11612733 杜子豪

• Review Problem——

• 13.

Let
$$M(x,y)=e^{-x}\cos y-e^{2y}\cos x, N(x,y)=e^{-x}\sin y-2e^{2y}\sin x$$
 Hence $Mdx+Ndy=0$
$$dM/dy=-e^{-x}\sin y-2e^{2y}\cos x=dN/dx, \text{ it follows that this equation is exact}$$
 Thus define $\phi(x,y)$ s.t. $d\phi(x,y)=Mdx+Ndy=0$ Which implies $\phi(x,y)=\int (e^{-x}\cos y-e^{2y}\cos x)dx=-e^{-x}\cos y-e^{2y}\sin x+g(y)=\int (e^{-x}\sin y-2e^{2y}\sin x)dy=-e^{-x}\cos y-e^{2y}\sin x+h(x)$ Hence $\phi(x,y)=-e^{-x}\cos y-e^{2y}\sin xC=$ where C is an arbitrary constant We get $e^{-x}\cos y+e^{2y}\sin x=c$ where c is an arbitrary constant

• 14.

Let
$$M(x,y)=e^{2x}+3y, N(x,y)=-1$$
, thus $Mdx+Ndy=0$ Since this equation is not exact, we multiple both sides by $\mu(x)$ s.t. $(\mu M)_y=(\mu N)_x$ which is $\mu M_y=\mu_x N+\mu N_x$ and we get $3\mu=-\mu_x$ Thus let $\mu=e^{-3x}$ and $(e^{-x}+3ye^{-3x})dx-e^{-3x}dy=0$ is an exact euation
$$\int (e^{-x}+3ye^{-3x})dx=-e^{-x}-ye^{-3x}+g(y)=\int (-e^{3x})dy=-ye^{-3x}+g(x)$$
 Hence let $\phi(x,y)=-e^{-x}-ye^{-3x},d\phi=0$ We get $e^{-x}+ye^{-3x}=c$ which is $y=ce^{3x}-e^{2x}$ where c is an arbitrary constant

• 15.

Suppose
$$\mu(x)>0$$
 s.t. $(\mu y)'=\mu y'+2\mu y$. Thus $\mu'=2\mu$, we can let $\mu=e^{2x}$ Hence $(e^{2x}y)'=e^{-x^2}$, which implies $e^{2x}y=\int e^{-x^2}dx=\int_0^x e^{-s^2}ds+c$ where c is an arbitrary constant Since $y(0)=3, c=3$ Hence $y=e^{-2x}\int_0^x e^{-s^2}dx+3e^{-2x}$

• 16.

Let
$$M(x,y)=y^3+2y-3x^2$$
, $N(x,y)=2x+3xy^2$, hence $Mdx+Ndy=0$ Since $dM/dy=3y^2+2=dN/dx$, this equation is exact
$$\int (y^3+2y-3x^2)dx=xy^3+2xy-x^3+g(y)=\int (2x+3xy^2)dy=2xy+xy^3+h(x)$$
 Thus let $\phi(x,y)=xy^3+2xy-x^3$, $d\phi=0$ We get $xy^3+2xy-x^3=c$ where c is an arbitrary constant

• 17.

 $dy/dx=e^xe^y\Rightarrow e^{-y}dy=e^xdx\Rightarrow -e^{-y}=e^x+C$ where C is an arbitrary constant Hence $e^x+e^{-y}=c$ where c is an arbitrary constant

• 18.

Let
$$M(x,y)=2y^2+6xy-4$$
, $N(x,y)=3x^2+4xy+3y^2$, hence $Mdx+Ndy=0$ Since $dM/dy=4y+6x=dN/dx$, this equation is exact
$$\int (2y^2+6xy-4)dx=2xy^2+3x^2y-4x+g(y)=\int (3x^2+4xy+3y^2)dy=3x^2y+2xy^2+y^3+h(x)$$
 Thus let $\phi(x,y)=3x^2y+2xy^2-4x+y^3$, $d\phi=0$ We get $3x^2y+2xy^2-4x+y^3=c$ where c is an arbitrary constant

• 19.

The equation can be transformed into
$$y'+\frac{t+1}{t}y=\frac{e^{2t}}{t}$$
 Suppose $\mu(t)>0$ s.t. $(\mu y)'=\mu y'+\frac{t+1}{t}\mu y$. Thus $\mu'=\frac{t+1}{t}\mu$, we can let $\mu=te^t$ Hence $(te^ty)'=e^{3t}$ which implies that $te^ty=\int e^{3t}dt=\frac{1}{3}e^{3t}+c$ Hence $y=\frac{e^{2t}+3ce^{-t}}{3t}$

• 20.

Suppose
$$v(x)=y(x)/x$$
, thus $xdv+v=dy$ It follows that the equation can be transformed into $xv'+v=v+e^v$ which is $e^{-v}dv=dx/x$ Thus $\ln|x|+e^{-v}=c$ where c is an arbitrary constant We get $\ln|x|+e^{\frac{y}{x}}=c$ where c is an arbitrary constant

• 21.

constant

Let
$$u=x^2, dy/dx=(dy/du)(du/dx)=2xdy/du$$

 Thus the equation can be transformed into $2dy/du=1/(uy+y^3)$ which is $(2uy+2y^3)dy-du=0$
 Let $M(y,u)=2uy+2y^3, N(y,u)=-1$
 This equation is not exact, thus suppose $\mu(y)$ s.t. $(\mu M)_u=(\mu N)_y$ which is $\mu M_u=\mu_y N+\mu N_y$
 We get $2y\mu=-\mu_y$, thus we can let $\mu=e^{-y^2}$
 Thus $(2uye^{-y^2}+2y^3e^{-y^2})dy-e^{-y^2}du=0$ which is exact
$$\int (2uye^{-y^2}+2y^3e^{-y^2})dy=-ue^{-y^2}-(y^2+1)e^{-y^2}+g(u)=\int (-e^{-y^2})du=-ue^{-y^2}+h(y)$$

 Thus let $\phi(y,u)=-ue^{-y^2}-(y^2+1)e^{-y^2}$, $d\phi=0$
 Hence $-ue^{-y^2}-(y^2+1)e^{-y^2}=c$ which is $-x^2e^{-y^2}-(y^2+1)e^{-y^2}=C$ where C is an arbitrary

We get $x^2+y^2+1=ce^{y^2}$ where c is an arbitrary constant

• 22.

Suppose
$$xv(x) = y(x)$$
, thus $y' = xv' + v$

Thus the equation can be transformed into
$$xv'+v=rac{1+v}{1-v}$$
 which is $xv'=rac{1+v^2}{1-v}$

Hence
$$(\frac{1}{1+v^2} - \frac{1}{2} \frac{2v}{1+v^2}) dv = dx/x$$

we get
$$\arctan(v) - \ln \sqrt{|1+v^2|} = \ln |x| + c$$
 where c is an arbitrary constant

Hence
$$\arctan(\frac{y}{x}) - \ln \sqrt{x^2 + y^2} = c$$
 where c is an arbitrary constant

23.

Suppose
$$xv(x) = y(x)$$
, thus $y' = xv' + v$

Thus the equation can be transformed into
$$xv'+v=rac{3v^2+2v}{2v+1}$$
 which is $xv'=rac{v^2+v}{2v+1}$

Hence
$$(rac{1}{v}+rac{1}{1+v})dv=dx/x$$

we get
$$v(v+1) = cx$$
 where c is an arbitrary constant

Hence
$$y^2 + xy = cx^3$$
 where c is an arbitrary constant

• 24.

Suppose
$$v(x) = [y(x)]^{-1}$$
, thus $y = v^{-1}, y' = -v^{-2}v'$

Thus the equation can be transformed into
$$xv'-v=-e^{2x}$$
 which is $v'-\frac{1}{x}v=-\frac{e^{2x}}{x}$

Multiple both sides by some
$$\mu(x)>0$$
 s.t. $(\mu v)'=\mu v'-rac{1}{x}\mu v$ thus $\mu'=-rac{1}{x}\mu$

we can suppose
$$\mu=rac{1}{x}$$
, and $(rac{v}{x})'=-rac{e^{2x}}{x^2}$

Hence
$$rac{v}{x}=-\intrac{e^{2x}}{x^2}dx=-\int_1^xrac{e^{2s}}{s^2}ds+c$$

We get
$$v=-x\int_1^xrac{e^{2s}}{s^2}ds+cx$$
 , $y^{-1}=-x\int_1^xrac{e^{2s}}{s^2}ds+cx$

Since
$$y(1) = 2$$
, $c = \frac{1}{2}$

Hence
$$y^{-1}=-x\int_0^xrac{e^{2s}}{s^2}ds+rac{2}{x}$$