Buffon's needle

- Parallel lines at distance dNeedle of length ℓ (assume $\ell < d$)
- Find P(needle intersects one of the lines)

• Model:
$$(x, \Theta)$$
 independent
 $X: \int_{X} (x) = \frac{2}{d}$, $0 \le x \le \frac{d}{2}$

$$\Theta: f_{\theta}(\theta) = \frac{2}{7}, \quad o \in \Theta = \frac{7}{2}$$

• Intersect if $\times \leq \frac{\ell}{2} \sin \theta$

Buffon's needle

$$f_{X,\Theta}(x,\theta) = \frac{4}{\pi d}$$
, $0 \le x \le d/2$, $0 \le \theta \le \pi/2$

• Intersect if
$$X \le \frac{\ell}{2} \sin \Theta$$
 $\left(P\left(X \le \frac{\ell}{2} \sin \Theta \right) = \frac{2\ell}{\pi d} \right)$

$$\int_{0}^{\pi/2} \left(\chi \leq \frac{\ell}{2} \sin \Theta \right)$$

$$= \int_{0}^{\pi/2} \frac{\ell}{\pi d} \sin \Theta dx d\theta = \int_{0}^{\pi/2} \frac{4}{\pi d} \cdot \frac{\ell}{2} \sin \Theta \cdot d\theta$$

$$= \frac{9\ell}{\pi d} \left(-(05\theta) \right)^{n/2} = \frac{2\ell}{\pi d}$$

"Monte Carlo" method for experimental evaluation of π