Colle **16**Matrices, Espaces vectoriels

- ▶ Après votre colle, il vous est demandé de reprendre les exercices traités et de les rédiger sur feuille. Ce travail est à déposer dans la boîte en B013 avant mercredi prochain.
- ▶ Vous trouverez le sujet et des indications sur la page ci-contre.

Exercices de calcul

Exercice 16.1

Calculer le noyau de la matrice

$$A := \begin{pmatrix} 3 & 5 & -6 \\ -6 & 0 & 12 \\ 5 & 10 & -10 \end{pmatrix} \in \mathsf{M}_3(\mathbb{R})$$

Exercice 16.3

Calculer l'inverse de la matrice

$$M := \begin{pmatrix} 1 & 2 & 4 \\ 4 & 1 & 2 \\ 2 & 4 & 1 \end{pmatrix} \in \mathsf{M}_3(\mathbb{R}).$$

Exercice 16.5

La famille

$$\left(\begin{pmatrix} -1\\1\\-2\\4 \end{pmatrix}, \begin{pmatrix} -2\\2\\-3\\-5 \end{pmatrix}, \begin{pmatrix} 0\\1\\2\\-2 \end{pmatrix}, \begin{pmatrix} -4\\0\\1\\-7 \end{pmatrix} \right)$$

est-elle libre ou liée?

Exercice 16.2

Calculer le noyau de la matrice

$$A := \begin{pmatrix} 1 & 8 & -3 & 2 \\ -7 & 5 & 21 & -14 \\ -3 & 4 & 9 & -6 \\ 6 & 1 & -18 & 12 \end{pmatrix} \in \mathsf{M}_4(\mathbb{R})$$

Exercice 16.4

Calculer l'inverse de la matrice

$$M := \begin{pmatrix} 3 & 1 & 4 \\ 5 & 1 & 2 \\ 2 & 4 & 2 \end{pmatrix} \in \mathsf{M}_3(\mathbb{R}).$$

Exercice 16.6

La famille

$$\left(\begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} -3\\4\\1 \end{pmatrix}, \begin{pmatrix} 1\\-2\\2 \end{pmatrix} \right)$$

est-elle libre ou liée?

Matrices

Exercice 16.7

Soit $n \in \mathbb{N}^*$. Soient $A, B \in GL_n(\mathbb{K})$. Montrer que

A et B commutent \implies A et B^{-1} commutent.

Exercice 16.8

Soit $n \in \mathbb{N}$. Soit $A \in M_n(\mathbb{R})$.

1. Montrer que

$$\operatorname{\mathsf{Ker}}(A^{\top}A) = \operatorname{\mathsf{Ker}}(A).$$

2. Le résultat reste-t-il vrai si $A \in M_n(\mathbb{C})$?

Exercice 16.9

Soit $n \in \mathbb{N}$. Soient $a, b \in \mathbb{K}$. On pose $M := aI_n + bJ \in M_n(\mathbb{K})$, où

$$J := \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \in \mathsf{M}_n(\mathbb{K}).$$

Déterminer, lorsqu'elle est inversible, l'inverse de M, en fonction de M, I_n , a, b et n.

Exercice 16.10

Soit $n \in \mathbb{N}$. Soient $A, B \in M_n(\mathbb{R})$. Résoudre l'équation en $X \in M_n(\mathbb{R})$

$$X = \operatorname{Tr}(X)A + B.$$

Exercice 16.11

Soit $n \in \mathbb{N}$. Soit $A \in M_n(\mathbb{R})$. Montrer que

$$A^2 = AA^{\top} \implies A \in S_n(\mathbb{R}).$$

Espaces vectoriels

Exercice 16.12

Soit $N \in \mathbb{N}^*$. Soient $\lambda_1, \dots, \lambda_N \in \mathbb{R}$ deux à deux distincts.

Montrer que la famille $(t \mapsto e^{\lambda_k t})_{1 \leqslant k \leqslant N}$ est libre dans $\mathscr{F}(\mathbb{R}, \mathbb{R})$.

Exercice 16.13

Soit $N \in \mathbb{N}^*$. Soient $\theta_1, \dots, \theta_N \in \mathbb{R}_+^*$ deux à deux distincts.

Montrer que la famille $\left(t \longmapsto \sin(\theta_k t)\right)_{1 \leqslant k \leqslant N}$ est libre dans $\mathscr{F}(\mathbb{R}, \mathbb{R})$.