MAT1100 - Grublegruppe Fasit 3

Jørgen O. Lye

4.3.5

a)

Gitt $c \in \mathbb{R}$. Siden $a_n > 0$ for alle n kan vi anta at c > 0. Vi kan dermed oppnå

$$a_n = 3n + 7 > c$$

hvis 3n>c-7 eller $n>\frac{c-7}{3}$. Konklusjon: Gitt en $c\in\mathbb{R}$ så er $x_n>c$ for alle $n>N>\frac{c-7}{3}$. Dette viser at $x_n \to \infty$.

b)

Gitt $c \in R$, så vil vi ha at $x_n < c$ for alle $n \ge N$ for en eller annen N. Anta at n > 7 slik at nevneren i $a_n = \frac{n^2+4}{7-n}$ er negativ. Da regner vi litt:

$$c > a_n = \frac{n^2 + 4}{7 - n} \implies c(7 - n) < n^2 + 4$$

(snudde ulikheten fordi vi ganget med noe negativt). Flytter man over finner man at

$$n^2 + cn - 7c + 4 > 0$$

Dette er oppfylt for stor nok n, slik at $a_n \to -\infty$.

5.1.13

Setning 5.1.10 sier at f er kontinuerlig i x_0 hvis og bare hvis $f(x_n) \to f(x_0)$ for alle x_n som konvergerer mot x_0 . For følger har vi at

$$(f(x_n) \pm g(x_n)) \to (f(x_0) \pm g(x_0))$$

hvis $f(x_n) \to f(x_0)$ og $g(x_n) \to g(x_0)$. Dette viser at $g \pm f$ er kontinuerlig hvis både f og g er det!

Helt analogt har vi at $\frac{f(x_n)}{g(x_n)} \to \frac{f(x_0)}{g(x_0)}$ hvis $f(x_n) \to f(x_0)$ og $g(x_n) \to g(x_0) \neq 0$. Dette viser at f/g er kontinuerlig i x_0 . Samme type argument for $f \cdot g$.

Liming

Disse er begge konsekvens av Setning 5.1.10 i Kalkulus, som sier essensielt at f er kontinuerlig i x_0 hvis og bare hvis $f(x_n) \to f(x_0)$ for alle $x_n \to x_0$. Her er et bevis:

Anta at f er kontinuerlig i et punkt x_0 , og la $x_n \to x_0$ være en konvergent følge. La $\epsilon > 0$ være gitt. Siden f er kontinuerlig finnes det en $\delta > 0$ slik at $|f(x_n) - f(x_0)| < \epsilon$ når $|x_n - x_0| < \delta$. Siden $x_n \to x_0$, finnes det en N slik at $|x_n - x_0| < \delta$ for alle n > N. Samler man tankene litt her viser dette at $|f(x_n) - f(x_0)| < \epsilon$ når n > N, dvs $f(x_n) \to f(x_0)$.

For den motsatte implikasjonen, anta at f ikke er kontinuerlig. Vi skal da vise at $f(x_n)$ ikke konvergerer mot $f(x_0)$.

La $x_n \to x_0$. Siden f ikke er kontinuerlig så finnes det en $\epsilon > 0$ slik at uansett $\delta > 0$ så vil $|f(x_n) - f(x_0)| \ge \epsilon$ selv om $|x_n - x_0| < \delta$. Uansett $\delta > 0$ finnes det en N slik at $|x_n - x_0| < \delta$ for alle $n \ge N$. Men siden uansett hvor stor n blir så er $|f(x_n) - f(x_0)| \ge \epsilon$ kan ikke $f(x_n)$ konvergere mot $f(x_0)$.

Anvendelse

Vi vet fra beviset av de deriverte av sinus og cosinus at

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

Dermed er F(x) som i oppgaven kontinuerlig.

Siden $\lim_{x\to 0} \frac{1}{x} = \infty$ kan ikke dette være lik noe reelt tall $(\infty \notin \mathbb{R} !)$. Dermed er $\lim_{x\to 0^-} F(x) = \infty \neq F(0)$ slik at den andre F definert i oppgaven ikke kan være kontinuerlig.