Десятичные дроби Теория

Целью нашего разговора будет как можно больше понять про десятичные представление рациональных чисел $\frac{m}{n}$. Во-первых, сразу откажемся от случая $m \ge n$, а также будем считать дробь нескократимой: (m, n) = 1.

Во-вторых, нас интересуют лишь бесконечные десятичные дроби. Несложно проверить, что дробь будет конечной тогда и только тогда, когда $n=2^x\cdot 5^y$. Действительно, если $\frac{m}{n}=\overline{0,a_1a_2\dots a_t}=\frac{\overline{a_1a_2\dots a_t}}{10^t}$, то 10^t : n, откуда n— произведение степени 2 на степень 5. С другой стороны, если $n=2^x5^y$, то

$$\frac{m}{n} = \frac{m \cdot 2^{\max(x,y) - x} 5^{\max(x,y) - y}}{10^{\max(x,y)}} = \overline{0, \dots}$$

конечная десятичная дробь. В дальнейшем считаем, что $n \neq 2^x \cdot 5^y$.

Пример 1. Рассмотрим дробь $\frac{70}{101}$. Как представить её в виде бесконечной десятичной дроби? Попробуем поделить в столбик! . . . * делим в столбик * . . . Итак, мы зациклились, поэтому $\frac{70}{101} = 0.69306930 \ldots = 0.69306930$.

Пример 2. Аналогично получаем $\frac{1}{7} = 0,(142857).$

Понятно, что все те же рассуждения можно провести для произвольной дроби $\frac{m}{n}$. Так что мы доказали следующую теоремы.

Теорема 1. Для любых натуральных m < n, (m,n) = 1, $n \neq 2^x \cdot 5^y$, десятичная запись дроби $\frac{m}{n}$ является бесконечной периодической десятичной дробью.

Более того, как только повторится остаток, который уже встречался ранее, мы войдём в период. Однако остатков при делении на n у нас ровно n. Среди остатков, которые нам встречались в ходе деления в столбик, не может получится остаток 0. Значит, различных остатков, которые нам могут встретится, не более n-1.

Теорема 2. В условиях предыдущей теоремы, длина периода дроби $\frac{m}{n}$ не превосходит n-1. Более того, сумма длин периода и предпериода не превосходит n-1.

Зададимся обратным вопросом — как из бесконечной чисто периодической дроби получить дробь обычную? Т.е. пусть $\alpha = 0, (A)_k$. Чему тогда равно α ?

$$\alpha = 0, (A)_k$$
$$10^k \alpha = A, (A)_k$$

Вычитая из второго равенства первое, получаем $(10^k - 1)\alpha = A$, т.е. $\alpha = \frac{A}{10^k - 1}$. Можно пойти по другому пути:

$$\alpha = A \cdot 10^{-k} + A \cdot 10^{-2k} + \dots = A \cdot (10^{-k} + 10^{-2k} + \dots) = A \cdot \frac{10^{-k}}{1 - 10^{-k}} = \frac{A}{10^{k} - 1}.$$

Хорошо, а если в нашей дроби имеется предпериод?

Пример 3. Как представить в виде обыкновенной дроби число $\alpha = 0.05(61)$? Делаем аналогично:

$$10^{2}\alpha = 5,(61)$$
$$10^{4}\alpha = 561,(61),$$

откуда $\alpha = \frac{561-5}{10^4-10^2}$.

Обобщая это рассуждение, получаем, что если $\alpha = 0, B_m(A)_k$, то $\alpha = \frac{\overline{BA} - B}{10^m (10^k - 1)}$.

Теперь мы готовы ответить на следующий вопрос: глядя на дробь $\frac{m}{n}$, как сказать, будет ли в её десятичном представлении предпериод или нет?

Теорема 3. Десятичная запись дроби $\frac{m}{n}$ будет чисто периодической тогда и только тогда, когда HOД(n,10)=1.

Доказательство. Если дробь является чисто периодической $\frac{m}{n} = 0, (A)_k = \frac{A}{10^k - 1}$, то $10^k - 1$: n, т.е. n не делится ни на 2, ни на 5.

С другой стороны, если предпериод есть, то $\frac{m}{n}=0, B_\ell(A)_k=\frac{\overline{BA}-B}{10^\ell(10^k-1)}$. Если $\overline{BA}-B$ не делится на 10^ℓ , то в n останется или 2, или 5. Предположим противное и пусть $\overline{BA}-B$ делится на 10^ℓ . Но тогда $\frac{m}{n}=\frac{C}{10^k-1}=0, (C)_k$ — чисто периодическая дробь, что противоречит условию.

Следующий вопрос, наверное, является самым важным. Пусть HOД(n,10)=1. Как, глядя на дробь $\frac{m}{n}$ узнать, чему равняется длина k периода? Зная ответ, его не очень сложно проверить, что мы оставляем в качестве упражнения.

Теорема 4. Пусть HOД(n,10)=1. Тогда длина периода десятичной записи дроби $\frac{m}{n}$ равняется наименьшему натуральному k такому, что 10^k-1 делится на n.

Из этой теоремы следует несколько интересных наблюдений. Во-первых, для любого натурального n, HOД(n,10)=1 существует такое натуральное k, что 10^k-1 делится на n. Во-вторых, длина периода дроби $\frac{m}{n}$ не зависит от m.

Хорошо, разобрались с длиной периода. А что с предпериодом?

Теорема 5. Пусть $n = 2^s \cdot 5^t \cdot n_1$, $HOД(n_1, 10) = 1$. Тогда длина предпериода десятичной записи дроби $\frac{m}{n}$ равняется $\max\{s,t\}$.

Доказательство остаётся в качестве упражнения.

Несколько интересных сюжетов

Пример 4. Пусть (n,10)=1. Рассмотрим дробь $\frac{1}{n}=0$,(A). Например, $\frac{1}{7}=0$,(142857). Если умножить $\frac{1}{n}$ на 10, то из A «вперёд» вылезет одна цифра, а период циклически сдвинется: $\frac{10}{n}=a$,(A'). Тогда $\frac{10 \bmod n}{n}=\frac{t}{n}=0$,(A'). С другой стороны, дробь $\frac{t}{n}$ можно получить из $\frac{1}{n}$ простым умножением на t. При

С другой стороны, дробь $\frac{t}{n}$ можно получить из $\frac{1}{n}$ простым умножением на t. При этом период также умножится на t, т.е. $A'=t\cdot A$. Вместо числа 10 можно было умножить исходное выражение на 100, 1000, Тогда период циклически сдвигался бы на 2, на 3, . . . цифры

Итак, мы получили, что любое число, получаемое циклическим сдвигом из A делится на A. Например, каждое из чисел 428571, 285714, 857142, 571428, 714285 делится на 142857.

Пример 5. Пусть p>5 — простое такое, что длина периода A дроби $\frac{m}{p}$ равняется 2k для некоторого натурального k. Например, $\frac{1}{7}=0,(142857)$. Разделим число A на две части по k цифр в каждой: $A = \overline{A_1 A_2}$. Тогда $A_1 + A_2 = 99...9$. Например, 142 + 857 = 999.

Действительно, $\frac{m}{p}=0$, (A_1A_2) , $\frac{10^km}{p}=A_1$, (A_2A_1) . Заметим, что $\frac{m}{p}+\frac{10^km}{p}=m\cdot\frac{10^k+1}{p}$. Учитывая теорему 4, имеем $10^{2k-1}-1=(10^k-1)(10^k+1)$; p, причём в силу минимальности 2k получаем, то $10^k-1 \not= p$, т.е. 10^k+1 ; p. Следовательно, сумма чисел $\frac{m}{p} + \frac{10^k m}{p}$ является целым числом! Несложно проверить, что это и означаем, что сумма цифр в каждом разряде после

запятой этих чисел равняется 9, т.е. $A_1 + A_2 = 99 \dots 9$.

Пример 6. Пусть p — очень большое простое число (например, большее 10^{10}), а длина периода дроби $\frac{1}{p}$ равняется p-1, т.е. 10 принадлежит показателю p-1 по модулю p. Ещё раз аккуратно посмотрим на процедуру деления в столбик 1 на p:

$$\begin{cases} 10 = pq_1 + r_1 \\ 10r_1 = pq_2 + r_2 \\ 10r_2 = pq_3 + r_3 \\ \dots \end{cases}$$

При этом $\overline{q_1q_2\dots q_{p-1}}$ — период дроби $\frac{1}{p}$.

Поскольку длина периода равняется p-1, среди чисел $1, r_1, r_2, \ldots, r_{p-2}$ нет повторяющихся (иначе зацикливание произошло бы раньше), т.е. они образуют приведённую систему вычетов по модулю p.

А как найти $\overline{q_{k=1}q_{k+2}\dots q_{k+10}}$? Посмотрим на равенство $10r_k = pq_{k+1} + r_{k+1}$. Умножим его на 10:

$$10^{2}r_{k} = p \cdot 10q_{k+1} + 10r_{k+1} = p \cdot (10q_{k+1} + q_{k+2}) + r_{k+2} = p \cdot \overline{q_{k+1}q_{k+2}} + r_{k+2}.$$

Если мы ещё раз умножим полученное равенство на 10, получим

$$10^3 r_k = p \cdot \overline{q_{k+1} q_{k+2} q_{k+3}} + r_{k+3}.$$

Продолжая аналогично, получим, что

$$10^{10}r_k = p \cdot \overline{q_{k+1}q_{k+2}\dots q_{k+10}} + r_{k+10}.$$

Выпишем все эти равенства:

$$\begin{cases} 10^{10} = p \cdot \overline{q_1 q_2 \dots q_{10}} + r_{10} \\ 10^{10} r_1 = p \cdot \overline{q_2 q_3 \dots q_{11}} + r_{11} \\ \dots \end{cases}$$

В левой части встречают все из чисел $10^{10},\, 2\cdot 10^{10},\, \ldots,\, (p-1)\cdot 10^{10}.$

$$\begin{cases} 10^{10} = p \cdot Q_1 + R_1 \\ 2 \cdot 10^{10} r_1 = p \cdot Q_2 + R_2 \\ \dots \end{cases}$$

Заметим, что левая часть каждый раз увеличивается на 10^{10} , а поскольку $p>10^{10}$, то Q увеличивается каждый раз не более чем на 1. Следовательно, среди чисел Q_1 , Q_2, \ldots, Q_{p-1} встретятся все не более чем 10-значные числа.

Упражнения

- **1.** Пусть p простое число, а m < p натуральное число. Оказалось, что $\frac{m}{p} = 0$, $(A)_{3k}$. Докажите, что если разбить число A на три числа A_1 , A_2 , A_3 по k цифр: $A = \overline{A_1 A_2 A_3}$, то $A_1 + A_2 + A_3 = 99 \dots 9$ или $A_1 + A_2 + A_3 = 2 \cdot 99 \dots 9$ (k девяток).
- **2.** Докажите, что для каждого положительного действительного α найдутся такие действительные числа $\beta_1, \beta_2, \ldots, \beta_9$, в десятичной записи которых встречаются только цифры 0 и 7, что выполнено равенство $\alpha = \beta_1 + \beta_2 + \ldots + \beta_9$.
- **3.** Пусть $p,\ q>5$ простые числа. Длины периодов дробей $\frac{1}{p}$ и $\frac{1}{q}$ равны a и b соответственно. Найдите длину периода дроби $\frac{1}{pq}$.