

AD-A101 102

NAVAL POSTGRADUATE SCHOOL MONTEREY CA
COMPUTER EVALUATION OF THE ON-AND-OFF DESIGN PERFORMANCE OF AN --ETC(I)
MAR 81 R CIRONE

F/G 9/2

NL

UNCLASSIFIED

1 OF 3
AD-A10102

LEVEL 2
C
P
M
O
A
D
A

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
SELECTED

JUL 8 1981

A

THESIS

COMPUTER EVALUATION OF THE ON-AND-OFF-DESIGN
PERFORMANCE OF AN AXIAL AIR TURBINE

by

Robert Cirone

March 1981

Thesis Advisor

R. P. Shreeve

Approved for public release; distribution unlimited

DMC FILE COPY

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
		ADA 101 102
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED	
Computer Evaluation of the On-and-Off Design Performance of an Axial Air Turbine	Master's Thesis March 1981	
7. AUTHOR(s)	6. PERFORMING ORG. REPORT NUMBER	
Robert Cirone	8. CONTRACT OR GRANT NUMBER(s)	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Naval Postgraduate School Monterey, California 93940	11	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE	
Naval Postgraduate School Monterey, California 93940	11 March 1981	
13. MONITORING AGENCY NAME & ADDRESS// different from Controlling Office)	13. NUMBER OF PAGES	
	268	
16. DISTRIBUTION STATEMENT (of this Report)	16. SECURITY CLASS. (of this report)	
Approved for public release; distribution unlimited.	Unclassified	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	18a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
Axial turbine Performance prediction Off-design performance		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)		
An existing code for calculating axial turbine performance using multiple stream surfaces was modified and made to run on the equivalent of an HP-1000 computer system. Calculations were made for the geometry of a 485 horsepower dual-discharge air-drive turbine for both on and off-design conditions. The results were compared with available data obtained at off-design speeds. Agreement of the flow rate and horsepower to within 5% was obtained.		

DD FORM 1 JAN 73 1473

EDITION OF 1 NOV 68 IS OBSOLETE
S/N 0102-014-6601

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

1514

Approved for public release; distribution unlimited

Computer Evaluation of the On-and-Off-Design
Performance of an Axial Air Turbine

by

Robert Cirone
Lieutenant, United States Navy
B.S.M.E., University of Notre Dame, 1973

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1981

Author:

Robert Cirone

A

Approved by:

Freymond J. Skreene Thesis Advisor

Paul Lucci Second Reader

B. J. Marts
Chairman, Department of Mechanical Engineering

William M. Tolles
Dean of Science and Engineering

ABSTRACT

An existing code for calculating axial turbine performance using multiple stream surfaces was modified and made to run on the equivalent of an HP-1000 computer system. Calculations were made for the geometry of a 485 horsepower dual-discharge air-drive turbine for both on and off-design conditions. The results were compared with available data obtained at off-design speeds. Agreement of the flow rate and horsepower to within 5% was obtained.

TABLE OF CONTENTS

I.	INTRODUCTION -----	13
	A. DESCRIPTION OF THE TRANSONIC COMPRESSOR TEST RIG -----	13
	B. STATEMENT OF THE TASK -----	14
II.	APPROACH -----	16
	A. BACKGROUND -----	16
	B. ANALYSIS -----	17
	C. METHOD OF SOLUTION -----	19
	D. MODIFICATION TO THE COMPUTER CODE -----	20
III.	RESULTS OF AXIAL TURBINE PREDICTIONS -----	23
	A. USING BOTH COMPLETE AND MODIFIED PROGRAMS ---	23
	B. COMPARISON WITH MEASURED DATA -----	24
IV.	DISCUSSION -----	26
V.	CONCLUSIONS -----	28
	APPENDIX A: DESCRIPTION OF THE COMPUTER PROGRAM -----	42
	A-1. INTRODUCTION -----	42
	A-2. DESCRIPTION -----	42
	A-2.1 Input Data -----	42
	A-2.2 Initial Geometric Calculations -----	43
	A-2.3 Calculation of Gas Outlet Angles -----	43
	A-2.4 Calculation of the Flow Rate -----	44

A-2.5	Solution of the Equation of Motion for the Stator -----	45
A-2.6	Calculation of the Stator Loss Coefficients -----	49
A-2.7	Solution of the Continuity Equation -----	53
A-2.8	Calculation of the Rotor Inlet Conditions -----	56
A-2.9	Calculation of the Rotor Exit Conditions -----	58
A-2.10	Accounting for Streamline Curvature -----	61
APPENDIX B:	DERIVATION OF EQUATIONS USED IN THE PROGRAM -----	95
B-1.	EQUATION OF MOTION FOR RELATIVE FLOW -----	95
B-2.	EQUATION OF MOTION FOR ABSOLUTE FLOW -----	107
B-3.	THE AREA RESTRICTION FACTOR, Z -----	108
B-4.	THE ENERGY PARAMETER, H*** -----	112
APPENDIX C:	PROGRAM SEGMENTATION ON THE HP-1000 -----	115
APPENDIX D:	RUNNING THE COMPUTER PROGRAM -----	119
APPENDIX E:	DISCREPANCIES IN MACCHI'S PROGRAM -----	122
APPENDIX F:	COMPUTER OUTPUT -----	124
APPENDIX G:	COMPUTER CODE LISTING -----	240
LIST OF REFERENCES -----		265
INITIAL DISTRIBUTION LIST -----		267

LIST OF TABLES

I	Turbine Geometry -----	30
II	Measured/Design Data Used to Verify the Program -----	31
III	Comparison of Predicted Turbine Performance vs Measured Performance -----	32
IV	Values of Assumed Total Inlet Temperature for Each Pressure Ratio -----	33
A-I	Turbine Geometric Input Data (STATOR) -----	69
A-II	Turbine Geometric Input Data (ROTOR) -----	71
A-III	Turbine Operating Conditions (INPUT DATA) ----	73
A-IV	Special Input Data -----	74
A-V	Program Control Parameters -----	75
A-VI	Fortran Symbols in the Main Program -----	76
A-VII	Fortran Symbols in Subroutine (CHAN) -----	78
A-VIII	Fortran Symbols in Subroutine (STATR) -----	79
A-IX	Fortran Symbols in Subroutine (TRAU2) -----	80
A-X	Fortran Symbols in Subroutine (FLOWR) -----	81
A-XI	Fortran Symbols in Subroutine (ROTO1) -----	82
A-XII	Fortran Symbols in Subroutine (ROTO2) -----	83

LIST OF FIGURES

1.	Schematic of the Compressor Test Rig, with proposed modifications -----	34
2.	Turbine rotor and stator blade shapes -----	35
3.	Predicted horsepower vs RPM as a function of pressure ratio, at temperatures to avoid condensation -----	36
4.	Predicted referred horsepower vs referred RPM as a function of pressure ratio -----	37
5.	Predicted flow rate vs RPM as a function of pressure ratio at temperatures to avoid condensation -----	38
6.	Predicted horsepower vs pressure ratio as a function of RPM, at temperatures to avoid condensation -----	39
7.	Predicted flow rate vs pressure ratio as a function of RPM at temperatures to avoid condensation -----	40
8.	Predicted referred flow rate vs referred RPM as function of pressure ratio -----	41
A-1	Program flowchart -----	84
A-2	Blade nomenclature -----	85
A-3	Velocity diagram nomenclature -----	86
A-4	Interconnection of the subroutines in the Traupel method -----	87
A-5	Initial profile loss coefficient and Mach number correction from Traupel -----	88
A-6	T.E. thickness correction factor, mixing loss coefficient and fan loss coefficient from Traupel-	89
A-7	"Remaining" loss coefficient from Traupel -----	90
A-8	Subroutine FLOWR flowchart -----	91

A-9	Subroutine ROTO2 flowchart -----	92
A-10	Tip leakage loss coefficient plot from Traupel -----	93
A-11	Streamline coordinates -----	94
B-1	Boundary layer effects at the exit of a blade row -----	114
C-1	Program segmentation.-Illustration of the main program calling a segment into logical memory -----	118

LIST OF SYMBOLS

A	Cross sectional area
a	Blade opening
c	Blade chord
c_p	Specific heat at constant pressure
D	Diameter
E	Kinetic energy
g_c	Universal gravitational constant
H	Total enthalpy
H^{***}	Energy parameter, boundary layer
h	Static enthalpy
h	Blade height
HP	Horsepower
I	Integrand
J	Conversion factor
K_{is}	Head coefficient
L	Distance between stations
M	Mach number
\dot{m}	Mass flow rate
m	Exponent used in boundary layer calculations
\dot{m}_{ref}	Reference flow rate
N	Rotational speed
P	Pressure (Psia)
R	Gas constant for air

R	Radius
r	Radius
r*	Theoretical degree of reaction
s	Entropy
s*	Non-dimensional entropy
T	Temperature ($^{\circ}$ R)
t	Maximum blade thickness
t_e	Trailing edge thickness
U	Peripheral velocity
u	Velocity within the boundary layer
V	Absolute velocity
W	Relative velocity
X	Non-dimensional radius (r/r_m)
Y	Non-dimensional axial velocity ratio (V_a/V_{am})
y	Pressure loss coefficient

GREEK LETTERS

α	Absolute gas outlet angle
β	Relative gas outlet angle
γ	Specific heat ratio, c_p/c_v
δ	Boundary layer thickness
δ	Referred pressure ratio ($P_{to}/14.7$)
δ^*	Boundary layer displacement thickness
δ^{***}	Boundary layer energy thickness
ξ	Loss coefficient
η	Efficiency

θ	Referred temperature ratio, $\frac{T_{T0}}{518.4}$
κ	Curvature factor
λ	Angle of flow in a meridional plane
ξ	Area restriction factor
ρ	Density
Φ	Non-dimensional flow function
ω	Angular velocity

SUBSCRIPTS

a	Axial
ACT	Actual or computed value
E	An equivalent thermodynamic quantity
eff	Effective
H	Hub
is	ISENTROPIC
m	Mean streamline value
p	Profile
R	Relative flow value
r	radial
ref	Referred value
req	Required
s	secondary
TH	Theoretical value
TO	Total conditions
u	Tangential
o	Station at the stator inlet

-
- 1 Station between the stator and the rotor
 - 2 Station at the rotor outlet

I. INTRODUCTION

A. DESCRIPTION OF THE TRANSONIC COMPRESSOR TEST RIG

The Transonic Compressor Test Rig at the Turbopropulsion Laboratory (TPL) of the Naval Postgraduate School is shown schematically in Fig. 1 and consists of the following major components:

1. Air drive turbine.
2. Air supply system.
3. Associated piping including throttling valves at the turbine and compressor inlets.
4. Test compressor.

The drive turbine is a dual-flow axial air turbine with 50% reaction. The geometry is given in Table 1. The profile shapes of the turbine rotor and of the stator blades are identical and the blades are of constant section along the radius as shown in Fig. 2. The stator has 31 blades while the rotor has 32 (to avoid resonant excitation from wake interference). The two parallel stages of the turbine are designed for the following output and total inlet conditions:

Pressure Ratio: 2.8

Total Inlet Temperature: 640°R

Flow rate: 10.85 LBM/SEC

Horsepower: 485 HP

The compressor presently under test is a transonic single stage, axial flow compressor. It is instrumented for measurements of torque, mass flow rate, stagnation temperatures and pressures, case and hub wall pressures, and for unsteady pressure measurements in the flow field and at the walls.

The Air Supply System incorporates an electric motor-driven multi-stage axial flow compressor manufactured by Allis-Chalmers. It can presently supply up to 12 lbs/sec of air at 3 atmospheres, at temperatures between 560°R and 660°R. The compressor is rated at 1250 HP and has a controlled variable speed drive.

B. STATEMENT OF THE TASK

The Transonic Compressor Test Rig was designed to provide the means for obtaining experimental data in fundamental compressor phenomena. Following the present experiments, an experiment to investigate the onset of supersonic unstalled blade flutter is planned which would involve replacing at least the present compressor rotor by a rotating cascade of flat-plate blades. Such a rotor would not be able to produce the pressure ratios required to pump the required flow rates through the system. Therefore, it has been proposed, that a turbocharger compressor be fitted in series with the rotating cascade to provide the required flow through it. The turbocharger would also be driven using air from the Allis-Chalmers air supply system.

In order to evaluate the feasibility of the turbocharger installation, it is necessary to determine the mass flow rate required by the drive turbine to drive the test compressor at a given power and speed. The remaining air to drive the turbocharger turbine is then known and the selection of a commercially available turbocharger suitable for this application can be made.

Thus, the performance of the air drive turbine must be known over the complete speed range. Of particular importance, are the required mass flow rates for given values of horsepower. The problem, therefore, is to obtain the turbine performance map for all pressure ratios and speeds.

II. APPROACH

A. BACKGROUND

A search of the most recent literature revealed a number of analytical methods for the calculation of turbine off-design performance. The majority of these used a finite element approach but little information on the relative success of these methods in practice was available. Two alternate methods, both used at the Turbopropulsion Laboratory, were those of M. H. Vavra and E. Macchi. Each was examined in detail.

The method of Vavra, given in Ref. [1] is a one-dimensional (meanline) approach using mathematical modelling and experimental data to express flow angles and losses. It is primarily a method to design turbine blading but may also be used to predict turbine performance for a given set of gas inlet and operating conditions when the blading geometries are specified. It is assumed that the axial velocity is constant along the blading from hub to tip. Vavra states that this assumption is reasonable for blading in which the tip-to-hub ratio is equal to or less than 1.15. The ratio is 1.312 and 1.424 for the drive turbine stator and rotor blading respectively. It was thought therefore, that the method of Macchi might yield more accurate predictions.

Macchi's method is given in Ref. [2]. The method, implemented by Macchi in a computer program written for the IBM 360, was an extension of the work done by R. Eckert [Ref. 3] and R. Harrison [Ref. 4]. Eckert wrote a program, following a simplified three-dimensional analysis, which could be used to predict the performance of a single-stage axial flow turbine. Harrison improved the program by modifying the analysis to take into account streamline curvature. Both programs were based on the three-dimensional method developed by Vavra in Ref. [5]. Macchi's principle improvements to the program were to introduce the choice of various methods to calculate gas outlet angles and loss coefficients. Two methods of calculating gas outlet angles are included; those of Ainley and Mathieson [Ref. 6] and Traupel [Ref. 7]. Five methods for calculating the loss coefficients can be selected; those due to Ainley and Mathieson [Ref. 6], Dunham and Came [Ref. 8], Balje [Ref. 9], Lonherr and Carter [Ref. 10] and Traupel [Ref. 7].

Macchi's computer program, as documented in Ref. [2], was selected for performance predictions of the drive turbine. It should be noted that no card deck of the program was available, and no results of using the program were available other than those included in Ref. [2].

B. ANALYSIS

The method requires the following assumptions;

1. There are an infinite number of blades in each blade row so that blades downstream do not affect upstream conditions.

2. The flow is axisymmetric at locations where the equation of motion is solved.

3. The flow is steady and adiabatic. Thus, the total enthalpy through the stator remains constant along a streamline and the relative total enthalpy through the rotor remains constant along a streamline.

4. All equations are solved at between blade row locations. Increases in entropy occur in the blade row upstream of the stations where equations are solved and the entropy change along a streamline between blade rows is zero.

5. The boundary layers on the turbine casing are not accounted for.

The method of solution is as follows:

1. Assume initial radial positions of the streamlines.
2. Obtain the axial velocity distribution by solving the equation of motion at the stator outlet. The velocity distribution into the stator is assumed to be axial, and uniform
3. Obtain stator loss coefficients.
4. Check overall continuity and adjust the inlet Mach number as necessary.
5. Check the between-streamline continuity, and adjust streamline radial positions as necessary.
6. Repeat this process for the rotor.
7. Re-cycle all the above calculations, accounting for streamline curvature, and repeat until convergence is reached.

C. METHOD OF SOLUTION

The computer code written by Macchi was originally run on the IBM 360 computer. The program consisted of a deck of over 2000 program cards plus over 60 data cards. Since the deck could not be located, it was necessary to re-type the program from the listing in Macchi's paper. However, since the IBM 360 computer was soon to be replaced in the period in which the work was to be carried out, an alternate computer was sought.

The HP-1000 series mini-computer located at TPL was selected for two reasons. First, the machine used FORTRAN as did Macchi's program. Secondly, it would be a benefit to TPL to have the program immediately available on the laboratory computer.

The first steps were to analyze Macchi's program, in detail, and then to run it using his example input/output. In analyzing the program it became obvious that the computer program listing given in Ref. 2, was not the one used to obtain the listed output. Numerous discrepancies were found in the listing, some of which would have prevented the program from running; others would have caused incorrect results to be obtained. A listing of these discrepancies is contained in Appendix E. When the program was understood and flowcharted, it was keyed-in at the HP-1000 computer terminal. However, modifications were required to accomodate

the program within the mini-computer disc-based operating system.

D. MODIFICATION TO THE COMPUTER CODE

Since there was no card reader, variable input data such as turbine speed had to be entered using data or specification statements. This contributed in part to the most difficult problem, that of program size. The HP-1000 mini-computer uses a disc with a storage capability of 19.5 mega-bytes. However, the machine memory is only 124 K Bytes, of which only 29 K Bytes is available to a programmer. Also, the available memory is divided up, or partitioned into two 18 K and one 11 K partitions, so that no single program can exceed 18 K. It was estimated that Macchi's program was over 100 K. So it was clear that the program would have to be modified if it were to run on the mini-computer.

The first modification was to remove all subroutines from the program that were not actually used. It will be recalled that Macchi's program contained five methods for calculating loss coefficients and two methods for calculating gas outlet angles. It was decided that only the Traupel method of calculating loss coefficients would be retained. Traupel was selected for two reasons. Firstly, it was the method used by Macchi in his example calculations and therefore the modified program should still reproduce Macchi's results. Secondly, the method of Traupel is widely respected.

The method of calculating gas outlet angles was totally changed. Neither Ainley and Mathieson [Ref. 6] nor Traupel [Ref. 7] was used. Both methods required prohibitively large sections of computer code. The method selected was that of Vavra [Ref. 1].

Use of Vavra's method greatly simplified the program because this method predicts gas outlet angles independently of the inlet Mach number. Macchi's approach was to use Traupel's method which is dependent on the Mach number of the flow into the blade.

The above simplifications reduced the program size from 2257 lines to less than 1800 lines. However, this was still too large and the program could not be loaded without overflowing the memory.

The solution to the problem was found in program segmentation. In this process, the computer code is divided into a main program and several segments. Each segment is a "piece" of the original program. The segments are individually compiled and loaded. However, the segments are placed into memory only as they are needed to execute the overall program. Thus, a very large program can be made to run in the available 18 K partition. Since the present program was not originally intended for a mini-computer, segmentation was not straight forward. The method finally arrived at is detailed in Appendix C. Basically, the main

program consists of all the subroutines, while the three other segments contain coding which enables program flow to proceed in a logical manner.

Successfully segmented, the program was run using Macchi's input. An output was obtained which agreed almost exactly with Macchi's results. All output quantities were within 1% of Macchi's quantities. The differences were, in all probability, due to the different method of calculating gas outlet angles.

After verifying Macchi's program, the drive turbine geometry was input and the program was run for a given set of operating conditions. The results are discussed in the following section. Note: The "verification" of Macchi's program amounted to verifying that the computer code now loaded into the HP-1000, was indeed Macchi's code. It was not known whether Macchi's output data were a good or bad prediction of performance since they were not compared with test results.

III. RESULTS OF AXIAL TURBINE PREDICTIONS

A. USING BOTH COMPLETE AND MODIFIED PROGRAMS

The drive turbine geometry was input and the following solution flow path was selected:

1. Stator and rotor loss coefficients were functions of pressure ratio.
2. The blockage factor, ξ^* , used in the equation of continuity was equal to the total loss coefficient.

Four operating points were selected to test the validity of the program. Three were off-design points at which measured data were available and the fourth was the design point itself. Table II contains details of the selected test points for Run 1.

The program variables were then changed and the following new solution flow path was selected:

1. Stator and rotor loss coefficients were those calculated by Traupel's method.
2. The blockage factor, ξ^* , was equal to the profile loss coefficient.

After reviewing the results of Runs 1 and 2, a further modification was made to the program. The original program contained a subroutine which checked between-streamline continuity. If the total mass flow rate at the stator and rotor exits was not evenly divided between the five streamlines,

the radial positions of the streamlines were adjusted and all steps were recalculated using the new streamline positions. Hence, for Run 3, a subroutine was removed and the main program was modified so that between-streamline continuity was not examined.

B. COMPARISON WITH MEASURED DATA

The results of Run 1, 2, and 3 are tabulated in Table III. Run 1 showed predictions of mass flow rate which departed about 6% from the measured data. However, the horsepower predictions were off by as much as 16.17%. Furthermore, the computer program was unable to reach a solution for the design point.

Run 2 produced worse results as is evident from the table. Again, the program was unable to converge to a solution at the design point.

Run 3 produced more acceptable data. Additionally, convergence to a solution was noticeably faster and a solution was obtained at the design point. Because of this, the method used in Run 3 was used to map the drive turbine performance. The computer program used to obtain the results of Run 3 is described in detail in Appendix A and is listed in Appendix G. The results of Run 3 are shown plotted in Figures 3 through 8.

To obtain the plots in Figures 3 and 6, a value of the total inlet temperature was approximated by the method of Vavra as contained in Ref. [14]. It was assumed that the static turbine discharge temperature should not be less than

45°F (505°R). This corresponds to the approximate temperature at which condensation of moisture in the air, assuming 100% relative humidity, will occur. The inlet temperature was given by

$$\text{Total Inlet Temperature} = \frac{\text{Static Outlet Temperature}}{1 - \eta_s [1 - (\frac{1}{\delta_T})^{\frac{\gamma-1}{\gamma}}]}$$

where η_s , the total-static turbine efficiency was assumed to be 81%, and δ_T , was the total to static pressure ratio. The total inlet temperature corresponding to each pressure ratio is given in Table IV.

The computer output corresponding to each point on Figures 3 through 8 is contained in Appendix F. Only one side of the dual flow turbine was analyzed, thus, the resulting printed values of horsepower, referred horsepower, moment, referred moment, flow rate and referred flow rate must be doubled to obtain the actual turbine characteristics which have been plotted in Figures 3 through 8.

IV. DISCUSSION

The agreement of both the predicted flow rate and the horsepower obtained in Run 3 with turbine test data was encouraging. It is to be noted however, that this agreement was obtained using a procedure which was conceptually incorrect. In Runs 1 and 2, between-streamline continuity was checked and the streamlines were adjusted as necessary. In Run 3, between-streamline continuity was not checked, and as a result, the mass flow rate between streamlines was not precisely 25% of the total flow rate. It is noted however, that the deviations were less than 10.0% and while the radial positions of the streamlines varied by 10.%, the differences between predicted and measured output horsepower decreased from 24% to 4.5%. Since the enthalpy change on each streamline was computed using Euler's turbine equation, the total horsepower obtained by integration is sensitive to the streamline radial positions. On the other hand, the calculation of the overall mass flow rate is primarily a function of the blade throat openings and inlet conditions of the flow. Consequently, in relaxing the requirement for between-streamline continuity, the output horsepower was changed significantly, while the overall flow rate was not.

Using this procedure, which preserves overall continuity, a performance map for the turbine was produced (Fig. 3-8) which agreed well with the off-design performance measurements made at lower speeds (Table III). It is noted however, that the inability of the program in its original form to predict the measured turbine performance is not explained, and both the program itself and the data input for the geometry should be closely re-examined.

The difficulty in obtaining convergence to a solution at some operating points above the pressure ratio of 2.0 is likely to be the result of choking occurring on one or more of the streamlines. This was suspected but not fully explored.

Finally, although the program was eventually made to run on the mini-computer, the time required to put the program into its final form was excessive since the original program was not written with segmentation in mind. When the segmented program was completed, only one operating point per run could be obtained. Thus, excessive time was spent compiling and loading the program. The execution time for the program averaged 2 minutes at the lower pressure ratios and up to 30 minutes at the higher ones. This would be unacceptable if many points were to be examined.

V. CONCLUSIONS

The program for calculating the performance of a single stage axial turbine reported by Macchi was revised, corrected and segmented and made to run on the Laboratory mini-computer. When applied to the geometry of the air-drive turbine of the compressor test rig, selecting specific options for the representation of loss coefficients, the revised program failed to converge when design-point test conditions where input. Also, the computed horsepower was in error by as much as 24% when the program predictions were compared with specific test data obtained from the rig at off-design (lower speed) conditions. The revised program did however closely reproduce the results given by Macchi in his original report for a specific turbine geometry.

When the requirement that the computed stream surfaces be such that they divided the flow exactly into equal 25% increments was removed, the program converged satisfactorily for design point conditions and gave agreement with test data to within 5% in flow rate and horsepower at off-design conditions.

The complete performance map for the air drive turbine was obtained with the program following this revision. Based on the favorable comparison with data so far obtained, the map is likely to describe the performance to better than a 10% uncertainty. This is considered to be satisfactory for

sizing the turbocharger for the proposed compressor rig modification.

The following recommendations are made concerning further application or development of the computer program:

1. The failure of the program to converge before the final revision was made should be analysed closely, and the final revision removed if possible.
2. The geometrical input for the air drive turbine (which was taken from drawings) should be reexamined and the physical dimensions of the blade rows themselves should be measured.
3. Consideration should be given to putting the corrected original version of the program onto the IBM 370 computer so that, when successfully operating, a turbine map can be calculated with a single load.

TABLE I

TURBINE GEOMETRY

(see Figure 2; Dimensions in inches)

STATOR:

Hub Radius	2.764
Mean Radius	3.196
Tip Radius	3.627
Blade Chord	1.003
Blade Suction Side Radius of Curvature	2.8065
Maximum Blade Thickness	.2252
T.E. Projected Thickness	.03
T.E. Normal Thickness	.0186

ROTOR:

Hub Radius	2.693
Mean Radius	3.265
Tip Radius	3.837
Blade Chord	1.003
Blade Suction Side Radius of Curvature	2.8065
Maximum Blade Thickness	.2252
T.E. Projected Thickness	.03
T.E. Normal Thickness	.0186
Tip Clearance	.01(estimated)

TABLE II

MEASURED/DESIGN DATA USED TO VERIFY THE PROGRAM

POINT	RPM	T _{IN} (R)	T _{OUT} (R)	P _{TO} (PSI)	P.R.	M($\frac{LBM}{SEC}$)	H.P.
1	18310	579.2	550.8	23.56	1.602	5.542	110.1
2	15200	557.4	517.8	20.43	1.390	4.698	63.27
3	21300	578.9	506.8	27.13	1.846	7.033	172.0
4*	30500	640.0	---	41.16	2.8	10.85	485

*Design Point

TABLE III

COMPARISON OF PREDICTED TURBINE PERFORMANCE
VS MEASURED PERFORMANCE

POINT	RUN I			HORSEPOWER		
	PREDICT.	MEAS.	%DIFF.	PREDICT.	MEAS	%DIFF.
1	5.88	5.542	6.09	99.5	110.1	9.63
2	4.74	4.698	0.89	52.5	63.27	16.17
3	7.04	7.033	0.009	163.64	172.0	4.86
4	N.C.	10.85	---	N.C.	485	---

RUN 2						
1	6.06	5.542	9.35	90.92	110.1	17.4
2	4.90	4.698	4.29	49.76	63.27	21.35
3	7.30	7.033	3.80	130.76	172.0	23.97
4	N.C.	10.85	---	N.C.	485	---

RUN 3						
1	5.82	5.542	5.01	113.12	110.1	2.74
2	4.66	4.698	0.81	61.96	63.27	2.09
3	7.04	7.033	0.10	179.68	172.0	4.47
4	10.40	10.85	4.15	444.18	485	8.42

NC: Computer program would not converge to a solution after
a large number of iterations.

TABLE IV

VALUES OF ASSUMED TOTAL INLET TEMPERATURE FOR EACH
PRESSURE RATIO GIVEN IN FIGS. 3, 5, 6, AND 7

PRESSURE RATIO	TOTAL INLET TEMPERATURE ($^{\circ}$ R)
1.4	545.5
1.6	562.6
1.8	577.3
2.0	591.0
2.2	603.6
2.4	615.3
2.6	626.1
2.8	636.6

FIGURE 1: SCHEMATIC OF THE COMPRESSOR TEST RIG, WITH PROPOSED MODIFICATIONS

FIGURE 2: TURBINE ROTOR AND STATOR BLADE SHAPES

FIGURE 3: PREDICTED HORSEPOWER VS RPM AS A FUNCTION OF PRESSURE RATIO,
AT TEMPERATURES TO AVOID CONDENSATION

FIGURE 4 : PREDICTED REFERRED HORSEPOWER VS REFERRED RPM AS A FUNCTION OF PRESSURE RATIO

FIGURE 5: PREDICTED FLOWRATE VS RPM AS A FUNCTION OF PRESSURE RATIO
AT TEMPERATURES TO AVOID CONDENSATION.

FIGURE 6 : PREDICTED HORSEPOWER VS PRESSURE RATIO AS A FUNCTION OF RPM,
AT TEMPERATURES TO AVOID CONDENSATION

FIGURE 7: PREDICTED FLOW RATE VS PRESSURE RATIO AS A FUNCTION OF RPM AT TEMPERATURES TO AVOID CONDENSATION.

FIGURE 8: PREDICTED REFERRED FLOWRATE VS REFERRED RPM AS A FUNCTION OF PRESSURE RATIO

APPENDIX: A

DESCRIPTION OF THE COMPUTER PROGRAM

A-1. INTRODUCTION

To enable the program to run on the laboratory computer, the program was divided into 4 parts; a main program and 3 segments. A detailed discussion of program segmentation on the HP-1000 computer series is contained in Appendix C. In the description which follows, the program is treated as if it were one large program with many subroutines.

The description follows the individual steps from start to finish in the analysis. A program flowchart is given in Figure A-1 and the FORTRAN symbols used in the program are listed in Tables A-I to A-IX.

A-2. DESCRIPTION

A-2.1 Input Data

There are 4 basic categories of input data; turbine geometry, operating conditions, special data and program control parameters. Since there was no card reader input device on the computer, all data were entered using either data or specification statements. Explanations of the turbine geometry, operating conditions, special data and program control parameters are found in Table A-I through A-V. The nomenclature for the blading is given in Figure A-2.

A-2.2 Initial Geometric Calculations

The first calculation performed is to establish the 5 streamline locations at the stator inlet (station 0). The streamlines are initially positioned such that there are equal areas (25% of the total flow area) between them. Next, blade heights of the stator and rotor are calculated using the hub and tip radii of each blade. Blade spacings for the stator and rotor are computed at 3 streamlines; hub, mean and tip. The blade spacing on the mean streamline for the stator is given by

$$S = \frac{2\pi}{Z_s} R_m \quad (A-1)$$

where S = Blade spacing

Z_s = Number of stator blades

R_m = Mean stator radius

A-2.3 Calculation of Gas Outlet Angles

Subroutine VAVRA calculates gas outlet angles for both stator and rotor. The method is that of M.H. Vavra [Ref. 1]. The equation programmed in the subroutine is

$$\alpha = \cos^{-1} \left[\frac{a}{S} + 4 \frac{t_e}{S} \left(1 - \frac{\cos^{-1}(\frac{a}{S})}{90} \right) \right] \quad (A-2)$$

where α = Gas outlet angle

a = Throat opening

S = Blade spacing

t_e = Projected trailing edge thickness

This method is much simpler than that used by Macchi since

there is no variation in outlet angle with Mach number (for sub-sonic conditions). Therefore, once calculated, the stator and rotor exit angles remain unchanged. Subroutine VAVRA computes exit angles for the hub, mean and tip streamlines. The outlet angles at streamlines two and four are computed later in the subroutines STATR and ROTO2.

Before printing the input data, the program calculates the mean throat opening for the stator and for the rotor. The ten equally spaced radii and corresponding throat openings (part of the input geometry) are fitted with a fourth order Chebyschev polynomial. A throat opening corresponding to the mean radius is thus obtained. In the present application of the program to the drive turbine, the mean throat opening was obtained from the design drawing of the blading shown in Figure 2. It was assumed that the throat opening varied linearly with radial position and hence the throat openings at other radii could be calculated. The resulting throat openings are shown in the computer output under the heading of "Input Prints". The design values of the stator and rotor throat areas were obtained from the original design notes of M.H. Vavra.

A-2.4 Calculation of the Flow Rate

Subroutine CHAN is called to calculate the mass flow rate entering the stator. The equations used are as follows:

$$T = \frac{T_{\infty}}{1 + \frac{\gamma-1}{2} M_{\infty}^2} \quad (A-3)$$

$$V = \sqrt{g_c \gamma RT} \quad (A-4)$$

$$P = \frac{P_{\infty}}{1 + \frac{\gamma-1}{2} M_{\infty}^2} \quad (A-5)$$

$$\rho = P/RT \quad (A-6)$$

$$A = \pi [R_{TIP}^2 - R_{HUB}^2] \quad (A-7)$$

$$\dot{m} = \rho A V \quad (A-8)$$

$$\dot{m}_{REF} = \frac{\dot{m}}{P_{\infty}} \sqrt{\frac{RT_{\infty}}{g_c}} \quad (A-9)$$

\dot{m}_{ref} is the reference (dimensionless) flowrate

and is used to check overall continuity later in the program.

A-2.5 Solution of the Equation of Motion for the Stator

Subroutine STATR is called to solve the equation of motion for the stator outlet conditions. The equation of motion which is programmed is as follows:

$$\begin{aligned} \frac{d(\ln Y_1^2)}{dx_1} &= -\cos^2 \alpha_1 \left[-\left(K_2 r_m \frac{\delta R}{L^2} \right) - \left(\frac{4L^2 + (\delta r)^2}{4L^2} \right) \cdot \right. \\ &\quad \left. \frac{dS_i^*}{dx_1} \right] - 2 \tan \alpha \frac{d\alpha}{dx_1} - \frac{2}{x_1} \sin^2 \alpha_1 + \\ &\quad \frac{C_1 \cos^2 \alpha_1}{Y_1^2 V_{a,m}^2} \frac{dH}{dx_1} - \left[\frac{C_1 H \cos^2 \alpha_1}{Y_1 V_{a,m}^2} - \sin^2 \alpha_1 \right] \frac{dS_i^*}{dx_1} \quad (A-10) \end{aligned}$$

where $C_1 = 2g_c J$ (a constant to convert H , the enthalpy from BTU LBM TO $\frac{FT^2}{sec}$)

$$Y_1 = \frac{V_a(I)}{V_a(3)} = \frac{\text{Axial velocity at a streamline}}{\text{Axial velocity at mean streamline}}$$

$$X_1 = \frac{R(I)}{R_m} = \frac{\text{Streamline radius}}{\text{Mean streamline radius}}$$

$$\frac{dS^*}{dX_1} = \frac{d}{dx} \left[\ln \left[\frac{1 - \frac{Y_1^2 V_{a,m}^2}{C_1 H \cos^2 \alpha_1}}{1 - \frac{Y_1^2 V_{a,m}^2}{C_1 H \cos^2 \alpha (1-\xi)}} \right] \right]$$

ξ = Stator loss coefficient
(which is initially assigned an estimated value)

The derivation of this form of the equation of motion is given in Appendix B. However, at this stage of the analysis, the streamline curvature is assumed to be zero. Therefore, the equation of motion becomes:

$$\frac{d(\ln Y_1^2)}{dX_1} = -2 \tan \alpha_1 \frac{d\alpha_1}{dX_1} - \frac{2}{X_1} \sin^2 \alpha_1 + \frac{C_1 \cos^2 \alpha_1}{Y_1^2 V_{a,m}^2}.$$

$$\frac{dH}{dX_1} = \left[1 - \frac{C_1 H \cos^2 \alpha_1}{Y_1^2 V_{a,m}^2} \right] \frac{dS^*}{dX_1} \quad (A-11)$$

The equation of motion is solved when the value of Y_1 at each streamline satisfies the equation. The solution is to first put the equation in the form:

$$\frac{d(\ln Y_1^2)}{dX_1} = I(x) \quad (A-12)$$

where $I(x)$ consists of the right hand side of equation (A-11). Integrating equation (A-12) yields;

$$\ln Y_1^2 = \int_{x_0}^x I(x) dx_1 + \ln C^2 \quad (A-13)$$

where $\ln C^2$ is the constant of integration when $x = 1$ and $Y_1 = 1$. With these boundary conditions Eq. (A-13) gives

$$\ln C^2 = - \int_{x_0}^1 I(x) dx_1 \quad (A-14)$$

using Eq. (A-14) in Eq. (A-13),

$$\ln Y_1^2 = \int_{x_0}^{x_1} I(x) dx_1 - \int_{x_0}^1 I(x) dx_1 \quad (A-15)$$

which becomes

$$\ln Y_1^2 = \int_{x_1}^{x_1} I(x) dx_1 \quad (A-16)$$

Taking the inverse natural log and the square root of both sides

$$Y_1 = e^{\frac{1}{2} \int_{x_1}^x I(x) dx_1} \quad (A-17)$$

Equation (A-17) is the form of the equation of motion solved in subroutine STATTR. Solution of the equation gives five values of Y_1 and thus the value of the axial velocity at each of the five streamlines. Initially, the value of Y_1 is taken to be 1 and the value of $\frac{ds^*}{dx_1}$ is taken to be zero. In succeeding iterations, the calculated value of Y_1 is used to obtain a new value of $\frac{ds^*}{dx_1}$, and so on.

After calculating five values of Y_1 , the stator exit conditions are calculated at each streamline from the geometry of the velocity diagram. The convention for positive

and negative angles and velocities is defined in Figure A-3.

The required relations are the following:

$$V_{a_1} = V_{a_1} \cdot Y_1 \quad (A-18)$$

$$V_{u_1} = V_{a_1} \cdot \tan \alpha_1 \quad (A-19)$$

$$V_1 = V_{a_1} / \cos \alpha_1 \quad (A-20)$$

$$V_R = -V_{a_1} \left[\Delta R / 2L \right] \quad (A-21)$$

where L is the axial distance between stations and ΔR is the change in radial position of the streamline. V_{r_1} , the radial component of velocity, is taken to be zero at this stage in the calculation.

$$V_1 = \sqrt{V_1^2 + V_R^2} \quad (A-22)$$

$$T_1 = T_{TO} - \frac{V_1^2}{2g_c J C_p} \quad (A-23)$$

$$T_{1,s} = T_{TO} - \left[\frac{T_{TO} - T_1}{1 - \xi_s} \right] \quad (A-24)$$

$$P.R. = P_1 / P_{TO} \quad (A-25)$$

$$P_1 = P_{TO} \left[\frac{T_{1,s}}{T_{TO}} \right]^{\frac{r}{r-1}} \quad (A-26)$$

$$M_1 = V_1 / \sqrt{R g_c RT} \quad (A-27)$$

After the above quantities have been calculated at each streamline, subroutine STATR returns to the main program.

A-2.6 Calculation of the Stator Loss Coefficients

The calculation of the stator loss coefficients at each streamline is accomplished by subroutine ALOS1.

The method of solution to obtain these loss coefficients is that formulated by Traupel [Ref. 7]. In Traupel's method, the value of the total loss coefficient is given by

$$\xi_{\text{total}} = \xi_{\text{profile}} + \xi_{\text{wall}} + \xi_{\text{remaining}} \quad (\text{A-28})$$

The calculation of ξ_{total} requires 9 subroutines. Figure A-4 describes the connection between the subroutines and subroutine ALOS1.

The first step is to obtain the value of the total profile loss coefficient, ξ_p . ξ_p is defined by Traupel to be

$$\xi_p = \xi_{po} \chi_m \chi_s + \xi_m + \xi_f \quad (\text{A-29})$$

where ξ_{po} = initial value of the profile loss coefficient

χ_m = mach number correction factor

χ_s = trailing edge thickness correction factor

ξ_m = loss coefficient due to mixing losses and separation losses

ξ_f = loss coefficient due to fan losses

The total profile loss coefficient is calculated in the following manner. First, data for initial profile loss (ξ_{po}) as a function of gas outlet angle (α_1) for various values of gas inlet angle (α_0) is read from an array (Fig. A-5).

This is done by subroutine TRAU1 and functions XPO and YC. The values of ξ_{po} are contained in two arrays XPO1 (5, 8) and XPO2 (6, 8). This is because the data shown plotted in Fig. A-5 has been divided into two sets. One set is for values of α_1 between 40° and 80° . The other is for values of α_1 between 80° and 170° . The FORTRAN symbols for the two ranges of values of α_1 are ALFO1(I) and ALFO2(I) respectively. The FORTRAN symbol for the gas inlet angle is ALF1 (J) once the data points selected from the plot are entered, fifth and sixth degree polynomials respectively are fitted through the data points. The value of ξ_{po} can then be determined for given values of α_1 and α_0 .

The mach number correction, X_m is obtained from Fig. A-5. Subroutine CSIM calculates the value of X_m using straight line approximations of the plot.

Subroutine CID calculates the remaining terms in the expression for ξ_p . These are X_s , ξ_m , ξ_f . They are obtained from the data in Fig. A-6 using the linear interpolation. The abscissa of the curves for X_s and ξ_m is either f or 1-f where f is defined as

$$f = 1 - \frac{\delta}{t \sin \alpha_1} \quad (A-30)$$

where δ = normal trailing edge thickness.

t = blade spacing.

α_1 = gas outlet angle.

The loss coefficient due to wall friction, ξ_w , is calculated using

$$\xi_w \cong \xi_{p0} \cdot \chi_p \frac{t \sin \alpha}{l} \quad (A-31)$$

where t - blade maximum thickness

l = blade height

This equation is programmed in subroutine CSIW.

The value of ξ_R is obtained using subroutine CSIR.

ξ_R is defined by Traupel to be an all-inclusive loss coefficient which accounts for any remaining losses not previously defined. It is written as

$$\xi_R = \chi_L \xi_{R0} \quad (A-32)$$

ξ_{R0} is an initial value of ξ_R which depends on the value of ϕ , where ϕ is given by

$$\phi = \frac{v_1 \sin \alpha_1}{U} \quad (A-33)$$

in which v_1 = true velocity of gas

v = blade speed

A plot of ξ_{R0} vs ϕ is shown in Fig. A-7. The correction χ_L is a function of s/l where

s = chord length

l = blade height

and is obtained using the data in the lower half of Fig. A-7.

The total stator loss coefficient is computed for 3 streamlines; those at the hub, mean and tip.

The loss coefficients at streamlines 2 and 4 are obtained by linear interpolation.

A refinement to the stator loss coefficient may be applied depending on the input value of one program control parameter. The following 3 variations of ξ_s are available:

$$\xi_s = \frac{\left[\frac{1 + \xi_0}{1 + \xi_0 \frac{P}{P_{TO}}} \right]^{\frac{\gamma-1}{\gamma}} - 1}{\left[\frac{1}{\frac{P}{P_{TO}}} \right]^{\frac{\gamma-1}{\gamma}} - 1} \quad (A-34)$$

$$\xi_s = \xi_0 \quad (A-35)$$

and

$$\xi_s = \frac{\left[\frac{1 + \xi_0}{1 + \xi_0 \beta^*} \right]^{\frac{\gamma-1}{\gamma}} - 1}{\left[\frac{1}{\beta^*} \right]^{\frac{\gamma-1}{\gamma}} - 1} \quad (A-36)$$

where ξ_0 = loss coefficient calculated using the method of Traupel

$$\beta^* = \left[1 + \frac{\gamma-1}{2} (.8)^2 \right]^{\frac{\gamma-1}{\gamma}} \quad (A-37)$$

The values of the program control parameter required to select between options are given in Table A-V.

Before returning to the main program, subroutine ALOSL calculates a value of ξ^* which is a blockage factor to be used in the equation of continuity. There are three ways to define ξ^* ; they are as follows:

$$\xi^* = \xi_0 \quad (A-38)$$

$$\xi^* = \frac{1}{2} \xi_0 \quad (A-39)$$

$$\xi^* = \xi_p \quad (A-40)$$

A-2.7 Solution of the Continuity Equation After Returning to the Main Program

The overall continuity at the stator exit is checked. Subroutine FLOWR performs this task. The flow chart for FLOWR is given in Fig. A-8. In FLOWR the mass flow rate required by continuity is checked against the calculated mass flow rate. If the calculated flow rate does not agree with that required by continuity, adjustments are made to the axial velocity and/or the inlet Mach number, as will be explained.

The mass flow required by continuity is

$$\dot{m}_{REQD} = \frac{\dot{m}_{REF}}{Z_s \cdot A_m \cdot R_m} \quad (A-41)$$

where \dot{m}_{REF} = reference mass flow rate as computed in subroutine CHAN

Z_s = # of stator blades

A_m = mean stator throat opening

R_m = mean stator radius

The mass flow rate at each streamline computed in this subroutine is

$$\dot{m}_{ACT} = \left[\frac{P_{TE}}{P_{TO}} \right] \sqrt{\frac{T_{TE}}{T_{TO}}} \left[\frac{A(I)}{A(3)} \right] Z \Phi \quad (A-42)$$

where Z is an area reduction coefficient defined by

$$Z = \frac{H^{***} - 1}{H^{***} - 1 + \xi^*} \quad (A-43)$$

Z gives the percentage of flow area between the blades over which it is permissible to assume a uniform velocity. The boundary layer on both sides of the flow limits the available flow area and the backage factor, Z , accounts for this.

Equation A-43, Z is seen to be a function of the energy parameter H^{***} and ξ^* . ξ^* is the value of the loss coefficient returned from subroutine ALOS1. The energy parameter is defined as

$$H^{***} = \frac{\delta_3}{\delta_1} = \frac{\text{Energy thickness}}{\text{Displacement thickness}} \quad (\text{A-44})$$

H^{***} can be written as

$$H^{***} = \frac{\left[\frac{1}{X_E-1} + \frac{1}{3m+1} + \frac{X_E}{5m+1} + \frac{X_E^2}{7m+1} + \frac{X_E^3}{9m+1} + \frac{X_E^4}{11m+1} \right]}{\left[\frac{1}{X_E-1} + \frac{1}{m+1} + \frac{X_E}{3m+1} + \frac{X_E^2}{5m+1} + \frac{X_E^3}{7m+1} + \frac{X_E^4}{9m+1} \right]} \quad (\text{A-45})$$

where:

$$m = .15$$

$$X_E = 1 - \left(\frac{P}{P_{TO}} \right)^{\frac{\gamma-1}{\gamma}} \quad \text{for unchoked flow}$$

$$X_E = 1 - [P_{CRIT}]^{\frac{\gamma-1}{\gamma}} \quad \text{for choked flow}$$

and

$$P_{CRIT} = \left[\frac{2}{\gamma+1} \right]^{\frac{\gamma}{\gamma-1}}$$

The derivation of Z and H^{***} is given in Appendix B.

The expression for Φ , the flow function, for unchoked flow is

$$\Phi = \sqrt{\left(\frac{2\gamma}{\gamma-1} \right) \left(\frac{P}{P_{TO}} \right)^{\frac{1}{\gamma}} - \left(\frac{P}{P_{TO}} \right)^{\frac{\gamma+1}{\gamma}}} \quad (\text{A-46})$$

and for choked flow is

$$\Phi = \left[\frac{2}{\gamma+1} \right]^{\frac{1}{\gamma-1}} \sqrt{\frac{2\gamma}{\gamma+1}} \quad (\text{A-47})$$

After calculating for each streamline, the flow rate is integrated from hub to tip and the resulting value is compared with \dot{m}_{reqd} . If the two values of flow rate agree to within a specified tolerance (see Table A-IV) continuity is considered to be satisfied. Then, after calculating the total percentage of mass flow between adjacent streamlines, subroutine FLOWR returns to the main program.

If the flow rates are not within tolerance the program checks to see if the actual mass flow is too high. If it is too high, the value of the axial velocity is lowered proportionally to the difference between the actual and required flow rates.

If the actual flow rate is too low, the procedure is more complicated. First, the flow is checked to determine whether choking has occurred. Streamlines one and five are checked. If the flow is in fact choked at those streamlines, the inlet Mach number is lowered and the program loops back to recompute the reference mass flow rate and repeat the complete procedure.

If the flow is not choked, the axial velocity is raised proportionally to the difference between actual and required flow rates and subroutine FLOWR returns to the main program.

A-2.8 Calculation of the Rotor Inlet Conditions

Continuity having been satisfied through the stator, the rotor relative inlet conditions are calculated. In subroutine ROT01, the following expressions are used:

$$U = \frac{\omega R}{12} \quad (A-48)$$

$$U_2 = \frac{\omega}{12} \cdot \frac{R_{\text{STATOR}}}{R_{\text{ROTOR}}} \quad (A-49)$$

$$W_{m1} = V_{m1} - U \quad (A-50)$$

$$\beta_1 = T_{AN}^{-1} \left[\frac{W_{m1}}{V_{a1}} \right] \quad (A-51)$$

$$W_1 = \frac{V_{a1}}{\cos \beta_1} \quad (A-52)$$

$$W_1 = \sqrt{V_{R1}^2 + W_1^2} \quad (A-53)$$

$$T_{TE} = \frac{(T_1 + W_1)^2}{2g_c J c_p + \left(\frac{U_2^2 - U_1^2}{2g_c J c_p} \right)} \quad (A-54)$$

$$P_{TE} = P_1 \left[\frac{T_{TE}}{T_1} \right]^{\frac{\gamma}{\gamma-1}} \quad (A-55)$$

$$H_E = (T_{TE})(.24) \quad (A-56)$$

Where T_{TE} , P_{TE} and H_E are equivalent temperature, pressure and enthalpy respectively.

A-2.9 Calculation of the Rotor Exit Conditions

Calculation of the rotor exit properties follows the same procedure as was used to compute the stator exit properties. The process is outlined here with notable differences explained. Subroutine ROTO2 calculates the rotor exit properties. A flowchart of ROTO2 is given in Fig. A-9.

The first step in ROTO2 is to solve the equation of motion for each streamline. The equation of motion in terms of relative quantities is

$$\frac{d(\ln Y_2^2)}{dX_2} = -\cos^2 \beta_2 \left[2K r_m \frac{\delta r}{L^2} - \frac{L^2 + \left(\frac{\Delta R}{2}\right)^2}{L^2} \right. \\ \left. \frac{ds^*}{dx} \right] - 2 \tan \beta_2 \frac{d\beta_2}{dx} - \frac{2}{X_2} \sin^2 \beta_2 - \frac{4U_m \cos \beta_2 \sin \beta_2}{Y_2^2 V_{a2}^2} \\ - \frac{2U_m U_2 \cos^2 \beta_2}{Y_2^2 V_{a2}^2} + \frac{C_1 \cos^2 \beta_2}{Y_2^2 V_{a2}^2} \cdot \frac{dH_E}{dX_2} + \\ \left[1 - \frac{C_1 H_E \cos^2 \beta_2}{Y_2^2 V_{a2}^2} \right] \cdot \frac{ds_2^*}{dX_2} \quad (A-57)$$

At this point in the calculation, streamline curvature is neglected. Hence, Eq. (A-57) reduces to

$$\frac{d(\ln Y_2^2)}{dX_2} = -2 \tan \beta_2 \frac{d\beta_2}{dX_2} - \frac{2}{X_2} \sin^2 \beta_2 - \frac{4 U_m \cos \beta_2 \sin \beta_2}{Y_2 V_{a2}} - \frac{2 U_m U_2 \cos^2 \beta_2}{Y_2^2 V_{a2}^2} + \frac{C_1 \cos^2 \beta_2}{Y_2^2 V_{a2}^2} \frac{dH_E}{dX_2} + \left[1 - \frac{C_1 H_E \cos^2 \beta_2}{Y_2^2 V_{a2}^2} \right] \frac{dS_2}{dX_2} \quad (A-58)$$

The derivation of Eq. (A-57) is contained in Appendix B. Equation (A-55) is similar in form to Eq. (A-10). Hence, the method of solution is identical to that employed by subroutine STATR. However, after solving the equation, the value of Y_2^2 at each streamline is examined to determine whether or not it falls into the range $.2 < Y_2 < 2.0$. Values of Y_2^2 greater than 2.0 are set equal to 2.0 while those less than .2 are set equal to .2. Successive values of Y_2^2 at each streamline are compared, and when the values of successive iterations are within a specified tolerance (see Table A-IV), the iteration ends. The values of Y_2^2 are used to calculate the rotor exit conditions using the following equations:

$$V_{a2} = V_{a2}(3) Y_2 \quad (A-59)$$

$$W_2 = \frac{V_{a2}}{\cos \beta_2} \quad (A-60)$$

$$W_{R2} = \frac{(-V_{a2}) \cdot D \cdot CL}{2} \quad (A-61)$$

$$T_2 = T_{TE} - \frac{W_2^2}{2g_c J c_p} \quad (A-62)$$

$$V_{u2} = V_{a2} \tan \beta_2 \quad (A-63)$$

$$W_{u2} = V_{u2} + U \quad (A-64)$$

$$T_{as} = T_{TE} - \frac{T_{TE} - T_2}{1 - f_R} \quad (A-65)$$

$$P_2 = P_{TE} \left[\frac{T_{as}}{T_{TE}} \right]^{\frac{\gamma}{\gamma-1}} \quad (A-66)$$

Subroutine ROTO2, then returns to the main program.

After calculating the rotor outlet conditions, the rotor loss coefficients are computed. Subroutine ALOS2

calculates the rotor loss coefficients following the process used in subroutine ALOS1 for the stator losses. The principle exception is that a tip clearance loss is also calculated and added to the total loss coefficient. The tip clearance loss coefficient is obtained from subroutine ALEAK which uses a straight line approximation to the curve shown in Fig. A-10. Subroutine ALOS2 also computes values of ξ^* and one of the three refinements to ξ_R .

Subroutine FLOWR is called to check continuity at the rotor exit. If continuity is satisfied, the program continues. If not, the same procedure is followed as previously explained for the stator outlet (Fig. A-1).

A-2.10 Accounting for Streamline Curvature

All calculations to this point have neglected streamline curvature and assumed that the streamlines remain fixed through the stator and rotor (Fig. A-11). The radial shift in a streamline between stator inlet and rotor outlet can be written as

$$\Delta R = R_{\text{STATOR INLET}} - R_{\text{ROTOR OUTLET}} \quad (\text{A-67})$$

This is the net radial shift in a streamline between stations '0' (stator inlet) and '2' (rotor outlet). It is shown in Section 16.4 of Ref. [5] that the radial shift in a streamline between the stator and the rotor (station 1) can be written as

$$\delta R = R_{\text{STATOR OUTLET}} - \frac{1}{2} \left[R_{\text{STATOR INLET}} - R_{\text{ROTOR OUTLET}} \right] \quad (\text{A-68})$$

The angle between the meridional velocity V_m and the axial velocity V_a is λ . The radial velocity V_r can be expressed as

$$V_r = V_a \tan \lambda \quad (\text{A-69})$$

and from Fig. 16(1) of Ref.[5], it follows that

$$\tan \lambda = \frac{-\Delta R}{2L} \quad (\text{A-70})$$

Using Eq. (A-68) in Eq. (A-67),

$$V_r = -V_a \frac{\Delta R}{2L} \quad (\text{A-71})$$

where $\frac{\Delta R}{2L}$ = Average streamline slope

Also, from using Eq. (A-68)

$$\cos \lambda = \frac{2L}{\sqrt{\Delta R^2 + (2L)^2}} \quad (\text{A-72})$$

Rearranging;

$$\cos \lambda = \sqrt{\frac{L^2}{L^2 + \left(\frac{\Delta R}{2}\right)^2}} \quad (\text{A-73})$$

The remaining term used in the calculation of streamline curvature (Section 16-4 of Ref. [5]) is

$$K \frac{\delta R}{L^2}$$

where K is the so called curvature factor. It usually has a value between 4 and 6 and in the program its value is taken to be 5. Having calculated $\cos\lambda$, ΔR and δR , the program repeats the solution process. However, the only quantity which is unchanged is the reference mass flow rate \dot{m}_{ref} . In subroutine STATR the equation of motion is solved, this time accounting for streamline curvature. The same is true in subroutine ROTO2.

The flow path of the program is identical to the section which did not account for streamline curvature. Next, the program computes an average pressure ratio at the rotor outlet using the expression

$$\frac{P_2}{P_{TO}} = \left(\frac{P_2}{P_{TO}} \right)_{STREAMLINE} + \frac{1}{4} \left[\left(\frac{P_2}{P_{TO}} \right)_{S.L.2} \right. \\ \left. \left(\frac{P_2}{P_{TO}} \right)_{S.L.3} + \left(\frac{P_2}{P_{TO}} \right)_{S.L.4} + \left(\frac{P_2}{P_{TO}} \right)_{S.L.5} \right]$$

(A-74)

If this pressure ratio is within a specified tolerance to the actual pressure ratio (which is input data) the program

proceeds to the final stage of the calculations. If not, the inlet mach number is adjusted by an amount which depends on the difference between the calculated and specified pressure ratios. If the calculated pressure ratio is too high, the Mach number is lowered using

$$M_o = M_{o_0} - \frac{\text{Pressure Ratio Difference}}{18} \quad (\text{A-75})$$

If the computed pressure ratio is too low, the Mach number is raised using

$$M_o = M_{o_0} + \frac{\text{Pressure Ratio Difference}}{18} \quad (\text{A-76})$$

In both cases, the program loops back to subroutine CHAN and proceeds to compute a new reference mass flow rate based on the new value of the inlet Mach number. The entire process is then repeated until the pressure ratios agree within the specified tolerance.

A-2.11 Final Calculations

Stator and rotor outlet conditions not previously calculated are computed as follows:

$$\alpha_2 = \tan^{-1} \left[\frac{V_{u_2}}{V_{a_2}} \right] \quad (\text{A-77})$$

$$V_2 = \frac{V_{a_2}}{\cos \alpha_2} \quad (\text{A-78})$$

$$V_2 = \sqrt{V_2^2 + W_{R2}^2} \quad (A-79)$$

$$\Delta h = \frac{UVw_1 - U_2 Vw_2}{g_c J} \quad (A-80)$$

$$T_{T2} = T_{TO} - \frac{\Delta h}{C_p} \quad (A-81)$$

$$P_{T2} = P_2 \left[\frac{T_{T2}}{T_2} \right]^{\frac{\gamma}{\gamma-1}} \quad (A-82)$$

$$P_{T1} = P_1 \left[\frac{T_{TO}}{T_1} \right]^{\frac{\gamma}{\gamma-1}} \quad (A-83)$$

$$T_{2,IS} = T_{TO} \left[\frac{P_2}{P_{TO}} \right]^{\frac{\gamma-1}{\gamma}} \quad (A-84)$$

$$\text{ROTOR EXIT RELATIVE MACH #} = \frac{W_2}{\sqrt{\gamma R g_c T_2}} \quad (A-85)$$

$$T_{T_{1S}} = T_{TO} \left[\frac{P_{T_2}}{P_{TO}} \right]^{\frac{\gamma-1}{\gamma}} \quad (A-86)$$

$$\eta_{T-T} = \frac{T_{TO} - T_{T_2}}{T_{TO} - T_{T_{1S}}} \quad (A-87)$$

$$\eta_{T-S} = \frac{T_{TO} - T_{T_2}}{T_{TO} - T_{2_{1S}}} \quad (A-88)$$

$$\text{Stator Blade Efficiency} = \frac{T_{TO} - T_1}{T_{TO} - T_{1_{1S}}} \quad (A-89)$$

$$\text{Rotor Blade Efficiency} = \frac{T_{TE} - T_2}{T_{TO} - T_{2_{1S}}} \quad (A-90)$$

$$r^* = \frac{T_{1_{1S}} - T_{2_{1S}}}{T_{TO} - T_{2_{1S}}} \quad (A-91)$$

$$\text{Head Coefficient} = \frac{2 g_c J (T_{TO} - T_{2_{1S}})}{U^2} \quad (A-92)$$

$$\text{Blade-Jet Ratio} = [\text{Head Coefficient}]^{-1} \quad (A-93)$$

$$\text{Stator Exit Relative Mach #} = \frac{W_1}{\sqrt{\gamma R g_c T_1}} \quad (A-94)$$

The turbine horsepower is obtained by integration. The Δh term at each streamline is weighted by the percentage of mass flow at that streamline. The product is then integrated from hub to tip and result, $\bar{\Delta h}$, is used in the turbine horsepower equation

$$H.P. = \frac{\bar{\Delta h} \cdot J \cdot \dot{m}}{550} \quad (A-95)$$

The moment is calculated using

$$M = \frac{(H.P.)(550)}{\omega} \quad (A-96)$$

Referred horsepower, moment, mass flow and RPM are calculated using

$$H.P._{REF} = \frac{H.P.}{\theta \delta} \quad (A-97)$$

$$M_{REF} = \frac{M}{\delta} \quad (A-98)$$

$$\dot{m}_{REF} = \frac{\dot{m} \theta}{\delta} \quad (A-99)$$

$$RPM_{REF} = \frac{RPM}{\theta} \quad (A-100)$$

where

$$\Theta = \frac{T_{r0}}{518.4}$$

$$\delta = \frac{P_{r0}}{14.7}$$

The values of the total-static efficiency, total-total efficiency, total-static pressure ratio, total-total pressure ratio, head coefficient, blade/jet ratio, r^* and inlet mach number are then averaged.

With all calculations completed, the results are printed under the heading "STATOR SOLUTION", "ROTOR SOLUTION", and "OVERALL TURBINE CHARACTERISTICS".

TABLE A-I

TURBINE GEOMETRIC INPUT DATA (STATOR)
(see Figure A-2; Dimensions in inches)

<u>FORTRAN SYMBOL</u>	<u>DESCRIPTION</u>
ZS	Number of blades
RS(1)	Hub radius at stator outlet
RS(3)	Mean radius at stator outlet
RS(5)	Tip radius at stator outlet
C	Blade chord (mean)
CI	Blade chord (hub)
CO	Blade chord (tip)
E	Blade curvature (mean)
EI	Blade curvature (hub)
EO	Blade curvature (tip)
T	Maximum blade thickness (mean)
TI	Maximum blade thickness (hub)
TO	Maximum blade thickness (tip)
TE	Projected T.E. thickness (mean)
TEI	Projected T.E. thickness (hub)
TEO	Projected T.E. thickness (tip)
TN	Normal T.E. thickness (mean)
TNI	Normal T.E. thickness (hub)
TNO	Normal T.E. thickness (tip)
A1(1-10)	Ten values of throat diameter at 10 equally spaced radii

<u>FORTRAN SYMBOL</u>	<u>DESCRIPTION</u>
AL	Blade camber line length (mean)
ALI	Blade camber line length (hub)
ALO	Blade camber line length (tip)
RC(1)	Hub radius at stator inlet
RC(3)	Mean radius at stator inlet
RC(5)	Tip radius at stator inlet

TABLE A-II

TURBINE GEOMETRIC INPUT DATA (ROTOR)
(see Figure A-2; Dimensions in inches)

FORTRAN SYMBOL	DESCRIPTION
ZR	Number of blades
RR(1)	Hub radius
RR(3)	Mean radius
RR(5)	Tip radius
CR	Blade chord (mean)
CIR	Blade chord (hub)
COR	Blade chord (tip)
ER	Blade curvature (mean)
EIR	Blade curvature (hub)
EOR	Blade curvature (tip)
TR	Maximum blade thickness (mean)
TIR	Maximum blade thickness (hub)
TOR	Maximum blade thickness (tip)
TER	Projected T.E. thickness (mean)
TEIR	Projected T.E. thickness (hub)
TEOR	Projected T.E. thickness (tip)
TNR	Normal T.E. thickness (mean)
TNIR	Normal T.E. thickness (hub)
TNOR	Normal T.E. thickness (tip)
TIPC	Tip clearance

<u>FORTRAN SYMBOL</u>	<u>DESCRIPTION</u>
A2(1-10)	10 values of throat diameter at 10 equally spaced radii
ALR	Blade camber line length (mean)
ALIR	Blade camber line length (hub)
ALOR	Blade camber line length (tip)
CV	Axial distance between stations
CK	Curvature Factor

TABLE A-III

TURBINE OPERATING CONDITIONS (INPUT DATA)

FORTRAN SYMBOL	DESCRIPTION
AMC	Assumed inlet Mach number
AMS	Assumed stator exit Mach number (absolute)
AMR	Assumed stator exit Mach number (relative)
PT0	Total inlet pressure (P_{T0})
TTO	Total inlet temperature (T_{T0})
PR	Total-static pressure ratio
RPM	Operating speed (RPM)
VA1(3)	Assumed axial velocity in stator
VA2(3)	Assumed axial velocity in rotor

TABLE A-IV

SPECIAL INPUT DATA

FORTRAN SYMBOL	DESCRIPTION
TOL 1	Tolerance for convergence of equation of continuity
TOL 2	Tolerance for between-S.L. continuity (not used)
TOL 3	Tolerance in pressure ratio convergence
TOL 4	Tolerance in equation of motion convergence

TABLE A-V

PROGRAM CONTROL PARAMETERS

FORTRAN SYMBOL	POSSIBLE VALUE	EFFECT/MEANING
IND	1	Prints results in sub-routines STATR, FLOWR, ROTO2
	1	No printing in the above
ICL	1	Rotor is shrouded
	1	Rotor not shrouded
ICOZ	1	$\xi = \xi_0$
	6	$\xi = \xi$ (Y Pressure Ratio)
	8	$\xi = \xi_{M=0}$
ICON	1	$\xi = .5\xi_{TOTAL}$
	2	$\xi = \xi_{PROFILE}$
	3	$\xi = \xi_{TOTAL}$

TABLE A-VI

FORTRAN SYMBOLS IN THE MAIN PROGRAM

FORTRAN SYMBOLS	DESCRIPTION
BESP	$\beta^* = [1 + \frac{\gamma-1}{2} \cdot (.8)^2] \frac{\gamma-1}{\gamma}$
OI	Stator throat opening (hub)
OO	Stator throat opening (tip)
OIR	Rotor throat opening (hub)
OOR	Rotor throat opening (tip)
O	Stator throat opening (mean)
OR	Rotor throat opening (mean)
ANG2I	Stator gas outlet angle (hub)
ANG20	Stator gas outlet angle (tip)
BETAI	Rotor gas outlet angle (hub)
BETAZ	Rotor gas outlet angle (tip)
G	Grav. constant, 32.174 $\frac{\text{FT.LBM}}{\text{LBF.sec}^2}$
CJ	778.16 FT.LBF/BTU
EXP1	$\gamma/\gamma - 1$
EXP2	γ^{-1}/γ
ERRE	Gas constant, 53.3459 $\frac{\text{FT.LBF}}{\text{LBM.OR}}$
EMME	Molecular mass, 28.970 LBM/LB MOLE
GAM	γ , Ratio of specific heats
ETAT	Total-total efficiency
ETAI	Total-static efficiency
ETAS	Stator blade efficiency

FORTRAN SYMBOL	DESCRIPTION
ETAR	Rotor blade efficiency
RSTAR	Theoretical degree of reaction
ALOS	Head coefficient
BLAJE	Blade/jet ratio
DRI	Radial shift of streamlines
AMW1	Stator exit relative Mach Number
AMS1	Stator exit absolute Mach Number
AMV2	Rotor exit absolute Mach Number
AMR2	Rotor exit relative Mach Number
DELH	Δ
HP	Horsepower
AMOM	Moment
THETA	θ
DELTA	δ
HP1	Referred H.P.
AMOM1	Referred moment
RPM1	Referred RPM
WLBM1	Referred mass flow rate
ETA5	Average total-static efficiency
BETA6	Average total-total pressure ratio
ETA6	Average total-total efficiency
AKIS5	Average head coefficient
RSTARS5	Average theoretical degree of reaction

TABLE A-VII

FORTRAN SYMBOLS IN SUBROUTINE CHAN

FORTRAN SYMBOLS	DESCRIPTION
TTO	T_{T0} , total temp. at station \emptyset
AMC	Inlet Mach number
PTO	P_{T0} , total pressure at station \emptyset
RC (I)	Streamline radii at station \emptyset
WLBM	\dot{M} , required mass flow, ρAV
TC	Static temperature
VC	Velocity
PC	Static pressure
RHO	ρ , density of air
WCHAN	\dot{M}_{REF} , reference mass flow
WPERO	% of \dot{M} at each streamline

TABLE A-VIII
FORTRAN SYMBOLS IN SUBROUTINE STATR

FORTRAN SYMBOL	DESCRIPTION
ALFA1	Stator gas outlet angle
X	Ratio of streamline radius/ mean radius
AMS	Mach Number at station 1
T	Static temperature
P	Static pressure
V1	Absolute velocity
VA1	Axial velocity
Y	Ratio of axial velocity to mean axial velocity
S	Entropy
DSDX	Entropy gradient between streamlines
VU1	Tangential velocity
PRAT	(Total-static pressure ratio) ⁻¹
T1IS	T_{1IS}
DALF	$\frac{d\alpha}{dx}$
RSF	Mean stator radius
DELR	$R_{\text{stator in}} - R_{\text{rotor out}}$
ZETAPS	ξ_p
ZETAS	ξ_s
VR1	Radial velocity

TABLE A-IX

FORTRAN SYMBOLS IN SUBROUTINE TRAU2

FORTRAN SYMBOL	DESCRIPTION
CSIP	x_p , correction to
R	s_{po} , initial profile loss coefficient
ANG1	Gas outlet angle
ANG2	Gas inlet angle
R1	x_m , Mach No. correction
R3	s_R , remaining loss coefficient
R2	s_w , loss coefficient due to wall friction
RPRO	s_p , total profile loss coefficient
CL	Rotor tip clearance
YCL	Tip clearance loss coefficient
RTOT	Total loss coefficient
T	Blade spacing
DEZ	Normal trailing edge thickness
HM	Blade height
CSID	x_δ , trailing edge thickness correction factor
PSID	s_f , loss coefficient due to fan losses
PSIF	s_m , loss coefficient due to mixing and separation
UM	Tip speed

TABLE A-X

FORTRAN SYMBOLS IN SUBROUTINE FLOWR

FORTRAN SYMBOL	DESCRIPTION
PRATCR	Critical pressure ratio
PHICR	Φ_{CRIT} , critical flow function
HSTAR	H^{***} , energy parameter
XI	Z , area reduction coefficient
PHI	Φ , flow function (un choked flow)
ARAT	Streamline throat DIA/mean throat DIA
SUM 1,2,3,4	Successive values of the flow integral
AS	Mean stator throat diameter
AR	Mean rotor throat diameter
WREQ	\dot{M} required to satisfy continuity
WSUM	\dot{M} calculated
WPER	% of \dot{M} at each streamline

TABLE A-XI

FORTRAN SYMBOLS IN SUBROUTINE ROTO1

FORTRAN SYMBOL	DESCRIPTION
OMEG.	ω , wheel speed (RAD/sec)
U	$\omega \cdot \bar{R}$ stator mean
U2	$\omega \cdot \frac{\bar{R}}{R}$ rotor mean
WU1	$W\mu_1$ see figure A-3
BETA1	β_1 , see figure A-3
W1	W_1 , see figure A-3
TTE	Equivalent temperature
PTE	Equivalent pressure
HE	Equivalent enthalpy
ZETAR	ξ_R rotor loss coefficient
ZETAPR	ξ_p , rotor profile loss coefficient
DHEDX	Enthalpy gradient between streamlines
DSDX	Entropy gradient between streamlines

TABLE A-XII

FORTRAN SYMBOLS IN SUBROUTINE ROTO2

FORTRAN SYMBOL	DESCRIPTION
BETA2	β_2 , see figure A-3
DBETDX	$\frac{d\beta}{dx}$ between adjacent streamlines
VA2	V_{a_2} , axial velocity
W2	W_2 , see figure A-3
CL	Axial distance between stations
WR2	Radial component of velocity
WU2	W_{u_2} , see figure A-3
VU2	V_{u_2} , see figure A-3
AMR	Relative Mach No. at rotor exit
T2	T_2
T2S	T_{2s}
P2	P_2
PRAT2	[Total-static pressure ratio] ⁻¹

FIGURE A-1: PROGRAM FLOWCHART

- AL • CAMBER LINE LENGTH
- C • CHORD
- O • THROAT DIAMETER
- E • CURVATURE RADIUS
- S • SPACING
- T • MAXIMUM THICKNESS
- TE • TRAILING EDGE THICKNESS PROJECTED IN PERIPHERAL DIRECTION
- TN • TRAILING EDGE THICKNESS, NORMAL TO FLOW DIRECTION

FIGURE A-2: BLADE NOMENCLATURE

FIGURE A-3: VELOCITY DIAGRAM NOMENCLATURE

FIGURE A-4: INTERCONNECTION OF THE SUBROUTINES IN THE TRAUPEL METHOD

Abb. 8.4.2 Grundwert ζ_{p0} des Profilverlustes für Beschleunigungsgerüste und Machzahlkorrektur x_M

FIGURE A-5: INITIAL PROFILE LOSS COEFFICIENT AND MACH NUMBER CORRECTION FROM TRAUPEL

Abb. 8.4.4. Korrekturfaktor χ_δ und Mischverlust ζ_m infolge endlicher Austrittskantendicke oder Ablösung

Abb. 8.4.5 Flächenverlust ζ_f

FIGURE A-6: T.E. THICKNESS CORRECTION FACTOR, MIXING LOSS COEFFICIENT AND FAN LOSS COEFFICIENT FROM TRAUPEL

Abb. 8.4.7 Randverlust in Turbinenschaufelungen

FIGURE A-7: "REMAINING" LOSS COEFFICIENT FROM TRAUPEL

FIGURE A-8: SUBROUTINE FLOWR FLOWCHART

FIGURE A-9: SUBROUTINE ROTO2 FLOWCHART

Abb. 8.4.11 Faktor K_t für Spaltverlustberechnung

FIGURE A-10: TIP LEAKAGE LOSS COEFFICIENT PLOT FROM TRAUPEL

FIGURE A-11: STREAMLINE COORDINATES

APPENDIX: B

DERIVATION OF EQUATIONS USED IN THE PROGRAM

B-1. EQUATION OF MOTION FOR RELATIVE FLOW:

The equation of motion for relative flow Ref. [5] is

$$\nabla H_R = \vec{W} \times (\nabla \times \vec{W} + 2\vec{\omega}) + T \nabla S \quad (B-1)$$

Using cylindrical coordinates, the terms of EQN (B-1) may be expressed as follows:

$$\nabla H_R = \frac{i_\theta}{r} \frac{\partial H_R}{\partial \theta} + i_z \frac{\partial H_R}{\partial z} + i_r \frac{\partial H_R}{\partial r} \quad (B-2)$$

$$\begin{aligned} \nabla \times \vec{W} &= \begin{vmatrix} i_\theta & \frac{i_z}{r} & \frac{i_r}{r} \\ \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} & \frac{\partial}{\partial r} \\ rW_u & W_a & W_r \end{vmatrix} \\ &= i_\theta \left[\frac{\partial W_r}{\partial z} - \frac{\partial W_a}{\partial r} \right] + \frac{i_z}{r} \left[\frac{\partial(rW_u)}{\partial r} - \frac{\partial W_r}{\partial \theta} \right] \\ &\quad + \frac{i_r}{r} \left[\frac{\partial W_a}{\partial \theta} - \frac{\partial(rW_u)}{\partial z} \right] \end{aligned}$$

R :

AD-A101 102

NAVAL POSTGRADUATE SCHOOL MONTEREY CA

F/6 9/2

COMPUTER EVALUATION OF THE ON-AND-OFF DESIGN PERFORMANCE OF AN --ETC(1)

MAR 81 R CIRONE

NL

UNCLASSIFIED

2 of 3

AD
A10102

$$\vec{w} \times (\nabla \times \vec{w}) =$$

$$\begin{vmatrix}
i_\theta & i_z & i_r \\
W_u & W_a & W_r \\
\left[\frac{\partial W_r}{\partial z} - \frac{\partial W_a}{\partial r} \right] & \frac{1}{r} \left[\frac{\partial(rW_u)}{\partial r} - \frac{\partial W_r}{\partial \theta} \right] & \frac{1}{r} \left[\frac{\partial W_a}{\partial \theta} - \frac{\partial(rW_u)}{\partial z} \right]
\end{vmatrix}$$

$$= i_\theta \left[W_a \frac{1}{r} \left(\frac{\partial W_a}{\partial \theta} - \frac{\partial(rW_u)}{\partial z} \right) - W_r \frac{1}{r} \left(\frac{\partial(rW_u)}{\partial r} - \frac{\partial W_r}{\partial \theta} \right) \right] +$$

$$i_z \left[W_r \left(\frac{\partial W_r}{\partial z} - \frac{\partial W_a}{\partial r} \right) - W_u \frac{1}{r} \left(\frac{\partial W_a}{\partial \theta} - \frac{\partial(rW_u)}{\partial z} \right) \right] +$$

$$i_r \left[W_u \frac{1}{r} \left(\frac{\partial(rW_u)}{\partial r} - \frac{\partial W_r}{\partial \theta} \right) - W_a \left(\frac{\partial W_r}{\partial z} - \frac{\partial W_a}{\partial r} \right) \right]$$

(B-4)

$$\vec{w} \times 2\vec{w} = [i_\theta W_u + i_z W_a + i_r W_r] \times [i_z^2 \omega]$$

$$= i_r (2\omega W_u) - i_\theta (2\omega W_r)$$

(B-5)

$$T \nabla S = T \left[c_0 \frac{1}{r} \frac{\partial S}{\partial \theta} + c_z \frac{\partial S}{\partial z} + c_r \frac{\partial S}{\partial r} \right] \quad (B-6)$$

Combining equations (B-1) through (B-6) the terms in (B-2) can be written as:

$$\begin{aligned} \frac{1}{r} \frac{\partial H_R}{\partial \theta} &= \frac{W_a}{r} \left[\frac{\partial W_a}{\partial \theta} - \frac{\partial(rW_u)}{\partial z} \right] - \\ \frac{W_r}{r} \cdot \left[\frac{\partial(rW_u)}{\partial r} - \frac{\partial W_r}{\partial \theta} \right] &- 2\omega W_r + T \frac{\partial S}{\partial \theta} \end{aligned} \quad (B-7)$$

$$\begin{aligned} \frac{\partial H_R}{\partial z} &= W_r \left[\frac{\partial W_r}{\partial z} - \frac{\partial W_a}{\partial r} \right] - \frac{W_u}{r} \left[\frac{\partial W_a}{\partial \theta} - \right. \\ \left. \frac{\partial(rW_u)}{\partial z} \right] &+ T \frac{\partial S}{\partial z} \end{aligned} \quad (B-8)$$

$$\begin{aligned} \frac{\partial H_R}{\partial r} &= \frac{W_u}{r} \left[\frac{\partial(rW_u)}{\partial r} - \frac{\partial W_r}{\partial \theta} \right] - \\ W_a \left[\frac{\partial W_r}{\partial z} - \frac{\partial W_a}{\partial r} \right] &+ 2\omega W_u + T \frac{\partial S}{\partial r} \end{aligned}$$

(B-9)

Since the flow has been assumed to be axisymmetric, all derivatives with respect to θ are zero. Thus, Equations (B-7), (B-8) and (B-9) reduce to, respectively:

$$0 = - \frac{W_a}{r} \frac{\partial(rW_u)}{\partial z} - \frac{W_r}{r} \frac{\partial(rW_u)}{\partial r} - 2\omega W_r \quad (B-10)$$

$$\frac{\partial H_R}{\partial z} = W_r \frac{\partial W_r}{\partial z} - W_r \frac{\partial W_a}{\partial r} + \frac{W_u}{r} .$$

$$\frac{\partial(rW_u)}{\partial z} + T \cdot \frac{\partial S}{\partial z} \quad (B-11)$$

$$\begin{aligned} \frac{\partial H_R}{\partial r} &= \frac{W_u}{r} \frac{\partial(rW_u)}{\partial r} - W_a \frac{\partial W_r}{\partial z} + W_a \frac{\partial W_a}{\partial r} + \\ &2\omega W_u + T \frac{\partial S}{\partial r} \end{aligned} \quad (B-12)$$

Equation (B-10) may be written as

$$\frac{\partial(rW_u)}{\partial z} = - \frac{W_r}{W_a} \frac{\partial(rW_u)}{\partial r} - 2\omega r \frac{W_r}{W_a} \quad (B-13)$$

Substituting into equation (B-11),

$$\begin{aligned} \frac{\partial H_R}{\partial z} &= - \frac{W_u}{r} \frac{W_r}{W_a} \frac{\partial(rW_u)}{\partial r} + W_r \frac{\partial W_r}{\partial z} - \\ &W_r \frac{\partial W_a}{\partial r} - 2\omega \frac{W_u W_r}{W_a} - T \frac{\partial S}{\partial z} \end{aligned} \quad (B-14)$$

Multiplying equation (B-9) by W_r and Equation (B-14) by W_a results in

$$W_r \frac{\partial H_R}{\partial r} = \frac{W_u W_r}{r} \frac{\partial(r W_u)}{\partial r} - W_a W_r \frac{\partial W_r}{\partial z} + \\ W_a W_r \frac{\partial W_a}{\partial r} + 2 \omega W_u W_r + W_r T \frac{\partial S}{\partial r} \quad (B-15)$$

and

$$W_a \frac{\partial H_R}{\partial z} = - \frac{W_u W_r}{r} \frac{\partial(r W_u)}{\partial r} + W_a W_r \frac{\partial W_r}{\partial z} - \\ W_a W_r \frac{\partial W_a}{\partial r} - 2 \omega W_u W_r + W_a T \frac{\partial S}{\partial z} \quad (B-16)$$

Adding these two equations yields

$$W_r \frac{\partial H_R}{\partial r} + W_a \frac{\partial H_R}{\partial z} = T \left[W_r \frac{\partial S}{\partial r} + W_a \frac{\partial S}{\partial z} \right] \quad (B-17)$$

Since the flow has been assumed to be adiabatic, the total relative enthalpy, H_R , is constant along a streamline. Thus,

$$\nabla H_R = 0 = W_a \frac{\partial H_R}{\partial z} + W_r \frac{\partial H_R}{\partial r} \quad (B-18)$$

and re-arranging,

$$\frac{\partial H_R}{\partial z} = - \frac{W_r}{W_a} \frac{\partial H_R}{\partial r} \quad (B-19)$$

From equation (B-19), eq. (B-17) can be written as

$$\frac{\partial S}{\partial z} = - \frac{W_r}{W_a} \frac{\partial S}{\partial r} \quad (B-20)$$

Substituting Eq.s (B-19) and (B-20) into equation (B-15) gives

$$-\frac{W_r}{W_a} \frac{\partial H_R}{\partial r} = -\frac{W_u}{r} \frac{W_r}{W_a} \frac{\partial(rW_u)}{\partial r} + W_r \frac{\partial W_r}{\partial z} - \\ W_r \frac{\partial W_a}{\partial r} - 2\omega \frac{W_u W_r}{W_a} - \frac{W_r}{W_a} T \frac{\partial s}{\partial r} \quad (B-21)$$

Multiplying Equation (B-21) by $\frac{-W_a}{W_R}$ yields

$$\frac{\partial H_R}{\partial r} = \frac{W_u}{r} \frac{\partial(rW_u)}{\partial r} - W_a \frac{\partial W_r}{\partial z} + \\ W_a \frac{\partial W_a}{\partial r} + 2\omega W_u + T \frac{\partial s}{\partial r} \quad (B-22)$$

This expression is identical to equation (B-21) and is the equation which must be solved. It must be put into a form which can be solved by the computer. Re-writing equation

(B-22) given that

$$W_a \frac{\partial W_a}{\partial r} = \frac{1}{2} \frac{\partial(W_a^2)}{\partial r}$$

yields $\frac{\partial(W_a^2)}{\partial r} - 2W_a \frac{\partial W_r}{\partial z} + \frac{2W_u}{r} \frac{\partial(rW_u)}{\partial r} + \\ 4\omega W_u - 2 \frac{\partial H_R}{\partial r} + 2T \frac{\partial s}{\partial r} = 0 \quad (B-23)$

The relative enthalpy can be written

$$H_R = h_1 + \frac{W_1^2}{2g_c J} - \frac{U_1^2}{2g_c J} = h_2 + \frac{W_2^2}{2g_c J} - \frac{U_2^2}{2g_c J} \quad (B-24)$$

The equivalent enthalpy, defined in ref. [1] is

$$H_E = h_1 + \frac{W_1^2}{2g_c J} + \frac{U_2^2 - U_1^2}{2g_c J} \quad (B-25)$$

Hence, the relative enthalpy can be written as

$$H_R = H_E - \frac{U_a^2}{2} \quad (B-26)$$

Also, the turbine outlet static temperature can be written as

$$T_2 = \frac{H_E}{C_p} - \frac{W_2^2}{2C_p} \quad (B-27)$$

Substituting Eq. (B-26) and Eq. (B-27) into Eq. (B-23) and applying Eq. (B-21) to the rotor exit, gives

$$\begin{aligned} & \frac{\partial(W_a^2)}{\partial r_2} - 2W_{a2} \frac{\partial W_{r2}}{\partial z} + 2 \frac{W_{u2}}{r_2} \frac{\partial(r_2 W_{u2})}{\partial r_2} + \\ & 4\omega W_{u2} - 2 \frac{\partial}{\partial r_2} \left[H_E - \frac{U_2^2}{2} \right] + 2 \left[\frac{H_E}{C_p} - \right. \\ & \left. \frac{W_2^2}{2C_p} \right] \frac{\partial S_a}{\partial r_2} = 0 \end{aligned} \quad (B-28)$$

Given the relationships:

$$T_{AN}^2 \lambda = \frac{W_r^2}{W_a^2}$$

and $1 + \tan^2 \lambda = \frac{1}{\cos^2 \lambda}$

Equation (B-28) can be written as

$$\begin{aligned} & \frac{\partial (W a_2^2)}{\partial r_2} - 2 W a_2 \frac{\partial W r_2}{\partial z} - \frac{W a_2^2}{c_p \cos^2 \lambda_2} \cdot \frac{\partial S_2}{\partial r_2} + 2 \cdot \\ & \frac{W u_2}{r_2} \cdot \frac{\partial (r_2 W u_2)}{\partial r_2} + 4 \omega W u_2 - 2 \frac{\partial H_E}{\partial r_2} + \\ & \frac{\partial (U_2^2)}{\partial r_2} + \frac{1}{c_p} \left[2 H_E - W u_2^2 \right] \frac{\partial S_2}{\partial r_2} \end{aligned} \quad (B-29)$$

and substituting $\frac{\partial (U_2^2)}{\partial r_2} = 2 \omega^2 r_2$ into equation (B-29)
gives

$$\begin{aligned} & \frac{\partial (W a_2^2)}{\partial r_2} - 2 W a_2 \frac{\partial W r_2}{\partial z} - \frac{W a_2^2}{c_p \cos^2 \lambda_2} \frac{\partial S_2}{\partial r_2} - \\ & 2 \frac{W u_2}{r_2} \frac{\partial (r_2 W u_2)}{\partial r_2} + 4 \omega W u_2 - 2 \frac{\partial H_E}{\partial r_2} + \\ & 2 \omega^2 r_2 + \frac{1}{c_p} \left[2 H_E - W u_2^2 \right] \frac{\partial S_2}{\partial r_2} \end{aligned} \quad (B-30)$$

Multiplying Eq. (B-30) by $\frac{r_m}{W a_m^2}$ results in the dimensionless form of Equation (B-29):

$$\begin{aligned}
& \frac{r_{am}}{Wa_{2m}^2} \frac{\partial (Wa_2^2)}{\partial r_2} - 2 \frac{Wa_2}{Wa_{2m}^2} \frac{Wa_2}{Wa_2} r_{2m} \frac{\partial (Wr_2)}{\partial z} - \\
& \frac{Wa_2^2 r_{2m}}{Wa_{2m}^2 c_p \cos^2 \lambda_2} \frac{\partial S_2}{\partial r_2} + 2 \frac{Wu_2 Wa_2 r_{2m}}{Wa_{2m} Wa_2 r_2} \cdot \frac{\partial}{\partial (r_2/r_{2m})} \left[\frac{r_2 Wu_2 Wa_2}{r_{2m} Wa_{2m} Wa_2} \right] \\
& + 4 \frac{w r_{2m} Wu_2 Wa_2}{Wa_{2m}^2 Wa_2} - 2 \frac{r_{2m}}{Wa_{2m}^2} \frac{\partial H_E}{\partial r_2} + \frac{2w^2 r_2 r_{2m}}{Wa_{2m}^2} + \\
& \frac{r_{am}}{c_p} \left[\frac{\partial H_E}{\partial r_{2m}} - \frac{Wu_2^2 Wa_2^2}{Wa_{2m}^2 Wa_2^2} \right] \frac{\partial S_2}{\partial r_2}
\end{aligned} \tag{B-31}$$

Introducing the non-dimensional quantities

$$Y = \frac{Wa}{Wa_m} \tag{B-32}$$

$$X = \frac{r}{r_m} \tag{B-33}$$

$$S^* = \frac{S}{c_p} \tag{B-34}$$

Equation (B-31) is written as

$$\begin{aligned}
 & \frac{\partial(Y^2)}{\partial X} - 2 \frac{Y^2}{W_a} r_m \frac{\partial W_r}{\partial Z} - \frac{Y^2}{\cos^2 \lambda} \frac{\partial S^*}{\partial X} + \\
 & 2Y \frac{\tan \beta}{X} \frac{\partial(XY \tan \beta)}{\partial X} + 4 \frac{U_m Y \tan \beta}{W_{a_m}} - \\
 & \frac{2}{W_{a_m}^2} \frac{\partial H_E}{\partial X} + 2 \frac{U_m U_2}{W_{a_m}^2} + \left[\frac{2H_E}{W_{a_m}^2} - \right. \\
 & \left. Y^2 \tan^2 \beta \right] \frac{\partial S^*}{\partial X} = 0 \tag{B-35}
 \end{aligned}$$

The fourth term of Eq. (B-35) is

$$\begin{aligned}
 & 2Y \frac{\tan \beta}{X} \frac{\partial(XY \tan \beta)}{\partial X} = 2Y \frac{\tan \beta}{X} \left[XY \right. \\
 & \left. \frac{\partial \tan \beta}{\partial X} + X \tan \beta \frac{\partial Y}{\partial X} + Y \tan \beta \frac{\partial X}{\partial X} \right] \\
 & = 2Y^2 \tan \beta \frac{\partial \tan \beta}{\partial X} + 2Y \tan^2 \beta \frac{\partial Y}{\partial X} + \\
 & 2 \frac{Y^2}{X} \tan^2 \beta
 \end{aligned}$$

also,

$$\frac{\partial \tan \beta}{\partial x} = -\frac{1}{\cos^2 \beta} \frac{\partial \beta}{\partial x}$$

and $2Y \tan^2 \beta \frac{\partial Y}{\partial x} = \tan^2 \beta \frac{\partial (Y^2)}{\partial x}$

Therefore, equation (B-35) can be written

$$\begin{aligned} & \frac{\partial (Y^2)}{\partial x} (1 + \tan^2 \beta) - 2 \frac{Y^2}{W_a} r_m \frac{\partial W_r}{\partial z} - \frac{Y^2}{\cos^2 \lambda} \frac{\partial s^*}{\partial x} + \\ & 2Y^2 \frac{\tan \beta}{\cos^2 \beta} \frac{\partial \beta}{\partial x} + 2 \frac{Y^2}{X} \tan^2 \beta + \frac{4U_m Y \tan \beta}{W_{a_m}} - \\ & \frac{2}{W_{a_m}^2} \frac{\partial H_E}{\partial x} + 2 \frac{U_m U_2}{W_{a_m}^2} + \left[\frac{2H_E}{W_{a_m}^2} - Y^2 \tan^2 \beta \right] \frac{\partial s^*}{\partial x} \end{aligned} \quad (B-36)$$

Multiplying Eq. (B-36) by $(\frac{\cos^2 \beta}{Y^2})$ and observing that
 $(1 + \tan^2 \beta = \frac{1}{\cos^2 \beta})$,

$$\begin{aligned} & \frac{1}{Y^2} \frac{\partial (Y^2)}{\partial x} + \cos^2 \beta \left[-\frac{2r_m \cdot \partial W_r}{W_a \cdot \partial z} - \frac{1}{\cos^2 \lambda} \frac{\partial s^*}{\partial x} \right] + \\ & 2 \tan \beta \frac{\partial \beta}{\partial x} + \frac{2}{X} \sin^2 \beta + \frac{4U_m \sin \beta \cos \beta}{W_{a_m} Y} + \frac{2U_m U_2 \cos^2 \beta}{W_{a_m}^2 Y^2} \\ & - \frac{2 \cos^2 \beta}{W_{a_m}^2} \frac{\partial H_E}{\partial x} + \left[\frac{2H_E \cos^2 \beta}{W_{a_m}^2 Y^2} - \sin^2 \beta \right] \frac{\partial s^*}{\partial x} = 0 \end{aligned} \quad (B-37)$$

To account for streamline curvature the following terms are introduced:

$$\cos^2 \lambda = \frac{L^2}{L^2 + \left(\frac{\Delta R}{2}\right)^2} \quad (B-38)$$

where λ , the angle between the axial and radial components of velocity at a point, is approximated as the average value between two stations.

Also,

$$K \frac{\delta r}{L^2} = - \frac{1}{W_a} \frac{\partial W_r}{\partial z} \quad (B-39)$$

where δr is the streamline shift through the rotor defined as

$$\delta r = r_{\text{ROTOR OUTLET}} - r_{\text{ROTOR INLET}} \quad (B-40)$$

Substituting Eqs. (B-38) and (B-39) into (B-37) yields

$$\begin{aligned} \frac{d(\ln Y^2)}{dx} &= -\cos^2 \beta \left[-\left(2 K r_m \frac{\delta r}{L^2} \right) - \left(\frac{L^2 + (\Delta R)^2}{L^2} \right) \frac{ds^*}{dx} \right] \\ &\quad - 2 \tan \beta \frac{d\beta}{dx} - \frac{2}{x} \sin^2 \beta - \frac{4 U_m \sin \beta \cos \beta}{W_{a_m} Y} - \\ &\quad \frac{2 U_m U_a \cos^2 \beta}{W_{a_m}^2 Y^2} + \frac{2 \cos^2 \beta}{W_{a_m}^2 Y^2} \frac{dH_E}{dx} - \left[\frac{2 H_E \cos^2 \beta}{W_{a_m}^2 Y^2} - \sin^2 \beta \right] \frac{ds^*}{dx} \end{aligned} \quad (B-41)$$

To obtain a dimensionless equation, the term

$$C_1 = 2g_c J$$

is introduced into Eq. (B-41) giving

$$\frac{d(\ln Y^2)}{dx} = -\cos^2 \beta \left[-\left(K \frac{2(\delta r) r_m}{L^2} \right) - \left(\frac{L^2 + (\Delta R)^2}{L^2} \right) \frac{ds^*}{dx} \right] - \\ 2 \tan \beta \frac{d\beta}{dx} - \frac{2}{x} \sin^2 \beta - \frac{4 U_m \sin \beta \cos \beta}{W_{a_m} Y} - \frac{2 U_m U_2 \cos^2 \beta}{W_{a_m}^2 Y^2} + \\ \frac{C_1 \cos^2 \beta}{W_{a_m}^2 Y^2} \frac{dH_E}{dx} - \left[\frac{C_1 H_E \cos^2 \beta}{W_{a_m}^2 Y^2} - \sin^2 \beta \right] \frac{ds^*}{dx}$$

(B-42)

Equation (B-42) is the form of equation of motion used in the computer program.

B-2. EQUATION OF MOTION FOR ABSOLUTE FLOW

The equation of motion for absolute flow

$$\nabla H = \vec{V} \times (\nabla \times \vec{V}) + T \nabla S$$

(B-43)

Differs from the equation of motion for relative flow

$$\nabla H_R = \vec{W} \times (\nabla \times \vec{W} + 2\vec{\omega}) + T \nabla S \quad (B-44)$$

only by the term $\vec{W} \times 2\vec{\omega}$ which is the Coriolis acceleration.

To obtain the programmed form of the equation of motion for the stator, the previous derivation is followed, but with $U = 0$, H_E becomes H , W becomes V , and β becomes α .

B-3 THE AREA RESTRICTION FACTOR Z

The condition at the outlet of a blade row with boundary layers on both sides of the flow channel is shown in Fig. B-1. The flow is considered to be turbulent within the boundary layer while, outside the layer, the velocity of the flow is the theoretical velocity. Assuming a power-law velocity profile, the velocity may be written,

$$\frac{u}{V_{TH}} = \left[\frac{y}{\delta} \right]^m \quad (B-45)$$

The mass flow rate exiting the blade row can be expressed as

$$\dot{m} = \rho_{TH} V_{TH} \cos \alpha_d \left[S - \frac{t}{\cos^* \alpha_d} - \frac{\sum \delta}{\cos \alpha_d} \right] + \sum \int_0^\delta u \rho dy \quad (B-46)$$

where ρ_{th} and V_{th} represent the ideal conditions for an isentropic expansion through the blade row to the discharge

pressure P_d , which is assumed to be constant across the blade spacing. The discharge angle of the flow leaving the blade row is closely approximated by the expression [Ref. 1]

$$\alpha_d = \cos^{-1} \left[\frac{a}{S - \frac{t}{\cos \alpha_d}} \right] \quad (B-47)$$

Inserting Eq. (B-47) into (B-46) and reducing yields

$$\dot{m} = \rho_{TH} V_{TH} a \left[1 - \sum \frac{\delta}{a} \left(1 - \int_0^1 \frac{\rho}{\rho_{TH}} \frac{u}{u_{TH}} d\eta \right) \right] \quad (B-48)$$

Assuming a perfect gas

$$\frac{\rho}{\rho_{TH}} = \frac{T_{TH}}{T} = \frac{T_{TO} - (T_{TO} - T_{TH})}{T_{TO} - (T_{TO} - T_{TH})(\frac{u}{V_{TH}})^2} \quad (B-49)$$

Defining

$$X_E = 1 - \left(\frac{P_d}{P_{TO}} \right)^{\frac{\gamma-1}{\gamma}} \quad (B-50)$$

Equation (B-49) can be written

$$\frac{\rho}{\rho_{TH}} = \frac{1 - X_E}{1 - X_E \left(\frac{u}{V_{TH}} \right)^2} \quad (B-51)$$

Substituting Eq. (B-51) into (B-45) yields

$$\dot{m} = \rho_{TH} V_{TH} a \left[1 - \sum \frac{\delta}{a} \left(1 - (1 - X_E) \int_0^1 \frac{\eta^m}{1 - X_E \eta^{2m}} d\eta \right) \right] \quad (B-52)$$

Using the displacement thickness given by

$$\delta^* = \delta \cdot \left[1 - (1-x_E) \int_0^1 \frac{h^m}{(1-x_E h^{2m})} d\eta \right] \quad (B-53)$$

the mass flow rate can be written as

$$\dot{m} = \rho_{TH} V_{TH} a \left[1 - \frac{\sum \delta^*}{a} \right] \quad (B-54)$$

The loss coefficient, expressed in terms of average kinetic energy lost is

$$\frac{\delta}{\dot{m}} = \frac{\Delta E}{\dot{m} \left(\frac{V_{TH}^2}{2} \right)} = 1 - \frac{E}{\dot{m} \frac{V_{TH}^2}{2}} \quad (B-55)$$

where E is the actual kinetic energy of the flow, given by

$$E = \rho_{TH} V_{TH} (a - \sum \delta) \frac{V_{TH}^2}{2} + \sum \int_0^\delta \rho u \frac{u^2}{2} dy \quad (B-56)$$

Substituting Eq. (B-51) into (B-56) gives

$$E = \rho_{TH} \frac{V_{TH}^2}{2} a \left[1 - \sum \frac{\delta}{a} (1 - (1-x_E) \int_0^1 \frac{\eta^{3m}}{(1-x_E \eta^{2m})} d\eta) \right] \quad (B-57)$$

The energy thickness is written as

$$\delta^{***} = \delta \left[1 - (1-x_E) \int_0^1 \frac{1}{(1-x_E h^{2m})} dh \right]^{3m}$$
(B-58)

The loss coefficient can therefore be written as

$$\xi = 1 - \frac{1 - \sum \frac{\delta^{**}}{a}}{1 - \sum \frac{\delta^*}{a}}$$
(B-59)

The area restriction factor Z , is the fraction of the flow area through which the uniform theoretical velocity would produce the actual flow rate, thus

$$Z = \frac{\sum \delta^*}{a}$$
(B-60)

Defining the energy parameter (a form factor) as

$$H^{***} = \frac{\delta^{***}}{\delta^*}$$
(B-61)

using Equations (B-59) and (B-61), Eq. (B-60) becomes

$$Z = \frac{H^{**} - 1}{H^{**} - 1 + \xi_p}$$
(B-62)

where ξ_p is the profile loss coefficient.

B-4. THE ENERGY PARAMETER, H^{***}

In Equations (B-53) and (B-58) the denominator of the integrand is expanded using the binomial theorem, so that

$$(1 - X_E \eta^{2m})^{-1} = 1 + X_E \eta^{2m} + X_E^2 \eta^{4m} + X_E^3 \eta^{6m} + \dots \quad (B-63)$$

The integral of Equation (B-58) is now written as

$$\int_0^1 \frac{\eta^{3m}}{1 - X_E \eta^{2m}} d\eta = \int_0^1 \left[\eta^{3m} + X_E \eta^{5m} + X_E^2 \eta^{7m} + X_E^3 \eta^{9m} + X_E^4 \eta^{11m} + \dots \right] d\eta \quad (B-64)$$

which, on integration becomes

$$\begin{aligned} \int_0^1 \frac{\eta^{3m}}{1 - X_E \eta^{2m}} d\eta &= \frac{1}{3m+1} + \frac{X_E}{5m+1} + \frac{X_E^2}{7m+1} + \frac{X_E^3}{9m+1} \\ &+ \frac{X_E^4}{11m+1} + \dots \end{aligned} \quad (B-65)$$

Therefore, Equation (B-58) becomes.

$$\frac{\delta^{***}}{\delta} = 1 - \left[\frac{1}{3m+1} + \frac{X_E}{5m+1} + \frac{X_E^2}{7m+1} + \frac{X_E^3}{9m+1} + \frac{X_E^4}{11m+1} \right] (1 - X_E) \quad (B-66)$$

which can be written as

$$\frac{\delta^{***}}{\delta} = (x_E - 1) \left[\frac{1}{x_E - 1} + \frac{1}{3m+1} + \frac{x_E}{5m+1} + \frac{x_E^2}{7m+1} + \frac{x_E^3}{9m+1} + \frac{x_E^4}{11m+1} \right]$$

(B-67)

In a similar manner,

$$\frac{\delta^*}{\delta} = (x_E - 1) \left[\frac{1}{x_E - 1} + \frac{1}{m+1} + \frac{x_E}{3m+1} + \frac{x_E^2}{5m+1} + \frac{x_E^3}{7m+1} + \frac{x_E^4}{9m+1} \right]$$

(B-68)

Substituting Eq. (B-67) and Eq. (B-68) into Eq. (B-61), the equation for H^{***} used in the computer program is obtained:

$$H^{***} = \frac{\frac{1}{x-1} + \frac{1}{3m+1} + \frac{x_E}{5m+1} + \frac{x_E^2}{7m+1} + \frac{x_E^3}{9m+1} + \frac{x_E^4}{11m+1}}{\frac{1}{x_E-1} + \frac{1}{m+1} + \frac{x_E}{3m+1} + \frac{x_E^2}{5m+1} + \frac{x_E^3}{7m+1} + \frac{x_E^4}{9m+1}}$$

(B-69)

FIGURE B-1: BOUNDARY LAYER EFFECTS AT THE EXIT
OF A BLADE ROW

APPENDIX: C

PROGRAM SEGMENTATION ON THE HP-1000

Segmentation allows large programs to be run on the HP-1000. The program is divided by the programmer into a main program and several segments, which are stored on the disc. Each segment and the main program are then compiled and loaded. When the program is executed, the main program and its segments are called into memory individually, and only as they are needed for execution. In this manner, a program can run in a partition which is smaller than that program's total size.

When the main program has performed all executable statements, the first segment is called into memory by an EXEC call. The system then loads that segment from the disc into a memory block following the end of the main program. The process is illustrated in Figure C-1. Note; the main program plus the largest segment may not together exceed 29 k. Once a segment is in memory it can call another segment.

When executing, any segment can call any subroutine which is attached to the main program. It was this feature which allowed the present program to be run. All subroutines were placed within the main program. In fact, the main program consisted of nineteen subroutines and functions. A segment may not return to the main program. Communication of data

between the main program and the segments is accomplished through a common block.

The four segments of the present program are "MAIN", "SHORT", "PART 2" and "PART 3". The manner in which control is passed from the main program to the first segment and from the first segment to the second is as follows:

BLOCK DATA

.

.

.

END

PROGRAM THESS

DIMENSION INAM (3)

DATA INAM /2HSH, 2HOR, 2HT /

.

.

.

CALL EXEC (8, INAM)

END

PROGRAM SHORT (5)

DIMENSION INAM (3)

DIMENSION NAME (3)

DATA INAM /2HSH, 2HOR, 2HT /

DATA NAME /2HPA, 2HRT, 2H2 /

.

.

.

CALL EXEC (8, NAME)

```
END  
PROGRAM PART 2 (5)  
DIMENSION NAME (3)  
DIMENSION NAMR (3)  
DATA NAME /2HPA, 2HRT, 2H2 /  
DATA NAMR /2HPA, 2HRT, 2H3 /  
. . .  
CALL EXEC (8, NAMR)  
END  
PROGRAM PART 3 (5)  
DIMENSION NAME (3)  
DIMENSION NAMR (3)  
DATA NAME /2HPA, 2HRT, 2H2 /  
DATA NAMR /2HPA, 2HRT, 2H3 /  
. . .  
END
```

The "(5)" after the program name indicates that it is a program segment. Note the manner in which the program name is put into a data statement using the Hollerith notation.

FIGURE C-1: PROGRAM SEGMENTATION-ILLUSTRATION OF THE MAIN PROGRAM CALLING A SEGMENT INTO LOGICAL MEMORY

APPENDIX: D

RUNNING THE COMPUTER PROGRAM

If the reader is unfamiliar with the HP-1000 Computer System, references [11] and [12] should be consulted before attempting to run the program.

D-1. DATA INPUT

Using the editor, input the following data into segment "SHORT".

1. Turbine operating conditions: referring to Table A-III, type in appropriate data in lines 66 through 69 and 74 through 78.

2. Special input data/program control parameters: referring to Tables A-IV and A-V, type in appropriate data in lines 83 through 98.

3. Turbine geometry: referring to Tables A-1 and A-II, type in data for stator and rotor in lines 103 through 186.

D-2 COMPIILING THE PROGRAM

1. To compile the main program type:

:RU,FTN4,MAIN::25,-,-

2. Compile the first segment:

:RU,FTN4,SHORT::25,-,-

3. Compile the second segment:

:RU,FTN4,PART2::25,-,-

4. Compile the final segment:

:RU,FTN4PART3::25,-,-

D-3. LOADING THE PROGRAM

Type

: RU, LOADR

Tap return key

Will display

LOADR:

Type

OP,LB

Will display

LOADR:

Type

:RE,%MAIN::25

Will display

LOADR:

Type

:RE,%SHORT::25

Will display

LOADR:

Type

:RE,%PART2::25

Will display

LOADR:

Type

:RE,%PART3::25.

Will display

LOADR:

Type

:END

After the end statement, the loader will display that the program is ready for execution.

D-4 RUNNING THE PROGRAM

Type

: RUN, THESS

The program will be executed and no further action by the operator is required. The computed pressure ratio of each iteration of the outer loop of the program is displayed on the screen as it is calculated. The operator therefore has some idea where in the iteration process the computer program is executing.

APPENDIX: E

DISCREPANCIES IN MACCHI'S PROGRAM

1. Main program, lines 21 and 22; the value of ICL has not yet been read.
2. Main program, lines 163-166; the Traupel method of calculating gas outlet angles does not take the Mach number into consideration. However, in lines 163-164, the program is attempting to draw a parabola through points which represent outlet angle as a function of Mach number.
3. Main program line 281; the calling of subroutine SLINE is questionable. Parameters are transferred to that subroutine, but many of them have not yet been defined (HE, DHEDX, WPER2, DSDX1). These undefined variables will be set equal to zero by the IBM 360 and 370 computers. Thus, in line 10 of subroutine SLINE, the value of DWDX will be zero and in line 17, division by zero will occur and the execution of the program should cease.
4. Subroutine ROTORI lines 22 and 26; the stator radii are used in the calculation whereas the rotor radii should be used.
5. Subroutine ASOSI, line 107; the correct Fortran code is

ZETAPS(I) = .5 * ZETAS(I)

6. Subroutine ALOS2, line 121; the correct Fortran code
is

ZETAPR(I) = .5 * ZETAPR(I)

7. Subroutine ALOS2, lines 123-126; the stator radii are
used in the calculation whereas the rotor radii should be used.

8. Subroutine ANGAIN, line 14; the correct Fortran code
is

```
AO = ATAN(1. -XCL/H*CH*COS(ANG1)/COS(ANG2)*  
        TAN(ANG2) + XCL/H*CL*COS(ANG1)/COS(ANG2)*  
        TAN(ANG1)
```

Note: Since reference [2] was published, Professor Macchi's
program has been further developed by Professor Macchi under
private sponsorship [Ref. 13]. The new code however, is not
generally available.

APPENDIX F
COMPUTER OUTPUT

INPUT PRINTING		R ₁	A ₁	R ₂	A ₂
2.774	-	2.176	2.693	1.912	2.030
2.146	-	2.215	2.892	2.149	2.368
2.946	-	2.193	2.947	2.369	2.564
3.046	-	2.192	3.074	2.369	2.745
3.149	-	2.149	3.201	2.369	2.864
3.243	-	2.257	3.349	2.513	3.137
3.343	-	2.266	3.456	2.613	3.237
3.445	-	2.174	3.513	2.714	3.337
3.541	-	2.283	3.714	2.814	3.437
3.637	-	2.292	3.837	2.914	3.537
NUMBER OF STATOR BLADES =				31	31
NUMBER OF MOTOR BLADES =				32	32
ROTOR TIP CLEARANCE =				.0100	.0100
AXIAL DISTANCE L =				5.88	5.88
CURVATURE FACTOR K =				5.00	5.00

WADING GEOMETRY

ALL DIMENSIONS INDICATED IN THIS TABLE ARE IN INCHES.

	C	<i>t</i>	1	1E	1N	A1	K
STATOR	1.0040	2.8065	.2252	.0300	.0186	1.0380	2.7640
	1.0030	2.8065	.2252	.0300	.0186	1.0380	2.1955
	1.0030	2.8065	.2252	.0300	.0186	1.0380	3.6270
ROTOR	1.0030	2.4500	.2252	.0300	.0186	1.0080	2.6930
	1.0030	2.4500	.2252	.0300	.0186	1.0080	2.2650
	1.0030	2.4500	.2252	.0300	.0186	1.0080	3.6320

CORRELATION SYSTEM	TCUR	TAV	TAN	TGIZ	TINC	TCI	TCIN	GARM	VISCOSITY (1)	VISCOSITY (2)
GAS PROPERTIES	(BTU/LB.F)	MOLAR MASS						(LBM/SFC.FT)	(LBM/SFC.FT)	(LBM/SFC.FT)
	-240	28,970						1,400	-1.30E-04	-1.20E-04

SET NUMBER 1 PAGE 1 RPM 5000.0 TOTAL/STATIC PRESSURE RATIO 1.400 INSIDE TOTAL TEMPERATURE 20.540 INITIAL STATIC TEMPERATURE 54.550

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/RM SHIFT (IN)	RADIAL OPENING (IN)	BLADE Y=VA /VM EFFICIENCY	BLADE COEFFICIENT LOSS	TOTAL CONTINUITY	FLOW RATE FRACTION
1	2.725	.865	.0000	.2126	.1015	.8935	.1020
2	3.035	.945	.0000	.2147	.0468	.8092	.1065
3	3.142	1.024	.0297	.2526	.0000	.8871	.1101
4	3.142	1.024	.0000	.2745	.9407	.8847	.1129
5	3.627	1.135	.0000	.2926	.8916	.8847	.1153

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WAKE VELOCITY
1	312.90	-13.35	735.38	807.31	312.90	-13.35	614.78	684.25	120.60
2	316.36	-13.81	691.69	760.18	316.36	-13.81	560.05	663.23	131.03
3	295.46	6.91	654.34	725.48	295.46	6.91	514.91	542.74	139.41
4	264.29	24.69	616.59	693.29	264.29	24.69	460.89	542.74	149.73
5	269.47	31.97	634.92	635.75	269.47	31.97	416.87	497.24	158.26

MACH NUMBER	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
				101/101
STREAM LINE	ABSOLUTE	RELATIVE	TOTAL STATIC	STATIC
1	.74	.64	61.57	49.26
2	.78	.59	65.65	54.50
3	.66	.54	65.41	60.54
4	.61	.49	65.21	60.16
5	.57	.45	64.89	58.33

SETTER NUMBER	PAGE NUMBER	RPM	PRESSURE/STATIC PRESSURE TOTAL TEMPERATURE (PSI) (DEG. K)
1	2	5000.0	1.400 20.580 545.50

ROTOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X-R/RM SHIFT OPENING	Y-UN / VAM EFFICIENCY	Coefficient	CONTINUITY	FRICTION RATE	
1	2.693	.825	.0710	.9112	.9734	.2311	0.0000
2	2.025	.925	-.0168	.2218	.9954	.3320	.2418
3	1.000	1.000	-.0405	.2447	1.0000	.3326	.4446
4	1.562	1.562	-.1537	.2747	1.0392	.2289	.7354
5	3.837	3.837	1.175	.2100	.2983	.0911	1.0000

AXON UNIT VELOCITY (FPS.)

SIMILAR AXIAL LINE Component	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL	COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	CONTINUITY	WELLING VELCITY
1	214.02	-8.62	-399.46	453.64	214.82	-8.62	-516.96	559.84
2	219.09	5.02	-372.35	431.29	219.89	2.09	-505.11	550.90
3	22.0	2.0	-349.19	401.76	220.69	5.05	-490.05	537.42
4	23.35	19.92	-323.33	396.75	239.35	19.92	-479.05	531.96
5	240.79	28.57	-313.33	396.43	240.79	26.57	-401.05	546.71

MACH NUMBER

SIMILAR LINE	Absolute	Relative	Flow Angle (deg)	Temperature (deg. R)	Pressure (PSI)	Pressure Ratio
1	.41	.51	-61.73	-62.44	105.60	1.01/101
2	.39	.49	-59.51	-66.48	106.60	1.01/101
3	.37	.49	-57.59	-65.76	107.63	1.01/101
4	.36	.48	-54.64	-64.45	108.67	1.01/101
5	.36	.49	-52.49	-63.41	109.62	1.01/101

SIMILAR EQUIVALENT TEMPERATURE (DEG. R)

SIMILAR LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIV/STATIC PRESSURE RATIO
1	43.87	1.024
2	53.67	1.068
3	53.62	1.079
4	53.62	1.072
5	53.69	1.076

SETTER NUMBER	PAGE NUMBER	KPM	PRESSURE/STATIC	PRESSURE/TOTAL	NET TOTAL TEMPERATURE (DEG. R)
1	3	5000.0		1.400	20.580
					545.50

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	TOT/STA PRESSURE RATIO	TOT/STA EFFICIENCY	HEAD COEFFICIENT	SPEED/JET SPEED RATIO	THEORETICAL DEGREE OF REACTION
1	1.1181	.4147	.6579	.44.3745	.1590
2	1.4224	.4179	.6579	.36.2645	.1554
3	1.14049	.4173	.6536	.31.2645	.1790
4	1.3734	.4166	.6533	.25.2902	.1962
5	1.3853	.41265	.6524	.23.1752	.2077
					.2130

MASS AVERAGED QUANTITIES

REFERRRED HORSE POWER =	29.27	(HP)
REFERRRED MOMENTUM =	21.59	(FT-LB)
REFERRRED FLOW RATE =	2.55	(LB/SEC)
REFERRRED RPM =	4874.22	(RPM)
REFERRRED HORSE POWER =	15.12	(HP)
REFERRRED MOMENTUM =	15.21	(FT-LB)
REFERRRED FLOW RATE =	1.87	(LB/SEC)
TOTAL/STATIC EFFICIENCY =	.4634	
TOTAL/STATIC EFFICIENCY =	.6435	
TOTAL/STATIC PRESSURE RATIO =	1.4058	
TOTAL/STATIC PRESSURE RATIO =	1.2731	
HEAD COEFFICIENT =	31.8904	
BLADE/JET SPEED RATIO =	.1771	
THEORETICAL DEGREE OF REACTION =	.0435	
MACH NUMBER AT STATION 0 =	.1856	

SET NUMBER 1 PAGE 1 RPM 10000.0 TOTAL PRESSURE RATIO 1.400 TOTAL TEMPERATURE 26.580 TOTAL LENGTH 545.50

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/RM SHIFT (IN)	RADIAL BLADE OPENING (IN)	Y=VA /VA EFFICIENCY	BLADE COEFFICIENT	LOSS	Z/TAS CONTINUITY	FLOW RATE FRACTION
1	2.764	.865	.0000	.2126	.8809	.1111	.1144	0.0000
2	3.103	.940	.0000	.2347	.8856	.1144	.1171	.2602
3	3.195	1.000	.0290	.2526	.8829	.1170	.1148	.4813
4	3.432	1.074	.0000	.2745	.8852	.1140	.1148	.7624
5	3.627	1.135	.0000	.2926	.8960	.1128	.1128	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	Axial Velocity	Radial Component	Tangential Component	DIFFERENTIAL VELOCITY	WAKE FLUID VELOCITY
1	293.63	-11.78	644.27	702.30	291.65	-11.70	403.06	497.65
2	265.16	6.97	646.86	662.55	265.36	6.97	343.99	441.93
3	259.26	24.21	525.53	632.89	259.25	24.21	225.67	327.34
4	237.78	28.21	507.47	593.98	237.78	28.21	238.99	328.86
5							190.79	306.16

MACH NUMBER

FLOW ANGLE (DEG.)

STREAM LINE	ABSOLUTE RELATIVE	ABSOLUTE RELATIVE	TOTAL	STATIC	TOTAL	STATIC	TOTAL	STATIC
1	.64	.45	65.65	54.12	545.50	503.87	19.846	15.032
2	.66	.46	65.51	54.13	545.50	508.53	19.811	15.175
3	.57	.36	65.21	48.10	545.50	502.12	16.765	15.112
4	.53	.31	65.04	43.57	545.50	506.21	20.055	16.533
5	.50	.27	64.99	38.75	545.50	519.31	20.422	16.839

STREAM LINE	RELATIVE VELOCITY (FPS)
1	403.06
2	343.99
3	225.67
4	238.99
5	306.16

STREAM LINE	PRESSURE (PSI)
1	497.65
2	346.03
3	327.34
4	328.86
5	316.52

NUMBER NUMBER RPM PRESSURE/STATIC PRESSURE TOTAL THERMAL INPUT
4 2 10000.0 1.400 20.580 545.50

MOTOR EXIT SOLUTION

STREAM POSITION	X=R/RM SH/OPEN SHAPE	Y=VA /VAH EFFIC/SHAPE	COEFFICIENT	CONT. KINETIC	FRACTION RATE
1 2.623	.825 .0710 .1910	.9812 .0653 .0653	.1715 .1628 .1563	.1715 .1628 .1563	0.0000
2 1.265	.925 -.0668 .2318	.0652 .0652 .0652	.1628 .1563 .1485	.1628 .1563 .1485	.2340
3 1.585	.0668 -.0005 .2447	.1153 .1153 .1153	.1563 .1485 .1425	.1563 .1485 .1425	.4589
4 1.898	.1.098 -.1517 .2747	.1.096 .1.096 .1.096			.2202
5 1.175	.1.175 -.2100 .2983	.1.1871 .1.1871 .1.1871	.0576 .0576 .0576	.0576 .0576 .0576	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM AXIAL LINE COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	STREAM VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WIND VELOCITY
1 201.32	-9.08	-249.46	320.46	201.32	-8.08	-404.42	534.70	235.01
2 195.57	1.86	-185.71	363.71	195.57	1.86	-408.25	489.77	263.54
3 204.66	4.69	-159.56	326.66	204.66	4.69	-522.42	518.42	312.88
4 223.41	19.45	-159.56	326.66	223.41	19.45	-522.42	518.42	312.88
5 242.95	28.82	-150.52	287.25	242.95	28.82	-485.36	543.54	334.84

MACH NUMBER FLOW ANGLE (DEG)

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE	RELATIVE	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	.29	.48	-53.10	-67.44	509.88	501.32	1.01/101
2	.24	.44	-43.52	-66.48	516.92	504.82	1.3772
3	.34	.45	-39.54	-65.76	510.89	504.92	1.4355
4	.35	.47	-34.63	-64.45	516.63	503.52	1.3725
5	.26	.49	-31.78	-63.41	516.39	503.52	1.3766

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT INLET PRESSURE (PSI)	EQUITY/STATIC PRESSURE RATIO
1	52.123	17.267	1.2
2	52.145	17.395	1.2
3	52.159	17.529	1.2
4	52.186	17.757	1.2
5	52.211	17.964	1.2

SET NUMBER	PAGE NUMBER	RPM	TOTAL/STATIC PRESSURE RATIO	INLET TOTAL PRESSURE (PSI)	INLET TOTAL TEMPERATURE (DEG. R)
1	3	10000.0	1.400	20.580	545.50

OVERALL TURBINE CHARACTERISTICS

STEAM LINE	PRESSURE RATIO TOT/STA	TOT/STA EFFICIENCY	HEAD COEFFICIENT	BLADE SP SPEED/RAT	DEGREE OF REACTION
1	1.9407	1.3579	.9591	.2802	.41.1677
2	1.3923	1.3355	.9025	.7991	.8.6222
3	1.3876	1.3325	.7021	.8080	.1.3114
4	1.3859	1.3282	.7121	.8195	.7.5311
5	1.3927	1.3283	.7128	.8223	.6.5076

MASS AVERAGED QUANTITIES

REFRAMED HORSE POWER =	29.26 (HP)
REFRAMED MOMENTUM =	15.21 (FT-LB)
REFRAMED FLOW RATE =	2.45 (LB/SEC.)
REFRAMED RPM =	9748.47 (HP)
REFRAMED HORSE POWER =	20.17 (HP)
REFRAMED FLOW RATE =	10.86 (LB/SEC.)
REFRAMED MOMENTUM =	1.79 (FT-LB)
TOTAL/STATIC EFFICIENCY =	.7044
TOTAL/TOTAL EFFICIENCY =	.8075
TOTAL/TOTAL PRESSURE RATIO =	1.3248
HEAD COEFFICIENT =	7.7267
BLADE SP SPEED/RAT =	.3581
THEORETICAL DEGREE OF REACTION =	.1777
MACH NUMBER AT STATION 0 =	.1777

SEZ NUMBER PAGE RPM TOTAL/STATIC PRESSURE RATIO INLET TOTAL PRESSURE TEMPERATURE
1 1 15000.0 1.400 20.580 545.50

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/RM SHIFT	RADIAL OPENING	BLADE ANGLE	Y=VA/VAM EFFICIENCY	COEFF. LOSS	CONVERGENCE	FLOW RATE FRACTION
	(IN)	(IN)	(IN)	(IN)				
1	3.764	.865	.00000	.2126	.9773	.0045	.1047	0.0000
2	3.083	.940	.00000	.2347	.8453	.1047	.1047	.2610
3	3.195	.004	.0296	.2526	.8908	.1049	.1049	.4826
4	3.432	.074	.00005	.2745	.9416	.1052	.1052	.7635
5	3.627	1.135	.00006	.2926	.8928	.1055	.1055	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WALL VELOCITY	WALL VELOCITY
1	279.79	-11.22	618.88	678.55	279.79	-11.22	256.27	379.59	361.81	361.81
2	266.45	5.33	582.07	640.16	266.45	5.33	168.97	326.67	353.10	353.10
3	254.98	5.83	551.83	607.93	254.98	5.83	133.59	287.85	448.29	448.29
4	244.88	2.84	515.46	568.98	244.88	2.84	160.26	249.43	449.30	449.30
5	227.58	27.08	485.56	536.93	227.58	27.08	10.79	229.43	474.77	474.77

MACH NUMBER FLOW ANGLE TEMPERATURE (DEG. R.)

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE RELATIVE	TOTAL	STATIC	TOTAL	STATIC	PRESSURE RATIO
1	.61	.34	.65 .65	42.49	545.50	507.19	18.952	101/101 101/SIA
2	.58	.29	.65 .21	35.35	542.00	514.40	20.024	1.3405 1.3405
3	.55	.26	.37 .66	37.66	542.20	514.25	20.081	1.2903 1.2903
4	.51	.22	.65 .09	15.93	545.50	518.56	20.144	1.2748 1.2748
5	.48	.28	.65 .89	21.71	545.50	521.51	20.192	1.0192 1.0192

STREAM LINE	RADIAL POSITION	X=R/RH SHIFT OPENING		Y=VA /VAM EFFICIENCY	COEFFICIENT	CONTINUITY	TOTAL TEMPERATURE (DEG. R)	PRESSURE TOTAL (PSI)	PRESSURE INITIAL (PSI)	PRESSURE INITIAL (PSI)	FRACTION
		1	2								
ROTOR EXIT SOLUTION											
1	2.693	.825	.0710	.1912	.8934	.8222	.1279				
2	3.928	.925	-.1168	.2268	.8732	.8285	.1216				
3	3.265	1.000	-.0405	.2447	1.0697	.8932	.1169				
4	3.585	1.098	-.1537	.2447	1.0597	.8732	.1263				
5	3.637	1.175	-.2160	.2983	1.3631	.8663	.1337				
ABSOLUTE VELOCITY (FPS)											
STREAM LINE	Axial component	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	RELATIVE VELOCITY (FPS)	RELATIVE VELOCITY (FPS)	WALL VELOCITY
1	192.13	-7.71	-109.84	221.44	192.13	-7.71	-109.84	200.74			
2	176.44	-1.68	-10.00	176.73	176.44	-1.68	-10.00	176.35			
3	193.21	4.42	4.93	193.67	193.21	4.42	4.93	192.85			
4	222.92	19.36	-3.93	223.71	222.92	19.36	-3.93	222.59			
5	251.77	29.87	-3.72	253.54	251.77	29.87	-3.72	251.55			
MACH NUMBER											
STREAM LINE	Absolute	Relative	Absolute	Relative	Absolute	Relative	Absolute	Relative	Temperature (deg. R)	Pressure (psf)	Pressure Ratio
1	.16	.46	.29	.74	.29	.74	.16	.46	501.84	14.582	1.01/1.01
2	.18	.43	.28	.74	.28	.74	.18	.43	506.76	15.283	1.4113/1.4113
3	.20	.47	.30	.82	.30	.82	.20	.47	506.97	15.277	1.3510/1.3510
4	.23	.51	.34	.82	.34	.82	.23	.51	507.21	14.952	1.3470/1.3470
5									507.63	15.197	1.3322/1.3322
STREAM LINE											
STREAM LINE	EQUIVALENT TEMPERATURE (deg. R)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE (PSI)	EQUIV/STATIC PRESSURE RATIO	EQUIV/STATIC PRESSURE RATIO	EQUIV/STATIC PRESSURE RATIO
1	518.62	16.718	16.983	17.245	17.651	18.029	18.329	18.629	1.4171	1.4113	1.4113
2	520.42	16.718	16.983	17.245	17.651	18.029	18.329	18.629	1.4961	1.3510	1.3510
3	522.38	16.718	16.983	17.245	17.651	18.029	18.329	18.629	1.5277	1.3470	1.3470
4	525.29	16.718	16.983	17.245	17.651	18.029	18.329	18.629	1.5952	1.3322	1.3322
5	528.13	16.718	16.983	17.245	17.651	18.029	18.329	18.629	1.6313	1.3222	1.3222

SETTER NUMBER	PAGE NUMBER	RPM	TOTAL/STATIC PRESSURE RATIO	INLET TOTAL TEMPERATURE (RADIANT)	TOTAL TEMPERATURE (DEG. K)
1	3	15000.0	1.460	20.580	545.50

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE RATIO TOT/STA	TOT/EFFICIENCY TOT/101	HEAD COEFFICIENT	BLEED/JET SPEED RATIO DEGREE OF REACTION
1	1.4123	1.4113	.8538	.444
2	1.3556	1.3510	.8622	.523
3	1.3564	1.3471	.8657	.243
4	1.3574	1.3479	.8584	.553
5	1.4054	1.3542	.8488	.5821
				.4694

MASS AVERAGED QUANTITIES

REFERRED HEAD POWER =	31.71 (HP)
REFERRED HEAD POWER =	11.10 (FT-LB)
REFERRED HEAD POWER =	2.39 (LB/SEC)
REFERRED HEAD POWER =	14622.66 (HP)
REFERRED HEAD POWER =	425.03 (FT-LB)
REFERRED HEAD POWER =	1.75 (LB/SEC)
TOTAL/STATIC EFFICIENCY =	.7968
TOTAL/STATIC EFFICIENCY =	.8584
TOTAL/STATIC PRESSURE RATIO =	1.3572
HEAD COEFFICIENT =	.4357
BLADE/JET SPEED RATIO =	.5395
THEORETICAL DEGREE OF REACTION =	.3013
MACH NUMBER AT STATION 0 =	.1735

SET NUMBER 1 PAGE NUMBER 1 TOTAL STATIC PRESSURE 20.500 INLET TOTAL PRESSURE 55.500

NOV 11 1963 EDITION

STREAM LINE	RADIAL POSITION	X=R/RM (IN)	RADIAL OPENING (IN)	Y=VA/VM (IN)	BLADE EFFICIENCY	Z=VA/VM EFFICIENCY	COEFFICIENT	LISS COEFFICIENT	CONTINUITY	ZETA FAULT	FRICTION KATE
1	1.254	.865	.2126	1.073	.9123	.0877	.0877	.0877	.0877	.0877	.0877
2	1.353	.910	.2349	1.073	.9061	.0959	.0959	.0959	.0959	.0959	.0959
3	1.452	1.029	.2574	1.068	.9055	.0935	.0935	.0935	.0935	.0935	.0935
4	1.635	1.164	.2926	1.068	.9048	.0949	.0949	.0949	.0949	.0949	.0949
5	3.627	1.437	.4903	.2926	.8903	.0960	.0960	.0960	.0960	.0960	.0960

ארכיאולוגיה ימיות (1985)

STREAM AXIAL LINE COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	UPWALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TRANSIENT COMPONENT	UPWALL ACTIVITY	WHIRL VELOCITY	PRESSURE RATIO
									101/101
1 291.10	-11.68	643.06	205.98	291.10	-11.68	179.65	312.69	4H2.44	524.14
2 276.49	-2.63	664.00	664.00	276.49	-2.63	13.87	247.69	524.14	524.14
3 241.95	6.04	521.59	521.59	241.95	6.04	6.05	142.43	527.52	527.52
4 235.16	21.55	532.28	532.28	235.16	21.55	21.55	527.68	594.94	594.94
5 235.16	27.89	531.49	531.49	235.16	27.89	27.89	270.79	633.03	633.03
MACH NUMBER	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R.)		PRESSURE (PSI)		PRESSURE RATIO		101/101	101/101
STREAM LINE	Absolute	Relative	Absolute	Relative	Total	Static	Total	Static	101/101
1	6.4	.30	65.65	28.89	545.50	504.03	15.177	20.06	1.5540
2	5.9	.20	65.21	1.16	545.50	508.51	20.052	16.163	1.5257
3	5.3	.20	65.21	-1.36	545.50	512.51	16.163	16.163	1.5253
4	5.3	.24	64.89	-21.92	545.50	516.67	20.1206	12.079	1.5234
5	5.0	.24	64.89	-29.94	545.50	519.91	20.1206	12.079	1.5185

SEEDER NUMBER RPM PRESSURE/STATIC PRESSURE TOTAL TEMPERATURE (PSI) (DEG. R)

1 2 20000.0 1.400

20.580

545.50

KOTOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/RM SHIPPIAL OPENING		$\gamma = \text{VA} / \text{VAM}$ EFFECTIVE	CUT-OFF PLANE	CONTINUITY	FRACTION WAKE
		Absolute Velocity (FPS)	Relative Velocity (FPS)				
1	2.693	.825	.0710	.1912	1.0076	.8915	.1045
2	3.020	.925	.0168	.2218	1.0705	.8756	.1244
3	3.265	1.000	.0405	.2447	1.0000	.8637	.1364
4	3.505	1.098	.1537	.2747	1.2750	.8696	.1304
5	3.837	1.175	.2100	.2983	1.4565	.8743	.1258

RELATIVE VELOCITY (FPS)

STREAM LINE	RADIAL COMPONENT	OVERALL VELOCITY		AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	DIFFERENTIAL VELOCITY	WAKE VELOCITY
		TANGENTIAL	COMPONENT					
1	178.28	-7.15	183.98	183.97	178.28	-7.15	-424.04	464.66
2	157.51	-1.46	173.25	231.87	154.67	-1.46	-353.72	333.90
3	176.94	4.05	176.95	250.27	176.94	4.05	-395.90	470.92
4	18.98	168.93	168.93	376.59	218.51	18.98	-456.95	589.82
5	237.72	30.58	154.81	302.20	257.72	30.58	-514.88	576.59

MACH NUMBER FLOW ANGLE (DEG.)

STREAM LINE	ABSOLUTE RELATIVE	ABSOLUTE RELATIVE		TOTAL	STATIC	PRESSURE (PSI)	PRESSURE RATIO	PRESSURE RATIO
		ABSOLUTE	RELATIVE					
1	.17	.43	1.295	-62.48	492.08	494.79	14.214	13.927
2	.21	.35	1.636	-66.78	508.61	503.54	15.448	14.978
3	.23	.39	4.500	-65.78	509.23	503.09	15.516	14.800
4	.25	.46	3.669	-64.75	509.96	503.58	15.579	14.903
5	.28	.52	30.99	-63.41	509.92	502.32	15.639	14.725

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT PRESSURE (PSI)		EQUIV/STATIC PRESSURE RATIO	EQUIV/STATIC PRESSURE RATIO	EQUIV/STATIC PRESSURE RATIO
		EQUIVALENT TEMPERATURE	EQUIVALENT PRESSURE			
1	512.26	16.062	1.2			
2	515.93	16.509	1.1			
3	518.54	16.837	1.1			
4	521.96	16.628	1.2			
5	529.99	16.265	1.2			

SET NUMBER	PAGE NUMBER	KPM	PRESSURE/STATIC RATIO	INLET TOTAL TEMPERATURE (PSI)	TOTAL PRESSURE	INLET TOTAL TEMPERATURE (DEG. R)	TOTAL PRESSURE
1	3	20000.0	1.400	20 580	545.50		

OVERALL TURBINE CHARACTERISTICS

STREAM TIME	PRESSURE RATIO	101/STA	EFFICIENCY _{TOT} /TOT	COEFFICIENT	SPEED RATIO	DEGREE OF REACTION
1 1.3745	1.4458	.8453	.8680	2.9583	.9814	.7065
2 1.3821	1.33247	.7919	.8715	2.0709	.9749	.7468
3 1.3869	1.3214	.7529	.8615	1.6642	.9330	.7446
4 1.3977	1.3261	.7398	.8549	1.6926	.9882	.7378
5				1.4923	.9186	.4311

MASS AVERAGED QUANTITIES

HEAD COEFFICIENT	=	1.9496	(HP)
MOMENT POWER	=	28.63	(HP)
FLOW RATE	=	2.25	(FT ³ /SEC)
REFERRED RPM	=	19496.88	(HP)
REFERRED MOMENT POWER	=	19496.94	(HP)
REFERRED FLOW RATE	=	5.37	(FT ³ /SEC)
		1.65	(LB/SEC)
TOTAL/STATIC EFFICIENCY	=	.7662	
TOTAL/TOTAL EFFICIENCY	=	.7662	
TOTAL/STATIC PRESSURE RATIO	=	1.8629	
TOTAL/TOTAL PRESSURE RATIO	=	1.8629	
BLADE COEFFICIENT	=	1.9418	
BLADE/STFT SPEED RATIO	=	.7176	
THEORETICAL DEGREE OF REACTION	=	.2626	
MACH NUMBER AT STATION 0	=	.1629	

SET NUMBER 1 PAGE 1 RPM 25000.0 PRESSURE/STATIC TOTAL/INLET TOTAL
20.580 1.400

INITIAL TOTAL TEMPERATURE 545.50

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/RM RADIAL SHIFT (IN)	BLADE OPENING (IN)	$\gamma = \text{VA} / \text{VAM}$	BLADE EFFICIENCY	LOSS COEFFICIENT	ZETA CONTINUITY	FLOW RATE FRACTION
1	2.764	.865	.000	1.1005	.945	.0955	.955	0.9000
2	3.063	.940	.000	1.0465	.9126	.0974	.974	.7662
3	3.195	1.008	.0291	1.0005	.911	.0982	.982	.4819
4	3.432	1.074	.000	1.2745	.891	.1003	.1003	.1667
5	3.627	1.135	.000	1.2926	.8912	.1014	.1014	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	DOWNWALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	DOWNWALL VELOCITY	WINDAGE VELOCITY
1	285.88	-11.47	631.53	693.32	295.88	-11.47	28.52	278.53	601.01
2	271.85	-12.58	593.67	653.34	271.85	-12.58	61.31	615.17	592.15
3	263.91	-15.94	562.45	619.58	263.91	-15.94	134.71	395.56	746.67
4	244.24	21.22	592.45	579.20	244.24	21.22	223.99	372.69	791.29
5	231.21	27.47	593.74	546.34	231.21	27.47	297.35	377.85	

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE	RELATIVE	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	.63	.26	.6545	.570	545.50	505.50	19.285	101/101
2	.59	.25	.6541	.571	545.50	510.50	20.092	1.0298
3	.56	.27	.6521	.572	545.50	513.50	16.837	1.1643
4	.52	.30	.6504	.425	545.50	517.50	26.150	1.1551
5	.49	.34	.6489	.5210	545.50	520.68	20.195	1.0313

NUMBER	NUMBER	RPM	PRESSURE/STATIC PRESSURE (PSI)	PRESSURE/INITIAL TEMPERATURE (DEG. R)
1	2	25000.0	1.400	20.580
				545.50

MOTOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/RM SH/OPENING	Y=VA/VIN EFFIC. BLADE	COEFFICIENT	CONTINUITY	FRACTIONAL VEL/INITIAL		
1	2.693	.625	.0710	.192	1.0181	.6612	1.189	0.0000
2	3.025	1.000	-1.005	-1.225	.8756	.8714	.1245	.9950
3	3.595	1.175	-1.457	-2.247	1.0000	.8796	.1287	.9872
4	3.637	1.175	-1.200	-2.003	1.2662	.8861	.1205	.9852
5								1.0000

STREAM LINE	MACH NUMBER	FLOW ANGLE (deg)	TEMPERATURE (deg. R)	PRESSURE (PSI)	PRESSURE RATIO				
STREAM LINE	AIRSON. RELATIVE	ABSOLUTE	RELATIVE	TOTAL	STATIC	TOTAL	STATIC	101/101	101/51A
1	1.21	.97	.32	82	-67.44	493.97	489.64	13.836	13.414
2	1.38	.96	.61	82	-66.48	513.13	503.79	15.973	14.978
3	1.31	.92	.56	76	-65.76	514.60	504.74	16.086	15.332
4	1.33	.51	.49	02	-64.75	516.26	504.97	16.209	15.001
5	1.36	.58	.42	46	-63.45	517.08	504.36	16.238	14.882

STREAM LINE	EQUIVALENT TEMPERATURE (deg. R)	EQUIVALENT PRESSURE (PSI)	EQUIV/STATIC PRESSURE RATIO
1	510.85	15.883	1.2
2	516.87	16.597	1.1
3	522.60	17.297	1.2
4	530.03	18.340	1.3
5	538.76	19.336	

	SET NUMBER	PAGE NUMBER	RPM	PRESSURE RATIO	PRESSURE TOTAL (PSI)	TOTAL INLET TEMPERATURE (DEG. R)	TOTAL INLET PRESSURE (PSI)
1	3	25000.0	1,400	20.580	545.50		
OVERALL TURBINE CHARACTERISTICS							
STREAM LINE	PRESSURE RATIO $\frac{P_0}{P_1}$	TOT/STA	EFFICIENCY $\frac{\eta_0}{\eta_1}$	HEAD	SP. HEAD/EFFICIENCY	SP. HEAD/EFFICIENCY	THEORETICAL DEGREE OF REACTION
1	1.5742	1.4874	.8204	.8846	2.0753	.6912	.2957
2	1.5748	1.4885	.6838	.8332	1.1353	.6686	1.693
3	1.5754	1.4894	.6598	.8129	1.1508	.6264	2.410
4	1.5764	1.4904	.6205	.7957	1.0602	.9250	3.414
5	1.5719	1.4874	.5889			1.0374	4.275
MASS AVERAGED QUANTITIES							
				HORSE POWER =	26.70 (HP)		
				REFERRED HORSE POWER =	5.63 (FT-LB)		
				FLOW RATE =	2.43 (LB/SEC)		
				REFERRED HORSE POWER =	18.64 (HP)		
				REFERRED FLOW RATE =	4.02 (FT-LB)		
				REFERRED FLOW RATE =	1.78 (LB/SEC)		
				TOTAL EFFICIENCY =	6672		
				TOTAL/STATIC EFFICIENCY =	6672		
				TOTAL/STATIC PRESSURE RATIO =	1.3834		
				HEAD COEFFICIENT =	1.8315		
				BLADE/JET SPEED RATIO =			
				THEORETICAL DEGREE OF REACTION =			
				MACH NUMBER AT STATION 0 =			
					1.7485		
					1.6920		
					1.2286		
					,1768		

SET PAGE RPM TOTAL/STATIC TOTAL PRESSURE TOTAL
NUMBER NUMBER 30000.0 1.400 20,580 545.50

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/RM (IN)	Y=UA./UAH (IN)	BLADE EFFICIENCY	COEFFICIENT	CONTINUITY	FLOW MATE FRACTION
1	2.764	.865	.000	1.012	.9029	.922	0.0000
2	3.033	.865	.000	1.0468	.9055	.925	0.2601
3	3.152	.874	.000	1.000	.9036	.924	.9945
4	3.432	1.074	.000	0.903	.9019	.981	.9915
5	3.627	1.135	.000	0.996	.9006	.994	.9901

STREAM LINE	COMPONENT	ABSOLUTE VELOCITY (FPS)	OVERALL VELOCITY	COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	KINETIC ENERGY	RELATIVE VELOCITY (FPS)
1	RADIAL	-12.24	673.85	739.78	305.04	-12.24	49.77	302.32
2	RADIAL	2.75	633.45	696.05	260.02	2.75	-152.78	327.56
3	RADIAL	6.34	659.75	669.46	266.46	6.34	-236.83	336.81
4	RADIAL	29.27	532.42	582.41	246.73	22.62	-339.00	428.18
5	RADIAL	246.73				29.27	-423.13	490.68

STREAM LINE	MACH NUMBER	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	Absolute	RELATIVE	ABSOLUTE	TOTAL STATIC	TOTAL/TOTAL
2	.67	.28	.65 .65	545.50 499.96	14.683 19.921
3	.63	.30	.65 .65	545.50 505.16	15.243 16.633
4	.56	.39	.65 .64	545.50 513.77	16.150 20.150
5	.52	.44	.64 .69	545.50 517.30	16.734 16.734

NUMBER	NUMBER	RPM	PRESSURE/RATING	PRESSURE/TOTAL	TEMPERATURE	TOTAL
1	2	30000.0	1.400	20.580	545.50	

ROTOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/RAM	RADIAL OPEN BLADE	$\gamma = \text{VA} / \text{VAM}$	EFFECTIVENESS	COEFFICIENT	FLOW RATE
1	2.69	.825	.9718	1.912	1.9274	.8812	1.181
2	3.25	.825	.9718	1.912	1.9275	.8792	1.208
3	3.25	.668	.6495	2.447	1.0000	.8772	1.228
4	3.25	1.175	.1537	.2747	1.3181	.8691	1.130
5	3.68	1.175	.2180	.2983	1.3051	.8948	.1052

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	RELATIVE VELOCITY (FPS)
1	200.48	-8.04	222.75	299.74	200.40	-8.04	-482.34	522.32
2	155.94	4.48	432.49	459.66	155.94	4.48	-756.21	356.69
3	195.05	4.48	421.66	464.65	195.05	4.48	-433.11	455.03
4	257.16	22.33	461.05	476.61	257.16	22.33	-532.60	834.78
5	313.88	37.15	379.95	493.03	313.88	37.15	-625.47	710.44

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE	RELATIVE	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	.28	.18	.18	.17	-67.44	490.49	483.03	1.01/1.01
2	.42	.36	.42	.37	-66.17	520.51	511.93	1.01/1.01
3	.42	.33	.42	.33	-65.76	521.98	514.42	1.01/1.01
4	.45	.34	.45	.34	-64.45	524.51	514.16	1.01/1.01
5	.45	.34	.45	.34	-63.41	525.68	505.45	1.01/1.01

EQUIVALENT TEMPERATURE (DEG. R)

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT PRESSURE (PSI)	EQUIV/STATIC PRESSURE RATIO
1	584.71	15.283	1.2
2	514.63	16.299	1.1
3	522.94	17.283	1.2
4	535.18	18.800	1.3
5	546.28	20.251	1.4

SET NUMBER	PAGE NUMBER	RPM	TOTAL/STATIC PRESSURE RATIO	TOTAL/INLET PRESSURE RATIO (PSI)	TOTAL/INLET TEMPERATURE (DEG. R)
1	3	30000.0	1.400	20.580	545.50

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	TOT/STAT PRESSURE RATIO	TOT/STAT EFFICIENCY %	HEAD COEFFICIENT	SPEED RATE TO DEGREE OF REACTION
1	1.6168	78.63	.6787	1.6058
2	1.5322	52.66	.8072	.9621
3	1.3956	52.66	.7790	.8205
4	1.3763	52.66	.7792	.7806
5	1.3713	52.66	.7692	.6379
	1.3791	52.66		1.2521

MASS AVERAGED QUANTITIES

REFERRED RPM	=	29245.42	(HP)
REFERRED HORSE POWER	=	15.31	(FT-LB)
REFERRED MOMENT POWER	=	2.75	(LB-SEC)
REFERRED FLOW RATE	=	1.85	(LB/SEC)
TOTAL/STATIC EFFICIENCY %	=	51.59	
TOTAL/TOTAL EFFICIENCY %	=	78.03	
TOTAL/STATIC PRESSURE RATIO %	=	1.4106	
TOTAL/TOTAL PRESSURE RATIO %	=	1.2575	
HEAD COEFFICIENT %	=	1.2013	
BLADE/JET SPEED RATIO %	=	1.0534	
THEORETICAL DEGREE OF REACTION %	=	1.2061	
MACH NUMBER AT STATION 0 %	=	1.1841	

SET NUMBER 1 PAGE 1 RPM 5000.0 TOTAL STATIC PRESSURE RATIO 1.600 INFINITE TOTAL TEMPERATURE AI 23.510 S62.23

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/RM SHIFT (IN)	RADIAL OPENING (IN)	$\gamma = \text{UA} / \text{VAM}$	BLADE EFFICIENCY	COEFFICIENT	LOSS	CONTINUITY	FLOW RATE FRACTION
1	2.74	.865	.2126	1.1046	.9106	.0894	.0054	.0000	
2	3.00	.865	.2437	1.0460	.9641	.0959	.0919	.5535	
3	3.195	1.000	.2526	1.0000	.8939	.1012	.1017	.4729	
4	3.62	1.000	.2745	1.0000	.8945	.1054	.1054	.4729	
5	3.27	1.135	.2926	1.0000	.8935	.1093	.1093	.4729	

ABSOLUTE VELOCITY (FPS)

STREAM LINE COMPONENT	RADIAL	TANGENTIAL	OVERALL	AXIAL	COMPONENT	RADIAL	COMPONENT	TANGENTIAL	OVERALL
1	402.40	-16.16	389.81	976.87	402.80	-14.16	382.17	769.21	868.44
2	362.17	-1.63	371.34	918.19	382.17	3.63	358.69	700.59	790.60
3	3.62.39	8.34	7.09	869.70	358.69	8.34	342.61	650.00	742.32
4	342.61	26.26	7.35	812.24	342.61	26.26	325.11	635.42	659.43
5	324.48	38.49	692.24	765.49	324.46	38.49	313.98	629.55	643.55

MACH NUMBER

STREAM LINE	Absolute	Relative	Absolute	Relative	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE (PSI)	PRESSURE (PSI)
1	.91	.81	65.65	62.37	562.23	482.82	322.510	101.101
2	.94	.74	65.41	61.56	562.23	482.82	322.510	101.101
3	.79	.68	65.21	61.56	562.23	569.03	322.510	101.101
4	.74	.62	65.04	59.20	562.23	569.03	322.510	101.101
5	.69	.56	64.89	58.72	562.23	502.33	322.510	101.101
					513.47	513.47	322.510	101.101
							16.37	1.4399

NUMBER NUMBER RPM PRESSURE RATIO PRESSURE RATIO TOTAL
1 2 5000.0 1.600 23.520 562.23

MOTOR EXIT SOLUTION

STREAM LINE	RADIAl POSITION	X=R/NM SHIFTAL OPENING	BLADE ANGLE	Y=VA/VAM EFFICIENCY	BLADE COEFFICIENT	CONTINUATION COEFFICIENT	FRACTION
1	2.693	.825	.0710	.9722	.7663	.2337	0.0000
2	3.026	.925	.168	.9218	.7642	.2353	.2414
3	3.265	1.0405	.2447	1.0000	.7635	.2365	.4446
4	3.485	.988	.2447	1.0302	.7654	.2346	.7362
5	3.837	1.175	.2100	.2903	.7669	.2331	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	COMPONENT	COMPONENT	COMPONENT	RELATIVE VELOCITY (FPS)
1	268.85	-10.46	510.24	523.15	260.85	-10.46	622.75
2	268.75	-2.55	485.60	555.05	268.76	-2.55	625.34
3	268.70	6.14	453.30	514.76	268.39	6.14	595.76
4	268.42	21.41	421.56	504.68	268.42	21.41	548.42
5	268.24	34.26	400.42	501.96	268.24	34.26	576.84

MACH NUMBER

STREAM LINE	Absolute	Relative	Absolute	RELATIVE	FLOW ANGLE (deg)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	.52	.62	-62.93	-67.44	534.79	507.06	12.137	1.3726
2	.50	.61	-61.04	-66.48	533.37	507.74	12.101	1.3934
3	.49	.59	-59.38	-65.76	523.16	509.79	12.032	1.3751
4	.46	.58	-56.75	-64.45	532.92	511.73	12.006	1.3747
5	.45	.58	-54.79	-63.45	533.62	511.73	12.024	1.3685

STREAM LINE

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT PRESSURE (PSI)	EQUIL/STATIC PRESSURE RATIO
1	545.42	19.99	1.4
2	545.47	20.05	1.4
3	545.55	20.05	1.4
4	545.53	20.05	1.4
5	546.03	20.43	1.4

SET NUMBER	PAGE NUMBER	KFM	TOTAL PRESSURE RATIO	PRESSURE TOTAL / TOTAL PRESSURE RATIO (PSI)	DEGREE OF REACTION (DEG. K)
1	3	5000.0	1.600	24.520	562.23

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE TOTAL / STATION	TOTAL EFFICIENCY / 100	HEAD COEFFICIENT	SPEED OF REACTION
1	1.6494	1.3725	.3725	61.8818
2	1.6144	1.3725	.5892	.51.5135
3	1.5921	1.3665	.4118	.43.6353
4	1.5633	1.3563	.4351	.36.1130
5	1.5522	1.3537	.4431	.32.0649

MASS AVERAGED QUANTITIES

REFERRRED HEAD FLOW RATE	=	HORSE POWER = MOMENTUM RATE =	30.55 32.49 (HP) (F-LB)
REFERRRED HEAD FLOW RATE	=	REFERRRED HORSE POWER = REFERRRED MOMENTUM RATE =	4801.15 18.33 2.06 (HP) (F-LB) (LB/SEC)
TOTAL / STATIC PRESSURE RATIO	=	TOTAL / STATIC EFFICIENCY	.4116
TOTAL / STATIC PRESSURE RATIO	=	TOTAL / STATIC EFFICIENCY	.6062
TOTAL / TOTAL PRESSURE RATIO	=	TOTAL / STATIC PRESSURE RATIO	1.6006
HEAD COEFFICIENT BLADE / TOTAL SPEED RATIO	=	HEAD COEFFICIENT BLADE / TOTAL SPEED RATIO	1.3653
THE CREALICAL DEGREE OF REACTION = MACH NUMBER AT STATION 0 =	=	44.5560 .1498 .0128 .2014	

SET NUMBER 1 RATED 10000.0 RPM TOTAL STATIC PRESSURE 1.600 PRESENT 73.520 TOTAL TEMPERATURE 562.3

STATOR EXIT SOLUTION

STATION LINE	RADIAL POSITION	X=R/MM	RADIAL BLADE SHIFT (IN)	Y=VA /MM	BLADE EFFICIENCY	COEFFICIENT OF LOSS	CONTINUITY	FRICTION
1	.764	.865	(1IN)	1.1044	.9084	.0216	.0016	0.0000
2	.703	.940	0.0000	1.0426	.9019	.0261	.0023	.7562
3	.693	.940	0.0000	1.0427	.9068	.0320	.0033	.4253
4	.693	1.008	0.0296	1.2526	1.0000	.0320	.1073	.4253
5	.693	1.074	0.0000	1.2745	.9397	.1069	.1089	.7551
		1.135	0.0000	.2926	.8901	.1099	.1099	1.0000

ABSOLUTE VELOCITY (FPS)

STATION LINE	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERMAGNITUDE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERMAGNITUDE	RELATIVE VELOCITY (FPS)
1	.371,.28	-14.89	820.18	900.42	.371.28	-14.89	578.97	682.95
2	.355,.29	3.35	769.58	846.39	.362.39	3.35	507.51	617.81
3	.355,.09	7.59	727.65	801.72	.350.69	7.59	448.99	553.46
4	.355,.91	27.44	628.50	708.64	.355.91	27.44	379.05	424.47
5	.299,.23	35.50	638.43	705.97	.355.50	35.50	371.91	440.94

MATCH NUMBER

FLOW ANGLE (DEG.)

STATION LINE	ABSOLUTE RELATIVE	ABSOLUTE RELATIVE	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE (PSI)	FRIC. COEF. RAD/10
1	.83	.63	65.65	57.33	563.23	494.77	101/101
2	.73	.56	65.41	55.24	562.23	502.62	1.0457
3	.73	.50	65.21	54.52	562.23	508.74	1.0455
4	.63	.44	65.04	50.19	562.23	515.55	1.0453
5	.63	.39	64.89	47.02	562.23	520.76	1.0452

Sheet Number 2 Page 10000.0 Ratio 1.600 Total Static Pressure (PSI) 23.520 Ambient Temperature (deg. R) 562.25

K010X EXIT SOLUTION

STREAM LINE	POSITION	X=R/RM RADIAL OPENING	Y=VA / VAM EFFICIENCY	CHEFFICIENT	CONTINUITY	FRACTION RATE
1	2.693	.0710	.9799	.1874	.1834	0.0000
2	3.025	.0715	.9715	.1823	.1802	0.2760
3	3.265	.0716	.9747	.1777	.1777	0.4344
4	1.005	.0714	1.0000	.1828	.1828	0.7270
5	1.098	.0713	.9747	.1777	.1777	1.0000
	1.1537	.0710	.9747	.1777	.1777	
	1.1710	.0703	.9744	.1771	.1771	

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WHEAD	WHEAD
1	242.02	-9.71	-342.41	423.51	242.02	-9.71	-342.42	636.79	245.01	245.01
2	235.94	-2.23	-282.63	324.50	239.94	-2.26	-351.12	601.14	264.54	264.54
3	245.73	5.65	-261.49	346.12	246.98	5.65	-348.42	612.47	245.73	245.73
4	265.38	33.14	-244.13	362.07	265.38	33.14	-352.02	612.47	265.38	265.38
5	267.66	34.12	-239.71	375.95	267.60	34.12	-374.55	644.41	354.04	354.04

STREAM LINE	MACH NUMBER	FLOW ANGLE (DEG)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	Absolute	RELATIVE	ABSOLUTE	TOTAL	STATIC
2	.79	.53	-55.14	515.72	500.79
3	.34	.55	-50.17	516.05	504.37
4	.33	.55	-46.86	515.96	504.27
5	.33	.56	-42.51	515.70	504.15
			-64.45	515.24	503.48
			-63.41		45.794
			-39.81		14.752
			-63.41		14.752
			-19.465		14.752

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT LIQUID PRESSURE (PSI)	EQUILIBRIUM PRESSURE RATIO
1	535.90	18.698	1.3
2	574.44	18.929	1.3
3	549.33	18.961	1.3
4	546.56	19.224	1.3
5	537.93	19.465	1.3

SET NUMBER	PAGE NUMBER	KPM	INITIAL/STATIC PRESSURE RATIO	INITIAL TOTAL INLET TOTAL PRESSURE (PSI)	INITIAL TOTAL INLET TOTAL TEMPERATURE (DEG. R)
1	4	10000.0	4.609	23.520	562.25

OVERALL TURBINE CHARACTERISTICS

LIN#	REF/STATION	PRESSURE RATIO	10/STA	EFFICIENCY	HEAD	HEAD EFFICIENCY	HEAD/HEAD RATIO	DEGREE OF EXPANSION
1	1.694	1.4464		76.05	15.6275		25.30	.0153
2	1.693	1.4293		77.64	12.4023		24.41	.0675
3	1.594	1.4751		78.30	10.2805		30.39	.1643
4	1.587	1.4696		79.15	9.2752		32.64	.2450
5	1.594	1.4706		80.10	8.4152		34.47	.3458

MASS AVERAGED QUANTITIES

REFERRED	REF/STATION	REF/STATION	REF/STATION	REF/STATION	REF/STATION
MOTOR POWER =	46.17	(HP)			
MOTOR HEAD =	31.25	(FT-LB)			
FLOW RATE =	2.93	(lb/sec.)			

REFERRED	REF/STATION	REFERRED	REF/STATION	REFERRED	REF/STATION
REF/STATION	9603.30	(HP)			
MOTOR POWER =	22.71	(FT-LB)			
REF/STATION	15.16	(lb/sec.)			
REF/STATION	1.91				

TOTAL STATIC EFFICIENCY =	65.55
TOTAL / TOTAL EFFICIENCY =	72.15
TOTAL / TOTAL PRESSURE RATIO =	1.6929
TOTAL / TOTAL PRESSURE RATIO =	1.4959

HEAD COEFFICIENT	HEAD COEFFICIENT	HEAD COEFFICIENT
HEAD/HEAD RATIO =	11.1490	
HEAD/HEAD RATIO =	1.295	
HEAD/HEAD RATIO =	1.610	
HEAD/HEAD RATIO =	1.894	

SETR NUMBER 1 PAGE 1 KPPM 15000.0 TOTAL/STATIC PRESSURE 1.600 PRE/INITIAL TOTAL TEMPERATURE 23.520 562.73

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/MM	RADIAL SHIFT	BLADE OPENING (IN)	Y=VA/VAM	BLADE EFFICIENCY	LOSS COEFFICIENT	CONTINUITY	FLOW RATE FRACTION
1	2.764	.865	0.0000	.2126	1.0971	.8962	.1638	.1038	0.0000
2	3.003	.940	0.0000	.2342	1.0451	.8964	.1636	.1036	.9575
3	3.195	1.000	0.0290	.2526	1.0000	.8965	.1635	.1035	.9784
4	3.433	1.074	0.0000	.2745	.9417	.8963	.1637	.1037	.7606
5	3.637	1.135	0.0000	.2926	.8931	.8961	.1639	.1039	.0900

ABSOLUTE VELOCITY (FPS)

STREAM LINE COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WHEEL VELOCITY
1	352.10	-13.32	733.62	805.40	348.40	-13.32	321.62	494.73
2	317.46	3.01	731.68	760.06	316.36	3.01	392.98	474.60
3	307.42	6.93	655.37	721.94	305.42	6.93	237.00	473.10
4	295.06	23.76	632.23	675.79	295.06	23.76	313.02	473.29
5	270.43	32.07	576.77	637.79	270.33	32.07	102.00	474.77

MACH NUMBER

FLOW ANGLE
(DEG.)

TEMPERATURE
(DEG. R)

STREAM LINE	Absolute	Relative	Absolute Relative	Total	Static	Total	Static	PRESSURE RATIO
1	.74	.45	.65 .65	48.23	562.23	518.25	523.523	15.820
2	.68	.49	.62 .41	45.22	512.23	514.16	525.443	16.560
3	.65	.35	.65 .21	32.64	562.23	516.85	525.153	12.160
4	.60	.29	.65 .04	29.77	562.23	514.27	521.936	17.620
5	.57	.16	.64 .89	20.67	572.23	528.18	522.914	16.433

SELER NUMBER PAGE RPM PRESSURE STATIC TOTAL PRESSURE (PSI) (DEG. R)

1 2 15000.0 1.600 33.520 562.23

MOTOR EXIT SOLUTION

STATION	RADIAl POSITION	X=R/RH RADIAL UPSTREAM	Y=0/RH RADIAL PLATE	Z=0/RH RADIAL DOWNSTREAM	Axial FFficiency	GraFFf Coeff	CONTINENT	Fraction, RATE
1	2.623	.025	.0710	.1912	.9847	.8631	.1370	.1294
2	3.624	.000	.0768	.2018	.9703	.8756	.1298	.1245
3	3.845	.000	.0445	.2442	.9000	.8812	.1185	.1185
4	3.845	.000	.1532	.2747	.9120	.8812	.1185	.1185
5	3.845	.175	.2100	.2483	.9192	.8916	.1139	.1139

ABSOLUTE VELOCITY (FPS)

STATION	AXIAL COMPONENT	RADIAL COMPONENT	Z-UPSTREAM	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	Z-INITIAL	Z-FINAL
1	240.29	-9.56	-220.95	256.11	238.79	-9.56	-573.46	621.03
2	245.36	2.14	-122.38	256.45	238.36	-2.14	-512.84	564.61
3	245.16	0.53	-107.98	264.24	241.10	0.53	-535.82	587.51
4	249.98	23.45	-95.22	387.24	349.98	23.45	-534.85	626.59
5	248.76	35.45	-94.60	315.38	298.76	35.45	-596.87	668.41

MASS NUMBER FLOW ANGLE (DEG.)

STATION	ABSOLUTE RELATIVE	ABSOLUTE RELATIVE	RELATIVE	TOTAL	STATIC	TOTAL	STATIC	PRESSURE (PSI)	PRESSURE (PSI)
1	.30	.57	-42.44	505.89	496.30	14.649	14.547	1.676	1.676
2	.33	.51	-26.51	518.97	503.39	15.549	14.929	1.510	1.510
3	.34	.53	-24.71	519.93	503.36	15.574	15.504	1.516	1.516
4	.36	.57	-19.43	509.02	502.16	15.638	14.912	1.514	1.514
5	.29	.41	-17.57	508.97	501.47	15.616	14.745	1.512	1.512

EQUIVALENT TEMPERATURE (DEG. R)

STATION	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT INLET PRESSURE (PSI)	EQUILUS/STATIC PRESSURE RATIO
1	522.40	16.126	1.13
2	510.02	18.448	1.12
3	512.05	18.742	1.12
4	574.29	19.138	1.13
5	577.65	19.535	1.13

SETTER NUMBER	PIPE NUMBER	RPM	PRESSURE/STATIC RATIO	PROFILER TOTAL HEAD/TOTAL PRESSURE (PSI)	PROFILER TOTAL DEGREE OF REACTION (DEG. R)
1	3	15000.0	1.600	23.520	562.24

OVERALL TURBINE CHARACTERISTICS

STATION	TOT/STA	TOT/TOT	EFFICIENCY/TOT	CHEAD/TOT	SPEC. RATIO	DEGREE OF REACTION
1	1.6753	1.5712	.7414	.8745	7.0257	.2185
2	1.5712	1.5159	.7682	.8493	5.2251	.3124
3	1.5676	1.5064	.7866	.8556	4.6355	.2161
4	1.5773	1.5041	.7752	.8598	4.0175	.4622
5	1.5951	1.5061	.7617	.8615	3.7435	.5165

MASS AVERAGED QUANTITIES

HORSE POWER =	54.17	(HP)
MOMENTUM FLOW RATE =	18.97	(FT-LB)
	2.97	(LB/SEC)
REFERRED RPM =	14403.46	
REFERRED HORSE POWER =	32.55	(HP)
REFERRED MOMENTUM =	11.86	(FT-LB)
REFERRED FLOW RATE =	1.93	(LB/SEC)
TOTAL STATIC EFFICIENCY =	.7739	
TOTAL STATIC EFFICIENCY =	.8852	
TOTAL STATIC PRESSURE RATIO =	1.5162	
TOTAL STATIC PRESSURE RATIO =	1.5165	

HEAD COEFFICIENT = 4.8616
 HEAD/REF. SPEED RATIO = .4745
 THEORETICAL DEGREE OF REACTION = .4052
 MATCH NUMBER AT STATION 0 = 1.0000

SET PAGE RPM TOTAL/STATIC INLET TOTAL INLET TOTAL
NUMBER NUMBER 20000.0 PRESSURE RATIO 1.600 PRESSURF TEMPERATURE 562.23

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/RM SHIFT	RADIAL OPENING	BLADE Y=VA/VAH EFFICIENCY	BLADE COEFFICIENT	LOSS	CONTINUITY	FLUID STATE FRACTION
1	2.764	.845	.11000	.1.0975	.9033	.0967	.0967	.0.0000
2	3.683	.940	.0.000	.1.0447	.9819	.0981	.0981	.2585
3	3.193	1.008	.0.000	.1.0526	.9007	.0791	.0791	.4795
4	3.432	1.074	.0.000	.1.0245	.9409	.8998	.1002	.7614
5	3.627	1.135	.0.000	.2926	.8917	.8989	.1011	.1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	COMPONENT	AXIAL	RADIAL	TANGENTIAL	OVERALL VELOCITY	WIFFLE VELOCITY
1	326.89	-13.61	722.13	326.89	311.01	-13.41	339.72	405.58	402.41
2	312.81	2.65	747.21	312.81	302.56	12.95	355.96	347.62	344.14
3	302.56	6.60	643.70	302.56	286.08	6.80	83.98	314.61	352.22
4	269.73	21.45	688.78	269.73	265.11	21.29	31.45	289.79	359.64
5	265.11	31.45	565.62	265.11	265.11	31.45	-67.41	275.35	433.03

MACH NUMBER

STREAM LINE	ABSOLUTE RELATIVE	ABSONDUE RELATIVE	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R.)	PRESSURE (PSI)	PRESSURE RATIO
1	.72	.37	65.65	562.23	509.23	101/101
2	.67	.31	65.41	562.23	515.77	1.0394
3	.63	.28	65.66	562.23	520.39	1.4679
4	.59	.25	65.84	562.23	525.64	1.0350
5	.55	.24	64.89	-14.27	529.68	1.3522

SET NUMBER	PAGE NUMBER	RPM	PRESSURE/STATIC PRESSURE (PSI)	INFINITE TOTAL TEMPERATURE (DEG. R)	TOTAL PRESSURE/INFINITE TOTAL PRESSURE (PSI)		FRACTION RATE
					23,520	562,23	
ROTOR EXIT SOLUTION							
STREAM LINE	RADIATION	X=R/RH SHFT RADIAL OPEN BLADE	Y=VA /VANH EFFICIENCY	COEFFICIENT	CONTRIBUTION		
1	2.693	.825 .0710 .1912 .8889 .1011 .1111 .0000	.925 .168 .226 .8926 .1014 .1074 .215				
2	3.025	-1.000 -.1405 .2447 .8954 .1016 .1046 .4105	-1.098 -.1537 .2747 .8843 .1117 .1157 .7083				
3	3.585	1.098 -.1537 -.2106 .2983 .1.3310 .1255 .1245	1.175 -.2106 -.2106 .8756 .1.3310 .1255 .1.0000				
ABSOLUTE VELOCITY (FPS)							
STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	OVERALL VELOCITY
1	234.59	-9.41	-94.53	253.10	234.59	-9.41	-564.55
2	323.63	5.16	47.67	215.44	215.44	2.61	529.63
3	372.92	52.88	56.50	288.94	288.94	5.88	523.87
4	312.84	37.12	44.70	316.19	312.84	37.12	537.68
MACH NUMBER							
STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE	RELATIVE	Absolute	RELATIVE	Absolute
1	1.23	.56	-21.95	-67.48	126.86	491.53	14.279
2	1.28	.48	-66.48	-65.76	506.69	502.54	15.474
3	1.22	.52	11.53	-65.76	507.03	502.50	15.055
4	1.26	.58	16.49	-64.45	507.65	501.09	15.531
5	1.29	.64	8.13	-63.41	507.62	499.20	15.411
EQUIVALENT TEMPERATURE (DEG. R)							
STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE (PSI)	PRESSURE RATIO
1	522.64	526.68	529.72	534.63	539.96	542.80	1.01/1.01
2	526.68	526.68	529.72	534.63	539.96	542.80	1.01/1.01
3	529.72	529.72	534.63	539.96	542.80	546.67	1.01/1.01
4	534.63	534.63	539.96	542.80	546.67	553.44	1.01/1.01
5	539.96	539.96	542.80	546.67	553.44	560.11	1.01/1.01

SET NUMBER	PAGE NUMBER	KPM	TOTAL/STATIC RATIO	INFLUX TOTAL PRESSURE (PSI)	TOTAL TEMPERATURE (DEG. R.)	TOTAL
1	3	20000.0	1.600	23.520	562.23	

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE RATIO TOT/TOT STA	EFFICIENCY TOT/TOT	HEAD COEFFICIENT	BLADE/JET SPEED RATIO	THEORETICAL DEGREE OF REACTION
1	1.7186	.64772	.8177	4.1782	.7757
2	1.5612	1.5200	.8279	2.9192	.2334
3	1.5627	1.5144	.8199	2.6011	.6213
4	1.5868	1.5155	.8664	2.3254	.3192
5	1.6182	1.5262	.7560	.8537	.6558
					.4987
					.6794

MASS AVERAGED QUANTITIES

REFERRRED HORSE POWER =	56.13 (HP)
REFERRRED FLOW RATE =	14.79 (FT-LB)
	2.95 (LB/SEC)
REFERRRED RPM =	19204.61 (HP)
REFERRRED MOMENTUM =	33.81 (FT-LB)
REFERRRED FLOW RATE =	9.25 (LB/SEC)
	1.92
TOTAL STATIC EFFICIENCY =	.8052
TOTAL TOTAL EFFICIENCY =	.8717
TOTAL STATIC PRESSURE RATIO =	1.5913
	1.5342
HEAD COEFFICIENT =	2.7512
BLADE/JET SPEED RATIO =	2.6027
THEORETICAL DEGREE OF REACTION =	.3362
MACH NUMBER AT STATION 0 =	.1912

SET NUMBER 1 PAGE 1 RPM 25000.0 TOTAL/STATIC PRESSURE RATIO 1.680 INLET TOTAL TEMPERATURE 23.520 TOTAL 562.23

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=8/KM (IN)	RADIAL SHIFT (IN)	BLADE OPENING (IN)	V=VA / VAM EFFICIENCY	BLADE COEFFICIENT	LOSS COEFFICIENT	CONTINUITY /FIA	FLOW RATE FRACTION
1	2.76	.865	0.000	1.246	1.1009	.9084	.0916	.916	0.0000
2	3.05	.865	0.000	1.247	1.0467	.9063	.0917	.937	.2584
3	3.35	.865	0.029	1.2526	1.0000	.9047	.0923	.953	.4724
4	3.45	.874	0.000	1.2545	0.9403	.9031	.0939	.969	.763
5	3.67	1.135	0.000	1.2926	.8908	.9018	.0982	.982	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WHEEL VELOCITY
1	332.96	-13.36	735.53	807.49	332.96	-13.36	132.52	358.61	603.01
2	346.55	-3.01	691.51	760.53	316.55	3.01	36.34	318.65	615.17
3	302.44	6.92	654.81	724.32	302.44	6.92	42.34	305.4	627.15
4	288.39	24.76	610.80	674.39	284.39	24.76	137.87	317.01	747.67
5	269.41	31.96	574.81	635.61	269.41	31.96	-216.49	347.09	791.29

MACH NUMBER
FLOW ANGLE
(DEG. R)
TEMPERATURE
(DEG. R)

STREAM LINE	ABSOLUTE RELATIVE	ABSOLUTE RELATIVE	FLOW ANGLE (DEG. R)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	.73	.65	21.70	562.23	562.23	1.01/1.01
2	.68	.59	65.65	562.23	514.10	1.0385
3	.65	.57	65.21	562.23	518.93	1.0346
4	.54	.28	62.94	562.23	524.40	1.0353
5	.56	.31	64.89	-38.79	528.61	1.0312

STATION NUMBER	HEAD (IN)	RPM	PRESSURE RATIO	PRESSURE TOTAL (PSI)	TEMPERATURE TOTAL (DEG. R)
1 2	25000.0	1,600	23.520	562.23	

ROTUN EXIT SOLUTION

STREAM POSITION	X=R/HM SHIFT OPEN FLANE	Y=VA/VAM EFFIC. HEAD	Z=VAM/VA RELATIVE	COEFFICIENT	CONT. FLOW	FRACTION RATE
1 2	.875 .925 1.000 1.098 1.175	.0740 .0648 .0605 .1577 .2106	1.0074 1.8666 1.2442 1.2742 1.2983	.9044 .6845 .8704 .8796 .8869	.0968 .1556 .1577 .1204 .1132	.0000 .0156 .1297 .104 .0000
3 4						
5						

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OUTWARD UNIT VECTOR	RADIAL COMPONENT	TANGENTIAL COMPONENT	OUTWARD UNIT VECTOR
1 2	.9341 1.70 2.33 2.82 3.29	-9.36 1.91 5.59 5.54 7.78	25.81 197.80 198.67 191.49 178.27	.635 281.40 304.79 342.56 376.92	233.41 200.70 231.52 232.56 329.78	-9.36 1.91 5.59 5.54 39.13	.561.71 502.43 514.25 520.25 737.80
3 4							
5							

MACH NUMBER

STREAM LINE	Absolute	Relative	Absolute Relative	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1 2	.22 .26 .34	.56 .46 .51 .34	.631 44.59 40.54 34.13 26.40	-67.44 -66.44 -65.76 -63.45 -63.41	490.94 508.52 509.74 502.01 511.37	1.515 1.515 1.515 1.515 499.45	1.4312 1.4990 1.5743 1.4971 1.4815
3 4							
5							

STATION EQUIVALENT TEMPERATURE (DEG. R)

STATION	INLET PRESSURE (PSI)	EQUIVALENT PRESSURE RATIO
1 2	512.14 525.95	1.3 1.2
3 4	528.48 537.04	1.2 1.3
5	544.84	1.4

STATION NUMBER	PAGE NUMBER	KPM	TOTAL/STATIC PRESSURE RATIO	PKIN/EKIN TOTAL TEMPERATURE (PSI) (DEG. K)	INITIAL TOTAL TEMPERATURE (DEG. K)
1	3	25000.0	1.600	23.520	4,662.25

OVERALL TURBINE CHARACTERISTICS

STATION	PRESSURE, TOTAL / STATIC	EFFICIENCY, % / %	HEAD COEFFICIENT	SPEED / JET DEGREE OF REACTION
1	1.7669	1.7096	.8926	2.7008
2	1.6530	1.6963	.8750	2.9889
3	1.5720	1.4942	.7658	2.753
4	1.5007	1.4652	.8614	2.693
5	1.4641	1.4672	.8436	2.6948
			.8436	.4314

MASS AVERAGED QUANTITIES

REFERRED RPM	=	53.63	(HP)
REFERRED HORSE POWER	=	13.37	(FT-LB)
REFERRED MOMENT RATE	=	2.92	(LB/SEC)
REFERRED FLOW RATE	=		
REFERRED RPM	=	24005.76	(HP)
REFERRED HORSE POWER	=	32.19	(FT-LB)
REFERRED MOMENT RATE	=	7.04	(LB/SEC)
REFERRED FLOW RATE	=	1.90	(LB/SEC)
TOTAL/STATIC EFFICIENCY =		26.70	
TOTAL/STATIC PRESSURE RATIO =		.8641	
TOTAL/STATIC PRESSURE RATIO =		1.5192	
HEAD COEFFICIENT	=	1.7933	
HEAD / JET SPEED RATIO	=	.7458	
THEORETICAL DEGREE OF REACTION =		.3263	
MATCH NUMBER AT STATION 0 =		.1609	

SETTER NUMBER 1 PAGE 1 RPM 30000.0 TOTAL/STATIC PRESSURE RATIO 1.600

TOTAL TEMPERATURE 23.520 INITIAL TEMPERATURE 562.23

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/RM SHIFT (IN)	RADIAL OPENING (IN)	Y=VA /VAM EFFICIENCY	LAW BLADE COEFFICIENT	LOSS COEFFICIENT	CONTINUITY	FLOW RATE FRACTION
1	2.764	.845	.0000	1.1019	.9121	.0879	.0879	0.0000
2	3.003	.940	.0000	1.2126	.9091	.0966	.0966	.2549
3	3.195	1.000	.0000	1.2342	.9024	.0928	.0928	.7450
4	3.432	1.074	.0000	1.2526	.9000	.0949	.0949	.7682
5	3.627	1.135	.0000	1.2745	.8989	.0947	.0947	.6009
				2.9246	.8902	.0962	.0962	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	RELATIVE VELOCITY (FPS)
1	341.40	-13.69	754.17	827.96	341.40	-13.69	30.56	343.04
2	324.41	-3.08	768.67	779.40	324.41	-3.08	77.53	333.56
3	305.59	7.09	670.80	738.93	305.59	7.09	165.78	347.73
4	291.23	25.29	625.48	690.42	291.23	25.29	-272.93	399.93
5	275.81	32.72	588.46	650.71	275.81	32.72	-361.09	455.55

MACH NUMBER

FLOW ANGLE (DEG)

TEMPERATURE (DEG. R)

PRESSURE (PSI)

PRESSURE (PSI)

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE	RELATIVE	TOTAL	STATIC	TOTAL	STATIC	TOTAL/STATIC
1	.75	.31	65.65	5.12	542.23	505.19	22.616	15.566	1.01/1.01
2	.70	.30	65.21	-13.44	543.23	511.68	22.719	16.388	1.01/1.01
3	.66	.31	65.21	-28.48	543.23	516.80	22.788	16.768	1.01/1.01
4	.62	.36	65.06	-43.15	542.23	516.56	22.873	17.006	1.01/1.01
5	.58	.40	64.89	-52.63	542.00	527.00	22.939	18.290	1.01/1.01

SETTER NUMBER RPM PRESSURE RATIO TOTAL TEMPERATURE
1 2 30000.0 1.600 23.520 562.23

KOTOR EXIT SOLUTION

STREAM LINE	POSITION	X=R/RM SHIFT OPENING	Y=VA/VAM EFFICIENCY	COEFFICIENT	CONTINUITY	FRACTION
1	2.693	.625	.912	.8859	.1142	0.0000
2	3.626	.925	.9218	.8803	.1187	0.2119
3	3.265	1.000	.9447	.8864	.1239	1.2316
4	3.585	1.198	.9735	.8864	.1336	1.2775
5	3.837	1.175	.983	.8946	.1055	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WALL VELOCITY
1	216.49	-9.25	150.36	275.35	230.42	-9.25	-554.67	600.72	705.03
2	388.55	5.19	357.36	404.51	326.47	5.18	-413.05	472.31	770.61
3	386.49	5.18	351.91	418.51	326.47	5.18	-521.87	551.54	814.78
4	389.45	25.95	336.58	413.19	344.98	25.05	-633.08	668.96	938.65
5	344.98	46.93	315.33	469.17	40.93	46.93	-689.19	771.80	1004.53

MACH NUMBER FLOW ANGLE (DEG.) TEMPERATURE (DEG. R)

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE RELATIVE	TOTAL	STATIC	TOTAL	STATIC	PRESSURE RATIO
1	.36	.53	.31.12	-67.44	489.05	13.508	12.908	1.01/1.01
2	.38	.50	.32.28	-66.48	516.52	16.594	15.115	1.01/1.01
3	.40	.61	.57.24	-65.76	504.11	16.786	15.170	1.01/1.01
4	.40	.61	.49.33	-65.45	521.43	16.793	15.173	1.01/1.01
5	.43	.70	.42.43	-63.41	503.64	16.976	14.841	1.01/1.01

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT INLET PRESSURE (PSI)	EQUIV/STATIC PRESSURE RATIO
1	512.77	16.399	1.3
2	521.52	17.464	1.2
3	529.42	18.463	1.2
4	542.03	20.123	1.3
5	553.26	21.676	1.4

SET NUMBER	PAGE NUMBER	RPM	TOTAL PRESSURE (PSI)	TOTAL STATIC PRESSURE RATIO	TOTAL INLET TEMPERATURE (DEG. R)	TOTAL INLET TOTAL PRESSURE (PSI)
4	3	30000.0	1.600	23.520	562.23	

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	TOTAL/STATIC PRESSURE RATIO	TOTAL EFFICIENCY	HEAD COEFFICIENT	SPEED RATIO	THEORETICAL DEGREE OF REACTION
1	1.8221	.823	.8884	2.0327	.2938
2	1.5561	1.7411	.8565	.9786	.6659
3	1.5554	1.4611	.8790	1.1168	.1372
4	1.5550	1.3865	.8210	.9854	.3435
5	1.5570	1.3894	.8925	.9060	.3380

MARS AVERAGED QUANTITIES

REFERRRED HORSE POWER =	45.44	(HP)
REFERRRED MOMENT =	27.96	(FT-LB)
REFERRRED FLOW RATE =	.2.73	(LB/SFC)
REFERRRED RPM =	28806.91	(RPM)
REFERRRED MOMENT =	4.97	(FT-LB)
REFERRRED FLOW RATE =	1.91	(LB/SEC)
TOTAL/STATIC EFFICIENCY =	6674	
TOTAL/TOTAL EFFICIENCY =	8406	
TOTAL/STATIC PRESSURE RATIO =	1.5087	
TOTAL/TOTAL PRESSURE RATIO =	1.4421	
HEAD COEFFICIENT =	1.3322	
BLADE SPEED RATIO =	1.8045	
THEORETICAL DEGREE OF REACTION =	.2771	
MACH NUMBER AT STATION 0 =	1.1898	

SET NUMBER PAGE RPM PRESSURE/STATIC INLET TOTAL TEMPERATURE TOTAL
1 1 5000.0 1.810 26.460 557.30

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/RM SHIFT	RADIAL BLADE OPENING (IN)	Y=VA /VAM EFFICIENCY	BLADE FRICTION COEFFICIENT	CONTINUITY COEF.	FLOW RATE FRACTION
1	2.764	.865	.0000	1.053	.9152	.0843	0.9000
2	3.093	.940	.0000	1.084	.9068	.0912	.9504
3	3.195	1.000	.0000	1.000	.9033	.0967	.9689
4	3.432	1.074	.0000	1.045	.9390	.1057	.7530
5	3.627	1.135	.0000	1.246	.8888	.1059	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	RADIANT QUANTITY	WINDAGE VELOCITY
1	439.17	-17.62	976.14	1065.96	439.17	-17.62	849.54	956.56	120.60
2	416.55	-1.96	909.97	1000.79	416.55	-3.96	778.93	883.33	131.03
3	402.67	9.09	860.27	942.64	402.67	9.09	720.84	825.23	139.43
4	373.11	32.41	801.34	884.53	373.11	32.41	651.60	751.73	149.73
5	353.15	41.90	753.16	833.17	353.15	41.90	595.20	693.35	150.76

MACH NUMBER FLOW ANGLE (DEG. R)

STREAM LINE	ABSOLUTE RELATIVE	ABSOLUTE RELATIVE	FLOW ANGLE (DEG. R)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	1.01	.91	65.65	62.67	101.101	101/101
2	1.74	.83	65.41	61.82	24.762	2.0454
3	.88	.77	65.41	60.82	24.862	2.0454
4	.81	.69	65.04	60.21	15.078	1.5043
5	.76	.63	64.89	59.32	25.298	2.0454
				557.30	499.54	1.5392
				557.30	499.54	1.5392
				557.30	499.54	1.5392
				557.30	499.54	1.5392

SETTER NUMBER 2 RPM 5000.0 PRESSURE RATIO 1.000 PREINLET TOTAL TEMPERATURE (PSI) 26.460 PREINLET TOTAL TEMPERATURE (DEG. R) 557.30

MOTOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/RM SHIFT RADIAL OPENING	Y=UA / VAM EFFICIENCY	COEFFICIENT OF LOSS	CONTINUITY FRACTION
1	2.693	.825 .0710	.9717	.2278	0.0000
2	3.265	.925 -.0163	.7723	.2298	.2398
3	3.585	1.000 -.0405	.7762	.2313	.2402
4	3.637	1.098 -.1537	.7687	.2335	.4435
5	3.637	1.175 -.2180	.7649	.2352	.7363

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL VELOCITY	OVERALL VELOCITY	WIND FLUID VELOCITY
1	298.34	-11.93	-601.46	671.68	298.76	-11.98	-718.92	729.66	117.50
2	307.67	7.03	-576.53	653.81	308.74	12.93	-708.39	722.50	131.77
3	314.69	27.03	-520.22	626.98	307.42	27.94	-688.74	748.86	152.46
4	326.33	36.72	-261.69	594.51	314.26	38.72	-658.03	730.08	156.44
5			-484.51	595.44	326.33		-651.94		167.42

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	AIRSONIC RELATIVE	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	.62	.72	-6.59	-67.44	526.07	488.52	101/101
2	.60	.71	-6.18	-66.48	524.81	489.24	1.4571
3	.57	.69	-6.036	-65.76	524.53	492.72	1.4677
4	.54	.67	-57.90	-64.45	524.27	495.03	1.4513
5	.54	.67	-56.04	-63.41	523.96	495.44	1.4583

163

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT INLET PRESSURE (PSI)	EQUIV/STATIC PRESSURE RATIO
1	538.98	222.027	1.6
2	538.90	222.166	1.6
3	539.38	222.259	1.5
4	539.27	222.247	1.5
5	539.19	222.247	1.5

STATION NUMBER	PART NUMBER	KPH	PRESSURE RATIO	FRIC. COEFF. / SWING	FRIC. COEFF. TOTAL REACTION	DEGREE OF REACTION
1	3	5,000.0	1.000	.26,460	.557,39	(DEG. R)

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRE-SWING RATIO	TURBINE EFFICIENCY (%)	HEAD COEFFICIENT	SPEED RATIO BEFORE REACTION
1	1.000	1.4521	.3496	.76,464
2	1.9622	1.4521	.4664	.67,357
3	1.3653	1.4521	.6335	.53,493
4	1.7233	1.4383	.6069	.44,477
5	1.7463	1.4383	.6091	.39,392

MASS AVERAGED QUANTITIES

HIGH POWER =	40,80	(HP)
LOW POWER =	42,85	(FT-LB)
LOW POWER RATE =	3,68	(LB/SEC)
REFINED HIGH POWER =	4022,74	(HP)
REFINED MEDIUM POWER =	31,96	(FT-LB)
REFINED MEDIUM RATE =	23,81	(LB/SEC)
REFINED LOW RATE =	2,12	(LB/SEC)
OVERALL STATIC EFFICIENCY =	.3976	
TOTAL / TOTAL EFFICIENCY =	.44,35	
TOTAL / TOTAL PRESSURE RATIO =	1.4494	
HEAD COEFFICIENT =	.54,900	
HEAD / FT SPEED RATIO =	.1,149	
THROTTLING COEFFICIENT =	.0578	
MACH NUMBER AT STATION 0 =	.2417	

SET NUMBER 1 PAGE NUMBER 1 RPM 10000.0 INITIAL STATIC PRESSURE 1.000 TOTAL TEMPERATURE 26.40 INITIAL TOTAL PRESSURE 257.30

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/KIN SHIFT (IN)	RADIAN BLADE OPENING (IN)	Y=VA /VAN BLADE EFFICIENCY	BLADE LOSS COEFFICIENT	CONTINUITY COEFFICIENT	FLOW RATE FRACTION
1	2.764	.865	.0000	1.1035	.9052	.0748	0.0000
2	3.004	.940	.0000	1.042	.8951	.1009	.2544
3	3.195	1.000	.0000	1.252	.8912	.1058	.4742
4	3.432	1.079	.0000	1.2245	.8912	.1058	.7575
5	3.627	1.135	.0000	1.2025	.8910	.1115	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY (FPS)
1	387.07	-15.53	815.05	932.61	387.07	-15.53	613.85	775.86
2	367.44	3.49	813.05	932.61	367.44	3.49	540.62	653.68
3	350.38	6.03	759.46	836.60	350.38	6.03	410.60	527.07
4	329.81	26.64	708.35	781.88	329.81	26.64	408.88	525.66
5	312.54	37.08	666.82	737.36	312.54	37.08	370.30	476.47

MACH NUMBER

STREAM LINE	ABSOLUTE RELATIVE	ABSOLUTE RELATIVE	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. K)	PRESSURE (PSI)	TEMPERATURE (DEG. K)	PRESSURE (PSI)
1	.87	.67	65.65	52.77	552.30	1010	116.110
2	.81	.60	63.41	55.88	552.30	25.020	15.170
3	.76	.54	62.31	53.88	552.30	49.945	25.120
4	.71	.49	62.04	51.31	552.30	50.643	25.140
5	.66	.42	64.09	48.26	552.30	51.206	25.144

SET NUMBER	PAGE NUMBER	RPM	TOTAL/STATIC PRESSURE RATIO	INLET TOTAL TEMPERATURE (DEG. K)	PRESSURE TOTAL TEMPERATURE (DEG. K)
1	2	16000.0	1.800	26.460	557.30

ROTOR EXIT SOLUTION

STREAM LINE	RADIATION POSITION	X=R/RM SHAPING OPENING	Y=VA/VAM EFFICIENCY	COEFFICIENT	CONSTANT	FRACTION
1	2.693	.625	.974	.0116	.1912	.1768
2	3.620	.925	.974	.0116	.2248	.2363
3	3.265	1.000	.974	.0405	.2477	.2464
4	3.595	1.098	.974	.5137	.2771	.2266
5	3.837	1.175	.974	-2.100	.2993	1.0000
					.1.1358	
					.8397	

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL LINE COMPONENT		OVERALL VELOCITY	RADIAL COMPONENT	TANGENTIAL COMPONENT	TANGLENTIAL COMPONENT	OVERALL VELOCITY	WHEEL VELOCITY
	RADIAN	COMPONENT						
1	279.98	-11.23	520.40	279.90	-11.23	-673.58	729.51	235.01
2	279.84	-2.65	469.49	279.04	-2.65	-640.99	699.09	263.54
3	280.08	-6.56	475.20	286.08	-6.56	-635.33	696.91	284.88
4	279.74	26.53	452.32	304.34	26.53	-636.39	696.91	312.84
5	324.93	38.55	453.71	324.93	38.55	-649.14	726.95	334.84

STREAM LINE	MACH NUMBER		FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO	101/SIA	
	ABSOLUTE	RELATIVE						
1	.48	.69	-57.46	-67.44	505.82	483.29	16.625	14.174
2	.42	.64	-25.53	-65.48	505.74	483.40	16.694	14.758
3	.42	.64	-50.75	-65.76	505.44	488.42	16.834	14.932
4	.42	.65	-44.75	-64.45	505.15	488.68	16.923	15.669
5	.42	.67	-44.75	-63.43	504.66	487.53	16.921	14.994

STREAM LINE	EQUIVALENT TEMPERATURE	EQUIVALENT INLET PRESSURE	EQUIV/STATIC PRESSURE RATIO
-------------	------------------------	---------------------------	-----------------------------

	NH	NO	NO ₂	NO _x
June	(PSI)	(PSI)	(PSI)	(PSI)
1	527.57	20.652	1.5	1.5
2	528.07	20.801	1.4	1.4
3	528.81	20.975	1.4	1.4
4	530.14	22.275	1.4	1.4
5	531.56	22.558	1.4	1.4

SET NUMBER	PAGE NUMBER	RPM	PRESSURE/STATIC	TOTAL PRESSURE/INLET TOTAL PRESSURE	TEMPERATURE (DEG. K)
1	3	10000.0	1.800	26.460	557.30

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	TOTAL/STATIC PRESSURE RATIO	TOTAL/STATIC EFFICIENCY	HEAD COEFFICIENT	BLADE/STATION SPACING RATIO	THEORETICAL DEGREE OF REACTION
1	1.8668	1.5916	.5625	.7429	18.8039
2	1.7929	1.5756	.6622	.7596	14.9621
3	1.7721	1.5713	.6120	.7677	12.9877
4	1.7559	1.5616	.6298	.7806	11.0959
5	1.7647	1.5638	.6396	.7877	10.0133

MASS AVERAGED QUANTITIES

REFINED FLOW RATE	=	HORSE POWER	=	62.51 (HP)
REFINED FLOW RATE	=	MOMENTUM	=	32.83 (FT-LB)
REFINED FLOW RATE	=	HEAD	=	3.54 (LB/SEC)
REFINED FLOW RATE	=	REFINED HORSE POWER	=	9644.68 (HP)
REFINED FLOW RATE	=	REFINED MOMENTUM	=	33.50 (FT-LB)
REFINED FLOW RATE	=	REFINED HEAD	=	18.24 (LB/SEC)
REFINED FLOW RATE	=	REFINED HEAD	=	2.04 (LB/SEC)
REFINED FLOW RATE	=	TOTAL/STATIC EFFICIENCY	=	6118
REFINED FLOW RATE	=	TOTAL/STATIC PRESSURE RATIO	=	7683
REFINED FLOW RATE	=	THEORETICAL DEGREE OF REACTION	=	1.5922
REFINED FLOW RATE	=	HEAD COEFFICIENT	=	13.3686
REFINED FLOW RATE	=	BLADE/STATION SPACING RATIO	=	2258
REFINED FLOW RATE	=	THEORETICAL DEGREE OF REACTION	=	2036
REFINED FLOW RATE	=	MACH NUMBER AT STATION 0	=	1.2056

SET PAGE RPM TOTAL/STATIC INLET TOTAL
NUMBER 1 15000.0 PRESSURE RATIO TEMPERATURE
1 1.460 26.460 557.30

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/RH SHIFT (IN)	RADIAL OPENING (IN)	Y=VA /VAN BLADE EFFICIENCY	BLADE LOSS	CONTINUITY	FLOW RATE FRACTION
1	2.764	.865	.21129	1.0086	.9907	.0993	0.0000
2	3.095	.948	.00000	.9956	.9995	.1005	.2550
3	3.432	1.060	.00799	1.0000	.9986	.1044	.4750
4	3.627	1.074	.00000	.9455	.9984	.1066	.7582
5	3.627	1.135	.00000	.2926	.8929	.1018	1.0000

ABSOLUTE VEL./CITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	RELATIVE VELOCITY (FPS)
1	367.32	-14.73	811.42	890.81	367.32	-14.73	449.61	580.76	361.81
2	338.52	-3.32	763.72	819.94	349.62	3.32	370.64	509.52	353.10
3	314.81	27.65	723.82	792.34	338.65	27.65	356.62	456.13	418.29
4	298.55	35.42	656.15	714.35	298.55	35.42	326.92	389.03	419.29
5	298.55	35.42	636.95	704.35	298.55	35.42	162.19	341.60	474.77

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE RELATIVE	FLOW ANGLE	TEMPERATURE (DEG. R.)	PRESSURE (PSI)	PRESSURE RATIO
1	.82	.53	65.65	50.76	557.30	491.27	1.01/1.01
2	.77	.47	65.41	49.68	557.30	498.59	1.01/1.01
3	.72	.41	65.21	42.68	557.30	504.39	1.01/1.01
4	.67	.35	65.04	35.79	557.30	510.95	1.01/1.01
5	.63	.31	64.89	28.52	557.30	516.02	1.01/1.01

STREAM NUMBER	PIPE NUMBER	KINN NUMBER	RELATIVE/STATIC PRESSURE RATIO	INLET TOTAL PRESSURE (PSI)	INLET TOTAL TEMPERATURE (DEG. K)
1	2	15000.0	1.000	26.460	557.30

ROTON EXIT SOLUTION

SINKFAM LINE	RELATION POSITION	X-Y/Z-MIN SHIFT INLEAD OF TURBINE	Y-Z-YA WAV EFFECTIVE	COEFFICIENT	CONTINUITY	FLOW RATE
1	2.693	.6975	.0710	.1912	.8597	.1404
2	3.020	.975	.0168	.134	.6766	.1314
3	3.265	1.000	.0405	.2447	.0000	.0000
4	3.585	1.078	.1147	.1671	.8719	.1202
5	3.837	1.175	.2110	.3247	.8736	.1214
				.21063	.8039	.1162
						.1162

ANSWER VELOCITY (FPS)

SINKFAM LINE	RELATIONAL COMPONENT	ROTATIONAL COMPONENT	TRANSLATIONAL VELOCITY	COMPONENT	ROTATIONAL COMPONENT	TRANSLATIONAL VELOCITY	WALL VELOCITY
1	222.46	-11.05	.500.15	.44.89	225.36	-11.05	.660.66
2	268.50	2.52	.193.54	.349.84	261.80	2.52	.663.43
3	269.51	6.49	.193.54	.352.87	262.51	6.49	.663.31
4	308.03	26.75	.174.72	.355.17	309.51	26.75	.644.10
5	357.47	40.00	.171.32	.380.31	337.17	40.00	.673.59

MACH NUMBER

SINKFAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE RELATIV	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. K)	PRESSURE (PSI)	PRESSURE RATIO
1	.39	.67	.4H.40	-67.44	491.75	475.92	15.32
2	.37	.67	.4H.81	-66.48	491.32	483.71	14.77
3	.39	.67	.4H.86	-65.76	491.16	481.78	15.82
4	.34	.66	.49.57	-64.45	491.10	481.61	14.64
5	.35	.70	.56.94	-63.41	491.65	480.62	15.92
						14.76	1.6637
						15.90	1.6141

SINKFAM LINE	ROTATIONAL TEMPERATURE	ROTATIONAL PRESSURE RATIO	ROTATIONAL PRESSURE RATIO
1	1D.G. R.	510.78	19.545
2		529.43	19.468
3		522.54	20.240
4		525.08	21.721
5		527.96	21.211

SECTOR NUMBER	PAGE	RPM	PRESSURE/STATIC	PRESSURE/TOTAL	TOTAL TEMPERATURE AT TOTAL (PSI)	DEGREE AT TOTAL
1	3	15000.0	1.800	26.460	557.30	

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE TOTAL/STATIC	TOT/STAT EFFICIENCY	HEAD COEFFICIENT	SPEED RATIO	DEGREE OF REACTION
1	1.988	.7035	.8236	6.6495	.3858
2	1.7884	.7492	.8403	6.6497	.2309
3	1.7856	.7562	.8475	5.8274	.2367
4	1.6669	.7513	.8538	5.0891	.3059
5	1.6637	.7414	.8571	4.6491	.3963
				.4638	.4730

MASS AVERAGED QUANTITIES

HORSE POWER	=	76.87	(HP)
MOMENTUM FLOW RATE	=	26.91	(FT-LB)
		3.51	(LB/SEC)
REFERRED RPM	=	14467.03	(HP)
REFERRED HORSE POWER	=	41.19	(FT-LB)
REFERRED MOMENTUM	=	14.95	(LB/SEC)
REFERRED FLOW RATE	=	2.02	(LB/SEC)
TOTAL/STATIC EFFICIENCY	=	74.45	
TOTAL/TOTAL EFFICIENCY	=	.7445	
TOTAL/STATIC PRESSURE RATIO	=	1.8055	
TOTAL/TOTAL PRESSURE RATIO	=	1.8051	
HEAD COEFFICIENT	=	6.0665	
BLADE/JET SPEED RATIO	=	.4060	
THEORETICAL DEGREE OF REACTION	=	.7227	
MACH NUMBER AT STATION	=	.2014	

ST1
Number 1
MACH 20000.0
KPM 1800
TOTAL PRESSURE 26.460
TOTAL TEMPERATURE 557.30

STATOR EXIT SOLUTION

STREAM LINE	SECOND POSITION (IN)	X+R/RM SHIFT (IN)	RADIAL BLADE OPENING (IN)	Y=VA/VAN EFFICIENCY	BLADE COEFFICIENT	LOSS COEFFICIENT	MASS CONTINUITY	FLOW RATE FRACTION
1	2.764	.865	.0000	.2126	1.0996	.9048	.0952	0.0000
2	3.603	.940	.0000	.2347	1.0461	.9034	.0466	.2565
3	3.195	1.000	.0000	.2576	1.0000	.9023	.0777	.4760
4	3.432	1.074	.0000	.2745	.9468	.9012	.0988	.0796
5	3.627	1.135	.0000	.2926	.8916	.9002	.0948	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM AXIAL LINE COMPONENT	RADIAL TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WALL VELocities
1	552.41	-14.13	773.26	854.40	.352.34	-14.13	295.95
2	327.43	3.18	752.26	805.27	.335.18	3.18	268.06
3	327.43	7.33	691.70	764.16	.329.49	7.33	135.98
4	361.48	16.12	662.43	714.64	.304.41	16.12	48.49
5	265.67	31.89	669.50	673.98	.285.67	31.89	23.53

MACH NUMBER

STREAM LINE	RELATIVE ABSOLUTE	FLOW ANGLE (DEG)	TEMPERATURE (DEG. K)	PRESSURE (PSI)	PRESSURE RATIO
1			TOTAL STATIC	101.101	101.101
2			TOTAL STATIC	16.304	1.5672
3			TOTAL STATIC	25.287	1.0464
4			TOTAL STATIC	25.414	1.4770
5			TOTAL STATIC	25.515	1.4771
			TOTAL STATIC	16.541	1.0523
			TOTAL STATIC	19.418	1.5327
			TOTAL STATIC	20.115	1.3144
			TOTAL STATIC	25.721	1.0387

STATION NUMBER	PIPE NUMBER	KPM	PRESSURE RATIO	TOTAL TEMPERATURE (DEG. R)
1	2	20000.0	1.800	26.460
				557.30

ROTOR EXIT SOLUTION

STREAM LINE	POSITION	X=R/RH SHIFT	RADIAL OPENING	Y=UA / UAM EFFIC. PLATE	COEFFICIENT	CONDUCTIVITY	FRICTION KATE
1	2.693	.825	.07.0	.9112	.0062	.1131	.0000
2	3.265	1.060	-.01.8	.9118	.0055	.1085	.0243
3	3.565	1.098	-.04.7	.9145	.0050	.1050	.0169
4	3.637	1.175	-.15.7	.9142	.0050	.1140	.0142
5			-.21.6	.9164	.0050	.1210	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	LATERAL COMPONENT	OUTWARD VELOCITY	WHEEL VELOCITY
1	5.0.07	-0.75	-175.09	320.36	266.07	-10.75	-645.11	470.02
2	5.0.21	7.34	-39.64	249.58	269.76	-5.34	-596.22	535.02
3	5.0.22	5.17	-29.61	271.40	309.26	-6.67	-592.90	542.25
4	5.0.25	5.86	-20.91	311.5	309.26	-26.67	-546.98	510.33
5	3.47.51	41.23	-24.56	340.81	347.51	-41.23	-694.24	777.45

RELATIVE VELOCITY (FPS)

STREAM LINE	X=R/RH SHIFT	RADIAL OPENING	Y=UA / UAM EFFIC. PLATE	COEFFICIENT	CONDUCTIVITY	FRICTION KATE
1	2.693	.825	.07.0	.9112	.0062	.1131
2	3.265	1.060	-.01.8	.9118	.0055	.1085
3	3.565	1.098	-.04.7	.9145	.0050	.1050
4	3.637	1.175	-.15.7	.9142	.0050	.1140
5			-.21.6	.9164	.0050	.1210

MACH NUMBER

STREAM LINE	Absolute	Relative	Absolute Relative	TOTAL	STATIC	TOTAL	STATIC	PRESSURE RATIO
1	.30	.67	-.67.15	.67.44	.461.12	.472.56	.14.545	.81.91
2	.23	.57	-.57.13	.57.43	.438.05	.454.76	.15.144	.84.41
3	.25	.61	-.61.17	.61.76	.490.15	.494.51	.15.289	.67.56
4	.29	.67	-.67.67	.67.45	.490.52	.492.53	.15.759	.1.74.5
5	.34	.72	-.4.64	.64.41	.490.35	.490.11	.15.619	.1.6940

STREAM LINE	TEMPERATURE (DEG. R)	PRESSURE (PSI)	EQUILIBRIUM PRESSURE RATIO
1	513.20	18.549	1.4
2	516.55	19.483	1.3
3	520.42	20.079	1.3
4	525.45	20.841	1.4
5	530.41	21.632	1.5

ST. NO.	PAGE NUMBER	KPH	TOTAL/STATIC PRESSURE RATIO	PRF STATION TOTAL TEMPERATURE (PSI)	INLET TOTAL TEMPERATURE (DEG. R)
1	3	20000.0	1.80	26,460	557.30

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE RATIO TOT/STA	EFFICIENCY TOT/100	HEAD COEFFICIENT	BLADE/WAKE RATIO	THEORETICAL DEGREE OF REACTION
1	1.7328	.7944	.8699	4.953	.4454
2	1.7445	.8221	.8746	3.581	.5200
3	1.7351	.6493	.8746	3.146	.5299
4	1.7792	.7887	.8698	2.817	.3449
5	1.6946	.7614	.8593	2.6368	.4425
					.6158
					.5235

MASS AVERAGED QUANTITIES

REFINED HORSE POWER = $B_1 \cdot 09$ (HP)
 REFINED MOMENT RATE = $21,30$ (FT-LB)
 REFINED FLOW RATE = $3,51$ (LB/SEC)

REFINED RPM = 19289.37
 REFINED HORSE POWER = 43.45 (HP)
 REFINED MOMENT RATE = 11.83 (FT-LB)
 REFINED FLOW RATE = $.2.02$ (LB/SEC)

TOTAL/STATIC EFFICIENCY = $.6026$
 TOTAL/TOTAL EFFICIENCY = $.6221$
 TOTAL/TOTAL PRESSURE RATIO = 1.6980

HEAD COEFFICIENT = $.8721$
 BLADE/WAKE RATIO = 1.7262
 THEORETICAL DEGREE OF REACTION = $.3662$
 MACH NUMBER AT STATION 0 = $.2015$

SET NUMBER 1 PAGE 1 RPM 25000.0 TOTAL/STATIC PRESSURE RATIO 1.810 INLET TOTAL TEMPERATURE 577.30

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/RM SHIFT (IN)	RADIAL BLADE OPENING (IN)	Y=VA /VAM EFFICIENCY	BLADE LOSS COEFFICIENT	CONTINUITY	FLOW RATE FRACTION
1	2.764	.865	.000	1.008	.9085	.9215	0.000
2	3.063	.945	.000	1.066	.9064	.9236	.2567
3	3.195	1.000	.079	1.000	.9047	.9253	0.953
4	3.432	1.074	.000	1.026	.9032	.9268	.4772
5	3.627	1.135	.000	1.049	.9044	.9268	.7598
					.8909	.9019	1.0000
						.981	

ABSOLUTE VELOCITY (FPS)

STREAM LINE COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WHEEL VELOCITY
1	353.56	-14.18	781.02	857.44	353.56	-14.18	178.01	396.09
2	336.16	-3.19	734.34	807.63	336.16	-3.19	79.07	345.97
3	330.62	7.35	695.41	766.94	330.62	7.35	74.04	655.17
4	302.05	26.23	648.72	716.97	302.05	26.23	99.65	697.15
5	286.15	33.95	610.53	675.11	286.15	33.95	-180.77	748.62
							340.17	791.29

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE (PSI)	PRESSURE RATIO
	Absolute	Relative	Absolute	Relative	Total	Static	101/101
1	.79	.36	.65 .65	26.73	557.30	496.12	16.860
2	.73	.38	.65 .41	13.56	557.30	503.02	17.725
3	.64	.39	.65 .84	-18.31	557.30	508.49	25.535
4	.66	.38	.64 .89	-32.28	557.30	514.63	25.635
5					519.37	519.37	19.406
						25.732	20.106
							1.0263
							1.3160

NUMBER	NUMBER	RPM	PRESSURE/STATIC	PRESSURE/TOTAL	TOTAL (PSI)	FRACTION
1	2	25000.0	1.800	26.460	557.30	

ROTOR EXIT SOLUTION

STREAM LINE	POSITION	X=R/RM	SUPERFICIAL OPEN ENGINE	$\gamma = \text{VA} / \text{VAM}$	EFFECTIVE	COEFFICIENT	CONDUCTIVITY	FRACTION RATE
1	2.673	.825	.0710	1.9112	1.0024	.9035	.0266	.0966
2	3.825	.925	.0168	.2318	.8851	.8858	.1443	.1143
3	3.595	.1.068	.0405	.2447	.8000	.8725	.1275	.2076
4	3.837	.1.098	.1537	.2347	.8867	.8819	.1181	.4058
5	3.837	.1.175	.2100	.2983	.1.1613	.8893	.1108	.7035

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY
1	269.51	-10.81	-761.06	276.55	269.51	-10.81	-648.58	702.43
2	237.98	-2.26	112.08	263.10	237.98	-2.26	-546.66	594.32
3	268.87	-2.15	112.08	292.61	268.87	-2.15	-592.15	556.84
4	319.86	-2.11	115.94	340.36	319.86	-2.11	-667.17	740.16
5	366.00	-43.42	105.92	383.48	366.00	-43.42	-731.19	818.83

RELATIVE VELOCITY (FPS)

STREAM LINE	MACH NUMBER	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO	
1	.26	.66	-12.77	-67.44	472.55	13.797
2	.24	.55	-25.24	-66.48	489.53	13.158
3	.27	.61	23.21	-65.76	483.29	12.720
4	.32	.69	19.83	-64.45	491.67	15.201
5	.36	.76	16.14	-63.41	491.66	15.774

175

STREAM LINE	TEMPERATURE (DEG. R)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE/STATIC RATIO
1	507.64	18.270	1:4
2	513.35	19.085	1:3
3	519.35	19.950	1:3
4	522.38	21.142	1:4
5	535.21	22.335	1:5

STREAM LINE	TEMPERATURE (DEG. R)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE/STATIC RATIO
1	101/101	101/101	101/101
2	101/101	101/101	101/101
3	101/101	101/101	101/101
4	101/101	101/101	101/101
5	101/101	101/101	101/101

SET NUMBER	PAGE NUMBER	RPM	TOTAL/STATIC RATIO	PRESSURE (PSI)	TOTAL TEMPERATURE (DEG. R.)	TOTAL
1	3	25000.0	1.800	26.460	557.30	

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	TOTAL PRESSURE RATIO TOTAL	TOTAL EFFICIENCY %	HEAD COEFFICIENT	BLADE/JET SPEED RATIO	THEORETICAL DEGREE OF REACTION
1	2.0110	1.9778	.8765	.8915	.3326
2	1.7544	1.6632	.8766	.8797	.2150
3	1.7673	1.6853	.8696	.8681	.0690
4	1.7956	1.6753	.8653	.8621	.8400
5	1.8329	1.6781	.7411	.8568	1.7001

MASS AVERAGED QUANTITIES

HORSE POWER =	81.93	(HP)
MOMENT RATE =	17.21	(FT-LB)
FLOW RATE =	3.52	(LB/SEC)
REFERRED RPM =	24111.71	(RPM)
REFERRED MOMENT RATE =	43.30	(FT-LB)
REFERRED FLOW RATE =	9.56	(LB/SEC)
TOTAL STATIC EFFICIENCY =	7241	
TOTAL TOTAL EFFICIENCY =	.6710	
TOTAL STATIC PRESSURE RATIO =	1.8998	
TOTAL TOTAL PRESSURE RATIO =	1.8905	
HEAD COEFFICIENT =		
BLADE/JET SPEED RATIO =	2.1851	
THEORETICAL DEGREE OF REACTION =	.6765	
MACH NUMBER AT STATION 0 =	.3723	
	.2622	

SET PAGE
NUMBER 1 NUMBER 1 RPM 30000.0 PRESSURE RATIO 1.806 INFLATE TOTAL 26.460 PRESSURE NET TOTAL 557.30

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/RM SHIFT (IN)	RADIAL OPENING (IN)	Y=VA /VAN BLADE EFFICIENCY	COEFFICIENT OF LOSS	CONTINUITY	FLOW RATE FRACTION
1	2.764	.865	.0 .0000	1.0158	.0876	.0076	
2	3.803	.940	.0 .0000	1.0157	.0904	.0904	0.0000
3	3.195	1.000	.0 .0000	1.0156	.0927	.0927	.2562
4	3.432	1.074	.0 .0000	1.0155	.0945	.0945	.4753
5	3.627	1.135	.0 .0000	1.0154	.0961	.0961	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL TANGENTIAL COMPONENT	DOWNFALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WIND VELOCITY
1	362.67	-14.55	801.15	879.53	362.67	-14.55	371.15	723.62
2	344.62	3.27	752.84	827.97	344.62	-33.37	346.25	786.21
3	359.37	7.53	712.33	785.01	359.37	26.82	352.63	636.58
4	369.41	26.87	664.32	733.51	369.41	233.95	368.79	699.41
5	293.84	34.97	625.22	691.36	293.84	34.97	324.33	438.49

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE RELATIVE	FLOW ANGLE (DEG)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	.81	.34	65.65	12.07	557.30	492.93	101/101
2	.76	.32	65.41	15.53	557.30	506.62	1.6660
3	.71	.31	65.21	20.39	557.30	506.02	1.0407
4	.66	.35	65.04	37.69	557.30	512.53	1.5187
5	.62	.39	64.89	47.90	557.30	512.53	1.0374

SET NUMBER 2 RPM 10000.0 PRESSURE RATIO 1.000 PRESSURE TOTAL TEMPERATURE (PSI) (DEG. R)

MOTOR EXIT SOLUTION

STREAM LINE	POSITION	X=R/RM SIN RADIAL OPEN BLADE	Y=VA /VM EFFICIENCY	COEFFICIENT	CONDUCTIVITY	FRACTION RATE
1	2.693	.825	.0710	.9130	.0470	.0000
2	3.225	.925	.0768	.6930	.1070	.2084
3	3.585	1.068	.0405	.6780	.1221	.3689
4	3.632	1.099	.2447	.2000	.1125	.6874
5	3.632	1.175	.2137	.2431	.1051	.0066
			.2983	.4460		

ABSOLUTE VELOCITY (FPS)

STREAM LINE	COMPONENT	RADIAL	TANGENTIAL	OVERALL	AXIAL	RADIAL	TANGENTIAL	OVERALL	WINDING
1	265.45	-10.65	66.22	273.79	265.45	-10.65	66.18.81	621.85	705.03
2	264.13	2.13	275.76	355.36	226.13	2.13	514.85	561.92	790.61
3	262.49	6.09	272.12	352.40	262.04	6.09	529.6.61	532.85	854.78
4	353.58	28.10	262.04	417.32	323.58	28.10	529.6.61	532.85	854.78
5	379.44	45.02	246.49	454.71	379.44	45.02	-758.03	848.89	1004.53

MACH NUMBER

FLOW ANGLE
(DEG.)

TEMPERATURE
(DEG. R)

PRESSURE
(PSI)

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE	RELATIVE	TOTAL	STATIC	TOTAL	STATIC	PRESSURE RATIO
1	.26	.66	.14.01	.767.44	.468.59	.462.35	.13.407	.12.794	.101/101
2	.33	.52	.16.90	.766.48	.495.08	.494.79	.16.422	.15.234	.2.0684
3	.35	.59	.46.05	.65.76	.494.69	.485.24	.16.490	.15.186	.1.6113
4	.39	.79	.39.00	.64.45	.494.88	.484.39	.16.656	.15.023	.1.6047
5	.42	.79	.33.01	.63.41	.494.71	.482.50	.16.671	.14.747	.1.5886

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT INLET PRESSURE (PSI)	EQUIV/STATIC PRESSURE RATIO
1	502.18	1.6284	1.4
2	510.61	1.6284	1.2
3	519.23	1.6273	1.3
4	531.26	2.3394	1.4
5	542.46	2.3394	1.6

SET NUMBER	PAGE NUMBER	RPM	TOTAL/STATIC RATIO	PRESSURE TOTAL (PSI)	INLET TOTAL TEMPERATURE (DEG. R.)
1	3	30000.0	1.800	26,460	557.30

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE TOTAL/STA TOT/STA	EFFICIENCY TOT/STATION	MACH NUMBER	SPEED/JET DEGREE OF REACTION
1	2.0683	1.9739	.9072	.6457
2	1.7659	1.6113	.8733	.7953
3	1.5424	1.5947	.8551	.8440
4	1.7813	1.5886	.8663	.8984
5	1.7942	1.5872	.6719	.4058
			.8359	.4867
			.1425	

MASS AVERAGED QUANTITIES

HORSE POWER =	75.08	(HP)
MOMENTUM =	13.14	(FT-LB)
FLOW RATE =	3.53	(LB/SEC)
REFERRED RPM =	28934.05	
REFERRED HORSE POWER =	40.33	(HP)
REFERRED MOMENTUM =	7.10	(FT-LB)
REFERRED FLOW RATE =	2.03	(LB/SEC)
TOTAL/STATIC EFFICIENCY =	.7419	
TOTAL/TOTAL STATIC PRESSURE RATIO =	.6626	
TOTAL/TOTAL PRESSURE RATIO =	1.7930	
TOTAL/TOTAL HEAD =	1.7462	
HEAD COEFFICIENT =		
BLADE/JET SPEED RATIO =		
THEORETICAL DEGREE OF REACTION =		
MACH NUMBER AT STATION 0 =		

SET NUMBER 1 RPM 5000.0 PRESSURE STATION 2.000 INFINITE TOTAL TEMPERATURE 29.400 INFINITE TOTAL PRESSURE 591.01

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/RH (IN)	RADIAL SHIFT (IN)	BLADE OPENING (IN)	$\gamma = v_A / v_m$	BLADE EFFICIENCY	LOSS COEFFICIENT	CONTINUITY	FLOW RATE FRACTION
1	2.764	.865	0.0000	.2126	1.1063	.9231	.0769	.0769	0.0000
2	3.003	.940	0.0000	.2347	1.088	.9158	.0842	.0842	.2993
3	3.195	1.000	0.0290	.2526	1.0000	.9100	.0900	.0900	.4666
4	3.432	1.074	0.1000	.2745	.9885	.9046	.0954	.0954	.7618
5	3.627	1.135	0.0000	.2926	.8879	.9011	.0999	.0999	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WAKE VELOCITY
1	486.05	-19.58	1078.13	1183.62	488.05	719.58	957.53	1074.92	120.60
2	462.68	10.89	1010.13	1111.61	462.68	47.40	879.70	993.96	131.03
3	447.96	10.89	955.11	1052.11	447.96	10.99	815.68	930.65	139.43
4	391.88	35.49	892.19	981.51	391.88	35.49	739.46	849.23	149.73
5	391.88	46.49	835.63	924.08	391.88	46.49	677.42	783.88	158.26

MACH NUMBER

FLOW ANGLE

TEMPERATURE

(DEG R.)

STREAM LINE	ABSOLUTE RELATIVE	ABOLUTE RELATIVE	TOTAL	STATIC	TOTAL	STATIC	101/TOT	101/SIA
1	1.14	1.01	65.65	63.00	72.44	12.674	1.0751	2.3197
2	1.03	1.92	65.21	62.26	68.19	11.956	1.0706	2.0505
3	1.96	1.65	65.21	61.23	68.66	11.234	1.0736	2.2259
4	1.89	.77	65.64	60.76	51.61	22.732	1.0550	1.6517
5	.83	.76	64.89	59.97	59.10	22.869	1.0549	1.6517

NUMBER	MACH NUMBER	RPM	PRESSURE RATIO	PRESSURE TOTAL TEMPERATURE (PSI)	PRESSURE TOTAL TEMPERATURE (DEG. R)
1	2	5000.0	2.000	29.400	591.01

ROTOR EXIT SOLUTION

STREAM LINE	POSITION	X=R/RM	RADIAL OPENING	Y=UA / UAM EFFICIENCY	COEFFICIENT	CONTINUITY	FRACTION RATE
1	2.693	.925	.0710	.9713	.7753	.2248	0.0000
2	3.268	.925	.0168	.2218	.7718	.2282	.2393
3	3.265	1.000	.0405	.2447	.0000	.2308	.4424
4	3.885	1.198	.1537	.2747	.0194	.2345	.7357
5	3.837	1.175	.2100	.2983	.0538	.2374	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	RADIAL OPENING	AXIAL COMPONENT	RADIAN	TANGENTIAL COMPONENT	OVERALL VELOCITY	WHEEL VELOCITY
1	336.20	-13.49	-691.57	769.86	3736.20	-13.49	-809.04	826.25	147.50
2	346.05	3.31	-667.76	753.65	3441.06	3.31	-799.53	842.61	142.77
3	352.86	39.65	-626.16	765.36	3451.15	30.65	-768.64	848.31	142.44
4	364.76	43.28	-581.39	680.86	364.76	43.28	-728.71	816.06	167.42
5			-561.29						

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE RELATIVE	TOTAL	STATIC	TOTAL	STATIC	10T/10I	10T/10A
1	.70	.79	.64 .08	.67 .44	.555 .85	.506 .63	.19 .365	.13 .292	.1 .5162
2	.68	.79	.62 .47	.66 .48	.555 .33	.507 .14	.19 .235	.14 .068	.2 .0862
3	.65	.76	.61 .07	.65 .76	.554 .00	.511 .90	.19 .427	.14 .734	.1 .5133
4	.61	.74	.58 .75	.64 .45	.553 .71	.515 .15	.19 .619	.15 .578	.1 .4986
5	.60	.73	.56 .69	.63 .41	.553 .36	.515 .92	.19 .651	.15 .527	.1 .4961

EQUIVALENT TEMPERATURE (DEG. R)

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE RATIO
1	578.52	24.169	1.7
2	578.41	24.210	1.7
3	571.89	24.410	1.7
4	571.83	24.586	1.6
5		24.794	1.6

SET NUMBER	PAGE NUMBER	RPM	PRESSURE/STATIC RATIO	PRESSURE TOTAL (PSI)	TOTAL TEMPERATURE (DEG. F)	TOTAL HEAD/BLADE LENGTH RATIO
1	3	5000.0	2.000	29.400	591.01	

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE RATIO TOT/STA	TOT/STA EFFICIENCY	HEAD COEFFICIENT	BLADE/JET SPEED RATIO	THEORETICAL DEGREE OF REACTION
1	2.19002	.5115	.5291	.2818	.1186
2	2.0869	.5285	.5437	.4130	.0021
3	1.9955	.3474	.65	.4437	.0439
4	1.9294	.3686	.5782	.2298	.1241
5	1.9119	.3769	.5859	.9336	.2098

MASS AVERAGED QUANTITIES

NONREF REFERRED HORSE POWER =	50.34	(HP)
MOMENT FLOW RATE =	52.88	(FT-LB)
	.02	(LB/SEC)
REFERRED HORSE POWER =	4682.79	(HP)
REFERRED MOMENT FLOW RATE =	23.58	(FT-LB)
	26.44	(LB/SEC)
2.15		
TOTAL/TOTAL STATIC EFFICIENCY =	34.75	
TOTAL/TOTAL PRESSURE RATIO =	56.01	
TOTAL/TOTAL PRESSURE RATIO =	2.045	
	3.119	
HEAD COEFFICIENT		
BLADE/JET SPEED RATIO		
THEORETICAL DEGREE OF REACTION		
MACH NUMBER AT STATION 0		

SET NUMBER 1 PAGE 1 RPM 10000.0 PRESSURE/STATIC RATIO 2.000 INLET TOTAL TEMPERATURE 29.440 °R 591.01

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/RM	RADIAL SHFT OPENING (IN)	BLADE EFFICIENCY	Y=VA /VAN	WAKE COEFFICIENT	CONTINUITY	FRICTION RATE
1	2.76	.865	.0000	.9126	1.1048	.0878	.0078	0.0006
2	3.07	.94	.0000	.9147	1.0911	.0944	.0944	.259
3	3.145	1.00	.0000	.9156	1.0906	.0948	.0948	.471
4	3.432	1.074	.0000	.9152	.9334	.1043	.1043	.754
5	3.627	1.135	.0000	.9152	.8875	.1079	.1079	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY
1	438.56	-17.27	951.13	1044.19	430.56	-17.27	709.93	830.47
2	408.48	3.88	892.34	981.40	408.48	7.86	730.27	753.03
3	394.59	8.92	843.80	927.50	394.59	8.92	564.94	689.16
4	366.11	31.88	786.31	867.95	366.11	31.86	406.84	609.97
5	346.65	41.13	739.61	817.85	346.65	41.13	423.09	540.51

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE RELATIVE	FLW ANGL E (DEG)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRES SURF RATIO
1	.95	.76	.65 .65	58.77	574.01	15.426	1.0676
2	.89	.68	.65 .41	59.66	510.81	17.663	1.0055
3	.83	.54	.65 .64	59.67	519.12	17.663	1.0055
4	.77	.48	.64 .69	59.69	528.32	29.004	1.0499
5	.72	.48	.64 .69	59.69	535.35	28.126	1.0453

NUMBER PAGE RPM PRESSURE RATING INLET TOTAL TEMPERATURE
1 2 10000.0 2.000 (PSI) (DEG. R)
29.400 591.01

ROTOR EXIT SOLUTION

STREAM LINE	POSITION	X=R/RM SPATIAL OPENING	Y=VA/VAM EFFICIENCY	COEFFICIENT	CONT. NO.	FRACTION RATE
1	2.693	.625	.0710	.9212	.8273	.1227
2	3.020	.925	-.0668	.2218	.8374	.1236
3	3.265	1.0005	-.0605	.2447	.8375	.1235
4	3.585	1.098	-.0537	.2742	.8372	.1237
5	3.837	1.175	-.2100	.2983	.8359	.1678

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OUTWARD VELOCITY	COMPONENT	AXIAL	RADIAL	TANGENTIAL	INWARD VELOCITY	WHEEL VELOCITY
1	325.69	-13.06	-549.77	638.28	425.69	125.06	783.79	848.86	335.84	364.84
2	327.49	3.11	-568.54	598.00	425.40	7.11	780.25	820.25	304.93	312.93
3	333.47	2.63	-455.53	564.36	323.47	30.68	724.45	812.56	312.68	314.68
4	351.18	34.59	-421.55	554.36	322.14	44.15	734.43	832.50	334.84	344.84
5	372.11	34.15	-408.55	554.36						

MACH NUMBER	FLOW ANGLE (DEG)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE	RELATIVE	TOTAL	STATIC	TOTAL	STATIC	TOTAL	STATIC	PRESSURE RATIO
1	.588	.78	-52.52	-67.44	541.37	497.47	17.42	13.83	1.682	1.682	2.1151
2	.584	.75	-56.18	-66.48	531.66	501.88	17.55	14.42	1.672	1.672	2.1066
3	.551	.74	-53.00	-65.76	531.25	504.04	17.58	14.72	1.6723	1.6723	2.1070
4	.58	.74	-50.28	-64.45	529.88	504.76	17.62	14.91	1.6634	1.6634	2.1071
5	.50	.76	-47.68	-63.41	529.28	503.71	17.65	14.84	1.6642	1.6642	2.1074

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT INLET PRESSURE (PSI)	EQUIV/STATIC PRESSURE RATIO
1	557.43	22.124	1.6
2	557.87	22.175	1.6
3	559.42	22.207	1.6
4	559.97	23.185	1.6
5	561.38	23.492	1.6

SET NUMBER	PAGE NUMBER	KPM	LOGARITHMIC STATIC PRESSURE RATIO	INFINITE TOTAL TEMPERATURE (PSI)	INITIAL TOTAL TEMPERATURE (DEG. R)
1	3	10000.0	2.000	29.400	591.01

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE RATIO 101/SIA	TOT/SIA	HEAD COEFFICIENT	BLADE/JET SPEED RATIO	THEORETICAL DEGREE OF REACTION
1	2.1253	1.6974	.5208	.7269	.23 .6552
2	2.0386	1.6772	.5545	.7434	.2056 .1862
3	1.9970	1.6723	.5734	.7525	.5292 .5471
4	1.9717	1.6634	.5862	.7644	.2626 .2463
5	1.9804	1.6652	.5889	.7704	.2820 .3284

MSS AVERAGED QUANTITIES

HORSE POWER =	61.03	(HP)
HORIZONTAL FLOW RATE =	42.56	(FT-LB)
	3.93	(LB/SEC)
REFERRED RPM =	9365.59	(HP)
REFERRED HORSE POWER =	21.20	(FT-LB)
REFERRED MOMENT =	2.10	(LB/SEC)
TOTAL/STATIC EFFICIENCY =	5674	
TOTAL/TOTAL EFFICIENCY =	.7522	
TOTAL/STATIC PRESSURE RATIO =	2.0123	
HEAD COEFFICIENT =	16.8734	
BLADE/JET SPEED RATIO =	.2434	
THEORETICAL DEGREE OF REACTION =	.2574	
MACH NUMBER AT STATION 0 =	.2093	

SET NUMBER 1 PAGE 1 RPM 15000.0 TOTAL/STATIC PRESSURE RATIO 2.000 INLET TOTAL TEMPERATURE 29.400 EXIT TOTAL TEMPERATURE 591.61

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/RM SHIFT (IN)	RADIAL BLADE OPENING (IN)	Y=VA /VAM EFFICIENCY	COEFF. OF LOSS	CONTINUITY	FLOW RATE FRACTION
1	2.764	.865	.00000	1.1015	.9061	.0939	
2	3.003	.940	.00000	1.0467	.9023	.0978	0.0000
3	3.195	1.000	.00000	1.2126	.7347	.2534	
4	3.432	1.074	.00000	1.0000	.2576	.1010	
5	3.627	1.135	.00000	1.0000	.2745	.1011	.4724
					.2926	.8928	.7566
						.8988	1.0011
							1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	RELATIVE VELOCITY (FPS)
1	402.85	-16.16	889.91	976.98	402.85	-16.16	520.11	664.41
2	382.88	3.64	836.24	919.70	382.80	3.64	441.13	585.41
3	339.73	8.37	791.86	872.18	339.73	8.37	371.57	525.68
4	324.25	29.90	739.37	816.13	324.25	29.90	320.16	451.22
5	326.51	38.74	696.63	776.33	326.51	38.74	224.86	396.65

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE	RELATIVE	TOTAL	STATIC	TOTAL	STATIC	PRESSURE RATIO
1	.89	.60	.65	.65	.52.67	.591.01	.511.58	.37.71	101/101
2	.82	.52	.65	.47	.49.18	.591.01	.520.61	.37.71	101/101
3	.77	.47	.65	.42	.45.38	.591.01	.527.50	.38.03	101/101
4	.72	.40	.65	.35	.48.13	.591.01	.535.59	.38.03	101/101
5	.68	.35	.64.89	.34.20		.591.01	.541.63	.38.35	101/101

SET NUMBER	PAGE NUMBER	RPM	PRESSURE/STATIC RATIO	TOTAL PRESSURE (PSI)	TOTAL TEMPERATURE (DEG. R)
1	2	15000.0	2.000	29.400	591.01

ROTOR EX11 SOLUTION

STREAM LINE	POSITION	X=R/RM SWIRLING OPEN FLANGE	Y=VA /VA MAX EFFICIENCY	COEFFICIENT	CONTINUITY	FRICTION KATE
1	2.493	.825	.0716	.9311	.1443	0.0000
2	3.928	.925	-.0168	.8667	.1373	.2513
3	3.265	1.008	-.0205	.8680	.1320	.2693
4	3.585	1.098	-.0237	.8750	.1250	.2443
5	3.837	1.175	-.2166	.8805	.1195	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL TANGENTIAL	QUADRANT	VELOCITY	COMPONENT	AXIAL RADIAL	TANGENTIAL	WHEEL VELOCITY
1	312.83	-12.55	-400.31	508.29	314.83	-12.55	-752.63	815.34
2	304.44	2.89	-304.84	430.27	318.22	7.28	-699.34	762.74
3	318.22	30.28	-279.21	423.45	316.56	30.08	-704.60	803.98
4	346.38	30.88	-254.97	431.15	345.82	44.59	-724.42	462.33
5	375.82	44.59	-248.55	452.78			-750.81	840.81

FLOW ANGLE (DEG)

STREAM LINE	MACH NUMBER	FLOW ANGLE (DEG)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO	WHEEL VELOCITY
1	A1	75	RELATIVE	ABSOLUTE	TOTAL STATIC	TOTAL STATIC
2	.49	.76	-52.00	-67.44	513.94	492.45
3	.39	.71	-44.48	-66.48	516.30	506.89
4	.39	.73	-41.27	-65.76	516.03	501.75
5	.41	.77	-33.46	-63.45	515.82	498.13

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE RATIO	EQUIVALENT PRESSURE RATIO
1	547.77	21.291	1.6	1.6
2	549.31	21.619	1.5	1.5
3	551.33	21.285	1.5	1.5
4	554.07	23.039	1.6	1.6
5	556.96			

SET NUMBER	PAGE NUMBER	NPM	TOTAL/STATIC PRESSURE RATIO	INLET TOTAL TEMPERATURE (PSI)	INLET TOTAL TEMPERATURE (DEG. R.)
1	3	15000.0	2.000	29.400	591.01

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE TOTAL/STATION	EFFICIENCY TOTAL/STATION	HEAD COEFFICIENT	SPEED/FT SPEED OF REACTION
1	2.1431	.6664	.6129	10.6175
2	1.9837	.6842	.6292	8.6792
3	1.9676	.7216	.8343	7.1371
4	1.9697	.7225	.8447	6.1975
5	1.9958	.7160	.8493	5.6453

MASS AVERAGED QUANTITIES

REFERRED RPM	14048.78	(HP)
REFERRED HORSE POWER	4.26	(FT-LB)
REFERRED MOMENTUM	17.29	(FT-LB)
REFERRD FLOW RATE	2.06	(LB/SEC)
TOTAL/STATIC EFFICIENCY	.7116	
TOTAL/STATIC PRESSURE RATIO	.8352	
TOTAL/STATIC PRESSURE RATIO	1.9776	
HEAD COEFFICIENT	1.2858	
BLADE/FT SPEED RATIO	7.4088	
THEORETICAL DEGREE OF REACTION	.3674	
MACH NUMBER AT STATION 0	.3372	
	.2057	

SET NUMBER 1 PAGE 1 RPM 20600.0 TOTAL STATIC PRESSURE RATIO 2.000 INLET TOTAL TEMPERATURE 591.01

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/RM SHIFT (IN)	RADIAL OPENING (IN)	BLADE Y=VA / VAM EFFICIENCY	BLADE COEFFICIENT	LOSS CONTINUITY	FLOW RATE FRACTION
1	2.764	.865	.0000	1.007	.9088	.0912	0.0000
2	3.003	.940	.0000	1.065	.9064	.0936	.2543
3	3.195	1.008	.0291	1.000	.9045	.0955	.4242
4	3.432	1.074	.0000	1.045	.9034	.0966	.7576
5	3.627	1.135	.0000	1.000	.9024	.0976	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OUTWARD VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WHEEL VELOCITY
1	392.34	-15.74	866.69	951.49	392.34	-15.74	384.28	549.41	482.41
2	373.92	81.54	814.87	896.20	373.92	81.54	370.73	472.95	424.14
3	356.55	8.16	771.72	850.99	356.55	8.16	343.99	420.21	357.72
4	335.55	37.69	729.82	794.83	335.55	37.69	321.13	357.67	356.94
5	317.71	37.69	679.83	746.56	317.71	37.69	344.82	323.86	343.03

RELATIVE VELOCITY (FPS)

STREAM LINE	MACH NUMBER	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO	
1	Absolute	Relative	Absolute Relative	Total Static	Total Static	
2	.85	.49	.65 .65	591.01	27.919	1.0530
3	.75	.37	.65 .41	591.01	28.068	1.0426
4	.70	.31	.65 .21	591.01	28.188	1.0561
5	.66	.28	.64 .04	591.01	28.339	1.0374
			64.89	591.01	28.455	1.0332
						1.3786

18.0

NUMBER	NUMBER	RPM	PRESSURE/STATIC		PRESSURE TOTAL, TEMPERATURE TOTAL	
			(PSI)	(DEG. R)	(PSI)	(DEG. R)
1	2	20000.0	2.000	29.400	591.01	

ROTOR EXIT SOLUTION

STREAM LINE	RADIAl POSITION	X=R/RM	SHRIMPAN DRYING BLADE	Y=VA /VAM	EFFECTIVE BLADE	COEFFICIENT	CONT/ZEIT%	FLOW RATE
1	2.193	0.25	0.710	1.912	.9698	.1162	.1162	0.0000
2	3.126	0.925	0.168	3.218	.9701	.1110	.1110	.2257
3	3.655	1.000	0.495	1.247	.9929	.1071	.1071	.4250
4	3.695	1.098	1.537	2.947	.9880	.1121	.1121	.7184
5	3.837	1.175	-2.100	2.983	.9841	.1159	.1159	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WHEEL VELOCITY
1	307.44	-12.33	-269.85	408.26	307.44	-12.34	-739.87	501.30
2	292.90	-2.74	-136.58	316.57	286.90	-7.34	-663.65	527.07
3	310.61	-119.86	-119.86	318.61	318.61	-7.34	-669.21	566.95
4	349.86	-105.81	-105.81	366.78	349.86	-7.34	-731.58	611.50
5	388.62	46.31	-106.70	405.63	388.62	46.31	-776.38	669.44

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE	RELATIVE	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	1.18	7.4	-44.28	-62.44	500.32	466.38	14.810	1.01/1.01
2	1.29	6.6	-25.30	-66.48	507.95	499.45	15.598	1.914
3	1.30	6.9	-21.10	-65.10	508.01	499.09	15.442	1.8493
4	1.34	7.4	-16.03	-64.45	508.22	497.02	15.310	1.8442
5	1.37	8.0	-15.35	-63.34	507.91	494.01	15.252	1.9977

EQUIVALENT
TEMPERATURE
(DEG. R)

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT PRESSURE (PSI)	EQUIV/STATIC PRESSURE RATIO
1	539.81	2.331	1.5
2	543.05	2.872	1.4
3	546.71	2.460	1.5
4	551.82	2.129	1.6
5	556.92	2.112	

SET NUMBER PAGE RPM TOTAL/STATIC PRESSURE TOTAL INLET TEMPERATURE TOTAL
1 3 20000.0 2.000 29.400 591.01

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	TOT/STA TOT/STA	EFFICIENCY _{TOT/STA}	CoeffICIENT	SPEED RATIO	DEGREE OF REACTION
1	2.1924	.9851	.8625	4.1204	.3015
2	1.9613	.8433	.8025	.5272	.2876
3	1.9621	.8443	.8007	.5997	.3578
4	1.9577	.8479	.7890	.8716	.2306
5	1.9525	.8652	.8640	.5516	.4511
				.5280	

MASS AVERAGED QUANTITIES

HORSE POWER =	109.74	(HP)
MOMENT =	28.85	(FT-LB)
FLOW RATE =	3.85	(LB/SEC)
REFERRED RPM =	18731.18	
REFERRED HORSE POWER =	18751.39	(HP)
REFERRED MOMENT =	14.41	(FT-LB)
REFERRED FLOW RATE =	2.06	(LB/SEC)

TOTAL/STATIC EFFICIENCY =	.7067
TOTAL/TOTAL EFFICIENCY =	.8704
TOTAL/STATIC PRESSURE RATIO =	2.0109
TOTAL/TOTAL PRESSURE RATIO =	1.8666
HEAD COEFFICIENT =	4.1972
RATE/JOET SPEED RATIO =	4.4881
THEORETICAL DEGREE OF REACTION =	.3779
MACH NUMBER AT STATION 0 =	.2052

AD-A101 102

NAVAL POSTGRADUATE SCHOOL MONTEREY CA
COMPUTER EVALUATION OF THE ON-AND-OFF DESIGN PERFORMANCE OF AN --ETC(LM)
MAR 81 R CIRONE

F/G 9/2

NL

UNCLASSIFIED

3 OF 3
AD
A10102

END
ON
TIME
7-81
DTC

SET PAGE RPM TOTAL/STATIC INLET TOTAL
NUMBER NUMBER PRESSURE RATIO TEMPERATURE
1 1 25000.0 2.000 29.400 591.01

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/RM SHIFT (IN)	RADIAL OPENING (IN)	BLADE Y=VA /VAM EFFICIENCY	LOSS COEFFICIENT	CONTINUITY	FLOW RATE FRACTION
1	2.764	.865	.0000	.9123	.0866	.0866	0.0000
2	3.083	.940	.0000	.9127	.0869	.0869	.0553
3	3.195	1.000	.0270	.9072	.0875	.0875	.0925
4	3.432	1.074	.0000	.9026	.0858	.0842	.4754
5	3.627	1.135	.0000	.9044	.0804	.0756	.7584

ABSOLUTE VELOCITY (FPS)

STREAM AXIAL LINE COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	RELATIVE VELOCITY (FPS)
1	386.90	-15.48	852.49	916.12	386.06	-15.48	452.98
2	366.71	3.48	801.07	841.02	366.71	3.48	394.68
3	356.19	8.01	758.19	835.20	350.19	8.01	355.56
4	329.50	39.57	705.94	780.45	329.50	39.57	333.95
5	311.83	39.06	665.30	735.68	311.83	39.06	338.95

MACH NUMBER FLOW ANGLE (DEG. R)

STREAM LINE	ABSOLUTE RELATIVE	ABSOLUTE RELATIVE	FLOW ANGLE (DEG. R)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	.84	.91	65.65	73.90	591.01	101/101
2	.76	.95	62.41	29.69	521.01	1.6610
3	.71	.91	62.21	29.69	521.01	1.0482
4	.68	.89	65.04	-27.21	540.33	1.0434
5	.64	.86	64.89	-22.00	591.01	1.4942

SET NUMBER 2 PAGE 2 RPM 25000.0 PRESSURE/STATIC (PSI) 29.400 TOTAL TEMPERATURE (DEG. R) 591.01

ROTOR EXIT SOLUTION

STREAM LINE	POSITION	X=R/ARM SHIPPIAL OPENING DE	Y=VA /VA M EFFICIENCY	COEFFICIENT	CONTINUITY	FRICTION RATE
1	2.63	.825	.0710	.9112	.9019	.0981
2	3.08	.925	.0168	.2218	.8912	.0889
3	3.265	1.000	.0405	.2447	.8831	.1089
4	3.555	1.098	.1537	.2747	.8861	.1170
5	3.837	1.175	.2100	.2983	.8865	.1139
					.1115	.1115

ABSOLUTE VELOCITY (FPS)

STREAM AXIAL LINE COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	RELATIVE VELOCITY (FPS)
1 300.44	-12.95	-135.50	322.91	300.44	-12.95	-723.83	783.06
2 361.49	6.98	43.19	373.28	327.49	2.49	-623.66	680.19
3 351.34	6.99	43.26	364.62	301.00	6.99	-668.35	712.94
4 359.12	38.51	39.55	395.85	35.34	30.54	-734.67	714.93
5 399.12	47.35	39.75	403.88	399.12	47.35	-797.35	892.92

MACH NUMBER FLOW ANGLE (DEG)

STREAM LINE	ABSOLUTE RELATIVE	RELATIVE	TOTAL	STATIC	TOTAL	STATIC	PRESSURE (PSI)
1 .31	.73	-24.26	-67.44	492.19	483.14	14.198	13.305
2 .25	.62	-27.39	-66.48	507.52	501.20	15.995	15.313
3 .28	.67	8.31	-65.76	508.25	500.55	15.995	15.162
4 .33	.74	7.71	-64.45	509.10	498.57	16.023	14.696
5 .37	.62	5.69	-63.41	508.94	495.36	16.023	14.484

STREAM ABSOLUTE RELATIVE

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE RATIO	EQUIVALENT PRESSURE RATIO	EQUIVALENT PRESSURE RATIO	EQUIVALENT PRESSURE RATIO	PRESSURE RATIO
1 539.6	539.6	19.687	1.5	1.5	1.5	1.5	1.01/1.01
2 532.78	532.78	20.512	1.3	1.3	1.3	1.3	2.0092
3 545.29	545.29	21.366	1.4	1.4	1.4	1.4	1.9164
4 553.83	553.83	22.629	1.6	1.6	1.6	1.6	1.9256
5 561.71	561.71	23.884	1.6	1.6	1.6	1.6	2.0274

SET NUMBER	PAGE NUMBER	RPM	TOTAL/STATIC PRESSURE RATIO	INLET TOTAL PRESSURE (PSI)	TOTAL TEMPERATURE (DEG. R)
1	3	25000.0	2.000	29.400	594.01

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE RATIO TOT/TOT	EFFICIENCY TOT/TOT	HEAD COEFFICIENT	BLADE SPEED/RATIO	DEGREE OF REACTION
1	2.097	.8249	.8905	.9591	.3135
2	1.9194	.8381	.8850	.8132	.3634
3	1.9390	.8381	.8772	.5169	.3721
4	1.9237	.8381	.8708	.5199	.4637
5	1.8465	.7584	.8640	.0771	.5399

MASSED AVERAGED QUANTITIES

HORSE POWER =	108.40	(HP)
MOMENT RATE =	22.79	(FT-LB)
FLOW RATE =	3.77	(LB/SEC.)
REFERRRED RPM =	23413.97	
REFERRRED HORSE POWER =	50.80	(HP)
REFERRRED MOMENT RATE =	11.40	(FT-LB)
REFERRRED FLOW RATE =	12.02	(LB/SEC.)
TOTAL/STATIC EFFICIENCY =	.8051	
TOTAL/STATIC EFFICIENCY =	.8726	
TOTAL/STATIC PRESSURE RATIO =	1.9876	
TOTAL/TOTAL PRESSURE RATIO =	1.8673	
HEAD COEFFICIENT =		
BLADE/JET SPEED RATIO =	2.4465	
THEORETICAL DEGREE OF REACTION =	.4147	
MACH NUMBER AT STATION 6 =	.3915	
	.3916	

SET NUMBER 1 PAGE 1 RPM 30000.0 TOTAL/STATIC PRESSURE 2.06
TOTAL TEMPERATURE 591.01

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=8/RM SHIFT (IN)	RADIAL BLADE OPENING (IN)	Y=VA /VAM EFFICIENCY	BLADE COEFFICIENT	LOSS COEFFICIENT	CONTINUITY	ZETA*	FLOW RATE
1	2.74	.865	.0000	.2126	1.1043	.9201	.0799	.0799	0.0000
2	3.05	.948	.0000	.2347	1.0488	.9156	.0644	.0644	.2548
3	3.37	1.008	.0000	.2526	1.0000	.9119	.0881	.0881	.4748
4	3.69	1.074	.0000	.2745	.9393	.9095	.0905	.0905	.7500
5	3.62	1.135	.0000	.2926	.8893	.9075	.0925	.0925	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WHEEL VELOCITY
1	397.81	-15.93	877.82	962.83	397.81	-15.93	153.40	425.92	723.62
2	352.11	-13.58	823.06	905.21	326.77	3.58	36.85	378.59	786.21
3	337.92	-8.99	728.49	857.45	352.11	8.23	58.18	376.98	816.58
4	319.71	-57.93	683.32	859.63	335.72	22.33	173.08	389.62	898.41
5				754.28	349.71	37.93	-267.43	418.53	949.55

MACH NUMBER

STREAM LINE	Absolute	Relative	Absolute	Relative	Total	STATIC	Total	STATIC	PRESSURE RATIO
1	.87	.38	65.65	21.13	591.01	513.87	28.060	17.211	1.7102
2	.81	.34	65.41	5.59	591.01	522.83	28.181	18.149	1.6413
3	.76	.32	65.21	-9.38	591.01	529.83	28.268	19.264	1.6246
4	.78	.33	65.04	-27.14	591.01	537.47	28.397	20.394	1.6353
5	.66	.37	64.89	-39.91	591.01	543.67	28.497	21.226	1.6317

SET NUMBER 2
NUMBER 2
RPM 30000.0
PRESSURE RATIO 2.000
PRESSURE TOTAL (PSI) 29.400
PRESSURE TOTAL (PSI) 591.01

MOTOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/mm	RADIAL OPENING	Y=VA /VAN EFFICIENCY	COEFFICIENT	CONTINUITY	FRACTION
1	2.693	825	.0710	.1912	1.0000	.0886	0.0000
2	3.265	925	-.0969	.2249	.9755	.1069	.2310
3	3.585	1.008	-.0695	.2447	1.0000	.1205	.3933
4	3.637	1.078	-.1537	.2747	1.2088	.1089	.6982
5		1.175	-.2180	.2983	1.4017	.0004	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	RADIAL VELOCITY	AXIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WHEEL VELOCITY
1	297.96	-11.95	192.87	298.14	297.96	-11.95	297.94	296.57
2	259.14	6.76	196.09	324.10	259.14	6.76	259.15	256.93
3	296.19	6.78	196.09	325.84	296.19	6.78	296.16	294.61
4	357.88	39.88	196.44	410.27	357.88	39.88	357.94	354.63
5	415.16	49.26	175.12	453.27	415.16	49.26	415.16	400.53

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE	RELATIVE	FLOW ANGLE (DEG)	TEMPERATURE (DEG. R.)	PRESSURE (PSI)	PRESSURE RATIO	PRESSURE RATIO
1	.28	.73	-6.34	-6.44	483.98	476.57	13.44	12.73	101/101
2	.30	.59	-36.92	-66.48	508.96	500.20	16.215	15.260	1.01/1.01
3	.32	.66	33.64	-65.76	510.67	499.70	16.257	15.067	1.01/1.01
4	.37	.76	28.83	-64.45	512.32	498.57	16.390	14.901	1.7938
5	.42	.85	22.87	-63.41	512.49	495.40	16.351	14.520	1.7981

STREAM LINE

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R.)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE RATIO
1	526.75	18.769	1.5
2	535.33	19.932	1.7
3	543.00	20.014	1.4
4	552.88	20.215	1.5
5	561.18	20.475	1.7

SET NUMBER 1 PAGE 3 RPM 30000.0 TOTAL STATIC PRESSURE RATIO 2.000 TOTAL INLET TEMPERATURE (PSI) 29.400 INITIAL (DEG. R) 591.01

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE RATIO	EFFICIENCY	HEAD COEFFICIENT	BLADE AREA	SPEED OF REACTION
1	2.3053	.8531	.9053	2.8795	.5983
2	1.9267	.8126	.8880	1.7672	.3117
3	1.9513	.8134	.8710	1.7644	.2625
4	1.7938	.7812	.8646	1.5536	.3421
5	1.7981	.7545	.8646	1.4379	.4377
					.5164

MASS AVERAGED QUANTITIES

REFERRRED HORSE POWER =	105.42	(HP)
REFERRRED MOMENT OF INERTIA =	18.46	(FT-LB)
REFERRRED FLOW RATE =	3.75	(LB/SEC)
REFERRRED HORSE POWER =	28096.77	(HP)
REFERRRED MOMENT OF INERTIA =	49.37	(FT-LB)
REFERRRED FLOW RATE =	2.00	(LB/SEC)
TOTAL/STATIC EFFICIENCY =	7849	
TOTAL/TOTAL PRESSURE RATIO =	2.075	
TOTAL/TOTAL PRESSURE RATIO =	2.040	
HEAD COEFFICIENT =	1.8516	
BLADE/JET SPEED RATIO =	1.8333	
THEORETICAL DEGREE OF REACTION =	1.6678	
MACH NUMBER AT STATION 0 =	1.1995	

SETTER NUMBER 1 PAGE 1 RPM 15000.0 PRESSURE/STATIC 2.200
 INLET/STATIC TOTAL PNEUMATIC TEMPERATURE 603.60
 32.340

STATOR EXIT SOLUTION

STREAM LINE	POLAR POSITION (IN)	X=R/RM SHIFT (IN)	RADIAL BLADE OPENING (IN)	Y=VA /VAM EFFICIENCY	LOSS COEFFICIENT	CONTINUITY	FLOW RATE
1	2.764	.865	.00000	.2126	1.1032	.9106	.0894
2	3.083	.940	.00000	.2347	1.0473	.9062	.0948
3	3.195	1.000	.0250	.2526	1.0060	.9092	.0992
4	3.435	1.074	.00000	.2745	1.0468	.9082	.0998
5	3.627	1.135	.00000	.2926	.9720	.8996	.1004

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WIEFFL VELICITY
1	427.56	-12.15	944.51	1036.92	427.56	-17.15	502.70	722.94	361.81
2	485.92	-3.86	886.73	975.24	405.92	3.86	491.63	639.11	39.10
3	387.58	8.87	839.15	924.37	387.58	8.87	420.86	572.20	416.29
4	364.53	31.67	783.13	864.34	364.63	31.67	332.93	495.44	441.20
5	345.74	41.82	737.65	815.69	345.74	41.82	262.88	436.26	474.77

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE	RELATIVE	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R.)	PRESSURE (PSI)	PRESSURE RATIO
1	.93	.65	.65 .65	.53 .73	603.60	514.13	30.446	101/101
2	.87	.57	.65 .41	.50 .52	603.60	524.46	30.586	1.01/101
3	.82	.43	.65 .21	.47 .36	603.60	524.50	30.706	1.01/101
4	.76	.38	.65 .09	.42 .25	603.60	511.42	30.603	1.01/101
5	.71	.38	.64 .69	.37 .25	603.60	510.24	31.082	1.01/101

SEAL NUMBER	PAGE NUMBER	RPM	TOTAL STATIC PRESSURE RATIO	INLET TOTAL TEMPERATURE (PSI)	TOTAL PRESSURE (PSI)	INLET TOTAL TEMPERATURE (DEG. R.)
1	2	15000.0	2.206	32-340	603.60	

MOTOR EXIT SOLUTION

SIREAM LINE	RADIAL POSITION	X=R/RM	RADIAL SHIFT	BLADE OPENING	Y=VA/VAM	BLADE EFFICIENCY	COEFFICIENT	LOSS	CONTINUITY	FLOW RATE FRACTION	
										1	2
1	2.693	.825	.0718	.1912	.9817	.6565	.1436	.1436	.1436	.0	.0000
2	2.323	.8265	-.0005	.2267	.6246	.6224	.1326	.1326	.1326	.2	.0000
3	2.323	.5895	-.0005	.2267	1.0000	.6669	.1331	.1331	.1331	.4	.0004
4	2.175	.833	-.2500	.2933	1.0000	.6754	.1247	.1247	.1247	.4254	.0000
5	2.175	.833	-.175	.2933	1.0000	.6820	.1180	.1180	.1180	.1	.0000

ARMED FORCES OF THE UNITED STATES (AFSC)

STREAM LINE NUMBER	AXIAL LINE COMPONENT		OVERALL VELOCITY	RADIAL COMPONENT	TANGENTIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WELL INFLUENCE
	RADIAL COMPONENT	TANGENTIAL COMPONENT							
1	340.83	-13.67	578.87	340.83	-13.67	-520.21	688.31	352.51	
2	334.38	-13.18	572.80	334.38	-13.18	-518.34	687.74	351.31	
3	342.19	-12.94	543.55	488.50	347.19	-771.93	845.55	427.39	
4	372.22	-315.28	491.68	375.22	-32.59	-744.61	707.33	469.57	
5	405.14	-48.07	510.86	405.14	48.07	-809.38	906.39	502.26	

832 M. J. S. HOGG

EDITORIAL TEAM EDITORIAL BOARD EDITORIAL STAFF

TEMPERATURE (DEG. R.)	PRESSURE (cm. Hg.)	PRESSURE RATIO
557.97	9.93	1.7
558.59	9.26	1.6
558.88	9.06	1.6
558.98	8.82	1.7
559.31	8.64	

SETTER NUMBER	NOMINAL RPM	PRESSURE RATIO	HEAD COEFFICIENT	PRESSURE TOTAL TEMPERATURE
1	3	15000.0	2.200	32.340
				603.60

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	TOT/STAT PRESSURE RATIO	TOT/STAT EFFICIENCY	HEAD COEFFICIENT	SPEED/RATIO	PRESSURE TOTAL TEMPERATURE
					(PSI)
					(DEG. R)
1	2.167	1.969	.6416	.8059	12.0635
2	2.169	1.893	.6851	.8227	9.3694
3	2.168	1.893	.6958	.8297	8.1781
4	2.166	1.822	.7020	.8400	7.0560
5	2.172	1.875	.6979	.8466	6.4139

MASS AVERAGED QUANTITIES

REFERRED RPM	=	118.32	(HP)
REFERRED MOMENT FLOW RATE	=	4.18	(FT ³ /SEC)
REFERRED HORSE POWER	=	13901.10	(HP)
REFERRED MOMENT FLOW RATE	=	18.83	(FT ³ /SEC)
REFERRED FLOW RATE	=	2.05	(LB/SEC)
TOTAL STATIC EFFICIENCY	=	64.92	
TOTAL/STATIC EFFICIENCY	=	.6492	
TOTAL/STAT TOTAL PRESSURE RATIO	=	2.4782	
HEAD COEFFICIENT	=	1.6890	
BLADE/NET SPEED RATIO	=	8.4406	
THEORETICAL DEGREE OF REACTION	=	.3438	
MACH NUMBER AT STATION 0	=	.3997	
		.2049	

SETER NUMBER 1 PAGE 1 20000.0 RPM PRESSURE/STATIC 32.340 PRESSURE/TOTAL 603.60

STATION EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/MM	RADIAL SHIFT	BLADE OPENING (IN)	Y=VA/VAM	BLADE EFFICIENCY	COEFF (C _E)	LOSS (%)	CONT ZF (MM)	FLOW RATE
1	2.764	.865	.0000	.2126	1.1014	.9111	.0899	.0889	.0619	0.0000
2	3.003	.940	.0000	.2142	1.0618	.9081	.0819	.0843	.0943	0.2550
3	3.095	1.000	.0000	.2522	1.0000	.9557	.0943	.0955	.0955	4.2424
4	3.432	1.024	.0000	.2545	1.0000	.9445	.0955	.0965	.0965	7.564
5	3.427	1.135	.0000	.2926	.8912	.9035	.0965	.0965	.0965	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	RELATIVE VELOCITY (FPS)
1	414.83	-16.61	914.61	1004.10	414.03	-16.61	432.20	598.75
2	393.50	1.74	859.60	945.39	393.50	3.74	335.46	517.10
3	381.15	8.61	813.88	896.54	381.15	8.61	256.16	482.41
4	353.54	30.71	759.31	838.14	353.54	30.71	160.37	557.72
5	335.61	39.75	714.75	790.37	335.61	39.75	81.72	598.94

MACH NUMBER FLOW ANGLE (DEG.) TEMPERATURE (DEG. R)

STREAM LINE	ABSOLUTE RELATIVE	ABSOLUTE RELATIVE	TOTAL	STATIC	TOTAL	STATIC	PRESSURE (PSI)	PRESSURE RATIO
1	.90	.54	65.65	46.23	603.60	519.20	18,119	1.0572
2	.84	.46	65.21	49.45	603.60	529.23	30,652	1.7849
3	.79	.40	65.21	33.91	603.60	536.66	20,483	1.059
4	.73	.34	65.94	24.40	603.60	545.15	31,077	1.0407
5	.69	.30	64.89	13.71	603.60	551.62	31,245	1.0360

NUMBER	NUMBER	RPM	PRESSURE/STATIC (PSI)	PRESSURE TOTAL TEMPERATURE (DEG. R)	FRICTION RATE
1	2	20000.0	2.200	32.340	603.60

ROTOR EXIT SOLUTION

STREAM LINE	POSITION	X=R/RM AND CAPITAL OPENING	Y=VA / VAH EFFICIENCY	COEFFICIENT	CONTINUITY	FRICTION RATE
1	2.693	.825	.0710	.1912	.8852	.1148
2	3.020	.925	.0168	.2818	.8896	.1104
3	3.265	.900	.0405	.2447	.9391	.1071
4	3.585	.899	.1537	.2747	.0000	.1071
5	3.837	1.175	.2100	.2983	1.1131	.0970

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	Absolute Velocity (fps)	RELATIVE VELOCITY (fps)	WHEEL VELOCITY
1	338.59	-13.57	-343.92	482.56	330.32	-13.57	811.52
2	321.46	7.66	-211.66	363.01	321.59	7.66	605.71
3	381.20	7.66	-190.52	343.99	342.46	7.66	864.01
4	419.97	33.28	-179.25	455.25	381.49	33.28	864.20
5	419.97	49.83	-169.33	455.56	419.97	49.83	939.58

STREAM LINE	MACH NUMBER	FLOW ANGLE (DEG)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO	PRESSURE RATIO
1	1.45	.82	Absolute	Total	Static	Total/Static
2	1.35	.74	Relative	Absolute	Total	Total/Total
3	1.36	.76	-45.48	-67.44	481.69	1.3274
4	1.39	.81	-33.35	-66.48	510.05	1.6270
5	1.42	.86	-29.10	-65.76	509.98	1.6307
			-24.20	-64.45	510.44	1.6361
			-21.96	-63.41	509.43	1.6291

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE RATIO	EQUIVALENT PRESSURE RATIO
1	548.55	201.890	1.6	1.6
2	551.71	312.460	1.5	1.5
3	555.44	321.090	1.5	1.5
4	560.26	321.079	1.7	1.7
5	565.62	24.864	1.7	1.7

SET NUMBER	PAGE NUMBER	KPM	TOTAL/STATIC PRESSURE RATIO	INLET TOTAL TEMPERATURE (PSI)	INITIAL TOTAL TEMPERATURE (DEG. R.)
1	5	20000.0	2.200	32.340	603.60

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	TOTAL PRESSURE RATIO	TOTAL EFFICIENCY	HEAD EFFICIENCY	SPEED RATIO	DEGREE OF REACTION
1	2.4163	2.1235	.7400	.8587	.0014
2	2.1655	1.9837	.7824	.8897	.2302
3	2.1622	1.9832	.7842	.8229	.6118
4	2.1885	1.9766	.7728	.8759	.0543
5	2.2398	1.9851	.7582	.8770	.7248

MASS AVERAGED QUANTITIES

REFERRED FLOW RATE	=	HORSE POWER =	136.30 (HP)
	=	MOTOR POWER =	136.30 (FT-LB)
	=	FLOW RATE =	4.25 (LB/SEC)
REFERRED RPM	=		
REFERRED MOMENTUM	=		
REFERRED FLOW RATE	=		

TOTAL STATIC EFFICIENCY =	77.2%
TOTAL / TOTAL EFFICIENCY =	.8716
TOTAL / TOTAL PRESSURE RATIO =	2.0005
HEAD COEFFICIENT =	4. H ^{1.49}
JET SPEED RATIO =	4.557
THEORETICAL DEGREE OF REACTION =	.3978
MACH NUMBER AT STATION 0 =	.2082

SET NUMBER 1 PAGE 1 RPM 25000.0 TOTAL PRESSURE RATIO 32.340

TOTAL STATIC PRESSURE RATIO 32.340

INLET TOTAL TEMPERATURE 603.60

STATOR EXIT SOLUTION

STREAM LINE	RADIAN POSITION	X=R/RN	RADIAL OPENING (IN)	Y=UR / UAM	EFFICIENCY	HEAD	CONT. LOSS	HEAD	FRACTION
1	2.764	.865	.2126	1.1029	.9153	.0847	.0147	.0847	.0000
2	3.033	.900	.2347	1.0424	.9115	.0885	.0085	.0885	.0543
3	3.195	1.000	.2526	1.0000	.9084	.0916	.0916	.0916	.4741
4	3.352	1.044	.2745	.9399	.9062	.0933	.0933	.0933	.7575
5	3.627	1.135	.2926	.6903	.9053	.0947	.0947	.0947	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERRALL VELOCITY	AXIAL	RADIAL	TANGENTIAL	OUTWARD VELOCITY	WIND VELOCITY
1	403.36	-16.18	891.84	978.22	403.36	-16.18	288.03	495.90	604.01
2	382.97	3.44	816.81	920.33	382.97	3.44	181.64	423.97	655.17
3	365.73	8.17	791.95	812.27	365.73	8.17	94.70	372.99	691.14
4	343.77	29.66	716.73	804.99	343.77	29.66	10.54	345.22	748.17
5	325.61	38.63	691.71	720.20	325.61	38.63	96.58	341.82	791.39

MACH NUMBER

STREAM LINE	ABSOLUTE RELATIVE	ABSOLUTE RELATIVE	FLOW ANGLE (DEG)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	.67	.44	65.65	35.53	603.60	527.97
2	.61	.37	65.41	25.37	603.60	533.12
3	.57	.33	65.21	14.52	603.60	540.29
4	.51	.30	65.04	7.72	603.60	548.33
5	.47	.30	64.89	-16.52	603.60	554.49

STREAM LINE	Absolute	Relative	Absolute	Relative	Total	Static	Total	Static	Total/Static
1	.67	.44	65.65	35.53	603.60	527.97	30.776	16.757	1.7244
2	.61	.37	65.41	25.37	603.60	533.12	30.926	20.015	1.6463
3	.57	.33	65.21	14.52	603.60	540.29	31.023	21.050	1.6454
4	.51	.30	65.04	7.72	603.60	548.33	31.181	22.280	1.4512
5	.47	.30	64.89	-16.52	603.60	554.49	31.303	23.260	1.3904

SET NUMBER 2 PAGE 2 RPM 25000.0 ABSOLUTE/STATIC PRESSURE RATIO 2.200 INLET TOTAL PRESSURE (PSI) 32.340 TOTAL TEMPERATURE (DEG. R) 603.60

ROTOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/RM SHIFT	RADIAL OPENING BLADE	Y=VA / VAM EFFICIENCY	COEFFICIENT FLOW	CONTINUITY	FLOW RATE
1	2.693	.925	.0716	.9112	.9947	.9031	.9969
2	3.620	.925	.0163	.2118	.9138	.9049	.0051
3	3.565	1.000	.0405	.2447	1.0000	.9062	.0038
4	3.585	1.098	.1532	.2747	1.1508	.8981	.0119
5	3.637	1.175	.2106	.2983	1.2961	.8918	.1083

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WELL VELOCITY
1	331.43	-13.29	-210.98	392.63	351.43	-13.29	-792.60	863.82	SW.32
2	304.17	7.69	-74.56	307.17	304.42	2.89	-697.40	762.81	FH.14
3	333.18	7.62	-72.56	327.51	333.18	7.62	-759.83	811.43	TA.43
4	383.43	31.70	-19.55	365.51	383.43	31.70	-601.76	611.43	HD.36
5	431.95	51.24	-25.64	435.64	431.85	51.24	-852.75	909.41	TA.24

RELATIVE VELOCITY (FPS)

STREAM LINE	MACH NUMBER	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO				
1	Absolute	Relative	Absolute	Relative	Total				
1	.37	.80	-32.37	-67.44	493.64	480.81	14.499	11.222	101/101
2	.28	.70	-7.59	-66.48	507.41	500.06	16.309	15.435	2.4450
3	.41	.74	-4.72	-65.76	508.47	499.16	16.313	15.310	2.0953
4	.35	.61	-2.92	-64.45	509.86	492.78	16.290	14.948	1.9776
5	.40	.89	-3.40	-63.41	508.54	492.75	16.059	14.384	1.9652

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT INLET PRESSURE (PSI)	ABSOLUTE/STATIC PRESSURE RATIO
1	542.90	21.238	1.6
2	548.48	22.107	1.4
3	553.95	22.972	1.5
4	562.52	24.364	1.6
5	570.42	25.684	1.8

SET NUMBER	PAGE NUMBER	KPM	INITIAL/STATIC PRESSURE RATIO	INLET TOTAL TEMPERATURE, TOTAL (DEG. K)
1	3	25000.0	2.200	32.340 603.60

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE RELATION	TOTAL EFFICIENCY /TOT	REF COEFFICIENT	SHF COEFFICIENT
1	2.466	2.397	.8693	.4985
2	2.093	1.941	.8522	.3191
3	2.166	1.976	.8524	.5524
4	2.165	1.952	.8604	.5206
5	2.248	2.016	.8603	.5989
		.7626	.8680	.6239
				.6462
				.5652

STREAM LINE	PRESSURE RELATION	TOTAL EFFICIENCY /TOT	REF COEFFICIENT	SHF COEFFICIENT
1	2.466	2.397	.8693	.4985
2	2.093	1.941	.8522	.3191
3	2.166	1.976	.8524	.5524
4	2.165	1.952	.8604	.5206
5	2.248	2.016	.8603	.5989
		.7626	.8680	.6239
				.6462
				.5652

M+SS AVERAGED QUANTITIES

REFINED HORSE POWER =	137.41	(HP)
MINIMUM FLOW RATE =	24.48	(FT-LB)
	4.18	(LB/SEC.)
REFINED RPM =	23168.56	(RPM)
REFINED MOMENTUM =	13.12	(FT-LB)
REFINED FLOW RATE =	2.05	(LB/SEC.)

TOTAL/STATIC EFFICIENCY =	.8073
TOTAL/STATIC EFFICIENCY =	.8073
TOTAL/STATIC PRESSURE RATIO =	2.6123
HEAD/REF. HEAD RATIO =	3.0323
THEORETICAL DEGREE OF REACTION =	.9521
MACH NUMBER AT STATION 0 =	.4159
	.2047

SET NUMBER 1 PAGE 4 RPM 30000.0 TOTAL PRESSURE/STATIC 2.200 INFINITE TOTAL PRESSURE/STATIC 3.21340 INFINITE TOTAL TEMPERATURE 603.60

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/WK SHIFT RADIAL OPENING (IN)	Y=VA./Wk RADIAL EFFICIENCY	Z=VA./Wk RADIAL COEFFICIENT	CONTINUITY	FLOW RATE
1	2.764	.865 0.0000	.1637 .9179	.0121 .0821	.0821	0.0000
2	3.003	.940 0.0000	.1647 .9176	.0864 .0864	.0864	0.2545
3	3.195	.9790 0.0000	.1656 .9176	.0898 .0898	.0898	0.4743
4	3.432	1.074 0.0000	.1665 .9176	.0919 .0919	.0919	0.7577
5	3.627	1.135 0.0000	.1674 .9176	.0935 .0935	.0935	1.0000

ABSOLUTE VELOCITY (FPS) *

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	RELATIVE VELOCITY (FPS)
1	403.41	-16.18	891.15	978.34	403.41
2	362.94	17.64	836.55	920.04	362.94
3	320.16	20.76	792.13	871.70	320.16
4	325.23	26.53	732.01	814.29	325.23
5	325.23	38.58	693.87	767.27	325.23

MACH NUMBER FLOW ANGLE (DEG.)

STREAM LINE	Absolute	Relative	Absolute	Relative	TOTAL	STATIC	TOTAL	STATIC	FLOW RATE
1	.87	.39	.65.65	.22.55	.603.60	523.95	.747	18.7214	1.0490
2	.81	.34	.65.21	.27.42	.603.60	533.19	.747	20.0410	1.0641
3	.76	.33	.65.21	.26.97	.603.60	540.37	.747	21.0011	1.0641
4	.71	.33	.65.04	.25.97	.603.60	548.44	.747	22.3111	1.0641
5	.66	.36	.64.89	.28.18	.603.60	554.61	.747	23.2910	1.0326

SET NUMBER 2 RPM 30000.0 PRESSURE/STATIC (PSI) 2.200 INLET TOTAL TEMPERATURE (DEG. R.) 603.60

K010 EXIT SOLUTION

STREAM LINE	POSITION	X=1/RM SHIFT	RADIAL OPENING ANGLE	Y=VA / VAR EFFICIENCY	COEFFICIENT	CONTINUITY	FRICTION RATE
1	2.693	.825	.0710	.1912	1.0024	.9152	.0849
2	3.265	-.0168	-.0168	.2218	.8883	.8969	.1032
3	3.885	-.0405	-.0405	.2447	1.0000	.8831	.1169
4	4.175	-.1537	-.1537	.2747	1.1837	.8931	.1069
5	3.637	1.175	-.2100	.2983	1.3551	.9010	.0921

ABSOLUTE VELOCITY (FPS)

STREAM AXIAL LINE	COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL	RADIAL	TANGENTIAL	OVERALL VELOCITY
1	351.81	-13.38	-93.49	346.99	351.81	-13.38	-93.49	351.81
2	294.85	2.79	115.13	315.80	294.85	2.79	115.13	315.80
3	331.82	7.57	119.75	342.10	331.82	7.57	119.75	342.10
4	391.84	34.63	119.37	411.01	391.84	34.63	119.37	411.01
5	448.58	93.22	108.37	464.54	448.58	93.22	108.37	464.54

RELATIVE VELOCITY (FPS)

STREAM LINE	MACH NUMBER	FLOW ANGLE (DEG)	TEMPERATURE (DEG. R.)	PRESSURE (PSI)	PRESSURE (PSI)	PRESSURE (PSI)	PRESSURE (PSI)
1	Absolute	RELATIVE	ABSOLUTE RELATIVE	TOTAL STATIC	TOTAL STATIC	TOTAL STATIC	TOTAL STATIC
2	.32	.61	-15.74	485.31	475.41	13.767	12.804
3	.32	.74	-23.38	509.29	500.99	16.465	15.545
4	.39	.83	-19.89	510.46	500.43	16.422	15.520
5	.43	.92	-13.58	511.95	497.90	16.341	15.405

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R.)	EQUIVALENT PRESSURE (PSI)	EQUIV/STATIC PRESSURE RATIO
1	537.64	520.561	1.6
2	526.60	521.808	1.4
3	524.51	521.075	1.5
4	522.92	522.014	1.6
5	522.92	522.889	1.6

SET NUMBER	STATION NUMBER	NPM	PRESSURE RATIO	TOTAL EFFICIENCY	INITIAL TOTAL PRESSURE (PSI)	FINAL TOTAL PRESSURE (PSI)	TEMPERATURE (DEG. R.)
1	3	30000.0	2.200	32.340	603.69		

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE RATIO TOT/STA	TOT/STA	EFFICIENCY %	HEAD COEFFICIENT	BLADE SPAN/RATIO	DEGREE OF REACTION
1	2.5249	2.3491	.8429	.9051	3.2209	.5572
2	2.0805	1.9642	.8273	.8917	2.3162	.6217
3	2.1182	1.9633	.8028	.8766	1.9922	.6237
4	2.1553	1.9552	.7787	.8710	1.7704	.4892
5	2.2222	1.9612	.7434	.8663	1.6416	.5611

MASS AVERAGED QUANTITIES

REFINED HORSE POWER =	136.86	(HP)
HORSE POWER =	23.96	(FT-LB)
FLOW RATE =	4.22	(LB/SFC)
REFINED RPM =	27802.20	(RPM)
REFERRED MOMENT =	57.65	(FT-LB)
REFERRED FLOW RATE =	10.89	(LB/SFC)
REFERRED FLOW RATE =	2.07	(LB/SFC)
TOTAL/STATIC EFFICIENCY =	79.95	
TOTAL/TOTAL EFFICIENCY =	.8916	
TOTAL/STATIC PRESSURE RATIO =	2.1496	
TOTAL/TOTAL PRESSURE RATIO =	2.1496	
HEAD COEFFICIENT =	2.1021	
BLADE SPAN/RATIO =	.6833	
THEORETICAL DEGREE OF REACTION =	.4214	
MACH NUMBER AT STATION 0 =	.2068	

SEI NUMBER 1 PAGE 1 RPM 10000.0 TOTAL PRESSURE RATIO 2.400 INLET TOTAL TEMPERATURE 35.280

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/RM SHIFT	RADIAL OPENING	BLADE (IN)	Y=UA /UAH EFFICIENCY	COEFFICIENT LOSS	CONTINUITY	TURBULENCE	FRACTION
1	1.1H	.965	.0000	.2326	1.1059	.9125	.0005	.0000	0.0000
2	3.063	.940	.0000	.3347	1.0486	.9068	.0012	.0002	.2479
3	3.195	1.008	.0276	.5226	1.0000	.9057	.0005	.0002	.0000
4	3.432	1.074	.0000	.7987	.9885	.9015	.0005	.0002	.7531
5	3.627	1.135	.0000	.2946	.6883	.6972	.0028	.0000	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WIND VELOCITY
1	473.88	-19.01	1046.33	1149.25	473.88	-19.01	905.63	914.85	241.21
2	449.34	4.27	981.58	1079.35	449.34	4.27	919.52	919.31	26.07
3	424.49	9.80	927.23	1021.95	424.49	9.80	949.87	927.65	278.86
4	402.24	34.94	863.90	953.59	402.24	34.94	564.93	693.97	299.47
5	380.61	45.16	812.86	897.97	380.61	45.16	495.54	626.47	316.52

MACH NUMBER FLOW ANGLE (DEG.) TEMPERATURE (DEG. R) PRESSURE (PSI)

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE	RELATIVE	TOTAL	STATIC	TOTAL	STATIC	PRESSURE RATIO
1	1.04	.85	65.65	.59 .54	615.30	501.40	32.95	16.56	1.0626
2	.97	.76	65.41	.58 .62	615.30	528.39	33.13	19.46	2.1296
3	.91	.69	65.21	.56 .54	615.30	539.63	33.26	21.15	1.7415
4	.84	.61	65.04	.54 .48	615.30	548.20	33.45	22.15	1.8015
5	.78	.55	64.89	.52 .48			33.57	22.41	1.0507

SET NUMBER PAGE NUMBER RPM PRESSURE/STATIC RATIO [INLET TOTAL TEMPERATURE (PSI) (DEG. R)]

1 2 10000.0 2400 35.280 615.30

ROTON FX11 SOLUTION

STREAM LINE	RADIAL POSITION	X=R/RM SHIFT	RADIAL OPENING	BLADE ANGLE	Y=U/RM EFFICIENCY	COEFFICIENT	CONTINUITY	FLOW RATE FRACTION
1	2.693	.825	.0718	.1912	.9754	.8379	.6231	.1621
2	3.625	1.068	.0165	.2218	.9868	.8165	.6137	.0.0000
3	3.565	1.098	.0405	.2447	1.0000	.8153	.5549	.3579
4	3.585	1.098	.1537	.2747	1.0449	.8405	.5249	.4371
5	3.637	1.175	.2108	.2983	1.1009	.8441	.5559	.7311

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY
1	376.87	-15.09	-670.81	768.48	376.87	-15.09	-915.01	980.16
2	395.24	7.62	-612.23	721.24	381.24	3.62	-875.77	955.16
3	395.57	8.82	-571.23	689.23	385.57	8.82	-856.15	934.01
4	402.88	34.99	-529.16	669.31	402.88	34.99	-812.45	914.47
5	424.47	50.36	-513.15	667.86	424.47	50.36	-948.00	949.63

MACH NUMBER FLOW ANGLE (DEG.) TEMPERATURE (DEG. R)

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE RELATIVE	TOTAL	STATIC	TOTAL	STATIC	PRESSURE (PSI)	PRESSURE (PSI)
1	.70	.20	-60.70	-62.44	545.07	497.93	19.575	14.081	101/101
2	.66	.87	-58.09	-65.48	545.64	502.35	19.576	14.654	1.8073
3	.63	.85	-55.99	-65.76	545.61	505.61	19.654	15.102	1.8122
4	.69	.85	-52.74	-64.45	544.62	507.71	19.654	15.2950	2.4163
5	.61	.86	-50.41	-63.41	543.93	506.81	19.792	15.4855	1.7H14

EQUIVALENT TEMPERATURE EQUIVALENT EQUIVALENT EQUIVALENT EQUIVALENT EQUIVALENT EQUIVALENT EQUIVALENT EQUIVALENT EQUIVALENT

STREAM LINE	(DEG. R)	INLET PRESSURE (PSI)	PRESSURE RATIO	EQUIVALENT PRESSURE RATIO					
1	572.87	26.481	1.9						
2	576.27	26.647	1.8						
3	579.69	26.865	1.8						
4	580.39	27.215	1.8						
5	581.85	27.612	1.8						

SET NUMBER	PAGE NUMBER	RPM	PRESSURE/STATIC RATING	TOTAL PRESSURE (PSI)	TOTAL TEMPERATURE (DEG. R)
1	3	10000.0	2.400	35.280	615.30

-OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE RATIO	T0/T STATIC EFFICIENCY /TOT	HEAD COEFFICIENT	HEAD/STATION RATIO DEGREE OF REACTION
1	2.5054	1.8023	.4804	.7159
2	2.4068	1.8022	.5162	.7116
3	2.3361	1.7958	.5247	.7046
4	2.2779	1.7814	.5477	.7006
5	2.2828	1.7825	.5522	.7020

MASS AVERAGED QUANTITIES

HORSE POWER =	109.48	(HP)
FLOW RATE =	.57.50	(FT. ³ /SEC.)
	4.60	
REFERRED RPM =	9178.87	(HP)
REFERRED MOMENT =	23.76	(FT. ³ /SEC.)
REFERRED FLOW RATE =	2.09	
TOTAL / STATIC EFFICIENCY =	.5259	
TOTAL / TOTAL PRESSURE RATIO =	.7413	
TOTAL / STATIC PRESSURE RATIO =	1.7938	
HEAD COEFFICIENT =		
BLADE / NET SPEED RATIO =	21.0157	
THEORETICAL DEGREE OF REACTION =	.9161	
MACH NUMBER AT STATION 0 =	.2043	
	.2084	

SECTOR NUMBER 1 RPM 15000.0 PRESSURE/STATIC 2.400 INSIDE TOTAL TEMPERATURE 35.280 OUTSIDE TOTAL TEMPERATURE 615.30

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/RM SHIFT	RADIAL OPENING (IN)	Y=VA / VAM EFFICIENCY	LOSS COEFFICIENT	CONTINUITY	FLOW RATE FRACTION
1	2.764	.865	0.0000	1.043	.9122	.0678	.0678
2	3.633	1.000	0.0000	1.047	.9056	.0644	.0644
3	3.195	1.000	0.0290	1.0406	.9002	.0598	.0598
4	3.432	1.074	0.0000	1.045	.9408	.1000	.1000
5	3.627	1.135	0.0000	.2926	.8923	.1002	.1002

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL VELOCITY	COMPONENT AXIAL	COMPONENT RADIAL	OVERALL VELOCITY	WINDAGE VELOCITY
1	439.59	-17.63	971.07	1066.08	439.59	117.63	102.16
2	417.04	3.96	971.03	1001.96	417.04	3.96	971.93
3	398.05	9.51	864.92	949.35	398.05	9.51	864.92
4	374.50	32.53	864.84	887.84	374.50	32.53	867.14
5	355.18	42.14	757.81	837.98	355.18	42.14	835.03

MACH NUMBER	FLOW ANGLE (DEG. R)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	Absolute	Relative	Total	Static
2	.95	.67	65.65	54.19
3	.89	.52	65.41	53.16
4	.83	.45	65.21	48.10
5	.77	.39	65.04	43.48
			64.89	38.55

SET NUMBER	PAGE NUMBER	RPM	TOTAL PRESSURE/STATIC PRESSURE RATIO	INITIAL TOTAL TEMPERATURE (PSI), (DEG. R)	MULTIPLIER	TOTAL TEMPERATURE (DEG. R)
1	2	15000.0	2.400	35.280		615.40

MOTOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=H/RM SHIFT	RADIAN OPENING	Y=H/A RM SHIFT	AIRFLOW EFFICIENCY	COEFFICIENT	CONDUCTIVITY	FRACTION
1	2.693	.625	.0710	.1912	.9810	.8603	.1397	.0.0000
2	3.020	.925	.0168	.2218	.9616	.8947	.1354	.2310
3	3.265	1.000	.0405	.2247	.9598	.8879	.1321	.4312
4	3.585	1.098	.1537	.2242	.9573	.8821	.1239	.7222
5	3.837	1.175	.2160	.2983	.9567	.8825	.1175	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	RADIAL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	RELATIVE VELOCITY (FPS)
1	361.69	-14.51	-517.91	611.88	361.69	-14.51	-870.43	943.76
2	356.38	-13.39	-423.34	551.39	356.38	-13.39	-818.65	892.66
3	368.69	8.43	-329.58	537.69	368.69	8.43	-818.62	892.51
4	359.46	34.43	-359.79	537.42	390.46	34.43	-629.02	477.32
5	426.46	50.60	-349.72	551.83	426.46	50.60	-851.98	954.10

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE RELATIVE	FLOW ANGLE (DEG)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	.58	.87	.58	-67.44	526.44	493.27	1.01/1.01
2	.58	.87	.49	-49.91	527.85	502.37	1.01/1.01
3	.49	.82	.46	-46.71	527.47	503.42	1.01/1.01
4	.49	.04	.42	-42.22	526.07	503.43	1.01/1.01
5	.50	.87	.39	-39.36	526.19	500.67	1.01/1.01

EQUIVALENT TEMPERATURE

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT PRESSURE (PSI)	EQUIV/STATIC PRESSURE RATIO
1	567.17	24.942	1.0
2	568.70	25.277	1.7
3	570.56	25.649	1.7
4	573.50	26.321	1.7
5	576.41	26.942	1.6

SEEDER NUMBER	RPM	PRESSURE RATIO	PRESSURE TOTAL (PSI)	TOTAL TEMPERATURE (DEG. K)	TOTAL
1	3	15,000.0	2.400	35,280	615.30

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE TOTAL/STATION 10/10	TOTAL EFFICIENCY TOTAL / TOTAL	HEAD COEFFICIENT	SPEED RATIO DEGREE OF REACTION
1	2.5144	2.0014	.6236	.8031
2	2.3179	1.9493	.6657	.8186
3	2.2846	1.9445	.6773	.8249
4	2.2729	1.9316	.6857	.8363
5	2.3024	1.9347	.6831	.8428

MASS AVERAGE QUANTITIES

REFERRRED HORSE POWER =	175.97	(HP)
REFERRRED HORSE POWER =	42.24	(HP-LB)
REFERRRED FLOW RATE =	4.54	(LB/SFC)
REFERRRED HORSE POWER =	137.68	(HP)
REFERRRED HORSE POWER =	32.40	(HP-LB)
REFERRRED FLOW RATE =	2.06	(LB/SFC)
TOTAL / STATIC EFFICIENCY =	.6705	
TOTAL / TOTAL EFFICIENCY =	.6205	
TOTAL / STATIC PRESSURE RATIO =	2.3242	
HEAD COEFFICIENT =	1.3404	
BLADE COEFFICIENT =	9.3297	
THEORETICAL DEGREE OF REACTION =	.3691	
MACH NUMBER AT STATION 0 =	.2057	

SETER NUMBER 1 PAGE 1 RPM 2000.0 PRESSURE STATIC 35.280 TOTAL TEMPERATURE 615.50

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X-R/RM SHIFT	RADIAL OPENING (IN)	BLADE Y=VA /VA EFFICIENCY	BLADE COEFF. OF TURB.	CONTINUITY	FRiction
1	2.764	.865	.00000	.2126	1.1017	.0167	.0 .0000
2	3.095	.948	.00000	.2447	1.0470	.0196	.2500
3	3.424	1.082	.00000	.2726	1.0000	.0246	.4750
4	3.753	1.074	.00000	.2745	.9401	.0249	.7550
5	3.627	1.135	.00000	.2926	.9905	.0955	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WALL VELOCITY
1	429.67	-17.24	949.20	1042.97	429.69	-17.24	949.24	1046.79	534.69
2	418.34	3.88	692.22	780.65	408.34	3.88	692.22	787.84	549.63
3	390.87	8.92	844.54	910.20	390.87	8.92	844.54	916.72	557.16
4	347.68	41.85	844.54	869.20	356.56	41.85	844.54	881.52	559.94
5	347.33	41.85	741.05	819.35	347.33	41.85	741.05	838.02	633.03

MACH NUMBER
FLUID ANGLE
(DEG. R)

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE	RELATIVE	TOTAL	STATIC	TOTAL	STATIC	WALL
1	.93	.57	65.65	.47-.37	615.30	574.14	32.503	19.101	1.04376
2	.87	.48	65.41	.42-.32	615.30	575.51	33.204	20.559	1.05433
3	.81	.42	65.21	.36-.32	615.30	545.30	33.449	21.767	1.04005
4	.75	.36	65.04	.27-.22	615.30	552.42	33.595	23.507	1.04244
5	.71	.32	64.89	.17-.28	615.30	559.42	33.796	24.362	1.03778

SET PAGE
NUMBER NUMBER RPM TOTAL/STATIC
PRESSURE RATIO INLET TOTAL TEMPERATURE
(PSI) (DEG. R)
1 2 20000.0 2.400 35,280 615.30

KOTOR FX11 SOLUTION

STREAM LINE	RADIAL POSITION	X=R/RM	RADIAL SHFT OPENING	BLADE Y=VA / VAN	EFFICIENCY	COEFF LOSS	CONTINITY	FRACTION RATE
1	2.693	.825	.0710	.1912	.9655	.8899	.1112	
2	3.020	.925	.0668	.2248	.9659	.8929	.1052	
3	3.265	1.000	.0405	.2447	.9664	.9031	.1030	0.0000
4	3.585	1.098	.1537	.2277	.9669	.9040	.1040	.2279
5	3.837	1.175	.2100	.2983	1.2069	.9086	.0970	.4556
						.0214	.0914	.7221
								1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	INFILTRATE VELOCITY	AXIAL	COMPONENT	RADIAL	COMPONENT	Absolute Velocity (fps)
1	371.69	-14.91	-474.45	564.39	371.69	-14.91	589.47	568.74	
2	357.15	3.40	-267.20	463.02	357.15	3.40	583.38	575.73	
3	415.26	9.63	-272.65	462.57	327.12	6.63	583.58	583.07	
4	415.26	37.11	-273.54	483.26	415.38	36.11	859.30	948.55	
5	455.26	54.01	-239.71	517.29	455.26	54.01	859.34	964.39	
							902.39	1018.39	
								689.68	

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE RELATIVE	FLOW ANGLE (DEG)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE (PSI)	PRESSURE (PSI)	PRESSURE (PSI)
1	53	.90	-4H.R0	-67.44	505.89	429.39	15.616	12.935	10.1510
2	43	.82	-39.45	-66.46	511.68	493.84	16.589	14.655	10.2063
3	42	.84	-35.36	-65.76	511.54	493.73	16.632	14.651	10.1268
4	44	.89	-30.37	-64.45	511.43	493.92	16.693	14.662	10.132
5	48	.94	-27.27	-63.41	510.51	486.25	16.610	14.266	10.1135
								2.4341	2.4341
									2.4341

EQUIVALENT TEMPERATURE

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT INLET PRESSURE (PSI)	EQUIV/STATIC PRESSURE RATIO	STATIC	TOTAL	STATIC	TOTAL	STATIC	TOTAL
1	557.48	23.576	1.8	10.1510	10.1510	10.1510	10.1510	10.1510	10.1510
2	561.61	24.180	1.8	10.2063	10.2063	10.2063	10.2063	10.2063	10.2063
3	561.34	24.802	1.7	10.1268	10.1268	10.1268	10.1268	10.1268	10.1268
4	570.39	25.799	1.7	10.132	10.132	10.132	10.132	10.132	10.132
5	574.55	26.746	1.8	10.1135	10.1135	10.1135	10.1135	10.1135	10.1135

SETTER NUMBER	PAIR NUMBER	KPM	PRESSURE RATIO	PRESSURE TOTAL TEMPERATURE TOTAL	
				(PSI)	(DEG. K)
1	3	20000.0	2.400	35.280	615.30

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE RATIO	TOT/STA	TOT/STA	HEAD COEFFICIENT	SPEED RATIO	DEGREE OF REACTION
1	2.7374	2.12392	.7134	.8560	7.9191	.3548
2	2.4060	2.1238	.7584	.8683	5.9763	.4561
3	2.4063	2.1235	.7616	.8721	5.2634	.4359
4	2.4209	2.1235	.7554	.8770	4.6802	.4179
5	2.4829	2.1241	.7413	.8795	4.2221	.4662

MASS AVERAGED QUANTITIES

REFERRRED RPM	=	161.10	(HP)
REFERRRED MOMENTUM RATE	=	4.424	(FT-LB)
REFERRRED FLOW RATE	=	4.54	(LB/SFC)

REFERRRED RPM	=	183.57	(HP)
REFERRRED MOMENTUM RATE	=	6.41	(FT-LB)
REFERRRED FLOW RATE	=	5.06	(LB/SFC)

TOTAL/STATIC EFFICIENCY =	75.13
TOTAL/TOTAL EFFICIENCY =	75.13
TOTAL/TOTAL PRESSURE RATIO =	3.13H3
HEAD/COEFFICIENT RATIO =	5.1273
THEORETICAL DEGREE OF REACTION =	.417
MACH NUMBER AT STATION 0 =	.2055

SEALER NUMBER 1 RPM 30000.0 PRESSURE RATIO 2.400 PRESSURE TOTAL TEMPERATURE 35.280 TOTAL TEMPERATURE 695.30

STATOR XXII SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/RM SHIFT (IN)	RADIAL OPENING (IN)	BLADE Y=VA /VAM EFFICIENCY	COEFFICIENT	CONTINUITY	FLOW RATE
1	2.764	.865	.2126	1.1040	.9194	.0806	0.0000
2	3.003	.900	.2347	1.0479	.9149	.0851	.2534
3	3.195	1.000	.2526	1.0000	.9113	.0887	.4734
4	3.412	1.074	.2745	.9395	.9093	.0910	.7571
5	3.627	1.135	.2926	.8895	.9021	.0929	1.0000

ANSOLITE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL	RADIAL	TANGENTIAL	OVERALL VELOCITY	RELATIVE VELOCITY (FPS)
1	416.68	-16.71	920.47	1010.53	416.68	-16.71	196.86	461.15	724.62
2	755.49	3.76	883.45	950.17	755.49	3.76	77.74	403.05	786.21
3	777.42	6.64	817.55	910.14	777.42	6.64	19.43	378.02	831.58
4	754.55	38.80	716.29	840.62	754.55	38.80	-136.86	381.32	884.41
5	355.22	39.83	716.29	792.96	355.72	39.83	-231.26	410.74	949.55

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE	RELATIVE	TOTAL	STATIC	TOTAL	STATIC	PRESSURE RATIO
1	.90	.41	65.65	25.29	615.30	510.33	33.575	19.934	1.01/1.01
2	.83	.35	65.41	11.92	612.30	50.17	33.708	21.570	1.05/1.04
3	.78	.33	65.21	-2.92	612.30	52.08	34.822	22.532	1.06/1.05
4	.73	.33	65.04	-21.41	615.30	56.50	33.994	23.916	1.04/1.04
5	.68	.35	64.89	-34.79	615.30	563.10	34.122	25.019	1.03/1.03

SET NUMBER PAGE RPM LOGIC/STATIC PRESSURE RATIO INITIAL TOTAL PRESSURE (PSI) TOTAL TEMPERATURE (DEG. R)

1 2 30000.0 2.400 35.280 615.30

ROTOR EXIT SOLUTION

STREAM LINE POSITION	RADIAL POSITION	X=R/HM SHIFT RADIAL OPENING	Y=UA /UAH EFFICIENCY	BLADE COEFFICIENT	LOSS COEFFICIENT	CONTINUITY	FLOW RATE
1	2.693	.825	.0710	1.212	1.0001	.9163	.0837
2	3.020	.925	.0168	1.8669	.8983	.1072	.0000
3	3.265	1.000	-.0405	2.467	1.0000	.8058	.1012
4	3.585	1.098	-.537	.277	1.173	.8982	.1142
5	3.837	1.175	-.2106	.2983	1.3365	.9080	.1018
						.0920	.0064
							1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE POSITION	Axial Component	Radial Component	Tangential Component	Axial Velocity	Radial Velocity	Tangential Velocity	Relative Velocity (FPS)
1	351.32	-19.09	-140.43	328.60	351.32	-14.09	345.45
2	351.07	23.99	66.87	328.16	315.07	2.99	723.35
3	351.28	38.94	74.77	359.24	351.28	8.94	780.03
4	412.69	35.79	76.97	420.74	412.69	7.79	856.36
5	469.47	55.70	66.63	477.43	469.47	55.70	855.50
							855.82
							1.000 .31

MACH NUMBER

STREAM LINE POSITION	Absolute	Relative	Absolute	Relative	Total	Static	Velocity	Pressure
1	.35	.86	.76	.77	.67 .44	.482 .97	14.77	1.4 .64
2	.39	.76	.71	.98	.66 .48	.511 .66	16.87	15.94
3	.33	.78	.72	.82	.65 .76	.512 .17	16.82	16.84
4	.38	.87	.70	.58	.64 .45	.501 .43	16.84	15.66
5	.44	.96	.80	.08	.63 .41	.513 .46	498.73	16.92
						.513 .25	16.93	14.834
								1.000 .51

EQUIVALENT TEMPERATURE (DEG. R)

STREAM LINE POSITION	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT PRESSURE (PSI)	EQUIV/STATIC PRESSURE RATIO	FLOW RATE
1	545.01	22.973	1.7	.0000
2	552.27	23.386	1.5	.0000
3	562.33	24.691	1.6	.0000
4	564.75	26.778	1.9	.0000
5	586.07			

SET NUMBER PAGE NUMBER RPM PRESSURE/STATIC PRESSURE TOTAL TEMPERATURE (PSI) (DEG. R.)

1 3 30000.0 2,400 35,280 615,30

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	T0/T1A	T0/T1A EFFICIENCY	HEAD COEFFICIENT	SPALLED KAT TO DEGREE OF RETENTION
1	2.7841	.8465	3.4936	.5350
2	2.6729	.8131	3.4228	.6411
3	2.6950	.8080	2.9116	.6755
4	2.7276	.7812	1.9110	.7278
5	2.7882	.7564	1.7983	.7457

MACH AVERAGED QUANTITIES

REFINED HORSE POWER =	161.77	(HP)
REFINED FLOW RATE =	28.52	(FT ³ /MIN)
REFINED RPM =	4.53	(1/R/SEC.)
REFINED HORSE POWER =	27536.69	(HP)
REFINED MOMENT =	61.97	(FT ² -LB)
REFINED FLOW RATE =	11.80	(FT ³ /SEC.)
REFINED FLOW RATE =	2.05	(1/R/SEC.)

TOTAL/STATIC EFFICIENCY =	.8047
TOTAL/STATIC EFFICIENCY =	.8047
TOTAL/STATIC PRESSURE RATIO =	1.8854
TOTAL/STATIC PRESSURE RATIO =	1.8854
HEAD/DEFLATE RATIO =	2.3034
THEORETICAL DEGREE OF REACTION =	2.3034
MACH NUMBER AT STATION 0 =	2.3045

SET PAGE RPM TOTAL/STATIC INLET TOTAL INLET TOTAL
 NUMBER NUMBER PRESSURE RATIO PRESSURE 3A.220 626.18
 1 1 20000.0 2.600

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/RM SHIFT (IN)	RADIAL OPENING (IN)	Y=UA /VAM EFFICIENCY	BLADE COEFFICIENT	LOSS COEFFICIENT	CONT. FLAT#	FLOW RATE FRACTION
1	2.764	.865	.0010	1.0012	.9134	.00165	.0866	0.0000
2	3.803	.946	.0008	1.0069	.9082	.00155	.0918	.2518
3	3.125	1.008	.0290	1.0001	.9062	.00149	.0938	.4710
4	3.435	1.074	.0000	1.0045	.8905	.00146	.0954	.7554
5	3.627	1.135	.0000	.2926				1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WALL VELOCITY
1	436.14	-17.50	963.46	1057.73	436.14	-17.50	481.05	649.37	682.41
2	414.48	-3.94	905.45	995.81	414.48	3.94	381.31	563.31	574.14
3	395.98	9.06	857.45	944.21	395.98	9.06	349.44	496.97	557.72
4	372.19	42.33	799.18	882.37	372.19	42.33	320.44	423.97	539.94
5	352.54	41.83	752.17	831.74	352.54	41.83	319.14	374.47	633.03

RELATIVE VELOCITY (FPS)

STREAM LINE	MACH NUMBER	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R)	PRESSURE (PSI)				
1	.93	.57	65.65	47.81	626.18	533.08	36.051	20.524
2	.87	.49	65.41	45.62	626.18	543.66	36.261	22.413
3	.82	.43	65.21	37.10	626.18	551.99	36.433	23.432
4	.76	.37	65.04	28.31	626.18	561.39	36.646	24.005
5	.71	.32	64.89	18.67	626.18	568.61	36.811	26.266

SET NUMBER	MOTOR NUMBER	RPM	PRESSURE/STATIC PRESSURE RATIO	PRESSURE/STATIC PRESSURE RATIO	TOTAL TEMPERATURE (DEG. R)	TOTAL TEMPERATURE (DEG. R)
1	2	20000.0	2.400	38.220	626.18	

MOTOR EXIT SOLUTION

STREAM LINE	POSITION	X=R/RM	Y=U/RM	Z=RADIAL OPEN PLANE	$\gamma = u_a / u_m$	EFFECTIVENESS	COEFFICIENT	CONTINUITY	FRACTION RATE
1	2.693	.893	.9716	1.912	.9841	.8925	.1076	.1076	0.8000
2	3.625	.893	.8168	2.218	.9534	.8926	.1039	.1039	.2284
3	3.645	1.000	.8495	2.447	1.0000	.8790	.1011	.1011	.4264
4	3.655	1.000	.8495	2.747	1.0944	.9058	.0943	.0943	.7231
5	3.657	1.175	.2100	2.983	1.1922	.9111	.0889	.0889	1.0000

AIR-OUT VELOCITY (FPS)

STREAM AXIAL LINE COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WALL VELOCITY
1	399.76	-16.01	386.76	612.64	399.16	-16.01	-960.58	1040.34
2	386.72	3.67	386.72	526.53	386.72	3.67	-849.34	967.88
3	405.61	9.28	405.61	523.49	405.61	9.28	-800.62	987.82
4	443.92	18.56	443.92	538.56	443.92	18.56	-928.67	509.85
5	483.56	57.37	483.56	574.64	483.56	57.37	-966.94	1081.83

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE	RELATIVE	TOTAL	STATIC	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	.59	.97	-50.87	-67.44	510.46	477.15	1626.8	12.849	1017.16
2	.48	.89	-43.07	-66.48	515.51	492.21	1720.3	14.631	2.417.1
3	.48	.91	-39.20	-65.76	515.25	492.44	1724.5	14.718	2.271.7
4	.58	.95	-34.27	-64.45	515.60	490.86	1730.6	14.630	2.266.3
5	.53	1.00	-31.51	-63.41	515.91	486.87	1729.5	14.240	2.221.4

SIMILAR EQUIVALENT TEMPERATURE EQUIVALENT TINET PRESSURE

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. K)	EQUIVALENT PRESSURE (PSI)	EQUIVALENT PRESSURE RATIO
1	547.21	25.502	2.0
2	570.32	26.146	1.8
3	573.64	26.818	1.8
4	579.08	27.873	2.0
5	584.26	28.883	2.0

SET NUMBER	PAGE NUMBER	KP	TOTAL/STATIC PRESSURE RATIO	[INITIAL] TOTAL TEMPERATURE (PSI)	[INITIAL] TOTAL TEMPERATURE (DEG. R)
1	3	20000.0	2.600	38.720	626.18

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE RATIO ROT/STA	TOT/STA EFFICIENCY ROT	HEAD COEFFICIENT	BLADE/ST SPEED RATIO	THEORETICAL DEGREE OF REACTION
1	2.9751	.6985	.6535	.6546	.3919
2	2.6622	.6494	.8677	.6718	.3668
3	2.5617	.6367	.8714	.7231	.4513
4	2.5663	.7424	.8711	.6173	.5242
5	2.6255	.7400	.8705	.6157	.5865
	2.6040	.7295	.8793	.6155	

MASS AVERAGED QUANTITIES

REFINED	HORSE POWER =	185.30	(HP)
REFINED	MOMENTUM =	48.66	(FT-LB)
REFINED	FLOW RATE =	4.89	(LB/SEC)
REFINED	RPM =	18197.55	(HP)
REFINED	HORSE POWER =	64.84	(FT-LB)
REFINED	REFINED MOMENTUM =	18.73	(LB/SEC)
REFINED	REFINED FLOW RATE =	2.07	(LB/SEC)
TOTAL	TOTAL STATIC EFFICIENCY =	.7121	
TOTAL	TOTAL STATIC EFFICIENCY =	.7121	
TOTAL	TOTAL STATIC PRESSURE RATIO =	2.6302	
TOTAL	TOTAL STATIC PRESSURE RATIO =	2.6300	
HEAD COEFFICIENT	=		
BLADE/ST SPEED RATIO	=		
THEORETICAL DEGREE OF REACTION	=		
MACH NUMBER AT STATION 0	=		

SET NUMBER 1 PAGE 3000.0 RPM 3600.0 TOTAL/STATIC PRESSURE RATIO 2.600
 INLET TOTAL PRESSURE 38.220 TEMPERATURE 626.18

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/ARM SHIFT (IN)	RADIAL OPENING (IN)	Y=VA /VAM EFFICIENCY	BLADE COEFFICIENT	LOSS	CONTINUITY	FLOW RATE FRACTION
1	2.764	.865	.0000	.2126	1.1040	.9255	.0795	0.0000
2	3.163	.940	.0000	.2347	1.0480	.9559	.0841	.2532
3	3.195	1.000	.0000	.2546	1.0000	.9623	.0877	.4777
4	3.432	1.074	.0000	.2745	1.0393	.9698	.0902	.7566
5	3.627	1.135	.0000	.2926	.9892	.9077	.0923	1.0000

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	RADIAL VELOCITY	AXIAL COMPONENT	TANGENTIAL COMPONENT	RADIAL COMPONENT	OVERALL VELOCITY	WHEAD VELOCITY
1	427.64	-17.15	944.68	1037.11	427.64	-17.15	221.06	411.71	721.62
2	405.86	-3.86	886.61	975.10	405.86	-3.86	160.40	416.72	746.21
3	397.29	8.86	838.63	921.69	397.29	8.86	112.94	382.00	636.58
4	367.60	31.60	781.55	862.47	367.60	31.60	112.06	383.57	678.41
5	344.48	40.86	734.79	812.52	344.48	40.86	214.76	407.92	949.55

STREAM LINE	MACH NUMBER	FLOW ANGLE (DEG)	TEMPERATURE (DEG. R)	PRESSURE SURF (PSI)	PRESSURE RATIO
1	1.91	42	65.65	27.34	TOTAL
2	1.85	36	62.41	13.90	STATIC
3	1.80	34	65.21	22.29	TOTAL
4	1.74	33	65.84	17.84	STATIC
5	1.69	35	64.89	-31.95	TOTAL

SUETER NUMBER	PAGE NUMBER	RPM	PRESSURE STATIC	PRESSURE TOTAL	TEMPERATURE TOTAL
1	2	30000.0	2.600	38.220	626.18

MOTOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/RM RADIAL SHIFT OPENING BLADE	Y=VA /VA EFFICIENCY	EFFICIENCY	CONT. LOSS	FLOW RATE
1	2.693	.825	.9710	.9216	.0790	.6290
2	3.625	.925	.9765	.9246	.0946	.6000
3	3.685	1.000	.9405	.9036	.1063	.2200
4	1.098	1.175	1.0537	1.2447	.1063	.133
5	3.837	1.175	-2.100	2.2442	.0949	.7111
				2.9983	.0859	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	QUERANT VEL. VELOCITY	COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	WHEEL VELOCITY
1	391.31	-15.78	-236.68	457.59	391.31	-15.78	1012.89
2	352.29	-31.39	-319.35	358.57	357.29	-31.39	895.14
3	352.64	39.39	-17.89	323.11	323.64	871.65	956.23
4	451.10	39.35	-8.90	354.89	453.10	37.35	847.45
5	510.82	60.61	-15.98	514.65	510.82	60.61	-1020.51

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE RELATIVE	FLOW ANGLE (DEG)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	.47	.95	-31.17	-67.44	462.22	12.474	101/101
2	.33	.82	-4.82	-66.48	495.55	15.468	2.741
3	.36	.88	-2.49	-65.76	502.01	16.488	2.470
4	.42	.97	-1.11	-64.45	507.98	16.387	2.374
5	.48	1.05	-1.79	-63.41	485.39	16.502	2.611

EQUIVALENT TEMPERATURE (DFG, R)

STREAM LINE	EQUIVALENT TEMPERATURE (DFG, R)	EQUIVALENT INLET PRESSURE (PSI)	EQUIVALENT STATIC PRESSURE RATIO
1	553.78	23.629	1.9
2	562.19	25.010	1.6
3	570.23	26.377	1.8
4	582.62	28.589	2.0
5	594.83	30.786	2.2

SET NUMBER	PAGE NUMBER	RPM	TOTAL/STATIC PRESSURE RATIO	INLET TOTAL PRESSURE (PSI)	INLET TOTAL TEMPERATURE (DEG. R.)
1	3	30000.0	2.600	36.220	626.18

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE RATIO TOT/STA	TOT/STA EFFICIENCY	HEAD COEFFICIENT	BLADE/JET DEGREE OF REACTION
1	3.1012	.72262	.6161	.9067
2	2.9960	.72181	.8325	.8956
3	2.5917	.72323	.8105	.8856
4	2.6311	.72160	.7865	.8848
5	2.7198	.72282	.7630	.8844

MASS AVERAGED QUANTITIES

REFINED HORSE POWER =	201.32	(HP)
REFINED FLOW RATE =	.4534	(LB/SEC)
REFINED RPM =	4.88	
REFINED HORSE POWER =	27226.32	(HP)
REFINED MOMENT =	13.55	(FT-LB)
REFINED FLOW RATE =	2.06	(LB/SEC)
TOTAL/STATIC EFFICIENCY =	.8050	
TOTAL/TOTAL EFFICIENCY =	.8718	
TOTAL/STATIC PRESSURE RATIO =	2.673	
TOTAL/TOTAL PRESSURE RATIO =	2.3736	
HEAD COEFFICIENT =		
BLADE/JET SPEED RATIO =	2.6467	
THEORETICAL DEGREE OF REACTION =	.7747	
MACH NUMBER AT STATION 6 =	.4658	
	.2058	

SET NUMBER 1 PAGE 1 RPM 15000.0 TOTAL PRESSURE RATIO 2.800 INLET TEMPERATURE 41.160 TOTAL TEMPERATURE 636.67

STATOR EXIT SOLUTION

STREAM LINE POSITION	RADIAL POSITION (IN)	X=R/RM SHIFT (IN)	RADIAL OPENING (IN)	Y=VA./VAM	BLADE EFFICIENCY	LOSS COEFFICIENT	ZETAS	CONTINUITY	FLOW RATE FRACTION
1 2.764	.865	.000	.2326	1.1050	.9160	.0840	.0840	.0840	0.0000
2 3.083	.945	.000	.2547	1.0481	.9091	.0659	.0659	.0659	.2504
3 3.195	1.000	.029	.2526	1.0000	.9036	.0664	.0664	.0664	.4689
4 3.432	1.074	.000	.2745	1.0401	.9019	.0581	.0581	.0581	.7536
5 3.627	1.135	.000	.2926	.8910	.9055	.0395	.0395	.0395	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WAKE VELOCITY
1 46.88	-18.65	1826.75	1129.43	464.88	-18.65	4.19	665.14	811.71
2 44.92	4.19	963.20	1059.33	440.72	4.19	570.09	720.72	393.10
3 420.78	9.63	910.85	1003.36	420.70	9.63	492.56	647.84	418.29
4 395.51	34.35	849.46	937.65	395.51	34.35	400.25	563.75	419.20
5 374.84	44.47	799.73	884.34	374.84	44.47	324.96	498.07	474.77

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE RELATIVE	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE (PSI)	PRESSURE RATIO
1	1.00	.72	65.65	55.05	636.67	530.90	18.586	20.430	1.01/1.01
2	.63	.63	65.61	55.26	636.67	523.50	18.272	20.215	2.01/1.46
3	.61	.61	65.51	45.50	636.67	523.50	18.272	20.215	1.01/1.34
4	.61	.48	65.54	45.34	636.67	561.59	39.161	26.546	1.01/1.10
5	.75	.42	64.89	40.93	636.67	571.59	39.376	26.599	1.01/1.25

SET NUMBER 2 RPM 15000.0 PRESSURE/STATIC 2.800 INITIAL PRESSURE (PSI) 41.160 TOTAL TEMPERATURE (DEG. R) 636.67

MOTOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/RM SHIFT	RADIAL OPENING	Y=VA /VAM EFFICIENCY	COEFFICIENT OF LOSS	CONTINUITY	FLOW RATE FRACTION
1	2.693	.825	.0710	.9788	.8773	.1227	0.0000
2	3.028	1.068	-.0405	.9716	.8768	.1233	.2333
3	3.265	1.068	-.1537	.9447	.8764	.1237	.2333
4	3.505	1.098	-.1537	.9747	.8807	.1194	.2291
5	3.837	1.175	-.2100	.9883	.11319	.1160	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	RELATIVE VELOCITY (FPS)
1	430.45	-17.27	-583.39	807.84	438.45	-17.27	-1035.90	1421.91
2	429.27	4.08	-590.78	870.26	429.27	4.08	-986.08	1075.48
3	439.79	16.96	-592.15	851.62	439.79	16.96	-976.54	1071.05
4	467.02	48.56	-597.82	789.69	467.02	40.56	-983.25	1063.05
5	497.79	59.16	-492.21	762.53	497.79	59.06	-994.47	1113.66

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE RELATIVE	FLOW ANGLE (DEG)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO	WIND VELOCITY
1	1.75	1.04	-57.80	-62.44	534.74	480.44	1.01/1.01	356.51
2	.67	.99	-54.00	-64.48	534.74	493.01	1.01/1.01	479.39
3	.65	.98	-53.31	-65.76	534.74	493.05	1.01/1.01	469.33
4	.63	.99	-47.37	-63.45	533.54	491.85	1.01/1.01	502.26
5	.65	1.03	-44.68	-63.41	532.34	491.87	1.01/1.01	515.65

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT INLET PRESSURE (PSI)	EQUIV/STATIC PRESSURE RATIO
1	585.17	28.723	2.1
2	596.66	28.092	2.1
3	598.46	28.513	2.1
4	591.59	28.368	2.1
5	594.47	28.974	2.1

SET NUMBER	PAGE NUMBER	RPM	TOTAL/STATIC PRESSURE RATIO	INLET TOTAL PRESSURE (PSI)	INLET TEMPERATURE (DEG. R)	TOTAL (PSI)
4	3	15000.0	2.800	41.140	636.67	

-OVERALL TURBINE CHARACTERISTICS

STREAM LINE	TOT/STATIC PRESSURE, 100/100	TOT/STA EFFICIENCY, 100/100	COEFFICIENT	SPEED/RATE OF ROTATION
1	3.1849	2.1864	.5602	.7981
2	2.8216	2.1575	.6035	.8113
3	2.8550	2.1559	.6235	.8167
4	2.8128	2.1454	.6333	.8262
5	2.8563	2.1565	.6325	.8313

AVERAGED QUANTITIES

HEAD COEFFICIENT =	1.6154	TOTAL EFFICIENCY =	.6154
BLADE/JET SPEED RATIO =	.8174	TOTAL/STATIC EFFICIENCY =	.8174
THEORETICAL DEGREE OF REACTION =	.2.9023	TOTAL/STATIC PRESSURE RATIO =	2.1579
MACH NUMBER AT STATION 0 =	.2072		
HEAD COEFFICIENT =	11.6793		
BLADE/JET SPEED RATIO =	.2926		
THEORETICAL DEGREE OF REACTION =	.4468		
MACH NUMBER AT STATION 0 =	.2072		

SEWER NUMBER 1 RPM 20000.0 PRESSURE RATING 2.800 PRESSURE TOTAL 41.160 TEMPERATURE TOTAL 630.67

STATOR EXIT SOLUTION

STREAM LINE	PANIAL POSITION (IN)	X=R/RH SHIFT (IN)	RADIAL OPENING (IN)	Y=VA /VAM EFFICIENCY	BLADE LOSS COEFFICIENT	CONTINUITY FRACTION
1	2.764	.865	.0000	.2126	.9146	.0854
2	3.803	.940	.0000	.2347	.9083	.0883
3	3.195	1.000	.0290	.2526	.9094	.0906
4	3.432	1.074	.0000	.2745	.9071	.0929
5	3.627	1.135	.0000	.2926	.9052	.0948

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	RELATIVE VELOCITY (FPS)
1	450.26	-18.06	994.95	1021.92	451.76	-18.06	512.24	682.41	482.41
2	450.88	4.06	934.93	1028.02	427.89	4.06	410.59	593.04	524.14
3	450.68	9.35	884.83	974.69	408.68	9.35	327.11	523.55	557.72
4	325.14	33.16	825.84	910.70	384.14	33.36	226.10	446.99	598.94
5	363.79	43.16	776.17	858.29	363.79	43.16	143.14	393.32	633.03

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE RELATIVE	FLOW ANGLE (DEG.)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	.96	.68	.65 .65	48.69	636.67	517.45	101/101
2	.96	.52	.65 .41	43.82	636.67	546.73	1.0628
3	.84	.45	.65 .21	38.68	636.67	552.62	1.9229
4	.78	.38	.64 .04	26.48	636.67	567.61	1.0563
5	.73	.33	.64 .89	21.48	636.67	575.37	1.0510

SET NUMBER 2 20000.0 RPM 2,600 PRESSURE/STATIC (PSI) 41.160 TOTAL TEMPERATURE (DFG, R) 636.67

MOTOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/RM SHIFT OPENING	BLADE Y=VA/VAM EFFICIENCY	PITOT LOSS COEFFICIENT	CONTINuity	FLOW RATE FRACTION
1	2.693	.826	.9712	.8933	.1067	0.9000
2	2.625	.825	.9561	.8963	.1037	.2388
3	2.565	1.068	.9447	.8995	.1015	.4274
4	1.928	1.0495	1.0000	.9038	.0962	.7235
5	1.583	1.1537	.974	.9080	.0920	1.0000
		1.175	.2100	.2983		
				1.1853		

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WAKE VELOCITY
1	413.86	-16.60	-525.94	669.45	413.86	-16.60	695.95	1078.65
2	402.41	3.82	-397.32	565.52	402.41	13.82	524.35	1008.19
3	420.89	9.63	-364.72	567.01	420.89	9.63	534.57	1025.02
4	459.09	39.82	-334.21	569.26	459.09	39.82	559.88	1064.86
5	498.88	59.19	-326.97	579.41	498.88	59.19	596.65	1116.11

MACH NUMBER

STREAM LINE	ABSOLUTE	RELATIVE	ABSOLUTE RELATIVE	FLOW ANGLE (DEG)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO
1	.62	1.01	-51.80	-67.44	515.68	17.38	101/101
2	.52	.93	-44.64	-66.48	520.28	17.67	13.072
3	.51	.94	-40.91	-65.76	519.95	17.93	14.914
4	.52	.98	-36.06	-64.45	519.44	17.61	15.029
5	.55	1.03	-33.24	-63.45	518.63	18.03	14.940
					488.56	17.872	14.517

STREAM LINE	EQUIV TEMP (DFG, R)	EQUIV TEMP (DFG, R)	EQUIV/STATIC PRESSURE RATIO	EQUIV/STATIC PRESSURE RATIO
1	575.20	577.146	2.1	2.421
2	578.25	577.823	1.9	2.2966
3	581.56	578.526	1.9	2.2916
4	587.02	579.540	2.1	2.1863
5	592.22	576.719	2.1	2.3031

SETTER NUMBER	NOMENCLATURE	RPM	PRESSURE RATIO	PRESSURE TOTAL TEMPERATURE (PSI)	PRESSURE TOTAL TEMPERATURE (DEG. R)
1	3	20000.0	2.8100	41.169	636.67

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE RATIO / 100	TOT/STA	EFFICIENCY /TOT	HEAD COEFFICIENT	SPEED/JET DEGREE OF REACTION
1	1.1486	2.4261	.6902	.8513	.31863
2	1.7598	5.2916	.72261	.8646	.30119
3	2.7388	7.3129	.7313	.8691	.27796
4	2.7521	2.3813	.7211	.8239	.1525
5	2.8352	2.3831		.8755	.3619
					.49165

MASS AVERAGED QUANTITIES

REFINED	HORSE POWER =	208.81	(HP)
MONTE CARLO	MONTE CARLO	254.84	(FT-LB)
REFINED	FLOW RATE =	5.24	(LB/SEC)
REFINED	RPM =	18047.91	(RPM)
REFINED	HORSE POWER =	192.29	(FT-LB)
REFINED	MONTE CARLO	1.217	(LB/SEC)
TOTAL	/STATIC EFFICIENCY =	.72227	
TOTAL	/TOTAL EFFICIENCY =	.8677	
TOTAL	/TOTAL PRESSURE RATIO =	2.9692	
HEAD COEFFICIENT	=	6.3944	
BLADE/JET SPEED RATIO	=	.4664	
THEORETICAL DEGREE OF REACTION =			
MACH NUMBER AT STATION 0	=	.2069	

SET PAGE RPM PRESSURE STATIC TOTAL TEMPERATURE
NUMBER 1 25000.0 2.600 41.160 636.67

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/RM SHIFT RADIAL BLADE (IN)		Y=VA /VAH EFFICIENCY	BLADE COEFFICIENT	LONG CONVERGENCE	CONVERGENCE FRACTION
		RADIAL OPENING (IN)	BLADE SHIFT (IN)				
1	2.764	.865	.0000	.2126	1.1033	.9128	.00000
2	3.063	.940	.0000	.2347	1.0476	.8822	.2531
3	3.195	1.000	.0000	.2526	1.0000	.8921	.9231
4	3.432	1.074	.0000	.2745	.9396	.9055	.9562
5	3.627	1.135	.0000	.2926	.8897	.9865	.9735

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WALL VELOCITY
1	434.12	-17.41	950.99	1052.81	434.12	-13.92	355.97	561.67
2	412.21	3.92	960.48	992.55	412.21	3.92	245.31	479.70
3	393.49	9.00	881.94	938.66	393.49	9.00	154.79	422.93
4	369.73	32.44	744.89	876.59	369.73	32.44	45.42	373.89
5	356.69	41.54	746.93	825.95	356.69	41.54	-44.36	355.32

STREAM LINE	MACH NUMBER	FLOW ANGLE (DEG)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO	
					STATIC	TOTAL
1	.92	.49	65.65	39.35	636.67	544.44
2	.86	.42	65.41	30.76	636.67	555.93
3	.81	.36	65.21	21.47	636.67	563.38
4	.75	.32	65.04	7.80	636.67	572.74
5	.70	.30	64.89	-7.22	636.67	579.70

STREAM LINE	ABSOLUTE RELATIVE	ABSOLUTE RELATIVE	TOTAL	STATIC	PRESSURE RATIO	
					RELATIVE	TOTAL
1	.92	.49	65.65	39.35	39.35	65.65
2	.86	.42	65.41	30.76	30.76	65.41
3	.81	.36	65.21	21.47	21.47	65.21
4	.75	.32	65.04	7.80	7.80	65.04
5	.70	.30	64.89	-7.22	-7.22	64.89

234

SETTER NUMBER PAGE NUMBER RPM PRESSURE/STATIC PRESSURE TOTAL TEMPERATURE (PSI) (DEG. R)

1 2 25000.0 2800 41.160 636.67

MOTOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R/RM	RADIAL OPENING BLADE	Y=VA/VRM	EFFECTIVENESS	COEFFICIENT	LOSS COEF.	CONTINUITY	FRICTION RATE
1	2.693	.825	.0210	1912	.9114	.0846	.0866	.0000	0.2260
2	3.020	1.060	.0005	2216	.9126	.0875	.0875	.0000	0.2317
3	3.265	1.098	.2447	1.0010	.9134	.0866	.0866	.0000	0.2317
4	3.585	1.175	.1557	2742	.9125	.0926	.0926	.0000	0.2317
5	3.837	1.175	.2160	2963	.9128	.0972	.0972	.0000	0.2317

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	UNIFORMITY	WIEFFI
1	411.86	-16.49	-401.70	574.38	411.05	-16.49	-982.22	1071.35	5H7.52
2	488.97	-3.70	-234.66	544.29	488.97	-3.70	-693.50	674.50	6.58.84
3	415.71	9.51	-210.75	466.18	415.71	9.51	-923.07	1012.40	7.01.31
4	465.42	40.42	-190.99	504.70	465.42	40.42	-972.00	1079.52	7.01.31
5	514.87	61.09	-191.50	552.72	514.87	61.09	-1028.61	1151.90	8.37.11

MACH NUMBER

STREAM LINE	ABSOULTE RELATIVE	ABSOULTE RELATIVE	FLOW ANGLE (DEG)	TEMPERATURE (DEG. R)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE (PSI)	PRESSURE RATIO
1	.54	1.00	-44.34	501.45	473.64	15.742	12.928	1.101/1.01
2	.42	.99	-31.68	502.76	452.58	17.412	15.425	1.101/1.01
3	.43	.93	-26.89	503.84	444.76	17.425	15.567	1.101/1.01
4	.46	.99	-64.35	502.87	451.67	17.486	14.792	1.101/1.01
5	.51	1.07	-20.40	486.21	486.21	16.846	14.478	1.101/1.01

STREAM LINE EQUIVALENT TEMPERATURE (DEG. R)

STREAM LINE	EQUIVALENT TEMPERATURE (DEG. R)	EQUIVALENT INLET PRESSURE (PSI)	EQUIV/STATIC PRESSURE RATIO
1	569.15	26.354	2.0
2	574.60	27.376	1.8
3	580.05	28.405	1.8
4	588.64	30.665	2.0
5	596.62	31.644	2.2

SET NUMBER	PAGE NUMBER	RPM	PRESSURE/STATIC	PRESSURE TOTAL/INLET TOTAL	TOTAL TEMP. (PSI)	TOTAL DEGREE OF REACTION (DEG. R)
1	3	25000.0	2.800	41.160	636.67	

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE RATIO ROT/STA	TOT/STA EFFICIENCY	COEFFICIENT	BLADE/JET RATIO	DEGREE OF REACTION
3.1689	2.6632	.7556	.8670	5.9273	.4397
2.6524	2.3329	.7923	.8931	4.3511	.4354
2.6742	2.3322	.7928	.8932	3.8722	.4348
2.7631	2.3314	.7923	.8958	3.4770	.5619
2.9832	2.4259	.7482	.8776	3.2078	.5883

MASS AVERAGED QUANTITIES

REFERRRED HORSE POWER =	221.79	(HP)
REFERRRED MOMENT =	46.59	(FT-LB)
REFERRRED FLOW RATE =	5.21	(LB/SEC)
REFERRRED RPM =	22558.76	
REFERRRED HORSE POWER =	221.79	(HP)
REFERRRED MOMENT =	12.64	(FT-LB)
REFERRRED FLOW RATE =	12.05	(LB/SEC)
TOTAL/STATIC EFFICIENCY =	.7786	
TOTAL/STATIC PRESSURE RATIO =	.8885	
TOTAL/STATIC PRESSURE RATIO =	2.7093	
HEAD COEFFICIENT =	2.4097	
BLADE/JET SPEED RATIO =	4.0544	
THE OPTICAL DEGREE OF REACTION =	4.4966	
MACH NUMBER AT STATION 0 =	.5009	
	.2058	

SET NUMBER 1 PAGE 1 RPM 30000.0 TOTAL/STATIC PRESSURE RATIO 2.600 INFIL TOTAL PRESSURE 41.160 INFIL TOTAL TEMPERATURE 636.67

STATOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION (IN)	X=R/RM SHIFT (IN)	RADIAL OPENING (IN)	Y=VA /VAN EFFIC BIAD	LOSS COEFFICIENT	CONTINUITY	FLOW RATE FRACTION
1	2.764	.865	.0600	1.1042	.0791	.0791	0.0000
2	3.093	.940	.0600	1.0460	.0816	.0816	1.2529
3	3.195	1.000	.0291	1.0427	.0873	.0873	1.7224
4	3.432	1.074	.0000	1.0456	.0899	.0899	1.5631
5	3.627	1.135	.0000	1.0393	.0901	.0901	1.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	RELATIVE VELOCITY (FPS)
1	434.48	-12.43	958.78	1053.69	434.48	-17.43	236.17	494.82	723.62
2	412.35	3.92	980.77	990.69	412.35	3.92	114.57	427.98	786.21
3	393.47	3.90	958.90	938.42	393.47	3.90	93.87	836.56	898.43
4	369.58	32.19	823.16	826.12	369.58	32.19	365.45	406.67	949.55
5	349.84	41.51	746.41	825.37	349.84	41.51	-203.14		

MACH NUMBER

FLOW ANGLE (DEG.)

K RELATIVE VELOCITY (FPS)

STREAM LINE	Absolute	Relative	Absolute	Relative	Total	STATIC	TOTAL	STATIC	PRESSURE (PSI)
1	.92	.43	65.65	28.53	636.67	544.29	39.097	22.585	10171.1
2	.86	.37	65.41	15.33	636.67	555.00	39.257	24.280	10172.1
3	.81	.34	65.21	15.63	636.67	543.39	39.396	25.680	10173.7
4	.75	.33	65.04	-16.64	636.67	572.79	39.594	27.348	10174.3
5	.70	.34	64.89	-30.44	636.67	579.98	39.749	28.683	10175.1

NUMBER PAGE RPM PRESSURE/STATIC PRESSURE TOTAL
4 2 30000.0 2,800 41,160 636,67

MOTOR EXIT SOLUTION

STREAM LINE	RADIAL POSITION	X=R MM	RADIAL OPENING	V=VA / VAM EFFICIENCY	COEFFICIENT	CONTINUITY	FRACTIONAL
1	3.693	.825	.0710	.9212	.9230	.0770	.0000
2	3.695	1.066	-.0168	.9212	.9084	.0916	.210
3	3.595	1.098	-.0495	.9212	.8975	.1025	.152
4	3.595	1.175	-.1537	.9247	.9167	.0949	.2126
5	3.637	1.2106	-.2106	.9283	.9112	.0888	.0000

ABSOLUTE VELOCITY (FPS)

STREAM LINE	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	RADIAL VELOCITY	AXIAL COMPONENT	RADIAL COMPONENT	TANGENTIAL COMPONENT	OVERALL VELOCITY	WAKE VELOCITY
1	409.78	-16.43	-280.93	384.03	409.70	-16.43	-280.93	1067.81	705.03
2	376.73	9.58	-724.73	384.03	376.73	9.58	-724.73	1043.84	790.61
3	412.68	9.42	-59.36	412.68	412.68	9.42	-59.36	1092.67	854.78
4	412.67	41.00	-48.46	472.32	412.67	41.00	-48.46	1044.37	1004.53
5	529.93	62.87	-54.56	536.39	529.93	62.87	-54.56	1158.69	1185.36

RELATIVE VELOCITY (FPS)

STREAM LINE	ABSOLUTE RELATIVE	FLOW ANGLE (DEG)	TEMPERATURE (DEG. R)	PRESSURE (PSI)	PRESSURE RATIO	PRESSURE RATIO
1	1.01	-30.44	-67.44	468.13	14.532	2.6423
2	.86	-1.21	-6.48	496.69	17.006	2.4204
3	.92	-8.21	-6.76	509.42	16.885	2.4377
4	.44	1.01	-5.86	510.42	16.943	2.4293
5	.50	1.10	-5.84	509.46	16.788	2.4512

RELATIVE VELOCITY (FPS)

STREAM LINE	EQUIVALENT TEMPERATURE (DFG. R)	EQUIVALENT INLET PRESSURE (PSI)	EQUIV/STATIC PRESSURE RATIO	EQUIV/STATIC PRESSURE RATIO	EQUIV/STATIC PRESSURE RATIO	EQUIV/STATIC PRESSURE RATIO
1	562.45	25.336	2.0	2.0	2.0	2.0
2	570.82	26.799	1.8	1.8	1.8	1.8
3	578.86	28.233	2.4	2.4	2.4	2.4
4	591.51	30.665	2.3	2.3	2.3	2.3
5	602.68					

SET NUMBER	PAGE NUMBER	NPM	TOTAL/STATIC PRESSURE RATIO	INLET TOTAL PRESSURE (PSI)	INLET TOTAL TEMPERATURE (DEG. R)	TOTAL
1	3	30000.0	2.800	41.160	636.67	

OVERALL TURBINE CHARACTERISTICS

STREAM LINE	PRESSURE RATIO/10 ³	TOT/STA EFFICIENCY	HEAD COEFFICIENT	SPEED RATIO DEGREE OF REACTION
1	3.2925	.8323	.8055	.8068
2	3.6363	.8464	.8291	.8987
3	2.6959	.8377	.8050	.8872
4	2.7714	.8423	.7847	.8853
5	2.9014	.8417	.7603	.8826

MASS AVERAGED QUANTITIES

REFERRED HORSE POWER =	229.28	(HP)
REFERRED HEAD =	40.14	(FT-LB)
FLOW RATE =	5.32	(LB/SFC)
REFERRRED HORSE POWER =	27070.52	(HP)
REFERRRED HEAD =	12.34	(FT-LB)
REFERRRED FLOW RATE =	2.07	(LB/SEC)
TOTAL/STATIC EFFICIENCY =	.8018	
TOTAL/STATIC PRESSURE RATIO =	.8917	
TOTAL/TOTAL PRESSURE RATIO =	2.4824	
HEAD COEFFICIENT =		
BLADE/STC SPEED RATIO =	2.8270	
THEORETICAL DEGREE OF REACTION =	.5948	
MACH NUMBER AT STATION 0 =	.5035	
	.2062	

APPENDIX: G

COMPUTER LISTING

```

*MAIN T=00004 IS ON CR00025 USTNG 00147 BLKS R=0000
0001  FTN4,'L
0002      BLOCK DATA
0003      COMMON/ABA/BA17_BLEX
0004      COMMON/CUR/COSL(10)
0005      COMMON/TOL/TOL1,TOL2,TOL3,TOL4
0006      COMMON/TRS/TRAS
0007      COMMON/GAS/CP_GAM_FMMF_ERRE_EXP1_EXP2_UTSP_VIS3
0008      COMMON/CDZ/ICOR,ICDZ,IINC,JAI,ICG,IAN,ICON
0009      COMMON/MAC/IN
0010      COMMON/JW/(IND,INZ,IWR
0011      COMMON/AUS/XCL
0012      COMMON/CSS/CJ_G_01
0013      COMMON/VAR1/RC(10),RSOLD2,RSOLD3,RSOLD4,ASF0,RSFO,RRFO,ARFO,
0014      *RR(10),RROLD2,RROLD3,RROLD4,CV,CK,VA1(10),DALF(10),DBET(10),
0015      *ASF AMS,B1(20)
0016      COMMON/VAR2/B6(20),ZR,ZS,ARF,R2(20),PR,AMR,VU1(10)
0017      COMMON/VAR3/PTE(10),RS1,RS3,RS5,T2(10)
0018      COMMON/VAR4/BR1,RR2,RR3,RR1,RR5,RR6,V2(10)
0019      COMMON/VARS/PRA1(10),RINC1(10),ALFA1(10),BETA1(10),ZETA1(10),
0020      *V2(10),ALFA2(10),BETA2(10)
0021      COMMON/VAR5/PT2(10),TT2(10),PT1(10),DELH(10),ALFAP(10),VU2(10),
0022      *WR2(10),T2S(10),T2TS(10)
0023      COMMON/VAR7/TTIS(5),RFAT(5),ETAT(5),ETAI(10),ETAS(10),ETAR(10),
0024      *RSTAR(10),OKJS(10),PSIR(10)
0025      COMMON/VAR8/DR1(10),AMW1(10),AMW2(10),RFET(10),PRAT1T(10),AMR2(10),
0026      *Y1(10),YS(10),X1(10),AREA1(10),ZETAPS(10),WPER1(10),YR(10),X2(10)
0027      COMMON/VAR9/ZETAPR(10),ZETAPR(10),AS(10),AR(10),SI1(10),SI2(10),
0028      *SI1(10),DSDX1(10),W1(10),HE(10)
0029      COMMON/VAR10/WU1(10),D4EDX1(10),DSDX2(10),RI1(10),RI2(10),
0030      *RI3(10),RT4(10),RT(10),SR1(10),SR2(10)
0031      COMMON/VAR11/YOLD(10),AA(10),SR(10),PRAT2(10),WPER2(10),
0032      *DWDX(10),TIIS(10),PRAT3(10),SS(10),ALFA(10)
0033      COMMON/VAR12/BETA1(10),DELH(10),WPERO(10),ZETAPS(10),ZETAR1(20),
0034      *ZETAR3(20),ZETAR5(20),R1(20),A1(20),T1(20)
0035      COMMON/VAR13/ST1(20),IRR(20),R2(20),RINC(20),DR(10),
0036      *RETO(10),STALII(10),AREA2(10),VR1(10)
0037      COMMON/VAR14/WLBM_PRATS_QMEG
0038      COMMON/AL1/ALFA1(10),V1(10),TTD,RHM,RS(10),SI,TNT,H,D,CI,T1(10),
0039      *P1(10),TD,TEI,AL1,RESP,XX,ANG20,AMS(10),SI,TN,C,T2,AL,SD,TNO,
0040      *CO,TEO,(10),D11,D10,D21,D20,ANG21,ALFAX,T1,P10,A10,AMC
0041      COMMON/AL2/BETA2(10),BETA1(10),RETAO(10),W2(10),TTE(10),UP(10),
0042      *S1R,TNIR,HR,DZ,CIR,TIPC,SZ,TNR,CR,SOR,TNOR,COR,ALTR,ALR,ALOR,
0043      *P2(10),W12(10),W1(10),TEIR,TER,TEOR,D1TR,D1OR,BETAZ,BETAI,ANM,
0044      *TTR,TR,TR,STALII(10)
0045      COMMON/ARE/REE
0046      COMMON/TRA/XPO1(5,8),XP02(6,8),ALF1(8),ALF01(5),ALF02(6),
0047      *Y(10),Y1(10),Q(6),RX(30),RY(30),IR(30),Z(6),C1(4,8),C2(4,8)
0048      DATA ALF1/ 10.,15.,20.,25.,30.,40.,50.,60./
0049      DATA ALF01/ 40.,50.,60.,70.,80./
0050      DATA ALF02/ 80.,90.,100.,120.,150.,170./
0051      DATA XPO1/ .0570, .0465, .0440, .0428, .0424,
0052      * .0530, .0415, .0350, .0330, .0323,
0053      * .0495, .0380, .0312, .0396, .0285,
0054      * .0475, .0355, .0295, .0267, .0250,
0055      * .0440, .0335, .0273, .0245, .0225,
0056      * .0420, .0312, .0224, .0205, .0183,
0057      * .0420, .0300, .0213, .0181, .0152,
0058      * .0420, .0300, .0206, .0155, .0125,
0059      DATA XPO2/ .0424, .0422, .0420, .0402, .0313, .0000,
0060      * .0323, .0320, .0318, .0295, .0200, .0000,
0061      * .0283, .0280, .0275, .0250, .0143, .0000,
0062      * .0250, .0246, .0242, .0208, .0070, .0000,
0063      * .0225, .0216, .0203, .0168, .0000, .0000,
0064      * .0183, .0170, .0154, .0106, .0100, .0000,
0065      * .0150, .0136, .0104, .0050, -.015, .0000,
0066      * .0125, .0099, .0073, .0000, -.020, .0000/
0067      DATA VIS2,VIS3,CP_FMMF_GAM/ 0.00013, .000003, .24, .28, .97, 1.4/
0068      DATA G,CJ,EXP1,EXP2,ERRE/32.174,778.16,3.5,.2857,53.3459/
0069      END
0070      PROGRAM THESS
0071
0072
0073      DIMENSION INAM(3)
0074      COMMON/ABA/BA17_BLEX
0075      COMMON/CUR/COSL(10)
0076      COMMON/TOL/TOL1,TOL2,TOL3,TOL4
0077      COMMON/TRS/TRAS
0078      COMMON/GAS/CP_GAM_FMMF_ERRE_EXP1_EXP2_UTSP_VIS3

```

C

```

0079 COMMON/C07/TC07,IC07,IINC,IAI,TCL,IAN,ICON
0080 COMMON/MAC/TN
0081 COMMON/IWI/TND,INZ,IWR
0082 COMMON/AIS/XCL
0083 COMMON/CSS/CJ,G,Q1
0084 COMMON/VAR1/R0(10),RS0LD2,RS0LD3,RS0LD4,AS0,RS0,RR0,AR0,
0085 *RR(10),R0LD2,R0LD3,R0LD4,CV,CK,V01(10),DALF(10),DBET(10),
0086 *ASF,AMS,B1(20)
0087 COMMON/VAR2/B6(20),7R,ZS,ARF,B2(20),PR,AMR,VU1(10)
0088 COMMON/VAR3/PTE(10),RS1,RS3,RS2,T2(10)
0089 COMMON/VAR4/HR1,BR2,RB3,RK1,RR3,RRS,VA2(10)
0090 COMMON/VARS/HRA1(10),KINC1(10),ALFA11(10),BETA11(10),ZETA1(10),
0091 *X2(10),ALFA22(10),RFTA22(10)
0092 COMMON/VAR6/PT2(10),TT2(10),PT1(10),DELH(10),ALFAP(10),VU2(10),
0093 *WR2(10),T2S(10),T2TS(10)
0094 COMMON/VAR7/TT1S(5),RETAT(5),ETAT(5),FTAT(10),ETAS(10),ETAR(10),
0095 *STAR(10),AKJS(10),PSTR(10)
0096 COMMON/VAR8/DK1(10),AMW1(10),AMU2(10),BFTFT(10),PRAT1T(10)
0097 *XMR2(10),YS(10),X1(10),AREA1(10),ZETAPS(10),WPER1(10),YR(10),
0098 *X2(10)
0099 COMMON/VAR9/ZETAR(10),ZETAPR(10),AS(10),AR(10),SI1(10),SI2(10),
0100 *S1(10),DSDX1(10),WI1(10),HE(10)
0101 COMMON/VAR10/WU1(10),DHDX(10),DSDX2(10),RI1(10),RT2(10),
0102 *RI3(10),RT4(10),RT5(10),SR1(10),SR2(10)
0103 COMMON/VAR11/YOLD(10),AA1(10),S1(10),PRAT2(10),WPER2(10),
0104 *DHDX(10),TI1S(10),PRAT3(10),SS(10),ALFA(10)
0105 COMMON/VAR12/BETA(10),DELR(10),WPERO(10),ZETAS(10),ZETAR1(20),
0106 *ZETAR3(20),ZETAR(20),R1(20),A1(20),T1(20)
0107 COMMON/VAR13/ST1(20),IR0(20),R2(20),A2(20),RINC(20),DR(10),
0108 *RFTO(10),STALII(10),ARFA2(10),VR1(10)
0109 COMMON/VAR14/WLBM,PRATS,OMEG
0110 COMMON/AI1/ALFA1(10),V1(10),TTO,KPM,RS(10),SI,TNT,H,D,CI,T1(10),
0111 *P1(10),TO,TEI,ALI,RSSE,XX,ANG20,AMS1(10),S,TN,C,TF,AL,SO,TNO,
0112 *CO,TEOU(10),D11,D10,D21,D20,ANG21,ALFAX,T1,T,P10,A1,AMC
0113 COMMON/AL2/BETA2(10),BETA1(10),RETAN(10),W2(10),TTE(10),U2(10),
0114 *STR,TNR,HP,DZ,CIR,T1PC,SZ,TNR,CR,SOP,TNOR,CDR,ALJR,ALR,ALDR,
0115 *P2(10),WUP(10),W1(10),TEIR,TER,TEOR,D1TR,D1OR,BETAZ,BETAT,ANM,
0116 *TTR,TR,TR,STAL1(10)
0117 COMMON/ARF/REE
0118 COMMON/TRA/XP01(5,8),XP02(6,8),ALF1(8),ALFO1(5),ALFO2(6),
0119 *Y(10),Y1(10),Q(6),RX(30),RY(30),IR(30),Z(6),C1(4,8),C2(4,8)
0120 DATA INAM /2HSH,2HOR,2HT/
0121 TRAS=1
0122 XX=1.25
0123 CALL EXEC(8,INAM).
0124
0125 C
0126 SUBROUTINE CHAN(TTO,AMC,PTO,RC,WLBM,WCHAN,WPERO)
0127 DIMENSION RC(10),WPERO(10)
0128 COMMON/GAS/CP,GAM,EMME,ERKF,EXP1,EXP2,VIS2,VIS3
0129 COMMON/CSS/CJ,G,Q1
0130 TC=TTO/(1.+(GAM-1.)/2.*AMC*AMC)
0131 VC=SQRT(GAM*ERRE*G*TC)*AMC
0132 PC=PTO/(1.+(GAM-1.)*AMC**2/2.)*EXP1
0133 RHO=PC/ERRE/TC
0134 AREA=3.1416*(RC(5)**2-RC(1)**2)
0135 WLBM=RHO*AREA*VC
0136 WCHAN=WLBM/(PTO*SQRT(G/ERRE/TTO))
0137 WPERO(1)=0.
0138 WPERO(2)=.25
0139 WPERO(3)=.5
0140 WPERO(4)=.75
0141 WPERO(5)=1.0
0142 RETURN
0143 END
0144 C
0145 SUBROUTINE STATK (ALFA1,X,TTO,PTO,AM,T,P,V1,V01,SI1,SI2,Y,S,DSFX,
0146 *VU1,PRAT,T1S,SS,DALF,DELR,CL,CK,ZFTAPS,R,RS1,RS3,RS5,
0147 *ZFTA,DR,ZETAS,AMS,NS,VR1)
0148 DIMENSION ALFA1(10),X(10),T(10),P(10),V1(10),V01(10),SI1(10),
0149 *SI2(10),Y(10),DSFX(10),VU1(10),PRAT(10),T1S(10),SS(10),S(10),
0150 *DALDX(10),ALFA(10),ALFAM(10),DALF(10),AMS(10),DALFDX(10),DELR(
0151 *10),ZETAS(10),ETA(10),ZETAPS(10),R(10),ZETA(10),DR(10),VR1(10)
0152 COMMON/GAS/CP,GAM,EMME,ERKE,EXP1,EXP2,VIS2,VIS3
0153 COMMON/CSS/CJ,G,Q1
0154 CB=0.0
0155 Q1=2.*C*TC*CP
0156 CP=V01(3)**2/(Q1*TTO)

```

```

0159      DO 303 I=1,5
0160      1=(R(I)-RS3) 300,301,302
0161      300 ZF1AS(1)=ZFTA(1)+((R(I)-RS1)/(RS3-RS1))*(ZFTA(3)-ZETA(1))
0162      ALFA1(I)=ALFA1(3)+((R(I)-RS3)/(RS1-RS3))*DALF(1)
0163      ZFTAPS(1)=ZETAPS(1)+((R(I)-RS1)/(RS3-RS1))*(ZETAPS(3)-ZETAPS(1))
0164      GO TO 303
0165      301 ZFTAS(1)=ZFTA(3)
0166      ALFA1(1)=ALFA1(3)
0167      GO TO 303
0168      302 ZFTAS(1)=ZFTA(3)+((R(I)-RS3)/(RS5-RS3))*(ZFTA(5)-ZETA(3))
0169      ALFA1(I)=ALFA1(3)+((R(I)-RS3)/(RS5-RS3))*DALF(5)
0170      ZFTAPS(1)=ZETAPS(3)+((R(I)-RS3)/(RS5-RS3))*(ZETAPS(5)-ZETAPS(3))
0171      303 CONTINUE
0172      DO 305 I=1,5
0173      FTA(I)=1.-ZETAS(I)
0174      M=I-1
0175      N=I+1
0176      IF(I-1), 307, 309
0177      307 DALFDX(I)=(ALFA1(2)-ALFA1(1))/(X(2)-X(1))
0178      GO TO 315
0179      309 IF(I-5), 311, 313, 315
0180      311 DALFDX(I)=.5*((ALFA1(N)-ALFA1(I))/(X(N)-X(I))+(ALFA1(I)-ALFA1(M))/*
0181      * (X(I)-X(M)))
0182      GO TO 315
0183      313 DALFDX(5)=(ALFA1(5)-ALFA1(4))/(X(5)-X(4))
0184      315 TAN1=-2.*TAN(ALFA1(I))
0185      PROD=TAN1*DALFDX(I)
0186      SINSQ=-2.*STN(ALFA1(I))**2/X(I)
0187      SI1(I)=PROD+SINSQ
0188      305 CONTINUE
0189      304 DO 332 J=1,5
0190      IF(J-1), 306, 306, 310
0191      306 IF(NS-1), 317, 310, 310
0192      317 DO 308 I=1,5
0193      SS(I)=0.
0194      308 SI2(I)=SI1(I)
0195      GO TO 318
0196      310 DO 312 I=1,5
0197      AA=C2*Y(I)**2/COS(ALFA1(I))**2
0198      AB=(1.-AA)/(1.-AA/ETA(I))
0199      312 S(I)=ALOG(AB)
0200      314 DSDX(1)=(S(2)-S(1))/(X(2)-X(1))
0201      DSDX(2)=.5*(DSDX(1)+(S(3)-S(2))/(X(3)-X(2)))
0202      DSDX(3)=.5*((S(4)-S(3))/(X(4)-X(3))+(S(3)-S(2))/(X(3)-X(2)))
0203      DSDX(4)=.5*((S(5)-S(4))/(X(5)-X(4))+(S(4)-S(3))/(X(4)-X(3)))
0204      DSDX(5)=(S(5)-S(4))/(X(5)-X(4))
0205      DO 316 I=1,5
0206      IF(NS-1), 319, 321, 321
0207      319 SS(I)=(-COS(ALFA1(I))**2/(C2*Y(I)**2))*DSDX(I)
0208      GO TO 316
0209      321 SS(I)=(-COS(ALFA1(I))**2/(C2*Y(I)**2))+SIN(ALFA1(I))**2+COS(AL
0210      *FA1(I))**2*(CL**2+(DR(I)/2.0)**2)/CL**2*DSDX(I)+COS(ALFA1(I))**2*
0211      *CK**2.*RSF*DELR(I)/CL**2
0212      316 SI2(I)=SS(I)+SI1(I)
0213      318 SUM1=(SI2(1)+SI2(2))*(X(2)-X(1))/4.
0214      SUM2=(SI2(2)+SI2(3))*(X(3)-X(2))/4.
0215      SUM3=(SI2(3)+SI2(4))*(X(4)-X(3))/4.
0216      SUM4=(SI2(4)+SI2(5))*(X(5)-X(4))/4.
0217      EN2=-SUM2
0218      EN1=-SUM2-SUM1
0219      FN3=SUM3
0220      FN4=SUM3+SUM4
0221      Y(2)=EXP(EN2)
0222      Y(1)=EXP(EN1)
0223      Y(4)=EXP(EN3)
0224      Y(3)=1.0
0225      Y(5)=EXP(EN4)
0226      IF(IND-1), 332, 323, 323
0227      323 IF(J-1), 324, 324, 320
0228      320 IF(J-3), 322, 324, 322
0229      322 IF(J-5), 332, 324, 332
0230      324 WRITE(6,326)
0231      326 FORMAT(1/57H SLINE C8 C9 ITERATION I'ALFA I'DSDX I'TOTAL
0232      * Y)
0233      DO 330 I=1,5
0234      328 FORMAT(14,F4.2,F4.2,I9,F12.4,F9.5,F9.4,2FB.4)
0235      330 WRITE(6,328) I,C8,C9,J,SI1(I),SS(I),SI2(I),Y(I),ALFA1(I)
0236      332 CONTINUE
0237      DO 334 I=1,5
0238      VA1(I)=VA1(3)*Y(I)

```

```

0239      VU1(I)=VA1(I)*TAN(AlFA1(I))
0240      V1(I)=VA1(I)/COS(AlFA1(I))
0241      UR1(I)=-VA1(I)*KDR(T)/?./CL
0242      Vt(I)=SQRT(V1(I)*V1(I)+UR1(I)*UR1(I))
0243      T(I)=T1(I)-V1(I)**2/03
0244      T1IS(I)=TTO-(TTO-T(I))/ETA(I)
0245      P(I)=PTO*(T1IS(I)/TTO)**EXP1
0246      PRA1(I)=P(I)/PTO
0247      DO 352 I=1,5
0248      AMS(I)=V1(I)/SQRT(GAM*ERRE*G*T(I))
0249      352 CONTINUE
0250      RETURN
0251      END
0252
C      SUBROUTINE ROTO1  (VU1,VA1,RPM,U,BETA1,HE,TTE,PTE,X2,P1,T1,W1,WU1,
0253      *X1,RS,ZETAR,RR,DHEDX,DSDX,S,U2,OMEG,RRI,RR3,RR3,FS1,FS2,
0254      *ZFTA,B6,RS1,RS3,RS5,BETO,STALI,BINC,UR1)
0255      DIMENSION VU1(S),VA1(S),U(S),BETA1(S),HE(S),TTE(S),PTE(S),
0256      *X2(S),P1(S),T1(S),W1(S),WU1(S),RS(S),ZETAR(S),
0257      *ZFTAPR(S),RR(S),DHEDX(S),DSDX(S),S(S),U2(S),ZETA(S),
0258      *UR1(S),R1(10),BETO(S),STALI(S),BINC(S)
0259      COMMON/CSS/CJ,G,Q1
0260      COMMON/GAS/CP,GAM,EMME,ERRE,EXP1,EXP2,VIS2,VIS3
0261      COMMON/IWT/IND,IN7,IWR
0262      C=2.*3P.174*778.16*CP
0263      OMEG=RPM*3.1416/30.
0264      DO 520 I=1,5
0265      U(I)=OMEG*RS(I)/12.
0266      U2(I)=U(I)*RR(I)/RS(I)
0267      WU1(I)=VU1(I)-U(I)
0268      BETA1(I)=ATAN(WU1(I)/VA1(I))
0269      W1(I)=VA1(I)/COS(BETA1(I))
0270      W1(I)=SQRT(UR1(I)*UR1(I)+W1(I)**2*XW1(I))
0271      TTE(I)=T1(I)+W1(I)**2/C+(U2(I)**2-U(I)**2)/C
0272      PTE(I)=P1(I)*(TTE(I)/T1(I))**EXP1
0273      HE(I)=TTE(I)*.24
0274      IF(RS(I)-RS3).LT.512 S14,S16
0275      S12 ZETAR(I)=ZETA(I)+(RS(I)-RS1)/(RS3-RS1)*(ZETA(3)-ZETA(1))
0276      GO TO 518
0277      S14 ZETAR(I)=ZETA(3)
0278      GO TO 518
0279      S16 ZETAR(I)=ZETA(3)+(RS(I)-RS3)/(RS5-RS3)*(ZETA(5)-ZETA(3))
0280      S18 ZFTAPR(I)=ZETAR(I)/2.0
0281      520 CONTINUE
0282      DSDX1=(S(2)-S(1))/(X2(2)-X2(1))
0283      DSDX2=1.5*(DSDX1+(S(3)-S(2))/(X2(3)-X2(2)))
0284      DSDX3=0.5*((S(4)-S(3))/(X2(4)-X2(3))+S(3)-S(2))/(X2(3)-X2(2))
0285      DSDX4=0.5*(DSDX3+(S(4)-S(3))/(X2(4)-X2(3)))
0286      DHEDX1=(HE(2)-HE(1))/(X2(2)-X2(1))
0287      DHEDX2=.5*(DHEDX1+(HE(3)-HE(2))/(X2(3)-X2(2)))
0288      DHEDX3=0.5*((HE(3)-HE(2))/(X2(3)-X2(2))+HE(4)-HE(3))/(*(X2(4)-X2(3)))
0289      DHEDX4=0.5*(DHEDX3+(HE(4)-HE(3))/(X2(4)-X2(3)))
0290      *DHEDX5=(HE(5)-HE(4))/(X2(5)-X2(4))
0291      *DHEDX6=0.5*(DHEDX5+(HE(4)-HE(3))/(X2(4)-X2(3)))
0292      522 CONTINUE
0293      RETURN
0294      END
0295
C      SUBROUTINE ROTO2  (BETA2,HE,DHEDX,DSDX1,DSDX2,VA2,W1P,W2,VU2,V2
0296      *X2,U,YR,ZETAR,R12,R13,R14,RI,SR1,SR2,AA,SR,TTF,PTE,T2,P2,PRAT2
0297      *T2S,INDS,DEBT,DELR,CL,CK,DR,K,RR1,RR3,KRS,NG,WR2)
0298      DIMENSION BETA2(S),HE(S),DHEDX(S),DSDX1(S),DSDX2(S),SR2(S),YOLD(S),
0299      *WU2(S),W2(S),VU2(S),V2(S),X2(S),U(S),YR(S),ZETAR(S),
0300      *RI1(S),RI2(S),RI3(S),RI4(S),RI5(S),SR1(S),SR2(S)+YOLD(S),
0301      *AA(S),SR(S),TTE(S),PTE(S),T2(S),P2(S),PRAT2(S),T2S(S),
0302      *DRET(S),PRATAM(S),AMR(S),DRETDX(S),BETA(S),DELR(S),RI5(S),
0303      *DR(S),R(S),WR2(S)
0304      COMMON/TOL/TOL1,TOL2,TOL3,TOL4
0305      COMMON/CSS/CJ,G,Q1
0306      COMMON/GAS/CP,GAM,EMME,ERRE,EXP1,EXP2,VIS2,VIS3
0307      COMMON/IWT/IND,IN7,IWR
0308      INDS=0
0309      INDS1=0
0310      C=2.*C*CJ
0311      Q1=C/VA2(S)**2
0312      DO 274 I=1,5
0313      IF(R(I)-RR3).LT.270,271,273
0314      BETA2(I)=BETA2(S)+(R(I)-RR3)/(RR1-RR3)*DRET(I).
0315      GO TO 274
0316
0317
0318

```

```

0319      274  BETA2(1)=BETA2(3)
0320      GO TO 274
0321      273  BETA2(1)=BETA2(3)+(R(I)-RR3)/(RR5-RR3)*DRET(5)
0322      CONTINUE
0323      DRETDX(1)=(BETA2(2)-BETA2(1))/(X2(2)-X2(1))
0324      DRETDX(5)=(BETA2(5)-BETA2(4))/(X2(5)-X2(4))
0325      DO 280 I=2,4
0326      M=I-1
0327      N=I+1
0328      280  DRETDX(T)=.5*((BETA2(N)-BETA2(I))/(X2(N)-X2(I))+(BETA2(I)-BETA2
0329      *(M))/(X2(I)-X2(M)))
0330      DO 10 I=1,5
0331      200  TAN1=-2.*TAN(BETA2(I))
0332      PKOD=TAN1*DRETDX(T)
0333      S(N1=-2.*SIN(BETA2(T))**2/X2(I)
0334      RI1(I)=PR0D+S(N1+DSDX1(I)
0335      SR1(I)=-4.*U(3)*COS(BETA2(I))*STN(BETA2(I))/(VA2(3)*YR(I))
0336      SR2(I)=P.*U(3)*U(I)*COS(BETA2(I))**2/(VA2(3)**2*YR(I)**2)
0337      YOLD(I)=YR(I)
0338      AA(I)=(VA2(3)*YR(I)/COS(BETA2(I)))**2/(C*HE(I))
0339      RT3(I)=(C*COS(BETA2(I))**2/(VA2(3)*YR(I))**2)*DHEDX(I)
0340      TF (INDS1-1) 10,250,250
0341      10  CONTINUE
0342      281  IF(IND-1) 201,282,282
0343      282  WRITE(6,121)(RI1(I),I=1,5)
0344      121  FORMAT(/23H CONSTANT INTEGRAND 1-5, SF8.5)
0345      122  FORMAT(/60H SLINE IND$1 GRAD S INT2 INT3 INT4 INT
0346      *Y VAL)
0347      201  DO 20 J=1,13
0348      DO 30 I=1,5
0349      AA(I)=AA(I)*(YR(I)/YOLD(I))**2
0350      ANUM=1.-AA(I)
0351      ADEN=1.-AA(I)/(1.-ZETAR(I))
0352      AR=ANUM/ADEN
0353      TF (AB) 130,130,30
0354      130  IND$1
0355      GO TO 150
0356      30  SR(I)=ALOC(ANUM/ADEN)
0357      DSDX2(1)=(SR(2)-SR(1))/(X2(2)-X2(1))
0358      DSDX2(2)=.5*(DSDX2(1)+(SR(3)-SR(2))/(X2(3)-X2(2)))
0359      DSDX2(3)=.5*(SR(3)-SR(2))/(X2(3)-X2(2))+(SR(4)-SR(3))/
0360      *(X2(4)-X2(3))
0361      DSDX2(5)=(SR(5)-SR(4))/(X2(5)-X2(4))
0362      DSDX2(4)=.5*(DSDX2(5)+(SR(4)-SR(3))/(X2(4)-X2(3)))
0363      DO 40 I=1,5
0364      SR1(I)=SR1(I)*YOLD(I)/YR(I)
0365      SR2(I)=SR2(I)*(YOLD(I)/YR(I))**2
0366      RI2(I)=SR1(I)-SR2(I)
0367      RI3(I)=RI3(I)*(YOLD(I)/YR(I))**2
0368      IF (NS-1) 31,32,32
0369      31  RI4(I)=DSDX2(I)-(DSDX1(I)+DSDX2(I))*C1*HE(I)
0370      * *(COS(BETA2(I))/YR(I))**2
0371      GO TO 40
0372      32  RI4(I)=-(DSDX1(I)+DSDX2(I))*C1*HE(I)*(COS(BETA2(I))/YR(I))**2
0373      RI5(I)=(DSDX1(I)+DSDX2(I))*SIN(BETA2(I))**2+COS(BETA2(I))**2
0374      ***(CL**2+(DR(I)/2.0)**2/CL**2)-COS(BETA2(I))**2*(2.*CK*RRF*
0375      *DLR(I))/CL**2
0376      RI4(I)=RT4(I)+RI5(I)
0377      40  RI(I)=RI1(I)+RI2(I)+RI3(I)+RI4(I)
0378      SUM1=(RI(1)+RI(2))*(X2(2)-X2(1))/4.
0379      SUM2=(RI(2)+RI(3))*(X2(3)-X2(2))/4.
0380      SUM3=(RI(3)+RI(4))*(X2(4)-X2(3))/4.
0381      SUM4=(RI(4)+RI(5))*(X2(5)-X2(4))/4.
0382      FN1=-(SUM2-SUM1)
0383      FN2=-SUM2
0384      FN4=SUM3
0385      FN5=SUM3+SUM4
0386      DO 50 I=1,5
0387      YOLD(I)=YR(I)
0388      YR(1)=EXP(EN1)
0389      YR(2)=EXP(EN2)
0390      YR(3)=1.0
0391      YR(4)=EXP(EN4)
0392      YR(5)=EXP(EN5)
0393      NCOUNT=0
0394      DO 1001 I=1,5
0395      IF(YR(I).GT.2.0) YR(I)=2.0
0396      TF(YR(I).LT.0.2) YR(I)=0.2
0397      1001  CONTINUE

```

```

0399 DO 110 I=1,5
0400 TEST=ABS(Y00-D(I)-YR(I))
0401 IF(TEST-T0P(4)) 110,110,119
0402 110 NCOUNT=NCOUNT+1
0403 IF(NCOUNT-S) 119,140,119
0404 119 IF(IND-1),20 120,120
0405 120 TF(J-3) 80,100,80
0406 80 TF(J-6) 90,100,90
0407 90 TF(J-9) 160,100,160
0408 160 TF(J-12) 20,100,20
0409 100 DO 60 I=1,5
0410 123 FORMAT( J4,17,F10.5 SF8.4)
0411 60 WRITE( 6,123) I,IND$1,DSDX2(I),RI2(I),RI3(I),RI4(I),RI(I),YR(I)
0412 CONTINUE
0413 140 DO 70 I=1,5
0414 VA2(I)=YR(I)*VA2(3)
0415 W2(I)=VA2(I)/LDS(BETA2(I))
0416 WR2(I)=-VA2(I)*DR(I)/P./CL
0417 W2(I)=SQRT(W2(I)*W2(I)+WR2(I)*WR2(I))
0418 T2(I)=TTE(I)-W2(I)**2/(0.24*C)
0419 IF(IND$1-1) 251,149,149
0420 251 IND$1=IND$1+1
0421 DO 250 I=1,5
0422 AMR(I)=W2(I)/SQRT(GAM*ERRE*G*T2(I))
0423 250 CONTINUE
0424 149 DO 190 I=1,5
0425 WU2(I)=VA2(I)*TAN(BETA2(I))
0426 VU2(I)=WU2(I)+U(I)
0427 T2S(I)=TTE(I)-(TTE(I)-T2(I))/(1.-ZETAR(I))
0428 P2(I)=PTE(I)*(T2S(I)/TTE(I))**((GAM/(GAM-1.))
0429 PRAT2(I)=P2(I)/PTE(I)
0430 190 CONTINUE
0431 150 RETURN
0432 END
0433 C
0434 SUBROUTINE FLOWR(PRAT,ZETAP,X,WI,PTE,PTO,TTE,TTO,AS,ZS,RS,AR,ZR,
0435 *RR,M,WCHAN,VA,WPER,CODE,WLRM,R,R,TIPC,A)
0436 DIMENSION PRAT(10),ZETAP(10),X(10),WI(10),PTE(10),TTE(10),
0437 *VA(10),WPER(10),B(20),A(10),R(10)
0438 COMMON/CUR/CDOS(10)
0439 COMMON/TOL/TOL1,TOL2,TOL3,TOL4
0440 COMMON/MAC/IN
0441 COMMON/GAS/CP,GAM,EMME,ERRE,EXP1,EXP2,VIS2,VIS3
0442 COMMON/CSS/CJ,Q1
0443 COMMON/ARA/RA17,BLEX
0444 COMMON/IWI/IND,INZ,IWR
0445 TN=20
0446 C=BLEX
0447 A(3)=B(1)+B(2)*R(3)+B(3)*R(3)**2+B(4)*R(3)**3+B(5)*R(3)**4
0448 F1=1./(C+1.)
0449 F2=1./(3.*C+1.)
0450 F3=1./(5.*C+1.)
0451 F4=1./(7.*C+1.)
0452 FS=1./(9.*C+1.)
0453 FA=1./(11.*C+1.)
0454 PRATCR=(2./(GAM+1.))**((GAM/(GAM-1.))
0455 PHICR=(2./(GAM+1.))**((1.)/(GAM-1.))*SQRT(2.*GAM/(GAM+1.))
0456 DO 420 I=1,5
0457 TF=(PRATCR-PRAT(I)) 400,402,402
0458 400 XE=1.-PRAT(I)**((GAM-1.)/GAM)
0459 GO TO 404
0460 402 XE=1.-PRATCR**((GAM-1.)/GAM)
0461 404 XE2=XE**2
0462 XE3=XE**3
0463 XE4=XE**4
0464 XFINV=1./(XE-1.)
0465 HNUM=XFINV+F2*XE+F3*XE2+F4*XE3+F5*XE4+F6
0466 HDEN=XEINV+1+XE*X2+XE2*X3+XE3*X4+XE4*X5
0467 HSTAR=HNUM/HDEN
0468 XT=(HSTAR-1.)/(HSTAR-1.+ZETAP(I))
0469 IF((PRATCR-PRAT(I)) 406,408,408
0470 406 PHI=SQRT(2.*GAM/(GAM-1.)*(PRAT(I)**(2./GAM)-PRAT(I)**2
0471 *((GAM+1.)/GAM)))
0472 GO TO 410
0473 408 PHT=PHICR
0474 410 A(1)=B(1)+B(2)*R(I)+B(3)*R(I)**2+B(4)*R(I)**3+B(5)*R(I)**4
0475 ARAT=A(I)/A(3)
0476 IF(M-2) 415,412,415
0477 412 TF(I-S) 415,414,414
0478 414 ARAI=ARAT+2.*X(3).14*P(R(S)*TIPC/(ZR*AR*RR*(X(5)-X(4))))

```

```

0479      415 TF(IND-1) 420,416,416
0480      416 WRTTE(6,418) XI,PHT,ARAT
0481      418 FORMAT(7SH XH=F6.4,6H PHT=F7.5,7H ARAT=F6.4)
0482      420 WI(I)=(PTF(I)/PTF)/SQR(TTF(I)/TTO)*ARAT*XI*PHI*COSL(I)
0483      SUM1=(WI(1)+WI(2))*(X(2)-X(1))/2.
0484      SUM2=(WI(2)+WI(3))*(X(3)-X(2))/2.
0485      SUM3=(WI(3)+WI(4))*(X(4)-X(3))/2.
0486      SUM4=(WI(4)+WI(5))*(X(5)-X(4))/2.
0487      WSUM=SUM1+SUM2+SUM3+SUM4
0488      TF(M-1) 428,426,428
0489      426 WREQ=WCHAN/(AR*ZR*RR)
0490      DIFF=ABS(WREQ-WSUM)
0491      GO TO 430
0492      428 WREQ=WCHAN/(AR*ZR*RR)
0493      DIFF=ABS(WREQ-WSUM)
0494      430 TAL=TOL1*XWREQ
0495      IF (DIFF-TAL) 432,432,434
0496      432 VA(3)=VA(3)
0497      CODE=20.
0498      GO TO 442
0499      434 IF (WSUM-WREQ) 436,432,438
0500      436 CONTINUE
0501      IF (PRAT(1).LT.PRATOR.AND.PRAT(5).LT.PRATOR) GO TO 470
0502      VA(3)=VA(3)*(1.00+DIFF/WREQ*1.01)
0503      GO TO 442
0504      438 VA(3)=VA(3)*(1.00+DIFF/WREQ*1.01)
0505      442 WPER(1)=0.
0506      WPER(2)=SUM1/WSUM
0507      WPER(3)=(SUM1+SUM2)/WSUM
0508      WPER(4)=(SUM1+SUM2+SUM3)/WSUM
0509      WPER(5)=1.0
0510      TF(IND-1) 450,423,423
0511      423 WRITE(6,422) (WI(I),I=1,5)
0512      422 FORMAT(7PH FLOW TNTEGRAND 1-5 F10.5)
0513      WRITE(6,424) SUM1,SUM2;SUM3,SUM4,WSUM
0514      424 FORMAT(7SH SUMS 1-4 WSUM SF10.5)
0515      WRITE(6,440) WSUM,WREQ,VA(3)
0516      440 FORMAT(3SH REF FLOWS,COMPUTED-REQUIRED,AX VAL,2F10.4,F10.2)
0517      WRITE(6,444) WCHAN,WLBM
0518      444 FORMAT(7SH REF FLOW RATE CHANNEL-SQUARE INCHES,FB.5,18H FLOW RATE
0519      *-1 BM/SEC,FR.5)
0520      WRITE(6,446) M
0521      446 FORMAT(7SH STREAMLINE FLOW FRACTIONS M=[2])
0522      WRITE(6,448) X(2),WPER(2),X(3),WPER(3),X(4),WPER(4)
0523      448 FORMAT(6F10.4)
0524      GO TO 450
0525      450 IN=1
0526      RETURN
0527      END
0528      C
0529      SUBROUTINE SLINE (RR,X,Dwdx,Wper2,Wper1,Hf,U,Dhedx,S,Dsdx1,
0530      *Karf,Rrf,fc1,fc2,code,m,b)
0531      DIMENSION RR(10),X(10),Dwdx(10),WI(10),Wper2(10),Wper1(10),He(10),
0532      *Dhedx(10),S(10),Dsdx1(10),U(10),B(20)
0533      COMMON/TOL/TOL1,TOL2,TOL3,TOL4
0534      COMMON/IWI/IND,INZ,IWR
0535      N7=0
0536      SAVE=RR(3)
0537      CODE=1.
0538      DO 700 I=1,4
0539      J=I+1
0540      700 Dwdx(I)=(Wper2(J)-Wper2(I))/(X(J)-X(I))
0541      N=0
0542      DO 720 I=2,4
0543      K=I+1
0544      J=I-1
0545      IF (ABS(Wper2(I)-Wper1(I))-TOL2) 716,716,702
0546      702 IF (Wper2(I)-Wper1(I)) 704,716,708
0547      704 XN=X(1)+(Wper1(I)-Wper2(I))/Dwdx(J)
0548      IF (M-1) 706,712,706
0549      706 SI=(HE(K)-HE(I))/(X(K)-X(I))
0550      DFL=2.*SI-Dhedx(I)/(X(K)-X(I))
0551      Dhedx(I)=DHE(X(1)+DFL*(XN-X(I)))
0552      HE(I)=HE(T)+Dhedx(I)*(XN-X(I))
0553      SL=(S(K)-S(I))/(X(K)-X(I))
0554      DEL=2.*SI-Dsdx1(J)/(X(K)-X(I))
0555      Dsdx1(I)=Dsdx1(I)+DFL*(XN-X(I))
0556      S(I)=S(I)+Dsdx1(I)*(XN-X(I))
0557      GO TO 712
0558      708 XN=X(1)-(Wper2(I)-Wper1(I))/Dwdx(I)

```

```

0559      IF (M-1) 710,712,710
0560    710  SI=(HF(I)-HF(J))/(X(I)-X(J))
0561    DEL=2.* (DHFDX(I)-SI)/(X(I)-X(J))
0562    DHFDX(I)=DHFDX(I)+DFI*(XN-X(I))
0563    HF(I)=HF(I)+DHEDX(I)*(XN-X(I))
0564    SI=(S(I)-S(J))/(X(I)-X(J))
0565    DEL=2.* (DSDX1(I)-SL)/(X(I)-X(J))
0566    DSDX1(I)=DSDX1(I)+DFI*(SN-X(I))
0567    S(I)=S(I)+DSDX1(I)*(XN-X(I))
0568    RR(I)=XN*SAVE
0569    GO TO 718
0570  716 N=N+1
0571  IF (N-3) 720,730,720
0572  718 U(I)=U(I)*XN/X(I)
0573  720 CONTINUE
0574  DO 722 I=1,5
0575  722 X(I)=RR(I)/RR(3)
0576  FC1=RR(3)/SAVE
0577  FC2=FC1**2
0578  RRF=RR(3)
0579  ARF=R(1)+R(2)*RRF+B(3)*RRF**2+B(4)*RRF**3+B(5)*RRF**4
0580  IF (IND-1) 732,721,721
0581  721 IF (M-1) 729,732,729
0582  729 WRITE (6,724)
0583  724 FORMAT (/4H SLINE XNEW HENEW DHEDX S-NEW DSDX1)
0584  DO 728 I=1,5
0585  726 FORMAT (14F9.4,F9.2,F9.4,F9.6,F9.5)
0586  728 WRITE (6,726) I,X(I),HE(I),DHEDX(I),S(I),DSDX1(I)
0587  GO TO 732
0588  732 CODE=40.
0589  RETURN
0590  END
0591 C
0592  SUBROUTINE ALOS1(ZETAS,ZETAPS)
0593  DIMENSION ZETAS(10),ZETAPS(10)
0594  COMMON/AI1/ALFA1(10),V1(10),TTO,RPM,RS(10),SI,TNT,H,D,CI,T1(10),
0595  *P1(10),TO,TF1,AL1,RF6,XX,AN620,AMS1(10),S,TN,C,TE,AL,SD,TNO,
0596  *CO,TFO,U(10),D11,D10,D21,D20,ANC21,ALFAX,T1,T,P,TNO,ALO,AMC
0597  COMMON/AI2/BETA2(10),BETA1(10),BFTAO(10),W2(10),TTE(10),U2(10),
0598  *SIR,TIR,HR,DZ,CIR,TIPC,SZ,TNR,CR,SOR,TNOR,COR,ALTR,ALR,ALOR
0599  *P2(10),W1(10),TÉIR,TFR,TEOR,D1IR,DIOR,BETAZ,BETAT,ANH,
0600  *TIR,TR,TOR,STAI(10)
0601  COMMON/GAS/GAM,EMME,ERKE,EXP1,EXP2,VIS2,VIS3
0602  COMMON/CSS/CJ,G,Q1
0603  COMMON/IWI/IND,INZ,IWR
0604  COMMON/AUS/XCL
0605  COMMON/ARE/REE
0606  COMMON/COZ/ICOR,ICOZ,IINC,IAI,ICL,IAN,ICON
0607  COMMON/ARA/BA17,BLEX
0608  COMMON/TRS/TRAS
0609  DO 6001 MACC=1,5,2
0610  TRA1=90.-ALFA1(MACC)*57.29578
0611  TRA2=V1(MACC)*.3048
0612  TRA3=TTO/1.8
0613  TRA4=RPM*3.14159/30.*RS(MACC)/12.*.3048
0614  IF (MACC-3) 6002,6003,6004
0615  6002 CALL TRAU2 (TRA1,90.,TRA2,TRA3,EMME,GAM,SI,TNI,H,D,TRAS,CI,TRA4,
0616  *0.,TR16,TRA7,TRAB,TRA9,ZETAS(MACC))
0617  GO TO 6001
0618  6003 CALL TRAU2 (TRA1,90.,TRA2,TRA3,EMME,GAM,S,TN, H,D,TRAS,C ,TRA4,
0619  *0.,TR26,TRA7,TRAB,TRA9,ZETAS(MACC))
0620  GO TO 6001
0621  6004 CALL TRAU2 (TRA1,90.,TRA2,TRA3,EMME,GAM,SO,TNO,H,D,TRAS,CO,TRA4,
0622  *0.,TR36,TRA7,TRAB,TRA9,ZETAS(MACC))
0623  6001 CONTINUE
0624  IF (ICOZ .LT. 5) GO TO 2026
0625  DO 2027 MACC=1,5,2
0626  XY=ZETAS(MACC)/(1.-ZETAS(MACC))
0627  ZETAS(MACC)=(((1.+XY)/(1.+XY*P1(MACC)/PTO)) **EXP2-1.)/
0628  *((PTO/P1(MACC))**EXP2-1.)
0629  IF (ICOZ,FQ,B) ZETAS(MACC)=(((1.+XY)/(1.+XY*PESP))**EXP2-1.)/
0630  *(1./RESP)**EXP2-1.)
0631  2027 CONTINUE
0632  2026 CONTINUE
0633  IF (ICON.NE.3) GO TO 31
0634  30 DO 32 I=1,5,2
0635  32 ZETAPS(I)=ZETAS(I)
0636  31 IF (ICON.NE.2) GO TO 33
0637  32 IF (ICON.FQ.4) ZETAPS(1)=TR16
0638  32 IF (TCOR.FQ.4) ZETAPS(3)=TR26

```

```

0639      IF(ICOR.EQ.4) ZETAPS(5)=TR36
0640      33 CONTINUE
0641      IF(ICON.NE.1) GO TO 34
0642      DO 35 I=1,5,2
0643      35 ZETAPS(I)=.5*ZETAS(I)
0644      34 CONTINUE
0645      DO 66 K=1,5
0646      66 CONTINUE
0647      RETURN
0648      END
0649      C
0650      SUBROUTINE ALOS2(ZETAR,ZETAPR)
0651      DIMENSION ZETAPS(10),ZETAS(10),ZETAPR(10),ZETAR(10)
0652      COMMON/A11/ALFA1(10),V1(10),T10,KPM,R5(10),SI,TNI,H,D,CI,T1(10),
0653      *P1(10),TO,TE1,HT1,RFSP,XX,ANG20,AMS1(10),S,TN,C,TF,AL,SD,TND,
0654      *CD,TEO,U(10),D11,D10,D21,D20,ANG21,ALFAX,T1,P10,A10,AMC,
0655      COMMON/AL2/BETA2(10),BETA1(10),BETA0(10),W2(10),TTE(10),U2(10),
0656      *SIR,TNIR,HR,DZ,CIR,TIPC,S2,TNS,CR,SOR,TNOR,HR,ALTR,ALKA,ALOR,
0657      *P2(10),W1(10),W1(10),TE1R,TFR,TFOR,D1TR,D1OR,BETA2,BETA1,ANM,
0658      *TIR,TR,TOR,STALI(10)
0659      COMMON/VAR1/RC(10),RS0LD2,RS0LD3,RS0LD4,ASF0,RSF0,RRF0,ARF0,
0660      *RR(10),RR0LD2,RR0LD3,RR0LD4,CV,CK,VA1(10),DALF(10),DBET(10),
0661      *ASF,AMS,B1(20)
0662      COMMON/VAR2/H6(20),ZR,ZS,ARF,B2(20),PR,AMR
0663      COMMON/VAR3/PTE(10),RS1,RS3,RS5,T2(10)
0664      COMMON/VAR4/RH1,RR2,RR3,RK1,RK3,RR5,VA2(10)
0665      COMMON/ARA/BA17,RLX
0666      COMMON/GAS/CP,GAM,EMME,ERRE,EXP1,EXP2,VIS2,VIS3
0667      COMMON/CSS/CJ,G,Q1
0668      COMMON/IWI/IND,INZ,IWR
0669      COMMON/AUS/XCL
0670      COMMON/ARE/REE
0671      COMMON/COZ/ICOR,ICOZ,IINC,IAI,ICL,IAN,ICON
0672      COMMON/TR5/TRAS
0673      IF(ICOR.NE.4) GO TO 6010
0674      DO 6011 MACC=1,5,2
0675      TRA1=90.+BETA2(MACC)*57.29578
0676      TRAX=90.-BETA1(MACC)*57.29578
0677      CIUD=BETA0(MACC)-BETA1(MACC)
0678      IF(IINC.EQ.1.AND.CIUD.GE.0.) TRAX=90.-BETA0(MACC)*57.29578
0679      TRA2=W2(MACC)*.3048
0680      TRA3=TTE(MACC)/1.8
0681      TRA4=U2(MACC)*.3048
0682      IF(MACC=3) 6012,6013,6014
0683      6012 CALL TRAU2(TRA1,TRAX,TRA2,TRA3,EMME,GAM,SIR,TNIR,HR,DZ,TRAS,CIR,
0684      *TRA4,TIPC,TR16,TRA7,TRA8,TRA9,ZETAR(MACC))
0685      GO TO 6011
0686      6013 CALL TRAU2(TRA1,TRAX,TRA2,TRA3,EMME,GAM,SZ,TNIR,HR,DZ,TRAS,CR,
0687      *TRA4,TIPC,TR26,TRA7,TRA8,YCL,ZETAR(MACC))
0688      GO TO 6011
0689      6014 CALL TRAU2(TRA1,TRAX,TRA2,TRA3,EMME,GAM,SOR,TNOR,HR,DZ,TRAS,COR,
0690      *TRA4,TIPC,TR36,TRA7,TRA8,TRA9,ZETAR(MACC))
0691      6011 CONTINUE
0692      DH1=CP*TTO*(1.-(P2(3)/PTO)**EXP2)
0693      PSI=1./(1.-YCL*DH1*G*CJ/U2(3)/WU2(3))
0694      ZEZE=ZETAR(3)
0695      DO 6015 MACC=1,5,2
0696      ZETAR(MACC)=ZETAR(MACC)+(1.-ZEZE)*(1.-PSI*PSI)
0697      6015 CONTINUE
0698      6010 CONTINUE
0699      IF(ICOZ.LT.5) GO TO 2046
0700      DO 2047 MACC=1,5
0701      XY=ZETAR(MACC)/(1.-ZETAR(MACC))
0702      ZETAK(MACC)=(((1.+XY)/(1.+XY*B2(MACC)/PTE(MACC))**EXP2-1.)/
0703      *((PTE(MACC)/P2(MACC))**EXP2-1.))
0704      IF(ICOZ.EQ.8) ZETAR(MACC)=(((1.+XY)/(1.+XY*BESP))**EXP2-1.)/
0705      *(1./BESP**EXP2-1.)
0706      2046 CONTINUE
0707      2047 CONTINUE
0708      IF(ICON.NE.3) GO TO 31
0709      30 DO 32 I=1,5,2
0710      32 ZETAPR(I)=ZETAR(I)
0711      31 IF(ICON.NE.2) GO TO 33
0712      IF(ICOR.EQ.4) ZETAPR(1)=TR16
0713      IF(ICOR.EQ.4) ZETAPR(3)=TR26
0714      IF(ICOR.EQ.4) ZETAPR(5)=TR36
0715      33 CONTINUE
0716      IF(ICON.NE.1) GO TO 34
0717      DO 35 I=1,5,2
0718      35 ZETAPR(I)=.5*ZETAR(I)

```

```

0719      34 CONTINUE
0720      ZETAR(?)=ZETAR(1)+(RR(2)-RR1)/(RR3-RR1)*(ZETAR(3)-ZETAR(1))
0721      ZETAR(4)=ZETAR(3)+(RR(4)-RR3)/(RR5-RR3)*(ZETAR(5)-ZETAR(3))
0722      ZETAPR(2)=ZETAPR(1)+(RR(2)-RR1)/(RR3-RR1)*(ZETAPR(3)-ZETAPR(1))
0723      ZETAPR(4)=ZETAPR(3)+(RR(4)-RR3)/(RR5-RR3)*(ZETAPR(5)-ZETAPR(3))
0724      DO 7001 I=1,5
0725 7001 CONTINUE
0726      RETURN
0727      END
0728      C
0729      FUNCTION VAVRA(TH,TE,SP)
0730      C TH=THROAT OPENING
0731      C TF=TRAILING EDGE THICKNESS
0732      C SP=BLADE SPACING
0733      C ARG1=TH/SP
0734      TERM1=ATAN(SQRT(1.-(ARG1**2))/ARG1)
0735      TERM2=TFRM1*X180./3.14159
0736      TERM3=1.-TFRM2/90.
0737      TERM4=(4.*TE/SP)*TERM3
0738      ARG2=(TH/SP)+TERM4
0739      VAVRA=ATAN(SQRT(1.-(ARG2**2))/ARG2)
0740      RETURN
0741      END
0742      C
0743      C
0744      C
0745      FUNCTION XPO(ANG1,ANG2)
0746      COMMON/TRA/XPO1(5,8),XPO2(6,8),ALF1(8),ALF01(5),ALF02(6),
0747      *Y(10),Y1(10),Q(6),RX(30),RY(30),IR(30),Z(6),C1(4,8),C2(4,8)
0748      IF(ANG2-B0.) 1,2,3
0749 1 CONTINUE
0750      DO 4 I=1,8
0751      DO 5 J=1,4
0752      5 Q(J)=C1(j,I)
0753      4 Y(I)=YC(ANG2,Q,3)
0754      GO TO 10
0755 2 CONTINUE
0756      DO 6 I=1,8
0757      6 Y(I)=XPO1(5,I)
0758      GO TO 10
0759 3 CONTINUE
0760      DO 7 I=1,8
0761      DO 8 J=1,3
0762      8 Q(J)=C2(j,I)
0763      7 Y(I)=YC(ANG2,Q,2)
0764 10 CONTINUE
0765      DO 11 I=1,7
0766      IF(ANG1.GE.ALF1(I).AND.ANG1.LE.ALF1(I+1)) GO TO 100
0767      IF(ANG1.LT.ALF1(I)) GO TO 101
0768      IF(ANG1.GT.ALF1(8)) GO TO 102
0769 11 CONTINUE
0770 100 CONTINUE
0771      XPO=Y(I)+(Y(I+1)-Y(I))/(ALF1(I+1)-ALF1(I))*(ANG1-ALF1(I))
0772      IF(ANG2.LT.40) XPO=0.09-(0.09-(XPO1(1,I)+XPO1(1,I+1))/2.)*
0773      *(ANG2-20.)/20.
0774      RETURN
0775 101 XPO=Y(1)
0776      RETURN
0777 102 XPO=Y(8)
0778      RETURN
0779      END
0780      C
0781      FUNCTION CSIM(V1,T0,FMME,CAM)
0782      ERRE=848.*9.80665/FMME
0783      AST=SQRT(2.*CAM/(CAM+1.)*ERRE*T0)
0784      AMACH=V1/AST
0785      IF(AMACH.LE.0.8) CSIM=1.
0786      IF(AMACH.LE.0.8) GO TO 1000
0787      IF(AMACH.LE.1.1) CSIM=1.-0.22/0.3*(AMACH-0.8)
0788      IF(AMACH.LT.1.2.AND.AMACH.GT.1.1) CSIM=0.78+0.15/0.1*(AMACH-1.1)
0789      IF(AMACH.GT.1.2) CSIM=0.92+1.5/.2*(AMACH-1.2)
0790 1000 RETURN
0791      END
0792      C
0793      SUBROUTINE CID(ANG1,T,DEL,CSID,PSID,PSIF,HM,DM)
0794      DIMENSION X(7),Y1(7),Y2(7)
0795      FF=1.-DEL/T/SIN(ANG1)
0796      DATA X/15.,20.,25.,30.,45.,60.,90./
0797      DATA Y1/1.06,1.1,1.17,1.225,1.63,2.1,2.45/
0798      DATA Y2/0.016,0.0215,0.049,0.072,0.158,0.260,0.4/

```

```

0799      A=ANG1*180./3.1415
0800      DO 1 I=1,6
0801      IF(A.LE.X(I)) Y=1.+0.06*A/15.
0802      IF(A.GE.X(I).AND.A.LT.X(I+1)) Y+=(Y1(I+1)-Y1(I))/(X(I+1)-X(I))* 
0803      *(A-X(I))+Y1(I)
0804      IF(A.LE.X(I)) Z=Y2(I)*A/X(I)
0805      IF(A.GE.X(I).AND.A.LE.X(I+1)) Z=(Y2(I+1)-Y2(I))/(X(I+1)-X(I))* 
0806      *(A-X(I))+Y2(I)
1 CONTINUE
0807      IF(A.GT.X(7)) Y=1.
0808      IF(A.GT.X(7)) Z=1.
0809      CSID=1.+(Y-1.)*Z2.*((1.-EF)
0810      PSID=Z*4.*((1.-EF)*(1.-EF))
0811      PSIF=0.025/0.09* HM*HM/DM/DM
0812      RETURN
0813      END
0814
C
0815      FUNCTION CSIW(XPO,CSIP,T,ANG1,AH)
0816      CSIW=XPO*CSIP*T*SIN(ANG1)/AH
0817      RETURN
0818      END
0819
C
0820      FUNCTION CSIR(S,AH,V1,ANG1,UM,XP)
0821      SL=S/AH
0822      IF(SL.LE.0.4) XL=XP*0.65/.4*SL
0823      IF(SL.GT.0.4.AND.SL.LE.0.8) XL=XP*(0.65+0.45/0.4*(SL-0.4))
0824      IF(SL.GT.0.8.AND.SL.LE.1.5) XL=XP*(1.1+0.04/0.7*(SL-0.8))
0825      IF(SL.GT.1.5) XL=XP*(1.5+0.6/1.7*(SL-1.5))
0826      ASC=V1*SIN(ANG1)/UM
0827      XPO=0.025+0.015/0.64*ASC*ASC
0828      IF(ASC.LT..2) XRD=.024
0829      IF(ASC.GT..95) XRD=.0475
0830      CSIR=XRD*XL
0831      RETURN
0832      END
0833
C
0834      FUNCTION ALEAK(DELRF,DH,AL,CLE,ALFA1)
0835      C1=0.82-0.075*DELRF
0836      ALEAK=C1*(DH+AL)*CLE/DH/AL/COS(ALFA1)
0837      RETURN
0838      END
0839
C
0840      SUBROUTINE CHBFT(X,Y,N,A,M,RX,RH,R)
0841      DESCRIPTION OF PARAMETERS:
0842      X ARRAY OF ABSICSSAE DIMENSIONED REAL*4 X(N)
0843      Y ARRAY OF ORDINATES DIMFNSIONED REAL*4 Y(N)
0844      N NUMRFR OF SAMPLF POINTS (INTEGER)
0845      A ARRAY OF THE OUTPUTTED POLYNOMIAL COEFFICIENTS
0846      DIMENSIONED AT LEAST A(M+2) (REAL*4)
0847      M ORDER OF DESIRFD APPROXIMATING POLYNOMIAL
0848      RX WORK ARRAY DIMENSIONED AT LEAST REAL*4 RX(M+2)
0849      RH WORK ARRAY DIMENSIONED AT LEAST RFAL*4 RH(M+2)
0850      R INTEGER WORK ARRAY DIMENSIONED AT LEAST R(M+2)
0851
0852
0853
0854      NOTE: DIVIDED DIFFFRNCES AND NEWTON'S INTERPOLATING FORMULA IS
0855      USED FOR COMPUTING THE POLYNOMIAL COEFFICINTS.
0856
C
0857      REAL NEXTHI
0858      INTEGER RI,RJ,R(1)
0859      DIMENSION X(1),Y(1),A(1),RX(1),RH(1)
0860      MPLUS1=M+1
0861      MPLUS2=M+2
0862      PREVH=0.0
0863      C DETERMINE INDEX VECTOR FOR INITIAL REFERENCE SET
0864      R(1)=1
0865      R(MPLUS2)=N
0866      D=(N-1)/MPLUS1
0867      H=D
0868      DO 1 I=2,MPLUS1
0869      R(I)=H+1.0
0870
1 H=H+D
0871
2 H=-1.0
0872      C SELECT M+2 REFERENCE PAIRS AND SET ALTERNATIVE DEVIATION VECTOR
0873      DO 3 I=1,MPLUS2
0874      RJ=R(I)
0875      RX(I)=X(RI)
0876      A(I)=Y(RI)
0877      H=-H
0878      3 RH(I)=H

```

```

0879 C COMPUTE M+1 LEADING DIVIDED DIFFERENCES
0880 D0 4 J=1, MPLUS1
0881 T1=MPLUS2
0882 A11=A(I1)
0883 RHI1=RH(I1)
0884 T=MPLUS1
0885 S DENOM=RX(I1)-RX(I-J+1)
0886 A1=A(I)
0887 RHI=RH(I)
0888 A(I)=(A1-AI)/DENOM
0889 RH(I)=(RHI1-RHI)/DENOM
0890 I1=I
0891 AT1=A1
0892 RHI1=RHI
0893 I=I-1
0894 IF(I-J) 4,5,5
0895 4 CONTINUE
0896 EQUATE (M+1) THE DIFFERENCE TO ZERO TO DETERMINE H
0897 H=-A(MPLUS2)/RH(MPLUS2)
0898 C WITH H KNOWN, COMBINE THE FUNCTION AND DEVIATION DIFFERENCES
0899 DO 6 I=1, MPLUS2
0900 A(I)=A(I)+RH(I)*H
0901 C COMPUTE POLYNOMIAL COEFFICIENTS
0902 J=M
0903 XJ=RX(J)
0904 I=J
0905 AI=A(I)
0906 JPLUS1=J+1
0907 DO 8 I1=JPLUS1, MPLUS1
0908 AI1=A(I1)
0909 A(I)=AI-XJ*AI1
0910 AI=AI1
0911 B I=I1
0912 J=J-1
0913 IF(J-1) 9,7,7
0914 9 CONTINUE
0915 C IF THE REFERENCE DEVIATION IS NOT INCREASING MONOTONICALLY
0916 THEN EXIT
0917 HMAX=ARS(H)
0918 IF(HMAX.GT.PREVH) GO TO 29
0919 A(MPLUS2) =-HMAX
0920 RETURN
0921 C FIND THE INDEX, IMAX, AND VALUE, HIMAX, OF THE LARGEST ABSOLUTE
0922 C ERROR FOR ALL SAMPLE POINTS
0923 A(MPLUS2)=HMAX
0924 PREVH=HMAX
0925 IMAX=R(1)
0926 HIMAX=H
0927 J=1
0928 RJ=R(J)
0929 DO 110 I=1, N
0930 IF(I.EQ.RJ) GO TO 11
0931 XI=X(I)
0932 HI=A(MPLUS1)
0933 K=M
0934 12 HI=HI**XI+A(K)
0935 K=K-1
0936 IF(K-1) 112,12,12
0937 112 HI=Y(I)
0938 ABSHI=ABS(HI)
0939 IF(ABSHI.LE.HMAX) GO TO 11
0940 HMAX=ABSHI
0941 HIMAX=HI
0942 IMAX=I
0943 GO TO 110
0944 11 IF(J.GE.MPLUS2) GO TO 110
0945 J=J+1
0946 RJ=R(J)
0947 110 CONTINUE
0948 C IF THE MAXIMUM ERROR OCCURS AT A NONREFERENCE POINT, EXCHANGE THIS
0949 C POINT WITH THE NEAREST REFERENCE POINT HAVING AN ERROR OF THE
0950 SAME SIGN AND REPEAT
0951 IF(IMAX.EQ.R(1)) RETURN
0952 DO 14 I=2,MPLUS2
0953 IF(IMAX.LT.R(I)) GO TO 15
0954 14 CONTINUE
0955 I=MPLUS2
0956 15 NXTHI=H
0957 IF((1-I/2)**2.NE.0) NXTHI=-H
0958 IF(HIMAX.NE.NXTHI.GE.0) GO TO 115

```

```

0959      IF(IMAX.GE.R(1)) GO TO 116
0960      J1=MPLUS2
0961      J=M
0962      117 R(J1)=R(J)
0963      J1=J
0964      J=J-1
0965      IF(J-1) 118,117,117
0966      118 R(1)=IMAX
0967      GO TO 2
0968      116 IF(IMAX.LE.R(MPLUS2)) GO TO 120
0969      J=1
0970      DO 121 J1=1,MPLUS2
0971      R(J)=R(J1)
0972      121 J=J1
0973      R(MPLUS2)=IMAX
0974      GO TO 2
0975      119 R(I)=IMAX
0976      GO TO 2
0977      120 R(I-1)=IMAX
0978      GO TO 2
0979      END
0980      C
0981      SUBROUTINE TRAU1
0982      COMMON/TRA/XPO1(5,8),XP02(6,8),ALF1(8),ALFO1(5),ALFO2(6),
0983      *Y(10),Y1(10),Q(6),RX(30),RY(30),IR(30),Z(6),C1(4,8),C2(4,8)
0984      C
0985      DO 6 I=1,8
0986      DO 7 J=1,5
0987      7 Y(J)=XPO1(J,I)
0988      DO 8 J=1,6
0989      8 Y1(J)=XP02(J,I)
0990      CALL CHBFT(ALFO1,Y,5,0,3,RX,RY,IR)
0991      CALL CHBFT(ALFO2,Y1,6,Z,3,RX,RY,IR)
0992      DO 12 J=1,4
0993      C1(J,I)=Q(J)
0994      12 C2(J,I)=Z(J)
0995      6 CONTINUE
0996      RETURN
0997      END
0998      C
0999      SUBROUTINE TRAU2 (ANG1,ANG0,V1,T0,EMME,GAM,T,DEZ,HM,DM,CSIP,S,UM,
1000      *CL,RPRO,R2,R3,YCL,RTOT)
1001      CSIP=1
1002      R=XPO(ANG1,ANG0)
1003      P1=CSIM(V1,T0,EMME,GAM)
1004      ANGZ=ANG1*X3.1415/180.
1005      CALL CID(ANGZ,T,DF7(CSID,PSID,PSIF,HM,DM)
1006      R2=CSIW(R,CSIP,T,ANGZ,HM)
1007      R3=CSIR(S,HM,V1,ANGZ,UM,CSIP)
1008      RPRO=R*CSIP*R1*CSID+PSIF+PSID
1009      IF(CL.LE.0.) YCL=0.
1010      IF(CL.LE.0.) GO TO 1000
1011      DEL=3.1416-(ANG0+ANG1)*3.1416/180.
1012      ALF1=1.5708-ANGZ
1013      YCL=ALEAK(DEL,DM,HM,CL,ALF1)
1014      1000 RTOT=RPRO+R2+R3
1015      C
1016      RETURN
1017      END
1018      FUNCTION YC(XBAR,Q,M)
1019      DIMENSION Q(6)
1020      YC=0
1021      IF(XBAR.EQ.0.) YC=Q(1)
1022      IF(XBAR.EQ.0.) GO TO 10
1023
1024      M1=M+1
1025      DO 1 I=1,M1
1026      1 YC=YC+Q(I)*XBAR**(I-1)
1027      10 CONTINUE
1028      1000 RETURN
1029      END

```

ASHORT T=00003 IS ON CR00025 USING 00024 BLKS R=0000

```
0001  FTN4,L
0002      PROGRAM SHORT(5)
0003      DIMENSION INAM(3)
0004      DIMENSION NAME(3)
0005
0006  C
0007      COMMON/ABA/BAL7,BLEX
0008      COMMON/CUR/COSL(10)
0009      COMMON/TOL/TOL1,TOL2,TOL3,TOL4
0010      COMMON/TR5/TRAS
0011      COMMON/LAS/CP,GAM,FMME,ERRF,EXP1,EXP2,VIS2,VIS3
0012      COMMON/CO7/IC07,I07,IINC,IAI,ICL,IAN,ICON
0013      COMMON/MAC/IN
0014      COMMON/IWI/IND,INZ,IWR
0015      COMMON/AIS/XCL
0016      COMMON/CSS/CJ,G,Q1
0017      COMMON/VAR1/RC(10),RSOLD2,RSOLD3,RSOLD4,ASF0,RSFO,RRFO,ARFO,
0018      *RR(10),RROLD2,RROLD3,RROLD4,CV,CK,VA1(10),DALF(10),DBET(10),
0019      *ASF,AMS,R1(20)
0020      COMMON/VAR2/R6(20),ZR,ZS,ARF,R2(20),PR,AMR,VU1(10)
0021      COMMON/VAR3/PTE(10),RS1,RS3,RS5,T2(10)
0022      COMMON/VAR4/BR1,BR2,RR1,RR2,RR3,RR5,VA2(10)
0023      COMMON/VAR5/PRAT1(10),RINCI(10),ALFA1(10),BETA11(10),ZETA1(10),
0024      *V2(10),ALFA2(10),BETA2(10)
0025      COMMON/VAR6/PT2(10),TT2(10),PT1(10),DELH(10),ALFA2(10),VU2(10),
0026      *WR2(10),T2S(10),T2I6(10)
0027      COMMON/VAR7/TIIS(5),RETAT(5),ETAT(5),ETAI(10),ETAS(10),ETAR(10),
0028      *RSTAR(10),AK1S(10),PSIR(10)
0029      COMMON/VAR8/DP1(10),AMW1(10),AMU2(10),BFTET(10),PRAT1T(10),AMR2(
0030      *10),YS(10),X1(10),AREA1(10),ZFTAPS(10),WPER1(10),YR(10),X2(10)
0031      COMMON/VAR9/ZETAR(10),ZETAPR(10),AS(10),AR(10),ST1(10),SI2(10),
0032      *SI1(10),DSDX1(10),WI1(8),HE(10)
0033      COMMON/VAR10/WU1(10),DHEDX(10),DSDX2(10),RI1(10),RI2(10),
0034      *RI3(10),RI4(10),RT(10),SR1(10),SR2(10)
0035      COMMON/VAR11/YOLD(10),AA(10),SR(10),PRAT2(10),WPER2(10),
0036      *DWDX(10),TIIS(10),PRAT3(10),SI(10),ALFA(10)
0037      COMMON/VAR12/BETA(10),DELR(10),WPER0(10),ZETAS(10),ZETAR1(20),
0038      *ZETAR3(20),ZETARS(20),R1(20),A1(20),T10(20)
0039      COMMON/VAR13/ST1(20),IRR(20),R2(20),A2(20),RINC(20),DR(10),
0040      *BETO(10),STALII(10),AREA2(10),VR1(10)
0041      COMMON/VAR14/MLBM,PRATS,OMEG
0042      COMMON/AL1/ALFA1(10),V1(10),TTO,RPM,RS(10),SI,TNI,H,D,CI,T1(10),
0043      *P1(10),TO,TEI,ALI,BESP,XX,ANG20,AMS1(10),S,TN,C,TÉ,AL,SO,TNO,
0044      *CD,TEO,U(10),D11,D10,D21,D20,ANG21,ALFA,X,T,PTO,B10,AMC
0045      COMMON/AL2/BETA2(10),BETA1(10),RETAN(FAX,W2,T,TF(10),U2(10)),
0046      *SIR,TNIR,HR,DZ,CIR,TIPC,SZ,TNR,CR,SOR,TNOR,COR,A1,TR,ALR,ALOR,
0047      *P2(10),W1(2(10),W1(10),TEIR,TER,TEOR,D1IR,D1OR,BETAZ,BETAT,ANM,
0048      *TIR,TR,TOR,STALI(10)
0049      COMMON/ARE/REE
0050      COMMON/TRA/XPO1(5,8),XPO2(6,8),ALF1(8),ALF01(5),ALFD2(6),
0051      *Y(10),Y1(10),A(6),RX(30),RY(30),IR(30),Z(6),C1(4,8),C2(4,8)
0052      DATA INAM /2HSH,2HOR,2HT /
0053      DATA NAME /2HPA,2HRT,2H2 /
0054      CALL TRAU1
0055      XX=1.25
0056      BLEX=0.15
0057      XCL=1.35
0058
0059  C
0060      BESP=(1.+(GAM-1.)/2.*.64)**(-GAM/(GAM-1.))
0061
0062  C
0063
0064  C
0065  C *****OPERATING CONDITIONS*****
0066      PTO=38.22
0067      TTO=626.18
0068      RPM=12000.
0069      PR=2.6
0070
0071  C *****INITIAL APPROXIMATIONS*****
0072
0073  C *****INITIAL APPROXIMATIONS*****
0074      AMC=.2247
0075      AMS=.9
0076      AMR=.7
0077      VA1(3)=262.58
0078      VA2(3)=262.58
```

```

0079 C ****
0080 C
0081 C
0082 C *****SPECIAL INPUT DATA*****
0083 TOL1=.01
0084 TOL2=.01
0085 TOL3=.01
0086 TOL4=.01
0087 C
0088 IND=0
0089 INZ=0
0090 JWR=0
0091 ICOR=4
0092 IAI=0
0093 C
0094 JAN=2
0095 ICL=0
0096 IINC=1
0097 ICOZ=6
0098 ICON=3
0099 C ****
0100 C ****
0101 C ****
0102 C *****TURBINE GEOMETRY*****
0103 A1(1)=.2126
0104 A1(2)=.22145
0105 A1(3)=.23035
0106 A1(4)=.23925
0107 A1(5)=.24815
0108 A1(6)=.25705
0109 A1(7)=.26595
0110 A1(8)=.27485
0111 A1(9)=.28375
0112 A1(10)=.2926
0113 C
0114 A2(1)=.1912
0115 A2(2)=.20305
0116 A2(3)=.21495
0117 A2(4)=.22685
0118 A2(5)=.23875
0119 A2(6)=.25065
0120 A2(7)=.26255
0121 A2(8)=.27445
0122 A2(9)=.28635
0123 A2(10)=.2983
0124 C
0125 AI=1.088
0126 AI.I=1.088
0127 AI.O=1.088
0128 C
0129 C=1.003
0130 CI=1.003
0131 CO=1.003
0132 C
0133 E=2.8065
0134 ET=2.8065
0135 EO=2.8065
0136 C
0137 T=.2252
0138 TI=.2252
0139 TO=.2252
0140 C
0141 TE=.03
0142 TE.I=.03
0143 TE.O=.03
0144 C
0145 TN=.0186
0146 TN.I=.0186
0147 TN.O=.0186
0148 C
0149 ALR=1.088
0150 ALIR=1.088
0151 ALOR=1.088
0152 C
0153 CR=1.003
0154 CIR=1.003
0155 COR=1.003
0156 C
0157 FR=2.45
0158 ETR=2.45

```

```

0159      EDR=2.45
0160      C      TR=.2252
0161      C      TIR=.2252
0162      C      TOR=.2252
0163      C      TER=.03
0164      C      TEIR=.03
0165      C      TDR=.03
0166      C      TNIR=.0186
0167      C      TNOR=.0186
0168      C      TNR=.0186
0169      C      TNIR=.0186
0170      C      TNOR=.0186
0171      C      RC(1)=2.764
0172      C      RC(5)=3.627
0173      C      RS(1)=2.764
0174      C      RS(5)=3.627
0175      C      RR(1)=2.693
0176      C      RR(5)=3.837
0177      C      CV=.885
0178      C      CK=5.0
0179      C      TIPI=.01
0180      C      ZS=31.
0181      C      ZR=32.
0182      C ***** ****
0183      C
0184      C
0185      C
0186      C
0187      C
0188      C
0189      C
0190      C      RC(2)=SQRT(RC(5)*RC(5)/4.+3./4.*RC(1)*RC(1))
0191      C      RC(3)=SQRT(RC(5)*RC(5)/2.+RC(1)*RC(1)/2.)
0192      C      RC(4)=SQRT(3./4.*RC(5)*RC(5)+RC(1)*RC(1)/4.)
0193      C      RS(2)=SQRT(RS(5)*RS(5)/4.+RS(1)*RS(1)/4.*3.)
0194      C      RS(3)=(RS(1)+RS(5))/2.
0195      C      RS(4)=SQRT(((RS(5)**2)*.75)+((RS(1)**2)/4.))
0196      C      RR(2)=SQRT(RR(5)*RR(5)/4.+3./4.*RR(1)*RR(1))
0197      C      RR(3)=(RR(1)+RR(5))/2.
0198      C      RR(4)=SQRT(RR(5)*RR(5)*3./4.+RR(1)*RR(1)/4.)
0199      C      DO 3300 I=1,10
0200      C      A=I
0201      C      R1(I)=RS(1)+(A-1.)/9.*(RS(5)-RS(1))
0202      C      R2(I)=RR(1)+(A-1.)/9.*(RR(5)-RR(1))
0203      C      CONTINUE
0204      C      OI=A1(1)
0205      C      OO=A1(10)
0206      C      DIR=A2(1)
0207      C      ODR=A2(10)
0208      C      DO 3711 I=1,10
0209      C      IF(RS(3).LE.R1(I)) GO TO 3712
0210      C      3711 CONTINUE
0211      C      3712 CONTINUE
0212      C      I=I-1
0213      C      OI=A1(I)+(A1(I+1)-A1(I))*(RS(3)-R1(I))/(R1(I+1)-R1(I))
0214      C      OO 3713 I=1,10
0215      C      IF(RR(3).LE.R2(I)) GO TO 3714
0216      C      3713 CONTINUE
0217      C      3714 CONTINUE
0218      C      I=I-1
0219      C      OI=A2(I)+(A2(I+1)-A2(I))*(RR(3)-R2(I))/(R2(I+1)-R2(I))
0220      C      H=RS(5)-RS(1)
0221      C      D=2.*RS(3)
0222      C      S=2.*3.1416*RS(3)/ZS
0223      C      SI=2.*3.14159*RS(1)/ZS
0224      C      SO=2.*3.1416*RS(5)/ZS
0225      C      SZ=2.*3.1416*RR(3)/ZR
0226      C      SIR=2.*3.1416*RS(1)/ZR
0227      C      SOR=2.*3.1416*RS(5)/ZR
0228      C      DZ=2.*RR(3)
0229      C      HR=RR(5)-RR(1)
0230      C
0231      C      STATOR OUTLET ANGLES BY VAURA METHOD
0232      C
0233      C      ALFA1(3)=VAURA(0,TN,S)
0234      C      ANG2I =VAURA(1,TNI,SI)
0235      C      ANG2O =VAURA(00,TNO,SO)
0236      C
0237      C      DALF(1)=ANG2I-ALFA1(3)
0238      C      DALF(3)=0.

```

```

0239      DALF(5)=ANG20-ALFA1(3)
0240      C   ROTOR OUTLET ANGLES BY VAVRA METHOD
0241      C
0242      C   BETAZ(3)=-1.*VAVRA(DR,TNR,S7)
0243      C   BETAI   =-1.*VAVRA(DIR,TNIR,SIR)
0244      C   BETAZ   =-1.*VAVRA(DOR,TNOR,SOR)
0245      C
0246      C
0247      C   DRET(1)=BETAI-BETAZ(3)
0248      C   DRET(3)=0.
0249      C   DRET(5)=BETAZ-BETAZ(3)
0250      C
0251      C   X1(I)=RS(I)/RS(3)
0252      10    X2(I)=RR(I)/RR(3)
0253      C   RR0LD2=RR(2)
0254      C   RR0LD3=RR(3)
0255      C   RR0LD4=RR(4)
0256      C   RS0LD2=RS(2)
0257      C   RS0LD3=RS(3)
0258      C   RS0LD4=RS(4)
0259      C   RS1=RS(1)
0260      C   RS3=RS(3)
0261      C   RS5=RS(5)
0262      C   RR1=RR(1)
0263      C   RR3=RR(3)
0264      C   RRS=RR(5)
0265      C   CALL CHRT(R1,A1,10,B1,4,T10,ST1,IRR)
0266      C   CALL CHRT(R2,A2,10,B2,4,T10,ST1,IRR)
0267      C   ASF=B1(1)+B1(2)*RS(3)+B1(3)*RS(3)**2+B1(4)*RS(3)**3+B1(5)*RS(3)**4
0268      C   ARF=B2(1)+B2(2)*RR(3)+B2(3)*RR(3)**2+B2(4)*RR(3)**3+B2(5)*RR(3)**4
0269      C   ASF=.2526
0270      C   ARF=.2447
0271      C   RSF=RS(3)
0272      C   ASFO=ASF
0273      C   RSFO=RSF
0274      C   RRF=RR(3)
0275      C   RRF0=RRF
0276      C   ARFO=ARF
0277      C   INPUT PRINTING
0278      C
0279      C   WRITE(6,671)
0280      671 FORMAT(1H1, /60X,12HINPUT, PRINTS//40X,50H      RI          A1
0281      *           R2          A2 /)
0282      DO 72 I=1,10
0283      C   WRITE(6,73) R1(I),A1(I),R2(I),A2(I)
0284      73 FORMAT(40X,F10.3,F10.4,10X,F10.3,F10.4)
0285      72 CONTINUE
0286      C   WRITE(6,74) Z8,ZR,TPC,CV,CK
0287      74 FORMAT(/45X,25HNUMBER OF STATOR BLADES = F8.0/45X,25HNUMBER OF ROT
0288      *OR BLADES = F8.0/45X,25HROTOR TIP CLEARANCE = F8.4/45X,25HAXI
0289      *AL DISTANCE L = F8.2/45X,25HCURVATURE FACTOR K = F8.2/
0290      //55X,16HBLADING GEOMETRY/)
0291      C   WRITE(6,75)
0292      75 FORMAT(/30X,70H      C          E          T          TE          TN
0293      *          AL          R /)
0294      C   WRITE(6,76) CI,EI,TEI,TEI,TN,ALI,RS(1),C,E,T,TE,TN,AL,RS(3),CO,EO,
0295      *TO,TEO,TNO,ALO,RS(5)
0296      76 FORMAT(30X,2F10.4/22X,6HSTATOR,2X,2F10.4/30X,2F10.4/)
0297      77 FORMAT(30X,2F10.4/22X,6HROTOR,2X,2F10.4/30X,2F10.4/)
0298      C   WRITE(6,77) CIR,EIR,TPR,TFIR,TNIR,ALIR,RR(1),CR,ER,TR,TER,TNR,ALR,
0299      *RR(3),COR,FOR,TOR,TFOR,TNOR,ALOR,RR(5)
0300      C   WRITE(6,78)
0301      78 FORMAT(/40X,52HALL DIMENSIONS INDICATED IN THIS TABLE ARE IN INCHES
0302      *S/)
0303      C   WRITE(6,79) ICOR,IAT,IAN,1C0Z,1INC,ICL,ICON
0304      79 FORMAT(//40X,27HCORRELATION SYSTEM, ICOR = 15/61X,6HIAI = 15/
0305      *61X,6HIAN = 15/61X,6HIC0Z = 15/61X,6HTINC = 15/61X,6HICL = 15/6
0306      *1X,6HICON = 15)
0307      C   WRITE(6,81) CP,FMMF,GAM,VIS2,VIS3
0308      81 FORMAT(/20X,91HGAS PROPERTIES, CP, MOLECULAR MASS
0309      * GAMM, VISCOSITY (1), VISCOSITY (?)/38X,10H(RTU/LB.F),32X,13
0310      *H(LBM /SEC FT),4X,13H(LBM /SEC FT)//36X,F9.3,5X,F10.3,9X,F7.3,2E15
0311      *3/)
0312      C   CALL EXEC(8,NAME)
0313
0314      C   END

```

4PART2 T=00004 IS ON CR00025 USING 00030 BLKS R=0000

```
0001  FTN4.L
0002  PROGRAM PART2(5)
0003  DIMENSION NAME(3)
0004  DIMENSION NAMR(3)
0005  COMMON/ARA/RA17,BLEX
0006  COMMON/CUR/COSL(10)
0007  COMMON/TOL/TOL1,TOL2,TOL3,TOL4
0008  COMMON/TRS/TRAS
0009  COMMON/GAS/CP,GAM,EMME,ERRE,EXP1,EXP2,VTS2,VIS3
0010  COMMON/COZ/TCOR,ICOZ,IINC,IA1,ICL,IAN,ICON
0011  COMMON/MAC/IN
0012  COMMON/IWI/IND,INZ,IWR
0013  COMMON/AUS/XCL
0014  COMMON/CSS/CJ,G,Q1
0015  COMMON/UAR1/RC(10),RSOLD2,RSOLD3,RSOLD4,ASF0,RSFO,RRFO,ARFO,
0016  *RR(10),RR0LD2,RR0LD3,RR0LD4,CV,OK,VA1(10),DALF(10),DBET(10),
0017  *AMF,AMS,R1(20)
0018  COMMON/UAR2/R6(20),ZR,ZS,ARF,R2(20),PR,AMR,VU1(10)
0019  COMMON/UAR3/PTE(10),RS1,RS3,RS5,T2(10)
0020  COMMON/UAR4/RK1,BR2,BR3,RR1,RR3,RR5,VAP(10)
0021  COMMON/UAR5/PKAT1(10),R1NC1(10),ALFA11(10),BETA11(10),ZETA1(10),
0022  *V2(10),ALFA22(10),BETA22(10)
0023  COMMON/UAR6/PT2(10),TT2(10),PT1(10),DFLH(10),ALFAP(10),VU2(10),
0024  *WR2(10),TPS(10),TPTS(10)
0025  COMMON/UAR7/TTIS(5),BETAT(5),ETAT(5),ETAI(10),ETAS(10),ETAR(10),
0026  *RSTAR(10),DIS(10),PSIR(10)
0027  COMMON/UAR8/DR1(10),AMW1(10),AMU2(10),RFTET(10),PRAT1T(10),
0028  *AMR2(10),YS(10),X(10),AREA1(10),ZETAPS(10),WPER1(10),YR(10),
0029  *X2(10)
0030  COMMON/UAR9/ZETAR(10),ZETAPR(10),AS(10),AR(10),SI1(10),SI2(10),
0031  *S1(10),DSDX1(10),WT1(10),HE(10)
0032  COMMON/UAR10/WU1(10),DHDUX(10),DSDX2(10),RI1(10),RI2(10),
0033  *RI3(10),RI4(10),RI(10),SR1(10),SR2(10)
0034  COMMON/UAR11/YOLD(10),AA(10),SR(10),PRAT2(10),WPER2(10),
0035  *DWDX(10),TIIS(10),PRAT3(10),SS(10),ALFA(10)
0036  COMMON/UAR12/BETA(10),DELR(10),WPERO(10),ZETAS(10),ZETAR1(20),
0037  *ZETAR3(20),ZETARS(20),R1(20),A1(20),T10(20)
0038  COMMON/UAR13/ST1(20),IRR(20),R2(20),A2(20),RINC(20),DR(10),
0039  *BETO(10),STALII(10),AREA2(10),VR1(10)
0040  COMMON/UAR14/WLHM,PRATS,UMEG
0041  COMMON/AL1/ALFA1(10),V1(10),TTO,RPM,RS(10),SI,TNT,H,D,CT,T1(10),
0042  *P1(10),T0,TET,ALI,RESP,XX,ANG20,AMS1(10),S,TN,C,TF,AL,SD,TNO,
0043  *CO,TEO,)(10),D11,D21,D20,ANG21,ALFAX,T1,1,PTO,ALO,AMG
0044  COMMON/AL2/BETA2(10),BETA1(10),BETA0(10),W2(10),TTE(10),U2(10),
0045  *SIR,TNIR,HR,DZ,CIR,TPC,SZ,TNR,CR,SOR,TNOR,COR,AL,TR,ALR,ALOR
0046  *P2(10),W1P(10),W1(10),TEIR,TER,TEOR,DITR,DIOR,BETAZ,BETAT,ANM,
0047  *TIR,TR,TOR,STALI(10)
0048  COMMON/ARE/REE
0049  COMMON/TRA/XPO1(5,8),XPO2(6,8),ALF1(8),ALF01(5),ALF02(6),
0050  *Y(10),Y1(10),Q(6),RX(30),RY(30),IR(30),Z(6),C1(4,8),C2(4,8)
0051  DATA NAME /2HPA,2HRT,2H3 /
0052
0053
0054  DO 67 I=1,5
0055  U(I)=RPM*3.14159/30./12.*RS(I)
0056  DR(I)=0.
0057  DELR(I)=0.
0058  ZETAS(I)=.10
0059  ZETAR(I)=.15
0060  ZETAPS(I)=0.05
0061  ZETAPR(I)=0.05
0062  COSL(I)=1.0
0063  YS(I)=1.0
0064  67 YR(I)=1.0
0065  N9=0.
0066  750 NS=0
0067  N9=N9+1
0068  7750 CONTINUE
0069  100 RS(2)=RSOLD2
0070  RS(3)=RSOLD3
0071  DO 530 I=1,5
0072  530 X1(I)=RS(I)/RS(3)
0073  ASF=ASF0
0074  RSF=RSFO
0075  FS1=1.0
0076  FS2=1.0
0077  CALL CHAN (TTO,AMC,PTO,RC,W1,RM,WCHAN,WPERO)
0078  NS=0
```

```

0079   810 DO 801 K=1,15
0080     CALL STATR( ALFA1,X1,TTO,PTO,AMS,T1,P1,U1,UA1,ST1,ST2,YS,S1
0081     *DSDX1,VIII,PRAT1,T1,IS,SS,DALF,RSF,DELR,CV,CK,ZETAPS,RS,RS1,RS3,
0082     *RSS,ZETAS,DR,ZETA1,AMS1,NS,VR1)
0083     CALL AL0S1(ZETAPS,ZETAPS)
0084     DO 120 I=1,5
0085       PTE(I)=PTO
0086     120 TTE(I)=TTO
0087     CALL FLOWR(PRAT1,ZETAPS,X1,WI1,PTE,PTO,TTE,TTO,ASF,ZS,RSF,ASF,
0088     *ZR,RSF,1,WCHAN,VA1,WPER1,CODE,WLBM,B1,RS,TIPC,AREA1)
0089     IF(IN.EQ.1) AMC=AMC-.01
0090     IF(IN.EQ.1) GO TO 7750
0091     IF(CODE=20.) 801,802,801
0092
0093   801 CONTINUE
0094   802 CONTINUE
0095     FC1=1
0096     ARF=ARFO
0097     RRF=RROLD3
0098     RR(2)=RROLD2
0099     RR(3)=RRF
0100     RR(4)=RROLD4
0101     DO 71 I=1,5
0102       AMS1(I)=VI(I)/SQRT(GAM*ERRE*G*T1(I))
0103       X2(I)=RR(I)/RR(3)
0104
0105   71 CONTINUE
0106     CALL ROTO1(VU1,VA1,RPM,U,BFTA1,HE,TTE,PTE,X2,P1,T1,W1,WU1,X1,
0107     *RS,ZETAR,ZETAPR,RR,DHEDX,DSDX1,S1,U2,OMFG,BR1,BR2,BR3,FS1,FS2,
0108     *ZETAR,R6,RS1,RS3,RS5,BETO,STALII,RINCI,VR1)
0109     CODE=1
0110     IMACC=0
0111   201 DO 200 K=1,14
0112     CALL ROTO2(BETA2,HE,DHEDX,DSDX1,DSDX2,VA2,WU2,W2,UU2,U2,X2,U2,
0113     *YR,ZETAR,R11,R12,R13,R14,R1,SR1,SR2,AA,SR,TTE,PTE,T2,P2,PRAT2,
0114     *T2S,INDS,DBET1,RRF,DFLR,CV,CK,DR,RR,RR1,RR3,RR5,NS,WR2)
0115     CALL AL0S2(ZETAR,ZETAPR)
0116     IF(INDS=1) 310,320,310
0117     320 WRITE(6,36)((AA(I),I=1,5)
0118     36 FORMAT(3SH ENTRPY INDETERMINATE,PRINT AA 1-5,SE12.4/,25X,10HZETAR
0119     *1-5,SE12.4/25X,10H VA2 1-5,SE12.4/)
0120     IND=1
0121   310 CALL FLOWR(PRAT2,ZETAPR,X2,WI1,PTE,PTO,TTE,TTO,ASF,ZS,RSF,ARF,
0122     *ZR,RRF,2,WCHAN,VA2,WPER2,CODE,WLBM,B2,RR,TIPC,AREA2)
0123
0124     IF(IN.EQ.1) AMC=AMC-.01
0125     IF(IN.EQ.1) GO TO 7750
0126
0127   200 CONTINUE
0128   130 CONTINUE
0129     IMACC=IMACC+1
0130   4322 IF(IMACC.GE.10) GO TO 220
0131   4322 FORMAT(/20H LOOP IN SLINE ROT//SE10.3)
0132
0133   5000 CONTINUE
0134   220 DO 221 I=1,5
0135     DELR(I)=RS(I)-(RC(I)+RR(I))/2.
0136     DR(I)=RC(I)-RR(I)
0137     221 COSL(I)=SQRT(CV*CV/(DR(I)**2+CV*CV))
0138     NS=1
0139   880 DO 881 K=1,15
0140     CALL AL0S1(ZETAS,ZETAPS)
0141     CALL STATR( ALFA1,X1,TTO,PTO,AMS,T1,P1,U1,UA1,ST1,ST2,YS,S1
0142     *DSDX1,VIII,PRAT1,T1,IS,SS,DALF,RSF,DELR,CV,CK,ZETAPS,RS,RS1,RS3,
0143     *RSS,ZETAS,DR,ZETA1,AMS1,NS,VR1)
0144     DO 860 I=1,5
0145       PTE(I)=PTO
0146     860 TTE(I)=TTO
0147     CALL FLOWR(PRAT1,ZETAPS,X1,WI1,PTE,PTO,TTE,TTO,ASF,ZS,RSF,ASF,
0148     *ZR,RSF,1,WCHAN,VA1,WPER1,CODE,WLBM,B1,RS,TIPC,AREA1)
0149     IF(IN.EQ.1) AMC=AMC-.01
0150     IF(IN.EQ.1) GO TO 7750
0151     IF(CODE=20.) 881,822,881
0152
0153   881 CONTINUE
0154   822 CONTINUE
0155   861 CALL ROTO1(VU1,VA1,RPM,U,BFTA1,HE,TTE,PTE,X2,P1,T1,W1,WU1,X1,
0156     *RS,ZETAR,ZETAPR,RR,DHEDX,DSDX1,S1,U2,OMFG,BR1,BR2,BR3,FS1,FS2,
0157     *ZETAR,R6,RS1,RS3,RS5,BETO,STALII,RINCI,VR1)
0158     CODE=1
0159   894 DO 896 K=1,10
0160     CALL AL0S2(ZETAR,ZETAPR)

```

```

0159      CALL ROTOP (BETAP, HF, DHFDX, DSDX1, DSDX2, VA2, WU2, WI2, U2, X2, U2,
0160      *YR, ZETAR, RT1, X12, R12, RT4, RT, SR1, SR2, AA, SF, TTE, PTF, T2, P2, PRAT2,
0161      *T2S, INDS, DRET, RRF, DFLR, CV, CK, DR, RR, RR1, RR3, RRS, NS, WR2)
0162      IF (INDS=1) 895, 320, 895
0163      895 CALL FLOWR(PRA12, ZFTAPR, X2, WT1, PTF, PTO, TTE, TTO, ASF, ZS, RSF, ARF, ZR,
0164      *RRF2, WCHAN, VA2, WFFR2, CODE, WLEM, B2, RR, TIPO, AREA2)
0165      IF (IN.EQ.1) AMC=AMC-.01
0166      IF (IN.EQ.1) GO TO 7750
0167      IF (CODE=20.) 896, 897, 896
0168      896 CONTINUE
0169      897 CONTINUE
0170      226 DO 227 I=1,5
0171      227 PRAT3(I)=PT0/P2(I)
0172      TND=0
0173      PRATS=(PRAT3(1)+2.* (PRAT3(2)+PRAT3(3)+PRAT3(4))+PRAT3(5))/8.
0174      WRITE(1,265) PRATS
0175      265 FORMAT(1X,'COMPUTED PRESSURE RATIO=',F6.3)
0176      DIFF=ABS(PR-PRATS)
0177      TAL=TDL3*PR
0178      IF (TAL-DIFF) 920, 910, 910
0179      910 N11=0
0180      GO TO 223
0181      920 CONTINUE
0182      710 IF (PR-PRATS) 712, 712, 714
0183      712 AMC=AMC-DIFF/18.
0184      GO TO 750
0185      714 AMC=AMC+DIFF/18.
0186      GO TO 750
0187      223 CONTINUE
0188      CALL EXEC(8,NAMR)
0189      END

```

A PART3 T=00004 IS ON CR00025 USING 00042 BLKS R=0000

```
0001  FTN4,L
0002      PROGRAM PART3(5)
0003      DIMENSION NAME(3)
0004      DIMENSION NAMR(3)
0005      COMMON/ARA/RA17,BLEX
0006      COMMON/CUR/FCSL(10)
0007      COMMON/TOL/TOL1,TOL2,TOL3,TOL4
0008      COMMON/TR3/TRAS
0009      COMMON/GAS/CP,GAM,FMME,ERRE,EXP1,EXP2,VTS2,VIS3
0010      COMMON/COZ/ICOR,ICOZ,IINC,IAI,ICL,IAN,ICON
0011      COMMON/MAC/IN
0012      COMMON/IWI/IND,INZ,IWR
0013      COMMON/AUS/XCL
0014      COMMON/CSA/C,T,G,Q1
0015      COMMON/VAR1/R(10),RSOLD2,RSOLD3,RSOLD4,ASF0,RSFO,RRFO,ARFO,
0016      *RR(10),RROLD2,RROLD3,RROLD4,CV,CK,VA1(10),DALF(10),DBET(10),
0017      *ASF,AMS,R1(20)
0018      COMMON/VAR2/B6(20),ZR,ZS,ARF,B2(20),PR,AMR,VU1(10)
0019      COMMON/VAR3/PTE(10),PS1,PS3,RS5,T2(10)
0020      COMMON/VAR4/BR1,BR2,PR3,RR1,RR3,RR5,VA2(10)
0021      COMMON/VAR5/PRAT1(10),KINCI(10),ALFA11(10),BETA11(10),ZETA1(10),
0022      *V2(10),AI,FA22(10),FTA22(10)
0023      COMMON/VAR6/PT2(10),TT2(10),PT1(10),DELH(10),ALFA2(10),VU2(10),
0024      *WR2(10),T23(10),T21S(10)
0025      COMMON/VAR7/TT1S(5),BETAT(5),ETAT(5),ETAI(10),ETAS(10),ETAR(10),
0026      *RSTAR(10),AKIS(10),PSTAR(10)
0027      COMMON/VAR8/DR1(10),AMW1(10),AMV2(10),BFTET(10),PRAT1T(10)
0028      *AMR2(10),YS(10),X1(10),AREAT(10),ZETAPS(10),WPER1(10),YR(10),
0029      *X2(10)
0030      COMMON/VAR9/ZETAR(10),ZETAPR(10),AS(10),AR(10),SI1(10),SI2(10),
0031      *S1(10),DSDX1(10),WI(10),HE(10)
0032      COMMON/VAR10/WU1(10),DHFX(10),DSDX2(10),RT1(10),RI2(10),
0033      *RI3(10),RT4(10),RT(10),SR1(10),SR2(10)
0034      COMMON/VAR11/YULD(10),AA(10),SR(10),PRAT2(10),WPER2(10),
0035      *DWDX(10),T11S(10),PRAT3(10),SS(10),ALFA(10)
0036      COMMON/VAR12/BETA(10),DELR(10),WPERO(10),ZETAS(10),ZETARI(20),
0037      *ZETAR3(20),ZETAR5(20),R1(20),A1(20),T10(20)
0038      COMMON/VAR13/ST1(20),IR(20),R2(20),A2(20),RINC(20),DR(10),
0039      *RETO(10),STALI(10),AREA2(10),VR1(10)
0040      COMMON/VAR14/WLBM,PRATS,OMEG
0041      COMMON/AL1/ALFA1(10),V1(10),TTO,RPM,RS(10),SI,TNI,H,D,CI,T1(10),
0042      *P1(10),TD,TEI,ALI,RESP,XX,ANG20,AMS1(10),S,TN,C,TE,AL,SO,TNO,
0043      *CO,TEO,U(10),D1,D10,D20,ANG21,ALFAX,T1,T,PTO,ALO,AMC
0044      COMMON/AL2/BETA2(10),BETA1(10),BETAO(10),W2(10),TTE(10),U2(10),
0045      *SIR,TNIR,HR,DZ,CIR,T1PC,S2,TNR,CR,SDR,TNOR,COR,ALIR,ALR,ALOR,
0046      *P2(10),W1(10),W1(10),TEIR,TER,TEUR,DIIR,DIOR,BETAZ,BETAI,ANM,
0047      *TTR,TR,TOR,STALI(10)
0048      COMMON/ARE/REE
0049      COMMON/TRA/XPO1(5,8),XPO2(6,8),ALF1(8),ALFO1(5),ALFO2(6),
0050      *Y(10),Y1(10),A(6),RX(30),RY(30),IR(30),Z(6),C1(4,8),C2(4,8)
0051      DATA NAME /2MPA,2HRT,2H2 /
0052
0053      DATA NAMR/2HPA,2HRT,2H3 /
0054
0055      999 FORMAT(1H1)
0056      WRITE(6,999)
0057      WRITE(6,401)
0058      401 FORMAT(//27X,' SET      PAGE      RPM      TOTAL/STATIC      INLET
0059      *TOTAL    INLET TOTAL')
0060      WRITE(6,402)
0061      402 FORMAT(27X,6HNUMBER NUMBER                  PRESSURE RATIO      PRESSU
0062      *RE      TEMPERATURE)
0063      403 FORMAT(72X, SH(PSI), 7X,SH(DEG. R))
0064      J=1
0065      IS=1
0066      WRITE(6,405)J,IS,RPM,PR,PTO,TTO
0067      405 FORMAT(27X,13,18,F11.1,F14.3,F14.3,F15.2)
0068      WRITE(6,404)
0069      404 FORMAT(//57X21H STATOR EXIT SOLUTION//)
0070      WRITE(6,406)
0071      406 FORMAT(1X,'STREAM      RADIAL      X=R/RM      RADIAL      BLADE,      Y=VA
0072      */VAM      BLADE      LOSS      ZETAX      FLOW RATE')
0073      WRITE(6,407)
0074      407 FORMAT(1X,10H LINE      POSITION      SHIFT      OPENING
0075      *      EFFICIENCY      COEFFICIENT      CONTINUITY      FRACTION /)
0076      WRITE(6,411)
0077      411 FORMAT(12X,4H(IN),13X,4H(IN),5X,4H(IN))
0078      DD 408 T=1,5
```

```

0079      PRAT1(I)=1./PRAT1(I)
0080      ALFA11(I)=ALFA1(I)*57.3
0081      RETA11(I)=RETA1(I)*57.3
0082      ALFA2(I)=ATAN(VU2(I)/VA2(I))
0083      V2(I)=VA2(I)/COS(ALFA2(I))
0084      VR2(I)=SQRT(V2(I)*V2(I)+WR2(I)*WR2(I))
0085      ALFA22(I)=ALFA2(I)*57.3
0086      RETA22(I)=RETA2(I)*57.3
0087      DELH(I)=(U(I)*VU1(I)-U2(I)*UU2(I))/(G*CJ)
0088      TT2(I)=TTO-DLH(I)/CP
0089      PT2(I)=P2(I)*(TT2(I)/T2(I))**EXP1
0090      PT1(I)=P1(I)*(TTO/T1(I))**EXP1
0091      TPI(S(I)=TTO*(P2(I)/PTO)**EXP2
0092      TPS(I)=TTE(I)*(P2(I)/PTE(I))**EXP2
0093      TTIS(I)=TTO*(PT2(I)/PTO)**EXP2
0094      RFTAT(I)=PTO/PT2(I)
0095      ETAT(I)=(TTO-TT2(I))/(TTO-TTIS(I))
0096      ETA1(I)=(TTO-TT2(I))/(TTO-TTIS(I))
0097      ETAS(I)=(TTO-T1(I))/(TTO-TTIS(I))
0098      FTAR(I)=(TTE(I)-T2(I))/(TTE(I)-T2S(I))
0099      RSTAR(I)=(TTIS(I)-T2S(I))/(TTO-T2S(I))
0100      AKIS(I)=2.*G*CJ*CP*(TTO-T2IS(I))/U(I)**2
0101      PSIK(I)=SQRT(ETAR(I))
0102      DR1(I)=RC(I)-RS(I)
0103      AMW1(I)=W1(I)/SQRT(GAM*ERRE*G*T1(I))
0104      AMS1(I)=V1(I)/SQRT(GAM*ERRE*G*T1(I))
0105      AMV2(I)=V2(I)/SQRT(GAM*ERRE*G*T2(I))
0106      AMR2(I)=W2(I)/SQRT(GAM*ERRE*G*T2(I))
0107      RFTET(I)=PTE(I)/P2(I)
0108      PRAT1(I)=PTO/PT1(I)
0109      408 WRITE(6,409) 1,RS(I),X1(I),DR1(I),AREA1(I),YS(I),ETAS(I),ZETA1(I),
0110      *ZETAPS(I),WPER1(I)
0111      DELH(10)=0.
0112      DO 240 I=1,4
0113      L=I+1
0114      240 DELH(10)=DELH(10)+.5*(WPER2(L)-WPER2(I))*(DELH(L)+DELH(I))
0115      HP=DELH(10)*CJ*WL*RM/550.
0116      AMOM=HP*550./OMEG
0117      THETA=SQRT(TTO/518.4)
0118      DELTA=PTO/14.7
0119      HP1=HP/(THETA*DELTA)
0120      AMOM1=AMOM/DELTA
0121      RPM1=RPM/THETA
0122      WLBW1=WL*BM*THETA/DELTA
0123      ETAS=(ETAI(1)+ETAI(5)+2.*((ETAI(2)+ETAT(3)+ETAT(4)))/8.
0124      BETAT=(BETAT(1)+BETAT(5)+2.*((BETAT(2)+RFTAT(3)+BETAT(4)))/8.
0125      ETAT6=(ETAT(1)+ETAT(5)+2.*((ETAT(2)+ETAT(3)+ETAT(4)))/8.
0126      AKISS=(AKIS(1)+AKIS(5)+2.*((AKIS(2)+AKIS(3)+AKIS(4)))/8.
0127      RSTAR5=(RSTAR(1)+RSTAR(5)+2.*((RSTAR(2)+RSTAR(3)+RSTAR(4)))/8.
0128      409 FORMAT(1X,14,F12.3,F10.3,F9.4,F9.4,F11.4,F11.4,F14.4,F14.4)
0129      WRITE(6,412)
0130      412 FORMAT(//22X,23HABSOLUTE VELOCITY (FPS),27X,23HRELATIVE VELOCITY
0131      *(FPS)//)
0132      413 FORMAT(1X,6HSTREAM,2X,2(50H AXIAL RADIAL TANGENTIAL OVER
0133      *ALL ),7H WHEEL )
0134      WRITE(6,413)
0135      WRITE(6,414)
0136      414 FORMAT(1X,6H LINE 2(50HCOMPONENT COMPONENT COMPONENT VE
0137      *LOCITY ),8HVELOCITY//)
0138      DO 415 I=1,5
0139      415 WRITE(6,416) I,VA1(I),VR1(I),VU1(I),V1(I),VA1(I),VR1(I),WU1(I),W1(
0140      *I) U(I)
0141      416 FORMAT(1S,2X,2(F8.2,3F12.2,6X),F8.2)
0142      WRITE(6,418)
0143      418 FORMAT(//7X,113H MACH NUMBER FLOW ANGLE
0144      * TEMPERATURE PRESSURE PRESSURE)
0145      WRITE(6,419)
0146      419 FORMAT( 7X,113H (DEG. R) (PSI) (DEG) RATIO /)
0147      * (DEG. R)
0148      WRITE(6,492)
0149      492 FORMAT( 7H STREAM)
0150      WRITE(6,420)
0151      420 FORMAT(7H LINE,2(24H ABSOLUTE RELATIVE ),2(24H TOTAL
0152      * STATIC ),24H TOT/TOT TOT/STA /)
0153      DO 422 I=1,5
0154      422 WRITE(6,421) I,AMS1(I),AMW1(I),ALFA11(I),RETA11(I),TTO,T1(I),PT1(I)
0155      * ,P1(I),PRAT1(I),PRAT1(I)
0156      421 FORMAT(14,3X,2F10.2,4X,2F10.2,4X,2F10.2,4X,2F10.3,4X,F11.4,F10.4)
0157      WRITE(6,999)
0158      WRITE(6,401)

```

```

0159      WRITE(6,402)
0160      WRITE(6,403)
0161 452 FORMAT(//,57X,21H ROTOR EXIT SOLUTION///)
0162      IS=2
0163      WRITE(6,405) J,IS,RPM,PR,PTO,TTO
0164      WRITE(6,452)
0165      WRITE(6,406)
0166      WRITE(6,407)
0167      DO 423 I=1,5
0168 423 WRITE(6,408) I,RR(I),X2(I),DR(I),AREA2(I),YR(I),ETAR(I),ZETAR(I),
0169      *ZETAPR(I),WPER2(I)
0170      WRITE(6,412)
0171      WRITE(6,413)
0172      WRITE(6,414)
0173      DO 424 I=1,5
0174 424 WRITE(6,416) I,VA2(I),WR2(I),UU2(I),V2(I),VA2(I),WR2(I),WU2(I),W2(I
0175      *)_U2(I)
0176      WRITE(6,418)
0177      WRITE(6,419)
0178      WRITE(6,420)
0179      WRITE(6,420)
0180      DO 425 I=1,5
0181 425 WRITE(6,421) I,AMU2(I),AMR2(I),ALFA22(I),BETA22(I),TT2(I),T2(I),
0182      *PT2(I),P2(I),BETAT(I),PRAT3(I)
0183      WRITE(6,491)
0184 491 FORMAT(///)
0185      WRITE(6,426)
0186 426 FORMAT(2H STREAM, 41H EQUIVALENT EQUIVALENT EQUIV/STATIC)
0187 427 FORMAT(7H LINE , 38H TEMPERATURE INLET PRESSURE)
0188 428 FORMAT( 7X, 38H PRESSURE RATIO)
0189 429 FORMAT( 7X, 22H (DEG. R) (PSI)
0190      WRITE(6,427)
0191      WRITE(6,428)
0192      WRITE(6,429)
0193      DO 430 I=1,5
0194 430 WRITE(6,431) I,TTE(I),PTE(I),BETET(I)
0195 431 FORMAT(14.13,2,F15.3,F11.1)
0196      WRITE(6,999)
0197      WRITE(6,401)
0198      WRITE(6,402)
0199      WRITE(6,403)
0200      IS=3
0201      WRITE(6,405) J,IS,RPM,PR,PTO,TTO
0202      WRITE(6,441)
0203 441 FORMAT(//,45X,31HOVERALL TURBINE CHARACTERISTICS///)
0204      WRITE(6,442)
0205 442 FORMAT(102H STREAM PRESSURE RATIO, EFFICIENCY
0206      * HEAD BLADE/JET THEORETICAL )
0207      WRITE(6,443)
0208 443 FORMAT(102H LINE TOT/STA TOT/TOT TOT/STA TOT/TOT
0209      * COEFFICIENT SPEED RATIO DEGREE OF REACTION //)
0210      DO 444 I=1,5
0211      BLAJE=1./SQR(TAKIS(I))
0212 444 WRITE(6,445) I,PRAT3(I),BETAT(I),ETAI(I),ETAT(I),AKIS(I),BLAJE,RST
0213      *AR(I)
0214 445 FORMAT(15,F14.4,F11.4,F11.4,F13.4,F12.4,F15.4,F16.4)
0215      WRITE(6,446)
0216 446 FORMAT(//,53X,24HMASS AVERAGED QUANTITIES//)
0217 447 FORMAT(52X,13HPOWER =,F10.2,3X,4H(HP))
0218 448 FORMAT(52X,13HMOMENT =,F10.2,3X,7H(FT-LB))
0219 449 FORMAT(52X,13HFLOW RATE =,F10.2,3X,8H(LB/SEC)//)
0220 450 FORMAT(43X,22HREFRRED RPM =,F10.2)
0221 452 FORMAT(43X,22HREFRRED HORSE POWER =,F10.2,3X,4H(HP))
0222 453 FORMAT(43X,22HREFRRED MOMENT =,F10.2,3X,7H(FT-LB))
0223 454 FORMAT(43X,22HREFRRED FLOW RATE =,F10.2,3X,8H(LB/SEC)//)
0224 455 FORMAT(40X,25HTOTAL/STATIC EFFICIENCY =,F10.4)
0225 456 FORMAT(40X,25HTOTAL/TOTAL EFFICIENCY =,F10.4)
0226 457 FORMAT(34X,29HTOTAL/STATIC PRESSURE RATIO =,F10.4)
0227 458 FORMAT(34X,29HTOTAL/TOTAL PRESSURE RATIO =,F10.4//)
0228 459 FORMAT(34X,31HHEAD COEFFICIENT =,F10.4)
0229 471 FORMAT(34X,31HTHEORETICAL DEGREE OF REACTION =,F10.4)
0230 472 FORMAT(34X,31HLOAD/TOT SPEED RATIO =,F10.4)
0231 473 FORMAT(34X,31HMACH NUMBER AT STATION 0 =,F10.4)
0232      WRITE(6,447) HP
0233      WRITE(6,448) AMOM
0234      WRITE(6,449) WLBM
0235      WRITE(6,461) RPM1
0236      WRITE(6,462) HP1
0237      WRITE(6,463) AMOM1
0238      WRITE(6,464) WI KM1

```

```
0239      WRITE(6,465) ETA5
0240      WRITE(6,466) ETA6
0241      WRITE(6,467) PRATS
0242      WRITE(6,468) BETA6
0243      WRITE(6,469) AKISS
0244      HI AJFS=1 /NORT(AKISS)
0245      WRITE(6,472) BLAJFS
0246      WRITE(6,471) RSTARS
0247      WRITE(6,473) AMC
0248      IF(JNZ-1) 400,930,930
0249      930 IF(N11-1) 400,400,400
0250      400 CONTINUE
0251      END
```

LIST OF REFERENCES

1. Vavra, M.H., Axial Turbine Design Data, Report 1174VA1, M.H. Vavra, (Consultant), Pebble Beach, CA., 1974.
2. Macchi, E., Computer Program for Prediction of Axial-Flow Turbine Performance, NPS-57MA70081A, August 1970.
3. Eckert, R.H. Performance Analysis and Initial Tests of a Transonic Turbine Test Rig, AE Thesis, Naval Post-graduate School, Monterey, CA., 1966.
4. Harrison, G.H., An Analysis of Single Stage Axial-Flow Turbine Performance Using Three Dimensional Calculating Methods, AE Thesis, Naval Postgraduate School, Monterey, CA., 1967.
5. Vavra, M.H., Aerothermodynamics and Flow in Turbomachines, John Wiley and Sons, N.Y., Chapter 16, 1960.
6. Ainley, D.G. and Mathieson, G.C.R., A Method of Performance Estimation for Axial-Flow Turbines, Aeronautical Research Council Reports and Memoranda Number 2974, 1957.
7. Traupel, W., Thermische Turbomaschinen, Springer-Verlag, Berlin/Göttingen/Heidelberg, 1962.
8. Dunham, J and Came, P.M., Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction, ASME Paper 70-6T-2, 1970.
9. Balje, O.E. and Binsley, R.L., Axial Turbine Performance Evaluation, Part A-Loss-Geometry Relationships, Journal of Engineering for Power, Transactions of the ASME, 1968.
10. Lonherr, F.K. and Carter, A.F., Correlations of Turbine Blade Total Pressure Loss Coefficients Derived from Achievable Stage Efficiency Data, ASME Paper 68-FE-51, 1968.
11. GeopfARTH, R.N., Introductory Guide for Users of RTE-IV, TPL Technical Note 79-01, June 1979.
12. Yahyawi, M., TPL Computer User Guide-1. Operating the Computer to Write and Run a Fortran Program, TPL Technical Note 80-04, August 1980.

13. E. Macchi private communication to Lt. R. Cirone, December 1980.
14. Vavra, M.H., Design Report of Hybrid Compressor and Associated Test Rig, NPS-57VA 73071A, July 1973.

INITIAL DISTRIBUTION LIST

	No. Copies
1. Defense Technical Information Center Cameron Station Alexandria, Virginia 22314	2
2. Library, Code 0142 Naval Postgraduate School Monterey, California	2
3. Department Chairman, Code 69 Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940	2
4. Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, California 93940	1
5. Dr. R. P. Shreeve, Code 67Sf Department of Aeronautics Naval Postgraduate School Monterey, California	1
6. Professor Paul F. Pucci, Code 69Pc Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940	1
7. Dr. E. Macchi Instituto de Macchine Plitecnico Milano, Italy	1
8. Turbopropulsion Laboratory Code 67 Naval Postgraduate School Monterey, California 93940	10
9. LT R. Cirone, USN 32 Pace Drive North Babylon, N.Y. 11703	1

10. Dr. Gerhard Heiche 1
Research Administrator
Code 310A
Naval Air Systems Command
Navy Department
Washington, DC 20360
11. Mr. Karl H. Guttmann 1
Code 330C
Naval Air Systems Command
Navy Department
Washington, DC 20360
12. Dr. A.D. Wood 1
Office of Naval Research
Eastern/Central Regional Office
666 Summer Street
Boston, MA 02210
13. Commanding Officer 1
Naval Air Propulsion Test Center
Attn: Mr. Vernon Lubosky
Trenton, N.J. 08628

END

DATE
FILMED

7 - 81

DTIC