캡스톤 디자인 I 최종결과 보고서

프로젝트 제목(국문): 딥러닝 기반 딸기 숙성도 분류 및 로봇 팔을 활용한 수확 자동화

프로젝트 제목(영문): Deep Learning-Based Strawberry Ripeness Classification and Automated Harvesting Using a Robotic Arm

프로젝트 팀(원): 학번: 20202066 이름: 안다은

프로젝트 팀(원): 학번: 20201737 이름: 백민우

프로젝트 팀(원): 학번: 20222008 이름: 조민서

프로젝트 팀(원): 학번: 20222278 이름: 박동현

1. 중간보고서의 검토결과 심사위원의 '수정 및 개선 의견'과 그러한 검토의견을 반영하여 개선한부분을 명시하시오.

없음

2. 기능, 성능 및 품질 요구사항을 충족하기 위해 본 개발 프로젝트에서 적용한 주요 알고리즘, 설계방법 등을 기술하시오.

〈딸기 탐지 파트〉

1. 개요

RGB 이미지 및 Depth 정보를 입력으로 받아, 딸기를 탐지하고, 인스턴스별 분할, 숙성도 분류, 수확 지점 및 각도 추정을 수행함으로써 로봇 팔 제어를 위한 좌표 정보를 제공한다.

탐지 파트 순서도

2. 시스템 입력 및 구성요소

- 입력 데이터
 - RGB 이미지: 딸기 위치 및 모양 정보
 - Depth 이미지: 딸기와의 거리 및 수확 지점의 깊이 파악
- 사용 모델
 - 객체 검출: YOLOv5n 영역
 - 세분화: MobileNetV2 + UNet
- 후처리 알고리즘
 - 숙성도 분류: HSV 히스토그램 기반 분류
 - Watershed 기반 인스턴스 마스크 생성
 - 삼각형 중심선 기반 수확 지점 및 각도 계산
- 3. 처리 단계 및 설계
- 3.1 딸기 검출 (Bounding Box)
 - 모델: YOLOv5n
 - 처리 과정:
 - 입력 RGB 이미지에 대해 YOLOv5n 추론 수행
 - 딸기 포함 영역의 bbox 좌표 반환
 - 결과: 딸기 후보 영역 (x1, y1, x2, y2) 추출
- 3.2 딸기 영역 분할 (Segmentation)
 - 모델: MobileNetV2 기반 U-Net
 - 처리 과정:
 - bbox 내 crop 이미지를 모델 입력으로 사용
 - bbox 내 pixel 에 대해 binary_mask[y1:y2, x1:x2] 갱신
 - 결과: 전체 이미지에 대한 딸기 영역 바이너리 마스크

객제 탐지 모델 훈련 순서도

3.3 인스턴스 분리 (Instance Mask)

- 기법: Watershed 세그멘테이션
- 전처리:
 - Morphological Opening 으로 노이즈 제거
 - Distance Transform 으로 중심점 강조
- 적용:
 - \bigcirc Connected Component \rightarrow Marker
 - Watershed → 각 인스턴스 분리
- 결과: 인스턴스마다 고유 ID 가 부여된 마스크

3.4 숙성도 분류

- 기법: HSV 히스토그램 기반 분류
- 절차:
 - S, V 값이 충분히 높은 픽셀 기준 유효영역 선정
 - H 값의 비율로 '붉은 영역' 판단
- 분류 기준:
 - fully_ripe: 붉은 영역 ≥ 20%
 - unripe: 붉은 영역 < 10%
- 결과: 각 딸기별 숙성도 클래스

3.5 중심선 추출 및 수확 좌표 산출

● 처리:

- 인스턴스 마스크의 외곽 윤곽선 추출 후 딸기 형태를 감싸는 외부삼각형 피팅
- 외부 삼각형을 기반으로 내부 삼각형 재생성
- 내부 삼각형에서 꼭짓점 중 딸기의 가장 아랫부분에 해당하는 꼭짓점을 계산
- 나머지 두 꼭짓점을 수확지점으로 설정
- 중심선 벡터를 기반으로 딸기의 수확 각도(angle)가 산출
- 결과 : 딸기 각도, 수확 지점 좌표

3.6 Depth 기반 거리 추정

- 기법: 딸기 mask 내 padding 을 제거 후 유효 depth 평균 계산
- 결과: 수확 지점의 평균 거리 추정

4. 로봇 제어를 위한 정보 제공

최종적으로 각 fully_ripe 딸기에 대해 다음 정보를 추출함:

- 딸기 위치 (center)
- 수확 좌표 2 개
- 딸기 각도 (기울기)
- 거리 (depth 평균)

이러한 정보는 로봇 팔의 수확을 위한 제어에 바로 사용 가능하도록 구조화됨.

〈로봇 제어 파트〉

1.개요

본 시스템은 Jetson Nano 에서 분석된 수확 지점 좌표 및 각도 정보를 기반으로, 로봇팔(Indy7)을 제어하여 딸기를 자동으로 수확하는 과정을 포함한다. 딸기의 위치 좌표 및 수확 방향은 영상 기반 추론 결과로부터 계산되며, 해당 정보를 이용해 로봇팔이 지정된 위치로 이동하고, 수확 동작을 수행한다.

2. 시스템 입력 및 구성요소

- 제어 대상
 - 로봇팔: Indy7(neuromeka)

● 제어 방식

- Jetson Nano 에서 연산한 실세계 좌표(X, Y, Z) 값을 기반으로 로봇팔에 이동 명령 전송
- Neuromeka 에서 제공하는 IndyDCP 라이브러리를 활용하여 제어 명령 수행

● 제어 흐름

- go_home(): 초기 위치로 이동
- task_move_to(x, y, z, rx, ry, rz): 수확 좌표로 이동
- wait_for_move_finish(): 이동 완료 대기
- joint_move_by() or task_move_by(): 미세 보정
- 수확 후 다시 초기 위치 복귀

3.현재 진행 상황

- 로봇팔 연동 완료 후 포인트 제어 연습 진행 중
- 고정된 테스트 베드 위 10cm 간격의 타깃 지점을 반복 이동하여 좌표 오차 측정 및 보정 알고리즘 실험 중
- 3. 요구사항 정의서에 명세된 기능 및 품질 요구사항에 대하여 최종 완료된 결과를 기술하시오.

전체 순서도

탐지 결과

4. 구현하지 못한 기능 요구사항이 있다면 그 이유와 해결방안을 기술하시오.

최초 요구사항	구현 여부(미구현, 수정, 삭제 등)	이유(일정부족, 프로젝트 관리미비, 팀원변동, 기술적 문제 등)
로봇팔 이동 및 수확 제어	미구현	일정 부족 및 로봇팔 제어 환경 구축 지연

- 로봇팔 연동

로봇팔(OpenManipulator-X 및 Indy7)과의 연동 기능은 하드웨어 테스트베드 구축 및 네트워크기반 제어 환경 미비로 인해 본 개발 기간 내에 구현되지 못하였다.

향후에는 ROS 기반 시뮬레이션 환경을 우선적으로 구축하고, 딸기 위치 좌표를 기반으로 한 로봇 제어 명령의 정확성을 검증함으로써 실질적인 연동이 가능하도록 할 예정이다.

또한, 제어 알고리즘의 정밀도 향상을 위해 포인트 이동에 대한 반복 실험을 통해 오차 보정 값을 수집하고 적용함으로써 연동 신뢰도를 제고할 계획이다.

최초 요구사항	구현 여부(미구현, 수정, 삭제 등)	이유(일정부족, 프로젝트 관리미비, 팀원변동, 기술적 문제 등)
수확 시퀀스 통합 제어	미구현	일정 부족 및 로봇팔 제어 환경 구축 지연

최초 요구사항	구현 여부(미구현, 수정, 삭제 등)	이유(일정부족, 프로젝트 관리미비, 팀원변동, 기술적 문제 등)
추론 결과와 데이터 베이스 연동	미구현	일정 부족 및 네트워크 환경 구축 지연

- 추론 결과와 데이터 베이스 연동

모델의 추론 결과와 데이터 베이스의 연동 기능은 네트워크 기반 통신 환경 미비로 인해 본 개발기간 내에 구현 되지 못하였다.

향후 테스트 베드에서의 추론결과를 FireBase 로 전송하는 환경을 구축하고, 이를 기반으로 스마트팜 환경에서의 농작물 데이터 분석 및 사용자에게 정보를 제공하는 프로세스를 구축할 예정이다.

5. 요구사항을 충족시키지 못한 성능, 품질 요구사항이 있다면 그 이유와 해결방안을 기술하시오.

분류(성능, 속도 등) 및	충족 여부(현재	이유(일정부족, 프로젝트 관리미비,
최초요구사항	측정결과 제시)	팀원변동, 기술적 문제 등)
해당 사항 없음		

6. 최종 완성된 프로젝트 결과물(소프트웨어, 하드웨어 등)을 설치하여 사용하기 위한 사용자 매뉴얼을 작성하시오.

1) 소개

이 매뉴얼은 딸기 인스턴스 세분화를 기반으로 한 자동 수확 지원 시스템을 설치하고 사용하는 방법을 설명한다.

2) 시스템 요구사항

하드웨어 권장 사항

Jetson 보드: 최소 Jetson Nano

디스크: 512GB SSD (시스템 및 프로그램, 데이터 저장용)

전원 어댑터: 5V 4A

로봇팔: Indy 7

전원 어댑터: 12V

고정 거치대

엔드 이펙터: OpenManipulator-X

카메라: Intel RealSense D435

소프트웨어 요구사항

운영체제: Ubuntu 22.04 기반 JetPack 4.6 이상 (CUDA 12.6, cuDNN 12 포함)

Python: 3.10 (JetPack 내장)

JetPack SDK: CUDA Toolkit, cuDNN, TensorRT 포함

필수 라이브러리 및 패키지: numpy, OpenCV, PyTorch, torchvision, TensorRT Python 바인딩 (tensorrt, pycuda)

3) 설치 준비물

필수 항목

설치 파일: 자동 수확 지원 시스템 패키지 (strawberry_harvest_system.zip)

Jetson Nano 및 초기화된 SSD 카드

Python 설치 파일

pip3 (Ubuntu 패키지 관리자로 설치)

카메라 드라이버: Intel RealSense D435 용 librealsense 패키지

로봇팔 제어 소프트웨어: Indy 7 용 ROS 패키지 및 OpenManipulator-X 드라이버

SSH 접속을 위한 네트워크 연결

선택 항목

가상 환경 설정을 위한 python3-venv

Jetson 용 추가 냉각 팬

4) 설치 과정

a. 시스템 패키지 업데이트

터미널을 열고, sudo apt-get update 과 sudo apt-get install -y 명령어를 입력해 패키지리스트를 최신 상태로 업데이트한다.

b. 가상 환경 설정 (선택 사항)

터미널에서 pip3 install --user virtualenv 명령어를 입력하여 virtualenv 를 설치한다. 프로젝트 폴더로 이동한 후, virtualenv venv 명령어를 입력하여 가상 환경을 만든다. source venv/bin/activate 명령어를 입력하여 가상 환경을 활성화한다.

c. 필수 라이브러리 설치

제공된 strawberry_harvest_system.zip 파일을 압축 해제한다.

압축 해제한 폴더로 이동하여 requirements.txt 파일이 있는지 확인한다.

터미널에서 pip install -r requirements.txt 명령어를 입력하여 필요한 라이브러리를 설치한다.

d. 소프트웨어 설치 및 실행

압축 해제한 폴더에 app.py 파일과 Grow Vision.apk 가 있는지 확인한다.

터미널(또는 명령 프롬프트)에서 python app.py 명령어를 입력하여 소프트웨어를 실행한다.

또한 Grow Vision.apk 파일을 설치하여 인터페이스에 접근한다.

5) 소프트웨어 사용법

a.로그인 및 메인페이지

Grow Vision 앱을 열고, 로그인 페이지에서 사용자 계정으로 로그인 한다.

로그인 후 메인 페이지에서 구역별 농작물(딸기) 현황 및 농장 구역 관리에 접근할 수 있다.

b. 구역별 농작물(딸기) 현황

메인페이지에서 "Farm Statistics" 탭을 선택한다.

각 구역별 농작물의 개수와 숙성된 딸기 및 숙성되지 않은 딸기의 개수를 확인 할 수 있다.

c. 농장 구역 관리

메인페이지에서 "Zone Management" 탭을 선택한다.

농장 구역 추가 기능과 농장 구역별 농작물 통계 현황을 볼 수 있다.

d. 생성형 AI 를 활용한 데이터 분석

Farm Statistics 과 Zone Management 탭에서 생성형 AI 를 활용한 데이터 분석 기능을 이용할 수 있다.

7. 캡스톤디자인 결과의 활용방안

본 캡스톤 디자인을 통해 딸기 인스턴스 세분화 기반의 자동 수확 최적화 모델을 개발하고자 한다. 이 시스템은 영상 기반 딸기 탐지, 숙성도 분류, 수확 좌표 산출을 통해 로봇팔이 자동으로 수확할 수 있도록 지원한다.

이를 통해 과실 위치와 숙성도를 정확히 파악하여 작업 효율을 극대화하고, 노동력 의존도를

낮춤으로써 농장 경영 비용 절감에 기여할 수 있다.

또한, 자동화된 수확 과정은 품질을 균일하게 유지하며, 물리적 손실을 최소화하여 생산성과 상품 가치를 동시에 향상시킨다.

아울러 본 프로젝트에서 수집된 생육 데이터는 스마트팜 관리 시스템의 고도화, AI 학습 데이터셋, 딥러닝 기반 작황 예측 등 다양한 연구 개발의 기반 자료로 활용될 수 있다.

이를 통해 지속 가능한 농업 환경 조성에 실질적으로 이바지할 수 있을 것으로 기대된다.