

Sequential Monte Carlo methods

Lecture 13 – Gibbs sampling

Fredrik Lindsten, Uppsala University 2017-08-28

Outline - Lecture 13

Aim: Show an alternative MCMC procedure (Gibbs sampling) and how it conceptually can be used for learning of dynamical systems

Outline:

- 1. The Gibbs sampler
- 2. Gibbs sampling for linear dynamical systems
- 3. Gibbs sampler for nonlinear dynamical systems

1/19

The Gibbs sampler

Challenge with MCMC

Designing **efficient** Metropolis–Hastings kernels for **arbitrary and high-dimensional** target distributions can be very challenging.

Gibbs sampling turns the overall sampling problem into a **series of sub-problems**, each of which is hopefully easier to address.

A first Gibbs sampler

Let $\pi(x_1, x_2)$ be a target distribution over two (groups of) variables.

Basic factorization: $\pi(x_1, x_2) = \pi(x_2 \mid x_1)\pi(x_1)$

Thus:

- If $(X_1, X_2) \sim \pi(x_1, x_2)$, then X_1 is distributed according to $\pi(x_1)$.
- If $X_2^{\star} \mid (X_1 = x_1) \sim \pi(x_2 \mid x_1)$, then (X_1, X_2^{\star}) is distributed according to $\pi(x_1, x_2)$.

Starting with a sample from the joint distribution, we can replace any of the variables by a draw from it's full conditional and still have a sample from the joint distribution.

ex) Gibbs sampler illustration

ex) Sample from,

$$\pi(x_1, x_2) = \mathcal{N}\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mid \begin{pmatrix} 10 \\ 10 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}\right).$$

Gibbs sampler:

Initialize $x_1[1] = 0$, $x_2[1] = 0$

for m = 2, ..., M

Draw $x_1[m] \sim \pi(x_1 | x_2[m-1]);$

Draw $x_2[m] \sim \pi(x_2 | x_1[m])$.

4/19

ex) Gibbs sampler illustration

MCMC kernels

An MCMC sampler generates the Markov chain $\{x[m]\}_{m=1}^{M}$ by:

- Initialize: set x[1] arbitrarily.
- For m=2 to M: sample $x[m] \sim \kappa(x[m-1], x^*)$.

 $\kappa(x, x^*)$ is a **Markov kernel** on \mathcal{X} , i.e. a conditional distribution for the next state x^* given the current state x.

Basic requirement 1: Stationarity of $\pi(x)$

$$\int \pi(x)\kappa(x,x^{\star})\mathrm{d}x = \pi(x^{\star}).$$

Basic requirement 2: Ergodicity — κ must allow the state to move in order to explore the state space.

The Gibbs Markov kernel

Target: $\pi(x) = \pi(x_1, ..., x_d)$

Input a configuration $x = (x_1, ..., x_d)$ for j = 1, ..., dSample $x_j^* \sim \pi(x_j \mid x_1^*, ..., x_{j-1}^*, x_{j+1}, ..., x_d)$ Output $x^* = (x_1^*, ..., x_d^*)$.

Gibbs kernel: This procedure defines a Markov kernel $\kappa(x, x^*)$ with stationary distribution $\pi(x)$.

Extensions

There are many possible extensions of the basic Gibbs procedure, which also result in valid MCMC kernels.

- Random scan: select components to sample randomly (with or without replacement)
- Overlapping blocks: the groups of variables need not be disjoint
- Collapsing: analytical marginalization of some of the variables (!)

8/19

Extensions - Composition of MCMC methods

In many cases, exact sampling from some of the full conditional distributions is not possible.

Sufficient to sample from some Markov kernel which has the **full conditional distribution** as stationary distribution — we can make use of a combination of MCMC techniques.

If exact sampling from $\pi(x_i | x_{-i})$ is not possible:

$$X_j^{\star} \sim \kappa_j(x, x_j^{\star})$$
 where $\int \kappa_j(x, x_j^{\star}) \pi(x_j \mid x_{-j}) dx_j = \pi(x_j^{\star} \mid x_{-j})$

For instance, κ_j can be a Metropolis–Hastings kernel on the lower dimensional space $\mathcal{X}_j \ni x_j$.

(Short hand notation $x_{-i} = (x_1, ..., x_{i-1}, x_{i+1}, ..., x_d)$.)

ex) Metropolis-within-Gibbs

Target:

7/19

9/19

$$\pi(x_1, x_2) \propto \widetilde{\pi}(x_1, x_2) = \underbrace{\exp\left(-\frac{1}{2}(2x_1 + \sin(6.28x_1))^2\right)}_{\widetilde{\pi}(x_1)} \underbrace{\mathcal{N}(x_2 \mid x_1^3, 0.1)}_{\pi(x_2 \mid x_1)}$$

Gibbs sampler:

Set $x_1[1] = 0$, $x_2[1] = 0$

 $\quad \text{for } m=2,\,\ldots,\,M$

Draw $x_1[m] \sim \kappa_1(x[m-1], \mathbf{x_1^{\star}});$

Draw $x_2[m] \sim \pi(x_2 | x_1[m])$.

where κ_1 is a Metropolis–Hastings kernel for $\pi(x_1 \mid x_2)$.

Note that $\pi(x_1 \mid x_2) = \frac{\pi(x_1, x_2)}{\pi(x_2)}$. Hence, **conditionally on** x_2 ,

$$\pi(x_1 \mid x_2) \propto \pi(x_1, x_2) \propto \widetilde{\pi}(x_1, x_2).$$

ex) Metropolis-within-Gibbs

Algorithm 1 Metropolis-within-Gibbs sampler for toy problem

- 1. **Initialize:** Set $x_1[1] = 0$, $x_2[1] = 0$.
- 2. For m = 2 to M, iterate:
- a. Sample $x_1' \sim \mathcal{N}(x_1 | x_1[m-1], 0.5^2)$.
- b. Sample $u \sim \mathcal{U}[0,1]$.
- c. Compute the acceptance probability

$$\alpha = \min\left(1, \frac{\widetilde{\pi}(x_1', x_2[m-1])}{\widetilde{\pi}(x_1[m-1], x_2[m-1])}\right)$$

d. Set

$$x_1[m] = \begin{cases} x_1' & \text{if } u \leq \alpha \\ x_1[m-1] & \text{otherwise} \end{cases}$$

e. Draw $x_2[m] \sim \pi(x_2 | x_1[m])$.

Gibbs sampling for dynamical systems

11/19

ex) Gibbs sampling for linear Gaussian system

Simple LG-SSM,

$$X_t = 0.9X_{t-1} + V_t,$$
 $V_t \sim \mathcal{N}(0, \Theta_1),$
 $Y_t = X_t + E_t,$ $E_t \sim \mathcal{N}(0, \Theta_2),$

With inverse-Gamma priors: $\Theta_1 \sim \mathcal{IG}(0.1, 0.1), \ \Theta_2 \sim \mathcal{IG}(0.1, 0.1)$

Task: Compute $p(\theta \mid y_{1:T})$ for a batch of T = 100 observations.

The inverse-Gamma distribution is **conjugate prior** for an unknown variance of a Gaussian likelihood \Rightarrow

$$\begin{aligned} \rho(\theta_1 \mid x_{0:T}, y_{1:T}) &= \mathcal{I}\mathcal{G}\left(\theta_1 \mid 0.1 + \frac{T}{2}, 0.1 + \frac{1}{2} \sum_{t=1}^{T} (x_t - 0.9 x_{t-1})^2\right), \\ \rho(\theta_2 \mid x_{0:T}, y_{1:T}) &= \mathcal{I}\mathcal{G}\left(\theta_2 \mid 0.1 + \frac{T}{2}, 0.1 + \frac{1}{2} \sum_{t=1}^{T} (y_t - x_t)^2\right). \end{aligned}$$

ex) Gibbs sampling for linear Gaussian system

Gibbs sampler:

Initialize $\theta_1[1] = \theta_2[1] = 5$ (arbitrary!) for m = 2, ..., M

- Draw $x_{0:T}[m] \sim p(x_{0:T} \mid \theta[m-1], y_{1:T})$, by using Kalman smoothing techniques.
- Draw θ[m] ~ p(θ | x_{0:T}[m], y_{1:T}),
 i.e., simulate θ₁[m] and θ₂[m] from their inverse-Gamma posteriors.

12/19

ex) Gibbs sampling for linear Gaussian system

First 500 iterations of the Gibbs sampler for θ_1 and θ_2 .

ex) Gibbs sampling for linear Gaussian system

Marginal posterior distributions, $p(\theta_1 | y_{1:T})$ and $p(\theta_2 | y_{1:T})$, based on 50 000 iterations of the Gibbs sampler.

15/19

Gibbs sampling for nonlinear dynamical systems

What about a general nonlinear/non-Gaussian dynamical system?

$$X_t \mid (X_{t-1} = x_{t-1}, \Theta = \theta) \sim p(x_t \mid x_{t-1}, \theta),$$

$$Y_t \mid (X_t = x_t, \Theta = \theta) \sim p(y_t \mid x_t, \theta),$$

$$X_0 \sim p(x_0), \quad \Theta \sim p(\theta).$$

Gibbs sampler:

- Draw $\theta^{\star} \sim p(\theta \mid x_{0:T}, y_{1:T})$, **OK!**
- Draw $\mathbf{x}_{0:T}^{\star} \sim p(\mathbf{x}_{0:T} \mid \boldsymbol{\theta}^{\star}, \mathbf{y}_{1:T})$. Hard!

Problem: $p(x_{0:T} | \theta, y_{1:T})$ not available!

Idea: Approximate $p(x_{0:T} | \theta, y_{1:T})$ using a particle filter?

Sampling based on the PF

With
$$\mathbb{P}\left(\mathbf{X}_{0:T}^{\star}=x_{0:T}^{i}\right)=w_{T}^{i}$$
 we get $\mathbf{X}_{0:T}^{\star}\overset{\mathsf{approx.}}{\sim}p(x_{0:T}\mid\theta,y_{1:T})$.

17/19

16/19

Sampling based on the PF

Problems with this approach:

- Based on a PF ⇒ approximate sample.
- $p(\theta, x_{1:T} | y_{1:T})$ is not a stationary distribution.
- Relies on large *N* to be successful.
- A lot of wasted computations.

The PMCMC framework allows us to address these issues!

A few concepts to summarize lecture 13

Gibbs sampler: an MCMC sampler that iteratively simulates the unknown variables of the model from their conditional distributions.

MCMC within Gibbs: If exact sampling from some conditional is not possible, we may use any valid MCMC kernel within a Gibbs sampler to simulate from this conditional.

Gibbs sampling for dynamical systems: boils down to sampling the model parameters **with fixes states** + sampling the states with **fixed parameters** (state inference).

19/19