35

ME 31 MM E

<110>

SEQUENCE LISTING

Colucci, M. Gabriella Chrispeels, Maarten J. Moore, Jeffrey G.

<120> Progenitor Cell Preservation Factors and Methods for and Products of Their Use

<130> 108236.119

<140> US 09/476,485

<141> 1999-12-30

<150> US 08/881,189

<151> 1997-06-24

<160> 57

<170> PatentIn version 3.0

<210> 1

<211> 939

<212> DNA

<213> Artificial Sequence

<220>

<223> D1-FRIL.

<400> 1 gcacagtcat tgtcatttag tttcaccaag tttgatccta accaagagga tcttatcttc 60 caaggtcatg ccacttctac aaacaatgtc ttacaagtca ccaagttaga cagtgcagga 120 aaccetgtga gttctagtge gggaagagtg ttatatte $t_{\mathbf{q}}$ g caccattgeg cetttgggaa 180 gactctgcgg tattgacaag ctttgacacc attatcaactiggl(ttgaaatctc aacaccttac 240 acttetegta tagetgatgg ettggeette tteattgeac c_{q} eetgaete tgteateagt 300 tatcatggtg gttttcttgg actctttccc aacgcaaaca ctc \uparrow caacaa ctcttccacc 360 tetgaaaacc aaaccaccac taaggetgea teaagcaacg ttgt t_{Q}^{A} etgt tgaatttgac 420 acctatctta atcccgatta tggtgatcca aactacatac acatcggat tgacgtcaac 480 totattagat ccaaggtaac tgctaagtgg gactggcaaa atgggaaa λ t agccactgca 540 cacattaget ataactetgt etetaaaaga etatetgtta etagttatta \t tgetgggagt 600 aaacctgcga ctctctccta tgatattgag ttacatacag tgcttcctga a \cup{t} gggtcaga 660 gtagggttat ctgcttcaac tggacaagat aaagaaagaa ataccgttca ctcatggtct 720 ttcacttcaa gcttgtggac caatgtggcg aagaaggaga atgaaaacaa gtatattaca 780

840

900

939

ag	aggc	gttc	tgt	gatg	ata [.]	tatg	tgta	tc a	atga [.]	tttt	c ta	tgtta	ataa	gca	tgtaatg
															aagagtc
		cttt													-
	10> 11>	2 264													
<2	l2> l3>	PRT	fici	al c	Segue	an co									
<22	20>	D1-F			reque	ence									
<40	00>	2													
Ala 1	Gly	'Ser	Leu	Ser 5	Phe	e Ser	Phe	Thr	Lys	Phe	Asp	Pro	Asn	Gln 15	Glu
Asp	Leu	Ile	Phe 20	Gln	Gly	His	Ala	Thr 25	Ser	Thr	Asn	Asn	Val	Leu	Gln
Val	Thr	Lys 35	Leu	Asp	Ser	Ala	Gly 40	Asn	Pro	Val	Ser	Ser 45	Ser	Ala	Gly
Arg	Val 50	Leu	Tyr	Ser	Ala	Pro 55	Leu	Arg	Leu	Trp	Glu 60	Asp	Ser	Ala	Val
Leu 65	Thr	Ser	Phe	Asp	Thr 70	Ile	Ile	Asn	Phe	Glu 75	Ile	Ser	Thr	Pro	Tyr 80
Thr	Ser	Arg	Ile	Ala 85	Asp	Gly	Leu	Ala	Phe 90	Phe	Ile	Ala	Pro	Pro 95	Asp
Ser	Val	Ile	Ser 100	Tyr	His	Gly	Gly	Phe 105	Leu	Gly	Leu	Phe	Pro 110	Asn	Ala
Asn	Thr	Leu 115	Asn	Asn	Ser	Ser	Thr 120	Ser	Glu	Asn	Gln	Thr 125	Thr	Thr	Lys
Ala	Ala 130	Ser	Ser	Asn	Val	Val 135	Ala	Val	Glu	Phe	Asp 140	Thr	Tyr	Leu	Asn
Pro 145	Asp	Tyr	Gly	Asp	Pro 150	Asn	Tyr	Ile	His	Ile 155	Gly	Ile	Asp	Val	Asn 160
Ser	Ile	Arg	Ser	Lys 165	Val	Thr	Ala	Lys	Trp 170	Asp	Trp	Gln	Asn	Gly 175	Lys
Ile	Ala	Thr	Ala 180	His	Ile	Ser	Tyr	Asn 185	Ser	Val	Ser	Lys	Arg 190	Leu	Ser
Val	Thr	Ser 195	Tyr	Tyr	Ala	Gly	Ser 200	Lys	Pro	Ala	Thr	Leu 205	Ser	Tyr	Asp

Page 2

Ų.

Ile Glu Le 210	eu His Thr	Val Leu 215	Pro G	Glu Trp	Val	Arg 220	Val	Gly	Leu	Ser	
Ala Ser Th 225	nr Gly Gln	Asp Lys 230	Glu A	arg Asn	Thr 235	Val	His	Ser	Trp	Ser 240	
Phe Thr Se	er Ser Leu 245	Trp Thr	Asn V	al Ala 250	Lys	Lys	Glu Z	Asn	Glu 255	Asn	
Lys Tyr Il	e Thr Arg 260	Gly Val	Leu								
<210> 3 <211> 100 <212> DNA <213> Art		quence									
	leic acid	sequence	of the	he natu	rall	у-ос	curri	ing	D1-F	RIL p	rotein.
<400> 3 atggcttcct	ccaacttac	t caccct	agcc (ctcttcc	ttg	tgct [.]	tctca	ic c	cacg	caaac	60
tcagccgcac	agtcattgt	c atttag	rtttc a	accaagt	ttg	atcc	taacc	a a	.gagg	atctt	120
atcttccaag	gtcatgcca	c ttctac	aaac a	aatgtct	tac	aagto	cacca	ıa g	ttag	acagt	180
gcaggaaacc	ctgtgagtt	c tagtgo	ggga a	agagtgt	tat .	attci	gcac	c a	ttgc	gcctt	240
tgggaagact	ctgcggtati	gacaag	cttt o	gacaccat	tta ·	tcaad	ctttg	a a	atct	caaca	300
ccttacactt	ctcgtatage	tgatgg	cttg g	gccttcti	tca ·	ttgca	accac	c t	gact	ctgtc	360
atcagttatc	atggtggttt	tcttgg	actc t	ttcccaa	acg (caaac	cactc	t c	aacaa	actct	420
tccacctctg	aaaaccaaad	caccac	taag g	gctgcato	caa q	gcaac	gttg	t t	gctgt	tgaa	480
tttgacacct	atcttaatco	c cgatta	tggt g	gatccaaa	act a	acata	caca	t c	ggaat	tgac	540
gtcaactcta	ttagatccaa	ggtaac	tgct a	agtggga	act o	ggcaa	aatg	g g	aaaat	tagcc	600
actgcacaca	ttagctataa	ctctgt	ctct a	aaagact	at o	ctgtt	acta	g t	tatta	atgct	660
gggagtaaac	ctgcgactct	ctccta	tgat a	ıttgagtt	ac a	ataca	gtgc	t to	cctga	atgg	720
gtcagagtag	ggttatctgc	: ttcaac	tgga c	aagataa	ag a	aaaga	aata	c c	gttca	ctca	780
tggtctttca	cttcaagctt	gtggac	caat g	tggcgaa	ıga a	aggag	aatga	a aa	aacaa	gtat	840
attacaagag	gcgttctgtg	atgata	tatg t	gtatcaa	tg a	tttt	ctate	g tt	cataa	gcat	900
gtaatgtgcg	atgagtcaat	aatcaca	aagt a	cagtgta	gt a	cttg	tatgi	t to	gtttg	tgta	960
agagtcagtt	tgcttttaat	aataaca	aagt g	cagttag	ta c	ttgt					1005

Page 3

*****,

<211> <212>	4 22 PRT Artificial Se	quence				
<220> <223>	Signal sequend ab	ce from the	FRIL famil	y isolated	from Dolichos	lab l
<400>	1					
Met Ala 1	Ser Ser Asn 1	Leu Leu Thr	Leu Ala Leu 10	ı Phe Leu V	al Leu Leu 15	
Thr His	Ala Asn Ser A	Ala				
<212>	5 014 ONA ortificial Sec	quence				
<220> <223> F	v-FRIL.					
<400> 5						
	at tatcttttaa					60
	tg ccacttctac					120
	gg gtgctagtgt					180
aactctat	gg cagtgtcaag	ctttgaaact	aatctcacca	ttcaaatctc	aacacctcac	240
ccttatta	tg cagctgatgg	ctttgccttc	ttccttgcac	cacatgacac	tgtcatccct	300
ccaaattc	tt ggggcaaatt	ccttggactc	tactcaaacg	ttttcagaaa	ctccccacc	360
tctgaaaa	cc aaagctttgg	tgatgtcaat	actgactcaa	gagttgttgc	tgtcgaattt	420
gacacctt	cc ctaatgccaa	tattgatcca	aattacagac	acattggaat	cgatgtgaac	480
tctattaa	gt ccaaggaaac	tgctaggtgg	gagtggcaaa	atgggaaaac	ggccactgca	540
cgcatcag	ct ataactctgc	ctctaaaaaa	tcaactgtta	ctacgtttta	tcctgggatg	600
gaagttgt	gg ctctctccca	tgatgttgac	ttacatgcag	agcttcctga	atgggttaga	660
	at ctgcttcaac					720
	aa gcttgaagaa					780
	gc gatcatatac					940

atgtatgatg cactcaataa taatcacaag tacgtacggt gtagtacttg tatgttgttt

900

914

atgaaaaaaa aaaa <210> 6 <211> 303 <212> PRT <213> Artificial Sequence <220> <223> Pv-FRIL. <400> 6 Ala Gln Ser Leu Ser Phe Asn Phe Thr Lys Phe Asp Leu Asp Gln Lys 10 Asp Leu Ile Phe Gln Gly Asp Ala Thr Ser Thr Asn Asn Val Leu Gln Leu Thr Lys Leu Asp Ser Gly Gly Asn Pro Val Gly Ala Ser Val Gly Arg Val Leu Phe Ser Ala Pro Phe His Leu Trp Glu Asn Ser Met Ala Val Ser Ser Phe Glu Thr Asn Leu Thr Ile Gln Ile Ser Thr Pro His Pro Tyr Tyr Ala Ala Asp Gly Phe Ala Phe Phe Leu Ala Pro His Asp Thr Val Ile Pro Pro Asn Ser Trp Gly Lys Phe Leu Gly Leu Tyr Ser 105 Asn Val Phe Arg Asn Ser Pro Thr Ser Glu Asn Gln Ser Phe Gly Asp Val Asn Thr Asp Ser Arg Val Val Ala Val Glu Phe Asp Thr Phe Pro Asn Ala Asn Ile Asp Pro Asn Tyr Arg His Ile Gly Ile Asp Val Asn 155 145 Ser Ile Lys Ser Lys Glu Thr Ala Arg Trp Glu Trp Gln Asn Gly Lys 170 Thr Ala Thr Ala Arg Ile Ser Tyr Asn Ser Ala Ser Lys Lys Ser Thr 185 Val Thr Thr Phe Tyr Pro Gly Met Glu Val Val Ala Leu Ser His Asp

Page 5

Val Asp Leu His Ala Glu Leu Pro Glu Trp Val Arg Val Gly Leu Ser

	210					215					220					
Ala 225	Ser	Thr	Gly	Glu	Glu 230	Lys	Gln	Lys	Asn	Thr 235	Ile	Ile	Ser	Trp	Ser 240	
Phe	Thr	Ser	Ser	Leu 245	Lys	Asn	Asn	Glu	Val 250	Lys	Glu	Pro	Lys	Glu 255	Asp	
Met	Tyr	Ile	Ala 260	Asn	Val	Val	Arg	Ser 265	Tyr	Thr	Trp	Ile	Asn 270	Asp	Val	
Leu	Ser	Tyr 275	Ile	Ser	Asn	Lys	Met 280	Tyr	Asp	Ala	Leu	Asn 285	Asn	Asn	His	
Lys	Tyr 290	Val	Arg	Суѕ	Ser	Thr 295	Cys	Met	Leu	Phe	Met 300	Lys	Lys	Lys		
<210 <211 <212 <213 <220 <223	> 6 > D > A	78 NA rtif	ficia Fil p				sequ	lence								
<400 acga		cg a	cagc	gacc	a aa	.agga	tctt	atg	ttcc	aag	gtca	tacc	at t	tcta	gcago	: 60
aatg	tcat	ac a	actc	acca	a gt	taga	cagt	aat	ggaa	acc	ctgt	gagt	ac c	agtg	tggga	120
agag	tgtt	at a	ctct	gcac	c at	tgcg	cctt	tgg	gaaa	gct	ctac	agta	gt g	ıtcaa	ccttt	180
gaga	ccac	tt t	cacc	tttc	a aa	tctc	aaca	cct	taca	cta	gtcc	tcct	gg t	gatg	ggctc	240
gcct	tctt	cc t	tgca	ccat	a tg	acac	tgtc	atc	cctc	caa	attc	tgct	gg c	aatc	ttctt	300
ggac	tctt [.]	tc c	taac	ttaa	a tg	cttt	aaga	aac	tcca	сса	ccag	taaa	ga a	acca	ctatt	360
gatg	tcaat	tg c	tgca	tcta	a ca	acgt	tgtt	gcc	gttg	aat	ttga	cacc	ta c	ccta	acgac	420
aata	ttggi	tg a	tcca	agat	a ca	aaca	catt	gga	atcg	atg	tcaa	ctct	at c	aggt	ccaag	480
gcaa	ctgti	ig c	gtgg	gact	g gc	aaaa	tggg	aaa	acag	cca	ctgc	acaca	at c	agct	ataac	540
tctg	cctct	ca a	aaga	ctat	c tg	ttac	tact	ttt	tatc	ctg	gggg	caaa	gc t	gtga	gtctt	600
tccca	atgad	cg t	tgag	ctca	c tc	aagt	gctt	cct	caat	gga	ttaga	agta	gg g	ttct	ctgct	660
tcaad	cagga	at ta	agaga	aaa												678

<210> 8 <211> 234 <212> PRT

<213> Artificial Sequence

<220>

<223> YamFril deduced amino acid squence.

<400> 8

Ala Gln Ser Val Ser Phe Thr Phe Thr Lys Phe Asp Ser Asp Gln Lys $1 \hspace{1cm} 15 \hspace{1cm} 1$

Asp Leu Met Phe Gln Gly His Thr Ile Ser Ser Ser Asn Val Ile Gln 20 25 30

Leu Thr Lys Leu Asp Ser Asn Gly Asn Pro Val Ser Thr Ser Val Gly 35 40 45

Arg Val Leu Tyr Ser Ala Pro Leu Arg Leu Trp Glu Ser Ser Thr Val 50 55 60

Val Ser Thr Phe Glu Thr Thr Phe Thr Phe Gln Ile Ser Thr Pro Tyr 70 75 80

Thr Ser Pro Pro Gly Asp Gly Leu Ala Phe Phe Leu Ala Pro Tyr Asp 85 90 95

Thr Val Ile Pro Pro Asn Ser Ala Gly Asn Leu Leu Gly Leu Phe Pro 100 105 110

Asn Leu Asn Ala Leu Arg Asn Ser Thr Thr Ser Lys Glu Thr Thr Ile 115 120 125

Asp Val Asn Ala Ala Ser Asn Asn Val Val Ala Val Glu Phe Asp Thr 130 135 140

Tyr Pro Asn Asp Asn Ile Gly Asp Pro Tyr Arg Lys His Ile Gly Ile 145 150 155 160

Asp Val Asn Ser Ile Arg Ser Lys Ala Thr Val Ala Trp Asp Trp Gln \$165\$ \$170\$ \$175\$

Asn Gly Lys Thr Ala Thr Ala His Ile Ser Tyr Asn Ser Ala Ser Lys 180 185 190

Arg Leu Ser Val Thr Thr Phe Tyr Pro Gly Gly Lys Ala Val Ser Leu 195 200 205

Ser His Asp Val Glu Leu Thr Gln Val Leu Pro Gln Trp Ile Arg Val 210 215 220

Gly Phe Ser Ala Ser Thr Gly Leu Glu Lys 225 230

<210> 9

<211> 15

<212> PRT

Page 7

*

```
<213> Artificial Sequence
 <220>
 <223> Beta band polypeptide.
 <400> 9
 Ala Gln Ser Val Ser Phe Thr Phe Thr Lys Phe Asp Ser Asp Gln
                                      10
 <210> 10
 <211> 16
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Alpha band polypeptide.
<220>
<221> PEPTIDE
<222> (14)..(14) <223> Amino acid 14 is Xaa wherein Xaa = any amino acid.
<400> 10
Ala Ala Ser Asn Asn Val Val Ala Val Glu Phe Asp Thr Xaa Pro Asn
                                     10
<210> 11
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> MLA degenerate oligonucleotide primer.
<220>
<221> misc_feature
<222> (3)..(21)
<223> Nucleotides 3, 18 and 21 are n wherein n=a or g.
<220>
<221> misc_feature
<222> (6)..(15)
<223> Nucleotides 6, 9, and 15 are n wherein n = t or c.
```

Page 8

Þ

```
<220>
 <221> misc_feature
 <222>
       (12)...(12)
 <223> Nucleotide 12 is n wherein n = a or t.
 <400> 11
 aanttnganc cnaancanga nga
                                                                      23
 <210> 12
 <211> 20
 <212> DNA
<213> Artificial Sequence
 <220>
<223> MLZ degenerate oligonucleotide primer.
<220>
<221> misc feature
<222> (3)..(3)
<223> Nucleotide 3 is n wherein n = a or t.
<220>
<221> misc feature
<222> (6)..(15)
<223> Nucleotides 6 and 15 are n wherein n = a or g.
<220>
<221> misc feature
<222> (9)..(9)
<223> Nucleotide 9 is n wherein n = t or c.
<400> 12
ttnccnttnt gccantccca
                                                                      20
<210> 13
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> primer.
<400> 13
gtaccgagct cggat
                                                                     15
```

Page 9

7

```
<210> 14
 <211> 18
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> primer.
<400> 14
tctagatgca tgctcgag
                                                                         18
<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> MLX primer.
<400> 15
gttggacgtc aattccgatg tg
                                                                         22
<210> 16
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> MLI degenerate primer.
<220>
<221> misc_feature
<222> (3)..(15)
<223> Nucleotides 3, 9, 12 and 15 are n wherein n = t or c.
<220>
<221> misc_feature <222> (6)..(6)
<223> Nucleotide 6 is n wherein n = a or g.
<400> 16
gcncantcnc tntcntt
                                                                        17
```

Page 10

•

```
<210> 17
 <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Oligo(dT) anchor primer.
 <400> 17
 gaccacgcgt atcgatgtcg ac
                                                                      22
<210> 18
<211> 21
<212> .DNA
<213> Artificial Sequence
<220>
<223> MLB primer.
<400> 18
aagttagaca gtgcaggaaa c
                                                                      21
<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> MLII primer.
<400> 19
gcacagtcat tgtcatttag
                                                                     20
<210> 20
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> D1-FRIL.
<400> 20
Tyr Leu Asn Pro Asp Tyr Gly Asp Pro Asn Tyr Ile His Ile Gly Ile
Asp Val
```

Page 11

۵

<210> 21 <211> 19 <212> PRT <213> Artificial Sequence	
<220> <223> Pea.	
<400> 21	
Phe Tyr Asn Ala Ala Trp Asp Pro Ser Asn Arg Asp Arg His Ile Gly 1 5 10 15	
Ile Asp Val	
<210> 22 <211> 1005 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220> <223> SpDLA.	
<400> 22 atggcttcct ccaacttact caccctagec etetteettg tgetteteac ccaegeaaac	60
tcagccgcac agtcattgtc atttagtttc accaagtttg atcctaacca agaggatctt	120
atottocaag gtoatgocac ttotacaaac aatgtottac aagtoaccaa gttagacagt	120
	180
gcaggaaacc ctgtgagttc tagtgcggga agagtgttat attctgcacc attgcgcctt	240
tgggaagact ctgcggtatt gacaagcttt gacaccatta tcaactttga aatctcaaca	300
cettacactt etegtatage tgatggettg geettettea ttgcaccace tgactetgte	360
atcagttatc atggtggttt tcttggactc tttcccaacg caaacactct caacaactct	420
tccacctctg aaaaccaaac caccactaag gctgcatcaa gcaacgttgt tgctgttgaa	480
tttgacacct atcttaatcc cgattatggt gatccaaact acatacacat cggaattgac	540
gtcaactcta ttagatccaa ggtaactgct aagtgggact ggcaaaatgg gaaaatagcc	600
actgcacaca ttagctataa ctctgtctct aaaagactat ctgttactag ttattatgct	660
gggagtaaac ctgcgactct ctcctatgat attgagttac atacagtgct tcctgaatgg	720
gtcagagtag ggttatctgc ttcaactgga caagataaag aaagaaatac cgttcactca	780

840

900

960

1005

tggtctttca cttcaagctt gtggaccaat gtggcgaaga aggagaatga aaacaagtat

att	acaa	gag	gcgt	tctg	tg a	tgat	atat	g tg	tato	aatg	att	ttct	atg	ttat	aagcat
gta	atgt	gcg	atga	gtca	at a	atca	caag	t ac	agtg	tagt	act	tgta	tgt	tgtt	tgtgta
aga	agagtcagtt tgcttttaat aataacaagt gcagttagta cttgt														
<21 <21 <21	<210> 23 <211> 286 <212> PRT <213> Artificial Sequence <220> <223> SpDLA.														
< 40	0>	23													
Met 1	Ala	Ser	Ser	Asn 5	Leu	Leu	Thr	Leu	Ala 10	Leu	Phe	Leu	Val	Leu 15	Leu
Thr	His	Ala	Asn 20	Ser	Ala	Ala	Gln	Ser 25	Leu	Ser	Phe	Ser	Phe 30	Thr	Lys
Phe	Asp	Pro 35	Asn	Gln	Glu	Asp	Leu 40	Ile	Phe	Gln	Gly	His 45	Ala	Thr	Ser
Thr	Asn 50	Asn	Val	Leu	Gln	Val 55	Thr	Lys	Leu	Asp	Ser 60	Ala	Gly	Asn	Pro
Val 65	Ser	Ser	Ser	Ala	Gly 70	Arg	Val	Leu	Tyr	Ser 75	Ala	Pro	Leu	Arg	Leu 80
Trp	Glu	Asp	Ser	Ala 85	Val	Leu	Thr	Ser	Phe 90	Asp	Thr	Ile	Ile	Asn 95	Phe
Glu	Ile	Ser	Thr 100	Pro	Tyr	Thr	Ser	Arg 105	Ile	Ala	Asp	Gly	Leu 110	Ala	Phe
Phe	Ile	Ala 115	Pro	Pro	Asp	Ser	Val 120	Ile	Ser	Tyr	His	Gly 125	Gly	Phe	Leu
Gly	Leu 130	Phe	Pro	Asn	Ala	Asn 135	Thr	Leu	Asn	Asn	Ser 140	Ser	Thr	Ser	Glu
Asn 145	Gln	Thr	Thr	Thr	Lys 150	Ala	Ala	Ser	Ser	Asn 155	Val	Val	Ala	Val	Glu 160
Phe	Asp	Thr	Tyr	Leu 165	Asn	Pro	Asp	Tyr	Gly 170	Asp	Pro	Asn	Tyr	Ile 175	His
Ile	Gly	Ile	Asp 180	Val	Asn	Ser	Ile	Arg 185	Ser	Lys	Val	Thr	Ala 190	Lys	Trp

Asp Trp Gln Asn Gly Lys Ile Ala Thr Ala His Ile Ser Tyr Asn Ser 195 Val Ser Lys Arg Leu Ser Val Thr Ser Tyr Tyr Ala Gly Ser Lys Pro Ala Thr Leu Ser Tyr Asp Ile Glu Leu His Thr Val Leu Pro Glu Trp 235 Val Arg Val Gly Leu Ser Ala Ser Thr Gly Gln Asp Lys Glu Arg Asn Thr Val His Ser Trp Ser Phe Thr Ser Ser Leu Trp Thr Asn Val Ala 265 Lys Lys Glu Asn Glu Asn Lys Tyr Ile Thr Arg Gly Val Leu 280 -<210> 24 <211> 8 <212> PRT <213> Dolichos lablab <220> <221> PEPTIDE <222> (7)..(7) <223> Amino acid 7 is Xaa wherein Xaa = any amino acid. <400> 24 Thr Asn Asn Val Leu Gln Xaa Thr <210> 25 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> MutI primer. <400> 25 ccataatcgg gatcaagata ggtg

<210> 26

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> MutII primer.

24

Page 14

4

<400> caccta	26 atctt gatcccgatt atgg	24
<210><211><211><212><213>	24	
<220> <223>	M1 Forw primer.	
<400> aactca	27 Igccg cacagtcatt gtca	24
<210> <211> <212> <213>	28 DNA	
<220> <223>	APECORI primer.	
<400> gaatto	28 gacc acgcgtatcg atgtcgac	28
<210><211><211><212><213>	21	
<220> <223>	Sigforw primer.	
<400> gaattc	29 atgg cttcctccaa c	21
<210> <211> <212> <213>	30 28 DNA Artificial Sequence	
<220>	Sigray primar	

28

```
<400> 30
 tgactgtgcg gctgagtttg cgtgggtg
<210> 31
<211> 14
<212>
       PRT
<213> Artificial Sequence
<220>
<223> Peptide corresponding to Pv-FRIL.
<220>
<221> PEPTIDE
<222> (7)..(7)
<223> Amino acid 7 is Xaa wherein Xaa = Asn, Cys or Ser.
<400> 31
Ala Gln Ser Leu Ser Phe Xaa Phe Thr Lys Phe Asp Leu Asp
                5
<210> 32
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Polypeptide of 18 kDa.
<220>
<221> PEPTIDE
<222> (7)..(7)
<223> Amino acid 7 is Xaa wherein Xaa = unknown amino acid.
<400> 32
Ala Gln Ser Leu Ser Phe Xaa Phe Thr Lys Asp Ala Leu Asp
<210> 33
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Aminoterminal sequence.
```

Page 16

*

```
<220>
 <221>
      PEPTIDE
 <222>
       (12)..(12)
<223> Amino acid 12 is Xaa wherein Xaa = unknown amino acid.
<400> 33
Thr Asp Ser Arg Val Val Ala Val Glu Phe Asp Xaa Phe Pro
<210> 34
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Aminoterminal polypeptide.
<220>
<221> PEPTIDE
<222>
      (7)..(7)
<223> Amino acid 7 is Xaa wherein Xaa = unknown amino acid.
<400> 34
Ala Gln Ser Leu Ser Phe Xaa Phe Lys Phe Asp Pro Asn
                                   10
<210> 35
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Aminoterminal polypeptide.
<400> 35
Thr Asp Ser Arg Val Val Ala Val Glu Asp Phe
                5
                                   10
<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Degenerate oligonucleotide PVBeta1.
```

Page 17

*

<222>	<pre>misc_feature (18)(18) Nucleotide 18 is n wherein n = any nucleotide.</pre>	
<400> ttyacy	36 yaart tygayytnga	20
<210><211><211><212><213>	17 DNA	
<220> <223>	Degenerate oligonucleotide PVBeta2.	
<400> atytty	37 carg gwgaygc	17
<210> <211> <212> <213>	20	
<220> <223>	Degenerate oligonucleotide PVAlfal.	
<400> ttracr	38 tcra twccratrtg	20
<210> <211> <212> <213>	23	
<220> <223>	Degenerate oligonucleotide PVAlfa2.	
<400> tarttw	39 ggrt cratrttrgc rtt	23
<210> <211>	40 22	

Page 18

· gin

<212> <213>	DNA Artificial Sequence	
<220> <223>	PV3 PCR-Anchor primer.	
<400> caatgt	40 cctta caactcacta ag	22
<210><211><211><212><213>	21	
<220> <223>	PV4 PCR-Anchor primer.	
<400> agtgtg	41 ggaa gagtgttatt c	21
<210><211><211><212><213>	21	
<220> <223>	SPV2 Anchor primer.	
<400> accaaa	42 gctt tggttttcag a	21
<210> <211> <212> <213>	43 21 DNA Artificial Sequence	
<220> <223>	SPV3 Anchor primer.	
<400> tctgaaa	43 aacg tttgagtaga g	21
<210> <211> <212>	44 32 DNA	

<213>	Artificial Sequence	
<220> <223>	PVEcoRI primer.	
<400> tacato	44 gaatt cgctcagtca ttatctttta ac	32
<210><211><211><212><213>	21 DNA	
<220> <223>	Sigfor BglII primer.	
<400> agatct	45 atgg cttcctccaa c	21
<210><211><211><212><213>	DNA	
<220> . <223>	Sigrev primer.	
<400> aaagat	46 aatg actgagcggc tgagtttgcg tg	32
<210><211><211><212><213>	47 32 DNA Artificial Sequence	
<220> <223>	SpM1forw primer.	
<400> cacgcaa	47 mact cageegetea gteattatet tt	32
<210> <211> <212> <213>	48 27 DNA Artificial Sequence	

Page 20

1

<220>

<223> APXhoI primer.

<400> 48

ctcgaggacc acgcgtatcg atgtcga

27

<210> 49

<211> 106

<212> PRT

<213> Artificial Sequence

<220>

<223> Beta-subunit of the mannose lectin of Gowda et al.

<400> 49

Ala Gln Ser Leu Ser Phe Ser Ser Phe Thr Lys Phe Asp Pro Asn Gln $1 \hspace{1.5cm} 1 \hspace{1.5cm}$

Glu Asp Leu Ile Phe Gln Gly Thr Ala Thr Ser Lys Leu Asp Ser Ala 20 25 30

Gly Asn Pro Val Ser Ser Ser Ala Gly Arg Val Leu Tyr Ser Ala Pro 35 40 45

Leu Arg Leu Trp Glu Asp Ser Ala Val Leu Thr Ser Phe Asp Pro Thr 50 55 60

Ile Tyr Ile Phe Thr Asn Tyr Thr Ser Arg Ile Ala Asp Gly Leu Ala 65 70 75 80

Phe Ile Ala Pro Pro Asp Ser Val Ile Ser Tyr His Gly Gly Phe Leu 85 90 95

Gly Leu Phe Pro Asn Ala Ala Glu Ser Gly
100 105

<210> 50

<211> 123

<212> PRT

<213> Artificial Sequence

<220>

<223> Beta-subunit of D1-FRIL.

<400> 50

Ala Gln Ser Leu Ser Phe Ser Phe Thr Lys Phe Asp Pro Asn Gln Glu 1 10 15

Asp Leu Ile Phe Gln Gly His Ala Thr Ser Thr Asn Asn Val Leu Gln

Page 21

.

20 25 30

Val Thr Lys Leu Asp Ser Ala Gly Asn Pro Val Ser Ser Ser Ala Gly 35 40 45

Arg Val Leu Tyr Ser Ala Pro Leu Arg Leu Trp Glu Asp Ser Ala Val 50 55 60

Leu Thr Ser Phe Asp Thr Ile Ile Asn Phe Glu Ile Ser Thr Pro Tyr 70 75 80

Thr Ser Arg Ile Ala Asp Gly Leu Ala Phe Phe Ile Ala Pro Pro Asp 85 90 95

Ser Val Ile Ser Tyr His Gly Gly Phe Leu Gly Leu Phe Pro Asn Ala 100 105 110

Asn Thr Leu Asn Asn Ser Ser Thr Ser Glu Asn 115 120

<210> 51

<211> 132

<212> PRT

<213> Artificial Sequence

<220>

<223> Alpha-subunit of the mannose lectin of Gowda et al.

<400> 51

Ile Ala Glu Ser Asn Val Val Ala Val Glu Phe Asp Thr Asp Tyr Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Asn Pro Asp Tyr Gly Asp Pro Asn Tyr Ile His Ile Gly Ile Asp Val 20 25 30

Asn Ser Ile Arg Ser Lys Val Thr Ala Ser Trp Asp Trp Gln Asn Gly 35 40 45

Lys Ile Ala Thr Ala His Ile Ser Tyr Asn Ser Val Ser Lys Arg Leu 50 60

Ser Val Thr Thr Tyr Tyr Pro Gly Arg Gly Lys Pro Ala Thr Ser Tyr 65 70 75 80

Asp Ile Glu Leu His Thr Val Leu Pro Glu Trp Val Arg Val Gly Leu 85 90 95

Ser Ala Ser Thr Gly Gln Asn Ile Glu Arg Asn Thr Val His Ser Trp 100 105 110

Ser Phe Thr Ser Ser Leu Trp Thr Asn Val Ala Lys Val Gly Val Ala 115 120 125

Ser Ile Ser Gly

130

```
<210> 52
<211> 147
<212> PRT
<213> Artificial Sequence
<220>
<223> Alpha-subunit of D1-FRIL.
<400> 52
Gln Thr Thr Thr Lys Ala Ala Ser Ser Asn Val Val Ala Val Glu Phe
Asp Thr Tyr Leu Asn Pro Asp Tyr Gly Asp Pro Asn Tyr Ile His Ile
Gly Ile Asp Val Asn Ser Ile Arg Ser Lys Val Thr Ala Lys Trp Asp
Trp Gln Asn Gly Lys Ile Ala Thr Ala His Ile Ser Tyr Asn Ser Val
                        55
Ser Lys Arg Leu Ser Val Thr Ser Tyr Tyr Ala Gly Ser Lys Pro Ala
Thr Leu Ser Tyr Asp Ile Glu Leu His Thr Val Leu Pro Glu Trp Val
Arg Val Gly Leu Ser Ala Ser Thr Gly Gln Asp Lys Glu Arg Asn Thr
                             105
Val His Ser Trp Ser Phe Thr Ser Ser Leu Trp Thr Asn Val Ala Lys
Lys Glu Asn Glu Asn Lys Tyr Ile Thr Arg Gly Val Leu Tyr Met Cys
Ile Asn Asp
145
<210> 53
<211> 64
<212> DNA
```

<400> 53

<220> <223>

<213> Artificial Sequence

Recombinant expression vector.

ctggttccgc gtggatcccc ggaattcatg cccggttcga ctcgagcggc cgcatcgtga

60

ctga 64 <210> 54 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> Recombinant expression vector. <400> 54 ctggttccgc gtggatcccc ggaattcatg ctcgagcggc cgcatcgtga ctga 54 <210> 55 <211> 237 <212> PRT <213> Artificial Sequence <220> <223> DLL. <400> 55 Ala Gln Ser Leu Ser Phe Ser Phe Thr Lys Phe Asp Pro Asn Gln Glu Asp Leu Ile Phe Gln Gly Thr Ala Thr Ser Lys Leu Asp Ser Ala Gly Asn Pro Val Ser Ser Ser Ala Gly Arg Val Leu Tyr Ser Ala Pro Leu Arg Leu Trp Glu Asp Ser Ala Val Leu Thr Ser Phe Asp Pro Thr Ile Tyr Ile Phe Thr Asn Tyr Thr Ser Arg Ile Ala Asp Gly Leu Ala Phe Ile Ala Pro Pro Asp Ser Val Ile Ser Tyr His Gly Gly Phe Leu Gly Leu Phe Pro Asn Ala Ala Glu Ser Gly Ile Ala Glu Ser Asn Val Val 105 Ala Val Glu Phe Asp Thr Asp Tyr Leu Asn Pro Asp Tyr Gly Asp Pro Asn Tyr Ile His Ile Gly Ile Asp Val Asn Ser Ile Arg Ser Lys Val 135 Thr Ala Ser Trp Asp Trp Gln Asn Gly Lys Ile Ala Thr Ala His Ile

Page 24

7),

145 150 155 160

Ser Tyr Asn Ser Val Ser Lys Arg Leu Ser Val Thr Tyr Tyr Pro 165 170 175

Gly Arg Gly Lys Pro Ala Thr Ser Tyr Asp Leu Glu Leu His Thr Val

Leu Pro Glu Trp Val Arg Val Gly Leu Ser Ala Ser Thr Gly Gln Asn 195 200 205

Ile Glu Arg Asn Thr Val His Ser Trp Ser Phe Thr Ser Ser Leu Trp 210 215 220

Thr Asn Val Ala Lys Val Gly Val Ala Ser Ile Ser Gly 225 230 235

<210> 56

<211> 279

<212> PRT

<213> Artificial Sequence

<220>

<223> PvFRIL.

<400> 56

Ala Gln Ser Leu Ser Phe Asn Phe Thr Lys Phe Asp Leu Asp Gln Lys 1 5 10 15

Asp Leu Ile Phe Gln Gly Asp Ala Thr Ser Thr Asn Asn Val Leu Gln 20 25 30

Leu Thr Lys Leu Asp Ser Gly Gly Asn Pro Val Gly Ala Ser Val Gly 35 40 45

Arg Val Leu Phe Ser Ala Pro Phe His Leu Trp Glu Asn Ser Met Ala 50 55 60

Val Ser Ser Phe Glu Thr Asn Leu Thr Ile Gln Ile Ser Thr Pro His 65 70 75 80

Pro Tyr Tyr Ala Ala Asp Gly Phe Ala Phe Phe Leu Ala Pro His Asp 85 90 95

Thr Val Ile Pro Pro Asn Ser Trp Gly Lys Phe Leu Gly Leu Tyr Ser 100 105 110

Asn Val Phe Arg Asn Ser Pro Thr Ser Glu Asn Gln Ser Phe Gly Asp 115 120 125

Val Asn Thr Asp Ser Arg Val Val Ala Val Glu Phe Asp Thr Phe Pro 130 135 140

Asn Ala Asn Ile Asp Pro Asn Tyr Arg His Ile Gly Ile Asp Val Asn

145	150	155	160

Ser Ile Lys Ser Lys Glu Thr Ala Arg Trp Glu Trp Gln Asn Gly Lys 165 170 175

Thr Ala Thr Ala Arg Ile Ser Tyr Asn Ser Ala Ser Lys Lys Ser Thr 180 185 190

Val Thr Thr Phe Tyr Pro Gly Met Glu Val Val Ala Leu Ser His Asp 195 200 205

Val Asp Leu His Ala Glu Leu Pro Glu Trp Val Arg Val Gly Leu Ser 210 225 220

Ala Ser Thr Gly Glu Glu Lys Gln Lys Asn Thr Ile Ile Ser Trp Ser 225 230 235 240

Phe Thr Ser Ser Leu Lys Asn Asn Glu Val Lys Glu Pro Lys Glu Asp 245 250 255

Met Tyr Ile Ala Asn Val Val Arg Ser Tyr Thr Trp Ile Asn Asp Val 260 265 270

Leu Ser Tyr Ile Ser Asn Lys 275

<210> 57

<211> 254

<212> PRT

<213> Artificial Sequence

<220>

<223> PHA-E.

<400> 57

Ala Ser Gln Thr Ser Phe Ser Phe Gln Arg Phe Asn Glu Thr Asn Leu 1 5 10 15

Ile Leu Gln Arg Asp Ala Thr Val Ser Ser Lys Gly Gln Leu Arg Leu 20 25 30

Thr Asn Val Asn Asp Asn Gly Glu Pro Thr Leu Ser Ser Leu Gly Arg 35 40 45

Ala Phe Tyr Ser Ala Pro Ile Gln Ile Trp Asp Asn Thr Thr Gly Ala 50 55 60

Val Ala Ala Ser Pro Thr Ser Phe Thr Phe Asn Ile Asp Val Pro Asn 65 70 75 80

Asn Ser Gly Pro Ala Asp Gly Leu Ala Phe Val Leu Leu Pro Val Gly 85 90 95

Ser Gln Pro Lys Asp Lys Gly Gly Leu Leu Gly Leu Phe Asn Asn Tyr

٠.			100					105					110		
Lys	Tyr	Asp 115	Ser	Asn	Ala	His	Thr 120	Val	Ala	Val	Glu	Phe 125	Asp	Thr	Leu
Tyr	Asn 130	Val	His	Trp	Asp	Pro 135	Lys	Pro	Arg	His	Ile 140	Gly	Ile	Asp	Val
Asn 145	Ser	Ile	Lys	Ser	Ile 150	Lys	Thr	Thr	Thr	Trp 155	Asp	Phe	Val	Lys	Gly 160
Glu	Asn	Ala	Glu	Val 165	Leu	Ile	Thr	Tyr	Asp 170	Ser	Ser	Thr	Lys	Leu 175	Leu
Val	Ala	Ser	Leu 180	Val	Tyr	Pro	Ser	Leu 185	Lys	Thr	Ser	Phe	Ile 190	Val	Ser
Asp	Thr	Val 195	Asp	Leu	Lys	Ser	Val 200	Leu	Pro	Glu	Trp	Val 205	Ile	Val	Gly
Phe	Thr 210	Ala	Thr	Thr	Gly	Ile 215	Thr	Lys	Gly	Asn	Val 220	Glu	Thr	Asn	Asp
Ile 225	Leu	Ser	Trp	Ser	Phe 230	Ala	Ser	Lys	Leu	Ser 235	Asp	Gly	Thr	Thr	Ser 240
Glu	Ala	Leu	Asn	Leu 245	Ala	Asn	Phe	Ala	Leu 250	Asn	Gln	Ile	Leu		