P. J. Bickel, E. A. Hammel, W. J. O'Connell, Science (187), 1975

P. J. Bickel, E. A. Hammel, W. J. O'Connell, Science (187), 1975

Department-specific admissions data

Departments	Social Warfare		Machismatics	
Applicant gender	Women	Men	Women	Men
Admitted	20	1	19	100
Rejected	180	19	1	100

P. J. Bickel, E. A. Hammel, W. J. O'Connell, Science (187), 1975

Department-specific admissions data

Departments	Social Warfare		Machismatics	
Applicant gender	Women	Men	Women	Men
Admitted	20	1	19	100
Rejected	180	19	1	100

Applicant gender	Women	Men
Total admissions	39	101
Total rejected	181	119
Admission odds	39/220 ≈ .18	101/220 ≈ .46

P. J. Bickel, E. A. Hammel, W. J. O'Connell, Science (187), 1975

Department-specific admissions data

Departments	Social Warfare		Machismatics	
Applicant gender	Women	Men	Women	Men
Admitted	20	1	19	100
Rejected	180	19	1	100

Applicant gender	Women	Men
Total admissions	39	101
Total rejected	181	119
Admission odds	39/220 ≈ .18	101/220 ≈ .46

P. J. Bickel, E. A. Hammel, W. J. O'Connell, Science (187), 1975

Department-specific admissions data

Departments	Social Warfare		Machismatics	
Applicant gender	Women	Men	Women	Men
Admitted	20	1	19	100
Rejected	180	19	1	100
Admission odds	20/200 = .10	1/20 = .05	19/20 = .95	100/200 = .50

Applicant gender	Women	Men
Total admissions	39	101
Total rejected	181	119
Admission odds	39/220 ≈ .18	101/220 ≈ .46

P. J. Bickel, E. A. Hammel, W. J. O'Connell, Science (187), 1975

Department-specific admissions data

Departments	Social V	Varfare	Machism	natics
Applicant gender	Women	Men	Women	Men
Admitted	20	1	19	100
Rejected	180	19	1	100
Admission odds	20/200 = .10	> 1/20 = .05	19/20 = .95	100/200 = .50

Applicant gender	Women	Men
Total admissions	39	101
Total rejected	181	119
Admission odds	39/220 ≈ .18	101/220 ≈ .46

- * Sample space: population of 440 applicants, 220 men and 220 women.
- * Combinatorial setting: a randomly selected applicant from the population.
- * Events:
 - * $A := applicant is admitted; A^{c} := applicant is rejected.$
 - * $W := \text{applicant is a woman}; W^c := \text{applicant is a man}.$
 - * S := applicant applies to Department of Social Warfare; $S^c :=$ applicant applies to Department of Machismatics.

E. H. Simpson, Journal of the Royal Statistical Society (13), 1951

- * Sample space: population of 440 applicants, 220 men and 220 women.
- * Combinatorial setting: a randomly selected applicant from the population.
- * Events:
 - * $A := applicant is admitted; A^{c} := applicant is rejected.$
 - * $W := \text{applicant is a woman}; W^c := \text{applicant is a man}.$
 - * S := applicant applies to Department of Social Warfare; $S^c :=$ applicant applies to Department of Machismatics.

Department-specific admissions data:

$$\mathbf{P}(A \mid W \cap S) > \mathbf{P}(A \mid W^{0} \cap S)$$

$$\mathbf{P}(\mathbf{A} \mid \mathbf{W} \cap \mathbf{S}^{\mathbf{c}}) > \mathbf{P}(\mathbf{A} \mid \mathbf{W}^{\mathbf{c}} \cap \mathbf{S}^{\mathbf{c}})$$

- * Sample space: population of 440 applicants, 220 men and 220 women.
- * Combinatorial setting: a randomly selected applicant from the population.
- * Events:
 - * $A := applicant is admitted; A^c := applicant is rejected.$
 - * W := applicant is a woman; W^c := applicant is a man.
 - * S := applicant applies to Department of Social Warfare; $S^c :=$ applicant applies to Department of Machismatics.

Department-specific admissions data:

$$P(A \mid W \cap S) > P(A \mid W^{c} \cap S)$$

$$\mathbf{P}(\mathbf{A} \mid \mathbf{W} \cap \mathbf{S}^{\mathbf{c}}) > \mathbf{P}(\mathbf{A} \mid \mathbf{W}^{\mathbf{c}} \cap \mathbf{S}^{\mathbf{c}})$$

$$P(A \mid W) < P(A \mid W^{c})$$

E. H. Simpson, Journal of the Royal Statistical Society (13), 1951

- * Sample space: population of 440 applicants, 220 men and 220 women.
- * Combinatorial setting: a randomly selected applicant from the population.
- * Events:
 - * $A := applicant is admitted; A^c := applicant is rejected.$
 - * W := applicant is a woman; W^c := applicant is a man.
 - * S := applicant applies to Department of Social Warfare; $S^c :=$ applicant applies to Department of Machismatics.

Department-specific admissions data:

$$P(A \mid W \cap S) > P(A \mid W^{c} \cap S)$$

$$\mathbf{P}(\mathbf{A} \mid \mathbf{W} \cap \mathbf{S}^{\mathbf{c}}) > \mathbf{P}(\mathbf{A} \mid \mathbf{W}^{\mathbf{c}} \cap \mathbf{S}^{\mathbf{c}})$$

Cumulative admissions data:

$$P(A \mid W) < P(A \mid W^{c})$$

Slogan: Conditioning provides information that can effect event probabilities in unexpected ways.