Algorithmik kontinuierlicher Systeme

Felix Leitl

2. Juli 2024

Inhaltsverzeichnis

Direkte Verfahren	3
LR-Zerlegung	 3
Ziel	 3
Algorithmus	 3
Komplexität	
Anwendung	
LRP-Zerlegung	 3
QR-Zerlegung	
Housholder-Spiegelungen	
Givens-Rotationen	
Cholesky-Zerlegung	
Cholcony Zeriogung	
Lineare Ausgleichsrechnung	5
Matrizen	5
Orthogonal	 5
Skalarprodukt	 5
Tridiagonalmatrix	 5
Normen	 5
Matrix-Norm bzw. Operator-Norm	 5
Konditionszahl	 6
Spektralsatz	 6
Diskretisierung	6
Quantisierung	6
Interpolation	6
Bezier Kurven	6
SVD	6
Informationen	 6
Bild	
Kern	
N	_

Iterative Verfahren																7												
	Lösen																											7
	Pseudo	o-Inve	erse																									7
Los	${ m ungsthee}$	orie																										1

Direkte Verfahren

Direkte Verfahren Lösen ein Problem nach endlich vielen Schritten. Verwendung: kleine, vollbesetzte Matrizen.

LR-Zerlegung

Ziel

$$A = LR$$

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ * & 1 & & & \\ \vdots & & \ddots & \vdots \\ * & & \dots & 1 \end{pmatrix} \begin{pmatrix} * & * & \dots & * \\ 0 & * & & & \\ \vdots & & \ddots & \vdots \\ 0 & & \dots & * \end{pmatrix}$$

Algorithmus

- 1. i-te Zeile in R übertragen
- 2. i-te Spalte dividiert durch a_{ii} in L über nehmen. Erstes Element der Spalte gleich 1 setzten
- 3. Mit i-ter Zeile die i-te Spalte eliminieren

Komplexität

 $\mathcal{O}(n^3)$

Anwendung

- $det(A) = det(L) \times det(R) = 1 \times det(R)$
- Lösen mehrerer GLS:
 - -Ly = b mit Vorwärtssubstitution $\mathcal{O}(n^2)$
 - -Rx = y mit Rückwärtssubstitution $\mathcal{O}(n^2)$

LRP-Zerlegung

$$A = PLR$$

QR-Zerlegung

Ziel

$$A = QR$$

Housholder-Spiegelungen

Mit einer Housholder-Spiegelung in eriner Spalte Nullen einfügen (außer Diagonalelement) \rightarrow nach n-1 Schritten erhält man die Dreiecksmatrix R

$$R = H_{n-1} \dots H_2 H_1 A$$

$$Q = (H_{n-1} \dots H_2 H_1)^{-1} = H_1 H_2 \dots H_{n-1}$$

Givens-Rotationen

Mit einer Givens-Rotation ein Element (unterhalb der Diagonalen) zu Null machen \to nach n(n-1)/2 Schritten erhält man die Dreiecksmatrix R

$$J_{ij}(\varphi) = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & c & & -s & \\ & & & \ddots & \\ & & s & c & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}$$

Wobei c_1 an Position jj ist und c_2 an Position ii

$$c = \cos(\varphi) = \frac{\sigma \cdot a_{jj}}{\sqrt{a_{jj}^2 + a_{ij}^2}}$$
$$s = \sin(\varphi) = \frac{-\sigma \cdot a_{ij}}{\sqrt{a_{jj}^2 + a_{ij}^2}}$$
$$\sigma = \operatorname{sign}(a_{ij})$$

Ergebnis:

$$R = J_{m,n^*} \dots J_{2,1} A$$

$$Q = J_{2,1}^T \dots J_{m,n^*}^T$$

$$n^* = \min\{m - 1, n\}$$

Cholesky-Zerlegung

Wenn A symmetrisch und positiv definit ist kann man A faktorisieren in

$$A = LDL^T$$

Wobei L das L der LR-Zerlegung ist und D der Diagonalanteil von R

Lineare Ausgleichsrechnung

Matrizen

Orthogonal

Eine Matrix ist orthogonal, falls eine der Bedingungen erfüllt ist:

- $Q^TQ = Id$
- $QQ^T = Id$
- Spalten oder Zeilen bilden eine Orthonomalbasis
- Die Abbildung Q ist winkel- und längentreu
- Qerhält das Skalarpr
dukt: $Qx\circ Qy=x\circ y$

Skalarprodukt

$$x \circ y = \sum_{i=1}^{n} x_i y_i$$

Tridiagonalmatrix

Die inverse einer tridiagonalen Matrix ist in der Regel voll besetzt

Normen

Eigenschaften:

- definit: $x \neq 0 \Rightarrow ||x|| > 0$
- homogen: $||\lambda x|| = |\lambda| \cdot ||x||$
- sub-additiv: $||x + y|| \le ||x|| + ||y||$

Matrix-Norm bzw. Operator-Norm

Erfüllt Normeigenschaften und mehr:

- |||Id||| = 1
- sub-multiplikativ: $|||AB||| \le |||A||| \cdot |||B|||$
- mit der Vektornorm kompatibel: $||Ax|| \le |||A||| \cdot ||x||$
- $|||A||| \ge |\lambda|$

Beispiele:

• Spalten-Summen-Norm: $|||A|||_1$

$$|||A|||_1 = \max_{j} \{\Sigma_i |a_{ij}|\}$$

• Zeilen-Summen-Norm: $|||A|||_{\infty}$

$$|||A|||_{\infty} = \max_{i} \{\Sigma_{j} |a_{ij}|\}$$

$$|||A|||_2 = \sqrt{\lambda \max(A^T A)}$$

• Frobenius-Norm:
$$||A||_F$$

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$$

Konditionszahl

$$\kappa(A) = \frac{\max_{x \in \mathbb{R}^n, ||x|| = 1} ||Ax||}{\min_{x \in \mathbb{R}^n, ||x|| = 1} ||Ax||}$$

Spektralsatz

Es sei $A \in \mathbb{R}^{m \times m}$ eine reelle symmetrische Matrix. Dann gibt es eine Orthonomalbasis aus Eigenvektoren bzw. $A = VDV^T$, wobei D die Diagonalmatrix aller EW ist und die Spalten von V die normierten EV sind.

Diskretisierung

Quantisierung

Interpolation

Bezier Kurven

SVD

$$A = U \Sigma V^T$$

- Σ ist Diagonal matrix, $\sigma_{11} \geq \sigma_{22} \geq \cdots \geq 0$
- U und V sind orthogonal
- Die Spalten von U bzw. V sind EV von AA^T bzw. A^TA
- $\sigma_{kk} = \sqrt{\lambda_k} \text{ von } A$
- $U \in \mathbb{R}^{m \times m}, \Sigma \in \mathbb{R}^{m \times n}, V \in \mathbb{R}^{n \times n}$

Informationen

$$\operatorname{rang}(A) = r$$

\mathbf{Bild}

$$\operatorname{im}(A) = \langle u_1, \dots, u_r \rangle$$

\mathbf{Kern}

$$\ker(A) = \langle v_{r+1}, \dots, v_n \rangle$$

Norm

$$|||A|||_2 = \sigma_{11}$$

Lösungstheorie

- n = m und $det(A) \neq 0$: eindeutige Lösung
- n = m und det(A) = 0 oder $n \neq m$:
 - nur lösbar, falls $b \in im(A)$
 - alle Lösungen: $x_0 + \ker(A)$ wobei x_0 eine spezielle Lösung ist

Pseudo-Inverse

$$A^{\sim 1} = V \Sigma^{\sim 1} U^T$$

wobei

$$\Sigma^{\sim 1} = \begin{pmatrix} \frac{1}{\sigma_1} & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & & \vdots \\ 0 & \dots & \frac{1}{\sigma_r} & \dots & 0 \\ \vdots & & \vdots & 0 & 0 \\ 0 & \dots & 0 & 0 & 0 \end{pmatrix}$$

Lösen

- A hat maximalen Rang $(rank(A) = min\{n, m\})$
 - -überbestimmtes System $\left(n < m \right)$

$$x = A^{\sim 1}b$$
 löst $||Ax - b|| = \min$

- unterbestimmtes System (n > m)

$$x=A^{\sim 1}b$$
löst $Ax=b$ und erfüllst $||x||_2=\min$

- $\operatorname{rank}(A) < \min\{n, m\}$
 - $-x = A^{\sim 1}b$ minimiert $||Ax b||_2 = \min$ das Residuum und
 - -ist unter allen diesen Lösungen die
jenige mit der kleinsten Norm $||x||_2 = \min$

Iterative Verfahren