

Accurate Multivariate Stock Movement Prediction via Data-Axis Transformer with Multi-Level Contexts

Jaemin Yoo¹, Yejun Soun¹², Yong-chan Park¹, and U Kang¹²

¹ Seoul National University

² DeepTrade, Inc.

KDD 2021

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

Stock Market Prediction

- To predict the future values of stock prices
 - The most popular task in the financial domain
- The problem is challenging but rewarding
 - Challenging. Stock prices have no clear patterns and make random movements
 - Rewarding. Even the increase of 1% of prediction accuracy results in enormous profit

Problem Definition

Stock movement prediction

- We model the problem as binary classification
- To predict a movement rather than exact price

Definition

- **Given** the historical prices $\{p_t\}_{t\leq T}$ of a stock
 - We assume daily prices; p_t is the price at day t
 - *T* is the current index for prediction
- **Predict** the rise $(p_{T+1} > p_T)$ or fall $(p_{T+1} \le p_T)$

Research Motivation

- Stocks are strongly correlated with each other
- Previous models can be categorized as
 - Univariate models
 - They treat each stock independently from the others
 - Multivariate models with fixed correlations
 - They take the correlations as a predefined input
 - The correlations cannot reflect the dynamic property

How can we learn dynamic correlations between stocks with no prior knowledge?

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

Overview (1)

- We propose DTML for stock price prediction
 - Data-axis Transformer with Multi-Level contexts
- Idea 1. Time-axis attention
 - To summarize the historical prices of each stock
- Idea 2. Context aggregation
 - To combine individual contexts with a global trend
- Idea 3. Data-axis attention
 - To learn the stock correlations by a transformer

Overview (2)

- This is the overall structure of DTML
 - Three modules correspond to the three main ideas

Time-Axis Attention (1)

- Module 1. Time-axis attention
 - Summarizes the historical prices as a single vector

Time-Axis Attention (2)

- Given feature vectors $\{\mathbf{z}_{ut}\}_{t\leq T}$ of stock u
 - \mathbf{z}_{ut} is made from the prices of stock u until day t
- Feature transformation
 - We transform each feature vector as follows:

$$\tilde{\mathbf{z}}_{ut} = \tanh(\mathbf{W}_{s}\mathbf{z}_{ut} + \mathbf{b}_{s}),$$

• W_s and b_s are learnable weight and bias, resp.

Time-Axis Attention (3)

Attention LSTM

- We run LSTM to generate state vectors $\{\mathbf{h}_{ut}\}_t$
- We then compute an attention score α_i such that

$$\alpha_i = \frac{\exp(\mathbf{h}_i^{\top} \mathbf{h}_T)}{\sum_{j=1}^T \exp(\mathbf{h}_j^{\top} \mathbf{h}_T)}.$$

• The state vectors are combined as $\tilde{\mathbf{h}}^c = \sum_i \alpha_i \mathbf{h}_{ui}$

Time-Axis Attention (4)

Context normalization

- Raw contexts have different scales for stocks
- We normalize each element of $\tilde{\mathbf{h}}_{u}^{c}$ as follows:

$$h_{ui}^{c} = \gamma_{ui} \frac{\tilde{h}_{ui}^{c} - \text{mean}(\tilde{h}_{ui}^{c})}{\text{std}(\tilde{h}_{ui}^{c})} + \beta_{ui},$$

• γ_{ui} and β_{ui} are learnable parameters for each pair (u, i)

Context Aggregation (1)

- Module 2. Context aggregation
 - Combines individual and global context vectors

Context Aggregation (2)

- Prepare a global market context hⁱ
 - Consider a market index i as an individual stock
 - Such as NDX100 or DJI in the US stock markets
 - Apply the time-axis attention to i and make \mathbf{h}^i
- Make a multi-level context for each stock u:

$$\mathbf{h}_{u}^{m} = \mathbf{h}_{u}^{c} + \beta \mathbf{h}^{i},$$

• β is a parameter for balancing the two contexts

Context Aggregation (3)

- Effect of context aggregation
 - Consider a simple dot-product attention as

$$\mathbf{h}_{u}^{m\top}\mathbf{h}_{v}^{m} = \mathbf{h}_{u}^{c\top}\mathbf{h}_{v}^{c} + \beta\mathbf{h}^{i\top}(\mathbf{h}_{u}^{c} + \mathbf{h}_{v}^{c}) + \beta^{2}\mathbf{h}^{i\top}\mathbf{h}^{i}.$$

- Using multi-level contexts has several effects:
 - T2: A larger weight is given if the movement of a stock corresponds to the movement of the market
 - T3: The movement of the market works as the default value for all correlations between stocks

Data-Axis Attention (1)

- Module 3. Data-axis attention
 - Computes dynamic correlations between stocks

Data-Axis Attention (2)

Given

- Matrix $\mathbf{H} \in \mathbb{R}^{n \times d}$ that stacks multi-level contexts
 - *n* is the number of stocks, and *d* is the context size
- Make attention components Q, K, and V as

$$\mathbf{Q} = \mathbf{H}\mathbf{W}_q \qquad \qquad \mathbf{K} = \mathbf{H}\mathbf{W}_k \qquad \qquad \mathbf{V} = \mathbf{H}\mathbf{W}_v.$$

Aggregate the context vectors as follows:

$$\tilde{\mathbf{H}} = \mathbf{S}\mathbf{V}$$
 where $\mathbf{S} = \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{h}}\right)$.

Data-Axis Attention (3)

- We transform the aggregated contexts $\widetilde{\mathbf{H}}$ with
 - Nonlinear transformation

$$H_p = \tanh(H + \tilde{H} + MLP(H + \tilde{H})),$$

Final prediction layer

$$\hat{\mathbf{y}} = \sigma(\mathbf{H}_{\mathbf{p}}\mathbf{W}_{\mathbf{p}} + \mathbf{b}_{\mathbf{p}}).$$

• σ is the logistic sigmoid function for an output

Summary

- DTML is a combination of three modules
 - Time-axis attention for the prices of each stock
 - Context aggregation with a global market trend
 - Data-axis attention by a transformer encoder
- DTML is trained by a gradient-based way
 - To minimize the cross-entropy loss £ for training
 - Apply the L2 regularizer only to the last predictor
 - Why? To restrict the output space while not affecting the main functionality for making stock correlations

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

Datasets

- We use six datasets in four different countries
 - Two are public datasets used in previous work
 - Four are private datasets collected in this work

Dataset	Country	Stocks	Days	From	То
ACL18 ¹	US	87	504	2014-01-01	2015-12-31
KDD17 ¹	US	50	2,518	2007-01-01	2016-12-31
NDX100	US	95	1,259	2013-01-01	2017-12-31
CSI300	China	219	1,119	2015-06-01	2019-12-31
NI225	Japan	51	856	2016-07-01	2019-12-31
FTSE100	UK	24	1,134	2014-01-01	2018-06-30

Feature Engineering

- We use the same features as in previous work
 - Each feature \mathbf{z}_{ut} summarizes the price movement of stock u until day t by simple operations

Features	Calculation		
$z_{ m open}$	$z_{\text{open}} = \text{open}_t/\text{close}_t - 1$		
$z_{ m high}$	$z_{\text{high}} = \text{high}_t/\text{close}_t - 1$		
$z_{ m low}$	$z_{\text{low}} = \text{low}_t/\text{close}_t - 1$		
$z_{ m close}$	$z_{\text{close}} = \text{close}_t/\text{close}_{t-1} - 1$		
$z_{ m adj_close}$	$z_{\text{adj_close}} = \text{adj_close}_t / \text{adj_close}_{t-1} - 1$		
z_{d5}, z_{d10}	$\sum_{k=1}^{k}$		
z_{d15}, z_{d20}	e.g., $z_{dk} = \frac{\sum_{i=0}^{k} \text{adj_close}_{t-i}}{k \cdot \text{adj_close}_{t}} - 1$		
z_{d25}, z_{d30}	κ auj_closc $_t$		

Evaluation

- We split each dataset into train/valid/test sets
 - The split is done by the chronological order
 - The splitting dates are the same as in prev. work
- We use two evaluation metrics
 - Simple accuracy (ACC)
 - The number of correct predictions over all predictions
 - The Matthews correlation coefficient (MCC)
 - Measures the accuracy in a more balanced manner

Questions

- We answer the questions by experiments:
 - Q1 (Accuracy). Does DTML outperform previous models in terms of classification accuracy?
 - Q2 (Profit). Does DTML make the profit on actual investment simulation in our datasets?
 - Q3 (Correlations). Does DTML make reasonable correlations between stocks?
 - Q4 (Ablation study). Does each module of DTML help improving the classification accuracy?

Q1. Prediction Accuracy

- DTML produces the highest ACC and MCC
 - The improvement is more significant with MCC

Model	ACL18 (US)		KDD17 (US)		NDX100 (US)	
	ACC	MCC	ACC	MCC	ACC	MCC
LSTM [24]	0.4987 ± 0.0127	0.0337 ± 0.0398	0.5118 ± 0.0066	0.0187 ± 0.0110	0.5263 ± 0.0003	0.0037 ± 0.0049
ALSTM [31]	0.4919 ± 0.0142	0.0142 ± 0.0275	0.5166 ± 0.0041	0.0316 ± 0.0119	0.5260 ± 0.0007	0.0028 ± 0.0084
StockNet [31]	0.5285 ± 0.0020	0.0187 ± 0.0011	0.5193 ± 0.0001	0.0335 ± 0.0050	0.5392 ± 0.0016	0.0253 ± 0.0102
Adv-ALSTM [9]	0.5380 ± 0.0177	0.0830 ± 0.0353	0.5169 ± 0.0058	0.0333 ± 0.0137	0.5404 ± 0.0003	0.0046 ± 0.0090
DTML (proposed)	0.5744 ± 0.0194	0.1910 ± 0.0315	0.5353 ± 0.0075	0.0733 ± 0.0195	0.5406 ± 0.0037	0.0310 ± 0.0193

Model	CSI300 (China)		NI225 (Japan)		FTSE100 (UK)	
	ACC	MCC	ACC	MCC	ACC	MCC
LSTM [24]	0.5367 ± 0.0038	0.0722 ± 0.0050	0.5079 ± 0.0079	0.0148 ± 0.0162	0.5096 ± 0.0065	0.0187 ± 0.0129
ALSTM [31]	0.5315 ± 0.0036	0.0625 ± 0.0076	0.5060 ± 0.0066	0.0125 ± 0.0139	0.5106 ± 0.0038	0.0231 ± 0.0077
StockNet [31]	0.5254 ± 0.0029	0.0445 ± 0.0117	0.5015 ± 0.0054	0.0050 ± 0.0118	0.5036 ± 0.0095	0.0134 ± 0.0135
Adv-ALSTM [9]	0.5337 ± 0.0050	0.0668 ± 0.0084	0.5160 ± 0.0103	0.0340 ± 0.0201	0.5066 ± 0.0067	0.0155 ± 0.0140
DTML (proposed)	0.5442 ± 0.0035	0.0826 ± 0.0074	0.5276 ± 0.0103	0.0626 ± 0.0230	0.5208 ± 0.0121	0.0502 ± 0.0214

Q2. Investment Simulation

- DTML makes larger profit than the baselines
 - DTML does not suffer from unstable drops
 - The trend is the same as in the other datasets

Q3. Data-Axis Attention (1)

- Attention scores indicate stock importances
 - We sort the stocks by their attention scores
 - Region C contains the most influential stocks

Q3. Data-Axis Attention (2)

- We study the cases of Amazon and Google
 - They show smooth changes in scores with others

Q3. Temporal Attention

- DTML learns also the importances of days
 - Important days have larger influences than others

Q4. Ablation Study

- We perform an ablation study for DTML
 - TA, SA, and MC refer to temporal attention, stock attention, and multi-level contexts, resp.
 - All three modules help improving the accuracy

Model	ACC	MCC		
DTML-TA-SA-MC	0.5349 ± 0.0140	0.0828 ± 0.0246		
DTML-TA	0.5574 ± 0.0163	0.1387 ± 0.0334		
DTML-SA	0.5622 ± 0.0153	0.1453 ± 0.0205		
DTML-MC	0.5724 ± 0.0177	0.1856 ± 0.0313		
DTML	0.5744 ± 0.0194	0.1910 ± 0.0315		

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

Conclusion

- We propose DTML for stock price prediction
 - To learn dynamic correlations between stocks
- DTML consists of three modules
 - Time-axis attention for the prices of each stock
 - Context aggregation with a global market trend
 - Data-axis attention by a transformer encoder
- We perform experiments on six datasets
 - DTML achieves the state-of-the-art accuracy
 - DTML makes up to 13.8%p higher actual profit

Thank you!

DM Lab @ SNU (datalab.snu.ac.kr)

DeepTrade (deeptrade.co)