ΛΥΣΗ

- β) Από την ανισότητα $\alpha < \frac{1}{4}$ και τη μονοτονία της f συμπεραίνουμε ότι $f(\alpha) > f\left(\frac{1}{4}\right) \Rightarrow f(\alpha) > \frac{1}{2}$, οπότε $2f(\alpha) 1 > 0$.

Επίσης, $\beta > \frac{1}{4}$, οπότε $f(\beta) < f\left(\frac{1}{4}\right) \Longrightarrow f(\beta) < \frac{1}{2}$, απ' όπου προκύπτει ότι $2f(\beta) - 1 < 0$.

Άρα,
$$P = (2f(\alpha)-1)(2f(\beta)-1)<0$$
.

γ) Οι τετμημένες των κοινών σημείων της γραφικής παράστασης C_f της f με την ευθεία, δίνονται από τη λύση της εξίσωσης f(x) = 2x. Με $x \ge 0$ έχουμε:

$$f(x) = 2x \Leftrightarrow 1 - \sqrt{x} = 2x \Leftrightarrow 2x + \sqrt{x} - 1 = 0$$

Αν θέσουμε $\sqrt{x}=u$, τότε η εξίσωση γράφεται $2u^2+u-1=0$ και έχει λύσεις τους αριθμούς -1 και $\frac{1}{2}$. Έτσι έχουμε:

- u = -1: $\sqrt{x} = -1 \pi o u \epsilon i v \alpha i \alpha \delta u v \alpha \tau \eta$.
- $u = \frac{1}{2}$: $\sqrt{x} = \frac{1}{2} \Leftrightarrow x = \frac{1}{4}$

Άρα το μοναδικό κοινό σημείο της $\,C_{_f}\,$ με την ευθεία είναι το $\,A\!\left(\frac{1}{4},\frac{1}{2}\right)\!.$

Εναλλακτική λύση του ερωτήματος γ)

Παρατηρούμε ότι ο αριθμός $\frac{1}{4}$ είναι λύση της εξίσωσης f(x) = 2x. Επιπλέον:

- Av $x > \frac{1}{4}$, tote $2x > \frac{1}{2}$ kal $f(x) < \frac{1}{2}$, onote $f(x) \neq 2x$.
- Av $0 \le x < \frac{1}{4}$, tóte $2x < \frac{1}{2}$ kai $f(x) > \frac{1}{2}$, omóte $f(x) \ne 2x$.

Επομένως η εξίσωση f(x) = 2x έχει μοναδική λύση την $x = \frac{1}{4}$ και το μοναδικό κοινό σημείο της C_f με την ευθεία είναι το $A\left(\frac{1}{4},\frac{1}{2}\right)$.