https://powcoder.com Assignment Project Exam Help

Assignment Project Pampotelp Sequence labeling problems https://powcoder.com

Add WeChat powcoder

Sequence labeling problems

https://powcoder.com

- Many problems in NLP can be formulated as sequence labeling Arssignment Project Exam Help
 - POS tagging:
 - The_DT man_NN who WP whistles_VBZ tunes_VBZ Assignation types just paymone in
 - Named Entity Recognition (NER)
 - The Q company Q is Q backed Q by Q Microsoft_B-ORG cofounder O Bill B-PER Gates I-PER and O venture O capitalist_O Andressen_B-PER Horowitz_I-PER
 - Time expression were timat powcoder
 - Bedford_O police_O said_O they_O received_O a_O call_O about_O 3:45_B-TIMEX p.m._I-TIMEX Monday_B-TIMEX
 - Spoken language understanding
 - Which_O flights_FLIGHT arrive_ARRIVE in_O Burbank_CITY from_O Denver_CITY on_ON Saturday_Day

Search and Learning

Recall most natural language problems can be formulated mathematically as optimization:

Assignment Project Exam Help

Assignment Property Examples

There are two madules to the wooder.com

- Search, the module that is responsible for finding the argmax of the score Audiction Chat powcoder
- Learning, the module that is responsible for finding the optimal parameters θ

For simple text classification problems, the search module is fairly straightforward, and most of the work goes to learning. For sequence labeling and more complicated NLP problems, the search module is getting more complicated.

Sequence labeling: first idea

https://powcoder.com

Assignment Project Exam Help

Assign Add Person Design Assign Assign Add Design D

Classify the sequence one element at a time https://powcoder.com

Add WeChat powcoder

Sequence labeling example: POS tagging https://powcoder.com

Let's useAPQS tagging at aproject Exam Help
 The most common used data set for training POS taggers is

the Penn Tree Bank 1 VH C1

Assi	gnm	Eght VP	Pojbat]	PRWA	
DT	NN	WP	VBZ	VBZ	NNS
The	https	:///po	weistle:	r.tupesn	pianos

DT: Determiner
 NN: uncountable noun or noun in singular form

► WP: Wh-pronoun

VBZ: 3rd person singular verb

NNS: plural noun

How do we extract features from sequences in a linear model? https://powcoder.com

Assignment Project Exam Help

- We take as input a set of word tokens thand their corresponding POS tags y, as well as a position m, and return a set of features associated with that position.
 Typically we make the assumption that the context that
- Typically we make the assumption that the context that matters for classifying the word at position *m* are its surrounding words. We define a Mindow Phae's centered on position *m* of size *k*, and only extract contextual information from this window.

Extracting features from a window size of 1 https://powcoder.com

Assuming a window of I, the features we will be extracting from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the extracting
from the example sentence will be:

Assignment Project Exam Help
from the extracting
from the example sentence will be:

Assignment Project Exam Help
from the extracting
from the example sentence will be:

Assignment Project Exam Help
from the extracting
from the example sentence will be:

Assignment Project Exam Help
from the extracting
from the example sentence will be:

Assignment Project Exam Help
from the extracting
from the example sentence will be:

Assignment Project Exam Help
from the extracting
from the example sentence will be:

Assignment Project Exam Help
from the extracting
from the example sentence will be:

Assignment Project Exam Help
from the extracting
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Proje

How many features will we extract if we use a window of size 1?

Weights

https://powcoder.com

We can then Arain in classifien using these features and feet p weight for each feature:

_AssignA	de tiv	eshe	I PROV	MYPE	NNS
w_0 =the	-0.05	-3.9	-4.6	-4.6	-4.6
$w_0 = man_{httn}$	-4,6	-0.35	1-4.6	-1.4	-3.5
$w_0 = who$	3-4.6 ^{PC}	-4.6	-0.05)m.4 -4.6	-4.6
w_0 =whistles	-4.6	-4.6	-4.6	-0.8	-0.63
$w_0 = tunes dC$	1_ <u>xk</u> e(Llaat 1	pawc	o <u>g</u> er	-0.6
<i>w</i> ₀=pianos	-4.6	-4.6	-4.6	-3.0	-0.08

For example, the weight $\theta_1 = -0.05$ for the feature $f_1(w_0 = the, DT)$

Using these weights we can classify each word in the sequence https://powcoder.com

Predicting the tag for each word in the sequence https://powcoder.com

After finding the argman and Il positions to Ethe sentence we get:

DT	NN	•	•	• •			• •	NS .	NNS	- '	INS	
Assi	gma	H	Ç	the	V	Po	ji	301	PAMA)

http	DT	NN	WP	VBZ	NNS
w_0 =the	-0.05	-3.9	-4.6	-4.6	-4.6
$w_0=$ man	-4.6	-0.35	-4.6	-1.4	-3.5
$w_0 = \text{who} AdC$	1- <u>4%</u> e(Llagt 1	pawe	oder	-4.6
<i>w</i> ₀=whistles	-4.6	-4.6	-4.6	-0.8	-0.63
<i>w</i> ₀=tunes	-4.6	-4.6	-4.6	-0.8	-0.6
<i>w</i> ₀=pianos	-4.6	-4.6	-4.6	-3.0	-0.08

Extracting features from a larger window https://powcoder.com

If we increase the window size to 2 and also include the previous word in the context roject Exam Help

```
f((\mathbf{w} \in \mathbf{Stignment}) \setminus \mathbf{w} \in \mathbf{Start} (\mathbf{w}), DT)
= \{(w_0 = the, DT), (w_{-1} = START, DT)\}
f((\mathbf{w} = \mathbf{thettps}, \mathbf{w}) \in \mathbf{derecoims}, m = 2), NN)
= \{(w_0 = man, NN), (w_{-1} = the, NN)\}
\dots \quad \mathbf{Add} \quad \mathbf{WeChat} \quad \mathbf{powcoder}
f((\mathbf{w} = \mathbf{the} \text{ man who whistles tunes pianos}, m = 4), VBZ)
= \{(w_0 = \mathbf{whistles}, VBZ), (w_{-1} = \mathbf{who}, VBZ)\}
```

Include weights for the new features https://powcoder.com

Assign	ment	Phoi	e&t E	XXA	Mesp
w_0 =the	-0.05	-3.9	-4.6	-4.6	-4.6
$w_0 = \text{man}$	-4.6	-0.35	-4.6	-1.4	-3.5
ASSIGNM	em By	rojed	t-Pax	M44.64	
<i>w</i> ₀=whistles	-4.6	-4.6	-4.6	-0.8	-0.63
w ₀ =tunes	-46	-4.6	<u>4</u> 6	-0.8	-0.6
$w_0 = pianos$	·-4.6	-4.6	-4.6	-3.0	-0.08
w_{-1} =START	-0.92	-3.9	-1.9	-3.5	-0.92
$w_{-1} = th Add$	W.e (Chart p	OWC	oder	-0.75
w_{-1} =man	-1.6	-2.3	-0.9	-1.6	-2.3
w_{-1} =who	-1.8	-4.6	-4.6	-0.2	-4.6
w_{-1} =whistles	-2.3	-4.6	-4.6	-1.6	-0.4
w _{−1} =tunes	-1.6	-4.6	-4.6	-4.6	-0.26

Classification with the new weights

https://powcoder.com
$$\psi((\mathbf{w} = \text{the man who whistles tunes pianos}, m = 4), DT)$$

$$= \sum_{i} \text{ fignification Project Exam Help}$$

$$\psi((\mathbf{w} = \text{the man who whistles tunes pianos}, m = 4), NN)$$

$$Assignification Project Exam Help$$

$$\psi((\mathbf{w} = \text{the man who whistles tunes pianos}, m = 4), NN)$$

$$= \sum_{i} f_{i}\theta_{i} = -4.6 - 4.6 = -9.2$$

$$\psi((\mathbf{w} = \text{the man who whistles tunes pianos}, m = 4), VBZ)$$

$$= \sum_{i} f_{i}\theta_{i} = -0.8 - 0.2 = -1$$

$$\psi((\mathbf{w} = \text{the man who whistles tunes pianos}, m = 4), NNS)$$

$$= \sum_{i} f_{i}\theta_{i} = -0.63 + -4.6 = -5.23$$

So VBZ receives the highest score when classifying position 4.

Updated classification results

https://powcoder.com

DT NN WP VBZ NNS NNS

Thas sign ment Pristige ctuling a mia Help

	DŢ	NN	WP	VBZ_	NNS
Waststegnin	equitor P	roje e	t-Pay	MAGE	Hp
$w_0=$ man	-4.6	-0.35	-4.6	-1.4	-3.5
$w_0 = \text{who}_{0}$	-A,6	-4.6	-0.05	-4.6	-4.6
w_0 =whistles	· <u>/</u> 4BO	<u>w4.600</u>	154.6CC	-0.8	-0.63
w_0 =tunes	-4.6	-4.6	-4.6	-0.8	-0.6
$w_0 = pian $	₩ @ (Chart 1	OWC	oder	-0.08
$\overline{w_{-1}}$ =START	-0.92	-3.9	-1.9	-3.5	-0.92
$w_{-1}=$ the	-4.6	-0.7	-4.6	-4.6	-0.75
w_{-1} =man	-1.6	-2.3	-0.9	-1.6	-2.3
w_{-1} =who	-1.8	-4.6	-4.6	-0.2	-4.6
w_{-1} =whistles	-2.3	-4.6	-4.6	-1.6	-0.4
w_{-1} =tunes	-1.6	-4.6	-4.6	-4.6	-0.26

Sequence labeling as structured prediction https://powcoder.com

Assignment Project Exam Help

Enlarging the window to include more context helps, to a degree Assign And the Post Exmontelp

- To further improve the classifier requires also evaluating sequences of tags. For example, the tag sequence "NNS NNS" should receives a very low score as it rarely appears. Incorporating such information in the model would help improve taggred come Chat powcoder
- ► The tags are of course not observable in the data, and they need to be predicted together.

Sequence labeling: Computing a global score for the entire sequence https://powcoder.com

Consider an possible label sequences for the input sequence, and choose the one that has the highest score

Assignment Project Framput Sequence, and choose the one that has the highest score

Assignment Project Framput Sequence, and choose the one that has the highest score

Assignment Project Framput Sequence, and choose the one that has the highest score

Www.(DT, NN, WP, VBZ, NNS, NNS)) =

White ST//WWWEOVER. VBZnNNS)) =

- For a sequence of N elements with a tagset of size N, there are N^M possible sequences, a very large number!
- To find the sequence with the highest score, we need to do this efficiently
- The common solution is the Viterbi Algorithm

Sequence labeling as structured prediction

The goal of the input sequence:

Assignment Project Exam Help
$$y \in \mathcal{Y}(w)$$

Assignment Problet Exmontelp

To make the computation tractable we factor the score for the entire sequentips of the computation tractable we factor the score for the entire sequentips of the computation tractable we factor the score for the entire sequential tractable we factor the

$$Add_{\mathbf{W}} \underbrace{\mathbf{W}}_{m=1}^{M+1} \underbrace{\mathbf{p}_{0} \mathbf{y}_{m} \mathbf{y}_{m}^{0} \mathbf{q}_{1}^{0} \mathbf{r}_{m}^{0}}_{\mathbf{m}}$$

► The local score is a weighted sum of the local features at position m.

$$\psi(\mathbf{w}_{1:M}, y_m, y_{m-1}, m) = \boldsymbol{\theta} \cdot \boldsymbol{f}(\mathbf{w}, y_m, y_{m-1}, m)$$

Feature representation for sequences

https://powcoder.com

Decoding for sequences: The Viterbi algorithm https://powcoder.com

► The goal is to find the sequence of tags with the highest score:

Assignment Project Exam Help

Assignment Power Pawordelp

https://power.com.n.m/
$$y_{1:M}$$
 $m=1$

Add WeChat powcoder
 $s_m(y_m, y_{m-1})$

▶ Instead of finding the argmax for the entire sequence directly, we start by finding the max up to position m and keep a sequence of back pointers

Finding the max score for the sequence https://powcoder.com

Assignment Project Exam Help

Viterbi variable

https://powcoder.com

Caching Viterbi variables as intermediate results:
Assignment Project Exam Help

$$v_{m} \text{Assignate} \text{ Pawollelp}$$

$$\underset{y_{1:m-1}}{\text{https://powcoder.com-1}\atop = \max_{y_{m-1}} s_{m}(y_{m}, y_{m-1}) + \max_{y_{1:m-2}} \sum_{n=1}^{n-1} s_{n}(y_{n}, y_{n-1})$$

$$= \underset{y_{m-1}}{\text{Add}} \underset{y_{m-1}}{\text{WeChat powcoder}}$$

Note that $\upsilon_1(y_1) \triangleq s_1(y_1, \lozenge)$ and the maximum overall score for the sequence is the final Viterbi variable $\max_{\mathbf{y}_{1:M}} \Psi(\mathbf{w}_{1:M}, \mathbf{y}_{1:M}) = \upsilon_{M+1}(\spadesuit)$

The Viterbi Algorithm

https://powcoder.com

Viterbi Algorithm: Each $s_m(k, k')$ is a local score for tag $y_m = k$ and $y_{m-1} = k$ Ssignment Project Exam Help

```
1: for k \in \{0, \dots, k\} do very sum of the power of the p
```

Assuming these parameters

https://powcoder.com

	DŢ	NN	WP .	VBZ	NNS _	*
w_0 =the A	S81 G 1	ment	H ₁ (O)	ecateE	xana l	Telp
<i>w</i> ₀=man	-4.6	-0.35	-4.6	-1.4	-3.5	$-\infty$
$w_0 = \text{who} A_{SS}$	i Argan		e Cipta	FOX	COPPE OF	$1p^{\infty}$
w_0 =whistles	-4.6	-4.6	-4.6	-0.8	-0.63	$-\infty$
<i>w</i> ₀=tunes	14.6 10 tt 100	-4/6	-4.6	-0.8 -0.8	-0.6	$-\infty$
<i>w</i> ₀=pianos	-4.6	-4.60	-4.6	-3.0	-0.08	$-\infty$
$t_{-1} = \Diamond$	-0.92	-3.9	-1.9	-3.5	-0.92	$-\infty$
$t_{-1} = DT$	12 90	<u>₩</u> .69	pat p	Q _M CC	Oct ₆	-4.6
$t_{-1} = NN$	-4.6	-1.6	-0.3	-0.36	-1.0	-0.7
$t_{-1} = WP$	-3.8	-4.6	-4.6	-0.2	-4.6	-4.6
$t_{-1} = VBZ$	-0.2	-1.3	-1.6	-4.6	-0.92	-2.3
w_{-1} =NNS	-4.6	-4.6	-0.1	-4.6	-3.9	-1.2

Example Viterbi computation

https://powcoder.com

Additional features (and their weights) can be added https://powcoder.com

		DT	NN	WP	VBZ	NNS	♦	
	<i>w</i> ₀=the	\-0.05	-3.9	-46 D	r-4.6	ct4Ex	<u>-</u> 20	Haln
	$w_0=$ man	74.91	2197321	1161	1.41c		am	Help
	w_0 =who	-4.6	-4.6	-0.05	-4.6	-4.6	$-\infty$	
	w_0 =whistles	-4.6	-4.6	46	0.8	-0.63	$-\infty$. 4
	w_0 =tunes AS	SIGN	rrech	typeo	1 0 0t	EGGM	POB	e dis
	<i>w</i> ₀ =pianos	-4.6	-4.6	-4.6	-3.0	-0.08	$-\infty$	- - F
-	$t_{-1} = \Diamond$	-0.92	-3.9	-1.9	-3.5	-0.92	$-\infty$	•
	t_{-1} $=$ DT	-2311	10.69/	ነንტዒአ/	caple	r-0.761	77 4.6	
	$t_{-1} = NN$	-4.6	P-1.6'	-0.3	-0.36	-1.0	-0.7	
	t_{-1} =WP	-3.8	-4.6	-4.6	-0.2	-4.6	-4.6	
	t_{-1} =VBZ	-0.2	4.3X	01.0h	24.6	- 0.92	123	
	w_{-1} =NNS	-4.6	-4.6 ^V	0.111	ay,pc	<u> </u>	<u>ur</u> 2	
-	w_{-1} =START	-0.92	-3.9	-1.9	-3.5	-0.92	$-\infty$	•
	w_{-1} =the	-4.6	-0.7	-4.6	-4.6	-0.75	-10	
	w_{-1} =man	-1.6	-2.3	-0.9	-1.6	-2.3	-1	
	w_{-1} =who	-1.8	-4.6	-4.6	-0.2	-4.6	-9	
	w_{-1} =whistles	-2.3	-4.6	-4.6	-1.6	-0.4	-0.5	
	w_{-1} =tunes	-1.6	-4.6	-4.6	-4.6	-0.26	-0.3	

Feature templates used in SoA models https://powcoder.com

State-of-the-altsmodels treed to Projedent set xofinatife and high-order transitions

- ightharpoonup current words, w_{-1}, w_{-2}
- next words, https://powcoder.com
- ightharpoonup previous two tags, y_{-1}, y_{-2}
- ► for rare word:dd WeChat powcoder
 - first k characters, up to $K = \frac{1}{4}$
 - last k characters, up to k=4
 - ightharpoonup whether w_m contains a number, uppercase character, or hyphen

Parameter estimation for sequence labeling https://powcoder.com

Assignment Project Exam Help

We can extend the text classification models to sequence labeling:

Assign And the Spanning Assign And Assign An

Text classification	Sequence Labeling
Naïve Bayes https://powco	Helder (Mmkov Models (HMM)
Logistic Regression	Conditional Random Fields (CRF)
Perceptron Add WeChat	
Support Vector Machines (SVM)	Support Vector Machines (SVM)