上海交通大學学生实验报告

课程名称: 双闭环可逆直流脉宽调速系统

姓名: 谢敬鱼

学号: <u>516021910125</u>

邮箱: __xjy0104@sjtu.edu.cn

手机: ___13262935410

2019 年 5 月 13 日

实验三 双闭环可逆直流脉宽调速系统

一. 实验目的

- 1. 掌握双闭环可逆直流脉宽调速系统的组成、原理及各主要单元部件的工作原理。
- 2. 熟悉直流 PWM 专用集成电路 SG3525 的组成、功能与工作原理。
- 3. 掌握双闭环可逆直流脉宽调速系统的调试步骤、方法及参数的整定。

二. 实验内容

- 1. PWM 控制器 SG3525 性能测试。
- 2. 控制单元调试。
- 3. 测定开环和闭环机械特性 n=f(Id)。
- 4. 闭环控制特性 $n=f(U_g)$ 的测定

三. 实验系统的组成和工作原理

图 3-1 双闭环脉宽调速系统的原理图

在中小容量的直流传动系统中,采用自关断器件的脉宽调速系统比相控系统具有更多的 优越性,因而日益得到广泛应用。

双闭环脉宽调速系统的原理框图如图 3-1 所示。图中可逆 PWM 变换器主电路系采用 MOSFET 所构成的 H型结构形式,UPW 为脉宽调制器,DLD 为逻辑延时环节,GD 为 MOS 管的栅极驱动电路,FA 为瞬时动作的过流保护。

脉宽调制器 UPW 采用美国硅通用公司(Silicon General)的第二代产品 SG3525,这是一种性能优良,功能全、通用性强的单片集成 PWM 控制器。由于它简单、可靠及使用方便灵活,大大简化了脉宽调制器的设计及调试,故获得广泛使用。

在结构上分为两部分: 主回路和控制回路。

1. 主回路:

二极管整流桥把输入的交流电变为直流电,正常情况下,交流输入为 220V,经过整流后变为 300V 直流电,电阻 R1 为起动限流电阻,滤波电容 C 为 470 μ F/450V; 四只功率 MOS 管构成 H 桥,根据脉冲占空比的不同,在直流电机上可得到十或一的直流电压 U_0 。

由于在一个 PWM 周期里电枢电压经历了正反两次变化,因此其平均电压

 $U_0 = [(t_{on}/T)-(T-t_{on})/T]U_s = [(2t_{on}/T)-1]U_s = (2\alpha-1)U_s$

由式可见,电枢绕组所受的平均电压取决于占空比 α 大小。当 α =0 时, U_0 =- U_s ,电动机反转,且转速最大;当 α =1 时, U_0 = U_s ,电动机正转,转速最大;当 α =1/2 时, U_0 =0,电动机不转。虽然此时电动机不转,但电枢绕组中仍然有交变电流流动,使电动机产生高频振荡,这种振荡有利于克服电动机负载的静摩擦,提高动态性能。

在 VT2 和 VT4 的源极回路中,串接两取样电阻,其上的电压分别反映流过 VT2、VT4 的电流,经过差动放大,在 "21" 端输出一反映电流大小的电压,作为双闭环控制系统的电流反馈信号。

电阻 R2 在本实验箱中有两个作用。第一,可用来观察波形,R2 的阻值为 1Ω ,其上的电压波形反映了主回路的电流波形。第二,作为过流保护用。当 R2 的电压超过整定值后,过流保护电路动作,关闭脉冲,从而保护功率 MOS 管。

2. 控制回路:

控制回路采用 SG3525 构成。

SG3525 的 13 脚输出占空比可调(改变 9 脚电压)的脉冲波形(占空比调节范围不小于 $0.1^{\circ}0.9$),同时频率可通过充放电时间的不同而改变(通过钮子开关 S1 调节),经过 RC 移相后,输出两组互为倒相,死区时间为 $5 \,\mu$ S 左右的脉冲(观察"33"端和"34"端),经过光耦隔离后,分别驱动四只 MOS 管,其中 VT1、VT4 驱动信号相同,VT2、VT3 驱动信号相同。

为了保证系统的可靠性,在控制回路设置了保护线路,一旦出现过流,保护电路输出二路信号,分别封锁 SG3525 的脉冲输出和与门的信号输出。

面板的左端为正、负给定。当钮子开关 S5 打向"±给定",S4 打向"正给定"时,"24"端输出-15V,同时调节电位器 RP3,"23"可得到 $0^{\sim}12V$ 的正电压输出,当 S4 打向"负给定"时,调节 RP4,"23"可得到 $0^{\sim}12V$ 的负电压输出。当钮子开关 S5 打向"0"时,"23"端输出 0V,同时"24"端输出为 0V,封锁控制电路的工作。

四. 实验设备及仪器

- 1. MCL-II主控制屏。
- (1) MCL-10、03 组件。

- (2) MEL-11 挂箱
- (3) 电机导轨、测速发电机及测功机、MEL-13组件。
- (4) 直流电动机 M03。(5) 双踪示波器
- 2. MCL一III主控制屏。
- (1) MCL-10A、31 组件。
- (2) MEL-11 挂箱
- (3) MEL-03、04 三相可调电阻
- (4) 电机导轨及测速发电机、直流发电机 M01
- (5) 直流电动机 M03。(6) 双踪示波器。

五. 注意事项

- 1. 直流电动机工作前,必须先加上直流激磁。
- 2. 接入 ASR 构成转速负反馈时,为了防止振荡,可预先把 ASR 的 RP3 电位器逆时针 旋到底,使调节器放大倍数最小,同时,ASR 的 "5"、"6"端接入可调电容 (预置 7 μ F)。
 - 3. 测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。
 - 4. 系统开环连接时,不允许突加给定信号 U。起动电机。
 - 5. 起动电机时,不带负载起动。

六. 实验方法

采用 MCL-10 组件

1. SG3525 性能测试

分别连接"3"和"5"、"4"和"6"、"7"和"27"、"31"和"22"、"32"和"23",然后打开面板右下角的电源开关。

- (1) 用示波器观察 "25" 端的电压波形,记录波形的周期,幅度(需记录 S1 开关拨向"通"和"断"两种情况)
- (2) S5 开关打向"给定",用示波器观察"30"端电压波形,调节 RP2 电位器,使方波的占空比为 50%。
- S5 开关打向"给定"分别调节 RP3、RP4,记录"30"端输出波形的最大占空比和最小占空比。(分别记录 S2 打向"通"和"断"两种情况)

2. 控制电路的测试

- (1) 逻辑延时时间的测试
- S5 开关打向"给定",用示波器观察"33"和"34"端的输出波形。并记录延时时间。 t_{d} =
- (2) 同一桥臂上下管子驱动信号死区时间测试

分别连接"7"和"8"、"10"和"11","12"和"13"、"14"和"15"、"16"和"17"、"18"和"19",用双踪示波器分别测量 $V_{VT1.~GS}$ 和 $V_{VT2.~GS}$ 以及 $V_{VT3.~GS}$ 和 $V_{VT4.~GS}$ 的死区时间。

 $t_{d.VT1.VT2}\!\!=\!$

 $t_{d.VT3.VT4} =$

以下的实验方法针对 MCL-10A 组件:

1. SG3525 性能测试

(1) 用示波器观察"1"端的电压波形,记录波形的周期、幅度。

连接好电路以后,利用示波器观察"1"端的电压波形,如图 1 所示。对图 1 中的周期进行测量得到,波形的周期为: $T=20ms\ max=1.20V\ min=-1.16V\ max-min=2.36V$

图 1 "1"端电压波形

- (2) 用示波器观察 "2" 端的电压波形,调节 RP2 电位器,使方波的占空比为 50%。
- (3) 用导线将 "G"的"1"和"UPW"的"3"相连,分别调节正负给定,记录"2"端输出波形的最大占空比和最小占空比。

	正给定			负给定		
	周期T总	正值时间	占空比	周期T总	正值时间	占空比
最大占空比	124us	124us	100%	120us	58us	48.3%
最小占空比	124us	62us	50%	122us	3.2us	2.6%

相关实验结果图如图 2 所示:

图 2 正负给定下的最大(小)占空比

2. 控制电路的测试

(1) 逻辑延时时间的测试

在上述实验的基础上,分别将正、负给定均调到零,用示波器观察"DLD"的"1"和"2"端的输出波形,并记录延时时间 td=3us。

(2) 同一桥臂上下管子驱动信号列区时间测试

分别将"隔离驱动"的 G 和主回路的 G 相连,用双踪示波器分别测量 $V_{VT1.GS}$ 和 $V_{VT2.GS}$ 以及 $V_{VT3.GS}$ 和 $V_{VT4.GS}$ 的列区时间:

 $t_{dVT1.VT2}=3.2us$

 $t_{dVT3.VT4}=3.2us$

图 3 "1"和"2"端时延图

3. 开环系统调试

(1) 速度反馈系数的调试

断开主电源,并逆时针调节调压器旋钮到底,接入直流电动机 M03,电机加上励磁。合上主电源,调节交流电压输出至220V左右。调节正给定电位器使电机转速逐渐升高,并达到1400r/min,调节FBS的反馈电位器 RP,使速度反馈电压为2V。

(2) 系统开环机械特性测定

正给定调节电位器,使电机转速分别达 n=1400r/min,n=800/min,改变测功机加载旋钮(若是直流发电机负载,先调节 450Ω 电阻,调节完毕后用导线短接,再调节 90Ω 电阻),在空载至额定负载(I=1A)范围内测取 6 个点,记录相应的转速 n 和电机电流 $I_d(A)$ 。

n(r/min)	1400	1378	1361	1340	1327	1310
Id(A)	0.29	0.38	0.45	0.55	0.62	0.72
n(r/min)	800	786	771	740	720	706
Id(A)	0.18	0.24	0.31	0.45	0.55	0.64

负给定调节电位器,然后按照以上方法,测出系统的反向机械特性。

n(r/min)	-1400	-1388	-1369	-1353	-1340	-1328
Id(A)	-0.265	-0.325	-0.425	-0.485	-0.555	-0.605
n(r/min)	-800	-784	-770	-754	-733	-723
Id(A)	-0.187	-0.287	-0.357	-0.437	-0.537	-0.587

4. 闭环系统调试

将 ASR,ACR 均接成 PI 调节器接入系统,形成双闭环不可逆系统。

按图 3-3 接线

- (1) 速度调节器 ASR 的调试
- (a) 反馈电位器 RP3 逆时针旋到底, 使放大倍数最小;
- (b) "5"、"6" 端接入 MEL-11 电容器, 预置 7 μ F;
- (c)调节RP1、RP2使输出限幅为±5V。
- (2) 电流调节器 ACR 的调试
- (a) 反馈电位器 RP3 逆时针旋到底, 使放大倍数最小;
- (b) "5"、"6" 端接入 MEL-11 电容器, 预置 7 μ F;
- (c)调节RP1、RP2使输出限幅为±5V。

5. 系统静特性测试

(1) 机械特性 n=f(Id) 的测定

给定使电机空载转速至 1400 r/min,n=800/min 再调节测功机加载旋钮(若是直流发电机负载,先调节 450 Ω 电阻,调节完毕后用导线短接,再调节 90 Ω 电阻),在空载至额定负载范围内分别记录 6 个点,可测出系统正转时的静特性曲线 n=f(Id)

在空载至额定负载(I=1A)范围内测取 6 个点,记录相应的转速 n 和电机电流 I_d(A)。

n(r/min)	1400	1398	1395	1390	1389	1387
Id(A)	0.26	0.40	0.54	0.85	0.90	1.03
n(r/min)	800	797	795	791	789	787
Id(A)	0.17	0.38	0.52	0.71	0.84	1.08

负给定调节电位器,然后按照以上方法,测出系统的反向机械特性。

n(r/min)	-1400	-1398	-1396	-1394	-1392	-1390
Id(A)	-0.28	-0.42	-0.55	-0.71	-0.87	-1.04
n(r/min)	-800	-799	-797	-795	-793	-791
Id(A)	-0.24	-0.35	-0.54	-0.65	-0.82	-1.02

(2) 闭环控制特性 n=f(Ug)的测定

调节正给定电位器,启动电机使电机空载转速 n=1400 r/min。记录 Ug 和 n,逐渐

降低 Ug, 即可测出闭环控制特性 n=f(Ug)。

n(r/min)	1400	1300	1200	1097	942	806
Ug(V)	2.23	2.08	1.93	1.78	1.54	1.34

调节负给定电位器,启动电机使电机空载转速 n=-1400 r/min。记录 U_g 和 n,逐渐降低 U_g ,即可测出闭环控制特性 n=f(Ug)。

n(r/min)	-1400	-1302	-1094	-980	-866	-729
Ug(V)	-2.09	-1.95	-1.64	-1.47	-1.31	-1.11

七. 实验报告

- 1. 根据实验数据,列出 SG3525 的各项性能参数、逻辑延时时间、同一桥臂驱动信号死区时间等。
 - (1) "1"端的电压波形的周期、幅度分别为: T = 20 ms、V = 2.36 V. (实验结果图 1)
- (2) 分别调节正负给定,记录"2"端输出波形的最大占空比和最小占空比。(实验结果见图 2)

	正给定		负给定			
	周期T总	正值时间	占空比	周期T总	正值时间	占空比
最大占空比	124us	124us	100%	120us	58us	48.3%
最小占空比	124us	62us	50%	122us	3.2us	2.6%

- (3) "1"和"2"端的输出波形,并记录延时时间 td=3us。
- 2. 列出开环机械特性数据, 画出对应的曲线 n=f(Id), 计算静差率。

计算静差率:

$$s = \frac{\Delta n_N}{n_{min} + \Delta n_N}$$
 正给定 1400: $s = \frac{\Delta n_N}{n_{min} + \Delta n_N} = \frac{1400 - 1248}{1400} = 10.86\%$ 正给定 800: $s = \frac{\Delta n_N}{n_{min} + \Delta n_N} = \frac{800 - 628}{800} = 21.5\%$ 负给定-1400: $s = \frac{\Delta n_N}{n_{min} + \Delta n_N} = \frac{-1400 - (-1246)}{-1400} = 10.99\%$ 负给定-800: $s = \frac{\Delta n_N}{n_{min} + \Delta n_N} = \frac{-800 - (-643)}{-800} = 19.6\%$

3. 列出闭环机械特性数据,画出对应的曲线 $n=f(I_d)$,计算静差率,并于开环机械特性进行比较。

图 5 闭环机械特性

计算静差率:

$$s = \frac{\Delta n_N}{n_{min} + \Delta n_N}$$

正给定 1400: $s = \frac{\Delta n_N}{n_{min} + \Delta n_N} = \frac{1400 - 1387}{1400} = 0.93\%$
正给定 800: $s = \frac{\Delta n_N}{n_{min} + \Delta n_N} = \frac{800 - 787}{800} = 1.63\%$

负给定-1400:
$$s = \frac{\Delta n_N}{n_{min} + \Delta n_N} = \frac{-1400 - (-1390)}{-1400} = 0.71\%$$

负给定-800:
$$s = \frac{\Delta n_N}{n_{min} + \Delta n_N} = \frac{-800 - (-791)}{-800} = 1.13\%$$

理论上, 闭环系统与开环系统的静差率的关系为:

$$s_{\rm cl} = \frac{s_{op}}{1 + K}$$

闭环控制系统直接的好处就是减小了静差率,提高了系统的调速精度。

实际系统测试结果显示:

正给定 1400 时,
$$\frac{s_{op}}{s_{cl}} = \frac{10.86}{0.93} = 11.68$$

正给定 800 时,
$$\frac{s_{op}}{s_{cl}} = \frac{21.5}{1.63} = 13.19$$

负给定 1400 时,
$$\frac{s_{op}}{s_{cl}} = \frac{9}{0.71} = 12.68$$

负给定 800 时,
$$\frac{s_{op}}{s_{cl}} = \frac{19.6}{1.13} = 17.34$$

系统的开环静差率大概是闭环静差率的 12-17 倍之间。闭环的机械特性更好, 与理论结果相符合。

4. 列出闭环控制特性数据,画出对应的曲线 n=f(Ug)。

图 9 闭环控制特性曲线

正给定时拟合的曲线为: $n = 666.441U_g - 86.535$

负给定时拟合的曲线为: $n = 682.925U_g + 27.433$

八. 思考题

1. 为了防止上、下桥臂的直通,有人把上、下桥臂驱动信号死区时间调得很大,这样做行不行,为什么?您认为死区时间长短由哪些参数决定?

不行,增大死区时间,器件的非线性因素会更强,造成输出信号波形的失真,以及输出效率的降低。

由 MOS 管和驱动芯片的开关延迟时间,以及信号的上升沿与下降沿时间决定。

2. 与采用晶闸管的移相控制直流调速系统相对比,试归纳采用自关断器件的脉宽调速

系统的优点。

- 1) 主电路结构简单, 需用的功率器件少;
- 2) 开关频率高, 电流容易连续, 谐波污染小, 电机损耗及发热都较小;
- 3) 低速性能好,稳速精度高,调速范围宽;
- 4) 若与快速响应的电机配合,则系统频带宽,动态响应快,动态抗扰能力强;
- 5) 功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大, 因而装置效率较高;
 - 6) 直流电源采用不控整流时, 电网功率因数比相控整流器高。