Actividad:

1.- Dada las características de un Sensor (rango, alcance, error, exactitud; etc.), explique: ¿Qué es el régimen estático y transitorio de un sensor?

Respuesta:

El régimen estático y transitorio son conceptos importantes cuando se trata de comprender el comportamiento de un sensor en diferentes situaciones y condiciones. Estos términos se refieren a cómo un sensor responde a cambios en la cantidad que está midiendo y cómo se estabiliza después de esos cambios.

1. Régimen Estático: El régimen estático se refiere a la respuesta de un sensor cuando la cantidad que está midiendo cambia de manera lenta y gradual. En este caso, los cambios en la cantidad medida son lo suficientemente lentos como para que el sensor tenga tiempo de ajustarse completamente y mostrar la lectura correspondiente. La respuesta en régimen estático se caracteriza por ser más precisa y estable, ya que el sensor tiene tiempo para alcanzar su estado de equilibrio.

Las características que influyen en el régimen estático de un sensor incluyen:

- **Exactitud:** La capacidad del sensor para proporcionar mediciones cercanas al valor real de la cantidad medida.
- **Linealidad:** La relación entre la señal de salida del sensor y el valor real de la cantidad medida. En el régimen estático, esta relación se espera que sea constante.
- Error: La diferencia entre el valor medido por el sensor y el valor real de la cantidad medida.
- Rango: El rango de valores de la cantidad medida en el cual el sensor puede operar con precisión.
- 2. Régimen Transitorio: El régimen transitorio se refiere a la respuesta de un sensor cuando la cantidad que está midiendo cambia rápidamente o de manera brusca. En este caso, el sensor puede tener dificultades para ajustarse instantáneamente a los cambios debido a limitaciones en su velocidad de respuesta o inercia física. Durante el régimen transitorio, es posible que el sensor presente oscilaciones, overshoot (sobrepaso) o inestabilidad antes de estabilizarse en una lectura precisa.

Las características que influyen en el régimen transitorio de un sensor incluyen:

- Tiempo de Respuesta: El tiempo que tarda el sensor en ajustarse y proporcionar una lectura precisa después de un cambio repentino en la cantidad medida.
- **Inercia:** La resistencia del sensor a cambiar su estado debido a la inercia física de sus componentes internos.
- Amortiguación: La capacidad del sensor para reducir oscilaciones no deseadas durante el proceso de ajuste.

En resumen, el régimen estático se refiere a cómo un sensor responde a cambios lentos y graduales en la cantidad medida, mientras que el régimen transitorio se enfoca en la respuesta del sensor a cambios rápidos o bruscos. Ambos regímenes son fundamentales para comprender el comportamiento y la capacidad de un sensor en diferentes situaciones y aplicaciones.

2.- De ejemplo de las características de 1 sensor real, por ejemplo (temperatura, presión, humedad, aceleración, posición, color, distancia, etc.). (Buscar el datasheet de un sensor real y copiar tabla de características).

Sensor MPU-6050 (acelerómetro y giroscopio)

El MPU-6050 es un popular sensor de movimiento y orientación de seis ejes desarrollado por InvenSense (ahora parte de TDK Corporation). Combina un acelerómetro de tres ejes y un giroscopio de tres ejes en un solo chip.

A continuación, las características típicas del sensor MPU-6050:

1. Acelerómetro:

- Rango de Medición: +/- 2g, +/- 4g, +/- 8g, +/- 16g (ajustable).
- Resolución: 16 bits.
- Sensibilidad: La relación entre los valores digitales y las unidades de gravedad (g).
- Sensibilidad a la Temperatura: Variaciones en la sensibilidad debido a cambios de temperatura.

2. Giroscopio:

- Rango de Medición: +/- 250°/s, +/- 500°/s, +/- 1000°/s, +/- 2000°/s (ajustable).
- Resolución: 16 bits.
- Sensibilidad: La relación entre los valores digitales y las unidades de velocidad angular (°/s).
- Sensibilidad a la Temperatura: Variaciones en la sensibilidad debido a cambios de temperatura.

3. Comunicación:

• Interfaz: I2C (comunicación bidireccional de dos cables).

4. Frecuencia de Muestreo:

• Acelerómetro y Giroscopio: Hasta 1 kHz.

5. Filtrado Digital:

Filtros pasabajos y pasabanda configurables para reducir ruido y oscilaciones.

6. Temperatura:

• Sensor de temperatura incorporado.

7. Alimentación:

- Voltaje de Alimentación: 2.375 V a 3.46 V (típicamente 3.3 V).
- Consumo de Corriente: Depende del rango de medición y la frecuencia de muestreo.

8. Interrupciones:

 Capacidad de generar interrupciones basadas en eventos específicos (por ejemplo, detección de movimiento).

9. Formatos de Datos:

• Salida de datos en formato crudo (valores digitales sin procesar) o con formatos más elaborados (como valores en unidades físicas).

10. Detección de Movimiento:

 Capacidad para detectar ciertos tipos de movimiento, como golpes o sacudidas.

11. Estabilidad y Deriva:

 Características relacionadas con la precisión y la estabilidad a largo plazo de las mediciones.

12. Tamaño y Encapsulado:

 Tamaño compacto y encapsulado en paquetes como QFN (Quad Flat No-Lead).

13. Compatibilidad Ambiental:

• Operación en una variedad de condiciones ambientales.

14. Aplicaciones Típicas:

• Control de movimiento en dispositivos electrónicos, detección de inclinación, detección de orientación, seguimiento de movimiento en dispositivos portátiles, etc.

Tabla características del sensor MPU-6050

Característica	Descripción
Rango de Aceleración	+/- 2g, +/- 4g, +/- 8g, +/- 16g (ajustable)
Resolución de Aceleración	16 bits
Rango de Giroscopio	+/- 250°/s, +/- 500°/s, +/- 1000°/s, +/- 2000°/s (adjustable)
Resolución de Giroscopio	16 bits
Comunicación	Interfaz I2C
Frecuencia de Muestreo	Hasta 1 kHz
Filtros Digitales	Filtros Low Pass y Band Pass configurable
Sensor de Temperatura	Incorporado
Voltaje de Alimentación	2.375 V a 3.46 V (típicamente 3.3 V)
Consumo de Corriente	Variable según configuración y uso
Detección de Movimiento	Capacidad para detectar eventos de movimiento
Formatos de Datos	Salida de datos en formato crudo o unidades físicas
Tamaño y Encapsulado	Paquetes como QFN (Quad Flat No-Lead)
Compatibilidad Ambiental	Operación en diversas condiciones ambientales
Aplicaciones Típicas	Control de movimiento, detección de inclinación, etc.

3.- Un sensor de temperatura, que tiene un rango de medida de 20-250 °C, entrega una lectura de 55 °C. Especificar el error en la lectura si la exactitud se expresa de las siguientes formas, indicando el rango de medición en cada caso.

a. ± 0,5% del valor máximo de lectura

En este caso, el valor máximo de lectura es 250 °C.

Error = (Exactitud en %) * (Valor máximo de lectura)

Error = (0.5/100) * 250 = 1.25 °C

± 1,25 °C

b. ± 0,75% del alcance (FS)

El alcance (rango completo) del sensor es 250 - 20 = 230 °C.

Error = (Exactitud en %) * (Alcance)

Error = (0.75/100) * 230 = 1.725 °C

± 1,725 °C

c. ± 0,8% de la lectura

Error = (Exactitud en %) * (Lectura actual)

Error = (0,8/100) * 55 = 0,44 °C

± 0,44 °C

4.- Durante el diseño de un equipo de control de temperatura se ensayan cuatro sensores A, B, C y D. Cada uno de estos sensores fue probado tomando cinco lecturas mientras se mantenía una temperatura constante de 18°C, dando como resultado los datos

consignados en la tabla. ¿Cuál sensor ofrece la mayor exactitud y cuál ofrece la mayor precisión?

Sensor	Lectura 1 (ºC)	Lectura 2 (ºC)	Lectura 3 (ºC)	Lectura 4 (ºC)	Lectura 5 (ºC)	Promedio	Desviación Estándar
Α	18,10	18,05	18,00	18,10	18,15	18,08	0,0457
В	18,00	18,05	18,00	18,05	18,00	18,02	0,0272
С	17,95	17,90	17,85	17,98	17,80	17,90	0,0567
D	17,90	17,92	17,91	17,90	17,91	17,91	0,0077

- Mayor exactitud: El sensor B tiene el promedio más cercano a la temperatura real (18°C). Por lo tanto, tiene la mayor exactitud en este caso.
- Mayor precisión: El sensor D tiene la menor desviación estándar (0.0077°C), lo que indica que sus lecturas individuales están más cerca unas de otras. Por lo tanto, tiene la mayor precisión en este caso.

5.- Determinar el alcance, exactitud y precisión de cada uno de los modelos de sensores de presión que se muestran en el catálogo.

Modelo		PSE570	PSE573	PSE574	PSE575	PSE576	PSE577		
Fluido	Fluido Aplicable	Gas o líquido que no corroerá los materiales de las piezas en contacto con el fluido.							
	·		-100 a 100						
Presión	Rango de presión nominal	0 a 1 MPa	kPa	0 a 500 kPa	0 a 2 MPa	0 a 5 MPa	0 a 10 MPa		
Exactitud	Salida analógica exacta (Temperatura ambiente de 25ºC)	+-1.0% FS			+-2.5% FS				
	Repetibilidad (Temperatura ambiente de 25ºC)	+-0.2% FS			+-0.5% FS				
	Alcance:	1 MPa	200 kPa	500 kPa	2 MPa	5 MPa	10 MPa		
	Exactitud:	0.01 MPa	2.0 kPa	5.0 kPa	0.05 MPa	0.125 MPa	0.25 MPa		
	Precisión:	0.002 MPa	0.4 kPa	1.0 kPa	0.01 MPa	0.025 MPa	0.05 MPa		