Consider the following circuit. Assume V γ = 0.7V, R_F = 0, v_I = $10sin(2\pi 100t)$ V.

Plot the transfer function v_O versus v_I (v_I in the range from -10V to 10V).

In the following circuit, the transistor has $\beta = 120$ and $V_{BE}(on) = 0.7V$.

- a) (5 points) Determine the Q-point (Ic, V_{CE})
- **b)** (**5 points**) Draw the dc and ac load lines.
- c) (5 points) Draw the small-signal equivalent circuit.
- d) (5 points) Determine the maximum symmetrical output voltage swing.
- e) (5 points) Determine the input voltage v_s corresponding to the maximum swing in v_o

Consider the following circuit. Assume V_{TP} = -2V, K_p = 5mA/V², λ = 0.01 V¹¹, R_G = 200k Ω , R_L = 20k Ω , I_Q = 0.5mA

- a) (10 points) Determine I_D , V_{GS} , V_{DS} .
- b) (10 points) Draw the small-signal equivalent circuit and determine the output resistance $R_{\rm O}$
- c) (5 points) Determine the voltage gain

In the following circuit, the transistor parameters are $V_{TN}\!=\!2V,\,K_n\!=\!2$ mA/V², $\lambda=0.01$ V⁻¹

- a) (5 points) Determine $I_D,\,V_{DS},\,and\,\,V_{GS}$
- b) (10 points) Draw the small signal equivalent circuit
- c) (10 points) Determine the voltage gain