

INSTITUTE OF INFORMATION TECHNOLOGY JAHANGIRNAGAR UNIVERSITY

Number of Lab Report: 07

Name of Lab Report : N mod counter with Jk flipflop.

Course Tittle : Digital Logic Design Lab

Course Code : ICT – 2104

Submission Date : 27/05/2021

Submitted To

Dr. Md. Sazzadur Rahman

Associate Professor

IIT - JU

Submitted By

MD. Shakil Hossain

Roll - 2023

2nd year 1st Semester

IIT - JU

Experiment Nom: Nome Counter.

Objectives: not which and and gill of

To know how to construct a mod-7 Counter
2. To know and study the Operations of mod-7
Counter.

Theory: Binary counters are ond of the application of Sequential logic using flip-flops. A Counter is a devich stones on displays the number of times a Particular event or Process has occured in form of clock Pulse. On application of Pulses the flip-flop connected together undergo a change of State in such a manner that the binary number stored in the flip-flops represents the number of Pulses applied at input.

To make a mod-7 couniter it will require 3 flip-flops as $2^3=8$ which can county show total 8 different states we will modify it to count 7 states and repeat the same process.

Apparatus:

Appara

Excitation table:

On	anti	J	K
0	0	0	X
0	1 -	1	X
1	0	X	1
1	1	X	0

Pro	esent	-	١	vent					9.5	Hor
0.2	Q1	Q ₀	at	a,+	a +	132	1K2	Ji Ki	J.	K.
0	0	0	0	0	1	0	,×	0 X	1	X
0	0	1	0	1	0	0	X	1 ×	×	1
0	1	0	0	1	1,00	0	×	× 0	1	×
0	١	1	1	0	0	1	×	× 1.,	X	1
l	0	0	100	0	1	X	0	0 ×	1	×
1	0	1	1	1	0	X	0	1 ×	X	1
ı	(0,10	0	0	6	X	1	XIEI	0	X
ŧ	1	1	×	X	X	×	×	xx	×	X

Circuit implementation:

100

The Counter is conunting 0 to 46

The Counter is conunting 0 to 46

total 7 numbers Properly. We used 3 Hip-Hops

to Cover 0002 to 1102. When the Count

reaches 1102 it will repeat the Same

Process.

References:

- 1. Digital Systems Principles and Applications Ronald J. Tocci 12th Edition
- Z. www. wikipedia. Com

THE END