Aplikasi *Bidirectional Encoder Representations*from Transformers untuk Pemeringkatan Teks Bahasa Indonesia

Carles Octavianus
Dosen Pembimbing: Sarini Abdullah S.Si., M.Stats., Ph.D.

3 Januari, 2024

Daftar Isi

Pendahuluan

Pemeringkatan Teks

Metrik Evaluasi

Pemeringkatan Teks Dengan Statistik

Metode

Simulasi Dan Analisis Hasil

Penutup

Table of Contents

Pendahuluan

Pemeringkatan Teks

Metrik Evaluasi

Pemeringkatan Teks Dengan Statistik

Metode

Simulasi Dan Analisis Hasil

Penutur

Pendahuluan

- 1. Peningkatan jumlah data teks digital membuat manusia kesulitan dalam memproses informasi secara efektif dan efisien.
- 2. Tahap pertama dalam memproses informasi dari data teks adalah melakukan penyimpanan data teks dengan efisien.
- 3. Diperlukan mekanisme untuk mengembalikan teks yang relevan dari kumpulan data teks tersebut. Mekanisme pengembalian teks menjadi semakin penting dengan peningkatan jumlah data teks.

Pendahuluan

- 3. Pemeringkatan teks adalah salah satu mekanisme untuk mengembalikan teks yang relevan.
- 4. Tujuan dari pemeringkatan teks adalah menghasilkan daftar teks yang terurut berdasarkan relevansinya terhadap permintaan pengguna.

Classical Text Ranking

Vocabulary Mismatch

- Kueri apa makanan terenak di Indonesia, dan teks hidangan terlezat di nusantara adalah rendang tentunya akan mendapatkan skor yang rendah bila menggunakan fungsi skoring kecocokan antara kata-kata pada kueri dan teks.
- 2. Hal ini diatasi dengan penggunaan fungsi skoring berbasis *deep learning*.

Alur Pemeringkatan Teks dengan Deep Learning

Text Ranking With Deep Learning

BERT

- Model Bidirectional Encoder Representations from Transformers
 (BERT) adalah model pra-latih deep learning yang dikembangkan
 oleh Devlin, Chang, Lee, dan Toutanova (2018) untuk permasalahan
 bahasa alami. BERT memetakan kata-kata pada kalimat menjadi
 representasi vektor yang kontekstual.
- 2. BERT telah menjadi *state-of-the-art* untuk berbagai permasalahan pemrosesan bahasa alami seperti *question answering*, *named entity recognition*, *sentiment analysis*, dan pemeringkatan teks.

Websearch dengan BERT

Google (October 2019)

Microsoft (November 2019)

Model Pemeringakatan Teks Bahasa Inggris

Model pemeringkatan teks bahasa Inggris pada *HuggingFace* dengan jumlah 339 model. Variasi dan jumlah model cukup banyak, dan terdokumentasi dengan baik performa model-model tersebut.

Model Pemeringakatan Teks Bahasa Indonesia

Model "pemeringkatan teks" bahasa Indonesia pada *HuggingFace* dengan jumlah 21 model. Hanya 3 model yang bukan model multibahasa, dan dari ketiga model tersebut, tidak ada model dengan dokumentasi performa model untuk pemeringkatan teks.

Rumusan Masalah

- 1. Bagaimana pengaplikasian model BERT untuk pemeringkatan teks berbahasa Indonesia?
- 2. Bagaimana kinerja model BERT pada setiap *dataset* yang digunakan bila dibandingkan dengan model *baseline* BM25?

Tujuan Penelitian

- 1. Membangun dan melatih kembali (fine tuning) model BERT untuk pemeringkatan teks berbahasa Indonesia.
- 2. Membandingkan kinerja model BERT pada setiap *dataset* yang digunakan bila dibandingkan dengan model *baseline* BM25.

Batasan Masalah

- 1. Dataset yang digunakan untuk melatih kembali (fine tuning) model BERT adalah dataset mMarco train set bahasa Indonesia (Bonifacio, Campiotti, de Alencar Lotufo, & Nogueira, 2021).
- Dataset yang digunakan untuk mengukur performa model adalah dataset mMarco dev set bahasa Indonesia (Bonifacio et al., 2021) untuk in-domain test serta MrTyDi dev set bahasa Indonesia (Zhang, Ma, Shi, & Lin, 2021), dan Miracl dev set bahasa Indonesia (Zhang et al., 2023) untuk out-of-domain test.
- 3. Kinerja model diamati dengan metrik recriprocal rank (RR), recall (R), dan normalized discounted cumulative gain (NDCG).

Table of Contents

Pendahuluan

Pemeringkatan Teks

Metrik Evaluasi

Pemeringkatan Teks Dengan Statistik

Metode

Simulasi Dan Analisis Hasil

Penutur

Tugas Pemeringkatan Teks

Tugas Pemeringkatan Teks

Diberikan kueri q dan himpunan teks terbatas $\mathcal{D}=\{d_1,d_2,...,d_n\}$, keluaran yang diinginkan dari permasalahan ini adalah barisan teks $D_k=(d_{i_1},d_{i_2},...,d_{i_k})$ yang merupakan k teks yang paling relevan dengan kueri q.

Bentuk Umum Dataset Uji Pemeringkatan Teks

Dataset Uji pada masalah pemeringkatan teks terdiri dari tiga file, yaitu file kueri, file korpus dan file judgements.

Table: File korpus

_id	title	text
1342516#1	Colobothea biguttata	Larva kumbang ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan
1342517#0	Ichthyodes rufipes	Ichthyodes rufipes adalah spesies kumbang tanduk panjang yang berasal dari famili Cerambycidae. Spesies ini

File Kueri

Table: File kueri

_id	text		
3	Dimana James Hep-		
	burn meninggal?		
4	Dimana Jamie		
	Richard Vardy lahir?		
11	berapakah luas pulau		
	Flores?		
17	Siapakah yang		
	menulis Candy		
	Candy?		
19	Apakah karya tulis		
	Irma Hardisurya yang		
	pertama?		

File *Judgements*

Table: File judgements

query-id corpus-id		score
3	115796#6	1
3	77689#48	1
4	1852373#0	1

Table of Contents

Pendahuluan

Pemeringkatan Teks

Metrik Evaluasi

Pemeringkatan Teks Dengan Statistik

Metode

Simulasi Dan Analisis Hasil

Penutur

Recall dan Presisi

$$\begin{split} \operatorname{recall}(q,D_k) @ \mathsf{k} &= \frac{\sum_{d \in D_k} \operatorname{rel}(q,d)}{\sum_{d \in \mathcal{D}} \operatorname{rel}(q,d)} \in [0,1], \\ \operatorname{precision}(q,D_k) @ \mathsf{k} &= \frac{\sum_{d \in D_k} \operatorname{rel}(q,d)}{|D_k|} \in [0,1], \\ \operatorname{rel}(q,d) &= \begin{cases} 1 & \operatorname{jika} \ r > 1 \\ 0 & \operatorname{jika} \ r = 0 \end{cases}. \end{split}$$

- g: kueri,
- D_k: barisan k teks yang dipilih oleh sistem,
- r: nilai relevansi antara kueri q dengan teks d dari file judgements.

Recall dan Presisi

Figure: Ilustrasi recall dan presisi.

Reciprocal Rank

Metrik lainnya yang sering digunakan untuk mengukur performa sistem pemeringkatan adalah *reciprocal rank* (RR). Metrik RR menitikberatkan pada peringkat dari teks relevan pertama dengan kueri q.

$$\mathsf{RR}(q,D_k)$$
@k = $\begin{cases} \frac{1}{\mathsf{FirstRank}(q,D_k)} & \mathsf{jika} \ \exists d \in D_k \ \mathsf{dengan} \ \mathsf{rel}(q,d) = 1 \\ 0 & \mathsf{jika} \ \forall d \in D_k, \ \mathsf{rel}(q,d) = 0 \end{cases}$

- → q: kueri,
- \triangleright D_k : barisan k teks yang dipilih oleh sistem,
- ightharpoonup r: nilai relevansi antara kueri q dengan teks d dari file judgements.
- FirstRank (q, D_k) : posisi teks relevan pertama $d \in D_k$ dengan rel(q, d) = 1.

Reciprocal Rank

Figure: Ilustrasi reciprocal rank.

Normalized Discounted Cumulative Gain

Normalized Discounted Cumulative Gain (NDCG) adalah metrik yang umumnya digunakan untuk mengukur kualitas dari pencarian situs web. Tidak seperti metrik yang telah disebutkan sebelumnya, nDCG dirancang untuk suatu r yang tak biner.

$$\begin{split} \mathsf{nDCG}(q,D_k)@\mathsf{k} &= \frac{\mathsf{DCG}(q,D_k)@\mathsf{k}}{\mathsf{DCG}(q,D_k^\mathsf{ideal})@\mathsf{k}} \in [0,1], \\ \mathsf{DCG}(q,D_k)@\mathsf{k} &= \sum_{d \in D_k} \frac{2^{\mathsf{rel}(q,d)} - 1}{\mathsf{log}_2(\mathsf{rank}(d,D_k) + 1)}, \\ \mathsf{rank}(d,D_k) &= \mathsf{Posisi} \ d \ \mathsf{dalam} \ D_k, \\ \mathsf{rel}(q,d) &= r. \end{split}$$

Normalized Discounted Cumulative Gain

Figure: Ilustrasi normalized discounted cumulative gain.

Table of Contents

Pendahuluan

Pemeringkatan Teks

Metrik Evaluasi

Pemeringkatan Teks Dengan Statistik

Metode

Simulasi Dan Analisis Hasil

Penutur

Pemeringkatan Teks Dengan Statistik

- 1. Untuk mengambil k teks dari kumpulan \mathcal{D} , kita menggunakan fungsi skor score (q,d,\mathcal{D}) untuk mengukur relevansi antara kueri q dan teks d. Dengan mencari skor antara q dan semua teks pada \mathcal{D} , kita dapat memilih barisan teks $D_k = (d_{i_1}, d_{i_2}, \ldots, d_{i_k})$ dengan k teks memiliki skor tertinggi.
- 2. Salah satu fungsi skor mudah dan sering digunakan adalah TF-IDF dan BM25. Fungsi skor ini menghitung skor antara kueri q dan teks d dengan informasi dari kata yang ada pada q dan d.

TF-IDF

- ▶ term frequency: $tf(t,d) = \frac{Count(t,d)}{|d|}$,
- ► document frequency:

 $\mathsf{df}(t,\mathcal{D}) = \mathsf{jumlah}$ teks pada \mathcal{D} yang mengandung kata t.

▶ inverse document frequency:

$$\operatorname{idf}(t,\mathcal{D}) = egin{cases} \log_2\left(rac{|\mathcal{D}|}{\operatorname{df}(t,\mathcal{D})}
ight) & ext{jika df}(t,\mathcal{D}) > 0 \ 0 & ext{jika df}(t,\mathcal{D}) = 0 \end{cases}.$$

► TF-IDF $(t, d, \mathcal{D}) = tf(t, d) \times idf(t, \mathcal{D})$.

	doc ₁	doc ₂	doc ₃	doc ₄			IDF
A B C D	10 10 10 0	10 10 10 0	10 10 0 0	10 0 0 1	⇒	A B C D	0.00 0.29 0.69 1.39
		<u> 11</u>					

	TF		
doc_1	doc_2	doc ₃	doc_4
 0.22	0.22	0.50	0.01

	4001	4002	4005	4004
Α	0.33	0.33	0.50	0.91
В	0.33	0.33	0.50	0.00
C	0.33	0.33	0.00	0.00

0.00

0.09

0.00

0.00

	TF-IDF				
	doc_1	doc ₂	doc3	doc ₄	
A B	0.00 0.10	0.00 0.10	0.00	0.00	
Ċ	0.23	0.23	0.00	0.00	
D	0.00	0.00	0.00	0.13	

Score

score dihitung adalah jumlah TF-IDF dari kata-kata yang ada pada kueri dan teks.

$$\mathsf{score}(q, d, \mathcal{D}) = \sum_{t \in T_q \cap T_d} \mathsf{TF}\text{-}\mathsf{IDF}(t, d, \mathcal{D})$$

$$T_q = \{t_1, t_2, \dots, t_{L_1}\}$$
 = kumpulan kata pada q , $T_d = \{t_1, t_2, \dots, t_{L_2}\}$ = kumpulan kata pada d .

BM25

Smoothed IDF

$$\mathsf{idf}_{\mathsf{BM25}}(t,\mathcal{D}) = \mathsf{log}\left(1 + \frac{|\mathcal{D}| - \mathsf{df}(t,\mathcal{D}) + 0.5}{\mathsf{df}(t,\mathcal{D}) + 0.5}\right)$$

Score BM25 Pengganti tf

$$\mathsf{score}_\mathsf{BM25}(t,d) = rac{\mathsf{tf}(t,d) imes (k_1+1)}{\mathsf{tf}(t,d) + k_1 imes (1-b+b imes rac{|d|}{\mathsf{avgdI}})}$$

BM25

$$\mathsf{BM25}(t,d,\mathcal{D}) = \mathsf{idf}_{\mathsf{BM25}}(t,\mathcal{D}) \times \mathsf{score}_{\mathsf{BM25}}(q,d,\mathcal{D})$$

Robertson, Walker, Jones, Hancock-Beaulieu, dan Gatford (1994)

Table of Contents

Pendahuluan

Pemeringkatan Teks

Metrik Evaluasi

Pemeringkatan Teks Dengan Statistik

Metode

Simulasi Dan Analisis Hasil

Penutur

BFRT

Bidirectional Encoder Representations from Transformers (BERT) merupakan model representasi teks yang dikembangkan oleh Devlin et al. (2018) yang dapat merepresentasikan teks secara kontekstual dengan menggunakan arsitektur encoder dari transformer (Vaswani et al., 2017).

Keluaran dari model BERT adalah vektor representasi kontekstual dari setiap token (kata atau subkata) pada teks.

$$\mathsf{BERT}(([\mathsf{CLS}], t_1, t_2, \dots, t_L, [\mathsf{SEP}])) = (\mathbf{h}_{[\mathsf{CLS}]}, \mathbf{h}_{t_1}, \mathbf{h}_{t_2}, \dots, \mathbf{h}_{t_L}, \mathbf{h}_{[\mathsf{SEP}]}). \tag{1}$$

Self-Attention

BERT (atau transformer) menggunakan mekanisme self-attention menghasilkan representasi vektor kontekstual dari setiap token pada teks. Untuk kumpulan vektor representasi tak kontekstual dari kumpulan token $\mathbf{E} \in \mathbb{R}^{L \times d \text{token}}$, vektor representasi kontekstual dari kumpulan token \mathbf{E} sebagai rata-rata terbobot dari seluruh token pada $\mathbf{E} \mathbf{W}^{\mathbf{v}}$ dengan bobot yang dihitung dari $\mathbf{E} \mathbf{W}^{\mathbf{q}}$ dan $\mathbf{E} \mathbf{W}^{\mathbf{k}}$.

$$\mathsf{Self-Attention}(\mathbf{E}) = \mathsf{Softmax}(\frac{\mathbf{E}\mathbf{W}^q(\mathbf{E}\mathbf{W}^k)^\top}{\sqrt{d_\mathsf{token}}})(\mathbf{E}\mathbf{W}^v) \in \mathbb{R}^{L \times d_\mathsf{token}}$$

Self-Attention

Self-attention digunakan untuk membangun dan memperkuat konteks kata pada kalimat.

pre-training dan fine tuning

Tahapan pembelajaran untuk BERT:

- Pre-training menggunakan data tidak berlabel dalam jumlah yang banyak untuk mempelajari representasi bahasa secara umum, melatih model BERT dari awal untuk menghasilkan vektor representasi kontekstual dari setiap token pada teks yang baik.
- 2. *Fine-tuning* menggunakan data berlabel, dengan jumlah yang lebih sedikit, untuk mempelajari tugas tertentu, seperti pemeringkatan teks.

pre-training BERT Berbahasa Indonesia

Pre-training BERT untuk bahasa Indonesia dilakukan dengan menggunakan korpus Wikipedia bahasa Indonesia dengan 74 Juta kata, artikel berita dari Kompas, Tempo, dan Liputan6 dengan 55 Juta kata, dan korpus web bahasa Indonesia dengan 90 Juta kata. Model IndoBERT dilatih selama 2.4 Juta iterasi (180 epoch) (Koto, Rahimi, Lau, & Baldwin, 2020).

BERTCAT

BERT_{CAT} menghitung skor relevansi dari pasangan (kueri, teks) dengan melakukan *soft classification* antara pasangan (kueri, teks).

$$\begin{split} \mathsf{score}(q,d) &= P(\mathsf{relevance} = 1 | q,d) = \sigma\left(\mathbf{h}_{\texttt{[CLS]}}\mathbf{W}^{\texttt{CLS}} + \mathbf{b}^{\texttt{CLS}}\right) \in (0,1), \\ \mathbf{h}_{\texttt{[CLS]}} &= \mathsf{BERT}((\texttt{[CLS]},q,\texttt{[SEP]},d,\texttt{[SEP]}))_{\texttt{[CLS]}} \in \mathbb{R}^{d_{\mathsf{token}}}, \end{split}$$

BERT_{CAT}

 $\mathsf{BERT}_\mathsf{CAT}$ biasanya digunakan bersama dengan model BM25 disebabkan oleh keterbatasan komputasi $\mathsf{BERT}_\mathsf{CAT}.$

BERTDOT

BERT_{DOT} menghitung skor relevansi dari pasangan (kueri, teks) dengan melakukan *dot product* antara vektor representasi kontekstual dari kueri dan teks.

$$egin{aligned} \mathsf{score}(q,d) &= \mathbf{q}_{\texttt{[CLS]}} \cdot \mathbf{d}_{\texttt{[CLS]}} \in \mathbb{R}, \ \mathbf{q}_{\texttt{[CLS]}} &= \mathsf{BERT}((\texttt{[CLS]},q,\texttt{[SEP]}))_{\texttt{[CLS]}} \in \mathbb{R}^{d_{\mathsf{token}}}, \ \mathbf{d}_{\texttt{[CLS]}} &= \mathsf{BERT}((\texttt{[CLS]},d,\texttt{[SEP]}))_{\texttt{[CLS]}} \in \mathbb{R}^{d_{\mathsf{token}}}. \end{aligned}$$

Table of Contents

Pendahuluan

Pemeringkatan Teks

Metrik Evaluasi

Pemeringkatan Teks Dengan Statistik

Metode

Simulasi Dan Analisis Hasil

Penutur

Dataset

Dataset

Tabel berikut menunjukkan informasi mengenai jumlah entri dari *file* kueri, *file* korpus, dan *file jugdements* dari setiap *dataset* yang digunakan dalam penelitian ini.

Dataset	Korpus	Kueri	Jugdements	J/K
mMarco train set	8,841,823	502,939	532,761	1.05
mMarco dev set	8,841,823	6980	7,437	1.06
Mrtydi test set	1,469,399	829	961	1.15
Miracl dev set	1,446,315	960	9,668	10.07

Dataset

Tabel mengenai panjang kueri dan teks pada setiap *dataset. white space tokenizer* adalah *tokenizer* yang memisahkan teks menjadi kata-kata berdasarkan spasi. IndoBERT *tokenizer* adalah*tokenizer* yang digunakan pada model BERT yang digunakan pada penelitian ini.

Dataset	M	in	Med	lian	95%	6th	M	ax
Dataset	Kueri	Teks	Kueri	Teks	Kueri	Teks	Kueri	Teks
		Indol	BERT to	kenizer				
mMARCO train set	3	3	9	62	14	123	247	772
mMARCO dev set	3	4	9	62	14	123	125	772
MrTyDI test set	6	3	9	48	13	172	23	6747
Miracl dev set	6	2	9	48	13	171	23	6747
		white	espace to	kenizer				
mMARCO train set	1	1	5	45	9	89	123	245
mMARCO dev set	1	1	5	45	10	89	31	245
MrTyDI test set	3	1	5	33	9	123	14	4462
Miracl dev set	3	1	5	33	8	123	14	4462

IndoBERT_{CAT}

- 1. Arsitektur BERT_{CAT} digunakan untuk melakukan pemeringkatan teks.
- 2. Fungsi loss yang digunakan adalah binary cross entropy.

$$\begin{split} L(y, \hat{y}) &= -y_i \log(\hat{y}_i) - (1 - y_i) \log(1 - \hat{y}_i), \\ \hat{y} &= P(\text{relevance} = 1 | q, d) = \sigma\left(\mathbf{h}_{\texttt{[CLS]}} \mathbf{W}^{\texttt{CLS}} + \mathbf{b}^{\texttt{CLS}}\right) \in (0, 1), \\ \mathbf{h}_{\texttt{[CLS]}} &= \texttt{BERT}((\texttt{[CLS]}, q, \texttt{[SEP]}, d, \texttt{[SEP]}))_{\texttt{[CLS]}} \in \mathbb{R}^{d_{\mathsf{token}}}, \\ y &= \mathsf{relevansi} \text{ antara } q \text{ dan } d \in \{0, 1\}. \end{split}$$

$IndoBERT_{CAT}$

Potongan dataset yang digunakan untuk pelatihan model IndoBERT_{CAT}.

Kueri	Teks	Relevansi
Berapa banyak kalori sehari yang hilang saat menyusui?	Tidak hanya menyusui lebih baik untuk bayi, namun penelitian juga mengatakan itu lebih baik bagi ibu. Menyusui membakar ratarata 500 kalori sehari, dengan kisaran khas antara 200 hingga 600 kalori yang terbakar sehari. Diperkirakan produksi 1 oz	1
Karakteristik iklim utama hutan hujan tropis	Kacang kola adalah buah dari pohon kola, genus (Cola) po- hon yang berasal dari hutan	0
	hujan tropis Afrika.	

hyperparameterIndoBERT_{CAT}

 $\label{eq:hyperparameter} \textit{Hyperparameter} \ \ \text{yang digunakan untuk} \ \textit{fine tuning} \ \ \text{IndoBERT}_{\text{CAT}}.$

Parameter	Nilai
Model pralatih	indolem/indobert-base-uncased
Total data	532,761
Batch size	32
Total iterasi	83243 (5 epochs)
Optimizer	Adam dengan $eta_1 = 0.9, \ eta_2 = 0.999, \ \epsilon = 10^{-8}$
Learning rate	2×10^{-5}
Learning rate warmup	Linear selama 10% dari total iterasi
Fungsi loss	Binary cross entropy

IndoBERT_{DOT}

- Arsitektur BERT_{DOT} digunakan untuk melakukan pemeringkatan teks.
- 2. Fungsi loss yang digunakan adalah *N-pair loss*, dengan Teks negatif dipilih adalah teks positif untuk kueri lain pada *batch* yang sama (Karpukhin et al., 2020).

$$L(q, d^+, \{d_i^-\}_{i=1}^{N-1}) = -\log \frac{\exp(\mathbf{h}_q^\top \mathbf{h}_d^+)}{\exp(\mathbf{h}_q^\top \mathbf{h}_d^+) + \sum_{i=1}^{N-1} \exp(\mathbf{h}_q^\top \mathbf{h}_i^-)},$$

dengan keterangan sebagai berikut:

$$\mathbf{h}_q = \mathsf{IndoBERT}_{\mathsf{DOT}}(([\mathsf{CLS}], q, [\mathsf{SEP}]))_{[\mathsf{CLS}]}$$

$$\mathbf{h}_d^+ = \mathsf{IndoBERT}_{\mathsf{DOT}}(([\mathsf{CLS}], d^+, [\mathsf{SEP}]))_{[\mathsf{CLS}]}$$

$$\mathbf{h}_{i}^{-} = \mathsf{IndoBERT}_{\mathsf{DOT}}(([\mathsf{CLS}], d_{i}^{-}, [\mathsf{SEP}]))_{[\mathsf{CLS}]}$$

IndoBERTDOT

Ilustrasi fungsi objektif *N-pair loss*. Untuk pasangan teks yang relevan (a, b_1) , tujuannya adalah untuk meminimalkan jarak antara a dan b_1 sehingga jarak tersebut lebih kecil dibandingkan dengan jarak antara a dan b_i yang lain.

hyperparameter IndoBERT_{DOT}

 $\label{eq:hyperparameter} \textit{Hyperparameter yang digunakan untuk fine tuning } IndoBERT_{DOT}.$

Parameter	Nilai
Model pralatih	indolem/indobert-base-uncased
Total data	532,761
Batch size	32
Total iterasi	83,243 (5 epochs)
Optimizer	Adam dengan $eta_1 = 0.9, \ eta_2 = 0.999, \ \epsilon = 10^{-8}$
Learning rate	2×10^{-5}
Learning rate warmup	Linear selama 10% dari total iterasi
Fungsi <i>loss</i>	N-pair loss

$IndoBERT_{DOThardnegs}$

- Arsitektur BERT_{DOT} digunakan untuk melakukan pemeringkatan teks.
- 2. Fungsi loss yang digunakan adalah *N-pair loss*, dengan Teks negatif dipilih terlebih dahulu yang merupakan Teks yang serupa dengan teks positif namun tidak relevan dengan kueri.

$IndoBERT_{DOThardnegs}$

Potongan *file hard negative*. Kolom qid berisikan id dari kueri, kolom *positive* adalah id teks positif, dan kolom *hard negative* adalah id teks yang sulit dibedakan dengan teks positif.

qid	Positive	Hard Negative
1185869	0	[2942572, 5154062, 2942571, 5154065, 3870084]
1185868	16	[6821177, 1641650, 1641656, 1641659, 1203539]
597651	49	[6398884, 162755, 1838949, 1391482, 7818305]

$hyperparameter\ IndoBERT_{DOThardnegs}$

 $\textit{Hyperparameter} \ \ \mathsf{yang} \ \ \mathsf{digunakan} \ \ \mathsf{untuk} \ \ \textit{fine} \ \ \mathsf{tuning} \ \ \mathsf{IndoBERT}_{\mathsf{DOThardnegs}}.$

Parameter	Nilai
Model pralatih	indolem/indobert-base-uncased
Total data	502,939
Batch Size	32
Total Iterasi	78585 (5 epochs)
Optimizer	Adam dengan $eta_1=$ 0.9, $eta_2=$ 0.999, $\epsilon=$ 10 $^{-8}$
Learning rate	2×10^{-5}
Learning rate warmup	Linear selama 10% dari total iterasi
Fungsi <i>loss</i>	N-pair loss

IndoBERT_{DOTKD}

- Arsitektur BERT_{DOT} digunakan untuk melakukan pemeringkatan teks.
- 2. Fungsi loss yang digunakan adalah *Mean squared error* dengan prinsip *knowledge distillation* (Reimers & Gurevych, 2020).

$$L(s_i, t_i) = \left((|| M(s_i) - \hat{M}(s_i) ||)^2 + (|| M(s_i) - \hat{M}(t_i) ||)^2 \right),$$

dengan keterangan sebagai berikut:

M =pemetaan vektor oleh model guru,

 $\hat{M} = \text{pemetaan vektor oleh model murid},$

 $s_i = \text{teks sumber (bahasa Inggris)},$

 $t_i = \text{teks target (bahasa Indonesia)}.$

IndoBERT_{DOTKD}

Ilustrasi dari pelatihan model IndoBERT_{DOTKD} dengan *knowledge* distillation. Kalimat paralel diberikan sebagai *input* pada model guru dan model murid. vektor yang dihasilkan oleh model guru dan model murid di-align menggunakan fungsi *loss mean squared error*.

$\mathsf{IndoBERT}_{\mathsf{DOTKD}}$

Potongan dari dataset yang digunakan untuk pelatihan model IndoBERT_{KD}.

text_en	txt_id
Defining alcoholism as a	Mendefinisikan alkoholisme
disease is associated with	sebagai penyakit dikaitkan
Jellinek	dengan Jellinek
ECT is a treatment that is	ECT adalah pengobatan yang
used for	digunakan untuk
Ebolavirus is an enveloped	Ebolavirus adalah virus yang
virus, which means	diselimuti, yang berarti
How much does Cambridge	Berapa biaya Cambridge
Manor cost per month	Manor per bulan?

$hyperparameter\ IndoBERT_{DOTKD}$

 $\textit{Hyperparameter} \ \ \text{yang digunakan untuk} \ \textit{fine tuning} \ \ \text{IndoBERT}_{\text{DOTKD}}.$

Parameter	Nilai
Model guru	sentence-transformers/msmarco-bert-base-dot-v5
Model murid	bert-base-multilingual-uncased
Total data	1,000,000
Batch Size	64
Total Iterasi	78125 (5 epochs)
Optimizer	Adam dengan $eta_1=$ 0.9, $eta_2=$ 0.999, $\epsilon=$ 10^{-8}
Learning rate	2×10^{-5}
Learning rate warmup	Linear selama 10% dari total iterasi
Fungsi <i>loss</i>	Mean squared error

Evaluasi Model

- 1. Setiap model dibandingkan dengan model baseline BM25.
- 2. Implementasi BM25 menggunakan software ElasticSearch dengan parameter default, b=0.75 dan $k_1=1.2$.
- 3. Stemming, lemmatization, dan stopword removal diserahkan kepada ElasticSearch.

Evaluasi Model IndoBERT_{CAT}

Evaluasi model IndoBERT_{CAT} pada *dataset* mMarco *dev set*, MrTyDi *test set*, dan Miracl *dev set*. Catatan: tulisan bercetak tebal menunjukkan nilai tertinggi pada setiap kolom.

Model	mMarco Dev		MrTyDi Test		Miracl Dev	
	RR@10 R@100		RR@10	R@100	NDCG@10	R@100
BM25	.114	.447	.279	.723	.391	811
BM25+IndoBERT _{CAT}	.177	.568	.363	.830	.367	853

Evaluasi model IndoBERT $_{\rm DOT}$ pada dataset mMarco dev set, MrTyDi test set, dan Miracl dev set. Catatan: tulisan bercetak tebal menunjukkan nilai tertinggi pada setiap kolom.

Model	mMarco Dev		MrTyDi Test		Miracl Dev	
	RR@10	R@100	RR@10	R@100	NDCG@10	R@100
BM25	.114	.447	.279	.723	.391	811
IndoBERT _{DOT}	.181	.650	.324	.852	.319	.741

Evaluasi Model IndoBERT_{DOThardnegs}

Evaluasi model IndoBERT_{DOThardnegs} pada *dataset* mMarco *dev set*, MrTyDi *test set*, dan Miracl *dev set*. Catatan: tulisan bercetak tebal menunjukkan nilai tertinggi pada

Model	mMarco Dev		MrTyDi Test		Miracl Dev	
	RR@10 R@100		RR@10	R@100	NDCG@10	R@100
BM25	.114	.447	.279	.723	.391	.811
IndoBERT _{DOThardnegs}	.232	.680	.471	.824	.397	.726

Evaluasi Model IndoBERT DOTKD

Evaluasi model IndoBERT_{DOTKD} pada *dataset* mMarco *dev set*, MrTyDi *test set*, dan Miracl *dev set*. Catatan: tulisan bercetak tebal menunjukkan nilai tertinggi pada setiap kolom.

Model	mMarco Dev		MrTyl	Di Test	Miracl Dev	
	RR@10	R@100	RR@10	R@1000	NDCG@10	R@1000
BM25	.114	.447	.279	.723	.391	.811
$IndoBERT_{DOTKD}$.235	.705	.393	.751	.374	.702

Evaluasi Model

Evaluasi dari model IndoBERT_{CAT}, IndoBERT_{DOT}, IndoBERT_{DOThardnegs}, dan IndoBERT_{DOTKD} pada *dataset* mMarco *dev set*, MrTyDi *test set*, dan Miracl *dev set*.

Model	mMarco Dev		MrTyDi Test		Miracl Dev	
	RR@10	R@100	RR@10	R@100	NDCG@10	R@100
BM25	.114	.447	.279	.723	.391	.811
BM25+IndoBERT _{CAT}	.177	.568	.363	.830	.367	.853
IndoBERT _{DOT}	.181	.650	.324	.852	.319	.741
IndoBERT _{DOThardnegs}	.232	.680	.471	.824	.397	.726
$IndoBERT_{DOTKD}$.235	.705	.393	.751	.374	.702

Table of Contents

Pendahuluan

Pemeringkatan Teks

Metrik Evaluasi

Pemeringkatan Teks Dengan Statistik

Metode

Simulasi Dan Analisis Hasil

Penutup

Kesimpulan

- Berdasarkan penjelasan dan implementasi pada presentasi telah ditunjukkan dua cara penggunaan BERT untuk pemeringakatan teks, yaitu BERT sebagai soft classifier dari nilai relevansi (kueri, teks) dan BERT sebagai pemetaan teks ke dalam ruang vektor dengan nilai skor relevansi dihitung dengan fungsi similarity seperti jarak kosinus dan dot product.
- 2. tabel pada slide sebelumnya, telah ditunjukkan bahwa model BERT yang dilatih kembali (fine tuning) pada dataset Mmarco train set menghasilkan skor yang lebih baik dibandingkan dengan model baseline BM25 pada dua dataset uji Mmarco dev set dan MrTyDi dev set. Pada dataset Miracl dev set, hanya IndoBERT_{DOThardnegs} yang menghasilkan skor yang lebih baik dibandingkan dengan model baseline BM25 pada metrik NDCG@10. dan IndoBERT_{CAT} yang menghasilkan skor yang lebih baik pada metrik R@100.

Saran

- 1. Pelatihan model BERT dapat dilakukan dengan *dataset* yang lebih beragam.
- Memperbanyak dataset uji untuk pemeringkatan teks, sehingga dapat dilakukan analisis yang lebih mendalam terhadap setiap model yang dihasilkan.
- Menambah jumlah model baseline untuk pemeringkatan teks.
 Beberapa model yang dapat ditambahkan adalah TF-IDF,
 Word2Vec, ELMo, dan arsitektur non-transformer seperti LSTM dan CNN.

Daftar Pustaka I

- Bonifacio, L. H., Campiotti, I., de Alencar Lotufo, R., & Nogueira, R. F. (2021). mmarco: A multilingual version of MS MARCO passage ranking dataset. *CoRR*, *abs/2108.13897*. Diakses dari https://arxiv.org/abs/2108.13897
- Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: pre-training of deep bidirectional transformers for language understanding. *CoRR*, *abs/1810.04805*. Diakses dari http://arxiv.org/abs/1810.04805
- Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., ... Yih, W.-t. (2020, November). Dense passage retrieval for open-domain question answering. In *Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp)* (pp. 6769–6781). Online: Association for Computational Linguistics. Diakses dari

 $\verb|https://www.aclweb.org/anthology/2020.emnlp-main.550| doi: 10.18653/v1/2020.emnlp-main.550|$

Daftar Pustaka II

- Koto, F., Rahimi, A., Lau, J. H., & Baldwin, T. (2020). Indolem and indobert: A benchmark dataset and pre-trained language model for indonesian NLP. CoRR, abs/2011.00677. Diakses dari https://arxiv.org/abs/2011.00677
- Reimers, N., & Gurevych, I. (2020, 04). Making monolingual sentence embeddings multilingual using knowledge distillation. *arXiv preprint arXiv:2004.09813*. Diakses dari http://arxiv.org/abs/2004.09813
- Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M., & Gatford, M. (1994). Okapi at trec-3. In *Text retrieval conference*. Diakses dari https://api.semanticscholar.org/CorpusID:3946054
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... Polosukhin, I. (2017). Attention is all you need. In *Proceedings of the 31st international conference on neural information processing systems* (p. 6000–6010). Red Hook, NY, USA: Curran Associates Inc.
- Zhang, X., Ma, X., Shi, P., & Lin, J. (2021). Mr. TyDi: A multi-lingual benchmark for dense retrieval. arXiv:2108.08787.

Daftar Pustaka III

Zhang, X., Thakur, N., Ogundepo, O., Kamalloo, E., Alfonso-Hermelo, D., Li, X., ... Lin, J. (2023, 09). MIRACL: A Multilingual Retrieval Dataset Covering 18 Diverse Languages. *Transactions of the Association for Computational Linguistics, 11*, 1114-1131. Diakses dari https://doi.org/10.1162/tacl_a_00595 doi: 10.1162/tacl_a_00595

