CS 248 Review Session #3

Handling Shadow Edges
Perspective Correct Transformation
Normal Transformation

Shadow Edges

- Caused by floating point precision
 - Not really possible to check if a value is < 0

- A proper solution may not be accurate, but should be consistent among pixel centers
 - Adjacent triangles should write to edge pixels exactly once

Shadow Edges

"Dummy" point (-2,-2)

(w+2,-2)

if $\alpha < 0$ point not in triangle else point in triangle

Shadow Edges

"Dummy" point (-2,-2)

(w+2,-2)

```
// special check
if |\alpha| < \epsilon
  if dummy point lies on + side
     point in triangle
  else
     point not in triangle
```

Perspective Correct Transformation

Affine

Linearly interpolates texture coordinates

Perspective Correct

Stretches near front, squeezes near back

Comparison

Affine

- Fast to compute
- Useful for hacks such as drawing vertical/horizontal lines in *Doom*

Perspective Correct

- Accurate texture mapping accounting for depth
- Hybrid (Persp Correct every 16 pixels)
 - Fast and more or less accurate

Why not linearly interpolate?

 U, V texture coordinates can't be linearly interpolated in screen space

Can it be linearly interpolated?

Linear relationships can be written as:

$$y = Ax + B$$

Find a linear relationship between x' and z (why?)

$$x = Az + B$$

Start with the unprojected line in object space

$$x'z = Az + B$$

$$z(x'-A) = B$$

$$z = \frac{B}{x' - A}$$

This is **not** a linear equation of z w.r.t. x'

 $\frac{1}{z} = \frac{x' - A}{B}$

$$\frac{1}{z} = \frac{1}{B}x' - \frac{A}{B}$$

This is a linear equation of 1/z w.r.t. x'

Can it be linearly interpolated?

 This means we can recover the original unprojected x value:

$$\frac{x'}{\frac{1}{z}} = \frac{\frac{x}{z}}{\frac{1}{z}} = x$$

- x/z and 1/z are linear in screen space
- *u, v* and *x* are linear w.r.t. each other
- Thus, u/z is linear in screen space

Overview

• Find z' = 1/z at each vertex

Linearly interpolate u' and z' in screen space

 At each pixel, calculate u by u'/z' to recover the u value at the unprojected line

Generalize from 2D to 3D case

Normals

- Normals are specified for each vertex
- Uses include lighting effects, bump mapping
- Interpolate the normals with perspective correctness (like texture coordinates)

 Naïve approach: apply modelview transform on normal vector

- Normals are directions
 - w = 0 (w = 1 only for points)
 - Translations have no effect
 - Ignore 4th column of modelview matrix
- Normals are non-projective
 - Ignore 4th row as well

- Transform normals by multiplying by the inverse transpose of the top-left 3x3 part of the modelview matrix
- Why?
 - Translations don't matter (w = 0)
 - Inverse transpose of a rotation matrix is the same
 - Inverse transpose of scaling is 1/scaling factor

- Remember to normalize!
 - After any transformation, normalize the vertex normal
 - Normalize the result at each pixel/fragment before computing lighting

Questions?

- Assignment 2 involves
 - Perspective correct transformations
 - Normal transformations
 - Lighting calculations