stuff-plus

Bryan Mui - UID 506021334

2025-03-05

Library packages

Read the dataset

```
data_original <- read_csv("./data/UCLA2023-2024.csv")</pre>
## Rows: 31775 Columns: 198
## -- Column specification -----
## Delimiter: ","
         (40): Date, Pitcher, PitcherThrows, PitcherTeam, Batter, BatterSide, B...
## chr
## dbl
        (148): PitchNo, PAofInning, PitchofPA, PitcherId, BatterId, Inning, Out...
          (4): MeasuredDuration, PitchLastMeasuredX, PitchLastMeasuredY, PitchL...
## lgl
          (2): LocalDateTime, UTCDateTime
## dttm
## time
          (4): Time, Tilt, UTCTime, SpinAxis3dTilt
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
# The data set that we will be mutating
data <- data_original
head(data, 25)
## # A tibble: 25 x 198
                             PAofInning PitchofPA Pitcher PitcherId PitcherThrows
##
      PitchNo Date Time
##
       <dbl> <chr>
                      <time>
                                   <dbl>
                                            <dbl> <chr>
                                                                <dbl> <chr>
## 1
         264 3/1/2023 24:32
                                      6
                                                 1 Harajli~
                                                               1.00e9 Right
## 2
         289 3/1/2023 36:56
                                       3
                                                 1 Harajli~
                                                               1.00e9 Right
## 3
         265 3/1/2023 25:21
                                       7
                                                 1 Harajli~
                                                               1.00e9 Right
## 4
                                       2
                                                 3 Harajli~
         288 3/1/2023 36:17
                                                               1.00e9 Right
## 5
         293 3/1/2023 38:09
                                       3
                                                 5 Harajli~
                                                               1.00e9 Right
## 6
         336 3/1/2023 06:18
                                       3
                                                 5 Harajli~
                                                               1.00e9 Right
## 7
                                       4
         342 3/1/2023 08:52
                                                 1 Harajli~
                                                               1.00e9 Right
## 8
          339 3/1/2023 07:28
                                       3
                                                 8 Harajli~
                                                               1.00e9 Right
## 9
         281 3/1/2023 33:55
                                       1
                                                 2 Harajli~
                                                               1.00e9 Right
## 10
          262 3/1/2023 23:35
                                                 4 Harajli~
                                                               1.00e9 Right
## # i 15 more rows
## # i 190 more variables: PitcherTeam <chr>, Batter <chr>, BatterId <dbl>,
      BatterSide <chr>, BatterTeam <chr>, PitcherSet <chr>, Inning <dbl>,
```

```
## # Top_Bottom <chr>, Outs <dbl>, Balls <dbl>, Strikes <dbl>,
## # TaggedPitchType <chr>, AutoPitchType <chr>, PitchCall <chr>, KorBB <chr>,
## # TaggedHitType <chr>, PlayResult <chr>, OutsOnPlay <dbl>, RunsScored <dbl>,
## # Notes <chr>, RelSpeed <dbl>, VertRelAngle <dbl>, HorzRelAngle <dbl>, ...
```

Outputting the columns

colnames (data)

```
##
     [1] "PitchNo"
     [2] "Date"
##
     [3] "Time"
##
     [4] "PAofInning"
##
##
     [5] "PitchofPA"
##
     [6] "Pitcher"
     [7] "PitcherId"
##
##
     [8] "PitcherThrows"
##
     [9] "PitcherTeam"
##
    [10] "Batter"
##
    [11] "BatterId"
    [12] "BatterSide"
    [13] "BatterTeam"
##
    [14] "PitcherSet"
##
   [15] "Inning"
##
   [16] "Top_Bottom"
    [17] "Outs"
##
    [18] "Balls"
##
   [19] "Strikes"
##
    [20] "TaggedPitchType"
##
    [21] "AutoPitchType"
##
   [22] "PitchCall"
##
   [23] "KorBB"
   [24] "TaggedHitType"
##
##
    [25] "PlayResult"
##
   [26] "OutsOnPlay"
   [27] "RunsScored"
   [28] "Notes"
##
    [29] "RelSpeed"
##
   [30] "VertRelAngle"
   [31] "HorzRelAngle"
##
    [32] "SpinRate"
    [33] "SpinAxis"
##
##
   [34] "Tilt"
   [35] "RelHeight"
    [36] "RelSide"
##
    [37] "Extension"
##
  [38] "VertBreak"
##
##
  [39] "InducedVertBreak"
##
   [40] "HorzBreak"
## [41] "PlateLocHeight"
## [42] "PlateLocSide"
```

- ## [43] "ZoneSpeed"
- ## [44] "VertApprAngle"
- ## [45] "HorzApprAngle"
- ## [46] "ZoneTime"
- ## [47] "ExitSpeed"
- ## [48] "Angle"
- ## [49] "Direction"
- ## [50] "HitSpinRate"
- ## [51] "PositionAt110X"
- ## [52] "PositionAt110Y"
- ## [53] "PositionAt110Z"
- ## [54] "Distance"
- ## [55] "LastTrackedDistance"
- ## [56] "Bearing"
- ## [57] "HangTime"
- ## [58] "pfxx"
- ## [59] "pfxz"
- ## [60] "x0"
- ## [61] "y0"
- ## [62] "z0"
- ## [63] "vx0"
- ## [64] "vy0"
- ## [65] "vz0"
- ## [66] "ax0"
- ## [00] ax0
- ## [67] "ay0"
- ## [68] "az0"
- ## [69] "HomeTeam"
- ## [70] "AwayTeam"
- ## [71] "Stadium"
- ## [72] "Level"
- ## [73] "League"
- ## [74] "GameID"
- ## [75] "PitchUID"
- ## [76] "EffectiveVelo"
- ## [77] "MaxHeight"
- ## [78] "MeasuredDuration"
- ## [79] "SpeedDrop"
- ## [80] "PitchLastMeasuredX"
- ## [81] "PitchLastMeasuredY"
- ## [82] "PitchLastMeasuredZ"
- ## [83] "ContactPositionX"
- ## [84] "ContactPositionY"
- ## [85] "ContactPositionZ"
- ## [86] "GameUID"
- ## [87] "UTCDate"
- ## [88] "UTCTime"
- ## [89] "LocalDateTime"
- ## [90] "UTCDateTime"
- ## [91] "AutoHitType"
- ## [92] "System"
- ## [93] "HomeTeamForeignID"
- ## [94] "AwayTeamForeignID"
- ## [95] "GameForeignID"
- ## [96] "Catcher"

```
[97] "CatcherId"
```

- [98] "CatcherThrows"
- [99] "CatcherTeam"
- ## [100] "PlayID"
- ## [101] "PitchTrajectoryXc0"
- ## [102] "PitchTrajectoryXc1"
- ## [103] "PitchTrajectoryXc2"
- ## [104] "PitchTrajectoryYc0"
- ## [105] "PitchTrajectoryYc1"
- ## [106] "PitchTrajectoryYc2"
- ## [107] "PitchTrajectoryZc0"
- ## [108] "PitchTrajectoryZc1"
- ## [109] "PitchTrajectoryZc2"
- ## [110] "HitSpinAxis"
- ## [111] "HitTrajectoryXc0"
- ## [112] "HitTrajectoryXc1"
- ## [113] "HitTrajectoryXc2"
- ## [114] "HitTrajectoryXc3"
- ## [115] "HitTrajectoryXc4"
- ## [116] "HitTrajectoryXc5"
- ## [117] "HitTrajectoryXc6"
- ## [118] "HitTrajectoryXc7"
- ## [119] "HitTrajectoryXc8"
- ## [120] "HitTrajectoryYc0"
- ## [121] "HitTrajectoryYc1"
- ## [122] "HitTrajectoryYc2"
- ## [123] "HitTrajectoryYc3"
- ## [124] "HitTrajectoryYc4"
- ## [125] "HitTrajectoryYc5"
- ## [126] "HitTrajectoryYc6"
- ## [127] "HitTrajectoryYc7"
- ## [128] "HitTrajectoryYc8"
- ## [129] "HitTrajectoryZc0"
- ## [130] "HitTrajectoryZc1"
- ## [131] "HitTrajectoryZc2"
- ## [132] "HitTrajectoryZc3"
- ## [133] "HitTrajectoryZc4"
- ## [134] "HitTrajectoryZc5"
- ## [135] "HitTrajectoryZc6"
- ## [136] "HitTrajectoryZc7"
- ## [137] "HitTrajectoryZc8"
- ## [138] "ThrowSpeed"
- ## [139] "PopTime"
- ## [140] "ExchangeTime"
- ## [141] "TimeToBase"
- ## [142] "CatchPositionX"
- ## [143] "CatchPositionY"
- ## [144] "CatchPositionZ"
- ## [145] "ThrowPositionX"
- ## [146] "ThrowPositionY"
- ## [147] "ThrowPositionZ"
- ## [148] "BasePositionX"
- ## [149] "BasePositionY"
- ## [150] "BasePositionZ"

```
## [151] "ThrowTrajectoryXc0"
## [152] "ThrowTrajectoryXc1"
## [153] "ThrowTrajectoryXc2"
## [154] "ThrowTrajectoryYc0"
  [155] "ThrowTrajectoryYc1"
## [156] "ThrowTrajectoryYc2"
## [157] "ThrowTrajectoryZc0"
## [158] "ThrowTrajectoryZc1"
## [159] "ThrowTrajectoryZc2"
## [160] "PitchReleaseConfidence"
## [161] "PitchLocationConfidence"
## [162] "PitchMovementConfidence"
## [163] "HitLaunchConfidence"
## [164] "HitLandingConfidence"
## [165] "CatcherThrowCatchConfidence"
## [166] "CatcherThrowReleaseConfidence"
## [167] "CatcherThrowLocationConfidence"
## [168] "SpinAxis3dTransverseAngle"
## [169] "SpinAxis3dLongitudinalAngle"
## [170] "SpinAxis3dActiveSpinRate"
## [171] "SpinAxis3dSpinEfficiency"
## [172] "SpinAxis3dTilt"
## [173] "SpinAxis3dVectorX"
## [174] "SpinAxis3dVectorY"
## [175] "SpinAxis3dVectorZ"
## [176] "SpinAxis3dSeamOrientationRotationX"
## [177] "SpinAxis3dSeamOrientationRotationY"
## [178] "SpinAxis3dSeamOrientationRotationZ"
## [179] "SpinAxis3dSeamOrientationBallAngleHorizontalAmb1"
## [180] "SpinAxis3dSeamOrientationBallAngleVerticalAmb1"
## [181] "SpinAxis3dSeamOrientationBallXAmb1"
## [182] "SpinAxis3dSeamOrientationBallYAmb1"
## [183] "SpinAxis3dSeamOrientationBallZAmb1"
## [184] "SpinAxis3dSeamOrientationBallAngleHorizontalAmb2"
## [185] "SpinAxis3dSeamOrientationBallAngleVerticalAmb2"
## [186] "SpinAxis3dSeamOrientationBallXAmb2"
## [187] "SpinAxis3dSeamOrientationBallYAmb2"
## [188] "SpinAxis3dSeamOrientationBallZAmb2"
## [189] "SpinAxis3dSeamOrientationBallAngleHorizontalAmb3"
## [190] "SpinAxis3dSeamOrientationBallAngleVerticalAmb3"
## [191] "SpinAxis3dSeamOrientationBallXAmb3"
## [192] "SpinAxis3dSeamOrientationBallYAmb3"
## [193] "SpinAxis3dSeamOrientationBallZAmb3"
## [194] "SpinAxis3dSeamOrientationBallAngleHorizontalAmb4"
## [195] "SpinAxis3dSeamOrientationBallAngleVerticalAmb4"
## [196] "SpinAxis3dSeamOrientationBallXAmb4"
## [197] "SpinAxis3dSeamOrientationBallYAmb4"
## [198] "SpinAxis3dSeamOrientationBallZAmb4"
```

Predictor Ideas:

Velocity:

* RelSpeed (Release Speed)

- * ZoneSpeed (Speed at the plate)
- * EffectiveVelo (Velocity adjusted for approach angle)

Movement:

- * VertBreak (Vertical movement due to spin)
- * InducedVertBreak (More refined vertical movement measurement)
- * HorzBreak (Horizontal movement due to spin)
- * pfxx (Horizontal movement component)
- * pfxz (Vertical movement component)

Spin:

- * SpinRate (Total revolutions per minute)
- * SpinAxis (2D spin direction)
- * SpinAxis3dTransverseAngle (3D spin components)
- * SpinAxis3dLongitudinalAngle
- * SpinAxis3dActiveSpinRate
- * SpinAxis3dSpinEfficiency

Release & Extension:

- * RelHeight (Height of release)
- * RelSide (Side angle of release)
- * Extension (How far forward the pitcher releases the ball)

Pitch Type & Classification:

- * TaggedPitchType (Human-classified pitch type)
- * AutoPitchType (Algorithm-classified pitch type)

Location & Trajectory (Optional, but can improve Stuff+ models):

- * PlateLocHeight (Height of the pitch as it crosses the plate)
- * PlateLocSide (Side location at home plate)
- * VertApprAngle (Vertical approach angle)
- * HorzApprAngle (Horizontal approach angle)

For now, focusing on these variables:

- * Pitch Velocity
- * Vertical Break
- * Horizontal Break
- * Arm Angle
- * Release Extension

Stuff+

Part 1: Exploring Pitch Types and Sectioning Data Based off Pitches

```
data %>%
  group_by(TaggedPitchType) %>%
  summarize(Count = n())
## # A tibble: 12 x 2
##
      TaggedPitchType
                      Count
##
      <chr>
                       <int>
##
  1 ChangeUp
                        4247
## 2 Curveball
                        2790
## 3 Cutter
                         421
## 4 Fastball
                       14056
## 5 FourSeamFastBall
                          15
## 6 OneSeamFastBall
                           1
## 7 Other
                         108
## 8 Sinker
                        3588
## 9 Slider
                        6444
## 10 Splitter
                          71
## 11 TwoSeamFastBall
                          31
## 12 Undefined
                           3
```

We can see that we have ample data to produce a model for 1) Fastball, 2) Curve Ball, 3) Change Up, 4) Slider, 5) Sinker. The rest of the pitches have limited observations

```
# Section the Data based off pitch type(Run After we've transformed variables)
# data_fastball <- data %>%
# filter(TaggedPitchType == "Fastball")
# data_curveball <- data %>%
# filter(TaggedPitchType == "Curveball")
# data_changeup <- data %>%
# filter(TaggedPitchType == "ChangeUp")
# data_slider <- data %>%
# filter(TaggedPitchType == "Slider")
# data_sinker <- data %>%
# filter(TaggedPitchType == "Slider")
```

Part 2: Target Variable(set hit = 0/not a hit = 1)

```
# Calculate hit/no-hit on pitch
data <- data %>%
  mutate(hit_response = ifelse(PlayResult != "Undefined", 1, 0)) %>%
  relocate(hit_response, .after = PitchCall)
```

Part 3: Calculating Stuff+

```
# Select the variables we need, refer the beginning to see which variables are being selected
vars <- c(
    "Pitcher",
    "PitcherId",</pre>
```

```
"TaggedPitchType",
    "RelSpeed",
    "ZoneSpeed",
    "EffectiveVelo",
    "VertBreak",
    "InducedVertBreak",
    "HorzBreak",
    "SpinRate",
    "SpinAxis",
    "Tilt",
    "RelHeight",
    "RelSide",
    "Extension",
    "VertApprAngle",
    "HorzApprAngle",
    "hit_response"
data <- data %>%
  select(all_of(vars))
# Now create separate datasets for all the pitch types
# Section the Data based off pitch type(Run After we've transformed variables)
data_fastball <- data %>%
  filter(TaggedPitchType == "Fastball")
data_curveball <- data %>%
  filter(TaggedPitchType == "Curveball")
data_changeup <- data %>%
  filter(TaggedPitchType == "ChangeUp")
data_slider <- data %>%
 filter(TaggedPitchType == "Slider")
data_sinker <- data %>%
 filter(TaggedPitchType == "Sinker")
```

Part 3a: Calculating Coefficients Using LM

Fastball Model

```
model_vars <- c(
    "RelSpeed",
    "ZoneSpeed",
    "EffectiveVelo",
    "VertBreak",
    "InducedVertBreak",
    "HorzBreak",
    "SpinRate",
    "SpinRate",
    "Tilt",
    "RelHeight",
    "RelSide",
    "Extension",
    "VertApprAngle",
    "HorzApprAngle",</pre>
```

```
# get the LM equation formatted
equation <- paste("hit_response ~ ", paste(model_vars, collapse = " + "))
print(equation)
## [1] "hit_response ~ RelSpeed + ZoneSpeed + EffectiveVelo + VertBreak + InducedVertBreak + HorzBreak
# train
lm_fb <- lm(formula(equation), data = data_fastball)</pre>
# summarize
summary(lm_fb)
##
## lm(formula = formula(equation), data = data_fastball)
## Residuals:
                     Median
       Min
                 1Q
                                   3Q
                                           Max
## -0.78786 -0.23046 -0.17421 -0.06673 1.00530
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    2.007e+01 2.590e+00
                                          7.748 1.00e-14 ***
## RelSpeed
                   -4.245e-01 2.643e-02 -16.060 < 2e-16 ***
## ZoneSpeed
                   -5.291e-01 3.067e-02 -17.252 < 2e-16 ***
## EffectiveVelo
                    8.365e-01 5.254e-02 15.921 < 2e-16 ***
## VertBreak
                                          4.936 8.09e-07 ***
                    1.118e-01 2.265e-02
## InducedVertBreak -1.221e-01 2.270e-02 -5.379 7.62e-08 ***
## HorzBreak
                  6.196e-03 1.941e-03
                                          3.193 0.001414 **
## SpinRate
                   2.015e-05 2.217e-05
                                          0.909 0.363539
## SpinAxis
                   -1.996e-03 6.624e-04 -3.013 0.002593 **
## Tilt
                   -1.568e-07 2.609e-07 -0.601 0.547900
## RelHeight
                   3.572e-02 9.776e-03
                                          3.654 0.000259 ***
                   -6.051e-03 6.327e-03 -0.956 0.338905
## RelSide
## Extension
                   -1.545e+00 9.028e-02 -17.112 < 2e-16 ***
## VertApprAngle
                   -1.173e-01 6.753e-03 -17.371 < 2e-16 ***
## HorzApprAngle
                   -1.249e-02 3.915e-03 -3.190 0.001424 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3912 on 13796 degrees of freedom
     (245 observations deleted due to missingness)
## Multiple R-squared: 0.03819,
                                   Adjusted R-squared: 0.03722
## F-statistic: 39.13 on 14 and 13796 DF, p-value: < 2.2e-16
# standardize stuff to 100
stuff_fb <- data_fastball %>%
 mutate(
   raw_stuff = predict(lm_fb, newdata = .),
   StuffPlus = 100 * raw_stuff / mean(raw_stuff, na.rm = TRUE)
 )
```

Ranking Top 50 Pitches Given by Stuff Plus

```
top 50 <- stuff fb %>%
  top_n(50, StuffPlus)
head(top_50, 50)
## # A tibble: 50 x 20
##
      Pitcher PitcherId TaggedPitchType RelSpeed ZoneSpeed EffectiveVelo VertBreak
      <chr>
                   <dbl> <chr>
                                             <dbl>
##
                                                       <dbl>
                                                                      <dbl>
                                                                                <dbl>
##
  1 Chiment~
                  1.00e9 Fastball
                                              86.5
                                                        78.6
                                                                       84.0
                                                                                -36.1
## 2 Chiment~
                  1.00e9 Fastball
                                              85.5
                                                        77.6
                                                                       83.0
                                                                                -37.6
## 3 Chiment~
                  1.00e9 Fastball
                                                        78.4
                                                                       83.8
                                                                                -37.3
                                              86.2
## 4 Chiment~
                  1.00e9 Fastball
                                              86.3
                                                        78.5
                                                                       84.0
                                                                                -37.4
## 5 Chiment~
                  1.00e9 Fastball
                                                                       84.2
                                                                                -39.0
                                              86.4
                                                        79.1
## 6 Grimm, ~
                  1.00e9 Fastball
                                              80.6
                                                        73.3
                                                                       77.2
                                                                                -30.9
## 7 Taylor,~
                                                                       79.8
                                                                                -36.9
                  1.00e9 Fastball
                                              81.4
                                                        75.5
## 8 Taylor,~
                  1.00e9 Fastball
                                              86.9
                                                        78.7
                                                                       84.8
                                                                                -30.1
## 9 Shinn, ~
                  1.00e9 Fastball
                                              86.5
                                                        79.0
                                                                       82.1
                                                                                -30.0
## 10 Shinn, ~
                  1.00e9 Fastball
                                              87.9
                                                        79.9
                                                                       83.6
                                                                                -27.0
## # i 40 more rows
## # i 13 more variables: InducedVertBreak <dbl>, HorzBreak <dbl>, SpinRate <dbl>,
       SpinAxis <dbl>, Tilt <time>, RelHeight <dbl>, RelSide <dbl>,
       Extension <dbl>, VertApprAngle <dbl>, HorzApprAngle <dbl>,
## #
## #
       hit_response <dbl>, raw_stuff <dbl>, StuffPlus <dbl>
```

Misc

Stuff++

We could use a non-linear model to calculate Stuff+ but it would be a black-box model, meaning it gives us a score with no interpretable coefficients. The model might have better performance but low interpretability, hence we only know what the stuff is but we don't know what actually affects stuff.

ChatGPT Recommendation:

```
Do I want to know the magnitude and direction of a variable's impact?

→ Use lm, logistic, beta, GAM.

Do I need to rank importance but not interpret exact relationships?

→ Try tree models + SHAP.

Do I want interpretable nonlinear effects?

→ Use GAMs - they're really underused for stuff like this
```