Level	4.	Alo	ehr	aic	Rox
TC A CI	т.	1115	CUL	aic	עטע

Name				

A little kid is playing on a swing!

Assume that friction and air resistance are negligible, and the kid is swinging without adding energy to the system (pumping).

At the bottom of the swing, he reaches a velocity v_{max} and a height h_{min} At the top of the swing, his velocity is zero and his height is h_{max} . In the middle of the swing, his velocity is $v_{halfway}$ and his height is the average of h_{max} and h_{min} .

1. Fill out the table below in terms of h_{max} and h_{min} , the mass of the kid m., and the free fall acceleration g.

Note that you may NOT include v_{max} and $v_{halfway}$ as variables in the box. Also, do not write a number for free-fall acceleration, instead indicate it by the variable g.

You may consider that GPE = 0 at the group (height = 0), which the playground swinger does not reach.

Point	Height	Velocity	KE	GPE	Total Energy
Тор					
Halfway					
Bottom					

Show the work necessary to fill in the table in this space:

 $\begin{array}{l} \textbf{2.} \ \text{Based upon the table} \\ \text{Write equations for } v_{halfway} \ \text{and } v_{max}. \\ \text{Prove your equations are dimensionally correct.} \end{array}$

3. What is the proportionality relationship between v_{max} and Δh , in which $\Delta h = h_{max} - h_{min}$?

4. If you solved correctly, the mass of the playground swinger should not be included in any of the formulas for velocity. Explain conceptually why this makes sense, referring if necessary to findings from other areas of physics.