

Efficient Sanitization Design for LSM-based Key-Value Store over 3D NAND Flash

Liang-Chi Chen¹, Shu-Qi Yu², Chien-Chung Ho¹,

Wei-Chen Wang³, Yung-Chun Li⁴

Computer Science and Information Engineering
National Cheng Kung University, Taiwan

Electrical Engineering and Computer Science Massachusetts Institute of Technology, USA

Computer Science and Information Engineering
National Taiwan University, Taiwan

Emerging System Lab
Macronix International Co., Ltd., Taiwan

- **≻**Motivation
- > Background
- **≻**Observation
- ➤ Design
- > Experiment
- **➤** Conclusion and Future Work

- > Motivation
- > Background
- **≻**Observation
- ➤ Design
- > Experiment
- **➤** Conclusion and Future Work

Outdated data in LSM Tree

- Log-Structured Merge-Tree (<u>LSM-tree</u>) are widely adopted to modern <u>data-intensive</u> applications
 - RocksDB
 - LevelDB
- LSM-tree leaves several out-of-date values to the specified key
 - Those values are removed during compaction

Privacy Security on NAND Flash

• 3D NAND flash-based devices are widely used in many situations

People store their personal data in these devices, e.g., image, video, and password

SSD

Memory card

Privacy Security on NAND Flash

- A deletion or updating request is sent from host to storage
 - NAND flash only performs <u>logical</u> <u>deletion</u>
 - Out-of-date data <u>isn't removed</u> <u>physically</u> from device-level immediately
- The data which user want to delete is still on the device!

Delete an image

- **≻**Motivation
- > Background
- **≻**Observation
- ➤ Design
- > Experiment
- **➤** Conclusion and Future Work

Basics of NAND Flash

Basic operations Features: Write-once Program (write): page **Bulk-erasing** Read : page → Out-of-place updating Erase: block → Garbage collection **Block** NAND Flash memory Cell Bitline 3 NAND flash array Wordline Page Wordline n+ No Charge Negative Charge V_{Pass} V_{Read} of Cells n-source n-drain n-source n-drain P-substrate P-substrate The Vt distribution of a SLC nand flash page Bit value = 1 Bit value = 0

Program Disturbance

Program Disturbance

• When enough electrons are forced into a neighboring cell during a program, that cell will appear as <u>weakly</u> programmed in the next page of that cell's page

W. -C. Wang, P. -H. Lin, Y. -C. Li, C. -C. Ho, Y. -M. Chang and Y. -H. Chang, "Toward Instantaneous Sanitization through Disturbance-induced Errors and Recycling Programming over 3D Flash Memory," 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2019, pp. 1-8.

Conventional Sanitization Methods

Instantaneous Sanitization

- To delete an outdated data by a write of new version data
 Instantaneously
- Deliberately create a <u>certain</u> <u>number of errors in beginning stage</u>
- If there are too many disturbanceinduced errors in a flash page, it fails on ECC decoding
 - Original data can't be recognized
 - Successfully sanitized

W. -C. Wang, P. -H. Lin, Y. -C. Li, C. -C. Ho, Y. -M. Chang and Y. -H. Chang, "Toward Instantaneous Sanitization through Disturbance-induced Errors and Recycling Programming over 3D Flash Memory," 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2019, pp. 1-8.

- **≻**Motivation
- ➤ Background
- **≻**Observation
- ➤ Design
- > Experiment
- **➤** Conclusion and Future Work

Observation: Vt distribution

- MLC allows each memory cell to store multiple bits of information
 - Higher density
 - Lower cost
 - TLC and QLC are gradually being used
- Data retention decreases as memory density increases
 - SLC is better than MLC
- Instantaneous sanitization creates errors deliberately
 - Causes retention issue
 - The storage system cannot have poor reliability

Observation: Space Utilization

 The impact of inconsistent data update patterns to space utilization in a block

Infrequent data updates result in more wasted space

Regular data updates has optimal space utilization

Observation Summary

Vt distribution

MLC has retention issue Narrow Vt window per state

How to re-design the MLC Vt distribution ?

Space Utilization

Infrequent data updates result in more wasted space

How to maintain the space utilization ?

- **≻**Motivation
- > Background
- **≻**Observation
- **≻**Design
- > Experiment
- **➤** Conclusion and Future Work

Influence-Classification Programming

- Influence-classification programming (ICP)
 - By considering cells' **programmability** and error properties
 - Fast cells: susceptible to interference and charge leakage
 - Slow cells: easily to keep in the current Vt state as long as possible

- Fast cells help sanitization
 - More errors to fail ECC
- Slow cells help improving reliability
 - No charge loss

Ho, Chien-Chung, et al. "Achieving defect-free multilevel 3D flash memories with one-shot program design." 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018.

Influence-Classification Programming

• Influence-classification programming (ICP)

- 1. One-shot programming to classify programmability
- 2. Another one-shot programming to charge the cells to certain voltage
- 3. Redo 1-2 until the MLC page programming is complete

ICP can realize the same effect of instantaneous sanitization on 3D MLC NAND flash

Hot-Cold Separation Allocation Policy

- We exploit the inherent characteristics of LSM-based key-value store
 - Data locates in only deep layers means that it is cold

- Only hot data leaves many out-of-date data that needs efficient sanitization
- Cold data usually does not change versions frequently

- **≻**Motivation
- > Background
- **≻**Observation
- ➤ Design
- > Experiment
- **➤** Conclusion and Future Work

Experiment Setup

- The proposed ICP is compared to two existing methods
 - Erasure-based method (ER)
 - Overhead: block-erase + copy all live pages in the block
 - Scrubbing, or called rewriting-based method (SC)
 - Overhead: program (write) + copy the neighboring pages
- We use different hot-cold ratio workloads to test feasibility on MQsim
 - 1:9 (close to real scenario)
 - 5:5 (update very frequently)
- Metrics
 - 1. Sanitization overhead
 - 2. Overall I/O performance
 - 3. Space utilization analysis

Experiment: Sanitization Performance

- The sanitization performance of the <u>erasure-based method</u> is poor in every situations
- Compared to the scrubbing
 - ICP improves the performance by 8.3x and 8.2x under the hot-cold ratio of 1:9 and 5:5

Proposed ICP sanitizes data by exploiting programming disturbance and <u>would not incur any additional process</u>

Experiment: Overall I/O Performance

- The trend of overall performance is consistent with that of sanitization performance
 - Performance of the *erasure-based method* is poor
 - ICP outperforms scrubbing

Experiment: Space Utilization

- Proposed ICP with the hot-cold separation allocation policy
 - Significantly reduce the wasted space by 43.5% and 24.3% respectively

Proposed hot-cold separation allocation policy improves
space utilization without
large overhead

- **≻**Motivation
- ➤ Background
- **≻**Observation
- ➤ Design
- > Experiment
- **≻**Conclusion and Future Work

Conclusion and Future work

- This paper aims at resolving the <u>data security for LSM-based key-value</u> separating storage on 3D MLC NAND flash memories
- The proposed <u>ICP</u> is used to write the new version value and <u>sanitize</u> <u>out-of-date values simultaneously</u>
- The <u>hot-cold separation allocation policy</u> focuses on <u>improving space</u> utilization
- We will focus on <u>device-level observations</u> in the future, our idea may incur additional issues on flash with higher density (e.g., TLC or QLC)

Thanks for your attention

Question & Answer