

# Dynamic Programming

Algorithms: Design and Analysis, Part II

Sequence Alignment
Optimal Substructure

#### **Problem Definition**

Recall: Sequence alignment. [Needleman-Wunsch score = Similarity measure between strings]

Input: Strings  $X = x_1 \dots x_m$ ,  $Y = y_1 \dots y_n$  over some alphabet  $\Sigma$  (like  $\{A,C,G,T\}$ )

- Penalty  $\alpha_{\rm gap}$  for inserting a gap,  $\alpha_{ab}$  for matching a & b [presumably  $\alpha_{ab} = 0$  of a = b]

Feasible solutions: Alignments - i.e., insert gaps to equalize lengths of the string

Goal: Alignment with minimum possible total penalty

## A Dynamic Programming Approach

Key step: Identify subproblems. As usual, will look at structure of an optimal solution for clues.

[i.e., develop a recurrence + then reverse engineer the subproblems]

Structure of optimal solution: Consider an optimal alignment of X, Y and its final position:



Question: How many <u>relevant</u> possibilities are there for the contents of the final position?

- A) 2 C) 4 B) 3 D) *mn*
- Case 1:  $x_m$ ,  $y_n$  matched, case 2:  $x_m$  matched with a gap, case 3:  $y_n$  matched with a gap [Pointless to have 2 gaps]

### **Optimal Substructure**

Point: Narrow optimal solution down to 3 candidates.

Optimal substructure: Let 
$$X' = X - x_m$$
,  $Y' = Y - y_n$ .

If case (1) holds, then induced alignment of X' & Y' is optimal. If case (2) holds, then induced alignment of X' & Y is optimal. If case (3) holds, then induced alignment of X & Y' is optimal.

# Optimal Substructure (Proof)

#### Proof: [of Case 1, other cases are similar]

By contradiction. Suppose induced alignment of X', Y' has penalty P while some other one has penalty  $P^* < P$ .

 $\Rightarrow \text{Appending} \quad \frac{x_m}{y_n} \quad \text{to the latter, get an alignment of $X$ and $Y$}$  with penalty  $P^* / + \alpha_{x_m y_n} < P + \alpha_{x_m y_n}$ 

Contents of final position Penalty of original alignment

 $\Rightarrow$  Contradicts optimality of original alignment of X & Y. QED!