Московский физико-технический институт (государственный университет) Факультет общей и прикладной физики

Лабораторная работа № 4.3.3 (Общая физика: оптика)

Исследование разрешающей способности микроскопа методом Аббе

Работу выполнил: Иванов Кирилл, 625 группа

г. Долгопрудный 2018 год

Цель работы: изучение дифракционного предела разрешения объектива микроскопа.

Оборудование: лазер, кассета с набором сеток разного периода, линзы, щель с микрометрическим винтом, экран, линейка.

1. Теоретическое введение

Метод Аббе оценки разрешающей способности прибора основа на принципе Гюйгенса-Френеля: сначала рассматривается первичное изображение, или фурье-образ, предмета, получаемое в задней фокальной плоскости F объектива; затем первичное изображение представляется источником волн, формирующих вторичное изображение в сопряженной плоскости P_2 . Рисунок 1 иллюстрирует образование изображения в объективе микроскопа. На рисунке P_1 - предметная плоскость.

Рис. 1: Образование изображение в объективе микроскопа

Первичное изображение является картиной дифракции Фраунгофера на объекте (в работе на дифракционной решетке). Для одномерной решетки периода d направление φ_m на максимум интенсивности x_m задается условием:

$$d\sin\varphi_m = m\lambda$$

Здесь λ - длина световой волны.

В плоскости P_2 наблюдается результат интерференции от когерентных точечных источников в F, создается изображение объекта. Согласно геометрической оптике, изображение в сопряженной плоскости имеет период:

$$d' \approx \frac{H + f}{f} \cdot d = \Gamma d$$

Здесь $\Gamma = \frac{H+f}{f}$ - увеличение, даваемое системой, соответствующие величины указаны на рисунке 1.

Для образование в P_2 периодичной структуры необходимо: $\varphi_m \leq u$, где u - апертурный угол. Откуда из формулы (1):

$$\sin u \ge \lambda/d$$

Обозначим диаметр рабочей части линзы объектива D, тогда $\sin u = \frac{D}{2f}$.

Таким образом, оценено разрешимое объективом расстояние d:

$$d \ge \frac{\lambda}{\sin u} = \frac{2\lambda f}{D}$$

В работе используется двумерная дифракционная решетка, которую можно рассматривать как скрещенные одномерные. Контролируя размер диафрагмы, устанавливаемой в фурьеплоскости F, можно пропустить только вертикальные или горизонтальные максимумы и получить одномерное вторичное изображение.

2. Определение периода решеток по их пространственному спектру

Схема установки, используемой в работе, изображена на рисунке 2. Лазер светит перпендикулярно на двумерную решетку С (в кассете их 5 штук), расположенную вблизи фокальной плоскости длиннофокусной линзы Π_1 . Вторичное изображение в плоскости P_2 проецируется на экран Э короткофокусной линзой Π_2 . В фурье-плоскости F ставится диафрагма диаметром D. Параметры установки: длина волны излучения лазера $\lambda = 532$ нм.

Рис. 2: Схема экспериментальной установки - модель проекционного микроскопа

Для выполнения данного пункта частично соберем схему: установим на пути луча сетку и добьемся четкого изображения решеток на экране. Для увеличения точности измерений на миллиметровой бумаге отметим диапазон дифракционных максимумов для каждой сетки. Расстояние от сетки до экрана равно $L=(117,0\pm0,5)$ см.

По количеству отмеченных максимумов m и их общей длине l (ошибку примем равной 2 мм) определим период решеток d из формулы (1). С учетом условия $\varphi = l/L$, получим:

$$d = \frac{(m-1)\lambda}{l/L}$$

Вычисления содержатся в таблице 1.

№ решетки	n	l, mm	d, mm	Δd , mm
1	25	94	0,159	0,004
2	22	111	0,118	0,002
3	15	147	0,0593	0,0010
4	9	161	0,0309	0,0005
5	7	187	0,0200	0,0003

Таблица 1: Измерение периода дифракционных решеток по их пространственному спектру

3. Определение периода решеток по изображению, увеличенному при помощи модели микроскопа

Соберем модель проекционного микроскопа без диафрагмы в соответствии с изображенной на рисунке 2; отцентрируем систему. Добьемся хорошей резкости картинки на экране для всех решеток. Измерим расстояния между сеткой и длиннофокусной линзой Π_1 $a_1=(14,5\pm0,5)$ см, между короткофокусной линзой Π_2 $b_2=(17,0\pm0,5)$ см и "длину тубуса" $b_1+a_2=(103,0\pm0,5)$ см (указаны на рисунке 2). Расстояние a_2 приблизительно равно фокусному расстоянию линзы Π_2 и указано на установке $a_2=2,5$ см. Увеличение системы задается формулой:

$$\Gamma = \frac{b_1 b_2}{a_1 a_2} = 47.1 \pm 1.3$$

Погрешность увеличения Γ рассчитана в соответствии с правилом для погрешности произведения.

Как и в первой части работы, на миллиметровой бумаге отметим диапазон максимумов, наблюдаемых на экране для каждой решетки. Определим период изображения d'=l/(m-1) и по формуле (2), где $\Gamma=(47,1\pm1,3)$, пересчитаем период решеток d. Вычисления содержатся в таблице 2.

№ решетки	n	l, mm	d', mm	$\Delta d'$, mm	d, mm	Δd , mm
1	10	87	9,7	0,2	0,205	0,007
2	13	87	7,25	0,17	0,154	0,005
3	22	70	3,33	0,10	0,071	0,003
4	27	44	1,69	0,08	0,036	0,002
5	28	30	1,11	0,07	0,024	0,002

Таблица 2: Измерение периода дифракционных решеток по изображению, увеличенному при помощи микроскопа

Измерения, выполненные в данном пункте, могут быть неточны, так как положение сетки лишь приближенно соответствует законам геометрической оптики. В кассете не было решетки с проволокой, по резкому изображению которой проводится правильная настройка.

4. Определение периода решеток по оценке разрешающей способности микроскопа

Поместим диафрагму в фокальную плоскость F, как это показано на рисунке 2. Для каждой решетки определим минимальное размер щели D_{min} (измеряется микрометрическим винтом с ошибкой 0,02 мм), при котором появляется двумерная структура, что соответствует открытию первых максимумов во втором направлении.

По формуле (3) при подстановке значения D_{min} вычислим наименьшее разрешаемое микроскопом расстояние d - период дифракционной решетки:

$$d = \frac{2\lambda f}{D_{min}}$$

Здесь f - фокус линзы Π_1 : f=110 мм.

Вычисления содержатся в таблице 3.

№ решетки	D_{min} , mm	d, mm	Δd , mm
1	0,57	0,205	0,007
2	0,76	0,154	0,004
3	1,15	0,102	0,002

 Таблица 3: Измерение периода дифракционных решеток по оценке разрешающей способности микроскопа

Определить положение щели, при котором наблюдается двумерная структура, для решеток с меньшим периодом (N 4, 5) не удалось: при максимальном открытии диафрагмы оставалось изображение одномерной сетки.

Измерения, приведенные в графе D_{min} , могут быть сдвинуты на несколько десятых миллиметра: микрометрический винт прокручивался при закрытой щели в сторону уменьшения.

Проверим теорию Аббе. Для этого построим график зависимости $d(1/D_{min})$, где значения d возьмем из первой части работы (определенные по спектру). Необходимые величины сведены в таблицу 4.

$1/D_{min}, \text{mm}^{-1}$	1,75	1,32	0,870
$\Delta 1/D_{min}, \mathrm{MM}^{-1}$	0,06	0,03	0,015
d,MM	0,159	0,118	0,0593
Δd , mm	0,004	0,002	0,0010

Таблица 4: Измерение зависимости периода решетки d (взят по спектру) от размера щели D_{min} , при котором проявляется двумерная структура

По таблице 4 построен график зависимости $d(1/D_{min})$, изображенный на рисунке 3. Экспериментальные точки, как того и требует теоретическая зависимость (8), ложатся на прямую

с хорошей точностью. Величина наклона прямой и ошибка, определенная по методу χ^2 , отражены на графике. Ошибка составляет 7%. В пределах погрешности значение коэффициента наклона совпадает с теоретическим $b=2\lambda f\approx 0.117~{\rm mm}^2$.

Рис. 3: График зависимости периода решетки, взятого по спектру, от диаметра диафрагмы $d(1/D_{min})$

5. Наблюдение пространственной фильтрации и мультиплицирования

В этой части работы будем работать с решеткой №2.

Максимумы, создаваемые двумерной решеткой в фокальной плоскости объектива F (см. рисунок 1), представляют картину дифракции Фраунгофера и будут рассмотрены как первичное изображение. Они изображены на рисунке 4.

Рис. 4: Дифракция Фраунгофера на двумерной решетке

Отфильтруем максимумы в одном из направлений решетки. Для этого подберем ширину щели таким образом, чтобы она пропускала только максимум нулевого порядка в перпендикулярном направлении. Поворачивая щель относительно оси системы, пронаблюдаем, как изменяется картина на экране, демонстрируя пространственную фильтрацию.

При вертикальной щели пропускаются максимумы $(0, m_x)$, и на экране наблюдается вертикальная "полоса" размытых максимумов. При горизонтальной щели, наоборот, пропускаются максимумы $(m_y, 0)$, и на экране видна горизонтальная "полоса". При положении щели под углом 45° к вертикали наблюдается полоса максимумов $m_x = m_y$. Фотографии эффекта приведены на рисунке 5.

Рис. 5: Наблюдаемая картинка пространственной фильтрации: (a) при вертикальной щели, (b) при наклонной на 45° щели, (c) горизонтальной щели

Рис. 6: Наблюдаемая картина при мультиплицировании

Нечеткость изображения можно объяснить наличием длинного козырька на подставке с сетками, способного изменить угол падения лучей на решетку.

Далее пронаблюдаем **мультиплицирование**. Для этого поменяем местами диафрагму с узкой щелью и решетку местами. Тогда в фокальной плоскости F получим результат дифракции на щели, а решетка рассечет это первичное изображение. Наблюдаемая картинка запечатлена на фотографии на рисунке 6.

6. Вывод

В работе определены периоды исследуемых решеток тремя методами: по пространственному спектру, по увеличенному микроскопом изображению и по оценке разрешающей способности микроскопа (указаны в таблицах 1-3). Полученные значения изменяются в пределах 20%. Более достоверными являются измерения в первой части работы (по спектру), так как они в меньшей степени зависят от качества установки и настройки системы.

Проверена теория Аббе разрешающей способности микроскопа, для чего построен график зависимости $d(1/D_{min})$, теоретически являющейся линейной. Действительно, экспериментальные точки хорошо легли на прямую, и коэффициент ее наклона, определенный по графику $b_{exp} = (0.121 \pm 0.008) \; \text{мм}^2$ соотносится с теоретической константой $b_{theor} \approx 0.117$, что подтверждает состоятельность метода Аббе.

Изучены эффекты пространственной фильтрации и мультиплицирования.