HW3 – Operational Semantics

CS 476, Fall 2023

1 Instructions

This is a written assignment. You may write your solutions by hand and scan/take a picture of the paper, or in a text editor (Notepad, Word, LaTeX, etc.) and submit a text file or PDF. If you need any help getting your solutions into a suitable format, just let the instructors know. As always, please don't hesitate to ask for help on Piazza (https://piazza.com/class/ksknvqg6ogb2kc).

2 Operational Semantics of Expressions and Commands

Here are the operational semantics rules for a simple imperative programming language, using the "hybrid style" of big steps for expressions and small steps for commands.

$$\begin{array}{c|c} (n \text{ is a number literal}) \\ \hline (n,\rho) \Downarrow n \end{array} \qquad \begin{array}{c|c} (b \text{ is a boolean literal}) \\ \hline (b,\rho) \Downarrow b \end{array} \qquad \begin{array}{c|c} (\rho(x)=v) \\ \hline (x,\rho) \Downarrow v \end{array}$$

op $(e_1, \rho) \Downarrow v_1$ $(e_2, \rho) \Downarrow v_2$ $(v_1 \oplus v_2 = v)$ for each operator op and its meta-level equivalent \oplus $(e_1 \text{ op } e_2, \rho) \Downarrow v$

$$\begin{array}{c} (e,\rho) \Downarrow v \\ \hline (x:=e,\rho) \to (\mathtt{skip},\rho[x\mapsto v]) \end{array} \qquad \text{SEQ-STRUCT} \begin{array}{c} (c_1,\rho) \to (c_1',\rho') \\ \hline (c_1;c_2,\rho) \to (c_1';c_2,\rho') \end{array}$$

3 Problems

1. (6 points total) Consider the following program configuration:

$$(a := b + 2; c := 3 + 4, \{b = 5\})$$

- (a) (2 points) What is the top-level operation in this configuration's program? Put another way, which rule's conclusion would match the entire configuration?
- (b) (4 points) Write a proof tree for the step taken by the configuration. The bottom of the tree should have the form (a := b + 2; c := 3 + 4, $\{b = 1\}$) \rightarrow ..., with the ... filled in according to the rules you apply. You only need to write a proof tree for a single small step.

2.	2. (9 points total) Suppose we wanted to add a new ? operation to our language of the form x ? y x and y can be any program expression. The program x ? y is meant to return the value of x that value is 0, in which case it returns the value of y instead.						= :	
	(a)	(2 points) S	Should $x ? y$ b	e an expression	n or a comma	and? Why?		
	(b)		Write one or mo				the appropriat	e style (big-step
	(c)	` - ,	Using your rule value of variabl	· -		_		le z is currently
	(d)	variable) to	the value of g d do nothing a	y when x is 0 ,	instead of re	turning the va	alue of y . When	which must be a en x is not zero. If your rule(s) in