MAT 168 – Programing Project I Missael Colin Cuevas – 914373182

Use your program to solve the following linear programs:

(1) The linear program with data

$$c = \begin{bmatrix} 1 \\ 4 \\ 1 \\ 3 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 1 \end{bmatrix}, \quad \text{and} \quad b = \begin{bmatrix} 4 \\ 3 \\ 3 \end{bmatrix}.$$

Largest Coefficient pivoting rule

A =

1 3 0 1 2 1 0 0 0 1 4 1

D =

 1.3333
 -0.3333
 -0.3333
 0
 -0.3333

 1.6667
 -1.6667
 0.3333
 0
 0.3333

 1.6667
 0.3333
 0.3333
 -4.0000
 -0.6667

 5.3333
 -0.3333
 -1.3333
 1.0000
 1.6667

BA = [x2, w2, w3]

N = [w1, x1, x3, x4]

iter =

D =

 0.5000
 -0.5000
 -0.5000
 2.0000
 0.5000

 2.5000
 -1.5000
 0.5000
 -2.0000
 -0.5000

 2.5000
 0.5000
 0.5000
 -6.0000
 -1.5000

 9.5000
 0.5000
 -0.5000
 -9.0000
 -2.5000

BA =

[x2, w2, x4]

N =

[w1, w3, x1, x3]

iter =

2

D =

 1.0000
 -2.0000
 -1.0000
 4.0000
 1.0000

 1.0000
 3.0000
 2.0000
 -8.0000
 -2.0000

 3.0000
 -1.0000
 0
 -4.0000
 -1.0000

 10.0000
 -1.0000
 -1.0000
 -7.0000
 -2.0000

BA =

[x1, w2, x4]

N =

[w1, w3, x2, x3]

iter =

3

Bland's pivoting rule

```
iter =
A =
                                                            3
         0 1
  1
      3
  2
     1
         0 0
                                                         D =
  0
      1
         4 1
                                                           1.3333 -0.3333 -0.3333
                                                                                     0 -0.3333
D =
                                                           1.6667 -1.6667 0.3333
                                                                                     0 0.3333
  2.5000 0.5000 -2.5000
                           0 -1.0000
                                                           1.5000 -0.5000 -0.5000
                                                           5.7500 -0.2500 -1.2500 -0.2500 1.5000
                           0
                                0
  3.0000
            0 -1.0000 -4.0000 -1.0000
                                                         BA =
  1.5000 -0.5000 3.5000 1.0000 3.0000
                                                         [x2, x1, x3]
BA =
                                                         N =
[ w1, x1, w3]
                                                         [ w1, w2, w3, x4]
N =
                                                         iter =
[ w2, x2, x3, x4 ]
                                                            4
iter =
                                                         D =
  1
                                                           0.5000 -0.5000 -0.5000 0.5000 2.0000
D =
                                                           2.5000 -1.5000 0.5000 -0.5000 -2.0000
  1.0000 0.2000 -0.4000
                           0 -0.4000
                                                           2.5000 0.5000 0.5000 -1.5000 -6.0000
  1.0000 -0.6000 0.2000
                                                           9.5000 0.5000 -0.5000 -2.5000 -9.0000
                           0 0.2000
  2.0000 -0.2000 0.4000 -4.0000 -0.6000
                                                         BA =
  5.0000 0.2000 -1.4000 1.0000 1.6000
                                                         [x2, x1, x4]
BA =
                                                          N =
[ x2, x1, w3]
                                                         [ w1, w2, w3, x3]
N =
                                                         iter =
[ w1, w2, x3, x4]
                                                            5
iter =
  2
                                                         D =
                                                           1.0000 -2.0000 -1.0000 1.0000 4.0000
D =
                                                           1.0000 3.0000 2.0000 -2.0000 -8.0000
  1.3333 -0.3333 -0.3333
                           0 -0.3333
                                                           3.0000 -1.0000
                                                                             0 -1.0000 -4.0000
  1.6667 -1.6667 0.3333
                                                           10.0000 -1.0000 -1.0000 -2.0000 -7.0000
                           0 0.3333
  BA =
  5.3333 -0.3333 -1.3333 1.0000 1.6667
                                                         [x1, x1, x4]
                                                         N =
BA =
                                                         [ w1, w2, w3, x2, x3]
[ x2, x1, w3]
                                                         iter =
N =
                                                            6
[ w1, w2, x3, x4]
```

(2) The n-variable linear program

near program
$$\max \sum_{j=1}^n 10^{n-j} x_j$$
 s.t. $2 \sum_{j=1}^{i-1} 10^{i-j} x_j + x_i \le 100^{i-1}, \quad i=1,2,\ldots,n$
$$x_j \ge 0, \quad j=1,2,\ldots,n$$
 $3,5,8.$

for the cases n = 3, 5, 8.

Largest Coefficient pivoting & bland's rule n=3

9900

100

-1

-190

BA =
[x1, w2, x3]
N =
[w1, w3, x2]
iter =
4

Largest Coefficient pivoting & bland's rule n=5

A =

Largest Coefficient pivoting & bland's rule n=7

A =										
1	0	0	0	(0	0		0		
20	1	0	0		0	0		0		
200	200	1		0	0		0	0		
2000	2000	200	00	1		0	0		0	
20000	20000	20	000	2000	0	1		0		0
200000	200000	20	0000	2000	00	200	000	1		0
2000000	200000	0 200	0000	20000	000	2000	000 2	00000	00	1

D =

MATLAB Code- Problem (a)	MATLAB Code – Problem (b)
n=4;	n=3; %(n=3,5,7)
m=3;	A=zeros(n);
ini=0;	ini = 0;
c = [1,4,1,3];	for $x = 1:n$
A = [1 3 0 1;2 1 0 0;0 1 4 1]	for y = 1:n
b = [4,3,3]';	if $x-y > 0$;
iter = 0;	$A(x,y) = 2*(10.^{(x-1)});$
BA = sym('w',[1 3]); % Variables Basis	else if $x == y$;
NA = sym('x',[1 4]); % Variables Constrain	A(x,y) = 1;
NB = [NA BA];	end end
A=-A;	end end
while $max(c) > 0$,	b= 100.^[0:n-1]';
[cj, col] = max(c);%choose largest coefficient	c= 10.^[0:n-1];
% [cj, col] = find(c > 0,1,'first')	c=fliplr(c);
% If bland's pivoting rule	iter = 0;
Acol = A(:,col);	BA = sym('w',[1 n]); % Variables Basis
[i, row] = max(-Acol./b); %select leaving variable	NA = sym('x',[1 n]); % Variables Constrain
if $i < 0$;	NB = [NA BA];
opt = -1; %unbounded	A=-A;
'unbounded'	while $max(c) > 0$,%choose largest coefficient
break;	[cj, col] = max(c);%choose largest coefficient
end	% [cj, col] = find(c > 0,1,'first')
Arow = A(row,:);%A matrix	% If bland's pivoting rule
a = A(row, col);	Acol = $A(:,col)$;
$A = A \cdot Acol*Arow/a;$	[i, row] = max(-Acol./b); %select leaving variable
A(row,:) = -Arow/a;	if $i < 0$;
A(10w, 1) = -A(10w)a, A(:,col) = Acol/a;	opt = -1; %unbounded
A(.,coi) = Acoi/a, A(row,col) = 1./a; %A after pivoting	'unbounded'
A(low,col) – 1./a, /0A alter produing	break;
$b_{\text{max},r} = b(y_{\text{max},r}) \cdot 0 / b_{\text{max},r}$	
brow = b(row);% b matrix	end $A_{\text{row}} = A(\text{row}_{\bullet}) \cdot \theta / A \text{ matrix}$
b = b - Acol*(brow)./a;	Arow = $A(row,:)$;%A matrix
b(row) = -brow./a; %b after pivoting	a = A(row,col); A = A - Acol*Arow/a;
D = h(var)*s(sal) + iniv0/ D constraint add constant	· ·
P = b(row)*c(col) + ini;% P constraint add constant	A(row,:) = -Arow/a;
value.	A(:,col) = Acol/a;
ini = P;	A(row,col) = 1./a; %A after pivoting
1 (1) 0/	brow = b(row);% b matrix
ccol = c(col);%c matrix	b = b - Acol*(brow)./a;
c = c - ccol*Arow./a;	b(row) = -brow./a; %b after pivoting
c(col) = ccol./a;	b(row)*c(col);
D 1 (D D) 0(D 1 D 1	P = b(row)*c(col) + ini; % P constraint add constant
D = horzcat(B,D) %Print D matrix	value.
BA(row) = NA(col) %Print Basis	ini = P;
N = setdiff(NB, BA) %Print Constrain	ccol = c(col);%c matrix
	c = c - ccol*Arow./a;
iter = iter+1	c(col) = ccol./a;
	B = b; %Create D (dictionary) matrix
end	B(n+1) = P;
	D = vertcat(A,c);
	D = horzcat(B,D) %Print D matrix
	BA(row) = NA(col) %Print Basis
	N = setdiff(NB, BA) %Print Constrain
	iter = iter+1
	end