PH233 L1 (Mon) + L4 (Fri)

Session 0 – Orientation and Introduction to Opamps

PH233 (Electronics Lab – 2)

- 1. Will run in the same format as PH231. Monday + Friday afternoons
 - ➤ Monday: Lab of the week starts, concept discussion
 - Forum active. Submission Wednesday night, Late submission (-30%) till Thursday night
 - ➤ Friday: Lab wrap-up + follow-up
- 2. CONTENT: Everything is done with OPAMPS IC741 in your kit
 Please retain your astable multivibrator FG on your breadboard –
 that will still serve as the FG for most experimental tests

Why Opamps? Discrete Transistor circuits are not good enough, as voltage amplifier

VOLTAGE Amplifier: Want high gain, high input Z, low output Z

Lab 4: Limited gain

Limitation: R_c / emitter resistor sets gain High $R_c \to$ High output Z Low emitter resistor \to low input Z

Endsem: High gain

Discrete Transistor circuits are not good enough, as Current amplifier

Want: High Input Z, high Output Z

Limitation:

If we want high current gain, need super high idle power dissipation (recall efficiency is ~ 2%!)

R_E sets .op in middle of FA, must be low So output Z and input Z are both low General limitations of discrete transistor circuits we have not explored so far

RBB1 | RBB2 are "idle" parts simply to set $V_B = V_E + 0.7$

RBB1, RBB2 value needs to be fine-tuned to keep $i_{b|DC}$ tiny – and they affect input impedance!

BETTER:

R_B feedback from C to B stabilizes bias!

IDEALLY:

We want a current source supplying $I_{C_i}I_B$ V_E not dependent on r_e , R_E

OPAMP

GAIN IS SET BY TWO EXTERNAL resistors R1, R2 No more calculating, fiddling with $R_{\rm C}$, $R_{\rm E}$, $R_{\rm B}$!

WHAT'S INSIDE AN OPAMP?

PRACTICAL ISSUES: HOW TO CONNECT AN OPAMP ON YOUR BREADBOARD

WITH RESPECT TO NOTCH ON IC

TOP LEFT PIN IS #1
THEN OTHER PINS ARE
COUNTER-CLOCKWISE

EXERCISE 1: WHAT ARE ALL THESE TRANSISTORS DOING??

