Reconhecimento de padrões em Biomecânica de Corrida usando Aprendizado de Máquina

Mônica de Oliveira

Professor Orientador: Talles Henrique de Medeiros **Professor Co-orientador**: Rafael S. O. Martins

ICEA - UFOP

17 de julho de 2018

Sumário

- 1 Introdução
- 2 Identificação do problema
- 3 Revisão Bibliográfica
- 4 Metodologias
- 5 Resultados
- 6 Conclusão e Trabalhos Futuros
- 7 Referências

Introdução

Aprendizado de Máquina

 Aprendizado de Máquina é um campo de pesquisa da Inteligência Artificial que estuda o desenvolvimento de métodos capazes de extrair conceitos (conhecimento) a partir de amostras de dados.(MITCHELL et al., 1997)

Introdução

Aprendizado de Máquina

A análise da marcha biomecânica é comumente usada para analisar desempenho desportivo e avaliação de marcha patológica.

Identificação do problema

- (HINO et al., 2009) As lesões musculares.(lentidão na recuperação);
- Embora haja estudos aplicados a aprendizado de máquina em relação a classificação de marcha em atletas, eles geralmente usam poucas amostras e um conjuntos limitados de variáveis considerando apenas uma parte do ciclo de marcha atribuindo a maior parte das pesquisas as variáveis de centro de pressão.(MCGREGOR; BOLLT; FEDEL, 2014)

Objetivos Propostos

A proposta deste estudo basicamente consiste a princípio, aplicar técnicas de algoritmos de aprendizado de máquina supervisionado na base de dados, treinando-os com o conjunto de treinamento e depois realizando classificação do conjunto de testes para verificar qual algoritmo apresenta a melhor taxa de reconhecimento. Espera-se que o modelo que atingir maior grau de classificação possa contribuir ao máximo sob predições à lesões entre os atletas, melhorando assim tomada de decisões onde determinado grupo possa vir adquirir de acordo com os padrões encontrados.

Base de Dados

Disponíve pela mega revista científica (PeerJ) pela Universidade Federal do ABC

■ Cinemática e Cinética

(a) Marcadores

_	Time ‡	Fx ÷	Fy ÷	Fz ‡	COPx ÷	COPy ÷	COPz ÷	Ту
1	1	-184.63	328.67	-72.78	2591.73	0	1134.51	-15305.20
2	2	-194.63	348.66	-66.45	2514.68	0	1123.29	9418.18
3	3	-96.66	400.85	-45.39	2546.33	0	1136.36	-29979.20
4	4	-47.38	491.49	-19.99	2493.38	0	1127.69	12225.30
5	5	-36.24	552.83	-20.07	2500.02	0	1129.17	21395.00

(b) Dados Força

Figura: Fonte: (FUKUSHI; DUARTE, 2017)

Revisão na literatura sobre Aprendizado de Máquina

Figura: Hierarquia do Aprendizado de Máquina, FONTE: adaptado de Monard e Baranauskas (2003)

Algoritmos de Classificação: Knn - K vizinhos mais próximos

- Knn K-vizinhos mais próximos (COVER; HART, 1967);
- Classificação;
- Aprendizado de máquina supervisionado;
- Ideia:
 - Espaço entrego ponto de consulta;
 - Ponto de consulta/query point
 - Verificar quais são os k pontos mais próximos;
 - Distância:
 - Verifico Classes de vizinhos mais próximos;
 - votação;

Figura: K vizinhos

Algoritmos de Classificação: Knn - K vizinhos mais próximos

- Dado um vetor de característica desconhecido N (Conjunto de dados para treinamento);
- Defina um valor de k;
- Calcule uma métrica de distância;

$$d(x,y) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2}$$
 (1)

- Fora dos N vetores de treinamento, identifique os vizinhos mais próximos, independentemente dos rótulos das classes.
- Fora dessas k amostras, conte o número de vizinhos mais próximos que pertencem a cada classe k_1 com i = 1,2...M. Assim temos: $\sum_i k_i = k$
- Atribua o rótulo à classe mais frequente na vizinhança. Classificando o no elemento.

Escolha do K apropriado

Figura: Escolha de um k apropriado: underfitting, K apropriado e overfitting e respectivamente

Implementação Knn

Figura: Implementação básica do Algoritmo Knn

Pesquisa Algoritmos padrões de projeto: SVM - Máquinas de Vetores Suporte

- Classificação;
- SVM técnica embasada na Teoria de Aprendizado Estatátistico (CORTES; VAPNIK, 1995);
- Objetivo: Econtrar Hiperplano de separação com margem máxima;

Figura: Hiperplanos Ótimos

Aprendizado de Máquina

Pesquisa Algoritmos padrões de projeto: SVM - Máquinas de Vetores Suporte

(a) Linearmente separável

(b) Não linearmente separável

Aprendizado de Máquina

SVM - Kernels

Tabela: Algumas das funções Kernels mais utilizadas

Tipo de Kernel		Tipo do classificador
Polinomial	$((x_i.j_i)+1)^2$	Máquina de aprendizagem polinomial
Gaussiano (RBF)	$exp(-\frac{\left\ x_i-x_j\right\ ^2}{2\sigma^2})$	Rede RBF
Linear	$x \times y$	classificador linear
Curva Sigmoide	$tanh(eta_0(x_i.x_j)) + eta_1$	Perceptron de duas camada

17 de julho de 2018

Transformada de Fourier

Um sinal aperiódico pode ser visto como um sinal periódico com um período infinito. Quando o período $T \to \infty$, $x(t) \to \tilde{x}(t)$

A representação em série de Fourier do sinal periódico $\tilde{x}(t)$ é:

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} a_k e^{jkw_0 t}$$
 (2)

Sendo \tilde{x} :

$$a_k = rac{1}{T} \int_T x(t) e^{-jkw_0 t} dt = rac{1}{T} \int_{-rac{T}{2}}^{rac{T}{2}} x(t) e^{-jkw_0 t} dt$$

Transformada de Fourier

Considerando:

$$\tilde{x}(t) = \begin{cases} x(t), & \text{para } |t| \text{ i T/2} \\ 0, & cc \end{cases}$$
 (4)

Podemos reescrever os limites de a_k , com w = kw_0 como:

$$a_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \tilde{x}(t) e^{-jkw_0 t} dt = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) e^{-jkw_0 t} dt = \frac{1}{T} \int_{-\infty}^{\infty} x(t) e^{-jkw_0 t} dt$$
 (5)

Portanto a Trasformada de Fourier é definida como:

$$X(jw) = \int_{-\infty}^{\infty} x(t)e^{-jwt} dt$$

UFOP

17 / 38

Também denominada espectro de frequências de x(t).

Ambiente de desenvolvimento e Base de Dados

Softwares utilizados para análise, observação, testes, etc

- RStudio;
- Matlab;

Base de dados:

- Mega revista científica PeerJ disponibilizada pela Universidade Federal do ABC;
- 28 Atletas, esteira instrumentada;
- ensaios de corrida foram realizados em uma esteira instrumentada a três velocidades de marcha distintas (2,5 m / s, 3,5 m / s e 4,5 m / s);
- sinais amostrados 300 Hz para cinética;

Observações e Testes (Pré-processamento e autoconhecimento dos dados.)

Figura: Correlação dos dados de Força nos eixos x,y e z dos 28 atletas

<ロト <回り < 重り < 重

Observações e Testes

Figura: Dados brutos no domínio do tempo em relação aos eixos x, y e z do atributo Força de um sujeito aleatório para mostrar aperiodicidade

Observações e Testes

```
%x -> \(\hat{e}\) o sinal
%Ys -> \(\hat{e}\) a frequêcia de amostragem
%n pontos -> \(\hat{e}\) o número de pontos que se deseja calcular
FFFF (sugest\(\hat{o}\) unitirar $12\) ou 1024 ou em torno de isso)
%
%[f,mod_FFT] = calc_fff(x,Fs,n_pontos);
%
Unuction [f,mod_FFT] = calc_fff(x,Fs,n_pontos)

FFT X = fff(x,n_pontos);
f = 0:Fs/n_pontos:Fs - Fs/n_pontos;
mod_FFT = abs(FFT X);
plot(f(1:n_pontos/2),mod_FFT(1:n_pontos/2));
xlabel('Ysequência (%z)');
ylabel('Yse('\long x));
cavwrite('mod_FFT.csv', mod_FFT);
```

(a) Código TF - Matlab

(b) Comportamento TF (dado aleatório)

Features - Teia de Determinantes

Base de dados final: 139 colunas e 28 linhas.

- Média, var, sd, máximo (Fx, Fy, Fz);
- Tempo fora da esteira [segundos]
- Centro de Pressão nos 2 eixos: (COPx, COPz);
- Momento livre sobre o eixo vertical Ty;
- TF da média, var, sd;
- TF das 2 COP;
- TF eixo vertical Ty;
- Atleta lesionado [S/N];

(Nos tempos 2.5, 3.5 e 4.5 m/s)

Métodos de avaliação

- Matriz de Confusão
- Acurácia

Tabela: Exemplo matriz de confusão

	Valor Rea	ıl
Previsto	Positivo	Negativo
Positivo	VP	FP
Negativo	FN	VN

Resumo da divisão da base juntamente com os algoritmos kNN e SVM

```
# Monica de Oliveira
# Universidade Federal de Ouro Preto
******************
# Leitura da base de dados
#base = read.csv('dadoAtletas.csv')
base<-dadoAtletas
dim(dadoAtletas)
# Divisão entre treinamento e teste
library(caTools)
set.seed(214)
divisao = sample.split(base$Lesao, SplitRatio = 0.7)
base_treinamento = subset(base, divisao == TRUE)
base teste = subset(base, divisao == FALSE)
# Algoritmo de Classificação SVM
classificador1 = svm(formula = Lesao ~., data = base_treinamento,
                  type ='C-classification', kernel = 'radial', cost = 10.0)
# Algoritmo de Classificação kNN
classificador2 = knn(train = base_treinamento[,-139] , test = base_teste[,-139],
              cl = base treinamento[, 139, drop = TRUE], k =3)
```

Algoritmo kNN

Tabela: Matriz de confusão kNN com k = 1

Tabela: Matriz de confusão kNN com k = 2

	Valo	r Real
Previsto	0	1
0	4	2
1	3	0

	Valor	Real
Previsto	0	1
0	3	3
1	2	1

Tabela: Matriz de confusão kNN com k = 3

	Valo	r Real
Previsto	0	1
0	4	2
1	2	1

K	Acurácia
1	44,4 %
2	44,4 %
3	55,5 %

Algoritmo SVM

Tabela: Matriz de confusão Kernel linear

Tabela: Matriz de confusão Kernel Polinomial

	Valor	Real
Previsto	0	1
0	6	1
1	3	0

	Valo	r Real
Previsto	0	1
0	4	2
1	1	2

Algoritmo SVM

Tabela: Matriz de confusão Kernel Base Radial

Tabela: Matriz de confusão Kernel Sigmoide

	Valo	r Real
Previsto	0	1
0	5	1
1	1	2

Valor Real
0 1
4 2
2 1

Kernel	cost	Acurácia
Linear	1	60%
Polinomial	3	66,6%
Base Radial	5	77,7%
Sigmoide	3	55,5 %

Caracteristicas dos Atletas

Gráfico Momento Livre T25 5000 Lesionado Não Lesionado 4000 Tempo plataforma 3000 2000 1000 24 25 26 14 15 16 18 20 22 28 Sujeitos

Figura: Média fora da Esteira: L = 2.1s NL = 2.3s

Caracteristicas dos Atletas

Figura: Média fora da Esteira: $L=2.7s\ NL=2.9s$

Caracteristicas dos Atletas

Gráfico Momento Livre T45

Figura: Média fora da Esteira: L = 3.0s NL = 3.3s

Caracteristicas dos Atletas

Caracteristicas dos Atletas

Caracteristicas dos Atletas

(b) Atletas sem lesionados

Figura: Média da Transormada de Fourier das Forças no eixo x, 2.5 m/s 3.5 m/s e 4 m/s

Caracteristicas dos Atletas

(a) Atletas Lesionados

(b) Atletas sem lesão

Caracteristicas dos Atletas

(b) Atletas sem lesão

Aprendizado de Máquina

Caracteristicas dos Atletas

(b) Atletas sem lesão

Figura: Média da Transormada de Fourier do momento livre sob o eixo vertical Ty no tempos 2.5 m/s 3.5 m/s e 4.5 m/s

Conclusões e Trabalhos Futuros Obrigado!

Referências I

CORTES, C.; VAPNIK, V. Support-vector networks. *Machine learning*, Springer, v. 20, n. 3, p. 273–297, 1995.

COVER, T.; HART, P. Nearest neighbor pattern classification. *IEEE transactions on information theory*, IEEE, v. 13, n. 1, p. 21–27, 1967.

HINO, A. A. F. et al. Prevalência de lesões em corredores de rua e fatores associados. *Rev Bras Med Esporte*, v. 15, n. 1, p. 36–9, 2009.

MCGREGOR, S. J.; BOLLT, E.; FEDEL, F. J. Method of monitoring human body movement. [S.I.]: Google Patents, 2014. US Patent 8,821,417.

MITCHELL, T. M. et al. Machine learning. 1997. *Burr Ridge, IL: McGraw Hill*, v. 45, n. 37, p. 870–877, 1997.