

Algoritmos

Projeto de Certificadora de Competência Comum

André Agostinis Gabriel Victor Tavares Leila Minello Luan Almeida

André Luis dos Santos Domingues

Conteúdo

- Definição de algoritmo
 - Utilizações
 - Características
 - Exemplos práticos

- Pseudocódigo
 - Definição e características
 - Exemplo

- Fluxograma
 - Definição e características
 - Exemplo

Referências

Definição

O que é um Algoritmo?

Um algoritmo é uma sequência finita de passos bem definidos usados para resolver um problema ou executar uma tarefa específica.

Definição Formal

- Conjunto de regras finito: consiste em um conjunto de instruções que devem ser seguidas para se chegar a uma solução.
- Processo finito: deve sempre terminar após um número finito de passos.
- Independência de linguagem: são independentes de linguagens de programação específicas; podem ser implementados em qualquer linguagem.

O algoritmo é a lista de passos que você segue, como numa receita:

- Pegar os ingredientes (entrada).
- Misturar os ingredientes seguindo a ordem (processamento).
- Finalizar com o prato pronto (saída).

Os algoritmos são essenciais em diversas áreas:

- Ciência da Computação: utilizados para resolver problemas como ordenação, busca de dados e até inteligência artificial.
- Matemática: resolvem problemas como cálculos de sistemas lineares ou gráficos.
- Engenharia: otimizam processos e ajudam no design de sistemas eficientes.
- Operações do dia a dia: desde navegação por GPS até análise de dados financeiros

Exemplo prático:

• A busca de um produto em um site de e-commerce utiliza um algoritmo para encontrar os itens relevantes rapidamente.

Utilizações

Por que precisamos de algoritmos?

Características de um algoritmo

Critérios para que uma sequência de passos seja considerada um algoritmo:

- Clareza e desambiguidade: passos devem ser claros e ter um único significado.
- Entradas bem definidas: se um algoritmo precisar de uma entrada, ela deve ser clara.
- Saídas bem definidas: o algoritmo deve gerar pelo menos um resultado.
- **Finitude**: o processo deve terminar após um número limitado de etapas.
- Eficiência e simplicidade: deve ser prático e executável com os recursos disponíveis.
- Independência de linguagem: pode ser descrito em pseudocódigo, fluxogramas ou qualquer representação genérica.

Exemplo prático

soma de três números

Problema: criar um algoritmo para somar três números e exibir o resultado.

Etapas:

- Definir as entradas: três números inteiros.
- Realizar a soma dos números.
- Exibir o resultado.

Pseudocódigo do Algoritmo:

```
INÍCIO
   Declare três variáveis: num1, num2, num3.
   Solicite ao usuário os três números e armazene nas variáveis correspondentes.
   Calcule a soma: soma = num1 + num2 + num3.
   Exiba a soma.
FIM
```


Pseudocódigo

Definição

O pseudocódigo é uma forma de descrever algoritmos utilizando uma linguagem simplificada e intermediária entre a linguagem natural (como português) e uma linguagem de programação. Ele ajuda a estruturar ideias antes de implementar o código em uma linguagem específica.

Características

- -> Não segue a sintaxe rígida de uma linguagem de programação.
 - -> Fácil de entender, mesmo para iniciantes.
- -> Foco na lógica e no fluxo de execução.

Exemplo de pseudocódigo:

Problema: Verificar se um número é par ou ímpar.

Início

Leia número

Se número MOD 2 = 0 então

Escreva "Número é par"

Senão

Escreva "Número é ímpar"

Fim

Fluxograma

Definição

Um fluxograma é uma representação gráfica de um algoritmo ou processo. Ele usa símbolos padronizados para representar diferentes etapas e setas para indicar o fluxo de execução.

Símbolos Comuns

- -> Elipse: Início ou fim do processo.
- -> Retângulo: Ações ou instruções.
- -> Losango: Decisões ou condições.
- -> Setas: Direção do fluxo.

Vantagens

- -> Visualmente intuitivo.
 - -> Útil para identificar problemas no fluxo.
- -> Auxilia na comunicação entre equipes.

Exemplo prático

Problema: verificar se um número é positivo, negativo ou zero.

Descrição:

- Leia um número.
- Verifique se o número é maior que zero:
 - Se for, exiba "Número positivo".
- Caso contrário, verifique se o número é menor que zero:
 - Se for, exiba "Número negativo".
- Se não for nenhuma das opções acima, exiba "Número é zero"

Referências

1. Khan Academy - Algoritmos e Fluxogramas

KHAN ACADEMY. Algoritmos e Fluxogramas.

Disponível em: https://www.khanacademy.org/

Acesso em: 15 nov. 2024.

2. GeeksforGeeks - Introduction to Algorithms

GEEKSFORGEEKS. Introduction to Algorithms. Disponível em:

https://www.geeksforgeeks.org/introduction-to-algorithms/

Acesso em: 15 nov. 2024.

3. Livro: Algoritmos: Teoria e Prática

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C.

Algoritmos: Teoria e Prática. 3. ed. Rio de Janeiro: Elsevier,

2022.