Lecture 4: CNNs I - Architecture & Equivariance

Lan Xu SIST, ShanghaiTech Fall, 2022

Computation graph

- Represent the computations using a computation graph
 - Nodes: inputs & computed quantities
 - Edges: which nodes are computed directly as function of which other nodes

General Backpropagation

Given a computation graph

Let v_1, \ldots, v_N be a topological ordering of the computation graph (i.e. parents come before children.)

 v_N denotes the variable we're trying to compute derivatives of (e.g. loss)

General Backpropagation

Backprop as message passing:

- Each node receives a set of messages from its children, which are aggregated into its error signal, then it passes messages to its parents
- Modularity: each node only has to know how to compute derivatives w.r.t. its arguments – local computation in the graph

Patterns in backward flow

Multiplicative node

$$\frac{\partial L}{\partial y_j^{(k-1)}} = \frac{\partial L}{\partial o_i^{(k)}} \frac{\partial o_i^{(k)}}{\partial y_j^{(k-1)}} = y_l^{(k-1)} \frac{\partial L}{\partial o_i^{(k)}}$$

Patterns in backward flow

Max node

- Vector equivalent of subgradient
 - 1 w.r.t. the largest incoming input
 - Incremental changes in this input will change the output
 - 0 for the rest
 - Incremental changes to these inputs will not change the output

Vector form of BackProp

Review: Jacobian of vector functions

$$\mathbf{J} = \left[egin{array}{cccc} rac{\partial \mathbf{f}}{\partial x_1} & \cdots & rac{\partial \mathbf{f}}{\partial x_n} \end{array}
ight] = \left[egin{array}{cccc} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{array}
ight].$$

Vectorized chain rule

$$\mathbf{x} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{n} \qquad g : \mathbb{R}^{m} \to \mathbb{R}^{n}, \mathbf{y} = g(\mathbf{x})$$

$$\frac{\partial z}{\partial \mathbf{x}_{i}} = \sum_{j=1}^{n} \frac{\partial z}{\partial \mathbf{y}_{j}} \frac{\partial \mathbf{y}_{j}}{\partial \mathbf{x}_{i}}$$

$$f : \mathbb{R}^{n} \to \mathbb{R}, z = f(\mathbf{y})$$

$$\nabla_{\mathbf{x}} z = \left[\frac{\partial \mathbf{y}_{j}}{\partial \mathbf{x}_{i}}\right] \nabla_{\mathbf{y}} z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^{T} \nabla_{\mathbf{y}} z$$

Vector form of BackProp

Forward pass with vectors

Vector form of BackProp

Note: here the Jacobian matrices are actually the transpose of the standard version.

Matrix form of BackProp

- Often used in mini-batches
 - □ N is the batch size, for instance.

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

- Often used in mini-batches
 - □ N is the batch size, for instance.

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Jacobians:

dy/dx: $[(N\times D)\times (N\times M)]$ dy/dw: $[(D\times M)\times (N\times M)]$

For a neural net we may have
N=64, D=M=4096
Each Jacobian takes 256 GB of memory!
Must work with them implicitly!

- Often used in mini-batches
 - □ N is the batch size, for instance.

x: [N×D] [2 1 -3] [-3 4 2] w: [D×M] [3 2 1 -1] [2 1 3 2] [3 2 1 -2]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

[N×D] [N×M] [M×D]

$$\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right) w^T$$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} w_{d,m}$$

- Often used in mini-batches
 - N is the batch size, for instance.

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

[N×D] [N×M] [M×D]

$$\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right) w^T$$

[D×M] [D×N] [N×M]

$$\frac{\partial L}{\partial w} = x^T \left(\frac{\partial L}{\partial y} \right)$$

These formulas are easy to remember: they are the only way to make shapes match up!

Computation cost

- Forward pass: one add-multiply operation per weight
- Backward pass: two add-multiply operations per weight

 For a multilayer network, the cost is linear in the number of layers, quadratic in the number of units per layer

Backpropagation

- Backprop is used to train the majority of neural nets
 - Even generative network learning, or advanced optimization algorithms (second-order) use backprop to compute the update of weights
- However, backprop seems biologically implausible
 - □ No evidence for biological signals analogous to error derivatives
 - All the existing biologically plausible alternatives learn much more slowly on computers.
 - So how on earth does the brain learn???

Outline

- Why Convolutional Neural Network (CNN)?
 - Motivation and overview
- What is the CNN?
 - Convolution layers & model complexity
 - Closer look at activation functions
 - □ Pooling layers & model complexity
 - Math properties
- Examples of CNNs

Acknowledgement: Roger Grosse @UofT & Feifei Li's cs231n notes

Motivation

- Visual recognition
 - Suppose we aim to train a network that takes a 200x200 RGB image as input

- □ What is the problem with have full connections in the first layer?
 - Too many parameters! 200x200x3x1000 = 120 million
 - What happens if the object in the image shifts a little?

Our goal

- Visual Recognition: Design a neural network that
 - □ Much deal with very high-dimensional inputs
 - ☐ Can exploit the 2D topology of pixels in images
 - Can build in invariance/equivariance to certain variations we can expect
 - Translation, small deformations, illumination, etc.
- Convolution networks leverage these ideas
 - □ Local connectivity
 - Parameter sharing
 - □ Pooling/subsampling hidden units

- First idea: Use a local connectivity of hidden units
 - Each hidden unit is connected only to a subregion (patch) of the input image
 - Usually it is connected to all channels
 - Each neuron has a local receptive field

- Second idea: share weights across certain units
 - Units organized into the same "feature map" share weight parameters
 - Hidden units within a feature map cover different positions in the image

- Third idea: pool hidden units in the same neighborhood
 - □ Averaging or Discarding location information in a small region
 - Robust toward small deformations in object shapes by ignoring details.

- Fourth idea: Interleaving feature extraction and pooling operations
 - Extracting abstract, compositional features for representing semantic object classes

 Artificial visual pathway: from images to semantic concepts (Representation learning)

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Outline

- Why Convolutional Neural Network (CNN)?
 - Motivation and overview
- What is the CNN?
 - Convolution layers & model complexity
 - Closer look at activation functions
 - □ Pooling layers & model complexity
 - Math properties
- Examples of CNNs

Acknowledgement: Roger Grosse @UofT & Feifei Li's cs231n notes

2D Convolution

If A and B are two 2-D arrays, then:

$$(A*B)_{ij} = \sum_{s} \sum_{t} A_{st} B_{i-s,j-t}.$$

1	3	1
0	-1	1
2	2	-1

			1 0				
1	3	1	× 2 1	1	5	7	2
0	-1	1		0	-2	-4	1
2	2	-1		2	6	4	-3
				0	-2	-2	1

2D Convolution

(4 × 0) (0 × 0)

 (0×0)

 (0×0)

 (0×1)

If A and B are two 2-D arrays, then:

$$(A*B)_{ij} = \sum_{s} \sum_{t} A_{st} B_{i-s,j-t}.$$

Center element of the kernel is placed over the source pixel. The source pixel is then replaced with a weighted sum of itself and nearby pixels.

1 _{×1}	1 _{×0}	1,	0	0
0,0	1,	1 _{×0}	1	0
0 _{×1}	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

Picture Courtesy: developer.apple.com

Formal definition

Define a neuron corresponding to a 5x5 filter

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

- Convolution operation
 - Parameter sharing
 - ☐ Spatial information

activation map

- Convolution operation
 - Parameter sharing
 - Spatial information

Multiple kernels/filters

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Visualizing the filters and their outputs

example 5x5 filters (32 total)

We call the layer convolutional because it is related to convolution of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

elementwise multiplication and sum of a filter and the signal (image)

Special Convolutions

- 1x1 convolutions
 - ☐ Used in Network-in-network, GoogleNet
 - □ Reduce or increase dimensionality
 - Can be considered as 'feature pooling"

Complexity of Convolution Layers

Sizes of activation maps and number of parameters

Complexity of Convolution Layers

Size of activation maps

7x7 input (spatially) assume 3x3 filter

7

Complexity of Convolution Layers

Size of activation maps

7x7 input (spatially) assume 3x3 filter

=> 5x5 output

Case: Stride > 1

7x7 input (spatially) assume 3x3 filter applied with stride 2

Case: Stride > 1

7x7 input (spatially) assume 3x3 filter applied with stride 2

Case: Stride > 1

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

 Zero padding to handle non-integer cases or control the output sizes

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

 Zero padding to handle non-integer cases or control the output sizes

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

 Zero padding to handle non-integer cases or control the output sizes

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

$$(32+2*2-5)/1+1 = 32$$
 spatially, so

32x32x10

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params

=> 76*10 = **760**

Summary

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K.
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.
- Produces a volume of size W₂ × H₂ × D₂ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $\circ H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 imes H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Receptive Fields

For convolution with kernel size K, each element in the output depends on a K x K receptive field in the input

Outline

- Why Convolutional Neural Network (CNN)?
 - Motivation and overview
- What is the CNN?
 - □ Convolution layers & model complexity
 - Closer look at activation functions
 - □ Pooling layers & model complexity
 - Math properties
- Examples of CNNs

Acknowledgement: Roger Grosse @UofT & Feifei Li's cs231n notes

Review: Activation Function

Zoo of Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Sigmoid function

Sigmoid

$$\sigma(x) = 1/(1 + e^{-x})$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

- Saturated neurons "kill" the gradients
- Sigmoid outputs are not zero-centered
- 3. exp() is a bit compute expensive

Sigmoid function

Consider what happens when the input to a neuron is always positive...

$$f\left(\sum_i w_i x_i + b
ight)$$

What can we say about the gradients on **w**? Always all positive or all negative :((this is also why you want zero-mean data!)

allowed gradient update directions

zig zag path ypothetical optimal w

vector

Tanh function

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]

Recurrent neural networks: LSTM, GRU

м

Rectified Linear Unit

ReLU (Rectified Linear Unit)

- Computes f(x) = max(0,x)
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Actually more biologically plausible than sigmoid
- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

Rectified Linear Unit

Rectified Linear Unit

Leaky ReLU

[Mass et al., 2013] [He et al., 2015]

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

М

Leaky ReLU

Leaky ReLU

 $f(x) = \max(0.01x, x)$

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

Parametric Rectifier (PReLU)

$$f(x) = \max(\alpha x, x)$$

backprop into \alpha (parameter)

Exponential Linear Units (ELU)

[Clevert et al., 2015]

Exponential Linear Units (ELU)

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha & (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$
 - Computation requires exp()

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime compared with Leaky ReLU adds some robustness to noise

Summary: Activation function

- For internal layers in CNNs
 - Use ReLU. Be careful with your learning rates
 - Try out Leaky ReLU / Maxout / ELU
 - Try out tanh but don't expect much
 - Don't use sigmoid
- For output layers
 - □ Task dependent
 - □ Related to your loss function

Summary: Activation function

Recent progresses

$$\square$$
 Mish $f(x) = x \cdot \tanh(\varsigma(x))$, $\varsigma(x) = \ln(1 + e^x)$.

□ Swish
$$f(x) = x * (1 + \exp(-x))^{-1}$$

https://arxiv.org/abs/1908.08681

https://arxiv.org/abs/1710.05941

Outline

- Why Convolutional Neural Network (CNN)?
 - Motivation and overview
- What is the CNN?
 - □ Convolution layers & model complexity
 - □ Closer look at activation functions
 - □ Pooling layers & model complexity
 - Math properties
- Examples of CNNs

Acknowledgement: Roger Grosse @UofT & Feifei Li's cs231n notes

Pooling Layers

- Reducing the spatial size of the feature maps
 - □ Smaller representations
 - On each activation map independently
 - Low resolution means fewer details

Pooling Layers

- Example: max pooling
- Spatial invariance; no learnable parameters!

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

Complexity of Pooling Layers

Summary

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires three hyperparameters:
 - their spatial extent F,
 - the stride S,
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

$$O$$
 $D_2 = D_1$

- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Outline

- Why Convolutional Neural Network (CNN)?
 - Motivation and overview
- What is the CNN?
 - □ Convolution layers & model complexity
 - □ Closer look at activation functions
 - □ Pooling layers & model complexity
 - Math properties
- Examples of CNNs

Acknowledgement: Roger Grosse @UofT & Feifei Li's cs231n notes

- What representations a CNN can capture in general?
- lacktriangle Consider a representation ϕ as an abstract function

$$\phi: \mathbf{x} \to \phi(\mathbf{x}) \in \mathbb{R}^d$$

- We want to look at how the representation changes upon transformations of input image.
 - Transformations represent the potential variations in the natural images
 - □ Translation, scale change, rotation, local deformation etc.

- Two key properties of representations
 - □ Equivariance

A representation ϕ is equivariant with a transformation g if the transformation can be transferred to the representation output.

$$\exists$$
 a map $M_g : \mathbb{R}^d \to \mathbb{R}^d$ such that: $\forall \mathbf{x} \in \mathcal{X} : \phi(g\mathbf{x}) \approx M_g \phi(\mathbf{x})$

□ Example: convolution w.r.t. translation

- Two key properties of representations
 - □ Invariance

A representation ϕ is invariant with a transformation g if the transformation has no effect on the representation output.

$$\forall \mathbf{x} \in \mathcal{X} : \phi(g\mathbf{x}) \approx \phi(\mathbf{x})$$

Example: convolution+pooling+FC w.r.t. translation

- Recent results on convolution layers
 - Convolutions are equivariant to translation
 - Convolutions are not equivariant to other isometries of the sampling lattice, e.g., rotation

- □ What if a CNN learns rotated copies of the same filter?
 - The stack of feature maps is equivariant to rotation.

- Recent results on convolution layers
 - □ Ordinary CNNs can be generalized to Group Equivariant
 Networks (Cohen and Welling ICML'16, Kondor and Trivedi ICML'18)
 - Redefining the convolution and pooling operations
 - Equivariant to more general transformation from some group G
 - Replacing pooling by other network designs
 - Capsule network (Sabour et al, 2017) https://arxiv.org/abs/1710.09829

Outline

- Why Convolutional Neural Network (CNN)?
 - Motivation and overview
- What is the CNN?
 - □ Convolution layers & model complexity
 - □ Closer look at activation functions
 - □ Pooling layers & model complexity
 - Math properties
- Examples of CNNs

Acknowledgement: Roger Grosse @UofT & Feifei Li's cs231n notes

LeNet-5

Handwritten digit recognition

AlexNet

Deeper network structure

Add a classification ``layer".

For an input image, the value in a particular dimension of this vector tells you the probability of the corresponding object class.

Summary of CNNs

- CNN properties [Bronstein et al., 2018]
 - Convolutional (Translation invariance)
 - Scale Separation (Compositionality)
 - ☐ Filters localized in space (Deformation Stability)
 - □ O(1) parameters per filter (independent of input image size n)
 - □ O(n) complexity per layer (filtering done in the spatial domain)
 - □ O(log n) layers in classification tasks
- Next time ...
 - Structure design of Modern CNNs
- Reference
 - CS231n course notes http://cs231n.github.io/convolutional-networks/
 - D2L Chapter 6 + DLBook Chapter 9