Oscillators

ZHAO BO

Institute of VLSI Design

Zhejiang University

Email: zhaobo@zju.edu.cn

Web: person.zju.edu.cn/zhaobo

Feedback View

$$\frac{Y}{X}(s) = \frac{H(s)}{1 + H(s)} \qquad |H(s = j\omega_1)| = 1$$

$$\angle H(s = j\omega_1) = 180^{\circ}$$

- \Box If at a sinusoidal frequency, ω_1 , H(s=j ω_1) becomes equal to -1?
- \Box The gain from the input to the output goes to infinity, allowing the circuit to amplify a small component at ω_1 indefinitely.
- \Box That is, the circuit can sustain an output at ω_1 .

Phase Relationship

An LC-Tank Oscillator

- □Note that an LC tank alone is not a good oscillator. Due to loss, no matter how small, the amplitude of the oscillator decays.
- □Even a very high Q oscillator can only sustain oscillations for about Q cycles. For instance, an LC tank at 1GHz has a Q=20, can only sustain oscillations for about 20ns.
- □ Even a resonator with high Q=1000, will only sustain oscillations for about 1ms.

 [Ali Niknejad, EE142&EE242 of UC Berkeley]

Negative Resistance Perspective

□Another perspective is to view the active device as a negative resistance generator. In steady state, the losses in the tank due to resistance R are balanced by the power drawn from the active device through the negative resistance -R.

[Ali Niknejad, EE142&EE242 of UC Berkeley]

Negative Resistance

Negative Resistance

- □Attach the negative resistance to a lossy tank so as to construct an oscillator.
- \Box Connect an inductor to the negative-resistance port, and model the loss of the inductor by a series resistance, R_s.

$$R_S = \frac{g_m}{C_1 C_2 \omega^2}$$

$$\omega_{osc} = \frac{1}{\sqrt{L_1 \frac{C_1 C_2}{C_1 + C_2}}}$$

Tuned Amplifier

□A negative-feedback oscillatory system is built using "LC-

tuned" amplifier stages.

 \Box At the resonance frequency, ω_0 ,

the tank reduces to R_p and

$$\frac{V_{out}}{V_{in}} = -g_m R_p$$

Tuned Amplifier

- □Upon closer examination, we recognize that the circuit provides a phase shift of 180° with possibly adequate gain $(g_m R_p)$ at ω_0 .
- □We simply need to increase the phase shift to 360°, by inserting another stage in the loop

☐ The circuit oscillates if the loop gain:

$$\left(g_m R_p\right)^2 \ge 1$$

Cross-Coupled Oscillator

□The above circuit can be redrawn and is called a "cross-coupled" oscillator

 \Box The oscillating frequency is determined by the L₁, C₁, and parasitic capacitance

Supply Interference

□Supply variations modulate this capacitance and hence the oscillation frequency.

Oscillation Startup

$$I_X = -g_{m1}V_1 = g_{m2}V_2$$

$$\frac{V_X}{I_X} = -\left(\frac{1}{g_{m1}} + \frac{1}{g_{m2}}\right)$$

$$\frac{V_X}{I_X} = -\frac{2}{g_m} \qquad \frac{2}{g_m} \le 2R_p$$

$$g_m R_p \ge 1$$

Three-Point Oscillator

□Three different oscillator topologies can be obtained by grounding each of the transistor terminals

- □There is only one MOSFET for negative resistance, so the start-up condition is more stringent than cross-coupled one
- ☐ The circuits produce only single-ended output

Three-Point Oscillator

□It is possible to couple two copies of one oscillator so that they operate differentially.

 \Box The noise of I_1 and I_2 directly corrupts the oscillation.

Ring Oscillator

- □Each stage operates as an amplifier, leading to an oscillation frequency at which each inverter contributes a frequency-dependent phase shift of 60°.
- \Box In the steady state, the output of each inverter swings from nearly zero to nearly V_{DD} .

Voltage-Controlled Oscillator (VCO)

Symmetric Inductor

□Symmetric spiral inductors excited by differential waveforms exhibit a higher Q than their single-ended counterparts

Overall Q

□The loss of an inductor or a capacitor can be modeled by a parallel resistance

$$Q_L = \frac{R_{p1}}{L_1 \omega}$$
$$Q_C = R_{p2} C_1 \omega$$

□In the vicinity of resonance $L_1\omega = (C_1\omega)^{-1}$

$$L_1\omega = (C_1\omega)^{-1}$$

 \square Merging R_{p1} and R_{p2} yields the overall Q:

$$Q_{tot} = \frac{R_{p1}R_{p2}}{R_{p1} + R_{p2}} \cdot \frac{1}{L_{1}\omega} = \frac{1}{\frac{L_{1}\omega}{R_{p1}} + \frac{1}{R_{p2}C_{1}\omega}}$$

$$\frac{1}{Q_{tot}} = \frac{1}{Q_L} + \frac{1}{Q_C}$$

VCO Bias

- ☐ The VCO can be tail biased or top biased
- □AC coupling can be used to set a free bias voltage, but the tuning range will be reduced

Impact of MIM Cap

- □ More metal layers increase the overall capacitance C_{AB}
- □As more layers are stacked, the capacitance between the bottom layer and the substrate increase

MOM Cap

- □A MOM capacitor can exhibits lower parasitics than the MIM structure
- □The capacitance per unit volume is larger than that of the metal sandwich, leading to a smaller parasitic.

PMOS & NMOS Cross-Coupled Pairs

- □The VCO topology naturally provides an output CM level approximately equal to V_{DD}/2
- □ The bias current is "reused" by the PMOS devices, providing a higher transconductance

PMOS & NMOS Cross-Coupled Pairs

- □The typology produces twice the voltage swing for a given bias current and inductor design
- \Box The current in each tank swings between I_{SS} and I_{SS} , whereas in previous topologies it swings between I_{SS} and zero. The output voltage swing is therefore doubled

PMOS & NMOS Cross-Coupled Pairs

□If we remove the noise of the tail current source:

- □The circuit indeed avoids frequency modulation due to the tail current noise.
- □It saves the voltage headroom associated with the tail current
- □The circuit is now very sensitive to the supply voltage.

Amplitude Variation

□Frequency tuning induces variation of oscillation amplitude:

$$Q = \frac{L_1 \omega}{R_S} = \frac{R_p}{L_1 \omega}$$
$$R_p = \frac{L_1^2 \omega^2}{R_S}$$

- $\square R_p$ falls in proportion to ω^2 as more capacitance is presented to the tank
- \Box The oscillation amplitude is proportional to R_p
- \Box For example, a 10% change in ω yields a 20% change in the amplitude

Discrete Tuning

- □A small varactor leads to a relatively narrow tuning range
- \Box A large varactor leads to a high VCO gain (K_{VCO}), making the circuit sensitive to noise on the control voltage
- Discrete tuning works as a "coarse control" to enlarge the tuning range, and the varactor works as a "fine control" to decrease the K_{VCO}

Switch Design Trade-Off

- □Increasing the width of the switch transistors help to minimize the tuning-on resistance, increasing the Q
- □Unfortunately, wider switches introduce a larger capacitance from the bottom plate of the unit capacitors to ground, thereby presenting a substantial capacitance to the tanks

Floating Switch

- \Box The main switch (S₁) is placed between nodes A and B so that, with differential swings at these nodes, only half of R_{on} appears in series with each unit capacitor
- \square Switches S₂ and S₃ are minimum-size devices, merely defining the CM level of A and B.

Blind Zone

- □Sometimes the oscillator fails to cover the range for any combination of fine and coarse controls
- □One can design overlap between consecutive characteristics to avoid blind zone.

Phase Noise

- □An oscillator output x(t)=Acos[$ω_c$ t+ $φ_n$ (t)], where $φ_n$ (t) is a small random phase quantity that deviates the zero crossings from integer multiples of Tc
- \Box The term $\varphi_n(t)$ is called the "phase noise"

Phase Noise Specification

- \square Since the phase noise falls at frequencies farther from ω_c , it must be specified at a certain "frequency offset," i.e., a certain difference with respect to ω_c .
- □We consider a 1-Hz bandwidth of the spectrum at an offset of f, measure the power in this bandwidth, and normalize the result to the "carrier power."

□"dB with respect to the carrier," the unit dBc signifies normalization of the noise power to the carrier power.

Reciprocal Mixing

- □Suppose the LO suffers from phase noise and the desired signal is accompanied by a large interferer.
- □The convolution of the desired signal and the interferer with the noisy LO spectrum results in a broadened downconverted interferer whose noise skirt corrupts the desired IF signal.

Phase Noise in TX

- □Two users are located in close proximity, with user#1 transmitting a high-power signal at f_1 and user#2 receiving this signal and a weak signal at f_2
- \Box The phase noise skirt of f_1 received by user #2 greatly corrupts it even before downconversion.

Phase Noise in TX

- □ The LO phase noise also corrupts phase-modulated signals in the process of upconversion or downconversion
- □Since the phase noise is indistinguishable from phase (or frequency) modulation, the mixing of the signal with a noisy LO in the TX or RX path corrupts the signal constellation

□Corruption of a QPSK signal due to phase noise:

Cyclostationary Noise

- **□When M₁ turns off, injecting no noise**
- □When M₁ and M₂ are near equilibrium, they inject maximum noise current
- \square When M_1 is on but degenerated by the tail current, injecting little noise to the output.
- □So, the total noise current experiences an envelope having twice the oscillation frequency

Time-Variation Resistance

□For the time variation of the resistance presented by the cross-coupled pair, we may consider a time average of the resistance

Tail Capacitance

- □This capacitance may be large due to the parasitics of I_{SS}
- □The Q degrades significantly. Equivalently, the noise injected by M₂ rises considerably
- \Box It may be added deliberately to shunt the noise of I_{SS} to ground

Noise of Bias Current

□Oscillators typically employ a bias current source so as to minimize sensitivity to the supply voltage and noise therein

Cross–coupled transistors enter triode region and	Tail current source has noise at $2\omega_0$.	Tail current source has flicker noise and
Tail has large capacitance.		Output CM level is modulated by flicker noise or
		Varactors have even-order voltage dependence.

Noise of Bias Current

- \Box In models the noise of I_{SS} , including flicker noise near zero frequency, thermal noise around the oscillation frequency, $ω_0$, and thermal noise around $2ω_0$
- $\square M_1$ and M_2 are periodically turned on and off, thus steering I_{SS} I_n and hence operating as a mixer

Coupling Oscillators

□Two oscillators can be coupled in phase or anti-phase

Coupling Oscillators

$$X = (\alpha_1 Y - X)H(s)$$

$$Y = (\alpha_2 X - Y)H(s).$$

$$\left(\alpha_2 X^2 - \alpha_1 Y^2\right) \left[1 + H(s)\right] = 0$$

$$\alpha_2 X^2 = \alpha_1 Y^2$$

□If $\alpha_1 = \alpha_2$ (in-phase coupling), then X=±Y, i.e., the two oscillators operate with a zero or 180° phase difference.

Quadrature Oscillators

- $\Box Two$ oscillators are somehow forced to operate in quadrature at a frequency of ω_{osc}
- □The tail nodes, A and B, thus exhibit periodic waveforms at $2ω_{osc}$ and 180° out of phase.
- □Conversely, if additional circuitry forces A and B to sustain a phase difference of 180°, then the two oscillators operate in quadrature

Quadrature Oscillators

- \Box The tail transformer T₁ must remain relatively far from the main inductors so as to minimize the leakage of 2ω_{osc} to the two core oscillators.
- □Such leakage distorts the duty cycle of the outputs

