Chapitre VI Applications linéaires

Dans ce cours, K désigne R, C ou un corps commutatif quelconque.

I – Généralités

1. Définition

Soient E et F deux \mathbb{K} -ev donnés.

Une application $f: \frac{E \to F}{\vec{x} \mapsto f(\vec{x})}$ est dite *linéaire* si

$$\forall \vec{x}, \vec{y} \in E, \ \forall \lambda \in \mathbb{K}, \ f(\lambda \cdot \vec{x} + \vec{y}) = \lambda \cdot f(\vec{x}) + f(\vec{y}).$$

C'est-à-dire que f respecte les opérations disponibles sur E et F.

Une application linéaire transforme un segment de droite en un segment de droite, puisque

$$f(t\vec{x} + (1-t)\vec{y}) = tf(\vec{x}) + (1-t)f(\vec{y}).$$

Exemples:

- * $f: \mathbb{R}^2 \to \mathbb{R}^3$ est une application linéaire.
- * Plus généralement, la donnée de p combinaisons linéaires des n coordonnées de x définit une application linéaire $f: \mathbb{R}^n \xrightarrow{\mathbb{R}^n \to \mathbb{R}^p} \mathbb{R}^p$

(... =expressions de degré 1 dans les x_i et sans terme constant.)

- * La translation $f:_{x\mapsto x+1}^{\mathbb{R}\to\mathbb{R}}$ n'est pas linéaire car $f(0)\neq 0$.
- \rightarrow Une application linéaire vérifie toujours $f(\vec{0}) = \vec{0}$.

En effet,
$$f(\vec{0}) = f(-\vec{0} + \vec{0}) = -f(\vec{0}) + f(\vec{0}) = \vec{0}$$
.

- * $D: \frac{C^1(\mathbb{R},\mathbb{R}) \to C^0(\mathbb{R},\mathbb{R})}{f(x) \mapsto f'(x)}$ est une application linéaire.
- * $I: \frac{C^0(\mathbb{R},\mathbb{R}) \to C^1(\mathbb{R},\mathbb{R})}{f(x) \mapsto \int_0^x f(t) dt}$ est une application linéaire.
- * $u: \frac{C^0(\mathbb{R},\mathbb{R}) \to C^1(\mathbb{R},\mathbb{R})}{f(x) \mapsto f(x^2)}$ est une application linéaire.
- * $v: {c^0(\mathbb{R},\mathbb{R}) \to c^1(\mathbb{R},\mathbb{R})} \atop f(x) \mapsto (f(x))^2$ n'est pas une application linéaire.

En effet, $v(2f) = 4f^2 \neq 2v(f)$ en général.

* On verra que les transformations géométriques : les projections, les symétries, les rotations, sont des applications linéaires.

2. Construction générale d'applications linéaires en dimension finie

Théorème

Soient E et F deux \mathbb{K} -ev avec E de dimension finie, et $B = (\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n})$ une base de E. Alors pour tout choix de n vecteurs $\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n}$ dans F, il existe une *unique* application linéaire $f: E \to F$ telle que $f(\overrightarrow{e_1}) = \overrightarrow{v_1}, ..., f(\overrightarrow{e_n}) = \overrightarrow{v_n}$.

Une application linéaire f est donc déterminée par la donnée de l'image d'une base.

<u>Démonstration</u>: Tout \vec{x} de E s'écrit $\vec{x} = x_1 \vec{e_1} + \dots + x_n \vec{e_n}$.

Analyse. Si f est linéaire alors $f(\vec{x}) = x_1 f(\vec{e_1}) + \dots + x_n f(\vec{e_n})$, ce qui peut aussi s'écrire

$$f(\vec{x}) = x_1 \overrightarrow{v_1} + \dots + x_n \overrightarrow{v_n}$$

f est donc déterminée par les données de $f(\overrightarrow{e_1}), \dots, f(\overrightarrow{e_n})$.

Synthèse. On vérifie que la formule proposée est une application linéaire (exercice).

<u>Toutes</u> les applications linéaires (en dimension finie) peuvent donc être définies par une formule de ce type !

3. Opérations générales sur les applications linéaires

Notation. On note $\mathcal{L}(E, F)$ l'espace des applications linéaires de E dans F.

Proposition: $\mathcal{L}(E, F)$ est un espace vectoriel.

$$\rightarrow$$
 Si $f, g \in \mathcal{L}(E, F)$, alors $\lambda f + g \in \mathcal{L}(E, F)$ (exercice).

Restriction à un sous espace vectoriel : Si $f \in \mathcal{L}(E, F)$ et G est un sous espace vectoriel de E, alors $f_{|G}: {}_{x \mapsto f(x)}^{G \to F}$ est une application linéaire.

Composition: Si $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$, alors $g \circ f \in \mathcal{L}(E, G)$.

En effet,
$$(g \circ f)(\lambda x + y) = g(f(\lambda x + y))$$

$$= g(\lambda f(x) + f(y))$$

$$= \lambda g(f(x)) + g(f(y))$$

$$= \lambda (g \circ f)(x) + (g \circ f)(y).$$

Définitions

- 1) Si $f \in \mathcal{L}(E, F)$ est une bijection, on dit que c'est un isomorphisme de E dans F.
- 2) Si $f \in \mathcal{L}(E, E)$, on dit que f est un endomorphisme de E. $\mathcal{L}(E, E) = End(E)$.
- 3) Si $f \in End(E)$ est une bijection, on dit que c'est un automorphisme de E.

Proposition: Si $f \in \mathcal{L}(E, F)$ est un isomorphisme, alors f^{-1} l'est aussi.

<u>Démonstration</u>: On considère $z = \lambda f^{-1}(x) + f^{-1}(y)$.

On a
$$f(z) = f(\lambda f^{-1}(x) + f^{-1}(y))$$

$$\rightarrow f(z) = \lambda f(f^{-1}(x)) + f(f^{-1}(y))$$
, car f est linéaire,

$$\rightarrow f(z) = \lambda x + y \Longrightarrow z = f^{-1}(\lambda x + y) = \lambda f^{-1}(x) + f^{-1}(y).$$

4. Exemples d'isomorphismes déjà rencontrés

a) Exemple important

Soit E est un \mathbb{K} -ev et $\mathcal{F} = (\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n}) \subset E$ une famille donnée. On considère l'application « combinaison linéaire »

$$f: \underbrace{\mathbb{K}^n \longrightarrow E}_{(x_1, x_2, \dots, x_n) \mapsto x_1 \overrightarrow{v_1} + x_2 \overrightarrow{v_2} + \dots + x_n \overrightarrow{v_n}}_{F}$$

Propriétés

1) f est injective si et seulement si \mathcal{F} est libre. En effet, on a en général

$$\vec{v} = f(x_1, x_2, \dots, x_n) \Leftrightarrow \vec{v} = x_1 \overrightarrow{v_1} + x_2 \overrightarrow{v_2} + \dots + x_n \overrightarrow{v_n}$$

Un vecteur \vec{v} possède au plus une telle décomposition ssi \mathcal{F} est libre.

- 2) f est surjective si et seulement si \mathcal{F} est génératrice de E.
- 3) f est bijective si et seulement si \mathcal{F} est une base de E, et l'application réciproque

$$f^{-1}(\vec{v}) = (x_1, x_2, ..., x_n) = \text{les coordonnées de } \vec{v} \text{ dans } \mathcal{F}.$$

On dit alors que E et \mathbb{K}^n sont isomorphes.

<u>Définition</u>: Deux espaces vectoriels liés par un isomorphisme sont dits isomorphes.

Corollaire important.

Un espace vectoriel E de dimension finie sur \mathbb{K} est toujours isomorphe à \mathbb{K}^n avec $n = \dim E$.

En particulier, les droites réelles sont toutes isomorphes à \mathbb{R} , les plans réels sont isomorphes à \mathbb{R}^2 , etc.

Attention, cela ne signifie pas qu'il n'existe qu'une seule droite vectorielle, mais que toutes les droites « se ressemblent » !

b) Retour sur le problème d'interpolation de Lagrange

Soient P_{n-1} l'espace des fonctions polynômiales de degré inférieur ou égal à n-1, $x_1, x_2, ..., x_n$ des réels distincts donnés et $y_1, y_2, ..., y_n$ des réels quelconques.

On a vu le résultat suivant :

Théorème d'interpolation de Lagrange:

Il existe un unique polynôme $P \in P_{n-1}$ tel que $P(x_1) = y_1, ..., P(x_n) = y_n$.

Soit $L: \frac{P_{n-1} \to \mathbb{R}^n}{P(x_1) \dots P(x_n)}$. L est une application linéaire par rapport à P.

Théorème de Lagrange $\Leftrightarrow L$ est un isomorphisme. On a en particulier $n = \dim P_{n-1}$.

c) Suites $(u_n)_{n\in\mathbb{N}}\in\mathbb{C}$ satisfaisant une relation du type $u_{n+2}=au_{n+1}+bu_n$ $(a,b\in\mathbb{C})$

Pour $a, b \in \mathbb{C}$ donnés, on note

$$S = \{(u_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n\}.$$

C'est un \mathbb{C} -ev et $f: \frac{S \to \mathbb{C}^2}{(u_n)_{n>2} \mapsto (u_0,u_1)}$ est un isomorphisme.

 \Leftrightarrow il existe une unique suite $(u_n) \in S$ de condition initiale $(u_0, u_1) \in \mathbb{C}^2$ donnée.

S est un plan (complexe) de l'espace de toutes les suites complexes. On a calculé f^{-1} avec des formules explicites, c'est-à-dire que la formule de récurrence a été résolue en fonction de la condition initiale. On a également donné une base de S:

si $\Delta = a^2 + 4b \neq 0$, les suites (r_1^n) et (r_2^n) forment une base de S, avec r_1 et r_2 racines de $r^2 - ar - b = 0$.

5. Noyau et image d'une application linéaire

<u>Définitions</u>: Soit $f \in \mathcal{L}(E, F)$. On note :

- i) Im $f = \{f(\vec{x}) = \vec{y}, \ \vec{x} \in E\} \subset F$. C'est l'image de f,
- ii) $\ker f = {\vec{x} \in E \mid f(\vec{x}) = \vec{0}} \subset E$. C'est le noyau de f.

Ces espaces sont fondamentaux dans l'étude des propriétés de l'application f.

Proposition: Soit $f \in \mathcal{L}(E, F)$.

- i) $\ker f$ est un sous espace vectoriel de E.
- ii) Im f est un sous espace vectoriel de F.
- iii) f est injective si et seulement si ker $f = \{0\}$.
- iv) f est surjective si et seulement si Im f = F.

<u>Démonstration i)</u> et **<u>Démonstration ii)</u>** à faire en exercice.

<u>Démonstration iv</u>): Ce point est vrai pour toute application, linéaire ou non.

Démonstration iii):

(⇒): Soit $\vec{x} \in \ker f$. On a $f(\vec{x}) = \overrightarrow{0_F} = f(\vec{0})$. Par injectivité, on a $\vec{x} = \vec{0}$. En effet, $\overrightarrow{0_F}$ n'a qu'un seul antécédent et c'est $\vec{0}$ car f est une application linéaire.

 (\Leftarrow) : On suppose que $\ker f = \{\vec{0}\}$. Soient $\overrightarrow{x_1}, \overrightarrow{x_2} \in E$.

On a
$$f(\overrightarrow{x_1}) = f(\overrightarrow{x_2}) \Leftrightarrow f(\overrightarrow{x_1}) - f(\overrightarrow{x_2}) = f(\overrightarrow{x_1} - \overrightarrow{x_2}) = \overrightarrow{0}$$

 $\Leftrightarrow \overrightarrow{x} = \overrightarrow{x_1} - \overrightarrow{x_2} \in \ker f$
 $\Rightarrow \overrightarrow{x_1} = \overrightarrow{x_2} \text{ et } f \text{ est injective.}$

Remarque: Ce critère d'injectivité par le noyau est élémentaire mais *très utile*. En effet, si dim E = n, le problème $f(\vec{x_1}) = f(\vec{x_2})$ a 2n inconnues alors que $f(\vec{x}) = \vec{0}$ n'en a que n. Notez que c'est la *linéarité* de f qui permet cette réduction.

6. Espace des solutions d'une équation linéaire

Soit $f \in \mathcal{L}(E, F)$ une application linéaire et \vec{y} un vecteur donné de F. Les notions de noyau et d'image permettent de décrire l'espace des solution S_y de l'équation linéaire :

$$(E_{\nu}): f(\vec{x}) = \vec{y}$$

Proposition

- 1) L'équation (E_{ν}) possède au moins une solution \vec{x} si et seulement si $\vec{y} \in \text{Im } f$.
- 2) Si $\vec{y} \in \text{Im } f$ et si \vec{x}_0 est une solution particulière de (E_y) , alors toute autre solution est de la forme $\vec{x} = \overrightarrow{x_0} + \vec{u}$ avec $\vec{u} \in \ker f$.

On l'exprime en disant qu'une solution de l'équation linéaire avec second membre (E_y) est la somme d'une solution particulière de cette équation et de la solution générale de l'équation homogène (ou « sans second membre ») (E_0) : $f(\vec{x}) = \vec{0}$.

Autrement dit, l'espace des solution S_y est *l'espace affine* passant par la solution particulière $\overrightarrow{x_0}$ et de direction le noyau de f, ce que l'on écrit :

$$S_y = \overrightarrow{x_0} + \ker f$$

Démonstration

- 1) C'est une propriété générale, valable pour toute application linéaire ou non, par définition de l'image.
- 2) Si \vec{x}_0 est une solution particulière de (E_y) , alors on a $f(\vec{x}_0) = \vec{y}$, d'où

$$f(\vec{x}) = \vec{y} = f(\overrightarrow{x_0}) \Leftrightarrow f(\vec{x}) - f(\overrightarrow{x_0}) = f(\vec{x} - \overrightarrow{x_0}) = \vec{0}$$

$$\Leftrightarrow \vec{x} - \overrightarrow{x_0} = \vec{u} \in \ker f \iff \vec{x} = \overrightarrow{x_0} + \vec{u} \text{ avec } \vec{u} \in \ker f.$$

Remarque: Si on choisit des bases de E et F, l'équation (E_y) devient un système linéaire dans les coordonnées de \vec{x} et \vec{y} . Alors l'image de f apparait comme équations de compatibilité d'un système échelonné équivalent, tandis que le noyau est paramétré par les inconnues non principales.

II – Résultats fondamentaux

On se place dans le cas où l'espace de départ E est de dimension finie, et $f: E \to F$ est une application linéaire. ker $f \subset E$ est donc un sous espace vectoriel de E de dimension finie.

1. Définition et premières propriétés du rang d'une application

<u>Proposition</u>: Soit $f \in \mathcal{L}(E, F)$, et $B = (\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n})$ une base de E. Alors Im $f = Vect(f(\overrightarrow{e_1}), ..., f(\overrightarrow{e_n})) =$ le sous espace vectoriel de F engendré par l'image d'une base de E.

En particulier, Im f est de dimension finie inférieure ou égale à la dimension de E.

Définition du rang d'une application linéaire.

On note
$$rg(f) = \dim(\operatorname{Im} f) = rg(f(\overrightarrow{e_1}), \dots, f(\overrightarrow{e_n}))$$
.

Démonstration:

On a $\vec{y} \in \text{Im } f$ si et seulement si

$$\exists \ \vec{x} \in E \text{ tel que } \vec{y} = f(\vec{x}) \text{ avec } \vec{x} = x_1 \overrightarrow{e_1} + \dots + x_n \overrightarrow{e_n}.$$
Par linéarité de f , on a $f(\vec{x}) = x_1 f(\overrightarrow{e_1}) + \dots + x_n f(\overrightarrow{e_n}) = \vec{y}$

$$\Leftrightarrow \vec{y} \in Vect(f(\overrightarrow{e_1}), \dots, f(\overrightarrow{e_n})).$$

Bornes élémentaires sur le rang :

Soit $f \in \mathcal{L}(E, F)$. On a $rg(f) \leq \min(\dim E, \dim F)$.

Démonstration.

* D'après la proposition ci-dessus,

$$rg(f) = \dim(\operatorname{Im} f) = rg(f(\overrightarrow{e_1}), ..., f(\overrightarrow{e_n})) \le n = \dim E.$$

* et comme $\operatorname{Im} f \subset F$, on a aussi $rg(f) = \dim(\operatorname{Im} f) \le \dim F$.

<u>Illustration</u>: L'image par une application linéaire d'un espace vectoriel de dimension n est toujours un espace vectoriel de dimension inférieure ou égale à n.

Exemples:

- i) L'image par f d'une droite est une droite ou un point.
- ii) L'image par f d'un plan est un plan, une droite ou un point.
- iii) Si $f: \mathbb{R}^n \to \mathbb{R}^p$ est une application linéaire surjective alors $p \le n$.

Théorème

Soit $f \in \mathcal{L}(E, F)$, et $B = (\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n})$ une base de E. On note $f(B) = (f(\overrightarrow{e_1}), ..., f(\overrightarrow{e_n}))$ l'image de la base B.

- i) f injective $\Leftrightarrow f(B)$ est libre.
- ii) f surjective $\Leftrightarrow f(B)$ est génératrice de F.
- iii) f bijective $\Leftrightarrow f(B)$ est une base de F.

Démonstration i):

On a vu que f injective $\Leftrightarrow \ker f = \{\vec{0}\}.$

On suppose donc que $\ker f = \{\vec{0}\}\$. La famille f(B) est-elle libre ?

Soient $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$ tels que

$$\lambda_1 f(\overrightarrow{e_1}) + \dots + \lambda_n f(\overrightarrow{e_n}) = \overrightarrow{0} \Leftrightarrow f(\lambda_1 \overrightarrow{e_1} + \dots + \lambda_n \overrightarrow{e_n}) = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{v} = \lambda_1 \overrightarrow{e_1} + \dots + \lambda_n \overrightarrow{e_n} \in \ker f = \{\overrightarrow{0}\}$$

$$\Leftrightarrow \lambda_1 = \lambda_2 = \dots = \lambda_n = 0 \text{ car } B \text{ est libre par hypothèse.}$$

Inversement: On suppose f(B) est libre et $\vec{v} = \lambda_1 \vec{e_1} + \dots + \lambda_n \vec{e_n} \in \ker f$. Alors

$$f(\lambda_1 \overrightarrow{e_1} + \dots + \lambda_n \overrightarrow{e_n}) = \overrightarrow{0} = \lambda_1 f(\overrightarrow{e_1}) + \dots + \lambda_n f(\overrightarrow{e_n})$$

$$\Rightarrow \lambda_1 = \lambda_2 = \dots = \lambda_n = 0 \text{ si } f(B) \text{ est libre.}$$

Ceci donne $\ker f = \{\vec{0}\}\$.

Démonstration ii):

On a vu que f surjective \Leftrightarrow Im f = F = Vect(f(B)) $\Leftrightarrow f(B)$ est génératrice de F.

2. Conséquences utiles

La notion de dimension permet d'obtenir facilement des critères très pratiques d'injectivité, de surjectivité et d'isomorphisme.

Théorème

Soit $f \in \mathcal{L}(E, F)$ et $B = (\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n})$ une base de E.

- i) Si f est injective, alors dim $E \leq \dim F$.
- ii) Si f est surjective, alors dim $E \ge \dim F$.
- iii) Si f est un isomorphisme, alors dim $E = \dim F$.
- iv) f est un isomorphisme si et seulement si

 $\dim E = \dim F$ et (f injective ou surjective).

<u>Démonstration i</u>: f injective $\Leftrightarrow f(B)$ libre dans $F \Rightarrow card(f(B)) = \dim E \leq \dim F$

<u>Démonstration ii</u>: f surjective $\Leftrightarrow f(B)$ génératrice de $F \Rightarrow card(f(B)) = \dim E \ge \dim F$

Démonstration iii): On se sert de i) et ii).

Démonstration iv):

f isomorphisme $\Leftrightarrow f(B)$ base de F

- $\Leftrightarrow card(f(B)) = \dim E = \dim F \text{ avec } f \text{ libre ou génératrice}$
- \Leftrightarrow dim $E = \dim F$ et f surjective ou injective

Exemple: Soit P_n l'espace des fonctions polynômiales de degré inférieur ou égal à n.

Soit l'application linéaire $f: P_{P \mapsto \lambda P + P'}$ avec $\lambda \neq 0$ fixé.

<u>Problème</u>: On veut montrer que f est un isomorphisme. En particulier, pour tout $Q \in P_n$ donné, l'équation différentielle $\lambda P + P' = Q$ a une unique solution.

La dimension de l'espace de départ est égale à celle de l'espace d'arrivée. Il suffit donc de vérifier que f est injective, c'est-à-dire que $\ker f = \{\vec{0}\}$.

On considère $P \in P_n$ tel que $f(P) = 0 = \lambda P + P'$.

 $P = Ce^{-\lambda x}$ est une solution mais pas un polynôme. Si $P(x) = a_0 + a_1 x + \dots + a_n x^n$ alors le degré de λP est égal au degré de P si $\lambda \neq 0$, et le degré de P' est inférieur au degré de P-1.

$$\Rightarrow \deg(\lambda P + P') = \deg P \text{ si } P \neq 0$$

 $\Rightarrow \lambda P + P' \neq 0$ si $P \neq 0 \Rightarrow f$ est injective, et finalement bijective.

3. Le théorème du rang

Le résultat suivant est le plus important de ce chapitre. Il lie *quantitativement* la dimension de l'image à celle du noyau et de l'espace de départ pour une application linéaire quelconque.

Théorème du rang

Soit $f: E \to F$ une application linéaire avec E de dimension finie. Alors on a

$$rg(f) = \dim E - \dim (\ker f).$$

En particulier, f injective $\Rightarrow rg(f) = \dim E \le \dim F$, f surjective $\Rightarrow rg(f) = \dim F = \dim E - \dim(\ker f) \Rightarrow \dim E \ge \dim F$, f bijective $\Rightarrow rg(f) = \dim E = \dim F$.

Démonstration 1 : méthode par système linéaire.

- Soit $B = (\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n})$ une base de E. On sait en utilisant la technique du pivot que $rg(f) = \dim(\operatorname{Im} f) = rg(f(\overrightarrow{e_1}), ..., f(\overrightarrow{e_n}))$ = nombre d'inconnues principales du système (S) défini par $x_1 f(\overrightarrow{e_1}) + \cdots + x_n f(\overrightarrow{e_n}) = \vec{0}$.

- D'autre part,

$$\vec{x} = x_1 \overrightarrow{e_1} + \dots + x_n \overrightarrow{e_n} \in \ker f \Leftrightarrow f(\vec{x}) = \vec{0} = x_1 f(\overrightarrow{e_1}) + \dots + x_n f(\overrightarrow{e_n})$$

 $\Rightarrow \ker f = Sol(S)$ et dim(ker f) = nombre d'inconnues non principales de (S) .

On a donc dim E = nombre d'inconnues principales + non principales de (S)

$$\Leftrightarrow$$
 dim $E = rg(f) + \dim(\ker f)$.

Démonstration 2 : méthode géométrique.

Soit G le supplémentaire de ker f dans l'espace vectoriel de départ E.

On a $E = G \oplus \ker f$. On restreint $f \wr G$.

On montre que $f_{|G}$: $\underset{\vec{x} \mapsto f(\vec{x})}{G \to \text{Im } f}$ est un isomorphisme.

* $f_{|G}$ est-elle injective ? Soit $\vec{x} \in G$ tel que $f_{|G|}(\vec{x}) = \vec{0} = f(\vec{x})$

$$\Leftrightarrow \vec{x} \in \ker f \cap G = \{\vec{0}\} \Rightarrow \vec{x} = \vec{0} \text{ et } f_{|G} \text{ est injective.}$$

* $f_{\mid G}$ est-elle surjective ? Soit $\vec{y} \in \text{Im } f \Rightarrow \exists \ \vec{x} \in E \mid f(\vec{x}) = \vec{y}$

On décompose $\vec{x} = \vec{g} + \vec{u}$ avec $\vec{g} \in G$ et $\vec{u} \in \ker f$.

On a donc
$$\vec{y} = f(\vec{x}) = f(\vec{g}) + f(\vec{u}) = f(\vec{g}) = f_{|G}(\vec{g})$$

 $\Rightarrow f_{|G}$ est donc un isomorphisme de G dans Im f.

$$\Rightarrow$$
 dim $G = \dim(\operatorname{Im} f) = rg(f)$ avec $E = G \oplus \ker f$

$$\Rightarrow$$
 dim $E = \dim G + \dim(\ker f) = rg(f) + \dim(\ker f)$.

<u>Attention</u>: Dans le cas des endomorphismes, $\ker f$ et $\operatorname{Im} f$ sont deux sous-espaces vectoriels de E avec $\dim E = \dim(\ker f) + \dim(\operatorname{Im} f)$ (théorème du rang), mais on a pas en général

$$\ker f\cap\operatorname{Im} f=\left\{\overrightarrow{0}\right\}\ \text{ni}\ E=\ker f\oplus\operatorname{Im} f.$$

En effet, le théorème du rang ne donne pas les positions respectives de $\ker f$ et $\operatorname{Im} f$.

Par exemple: $f: {\mathbb{R}^2 \to \mathbb{R}^2 \atop (\vec{x}, \vec{y}) \mapsto (\vec{y}, \vec{0})}$. On a ker $f = \{(\vec{x}, \vec{0}), \vec{x} \in \mathbb{R}^2\} = \mathbb{R} \ \overrightarrow{e_1}$ et Im $f = \mathbb{R} \ \overrightarrow{e_1} = \ker f$, d'où $f \ o \ f = \vec{0}$.

Remarque i): f est semblable à la dérivation des fonctions affines.

Remarque ii): Il existe aussi des cas où $E = \ker f \oplus \operatorname{Im} f$.

Exemple: Projections sur D_1 le long de D_2 :

$$\begin{cases} \operatorname{Im} P = D_1 \\ \ker P = D_2 \end{cases} \text{ et } D_1 \oplus D_2 = \mathbb{R}^2.$$

III – Quelques familles classiques d'applications linéaires

1. Exemples génériques dans \mathbb{R}^2 et \mathbb{R}^3

Soient E un espace vectoriel quelconque, $\lambda \in \mathbb{R}$ un scalaire donné.

i) Homothétie de rapport λ

 h_{λ} : $_{\vec{v} \mapsto \lambda \vec{v}}^{E \to E}$ est l'application linéaire « homothétie de rapport λ ».

Si $\lambda \neq 0$, h_{λ} est un isomorphisme avec $(h_{\lambda})^{-1} = h_{\frac{1}{\lambda}}$

 $R_{\theta}(\overrightarrow{e_1})$

ii) Rotation d'angle θ dans \mathbb{R}^2

$$R_{\theta}(\overrightarrow{e_1}) = (\cos \theta, \sin \theta) = \cos \theta \overrightarrow{e_1} + \sin \theta \overrightarrow{e_2}$$

$$R_{\theta}(\overrightarrow{e_2}) = (-\sin\theta, \cos\theta) = -\sin\theta \overrightarrow{e_1} + \cos\theta \overrightarrow{e_2}$$

Soit $\vec{v} \in \mathbb{R}^2$ de coordonnées $\vec{v} = (x, y) = x\vec{e_1} + y\vec{e_2}$.

$$R_{\theta}(\vec{v}) = xR_{\theta}(\vec{e_1}) + yR_{\theta}(\vec{e_2})$$
$$= x(\cos\theta \,\vec{e_1} + \sin\theta \,\vec{e_2}) + y(-\sin\theta \,\vec{e_1} + \cos\theta \,\vec{e_2})$$

$$\rightarrow R_{\theta}(\vec{v}) = (x\cos\theta - y\sin\theta)\vec{e_1} + (x\sin\theta + y\cos\theta)\vec{e_2}$$

$$\to R_{\theta}(x, y) = (x(\cos \theta) - y(\sin \theta), x(\sin \theta) + y(\cos \theta))$$

 $R_{\theta}(\overrightarrow{e_2})$

On peut donc décrire l'application linéaire « rotation d'angle θ » avec la formule :

$$R_{\theta}\colon_{\overrightarrow{v}=x\overrightarrow{e_1}+y\overrightarrow{e_2}\mapsto R_{\theta}(\overrightarrow{v})=(x\cos\theta-y\sin\theta)\overrightarrow{e_1}+(x\sin\theta+y\cos\theta)\overrightarrow{e_2}}^{\mathbb{R}^2\to\mathbb{R}^2}$$

<u>Autre méthode</u>: Se servir du fait que $\mathbb{R}^2 \approx \mathbb{C}$.

$$\vec{v} = (x, y) \leftrightarrow z = x + iy$$

$$R_{\theta}(\vec{v}) \leftrightarrow e^{i\theta}z = (\cos\theta + i\sin\theta)(x + iy) = (x\cos\theta - y\sin\theta) + i(x\sin\theta + y\cos\theta)$$

Remarque: Rotation dans \mathbb{R}^2 = Homothétie de rapport $e^{i\theta}$ dans \mathbb{C} .

iii) Rotation d'angle θ et d'axe Oz dans \mathbb{R}^3

$$R_{\theta}^{Oz}(\overrightarrow{e_1}) = (\cos\theta, \sin\theta, 0) = \cos\theta \overrightarrow{e_1} + \sin\theta \overrightarrow{e_2}$$

$$R_{\theta}^{Oz}(\overrightarrow{e_2}) = (-\sin\theta, \cos\theta, 0) = -\sin\theta \overrightarrow{e_1} + \cos\theta \overrightarrow{e_2}$$

$$R_{\theta}^{0z}(\overrightarrow{e_3}) = \overrightarrow{e_3}$$

$$\rightarrow R_{\theta}^{Oz}(\vec{v}) = (x\cos\theta - y\sin\theta)\vec{e_1} + (x\sin\theta + y\cos\theta)\vec{e_2} + z\vec{e_3}$$

$$\to R_{\theta}^{OZ}(x,y) = (x(\cos\theta) - y(\sin\theta), x(\sin\theta) + y(\cos\theta), z)$$

 $P_{\vec{v}}(\vec{u})$

On peut donc décrire l'application linéaire « rotation d'angle θ et d'axe Oz » avec la formule :

$$R_{\theta}^{Oz}: \overrightarrow{v} = x\overrightarrow{e_1} + y\overrightarrow{e_2} + z\overrightarrow{e_3} \mapsto R_{\theta}(\overrightarrow{v}) = (x\cos\theta - y\sin\theta)\overrightarrow{e_1} + (x\sin\theta + y\cos\theta)\overrightarrow{e_2} + z\overrightarrow{e_3}$$

iv) Projections orthogonales

Soit $\vec{v} \neq \vec{0}$ et $D = \mathbb{R}\vec{v}$ = droite engendrée par \vec{v} .

$$P_{\vec{v}} \colon \frac{\mathbb{R}^{n} \to \mathbb{R}^{n}}{\vec{u} \mapsto \langle \vec{u} | \vec{v} \rangle \frac{\vec{v}}{\|\vec{v}\|^{2}}} \text{ est } la \ projection \ orthogonale } sur \ D.$$

$$P_{\vec{v}}(\vec{v}) = \vec{v}$$
 et $P_{\vec{v}}(\vec{u}) = \vec{0}$ si $\vec{u} \perp D$.

Exemple dans
$$\mathbb{R}^3$$
: $\vec{v} = (a, b, c)$ non nul et $\vec{u} = (x, y, z)$

$$P_{\vec{v}}(\vec{u}) = \langle (x, y, z), (a, b, c) \rangle \frac{\vec{v}}{\|\vec{v}\|^2} = \frac{ax + by + cz}{a^2 + b^2 + c^2} (a, b, c).$$

Par exemple $P_{\overrightarrow{e_1}}(x, y, z) = (x, 0, 0)$ pour $\overrightarrow{e_1} = (1, 0, 0)$.

2. Les projections générales

Soit *E* un espace vectoriel général.

Si $E = F \oplus G$ alors tout $\vec{x} \in E$ se décompose en

 $\vec{x} = \vec{y} + \vec{z}$ avec $\vec{y} \in F$ et $\vec{z} \in G$.

<u>Définition</u>: La projection de E sur F le long de G est l'application $p: \underset{\vec{x}=\vec{y}+\vec{z} \mapsto p(\vec{x})=\vec{y}}{\overset{E\to E}{\mapsto p(\vec{x})=\vec{y}}}$.

Cas particulier : Projection orthogonale si $G = F^{\perp}$

Propriétés

i) p est une application linéaire,

ii) Im
$$p = F = {\vec{x} \in E \mid p(\vec{x}) = \vec{x}},$$

- iii) $\ker p = G$,
- iv) $p \circ p = p$.

Exemples dans \mathbb{R}^3 : Projection sur un plan P de \mathbb{R}^3 le long d'une droite D.

$$P = {\vec{v} = (x, y, z) \mid ax + by + cz = l(\vec{v}) = 0}$$
 avec $a, b \text{ ou } c \neq 0$.

$$D = \mathbb{R} \overrightarrow{V}$$
 où $\overrightarrow{V} = (x_0, y_0, z_0) \neq \overrightarrow{0}$

Soit
$$l(\vec{X}) = ax + by + cz$$
. $l: \mathbb{R}^3 \to \mathbb{R}$ est linéaire.

 $P = \ker l$ et dim $P = \dim \mathbb{R}^3 - rg(l)$ avec $\operatorname{Im} l \neq \{\vec{0}\}$ car $l \neq 0$.

 \rightarrow Im $l = \mathbb{R}$ et donc dim P = 2.

Par définition, la projection de \vec{X} sur P est le vecteur \vec{Y} . On sait que $\vec{Z} \in D = \mathbb{R} \overrightarrow{V}$.

$$\rightarrow \vec{Z} = \lambda \vec{V}$$

On a
$$l(\vec{X}) = l(\vec{Y}) + l(\vec{Z}) = l(\vec{Z}) = \lambda l(\vec{V}) \implies \lambda = \frac{l(\vec{X})}{l(\vec{V})} \text{ avec } l(\vec{V}) \neq \vec{0} \text{ car } \vec{V} \in P.$$

Finalement, la projection de \vec{X} sur P est l'application $\pi: \vec{X} \to \vec{X} - \vec{Z} = \vec{X} - \frac{\iota(\vec{X})}{\iota(\vec{Y})} \vec{V}$

Formule explicite: $\pi(\vec{X}) = \vec{X} - \frac{l(\vec{X})}{l(\vec{V})} \vec{V}$.

$$P = \{\vec{v} = (x, y, z) \mid z = 0\} = \{sol\}$$

$$\vec{V} = (1,1,1) = \text{Direction du Soleil}$$

$$l(\vec{X}) = ax + by + cz = z$$
 et $l(\vec{V}) = 1$

$$\pi(\vec{X}) = \pi(x, y, z) = (x, y, z) - z\vec{V}$$

Soit
$$\pi(\vec{X}) = (x - z, y - z, 0)$$

Théorème de la caractérisation des projections.

Soit E un espace vectoriel et p un endomorphisme de E.

Alors p est une projection si et seulement si p o p = p auquel cas p est la projection sur Im p le long de ker p.

Démonstration:

 (\Rightarrow) : Par définition d'une projection, on a pour $E = F \oplus G$

$$p: \vec{x} = \vec{y} + \vec{z} \rightarrow p(\vec{x}) = \vec{y} \in F.$$

En particulier, on a $p(\vec{x}) = \vec{0} \Leftrightarrow \vec{y} = \vec{0} \Leftrightarrow \vec{x} = \vec{z} \in G$, et de plus $p(\vec{y}) = \vec{y}$ pour $\vec{y} \in F \Leftrightarrow \text{Im } p = F$.

Enfin, $(p \circ p)(\vec{x}) = p(\vec{y}) = \vec{y}$. Ce qui montre que $p \circ p = p$.

 (\Leftarrow) : On suppose que $p \circ p = p$.

On pose $F = \ker(Id - p) = \{\vec{x} \in E \mid (Id - p)(\vec{x}) = \vec{0}\} = \{\vec{x} \in E \mid p(\vec{x}) = \vec{x}\}$: c'est l'ensemble des *vecteurs invariants* de p.

F est un sous espace vectoriel de E car c'est un noyau. On pose aussi $G = \ker p$.

- On montre d'abord que $E = F \oplus G$.

Analyse: Si $\vec{x} = \vec{y} + \vec{z}$ avec $\vec{y} \in F$ et $\vec{z} \in G$, alors $p(\vec{x}) = p(\vec{y}) + p(\vec{z}) = \vec{y} + \vec{0} = \vec{y}$.

 $\Rightarrow \vec{y} = p(\vec{x})$ et $\vec{z} = \vec{x} - p(\vec{x})$ sont les seuls choix possibles.

On a bien $\vec{x} = p(\vec{x}) + (\vec{x} - p(\vec{x}))$.

Synthèse : On vérifie que $p(\vec{x}) \in F$ et que $\vec{x} - p(\vec{x}) \in G$.

* $p(\vec{x}) \in F \iff p(p(\vec{x})) = p(\vec{x})$. Or $(p \circ p)(\vec{x}) = p(\vec{x})$, donc OK par hypothèse.

 $*(\vec{x} - p(\vec{x})) \in G \iff p(\vec{x} - p(\vec{x})) = \vec{0} \iff p(\vec{x}) - (p \circ p)(\vec{x}) = \vec{0}$, OK par hypothèse.

Conclusion: On a bien $E = F \oplus G$.

- On vérifie maintenant que p est la projection de F le long de G:

$$\vec{x} = \vec{y} + \vec{z}$$
 avec $\vec{y} \in F = \{\vec{y} \in E \mid p(\vec{y}) = \vec{y}\}$ et $\vec{z} \in G = \ker p$

Donc $p(\vec{x}) = p(\vec{y}) + p(\vec{z}) = p(\vec{y}).$

3. Les symétries

 $E = F \oplus G$. La symétrie à F parallèlement à G est l'application $s: E \to E$ $E \to E$

Proposition: On a s o $s = Id_E$, avec $s \in End(E)$. s est une bijection avec $s^{-1} = s$. $F = {\vec{x} \in E \mid s(\vec{x}) = \vec{x}} = \ker(Id - s)$ $G = {\vec{x} \in E \mid s(\vec{x}) = -\vec{x}} = \ker(Id + s)$

Exemples: $E = \mathbb{R}^3$, F = plan P, G = droite orthogonale à P.

 \rightarrow s est une symétrie orthogonale, dite « symétrie miroir ».

$$P = \{(x, y, 0), x, y \text{ quelconques}\}; D = \{(0, 0, z), z \text{ quelconque}\}.$$

Si
$$\vec{v} = (x, y, z) = (x, y, 0) + (0, 0, z)$$
, alors $s(\vec{v}) = (x, y, 0) - (0, 0, z) = (x, y, -z)$.

Cas plus général dans \mathbb{R}^3

$$P = \ker l = {\vec{X} = (x, y, z) \mid ax + by + cz = 0}$$
 et $D = \mathbb{R}\vec{v}$ avec $\vec{v} = (x_0, y_0, z_0)$

On a vu que \vec{X} se décompose sous la forme $\vec{X} = (\vec{X} - \frac{l(\vec{X})}{l(\vec{v})}\vec{v}) + \frac{l(\vec{X})}{l(\vec{v})}\vec{v}$,

avec
$$\vec{X} - \frac{l(\vec{X})}{l(\vec{v})}\vec{v} = \vec{Y} \in P$$
 et $\frac{l(\vec{X})}{l(\vec{v})}\vec{v} = \vec{Z} \in D$. On a donc en général :

$$s(\vec{X}) = \vec{Y} - \vec{Z} = \vec{X} - 2\frac{l(\vec{X})}{l(\vec{v})}\vec{v} \rightarrow \text{Symétrie par rapport à } P \text{ le long de } D.$$

Théorème de la caractérisation des symétries.

Soit *E* un espace vectoriel et *s* un endomorphisme de *E*.

Alors s est une symétrie si et seulement si s o $s = Id_E$ auquel cas s est la symétrie par rapport à $F = \{\vec{x} \in E \mid s(\vec{x}) = \vec{x}\}$ le long de $G = \{\vec{x} \in E \mid s(\vec{x}) = -\vec{x}\}$.

Démonstration:

$$(\Rightarrow): \vec{x} = \vec{y} + \vec{z} \Rightarrow s(\vec{x}) = \vec{y} - \vec{z} \Rightarrow s(s(\vec{x})) = \vec{y} + \vec{z} = \vec{x}$$

$$\Rightarrow s \circ s = Id_E$$
.

 (\Leftarrow) : On suppose que s o $s = Id_E$. On veut montrer que $E = F \oplus G$.

Analyse : Si $\vec{x} = \vec{y} + \vec{z}$ avec $\vec{y} \in F$ et $\vec{z} \in G$, alors $s(\vec{x}) = s(\vec{y}) + s(\vec{z}) = \vec{y} - \vec{z}$.

$$\Rightarrow \vec{y} = \frac{\vec{x} + s(\vec{x})}{2}$$
 et $\vec{z} = \frac{\vec{x} - s(\vec{x})}{2}$ sont les seuls choix possibles.

On a bien
$$\vec{x} = \frac{\vec{x} + s(\vec{x})}{2} + \frac{\vec{x} - s(\vec{x})}{2}$$
.

<u>Synthèse</u>: On vérifie que $\frac{\vec{x}+s(\vec{x})}{2} \in F$ et que $\frac{\vec{x}-s(\vec{x})}{2} \in G$.

$$s(\vec{y}) = \frac{s(\vec{x}) + s(s(\vec{x}))}{2} = \frac{\vec{x} + s(\vec{x})}{2} = \vec{y} \text{ car } s \text{ o } s = Id_E.$$

$$s(\vec{z}) = \frac{s(\vec{x}) - s(s(\vec{x}))}{2} = \frac{s(\vec{x}) - \vec{x}}{2} = -\vec{z}.$$

Conclusion : On a bien $E = F \oplus G$.

D'autre part, si $\vec{x} = \vec{y} + \vec{z}$ avec $\vec{y} \in F$ et $\vec{z} \in G$, alors $s(\vec{x}) = \vec{y} - \vec{z}$.

 \rightarrow s est le symétrique par rapport à F le long de G.

Un exemple abstrait, les fonctions paires et impaires.

 $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$. Si $f: \mathbb{R} \to \mathbb{R}$, alors $f \in E$.

On pose s(f): $\underset{x \mapsto f(-x)}{\mathbb{R} \to \mathbb{R}}$. On a $(s \circ s)(f) = f$. $\to s$ est une symétrie de E.

D'après l'énoncé précédent, on a $E = F \oplus G$:

$$F = \{f \in E \mid s(f) = f\} = \{f \in E \mid \forall x \in \mathbb{R}, f(-x) = f(x)\} = \text{Fonctions paires}.$$

$$G = \{ f \in E \mid s(f) = -f \} = \{ f \in E \mid \forall x \in \mathbb{R}, f(-x) = -f(x) \} = \text{Fonctions impaires.}$$

Toute fonction de $\mathcal{F}(\mathbb{R}, \mathbb{R})$ est somme d'une fonction paire et d'une fonction impaire de manière unique : en pratique, on a $f = \frac{f+s(f)}{2} + \frac{f-s(f)}{2}$, c'est-à-dire

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$$

Exemple: $e^x = \cosh x + \sinh x$; $e^{ix} = \cos x + i \sin x$.

4. Formes linéaires

<u>Définition</u>: Soit E un \mathbb{K} -ev. Une forme linéaire sur E est une application linéaire $l: E \to \mathbb{K}$. On note $E' = \mathcal{L}(E, \mathbb{K})$. E' est l'espace dual de E.

Si E est un espace vectoriel de dimension finie, et $B = (\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n})$ une base de E, alors tout \vec{x} de E s'écrit $x_1 \overrightarrow{e_1} + x_2 \overrightarrow{e_2} + \cdots + x_n \overrightarrow{e_n}$.

$$\to l(\vec{x}) = x_1 l(\overrightarrow{e_1}) + x_2 l(\overrightarrow{e_2}) + \dots + x_n l(\overrightarrow{e_n}) = \sum_{i=1}^n x_i l(\overrightarrow{e_i})$$

l est donc déterminée par la donnée des n nombres $l(\overrightarrow{e_1}), l(\overrightarrow{e_2}), \dots, l(\overrightarrow{e_n})$.

<u>Proposition</u>: $l: \frac{E' = \mathcal{L}(E, \mathbb{K}) \to \mathbb{K}^n}{l \mapsto (l(\overrightarrow{e_1}), l(\overrightarrow{e_2}), \dots, l(\overrightarrow{e_n}))}$ est un isomorphisme et dim $E' = \dim E = n$.

Une base de E' est donnée par les n applications coordonnées

$$e_1^* : _{\vec{x} \mapsto x_1}^{E \to \mathbb{K}}, e_2^* : _{\vec{x} \mapsto x_2}^{E \to \mathbb{K}}, \dots, e_n^* : _{\vec{x} \mapsto x_n}^{E \to \mathbb{K}}.$$

Cette base $B'=(e_1^*,e_2^*,\dots,e_n^*)$ de E' est appelée la base duale de B. Pour tout $l\in E'$, on a

$$l = l(e_1)e_1^* + l(e_2)e_2^* + \dots + l(e_n)e_n^*$$

Noyau d'une forme linéaire

Si $l \in E'$ est une forme linéaire, alors $l = 0 \Leftrightarrow \ker l = E$ et $l \neq 0 \Leftrightarrow \operatorname{Im} l = \mathbb{K}$ et rg(l) = 1.

 \rightarrow $H = \ker l$ est un espace de dimension n - 1 soit dim $H = \dim E - 1$ (Théorème du rang).

L'espace *H* est appelé un *hyperplan* de *E*.

Exemples:

- Une droite est un hyperplan de \mathbb{R}^2 , un plan de \mathbb{R}^3 est un hyperplan de \mathbb{R}^3 , etc...
- $E = \mathcal{F}(\mathbb{R}, \mathbb{R}), x \in \mathbb{R}$ donné. L'application « valeur en x », l_x : $l_x : l_x \in \mathbb{R}$ est une forme linéaire.

-
$$E = C^0(\mathbb{R}, \mathbb{R})$$
, l'intégrale $I: \sum_{f \mapsto \int_a^b f(x) dx}^{E \to \mathbb{R}}$

- Si
$$E$$
 = fonction polynomiales de degré inférieur ou égal à n = $\{P \mid P(X) = a_0 + a_1X + \dots + a_nX^n\}$ = $\mathbb{R}_n[X]$

Alors dim E = n + 1 donc dim E' = n + 1.

On considère n+1 points donnés $x_1, x_2, ..., x_n$ de [a, b] avec b>a, deux à deux différents.

Il y a donc n + 1 formes linéaires $l_{x_1}, l_{x_2}, ..., l_{x_n}$.

Proposition: $(l_{x_1}, l_{x_2}, ..., l_{x_n})$ est une base de E'.

<u>Démonstration</u>: On a $card(l_{x_1}, l_{x_2}, ..., l_{x_n}) = \dim E' = n + 1$. Il suffit donc de montrer que la famille est libre.

Si $\sum_{i=1}^{n+1} \lambda_i l_{x_i} = 0$, alors pour tout $P \in E$, $\sum_{i=1}^{n+1} \lambda_i P(x_i) = 0$.

$$\rightarrow \exists P \mid P(x_1) = 1, P(x_2) = \dots = P(x_n) = 0.$$

On retrouve le polynôme de Lagrange $\rightarrow \lambda_i = 0$.

Conséquence : formule d'intégration

La forme linéaire $I(P) = \int_a^b P(x) dx$ est une combinaison linéaire fixe des l_{x_i} .

Il existe des nombres fixes $\lambda_1,\ldots,\lambda_{n+1}$ tels que pour tout P de degré inférieur ou égal à n, on ait :

$$I(P) = \int_{a}^{b} P(x)dx = \sum_{i=1}^{n+1} \lambda_{i} P(x_{i})$$

En testant avec $P = P_i = i^{\text{ème}}$ polynôme de Lagrange, on trouve : $\lambda_i = I(P_i)$.

Exemple: Si n = 1, la formule utilise deux points :

Prenons
$$x_1 = a$$
 et $x_2 = b$,

$$\int_{a}^{b} P(x)dx = (b-a)\left(\frac{P(a) + P(b)}{2}\right)$$

C'est la formule des trapèzes!

Cette formule est exacte pour les fonctions affines par morceaux, et approchée pour les fonctions quelconques. Voir cours d'analyse pour estimation de l'erreur faite.

- Dans le cas n=2, avec trois points $x_1=a, x_2=b$ et $x_3=\frac{a+b}{2}$, on obtient

$$\int_{a}^{b} P(x)dx = \frac{b-a}{6} \left(P(a) + 4P\left(\frac{a+b}{2}\right) + P(b) \right)$$

Cette formule est exacte sur tous les polynômes de degré ≤ 2 , et beaucoup plus précise que la précédente pour une fonction régulière quelconque.

Cette technique d'intégration approchée s'appelle la *méthode de Simpson* : voir http://fr.wikipedia.org/wiki/M%C3%A9thode_de_Simpson. Elle est très utilisée pour estimer les intégrales, par exemple dans les calculatrices.