FINAL EXAMINATION

January 2019

Duration: 120 minutes

SUBJECT: REAL ANALYSIS	
Deputy Head of Dept. of Mathematics:	Lecturer:
Dr. Tran Vinh Linh	Assoc. Prof. Nguyen Ngoc Hai

INSTRUCTIONS: Each student is allowed a scientific calculator and a maximum of two double-sided sheets of reference material (size A4 or similar), stapled together and marked with their name and ID. All other documents and electronic devices are forbidden.

Question 1 (25 marks) Let $F(x) = \tan^{-1} x$, $x \in \mathbb{R}$. If μ_F is the Lebesgue-Stieltjes measure corresponding to F, determine $\mu_F((0,1])$ and $\mu_F((-\infty,0])$.

Question 2 Consider the function $g: \mathbb{R} \to \mathbb{R}$ defined by

$$g(x) = \begin{cases} e^x & \text{if } x \le 0, \\ 2x + 3 & \text{if } x > 0. \end{cases}$$

- (a) (15 marks) Show that g(x) is Borel measurable on \mathbb{R} . (Hint: Express g in terms of e^x , (2x+3), $\chi_{(-\infty,0]}$, and $\chi_{(0,\infty)}$.)
- (b) (10 marks) Determine $E = g^{-1}([2,5])$ and the Lebesgue measure m(E).

Question 3 Let (X, \mathcal{M}, μ) be a measure space and let $\{A_n\}$ be a sequence of measurable sets such that $A_n \subset A_{n+1}$ for all n and $\bigcup_{n=1}^{\infty} A_n = X$. Suppose f is integrable on X and $h_n = f\chi_{A_n}$. Show that

- (a) (10 marks) $f h_n$ is defined a.e. on X;
- (b) (10 marks) $\lim_{n\to\infty} \int_X |f h_n| d\mu = 0$, and
- (c) (5 marks) $\lim_{n\to\infty} \int_{A_n} |f h_n| d\mu = 0.$

(Hint: Use the Dominated Convergence Theorem.)

Question 4 Suppose that X is a nonempty countable set and μ and ν are two measures on $\mathcal{P}(X)$.

- (a) (10 marks) Show that $M = \{x \in X : \mu(\{x\}) = 0\}$ is the largest μ -null set, that is, $\mu(M) = 0$ and if $\mu(A) = 0$ then $A \subset M$. Show that $N = \{x \in X : \nu(\{x\}) = 0\}$ is the largest ν -null set.
- (b) (10 marks) Show that $\nu \ll \mu$ if and only if $M \subset N$.
- (c) (5 marks) If $\mu(\lbrace x \rbrace) < \infty$, $\nu(\lbrace x \rbrace) < \infty$ for all $x \in X$, and $\nu \ll \mu$, find $\frac{d\nu}{d\mu}$.

*** END ***

SOLUTIONS

Subject: REAL ANALYSIS

January 2019

Duration: 120 minutes

Question 1 Since F(x) is continuous and increasing, the Lebesgue-Stieltjes measure μ_F corresponding to F exists. By definition,

$$\mu_F((0,1]) = F(1) - F(0) = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4}.$$

As $\{(-n,0]\}$ is an increasing sequence and $(-\infty,0] = \bigcup_{n=1}^{\infty} (-n,0]$, we have

$$\mu_F((-\infty, 0]) = \lim_{n \to \infty} \mu_F((-n, 0]) = \lim_{n \to \infty} F(0) - F(-n)$$
$$= \lim_{n \to \infty} \left[0 - \tan^{-1}(-n) \right] = \lim_{n \to \infty} \tan^{-1}(n) = \frac{\pi}{2}.$$

Question 2 (a) Since $(-\infty,0]$ and $(0,\infty)$ are Borel measurable, so are the functions $\chi_{(-\infty,0]}$ and $\chi_{(0,\infty)}$. As e^x and 2x+4 are continuous, they are Borel measurable. Thus $g(x) = e^x \chi_{(-\infty,0]} + (2x+3)\chi_{(0,\infty)}$ is Borel measurable.

(b) Since $g(x) = e^x \le 1$ for $x \le 0$, it follows that

$$E = g^{-1}([2,5]) = \{x : g(x) \in [2,5]\} = \{x > 0 : g(x) \in [2,5]\}$$
$$= \{x > 0 : 2 \le 2x + 3 \le 5\} = (0,1].$$

Thus m(E) = m((0,1]) = 1.

Question 3 (a) Since f is integrable, it is finite a.e. on X. In addition, h_n is defined everywhere, hence $f - h_n$ is defined a.e.

(b) For each $x \in X = \bigcup_{k=1}^{\infty} A_k$, there is $n_x \in \mathbb{N}$ such that $x \in A_{n_x}$. As $A_k \subset A_{k+1}$, we have $x \in A_n$ for all $n \geq n_x$ so that $h_n(x) = f(x)$ for all $n \geq n_x$. This implies $\lim_{n \to \infty} h_n(x) = f(x)$ for all $x \in X$ and hence, $\lim_{n \to \infty} |f(x) - h_n(x)| \to 0$ a.e. Moreover, $|h_n| = |f\chi_{A_n}| \leq |f|$, so

$$0 \le |f - h_n| \le |f - h_n| \le |f| + |h_n| \le 2|f|$$
 a.e.

The function 2f is integrable on X and we can apply the DCT to obtain

$$\lim_{n \to \infty} \int_X |f - h_n| d\mu = \int_X 0 d\mu = 0.$$

(c) Since $0 \le |f - h_n| \chi_{A_n} \le |f - h_n|$ a.e.,

$$0 \le \int_{A_n} |f - h_n| d\mu = \int_X |f - h_n| \chi_{A_n} d\mu \le \int_X |f - h_n| d\mu \to 0.$$

Thus $\lim_{n\to\infty} \int_{A_n} |f - h_n| d\mu = 0.$

Question 4 (a) Since X is countable, so is M. By assumption, $\mu(\{x\}) = 0$ for each $x \in M$. Thus $M = \bigcup_{x \in M} \{x\}$ is a countable union of μ -null sets $\{x\}$, so M is a μ -null set. If E is a μ -null set, then $\mu(\{x\}) = 0$ for all $x \in E$,

hence $x \in M$, i.e., $E \subset M$. Thus M is the largest μ -null set. In the same manner we can see that N is the largest ν -null set.

- (b) Suppose that $\nu \ll \mu$. Since $\mu(M) = 0$, then $\nu(M) = 0$. By part (a), N is the largest ν -null set, hence $M \subset N$. Conversely, if $M \subset N$, then for all μ -null set E, we have $E \subset M \subset N$. As $E \subset N$ and $\nu(N) = 0$, we have $\nu(E) = 0$, i.e., $\nu \ll \mu$. Thus $\nu \ll \mu$ if and only if $M \subset N$.
- (c) Since X is countable and $\mu(\{x\}) < \infty$, $\nu(\{x\}) < \infty$ for all $x \in X$, $X = \bigcup_{x \in X} \{x\}$ is the countable union of sets of finite measures. Thus μ and ν are σ -finite measures. Moreover, $\nu \ll \mu$, so by the Radon-Nikodym theorem, $\frac{d\nu}{d\mu}$ exists. Let $f = \frac{d\nu}{d\mu}$. Then

$$\nu(\{x\}) = \int_{\{x\}} f d\mu = f(x)\mu(\{x\}),$$

implying $f(x) = \frac{\nu(x)}{\mu(x)}$ for all $x \notin M$. Since X is equipped with the σ -algebra $\mathcal{P}(X)$, any function defined on X is measurable. Since $\frac{d\nu}{d\mu}$ is unique a.e. $[\mu]$ and $\mu(M) = 0$, any function f on X satisfying $f(x) = \frac{\nu(x)}{\mu(x)}$ for $x \notin M$ is the Radon-Nikodym derivative of ν with respect to μ .