

Prototyping

- In the previous class:
 - Methodology for conceiving apps
 - Problems and ideas; user requirements and tasks
 - Conceptual modelling
- In this class:
 - Prototyping
 - Benefits
 - Taxonomy, classes of prototypes
 - Test planning and execution

What is prototyping

- Develop concrete models to present and test ideas
 - of the identified problem
 - of the selected idea(s) or of THE idea
 - of the requirements, tasks and functionalities identified
 - of the design
 - of the conceptual model
- it allows to examine the contents, appearance and interaction techniques from the perspectives of designers, clients and users
- Instead of developing the whole application, certain parts are ignored,
 to restrict the feedback to gather and incorporate into the app
 - Fast way of collecting focussed feedback
 - Reduces the odds of developing something that is not useful to anyone

Prototyping added-value

- Get feedback on design, faster or earlier enough
- Save development time and money
- Experiment with design alternatives
- Solve problems before writing code
- Ensure user-centred design
 - the application meets expectations
 - reduces the odds of developing something that is not useful to anyone

Prototyping added-value

- How can time be saved?
 - In operational terms
 - eliminating parts hidden from the user
 - not implementing actions and interconnections between them
 - In terms of user interaction
 - reducing the value it offers the user
 - keeping only the most important/determinant/differentiator aspects

Classes of prototypes

- Two taxonomies
 - Horizontal vs Vertical
 - Low vs High fidelity

Classes of prototypes (I)

Horizontal

- Includes the complete interface but no implementation of actions behind
- The system is simulated only through the interface

Vertical

• Limited interface, on the number of actions allowed, but all actions needed behind are implemented

Horizontal prototypes

- There is no operations on data
 - fake data can be used
 - or real data can be introduced but the app does not manipulate them
- however, it presents on the UI the enlarged set of use cases that the user can execute
 - but no real processing is going on behind

Horizontal prototypes (2)

- used when the intention is to present all the UI layout
 - thus, useful to evaluate the overall design
 - and to understand how users react to the proposed layout and how they will interact and whether friction occurs
- can be complemented with a description of the interaction scenarios
 - description of hypothetical but realistic use cases (sort of storyboard)
 - helps in overcoming the barriers on building the mental model of the final application and its added-value

Procedure to create a storyboard

- idealize a scenario with different types of users
- identify the elements to place on the screen
- organize/arrange the elements
- group related areas
- create a description of the flow of actions and interactions to be performed
 - questions and/or comments can be included

Vertical prototype

- The UI only presents some tasks or some use cases to the user
 - user is unable to freely navigate the UI
 - Only perform a limited set of tasks or use cases
 - but the presented use case(s) are implemented in their entirety
 - The user can enter data which will be effectively processed by the system and a real result will be returned.
 - the developer/designer can develop a storyboard, but in this case it will be more limited
 - it is restricted by the available/presented use cases

10

Classes of prototypes (2)

- In terms of faithfulness
 - High fidelity (HFP)
 - Prototype similar to final product
 - Low fidelidade (LFP)
 - Artistic representation with many missing details

Fidelity-based prototypes

LFP

- used in the initial phases
- fast to obtain
- low cost
 - papel and pencil
- easy to make modifications so feedback is incorporated
 - both in the UI layout as in the sequence of actions/interactions

HFP

- used in are advanced phase
- more labour-intense as it provides more accurate representation of the complete layout and behaviour
- higher costs, involving the use of dedicated software
- whilst modifications may be easily done in the layout, it will not be trivial to change the sequence of actions

LFP - HowTo

- Developed typically with materials such as
 - cardboard, white paper, acetates
 - small cards
 - Glue Tape, Glue, Corrector
 - Colored Markers and Correctors
 - scissors, x-act
 - etc..

LFP – HowTo (2)

- cardboard screens
- cards to represent dynamic elements (menus, dialogs, etc.)
- create multiple screens, menus, dialogs, etc.
 - in order to contemplate the full (large) range of tasks offered and possible behaviors of the application
 - or from a subset, if script/storyboard is developed
- use photocopies (various versions)
- don't look at the details

LFP – planning tests

- Choose potential users
 - use questionnaires to identify target audience characteristics
- Prepare realistic usage scenarios for I hour maximum
 - required if prototype performed to simulate full operation
 - if performed according to storyboard/script, the usage scenario is as described by the script
- The expected reaction from the application, for each action that the user may take, should be well-known
 - i. e., what the computer would do
 - to thus simulate the computer's reactions
- Prepare final questionnaire to be delivered to the user

15

LFP – executing tests

- Screens are presented according to the user's actions and according to the scenario(s) developed
 - the person who impersonates the computer makes the decision about the next screen to be presented
- At least 3 involved persons
 - Facilitator: explains the interface and conducts the tests
 - Computer: knows the program and simulates answers without giving explanations

16

Observer: notes reactions, recommendations

Computadores

LFP – executing tests (2)

- Facilitator
 - at the beginning, it provides clear and precise written instructions to the user
 - raises questions to get user feedback
 - what are you thinking now? Think out loud, etc.
- Observer
 - notes user reactions, responses and suggestions
 - Record tasks/steps in which the user hesitated or had difficulties
- At the end
 - user must fill in predefined questionnaire
 - but questions should also be asked regarding the difficulties that the user experienced

LFP - wireframes

- Wireframes are sketches / schemas / mockups
 - They are outline drawings that enable to experiment different structures for the interface
 - Their use can be split into two phases

Ideation and validation

- which are the alternatives for solving the problem?
 - to arrive to THE Idea it will be necessary to go through a lot of bad ideas

- do the alternative(s) really solve the problem?
 - Show the sketch(es) to stakeholders
 making sure they can transmit the idea(s)
- Should be seen as a form of visual communication and for evaluating usability

LFP - wireframes (2)

- Sketches that represent contents/objects/elements that should appear on a certain screen
 - use geometric figures or (real-world) concepts to show the existence and the placement of elements on the screen
 - do not include images, but use boxes with textual or graphical tags placed on the local the images should appear
 - normally do not use color but they may be considered useful to provide more information about the elements
 - Such as, the relative importance or priorities
- But, typically the idea is to schematise, not drawing or illustrating!

Wireframes

- Allows to define and plan how the elements will appear in the application
 - the order
 - hierarchy
 - position
 - type
- Which conditions, or is conditioned by, the way in which the user processes information

Wireframes - examples

Wireframes - examples (2)

Wireframes - examples (3)

Computadores

Low fidelity prototypes - examples

Guided testing with interesting ideas:

https://www.youtube.com/watch?v=yafaGNFu8Eg

Guided testing (a bit more difficult to follow):

https://www.youtube.com/watch?v=Car4llhY3 0

• iTraveller with some written guidelines and interesting ideas for the testing:

https://www.youtube.com/watch?v=_5FGeSQ7DBU

Pinterest redesign with simple written guidelines:

https://www.youtube.com/watch?v=B7M0fVXdovM

Computadores

Low fidelity prototypes - examples (2)

- Angry birds game redesign with simple written guidelines:
- https://www.youtube.com/watch?v=pvg8GpdQZSQ
- No guidelines but useful for ideas for the prototype and testing:
- https://www.youtube.com/watch?v=x48qOA2Z_xQ
- Just for ideas:

https://www.youtube.com/watch?v=y20E3qBmHpg

Google series of short videos on prototyping:

Sketching on paper: https://www.youtube.com/watch?v=JMjozqJS44M

Digital prototyping: https://www.youtube.com/watch?v=KWGBGTGryFk

Native prototyping: https://www.youtube.com/watch?v=lusOgox4xMl