

SIMULACIÓN DE SUCESOS DE COLISIÓN UTILIZANDO REDES GENERATIVAS ADVERSARIAS

Miguel Ángel Hoyo Abascal

Director: Pablo Martínez Ruiz del Árbol

Co-director: Sergio Sánchez Cruz

Tabla de contenidos

Introducción

Redes Neuronales (WGAN)

Entrenamiento y resultados

Conclusiones

Simulaciones en física de altas energías

• Magnitudes objetivo:

- $p_T \in [0, +\infty]$
- $\phi \in [-\pi, +\pi]$
- $\eta \in [-\infty, +\infty]; \quad \eta = -\ln \tan \frac{\theta}{2}$

• Fuentes de inexactitudes:

- Aproximación de la sección eficaz
- Modelo tridimensional del CMS
- Fallo de los subdetectores
- Procesos de nueva física

Producción de quarks top-antitop

Objetivos

- Corrección de las distribuciones
- Partículas:
 - 2 leptones
 - 2 *b*-jets
- MET:
 - Missing Transverse Energy
 - Debido a leyes de conservación

Redes Neuronales (WGAN)

Esquema de una red neuronal

Componentes

- Input layer
 - $\{x_n\} \rightarrow inputs$
- Hidden layers
 - $\{w_{ij}\} \rightarrow \text{pesos}$
- Output layer
 - $\{y_m\} \rightarrow outputs$

Redes generativas adversarias (GAN)

Vector de información

Redes generativas adversarias (GAN)

Función objetivo Wasserstein GAN

- Basado en:
 - Distancia de Wasserstein
 - Continuidad de Lipschitz
- Propósito de *D*:
 - Calcular la distancia de Wasserstein

$$\min_{G} \max_{w \in W} V(G, D_w) = \mathbb{E}_{x \sim p_{data}} [D_w(x)] - \mathbb{E}_{z \sim p_z} [D_w(G(z))]$$

Restricción de Lipschitz

- Condición sobre la derivada
 - $|f(x_1) f(x_2)| \le K |x_1 x_2|$
- Implementaciones:
 - Confinando los parámetros en D $\rightarrow c$
 - Añadiendo un término de *penalty* $\rightarrow \lambda$

Entrenamiento y resultados

Comparación entre muestras

WGAN con 1 y 3 variables

Modelo WGAN con 14 variables

Modelo WGAN con 14 variables

Capacidad de la WGAN

- Sesgo en la red del 60% en la media
- Espacio latente en el entrenamiento:
 - 10 canales de ruido uniforme
 - 1 canal de información (p_T)
- Espacio latente nuevo:
 - 10 canales de ruido uniforme
 - 1 canal de ruido uniforme ∈ [0,160]
- Muestra resultante:
 - Distribución uniforme
 - Rango $\in [0,256]$

Conclusiones

Conclusiones

• Los modelos de WGAN son capaces de capturar los distintos sesgos y crear muestras realistas

• Distribuciones muy sesgadas favorecen el aprendizaje de la WGAN

• Los modelos han sido entrenados confinando los parámetros de D en [-c, c]

• La WGAN capta el sesgo en los datos y lo aplica al vector de información concatenado en el espacio latente

Muchas gracias por su atención

Funcionamiento de una neurona

Feedforward y backpropagation

Función objetivo GAN

- Basado en:
 - Divergencia Jensen-Shannon
- Propósito de *D*:
 - Discriminar entre muestra real o falsa

$$\min_{G} \max_{D} V(G, D) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z}[\log(1 - D(G(z)))]$$

Función de Loss

Loss
$$(D_{real}) = -\mathbb{E}_{x \sim p_{data}} [D(x)]$$

$$Loss(D_{fake}) = \mathbb{E}_{z \sim p_z} \left[D(G(z)) \right]$$

$$Loss(G) = -\mathbb{E}_{z \sim p_z} \left[D(G(z)) \right]$$

Root-Mean Square Error

$$RMSE = \sqrt{\frac{1}{n} \sum_{i}^{n} (y_i - \widehat{y}_i)^2}$$

Root-Mean Square Error

$$RMSE = \sqrt{\frac{1}{n} \sum_{i}^{n} (y_i - \widehat{y}_i)^2}$$

n-critic bajo

n-critic alto

c bajo

c alto

α alto

\overline{WGAN} - \overline{GP} $\lambda = 10$

Capacidad de la WGAN

- Sesgo en la red del 60% en la media
- Espacio latente en el entrenamiento:
 - 10 canales de ruido uniforme
 - 1 canal de información (p_T)
- Espacio latente nuevo:
 - 10 canales de ruido uniforme
 - 1 canal de ruido gaussiano *N* (mean=50.76,std=37.85)
- Muestra resultante:
 - Distribución gaussiana
 - Valores negativos enviados al 0

Capacidad de la WGAN

- Sesgo en la red del 60% en la media
- Espacio latente en el entrenamiento:
 - 10 canales de ruido uniforme
 - 1 canal de información (p_T)
- Espacio latente nuevo:
 - 10 canales de ruido uniforme
 - 1 canal de ruido solo positivo gaussiano *N* (mean=50.76,std=37.85)
- Muestra resultante:
 - Distribución gaussiana sesgada