ЛАБОРАТОРНАЯ РАБОТА №7

Дискретное логарифмирование в конечном поле

Задача дискретного логарифмирования, как и задача разложения на множители, применяется во многих алгоритмах криптографии с открытым ключом. Предложенная в 1976 году У. Диффи и М. Хеллманом для установления сеансового ключа, эта задача послужила основой для создания протоколов шифрования и цифровой подписи, доказательств с нулевым разглашением и других криптографических протоколов.

Пусть над некоторым множеством Ω произвольной природы определены операции сложения «+» и умножения «·». Множество Ω называется *кольцом*, если выполняются следующие условия:

- 1. Сложение коммутативно: a + b = b + a для любых $a, b \in \Omega$;
- 2. Сложение ассоциативно: (a + b) + c = a + (b + c) для любых $a, b, c \in \Omega$;
- 3. Существует нулевой элемент $0 \in \Omega$ такой, что a + 0 = a для любого $a \in \Omega$;
- 4. Для каждого элемента $a \in \Omega$ существует противоположный элемент $-a \in \Omega$, такой, что (-a) + a = 0;
- 5. Умножение дистрибутивно относительно сложения:

$$a \cdot (b+c) = a \cdot b + a \cdot c, (a+b) \cdot c = a \cdot c + b \cdot c,$$

для любых $a, b, c \in \Omega$.

Если в кольце Ω умножение коммутативно: $a \cdot b = b \cdot a$ для любых $a, b \in \Omega$, то кольцо называется *коммутативным*.

Если в кольце Ω умножение ассоциативно: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ для любых $a,b,c \in \Omega$, то кольцо называется *ассоциативным*.

Если в кольце Ω существует единичный элемент e такой, что $a \cdot e = e \cdot a = a$ для любого $a \in \Omega$, то кольцо называется кольцом с единицей.

Если в ассоциативном, коммутативном кольце Ω с единицей для каждого ненулевого элемента a существует обратный элемент $a^{-1} \in \Omega$ такой, что $a^{-1} \cdot a = a \cdot a^{-1} = e$, то кольцо называется *полем*.

Пусть $m \in N, m > 1$. Целые числа a и b называются cpавнимыми по модулю m (обозначается $a \equiv b \pmod{m}$), если разность a - b делится на m. Некоторые свойства отношения сравнимости:

- 1. Рефлексивность: $a \equiv a \pmod{m}$.
- 2. Симметричность: если $a \equiv b \pmod{m}$, то $b \equiv a \pmod{m}$.
- 3. Транзитивность: если $a \equiv b \pmod{m}$ и $b \equiv c \pmod{m}$, то $a \equiv c \pmod{m}$.

Отношение, обладающее свойством рефлексивности, симметричности и транзитивности, называется *отношением эквивалентности*. Отношение сравнимости является отношением эквивалентности на множестве Z целых чисел.

Отношение эквивалентности разбивает множество, на котором оно определено, на *классы эквивалентности*. Любые два класса эквивалентности либо не пересекаются, либо совпадают.

Классы эквивалентности, определяемые отношением сравнимости, называются *классами вычетов по модулю т*. Класс вычетов, содержащий число a, обозначается $a \pmod{m}$ или \bar{a} и представляет собой множество чисел вида a+km, где $k \in \mathbb{Z}$; число a называется представителем этого класса вычетов.

Множество классов вычетов по модулю m обозначается Z/mZ, состоит ровно из m элементов и относительно операций сложения и умножения является кольцом классов вычетов по модулю m.

Пример. Если m = 2, то $\mathbb{Z}/2\mathbb{Z} = \{0 \pmod{2}, 1 \pmod{2}\}$, где $0 \pmod{2} = 2\mathbb{Z} - \mathbb{Z}$ множество всех четных чисел, $1 \pmod{2} = 2\mathbb{Z} + 1 - \mathbb{Z}$ множество всех нечетных чисел.

Обозначим $F_p = Z/pZ$, p — простое целое число и назовем конечным полем из p элементов. Задача дискретного логарифмирования в конечном поле F_p

формулируется так: для данных целых чисел a и b, a > 1, b > p, найти логарифм — такое целое число x, что $a^x \equiv b \pmod{p}$ (если такое число существует). По аналогии с вещественными числами используется обозначение $x = \log_a b$.

Безопасность соответствующих криптосистем основана на том, что, зная числа a, x, p вычислить $a^x \pmod{p}$ легко, а решит задачу дискретного логарифмирования трудно. Рассмотрим р-Метод Полларда, который можно применить и для задач дискретного логарифмирования. При этом случайное отображение f должно обладать не только сжимающими свойствами, но и вычислимостью логарифма (логарифм числа f(c) можно выразить через неизвестный логарифм x и $\log_a f(c)$). Для дискретного логарифмирования в качестве случайного отображения f чаще всего используются ветвящиеся отображения, например:

$$f(c) = \begin{cases} ac, \text{при } c < \frac{p}{2} \\ bc, \text{при } c > \frac{p}{2} \end{cases}.$$

При $c<\frac{p}{2}$ имеем $\log_a f(c)=\log_a c+1$, при $c>\frac{p}{2}-\log_a f(c)=\log_a c+x$. Алгоритм, реализующий р-Метод Полларда для задач дискретного логарифмирования.

Bxod. Простое число p, число a порядка r по модулю p, целое число b, 1 < b < p; отображение f, обладающее сжимающими свойствами и сохраняющее вычислимость логарифма.

Bыход. Показатель x, для которого $a^x \equiv b \pmod{p}$, если такой показатель существует.

- 1. Выбрать произвольные целые числа u, v и положить $c \leftarrow a^u b^v \pmod{p}, d \leftarrow c$.
- 2. Выполнять $c \leftarrow f(c) (mod \ p), d \leftarrow f(f(d)) (mod \ p)$, вычисляя при этом логарифмы для c и d как линейные функции от x по модулю r, до получения равенства $c \equiv d \ (mod \ p)$.
- 3. Приравняв логарифмы для c и d, вычислить логарифм x решением сравнения по модулю r. Результат: x или "Решений нет".

Пример. Решим задачу дискретного логарифмирования $10^x \equiv 64 \pmod{107}$, используя р–Метод Полларда. Порядок числа 10 по модулю 107 равен 53.

Выберем отображение $f(c) \equiv 10c \ (mod \ 107)$ при c < 53, $f(c) \equiv 64c \ (mod \ 107)$ при $c \geq 53$. Пусть u = 2, v = 2. Результаты вычислений запишем в таблицу:

Номер шага	С	$\log_a c$	d	$\log_a d$
0	4	2+2 x	4	2+2 x
1	40	3+2 x	76	4+2 x
2	79	4+2 x	56	5+3 x
3	27	4+3 x	75	5+5 x
4	56	5+3 x	CHW 3	5+7 x
5	53	5+4 x	86	7+7 x
6	75	5+5 x	42	8+8 x
7	92	5+6 x	23	9+9 x
8	3	5+7 x	53	11+9 x
9	30	6+7 x	92	11+11 x
10	86	7+7 x	30	12+12 x
11	47	7+8 x	47	13+13 x

Приравниваем логарифмы, полученные на 11-м шаге: 7+8 $x \equiv 13+13$ x (mod 53). Решая сравнение первой степени, получаем: x=20 (mod 53).

Проверка: $10^{20} \equiv 64 \pmod{107}$.

Задания к лабораторной работе

- 1. Реализовать алгоритм программно.
- 2. Получить у преподавателя задание, содержащее числа p,a,b и вычислить логарифм.