Reinforcement Learning

Machine Learning - Coursera

Position is given -> How to move the control sticks? state s -> action a

Supervised Learning?

x -> y

for x's we will find y's from our knowledge?

it is too ambigious for it, flying is unpredictable.

how to make a dog behave? Good dog! Bad dog!

you have to tell it what to do, rather than how to do it. reward/punishment

Robotic Dog Example

[Thanks to Zico Kolter]

Financial trading?

terminal state when gets to the one of the states, day ends.

The Return in Reinforcement Learning

discount factor of r = (ex) 0.9

Return = $R + r.R + r^2.R + ...$

Finance: Interes rate, time value of money.

Policies in reinforcement learning

can choose always go direction

state -> (policy) -> action

goal of RL: find a policy (pi) that tells you what action to take in every state so as to maximize the return.

states, actions, rewards, discount factor, return, policy(pi)

Markov Decision Process (MDP)

future depends on where you are now, not on how you got here.

State Action Value Function (Q-function)

Bellman Equation:

Bellman Equation

- Q(s,a) = Return if you
 - start in state s.
 - take action a (once).
 - then behave optimally after that.

- s: current state
- R(s) = reward of current state
- a: current action
- s': state you get to after taking action aa': action that you take in state s'

$$()(s,a) = R(s) + r \max_{\alpha'} ()(s',\alpha')$$

Explanation of Bellman Equation

- then behave optimally after that.

 \rightarrow The best possible return from state s' is $\max_{a} Q(s', a')$

$$Q(s,a) = R(s) + \gamma \max_{a'} Q(s',a')$$
Reward you get Return from behaving optimally

Return from behaving optimally starting from state s'.

$$(\lambda(s_{3}a) = R_{1} + rR_{2} + r^{2}R_{3} + r^{3}R_{4} + \cdots)$$

$$(\lambda(s_{3}a) = R_{1} + rR_{2} + rR_{3} + r^{2}R_{4} + \cdots)$$

Discrete vs Continuous State

how would you represent the position of the helicopter/truck/...

pos, pitch, angle. with a vector:

Autonomous Helicopter


```
LUNAR LANDER
actions:
do nothing
left thruster
main thruster
right thruster
s=
[
Χ
У
velocity
angle
angular velocity
I sitting on ground?
r sitting on ...?
1
custom reward function:
crush -100
soft land +100
```

leg grounded +, fire main engine ---, side thrust -, get to landing pad ++

Deep Reinforcement Learning

Create a supervised learning data for the NN output (Learning the Q(s, a) function)

Bellman Equation

Learning Algorithm

Initialize neural network randomly as guess of Q(s, a).

Repeat {

Take actions in the lunar lander. Get (s, a, R(s), s'). Store 10,000 most recent (s, a)R(s), s' tuples.

Replay Buffer

Train neural network:

Create training set of 10,000 examples using

$$x = (s, a)$$
 and $y = R(s) + \gamma \max_{a'} Q(s', a')$

Train Q_{new} such that $Q_{new}(s,a) \approx y$.

Set $Q = Q_{new}$.

f_{w,B}(x)≈y

Continuous State Spaces: Improved NN Architecture

Algorithm refinement: ε-greedy policy

How to choose actions while we are still learning? at some probability, pick an action a randomly (%5) epsilon greedy, epsilon = 0.05

Some strategies may never be tried by the NN in some cases, (stuck by chance)

start e high and gradually decrease (we know more, possibility of being stuck is lower.)

Algorithm refinement: Mini-batch and soft updates

Limitations

much easier in simulations rather than real world scenarios. fewer applications compared to (un)supervised learning.

