Informatik II Skript Sommersemester 2015

Finn Ickler

10. Juli 2015

Inhaltsverzeichnis

14.4.2015	4
16.4.2015	5
21.4.2015	7
23.4.2015	9
28.4.2015	11
30.4.2015	14
5.5.2015	18
7.5.2015	19
12.5.2015	23
19.5.2015	27
21.5.2015	32
9.6.2015	37
11.6.2015	39
16.6.2015	44
18.6.2015	46
23.6.2015	49

25.6.20	015	55
30.6.20	015	59
2.7.201	15	64
7.7.201	15	69
9.7.201	15	72
Code	ebeispiele	
1	Schlüsselwort define	6
2	Lambda Abstraktion	
3	Bilderzusammenstellung am Beispiel einer Uhr	8
4	Die one-of Signatur	_
5	Konstruktion eines eigenen Ifs?	
6	Absolutbetrag durch cond	
7	Boolsche Ausdrücke mit and und or	
8	Record Definitionen	
9	Check-property	
10	Übersetzung mathematischer Aussagen in check-property	
11	Konstruktoren und Selektoren	
12	predicate Signaturen am Beispiel von Längen- und Breitengrade	
13	Ersetzung one-of druch predicate Siganturen	
14	Geocoding	
15	cond mit gemischten Daten	
16	Wrapper und Worker	
17	make-pair, ein polymorpher Datentyp	
18	Listen mit Signatur list-of	
19	Geschachtelte Listen	
20	Rekursion auf Listen: Länge einer Liste	30
21	Rekursion: Zusammenfügen zweier Listen	31
22	Bildmanipulation mit Listen aus Pixeln	32
23	Check-property mit Einschränkungen	35
24	Rekursion auf natürlichen Zahlen: Fakultät	35
25	Fehlerhafte Rekursionen	36
End	lrekursion.rkt	
26	Umdrehen einer Liste durch lambda Rekursion	
27	Letrec und endrekursives Umdrehen einer Liste	
Hig	herOrderProcedures.rkt	46

28	Anwendungsbeispiele foldr	8
Anir	nationen–und–HOP–Typ2.rkt	9
29	Animation 1: Ein Zähler	0
30	Animation 2: Ein Raumschiff	0
31	Anwendungen von Combined	2
32	+ als Higher Order Funktion	3
Curr	yUndMengen.rkt	5
33	Einfache Curry Beispiele	5
34	Ableitungen berechnen mit Curry	6
35	Mengenoperationen Teil 1	7
36	Mengenoperationen Teil 2	8
Strea	amsUndMengen.rkt	9
37	Listen zu Mengen Konvertierung	9
38	Mengenoperationen	9
39	Implementation von Streams	1
40	Rekursiv definierter Sream	4
Baeı	ume.rkt	5
41	Implementation von Bäumen	6
42	Berechnung der Größe eines Baumes 6	9
43	Entwicklung einer Pretty Print Methode für Bäume	
44	Fold über Bäume	2
45	Ismorphie von Listen und rechtstiefe Bäumen 7	3
46	Breitendurchlauf eines Baumes	6

14.4.2015

Scheme

Ausdrücke, Auswertung und Abstraktion

Dr Racket

Die Anwendung von Funktionen wird in Scheme ausschlieSSlich in Präfixnotation durchgeführt

Mathematik	Scheme
44 - 2	(- 44 2)
f(x, y)	(f x y)
$\sqrt{81}$	(sqrt 81)
9^2	(! 3)

Allgemein: (<funktion><argument1><argument2> ...)

(+ 40 2) und (odd? 42) sind Beispiele für *Ausdrücke*, die bei *Auswertung* einen Wert liefern.

(Notation: Υ→→)

```
(odd? 42) →→ #f
```

Interaktionsfenster: $\underbrace{Read \rightarrow Eval \rightarrow Print \rightarrow Loop}_{REPL}$

Literale stehen für einen konstanten Wert (auch: *Konstante*) und sind nicht weiter reduzierbar.

Literal		Sorte,Typ
#f,#t	(true, false, Wahrheitswert)	boolean
"X"	(Zeichenketten)	String
0 1904 42 -2	(ganze Zahl)	Integer
0.42 3.14159	(FlieSS kommazahl)	real
1/2, 3/4, -1/10	(rationale Zahlen)	rational
	(Bilder)	image

16.4.2015

Auswertung *zusammengesetzter Ausdrücke* in mehreren Schritten (Steps), von "innen nach außen", bis keine Reduktion mehr möglich ist.

```
(/ 3/5 3/10))
```

Ein Wert kann an einen *Namen* (auch *Identifier*) gebunden werden, durch (define <id> <e>) (id)Identifier (e)Ausdruck

Erlaubte konsistente Wiederverwendung, dient der Selbstdokumentation von Programmen

Achtung: Dies ist eine sogenannte Spezialform und kein Ausdruck. Insbesondere besitzt diese Spezialform *keinen* Wert, sondern einen Effekt Name $\langle id \rangle$ wird an den *Wert* von $\langle e \rangle$ gebunden.

Namen können in Scheme beliebig gewählt werden, solange

- (1) die Zeichen () [] {} ", ' '; # | \nicht vorkommen
- (2) dieser nicht einem numerischen Literal gleicht.
- (3) kein Whitespace (Leerzeichen, Tabulator, Return) enthalten ist.

Beispiel: euro→US\$

Achtung: Groß-\Kleinschreibung ist irrelevant.

Codebeispiel 1: Bindung von Werten an Namen

```
(define absoluter-nullpunkt -273.15)
  (define pi 3.141592653)
  (define Gruendungsjahr-SC-Freiburg 1904)
   (define top-level-domain-germany "de")
  (define minutes-in-a-day (* 24 60))
   (define vorwahl-tuebingen (sqrt 1/2))
```

Eine *lambda-Abstraktion* (auch Funktion, Prozedur) erlaubt die Formatierung von Ausrdrücken, in denen mittels *Parametern* von konkreten Werten abstrahiert wird.

```
(lambda (<p1><p2>...) <e>
```

 $\langle e \rangle$ Rumpf: enthält Vorkommen der Parameter $\langle p_n \rangle$

(lambda(...)) ist eine Spezialform. Wert der lambda-Abstraktion ist #⟨procedure⟩

. *Anwendung* (auch Application) des lambda-Aufrufs führt zur Ersetzung aller Vorkommen der Parameter im Rumpf durch die angegebenen *Argumente*.

Codebeispiel 2: Lambda-Abstraktion

```
; Abstraktion: Ausdruck mit "Loch" ⊙ (lambda (⊙) (* ⊙ (* 155 minutes-in-a-day)))
```

In Scheme leitet ein Semikolon einen Kommentar ein, der bis zum Zeilenende reicht und vom System bei der Auswertung ignoriert wird.

Prozeduren sollten im Programm ein- bis zweizeilige *Kurzbeschreibungen* direkt vorangestellt werden.

21.4.2015

Eine Signatur prüft, ob ein Name an einen Wert einer angegebenen Sorte (Typ) gebunden wird. Signaturverletzungen werden protokolliert.

```
(: <id> <signatur>)
```

Bereits eingebaute Sinaturen

```
\begin{array}{c|ccc} natural & \mathbb{N} & boolean \\ integer & \mathbb{Z} & string \\ rational & \mathbb{Q} & image \\ real & \mathbb{R} & \dots \\ number & \mathbb{C} & \end{array}
```

(: ...) ist eine Spezialform und hat keinen Wert, aber einen Effekt: Signaturprüfung

Prozedur Signatur spezifizieren sowohl Signaturen für die Parameter $P_1, P_2, \dots P_n$ als auch den Ergebniswert der Prozedur,

```
(: <Signatur P1> ... <Signatur Pn> -> <Signatur Ergebnis>)
```

Prozedur Signaturen werden *bei jeder Anwendung* einer Prozedur auf Verletzung geprüft. *Testfälle* dokumentieren das erwartete Ergebnis einer Prozedur für ausgewählte Argumente:

```
(check-expect <e1> <e2>)
```

Werte Ausdruck $\langle e_1 \rangle$ aus und teste, ob der erhaltene Wert der Erwartung $\langle e_2 \rangle$ entspricht (= der Wert von $\langle e_2 \rangle$) Einer Prozedur sollte Testfälle direkt vorangestellt werden.

Spezialform: kein Wert, sondern Effekt: Testverletzung protokollieren

Konstruktionsanleitung für Prozeduren:

- (1) Kurzbeschreibung (ein- bis zweizeiliger Kommentar mit Bezug auf Parametername)
- (2) Signaturen
- (3) Testfälle
- (4) Prozedurrumpf

Top-Down-Entwurf (Programmieren durch "Wunschdenken") Beispiel: Zeichne Ziffernblatt (Stunden- und Minutenzeiger) zu Uhrzeit h:m auf einer analogen 24h-Uhr

Minutenzeiger legt $\frac{360^{\circ}}{60}$ Grad pro Minute zurück (also $\frac{360}{60} \cdot m$) Studentenzeiger legt $\frac{360}{12}$ pro Stunde zurück ($\frac{360}{12} \cdot h + \frac{360}{12} \cdot \frac{m}{60}$)

Codebeispiel 3: Bauen der Uhr durch Top Down Entwurf

```
; Grad, die Minutenzeiger pro Minute zuruecklegt
  (define degrees-per-minute 360/60)

; Grad, die Stundenzeiger pro voller Stunde zuruecklegt
  (define degrees-per-hour 360/12)

; Zeichne Ziffernblatt zur Stunde h und Minute m
  (: draw-clock (natural natural -> image))
  (check-expect (draw-clock 4 15) (draw-clock 16 15))
  (define draw-clock
  (lambda (h m)
   (clock-face (position-hour-hand h m)
   (position-minute-hand m))))

15 ; Winkel (in Grad), den Minutenzeiger zur Minute m einnimmt
   (: position-minute-hand (natural -> rational))
```

```
(check-expect (position-minute-hand 15) 90)
(check-expect (position-minute-hand 45) 270)
(define position-minute-hand
(lambda (m)
(* m degrees-per-minute)))
; Winkel (in Grad), den Stundenzeiger zur Stunde h einnimmt
(: position-hour-hand (natural natural -> rational))
(check-expect (position-hour-hand 3 0) 90)
(check-expect (position-hour-hand 18 30) 195)
(define position-hour-hand
(lambda (h m)
(+ (* (modulo h 12) degrees-per-hour)
; h mod 12 in \{0, 1, ..., 11\}
(* (/ m 60) degrees-per-hour))))
; Zeichne Ziffernblatt mit Minutenzeiger um dm und
; Stundenzeiger um dh Grad gedreht
(: clock-face (rational rational -> image))
(define clock-face
(lambda (dh dm)
(clear-pinhole
(overlay/pinhole
(circle 50 "outline" "black")
(rotate (* -1 dh) (put-pinhole 0 35 (line 0 35 "red")))
(rotate (* -1 dm) (put-pinhole 0 45 (line 0 45 "blue")))))))
```

23.4.2015

Substitutionsmodell

Reduktionsregeln für Scheme (Fallunterscheidung je nach Ausdrücken) wiederhole, bis keine Reduktion mehr möglich

(1) f, e_1, e_2 reduzieren erhalte: f', e_1', e_2'

```
Operation f auf e_1 und e_2 [apply prim] falls f primitiv ist

Argumentenwerte in den Rumpf von f einsetzen, dann reduzieren falls f lambda Abstraktion
```

Beispiel:

dur? \Rightarrow JA! Achtung: Das hat Einfluß auf das Korrekte Einsetzen von Argumenten für Prozeduren (siehe apply)

Prinzip der Lexikalischen Bindung

Das *bindene Vorkommen* eines Identifiers id kann im Programmtext systematisch bestimmt werden: Suche strikt von innen nach außen, bis zum ersten

```
(1) (lambda (r) <Rumpf>
(2) (define <e>)
```

Übliche Notation in der Mathematik: Fallunterscheidung

$$max(x_1, x_2) = \begin{cases} x_1 & \text{falls } x_1 \ge x_2 \\ x_2 & \text{sonst} \end{cases}$$

Tests (auch Prädikate) sind Funktionen, die einen Wert der Signatur boolean liefern. Typische primitive Tests.

```
(: = (number number -> boolean))
(: < (real real -> boolean))
auch >, <=, >=
  (: String=? (string string -> boolean))
auch string>?, string<=?
  (: zero? (number -> boolean))
auch odd?, even?, positive?, negative?
```

```
Binäre Fallunterscheidung if if < e_1 >  Mathematik: < e_2 >  \begin{cases} e_1 & \text{falls } t_1 \\ e_2 & \text{sonst} \end{cases} < e_2 > )
```

28.4.2015

Die Signatur *one of* lässt genau einen der ausgewählten Werte zu.

```
(one of \langle e_1 \rangle \langle e_2 \rangle ... \langle e_n \rangle)
```

Codebeispiel 4: one-of am Beispiel des Fußballpunktesystems

Reduktion von if:

```
(if t_1 < e_1 > < e_2 > )
```

1 Reduziere t_1 , erhalte $t_1' \longrightarrow \begin{cases} \langle \mathbf{e}_1 \rangle & \text{falls } t_1' = \# \mathbf{t}, \langle \mathbf{e}_2 \rangle \text{ niemals ausgewertet} \\ \langle \mathbf{e}_2 \rangle & \text{falls } t_1' = \# \mathbf{f}, \langle \mathbf{e}_1 \rangle \text{ niemals ausgewertet} \end{cases}$

Codebeispiel 5: Koennen wir unser eigenes 'if' aus 'cond' konstruieren? (Nein!)

Spezifikation Fallunterscheidung (conditional expression):

Werte die Tests in den Reihenfolge $t_1, t_2, t_3, \dots, t_n$ aus.

Sobald $t_i \# t$ ergibt, werte Zweig e_i aus. e_i ist Ergebnis der Fallunterscheidung. Wenn $t_n \# t$ liefert, dann liefert

```
Fehlermeldung "cond: alle Tests ergaben false" falls kein else Zweig \langle e_{n+1} \rangle sonst
```

Codebeispiel 6: Absolutwert von x

Reduktion von cond [eval_{cond}]

cond ist syntaktisches Zucker (auch abgeleitete Form) für eine verbundene Anwendung von if

```
(cond
                     (<t1><e1>)
                                                                                  if (<t1>
                     (<t2><e2>)
                                                                                            <e1>
                                                                                                       if <t2>
                                                                                                       if <e2>
                                                                                                       . . .
                                                                                                            if <tn>
                     (<tn><en>)
                                                                                                                    <en>
                     (else <en+1>)
                                                                                                                            <en+1>))..))
Spezialform 'and' und 'or'
(\text{or } \langle \mathsf{t}_1 \rangle \ \langle \mathsf{t}_2 \rangle \ \dots \ \langle \mathsf{t}_n \rangle) \ \leftrightsquigarrow (\text{if } \langle \mathsf{t}_1 \rangle \ (\text{or } \langle \mathsf{t}_2 \rangle \ \dots \ \langle \mathsf{t}_n \rangle) \ \# \mathsf{t})
(and \langle t_1 \rangle \langle t_2 \rangle \dots \langle t_n \rangle) \rightsquigarrow (if \langle t_1 \rangle (and \langle t_2 \rangle \dots \langle t_n \rangle) #f)
(and) →→#t
```

Codebeispiel 7: Konstruktion komplexer Prädikate mittels 'and' und 'or'

30.4.2015

Zusammengesetze Daten

Ein Charakter besteht aus drei Komponenten

- Name des Charakters (name)
- Handelt es sich um einen Jedi? (jedi?) Datendefinition für zusammengesetzte Daten
- Stärke der Macht

(force)

Konkrete Charakter:

name	"Luke Skywalker "	
jedi?	#f	
force	25	

Codebeispiel 8: Starwars Charakter als Racket Records

Zusammengesetzte Daten = *Records* in Scheme Record-Definition legt fest:

- Record-Signatur
- Konstruktor (baut aus Komponenten einen Record)
- Prädikat (liegt ein Record vor?)
- Liste von *Selektoren* (lesen jeweils eine Komponente des Records)

Verträge des Konstruktors der Selektoren für Record- Signatur

 $\langle t \rangle$ mit Komponenten namens $\langle comp_1 \rangle \dots \langle comp_n \rangle$

```
(: make-<t> (<t1>...<t2>) -> <t>)
(: <t>-<comp1> (<t> -> <t1>))
(: <t>-<compn> (<t> -> <tn>))
```

Es gilt für alle Strings n, Booleans j und Integer f:

```
(character-name (make-character n j f) n)
(character-jedi? (make-character n j f) j)
(character-force (make-character n j f) f )
```

Spezialform check-property:

Test erfolgreich, falls $\langle e \rangle$ für beliebig gewählte Bedeutungen für $\langle id_1 \rangle \dots \langle id_n \rangle$ immer #t ergibt

Codebeispiel 9: Interaktion von Selektoren und Konstruktor:

```
(check-property
   (for-all ((n string)
              (j boolean)
              (f real))
      (expect (character-name (make-character n j f)) n)))
  (check-property
   (for-all ((n string)
              (j boolean)
              (f real))
10
     (expect (character-jedi? (make-character n j f)) j)))
  (check-property
   (for-all ((n string)
              (j boolean)
              (f real))
      (expect-within (character-force (make-character n j f)) f 0
         .001)))
```

Beispiel: Die Summe von zwei natürlichen Zahlen ist mindestens so groß wie jeder dieser Zahlen: $\forall x_1 \in \mathbb{N}, x_2 \in \mathbb{N} : x_1 + x_2 \ge \max\{x_1, x_2\}$

Codebeispiel 10: Mathematische ∀-Aussage in Racket

Konstruktion von Funktionen, die bestimmte gesetzte Daten konsumiert.

- Welche Record-Componenten sind relevant für Funktionen?
 - → Schablone:

Konstruktion von Funktionen, die zusammengesetzte Daten konstruieren

- Der konstruktor muss aufgerufen werden
 - → Schablone:

- Konkrete Beispiele:

Codebeispiel 11: Abfragen der Eigenschaften von character Records

```
; Könnte Charakter c ein Sith sein?
  (: sith? (character -> boolean))
  (check-expect (sith? yoda) #f)
  (check-expect (sith? r2d2) #f)
  (define sith?
    (lambda (c)
      (and (not (character-jedi? c))
           (> (character-force c) 0))))
  ; Bilde den Charakter c zum Jedi aus (sofern c überhaupt
     Macht besitzt)
  (: train-jedi (character -> character))
  (check-expect (train-jedi luke) (make-character "Luke_
     Skywalker" #t 50))
  (check-expect (train-jedi r2d2) r2d2)
  (define train-jedi
    (lambda (c)
      (make-character (character-name c)
                       (> (character-force c) 0)
20
                       (* 2 (character-force c)))))
```

5.5.2015

Position Nord/Südwest vom Äquator Position west/östlich vom Nullmeridian Sei ein Prädikat mit Signatur (<t> -> boolean).

Eine Signatur der Form (predicate gilt für jeden Wert der Signatur $\langle t \rangle$ sofern $(\langle p \rangle) \rightsquigarrow \#t$

Signaturen des Typs predicate) sind damit *spezifischer* (restriktiver) als die Signatur $\langle t \rangle$ selbst.

```
(define <newt> (signature <t>
Beispiele:
```

Codebeispiel 12: Restriktive Signaturen mit predicate

```
; Ist x ein gültiger Breitengrad
; zwischen Südpol (-90°) und Nordpol (90°)?
(: latitude? (real -> boolean))
(check-expect (latitude? 78) #t)
(check-expect (latitude? -92) #f)
(define latitude?
  (lambda (x)
    (within? -90 \times 90))
; Ist x ein gültiger Längengrad westlich (bis -180°)
; bzw. östlich (bis 180°) des Meridians?
(: longitude? (real -> boolean))
(check-expect (longitude? 0) #t)
(check-expect (longitude? 200) #f)
(define longitude?
  (lambda (x)
     (within? -180 \times 180)))
; Signaturen für Breiten-/Längengrade basierend auf
; den obigen Prädikaten
(define latitude
  (signature (predicate latitude?)))
(define longitude
  (signature (predicate longitude?)))
```

7.5.2015

Man kann jedes one-of durch ein predicate ersetzen.

Codebeispiel 13: Das "große One-of Sterben des Jahres 2015"

```
(: f ((one-of 0 1 2 ) -> natural))
(define f
    (lambda (x)
        x))
5 ; And then the "The Great one-of Extinction" of 2015 occurred
```



```
(lambda (x)
 x))
```

Geocoding: Übersetze eine Ortsangabe mittels des Google Maps Geocoding API (Application Programm Interface) in eine Position auf der Erdkugel.

```
(: geocoder (string -> (mixed geocode geocode-error)))
Ein geocode besteht aus:
   Signatur
   Adresse
                 (address)
                              string
- Ortsangabe
                 (loc)
                              location
   Nordostecke
                 (northeast)
                              location Ein geocode-error besteht aus:

    Südwestecke

                 (southwest)
                             location
 - Typ
                 (type)
                              string

    Genauigkeit

                 (accuracy)
                              string
               (: geocode-adress (geocode -> string))
               (: geocode-loc (geocode -> location))
               (: geocode-... (geocode -> ...))
   Signatur
- Fehlerart
                   (level)
                               (one-of "TCP" "HTTP" "JSON" "API")
   Fehlermeldung (message)
                              string
Gemischte Daten
Die Signatur
```

(mixed $\langle t_1 \rangle \ldots \langle t_n \rangle$)

ist gültig für jeden Wert, der mindestens eine der Signaturen $\langle t_1 \rangle \dots \langle t_n \rangle$ erfüllt. Beispiel: Data-Definition

Eine Antwort des Geocoders ist *entweder*

- ein Geocode (geocode) oder
- eine Fehlermeldung (geocode-error)

Beispiel (eingebaute Funktion string-\number)

```
(: string->number (string -> (mixed number (one-of #f))))
(string->number "42") 	→ 42
(string→ number "foo") 	→ #f
```

Codebeispiel 14: Die Google Geocode API

```
(define geocoder-response
    (signature (mixed geocode geocode-error)))
  (: sand13 geocoder-response)
  (define sand13
    (geocoder "Sand_13,_Tübingen"))
  (geocode-address sand13)
  (geocode-type sand13)
(location-lat (geocode-loc sand13))
  (location-lng (geocode-loc sand13))
  (geocode-accuracy sand13)
(: lady-liberty geocoder-response)
  (define lady-liberty
    (geocoder "Statue_of_Liberty"))
  (: alb geocoder-response)
  (define alb
    (geocoder "Schwäbische_Alb"))
  (: A81 geocoder-response)
  (define A81
    (geocoder "A81, Germany"))
```

Erinnerung:

Das Prädikat $\langle t \rangle$? einer Signatur $\langle t \rangle$ unterscheidet Werte der Signatur $\langle t \rangle$ von allen anderen Werten:

```
(: @\argt{}@? (any -> boolean))
```

Auch: Prädikat für eingebaute Signaturen

```
number?
complex?
real?
rational?
sinteger?
natural?
string?
boolean?
```

Prozeduren, die gemischte Daten der Signaturen $\langle t_1 \rangle \dots \langle t_n \rangle$ konsumieren: Konstruktionsanleitung:

```
(: \langle \mathsf{t} \rangle ((mixed \langle \mathsf{t}_1 \rangle ... \langle \mathsf{t}_n \rangle) -> ...))

(define \langle \mathsf{t} \rangle

(lambda (x)

(cond

((\langle \mathsf{t}_1 \rangle? x) ...)

...

((\langle \mathsf{t}_n \rangle? x) ...))))
```

Mittels let lassen sich Werte an lokale Namen binden,

```
(let (  (\langle \mathrm{id}_1 \rangle \ \langle \mathrm{e}_1 \rangle) \\ (\ldots) \\ (\langle \mathrm{id}_n \rangle \ \langle \mathrm{e}_n \rangle))  5 \langle \mathrm{e} \rangle
```

Die Ausdrücke $\langle e_1 \rangle \dots \langle e_n \rangle$ werden *parallel* ausgewertet. $\Rightarrow \langle id_1 \rangle \dots \langle id_n \rangle$ können in $\langle e \rangle$ (und nur hier) verwendet werden. Der Wert des let Ausdruckes ist der Wert von $\langle e \rangle$.

Codebeispiel 15: Liegt der Geocode r auf der südlichen Erdhalbkugel?

ACHTUNG:

'let' ist verfügbar auf ab der Sprachebene "Macht der Abstraktion".

'let' ist syntaktisches Zucker.

```
(let ( (lambda (\langle id_1 \rangle ... \langle id_n \rangle)
```

```
(\langle \operatorname{id}_{1} \rangle \langle e_{1} \rangle) \qquad \qquad \langle e \rangle)
(\ldots) \qquad \qquad \equiv \qquad \langle e_{1} \rangle
(\langle \operatorname{id}_{n} \rangle \langle e_{n} \rangle) ) \qquad \qquad \langle e_{2} \rangle \ldots
\langle e_{n} \rangle
```

12.5.2015

Abstand zweier geographischer Positionen b_1 , b_2 auf der Erdkugel in km (lat, lng jeweils in Radian).

Codebeispiel 16: Abstand zweier geographischer Positionen

```
; Abstand zweier geographischer Positionen 11, 12 auf der
     Erdkugel in km (lat, lng jeweils in Radian):
  ; dist(11, 12) =
  ; Erdradius in km *
      a\cos(\cos(11.1at) * \cos(11.1ng) * \cos(12.1at) * \cos(12.1ng)
           cos(11.lat) * sin(11.lng) * cos(12.lat) * sin(12.lng)
  ;
           sin(l1.lat) * sin(l2.lat))
  (define pi 3.141592653589793)
10 |; Konvertiere Grad d in Radian (\pi = 180^{\circ})
  (: radians (real -> real))
  (check-within (radians 180) pi 0.001)
  (check-within (radians -90) (* -1/2 pi) 0.001)
  (define radians
    (lambda (d)
      (* d (/ pi 180))))
  ; Abstand zweier Orte o1, o2 auf Erdkugel (in km)
20 ; [Wrapper]
  (: distance (string string -> real))
  (check-within (distance "Tübingen" "Freiburg") (distance
     "Freiburg" "Tübingen") 0.001)
  (define distance
    (lambda (o1 o2)
```

```
(let ((dist (lambda (11 12)
                                             ; Abstand zweier
       Positionen 11, 12 (in km) [Worker]
                  (let ((earth-radius 6378); Erdradius (in km)
                        (lat1 (radians (location-lat l1)))
                        (lng1 (radians (location-lng l1)))
                        (lat2 (radians (location-lat 12)))
                        (lng2 (radians (location-lng 12))))
                    (* earth-radius
                       (acos (+ (* (cos lat1) (cos lng1) (cos
                          lat2) (cos lng2))
                                 (* (cos lat1) (sin lng1) (cos
                                   lat2) (sin lng2))
                                 (* (sin lat1) (sin lat2)))))))
          (qc1 (qeocoder o1))
          (gc2 (geocoder o2)))
      (if (and (geocode? gc1)
               (geocode? gc2))
          (dist (geocode-loc gc1) (geocode-loc gc2))
          (violation "Unknown_location(s)"))))
; ... einmal quer durch die schöne Republik
(distance "Konstanz" "Rostock")
```

PARAMETRISCH POLYMORPHE PROZEDUREN

Beobachtung: Manche Prozeduren arbeiten unabhängig von den Signaturen ihrer Argumente: parametrisch polymorphe Funktion (griechisch: vielgestaltig).

Nutze Signaturvariablen %a, %b,...

Beispiel:

```
; die Identität
(: id (%a -> %a))
(define id
     (lambda (x) x))

; die konstante Funktion
(: const (%a %b -> %a))
(define const
     (lambda (x y) x))

; die Projektion
(: proj ((one-of 1 2) %a %b -> (mixed %a %b)))
(define proj
     (lambda (i x y)
```

```
(cond ((= i 1) x)
((= i 2) y))))
```

Eine polymorphe Signatur steht für alle Signaturen, in denen die Signaturvariablen durch konkrete Signaturen ersetzt werden.

Beispiel: Wenn eine Prozedur (: number %a %b -> %a) erfúllt, dann auch:

```
(: number string boolean -> string)
(: number boolean natural -> boolean)
(: number number number -> number)
```



```
; Ein polymorphes Paar (pair-of %a %b) besteht aus
; - einer ersten Komponente (first)
; - einer zweiten Komponente (rest)
  (: make-pair (%a %b -> (pair-of %a %b)))
5 (: pair? (any -> boolean))
  (: first ((pair-of %a %b) -> %a))
  (: rest ((pair-of %a %b) -> %b))
  (define-record-procedures-parametric pair pair-of make-pair
  pair?
    (first
    rest))
```

(pair-of <t1> <t2>) ist eine Signatur für Paare deren erster bzw. zweiter Komponente die Signaturen $\langle t_1 \rangle$ bzw. $\langle t_2 \rangle$ erfüllen.

```
;→ pair-of Signatur mit (zwei) Parametern
(: make-pair (%a %b -> (pair-of % a %b)))
(: pair? (any -> boolean))
(: first ((pair-of %a %b ) -> %a))
5 (: rest ((pair-of %a %b ) -> %b))
```

Codebeispiel 17: Paare aus verschiedenen Datentypen

Eine *Liste* von Werten der Signatur $\langle t_t \rangle$ ist entweder

- leer (Signatur empty-list) oder:
- ein Paar (Signatur pair-of) aus einem Wert der Signatur (t) und einer Liste von Werten der Signatur (t).

Signatur empty-list bereits in Racket vordefiniert.

Ebenfalls vordefiniert:

```
(:empty empty-list)
(: empty? (any -\zu boolean))
Operatoren auf Listen
```

opening -initial

```
Konstruktoren (: empty-list) leere liste
    (: make-pair (% a (list-of % a)) Konstruiert Liste aus Kopf und Rest

Predikate: (: empty (any -> boolean) liegt leere Liste vor?
    (: pair? (any -> boolean)) Nicht leere Liste?

Selektoren: (: first (list-of %a)-> %a) Kopf-Element
    (: rest (list-of %a)-> (list-of %a)) Rest Liste
```

Codebeispiel 18: Listen aus einem oder verschiedenen Datentypen

```
; Noch einmal (jetzt mit Signatur): Liste der natürlichen
  Zahlen 1,2,3,4
(: one-to-four (list-of natural))
(define one-to-four
  (make-pair 1
             (make-pair 2
                         (make-pair 3
                                    (make-pair 4
                                               empty)))))
; Eine Liste, deren Elemente natürliche Zahlen oder Strings
  sind
(: abstiegskampf (list-of (mixed number string)))
(define abstiegskampf
  (make-pair "SCF"
             (make-pair 96
                        (make-pair "SCP"
                                    (make-pair "VfB" empty)))))
```

19.5.2015

(make-pair 1 (make-pair 2 empty))
Visualisierung Listen

1	2	empty

Spine (Rückgrat)


```
(: jedis-and-siths (list-of (list-of string)))
```


Codebeispiel 19: Jedis und Siths in einer geschachtelten Liste

Prozeduren, die Liste konsumieren Konstruktionsanleitung:

Beispiel:

(rest xs) mit Signatur (list-of number) ist selbst wieder eine kürzere Liste von Zahlen.

(list sum (rest
xs)) erzielt Fortschritt

Konstruktionsanleitung für Prozeduren:

Neue Sprachebene "Macht der Abstraktion"

```
- Signatur (list-of \% a) eingebaut

(list \langle e_1 \rangle \langle e_2 \rangle \dots \langle e_n \rangle)

\equiv

(make-pair (\langle e_1 \rangle)

(make-pair \langle e_2 \rangle)

... (make-pair \langle e_n \rangle) empty) ...)
```

- Ausgabeformat für nicht leere Listen:

```
{#<list x1x2... xn>
```

Codebeispiel 20: Länge einer Liste

```
; Länge der Liste xs
(: list-length ((list-of %a) -> natural))

(check-expect (list-length empty) 0)
(check-expect (list-length (list 1 1 3 8)) 4)
(check-expect (list-length jedis-and-siths) 2) ; nicht 4!
```

Füge Listen xs , ys zusammen (con*cat*ination) Zwei Fälle (xs leer oder nicht leer)

Beobachtung:

- Die Längen von xs bestimmt die Anzahl der rekursiven Aufrufe von cat
- Auf xs werden Selektoren angewendet

Codebeispiel 21: Zusammenfügen zweier Listen

21.5.2015

Codebeispiel 22: Ausflug: Bluescreen Berechnung wie in Starwars mit Listen:

(**define** yoda

(**define** dagobah

```
; ; ; Zugriff auf die Liste der Bildpunkte (Pixel) eines Bildes:

; (: image->color-list (image -> (list-of rgb-color)))
; (: color-list->bitmap ((list-of rgb-color) natural natural -> image))

; Breite/Höhe eines Bildes in Pixeln:

; (: image-width (image -> natural))
; (: image-height (image -> natural))

; Eine Farbe (rgb-color) besteht aus ihrem
; - Rot-Anteil 0..255 (red)
; - Grün-Anteil 0..255 (green)
; - Blau-Anteil 0..255 (blue)
```

```
; (define-record-procedures rgb-color
    make-color
     color?
      (color-red color-green color-blue))
  ; Signatur für color-Records nicht in image2.rkt eingebaut.
    Roll our own...
  (define rgb-color
    (signature (predicate color?)))
  ; Ist Farbe c bläulich?
  (: bluish? (rgb-color -> boolean))
  (define bluish?
    (lambda (c)
      (< (/ (+ (color-red c) (color-green c) (color-blue c))</pre>
            3)
         (color-blue c))))
40 ; Worker:
  ; Pixel aus Hintergrund bg scheint durch, wenn der
  ; entsprechende Pixel im Vordergrund fg bläulich ist.
  ; Arbeite die Pixellisten von fg und bg synchron ab
  ; Annahme: fg und bg haben identische Länge!
  (: bluescreen ((list-of rgb-color) (list-of rgb-color) ->
     (list-of rgb-color)))
  (define bluescreen
    (lambda (fg bg)
      (cond ((empty? fg)
             empty)
            ((pair? fg)
             (make-pair
              (if (bluish? (first fg))
                  (first bg)
```

```
(first fq))
               (bluescreen (rest fg) (rest bg)))))))
55
  ; Wrapper:
  ; Mische Vordergrund fg und Hintergrund bg nach
     Bluescreen-Verfahren
  (: mix (image image -> image))
  (define mix
     (lambda (fq bq)
       (let ((fg-h (image-height fg))
             (fg-w (image-width fg))
             (bg-h (image-height bg))
             (bg-w (image-width bg)))
         (if (and (= fg-h bg-h)
                  (= fg-w bg-w))
             (color-list->bitmap
              (bluescreen (image->color-list fg)
                          (image->color-list bg))
              fg-w
              fq-h)
             (violation "Dimensionen von Vorder-/Hintergrund
                verschieden")))))
75 ; Yoda vor seine Hüte auf Dagobah setzen
```



```
(mix yoda dagobah) ~~
```

Generierung aller natürlichen Zahlen (vgl. gemischte Daten) Eine natürliche Zahl (natural) ist entweder

- die 0 (zero)
- der Nachfolge (succ) einer natürlichen Zahl

```
\mathbb{N} = \{0, (succ(0)), (succ(succ(0))), \ldots\}
Konstruktoren
```

Codebeispiel 23: ==> als Einschränkungsoperator

Beispiel für Rekursion auf natürlichen Zahlen: Fakultät

```
0! = 1
n! = n \cdot (n-1)!
3! = 3 \cdot 2!
= 3 \cdot 2 \cdot 1!
= 3 \cdot 2 \cdot 1 \cdot 0!
= 3 \cdot 2 \cdot 1 \cdot 1
= 6
10 = 3628800
```

Codebeispiel 24: Fakultät rekursiv

```
; Berechne n!
(: factorial (natural -> natural))
(check-expect (factorial 0) 1)
(check-expect (factorial 3) 6)
(check-expect (factorial 10) 3628800)

(define factorial
    (lambda (n)
```

```
(cond ((= n 0) 1)
((> n 0) (* n (factorial (- n 1))))))
```

Konstruktionsanleitung für Prozeduren über natürlichen Zahlen:

Beobachtung:

- Im letzten Zweig ist n > 0 \rightarrow pred angewandt
- $(\langle f \rangle (-n 1))$ hat die Signatur $\langle t \rangle$

Satz:

Eine Prozedur, die nach der Konstruktionsanleitung für Listen oder natürliche Zahlen konstruiert wurde *terminiert immer* (= liefert immer ein Ergebnis). (Beweis in Kürze)

Codebeispiel 25: Fehlerhafte Rekursionen

```
\underbrace{(3\cdot(2\cdot(1\cdot0!)))}^{\text{merken}}
```

Die Größe eines Ausdrucks ist proportional zum Platzverbrauch des Reduktionsprozesses im Rechner ⇒ Wenn möglich Reduktionsprozesse, die *konstanten* Platzverbrauch - unabhängig von Eingabeparametern - benötigen

9.6.2015

→ Multiplikationen können vorgezogen werden :-)

Idee: Führe Multiplikation sofort aus. Schleife des Zwischenergebnis (*akkumulierendes Argument*) durch die ganze Berechnung. Am Ende erhält der Akkumulatoren das Endergebnis.

Beispiel: Berechne 5!

```
(: fac-worker (natural natural -> natural)) 

n | acc

-1 \checkmark 5 | 1 \searrow · 5 | neutrales Element

-1 \checkmark 4 | 5 \searrow · 4

-1 \checkmark 3 | 20 \searrow · 3

-1 \checkmark 2 | 60 \searrow · 2

-1 \checkmark 1 | 120 \searrow · 1

-1 \checkmark 0 | 120
```

```
((> n 0) (fac-worker (- n 1) (* n acc))))))
```

Ein Berechnungsprozess ist *iterativ*, falls seine Größe konstant bleibt. Damit:

```
factorial nicht iterativ
```

Wieso ist fac-worker iterativ?

Der Rekursive Aufruf ersetzt den aktuell reduzierten Aufruf *vollständig*. Es gibt keinen *Kontext* (umgebenden Ausdruck), der auf das Ergebnis des rekursiven Aufrufs "wartet"

Kontext des rekursiven Aufrufs in:

```
- factorial: (* n □)
```

- fac-worker: keiner

Eine Prozedur ist *endrekursiv* (tail call), wenn sie keinen Kontext besitzt. Prozeduren, die nur endrekursive Prozeduren beinhalten, heißen selber endrekursiv. Endrekursive Prozeduren generieren *iterative* Berechnungsprozesse

```
(: rev ((list-of %a))-> (list-of %a))
```

Codebeispiel 26: Liste xs umdrehen

```
Beobachtung: von (rev (from-to 11000))
```

```
(cat (list 1000 ... 2) (list 1))
(cat (list 1000 ... 3) (list 2))
\rightarrow Aufrufe von make-pair: 1000+999+998+...+1
\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2} Quadratische Aufrufe :-(
```

Konstruiere iterative Listenumkehrfunktion backwards:

```
rest ✓ (list 123)

(: backwards-worker ((list-of %a) (list-of %a) -> (list-of %a))) rest ✓ (list 23)

rest ✓ (list 3)

empty
```

Mittels letrec lassen sich Werte an lokale Namen binden.

```
(letrec  ((\langle \mathrm{id}_1 \rangle \ \langle \mathrm{e}_1 \rangle) \ \dots \ (\langle \mathrm{id}_n \rangle \ \langle \mathrm{e}_n \rangle)) \ \langle \mathrm{e} \rangle)
```

Die Ausdrücke $\langle e_1 \rangle, \dots, \langle e_n \rangle$ und $\langle e \rangle$ dürfen sich auf die Namen $\langle id_1 \rangle, \dots, \langle id_n \rangle$ beziehen

Codebeispiel 27: Effizientere Variante eine Liste umzudrehen

```
; Wrapper
  (: backwards ((list-of %a) -> (list-of %a)))
  (check-expect (backwards empty) empty)
  (check-expect (backwards (list 1 2 3 4)) (list 4 3 2 1))
  (define backwards
    (lambda (xs)
      ; Liste xs umdrehen (mit Akkumulator acc, endrekursiv)
      ; Worker
      ; Aufwand: n Aufrufe von make-pair, wenn xs die Länge n hat
      (letrec ((backwards-worker
                 (lambda (xs acc)
15
                   (cond ((empty? xs) acc)
                         ((pair? xs)
                          (backwards-worker (rest xs) (make-pair
                             (first xs) acc)))))))
         (backwards-worker xs empty))))
```

11.6.2015

Induktive Definition

Konstante Definition der natürlichen Zahlen N.

Definition: (Peamo Axiome)

```
(P1) 	 0 \in \mathbb{N}
```

$$(P2) \qquad \forall n \in \mathbb{N} : succ(n) \in \mathbb{N}$$

(P3)
$$\forall n \in \mathbb{N} : succ(n) \neq 0$$

$$(P4) \qquad \forall n, m \in \mathbb{N} : succ(n) = succ(m) \iff n = m$$

TODO: "Plot"mit punkten und Pfeilen

(P5) Für jede Menge $M \subset N$ mit $0 \in M$

und
$$\forall n : (n \in M \Rightarrow succ(n) \in M)$$
, gilt $M = \mathbb{N}$

"N enthält nicht mehr als die 0 und die durch succ() generierten Elemente "Nicht ist sonst in \mathbb{N} ,

TODO: Plot von zwei kreisen ineinander Beweisschema der *vollständigen Induktion* Sei P(n) eine Eigenschaft einer Zahl $n \in \mathbb{N}$

```
(: P (natural -> boolean))
```

Ziel: $\forall n \in \mathbb{N} : P(n)$

Definiere $M = \{n \in \mathbb{N} | P(n)\} \subset \mathbb{N}$

M enthält die Zahlen n für die P(n) gilt

Induktionsaxiom

Falls

 $0 \in M$

und

 $\forall n : (n \in M \Rightarrow succ(n) \in M)$

dann

 $M \in \mathbb{N}$

 $\begin{array}{c|c} & & \text{Falls} \\ \text{Induktions start} & & P(0) \end{array}$

und

 $\forall (P(n) \Rightarrow P(succ(n)))$

Induktionsschritt da

dann

 $\forall n \in \mathbb{N}P(n)$

Beispiel:

```
1
                 =1
 1 + 3
                 = 4
 1 + 3 + 5
                 = 9
 1+3+5+7 = 16
                 = \sum_{i=0}^{n} (2i+1) = (n+1)^{2}
 P(n)
                    ersten n
ungeraden Zahlen
Induktions schluss P(0)
\sum_{i=0}^{0} (2i+1) = 2 \cdot 0 + 1 = (0+1)^{2} \checkmark
Induktionsschritt \forall n(P(n)) = P(n+1)
\sum_{i=0}^{n+1} (2i+1) = \sum_{i=0}^{n} (2i+1) + (2(n+1)+1)
\stackrel{iv.}{=} (n+1)^2 + 2n + 3
= n^2 + 4n + 4
                =((n+1)+1)^2 \checkmark
Beispiel:
             (define factorial
                           (lambda (k)
                                        (if
                                                     (= k 0) 1
                                                     (* k (factorial (- k 1))))))
P(x) \equiv (factorial n) = |n!|
                                                           x:(Racket Repräsentation für x \in \mathbb{N})
Zeige: \forall n \in \mathbb{N} : P(n)
Induktionsbasis P(0)
(factorial(0))
∼ ((lambda (k)...) 0)
~~ (if (= 0 0)1 ...)
~~> (if #t 1 ...)
\longrightarrow 1 = \boxed{0}!
Induktionsschritt: \forall n : (P(n) \rightarrow P(n+1))
(factorial n+1)
```

```
Unter der
Annahme, dass
tatsächlich
Subtraktion
implementiert ist
```

```
'** ((lambda (n)...) n+1)

*** (if (= n+1 0)1 ... (...))

*** (if #f 1 ... (...))

*** (* n+1 (factorial (- n+1 1)))

*** (* n+1 n!)

iv = (n+1)!√

= (n+1)!√
```

Beispiel:

Jede durch die Konstruktionsanleitung für Funktionen über natürliche Zahlen konstruierte Funktion liefert ein Ergebnis (*terminiert immer*)

```
(define f
           (lambda (n)
                     (if
                                (= n 0) base
                                (step (f (n-1)) n)))
(: base natural)
(: step (natural natural \rightarrow natural)) Bsp:step \rightarrow (lambda (x y) (* x
Dann gilt P(n) = (f n) terminiert (Mit Ergebnis der Signatur natural)
Zeige \forall n \in \mathbb{N} : P(n)
Induktionsbasis P(0):
(f 0)
⋯ (if (= 0 0) base ...)
~~ (if #tbase
>>> base ✓
Induktionsschritt \forall n : (P(n) \rightarrow P(n+1))
(f \mid n+1)
\longrightarrow (if (= \lceil n+1 \rceil 0) base ... (step ...))
→→ (if #f base ... (step ...))
42
```

Definition:(Listen.endliche Folge)

Die Menge M^* (= Listen mit Elementen aus M + list-of M ist *induktiv* definiert

(L1) empty
$$\in M^*$$

Nicht leere Liste

(make-pair x

 $\forall x \in M, xs \in M^*$

 $\in M^*$

xs)

(L3)

Nichts sonst in M^*

Beweisschema *Listeninduktion*

So P(xs) eine Eigenschaft von Listen über M.

```
(: P ((list-of M)-> boolean))
```

```
Induktionsanfang
```

```
\forall x \in M, xs : P(xs) \Rightarrow (P(xs) \Rightarrow (P(make-pair \times xs))) dann
```

 $\forall xs \in M^* : P(xs)$

Falls P(empty)

Indukstionsschritt

16.6.2015

```
Beispiel:
```

```
(define cat
                             (lambda (xs ys)
                                        (cond
                                                   ((empty? xs ) ys)
                                                   ((pair? xs) (make-oair (first xs) (cat
                                                      (rest xs) ys))))))
                      (1) cat empty ys = ys
                      (2) (cat xs empty) = xs
                                                                                   Beweise:
(M^*, cat, empty)
 ist ein Monoid)
                            (cat (cat xs ys)ys) = (cat xs (cat ys zy))
                  (1) (cat empty ys) \overset{\star}{\leadsto} ys\checkmark
                  (2) P(xs) = (cat xs empty) = xs
                  Induktionsanfang P(empty)
                  (cat empty empty) = empty ✓
                  Induktionsschritt \forall x \in M : P(xs) \Rightarrow P((make-pair x xs))
                  (define make-pair mp)
                  (cat (mp x xs)empty)
                  (mp (first (mp x xs)) (cat (rest (mp x xs)) empty))
                  \stackrel{iv.}{=} (mp \times xs) \checkmark
                  (3) Listeninduktion über xs (ys,zs \in M^* beliebig)
                      P(xs) \equiv (\text{cat (cat xs ys)zs}) = (\text{cat xs (cat ys zs)})
                  Induktionsanfang P(empty)
                  (cat (cat empty ys)zs)
                   \longrightarrow (1) (cat ys zs)
                   \leftarrow \sim \stackrel{\text{(1)}}{=} (\text{cat empty (cat ys zs)}) \checkmark
                  Induktionsschritt \forall x \in M : P(xs) \Rightarrow P((make-pair x xs))
                  (cat (cat (mp x xs)ys)zs))
```

```
(cat (mp x (cat xs ys))zs)
   ★ (mp (cat (cat xs ys))zs)
    iv. = (mp (cat (cat xs ys)zs))
   \leftarrow (cat (mp x xs ) (cat ys zs))\checkmark
  Beispiel: Interaktion von length und cat (Distributivität)
  (define length
              (lambda (xs)
                          (cond
                                      ((empty? xs)0)
                                      ((pair? xs) (+ 1
                                                  (length (rest xs))))))
  P(xs): (length (cat xs ys)) = (+(length xs)(length ys)),
  vs \in M^* beliebig.
  Induktionsbasis:
  (length (cat empty ys))
     \stackrel{\text{(1)}}{=} (length ys)
     + (+ 0(length ys))
   \leftarrow (+ (length empty) (length ys))\checkmark
  Induktionsschritt
  (length (mp x xs)ys)
   \operatorname{cat} \xrightarrow{\star} (\operatorname{length} (\operatorname{mp} \times (\operatorname{cat} \times \operatorname{sys})))
length \overset{\star}{\longleftrightarrow} (+ 1(length (rest (mp x (cat xs ys)))))
   rest \overset{\star}{\longleftrightarrow} (+ 1(length (cat xs ys)))
        iv. = (+ 1(+ (length xs)(length ys)))
   ass. \stackrel{(+)}{=} (+ (+ 1(length xs)(length ys)))
length \stackrel{\star}{\leftrightsquigarrow} (+ (length (mp x xs) (length ys))) \checkmark
```

Prozeduren höherer Ordnung

(higher-order procedures)

Wert des Parameters p? ist Prozedur ⇒ kann angewendet werden

18.6.2015

Zwei Arten von Higher Order Prozeduren (H.O.P)

- (1) akzeptieren, Prozeduren als Parameter oder/und
- (2) liefern Prozeduren als Ergebnis

```
filter ist vom Typ (1).
```

H.O.P vermeiden Duplizierung von Code und führen zu kompakteren Programmen, verbesserte Lesbarkeit und verbesserte Wartbarkeit.

Beispiel: (map f x)

Allgemeine Transformation von Listen Listenfaltung (list folding)

Idee: Ersetze die Listenkonstruktoren make-pair und empty systematisch.

- z c xs) wirkt als Spinetransformer
 - empty **→>**Z
 - make-pair \leadsto c
 - Eingabe: Liste (list-of %a)
 - Ausgabe : im Allgemeinen keine Liste mehr: %b

Beispiele: Listenreduktion mit foldr

TODO: Großes Bild von foldr Funktionen

```
(: sum ((list-of number) -> number))
(define sum(lambda (xs)(foldr 0 + xs)))
```

Beispiel: Länge einer Liste durch Listenreduktion TODO: Bild Plotten

```
; Listenreduktion via foldr: Länge der Liste xs
(: my-length ((list-of %a) -> natural))
(define my-length
        (lambda (xs)
                (foldr 0 (lambda (x 1) (+ 1 1)) xs)))
```

Codebeispiel 28: Fold und seine Anwendungen

```
; Listenreduktion via foldr: Summe der Liste xs
  (: my-sum ((list-of number) -> number))
  (define my-sum
    (lambda (xs)
      (foldr 0 + xs))
  ; Listenreduktion via foldr: Produkt der Liste xs
  (: my-product ((list-of number) -> number))
  (define my-product
    (lambda (xs)
      (foldr 1 * xs))
  ; Listenreduktion via foldr: Maximum der Liste xs
  (: my-maximum ((list-of number) -> number))
  (define my-maximum
    (lambda (xs)
      (foldr -inf.0 max xs)))
  ; Identität (auf Listen), implementiert via foldr
  (: my-id ((list-of %a) -> (list-of %a)))
  (define my-id
    (lambda (xs)
      (foldr empty make-pair xs)))
25 ; Reimplementation von append via foldr
  (: my-append ((list-of %a) (list-of %a) -> (list-of %a)))
  (define my-append
    (lambda (xs ys)
      (foldr ys make-pair xs)))
  ; Reimplementation von map via foldr
  (: my-map ((%a -> %b) (list-of %a) -> (list-of %b)))
  (define my-map
    (lambda (f xs)
      (foldr empty
```

```
(lambda (y ys) (make-pair (f y) ys))
             xs)))
  ; Reimplementation von reverse via foldr
  (: my-reverse ((list-of %a) -> (list-of %a)))
  (define my-reverse
    (lambda (xs)
       (foldr empty
              (lambda (y ys) (append ys (list y)))
             xs)))
  ; Listenreduktion via foldr: Länge der Liste xs
  (: my-length ((list-of %a) -> natural))
  (define my-length
    (lambda (xs)
       (foldr 0 (lambda (x 1) (+ 1 1)) xs)))
  ; Reimplementation von filter mittels foldr
  (: my-filter ((%a -> boolean) (list-of %a) -> (list-of %a)))
  (define my-filter
    (lambda (p? xs)
       (foldr empty
              (lambda (y ys) (if (p? y)
                                  (make-pair y ys)
                                 ys))
60
             xs)))
```

23.6.2015

Teachpack 'universe' nutzt H.O.P Animationen (Sequenzen von Bildern/Szenen) zu definieren.

```
(big bang
    (⟨init⟩)
    (ontick (tock))
    (todraw \langle render \rangle \langle w \rangle \langle h \rangle))
- ((init) %a) Startzustand
```

- (: (tock) (%a -> %a)) Funktion, die einen neuen Zustand aus alten Zustand berechnet

- (: $\langle render \rangle$ (%a -> image)) Funktion, die aus dem aktuellen eine Szene berechnet (wird in Fenster mit Dimension $\langle w \rangle \cdot \langle h \rangle$ Pixel angezeigt)
- Beim Schließen der Animation wird der letzte Zustand zurückgegeben

Codebeispiel 29: Ein animierter Zähler

Codebeispiel 30: Ein animiertes Raumschiff

```
; Erstellung von Animationen mit Teachpack "universe"
; (2) X-Wing Fighter + Scrolling Death Star

(define death-star
```



```
(define x-wing

; Erhalte einfachen Scrolling-Effekt durch Herausschneiden von
    Teilbildern
; aus dem Bild der Todessternoberfläche
; (zu crop und overlay: siehe Dokumentation des Teachpack
    "image2")
(: scroll-death-star (natural -> image))
(define scroll-death-star
    (lambda (t)
```

```
(overlay x-wing

(crop (modulo (* 8 t) 200) 0 400 440

death-star))))

(big-bang 0

(on-tick (lambda (t) (+ t 1)))
```

Ausgabe der römischen Episoden nummern für Film f: (roman (film-episode f))

Gesuchte Funktion ist *Komposition* von zwei existierenden Funktionen:

- (1) Erst film-episode anwenden, dann
- (2) Wende roman auf das Ergebnis von (1) an

Komposition von Prozeduren allgemein:

```
( (compose f g) x) \equiv (f (g x))

neue Prozedur realisiert
Komposition von f und g

[ Mathematisch (compose f g) \equiv f \circ g ]

(: compose (%b -> %c) ($a -> %b) -> (%a -> %c))

(define compose
(lambda (f g)
(lambda (x)
(f (g x)))))
```

Codebeispiel 31: Zweites und Drittes Element durch Combined

repeat: n-fache Komposition von f auf sich selbst (n-fache Anwendung von f, Exponentation)

```
f^0 = \operatorname{id} \qquad \qquad \left(\operatorname{id} \equiv \left(\operatorname{lambda}\left(\mathbf{x}\right)\mathbf{x}\right)\right)
f^n = f \circ f^{n-1}
(: repeat (natural (%a -> %a) -> (%a -> %a)))
(define repeat
(lambda (n f)
(cond
((= n 0) (lambda (x) x)
((> n 0) (compose f (repeat (- n 1) f)))))))
;Greife auf das n-te Element der Liste xs zu
(: nth (natural (list-of %a) -> %a))
(define nth
(lambda (n xs)
((compose first (repeat (- n 1) rest))xs)))
```

Codebeispiel 32: Gibt die Funktion + zurück

```
; Funktionen, die ihre Argument schrittweise konsumieren
; Konsumiert Argumente x,y in einem Schritt (eine Reduktion
   von apply_)
(: plus (number number -> number))
 (define plus
   (lambda (x y)
     (+ x y)))
; Konsumiert Argumente x, y in zwei Schritten (zwei Reduktionen
   von apply_).
; Nach dem ersten Schritt ist nur Argument x festgelegt,
   Ergebnis ist eine
; Funktion, die das zweite Argument y erwartet.
 (: add (number -> (number -> number)))
 (define add
   (lambda (x)
     (lambda (y)
       (+ x y))))
 (map (add 1) (list 1 2 3 4 5 6 7 8 9 10)); → (list 2 3 4 5 6 7
    8 9 10 11)
```

```
(map (add 10) (list 1 2 3 4 5 6 7 8 9 10)); \(\infty\) (list 11 12 13 14

15 16 17 18 19 20)

Reduktion: ((add 1) 41)

\(\infty\) ((lambda (x) (lambda (y) (+ x y))1)41)

eval_{id}

((lambda (y) (+ 1 y) 41)

apply_{\lambda} [lambda(x)] \(\text{Funktion die 1 auf} \)

ihr Argument anwenden

\(\infty\) (+ 1 41)

apply_{\lambda} [lambda(y)]
```

25.6.2015

```
(%a %b -> %c) \longrightarrow Applikation auf zwei Argumente (Signaturen %a, %b) \longrightarrow %c

Curry uncurry = 

(%a->(%b->%c)) \rightarrow App. auf Arg. (Sig. %a) \rightarrow (%b %c) App. auf Arg. (Sig. %b) \rightarrow %c

Currying (Haskell B. Curry, Moses Schönfinkel)
```

Anwendung einer Prozedur auf ihr erstes Argument liefert Prozedur der restlichen Argumente.

Jede n-stellige Prozedur lässt sich in eine alternative curried Prozedur transformieren, die in n Schritte jeweils ein Argument konsumiert. Uncurry ist die umgekehrte Transformation.

Es gilt für jeder Prozedur p:

```
(uncurry (curry p)) = p
```

"Schönfinkel Isomorphismus"

Codebeispiel 33: Einfache Anwendung von Curry

Erinnerung: Bestimmung der ersten Ableitung der rellen Funktion durch Bildung des Differentialqoutienten

Bildung des Differentialqoutienten:

Operator ' (Ableitung konsumiert Funktionen und produziert Funktion) \rightarrow _' ist higher Order

Codebeispiel 34: Ableitungen mit Curry

```
; Differenzenquotienten von f (mit Differenz h)
  (: diffquot (real -> real) -> (real -> real)))
  (define diffquot
    (lambda (h f)
       (lambda (x)
         (/ (- (f (+ x h)) (f x))
           h))))
; Berechne Differenzenquotienten mit Differenz h = 0.00001
  ; ((derive f) x) \equiv (f' x)
  (: derive ((real -> real) -> (real -> real)))
  (define derive
    ((curry diffquot) 0.00001))
  ; Beispielfunktion: f1(x) = xs + 2x
  (: f1 (real -> real))
  (define f1
     (lambda (x) (+ (* \times \times \times)
                    (*2x)))
  ; Ableitung von f1(x)
  ; f1'(x) = 3xš + 2
 (check-property
  (for-all ((x real))
```

Charakteristische Funktion einer Menge $S \subset M$ (s) S M

Charakteristische Funktion für S: $(:\chi_s \pmod{-} \text{Boolean})$

$$\chi_{s}(x) = \begin{cases} #t & x \in S \\ #f & \text{sonst} \end{cases}$$
$$\chi_{s}(m) = #f \qquad \chi_{s}(s) = #t$$

Idee Repräsentiere $S \subseteq$ durch Prozedur (M -> boolean) und Mengenoperation auf Prozeduren (H.O.P)

Codebeispiel 35: Grundlagen Mengenimplementierung

```
; Charakteristische Funktion (M -> boolean) als Repräsentation
  ; für eine Menge S ⊆ M
  (define set-of
    (lambda (t)
       (signature (t -> boolean))))
  ; S42 = \{ x \in \mathbb{Z} \mid x > 42 \}
  (: S42 (set-of integer))
  (define S42
     (lambda (x)
      (> x 42))
  ; Leere Menge Ø
15 (: empty-set (set-of %a))
  (define empty-set
    (lambda (x)
      #f))
; Ist Element x in der Menge S (x \in S)?
```

- :-) Darstellung unendlicher Mengen $(S_42 = \{x \in \mathbb{Z} \mid x > 42\})$
- :-) Mengenoperationen (\cup, \cap, \setminus) in *Konstanter Zeit*

Element *x* in Menge S einfügen:

$$\chi_{S \cup \{x\}}(y) = \begin{cases} # f & x = y \\ \chi_s(y) & \text{sonst} \end{cases}$$

Codebeispiel 36: Erweiterte Mengenoperationen

```
; Element x in Menge S hinzufügen: S U {x}
  (: set-insert (number (set-of number) -> (set-of number)))
  (define set-insert
    (lambda (x S)
       (lambda (y)
         (or (= y x)
             (S y)))))
10 ; Test: die leere Menge enthält kein Element
  (check-property
   (for-all ((x integer))
      (boolean=? (set-member? x empty-set) #f)))
¡ Test: die Menge Ø ∪ {x} enthält x
  (check-property
   (for-all ((x integer))
      (set-member? x (set-insert x empty-set))))
  ; Konstruiere \{1,2,3,4,5\} = (((\emptyset \cup \{1\}) \cup \{2\}) \cup \{3\}) \cup \{4\})
     U {5})
  (: 1-to-5 (set-of integer))
  (define 1-to-5
    (set-insert
     5
     (set-insert
       (set-insert
       3
```

30.6.2015

Konvertierung Liste xs in eine Menge gleicher Elemente.

Codebeispiel 37: Konvertiert eine Liste zu einer Menge

```
; Konvertiere Liste xs in Menge
(: list->set ((list-of number) -> (set-of number)))
(define list->set
   (lambda (xs)
        (fold empty-set set-insert xs)))

; Beispiel: Konstruiere {1,2,...,10}
(: 1-to-10 (set-of integer))
(define 1-to-10
        (list->set (list 1 2 3 4 5 6 7 8 9 10)))
```

Vereinigung: $\chi_{S \cup T}(x) = \chi_S(x) \vee \chi_T(x)$. Weitere Mengenoperationen analog:

Codebeispiel 38: Mengenoperationen \setminus , \cup , \cap , \triangle

```
; Element x aus Menge S löschen
(: set-delete (number (set-of number) -> (set-of number)))
(define set-delete
   (lambda (x S)
```

```
(lambda (y)
       (if (= y x)
            #f
            (S y)))))
; SUT
; x \in S \cup T \iff x \in S \vee x \in T
(: set-union ((set-of %a) (set-of %a) -> (set-of %a)))
(define set-union
  (lambda (S T)
     (lambda (x)
       (or (S x) (T x))))
; S \cap T
; x \in S \cap T \Leftrightarrow x \in S \wedge x \in T
(: set-intersect ((set-of %a) (set-of %a) -> (set-of %a)))
(define set-intersect
  (lambda (S T)
     (lambda (x)
       (and (S x) (T x))))
; S \ T
; x \in S \setminus T \Leftrightarrow x \in S \wedge x \notin T
(: set-difference ((set-of %a) (set-of %a) -> (set-of %a)))
(define set-difference
  (lambda (S T)
     (lambda (x)
       (and (S \times) (not (T \times)))))
```

Charakteristische Funktion zur Repräsentation Mengen:

- (1) Performance: set-member hat lineare Laufzeit bei mit set-insert konstruierte Mengen (wie Liste!)
- (2) Vorteile:
 - + unendliche Mengen darstellbar
 - + Mengenoperationen in konstanter Zeit durchführbar
- (3) Nachteile
 - Elemente sind nicht auf zählbar

Streams (stream-of %a):unendliche Ströme von Elementen x, mit Signatur %a

Ein Stream ist ein Paar:

-Erst eine Ausführung des Tails (force) erzeugt nächstes Stream-Element (faher

auch *lazylist*). Vergleich:

Verzögerte Auswertung eines Ausdrucks (delayed Evaluation):

- (**delay** e): Verzögere die Auswertung des Ausdruckes e und liefere "Versprechen" (promise) e bei Bedarf später auswerten zu können.

```
(delay e) ≡ (lambda () e )

nicht
ausgewertet

(force n) Frzwinge Auswertung des n
```

(force p) Erzwinge Auswertung des promise. p liefert Wert zurück

Codebeispiel 39: Streams

```
; Promise, ein Wert des Vertrags t zu liefern (0-stellig
Prozedur)
(define promise
(lambda (t)
```

```
(signature (-> t))))
  ; Verzögerte Auswertung (delay)
 ; Variante 1:
  ; (delay e) (lambda () e)
  ; Variante 2 (nutzt selbstdefinierte Scheme-Syntax-Regel,
     verfügbar ab
  ; Sprachebene "DMdA - fortgeschritten"):
15
  ; (define-syntax delay
     (syntax-rules ()
        (lambda () e))))
  ; Erzwungene Auswertung
  (: force ((promise %a) -> %a))
  (define force
    (lambda (p)
      (p)))
  ; Beispiel:
  ; Promise (werde 41+1 berechnen, falls gefordert)
  (: will-evaluate-to-42 (promise natural))
  (define will-evaluate-to-42
    (lambda () ; oder äquivalent mit Variante 2: (delay (+ 1
       41))
      (+ 41 1)))
  ; Verzögerte Ausführung...
will-evaluate-to-42
  ; ... und erzwungene Ausführung
  (force will-evaluate-to-42)
  ; Polymorphe Paare (isomorph zu `pair')
40 (: make-cons (%a %b -> (cons-of %a %b)))
  (: head ((cons-of %a %b) -> %a))
  (: tail ((cons-of %a %b) -> %b))
  (define-record-procedures-parametric cons cons-of
   make-cons
    cons?
    (head
```

```
tail))
  ; Ein Stream besteht aus
  ; - einem ersten Element (head)
  ; - einem Promise, den Rest des Streams generieren zu können
     (tail)
  (define stream-of
    (lambda (t)
      (signature (cons-of t (promise (stream-of t))))))
  ; Beispiel:
  ; Stream mit Zahlen ab n erzeugen
  (: from (number -> (stream-of number)))
  (define from
    (lambda (n)
      (make-cons n (lambda () (from (+ n 1))))))
  ; Beispiel (Stream Liste):
  ; Erste n Elemente des Streams str in eine Liste extrahieren
  (: stream-take (natural (stream-of %a) -> (list-of %a)))
  (check-expect (stream-take 5 (from 1)) (list 1 2 3 4 5))
  (check-expect (stream-take 0 (from 1)) empty)
  (define stream-take
    (lambda (n str)
      (if (= n 0))
          empty
           (make-pair (head str)
                      (stream-take (- n 1) (force (tail str)))))))
75
  ; Beispiel (Stream Stream):
  ; Filtere Stream str bzgl. Prädikat p?
  (: stream-filter ((%a -> boolean) (stream-of %a) -> (stream-of
     %a)))
80
  (check-expect (stream-take 10
                              (stream-filter (lambda (x) (=
                                 (remainder x 2) 0))
                                              (from 1)))
                 (list 2 4 6 8 10 12 14 16 18 20))
  (define stream-filter
```

2.7.2015

Generiere den unendlichen Strom der Fibonacci Zahlen.

```
fib(0) = 1
fib(1) = 1
fib(n) = fib(n-1) + fib(n - 2)
1, 1, 2, 3, 5, 8, 13, 21,...
```

↑ ab hier jeweils Summe der beiden Vorgänger

Beobachtung:

```
11235
+ 1235
2358
```

Stream-Diagramm zu fibs:

Codebeispiel 40: Stream aller Fibonacci Zahlen

Die Menge der Binärbäume T(m) ist induktiv definiert:

```
(T1) empty-tree \in T(M)
```

- (T2) $\forall x \in M \text{ und } l, r \in T(M) : (\text{make-node } 1 \times r) \in T(M)$
- (T3) nichts sonst in T(M)

Hinweis:

- Jeder Knoten (make-node) in einem Binärbaum hat zwei Teilbäume sowie eine Markierung ((label)).
- Vegleiche:

```
M* und T(M)
empty und empty-tree
make-pair und make-node
```

Visualisierung:

- empty-tree□

- Die Knoten mit Markierung x ist Wurzel (root) des Baumes
- Ein Knoten, der nur leere Teilbäume beinhaltet heißt *Blatt* (leaf). Alle anderen Knoten heißen *innere Konten* (inner-nodes)

Beispiel für Binärbäume der Menge T(M) (Binär-) Bäume haben zahlreiche Anwendungen:

Abbildung 2: Baum t_2 balanciert, alle Teilbäume auf einer Tiefe haben die selbe Anzahl an Knoten

- Suchbäume (z.B Datenbanken)
- Datenkompression
- Darstellung von Termen (Ausdrücken)

Bäume sind die Induktiv definierte Datenstruktur

Codebeispiel 41: Verschiedene Bäume

```
; Ein Knoten (node) eines Binärbaums besitzt
; - einen linken Zweig (left-branch),
```

```
; - eine Markierung (label) und
  ; - einen rechten Zweig (right-branch)
5 (: make-node (%a %b %c -> (node-of %a %b %c)))
  (: node-left-branch ((node-of %a %b %c) -> %a))
  (: node-label
                       ((node-of %a %b %c) -> %b))
  (: node-right-branch ((node-of %a %b %c) -> %c))
  (define-record-procedures-parametric node node-of
   make-node
    node?
    (node-left-branch
    node-label
    node-right-branch))
  ; Ein leerer Baum (empty-tree) besitzt
  ; keine weiteren Eigenschaften
  (: make-empty-tree (-> the-empty-tree))
  (define-record-procedures the-empty-tree
   make-empty-tree
    empty-tree?
    ())
  ; Der leere Baum (Abkürzung)
25 (: empty-tree the-empty-tree)
  (define empty-tree (make-empty-tree))
  ; Signatur für Binärbäume (btree-of t) mit Markierungen des
    Signatur t
  ; (im linken/rechten Zweig jedes Knotens findet sich jeweils
     wieder
 ; ein Binärbaum)
  (define btree-of
    (lambda (t)
      (signature (mixed the-empty-tree
                        (node-of (btree-of t) t (btree-of t)))))
  ;
35
  ;
                                    zweifache Rekursion, s.
     (list-of t)
40 |; Konstruiere Blatt mit Markierung x
  (: make-leaf (%a -> (btree-of %a)))
  (define make-leaf
```

```
(lambda (x)
    (make-node empty-tree x empty-tree)))
; Beispiel: t1 (rechts-tief, listen-artig)
(: t1 (btree-of natural))
(define t1
  (make-node empty-tree
             (make-node empty-tree
                        2
                        (make-node empty-tree
                                   empty-tree))))
; Beispiel: t2 (balanciert)
(: t2 (btree-of natural))
(define t2
  (make-node (make-leaf 2)
            1
             (make-leaf 3)))
; Beispiel: Klassifikation von Star Wars Charakteren
; (left branch "no", right branch "yes")
(: classifier (btree-of string))
(define classifier
  (make-node (make-node (make-leaf "Han_Solo")
                                   "female?"
                                   (make-leaf "Padme, Amidala"))
                        "droid?"
                        (make-node (make-leaf "C-3PO")
                                   "astromech?"
                                   (make-leaf "R2D2")))
             "force?"
             (make-node (make-leaf "Luke_Skywalker")
                                   "prequel?"
                                   (make-leaf "Mace_Windu"))
                        "dark_side?"
                        (make-node (make-leaf "Emperor")
                                   "pilot?"
                                   (make-leaf "Darth...
                                      Vader")))))
```

Die *Tiefe* (depth) eines Baumes ist die maximale Länge eines Weges von der Wurzel von t zu einem leeren Baum. Also:

7.7.2015

Codebeispiel 42: Die Größe eines Baumes

Einschub: Pretty-Printing von Bäumen

Prozedur (pp t) erzeugt formatierten String für Binärbaum t.

Idee: Repräsentiere formatierten String als *Liste von Zeilen* (Strings).

- ⇒(1) Nutze (string-append) um Zeilen-String zu definieren (horizontale Konkatenation).
 - (2) Nutze (append) um die einzelnen Zeilen zu einer Liste von Zeilen zusammenzusetzen (vertikale Konkatenation)

Erst direkt vor der Ausgabe werden die Zeilen-Strings zu einem auszugebenden String zusammengesetzt (strings-list->string)

Codebeispiel 43: Pretty Print eines Baumes

```
; Drucke Textrepräsentation des Baums t
(: print ((btree-of (mixed number string)) -> %void))
(define print
  (lambda (t)
    (write-string (strings-list->string (pp t)))))
; Erzeuge Liste von Zeilen-Strings der Textrepräsentation des
  Baums t
(: pp ((btree-of (mixed number string)) -> (list-of string)))
(define pp
  (lambda (t)
    (cond
      ((empty-tree? t) (list "\n"))
      ((node? t)
       (letrec ((lbl (node-label t))
                   (if (string? lbl) lbl (number->string
                (x
                   lb1)))
                (wx (string-length x))
                (ppl (pp (node-left-branch t)))
                (ppr (pp (node-right-branch t))))
         (append (list (string-append x "--"
                                   (first ppr)))
                 (map ((curry string-append)
                       (string-append "" (replicate wx "_")))
                              (rest ppr))
                 (list (string-append "" (replicate wx "_")
                    "\n"))
                 (list (string-append "" (replicate (+ 1 wx)
                    "-") (first ppl)))
                 (map ((curry string-append)
```

Induktion über Binärbäume

Sei P(t) eine Eigenschaft von Binärbäumen $t \in T(M)$, also (: P((btree-of M)->boolean)).

```
Falls (empty-tree) und \forall x \in M, r, l \in T(M) \colon P(l) \land P(r) \Rightarrow P \text{ (make-node 1 x r)} dann \forall t \in T(M) \colon P(t)
```

Induktionsbasis

Induktionsschritt

Beispiel:

Zusammenhang zwischen Größe (btree-size) und Tiefe (btree-depth) eines Binärbaums t. ("Ein Baum der Tiefe n enthält mindestens n und höchstens $2^n - 1$ Konten").

```
P(t) \equiv (\text{btree-depth t}) \leq (\text{btree-size t}) \leq 2^{(\text{btree depth t})} - 1
Induktionsbasis P((empty-tree))
(\text{size empty-tree})
\implies 0
= 2^{0} - 1 \checkmark
depth]
Induktionsschritt(P(l) \land P(r) \Rightarrow P(make-nodelxr)
(\text{size (make-node l x r)})
(\text{size (make-node l x r)})
[\text{size}]
```

```
 = 2^{(\text{depth 1})} - 1 + 1 + 2^{(\text{depth r})} - 1 
 = 2^{(\text{depth 1})} + 2^{(\text{depth r})} - 1 
 \le 2 \cdot \max(2^{(\text{depth 1})}, 2^{(\text{depth r})}) - 1 
 = 2 \cdot 2^{\max((\text{depth rl}), (\text{depth r}))} - 1 
 \iff 2^{(\text{depth make-node 1 x r})} - 1 \checkmark 
 = 2 \cdot 2^{(\text{depth make-node 1 x r})} - 1 \checkmark
```

Wie müsste sich btree-fold eine fold-Operation für *Binärbäume* verhalten? Tree Transformer für Baum t: TODO: Bild

9.7.2015

Codebeispiel 44: Beispiele von btree-fold

Bestimme die Markierung lm links-Außen im Baum t (oder empty falls t leer ist). 1

Codebeispiel 45: Listen sind rechtstiefe Bäume

 $^{^1\}mathrm{Nach}$ dem Prinzip von "How to Replace Failure by a List of Successes ", Wadler 1985

Listen und rechtstiefe Bäume sind isomorph

```
; Listen und rechts-tiefe Bäume sind isomorph
  ; Konvertiere Liste xs in rechts-tiefen Baum
  (: list->btree ((list-of %a) -> (btree-of %a)))
  (check-expect (list->btree empty) empty-tree)
  (check-expect (list->btree (list 1 2 3)) t1)
  (define list->btree
    (lambda (xs)
      (fold empty-tree
            (lambda (x t) (make-node empty-tree x t))
            xs)))
 ; Konvertiere rechts-tiefen Baum t in Liste
  ; (ÜBUNG: (: right-deep? ((btree-of %a) -> boolean))) )
  (: btree->list ((btree-of %a) -> (list-of %a)))
  (check-expect (btree->list empty-tree) empty)
  (check-expect (btree->list t1) (list 1 2 3))
  (define btree->list
    (lambda (t)
      (btree-fold empty
                  (lambda (xs1 x xs2) (make-pair x xs2))
                  t)));
                       ; empty-list, da t rechts-tief
25
  ; Listen und rechts-tiefe Bäume sind isomorph:
  (check-property
  (for-all ((xs (list natural)))
     (expect (btree->list (list->btree xs)) xs)))
```

Ein *Tiefendurchlauf* (depth-first-traversal) eines Baumes t sammelt die Markierungen der Teilbäume l, r des Knotens.

 $n = \text{make-node 1} \times \text{r}$ werden $vor \times \text{singesammelt}$ (Durchlauf zuerst in der Tiefe). Je nachdem ob x:

- (a) zwischen, (b) vor, (c) nach den Markierungen von l,r eingezeichnet wird, erhält man einen
- (a) *inorder* traversal **023**
- (b) *preorder* traversal **203**
- (c) *postorder* traversal **032**

Ein *Breitendurchlauf* ((breadth-first-traversal)) eines Baumes t sammelt die Markierungen der Knoten ebenenweise von der Wurzel ausgehend auf.

Idee: Gegeben sei eine Liste von Bäumen

- (1) Sammle die Liste der Markierungen der Wurzeln der nicht leeren Bäume in ts auf (roots ts)
- (2) Bestimme Liste ts' der nicht leeren Teilbäume der Bäume in ts (subtrees ts)

- (3) Führe (1) rekursiv auf ts' aus
- (4) Konkateniere die Listen aus (1) und (3)

Codebeispiel 46: Breitendurchlauf

```
; Repräsentiert 2 + (3 Œ 4)
 (: term (btree-of string))
 (define term
   (make-node (make-leaf "2")
              "+"
              (make-node (make-leaf "3")
                         "Œ"
                         (make-leaf "4"))))
 (check-expect (inorder term) (list "2" "+" "3" "Œ" "4")); C
 (check-expect (preorder term) (list "+" "2" "C" "3" "4"));
   Scheme
 (check-expect (postorder term) (list "2" "3" "4" "E" "+"));
   Forth
; Breitendurchlauf eines Baumes
; Breitendurchlauf für die Liste der Bäume ts
 (: traverse ((list-of (btree-of %a)) -> (list-of %a)))
(define traverse
   (lambda (ts)
     (cond ((empty? ts) empty)
           ((pair? ts) (append (roots ts)
                                (traverse (subtrees ts)))))))
; Liste der Wurzelmarkierungen der nicht-leeren Bäume in ts
 (: roots ((list-of (btree-of %a)) -> (list-of %a)))
 (define roots
  (lambda (ts)
     (map node-label
         (filter node? ts))))
; Liste der Teilbäume der nicht-leeren Bäume in ts
 (: subtrees ((list-of (btree-of %a)) -> (list-of (btree-of
   %a))))
(define subtrees
```

```
(lambda (ts)
       (flatten
        (map (lambda (t) (list (node-left-branch t)
                                (node-right-branch t)))
             (filter node? ts)))))
40
  ; Breitendurchlauf für Baum t
  ; (Wrapper für traverse)
  (: levelorder ((btree-of %a) -> (list-of %a)))
  (define levelorder
    (lambda (t)
       (traverse (list t))))
50 ; Beispielbaum
  (: scheme (btree-of string))
  (define scheme
    (make-node (make-node empty-tree
                           " C "
                            (make-leaf "e"))
55
                " s "
                (make-node (make-leaf "m")
                           "h"
                            (make-leaf "e"))))
  (check-expect (levelorder scheme) (string->strings-list
     "scheme"))
```