1

Resistance Measurement and Display using I2C

G V V Sharma*

Fig. 2.2.1: lcd

Abstract—Through this manual, we will learn how to setting up the I2C Communication between ESP32 and Arduino Uno.

1 Components

Component	Value	Quantity
Resistor	220 Ohm	1
	1K	1
ESP32	Devkit V1	1
Arduino	UNO	2
Jumper Wires		20
Bread board		1
LCD	16 X 2	1

TABLE 1.1

2 SETTING UP THE DISPLAY

- 2.1. In this we are using ESP32 as a Master, and use two Arduino Uno boards as a slaves refered as Arduino1 and Arduino2.
- 2.2. Plug the LCD in Fig. 2.2.1 to the breadboard.
- 2.3. Connect the Arduino2 to LCD pins as per Table 2.3.1.

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in the manual released under GNU GPL. Free to use for anything.

Arduino UNO	LCD Pins	LCD Pin Label	LCD Pin Description
GND	1	GND	
5V	2	Vcc	
GND	3	Vee	Contrast
D12	4	RS	Register Select
GND	5	R/W	Read/Write
D11	6	EN	Enable
D5	11	DB4	Serial Connection
D4	12	DB5	Serial Connection
D3	13	DB6	Serial Connection
D2	14	DB7	Serial Connection
5V	15	LED+	Backlight
GND	16	LED-	Backlight

TABLE 2.3.1

2.4. Connect the ESP32 pins to Arduino1 and Arduino2 as per Table 2.4.1.

I2C	ESP32	Arduino 1	Arduino 2
SDA	GPIO21	A4	A4
SDC	GPIO22	A5	A5
	VCC	VCC	VCC
	GND	GND	GND

TABLE 2.4.1

- 2.5. Execute the following code to flash and program ESP32 as a Master. https://github.com/Nagarajunaddi/esp32/tree/main/I2C/1_Master%2C%202_Slaves/I2C_
- 2.6. Execute the following code to flash and program Arduino1 as a Slave1.

Master/src/main.cpp

Fig. 3.1.1: Breadboard

Fig. 3.3.1: Voltage Divider

https://github.com/Nagarajunaddi/esp32/blob/main/I2C/1_Master%2C%202_Slaves/slave1/src/main.cpp

2.7. Execute the following code to flash and program Arduino2 as a Slave2. https://github.com/Nagarajunaddi/esp32/blob/main/I2C/1_Master%2C%202_Slaves/slave2/src/main.cpp

3 Measuring the resistance

- 3.1. Connect the 5V pin of the Arduino1 to an extreme pin of the Breadboard shown in Fig. 3.1.1. Let this pin be V_{cc} .
- 3.2. Connect the GND pin of the Arduino1 to the opposite extreme pin of the Breadboard.
- 3.3. Let R_1 be the known resistor and R_2 be the unknown resistor. Connect R_1 and R_2 in series such that R_1 is connected to V_{cc} and R_2 is connected to GND. Refer to Fig. 3.3.1
- 3.4. Connect the junction between the two resistors to the A0 pin on the Arduino1.
- 3.5. Connect the ESP32 to the computer so that it is powered.

4 Explanation

- 4.1. We create a variable called analog pin and assign it to 0. This is because the voltage value we are going to read is connected to analog pin A0.
- 4.2. The 10-bit ADC can differentiate 1024 discrete voltage levels, 5 volt is applied to 2 resistors and the voltage sample is taken in between the resistors. The value which we get from analog pin can be between 0 and 1023. 0 would represent 0 volts falls across the unknown resistor. A value of 1023 would mean that practically all 5 volts falls across the unknown resistor.
- 4.3. V_{out} represents the divided voltage that falls across the unknown resistor.
- 4.4. The Ohm meter in this manual works on the principle of the voltage divider shown in Fig. 3.3.1.

$$V_{out} = \frac{R_2}{R_1 + R_2} V_{in} (4.4.1)$$

$$\Rightarrow R_2 = \frac{R_1}{\left(\frac{V_{in}}{V_{out}} - 1\right)} \tag{4.4.2}$$

In the above, $V_{in} = 5V$, $R_1 = 220\Omega$.