test iz Uvoda v geometrijsko topologijo 4. 2019 Veliko uspeha!

1. naloga (5 točk)

Za vsako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna \bigcap oziroma napačna \bigcap .

Če ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!

R	Podalgebra algebre $\mathcal{C}([0,1],\mathbb{R})$, ki vsebuje funkcijo $x\mapsto\sin(\frac{\pi}{2}x)$, loči točke.
R	Kompaktno odprta topologija na $\mathcal{C}([0,1],\mathbb{R})$ je strogo močnejša od topologije konvergence po točkah.
R	Kvocientni prostor 1-števnega prostora je 1-števen.
R	Prostor $\hat{\mathcal{C}}(\mathbb{R}\setminus\{0\},\mathbb{R})$ je nepovezan.
R	Naj bo $q\colon \mathbb{R} \to \mathbb{R}/\{0,1\}$ kvocientna preslikava. Tedaj je množica $q((-1,1))$ odprta.
R	Če grupa G deluje na $X,$ je kvocientna preslikava $q\colon X\to X/G$ odprta.
R	Za podbazični množici v kompaktno odprti topologiji velja $\langle K_1,U_1\rangle\cap\langle K_2,U_2\rangle=\langle K_1\cup K_2,U_1\cap U_2\rangle.$
R	Kvocientni prostor s potmi povezanega prostora je s potmi povezan.
R	Kvocientni prostor $\mathbb{R}/((-\infty,0]\cup[1,\infty))$ je homeomorfen intervalu $[0,1].$
R	Za vsak $\varepsilon > 0$ in vsako zvezno funkcijo $f \colon \mathbb{R} \to \mathbb{R}$ obstaja polinom p , da je $ f(x) - p(x) < \varepsilon$ za vse $x \in \mathbb{R}$.

2. naloga (2 točk + 3 točke + 2 bonus točki)

Množico $\mathcal{C}([0,1],\mathbb{R})$ opremimo s topologijo konvergence po točkah.

- 1. Ali je $F: \mathcal{C}([0,1],\mathbb{R}) \to \mathbb{R}$, podana s predpisom F(f) = f(0) + f(1), zvezna?
- 2. Pokaži, da je $G\colon \mathcal{C}([0,1],\mathbb{R})\to\mathbb{R}$, podana s predpisom $G(f)=\sum_{n=1}^\infty \frac{1}{2^n} f(\frac{1}{n})$, dobro definirana. Ali je zvezna?
- 3. Ali je množica $A = \{f \mid f(x) = kx + n, n, k \in \mathbb{R}\}$ zaprta v $\mathcal{C}([0,1],\mathbb{R})$?

3. naloga (5 točk)

- 1. Naj grupa $G = \{1, -1, i, -i\}$ deluje na \mathbb{C} z množenjem. Poišči kak podprostor evklidskega prostora, ki je homeomorfen prostoru orbit \mathbb{C}/G .
- 2. Na $\mathbb C$ je podana ekvivalenčna relacija: $z \sim w$ natanko tedaj, ko je z = w ali pa je $\operatorname{Re} z = \operatorname{Re} w$ in $\operatorname{Im} z, \operatorname{Im} w \in \mathbb Q$. Ali je $\mathbb C/\sim \operatorname{Hausdorffov}$?