

1 (Currently amended). A compound of formula I,

wherein

R^1 represents C_{1-12} alkyl, cycloalkyl, $-(CH_2)_a$ -aryl, or $(CH_2)_a$ Het¹ (all of which are optionally substituted by one or more substituents selected from -OH, halo, cyano, nitro, C_{1-4} alkyl, cycloalkyl and/or C_{1-4} alkoxy or cycloalkoxy);

a represents 0, 1, 2, 3, or 4;

Het¹ represents a five to ten-membered heterocyclic ring containing one or more heteroatoms selected from oxygen, nitrogen and/or sulfur, and which also optionally includes one or more =O substituents;

X represents O or S;

R^{5a} and R^{5b} independently represent H or C₁₋₃ alkyl or cycloalkoxy;

R² and R³ independently represent H, C₁₋₄ alkyl (optionally substituted with one or more nitro or cyano groups), cycloalkyl, OR⁷, N(R^{7a})R^{7b}, OC(O)R⁸ or together form -O-(CH₂)₂-O-, -(CH₂)₃-, -(CH₂)₄- or -(CH₂)₅-;

R⁷ and R⁸ independently represent H, C₁₋₆ alkyl, or -(CH₂)_b-aryl or cycloalkoxy (which latter two three groups are optionally substituted by one or more substituents selected from -OH, halo, cyano, nitro, C₁₋₄ alkyl and/or C₁₋₄ alkoxy, cycloalkyl and/or cycloalkoxy);

R^{7a} and R^{7b} independently represent H, or C₁₋₆ alkyl or cycloalkyl;

b represents 0, 1, 2, 3 or 4;

R⁴ represents H, or C₁₋₆ alkyl or cycloalkyl;

D represents H, -OH, or -(CH₂)_cN(R¹⁰)(R¹¹);

c represents 0, 1, 2, 3 or 4;

R¹⁰ represents H, C₁₋₆ alkyl, cycloalkyl, -(CH₂)_d-aryl, -C(NH)NH₂, -S(O)₂R¹³, -[C(O)]_eN(R¹⁴)(R¹⁵), -C(O)R¹⁶ or -C(O)OR¹⁷;

e represents 1 or 2;

R¹¹ represents H, C₁₋₆ alkyl, -C(O)R¹⁸ or -(CH₂)_f-aryl (which latter group is optionally substituted by one or more substituents selected from -OH, cyano, halo, amino, nitro, C₁₋₆ alkyl and/or C₁₋₆ alkoxy, cycloalkyl and/or cycloalkoxy);

R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R¹⁸ independently represent H, C₁₋₆ alkyl, cycloalkyl, Het² or -(CH₂)_g-aryl (which latter three groups are optionally substituted by one or more substituents selected from -OH, cyano, halo, amino, nitro, C₁₋₆ alkyl and/or C₁₋₆ alkoxy, cycloalkyl and/or cycloalkoxy);

R^{13} represents C_{1-6} alkyl, cycloalkyl, aryl or $-(CH_2)_h$ -aryl (all of which are all optionally substituted by one or more substituents chosen from halo, nitro, C_{1-6} alkyl and/or C_{1-6} alkoxy, cycloalkyl and/or cycloalkoxy);

d, f, g and h independently represent 0, 1, 2, 3 or 4;

Het^2 represents a five to ten-membered heterocyclic ring containing one or more heteroatoms selected from oxygen, nitrogen and/or sulfur, and which also optionally includes one or more $=O$ substituents;

R^6 represents one or more optional substituents selected from -OH, cyano, halo, amino, nitro, C_{1-6} alkyl (optionally terminated by $-N(H)C(O)OR^{18a}$), C_{1-6} alkoxy, cycloalkyl, cycloalkoxy, $-C(O)N(H)R^{19}$, $-NHC(O)N(H)R^{20}$, $-N(H)S(O)_2R^{21}$ and/or $-OS(O)_2R^{22}$;

R^{19} and R^{20} independently represent H or C_{1-6} alkyl or cycloalkyl;

R^{18a} , R^{21} and R^{22} independently represent C_{1-6} alkyl or cycloalkyl;

A represents a single bond, C_{1-6} alkylene, $-N(R^{23})(CH_2)_j-$, $-O(CH_2)_j-$ or $-(CH_2)_jC(H)(OR^{23})(CH_2)_k-$ (in which latter three groups, the $-(CH_2)_j-$ group is attached to the bispidine nitrogen atom, and which latter four groups are all optionally substituted by one or more OH groups);

B represents a single bond, C_{1-4} alkylene, $-(CH_2)_mN(R^{24})-$, $(CH_2)_mS(O)_n-$, $-(CH_2)_mO-$ (in which three latter groups, the $-(CH_2)_m-$ group is attached to the carbon atom bearing D and R^4), $-C(O)N(R^{24})-$ (in which latter group, the $-C(O)-$ group is attached to the carbon atom bearing D and R^4), $N(R^{24})C(O)O(CH_2)_m-$ or $-N(R^{24})(CH_2)_m-$ (in which latter two groups, the $N(R^{24})$ group is attached to the carbon atom bearing D and R^4);

j, k and m independently represent 0, 1, 2, 3 or 4;

n represents 0, 1 or 2;

R²³ represents H, C₁₋₆ alkyl, cycloalkyl or C(O)R²⁵

R²⁴ represents H or C₁₋₆ alkyl or cycloalkyl;

R²⁵ represents H, C₁₋₆ alkyl, cycloalkyl, Het³ or -(CH₂)_p-aryl (which latter two groups are optionally substituted by one or more substituents selected from -OH, cyano, halo, amino, nitro, C₁₋₆ alkyl and/or C₁₋₆ alkoxy, cycloalkyl and/or cycloalkoxy);

Het³ represents a five to ten-membered heterocyclic ring containing one or more heteroatoms selected from oxygen, nitrogen and/or sulfur, and which also optionally includes one or more =O substituents;

p represents 0, 1, 2, 3 or 4;

or a pharmaceutically acceptable salt, N-oxide or C₁₋₄ alkyl quaternary ammonium derivative thereof;

wherein alkyl groups that R¹, R², R³, R⁴, R^{5a}, R^{5b}, R⁶, R⁷, R^{7a}, R^{7b}, R⁸, R¹⁰, R¹¹, R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R^{18a}, R¹⁹, R²⁰, R²¹, R²², R²³, R²⁴, R²⁵ and D may represent, and with which R¹, R⁷, R⁸, R¹¹, R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸ and R²⁵ may be substituted; and alkoxy groups and R⁶ may represent, and with which R¹, R⁷, R⁸, R¹¹, R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸ and R²⁵ may be substituted, may be linear or, when there is a sufficient number (i.e. three) of carbon atoms, be branched and/or cyclic, and wherein, when there is a sufficient number (i.e. four) of carbon atoms, such alkyl and alkoxy groups may also be part cyclic/acyclic, and wherein such alkyl and alkoxy groups may also be saturated or, when there is a sufficient number (i.e. two) of carbon atoms, be unsaturated and/or interrupted by oxygen and/or substituted by one or more fluoro groups; and

wherein alkylene groups that A and B may represent, and $-(CH_2)-$ containing groups that R^1 , R^2 and R^3 (together), R^7 , R^8 , R^{10} , R^{11} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{25} , A, B and D may include, may be linear or, when there is a sufficient number (i.e. two) of carbon atoms, be branched, and wherein such alkylene groups and $-(CH_2)-$ containing chains may also be saturated or, when there is a sufficient number (i.e. two) of carbon atoms, be unsaturated and/or interrupted by oxygen;

provided that:

- (a) when D represents either H or $-OH$, and R^{5a} and R^{5b} both represent H, then at least one of R^2 and R^3 represents OR^7 , $OC(O)R^8$ or C_{1-4} alkyl, which alkyl group is substituted with one or more nitro or cyano groups; and
- (b) when D represents $-OH$ or $-(CH_2)_cN(R^{10})R^{11}$ in which c represents 0, then:-
 - (i) A does not represent $-N(R^{23})(CH_2)_j-$, $-O(CH_2)_j-$ or $-CH_2)_jC(H)(OR^{23})(CH_2)_k-$ (in which k is 0); and/or
 - (ii) m does not represent 0 when B represents $-(CH_2)_mN(R^{24})-$, $-(CH_2)_mS(O)_n-$ or $-(CH_2)_mO-$.

2 (previously amended). A compound as claimed in Claim 1, wherein R^1 represents optionally substituted $-(CH_2)_a$ -phenyl, in which a is 0, 1, 2 or 3, or optionally substituted, optionally unsaturated, linear, branched or cyclic, C_{1-18} alkyl (which latter group may also be interrupted by an oxygen atom).

3 (previously amended). A compound as claimed in Claim 1, wherein R^2 represents H, OR^7 , $-CH_2NO_2$ or $-OC(O)R^8$ or together with R^3 $-O-(CH_2)_2-O-$.

4 (previously amended). A compound as claimed in Claim 1, wherein R³ represents H, OR⁷, C₁₋₄ alkyl or together with R² represents -O-(CH₂)₂-O-.

5 (previously amended). A compound as claimed in Claim 1, wherein R⁴ represents H or C₁₋₂ alkyl.

6 (previously amended). A compound as claimed in Claim 1, wherein R^{5a} and R^{5b} either both represent H or both represent methyl.

7 (previously amended). A compound as claimed in Claim 1, wherein R⁶ represents one or more substituents selected from C₁₋₆ alkyl, cyano, nitro, amino or C(O)N(H)R¹⁹ or N(H)S(O)₂R²¹.

8 (previously amended). A compound as claimed in Claim 1, wherein X represents O.

9 (previously amended). A compound as claimed in Claim 1, wherein A represents a single bond or linear, or branched, C₁₋₄ alkylene (which group is also optionally interrupted by O).

10 (previously amended). A compound as claimed in Claim 1, wherein B represents a single bond, C₁₋₄ alkylene, -(CH₂)_mO- or -(CH₂)_mN(R²⁴)- (in which latter two cases m is 1, 2 or 3).

11 (previously amended). A compound as claimed in Claim 1, wherein when D represents $-(CH_2)_cN(R^{10})(R^{11})$, c represents 0, 1 or 2.

12 (previously amended). A compound as claimed in Claim 1, wherein when D represents $-(CH_2)_cN(R^{10})(R^{11})$, R^{10} represents H, C_{1-4} alkyl, $-C(O)R^{16}$ (in which R^{16} is H, C_{1-3} alkyl or Het^2), $-C(O)OR^{17}$ (in which R^{17} is C_{1-5} alkyl, phenyl or C_{1-3} alkylphenyl), $-C(NH)NH_2$ or $[C(O)]_eN(H)R_{15}$ (in which R_{15} is H or C_{1-3} alkyl).

13 (previously amended). A compound as claimed in Claim 1, wherein when D represents $-(CH)_cN(R^{10})(R^{11})$, R^{11} represents H.

14 (previously amended). A pharmaceutical formulation including a compound as defined in Claim 1 in admixture with a pharmaceutically-acceptable adjuvant, diluent or carrier.

20 (currently amended). A method of prophylaxis or treatment of an arrhythmia which method comprises administration of a therapeutically effective amount of a compound as defined in Claim 1 to a person suffering from or susceptible to, such a condition in need thereof.

21 (currently amended). A process for the preparation of a compound of formula I as defined in Claim 1 which comprises:

(a) reaction of a compound of formula II,

wherein R^2 , R^3 , R^4 , R^{5a} , R^{5b} , R^6 , A, B and D are as defined in Claim 1 with a compound of formula III,

wherein L^1 represents a leaving group and R' and X are as defined in Claim 1;

(b) for compounds of formula I in which A represents CH_2 and D represents $-\text{OH}$ or $N(R^{10})H$, reaction of a compound of formula IV,

wherein R^1 , R^2 , R^3 , R^{5a} , R^{5b} and X are as defined in Claim 1, with a compound of formula V,

wherein Y represents 0 or $N(R^{10})$ and R^4 , R^6 , R^{10} and B are as defined in Claim 1;

(c) reaction of a compound of formula IV, as defined above, with a compound of formula VI,

wherein L^2 represents a leaving group and R^4 , R^6 , A , B and D are as defined in Claim 1;

(d) for compounds of formula I in which D represents H or OH and R^4 represents H, reduction of a compound of formula VII,

wherein R' , R^2 , R^3 , R^{5a} , R^{5b} , R^6 , A , B and X are as defined in Claim 1;

(e) for compounds of formula I in which one of R^2 and R^3 represents H or OH and the other represents H, reduction of a corresponding compound of formula VIII,

wherein R^1 , R^4 , R^{5a} , R^{5b} , R^6 , A , B , D and X are as defined in Claim 1;

(f) for compounds of formula I in which R^2 and/or R^3 represents $OC(O)R^8$ and R^8 is as defined in Claim 1, coupling of a corresponding compound of formula I in which R^2

and/or R^3 (as appropriate) represents OH and a compound of formula VIIIA,

wherein R^8 is as defined in Claim 1;

(g) for compounds of formula I in which D represents $-(CH_2)_cNH_2$, reduction of a corresponding compound of formula IX,

wherein c, R^1 , R^2 , R^3 , R^4 , R^{5a} , R^{5b} , R^6 , A, B and X are as defined in Claim 1;

(h) for compounds of formula I in which D represents $-N(R^{11})C(O)NH(R^{15})$, in which R^{11} and R^{15} are as defined in Claim 1 except that R^{11} does not represent $C(O)R^{18}$, reaction of a corresponding compound of formula I in which D represents $-N(R^{11})H$, in which R^{11} is as defined in Claim 1 except that it does not represent $C(O)R^{18}$ in which R^{18} is as defined in Claim 1, with a compound of formula X,

wherein R^{15} is as defined in Claim 1;

(i) for compounds of formula I in which D represents $-N(H)[C(O)]_2NH_2$, reaction of a corresponding compound of formula I in which D represents

$-NH_2$ with oxalic acid diamide;

(j) for compounds of formula I in which D represents $-N(R^{11})C(O)R^{16}$, in which R^{11} and R^{16} are as defined in Claim 1 except that R^{11} does not represent $C(O)R^{18}$, reaction of a corresponding compound of formula I in which D represents $-N(R^{11})H$, in which R^{11} is as defined in Claim 1 except that it does not represent $C(O)R^{18}$ in which R^{18} is as defined in Claim 1, with a compound of formula XI,

wherein R_x represents a suitable leaving group and R^{16} is as defined in Claim 1;

(k) for compounds of formula I in which D represents $-N(H)R^{10}$ and R^{10} is as defined in Claim 1 except that it does not represent H or $-C(NH)NH_2$, reaction of a corresponding compound of formula I wherein D represents $-NH_2$ with a compound of formula XIA,

wherein R^{10a} represents R^{10} as defined in Claim 1 except that it does not represent H or $-C(NH)NH_2$ and L^1 is as defined above;

(l) for compounds of formula I which are bispidine-nitrogen N-oxide derivatives, oxidation of the corresponding bispidine nitrogen of a corresponding compound of formula I;

(m) for compounds of formula I which are C_{1-4} alkyl quaternary ammonium salt derivatives, in which the alkyl group is attached to a bispidine nitrogen, reaction, at the bispidine nitrogen, of a corresponding compound of formula I with a compound of formula XII,

wherein R^a represents C_{1-4} alkyl and Hal represents Cl, Br or I;

(n) for compounds of formula I in which D and R^4 both represent H, A represents C_{1-6} alkylene, B represents $N(R^{24})(CH_2)_m$ and m and R^{24} are as defined in Claim 1, reaction of a compound of formula XIII,

wherein A^a represents C_{1-6} alkylene and R^1 , R^2 , R^3 , R^{5a} , R^{5b} , R^{24} and X are as defined in Claim 1 with a compound of formula XIV,

wherein R^6 , m are as defined in Claim 1 and Hal is as defined above;

(o) reaction of a compound of formula II, as defined above, with a compound of formula XV,

wherein R^1 and X are as defined in Claim 1, in the presence of 1,1'-carbonyldiimidazole;

(p) for compounds of formula I in which one of R^2 and R^3 represents $-NH_2$ and the

other represents H, reduction of a compound of formula XVA,

wherein R¹, R⁴, R^{5a}, R^{5b}, R⁶, A, B, D and X are as defined in Claim 1;

(q) for compounds of formula I in which one or both of R² and R³ represent -N(R^{7a})R^{7b} in which one or both of R^{7a} and R^{7b} represents C₁₋₆ alkyl, alkylation of a corresponding compound of formula I in which R² and/or R³ represent -N(R^{7a})R^{7b} (as appropriate) in which R^{7a} and/or R^{7b} (as appropriate) represent H, using a compound of formula XXIB,

wherein R^{7c} represents C₁₋₆ alkyl and L¹ is as defined above; or

(r) conversion of one R⁶ substituent to another; or

(s) (r) deprotection of a protected derivative of a compound of formula I as defined in Claim 1.

22 (currently amended). A compound of formula II

wherein R^2 , R^3 , R^4 , R^{5a} , R^{5b} , R^6 , A, B and D are as defined in Claim 1

R^{5a} and R^{5b} independently represent H, C_{1-3} alkyl or cycloalkoxy;

R^2 and R^3 independently represent H, C_{1-4} alkyl (optionally substituted with one or more nitro or cyano groups), cycloalkyl, OR^7 , $N(R^{7a})R^{7b}$, $OC(O)R^8$ or together form $-O-(CH_2)_2-O-$, $-(CH_2)_3-$, $-(CH_2)_4-$ or $-(CH_2)_5-$;

R^7 and R^8 independently represent H, C_{1-6} alkyl, $-(CH_2)_b$ -aryl or cycloalkoxy (which latter three groups are optionally substituted by one or more substituents selected from -OH, halo, cyano, nitro, C_{1-4} alkyl, C_{1-4} alkoxy, cycloalkyl and/or cycloalkoxy);

R^{7a} and R^{7b} independently represent H, C_{1-6} alkyl or cycloalkyl;

b represents 0, 1, 2, 3 or 4;

R^4 represents H, C_{1-6} alkyl or cycloalkyl;

D represents H, -OH, or $-(CH_2)_cN(R^{10})(R^{11})$;

c represents 0, 1, 2, 3 or 4;

R^{10} represents H, C_{1-6} alkyl, cycloalkyl, $-(CH_2)_d$ -aryl, $-C(NH)NH_2$, $-S(O)_2R^{13}$, $-[C(O)]_eN(R^{14})(R^{15})$, $-C(O)R^{16}$ or $-C(O)OR^{17}$.

e represents 1 or 2;

R¹¹ represents H, C₁₋₆ alkyl, -C(O)R¹⁸ or -(CH₂)₁₋₅aryl (which latter group is optionally substituted by one or more substituents selected from -OH, cyano, halo, amino, nitro, C₁₋₆ alkyl, C₁₋₆ alkoxy, cycloalkyl and/or cycloalkoxy);

R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R¹⁸ independently represent H, C₁₋₆ alkyl, cycloalkyl, Het² or -(CH₂)₁₋₅aryl (which latter three groups are optionally substituted by one or more substituents selected from -OH, cyano, halo, amino, nitro, C₁₋₆ alkyl, C₁₋₆ alkoxy, cycloalkyl and/or cycloalkoxy);

R¹³ represents C₁₋₆ alkyl, cycloalkyl, aryl or -(CH₂)₁₋₅aryl (all of which are all optionally substituted by one or more substituents chosen from halo, nitro, C₁₋₆ alkyl, C₁₋₆ alkoxy, cycloalkyl and/or cycloalkoxy);

d, f, g and h independently represent 0, 1, 2, 3 or 4;

Het² represents a five to ten-membered heterocyclic ring containing one or more heteroatoms selected from oxygen, nitrogen and/or sulfur, and which also optionally includes one or more =O substituents;

R⁶ represents one or more optional substituents selected from -OH, cyano, halo, amino, nitro, C₁₋₆ alkyl (optionally terminated by -N(H)C(O)OR^{18a}), C₁₋₆ alkoxy, cycloalkyl, cycloalkoxy, -C(O)N(H)R¹⁹, -NHC(O)N(H)R²⁰, -N(H)S(O)₂R²¹ and/or -OS(O)₂R²²;

R¹⁹ and R²⁰ independently represent H, C₁₋₆ alkyl or cycloalkyl;

R^{18a}, R²¹ and R²² independently represent C₁₋₆ alkyl or cycloalkyl;

A represents a single bond, C₁₋₆ alkylene, -N(R²³)(CH₂)₁₋₅-, -O(CH₂)₁₋₅- or -(CH₂)₁₋₅C(H)(OR²³)(CH₂)₁₋₅- (in which latter three groups, the -(CH₂)₁₋₅- group is attached to

the bispidine nitrogen atom, and which latter four groups are all optionally substituted by one or more OH groups);

B represents a single bond, C₁₋₄ alkylene, -(CH₂)_mN(R²⁴)-, (CH₂)_mS(O)_n-,
-(CH₂)_mO- (in which three latter groups, the -(CH₂)_m- group is attached to the carbon
atom bearing D and R⁴), -C(O)N(R²⁴)- (in which latter group, the -C(O)- group is
attached to the carbon atom bearing D and R⁴), N(R²⁴)C(O)O(CH₂)_m- or -N(R²⁴)(CH₂)_m-
(in which latter two groups, the N(R²⁴) group is attached to the carbon atom bearing D
and R⁴);

j, k and m independently represent 0, 1, 2, 3 or 4;

n represents 0, 1 or 2;

R²³ represents H, C₁₋₆ alkyl, cycloalkyl or C(O)R²⁵

R²⁴ represents H, C₁₋₆ alkyl or cycloalkyl;

R²⁵ represents H, C₁₋₆ alkyl, cycloalkyl, Het³ or -(CH₂)_p-aryl (which latter two
groups are optionally substituted by one or more substituents selected from -OH, cyano,
halo, amino, nitro, C₁₋₆ alkyl, C₁₋₆ alkoxy, cycloalkyl and/or cycloalkoxy);

Het³ represents a five to ten-membered heterocyclic ring containing one or more
heteroatoms selected from oxygen, nitrogen and/or sulfur, and which also optionally
includes one or more =O substituents;

p represents 0, 1, 2, 3 or 4;

wherein alkyl groups that R², R³, R⁴, R^{5a}, R^{5b}, R⁶, R⁷, R^{7a}, R^{7b}, R⁸, R¹⁰, R¹¹, R¹³,
R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R^{18a}, R¹⁹, R²⁰, R²¹, R²², R²³, R²⁴, R²⁵ and D may represent, and
with which R⁷, R⁸, R¹¹, R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸ and R²⁵ may be substituted; and
alkoxy groups and R⁶ may represent, and with which R⁷, R⁸, R¹¹, R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷,
R¹⁸ and R²⁵ may be substituted, may be linear or, when there is a sufficient number (i.e.

three) of carbon atoms, be branched and/or cyclic, and wherein, when there is a sufficient number (i.e. four) of carbon atoms, such alkyl and alkoxy groups may also be part cyclic/acyclic, and wherein such alkyl and alkoxy groups may also be saturated or, when there is a sufficient number (i.e. two) of carbon atoms, be unsaturated and/or interrupted by oxygen and/or substituted by one or more fluoro groups; and wherein alkylene groups that A and B may represent, and $-(CH_2)-$ containing groups that R^2 and R^3 (together), R^7 , R^8 , R^{10} , R^{11} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{25} , A, B and D may include, may be linear or, when there is a sufficient number (i.e. two) of carbon atoms, be branched, and wherein such alkylene groups and $-(CH_2)-$ containing chains may also be saturated or, when there is a sufficient number (i.e. two) of carbon atoms, be unsaturated and/or interrupted by oxygen,

or a derivative thereof, provided that when R^{5a} and R^{5b} both represent H, then D does not represent H or OH.

23 (currently amended). A compound of formula IV

wherein R^1 , R^2 , R^3 , R^{5a} , R^{5b} and X are as defined in Claim 1

R¹ represents C₁₋₁₂ alkyl, cycloalkyl, -(CH₂)_a-aryl, or (CH₂)_aHet¹ (all of which are optionally substituted by one or more substituents selected from -OH, halo, cyano, nitro, C₁₋₄ alkyl, cycloalkyl and/or C₁₋₄ alkoxy or cycloalkoxy);

a represents 0, 1, 2, 3, or 4;

Het¹ represents a five to ten-membered heterocyclic ring containing one or more heteroatoms selected from oxygen, nitrogen and/or sulfur, and which also optionally includes one or more =O substituents;

X represents O or S;

R^{5a} and R^{5b} independently represent H, C₁₋₃ alkyl or cycloalkoxy;

R² and R³ independently represent H, C₁₋₄ alkyl (optionally substituted with one or more nitro or cyano groups), cycloalkyl, OR⁷, N(R^{7a})R^{7b}, OC(O)R⁸ or together form -O-(CH₂)₂-O-, -(CH₂)₃-, -(CH₂)₄- or -(CH₂)₅-;

R⁷ and R⁸ independently represent H, C₁₋₆ alkyl, -(CH₂)_b-aryl or cycloalkoxy (which latter three groups are optionally substituted by one or more substituents selected from -OH, halo, cyano, nitro, C₁₋₄ alkyl, or C₁₋₄ alkoxy, cycloalkyl and/or cycloalkoxy);

R^{7a} and R^{7b} independently represent H, C₁₋₆ alkyl or cycloalkyl;

b represents 0, 1, 2, 3 or 4;

wherein alkyl groups that R¹, R², R³, R^{5a}, R^{5b}, R⁷, R^{7a}, R^{7b} and R⁸ may represent, and with which R¹, R⁷ and R⁸ may be substituted; and alkoxy groups and with which R¹, R⁷ and R⁸ may be substituted, may be linear or, when there is a sufficient number (i.e. three) of carbon atoms, be branched and/or cyclic, and wherein, when there is a sufficient number (i.e. four) of carbon atoms, such alkyl and alkoxy groups may also be part cyclic/acyclic, and wherein such alkyl and alkoxy groups may also be saturated or,

when there is a sufficient number (i.e. two) of carbon atoms, be unsaturated and/or interrupted by oxygen and/or substituted by one or more fluoro groups;

or a derivative thereof, provided that when R^{5a} and R^{5b} both represent H, then at least one of R^2 and R^3 represents OR^7 , $OC(O)R^8$ or C_{1-4} alkyl, which alkyl group is substituted with one or more nitro or cyano groups.

24 (currently amended). A compound of formula VIII

wherein R^1 , R^4 , R^{5a} , R^{5b} , R^6 , A, B, D and X are as defined in Claim 1

R^1 represents C_{1-12} alkyl, cycloalkyl, $-(CH_2)_a$ -aryl, or $(CH_2)_a$ Het¹ (all of which are optionally substituted by one or more substituents selected from -OH, halo, cyano, nitro, C_{1-4} alkyl, cycloalkyl and/or C_{1-4} alkoxy or cycloalkoxy);

a represents 0, 1, 2, 3, or 4;

Het¹ represents a five to ten-membered heterocyclic ring containing one or more heteroatoms selected from oxygen, nitrogen and/or sulfur, and which also optionally includes one or more =O substituents;

X represents O or S;

R^{5a} and R^{5b} independently represent H, C₁₋₃ alkyl or cycloalkoxy;

R⁴ represents H, C₁₋₆ alkyl or cycloalkyl;

D represents H, -OH, or -(CH₂)_cN(R¹⁰)(R¹¹);

c represents 0, 1, 2, 3 or 4;

R¹⁰ represents H, C₁₋₆ alkyl, cycloalkyl, -(CH₂)_d-aryl, -C(NH)NH₂, -S(O)₂R¹³,

-[C(O)]_eN(R¹⁴)(R¹⁵), -C(O)R¹⁶ or -C(O)OR¹⁷;

e represents 1 or 2;

R¹¹ represents H, C₁₋₆ alkyl, -C(O)R¹⁸ or -(CH₂)_f-aryl (which latter group is optionally substituted by one or more substituents selected from -OH, cyano, halo, amino, nitro, C₁₋₆ alkyl, C₁₋₆ alkoxy, cycloalkyl and/or cycloalkoxy);

R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R¹⁸ independently represent H, C₁₋₆ alkyl, cycloalkyl, Het² or -(CH₂)_g-aryl (which latter three groups are optionally substituted by one or more substituents selected from -OH, cyano, halo, amino, nitro, C₁₋₆ alkyl, C₁₋₆ alkoxy, cycloalkyl and/or cycloalkoxy);

R¹³ represents C₁₋₆ alkyl, cycloalkyl, aryl or -(CH₂)_h-aryl (all of which are all optionally substituted by one or more substituents chosen from halo, nitro, C₁₋₆ alkyl, C₁₋₆ alkoxy, cycloalkyl and/or cycloalkoxy);

d, f, g and h independently represent 0, 1, 2, 3 or 4;

Het² represents a five to ten-membered heterocyclic ring containing one or more heteroatoms selected from oxygen, nitrogen and/or sulfur, and which also optionally includes one or more =O substituents;

R⁶ represents one or more optional substituents selected from -OH, cyano, halo, amino, nitro, C₁₋₆ alkyl (optionally terminated by -N(H)C(O)OR^{18a}), C₁₋₆ alkoxy,

cycloalkyl, cycloalkoxy, -C(O)N(H)R¹⁹, -NHC(O)N(H)R²⁰, -N(H)S(O)₂R²¹ and/or -OS(O)₂R²²:

R¹⁹ and R²⁰ independently represent H, C₁₋₆ alkyl or cycloalkyl;

R^{18a}, R²¹ and R²² independently represent C₁₋₆ alkyl or cycloalkyl;

A represents a single bond, C₁₋₆ alkylene, -N(R²³)(CH₂)_j-, -O(CH₂)_j- or

-(CH₂)_jC(H)(OR²³)(CH₂)_k- (in which latter three groups, the -(CH₂)_j- group is attached to the bispidine nitrogen atom, and which latter four groups are all optionally substituted by one or more OH groups);

B represents a single bond, C₁₋₄ alkylene, -(CH₂)_mN(R²⁴)-, (CH₂)_mS(O)_n-, -(CH₂)_mO- (in which three latter groups, the -(CH₂)_m- group is attached to the carbon atom bearing D and R⁴), -C(O)N(R²⁴)- (in which latter group, the -C(O)- group is attached to the carbon atom bearing D and R⁴), N(R²⁴)C(O)O(CH₂)_m- or -N(R²⁴)(CH₂)_m- (in which latter two groups, the N(R²⁴) group is attached to the carbon atom bearing D and R⁴);

j, k and m independently represent 0, 1, 2, 3 or 4;

n represents 0, 1 or 2;

R²³ represents H, C₁₋₆ alkyl, cycloalkyl or C(O)R²⁵

R²⁴ represents H, C₁₋₆ alkyl or cycloalkyl;

R²⁵ represents H, C₁₋₆ alkyl, cycloalkyl, Het³ or -(CH₂)_p-aryl (which latter two groups are optionally substituted by one or more substituents selected from -OH, cyano, halo, amino, nitro, C₁₋₆ alkyl, C₁₋₆ alkoxy, cycloalkyl and/or cycloalkoxy);

Het³ represents a five to ten-membered heterocyclic ring containing one or more heteroatoms selected from oxygen, nitrogen and/or sulfur, and which also optionally includes one or more =O substituents;

p represents 0, 1, 2, 3 or 4;

wherein alkyl groups that R¹, R⁴, R^{5a}, R^{5b}, R⁶, R⁷, R^{7a}, R^{7b}, R⁸, R¹⁰, R¹¹, R¹³, R¹⁴,
R¹⁵, R¹⁶, R¹⁷, R¹⁸, R^{18a}, R¹⁹, R²⁰, R²¹, R²², R²³, R²⁴, R²⁵ and D may represent, and with
which R¹, R⁷, R⁸, R¹¹, R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸ and R²⁵ may be substituted; and
alkoxy groups and R⁶ may represent, and with which R¹, R⁷, R⁸, R¹¹, R¹³, R¹⁴, R¹⁵, R¹⁶,
R¹⁷, R¹⁸ and R²⁵ may be substituted, may be linear or, when there is a sufficient number
(i.e. three) of carbon atoms, be branched and/or cyclic, and wherein, when there is a
sufficient number (i.e. four) of carbon atoms, such alkyl and alkoxy groups may also be
part cyclic/acyclic, and wherein such alkyl and alkoxy groups may also be saturated or,
when there is a sufficient number (i.e. two) of carbon atoms, be unsaturated and/or
interrupted by oxygen and/or substituted by one or more fluoro groups; and

wherein alkylene groups that A and B may represent, and -(CH₂)- containing
groups that R¹, R⁷, R⁸, R¹⁰, R¹¹, R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R²⁵, A, B and D may
include, may be linear or, when there is a sufficient number (i.e. two) of carbon atoms,
be branched, and wherein such alkylene groups and -(CH₂)- containing chains may
also be saturated or, when there is a sufficient number (i.e. two) of carbon atoms, be
unsaturated and/or interrupted by oxygen,

or a derivative thereof, provided that when R^{5a} and R^{5b} both represent H, then D does not represent H or OH.

25 (previously presented). A compound of formula XVII,

XVII

wherein R^4 , R^{5a} , R^{5b} , R^6 , A, B and D are as defined in Claim 1, or a protected derivative thereof, provided that when R^{5a} and R^{5b} both represent H, then D does not represent H or OH.

26 (currently amended). A process for the preparation of a compound of formula VIII, as defined in Claim 24, or a compound of formula XVII, as defined in Claim 25, which comprises reaction of a compound of formula XXIX,

wherein R^Z represents H or -C(O)XR¹ and R¹, R^{5a}, R^{5b} and X are as defined in

Claim 1 with a compound of formula XXX,

or a protected derivative thereof, wherein R⁴, R⁶, A, B and D are as defined in
Claim 1, in the presence of a formaldehyde.

27 (previously presented). A method as claimed in Claim 20, wherein the arrhythmia is an atrial or a ventricular arrhythmia.