2.1. Метрики размера программ

Метрики этой группы основаны на анализе исходных текстов программ.

Существуют различные метрики, с помощью которых может быть оценен размер программы.

К наиболее простым метрикам размера программы относятся количество строк исходного текста программы и количество операторов программы.

Из метрик размера программ широкое распространение получили *метри-ки Холстеда* [28].

Основу метрик Холстеда составляют шесть базовых метрик программы:

- $-\eta_1$ словарь операторов (число уникальных операторов программы);
- $-\eta_2-$ словарь операндов (число уникальных операндов программы);
- $-N_{1}$ общее число операторов в программе;
- $-N_2$ общее число операндов в программе;
- $-f_{1j}$ число вхождений j-го оператора, $j=1,\,2,\,...,\,\eta_1;$
- $-f_{2i}$ число вхождений i-го операнда, $i=1,2,...,\eta_2$.

Справедливы следующие соотношения:

$$N_1 = \sum_{j=1}^{\eta_1} f_{1j} \qquad N_2 = \sum_{i=1}^{\eta_2} f_{2i}$$

Базовые метрики определяются непосредственно при анализе исходных текстов программ. На основе базовых метрик Холстед предложил рассчитывать ряд производных метрик программы. Наиболее широко из них используются следующие метрики:

словарь программы (общее число уникальных операторов и операндов программы):

$$\eta = \eta_1 + \eta_2; \tag{2.1}$$

длина программы (общее количество операторов и операндов программы):

$$N = N_1 + N_2; (2.2)$$

– объем программы (число логических единиц информации, необходимых для записи программы):

$$V = N \log_2 \eta. \tag{2.3}$$

Операнды программы представляют собой используемые в ней переменные и константы.

Под операторами программы Холстед подразумевает входящие в ее состав символы-ограничители (в том числе символы операций, символы скобок и символы-разделители), управляющие операторы, а также имена подпрограмм (процедур и функций). При этом парные символы (например пара из открывающей и закрывающей скобок) считаются одним оператором. Несколько служебных

слов, входящих в состав одного оператора (например, If...Then...Else), также считаются одним оператором.

Метки не относятся ни к операторам, ни к операндам.

При подсчете операторов Холстеда объявления и инициализацию элементов программы (например, типов, констант, переменных) вместе с соответствующими символами-ограничителями принято не учитывать.

Очевидно, что совокупность операторов программы и их количество зависят от языка программирования, на котором написана программа.

В табл. 2.1 приведены основные операторы процедурно-ориентированного подмножества языка Delphi в интерпретации Холстеда. При подсчете количества операторов и операндов в программе, написанной на языке Delphi, обычно анализируется только ее раздел операторов, а также разделы операторов процедур и функций пользователя.

Таблица 2.1 Операторы языка Delphi в интерпретации Холстеда

Обозначение	Назначение оператора					
оператора	X)					
1	2					
+	плюс (сложение, объединение множеств, сцепление строк)					
_	минус (изменение знака, вычитание, разность множеств)					
*	звездочка (умножение, пересечение множеств)					
1	наклонная черта, слэш (деление)					
<	меньше					
>	больше					
=	равно					
•	точка (разделитель полей при обращении к элементам					
	записи)					
,	запятая (разделитель в перечислениях)					
:	двоеточие (отделяет константы выбора в операторе Case)					
;	точка с запятой (разделитель операторов программы)					
	левая и правая скобки при выделении подвыражений					
	левая и правая квадратные скобки (выделяет индексы эле-					
	ментов массивов)					
<=	меньше или равно					
>=	больше или равно					
<>	неравно					
:=	операция присваивания					
٨	знак карата (обращение к динамической переменной)					
@	коммерческое 'at' (операция взятия адреса элемента)					
And	операция поразрядного логического сложения (И)					
Not	операция поразрядного дополнения (НЕ)					

1	2				
Or	операция поразрядного логического сложения (ИЛИ)				
Xor	операция поразрядного логического исключающего ИЛИ				
Div	целочисленное деление				
Mod остаток от целочисленного деления					
Shl операция сдвига влево					
Shr операция сдвига вправо					
In операция проверки вхождения элемента в множество					
BeginEnd	составной оператор				
Break	оператор безусловного выхода из цикла				
Continue	оператор передачи управления на конец тела цикла				
Goto <merka></merka>	оператор безусловного перехода				
CaseOf					
ElseEnd	оператор варианта				
IfThenElse	оператор условного перехода				
RepeatUntil	оператор цикла с постусловием				
WhileDo	оператор цикла с предусловием				
ForToDo	отТоDо оператор цикла с параметром (с увеличением параметра)				
ForDownto					
Do	оператор цикла с параметром (с уменьшением параметра)				
WithDo	оператор присоединения				

В табл. 2.2 приведены основные операторы языка C в интерпретации Холстеда.

Таблица 2.2 Операторы языка *С* в интерпретации Холстеда

Обозначение оператора	Назначение оператора
1	2
=	операция присваивания
+	сложение
-	вычитание
*	звездочка (умножение, обращение к динамической пере-
	менной)
/	деление
%	остаток от целочисленного деления
++	инкремент
	декремент
==	равно
!=	неравно

Продолжение табл. 2.2

1	2				
>	больше				
<u> </u>	меньше				
>=	больше или равно				
<= <=	меньше или равно				
1	логическое отрицание (НЕ)				
&&	логическое Огрицание (ПЕ)				
II	логическое ИЛИ				
	побитовая инверсия				
&	побитовое И, ссылка				
I	побитовое ИЛИ				
^	побитовое исключающее ИЛИ				
<<	побитовый сдвиг влево (в сторону старших разрядов)				
>>	побитовый сдвиг вправо (в сторону младших разрядов)				
+=	присваивание с суммированием				
-=	присваивание с вычитанием				
*=	присваивание с умножением				
/=	присваивание с умножением присваивание с делением				
%=	присваивание по модулю				
&=	присваивание с побитовым И				
=	присваивание с побитовым ИЛИ				
^=	присваивание с побитовым исключающим ИЛИ				
<<=	присваивание с побитовым сдвигом влево				
>>=	присваивание с побитовым сдвигом вправо				
()	левая и правая скобки при выделении подвыражений				
[]	обращение к элементу массива				
->	динамическое обращение к элементу структуры				
	статическое обращение к элементу структуры				
,	запятая (операция и разделитель)				
;	точка с запятой (разделитель операторов программы)				
	двоеточие (отделяет константы выбора в операторе				
	switch)				
?:	условный оператор				
sizeof	размер				
(type)	преобразование типа				
{}	составной оператор				
ifelse	оператор выбора				
switch()case					
default	оператор множественного выбора				
dowhile()	оператор цикла с постусловием				
while()	оператор цикла с предусловием				

1	2			
for()	оператор цикла с параметром			
goto <метка>	оператор безусловного перехода			
continue	оператор перехода к следующему шагу цикла			
break	оператор выхода из цикла			

Пример 1

Расчет метрик Холстеда для программы, вычисляющей значение функции $Y = \sin X$ через разложение функции в бесконечный ряд

$$Y = \sin X = X - X^3 / 3! + X^5 / 5! - X^7 / 7! + \dots$$

с точностью Eps = 0.0001.

Текст программы на языке Delphi, реализующей вычисление функции Y, приведен ниже.

```
Program Sin1;
   Const
      eps = 0.0001;
   Var
      y, x: real; n: integer; vs: real;
   Begin
      Readln (x);
      y := x; {Начальные установки
      n := 2;
      vs := x;
      Repeat
        \overline{vs} := -vs * x * x / (2 * n - 1) / (2 * n - 2); {Формирование слагаемого}
        n := n + 1;
        y := y + vs
      Until abs(vs) \lt eps; {Выход из цикла по выполнению условия}
      Writeln(x, y, eps)
   End.
```

Расчет базовых метрик Холстеда для данной программы приведен в табл. 2.3. По формулам (2.1) - (2.3) рассчитываются словарь, длина и объем программы.

Словарь программы: $\eta = 14 + 7 = 21$. Длина программы: N = 34 + 28 = 62. Объем программы: $V = 62 \log_2 21 \approx 272$.

Расчет базовых метрик Холстеда для программы, вычисляющей значение функции $Y = \sin X$

j	Оператор	f_{1j}	i	Операнд	f_{2i}
1.	;	7	1.	X	6
2.	:=	6	2.	n	5
3.	*	4	3.	VS	5
4.	_	3	4.	y	4
5.	/	2	5.	2	4
6.	()	2	6.	1	2
7.	+	2	7.	eps	2
8.	,	2			
9.	BeginEnd	1			
10.	Readln ()	1			
11.	RepeatUntil	1			
12.	abs()	1			
13.	<	1			
14.	Writeln ()	1			
$\eta_1 = 14$		$N_1 = 34$	$\eta_2 = 7$		$N_2 = 28$

Пример 2

Расчет метрик Холстеда для программы на языке C. Программа реализует вычисление той же функции $Y = \sin X$, что и программа из примера 1.

```
#include <stdio.h>
#include <stdlib.h>
main()
{
  const\ double\ eps=0.0001;
  double y, x;
  int n;
  double vs;
  scanf("\%f", \&x);
  y = x; // Начальные установки
  n = 2;
  vs = x;
  do
     vs = -vs * x * x / (2 * n - 1) / (2 * n - 2); // Формирование слагаемого
    n++;
    y += vs;
```

```
while (abs(vs) \ge eps); // Выход из цикла по выполнению условия printf("\%f \%f \%f n", x, y, eps); }
```

Расчет базовых метрик Холстеда для данной программы приведен в табл. 2.4. По формулам (2.1)-(2.3) рассчитываются словарь, длина и объем программы.

Словарь программы: $\eta = 16 + 6 = 22$. Длина программы: N = 38 + 24 = 62. Объем программы: $V = 62 \log_2 22 \approx 276$.

Таблица 2.4 Расчет базовых метрик Холстеда для программы, вычисляющей значение функции $Y = \sin X$ на языке C

j	Оператор	f_{1j}	i	Операнд	f_{2i}
1.	·,	9	1.	X	6
2.		4	2.	VS	5
3.	*	4	3.	n	4
4.	,	4	4.	2	4
5.		3	5.	y	3
6.	1	2	6.	eps	2
7.	()	2			
8.	{}	2			
9.	scanf ()	1			
10.	dowhile ()	1			
11.	abs()	1			
12.	>=	1			
13.	printf ()	1			
14.	++	1			
15.	+=	1			
16.	&	1			
$\eta_1 = 16$		$N_1 = 38$	$\eta_2 = 6$		$N_2 = 24$

2.2. Метрики сложности потока управления программ

Метрики сложности потока управления программ принято определять на основе представления программ в виде управляющего ориентированного графа G = (V, E), где V – вершины, соответствующие операторам, а E – дуги, соответствующие переходам между операторами [27, 29]. В дуге (v, u) вершина v является исходной, а u – конечной. При этом u непосредственно следует за v, а v непосредственно предшествует u. Если путь от v до u состоит более чем из одной дуги, тогда u следует за v, а v предшествует u.