# Apuntes de Variable Compleja

Luis López

Septiembre 2025

# Índice

| 1. | Números complejos                            |                                                         | 4  |
|----|----------------------------------------------|---------------------------------------------------------|----|
|    | 1.1.                                         | Teoría y estructura elemental                           | 4  |
|    | 1.2.                                         | Introducción elemental                                  | 4  |
|    | 1.3.                                         | Propiedades elementales                                 | 4  |
|    | 1.4.                                         | Forma polar y geometría de los números complejos        | 5  |
|    | 1.5.                                         | Forma exponencial y multiplicación de números complejos | 8  |
|    | 1.6.                                         | Ejemplo: cálculo en forma exponencial                   | 9  |
|    | 1.7.                                         | Raíces de números complejos                             | 9  |
| 2. | Teoría de las funciones de variable compleja |                                                         | 11 |
|    | 2.1.                                         | Límites y continuidad de funciones complejas            | 11 |
|    | 2.2.                                         | Continuidad                                             | 13 |
|    | 2.3.                                         | Derivación de funciones complejas                       | 14 |

# Introducción

Los **números complejos**, denotados por  $\mathbb{C}$ , constituyen una extensión de los números reales  $\mathbb{R}$ , cumpliéndose que  $\mathbb{R} \subset \mathbb{C}$ . A diferencia de los reales, los complejos forman un *cuerpo algebraicamente cerrado*, lo que significa que todo polinomio con coeficientes complejos admite todas sus raíces en  $\mathbb{C}$ .

Todo número complejo puede escribirse como

$$z = x + iy$$
,

donde  $x,y\in\mathbb{R}$  e i es la unidad imaginaria ( $i^2=-1$ ). También pueden representarse en forma polar, mediante su módulo y argumento.

El conjunto  $\mathbb{C}$  no solo es fundamental en álgebra y análisis, sino que resulta indispensable en múltiples áreas de las matemáticas aplicadas y la física. Asimismo, los números complejos son herramientas habituales en ingeniería.

# 1. Números complejos

#### 1.1 Teoría y estructura elemental

La imposibilidad de resolver ciertas ecuaciones con números reales nos obliga a introducir los **números imaginarios**, definidos a partir de la unidad i tal que

$$i^2 = -1$$
.

### 1.2 Introducción elemental

Denotamos los números complejos como

$$\mathbb{C} = \{ z = a + bi \mid a, b \in \mathbb{R} \}.$$

Dado  $z = a + bi \in \mathbb{C}$ , se definen:

• Parte real:  $\Re(z) = a \in \mathbb{R}$ .

• Parte imaginaria:  $\Im(z) = b \in \mathbb{R}$ .

• Módulo:  $|z| = \sqrt{a^2 + b^2}$ .

• Conjugado:  $\overline{z} = a - bi$ .

**Ejemplo.** Sea z = 1 - 2i. Entonces:

$$\Re(1-2i) = 1, \ \Im(1-2i) = -2, \ \overline{1-2i} = 1+2i, \ |1-2i| = \sqrt{1^2 + (-2)^2} = \sqrt{5}.$$

#### 1.3 Propiedades elementales

1.  $\overline{\overline{z}} = z$ . Demostración: si  $z = a + bi \Rightarrow \overline{z} = a - bi \Rightarrow \overline{\overline{z}} = a + bi = z$ .

 $2. \ z + \overline{z} = 2\Re(z).$ 

 $3. \ z - \overline{z} = 2i\Im(z).$ 

 $4. |\overline{z}| = |z|.$ 

5.  $\overline{z+z'} = \overline{z} + \overline{z'}$ .

6.  $\overline{z \cdot z'} = \overline{z} \cdot \overline{z'}$ .

Además, tenemos las siguientes propiedades asociadas al **módulo**:

1.  $|\Re(z)| \le |z|$ .

- 2.  $|\Im(z)| \le |z|$ . En efecto,  $|z| = \sqrt{a^2 + b^2} \ge |b|$ .
- 3. Designaldad triangular:  $|z+w| \leq |z| + |w| \quad \forall z, w \in \mathbb{C}$ .
- 4.  $z \cdot \overline{z} = |z|^2$ .
- 5. Desigualdad triangular inversa:  $||z| |z'|| \le |z z'|$ .

Todas estas propiedades, junto con la suma y producto de números complejos, generalizan las propiedades de los números reales:

$$z + z' = (x + iy) + (x' + iy') = (x + x') + (y + y')i \in \mathbb{C},$$

$$z \cdot z' = (x + iy)(x' + iy') = (xx' - yy') + (xy' + x'y)i \in \mathbb{C}.$$

En particular, si z = a + bi, se cumple que

$$|z| = \sqrt{a^2 + b^2},$$

es decir, el módulo de z coincide con el valor absoluto en los reales.

### 1.4 Forma polar y geometría de los números complejos

El conjunto  $\mathbb C$  se puede representar como  $\mathbb R^2$  mediante la asignación

$$z = a + bi \longmapsto (a, b) \in \mathbb{R}^2.$$

De esta forma obtenemos el denominado **plano complejo**; por lo tanto, la interpretación geométrica de *todo lo visto* sería:



Representación de 1 e i



Geometría de z y  $\overline{z}$ 

Si  $z = \frac{|z|}{|z|}z = |z|\frac{z}{|z|} = |z|(\cos\theta + i\sin\theta)$ , decimos que z está en forma polar.

Sea:

$$w = \frac{z}{|z|} \quad \Rightarrow \quad |w| = \frac{|z|}{|z|} = 1.$$

Es decir,  $\frac{z}{|z|}$  es un número complejo de módulo 1, luego existe  $\theta \in \mathbb{R}$  tal que

$$\frac{z}{|z|} = \cos\theta + i\sin\theta.$$

**Ejemplo.** El número complejo 1+i en forma polar es:

$$1 + i = \sqrt{2} \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right).$$



Circunferencia unitaria:  $w = \cos \theta + i \sin \theta$ 

Vemos que un mismo número complejo tiene infinitas representaciones polares por culpa del ángulo  $\theta$ , llamado **argumento de** z. Para solucionar este problema introducimos el **argumento principal** de z, que es aquel ángulo  $-\pi < \theta \le \pi$  que verifica:

$$z = |z|(\cos \theta + i \sin \theta), \qquad \theta = \arg(z).$$

Además, si z = x + iy, entonces:

$$\operatorname{arctan}\left(\frac{y}{x}\right), \qquad x > 0, \ y \ge 0,$$

$$\operatorname{arctan}\left(\frac{y}{x}\right) + \pi, \quad x < 0, \ y \ge 0,$$

$$\pi, \qquad x < 0, \ y = 0,$$

$$\operatorname{arctan}\left(\frac{y}{x}\right) - \pi, \quad x < 0, \ y < 0,$$

$$-\frac{\pi}{2}, \qquad x = 0, \ y < 0,$$

$$\frac{\pi}{2}, \qquad x = 0, \ y > 0,$$

$$\operatorname{arctan}\left(\frac{y}{x}\right), \qquad x > 0, \ y < 0.$$

Nótese que se verifica que

$$arg(z) = arg(z) + 2k\pi, \qquad k \in \mathbb{Z}.$$

Así, geométricamente, un número complejo z tendría esta información:

$$z = |z|e^{i\arg(z)}.$$



Argumento de z.

Al tener el módulo de cualquier complejo podemos hablar de la noción de distancia entre complejos, dada por:

$$d(z, w) = |z - w|.$$

**Definición.** El disco centrado en  $z_0 \in \mathbb{C}$  y de radio  $\varepsilon > 0$  es:

$$D(z_0,\varepsilon) = \{ z \in \mathbb{C} : |z - z_0| < \varepsilon \}.$$

## Ejemplo.

$$D(1+i,1) = \{z \in \mathbb{C} : |z - (1+i)| < 1\}.$$

El disco cerrado se denota por:

$$\overline{D}(z_0,\varepsilon) = \{ z \in \mathbb{C} : |z - z_0| \le \varepsilon \}.$$



#### Forma exponencial y multiplicación de números complejos

Por conveniencia, escribimos

$$\cos \theta + i \sin \theta = e^{i\theta}$$
.

Así, la forma polar  $z = |z|(\cos \theta + i \sin \theta)$  se expresa como

$$z = |z| e^{i\theta}$$
.

Esta representación hace muy sencilla la multiplicación de complejos. En efecto, si:

$$z = r e^{i\theta}, \qquad w = \rho e^{i\varphi} \quad (r, \rho \ge 0),$$

entonces:

$$z w = (r\rho) e^{i(\theta + \varphi)}.$$

En particular,

$$|zw| = |z| |w|,$$
  $\arg(zw) = \arg(z) + \arg(w) \pmod{2\pi}.$ 

Nota. En general es falso que

$$arg(zw) = arg(z) + arg(w),$$

pues arg<br/> es el argumento principal (restringido a $(-\pi,\pi])$ y puede requerir ajustar por múltiplos de  $2\pi$ .



Multiplicación en forma polar (solo vectores).

# Ejemplo.

$$\arg(i) = \frac{\pi}{2}, \qquad \arg(-i) = -\frac{\pi}{2},$$

mientras que

$$arg(i) = \frac{\pi}{2} + 2k\pi, \quad arg(-i) = -\frac{\pi}{2} + 2k\pi, \quad k \in \mathbb{Z}.$$

Potencias (fórmula de De Moivre). Si  $z = r e^{i\theta}$  y  $n \in \mathbb{N}$ , entonces:

$$z^n = r^n e^{in\theta}.$$

## 1.6 Ejemplo: cálculo en forma exponencial

**Ejemplo.** Calcular  $(1+i)^4$ .

$$1 + i = \sqrt{2} e^{i\pi/4} \implies (1+i)^4 = (\sqrt{2})^4 e^{i\pi} = 4 \cdot (-1) = -4,$$

llegamos a:

$$e^{i\pi} + 1 = 0$$

(Fórmula de Euler, considerada la más bonita de las matemáticas).

#### 1.7 Raíces de números complejos

Queremos estudiar qué números complejos cumplen la ecuación  $z^n=w$  para un  $n\geq 2,\,w\in\mathbb{C}.$ 

**Proposición.** Dado un número complejo no nulo  $w \in \mathbb{C} \setminus \{0\}$  y  $n \geq 2$ , existen exactamente n números complejos que cumplen  $z^n = w$ . Si

$$w = r e^{i\theta} \quad (r > 0, \ \theta \in \mathbb{R}),$$

entonces las soluciones son

$$z_k = r^{1/n} e^{i(\theta + 2k\pi)/n}, \qquad k = 0, 1, \dots, n - 1,$$

que son los vértices de un n-gono regular centrado en el origen.

**Demostración.** Si  $z = \rho e^{i\varphi}$ , entonces  $z^n = \rho^n e^{in\varphi}$ . Imponiendo  $z^n = w = re^{i\theta}$  se obtiene  $\rho^n = r \Rightarrow \rho = r^{1/n}$  y  $n\varphi = \theta + 2k\pi \Rightarrow \varphi = (\theta + 2k\pi)/n$ .

**Definición.** El conjunto de las raíces n-ésimas de w es

$$\sqrt[n]{w} := \left\{ r^{1/n} e^{i(\theta + 2k\pi)/n} : k = 0, \dots, n - 1 \right\}.$$

Por abuso, se llama raíz n-ésima principal de w a

$$\sqrt[n]{w}_{\mathrm{pr}} := r^{1/n} e^{i \operatorname{arg}(w)/n},$$

donde  $arg(w) \in (-\pi, \pi]$  es el argumento principal.

**Ejemplo.** Resolver  $z^3 = -8i$ .

$$-8i = 8e^{-i\pi/2}$$
  $\Rightarrow$   $z_k = 2e^{i(-\pi/2 + 2k\pi)/3}, k = 0, 1, 2.$ 

Explícitamente:

$$z_0 = 2e^{-i\pi/6} = \sqrt{3} - i$$
,  $z_1 = 2e^{i\pi/2} = 2i$ ,  $z_2 = 2e^{i7\pi/6} = -\sqrt{3} - i$ .

La raíz cúbica principal es  $2e^{-i\pi/6}$ .

#### Notas.

- $(z_k)^n = w$  para todo k, y  $z_k = z_0 e^{i2k\pi/n}$ .
- $\sqrt[n]{w}$  denota un *conjunto*; la notación de raíz *principal* usa  $\arg(w)$ .

# 2. Teoría de las funciones de variable compleja

Estudiaremos funciones de la forma  $f:A\subset\mathbb{C}\to\mathbb{C}$ .

Parte real e imaginaria. Si z = x + iy, toda función f puede escribirse como

$$f(z) = u(x, y) + i v(x, y),$$

donde  $u = \Re f$  y  $v = \Im f$ .

### Ejemplos.

$$f(z) = z^2 = (x + iy)^2 = (x^2 - y^2) + i(2xy)$$
  $\Rightarrow u(x,y) = x^2 - y^2, v(x,y) = 2xy,$   
 $f(z) = \overline{z} = x - iy$   $\Rightarrow u(x,y) = x, v(x,y) = -y.$ 

#### 2.1 Límites y continuidad de funciones complejas

**Definición.** Sea f definida en un conjunto  $A \subset \mathbb{C}$ ,  $f: A \subset \mathbb{C} \to \mathbb{C}$ . Diremos que el límite de f cuando z tiende a  $z_0$  es  $w \in \mathbb{C}$  si

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tal que} \ 0 < |z - z_0| < \delta \ \Rightarrow \ |f(z) - w| < \varepsilon.$$

Se denota por  $\lim_{z \to z_0} f(z) = w$ .

**Proposición.** Sean f, g dos funciones tales que  $f, g: A \subset \mathbb{C} \to \mathbb{C}$  y existen  $\lim_{z \to z_0} f(z) = w$  y  $\lim_{z \to z_0} g(z) = \ell$ . Entonces:

1. 
$$\lim_{z \to z_0} \left( f(z) + g(z) \right) = \lim_{z \to z_0} f(z) + \lim_{z \to z_0} g(z) = w + \ell.$$

2. 
$$\lim_{z \to z_0} (f(z) g(z)) = \lim_{z \to z_0} f(z) \cdot \lim_{z \to z_0} g(z) = w \ell$$
.

3. Si 
$$\ell \neq 0$$
, entonces  $\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{w}{\ell}$ .

### Proposición.

$$\exists \lim_{z \to z_0} f(z) = w \quad \Longleftrightarrow \quad \exists \lim_{(x,y) \to (x_0,y_0)} \Bigl( u(x,y) + i \, v(x,y) \Bigr) = a + ib$$

equivalentemente

$$\begin{cases} \exists \lim_{(x,y)\to(x_0,y_0)} u(x,y) = a, \\ \exists \lim_{(x,y)\to(x_0,y_0)} v(x,y) = b. \end{cases}$$

#### Demostración.

$$\exists \lim_{z \to z_0} f(z) = a + bi = w \iff \forall \varepsilon > 0 \ \exists \delta > 0 : \ 0 < |z - z_0| < \delta \implies |f(z) - (a + bi)| < \varepsilon.$$

Analicemos lo siguiente:

$$\lim_{(x,y)\to(x_0,y_0)} u(x,y) = a \iff \forall \varepsilon > 0 \ \exists \delta > 0 : \ 0 < \|(x,y)-(x_0,y_0)\| < \delta \Rightarrow |u(x,y)-a| < \varepsilon.$$

En efecto,

$$|u(x,y)-a| = \left| u(x,y)-a+i(v(x,y)-b)-i(v(x,y)-b) \right| \leq |f(z)-(a+bi)| < \varepsilon,$$

y análogamente para la parte imaginaria v(x,y). Además,

$$0 < |z - z_0| < \delta \iff 0 < |x + iy - (x_0 + iy_0)| < \delta \iff 0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta.$$

La parte imaginaria es análoga.  $\square$ 

**Ejemplo.** Analicemos  $\lim_{z\to 2i} z^2$ . Como

$$(x+iy)^2 = (x^2 - y^2) + i(2xy),$$

se tiene

$$\lim_{(x,y)\to(0,2)} (x^2 - y^2) = -4, \qquad \lim_{(x,y)\to(0,2)} 2xy = 0,$$

luego  $\lim_{z \to 2i} z^2 = -4$ .

Ejemplo (analítico por definición). Probemos por  $\varepsilon$ -δ que  $\lim_{z\to 2i} z^2 = -4$ . Sea  $\varepsilon > 0$ . Observamos

$$|z^2 - (2i)^2| = |z - 2i| \, |z + 2i| \le |z - 2i| \big( |z - 2i| + |4i| \big) = |z - 2i| \, (|z - 2i| + 4).$$

Si imponemos  $0 < |z - 2i| < \delta$  y además  $\delta \le 1$ , entonces

$$|z^2 - (2i)^2| < \delta(\delta + 4) \le 5\delta.$$

Eligiendo

$$\delta = \min \left\{ 1, \ \frac{\varepsilon}{5} \right\}$$

se obtiene  $0 < |z - 2i| < \delta \Rightarrow |z^2 + 4| < \varepsilon$ . Por lo tanto,

$$\lim_{z \to 2i} z^2 = -4.$$

#### 2.2 Continuidad

**Definición.** Sea  $f:A\subset\mathbb{C}\to\mathbb{C}$ . Decimos que f es continua en  $z_0\in A$  si

$$\lim_{z \to z_0} f(z) = f(z_0).$$

El ejercicio anterior muestra que:

**Proposición.** Sean  $f, g: A \subset \mathbb{C} \to \mathbb{C}$  continuas en  $z_0$ . Entonces

- (1) f + g es continua en  $z_0$ .
- (2)  $f \cdot g$  es continua en  $z_0$ .
- (3)  $\frac{f}{g}$  es continua en  $z_0$  si  $g(z_0) \neq 0$ .

**Proposición.** Si  $f:A\subset\mathbb{C}\to\mathbb{C}$  es continua en  $z_0$  y  $g:\mathbb{C}\to\mathbb{C}$  es continua en  $f(z_0)$ , entonces  $g\circ f$  es continua en  $z_0$ .

**Ejercicio.** Veamos que  $f(z) \equiv k \in \mathbb{C}$  es continua en todo  $z \in \mathbb{C}$ . En efecto,

$$|f(z)-k|=|k-k|=0<\varepsilon \qquad (\forall\,\varepsilon>0).$$

(2) Estudiemos f(z)=|z|: dado  $\varepsilon>0,$  si  $0<|z-z_0|<\delta$  con  $\delta=\varepsilon,$  entonces

$$\left| |z| - |z_0| \right| \le |z - z_0| < \varepsilon.$$

- (3) Todo polinomio  $p(z) = a_0 + a_1 z + \cdots + a_n z^n$  es continuo (suma y producto de continuas).
  - (4) Para f(z) = |z|: usando  $|z| |w| \le |z w|$ , se obtiene continuidad.
- (5) Para  $f(z) = |z|^2$ :  $||z|^2 |w|^2 = |z\overline{z} w\overline{w}| \le (|z| + |w|)|z w|$ , y eligiendo  $\delta$  conveniente resulta continua.

#### 2.3 Derivación de funciones complejas

**Definición.** Sea  $f:A\subset\mathbb{C}\to\mathbb{C}$ . Se dice que f es holomorfa en  $z_0\in A$  si existe el límite

 $f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}.$ 

Se dirá que f es holomorfa en A si lo es en todo punto de A; se denota  $f \in H(A)$ . Si f es holomorfa en  $\mathbb{C}$  se dice *entera*, esto es,  $f \in H(\mathbb{C})$ .

**Ejemplo.** Veamos que f(z) = z es entera:

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{h \to 0} \frac{(z_0 + h) - z_0}{h} = 1 = f'(z_0).$$

**Proposición.** Si  $f: A \to \mathbb{C}$  es holomorfa en  $z_0$ , entonces f es continua en  $z_0$ .

Demostración.

$$\lim_{h \to 0} \left( f(z_0 + h) - f(z_0) \right) = \lim_{h \to 0} h \frac{f(z_0 + h) - f(z_0)}{h} = 0. \quad \Box$$

Observamos que se cumplen todas las reglas de derivación en  $\mathbb C$  de la misma forma que en  $\mathbb R$ .

# **Ejercicios**

#### 1.1

Dado  $z \neq 0 \in \mathbb{C} \implies z^{-1} \in \mathbb{C}$ .

Sabemos que 
$$z \overline{z} = |z|^2 \implies z^{-1} = \frac{\overline{z}}{|z|^2}$$
.

Además, si z = x + iy, entonces

$$z^{-1} = \frac{1}{x^2 + y^2}(x - iy) = \frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2}i.$$

Así, por ejemplo,

$$(1+i)^{-1} = \frac{1-i}{1^2+1^2} = \frac{1}{2} - \frac{1}{2}i.$$

Por lo tanto,

$$1 = (1+i) \left(\frac{1}{2} - \frac{1}{2}i\right).$$

#### 1.2

Calcula el módulo y argumento principal de los siguientes números.

(b) 
$$\frac{i}{2-2i}$$
.

$$\frac{i}{2-2i} = \frac{i}{2-2i} \cdot \frac{2+2i}{2+2i} = \frac{i(2+2i)}{(2)^2+(2)^2} = \frac{2i-2}{8} = -\frac{1}{4} + \frac{1}{4}i.$$

Una vez hecho esto, calculamos su módulo y argumento:

$$\left| -\frac{1}{4} + \frac{1}{4}i \right| = \sqrt{\left(\frac{1}{4}\right)^2 + \left(\frac{1}{4}\right)^2} = \frac{\sqrt{2}}{4}.$$

$$\arg\left(-\frac{1}{4} + \frac{1}{4}i\right) = \arctan\left(\frac{\frac{1}{4}}{-\frac{1}{4}}\right) + \pi = \arctan(-1) + \pi = \frac{3\pi}{4}.$$

\*Le sumamos  $\pi$  porque estamos en el segundo cuadrante (según la convención del arctan). \*

#### 1.3

$$(\sqrt{3}-i)^6$$
.

Pasamos a forma exponencial:

$$\sqrt{3} - i = 2e^{-i\pi/6} \implies (\sqrt{3} - i)^6 = (2e^{-i\pi/6})^6 = 2^6e^{-i\pi} = 64e^{-i\pi}.$$

## 1.4

Representa los siguientes subconjuntos del plano complejo  $\mathbb{C}$ .

(a) 
$$\Omega = \{ z \in \mathbb{C} : |z - 2 + i| \le 1 \}.$$

$$|z-2+i| \le 1 \iff |z-(2-i)| \le 1 \implies \Omega = \overline{D}(2-i,1),$$

lo que quedaría como un disco centrado en 2-i y de radio 1. c)  $\Omega=\{z\in\mathbb{C}:|2-4|\geq |2i|\}$  Para analizarlo, nos fijamos en que z-2i tiene la misma distancia a 0 que a 4.

Así, 
$$\Omega = \{z \in \mathbb{C} : \Re(z) \le 2\}$$

#### 1.8 - Calcula:

c)

$$\sqrt[5]{-1-i} = \sqrt[5]{w} \left[ \cos \left( \frac{\arg w + 2k\pi}{5} \right) + i \sin \left( \frac{\arg w + 2k\pi}{5} \right) \right], \quad k = 0, 1, 2, 3, 4$$

Aplicamos la fórmula a nuestro caso, para ello calculamos el módulo y argumento:

$$|-1-i| = \sqrt{2}$$

$$\arg(-1-i) = -\frac{3\pi}{4}$$

$$= \sqrt[5]{\sqrt{2}} \left[\cos\left(\frac{-3\pi}{20}\right) + i\sin\left(\frac{-3\pi}{20}\right)\right] \dots$$

**Teorema:** Sea  $f: \Omega \to \mathbb{C}$ . Entonces, denotando f(z) = u(x,y) + iv(x,y): Si f es holomorfa en  $z_0$ , es decir, existe la derivada en  $z_0$ , entonces existen las derivadas parciales de u y v verificando las llamadas ecuaciones de Cauchy-Riemann (C-R) dadas por:

$$\begin{cases} u_x(x_0, y_0) = v_y(x_0, y_0) \\ u_y(x_0, y_0) = -v_x(x_0, y_0) \end{cases}$$
 donde  $u_x(x_0, y_0) = \frac{\partial u}{\partial x}(x_0, y_0), \ v_x(x_0, y_0) = \frac{\partial v}{\partial x}(x_0, y_0)$  Además 
$$f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0)$$

### Demostración:

$$\exists f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

$$= \lim_{t \to 0} \frac{u(x_0 + t, y_0) + iv(x_0 + t, y_0) - u(x_0, y_0) - iv(x_0, y_0)}{t}$$

$$= u_x(x_0, y_0) + iv_x(x_0, y_0)$$

$$\lim_{t \to 0} \frac{i\left(v(x_0, y_0 + t) - v(x_0, y_0)\right) - \left(u(x_0, y_0 + t) - u(x_0, y_0)\right)}{it} = -iv_y(x_0, y_0) + u_y(x_0, y_0)$$

**Ejemplo.** Analicemos que f(z)=z cumple las ecuaciones de Cauchy-Riemann

$$f(x+iy) = x + iy \Rightarrow \begin{cases} u(x,y) = x \\ v(x,y) = y \end{cases}$$

Recordando las ecuaciones de Cauchy-Riemann

(CR) 
$$\begin{cases} u_x(x_0, y_0) = v_y(x_0, y_0) \\ u_y(x_0, y_0) = -v_x(x_0, y_0) \end{cases} \Rightarrow \begin{cases} 1 = 1 \\ 0 = 0 \end{cases}$$

Además:

$$f'(z) = u_x(x+iy) + iv_x(x,y) = v_y(x,y) + iu_x(x,y) = 1$$

**Observación:** Ya sabíamos que f(z) = z es holomorfa por definición. **Ejemplo.** Analiza si  $f(z) = z^2$  cumple las ecuaciones de Cauchy-Riemann

$$f(x+iy) = (x+iy)(x+iy) = (x^2 - y^2) + i(2xy) \Rightarrow \begin{cases} u(x,y) = x^2 - y^2 \\ v(x,y) = 2xy \end{cases}$$

(C-R) 
$$\begin{cases} u_x(x,y) = 2x = v_y(x,y) \\ u_y(x,y) = -2y = -v_x(x,y) \end{cases}$$

Además:

$$f'(z) = u_x(x,y) + iv_x(x,y) = 2x + i2y = 2(x+iy) = 2z$$

**Ejemplo.** Analicemos si  $f(z)=\bar{z}$  es holomorfa usando las ecuaciones de Cauchy-Riemann

$$f(x+iy) = x - iy \Rightarrow \begin{cases} u(x,y) = x \\ v(x,y) = -y \end{cases}$$

 $f(z) = \bar{z}$  no es holomorfa.

**Ejemplo:** Analicemos si  $f(z) = |z|^2$  es holomorfa usando las ecuaciones de Cauchy-Riemann

$$f(x+iy) = x^2 + y^2 \Rightarrow \begin{cases} u(x,y) = x^2 + y^2 \\ v(x,y) = 0 \end{cases}$$

Aplicamos las ecuaciones de Cauchy-Riemann

(C-R) 
$$\begin{cases} 2x = 0 \\ 2y = 0 \end{cases} \Rightarrow \text{Si } z \neq 0 \Rightarrow f(z) = |z|^2 \text{ no es holomorfa}$$

No obstante, en z=0 se cumplen las ecuaciones de Cauchy-Riemann  $\Rightarrow f$  sea holomorfa en z=0

Analicemos por definición si  $f(z) = |z|^2$  es holomorfa en z = 0

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{|h|^2 - 0}{h} = \lim_{h \to 0} \frac{|h|^2}{h} = \lim_{h \to 0} \bar{h} = 0$$

Por lo tanto  $f(z) = |z|^2$  es holomorfa en z = 0

**Proposición:** Sea  $f:\Omega\subset\mathbb{C}\to\mathbb{C}, f(x+iy)=u(x,y)+iv(x,y).$  Entonces

f es holomorfa en  $z_0 \Rightarrow u, v : \Omega \subset \mathbb{R}^2 \to \mathbb{R}$  son diferenciables en  $(x_0, y_0)$  y se cumplen las ecuaciones de Cauchy-Riemann

$$\begin{cases} u_x(x_0, y_0) = v_y(x_0, y_0) \\ u_y(x_0, y_0) = -v_x(x_0, y_0) \end{cases}$$

**Ejemplo:** Analicemos por definición si f(z) = |z| es holomorfa en  $z_0 \in \mathbb{C}$ 

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{h \to 0} \frac{|z_0 + h| - |z_0|}{h} = \lim_{h \to 0} \frac{|h|}{h}$$

Vamos a acercarnos a 0 de varias formas diferentes:

$$\bullet \lim_{h \to 0^+} \frac{h}{h} = 1$$

$$\bullet \lim_{h \to 0^-} \frac{-h}{h} = -1$$

Como

$$\lim_{h \to 0^+} \neq \lim_{h \to 0^-}$$

entonces concluimos que f no es holomorfa en  $z_0$ .

Acercarme de formas distintas y que dé diferente garantiza que no es holomorfa. Pero si da lo mismo no me garantiza que sea holomorfa.

**Proposición:** Sean  $f, g: \Omega \to \mathbb{C}$  y  $\alpha \in \mathbb{C}$ . Entonces:

- f + g es holomorfa y cumple (f + g)'(z) = f'(z) + g'(z)
- $\bullet \ \alpha f$ es holomorfa y cumple  $(\alpha f)'(z) = \alpha f'(z)$
- $\bullet \ f \cdot g$ es holomorfa y cumple  $(f \cdot g)' = f'g + fg'$
- $\bullet$   $\frac{f}{g}$ es holomorfa y cumple  $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$
- ${\color{red} \bullet} \ f(g(z))$ es holomorfa y cumple  $(f \circ g)'(z) = f'(g(z)) \cdot g'(z)$