Named Entity Recognition in Tweets

- An Experimental Study

-- Presented By Haoyu Chen

Basic Info

Conference: Empirical Methods in Natural Language Processing (EMNLP)

Authors' institution: University of Washington, Seattle, WA

Time: 2011

Google Citation: 305

Accepted Rate - 24% at 2011 EMNLP

Outline

- Background
- Challenges
- Methodology & Evaluation
- Contributions

Review -- Named Entity Recognition (NER)

Jim bought 300 shares of Acme Corp. in 2006.

[Jim]_{Person} bought 300 shares of [Acme Corp.]_{Organization} in [2006]_{Time}.

Review -- BIO Encoding for NER

For example, we need name **person** and **date** entity, then define new tags.

Begin: B-PERS, B-DATE

-- Beginning of a mention of a person/date

Inside: I-PERS, I-DATE

-- Inside of a mention of a person/date

Outside: O

--outside of any mention of a named entity

<POS Tagging with restricted Tagset>

Challenges in Tweets

Fresh Big Data

8,842 Tweets sent in 1 second

762,835,646

Tweets sent today

view how many in 1 second

Source: http://www.internetlivestats.com/twitter-statistics/

Challenges in Tweets

- Fresh Big Data
 - => Out Of Vocabulary (OOV), More Types of Entities
- Informal and Noisy Text
 - => OOV, Uninformative Capitalization

1	The Hobbit has FINALLY started filming! I
	cannot wait!
2	Yess! Yess! Its official Nintendo announced
	today that they Will release the Nintendo 3DS
	in north America march 27 for \$250
3	Government confirms blast n nuclear plants n
	japandon't knw wht s gona happen nw

Table 1: Examples of noisy text in tweets.

Challenges in Tweets

- Fresh Big Data
 - => Out Of Vocabulary (OOV), More Types of Entities
- Informal and Noisy Text
 - => OOV, Uninformative Capitalization
- 140 characters Limit
 - => Lack of Context

KKTNY in 45min.....

Methodology -- System Flow Chart

Traditional POS Tagging

Data Set,

Brown Corpus,

Tweets,

Baseline

0.90

0.76

Data Set,

WSJ,

Tweets,

State-Of-Art

0.97

08.0

Improvements on POS

 Apply hierarchical clustering (Brown Clustering) on 52 million tweets to capture lexical variations.

```
'2m', '2ma', '2mar', '2mara', '2maro', '2marrow', '2mor', '2mora', '2moro', '2morow', '2morrow', '2morrow', '2morrow', '2morow', '2mrw', '2mrw', '2mrw', '2mrw', '2mrw', '2mrw', '4morow', '4morow',
```

Improvements on POS

- Apply hierarchical clustering (Brown Clustering) on 52 million tweets to capture lexical variations.
- Conditional Random Fields is used to get the help of the context.

Simple Example: I will be there toma.

I will be there [tomorrow Adv].

I will be there [tomato **noun**]. X

Improvements on POS

- Apply hierarchical clustering (Brown Clustering) to capture lexical variations.
- Conditional Random Fields is used to get the help of context.
- Add new tags, such as urls, #hashtags,@usernames, and retweets. (100% accuracy)
- To overcome difference in style and vocabulary, they manually annotated 800 tweets as in-domain training data.
- Incorporate out-domain training data, such as IRC.

Evaluation on POS (4-fold validation)

	Accuracy	Error
		Reduction
Majority Baseline (NN)	0.189	-
Word's Most Frequent Tag	0.760	-
Stanford POS Tagger	0.801	-
T-POS(PTB)	0.813	6%
T-POS(Twitter)	0.853	26%
T-POS(IRC + PTB)	0.869	34%
T-POS(IRC + Twitter)	0.870	35%
T-POS(PTB + Twitter)	0.873	36%
T-POS(PTB + IRC + Twitter)	0.883	41%

Table 2: POS tagging performance on tweets. By training on in-domain labeled data, in addition to annotated IRC chat data, we obtain a 41% reduction in error over the Stanford POS tagger.

Evaluation--Shallow Parsing (Chunking)

	Accuracy	Error
		Reduction
Majority Baseline (B-NP)	0.266	-
OpenNLP	0.839	-
T-CHUNK(CoNLL)	0.854	9%
T-CHUNK(Twitter)	0.867	17%
T-CHUNK(CoNLL + Twitter)	0.875	22%

Table 4: Token-Level accuracy at shallow parsing tweets. We compare against the OpenNLP chunker as a baseline.

Methodology -- System Flow Chart

Segmenting Named Entities

- Larger annotated dataset to effectively learn a model of named entities - Randomly sampled 2400 tweets.
- BOI encoding for representing segmentation
- Dictionaries included a set of type lists gathered from Freebase
- Use the result of shallow syntax as input

Note: Freebase is an online collection of structured data and Google's Knowledge Graph is powered in part by it

Evaluation--Segmenting Named Entities

	P	R	F_1	F ₁ inc.
Stanford NER	0.62	0.35	0.44	-
T-SEG(None)	0.71	0.57	0.63	43%
T-SEG(T-POS)	0.70	0.60	0.65	48%
T-SEG(T-POS, T-CHUNK)	0.71	0.61	0.66	50%
T-SEG(All Features)	0.73	0.61	0.67	52%

Classifying Named Entities

- Distinctive entities => Big training dataset ?
- Lack of context => Out-domain knowledge
- Solution: Leverage large lists of entities gathered from Freebase as a source of distant supervision
- Benefit: Allow use of large amount of unlabeled data in learning

Classifying Named Entities

- 30% of entities on Twitter are out of Freebase dictionary while 35% of entities on Twitter has multiple meaning types in Freebase.
- Enhanced Solution: Topic Model is to discover the hidden thematic structure in docs, and Latent Dirichlet allocation(LDA) is one of the mosted used topic model.
- □ Basic Idea: Every doc is made of multiple topics. The words in the documents are generated from those multiple topics.

Evaluation--Classifying Named Entities

System	P	R	F_1
Majority Baseline	0.30	0.30	0.30
Freebase Baseline	0.85	0.24	0.38
Supervised Baseline	0.45	0.44	0.45
DL-Cotrain	0.54	0.51	0.53
LabeledLDA	0.72	0.60	0.66

Table 8: Named Entity Classification performance on the 10 types. Assumes segmentation is given as in (Collins and Singer, 1999), and (Elsner et al., 2009).

Contributions

- Design and implement a complete system for Named Entity Recognition (NER) in Tweets. By optimizing each steps of NER system, it shows a substantially improvement on performance.
- It introduces a new approach to classify named entity by applying distant supervision with Topic Models (), which is able to train large amount of unlabeled dataset.

Thank you!

Any Questions?

Application <a>Demo