Part 1 Review Homework 8.0

ARoC6.tex

Exercise 1 Let $f(x) = \frac{1}{x^2}$.

(a) Compute $AV_{[2,4]}$.

$$AV_{[2,4]} = \boxed{-\frac{3}{16}}.$$

(b) Compute $AV_{[100,101]}$.

$$AV_{[100,101]} = \boxed{-\frac{201}{102010000}}$$

ARoC7.tex

Exercise 2 Let $f(x) = x^4$.

(a) Compute $AV_{[1,3]}$.

$$AV_{[1,3]} = 80$$

BNF1.tex

Exercise 3 Let f be a function defined by $f(x) = 2x^2$ and g be a function defined by g(x) = 5 - 3x. Use the pair of functions f and g to find the following values, if they exist. If the value does not exist, enter DNE.

- (a) $(f+g)(2) = \boxed{7}$
- (b) (f-g)(-1) = 6
- (c) $(g-f)(1) = \boxed{0}$
- (d) $(f \cdot g) \left(\frac{1}{2}\right) = \boxed{\frac{7}{4}}$
- (e) $\left(\frac{f}{g}\right)(0) = \boxed{0}$

2

(f) $\left(\frac{g}{f}\right)(-2) = \boxed{\frac{11}{8}}$

CoF8.tex

Use the given pair of functions to find and simplify expressions for the following functions and state the domain of each using interval notation.

Exercise 4 For $f(x) = 3x^2 - 2x + 7$ and g(x) = -x + 3

- $(g \circ f)(x) = \boxed{-3x^2 + 2x 4}$ with domain $(\boxed{-\infty}, \boxed{\infty})$
- $(f \circ g)(x) = 3x^2 20x + 28$ with domain $(-\infty, \infty)$
- $(f \circ f)(x) = 27x^4 36x^3 + 132x^2 74x + 140$ with domain $(-\infty, \infty)$

Exercise 5 For $f(x) = x^2 - 9$ and g(x) = |x|

- $(g \circ f)(x) = [x^2 9]$ with domain $(-\infty, \infty)$
- $(f \circ g)(x) = x^2 9$ with domain $(-\infty, \infty)$
- $(f \circ f)(x) = x^4 18x^2 + 72$ with domain $(-\infty, \infty)$

Exercise 6 For f(x) = 4x + 3 and $g(x) = -\sqrt{x}$

- $(g \circ f)(x) = \boxed{-\sqrt{4x+3}}$ with domain $\boxed{-\frac{3}{4}}, \boxed{\infty}$
- $(f \circ g)(x) = \boxed{-4\sqrt{x} + 3}$ with domain $\boxed{0}, \boxed{\infty}$
- $(f \circ f)(x) = \boxed{16x + 15}$ with domain $(-\infty)$, $\boxed{\infty}$

Exercise 7 For f(x) = |x| and $g(x) = \sqrt{9-x}$

• $(g \circ f)(x) = \sqrt{9 - |x|}$ with domain [-9], [9]

- $(f \circ g)(x) = \boxed{|\sqrt{9-x}|}$ with domain $(\boxed{-\infty}, \boxed{9}]$
- $(f \circ f)(x) = [|x|]$ with domain $(-\infty, \infty)$

D3.tex

Exercise 8 Use the graph of y = f(x) and the table for g(x) below to find the requested function values.

\boldsymbol{x}	g(x)
0	0
1	3
2	3
3	0
4	4

$$(f+g)(2) = \boxed{6}$$

$$(g-f)(1) = \boxed{1}$$

$$\left(\frac{f}{g}\right)(2) = \boxed{1}$$

$$\left(\frac{g}{f}\right)(3) = \boxed{0}$$

CiT2.tex

Exercise 9 For each of the situations below, pick the graph that most reasonably reflects the situation and the variables involved.

(a) A girl takes a ride on a Ferris wheel. \boxed{B}

(b) A child climbs up to the top of a slide and then slides down it: \Box

(c) A bus drives into the bus station and drops off its passengers: B

EF6.tex

Exercise 10 A population has 5000 people at time t=0, where t is measured in years.

Exercise 10.1 If the population increases by 200 people by year, the population P(t) after t years equals P(t) = 5000 + 200t.

Exercise 10.2 If the population increases by 7% by year, the population P(t) after t years equals $P(t) = 5000(1.07)^t$.

Exercise 11 Let's say the cost of renting a scooter is as follows: \$1 to unlock the scooter, and then \$0.20 for each minute you have travelled. Fill the following table with prices in terms of time:

minutes	Price
0	\$1
5	\$ 2
10	\$3
15	\$ 4
20	\$ 5

Exercise 11.1 What does seem more adequate to model this situation?

Multiple Choice:

- (a) A linear function \checkmark
- (b) An exponential function

Exercise 11.1.1 Find a linear formula for the fare f paid in terms of the amount m of miles travelled. Answer: $f(m) = \boxed{0.2 \, m + \boxed{1}}$.

FP1.tex

Exercise 12 Let f be a function defined as follows.

$$f(x) = \begin{cases} -x, & x < 0 \\ x^2, & x \ge 0 \end{cases}$$

Exercise 12.1 (a) Compute f(1).

$$f(1) = \boxed{1}$$

(b) Compute f(-1).

$$f(-1) = \boxed{-1}$$

(c) The calculations in parts (a) and (b) above show that f is
Multiple Choice:
(i) neither even nor odd.
(ii) even but not odd.
(iii) odd but not even.
(iv) both even and odd.
(v) not odd, but f may not be even.
(vi) not even, but f may not be odd. \checkmark
Exercise 12.2 (a) Compute $f(3)$. $f(3) = \boxed{9}$
(b) Compute $f(-3)$.
$f(-3) = \boxed{3}$
(c) The calculations in parts (a) and (b) above show that f is
Multiple Choice:
(i) neither even nor odd. \checkmark
(ii) even, but not odd.
(iii) odd, but not even.
(iv) both even and odd.
(v) The calculations do not say anything about whether f is even or odd
LE5.tex
Exercise 13 A particular car is known to have a fuel efficiency of 23 miles/gallon (mpg).

(a) If this car is driven 23 miles, it uses $\boxed{1}$ gallons of fuel.

(b) If this car is driven 115 miles, it uses $\boxed{5}$ gallons of fuel.

- (c) Call x the number of miles driven and y the gallons of fuel used. Then x and y have a linear relationship.
 - (i) The slope of this linear relationship is 1/23 gallons/mile.
 - (ii) The equation of this line in slope-intercept form is given by y = (1/23) * x + 0.

LM5.tex

Exercise 14 A shoe salesperson is paid \$250 per week plus 3% commission on her weekly sales of x dollars.

- (a) A linear function that represents her total weekly pay, W (in dollars) in terms of x is $W(x) = \boxed{.03x + 250}$.
- (b) In order for her to earn \$445 for the week, her weekly sales must be \$\) 6500.
- (c) The drapery department at her store has an open sales position that only pays \$200 per week, but pays out 5% commission on sales. What is the minimum amount of sales she would have to sell in a week to make more money at the drapery sales job than the shoe sales job? \$\frac{2500}{2500}\$

LOG2.tex

Exercise 15 Which of the following equations or statements are equivalent to $log_57 = x$

Select All Correct Answers:

- (a) 5 to what power is 7? \checkmark
- (b) $7^x = 5$
- (c) 7 to what power is 5?
- (d) $5^x = 7 \checkmark$
- (e) $5^7 = x$
- (f) $\log 5^x = \log 7$ \checkmark
- (g) $log_7 5 = x$

LOG5.tex

Exercise 16 Evaluate the following logarithmic expressions.

$$\log_b b^{\frac{7}{9}} = \boxed{\frac{7}{9}}$$

$$\log_{b^3} b^{\frac{3}{4}} = \boxed{\frac{1}{4}}$$

$$\log_{b^{\frac{2}{3}}} b^{\frac{8}{3}} = \boxed{4}$$

POLY2.tex

Exercise 17 For $g(x) = \frac{1}{2}(x+2)^2 - 7$, determine the following properties:

Exercise 17.1 Does the graph open upwards or downwards?

Multiple Choice:

- (a) upward ✓
- (b) downward

Exercise 17.2 *Identify the vertex:*

$$(-2, -7)$$

Exercise 17.3 Determine the x-intercepts

smaller x-intercept larger x intercept

$$(-2-\sqrt{14}],0)$$
 $(-2+\sqrt{14}],0)$

Exercise 17.4 Determine the y-intercepts

$$(0, -5)$$

Exercise 17.5 Determine the maximum or minimum value of the function.

Multiple Choice:

- (a) maximum
- (b) minimum ✓

Max or Min Value: $\boxed{-7}$

R1.tex

In each part, an invertible function f will be defined. For each function, find its inverse.

Exercise 18 f(x) = 4x - 7

$$f^{-1}(x) = \boxed{\frac{x+7}{4}}$$

Exercise 19 $f(x) = \frac{x+2}{9} - 1$

$$f^{-1}(x) = \boxed{9(x+1) - 2}$$

Exercise 20 $f(x) = \sqrt[3]{x+4} - 7$

$$f^{-1}(x) = \boxed{(x+7)^3 - 4}$$

ZoF10.tex

Exercise 21 Feel free to use Desmos or another graphing calculator for the following problems.

- (a) Let f be a function defined by $f(x) = e^x 1$. The function f has $\boxed{1}$ zero(s).
- (b) Let g be a function defined by $g(x) = e^x + 1$. The function g has $\boxed{0}$ zero(s).
- (c) Let h be a function defined by $h(x) = x^3 4x^2 + x 6$. The function g has 3 zero(s).

ZoFF4.tex

Exercise 22 The following is a rational function.

$$g(x) = \frac{1}{x+5} + \frac{1}{x-5} + \frac{x^2 - 35}{x^2 - 25}.$$

How many zeros does this function have? 1

Exercise 22.1 It is at $x = \boxed{-7}$.

Exercise 22.1.1 Why is x = 5 NOT a zero of g?

Multiple Choice:

- (a) Because g(5) is a nonzero number.
- (b) Because g(5) = 0.
- (c) Because x = 5 is not in the domain of g. \checkmark

Hint: Make sure to check your possible solutions are actually solutions.

Exercise 23 The following is a rational function.

$$h(x) = 1 - \frac{x^2 - 2x + 1}{x^3 + x^2 - 2x}.$$

How many zeros does this function have? 0

ZOP5.tex

Exercise 24 Find the zeros of the following function.

$$z(x) = 7x(3x - 2)(x + 8)(x - \sqrt{7})(x + \sqrt{7})$$

Enter the x values from smallest to largest

$$x_1 = \boxed{-8}$$
 $x_2 = \boxed{-\sqrt{7}}$ $x_3 = \boxed{0}$ $x_4 = \boxed{\frac{2}{3}}$ $x_5 = \boxed{\sqrt{7}}$