GOML2: ML in Go

Because...why not

Today

- Classification trees
- Bias vs variance
- Cost-Complexity pruning
- Project timeline for GOML2

Some data - let's suppose our tree was trained on this data

Furry?	Length	Class
X	3.0 ft	snek
V	0.4 ft	mouse
V	2.1 ft	dog
X	2.4 ft	snek
V	3.0 ft	dog
V	0.5 ft	dog
V	0.6 ft	mouse

There are data points that are classified incorrectly

Furry?	Length	Class
Х	3.0 ft	snek
V	0.4 ft	mouse
V	2.1 ft	dog
Х	2.4 ft	snek
V	3.0 ft	dog
V	0.5 ft	dog
V	0.6 ft	mouse

!!!

!!!!

We could build a tree like this to get all of the data points:

Furry?	Length	Class
X	3.0 ft	snek
V	0.4 ft	mouse
V	2.1 ft	dog
Х	2.4 ft	snek
V	3.0 ft	dog
V	0.5 ft	dog
V	0.6 ft	mouse

How to do this with GOML2... Sorry, not as pretty 😔

Bias vs variance

In most circumstances we want *some* error in our model to help decrease variance.

Pruning

By removing steps we fix the bias (which is already low) and decrease variance

The best tree is the one that solves minimization problem:

$$R_{\alpha}(T) = R(T) + \alpha |f(T)|$$

R(T) training error

α hyperparameter

f(T) returns set of leaves

Let's suppose each tree has the following error

If α is fixed at 100, we get the following values for $R_{\alpha}(T)$:

= 500

The lowest value for $R_{\alpha}(T)$ is the winner!

But... any tree could be a winner, depending on alpha

winner when alpha = 0

How do we know which alphas and subtrees to consider?

How do we know which alphas and subtrees to consider?

Answer lies in the other name for cost-complexity pruning, "weakest-link pruning"

Intuition..

Turning this into a minimization problem we get:

$$\min \left[R_{\alpha}(T - T_{t}) - R_{\alpha}(T) \right]$$

To find the value of α for weakest-link subtree (rooted at t):

min
$$\left[R_{\alpha}(T - T_{t}) - R_{\alpha}(T)\right]$$

= min $\left[R(T - T_{t}) - R(T) + \alpha (|f(T - T_{t}| - |f(T)|))\right]$
= min $\left[R(t) - R(T_{t}) + \alpha (1 - |f(T)|)\right]$
 $\alpha' = R(t) - R(T_{t}) / |f(T'_{t})| - 1$

All of this to get a set of alphas and subtrees. Which do we choose?

Suppose one row represents all observed data points

Generally we would split into two distinct sets, a **training** and a **testing** set.

But doing so reduces the amount of data that the model was trained on

Instead we split the data points into K training / testing sets

We build new subtrees using the alphas that we found

Here's a new set of trees for the next training set

Instead we split the data points into K training / testing sets

$$\frac{a_1' + a_2' + .. + a_K'}{K} = a'$$

this is the best value for alpha using entire dataset.

Current Scope

- Classic ML
 - Datasets
 - Visualization
 - Unsupervised learning
 - Supervised learning
 - Decision trees (regression/classification)
 - Ensemble learning
 - Gradient tree boosting
 - Model selection and validation
 - K-fold cross validation
- Deep learning
 - I few years ago I built simple NN w/ backprop from scratch
 - at <u>www.robertkotcher.me</u>

References

- StatQuest: https://www.youtube.com/watch?v=D0efHEJsfHo&t=779s
- MLWiki: http://mlwiki.org/index.php/Cost-Complexity_Pruning
- ScikitLearn source: <a href="https://github.com/scikit-learn/scikit-le