$12n_{0688} \ (K12n_{0688})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -1.45733 \times 10^{20} u^{26} - 2.14063 \times 10^{20} u^{25} + \dots + 3.64969 \times 10^{20} b + 1.19460 \times 10^{21}, \\ &- 4.51116 \times 10^{20} u^{26} - 7.95319 \times 10^{20} u^{25} + \dots + 3.64969 \times 10^{20} a + 5.99946 \times 10^{21}, \\ &u^{27} + 2u^{26} + \dots - 12u - 4 \rangle \\ I_2^u &= \langle b - u + 1, \ -u^2 + a + 3, \ u^3 - u^2 - 2u + 1 \rangle \\ I_3^u &= \langle -au + b + 1, \ 2a^2 + au + 2a - 2u - 3, \ u^2 - 2 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 36 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -1.46 \times 10^{20} u^{26} - 2.14 \times 10^{20} u^{25} + \dots + 3.65 \times 10^{20} b + 1.19 \times 10^{21}, \ -4.51 \times 10^{20} u^{26} - 7.95 \times 10^{20} u^{25} + \dots + 3.65 \times 10^{20} a + 6.00 \times 10^{21}, \ u^{27} + 2u^{26} + \dots - 12u - 4 \rangle$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1.23604u^{26} + 2.17914u^{25} + \dots + 8.25237u - 16.4383 \\ 0.399304u^{26} + 0.586525u^{25} + \dots - 3.39246u - 3.27317 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.738918u^{26} + 1.22294u^{25} + \dots + 2.14974u - 8.57454 \\ 0.353041u^{26} + 0.631631u^{25} + \dots - 2.16585u - 3.44416 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.175121u^{26} + 0.148966u^{25} + \dots - 7.10327u + 0.964438 \\ 0.560998u^{26} + 0.740275u^{25} + \dots - 2.78768u - 4.16594 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1.66235u^{26} + 2.73772u^{25} + \dots + 6.10273u - 20.0632 \\ 0.563386u^{26} + 0.613561u^{25} + \dots - 4.52635u - 3.30149 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.670706u^{26} + 1.16883u^{25} + \dots + 9.64782u - 9.46907 \\ -0.635285u^{26} - 0.677229u^{25} + \dots + 4.25702u + 3.47590 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.0973141u^{26} + 0.0651568u^{25} + \dots + 7.52379u - 2.64979 \\ -0.591878u^{26} - 0.655073u^{25} + \dots + 3.31129u + 3.50017 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4	$u^{27} - 7u^{26} + \dots - 9u - 1$
c_3, c_7	$u^{27} - 2u^{26} + \dots - 52u + 8$
c_5, c_6, c_9 c_{10}	$u^{27} - 2u^{26} + \dots - 12u + 4$
c_8, c_{11}, c_{12}	$u^{27} + 4u^{26} + \dots - 57u - 9$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$y^{27} - 15y^{26} + \dots + 103y - 1$
c_3, c_7	$y^{27} + 12y^{26} + \dots + 3920y - 64$
c_5, c_6, c_9 c_{10}	$y^{27} - 24y^{26} + \dots + 432y - 16$
c_8, c_{11}, c_{12}	$y^{27} - 10y^{26} + \dots + 1179y - 81$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.103210 + 1.061510I		
a = 0.243591 + 1.283730I	5.33632 - 0.36665I	-12.32525 - 0.05039I
b = 0.314942 + 0.159811I		
u = -0.103210 - 1.061510I		
a = 0.243591 - 1.283730I	5.33632 + 0.36665I	-12.32525 + 0.05039I
b = 0.314942 - 0.159811I		
u = -0.903239 + 0.167691I		
a = -1.45135 - 0.68497I	-3.12027 + 0.78467I	-18.4367 - 3.3729I
b = -0.485625 - 0.865359I		
u = -0.903239 - 0.167691I		
a = -1.45135 + 0.68497I	-3.12027 - 0.78467I	-18.4367 + 3.3729I
b = -0.485625 + 0.865359I		
u = 0.337221 + 1.048840I		
a = 0.052763 - 1.351640I	3.59374 - 7.31725I	-14.7365 + 5.0472I
b = 0.215415 - 0.194118I		
u = 0.337221 - 1.048840I		
a = 0.052763 + 1.351640I	3.59374 + 7.31725I	-14.7365 - 5.0472I
b = 0.215415 + 0.194118I		
u = 1.104930 + 0.368271I		
a = -0.268980 + 0.135914I	-3.05220 - 3.96537I	-17.7910 + 4.2991I
b = 0.714285 - 1.043610I		
u = 1.104930 - 0.368271I		
a = -0.268980 - 0.135914I	-3.05220 + 3.96537I	-17.7910 - 4.2991I
b = 0.714285 + 1.043610I		
u = 1.020210 + 0.720557I		
a = 0.780740 - 0.476181I	1.52420 + 1.21028I	-14.6857 - 1.0471I
b = 1.045480 - 0.589623I		
u = 1.020210 - 0.720557I		
a = 0.780740 + 0.476181I	1.52420 - 1.21028I	-14.6857 + 1.0471I
b = 1.045480 + 0.589623I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.33719		
a = 0.790731	-14.1221	-16.5250
b = -0.340332		
u = -1.374500 + 0.240422I		
a = -0.496066 - 0.228689I	-6.49373 + 0.53770I	-14.7868 - 0.8041I
b = -1.169080 - 0.741326I		
u = -1.374500 - 0.240422I		
a = -0.496066 + 0.228689I	-6.49373 - 0.53770I	-14.7868 + 0.8041I
b = -1.169080 + 0.741326I		
u = 1.40105		
a = -11.6087	-8.19904	-208.640
b = -22.6375		
u = -1.295330 + 0.551421I		
a = 0.862994 + 0.773421I	1.64132 + 6.06050I	-15.3648 - 4.1353I
b = 1.25669 + 1.17478I		
u = -1.295330 - 0.551421I		
a = 0.862994 - 0.773421I	1.64132 - 6.06050I	-15.3648 + 4.1353I
b = 1.25669 - 1.17478I		
u = 0.279491 + 0.475963I		
a = 0.278696 - 0.748546I	-0.648673 + 0.468512I	-12.96489 + 0.08688I
b = -0.794845 + 0.094176I		
u = 0.279491 - 0.475963I		
a = 0.278696 + 0.748546I	-0.648673 - 0.468512I	-12.96489 - 0.08688I
b = -0.794845 - 0.094176I		
u = -1.45969		
a = -1.05208	-6.73578	-12.1710
b = -1.81866		
u = 1.44790 + 0.52184I		
a = -0.710802 + 0.417384I	0.46040 - 5.31882I	-15.6377 + 3.3723I
b = -1.42465 + 1.21712I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.44790 - 0.52184I		
a = -0.710802 - 0.417384I	0.46040 + 5.31882I	-15.6377 - 3.3723I
b = -1.42465 - 1.21712I		
u = -0.459185		
a = 1.01896	-10.8656	-30.2970
b = 1.69587		
u = -1.51780 + 0.43184I		
a = -0.849204 - 0.755740I	-2.32586 + 12.67780I	-18.7053 - 6.5054I
b = -1.65455 - 1.79207I		
u = -1.51780 - 0.43184I		
a = -0.849204 + 0.755740I	-2.32586 - 12.67780I	-18.7053 + 6.5054I
b = -1.65455 + 1.79207I		
u = 0.379857		
a = 0.653894	-0.575852	-17.0320
b = -0.255787		
u = -0.278308		
a = -8.72003	-2.85525	-50.3790
b = -0.183695		
u = 1.76214		
a = 0.0324794	-19.5641	-33.0880
b = -0.496020		

II.
$$I_2^u = \langle b-u+1, \ -u^2+a+3, \ u^3-u^2-2u+1 \rangle$$

a₁ Are colorings
$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} - 3 \\ u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u^{2} - 4 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} - 3 \\ u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} - 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^2 + 4u 16$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_7	u^3
C4	$(u+1)^3$
c_5, c_6, c_8	$u^3 - u^2 - 2u + 1$
$c_9, c_{10}, c_{11} \\ c_{12}$	$u^3 + u^2 - 2u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_7	y^3
c_5, c_6, c_8 c_9, c_{10}, c_{11} c_{12}	$y^3 - 5y^2 + 6y - 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.24698		
a = -1.44504	-7.98968	-19.4330
b = -2.24698		
u = 0.445042		
a = -2.80194	-2.34991	-14.0220
b = -0.554958		
u = 1.80194		
a = 0.246980	-19.2692	-5.54530
b = 0.801938		

III.
$$I_3^u = \langle -au + b + 1, \ 2a^2 + au + 2a - 2u - 3, \ u^2 - 2 \rangle$$

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a\\au-1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u\\-au+2a-u+2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}u\\-au+2a+2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1\\-2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} au-a-1\\3au-4a-3 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -au+2a-\frac{1}{2}u\\-3au+6a-u+2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}u\\-au+2a-u+2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0\\-u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -24

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7	$(u^2+u-1)^2$
c_3, c_4	$(u^2 - u - 1)^2$
c_5, c_6, c_9 c_{10}	$(u^2-2)^2$
c_8	$(u+1)^4$
c_{11}, c_{12}	$(u-1)^4$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7	$(y^2 - 3y + 1)^2$
c_5, c_6, c_9 c_{10}	$(y-2)^4$
c_8, c_{11}, c_{12}	$(y-1)^4$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.41421		
a = 1.05505	-15.4624	-24.0000
b = 0.492066		
u = 1.41421		
a = -2.76216	-7.56670	-24.0000
b = -4.90628		
u = -1.41421		
a = -0.473911	-7.56670	-24.0000
b = -0.329788		
u = -1.41421		
a = 0.181018	-15.4624	-24.0000
b = -1.25600		

IV.
$$I_1^v = \langle a, \ b - v - 2, \ v^2 + 3v + 1 \rangle$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ v+2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ v+3 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} v-1 \\ -v-3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} v+2 \\ v+2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -v-2 \\ -v-3 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ -v-3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3	$u^2 + u - 1$
c_4, c_7	$u^2 - u - 1$
c_5, c_6, c_9 c_{10}	u^2
c_8	$(u-1)^2$
c_{11}, c_{12}	$(u+1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7	$y^2 - 3y + 1$
c_5, c_6, c_9 c_{10}	y^2
c_8, c_{11}, c_{12}	$(y-1)^2$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.381966		
a = 0	-10.5276	-6.00000
b = 1.61803		
v = -2.61803		
a = 0	-2.63189	-6.00000
b = -0.618034		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2	$((u-1)^3)(u^2+u-1)^3(u^{27}-7u^{26}+\cdots-9u-1)$
c_3	$u^{3}(u^{2}-u-1)^{2}(u^{2}+u-1)(u^{27}-2u^{26}+\cdots-52u+8)$
C4	$((u+1)^3)(u^2-u-1)^3(u^{27}-7u^{26}+\cdots-9u-1)$
c_5, c_6	$u^{2}(u^{2}-2)^{2}(u^{3}-u^{2}-2u+1)(u^{27}-2u^{26}+\cdots-12u+4)$
<i>c</i> ₇	$u^{3}(u^{2}-u-1)(u^{2}+u-1)^{2}(u^{27}-2u^{26}+\cdots-52u+8)$
<i>C</i> ₈	$((u-1)^2)(u+1)^4(u^3-u^2-2u+1)(u^{27}+4u^{26}+\cdots-57u-9)$
c_{9}, c_{10}	$u^{2}(u^{2}-2)^{2}(u^{3}+u^{2}-2u-1)(u^{27}-2u^{26}+\cdots-12u+4)$
c_{11}, c_{12}	$((u-1)^4)(u+1)^2(u^3+u^2-2u-1)(u^{27}+4u^{26}+\cdots-57u-9)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$((y-1)^3)(y^2-3y+1)^3(y^{27}-15y^{26}+\cdots+103y-1)$
c_3, c_7	$y^{3}(y^{2} - 3y + 1)^{3}(y^{27} + 12y^{26} + \dots + 3920y - 64)$
$c_5, c_6, c_9 \ c_{10}$	$y^{2}(y-2)^{4}(y^{3}-5y^{2}+6y-1)(y^{27}-24y^{26}+\cdots+432y-16)$
c_8, c_{11}, c_{12}	$((y-1)^6)(y^3 - 5y^2 + 6y - 1)(y^{27} - 10y^{26} + \dots + 1179y - 81)$