DRAFT

January 2012 - Ph.D. Qualifying Exam

E&M

Question 1

A hollow metal sphere of radius R and mass M floats on an insulating dielectric liquid of density ρ and relative dielectric constant ε_r . When the metal sphere has no charge on it, it floats on the dielectric liquid as shown in Figure 1(a); i.e., the bottom of the sphere is R/2 below the surface of the dielectric liquid. Find the magnitude of the charge Q to which the sphere must be charged in order for it to be half submerged as shown in Figure 1(b). Express your answer in terms of ρ , R, ε_r , the vacuum permittivity ε_0 , the acceleration due to gravity g, and other numerical factors.

Figure 1(a)

Figure 1(b)

Now, $D = G_0 E = G_0 E + P$, where $P = \sigma_s$ and $G_0 E = \sigma = \frac{Q}{4\pi R^2}$, hence $G_r \sigma = \sigma + \sigma_s = \frac{Q}{5} = \frac{Q}{4\pi R^2}G_r$

Thus,
$$\frac{Q^{2}(6_{r}-1)}{4\pi R^{2}6_{0}6_{r}} = \frac{11}{6}\pi R^{3}_{9}9$$

 $000 Q = 227^{2}R^{5}e_{0}e_{-}gg$ $3(e_{-}-1)$

Consider the circuit shown below, in which for times t < 0 the capacitor of capacitance C is charged to a voltage V_0 . At t = 0, the switch S is closed, allowing the capacitor to discharge through a resistor R and an inductor L placed in series.

- a) Using Kirchoff's voltage law, write down the second-order differential equation describing the evolution of the charge q on the capacitor for times t > 0.
- b) For times t > 0, solve the differential equation obtained in part (a) subject to the boundary conditions $q(t = 0) = q_0$ and $\frac{dq}{dt}\Big|_{t=0} = 0$.
- c) Verify that the solution obtained in part (b) satisfies the two boundary conditions.
- d) Show that the current in the circuit is maximum at a time t given by the relation

$$\tanh(\Omega t) = \frac{2\Omega}{\alpha}$$
, where $\Omega = \sqrt{\omega^2 + \frac{\alpha^2}{4}}$ and $\alpha = \frac{R}{L}$ with $\omega = \frac{1}{\sqrt{LC}}$.

2)
$$|XVL: Voltage drops = Voltage increase (Emfsources)$$

$$| \Rightarrow L \frac{d^2}{dt^2} + R \frac{d^2}{dt} = \frac{2}{c}$$

$$| \circ i d^2 - o dq - 2$$

$$\frac{1}{10} \frac{1}{10} \frac$$

$$\frac{d^2}{dt^2} = \rho^2 Q - \rho g(t=0) - \frac{dg}{dt}\Big|_{t=0} = \rho^2 Q - \rho g_0$$

$$\frac{dg}{dt} = \rho Q - g(t=0) = \rho Q - g_0$$

$$\frac{dg}{dt} = \rho Q - g(t=0) = \rho Q - g_0$$

$$Q\left(L\rho^2 + R\rho - \frac{1}{C}\right) = L_{2}\rho + R_{2}\rho$$

$$\Rightarrow Q = \frac{2 \cdot (\rho + k_L)}{\rho^2 + \frac{R}{L} \rho - \frac{1}{Lc}} = \frac{2 \cdot (\rho + \kappa)}{\rho^2 + \kappa \rho + \omega^2}$$

$$x = \frac{R}{L}$$
 and $w^2 = \frac{L}{LC}$

 $\frac{dz}{dt} = 90 \frac{\lambda}{dt} \left\{ \frac{1}{2} \left(e^{(1+\frac{\omega}{2})t} - (1+\frac{\omega}{2})t \right) + \frac{\omega}{4\pi} \left(e^{(1+\frac{\omega}{2})t} - (1+\frac{\omega}{2})t \right) \right\}$ $=\frac{20}{2}\frac{d}{dt}\left\{\left(1+\frac{\alpha}{2\lambda}\right)e^{\left(\beta-\frac{\alpha}{2}\right)t}+\left(1-\frac{\alpha}{2\lambda}\right)e^{-\left(\beta+\frac{\alpha}{2}\right)t}\right\}$ $=\frac{20}{2}\left(1+\frac{2}{2}\right)\left(1-\frac{2}{2}\right)e^{-\left(1-\frac{2}{2}\right)}\left(1-\frac{2}{2}\right)\left(1+\frac{2}{2}\right)e^{-\left(1+\frac{2}{2}\right)}e^{-\left(1+\frac{2}2\right)}e^{-\left(1+\frac{2}{2}\right)}e^{-\left(1+\frac{2}{2}\right)}e^{-\left(1+\frac{2}{2}\right)}e^{-\left$ $\frac{1}{2}\left(3^{2}-\frac{\alpha^{2}}{4}\right) \qquad \frac{1}{2}\left(3^{2}-\frac{\alpha^{2}}{4}\right)$ $\Rightarrow \frac{dq}{dt} = \frac{20}{1.1.} \left(1^2 - \frac{\chi^2}{4} \right) \sinh(ut) e^{-\frac{\chi t}{2}}$ $\begin{array}{c|c} 0 & d2 \\ 0 & d1 \\ \end{array} = 0$ Max. current at de = 0

$$=>0=\frac{20}{20}\left(l^{2}-\frac{x^{2}}{4}\right)\left[\cosh(lt)-\frac{x}{2}\sinh(nt)\right]e^{-xt/2}$$

A cylindrical 'pill-box' resonator of radius a and length d is driven at its fundamental TM₀₁₀ mode for which the oscillating electric component of the RF field may be written as

$$\mathbf{E}(t) = \hat{\mathbf{z}}E_0 J_0 \left(\frac{2.405r}{a}\right) \sin(\omega t + \phi)$$

where $J_0(x)$ is the Bessel function of zero order whose first zero is at x = 2.405.

- a) What is the form of the magnetic component of the oscillating RF field in the cavity?
- b) Verify that the average value of the Poynting vector (i.e., $\langle S \rangle_{av}$) is zero.
- c) What is the stored energy of the oscillating TM_{010} mode?
- d) Consider the propagation of a particle of mass m and charge q incident at $(r,\phi,z) = (r_0,0,0)$, where $r_0 \ll a$, and with momentum $\mathbf{p}_0 = (p_r,p_\phi,p_z) = (0,0,p_0)$ on the RF cavity at t = 0 (see diagram above). For the case when $\frac{p_0}{md} >> \omega$ (i.e., the time-of-flight through the RF cavity is much less than the RF period), determine \mathbf{p} at z = d to *first order* in E_0 .

(3)
$$\overrightarrow{\nabla} \times \overrightarrow{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\Rightarrow | \overrightarrow{r} | \cancel{\partial} | \overrightarrow{z} | = -\frac{\partial \vec{E}}{\partial r} = -\frac{\partial \vec{B}}{\partial t}$$

$$\Rightarrow | \overrightarrow{\sigma} | \cancel{\partial} | = -\frac{\partial \vec{E}}{\partial r} = -\frac{\partial \vec{B}}{\partial t}$$

$$\Rightarrow | \overrightarrow{\sigma} | \cancel{\partial} | = -\frac{\partial \vec{B}}{\partial r} = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{\sigma} | = | \cancel{D} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{B} | = | \cancel{D} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{B} | = | \cancel{D} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{B} | = | \cancel{D} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{B}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{A} | = -\frac{\partial \vec{A}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{A} | = -\frac{\partial \vec{A}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = | \cancel{A} | = -\frac{\partial \vec{A} | = -\frac{\partial \vec{A}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = -\frac{\partial \vec{A} | = -\frac{\partial \vec{A}}{\partial r}$$

$$\Rightarrow | \overrightarrow{A} | = -\frac{\partial \vec$$

As sin 20 = 2 sin OcosO, the integra $\left[\frac{1}{dt}\sin\left[2(\omega t+\phi)\right] = \frac{1}{2}\left[-\cos\left[2(\omega t+\phi)\right]\right]$ $=\frac{1}{4\omega}\left(\cos\left[2\phi\right]-\cos\left[2\left(\pi\right)\right]+\frac{1}{2}\left(\cos\left[2\left(\pi\right)\right]\right)+\frac{1}{2}\left(\sin\left[2\left(\pi\right)\right]\right)+\frac{1}{2}\left(\sin\left[$ 0 25 av. = 0 chergy density $U = \frac{1}{2} \left(\vec{E} \cdot \vec{O} + \vec{B} \cdot \vec{H} \right)$ with deduce and magnetic contributions. So, since Por a rdr. E $= 2\pi dG E^{2} \left(\frac{1}{2}\right) \int_{0}^{\alpha} r dr \int_{0}^{2} \left(\frac{2.405r}{\alpha}\right)$ $rdr = a^2xdx$

energy = \frac{1}{2} \pi ad 6 \quad \in \frac{1}{0} \quad \tag{2.405} We are interested in $\Delta \vec{p}_R = 9 \int (\vec{E} + \vec{v} \times \vec{B}) dt$ $t' = \frac{d}{v} = \frac{md}{p_0} \ll \frac{1}{w}$ For Geca, Jo (2.405 ro) = 1 and J (2.405 ro) = 1 (2.405 ro); $\Delta \rho_z = 2 E_0 \left[dt \sin(\omega t + \phi) = -2 E_0 \left[\cos(\omega t + \phi) \right]^{t} \right]$ = - 9Eo cosat cosp-sinut sind - cos => Apz = 2md Eo sin \$ $\Delta p_r = + \frac{2P_0}{m} \left(\frac{2.405E_0}{a\omega} \right) \frac{1}{2} \left(\frac{2.405r_0}{a} \right) dt \cos(\omega)$ => Apr = 2 Po To Eo (2.405) [] sin(wt+p)

 $\Rightarrow \Delta p_{r} = \frac{2 \operatorname{PovsEo}}{2 \operatorname{mw}^{2}} \left(\frac{2 \cdot 4 v s}{a} \right) \left[\sin \left(w t + \phi \right) - \sin \phi \right]$ $_{00}^{\circ} Ap_{r} = \frac{2}{2} dr_{0} E_{0} / \frac{2.405}{a} cos \phi$ So, ate the RF carry $\frac{1}{p} = \left(\frac{2dr_0 E_0}{2\omega} \left(\frac{2405}{\alpha}\right) \cos \phi, 0, p_0 + \frac{2mdE_0}{p_0} \sin \phi\right)$

a) Show that for a single wire loop of radius a carrying current I the axial magnetic field at point P in Figure 4(a) may be written as

$$\mathbf{B}(\theta) = \hat{\mathbf{z}} \frac{\mu_0 I}{2a} \sin^3 \theta$$

where θ is the angle subtended from the axis at point P to the circumference of the loop and μ_0 is the permeability of vacuum.

- b) Use the result of part (a) to determine the axial magnetic field at point P for a solenoid of length d and radius a carrying current I in n turns (Figure 4(b)). Express your answer in terms of the angles α and β that the front and back coils of the solenoid subtend with its axis at point P.
- c) Verify that your answer in part (b) reduces to the expected result for an infinitely long solenoid (i.e., $d \gg a$).
- d) Show that for small distances $z \ll d$ from the center of the narrow $(d \gg a)$ finite solenoid that the axial dependence of the magnetic field strength is parabolic in z and of the form

$$B(z) = B_0 \left[1 - \frac{2a^2}{d^2} \left(1 + \frac{12z^2}{d^2} \right) \right].$$

Nove the relation between 2 and 0 can be $rd\theta$ $sin\theta = \frac{\alpha}{r} = \frac{rd\theta}{dz}$ $\Rightarrow d\beta(\alpha) = \frac{\mu_0 I n}{2ad} \sin \theta \frac{r d\theta}{\sin \theta}$ = MoIn sind do So, total field at P for schemoid is $B(2) = \frac{\mu_0 \ln \left[-\cos\theta\right]^{\beta}}{2d} = \frac{\mu_0 \ln \left(\cos x - \cos\beta\right)}{2d}$ C) Magnetic field for infinity long sclenoid (inside has x = 0 and $\beta = \pi$, hence $B = M\left(\frac{n}{d}\right) I$... as expect tuns/length

 $\cos x = \frac{d}{z^{2}+z^{2}} \leq 1-\frac{x^{2}}{2} = 1-\frac{a^{2}}{2(\frac{d}{z}+z)^{2}}$ $\cos \beta = -\cos \beta = 1 - \frac{\alpha^2}{2/d}$ $\frac{\circ}{\circ} B = \frac{M_0 I n}{2 d} \left[2 - \frac{a^2}{2} \left(\frac{4}{d^2 (1 + \frac{2z}{d})^2} + \frac{4}{d^2 (1 - \frac{2z}{d})^2} \right) \right]$ $= \mu_{0} In \left[1 - \frac{a^{2}}{d^{2}} \left(1 - \frac{4z}{2} + \frac{24z^{2}}{2} + 1 + \frac{4z}{2} + \frac{24z^{2}}{2} + \ldots \right) \right]$ $= M_0 In \left[1 - \frac{2a^2}{J^2} \left(1 + \frac{12z^2}{J^2} \right) \right]$ $\beta(2) = \beta_0 \left(1 - \frac{2a}{d^2} \left(1 + \frac{12z^2}{d^2}\right)\right)$

A material can be anisotropic in either or both its refractive index and absorption. These optical properties are described by a permittivity tensor, $\underline{\varepsilon}$, for the $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, and $\hat{\mathbf{z}}$ directions (i.e., a 3×3 matrix). The wave equation in a non-conducting, non-magnetic medium then reads

$$\nabla^2 \mathbf{E} - \mu_0 \mathbf{\underline{\varepsilon}} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$$

a) For a electromagnetic wave with a polarization unit vector $\hat{\mathbf{e}}$ and amplitude \mathbf{E}_0 described by, $\mathbf{E}(\mathbf{r},t) = \frac{1}{2}\hat{\mathbf{e}}\mathbf{E}_0 \exp[i(\mathbf{k}\cdot\mathbf{r} - \omega t)] + c.c.$, show that the refractive index n experienced by the wave in the medium is given by the expression

$$n^2 = \frac{1}{\varepsilon_0} \left[\hat{\mathbf{e}} * \cdot (\underline{\varepsilon} \cdot \hat{\mathbf{e}}) \right].$$

b) For $\hat{\mathbf{e}} = (\sin \theta, 0, \cos \theta)$ in the x-z plane, determine the refractive index experienced by the

wave in a non-absorbing crystalline medium described by $\underline{\varepsilon} = \varepsilon_0 \begin{pmatrix} n_o^2 & 0 & 0 \\ 0 & n_o^2 & 0 \\ 0 & 0 & (n_o + \Delta n)^2 \end{pmatrix}$,

where n_o and $n_e = n_o + \Delta n$ are the ordinary and extra-ordinary refractive indexes of the unaxial crystal respectively.

- c) What is the walk-off angle ϕ between the Poynting vector **S** and the wave vector **k** of the wave in the anisotropic medium if its magnetic field amplitude is given by $\mathbf{H} = (0, H_0, 0) = \hat{\mathbf{y}} H_0$?
- d) What is the angle between **E** and **D** in the uniaxial crystal?
- e) Show that the angle $\boldsymbol{\theta}$ for which the magnitude of $\boldsymbol{\phi}$ is a maximum is given by the relation

$$\cos \theta = \sqrt{\frac{1}{\alpha + 1}}$$
, where $\alpha = \left(\frac{n_o + \Delta n}{n_o}\right)^2$.

(5)
b) costd.

$$\Rightarrow N = h_0 \sin^2 \theta + (h_0 + \lambda \ln^2 \cos^2 \theta)$$

$$= N_0^2 + (2n_0 + \Delta \ln) \Delta \ln \cos^2 \theta$$

$$= N_0^2 + (2n_0 + \Delta \ln) \Delta \ln \cos^2 \theta$$

$$\Rightarrow \sin \theta = \cos \theta$$

$$= E_0 H_0 = (\cos \theta) = 0$$

$$= E_0 H_0 = (\cos \theta) = 0$$

$$\Rightarrow i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega \in E_0 = 0$$

$$= \sum_{i=0}^{\infty} i k \times H = -i \omega = E_0 \times -i \omega = E_0$$

contd.

The angle of between S and he is now readily found $\cos \phi = \frac{\vec{S} \cdot \vec{k}}{|\vec{S}| |\vec{k}|} = \frac{(n_0 + \Delta n)^2 \cos \theta + n_0^2 \sin^2 \theta}{\sqrt{(n_0 + \Delta n)^4 \cos^2 \theta + n_0^4 \sin^2 \theta}}$ $= \cos \phi = \frac{\propto \cos^2 \theta + \sin^2 \theta}{\sqrt{\propto^2 \cos^2 \theta + \sin^2 \theta}}; \quad \chi = \left(\frac{N_0 + \Delta n}{N_0}\right)^2$ d) Fis/ to e = (SinO, O, cosO) and D= E. E. $\underline{\varepsilon}$. $\underline{E} \propto \left(u_0^2 \sin \Theta, O, \left(u_0 + \Delta u\right)^2 \cos \Theta\right)$ $\frac{\partial}{\partial o} \cos \overline{D} = \frac{\overrightarrow{E} \cdot \overrightarrow{O}}{|\overrightarrow{E}| \cdot |\overrightarrow{O}|} = \frac{N^{7} \sin^{2}\theta + (u_{0} + \Delta u_{1})^{2} \cos^{3}\theta}{|\overrightarrow{E}| \cdot |\overrightarrow{O}|}$ same as (c); 00 \$ = \$

