Лабораторная работа №8

Программирование цикла. Обработка аргументов командной строки

Яковлева Дарья Сергеевна

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Выполнение задания для самостоятельной работы	10
4	Выволы	11

Список иллюстраций

∠.⊥	создание раоочеи директории и фаила labs-1.asm	0
2.2	Запуск Midnight commander	6
2.3	Вставка кода из файла листинга 8.1	6
2.4	Копирование файла in_out.asm в рабочую директорию	6
2.5	Сборка программы из файла lab8-1.asm и её запуск	6
2.6	Изменение файла lab8-1.asm	7
2.7	Повторная сборка программы из файла lab8-1.asm и её запуск	7
2.8	Результат вывода	7
2.9	Результат вывода для чётного N	7
2.10	Редактирование файла lab8-1.asm	7
	Повторная сборка программы из файла lab8-1.asm и её запуск	8
2.12	Создание второго файла: lab8-2.asm	8
2.13	Запись кода из листинга 8.2 в файл lab8-2.asm	8
2.14	Сборка программы из файла lab8-2.asm и её запуск	8
2.15	Создание третьего файла: lab8-3.asm	8
	Запись кода из листинга 8.3 в файл lab8-3.asm	8
	Сборка программы из файла lab8-2.asm и её запуск	9
2.18	Изменение файла lab8-3.asm	9
2.19	Повторная сборка программы из файла lab8-3.asm и её запуск	9
3.1	Создание файла самостоятельной работы	10
3.2	Код файла самостоятельной работы	10
3.3	Сборка и запуск программы первого задания самостоятельной ра-	
	боты, а также результат выполнения	10

Список таблиц

1 Цель работы

Научиться работать с циклами на языке Ассемблера, а также научиться обрабатывать аргументы командной строки

2 Выполнение лабораторной работы

Для начала выполнения лабораторной работы создадим рабочую директорию и файл lab8-1.asm (рис. 2.1):

Создание рабочей директории и файла lab8-1.asm

Рис. 2.1: Создание рабочей директории и файла lab8-1.asm

Далее, запустим Midnight commander (рис. 2.2):

Запуск Midnight commander

Рис. 2.2: Запуск Midnight commander

Теперь, вставим в ранее созданный файл из листинга 8.1. Он должен запускать цикл и выводить каждую итерацию число, на единицу меньше предыдущего (начинается выводить с числа N) (рис. 2.3):

Вставка кода из файла листинга 8.1

Рис. 2.3: Вставка кода из файла листинга 8.1

Чтобы собрать код, нужен файл in_out.asm. скопируем его из директории прошлой лабораторной работы (рис. 2.4):

Копирование файла in_out.asm в рабочую директорию

Рис. 2.4: Копирование файла in_out.asm в рабочую директорию

Теперь соберём программу и посмотрим на результат выполнения (рис. 2.5):

Сборка программы из файла lab8-1.asm и её запуск

Рис. 2.5: Сборка программы из файла lab8-1.asm и её запуск

Как видим, она выводит числа он N до единицы включительно. Теперь попробуем изменить код, чтобы в цикле также отнималась единица у регистра есх (рис. 2.6):

Изменение файла lab8-1.asm

Рис. 2.6: Изменение файла lab8-1.asm

Попробуем собрать программу и запустить её (рис. 2.7):

Повторная сборка программы из файла lab8-1.asm и её запуск

Рис. 2.7: Повторная сборка программы из файла lab8-1.asm и её запуск

Введём в качестве N число 5 и посмотрим на результат выполнения (рис. 2.8): Результат вывода

Рис. 2.8: Результат вывода

Как видим, цикл выполняется бесконечное количество раз. Это связано с тем, что цикл останавливается в тот момент, когда при проверке есх равен 0, но он каждое выполнение цикла уменьшается на 2, из-за чего, в случае нечётного числа, никогда не достигнет нуля. Регистр есх меняет своё значение дважды: стандартно -1 после каждой итерации и -1 в теле цикла из-за команды sub. Если на вход подать чётное число, цикл прогонится N/2 раз, выводя числа от N-1 до 1 (выводит через одно число) (рис. 2.9):

Результат вывода для чётного N

Рис. 2.9: Результат вывода для чётного N

Таким образом, количество итераций цикла не равно N ни при подаче на вход чётного числа, ни при подаче нечётного.

Теперь попробуем изменить программу так, чтобы она сохраняла значение регистра есх в стек (рис. 2.10):

Редактирование файла lab8-1.asm

Рис. 2.10: Редактирование файла lab8-1.asm

Попробуем собрать и запустить программу (рис. 2.11):

Повторная сборка программы из файла lab8-1.asm и её запуск Рис. 2.11: Повторная сборка программы из файла lab8-1.asm и её запуск

Теперь, программа выводит все числа от N-1 до нуля. Таким образом, число прогонов цикла равно числу N. Создадим второй файл (рис. 2.12):

Создание второго файла: lab8-2.asm

Рис. 2.12: Создание второго файла: lab8-2.asm

И вставим в него код из файла листинга 8.2 (рис. 2.13):

Запись кода из листинга 8.2 в файл lab8-2.asm

Рис. 2.13: Запись кода из листинга 8.2 в файл lab8-2.asm

Соберём и запустим его, указав некоторые аргументы. Посмотрим на результат (рис. 2.14):

Сборка программы из файла lab8-2.asm и её запуск Рис. 2.14: Сборка программы из файла lab8-2.asm и её запуск

Как видим, он обработал 4 аргумента. Аргументы разделяются пробелом, либо, когда аргумент содержит в себе пробел, обрамляется в кавычки. Создадим третий файл (рис. 2.15):

Создание третьего файла: lab8-3.asm

Рис. 2.15: Создание третьего файла: lab8-3.asm

И вставим в него код из листинга 8.3. Он будет находить сумму всех аргументов (рис. 2.16):

Запись кода из листинга 8.3 в файл lab8-3.asm

Рис. 2.16: Запись кода из листинга 8.3 в файл lab8-3.asm

Теперь соберём программу и запустим её (рис. 2.17):

Сборка программы из файла lab8-2.asm и её запуск Рис. 2.17: Сборка программы из файла lab8-2.asm и её запуск

Как видим, программа действительно выводит сумму всех аргументов. Изменим её так, чтобы она находила не сумму, а произведение всех аргументов (рис. 2.18):

Изменение файла lab8-3.asm

Рис. 2.18: Изменение файла lab8-3.asm

Соберём программу и запустим её (рис. 2.19):

Повторная сборка программы из файла lab8-3.asm и её запуск Рис. 2.19: Повторная сборка программы из файла lab8-3.asm и её запуск

Как видим, программа выводит правильный ответ

3 Выполнение задания для самостоятельной работы

Для выполнения самостоятельной работы создадим файл в формате .asm (рис. 3.1):

Создание файла самостоятельной работы

Рис. 3.1: Создание файла самостоятельной работы

В рамках самостоятельной работы необходимо сделать задание под вариантом 17. Так, необходимо сложить результаты выполнения функции $f(x)=10(\square-1)$ для всех введённых аргументов (рис. 3.2):

Код файла самостоятельной работы

Рис. 3.2: Код файла самостоятельной работы

Соберём и запустим программу, вводя различные аргументы (рис. 3.3):

Сборка и запуск программы первого задания самостоятельной работы, а также результат выполнения

Рис. 3.3: Сборка и запуск программы первого задания самостоятельной работы, а также результат выполнения

Пересчитав результат вручную, убеждаемся, что программа работает верно

4 Выводы

В результате выполнения лабораторной работы были получены навыки работы с циклами и обработкой аргументов из командной строки. Были написаны программы, использующие все вышеописанные аспекты.