7 Лабораторная работа №7. Анализ информации и автоматизация

Цель: научиться использовать флаги регистра STATUS для анализа информации. Изучить инструкции условных переходов BTFSC и BTFSS, применить их для ветвления алгоритма автоматизации.

7.1 Общие сведения

Инструкции условных переходов BTFSC и BTFSS проверяют состояние заданного бита в любом регистре и, в зависимости от результата, пропускают или не пропускают следующую инструкцию программы. Инструкция BTFSC пропускает следующую инструкцию, если заданный бит сброшен. Инструкция BTFSS пропускает следующую инструкцию, если заданный бит установлен. На основе этого создается передача управления в другое место программы и организация циклов (таблица 7.1).

Таблица 7.1 – Ветвление алгоритма

Использование бита CARRY (C)					
	Если в бите Carry установлена единица, то				
GOTO METKA	пропускается следующая инструкция программы				
MOVWF R2	GOTO МЕТКА и сразу выполняется инструкция				
	MOVWF R2				
	Если бит Carry сброшен, то выполняется следующая				
	инструкция программы GOTO МЕТКА				
Использование бита ZERO (Z)					
BTFSS STATUS, Z	Если в бите Z установлена единица, то пропускается				
MOVF R2, W	следующая инструкция программы MOVF R2 и сразу				
MOVWF PORTC	выполняется инструкция MOVWF PORTC				
	Если бит Z сброшен, то выполняется следующая				
	инструкция программы MOVF R2, W и затем				
	MOVWF PORTC				

В реальных программах вместо указанных инструкций пишутся инструкции, соответствующие разработанному алгоритму.

В ассемблере отсутствуют инструкции сравнения чисел, поэтому, чтобы определить, какое из чисел больше (меньше), применяют следующий алгоритм:

- 1) Выполняют вычитание чисел. При этом в зависимости от результата, устанавливаются флаги С и Z регистра STATUS (таблица 7.2).
 - 2) Далее применяют инструкции условных переходов.
- В таблице 7.2 показаны значения флагов регистра STATUS при вычитании по команде SUBWF UMENSH, W, т.е. W=UMENSH-W.

Таблица 7.2 – Регистрация событий в регистре STATUS

Соотношения	Значения флагов регистра STATUS после выполнения			
значений в W и	вычитания			
POH UMENSH	Флаг Z	Флаг С		
	0 - Нулевого	1 - был перенос из 7 бита W в		
UMENSH-W>0	результата не было	бит С (при сложении в		
		дополнительном коде)		
UMENSH-W<0	0 - Нулевого	0 - не было переноса из 7		
	результата не было	разряда W в бит C (при		
		сложении в дополнительном		
		коде)		
UMENSH-W=0	1 - Был нулевой	1- был перенос из 7 разряда W в		
	результат операции	бит С (при сложении в		
		дополнительном коде)		
Примечание – В регистр UMENSH помещается уменьшаемое число				

Составим программу для автоматизации теплового режима.

Технологический процесс должен выполняться при определенной требуемой температуре T_treb. Температура окружающей среды T_sredy измеряется аналоговым датчиком. Его показания поступают на АЦП микроконтроллера и преобразуются в двоичный код. Измеренная температура среды сравнивается с требуемой температурой, если она выше - включают охлаждение, если ниже - включают подогрев. Охлаждающая установка подключается к нулевому биту PORTC, нагревающая установка подключается к первому биту. Работа такой установки аналогична на работе кондиционера «Зима-Лето».

```
Программа 7.1- Регулирование температуры
```

include<p16f877.inc>

T_sredy EQU h'40' ; регистр для записи температуры окружающей среды T_treb EQU h'41' ; регистр для записи требуемой температуры установки

UMENSH EQU h'43'; рабочий регистр для хранения данных.

Пропущенные инструкции настройки МК напишите самостоятельно.

MOVLW D'22';

MOVWF T_treb ; требуемая температура

MOVLW b'00011000' ; первое значение T_s геду, данные после АЦП

M1 MOVWF T_sredy ; температура по показаниям датчика

CLRF PORTC

MOVF T_treb, W ; устанавливаем UMENSH = T_treb

MOVWF UMENSH ; чтобы не портить данные в регистре T_treb

MOVF T_sredy, W ; температура --> W

SUBWF UMENSH, F; UMENSH=T Treb -T Sredy

MOVLW b'00000010'; предполагаем, что надо включить подогрев

(Запомните, что команда MOVLW не влияет на регистр Status) BTFSS STATUS, C = 1? (разность положительна?)

```
MOVLW b'00000001'
; (только при C=0) надо включить охлаждение

MOVWF PORTC
; пересылаем информацию на установку из W

MOVLW b'00010100'
; второе значение T_sredy.

GOTO M1;
END
```

На рисунках 7.1 и 7.2 показаны окна наблюдения, из которых видно, как переключается нагрев и охлаждение при изменении окружающей температуры.

Address	Symbol Symbol	Value	Address	Symbol	Value
03	STATUS	B'00011011'	63	STATUS	B'00011000'
200	W	B'00000010'	200	W	B'00000001'
87	TRISC	B'00000000'	87	TRISC	B'00000000'
07	PORTC	B'00000010'	97	PORTC	B'00000001'
40	T_sredy	D'20 '	40	T sredy	D'24 '
41	T_treb	D'22 '	41	T treb	D'22 '
43	UMENSH	D'2 '	43	UMENSH	D'254'

Рисунок 7.1 – Нагрев включился

Рисунок 7.2 – Охлаждение включилось

7.2 Порядок выполнения

Выбрать вариант по таблице 7.3 и составить программу. При написании программы используйте блок-схему на рисунке 7.3.

Таблица 7.3 – Варианты заданий

Вариант	T_sredy 1	T_treb	T_sredy 2	Бит	Бит
				подключения	подключения
				системы	системы
				нагрева	охлаждения
1	00001010	11	00001101	3	1
2	00010101	22	00011001	4	2
3	00011110	33	00100011	5	3
4	00101001	44	00101111	6	4
5	00110101	55	00111001	7	5
6	00111110	66	01000101	3	0
7	01001011	77	01001111	4	1
8	01010100	88	01011001	5	2
9	01011111	99	11010000	6	3
10	01100000	110	01101111	7	4

Примечание - Значения T_sredy 1 и T_sredy 2 заданы в двоичной системе, T_treb в десятичной.

Рисунок 7.3 – Блок-схема (фрагмент)

7.3 Контрольные вопросы

- 7.3.1 Что происходит с регистром STATUS при логических и математических операциях?
 - 7.3.2 Расскажите, какую реальную задачу решает ваша программа.
 - 7.3.3 Поясните инструкцию условного перехода BTFSC STATUS, Z.
 - 7.3.4 Поясните инструкцию условного перехода BTFSS STATUS, Z.
 - 7.3.5 Какой операцией можно определить равенство чисел?
 - 7.3.6 В каких случаях флаг Z равен единице при вычитании?
 - 7.3.7 В каких случаях флаг С равен единице при вычитании?
 - 7.3.8 Когда флаги Z и C регистра Status одновременно равны нулю?
 - 7.3.9 Как определить более мощную установку из двух потребителей?
 - 7.3.10 Как выполняется сравнение чисел?
 - 7.3.11 В каких банках находятся, регистры применяемые в программе?
 - 7.3.12 Как переключается нагрев и охлаждение установки?