Assignment 1

Experiment 1 and 2

Title: ANN and Its Models

Name of Student: Sangeet Agrawal PRN No. 21070122140

DoP1: 15 Jul

DoP2: 22 Jul

DoS: 28 Jul

Aim:

- a) Implement a Program to Generate the Output of Logic AND Function by McCulloch–Pitts Neuron Model. The Threshold on Unit Is 2. Simulate same by changing T = 1
- **b)** Implement a Program to Generate Output for OR Function Using McCulloch–Pitts Neurons with Threshold Value 1
- **c)** Implement a Program to Generate Output for XOR Function Using McCulloch–Pitts Neurons with Threshold Value 1
- d) Implement a Program to Generate Output for ANDNOT Function Using McCulloch-Pitts Neurons

Learning Outcome:

- 1. To understand the fundamentals of ANN
- 2. To implement McCulloch-Pitts Neuron Model

Hardware/Software: Google Collab

Problem Statement: X1=[1 1 0 0], X2=[1 0 1 0] T=2, w1=1, w2=1

* /heary :-> The McCulloch-Pitts Neural Network: It is a simple model of a neuron, developed in 1943. It takes binary inputs (Oor 1), multiplies each input by a weight, sums the sum to a threshold. If the sum is greater than or equal to the threshold, the neuron "fires" and outputs a 1; otherwise, it output a 0. This model helps is understand the basics of artificial neural network. > McCulloch - Pitts Neuron Architecture: Input : Binary values (O or 1) from multiple sources. Weights: Numbers that multiply each inpi Summation: Adds up the weighted iv) Threshold: A set value that the Output: Binary value (O or) based on the threshold comparison.

Program a)

```
# AND Function
def mcCulloch_pitts_and_t1(inputs):
   # Adjusted weights for AND function
   weights = [0.5, 0.5]
   threshold = 1
   # calculate the weighted sum
   weighted_sum = sum(weight * input_val for weight, input_val in
zip(weights, inputs))
   # apply the threshold to get the output
   output = 1 if weighted sum >= threshold else 0
   return output
def mcCulloch_pitts_and_t2(inputs):
   # weights for AND function
   weights = [1, 1]
   threshold = 2
   # calculate the weighted sum
   weighted_sum = sum(weight * input_val for weight, input_val in
zip(weights, inputs))
   # apply the threshold to get the output
   output = 1 if weighted sum >= threshold else 0
   return output
# Test inputs
test_inputs = [(0, 0), (0, 1), (1, 0), (1, 1)]
print("\nAND Function with T = 1")
for inputs in test inputs:
   print(f"Inputs: {inputs} -> Output:
{mcCulloch pitts and t1(inputs)}")
print("AND Function with T = 2")
for inputs in test inputs:
   print(f"Inputs: {inputs} -> Output:
{mcCulloch pitts and t2(inputs)}")
```

```
AND Function with T = 1
Inputs: (0, 0) -> Output: 0
Inputs: (0, 1) -> Output: 0
Inputs: (1, 0) -> Output: 0
Inputs: (1, 1) -> Output: 1
AND Function with T = 2
Inputs: (0, 0) -> Output: 0
Inputs: (0, 1) -> Output: 0
Inputs: (1, 0) -> Output: 0
Inputs: (1, 0) -> Output: 0
Inputs: (1, 0) -> Output: 1
```

Program b)

```
# OR Function
def mcCulloch_pitts_or(inputs, threshold):
   # weights for OR function
   weights = [1, 1]
   # calculate the weighted sum
   weighted_sum = sum(weight * input_val for weight, input val in
zip(weights, inputs))
   # apply the threshold to get the output
   output = 1 if weighted sum >= threshold else 0
   return output
# Test with threshold T = 1
threshold 1 = 1
test_inputs = [(0, 0), (0, 1), (1, 0), (1, 1)]
print("OR Function with T = 1")
for inputs in test inputs:
   print(f"Inputs: {inputs} -> Output: {mcCulloch_pitts_or(inputs,
threshold 1)}")
```

```
OR Function with T = 1
Inputs: (0, 0) -> Output: 0
Inputs: (0, 1) -> Output: 1
Inputs: (1, 0) -> Output: 1
Inputs: (1, 1) -> Output: 1
```

Program: c)

```
# XOR Function
def mcculloch_pitts_neuron(inputs, weights, threshold):
   weighted sum = sum(w * i for w, i in zip(weights, inputs))
   return 1 if weighted_sum >= threshold else 0
def xor mcculloch pitts(x1, x2):
   # Neuron 1 (OR gate)
   n1_output = mcculloch_pitts_neuron([x1, x2], [1, 1], 1)
   # Neuron 2 (AND gate)
   n2_output = mcculloch_pitts_neuron([x1, x2], [1, 1], 2)
   # Neuron 3 (XOR gate)
   xor output = mcculloch pitts neuron([n1 output, n2 output], [1,
-2], 1)
   return xor output
# Test the XOR function
print("XOR Function Outputs:")
for x1 in [0, 1]:
   for x2 in [0, 1]:
       print(f"XOR({x1}, {x2}) = {xor_mcculloch_pitts(x1, x2)}")
```

```
XOR Function Outputs:
XOR(0, 0) = 0
XOR(0, 1) = 1
XOR(1, 0) = 1
XOR(1, 1) = 0
```

Program d)

```
# NAND Function
def mcCulloch_pitts_nand(inputs):
   # Weights for NAND function
   weights = \begin{bmatrix} -1, -1 \end{bmatrix}
   threshold = -0.5
   # Calculate the weighted sum
   weighted_sum = sum(weight * input_val for weight, input_val in
zip(weights, inputs))
   # Apply the threshold to get the output
   output = 1 if weighted sum >= threshold else 0
   return output
# Test inputs
test_inputs = [(0, 0), (0, 1), (1, 0), (1, 1)]
print("\nNAND Function:")
for inputs in test_inputs:
   print(f"Inputs: {inputs} -> Output:
{mcCulloch pitts nand(inputs)}")
```



```
NAND Function:
Inputs: (0, 0) -> Output: 1
Inputs: (0, 1) -> Output: 0
Inputs: (1, 0) -> Output: 0
Inputs: (1, 1) -> Output: 0
```

-> Conclusion:
The McCullock-Pitts neuron model
is a foundational concept in reciral networks, demonstrating how simple
limary operations can model
neuron behavior. It forms the
lossis for understanding more somplen artificial neural network structures and their functions.
structures and their functions.

Assignment 1

Experiment 3

Title: ANN and Its Models

Name of Student: Sangeet Agrawal PRN No. 21070122140

DoP: 29 Jul DoS: 4 Aug

Aim: e) Implement activation functions Binary unipolar, binary bipolar, continuous unipolar, sigmoid, and ReLU function

Learning Outcome:

1. To understand the fundamentals of ANN

2. To implement McCulloch-Pitts Neuron Model

Hardware/Software: MATLAB Online

* Theory	
Activation	on Function: It calculates
	ut of a neuron by applying
	rematical operation to
	of its weighted inputs.
They are	essential for introducing
non-lines	essential for introducing with into neural networks.
	in the same layer use
the activ	vation function. There are
linear ans	d non-linear activation function
with non-	linear being trucial for
multi-la	d non-linear activation function linear being crucial for yes networks.
* Types of 1	Retivation Functions:
1) Linear A	Extination Function:
-> Outpr	Extination Function: ut proportional to input.
2) Binary	Sigmoid (Unipolar Sigmoid) t: 0 to 1 $ula: f(x) = \frac{1}{1+e^{-x}}$
-> Outpu	t: 0 to 1
-> Form	ula: f(x)=
	1+e
3) Ribolas (Ciamoid:
-> Outhet	Cigmoid: 1: -/ to / 1a: $f(x) = \frac{2}{1+e^{-x}}$
-> Form	1/2 /(x) = 2 -1
	1+e-x
	TC!

```
4) Re LU (Restified Linear Unit):

- Output: O for regative, linear for positive

> Formula: f(x) = man(0, x)

5) Leaky. Re LU:

- Allows small gradient for regative inputs

- Formula: f(x) = man(0.01 x_0, x).

6) Unipolar Binary:

- Output: O or 1

7) Bipolar Binary:

- Output: -1 or 1
```

Program:

```
function Experiment 3()
   while true
       % Display menu options
       fprintf('Select an activation function to plot:\n');
       fprintf('1. Linear\n');
       fprintf('2. Binary Sigmoid\n');
       fprintf('3. Bipolar Sigmoid\n');
       fprintf('4. ReLU\n');
       fprintf('5. Leaky ReLU\n');
       fprintf('6. Unipolar Binary\n');
       fprintf('7. Bipolar Binary\n');
       fprintf('8. Exit\n');
       % Get user choice
       choice = input('Enter your choice: ');
       % Define the range of input values
       x = -10:0.1:10;
       switch choice
           case 1
               % Linear Activation Function
               linear_activation = x;
               plot activation(x, linear activation, 'Linear
Activation Function');
           case 2
               % Binary Sigmoid Activation Function
               binary_sigmoid_activation = 1 ./ (1 + exp(-x));
               plot_activation(x, binary_sigmoid_activation, 'Binary
Sigmoid Activation Function');
           case 3
               % Bipolar Sigmoid Activation Function
               bipolar sigmoid activation = (2 \cdot / (1 + \exp(-x))) -
```

```
1;
               plot activation(x, bipolar sigmoid activation,
'Bipolar Sigmoid Activation Function');
           case 4
               % ReLU Activation Function
               relu activation = max(0, x);
               plot activation(x, relu activation, 'ReLU Activation
Function');
           case 5
               % Leaky ReLU Activation Function
               alpha = 0.01;
               leaky relu_activation = max(alpha * x, x);
               plot activation(x, leaky relu activation, 'Leaky ReLU
Activation Function');
           case 6
               % Unipolar Binary Activation Function
               unipolar binary activation = double(x >= 0);
               plot_activation(x, unipolar_binary_activation,
'Unipolar Binary Activation Function');
           case 7
               % Bipolar Binary Activation Function
               bipolar binary activation = double(x >= 0) * 2 - 1;
               plot activation(x, bipolar binary activation,
'Bipolar Binary Activation Function');
           case 8
               % Exit
               disp('Exiting...');
               break;
           otherwise
               disp('Invalid choice. Please select a valid
option.');
       end
   end
function plot activation(x, y, title str)
   figure;
   plot(x, y, 'LineWidth', 2);
   title(title str);
   xlabel('Input');
   ylabel('Output');
   grid on;
end
```

Output Screenshot:

Command Window

>> Assignment_2

Select an activation function to plot:

- 1. Linear
- 2. Binary Sigmoid
- 3. Bipolar Sigmoid
- 4. ReLU
- 5. Leaky ReLU
- 6. Unipolar Binary
- 7. Bipolar Binary
- 8. Exit

Enter your choice:

Activation functions are crucial for determining neuron output and introducing ron-linearity, enabling neural networks to solve complex problems. Understanding them is key to designing effective models.