- 1. Q) Convergent/Divergent? $\int_{-\infty}^{\infty} 11xe^{-x^2}dx$
- A) $11 \left[\int_{-\infty}^{0} x e^{-x^2} dx + \int_{0}^{\infty} x e^{-x^2} dx \right]$ $= 11 \lim_{t \to \infty^{+}} \int_{t}^{0} x e^{-x^2} dx + 11 \lim_{t \to \infty^{-}} \int_{0}^{t} x e^{-x^2} dx$ $\int x e^{-x^2} dx = -\frac{1}{2} \int e^{u} du, \text{ for } u = -x^2, \text{ and } x dx = -\frac{1}{2} du$ $= -\frac{e^{u}}{2} = -\frac{e^{-x^2}}{2}$ $\therefore \left[-\frac{e^{-x^2}}{2} \right]_{t}^{0} = -\frac{1}{2} \left[e^{0} e^{-t^2} \right] = -\frac{1}{2} \left[1 \frac{1}{e^{t^2}} \right]$ $\therefore -\frac{1}{2} \lim_{t \to \infty^{+}} \left[1 \frac{1}{e^{t^2}} \right] = -\frac{1}{2} \left[1 0 \right] = -\frac{1}{2}$ and $\left[-\frac{e^{-x^2}}{2} \right]_{0}^{t} = -\frac{1}{2} \left[e^{-t^2} e^{0} \right] = -\frac{1}{2} \left[\frac{1}{e^{t^2}} 1 \right]$ and $-\frac{1}{2} \lim_{t \to \infty^{-}} \left[\frac{1}{e^{t^2}} 1 \right] = -\frac{1}{2} \left[0 1 \right] = \frac{1}{2}$ $\therefore I = 11(0) = 0$