Borromean Signatures

Sammy, Hao Xu

2017-09-21

1 Concrete Algorithm

All the works listed in this section is from [MP16].

1.1 Signing

Suppose a signer has a collection of verification keys $P_{i,j}$ for $0 \le i \le n-1$, $0 \le j \le m_i-1$, and wants to create a signature of knowledge of the n keys $\{P_{i,j_i^*}\}_{i=0}^{n-1}$ where the j_i^* 's are some fixed and unknown (to a verifier) indices. Denote the secret key to P_{i,j_i^*} by x_i . He acts as follows:

- 1. Compute M as the hash of the message to be signed and the set of verification keys.
- 2. For each $0 \le i \le n-1$:
 - (a) Choose a scalar k_i uniformly at random.
 - (b) Set $R_{i,j^*} = k_i G$.
 - (c) For j such that $j_i^* + 1 \le j \le m_i 1$ choose $s_{i,j}$ at random and compute

$$e_{i,j} = H(M||R_{i,j-1}||i||j-1)$$
 (1)

$$R_{i,j} = s_{i,j}G - e_{i,j}P_{i,j} \tag{2}$$

3. Finally, set

$$e_{i,0} = H(R_{0,m_0-1} \| \cdots \| R_{n-1,m_{n-1}-1})$$

That is, $e_{i,0}$ commits to several (s, P) pairs, one from each ring.

- 4. For each $0 \le i \le n-1$:
 - (a) Let $R_{i,-1} = R_{i,m_i-1}$
 - (b) For j such that $0 \le j \le j_i^* 1$ choose $s_{i,j}$ at random and compute

$$R_{i,j} = s_{i,j}G - e_{i,j}P_{i,j} \tag{3}$$

$$e_{i,j+1} = H(M||R_{i,j}||i||j)$$
 (4)

Note that this calculation is identical to the one in Step 2c.

(c) To wrap around making $R_{i,j_i^*} = s_{i,j}G - e_{i,j_i^*}P_{i,j_i^*}$, we should set

$$s_{i,j_{i}^{*}} = k_{i} + x_{i}e_{i,j_{i}^{*}} \tag{5}$$

The resulting signature on m consists of

$$\sigma = \{e_0, s_{i,j} \mid 0 \le i \le n - 1, 0 \le j \le m_i - 1\}$$
(6)

where e_0 means any of $e_{i,0}$. We should publish

$$\{M, \{P_{i,j}\}, \sigma \mid 0 \le i \le n-1, 0 \le j \le m_i - 1\}$$
 (7)

1.2 Verification

Since verification does not depend on which specific keys are known, it avoids the "two-phase" structure of signing and is therefore much simpler.

We assume we have a message m, a collection $\{P_{i,j}\}$ of verification keys whose indices range as before, and a signature σ whose notation is the same as before. The verifier acts as follows:

- 1. Compute M as the hash of the message to be signed and the set of verification keys.
- 2. For each $0 \le i \le n-1$,
 - (a) For each $0 \le j \le m_i 1$, compute

$$R_{i,j} = s_{i,j}G - e_{i,j}P_{i,j} (8)$$

$$e_{i,j+1} = H(M||R_{i,j}||i||j) \tag{9}$$

(As before, we always take $e_{i,0}$ to be e_0 .)

3. Compute

$$e_0' = H(M||R_{0,m_0-1}||\cdots||R_{n-1,m_{n-1}-1})$$
(10)

and return 1 iff $e'_0 \stackrel{?}{=} e_0$.

A visualization of the whole scheme is as Figure 1

Figure 1: A Borromean ring signature for $(P_0|P_1|P_2)\&(P_0'|P_3|P_4)$

2 Implementation in Monero

Summarized from the official codebase [SML].

References

- [MP16] Gregory Maxwell and Andrew Poelstra. Borromean Ring Signatures. 2016. URL: https://github.com/ ElementsProject/borromean-signatures-writeup.
- [SML] Noether Shen, Adam Mackenzie, and The Monero Lab. *monero*. URL: https://github.com/monero-project/monero.