

ESCUELA SUPERIOR DE CÓMPUTO

REPORTE

Series alternantes

 $por: \\ \'{A}ngel\ L\'{o}pez\ Manr\'iquez$

profesora Lic. Claudia Jisela Dorantes Villa

1. Introducción

El concepto de serie se refiere a sumar sucesiones que siguen una determinada regla y se denota como $\sum_{i=1}^{\infty} a_i$ o $\sum a_i$ que es otra forma de decir $a_1 + a_2 + \ldots$, en el presente reporte se abordaran a las series alternantes, que tienen la forma $\sum_{k=1}^{\infty} b_k(-1)^k$ o , $\sum_{k=1}^{\infty} b_k(-1)^{k+1}$ con sus respectivos criterios de convergencia.

2. Desarrollo

Una serie alternante es una serie en la que los terminos consecutivos alternan de signo, por ejemplo:

$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} (-1)^k = \cos x$$

$$1-1+1-1+\cdots = \sum_{k=0}^{\infty} (-1)^k$$

Donde la primera es una serie de McLaurin para el coseno de x y la segunda es la serie de Grandi.

2.1. Teorema de convergencia para series alternantes

Si la serie alternante

$$\sum_{n=1}^{\infty} b_n (-1)^{n+1}$$

cumple con

1)
$$b_{n+1} \le b_n$$
 2) $\lim_{n \to \infty} b_n = 0$

entonces la serie es convergente.

2.2. Demostración

Por 1), tenemos

$$b_n - b_{n+1} > 0$$

Ahora, consideremos las sumas parciales como:

$$S_2 = b_1 - b_2 \ge 0$$

 $S_4 = b_1 - b_2 + b_3 - b_4 = S_2 + b_3 - b_4 \ge S_2$ Puesto que $b_3 - b_4 \ge 0$
 $S_6 = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 = S_4 + b_5 - b_6 \ge S_4$ puesto que $b_5 - b_6 \ge -0$
 \vdots
 $S_{2n} = S_{2n-2} + b_{2n-1} - b_{2n} \ge S_{2n-2}$ puesto que $b_{2n-1} - b_{2n} \ge 0$

Asi, vemos que S_{2n} esta creciendo y esta siendo acotada por abajo por S_{2n-2} .

Notemos que tambien podemos escribir la serie como:

$$S_{2n} = b_1 - b_2 + b_3 - b_4 + b_5 + \dots - b_{2n-2} + b_{2n-1} - b_{2n}$$

= $b_1 - (b_2 - b_3) - (b_4 - b_5) + \dots - (b_{2n-2} - b_{2n-1}) - b_{2n}$

Donde cada diferencia indicada entre los parentesis es mayor o igual a cero y por la condicion 1) tambien sabemos que a_{2n} es un termino positivo. Por lo que, podemos decir que $S_{2n} \leq b_1$ $\forall n$.

Asi, vemos que la serie esta acotada tanto por arriba como por abajo, por lo que la serie debe converger. Asumamos que su es L, es decir:

$$\lim_{n \to \infty} S_{2n} = L$$

Tambien sabemos, por la condicion 2) que $\lim_{n\to\infty} b_n = 0$, por lo que, tenemos:

$$\lim_{n \to \infty} S_{2n+1} = \lim_{n \to \infty} (S_{2n} + b_{2n+1}) = L + 0 = L$$

Vemos que S_{2n} y S_{2n+1} convergen al mismo limite L y sabemos que son secuencias de S_n , Por lo que la serie converge.

2.3. series alternantes convergentes ejemplos

2.4. error en la aproximación

Algo que nos puede resultar util es aproximar una serie alternante (convergente, claro esta) si se cumplen los casos anteriores, sigamos asumiendo que $L = \lim_{n\to\infty} \sum_{k=1}^n b_k (-1)^{k+1}$,

podemos decir que
$$L \approx \sum_{k=1}^m b_k (-1)^{k+1}$$
 o $L \approx S_m$ y

$$S_m \leq L \leq S_{m+1}$$

Lamentablemente no se recurre mucho a esto, a menos que se estime la aproximación de la suma total, El error involucrado al usar $L \approx S_m$ es el residuo $R_n = L - S_m$.

2.5. Teorema de estimación para series alternantes

Si la serie alternante

$$\sum_{n=1}^{\infty} b_n (-1)^{n+1}$$

cumple con

1)
$$b_{n+1} \le b_n$$
 2) $\lim_{n \to \infty} b_n = 0$ entonces $|R_n| = |L - S_n| \le b_{n+1}$

2.6. demostración

Sabemos de la demostración para la prueba de series alternantes que L queda entre dos sumas parciales, por lo que se infiere que:

$$|L - S_n| \le |S_{n+1} - S_n| = b_{n+1}$$

2.7. residuos en la aproximación de series alternantes ejemplos

3. Conclusión

3.1. Ángel

El estudio de las series resulta de gran importancia para las ciencias y la ingenieria, puesto que con las mismas es posible hacer integrales que con los metodos tradicionales es imposibles resolverlas ($\int e^{x^2} dx$, $\int \sin(t^2) dt$, por mencionar algunos ejemplos). Asi como las

calculadoras, que mediante series de Taylor y McLaurin es posible la implementacion de las funciones trigonometricas y logaritmos.