$
 - $Y_i(1) Y_i(0) = 0 \Leftrightarrow$ criminal record has no impact on callback
 - $Y_i(1) Y_i(0) = -1 \rightsquigarrow$ criminal record prevents callback
 - $Y_i(1) Y_i(0) = +1 \rightsquigarrow$ criminal record leads to callback

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would an employer treat criminal & noncriminal applicants differently?
- Two potential outcomes:
 - $Y_i(1)$: would applicant i get a callback if applied as an ex-felon?
 - $Y_i(0)$: would applicant i get a callback if applied not as an ex-felon?
- Causal effect: $Y_i(1) Y_i(0)$
 - $Y_i(1) Y_i(0) = 0 \rightsquigarrow$ criminal record has no impact on callback
 - $Y_i(1) Y_i(0) = -1 \Leftrightarrow$ criminal record prevents callback
 - $Y_i(1) Y_i(0) = +1 \rightsquigarrow$ criminal record leads to callback

	T_i (ex-felon)	Y_i (callback)	$Y_i(1)$	$Y_i(0)$
Ex-felon applicant	1	0	0	???
Non-ex-felon applicant	0	1	???	1

	T_i (ex-felon)	Y_i (callback)	$Y_i(1)$	$Y_i(0)$
Ex-felon applicant	1	0	0	???
Non-ex-felon applicant	0	1	???	1

• Fundamental problem of causal inference:

	T_i (ex-felon)	Y_i (callback)	$Y_i(1)$	$Y_i(0)$
Ex-felon applicant	1	0	0	???
Non-ex-felon applicant	0	1	???	1

• Fundamental problem of causal inference:

• We only observe one of the two potential outcomes.

	T_i (ex-felon)	Y_i (callback)	$Y_i(1)$	$Y_i(0)$
Ex-felon applicant	1	0	0	???
Non-ex-felon applicant	0	1	???	1

• Fundamental problem of causal inference:

- We only observe one of the two potential outcomes.
- Observe $Y_i = Y_i(1)$ if $T_i = 1$ or $Y_i = Y_i(0)$ if $T_i = 0$

	T_i (ex-felon)	Y_i (callback)	$Y_i(1)$	$Y_i(0)$
Ex-felon applicant	1	0	0	???
Non-ex-felon applicant	0	1	???	1

• Fundamental problem of causal inference:

- We only observe one of the two potential outcomes.
- Observe $Y_i = Y_i(1)$ if $T_i = 1$ or $Y_i = Y_i(0)$ if $T_i = 0$
- To infer causal effect, we need to infer the missing counterfactuals!

	T_i (ex-felon)	Y_i (callback)	$Y_i(1)$	$Y_i(0)$
Ex-felon applicant	1	0	0	???
Non-ex-felon applicant	0	1	???	1

Fundamental problem of causal inference:

- We only observe one of the two potential outcomes.
- Observe $Y_i = Y_i(1)$ if $T_i = 1$ or $Y_i = Y_i(0)$ if $T_i = 0$
- To infer causal effect, we need to infer the missing counterfactuals!

• Find a similar unit! → matching

- Find a similar unit! → matching
 - Mill's method of difference

- Find a similar unit! → matching
 - Mill's method of difference
- Did applicant fail to get a job offer because of his criminal record?

- Find a similar unit! → matching
 - Mill's method of difference
- Did applicant fail to get a job offer because of his criminal record?
 - \rightsquigarrow find a non-ex-felon who is just like ex-felon applicant.

- Find a similar unit! → matching
 - Mill's method of difference
- Did applicant fail to get a job offer because of his criminal record?
 - \rightsquigarrow find a non-ex-felon who is just like ex-felon applicant.
- NJ increased the minimum wage. Causal effect on unemployment?

- Find a similar unit! → matching
 - Mill's method of difference
- Did applicant fail to get a job offer because of his criminal record?
 - \rightsquigarrow find a non-ex-felon who is just like ex-felon applicant.
- NJ increased the minimum wage. Causal effect on unemployment?
 - \rightsquigarrow find a state similar to NJ that didn't increase minimum wage.

• The problem: imperfect matches!

- The problem: imperfect matches!
- Say we match i (treated) and j (control)

- The problem: imperfect matches!
- Say we match i (treated) and j (control)
- Selection Bias: $Y_i(1) \neq Y_j(1)$

- The problem: imperfect matches!
- Say we match *i* (treated) and *j* (control)
- Selection Bias: $Y_i(1) \neq Y_i(1)$
- Those who take treatment may be different that those who take control.

9/19

- The problem: imperfect matches!
- Say we match i (treated) and j (control)
- Selection Bias: $Y_i(1) \neq Y_j(1)$
- Those who take treatment may be different that those who take control.
- How can we correct for that?

- The problem: imperfect matches!
- Say we match i (treated) and j (control)
- Selection Bias: $Y_i(1) \neq Y_j(1)$
- Those who take treatment may be different that those who take control.
- How can we correct for that?

Break time

• Space here for a break in the action

• Question: can we effectively persuade people to change their minds?

- Question: can we effectively persuade people to change their minds?
- Hugely important question for political campaigns, companies, etc.

- Question: can we effectively persuade people to change their minds?
- Hugely important question for political campaigns, companies, etc.
- Psychological studies show it isn't easy.

- Question: can we effectively persuade people to change their minds?
- Hugely important question for political campaigns, companies, etc.
- Psychological studies show it isn't easy.
- **Contact Hypothesis**: outgroup hostility diminished when people from different groups interact with one another.

- Question: can we effectively persuade people to change their minds?
- Hugely important question for political campaigns, companies, etc.
- Psychological studies show it isn't easy.
- Contact Hypothesis: outgroup hostility diminished when people from different groups interact with one another.
- Today we'll explore this question the context of support for gay marriage and contact with a member of the LGBT community.

- Question: can we effectively persuade people to change their minds?
- Hugely important question for political campaigns, companies, etc.
- Psychological studies show it isn't easy.
- Contact Hypothesis: outgroup hostility diminished when people from different groups interact with one another.
- Today we'll explore this question the context of support for gay marriage and contact with a member of the LGBT community.
 - Y_i = support for gay marriage (1) or not (0)

- Question: can we effectively persuade people to change their minds?
- Hugely important question for political campaigns, companies, etc.
- Psychological studies show it isn't easy.
- Contact Hypothesis: outgroup hostility diminished when people from different groups interact with one another.
- Today we'll explore this question the context of support for gay marriage and contact with a member of the LGBT community.
 - Y_i = support for gay marriage (1) or not (0)
 - $T_i = \text{contact with member of the LGBT community (1) or not (0)}$

• What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would citizen *i* have supported gay marriage if they had contact with a member of the LGBT community?

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would citizen *i* have supported gay marriage if they had contact with a member of the LGBT community?
- Two potential outcomes:

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would citizen *i* have supported gay marriage if they had contact with a member of the LGBT community?
- Two potential outcomes:
 - $Y_i(1)$: would i have supported gay marriage if they **had** contact with a member of the LGBT community?

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would citizen *i* have supported gay marriage if they had contact with a member of the LGBT community?
- Two potential outcomes:
 - $Y_i(1)$: would i have supported gay marriage if they **had** contact with a member of the LGBT community?
 - Y_i(0): would i have supported gay marriage if they didn't have contact with a member of the LGBT community?

Causal effects and counterfactuals

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would citizen *i* have supported gay marriage if they had contact with a member of the LGBT community?
- Two potential outcomes:
 - $Y_i(1)$: would i have supported gay marriage if they **had** contact with a member of the LGBT community?
 - $Y_i(0)$: would i have supported gay marriage if they **didn't have** contact with a member of the LGBT community?
- Causal effect for citizen $i: Y_i(1) Y_i(0)$

Causal effects and counterfactuals

Causal effects and counterfactuals

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would citizen i have supported gay marriage if they had contact with a member of the LGBT community?
- Two potential outcomes:
 - $Y_i(1)$: would i have supported gay marriage if they **had** contact with a member of the LGBT community?
 - $Y_i(0)$: would i have supported gay marriage if they **didn't have** contact with a member of the LGBT community?
- Causal effect for citizen i: $Y_i(1) Y_i(0)$
- Fundamental problem of causal inference: only one of the two potential outcomes is observable.

• We will often refer to the **sample size** (number of units) as *n*.

- We will often refer to the **sample size** (number of units) as *n*.
- We often have *n* measurements of some variable: $(Y_1, Y_2, ..., Y_n)$

- We will often refer to the **sample size** (number of units) as *n*.
- We often have *n* measurements of some variable: $(Y_1, Y_2, ..., Y_n)$
- We often want sums: how many in our sample support gay marriage?

- We will often refer to the **sample size** (number of units) as *n*.
- We often have n measurements of some variable: $(Y_1, Y_2, ..., Y_n)$
- We often want sums: how many in our sample support gay marriage?

$$Y_1 + Y_2 + ... + Y_n$$

- We will often refer to the **sample size** (number of units) as *n*.
- We often have n measurements of some variable: $(Y_1, Y_2, ..., Y_n)$
- We often want sums: how many in our sample support gay marriage?

$$Y_1 + Y_2 + ... + Y_n$$

* Notation is a bit clunky, so we often use the **Sigma notation**:

- We will often refer to the **sample size** (number of units) as *n*.
- We often have n measurements of some variable: $(Y_1, Y_2, ..., Y_n)$
- We often want sums: how many in our sample support gay marriage?

$$Y_1 + Y_2 + ... + Y_n$$

* Notation is a bit clunky, so we often use the **Sigma notation**:

$$\sum_{i=1}^{n} Y_i = Y_1 + Y_2 + \dots + Y_n$$

- We will often refer to the **sample size** (number of units) as *n*.
- We often have n measurements of some variable: $(Y_1, Y_2, ..., Y_n)$
- We often want sums: how many in our sample support gay marriage?

$$Y_1 + Y_2 + ... + Y_n$$

* Notation is a bit clunky, so we often use the **Sigma notation**:

$$\sum_{i=1}^{n} Y_i = Y_1 + Y_2 + \dots + Y_n$$

* $\sum_{i=1}^{n}$ means sum each value from Y_1 to Y_n

• The **sample average** or **sample mean** is simply the sum of all values divided by the number of values.

- The sample average or sample mean is simply the sum of all values divided by the number of values.
- Sigma notation allows us to write this in a compact way:

- The sample average or sample mean is simply the sum of all values divided by the number of values.
- Sigma notation allows us to write this in a compact way:

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

- The **sample average** or **sample mean** is simply the sum of all values divided by the number of values.
- Sigma notation allows us to write this in a compact way:

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

* Suppose we surveyed 6 people and 3 supported gay marriage:

- The **sample average** or **sample mean** is simply the sum of all values divided by the number of values.
- Sigma notation allows us to write this in a compact way:

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

* Suppose we surveyed 6 people and 3 supported gay marriage:

$$\bar{Y} = \frac{1}{6}(1+1+1+0+0+0) = 0.5$$

• We want to estimate the average causal effects over all units:

• We want to estimate the average causal effects over all units:

Sample Average Treatment Effect (SATE)
$$=\frac{1}{n}\sum_{i=1}^{n}\left(Y_{i}(1)-Y_{i}(0)\right)$$

• We want to estimate the average causal effects over all units:

Sample Average Treatment Effect (SATE)
$$=\frac{1}{n}\sum_{i=1}^{n}(Y_i(1)-Y_i(0))$$

* Why can't we just calculate this quantity directly?

• We want to estimate the average causal effects over all units:

Sample Average Treatment Effect (SATE)
$$=\frac{1}{n}\sum_{i=1}^{n}(Y_i(1)-Y_i(0))$$

* Why can't we just calculate this quantity directly? * What we can estimate instead:

• We want to estimate the average causal effects over all units:

Sample Average Treatment Effect (SATE)
$$=\frac{1}{n}\sum_{i=1}^{n}(Y_i(1)-Y_i(0))$$

* Why can't we just calculate this quantity directly? * What we can estimate instead:

Difference in means
$$= \bar{Y}_{treated} - \bar{Y}_{control}$$

• We want to estimate the average causal effects over all units:

Sample Average Treatment Effect (SATE)
$$=\frac{1}{n}\sum_{i=1}^{n}\left(Y_{i}(1)-Y_{i}(0)\right)$$

* Why can't we just calculate this quantity directly? * What we can estimate instead:

Difference in means
$$= \bar{Y}_{treated} - \bar{Y}_{control}$$

- $\bar{Y}_{treated}$: observed average outcome for treated group - $\bar{Y}_{control}$: observed average outcome for control group

• We want to estimate the average causal effects over all units:

Sample Average Treatment Effect (SATE)
$$=\frac{1}{n}\sum_{i=1}^{n}\left(Y_{i}(1)-Y_{i}(0)\right)$$

* Why can't we just calculate this quantity directly? * What we can estimate instead:

Difference in means
$$= \bar{Y}_{treated} - \bar{Y}_{control}$$

- $\bar{Y}_{treated}$: observed average outcome for treated group - $\bar{Y}_{control}$: observed average outcome for control group * When will the difference-in-means be a good estimate of the SATE?

• Randomize control trial: each unit's treatment assignment is determined by chance

- Randomize control trial: each unit's treatment assignment is determined by chance
 - e.g., flip a coin; draw read and blue chips from a hat; etc.

- Randomize control trial: each unit's treatment assignment is determined by chance
 - e.g., flip a coin; draw read and blue chips from a hat; etc.
- Randomization ensures balance between treatment and control group.

- Randomize control trial: each unit's treatment assignment is determined by chance
 - e.g., flip a coin; draw read and blue chips from a hat; etc.
- Randomization ensures balance between treatment and control group.
 - Treatment and control group are identical **on average**

- Randomize control trial: each unit's treatment assignment is determined by chance
 - e.g., flip a coin; draw read and blue chips from a hat; etc.
- Randomization ensures balance between treatment and control group.
 - Treatment and control group are identical **on average**
 - Similar on both observable and unobservable characteristics.

- Randomize control trial: each unit's treatment assignment is determined by chance
 - e.g., flip a coin; draw read and blue chips from a hat; etc.
- Randomization ensures balance between treatment and control group.
 - Treatment and control group are identical on average
 - Similar on both observable and unobservable characteristics.
- ullet Control group pprox what would have happened to treatment group if they had taken control

- Randomize control trial: each unit's treatment assignment is determined by chance
 - e.g., flip a coin; draw read and blue chips from a hat; etc.
- Randomization ensures balance between treatment and control group.
 - Treatment and control group are identical on average
 - Similar on both observable and unobservable characteristics.
- ullet Control group pprox what would have happened to treatment group if they had taken control
 - $\bar{Y}_{control} \approx \frac{1}{n} \sum_{i=1}^{n} Y_i(0)$

- Randomize control trial: each unit's treatment assignment is determined by chance
 - e.g., flip a coin; draw read and blue chips from a hat; etc.
- Randomization ensures balance between treatment and control group.
 - Treatment and control group are identical on average
 - Similar on both observable and unobservable characteristics.
- ullet Control group pprox what would have happened to treatment group if they had taken control
 - $\bar{Y}_{control} \approx \frac{1}{\underline{n}} \sum_{i=1}^{n} Y_i(0)$
 - $\bar{Y}_{treated} \bar{Y}_{control} \approx \mathsf{SATE}$

Some potential problems with RCTs

Placebo effects:

Some potential problems with RCTs

Placebo effects:

 Respondents will be affected by any intervention, even if they shouldn't have any effect

Some potential problems with RCTs

- Placebo effects:
 - Respondents will be affected by any intervention, even if they shouldn't have any effect
- Hawthorne effects:

Some potential problems with RCTs

Some potential problems with RCTs

Placebo effects:

 Respondents will be affected by any intervention, even if they shouldn't have any effect

• Hawthorne effects:

Respondents act differently just knowing that they are under study.

• Can we determine if randomization "worked"?

- Can we determine if randomization "worked"?
- If it did, we shouldn't see large differences between treatment and control group on pretreatment variable

- Can we determine if randomization "worked"?
- If it did, we shouldn't see large differences between treatment and control group on pretreatment variable
 - Pretreatment variable are those that are unaffected by treatment

- Can we determine if randomization "worked"?
- If it did, we shouldn't see large differences between treatment and control group on pretreatment variable
 - Pretreatment variable are those that are unaffected by treatment
- ullet We can check in the actual data for some pretreatment variable X

- Can we determine if randomization "worked"?
- If it did, we shouldn't see large differences between treatment and control group on pretreatment variable
 - Pretreatment variable are those that are unaffected by treatment
- ullet We can check in the actual data for some pretreatment variable X
 - $\bar{X}_{treated}$: average value of variable for treated group

- Can we determine if randomization "worked"?
- If it did, we shouldn't see large differences between treatment and control group on pretreatment variable
 - Pretreatment variable are those that are unaffected by treatment
- ullet We can check in the actual data for some pretreatment variable X
 - $\bar{X}_{treated}$: average value of variable for treated group
 - X_{control}: average value of variable for control group

- Can we determine if randomization "worked"?
- If it did, we shouldn't see large differences between treatment and control group on pretreatment variable
 - Pretreatment variable are those that are unaffected by treatment
- ullet We can check in the actual data for some pretreatment variable X
 - $\bar{X}_{treated}$: average value of variable for treated group
 - $\bar{X}_{control}$: average value of variable for control group
 - ullet Under randomization, $ar{X}_{treated} ar{X}_{control} pprox 0$

• Instead of 1 treatment, we might have multiple **treatment arms**:

- Instead of 1 treatment, we might have multiple **treatment arms**:
 - Control condition
 - Treatment A
 - Treatment B
 - Treatment C, etc.
- In this case, we will look at multiple comparisons:

- Instead of 1 treatment, we might have multiple **treatment arms**:
 - Control condition
 - Treatment A
 - Treatment B
 - Treatment C, etc.
- In this case, we will look at multiple comparisons:
 - $\bar{Y}_{treated,A} \bar{Y}_{control}$

- Instead of 1 treatment, we might have multiple **treatment arms**:
 - Control condition
 - Treatment A
 - Treatment B
 - Treatment C, etc.
- In this case, we will look at multiple comparisons:
 - $\bar{Y}_{treated,A} \bar{Y}_{control}$
 - $\bar{Y}_{treated,B} \bar{Y}_{control}$

- Instead of 1 treatment, we might have multiple **treatment arms**:
 - Control condition
 - Treatment A
 - Treatment B
 - Treatment C, etc.
- In this case, we will look at multiple comparisons:
 - $\bar{Y}_{treated,A} \bar{Y}_{control}$
 - $\bar{Y}_{treated,B} \bar{Y}_{control}$
 - $\bar{Y}_{treated,A} \bar{Y}_{treated,B}$

- Instead of 1 treatment, we might have multiple treatment arms:
 - Control condition
 - Treatment A
 - Treatment B
 - Treatment C, etc.
- In this case, we will look at multiple comparisons:
 - $\bar{Y}_{treated,A} \bar{Y}_{control}$
 - $Y_{treated.B} Y_{control}$
 - Y_{treated A} − Y_{treated B}
- If treatment arms are randomly assigned, these differences will be good estimators for each causal contrast.