

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(S1) International Patent Classification ⁶ : C12N 15/57, C11D 3/386, C12N 9/54	AI	(11) International Publication Number: WO 95/30010 (43) International Publication Date: 9 November 1995 (09.11.95)
(21) International Application Number: PCT/I (22) International Filing Date: 16 March 1995 (30) Priority Data: 16 March 1995 (32) 97 (12) 17 (12) 18 (12) 19 (DOMPAN imati, C quirrelsne FF, Bobi 5240 (Ul Cincinna 605 Pinch	EE, FI, GE, HU, JP, KG, KP, KR, KZ, LE, LR, LT, LV MD, MG, MM, MK, NO, NZ, PL, RO, RU, SG, SI, SK, TI TT, UA, UG, UZ, VN, European patent (AT, BE, CH, DE DK, ES, FR, GB, GR, ET, ET, LJ, MC, NL, PT, SE), OAS, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG). Published With international search report.

(54) Title: SUBTILISIN BPN' VARIANTS HAVING DECREASED ADSORPTION AND INCREASED HYDROLYSIS

(57) Abstract

The present Invention relates to subclisin BPN variants having a modified antino acid sequence of wild-type BPN amino acid sequence. The wild-type amino acid sequence comprising a farst loop region, a second loop region, a britto loop region, a britto loop region, a britto loop region, a britto loop region, a second loop region, a britto loop region, a second loop region and a significant loop region and a specifically identified positions in one or more of the loop regions whereby the BPN variant has decreased absorption to, and hereased hydrodysis of, an insoluble substrate as compared to the while-type sublishin BPN. Variant has decreased invention also relates to compositions comprising such subclisin BPN variants for cleaning a variety of surfaces.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify Statzs party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AΥ	Austria	GB	United Kingdom	MR	Mauritanis
AE:	Australia	GE.	Georgia	3438	Mishral
88	Barbados	GN	Cuinca	NE	Niger
88	Belgium	GR	Greece	NL.	Netherlands
BF	Burkina Paso	BU	Hongary	NO	Norway
86	Bioligaria.	XX.	Instand	NZ	New Zraited
83	Benis	ET.	Ruly	PL.	Poland
BR	Brazi?	JP.	Japan	PT	Portugal
88	Belaros	KE	Kenya	80	Romania
CA	Carrieta	*G	Kytgystm	88	Russian Federation
CF	Central Africas Republic	KP	Democratic People's Republic	SĐ	Sadan
CG	Congo		of Korea	SE	Sweden
CH	Switzerfand	KR	Republic of Korea	SE	Slovenia
Cl	Côte d'Eveure	KZ	Kazakistan	SK	Slovakia
C34	Cameroon	1.1	Liechteuszehn	539	Senegai
CN	China	LK	Sri Lauka	TD	Chad
CS	Czechosiovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Lacvin	TI	Tajikisess
ME	Germany	MC	Mouses	33	Trinidad and Tobugo
DK	Denmark	MD	Republic of Moldova	XIA.	Ukraine
23	Spain	MG	Madagascar	88	United States of America
37	Finland	ML.	Misti	UZ.	Uzbekistas
8.33	Promot	MIN	Mongolia	VN	Viet Nam
GA.	Gabon				

WO 95/30010 PCT/US95/03176

1

Subtilisin BPN' variants having decreased adsorption and increased hydrolysis

s

10

20

25

35

TECHNICAL FIELD

The present invention relates to novel enzyme variants useful in a variety of cleaning compositions, and the genes encoding such enzyme variants.

BACKGROUND

Enzymes make up the largest class of naturally occurring proteins. Each class of enzyme generally catalyzes (accelerates a reaction without being consumed) a different kind of chemical reaction. One class of enzymes known as proteases, are known for their ability to hydrolyze (break down a compound into two or more simpler compounds with the uptake of the H and OH parts of a water molecule on either side of the chemical bond cleaved) other proteins. This ability to hydrolyze proteins has been taken advantage of by incorporating naturally occurring and protein engineered proteases as an additive to laundry detergent preparations. Many stains on clothes are proteinaceous and wide-specificity proteases can substantially improve removal of such stains.

Unfortunately, the efficacy level of these proteins in their natural, bacterial environment, frequently does not translate into the relatively unnatural wash environment. Specifically, protease characteristics such as thermal stability, pH stability, oxidative stability and substrate specificity are not necessarily optimized for utilization outside the natural environment of the enzyme.

The amino acid sequence of the protease determines the characteristics of the protease. A change of the amino acid sequence of the protease may alter the properties of the enzyme to varying degrees, or may even inactivate the enzyme, depending upon the location, nature and/or magnitude of the change in the amino acid sequence. Several approaches have been taken to alter the wild-type amino acid sequence of proteases in an attempt to improve their properties, with the goal of increasing the efficacy of the protease in the wash environment. These approaches include altering the amino acid sequence to

enhance thermal stability and to improve oxidation stability under quite diverse conditions

Despite the variety of approaches described in the art, there is a continuing need for new effective variants of proteases useful for cleaning a variety of surfaces.

Objects of the Present Invention

It is an object of the present invention to provide subfilisin enzyme variants having improved hydrolysis versus the wild-type of the enzyme.

It is also an object of the present invention to provide cleaning compositions comprising these subtilisin enzyme variants.

SUMMARY

The present invention relates to subtilisin BPN' variants having a modified amino acid sequence of wild-type BPN' amino acid sequence, the wild-type amino acid sequence comprising a first loop region, a second loop region, a third loop region, a fourth loop region and a fifth loop region, wherein the modified amino acid sequence comprises different amino acids than that occurring in wild-type subtilisin BPN' (i.e., substitution) at specifically identified positions in one or more of the loop regions whereby the BPN' variant has decreased adsorption to, and increased hydrolysis of, an insoluble substrate as compared to the wild-type subtilisin BPN'. The present invention also relates to the genes encoding such subtilisin BPN' variants. The present invention also relates to compositions comprising such subtilisin BPN' variants for cleaning a variety of surfaces.

DESCRIPTION

25 L. Subtilisin Variants

30

35

This invention pertains to subtilisin enzymes, in particular BPN', that have been modified by mutating the various nucleotide sequences that code for the enzyme, thereby modifying the amino acid sequence of the enzyme. The modified subtilisin enzymes (hereinafter, "BPN' variants") of the present invention have decreased adsorption to and increased hydrolysis of an insoluble substrate as compared to the wild-type subtilisin. The present invention also pertains to the mutant genes encoding for such BPN' variants.

The subtilisin enzymes of this invention belong to a class of enzymes known as proteases. A protease is a catalyst for the cleavage of peptide bonds. One type of protease is a serine protease. A serine protease is distinguished by

WO 95/30016 PCT/US95/93176

3

the fact that there is an essential serine residue at the active site

The observation that an enzyme's rate of hydrolysis of soluble substrates increases with enzyme concentration is well documented. It would therefore seem plausible that for surface bound substrates, such as is encountered in many cleaning applications, the rate of hydrolysis would increase with increasing surface concentration. This has been shown to be the case. (Brode, P.F. III and D. S. Rauch, LANGMUR, "Subtilisin BPN": Activity on an Immobilized Substrate". Vol. 8, pp. 1325-1329 (1992)). In fact, a linear dependence of rate upon surface concentration was found for insoluble substrates when the surface concentration of the enzyme was varied. (Rubingh, D. N. and M. D. Bauer, "Catalysis of Hydrolysis by Proteases at the Protein-Solution Interface," in Polywer SOLUTIONS, BLENDS AND INTERFACES, Ed. by I. Noda and D. N. Rubingh, Elsevier, p. 464 (1992)). Surprisingly, when seeking to apply this principle in the search for variant proteases which give better cleaning performance, we did not find that enzymes which adsorb more give better performance. In fact, we surprisingly determined the opposite to be the case: decreased adsorption by an enzyme to a substrate resulted in increased hydrolysis of the substrate (i.e., better cleaning performance).

While not wishing to be bound by theory, it is believed that improved performance, when comparing one variant to another, is a result of the fact that enzymes which adsorb less are also less tightly bound and therefore more highly mobile on the surface from which the insoluble protein substrate is to be removed. At comparable enzyme solution concentrations, this increased mobility is sufficient to outweigh any advantage that is conferred by delivering a higher concentration of enzyme to the surface.

The mutations described herein are designed to change (i.e., decrease) the adsorption of the enzyme to surface-bound soils. In BPN', certain amino acids form exterior loops on the enzyme molecule. For purposes of discussion, these loops shall be referred to as first, second, third, fourth and fifth loop regions. Specifically, positions 95-66 form the first loop region; positions 95-107 form the second loop region; positions 126-133 form the third loop region; positions 154-167 form the fourth loop region; positions 187-191 form the fifth loop region; and positions 199-220 form the sixth loop region (position numbering analagous to positions in the amino acid sequence for wild-type subtilisin BPN' (SEQ ID NO.11).

WO 95/30018 PCT/US95/03176

4 .

It believed that these loop regions play a significant role in the adsorption of the enzyme molecule to a surface-bound peptide, and specific mutations in one or more of these loop regions will have a significant effect on this adsorption. While not wishing to be bound by theory, it is believed that the loop regions are important to the adsorption of the BPN' molecule for at least two reasons. First, the amino acids which comprise the loop regions can make close contacts with any surfaces to which the molecule is exposed. Second, the proximity of the loop regions to the active-site and binding pocket of the BPN' molecule gives them a role in the catalytically productive adsorption of the enzyme to surface-bound substrates (peptides/protein soils).

As used herein, "variant" means an enzyme having an amino acid sequence which differs from that of wild-type.

As used herein, "mutant BPN' gene" means a gene coding for a BPN' variant.

15

20

25

30

As used herein, "wild-type subtilisin BPN" refers to a subtilisin enzyme represented by SEQ ID NO:1. The amino acid sequence for subtilisin BPN is further described by Wells, J. A., E. Ferrari, D. J. Henner, D. A. Estell and E. Y. Chen, NucLeic Acids Research, Vol. II, 7911-7925 (1983), incorporated herein by reference.

As used herein, the term "wild-type amino acid sequence" encompasses SEQ ID NO:1 as well as SEQ ID NO:1 having modifications to the amino acid sequence other than at any of positions 59-66, 95-107, 126-133, 154-167, 187-191 and 199-220.

As used herein, "more hydrophilic amino acid" refers to any other amino acid having greater hydrophilicity than a subject amino acid with reference to the hydrophilicity table below. The following hydrophilicity table (Table 1) lists amino acids in descending order of increasing hydrophilicity (see Hopp, T.P., and Woods, K.R., "Prediction of Protein Antigenic Determinants from Amino Acid Sequences", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCE USA, Vol. 78, pp. 3824-3828, 1981, incorporated herein by reference).

TARLE 1

Amino Acid	Hydrophilicity Value
Trp	-3.4
Phe	-2.5
Tyr	-2.3
Leu, Ile	-1.8
Val	-1.5
Met	-1.3
Cys	-1.0
Ala, His	-O.5
Thr	-0.4
Pro, Gly	-0.0
Gin, Asn	0.2
Ser	0.3
Arg+, Lys+, Glu-,	3.0
Asp*	

Table 1 also indicates which amino acids carry a charge (this characteristic being based on a pH of from about 8-9). The positively charged amino acids are Arg and Lys, the negatively charged amino acids are Glu and Asp, and the remaining amino acids are neutral. In a preferred embodiment of the present invention, the substituting amino acid is either neutral or negatively charged (i.e., Glu or Asp).

Therefore, for example, the statement "substitute Gin with an equally or more hydrophilic amino acid which is neutral or has a negative charge" means Gln would be substituted with Asn (which is equally hydrophilic to Gln), or Ser, Glu or Asp (which are more hydrophilic than Gln); each of which are neutral or have a negative charge, and have a greater hydrophilicity value as compared to Gln. Likewise, the statement "substitute Pro with a more hydrophilic amino acid which is neutral or has a negative charge" means Pro would be substituted with Gln, Asn, Ser, Glu or Asp.

In one embodiment of the present invention, the BPN' variant has a modified amino acid sequence of wild-type amino acid sequence, wherein the modified amino acid sequence comprises a substitution at one or more positions in one or more of the first, second, third, fourth or fifth loop regions; whereby the BPN' variant has decreased adsorption to, and increased hydrolysis of, an insoluble substrate as compared to the wild-type subtilisin BPN'.

In another embodiment of the present invention, the BPN' variant further comprises one or more substitutions to the sixth loop region.

20

6

In a preferred embodiment of the present invention, the substituting amino acid for one or more of the positions in one or more of the loop regions is, with reference to Table 1, neutral or negatively charged and equally or more hydrophylic, preferably more hydrophylic, than the amino acid at the subject position in the wild-type amino acid sequence.

A. Substitutions in the First Loop Region

When a substitution occurs in the first loop region, the substitution occurs at one or more of positions 59, 60, 61, 62, 63, 65 or 66.

When a substitution occurs at position 59, the substituting amino acid is Asn, Asp, Glu or Ser.

When a substitution occurs at position 60, the substituting amino acid is Giu

When a substitution occurs at position 61, the substituting amino acid is Asp, Gln, Glu or Ser.

15 When a substitution occurs at position 62, the substituting amino acid is Asp. Gln. Glu or Ser.

When a substitution occurs at position 63, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 65, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 66, the substituting amino acid is Asn, Asp, Gin, Glu, Gly, Pro or Ser.

B. Substitutions in the Second Loop Region

When a substitution occurs in the second loop region, the substitution occurs at one or more of positions 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106 or 107.

When a substitution occurs at position 95, the substituting amino acid is Ala, Asn, Asp, Cys, Gin, Glu, Gly, His, Met, Pro, Ser or Thr.

When a substitution occurs at position 96, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Met, Pro, Ser, Thr or Val.

When a substitution occurs at position 97, the substituting amino acid is Asn, Asp, Glu, Pro or Ser.

When a substitution occurs at position 98, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, His, Pro, Ser or Thr.

35 When a substitution occurs at position 99, the substituting amino acid is

Glu.

10

20

30

When a substitution occurs at position 100, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 101, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 102, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 103, the substituting amino acid is Asn, Asp, Glu or Ser.

When a substitution occurs at position 104, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Pro, Ser, Thr or Val.

When a substitution occurs at position 105, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 106, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Phe, Pro, Ser, Thr, Tyr or Val.

When a substitution occurs at position 107, the substituting amino acid is Ala, Asn, Asp, Cys, Gin, Glu, Giy, His, Leu, Met, Pro, Ser, Thr or Val.

C. Substitutions in the Third Loop Region

When a substitution occurs in the third loop region, the substitution occurs at one or more of positions 126, 127, 128, 129, 130, 131, 132 pr 133.

When a substitution occurs at position 126, the substituting amino acid is Ala, Asn, Asp, Cys, Gin, Glu, Gly, His, Ile, Met, Pro, Ser, Thr or Val.

When a substitution occurs at position 127, the substituting amino acid is 25 Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 128, the substituting amino acid is Asn, Asp, Glu, Glu, Gly or Ser.

When a substitution occurs at position 129, the substituting amino acid is Asn, Asp, Gln, Glu, Gly or Ser.

When a substitution occurs at position 130, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 131, the substituting amino acid is Asn, Asp, Gln, Glu, Gly or Ser.

When a substitution occurs at position 132, the substituting amino acid is 35 Asp or Glu.

WD 95/30010 PCT/US95/03176

When a substitution occurs at position 133, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, His, Pro, Ser or Thr.

8

D. Substitutions in the Fourth Loop Region

10

15

20

25

When a substitution occurs in the fourth loop region, the substitution occurs at one or more of positions 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166 or 167.

When a substitution occurs at position 154, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 155, the substituting amino acid is Asp, Gin, Glu or Ser.

When a substitution occurs at position 156, the substituting amino acid is Asp.

When a substitution occurs at position 157, the substituting amino acid is Asn, Asp, Gln, Glu. Pro or Ser.

When a substitution occurs at position 158, the substituting amino acid is Asn, Asp, Glu, Glu, Gly, Pro or Ser.

When a substitution occurs at position 159, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 160, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 161, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 162, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 163, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 164, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, Pro or Ser.

When a substitution occurs at position 165, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Met, Pro, Ser or Thr.

When a substitution occurs at position 166, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 167, the substituting amino acid is Ala, Asn, Asp, Cys, Gin, Glu, Giy, His, Ile, Leu, Met, Pro, Ser, Thr or Val.

18

20

25

30

35

9

E. Substitutions in the Fifth Loop Region

When a substitution occurs in the fifth loop region, the substitution occurs at one or more of positions 187, 188, 189, 190 or 191.

When a substitution occurs at position 187, the substituting amino acid is 5 Asn, Asp, Glu, Glu, Glu, His, Pro, Ser and Thr.

When a substitution occurs at position 188, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 189, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Pro, Ser, Thr, Tyr or Val.

When a substitution occurs at position 190, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 191, the substituting amino acid is Asp or Glu.

F. Substitutions in the Sixth Loop Region

When a substitution occurs in the slxth loop region, the substitution occurs at one or more of positions 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219 or 220.

When a substitution occurs at position 199, the substituting amino acid for position 199 is Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 200, the substituting amino acid for position 200 is His. Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 201, the substituting amino acid for position 201 is Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 202, the substituting amino acid for position 202 is Pro, Gin, Asn, Ser, Asp or Glu.

When a substitution occurs at position 203, the substituting amino acid for position 203 is Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 204, the substituting amino acid for position 204 is Asp. or Glu.

When a substitution occurs at position 205, the substituting amino acid for position 205 is Leu, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 206, the substituting amino acid for position 206 is Pro, Asn, Ser, Asp, or Glu.

When a substitution occurs at position 207, the substituting amino acid for

25

30

35

position 207 is Asp or Glu.

When a substitution occurs at position 208, the substituting amino acid for position 208 is Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 209, the substituting amino acid for position 209 is Ile, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 210, the substituting amino acid for position 210 is Ala, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 211, the substituting amino acid for position 211 is Ala, Pro, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 212, the substituting amino acid for position 212 is Gin, Ser, Asp or Glu.

When a substitution occurs at position 213, the substituting amino acid for position 213 is Trp, Phe, Tyr, Leu, Ite, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Aso or Glu.

When a substitution occurs at position 214, the substituting amino acid for position 214 is Phe, Leu, Ile, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 215, the substituting amino acid for position 215 is Thr. Pro. Gln. Asn. Ser. Asp or Glu.

When a substitution occurs at position 216, the substituting amino acid for position 216 is His, Thr., Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 217, the substituting amino acid for position 217 is Leu, Ile, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu

When a substitution occurs at position 218, the substituting amino acid for position 218 is Gln, Ser, Asp or Glu.

When a substitution occurs at position 219, the substituting amino acid for position 219 is Pro, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 220, the substituting amino acid for position 220 is Pro, Gly, Gln, Asn, Ser Asp or Glu.

G. Preparation of enzyme variants

Example 1

Mutant BPN' Genes

A phagemid (pSS-5) containing the wild type subtilisin BPN' gene

(Mitchinson, C. and J. A. Wells, (1989), "Protein Engineering of Disulfide Bonds in Subtilisin BPN', BIOCHEMISTRY, Vol. 28, pp. 4807-4815) is transformed into Escherichia coli ung-strain CJ236 and a single stranded uracil-containing DNA template is produced using the VCSM13 helper phage (Kunkel, T.A., J.D. Roberts and R.A. Zakour, "Rapid and efficient site-specific mutagenesis without phenotypic selection", METHODS IN ENZYMOLOGY, Vol. 154, pp. 367-382, (1987); as modified by Yuckenberg, P.D., F. Witney, J. Geisselsoder and J. McClary. "Site-directed in vitro mutagenesis using uracil-containing DNA and phagemid vectors", DIRECTED MUTAGENESIS - A PRACTICAL APPROACH, ed. M.J. McPherson, pp. 27-48, (1991); both of which are incorporated herein by reference). A single primer site-directed mutagenesis modification of the method of Zoller and Smith (Zoller, M.J., and M. Smith, "Oligonucleotide-directed mutagenesis using M13derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA", NUCLEIC ACIDS RESEARCH, Vol. 10, pp. 6487-15 6500, (1982), incorporated herein by reference) is used to produce all mutants (basically as presented by Yuckenberg, et al., 1991, above). Oligonucleotides are made using an Applied Biosystem Inc. 380B DNA synthesizer. Mutagenesis reaction products are transformed into Escherichia coli strain MM294 (American Type Culture Collection E. Coli. 33625). All mutants are confirmed by DNA sequencing and the isolated DNA is transformed into the Bacillus subtilis expression strain BG2036 (Yang, M. Y., E. Ferrari and D. J. Henner, (1984), "Cloning of the Neutral Protease Gene of Bacillus subtillis and the Use of the Cloned Gene to Create an In Vitro-derived Deletion Mutation", JOURNAL OF BACTERIOLOGY, Vol. 160, pp. 15-21). For some of the mutants a modified pSS-5 with a frameshift-stop codon mutation at amino acid 217 is used to produce the uracil template. Oligonucleotides are designed to restore the proper reading frame at position 217 and also encoded for random substitutions at positions 59, 60, 61, 62, 63, 64, 65, 66; 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107; 126, 127, 128, 129, 130, 131, 132, 133; 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 187, 188, 189, 190, 191; 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219 and 220 (equimolar and/or variable mixtures of all four nucleotides for all three bases at these codons). Mutations that correct for the frameshift-stop and produce a functional enzyme are identified by their ability to digest casein. The random substitutions are determined by DNA sequencing.

in

15

20

25

30

35

Example 2

Fermentation

The Bacillus subtilis cells (BE2036) containing a subtilisin mutant of interest are grown to mid-log phase in a one liter culture of LB-glucose broth and inoculated into a Biostat ED fermenter (B. Braun Biotech, Inc., Allentown, Pennsylvania) in a total volume of 10 liters. The fermentation media contains Yeast Extract, starch, antifoam, buffers and trace minerals (see FERMENTATION: A PRACTICAL APPROACH, Ed. B. McNeil and L. M. Harvey, 1990). The broth skept at a constant pH of 7.0 during the fermentation run. Chloramphenical is added for antibiotic selection of mutagenized plasmid. The cells are grown overnight at 37°C to an Asno of about 60 and harvested.

Example 3 Purification

The fermentation broth is taken through the following steps to obtain pure enzyme. The broth is cleared of *Bacillus subtilis* cells by centrifugation, and clarified by removing fine particulates with a 100K cutoff membrane. This is followed by concentration on a 10K cutoff membrane, and flow dialysis to reduce the ionic strength and adjust the pH to 5.5 using 0.025M MES buffer (2-{N-morpholino)ethanesulfonic acid). The enzyme is further purified by loading it onto either a cation exchange chromatography column or an affinity adsorption chromatography column and eluting it from the column with a NaCl or a propylene glycol gradient (see Scopes, R. K., PROTEIN PURIFICATION PRINCIPLES AND PRACTICE, Springer-Verlag, New York (1984), incorporated herein by reference).

The pNA assay (DelMar, E.G., C. Largman, J.W. Brodrick and M.C. Geokas, ANAL. Biochtem., Vol. 99, pp. 316-320, (1979), incorporated herein by reference) is used to determine the active enzyme concentration for fractions collected during gradient elution. This assay measures the rate at which p-nitroaniline is released as the enzyme hydrolyzes the soluble synthetic substrate, succinyl-alanine-alanine-proline-phenylalanine-p-nitroanilide (sAAPF-pNA). The rate of production of yellow color from the hydrolysis reaction is measured at 410 nm on a spectrophotometer and is proportional to the active enzyme concentration. In addition, absorbance measurements at 280 nm are used to determine the total protein concentration. The active enzyme/total-protein ratio gives the enzyme purity, and is used to identify fractions to be

30

pooled for the stock solution.

To avoid autolysis of the enzyme during storage, an equal weight of propylene glycol is added to the pooled fractions obtained from the chromatography column. Upon completion of the purification procedure the purity of the stock enzyme solution is checked with SDS-PAGE (sodium dodecy) sulfate polyacrylamide gel electrophoresis) and the absolute enzyme concentration is determined via an active site titration method using trypsin inhibitor type II-T: turkey egg white purchased from Sigma Chemical Company (St. Louis, Missouri). The measured conversion factors will show which changes made in the enzyme molecule at the various positions result in the enzyme variant having increased activity over the wild-type, against the soluble substrate pNA.

In preparation for use, the enzyme stock solution is eluted through a Sephadex-G25 (Pharmacia, Piscataway, New Jersey) size exclusion column to remove the propylene glycol and exchange the buffer. The MES buffer in the enzyme stock solution is exchanged for 0.1 M Tris buffer (Tris(hydroxymethylaminomethane) containing 0.01M CaCl₂ and pH adjusted to 8.6 with HCl. All experiments are carried out at pH 8.6 in Tris buffer thermostated at 25°C.

H. Characterization of enzyme variants

Example 4

Model Surface Preparation

Aminopropyl controlled pore glass (CPG) purchased from CPG Inc. (Fairfield, New Jersey) is used as a support for covalently attaching the sAAPF-pNA substrate purchased from Bachem, Inc. (Torrence, California). The reaction is carried out in dimethyl sulfoxide and (1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide hydrochloride) (EDC) is used as a coupling agent. Upon completion (monitored by pNA assay), the excess solvent is removed, and the CPG:sAAPF-pNA is rinsed with dimethyl sulfoxide (DMSO) and doubly-distilled water. This is followed by oven drying with a N2 purge at about 70°C. The reaction scheme and preparation of the immobilized substrate are conducted as described by Brode, P.F. III, and D.S. Rauch, "Subtilisin BPN": Activity on an Immobilized Substrate," LANGMUIR, Vol. 8, p. 1325-1329, (1992), incorporated herein by reference.

The CPG surface will have 62,000 ± 7,000 pNA molecules/µm². The surface area will remain unchanged from the value of 50.0m²/g reported by CPG

20

30

Inc. for the CPG as received. This suggests that the procedure used to add sAAPF-pNA to CPG does not damage the porous structure (mean diameter is 486 Å).

Example 5

Surface Hydrolysis Assay

Using CPG:sAAPF-pNA, adsorption of an enzyme variant and hydrolysis of a CPG-bound peptide can be measured in a single experiment. A small volume of enzyme variant stock solution is added to a flask containing Tris buffer and CPG:sAAPF-pNA which has been degassed. The flask is shaken on a wrist-action shaker for a period of 90 minutes during which the shaker is stopped at various time intervals (for example, every 2 minutes during the early stages of adsorption hydrolysis - e.g., the first 20 minutes - and every 10 minutes towards the end of the experiment). The CPG:sAAPF-pNA is allowed to settle and the solution is sampled. Both the experimental procedure and the calculation of the adsorption and hydrolysis are conducted as described by Brode et al., 1992, above.

All enzymes are monitored for stability against autolysis and should show no appreciable autolytic loss over the time course of this experiment. Therefore, enzyme adsorption can be determined by measuring solution depletion. The difference between the initial enzyme variant concentration and the concentration measured at each individual time point gives the amount of enzyme variant adsorbed. The amount of pNA hydrolyzed from the surface is measured by taking an absorbance reading on an aliquot of the sample at 410 nm. The total amount of pNA hydrolyzed is calculated by adding the amount sampled and the amount remaining in the flask. This value is corrected by subtracting the amount of pNA that is hydrolyzed by Tris buffer at pH 8.6 when no enzyme is present. This base-hydrolysis ranges from 7-29% of the total hydrolysis depending on the efficiency of the enzyme.

Example 6

Soluble Substrate Kinetic Analysis

The rates of hydrolysis of the soluble substrate sAAPF-pNA are monitored by measuring the adsorbance increase as a function of time at 410 nm on a DU-70 spectrophotometer. The enzyme concentration is held constant and is prepared to be in the range of 6-10 nanomolar while the substrate concentration is varied from 90-700 µM sAAPF-pNA for each kinetic determination. An

adsorbance data point is taken each second over a period of 900 seconds and the data are transferred to a LOTUs $^{\rm TM}$ spreadsheet (Lotus Development Corporation, Cambridge, Massachusetts). Analysis for kinetic parameters is conducted by the standard Lineweaver Burk analysis in which the data in the initial part of the run (generally the first minute) are fit to a linear regression curve to give $v_{\rm O}$. The $v_{\rm O}$ and $s_{\rm O}$ data are plotted in the standard inverse fashion to give $K_{\rm M}$ and $k_{\rm Cat}$.

I. Example BPN' variants

BPN' variants of the present invention which have decreased adsorption to and increased hydrolysis of surface bound substrates are exemplified in Tables 2-25, below. In describing the specific mutations, the original amino acid occurring in wild-type is given first, the position number second, and the substituted amino acid third.

TABLE 2

15	Loop 1 - Single Mutation Variants
-	Gln59Asn
	Gln59Asp
	Gln59Glu
	Gln59Ser
20	Asp60Glu
	Asn6lAsp
	Asn6lGln
	Asn61Glu
	Asn61Ser
25	Asn62Asp
	Asn62Gln
	Asn62Glu
	Asn62Ser
	Ser63Asp
30	Ser63Glu
	Gly65Asn
	Gly65Asp
	Gly65Gln
	Gly65Glu
35	Gly65Pro
	Gly65Ser
	Thr66Asn
	Thr66Asp
	Thr66Gln
40	Thr66Glu
	Thr66Gly
	Thr66Pro
	Thr66Ser
~~	

TARLE 3

	I ABLE 3
	Loop 1 - Double Mutation Variants
	Gln59Ser + Asn62Glu
5	Asp60Glu + Asn61Ser
	Asn61Glu + Asn62Ser
	Gln59Ser + Gly65Gln
	Asn61Gln + Glv65Asn
	Asn61Ser + Asn62Asp
10	Gln59Glu + Asn61Gln
	Asp60Glu + Gly65Gln
	Gln59Asp + Gly65Pro
	Asn61Asp + Gly65Asn
	Gln59Ser + Asn62Asp
1.5	Gln59Asn + Gly65Gln
1.5	Asn62Asp + Thr66Gly
	Gln59Asn + Asn62Glu
	Asn61Ser + Ser63Glu
	Gln59Ser + Asp60Glu
20	Asp60Glu + Thr66Gln
	AsnolGlu + Thro6Gly
	Asp60Glu + Asn62Gln
	Asn62Gln + Gly65Pro
	Asn6lSer + Thr66Ser
25	Asp60Glu + Gly65Pro
	Ser63Glu + Gly65Pro
	Asp60Glu + Thr66Ser
	Gln59Ser + Asn6lGlu
	Asn62Asp + Gly65Gln
30	Asn61Gln + Ser63Asp
	Gln59Asp + Gly65Asn
	Ser63Asp + Thr66Pro
	Ser63Glu + Thr66Asn
	Asn62Glu + Thr66Asn
35	Asn6lAsp + Gly65Ser
	Glv65Pro + Thr66Ser
	Gln59Ser + Asn62Ser
	Asp60Glu + Glv65Ser
	Ser63Asp + Glv65Ser
40	Asn61Gln + Ser63Glu
40	Asn6lAsp + Asn62Ser
	Gln59Glu + Gly65Pro
	Gln59Ser + Asn6lAsp
	Gln59Asp + Asn62Ser
45	Gln59Asn + Gly65Ser
	Ser63Glu + Thr66Ser
	Asn61Ser + Ser63Asp
	Asn62Ser + Gly65Pro

TABLE 4

	Loop 1	. Т	riple Mutatio	n'	Variants
	Gln59Ser	+	Ser63Asp	+	Gly65Pro
	Asn62Gln	4	Gly65Ser	4	Thr66Asp
					Thr66Gln
	Gln59Asn	+	Ser63Glu	+	Thr66Pro
					Thr66Glu
	Ser63Glu	4	Gly65Ser	+	Thr66Asn
	Asn62Asp	÷	Gly65Ser	+	Thr66Gly
	Gln59Ser	4	Asn62Asp	4	Thr66Pro
	Gln59Ser	*	Asp60Glu	÷	Asn61Gln
	Asn61Gln	÷	Ser63Asp	+	Glv65Ser
			Gly65Asn		
	Asp60Glu	+	Gly65Asn	4	Thr66Ser
			Ser63Asp		
			Asn62Gln		
			Ser63Glu		
			Asn62Ser		
			Asn61Gln		
			Asn61Gln		
			Gly65Pro		
					Asn62Asp
			Asn62Asp		
			Asn62Glu		
			Asp60Glu		
			Asp60Glu		
			Ser63Asp		
			Ser63Glu		
			Ser63Glu		
			Asn62Asp		
			Ser63Asp		
			Asn62Asp		
			Asp60Glu		
			Asn62Glu		
			Asn61Glu		
	Gln59Ser				

TARIFE

40	Loop 1 - Quadruple Mutation Variants							
	Gln59ser	+	Asp60Glu	+	Gly65Gln	*	ThrééGln	~~~~~
	Gln59Ser	+	Asn62Ser	÷	Ser63Asp	+	Gly65Gln	
	Asp60Glu	4	Asn62Ser	+	Gly65Pro	4	Thr66Gln	
	Asn62Gln	4	Ser63Glu	÷	Gly65Pro	4	Thr66Gln	
45	Asn61Gln	÷	Asn62Gln	+	Ser63Asp	+	Gly65Pro	
	Gln59Asn	÷	Asp60Glu	÷	Asn61Gln	+	Gly65Asn	
	Gln59Glu	4	Asn62Ser	+	Gly65Pro	4	Threeser	

	Gln59Asn	4	Asn61Asp	4	Asn62Asp	+	Thr66Asn
			Asp60Glu				
			Asn62Asp				
			Asn61Asp				
5			Asn62Glu				
			Asn62Glu				
			Asp60Glu				
			Asn62Asp				
			Asn62Glu				
10							Gly65Ser
							Thr66Asn
							Ser63Asp
							Gly65Pro
							Thr 66Gly
15							Gly65Asn
							Thr66Gly
			Asn62Asp				
							Glv65Ser
							Gly65Gln
20			Asn61Ser				
			Asn61Ser				
			Asp60Glu				
			Ser63Glu				
			Asp60Glu				
25			Ser63Glu				
dist.	noproduce		20100000		Or Loan TO		ALLE VOUCA

TABLE 6

Loop 2 - Single Mutation Variants Val95Ala Val95Asn 30 Val95Asp Val95Cys Val95Gln Val95Glu Val95Glv 35 Val95His Val95Met Val95Pro Val95Ser 40 Val95Thr Leu96Ala Leu96Asn Leu96Asp Leu96Cys 45 Leu96Gln Leu96Glu Leu96Gly Leu96His Leu96Ile

	Leu96Met
	Leu96Pro
	Leu96Ser
	Leu96Thr
5	Leu96Val
4	Gly97Asn
	Gly97Asp
	Glÿ97Gln
	Gly97Glu
10	Gly97Pro
**	Gly97Ser
	Ala98Asn
	Ala98Asp
	Ala98Gln
15	Ala98Glu
• • •	Ala98Gly
	Ala98His
	Ala98Pro
	Ala98Ser
20	Ala98Thr
	Asp99Glu
	Gly100Asn
	Gly100Asp
	Gly100Gln
25	Gly100Glu
	Gly100Pro
	Gly100Ser
	Ser101Asp
	Serl01Glu
30	Gly102Asn
	Gly102Asp
	Gly102Gln
	Gly102Glu
	Gly102Pro
35	Gly102Ser
	Gln103Asn
	Gln103Asp
	Gln103Glu
	Gln103Ser
40	Tyr104Ala
	Tyrl04Asn
	Tyr104Asp
	Tyr104Cys
	Tyrl04Gln Tyrl04Glu
45	
	Tyr104Gly
	Tyr104His
	Tyr104Ile
-	Tyr104Leu Tyr104Met
50	iyrroamec

Tyr104Pro	
Tyrl04Thr	
Tyr104Val	
Ser105Asp	
Ser105Glu	
Trp106Ala	
Trp106Asn	
Trp106Asp	
Trp106Cys	
Trp106Glu	
Trp106Gly	
Trp106His	
Trp106Ile	
Trp106Leu	
Trp106Met	
Trp106Phe	
Trp106Pro	
Trp1065er	
Trp106Thr	
Trp106Tyr	
Trp106Val	
Ile107Ala	
Ile107Asn	
Ile107Asp	
Ile107Cys	
Ile107Gln	
Ile107Gly	
Ile107His	
Ile107Leu	
Ile107Met	
Ile107Pro	
Ile107Ser	
Ile107Thr	
Ile107Val	
756501807	
	Týrlo4Ser Tyrlo4Thr Tyrlo4Thr Tyrlo4Thr Tyrlo4Val Serlo5Asp Serlo5Selu Trplo6Ala Trplo6Asn Trplo6Asn Trplo6Asp Trplo6Cys Trplo6Glu Trplo6Glu Trplo6Glu Trplo6Glu Trplo6Gle Trplo6His Trplo6Het Trplo6Het Trplo6Het Trplo6Het Trplo6Fro Trplo6Ser Trplo6Fro Trplo6Fro Trplo6Fro Trplo6Fyr Trplo6Tyr Trplo6Tyr Trplo6Tyr Trplo6Tyr Trplo6Val Ile107Asp Ile107Asp Ile107Asp Ile107Glu Ile107Glu Ile107Glu Ile107Glu Ile107Glu Ile107Glu Ile107Thr

TABLE 7

40	Loop 2 - Double	M	lutation Variants	
	Val 95Gln	+	Ser101Glu	
	Gly 97Ser	+	Gly100Gln	
	Ser105Glu	+	Trp106Gly	
	Asp 99Glu	+	Gln103Asn	
45	Ala 98Gln	+	Trp106Thr	
			Ile107Thr	
			Gly102Gln	
			Ser101Glu	
	Asp 99Glu	+	Ile107Ala	

	Leu 96Asn	÷	Asp 99Glu
	Gly102Gln	4.	Trp106Asp
	Tyr104Leu	+	Trp106Glu
	Tyr104Pro		
5	Gly 97Ser		
	Gly100Pro	+	
	Val 95Asn	*	
	Val 95Met		Ile107Gly
	Asp 99Glu		
10	Gly100Asn		Trp106Thr
	Gln103Ser		Trp106Pro
	Gly102Asp		Gln103Ser
	Gly102Ser		Trp106Gln
	Ser101Asp		Gly102Pro
15			Trp106Asp
	Asp 99Glu		Gly102Ser
			Trp106Val
	Gly 97Ser		Trp106Phe
			Tyr104Thr
20	Ala 98His		Gly100Gln
2.0			Trp106Leu
			Tyr104Thr
			Ser101Glu
	Val 95Thr		
25			Tyr104Ile
and a			Gln103Asn
			Trp10611e
			Gly102Pro
			Ile107His
30	Val 95Gln		
26			Ala 98Gln
			Ser101Glu
			Tyrl04Gly
			Ser105Asp
35			Ser105Glu
33			Tyr104Leu
	Val 95Gly		Gly100Ser
	Gly102Gln		Tyr104Ser
	Ala 98Glv		Trp106Phe
40	Glv100Asp		Trp106Phe
90	Val 95Glu	4	
	Ser101Glu		Tyrl04Asn
	Leu 96Val		Ser101Asp
**	Gly102Glu		Gln103Asn
45	Gly102Glu		Trp106Gly
			Glyl00Asp
			Gln103Ser
			Tyrl04Leu
a.			Gly102Ser
50	Ala 98His	+	Ser101Asr

Gly 97Asp + Gln103Asn

TABLE 8

***************************************	Loop 2 - Triple Mutation Variants	consess
5	Val 95Gln + Leu 96Thr + Ser101Glu	*****
~	Ala 98His + Gln103Glu + Trp106Cys	
	Ala 98Gln + Ser101Glu + Tyr104Met	
	Ser101Asp + Gln103Ser + Ile107Cys	
	Ala 98Pro + Asp 99Glu + Gly102Pro	
10	Val 95Pro + Gly 97Glu + Gly100Gln	
	Ser101Glu + Gly102Pro + Ile107His	
	Leu 96Pro + Gly100Pro + Gly102Asn	
	Gly100Glu + Gly102Asn + Trp106Tvr	
	Ala 98Asn + Gln103Glu + Ile107Ser	
15	Gly 97Pro + Gly100Asp + Trp106Met	
	Gln103Asn + Tyr104Leu + Ser105Asp	
	Gly 97Pro + Ala 98Gln + Tyrl04Cys	
	Ala 98Gly + Glyl00Glu + Gln103Ser	
	Leu 96Ile + Gly 97Pro + Ser105Asp	
20	Ala 98Pro + Gly100Pro + Ile107Ala	
	Val 95Pro + Glnl03Asp + Ile107Met	
	Val 95Gln + SerlOlGlu + Trp106Phe	
	Leu 96Val + Ser101Glu + Ile107Pro	
	Leu 96Gly + Gly 97Glu + Trp106Thr	
25	Gly 97Asp + Tyrl04Ser + Trpl06His	
25	Gly 97Ser + Gly100Pro + Tyr104Cys	
	Gln103Ser + Ser105Asp + 1le107His	
	Ala 98Glu + Tyr104Cys + Trp106Phe	
	Val 95Gln + Gly100Pro + Gly102Ser	
30	Val 95Ala + Gly102Asp + Tyr104Ser	
	Val 95Ala + Leu 96Met + Ser105Asp	
	Gly102Gln + Trp106Leu + Ile107Gly	
	Leu 96Asn + Gly 97Glu + Ile107Pro	
	Gly100Pro + Gly102Gln + Gln103Glu	
35	Gly 97Asp + Ala 98Asn + Trp106Leu	
	Ala 98Gln + Gly100Pro + Trp106His	
	Leu 96Thr + Gly100Asn + Ser105Glu	
	Val 95Ser + Leu 96Asn + Gly 97Pro	
	Gly100Gln + Ser105Glu + Trp106Gln	
40	Gly 97Glu + Tyr104Thr + Trp106Val	
	Leu 96Ala + Ala 98Gln + Glyl00Glu	
	Val 95His + Gly 97Gln + Ser101Glu	
	Val 95Pro + Gly102Asn + Gln103Glu	
	Gln103Asn + Trp106Ile + Ile107Ala	
45	Gly 97Ser + Ala 98Glu + Tyrl04Gln	
	Val 95Glu + Leu 96Ile + Ilel07Gln	
	Leu 96Gln + Ala 98Ser + Asp 99Glu	
	Leu 96Pro + Ser101Glu + Gly102Pro	
	Gly 97Asn + Ala 98Pro + Gly100Pro	

S

10

15

Gly 97Asn + Ala 98Glu + Gly100Asn
Gly102Pro + Trp106Gla + T1e107Pro
Gly100Ser + Gly102Glu + Trp106Cys
Leu 96Thr + Gly102Glu + T1e107Van
Leu 96Cys + Trp106Leu + Ile107Van
Leu 96Thr + Ser105Glu + Trp106Tyr
Leu 96Ala + Gly100Asp + Ser101Asp
Gly 97Asn + Ser101Glu + Gly102Asp
Val 95Gln + Ser101Asp + Gly102Asp
Val 95Gln + Ser101Asp + Gly102Asp
Tyr104Glu + Ser105Asp + T1e107Asp
Leu 96Glu + Ser105Asp + T1e107Asp
Gly 97Asp + Gly100Asp + Trp106Val
Tyr104Met + Ser105Asp + Ile107Asp
Gly 97Asp + Gly100Asp + Trp106Fval
Tyr104Glu + Ser105Asp + T1e107Asp

TABLE 9

Loop 2 - Quadruple Mutation Variants Leu 96Gln + Gly 97Ser + Serl01Glu + Trp106Val 20 Val 95Ala + Ala 98Gln + Gly100Asn + Gln103Asp Val 95Gln + Tyr104Ile + Trp106Gly + Ile107Pro Val 95Met + Leu 96Gly + Gly100Pro + Trp106Gly Ala 98Gln + Gly100Pro + Tyr104Thr + Trp106His Gly 97Pro + Ala 98His + Gly100Pro + Ile107Asp 25 Ala 98Pro + Gly100Glu + Trp106Ser + Ile107Met Leu 96Gln + Gly 97Ser + Ser105Asp + Ile107Val Ala 98Glv + SerlOlAsp + Trp106Ala + Ile107Gln Val 95Ser + Gly 97Ser + Asp 99Glu + Gln103Ser Leu 96Thr + Gly 97Ser + Asp 99Glu + Tyr104Asn Val 95Thr + Leu 96Gln + Ala 98Pro + Ser105Glu 30 Val 95Glv + Glv 97Ser + Tvr104Asn + Trp106Glu Leu 96Gln + Gly 97Ser + Tyrl04Thr + Ile107Glu Val 95Ser + Leu 96Pro + Gly100Gln + Ser101Asp Leu 96Met + Gly100Ser + Ser101Asp + Trp106Asn Leu 96Ile + Ala 98Ser + Gly100Pro + Gly102Glu 35 Val 95Asn + Ala 98Gly + Gln103Ser + Tyr104Val Gly 97Asn + Asp 99Glu + Gly102Asn + Trp106His Gly 975er + Gly102Asp + Gln103Asp + Ile107His Val 95Pro + Gly100Glu + Ser101Glu + Tyr104Gly Ala 98Pro + Gly100Asp + Ser101Asp + Ile107Cvs 40 Leu 96Gly + Ser101Asp + Gly102Asp + Ile107Gly Val 95His + Tyr104Asp + Ser105Asp + Trp106Ala Gly102Pro + Ser105Asp + Trp106Asp + Ile107Thr Leu 96Glu + Ala 98Gln + Glv102Asp + Tyr104Pro Ala 98Thr + Asp 99Glu + Gly100Glu + Ser101Glu 45 Gly 97Ser + Ala 98Glu + Asp 99Glu + Gly100Glu Leu 96Asp + Gly 97Glu + Gly100Glu + Ile107Asn Leu 96Asn + Gly100Asp + Ser101Asp + Gly102Glu Val 95Gly + Ser101Glu + Gly102Asp + Gln103Asp

	Val	95His	÷	Leu 96Glu	÷	Gly100Gln	÷	Ser101Glu	
	Leu	96Glu	4	Gly100Gln	÷	Ser101Asp	+	Gly102Ser	
	Gly	97Asp	÷	Gly100Asp	4	Gly102Pro	4	Ile107Gly	
	Gly	97Glu	+	Asp 99Glu	+	Gly100Pro	4	Tyr104Ser	
5	Leu	96Ile	4	Gly 97Gln	+	Gln103Glu	+	Ser105Glu	
								Ile107His	
	Val	95Pro	+	Ala 98Pro	+	Gln103Glu	+	Ser105Asp	
	Val	95His	4	Asp 99Glu	+	Ser101Glu	4	Gly102Pro	
								Ser101Glu	
10	Ala	98Asp	+	Asp 99Glu	+	Ser101Asp	+	Ile107Pro	
	Leu	96Thr	+	Gly 97Glu	+	Gly100Glu	4	Gly102Asp	
	Val	95Glu	+	Gly102Asp	+	Tyrl04Ser	÷	Ile107Glu	
	Leu	96Gly	4.	Gly102Asp	4	Gln103Asp	÷	Ser105Glu	
								Trp106Cys	
15	Asp	99Glu	4	Ser101Glu	+	Gly102Glu	+	Gln103Asn	
	Asp	99Glu	4	Ser101Glu	+	Gly102Glu	÷	Trp106Gly	
	Glyl	102Glu	+	Gln103Asn	+	Tyr104Asp	+	Ile107Thr	
								Ile107Glu	
	Gly	97Ser	4	Gly102Ser	+	Gln103Glu	+	Ile107Glu	
20	Val	95Glu	4	Leu 96Asp	+	Gln103Asp	+	Ile107Asn	
	Val	95Thr	+	Gly102Glu	+	Trp106Tyr	+	Ile107Asp	
	Val	95Glu	+	Gly 97Glu	÷	Ala 98Gly	÷	Gly100Asp	
	Leu	96Ala	4	Gly 97Pro	+	Ala 98Asp	+	Ser101Asp	
	Val	95Asp	4	Leu 96Asp	4	Tyr104Glu	÷	Ile107Ser	
25	Val.	95Pro	4	Gly102Glu	÷	Tyr104Pro	+	Ser105Asp	
	Leu	96Asn	÷	Gly102Asp	÷	Gln103Asn	4	Ser105Glu	
	Leu	96Asn	+	Gly102Asp	+	Tyr104Ala	+	Ser105Glu	
	Leu	96Ser	4	Gly 97Gln	+	Gly102Glu	+	Ser105Asp	
	Leu	96Thr	+	Asp 99Glu	+	Gly102Asp	+	Ile107Gly	

TABLE 10

Loop 3 - Single Mutation Variants Leu126Ala Leul26Asn 35 Leu126Asp Leul26Cys Leu126Gln Leu126Glu Leu126Gly 40 Leul26His Leul26Ile Leu126Met Leul26Pro Leu126Ser 45 Leu126Thr Leu126Val Gly127Asn Gly127Asp Gly127Gln

	Gly127Glu	
	Gly127Pro	
	Glv127Ser	
	Gly128Asn	
5	Gly128Asp	
3	Glv128Gln	
	Gly128Glu	
	Gly128Pro	
	Gly128Ser	
10	Pro129Asn	
10	Pro129Asp	
	Pro129Gln	
	Pro129Glu	
15	Pro129Gly	
13	Pro129Ser	
	Ser130Asp	
	Ser130Glu	
	Gly131Asn	
	Gly131Asp	
20	Gly131Gln	
	Gly131Glu	
	Gly131Pro	
	Gly131Ser	
	Ser132Asp	
25	Ser132Glu	
	Ala133Asn	
	Ala133Asp	
	Ala133Gln	
	Alal33Glu	
30	Ala133Gly	
	Ala133His	
	Ala133Pro	
	Ala133Ser	
	Ala133Thr	
35		***************************************
**	TABLE 11	
	Loop 3 - Double Mutation Variants	

	INDEC 13
	Loop 3 - Double Mutation Variants
	Leul26Gln + Serl30Glu
	Glyl31Gln + Alal33Asn
40	Pro129Asp + Gly131Gln
	Glyl28Ser + Ser130Glu
	Leu126Pro + Ala133Gly
	Gly127Asp + Ala133Gly
	Leul26Asp + Prol29Gln
45	Glyl3lAsn + Alal33Gln
	Glyl27Pro + Glyl3lGlu
	Gly128Asn + Gly131Asp
	Pro129Gln + Ser130Glu
	Gly128Pro + Ser130Asp

	Gly128Gln + Prol29Ser
	Glyl28Asn + Prol29Gly
	Leu126Val + Ser130Asp
	Leu126Val + Pro129Ser
5	Leu126Cys + Pro129Glu
2	Gly127Asp + Ala133Thr
	Gly128Pro + Prol29Glu
	Gly127Ser + Gly131Asp
	Leu126His + Pro129Asp
	Glyl31Pro + Ala133Glu
10	
	Gly127Ser + Gly128Ser
	Pro129Asn + Gly131Glu
	Leul26Val + Prol29Asp
	Pro129Gly + Ala133Asp
15	Leul26Val + Ser130Glu
	Pro129Glu + Alal33Pro
	Pro129Gly + Ser130Asp
	Leul26His + Gly128Glu
	Glyl28Asn + Ser132Glu
20	Gly127Pro + Ser132Asp
	Glyl27Gln + Pro129Gln
	Glyl28Pro + Prol29Asp
	Gly128Asn + Ser130Glu
	Leul26Cys + Prol29Asn
25	Pro129Asn + Ser132Glu
	Leul265er + Serl32Asp
	Glyl28Glu + Gly131Ser
	Pro129Asn + Ser130Asp
	Leu126Ser + Ser132Glu
30	Prol29Gln + Gly131Pro
	Glyl27Asp + Glyl28Gln
	Glyl28Gln + Prol29Glu
	Gly127Pro + Pro129Gly
	Prol29Gln + Ala133Gln
35	Leu126Val + Glv128Asp
	Gly128Ser + Ser132Glu
	Leul26Asn + Prol29Glv
	Leul26Ile + Alal33Gly
	Glyl28Ser + Glyl31Gln
40	Gly127Ser + Ser130Asp
	Leul26Cvs + Serl32Asp
	Gly127Pro + Ser130Glu
	Leu126His + Ala133Asp
	Glyl3lSer + Alal33Glu
45	Glyl31Pro + Ala133Gln
72	Glyl3lAsp + Alal33Ser
	Leul26Asp + Alai33Asn
	Leu126Glu + Pro129Gln
	MEGITAGIO A LIDITAGAIN

TABLE 12

			> > \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
***************************************	Loop 3	٠,٦	riple Mutation	١V	'ariants	
***************************************			Pro129Glu			
5	Leu126Asp	÷	Gly128Ser	+	Gly131Gln	
	Pro129Asn	÷	Gly131Ser	÷	Ser132Glu	
	Gly128Pro	+	Prol29Asn	÷	Ser130Glu	
	Glv128Gln	÷	Serl30Glu	÷	Ala133Ser	
	Gly131Gln	+	Serl32Glu	÷	Ala133Gln	
10	Gly128Asp	4	Gly131Ser	÷	Ala133Asn	
	Gly131Ser	*	Ser132Asp	*	Ala133Pro	
	Pro129Ser	+	Gly131Gln	+	Ala133Glu	
	Gly128Asn	4	Ser130Glu	+	Gly131Gln	
	Leul26Gly	+	Gly127Gln	+	Gly131Pro	
15	Leul26Pro	4	Gly127Glu	+	Gly128Pro	
			Pro129Ser			
	Glv128Ser	+	Ser132Glu	4	Ala133Asn	
			Ser132Glu			
	Pro129Glv	4	Ser130Glu	4	Glv131Pro	
20			Gly127Pro			
			Ser130Asp			
			Glv127Ser			
	Leu126Glv	4	Ser132Asp	4.	Alal33Ser	
			Prol29Gln			
25			Gly131Asn			
	Leu126Cvs	+	Ser130Glu	4	Ala133Gly	
	Glv127Ser	+	Ser130Asp	+	Ala133Gly	
			Pro129Asn			
			Gly131Asp			
30			Gly128Asn			
			Gly127Gln			
			Ser132Asp			
			Gly131Gln			
	Gly127Pro	+	Gly128Ser	+	Ala133Ser	
35			Prol29Gly			
	Gly131Asn	+	Ser132Asp	4	Ala133Asn	
	Leu126Val	4	Gly131Asp	+	Alal33ser	
	Leu126Ser	4	Gly127Asn	4	Ala133Gln	
	Pro129Gln	+	Ser130Glu	÷	Ala133His	
40	Leul26Met	÷	Glv127Ser	÷	Ser130Asp	
	Leu126Cvs	+	Prol29Asn	+	Gly131Asp	
	Pro129Ser	+	Ser130Asp	÷	Ala133Asn	
			Prol29Gly			
	Glv127Ser	4	Pro129Gln	+	Ser132Asp	
45	Glv127Pro	+	Gly128Asn	+	Pro129Gln	
			Ser132Asp			
			Pro129Glu			
	Pro129Ser	+	Gly131Glu	4	Ala133Pro	
	Leul26His	+	Gly128Pro	÷	Pro129Gln	

Leu126Met + Gly127Asp + Gly128Asp Glv128Pro + Glv131Glu + Ser132Asp Gly131Asp + Ser132Glu + Ala133Pro Glv128Glu + Pro129Glu + Ala133Asn Pro129Ser + Ser132Glu + Ala133Glu 5 Leu126Asn + Ser130Glu + Gly131Asp Pro129Asn + Serl30Glu + Gly131Asp Leul26His + Ser130Glu + Gly131Glu Pro129Glu + Ser130Asp + Gly131Asn Glv127Ser + Pro129Asp + Ser130Asp 10 Ser130Asp + Gly131Asp + Ser132Asp Gly128Asp + Ser130Glu + Gly131Asn Leu126Met + Gly128Glu + Ser130Asp Glv128Asp + Pro129Asn + Ser130Glu

15

TABLE 13

```
Loop 3 - Quadruple Mutation Variants
           Leul26Ser + Prol29Asn + Serl30Asp + Ala133His
           Leu126Met + Pro129Ser + Ser132Glu + Ala133Asn
20
           Glv127Ser + Glv131Gln + Ser132Glu + Ala133Gln
           Leul26Asn + Gly127Pro + Gly128Glu + Pro129Gly
           Leul26Asn + Prol29Gly + Gly13lAsp + Ala133Gly
           Leul26Gly + Prol29Gly + Ser132Glu + Ala133Pro
           Leul26Glv + Glv127Asp + Pro129Glv + Glv131Pro
25
           Gly127Asn + Pro129Gln + Gly131Asp + Ala133Gly
           Leul26Pro + Gly127Ser + Gly128Gln + Ser130Glu
           Leu126Ala + Gly127Gln + Pro129Asn + Ser130Glu
           Leu126Asn + Gly127Ser + Ser130Glu + Ala133Thr
           Glv128Gln + Pro129Gln + Ser130Asp + Glv131Ser
30
           Leul26His + Gly128Ser + Gly131Ser + Ser132Asp
           Leul26Gln + Prol29Ser + Serl30Asp + Ala133His
           Leul26Val + Gly128Pro + Pro129Asn + Ala133Asp
           Leul26Val + Prol29Gly + Ser130Glu + Ala133Thr
           Leul26Thr + Gly127Pro + Ser132Glu + Ala133Thr
35
           Gly128Asp + Pro129Gly + Gly131Pro + Ala133Ser
           Leul26Asn + Glyl28Glu + Prol29Gln + Glyl31Pro
           Leu126Pro + Gly127Pro + Pro129Ser + Ser130Asp
           Gly127Pro + Gly128Gln + Gly131Glu + Ser132Glu
           Leu126Ile + Gly127Gln + Gly131Asp + Ser132Glu
           Leul26Val + Gly131Asp + Ser132Asp + Ala133Pro
40
           Glv128Asp + Pro129Asp + Glv131Asn + Ala133Pro
           Pro129Asn + Gly131Ser + Ser132Asp + Ala133Asp
           Leu126Gln + Gly131Pro + Ser132Asp + Ala133Asp
           Gly127Pro + Ser130Glu + Gly131Glu + Ala133His
45
           Leul26Gln + Prol29Gln + Serl30Asp + Glv131Glu
           Gly127Ser + Ser130Asp + Gly131Glu + Ala133Gln
           Leul26Ser + Gly127Pro + Pro129Glu + Ser130Glu
           Ser130Glu + Gly131Glu + Ser132Glu + Ala133Ser
           Gly127Gln + Ser130Glu + Gly131Asp + Ser132Asp
```

	Gly128Gln	4	Ser130Glu	+	Gly131Asp	÷	Ser132Asp
	Glv127Asn	÷	Ser130Glu	+	Gly131Asp	+	Ser132Asp
	Gly127Ser	+	Pro129Asp	+	Ser130Glu	÷	Gly131Glu
	Gly127Asn	÷	Pro129Asp	+	Ser130Asp	÷	Gly131Asp
S	Gly128Asn	÷	Pro129Glu	+	Ser130Glu	+	Gly131Asp
	Leul26Ser	÷	Gly128Asp	÷	Ser130Glu	+	Ala133Pro
	Gly127Asn	+	Gly128Asp	+	Ser130Glu	÷	Alal33Pro
	Gly128Glu	+	Serl30Glu	+	Gly131Pro	+	Alal33His
	Leu126Val	+	Serl30Asp	4	Ser132Asp	+	Ala133Asn
10	Prol29Ser	÷	Ser130Glu	+	Ser132Asp	4	Ala133Gly
	Leul26His	÷	Ser130Glu	4	Ser132Asp	4	Alal33His
	Leul26Ala	+	Ser130Glu	÷	Ser132Glu	÷	Ala133Asn
	Gly127Pro	+	Gly128Gln	+	Serl30Asp	÷	Ser132Glu
	Leu126Ser	+	Ser130Asp	+	Gly131Pro	÷	Ser132Asp
15	Serl30Glu	+	Gly131Pro	+	Ser132Glu	+	Ala133Ser
	Gly128Gln	4	Ser130Asp	4	Gly131Ser	4	Serl32Glu
			Pro129Asn				
	Gly127Gln	÷	Gly128Pro	÷	Prol29Glu	4	Glyl31Asp
							Ala133Asn
20	Leu126Asn	÷	Pro129Glu	+	Gly131Asp	+	Ala133Ser
	Leul26Met	÷	Prol29Glu	+	Gly131Glu	÷	Alal33Thr
							Ala133Gin
			Pro129Gly				
			Pro129Gly				
25			Serl30Glu				
	Leul26Gln	÷	Serl30Glu	÷	Serl32Glu	4	Ala133Glu
			Pro129Asp				
	 Pro129Asp	+	Ser130Glu	+	Gly131Ser	4	Ser132Asp

TABLE 14

Loop 4 - Single Mutation Variants Gly154Asn Gly154Asp Gly154Gln 35 Gly154Glu Gly154Pro Gly154Ser Asn155Asp Asn155Gln 40 Asn155Glu Asn155Ser Glul56Asp Gly157Asn Gly157Asp Gly157Gln 43 Gly157Glu Gly157Pro Gly157Ser

Thr158Asn

	Thr158Asp
	Thr158Gln
	Thr158Glu
	Thr158Gly
5	Thr158Pro
_	Thr158Ser
	Ser159Asp
	Ser159Glu
	Gly160Asn
10	Gly160Asp
***	Gly160Gln
	Gly160Glu
	Gly160Pro
4.0	Gly160Ser
15	Ser161Asp
	Ser161Glu
	Ser162Asp
	Ser162Glu
	Ser163Asp
20	Ser163Glu
	Thr164Asn
	Thr164Asp
	Thr164Gln
	Thr164Glu
25	Thr164Gly
	Thr164Pro
	Thr164Ser
	Val165Ala
	Vall65Asn
30	Val165Asp
	Vall65Cys
	Vall65Gln
	Vall65Glu
	Val165Gly
35	Vall65His
	Val165Met
	Val165Pro
	Val165Ser
	Vall65Thr
40	Gly166Asn
	Gly166Asp
	Gly166Gln
	Gly166Glu
	Glyl66Pro
45	Gly166Ser
	Tyr167Ala
	Tyr167Asn
	Tyr167Asp
	Tyr167Cys
50	Tyr167Gln
	-3

	Tyrl67Glu
	Tyr167Gly
	Tyr167His
	Tyr167Ile
S	Tyrl67Leu
	Tyr167Met
	Tyr167Pro
	Tyr167Ser
	Tyr167Thr
10	Tyr167Val

TABLE 15

	Loop 4 - Double Mutation Variants
***************************************	Asn155Ser + Glu156Asp
5	Gly154Ser + Tyr167Gln
	Gly154Glu + Val165Ala
	Asn155Glu + Thr164Pro
	Gly157Pro + Ser159Asp
	Gly154Ser + Ser161Asp
10	Serl6lGlu + Vall65Pro
	Gly154Gln + Serl61Glu
	Asn155Asp + Thr158Pro
	Thr164Asn + Gly166Gln
	Asn155Glu + Tyr167His
:5	Glu156Asp + Thr158Gly
	Gly154Pro + Gly157Glu
	Asn155Ser + Tyr167Asp
	Thr158Pro + Gly166Asp
	Thr164Gln + Tyr167Glu
10	Gly157Gln + Thr158Glu
	Thr158Asn + Ser162Asp
	Gly154Asn + Tyr167Glu
	Gly157Gln + Serl6lAsp
	Thr164Asp + Tyr167Ala
35	Gly160Asp + Vall65His
	Gly154Glu + Gly157Ser
	Glul56Asp + Tyr167Ile
	Asn155Ser + Thr158Asp
	Gly157Gln + Thr164Pro
10	Thr164Ser + Tyr167Ile
	Ser159Glu + Tyr167Thr
	Thr164Glu + Val165Gln
	Thr158Gly + Gly160Ser
	Serl6lAsp + Gly166Pro
45	Gly154Glu + Gly166Ser
	Gly160Asp + Val165Asn
	Ser162Glu + Val165Gln
	Glv157Asn + Ser159Glu
	Ser161Asp + Vall65Asn

		Asn155Asp + Vall65Pro	
		Glu156Asp + Gly166Ser	
		Gly154Pro + Ser159Asp	
		Gly154Ser + Tyr167Cys	
5		Gly160Pro + Thr164Asp	
		Ser161Glu + Val165Gly	
		Ser162Glu + Tyr167Asn	
		Gly154Asn + Gly166Glu	
		Ser161Glu + Tyr167Ala	
10		Gly160Gln + Val165Pro	
		Gly154Glu + Vall65Gly	
		Glyl60Ser + Serl63Asp	
		Gly157Glu + Thr158Asn	
		Gly160Asp + Val165Pro	
15		Gly160Asn + Ser162Asp	
		Thr164Gln + Gly166Gln	
		Asn155Ser + Thr158Gln	
		Serl6lGlu + Tyr167Gly	
		Ser162Asp + Gly166Ser	
20		Gly154Glu + Thr158Gly	
		Gly154Ser + Thr158Ser	
		Gly157Asp + Gly160Pro	
		Ser163Glu + Val165His	
****		Gly154Pro + Gly166Asp	
25			
		W A W C W C W	
		TABLE 16	
		Loop 4 - Triple Mutation Variants	
*****	***************************************	Glyl54Gln + Asnl55Ser + Glul56Asp	
		Gly154Ser + Gly160Asp + Tyr167Gln	
30		Asn155Glu + Gly157Ser + Thr164Pro	
		Gly157Asn + Ser159Asp + Gly160Ser	
		Glul56Asp + Gly160Ser + Val165Thr	
		Gly160Pro + Ser162Glu + Thr164Asn	
		Gly154Ser + Glu156Asp + Thr158Gln	
35		Gly160Asn + Ser162Glu + Gly166Ser	
		Gly160Ser + Vall65Gly + Gly166Gln	
		Thr158Gln + Ser162Asp + Tyr167Val	
		Gly157Gln + Ser162Glu + Tyr167Leu	
		Ser162Glu + Thr164Gln + Val165Cys	

Gly157Ser + Vall65Met + Gly166Glu

GlÝ154Ser + Glu156Asp + GlÝ166Fro
Thr158Ser + Ser161Asp + Thr164Gly
Glu156Asp + GlY157Ser + GlY160Asn
GlY154Gln + Asn155Asp + GlY166Ser
45 Ser163Glu + Val165Thr + Tyr167Pro
GlY157Asp + Thr158Gln + Val165Ser
GlY157Asn + Ser159Asp + GlY166Ser
GlY157Asn + Ser159Asp + GlY166Ser
GlY154Asn + Asn155Asp + GlY157Pro

	Glu156Asp	+	Thr158Asn	+	Vall65Cys	
	Thr158Asn	+	Gly160Glu	÷	Thr164Pro	
	Gly154Asn	+	Gly157Pro	÷	Thr158Gln	
	Asn155Glu	÷	Gly157Ser	÷	Thr158Gln	
5	Thr158Glu	+	Gly160Ser	÷	Tyr167Val	
	Asn155Gln	4:	Glul56Asp	+	Thr164Ser	
	Asn155Ser	+	Ser162Glu	+	Vall65Met	
	Gly154Gln	+	Thr158Gly	+	Gly166Asp	
	Serl63Glu	4	Val165Ala	+	Gly166Asn	
0	Asn155Ser	4	Gly160Glu	÷	Thr164Gln	
			Thr164Ser			
			Thr164Glu			
	Ser163Asp	4	Thr164Asp	4	Vall65Met	
			Gly157Asp			
5	Glv157Gln	+	Gly166Asp	4.	Tvr167Glu	
			Serl62Glu			
			Serl59Glu			
			Serl62Glu			
			Gly160Ser			
0			Ser161Glu			
•			Ser163Asp			
			Ser163Glu			
			Glu156Asp			
			Thr164Glu			
5			Ser163Glu			
•			Thr158Gln			
			Ser159Asp			
			Ser163Glu			
			Ser163Asp			
O			Ser163Asp			
			Ser161Asp			
			Ser162Asp			
			Ser162Asp			
			Thr158Asp			
S			Ser163Glu			
-			Ser163Asp			
			Gly166Glu			
	Asn155Glu	4	Gly157Pro	4	Thr164Asp	

TABLE 17 Loop 4 - Quadruple Mutation Variants

Ser159Glu + Thr164Ser + Val165Thr + Gly166Pro Asn155Ser + Gly157Pro + Val165Ser + Gly166Glu Gly157Asn + Val165Pro + Gly166Glu + Tyr167Val Thr158Ser + Gly166Gln + Val165His + Gly166Asp

Gly154Ser + Gly157Pro + Ser163Glu + Thr164Ser Gly157Gln + Gly160Asp + Thr164Ser + Val165Asn Gly157Asn + Gly160Asp + Val165Cys + Tyr167Leu Glu156Asp + Thr158Ser + Val165Asn + Gly166Pro

	Glu156Asp	+	Thr158Pro	4	Thr164Gln	4	Vall65Pro
			Glu156Asp			4	Val165Thr
				4		4	Tyr167Asn
			Gly160Gln			+	Tyr167Pro
5	Gly154Pro					+	
3		4	Gly160Pro			÷	Gly166Pro
	Gly154Asn Asn155Ser		Gly157Asn			+	Tyr167Asp
			Thr158Asn		Ser163Glu	+	Vall65Gln
	Gly157Asn					4	
	Gly160Glu				Vall65Met		Tyrl67Pro Glyl66Pro
10		+	Glu156Asp			4	
	Asn155Asp	÷				+	Gly166Asn
			Glu156Asp		Gly160Ser	4	Thr164Asn
		+	Thr158Gln		Ser162Glu	+	Ser163Glu
	Gly154Asn	÷	Asn155Gln			+	Thr164Glu
15		4.				*	Thr164Gly
		+				4	Vall65Cys
	Gly154Pro					4	Ser159Asp
	Gly154Ser	4			Thr158Glu		Ser159Glu
		4			Gly166Asp	÷	Tyr167Glu
20		4				÷	Tyr167Asn
		4				÷	Gly166Asn
	Gly154Gln	4	Ser159Glu		Gly160Glu		Serl6lAsp
	Thr158Ser	+			Gly160Asp	÷	Ser161Asp
	Asn155Ser	*	Glu156Asp	÷	Gly157Asp	÷	Thr158Glu
25	Gly157Asn	÷	Serl59Asp	4	Ser161Glu	*	Ser162Glu
	Gly154Asn	4	Glu156Asp	+	Gly157Glu	4	Thr164Glu
	Gly157Gln	*	Gly160Asp	+	Ser162Asp	+	Vall65Thr
	Gly160Glu	÷	Ser162Asp	÷	Thr164Asn	÷	Gly166Gln
	Gly154Asp	+	Asn155Ser	+	Glu156Asp	4	Thr164Ser
30	Gly154Asp	+	Glu156Asp	+	Gly157Glu	+	Thrl58Gly
	Gly154Gln	+	Gly157Pro	÷	Ser159Asp	+	Ser161Asp
	Serl59Glu	4	Serl6lAsp	+	Gly166Ser	÷	Tyrl67His
	Serl59Asp	+	Serl6lAsp	+	Gly166Pro	4	Tyr167Ser
	Glu156Asp	+	Thr158Glu	4	Val165Ala	+	Gly166Gln
35	Glu156Asp	÷	Thr158Asp	4	Gly166Pro	4	Tyr167Ala
	Asn155Gln		Thr158Asp	4	Thr164Asp	4	Tyr167Val
	Serl63Glu	÷	Thr164Asp	÷	Vall65Met	÷	Gly166Glu
	Serl61Asp	÷			Vall65Thr	+	Tyr167His
	Serl6lAsp		Serl63Glu		Thr164Gln	4	Gly166Asn
40 .	Gly157Pro		Serl59Glu	+	Ser161Asp	÷.	Ser163Glu
			Glu156Asp				
	Asn155Asp				Thr158Asp		Thr164Asn
	Glu156Asp						Val165Ala
		4			Serl63Glu		Val165Cys
45		+				ų.	Gly166Pro
74	Asn155Ser		Gly160Asp				Thr164Asp
	Gly154Gln		Gly160Asp				Thr164Glu
			Gly160Pro				Gly166Glu
			Serl63Asp				Tyr167Leu
50			Ser163Glu				Gly166Gln
50	GTATOAGTE	Ť	ocrioonin	7	THETOMPEO	.4.	Gratonatii

Asn155Asp + Thr158Pro + Ser163Glu + Thr164Asp Asn155Ser + Glu156Asp + Ser163Asp + Gly166Glu

TARIF 18

	IABLE 18	
5	Loop 5 - Single Mutation Variants	
	Ala187Asn	
·	Ala187Asp	
	Ala187Gln	
	Alai87Glu	
10	Ala187Gly	
	Ala187His	
	Ala187Pro	
	Ala187Ser	
	Ala187Thr	
15	Ser188Asp	
	Ser188Glu	
	Phe189Ala	
	Phel89Asn	
	Phel89Asp	
20	Phel89Cys	
	Phel89Gln	
	Phe189Glu	
	Phe189Gly	
	Phe189His	
25	Phe189Ile	
	Phel89Leu	
	Phe189Met	
	Phel89Pro	
	Phe189Ser	
30	Phe189Thr	
	Phe189Tyr	
	Phe189Val	
	Ser190Asp	
	Ser190Glu	
35	Ser191Asp	
	Ser191Glu	

	Loop 5 - Double	M	utation Variants	
40	Ala187Asp	+	Phel89Gln	
	Alal87Ser	÷	Ser188Asp	
	Ser188Glu	4	Phe189Pro	
	Ala187Asp	÷	Phe189His	
	Alal87Asn	+	Ser191Glu	
45	Alal87Gln	+	Ser191Asp	
	Alal87Glu	÷	Phel89Pro	
	Ala187Pro	÷	Phel89Asp	

	Ser188Asp	÷	Phe189Cys
	Phe189His	+	Ser191Asp
	Ser188Glu	+	Phe189Ala
	Ala187His	+	Ser188Asp
5	Ala187Asn	+	Ser188Glu
	Ser188Glu	+	Phe189Gln
	Ala187Asp		
			Phe189Val
	Ala187Gln		
10			Ser188Glu
10	Ala187Pro		Ser191Asp
			Phel89Val
	Phe189Ser		Ser191Glu
	Ala187Glv		
15			Ser191Asp
			Ser191Asp
			Ser188Glu
			Phe189Gly
			Phel89Ile
20			Phe189Met
			Ser191Asp
			Phe189Tyr
			Ser191Glu
	Ala187Ser		Phe189Ala
25	Phe189Val	+	Ser191Asp
	Ser188Glu	+	Phe189Leu
	Ala187Pro	÷	Ser188Glu
	Phel89Asn	+	Ser191Glu
	Phel891le	4	Ser191Asp
30			Phe189Met
	Ala187His	4	Ser191Glu
			Phe189Tyr
	Ala187Gly		
			Phe189Gln
3.5			Phe189Tyr
			Phel89Asp
			Ser191Glu
			Ser191Asp
	Ala187Thr		Ser188Glu
40			Ser188Asp
447	Ala187Glv		Ser188Asp
	Ala187Gly		
			Ser191Glu
	Ala187Asp		
45			Phe189Leu
			Phe189Gly
			Phe189Asp
	Ala187Pro		
			Ser191Asp
50	Ala187Thr	4	Ser188Asp

Phel89Ala + Serl91Glu

Phel89Leu + Ser191Glu

***************************************	11121		TABLE 20		P. M. 4. M.	
	Loop 5	- 7	Triple Mutation	١V	ariants	
S	Ala167Pro	+	Phe189Cys	3	Ser191Glu	
	Ala187Thr	4	Phe189Tyr	4	Ser191Glu	
	Ala187Ser	+	Ser188Glu	4	Phe189Ser	
	Ala187Gln	4	Phel89Asn	÷	Ser191Glu	
	Ala187Gln	4	Ser188Asp	4	Phe189His	
10	Ala187Gln	+	Ser188Glu	+	Phe189His	
	Ala187Glv	4	Ser188Asp	+	Phe189Met	
			Ser188Asp			
			Phe189His			
			Phel89Gln			
15			Ser188Asp			
**			Ser188Glu			
			Phel89Met			
			Ser188Asp			
			Phe189His			
20			Ser188Glu			
20			Phe189Val			
			Phel89Met			
			Ser188Glu			
			Phel89Gln			
25			Ser188Asp			
20			Ser188Asp			
			Phe189Gln			
			Ser188Glu			
			Phe189Gly			
30			Phe189Met			
30			Phel89Thr			
			Phe189Leu			
			Phe189Thr			
			Ser188Asp			
35			Phe189Ser			
23			Ser188Glu			
			Ser188Glu			
			Ser188Glu			
			Ser188Asp			
40			Ser188Glu			
40			Ser188Glu			
			Ser188Glu			
			Ser188Asp			
			Ser188Glu			
460						
45			Seri88Glu			
			Ser188Asp			
			Ser188Asp Ser188Glu			
			SerissGlu SerissGlu			
	Alais/Giu	4	perigagin	4	LHSTOATHE	

	Ala187Glu	+	Ser188Asp	+	Phe189Ile	
	Ala187Glu	÷	Ser188Asp	4	Phel89Asn	
	Ala187Ser	+	Ser188Glu	+	Phel89Glu	
	Ala187Gly	+	Ser188Asp	÷	Phel89Glu	
5	Ala187Gly	+	Ser188Glu	4	Phe189Asp	
	Ala187Pro	4	Ser188Glu	÷	Phe189Asp	
	Ala187Asp	4	Ser188Glu	+	Phe189Glu	
	Ala187Glu	*	Ser188Asp	4	Phe189Asp	
	Ala187Asp	+	Ser188Glu	÷	Phe189Asp	
10			Ser188Glu			
			Phe189Glu			
	Ala187Gly	+	Phe189Glu	+	Ser191Glu	
	Ala187Thr	+	Phe189Glu	+	Ser191Glu	
			Phe189Glu			
15	Ser188Glu	÷	Phe189Glu	*	Ser191Asp	
	 					٠

```
Loop 5 - Quadruple Mutation Variants
            Alai87Ser + Serl88Glu + Phel89Asp + Serl91Asp
20
           Ala187Pro + Ser188Glu + Phel89Glu + Ser191Glu
           Ala187His + Serl88Glu + Phel89Asp + Ser191Glu
           Ala187Gly + Ser188Asp + Phe189Asp + Ser191Glu
           Alal87His + Serl88Glu + Phel89Glu + Serl91Asp
           Ala187Thr + Ser188Asp + Phel89Asp + Ser191Glu
25
           Ala187Asn + Ser188Glu + Phel89Glu + Ser191Glu
           Als187Pro + Serl88Asp + Phe189Glu + Ser191Glu
           Ala187Pro + Ser188Asp + Phe189Asp + Ser191Asp
           Ala187Ser + Ser188Glu + Phe189Asp + Ser191Glu
           Ala187His + Ser188Asp + Phe189Glu + Ser191Asp
           Ala187Thr + Ser188Glu + Phe189Asp + Ser191Asp
30
           Ala187Asn + Ser188Asp + Phe189Glu + Ser191Glu
           Ala187Gln + Ser188Glu + Phe189Asp + Ser191Glu
           Ala187Gly + Ser188Asp + Phe189Glu + Ser191Glu
           Ala187Glu + Ser188Asp + Phel89Gly + Ser191Asp
           Ala187Glu + Ser188Glu + Phel89Met + Ser191Asp
35
           Alal87Asp + Ser188Asp + Phel89Ile + Ser191Glu
           Ala187Asp + Ser188Glu + Phe189Leu + Ser191Asp
           Alal87Asp + Serl88Glu + Phe189Thr + Serl91Asp
           Ala187Glu + Ser188Glu + Phe189Leu + Ser191Asp
40
           Alai87Glu + Seri88Asp + Phel89Tyr + Seri91Asp
           Ala187Glu + Ser188Glu + Phel89Gln + Ser191Asp
           Ala187Glu + Ser188Glu + Phe189Cys + Ser191Glu
           Ala187Glu + Ser188Glu + Phe189Gln + Ser191Glu
           Ala187Glu + Ser188Glu + Phel89Pro + Ser191Glu
45
           Ala187Asp + Ser188Glu + Phe189Ser + Ser191Glu
           Alai87Glu + Serl88Glu + Phel89Cvs + Serl91Asp
           Ala187Asp + Ser188Asp + Phel89Leu + Ser191Asp
           Ala187Glu + Ser188Asp + Phe189Ile + Ser191Asp
           Ala187Asp + Ser188Asp + Phe189His + Ser191Glu
```

Ala187Glu + Serl88Asp + Phel89His + Ser191Asp Ala187Glu + Ser188Asp + Phe189Val + Ser191Asp Ala187Asp + Ser188Glu + Phel89Gly + Ser191Glu Ala187Asp + Ser188Asp + Phe189Cys + Ser191Asp 5 Ala187Glu + Ser188Glu + Phel89Asn + Ser191Glu Ala187Asp + Ser188Asp + Phel89Thr + Ser191Glu Alal87Asp + Ser188Asp + Phel89Ile + Ser191Asp Ala187Asp + Ser188Asp + Phel89Ala + Ser191Glu Ala187Asp + Ser188Asp + Phel89Val + Ser191Glu 10 Alal87Glu + Ser188Glu + Phel89Ala + Ser191Glu Ala187Asp + Ser188Asp + Phe189Ser + Ser191Asp Ala187Glu + Ser188Asp + Phe189Asn + Ser191Asp Alai87Asp + Seri88Asp + Phel89Cvs + Seri91Glu Ala187Asp + Seri88Glu + Phe189Cys + Ser191Asp 15 Ala187Glu + Ser188Asp + Phel89Ser + Ser191Glu Ala187Asp + Ser188Glu + Phe189Tyr + Ser191Glu Ala187Asp + Ser188Glu + Phel89Ala + Ser191Asp Ala187Gly + Serl88Glu + Phel89Thr + Ser191Asp Ala187His + Serl88Asp + Phel89Met + Serl91Glu Ala187Thr + Ser188Asp + Phel89Ser + Ser191Asp 20 Ala187Ser + Ser188Glu + Phel89Met + Ser191Asp Ala187Ser + Ser188Asp + Phe189Ser + Ser191Asp Ala187Thr + Ser188Asp + Phe189Tvr + Ser191Glu Ala187Ser + Ser188Glu + Phel89Ala + Ser191Asp 25 Ala187Asn + Ser188Glu + Phe189Glv + Ser191Asp Ala187Gln + Ser188Asp + Phel89Asn + Ser191Glu Ala187Asn + Ser188Asp + Phe189His + Ser191Glu Ala187Gly + Ser188Asp + Phe189Ser + Ser191Glu Ala187His + Ser188Asp + Phe189Val + Ser191Asp

30

TABLE 22 Multi-loop Double Mutation Variants

Leu 96Glv + Ser204Glu Gln 59Ser + Asn 62Ser 35 Val 95Gln + Asn218Asp Tvr104Cvs + Lvs213Glu Glv127Gln + Ala216Pro Ser188Glu + Gly215Asn Gly 97Gln + Ile107Ala Gln206Asp + Tyr217Thr 40 Asp 60Glu + Gln206Asn Thr158Asp + Gln206Ser Pro210Gln + Gly215Asn Tyr104Glu + Ile107Leu Tyr167Pro + Gly211Glu 45 Ile107Leu + Ala187Asp Glv 97Glu + Thr164Pro Thr 66Pro + Val203Cys Ala133Gly + Tyr217Ser

	Ser105Glu	+	Phe189Val
	Tyr167Asp		Ala187Thr
	Serl61Glu	4	Ala216Thr
	Ser 63Asp	4	Gln103Ser
5	Leu 96Gln	4	Pro129Glu
,	Ala 98Glv	4	Tyr214Glu
	Leu 96Asn	4	Asn212Ser
	Ser 63Asp	+	
	Thr158Gln	4	Lys213Glu
10	Leu126Gln	+	
10	Ser159Asp	÷	Tyr217Gln
	Ser101Asp	+	
	Gly100Asn	÷	Gly215Glu
	Gln 59Asp	÷	
15	Gly157Glu	+	Leu209Pro
13	Trp106Pro	+	Tyr217Ile
	Ala216Ser	4	
	Thr 66Gln	+	
	Gly102Gln	+	
20	Asn212Ser	+	
20	Gln206Ser	+	Lys213Asp Lys213Glu
	Tyrl04Glu	+	
	Val 95Asp	*	
**	Tyr104Asp Thr 66Pro	*	
25		+	
	Asn 61Glu	*	
	Asp 60Glu	*	
	Pro129Gln	4	
	Gly160Asp	4	
30	Serl61Glu	+	
	Leu 96Pro	+	
	Trp106Asn		Val203Asn
	Ser101Asp	+	
	Ala133Gln	÷	
35	Ser101Asp	+	
	Ile107Ala	÷	Gly160Asn
	Alal33Thr	÷	
	Phel89Ser	+	
	Gly 97Asp	÷	
40	Gln 59Asn	+	
	Pro201Ser	÷	
	Ser162Glu	4	
	Gly 65Ser	4	
	Lys213Asp	+	
45	Val203Ala	+	Lys213Asp
	Ala216Thr	4	Tyr217Pro
	Gly131Asn	÷	Asn218Glu
	Tyr104Glu	+	
	Gly127Ser	+	Thr158Asp
50	Trp106Gly	+	Ser132Asp

10

15

20

25

30

35

40

45

50

Asn 62Ser + Ala187Ser Ser163Asp + Phe189Ser Pro201Gln + Glv215Glu Gly100Gln + Tvr217Thr Ser130Glu + Glv154Asn Asp 60Glu + Tyr214Thr Asn155Glu + Tyr217Gln Ala 98Gln + Gly102Asn Pro201Asn + Glv219Asn Thr 66Ser + Gly127Gln Leul26Glu + Ala216Thr Asn 61Ser + Asn155Glu Thr 66Ser + Gly157Asp Pro129Ser + Thr164Gln Ala216Asp + Tvr217Val Ser130Glu + Tvr217Leu Asn 62Asp + Tyr214Leu Val 95Ser + Phe189Val Gly100Pro + Ser159Asp Asn155Gln + Ser204Glu Pro129Asp + Val203Ser Ser101Glu + Thr158Asn Ala167Pro + Asn218Asp Val 95Gly + Ser161Asp Gly202Pro + Ala216Gln Gly 97Ser + Gly215Asp Tyr167Asp + Gln206Ser Thr 66Ser + Asn212Glu Ala216Thr + Tyr217Gln Ala200Asn + Tyr217Ala Asp 60Glu + Val203Pro Val 95Thr + Tvr217Met Val203Asn + Lys213Glu Gly102Asp + Val203Gly Ser130Asp + Ala133Thr Tvrl04Ala + Glv166Ser Leu 96Met + Tyr217Asp Ser101Asp + Glv102Pro Ser101Asp + Thr220Pro Val 95Asn + Ala216Pro Tyrl04Asn + Prol29Asp Gly202Asn + Gln206Asp Gln 59Glu + Ile107Cvs Thr 66Glu + Tyrl04Pro Val 95Met + Asp 99Glu Ser204Glu + Glv211Pro Pro210Glu + Gly219Ser Leu126Pro + Ser204Glu Prol29Asp + Ala200His Ile107Gly + Gly215Pro

	Thr 66Glu	+	Gln206Asn
	Asn155Asp	+	Leu209His
	Gly211Asp	+	Tyr217Val
	Ala216Asp	*	Thr220Gln
5	Thr158Gly	+	Ser204Asp
	Gly100Glu	+	Ile107Ser
	Ala 98Ser	4	Gly154Asn
	Gln103Asn	+	Ala216Glu
	Gly154Gln	4	Pro210Gln
10	Leu126Pro	4	Ala216His
	Ala216His	+	Tyr217Leu
	Gly154Glu	+	Tyr2175er
	Gly 97Ser	+	Tyr167Thr
	Trp106Ile	4	Ala216Gly
15	Gly102Ser	÷	Phe189Gly
	Gly154Glu	4	Gly219Asn
	Lys213Glu	4.	Ala216Pro
	Asn 62Asp	+	
	Thr 66Gly	4	
20	Gly157Pro	+	
**	Gln 59Asp	+	
	Leu 96Met	4	Gly100Ser
	Ala 98Gly	+	
	Asn 62Gln	4	Leu 96Asp
25	Glv127Asn	+	
	Gly160Pro	4	
	Leu 96Thr	4	Tyr217Ala
	Trp106Phe	+	Tyr217Thr
	Gly131Pro	4	Lys213Glu
30	Gly 65Gln	4	Asp 99Glu
30	Gly127Asn	4	Gly128Gln
	Ala133Asn	÷	
	Ser204Glu	4	
	Glu156Asp	+	
35	Asp 60Glu	4	
20	Asn 61Gln	4	
	Pro210Asn	4	
	Ala133Asp	4	
	Glv219Ser	4	
40	Ser191Asp	4	Val203Thr
40	Gly160Glu	4	Ala216Thr
	Ser162Glu	+	Ala216Gln
	Ala 98Gln	+	Tyr217Asn
	Val 95Asp	+	Gln206Asn
45	Tyr104Ser	4	
-402	Gly100Pro	4	Phe189Gln
	Gly 97Asp	+	
	Gln206Ser	+	Gly211Asn
	Ala187Asn	+	Ser188Asp
50	Ala 98Gly	+	Asp 99Glu
30	wra apprix	*	woh agein

Thr164Asn + Phe189Cys Val203Gln + Gln206Ser Trp106Cvs + Glv157Ser Thr158Ser + Gly160Ser 5 Ser188Asp + Tyr217Gly Gly157Asn + Phe189Met Ser188Asp + Ala216Asn Glv128Asn + Glv166Ser Leu126Asn + Ala216Ser 10 Gly127Asp + Gln206Asn Gln 59Glu + Leu 96His Ser132Asp + Tyr217Ala Gly166Ser + Gly219Glu Ser163Glu + Val203Met 15 Ala 98His + Tyr217Met Ala 98Pro + Ser130Asp Gly160Asn + Ser204Glu Gln206Asn + Glv215Asp Gln103Ser + Ser130Asp 20 Alal33Glv + Thr220Glv Ser132Glu + Ala216Gln Asn 61Gln + Ile107His Leu126Ala + Gly131Glu Gln206Asp + Thr220Gly Gln206Glu + Tyr217Cys 25 Gly157Ser + Pro210Asp Gly166Glu + Tyr214Gln Ser188Glu + Ala216His Thr 66Glu + Gly166Gln 30 Gly102Pro + Gly166Glu Val 95Gln + Tvr104Tle Sarl91Glu + Gly2195er Asp 99Glu + Asn218Gln Gly100Asn + Ser105Glu 35 Glv166Pro + Pro210Asn Gln 59Asn + Thr164Ser Leul26His + Tvr214Ala Thr 66Pro + Lvs213Asp Trp106His + Glv211Ser 40 Tyr167Leu + Ser204Glu Val 95Thr + Ala133Gly Ile107Ser + Gln206Glu Phe189Tyr + Lys213Asp Gly 65Asn + Asn218Asp 45 Tyr167Val + Lys213Glu Gly 97Gln + Ser132Glu Asp 99Glu + Gly102Pro Leu126Cys + Ala216Asp Leul26Cys + Gly127Ser 50 Ser191Asp + Ala216Asn

	Gly100Gln	4-	Gly154Asp
	Asn 61Asp	+	Gly211Ser
	Serl6lAsp	+	Phe189Leu
	Ile205Gln	4	Ala216Glu
5	Asn 62Gln	÷	Tyr217Leu
	Ile107Met	÷	Ser161Asp
	Leul26Ile	4-	Tyr217Ser
	Ala 98His	+	Ser162Asp
	Asn 61Asp	+	Gly128Ser
10	Asn155Glu	4	Gly215Gln
10	Asn155Gln	+	Ser204Asp
	Asn155Glu	+	Thr220Gln
	Lys213Asp	4	Tyr217His
	Gly127Pro	+	Ser204Glu
15	Ser204Asp	+	Tyr217Ala
	Glu156Asp	+	Val203Gly
	Gly127Glu	4	Ala133His
	Gly100Asn	+	Gly131Ser
	Gly211Gln	+	Lys213Asp
20	Ala187Asp	+	Phe189Leu
	Ala216Glu	4	Tyr217Cys
	Ser204Asp	+	Ala216Thr
	Gly131Ser	÷	Thr158Asp
	Gly100Asn	4	Gln206Asn
25	Ser105Asp	÷	Gly131Gln
	Ser204Asp	4	Tyr214Val
	Tyr214Met	÷	Tyr217Ile
	Ser 63Glu	÷	Thr164Asn
	Ile107Cys	+	Ala216Pro
30	Trp106Gly	+	Gln206Asp
	Gly102Asp	4	Thr164Pro
	Asp 99Glu	4	Ala216Gln
	Lys213Glu	4	Ala216Gln
	Ala133Ser	4	Pro210Glu
35	Asp 60Glu	÷	Tyr104Asn
	Asn 62Gln	÷	Ile107Cys
	Tyr167Ala	÷	Gly211Asp
	Glul56Asp	ą.	Tyr217Ile
	Gly131Pro	+	Leu209Pro
40 .	Lys213Glu	4	Asn218Gln
40	Gly160Ser	+	Val203Glu
	Asn155Ser	4	Tyr167Ala
	Asp 60Glu	+	Phe189Gly
	Thr164Gln	4	Gly219Ser
45	Ser162Asp	+	
43		+	
	Gly100Glu		Tyr104Asn
	Gly160Pro	+	
	Thr 66Gly	4	Ala216Gly
	Tyr104Ile	ą.	
50	Pro201Gln	+	Ala216Thr

	Gln103Glu	÷	Ala133Asn
	Serl63Glu	+	Phel89His
	Gly127Ser	÷	Tyr217Ser
	Gln206Asn	+	Leu209His
5	Pro210Glu		
	Asn 62Ser	+	Gln206Asn
	Ser161Glu	*	Gly219Asn
	Val203Gly		
	Ala 98Glu		
10	Vall65Gln	+	Ser204Asp
	Gly154Ser	+	Ala216His
	Pro201Gly	÷	Gly211Glu
	Serl61Asp	÷	Gly219Gln
	Asn155Glu	4	Thr220Asn
15	Leu 96Glu	*	Ile107Leu
	Thr158Ser	÷	Gly215Ser
	Ser 63Glu	÷	Pro129Ser
			Ser163Glu
	Gly102Asn	÷	Leu126Glu
20	Thr 66Gly	÷	Ala216Pro
	Gly157Ser	4	Thr158Glu
	Ala 98Asp	+	Ala187Ser
	Asp 99Glu	÷	Thr164Gln
	Thr 66Ser	+	Ser105Glu
25	Gln103Asp		
	Thr 66Glu		Tvr217His
	Gly127Gln	4	Ser204Glu
	Phe189Ile	*	Tyr217Thr
	Ala133Gln	÷	Lys213Asp
30	Ser130Asp	4	Tyr217Thr
	Leu126Ile	+	Asn212Ser
	Gly154Asn	*	Gln206Asp
	Thr 66Pro	÷	Glu156Asp
	Gln103Asn		
35	Phe189Met	4	Gln206Asp
	Leul26Asn	4	Gly154Gln
	Pro210Gly	+	Gly215Glu
	Leul26Val	ተ	Ala216Pro
	Gln206Ser	4	Tyr217His
40	Leu 96Asn	+	Lys213Asp
	Leul26Pro		Ala216Ser
	Val203His		
	Tyr167Ala		
	Trp106Asn	4	Gln206Asn
45	Gly127Ser	4	Ser161Glu
	Lys213Glu	÷	Gly219Asn
	Val 95Thr		
	Thr158Gly	4	Ser204Glu
	Gly 97Pro	4	Trp106Tyr
50	Phel8911e	+	Val203His

Leu 96Gln + Lvs213Glu Gln206Glu + Ala216Thr Glv154Ser + Asn155Glu Ser132Asp + Tvr214Asn 5 Prol29Gln + Ala133Pro Ala 98Asn + Gly127Asp Gly211Gln + Asn218Asp Trp106Cys + Ser163Asp Leu 96His + Ala216Gly 10 Gly 97Asn + Ser204Asp Asn 61Ser + Gly157Asp Pro210Asn + Tyr217His Asp 60Glu + Tyr104Ala Thr164Asn + Ala200Gly Tyr214Val + Ala216Asp 15 Leul26His + Ala216Ser Glv128Gln + Asn212Asp Ser162Glu + Gln206Ser Glm206Glu + Ala216Ser 20 Thr164Pro + Thr220Asp Val203Ser + Gly219Asp Gln206Asn + Gly219Asp Ser 63Asp + Ile107Gln Glv102Gln + Val203Ala 25 Serioiglu + Valiasgin Gln 59Ser + Gly166Glu Ser101Glu + Tyr217Ser Glyl3lAsn + Ala187Glu Glv102Ser + Tvr214Glv Thr158Ser + Thr220Glu 30 Asp 99Glu + Gly215Gln Val 95Gly + Thr220Asp Ala200Ser + TvrZ14Val Ser188Glu + Ala216Asn 35 Tyr214His + Ala216Asp Thr158Glu + Phe189Asn Asn155Gln + Ser191Asp Thr 66Ser + Leu126Ser Thr 66Glv + Gln206Asp 46 Ser105Asp + Tvr214Thr Gly102Pro + Thr164Gln Trp106Gly + Pro210Gly Asn155Asp + Thr220Gln

45

TABLE 23 Multi-loop Triple Mutation Variants

Gln 59Ser + Leu 96Gly + Ser204Glu Asn 62Ser + Val 95Gln + Asn218Asp Tyr104Cys + Glv127Gln + Lys213Glu

	Ser188Glu	+	Gly215Asn	+	Ala216Pro
	Gly 97Gln	+	Ile107Ala	+	Glv157Glu
			Pro210Gln		
			Val203Cys		
5			Alal33Gly		
			Asn212Ser		
			Glv131Glh		
			Gly157Glu		
			Leu126Asn		
10	Asn212Ser				Glv219Gln
			Leul26Ser		
			Thr 66Pro		
			Gly166Asn		
			Gly127Ser		
15			Ile107Ala		
**	Ala133Thr				
			Gly 97Asp		
			Pro210Gly		
			Asn212Ser		
20	Asn 62Gln				
20			Gly215Glu		
	Ala 98Asn				
			Gly211Glu		
			Tvr214Asn		
25			Ala133Pro		
20			Gly128Glu		
	Serl59Asp				Gly219Gln
			Glu156Asp		
			Thr208Pro		
30			Gly128Pro		
20			Glv102Asn		
	Ala200Gln				
			Glu156Asp		
			Ala216Thr		
35			Pro210Asp		
<i>~</i>	Gly100Glu				Thr158Gly
			Gly154Gln		
			Leul26Pro		
	Lve213610	į.	Ala216His	å	Tur 23 77 au
40	Gly154Glu				
10			Trp10611e		
	Gly102Ser				
			Gly160Asp		
			Ala 98Gly		
45			Gly160Pro		
***			Tyr217Ala		
	Trp106Phe				Tyr217Thr
			Gly127Asn		
	Ala133Asn				
50	Asn 61Gln				
JU	wan areru	a.	GTHYROGOSIL	*	uraciousu

	Ser204Asp	+	Gly219Ser	4	Thr220Gly
			Ser159Glu		
			Gly100Pro	+	
			Gly211Asn	+	
5			Ala187Asn	4	
~	Asp 99Glu	4	Thr164Asn	4	
	Trp106Cys	+		4	
	Gly157Asn			+	
	Gly166Ser			+	
10	Leu126Asn			+	
10	Leu 96His			4	
				+	
			Lys213Glu		
			Ser130Asp	+	
	Ser130Asp			+	
15	Asn 61Gln	+	Ile107His	+	
	Gln206Glu	+	Tyr217Cys		
	Gly157Ser	÷	Pro210Asp	4	
	Val 95Gln	÷		+	Gly166Glu
	Tyr104Ile	4	Ser191Glu	+	Gly219Ser
20	Asp 99Glu	4	Gly100Asn	+	Asn218Gln
	Gly131Glu	4-	Gly166Pro	+	Pro210Asn
	Leul26His	+	Thr164Ser	÷	Tyr214Ala
	Thr 66Pro	4	Gly211Ser	*	Lys213Asp
	Trp106His	4	Tyr167Leu	+	Ser204Glu
25	Val 95Thr	4	Ala133Gly	+	Gln206Glu
	Gly 97Gln	4			
	Leu126Cys	4			
	Gly100Gln	4	Gly154Asp	+	Gly211Ser
	Asn 62Gln	4		4	
30	Leul26Ile	4		4	
	Pro129Glu	4.	Asn155Gln	4	
			Ala133His	4	Val203Gly
	Gly131Ser		Gly211Gln		Lys213Asp
	Gly131Ser	4			
35	Gly100Asn	+			
-	Gly 97Glu		Gly160Gln		
	Ile107Cvs	*			
	Trp106Gly	÷	Gln206Asp		
		4			
40	Asn 62Gln	+	Ile107Cys		
***	Gly131Pro	÷			
	Asn155Ser				
		+		+	
	Asp 60Glu	+		+	
A.C.	Gly160Pro	*			Gln206Ser
45	Thr 66Gly	÷			
	Tyr104Ile	+			
	Gly127Ser	4			
	Serl88Glu	+			
	Asn 62Ser	÷			
50	Ala 98Glu	÷	Leu126Met	÷	Val203Gly

	Gly154Ser	+	Ser161Glu	4	Ala216His
	Pro201Glv	+	Gly211Glu	+	Ala216Thr
			Glv219Gln		
	Asn 62Glu	+	Thr158Ser	+	Glv215Ser
5			Leul26Glu		
			Ser204Glu		
	Alal33Gln	4	Phe189Ile	4	Lvs213Asp
	Ser130Asp	4	Asn212Ser	÷	Tyr217Thr
			Gly154Asn		
10	Thr 66Pro	4	Gln103Asn	4	Lys213asn
			Gly154Gln		
			Gly215Glu		
			Lys213Asp		
			Leu126Pro		
15			Trp106Asn		
***			Ser161Glu		
			Thr208Gly		
	Clar GTBan	4	Trp106Tyr	4	DARST 2010
			Phe189Ile		
20			Ala133Pro		
20					
			Gly127Asp		
	Leu Sonis	*	Gly 97Asn	+	Alazibery
			Gly215Glu		
**	Asp budiu	·	Trp106Tyr	*	Pro129G1n
25	Giyi5/Asn	*	Phe189Val	*	Asn218Asp
			Thr164Asn		
	Leuizbhis	*	Gln206Asp	+	Alazioser
			Ile107Gln		
30			Gly102Gln		
30	Wab 3301n	*	Thr158Ser	*	G1y215G1n
	Alazuoser	*	Ser204Glu	4	Tyrziavai
			Thr158Glu		
	Thr bbGly	*	Ser105Asp	4	Tyrziathr
35			Thr164Gln		
22			Asn155Asp		
			Ala187Gln		
			Tyrl67Cys		
	Asp sociu	*	Ala 98His	÷	GIAIOSERO
			Ile205Val		
40			Vall65Cys		
			Ile107Gln		
			Gly166Pro		
			Gly154Ser		
			Vall65His		
45			Prol29Ser		
			Thr158Ser		
	Thr164Glu	+	Gly215Ser	÷	Ala216Asn
	Thr 65Pro	+	Asp 99Glu	+	Tyr217Cys
	Trp106Met	÷	Ala187Ser	÷	Tyr21711e
50	Hel07Thr	÷	Glul56Asp	÷	Tyr217Cys

	Leu126Pro	4	Gly131Asn	÷	Tyr217Leu
			Gly219Pro		
			Trp106Ile		
		4		+	
S	Val 95Ala	4			Tyr217Glu
•	Asp 60Glu				
	Clulenton	à	Ala187Gly		
	Glv102Gln	+		i	Sarl63Clu
	Asn 62Gln		Ser188Glu		
10	Gly100Pro	+			Ala216Ser
10	Ser105Glu		Ile107Thr		Gly131Pro
			Gly131Asp		
	Gln103Asn	+		+	
	Asp 60Glu	÷			Ala216Ser
15	Gln 59Glu	+			Tyr217Ser
	Asn 61Glu				Gly215Pro
					Gly219Ser
			Tyrl67Ala		Tyr217Ser
	Gly100Ser				Tyr217Asn
20					Gly157Gln
	Gly100Ser			4	
	Ser132Asp	+	Ala187Pro	+	Gln206Asn
	Gln 59Asp	+		4	
	Gln103Asn	+	Ile107Asn	4	Ala133Ser
25	Gly128Gln	÷			Ala216Asp
	Thr 66Glu	÷	Trp106Ala	+	Alal87Ser
	Asp 60Glu	+	Gly 65Asn	+	Tyr214Ser
	Serl32Asp	÷.	Gly157Asn	÷	Ala216Ser
	Asn 62Asp	4	Ile205Thr	+	Gln206Ser
30	Gln 59Asn	+	Gly 65Pro	÷	Val 95Asp
	Val 95Ser	+		÷	Lys213Asp
	Ala216Pro	+	Tvr217Pro	÷	Asn218Ser
	Ser 63Asp	+	Glv127Ser	÷	Thr220Asn
	Gly 97Asn	+		+	Ala216Asn
35	Ala 98His	4		÷	Ala216Gln
	Glv102Asn	÷	Ile107Gln		Ser162Asp
	Ile107Val	÷			Ala216Ser
	Tyr104Leu	÷			Thr220Asn
	Pro201Asn	+	Pro210Asn	+	
40	Gly166Asn	+			Ala216Thr
41/	Ala 98Ser	+		4	
	Ala133His				Tyr217Gly
	Ala 98Glu				Gly157Pro
	Leu 96Ile	+			Val203His
45	Tyrl67Thr			+	
43	Leu 96Gln			+	
		+			
	Gly127Glu		Thr158Pro	+	
	Gly160Ser				Ala216Ser
A.	Tyr104Ser			4	
50	Asn 62Ser	÷	Gly160Glu	÷	Ala216His

	Leu 96Cvs	4	Thr164Ser	÷	Ser204Asp
			Phel89Ile		
			Gly 65Gln		
			Gly128Ser		
5			Val 95Gly		
			Gly154Asp		
	Thr 66Pro				Ala216Pro
			Asn155Glu		
**			Tyr167Glu		
10			Asn218Glu		
			Thr164Gln		Gly166Ser
	Leul26Gln				Gly160Asp
			Asn 62Asp		
	Thr 66Pro				Ser101Glu
15					Ala216Glu
	Ser204Asp	÷	Ala216Glu	÷	Tyr217Cys
	Ser204Asp	+	Ala216Asp	+	Thr220Gln
	Gln103Asn	4	Ser204Glu	÷	Ala216Glu
	Glv202Gln	÷	Ser204Glu	÷	Asn218Asp
20			Gln206Asp		
			Gln206Glu		
			Ser204Asp		
			Lys213Glu		
			Lys213Glu		
25	Tyr167Val				Lys213Glu
***			Asn 62Asp		
	Gly160Glu			+	
			Gln206Asp		
			Gln206Glu		
30					
30			Ser204Glu		
			Gln206Glu		
			Serl63Asp		
	Thr164Pro				Tyr217Asp
	Asp 60Glu				Pro210Asp
35			Tyr104Asn		
			Val203Glu		
			Gly166Glu		
	Thr158Asp				
	Gly154Asp	4	Val203Ser	÷	Gly219Asp
40	Ser188Glu	4	Ser191Asp	+	Ala216Asn
	Asp 60Glu	4	Gly 97Glu	+	Asp 99Glu
	Thr164Pro	4	Ser204Glu	+	Gly219Glu
	Asp 99Glu	4	Gly102Asp		
			Gln206Asn		
45			Gln206Asp		
-			Gly211Glu		
			Leul26Glu		
			Leu 96Glu		
			Leu 96Glu		
50			Gly127Glu		
20	ヘニアフロアはアバ	T	arlar cara	~	uraro (anu

	Ser 63Gln	÷	Gly131Asn	4	Lys213Glu
	Ser 63Asp			+	
		+	Ser132Glu	4	
				÷	
,		4		+	
5				+	
			Pro210Glu	+	
	Ser 63Asp	4	Gln206Asp	+	
		+		+	
		+			
10	Gly157Asp	+		+	
			Gly100Ser		Tyr217Asp
	Gly100Glu	4		+	
	Gly154Glu	÷			Val203Met
	Val 95Gly	+			
15		+		÷	
	Ser204Glu				Lys213Glu
	Ala187Asp		Ser204Glu		Gln206Glu
	Ser 63Glu	+	Ser204Glu		Ala216Asp
	Asn 61Asp	4	Ser 63Asp	4	Ala216Glu
20	Pro129Glu	4			Ser163Asp
	Ser 63Asp	4			Asn212Asp
	Gln206Asp	ŧ	Pro210Asp	+	Asn212Asp
	Glu156Asp	÷	Serl63Glu	+	Gly219Asp
	Ile107Glu	÷	Gly131Ser	÷	Ser132Asp
25	Gly100Asn	*	Gly211Asp	÷	Gly215Glu
	Gln103Asp	÷	Gly127Glu	ą.	Ala216Gln
	Serl30Asp	4.	Gly131Asp	+	Lvs213Glu
	Gly100Asp			+	Ser163Asp
	Pro129Asp		Serl30Asp	4	Tyr217Glu
30	Val203Asp		Ser204Glu	4	Lys213Glu
	Ser132Asp			4	Tyr217Glu
	Ser101Glu			4	
	Ala 98Asp				Ser204Asp
			Gln206Asp		Asn212Asp
35			Glul56Asp	+	
20	Ser132Asp	+			Ala216Asp
	Ala 98Glu	4	Ser204Glu		
	Ser204Asp	+	Lys213Asp		
	Ser204Glu	+	Gly211Asp	4	
40	Ser162Asp	4		4	
40	Gly128Glu	+	Gly166Glu	+	
			Asn 62Glu	+	
	Asp 60Glu	*			
	Asp 99Glu	+		*	
-	Gln103Ser	4		+	
45	Phe189Asp			+	
	Asn 61Asp			+	
	Thr 66Glu			+	
	SerlOlGlu	+			
	Gly157Glu		Ser204Glu	+	
50	Asp 99Glu	+	Ser204Asp	4	Gln206Glu

	Gly 97Glu	4-	Ser204Glu	÷	Gln206Asp
	SerlOlAsp	+	Gly102Ser	+	Ser105Asp
	Serl61Glu	+	Ser163Asp	+	
	Ser130Asp	+	Ser132Glu	+	Asn212Glu
5	Serl30Glu	+	Ser132Glu	+	
	Pro129Glu	+	Gly131Glu	4	
	Asn 62Gln	+	Thr158Asp	+	
	Ser132Glu	4	Gln206Glu	ą.	
	Asp 60Glu	4	Phe189His	+	
10	Gly131Glu	+	Lys213Asp	4	
***	Ser159Glu	4	Ser163Glu	+	
	Thr158Glu	4		4	
	Tvrl04Glu	+	Ser132Glu	+	
	Asp 99Glu	+		÷	
15	Ser 63Glu	4	Ser188Asp	+	
1.5	Ser188Asp	4	Ser191Glu		Ala216Asp
	Gln 59Glu	4	Ser188Asp	4	
	Ser204Glu	4	Lys213Glu	+	
		+			
20	Asp 60Glu Leu126Asp		Ser204Asp	+	
20		+		4	
	Thr164Glu	*	Ser188Glu	+	
	Asp 60Glu	4	Gln206Glu	+	
	Ser105Asp	4	Leu126Glu	÷	
	Asp 99Glu		Glu156Asp	+	
25			Asn 62Asp	÷	
	Gly166Glu		Val203Asp	4	
	Asn155Glu		Ala187Glu	4	
	Thr 66Asp	+	Ser204Glu	+	
	Ser 63Asp	4		+	
30		÷	Ser105Asp	÷	
	Ser105Asp	4	Ser132Glu	÷	
	Ser 63Asp	+		*	
	Ser 63Glu	+	Ser101Asp	+	
	Thr164Glu		Gln206Glu	+	
35	Leul26Glu	*		*	
	G1y131G10		Gln206Asp	4.	
	Ser 63Asp	*	Trp106Asp	÷	
	Gly160Glu	4		4	
	Alal33Glu	+	Lys213Asp	*	
40	Ser 63Glu	÷	Gln206Asp	÷	
	Lys213Asp	÷	Ala216Asn	÷	
	Serl30Asp	÷	Ala187Asp	4	
	Asp 99Glu	+		ş.	
	Asn 61Asp	4		+	
45	Gly102Asp	4		4	
	Gly127Asp	7	Ser191Glu	÷	2
	Thr 66Glu		Gly 97Glu	÷	
		4		+	
			Gly154Glu	4	
50	Gln103Asp	4	Ser132Asp	÷	Gln206Glu

Tyr167His	÷	Ser191Glu	4	Asn218Asp
Asp 60Glu	+	Glu156Asp	+	Gly160Glu
Gln103Glu	÷	Gly154Glu	+	Asn218Asp
Asp 60Glu	+	Asn155Glu	4	Ser159Asp
Gln103Glu	÷	Serl61Glu	4	Ser191Asp
Ala 98Asp	÷	Ser132Asp	4	Gly166Glu
Ser188Asp	4	Ser204Asp	+	Tvr214Val

```
Multi-loop Quadruple Mutation Variants
10
           Gln 59Ser + Asn 62Ser + Leu 96Gly + Ser204Glu
           Glv127Gln + Ser188Glu + Glv215Asn + Ala216Pro
           Asn 62Gln + Ile107Ala + Gln206Asp + Tyr217Thr
           Asn 61Ser + Leu 96His + Gly157Pro + Ala216Gly
15
           Leu 96Gln + Glyl27Gln + Glul56Asp + Thr220Asn
           Thr158Glu + Gly202Ser + Gln206Ser + Thr220Ser
           Gly 97Asn + Ser105Asp + Gly215Ser + Ala216Ser
           Leul26Thr + Gly211Gln + Lys213Asp + Ala216Ser
           Gly100Asp + Trp106Asn + Gly127Ser + Val203Asn
           Ile107Ala + Glv160Asn + Glv166Asp + Glv202Ser
20
           Alal33Thr + Phel89Ser + Tyr214Ile + Ala216Glu
           Asn 62Ser + Ser163Asp + Phe189Ser + Pro201Gln
           Ala 98Gln + Gly102Asn + Pro201Asn + Gly219Asp
           Thr 66Ser + Leul26Glu + Gly127Gln + Ala216Thr
25
           Pro129Ser + Thr164Gln + Ala216Asp + Tyr217Val
           Glv128Gln + Thr158Gln + Gln206Asn + Asn212Asp
           Gly157Ser + Gln206Glu + Tyr217Cys + Thr220Gly
           Val 95Gln + Tyr104Tle + Ser191Glu + Gly219Ser
           Gln 59Asn + Gly 97Asn + Gly154Pro + Asn218Ser
30
           Pro129Glv + Thr158Asn + Gln206Asn + Glv211Pro
           Ala 98His + Trp106His + Gln206Asn + Lys213Asp
           Leul26Ile + Ser204Glu + Gln206Asn + Tvr217Thr
           Gln 59Glu + Asn 62Gln + Phe189Leu + Val203Ala
           Pro129Gln + Gly154Pro + Ala187Thr + Lys213Glu
35
           Ser 63Glu + Thr164Asn + Gln206Ser + Pro210Asn
           Leu 96Met + Gln103Asn + Ala133Ser + Ser204Glu
           Trp106Ala + Gly154Pro + Ala187Asn + Gly219Pro
           Asn 62Glu + Gly102Pro + Gly160Asn + Asn218Ser
           Thr 66Gly + Gly100Asp + Tyr104Ile + Ala216Gly
           Gly102Asp + Pro201Gln + Gly215Pro + Ala216Thr
40
           Leu126Met + Val203Gly + Asn212Glu + Glv219Asn
           Leu 96Glu + Ile107Leu + Thr158Ser + Gly215Ser
           Ser130Asp + Ala133Gln + Asn212Ser + Tvr217Thr
           Thr 66Gly + Gly100Ser + Leu126Gly + Ala216Glu
45
           Gln103Asp + Tyr104Ile + Gly128Gln + Tyr217Cys
           Leu126Pro + Ser204Asp + Gln206Asn + Thr208Asn
           Pro129Ser + Glv157Asn + Thr164Glu + Ala200Ser
           Glv128Gln + Val165Cys + Glv211Gln + Lvs213Glu
           Gly160Asp + Gly166Pro + Gly211Ser + Tyr214Ile
```

							Gly215Pro
			Tyrl04Ser				
	Gran googru		Gly131Gln				
			Thr 66Asp				
5			Gly 97Pro				
			Tyr104Gly				
	Asp 99Glu	4	Trp106Ala	÷	Pro201Gln	4	Ala216Gly
			Val 95Asp				
	Ile107Gln	+	Val203Ser	4	Ser204Asp	*	Gly215Ser
10	Val 95Thr	4	Gly202Gln	4	Ser204Asp	÷	Ala216Asn
	Thr158Pro	+	Val203Gly	4	Lys213Glu	+	Tyr217Ser
							Tyr214Ala
	Glv102Asn	4	Gly157Ser	4	Tvr167Ala	4	Ala216Asn
			Val203Thr				
15			Gly128Asn				
			Pro129Gly				
			Ser 63Asp				
			Prol29Ser				
			Gly131Asp				
20			Val 95Gln				
200			Ala187Gly				
			Gly 97Pro				
			Ser159Glu				
			Asn155Gln				
25							Gly215Asn
23							
			Gly128Gln Thr158Gln				
			Leu 96Ile				
30			Pro210Gly				
30			Gly160Asn				
	Tyriotasp	*	Gly154Pro	*	Atais/Asn	*	valzusser
			Leu126Thr				
			Ala187Pro				
**			Gly157Glu				
35			Thr164Glu				
			Val203Met				
			Val203Asn				
			Gln206Asp				
			Ile107Cys				
40	Gly128Glu	÷	Asn155Gln	+	Thr158Ser	*	Gly160Ser
			Serl62Glu				
			Thr164Asn				
			Gly157Ser				
			Gln206Asn				
45			Ala133Thr				
			Gly131Asp				
							Asn218Gln
			Tyr104Ala				
			Ala 98Glu				
50	Asn 62Glu	÷	Gly128Gln	4	Ala187Asn	÷	Gly215Ser

	Lon 96Tle	4	Gly157Ser	+	Val203Ala	+	Ala216Ser
			Val 95Thr				
			Gly128Pro				
			Gly131Gln				
5			Ala216Gln				
2			Ser105Glu				
			Phe189Thr				
			Thr158Gly				
			Thr 66Asn				
**			Gly157Ser				
10			Gln206Asp				
			Gly131Glu				
			Lys213Glu				
			Leu126Gly				
15			Pro129Gly				
			Val 95Gln				
			Ile107Val				
			Prol29Gln				
			Gly154Gln				
20			Trp106Cys				
			Gly 97Ser				
			Ser204Asp				
			Ile107Gly				
			Gly154Asp				
25			Gly157Gln				
			Ser162Glu				
			Trp106Gly				
			Val 95Pro				
			Gly160Asp				
30			Gly160Asp				
			Lys213Glu				
			Ser159Asp				
			Asp 99Glu				
			Gly131Pro				
35			Trp106Gln				
			Ser204Glu				
			Ser204Glu				
			Ile205Gln				
1			Gly154Asn				
40			Ala 98Gln				
			Vall65Met				
			Serl62Asp				
			Thr 66Ser				
			Ser159Asp				
45			Gly102Glu				
			Gly100Asp				
			Gln206Glu				
			Ser204Glu				
			Ser130Glu				
50	Asp 60Glu	+	Gly 65Asn	÷	Thr 66Glu	÷	Tyr214Ser

	Nen 600lo	2.	Gln206Ser	2	Pro210Clu	_	C102195ar
			Ser163Glu				
			Glv215Gln				
			Ala187Asp				
5			Pro129Asn				
3			Ile107Gln				
			Gly157Gln				
			Gly128Asn				
			Pro129Glv				
10			Ser188Asp				
10			Ser204Asp				
			Gly 97Gln				
			Tyr104Asp				
			Gln206Asp				
15			Lys213Asp				
4.0			Asn155Glu				
			Thr 66Glu				
			Gly157Asp				
			Gln206Asp				
20			Ser 63Glu				
200			Pro129Asn				
			Gly100Asn				
			Phe189Asp				
			Val 95Ser				
25			Val203Cys				
200			Ser105Asp				
			Leu 96Cys				
			Gly215Asp				
			Gln206Glu				
30			Phel89Leu				
**			Ala133Gln				
			Gly154Glu				
			Gln206Glu				
	Leul26Ala	+	Ser204Glu	4	Gin206Asp	+	Lys213Gln
35			Gly157Glu				
			Gly102Asp				
			Lys213Glu				
			Gin206Asn				
			Ser132Asp				
40			Val203His				
			Lys213Glu				
			Lys213Glu				
			Ser188Glu				
			Thr 66Asp				
45			Ala187Asp				
			Asn212Gln				
			Serl61Asp				
			Tyrl67Gln				
			Serl63Glu				
50			Glu156Asp				

	Gln 59Asp	+	Ser162Asp	+	Serl63Glu	÷	Ala216Thr
			Ser162Glu				Tyr217Glu
			Val203Cys				
	Ser105Glu				Val203Glu		Ser204Asp
5		+			Thr164Glu		Pro201Gln
•	Val 95Gln				Gly157Asp		Lys213Glu
	Ser162Glu	4			Ala216Asp		Tyr217Glu
	Asp 99Glu				Ser159Glu		Ala216Thr
	Ala 98Glu		Asp 99Glu				Gly154Asp
10	Asn 62Glu				Prol29Ser		Asn155Asp
10	Asn 61Glu	+			Ala216Glu		Tyr217Cys
	Thr 66Pro				Glul56Asp		Ser19lAsp
	Asp 60Glu				Ala216Asp		
							Tyr217Ile
15	Ser105Asp Thr158Asn				Gln206Ser		Ala216Glu
15					Ser204Asp		Asn218Asp
	Gln 59Asp				Ser204Asp		Asn218Asp
			Gly128Glu				Gly215Asp
			Val203Cys			4	Tyr217Glu
			Ala187Thr				Tyr217Glu
20			Asn155Glu				Tyr214Val
	Val 95Asp				Ala187Pro		Val203Asp
		+			Gly128Asn		
	Gly128Glu						Ala216Gln
	Gln103Asp				Gly154Glu		
25	Ser159Glu				Lys213Asp		
	Gln 59Asn				Gly211Glu		
	Ile107Glu				Lys213Asp		
	Ser159Asp				Pro210Glu		
	Asp 60Glu				Ser191Asp		Tyr217Leu
30	Asp 60Glu						Phe189Glu
			Gly166Asp				Lys213Asp
	Val 95Glu				Gly102Glu		Serl62Glu
	Ser 63Asp				Ala216Glu		Gly219Glu
	Tyr104Asp				Ser191Glu		
35			Ser159Glu				
					Gln206Glu		Tyr217His
			Ser163Asp				
	Gly131Asp		Thr158Gln				
	Tyr167Asp					*	Tyr217Asn
40	Gly 97Asp					+	
	Gly127Asp				Gln206Glu		Tyr214Asn
		÷			Asn155Asp		
			Ser130Glu				Tyr217Val
		+	Ala187Gly				Ala216Glu
45		÷			Ala216His		Tyr217His
	Ser130Asp				Asn212Glu		
	Ser130Glu				Gly160Asp		
	Gly100Glu				Ser130Asp		
			Gly160Asp				Tyr217Asp
50	Gly127Asp	÷	Pro129Glu	÷	Ser188Asp	÷	Gln206Asn

	Ser159Asp	÷	Thr164Glu	÷	Phe189His	+	Lvs213Glu
			Gly 97Asp				
			Serl63Glu				
			Ser162Glu				
5			Thr158Glu				
	Asp 99Glu				Ser162Asp		
			Glv131Asn				
	Asn 61Glu				Ser204Asp		
	Asn 62Asp				Ser204Asp		
10	Gly102Asp				Tyr167Ala		
20	Ser188Asp				Ala216Gly		
			Gly 97Asp				
			Leu 96Glu				
	Asn 62Glu				Tyr104Pro		
15	Asn 61Ser				Asn155Asp		
2.0	Gly100Glu				Ser130Glu		
			Leul26Asn				
	Ala 98Glu				Glul56Asp		
			Ala133Glu				
20			Gly154Asn				
20							
			Asn155Asp				
			Asn155Asp				
	Gln103Glu				Gln206Glu		
			Gly100Glu				
25	Ser 63Glu				Glyl3lSer		
			Thr 66Asp				
			Ser101Glu				
			Val 95Ala				
30			Ser191Glu				
DU.			Gly160Asp				
			Gly157Asn				
			Ser105Asp				
			Ser162Glu				
~~	Ser 63Asp				Serl32Asp		
35			Gly128Glu				
			Gly157Asn				
			Gln206Glu				
			Gly157Pro				
			Gln206Asp				
40			Ser163Glu				
			Gly157Asn				
			Gly157Asp				
			Thr158Glu				
			Gly154Pro				
45			Lys213Glu				
			Thr158Glu				
			Ile107Val				
			Pro201Gln				
			Thr158Pro				
50	Asp 99Glu	4	Ala133Gly	+	Ser188Glu	4	Thr220Glu

	Asp 60Glu	+	Ser188Glu	4	Gln206Ser	+	Asn218Glu
	Gln 59Asp	4	Leu 96Glu	4	Glv131Gln	4	Ser132Asp
			Prol29Asp				
							Tvr217Gln
5							Lys213Glu
			Asp 99Glu				
			Alal33Glu				
			Ser132Glu				
			Ser101Asp				
10			Asp 99Glu				
10			Ser159Asp				
			Ser163Glu				
			Ser132Asp				
			Ser162Asp				
15			Ser204Asp				
			Gly166Gln				
			Gly131Glu				
			Phel89His				
	Asn155Gln	4	Gly215Glu	4	Tyr217Pro	+	Gly219Asp
20			Leu126Glu				
			Gly166Glu				
			Asn155Ser				
			Ser105Glu				
			Gln206Ser				
2.5			Gly 97Gln				
			Val 95Ala				
			Ile107Met				
	Pro129Asn	÷	Ser130Asp	4	Lys213Glu	+	Tyr217Glu
	Prol29Asn	÷	Ser191Glu	4	Lys213Asp	+	Tyr217Glu
30			Gly102Asp				
	Gln 59Asn	÷	Serl62Glu	+	Phe189Asp	+	Ser204Asp
			Gly128Glu				
	Leu 96Pro	÷	Ser105Asp	+	Ser130Glu	÷	Ala133Gly
	Tyr167His	÷	Ser191Glu	÷	Asn212Glu	+	Asn218Asp
35	Asn 61Glu	÷	Thr158Gln	+	Lys213Asp	4	Tyr217Asn
	Gln 59Asp	4	Gly157Asp	4	Gln2065er	4	Asn218Asp
	Gly154Ser	÷	Ser163Glu	+	Ser188Glu	4	Ser204Asp
			Ser130Asp				
			Ser188Asp				
40			Ala216Gly				
			Leu126Cys				
			Gly160Asp				
			Trp106Met				
			Gly102Glu				
45			Gln206Ser				
***	Pro12961u		Ser159Asp	4	6) 5206615	ì.	TuralTon
			Ser159Glu				
			Trp106Leu				
			Ala133Gln				
50	Sar 63630	,	Ser130Asp	ž.	Tire?!?!!	1	Clubion-
30	000 00010		nerranwah.		v Array Gris	4	graerawab

Gly131Asp + Ser163Asp + Gly166Asn + Ser204Asp Ile107Asp + Gln2063er + Asn212Glu + Ala216Asp Leu12GGly + Ser130Asp + Gly154Asn + Asn218Asp Gln 59Asp + Ser105Asp + Gly166Gln + Ser204Asp 5 Asn 61Asp + Ser105Glu + Ala187Gln + Ala216Gl Ser105Asp + Phel89Ile + Lys213Glu + Gly219Gl Ser 63Glu + Gly131Gln + Ser204Glu + Gly219Asp	
Leul26Gly + Serl30Asp + Gly154Asn + Asn218Asj Gln 59Asp + Serl05Asp + Gly166Gln + Ser204Asj 5 Asn 61Asp + Serl05Glu + Ala187Gln + Ala216Gl Serl05Asp + Phel891le + Lys213Glu + Gly219Gli Ser 63Glu + Gly131Gln + Ser204Glu + Gly219Asi	þ
Gln 59Asp + Ser105Asp + Gly166Gln + Ser204Asj 5 Asn 61Asp + Ser105Glu + Ala187Gln + Ala216Gl Ser105Asp + Phe1891le + Lys213Glu + Gly219Gli Ser 63Glu + Gly131Gln + Ser204Glu + Gly219Asj	9
5 Asn 61Asp + Ser105Glû + Ala187Gln + Ala216Gl Ser105Asp + Phel891le + Lys213Glu + Gly219Gl Ser 63Glu + Gly131Gln + Ser204Glu + Gly219Ass	0
Ser105Asp + Phel891le + Lys213Glu + Gly219Gli Ser 63Glu + Gly131Gln + Ser204Glu + Gly219Ass	9
Ser 63Glu + Gly131Gln + Ser204Glu + Gly219Ası	4
	ã
	3
Gly157Pro + Thr164Glu + Gln206Asn + Lys213As	0
Leu 9611s + Ser101Asp + Gln206Glu + Tyr214Al	9
10 Thr 66Gln + Leu 96Met + Tyr167Glu + Ser188Gli	2
Tyr104Cys + Gly160Asp + Ile205Pro + Ala216Gli	1
Asp 60Glu + Serl30Asp + Pro201Gln + Ala216Gly	Ý
Ile107Asp + Ser191Asp + Gln206Asp + Ala216Th	Ċ
Gln 59Asp + Val 95Asn + Ser101Glu + Ser163Glu	2
15 Val 95Gln + Tyr104Cys + Lys213Glu + Asn218Asp	э
Asn 62Asp + Gly 97Asn + Ala 98Ser + Ser162Gl	1
Gln103Glu + Ser204Asp + Gln206Asn + Ala216Pro	>
Ser101Asp + Ser162Asp + Gly166Ser + Tyr217Th	C
Leul26Ile + Gly128Asp + Pro210Ser + Asn218Gl	1
20 Gly100Glu + Gly160Ser + Gly166Glu + Ala216Th	c
Gln103Asn + Ser132Asp + Ser163Glu + Ser188Asp	3

			Multi-loop	Q	uintuple Muta	tio	n Variants		
25	Val 95Gln	+	Tyr104Cys	+	Gly127Gln	+	Lys213Glu	+	Ala216Pro
	Asn 61Ser	+	Leu 96His	÷	Gly157Pro	4	Val203Asp	4	Ala216Glv
	Leu 96Gln	+	Gly127Gln	÷	Glu156Asp	+	Tvr214Ala	+	Thr220Asn
	Gly100Gln	4	Tyr167Cys	4	Ser188Glu	÷	Val203Gln	+	Ala216His
			Trp106Gly						
30	Thr 66Ser	+	Gly127Gln	+	Pro201Asn	4	Ala216Thr	4	Gly219Asp
	Gly 97Asn	÷	Gly154Pro	+	Gln206Asn	4	Pro210Glu	÷	Gly211Pro
			Ser132Glu						
	Gly 65Ser	+	Gly 97Gln	4	Gly128Ser	+	Lys213Asp	÷	Gly219Gln
	Leu 96Met	4	Gln103Asn	÷	Ala133Ser	÷	Gly154Pro	4	Gly219Pro
35	Asn 61Gln	+	Trp106Ala	4	Gly211Pro	÷	Asn218Asp	+	Gly219Asn
			Tyr104Ile						
			Ser130Asp						
	Leu126Val	+	Gln206Ser	4	Pro210Gly	+	Gly215Glu	÷	Ala216Pro
			Leu126Pro						
40			Gly127Ser						
			Gly102Gln						
			Ala 98Gly						
	Prol29Glu	4	Gly160Pro	4	Gly166Asn	+	Ala187Pro	4	Gly202Ser
			Tyr167Thr						
45			Val 95Asp						
			Val203Thr						
			Asn155Glu						
			Val 95Met						
	Tyr104Gly	+	Prol29Ser	4	Ser163Glu	÷	Gln206Ser	+	Gly219Ser

							Pro210Gly		
	Gly 65Gln	+	Gly 97Pro	4	Serl30Glu	4	Gly154Ser	4	Pro210Asn
	Trp106Ser	+	Gly128Asn	÷	Ser159Glu	+	Pro201Ser	÷	Tyr217Val
	Leu 96Met	+	Leul26Asn	+	Asn155Gln	+	Ser188Glu	4	Gly202Gln
S	Gly100Glu	÷	Thr158Gln	+	Thr164Asn	4	Gln206Asn	+	Ala216Thr
	Asn 62Glu	4	Leu 96Ile	+	Glv 97Ser	4	Gly2115er	+	Glv219Ser
	Gly102Asp	+	Tyr167Ala	+	Pro210Glv	4	Ala216Thr	+	Tvr217Met
							Ala200Gln		
							Ala216Asn		
10							Gly211Gln		
							Lys213Glu		
							Tyr217Val		
							Gln206Asn		
							Gly211Gln		
15							Pro201Asn		
***							Trp106Thr		
							Gly166Ser		
							Tyr217Leu		
	2121235ar	4	Gluisicar	4	Tyrio dry	4	Gly202Asn	7	Application in
20							Gln206Asn		
200							Ala187Pro		
							Phe189Gln		
							Ala216Thr		
							Ala216His		
25							Gly211Pro		
and .							Pro210Gln		
							Ser204Glu		
	Cluisonne	Tr.	THE LOOSet	4	INITIOARIO	Ţ	Asn212Ser	*	THEZZUPTO
	GIAITOLIO	· T	Taulocci.	3	What 645am	7	Val203Gln	4	GIYZISASD
30									
30							Gly157Asn		
							Gly211Gln Pro210Glu		
							Gly215Ser		
							Gly154Gln		
35							Gln206Glu		
33									
							Ser204Glu Ser204Glu		
							Gly211Asn		
							Ser204Asp		
40							Gly211Glu		
							Tyr217Cys		
							Gln206Asp		
							Gln206Asp		
							Gly157Asn		
45							Tyr167Glu		
							Pro201Gln		
							Ala216Pro		
							Tyr167Met		
							Ala216Gln		
50	Asni55Glu	÷	G1y160Asn	+	Gly166Glu	+	Tyr217Cys	4	Thr220Asp

	Asn 62Asp	+	Gly 97Gln	+	Trp106Glv	+	Pro210Asp	+	Asn212Gln
							Asn155Gln		
							Gly215Asn		
							Val203His		
5	Trn106Tle	4	Asn155Ser	4	Ser159ken	4.	Ser191Glu	4	13216Thr
	Glv100Asp	4.	Leul26Asn	4	Glv127Ser	4	Pro129Gln	-	Thr220Ser
	Alalagero	į.	Gln206Gln	4	Tur21451:	·	Asn218Glu	i	G1 v21 000x
	Thr 6661v	i.	Sarioidiu	ì	Gluinghen	ì	Leu126Glu		712715551
	G1v100G1v	4	G1v102G1v	i.	Turinggin	ú	Asn155Gln	á	Wallanala
10	Len126His	4	Alais7Glu	i	Val203010	-	Gln206Asp		Ren21961v
	Asp 60clu	,	Lan Galler	i	Prolabolia		Gly211Glu		Tree?! 7Mat
	Len 96Cve	à	TIGIOTAL	4	Blaision	1	Gly157Asp	1	Cluisoner
	Sar 672en	à.	75 × 3 5 6 C 3 U	1	Cladiosero		Tyr214Asp		Civion 177
	Gin Soben	ă.	hen 62hen	Ţ	dewoorn a		Phe189Tyr	7	
15	Carlelan	4	CINTERNAL	7	212100010	7	Gln206Asn	Τ.	Tyr214Met
1.3	periologia	T.	GIATE GOLD	7	Widio / Gin	7	Gly131Asn	,	TYPZI/IIE
	Non COChe	7	261 03010	7	GIVIOURSD	*	GIYIJIMSH	*	LysziaGiu
	Asp Socia	3	GIY STASP	*	Win Socia	*	Phel89His	*	GIASTIGIA
	Asp bodiu	7	Val 95Glu	7	Wab aagin	*	Ser101Asp	*	valiebinr
20	GIATOSGIU	*	Granadin	*	Ashi55Giu	*	Ser191Asp	+	Gin206Asp
20	Ash biser	4	Inr obser	*	Penizeein	*	Asn155Glu	+	GIY157Asp
	ProizeAsh	4	AlaldJGIN	*	Pheraalie	+	Gln206Glu	+	Lys213Glu
	Ash biser	*	GINZUGASP	-ga-	Lys213G10	4	Tyr217Ala	÷	Gly219Asn
	Gin SaAsh	4	GIYIZBASN	- Spin	Alazuothr	*	Gln206Glu	÷	Lys213Glu
	Pheraggin	4	vaizosgiy	*	GinzubAsp	4	Lys213Asp	÷	Tyr21/Pro
25	Ala Saula	*	GIAIPAGIO	*	SeritaAsp	+	Val203Met	÷	Tyr217Met
	neu somet	*	Protzecty	*	GIVI24GIU	4	Serl63Glu	+	Tyr217Ser
	gra alsto	*	Serzuagiu	*	Lyszijasp	4	Ala216Glu	+	G1y219Ser
	Agrieger.	*	Lys213610	*	Tyrziacys	*	Ala216Glu	*	Tyrz1/Pro
**							Tyr214His		
30	GIVIOSERO	*	ASDIJJASP	*	Alaziegiu	4	Tyr217His	+	Asn218Glu
	ASDIOSASD	*	GIYZISPTO	*	Alaziogiu	4	Tyr217Ser	÷	Asn218Glu
	Giyiouser	+	Serzu4Giu	÷	Gin206Giu	÷	Lys213Glu	+	Ala216Ser
	Ala 98Thr	+	Alais/Ser	+	Ser204G1u	÷	Gln206Glu	+	Lys213Asp
**	GIAISALD	*	Ser204Glu	+	GTD50eGIn	÷	Lys213Glu	÷	Tyr217Ala
35	Ten120Wet	*	Pro129G1u	+	Seri63Giu	*	Phe189Thr	+	Asn218Ser
	Seriviasp	4	Serzuaasp	*	GINZUGGIU	*	Ala216Asn	*	Tyr217Glu
	vai 95Aia	*	Tyri6/Asp	*	Ser204Glu	+	Gln206Glu	÷	Tyr217Glu
	ASDISSGIU	*	GIUISTASP	*	Thribaasp	*	Ser204Glu	÷	Tyr214Thr
10	reprogreo	*	GIAIS (Wab	*	SerisuAsp	÷	Asn155Asp	÷	G1y219Gln
40	Prolzyser		Serz04Asp	*	Ginzoegiu	*	Pro210Asp	÷	Asn218Glu
	TALIDAANT	+	Leu126Asp	*	Gly157Asp	÷	Ser163Asp	÷	Thr164Asp
	Leu 96Asp	4	GIY 9/Asp	+	Gin103Asp	÷	Tyr217Cys	+	Gly219Asp
	Serisaciu	4	AshzizGin	+	LysziaGiu	+	Gly215Asp	+	Ala216Glu
	Gin 59Asp	+	Asn bZGIU	÷	Ser 63Glu	*	Pro129Ser	+	Asn155Asp
45	Giniusser	+	Tyr104Ala	+	Val203Asp	+	Gln206Asp	÷	Lys213Glu
	vai 95Glu	4	Giul56Asp	4	Gly157Asp	+	Tyr214Gly	÷	Thr220Asp
	vai 95Glu	*	GIYZI5Glu	+	Alazi6Glu	+	Tyr217Leu	÷.	Gly219Ser
							Val203Ser		
	GIYIBUASP	4	seri6lAsp	+	Tyr167Met	÷.	Ser204Asp	+	Tyr217Ala
50	Leu 96His	÷	Trp106Asp	÷	Gin206Asn	4	Asn218Asp	4	Gly219Asp

	Gly100Glu	+	Ser101Asp	4	Trp106Met	+	Ser162Asp	4	Thr164Pro
	Ser105Glu	+	Ala187Ser	4	Val203Glu	÷	Ser204Asp	÷	Ala216Gly
	Asp 60Glu	4-	Trp106Asn	4	Val203Glu	+	Ser204Glu	4.	Ala216Gln
			Ser163Glu						
5			Gly100Asn						
			Ser159Asp						
			Trp106Glu						
			Asp 60Glu						
			Serl61Glu						
10			Asp 99Glu						
20			Asn155Asp						
			Tyr104Ser						
			Thr158Glu						
			Gly157Glu						
15			Asn155Glu						
			Gly157Asn						
			Val 95Ala						
			Gln206Ser						
			Ser163Asp						
20			Ser132Asp						
			Ser191Asp						
			Ile107His						
			Ala 98Glu						
			Gly154Asp						
25			Gly160Ser						
	Leu 96Glu	÷	Ala 98Asn	4	Tyr167Asn	+	Gln206Glu	+	Gly215Glu
			Thr164Glu						
			Ile107Asp						
			Gly166Asp						
30			Asp 99Glu						
			Gln103Asp						
	Gln103Glu	+	Ser105Glu	÷	Thr158Ser	4	Leu209Thr	4	Lys213Glu
	Thr 66Gln	+	Thr164Asp	÷	Val203His	÷	Gly211Glu	4	Lys213Glu
	Prol29Asn	+	Gly131Gln	÷	Thr164Glu	4	Gly211Glu	4	Lys213Asp
35	Ser159Asp	*	Ser162Glu	÷	Gln206Ser	÷	Pro210Glu	÷	Tyr214Ala
	Asp 99Glu	+	Ser101Asp	*	Gly131Asn	÷	Lys213Glu	4.	Gly215Ser
			Tyr104Gly						
	Asn 62Ser	÷	Ser132Asp	+	Gly160Glu	+	Ser162Glu	4	Ala216His
			Ser162Asp						
40			Ser 63Asp						
			Glu156Asp						
			Trp106Gly						
			Gly100Glu						
			Pro129Gly						
45			Gly100Asn						
-10			Thr164Glu						
	Glv 97Glu	4	Ser130Glu	4	TurleThen	ı.	Tur 217Val	4	Cly239car
	619128619	í	Ser163Glu	í	Gly166Gly	4	Gin206Cin	4	212212001
			Asn 61Glu						
50	Cly 678.22	J.	Ser101Asp	a.	Turinaci.	2.	Envision.	1	Tree 21791-1
357	ora asumb	d.	SETTATURD	*	131104010	4.	ACTIDICIO.	A.	TATETIAGE

	Ser 63Glu	4	Ile107Gln	+	Gln206Asp	4	Ala216Asp	+	Thr220Glu
							Ala216Gln		
							Ala200Gly		
							Ser132Asp		
5	Asp 60Glu	4	G1v128G1u	+	Gln206Asn	+	Pro210Glu	4	Ala216Gln
w							Lys213Asp		
							Tyr167Leu		
							Ala216Glu		
							Tyr217Thr		
10							Ser204Glu		
10							Val203Cys		
							Tyr214Leu		
							Gly215Asp		
							Ser204Glu		
							Ser163Asp		
15							Val203His		
							Val203Met		
							Ser191Asp		
							Gln206Asn		
20							Gly211Glu		
							Ala216Asp		
							Gln206Asp		
							Lys213Glu		
							Tyr217Leu		
25							Alal87Pro		
							Ser191Glu		
							Gly211Pro		
							Lys213Asp		
							Asn212Asp		
30							Ala216Gln		
							Asn212Gln		
							Lys213Asp		
							Gln206Asp		
							Ser204Glu		
35							Ala216His		
							Gly166Asp		
	Gly102Asn	÷	Glyl60Asn	+	Thr164Glu	*	Gln206Asn	÷	Thr220Asp
	Asn 61Ser	+	Ala 98Asp	+	Asn155Asp	李	Ser188Glu	+	Val203Ser
	Glu156Asp	4	Ser204Asp	4	Gln206Glu	寺	Lys213Glu	4	Ala216Pro
40	Asp 99Glu	+	Gly157Pro	4	Ser204Glu	÷	Gln206Asp	÷	Lys213Glu
	Ser130Asp	÷	Gly160Asn	4	Ser204Glu	+	Gln206Asn	4	Gly215Asp
							Gln206Asp		
	Ala 98Glu	+	Asp 99Glu	*	Trp106Gly	÷	Gly154Asp	4	Asn218Glu
							Ser105Glu		
45							Ala216Glu		
							Tyrl67Glu		
							Gly215Pro		
							Ser204Asp		
							Gly166Ser		
50							Tyr167Glu		
							-		-

	Gln 59Ser	+	Glu156Asp	4	Gly160Glu	+	Gly211Glu	÷	Lys213Glu
	Glv127Glu	+	Asn155Asp	+	Ala187His	4	Ala216Glu	+	Tyr217His
	Gln103Glu	+	Glv160Asn	+	Gln206Glu	+	Tyr214Gly	+	Asn218Glu
	Ser 63Asp	+	Gly202Pro	÷	Lvs213Asp	+	Gly215Gln	4	Asn218Asp
5	Asp 60Glu	4	Leu 96G1u	4	Thr158Gln	+	Gly166Pro	4	Gln206Asp
-	Gly 97ksn	4	Gln103asp	4	Phel89Ala	+	Gln206Ser	4	Lvs213Asp
	hen 62hen	4	Thr 66Gln	4	Tyr104Pro	+	Ser132Asp	ą.	Asn212Asp
	Ala Gapro	4	Pro129asp	4	Ser130Asp	4	Lys213Glu	+	Tyr217Glu
	Sor 63Men	i	Gluis6asp	ı.	Gin206Glu	4	Lys213Glu	+	Ala216Pro
10	Aen 60Glu		G1v102G1n	à	Serinsch	å	Thr164Gln	4	G1v211G1u
1.63	Nam COCIU	3.	ThwiseCin	ì	Tue 213C1n	1	Ala216Gln	á	Tur217Val
							Tyr217His		
	TrefolWab	7	GIATOTUSE	4	WING I CHAP	7	Gln206Asn	1	Clasiano
	Ser osasp	*	GIYIOOGIU	7	GTHIONED	7	GIHZOOMSH	7	grastauph
							Pro210Asp		
15							Ser191Asp		
							Leu126Thr		
							Lys213Asp		
							Tyr217Cys		
	Ser 63Glu	+	Ser16ZAsp	÷	Alal87Gln	+	Gly211Asn	+	Lys213Asp
20							Tyr214Glu		
							Gly215Glu		
							Pro201Gln		
							Ser188Asp		
							Ser204Asp		
25							Lys213Asp		
	Serl62Asp	4	Ala187Glu	÷	Pro201Gln	4	Gln206Asp	+	Tyr217Glu
	Gly157Glu	+	Phel89Tyr	+	Val203Glu	+	Ser204Glu	+	Lys213Glu
							Gly202Asn		
	Asp 60Glu	+	Ser159Asp	÷.	Thr164Glu	+	Phel89His	+	Lys213Glu
30	Tvr104Cvs	+	Ser162Glu	4	Lys213Glu	+	Asn218Asp	4	Gly219Glu
							Gly1575er		
							Asn212Asp		
							Tyr167Leu		
							Serl88Glu		
35							Gly166Gln		
							Thr164Asn		
							Ser191Glu		
							Gln206Ser		
							Pro210Gln		
40							Gly128Glu		
***							Ser204Glu		
							Asn212Asp		
							Ser191Glu		
							Gln206Glu		
200							Lys213Asp		
45									
							Gln206Glu		
	Ser 63Glu								
							Lys213Glu		
	rrpioeThr	*	Giyisaser	+	GIYID/ASP	4	Lys213Glu	+	ALAZIOGIU
50	Ala 98Ser	+	Alal8/Glu	+	Lys213Asp	4	Gly215Gln	÷	AlazibAsp

Tyr104Pro + Ser159Asp + Glv202Asp + Lys213Glu + Ala216Asp Leul26Asn + Asn155Glu + Thr164Asn + Lys213Asp + Ala216Glu Ser161Asp + Val203His + Ser204Asp + Gly211Asp + Tyr217Asp Asn 61Asp + Ser163Asp + Val203His + Ser204Glu + Tyr217Asp Val 95Asp + Trp106Glu + Ser161Glu + Ala187Pro + Ser204Asp Leu 96Glu + Gly100Asp + Trp106Cys + Ser188Glu + Gln206Asp SerlOlGlu + Ser204Asp + Gly2llGlu + Lys2l3Asp + Gly2l5Asn Asp 99Glu + Ser159Glu + Ser162Glu + Ser204Asp + Glv219Asn Leu 96Ala + Gln103Asp + Leu126Val + Glv128Asp + Ser204Asp Ala 98Glu + Ser105Glu + Gly154Glu + Glu156Asp + Phe189Pro Asn 61Glu + Ser159Glu + Gln206Ser + Pro210Glu + Ala216Glu Gly 97Asp + Ser101Asp + Alal33Glu + Gln206Glu + Gly219Pro Leul26Ala + Glv131Glu + Ser204Glu + Pro210Asp + Lvs213Glu Val 95Glu + Ala 98Asn + Glyl02Glu + Ser162Asp + Ser204Glu 15 Asn 61Glu + Glv100Asn + Pro129Asp + Ser163Glu + Asn218Ser Gly102Asp + Gly127Ser + Thr158Asp + Gly160Glu + Lys213Glu Serl30Asp + Asn155Gln + Thr158Glu + Ser191Asp + Gly215Glu Alal33Asp + Ser159Glu + Ser16lAsp + Ser204Asp + Ala216Gln Ser132Glu + Thr164Asp + Ser204Asp + Gln206Glu + Tvr217Pro Gly157Glu + Tyr167Asp + Ser204Glu + Gln206Glu + Ala216Asn 20 Thr 66Ser + Serl30Glu + Thr158Glu + Ser204Glu + Gln206Glu Asp 99Glu + Ser159Glu + Ser204Glu + Gln206Glu + Tvr217Pro Thr 66Ser + Ser105Asp + Ser159Glu + Ser204Glu + Gln206Asp Asp 60Glu + Glv127Asp + Ser204Glu + Gln206Glu + Tvr214Asp Ser 63Glu + Ser130Asp + Gln206Asp + Ala216Gly + Asn218Asp 25 Pro129Gly + Ser159Glu + Ser188Glu + Phe189Cvs + Ser204Asp Glyl3lAsp + Glu156Asp + Ser162Glu + Ala187Pro + Tyr214Gly Gly102Asp + Trp106Glu + Ser159Glu + Pro210Gln + Thr220Asp Gly131Asp + Ser161Asp + Ser163Asp + Gly166Asn + Ser204Asp Gln 59Asn + Ser188Asp + Gln206Asp + Glv211Glu + Tvr217Glu 30 Ala 98Glu + Glv157Asp + Thr164Asp + Phe189Thr + Lvs213Asp Gln103Asp + Trp106Tvr + Glv160Asp + Lvs213Glu + Glv215Asp Val 95Asp + Gly131Gln + Ser159Asp + Ala216Asp + Asn218Asp Ser101Asp + Gln103Glu + Ser161Glu + Gln206Glu + Ala216His Thr 66Glu + Gly128Pro + Gly154Asp + Thr164Asp + Ser204Glu 35 Val 95Asp + Glv131Glu + Ser163Asp + Ser191Glu + Gln206Asn Val 95Ser + Ala 98Glu + Seri01Asp + Glv131Asp + Phe189Asp Asn 62Asp + Leu126His + Glv131Pro + Lys213Glu + Tvr217Asp Ser 63Asp + Seri30Glu + Thr158Pro + Ala216Glu + Tvr217Ile 40 Gln 59Asp + Gly157Asp + Gln206Glu + Tyr214Val + Asn218Asp Val 95Glu + Asp 99Glu + Gly215Asp + Ala216Asn + Tyr21711e Ser132Glu + Gly154Gln + Gly157Glu + Ser161Asp + Tyr214Ser SeriOlAsp + Glv131Pro + Seri88Asp + Seri91Glv + Gln206Glv Thr 66Asp + Leu 96Glu + Glu156Asp + Val203His + Glv215Asp Asn 62Glu + Glv166Gln + Ser188Glu + Glv211Glu + Ala216His 45 Ile107Asp + Ala187Asp + Ser191Asp + Gln206Asp + Ala216Thr SerlOSAsp + SerlS9Glu + Serl91Asp + Lys213Asp + Ala216Thr Asn155Asp + Ser163Asp + Vall65Asn + Gln206Ser + Lys213Glu Ser101Glu + Glv131Asn + Asn155Glu + Ala187Glu + Lvs213Asp 50 Gln 59Glu + Gly160Asp + Ser188Asp + Val203Glu + Tyr217Ile

```
Alal33Asp + Ser161Glu + Thr164Asp + Ser204Asp + Asn218Ser
     Gln103Glu + Tyr104Cys + Ser161Glu + Thr164Asp + Lys213Glu
     Ser 63Glu + Gly160Asp + Tyr167Met + Lys213Asp + Asn218Asp
     Ser101Glu + Leu126Glu + Ser188Glu + Lys213Asp + Ala216Asn
S
     Asp 60Glu + Leu 96Glu + Gly128Asn + Ser130Glu + Gln206Glu
     Glh103Ser + Ser130Asp + Ala133Gly + Gln206Glu + Gly219Asp
     Gly102Asn + Ser162Asp + Gln206Asp + Tyr217Gly + Gly219Asp
     Thr 66Gln + Asp 99Glu + Gln103Glu + Val203Ser + Tvr217Asp
     Asp 99Glu + Gln103Asp + Glv157Asn + Lys213Asp + Ala216Gln
     Thr 66Asp + Pro129Asp + Ser159Glu + Lys213Asp + Tyr217His
10
     Ser 63Asp + Gly 97Asp + Tyr167Ala + Ser188Asp + Ser204Glu
     Gly102Pro + Tyr104Ala + Glu156Asp + Tyr167Glu + Ser204Glu
     Gln 59Glu + Asn 62Gln + Gln103Glu + Gly131Glu + Phe189Leu
     Asp 60Glu + Ser162Glu + Ala200Gln + Val203Glu + Gly211Asp
15
     Asp 60Glu + Ile107Glu + Gly157Asp + Gly160Glu + Phe189Ser
     Ser101Asp + Gly102Ser + Tyr104Glu + Phel89Asp + Lys213Glu
     Ser101Asp + Ser105Asp + Val203Asp + Ala216His + Tyr217His
     Serl32Asp + Asn155Glu + Gly211Pro + Lys213Glu + Asn218Asp
     Gln103Asp + Gly128Asp + Ser163Asp + Ala187Glu + Tyr217Ile
20
     Leu 96Ile + Gly128Asp + Ser191Glu + Gly202Asn + Gln206Glu
     Thr 66Glu + Gln103Asp + Ser204Glu + Lys213Asp + Gly219Ser
     Ala 98Asp + Ser132Asp + Gly166Glu + Pro210Asp + Tyr214Gln
     Ser 63Glu + Prol29Glu + Val203Met + Lys213Glu + Gly219Asp
     Gln 59Glu + Gly 97Asp + Gly128Asp + Ser159Glu + Ala216Ser
     Ser 63Glu + Gln103Glu + Ile107Ser + Glu156Asp + Lys213Asp
25
     Gly102Asp + Gly157Asn + Ser162Glu + Ser191Glu + Ser204Glu
     Ser105Asp + Ser162Asp + Ser191Asp + Pro210Gly + Gly211Glu
     Asp 60Glu + Val 95Glu + Trp106Gly + Pro129Glu + Ser159Asp
     Ser1016lu + Trp106Asp + Thr164Glu + Ser204Asp + Pro210Ser
     Gln 59Glu + Gly100Gln + Gly157Asp + Gly211Asp + Tyr217Glu
30
     Gly 97Asp + Ser130Asp + Gln206Asp + Lys213Asp + Ala216Asn
     Tvrl04Asp + Glv154Asp + Glv160Asp + Ser163Asp + Ser204Glu
     Ser132Glu + Glv154Glu + Ser163Glu + Pro210Glv + Asn212Asp
     Leu 96Thr + Alal33Glu + Asn155Glu + Lys213Asp + Ala216Asp
35
     Asp 60Glu + Asp 99Glu + Leul26Gly + Ser130Asp + Ser162Glu
```

II. Cleaning Compositions

In another embodiment of the present invention, an effective amount of one or more of the enzyme variants are included in compositions useful for cleaning a variety of surfaces in need of proteinaceous stain removal. Such cleaning compositions include detergent compositions for cleaning hard surfaces, unlimited in form (e.g., liquid and granular); detergent compositions for cleaning fabrics, unlimited in form (e.g., granular, liquid and bar formulations); dishwashing compositions (unlimited in form); oral cleaning compositions, unlimited in form (e.g., dentifrice, toothpaste and mouthwash formulations); denture cleaning compositions, unlimited in form (e.g., liquid, tablet); and contact

20

25

35

lens cleaning compositions, unlimited in form (e.g., liquid, tablet),

The cleaning compositions also comprise, in additin to the BPN' variants described hereinbefore, one or more cleaning composition materials compatible with the protease enzyme. the term "cleaning composition material", as used herein, means any liquid, solid or gaseous material selected for the particular type of cleaning composition desired and the form of the product (e.g., liquid, granule, bar, spray, stick, paste, gel), which materials are also compatible with the BPN' variant used in the composition. the specific selection of cleaning composition materials are readily made by considering the surface material to be cleaned, the desired form of the composition for the cleaning condition during use (e.g., through the wash detergent use). The term "compatible", as used herein, means the cleaning composition materials do not reduce the proteolytic activity of the BPN' variant to such an extent that the protease is not effective as desired during normal use situations. Specific cleaning composition materials are exemplified in detail hereinafter.

As used herein, "effective amount of enzyme variant" refers to the quantity of enzyme variant necessary to achieve the enzymatic activity necessary in the specific cleaning composition. Such effective amounts are readily ascertained by one of ordinary skill in the art and is based on many factors, such as the particular enzyme variant used, the cleaning application, the specific composition of the cleaning composition, and whether a liquid or dry (e.g., granular, bar) composition is required, and the like. Preferably the cleaning compositions comprise from about 0.0001% to about 10% of one or more enzyme variants of the present invention, more preferably from about 0.001% to about 1%, more preferably still from about 0.01% to about 0.1%. Several examples of various cleaning compositions wherein the enzyme variants may be employed are discussed in further detail below. All parts, percentages and ratios used herein are by weight unless otherwise specified.

As used herein, "non-fabric cleaning compositions" include hard surface cleaning compositions, dishwashing compositions, oral cleaning compositions, denture cleaning compositions and contact lens cleaning compositions.

A. Cleaning Compositions for Hard Surfaces, Dishes and Fabrics

The enzyme variants of the present invention can be used in a variety of detergent compositions where high sudsing and good insoluble substrate removal are desired. Thus the enzyme variants can be used with various

20

30

35

conventional ingredients to provide fully-formulated hard-surface cleaners, dishwashing compositions, fabric laundering compositions and the like. Such compositions can be in the form of liquids, granules, bars and the like. Such compositions can be formulated as modern "concentrated" detergents which contain as much as 30%-60% by weight of surfactants.

The cleaning compositions herein can optionally, and preferably, contain various anionic, nonionic, zwitterionic, etc., surfactants. Such surfactants are typically present at levels of from about 5% to about 35% of the compositions.

Nonlimiting examples of surfactants useful herein include the conventional C11-C18 alkyl benzene sulfonates and primary and random alkyl sulfates, the C1n-C18 secondary (2,3) alkyl sulfates of the formulas CHa(CHa)x(CHOSOa)7M+)CHa and CHa(CHa)v(CHOSOa-M+) wherein x and (v+1) are integers of at least about 7, preferably at least about 9. and M is a water-solubilizing cation, especially sodium, the C10-C12 alkyl alkoxy sulfates (especially EO 1-5 ethoxy sulfates), C1n-C1g alkyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the C+n-C+x alkyl polyglycosides. and their corresponding sulfated polyglycosides, C12-C12 alpha-sulfonated fatty acid esters. C+2-C+a alkyl and alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C12-C18 betaines and sulfobetaines ("sultaines"), C10-C18 amine oxides, and the like. The alkyl alkoxy sulfates (AES) and alkyl alkoxy carboxylates (AEC) are preferred herein. (Use of such surfactants in combination with the aforesaid amine oxide and/or betaine or sultaine surfactants is also preferred, depending on the desires of the formulator.) Other conventional useful surfactants are listed in standard texts. Particularly useful surfactants include the C10-C1x N-methyl glucamides disclosed in US Patent 5. 194.639. Connor et al., issued March 16, 1993, incorporated herein by reference.

A wide variety of other ingredients useful in detergent cleaning compositions can be included in the compositions herein, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, solvents for liquid formulations, etc. If an additional increment of sudsing is desired, suds boosters such as the $\rm C_{10}\text{-}C_{16}$ alkolamides can be incorporated into the compositions, typically at about 1% to about 10% levels. The $\rm C_{10}\text{-}C_{14}$ monoethanol and diethanol amides illustrate a typical class of such suds boosters. Use of such suds boosters with high sudsing adjunct surfactants such

15

26

25

35

as the amine oxides, betaines and sultaines noted above is also advantageous. If desired, soluble magnesium salts such as MgCl₂, MgSO₄, and the like, can be added at levels of, typically, from about 0.1% to about 2%, to provide additionally sudsing.

The liquid detergent compositions herein can contain water and other solvents as carriers. Low molecular weight primary or secondary alcohols exemplified by methanol, ethanol, propanol, and isopropanol are suitable. Monohydric alcohols are preferred for solubilizing surfactants, but polyols such as those containing from about 2 to about 6 carbon atoms and from about 2 to about 6 hydroxy groups (e.g., 1,3-propanediol, ethylene glycol, glycerine, and 1,2-propanediol) can also be used. The compositions may contain from about 5% to about 90%, typically from about 10% to about 50% of such carriers.

The detergent compositions herein will preferably be formulated such that during use in aqueous cleaning operations, the wash water will have a pH between about 6.8 and about 11.0. Finished products thus are typically formulated at this range. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.

When formulating the hard surface cleaning compositions and fabric cleaning compositions of the present invention, the formulator may wish to employ various builders at levels from about 5% to about 50% by weight. Typical builders include the 1-10 micron zeolites, polycarboxylates such as citrate and oxydisuccinates, layered silicates, phosphates, and the like. Other conventional builders are listed in standard formularies.

Likewise, the formulator may wish to employ various additional enzymes, such as cellulases, lipases, amylases and proteases in such compositions, typically at levels of from about 0.001% to about 1% by weight. Various detersive and fabric care enzymes are well-known in the laundry detergent art.

Various bleaching compounds, such as the percarbonates, perborates and the like, can be used in such compositions, typically at levels from about 1% to about 15% by weight. If desired, such compositions can also contain bleach activators such as tetraacetyl ethylenediamine, nonanoyloxybenzene sulfonate, and the like, which are also known in the art. Usage levels typically range from about 1% to about 10% by weight.

Various soil release agents, especially of the anionic oligoester type,

15

30

35

various chelating agents, especially the aminophosphonates and ethylenediaminedisuccinates, various clay soil removal agents, especially ethoxylated tetraethylene pentamine, various dispersing agents, especially polyacrylates and polyasparatates, various brighteners, especially anionic brighteners, various suds suppressors, especially silicones and secondary alcohols, various fabric softeners, especially smectite clays, and the like can all be used in such compositions at levels ranging from about 1% to about 35% by weight. Standard formularies and published patents contain multiple, detailed descriptions of such conventional materials.

Enzyme stabilizers may also be used in the cleaning compositions. Such enzyme stabilizers include propylene glycol (preferably from about 1% to about 10%), sodium formate (preferably from about 0.1% to about 1%) and calcium formate (preferably from about 0.1% to about 1%).

1. Hard surface cleaning compositions

As used herein "hard surface cleaning composition" refers to liquid and granular detergent compositions for cleaning hard surfaces such as floors, walls, bathroom tile, and the like. Hard surface cleaning compositions of the present invention comprise an effective amount of one or more enzyme variants of the present invention, preferably from about 0.001% to about 10%, more preferably from about .01% to about 15% to about 15% more preferably still from about .05% to about 15% by weight of active enzyme of the composition. In addition to comprising one or more of the enzyme variants, such hard surface cleaning compositions typically comprise a surfactant and a water-soluble sequestering builder. In certain specialized products such as spray window cleaners, however, the surfactants are sometimes not used since they may produce a filmy/streaky residue on the glass surface.

The surfactant component, when present, may comprise as little as 0.1% of the compositions herein, but typically the compositions will contain from about 0.25% to about 10%, more preferably from about 1% to about 5% of surfactant.

Typically the compositions will contain from about 0.5% to about 50% of a detergency builder, preferably from about 1% to about 10%.

Preferably the pH should be in the range of about 8 to 12. Conventional pH adjustment agents such as sodium hydroxide, sodium carbonate or hydroxhloric acid can be used if adjustment is necessary.

Solvents may be included in the compositions. Useful solvents include,

but are not limited to, glycol ethers such as diethyleneglycol monohexyl ether. diethyleneglycol monobutyl ethylenealycol ether. monobutyl ether. propyleneglycol ethylenealycol monohexyl ether. monobuty! ether. dipropyleneglycol monobutyl ether, and diols such as 2,2,4-trimethyl-1,3pentanediol and 2-ethyl-1,3-hexanediol. When used, such solvents are typically present at levels of from about 0.5% to about 15%, preferably from about 3% to about 11%.

Additionally, highly volatile solvents such as isopropanol or ethanol can be used in the present compositions to facilitate faster evaporation of the composition from surfaces when the surface is not rinsed after "full strength" application of the composition to the surface. When used, volatile solvents are typically present at levels of from about 2% to about 12% in the compositions.

The hard surface cleaning composition embodiment of the present invention is illustrated by the following examples.

		Example	s 7-12			
Liquid	Hard Si	urface Cl	eaning	Compo	sitions	
			Examp	ole No.		
Component	7	8	9	10	11	12
Ser105Glu	0.05	0.50	0.02	0.03	0.10	0.03
Gly127Gln + Ala216Pro	•••		•	~	0.20	0.02
Na ₂ DIDA*						
EDTA**			2.90	2.90	•••	
Na Citrate	•••				2.90	2.90
NaC ₁₂ Alkyl-benzene sulfonate	1.95		1,95	•••	1.95	View
NaC ₁₂ Alkylsulfate	2000	2.20		2.20	***	2.20
NaC ₁₂ (ethoxy)*** sulfate		2.20		2.20	4000	2.20
C ₁₂ Dimethylamine oxide	•••	0.50	***	0.50	***	0.50
Na Cumene sulfonate	1.30	***	1.30	***	1.30	-
Hexyl Carbitol***	6.30	6.30	6.30	6.30	6.30	6.30
Water****		k	alance	to 1009	6	

^{*}Disodium N-diethyleneglycol-N,N-iminodiacetate

^{35 **}Na₄ ethylenediamine diacetic acid

10

15

20

25

***Diethyleneglycol monohexyl ether

****All formulas adjusted to pH 7

In Examples 7-10, the BPN' variants recited in Tables 2-25, among others, are substituted for Ser105Glu, with substantially similar results,

In Examples 11-12, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Gly127GIn + Ala216Pro, with substantially similar results.

Examples 13-18
Spray Compositions for Cleaning Hard Surfaces
and Removing Household Mildew

			Examp	ole No.		
Component	13	14	15	16	17	18
Tyr104lle + Gly215Pro	0.50	0.05	0.60	0.30	0.20	0.30
Asp99Glu	*			•	0.30	0.10
Sodium octyl sulfate	2.00	2.00	2.00	2.00	2.00	2.00
Sodium dodecyl sulfate	4.00	4.00	4.00	4.00	4.00	4.00
Sadium hydroxide	0.80	0.80	0.80	0.80	0.80	0.80
Silicate (Na)	0.04	0.04	0.04	0.04	0.04	0.04
Perfume	0.35	0.35	0.35	0.35	0.35	0.35
Water			balance	to 100%		

Product pH is about 7.

In Examples 13-16, the BPN' variants recited in Tables 2-25, among others, are substituted for Tyr104lle + Gly215Pro, with substantially similar results.

In Examples 17-18, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Tyr104lle + Gly215Pro and Asp99Glu, with substantially similar results.

Dishwashing Compositions

In another embodiment of the present invention, dishwashing compositions comprise one or more enzyme variants of the present invention. As used herein, "dishwashing composition" refers to all forms for compositions for cleaning dishes, including but not limited to, granular and liquid forms. The dishwashing composition embodiment of the present invention is illustrated by the following examples.

Examples 19-24
Dishwashing Composition

		Example No.				
Component	19	20	21	22	23	24
Glu59Ser + Leu96Gly						
+ Ser204Glu	0.05	0.50	0.02	0.40	0.10	0.03
Lys96Gly + Ser204Glu		~	-	•	0.40	0.02
C ₁₂ -C ₁₄ N-methyl-						
glucamide	0.90	0.90	0.90	0.90	0.90	0.90
C ₁₂ ethoxy (1) sulfate	12.00	12.00	12.00	12.00	12.00	12.00
2-methyl undecanoic aci	d 4.50	4.50	4.50	4,50	4.50	4.50
C ₁₂ ethoxy (2) carboxyla	te 4,50	4.50	4.50	4.50	4.50	4.50
C ₁₂ alcohol ethoxylate (-	4) 3.00	3.00	3.00	3.00	3.00	3.00
C ₁₂ amine oxide	3.00	3.00	3.00	3.00	3.00	3.00
Sodium cumene sulfonat	e 2.00	2.00	2.00	2.00	2.00	2.00
Ethanol	4.00	4.00	4.00	4.00	4.00	4.00
Mg++ (as MgCl ₂)	0.20	0.20	0.20	0.20	0.20	0.20
Ca++ (as CaCl ₂)	0.40	0.40	0.40	0.40	0.40	0.40
Water			balano	e to 1009	%	

Product pH is adjusted to 7.

20

35

In Examples 19-22, the BPN' variants recited in Tables 2-25, among others, are substituted for Gin59SSer + Leu96Gly + Ser204Glu, with substantially similar results.

In Examples 23-24, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Gin59SSer + Leu9GGly + Ser204Glu and Lys96Gly + Ser204Glu, with substantially similar results.

Fabric cleaning compositions

In another embodiment of the present invention, fabric cleaning compositions comprise one or more enzyme variants of the present invention.

As used herein, "fabric cleaning composition" refers to all forms for detergent compositions for cleaning fabrics, including but not limited to, granular, liquid and bar forms. Preferred fabric cleaning compositions are those in the liquid form.

a. Granular fabric cleaning compositions

The granular fabric cleaning compositions of the present invention contain

25

an effective amount of one or more enzyme variants of the present invention, preferably from about 0.001% to about 10%, more preferably from about 0.005% to about 5%, more preferably from about 0.01% to about 1% by weight of active enzyme of the composition. In addition to one or more enzyme variants, the granular fabric cleaning compositions typically comprise at least one surfactant, one or more builders, and, in some cases, a bleaching agent.

The granular fabric cleaning composition embodiment of the present invention is illustrated by the following examples.

Examples 25-28
Granular Fabric Cleaning Composition

		Exam	ple No.	
Component	25	26	27	28
Ser101Asp	0.10	0.20	0,03	0,05
Thr66Glu	*		0.02	0.05
C ₁₃ linear alkyl benzene sulfonate	22.00	22.00	22.00	22.00
Phosphate (as sodium tripolyphosphates)	23.00	23.00	23.00	23.00
Sodium carbonate	23.00	23.00	23.00	23.00
Sodium silicate	14.00	14.00	14.00	14.00
Zeolite	8.20	8.20	8.20	8.20
Chelant (diethylaenetriamine- pentaacetic acid)	0.40	0.40	0.40	0.40
Sodium sulfate	5.50	5.50	5,50	5.50
Water		balano	e to 100°	Va

In Examples 25-26, the BPN' variants recited in Tables 2-25, among others, are substituted for Ser101Asp, with substantially similar results.

In Examples 27-28, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Ser101Asp and Thr66Glu, with substantially similar results.

Examples 29-32
Granular Fabric Cleaning Composition

	Example No.				
Component	29	30	31	32	
Val95Asp + Leu126Ser + Asn155Gin	0.10	0.20	0.03	0,05	
Gly65Ser + Gly102Asn + Val203Glu	-	-	0.02	0.05	
C ₁₂ alkyl benzene sulfonate	12.00	12.00	12.00	12.00	
Zeolite A (1-10 micrometer)	26.00	26.00	26.00	26.00	
2-butyl octanoic acid	4.00	4.00	4.00	4.00	
C ₁₂ -C ₁₄ secondary (2,3) alkyl sulfate, Na salt	5.00	5,00	5.00	5.00	
Sodium citrate	5.00	5.00	5.00	5.00	
Optical brightener	0.10	0.10	0.10	0.10	
Sodium sulfate Water and minors	17.00	17.00 balanc	17.00 e to 100°	17.00	

In Examples 29-30, the BPN' variants recited in Tables 2-25, among others, are substituted for Val95Asp + Leu126Ser + Asn155Gin, with substantially similar results.

In Examples 31-32, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Val95Asp + Leu126Ser + Asn155Gin and Gly65Ser + Gly102Asn + Val203Glu, with substantially similar results.

Examples 33-36
Granular Fabric Cleaning Composition

	Example No.			
Component	33	34	35	36
Ser63Glu	0.10	0.20	0.03	0.05
Leu96Asn + Lys213Asp	-	-	0.02	0.05
C ₁₃ linear alkyl benzene sulfonate	22.00	22.00	22.00	22.00
Phosphate (as sodium tripolyphosphates)	23.00	23.00	23.00	23.00
Sodium carbonate	23.00	23.00	23.00	23.00
Sodium silicate	14.00	14.00	14.00	14.00
Zeolite	8.20	8.20	8.20	8.20
Chelant (diethylaenetriamine- pentaacetic acid)	0.40	0.40	0.40	0.40
Sodium sulfate	5.50	5.50	5.50	5.50
Water		balanc	e to 100°	%

In Examples 33-34, the BPN' variants recited in Tables 2-25, among others, are substituted for Ser63Glu, with substantially similar results.

In Examples 35-36, any combination of the BPN' variants recited in

20 Tables 2-25, among others, are substituted for Ser63Glu and Leu96Asn + Lys213Asp, with substantially similar results.

Examples 37-40
Granular Fabric Cleaning Composition

O		Exan	nple No.	
Component	37	38	39	40
Asn62Ser +Ser163Asp + Phe189Ser + Ala216Glu	0,10	0.20	0.03	0.05
Gly97Ser + Trp106lle + Tyr217Leu	-	-	0.02	0.05
C ₁₂ alkyl benzene sulfonate	12.00	12.00	12.00	12.00
Zeolite A (1-10 micrometer)	26.00	26.00	26.00	26.00
2-butyl octanoic acid	4.00	4.00	4.00	4.00
C ₁₂ -C ₁₄ secondary (2,3) alkyl sulfate, Na salt	5.00	5,00	5.00	5.00
Sodium citrate	5.00	5.00	5.00	5.00
Optical brightener	0.10	0.10	0.10	0.10
Sodium sulfate Water and minors	17.00	17.00 balanc	17.00 e to 100	17.00 %

In Examples 37-38, the BPN' variants recited in Tables 2-25, among others, are substituted for Asn62Ser + Ser163Asp + Phe189Ser + Ala216Giu, with substantially similar results.

In Examples 39-40, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Asn62Ser + Ser163Asp + Phe189Ser + Ala216Glu and Gly97Ser + Trp106lle + Tyr217Leu, with substantially similar results.

Examples 41-42
Granular Fabric Cleaning Composition

	Examp	ole No.
Component	41	42
Linear alkyl benzene sulphonate	11.4	10.70
Tallow alkyl sulphate	1.80	2.40
C ₁₄₋₁₅ alkyl sulphate	3.00	3.10
C ₁₄₋₁₅ alcohol 7 times ethoxylated	4.00	4.00
Tallow alcohol 11 times ethoxylated	1.80	1.80
Dispersant	0.07	0.1
Silicone fluid	0.80	0.80
Trisodium citrate	14.00	15.00
Citric acid	3.00	2.50
Zeolite	32.50	32.10
Maleic acid acrylic acid copolymer	5.00	5.00
Diethylene triamine penta methylene phosphonic acid	1.00	0.20
Ala98Asp + Ala187Ser	0.30	0.30
Lipase	0.36	0.40
Amylase	0.30	0.30
Sodium silicate	2.00	2.50
Sodium sulphate	3.50	5.20
Polyvinyl pyrrolidane	0.30	0.50
Perborate	0.5	1
Phenol sulphonate	0.1	0.2
Peroxidase	0.1	0.1
Minors	Up to 100	Up to 100

Examples 43-44
Granular Fabric Cleaning Composition

		Examp	le No.
	Component	43	44
5	Sodium linear C ₁₂ alkyl benzene-sulfonate	6.5	8.0
	Sodium sulfate	15.0	18,0
	Zeolite A	26.0	22.0
	Sodium nitrilotriacetate	5.0	5.0
	Polyvinyl pyrrolidone	0.5	0.7
0	Tetraacetylethylene diamine	3.0	3.0
	Boric acid	4.0	~
	Perborate	0.5	1
	Phenol sulphonate	0.1	0.2
15	Gin59Ser + Asn62Ser + Leu96Gly + Ser204Gin	0.4	0.4
	Fillers (e.g., silicates; carbonates; perfumes; water)	Up to 100	Up to 100

Example 45

	and the same of th		
	Compact Granular Fabric Cleaning	Compasition	*************
20	Component	Weight %	
	Alkyl Sulphate	8.0	
	Alkyl Ethoxy Sulphate	2.0	
	Mixture of C25 and C45 alcohol 3 and 7 times ethor	ylated 6.0	
	Polyhydroxy fatty acid amide	2.5	
	Zeolite	17.0	
	Layered silicate/citrate	16.0	
	Carbonate	7.0	
	Maleic acid acrylic acid copolymer	5.0	
	Soil release polymer	0.4	
	Carboxymethyl cellulose	0.4	
	Poly (4-vinylpyridine) -N-oxide	0.1	
	Copolymer of vinylimidazole and vinylpyrrolidone	0.1	
	PEG2000 ·	0.2	
	Val95Gin + Tyr104Giu + Gly127Gin + Lys213Giu + Ala216Asp	0.5	
	Lipase	0.2	

Cellulase	0.2
Tetracetylethylene diamine	6.0
Percarbonate	22.0
Ethylene diamine disuccinic acid	0.3
Suds suppressor	3.5
Disodium-4,4'-bis (2-morpholino -4-anilino-s-triazin-6- ylamino) stilbene-2,2'-disulphonate	0.25
Disadium-4,4'-bis (2-sulfostyril) biphenyl	0.05
Water, Perfume and Minors	Up to 100

Example 46

Granular Fabric Cleaning Composition				
Component	Weight %			
Linear alkyl benzene sulphonate	7.6			
C ₁₆ -C ₁₈ alkyl sulfate	1.3			
C ₁₄₋₁₅ alcohol 7 times ethoxylated	4.0			
Coco-alkyl-dimethyl hydroxyethyl ammonium chloride	1.4			
Dispersant	0.07			
Silicone fluid	0.8			
Trisodium citrate	5.0			
Zeolite 4A	15.0			
Maleic acid acrylic acid copolymer	4.0			
Diethylene triamine penta methylene phosphonic acid	0.4			
Perborate	15.0			
Tetraacetylethylene diamine	5.0			
Smectite clay	10,0			
Poly (oxy ethylene) (MW 300,000)	0.3			
Ser63Glu + Thr104Asn + Gln206Ser + Tyr217Thr	0.4			
Lipase	0.2			
Amylase	0.3			
Cellulase	0.2			
Sodium silicate	3.0			
Sodium carbonate	10.0			
Carboxymethyl cellulose	0.2			
Brighteners	0.2			
Water, perfume and minors	Up to 100			

Example 47
Granular Fabric Cleaning Composition

Component	Weight %
Linear alkyl benzene sulfonate	6.92
Tallow alkyl sulfate	2.05
C ₁₄₋₁₅ alcohol 7 times ethoxylated	4.4
C ₁₂₋₁₅ alkyl ethoxy sulfate - 3 times ethoxylated	0.16
Zeolite	20.2
Citrate	5.5
Carbonate	15.4
Silicate	3.0
Maleic acid acrylic acid copolymer	4.0
Carboxymethyl cellulase	0.31
Soil release polymer	0.30
Asn62Ser + Trp106Gly + Ser132Asp + Ala187Ser + Phe189Ser	0.2
Lipase	0.36
Cellulase	0.13
Perborate tetrahydrate	11.64
Perborate monohydrate	8.7
Tetraacetylethylene diamine	5.0
Diethylene tramine penta methyl phosphonic acid	0.38
Magnesium sulfate	0.40
Brightener	0.19
Perfume, silicone, suds suppressors	0.85
Minors	Up to 100

Liquid fabric cleaning compositions

10

Liquid fabric cleaning compositions of the present invention comprise an effective amount of one or more enzyme variants of the present invention, preferably from about 0.005% to about 5%, more preferably from about 0.01% to about 1%, by weight of active enzyme of the composition. Such liquid fabric cleaning compositions typically additionally comprise an anionic surfactant, a fatty acid, a water-soluble detergency builder and water.

The liquid fabric cleaning composition embodiment of the present invention is illustrated by the following examples.

30

Examples 48-52 Liquid Fabric Cleaning Compositions

	Example No.					
Component	48	49	50	51	52	
Ser161Glu + Gly219Asn	0.05	0,03	0.30	0,03	0,10	
Asn62Ser + Ile107Ala + Glu20 + Tyr217Thr	06Asp -	~	~	0.01	0.20	
C ₁₂ - C ₁₄ alkyl sulfate, Na	20.00	20.00	20.00	20.00	20.00	
2-butyl octanoic acid	5.00	5.00	5.00	5.00	5.00	
Sodium citrate	1.00	1.00	1.00	1.00	1.00	
C ₁₀ alcohol ethoxylate (3)	13.00	13.00	13.00	13.00	13.00	
Monethanolamine	2.50	2.50	2.50	2.50	2.50	
Water/propylene glycol/ethano	ol (100:1:1)	b	alance t	0 100%		

In Examples 48-50 the BPN' variants recited in Tables 2-25, among others, are substituted for Ser161Glu + Gly219Asn, with substantially similar results

In Examples 51-52, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Ser161Glu + Gly219Asn and Asn62Ser + Ile107Ala + Glu206Asp + Tyr217Thr, with substantially similar results.

Examples 53-57

		ŧ	Example	No.		
Component	53	54	55	56	57	
Ser101Asp + lie 107Ala + Gly202Ser	0.05	0.03	0.30	0.03	0.10	
Val95Thr + Thr208Gly				0.01	0.20	
C ₁₂ - C ₁₄ alkyl sulfate, Na	20.00	20.00	20.00	20,00	20.00	
2-butyl octanoic acid	5.00	5.00	5.00	5.00	5.00	
Sodium citrate	1.00	1.00	1.00	1.00	1.00	
C ₁₀ alcohol ethoxylate (3)	13.00	13.00	13.00	13.00	13.00	
Monethanolamine	2.50	2.50	2.50	2.50	2.50	
Water/propylene glycol/ethano	ol (100:1:1)	b	alance t	0 100%		

In Examples 53-55 the BPN' variants recited in Tables 2-25, among 35 others, are substituted for Ser101Asp + Ile 107Ala + Gly202Ser, with

substantially similar results.

In Examples 56-57, any combination of the BPN' variants recited in Tables 212, among others, are substituted for Ser101Asp + lie 107Ala + Gly202Ser and Val95Thr + Thr208Gly, with substantially similar results.

Examples 58-59
Granular Fabric Cleaning Composition

	Example No.	
Component	58	59
C ₁₂₋₁₄ alkenyl succinic acid	3.0	8.0
Citric acid monohydrate	10.0	15.0
Sodium C ₁₂₋₁₅ alkyl sulphate	8.0	8.0
Sodium sulfate of C ₁₂₋₁₅ alcohol 2 times	ethoxylated -	3.0
C ₁₂₋₁₅ alcohol 7 times ethoxylated	*	8.0
C ₁₂₋₁₅ alcohol 5 times ethoxylated	8.0	~
Diethylene triamine penta (methylene ph	osphonic acid)0.2	
Oleic acid	1.8	-
Ethanol	4.0	4.0
Propanediol	2.0	2.0
Asp60Glu + Gln206Asn	0.2	0.2
Polyvinyl pyrrolidone	1.0	2.0
Suds suppressor	0.15	0.15
NaOH	up to	pH 7.5
Perborate	0.5	1
Phenol sulphonate	0.1	0.2
Peroxidase	0.4	0.1
Waters and minors	up to 10	00 parts

In each of Examples 58 and 59 herein, the BPN' variants recited in Tables 2-25, among others, are substituted for Asp60Glu + Gln206Asn, with substantially similar results.

Examples 60-62 Liquid Fabric Cleaning Composition

	Exa			
Component	60	61	62	
Citric Acid	7.10	3.00	3.00	
Fatty Acid	2.00	*	2.00	
Ethanol	1.93	3.20	3.20	
Boric Acid	2.22	3.50	3,50	
Monoethanolamine	0.71	1.09	1.09	
1,2 Propanediol	7.89	8.00	8.00	
NaCumene Sulfonate	1.80	3.00	3.00	
NaFormate	0.08	0.08	80.0	
NaOH	6.70	3.80	3.80	
Silicon anti-foam agent	1,16	1.18	1.18	
Asn61Glu	0.0145			
Gly97Glu + Thr164Pro	-	0.0145		
Asn62Glu + Thr158Ser + Gly215Ser	-	~	0.0145	
Lipase	0.200	0.200	0.200	
Cellulase	-	7.50	7.50	
Soil release polymer	0.29	0.15	0.15	
Anti-foaming agents	0.06	0.085	0.085	
Brightener 36	0.095	*	**	
Brightener 3	~	0.05	0.05	
C ₁₂ alkyl benzenesulfonic acid	9.86	-	-	
C ₁₂₋₁₅ alkyl polyethoxylate (2.5) sulfate	13.80	18.00	18.00	
C ₁₂ glucose amide	•	5.00	5.00	
C ₁₂₋₁₃ alkyl polyethoxylate (9)	2.00	2.00	2.00	
Water, perfume and minors	b	alance to	100%	

Bar fabric cleaning compositions

30

Bar fabric cleaning compositions of the present invention suitable for hand-washing soiled fabrics contain an effective amount of one or more enzyme variants of the present invention, preferably from about 0.001% to about 10%, more preferably from about 0.01% to about 1% by weight of the composition.

The bar fabric cleaning composition embodiment of the present invention is illustrated by the following examples.

Examples 63-66
Bar Fabric Cleaning Compositions

		Exan	ple No.	
Component	63	64	65	66
Gly97Glu + Thr164Pro	0.3	~	0.1	0.02
Ala98Ser + Gly154Asn	-	~	0.4	0.03
C ₁₂ -C ₁₆ alkyl sulfate, Na	20.0	20.0	20.0	20.00
C ₁₂ -C ₁₄ N-methyl glucamide	5.0	5.0	5.0	5.00
C ₁₁ -C ₁₃ alkyl benzene sulfonate, Na	10.0	10.0	10.0	10.00
Sodium carbonate	25.0	25.0	25.0	25.00
Sodium pyrophosphate	7.0	7.0	7.0	7.00
Sodium tripolyphosphate	7.0	7.0	7.0	7.00
Zeolite A (0.110μ)	5.0	5.0	5.0	5.00
Carboxymethylcellulose	0.2	0.2	0.2	0.20
Polyacrylate (MW 1400)	0.2	0.2	0.2	0.20
Coconut monethanolamide	5.0	5.0	5.0	5.00
Brightener, perfume	0.2	0.2	0.2	0.20
CaSO ₄	1.0	1.0	1.0	1.00
MgSO ₄	1.0	1.0	1.0	1.00
Water	4.0	4.0	4.0	4.00
Filler*		balan	ce to 10	0%

^{*}Can be selected from convenient materials such as CaCO₃, talc, clay, silicates, and the like.

In Examples 63-64 the BPN' variants recited in Tables 2-25, among others, are substituted for Gly97Glu + Thr164Pro, with substantially similar results.

In Examples 65-66, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Gly97Glu + Ghr164Pro and Ala98Ser + Gly154Asn, with substantially similar results.

Examples 67-70

Ber Fabric Cleaning Compositions

		Exan	ple No.	
Component	67	68	69	70
Val203Glu	0.3	~	0.1	0.02
Gly100Glu + Ile107Ser	~	0.3	0.4	0.03
C ₁₂ -C ₁₆ alkyl sulfate, Na	20.0	20.0	20.0	20.00
C ₁₂ -C ₁₄ N-methyl glucamide	5.0	5.0	5.0	5.00
C ₁₁ -C ₁₃ alkyl benzene sulfonate, Na	10.0	10.0	10.0	10.00
Sodium carbonate	25.0	25.0	25.0	25.00
Sodium pyrophosphate	7.0	7.0	7.0	7.00
Sodium tripolyphosphate	7.0	7.0	7.0	7.00
Zeolite A (0.110µ)	5.0	5.0	5.0	5.00
Carboxymethylcellulose	0.2	0.2	0.2	0.20
Polyacrylate (MW 1400)	0.2	0.2	0.2	0.20
Coconut monethanolamide	5.0	5.0	5.0	5.00
Brightener, perfume	0.2	0.2	0.2	0.20
CaSO ₄	1.0	1.0	1.0	1.00
MgSO ₄	1.0	1.0	1.0	1.00
Water	4.0	4.0	4.0	4.00
Filler*		balan	ce to 10	0%

*Can be selected from convenient materials such as CaCO₃, talc, clay, silicates, and the like

In Example 67, the BPN' variants recited in Tables 2-25, among others, are substituted for Val203Glu, with substantially similar results.

In Example 68, the BPN' variants recited in Tables 2-25, among others, are substituted for Gly100Glu + Ile107Ser, with substantially similar results.

In Examples 69-70, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Val203Glu and Gly100Glu + Ile107Ser, with substantially similar results.

Additional Cleaning Compositions

In addition to the hard surface cleaning, dishwashing and fabric cleaning compositions discussed above, one or more enzyme variants of the present invention may be incorporated into a variety of other cleaning compositions where hydrolysis of an insoluble substrate is desired. Such additional cleaning

15

20

25

compositions include but are not limited to, oral cleaning compositions, denture cleaning compositions, and contact lens cleaning compositions.

1. Oral cleaning compositions

In another embodiment of the present invention, a pharmaceutically-acceptable amount of one or more enzyme variants of the present invention are included in compositions useful for removing proteinaceous stains from teeth or dentures. As used herein, "oral cleaning compositions" refers to dentifrices, toothpastes, toothgestes, toothpowders, mouthwashes, mouth sprays, mouth gels, chewing gums, lozenges, sachets, tablets, biogels, prophylaxis pastes, dental treatment solutions, and the like. Preferably, the oral cleaning compositions comprise from about 0.001% to about 20% of one or more enzyme variants of the present invention, more preferably from about 0.001% to about 10%, more preferably still from about 0.01% to about 5%, by weight of the composition, and a pharmaceutically-acceptable carrier. As used herein, "pharmaceutically-acceptable" means that drugs, medicaments or inert ingredients which the tem describes are suitable for use in contact with the tissues of humans and lower animals without undue toxicity, incompatibility, instability, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio.

Typically, the pharmaceutically-acceptable oral cleaning carrier components of the oral cleaning components of the oral cleaning compositions will generally comprise from about 50% to about 99.99%, preferably from about 65% to about 99.99%, more preferably from about 65% to about 99%, more preferably from about 65% to about 99%, by weight of the composition.

The pharmaceutically-acceptable carrier components and optional components which may be included in the oral cleaning compositions of the present invention are well known to those skilled in the art. A wide variety of composition types, carrier components and optional components useful in the oral cleaning compositions are disclosed in U.S. Patent 5,096,700, Seibel, issued March 17, 1992; U.S. Patent 5,028,414, Sampathkumar, issued July 2, 1991; and U.S. Patent 5,028,415, Benedict, Bush and Sunberg, issued July 2, 1991; all of which are incorporated herein by reference.

The oral cleaning composition embodiment of the present invention is illustrated by the following examples.

Examples 71-74

Dentifrice Composition

		Exa	mple No	
Component	71	72	73	74
Gin59Asp + Ala98Glu + Gly102Asp +Ser105Glu + Leu109Thr	2.000	3,500	1,500	2.000
Sorbitol (70% aqueous solution)	35.000	35.000	35.000	35.000
PEG-6*	1.000	1.000	1.000	1.000
Silica dental abrasive**	20.000	20.000	20.000	20.000
Sodium fluoride	0.243	0.243	0.243	0.243
Titanium dioxide	0.500	0.500	0.500	0.500
Sodium saccharin	0.286	0,286	0.286	0.286
Sodium alkyl sulfate (27.9% aqueous solution)	4.000	4,000	4.000	4.000
Flavor	1.040	1.040	1.040	1.040
Carboxyvinyl Polymer***	0.300	0.300	0.300	0.300
Carrageenan****	0.800	0.800	0.800	0.800
Water		balan	ce to 100	9%

^{*}PEG-6 = Polyethylene glycol having a molecular weight of 600.

In Examples 71-74 the BPN' variants recited in Tables 2-25, among others, are substituted for Gin59Asp + Ala98Giu + Gly102Asp + Ser105Glu + 25 Leu209Thr, with substantially similar results.

^{20 **}Precipitated silica identified as Zeodent 119 offered by J.M. Huber.

^{***}Carbopol offered by B.F. Goodrich Chemical Company.

^{****}lota Carrageenan offered by Hercules Chemical Company.

35

Examples 75-78 Mouthweek Composition

		E	xample f	No.
Component	75	76	77	78
Leu96Thr + Gly128Asp + Ala133Glu + Asn155Glu + Lys213Asp + Ala216Asp	3.00	7.50	1.00	5.00
SDA 40 Alcohol	8.00	8.00	8.00	8.00
Flavor	0.08	0.08	80.0	0.08
Emulsifier	0.08	0.08	0.08	0.08
Sodium Fluoride	0.05	0.05	0.05	0.05
Glycerin	10.00	10.00	10.00	10.00
Sweetener	0.02	0.02	0.02	0.02
Benzoic acid	0.05	0.05	0.05	0.05
Sodium hydroxide	0.20	0.20	0.20	0.20
Dye	0.04	0.04	0.04	0.04
Water		ba	lance to	100%

In Examples 75-78, the BPN' variants recited in Tables 2-25, among others, are substituted for Leu96Thr + Gly128Asp + Ala133Glu+ Asn155Glu + Lys213Asp+ Ala216Asp, with substantially similar results.

Examples 79-82 Lazenge Composition

		Example No.				
	Component	79	80	81	82	
25	Ser132Asp + Tyr217Leu	0.01	0.03	0.10	0.02	
	Sorbitol	17.50	17.50	17.50	17.50	
	Mannitol	17.50	17.50	17.50	17.50	
	Starch	13,60	13.60	13,60	13.60	
	Sweetener	1.20	1.20	1.20	1.20	
30	Flavor	11.70	11.70	11.70	11.70	
	Color	0.10	0.10	0.10	0.10	
	Corn Syrup		balance	to 100%	ć	

In Examples 79-82, the BPN variants recited in Tables 2-25, among others, are substituted for Ser132Asp + Tyr217Leu, with substantially similar results.

Examples 83-86 Chewing Gum Composition

		Example No.				
	Component	83	84	85	86	
5	Thr66Pro + Gln103Asn + Lys213Asp	0.03	0.02	0.10	0.05	
	Sorbitol crystals	38.44	38.40	38.40	38.40	
	Paloja-T gum base*	20.00	20.00	20.00	20.00	
	Sorbitol (70% aqueous solution)	22.00	22.00	22.00	22.00	
	Mannitol	10.00	10.00	10.00	10.00	
ŀ	Glycerine	7.56	7.56	7.56	7.56	
	Flavor	1.00	1.00	1.00	1.00	

*Supplied by L.A. Dreyfus Company.

In Examples 83-86, the BPN' variants recited in Tables 2-25, among others, are substituted for Thr66Pro + Gln103Asn + Lys213Asp, with substantially similar results.

2. Denture cleaning compositions

In another embodiment of the present invention, denture cleaning compositions for cleaning dentures outside of the oral cavity comprise one or more enzyme variants of the present invention. Such denture cleaning compositions comprise an effective amount of one or more of the enzyme variants, preferably from about 0.0001% to about 50% of one or more of the enzyme variants, more preferably from about 0.001% to about 35%, more preferably still from about 0.01% to about 20%, by weight of the composition, and a denture cleansing carrier. Various denture cleaning composition formats such as effervescent tablets and the like are well known in the art (see for example U.S. Patent 5,055,305, Young, incorporated herein by reference), and are generally appropriate for incorporation of one or more of the enzyme variants for removing proteinaceous stains from dentures.

The denture cleaning composition embodiment of the present invention is illustrated by the following examples.

Examples 87-90
Two-layer Effencescent Dentura Cleansing Tablet

		Exa	mple No.	
Component	87	88	89	90
Acidic Layer				
Gln59Glu + Ser63Glu + Val + Gly97Pro + Tyr217Ala		1.5	0.01	0.05
Tartaric acid	24.0	24.0	24.00	24.00
Sodium carbonate	4.0	4.0	4.00	4.00
Sulphamic acid	10.0	10.0	10.00	10.00
PEG 20,000	4.0	4.0	4.00	4.00
Sodium bicarbonate	24.5	24.5	24.50	24.50
Potassium persulfate	15.0	15.0	15.00	15.00
Sodium acid pyrophosphate	7.0	7.0	7.00	7.00
Pyrogenic silica	2.0	2.0	2.00	2.00
TAED*	7.0	7.0	7.00	7.00
RicinoleyIsulfosuccinate	0.5	0.5	0.50	0.50
Flavor	1.0	1.0	1.00	1.00
Alkaline Laver				
Sodium perborate monohyo	Irate 32.0	32.0	32.00	32.00
Sodium bicarbonate	19.0	19.0	19.00	19.00
EDTA	3.0	3.0	3.00	3,00
Sodium tripolyphosphate	12.0	12.0	12.00	12.00
PEG 20,000	2.0	2,0	2.00	2.00
Potassium persulfate	26.0	26.0	26.00	26.00
Sodium carbonate	2.0	2.0	2.00	2.00
Pyrogenic silica	2.0	2.0	2.00	2.00
Dye/flavor	2.0	2.0	2.00	2.00

^{*}Tetraacetylethylene diamine

In Examples 87-90, the BPN' variants recited in Tables 2-25, among others, are substituted for Gln59Glu + Ser63Glu + Val95Met + Gly97Pro + Tyr217Ala, with substantially similar results.

3. Contact Lens Cleaning Compositions

In another embodiment of the present invention, contact lens cleaning
35 compositions comprise one or more enzyme variants of the present invention.

Such contact lens cleaning compositions comprise an effective amount of one or more of the enzyme variants, preferably from about 0.01% to about 50% of one or more of the enzyme variants, more preferably from about 0.01% to about 20%, more preferably still from about 1% to about 5%, by weight of the composition, and a contact lens cleaning carrier. Various contact lens cleaning composition formats such as tablets, liquids and the like are well known in the art (see for example U.S. Patent 4,863,627, Davies, Meaken and Ress, issued September 5, 1989; U.S. Patent Re. 32,672, Huth, Lam and Kirai, reissued May 24, 1988; U.S. Patent 4,609,493, Schäfer, issued September 2, 1986; U.S. Patent 4,690,793, Ogunbiyi and Smith, issued September 1, 1987; U.S. Patent 4,814,549, Ogunbiyi, Riedhammer and Smith, issued September 30, 1986; and U.S. Patent 4,285,738, Ogata, issued August 25, 1981; each of which are incorporated herein by reference), and are generally appropriate for incorporation of one or more enzyme variants of the present invention for removing proteinaceous stains from contact lens.

The contact lens cleaning composition embodiment of the present invention is illustrated by the following examples.

Examples 91-94
Enzymatic Contact Lens Cleaning Solution

		Exa	mple No.	
Component	91	92	93	94
Ser191Glu + Gly219Ser	0.01	0.5	0.1	2.0
Glucose	50.00	50.0	50.0	50.0
Nonionic surfactant (polyoxyethlene- polyoxypropylene copolymer)	2.00	2.0	2.0	2.0
Anionic surfactant (polyoxyethylene- alkylphenylether sodium sulfricester)	-1.00	1,0	1.0	1.0
Sodium chloride	1.00	1.0	1.0	1.0
Borax	0.30	0.3	0.3	0.3
Water		baland	e to 100	%

In Examples 91-94, the BPN' variants recited in Tables 2-25, among others, are substituted for Ser191Glu + Gly219Ser, with substantially similar results.

While particular embodiments of the subject invention have been described, it will be obvious to those skilled in the art that various changes and

modifications of the subject invention can be made without departing from the spirit and scope of the invention. It is intended to cover, in the appended claims, all such modifications that are within the scope of the invention.

SEQUENCE LISTING

(1) GENE	RAL INFORMATION:
(i)	APPLICANT: BRODE, PHILIP F. et al.
(ii)	TITLE OF INVENTION: BPN VARIANTS HAVING DECREASED ADSORPTION AND INCREASED HYDROLYSIS WHEREIN ONE OR MORE LOOP REGIONS ARE SUBSTITUTED
(lii)	NUMBER OF SEQUENCES: 1
{£v}	CORRESPONDENCE ADDRESS: (A) ADDRESSE: THE PROCTER & GAMBLE COMPANY (B) STREET: 11810 EAST MIAMI RIVER ROAD (C) CITY: ROSS (D) STATE: OH
	(E) COUNTRY: USA (F) ZIP: 45061
(v)	COMPUTER READABLE FORM: (A) HEDIUM TYPE: Floppy disk (E) COMPUTER: IBM PC compatible (C) OPERATION SYSTEM: PC-DOS/MS-DOS (D) SOTTWARE: Patentin Release #1.0, Version #1.25
(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: CORSTANJE, BRAHF J. (B) REGISTRATION NUMBER: 34,804 (C) ATTORNEY DOCKET NO. 5597
(ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: \$13-627-2858 (B) TELEFAX: \$13-627-0260
(2) INFO	RHATION FOR SEQ ID NO:1:
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 275 amino acids (B) TYFE: amino acid (D) TOPOLOGY: linear
(ii)	MOLECULE TYPE: protein
	SEQUENCE DESCRIPTION: SEQ ID NO:1:
Ala 1	Gln Ser Val Pro Tyr Gly Val Ser Gln Ile Lys Ala Pro Ala Les 5 10 15
His	Ser Gln Gly Tyr Thr Gly Ser Asn Val Lys Val Ala Val Ile Asy $20 \\ 20 \\ 36$
Ser	Gly Tie Asp Ser Ser His Pro Asp Leu Lys Val Ala Gly Gly Ala 35 40 45
	(i) (ii) (lii) (iv) (vi) (viii) (ix) (ii) (iii) (xi) Ala i His

	ser	Met SO	Val	Pro	Ser	Glu	Thr 55	Asn	Pro	Phe	Gin	60 60	Asn	asn	ser	His
5	Gly 65	Thr	His	Val	Ala	Gly 70	Thr	Val	Ala	Ala	Leu 75	Asn	Asn	Ser	Ile	Gly 80
	Val	Leu	Gly	Val	Ala 85	Pro	Ser	Ala	Ser	Leu 90	Tyr	Ala	Val	Lys	Val 95	Leu
10	Gly	Ala	Asp	Gly 100	Ser	Gly	Gln	Tyr	Ser 105	Trp	Ile	Ile	Asn	Gly 110	Ile	Glu
15	Trp	Ala	11e	Ala	Asn	Asn	Met	Asp 120	Val	Ile	Asn	Met	Ser 125	Leu	Gly	Gly
15	Pro	Ser 130	Gly	Ser	Ala	Ala	Leu 135	Lys	Ala	Ala	Val	Asp 140	Lys	Ala	Val	Ala
20	Ser 145	Gly	Val	Val	Val	Val 150	Ala	Ala	Ala	Gly	Asn 155	Glu	Gly	Thr	Ser	Gly 160
	Ser	Ser	Ser	Thr	Val 165	Gly	Tyr	Pro	Gly	Lys 170	Tyr	Pro	ser	Val	Ilm 175	Ala
25	Val	Gly	Ala	Val 180	Asp	Ser	Ser	Asn	Gln 185	Arg	Ala	Ser	Phe	Ser 190	Ser	Val
30	Gly	Pro	Glu 195	Leu	Asp	Val	Met	Ala 200	Pro	Gly	Val	Ser	11e 205	Gln	Ser	Thr
30	Leu	Pro 210	Gly	Asn	Lys	Tyr	Gly 215	Ala	Tyr	Asn	Gly	Thr 220	Ser	Met	Ala	Ser
35	Pro 225	Ris	Val	Ala	Gly	Ala 230	Ala	Ala	Leu	Ile	Leu 235	Ser	Lys	His	Pro	Asn 240
	Trp	Thr	Asn	Thr	Gln 245	Val	Arg	Ser	Ser	Leu 250	Glu	Asn	The	Thr	Thr 255	Lys
40	Leu	Gly	Asp	Ser 260	Phe	Tyr	Tyr	Gly	Lys 265	Gly	Leu	Ile	Asn	Val 270	Gln	Ala
	Ala	Ala	Gln 275													
45																

What is claimed is:

- A BPN' variant having a modified amino acid sequence of wild-type amino acid sequence, the wild-type amino acid sequence comprising a first loop region, a second loop region, a third loop region, a fourth loop region and a fifth loop region; characterized in that the modified amino acid sequence comprises a substitution at one or more positions in one or more of the loop regions; wherein
 - A. when a substitution occurs in the first loop region, the substitution occurs at one or more of positions 59, 60, 61, 62, 63, 65 or 66; wherein
 - when a substitution occurs at position 59, the substituting amino acid is Asn, Asp, Glu or Ser;
 - when a substitution occurs at position 60, the substituting amino acid is Glu;
 - when a substitution occurs at position 61, the substituting amino acid is Asp. Gln. Glu or Ser;
 - d. when a substitution occurs at position 62, the substituting amino acid is Asp. Gin. Giu or Ser:
 - e. when a substitution occurs at position 63, the substituting amino acid is Asp or Glu;
 - t. when a substitution occurs at position 65, the substituting amino acid is Asn, Asp, Gin, Giu, Pro or Ser; and
 - g. when a substitution occurs at position 66, the substituting amino acid is Asn. Asp. Gln. Glu, Gly, Pro or Ser;
 - when a substitution occurs in the second loop region, the substitution occurs at one or more of positions 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106 or 107; wherein
 - a. when a substitution occurs at position 95, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Met, Pro, Ser or Thr;
 - when a substitution occurs at position 96, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Met, Pro, Ser, Thr or Val;
 - when a substitution occurs at position 97, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser;

- when a substitution occurs at position 98, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, His, Pro, Ser or Thr;
- e. when a substitution occurs at position 99, the substituting amino acid is Glu;
- f. when a substitution occurs at position 100, the substituting amino acid is Asn, Asp, Gin, Giu, Pro or Ser;
- when a substitution occurs at position 101, the substituting amino acid is Asp or Glu;
- when a substitution occurs at position 102, the substituting amino acid is Asn. Asp. Gln. Glu. Pro or Ser;
- when a substitution occurs at position 103, the substituting amino acid is Asn, Asp, Glu or Ser;
- j when a substitution occurs at position 104, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Pro, Ser, Thr or Val;
- when a substitution occurs at position 105, the substituting amino acid is Asp or Glu;
- when a substitution occurs at position 106, the substituting amino acid is Ala, Asn, Asp, Cys, Gin, Glu, Gly, His, Ile, Leu, Met, Phe, Pro, Ser, Thr, Tyr or Val; and
- m. when a substitution occurs at position 107, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Leu, Met. Pro, Ser, Thr or Val;
- C. when a substitution occurs in the third loop region, the substitution occurs at one or more of positions 126, 127, 128, 129, 130, 131, 132 or 133; wherein
 - when a substitution occurs at position 126, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Met. Pro. Ser. Thr or Val:
 - when a substitution occurs at position 127, the substituting amino acid is Asn. Asp. Gln. Glu. Pro or Ser:
 - when a substitution occurs at position 128, the substituting amino acid is Asn, Asp, Gln, Glu, Gly or Ser;
 - when a substitution occurs at position 129, the substituting amino acid is Asn, Asp, Gln, Glu, Gly or Ser;
 - when a substitution occurs at position 130, the substituting amino acid is Asp or Glu;

WO 95/30010 PCT/US95/93176

- when a substitution occurs at position 131, the substituting amino acid is Asn, Asp, Gln, Gly, Gly or Ser;
- when a substitution occurs at position 132, the substituting amino acid is Asp or Glu; and
- when a substitution occurs at position 133, the substituting amino acid is Asn, Asp, Gln, Gly, Gly, His, Pro, Ser or Thr;
- D. when a substitution occurs in the fourth loop region, the substitution occurs at one or more of positions 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166 or 167; wherein
 - when a substitution occurs at position 154, the substituting amino acid is Asn, Asp, Gln, Glu. Pro or Ser;
 - when a substitution occurs at position 155, the substituting amino acid is Asp, Gln, Glu or Ser;
 - when a substitution occurs at position 156, the substituting amino acid is Asp;
 - d. when a substitution occurs at position 157, the substituting amino acid is Asn. Asp. Gln. Glu. Pro or Ser.
 - when a substitution occurs at position 158, the substituting amino acid is Asn. Asp. Gln. Glv. Pro or Ser.
 - f. when a substitution occurs at position 159, the substituting amino acid is Aso or Giu:
 - when a substitution occurs at position 160, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser;
 - when a substitution occurs at position 161, the substituting amino acid is Asp or Glu;
 - when a substitution occurs at position 162, the substituting amino acid is Asp or Glu;
 - j. when a substitution occurs at position 163, the substituting amino acid is Aso or Glu:
 - k. when a substitution occurs at position 164, the substituting amino acid is Asn, Asp, Glu, Glu, Gly, Pro or Ser.
 - when a substitution occurs at position 165, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Met, Pro, Ser or Thr;
 - when a substitution occurs at position 166, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser; and

- when a substitution occurs at position 167, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Pro, Ser, Thr or Val; and
- E. when a substitution occurs in the fifth loop region, the substitution occurs at one or more of positions 187, 188, 189, 190 or 191; wherein
 - a. when a substitution occurs at position 187, the substituting amino acid is Asn, Asp, Gin, Gtu, Gty, His, Pro, Ser and Thr.
 - when a substitution occurs at position 188, the substituting amino acid is Asp or Glu;
 - when a substitution occurs at position 189, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Pro, Ser, Thr, Tyr or Val;
 - when a substitution occurs at position 190, the substituting amino acid is Asp or Glu; and
 - when a substitution occurs at position 191, the substituting amino acid is Asp or Glu;

whereby the BPN variant has decreased adsorption to, and increased hydrolysis of, an insoluble substrate as compared to wild-type subtilisin BPN'.

- 2. The BPN' variant of Claim 1, wherein one or more substitutions occur in the first loop region.
- 3. The BPN' variant of Claim 1, wherein one or more substitutions occur in the second loop region.
- 4. The BPN' variant of Claim 1, wherein one or more substitutions occur in the third loop region.
- The BPN' variant of Claim 1, wherein one or more substitutions occur in the fourth loop region.
- The BPN' variant of Claim 1, wherein one or more substitutions occur in the fifth loop region.
- The BPN' variant of any of Claims 1-6, wherein the wild-type amino acid sequence further comprises a sixth loop region, characterized in that the

modified amino acid sequence further comprises one or more substitutions in the sixth loop region; wherein the substitution(s) in the sixth loop region occurs at one or more of positions 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219 or 220; wherein

- a. when a substitution occurs at position 199, the substituting amino acid for position 199 is Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Giu;
- when a substitution occurs at position 200, the substituting amino acid for position 200 is His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- when a substitution occurs at position 201, the substituting amino acid for position 201 is Gly, Gln, Asn, Ser, Asp or Glu;
- d. when a substitution occurs at position 202, the substituting amino acid for position 202 is Pro, Gln, Asn, Ser, Asp or Glu;
- when a substitution occurs at position 203, the substituting amino acid for position 203 is Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- f. when a substitution occurs at position 204, the substituting amino acid for position 204 is Asp. or Glu;
- g. when a substitution occurs at position 205, the substituting amino acid for position 205 is Leu, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gin, Asn, Ser, Asp or Glu;
- when a substitution occurs at position 206, the substituting amino acid for position 206 is Pro, Asn, Ser, Asp, or Glu;
- when a substitution occurs at position 207, the substituting amino acid for position 207 is Asp or Glu;
- when a substitution occurs at position 208, the substituting amino acid for position 208 is Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- k. when a substitution occurs at position 209, the substituting amino acid for position 209 is tle, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- when a substitution occurs at position 210, the substituting amino acid for position 210 is Ala, Gly, Gln, Asn, Ser, Asp or Glu;
- m. when a substitution occurs at position 211, the substituting amino acid for position 211 is Ala, Pro, Gin, Asn, Ser, Asp or Glu;
- when a substitution occurs at position 212, the substituting amino acid for position 212 is Gln, Ser, Asp or Glu;

- when a substitution occurs at position 213, the substituting amino acid for position 213 is Trp, Phe, Tyr, Leu, Ile, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- when a substitution occurs at position 214, the substituting amino acid for position 214 is Phe, Leu, Ile, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- when a substitution occurs at position 215, the substituting amino acid for position 215 is Thr, Pro, Gln, Asn, Ser, Asp or Glu;
- when a substitution occurs at position 216, the substituting amino acid for position 216 is His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- when a substitution occurs at position 217, the substituting amino acid for position 217 is Leu, Ite, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- t. when a substitution occurs at position 218, the substituting amino acid for position 218 is Gln, Ser, Asp or Glu;
- u, when a substitution occurs at position 219, the substituting amino acid for position 219 is Pro. Gin. Asn. Ser. Asp or Glu; and
- when a substitution occurs at position 220, the substituting amino acid for position 220 is Pro, Gly, Gln, Asn, Ser Asp or Glu.
- 8. A cleaning composition selected from the group consisting of a hard surface cleaning composition, a dishwashing composition, an oral cleaning composition, a denture cleaning composition, a contact lens cleaning composition and a fabric cleaning composition, characterized in that the cleaning composition comprises the BPN variant of any of Claims 1-7 and a cleaning composition cerrier.
- The cleaning composition of Claim 8, wherein the cleaning composition is a hard surface cleaning composition.
- The cleaning composition of Claim 8, wherein the cleaning composition is a fabric cleaning composition.
- 11. A mutant BPN' gene encoding the BPN' variant of any of Claims 1-7.

INTERNATIONAL SEARCH REPORT

Inter And Application No PCT/US 95/03176

A CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/57 C11D3/386 C12N9/54

According to International Patent Classification (IPC) or to both national classification and IPC

B, FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C11D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the manustronal search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP-A-O 405 901 (UNILEVER PLC ;UNILEVER NV (NL)) 2 January 1991 see claims	1-5,7-11
X	WO-A-94 02618 (GIST BROCADES NV :MULLENERS LEONARDUS JOHANNES S (NL); MISSET ONNO) 3 February 1994 see tables II , III	1,3-5, 7-11
X	WO-A-89 09830 (GENEX CORP) 19 October 1989 see claims; table 2	1,3,7-11
X	WO-A-87 05050 (GENEX CORP) 27 August 1987 see page 18; claims	1,4,5, 7-11
	or form	1000

X Purther documents are listed in the continuation of box C.	Patent family members are listed in arcsex.
*Special categories of cited documents: *A* document defining the general state of the set which is not considered to be of particular relevance. Be earlier document but published on or after the international filing data when how, there document appropriate datafied or "C." document wheth may there document appropriate datafied or cases on or other to estimate the prolinculum data of enother cases on or other special places for special filing the special places for speciality about 60 special filing data of the other cases on or other special places for special filing the special filing of special filing data but that than the promoty data estimate.	"I state document published after the international filling data controlled the data of the controlled with the againstates but strict to understand the generalise or those yieldedings the invention." "Me document of particular relivance; the claimed surveition cannot be considered not cannot be considered for cannot be considered for an another an invention of considered for cannot be considered for the con
Date of the actual completion of the international search 27 July 1995	Date of mading of the soormational search report 16.08.95
Name and mailing address of the ISA European Patent Office, P. B. 5818 Patentiaan 2 NJ 2280 ST Vallystyik, Tal. (+ 31.70) 340-2040, Th. 31 651 epo nl. Face (+ 31.70) 340-3016	Authorized officer Van der Schaal, C

Form PCT/SSA/2IS (accord sheet) (July 1972)

3

INTERNATIONAL SEARCH REPORT

Inn. coal Application No PCT/US 95/03176

C(CONTINUETOR) DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category ' | Citation of document, with indication, where appropriate, of the relevant passages 1.5.7-11 EP-A-0 328 229 (GIST BROCADES NV) 16 August 1989 see example 12 CHEMICAL ABSTRACTS, vol. 116, no. 23, 8 June 1992 Columbus, Ohio, US; abstract no. 230623, P. BRODE AND D. RAUCH 'Subtilisin BPN' activity on an immobilized substrate' cited in the application see abstract & LANGMUIR, vol. 8, no. 5, 1992 pages 1325-1329.

INTERNATIONAL SEARCH REPORT

Into and Application No PCT/US 95/03176

			1 120700	
Patent document sited in search report	Publication date		iamily ber(s)	Publication date
EP-A-0405901	02-01-91	WO-A- JP-T- EP-A- WO-A- JP-T-	9100334 4500385 0405902 9100335 4500384	10-01-91 23-01-92 02-01-91 10-01-91 23-01-92
WO-A-9402618	03-02-94	AU-B- CA-A- FI-A-	4700693 2139928 950168	14-02-94 03-02-94 10-03-95
WO-A-8909830	19-10-89	US-A- EP-A- JP-T- US-A- US-A-	5013657 0409878 3503602 4990452 5246849	07-05-91 30-01-91 15-08-91 05-02-91 21-09-93
WO-A-8705050	27-08-87	EP-A- JP-T- US-A- US-A-	0260299 63502959 4980288 4990452	23-03-88 02-11-88 25-12-90 05-02-91
EP-A-0328229	16-08-89	AU-B- AU-A- DE-D- DE-T- EP-A- ES-T- JP-T- WO-A- PT-B- US-A-	629814 3050189 68912359 68912359 0571049 2061929 2503986 8907642 89702 5336611 5324653	15-10-92 06-09-89 03-03-94 09-06-94 24-11-93 16-12-94 22-11-90 24-08-89 29-04-94 09-08-94 28-06-94