RUL Label Annotator Analysis for BatteryML

Analysis Report

September 15, 2025

1 RUL Definition and Purpose

RUL (Remaining Useful Life) represents the number of cycles remaining before a battery reaches its End-of-Life (EOL) condition. It's a regression target that predicts how many more charge-discharge cycles a battery can undergo before it degrades to a specified capacity threshold.

2 RUL Calculation Algorithm

2.1 Core Algorithm

```
Listing 1: RUL Calculation Logic

def process_cell(self, cell_data: BatteryData) -> torch.Tensor:
    label, found_eol = 1, False
    for cycle in cell_data.cycle_data:
        label += 1
        Qd = max(cycle.discharge_capacity_in_Ah)
        if Qd <= cell_data.nominal_capacity_in_Ah * self.eol_soh:
            found_eol = True
            break

if not found_eol:
        label = label + 1 if self.pad_eol else float('nan')

if label <= self.min_rul_limit:
        label = float('nan')

return torch.tensor(label)
```

2.2 Step-by-Step Process

- 1. **Initialize**: Start with label = 1 (counting from cycle 1)
- 2. **Iterate through cycles**: For each cycle in the battery data:
 - Increment label counter (label += 1)
 - Extract maximum discharge capacity: Qd = max(cycle.discharge_capacity_in_Ah)
 - Check EOL condition: Qd <= nominal_capacity * eol_soh
- 3. EOL Detection: If capacity drops below threshold, mark found_eol = True and break
- 4. Handle incomplete data: If EOL not reached, add padding or mark as NaN
- 5. Quality filtering: Remove batteries with RUL \le min_rul_limit

3 Key Parameters

3.1 EOL SOH Threshold (eol_soh)

Table 1: EOL SOH Threshold by Dataset

Dataset	Threshold	Capacity %
SNL, CRUSH Others (HUST, MATR, etc.)		90% of nominal capacity 80% of nominal capacity
Others (HUST, MATR, etc.)	0.8	80% of nominal capacity

3.2 Padding Strategy (pad_eol)

• Default: True

• Behavior:

- If EOL not reached: label = label + 1 (add one more cycle)
- If False: label = NaN (mark as invalid)

3.3 Minimum RUL Limit (min_rul_limit)

• **Default**: 100.0 cycles

• Purpose: Filters out batteries with very short life (likely defective)

• Effect: RUL $\leq 100 \text{ cycles} \rightarrow \text{NaN (excluded from training)}$

4 What Exactly Do We Predict?

4.1 Target Variable Characteristics

• Type: Continuous integer (number of cycles)

• Range: Typically 100-2000+ cycles (dataset dependent)

ullet Unit: Charge-discharge cycles

• Interpretation: "This battery has X cycles left before reaching EOL"

4.2 Prediction Task

• Input: Battery features extracted from early cycles (typically cycles 2-99)

• Output: Predicted number of remaining cycles until 80% capacity degradation

• Problem Type: Regression (not classification)

5 Dataset-Specific RUL Characteristics

5.1 RUL Distribution by Dataset

5.2 EOL Threshold Variations

• SNL, CRUSH: 90% capacity (stricter EOL)

• Others: 80% capacity (standard EOL)

Table 2: RUL Distribution Across Datasets

Dataset	Mean RUL	Std RUL	Range
CALCE	566 ± 106	106	\sim 400-700
MATR	823 ± 368	368	$\sim 400 - 1200$
HUST	1899 ± 389	389	$\sim 1500-2300$
HNEI	248 ± 15	15	\sim 230-260
RWTH	658 ± 64	64	$\sim 600-700$
SNL	1256 ± 1321	1321	\sim 0-2500+
UL_PUR	209 ± 50	50	$\sim 150 - 250$

6 Label Transformation Pipeline

6.1 Sequential Transformations

- 1. Log Scale Transformation: log(RUL) Compresses the wide range of RUL values
- 2. Z-Score Normalization: $\frac{\log(\text{RUL}) \mu}{\sigma}$ Standardizes for model training

6.2 Mathematical Flow

$$\text{Raw RUL} \rightarrow \log(\text{RUL}) \rightarrow \frac{\log(\text{RUL}) - \mu}{\sigma} \rightarrow \text{Model Input} \tag{1}$$

7 Quality Control and Data Filtering

7.1 Exclusion Criteria

- 1. Short-lived batteries: RUL \leq 100 cycles (likely defective)
- 2. Incomplete data: Batteries that don't reach EOL (if pad_eol=False)
- 3. Invalid capacity data: Cycles with missing or invalid discharge capacity

7.2 Data Validation

- Capacity check: Qd = max(cycle.discharge_capacity_in_Ah) must be valid
- EOL detection: Must find cycle where capacity drops below threshold
- Range validation: RUL must be within reasonable bounds

8 Practical Example

8.1 Scenario

- Battery: Nominal capacity = 1.1 Ah
- EOL threshold: 80% = 0.88 Ah
- Cycle data: Cycles 1-500 with decreasing capacity

8.2 RUL Calculation

Listing 2: RUL Calculation Example

Cycle 1:
$$Qd = 1.05 Ah > 0.88 Ah$$
 Continue
Cycle 2: $Qd = 1.02 Ah > 0.88 Ah$ Continue

Cycle 150: Qd = 0.87 Ah 0.88 Ah EOL reached! RUL = 150 cycles

8.3 After Transformations

$$Raw RUL: 150 (2)$$

$$\log(\text{RUL}) : \log(150) \approx 5.01 \tag{3}$$

Normalized:
$$\frac{5.01 - \mu}{\sigma} \to \text{Model input}$$
 (4)

9 Key Insights

1. RUL is cycle-based: Not time-based, but cycle-count based

2. Capacity-driven EOL: Based on discharge capacity degradation, not voltage

3. Early prediction: Uses features from early cycles to predict total remaining life

4. Quality filtering: Excludes defective or incomplete batteries

5. Log transformation: Handles the wide range of RUL values across datasets

6. Dataset adaptation: Different EOL thresholds for different battery types

10 Summary

The RUL prediction task is essentially asking: "Given what I observe in the first $\sim \! 100$ cycles of this battery's life, how many more cycles will it last before degrading to 80% of its original capacity?"

This approach enables early prediction of battery degradation, which is crucial for:

- Battery management systems
- Predictive maintenance
- Quality control in manufacturing
- Research and development of battery technologies