AMENDMENTS TO THE CLAIMS

The following listing of claims will replace all prior versions and listings of claims in the application.

Listing of claims:

Claim 1 (previously presented).

A compound selected from those of formula

(I):

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{Y} O \xrightarrow{N} R_3$$
 (I)

in which:

W represents N or $C-R_1$; in which R_1 is selected from:

- hydrogen atom,
- OR₅, SR₅ in which R₅ is selected from hydrogen, (C₁-C₆)alkyl and aryl(C₁-C₆)alkyl,
- (C_1-C_6) alkyl, cycloalkyl of 3 to 8 carbon atoms optionally interrupted with one hetero atom selected from oxygen, sulfur and nitrogen, aryl, heteroaryl and aryl (C_1-C_6) alkyl, these groups being optionally substituted by (CH_2) p-OH or (CH_2) p-NH₂, in which p is an integer from 0 to 4 inclusive,

X represents N or C-R₂ in which R₂ is selected from:

- hydrogen atom,
- NR_6R_7 , OR_6 , SR_6 in which R_6 and R_7 , identical or different, are selected from hydrogen, (C_1-C_6) alkyl and $aryl(C_1-C_6)$ alkyl,
- (C_1-C_6) alkyl, cycloalkyl of 3 to 8 carbon atoms optionally interrupted with one hetero atom selected from oxygen, sulfur and nitrogen, aryl, heteroaryl and aryl (C_1-C_6) alkyl,

these groups being optionally substituted by (CH₂)p-OH or (CH₂)p-NH₂, in which p is an integer from 0 to 4 inclusive,

Y represents a group selected from oxygen, sulfur, -NH, and -N(C_1 - C_6)alkyl,

Z represents a group selected from:

- oxygen, sulphur,
- and -NR₈ in which R₈ represents a group selected from hydrogen, (C_1-C_6) alkyl, aryl (C_1-C_6) alkyl, cycloalkyl, aryl, and heteroaryl, and
- when Y is oxygen, sulphur, or $-N(C_1-C_6)$ alkyl, Z optionally represents a carbon atom which is optionally substituted by a group selected from (C_1-C_6) alkyl, aryl, aryl (C_1-C_6) alkyl, aromatic heterocycle, non-aromatic heterocycle, and cycloalkyl,

n is an integer from 0 to 8 inclusive,

 Z_1 represents a group -CR₉R₁₀ wherein R₉ and R₁₀, identical or different, represent a group selected from hydrogen, (C₁-C₆)alkyl, halo(C₁-C₆)alkyl, halogen, NR₅R₁₁, OR₅, SR₅ and C(=O)OR₅ in which R₅ and R₁₁, identical or different, represents hydrogen atom or (C₁-C₆)alkyl, and

- when n is greater than or equal to 2, the hydrocarbon chain Z_1 optionally contains one or more multiple bonds,
- and/or one of the carbon atoms in the hydrocarbon chain Z_1 may be replaced with an oxygen atom, a sulphur atom which is optionally substituted by one or two oxygen atoms, or a nitrogen atom which is optionally substituted by (C_1-C_6) alkyl,

A represents a group selected from:

- aromatic or non-aromatic, 5- or 6-membered monocycle comprising from 0 to 4 heteroatoms selected from nitrogen, oxygen and sulphur, and
- bicycle, composed of two aromatic or non-aromatic, 5- or 6-membered rings, which may be identical or different, comprising from 0 to 4 heteroatoms selected from nitrogen, oxygen and sulphur,

m is an integer from 0 to 7 inclusive,

the group(s) R_4 , which may be identical or different, is (are) selected from (C_1-C_6) alkyl, halogen, -CN, $-NO_2$, $-SCF_3$, $-CF_3$, $-OCF_3$, $-NR_5R_{11}$, $-OR_5$, $-SR_5$, $-SOR_5$, $-SO_2R_5$, $-(CH_2)_kSO_2NR_5R_{11}$, $-X_1(CH_2)_kC(=O)OR_5$, $-(CH_2)_kC(=O)OR_5$, $-X_1(CH_2)_kC(=O)NR_5R_{11}$, $-(CH_2)_kC(=O)NR_5R_{11}$, and $-X_2-R_{12}$ in which:

- X_1 represents a group selected from oxygen, sulphur optionally substituted by one or two oxygen atoms, and nitrogen substituted by hydrogen or (C_1-C_6) alkyl,
- k is an integer from 0 to 3 inclusive,
- R₅ and R₁₁, which may be identical or different, are selected from hydrogen and (C₁-C₆)alkyl,
- X_2 represents a group selected from single bond, -CH₂-, oxygen atom, sulphur atom optionally substituted by one or two oxygen atoms, and nitrogen atom substituted by hydrogen atom or (C₁-C₆)alkyl group,
- R_{12} represents an aromatic or non-aromatic, heterocyclic or non-heterocyclic, 5- or 6-membered ring which is optionally substituted by one or more groups, which may be identical or different, selected from (C_1-C_6) alkyl, halogen, hydroxyl and amino, and when the ring is heterocyclic, it comprises from 1 to 4 heteroatoms selected from nitrogen, oxygen and sulphur,

R₃ represents a group selected from:

- hydrogen,
- (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, these groups being optionally substituted by one or more groups, which may be identical or different, selected from

amino, cyano, halo(C_1 - C_6)alkyl, cycloalkyl, -C(=O)NR₅R₁₁, -C(=O)OR₅, -OR₅, and -SR₅, in which R₅ and R₁₁, which may be identical or different, are as defined hereinbefore,

• and the group of formula:

$$(R_{13})_q$$
 B $(Z_2)_p$

✓ in which p is an integer from 0 to 8 inclusive,

✓ Z_2 represents -CR₁₄R₁₅ wherein R₁₄ and R₁₅, identical or different, represent a group selected from hydrogen, (C₁-C₆)alkyl, phenyl, halo(C₁-C₆)alkyl, halogen, amino, -OR₅, -NR₅R₁₁, -SR₅ and -C(=O)OR₅ in which R₅ and R₁₁, identical or different, are as defined hereinbefore, and

- when p is greater than or equal to 2, the hydrocarbon chain Z_2 optionally contains one or more multiple bonds,
- and/or one of the carbon atoms in the hydrocarbon chain Z₂ may be replaced with an oxygen atom, a sulphur atom which is optionally substituted by one or two oxygen atoms, or a nitrogen atom which is optionally substituted by (C₁-C₆)alkyl,
- ✓ B represents a group selected from:
- aromatic or non-aromatic 5- or 6-membered monocycle comprising from 0 to 4 heteroatoms selected from nitrogen, oxygen and sulphur, and
- bicycle, composed of two aromatic or non-aromatic, 5- or 6-membered rings, which may be identical or different, comprising from 0 to 4 heteroatoms selected from nitrogen, oxygen and sulphur,
- \checkmark q is an integer from 0 to 7 inclusive,

✓ the group(s) R_{13} , which may be identical or different, is (are) selected from (C_1-C_6) alkyl, halogen, -CN, $-NO_2$, $-CF_3$, $-OCF_3$, (C_1-C_6) acyl, $-(CH_2)_kNR_{16}R_{17}$, $-X_3-(CH_2)_kNR_{16}R_{17}$ $-N(R_{16})C(=O)R_{17}$, $-N(R_{16})C(=O)OR_{17}$, $-N(R_{16})SO_2R_{17}$, $-N(SO_2R_{16})_2$, $-OR_{16}$, $-S(O)_{k1}R_{16}$, $-(CH_2)_kSO_2NR_{16}R_{17}$, $-X_3(CH_2)_kC(=O)OR_{16}$,

-(CH₂)_kC(=O)OR₁₆, -X₃(CH₂)_kC(=O)NR₁₆R₁₇, -(CH₂)_kC(=O)NR₁₆R₁₇,

 $-C(=O)O-R_{19}-NR_{16}NR_{17}$ and $-X_4-R_{18}$, in which:

- X₃ represents a group selected from oxygen, sulphur optionally substituted by one
 or two oxygen atoms, and nitrogen substituted by a hydrogen atom or a (C₁C₆)alkyl group,
- k is an integer from 0 to 3 inclusive,
- k_1 is an integer from 0 to 2 inclusive,
- R₁₆ and R₁₇, which may be identical or different, are selected from hydrogen and (C₁-C₆)alkyl,
- X₄ represents a group selected from single bond, -CH₂-, oxygen atom, sulphur atom optionally substituted by one or two oxygen atoms, and nitrogen atom substituted by hydrogen atom or (C₁-C₆)alkyl group,
- R₁₈ represents an aromatic or non-aromatic, heterocyclic or non-heterocyclic, 5- or 6-membered ring, which is optionally substituted by one or more groups, which may be identical or different, selected from (C₁-C₆)alkyl, halogen, hydroxyl, (C₁-C₆)alkoxy, oxo, cyano, tetrazole, -NR₅R₁₁, and -C(=O)OR₅ wherein R₅ and R₁₁ are as defined hereinbefore, and, when the ring is heterocyclic, it comprises from 1 to 4 heteroatoms selected from nitrogen, oxygen and sulphur,
- R₁₉ represents a (C₁-C₆)alkylene group, optionally a racemic form, isomer thereof, N-oxide thereof, or a pharmaceutically acceptable salt thereof,

it being understood that:

- aryl represents a monocycle or bicycle containing from 5 to 10 carbon atoms,
- heteroaryl represents aryl, as defined hereinbefore, in which one to four carbon atoms are replaced by one to four heteroatoms selected from nitrogen, oxygen and sulphur,
- cycloalkyl represents monocycle or bicycle containing from 3 to 10 carbon atoms,
- heterocycle represents heteroaryl as defined above, heteroaryl partially hydrogenated and cycloalkyl as defined above in which one to four carbon atoms are replaced by one to four heteroatoms selected from oxygen, sulphur and nitrogen,

- $aryl(C_1-C_6)alkyl$ represents a group in which alkyl contains from 1 to 6 carbon atoms and aryl contains from 5 to 10 carbon atoms,

- cycloalkyl(C_1 - C_6)alkyl represents a group in which alkyl contains from 1 to 6 carbon atoms and cycloalkyl contains from 3 to 10 carbon atoms.

Claim 2 (previously presented). A compound according to claim 1 characterized in that:

W is $C-R_1$ and X is N or $C-R_2$ in which R_1 and R_2 , identical or different, are selected from hydrogen and methyl,

Y is O,

Z represents an oxygen atom or -NH group,

n is an integer from 0 to 4 inclusive,

 Z_1 represents a group -CR₉R₁₀ wherein R₉ and R₁₀, identical or different, represent a group selected from hydrogen, (C₁-C₆)alkyl, halo(C₁-C₆)alkyl, halogen, -NR₅R₁₁, -OR₅, -SR₅ and -C(=O)OR₅ in which R₅ and R₁₁, identical or different, represent hydrogen atom or (C₁-C₆)alkyl, and

- when n is greater than or equal to 2, the hydrocarbon chain Z_1 optionally contains one double bonds,
- and/or one of the carbon atoms in the hydrocarbon chain Z_1 may be replaced with an oxygen atom, a sulphur atom which is optionally substituted by one or two oxygen atoms, or a nitrogen atom which is optionally substituted by (C_1-C_6) alkyl,

 R_3 , R_4 and A are as defined in the compound of formula (I), optionally a racemic form, isomer thereof, N-oxide thereof, or a pharmaceutically acceptable salt thereof.

Claim 3 (previously presented). A compound according to claim 1 characterized in that:

R₃ represents the group of formula:

$$(R_{13})_q$$
 B $(Z_2)_p$

- ✓ in which p is an integer from 0 to 4 inclusive,
- ✓ Z_2 represents -CR₁₄R₁₅ wherein R₁₄ and R₁₅, identical or different, represent a group selected from hydrogen and methyl, and when p is greater than or equal to 2, the hydrocarbon chain Z_2 optionally contains one double bond,
- ✓ B represents a group selected from phenyl, pyridyl, thienyl, imidazolyl, furyl, 1,3-benzodioxolyl, benzodioxinyl, benzothienyl, benzofuryl, 2,1,3-benzothiadiazolyl, benzofurazanyl, and indolyl,
- \checkmark q is an integer from 0 to 7 inclusive,
- ✓ the group(s) R_{13} , which may be identical or different, is (are) selected from (C_1-C_6) alkyl, halogen, -CN, $-CF_3$, $-NR_{16}R_{17}$, $-OR_{16}$, $-SO_2R_{16}$, $-(CH_2)_kSO_2NR_{16}R_{17}$, $-O(CH_2)_kC(=O)OR_{16}$, $-(CH_2)_kC(=O)OR_{16}$, $-O(CH_2)_kC(=O)NR_{16}R_{17}$, $-C(=O)O-R_{19}-NR_{16}NR_{17}$ and $-(CH_2)_kC(=O)NR_{16}R_{17}$, in which k is an integer from 0 to 3 inclusive, R_{16} and R_{17} , which may be identical or different, are selected from hydrogen and (C_1-C_6) alkyl, and R_{19} represents a (C_1-C_6) alkylene group,
- W, X, Y, Z, Z₁, n, m, A and R₄ are as defined in the compound of formula (I), optionally a racemic form, isomer thereof, N-oxide thereof, or a pharmaceutically acceptable salt thereof.

Claim 4 (previously presented). A compound according to claim 1 characterized in that:

n is an integer from 0 to 4 inclusive,

Z₁ represents a group -CR₉R₁₀ wherein R₉ and R₁₀ represent each hydrogen atom, and

- when n is greater than or equal to 2, the hydrocarbon chain Z_1 optionally contains one double bond,
- and/or one of the carbon atoms in the hydrocarbon chain Z_1 may be replaced with an oxygen atom, a sulphur atom which is optionally substituted by one or two oxygen atoms, or a nitrogen atom which is optionally substituted by (C_1-C_6) alkyl,

A represents a group selected from phenyl, pyridyl, thienyl, imidazolyl, furyl, 1,3-benzodioxolyl, benzodioxinyl, benzothienyl, benzofuryl, 2,1,3-benzothiadiazolyl, benzofurazanyl, and indolyl,

m is an integer from 0 to 7 inclusive,

the group(s) R_4 , which may be identical or different, is (are) selected from (C_1-C_6) alkyl, halogen, -CN, $-CF_3$, $-NR_5R_{11}$, $-OR_5$, and $-C(=O)OR_5$ in which R_5 and R_{11} , which may be identical or different, are selected from hydrogen and (C_1-C_6) alkyl,

W, X, Y, Z and R₃ are as defined in the compound of formula (I), optionally a racemic form, isomer thereof, N-oxide thereof, or a pharmaceutically acceptable salt thereof.

Claim 5 (previously presented). A compound according to claim 1 characterized in that:

W is $C-R_1$ and X is N or $C-R_2$ in which R_1 and R_2 , identical or different, are selected from hydrogen and methyl,

Y is O,

Z represents an oxygen atom or -NH group,

n is an integer from 0 to 4 inclusive,

 Z_1 represents a group $-CR_9R_{10}$ wherein R_9 and R_{10} , identical or different, represent a group selected from hydrogen and methyl, and

- when n is greater than or equal to 2, the hydrocarbon chain Z_1 optionally contains one or more multiple bonds,
- and/or one of the carbon atoms in the hydrocarbon chain Z_1 may be replaced with an oxygen atom, a sulphur atom which is optionally substituted by one or two oxygen atoms, or a nitrogen atom which is optionally substituted by (C_1-C_6) alkyl,

A represents a group selected from phenyl, pyridyl, thienyl, imidazolyl, furyl, 1,3-benzodioxolyl, benzodioxinyl, benzothienyl, benzofuryl, 2,1,3-benzothiadiazolyl, benzofurazanyl, and indolyl,

m is an integer from 0 to 7 inclusive,

the group(s) R_4 , which may be identical or different, is (are) selected from $(C_1\text{-}C_6)$ alkyl, halogen, -CN, -CF₃, -NR₅R₁₁, -OR₅, -SO₂R₅, -(CH₂)_kSO₂NR₅R₁₁, -X₁(CH₂)_kC(=O)OR₅, -(CH₂)_kC(=O)NR₅R₁₁, -(CH₂)_kC(=O)NR₅R₁₁, and -X₂-R₁₂ in which:

- \checkmark X₁ represents a group selected from oxygen, sulphur and -NH,
- \checkmark k is an integer from 0 to 3 inclusive,
- \checkmark R₅ and R₁₁, which may be identical or different, are selected from hydrogen and (C₁-C₆)alkyl,
- \checkmark X₂ represents a group selected from single bond, -CH₂-, oxygen atom, and sulphur atom optionally substituted by one or two oxygen atoms,

 \checkmark R₁₂ represents an aromatic or non-aromatic, heterocyclic or non-heterocyclic, 5- or 6-membered ring which is optionally substituted by one or more groups, which may be identical or different, selected from (C₁-C₆)alkyl, halogen, hydroxyl and amino, and when the ring is heterocyclic, it comprises from 1 to 4 heteroatoms selected from nitrogen, oxygen and sulphur;

R₃ represents the group of formula:

$$(R_{13})_q$$
 B $(Z_2)_p$

✓ in which p is an integer from 0 to 6 inclusive,

✓ Z_2 represents -CR₁₄R₁₅ wherein R₁₄ and R₁₅, identical or different, represent a group selected from hydrogen, (C₁-C₆)alkyl, phenyl, halo(C₁-C₆)alkyl, halogen, amino, OR₅, SR₅ and -C(=O)OR₅ in which R₅ is as defined in the compound of formula (I), and

- when p is greater than or equal to 2, the hydrocarbon chain Z₂ optionally contains one or more multiple bonds,
- and/or one of the carbon atoms in the hydrocarbon chain \mathbb{Z}_2 may be replaced with an oxygen atom, a sulphur atom which is optionally substituted by one or two oxygen atoms, or a nitrogen atom which is optionally substituted by (C_1-C_6) alkyl,
- ✓ B represents a group selected from:
- aromatic or non-aromatic 5- or 6-membered monocycle comprising from 0 to 4
 heteroatoms selected from nitrogen, oxygen and sulphur, and
- bicycle, composed of two aromatic or non-aromatic, 5- or 6-membered rings, which may be identical or different, comprising from 0 to 4 heteroatoms selected from nitrogen, oxygen and sulphur,
- \checkmark q is an integer from 0 to 7 inclusive,

✓ the group(s) R_{13} , which may be identical or different, is (are) selected from (C_1-C_6) alkyl, halogen, -CN, $-CF_3$, $-NR_{16}R_{17}$, $-OR_{16}$, $-SO_2R_{16}$, $-(CH_2)_kSO_2NR_{16}R_{17}$, $-X_3(CH_2)_kC(=O)OR_{16}$, $-(CH_2)_kC(=O)OR_{16}$, $-X_3(CH_2)_kC(=O)NR_{16}R_{17}$, $-(CH_2)_kC(=O)NR_{16}R_{17}$, $-(CH_2)_kC(=O)NR_{16}R_{17}$, and $-X_4-R_{18}$, in which:

- X₃ represents a group selected from oxygen atom, sulphur atom and -NH group,
- k is an integer from 0 to 3 inclusive,
- R_{16} and R_{17} , which may be identical or different, are selected from hydrogen and $(C_1\text{-}C_6)$ alkyl,
- X₄ represents a group selected from single bond, -CH₂-, oxygen atom, and sulphur atom optionally substituted by one or two oxygen atoms,
- R₁₈ represents an aromatic or non-aromatic, heterocyclic or non-heterocyclic, 5- or 6-membered ring, which is optionally substituted by one or more groups, which may be identical or different, selected from (C₁-C₆)alkyl, halogen, hydroxyl, and amino, and when the ring is heterocyclic, it comprises from 1 to 4 heteroatoms selected from nitrogen, oxygen and sulphur,
- R₁₉ represents a (C₁-C₆)alkylene group, optionally a racemic form, isomer thereof, N-oxide thereof, or a pharmaceutically acceptable salt thereof.

Claim 6 (previously presented). A compound according to claim 1 characterized in that:

W is $C-R_1$ and X is N or $C-R_2$ in which R_1 and R_2 , identical or different, are selected from hydrogen and methyl,

Y is O,

Z represents an oxygen atom or a -NH group,

n is an integer from 0 to 4inclusive,

 Z_1 represents a group -CR₉R₁₀ wherein R₉ and R₁₀, identical or different, represent a group selected from hydrogen and methyl, and

- when n is greater than or equal to 2, the hydrocarbon chain Z_1 optionally contains one double bond,
- and/or one of the carbon atoms in the hydrocarbon chain Z_1 may be replaced with an oxygen atom, a sulphur atom which is optionally substituted by one or two oxygen atoms, or a nitrogen atom which is optionally substituted by (C_1-C_6) alkyl,

A represents a group selected from phenyl, pyridyl, thienyl, imidazolyl, furyl, 1,3-benzodioxolyl, benzodioxinyl, benzothienyl, benzofuryl, 2,1,3-benzothiadiazolyl, benzofurazanyl, and indolyl,

m is an integer from 0 to 7 inclusive,

the group(s) R_4 , which may be identical or different, is (are) selected from (C_1-C_6) alkyl, halogen, -CN, -CF₃, -NR₅R₁₁, -OR₅, and -C(=O)OR₅, in which R₅ and R₁₁, which may be identical or different, are selected from hydrogen and (C_1-C_6) alkyl,

R₃ represents the group of formula:

$$(R_{13})_q$$
 B $(Z_2)_p$

- ✓ in which p is an integer from 0 to 4 inclusive,
- \checkmark Z₂ represents -CR₁₄R₁₅ wherein R₁₄ and R₁₅, identical or different, represent a group selected from hydrogen and methyl, and
- when p is greater than or equal to 2, the hydrocarbon chain Z₂ optionally contains one double bond,
- and/or one of the carbon atoms in the hydrocarbon chain \mathbb{Z}_2 may be replaced with an oxygen atom, a sulphur atom which is optionally substituted by one or two oxygen atoms, or a nitrogen atom which is optionally substituted by $(\mathbb{C}_1\text{-}\mathbb{C}_6)$ alkyl,

- ✓ B represents a group selected from phenyl, pyridyl, thienyl, imidazolyl, furyl, 1,3-benzodioxolyl, benzodioxinyl, benzothienyl, benzofuryl, 2,1,3-benzothiadiazolyl, benzofurazanyl, and indolyl,
- \checkmark q is an integer from 0 to 7 inclusive,
- ✓ the group(s) R_{13} , which may be identical or different, is (are) selected from (C_1-C_6) alkyl, halogen, -CN, -CF₃, -NR₁₆R₁₇, -OR₁₆, -SO₂R₁₆, -(CH₂)_kSO₂NR₁₆R₁₇, -X₃(CH₂)_kC(=O)OR₁₆, -(CH₂)_kC(=O)OR₁₆, -X₃(CH₂)_kC(=O)NR₁₆R₁₇, -(CH₂)_kC(=O)NR₁₆R₁₇, and -X₄-R₁₈,in which :
 - X₃ represents a group selected from oxygen atom, sulphur atom and -NH group,
 - k is an integer from 0 to 3 inclusive,
 - R_{16} and R_{17} , which may be identical or different, are selected from hydrogen and (C_1-C_6) alkyl,
 - X_4 represents a group selected from single bond, -CH₂-, oxygen atom, and sulphur atom optionally substituted by one or two oxygen atoms,
 - R₁₈ represents an aromatic or non-aromatic, heterocyclic or non-heterocyclic, 5- or 6-membered ring, which is optionally substituted by one or more groups, which may be identical or different, selected from (C₁-C₆)alkyl, halogen, hydroxyl, and amino, and when the ring is heterocyclic, it comprises from 1 to 4 heteroatoms selected from nitrogen, oxygen and sulphur,
- R₁₉ represents a (C₁-C₆)alkylene group, optionally a racemic form, isomer thereof, N-oxide thereof, or a pharmaceutically acceptable salt thereof.

Claim 7 (previously presented). A compound according to claim 1 characterized in that:

W is $C-R_1$ and X is N or $C-R_2$ in which R_1 and R_2 , identical or different, are selected from hydrogen and methyl,

Y is O,

Z represents an oxygen atom or a -NH group,

n is an integer from 0 to 4 inclusive,

Z₁ represents a methylene group, and

- when n is greater than or equal to 2, the hydrocarbon chain Z_1 optionally contains one double bond,
- and/or one of the carbon atoms in the hydrocarbon chain Z₁ may be replaced with an oxygen atom, a sulphur atom which is optionally substituted by one or two oxygen atoms, or a nitrogen atom which is optionally substituted by (C₁-C₆)alkyl,

A represents a group selected from phenyl, pyridyl, thienyl, imidazolyl, furyl, 1,3-benzodioxolyl, benzodioxinyl, benzothienyl, benzofuryl, 2,1,3-benzothiadiazolyl, benzofurazanyl, and indolyl,

m is an integer from 0 to 7 inclusive,

the group(s) R_4 , which may be identical or different, is (are) selected from (C_1-C_6) alkyl, halogen, -CN, -CF₃, -NR₅R₁₁, -OR₅, and -C(=O)OR₅, in which R₅ and R₁₁, which may be identical or different, are selected from hydrogen and (C_1-C_6) alkyl,

R₃ represents the group of formula:

$$(R_{13})_q$$
 B $(Z_2)_p$

✓ in which p is an integer from 0 to 4 inclusive,

- ✓ Z₂ represents -CR₁₄R₁₅ wherein R₁₄ and R₁₅, identical or different, represent a group selected from hydrogen and methyl, and when p is greater than or equal to 2, the hydrocarbon chain Z₂ optionally contains one double bond,
 - ✓ B represents a group selected from phenyl, pyridyl, thienyl, imidazolyl, furyl, 1,3-benzodioxolyl, benzodioxinyl, benzothienyl, benzofuryl, 2,1,3-benzothiadiazolyl, benzofurazanyl, and indolyl,
- \checkmark q is an integer from 0 to 7 inclusive,
- the group(s) R_{13} , which may be identical or different, is (are) selected from $(C_1\text{-}C_6)$ alkyl, halogen, -CN, -CF₃, -NR₁₆R₁₇, -OR₁₆, -SO₂R₁₆, -(CH₂)_kSO₂NR₁₆R₁₇, -O(CH₂)_kC(=O)OR₁₆, -(CH₂)_kC(=O)OR₁₆, -O(CH₂)_kC(=O)NR₁₆R₁₇, -(CH₂)_kC(=O)NR₁₆R₁₇, and -C(=O)O-R₁₉-NR₁₆NR₁₇ in which :
 - k is an integer from 0 to 3 inclusive,
 - R_{16} and R_{17} , which may be identical or different, are selected from hydrogen and (C_1-C_6) alkyl,
- R_{19} represents a $(C_1\text{-}C_6)$ alkylene group optionally a racemic form, isomer thereof, N-oxide thereof, or a pharmaceutically acceptable salt thereof.

Claim 8 (previously presented). A compound according to claim 1 wherein n is equal to one, optionally a racemic form, isomer thereof, N-oxide thereof, or a pharmaceutically acceptable salt thereof.

Claim 9 (previously presented). A compound according to claim 1 wherein Z_1 represents a group $-CR_9R_{10}$ in which R_9 and R_{10} represent each a hydrogen atom, optionally a racemic form, isomer thereof, N-oxide thereof, or a pharmaceutically acceptable salt thereof.

Claim 10 (previously presented). A compound according to claim 1 wherein A represents a 5- to 6- membered aromatic monocycle or a 3,4-methylenedioxyphenyl group optionally substituted by one or more groups R₄ as defined in the compound of formula (I), optionally a racemic form, isomer thereof, N-oxide thereof, or a pharmaceutically acceptable salt thereof.

Claim 11 (previously presented). A compound according to claim 10 wherein A represents a phenyl group optionally substituted by one group R_4 as defined in the compound of the formula (I), optionally a racemic form, isomer thereof, N-oxide thereof, or a pharmaceutically acceptable salt thereof.

Claim 12 (previously presented). A compound according to claim 11 wherein A represents a phenyl group, m is equal to one, and R₄ represents a methoxy group or a fluoro group, optionally a racemic form, isomer thereof, N-oxide thereof, or a pharmaceutically acceptable salt thereof.

Claim 13 (previously presented). A compound according to claim 10 wherein A represents a 4-pyridinyl group and m is equal to zero, optionally a racemic form, isomer thereof, N-oxide thereof, or a pharmaceutically acceptable salt thereof.

Claim 14 (previously presented). A compound according to claim 1 wherein Z represents a -NH group and Y represents an oxygen atom, optionally a racemic form, isomer thereof, N-oxide thereof, or a pharmaceutically acceptable salt thereof.

Claim 15 (previously presented). A compound according to claim 1 wherein W represents a -CH group and X represents a nitrogen atom, optionally a racemic form, isomer thereof, N-oxide thereof, or a pharmaceutically acceptable salt thereof.

Claim 16 (previously presented). A compound according to claim 1 wherein R₃ represent a group of formula:

in which p is equal to one, Z_2 represents a methylene group, B represents a phenyl group, q is comprise between 0 to 1 inclusive, R_{13} represents a group selected from -CN, -(CH₂)_k-C(=O)OR₁₆, -(CH₂)_k-C(=O)NR₁₆R₁₇, and -C(=O)O-R₁₉-NR₁₆NR₁₇ in which k, R_{16} , R_{17} , and R_{19} are as defined in the compound of formula (I), optionally a racemic form, isomer thereof, N-oxide thereof, or a pharmaceutically acceptable salt thereof.

Claim 17 (original). A compound according to claim 1 selected from:

- benzyl 4-benzyl-5-oxo-4*H*-[1,2,4]triazolo[4,3-*a*]quinazol-7-ylcarboxylate,
- 4-pyridylmethyl 4-benzyl-5-oxo-4*H*-[1,2,4]triazolo[4,3-*a*]quinazol-7-ylcarboxylate,
- *N*-(3,4-methylenedioxybenzyl)-4-benzyl-5-oxo-4*H*-[1,2,4]triazolo[4,3-*a*]quinazol-7-ylcarboxamide,
- *N*-(4-pyridylmethyl)-4-benzyl-5-oxo-4*H*-[1,2,4]triazolo[4,3-*a*]quinazol-7-ylcarboxamide,
- *N*-(3,4-methylenedioxybenzyl)-4-benzyl-5-oxo-4*H*-imidazo[1,2-*a*]quinazol-7-ylcarboxamide,
- *N*-(4-pyridylmethyl)-4-benzyl-5-oxo-4*H*-imidazo[1,2-*a*]quinazol-7-ylcarboxamide,
- *N*-(4-methoxybenzyl)-4-benzyl-5-oxo-4,5-dihydro[1,2,4]triazolo[4,3-*a*]quinazoline-7-carboxamide,
- *N*-[3-(4-pyridylsulphanyl)propyl]-4-benzyl-5-oxo-4,5-dihydro[1,2,4]triazolo-[4,3-*a*] quinazoline-7-carboxamide,
- *N*-(3,4-Methylenedioxybenzyl)-4-(4-cyanobenzyl)-5-oxo-4*H*-[1,2,4]triazolo[4,3-*a*] quinazol-7-ylcarboxamide
- Methyl 4-{7-[(1,3-benzodioxol-5-ylmethyl)-carbamoyl]-5-oxo-5*H*-[1,2,4]triazolo [4,3-*a*] quinazol-4-ylmethyl} benzoate
- Methyl 4-{7-[(4-methoxybenzyl)-carbamoyl]-5-oxo-5*H*-[1,2,4]triazolo[4,3-*a*] quinazol-4-ylmethyl} benzoate

- Methyl 4-{7-[(pyridin-4-ylmethyl)-carbamoyl]-5-oxo-5*H*-[1,2,4]triazolo[4,3-*a*] quinazol-4-ylmethyl} benzoate
- (2-Dimethylamino-ethyl) 4-[7-(4-fluoro-benzylcarbamoyl)-5-oxo-5*H*-[1,2,4]triazolo [4,3-*a*]quinazol-4-ylmethyl] benzoate
- 4-(4-Dimethylcarbamoyl-benzyl)-5-oxo-4,5-dihydro-[1,2,4]triazolo[4,3-a] quinazoline-7-carboxylic acid 4-methoxy-benzylamide
- *N*-(pyridin-4ylmethyl)-4-(4-cyanobenzyl)-5-oxo-4*H*-[1,2,4]triazolo[4,3-*a*]quinazol-7-ylcarboxamide
- Methyl (4-{7-[(1,3-benzodioxol-5-ylmethyl)-carbamoyl]-5-oxo-5*H*-[1,2,4]triazolo [4,3-*a*]quinazolin-4-ylmethyl}-phenyl)-acetate
- Methyl (4-{7-[(4-methoxy)-benzylcarbamoyl]-5-oxo-5*H*-[1,2,4]triazolo[4,3-*a*] quinazolin-4-ylmethyl}-phenyl)-acetate
- Methyl (4-{7-[(pyridin-4-yl)-methylcarbamoyl]-5-oxo-5*H*-[1,2,4]triazolo[4,3-*a*] quinazolin-4-ylmethyl}-phenyl)-acetate
- *N*-(pyridin-4-ylmethyl) 4-[3-(pyridin-4-yl)-2-propen-1-yl]-5-oxo-4*H*-[1,2,4]triazolo [4,3-*a*]quinazol-7-ylcarboxamide
- 4-[2-(4-Chloro-phenoxy)-ethyl]-5-oxo-4,5-dihydro-[1,2,4]triazolo[4,3-a] quinazoline-7-carboxylic acid 4-methoxy-benzylamide
- 4-{7-[(4-methoxybenzyl)-carbamoyl]-5-oxo-5*H*-[1,2,4]triazolo[4,3-*a*] quinazol-4-ylmethyl} benzoic acid
- 4-{7-[(1,3-benzodioxol-5-ylmethyl)-carbamoyl]-5-oxo-5*H*-[1,2,4]triazolo [4,3-*a*]quinazol-4-ylmethyl} benzoic acid
- 4-{7-[(pyridin-4-ylmethyl)-carbamoyl]-5-oxo-5*H*-[1,2,4]triazolo[4,3-*a*] quinazol-4-ylmethyl} benzoic acid
- 4-{7-[(4-fluoro)-benzylcarbamoyl]-5-oxo-5*H*-[1,2,4]triazolo[4,3-*a*] quinazol-4-ylmethyl} benzoic acid
- (4-{7-[(4-methoxy)-benzylcarbamoyl]-5-oxo-5*H*-[1,2,4]triazolo[4,3-*a*] quinazolin-4-ylmethyl}-phenyl)-acetic acid
- (4-{7-[(1,3-benzodioxol-5-ylmethyl)-carbamoyl]-5-oxo-5*H*-[1,2,4]triazolo [4,3-*a*]quinazolin-4-ylmethyl}-phenyl)-acetic acid, and

- (4-{7-[(pyridin-4-yl)-methylcarbamoyl]-5-oxo-5*H*-[1,2,4]triazolo[4,3-*a*] quinazolin-4-ylmethyl}-phenyl)-acetic acid.

Claim 18 (original). A compound according to claim 1 selected from: benzyl 4-benzyl-5-oxo-4H-[1,2,4]triazolo[4,3-a]quinazol-7-ylcarboxylate, 4-pyridylmethyl 4-benzyl-5-oxo-4H-[1,2,4]triazolo[4,3-a]quinazol-7-ylcarboxylate, N-(3,4-methylenedioxybenzyl)-4-benzyl-5-oxo-4H-[1,2,4]triazolo[4,3-a]quinazol-7-ylcarboxamide,

N-(4-methoxybenzyl)-4-benzyl-5-oxo-4,5-dihydro[1,2,4]triazolo[4,3-a]quinazoline-7-carboxamide,

N-(3,4-Methylenedioxybenzyl)-4-(4-cyanobenzyl)-5-oxo-4*H*-[1,2,4]triazolo[4,3-*a*] quinazol-7-ylcarboxamide

Methyl 4-{7-[(1,3-benzodioxol-5-ylmethyl)-carbamoyl]-5-oxo-5*H*-[1,2,4]triazolo[4,3-*a*] quinazol-4-ylmethyl} benzoate

Methyl $4-\{7-[(4-methoxybenzyl)-carbamoyl]-5-oxo-5H-[1,2,4]triazolo[4,3-a]$ quinazol-4-ylmethyl} benzoate

4-(4-Dimethylcarbamoyl-benzyl)-5-oxo-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinazoline-7-carboxylic acid 4-methoxy-benzylamide

Methyl $(4-\{7-[(1,3-benzodioxol-5-ylmethyl)-carbamoyl]-5-oxo-5H-[1,2,4]triazolo [4,3-a]quinazolin-4-ylmethyl\}-phenyl)-acetate$

Methyl $(4-{7-[(4-methoxy)-benzylcarbamoyl]-5-oxo-5}H-[1,2,4]triazolo[4,3-a]$ quinazolin-4-ylmethyl}-phenyl)-acetate

4-{7-[(4-methoxybenzyl)-carbamoyl]-5-oxo-5*H*-[1,2,4]triazolo[4,3-*a*]quinazol-4-ylmethyl} benzoic acid

4-{7-[(1,3-benzodioxol-5-ylmethyl)-carbamoyl]-5-oxo-5*H*-[1,2,4]triazolo[4,3-*a*]quinazol-4-ylmethyl} benzoic acid

4-{7-[(pyridin-4-ylmethyl)-carbamoyl]-5-oxo-5*H*-[1,2,4]triazolo[4,3-*a*]quinazol-4-ylmethyl} benzoic acid

4-{7-[(4-fluoro)-benzylcarbamoyl]-5-oxo-5*H*-[1,2,4]triazolo[4,3-*a*]quinazol-4-ylmethyl} benzoic acid

(4-{7-[(4-methoxy)-benzylcarbamoyl]-5-oxo-5*H*-[1,2,4]triazolo[4,3-*a*]quinazolin-4-ylmethyl}-phenyl)-acetic acid

 $(4-{7-[(1,3-benzodioxol-5-ylmethyl)-carbamoyl]-5-oxo-5}H-[1,2,4]triazolo[4,3-a]$ quinazolin-4-ylmethyl}-phenyl)-acetic acid, and

 $(4-{7-[(pyridin-4-yl)-methylcarbamoyl]-5-oxo-5}H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl}-phenyl)-acetic acid.$

Claim 19 (previously presented). A process for manufacturing a compound of general formula (I)

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{Y} O \xrightarrow{N} R_3$$
 (I)

in which W, X, R_3 , R_4 , n, m, Z_1 and A are as defined in claim 1, Y is O and Z is O, the said process being characterized in that it comprises the reaction of the compound of formula (7a):

$$W=X$$

$$N$$

$$N$$

$$N$$

$$N$$

$$R_3$$

$$(7a)$$

in which W, X, and R₃ are as defined in the compound of formula (I), with the compound of general formula (7g), in the presence of a base:

$$(R_4)_m$$
 hal $(7g)$

in which hal is a halogen atom, and in which R_4 , n, m, Z_1 and A are as in the compound of formula (I),

to give the compound of general formula (7c), which is a particular case of the compounds of formula (I):

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{O} O \xrightarrow{N} R_3$$

$$(7c)$$

in which W, X, R₃, R₄, n, m, Z₁ and A are as defined hereinbefore.

Claim 20 (previously presented).

A process for manufacturing a compound of

general formula (I)

$$(R_4)_{m} \xrightarrow{A} (Z_1)_{n} \xrightarrow{Y} O \xrightarrow{N} R_3$$
 (I)

in which W, X, R_3 , R_4 , n, m, Z_1 and A are as defined in claim 1, Y is O and Z is -NR₈, in which R₈ is as defined in claim 1, the said process being characterized in that it comprises the reaction of the compound of formula (7a):

$$W=X$$

$$N$$

$$N$$

$$N$$

$$R_3$$

$$(7a)$$

in which W, X, and R_3 are as defined in the compound of formula (I), with the compound of general formula (7i):

$$(R_4)_m$$
 NHR₈ (7i)

in which R_4 , R_8 , n, m, Z_1 and A are as defined in the compound of formula (I),

by activating the acid function with an activator, in the presence of disopropylethylamine (DIPEA) and in a solvent, to give the compound of general formula (7d), which is a particular case of the compounds of formula (I):

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{N} (7d)$$

in which W, X, R₃, R₄, R₈, n, m, Z₁ and A are as defined hereinbefore.

Claim 21 (previously presented). A process for manufacturing a compound of general formula (I),

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{Y} Q \xrightarrow{N} R_3$$
 (I)

in which W, X, R_3 , R_4 , n, m, Z_1 and A are as defined in claim 1, Y is O and Z is S, the said process being characterized in that it comprises the reaction of the compound of formula (7a):

$$W=X$$

$$N$$

$$N$$

$$N$$

$$R_3$$

$$(7a)$$

in which W, X, and R₃ are as defined in the compound of formula (I), with the compound of general formula (7j):

$$(R_4)_m$$
 A $(Z_1)_n$ SH $(7j)$

in which R_4 , n, m, Z_1 and A are as defined in the compound of formula (I),

by activating the acid function with an activator, in the presence of DIPEA in a solvent, to give the compound of general formula (7e), which is a particular case of the compounds of formula (I):

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{N} R_3$$

$$(7e)$$

in which W, X, R₃, R₄, n, m, Z₁ and A are as defined hereinbefore.

Claim 22 (previously presented).

A process for manufacturing a compound of

general formula (I),

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{V} Q \xrightarrow{N} R_3$$
 (I)

in which W, X, R_3 , R_4 , n, m, Z_1 and A are as defined in claim 1, Y is O and Z is O, the said process being characterized in that it comprises the reaction of the compound of formula (7b):

$$V = X$$

$$V =$$

in which W, X, and R_3 are as defined in the compound of formula (I), with the compound of formula (7h):

$$(R_4)_m$$
 A $(Z_1)_n$ OH $(7h)$

in which R_4 , n, m, Z_1 and A are as defined in the compound of formula (I), in the presence of a base, to give the compound of general formula (7c), which is a particular case of the compounds of formula (I):

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{N} R_3$$

$$(7c)$$

in which W, X, R₃, R₄, n, m, Z₁ and A are as defined hereinbefore.

Claim 23 (previously presented). A process for manufacturing a compound of general formula (I),

$$(\mathbf{R}_{4})_{\mathbf{m}} \xrightarrow{\mathbf{A}} (\mathbf{Z}_{1})_{\mathbf{n}} \xrightarrow{\mathbf{Y}} \mathbf{N} \xrightarrow{\mathbf{N}} \mathbf{R}_{3}$$
 (I)

in which W, X, R_3 , R_4 , n, m, Z_1 and A are as defined in claim 1, Y is O and Z is -NR₈, in which R₈ is as defined in claim 1, the said process being characterized in that it comprises the reaction of the compound of formula (7b):

$$\begin{array}{c}
W = X \\
N \longrightarrow N \\
N \longrightarrow R_3
\end{array}$$
(7b)

in which W, X, and R_3 are as defined in the compound of formula (I), with the compound of formula (7i):

$$(R_4)_m$$
 $(Z_1)_n$ NHR_8 $(7i)$

in which R_4 , R_8 , n, m, Z_1 and A are as defined in the compound of formula (I), in the presence of a base, to give the compound of general formula (7d), which is a particular case of the compounds of formula (I):

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{N} O \xrightarrow{N} R_3$$

$$(7d)$$

in which $W,\,X,\,R_3,\,R_4,\,R_8,\,n,\,m,\,Z_1$ and A are as defined hereinbefore.

Claim 24 (previously presented). A process for manufacturing a compound of general formula (I),

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{Y} O \xrightarrow{N} R_3$$
 (I)

in which W, X, R_3 , R_4 , n, m, Z_1 and A are as defined above in claim 23, Y is O and Z is S, the said process being characterized in that it comprises the reaction of the compound of formula (7b):

$$\begin{array}{c}
W = X \\
N \longrightarrow N \\
N \longrightarrow R_3
\end{array}$$
(7b)

in which W, X, and R_3 are as defined in the compound of formula (I), with the compound of general formula (7j):

$$(R_4)_m$$
 SH $(7j)$

in which R_4 , n, m, Z_1 and A are as defined in the compound of formula (I), to give the compound of general formula (7e), which is a particular case of the compounds of formula (I):

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{N} R_3$$

$$(7e)$$

in which W, X, R₃, R₄, n, m, Z₁ and A are as defined hereinbefore.

Claim 25 (previously presented). A process for manufacturing a compound of general formula (I),

$$(\mathbf{R}_{4})_{\mathbf{m}} \xrightarrow{\mathbf{A}} (\mathbf{Z}_{1})_{\mathbf{n}} \underbrace{\mathbf{Z}_{1}}_{\mathbf{Y}} \underbrace{\mathbf{A}}_{\mathbf{Y}} \underbrace{\mathbf{A}}_{\mathbf{N}} \underbrace$$

in which W, X, R_3 , R_4 , n, m, Z_1 and A are as defined above in claim 23, Y is O and Z is - CHRa, in which Ra represents a group selected from hydrogen, (C_1-C_6) alkyl, aryl, aryl (C_1-C_6) alkyl, aromatic heterocycle, non-aromatic heterocycle, and cycloalkyl, the said process being characterized in that it comprises the reaction of the compound of formula (7b):

$$\begin{array}{c} W = X \\ N \\ N \\ N \\ R_3 \end{array}$$
 (7b)

in which W, X, and R_3 are as defined in the compound of formula (I), with the compound of general formula (7k):

$$(R_4)_m$$
 A
 $(Z_1)_n$
 $Mg-Hal$
 $(7k)$

in which Ra represents a group selected from hydrogen, (C₁-C₆)alkyl, aryl, aryl(C₁-C₆)alkyl, aromatic heterocycle, non-aromatic heterocycle, and cycloalkyl, Hal

represents a halogen atom, and R₄, n, m, Z₁ and A are as defined in the compound of formula (I),

to give the compound of general formula (7f), which is a particular case of the compounds of formula (I):

in which W, X, R₃, R₄, Ra, n, m, Z₁ and A are as defined hereinbefore.

Claim 26 (previously presented). A process for manufacturing a compound of general formula (I),

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{Y} O \xrightarrow{N} R_3$$
 (I)

in which W, X, R_3 , R_4 , n, m, Z, Z_1 and A are as defined in claim 1, and Y is S, the said process being characterized in that it comprises the reaction of the compound (8a):

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{O} N \xrightarrow{N} R_3$$

$$(8a)$$

in which W, X, R_3 , R_4 , n, m, Z, Z_1 and A are as defined in the compound of formula (I), with Lawesson's reagent or P_2S_5 , to give the compound of general formula (8b), which is a particular case of the compounds of formula (I):

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{S} O \xrightarrow{N} R_3$$

$$(8b)$$

in which W, X, R₃, R₄, n, m, Z, Z₁ and A are as defined hereinbefore.

Claim 27 (previously presented).

A process for manufacturing a compound of

general formula (I),

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{V} Q \xrightarrow{N} R_3$$
 (I)

in which W, X, R_3 , R_4 , n, m, Z_1 and A are as defined in claim 1, Y is NH and Z is O, the said process being characterized in that it comprises the reaction of compound (9a):

$$\begin{array}{c}
W = X \\
N \longrightarrow N \\
N \longrightarrow N \\
R_3
\end{array}$$
(9a)

in which W, X, and R_3 are as defined in the compound of formula (I), with the compound of general formula (7h):

$$(R_4)_m$$
 OH $(7h)$

in which R₄, n, m, Z₁ and A are as defined in the compound of formula (I),

to give the compound of general formula (9b), which is a particular case of the compounds of formula (I):

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{N} N \xrightarrow{N} R_3$$

$$(9b)$$

in which W, X, R₃, R₄, n, m, Z₁ and A are as defined hereinbefore.

Claim 28 (previously presented). A process for manufacturing a compound of general formula (I),

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{Y} O \xrightarrow{N} R_3$$
 (I)

in which W, X, R_3 , R_4 , n, m, Z_1 and A are as defined in claim 1, Z is -NR₈ and Y is NH, the said process being characterized in that it comprises the reaction of compound (9a):

$$\begin{array}{c}
W = X \\
N \longrightarrow N \\
N \longrightarrow N \\
R_3
\end{array}$$
(9a)

in which W, X, and R_3 are as defined in the compound of formula (I), with the compound of general formula (7i):

$$(R_4)_m$$
 NHR₈ (7i)

in which R_4 , n, m, Z_1 and A are as defined in the compound of formula (I), to give the compound of general formula (9c), which is a particular case of the compounds of formula (I):

$$(\mathbf{R}_4)_{\mathbf{m}} \xrightarrow{\mathbf{A}} (\mathbf{Z}_1)_{\mathbf{n}} \xrightarrow{\mathbf{N}} \mathbf{N} + \mathbf{N}$$

$$(\mathbf{N}_4)_{\mathbf{m}} \xrightarrow{\mathbf{N}} \mathbf{N} + \mathbf{N}_3$$

$$(\mathbf{9c})$$

in which W, X, R₃, R₄, R₈, n, m, Z₁ and A are as defined hereinbefore.

Claim 29 (previously presented). A process for manufacturing a compound of general formula (I),

$$(R_4)_m$$

$$A$$

$$(Z_1)_n$$

$$Y$$

$$O$$

$$R_3$$

$$(I)$$

in which W, X, R_3 , R_4 , n, m, Z_1 and A are as defined in claim1, Z is S and Y is NH, the said process being characterized in that it comprises the reaction of compound (9a):

$$\begin{array}{c}
W = X \\
N \longrightarrow N \\
N \longrightarrow N \\
R_3
\end{array}$$
(9a)

in which W, X, and R_3 are as defined in the compound of formula (I), with the compound of general formula (7j):

$$(R_4)_m$$
 A $(Z_1)_n$ SH $(7j)$

in which R₄, n, m, Z₁ and A are as defined in the compound of formula (I),

to give the compound of general formula (9d) which is a particular case of the compounds of formula (I):

$$(R_4)_m \xrightarrow{A} (Z_1)_n \xrightarrow{N} N \xrightarrow{N} R_3$$

$$(9d)$$

in which W, X, R₃, R₄, n, m, Z₁ and A are as defined hereinbefore.

Claim 30 (previously presented). A process for manufacturing a compound of general formula (I),

$$(R_4)_m$$

$$A$$

$$(Z_1)_n$$

$$Y$$

$$O$$

$$R_3$$

$$(I)$$

in which W, X, R_3 , R_4 , n, m, Z_1 and A are as defined in claim 1, Z is -CHRa in which Ra represents a group selected from hydrogen, (C_1 - C_6)alkyl, aryl, aryl(C_1 - C_6)alkyl, aromatic heterocycle, non-aromatic heterocycle, and cycloalkyl, and Y is N-Rb in which Rb is a (C_1 - C_6)alkyl, the said process being characterized in that it comprises the reaction of compound (7f):

$$(\mathbf{R}_{4})_{\mathbf{m}} \xrightarrow{\mathbf{A}} (\mathbf{Z}_{1})_{\mathbf{n}} \xrightarrow{\mathbf{O}} \mathbf{N} \xrightarrow{\mathbf{N}} \mathbf{R}_{3}$$

$$(7f)$$

in which W, X, R₃, R₄, n, m, Z₁ and A are as defined in the compound of formula (I), and in which Ra is as defined hereinbefore,

with Rb-NH₂, in which Rb represents a (C_1-C_6) alkyl group, in a presence of a dehydrating agent, to give the compound of general formula (10a), which is a particular case of the compounds of formula (I):

$$(R_4)_m$$

$$A$$

$$(Z_1)_n$$

$$NRb$$

$$O$$

$$(10a)$$

in which W, X, R₃, R₄, n, m, Z₁, Ra, Rb and A are as defined hereinbefore.

Claim 31 (previously presented). A pharmaceutical composition comprising a compound according to any one of Claims 1 to 18 and a pharmaceutically acceptable excipient.

Claims 32-38 (cancelled).

Claim 39 (currently amended). A method for treating a disease according to Claim 37 characterized in that the disease is arthritis arthritis, the method comprising the administration of an effective amount of a compound according to any one of Claims 1 to 18 to a patient having arthritis.

Claim 40 (currently amended). A method for treating a disease according to Claim 37 characterized in that the disease is osteoarthritis osteoarthritis, the method comprising the administration of an effective amount of a compound according to any one of Claims 1 to 18 to a patient having osteoarthritis.

Claim 41 (currently amended). A method for treating a disease according to Claim 37 characterized in that the disease is osteoarthritis rheumatoid arthritis, the method comprising the administration of an effective amount of a compound according to any one of Claims 1 to 18 to a patient having rheumatoid arthritis.

Claim 42 (previously presented). The compound according to Claim 1, wherein aryl represents a monocycle or bicycle containing 5 or 6 carbon atoms.

Claim 43 (previously presented). The compound according to Claim 1, wherein cycloalkyl represents a monocycle or bicycle containing from 3 to 6 carbon atoms.

Claim 44 (previously presented). The compound according to Claim 1, wherein $aryl(C_1-C_6)$ alkyl represents a group in which alkyl contains from 1 to 4 carbon atoms and aryl contains from 5 to 10 carbon atoms.

Claim 45 (previously presented). The compound according to Claim 1, wherein $aryl(C_1-C_6)$ alkyl represents a group in which alkyl contains from 1 to 6 carbon atoms and aryl contains 5 or 6 carbon atoms.

Claim 46 (previously presented). The compound according to Claim 1, wherein cycloalkyl(C_1 - C_6)alkyl represents a group in which alkyl contains from 1 to 3 carbon atoms and cycloalkyl contains from 3 to 10 carbon atoms.