Biostat 801 Hw 5

David Zhang

Oct 20, 2017

- 1. Problem 1 Proof:
 - (a) (\Rightarrow) Let $A \in \mathcal{F}$. Then $A \perp A^C$, so $P(A)P(A^C) = P(AA^C) = P(\phi) = 0$. Thus P(A) = 0 or 1.
 - (b) (\Leftarrow): Let $A, B \in \mathcal{F}$. Then P(AB) = 0 or 1. i. If P(AB) = 0, then P(A) = 0 or P(B) = 0, so P(A)P(B) = 0. ii. If P(AB) = 1, then P(A) = 1 and P(B) = 1, so P(A)P(B) = 1. In both cases, P(AB) = P(A)P(B), so $A \perp B$.
- 2. Problem 2

Let $(\Omega, \mathcal{B}, P) = ([0, 1], \mathcal{B}([0, 1]), \lambda)$, where λ is the Lebesgue measure. Define

$$X(\omega) := \begin{cases} -1, & \text{if } \omega \in [0, \frac{1}{2}] \\ 1, & \text{if } \omega \in (\frac{1}{2}, 1] \end{cases}$$

and Y:=-X. Then clearly $Y\not\perp X$. However, $Y^2=X^2=1$, so $Y^2\perp X^2$ (see Problem 1).

3. Problem 3

Proof:

- (a) (\Leftarrow) : Suppose P[X = a] = 1. Let $A, B \in \mathcal{B}$.
 - i. If $a \in AB$, then $P[X \in AB] = 1$, and at the same time $P[X \in A] = P[X \in B] = 1$, since $a \in A$ and $a \in B$.
 - ii. If $a \notin AB$, then $P[X \in AB] = 0$, and at the same time $P[X \in A] = 0$ or $P[X \in B] = 0$, since $a \notin A$ or $a \notin B$.

In both cases, $P[X \in AB] = P[X \in A]P[X \in B]$, so $X \perp X$.

(b) (\Rightarrow): Suppose $X \perp X$. Let $A \in \mathcal{B}$. Then

$$0 = P(\phi) = P(AA^C) = P(A)P(A^C),$$

so P(A) = 0 or 1 for all $A \in \mathcal{B}$. Let $F(x) = P[X \le x]$. Then F(x) = 0 or 1 for all x. Define $S := \{x : F(x) = 1\}$ and $b := \inf S$. Since

 $F(\infty)=1$ and $F(-\infty)=0,\ b\neq -\infty$ or ∞ . Moreover, F is non-decreasing and right-continuous, so $b\in S$ and thus $P[X\leq b]=1$. Further more,

$$P[X < b] = P(\bigcup_{n=1}^{\infty} [X \le b - \frac{1}{n}]) = \lim_{n \to \infty} P[X \le b - \frac{1}{n}] = 0,$$

so

$$P[X = b] = P[X \le b] - P[X < b] = 1 - 0 = 1$$

4. Problem 4

To show:

$$E[\cdots E[X|\mathcal{B}_1]\cdots|\mathcal{B}_n] = E[X|\mathcal{B}_n]$$
 a.s.

Proof:

First consider $E[E[X|\mathcal{B}_1]|\mathcal{B}_2]$. Let $B_2 \in \mathcal{B}_2$. Then

$$\int_{B_2} E[E[X|\mathcal{B}_1]|\mathcal{B}_2]dP = \int_{B_2} E[X|\mathcal{B}_1]dP = \int_{B_2} XdP = \int_{B_2} E[X|\mathcal{B}_2]dP,$$

since $\mathcal{B}_2 \subset \mathcal{B}_1$. By the Integral Comparison Lemma,

$$E[E[X|\mathcal{B}_1]|B_2] = E[X|\mathcal{B}_2] \quad a.s.$$

Then by mathematical induction,

$$E[\cdots E[X|\mathcal{B}_1]\cdots|\mathcal{B}_n] = E[X|\mathcal{B}_n]$$
 a.s.