Lecture 11: Computational Learning Theory PAC Learning

• So far our questions were of the form — Given m samples iid from a distribution \mathbb{P}_x , can we upper bound the error as $\epsilon = O(m^{-\alpha})$?

- So far our questions were of the form Given m samples iid from a distribution \mathbb{P}_{\times} , can we upper bound the error as $\epsilon = O(m^{-\alpha})$?
- In particular, we have discussed how to use properties of the distribution to give better statistical "rates".

- So far our questions were of the form Given m samples iid from a distribution \mathbb{P}_{\times} , can we upper bound the error as $\epsilon = O(m^{-\alpha})$?
- In particular, we have discussed how to use properties of the distribution to give better statistical "rates".
- [Today] In Computational Learning Theory, we will treat the learning algorithm as a computational process. This requires making a few things explicit (Discuss in pairs what they can be):

- So far our questions were of the form Given m samples iid from a distribution \mathbb{P}_{\times} , can we upper bound the error as $\epsilon = O(m^{-\alpha})$?
- In particular, we have discussed how to use properties of the distribution to give better statistical "rates".
- [Today] In Computational Learning Theory, we will treat the learning algorithm as a computational process. This requires making a few things explicit (Discuss in pairs what they can be):
 - How does the algorithm "interact" with the distribution ?

- So far our questions were of the form Given m samples iid from a distribution \mathbb{P}_{\times} , can we upper bound the error as $\epsilon = O(m^{-\alpha})$?
- In particular, we have discussed how to use properties of the distribution to give better statistical "rates".
- [Today] In Computational Learning Theory, we will treat the learning algorithm as a computational process. This requires making a few things explicit (Discuss in pairs what they can be):
 - How does the algorithm "interact" with the distribution ?
 - What information does the algorithm have about the "learning problem"?

- So far our questions were of the form Given m samples iid from a distribution \mathbb{P}_{\times} , can we upper bound the error as $\epsilon = O(m^{-\alpha})$?
- In particular, we have discussed how to use properties of the distribution to give better statistical "rates".
- [Today] In Computational Learning Theory, we will treat the learning algorithm as a computational process. This requires making a few things explicit (Discuss in pairs what they can be):
 - How does the algorithm "interact" with the distribution ?
 - What information does the algorithm have about the "learning problem"?
 - How "long" is the algorithm allowed to run etc?

- So far our questions were of the form Given m samples iid from a distribution \mathbb{P}_{\times} , can we upper bound the error as $\epsilon = O(m^{-\alpha})$?
- In particular, we have discussed how to use properties of the distribution to give better statistical "rates".
- [Today] In Computational Learning Theory, we will treat the learning algorithm as a computational process. This requires making a few things explicit (Discuss in pairs what they can be):
 - How does the algorithm "interact" with the distribution ?
 - What information does the algorithm have about the "learning problem"?
 - How "long" is the algorithm allowed to run etc?
 - How will the output estimator be "represented" ?

- So far our questions were of the form Given m samples iid from a distribution \mathbb{P}_{\times} , can we upper bound the error as $\epsilon = O(m^{-\alpha})$?
- In particular, we have discussed how to use properties of the distribution to give better statistical "rates".
- [Today] In Computational Learning Theory, we will treat the learning algorithm as a computational process. This requires making a few things explicit (Discuss in pairs what they can be):
 - How does the algorithm "interact" with the distribution ?
 - What information does the algorithm have about the "learning problem"?
 - How "long" is the algorithm allowed to run etc?
 - How will the output estimator be "represented" ?

Finally, this proposes an answer to the question what can be "learned" under various restrictions.

Binary classification Setting

Some terminologies

- Instance space: \mathcal{X} e.g. \mathbb{R}^2 , $\{0,1\}^d$, \mathbb{R}^d etc.
- Label space: $\mathcal{Y} = +1, -1$
- Hypothesis/Concept classes are represented by : $\mathcal{C}, \mathcal{H}, \mathcal{F}$. They are sets of maps from \mathcal{X} to \mathcal{Y} . (In other words, classes of labelling functions) E.g.
 - CONJUNCTIONS e.g. $x_1 \wedge x_3 \wedge x_5$
 - DISJUNCTIONS e.g. $x_2 \lor x_3 \lor x_5$
 - Linear halfspaces e.g. $\sum_{i=1}^{d} w_i x_i \ge b$
- Data Distribition \mathbb{P}_{x} over \mathcal{X}
- Example Oracle: An oracle $\operatorname{Ex}(c; \mathbb{P}_x)$ that samples $x \sim \mathbb{P}_x$ and returns (x, c(x)).
- Target Concept Refer to c as the "target concept" (ground truth).

Learning Algorithm

- ullet Learning algorithm An algorithm ${\cal A}$
 - ullet for learning concept class ${\cal C}$
 - ullet with hypothesis class ${\cal H}$
 - can call the example oracle $\mathrm{Ex}\,(c;\mathbb{P}_x)$ many times
 - and must return some $h \in \mathcal{H}$.
- Two sources of randomisation :
 - Randomness from dataInherently, due to the randomisation of $\operatorname{Ex}(c; \mathbb{P}_x)$, \mathcal{A} is always randomised. This randomness is from \mathbb{P}_x .
 - Randomness from algorithm After receiving data from $\operatorname{Ex}(c; \mathbb{P}_x)$, $\mathcal A$ can flip and unbiased coin and introduce further randomness into the algorithm. Let the joint distribution over \mathbb{P}_x and internal coin flips of $\mathcal A$ be $\mathbb P$.

Probably Approximately Correct Learnability: Attempt 1 Definition (PAC learning)

A concept class $\mathcal C$ is PAC learnable with hypothesis class $\mathcal H$ if there exists a learning algorithm $\mathcal A$ such that for all distributions $\mathbb P_x$, concept $c\in\mathcal C$, and $\epsilon,\delta>0$, if $\mathcal A$ is given access to $\operatorname{Ex}(c;\mathbb P_x)$ and knows ϵ,δ , $\mathcal A$ returns $h\in\mathcal H$ such that with probability at least $1-\delta$, over inner randomisation of $\operatorname{Ex}(c;\mathbb P_x)$ and $\mathcal A$ we have that $\mathbb P_x[h(x)\neq c(x)]\leq \epsilon$.

- If $\mathcal A$ runs in time poly $\left(\frac{1}{\epsilon},\frac{1}{\delta}\right)$ then $\mathcal C$ is **efficiently PAC learnable**.
- If \mathcal{C} is learnable with $\mathcal{H} = \mathcal{C}$, then we say \mathcal{C} is **proper learnable** Otherwise, it is referred to as **improper learnable** We will focus on proper PAC learnability for now.
- Number of times \mathcal{A} calls $\operatorname{Ex}(c;\mathbb{P}_{\mathsf{x}})$ is equal to the sample size m
- So far, we have written ϵ as function of m i.e. $\epsilon(m, \delta)$ is the error rate. m is the sample size or the smallest possible m is the sample complexity.

Understanding the definition

What are some things or questions that stand out to you about learnability in this definition ?

Efficiency

- What is one unit of time?
- What are possible reasons of inefficiency?
- What kinds of computational constraints are required on h?

Available information to A

- What does A know and what does A not know?
- What are some possible changes to $\operatorname{Ex}(c; \mathbb{P}_x)$ that can simulate real environments? How can they change a class' learnability?

Discuss in pairs

Understanding the definition

- Efficiency.
 - What is one unit of time?
 Call to Ex (c; Px) takes unit time. The algorithm is run on a turing machine.
 - What are possible reasons of inefficiency?
 Exponential sample complexity or exponential running time.
 - What kinds of computational constraints are required on h?
 h needs to be poly evaluable, otherwise trivial
- Available information
 - What does A know and what does A not know?
 Knows C but not c. Does not know P_x.
 - What are some changes to Ex (c; Px) that can simulate real environments?
 Noisy Oracle (RCN, Massart, Tsybakov), Positive/Negative only, Membership Query, Statistical Query
- It attempts to separate the two things
 - Having sufficient data
 - Being able to compute the estimator/hypothesis from the data

Learning Axis-Aligned Rectangles

- Let $\mathcal{X} = \mathbb{R}^2, \mathcal{Y} = \{+1, 0\}$
- C is the class of Axis-Aligned Rectangle Classifiers. A concept $c \in C$ labels $x \in \mathcal{X}$ positive (+1) if x lies inside the rectangle and 0 o.w.

Theorem

The concept class of axis aligned rectangles is efficiently proper PAC learnable.

Proof:

- Algorithm \mathcal{A} chooses $m=\frac{4}{\epsilon}\log\left(\frac{4}{\delta}\right)$, queries $\operatorname{Ex}\left(c;\mathbb{P}_{\mathsf{x}}\right)$ m times and outputs the smallest axis-aligned rectangle R' that contains all +ve points.
- Let R be the target rectangle. Choose 4 regions T_1 , T_2 , T_3 , T_4 along the inner sides of R such that each region has mass $\frac{\epsilon}{4}$ under \mathbb{P}_x . Note that if $\mathrm{Ex}\,(c;\mathbb{P}_x)$ returns at least one point in all of these regions with probability greater than $1-\delta$, it suffices for us.
- Let A_i be the event that $\operatorname{Ex}(c; \mathbb{P}_{\times})$ upon m calls does not return any point in T_i . Show $\mathbb{P}[\bigcup_i A_i] \leq 4 \exp\left(-\frac{m\epsilon}{4}\right)$
- Setting $m = \frac{4}{\epsilon} \log \left(\frac{4}{\delta} \right)$ completes the proof.

Probably Approximately Correct Learnability: Attempt 2

Issue: Previous definition does not account for the size of the concept class or the instance space.

- Representation scheme for concept class: $\rho: (\Sigma \cup \mathbb{R})^* \to \mathcal{C}$ is a representation scheme for \mathcal{C} . e.g. $\rho((x_1, y_1), (x_2, y_2)) =$ axis-aligned rectangle with bottom left corner at (x_1, y_1) and top right corner in (x_2, y_2) . (Unit cost to represent alphabets in Σ and numbers in \mathbb{R})
- Size of representations The function size : $(\Sigma \cup \mathbb{R})^* \to \mathbb{N}$ measures the size of a representation in $(\Sigma \cup \mathbb{R})^*$.
- Size of concept: A size of a concept is the minimum size over all representations in that representation scheme size(c) = min_{σ:ρ(σ)=c} .size(σ)

What are some examples where the choice of ρ affects the size of a concept?

• Instance size: Instances $x \in \mathcal{X}$ also has an associated size e.g. memory to store. We denote \mathcal{X}_d as an instance space where all $x \in \mathcal{X}_d$ has size d.

What are some examples of sizes of instance spaces?

Often these are clear from context but sometimes need further thought.

Probably Approximately Correct Learnability: Attempt II

For $d \geq 1$, let \mathcal{C}_d be a concept class over \mathcal{X}_d . Consider instance space $\mathcal{X} = \bigcup_{d=1}^{\infty} \mathcal{X}_d$ and the corresponding concept class $\mathcal{C} = \bigcup_{d=1}^{\infty} \mathcal{C}_d$.

Definition (PAC learning)

A concept class $\mathcal C$ is PAC learnable with hypothesis class $\mathcal H$ if there exists a learning algorithm $\mathcal A$ such that for all d>0, all distributions $\mathbb P_x$ over $\mathcal X_d$, concept $c\in \mathcal C_d$, and $\epsilon,\delta>0$, if $\mathcal A$ is given access to $\mathrm{Ex}\,(c;\mathbb P_x)$ and knows $\epsilon,\delta,\mathrm{size}(c)$, and d, $\mathcal A$ returns $h\in \mathcal H$ such that with probability at least $1-\delta$, over inner randomisation of $\mathrm{Ex}\,(c;\mathbb P_x)$ and $\mathcal A$ we have that $\mathbb P_x[h(x)\neq c(x)]\leq \epsilon$.

Efficient PAC learnability: \mathcal{A} should run in time polynomial in $\frac{1}{\epsilon}, \frac{1}{\delta}$, size(c), and d. Usually size(c) is bounded by some polynomial in d and hence can be ignored.

Learning CONJUNCTIONS

Now we will see an example of PAC Learning Attempt II

- Let $\mathcal{X}_d = \{0,1\}^d$, $\mathcal{Y} = \{0,1\}$
- CONJUNCTIONS_d over d boolean variables z_1, \ldots, z_d
 - literal is a variable or its negation
 - conjunction is an AND of literals.
- A conjunction can be represented with two sets $P, N \subseteq [d]$

$$c_{P,N} = \bigwedge_{i \in P} z_i \wedge \bigwedge_{j \in N} \bar{z}_j$$

• The class of $CONJUNCTIONS_d$ is the set of all conjunctions.

CONJUNCTIONS_d = {
$$c_{P,N}|P, N \subseteq [d]$$
}

• Note an efficient representation scheme: size $c_{P,N} \leq d$

Theorem (learning conjunctions)

The concept class $C = \bigcup_{d \geq 1} CONJUNCTIONS_d$ is efficiently PAC learnable.

Proof of learning conjunctions

Proof Let c^* be the target concept. The proof follows these three steps

- **Algorithm** Fix $m \geq \frac{2d}{\epsilon} \log \left(\frac{2d}{\delta} \right)$ and run the following algorithm.
 - Start with $c_{[d],[d]}$; call $\operatorname{Ex}(c^*;\mathcal{D})$ m times.
 - For every +ve example, eliminate all literals from $c_{[d],[d]}$ that cause it to be zero. Return the resultant conjunction h.
- "Correct" Call a literal ℓ "bad" if $\mathbb{P}_x[c^*(x) = 1 \land \ell(x) = 0] \geq \frac{\epsilon}{2d}$.
 - Note by construction, $\mathbb{P}_x[h(x) \neq c^*(x)] = \mathbb{P}_x[h(x) = 0 \land \overline{c(x)} = 1].$
 - Let B be the set of bad literals and h contain no literals in B. Then, $\mathbb{P}_x[h(x) = 0 \land c(x) = 1] \le \sum_{\ell \in \overline{B}} \mathbb{P}_x[h(x) = 0 \land \ell(x) = 1] \le \epsilon$
- "Approximately" Now, we need to prove that h contains no bad literals. Let A_ℓ be the event that ℓ is not eliminated by the algorithm after m calls
 - Bound $\mathbb{P}[A_\ell] \leq (1 \frac{\epsilon}{2d})^m \leq \exp(-\frac{\epsilon m}{2d})$.
 - $\mathbb{P}\left[\text{at least 1 "bad" literal remain} \right] \leq \mathbb{P}\left[\bigcup_{\ell \in B} A_{\ell} \right] \leq \sum_{\ell=0}^{2d} \exp(-\frac{\epsilon m}{2d})$
 - Use $m \geq \frac{2d}{\epsilon} \log \left(\frac{2d}{\delta} \right)$ to show that all bad literals are eliminated with probability 1δ .

Exercise: Learning k-CNF

A different approach to proving learnability — By Reduction

- Let $\mathcal{X}_d = \{0,1\}^d$, $\mathcal{Y} = \{0,1\}$
- k-CNF_d over d boolean variables.
 - Set of k-tuples $S = \{S^1, \dots S^p\}$. $\forall i : S^i \subset [d] \text{ and } |S^i| = k$.
 - $c_S(x) = \bigwedge_{i=1}^p \left(\bigvee_{j=1}^k x \left[S_j^i \right] \right)$

Theorem (learning k-CNF)

The concept class $C = \bigcup_{d \ge 1} k$ - CNF_d is efficiently PAC learnable.

Proof by Reduction We need the concept of *monotone conjunctions*. *Monotone conjunctions* are conjunctions without negated literals.

- Step 1: (Reduction) Show these exist: instance space Z_k , a map $\phi: \{0,1\}^d \to Z_k$, and a bijection φ between k-CNF_d and monotone conjunctions on Z_k .
- Step 2: (Algorithm) Show that the algorithm for learning conjunctions also learns monotone conjunctions. Hence, C is PAC learnable.
- Step 3: (Reduction is polynomial) Show that ϕ, ϕ^{-1} , and φ are