Intermediate Microeconomics Spring 2025

Week 16: Final Review

Yuanning Liang

Final exam is cumulative.

- □ All topics before and after midterm could appear in the final.
 - Preference, utility maximization
 - Demand analysis
 - Profit maximization
 - Competitive market
 - Externality
 - Monopoly and market power
 - Imperfect competition
 - Risk and uncertainty
 - Asymmetric information
 - Game theory

Big Picture

Departures from Competitive Equilibrium

- 1. Violation of the "private good" assumption -- Externality
- 2. Violation of the "price-taking" assumption -- Monopoly
- 3. Violation of the "complete market" assumption -- Asymmetric information

(Negative) Externalities

■ Marginal Social Benefit (MSB):

- $\blacksquare MSB(x) = MU_1(x) + MU_2(x)$
- \square If $MU_2(x) < 0$, then

$$MC(x^*) = MU_1(x^*) > MU_1(x^*) + MU_2(x^*).$$

☐ So, the market equilibrium results in an allocation where MC > MSB.

Negative Externalities

- What allocation maximizes total surplus?
- \square Total Surplus is maximized at x^{**} where:

$$MSB(x^{**}) = MU_1(x^{**}) + MU_2(x^{**}) = MC(x^{**}).$$

 \square In the case of a negative externality, $x^{**} < x^*$.

Solutions to the externalities problem.

- ☐ We will consider four types of solutions to the externalities problem.
 - Centralized: require gov. to know consumers' preferences and enforce policies.
 - ☐ Quotas: command-and-control
 - □ Taxes: Pigouvian taxation
 - Decentralized: require gov. to create institutions and/or laws that lay out the rules, enforce policies only if violations occur.
 - □ Bargaining: Coase theorem
 - □ Market Making: carbon emission trading system

FIGURE 19.1 Production Externalities

- Two newsprint producers
 - Are located along a river
 - The upstream firm has a production function:

$$x = f(l_x) = 2,000\sqrt{l_x}$$

- The downstream firm similar production function
 - Its output may be affected by chemicals that firm x pours in the river

$$y = g(l_y, x) = 2,000\sqrt{l_y} \cdot (1 + \alpha x)$$

FIGURE 19.1 Production Externalities

- Assume
 - Newsprint sells for P = \$1 per foot
 - Workers earn w = \$100 per day
- Firm x will maximize profits
 - Setting this wage equal to the labor's marginal revenue product

$$100 = P \cdot \frac{\partial f}{\partial l_x} = 1,000 l_x^{-0.5}$$

- $l_x = 100$
- If $\alpha = 0$ (no externalities), $l_y = 100$
- x = y = 20,000

FIGURE 19.1 Production Externalities

- Effects of a negative externality (α < 0)
 - The upstream firm's profit-maximizing decision will be unaffected
 - $-(l_x = 100 \text{ and produces } x = 20,000)$
 - But the marginal product of labor will be lower in firm y because of the externality
 - If $\alpha = -1/40,000$,
 - $-l_{y} = ?$
 - -y=

Monopoly

- \square The monopolist chooses q to maximize profit p(q) q c(q).
- \square Take derivative with respect to q, set equal to zero:

$$p'(q) q + p(q) - c'(q) = 0$$

☐ Rearrange:

Marginal revenue
$$p'(q) q + p(q) = c'(q)$$
 Marginal cost

- Marginal Revenue: the rate at which revenue changes when you increase q by a small amount.
- \square Also need to consider whether it's better to produce $q^* = 0$

Optimal choice of q*

- \square Monopolist chooses q^* where MR = MC.
- Optimal price p^* is found by evaluating p(q) at q^* .
- ☐ Frequent mistake: don't plug q* into MR by mistake!

Regulation of Monopoly

- □ An enforced policy of marginal cost pricing will cause a natural monopoly to operate at a loss
- □ Rate of return regulation
- Per-unit subsidy

Example

- Suppose a perfectly competitive industry can produce widgets at a constant marginal cost of \$10 per unit. Monopolized marginal costs increase to \$12 per unit because \$2 per unit must be paid to lobbyists to retain the widget producers' favored position.
- Suppose the market demand for widgets is given by

$$Q_D = 1000 - 50P$$

- 1. Calculate the perfectly competitive and monopoly outputs and prices.
- 2. Calculate the total loss of consumer surplus from monopolization of widget production.
- 3. Graph your results and explain how they differ from the usual analysis.

Bertrand vs. Cournot vs. Cartel

- In Cournot game, industry profits
 - Lower than in the cartel model (P_AAEP_C <P_MMDP_C)
- DWL
 - Smaller in the Cournot model (3) than in the cartel situation (1+2+3)

Risk and Uncertainty

Risk Aversion and Insurance

- □ An individual who always refuses fair bets is said to be <u>risk averse</u>
 - will exhibit diminishing marginal utility of income
 - will be willing to pay to avoid taking fair bets

Risk Aversion and Insurance

State-preference model

□ The expected utility associated with these two contingent goods is

$$V(W_g, W_b) = \pi U(W_g) + (1 - \pi)U(W_b)$$

☐ This is the value that the individual wants to maximize given his initial wealth (W)

Example

□ A farmer believes there is a 50-50 chance that the next growing season will be abnormally rainy. His expected utility function has the form

$$E[U(Y)] = \frac{1}{2} \ln Y_{NR} + \frac{1}{2} \ln Y_R$$
,

where Y_{NR} and Y_R represent the farmer's income in the states of "normal rain" and "rainy"

a. Suppose the farmer must choose between two crops that promise the following income prospects:

Crop	Y_{NR}	Y_R
Wheat	\$28,000	\$10,000
Corn	\$19,000	\$15,000

Which of the crops will he plant?

- b. Suppose the farmer can plant half his field with each crop. Would he choose to do so? Explain your result.
- c. What mix of wheat and corn would provide maximum expected utility to this farmer?
- □ d. Would wheat crop insurance which is available to farmers who grow only wheat and which costs \$4,000 and pays off \$8,000 in the event of a rainy growing season—cause this farmer to change what he plants?

Asymmetric information

- ☐ Two Leading Models
 - Moral hazard model
 - □ The agent's actions affect the principal, but the principal does not observe the actions directly
 - □ Hidden-action model
 - ☐ Eg. Owner-manager relationship
 - ☐ Eg. Moral hazard in insurance

Asymmetric information

- Two Leading Models
 - Adverse selection model
 - □ The agent has private information before signing the contract (his type)
 - □ Hidden-type model
 - ☐ Eq. Adverse selection in car insurance
 - ☐ Eg. Akerlof's Lemon Model

First-, Second-best contracts

- ☐ First-best contract
 - Full-information environment
 - The principal could propose a contract that maximizes joint surplus
 - Could capture all of the surplus for himself
 - Leaving the agent just enough to make him indifferent between agreeing to the contract or not
- Second-best contract
 - The contract that maximizes the principal's surplus
 - Subject to the constraint that he is less well informed than the agent

Example

- □ Suppose there is a 50–50 chance that an individual with logarithmic utility from wealth and with a current wealth of \$20,000 will suffer a loss of \$10,000 from a car accident. Insurance is competitively provided at actuarially fair rates.
- ☐ A. Compute the outcome if the individual buys full insurance.
- □ B. Compute the outcome if the individual buys only partial insurance covering half the loss. Show that the outcome in part (a) is preferred.
- C. Now suppose that individuals who buy the partial rather than the full insurance policy take more care when driving, reducing the damage from loss from \$10,000 to \$7,000. What would be the actuarially fair price of the partial policy? Does the individual now prefer the full or the partial policy?

Game theory

- ☐ Tragedy of the commons
- □ Bayesian-Nash Equilibrium with incomplete information