

Universität Ulm

Abgabe: Freitag, den 05.06. um 12 Uhr

Dr. Gerhard Baur Dr. Jan-Willem Liebezeit Marcus Müller Sommersemester 2020 Punktzahl: 10

(1)

Übungen Analysis 1: Blatt 6

- **23.** Zeige, dass für die nachstehenden Zahlenfolgen $(a_n)_{n\in\mathbb{N}}$ jeweils eine Zahl $a\in\mathbb{R}$ existiert, sodass $\lim_{n\to\infty}a_n=a$ gilt und berechne für gegebenes $\varepsilon>0$ ein N>0 derart, dass $|a_n-a|<\varepsilon$ für alle $n\geq N$ gilt. Für $n\in\mathbb{N}$ sei
 - (a) $a_n := \frac{n+4}{n+1}$
 - (b) $a_n := \frac{4n-1}{n^2+n^7+25}$
 - (c) $a_n := \sum_{k=1}^n \frac{1}{k(k+1)}$
- **24.** Es sei 0 < q < 1 und $(y_n)_{n \in \mathbb{N}}$ sei eine Folge reeller Zahlen mit $|y_{n+1} y_n| \le q \cdot |y_n y_{n-1}|$ für alle $n \in \mathbb{N}$. Zeige, dass die Folge in \mathbb{R} konvergiert. Hinweis: Zeige hierzu, dass (y_n) eine Cauchyfolge ist. Ohne Beweis darf verwendet werden, dass jede Cauchyfolge in \mathbb{R} konvergiert. Schätze mit einer geometrischen Reihe ab.
- **25.** Zeige, dass für $n, k \in \mathbb{N}$ mit $k \leq n$ gilt

$$k \cdot \binom{n}{k} = n \cdot \binom{n-1}{k-1}$$

- **26.** Wir definieren die Menge $\mathbb{Q} + i\mathbb{Q} := \{q_1 + iq_2 \mid q_1, q_2 \in \mathbb{Q}\} \subset \mathbb{C}$. Zeige die folgenden Aussagen: (3)
 - (a) Für alle $x \in \mathbb{R}$ und alle $\varepsilon > 0$ exisitert ein $q \in \mathbb{Q}$ mit $|x q| < \varepsilon$.
 - (b) Für alle $z \in \mathbb{C}$ und alle $\varepsilon > 0$ existiert ein $q \in \mathbb{Q} + i\mathbb{Q}$ mit $|z q| < \varepsilon$.