BAN 620 Data Mining

Team 3

Kalpita Nimje

Koya Sai Teja

Navya Arveti

Kovvuru Saicharanreddy

Sri Vinuta Sai Pinisetty

Problem Statement

Problem Statement

Motivation: Current pandemic conditions + role of analytics + skills & knowledge

Research Questions

What? Prediction

• Can diabetes be predicted from basic details and vitals?

How? Methods

• What methods can be adopted for prediction?

How much? Accuracy

How accurately can we predict?

Why? Reasons causing Diabetes

• What vitals and factors in humans make them susceptible to diabetes?

Dataset Description and Details

Variable	Description
Pregnancies	Number of times pregnant
Glucose	Plasma glucose concentration at 2 hours in an oral glucose tolerance test
Blood Pressure	Diastolic blood pressure (mm Hg)
SkinThickness	Triceps skin fold thickness (mm)
Insulin	2-Hour serum insulin (mu U/ml)

Variable	Description
BMI	Body mass index (weight in kg/(height in m)^2)
DiabetesPedigreeFunction	Diabetes pedigree function
Age	Age in years
Class (Outcome Variable)	Prediction if the patient has diabetes

Variables Description

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
count	768.00	768.00	768.00	768.00	768.00	768.00	768.00	768.00	768.00
mean	3.85	120.89	69.11	20.54	79.80	31.99	0.47	33.24	0.35
std	3.37	31.97	19.36	15.95	115.24	7.88	0.33	11.76	0.48
min	0.00	0.00	0.00	0.00	0.00	0.00	0.08	21.00	0.00
25%	1.00	99.00	62.00	0.00	0.00	27.30	0.24	24.00	0.00
50%	3.00	117.00	72.00	23.00	30.50	32.00	0.37	29.00	0.00
75%	6.00	140.25	80.00	32.00	127.25	36.60	0.63	41.00	1.00
max	17.00	199.00	122.00	99.00	846.00	67.10	2.42	81.00	1.00

Preprocessing Data

Null Values

There are **0 null values** in the dataset

Inappropriate Values

Pregnancies	0
Glucose	5
BloodPressure	35
SkinThickness	227
Insulin	374
BMI	11
DiabetesPedigreeFunction	0
Age	0
Outcome	0

Initial Analysis

Initial Analysis

- **L.** Bar Plot: Diabetes is prevalent in patients with high glucose and BP levels
- 2. Map: Age <-> no. of pregnancies; Skin Thickness <-> BMI; Glucose <-> Insulin

Analysis and Results – Model Building

kNN Classifier, Decision Trees, Random Forest, Boosted Trees, Neural Networks, Logistic Regression

Hierarchical Clustering

kNN and Decision Trees

1.1

kNN Classifier

Best accuracy in validation data is obtained at **k = 13**

Actual	Prediction	
Actual	0	1
0	95	12
1	16	31

Accuracy Score: 81.82% Precision Score: 72.09% Recall Score: 65.96%

f1 Score: 68.89%

Prediction: For any new patient, we would identify the 13 nearest neighbors and predict if the patient is based on the majority among these 13 neighbors

2.1

Decision Tree with maximum depth = 2

Actual	Prediction		
Actual	0	1	
0	88	11	
1	21	34	

Accuracy Score: 79.22% Precision Score: 75.56% Recall Score: 61.82%

f1 Score: 68.0%

2.2

Tree with minimum impurity= 0.01

Actual	Prediction		
Actual	0	1	
0	87	12	
1	16	39	

Accuracy Score: 81.82% Precision Score: 76.47% Recall Score: 70.91%

f1 Score: 73.58%

Decision Trees

Tree with user defined parameters

Max depth = 8
Minimum impurity decrease = 0.01
Minimum number of samples = 30

Actual	Prediction	
Actual	0	1
0	87	12
1	16	39

Accuracy Score: 81.82% Precision Score: 76.47% Recall Score: 70.91%

f1 Score: 73.58%

Observation: The tree obtained by this method is the same as obtained in 2.2. This is also, by far, the best prediction model

Tree with user defined parameters

Decision Trees

2.4

Best Tree

Best tree is obtained at:

Max depth = 11

Minimum impurity decrease = 0

Minimum number of samples = 76

Actual	Prediction		
Actual	0	1	
0	83	16	
1	15	40	

Accuracy Score: 79.87% Precision Score: 71.43%

Recall Score: 72.73%

f1 Score: 72.07%

3

Random Forest

Actual	Prediction		
Actual	0	1	
0	89	10	
1	20	35	

Accuracy Score: 80.52% Precision Score: 77.78% Recall Score: 63.64%

f1 Score: 70.0%

Feature Importance

Trees, Neural Networks

Boosted Trees

Actual	Prediction		
Actual	0	1	
0	86	13	
1	19	36	

Accuracy Score: 79.22% Precision Score: 73.47% Recall Score: 65.45%

f1 Score: 69.23%

5

Neural Networks

Actual	Predi	ction
Actual	0	1
0	430	70
1	127	141

Accuracy Score: 74.35% Precision Score: 66.82% Recall Score: 52.61%

f1 Score: 58.87%

Observations:

- In neural network, the model cannot be explained. Also, the accuracy we obtain is not the highest.
- The model is run on the complete dataset and not on training data. The prediction is done on the new data directly.

Logistic Regression

Observation: The coefficients pregnancies, glucose and BP are statistically significant

Actual	Prediction		
	0	1	
0	88	11	
1	24	31	

Accuracy Score: 77.27% Precision Score: 73.81% Recall Score: 56.36%

f1 Score: 63.92%

6.2

Logistic Regression-different cutoff

Cut off chosen is 0.4

Actual	Prediction		
	0	1	
0	84	15	
1	15	40	

Accuracy Score: 80.52% **Precision Score:** 72.73%

Recall Score: 72.73%

f1 Score: 72.73%

Clustering

Hierarchical Clustering

Analysis: Clusters don't help in good characterization

Non-hierarchical Clustering

K-Means Clustering

Analysis: Good characterization of clusters

Cluster 0: Low across all values – not diabetic prone

Cluster 1: Aged, high number of pregnancies (female dominated), high BP – diabetic

Cluster 2: Young, high skin thickness, high insulin, high dpf, obese segment – highly

diabetic

% of diabetic patients in clusters				
Cluster 0	4.52%			
Cluster 1	57.50%			
Cluster 2	74.34%			

Comparison of Different Models

Model	Accuracy	Recall	Precision	F1 Score
kNN Classifier	81.82%	65.96%	72.09%	68.89%
Decision Tree with max depth = 2	79.22%	61.82%	75.56%	68.0%
Tree with minimum impurity = 0.01	81.82%	70.91%	76.47%	73.58%
Best Tree	79.87%	72.73%	71.43%	72.07%
Random Forest	80.52%	63.64%	77.78%	70.0%
Boosted Trees	79.22%	65.45%	73.47%	69.23%
Logistic Regression	77.27%	56.36%	73.81%	63.92%
Logistic Regression with cut off = 0.04	80.52%	72.73%	72.73%	72.73%
Neural Networks	74.35%	52.61%	66.82%	58.87%

Feature Importance for our chosen model

Comparison with Kaggle Models

Final Verdict

Our model - Decision Tree with minimum impurity of 0.01 performs better than the base models available on Kaggle

Our Learnings from Project

Conclusion and Recommendations

Conclusions

- Understand most important factors
- Important early diagnosis
- Glucose
- Awareness and accessibility to track glucose levels
- BMI
- Obesity
- Increase in age

Recommendations

- Promote healthier ways glucose levels low (<100)</p>
- Increasing glucose level inform of healthier lifestyle
- Age increased, increased caution
- People with hereditary diabetes care from early stgae

Diabetes is a disease which can be **controlled** by **keeping a check on vitals** such as **glucose level, BMI** and if proper care is taken from an **early stage in life** and by **maintaining healthy lifestyle** including **food habits** and **physical exercise**