POLITEHNIKA PULA

Visoka tehničko-poslovna škola s p.j. Stručni studij politehnike

> Elementi strojeva 2 Projektni zadatak

> > Kristijan Cetina*

Pula, 25. svibnja 2018.

Sažetak

U ovom radu predstavljam proračun strojnog sklopa - vratila prijenosnika snage i pripadajućih ležajeva koji je zadan kao sastavni dio kolegija Elementi strojeva 2.

^{*}kcetina@politehnika-pula.hr, JMBAG: 2424011721

Sadržaj

1	Uvo	${ m pd}$	2
2	Pro	račun sklopa	3
	2.1	Zadani parametri	3
	2.2	Projektni proračun sklopa	3
	2.3	Konstruiranje sklopa	4
	2.4	Proračun reakcija u ležajevima	5
	2.5	Izbor valjnih ležajeva i proračun stvarne trajnosti 6	6
	2.6	Proračun momenata savijanja i naprezanja	7
3	Kor	ntrolni proračun vratila 9	9
\mathbf{Li}	terat	tura	4
\mathbf{D}	odata	ak A: Radionički nacrt sklopa	5

1 Uvod

Ovaj projektni zadatak nastoj je kao obavezni zadatak u sklopu kolegija Elementri strojeva 2 koji se održava pod vodstvom prof. dr. sc. Božidara Križana na stručnom studiju politehnike na Politehnici Pula.

U ovom radu obrađen je proračun vratila prijenosnika snage s pripadajućim ležajevima. Prema zadatku bilo je potrebno odrediti dimenzije vratila i ležaja te odabrati prikladni ležaj u ondnosu na postavljene zahtjeve prenosa snage i traženu minimalnu trajnost.

2 Proračun sklopa

2.1 Zadani parametri

Prema projektnom zadatku zadani su sljedeći parametri sklopa: Snaga koju prenose zučanik i vratilo

Snaga koju prenose zupčanik i vratilo	P = 23kW
Brzina vrtnje	$800min^{-1}$
Materijal vratila	Ck45
Korjeni promjer zupčanika	$d_f = 96, 25mm$
Diobeni promjer zupčanika	d = 110mm
Tjemeni promjer zupčanika	$d_a = 121mm$
Širina zupčanika	$b_z = 115mm$
Faktor sigurnosti	$\nu_d = 1, 3$
Hrapavost površine na kritičnim mjestima	$R_a = 0,8\mu m$
Razmak ležajeva	l = 165mm
Razmak između središta ležaja A	
i središta zupčanika	a = 80mm
Minimalna trajnost ležajeva	$L_{10hmin} = 12000sati$

Mehanička svojstva korištenog materijala su sljedeća:

$$R_{dt0} = 340 \frac{N}{mm^2}$$

$$R_{ds-1} = 370 \frac{N}{mm^2}$$

$$R_e = 490 \frac{N}{mm^2}$$

$$R_m = 700 \frac{N}{mm^2}$$

2.2 Projektni proračun sklopa

U projektnom praračunu sklopa ne uzima se u obzir svi detalji sklopa kao niti koncentracije lokalnog naprezanja, ali se zato uzima značajno veći faktor sigurnosti kako bi kompenzirali za izostavljene faktore. U projektnom proračunu za određivanje početnog promjera vratila uzeti su u obzir samo snaga koja se prenosi i materijal od kojeg se izrađuje vratilo. Kao mjerodavne vrijednosti uzeto je torzijsko naprezanje koje mora biti manje od dopuštenog, a faktor sigurnosti je usvojen $\nu=12$. Kao glavni uvjet uzet je kriterij čvrstoće pri kojem torzijsko naprezanje mora biti manje od dopuštenog pri čemu torzijsko naprezanje možemo izraziti pomoću izraza

$$\tau_t = \frac{T}{W_p} \tag{1}$$

pri čemu je W_p za okrugli puni popreči presjek jednak

$$W_p = \frac{d_1^3 \cdot \pi}{16} \tag{2}$$

Okretni moment koji se prenosi izračunat je pomoću sljedećeg izraza

$$T = \frac{P}{\omega} \tag{3}$$

pri čemu je obodna brzina $\omega = 2 \cdot \pi \cdot n$, a n je izražen u okretajima u sekundi $[s^{-1}]$. Uvršavanjem poznatih podataka u (3) dobije se okretni moment

$$T = \frac{60 \cdot 23 \cdot 10^3}{2 \cdot \pi \cdot 800}$$
$$T = 274.5 \text{ Nm}$$

Promjer vratila je izračunat pomoću izraza

$$d_1 \ge \sqrt[3]{\frac{16 \cdot T \cdot \nu}{R_{dt0} \cdot \pi}} \tag{4}$$

Uvršavanjem poznatih podataka u izraz (4) dobije se početni promjer vratila d_1

$$d_1 \ge \sqrt[3]{\frac{16 \cdot 274, 5 \cdot 10^3 \cdot 12}{340 \cdot \pi}}$$
$$d_1 \ge \mathbf{36, 68mm}$$

2.3 Konstruiranje sklopa

Prema tablici standardnih dimenzija krajeva cilindričnog vratila prema normi DIN 748 usvojena je dimenzija **38x80 DIN 748** (ϕ 38k6). Maksimalni radijus prijelaza je $r_{max}=1mm$.

Prema tablici standardnih dimenzija uložnih pera po DIN 6885 normi usvojeno je pero **DIN6885** – **A10** × **8** × **70** – **E295** s dubinom utora u vratilu $t_1=5mm$. Dimenzija d_2 je zbog standardnih dimenzija ležajeva usvojena $\mathbf{d_2}=\mathbf{45mm}$

Žlijeb za izlaz alata

Usvojeme dimenzije žlijeba za izlaz alata prema d_2 su **DIN 509** – **E 0**, **6** × **0**, **3** ($\rho_1 = 0, 6mm, t_1 = 0, 3mm$). Na slici 1 prikazan je žlijeb za izlaz alata.

Slika 1: Skica žlijeba za izlaz alata

Visina bočnog oslonca ležaja

Kao vrijednost visine bočnog oslonca ležaja usvojena je vrijednost h=3,5mm. Promjer d_3 je izračunat kao $d_3=d_2+2\cdot h=\mathbf{52mm}$. Vrijednost radijusa zakrivljenja ρ_2 je usvojen $\rho_2=5mm$.

2.4 Proračun reakcija u ležajevima

Tangencijalna sila između zupčanika je izračunata pomoću momenta koji se prenosi i promjera zupčanika

$$F_t = \frac{2T}{d}$$

$$F_t = \frac{2 \cdot 274, 5 \cdot 10^3}{110}$$

$$F_t = 4990,9N$$

Radijalna sila je izračunata pomoću tangencijalne sile i poznatog kuta zahvata zubaca zupčanika koji iznosi $\alpha_n=20^\circ$

$$F_r = F_t \cdot \tan \alpha_n$$

 $F_r = 4990, 9 \cdot \tan 20^\circ$
 $F_r = \mathbf{1816,5N}$

Kako sile mođusobno djeluju pod pravim kutem njihova rezultanta se može izračunati po Pitagorinom poučku kao korijen zbroja kvadrata sila

$$F = \sqrt{F_t^2 + F_r^2}$$

$$F = \sqrt{4990, 9^2 + 1816, 5^2}$$

$$F = \mathbf{5311,2N}$$

Reakcija u osloncu ${\cal B}$ izračunata je pomoću uvijeta ravnoteže sume momenata oko oslonva ${\cal A}$

$$F_B = rac{F \cdot 80}{168}$$

$$F_B = rac{5311, 2N \cdot 80}{168}$$

$$F_B = \mathbf{2575, 1N}$$

rakcija u osloncu A izračunata je pomoću uvijeta ravnoteže sustava u kojem je suma sila i reakcija jednaka nuli

$$F_A = F - F_B$$

 $F_A = 5311, 2 - 2575, 1$
 $F_A = \mathbf{2736, 1N}$

2.5 Izbor valjnih ležajeva i proračun stvarne trajnosti

Trajnost ležajeva se može proračunati po izrazu

$$L_{10h} = \left(\frac{C}{F} \cdot f_t\right)^p \cdot \frac{10^6}{60 \cdot n} \tag{5}$$

pri čemu je C - dinamička nosivost ležaja, p - eksponent vijeka trajanja. Za kuglične ležajeve p=3 i f_t - temperaturni faktor. Za $\vartheta<150^\circ C\Rightarrow f_t=1$.

Iz izraza (5) može se izračunati minimalna potrebna dimanička nosivost ležaja

$$C = \frac{F}{f_t} \cdot \sqrt[3]{\frac{L_{10h} \cdot 60 \cdot n}{10^6}}$$

$$C = \frac{2736, 1}{1} \cdot \sqrt[3]{\frac{12000 \cdot 60 \cdot 800}{10^6}}$$

$$C \cong \mathbf{22.8kN}$$

Nakon pregleda kataloških podataka dostupnih ležajeva odabran je ležaj SKF 6209 koji ima dinamičku nosivost od C = 35, 1kN.

Proračun stvarne trajnosti

Po izrazu (5) sada se može izračunati stvarna trajnost za odabrani ležaj

$$L_{10h} = \left(\frac{35100}{2736, 1} \cdot 1\right)^3 \cdot \frac{10^6}{60 \cdot 800}$$
$$L_{10h} = \mathbf{43983 h}$$

6209

Popular item SKF Explorer

Dimensions

d		45	mm
D		85	mm
В		19	mm
d 1		57.6	mm
D ₂		75.19	mm
r _{1,2}	min.	1.1	mm

Abutment dimensions

d _a	min.	52	mm
D _a	max.	78	mm
ra	max.	1	mm

Slika 2: Tehnički podaci odabranog ležaja SKF 6209

2.6 Proračun momenata savijanja i naprezanja

U nastavku su dani proračuni momenata savijanja i naprezanja za svaki kritični presjek nazanačen na slici 3.

$$\begin{split} M_{S1} &= F_A \cdot \frac{B}{2} = 2736, 1 \cdot \frac{19}{2} = 25933Nmm \\ M_{S2} &= F_A \cdot \left(a - \frac{b_z}{2}\right) = 2736, 1 \cdot \left(80 - \frac{115}{2}\right) = 61562, 3Nmm \\ M_{S3} &= F_B \cdot \left(l - a - \frac{b_z}{2}\right) = 2575, 1 \cdot \left(165 - 80 - \frac{115}{2}\right) = 70815, 3Nmm \\ M_{S4} &= F_B \cdot \frac{B}{2} = 2575, 1 \cdot \frac{19}{2} = 24463, 5Nmm \\ M_{S5} &= 0 \end{split}$$

Slika 3: Prikaz kritičnih presjeka na vratilu

Geometrijske karakteristike poprečnih presjeka - ${\cal W}$

$$W_1 = W_4 = \frac{d_2^3 \cdot \pi}{32} = \frac{45^3 \cdot \pi}{32} = 8946, 2mm^3$$

$$W_2 = W_3 = \frac{d_3^3 \cdot \pi}{32} = \frac{52^3 \cdot \pi}{32} = 13804, 2mm^3$$

Polarni momenti otpora - \mathcal{W}_p

$$W_{p2} = W_{p3} = \frac{d_3^3 \cdot \pi}{16} = \frac{52^3 \cdot \pi}{16} = 27608, 3mm^3$$

$$W_{p4} = \frac{d_2^3 \cdot \pi}{16} = \frac{45^3 \cdot \pi}{16} = 17892, 4mm^3$$

$$W_{p5} = \frac{(d_1 - t_1)^3 \cdot \pi}{16} = \frac{(38 - 5)^3 \cdot \pi}{16} = 7056, 2mm^3$$

presjek 1-1

$$\sigma_{s1} = \frac{M_{S1}}{W_1} = \frac{25933}{8946, 2} = \mathbf{2}, \mathbf{9} \frac{\mathbf{N}}{\mathbf{mm^2}}$$

presjek 2-2

$$\sigma_{s2} = \frac{M_{S2}}{W_2} = \frac{61562, 3}{13804, 2} = 4, 6 \frac{N}{mm^2}$$

$$\tau_{t2} = \frac{T}{W_{p2}} = \frac{274, 5 \cdot 10^3}{27608, 3} = 9, 9 \frac{N}{mm^2}$$

$$\sigma_{ekv2} = \sqrt{\sigma_{s2}^2 + 3 \cdot (0, 7 \cdot \tau_{t2})^2}$$

$$\sigma_{ekv2} = \sqrt{4, 6^2 + 3 \cdot (0, 7 \cdot 9, 9)^2} = \mathbf{12}, \mathbf{9} \frac{\mathbf{N}}{\mathbf{mm}^2}$$

presjek 3-3

$$\sigma_{s3} = \frac{M_{S3}}{W_3} = \frac{70815, 3}{13804, 2} = 5, 1 \frac{N}{mm^2}$$

$$\tau_{t3} = \frac{T}{W_{p3}} = \frac{274, 5 \cdot 10^3}{27608, 3} = 9, 9 \frac{N}{mm^2}$$

$$\sigma_{ekv3} = \sqrt{\sigma_{s3}^2 + 3 \cdot (0, 7 \cdot \tau_{t3})^2}$$

$$\sigma_{ekv3} = \sqrt{4, 6^2 + 3 \cdot (0, 7 \cdot 9, 9)^2} = \mathbf{13} \frac{\mathbf{N}}{\mathbf{mm}^2}$$

presjek 4-4

$$\sigma_{s4} = \frac{M_{S4}}{W_4} = \frac{23175, 9}{8946, 2} = 2, 6 \frac{N}{mm^2}$$

$$\tau_{t4} = \frac{T}{W_{p4}} = \frac{274, 5 \cdot 10^3}{17892, 4} = 15, 3 \frac{N}{mm^2}$$

$$\sigma_{ekv4} = \sqrt{\sigma_{s4}^2 + 3 \cdot (0, 7 \cdot \tau_{t4})^2}$$

$$\sigma_{ekv4} = \sqrt{2, 6^2 + 3 \cdot (0, 7 \cdot 15, 3)^2} = \mathbf{18}, \mathbf{7} \frac{\mathbf{N}}{\mathbf{mm}^2}$$

presjek 5-5

$$\tau_{t5} = \frac{T}{W_{n5}} = \frac{274, 5 \cdot 10^3}{7056, 2} = 38, 9 \frac{N}{mm^2}$$

3 Kontrolni proračun vratila

Dopušteno naprezanje pri savijanju u kontrolnom proračunu uzima u obzir trajnu izmjeničnu dinamičku čvrstoću materijala pri savijanju, faktore $b_{1\sigma}$ - faktor utjecaja poršinske hrapavosti za vlak/tlak i savijanje, b_2 - faktor utjecaja veličine konstrukcijskog elementa, ν_d - faktor sigurnosti prikladan

za kontrolni proračun te β_{ks} - efektivni faktor koncentracije naprezanja pri savijanju i to sve u sljedećem izrazu

$$\sigma_{sdop} = \frac{R_{ds-1} \cdot b_{1\sigma} \cdot b_2}{\nu_d \cdot \beta_{ks}} \tag{6}$$

Za izračunati dopušteno naprezanje potrebni su i sljedeći podaci

$$R_z = 4 \cdot R_a$$

$$R_z = 4 \cdot 0,8 \mu m$$

$$R_z = 3,2 \mu m$$

Faktor $b_{1\sigma}$ vrijedi isti za cijeli sklop jer je navedeni kompletan izrađen od istog materijala jednake površinske obrade, a izračunat je po sljedećem izrazu

$$b_{1\sigma} = 1 - 0, 22 \cdot \log R_z \left(\log \frac{R_m}{20} - 1 \right)$$

$$b_{1\sigma} = 1 - 0, 22 \cdot \log 3, 2 \left(\log \frac{700}{20} - 1 \right)$$

$$b_{1\sigma} = \mathbf{0}, \mathbf{939}$$

Efektivni faktor koncentracije naprezanja pri savijanju β_{ks} se računa za svaki kritični presjek i to po izrazu

$$\beta_{ks} = 1 + \eta_k \cdot (\alpha_{ks} - 1) \tag{7}$$

Faktor osjetljivosti materijala na koncentraciju naprezanja η_k se računa po sljedećem izrazu

$$\eta_k = \frac{1}{1 + \frac{8}{\rho} \cdot \left(1 - \frac{R_e}{R_m}\right)^3} \tag{8}$$

Geometrijski faktor koncentracije naprezanja pri savijanju α_{ks} je očitan iz skripte, slika 8 na stranici 6. Faktor utjecaja veličine konstrukcijskog elementa b_2 je očitan iz slike 7, stranica 5 skripte.

presjek 1-1

Zakrivljenost žlijeba za izlaz alata je $\rho_1=0,6mm$, vrijednost geometrijskog faktora koncentracije naprezanja pri savijanju je očitana $\alpha_{ks}=3,1$ i faktor utjecaja veličine konstrukcijskog elementa je $d_2=45mm \Rightarrow b_2=0,835$. Kada se uvrste poznati podaci u (8) faktor osjetljivosti materijala na koncentraciju naprezanja η_k za navedene presjeke iznosi

$$\eta_k = \frac{1}{1 + \frac{8}{0.6} \cdot \left(1 - \frac{490}{700}\right)^3}$$

$$\eta_k = 0,735$$

 α_{ks} je očitan iz slike 8 na stranici 6 s slijedećim parametrima:

$$d = d_2 - t_1 = 44,7mm$$

$$D = d_3 = 52mm$$

$$\rho = 1mm$$

$$t = \frac{D - d}{2} = 3,65mm$$

Uvršatavnjem poznatih podataka u (7) dobije se

$$\beta_{ks} = 1 + 0.735 \cdot (3, 1 - 1)$$

 $\beta_{ks} = 2.54$

Slijednom navedenog može se izračunati dopušteno naprezanje za navedene presjeke uvrštavanjem poznatih podataka u izraz (6)

$$\sigma_{sdop1} = \frac{370 \cdot 0,939 \cdot 0,835}{1,3 \cdot 2,54}$$
$$\sigma_{sdop1} = 88 \frac{N}{mm^2}$$
$$\sigma_{sdop1} > \sigma_{s1}$$

Vidljivo je kako dopušteno naprezanje iznosi više od ekvivalentnih naprezanja koji se javljaju u danim presjecima te da oni zadovoljavaju kriterij čvrstoće.

presjek 2-2

Za dane presjeke $d_3 = 52mm \Rightarrow b_2 = 0,814$, zakrivljenje $\rho = 5mm$ i $\alpha_{ks} = 1,9$. Uvršatanjem poznatih podataka u (8) faktor osjetljivosti materijala na koncentraciju naprezanja η_k za navedene presjeke iznosi

$$\eta_k = \frac{1}{1 + \frac{8}{5} \cdot \left(1 - \frac{490}{700}\right)^3}$$

$$\eta_k = 0,956$$

 α_{ks} je očitan iz slike 8 na stranici 6 s slijedećim parametrima:

$$d = d_3 = 47mm$$

 $D = d_f = 96, 25mm$
 $\rho = \rho_2 = 5mm$
 $t = \frac{D-d}{2} = 22, 125mm$

Uvršatavnjem poznatih podataka u (7) dobije se

$$\beta_{ks} = 1 + 0,956 \cdot (1,9-1)$$

 $\beta_{ks} = 1,86$

Slijednom izračunatog može se izračunati dopušteno naprezanje za navedene presjeke uvrštavanjem poznatih podataka u izraz (6)

$$\begin{split} \sigma_{sdop} &= \frac{370 \cdot 0,939 \cdot 0,814}{1,3 \cdot 1,86} \\ \sigma_{sdop} &= \mathbf{117} \frac{\mathbf{N}}{\mathbf{mm^2}} \end{split}$$

Vidljivo je kako dopušteno naprezanje iznosi više od ekvivalentnih naprezanja koji se javljaju u danim presjecima te da oni zadovoljavaju kriterij čvrstoće.

presjek 3-3

U pogledu konstrukcijskih karakteristika i naprezanaja presjeci 2-2 i 3-3 mogu se smatrati jednakima te je stoga i njihovo dopušteno naprezanje jednako.

$$\sigma_{sdop3} = \sigma_{sdop2}$$

$$\sigma_{sdop3} > \sigma_{s3}$$

presjek 4-4

U pogledu konstrukcijskih karakteristika i naprezanaja presjeci 1-1 i 4-4 mogu se smatrati jednakima te je stoga i njihovo dopušteno naprezanje jednako.

$$\sigma_{sdop4} = \sigma_{sdop1}$$
$$\sigma_{sdop4} > \sigma_{s4}$$

presjek 5-5

U presjeku 5-5 djeluje samo torzijsko naprezanje te se dopušteno naprezanje računa s podacima za tu vrstu naprezanja po izrazu

$$\tau_{tdop} = \frac{R_{dt0} \cdot b_{1\tau} \cdot b_2}{\nu_d \cdot \beta_{kt}} \tag{9}$$

pri čemu su R_{dt0} - trajna ishodišna dinamička čvrstoča pri torziji, $b_{1\tau}$ - faktor utjecaja površinske hrapavosti za torziju i β_{kt} - efektivni faktor koncentracije naprezanja pri torziji. Efektivni faktor koncentracije naprezanja pri torziji β_{kt} računa se po izrazu

$$\beta_{kt} = 1 + \eta_k \cdot (\alpha_{kt} - 1) \tag{10}$$

Za zadani presjek $d_1=38mm \Rightarrow b_2=0,856$, iz slike 7, stranica 10 skripte očatani su $\alpha_{kt}=2,8$ i $\rho=0,25mm$. $b_{1\tau}$ - faktor utjecaja poršinske hrapavosti za torziju izračunat je po izrazu

$$b_{1\tau} = 0,575 \cdot b_{1\sigma} + 0,425$$

$$b_{1\tau} = 0,575 \cdot 0,939 + 0,425$$

$$b_{1\tau} = 0,965$$

Uvršatanjem poznatih podataka u (8) faktor osjetljivosti materijala na koncentraciju naprezanja η_k za navedeni presjek iznosi

$$\eta_k = \frac{1}{1 + \frac{8}{0.25} \cdot \left(1 - \frac{490}{700}\right)^3}$$

$$\eta_k = 0,54$$

Uvršatavnjem poznatih podataka u (10) dobije se

$$\beta_{kt} = 1 + 0.54 \cdot (2.8 - 1)$$
$$\beta_{kt} = 1.97$$

Slijednom izračunatog može se izračunati dopušteno naprezanje za navedeni presjek uvrštavanjem poznatih podataka u izraz (9)

$$\tau_{tdop} = \frac{340 \cdot 0,965 \cdot 0,856}{1,3 \cdot 1,97}$$
$$\tau_{tdop} = \mathbf{109}, \mathbf{7} \frac{\mathbf{N}}{\mathbf{mm^2}}$$
$$\tau_{tdop} > \tau_{t5}$$

Vidljivo je kako dopušteno naprezanje iznosi više od torzijskog naprezanja koji se javlja u danom presjeku te da isti zadovoljavaja kriterij čvrstoće.

Literatura

- [1] B. Križan, Interna skripta iz kolegija Elementi strojeva 2 za konstrukcijske vježbe. Politehnika Pula, 2018.
- [2] B. Križan, Osnove proračuna i oblikovanja konstrukcijskih elemenata. Školska knjiga, Zagreb, 2008.

Dodatak A: Radionički nacrt sklopa