Thermal Supernova Feedback and Multiphase Galactic Outflow

Yuri Oku (Osaka)

Collaborators:

Kentaro Nagamine (Osaka) Kengo Tomida (Tohoku) Ikko Shimizu (Shikoku Gakuin) Renyue Cen (Princeton, Osaka)

Introduction: Supernova Feedback

- Supernova feedback (SN FB) drive outflow and quench star formation.
- SN scale (~ 10 pc) is unresolved in galaxy simulations (kpc-Mpc scale).
- What do we need to model?

SN Feedback Model: Kinetic & Thermal

• Two forms of feedback: Kinetic & Thermal

	Kinetic FB	Thermal FB
Physical meaning	SNR gives momentum to ISM	Shock heating by SN ejecta
Roles	Drive turbulence , Expel gas out from galaxy	Produce hot outflow , Transport metals out from galaxy
Difficulty in low reso.	Unresolved cooling length, Unresolved thin shell formation (Due to low spatial resolution)	Unresolved cooling mass (Due to low mass resolution)
Previous works	Kimm & Cen (2014); Rosdahl et al. (2017); Hopkins et al. (2018)	Stinson et al. (2006); Dalla Vecchia & Schaye (2012); Keller et al. (2014)

SN Feedback Model: Kinetic & Thermal

Two forms of feedback: Kinetic & Thermal

	Kinetic FB	Thermal FB
Physical meaning	SNR gives momentum to ISM	Shock heating by SN ejecta
Roles	Drive turbulence , Expel gas out from galaxy	Produce hot outflow , Transport metals out from galaxy
Difficulty in low reso.	Unresolved cooling length, Unresolved thin shell formation (Due to low spatial resolution)	Unresolved cooling mass (Due to low mass resolution)
Previous works	Kimm & Cen (2014); Rosdahl et al. (2017); Hopkins et al. (2018)	Stinson et al. (2006); Dalla Vecchia & Schaye (2012); Keller et al. (2014)

Motivation of this work:

- Develop a SN FB model considering both { kinetic FB thermal FB thermal FB today's topic
- First, model SN FB based on pc-scale simulations.
- Second, implement the results into a galactic-scale simulation.

Result from small-box simulations

- How to assign thermal energy?
- When cooling mass is unresolved, thermal feedback is ineffective (overcooling problem).

High-resolution small-box simulations show temperature of hot outflow is typically $5 \times 10^6 \ K$.

Stochastic Thermal Feedback

- Updated stochastic thermal feedback model (Dalla Vecchia & Schaye 2012).
- Consider an effect of adiabatic cooling to reproduce hot outflow with $T_{OF}\sim 5\times 10^6 K$,
- Assume pressure equilibrium between outflow and ISM, Ξ the **target temperature is** $T_{\text{target},i} = T_{\text{OF}}^{5/3} T_i^{-2/3}$.
- Inject thermal energy $\Delta E_i = \frac{m_i}{\mu m_p} k_B T_{\mathrm{target},i}$ stochastically.
- Total thermal feedback energy is $0.7E_{SN}$.
- Cooling is always on.

Heats gas up to high temperature by stochastic treatment

Isolated Galaxy Test: Setup

- Isolated galaxy simulation using GADGET3-Osaka (Shimizu+ 2019).
- Initial condition: AGORA disk (Kim+ 2014) + gas halo (Shin+ 2021)
 - Milky-way-mass disk galaxy
 - $m_{gas} = 8.6 \times 10^4 M_{\odot}, m_{DM} = 1.3 \times 10^7 M_{\odot}$
- Evolved to 1 Gyr.

Name	Description	Purpose
Fiducial	Fiducial (momentum FB + stochastic thermal FB)	
Non-stochastic	Thermal energy is distributed without stochastic treatment	To evaluate the stochastic treatment
Thermal	Only stochastic thermal FB	To evaluate the effect of kinetic FB
No FB	No feedback	Reference

Isolated Galaxy Test: Face-on Movie

- Without kinetic FB, gas can easily collapse and the disk becomes clumpy. (Thermal & No FB)
- Hot bubbles are created by stochastic treatment (Fiducial & Thermal)
- Hot gas in No FB run is due to projection effect.

Isolated Galaxy Test: Edge-on Metal Outflow

- Outflow by stochastic thermal feedback transports metals up to R_{vir} (= 200 kpc).
- Gases kicked by kinetic feedback fall back to the galaxy.

Isolated Galaxy Test: SFR

- Kinetic FB suppresses star formation (Fiducial vs. Thermal vs. No FB).
- Stochastic thermal feedback have **little effect** on star formation (Fiducial vs. Non-stochastic).

Isolated Galaxy Test: Outflow

Metal loading factor profile averaged over t = 0.5 - 1 Gyr.

$$\left(\eta_Z = \frac{\dot{M}_{Z,out}}{\dot{M}_{Z,SN}}\right)$$

- Stochastic thermal FB produces hot ($T > 10^5$ K) outflow reaches $R_{\rm vir}$.
- Metals are transported by hot outflow.

Summary

- Updated stochastic FB model to reproduce hot ($T = 5 \times 10^6$ K) outflow.
- From isolated-galaxy test,
- Kinetic FB suppresses star formation.
- Stochastic thermal FB produce hot outflow and transport metals up to R_{vir} .
- We will use this model in cosmological simulations.

Appendix

Outflow Temperature

- Runs without hot gas halo
- Hot outflow $(T = 10^{6-7} \text{ K})$ in fiducial run

 $T_{OF} \sim 5 \times 10^6 K$ is reproduced.

Outflow Temperature (with hot gas halo)

- Runs with hot gas halo
- Hot outflow $(T = 10^{6-7} \text{ K})$ in all runs.