

RoboticsLabURJC

Programming Robot Intelligence

Modelado y Simulación de Robots Sim2Real

Grado en Ingeniería de Robótica Software

Teoría de la Señal y las Comunicaciones y Sistemas Telemáticos y Computación

Roberto Calvo Palomino roberto.calvo@urjc.es

Introducción

• La simulación en robótica ha sido utilizada tradicionalmente para validar diseños y escenarios antes de pasar a un entorno real.

Introducción

Digital Twin

Introducción

 Uno de los mayores problemas en la robótica es cómo hacer funcionar tu modelo simulado en el mundo real y que

generalice.

Sim2Real

- **Sim2Real** es el proceso de transferir conocimientos o algoritmos desde simuladores y mundos virtuales para su implementación en el mundo real.
 - Reducir costos y tiempo
 - Optimización y entrenamiento
 - Minimizar la brecha entre simulación y ralidad.
- Ese gap (brecha) hace que la transferencia del conocimiento no sea completa y el robot no funcione correctamente.
- Además tenemos:
 - sim2sim
 - real2real

Sim2Real

Sim2Real

Sim2Real: Características

- Complejidad del Entorno:
 - Variabilidad y Dinámica
 - Diversidad de Escenarios
- Fidelidad de la Simulación:
 - Exactitud de los modelos físicos
 - Representación sensorial
- Generalización del modelo
- Limitaciones del procesamiento en RT

Soluciones

Data Augmentation

- Aumento de datos y simulación
 - Generación de datos sintéticos variados mediante simulaciones para entrenar modelos de machine learning y deep learning.
 - Esto incluye alterar dinámicamente condiciones de iluminación, texturas y configuraciones de objetos para cubrir un amplio espectro de situaciones posibles

Data Augmentation

Domain Randomization

• Introduce variabilidad **aleatoria** en las propiedades de los entornos simulados durante el entrenamiento, como la apariencia visual, la física y la configuración del entorno

• El modelo sea menos sensible a las diferencias entre la simulación y el

mundo real.

Escenario Real

Domain Randomization

Domain Randomization

Mezca Simulación y Realidad

• Se utilizan datasets simulados y reales al mismo tiempo.

Transfer Learning

- Se aprovecha el conocimiento adquirido en una tarea o dominio para aplicarlo en otra tarea o dominio diferente.
- Evita tener que entrenar modelos desde 0.

Fine-tunning

- Técnica especifica dentro de transfer learning
- Consiste en tomar un modelo pre-entrenado (simulación), y ajustar sus parámetros con un conjunto más pequeño y representativo de datos reales.
- Se basa en comenzar el aprendizaje desde un punto de partida y no desde 0 de nuevo.
- No hay cambio de dominio, ni de tarea.

Fine-Tunning

SIMULADOR

MUNDO REAL

Ejemplos Sim2Real

Ejemplos Sim2Real

Imágenes RGBD simuladas

Imágenes RGBD Reales

Ejemplos Sim2Real

Original sim

1) Cutout (3, 66%)

5) Scale ([0.97,1.03], 66%)

EraseObject ('table', 33%)

6) SaltNoise (0.03, 66%)

WhiteNoise (0.04, 100%)

Posterize
 (5, 66%)

EdgeNoise
 (2, 33%)

8) Sharpness ([1.5, 2], 33%)

Ejemplo Sim2Real

Circuitos

Simulado

Referencias

- 6-DOF GraspNet: Variational Grasp Generation for Object Manipulation
 - https://arxiv.org/abs/1905.10520
- Domain Randomization for Sim2Real Transfer
 - https://lilianweng.github.io/lil-log/2019/05/05/domain-randomization.html

- Sim2Real Artículos
 - https://github.com/manjunath5496/Sim-2-Real-Papers/blob/main/READ ME.md
 - https://paperswithcode.com/paper/a-platform-agnostic-deepreinforcement

RoboticsLabURJC

Programming Robot Intelligence