Biostatistics 615 - Statistical Computing

Topic 3
Matrix Computation

Hyun Min Kang

Topic Overview

- Algorithms for matrix computation
- Matrix decomposition and solving linear systems
- Sparse matrices

Topic Overview

- Algorithms for matrix computation
- Matrix decomposition and solving linear systems
- Sparse matrices

Programming with Matrix

Why matrix matters?

- Many statistical models can be well represented as matrix operations
 - Linear regression
 - Logistic regression
 - Mixed models
- Efficient matrix computation can make difference in the practicality of a statistical method
- Understanding R implementation of matrix operation can expedite the efficiency by orders of magnitude

Recap: Divide-and-conquer algorithms

Solve a problem recursively, applying three steps at each level of recursion

- Divide the problem into a number of subproblems that are smaller instances of the same problem
- Conquer the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
- Combine the solutions to subproblems into the solution for the original problem

Matrix multiplication

Let $A \in \mathbb{R}^{n \times p}$, and $B \in \mathbb{R}^{p \times m}$. Define $C \in \mathbb{R}^{n \times m}$ such that

$$C_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj}$$
 $(i \in \{1, \dots, n\}, j \in \{1, \dots m\})$

- What is the time complexity for the algorithm to implement this?
- When n = m = p, what is the complexity? Any faster way?

Time complexity of square matrix multiplication

- For two matrices of dimension $n \times n$:
- Naive algorithm : $O(n^3)$
- Strassen algorithm (1969): $O(n^{2.807})$ (the fastest practical algorithm)
- Coppersmith-Winograd algorithm (1990): $O(n^{2.376})$
- François Le Gall (2014): $O(n^{2.373})$ (the best known algorithm)
- The best known lower bound: $\Omega(n^2)$ (or $\Omega(n^2 \log n)$ with certain assumptions).

Strassen algorithm (Volker Strassen, 1969)

Goal: Given A, B, compute C = AB, where A, B, C are matrices of size $n \times n$ where $n = 2^k$.

Step 1: Partition A, B, C into submatrices of size $2^{k-1} \times 2^{k-1}$:

$$A = \left[\begin{array}{cc} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{array} \right], B = \left[\begin{array}{cc} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{array} \right], C = \left[\begin{array}{cc} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{array} \right].$$

Step 2: Compute the followings matrices:

$$M_{1} = (A_{1,1} + A_{2,2})(B_{1,1} + B_{2,2})$$

$$M_{2} = (A_{2,1} + A_{2,2})B_{1,1}$$

$$M_{3} = A_{1,1}(B_{1,2} - B_{2,2})$$

$$M_{4} = A_{2,2}(B_{2,1} - B_{1,1})$$

$$M_{5} = (A_{1,1} + A_{1,2})B_{2,2}$$

$$M_{6} = (A_{2,1} - A_{1,1})(B_{1,1} + B_{1,2})$$

$$M_{7} = (A_{1,2} - A_{2,2})(B_{2,1} + B_{2,2})$$

(http://en.wikipedia.org/wiki/Strassen_algorithm)

Strassen algorithm (cont.)

Step 3: Compute the followings matrices:

$$\begin{split} C_{1,1} &= A_{1,1}B_{1,1} + A_{1,2}B_{2,1} = M_1 + M_4 - M_5 + M_7 \\ C_{1,2} &= A_{1,1}B_{1,2} + A_{1,2}B_{2,2} = M_3 + M_5 \\ C_{2,1} &= A_{2,1}B_{1,1} + A_{2,2}B_{2,1} = M_2 + M_4 \\ C_{2,2} &= A_{2,1}B_{1,2} + A_{2,2}B_{2,2} = M_1 - M_2 + M_3 + M_6 \end{split}$$

Time complexity analysis

$$T(n) = 7T(n/2) + O(n^2)$$

Applying the master theorem from the last lecture, $T(n) = O(n^{\log_2 7}) = O(n^{2.807})$.

9 / 47

Time complexity is not everything

- Time complexity only explains how scalable the algorithm is *relatively* to the increase in the size of input data.
- The absolute computational time of an algorithm may depend on the implementation details.
- For example, using loop inside is R is not usually recommended, because it can slow down the implementation by a lot.

Hands-on Session

Visit https://bit.ly/615top03r

- Triple-loop matrix multiplication
- Double-loop matrix multiplication

R implementations of matrix multiplication

Lessons learned:

- Double-loop implementation is an order of magnitude faster than Triple-loop implementation.
 - Did the time complexity change? If not, why is it faster?

R implementations of matrix multiplication

Lessons learned:

- Double-loop implementation is an order of magnitude faster than Triple-loop implementation.
 - Did the time complexity change? If not, why is it faster?
 - Avoiding loops and using built-in R functions helps the efficiency.

R implementations of matrix multiplication

Lessons learned:

- Double-loop implementation is an order of magnitude faster than Triple-loop implementation.
 - Did the time complexity change? If not, why is it faster?
 - Avoiding loops and using built-in R functions helps the efficiency.
- Matrix multiplication built in R is still orders of magnitude faster than v2
 - Do you think the difference is due to time complexity?
 - Built-in R matrix operations are very well optimized through BLAS/LAPACK.
 - Naive Rcpp implementation would be faster than naive R implementation, but still slower than built-in R multiplication

Matrix operation with BLAS/LAPACK is very fast

What is BLAS/LAPACK?

- BLAS (Basic Linear Algebra Subprograms) is a software library that implements low-level routines for linear algebra
- LAPACK (Linear Algebra PACKage) is a software library that implements key algorithms for linear algebra such as matrix decomposition and linear systems solver

Why are BLAS/LAPACK so fast?

Vectorization BLAS/LAPACK uses low-level hardware/software techniques that expedite operations on arrays.

Multithreading Many BLAS/LAPACK makes use of multiple CPUs via multithreading whenever possible.

Cache Optimization BLAS/LAPACK are carefully implemented to optimize the utilization of cache, which is much faster (but limited) storage in CPU than typical memory.

GenAl's explanation on this question: ChatGPT, Gemini, Claude.

BLAS/LAPACK Implementations

There are 4 BLAS/LAPACK implementations typically available in major operating systems.

- (GNU) default BLAS/LAPACK Typically installed. Typically not the fastest, and could be improved by replacing with other implementations.
 - OpenBLAS Open under BSD license. Typically faster than the default ones.
 - Intel MKL Open under Intel's ISSL license (used to have non-public license). Considered the fastest, but could be trickier to install.
 - ATLAS Open under BSD-like license. Similar performance with OpenBLAS, but installation may be trickier.

In this course, we will not teach how to install different BLAS/LAPACK libraries in your system, but it could affect your R/python performance dramatically.

Hands-on Session

Visit https://bit.ly/615top03r

Understanding BLAS/LAPACK

Time complexity for matrix inversion

Matrix inversion can be reduced to matrix multiplication!

$$\left[\begin{array}{cc} A & B \\ C & D \end{array}\right]^{-1} = \left[\begin{array}{cc} K^{-1} & -K^{-1}BD^{-1} \\ -D^{-1}CK^{-1} & D^{-1} + D^{-1}CK^{-1}BD^{-1} \end{array}\right]$$

where $K = A - BD^{-1}C$.

- Time complexity: $f(n) = 2f(n/2) + 6T(n/2) + O(n^2)$, where T(n) is the time for matrix multiplication.
- Applying the master theorem, $f(n) = \Theta(T(n)) = O(n^{2.584})$.
- Best known algorithm: $O(n^{2.373})$
- Best known lower bound: $\Omega(n^2 \log n)$.

(http://en.wikipedia.org/wiki/Invertible_matrix#Methods_
of_matrix_inversion)

Time complexity for matrix determinant

Determinant

- Laplace expansion : O(n!)
- LU decomposition : $O(n^3)$
- Bareiss algorithm : $O(n^3)$
- Matrix determinant can also be reduced to matrix multiplication : $O(n^{2.373})$

(http://en.wikipedia.org/wiki/Determinant#Calculation)

Computational considerations in matrix operations

Avoiding expensive computation

• Computation of $\mathbf{u}'AB\mathbf{v}$

Computational considerations in matrix operations

Avoiding expensive computation

- Computation of $\mathbf{u}'AB\mathbf{v}$
- If the order is $(((\mathbf{u}'(AB))\mathbf{v})$
 - \bullet $O(n^3) + O(n^2) + O(n)$ operations
 - $O(n^3)$ overall

Computational considerations in matrix operations

Avoiding expensive computation

- Computation of $\mathbf{u}'AB\mathbf{v}$
- If the order is $(((\mathbf{u}'(AB))\mathbf{v})$
 - $O(n^3) + O(n^2) + O(n)$ operations
 - $O(n^3)$ overall
- If the order is $(((\mathbf{u}'A)B)\mathbf{v})$
 - Two $O(n^2)$ operations and one O(n) operation
 - $O(n^2)$ overall

Quadratic multiplication

Same time complexity, but one is slightly more efficient

- Computing x'Ay.
- $O(n^2) + O(n)$ if ordered as $(\mathbf{x}'A)\mathbf{y}$.
- Can be simplified as $\sum_{i} \sum_{j} x_i A_{ij} y_j$

A symmetric case

- Computing $\mathbf{x}'A\mathbf{x}$ where A = LL' (Cholesky decomposition)
- u = L'x can be computed more efficiently than Ax.
- $\bullet x'Ax = u'u$

(http://en.wikipedia.org/wiki/Cholesky_decomposition)

Topic Overview

- 4 Algorithms for matrix computation
- Matrix decomposition and solving linear systems
- Sparse matrices

Solving linear systems

Problem

Find x that satisfies Ax = b

A simplest approach

- Calculate A^{-1} , and $\mathbf{x} = A^{-1}\mathbf{b}$
- Time complexity is $O(n^3) + O(n^2)$
- A has to be invertible
- Potential issue of numerical instability
- http://en.wikipedia.org/wiki/Invertible_matrix# Methods_of_matrix_inversion

Using matrix decomposition to solve linear systems

LU decomposition

- A = LU, making $U\mathbf{x} = L^{-1}\mathbf{b}$
- A needs to be square and invertible.
- Fewer additions and multiplications
- Precision problems may occur
- http:

//en.wikipedia.org/wiki/LU_decomposition#Algorithms

Cholesky decomposition

- *A* is a square, symmetric, and positive definite matrix.
- $A = U^T U$ is a special case of LU decomposition
- Computationally efficient and accurate
- http://en.wikipedia.org/wiki/Cholesky_decomposition# Computation

QR decomposition

- A = QR where A is $m \times n$ matrix
- Q is orthogonal matrix, $Q^TQ = I$.
- R is $m \times n$ upper-triangular matrix, $R\mathbf{x} = Q^T\mathbf{b}$.
- http://en.wikipedia.org/wiki/QR_decomposition# Computing_the_QR_decomposition

Singular value decomposition

Definition

A $m \times n (m \ge n)$ matrix A can be represented as $A = UDV^T$ such that

- U is $m \times n$ matrix with orthogonal columns $(U^T U = I_n)$
- lacktriangledown D is $n \times n$ diagonal matrix with non-negative entries
- $lackbox{ }V^T$ is $n \times n$ matrix with orthogonal matrix $(V^TV = VV^T = I_n).$

Computational complexity

- $4m^2n + 8mn^2 + 9m^3$ for computing U, V, and D.
- $4mn^2 + 8n^3$ for computing V and D only.
- The algorithm is numerically very stable
- http:

 $//en.wikipedia.org/wiki/Singular_value_decomposition\#Calculating_the_SVD$

THE book for matrix computations

Golub, Gene; Van Loan, Charles (2012) Matrix Computations, 4th edition.

Linear Regression

Linear model

- $y = X\beta + \epsilon$, where X is $n \times p$ matrix
- Under normality assumption, $y_i \sim N(X_i\beta, \sigma^2)$.

Key inferences under linear model

- Effect size : $\hat{\beta} = (X^T X)^{-1} X^T y$
- Residual variance : $\widehat{\sigma^2} = (\mathbf{y} X\hat{\beta})^T (\mathbf{y} X\hat{\beta})/(n-p)$
- Variance/SE of $\hat{\beta}$: $\widehat{\mathrm{Var}}(\hat{\beta}) = \widehat{\sigma^2}(X^T X)^{-1}$
- p-value for testing $H_0: \beta_i = 0$ or $H_o: R\beta = 0$.

Hands-on Session

Visit https://bit.ly/615top03r

• Implementing linear regression with matrix operations

A case for simple linear regression

A simpler model

- $\mathbf{y} = \beta_0 + \mathbf{x}\beta_1 + \epsilon$
- $X = [1 \ x], \ \beta = [\beta_0 \ \beta_1]^T$.

Question of interest

Can we leverage this simplicity to make a faster inference?

A faster inference with simple linear model

Ingredients for simplification

- $\bullet \ \sigma_y^2 = (\mathbf{y} \overline{y})^T (\mathbf{y} \overline{y}) / (n 1)$
- $\bullet \ \sigma_x^2 = (\mathbf{x} \overline{x})^T (\mathbf{x} \overline{x}) / (n 1)$
- $\bullet \ \sigma_{xy} = (\mathbf{x} \overline{x})^T (\mathbf{y} \overline{y}) / (n 1)$
- $\bullet \ \rho_{xy} = \sigma_{xy} / \sqrt{\sigma_x^2 \sigma_y^2}.$

Making faster inferences

- $\bullet \ \hat{\beta}_1 = \rho_{xy} \sqrt{\sigma_y^2/\sigma_x^2}$
- $SE(\hat{\beta}_1) = \sqrt{\sigma_y^2 (1 \rho_{xy}^2)/(n-2)/\sigma_x^2}$
- $t = \rho_{xy} \sqrt{(n-2)/(1-\rho_{xy}^2)}$ follows t-distribution with d.f. n-2

Hands-on Session

Visit https://bit.ly/615top03r

- Computational efficiency of linear regression
- A faster implementation for simple linear regression

Least square estimates using matrix decompositions

Suppose that we have the following matrix decompositions already computed:

- SVD: $X = UDV^T$
- QR: X = QR
- Cholesky: $A = X^T X = U^T U$

How can we solve linear system $y = X\beta + \epsilon$ efficiently?

Least square estimates using SVD

Note that
$$U^TU = V^TV = I$$
, and $(VDV^T)^{-1} = VD^{-1}V^T$.
$$\begin{aligned} X &= UDV^T \\ \hat{\boldsymbol{\beta}} &= (X^TX)^{-1}X^T\mathbf{y} \\ &= (VDU^TUDV^T)^{-1}VDU^T\mathbf{y} \\ &= (VD^2V^T)^{-1}VDU^T\mathbf{y} \\ &= VD^{-2}V^TVDU^T\mathbf{y} \end{aligned}$$

Would this approach numerically more stable than the naive approach?

Least square estimates using QR decomposition

$$X = QR$$

$$(X^T X)\hat{\boldsymbol{\beta}} = X^T \mathbf{y}$$

$$R^T Q^T QR\hat{\boldsymbol{\beta}} = R^T Q^T \mathbf{y}$$

$$R\hat{\boldsymbol{\beta}} = Q^T \mathbf{y}$$

R is an upper-triangular matrix, so obtaining $\hat{\beta}$ is straightforward.

Least square estimates using Cholesky decomposition

First, define A and b as follows:

$$A = X^T X = U^T U$$

$$\mathbf{b} = X^T \mathbf{y}$$

Then, we have

$$U^T U \hat{\boldsymbol{\beta}} = X^T X \hat{\boldsymbol{\beta}} = \boldsymbol{b}$$

Now, solve the lower/upper triangular systems sequentially:

- $\mathbf{0} \quad U^T \mathbf{z} = \mathbf{b}$
- $\mathbf{Q} \quad U \hat{\boldsymbol{\beta}} = \mathbf{z}$

Hands-on Session

Visit https://bit.ly/615top03r

- Linear regression with SVD
- Linear regression with QR decomposition
- Linear regression with Cholesky decomposition
- Evaluation of different methods

Discussion: Matrix Computation

- Make a group of two or three students.
- Review the linear regression results of different matrix decomposition methods
 - Which method is the fastest and why?
 - What are the advantages and disadvantages of each method?
 - Can you describe specific case where one method is more recommended than others?
- Five minutes
- After discussion, you may raise up your hand and ask your questions directly.

Topic Overview

- 4 Algorithms for matrix computation
- Matrix decomposition and solving linear systems
- Sparse matrices

Sparse Matrices

- Sparse matrix: contain mostly zero values
- Dense matrix: most of the values are non-zero
- Large sparse matrices are common in many applications
 - Text mining and natural language processing
 - Spatial epidemiology
 - Genetics
 - Genomics
 - Imaging
- Computationally expensive to represent and work with sparse matrices as though they are dense
- Much improvement in performance can be achieved by using representations and operations that specifically handle the matrix sparsity.

Sparsity

• **Sparsity** of a matrix: the number of zero values in the matrix divided by the total number of elements in the matrix.

$$Sparsity = \frac{Number of zeros}{Total number of elements}$$

- Examples:
 - A 2×5 matrix:

$$\mathbf{A} = \left(\begin{array}{cccc} 0 & -1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 & -2 \end{array} \right)$$

The sparsity of \mathbf{A} is 0.5.

• A banded matrix $\mathbf{A} = (a_{i,j})_{n \times n}$:

$$a_{i,j} = \left\{ \begin{array}{cc} |i-j| & |i-j| \leq 1 \\ 0 & |i-j| > 1 \end{array} \right.$$

The sparsity of \mathbf{A} is ?

Space complexity

- Large matrix requires a lot of memory, but if the matrix is sparse, we can save memory.
- Examples for large sparse matrices:
 - A word occurrence matrix for words in one book against all known words in English (\approx 273,000).
 - A brain functional connectivity matrix for all voxels in the human brain ($\approx 200,000$).
 - A link matrix for all of websites (≈ 1 billion).
- Memory cost for an $m \times n$ matrix:
 - Dense matrix: O(mn).
 - Sparse matrix with q non-zero elements: O(q), where $q \leq mn$.

Working with Sparse Matrices

- Use a special data structure to represent the sparse matrix.
- The zero values can be ignored and only the data or non-zero values in the sparse matrix need to be stored or acted upon.
- Typical methods to construct a sparse matrix $\mathbf{A} = (a_{i,j})_{m \times n}$.
 - **Dictionary of Keys**: A dictionary is used where a row and column index is mapped to a value. Let $\mathcal{S} = \{(i,j) : a_{i,j} \neq 0\}$,

$$f(i,j) \to \begin{cases} 0 & (i,j) \notin \mathcal{S} \\ a_{i,j} & (i,j) \in \mathcal{S} \end{cases}$$
.

• **List of Lists**: Each row of the matrix is stored as a list, with each sublist containing the column index and the value.

$$\{r(i): a_{i,j} \neq 0, \text{ for at least one } j\}, \quad r(i) = \{(j, a_{i,j}): a_{i,j} \neq 0\}.$$

• Coordinate List (COO): A list of triplets is stored with each triplet containing the row index, column index, and the value.

$$\{(i, j, a_{i,j}) : a_{i,j} \neq 0\}.$$

Compressed row oriented representation

- Compressed row oriented representation, also known as compressed sparse row, or CSR.
- Instead of holding the row of each non-zero entry, the row vector holds the locations in the column vector where a row is increased.
- Example:

$$\mathbf{A} = (a_{i,j}) = \begin{pmatrix} 0 & -1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 & -2 \end{pmatrix}$$

$a_{i,c_k} = v_k$	$u_{i,c_k} = v_k$; for $r_i + 1 \le k \le r_{i+1}, 1 \le i \le m$,			$r_{m+1} = \mathbf{v} $			
	Non-zero index k	1	2	3	4	5	
	Row index <i>i</i>	1	2	-	-	-	
$\mathbf{r} = (r_i)$	Row pointer (0-based)	0	2	5	-	-	
$\mathbf{c} = (c_k)$	Column indices (0-based)	1	2	0	1	4	
$\mathbf{v} = (v_k)$	Non-zero values	-1	1	-1_	-1_	-2_	

Compressed column oriented representation

- Compressed column oriented representation, also known as compressed sparse column, or CSC.
- The column vector holds the locations in the row vector where a column is increased.
- Example:

$$\mathbf{A} = (a_{i,j}) = \begin{pmatrix} 0 & -1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 & -2 \end{pmatrix}$$

$$a_{r_k,j} = v_k$$
; for $c_j + 1 \le k \le c_{j+1}, 1 \le j \le n$, $c_{n+1} = |\mathbf{v}|$.

	Non-zero index k	1	2	3	4	5	
	Column index j	1	2	3	4	5	6
$\mathbf{c} = (c_j)$	Column pointer (0-based)	0	1	3	4	4	5
$\mathbf{r} = (r_k)$	Row indices (0-based)	1	0	1	0	1	
$\mathbf{v} = (v_k)$	Non-zero values	-1	-1	-1	1_	-2_	- 00

Triplet representation

- Triplet representation, holds the locations of row and column indices of nonzero elements.
- Example:

$$\mathbf{A} = (a_{i,j}) = \begin{pmatrix} 0 & -1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 & -2 \end{pmatrix}$$

No particular order of indices is required.

Easiest-to-understand, but could be less efficient than other formats.

Torrides.	Non-zero index k	1	2	3	4	5
	Column index j	1	2	3	4	5
$\mathbf{c} = (r_k)$	Row indices (0-based)	1	0	1	0	1
$\mathbf{r} = (c_k)$	Column indices (0-based)	0	1	1	2	4
$\mathbf{v} = (v_k)$	Non-zero values	-1	-1	-1	1	-2

The "Matrix" Package

- The Matrix package provides facilities to deal with dense and sparse matrices.
- There are provisions to provide integer and complex (stored as double precision complex) matrices.
- The sparse matrix classes include:
 - TsparseMatrix: a virtual class of the various sparse matrices in triplet representation.
 - CsparseMatrix: a virtual class of the various sparse matrices in CSC representation.
 - RsparseMatrix: a virtual class of the various sparse matrices in CSR representation.

Double precision sparse matrix classes

- For matrices of real numbers, stored in double precision, the Matrix package provides the following (non virtual) classes:
 - dgTMatrix: a general sparse matrix of doubles, in triplet representation.
 - dgCMatrix: a general sparse matrix of doubles, in CSC representation.
 - dscMatrix: a symmetric sparse matrix of doubles, in CSC representation.
 - dtcMatrix: a triangular sparse matrix of doubles, in CSC representation.

Hands-on Session

Visit https://bit.ly/615top03r

- Using Matrix R package to handle sparse matrices
- Memory cost for sparse matrices.
- Compute cost for sparse matrices
- Solving linear systems with sparse matrix
- Real-world examples of sparse matrices

Discussion

• Consider a linear regression model, for i = 1, ..., n,

$$y_i = \beta_0 + \sum_{j=1}^p \beta_j X_{i,j} + \epsilon_i, \quad \mathbf{E}(\epsilon_i) = 0, \quad \mathbf{Var}(\epsilon_i) = \sigma^2.$$

where $n=10^6$, $p=10^3$, and $X_{i,j} \in \{0,1,2,\ldots,10\}$. Suppose we know that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} I(X_{i,j} \neq 3) \le 10^{3}$$

• Design and implement an algorithm in R to efficiently estimate the β_j , for $j=0,\ldots,p$?

