

Information Maximized Variational Domain Adversarial Learning for Speaker Verification

Youzhi TU¹, Man-Wai MAK¹ and Jen-Tzung CHIEN²

¹Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong SAR of China

> ²Dept. of Electrical and Computer Engineering, National Chiao Tung University, Taiwan

> > ICASSP'20 4-8 May 2020

Contents

- 1. Domain mismatch and domain adaptation
- Variational domain adversarial neural network (VDANN)
- Information-maximized VDANN (InfoVDANN)
- 4. Experimental setup
- 5. Results
- 6. Conclusions

Domain Mismatch

- When training data and test data of speaker recognition systems have a severe mismatch, the performance degrades rapidly.
- The mismatch can be caused by languages, channels, noises, genders, etc.
- Collecting a large amount of in-domain labeled data to retrain the system is time-consuming and costly.
- We need to adapt the existing system to new environments or create a domain-invariant feature space.

Domain Adaptation

- Can be performed during system training by
 - 1. making the speaker embedding network domain-invariant
 - 2. transforming the speaker embedding to domain-invariant space
 - adapting the PLDA model

Domain Adaptation

- Can be performed during system training by
 - 1. making the speaker embedding network domain-invariant
 - 2. transforming the speaker embedding to domain-invariant space
 - adapting the PLDA model

Transformation of i/x-vectors

- Fix the i-vector extractor or speaker embedding network
- Transform the i/x-vectors to a domain-invariant space, followed by PLDA scoring
- Transformation can be performed by a domain adversarial neural network

Domain Adversarial Neural Network

- A feature encoder, a speaker classifier, and a domain discriminator are trained with contradictory objectives
- After training, the encoder produces domain-invariant feature vectors

Variational DANN

 Variational domain adversarial neural network (VDANN) incorporates a variational autoencoder (VAE) into domain adversarial training

Limitations of VDANN

Posterior collapse: When the decoder is too flexible, a VAE can produce non-informative representations z independent of the input x

$$\begin{split} \text{ELBO}_{\text{VAE}} &= \mathbb{E}_{p_{\mathcal{D}}(\mathbf{x})} \Big[- \text{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) || p(\mathbf{z})) + \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{X})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] \Big] \\ &\propto - \mathbb{E}_{q_{\phi}(\mathbf{z})} \big[\text{KL}(q_{\phi}(\mathbf{x}|\mathbf{z}) || p_{\theta}(\mathbf{x}|\mathbf{z})] - \text{KL}(q_{\phi}(\mathbf{z}) || p(\mathbf{z})) \end{split}$$

 $p_{\theta}(\mathbf{x}|\mathbf{z})$: Reconstruction likelihood

. $q_{\phi}(\mathbf{z}|\mathbf{x})$: Variational posterior

 $p(\mathbf{z})$: Latent prior

 $q_{\phi}(\mathbf{z}) = \int_{\mathbf{x}} p_{\mathcal{D}}(\mathbf{x}) q_{\phi}(\mathbf{z}|\mathbf{x}) d\mathbf{x}$: Aggregated posterior

InfoVAE

- InfoVAEs overcome the limitations of VAE by
 - ightharpoonup incorporating a term $\eta I_q(\mathbf{x}, \mathbf{z})$ that explicitly preserves high mutual information between \mathbf{x} and \mathbf{z}
 - \triangleright adding a scalar λ to balance variational inference and data reconstruction

$$\mathrm{ELBO}_{\mathrm{VAE}} \propto - \mathbb{E}_{q_{\phi}(\mathbf{z})} \big[\mathrm{KL}(q_{\phi}(\mathbf{x}|\mathbf{z})||\ p_{\theta}(\mathbf{x}|\mathbf{z}) \big] - \mathrm{KL}(q_{\phi}(\mathbf{z})||p(\mathbf{z}))$$

$$\begin{split} \text{ELBO}_{\mathsf{InfoVAE}} &\equiv - \, \mathbb{E}_{q_{\phi}(\mathbf{z})} \big[\text{KL}(q_{\phi}(\mathbf{x}|\mathbf{z})||\, p_{\theta}(\mathbf{x}|\mathbf{z}) \big] - \lambda \text{KL}(q_{\phi}(\mathbf{z})||p(\mathbf{z})) + \eta I_{q}(\mathbf{x},\mathbf{z}) \\ &\propto \, \mathbb{E}_{p_{\mathcal{D}}(\mathbf{x})} \Big[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{X})} \big[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \big] \Big] \\ &\qquad - (1 - \eta) \mathbb{E}_{p_{\mathcal{D}}(\mathbf{x})} \big[\text{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) \big] \\ &\qquad - (\lambda + \eta - 1) \mathcal{D}_{g}(q_{\phi}(\mathbf{z})||p(\mathbf{z})) \end{split}$$

 $I_q(\mathbf{x}, \mathbf{z})$: Mutual information between \mathbf{x} and \mathbf{z} under $q_{\phi}(\mathbf{z}, \mathbf{x})$

 $D_g(\cdot || \cdot)$: Generalized divergence, e.g., maximum mean discrepancy (MMD) and adversarial training

InfoVDANN

Information-maximized variational DANN (InfoVDANN) incorporates an InfoVAE into domain adversarial training

InfoVAE aims to

- Perform variational regularization so that **z** follows a Gaussian distribution
- Preserve the mutual information between

InfoVDANN

Loss function:

$$\mathcal{L}_{\mathsf{InfoVDANN}}\left(\theta_{c}, \theta_{d}, \phi_{e}, \theta_{g}\right) = \mathcal{L}_{\mathcal{C}}(\theta_{c}, \phi_{e}) - \alpha \mathcal{L}_{\mathcal{D}}(\theta_{d}, \phi_{e}) + \beta \mathcal{L}_{\mathsf{InfoVAE}}\left(\phi_{e}, \theta_{g}\right)$$

$$\mathcal{L}_{\mathcal{C}}(\theta_c, \phi_e) = \sum_{r=1}^{R} \mathbb{E}_{p_{\mathcal{D}}(\mathbf{x}^{(r)})} \left\{ -\sum_{k=1}^{K} y_k^{(r)} \log \mathcal{C}\left(E(\mathbf{x}^{(r)})\right)_k \right\}$$

 $\mathcal{L}_{D}(\theta_{d}, \phi_{e}) = \sum_{r=1}^{R} \mathbb{E}_{p_{\mathcal{D}}(\mathbf{x}^{(r)})} \left\{ -\log D\left(E(\mathbf{x}^{(r)})\right)_{r} \right\}$

r indexes domaink indexes speakerj indexes the dim of z

$$\begin{split} \mathcal{L}_{\mathsf{InfoVAE}} (\theta_g, \phi_e) &\triangleq - \mathbb{E}_{p_{\mathcal{D}}(\mathbf{x})} \left[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] \right] + (1 - \eta) \mathbb{E}_{p_{\mathcal{D}}(\mathbf{x})} [\mathsf{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))] \\ &+ (\lambda + \eta - 1) \mathsf{D}_g (q_{\phi}(\mathbf{z})||p(\mathbf{z})) \\ &= - \sum_{r=1}^{R} \sum_{i=1}^{N_r} \left\{ \log p_{\theta} \left(\mathbf{x}_i^{(r)} | \mathbf{z}_i^{(r)} \right) + \frac{1 - \eta}{2} \sum_{j=1}^{J} \left[1 + \log \left(\sigma_i^{(r)} \right)^2 - \left(\mu_{ij}^{(r)} \right)^2 - \left(\sigma_{ij}^{(r)} \right)^2 \right] \right\} \\ &+ \left[(\lambda + \eta - 1) \mathsf{D}_g \left(q_{\phi}(\mathbf{z}) ||p(\mathbf{z}) \right) \right] \end{split}$$

MMD or adversarial training by introducing a discriminator to distinguish samples drawn from $q_{\phi}(\mathbf{z})$ and $p(\mathbf{z})$

Gaussian regularization: Push $q_{\phi}(\mathbf{z}|\mathbf{x})$ towards a Gaussian distribution $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$

InfoVDANN

Optimization:

$$\mathcal{L}_{\mathsf{InfoVDANN}}\left(\theta_{c},\theta_{d},\phi_{e},\theta_{g}\right) = \mathcal{L}_{\mathcal{C}}(\theta_{c},\phi_{e}) - \alpha \mathcal{L}_{\mathcal{D}}(\theta_{d},\phi_{e}) + \beta \mathcal{L}_{\mathsf{InfoVAE}}\left(\phi_{e},\theta_{g}\right)$$

$$\hat{\theta}_{d} = \underset{\theta_{d}}{\mathsf{argmax}} \mathcal{L}_{\mathsf{InfoVDANN}}\left(\hat{\theta}_{c},\theta_{d},\hat{\phi}_{e},\hat{\theta}_{g}\right)$$

$$\left(\hat{\theta}_{c},\hat{\phi}_{e},\hat{\theta}_{g}\right) = \underset{\theta_{c},\phi_{e},\theta_{g}}{\mathsf{argmin}} \mathcal{L}_{\mathsf{InfoVDANN}}\left(\theta_{c},\hat{\theta}_{d},\phi_{e},\theta_{g}\right)$$

- Special cases
 - $> \eta = 0, \lambda = 1$, InfoVDANN \rightarrow VDANN
 - \triangleright Remove the decoder and the sampling procedure ($\beta = 0$), InfoVDANN \rightarrow DANN

Experiments

InfoVDANN training: each dataset corresponds to a domain

dataset	No. of speakers	No. of utterances					
SRE04-10	1,806	54,180					
Voxceleb1	1,251	37,530					
SwitchBoard II	273	6,962					
SITW	203	3,700					

- Evaluation data: SRE16 and SRE18-CMN2
- PLDA training data:

SRE04-10 + augmentation for SRE16

SRE04-10-mx6 + augmentation for SRE18-CMN2

PLDA adaptation: SRE16 and/or SRE18 unlabeled

Experiments

- Input: X-vectors extracted from the pre-trained DNN (512)
- InfoVDANN: Transformed to a 400-dimensional latent space

Sub-network	Architecture	Non-linearity					
Encoder	1024-1024-400	ReLU + linear (output)					
Decoder	2048-512	ReLU + linear (output)					
Speaker classifier	1024-1024-3533	Leaky ReLU + softmax (output)					
Domain classifier	128-32-4	ReLU + softmax (output)					

- Hyperparameters: $\alpha = 0.1$, $\beta = \lambda = 1$, $\eta = 0.2$
- Preprocessing: center + LDA (150) + whitening + length-norm

Experiments

• Generalized divergence: $D_g\left(q_{\phi}(\mathbf{z})||p(\mathbf{z})\right)$

$$\begin{split} \mathcal{L}_{\mathsf{InfoVAE}}(\theta_g, \phi_e) &= -\sum_{r=1}^R \sum_{i=1}^{N_r} \left\{ \log p_\theta \left(\mathbf{x}_i^{(r)} | \mathbf{z}_i^{(r)} \right) + \frac{1-\eta}{2} \sum_{j=1}^J \left[1 + \log \left(\sigma_{ij}^{(r)} \right)^2 - \left(\mu_{ij}^{(r)} \right)^2 - \left(\sigma_{ij}^{(r)} \right)^2 \right] \right\} \\ &+ \left(\lambda + \eta - 1 \right) \mathsf{D}_g \left(q_\phi(\mathbf{z}) || p(\mathbf{z}) \right) \end{split}$$

- ightharpoonup MMD: MMD-VDANN Minimize the MMD between $q_{\phi}(\mathbf{z})$ and $p(\mathbf{z})$
- Adversarial training: AAE-VDANN Minimize the JS-divergence between $q_{\phi}(\mathbf{z})$ and $p(\mathbf{z})$

SRE16

		PLDA tation	PLDA adaptation		0.90 -	•	baselir	ne ne-adpt							•	
	EER	minDCF	EER	minDCF	0.85 -	•	DANN DANN						•	. *		•
Baseline	11.30	0.890	8.27	0.604	0.80 -	*	VDANN VDANN						ļ ·			_
DANN	11.62	0.862	8.43	0.599	₩ 0.75 -	•		DANN-ad	pt					+	_	_
VDANN	11.13	0.845	8.22	0.585	0.75 -			/DANN /DANN-a	dpt							
AAE- VDANN	10.74	0.825	7.87	0.575	0.65 -											
MMD- VDANN	10.90	0.834	7.96	0.579	0.60	8.0) 8	.5 9	0.0	9.5	10.	0 1	0.5	11.0	11.	5

SRE18-CMN2

		No PLDA adaptation		laptation	0.68 baseline baseline-adpt
	EER	minDCF	EER	minDCF	0.66 DANN DANN-adpt
Baseline	11.21	0.676	9.60	0.575	VDANN VDANN-adpt
DANN	10.79	0.678	9.31	0.584	AAE-VDANN
VDANN	10.24	0.667	9.22	0.578	AAE-VDANN-adpt MMD-VDANN MMD-VDANN-adpt
AAE- VDANN	9.95	0.653	8.97	0.568	0.60
MMD- VDANN	10.08	0.661	8.99	0.569	9.0 9.5 10.0 10.5 11.0
					EER (%)

Quantile-quantile (Q–Q) plots and p-values obtained from Shapiro–Wilk tests (The larger the p, the more Gaussian the distribution.)

Conclusions

- InfoVDANN can **reduce domain mismatch** through domain adversarial training.
- InfoVAEs and VAEs are effective in making the transformed x-vectors more Gaussian.
- InfoVDANNs are effective for preserving speaker information in the latent space to improve the performance of speaker verification.

References

- 1. Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky, "Domain-adversarial training of neural networks," Journal of Machine Learning Research, vol. 17, no. 1, pp. 2096–2130, 2016.
- 2. A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Scholkopf, and A. Smola, "A kernel method for the two-sample-problem," in Proc. NIPS, 2007, pp. 513–520.
- 3. W. W. Lin, M. W. Mak and J. T. Chien, "Multi-source I-vectors Domain Adaptation using Maximum Mean Discrepancy Based Autoencoders", IEEE/ACM Transactions on Audio, Speech and Language Processing, vol. 26, no. 12, pp. 2412-2422, Dec. 2018.
- 4. Y. Z. Tu, M. W. Mak, and J. T. Chien, "Variational Domain Adversarial Learning for Speaker Verification", Interspeech'19, Graz, Sept. 2019.
- 5. S. J. Zhao, J. M. Song, and S. Ermon, "InfoVAE: balancing learning and inference in variational autoencoders," in Proc. AAAI Conference on Artificial Intelligence, 2019, pp. 5885–5892.

Thank you!

Mutual information estimation

$$\hat{I}_{q}(\mathbf{x}; \mathbf{z}) = \sum_{s=1}^{B} \left\{ -\frac{1}{2} \sum_{j=1}^{J} \left[1 + \log(2\pi) + \log\sigma_{sj}^{2} \right] - \log \frac{1}{B} \sum_{b=1}^{B} q_{\phi}(\mathbf{z}_{s} | \mathbf{x}_{b}) \right\}$$

- \triangleright Estimated samples: B = 1024
- > 200 runs

		SRE1	6-eval		SRE18-eval-CMN2					
	Enrol	lment	Te	st	Enrol	lment	Test			
	mean	var	mean	var	mean	var	mean	var		
VDANN	4.466	1.092	5.078	1.115	3.922	1.045	4.567	1.077		
MMD-VDANN	4.811	1.052	5.770	1.150	5.357	1.228	5.028	1.327		
AAE-VDANN	5.114	1.047	6.263	1.151	5.038 1.163		5.031	1.248		