Adjoint-based Control of Traffic Systems Application to Ramp Metering

Samitha Samaranayake Walid Krichene Jack Reilly Maria-Laura Delle Monache

November 21, 2012

Outline

- Introduction to the adjoint method
 - Optimization of a PDE-constrained system
 - Example: linear system
 - Solving the original problem
- Discretized system dynamics
 - Forward System
 - Lower triangular forward system
 - Exploiting system structure
- 3 Solving the optimization problem via the adjoint method
 - Overview of procedure
 - A few details
- Mumercial results

Outline

- 1 Introduction to the adjoint method
 - Optimization of a PDE-constrained system
 - Example: linear system
 - Solving the original problem
- Discretized system dynamics
 - Forward System
 - Lower triangular forward system
 - Exploiting system structure
- 3 Solving the optimization problem via the adjoint method
 - Overview of procedure
 - A few details
- Mumercial results

Optimization problem

minimize_{$$u \in \mathcal{U}$$} $J(x, u)$
subject to $H(x, u) = 0$

- $x \in \mathcal{X} \subseteq \mathbb{R}^n$: state variables
- $u \in \mathcal{U} \subseteq \mathbb{R}^m$: control variables

$$J: \mathcal{X} \times \mathcal{U} \to \mathbb{R}$$
$$(x, u) \mapsto J(x, u)$$
$$H: \mathcal{X} \times \mathcal{U} \to \mathbb{R}^{n_H}$$
$$(x, u) \mapsto H(x, u)$$

Want to do gradient descent. How to compute the gradient?

4□ > 4□ > 4□ > 4□ > 4□ > 3

Outline

- Introduction to the adjoint method
 - Optimization of a PDE-constrained system
 - Example: linear system
 - Solving the original problem
- Discretized system dynamics
 - Forward System
 - Lower triangular forward system
 - Exploiting system structure
- 3 Solving the optimization problem via the adjoint method
 - Overview of procedure
 - A few details
- Mumercial results

Discrete linear dynamics

$$x_{t+1} = Ax_t + Bu_t, \ t \in \{0, \dots, T-1\}$$

with initial condition x_0 .

Let

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_T \end{bmatrix} \qquad \qquad u = \begin{bmatrix} u_0 \\ \vdots \\ u_{T-1} \end{bmatrix}$$

$$x = \begin{bmatrix} Ax_0 + Bu_0 \\ Ax_1 + Bu_1 \\ \vdots \\ Ax_{T-1} + Bu_{T-1} \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ A & \ddots \\ \vdots \\ A & 0 \end{bmatrix} x + \begin{bmatrix} B & & & \\ & \ddots & & \\ & & \ddots & \\ & & & B \end{bmatrix} u + \begin{bmatrix} Ax_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Can be written as

$$(\tilde{A} - I)x + \tilde{B}u + c = 0$$

Note: $(\tilde{A} - I)$ is invertible (lower triangular, with -1 on diagonal). Good: system is deterministic!

4 D > 4 A > 4 B > 4 B > B 9 Q A

Linear system

$$H_x x + H_u u + c = 0$$

- $x \in \mathbb{R}^n$ state
- $u \in \mathbb{R}^m$ control, with $m \le n$
- $H_x \in \mathbb{R}^{n \times n}$, assume invertible
- $H_{ii} \in \mathbb{R}^{n \times m}$
- $c \in \mathbb{R}^n$

want to minimize linear cost function

$$\begin{aligned} & \text{minimize}_{u \in \mathcal{U}} & J_x x + J_u u \\ & \text{subject to} & H_x x + H_u u + c = 0 \end{aligned}$$

 $J_x \in \mathbb{R}^{1 \times n}$ and $J_u \in \mathbb{R}^{1 \times m}$ are given row vectors.

Optimization problem

$$\begin{aligned} & \text{minimize}_{u \in \mathcal{U}} & & J_x x + J_u u \\ & \text{subject to} & & & H_x x + H_u u + c = 0 \end{aligned}$$

An equivalent problem is

$$minimize_{u \in \mathcal{U}} - J_x H_x^{-1}(H_u u + c) + J_u u$$

and the gradient is

Gradient

$$\nabla_{u}J = -J_{x}H_{x}^{-1}H_{u} + J_{u}$$

Gradient

$$\nabla_u J = -J_x H_x^{-1} H_u + J_u$$

Two ways to compute the first term

Forward

$$J_{\times}M$$

$$H_{\vee}M = -H_{\cdots}$$

Solve for $M \in \mathbb{R}^{n \times m}$: m inversions

$$H_{\mathsf{x}}\left[\begin{array}{c|c} M_1 & \dots & M_m \end{array}\right] = \left[\begin{array}{c|c} H_{\mathsf{u_1}} & \dots & H_{\mathsf{u_m}} \end{array}\right]$$

Cost $O(mn^2)$.

Then product $1 \times n$ times $n \times m$: O(nm)

Adjoint

$$\lambda^T H_u$$

$$\lambda^T H_x = -J_x$$

Solve for $\lambda \in \mathbb{R}^n$: 1 inversion

$$H_x^T \lambda = J_x^T$$

Cost $O(n^2)$.

Then product $1 \times n$ times $n \times m$: O(nm)

Outline

- Introduction to the adjoint method
 - Optimization of a PDE-constrained system
 - Example: linear system
 - Solving the original problem
- Discretized system dynamics
 - Forward System
 - Lower triangular forward system
 - Exploiting system structure
- 3 Solving the optimization problem via the adjoint method
 - Overview of procedure
 - A few details
- Mumercial results

General problem

minimize $u \in \mathcal{U}$ J(x, u)subject to H(x, u) = 0

$$\nabla_{u}J = \frac{\partial J}{\partial x}\nabla_{u}x + \frac{\partial J}{\partial u}$$

On trajectories, H(x, u) = 0 constant, thus $\nabla_u H = 0$

$$\frac{\partial H}{\partial x} \nabla_{u} x + \frac{\partial H}{\partial u} = 0$$

Linear system

minimize_{$u \in \mathcal{U}$} $J_x x + J_u u$ subject to $H_x x + H_u u + c = 0$

$$\nabla_u J = J_{\times} M + J_u$$

$$H_{\times}M = -H_{u}$$

General problem

minimize_{$u \in \mathcal{U}$} J(x, u)subject to H(x, u) = 0

$$\nabla_{u}J = \frac{\partial J}{\partial x}\nabla_{u}x + \frac{\partial J}{\partial u}$$

On trajectories, H(x, u) = 0 constant, thus $\nabla_u H = 0$

$$\frac{\partial H}{\partial x} \nabla_u x + \frac{\partial H}{\partial u} = 0$$

Linear system

minimize $_{u \in \mathcal{U}}$ $J_x x + J_u u$ subject to $H_x x + H_u u + c = 0$

$$\nabla_u J = J_x \mathbf{M} + J_u$$

$$H_{\times}M = -H_{u}$$

Instead, solve for $\lambda \in \mathbb{R}^n$

Adjoint

$$H_x^T \lambda = J_x^T$$

then

$$\nabla_{u}J = \lambda^{T}H_{u} + J_{u}$$

General problem

minimize $u \in \mathcal{U}$ J(x, u)subject to H(x, u) = 0

$$\nabla_{u}J = \frac{\partial J}{\partial x} \nabla_{u}x + \frac{\partial J}{\partial u}$$

On trajectories, H(x, u) = 0 constant, thus $\nabla_u H = 0$

$$\frac{\partial H}{\partial x} \nabla_{u} x + \frac{\partial H}{\partial u} = 0$$

Adjoint

$$\frac{\partial H}{\partial x}^{T} \lambda = \frac{\partial J}{\partial x}$$

then

$$\nabla_{u}J = \lambda^{T} \frac{\partial H}{\partial u} + \frac{\partial J}{\partial u}$$

Linear system

 $\begin{aligned} & \text{minimize}_{u \in \mathcal{U}} & & J_x x + J_u u \\ & \text{subject to} & & H_x x + H_u u + c = 0 \end{aligned}$

$$\nabla_u J = J_{\mathsf{x}} \mathsf{M} + J_{\mathsf{u}}$$

$$H_x M = -H_u$$

Instead, solve for $\lambda \in \mathbb{R}^n$

Adjoint

$$H_x^T \lambda = J_x^T$$

then

$$\nabla_u J = \lambda^T H_u + J_u$$

Computing $\nabla_u J(x, u)$

Want to evaluate

$$\begin{split} &\frac{\partial J}{\partial x} \nabla_{u} x \\ &\text{where } \frac{\partial H}{\partial x} \nabla_{u} x + \frac{\partial H}{\partial u} = 0 \end{split}$$

Computing $\nabla_u J(x, u)$

Want to evaluate

$$\frac{\partial J}{\partial x} \nabla_{u} x$$
where $\frac{\partial H}{\partial x} \nabla_{u} x + \frac{\partial H}{\partial u} = 0$

If λ is solution to the adjoint equation

$$\frac{\partial J}{\partial x} + \lambda^T \frac{\partial H}{\partial x} = 0$$

Samitha Samaranayake, Walid Krichene JackAdjoint-based Control of Traffic Systems App

Computing $\nabla_u J(x, u)$

Want to evaluate

$$\begin{split} &\frac{\partial J}{\partial x} \nabla_{u} x \\ &\text{where } \frac{\partial H}{\partial x} \nabla_{u} x + \frac{\partial H}{\partial u} = 0 \end{split}$$

If λ is solution to the adjoint equation

$$\frac{\partial J}{\partial x} + \lambda^T \frac{\partial H}{\partial x} = 0$$

Then

$$\frac{\partial J}{\partial x} \nabla_{\mathbf{u}} \mathbf{x} = -\lambda^{T} \frac{\partial H}{\partial x} \nabla_{\mathbf{u}} \mathbf{x} = \lambda^{T} \frac{\partial H}{\partial \mathbf{u}}$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 釣९♡

Adjoint solution λ

$$\nabla_{u}J = \lambda^{T} \frac{\partial H}{\partial u} + \frac{\partial J}{\partial u}$$

Also useful for sensitivity analysis.

Sensitivity analysis

 λ_k is the price of changing H_k

Outline

- Introduction to the adjoint method
 - Optimization of a PDE-constrained system
 - Example: linear system
 - Solving the original problem
- Discretized system dynamics
 - Forward System
 - Lower triangular forward system
 - Exploiting system structure
- 3 Solving the optimization problem via the adjoint method
 - Overview of procedure
 - A few details
- Mumercial results

Forward system

- Dynamics based on the discretized LWR PDE
- Piecewise affine system
- Junction solver based on the modified Piccoli model presented a few weeks ago

Mass conservation

Density evolution

$$\rho_{i}\left(k\right) = \rho_{i}\left(k-1\right) + \frac{\triangle t}{\triangle x}\left(f_{i}^{\mathsf{in}}\left(k-1\right) - f_{i}^{\mathsf{out}}\left(k-1\right)\right) \quad \forall i \in \{1, \dots, N-1\}, k \in \{1, \dots, T\}$$
(H1a)

$$\rho_{0}(k) = \rho_{0}(k-1) + \frac{\triangle t}{\triangle x} \left(D_{0}(k-1) - f_{0}^{\text{out}}(k-1) \right) \qquad \forall k \in \{1, \dots, T\}$$
(H1b)

$$\rho_{N}(k) = \rho_{N}(k-1) + \frac{\triangle t}{\triangle x} \left(f_{N}^{\text{in}}(k-1) - \delta_{N}(k-1) \right)$$

$$\forall k \in \{1, \dots, T\}$$
(H1c)

and initial condition

$$\rho_i(0) = \rho_i^0 \qquad \forall i \in \{0, \dots, N\}$$
 (11)

Samitha Samaranayake, Walid Krichene JackAdjoint-based Control of Traffic Systems App

Ramp buffer

Queue evolution

$$I_{i}(k) = I_{i}(k-1) + \triangle t(D_{i}(k-1) - r_{i}(k-1)) \quad \forall i \in \{1, ..., N-1\}, k \in \{1, ..., T\}$$
(H2)

and initial condition

$$l_i(0) = l_i^0$$
 $\forall i \in \{1, ..., N-1\}$ (12)

◆□▶ ◆□▶ ◆ ≥ ▶ ○ ≥ ● りゅ○

Junction supply and demand

$$\delta_{i}(k) = \min(F_{i}, v_{i}\rho_{i}(k)) \qquad \forall i \in \{0, \dots, N\}, k \in \{0, \dots, T-1\}$$
 (H3)

$$\sigma_{i}(k) = \min\left(F_{i}, w_{i}\left(\rho_{i}^{\mathsf{jam}} - \rho_{i}(k)\right)\right) \qquad \forall i \in \{1, \dots, N\}, k \in \{0, \dots, T-1\}$$
 (H4)

$$d_{i}(k) = \min(l_{i}(k), u_{i}(k))$$
 $\forall i \in \{1, ..., N-1\}, k \in \{0, ..., T-1\}$ (H5)

Junction outflow

$$\begin{split} f_{i}^{\text{in}}\left(k\right) &= \min\left(\delta_{i-1}\left(k\right)\left(1 - \beta_{i-1}\left(k\right)\right) + d_{i-1}\left(k\right), \sigma_{i}\left(k\right)\right) & \forall i \in \{2, \dots, N\}, \, k \in \{0, \dots, T-1\} \\ & \text{(H6a)} \\ f_{1}^{\text{in}}\left(k\right) &= \min\left(\delta_{0}\left(k\right), \sigma_{1}\left(k\right)\right) & \forall k \in \{0, \dots, T-1\} \\ & \text{(H6b)} \end{split}$$

$$f_{i+1}^{\text{in}}\left(k\right) = \underbrace{r_{i}\left(k\right)}_{=\left(1-P\right)f_{i+1}^{\text{in}}\left(k\right)} + \underbrace{f_{i}^{\text{out}}\left(k\right)\left(1-\beta_{i}\left(k\right)\right)}_{=Pf_{i+1}^{\text{in}}\left(k\right)}$$

$$f_{i+1}^{\text{in}}(k) = \underbrace{r_i(k)}_{=(1-P)f_{i+1}^{\text{in}}(k)} + \underbrace{f_i^{\text{out}}(k)(1-\beta_i(k))}_{=Pf_{i+1}^{\text{in}}(k)}$$

$$f_{i}^{\text{out}}(k) = \delta_{i}(k)$$
if $P_{i}f_{i+1}^{\text{in}}(k) > (1 - \beta_{i}(k)) \delta_{i}(k)$

イロト (例) (手) (手) 手 りの()

$$f_{i+1}^{\text{in}}(k) = \underbrace{r_i(k)}_{=(1-P)f_{i+1}^{\text{in}}(k)} + \underbrace{f_i^{\text{out}}(k)(1-\beta_i(k))}_{=Pf_{i+1}^{\text{in}}(k)}$$

$$f_{i}^{\text{out}}(k) = \frac{f_{i+1}^{\text{in}}(k) - d_{i}(k)}{1 - \beta_{i}(k)}$$
if $(1 - P_{i}) f_{i+1}^{\text{in}}(k) > d_{i}(k)$

←□ ト ←団 ト ← 団 ト ・ 豆 ・ りへで

4□ > 4回 > 4 = > 4 = > ■ 900

$$f_{i+1}^{\mathsf{in}}\left(k\right) = \underbrace{r_{i}\left(k\right)}_{=\left(1-P\right)f_{i+1}^{\mathsf{in}}\left(k\right)} + \underbrace{f_{i}^{\mathsf{out}}\left(k\right)\left(1-\beta_{i}\left(k\right)\right)}_{=Pf_{i+1}^{\mathsf{in}}\left(k\right)}$$

$$f_i^{\text{out}}(k) = \frac{P_i f_{i+1}^{\text{in}}(k)}{1 - \beta_i(k)}$$
 otherwise

◆ロト 4周ト 4 章 ト 4 章 ト 章 めなべ

$$\begin{split} f_{i}^{\text{out}}\left(k\right) &= \begin{cases} \delta_{i}\left(k\right) & \text{if } \left(R1_{k,i}\right) : P_{i}f_{i+1}^{\text{in}}\left(k\right) > \left(1-\beta_{i}\left(k\right)\right)\delta_{i}\left(k\right) \\ \frac{f_{i+1}^{\text{in}}\left(k\right) - d_{i}\left(k\right)}{1-\beta_{i}\left(k\right)} & \text{if } \left(R2_{k,i}\right) : \left(1-P_{i}\right)f_{i+1}^{\text{in}}\left(k\right) > d_{i}\left(k\right) \\ \frac{P_{i}f_{i+1}^{\text{in}}\left(k\right)}{1-\beta_{i}\left(k\right)} & \text{otherwise } \left(R3_{k,i}\right) \end{cases} \\ \forall i \in \left\{1, \dots, N-1\right\}, \, k \in \left\{0, \dots, T-1\right\} \quad (\text{H7a}) \end{split}$$

$$f_0^{\mathsf{out}}\left(k\right) = f_1^{\mathsf{in}}\left(k\right) \qquad \qquad \forall k \in \{0, \dots, T-1\}$$
 (H7b)

Ramp flow

$$r_{i}(k) = f_{i+1}^{in}(k) - f_{i}^{out}(k)(1 - \beta_{i}(k)) \quad \forall i \in \{1, ..., N-1\}, k \in \{0, ..., T-1\}$$
 (H8)

Outline

- 1 Introduction to the adjoint method
 - Optimization of a PDE-constrained system
 - Example: linear system
 - Solving the original problem
- Discretized system dynamics
 - Forward System
 - Lower triangular forward system
 - Exploiting system structure
- 3 Solving the optimization problem via the adjoint method
 - Overview of procedure
 - A few details
- Mumercial results

Lower triangular forward system

The forward system H has C constraints that need to be satisfied over T time steps for N cells.

- The causality of the system implies that the state at time t only depends on the state at times t' < t, so we first iterate over time.
- At each time step, the nature of our system also allows a topological ordering of the variables (no loops in the dependency graph!)
- Finally we iterate over the cells, as there is no equation that couples the same variable at a given time step for two seperate cells.

Lower triangular forward system

Figure: Dependency diagram of the variables in the system.

Lower triangular forward system

Figure: $\frac{dH}{dX}$ matrix

Lower triangular forward system

$$f_{i}^{\mathbf{in}}\left(k\right) = \min\left(\delta_{i-1}\left(k\right)\left(1 - \beta_{i-1}\left(k\right)\right) + d_{i-1}\left(k\right), \sigma_{i}\left(k\right)\right)$$

$$\left\{\delta_{i}\left(k\right) \quad \text{if } P_{i}f_{i-1}^{\mathbf{in}}\left(k\right) > \left(1 - \beta_{i}\left(k\right)\right)\delta_{i}\left(k\right)\right\}$$

 $\sigma_i(k) = \min \left(F_i, w_i \left(\rho_i^{jam} - \rho_i(k) \right) \right)$

 $\delta_i(k) = \min(F_i, v_i \rho_i(k))$

 $d_i(k) = \min(l_i(k), u_i(k))$

$$f_{i}^{\mathbf{out}}\left(k\right) = \begin{cases} \delta_{i}\left(k\right) & \text{if } P_{i}f_{i+1}^{\mathbf{in}}\left(k\right) > \left(1-\beta_{i}\left(k\right)\right)\delta_{i}\left(k\right) \\ \frac{f_{i+1}^{\mathbf{in}}\left(k\right) - d_{i}\left(k\right)}{1-\beta_{i}\left(k\right)} & \text{if } : \left(1-P_{i}\right)f_{i+1}^{\mathbf{in}}\left(k\right) > d_{i}\left(k\right) \\ \frac{P_{i}f_{i+1}^{\mathbf{in}}\left(k\right)}{1-\beta_{i}\left(k\right)} & \text{otherwise} \end{cases}$$

 $\rho_i(k) = \rho_i(k-1) + \frac{\triangle t}{\triangle x} \left(f_i^{\text{in}}(k-1) - f_i^{\text{out}}(k-1) \right)$ $l_i(k) = l_i(k-1) + \triangle t(D_i(k-1) - r_i(k-1))$

Solving the forward system gives H(x)

H is piecewise affine

- as a linear system
- $\frac{dH}{dX}$ is computed simultaneously

$$r_{i}\left(k\right)=f_{i+1}^{\mathsf{in}}\left(k\right)-f_{i}^{\mathsf{out}}\left(k\right)\left(1-\beta_{i}\left(k\right)\right)$$

Outline

- 1 Introduction to the adjoint method
 - Optimization of a PDE-constrained system
 - Example: linear system
 - Solving the original problem
- Discretized system dynamics
 - Forward System
 - Lower triangular forward system
 - Exploiting system structure
- 3 Solving the optimization problem via the adjoint method
 - Overview of procedure
 - A few details
- Mumercial results

Exploiting system structure

The structure of the forward system influences the efficiency of computing the adjoint system

Solving for λ

$$\frac{\partial H}{\partial x}^{\mathsf{T}} \lambda = -\frac{\partial J}{\partial x}$$

Exploiting system structure

The structure of the forward system influences the efficiency of computing the adjoint system

Solving for λ

$$\frac{\partial H}{\partial x}^{T} \lambda = -\frac{\partial J}{\partial x}$$

Since $\frac{\partial H}{\partial x}$ is lower triangular, $\frac{\partial H}{\partial x}^T$ is an upper triangular matrix

⇒ The adjoint system can be solved effciently using backwards substitution

Outline

- Introduction to the adjoint method
 - Optimization of a PDE-constrained system
 - Example: linear system
 - Solving the original problem
- Discretized system dynamics
 - Forward System
 - Lower triangular forward system
 - Exploiting system structure
- 3 Solving the optimization problem via the adjoint method
 - Overview of procedure
 - A few details
- Mumercial results

Optimization algorithm

Algorithm 1 Gradient descent loop

Pick initial control u^{init}

while not converged do

$$x = forwardSim(u, IC, BC)$$

$$\lambda = adjointSln(x, u)$$

$$\Delta u = \nabla_u J = \lambda^T \frac{\partial H}{\partial u} + \frac{\partial J}{\partial u}$$

$$u \leftarrow u + t\Delta u$$

end while

solve for state trajectory (forward system) solve for adjoint parameters (adjoint system) Compute the gradient (search direction) update u using line search along Δu

Line search

Example 1: decreasing step size

$$t^{(k)} = t^{(1)}/k$$

Example 2: backtracking line-search

- fix parameters 0 $< \alpha <$ 0.1 and 0 $< \beta <$ 1
- given search direction Δu

Algorithm 2 Backtracking line search

while
$$J(u + t\Delta u) - J(u) > \alpha(\nabla_u J)^T (t\Delta u)$$
 do $t \leftarrow \beta t$ end while

<ロ > → □ > → □ > → □ > → □ → ○ へ ○ ○

Objective function

The objective function is the total travel time, given by

$$J(x, u) = \sum_{k=0}^{T} \left(\sum_{i=0}^{N} \Delta x \rho_{i}(k) + \sum_{i=1}^{N-1} I_{i}(k) \right)$$

Outline

- Introduction to the adjoint method
 - Optimization of a PDE-constrained system
 - Example: linear system
 - Solving the original problem
- Discretized system dynamics
 - Forward System
 - Lower triangular forward system
 - Exploiting system structure
- 3 Solving the optimization problem via the adjoint method
 - Overview of procedure
 - A few details
- Mumercial results

Solving the optimization problem: Constrained optimization?

Original optimization problem

minimize_{$$u \in \mathcal{U}$$} $J(x, u)$
subject to $H(x, u) = 0$

Example: may want to impose minimal metering rate $u \ge u^{\min}$

Modified optimization problem: log barrier function

Fix t > 0.

minimize_{$$u \in \mathbb{R}^m$$} $tJ(x, u) - \sum_{i=1}^m \log (u_i - u_i^{\min})$
subject to $H(x, u) = 0$

As $t \to \infty$, the solution converges to the solution of the original problem.

4□ > 4□ > 4□ > 4□ > 4□ > □
900

Solving the optimization problem: Zero gradient?

$$\nabla_u J = \lambda^T \frac{\partial H}{\partial u} + \frac{\partial J}{\partial u}$$
. Only non-zero terms in $\frac{\partial H}{\partial u}$ are

$$H_{k,i}^5$$
: $d_i(k) = \min(l_i(k), u_i(k))$

 $\frac{\partial H}{\partial u}$

$$\frac{\partial H_{i,k}^5}{\partial u_i(k)} = \begin{cases} 0 & \text{if } u_i(k) > l_i(k) \\ 1 & \text{if } u_i(k) < l_i(k) \end{cases}$$

What if we start at u > 1? Then gradient is zero. Need to add a penalty term

Penalized problem

$$J(x, u) \leftarrow J(x, u) + h(I - u)$$

where h is a penalty function, e.g.

- $h(I-u) = c((u-I)^+)^r$ will push the solution to $I-u \ge 0$
- $h(I-u) = -\frac{1}{t} \log(I-u)$ will keep the solution inside the region I-u>0

Notes on oscillation, slow convergence, and second order methods

- System is piecewise affine.
 Gradient descent sometimes oscillates around boundary of two (affine) regions.
- Seems to be improved by using a second order method: computes an approximate Hessian (note the real Hessian is zero!)

Numerical Results

Numerical Results

Figure: No ramp metering

Figure: Optimal ramp metering

Numerical Results

Thank you.