Basics in pushing electrons

Head terminates at an electron sink

Tail emanates from an electron source

Common electron sources

I. Sources (R = H, alkyl, aryl)

Nonbonding Electrons

A. The lone pairs on the heteroatoms on the following structures: X^- , RO^- , R_2O , NR_3 , NR_2^- , RCO_2^- , RCO_2R , R(CO)R, $R(CO)NR_2$, R_2S , RS^- , CN^- , N_3^- , R_3P , R_2Se , and RSe^-

Electron Rich or Strained σ Bonds

- A. Organometallics: RMgX, RLi, R₂CuLi, and R₂Zn
- B. Hydride reagents: LiAlH₄, NaBH₄, NaH, and BH₃
- C. Cyclopropropyl or cyclobutyl

π Bonds

Alkenes, dienes, alkynes, allenes, and arenes

Electron Rich π Bonds

Enols, enamines, enolates, anilines, and phenols

Common electron sinks

II. Sinks (R = H, alkyl, aryl)

Species with Empty Orbitals

Carbocations, aluminum and boron containing Lewis acids, and transition metal (mercury, cadmium, and zinc) reagents

Acidic Hydrogens

Mineral acids, carboxylic acids, water, alcohols, amines, and terminal acetylenes

Weak Single Bonds

Peroxides (ROOR), molecular halogens (X_2), bleach (HOX), and disulfides (RSSR)

The Carbons in Polarized σ Bonds

Alkyl halides, alkyl tosylates, protonated alcohols (ROH_2^+), and protonated amines (RNH_3^+)

The Carbons in Polarized Multiple Bonds

 R_2 C=O, nitriles, α,β-unsaturated carbonyl compounds, acyl halides, anhydrides, esters, and amides

Common Electron-pushing Errors

Backwards Arrow Pushing

Not enough Arrows

Losing track of the octet rule

Losing track of hydrogens and lone pairs

Common Electron-pushing Errors

Not using the proper source

Common Electron-pushing Errors

Mixed media mistakes

Too many arrows — Short cuts

Drawing a chemically reasonable mechanism

A few simple rules:

- Find a 1:1 correspondence between all atoms in the reactants and the products.
- Look for a path that will lead to the product. Note which groups have added to or left from the reactant. Make sure such steps are included in the mechanism.
- Note any rearrangement of atoms within the chemical structure and make sure appropriate steps are included.
- Do not push too many arrows as a way to create a short cut to the product.
- Avoid the common electron-pushing mistakes.
- Do not form intermediates with unreasonably high energy

Case study — 1

Case study — 2

Case study — 3

$$R-O-O-R \rightarrow 2 R-O \cdot$$

$$R-O \cdot + H-Br \rightarrow RO-H + \cdot Br$$

$$+ \cdot Br \rightarrow Br$$

$$Br + H-Br \rightarrow Br$$

$$Br + \cdot Br$$

