Equações difrerenciais ordinárias e álgebra linear PPG-EM/UERJ

Lista de exercícios No. 2

- 1. Em um modelo simplificado da economia de um país, $\dot{R} = R \alpha C$, $\dot{C} = \beta \, (R C G)$, onde R é a renda nacional, C a taxa de gastos dos consumidores e G, a taxa de gastos do governo. As constantes α e β satisfazem às condições $1 < \alpha < \infty$, $1 \le \beta < \infty$. Mostre que se a taxa de gastos do governo for constante o sistema tem um ponto de equilíbrio, determine as equações linearizadas de evolução de pequenas perturbações em torno desse ponto e a solução das mesmas.
- 2. Localizar os pontos de equilíbrio e esquematizar o diagrama de trajetórias no espaço de fases de sistemas cuja evolução obedece às seguintes equações:

$$\begin{aligned} \ddot{x} - \kappa \dot{x} &= 0 \\ \ddot{x} - 8x\dot{x} &= 0 \\ \ddot{x} &= \kappa \quad \text{se} \quad |x| > 1 \quad \text{e} \quad \dot{x} &= 0 \quad \text{se} \; |x| < 1 \\ \ddot{x} + 3\dot{x} + 2x &= 0 \\ \ddot{x} - 4\dot{x} + 40x &= 0 \\ \ddot{x} + 3|x| + 2x &= 0 \end{aligned}$$

3. Um satélite artificial se desloca ao longo do segmento de reta que une os centros de dois planetas, o primeiro de massa M_1 e o segundo de massa M_2 . A distância entre os dois planetas é a. A aceleração do satélite é dada por:

$$\ddot{x} = -\frac{\gamma M_1}{x^2} + \frac{\gamma M_2}{(a-x)^2},$$

onde x é a distância do satélite a um dos planetas. Determine o ponto de equilíbrio da trajetória e as equações de evolução de pequenas perturbações em torno desse ponto e a solução das mesmass.

4. Determinar os pontos fixos, a estabilidade linear dos emesmos e esboçar as trajetórias no espaço de fases do sistema cuja evolução obedece à lei:

$$\ddot{x} + \left(x^2 - 1\right)\dot{x} + x = 0$$

5. Resolver o sistema:

$$\begin{array}{rcl} \dot{x} & = & -2x \\ \dot{y} & = & x - 2y \\ \dot{z} & = & y - 2z \end{array}$$

6. Determinar a forma canônica de Jordan das matrizes :

$$A = \begin{pmatrix} -5 & 6 & -1 & -1 \\ -1 & 1 & -1 & 0 \\ 2 & -2 & -2 & 1 \\ 8 & -10 & -1 & 2 \end{pmatrix} \qquad \text{e:} \qquad B = \begin{pmatrix} 5 & -1 & 1 & 1 & 0 & 0 \\ 1 & 3 & -1 & -1 & 0 & 0 \\ 0 & 0 & 4 & 0 & 1 & 1 \\ 0 & 0 & 0 & 4 & -1 & -1 \\ 0 & 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 1 & 3 \end{pmatrix},$$

sabendo que a matriz A tem um único autovalor $\lambda = -1$, de multiplicidade 4 e que os autovalores da matriz B são 4 (multiplicidade 5) e 2.

7. Localizar os ponos de equilíbrio de sistemas que obedecem às equações abaixo, determinar as equações de evolução de pequenas perturbações em torno dos mesmos, a solução dessas equações e asrespectivas trajetórias no espaço de fasse:

$$\begin{array}{lll} \dot{x} = x - y & \dot{y} = x + y - 2xy \\ \dot{x} = y \, e^y & \dot{y} = 1 - x^2 \\ \dot{x} = 1 - xy & \dot{y} = (x - 1)y \\ \dot{x} = (1 + x - 2y)x & \dot{y} = (x - 1)y \\ \dot{x} = x - y & \dot{y} = x^2 - 1 \\ \dot{x} = -6y + 2xy - 8 & \dot{y} = y^2 - x^2 \\ \dot{x} = 4 - 4x^2 - y^2 & \dot{y} = 3xy \\ \dot{x} = -y\sqrt{1 - x^2} & \dot{y} = x\sqrt{1 - x^2} & \text{para} & |x| \le 1 \\ \dot{x} = \sin y & \dot{y} = -\sin x \end{array}$$

- 8. Seja A um operador algébrico linear que tem um autovalor de multiplicidade 3. Mostrar porquê o autovetor e os autovetores generalizados, associados a este autovalor são linearmente independentes.
- 9. Resolver o sistema $\dot{\mathbf{X}} = A \mathbf{X}$, onde:

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{array}\right)$$

com a condição inicial $\mathbf{X}(t=0) = (1; 2; 3)$.

10. Dado o sistema de equações:

$$\dot{x} = -6y + 2xy - 8$$

$$\dot{y} = y^2 - x^2$$

Determinar os pontos fixos, a estabilidade linear dos mesmos e as trajetórias no espaço de fases.

11. Determinar a forma canônica de Jordan da matriz:

$$A = \begin{pmatrix} 5 & -1 & 1 & 1 & 0 & 0 \\ 1 & 3 & -1 & -1 & 0 & 0 \\ 0 & 0 & 4 & 0 & 1 & 1 \\ 0 & 0 & 0 & 4 & -1 & -1 \\ 0 & 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 1 & 3 \end{pmatrix},$$

sabendo que os autovalores da mesma são 4 (multiplicidade 5) e 2.

12. Reescrever a matrizes abaixo na forma canônica de Jordan:

13. Mostrar que o sistema cuja evolução obedece á lei:

$$\dot{x}_1 = -2x_1 - x_2 + x_1 \exp\left(x_1^2 + x_2^2\right)$$

$$\dot{x}_2 = x_1 - 2x_2 + x_2 \exp\left(x_1^2 + x_2^2\right)$$

tem um único ponto de equilíbrio e estudar a estabilidade linear desse ponto.

14. A interação entre duas espécies caça-predador é governada pela pelo modelo determinístico:

$$\dot{C} = (1 - C - P) C$$

$$\dot{P} = (-1 - P + C) P.$$

Determinar os estados de equilíbrio do sistema, estudar a estabilidade linear dos mesmos e confirmar que a espécie predadora não sobrevive na ausência da caça.

15. Dada a matriz:

$$A = \begin{pmatrix} -2 & -3 & 1 & 4 & -4 \\ -3 & -9 & 1 & 5 & -1 \\ 0 & -1 & -1 & 1 & -1 \\ -5 & -14 & 2 & 9 & -4 \\ -3 & -9 & 0 & 7 & -4 \end{pmatrix}$$

cujo polinômio característico é:

$$p(\lambda) = (\lambda + 1)^3 (\lambda + 2 - i) (\lambda + 2 + i)$$

reescrever a matriz na base de seus autovetores e autovetores generalizados.

16. Encontrar os pares de solução $x_1(t)$, $x_2(t)$ que satisfazem ao sistema de equações:

$$\begin{array}{rcl} \dot{x}_1 & = & -x_2 \\ \ddot{x}_2 & = & -x_1 - x_2 + \dot{x}_2 \end{array}$$

com a condição inicial $x_1(0) = 1$, $\dot{x}_2(0) = 0$ e $\dot{x}_2(0) = 3$.

17. Determinar os pontos de equilíbrio, a estabilidade linear ods memso e esboçar as trajetórias no espaço de fases do sistema cuja evolução obedece à equação de Duffing:

$$\ddot{x} + x^2 \dot{x} - x + x^3 = 0$$

18. Calcular $\exp(tA)$ e $\exp(tB)$, onde:

19. Calcular $\exp(tA)$, onde:

$$A = \begin{pmatrix} 1 & -2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & 2 & 1 & -2 \\ -2 & 0 & -2 & -1 \end{pmatrix},$$

sabendo que os autovalores de A são $\mu = 1 \pm 2i$, de multiplicidade 2.

20. Seja uma matriz quadrada A, de dimensções $n \times n$, cujo polinômio característico é:

$$p(\lambda) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \dots (\lambda - \lambda_k)^{m_k} = 0,$$

onde $\lambda_1, \lambda_2, \ldots, \lambda_k$ são os autovalores de A e m_1, m_2, \ldots, m_k , a multiplicidade de cada autovalor, respectivamente, com $m_1 + m_2 + \ldots + m_k = n$. Mostrar que toda matriz A, conforme acima, satizfaz seu polinômio característico, isso é:

$$p(A) = (A - \lambda_1 I)^{m_1} (A - \lambda_2 I)^{m_2} \dots (A - \lambda_k I)^{m_k} = 0,$$

onde I é a matriz identidade e 0, a matriz nula. Esse resultado é conhecido como teorema de Cayley-Hamilton.

21. Em 1968, os profs. I. Prigogine e R. Lefever, da Universidade Livre de Bruxelas, propuseram um modelo para descrever as oscilações em sistemas químicos observadas por Belousov e Zhabotinsky, cerca de quinze anos antes. Graças a esse modelo, Prigogine foi agraciado com o prêmio Nobel de química em 1977. O modelo recebeu o nome de "Brusselador" e é dado por:

$$\frac{dx}{dt} = -(b+1)x + a + x^2y$$

$$\frac{dy}{dt} = bx - x^2y,$$

onde x e y são as concentrações de compostos químicos intermediários e a e b, as concentrações de reagentes, mantidas constantes. Determinar os pontos de equilíbrio dessa cinética. Que relações devem existir entre os parâmetros desse modelo, para que o sistema seja estável e em que condições ocorrem oscilações que são amplificadas (bifurcação de Hopf)?