I. AMENDMENTS

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

Claims 1 – 55. (Canceled).

- 56. (Currently Amended) A method for inhibiting the proliferation of a hyperproliferative neoplastic cell that endogenously overexpresses thymidylate synthase, comprising contacting the cell with a compound of claim 62 or a 5'-monophosphate metabolite thereof formed after administration to a subject.
- 57. (Currently Amended) A method for treating a pathology characterized by hyperproliferative neoplastic cells that endogenously overexpresses overexpress thymidylate synthase in a subject comprising administering to the subject a compound of claim 62 or a 5'-monophosphate metabolite thereof formed after administration to a subject.
 - 58. (Canceled).
- 59. (Previously Presented) The method of claim 56 or 57, wherein Q has the formula:

- 60. (Previously Presented) The method of claim 56 or 57, wherein R_1 is a halogen.
- 61. (Previously Presented) The method of claim 56 or 57, wherein R_1 is of the formula $(-CH=CH)_n-R_4$, wherein n is an integer from 1 to 10, and R_4 is selected from the group consisting of H; hydroxyl; a halogen; -NHCHO; -OCN; -SCN; -N₃; -NH₂; -NHOH; -NHNH₂ and a C_2 to C_4 carbon-containing substituent selected from the group consisting of alkyl, alkenyl, alkynyl, -O-alkyl, -O-aryl, O-heteroaryl, -S-alkyl, -S-aryl, -S-heteroaryl, -NH-alkyl, -N(alkyl)₂ and NHO-alkyl.
 - 62. (Currently Amended) A compound of the formula:

wherein:

R¹ is of the formula:

$$\left\{ \begin{array}{c} \\ \\ \end{array} \right\} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\$$

wherein R² is one of:

an unsaturated C2 to C4 hydrocarbyl group;

or

a heteroaromatic group having the structure:

wherein J is -O-, -S-, -Se-, -NH-, or -NR^{ALK}-, wherein R^{ALK} is a linear or branched alkyl having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms;

R³ is selected from the group consisting of:

$$\xi \longrightarrow CH_2 \longrightarrow \xi, \quad \xi \longrightarrow CHR^5 \longrightarrow \xi, \quad \xi \longrightarrow C(R^5)_2 \longrightarrow \xi,$$

$$\xi \longrightarrow 0 \longrightarrow \xi, \quad \xi \longrightarrow S \longrightarrow \xi, \quad \xi \longrightarrow NH \longrightarrow \xi, \text{ and } \xi \longrightarrow NR^5 \longrightarrow \xi.$$

wherein R⁵ may be the same or different and is independently a linear or branched alkyl group having from 1 to 10 carbon atoms, or a cycloalkyl group having from 3 to 10 carbon atoms;

wherein n is an integer from 1 to 10;

wherein m is 0 or 1;

wherein R⁴ is a toxophore selected from the group consisting of:

and

$$\xi$$
 — z — cF_2 — c^0 — c^0

wherein X is -Cl, -Br, -I, or other halogen, with the proviso that when R⁷ is -H, and m is zero, then R⁴ is not a halogen or when m is zero and n is zero, then R⁴ is not a halogen;

wherein Y is independently -H or -F;

wherein Z is independently -O- or -S-;

wherein Q is selected from the group consisting of:

$$\mathbb{R}^7 - 0$$
 $\mathbb{R}^8 \mathbb{R}^6$
 $\mathbb{R}^8 \mathbb{R}^6$
 $\mathbb{R}^7 - \mathbb{C}^7$
 \mathbb

wherein R^6 is independently -H, -OH, -OC(=O)CH₃, or -O-R₉ wherein R₉ is a hydroxyl protecting group other than acetyl; and,

wherein R⁷ is hydrogen, <u>a phosphoryl derivative</u> or a phosphoramidatyl derivative of a naturally-occurring amino acid;

and wherein said compound may be in any enantiomeric, diasteriomeric, or stereoisomeric form, consisting of a D-form, L-form, α -anomeric form, and β -anomeric form or stereoisomeric form, wherein the stereoisomeric form consists of a D-form and an L-form.

63. (Currently Amended) A compound according to claim 62, wherein Q is:

64. (Previously Presented) A compound of claim 62, wherein R³ is selected from the group consisting of:

$$\xi$$
—0— ξ , ξ —s— ξ , ξ —NH— ξ , and ξ —NR⁵— ξ

65. (Previously Presented) A compound of claim 62, wherein \mathbb{R}^2 is selected from the group consisting of:

66. (Previously Presented) A compound of claim 62, wherein R² and R³, taken together form a structure selected from the group consisting of:

- 67. (Canceled).
- 68. (Canceled).

69. (Previously Presented) A compound of claim 62, wherein R⁷ is:

70. (Previously Presented) A compound of claim 62, wherein R⁷ is:

- 71. (Canceled).
- 72. (Canceled).
- 73. (Original) A compound of claim 62, wherein R⁴ is selected from the group consisting of:

74. (Original) A compound of claim 62, wherein R⁴ is selected from the group consisting of:

75. (Original) A compound of claim 62, wherein R⁴ is:

76. (Previously Presented) A compound of claim 62, wherein R⁴ is:

77. (Previously Presented) A compound of claim 62, wherein R⁴ is:

$$\left\{ -z - CF_2 - CH_2 - CHF - C - OH \right\}$$

$$\left\{ -z - CF_2 - CHF - CH_2 - C - OH \right\}$$

$$\left\{ -z - CF_2 - CH_2 - C - OH \right\}$$

$$\left\{ -z - CF_2 - CH_2 - C - OH \right\}$$

78. (Original) A compound of claim 62, wherein R⁴ is:

79. (Original) A compound of claim 62, wherein R⁴ is:

$$--$$
Z---CF₂----CH₂----CH₂---NO₂

Claims 80-87. (Canceled).

- 88. (Currently Amended) The method of claims 56 or 57, wherein the hyperproliferative cell is a cancer cell selected from the group consisting of a colorectal cell and a breast cancer cell.
 - 89. (Canceled)
- 90. (New) The compound of claim 62, wherein R⁷ is a phosphoryl derivative selected from the group consisting of:

where R is an aromatic substituent.