OPEN DATA SCIENCE EUROPE WORKSHOP

Working with harmonized LUCAS dataset

Instructors: Lukáš Brodský, Martin Landa, Tomáš Bouček

lukas.brodsky@fsv.cvut.cz martin.landa@fsv.cvut.cz tomas.boucek@fsv.cvut.cz

Draft content

- 1: LUCAS dataset introduction
- 2: Accessing LUCAS dataset using Python API (Jupyter notebooks)
- 3: Harmonized LUCAS dataset
- 4: Land product validation with LUCAS points (use case)
- 5. LUCAS land cover translation to CORINE and classes aggregation
- 6. Accessing LUCAS dataset from QGIS (LUCAS plug-in)

- Software requirements:
 - ODSE virtual box with eumap library
 - Jupyter Notebooks with sample data sets

../ODSE_workdir/code/odse-workshop-2021/Python-training/05_lucas/*.*

LUCAS dataset (Eurostat)

LUCAS stands for the **Land Use and Coverage Area frame Survey**.

Main goal: identify changes in the European Union in land cover and land use.

Such information aim to be used in: nature protection, forest and water management, urban and transport planning, agricultural policy, prevention and mitigation of natural hazards, soil protection and mapping, monitoring climate change, monitoring biodiversity, etc.

It is a unique **ground-true** dataset for land products (LC) **validation** and new models **calibration**.

LUCAS survey process

LUCAS dataset (Eurostat)

Surveyors examine:

- land cover and land use, management,
- structural elements in the landscape
- and take 500 gram topsoil sample (at one out of 10 points)
- and collect photos.

LUCAS Land Cover nomenclature

- fully hierarchical (3 levels)
- lc1: 76 classes

Land cover					
A00	ARTIFICIAL LAND	A10	Roofed built-up areas		
	and some times and a second	A20	Artificial non-built up areas		
		A30	Other artificial areas		
B00	CROPLAND	B10	Cereals		
		B20	Root crops		
	1	B30	Non-permanent industrial crops		
		B40	Dry pulses, vegetables and flowers		
		B50	Fodder crops		
		B70	Permanent crops: fruit trees		
		B80	Other permanent crops		
C00	WOODLAND	C10	Broadleaved woodland		
	71101010101010	C20	Coniferous woodland		
		C30	Mixed woodland		
D00	SHRUBLAND	D10	Shrubland with sparse tree cover		
		D20	Shrubland without tree cover		
E00	GRASSLAND	E10	Grassland with sparse tree/shrub cover		
		E20	Grassland without tree/shrub cover		
		E30	Spontaneously re-vegetated surfaces		
F00	BARE LAND AND LICHENS/MOSS	F10	Rocks and stones		
		F20	Sand		
		F30	Lichens and moss		
		F40	Other bare soil		
G00	WATER AREAS	G10	Inland water bodies		
		G20	Inland running water		
		G30	Transitional water bodies		
		G40	Sea and ocean		
		G50	Glaciers, permanent snow		
H00	WETLANDS	H10	Inland wetlands		
		H20	Coastal wetlands		

LUCAS Land Use nomenclature

- lu1: 41 classes

Land use				
U100	PRIMARY SECTOR	U110	Agriculture	
		U120	Forestry	
		U130	Aquaculture and fishing	
		U140	Mining and quarrying	
		U150	Other primary production	
U 200	SECONDARY SECTOR	U210	Energy production	
		U220	Industry and manufacturing	
U300	TERTIARY SECTOR, TRANSPORT, UTILITIES & RESIDENTIAL	U310	Transport, communication networks, storage, protection works	
		U320	Water and waste treatment	
		U330	Construction	
		U340	Commerce, financial, professional and information services	
		U350	Community services	
		U360	Recreation, leisure, sport	
		U361	Residential	
U400	UNUSED AND ABANDONED U4		Abandoned areas	
	AREAS	U420	Semi-natural and natural areas not in use	

LUCAS access: https://ec.europa.eu/eurostat/web/lucas

https://ec.europa.eu/eurostat/web/lucas/data/primary-data/2018

Hands-on #1: accessing LUCAS dataset using Python API

Hands-on #1: accessing LUCAS dataset using Python API

Hands-on session using Jupyter notebook

../01_lucas_access.ipynb

LUCAS Samples

First of all, let's import eumap library.

```
In [1]: # To work with local eumap code
import sys
sys.path.append('../../')
from eumap.datasets.lucas import LucasRequest, LucasIO, LucasClassTranslate
```

Usage

1. Define request

Request is defined by LucasRequest object. Bbox filter can be enabled by bbox property. Currently only EPSG:3035 is supported.

For testing purpose a request can be created by build() method.

LUCAS dataset grouped thematically

lc_lu: land cover and land use

lc_lu_so: land cover and land use & soil

fo: forestry

co: copernicus

in: inspire

	Year	EU countries	Points
LUCAS facts	2006	11	168 402
 Covers EU countries Grid 2x2 km Total 1.3 MIO points! 2006 -> 2018 	2009	23	234 623
	2012	27	270 272
LUCAS project evolves since 2006; => need of harmonization!	2015	28	339 696
	2018	28	337 854

LUCAS dataset

What	to	harmon	ize?
------	----	--------	------

- Attributes (new, removed)
- Attribute names (e.g. lc1_pct vs. lc1_perc)
- New definitions (continuous variables vs. categorical)
- Data types (string vs. integer)
- No valid data: 8

Year	

attrNoutes

- 2006
- 2

44

20

- 2009
 - 12 46
 - 2012

2015

- 59
- 2018 97

LUCAS harmonization: 1 import primary data

- 1. import primary data (2006 -> 2018)
- 2. coordinates correction
- 3. rename attributes (reference 2018)
- 4. values harmonization
- 5. re-type values
- 6. merge into one table
- 7. space-time aggregation

Database initialization

Hands-on #2: Validation with LUCAS datasets

General steps:

- 1. prepare land cover product for validation: ./sample_land_cover/cz_land*.tif
- 2. prepare LUCAS points for the AOI: ./sample_land_cover/cz_lucas*.gpkg
- 3. run validation in Jupyter notebook: ./02 land cover validation.ipynb
- 4. discuss the results;

Land Cover Validation with LUCAS dataset

This is an example of the land cover product validation using LUCAS points. The process is using class Validator to perform the main validation steps.

```
In [1]: import os import sys import yaml

from osgeo import gdal from osgeo import gdalconst
```

Hands-on #3: Nomenclature translation

Run nomenclature translation in Jupyter notebook: ./03_lucas_analyze.ipynb

LUCAS to CORINE land cover legend

```
Nomenclature translation
 In [5]: from eumap.datasets.lucas import LucasClassTranslate
         lucastrans = LucasClassTranslate(lucasio.data)
         lucastrans.set translations("clc3")
          lucastrans.apply()
In [10]: df = lucasio.to geopandas()
         # df[(df["clc3"] == None)]
Out[10]:
            point id nuts0 nuts1 nuts2 nuts3 survey date car latitude car longitude car ew gps proj ... photo north photo east photo south photo west crop
         0 rows x 109 columns
```

Hands-on #4: Nomenclature aggregation

Run class aggregation in Jupyter notebook: ./03 lucas analyze.ipynb

Apply aggregation

LUCAS points are obtained with level 3 lucas land cover information. With LucasClassAggr method you can get information about level 2 or level 1. New column will be added to the end of attribute table.

```
In [4]: 1c1 to level1 = {
            "A00": ["A11", "A12", "A13", "A21", "A22", "A30"],
            "B00": ["B11", "B12", "B13", "B14", "B15", "B16", "B17", "B18", "B19", "B21", "B22", "B23", "B31", "B32", "B33", "E
            "Bx1": ["Bx1"],
            "Bx2": ["Bx2"],
            "C00": ["C10", "C21", "C22", "C23", "C31", "C32", "C33"],
            "D00": ["D10", "D20"],
            "E00": ["E10", "E20", "E30"],
            "F00": ["F10", "F20", "F30", "F40"],
            "G00": ["G11", "G12", "G21", "G22", "G30", "G40", "G50"],
            "H00": ["H11", "H12", "H21", "H22", "H23"]-
        lucasaggr = LucasClassAggregate(lucasio.data, mappings=lc1 to level1)
        # lucasaggr = LucasClassAggregate(lucasio.data, mappings file='aggregation lc1 h to level1.json')
        lucasaggr.apply()
```

Hands-on #4: LUCAS QGIS plug-in

./lucas_download_manager.zip

Report issues on Gitlab: https://gitlab.com/geoharmonizer_inea/qgis-lucas-plugin

Wrap-up LUCAS session

Learned how to ...

- Access the harmonized LUCAS dataset with Python API and QGIS;
- Filter the subsets;
- Use LUCAS for land cover validation;
- .. and it can be used the same way for land cover model calibration!;
- Translate LUCAS nomenclature to e.g. CORINE;
- Aggregate the land cover classes before validation / calibration;

in order to perform land cover research with open data and open software!

Thanks for your attention!

and distribution

Geospatial system for LUCAS data harmonization

to be published as Open Source!