第 10 讲: 免赔额和限额保单的费率厘定

高光远

中国人民大学 统计学院

主要内容

- ① 免赔额保单
- ② 限额保单
 - 增限因子
 - 完整的区间赔款数据
 - 按限额分类的完整赔款数据表
 - 限额赔款数据表
- ③ 通货膨胀的杠杆效应
 - 赔偿限额的影响
 - 免赔额的影响
 - 超额赔款层

兔赔额保单 限额保单 通货膨胀的杠杆效应

参考教材 77 页和第 4 讲中关于纯保费的内容.

Table 1: 不含免赔额条款情况下的数据假设

(1) 保费	2,000,000
(2) 期望赔付率	65%
(3) ALAE 占赔款的比例	10%
(4) 佣金占保费的比例	5%
(5) 其他变动费用占保费的比例	10%
(6) 固定费用	50,000

承保利润 = 保费-赔款-ALAE-佣金-其他变动费用-固定费用 承保利润 =(1)-(1)×(2)-(1)×(2)×(3)-(1)×(4)-(1)×(5)-(6)

免赔额会对以下方面有影响

- 赔款
- 2 直接理赔费用
- ❸ 佣金和其他变动费用
- 固定费用
- 利润和风险附加
- 无法收回的免赔额

超额赔款比率

超额赔款比率 =
$$\frac{\int_{d}^{\infty}(x-d)f(x)dx}{\int_{0}^{\infty}xf(x)dx}$$

赔款消减比率 = 1 - 超额赔款比率

期望超额赔款 = 无免赔额条件下的期望赔款 × 超额赔款比率

(1)

直接理赔费用

- 免赔额应用于 ALAE 和赔款之和: 把 ALAE 和赔款合并.
- 免赔额仅应用于赔款: 索赔次数会减少, 相应地 ALAE 也会减少.
- 若免赔额较小, (教材) 近似地认为对 ALAE 无显著影响.

佣金和其他变动费用

- 假设佣金由投保人直接支付, 含免赔额保单的保费中不含佣金.
- 对于其他变动费用. 可以最后对保费进行如下调整:

保费中的固定成分 1-其他变动费用

• 假设其他变动费用占比为 12%.

固定费用

增加的固定费用包含

- 为了收回免赔额而向投保人寄送的账单
- ② 监督投保人按时返还免赔额
- ◎ 特殊情况下, 采用诉讼手段追偿.

假设增加的固定费用为免赔层损失的5%.

利润和风险附加

- 假设目标承保利润率为6%.
- 对于含免赔额的保单,保险公司承担的是低频高额损失,风险附加更大.
- 对于超过免赔额部分, 收取 10% 的风险附加.

无法收回的免赔额

- 在第三者责任保险中,当保险公司向第三者支付了所有赔款后,向被保险人追偿免赔额时,被保险人有可能无力或者不愿返还免赔额.
- 假设为这部分风险收取的附加保费是期望免赔层损失的 1%.

最终保费的厘定

Table 2: 最终保费的厘定

(1) 期望超额赔款	481,000
(2) ALAE	130,000
(3) 固定费用	
原有固定费用	50,000
增加的固定费用	40,950
(4) 增加的风险附加	48,100
(5) 无法收回的期望免赔额	8,190
(6) 小计	758,240
(7) 变动费用	12%
(8) 利润附加	6%
(9) 最终保费	924,683
(-)	-)

增限因子 (increased limit factor)通常基于每次索赔的限额 (支付给一个索赔人的限额) 或每次事故的限额 (一次事故中支付给所有索赔人的限额).

- 增限因子是较高限额下的期望保险成本与基本限额下的期望 保险成本之比.
- 高限额保单较少数据量较小,某个风险类别甚至可能没有高限额保单.
 - 在合并风险类别的基础上计算基本限额和高限额的期望成本, 进而计算增限因子.
 - ② 用增限因子乘以不同风险类别基本限额下的期望成本,得到 高限额下的期望保险成本
- 保险成本包括赔付成本,直接理赔费用,间接理赔费用,风险 附加.

其中, 第三个等号假设限额对索赔频率没影响.

增限因子 完整的区间赔款数据 按限额分类的完整赔款数据寻 跟额赔款数据表

限额为L的增限因子 = $\frac{ R额为L 的期望赔付成本}{ R额为B 的期望赔付成本}$ = $\frac{ R额为L 的索赔频率 \times R额为L 的索赔强度}{ R额为B 的索赔频率 \times R额为B 的索赔强度}$ = $\frac{ R额为L 的索赔强度}{ R额为B 的索赔强度}$ (2)

Table 3: 完整的区间赔款数据

- 赔款下限	赔款上限	赔款总和	事故次数
1	200,000	60,000,000	500
200,001	500,000	90,000,000	300
500,001	1,000,000	75,000,000	100
1,000,001	2,000,000	60,000,000	50
2,000,001	-	52,000,000	20

- 限额为 200,000 元的索赔强度 $\frac{60000000+470*200000}{970} = 158763$
- 限额为 1,000,000 元的索赔强度 $\frac{225000000+70*1000000}{970} = 304124$
- 限额为 2,000,000 元的索赔强度 $\frac{285000000+20*2000000}{970} = 335052$
- 可以进一步算得增限因子.

免赔额保单 **限额保单** 通货膨胀的杠杆效应 增限因于 完整的区间赔款数据 **按限额分类的完整赔款数据表** 限额赔款数据表

假设限额为 200,000 元, 1,000,000 元, 2,000,000 元保单的损失比例为 2:3:5. 进而可以得到如下按限额分类的完整赔款数据表.

增限因子 完整的区间赔款数据 按限额分类的完整赔款数据表 限额赔款数据表

Table 4: 限额为 200,000 元的保单的完整赔款数据

赔款下限	赔款上限	赔款总和	事故次数
1	200,000	12,000,000	100
200,001	500,000	18,000,000	60
500,001	1,000,000	15,000,000	20
1,000,001	2,000,000	12,000,000	10
2,000,001	-	10,400,000	4

增限因子 完整的区间赔款数据 按限额分类的完整赔款数据表 限额赔款数据表

Table 5: 限额为 1,000,000 元的保单的完整赔款数据

赔款下限	赔款上限	赔款总和	事故次数
1	200,000	18,000,000	150
200,001	500,000	27,000,000	90
500,001	1,000,000	22,500,000	30
1,000,001	2,000,000	18,000,000	15
2,000,001	-	15,600,000	6

Table 6: 限额为 2,000,000 元的保单的完整赔款数据

赔款下限	赔款上限	赔款总和	事故次数
1	200,000	30,000,000	250
200,001	500,000	45,000,000	150
500,001	1,000,000	37,500,000	50
1,000,001	2,000,000	30,000,000	25
2,000,001	-	26,000,000	10

免赔额保单 **限额保单** 通货膨胀的杠杆效应 增限因子 完整的区间赔款数据 按限额分类的完整赔款数据表 **限额赔款数据表**

实际上, 上述完整赔款数据保险公司并不能获得, 保险公司只能 获得限额赔款数据

曾限因子 完整的区间赔款数据 安限额分类的完整赔款数据。 **根额赔款数据表**

Table 7: 限额为 200,000 元的保单的限额赔款数据

赔款下限	赔款上限	赔款总和	事故次数
1	200,000	30,800,000	194
200,001	500,000	-	_
500,001	1,000,000	-	_
1,000,001	2,000,000	_	_
2,000,001	-	-	_

$$(12 + 94 \times 0.2) \times 10^6 = 30.8 \times 10^6$$

增限因子 完整的区间赔款数据 按限额分类的完整赔款数据表 **限额赔款数据表**

Table 8: 限额为 1,000,000 元的保单的限额赔款数据

- 赔款下限	赔款上限	赔款总和	事故次数
1	200,000	18,000,000	150
200,001	500,000	27,000,000	90
500,001	1,000,000	43,500,000	51
1,000,001	2,000,000	-	-
2,000,001	-	-	-

增限因子 完整的区间赔款数据 按限额分类的完整赔款数据表 **限额赔款数据表**

Table 9: 限额为 2,000,000 元的保单的限额赔款数据

- 赔款下限	赔款上限	赔款总和	事故次数
1	200,000	30,000,000	250
200,001	500,000	45,000,000	150
500,001	1,000,000	37,500,000	50
1,000,001	2,000,000	50,000,000	35
2,000,001	-	-	-

• 限额为 200,000 元的有限期望赔款为 $\frac{(30.8+18+141\times0.2+30+235\times0.2)\times10^6}{194+291+485}=158763$

• 限额为 1,000,000 元的有限期望赔款

$$\frac{(30.8+18+27+43.5+30+45+37.5+35)\times10^6}{194+291+485} = 275052$$

$$158763 + \frac{(27+43.5-141\times0.2+45+37.5+35-235\times0.2)\times10^6}{291+485} = 304124$$

• 限额为 2,000,000 元的有限期望赔款 $158763 + 304124 + \frac{(50-35)\times10^6}{485} = 335052$

在免赔额和限额条件下,纯保费为

$$\mathbb{E}\left[\sum_{i=1}^N Y_i^L\right] = \mathbb{E}(N)\mathbb{E}(Y^L) = \mathbb{E}\left[\sum_{i=1}^{N^*} Y_i^P\right] = \mathbb{E}(N^*)\mathbb{E}(Y^P)$$

- 其中, N 为损失次数, N^* 为索赔次数, Y^L 为含零赔款 (payment per loss), Y^P 为非零赔款 (payment per payment).
- ullet 因为损失次数不受通货膨胀的影响, 所以可以只看 Y^L 如何 受通货膨胀的影响, 进而得出通货膨胀对纯保费的影响

• 假设赔偿限额为 u, 免赔额为 d, 则含零赔款为 $Y^L = X \wedge (u+d) - X \wedge d$, 期望为

$$\mathbb{E}(Y^L) = \mathbb{E}\left[X \wedge (u+d)\right] - \mathbb{E}(X \wedge d)$$

• 假设通货膨胀率为 r, 赔偿限额和免赔额不变, 则

$$\mathbb{E}(Y^L) = (1+r) \left[\mathbb{E}\left(X \wedge \frac{u+d}{1+r} \right) - \mathbb{E}\left(X \wedge \frac{d}{1+r} \right) \right]$$

假设 d=0, 则

$$\frac{\mathbb{E}(Y^L)}{\mathbb{E}(X \wedge u)} = (1+r) \frac{\mathbb{E}\left(X \wedge \frac{u}{1+r}\right)}{\mathbb{E}(X \wedge u)} < 1+r \tag{3}$$

- 限额可以降低通货膨胀的影响
- 由于限额, 部分原先在限额内的赔款被截断

假设 $u=\infty$, 则

$$\frac{\mathbb{E}(Y^L)}{\mathbb{E}(X - X \wedge d)} = (1 + r) \frac{\mathbb{E}(X) - \mathbb{E}\left(X \wedge \frac{d}{1 + r}\right)}{\mathbb{E}(X) - \mathbb{E}(X \wedge d)} > 1 + r \qquad (4)$$

- 免赔额可以增加通货膨胀的影响
- 原先在免赔额内的损失可能超出免赔额

假设 $d > 0, u < \infty$, 则

$$\frac{\mathbb{E}(Y^L)}{\mathbb{E}(X \wedge (u+d) - X \wedge d)} = (1+r) \frac{\mathbb{E}\left(X \wedge \frac{u+d}{1+r}\right) - \mathbb{E}\left(X \wedge \frac{d}{1+r}\right)}{\mathbb{E}\left[X \wedge (u+d)\right] - \mathbb{E}(X \wedge d)} \tag{5}$$

通货膨胀对于超额赔款层的影响不确定, 需要考虑下面两种因素

- 限额可以降低通货膨胀的影响
- 免赔额可以增加通货膨胀的影响

如果免赔额和限额也随通货膨胀变化, 增加 r. 根据式(3)(4)(5), 免赔额和限额不会增加或者降低通货膨胀的影响.

- 阅读教材第6章.
- 完成习题 6.1-6.5.