R Objects & Programmatic Data Manipulation

Fundamental Techniques in Data Science

Kyle M. Lang

Department of Methodology & Statistics Utrecht University

Outline

R Objects & Data Types Vectors & Matrices Lists & Data Frames Factors

Programmatic Data Manipulation Subsetting Transforming Pipes

R OBJECTS & DATA TYPES

Vectors

Vectors are the simplest kind of R object.

• There is no concept of a "scalar" in R.

Vectors come in one of six "atomic modes":

- numeric/double
- logical
- character
- integer
- complex
- raw

Vectors

5 of 41

```
(v1 <- vector("numeric", 3))</pre>
[1] 0 0 0
(v2 <- vector("logical", 3))</pre>
[1] FALSE FALSE FALSE
(v3 <- vector("character", 3))</pre>
[1] "" "" ""
(v4 <- vector("integer", 3))</pre>
[1] 0 0 0
(v5 <- vector("complex", 3))</pre>
[1] 0+0i 0+0i 0+0i
(v6 <- vector("raw", 3))</pre>
[1] 00 00 00
```

Generating Vectors

We have many ways of generating vectors.

```
(y1 \leftarrow c(1, 2, 3))
[1] 1 2 3
(y2 <- c(TRUE, FALSE, TRUE, TRUE))
   TRUE FALSE TRUE TRUE
(y3 <- c("bob", "suzy", "danny"))
[1] "bob" "suzy" "danny"
1:5
[1] 1 2 3 4 5
1.2:5.3
[1] 1.2 2.2 3.2 4.2 5.2
```

Generating Vectors

```
rep(33, 4)
[1] 33 33 33 33
rep(1:3, 3)
[1] 1 2 3 1 2 3 1 2 3
rep(y3, each = 2)
[1] "bob" "bob" "suzy" "suzy" "danny" "danny"
seq(0, 1, 0.25)
[1] 0.00 0.25 0.50 0.75 1.00
```

The Three Most Useful Data Types

Numeric

```
(a <- 1:5)
[1] 1 2 3 4 5
```

Character

```
(b <- c("foo", "bar"))
[1] "foo" "bar"
```

Logical

```
(c <- c(TRUE, FALSE))
[1] TRUE FALSE
```

Combining Data Types in Vectors

What happens if we try to concatenate different data types?

```
c(a, b)

[1] "1" "2" "3" "4" "5" "foo" "bar"

c(b, c)

[1] "foo" "bar" "TRUE" "FALSE"

c(a, c)

[1] 1 2 3 4 5 1 0
```


Matrices

Matrices generalize vectors by adding a dimension attribute.

```
(m1 \leftarrow matrix(a, nrow = 5, ncol = 2))
     [,1] [,2]
[1,]
[2,] 2
[3,] 3 3
[4,] 4 4
[5,]
attributes(v1)
NULL
attributes(m1)
$dim
[1] 5 2
```

Matrices

Matrices are populated in column-major order, by default.

```
(m2 <- matrix(1:9, 3, 3))

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
```

The byrow = TRUE option allows us to fill by row-major order.

```
(m3 <- matrix(1:9, 3, 3, byrow = TRUE))

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
```

Mixing Data Types in Matrices

Like vectors, matrices can only hold one type of data.

```
cbind(c, letters[1:5])
     С
[1.] "TRUE"
              "a"
[2,] "FALSE" "b"
[3.] "TRUE"
              " c "
[4,] "FALSE" "d"
[5,] "TRUE"
             "6"
cbind(c, c(TRUE, TRUE, FALSE, FALSE, TRUE))
         С
[1,]
      TRUE
           TRUE
[2.] FALSE
            TRUE
[3,] TRUE FALSE
[4,] FALSE FALSE
[5,]
     TRUE TRUE
```

Lists are the workhorse of R data objects.

• An R list can hold an arbitrary set of other R objects.

We create lists using the list() function

```
(l1 <- list(1, 2, 3))

[[1]]
[1] 1

[[2]]
[1] 2

[[3]]
[1] 3
```

```
(12 <- list("bob", TRUE, 33, 42+3i))

[[1]]
[1] "bob"

[[2]]
[1] TRUE

[[3]]
[1] 33

[[4]]
[1] 42+3i
```

List elements have no defualt names, but we can define our own

```
(13 <- list(name = "bob",
            alive = TRUE,
            age = 33,
            relationshipStatus = 42+3i)
$name
[1] "bob"
$alive
[1] TRUE
$age
[1] 33
$relationshipStatus
[1] 42+3i
```

We can also assign post hoc names via the 'names()' function

```
names(l1) <- c("first", "second", "third")
l1

$first
[1] 1

$second
[1] 2

$third
[1] 3</pre>
```

We can append new elements onto an existing list:

```
(14 <- list())
list()
14$grass <- "green"
14$money <- 0
14$logical <- FALSE
14
$grass
[1] "green"
$money
[1] 0
$logical
[1] FALSE
```

The elements inside a list don't really know that they live in a list; they'll pretty much behave as normal

```
14$money - 42
```

[1] -42

Data frames are R's way of storing rectangular data sets.

- Each column of a data frame is a vector.
- Each of these vectors can have a different type.

We create data frames using the data.frame() function

```
(d1 \leftarrow data.frame(1:10, c(-1, 1), seq(0.1, 1, 0.1)))
   X1.10 c..1..1. seq.0.1..1..0.1.
                                   0.1
        1
2
                                   0.2
3
                                   0.3
                                   0.4
5
                                   0.5
6
                                   0.6
7
                                   0.7
                                   0.8
                 -1
                                   0.9
10
       10
                                   1.0
```

```
(d2 <- data.frame(x = 1:10, y = c(-1, 1), z = seq(0.1, 1, 0.1)))

x y z
1 1-10.1
2 2 10.2
3 3-10.3
4 4 10.4
5 5-10.5
6 6 10.6
7 7-10.7
8 8 10.8
9 9-10.9
10 10 1 1.0
```

```
(d3 <- data.frame(a = sample(c(TRUE, FALSE), 10, replace = TRUE),</pre>
                  b = sample(c("foo", "bar"), 10, replace = TRUE),
                  c = runif(10)
  FALSE foo 0.4708232
   TRUE foo 0.2701596
 TRUE bar 0.6199154
 FALSE bar 0.2078104
  TRUE bar 0.4912943
 FALSE bar 0.1840306
 FALSE bar 0.5438698
 TRUE bar 0.5755350
 FALSE bar 0.7557042
10 FALSE bar 0.8405729
```

```
(d4 <- data.frame(matrix(NA, 10, 3)))

X1 X2 X3

1 NA NA NA

2 NA NA NA

3 NA NA NA

4 NA NA NA

5 NA NA NA

6 NA NA NA

7 NA NA NA

8 NA NA NA

9 NA NA NA

10 NA NA NA
```

Data frames are actually lists of vectors (representing the columns)

```
is.data.frame(d3)
[1] TRUE
is.list(d3)
[1] TRUE
```

Although they look like rectangular "matrices", from R's perspective a data frame IS NOT a matrix

```
is.matrix(d3)
[1] FALSE
```

We cannot treat a data frame like a matrix. E.g., matrix algebra doesn't work with data frames

```
d1 %*% t(d2)

Error in d1 %*% t(d2): requires numeric/complex matrix/vector arguments
```

Factors

Factors are R's way of repesenting nominal variables.

We can create a factor using the factor() function

Factors are stored as integer vectors with a *levels* attribute and a special *factor* class.

```
typeof(f1)
[1] "integer"
attributes(f1)
$levels
[1] "red" "yellow" "blue"
$class
[1]or#factor"
```

Factors

Even though a factor's data are represented by an integer vector, R does not consider factors to be interger/numeric data.

```
is.numeric(f1)
[1] FALSE
is.integer(f1)
[1] FALSE
```

Since factors represent nominal variables, we cannot do math with factors

```
f1 + 1

[1] NA NA NA NA NA NA NA NA NA NA

mean(f1)

[1] NA
```

PROGRAMMATIC DATA MANIPULATION

Tidyverse Solutions: dplyr

The **dplyr** package provides two principle subsetting functions

- select() : subset columns
- filter() : subset rows

library(dplyr)

What are pipes?

The %>% symbol epresents the *pipe* operator.

• We use the pipe operator to compose functions into a pipeline.

The following code represents a pipeline.

```
firstBoys <-
  read_sav("../data/boys.sav") %>%
  head()
```

This pipeline replaces the following code.

```
firstBoys <- head(read_sav("../data/boys.sav"))</pre>
```

Why are pipes useful?

Let's assume that we want to:

- 1. Load data
- 2. Transform a variable
- 3. Filter cases
- 4. Select columns

Without a pipe, we may do something like this:

```
boys <- read_sav("../data/boys.sav")</pre>
Error in read_sav("../data/bovs.sav"): could not find function "read_sav"
boys <- transform(boys, hgt = hgt / 100)
Error in transform(boys, hgt = hgt/100): object 'boys' not found
boys <- filter(boys, age > 15)
Error in filter(boys, age > 15): object 'boys' not found
boys <- subset(boys, select = c(hgt, wgt, bmi))
Error in subset(boys, select = c(hgt, wgt, bmi)): object 'boys' not found
```

Why are pipes useful?

Let's assume that we want to:

- 1. Load data
- 2. Transform a variable
- Filter cases
- 4. Select columns

With the pipe, we could do something like this:

```
library(magrittr)

boys <-
    read_sav(".../data/boys.sav") %>%
    transform(hgt = hgt / 100) %>%
    filter(age > 15) %>%
    subset(select = c(hgt, wgt, bmi))

Error in read_sav(".../data/boys.sav"): could not find function "read_sav"
```

With a pipeline, our code more clearly represents the sequence of steps in our analysis.

Benefits of Pipes

When you use pipes, your code becomes more readable.

- Operations are structured from left-to-right and not from in-to-out
- You can avoid many nested function calls
- You don't have to keep track of intermediate objects
- It's easy to add steps to the sequence

In RStudio, you can use a keyboard shortcut to insert the %>% symbol.

- Windows/Linux: ctrl + shift + m
- Mac: cmd + shift + m

What do pipes do?

Pipes compose R functions without nesting.

```
• f(x) becomes x %>% f()
```

```
mean(rnorm(10))
[1] -0.4294987
rnorm(10) %>% mean()
[1] -0.04373715
```

What do pipes do?

Multiple function arguments are fine.

```
• f(x, y) becomes x %>% f(y)
```

```
cor(boys, use = "pairwise.complete.obs")
Error in is.data.frame(x): object 'boys' not found
boys %>% cor(use = "pairwise.complete.obs")
Error in is.data.frame(x): object 'boys' not found
```


What do pipes do?

Composing more than two functions is easy, too.

```
• h(g(f(x))) becomes x %>% f %>% g %>% h
```

```
max(na.omit(subset(boys, select = wgt)))
Error in subset(boys, select = wgt): object 'boys' not found
boys %>%
    subset(select = wgt) %>%
    na.omit() %>%
    max()
Error in subset(., select = wgt): object 'boys' not found
```

The Role of . . in a Pipeline

```
In the expression a %>% f(arg1, arg2, arg3) , a will be "piped into" f() as arg1 .
```

```
data(cats, package = "mice")
cats %>% plot(Hwt ~ Bwt)

Error in plot(., Hwt ~ Bwt): object 'cats' not found
```

Clearly, we have a problem if we pipe our data into the wrong argument.

- We can change this behavior with the ___ symbol.
- The .. symbol acts as a placeholder for the data in a pipeline.

The Role of . in a Pipeline

```
cats %>% plot(Hwt ~ Bwt, data = .)
Error in eval(m$data, eframe): object 'cats' not found
```


Different Flavors of Pipe

The standard pipe (%>%) %>% subset(boys boys The exposition pipe (%\$%) hgt bmi hc wgt %\$% mean(age) boys gen

Using the Exposition Pipe: %\$%

The exposition pipe offers a more elegant way to solve our earlier problem.

```
cats %$% plot(Hwt ~ Bwt)
Error in base::with(., plot(Hwt ~ Bwt)): object 'cats' not found
```


Performing a T-Test in a Pipeline

```
cats %$% t.test(Hwt ~ Sex)
Error in base::with(., t.test(Hwt ~ Sex)): object 'cats' not found
```

The above is equivalent to either of the following.

```
cats %>% t.test(Hwt ~ Sex, data = .)
t.test(Hwt ~ Sex, data = cats)
```


Storing the Results

```
catsTest <- cats %$% t.test(Bwt ~ Sex)
Error in base::with(., t.test(Bwt ~ Sex)): object 'cats' not found
catsTest
Error in eval(expr, envir, enclos): object 'catsTest' not found</pre>
```


References

