BRUNO BORGES DE SOUZA LISTA 4 Exercício 17.7

Na regressão legistica, para cada porto nos dados temo o Vetor X_i e uma classe obererreada Y_i . A probabilidade Roda ser P_i se $Y_i = 1$ ou 1-P se $Y_i = 0$. A verossimilhança e dada então, por:

Como $P(C=1|X) = \delta(W^TX+b)$, rendo $D = \{(x^m, c^m), m=1, ..., N\}$ $C^m \in \{0,1\}$, tomos: $C^m \in \{0,1\}$, tomos:

 $\log L = \sum_{i} c^{i} \log \sigma(w^{T} \times^{n} + b) + (1 - c^{i}) \log (1 - \delta(w^{T} \times^{n} + b))$

Como a deriveada de loge $6(W^T \times^m + b) = \frac{6'}{6(W^T \times^m + b)}$ (com relação a W),

e obcrerreande que:

$$\frac{d(x) = \frac{1}{1 + e^{-Ax}} \cdot 0'(x) = \frac{-2e^{-Ax}}{(1 + e^{-2x})^2} = 6(x)^2 (-2e^{-Ax}),$$

$$2e^{-Ax} = \frac{2(1 - d)}{6} = 0 = 6(1 - d), \text{ tunos}$$

Vul = {ci(1-6(wTxi+b))xi-(1-ci)6(wTxi+b) xi

Com j=n a reimplificando a expressão acima:

$$\nabla_{WL} = \sum_{n=1}^{N} \left(C^{n} - \delta(W^{T} \times^{n} + b) \right) \times^{n}$$