Линейная алгебра-4 Евклидовы и унитарные пространства

1. Евклидово пространство

Евклидово пространство (**EП**) \mathbb{E} — это вещественное **ЛП**, в котором зафиксирована симметричная положительно определенная билинейная форма $\mathbf{G}(\mathbf{x},\mathbf{y})$. Значение $\mathbf{F}\mathbf{\Phi}$ на паре векторов \mathbf{x},\mathbf{y} называется скалярным произведением (**СП**) этих векторов и обозначается (\mathbf{x},\mathbf{y}), т.е.

$$(\mathbf{x}, \mathbf{v}) = \mathbf{G}(\mathbf{x}, \mathbf{v}).$$

Очевидно, СП обладает следующими свойствами:

- 1) $\forall \mathbf{x}, \mathbf{y} \in \mathbb{E}$: $(\mathbf{x}, \mathbf{y}) = (\mathbf{y}, \mathbf{x})$;
- 2) $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{E}$: $(\mathbf{x} + \mathbf{y}, \mathbf{z}) = (\mathbf{x}, \mathbf{z}) + (\mathbf{y}, \mathbf{z})$;
- 3) $\forall \mathbf{x}, \mathbf{y} \in \mathbb{E}, \ \forall \alpha \in \mathbb{R}: \ (\alpha \mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y});$
- 4) $\forall \mathbf{x} \in \mathbb{E}, \ \mathbf{x} \neq \mathbf{0}: (\mathbf{x}, \mathbf{x}) > 0.$

Если в **ЕП** $\mathbb E$ выбран некоторый базис $\mathbf e_1, \dots, \mathbf e_n$, то **СП** векторов $\mathbf x, \mathbf y$ выражается через их координаты по формуле

$$(\mathbf{x}, \mathbf{y}) = g_{ik} x^j y^k = X_e^T G_e Y_e,$$

где $G_e=(g_{jk})$ — симметричная положительно определенная матрица, называемая матрицей Грама или метрическим тензором. Метрический тензор является дважды ковариантным.

Элементы матрицы Грама представляют собой СП векторов базиса:

$$g_{jk} = (\mathbf{e}_j, \mathbf{e}_k) = (\mathbf{e}_k, \mathbf{e}_j) = g_{kj}.$$

При переходе к новому базису (с помощью матрицы перехода С) матрица Грама преобразуется по тому же закону, что и матрица любой билинейной формы:

$$G_{e'} = C^T G_e C, \quad g_{j'k'} = c_{j'}^j c_{k'}^k g_{jk}.$$

Поскольку $\det G_e \neq 0$, матрица G_e обратима; обратная матрица G_e^{-1} называется контравариантным метрическим тензором. Элементы матрицы G_e^{-1} обозначаются g^{jk} . Имеет место соотношение

$$g_{jk}g^{kl} = \delta^l_i$$
.

В любом вещественном **ЛП** имеется бесконечно много симметричных положительно определенных $\mathbf{F}\mathbf{\Phi}$; поэтому каждое вещественное **ЛП** может быть сделано евклидовым пространством бесконечным числом способов.

Теорема. Неравенство Коши—Буняковского:

$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{E} : (\mathbf{x}, \mathbf{y})^2 \le (\mathbf{x}, \mathbf{x})(\mathbf{y}, \mathbf{y}).$$

Доказательство. Для любых $\mathbf{x}, \mathbf{v} \in \mathbb{E}$ и любого $\alpha \in \mathbb{R}$ имеем:

$$(\alpha \mathbf{x} + \mathbf{y}, \alpha \mathbf{x} + \mathbf{y}) \ge 0 \iff$$
$$f(\alpha) = \alpha^2(\mathbf{x}, \mathbf{x}) + 2\alpha(\mathbf{x}, \mathbf{y}) + (\mathbf{y}, \mathbf{y}) \ge 0.$$

Для того чтобы квадратный трехчлен $f(\alpha)$ принимал только неотрицательные значения, необходимо и достаточно, чтобы его дискриминант был неположителен:

$$(\mathbf{x}, \mathbf{v})^2 - (\mathbf{x}, \mathbf{x})(\mathbf{v}, \mathbf{v}) \le 0.$$

Примеры **ЕП**

1. **ЛП** $\mathbb{R}^n(\mathbb{R})$ становится **ЕП**, если для векторов

$$\mathbf{x} = \begin{pmatrix} x^1 \\ x^2 \\ \vdots \\ x^n \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} y^1 \\ y^2 \\ \vdots \\ y^n \end{pmatrix}$$

определить СП по формуле

2

$$(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^{n} x^{j} y^{j} = X^{T} Y,$$

где X, Y — столбцы, представляющие данные векторы (или, эквивалентно, столбцы координат векторов \mathbf{x}, \mathbf{y} относительно стандартного базиса).

 $2. \ \mathsf{B} \ \mathbb{R}^2(\mathbb{R})$ можно определить **СП** формулой

$$(\mathbf{x}, \mathbf{y}) = X^T G Y,$$

где G — произвольная симметричная положительно определенная матрица.

3. В $\mathbb{R}^{n \times m}(\mathbb{R})$ можно ввести **СП** по формуле

$$(X,Y) = \operatorname{tr}(X^TY).$$

Задача. Докажите.

4. В $\operatorname{Pol}(n,\mathbb{R})$ можно ввести **СП** векторов

$$\mathbf{x} = x(t) = a_0 + a_1 t + \dots + a_n t^n,$$

 $\mathbf{v} = y(t) = b_0 + b_1 t + \dots + b_n t^n$

по формуле

$$(\mathbf{x}, \mathbf{y}) = \sum_{j=0}^{n} a_j b_j.$$

5. В $Pol(n, \mathbb{R})$ можно определить **СП** иначе:

$$(\mathbf{x}, \mathbf{y}) = \int_{\alpha}^{\beta} x(t)y(t)dt.$$

Задача. Докажите.

3. Длины и углы в ЕП

Длиной вектора $\mathbf{x} \in \mathbb{E}$ называется число

$$\|\mathbf{x}\| = \sqrt{(\mathbf{x}, \mathbf{x})} \ge 0.$$

Теорема. Имеют место соотношения:

- 1) $\forall \mathbf{x} \in \mathbb{E}$: $\|\mathbf{x}\| \ge 0$, причем $\|\mathbf{x}\| = 0$ тогда и только тогда, когда $\mathbf{x} = \mathbf{0}$.
- 2) $\forall \mathbf{x} \in \mathbb{E}, \ \forall \alpha \in \mathbb{R} : \|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|.$
- 3) $\forall \mathbf{x}, \mathbf{y} \in \mathbb{E}$: $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (неравенство треугольника).

Доказательство. Утверждение 1 очевидно.

2. Имеем:

$$\|\alpha \mathbf{x}\| = \sqrt{(\alpha \mathbf{x}, \alpha \mathbf{x})} = \sqrt{\alpha^2(\mathbf{x}, \mathbf{x})} = |\alpha| \|\mathbf{x}\|.$$

$$\|\mathbf{x} + \mathbf{y}\|^{2} = (\mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y}) =$$

$$= \|\mathbf{x}\|^{2} + \|\mathbf{y}\|^{2} + 2(\mathbf{x}, \mathbf{y}) \le$$

$$\le \|\mathbf{x}\|^{2} + \|\mathbf{y}\|^{2} + 2\|\mathbf{x}\|\|\mathbf{y}\| \le$$

$$\le \|\mathbf{x}\|^{2} + \|\mathbf{y}\|^{2} + 2\|\mathbf{x}\|\|\mathbf{y}\| =$$

$$= (\|\mathbf{x}\| + \|\mathbf{y}\|)^{2},$$

откуда $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|.$

Угол между ненулевыми векторами \mathbf{x},\mathbf{y} — это число φ (0 $\leq \varphi \leq \pi$), определяемый из уравнения

$$\cos \varphi = \frac{(\mathbf{x}, \mathbf{y})}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

Из неравенства Коши—Буняковского следует, что угол определен для любых двух ненулевых векторов.

4 Унитарное пространство

Унитарное пространство (**УП**) \mathbb{U} — это комплексное **ЛП** со скалярным произведением. Однако в комплексном **ЛП** не удается ввести скалярное произведение с помощью симметричной билинейной формы. Действительно, в этом случае аксиомы скалярного произведения оказываются противоречивыми:

$$0 \le (i\mathbf{x}, i\mathbf{x}) = i(\mathbf{x}, i\mathbf{x}) =$$
$$= i(i\mathbf{x}, \mathbf{x}) = i^2(\mathbf{x}, \mathbf{x}) = -(\mathbf{x}, \mathbf{x}),$$

 $\text{r.e. } (\mathbf{x}, \mathbf{x}) < 0.$

Скалярное произведение в унитарном пространстве \mathbb{U} можно определить как функцию $\mathbf{G}: V \times V \to \mathbb{C}, \ \mathbf{G}(\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \mathbf{y}),$ обладающую следующими свойствами:

- 1) $\forall \mathbf{x}, \mathbf{y} \in \mathbb{U}$: $(\mathbf{x}, \mathbf{y}) = \overline{(\mathbf{y}, \mathbf{x})}$;
- 2) $\forall \mathbf{x}, \mathbf{v}, \mathbf{z} \in \mathbb{U}$: $(\mathbf{x} + \mathbf{v}, \mathbf{z}) = (\mathbf{x}, \mathbf{z}) + (\mathbf{v}, \mathbf{z})$;
- 3) $\forall \mathbf{x}, \mathbf{y} \in \mathbb{U}, \forall \alpha \in \mathbb{C}: (\alpha \mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y});$
- 4) $\forall \mathbf{x} \in \mathbb{U}, \ \mathbf{x} \neq \mathbf{0}: (\mathbf{x}, \mathbf{x}) > 0.$

Функция G не является линейной по второму аргументу:

$$(\mathbf{x}, \mathbf{y} + \mathbf{z}) = \overline{(\mathbf{y} + \mathbf{z}, \mathbf{x})} = \overline{(\mathbf{y}, \mathbf{x}) + (\mathbf{z}, \mathbf{x})} =$$

$$= \overline{(\mathbf{y}, \mathbf{x})} + \overline{(\mathbf{z}, \mathbf{x})} = (\mathbf{x}, \mathbf{y}) + (\mathbf{x}, \mathbf{z}),$$

однако

$$(\mathbf{x}, \alpha \mathbf{y}) = \overline{(\alpha \mathbf{y}, \mathbf{x})} = \overline{\alpha(\mathbf{y}, \mathbf{x})} = \overline{\alpha(\mathbf{y}, \mathbf{x})} = \overline{\alpha}(\mathbf{y}, \mathbf{x}) = \overline{\alpha}(\mathbf{x}, \mathbf{y}).$$

Функцию G называют полуторалинейным функционалом (линейным по первому и полулинейным по второму аргументу).

Если в **УП** выбран некоторый базис $\mathbf{e}_1, \dots, \mathbf{e}_n$, то выражение **СП** через координаты векторов имеет вид

$$(\mathbf{x}, \mathbf{y}) = (x^j \mathbf{e}_i, y^k \mathbf{e}_k) = x^j \bar{y}^k g_{ik},$$

где $g_{jk} = (\mathbf{e}_j, \mathbf{e}_k)$ — матрица Грама (метрический тензор). В матричных обозначениях

$$(\mathbf{x}, \mathbf{y}) = X_e^T G_e \bar{Y}_e.$$

4

3

П

Закон преобразования метрического тензора при переходе к новому базису усложняется по сравнению с вещественным случаем:

$$g_{j'k'} = (\mathbf{e}_{j'}, \mathbf{e}_{k'}) = (c_{j'}^j \mathbf{e}_j, c_{k'}^k \mathbf{e}_k) =$$

$$= c_{j'}^j \ \bar{c}_{k'}^k (\mathbf{e}_j, \mathbf{e}_k) = c_{j'}^j \ \bar{c}_{k'}^k g_{jk}.$$

В матричных обозначениях

$$G_{e'} = C^T G_e \bar{C}.$$

Теорема. Неравенство Коши-Буняковского:

$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{U} : |(\mathbf{x}, \mathbf{y})|^2 \le (\mathbf{x}, \mathbf{x})(\mathbf{y}, \mathbf{y}).$$

Доказательство. При $(\mathbf{x}, \mathbf{y}) = 0$ неравенство очевидно. Для любых $\mathbf{x}, \mathbf{y} \in \mathbb{U}$ таких, что $(\mathbf{x}, \mathbf{y}) \neq 0$, и любого $\alpha \in \mathbb{C}$ имеем:

$$0 \le (\alpha \mathbf{x} + \mathbf{y}, \alpha \mathbf{x} + \mathbf{y}) =$$

$$= \alpha(\mathbf{x}, \alpha \mathbf{x} + \mathbf{y}) + (\mathbf{x}, \alpha \mathbf{x} + \mathbf{y}) =$$

$$= \alpha \overline{\alpha}(\mathbf{x}, \mathbf{x}) + \alpha(\mathbf{x}, \mathbf{y}) + \overline{\alpha}(\mathbf{y}, \mathbf{x}) + (\mathbf{y}, \mathbf{y}) =$$

$$= |\alpha|^2(\mathbf{x}, \mathbf{x}) + \alpha(\mathbf{x}, \mathbf{y}) + \overline{\alpha}(\mathbf{x}, \mathbf{y}) + (\mathbf{y}, \mathbf{y}).$$

Это неравенство должно выполняться для всех $\alpha \in \mathbb{C}$, в том числе для $\alpha = t \frac{(\mathbf{x}, \mathbf{y})}{|(\mathbf{x}, \mathbf{y})|}$, где $t \in \mathbb{R}$. Получаем

$$\frac{|(\mathbf{x}, \mathbf{y})|^2}{|(\mathbf{x}, \mathbf{y})|^2} t^2(\mathbf{x}, \mathbf{x}) + t \frac{\overline{(\mathbf{x}, \mathbf{y})}}{|(\mathbf{x}, \mathbf{y})|} (\mathbf{x}, \mathbf{y}) + t \frac{(\mathbf{x}, \mathbf{y})}{|(\mathbf{x}, \mathbf{y})|} \overline{(\mathbf{x}, \mathbf{y})} + (\mathbf{y}, \mathbf{y}) \ge 0,$$

т.е.

$$f(t) = (\mathbf{x}, \mathbf{x})t^2 + 2|(\mathbf{x}, \mathbf{y})|t + (\mathbf{y}, \mathbf{y}) \ge 0$$

для всех $t \in \mathbb{R}$. Это возможно лишь при условии неположительности дискриминанта квадратного трехчлена f(t):

$$|(\mathbf{x}, \mathbf{y})|^2 - (\mathbf{x}, \mathbf{x})(\mathbf{y}, \mathbf{y}) \le 0.$$

В ${\bf y}{\bf \Pi}$ понятие длины векторов и свойства этого понятия формулируются и доказываются так же, как и в случае ${\bf E}{\bf \Pi}$. Понятие угла между векторами ${\bf y}{\bf \Pi}$ не вводится.

Задача. Используя примеры **ЕП**, приведенные в § $\ref{shifted}$, в качестве образцов, постройте аналогичные примеры $\ref{shifted}$ **УП**.

5. Ортогональные векторы

Векторы $\mathbf{x},\mathbf{y}\in\mathbb{E}$ (или $\in\mathbb{U}$) называются ортогональными $(\mathbf{x}\perp\mathbf{y}),$ если $(\mathbf{x},\mathbf{y})=0.$

Пусть $P \in \mathbb{E} - \mathbf{J} \mathbf{\Pi} \mathbf{\Pi}$ в $\mathbf{E} \mathbf{\Pi} \in (\mathbf{B} \mathbf{Y} \mathbf{\Pi} \mathbb{U})$. Вектор \mathbf{x} называется ортогональным подпространству $P \in \mathbb{E}$ ($P \in \mathbb{U}$), если он ортогонален любому вектору из P:

$$\mathbf{x} \perp P \iff \mathbf{x} \perp \mathbf{v} \ \forall \mathbf{v} \in P.$$

Обозначение: $\mathbf{x} \perp P$.

Теорема. 1) $\mathbf{x} \perp \mathbf{x}$ тогда и только тогда, когда $\mathbf{x} = \mathbf{0}$.

- 2) $Ecnu \mathbf{x} \in P \ u \ \mathbf{x} \perp P$, mo $\mathbf{x} = \mathbf{0}$.
- 3) Echu $\mathbf{y} \perp \mathbf{x}_1, \ldots, \mathbf{y} \perp \mathbf{x}_k$, mo $\mathbf{y} \perp L(\mathbf{x}_1, \ldots, \mathbf{x}_k)$.
- 4) Если $\mathbf{x} \perp \mathbf{y}$, то $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$ (теорема Пифагора).
- 5) Если ненулевые векторы $\mathbf{x}_1, \dots, \mathbf{x}_p$ попарно ортогональны, т.е. $\mathbf{x}_j \perp \mathbf{x}_k, \ j \neq k$, то они линейно независимы

4. Рассмотрим линейную комбинацию векторов $\mathbf{x}_1, \dots, \mathbf{x}_n$, равную нулевому вектору:

$$\alpha^1 \mathbf{x}_1 + \dots + \alpha^s \mathbf{x}_s + \dots + \alpha^p \mathbf{x}_p = \mathbf{0}.$$

Умножая скалярно это равенство на вектор \mathbf{x}_s , получаем $\alpha^s=0$, что и требовалось. \square

6. Ортогональные проекторы

Пусть $P - \mathbf{J}\mathbf{\Pi}\mathbf{\Pi}$ в $\mathbf{E}\mathbf{\Pi}$ \mathbb{E} (или в \mathbb{U}). Вектор \mathbf{y} называется ортогональной проекцией (**ОП**) вектора $\mathbf{x} \in \mathbb{E}$ на $\mathbf{J}\mathbf{\Pi}\mathbf{\Pi}$ P, если $\mathbf{y} \in P$ и $(\mathbf{x} - \mathbf{y}) \bot P$.

Теорема. Пусть $P \in \mathbb{E}$ $(P \in \mathbb{U})$. Для любого вектора $\mathbf{x} \in \mathbb{E}$ $(\in \mathbb{U})$ его **ОП** единственна.

Замечание. Вопрос о существовании ОП будет исследован позже.

Доказательство. Пусть $\mathbf{y}_1, \mathbf{y}_2$ — две различные **ОП** данного вектора \mathbf{x} на **ЛПП** P, т.е.

$$\mathbf{y}_1 \in P$$
, $\mathbf{x} - \mathbf{y}_1 \perp P$, $\mathbf{y}_2 \in P$, $\mathbf{x} - \mathbf{y}_2 \perp P$.

Тогда, очевидно, $\mathbf{y}_1 - \mathbf{y}_2 \in P$ и

$$\mathbf{y}_1 - \mathbf{y}_2 = \underbrace{(\mathbf{x} - \mathbf{y}_2)}_{P} \underbrace{(\mathbf{x} - \mathbf{y}_1)}_{P} \perp P,$$

так что $y_1 - y_2 = 0$, противоречие.

Определим оператор \mathbf{P} , ставящий в соответствие каждому вектору $\mathbf{x} \in \mathbb{E}$ ($\in \mathbb{U}$) его ортогональную проекцию \mathbf{v} на **ЛПП** P:

$$y = P(x)$$
.

Задача. Докажите, что этот оператор линейный.

Теорема. $\mathbf{P} - npoe\kappa mop$, m.e. $\hat{\mathbf{P}}^2 = \hat{\mathbf{P}}$.

Доказательство. Очевидно, $\operatorname{im} \mathbf{P} = P$. Рассмотрим векторы $\mathbf{x} \in \mathbb{E}$ ($\in \mathbb{U}$), $\mathbf{y} = \mathbf{P}(\mathbf{x}) \in P = \operatorname{im} \mathbf{P}$ и $\mathbf{z} = \mathbf{P}(\mathbf{y}) = \mathbf{P}^2(\mathbf{x})$. По определению,

$$z \in P$$
. $v - z \perp P$.

Так как $\mathbf{y}, \mathbf{z} \in P$, то $\mathbf{y} - \mathbf{z} \in P$ и поэтому $\mathbf{y} - \mathbf{z} = \mathbf{0}$. Таким образом,

$$z = P(y) = y \iff P^2(x) = P(x) \forall x,$$

T.e.
$$\mathbf{P}^2 = \mathbf{P}$$
.

Таким образом, **E** Π \mathbb{E} (**У** Π \mathbb{U}) разлагается в прямую сумму ядра и образа оператора **P**:

$$\mathbb{E} = \operatorname{im} \mathbf{P} \oplus \ker \mathbf{P}.$$

Ядро оператора ${\bf P}$ называется ортогональным дополнением (**ОД**) **ЛПП** $P=\operatorname{im}{\bf P}$ и обозначается P^{\perp} . Таким образом, для любого **ЛПП** $P \in \mathbb{E}$ имеем

$$\mathbb{E} = P \oplus P^{\perp}$$
.

Теорема. Ортогональное дополнение P^{\perp} представляет собой множество всех векторов $\mathbf{y} \in \mathbb{E}$, каждый из которых ортогонален подпространству P:

$$P^{\perp} = \left\{ \mathbf{y} \in \mathbb{E} : \mathbf{y} \perp P \right\}.$$

 P^{\perp} также является **ЛПП** в \mathbb{E} . причем

$$\dim P^{\perp} = \dim \mathbb{E} - \dim P$$

Доказательство. Докажем первое утверждение. Пусть ${f P}-$ оператора оптогонального проектирования на **ЛПП** P; тогда

$$\mathbf{y} \in P^{\perp} \iff \mathbf{y} \in \ker \mathbf{P} \iff \mathbf{z} = \mathbf{P}(\mathbf{y}) = \mathbf{0}$$

 $\iff \mathbf{z} \in P, \ \mathbf{y} - \mathbf{z} \perp P \iff \mathbf{y} \perp P.$

Завершите доказательство самостоятельно.

Если $P \in \mathbb{E}$, то $P^{\perp} \in \mathbb{E}$, $\mathbb{E} = P \oplus P^{\perp}$, и для любого вектора $\mathbf{x} \in \mathbb{E}$ имеется единственное разложение

$$\mathbf{x} = \underbrace{\mathbf{y}}_{\in P} + \underbrace{(\mathbf{x} - \mathbf{y})}_{\in P^{\perp}} = \underbrace{\mathbf{P}(\mathbf{x})}_{\in P} + \underbrace{(\mathbf{x} - \mathbf{P}(\mathbf{x})}_{\in P^{\perp}}.$$

Эта формула доказывает существование ортогональной проекции $\mathbf{y} = \mathbf{P}(\mathbf{x})$ любого вектора \mathbf{x} на любое **ЛПП** P.

7. Ортонормированные базисы

Базис $\mathbf{e}_1, \dots, \mathbf{e}_n$ в **ЕП (УП)** называется ортонормированным **(ОНБ)**, если векторы этого базиса попарно ортогональны:

$$(\mathbf{e}_i, \mathbf{e}_k) = \delta_{ik}.$$

Очевидно, $\|\mathbf{e}_i\| = 1, \ i = 1, \dots, n.$

Матрица Грама ортонормированного базиса является единичной матрицей. Выражение СП через координаты векторов относительно **ОНБ** имеет вид

$$(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^{n} x^{j} y^{j}$$

в ЕП и

$$(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^{n} x^{j} \bar{y}^{j}$$

в **УП**.

Существование **ОНБ** в **ЕП** не вызывает сомнений: каждая симметричная положительно определенная билинейная форма обладает каноническим базисом, который и является **ОНБ**. В **УП** существование **ОНБ** нуждается в доказательстве.

Пусть $\mathbf{f}_1, \dots, \mathbf{f}_n$ — произвольный базис в **ЕП** \mathbb{E} (в **УП** \mathbb{U}). Построим **ОНБ** в \mathbb{E} (\mathbb{U}), используя следующий алгоритм (процесс ортогонализации Грама—Шмидта).

Положим

$$\mathbf{e}_1 = \frac{\mathbf{f}_1}{\|\mathbf{f}_1\|}; \quad \|\mathbf{e}_1\| = 1.$$

Построим вектор

$$\mathbf{g}_2 = \mathbf{f}_2 - \operatorname{pr}_{L(\mathbf{e}_1)} \mathbf{f}_2,$$

где символом pr_P обозначен ортогональный проектор на подпространство P. Положим

$$\mathbf{e}_2 = \frac{\mathbf{g}_2}{\|\mathbf{g}_2\|};$$

Очевидно,

$$\mathbf{g}_2 \perp \mathbf{e}_1, \quad \|\mathbf{g}_2\| = 1.$$

Считая, что векторы e_1, \dots, e_{k-1} уже найдены, продолжим процесс. Построим вектор

$$\mathbf{g}_k = \mathbf{f}_k - \operatorname{pr}_{L(\mathbf{e}_1, \dots, \mathbf{e}_{k-1})} \mathbf{f}_k,$$

который, очевидно, ортогонален подпространству $L(\mathbf{e}_1,\dots,\mathbf{e}_{k-1})$, и положим

$$\mathbf{e}_k = \frac{\mathbf{g}_k}{\|\mathbf{g}_k\|}.$$

Ясно, что

$$\mathbf{e}_{k} \perp \mathbf{e}_{1}, \ \mathbf{e}_{k} \perp \mathbf{e}_{2}, \ \ldots, \ \mathbf{e}_{k} \perp \mathbf{e}_{k-1}, \ \|\mathbf{e}_{k}\| = 1.$$

$$\operatorname{pr}_{L(\mathbf{e}_1,\ldots,\mathbf{e}_k)} \mathbf{x} \in L(\mathbf{e}_1,\ldots,\mathbf{e}_k),$$

$$\mathbf{x} - \operatorname{pr}_{L(\mathbf{e}_1,\ldots,\mathbf{e}_k)} \mathbf{x} \perp L(\mathbf{e}_1,\ldots,\mathbf{e}_k).$$

Таким образом,

$$\operatorname{pr}_{L(\mathbf{e}_1,\dots,\mathbf{e}_k)} \mathbf{x} = \alpha^1 \mathbf{e}_1 + \dots + \alpha^k \mathbf{e}_k;$$

найдем коэффициенты этой линейной комбинации. Для любого вектора $\mathbf{e}_j,\ 1\leq j\leq k,$ имеем

$$\left(\mathbf{x} - (\alpha^1 \mathbf{e}_1 + \dots + \alpha^k \mathbf{e}_k), \ \mathbf{e}_j\right) = 0,$$

откуда

$$(\mathbf{x}, \mathbf{e}_j) - \sum_{s=1}^k \alpha^s(\mathbf{e}_s, \mathbf{e}_j) = 0.$$

В силу попарной ортогональности векторов ${f e}_j$ в сумме остается лишь одно ненулевое слагаемое, в котором s=j, т.е.

$$\alpha^j = \frac{(\mathbf{x}, \mathbf{e}_j)}{(\mathbf{e}_j, \mathbf{e}_j)}.$$

Если векторы \mathbf{e}_j нормированы (т.е. $\|\mathbf{e}_j\|=1$), то знаменатель в этой формуле обращается в 1, и мы получаем

$$\alpha^j = (\mathbf{x}, \mathbf{e}_i).$$

Замечание. Обратите внимание на положение индексов!

Задача. Для каждого из примеров **ЕП** (и аналогичных примеров **УП**) выясните, является ли стандартный базис ортонормированным.

Задача. Какой базис является ортонормированным в пространстве $\mathbb{R}^n(\mathbb{R})$ со скалярным произведением $(\mathbf{x},\mathbf{y})=X^TGY$, где G — симметричная положительно определенная матрица?

8. Изоморфизм евклидовых и унитарных пространств

Два **ЕП** \mathbb{E}_1 и \mathbb{E}_2 называются изоморфными, $\mathbb{E}_1 \cong \mathbb{E}_2$, если существует отображение $f: \mathbb{E}_1 \to \mathbb{E}_2$, являющееся изоморфизмом **ЛП** и удовлетворяющее условию

$$(f(\mathbf{x}), f(\mathbf{y})) = (\mathbf{x}, \mathbf{y}) \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{E}_1.$$

Отображение f называется изоморфизмом $\mathbf{E} \mathbf{\Pi}$.

Аналогично вводится понятие изоморфизма $\mathbf{y} \mathbf{\Pi}$.

Теорема. Любые два ЕП одинаковой размерности изоморфны.

Доказательство. Пусть $\mathbf{e}_1, \dots, \mathbf{e}_n - \mathbf{OH}\mathbf{b}$ в \mathbb{E}_1 , $\tilde{\mathbf{e}}_1, \dots, \tilde{\mathbf{e}}_n - \mathbf{OH}\mathbf{b}$ в \mathbb{E}_2 . Определим линейное отображение $f: \mathbb{E}_1 \to \mathbb{E}_2$ правилом $f(\mathbf{e}_j) = \tilde{\mathbf{e}}_j, \ j=1,\dots,n$. Для любых $\mathbf{x}, \mathbf{y} \in \mathbb{E}_1$ имеем:

$$\mathbf{x} = x^j \mathbf{e}_j, \quad \mathbf{y} = y^k \mathbf{e}_k, \quad (\mathbf{x}, \mathbf{y}) = \sum_{j=1}^n x^j y^j.$$

Так как

$$f(\mathbf{x}) = f(x^j \mathbf{e}_i) = x^j f(\mathbf{e}_i) = x^j \tilde{\mathbf{e}}_i, \quad f(\mathbf{y}) = y^k \tilde{\mathbf{e}}_k,$$

получаем

$$(f(\mathbf{x}), f(\mathbf{y})) = \sum_{j=1}^{n} x^{j} y^{j},$$

т.е. f — изоморфизм.

Задача. Сформулируйте и докажите аналогичную теорему для $\mathbf{y}\mathbf{\Pi}$.

9. Автоморфизмы ЕП и УП. Изометрические операторы

Автоморфизм **ЕП** (**УП**) — это изоморфизм **ЕП** (**УП**) на себя, т.е. линейный оператор **A**, удовлетворяющий условию

$$(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}) = (\mathbf{x}, \mathbf{y}) \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{E} \ (\in \mathbb{U}).$$

Иначе автоморфизмы $\mathbf{E}\mathbf{\Pi}$ называются изометрическими операторами. Изометрический оператор в $\mathbf{E}\mathbf{\Pi}$ называется ортогональным оператором, а в $\mathbf{y}\mathbf{\Pi}$ — унитарным оператором.

Теорема. Изометрический оператор в **ЕП** (**УП**) невырожден и следовательно обратим.

Доказательство. Пусть \mathbf{A} — изометрический оператор и $\mathbf{x} \in \ker \mathbf{A}, \ \mathbf{x} \neq \mathbf{0}$. Тогда

$$(\mathbf{x}, \mathbf{x}) \neq 0, \quad (\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{x}) = (\mathbf{0}, \mathbf{0}) = 0,$$

П

противоречие. Таким образом, $\ker \mathbf{A} = \mathbf{0}$, т.е. $\operatorname{rk} \mathbf{A} = \dim \operatorname{im} \mathbf{A} = n \Rightarrow \det \mathbf{A} \neq 0$.

Теорема. Все автоморфизмы данного **ЕП** \mathbb{E} (**УП** \mathbb{U}) образуют группу $\operatorname{Aut} \mathbb{E}$ ($\operatorname{Aut} \mathbb{U}$) относительно операции композиции автоморфизмлв (умножения линейных операторов).

Задача. Докажите самостоятельно.

Изучим структуру изометрических операторов.

Теорема. 1) Матрица A ортогонального оператора A в произвольном базисе удовлетворяет соотношению

$$A^TGA = G$$
,

где G — матрица Грама этого базиса.

2) Матрица А ортогонального оператора А в **ОНБ** удовлетворяет соотношению

$$A^T A = I$$
.

где I — единичная матрица.

3) Матрица A унитарного оператора ${\bf A}$ в произвольном базисе удовлетворяет соотношению

$$A^T G \bar{A} = G$$
.

где G — матрица Грама этого базиса.

4) Матрица А унитарного оператора А в ОНБ удовлетворяет соотношению

$$A^T \bar{A} = I$$
.

где I — единичная матрица.

- 5) Определитель матрицы изометрического оператора удовлетворяет соотношению $|\det \mathbf{A}| = 1$.
- 6) Все собственные значения изометрического оператора по модулю равны 1.

Доказательство. 1) В произвольном базисе имеем

$$(\mathbf{x}, \mathbf{y}) = X^T G Y, \quad (\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}) = (AX)^T G (AY),$$

так что

$$X^TGY = X^TA^TGAY \Rightarrow G = A^TGA.$$

6) Пусть $\mathbf{x} - \mathbf{C}\mathbf{B}$ изометрического оператора **A**, принадлежащий **C3** λ . Имеем:

$$(\mathbf{x}, \mathbf{x}) = (\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{x}) = (\lambda \mathbf{x}, \lambda \mathbf{x}) = |\lambda|^2 (\mathbf{x}, \mathbf{x}),$$

откуда $|\lambda|^2 = 1 \Rightarrow |\lambda| = 1$.

Остальные утверждения докажите самостоятельно.

Если в **ЕП** зафиксирован некоторый **ОНБ** e_1, \ldots, e_n , то каждому ортогональному оператору ${\bf A}$ ставится в соответствие его матрица A в этом базисе. Как известно, матрица Aудовлетворяет соотношению

$$A^T A = I$$
.

Матрицы, удовлетворяющие данному условию, называются ортогональными матрицами.

Таким образом, матрица ортогонального оператора в ОНБ является ортогональной матрицей. Матрица ортогонального оператора в произвольном базисе, вообще говоря, ортогональной не является.

Теорема. Ортогональные матрицы обладают следующими свойствами:

- 1) $AA^{T} = I$:
- 2) $\det A = \pm 1$;
- 3) $\sum_{j=1}^{n} a_{jk} a_{jp} = \delta_{kp};$ 4) $\sum_{j=1}^{n} a_{kj} a_{pj} = \delta_{kp}.$

Задача. Докажите самостоятельно.

Теорема. Все ортогональные матрицы порядка n образуют группу O(n), являюшуюся подгруппой в $GL(n,\mathbb{R})$. Группа автоморфизмов n-мерного **ЕП** \mathbb{E}_n изоморфна *epunne* O(n):

Aut
$$\mathbb{E}_n \cong O(n)$$
.

Задача. Докажите самостоятельно.

В группе O(n) имеется подгруппа, состоящая из ортогональных матриц с определителем, равным 1; эта подгруппа обозначается SO(n). Группы SO(2), SO(3) — группы вращений двумерного и трехмерного пространств.

Задача. Найдите общий вид матрицы $A \in O(2)$. Найдите общий вид матрицы $A \in SO(2)$.

11. Унитарная группа

Если в **УП** зафиксирован некоторый **ОНБ** e_1, \ldots, e_n , то каждому унитарному оператору $\mathbf A$ ставится в соответствие его матрица A в этом базисе. Как известно, матрица Aудовлетворяет соотношению

$$A^T \bar{A} = I$$
.

Матрицы, удовлетворяющие данному условию, называются унитарными матрицами.

Таким образом, матрица унитарного оператора в ОНБ является унитарной матрицей. Матрица унитарного оператора в произвольном базисе, вообще говоря, унитарной не яв-

Теорема. Унитарные матрицы обладают следующими свойствами:

- 1) $A\bar{A}^{T} = I$;
- 2) $|\det A| = 1$;
- 3) $\sum_{j=1}^{n} a_{jk} \bar{a}_{jp} = \delta_{kp}$; 4) $\sum_{j=1}^{n} a_{kj} \bar{a}_{pj} = \delta_{kp}$.

Задача. Докажите самостоятельно.

Теорема. Все унитарные матрицы порядка n образуют группу U(n), являющуюся подгруппой в $GL(n,\mathbb{C})$. Группа автоморфизмов n-мерного **УП** \mathbb{U}_n изоморфна группе U(n):

Aut
$$\mathbb{U}_n \cong U(n)$$
.

Задача. Докажите самостоятельно.

10

В группе U(n) имеется подгруппа, состоящая из ортогональных матриц в определителем, равным 1; эта подгруппа обозначается SU(n).

Задача. Найдите общий вид матрицы $A \in U(2)$. Найдите общий вид матрицы $A \in SU(2)$.

12. Взаимные базисы

Пусть $\mathbf{e}_1, \dots, \mathbf{e}_n$ — произвольный базис в **ЕП** \mathbb{E} , g_{ik} — метрический тензор. Рассмотрим

$$\mathbf{e}^j = q^{jk} \mathbf{e}_k$$

где q^{jk} — контравариантный метрический тензор. Векторы e^j образуют базис в \mathbb{E} (почему?); этот базис называется взаимным по отношению к исходному базису $\mathbf{e}_1, \dots, \mathbf{e}_n$.

Залача. Локажите, что взаимный базис совпалает с исходным тогда и только тогда. когда исходный базис ортонормирован.

Пусть $\varepsilon^1, \ldots, \varepsilon^n$ — базис, сопряженный к к исходному базису $\mathbf{e}_1, \ldots, \mathbf{e}_n$, т.е.

$$\varepsilon^{j}(\mathbf{e}_{l}) = \delta^{j}_{l}$$
.

Рассмотрим **СП** векторов e^j , e_i :

$$(\mathbf{e}^{j}, \mathbf{e}_{l}) = (g^{jk}\mathbf{e}_{k}, \mathbf{e}_{l}) = g^{jk}(\mathbf{e}_{k}, \mathbf{e}_{l}) =$$
$$= g^{jk}q_{kl} = \delta^{j}_{l} = \varepsilon^{j}(\mathbf{e}_{l}).$$

Таким образом, для любого вектора $\mathbf{x} \in \mathbb{E}$ имеем

$$\varepsilon^j(\mathbf{x}) = (\mathbf{e}^j, \mathbf{x}) = x^j.$$

Мы доказали следующую теорему.

Теорема. Евклидово пространство изоморфно своему сопряженному пространству, причем изоморфизм задается правилом

$$\boldsymbol{arepsilon}^j \leftrightarrow \mathbf{e}^j$$
 .

Иными словами, для любого линейного финкционала $\eta \in \mathbb{E}^*$ в **ЕП** существует вектор $\mathbf{v} \in \mathbb{E}$ такой, что

$$n(\mathbf{x}) = (\mathbf{v}, \mathbf{x}) \quad \forall \mathbf{x} \in \mathbb{E}.$$

13. КОВАРИАНТНЫЕ И КОНТРАВАРИАНТНЫЕ КООРДИНАТЫ

Пусть $\mathbf{e}_1, \dots, \mathbf{e}_n$ — произвольный базис в $\mathbf{E}\mathbf{\Pi} \ \mathbb{E}, \ \mathbf{e}^1, \dots, \mathbf{e}^n$ — взаимный базис. Координаты x^j произвольного вектора $\mathbf{x} \in \mathbb{E}$ в базисе \mathbf{e}_i называются его контравариантными координатами, а координаты x_k \mathbf{x} в базисе \mathbf{e}^k называются его ковариантными координатами:

$$\mathbf{x} = x^j \mathbf{e}_j, \quad \mathbf{x} = x_k \mathbf{e}^k.$$

Получим выражения для контравариантных и ковариантных координат вектора ${f x}.$

Умножая обе части первого из приведенных разложений скалярно на e^k , находим

$$(\mathbf{x}, \mathbf{e}^k) = (x^j \mathbf{e}_j, \mathbf{e}^k) = x^j (\mathbf{e}_j, \mathbf{e}^k) = x^j \delta_j^k = x^k.$$

Аналогично, умножая обе части второго из приведенных разложений скалярно на ${f e}_i$, нахолим

$$(\mathbf{x}, \mathbf{e}_i) = (x_k \mathbf{e}^k, \mathbf{e}_i) = x_k (\mathbf{e}^k, \mathbf{e}_i) = x_k \delta_i^k = x_i.$$

Полученные формулы называются формулами Гиббса.

Найдем связь между контравариантными и ковариантными координатами вектора х. Имеем:

$$x^k = (\mathbf{x}, \mathbf{e}^k) = (\mathbf{x}, g^{kj} \mathbf{e}_j) = g^{kj} (\mathbf{x}, \mathbf{e}_j) = g^{kj} x_j.$$

Аналогично получаем

$$x_j = g_{jk} x^k.$$

11

Если исходный базис ортонормированный, то $g_{jk} = \delta_{jk}$, и ковариантные координаты вектора совпадают с его контравариантными координатами.

Задача. Постройте для унитарных пространств теорию, аналогичную изложенной в данном параграфе.

14. Подъем и опускание индекса

Пусть $A_{k_1k_2...k_p}^{j_1j_2...j_q}$ — тензор типа (p,q), заданный в **ЕП** $\mathbb E,\ g_{lm}$ — метрический тензор. Операция свертки

$$B_{kk_1...k_p}^{j_2...j_q} = g_{kj_1} A_{k_1...k_p}^{j_1...j_q}$$

называется операцией опускания индекса у тензора A

Тензоры A и B принято обозначать одной буквой, т.е.

$$A_{kk_1...k_n}^{j_2...j_q} = g_{kj_1} A_{k_1...k_n}^{j_1...j_q}.$$

Аналогично определяется операция подъема индекса:

$$A_{k_2...k_p}^{jj_1...j_q} = g^{jk_1} A_{k_1...k_p}^{j_1...j_q}.$$

Тензорный индекс можно поднимать и опускать не обязательно на первое место, например, можно рассматривать тензор

$$A_{k_1 \ kk_2...k_p}^{j_2...j_q} = g_{kj_1} A_{k_1...k_p}^{j_1...j_q}.$$

Ковариантные координаты вектора получаются из контравариантных опусканием индекса; контравариантные координаты вектора получаются из ковариантных подъемом индекса

Рассмотрим произвольный линейный оператор **A** в **EП** \mathbb{E} ; ему отвечает тензор a_k^j типа (1,1) — матрица этого оператора в произвольно выбранном базисе $\mathbf{e}_1,\ldots,\mathbf{e}_n$. Опустим индекс у этого тензора:

$$a_{lk} = g_{lj}a_k^j.$$

Полученному 2-ковариантному тензору a_{lk} отвечает некоторая билинейная форма ${\bf B}$ в ${\mathbb E}$:

$$\mathbf{B}(\mathbf{x}, \mathbf{y}) = a_{lk} x^l y^k = g_{lj} a_k^j x^l y^k = (\mathbf{x}, \mathbf{A}\mathbf{y}).$$

Таким образом, доказана следующая теорема.

Теорема. Пространство билинейных форм, заданных на $E\!H$ \mathbb{E} , изоморфно пространству линейных операторов на этом $E\!H$, причем изоморфизм задается формулой

$$\mathbf{B}(\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \mathbf{A}\mathbf{y}) \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{E}.$$

Матрица билинейной формы получается из матрицы оператора опусканием индекса. Матрица оператора получается из матрицы билинейной формы подъемом индекса.

Задача. Какой линейный оператор получится, если поднять индекс у метрического тензора?