In the next few lectures, we wish to study the dual space of $C_c(X)$, where X is LCH. We call a positive linear functional on $C_c(X)$ a positive Radon measure (PRM). It is our end goal to characterize all PRMs as integrals (Riesz-Markov), so we begin by constructing a measure for every PRM. An overview of the construction is as follows: PRM \rightarrow content \rightarrow outer measure \rightarrow measure.

If ϕ is a PRM, define μ_{ϕ} on open sets by

$$\mu_{\phi}(U) = \sup\{\phi(f) : 0 \le f \le \chi_U, \sup\{f\} \subset U\}.$$

Then μ_{ϕ} is a **content**, i.e. it satisfies

- If U is open with \bar{U} compact, then $\mu_{\phi}(U)$ is finite. This is because if U is open with \bar{U} compact, then $C_{\infty}(U) \subset C_c(X)$.
- μ_{ϕ} is monotone. Easy.
- μ_{ϕ} is countably subadditive. Use partition of unity to break up a large function to one defined on many small domains.
- μ_{ϕ} is finitely additive. Not hard.

A content can be thought about "finitely additive measure." We extend content μ_{ϕ} to an outer measure by defining

$$\mu_{\phi}^*(A) = \inf\{\mu_{\phi}(U) : A \subset U\}.$$

Countable subadditivity follows from definition and countable subadditivity of ν . We then use Caratheodory's theorem to filter the outer measure into a measure, which we also denote as μ_{ϕ} (note μ_{ϕ} denotes both the content and the measure).