Discrete					
$\pi \in (0,1)$	$Y \sim \mathrm{Ber}(\pi)$	$P(Y = y) = \pi^{y} (1 - \pi)^{1 - y}$	$\mathrm{E}[Y] = \pi$	$Var[Y] = \pi(1 - \pi)$	$M_Y(t) = \pi e^t + (1 - \pi)$
	y = success/failure	$y \in \{0, 1\}$			
$\pi \in (0,1)$	$Y \sim \operatorname{Bin}(m,\pi)$	$P(Y = y) = {m \choose y} \pi^{y} (1 - \pi)^{m-y}$	$E[Y] = m\pi$	$Var[Y] = m\pi(1-\pi)$ $M_Y(t) = [\pi e^t + (1-\pi)]$	
	y = successes in m trials	$y \in \{0, 1,, m\}$			
$\pi \in (0,1)$	$mY \sim \text{Bin}(m,\pi)$	$P(Y=y) = \binom{m}{my} \pi^{my} (1-\pi)^{m-my}$	$\mathrm{E}[Y] = \pi$	$\operatorname{Var}[Y] = \frac{\pi(1-\pi)}{m}$	
	my = successes in m trials	$my \in \{\stackrel{\circ}{0},1,,m\}$	$E[mY] = m\pi$	$Var[mY] = m\pi(1-\pi)$	$M_{mY}(t) = [\pi e^t + (1-\pi)]^m$
$\pi_j \in (0,1) \ \forall j$	$oldsymbol{Y} \sim \operatorname{Multinom}(m, oldsymbol{\pi})$	$P(\boldsymbol{Y} = \boldsymbol{y}) = \binom{m}{\boldsymbol{y}} \pi_1^{y_1} \pi_2^{y_2} \pi_k^{y_k}$	$\mathrm{E}[Y_j] = m\pi_j$	$Var[Y_j] = m\pi_j(1 - \pi_j)$	$M_{oldsymbol{Y}}(t) = \left[\sum_{j=1}^k \pi_j e^{t_j} ight]^m$
$\text{s.t.} \sum_{j=1}^{k} \pi_j = 1$	$y_j = \text{successes in } j^{th} \text{ category}$	$y_j \in \{0, 1,, m\} \ \forall j \text{s.t.} \sum_{j=1}^k y_j = m$		$Cov[Y_i, Y_j] = -m\pi_i\pi_j, i \neq j$	-3
$\mu > 0$ (rate)	$Y \sim \text{Poiss}(\mu)$	$P(Y=y) = \frac{e^{-\mu}\mu^y}{y!}$	$E[Y] = \mu$	$Var[Y] = \mu$	$M_Y(t) = e^{\mu(e^t - 1)}$
(expected occurrences)	y = occurrences in a unit time	$y \in \{0, 1, 2,\}$, ,
$\pi \in (0,1)$	$Y \sim \text{geom}(\pi)$	$P(Y = y) = \pi^{1}(1 - \pi)^{y-1}$	$\mathrm{E}[Y] = \frac{1}{\pi}$	$\operatorname{Var}[Y] = \frac{1-\pi}{\pi^2}$	$M_Y(t) = \frac{\pi e^t}{1 - (1 - \pi)e^t}$
	y = trials until 1 success	$y \in \{1, 2, 3,\}$, , , , , , , , , , , , , , , , , , ,	"	1 (1 %)6
$\pi \in (0,1)$	$Y \sim \text{NegBin}(r, \pi)$	$P(Y = y) = {y-1 \choose r-1} \pi^r (1-\pi)^{y-r}$	$\mathrm{E}[Y] = r \frac{1}{\pi}$	$\operatorname{Var}[Y] = r \frac{1-\pi}{\pi^2}$	$M_Y(t) = \left[\frac{\pi e^t}{1 - (1 - \pi)e^t}\right]^r$
	y = trials until r successes	$y \in \{r, r+1, r+2,\}$,	^	
$\pi \in (0,1)$	$Y \sim \operatorname{geom}(\pi)$	$P(Y = y) = \pi^{1}(1 - \pi)^{y}$	$E[Y] = \frac{1-\pi}{\pi}$	$\operatorname{Var}[Y] = \frac{1-\pi}{\pi^2}$	$M_Y(t) = \frac{\pi}{1 - (1 - \pi)e^t}$
	y = failures until 1 success	$y \in \{0, 1, 2,\}$,		1 (1 //)
$\pi \in (0,1)$	$Y \sim \text{NegBin}(r, \pi)$	$P(Y = y) = {y+r-1 \choose y} \pi^r (1-\pi)^y$	$\mathrm{E}[Y] = r \frac{1-\pi}{\pi}$	$\operatorname{Var}[Y] = r \frac{1-\pi}{\pi^2}$	$M_Y(t) = \left[\frac{\pi}{1 - (1 - \pi)e^t}\right]^T$
	y = failures until r successes	$y \in \{0, 1, 2,\}$,	,	11 (1 11)6 2
$N = 0, 1, 2, \dots$ (Populat.)	$Y \sim \text{Hypergeom}(N, K, n)$	$P(Y=y) = \frac{\binom{K}{y}\binom{N-K}{n-y}}{\binom{N}{n}}$	$\mathrm{E}[Y] = n \frac{K}{N}$	$Var[Y] = n \frac{K}{N} \frac{N - K}{N} \frac{N - n}{N - 1}$	$M_Y(t) - \text{google/wiki}$
K = 0, 1,, N (Type I)	y = Type I objects in sample	\"/			
n = 0, 1,, N (Sample)	*sample drawn w/o replacement				

Continuous 1

Continuous 1					
$a,b\in\mathbb{R}$	$Y \sim \text{Unif}(a, b)$	$f(y a,b) = \frac{1}{b-a} \mathbb{1}_{(a,b)}(y)$	$E[Y] = \frac{a+b}{2}$	$Var[Y] = \frac{(b-a)^2}{12}$	$M_Y(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}, \text{ if } t \neq 0$ = 1, if $t = 0$
$\pi > 0$	$Y \sim \mathrm{Unif}(0,\pi)$	$f(y \pi) = \frac{1}{\pi} \mathbb{1}_{(0,\pi)}(y)$	$\mathrm{E}[Y] = rac{\pi}{2}$	$\operatorname{Var}[Y] = \frac{\pi^2}{12}$	$M_Y(t) = \frac{e^{t\pi} - 1}{t\pi}, \text{ if } t \neq 0$ $= 1, \text{ if } t = 0$
$\mu > 0$ (scale)	$Y \sim \text{Exp}(\mu)$	$f(y \mu) = \frac{1}{\mu}e^{-\frac{1}{\mu}y}$ $y > 0$	$E[Y] = \mu$	$Var[Y] = \mu^2$	$M_Y(t) = (1 - \mu t)^{-1} \text{ for } t < \frac{1}{\mu}$
	$Y \sim \text{Gamma}(1, \mu)$	y > 0			
$\alpha > 0 \text{ (shape)}$	$Y \sim \text{Gamma}(\alpha, \beta)$	$f(y \alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} y^{\alpha-1} e^{-\frac{y}{\beta}}$	$E[Y] = \alpha\beta$	$Var[Y] = \alpha \beta^2$	$M_Y(t) = (1 - \beta t)^{-\alpha}$ for $t < \frac{1}{\beta}$
$\beta > 0$ (scale)		y > 0			
$\mu > 0 \text{ (rate = scale}^{-1})$	$Y \sim \text{Exp}(\mu)$	$f(y \mu) = \mu e^{-\mu y}$	$E[Y] = \frac{1}{\mu}$	$\operatorname{Var}[Y] = \frac{1}{\mu^2}$	$M_Y(t) = \left(1 - \frac{t}{\mu}\right)^{-1}$ for $t < \mu$
	$Y \sim \text{Gamma}(1, \mu)$	y > 0	, ,	,	,
$\alpha > 0 \text{ (shape)}$	$Y \sim \text{Gamma}(\alpha, \beta)$	$f(y \alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{-\alpha}}y^{\alpha-1}e^{-\beta y}$	$\mathrm{E}[Y] = \frac{\alpha}{\beta}$	$\operatorname{Var}[Y] = \frac{\alpha}{\beta^2}$	$M_Y(t) = \left(1 - \frac{t}{\beta}\right)^{-\alpha} \text{ for } t < \beta$
$\beta > 0 \text{ (rate = scale}^{-1}\text{)}$		y > 0	,	·	·
$\alpha > 0 \text{ (shape)}$	$Y \sim \text{Beta}(\alpha, \beta)$	$f(y \alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} y^{\alpha-1} (1-y)^{\beta-1}$	$E[Y] = \frac{\alpha}{\alpha + \beta}$	$Var[Y] = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$M_Y(t) = 1 + \sum_{i=1}^{\infty} \left(\prod_{r=0}^{i-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^i}{i!}$
$\beta > 0 \text{ (shape)}$		$y \in (0,1)$	$E[Y^r] = \frac{\Gamma(\alpha+r)}{\Gamma(\alpha)} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha+\beta+r)}$, , , ,
$\alpha_j > 0 \ \forall j$	$m{\pi} \sim \mathrm{Dirich}(m{lpha})$	$f(\boldsymbol{\pi} \boldsymbol{\alpha}) = \frac{\Gamma(\alpha_1 + \dots + \alpha_k)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_k)} \pi_1^{\alpha_1 - 1} \dots \pi_k^{\alpha_k - 1}$		$\operatorname{Var}[\pi_j] = \frac{\alpha_j \left(\sum\limits_{l=1}^k \alpha_l - \alpha_j\right)}{\left(\sum\limits_{l=1}^k \alpha_l\right)^2 \left(\sum\limits_{l=1}^k \alpha_l + 1\right)}$	$M_{\pi}(t)$ – google
		$\pi_j \in (0,1) \ \forall j \text{s.t.} \sum_{j=1}^k \pi_j = 1$			

Continuous 2

Continuous 2					,
$\mu \in \mathbb{R} \text{ (mean)}$	$Y \sim N(\mu, \sigma^2)$	$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y-\mu)^2}$	$E[Y] = \mu$	$\operatorname{Var}[Y] = \sigma^2$	$M_Y(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$
$\sigma > 0$ (std. dev.)		$y \in \mathbb{R}$			
$\mu \in \mathbb{R}^p \text{ (location)}$	$m{Y} \sim ext{MVN}(m{\mu}, m{\Sigma})$	$f(y) = (2\pi)^{-\frac{k}{2}} \mathbf{\Sigma} ^{-\frac{1}{2}} e^{-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1}(\mathbf{y} - \boldsymbol{\mu})}$	$\mathrm{E}[oldsymbol{Y}] = oldsymbol{\mu}$	$oldsymbol{\Sigma}$	$M_{\mathbf{Y}}(t) = e^{t'\boldsymbol{\mu} + \frac{1}{2}t'\boldsymbol{\Sigma}t}$
$\Sigma \in \mathbb{R}^{p \times p}$ (P.D. Cov.)		$oldsymbol{y} \in oldsymbol{\mu} + \operatorname{span}(oldsymbol{\Sigma}) \subseteq \mathbb{R}^p$			
$p \in \mathbb{N}^+ \text{ (d.f.)}$	$U \sim \chi_p^2$	$f(u) = \frac{1}{\Gamma(\frac{p}{2})2^{\frac{p}{2}}} u^{\frac{p}{2} - 1} e^{-\frac{u}{2}}$	E[U] = p	Var[U] = 2p	$M_U(t) = (1 - 2t)^{-\frac{p}{2}} \text{ for } t < \frac{1}{2}$
	$U \sim \operatorname{Gamma}(\frac{p}{2}, 2)$	u > 0			
p > 0 (d.f.)	$U \sim \chi_p^2(\phi)$, where	$f(u) = \sum_{j=0}^{\infty} f(j)f(u j)$	$\mathrm{E}[U] = p + 2\phi$	$Var[U] = 2p + 8\phi$	$M_U(t) = (1 - 2t)^{-\frac{p}{2}} e^{\frac{2t}{1-2t}\phi}$
$\phi > 0$ (noncentrality)	$U J=j\sim\chi^2_{p+2j}$	$= \sum_{j=0}^{\infty} \left[\frac{e^{-\phi} \phi^j}{j!} \right] \left[\frac{u^{\frac{p+2j}{2} - 1} e^{-\frac{u}{2}}}{\Gamma(\frac{p+2j}{2}) 2^{\frac{p+2j}{2}}} \right]$			
	$J \sim \text{Pois}(\phi)$	u > 0			
$p_1 > 0 \text{ (d.f.)}$	$W \sim \mathbf{F}_{p_1,p_2}$	f(w) - google/wiki	E[W] - google/wiki	Var[W] - google/wiki	$M_W(t)$ DNE
$p_2 > 0 \text{ (d.f.)}$	$W = \frac{U_1/p_1}{U_2/p_2}$, where	w > 0			
	$U_1 \sim \chi_{p_1}^2$ $U_2 \sim \chi_{p_2}^2$				
$p_1 > 0 \text{ (d.f.)}$	$W \sim \mathcal{F}_{p_1,p_2}(\phi)$	f(w) - google/wiki	E[W] - google/wiki	Var[W] - google/wiki	$M_W(t)$ DNE
$p_2 > 0 \text{ (d.f.)}$	$W = \frac{U_1/p_1}{U_2/p_2}$, where	w > 0			
$\phi > 0$ (noncentrality)	$U_1 \sim \chi_{p_1}^2(\phi)$ $U_2 \sim \chi_{p_2}^2$				
p > 0 (d.f.)	$X \sim t_p$	$f(x) = \frac{\Gamma\left(\frac{p+1}{2}\right)}{\sqrt{p\pi}\Gamma\left(\frac{p}{2}\right)} \left(1 + \frac{x^2}{p}\right)^{-\frac{p+1}{2}}$	E[X] = 0, if p > 1	$\operatorname{Var}[X] = \frac{p}{p-2}, \text{ if } p > 2$	$M_X(t)$ DNE
	$X = \frac{Z}{\sqrt{U/p}}$, where	$x \in \mathbb{R}$	= DNE, o.w.	$= \infty$, if 1	
	$Z \sim N(0,1)$			= DNE, o.w.	
	$U \sim \chi_p^2$,	
p > 0 (d.f.)	$X \sim t_p(\mu)$	f(x) - google/wiki	E[X] - google/wiki	Var[X] - google/wiki	$M_X(t)$ DNE
$\mu > 0$ (noncentrality)	$X = \frac{Y}{\sqrt{U/p}}$, where	$x \in \mathbb{R}$			
	$Y \sim N(\mu, 1)$				
	$U \sim \chi_p^2$				