Memory Management

Consider the following assumptions

- Each process needs 4 pages to execute
- The OS has 10 frames available, with no backing store
- The free-frame list is treated as a queue and its initial contents are: 3, 8, 0, 2, 4, 6, 1, 9, 7, 5
- Memory allocation is done using paging and the CPU scheduling scheme is pre-emptive shortest-job first

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{3,8,0,2,4,6,1,9,7,5\}$

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = {4,6,1,9,7,5} P1: {3,8,0,2}

0	P1
1	
2	P1
3	P1
4	
5	
6	
7	
8	P1
9	

```
Time: 0
RQ = []
* P1 is in the RQ before being executed
P1(7)
0 - - - - -
```

P1 is allocated the first 4 free frames

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{7,5\}$

P1: {3,8,0,2} P2: {4,6,1,9}

0	P1
1	P2
2	P1
3	P1
4	P2
5	
6	P2
7	
8	P1
9	P2

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{7,5\}$

P1: {3,8,0,2} P2: {4,6,1,9}

0	P1
1	P2
2	P1
3	P1
4	P2
5	
6	P2
7	
8	P1
9	P2

P2 & P3 have the same CPU burst, but P2 is already being executed

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{7,5\}$

P1: {3,8,0,2} P2: {4,6,1,9}

0	P1
1	P2
2	P1
3	P1
4	P2
5	
6	P2
7	
8	P1
9	P2

P4 has lower remaining CPU burst compared to P2, but there are not enough available frames

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{7,5\}$

P1: {3,8,0,2} P2: {4,6,1,9}

0	P1
1	P2
2	P1
3	P1
4	P2
5	
6	P2
7	
8	P1
9	P2

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{7,5\}$

P1: {3,8,0,2} P2: {4,6,1,9}

0	P1
1	P2
2	P1
3	P1
4	P2
5	
6	P2
7	
8	P1
9	P2

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{1,9\}$

P1: {3,8,0,2} P4: {7,5,4,6}

0	P1
1	
2	P1
3	P1
4	P4
5	P4
6	P4
7	P4
8	P1
9	

Time: 6
$$RQ = [P5(3), P3(4), P1(6)]$$

The frames used by P2 are reclaimed and added to the end of the free-frames list

P4 is allocated the first 4 free frames

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{1,9\}$

P1: {3,8,0,2} P4: {7,5,4,6}

0	P1
1	
2	P1
3	P1
4	P4
5	P4
6	P4
7	P4
8	P1
9	

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{4,6\}$

P1: {3,8,0,2} P5: {1,9,7,5}

0	P1
1	P5
2	P1
3	P1
4	
5	P5
6	
7	P5
8	P1
9	P5

0 - - - - - 1 - - - - - 6 - - - - - 8 - - - - -

The frames used by P4 are reclaimed and added to the end of the free-frames list

P5 is allocated the first 4 free frames

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{4,6\}$

P1: {3,8,0,2} P5: {1,9,7,5}

0	P1
1	P5
2	P1
3	P1
4	
5	P5
6	
7	P5
8	P1
9	P5

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{4,6\}$

P1: {3,8,0,2} P5: {1,9,7,5}

0	P1
1	P5
2	P1
3	P1
4	
5	P5
6	
7	P5
8	P1
9	P5

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{7,5\}$

P1: {3,8,0,2} P3: {4,6,1,9}

0	P1
1	P3
2	P1
3	P1
4	P3
5	
6	P3
7	
8	P1
9	P3

The frames used by P5 are reclaimed and added to the end of the free-frames list

P3 is allocated the first 4 free frames

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{7,5\}$

P1: {3,8,0,2} P3: {4,6,1,9}

0	P1
1	P3
2	P1
3	P1
4	P3
5	
6	P3
7	
8	P1
9	P3

```
Time: 12
RQ = [P1(6)]
P1(6) P2(0) P4(0) P5(0) P3(3) 0 ----- 1 ----- 6 ----- 8 ----- 11 -----
```

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{7,5\}$

P1: {3,8,0,2} P3: {4,6,1,9}

0	P1
1	P3
2	P1
3	P1
4	P3
5	
6	P3
7	
8	P1
9	P3

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{7,5\}$

P1: {3,8,0,2} P3: {4,6,1,9}

0	P1
1	P3
2	P1
3	P1
4	P3
5	
6	P3
7	
8	P1
9	P3

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

15 - - - - -

The frames used by P3 are reclaimed and added to the end of the free-frames list

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{7,5,4,6,1,9\}$

P1: {3,8,0,2}

0	P1
1	
2	P1
3	P1
4	
5	
6	
7	
8	P1
9	

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = {7,5,4,6,1,9} P1: {3,8,0,2}

0	P1
1	
2	P1
3	P1
4	
5	
6	
7	
8	P1
9	

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = {7,5,4,6,1,9} P1: {3,8,0,2}

0	P1
1	
2	P1
3	P1
4	
5	
6	
7	
8	P1
9	

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = {7,5,4,6,1,9} P1: {3,8,0,2}

0	P1
1	
2	P1
3	P1
4	
5	
6	
7	
8	P1
9	

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{7,5,4,6,1,9\}$

P1: {3,8,0,2}

0	P1
1	
2	P1
3	P1
4	
5	
6	
7	
8	P1
9	

Process	Arrival Time	CPU Burst
P1	0	7
P2	1	5
P3	2	4
P4	3	2
P5	4	3

⁴ pages per process

Free frames = $\{7,5,4,6,1,9,3,8,0,2\}$

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

Consider the following assumptions

- Each process needs 5 pages to execute
- The OS has 12 frames available
- The free-frame list is treated as a queue and its initial contents are:
 6, 2, 8, 0, 4, 10, 5, 11, 3, 1, 7, 9
- Pages are executed in the same order as their IDs
- Backing store is enabled. Page replacement is performed on the oldest process (pages are evicted in the same order as their IDs)
- Memory allocation is done using demand paging and the CPU scheduling scheme is round robin with time slice = 3

Process	Arrival Time	CPU Burst
P1	0	6
P2	1	4
P3	2	5
P4	3	3
P5	4	2

5 pages per process

Time slice = 3

Free frames = $\{6,2,8,0,4,10,5,11,3,1,7,9\}$

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

Backing Store

Process	Arrival Time	CPU Burst
P1	0	6
P2	1	4
P3	2	5
P4	3	3
P5	4	2

5 pages per process Time slice = 3

Free frames = {10,5,11,3,1,7,9}
P1: {0:6, 1:2, 2:8, 3:0, 4:4}
allocated frame
process page

P1[3]
P1[1]
P1[4]
P1[0]
P1[2]

Backing Store

Time: 0
RQ = []
* P1 is in the RQ before being executed
P1(6)
0 -----

P1 pages are allocated the first 5 free frames

Process	Arrival Time	CPU Burst
P1	0	6
P2	1	4
P3	2	5
P4	3	3
P5	4	2

5 pages per process Time slice = 3

Free frames = {10,5,11,3,1,7,9} P1: {0:6, 1:2, 2:8, 3:0, 4:4}

1[3]
1[1]
1[4]
1[0]
1[2]

Backing Store

Time: 1 RQ = [P2(4)]

P1(5)

Process	Arrival Time	CPU Burst
P1	0	6
P2	1	4
P3	2	5
P4	3	3
P5	4	2

5 pages per process Time slice = 3

Free frames = {10,5,11,3,1,7,9} P1: {0:6, 1:2, 2:8, 3:0, 4:4}

P1[3]
P1[1]
P1[4]
P1[0]
P1[2]

Backing Store

Time: 2
$$RQ = [P2(4), P3(5)]$$

Process	Arrival Time	CPU Burst
P1	0	6
P2	1	4
P3	2	5
P4	3	3
P5	4	2

5 pages per process

Time slice = 3

Free frames = $\{7,9\}$

P1: {0:6, 1:2, 2:8, 3:0, 4:4}

P2: {0:10, 1:5, 2:11, 3:3, 4:1}

P1[3]	
P2[4]	
P1[1]	
P2[3]	
P1[4]	
P2[1]	
P1[0]	
P1[2]	
P2[0]	
P2[2]	

Backing Store

Time: 3

RQ = [P3(5), P1(3), P4(3)]

* P2 context switches with P1 before P4 arrives

P2 pages are allocated the first 5 free frames

Process	Arrival Time	CPU Burst
P1	0	6
P2	1	4
P3	2	5
P4	3	3
P5	4	2

5 pages per process

Time slice = 3

Free frames = $\{7,9\}$

P1: {0:6, 1:2, 2:8, 3:0, 4:4}

P2: {0:10, 1:5, 2:11, 3:3, 4:1}

0	P1[3]	
1	P2[4]	
2	P1[1]	
3	P2[3]	
4	P1[4]	
5	P2[1]	
6	P1[0]	
7		
8	P1[2]	
9		
10	P2[0]	
11	P2[2]	

Backing Store

Time: 4

RQ = [P3(5), P1(3), P4(3), P5(2)]

Process	Arrival Time	CPU Burst
P1	0	6
P2	1	4
P3	2	5
P4	3	3
P5	4	2

5 pages per process

Time slice = 3

Free frames = $\{7,9\}$

P1: {0:6, 1:2, 2:8, 3:0, 4:4}

P2: {0:10, 1:5, 2:11, 3:3, 4:1}

0	P1[3]	
1	P2[4]	
2	P1[1]	
3	P2[3]	
4	P1[4]	
5	P2[1]	
6	P1[0]	
7		
8	P1[2]	
9		
10	P2[0]	
11	P2[2]	

Process	Arrival Time	CPU Burst
P1	0	6
P2	1	4
P3	2	5
P4	3	3
P5	4	2

5 pages per process

Time slice = 3

Free frames = {}

P1: {3:0, 4:4}

P2: {0:10, 1:5, 2:11, 3:3, 4:1}

P3: {0:7, 1:9, 2:6, 3:2, 4:8}

0	P1[3]
1	P2[4]
2	P3[3]
3	P2[3]
4	P1[4]
5	P2[1]
6	P3[2]
7	P3[0]
8	P3[4]
9	P3[1]
10	P2[0]
11	P2[2]

```
Backing Store
P1[0], P1[1], P1[2]
```

Time: 6 RQ = [P1(3), P4(3), P5(2), P2(1)]

P3 pages are allocated the first 5 free frames

- Pages 0 and 1 are allocated to frames 7 and 9
- Page fault is triggered when allocating for 2, 3, 4

P1 pages 0, 1, 2 are swapped out

- Frames 6, 2, 8 are freed
- P3 pages 2, 3, 4 are allocated to the free frames

Process	Arrival Time	CPU Burst
P1	0	6
P2	1	4
P3	2	5
P4	3	3
P5	4	2

5 pages per process

Time slice = 3

Free frames = {}

P1: {0:10, 1:5, 2:11, 3:0, 4:4}

P2: {3:3, 4:1}

P3: {0:7, 1:9, 2:6, 3:2, 4:8}

0	P1[3]	
1	P2[4]	
2	P3[3]	
3	P2[3]	
4	P1[4]	
5	P1[1]	
6	P3[2]	
7	P3[0]	
8	P3[4]	
9	P3[1]	
10	P1[0]	
11	P1[2]	

```
Backing Store P2[0], P2[1], P2[2]
```

Time: 9

$$RQ = [P4(3), P5(2), P2(1), P3(2)]$$

Fast forward to the next time slice (time +3)

Page fault is triggered for P1 pages 0, 1, 2

- P2 pages 0, 1, 2 are swapped out
- P1 pages 0, 1, 2 are swapped in

Process	Arrival Time	CPU Burst
P1	0	6
P2	1	4
P3	2	5
P4	3	3
P5	4	2

5 pages per process

Time slice = 3

Free frames = {}

P2: {3:3, 4:1}

P3: {0:7, 1:9, 2:6, 3:2, 4:8}

P4: {0:10, 1:5, 2:11, 3:0, 4:4}

0	P4[3]	
1	P2[4]	
2	P3[3]	
3	P2[3]	
4	P4[4]	
5	P4[1]	
6	P3[2]	
7	P3[0]	
8	P3[4]	
9	P3[1]	
10	P4[0]	
11	P4[2]	

```
Backing Store P2[0], P2[1], P2[2]
```

Time: 12

RQ = [P5(2), P2(1), P3(2)]

Fast forward to the next time slice (time +3)

The frames used by P1 are reclaimed and added to the end of the free-frames list

P4 pages are allocated the first 5 free frames

Process	Arrival Time	CPU Burst
P1	0	6
P2	1	4
P3	2	5
P4	3	3
P5	4	2

5 pages per process

Time slice = 3

Free frames = {}

P2: {3:3, 4:1}

P3: {0:7, 1:9, 2:6, 3:2, 4:8}

P5: {0:10, 1:5, 2:11, 3:0, 4:4}

0	P5[3]	
1	P2[4]	
2	P3[3]	
3	P2[3]	
4	P5[4]	
5	P5[1]	
6	P3[2]	
7	P3[0]	
8	P3[4]	
9	P3[1]	
10	P5[0]	
11	P5[2]	

```
Backing Store P2[0], P2[1], P2[2]
```

Time: 15

$$RQ = [P2(1), P3(2)]$$

Fast forward to the next time slice (time +3)

The frames used by P4 are reclaimed and added to the end of the free-frames list

P5 pages are allocated the first 5 free frames

Process	Arrival Time	CPU Burst
P1	0	6
P2	1	4
P3	2	5
P4	3	3
P5	4	2

5 pages per process Time slice = 3

Free frames = $\{0,4\}$

P2: {0:10, 1:5, 2:11, 3:3, 4:1}

P3: {0:7, 1:9, 2:6, 3:2, 4:8}

0	
1	P2[4]
2	P3[3]
3	P2[3]
4	
5	P2[1]
6	P3[2]
7	P3[0]
8	P3[4]
9	P3[1]
10	P2[0]
11	P2[2]

Backing Store

Time: 17 RQ = [P3(2)]

Fast forward to the completion time of P5

The frames used by P5 are reclaimed and added to the end of the free-frames list

P2 pages 0, 1, 2 are swapped in

Process	Arrival Time	CPU Burst
P1	0	6
P2	1	4
P3	2	5
P4	3	3
P5	4	2

5 pages per process Time slice = 3

Free frames = {0,4,10,5,11,3,1} P3: {0:7, 1:9, 2:6, 3:2, 4:8}

0	
1	
2	P3[3]
3	
4	
5	
6	P3[2]
7	P3[0]
8	P3[4]
9	P3[1]
10	
11	

Backing Store

Time: 18 RQ = []

The frames used by P2 are reclaimed and added to the end of the free-frames list

Process	Arrival Time	CPU Burst
P1	0	6
P2	1	4
P3	2	5
P4	3	3
P5	4	2

5 pages per process

Time slice = 3

Free frames = $\{0,4,10,5,11,3,1,7,9,6,2,8\}$

Backing Store

Time: 20 RQ = []

Fast forward to the completion time of P3

The frames used by P3 are reclaimed and added to the end of the free-frames list

Finished