Análise Matemática I

1º Exame - 20 de Janeiro de 99 Ele., Eng. Bio., Eng. Quí., Ges. e Quí.

Soluções

1.

a) S é a união do conjunto de pontos cuja distância a 1 é inferior a 2 com o conjunto de pontos cuja distância a 3 é igual ou superior à sua distância a 4. Ou seja, $S =]-1, 3[\cup[3.5, +\infty[$.

- b) inf S = -1; o min S, max S e sup S não existem.
- **c)** $x_n = 0;$
 - $x_n = -1 + \frac{1}{n}$;
 - $x_n = 1 + (-1)^n$;
 - $x_n = n + 3$;
 - $x_1 = 5$, $x_n = n + 2$ se $n \ge 2$. Outro exemplo: $x_n = (-1)^{n+1} + n + 3$.

2.

a) $s_1 = \sum_{k=1}^{1} (a_{k+2} - a_k) = a_3 - a_1 = -a_1 - a_2 + a_2 + a_3$. Suponhamos que

$$s_n = \sum_{k=1}^{n} (a_{k+2} - a_k) = -a_1 - a_2 + a_{n+1} + a_{n+2};$$

então $s_{n+1}=s_n+(a_{n+3}-a_{n+1})=-a_1-a_2+a_{n+1}+a_{n+2}+a_{n+3}-a_{n+1}=-a_1-a_2+a_{n+2}+a_{n+3}=-a_1-a_2+a_{(n+1)+1}+a_{(n+1)+2}.$

- **b)** $\lim s_n = -a_1 a_2 + 2a$.
- c) Se $a_n = (-1)^n$, então $s_n = 0$ para todo o n.

3.

- a) $\lim e^{\frac{1}{n}} = 1$. A série é divergente pois o limite do seu termo geral não é zero.
- b) Trata-se de uma série geométrica de razão maior que -1 e menor do que 1. Logo, a série é convergente e a sua soma é $\frac{1}{e}\frac{1}{1-\frac{1}{e}}=\frac{1}{e-1}$.
- c) $\sqrt[n]{\left(\frac{1}{e} + \frac{1}{n}\right)^n} = \frac{1}{e} + \frac{1}{n} \to \frac{1}{e} < 1$. Pelo critério de Cauchy, a série é convergente.
- d) A sucessão (e^n) é crescente, pelo que a sucessão (e^{-e^n}) é decrescente. Pelo critério de Leibnitz, a série é convergente. Examinemos agora a série "dos módulos," $\sum_{n=1}^{\infty} e^{-e^n}$. Como $e^n = 1 + n + \frac{n^2}{2!} + \ldots > n$, $e^{-e^n} < e^{-n}$. Do estudo feito na alínea **b**), esta série é

convergente. Conclui-se que a série é absolutamente convergente.

4.
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 1^-} f(x) = -\infty.$$
 $f'(x) = \frac{1}{x} - \frac{2}{1-x} = \frac{1-3x}{x(1-x)}.$ $f'(x) > 0$ se $0 < x < \frac{1}{3}$, $f'(\frac{1}{3}) = 0$ e $f'(x) < 0$ se $\frac{1}{3} < x < 1.$ $f(\frac{1}{3}) = \log \frac{4}{27}.$ $f''(x) = -\frac{1}{x^2} - \frac{2}{(1-x)^2} < 0.$

O gráfico de f.

5.

a)
$$f(\frac{\pi}{6}) = \sin(\pi \sin \frac{\pi}{6}) = \sin \frac{\pi}{2} = 1 > \sin \frac{\pi}{6} = \frac{1}{2}$$
.
 $f(\frac{\pi}{2}) = \sin(\pi \sin \frac{\pi}{2}) = \sin \pi = 0 < \sin \frac{\pi}{2} = 1$.
 $f'(x) = \cos(\pi \sin x) \times \pi \cos x$.

Se $x \in \left[\frac{\pi}{6}, \frac{\pi}{2}\right]$, $\cos x \in \left[0, \frac{\sqrt{3}}{2}\right]$, $\sin x \in \left[\frac{1}{2}, 1\right]$, $\pi \sin x \in \left[\frac{\pi}{2}, \pi\right]$, $\cos(\pi \sin x) \in \left[-1, 0\right]$. Logo, $f'(x) \leq 0$, sendo a desigualdade estrita se $x \neq \frac{\pi}{6}$ e $x \neq \frac{\pi}{2}$. Por outro lado, a função seno é estritamente crescente no intervalo $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$. Aplicando o Teorema do Valor Intermédio à função $f(x) - \sin x$ no intervalo $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$, e usando o facto desta diferença ser estritamente decrescente neste interval, conclui-se que a equação $f(x) = \sin x$ tem exactamente uma solução em $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$.

O gráfico de f e da função seno.

b) f é periódica, $f(x) = f(x + 2k\pi)$ para k inteiro, e de classe C^{∞} . Derivando sucessivamente a igualdade da linha acima, $f^{(n)}(x) = f^{(n)}(x + 2k\pi)$

 $2k\pi$) para todo o natural n. Seja $n\in\mathbb{N}$. Pelo Teorema de Weierstrass, $f^{(n)}$ tem máximo e mínimo em $[0,2\pi]$. Pela periodicidade, esses valores coincidem com o máximo e mínimo em
 ${\rm I\!R}.$