LAPORAN AKHIR

PENELITIAN INTERNAL

PEMODELAN BERBASIS DATA UNTUK MEMPREDIKSI GAJI BERDASARKAN FAKTOR-FAKTOR SPESIFIK DENGAN PENDEKATAN MACHINE LEARNING

Oleh:

Syafrial Fachri Pane, ST., M.T.I., EBDP

0416048803

Amri Yanuar, ST., M.OT

0412018603

SARJANA TERAPAN TEKNIK INFORMATIKA UNIVERSITAS LOGISTIK DAN BISNIS INTERNASIONAL TAHUN 2022

HALAMAN PENGESAHAN

LEMBAR PENGESAHAN Penelitian Internal

: Pemodelan berbasis data untuk memprediksi gaji berdasarkan faktor-faktor spesifik dengan pendekatan Machine Learning Judul

Ketua

Nama Lengkap

: Syafrial Fachri Pane, ST., M.T.I., EBDP

Program Studi

: D4 Teknik Informatika

NIDN Nomor HP

: 0416048803 : 08112164882

Alamat Surel (e-mail) : syafrial.fachri@poltekpos.ac.id

Pendamping 1

Nama Lengkap

: Amri Yanuar, ST., M.MOT

NIDN : 0412018603

: Universitas Logistik dan Bisnis Internasional Perguruan Tinggi

Lama Penelitian : 8 Bulan Biaya Penelitian : Rp. 8.500.000 ,-

Mengetahui, Ketua Program Studi

(Roni Andarsyah, ST., UNIK/NIP 115.88.193

Logistik & Bisnis Internasional

ULBI ,

Bandung, 10-10-2022 Ketua

(Syafrial Faghri Pane, ST., M.T.I.,EBDP) NIK/NIP. 17.88.233

Menyetujui, Direktur RPIKK

(Dr. Prety Diawati, S.Sos., MM.) NIK/NIP. 113.75.108

1/1

10-10-2022 17:25:49

Direktorat RPIKK Universitas Logistik dan Bisnis Internasional

HALAMAN KETERLIBATAN MAHASISWA DALAM PENELITIAN

No.	Nama Mahasiswa	NPM	Keterlibatan	Paraf
1.	Bachtiar Ramadhan	1204077	Pemograman	Sphtian
2.	Nur Tri Ramadhanti	1204061	Analisi dan	00.0
	Adiningrum		pengumpulan	Thomas -
			data	

Bandung, 16 Oktober 2022 Ketua Peneliti

Syafrial Fachri Pane, ST., M.T.I., EBDP NIK. 117.88.233

ABSTRAK

Perkembangan ilmu pengetahuan dan teknologi pada Revolusi Industri 4.0 semakin berkembang pesat. Perubahan karakteristik pekerjaan adalah salah satu dampak tersendiri dari datangnya revolusi industri 4.0. Tentunya perusahaan perlu memiliki keunggulan manajemen yang efektif dalam menghadapi hal tersebut. Dengan demikian salah satu aspek yang berpengaruh besar terhadap kemajuan dan keberhasilan sebuah perusahaan adalah kinerja karyawannya. Oleh karena itu, penentuan gaji yang tepat oleh perusahaan adalah faktor internal terhadap kemajuan perusahaan. Sangat disayangkan, perkembangan perusahaan saat ini belum memliki suatu media keputusan untuk melakukan prediksi gaji karyawan berdasarkan kualitas data. Namun, untuk membuat keputusan bagaimana cara menentukan gaji karyawan dengan optimal perlu mempertimbangkan faktor-faktor lainya karena faktor tersebut merupakan bobot penilaian untuk mengukur kelayakan karyawan mendapatkan gaji.

Oleh karena itu dibuat model untuk memprediksi gaji karyawan berdasarkan data. Dataset yang digunakan adalah dataset kepegawaian sebanyak 1029 data. Berdasarkan uji korelasi, didapat beberapa variabel yang memiliki korelasi signifikan untuk memprediksi gaji yaitu umur, gaji, *joblevel*, lama pengalaman bekerja, dan masa bakti. Selanjutnya faktor-faktor spesifik tersebut akan diuji validitas (uji-f, uji-t, uji linearitas, uji normalitas, uji multikolinearitas, uji autokorelasi, dan uji homoskedastisitas) menggunakan pendekatan *machine learning* dengan metode *multivariate linear regression*. Hasil dari uji validitas dengan menggunakan OLS menunjukkan bahwa nilai akurasi model sebesar 0,909 yang berarti gaji dipengaruhi oleh faktor independen (umur dan masa bakti) sebesar 90,9%. Tentunya hasil prediksi gaji karyawan divisualisasikan secara realtime untuk dapat digunakan oleh perusahaan dalam menentukan keputusan dengan cepat. visualisasi hasil prediksi tersebut akan ditampilkan berbasis *web base* dengan framework Django.

Kata Kunci : Pemodelan, Prediksi, Gaji, Regresi, faktor-faktor spesifik, *Machine Learning*

PRAKARTA

Puji syukur kami haturkan kehadirat Allah SWT. yang telah melimpahkan kekuatan dan kesabaran, karena berkat rahmat dan hidayah-Nya, sehingga penulisan laporan penelitian akhir dengan judul "Pemodelan Berbasis Data Untuk Memprediksi Gaji Berdasarkan Faktor-Faktor Spesifik Dengan Pendekatan *Machine Learning*" yang telah lama dipersiapkan dapat diselesaikan dengan baik. Penyusunan laporan ini mendapatkan banyak masukan dan motivasi dari berbagai pihak terutama rekanrekan yang telah berkolaborasi dalam penulisan buku ini. Laporan ini bertujuan untuk memenuhi persyaratan pada penelitian internal. Maka dari itu, pada kesempatan ini kami ingin mengucapkan terima kasih yang sebesar-besarnya kepada seluruh pihak atas keihklasannya dalam melakukan proses penyusunan laporan ini hingga selesai sesuai rencana serta sesuai dengan kaedah-kaedah penulisan karya ilmiah. Penulis juga menghanturkan terima kasih kepada orang tua dan keluarga yang sangat kami cintai, yang selalu memberikan motivasi dan selalu berdoa atas setiap langkah kebenaran yang kami lakukan. Semoga laporan ini kelak bermanfaat untuk penulis maupun siapa saja yang membaca laporan ini.

Penulis menyadari bahwa dalam penyusunan laporan ini terdapat banyak kekurangan dan jauh dari sempurna serta menyadari bahwa laporan ini hanya merupakan sebagian kecil dari luasnya pengetahuan dalam algoritma regresi linier berganda. Oleh karena itu, segala bentuk masukan baik saran ataupun kritik yang berharga dari berbagai pihak untuk membangun kesempurnaan laporan ini sangat kami harapkan.

Terima kasih

Penulis

DAFTAR ISI

HALA	MAN PENGESAHAN	ii
HALA	MAN KETERLIBATAN MAHASISWA DALAM PENEL	ATIAN iii
ABSTI	RAK	iv
PRAK	ARTA	v
DAFT	AR ISI	vi
DAFT	AR TABEL	viii
DAFT	AR GAMBAR	ix
DAFT	AR LAMPIRAN	X
BAB I	PENDAHULUAN	1
1.1	Latar Belakang Penelitian	1
1.2	Identifikasi Masalah	2
1.3	Rancangan Hipotesis Penelitian	3
1.4	Ruang Lingkup Penelitian	3
1.5	Sistematika Penulisan	3
BAB II	I TINJAUAN PUSTAKA	5
2.1	State-of-The-Art	5
2.2	Tinjauan Pustaka	7
2.3	Taksonomi Literature Review	16
2.4	Machine Learning	17
2.	3.1 Mutivariate Linear Regression	19
2.	3.2 Random Forest Classifier	20
2.5	Statistika	21
2.	5.1 Simple Linear Regression	22
2.	5.2 Quantile Regression	23
2.6	Metode Evaluasi Model Machine Learning	24
2.0	6.1 Root Mean Square Error (RMSE)	24
2.0	6.2 Mean Square Error (MSE)	25
2.0	6.3 Mean Absolute Error (MAE)	25
2.0	6.4 OLS Regression (Uji Asumsi)	25
BAB II	II TUJUAN DAN MANFAAT	30
3.1	Tujuan dan Manfaat Penelitian	30

3.1	1.1 Tujuan Penelitian	30
3.1	.2 Manfaat Penelitian	31
BAB IV	METODE PENELITIAN	32
4.1	Diagram Alur Metodologi Penelitian	32
4.1	.1 Diagram Alur Utama	32
BAB V	HASIL DAN LUARAN YANG DICAPAI	34
5.1	Kegiatan dan Hasil Pelaksanaan	34
5.2	Luaran Yang Dicapai	36
5.3	Hasil Penelitian	38
BAB V	I KESIMPULAN DAN SARAN	54
5.1	Kesimpulan	54
5.2	Saran	54
DAFT	AR PUSTAKA	56
LAMP	IRAN-LAMPIRAN	61

DAFTAR TABEL

Tabel 2. 1 Penelitian Terkait	7
Tabel 2. 2 Klasifikasi Model berdasarkan SoTA	16
Tabel 4. 1 Penjelasan Diagram Alur Metodologi Penelitian	33
Tabel 5. 2 Luaran dan Target Capaian	38
Tabel 5. 3 Kumpulan Data Staf	39
Tabel 5. 4 Dataset Data Training	39
Tabel 5. 5 Dataset Data Testing	39
Tabel 5. 6 Atribut Dataset Data Training	40
Tabel 5. 7 Atribut Dataset Data Testing	41
Tabel 5. 8 Data Yang Sudah Ter-Encoder	43
Tabel 5. 9 Data Yang Sudah Terisi Dengan Mean	43
Tabel 5. 10 Data Dengan Variabel Yang Digunakan	45
Tabel 5. 11 Variabel Independen Data	46
Tabel 5. 12 Variabel Dependen Data	46
Tabel 5. 13 Evaluasi Model OLS	49
Tabel 5. 14 Nilai P-Values Dari Variabel Independen	50
Tabel 5. 15 Tabel VIF	52

DAFTAR GAMBAR

Gambar 2. 1 Taksonomi Studi Literatur	16
Gambar 2. 2 Visualisasi Classification dan Regression	18
Gambar 4. 1 Gambar Diagram Alur Metodologi Penelitian	32
Gambar 5. 1 Dataset Kepegawaian	35
Gambar 5. 2 Heatmap Correlation Dataset Data Training	44
Gambar 5. 3 Heatmap Correlation Dataset Data Testing	45
Gambar 5. 4 Visualisasi Penyebaran Data Training	47
Gambar 5. 5 Visualisasi Penyebaran Data Testing	47
Gambar 5. 6 Grafik Asumsi Linear	51
Gambar 5. 7 Grafik Distribusi Residual	51
Gambar 5. 8 Homoskedastisitas	53

DAFTAR LAMPIRAN

Lampiran 1 Susunan Organisasi Tim Peneliti dan Pembagian Tugas	61
Lampiran 2 Biodata Ketua dan Anggota Pengusul	62
Lampiran 3 Surat Pernyataan Bebas Plagiat Ketua Penelitian	71
Lampiran 4 Penggunaan Anggaran	72
Lampiran 5 Bukti Penerimaan Artikel Ilmiah (LOA) atau URL dan Sc	reenshoot
Halaman Jurnal yang Sudah Dipublikasi	73
Lampiran 6 Format Catatan Harian (Logbook)	74
Lampiran 7 Poster	76

BABI

PENDAHULUAN

1.1 Latar Belakang Penelitian

Kemajuan ilmu pengetahuan dan teknologi maju lebih cepat dari sebelumnya sepanjang revolusi industri. Revolusi Industri 4.0 mulai terwujud berkat internet of things yang berfungsi sebagai pusat komunikasi serta mobilitas manusia dan mesin.[1]. Akibatnya, teknologi digital dan internet bergabung dengan industri tradisional, dengan tujuan untuk meningkatkan produksi, efisiensi, dan layanan pelanggan[2]. Era revolusi ini akan mendisrupsi berbagai kegiatan diberbagai bidang seperti pada bidang teknologi, ekonomi, sosial, dan politik[1]. Kita berada di fase awal revolusi yang secara fundamental akan mengubah cara kita berkomunikasi, hidup, dan bekerja[3].

Salah satu dampak nyata dari masuknya revolusi industri 4.0 adalah perubahan karakteristik ketenagakerjaan[4]. Pekerjaan yang ada akan terganggu dan digantikan oleh pekerjaan dengan fitur baru ketika karakteristik pekerjaan berubah[5]. Sebagai akibat dari tuntutan pekerjaan yang meningkat, karyawan juga membutuhkan kemampuan baru[6]. Secara alami, bisnis harus siap bersaing dengan orang lain[7]. Selain itu, untuk dapat bersaing, bisnis perlu memiliki keunggulan dan manajemen yang efisien[7]. Dengan demikian, salah satu faktor yang secara signifikan mempengaruhi perkembangan dan keberhasilan perusahaan adalah pekerjaan personelnya[7]. Walaupun perusahaan tersebut memiliki teknologi yang canggih, namun tidak terdapat tenaga kerja didalamnya, perusahaan tidak akan dapat mencapai tujuannya[7].

Oleh karena itu, pengaturan kompensasi yang layak bagi karyawan merupakan salah satu elemen yang memiliki dampak internal terhadap perkembangan bisnis. Selain itu, bisnis harus siap untuk membayar kompensasi bonus kepada staf yang berkinerja baik dan sesuai dengan persyaratan bisnis. Sangat disayangkan, perkembangan perusahaan saat ini belum memliki suatu media keputusan untuk

melakukan dua prediksi gaji karyawan berdasarkan kualitas data. Berdasarkan hal tersebut, pentingnya studi ini, tidak hanya digunakan untuk penetapan gaji saja, tetapi juga menjadi studi terkait pemodelan prediksi penggajian secara umum dimasa yang akan datang. Urgensi pada penelitian ini adalah pemodelan yang dibuat dapat digunakan sebagai tools untuk menentukan gaji karyawan.

Karakteristik data yang digunakan terdiri dari umur, job level, total lama bekerja, masa bakti yang disebut faktor-faktor spesifik. Selanjutnya faktor-faktor tersebut akan diuji validitas dan korelasinya menggunakan pendekatan *machine learning*. Faktor-faktor tersebut akan diambil berdasarkan pedoman interpretasi koefisien korelasi [8]. Untuk menentukan faktor yang dominan terhadap prediksi gaji, maka koefisien korelasi yang akan digunakan adalah tingkat hubungan sedang, kuat, dan sangat kuat. Metode yang digunakan pada *machine learning* yaitu *regression. Regression* digunakan untuk melakukan prediksi gaji karyawan. Tentunya hasil prediksi gaji karyawan perlu divisualisasikan secara realtime untuk dapat digunakan oleh perusahaan dalam menentukan keputusan dengan cepat. Visualisasi hasil prediksi tersebut akan ditampilkan berbasis *web base* dengan *framework* Django. Tujuan luaran dari penelitian ini adalah menghasilkan jurnal nasional SINTA 3, HAKI, dan buku ber-ISBN yang dimanfaatkan sebagai sarana pembelajaran dan praktikum pada mata kuliah Database pada Program Studi Diploma 4 Teknik Informatika Universitas Logistik dan Bisnis Internasional.

1.2 Identifikasi Masalah

Masalah dalam penelitian ini diidentifikasi sebagai berikut.

- a) Bagaimana menganalisa karakterisik dan koelasi data terkait gaji karyawan?
- b) Bagaimana membuat model prediksi gaji karyawan berdasarkan kualitas data dengan mempertimbangkan faktor-faktor spesifik?
- c) Bagaimana merancang *framework* yang dinamis untuk menampilkan hasil prediksi gaji?

1.3 Rancangan Hipotesis Penelitian

Adapun rancangan hipotesis pada penelitian ini sebagai berikut.

Hipotesis penelitian/kerja:

H₀ : Tidak ada korelasi faktor-faktor spesifik untuk menentukan gaji karyawan.

H₁ : faktor-faktor spesifik mempunyai korelasi positif dan berpotensi menjadi faktor-faktor utama menentukan gaji karyawan.

1.4 Ruang Lingkup Penelitian

Berikut ini menjelaskan ruang lingkup penelitian.

- a) Data yang digunakan dalam penelitian ini berasal dari data karyawan di suatu perusahaan karena kondisi pandemi.
- b) Periode waktu 1 tahun.
- c) Bahasa pemograman menggunakan Python.
- d) Software yang digunakan Jupyter atau dan Google Colab.

1.5 Sistematika Penulisan

Penyusunan laporan yang cermat menjadi lima bab ini didasarkan pada sejarah dan rumusan masalah yang diangkat di atas, khususnya:

BAB I PENDAHULUAN

Bab ini berisi penjelasan terkait dengan *State-of-The-Art* yang menjelaskan mengenai pemaparan teori umum dengan topik yang dibahas secara global dan mengaitkan dengan referensi yang ada. Identifikasi masalah menjelaskan mengenai masalah dalam pemodelan berbasis data untuk memprediksi gaji berdasarkan faktor-faktor spesifik dengan pendekatan *machine learning* dan memberikan solusi atas masalah tersebut. Ruang lingkup menjelaskan mengenai batasan dalam pemodelan dan aplikasi tersebut. Serta sistematika penulisan menjelaskan tentang isi dari aplikasi tersebut.

BAB II LANDASAN TEORI

Bab ini berisi penjelasan mengenai konsep dasar dan pendukung dari sistem yang akan dibangun dengan menggunakan metode tertentu, antara lain *State-of-The-Art*,

diagram alur metodologi penelitian, dan penelitian sebelumnya yang berhubungan dengan tema yag di ambil.

BAB III TUJUAN DAN MANFAAT

Bab ini menjelaskan bagaimana memecahkan masalah saat ini dan keuntungan dari penelitian yang dilakukan.

BAB IV METODOLOGI PENELITIAN

Bab ini memberikan gambaran tentang flowchart metodologi penelitian serta tahapan-tahapan flowchart penelitian yang harus diselesaikan agar penelitian dapat diselesaikan dan menghasilkan hasil yang diinginkan.

BAB V HASIL DAN LUARAN YANG DICAPAI

Bab ini memberikan penjelasan tentang temuan dan kesimpulan yang diambil dari penelitian yang dilakukan.

BAB II

TINJAUAN PUSTAKA

2.1 State-of-The-Art

Revolusi industri keempat melihat kemajuan yang signifikan dalam ilmu pengetahuan. Kita mungkin melihat pergeseran cara kita hidup, bekerja, dan berinteraksi satu sama lain sebagai akibat dari Revolusi Industri 4.0 saat ini[3]. Transformasi lapangan kerja merupakan salah satu efek nyata dari masuknya Revolusi Industri 4.0[4]. Ciri-ciri pekerjaan baru akan mengganggu ciri-ciri pekerjaan lama[5]. Perusahaan tentunya harus memiliki keunggulan dan manajemen yang efisien jika ingin bersaing dengan bisnis lain[7]. Akibatnya, salah satu aspek internal yang mungkin berdampak adalah bagaimana perusahaan memutuskan untuk membayar personelnya. Sangat disayangkan, perkembangan perusahaan saat ini belum memiliki suatu media keputusan untuk melakukan prediksi gaji karyawan berdasarkan kualitas data. Banyak para peneliti yang telah berkontribusi dalam melakukan analisis untuk menghasilkan sebuah prediksi. Namun, di dalam suatu perusahaan pada umumnya sering terdapat perkembangan dan perubahan data kepegawaian, sehingga diperlukan teknik yang tepat agar dapat memodelkan kondisi untuk menghasilkan keputusan yang optimal. Pendekatan berbasis pembelajaran mesin semakin banyak digunakan di berbagai sektor untuk memodelkan atau mengantisipasi hal-hal seperti gaji dengan menghasilkan prediksi dan mengekstrak informasi dari data[8]. Pendekatan tersebut dapat dioptimalkan dengan memperhatikan faktor-faktor spesifik, yang meliputi umur, job level, total lama bekerja, dan masa bakti. Semakin banyak data relevan yang dilibatkan, luaran berupa kebijakan perusahaan yang dihasilkan akan semakin komprehensif. Banyak penelitian telah dilakukan untuk menilai efek dari faktor tunggal, sementara studi yang ditujukan untuk menilai efek dari berbagai faktor jarang dilakukan[9]. Pada penelitian sebelumnya, sumber informasi data yang relevan digunakan untuk melakukan prediksi gaji dengan satu faktor yaitu pengalaman lama bekerja. Untuk melakukan prediksi gaji pada perusahaan, tentunya diperlukan faktor-faktor lain untuk menghasilkan keputusan yang tepat. Sehingga diperlukan berbagai faktor

yang terlibat dalam memodelkan prediksi gaji karyawan agar hasil keputusan dari prediksi tersebut semakin relevan. Regresi linier adalah model algoritma analisis statistik yang melatih kumpulan data dengan fungsi linier untuk menganalisis dan menghitung risiko sistemik[10]. Hasil dari model ini dapat digunakan untuk merekomendasikan studi tambahan bagi akademisi. Penelitian ini menggunakan teknik regresi linier multivariat untuk melakukan proses pemilihan data berdasarkan kriteria yang dipilih, dengan penekanan pada kebijakan dalam menentukan pemilihan remunerasi karyawan di suatu perusahaan berdasarkan faktor-faktor tertentu. Karena penting untuk mempertimbangkan pemilihan variabel dalam analisis multivariat[11]. Selain itu, hasil prediksi gaji karyawan perlu divisualisasikan secara realtime untuk dapat digunakan oleh perusahaan dalam menentukan keputusan dengan cepat. Visualisasi hasil prediksi tersebut akan ditampilkan berbasis web base dengan framework Django.

Tim peneliti telah mempelajari banyak referensi tentang kemajuan teknologi pada revolusi industri 4.0 yang dapat mengubah karakteristik kerja serta pemodelan prediksi pembelajaran mesin[3]-[7]. Selain itu, terkait dengan kajian literatur terkait dalam melakukan prediksi, faktor-faktor apa saja yang mempengaruhi dan model *machine learning* yang digunakan [13]- [34]. Lebih lanjut, detail dari tiap referensi lainnya ditunjukkan pada tabel.

2.2 Tinjauan Pustaka

Tabel 2. 1 Penelitian Terkait

No.	Area	Tahun	Karakteristik	Metode	Model	Hasil Penelitian		Eval	luasi	
110.	Penelitian	Tanun	Data	Wictouc	1110461	Hasii i Chentian	RMSE	MSE	MAE	ACC
1.	Penentu Gaji	2020	Data survey	Statistika	Multiple	Analisis dan prediksi				
	untuk dokter		Dokter Hewan.		Regression	berdasarkan data survey	_	_	_	0,42
	hewan[12].					dokter hewan dengan model				0,42
						multiple regression.				
2.	Penentu	2022	Data kuesioner	Statistika	Multivariate	Analisis dan prediksi				
	kepuasan		ahli gizi.		Regression	berdasarkan data kuesioner				
	kerja ahli gizi					ahli gizi dengan model	-	-	-	0,80
	di					multivariate regression.				
	Yordania[14]									
3.	Prediksi gaji	2004	Data siswa	Statistika	Regresi OLS	Analisis dan prediksi				
	siswa empat		pendidikan			berdasarkan data siswa				
	tahun		tinggi tahun			pendidikan tinggi tahun 1991	-	-	-	-
	kemudian		1991.			dengan model regresi OLS.				
	[15].									

4.	Prediksi	2018	Data pelanggan	Statistika	Multivariate	Prediksi berdasarkan data				
	utama gaji		global		Regression	pelanggan dengan model				
	tahunan		HealthEconom			regresi multivariat.				
	untuk		ics.com.							
	ekonomi									
	kesehatan,						-	-	-	-
	penelitian									
	hasil, dan									
	professional									
	akses									
	pasar[16].									
5.	Analisis	2022	Data	Statistika	Regresi Logistik	Analisis kontrak gaji terbaik				
	kontrak		ketenagakerja-			menggunakan model regresi				
	terbaik dan		an			logistik menghasilkan gaji				
	gaji					rata-rata kontrak standar lebih	-	-	-	-
	tertinggi[17].					tinggi, dan pengalaman lebih				
						utama dibandingkan				
						pendidikan.				

6.	Analisis	2021	Data	sensus	Statistika	Logarithmic	Analisis data dari survey				
	tingkat		Ameril	ĸa		Regressions	komunitas Amerika				
	kompetitif		Serikat	2012-			menunjukkan bahwa				
	gaji guru[18].		2016.				besarnya perbedaan gaji guru	-	_	-	-
							meningkat dari waktu ke				
							waktu.				
7.	Analisis gaji	2021	Data	Schools	Statistika	Quantile	Variasi gaji antara distrik				
	dan bakat		and	Staffing		Regression	sekolah yang				
	guru[19].		Survey	,			berdekatan menunjukkan	-	-	-	0,90
			(SASS).			bahwa bakat guru berkorelasi				
							positif dengan gaji guru.				
8.	Prediksi gaji	2022	Data	survey	Machine	Regresi Linier	Analisis dan prediksi gaji				
	karyawan		dari	Google	Learning		karyawan berdasarkan				
	berdasarkan		Form.				pengalaman lama bekerja.	-	-	2,051	-
	pengalaman										
	bekerja[20].										
9.	Analisis dan	2018	Data re	ekap gaji	Machine	K-Means	Analisis dan prediksi dalam				
	penerapan		karyaw	an tetap	Learning	Clustering.	menentukan gaji karyawan	-	-	-	-
	data mining		dan k	aryawan			tetap dan kontrak pada PT.				

	untuk		kontrak	PT.			Indomex Dwijaya Lestari				
	menentukan		Indomex				dengan model K-Means				
	gaji		Dwijaya				Clustering.				
	karyawan		Lestari.								
	[21].										
10.	Prediksi gaji	2021	Data s	survey	Statistika	Regresi	Analisis dan prediksi gaji				
	dengan		penelitan	785		Multivariat.	karyawan dengan metode				
	mengguna-		subjek.				regresi multivariat.				
	kan										0,33
	kemampuan							-	-	-	0,33
	kecerdasan										
	emosional										
	[22]										
11.	Prediksi gaji	2020	Data kary	yawan	Machine	Regresi Linear,	Prediksi gaji karyawan				
	setelah tahun		dari		Learning	Regresi	dengan metode regresi linear	-	-	-	-
	tertentu[23].		perusahaa	ın.		Polinomial	dan regresi polinomial.				
12.	Analisis	2020	Dataset	gaji	Machine	Multiple Linear	Prediksi gaji karyawan dan		29045		
	empiris		pegawai	dan	Learning	Regression	harga rumah dengan model	1704,3	23,3	1410,9	0,92
	teknik regresi		harga run	nah.			multiple linear regression.		23,3		

	dengan harga									
	rumah dan									
	prediksi									
	gaji[24].									
13.	Prediksi gaji	2015	Data gaji dan	Machine	Simple Linear	Prediksi gaji karyawan dari				
	dalam		lama	Learning	Regression	lama pengalaman bekerja				
	penerapan		pengalaman			dengan model simple linear				
	model regresi		bekerja.			regression.	-	-	-	-
	dalam Data									
	Mining[25].									
14.	Analisis dan	2011	Data 250	Statistika	Simple	Prediksi kepuasan bekerja				
	Prediksi		karyawan staf-		Regression	dengan metode statistika				
	Kepuasan		manajerial dan			model simple regression.				
	Gaji dalam		non-				-	-	-	0,915
	Organisasi		manajerial.							
	Negeri dan									
	Swasta[26].									
15.	Perancangan	2022	Data dari	Machine	Linear	Perancangan sistem prediksi				
	sistem		database	Learning,	regression,	kenaikan gaji berbasis	-	_	-	-

	berbasis		Enterprise		Deep	artificial neural	machine learning dengan				
	machine		Resource		Learning	networks,	menggunakan arsitektur				
	learning		Planning			random forest	micro-services.				
	untuk		(ERP)			regression					
	prediksi										
	kenaikan										
	gaji[27]										
16.	Implementasi	2016	13.541	data .	Machine	K-NN	Prediksi gaji model K-NN	-	-	-	0,847
	sistem		mahasiswa		Learning	Naïve Bayes	memberikan akurasi terbaik			_	0.10.5
	prediksi gaji		yang lı	ulus		Naive Bayes	sebesar 84,69% sedangkan	_	_	_	0,436
	untuk		dengan			Decision trees	Multilayer Perceptron	-	-	-	0,74
	meningkat-		gajinya.			Multilayer	memberikan akurasi terendah	_	-	_	
	kan motivasi					perceptron	sebesar 38,08%.				0,381
	siswa[28].					SVM		_	_	_	0.427
						~ , .,.					0,437
17.		2020			,	Linear models		-	ı	-	0,586

	Prediksi gaji		Data e-	Machine	Logistic	Prediksi kisaran gaji yang	-	-	-	0,792
	di pasar kerja		Recruitment	Learning	regression	akurat dengan menggunakan				0,772
	TI [29].		khusus untuk		KNN	model random forest secara	-	-	-	0,591
			pekerjaan TI di		Multi-layer	umum lebih baik dengan	-	-	-	0.662
			Spanyol.		perceptrons	menghasilkan akurasi 84%.				0,663
					SVM		-	-	-	0,836
					Random forest		-	-	-	0,840
					Vote		-	-	-	0,844
					Vote3		-	-	-	0,837
18.	Analisis	2022	Data	Machine	Logistic	Prediksi gaji dengan model	-	-	-	
	prediktif gaji		ketenagakerja-	Learning	Regression	Support Vector Machine yang				0,79
	sumber daya		an			lebih akurat dibandingkan				
	manusia[30]				Support Vector	dengan Logistic Regression.		_	-	
					Machine					0.92
					Machine					0,83
19.	Desain mesin	2018	Data	Machine	Decision tree	Memprediksi gaji yang sesuai	-	389.64	6,04	0,844
	prediksi baru		kepegawaian	Learning	classifier	untuk suatu pekerjaan dengan			.	,,,,,,,

	untuk					Random forest	metode Decision	tree	-			
	memprediksi					classifier	classifier dan Randor	m forest		329.12	5,04	0,873
	gaji[31]						classifier.					
20.	Analisis	2022	Data su	vei M	Machine	Quantile	Memprediksi pen	dapatan	50,431.	-	-	0,44
	prediktif		studi dam	pak L	Learning	Regression	alumni untuk mend	lapatkan	45			0,44
	untuk		alumni			Quantile	wawasan tentang p	rediktor	47,325.	-	-	0,51
	pendapatan		Universitas			Random Forest	terkuat dan	kelas	67			0,31
	alumni[32]		Tecnolog	ico		Quantile	'berpenghasilan	tinggi'		-	-	
			de Monterre	у		Gradient	menggunakan	metode	45,892.			0,38
						Boosting	Quantile Regression ((QR)	69			
						Linear				-	-	0.49
						Regression			-			0,48
						Random Forest			-	-	-	0,50
						CLassifier						0,50
						Gradient			-	-	-	
						Boosting						0,53
						Classifier						

21.	Komputasi	2021	Data biomedis		Mmenyediakan layanan yang mampu menangani dan memproses
	cloud untuk				data biomedis melalui <i>code-free interface</i> dengan <i>framework</i> Django.
	fasilitas			Engan ayank Digas a	
	sinyal digital			Framework Django	
	biomedis.				
	[33]				
22.	Aplikasi web	2021	Data klinis		Model machine learning di-deploy menjadi aplikasi web
	prediksi		penyakit	Framework Django	dikembangkan untuk memprediksi diabetes yang sesuai.
	diabetes [34]		diabetes		
23.	Deployment	2021	Dataset <i>x-ray</i>		Klasifikasi penyakit paru-paru mengguanakan model CNN di-deploy
	klasifikasi		tubuh bagian		ke dalam framework django untuk menyediakan antarmuka pengguna
	penyakit		atas untuk	E 1.D.	yang lebih baik untuk memprediksi <i>output</i> .
	paru-paru		Covid-19,	Framework Django	
	[13]		Pneumonia,		
			dan <i>Normal</i> .		

2.3 Taksonomi Literature Review

Gambar 2. 1 Taksonomi Studi Literatur

Penjelasan dari gambar 2.1 taksonomi studi literatur dari kumpulan penelitian-penelitian sebelumnya dan yang berkaitan dengan permasalahan dalam penelitian ini dijelaskan dari referensi [12 – 31] bahwa pendekatan *machine learning* dapat digunakan untuk memprediksi untuk digunakan dalam membuat model berdasarkan kualitas data tersebut. Adapun pendekatan *machine learning* yang memiliki akurasi terbaik yaitu:

Tabel 2. 2 Klasifikasi Model berdasarkan SoTA

No	Pendekatan	Nilai Akurasi
1.	Mulivariate Linear Regression [24]	92%
2.	Simple Linear Regression [26]	91,5%
3.	Quantile Regression [19]	90%
4.	Random Forest Classifier [31]	87,3%

Langkah selanjutnya yaitu membandingkan kinerja dari beberapa model machine learning dalam memprediksi gaji karyawan. Ada beberapa parameter yang dipilih sebagai pengukur kinerja machine learning, yaitu Root Means Squared Error (RMSE), Mean Absolute Error (MAE), Mean Standard Error (MSE) dan R² Koefisien Determinasi (R2). Kemudian, ada beberapa model machine learning yang dirangkum dari referensi, yaitu Multivariate Regression Modelling dengan nilai akurasi 92%, Simple Linear Regression dengan nilai akurasi 91,5%, Quantile Regression dengan nilai akurasi 90%, dan Random Forest Classifier dengan akurasi

87,3%. Secara keseluruhan, model-model ini mampu mengidentifikasi parameter pembelajaran yang mempengaruhi perbedaan dalam memprediksi gaji karyawan. Namun berdasarkan model evaluasi yang digunakan sebagai parameter kinerja machine learning, *Multivariate Regression Modelling* menjadi salah satu pilihan yang tepat untuk memprediksi gaji karyawan.

Selain itu, berdasarkan studi literatur dari kumpulan penelitian-penelitian sebelumnya, dimana permasalahan berupa visualisasi menggunakan *framework* django dapat dijelaskan dari referensi [32 – 34] bahwa dengan penggunaan bantuan *framework* Django, kegiatan untuk melakukan keputusan dapat lebih mudah dilakukan tanpa harus menggunakan pengkodean, tetapi hanya dengan mengakses *web base* yang mudah dimengerti.

2.4 Machine Learning

Tujuan dari *machine learning* adalah untuk menciptakan sistem yang dapat belajar sendiri tanpa perlu terus menerus dilatih oleh manusia. *Machine Learning* adalah subbidang kecerdasan buatan yang berfokus pada pembelajaran dari data (*learn from data*). Sebelum menggunakannya untuk mengevaluasi hasil keluaran terbaik, pembelajaran mesin harus diberikan data yang dapat diandalkan untuk digunakan sebagai bahan pembelajaran.[35]. Model *machine learning* pada umumnya dibagi menjadi tiga kategori, yaitu:

- 1. Supervised Learning
- 2. Unsupervised Learning
- 3. Reinforcement Learning

Pada penelitian ini, model *machine learning* yang digunakan adalah *supervised learning regression*. Supervised learning adalah metode *machine learning* yang membutuhkan pembelajaran fungsi yang sesuai denagn pasangan input nilai dengan output. Supervised learning mengekstrak pengetahuan dari data training berlabel dan setiap pasangan input dengan nilai berlabel[36]. Supervised learning membutuhkan data berlabel untuk membangun sebuah model. Dalam supervised learning, ada dua variabel: variabel independen, juga dikenal sebagai variabel X,

dan variabel dependen, sering dikenal sebagai variabel Y. Y = f adalah rumus yang digunakan untuk memetakan variabel X dan Y dalam banyak kasus (X). Untuk meramalkan variabel Y ketika menerima data masukan baru, fungsi pemetaan (f) diperkirakan menggunakan rumus metode pembelajaran terawasi ini (variabel X)..

Gambar 2. 2 Visualisasi Classification dan Regression

Supervised learning dibagi menjadi dua jenis, yaitu:

- 1. Klasifikasi (*Classification*): mengklasifikasikan *train data* ke dalam kategori tertentu dengan benar menggunakan *supervised learning*. Jenis ini dapat mengidentifikasi entitas tertentu dalam data dan membuat kesimpulan tentang bagaimana hal-hal itu harus dijelaskan atau diberi label..
- 2. Regresi (*Regression*): memahami hubungan antara variabel dependen dan variabel independen melalui *supervised learning*. Biasanya, prediksi dibuat menggunakan bentuk regresi *supervised learning* ini.

Supervised learning mendeteksi pola dalam data training dan menghasilkan fungsi yang dapat memprediksi pasangan input baru atau pengamatan yang tidak pernah terlihat. Algoritma tersebut dapat menggeneralisasikan fungsi untuk memprediksi secara akurat. Algoritma supervised learning menerapkan langkahlangkah sebagai berikut:

- 1. Mengumpulkan data dan sumber data yang relevan.
- 2. Memproses data dengan mengisi nilai-nilai yang *miss*, menormalkan data, dan menghapus data.

- 3. Menentukan jenis variabel target.
- 4. Memisahkan data (train data dan test data).
- 5. Melatih model *machine learning*.
- 6. Memprediksi.

Berikut model machine learning yang digunakan dalam penelitian ini:

2.3.1 Mutivariate Linear Regression

Pendekatan regresi yang dikenal sebagai regresi linier multivariat menggambarkan hubungan antara variabel respon (variabel dependen) dan variabel yang berdampak pada beberapa prediktor (variabel independen)[37]. Regresi linier adalah metode terbaik untuk digunakan ketika hasil, kelas, atau atribut numerik dan semua atribut numerik.

Pendekatan statistik utama adalah yang satu ini. Tujuannya adalah menggunakan rumus berikut untuk merepresentasikan kelas sebagai kombinasi linier kualitas dengan bobot yang telah ditentukan sebelumnya:

$$y = a + b_1 X_1 + b_2 X_2 + \dots + b_n X_n \tag{1}$$

Keterangan:

y = Variabel dependen

X = Variabel independen

a = Konstanta

b = Koefisien regresi

Dimana $a, b_1, b_2, \dots b_n$ dihitung dengan metode persamaan sebagai berikut:

$$\sum y = a_n + b_1 \sum X_1 + b_2 \sum X_2 \tag{2}$$

$$\sum X_1 y = a \sum X_1 + b_1 \sum X_1 X_2 + b_2 \sum X_1 X_2$$
 (3)

$$\sum X_2 y = a \sum X_2 + b_1 \sum X_1 X_2 + b_2 \sum X_2 \tag{4}$$

Nilai 1, b_1 , b_2 , ... b_n juga dapat ditentukan dengan menggunakan pendekatan kuadran terkecil selain persamaan normal sebelumnya, yaitu :

$$b_1 = \frac{(\sum X_2^2)(\sum X_1 y) - (\sum X_2 y)(\sum X_1 X_2)}{(\sum X_1^2)(\sum X_2^2) - (\sum X_1 X_2)^2}$$
(5)

$$b_2 = \frac{(\sum X_1^2)(\sum X_2 y) - (\sum X_1 y)(\sum X_1 X_2)}{(\sum X_1^2)(\sum X_2^2) - (\sum X_1 X_2)^2}$$
(6)

$$a = \frac{\sum y - (b_1 \sum X_1) - (b_2 \sum X_2)}{n}$$
 (7)

Dimana:

$$\sum X_1^2 = \sum X_1^2 - \frac{(\sum X_2)^2}{n} \tag{8}$$

$$\sum X_2^2 = \sum X_2^2 - \frac{(\sum X_2)^2}{n}$$
 (9)

$$\sum X_1 X_2 = \sum X_1 X_2 - \frac{(\sum X_1)(\sum X_2)}{n}$$
 (10)

$$\sum X_1 y = \sum X_1 y - \frac{(\sum X_1)(\sum y)}{n}$$
 (11)

$$\sum X_2 y = \sum X_1 y - \frac{(\sum X_2)(\sum y)}{n}$$
 (12)

$$\sum y^2 = \sum y^2 - \frac{(\sum y)^2}{n} \tag{13}$$

2.3.2 Random Forest Classifier

Salah satu strategi *Decision Tree* adalah pendekatan *Random Forest*. Setiap pohon yang menguntungkan diintegrasikan ke dalam satu model dengan menggunakan hutan acak. Setiap pohon keputusan dalam hutan acak memiliki kedalaman maksimum dan bergantung pada nilai vektor acak dengan distribusi yang sama pada semua pohon. *Random forest* adalah pengklasifikasi yang mengambil bentuk pohon dimana setiap *tree* dalam suatu unit memilih input kelas yang paling umum θk dan dimana $\{h(x, \theta k), k = 1, ...\}$ adalah vektor acak yang didistribusikan secara independen. Karakteristik akurasi *random forest* adalah sebagai berikut.

a. Pusat random forest

Satu set pelatihan untuk pengklasifikasi h1(x), h2(x), ..., hk(x) berasal dari distribusi vektor acak dari variabel Y, X. Fungsi selanjutnya dibuat.

$$mg(X,Y) = av_k I(h_k(X) = Y) - \max_{j \neq Y} av_k I(h_k(X) = j)$$
 (14)

Fungsi untuk kesalahan.

$$PE^* = P_{XY}(mg(X,Y) < 0)$$
 (15)

Hasil dari menggabungkan banyak fungsi.

$$P_{X,Y}(P_{\Theta}(h(X,\Theta) = Y) - \max_{i \neq Y} P_{\Theta}(h(X,\Theta) = j) < 0)$$
 (16)

Temuan ini menjelaskan mengapa menambahkan *tree* ke *random forest* mencegahnya dari *overfitting* dan sebagai gantinya menghasilkan nilai yang hanya akurat untuk kesalahan.

b. Korelasi dan kekuatan

Hasilnya adalah fungsi.

$$PE^* \le \sum_{i} var(P_{\Theta}(h(X, \Theta) = Y) - P_{\Theta}(h(X, \Theta) = j))S_i^2$$
 (17)

Kekuatan tidak tergantung pada hutan dalam fungsi ini.

c. Random Forest memilih input secara acak

Untuk pemilihan fitur secara acak, bagging digunakan. Penggantian setiap training set diambil dari *training set* pertama. Set pelatihan kemudian ditanam dengan pohon menggunakan pemilihan fitur acak. Untuk meningkatkan akurasi saat fitur acak digunakan, bagging awalnya digunakan untuk tujuan ini. Kesalahan generalisasi pohon gabungan (PE*) dan perkiraan kekuatan dan korelasinya dihitung menggunakan hasil bagging kedua. Sejumlah terbatas variabel *input* umum dipilih secara acak pada setiap *node* untuk membuat *random forest* paling dasar dengan karakteristik acak. membentuk pohon dengan ukuran sebesar mungkin menggunakan pendekatan CART.

d. *Input* yang digunakan oleh *random forest*

Jika ada beberapa input (M, F), mengambil proporsi dalam M akan menghasilkan peningkatan kekuatan tetapi korelasi tinggi. Definisi fitur tambahan menggunakan kombinasi acak linier dari sejumlah variabel input menghasilkan metode yang berbeda. Variabel L, yang mewakili jumlah variabel, adalah karakteristik. Koefisien dengan bilangan acak [-1, 1] ditambahkan dengan variabel L, yang dipilih secara acak. Ini menghasilkan kombinasi linier F. Proses ini disebut sebagai *Forest*-RC[38].

2.5 Statistika

Statistik adalah bidang studi yang berfokus pada pengumpulan, menafsirkan, dan mewakili set data numerik (angka). Statistik juga berkaitan dengan organisasi, analisis, interpretasi, dan penyajian data yang seting digunakan pada maslaah ilmiah, industry, atau social. Statistik berkaitan dengan berbagai metode, salah satunya yaitu regresi. Regresi adalah metode statistik untuk mencari tahu hubungan antara satu atau lebih variabel independen dan dependen. Metode ini juga dapat digunakan untuk menilai kemanjuran hubungan antara variabel dan proyeksi masa depan[39]. Model statistik yang digunakan dalam penelitian ini adalah sebagai berikut:

2.5.1 Simple Linear Regression

Regresi linier sederhana adalah teknik paling sederhana untuk memodelkan hubungan antara satu variabel terikat dan satu variabel bebas. Regresi adalah proses menggunakan variabel independen untuk menjelaskan variabel dependen. Karena hubungan antarvariabel dalam analisis regresi sederhana bersifat linier, maka perubahan variabel X seringkali bersamaan dengan perubahan variabel Y. Namun, pada hubungan non-linier, perubahan variabel X tidak secara proporsional diikuti oleh perubahan variabel Y. Berikut ini adalah model sederhana untuk analisis regresi linier:

$$Y = a + bx \tag{18}$$

Keterangan:

Y =Variabel Dependen

a = Konstanta

b = Koefisien Regresi

Regresi linier sederhana memiliki tiga bagian: an adalah intersep, b adalah kemiringan, dan x adalah indeks waktu. Untuk menentukan nilai a dan b, gunakan persamaan:

$$b = \frac{n(\sum XY) - (\sum X)(\sum Y)}{n(\sum X^2) - (\sum X)^2}$$

$$a = \frac{\sum Y - b \sum X}{n}$$
(20)

Berikut adalah tahapan pendekatan yang disarankan berdasarkan regresi linier dasar :

- a. Pembuatan dataset.
- b. Pembentukan model regresi linier.

Berikut ini adalah langkah-langkah untuk membuat model:

- 1. Hitung X^2 , Y^2 , XY dan jumlah masing-masing.
- 2. Hitung a dan b masing-masing menggunakan persamaan (2) dan (3).
- 3. Buatkan model persamaan dasar persamaan regresi linear.
- 4. Memprediksi atau meramalkan variabel-variabel yang mewakili faktor-faktor penyebab atau variabel-variabel akibat[40].

2.5.2 Quantile Regression

Kuantil adalah titik distribusi yang mewakili peringkat nilai dalam distribusi. Metode *quantile regression* memungkinkan pemahaman hubungan antar variabel di luar rata-rata data, sehingga berguna dalam memahami hasil yang tidak terdistribusi secara normal dan yang memiliki hubungan *non-linear* dengan variabel prediktor. *Quantile Regression* memungkinkan analis untuk berasumsi bahwa variabel beroperasi sama di ekor atas distribusi seperti pada rata-rata dan untuk mengidentifikasi faktor-faktor yang merupakan penentu penting variabel. *Quantile Regression* digunakan ketika:

- a. Untuk memperkirakan median, atau kuantil 0,25 atau kuantil apapun.
- b. Asumsi kunci regresi linier tidak terpenuhi
- c. Outlier dalam data
- d. Residu tidak normal
- e. Peningkatan varians kesalahan dengan peningkatan variabel hasil

Berikut adalah model *linear regression*:

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$
 (21)

Garis *linear regression* terbaik ditemukan dengan meminimalkan kesalahan kuadrat rata-rata.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}))^2$$
 (22)

Persamaan model *Quantile Regression* untuk kuantil ke- τ adalah.

$$Q_{\tau}(y_i) = \beta_0(\tau) + \beta_1(\tau)x_{i1} + \dots + \beta_n(\tau)x_{in}$$
 (23)

Dimana p adalah jumlah variabel regressor, n adalah jumlah titik data. Garis regresi kuantil terbaik ditemukan dengan minimalkan dengan meminimalkan penyimpangan absolut median.

$$MAD = \frac{1}{n} \sum_{i=1}^{n} \rho_{\tau} (y_i - (\beta_0(\tau) + \beta_1 x_{i1}(\tau) + \dots + \beta_p(\tau) x_{ip}))$$
 (24)

Di sini fungsi ρ adalah fungsi cek yang memberikan bobot asimetris pada kesalahan tergantung pada kuantil dan tanda keseluruhan kesalahan. Secara matematis, ρ mengambil bentuk[41]:

$$\rho_{\tau}(u) = \tau \max(u, 0) + (1 - \tau) \max(-u, 0) \tag{25}$$

2.6 Metode Evaluasi Model Machine Learning

Efektivitas model pembelajaran mesin dalam peramalan dievaluasi. Dengan memeriksa nilai kesalahan yang ditemukan dalam model prediksi, model ini dinilai. *Root Mean Square Error* (RMSE), *Mean Square Error* (MSE), dan *Mean Absolute Error* merupakan tiga faktor perhitungan untuk melihat nilai *error* (MAE). Spesifiknya ditunjukkan di bawah ini:

2.6.1 Root Mean Square Error (RMSE)

Teknik pengukuran yang disebut *Root Mean Square Error* (RMSE) memperkirakan nilai yang diamati dengan membandingkannya dengan nilai yang diantisipasi dari suatu model. Pendekatan estimasi akar dengan mean square error (RMSE) kurang dari 0,5 dianggap lebih akurat. Rumus RMSE ditunjukkan di bawah ini[42]:

$$RMSE = \sqrt{\sum \frac{(Y'-Y)^2}{n}}$$
 (26)

Keterangan:

Y' = Nilai Prediksi

Y = Nilai Sebenarnya

n = Jumlah Data

2.6.2 Mean Square Error (MSE)

Kesalahan kuadrat rata-rata adalah perbedaan antara nilai aktual dan nilai yang diproyeksikan dalam rumus kuadrat rata-rata (MSE). Teknik MSE biasanya digunakan untuk menentukan nilai kesalahan peramalan yang diantisipasi. Temuan peramalan konsisten dengan data nyata dan dapat diterapkan untuk memprediksi perhitungan untuk periode mendatang ketika nilai MSE rendah atau mendekati nol[42].

$$MSE = \sum \frac{(Y'-Y)^2}{n} \tag{27}$$

Keterangan:

Y' = Nilai Prediksi

Y = Nilai Sebenarnya

n = Jumlah Data

2.6.3 Mean Absolute Error (MAE)

Model evaluasi yang disebut *mean absolute error* (MAE) menampilkan kesalahan rata-rata, atau perbedaan antara nilai aktual dan nilai yang diantisipasi. Semakin akurat model dalam membuat prediksi, semakin rendah angka MAE yang harus dimiliki. Rumus MAE terlihat seperti ini[43]:

$$MAE = \sum_{n} \frac{|Y'-Y|}{n}$$
 (28)

Keterangan:

Y' = Nilai Prediksi

Y = Nilai Sebenarnya

n = Jumlah Data

2.6.4 *OLS Regression* (Uji Asumsi)

Regresi adalah metode penelitian yang kuat yang dapat memeriksa banyak variabel sekaligus dan memberikan jawaban atas masalah penelitian yang menantang. Pada dasarnya, jika hasilnya cocok dengan Ordinary Leat Square, dapat

dikatakan yakin terhadap OLS. Asumsi model regresi dapat diperiksa dengan menggunakan analisis Uji Asumsi. OLS mengandaikan bahwa variabel memiliki hubungan linier satu sama lain. OLS bukanlah teknik yang baik untuk analisis penelitian jika hubungannya tidak linier. OLS sering digunakan untuk memperkirakan berbagai parameter hubungan fungsional [44][45].

2.6.4.1 Uji Linearitas

Salah satu uji hipotesis tradisional adalah uji linieritas, yang digunakan untuk memastikan apakah distribusi data antara variabel X dan Y linier. Sangat penting untuk memahami bagaimana linearitas hubungan X dan Y mempengaruhi tingkat validitas model regresi. Ini dapat ditemukan dengan memeriksa distribusi data pada sumber diagonal grafik. Model regresi normal dan sesuai untuk digunakan dalam memprediksi variabel bebas dan sebaliknya jika menyebar dan mengikuti garis diagonal[46].

2.6.4.2 Uji Normalitas

Uji normalitas digunakan untuk menentukan apakah suatu kumpulan data atau distribusi data variabel terdistribusi normal atau tidak. Pengujian ini akan menunjukkan apakah nilai residual berdistribusi normal atau tidak. Regresi dengan nilai residual yang terdistribusi secara teratur merupakan model regresi yang baik. Ini dapat ditemukan dengan menggunakan distribusi data grafik pada sumber diagonal sebagai dasar untuk penilaian[47]. Dimungkinkan untuk mengevaluasi apakah residu terdistribusi normal dengan memasukkannya ke dalam histogram, memeriksa nilai-p dan uji normalitas Anderson-Darling, dan membandingkannya dengan batas 0,05. Nilai p dihitung menggunakan fungsi ad() normal dari statsmodel. Jika nilai p yang dihasilkan melebihi cutoff, residu dapat dianggap terdistribusi secara teratur. Jika nilai p yang dihasilkan jatuh di bawah cutoff, residual mungkin dianggap tidak terdistribusi normal.

Dapat diketahui hipotesa sebagai berikut :

- a. H0 = Residual terdistribusi normal.
- b. H1 = Residual terdistribusi secara tidak normal.

2.6.4.3 Uji-t

Untuk memastikan bagaimana setiap variabel independen mempengaruhi variabel dependennya sendiri, digunakan uji-t, yang juga dikenal sebagai uji parsial. Nilai p, seperti uji-F, menunjukkan kemungkinan mengamati hasil ekstrem yang serupa dengan yang diprediksi oleh model. Dengan menerapkan properti.pvalues pada model, uji-t tambahan dapat memperoleh nilai-p untuk semua variabel[46].

Hipotesa yang dapat diambil adalah:

- a. H0 = Variabel independen tidak berpengaruh signifikan
- b. H1 = Variabel independen berpengaruh signifikan.
- c. $\alpha = 0.05$ (Taraf signifikansi)

2.6.4.4 Koefisien Determinas (*R-Square*)

Pengukuran yang digunakan untuk menentukan seberapa besar kontribusi variabel X terhadap hasil Y adalah analisis koefisien determinasi (*R-Square*). Analisis ini digunakan untuk menghitung proporsi pengaruh variabel independen terhadap variabel dependen secara bersamaan[46].

2.6.4.5 Uji F-(ANOVA)

Uji F, juga dikenal sebagai uji Model atau uji Anova. Ini adalah tes untuk menentukan dampak gabungan dari semua faktor independen pada variabel dependen. Uij-F memungkinkan seseorang untuk mengevaluasi penerapan pemodelan dengan menghitung probabilitas pengamatan statistik-F yang setidaknya setinggi nilai yang dicapai oleh model bawaan. Properti .fvalues dan.f pvalues dari model yang dikembangkan dapat diakses untuk mendapatkan statistik F dan probabilitasnya, seperti halnya skor R2.

Fs adalah hasil akhir dari analisis ANOVA. Nilai p dikontraskan dengan nilai Fs ini, juga dikenal sebagai F yang dihitung dalam uji hipotesis. Dapat disimpulkan bahwa baik variabel bebas maupun variabel terikat memiliki pengaruh yang signifikan terhadap permintaan secara bersamaan jika Fs melebihi nilai P. Tabel ANOVA tersebut di atas memberikan kesimpulan sebagai berikut :

- a. H0 = Variabel independen tidak dapat sepenuhnya menjelaskan variabel dependen (Model tidak cocok).
- b. H1 = Variabel dependen dijelaskan secara signifikan oleh variabel independen secara bersamaan (Model fit)[46].

2.6.4.6 Uji Multikolinearitas

Ketika variabel independen dalam model regresi memiliki hubungan linier yang sempurna atau hampir sempurna, ini disebut sebagai multikolinearitas. Jika terdapat fungsi linier yang sempurna pada beberapa atau semua variabel bebas dalam fungsi linier tersebut, maka model regresi dikatakan memiliki multikolinearitas. Uji multikolinearitas dilakukan untuk mengetahui apakah variabel independen dalam model regresi saling berhubungan. Apakah semua atau sebagian variabel yang digunakan untuk mengkarakterisasi model regresi linier sudah sempurna ditentukan dengan uji multikolinearitas. Pengujian ini dapat dihitung dengan melihat nilai toleransi dan nilai *variance inflation factor* (VIF). Menghitung faktor inflasi varians, atau VIF, adalah cara pengujian dilakukan. Jika nilainya terpusat, gunakan VIF (*Variance Inflation Factor*). Toleransi model regresi dan parameter *variance inflation factor* (VIF) dapat diuji. Variabel berikut diperhitungkan ketika uji multikolinearitas memberikan penilaian.:

- a. Jika angka VIF kurang dari 10 atau nilai toleransi lebih besar dari 0,01 dikatakan tidak ada multikolinearitas.
- b. Jika nilai VIF atau nilai toleransi lebih dari 10 atau kurang dari 0,01, multikolinearitas dinyatakan[46]

2.6.4.7 Uji Autokorelasi

Ketika residual dari periode t dan periode sebelumnya memiliki korelasi dalam model regresi, ini dikenal sebagai autokorelasi (t-1). Model regresi bebas autokorelasi adalah model yang baik. Uji autokorelasi dapat dilakukan dengan pengujian Durbin Watson. Model stats yang dibangun dalam fungsi durbin watson() langkah ini akan digunakan untuk menghitung skor Durbin-Watson, yang kemudian akan dievaluasi berdasarkan kriteria berikut:

- a. Jika skor Durbin-Watson kurang dari 1,5 dan terdapat autokorelasi positif, maka asumsi tersebut tidak benar.
- b. Jika skor Durbin-Watson antara 1,5 dan 2,5, maka tidak ada autokorelasi dan kondisi terpenuhi.
- c. Jika skor Durbin-Watson lebih besar dari 2,5, maka terjadi autokorelasi negatif, maka anggapan ini tidak benar[46][48].

2.6.4.8 Uji Heteroskedastisitas

Uji homoskedastisitas digunakan untuk menguji kesalahan dalam model statistik untuk menentukan apakah faktor lain berdampak pada varians atau variasi kesalahan. Ketika memvisualisasikan residu, homoskedastisitas dapat ditemukan dengan memeriksa apakah varians tampak seragam. Apabila terdapat ketidaksamaan varians dari residual untuk semua data dalam model regresi, dikatakan telah terjadi heteroskedastisitas[46].

BAB III

TUJUAN DAN MANFAAT

3.1 Tujuan dan Manfaat Penelitian

Tujuan dan sasaran yang ingin dicapai melalui penelitian disebutkan secara tepat dalam uraian tujuan penelitian. Beckingham (1971) menegaskan bahwa tujuan penelitian adalah penjelasan mengapa penelitian itu dilakukan. Tujuan suatu penelitian dapat mendefinisikan suatu gagasan dan memperjelas suatu masalah atau solusi, menunjukkan jenis penyelidikan yang harus dilakukan. Tujuan penelitian menentukan jalannya penelitian dan apa yang harus dicapai.

Dampak dari pencapaian tujuan penelitian adalah keuntungannya. Sugiyono (2011) mengklaim bahwa keunggulan penelitian adalah solusi atas pertanyaan yang diajukan oleh tujuan penelitian dan disajikan dalam temuan penelitian untuk membangun basis pengetahuan untuk memahami, menyelesaikan, dan meramalkan masalah yang telah terbentuk dalam topik penelitian.

Berikut ini akan dijelaskan tujuan dan manfaat penelitian sehubungan dengan hal tersebut.

3.1.1 Tujuan Penelitian

Adapun tujuan pada penelitian ini sebagai berikut.

- a) Menganalisa korelasi data gaji karyawan berdasarkan faktor-faktor spesifik.
- b) Menggunakan pendekatan *machine learning* yaitu model *multivariate linier regression* untuk pemodelan prediksi gaji karyawan berdasarkan parameter dari faktor-faktor spesifik seperti umur, job level, total lama bekerja, masa bakti.
- c) Menggunakan *framework* Django untuk menyajikan hasil prediksi gaji karyawan.

3.1.2 Manfaat Penelitian

Kelebihan dari penelitian ini adalah sebagai berikut.

- a) Merekomendasikan model prediksi gaji karyawan berdasarkan kualitas dari faktor-faktor spesifik.
- b) Membuat tampilan *framework* agar mudah digunakan untuk melakukan prediksi gaji karyawan secara *realtime*.

BAB IV

METODE PENELITIAN

4.1 Diagram Alur Metodologi Penelitian

Pada hakikatnya, teknik penelitian adalah suatu pendekatan metodis dalam pengumpulan data dengan tujuan dan keunggulan yang telah ditentukan. Untuk melakukan ini, kita membutuhkan taktik yang terhubung dengan hasil yang diinginkan. Teknik penelitian menurut Sugiyono (2017:2) pada dasarnya adalah proses ilmiah yang digunakan untuk mengumpulkan data untuk tujuan dan aplikasi tertentu. Sebuah diagram alur penelitian dapat digunakan sebagai metodologi penelitian.

4.1.1 Diagram Alur Utama

Gambar 4. 1 Gambar Diagram Alur Metodologi Penelitian

Berdasarkan diagram alur metodologi penelitian diatas, terdapat indikator capaian sebagai berikut.

Tabel 4. 1 Penjelasan Diagram Alur Metodologi Penelitian

No.	Tahapan		Indikator capaian
1.	Kajian literatur	\rightarrow	1. Mind map prediksi gaji terhadap faktor-
			faktor spesifik berdasarkan data dan pada
			metode machine learning serta framework
			django
2.	Pengumpulan	\rightarrow	2. Data mentah dari berbagai faktor (umur.job
	data		level,lama pengalaman bekerja,masa bakti)
3.	Pre-pemrosesan	\rightarrow	3. Pre-processed data yang sudah siap untuk
	data		pemodelan dengan tahapan pembersihan,
			penanganan nilai yang hilang dan
			transformasi.
4.	Pemodelan	\rightarrow	4. Model Multivariat Linier Regresi
			digunakan untuk memprediksi gaji
			berdasarkan data dari setiap faktor-faktor
			spesifik.
5.	Evaluasi	→	5. Performansi model
6.	Diseminasi hasil	\rightarrow	6. Artikel yang diterbitkan dalam jurnal
			nasional terakreditasi SINTA 3, HAKI dan
			Buku

BAB V

HASIL DAN LUARAN YANG DICAPAI

5.1 Kegiatan dan Hasil Pelaksanaan

Tindakan yang diambil dan hasil dari pelaksanaan program hibah penelitian internal ini dimaksudkan untuk menghasilkan efek yang diinginkan. Berikut ini adalah deskripsi dari tindakan dan hasil tersebut.

5.1.1 Pelaksanaan Penelitian

Kegiatan penelitian yang dilakukan telah berjalan selama 6 bulan oleh anggota tim. Penelitian dilakukan secara bertahap dengan didasarkan metode penelitian yang telah dirancang sebelumnya. Pelaksanaan penelitian ini dilakukan dengan cara berdiskusi dan mencari solusi berdasarkan literatur yang sesuai dengan tema penelitian. Permasalahan-permasalahan yang didapatkan selama penelitian dapat diatasi dengan mengenali masalah untuk kemudian dilakukannya pencarian solusi secara berdiskusi berdasarkan tinjauan literatur.

Hasil penelitian yang telah dilaksanakan mampu mencapai hasil yang diinginkan. Dimana penelitian ini berhasil mengatasi masalah berupa bagaimana cara memprediksi gaji karyawan, yang dilakukan dengan menggunakan kode pemrograman bahasa Python.

Berdasarkan penelitian yang dilakukan, didapatkan hasil nilai akurasi sebesar 0,909. Akurasi tersebut merupakan nilai akurasi yang baik, sehingga dapat dikatakan model *machine learning* dapat berperforma baik untuk memprediksi gaji. Berdasakan uji validitas, nilai akurasi 0,909 menunjukkan bahwa gaji dipengaruhi oleh faktor independen (umur, masa bakti, dan lama pengalaman bekerja) sebesar 0,909 atau 90,9%. Nilai sisa dari akurasi tersebut adalah 0,091 atau 9,1% yang artinya gaji dipengaruhi oleh faktor lain yang tidak diketahui sebesar 9,1%.

5.1.2 Dataset yang Digunakan

Dataset yang digunakan untuk melakukan pemodelan *machine learning* memprediksi gaji pegawai adalah dataset kepegawaian yang berasal dari Kaggle sebanyak 1029 data yang terdiri dari 35 variabel dan 3 Karakteristik variabel yang terdiri dari karakteristik data karyawan, data personal dan data region.

Gambar 5. 1 Dataset Kepegawaian

5.1.3 Pembuatan Aplikasi Prediksi Gaji Pegawai

Pembuatan Aplikasi Prediksi Gaji Pegawai dilakukan secara bersamaan ketika melakukan proses pembuatan kode program *machine learning* untuk memprediksi gaji pegawai serta penyusunan laporan penelitian.

Aplikasi telah dibuat oleh anggota tim dengan menggunakan bahasa pemrograman Python dengan *framework* Django. Aplikasi telah berhasil dijalankan sesuai dengan harapan yaitu melakukan prediksi gaji pegawai berdasarkan usia, level pekerjaan, tahun masa bakti, dan lama bekerja di perusahan.

5.1.4 Penyusunan Jurnal Ilmiah Nasional

Penyusunan Jurnal Ilmiah Nasional dilakukan oleh anggota tim ketika masalah dari penelitian telah diatasi dan hasil penelitian telah mencapai hasil yang diharapkan. Dimana jurnal ilmiah akan dipublikasikan dan ditargetkan untuk mencapai jurnal nasional SINTA S3. Susunan jurnal tersebut terdiri dari judul,

abstrak, pendahuluan, tinjauan pustaka, implementasi, kesimpulan dan saran, serta daftar pustaka.

5.1.5 Penyusunan Buku ISBN

Penyusunan buku ISBN dilakukan oleh anggota tim ketika masalah dari penelitian telah mendapatkan hasil yang dicapai. Penyusunan buku dilakukan selama 6 bulan. Buku yang disusun dari BAB I hingga BAB VI. Buku yang disusun terdiri cover, kata sambutan, kata pengantar dan terdiri dari 225 halaman terdaftar di Perpustakaan Nasional Republik Indonesia dan ber-ISBN.

5.1.6 Pembuatan Poster

Pembuatan poster dilakukan oleh anggota tim ketika masalah dari penelitian telah diatasi dan hasil penelitian telah mencapai hasil yang diharapkan. Poster yang dibuat berjumlah satu lembar dengan ukuran A2 secara vertical.

5.1.7 Pelaksanaan Praktikum Pada Mata Kuliah Database

Pelaksanaan pada praktikum mata kuliah Database menggunakan hasil penelitian ini yaitu buku berlisensi ISBN.

5.2 Luaran Yang Dicapai

Seperti yang telah dikemukakan di latar belakang, tujuan dari tindakan yang dilakukan dan hasil yang dicapai sebagai konsekuensi dari pelaksanaan program hibah penelitian internal adalah untuk menghasilkan hasil yang diinginkan. Keberhasilan keluaran dari program ini dapat diringkas sebagai berikut dengan mempertimbangkan tujuan keluaran saat ini.

1. Karya ilmiah yang dimuat di jurnal nasional

Penelitian ini akan memiliki artikel ilmiah di jurnal nasional yang diterbitkan untuk target audiens jurnal nasional SINTA S3. Versi draft jurnal penelitian ini telah dibuat. Karena belum ada tambahan anggota tim review atau menjadi bahan diskusi kelompok, draftnya belum selesai.

2. Buku ISBN

Buku ISBN adalah luaran yang ditargetkan untuk publikasi. Buku ISBN sebagai salah satu luaran dari pelaksanaan program penelitian ini telah dibuat dalam bentuk draf, dimana penyusunan buku ini disusun sebanyak enam bab. Bab tersebut juga belum dikoreksi lebih lanjut karena belum melakukan diskusi lebih lanjut. Produksi ini, yaitu penerbitan buku, sesuai dengan tujuan.

3. HAKI

HAKI pada penelitian didasarkan publikasi buku yang telah dipaparkan sebelumnya. Pada saat ini belum adanya hak atas kekayaan intelektual karena penyusunan dan publikasi buku belum sepenuhnya dituntaskan. Target dari luaran ini adalah mendapatkan HAKI berdasarkan penyusunan buku dari hasil program penelitian.

4. Poster penelitian

Poster penelitian adalah luaran yang ditargetkan untuk penelitian. Poster sebagai salah satu luaran dari pelaksanaan program penelitian ini telah dibuat dalam bentuk gambar desain grafis, dimana pembuatan poster ini disusun dari latar belakang, metode, hasil utama penelitian, kesimpulan, dan referensi. Karena kurangnya lebih banyak percakapan, tata letak belum disesuaikan lebih lanjut juga. Hasil ini sesuai dengan tujuan, yaitu menghasilkan poster penelitian.

5. Referensi praktikum pada matakuliah Database

Penelitian yang telah dilakukan akan dijadikan sebagai referensi praktikum pada matakuliah Database jurusan Diploma 4 Teknik Informatika. Capaian ini ditargetkan untuk terlaksananya praktikum pada matakuliah tersebut sebagai bahan ajar referensi.

Seperti yang dikatakan sebelumnya, tindakan yang telah diambil. Temuantemuan yang diperoleh sehubungan dengan tujuan pencapaian dapat ditampilkan dalam format tabel di bawah ini.

Tabel 5. 1 Luaran dan Target Capaian

No.	Jenis Luaran	Target	Capaian
1.	Publikasi jurnal ilmiah	Publikasi SINTA	Submit
	nasional	S3	
2.	Buku ISBN	Publikasi Buku	Submit
3.	Hak atas Kekayaan Intelektual	Mendapatkan	Belum ada
		HAKI	
4.	Referensi praktikum pada	Terlaksananya	Belum ada
	matakuliah Database	praktikum	
		berdasarkan	
		refernsi penelitian	

Tabel di atas menjelaskan mengapa output dari 4 (empat) kategori output tersebut belum sepenuhnya mencapai tingkat tujuan. Tentunya, capaian tersebut akan terus dikembangkan dengan terus melakukan koreksi dan diskusi untuk mencapai target yang telah ditetapkan.

5.3 Hasil Penelitian

Fokus dari beberapa studi tentang perkiraan kompensasi karyawan, peneliti berpendapat bahwa ada hubungan positif dan substansial antara gaji dan masa kerja pada kinerja karyawan[49]. Studi ini mengusulkan metode prediksi *Machine Learning* dengan menganalisis data penggajian yang dikumpulkan dengan metode angket (kuesioner). Penelitian menggunakan model *Linear Regression* sebagai algoritma *Machine Learning*. Hasil penelitian menunjukan nilai akurasi sebesar 90,% atau 0.96, sehingga dikatakan bahwa model tersebut memiliki nilai yang baik.

Pada penelitian ini, peneliti melakukan hal sama dengan memprediksi gaji pegawai dengan menggunakan pendekatan *machine learning*. Model yang disarankan adalah regresi linier multivariat atau model regresi linier berganda (MLR).

Tabel 5. 2 Kumpulan Data Staf

Age	Attrition	BusinessTravel		YearsAtCurrManager
50	No	Travel_Rarely	•••	3
36	No	Travel_Rarely		1
21	Yes	Travel_Rarely	•••	0
50	No	Travel_Frequently		7
50	No	Travel_Rarely	•••	0

Hasil model prediksi dengan pendekatan regresi linier berganda diperoleh dengan mengolah data tidak berlabel menggunakan teknik *unsupervised learning*. Berikut adalah pemaparan data yang digunakan.

Tabel 5. 3 Dataset Data Training

Age	Attrition		YearsWithCurrManager
50	No		3
36	No		1
21	Yes		0
50	No		7
•••		•••	
41	No		2
22	Yes		0
29	No		3
50	No		0

Tabel 5. 4 Dataset Data Testing

Age	BusinessTravel	 YearsWithCurrManager
	Travel_Rarely	3
53	Travel_Rarely	3

24	Travel_Rarely		0
45	Travel_Rarely		0
•••		•••	
27	Non-Travel		4
	Travel_Rarely		2
39	Travel_Rarely		4
	Travel_Rarely		0

Tabel 5.5 dan 5.6 memberikan karakteristik berikut dari data tersebut.

Tabel 5. 5 Atribut Dataset Data Training

Attribut	Keterangan	Tipe Data
Age	Usia pegawai	numerik
Attrition	Eliminasi pegawai	object
BusinessTravel	Perjalanan bisnis pegawai	object
DailyRate	Tarif harian pegawai	numerik
Department	Departemen pegawai	object
DistanceFromHome	Jarak perusahaan dari rumah	numerik
	pegawai	
Education	Pendidikan pegawai	object
EducationField	Bidang pendidikan pegawai	numerik
EmployeeCount	Jumlah pegawai	numerik
EmployeeNumber	Nomor pegawai	numerik
EnvironmentSatisfaction	Kepuasan lingkungan pegawai	numerik
Gender	Gender pegawai	object
HourlyRate	Tarif per jam pegawai	numerik
JobInvolvement	Keterlibatan kerja pegawai	numerik
JobLevel	Tingkat kerja pegawai	numerik
JobRole	Peran pekerjaan pegawai object	
JobSatisfaction	Kepuasan kerja pegawai	numerik

MaritalStatus	Status perkawinan pegawai	object
MonthlyIncome	Penghasilan bulanan pegawai	numerik
MonthlyRate	Tarif bulanan pegawai	numerik
NumCompaniesWorked	Jumlah perusahaan yang dikerjakan	numerik
	pegawai	
Over18	Pegawai dengan usia lebih dari 18	object
	tahun	
OverTime	Lembur pegawai	object
PercentSalaryHike	Persen kenaikan gaji pegawai	numerik
PerformanceRating	Peringkat kinerja pegawai	numerik
RelationshipSatisfaction	Kepuasan hubungan pegawai	numerik
StandardHours	Jam standar pegawai	numerik
StockOptionLevel	Tingkat opsi saham pegawai	numerik
TotalWorkingYears	Jumlah tahun kerja pegawai	numerik
TrainingTimesLastYear	Waktu pelatihan tahun lalu pegawai	numerik
WorkLifeBalance	Keseimbangan kehidupan kerja	numerik
	pegawai	
YearsAtCompany	Tahun di perusahaan pegawai	numerik
YearsInCurrentRole	Tahun berperan sekarang pegawai	numerik
YearsSinceLastPromotion	Tahun sejak promosi terakhir	numerik
	pegawai	
YearsWithCurrManager	Tahun dengan manajer saat ini	numerik
	pegawai	

Tabel 5. 6 Atribut Dataset Data Testing

Attribut	Keterangan	Tipe Data
Age	Usia pegawai	numerik
BusinessTravel	Perjalanan bisnis pegawai	object
DailyRate	Tarif harian pegawai	numerik

Department	Departemen pegawai	object
DistanceFromHome	Jarak perusahaan dari rumah pegawai	numerik
Education	Pendidikan pegawai	object
EducationField	Bidang pendidikan pegawai	numerik
EmployeeCount	Jumlah pegawai	numerik
EmployeeNumber	Nomor pegawai	numerik
EnvironmentSatisfaction	Kepuasan lingkungan pegawai	numerik
Gender	Gender pegawai	object
HourlyRate	Tarif per jam pegawai	numerik
JobInvolvement	Keterlibatan kerja pegawai	numerik
JobLevel	Tingkat kerja pegawai	numerik
JobRole	Peran pekerjaan pegawai	object
JobSatisfaction	Kepuasan kerja pegawai	numerik
MaritalStatus	Status perkawinan pegawai	object
MonthlyIncome	Penghasilan bulanan pegawai	numerik
MonthlyRate	Tarif bulanan pegawai	numerik
NumCompaniesWorked	Jumlah perusahaan yang dikerjakan	numerik
	pegawai	
Over18	Pegawai dengan usia lebih dari 18	object
	tahun	
OverTime	Lembur pegawai	object
PercentSalaryHike	Persen kenaikan gaji pegawai	numerik
PerformanceRating	Peringkat kinerja pegawai	numerik
RelationshipSatisfaction	Kepuasan hubungan pegawai	numerik
StandardHours	Jam standar pegawai	numerik
StockOptionLevel	Tingkat opsi saham pegawai	numerik
TotalWorkingYears	Jumlah tahun kerja pegawai	numerik
TrainingTimesLastYear	Waktu pelatihan tahun lalu pegawai	numerik
WorkLifeBalance	Keseimbangan kehidupan kerja	numerik
	pegawai	

YearsAtCompany	Tahun di perusahaan pegawai	numerik
YearsInCurrentRole	Tahun berperan sekarang pegawai	numerik
YearsSinceLastPromotion	Tahun sejak promosi terakhir pegawai	numerik
YearsWithCurrManager	Tahun dengan manajer saat ini	numerik
	pegawai	

Proses selanjutnya adalah mengganti kolom yang memiliki tipe data object menjadi numerik menggunakan metode encoder.

Tabel 5. 7 Data Yang Sudah Ter-Encoder

Age	Attrition	BusinessTravel		YearsAtCurrManager
50,0	0	2	•••	3
36,0	0	2		1
21,0	1	2		0
50,0	0	1		7
•••	•••			
50,0	0	2	•••	0

Proses selanjutnya adalah mengisi nilai yang hilang pada dataset tersebut dengan metode mengisi nilai yang hilang menggunakan mean.

Tabel 5. 8 Data Yang Sudah Terisi Dengan Mean

Age	Attrition	BusinessTravel	DailyRate		YearsAtCurrManager
50,0	0	2	1126,0	•••	3
36,0	0	2	216,0	•••	1
21,0	1	2	337,0	•••	0
50,0	0	1	1246,0	•••	7
50,0	0	2	264,0	•••	0

Kemudian dilakukan langkah pemilihan atribut yang akan digunakan dengan menggunakan *heatmap correlation* untuk memilih fitur atau variabel independen yang berhubungan erat dengan variabel dependen model, yaitu "Monthly Income". Pemilihan variabel independen dilihat berdasarkan nilai korelasi yang memiliki tingkat hubungan sedang, kuat, dan sangat kuat. Hasil korelasi dataset data training dapat dilihat pada gambar 5.1 dan dataset data testing pada gambar 5.2.

Gambar 5. 2 Heatmap Correlation Dataset Data Training

Gambar 5. 3 Heatmap Correlation Dataset Data Testing

Berdasarkan nilai korelasi pada gambar 5.1 dan korelasi pada gambar 5.2 di atas dapat diperhatikan bahwa variabel independen Age, JobLevel, TotalWorkingYears, dan YearsAtCompany memiliki hubungan kuat terhadap MonthlyIncome dengan rata-rata nilai akurasi 0,66. Sedangkan variabel lain memiliki hubungan yang lemah dengan MonthlyIncome.

Tabel 5. 9 Data Dengan Variabel Yang Digunakan

Kode	Variabel	Jenis Variabel	Tipe Data	Sumber Data
X1	Umur		Numerik	Kaggle
X2	Gaji	Data Personal	Numerik	Kaggle
X3	Lama Pengalaman Bekerja	Data i eisonai	Numerik	Kaggle
X4	Job Level	Data	Numerik	Kaggle
X5	Masa Bakti	Karyawan	Numerik	Kaggle

Kumpulan dataset pada tabel di atas yang telah disiapkan memiliki implikasi untuk memprediksi gaji dengan melakukan eksplorasi pengaruh berdasarkan faktor-faktor spesifik diantaranya umur, job level, masa bakti, lama pengalaman bekerja. Proses selanjutnya adalah melakukan penetapan variabel independen (sumbu x) yaitu Age, JobLevel, TotalWorkingYears, dan YearsAtCompany dan variabel dependen (sumbu y) yaitu Monthly Income.

Tabel 5. 10 Variabel Independen Data

Age	JobLevel	TotalWorkingYears	YearsAtCompany
50,0	4	32	5
36,0	2	7	3
21,0	1	1	1
50,0	5	32	32
	•••		
50,0	5	27	1

Tabel 5. 11 Variabel Dependen Data

No	MonthlyIncome
0	17399
1	4941
2	2679
3	18200
1029	19331

Distribusi data dari data pelatihan dan data pengujian kemudian ditampilkan menggunakan Seaborn. Gambar 5.3 untuk data pelatihan dan Gambar 5.4 untuk data pengujian keduanya menampilkan visualisasi.

Gambar 5. 4 Visualisasi Penyebaran Data Training

Gambar 5. 5 Visualisasi Penyebaran Data Testing

Selanjutnya, membuat variabel regressor yang menggunakan metode LinearRegression, kemudian membuat variabel persamaan menggunakan *method* regressor.fit dengan parameter x_train dan y_train. Dari model tersebut didapat nilai koefisien dari variabel Independen. Nilai koefisien dari Age adalah -5,054 yang berarti tiap karyawan yang mengalami pertambahan satu tahun umur kerja, maka akan mengalami penurunan gaji sebesar 5,054. Nilai koefisien dari JobLevel adalah 3871,7530 yang berarti tiap karyawan yang mengalami pertambahan satu tingkat job level akan mengalami kenaikan gaji sebesar 3871,7530. Nilai koefisien TotalWorkingYears adalah 46,9405 yang berarti tiap karyawan yang mengalami pertambahans satu tahun pengalaman bekerja akan mengalami kenaikan kerja sebesar 46,9405. Nilai koefisien YearsAtCompany adalah -9,8460 yang berarti tiap karyawan yang mengalami pertambahan satu tahun akan mengalami penurunan gaji sebesar 9,8460.

Selanjutnya adalah mencari konstanta/intercept menggunakan regressor. Intecept merupakan sebuah koefisien dari sebuah persamaan model regresi linear. Untuk kasus ini, berarti untuk variabel X yang bernilai nol atau karyawan yang belum berpengalaman kerja, karyawan tersebut akan dikurangi sebesar 1728 dari gaji sebelumnya per tahunnya. Proses selanjutnya adalah melakukan prediksi *data testing* menggunakan model *machine learning*. Kemudian buat kolom baru yang bernama MonthlyIncome Prediction yang berisikan nilai prediksi. Berikut persamaan umum dari model linear regresi multivariable.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + ... + \beta_n X_n$$

β0 adalah nilai *intersept* dari persamaan linear, dan β1, β2, β3 sampai dengan βn adalah konstanta dari variabel independen. Berdasarkan nilai koefisien variabel independen dan *Intersept* didapat, maka persamaan regresi linear multivariabel sebagai berikut :

$$Y = -1728 - 5,054X_1 + 3871,7530X_2 + 46,9405X_3 - 9,8460X_4$$

Keterangan:

Y = Variabel terikat yaitu MonthlyIncome

X1 = Variabel bebas pertama yaitu Age

X2 = Variabel bebas kedua yaitu JobLevel

X3 = Variabel bebas ketiga yaitu TotalWorkingYears

X4 = Variabel bebas keempat yaitu YearsAtCompany

Maka dapat disimpulkan, persamaan regresi linear multivariabel sebagai berikut:

Pada tahap selanjutnya yaitu evaluasi data, dimana evaluasi yang dilakukan pertama adalah menilai akurasi model dengan menggunakan metode R Square.

Berdasarkan uji R-Square yang dibuat didapat nilai akurasi sebesar 0.90 atau 90%. Maka, MonthlyIncome dipengarui oleh faktor Age dan YearsAtCompany sebesar 0,909 atau 90,9%. Nilai residual koefisien determinasi atau 9,1% adalah 0,091, dan dipengaruhi oleh variabel yang tidak teridentifikasi lebih lanjut.

Proses evaluasi selanjutnya adalah menggunakan model OLS untuk mengevaluasi terhadap analisis model dan kinerja metode. Tahap pertama untuk membuat model OLS adalah membuat variabel x atau variabel independen yaitu Age, JobLevel, TotalWorkingYears dan YearsAtCompany. Berikut adalah tabel summary dari model OLS.

Tabel 5. 12 Evaluasi Model OLS

OLS Regression Results						
Dep. Variable	: Moi	nthlyIncome	R-Squared		:	0,909
Model	:	OLS	Adj. R-So	quared	:	0,909
Method	: L	east Squares	F-Statisti	c	:	2571.
Date	: Mon,	10 Jan 2022	Prob (F-S	Statistic)	:	0,00
Time	:	10:58:11	Log-Like	lihood	:	-8944,9
No.Observations	:	1029	AIC		:	1,790 x 104
Df Residuals	:	1024	BIC		:	1,792 x 104
Df Model	:	4				
Covariance Type	: nonrobust					
Variable	Coef	Std. Err	t	P > t	[0,025	0,975]
const	-1728,52	230,58	-7,46	0,00	-2180,99	-1276,04
Age	-5,05	6,90	-0,73	0,46	-18,60	8,49
JobLevel	3871,75	65,63	58,98	0,00	3742,95	4000,54
TotalWorkingYears	46,94	11,73	4,01	0,00	23,91	69,96
YearsAtCompany	-9,84	9,76	-1,01	0,31	-29,01	9,32
Omnibus	:	12,798	Durbin-V	Vatson	:	2,096
Prob (Omnibus)	:	0,002	Jarque-Bera (JB) :		:	15,262
Skew	:	0,182	Prob (JB)		0,000485	
Kurtosis	:	3,472	Cond. No).	:	213

Berdasarkan Tabel 5.13, dapat dilihat hasil evaluasi model dan kinerja metode, dimana R-Square memperoleh nilai akurasi sebesar 0.909 atau 90%. F-statistic memperoleh nilai sebesar 2571. Jika kemungkinan F-statistik adalah 0,00

atau di bawah (di bawah 0,05), model tersebut signifikan dalam memprediksi variabel dependen (MonthlyIncome).

Berdasarkan uji-F didapat nilai Fs sebesar 2570,622 dan P-value sebesar 0,00. Dari hasil tersebut dapat diketahui bahwa Fs > P-value, yang artinya hipotesa yang dapat diambil adalah terima H1 dan tolak H0. Dapat dikatakan, variabel Independen (Age, JobLevel, TotalWorkingYears, YearsAtCompany) dan MonthlyIncome berpengaruh signifikan terhadap permintaan. Pada taraf signifikansi 5% (0,05), H0 tidak diperhitungkan karena nilai probabilitasnya adalah 0,00 yang lebih kecil dari 5%. Akibatnya, dapat diklaim bahwa model yang dipilih sesuai.

Tabel 5. 13 Nilai P-Values Dari Variabel Independen

No	Variabel	Nilai Uji-t
1	Age	2,643777 x 10 ⁻¹
2	JobLevel	0
3	TotalWorkingYears	6,771641 x 10 ⁻⁵
4	YearsAtCompany	3,136608 x 10 ⁻¹

Berdasarkan uji-t pada Tabel 5.14, dapat diambil hipotesa sebagai berikut :

- a. Nilai variabel X1 (Age) berada di atas taraf signifikansi yang berarti terima H1.
- b. Nilai variabel X2 (JobLevel) berada di bawah taraf signifikansi yang berarti terima H0.
- c. Nilai variabel X3 (TotalWorkingYears) di bawah taraf signifikansi yang berarti terima H0.
- d. Nilai variabel X4 (YearsAtCompany) di atas taraf signifikansi yang berarti terima H1.

Variabel independen JobLevel dan TotalWorkingYears merupakan faktor yang tidak mempengaruhi variabel dependen, sesuai dengan hipotesis di atas. Sedangkan variabel terikat dipengaruhi oleh variabel bebas Age dan

YearsAtCompany. Selanjutnya adalah menambahkan satu kolom baru dengan nama MonthlyIncome Prediction yang berisikan dengan hasil prediksi. Kemudian dibuat juga kolom residual untuk menyimpan nilai residualnya.

Uji asumsi pertama adalah uji linieritas. Tes ini menetapkan apakah hubungan antara variabel independen dan dependen adalah linier. Sebuah plot pencar digunakan untuk melakukan uji linieritas sehingga perbedaan antara nilai yang diantisipasi dan nilai yang sebenarnya dapat diperhatikan.

Gambar 5. 6 Grafik Asumsi Linear

Uji normalitas dilakukan setelah uji linieritas. Berikut adalah grafik uji normalitas di bawah ini :

Gambar 5. 7 Grafik Distribusi Residual

Berdasarkan Gambar 5.6, nilai p yang ditentukan oleh pendekatan Anderson-Darling adalah 0,00032261. Fakta bahwa angka ini lebih kecil dari titik potong 0,05 yang ditentukan menunjukkan bahwa H0 menerima H1, atau bahwa residu tidak terdistribusi normal. Oleh karena itu, dapat dikatakan bahwa praduga normal adalah benar.

Uji selanjutnya adalah uji multikolinearitas. Berikut adalah tabel multikolinearitas variabel-variabel independent :

Tabel 5. 14 Tabel VIF

No	Variabel	VIF
1	Intercept	28,655370
2	Age	1,690786
3	JobLevel	2,489052
4	TotalWorkingYears	4,140803
5	YearsAtCompany	1,739893

Nilai Age, JobLevel, TotalWorkingYears, dan YearsAtCompany semuanya kurang dari 10, maka dengan menggunakan taraf signifikansi 0,05 dapat ditarik kesimpulan dari Tabel 5.15 di atas bahwa data tersebut tidak terdapat multikolinearitas.

Berdasarkan uji autokorelasi didapat hasil perhitungan skor Durbin-Watson sebesar 2,160636228. Dapat diasumsikan bahwa terdapat sedikit atau tidak ada autokorelasi, sehingga asumsi yang didapatkan memiliki hasil puas.

Gambar 5. 8 Homoskedastisitas

Gambar 5.12 menunjukkan bagaimana titik-titik ditempatkan secara acak di sepanjang sumbu Y, di atas dan di bawah nilai 0 (nol). Dapat dikatakan bahwa tidak terdapat indikasi heteroskedastisitas dalam model regresi yang digunakan.

BAB VI

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Beberapa kesimpulan yang dapat diambil dari hasil penelitian dan pembahasan yang telah dilakukan, antara lain sebagai berikut :

- Berdasarkan hasi pada model OLS didapatkan nilai akurasi sebesar 0,909.
 Akurasi tersebut merupakan nilai akurasi yang baik, sehingga dapat dikatakan model machine learning yang digunakan untuk memprediksi gaji yaitu Multivariate Linear Regression dapat berperforma baik untuk memprediksi gaji.
- 2. Berdasarkan uji korelasi, ditemukan beberapa variabel yang memiliki korelasi signifikan untuk memprediksi gaji yaitu umur (*Age*), gaji (*MonthlyIncome*), *JobLevel*, lama pengalaman bekerja (*TotalWorkingYears*), dan Masa Bakti (*YearsAtCompany*). Selanjutnya, variabel-variabel tersebut di uji validitas (Uji ANOVA, Uji-t, Linearitas, Normalitas, Multikolinearitas, Autokorelasi, dan Homoskedastisitas). Berdasarkan uji validitas, nilai akurasi 0,909 menunjukkan bahwa MonthlyIncome dipengaruhi oleh faktor independen (*Age, JobLevel, TotalWorkingYears, YearsAtCompany*) sebesar 0,909 atau 90,9%.
- 3. Visualisasi data dari hasil model prediksi gaji karyawan dapat digunakan menjadi bentuk aplikasi berbasis *web base* dengan menggunakan *framework* Django. Dengan aplikasi tersebut, admin dapat melakukan prediksi gaji karyawan dengan mudah dan dengan cepat.

5.2 Saran

Saran berikut dapat diberikan kepada peneliti yang akan melakukan dan melanjutkan penelitian ini :

1. Diharapkan model yang dibangun terhindar dari outlier dan over fitting

- 2. Diharapkan model yang dibangun dapat memberikan rekomendasi variabel apa saja yang dominan dan optimum untuk memprediksi gaji dengan menggabungkan *machine learning* dan algoritma optimasi
- 3. Perlu pengkajian secara komperehensif untuk mempelajari variabel sebelum pemodelan yang disebut *hyper parameter tunning* yang bertujuan mendapatkan variabel yang baik untuk pemodelan

DAFTAR PUSTAKA

- [1] B. Prasetyo and U. Trisyanti, "Revolusi Industri 4.0 dan Tantangan Perubahan Sosial."
- [2] H. Prasetyo and W. Sutopo, "Perkembangan Keilmuan Teknik Industri Menuju Era Industri 4.0," Surakarta, May 2017.
- [3] O. C. Pangaribuan and I. Irwansyah, "Media Cetak Indonesia di Era Revolusi Industri 4.0," *Jurnal Pewarta Indonesia*, vol. 1, no. 2, pp. 134–145, Oct. 2019, doi: 10.25008/jpi.v1i2.11.
- [4] A. A. Shahroom and N. Hussin, "Industrial Revolution 4.0 and Education," *International Journal of Academic Research in Business and Social Sciences*, vol. 8, no. 9, Oct. 2018, doi: 10.6007/ijarbss/v8-i9/4593.
- [5] S. Kergroach, "Industry 4.0: New challenges and opportunities for the labour market," *Foresight and STI Governance*, vol. 11, no. 4, pp. 6–8, 2017, doi: 10.17323/2500-2597.2017.4.6.8.
- [6] M. I. Manda and S. ben Dhaou, "Responding to the challenges and opportunities in the 4th industrial revolution in developing countries," in *ACM International Conference Proceeding Series*, 2019, vol. Part F148155, pp. 244–253. doi: 10.1145/3326365.3326398.
- [7] Y. Adrianova Eka Tuah, P. Studi Pendidikan Komputer, and S. Persada Khatulistiwa Sintang, "Implementasi Model Regresi Linear Sederhana untuk Prediksi Gaji Berdasarkan Pengalaman Lama Bekerja," 2020.
- [8] G. Nicora, M. Rios, A. Abu-Hanna, and R. Bellazzi, "Evaluating pointwise reliability of machine learning prediction," *J Biomed Inform*, vol. 127, Mar. 2022, doi: 10.1016/j.jbi.2022.103996.
- [9] Q. Ke and K. Zhang, "Interaction effects of rainfall and soil factors on runoff, erosion, and their predictions in different geographic regions," *J Hydrol* (*Amst*), vol. 605, Feb. 2022, doi: 10.1016/j.jhydrol.2021.127291.
- [10] W. Xu, B. Wang, J. Liu, Y. Chen, P. Duan, and Z. Hong, "Toward practical privacy-preserving linear regression," *Inf Sci (N Y)*, vol. 596, pp. 119–136, Jun. 2022, doi: 10.1016/j.ins.2022.03.023.
- [11] Y. Fujikoshi, "High-dimensional consistencies of KOO methods in multivariate regression model and discriminant analysis," *J Multivar Anal*, vol. 188, Mar. 2022, doi: 10.1016/j.jmva.2021.104860.
- [12] R. E. Kreisler, M. E. Spindel, and M. Rishniw, "Determinants of Salary for Veterinarians Employed in the Field of Shelter Medicine in the United

- States," *Top Companion Anim Med*, vol. 40, Aug. 2020, doi: 10.1016/j.tcam.2020.100428.
- [13] T. Kumaraguru, P. Abirami, K. M. Darshan, S. P. Angeline Kirubha, S. Latha, and P. Muthu, "Smart access development for classifying lung disease with chest x-ray images using deep learning," in *Materials Today: Proceedings*, 2021, vol. 47, pp. 76–79. doi: 10.1016/j.matpr.2021.03.650.
- [14] N. A. Elsahoryi, A. Alathamneh, I. Mahmoud, and F. Hammad, "Association of salary and intention to stay with the job satisfaction of the dietitians in Jordan: A cross-sectional study," *Health Policy Open*, vol. 3, Dec. 2022, doi: 10.1016/j.hpopen.2021.100058.
- [15] D. Webbink and J. Hartog, "Can students predict starting salaries? Yes!," *Econ Educ Rev*, vol. 23, no. 2, pp. 103–113, 2004, doi: 10.1016/S0272-7757(03)00080-3.
- [16] S. Gosh, K. Rascati, A. Shah, and P. Peeples, "PHP88 Predictors of Annual Salary for Health Economics, Outcomes Research, and Market Access Professionals," *Value in Health*, vol. 21, p. S101, 2018, doi: https://doi.org/10.1016/j.jval.2018.04.682.
- [17] R. Marrero-Rodríguez, S. Morini-Marrero, and J. M. Ramos-Henriquez, "Tourism jobs in demand: Where the best contracts and high salaries go at online offers," *Tour Manag Perspect*, vol. 35, Jul. 2020, doi: 10.1016/j.tmp.2020.100721.
- [18] M. L. Blackburn, "Are U.S. teacher salaries competitive? Accounting for geography and the retransformation bias in logarithmic regressions," *Econ Educ Rev*, vol. 84, Oct. 2021, doi: 10.1016/j.econedurev.2021.102169.
- [19] G. A. Gilpin, "Teacher salaries and teacher aptitude: An analysis using quantile regressions," *Econ Educ Rev*, vol. 31, no. 3, pp. 15–29, Jun. 2012, doi: 10.1016/j.econedurev.2012.01.003.
- [20] K. K. Rekayasa, M. A. Saputra, N. Prasetyo, I. Zulfikar, T. Rijanandi, and F. Dharma Adhinata, "Pengalaman Bekerja Menggunakan Metode Regresi Linear," *Journal of Dinda*, vol. 2, no. 2, pp. 58–63, 2022, [Online]. Available: http://journal.ittelkom-pwt.ac.id/index.php/dinda
- [21] Munti and Y. S. Novi, "Analisis Dan Penerapan Data Mining Untuk Menentukan Gaji Karyawan Tetap Dan Karyawan Kontrak Menggunakan Algoritma K-Means Clustering," *Jurnal Inovasi Teknik Informatika*, vol. 1, no. 1, pp. 1–11, 2018.
- [22] M. Sanchez-Gomez, E. Breso, and G. Giorgi, "Could emotional intelligence ability predict salary? A cross-sectional study in a multioccupational

- sample," *Int J Environ Res Public Health*, vol. 18, no. 3, pp. 1–10, Feb. 2021, doi: 10.3390/ijerph18031322.
- [23] Sayan Das, Rupashri Barik, and Ayush Mukherjee, "Salary Predicition Using Regression Technique," *International Conference On Industry Interactive Innovations In Science, Engineering And Technology*, 2020, doi: https://dx.doi.org/10.2139/ssrn.3526707.
- [24] U. Bansal, A. Narang, A. Sachdeva, I. Kashyap, and S. P. Panda, "Empirical analysis of regression techniques by house price and salary prediction," in *IOP Conference Series: Materials Science and Engineering*, Jan. 2021, vol. 1022, no. 1. doi: 10.1088/1757-899X/1022/1/012110.
- [25] S. Gupta, "A Regression Modeling Technique on Data Mining," *Int J Comput Appl*, vol. 116, no. 9, pp. 975–8887, 2015, [Online]. Available: http://www.nag.co.uk/stats/GDGE
- [26] J. Prakash Sharma and N. Bajpai, "Salary Satisfaction as an Antecedent of Job Satisfaction: Development of a Regression Model to Determine the Linearity between Salary Satisfaction and Job Satisfaction in a Public and a Private Organization," *European Journal of Social Sciences*, vol. 18, no. 3, 2011.
- [27] Y. Gormez, H. Arslan, S. Sari, and M. Danis, "SALDA-ML: Machine Learning Based System Design to Predict Salary In-crease," *Advances in Artificial Intelligence Research*, vol. 2, no. 1, pp. 15–19, Jan. 2022, doi: 10.54569/aair.1029836.
- [28] K. Pornthep and S. Pokpong, "Implement Of Salary Prediction System To Improve Student Motivation Using Data Mining Technique," *International Conference on Knowledge, Information and Creativity Support Systems* (KICSS), 2016.
- [29] I. Martín, A. Mariello, R. Battiti, and J. Alberto Hernández, "Salary Prediction in the IT Job Market with Few High-Dimensional Samples: A Spanish Case Study," *International Journal of Computational Intelligence Systems*, vol. 11, pp. 1192–1209, 2018, doi: http://dx.doi.org/10.2991/ijcis.11.1.90.
- [30] R. Voleti and B. Jana, "Predictive Analysis of HR Salary using Machine Learning Techniques," *International Journal of Engineering Research & Technology (IJERT)*, vol. 10, no. 1, 2022, [Online]. Available: www.ijert.org
- [31] D. Sananda, H. Airiddha, and D. Kousik, "Design of a novel Prediction Engine for predicting suitable salary for a job," in *Fourth International* Conference on Research in Computational Intelligence and Communication

- *Networks* (*ICRCICN*), 2018, pp. 275–279. doi: https://doi.org/10.1109/ICRCICN.2018.8718711.
- [32] D. A. Gomez-Cravioto, R. E. Diaz-Ramos, N. Hernandez-Gress, J. L. Preciado, and H. G. Ceballos, "Supervised machine learning predictive analytics for alumni income," *J Big Data*, vol. 9, no. 1, pp. 1–31, Dec. 2022, doi: 10.1186/s40537-022-00559-6.
- [33] M. R. Jennings *et al.*, "Code-free cloud computing service to facilitate rapid biomedical digital signal processing and algorithm development," *Comput Methods Programs Biomed*, vol. 211, Nov. 2021, doi: 10.1016/j.cmpb.2021.106398.
- [34] N. Ahmed *et al.*, "Machine learning based diabetes prediction and development of smart web application," *International Journal of Cognitive Computing in Engineering*, vol. 2, pp. 229–241, Jun. 2021, doi: 10.1016/j.ijcce.2021.12.001.
- [35] C. Imam, Sutrisno, A. S. Arief, H. Uswatun, and I. F. Yessica, *AI, Machine Learning & Deep Learning (Teori & Implementasi)*. 2020. [Online]. Available: http://bit.ly/3piOnnU
- [36] N. Al-Azzam and I. Shatnawi, "Comparing supervised and semi-supervised Machine Learning Models on Diagnosing Breast Cancer," *Annals of Medicine and Surgery*, vol. 62, pp. 53–64, Feb. 2021, doi: 10.1016/j.amsu.2020.12.043.
- Y. Herlambang Ngumar, "Aplikasi Metode Numerik Dan Matrik Dalam Koefisien-Koefisien Regresi Linier Multiple Peramalan," Konferensi Nasional Sistem dan Informatika, pp. 157-168, 2008. Accessed: 14, 2022. [Online]. Aug. Available: https://yudiagusta.files.wordpress.com/2009/11/157-162-knsi08-029aplikasi-metode-numerik-dan-matrik-dalam-perhitungan-koefisienkoefisien-regresi-linier-multiple-untuk-peramalan.pdf
- [38] Y. Aditya, "Random Forest," *Universitas Gadjah Mada Menara Ilmu Machine Learning*, Jul. 20, 2018.
- [39] E. H. Briliant, M. Hasan, and S. Kurniawan, "Perbandingan Regresi Linier Berganda dan Regresi Buckley-James Pada Analisis Survival Data Tersensor Kanan," in *PROCEEDINGS OF THE 1 st STEEEM*, 2019, vol. 1, no. 1, pp. 1–19. Accessed: Aug. 14, 2022. [Online]. Available: http://seminar.uad.ac.id/index.php/STEEEM/article/view/3349/721
- [40] A. Afifah Muhartini *et al.*, "Analisis Peramalan Jumlah Penerimaan Mahasiswa Baru Dengan Menggunakan Metode Regresi Linear Sederhana,"

- *Jurnal Bayesian*, vol. 1, no. 1, pp. 17–23, 2021, [Online]. Available: http://bayesian.lppmbinabangsa.id/index.php/home
- [41] Greatlearning Blog, "What is Quantile Regression? | Introduction to Quantile Regression," *Greatlearning blog*, Jul. 16, 2020. https://www.mygreatlearning.com/blog/what-is-quantile-regression/ (accessed Aug. 14, 2022).
- [42] Khoiri, "Pengertian dan Cara Menghitung Root Mean Square Error (RMSE)," *khoiri.com*, Dec. 23, 2020. https://www.khoiri.com/2020/12/caramenghitung-root-mean-square-error-rmse.html (accessed Aug. 14, 2022).
- [43] K. Abdul Muiz, "Cara Hitung RMSE, MSE, MAPE, dan MAE Dengan Excel," *Pengalaman Edukasi*, Jan. 2021. https://www.pengalaman-edukasi.com/2021/01/cara-menghitung-rmse-root-mean-square.html (accessed Aug. 14, 2022).
- [44] M. Kuncoro, *Metode Kuantitatif: Teori Dan Aplikasi Untuk Bisnis Dan Ekonomi*. Yogyakarta, 2001. Accessed: Oct. 14, 2022. [Online]. Available: http://library.fip.uny.ac.id/opac/index.php?p=show_detail&id=1721
- [45] F. Pavelescu, "Features Of The Ordinary Least Square (OLS) Method Implications For The Estimation Methodology," *Romanian Journal Of Economic Forecasting*, vol. 1, no. 2, pp. 85–101, 2004, Accessed: Oct. 14, 2022. [Online]. Available: https://econpapers.repec.org/article/rjrromjef/v_3a1_3ay_3a2004_3ai_3a2_3ap_3a85-101.htm
- [46] G. Mardiatmoko, "Pentingnya Uji Asumsi Klasik Pada Analisis Regresi Linier Berganda (Studi Kasus Penyusunan Persamaan Allometrik Kenari Muda [Canarium Indicum L.])," *Jurnal Ilmu Matematika dan Terapan*, vol. 4, no. 3, pp. 333–342, 2020, doi: 10.30598/barekengvol14iss3pp333-342.
- [47] G. Imam, *Aplikasi Analisis Multivariat Dengan Program IBM SPSS 23*, vol. 8. Semarang, 2016. Accessed: Oct. 14, 2022. [Online]. Available: https://onesearch.id/Record/IOS2863.JATEN000000000218217
- [48] C. Trihendradi, *Langkah Mudah Menguasai Analisis Statistik Menggunakan SPSS 21*. Bandung, 2013. Accessed: Oct. 14, 2022. [Online]. Available: https://onesearch.id/Record/IOS13258.ai:slims-83102
- [49] Y. Adrianova Eka and Anyan, "Implementasi Model Regresi Linear Sederhana Untuk Prediksi Gaji Berdasarkan Pengalaman Lama Bekerja," *Journal Education and Technology*, vol. 1, no. 2, pp. 56–70, 2020, doi: 10.31932/jutech.v1i2.1289.

LAMPIRAN-LAMPIRAN

Lampiran 1 Susunan Organisasi Tim Peneliti dan Pembagian Tugas

No	Nama/NIDN	Asal Prodi	Bidang	Alokasi	Uraian
			Ilmu	Waktu	Tugas
				(jam/minggu)	
1.	Syafrial	D4 Teknik	Machine	16 Minggu	Menentukan
	Fachri Pane	Informatika	Learning,		pendekatan
	0416048803		Data		machine
			Science,		learning yang
			Big Data		digunakan
2.	Amri yanuar	D4	Logistik	16 Minggu	Roadmap
	0412018603	Logistik			tinjauan
		Bisnis			pustaka
3.	Bachtiar	D4 Teknik	Machine	16 Minggu	Pemograman
	Ramadhan	Informatika	Learning		
4.	Nur Tri	D4 Teknik	Machine	16 Minggu	Analisi dan
	Ramadhanti	Informatika	Learning		pengumpulan
	Adiningrum				data
5.	M. Rizky	D4 Teknik	Machine	16 Minggu	Data
		Informatika	Learning		Engineer

Lampiran 2 Biodata Ketua dan Anggota Pengusul

A. Identitas Diri Ketua Peneliti

1	Nama Diri	Syafrial Fachri Pane, S.T.,M.T.I.,EBDP
2	Jenis Kelamin	Laki – Laki
3	Program Studi	Teknik Informatika
4	NIDN/NUPN	0416048803
5	Tempat dan Tanggal Lahir	Medan, 16 April 1988
6	Alamat Email	syafrial.fachri@poltekpos.ac.id
7	Nomor Telepon/HP	085362383988

B. Riwayat Pendidikan

	D-3	S-1	S-2
Nama Perguruan Tinggi	Politeknik Pos Indonesia	Universitas Pasundan	Universitas Bina Nusantara
Bidang Ilmu & Tahun Lulus	Teknik Informatika (Lulus 2009)	Teknik Informatika (Lulus 2013)	Teknik Informatika (Lulus 2017)
IPK	3.76	3.60	3.67
Penghargaan	Cumloude	Cumloude	Cumloude

C. Rekam Jejak Tri Dharma PT Pendidikan/Pengajaran

No.	Semester	Kode Mata	Nama Mata Kuliah
		Kuliah	
1.	Ganjil 2013	T4I322AG4	Basis Data II/Database II
2.	Genap 2013	L3452S2	Fundamental SAP
3.	Genap 2013	P3M222D3	Basis Data
4.	Genap 2013	T4I222D4	Basis Data I/Database I
5.	Genap 2013	T4I722AF4	Sistem Pendukung
			Keputusan / DSS
6.	Ganjil 2014	T4I322AG4	Basis Data II/Database II
7.	Ganjil 2014	T4T4I611C	Internship 1
8.	Ganjil 2014	A4K733Y3	Manajemen Accounting II
			berbasis SAP
9.	Ganjil 2014	D4L352C3	Database + PRKT
10.	Genap 2014	T4I722AF2	Sistem Pendukung
			Keputusan
11.	Genap 2014	T4I222D4	Basis Data I
12.	Ganjil 2015	T4I162D2	Matematika Diskrit
13.	Ganjil 2015	T4I322AG4	Basis Data II/Database II

14.	Ganjil 2015	A4K733Y3	Manajemen Accounting II berbasis SAP
15.	Genap 2015	M4P422D3	Basis Data
16.	Genap 2015	T4I222D4	Basis Data I
17.	Ganjil 2016	D4L352C3	Database + Praktek
18.	Ganjil 2016	T4I322AG4	Basis Data II/Database II
19.	Genap 2016	T4I222D4	Basis Data I
20.	Ganjil 2017	T4I322AG4	Basis Data II/Database II
21.	Genap 2017	T4I222D4	Basis Data I
22.	Ganjil 2018	T4I322AG4	Basis Data II/Database II
23.	Genap 2018	T4I222D4	Basis Data I

D. Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Perancangan Sistem Penerimaan	Politeknik Pos	2014
	Mahasiswa Baru Berbasis Website	Indonesia	
2	Analisis kinerja proses bisnis dengan	Politeknik Pos	2015
	pendekatan BPMN menggunakan Bizagi	Indonesia	
3	Mengevaluasi Pengelolaan Dan	Politeknik Pos	2016
	Perencanaan Investasi Teknologi	Indonesia	
	Informasi dari Sumber Dana Hibah		
	Pemerintah Untuk Perguruan Tinggi		
	Swasta Menggunakan Cobit 5		
4	Prototype RFID Conveyor Belt Pada	Politeknik Pos	2018
	Warehouse Management System	Indonesia	
	Berbasis IoT		
5	Perancangan Aplikasi E-Recruitment	Politeknik Pos	2017
	Beasiswa Mahasiswa/I kurang mampu	Indonesia	
	dengan penerapan Teknologi Geispatial		
	Intelligence dan Webservice (OAUTH)		
	menggunakan metode Electre Berbasis		
	Webs		
6	PROFIT-WMS Prototype RFID	Politeknik Pos	2018
	Conveyor Belt pada Warehouse	Indonesia	
	Management System Berbasis IoT		
7	Simulasi Auto Turn Sign Pengantar Pos	Politeknik Pos	2019
	Menggunakan Aktifitas Gelombang	Indonesia	

	Otak Dengan Metode Bayesian Learning		
8	dan Logistic Regression Perancangan Simulasi Warehouse	Politeknik Pos	2019
8	Management System (Wms) Berbasis		2019
	Internet Of Things Pada Center Of	madicia	
	Technology		
9	Straglog: Analisis Strategi Pengadaan	Politeknik Pos	2020
	Barang dan Jasa Menggunakan	Indonesia	
	Algoritma Heuristic Miner		
10	Qualitative Evaluation of RFID	Jurnal Telkomnika –	2018
	Implementationon Warehouse	Jilid 16 Terbitan 3	
	Management System	(International)	
		Akreditasi Dikti A dan	
		Terindex Scopus	
11	K Means Clustering and Meanshift	Jurnal Telkomnika –	2018
	Analysis for Grouping the Data of Coal	Jilid 16 Terbitan 3	
	Term in Puslitbang tekMIRA	(International)	
		Akreditasi Dikti A dan	
		Terindex Scopus	2010
12	Sireuboh-klasifikasi data lokasi barang	Jurnal Nasional	2018
	menggunakan region of interest (roi) dan	Tekno Insentif	
12	algoritma ransac	LLDIKTI IV	2019
13	Implementation of web scraping on github task monitoring system	Jurnal Telkomnika – Jilid 17 Terbitan 1	2019
	github task monitoring system	(International)	
		Akreditasi Dikti A dan	
		Terindex Scopus	
14	Ontology Design of Family Planning	-	2019
	Field Officer for Family Planning	Jilid 17 Terbitan 1	-
	Agency Using	(International)	
	OWL and RDF	Akreditasi Dikti A dan	
L		Terindex Scopus	
15	RFID-based conveyor belt for improve	Jurnal Telkomnika –	2019
	warehouse operations	Jilid 17 Terbitan 2	
		(International)	
		Akreditasi Dikti A dan	
		Terindex Scopus	
16	Implementasi algoritma genetika untuk	Jurnal Nasional	2019
	optimalisasi pelayanan kependudukan	Tekno Insentif	
		LLDIKTI IV	

		Terindex DOAI	
17	Collaboration Fmadm And K-Means	Jurnal Emiter –	2019
	Clustering To Determine The Activity	EMITTER	
	Proposal In Operational Management	International Journal	
	Activity	of Engineering	
		Technology Terindex	
		Scopus	
18	Implementasi Algoritma Genetika Untuk	Jurnal Tekno Insentif	2019
	Optimalisasi Pelayanan Kependudukan	13 (2), 36-43	
19	MILA: Low-cost BCI framework for	Telkomnika 18 (2),	2020
	acquiring EEG data with IoT	846-852	
20	Ovmp: Operational sVehicle	Jurnal Tekno Insentif	2020
	Management Application Using Extreme	14 (1), 9-16	
	Programming (Xp) Method		
21	Sistem Informasi Absensi Pegawai	Jurnal Media	2020
	Menggunakan Metode RAD dan Metode	Informatika	
	LBS Pada Koordinat Absensi	Budidarma 4 (1),	
		59-64	
22	AMCF: A Novel Archive Modeling	Technomedia Journal	2020
	Based on Data Cluster and Filtering	4 (2), 139-152	

E. Pengabdian Kepada Masyarakat

No	Judul Pengabdian kepada Masyarakat	Penyandang Dana	Tahun
1	Pelatihan Penyusunan Proposal Penelitian	SD Panorama	2015
	Tindakan Kelas	Bandung	
2	Pelatihan Penyusunan Laporan Penelitian	SD Panorama	2016
	Tindakan Kelas	Bandung	
3	Pelatihan Publikasi Penelitian Tindakan	SD Panorama	2017
	Kelas	Bandung	
4	Pelatihan Pemanfaatan Google Map	Desa Wangunharja	2019
		Lembang	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Penelitian Internal Tahun 2022

Bandung, 14 Maret 2022

Ketua Peneliti,

(Syafrial Fachri Pane, S.T., M.T.I., EBDP)

A. Identitas Diri Anggota Peneliti

1	Nama Lengkap (dengan gelar)	Amri Yanuar, ST.,M.MT
2	Jenis Kelamin	Laki-laki
3	Jabatan Fungsional	Asisten Ahli
	Akademik	
4	NIK	116.86.207
5	NIDN	0412018603
6	Tempat dan Tanggal	Bandung, 12 Januari 1986
	Lahir	
7	E-mail	amriyanuar@poltekpos.ac.id
8	Nomor Telepon/HP	081910027205
9	Alamat Kantor	Jl. Sari Asih No. 54 Bandung
10	Nomor Telepon kantor	
11	Lulusan yang telah	D4 = 9 Orang
	dihasilkan	
12	Mata kuliah yang diampu	1. Manajemen Persediaan
		2. Manajemen pergudangan

B. Riwayat Pendidikan

	S1	S2
Nama Perguruan Tinggi	Universitas	Universiti Teknologi
	Pasundan	Malaysia
Bidang Ilmu	Teknik	Management of
	Industri	Technology
Tahun Masuk/Tahun Lulus	2004/2009	2011/2013
Judul Skripsi/Tesis	Implementasi	Implementation of
	MFG/Pro di	Inventory
	PT Pindad	Management in
	Persero	SMEs Metal
		Industries Bandung
Nama Pembimbing/Promotor	Putri Mety	Dr. Low Hock Heng
	Zalynda,	
	ST.,MT	

C. Pengalaman Penelitian dalam 5 tahun Terakhir

No.	Tahun	Judul Penelitian	Pend	lanaan
			Sumber	Jml (Juta Rp)
1	2015	Penerapan Software ERP SAP di	LPPM	5.000.000
		PT Purinusa Eka Persada	Politeknik	
			Pos	

2	2017	Perancangan Kebutuhan Persediaan Untuk Barang Penjualan Online (Studi Kasus: UKM Pelaku E-	Politeknik	8.000.000
		Commerce)	rus	
3	2018	Formulasi Model Bisnis Surat	PDP	14.500.000
		Kabar Elektronik di Indonesia	Ristekdikti	

D. Pengalaman Pengabdian Kepada Masyarakat dalam 5 tahun terakhir

No.	Tahun	Judul Pengabdian Kepada	Pendanaan
		Masyarakat	Sumber Jml (Juta Rp)
1	2017	Pelatihan Aplikasi	LPPM 7.000.000
		Monitoring Distribusi	Politeknik
		Beras Berbasis SMS	Pos
		Gateway di Kecamatan	
		Cikancung	
2	2018	Pelatihan Aplikasi Pos	LPPM 8.000.000
		Pelayanan Keluarga	Politeknik
		Berencana dan Kesehatan	Pos
		Terpadu di RW 06	
		Kelurahan Rancaekek	
		Kencana	

E. Publikasi Artikel Ilmiah Dalam Jurnal dalam 5 tahun Terakhir

No.	Judul Artikel	Nama Jurnal	Volume/Nomor/Tahun
1	Penerapan Software ERP SAP	Jurnal Logistik	Vol. 6 No 2 2016
	PT Purinusa Eka Persada	Bisnis	
2	Formulasi Bisnis Model Surat	Jurnal	Vol. 13 No 1 2018
	Kabar Elektronik di Pikiran	Competitive	
	Rakyat	_	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Penelitian Internal Tahun 2022.

Bandung,14 Maret 2022

Anggota Peneliti,
Amri Yanuar, ST.,M.MT

A. Identitas Diri Anggota Peneliti

1	Nama Diri	Bachtiar Ramadhan
2	Jenis Kelamin	Laki – Laki
3	Program Studi	DIV-Teknik Informatika
4	NIM	1204077
5	Tempat dan Tanggal Lahir	Pekanbaru, 21 Desember 2000
6	Alamat Email	1204077_bachtiar@students.poltekpos.ac.id
7	Nomor Telepon/HP	085213921331

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1	RPPI	Aktif	ULBI
2	LDK Commitment	Aktif	ULBI
3	Himatif	Aktif	ULBI

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1			
2			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Penelitian Internal Tahun 2022.

Bandung, 14 Maret 2022

Anggota Peneliti,

(Bachtiar Ramadhan)

A. Identitas Diri Anggota Penelitian

1	Nama Diri	Nur Tri Ramadhanti Adiningrum
2	Jenis Kelamin	Perempuan
3	Program Studi	DIV-Teknik Informatika
4	NIM	1204061
5	Tempat dan Tanggal Lahir	Bandung,16 Desember 2001
6	Alamat Email	1204061_nur@students.poltekpos.ac.id
7	Nomor Telepon/HP	081221950983

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1	Himatif	Aktif	ULBI
2	Composer	Aktif	ULBI
3	Popeys	Aktif	ULBI

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1			
2			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Penelitian Internal Tahun 2022.

Bandung, 14 Maret 2022

Anggota Tim

(Nur Tri Ramadhanti Adiningrum)

Lampiran 3 Surat Pernyataan Bebas Plagiat Ketua Penelitian

SURAT PERNYATAAN BEBAS PLAGIAT

Saya yang bertandatangan di bawah ini:

Nama : Syafrial Fachri Pane.,S.T.,M.TI.,EBDP

NIDN : 0416048803

Program Studi : D4 Teknik Informatika

Dengan ini menyatakan bahwa judul laporan ini **pemodelan berbasis data untuk** memprediksi gaji berdasarkan faktor-faktor spesifik dengan pendekatan machine learning benar bebas dari plagiat, dan apabila pernyataan ini terbukti tidak benar maka saya bersedia menerima sanksi sesuai ketentuan yang berlaku.

Demikian surat pernyataan ini saya buat untuk dipergunakan sebagaimana mestinya.

Bandung, 16 Oktober 2022 Yang membuat pernyataan,

(Syafrial Fachri Pane.,S.T.,M.T.I.,EBDP) NIK. 117.88.233

Lampiran 4 Penggunaan Anggaran

	Gaji & Upah/Jam	Waktu			
Jabatan	(Rp)	(Jam/Minggu)	Minggu	TOTAL (Rp)	
Ketua Peneliti	6500	6 Jam	16	832000	
Anggota 1 (Dosen)	4500	4 Jam	16	576000	
Anggota 2 (Dosen)	4500	4 Jam	16	350000	
Anggota 3 (Dosen)	4500	4 Jam	16	350000	
SUB TOTAL (Rp)				2108000	
2. Bahan Habis Pakai			•		
Madadal	Justifikasi	Kuantitas	Harga Satuan	TOTAL (D.)	
Material	Pemakaian	Kuanutas	(Rp)	TOTAL (Rp)	
Kertas A4	Untuk Print Dokumen	5 Rim	50000	250000	
Tinta Printer	Untuk Keperluan Print	4 Buah	200000	800000	
Konsumsi	Rapat/Diskusi 8 Bulan	8 Bulan	200000	1600000	
ATK	Administrasi	2 Pack	250000	500000	
Sewa Zoom (100 Partisipan)	Meeting Online 8 Bulan 1 Paket		250000	250000	
Subsidi Kuota Pulsa	Komunikasi 8 Bulan 50000		2550000		
SUB TOTAL (Rp)	•			5950000	
3. Perjalanan			•		
Material	Justifikasi	Kuantitas	Harga Satuan	TOTAL (D)	
Material	Pemakaian	Kuantitas	(Rp)	TOTAL (Rp)	
SUB TOTAL (Rp)			l .		
4. Lain - Lain					
M-41-1	Justifikasi	T7 (1)	Harga Satuan	TOTAL (RP)	
Material	Pemakaian	Kuantitas	(Rp)		
Administrasi, Publikasi, Laporan	Publikasi dan Laporan	1 Kali	500000	500000	
SUB TOTAL (Rp)				500000	
TOTAL DANA YANG DIBUTU	HKAN (Rp)			8558000	

Lampiran 5 Bukti Penerimaan Artikel Ilmiah (LOA) atau URL dan Screenshoot Halaman Jurnal yang Sudah Dipublikasi

Lampiran 6 Format Catatan Harian (Logbook)

No	Tanggal	Kegiatan		
1	Hari Rabu, 17 Agustus 2022	Catatan: Pembuatan Laporan Akhir Penelitian. Dokumen Pendukung: 1. Foto Foto		
2	Hari Sabtu, 6 Agustus 2022	Catatan: Pembuatan Power Point untuk Presentasi. Dokumen Pendukung: 1. Foto PARTI - AGI		
3	Hari Kamis, 1 September 2022	Catatan: Pembuatan Jurnal Ilmiah ter-akreditasi SINTA 3. Dokumen Pendukung: 1. Foto 1. Foto Analisi Data Pegawai untuk Memprediksi Gajillerdaarkan Justing Talawai Justing		

Lampiran 7 Poster

Skolah Vokasi. Sarjana Terapan Teknik Informatika, Universitas Logistik dan Bisnis Internasional
Syafrial Fachri Pane, S.T., M.Ti., EBDP., CDSP., SFPC. (0416048803), Amri Yanuar., S.T., M.OT. (0412018603)
Keterlibatan Mahasiswa: Bachtiar Ramadhan (1204077), Nur Tri Ramadhanti Adiningrum (1204061), Muhammad Rizky (1194021)

ULBI

Metodologi Penelitian

Implementasi

Jalan Sariasih No. 54 Sarijadi Bandung, 40151, Jawa Barat Indonesia