

Best Case: $\Theta($), Worst Case: $\Theta($

Merger Sort (list) &

left = merger Sort (left half of list)

right = merger Sort (right half of list)

merger (left, right) takes
$$\theta(N)$$
 time

euch level does N work

We run merge sort, but once the inputs for the recursive calls are of $size \le N/100$, we perform insertion sort on them.

We know that we perform Insertion Sorr on each of these 27 sublists

i. Runhime
Best luse =
$$2^7$$
. Best luse Justinon
= 2^7 . $\Theta(N) = \Theta(N)$

Lorer luse = 2^7 . Lorst luse Instruor
= 2^7 . $\Theta(N^2) = \Theta(N^2)$

.. Since it takes 8N=> O(N) time for Merge Sort to get sublists of size CIN/100, we all this in our total number:

Mege Treverion

Besi Case:
$$\Theta(N) + \Theta(N) = \Theta(N)$$

Lors Case: $\Theta(N) + \Theta(N^2) = \Theta(N^2)$

Solution:

Best Case: $\Theta(N)$, Worst Case: $\Theta(N^2)$

Once we have 100 runs of size N/100, insertion sort will take best case $\Theta(N)$ and worst case $\Theta(N^2)$ time. The constant number of linear time merging operations don't add to the runtime.

(b)	We run selection sort, but	instead of swapping	the smallest	element to	o the front,	we can o	nly swap
	adjacent elements.						

Best Case: $\Theta($), Worst Case: $\Theta($)

Selection Soro (list) &

For each element in list; (N time)

find min element in rest of list (roughly N time)

Suap positions of current clem and min elem (consider)

Runtine; N+W-1+W-2+...+1 = 0 (2)

Lonstraint: Lun only suap adjacent elements now, rather than doing one shap blu curr elemand min elem

i.e. 1272403

This means snapping is no longer a constant time operation in selection sorr!

Selection Soro (lisr) &

for each element in list; (N rine)
find min element in per of list (roughly N time)

Shap positions of current elem and min elem (now N time)

3

 $N \cdot (N + 1) \Rightarrow \Theta(N^2)$ After: iterating, (finh Min + adjacent strap min to front) $N \cdot (N + N) \Rightarrow N \cdot 2N \Rightarrow 2N^2 = \Theta(N^2)$

Before: iterating. (find Min & Shap Curr and min)

DOIGHOII.

Best Case: $\Theta(N^2)$, Worst Case: $\Theta(N^2)$

The best case and worst case don't change since swapping at most doubles the work each iteration, which produces the same asymptotic runtime as normal selection sort.

(c) We use a linear time median finding algorithm to select the pivot in quicksort. Best Case: $\Theta(\)$, Worst Case: $\Theta(\)$
Quideson (list) &
Choose pivor (me lian algo takes N time)
partition elems about pivor (N time)
quick Sorr (less) + pivor + quick sorr (greaser)
3
Since pivor is medien value, lett and night
partitions will be splir evenly, i.e. both will
be of size $\sim 1/2$
$\frac{1}{2 \cdot \sqrt[N]{2}}$
N/u N/u
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Inpur spir in half due to me dinn pivor

Sum of work =
$$2N + 2 \cdot (2 \cdot \frac{N}{4}) + 4 \cdot (2 \cdot \frac{N}{4}) + \dots$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + 2N + \dots + 2N$$

$$= 2N + 2N + \dots + 2N$$

Solution:

Best Case: $\Theta(N \log(N))$, Worst Case: $\Theta(N \log(N))$

Doing an extra N work each iteration of quicksort doesn't asymptotically change the best case runtime, but it improves the worst case runtime.

We implement heapsort with a min-heap instead of a max-heap. You may modify heapsort but must maintain constant space complexity. Best Case: $\Theta(\)$, Worst Case: $\Theta(\)$

Heap Sorr Clist) &

heap ify list into Mano heap (takes N time)

while heap is not empty: (takes N time)

Surap root W/ last elem

bubble Down new root] (takes log N time)

However, by using a min-heap, the resulting list will be in descending order, since we add the minimum to the end of the list. We have to then reverse the list to get it in a scending order.

min Heap Sorr (list) &

heap ify list into min-heap (takes N time)

while heap is not empty: (takes N time)

Surap root W/ last elen

bulbble Down new root] (takes log N time)

reverse list (takes N time)

... N + Nloy N + N = O(N log N)

Since all stens are unique, no diff b/w

best and worst case since bubble downs are log N time.

Solution:

Best Case: $\Theta(N \log(N))$, Worst Case: $\Theta(N \log(N))$

While a max-heap is better, we can make do with a min-heap by placing the smallest element at the right end of the list until the list is sorted in **descending order**. Once the list is in descending order, it can be sorted in ascending order with a simple linear time pass.

(e) We run an optimal sorting algorithm of our choosing knowing:

There are at most N inversions: pair of clerns (X,V) X corns befor Y Best Case: $\Theta()$, Worst Case: $\Theta()$ and X ? YIn Section Sart! $\Theta(N + K)$, K = H inversions

WOrst Case: E(N + K) = E(N)Best Case: E(K) = E(K)Best Case: E(K) = E(K)Best Case: E(K) = E(K)

Solution:

Best Case: $\Theta(N)$, Worst Case: $\Theta(N)$

Recall that insertion sort takes $\Theta(N+K)$ time, where K is the number of inversions. If K is at most N, then, insertion sort has the best and worst case runtime of $\Theta(N)$. Here is an explanation for why no sorting algorithm can surpass this. Notice for our algorithm to terminate we *either* need to address every inversion or look at every element. Since there are at most N inversions, knowing that we have addressed every inversion would take us at least $\Theta(N)$ time. Looking at every element in the list would also take us $\Theta(N)$ time. In either case, we see the runtime of any sorting algorithm cannot be faster than $\Theta(N)$.

Best Case: $\Theta($), Worst Case: $\Theta($)
Best case; inversion pair is first 2 elens in list
S 2
Takes Constant fine to find and Sun! => O(1)
Worst Lase; inversion pair is last 2 elements in list

Takes Nime to find, consum time to sum! => (O(N)

Solution:

Best Case: $\Theta(1)$, Worst Case: $\Theta(N)$

The inversion may be the first two elements, in which case constant time is needed. Or, it may involve elements at the end, in which case N time is needed. It can be proven quite simply that no sorting algorithm can achieve a better runtime than above for the best and worst case.

There are exactly $\frac{N(N-1)}{2}$ inversions
Best Case: $\Theta($), Worst Case: $\Theta($)
Consider an army of size N = 4
$N = 4 \Rightarrow \frac{4(4-1)}{2} = 6$ inversions
How to crease 6 inversions in this array?
- Let's consider finding man # of inversions
A B C D
Present A, B, C, D are arbitrary values
Whar is the mass H of inversions for
A:3
13:2
C: 1
$\mathcal{O}:\mathcal{O}$
max inversions; 3 2 1 0 = 6 inversions!
N-1 N-2 N-3 O

$$\frac{N^{1} \cdot N}{2} = \frac{N(N-1)}{2} = Snr$$
 of first N-1 H's $\frac{3}{2} = \frac{2}{2} = \frac{1}{2} = \frac{1}{2}$

Solution:

Best Case: $\Theta(N)$, Worst Case: $\Theta(N)$

If a list has N(N-1)/2 inversions, it means it is sorted in descending order! So, it can be sorted in ascending order with a simple linear time pass. We know that reversing any array is a linear time operation, so the optimal runtime of any sorting algorithm is $\Theta(N)$.