Lecture Slides for

INTRODUCTION TO DATA ANALYTICS: RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Dr. LALIT KUMAR SINGH

Probability distributions

Probability distributions

- Why do we need to talk about probability distributions. What does it have to do with Data?
- Remember the histogram?

Random Variables

Random Variables

- Random Variable: A variable whose value is subject to variations due to randomness.
- The mathematical function describing this randomness (the probabilities for the set of possible values a random variable can take) is called a probability distribution.
- Continuous and Discrete probability density functions

Random Variables

Random variables

Continuous Distributions

- Probability of certain height
- Total Probability of all outcomes

Random Variables

Random Variables

 Probability Density functions (PDFs) and Cumulative Density Functions (CDF)

Going from PDF to CDF and vice versa

Uniform

- Discrete
 - · The six sided dice, coin toss
 - Formula for pdf: $f(X = x) = \frac{1}{k}$ for all x that belongs to a specific set with k elements And f(X = x) = 0 for all other values of x.
- Continuous
 - · Number of seconds past the minute
 - Exact age of a randomly selected person between the ages of 50-60
 - Formula for PDF:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{for } x \le a \text{ and } x > b \end{cases}$$

What is the CDF, mean and Variance?

$$CDF = \frac{x - a}{b - a}$$

$$Mean = \frac{1}{2}(b+a)$$

Variance =
$$\frac{1}{12}(b-a)^2$$

Binomial

- What is it + Example: Toy problem
- Example Real-world: Probability of 3 out of 10 mergers. Probability of there being 5 defective products in a batch of 20.
- Formula for PMF: $\binom{n}{k} p^k (1-p)^{n-k}$
- Formula for CDF is just the summation
- It is more useful for small n's
- Mean: np, variance: np(1-p)

Poisson

- Discrete distribution that signifies the probability of 'x' occurrences of a certain event over a certain period of time or space.
- Examples: Number of defaults per month, Number of banks per square kilometre.

• PMF (not PDF)
$$\frac{\lambda^k}{k!}e^{-\lambda}$$

• Mean and variance are λ (lambda >0)

Geometric

- Number of attempts before an event
- The interarrival distribution counterpart of a binomial. The coin toss case (uniform, binomial, geometric)
- PMF $(1-p)^{k-1}p$
- CDF $1 (1 p)^k$
- Mean is $\frac{1}{p}$, and variance $\frac{1-p}{p^2}$

Exponential

- The interarrival times of the Poisson distribution
- The continuous version of the geometric distribution
- Memoryless
- PDF: $\lambda e^{-\lambda x}$, where lambda>0
- CDF: $1-e^{-\lambda x}$
- Mean: $\frac{1}{\lambda}$
- Variance: $\frac{1}{\lambda^2}$

· Parallels to the Binomial, Exponential, Geometric

	Interarival Distribution	Count per unit interarrival distribution
Discrete Interarrival	Geometric	Binomial
Continuous interarrival	Exponential	Poisson
	Continuous Distribution	
	Continuous Distribution	
	Discrete Distribution	

Working with distributions

Going from PDF to CDF (continuous)

$$F(x) = \int_{-\infty}^{x} f(x) \, dx$$

Going from CDF to PDF (continuous)

$$f(x) = \frac{d}{dx}F(x)$$

Mean

$$\overline{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

$$E[x] = \sum_{i=1}^{\infty} p_i x_i$$

$$E[x] = \int_{-\infty}^{\infty} x f(x) dx$$

Variance/Standard deviation

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x - \mu)^2 dx} =$$

$$\sigma = \sqrt{\int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2}$$