UNIVERSITE IBA DER THIAM DE THIES

UFR SET/Département Informatique SERIE N°1 : ELECTRICITE

EXERCICE 1:

- 1_ Calculer la résistance équivalente entre A et B pour les connexions suivantes a) et b).
- 2_ Si $R=1\Omega$ et entre A et B on applique une source de tension de VAB=10V calculer le courant de la source de tension dans les cas a) et b).

EXERCICE 2:

Déterminer les relations d'équivalence (transformation) T en π et réciproquement :

EXERCICE 3:

1_ Calculer les tensions U1 et U2 aux bornes des résistances R1 et R2 connectées en série en fonction de U, R1 et R2. Généraliser pour n résistances connectées en série.

2_ Calculer les courants I1 et I2 à travers les résistances R1 et R2 connectées en parallèle, en fonction du I, R1 et R2. Généraliser pour n résistances connectées en parallèle.

EXERCICE 4:

- 1_ Calculer Iin et Vout en fonction de la tension Vin supposée connue.
- 2_ Quelle est la résistance équivalente de ce circuit entre A et B?
- 3_ Quelle est la puissance dissipée par tout le circuit si Vin=3V (signal continu) ?

EXERCICE 5 : (Traité en classe)

Principe du modèle de thevenin

Le théorème de Thevenin permet de transformer un circuit complexe en un générateur de Thevenin dont :

- La valeur de la source de Thevenin E_{Th} (U_{AB}) est donnée par la mesure ou le calcul de la tension de sortie à vide (la charge étant débranchée),
- La valeur de la résistance interne R_{Th} est mesurée ou calculée vues des bornes de sorties A et B, avec les conditions suivantes;
- Débrancher la résistance de la charge,
- Court-circuiter les générateurs de tension, en gardant les résistances internes,
- Débrancher les sources de courants,
- 1_ On considère le circuit électrique donné par la figure suivante:

On donne:
$$E = 8 \text{ V}$$
; $R_1 = 4 \Omega$; $R_2 = 12 \Omega$; $R_3 = 9 \Omega$

Calculer le courant I qui traverse la résistance R₃ en appliquant le théorème de Thevenin,

2_ Appliquons le théorème de Thevenin pour calculer le courant I du circuit suivant :

On donne :
$$E_1 = 20 \text{ V}$$
 ; $E_2 = 70 \text{ V}$; $R_1 = 2 \Omega$; $R_2 = 10 \Omega$; $R_3 = 5 \Omega$

3_ On considère le circuit électrique donné par la figure suivante :

On donne:
$$E_1 = 10 \text{ v}$$
 ; $E_2 = 5 \text{ v}$; $R_1 = R_3 = R_4 = 100 \Omega$; $R_2 = 50 \Omega$

Calculer le courant I en appliquant le théorème de Thevenin

EXERCICE 6

Trouver la représentation de Thévenin (entre M et N) des circuits :

EXERCICE 7:

Déterminer les schémas équivalents de Thévénin et Norton des circuits :

U1=5V, U2=2V, $R1=2k\Omega$, $R2=R3=R1/2=1k\Omega$, I1=12mA.

EXERCICE 8:

Par application du principe de superposition, trouver la tension U aux bornes de la résistance R2 en fonction de I_0 , U_0 , R_1 et R_2 .

