

Dynamic System Modeling for Threat Analysis

Tithnara N. SUN, Ciprian TEODOROV, Joël CHAMPEAU & Philippe DHAUSSY ENSTA Bretagne, 2018

tithnara.sun@ensta-bretagne.org, ciprian.teodorov@ensta-bretagne.fr, joel.champeau@ensta-bretagne.fr, philippe.dhaussy@ensta-bretagne.fr

analysis. Exhibit the system, attack surface and critical resources.

Gather **information** relevant for the defined scope.

Correlate the gathered pieces of information to **identify** the threats, vulnerabilities and potential attacks.

Make intelligence decisions and take action against threats.

-Dynamic Attack-Defense Model-

How to model and build a dynamic simulation of a running system in a cyber security context *i.e.* in an environment where **threat actors** evolve?

Attack Surface Reification

identification Concepts and description. Relevant structures and abstractions choices.

Dynamic Model

Lifecycle of the system. Temporal dimension, interactive system and evolving attackers and defenders.

Implementation & Simulation

Runnable and user-friendly simulation. Compatibility with other security tools.

First Model

Actors: Attacker or defender of the system. Interactions with the system through an evolving point of view and action range.

Point of view: Potentially altered view on the system.

Action range: Actor's interactions with the system (modification, insertion, de-

letion).

Research Directions

Cyber Threat Intelligence Cyber-related vocabulary **Operational Design**

Military operation planning **Embedded Systems**

Cyber physical system modeling

Attack Trees

Step-by-step attack modeling **Model-Checking** Formal verification method **Game Theory**

Multiplayer scenarii modeling

Temporal Graphs

Evolving data structure

Automata

Conditional state-machines

Composite Structure

Both textual and graphical