#### 程式人



#### 用十分鐘瞭解

《人工智慧的那些問題與方法》

(函數優化、爬山演算法與模擬退火法)

陳鍾誠

2016年3月14日

# 《人工智慧》這個詞

·聽起來就很高級!

# 所以、很多人會覺得

•人工智慧的問題一定很難!

# 但是、真的那麼難嗎?

•其實不一定!

# 很多人工智慧的問題

•其實都很簡單!

# 但是、研究者為了讓它看起來高級一點

·總是寫了一大堆數學!

# 這讓它看起來

好像真的很難!

# 其實、那些數學

。我我大部分都看不懂!

# 那怎麼辦?

# 沒關係

•我們有直覺!

#### 所以

在這次的十分鐘系列中!

# 我要告訴大家

### 如何用直覺理解

•人工智慧的那些理論!

# 首先、讓我們看看

•到底人工智慧研究的

。是那些問題?

# 基本上

• 就是要讓電腦具有和人類差不多的能力!

### 問題是

•到底人類有哪些能力?

# 這個問題應該不難

# 因為你和我都是人類

### 我們人類

有五官:會《聽說讀寫》

•有四肢:會《走唱跑跳》

• 有大腦: 會《思考決策》

#### 所以

•電腦要有智慧,就要能模擬

這些功能!

# 但是、這看起來很難!

# 不過、有時候很簡單

### 例如、你問一個小孩

·請問你要一支棒棒糖還是兩支 這件事情電腦應該也能回答!

#### 但是、如果你問另一個小孩

•請問你要被藤條打一下還是兩下?

• 這件事情應該也很容易決定!

### 這些問題

\*都有一個共同的特性

# 就是有好壞

# 人工智慧的核心問題

。就是要判斷哪個好哪個壞?

# 换句話說

# 所有人工智慧的問題

•都可以視為一種《優化問題》

# 尋找好的

·放棄不好的!

#### 最簡單的一種人工智慧問題

。就是函數的優化問題!

# 舉例而言

### 如果你想找17的平方根

那你應該怎麼找呢?

# 其實、這個問題

•我好像不知道怎麼解?

### 不過、如果你給我電腦

·讓我寫個程式!

### 我就可以

•輕易地給你解答!

# 怎麼解呢?

# 想法很簡單

# 讓我們先看看下列圖形



## 您會發現

abs(x^2-17) 這個函數,有兩個最低點,通常我們認為平方根是正的那個!



#### 所以、如果我們從 X=0 開始

只要一直往右走,那麼將會發現,函數 f(x) = abs(x^2-17) 的值一開始會越來越小,等到過了最低點之後,就會變成越來越大!



### 於是、我們只要一直向右走

直到左右兩邊的函數值都比我大的時候,就代表了我們已經找到17的平方根了!

## 很多問題

- 表面上看起來
  - -並不是《優化問題》
  - 甚至不是《算分數》的問題
- 但是最後都可以轉為《算分數》的問題
  - 然後用電腦來解決!

## 像是、人工智慧中的

- 語音辨識、影像辨識、醫學診斷
- 電腦下棋、路徑規劃、機器人移動
- 甚至是機器翻譯、自然語言理解等等
- · 最後都可以變成《計算分數的優化問題》, 這樣才能夠用電腦進行計算並尋找解答!

# 所以、要學習人工智慧

·首先要能處理《優化問題》

# 處理優化問題的方法中

•最簡單應該就是《爬山演算法》了!

# 所謂的爬山演算法

。就是讓程式一直往上爬的方法



#### 你只要看到旁邊的點比現在的位置高

。就往那邊爬 …



## 直到你發現

四面八方都比你低,再也爬不上去了 此時代表你已經位於山頂上了



#### 於是乎、你找到了一個不錯的點

- 雖然不是世界最高,但是也算本地最高點了!
- 這就是所謂的區域最佳解。



# 奇怪

• 圖中的那點不就是《世界最高點》嗎?



#### 有可能、但是如果看遠一點

#### • 也有可能會像這樣



## 這就叫做

一山還有一山高囉!

## 歐!對了

• 這種方法,不只可以用來找最高點!



## 也可以用來找最低點

• 只要你將目標函數乘上-1就行了!





## 當然、這種方法

• 有時找不到真正的最高點(或最低點)!



#### 對於那種只有一個最低點的連續函數而言

• 不管函數有幾個維度,都可以輕易地找到最高點(或最低點)



## 但是如果有很多座山

那就不一定找得到最高點了



## 雖然如此

•但是沒關係!

因為其他方法通常也沒辦法找到最高點,特別在函數非常複雜的時候!

#### 而且

· 區域最佳解的表現,通常也已經很不錯了!

## 問題是

·我要怎麼把爬山演算法寫成程式 呢?

# 這個問題並不難

## 以下是爬山演算法的《算法》

```
Algorithm HillClimbing(f, x)
 x = 隨意設定一個解。
 while (x 有鄰居 x' 比 x 更高)
   X = X':
 end
 return x;
end
```

#### 如果寫成 JavaScript 程式,會像這樣

```
var dx = 0.01:
function hillClimbing(f, x) {
  while (true) {
    console. \log(\text{"f(\%s)=\%s"}, x. \text{ toFixed(4)}, f(x). \text{ toFixed(4)});
    if (f(x+dx) >= f(x))
      x = x+dx:
    else if (f(x-dx) >= f(x))
      x = x-dx:
    else
    break:
function f(x) { return -1*(x*x+3*x+5); }
hillClimbing(f, 0.0);
```

## 以下是該程式的執行結果

求解:  $-(x^2+3x+5)$  的最高點,也就是  $x^2+3x+5$  的最低點。

```
D:\Dropbox\Public\web\ai\code\optimize\node hillClimbingSimple
\mathbf{f}(0.0000) = -5.0000
f(-0.0100) = -4.9701
f(-0.0200) = -4.9404
f(-0.0300) = -4.9109
f(-0.0400)=-4.8816
f(-0.0500) = -4.8525
f(-1.4500) = -2.7525
f(-1.4600) = -2.7516
f(-1.4700) = -2.7509
f(-1.4800) = -2.7504
f(-1.4900) = -2.7501
f(-1.5000)=-2.7500
```

#### 如果把函數換掉,也可以順利執行。

```
function f(x) { return -1*Math. abs(x*x-4): }
『廖就可以用來求解 |x^2-4| 的最低點,也就是尋找 4 的平方根,以下是執行結果:
 D:\Dropbox\Public\web\ai\code\optimize\node hillClimbingSimple
 f(0.0000) = -4.0000
 f(0.0100) = -3.9999
 f(0.0200)=-3.9996
 f(0.0300) = -3.9991
 f(0.0400) = -3.9984
 f(0.0500) = -3.9975
 f(1.9500) = -0.1975
 f(1.9600) = -0.1584
 f(1.9700) = -0.1191
 f(1.9800) = -0.0796
 f(1.9900) = -0.0399
 f(2.0000)=-0.0000
```

#### 不過上述程式只能處理單變數函數

- 對於多變數函數,必須處理多變數(維度)的選擇問題
- 可以用隨機的方式從 n 個變數中取出一個,進行微小 調整後,看看是否能變得更好。
- 如果更好就接受,沒有更好就放棄!
- 當我們連續嘗試很多很多次(例如一萬次)都沒有變得更好時,就認為已經達到《山頂》,於是輸出解答!

# 以下是一個通用的《爬山演算法程式架構》

```
var hillClimbing = function() {} // 爬山演算法的物件模版(類別)
hillClimbing.prototype.run = function(s, maxGens, maxFails) { // 爬山演算法的主體函數
 console. log("s=%s", s); // 印出初始解
 var fails = 0: // 失敗次數設為 0
 // 富代數 gen/maxGen, 日連續失敗次數 fails < maxFails 時,就持續嘗試尋找更好的解。
 for (var gens=0; gens<maxGens && fails < maxFails; gens++) {
   var snew = s. neighbor(); // 取得鄰近的解
   var sheight = s.height(); // sheight=目前解的高度
   var nheight = snew.height(); // nheight=鄰近解的高度
   if (nheight >= sheight) { // 如果鄰近解比目前解更好
                     // 就移動過去
    s = snew;
    console. log("%d: %s", gens, s): // 印出新的解
                          // 移動成功,將連續失敗次數歸零
    fails = 0:
   } else
                             -// 否則
                              // 將連續失敗次數加一
    fails++:
 console. log("solution: \%s", s); // 印出最後找到的那個解
                             // 然後傳回。
 return s;
```

#### 還有通用的《解物件》(Solution)之定義

通常若是尋找高點,我們會用高度 height() 代表,但若尋找低點,我們會用能量 energy() 代表!

#### 有了這個爬山演算法的通用程式架構

• 我們就可以套用在任何需要優化的問題上

· 只要你能定義出《高度》或《能量函數》 就行了!

# 以下是尋找平方根的範例

```
var Solution = require("./solution"):
                                       // 引入解答類別
Solution, prototype, neighbor = function() {
                                       // 單變數解答的鄰居函數。
                             // x:解答 , dx : 移動步伐大小
 var x = this.v. dx=this.step:
 var xnew = (Math. random() > 0.5)?x+dx:x-dx: // 用亂數決定向左或向右移動
 return new Solution(xnew):
                                       // 建立新解答並傳回。
                                       // 能量函數
Solution. prototype. energy = function() {
                                       // x:解答
 var x = this.v:
 return Math. abs (x*x-4):
                                       // 能量函數為 |x^2-4|
Solution.prototype.toString = function() { // 將解答轉為字串,以供印出觀察。
 return "energy("+this. v. toFixed(3)+")="+this. energy(), toFixed(3);
                                       // 將解答類別匯出。
module.exports = Solution;
                                             // 引入爬山演算法類別
var hillClimbing = require("./hillClimbing");
                                             // 引入平方根解答類別
var solutionNumber = require("./solutionNumber");
var hc = new hillClimbing();
                                             // 建立爬山演算法物件
// 執行爬山演算法(從「解答=0.0」開始尋找, 最多十萬代、失敗一千次就跳出。
hc.run(new solutionNumber(0.0), 100000, 1000);
```

```
$ node hillClimbingNumber.js
s=energy(0.000)=4.000
0: energy (-0.010) =4.000
2: energy (-0.020) =4.000
3: energy (-0.030) = 3.999
10: energy(-0.040)=3.998
12: energy(-0.050)=3.998
366: energy (-1.910) = 0.352
371: energy (-1.920) = 0.314
375: energy (-1.930) = 0.275
380: energy (-1.940) = 0.236
382: energy (-1.950) = 0.197
388: energy (-1.960) = 0.158
389: energy (-1.970) = 0.119
391: energy (-1.980) = 0.080
392: energy (-1.990) = 0.040
394: energy (-2.000) = 0.000
solution: energy(-2.000)=0.000
```

## 當然

• 這個程式也可以用來處理更複雜的問題

· 只要你能寫出《能量函數》 energy() 與 《鄰居函數》 neighbor() 就行了!

### 其實、在大部分的情況下

·爬山演算法就已經夠好用了!

## 不過

為了克服《超小山丘》的那種問題,你也可以做一點點修改,讓爬山演算法可以有機會離開那個《無言的山丘》。

• 這個改良版就稱為《模擬退火法》。

# 為何稱為

•模擬退火法呢?

# 這是因為有人發現

· 打鐵煉鋼的時候,如果溫度降得太快,煉 出來的鐵就會脆脆的不堅固。

要能煉得好的秘訣是溫度要慢慢降,然後 一直敲一直打,這樣打出來的鐵才會夠堅 固,成為寶刀或寶劍

#### 如果模仿這種想法

- 在爬山演算法的相反版,也就是《下山演算法》當中,用《能量》的概念來取代《高度》,那麼整個爬山的過程就反過來變成在尋找能量的最低點。
- 這時如果加入溫度的概念,讓這些鐵原子在溫度高的時候可以比較自由的亂動,等到溫度慢慢降低之後才逐漸固定下來,這樣打出來的鐵,原子的排列就會比較整齊,也就會比較堅固。

# 模仿這種鐵原子慢慢降溫穩定過程的機器稱為《波茲曼機》

而模仿單一鐵原子震動或移動,然後慢慢 隨溫度下降而減少變動,逐漸固定下來的 行為,就是《模擬退火法了》

#### 以下是《模擬退火法》的演算法

Algorithm SimulatedAnnealing(s)

while (溫度還不夠低,或還可以找到比 s 更好的解 s'的時候) 根據能量差與溫度,用機率的方式決定是否要移動到新解 s'。 將溫度降低一些

end

end

在上述演算法中,所謂的機率的方式,是採用  $\exp\left(\frac{e-e'}{T}\right)$  這個機率公式,去判斷是否要從 s 移動到 s',其中 e 是 s 的能量值,而 e' 是 s' 的能量值。

#### 如果寫成程式,就會像這樣

```
simulatedAnnealing.prototype.run = function(s, maxGens) { // 模擬退火法的主要函數
                              // sbest:到目前為止的最佳解
 var sbest = s:
                                  // ebest:到目前為止的最低能量
 var ebest = s.energy();
                                var T = 100:
 for (var gens=0; gens<maxGens; gens++) { // 迴圈,最多作 maxGens 這麼多代。
  var snew = s.neighbor();
                                 // 取得鄰居解
                               // e : 目前解的能量
  var e = s.energy();
  var enew = snew.energy(); // enew : 鄰居解的能量
  T = T * 0.999:
                             // 每次降低一些溫度
  if (this. P(e, enew, T) > Math. random()) { // 根據溫度與能量差擲骰子, 若通過
                                  - // 則移動到新的鄰居解
    s = snew;
    console.log("%d T=%s %s", gens, T. toFixed(3), s. toString()); // 印出觀察
  if (enew < ebest) {</pre>
                                  // 如果新解的能量比最佳解好,則更新最佳解。
    sbest = snew;
    ebest = enew;
 console.log("solution: %s", sbest.toString()); // 印出最佳解
                                      // 傳回最佳解
 return sbest;
```

#### 當我們用上述《模擬退火法》模組

• 尋找函數  $x^2 + 3y^2 + z^2 - 4x - 3y - 5z + 8$  的最低點時,可以寫出下列主程式。

```
var simulatedAnnealing = require("./simulatedAnnealing"); // 引入模擬退火法類別
var solutionArray = require("./solutionArray"); // 引入多變數解答類別 (x ^2+3y^2+z^2-4x-3y-5z+8)

var sa = new simulatedAnnealing(); // 建立模擬退火法物件
// 執行模擬退火法 (從「解答(x, y, z)=(1, 1, 1)」開始尋找,最多執行 2 萬代。
sa. run(new solutionArray([1, 1, 1]), 20000);
```

完整的程式位於: http://ccc.nqu.edu.tw/db/ai/simulatedAnnealing.html

# 其執行結果如下

● 您會發現解答 (x=2, y=0.5, z=2.5)

正是函數  $x^2 + 3y^2 + z^2 - 4x - 3y - 5z + 8$  的最低點!

其能量值為-3,
 也就是函數 f(x, y, z) 的值。

```
0 T=99.900 energy( 1.000 1.000 0.990 )=1.030
1 T=99.800 energy (1.000 0.990
                               0.990 )=1.000
2 T=99.700 energy (1.000 0.980
                               0.990)=0.971
3 T=99.601 energy( 0.990 0.980
                               0.990)=0.991
4 T=99.501 energy( 0.990 0.990 0.990 )=1.021
5 T=99.401 energy (1.000 0.990
                               0.990 )=1.000
6 T=99.302 energy( 1.000 0.990 1.000 )=0.970
5985 T=0.251 energy (0.870 1.260 1.770)=0.543
5986 T=0.250 energy (0.870 1.250 1.770)=0.497
5989 T=0.250 energy (0.870 1.250 1.760)=0.512
5990 T=0.249 energy (0.860 1.250 1.760)=0.535
15036 T=0.000 energy (2.000 0.500 2.510)=-3.000
15038 T=0.000 energy (2.000 0.500 2.500)=-3.000
15173 T=0.000 energy (2.010 0.500 2.500)=-3.000
15174 T=0.000 energy (2.000 0.500 2.500)=-3.000
15261 T=0.000 energy (2.000 0.500 2.490)=-3.000
15265 T=0.000 energy (2.000 0.500 2.500)=-3.000
solution: energy( 2.000 0.500 2.500 )=-3.000
```

### 這種優化方法

• 看來好像只能解單一函數的優化

- •但事實上,爬山演算法和模擬退火法
  - -連《方程組的優化》也通常能解!

#### 舉例而言、如果你想解下列方程組

$$\begin{cases} 2x + y = 8\\ x + y = 6 \end{cases}$$

- 除了用國中時所學的消去法之外,也可以用上述的《爬山演算法》或《模擬退火法》來解。
- 只要把能量函數設為下列函數就行了。

$$-(2x+y-8)^2 + (x+y-6)^2$$

#### 同樣的、這種方法也能求解更複雜的方程組

• 包含線性方程組

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
  
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$   
 $\vdots$   $\vdots$   $\vdots$   $\vdots$   $\vdots$   $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$ .

$$x + 3y - 2z = 5$$
  
 $3x + 5y + 6z = 7$   
 $2x + 4y + 3z = 8$ 

• 與非線性方程組

$$\begin{cases} s^3 + 4c^3 - 3c = 0 \\ s^2 + c^2 - 1 = 0 \end{cases}$$

$$\begin{cases} t^3 - t = 0 \\ x = \frac{t^2 + 2t - 1}{3t^2 - 1} \\ y = \frac{t^2 - 2t - 1}{3t^2 - 1} \end{cases}$$

#### 甚至也能用於求解《微分方程組》

$$P_1(x)Q_1(y) + P_2(x)Q_2(y)\frac{dy}{dx} = 0$$
  
$$P_1(x)Q_1(y) dx + P_2(x)Q_2(y) dy = 0$$

• 只是不一定有辦法找到完全符合條件的解答而已!

# 當然、尋找這些函數的最佳解或方程組的解答

• 感覺並不太像是《人工智慧》的問題

• 反而比較像是《數值分析》或《科學計算》的問題!

# 但是、天底下的知識

• 幾乎都是相關聯的

• 而且常常能夠一通百通!

• 只要學會一招,通常就夠用了。

# 舉例而言

- 對於演算法中的《最小擴展樹》或《旅行推銷員》等問題,其實也都是在找某些數值最小
- 因此當然也能用《爬山演算法》或《模擬退火法》 來求解!
- 只是在這些問題上對於《鄰居》的定義不一樣,還有《能量函數》也有所不同而已!

## 甚至

對於《手寫辨識》等人工智慧上的問題,只要你能 定義出《兩個手寫字相似程度》的數學函數。

那麼就可以用《爬山演算法》來求解此類問題,只 是找到的解不一定會是最好的而已!

#### 甚至、對於《影像和語音辨識》問題

- 只要能定義兩個影像或語音的相似程度,也能夠用《爬山演算法來求解》找出最相似的語音(通常就是正確解答)。
- 不過這種相似函數很難直接用人腦定義出來,通 常必須要先進行某些特徵抽取後才有辦法計算相 似度。

#### 而對於《機器翻譯》的問題

- 只要你能定義《中文語句》和《英文語句》之間的意義相似度
- 那麼給定某個《英文語句》,你只要能從《所有可能的中文語句》裏,挑出與該英文語句意義最相似的一句話出來,這樣就完成了翻譯動作。
- 只是《中文語句通常有無限多》,不過我們可以先用《逐字對譯》的方式,取出所有可能的候選中文字詞,然後再進行排列組合,這樣就不會因為《中文語句無限多》而無法列舉了!

#### 還有電腦下棋的問題

- 其實也只是在尋找一個有效評估盤面好壞的《盤面評估函數》
- 然後每次下子時,都是從所有可能的下法 當中,尋找對方最不利的下法,讓對方難 以得勝,讓我方盡可能獲勝而已!

## 不過

•雖然人工智慧的問題都是優化問題

#### 但是每一種方法的適用性卻有所不同

#### 有些方法在某些問題上會表現得比較好

因此我們必須選擇解決該問題的適當方法。

## 除了爬山演算法

。還有模擬退火法之外

# 還有很多其他方法

# 像是

- 模仿鳥類的《粒子群演算法》
- 模仿螞蟻的《蟻群演算法》
- · 模仿 DNA 兩性生殖的《遺傳演算法》
- 純粹用亂數統計的《蒙地卡羅法》

#### 以上這些從大自然模仿而來的方法

- 通常被歸類為《軟計算》方法
- ·因為這些方法可以到處套用,很有彈性,所以很軟 ···

# 這些軟計算方法

•和爬山演算法之間的差異

除了粒子比較多之外

通常《鄰居》的定義也不太一樣

# 像是遺傳演算法GA

- 下一代的 DNA 就是由父母交 配後的結果
- 其鄰居的搜索空間很大
- GA 適用在兩個好的父母會生 出好的子女之問題上,也就 是要有《好的片段會組成好 的整體》之特性



# 而蒙地卡羅法

• 則是用亂數統計來估計某函數的一種方法

#### 例如你想計算圓面積或 π值

• 那麼可以用大量 的亂數,經由統計 計算出圓與方形 的比例, 進而計算 圓面積。



# 當然、蒙地卡羅法

也可以用來 計算微積分中



#### 甚至在下電腦圍棋的 AlphaGo 程式上

· 也用了蒙地卡羅樹狀搜尋法 來尋找下一子圍棋的好下法

#### 以下是《蒙地卡羅對局搜尋法》(MCTS) 的一個搜尋擴展範例

1. 選擇上界 UCB 最高的一條路 直到末端節點

- 2. 對該末端節點 進行探索(隨機 對下,自我對局) 的勝負結果
- 3. 透過自我對局, 直到得出本次對局
- 4. 用這次的對局結果, 更新路徑上的勝負統計 次數!









說明:上圖中白色節點為我方下子時的《得勝次數/總次數》之統計數據,

灰色的為對方下子的數據,本次自我對局結束後,得勝次數與總次數都會更新!

# 另外、人工智慧領域裡常用的《神經網路》學習模型

• 也只是在優化《錯誤率》這個《能量函數》而已。



(a) 單一神經元的模型

(b) 單層神經網路

# 而神經網路中著名的《反傳遞學習算法》



#### 也只是用《梯度下降法》

• 在尋找《降低錯誤能量》的神經權重之組合而已

$$\nabla f = \frac{\partial f}{\partial x_1} \overrightarrow{e_1} + \dots + \frac{\partial f}{\partial x_n} \overrightarrow{e_n}$$



The gradient of the function  $f(x,y) = -(\cos^2 x + \cos^2 y)^2$  depicted as a projected vector field on the bottom plane.

圖、曲面與每一點的梯度向量

#### 那個梯度,就是斜率最大的方向指引



## 最近很紅的《深度學習》技術 Deep Learning

- 其中所使用的《捲積神經網路》
  - (Convolutional Neural Network)
  - -也只不過是將《反傳遞神經網路》的中間層稍微改變了一些而已!

# 有關神經網路的議題

·以及最近因為AlphaGo大戰《李世石》引發大家對《捲積神經網路》與《深度學習》強烈好奇的問題,就讓我們留待下次的《十分鐘系列》再來探討了!

#### 以上

。就是我們今天的十分鐘系列!

# 希望

- · 您已經學會了
  - -爬山演算法
  - -各種優化算法
  - -還有關於人工智慧的基本概念

# 我們下次見囉!

# Bye bye!

