Other formalisms of uncertainty reasoning

Yuqing Tang

Doctoral Program in Computer Science The Graduate Center City University of New York ytang@cs.gc.cuny.edu

December 1, 2010

Outline

- Introduction
- Default logic
- Certainty factor
- 4 Dempster-Shafer theory
- Fuzzy sets
- 6 Summary

Other uncertainty reasoning formalisms

- Default logic
- Certainty factor
- Dempster-Shafer theory
- Fuzzy set

Outline

- Introduction
- Default logic
- Certainty factor
- Dempster-Shafer theory
- 5 Fuzzy sets
- 6 Summary

An introductory example

 A good deal of what we know about a world is 'almost always" true, with a few exceptions. For example,

$$Bird(x) \rightarrow Fly(x)$$

but

$$PENGUIN(x) \rightarrow Bird(x)$$

 $PENGUIN(x) \rightarrow \neg Fly(x)$
...
 $OSTRICH(x) \rightarrow Bird(x)$
 $OSTRICH(x) \rightarrow \neg Fly(x)$

 With classical logic, we will need to revise the always always true rule by

$$Bird(x) \land \neg PENGUIN(x) \land \ldots \land \neg OSTRICH(x) \rightarrow Fly(x)$$

Default logic

[Reiter, 1980]

 Default logic combines classical logic with domain-specific inference rules

$$\frac{Bird(x):Mfly(X)}{fly(X)}$$

where Mp stands for "p is consistent" meaning that $\neg p$ can not be derived.

Definition

A default theory is a pair (W, D) where

- ullet $W\subseteq L$ is a set of input knowledge represented in a language L
- D is a set of default rules of the form

$$\frac{\alpha: M\beta_1, \dots, M\beta_n}{\gamma}$$

where $a, \beta_1, \ldots, \beta_n, \gamma \in L$, and $n \ge 0$.

Default example

Given a set of default rules

$$D = \left\{ \frac{Bird(x) : Mfly(X)}{fly(X)} \right\}$$

From the facts

$$W = \{Bird(tweety)\}$$

We can infer that Fly(tweety).

 Later, we obtain new evidences saying that tweety is a penguin and penguin can not fly, W is updated into

$$W = \{Bird(tweety), Penguin(tweety), Penguin(X) \rightarrow \neg Fly(tweety)\}$$

We should be able to derive $\neg Fly(tweety)$.

Inferences in default logic

A set of default rules D inducing an extension E of some underlying knowledge W where

- E ⊃ W
- E is deductively closed (no more standard deductive rules can be applied on E to derive new conclusions)
- For all the default rule $\frac{a:M\beta_1,\ldots,M\beta_n}{\gamma}\in D$, if $\alpha\in E$ and $\neg\beta_1\not\in E,\ldots,\neg\beta_n\not\in E$, then $\gamma\in E$.

Summary

- Default logic supports reasoning with incomplete information.
- Defaults can be found naturally in many application domains, such as diagnostic problems, information retrieval, legal reasoning, regulations, specifications of systems and software, etc.
- Default Logic enables compact representation of information
- Important prerequisites for successful applications
 - the understanding of the basic concepts, and
 - the existence of powerful implementations.
- The difficulty of understanding Default Logic should not be underestimated.

Outline

- Introduction
- 2 Default logic
- Certainty factor
- 4 Dempster-Shafer theory
- 5 Fuzzy sets
- 6 Summary

Certainty factors

[Heckerman, 1992]

Example

Mr. Holmes receives a telephone call from his neighbor Dr. Watson stating that he hears a burglar alarm sound from the direction of Mr. Holmes house. Preparing to rush home, Mr. Holmes recalls that Dr. Watson is known to be a tasteless practical joker, and he decides to first call his other neighbor, Mrs. Gibbons, who, despite occasional drinking problems, is far more reliable.

A miniature rule-based system for Mr. Holmes situation contains the following rules:

- R_1 : if WATSONS CALL then ALARM, $CF_1 = 0.5$
- R_2 : if GIBBONS CALL then ALARM, $CF_2 = 0.9$
- R_3 : if ALARM then BURGLARY, $CF_3 = 0.99$

The meaning of certainty factors

A rule with certainty factor: IF e THEN h, CF

- A ceraintfy factor (CF) represents a person's change in belief in the hypothesis (h) given the evidence (e)
- CF between 0 and 1 means that the person's belief in h given e increases
- CF between -1 and 0 means that the person's belief in h given e decreases

Inferences with certainty factors (Parallel-combination)

To combine R_1 and R_2 into R_4 :

- R_1 : if WATSONS CALL then ALARM, $CF_1 = 0.5$
- R_2 : if GIBBONS CALL then ALARM, $CF_2 = 0.9$
- R₄: if WATSONS CALL and GIBBONS CALL then ALARM, CF₄

$$CF_4 = \begin{cases} \textit{CF}_1 + \textit{CF}_2 - \textit{CF}_1 \textit{CF}_2, & \text{if } \textit{CF}_1 \geq 0, \textit{CF}_2 \geq 0 \\ \textit{CF}_1 + \textit{CF}_2 + \textit{CF}_1 \textit{CF}_2, & \text{if } \textit{CF}_1 < 0, \textit{CF}_2 < 0 \\ \frac{\textit{CF}_1 + \textit{CF}_2}{1 - \textit{min}(|\textit{CF}_1|, |\textit{CF}_2|)} & \text{otherwise} \\ \textit{CF}_4 = 0.5 + 0.9 - (0.5)(0.9) = 0.95 \end{cases}$$

Inferences with certainty factors (Serial-combination)

To combine R_3 and R_4 into R_5 :

- R_3 : if ALARM then BURGLARY, $CF_3 = 0.99$
- R_4 : if WATSONS CALL and GIBBONS CALL then ALARM, $CF_4 = 0.95$
- R₅: if WATSONS CALL and GIBBONS CALL then BURGLARY, CF₅

$$CF_5 = \begin{cases} CF_3CF_4, & \text{if } CF_3 > 0\\ 0 & \text{if } CF_3 \le 0 \end{cases}$$

$$CF_5 = 0.99 \times 0.95 = 0.94$$

Inferences with certainty factors (Conjunction-combination)

To combine R_6 , R_7 and R_8 into R_9 :

- R_6 : if CHEST PAIN and SHORTNESS OF BREATH then HEART ATTACK, $CF_6 = 0.9$
- R_7 : if PATIENT GRIMACES then CHEST PAIN, $CF_7 = 0.7$
- R_8 : if PATIENT CLUTCHES THROAT then SHORTNESS OF BREATH, $CF_8 = 0.9$
- R_9 : if PATIENT GRIMACES and PATIENT CLUTCHES THROAT then HEART ATTACK, CF_9

$$CF_9 = CF_6 \times min(CF_7, CF_8) = 0.9 \times min(0.7, 0.9) = 0.63$$

Inferences with certainty factors (Disjunction-combination)

To combine R_{10} , R_{11} and R_{12} into R_{13} :

- R_{10} : if h_1 or h_2 then h_3
- R_{11} : if e_1 then h_1
- R_{12} : if e_2 then h_2
- R_{13} : if e_1 or e_2 then h_3

$$\mathit{CF}_{13} = \mathit{CF}_{10} \cdot \mathit{max}(\mathit{CF}_{11}, \mathit{CF}_{12})$$

Problems with certainty factors

- Principle of modularity: Given the logical rule if e then h, and given that e is true, we can assert that h is true
 - (principle of detachment) no matter how we established that e is true,
 and
 - (principle of locality) no matter what else we know to be true.
 Unfortunately, uncertain reasoning often violates the principles of detachment and locality
- Multiple causes of the same effect: A need to include rules for every possible combinations of observations
- Probabilistic interpretation of certainty factors shows that the combinations functions actually impose assumptions of conditional independence on the propositions involved in the combinations
 - ► This is usually violated in applications
- CF model requires that we encode the rules in the direction in they are applied
 - ▶ This is usually counter-intuitive for the experts
- The authors of [Heckerman, 1992] suggested that Bayesian network and its variants are remedies for the above problems

Outline

- Introduction
- 2 Default logic
- Certainty factor
- Dempster-Shafer theory
- 5 Fuzzy sets
- Summary

An introductory example

[Haenni, 2002]

• Evidence 1:

Mr. Jones was assassinated by the Mafia. An informer tells the police that the selection of the assassin was done as follows:

- a fair coin is tossed
- lacktriangle "head" ightarrow either Peter or Tom is selected
- "tail" either Tom or Mary is selected
- Evidence 2:

The police finds the assassin's fingerprint. An expert states that it is male with 80% chance and female with 20% chance.

Dempster-Shafter Theory vs. Probability theory

Using Dempster-Shafer theory:

$$m_1(\{Peter, Tom\}) = 0.5$$

 $m_1(\{Tom, Mary\}) = 0.5$

$$m_2(\{Peter, Tom\}) = 0.8$$

 $m_2(\{Mary\}) = 0.2$

Using probability theory:

$$P_1(Peter) = P_1(Mary) = 0.25$$

 $P_1(Tom) = 0.5$

$$P_2(Peter) = P_2(Tom) = 0.4$$

 $P_2(Mary) = 0.2$

Dempster-Shafer Theory

[Shafer, 1976]

- ullet Frame of Discernment: Θ (set of possible events, one of them is true)
- Multi-Variable Frames:

$$D = \{x_1, \dots, x_n\} \Rightarrow \Theta_D = \Theta_{x_1} \times \dots \times \Theta_{x_n}$$

- Belief mass function: $m: 2^{\Theta_D} \to [0,1]$ with $\Sigma_{A \subseteq \Theta_D} m(A) = 1$
- Belief: $Bel(A) = \sum_{B \subseteq A} m(A)$
- Focal Sets: $A \subseteq \Theta_D$ s.t. $m(A) \neq 0$
- Dempsters rule of combination:

$$m_{1,2}(A) = \frac{\sum_{B \cap C = A} m_1(B) \cdot m_2(C)}{\sum_{B \cap C \neq \emptyset} m_1(B) \cdot m_2(C)}$$

Combination example

$$m_{1}(\{Peter, Tom\}) = 0.5 \qquad m_{2}(\{Peter, Tom\}) = 0.8$$

$$m_{1}(\{Tom, Mary\}) = 0.5 \qquad m_{2}(\{Mary\}) = 0.2$$

$$n = m_{1}(\{P, T\}) \cdot m_{2}(\{P, T\} + m_{1}(\{T, M\}) \cdot m_{2}(\{P, T\}) + m_{1}(\{T, M\}) \cdot m_{2}(\{M\})$$

$$= 0.5 \cdot 0.8 + 0.5 \cdot 0.8 + 0.5 \cdot 0.2 = 0.9$$

$$m(\{Peter, Tom\})$$

$$= \frac{m_{1}(\{P, T\}) \cdot m_{2}(\{P, T\})}{n} = \frac{0.5 \cdot 0.8}{0.9} = 0.44$$

Combination example (cont.)

$$m_{1}(\{Peter, Tom\}) = 0.5 \qquad m_{2}(\{Peter, Tom\}) = 0.8$$

$$m_{1}(\{Tom, Mary\}) = 0.5 \qquad m_{2}(\{Mary\}) = 0.2$$

$$m(\{Tom\})$$

$$= \frac{m_{1}(\{T, M\}) \cdot m_{2}(\{P, T\})}{n} = \frac{0.5 \cdot 0.8}{0.9} = 0.44$$

$$m(\{Mary\})$$

$$= \frac{m_{1}(\{T, M\}) \cdot m_{2}(\{M\})}{n} = \frac{0.5 \cdot 0.2}{0.9} = 0.11$$

Combination example (cont. II)

$$m(\{Peter, Tom\}) = 0.44$$

 $m(\{Tom\}) = 0.44$
 $m(\{Mary\}) = 0.11$
 $Bel(Peter) = 0.44$
 $Bel(Tom) = 0.44 + 0.44 = 0.88$
 $Bel(Mary) = 0.11$

Summary I

Benefits of Dempster-Shafer Theory:

- Allows proper distinction between reasoning and decision taking
- No modeling restrictions (e.g. DAGs)
- It represents properly partial and total ignorance
- Ignorance is quantified:
 - low degree of ignorance means
 - ★ high confidence in results
 - ★ enough information available for taking decisions
 - high degree of ignorance means
 - low confidence in results
 - ★ gather more information (if possible) before taking decisions
- Conflict is quantified:
 - low conflict indicates the presence of confirming information sources
 - high conflict indicates the presence of contradicting sources
- Simplicity: Dempsters rule of combination covers
 - combination of evidence,

Summary II

- ► Bayes rule,
- Bayesian updating (conditioning),
- belief revision (results from non-monotonicity),
- etc.

DS-Theory is not very successful because:

Inference is less efficient than Bayesian inference

[Haenni, 2002]

Outline

- Introduction
- 2 Default logic
- Certainty factor
- 4 Dempster-Shafer theory
- 5 Fuzzy sets
- 6 Summary

An introductory example

Example

"Hans ate X eggs for breakfast", where $X \in U = \{1, 2, ..., 8\}$.

where p is the probability distribution and π is a fuzzy possibility distribution.

The possiblity for X = 3 is 1, the probability is only 0.1.

A logic based on the two truth values True and False is sometimes inadequate when describing human reasoning. The logic of fuzzy set uses the whole interval between 0 (False) and 1 (True) to describe human reasoning.

Fuzzy sets

[Zadeh, 1965]

A set A is in terms of its characteristic function

$$\mu_A(x):U\to [0,1]$$

A point x belongs to set A with possibility A(x).

Union

$$\mu_{A\cup B}(x) = \max(\mu_A(x), \mu_B(x))$$

Intersection

$$\mu_{A\cap B}(x) = \min(\mu_A(x), \mu_B(x))$$

Complement

$$\mu_{\bar{A}}(x) = 1 - \mu_{A}(x)$$

Buying house example

Example

A four-person family want sto buy a house. The indication of "comfortable" (c) is the number of bedrooms, and the concept of large (I). $U = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \end{bmatrix}$

Fuzzy relations

$$(a,b) \in R \subseteq A \times B$$

- $\mu_R(a,b) : A \times B \to [0,1]$
- Composition $\mu_{R_1 \times R_2}(a, c) = \max_b (\min(\mu_{R_1}(a, b), \mu_{R_2}(b, c)))$

Example

and Louie resembles Donald Dewey 0.5 Louie 0.6

- Huey resembles (0.8) Dewey, and Dewey resembles (0.5) Donald, or
- Huey resembles (0.9) Louie, and Louie resembles (0.6) Donald

Huey resembles Donald:

max(min(0.8, 0.5), min(0.9, 0.6) = max(0.5, 0.6) = 0.6

Summary

Applications

- Expert systems: decision-support systems, financial planners, diagnostic systems
- Information retrieval systems
- Control: a navigation system for automatic cars, a predicative fuzzy-logic controller for automatic operation of trains, laboratory water level controllers, controllers for robot arc-welders, feature-definition controllers for robot vision, graphics controllers for automated police sketchers, and more
- Fuzzy systems, including fuzzy logic and fuzzy set theory, provide a rich and meaningful addition to standard logic.
- The mathematics behind fuzzy theories is consistent.
- Fuzzy theories provide the opportunity for modeling of conditions which are inherently imprecisely defined.

Outline

- Introduction
- ② Default logic
- Certainty factor
- 4 Dempster-Shafer theory
- 5 Fuzzy sets
- 6 Summary

Summary

- Default logic
- Certainty factor
- Dempster-Shafer theory
- Fuzzy set

References I

Introduction to dempster-shafer theory.

Weekly Seminar, PPM Group, University of Konstanz, Germany, November 2002.

The certainty-factor model.

In Steven Shapiro, editor, *Encyclopedia of Artificial Intelligence*, pages 131–138. Wiley, New York, second edition edition, 1992.

Raymond Reiter.

A logic for default reasoning.

Artificial Intelligence, 13(1-2):81-132, 1980.

G. Shafer.

A mathematical theory of evidence.

Princeton university press, 1976.

References II

L.A. Zadeh.

Fuzzy sets.

Information Control, 8:338–353, 1965.