Funções de corte via função sigmóide

Diogo Luis Simm Salles Vianna Bacharelado em Física - UFPR

diogo.simm@ufpr.br

Prof. Carlos Eduardo Durán Fernández (Orientador) Departamento de Matemática - UFPR

cduran@ufpr.br

Palavras-chave: Função de corte, Sigmóide, Partições da Unidade.

Resumo: A função $\phi: \mathbb{R} \to \mathbb{R}$ é empregada de forma ampla para a construção de funções de corte e é descrita pela regra

$$\phi(x) = \begin{cases} e^{-1/x^2}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

em decorrência da sua contínua derivabilidade em todos os reais e a forma como se aproxima da função nula quando $x\to 0^+$.

Com inspiração nessa função, cujo comportamento se justifica em parte pela composição de uma exponencial dotada de uma assíntota horizontal e uma função racional com crescimento assintótico próximo a 0, foram imaginadas relações funcionais alternativas que, para elaboração de uma família de funções ψ_{x_0} continuamente deriváveis tais que, para qualquer real x_0 e dois fatores de proximidade 0 < r < s

- $\psi_{x_0}(x) = 1$ para todo $x < (x_0 r, x_0 + r)$
- $\psi_{x_0}(x) = 0$ para todo $x < x_0 s$ ou $x > x_0 + s$

através da composição da função sigmóide $\sigma: \mathbb{R} \to \mathbb{R}$, onde

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

com uma segunda função racional com um comportamento de crescimento assintótico. É então demonstrado que tal função composta pode, em virtude dos graus de liberdade propiciados pela função racional, herdar propriedades de σ , o que as torna facilmente adaptáveis, por exemplo, para construção de partições da unidade.

Referências

[1] SPIVAK, Michael David, Calculus, 3 ed, Publish or Perish.