Let us assume that PSPACE = E, then arrive at a violation of the time hierarchy theorem (i.e. a contradiction).

Let us define an arbitrary language L from $DTIME(n \cdot 2^{O(n)})$. So, there exists a deterministic Turing machine M that decides L in $O(n \cdot 2^{O(n)})$ time (which of course decides it in at most $O(n \cdot 2^{O(n)})$ space).

Then let us define a language $L_{pad} = \left\{ < x, 1^{2^{O(|x|)}} > s. t. \ x \in L \right\}$. We now create a deterministic Turing machine N to decide whether an input $y \in L_{pad}$:

Does there exist a string z such that $y = \langle z, 1^{2^{O(|z|)}} \rangle$? If not, then outright reject. If there is, then run M(z) for $|z| \cdot 2^{O(|z|)}$ steps and output that answer.

Clearly, the space is PSPACE in |y| because the input to L_{pad} is $|z| + 2^{O(|z|)}$ in length and the space of the algorithm is $|z| \cdot 2^{O(|z|)}$, which is $polynomial(|z| + 2^{O(|z|)})$. Thus, $L_{pad} \in PSPACE$. Which in turn makes $L_{pad} \in E$ because we assumed PSPACE = E.

Now we want to show that $L \in E$ also. We use L_{pad} to do this. Given an input x, pad it with $2^{O(|x|)}$ number of 1's to create y, then run N(y). The padding algorithm is E time because $2^{O(|x|)}$ is E(|x|). And N runs in E time. Hence, L is overall decidable in E time. But L is an arbitrary $DTIME(n \cdot 2^{O(n)})$ language, violating the time hierarchy theorem, because $2^{O(n)}$ is $O(n \cdot 2^{O(n)})$.