	КАФЕДРА	
ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ		
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
ОТЧЕТ О ЛА	БОРАТОРНОЙ РАБОТ	E № 1
_	тка концепта требованиз вработка и анализ требон	
РАБОТУ ВЫПОЛНИЛ		
СТУДЕНТ гр. №	_	Столяров Н.С.
	подпись, дата	инициалы, фамилия
Ca	анкт-Петербург 2025	
Содержание Задание:		3
1. Введение и постановка задач	ш	3

2. Основная идея концепта
3. Функциональные требования4
3.1 Модуль сбора и предобработки данных:4
3.2 Модуль многоуровневой трансформации:4
3.3 Онтологическая модель процессов:
3.4 Модуль хранения и визуализации:
3.5 Интеграция и обмен данными:
4. Нефункциональные требования5
5. Технологические аспекты
6. Сценарии использования и практическая значимость7
6.1 Мониторинг технических объектов:
6.2 Динамическая адаптация алгоритмов:
6.3 Интеграция с аналитическими платформами:
7. Диаграмма
8. Заключение

Задание:

Разработать концепт требований к системе хранения онтологической модели структур данных.

2. Введение и постановка задачи

Современные технические объекты, включая промышленные установки, транспортные средства и системы мониторинга, производят данных в виде временных рядов. огромные массивы Эти поступающие от различных датчиков, часто оказываются неоднородными, зашумленными и непригодными для непосредственного анализа. В связи с ЭТИМ необходимость предварительной обработки, возникает ИХ преобразования И структурирования ДЛЯ последующего анализа, прогнозирования и принятия решений.

ЦЦель данной работы — разработать концептуальную модель системы, выполняющей многоуровневую трансформацию временных рядов на основе онтологического подхода. Такая система не только преобразует исходные данные в удобный для анализа формат, но и обеспечивает прозрачное документирование каждого этапа обработки с помощью формализованной онтологии. Кроме того, интеграция с графовой базой данных позволяет эффективно хранить сложные взаимосвязи между этапами трансформации, алгоритмами, методами оценки и параметрами данных.

3. Основная идея концепта

Система включает несколько модулей, каждый из которых отвечает за определённый этап обработки временных рядов:

- Сбор и предварительная обработка данных: система принимает потоки данных с датчиков, выполняет первичную проверку, очистку и агрегацию, устраняя шумы и заполняя пропуски.
- Многоуровневая трансформация данных: данные проходят через последовательность этапов, включая фильтрацию, сглаживание, аппроксимацию, интерполяцию, агрегацию и применение статистических моделей.
- Онтологическое описание процессов: каждый этап обработки формализуется с помощью онтологической модели, включающей классы для этапов трансформации, алгоритмов обработки, методов оценки и связей между данными.
- Хранение и управление знаниями: онтологическая модель сохраняется в графовой базе данных, что обеспечивает быстрый поиск, визуализацию связей и динамическое обновление структуры.

• Интеграция с внешними системами: система предоставляет REST API для взаимодействия с другими платформами, что важно для комплексного мониторинга и поддержки принятия решений.

4. Функциональные требования

Модуль сбора и предобработки: приём, очистка и агрегация данных.

Модуль трансформации: многоэтапная обработка с возможностью выбора алгоритмов.

Онтологическая модель: формализация этапов, алгоритмов, методов оценки и связей между ними.

Модуль хранения и визуализации: использование графовой БД, визуализация цепочек обработки, поддержка версионности.

Интеграция: REST API, экспорт в стандартных форматах, динамическое обновление параметров.

5. Нефункциональные требования

- **Производительность:** обработка больших объёмов данных с минимальными задержками.
- Масштабируемость: возможность расширения для работы с растущими объёмами данных.
- Надёжность: резервное копирование и механизмы восстановления.
- Безопасность: шифрование данных, аутентификация и авторизация.
- Гибкость: возможность изменения алгоритмов и структуры онтологии без значительных доработок.
- Документированность: детальное описание процессов для удобства поддержки.

6. Технологические аспекты

- Онтологии: RDF/OWL.
- Графовая БД: Neo4j или GraphDB.

- Обработка данных: Python/Java с использованием библиотек для временных рядов и ML.
- API: RESTful для интеграции.
- Визуализация: веб-интерфейс для отображения графовых связей.

7. Сценарии использования и практическая значимость

Мониторинг технических объектов: выявление аномалий, прогнозирование отказов.

Динамическая адаптация алгоритмов: быстрое изменение правил обработки через онтологию.

Интеграция с аналитическими платформами: передача данных в ВІсистемы и МL-решения.

8. Диаграмма

Диаграмма иллюстрирует структуру системы, предназначенной для многоуровневой трансформации временных рядов технических объектов. Основные компоненты:

- Модуль сбора и предобработки данных получает и очищает данные с датчиков.
- Модуль многоуровневой трансформации данных выполняет последовательную обработку (фильтрация, аппроксимация, агрегация).
- Онтологическая модель процессов формализует этапы обработки, описывает используемые алгоритмы и методы оценки.
- Графовая база данных хранит онтологическую модель, обеспечивая быстрый поиск и визуализацию взаимосвязей.
- REST API обеспечивает интеграцию с внешними системами, обмен данными и обратную связь для обновления процессов обработки.

Такая архитектура позволяет гибко адаптировать систему под изменяющиеся условия и требования, обеспечивая высокую производительность и масштабируемость.

Рисунок 1 – Диаграмма структуры концептуальной системы

9. Заключение

Концепция объединяет онтологический подход и графовые базы данных, обеспечивая структурированную, гибкую и масштабируемую систему для обработки временных рядов. Это делает её применимой в промышленности и научных исследованиях.