פרויקט - מתמטיקה בדידה - שחר פרץ - שיעורי בית 7, תרגיל 1.ב

מידע כללי

תאריך הגשה: 20.1.2024

השאלה

תהי פונקציה $f:A \to B$, ויהי $X\subseteq A$, נגדיר את הצמצום של f ל־X בתור פונקציה $f:A \to B$ המקיימת $\forall x \in X$, נגדיר את הערגיל בית 6, גם ניתנו ההגדרות השקולות הבאות:

$$f|_X := f \cap (X \times B) = \{ \langle a, b \rangle \in f \mid a \in X \}$$

יהיו $A, B, C \neq \emptyset$ יהיו

$$H: ((B \cup C) \to A) \to ((B \to A) \times (C \to A)) \tag{1}$$

$$H = \lambda h \in (B \cup C) \to A.\langle h|_B, h|_C \rangle \tag{2}$$

(B o A) imes (C o A) על על H־ש לכך שA, B, C צ.ל. תנאי הכרחי ומספיק על

מה לא נכון בהוכחה שנתתי בשיעורי הבית

על. $B \cap C = \emptyset$ אמ"מ אמ"מ על.

במהלך הגרירה השנייה, הייתי צריך להוכיח ש־H על גורר $\emptyset = C = \emptyset$ (שבדיעבד אינו נכון). שיטת ה"הוכחה" שנקטתי בה הייתה הנחה בשלילה; הנחתי בשלילה ש־H על, ו"הוכחתי" שנגרר $\emptyset = C = \emptyset$, אך זו אינה אפילו שיטה להוכחת גרירה – סה"כ כל מה שהוכחתי באמת הוא ש־H לא על. גישה נכונה, הייתה, לדוגמה, להניח ש"H על ולהוכיח את אשר נדרש ממני, ואז, דוגמה, להניח בשלילה ש־ $H \cap C = \emptyset$ (ולא ההפך) ולהראות שתחת ההנחה, זאת מוביל לסתירה (אבל כמובן שזה אינו אפשרי).

הוכחה מתוקנת

. נוכיח שתי גרירות שתי Hעל. נוכיח שתי גרירות ($B\cap C=\emptyset \lor |A|=1)$

- נניח $(f_1,f_2)\in (B o A) imes (C o A)$ על, כלומר, יהי $(A,f_1,f_2)\in (B o A)$, נוכיח קיום $(A,f_1,f_2)\in (B o A)$ נכיח $(A,f_1,f_2)\in (B o A)$ נפלג למקרים.
 - $:H(h)=\langle f_1,f_2
 angle$ נניח ש־h פונ', המקיימת ($h=f_1\cup f_2$ נבחר ב $B\cap C=\emptyset$ נניח \circ
 - פונ': נוכיח מליאות וחד ערכיות; h
- $x\in B$ מליאות ב־ $B\cup C$ יהי $B\cup C$ יהי $x\in B\cup C$ מניח קיום $y\in A$ כך ש־ $y\in A$ נוכיח קיום $x\in B\cup C$ יהי י $y=f_2(x)$ ואם $y=f_2(x)$ ואם $y\in C$ באופן דומה נבחר $y=f_2(x)$ כך ש־ $y=f_1(x)\in B$, נבחר

- ים וניח $y_1=y_2$ נוכיח $(x,y_1)\in h \land (x,y_2)\in h$ כך ש־ $(x,y_1)\in h \land (x,y_2)\in h$ נוכיח בשלילה שלא כן. נפצל למקרים:
 - $y_1=y_2$ אם f_1 'ם אם ב־ f_1 , ומשום ש־ f_1 אם $\langle x,y_1
 angle,\langle x,y_2
 angle
 otin f_2$ אם $x\in B\setminus C$ אם $x\in B\setminus C$
 - $y_1=y_2$ אם f_1 ח"ע אז f_1 ולכן הם ב־ f_2 , ומשום ש־ f_1 אם $x\in C\setminus B$ אם $(x,y_1),(x,y_2)
 ot\in S$
 - . אם $x \in \emptyset$ אז אז $x \in C \cap B$ אם אם $x \in \emptyset$
 - בכלל שצ.ל.: נשתמש בכלל lpha וכלל lpha של תחשיב למדא, נקבל שצ.ל.: $H(h) = \langle f_1, f_2 \rangle$

$$\langle (f_1 \cup f_2)|_B, (f_1 \cup f_2)|_C \rangle = \langle f_1, f_2 \rangle$$

ובהתחשב בזה שהתחומים של f_1 ו־ f_2 הם A,B בהתאמה שהן קבוצות זרות, ובהתאם להגדרה השקולה של הצמצום המופיע לעיל, זהו פסוק אמת.

- $h=\lambda x\in B\cup C.a$ נביח $f_2\colon C\to A$ נביח $f_1\colon B\to A$ ידוע $A=\{a\}$ נכיח $a\in A$ נביח $a\in A$, ונשאר להוכיח $A=\{a\}$, ידוע $A=\{a\}$, משום שאין שום הגבלה על $a\in A$ או לפי הגדרה, $a\in A$ ונשאר להוכיח $a\in A$, ונשאר להוכיח $a\in A$, ונשאר להוכיח $a\in A$, מוכיח בה"כ $a\in A$, משום ש"ב $a\in A$, משום ש"ב $a\in A$, אזי $a\in A$, א
- יהי $f_1\subseteq h|_B$ יהי $f_1\subseteq h$, ולפי כלל f_1 , ולפי כלל f_1 , ולפי $f_1\subseteq h|_B$ יהי $f_1\subseteq h|_B$ יהי והטענה $f_1\subseteq h|_B$ ההפרדה, צ.ל. $f_1\subseteq h$, הטענה $f_1\subseteq h$. הטענה $f_2\subseteq h$ נכונה כי $f_1\subseteq h|_B$ יהי שקול לכך ש $f_2\subseteq h$ לפי כלל $f_3\subseteq h$.
- ולפי $\langle x,y \rangle \in h \land x \in B$ יהי $h|_B \subseteq f_1$ יהי $\langle x,y \rangle \in h$, נוכיח $\langle x,y \rangle \in h_B$, נוכיח $h|_B \subseteq f_1$ יהי $h|_B \subseteq f_1$ יהי $h|_B \subseteq f_1$ ובאופן שקול $h|_B \subseteq f_B$ שלפי כלל $h|_B$ בכיוון ההפוך כלל $h|_B$ סה"כ $h|_B \subseteq f_B$ ובאופן שקול $h|_B \subseteq f_B$ שלפי כלל $h|_B$ בכיוון ההפוך כלל $h|_B \subseteq f_B$ טה"כ $h|_B \subseteq f_B$ שלפי כלל $h|_B \subseteq f_B$ בכיוון ההפוך $h|_B \subseteq f_B$ בכיוון ההפוך $h|_B \subseteq f_B$ יהי

 $\mathscr{Q}.\mathscr{E}.\mathscr{F}.$ סה"כ $B\cap C=\emptyset \lor |A|=1$ סה"כ

נניח H על, נוכיח $B\cap C=\emptyset \lor |A|=1$ וגם $B\cap C=\emptyset \lor |A|=1$ וגם $B\cap C=\emptyset \lor |A|=1$ (לפי נניח $B\cap C=\emptyset \lor |A|=1$ וגם $B\cap C=\emptyset \lor |A|=1$ וגם ישנו לפחות איבר חוקי דה־מורגן על לוגיקה). ידוע $A,B,C\neq\emptyset$, ולכן $A,B,C\neq\emptyset$, ולכן $A,B,C\neq\emptyset$ ווהי ידוע $A,B,C\neq\emptyset$ (ויהי ידוע $A,B,C\neq\emptyset$). כדי להראות דוגמה נגדית להנחת השלילה, נתבונן בנתון על היות $A,C=\emptyset \lor \emptyset$ (ויהי $A,C=\emptyset \lor \emptyset$). כדי להראות דוגמה נגדית להנחת השלילה, נתבונן בנתון על היות $A,C=\emptyset \lor \emptyset$ (וור) אונסיק שלכל $A,C=\emptyset \lor \emptyset$ וור) איברים ב־ $A,C=\emptyset \lor \emptyset$ (וור) אונסיק שנעדר מההוכחה הקודמת]. מתוך כלל $A,C=\emptyset \lor \emptyset$ על הטענה $A,C=\emptyset \lor \emptyset$ (שוויון בין פונקציות, נסיק $A,C=\emptyset \lor \emptyset$). מון הנתון $A,C=\emptyset \lor \emptyset$ מון ההפרדה נסיף אונסיף אונסיף אונסיף ולכן לפי הגדרת $A,C=\emptyset \lor \emptyset$ אונה פונקציה, שהינה סתירה $A,C=\emptyset \lor \emptyset$ (אונסיף ובפרט $A,C=\emptyset \lor \emptyset$). ולכן לפי הגדרה $A,C=\emptyset \lor \emptyset$ אונה פונקציה, שהינה $A,C=\emptyset \lor \emptyset$ (אונסיף ובפרט $A,C=\emptyset \lor \emptyset$).

Q.E.D. ■