Ilmastovaikutukset

Ojitettujen soiden kestävä käyttö

Työpaja 21.3.2019

Kari Minkkinen, HY

Genesis

"Ojituksen seurauksena suolta häviää hiiltä kymmenen kertaa nopeammin, kuin mitä sinne luonnontilassa kertyy"

(Silvola, J. 1986, Ann. Bot. Fennici)

Luonnontilainen suoekosysteemi

- NPP>R_H -> NEE positiivinen, eli
- Kerryttää hiiltä
- Vaihtelee voimakkaasti

(pitkän ajan keskiarvot 2-100 g C m⁻² a⁻¹,)

- suotyyppien välillä
- suoyhdistymätyyppien välillä
- ilmasto
- suon ikä
- Korkeutena keskimäärin 0.5 mm vuodessa
- Vapauttaa metaania anaerobisessa hajoamisessa

Ojitus, mitä tapahtuu:

- Vettä poistuu
- Turvekerros painuu kasaan
- Turve tiivistyy ja sen tiheys kasvaa
- Metaanin tuotos ja päästöt vähenevät
- Typpioksiduulin päästöt kasvavat usein
- =>Turpeen hajotus kiihtyy hapellisissa oloissa jolloin ekosysteemiin varastoitunutta hiiltä täytyy vapautua ilmakehään
 - Hajotuksen nopeutuminen teoriassa kiistaton tosiasia
 - Todennettu laboratoriokokein
 - Mutta onko hiilen hävikistä empiirisiä havaintoja luonnosta?

Metsäojitettu suo

On!

- Esim. Holme Post, Englanti 1848-1978
- Turve painunut jo n. 4 metriä
- 1. fysikaalinen kokoonpuristuminen
- 2. turpeen oksidaatio

Myös metsäojitetuilla soilla maahengitys kasvaa ojituksen jälkeen

- Suorassa suhteessa vedenpinnan tasoon (60 cm asti)
- Maahengitys ei ole hiilitase, vaan siinä on mukana hajottajien ja tuottajien hengitys
- Jos orgaanisen aineen hajotuksesta aiheutuva päästö ylittää tuotoksen, johtaa tämä maan hiilivaraston vähenemiseen

Samaan aikaan: CH₄ päästöt vähenevät

- Sarasoiden suuret päästöt loppuvat
 - sarat häviävät:
 - metanogeenien ravinto vähenee
 - turvallinen kuljetus hapellisen turpeen läpi loppuu -> oksidaatio
- Rahkasoiden pienet päästöt puolittuvat
 - huonompi kuivatusvaikutus, vähemmän saravaikutusta

N₂O päästöt kasvavat merkittävästi reheviltä soilta, karuilta vähemmän

- Typpioksiduulia syntyy nitrifikaatio- ja denitrifikaatioprosesseissa
- Typen lähde metsäojitetulla suolla turpeen hajoaminen, mineralisaatio => voimakkaampaa runsastyppisillä soilla, joilla myös parempi kuivatus
- Maataloudessa typen suurin lähde lannoitus

Metsäojitettujen soiden <u>maan</u> hiilitaseet

 CO2-/C-taseen luotettava mittaus ei ole ihan helppoa. Päästö ei ole tase! Puusto on pahasti mittausten tiellä!

Menetelmiä:

- 1. Hiilivarastojen muutoksen määritys
- 2. Tulevien ja lähtevien hiilivirtojen määritys (Litter Respiration)
- 3. NEE-mittaus tornista (– puuston biomassan kasvu)

• Julkaistuja tutkimuksia:

- 1. Hiilivarastonmuutosmittauksia (Minkkinen ja Laine 1998, Minkkinen ym. 1999, Simola ym. 2010, (Turetsky et al. 2011))
- 2. Litter-Respiration (Ojanen ym. 2010, 2012, Uri et al. 2017)
- 3. NEE-mittauksia (Lohila ym. 2008, 2011, Minkkinen ym. 2018, Meyer et al. 2013)
- Ulkomaisia tutkimuksia niukasti

Turpeen hiilivaraston muutoksen määritys

(Minkkinen & Laine 1998)

Turpeen hiilitaseen muutoksen määritys, siitepölyanalyysit (Minkkinen ym. 1999)

Tulevat - lähtevät

- CO2 heterotrofinen respiraatio eli orgaanisen aineen hajotus (D) kammioilla
- Kariketuotos L (maanpäälliset ja alaiset) keräimillä ja juuritutkimuksista
- CO2-tase = L − D

Mikrometeorologiset NEE-mittaukset

Lettosuo, Mtkg

Kalevansuo, Vatkg

Suora CO2 mittaus, 10 Hz:

NEE = Ekosysteemin CO2-tase

Mittaukset eivät kuitenkaan ole koskaan aukottomia ja niitä pitää paikata malleilla.

Maan CO2 tase = NEE – biomassan kasvu

Maaperän hiilitaseita ojitetuilta soilta

Maaperän hiilitaseita ojitetuilta soilta

Karut vs rehevät

Karut nieluja, rehevät lähteitä

Karut nieluja, rehevät lähteitä

Minkkinen & Laine 1998

Ojanen ym. 2012

Rehevät vs. Karut

Ekosysteemi:

Nielu (n. 120 g CO2 m⁻² a⁻¹)

Maaperä:

Lähde n. 700 g CO2 m⁻² a⁻¹

Ekosysteemi:

Nielu (n. 860 g CO2 m⁻² a⁻¹)

Maaperä:

Nielu n. 220 g CO2 m⁻² a⁻¹

> Lohila et al. 2011, Minkkinen et al. 2018

Lohila et al. unpubl.

Johtopäätös 1

- Ojitus saa aikaan turpeen hiilivarastojen vähenemisen rehevillä kohteilla, mutta ei välttämättä karuilla.
 - märempiä, sammalkasvu jatkuu, humuskerroksen muodostuminen, hitaampi orgaanisen aineen hajotus
- Koko ekosysteemin hiilitase useimmiten myös positiivinen (hiilivarasto ei vähene, useimmiten kasvaa)

 Koko Suomenkin tasolla puuston kasvu kompensoi turpeen hajotuksen. Onko siis mitään hätää?

Maan vs ekosysteemin hiilivarastot

Hiilivarastojen simuloitu kehitys, Kalevansuo vs Lettosuo

Avohakkuiden vaikutus

 Avohakkuualue selvä hiilen lähde ainakin 3-4 vuotta hakkuun jälkeen (~550 g C/season)

Onko karu Kalevansuo aina hiilen nielu? Simuloitu kehitys:

Voiko päästöihin vaikuttaa?

• ...esim vedenpintaa säätelemällä?

Vedenpinnan vaikutus – CO2 tase

DATA: Kaikki Suomessa kerätty ojitettujen soiden kaasupäästöihin ja kariketuotoksiin perustuva hiilitasedata (Ojanen ym. 2013, Minkkinen ym. 2011, Minkkinen ym. 2007, julkaisemattomat)

-Rehevistä kohteista rajattu yli 60 cm syvät havainnot pois

TULOS: 10 cm muutos vedenpinnassa vastaa 63 / 121 g CO2 muutosta taseessa. **Märempi parempi!**

Mitä tämä tarkoittaa, esim. kunnostusojituksen suhteen?

Vedenpinnan vaikutus

CH4 tase (ojitetut)

N2O päästö

(Ojanen et al. 2010)

(Minkkinen et al. unpubl.)

Suon hiilenkierto ja ilmastovaikutukset

Vaikka CH4 lämmittää enemmän kuin CO2 viilentää sadan vuoden aikajänteellä suon kehityksen aikana, luonnontilaisilla soilla on ollut ilmastoa viilentävä vaikutus.

Miten hiilivarastojen ja KHK-päästöjen muutokset vaikuttavat säteilypakotteeseen eli ilmastovaikutukseen?

Albedo: kompensoi osan puuston nieluvaikutuksesta

Ilmastovaikutus samaa luokkaa puuston hiilen sidonnan kanssa – mutta vastakkainen eli ilmastoa lämmittävä!

Albedo – tai sitten vastaa n. 5 g metaania (karun luonnontilaisen suon päästö)

Maan kaasut vs. albedo

Maa+puut vs. albedo

...mutta koska vaikutus on paikallinen, vaikutus koko maapallon lämpötilaan epäselvä (leviääkö lämpö tasaisesti...?)

Maatalouden päästöt

- Kuivatusvaikutus samansuuntainen kuin metsäojitetuilla, mutta voimakkaampi, koska lannoitus ja maanmuokkaus ja ei-pysyvä kasvipeite
- Eli: CO2 ja N2O +++, CH4 -
- Yksivuotisilla viljelykasveilla suuremmat maan päästöt kuin monivuotisilla
- Metsittäminen ei lopeta päästöjä maaperästä, jos WT pysyy syvällä
- Ojapäästöjä ei ole juuri mitattu. Ennallistamista tosi vähän Suomessa. Keski-Euroopassa enemmän: vaara CH4 päästöjen hyvin suureen kasvuun, jos rehevä pelto tulvitetaan
- Pellonraivaus ja lannanlevitys suolle erittäin suuri N2O ja CO2 päästöjen aiheuttaja

Pinta-alat ja päästöt (2016)

-Raportoidut!

VMI11:

http://urn.fi/URN:ISBN:978-952-326-467-0

NIR, 2016:

http://www.tilastokeskus.fi/static/media/upload s/tup/khkinv/yymp kahup 1990-2017 2018 19735 net.pdf

https://unfccc.int/documents/65334

(metsäojitettujen N2O-päästöä korjattu:

http://dx.doi.org/10.1016/j.foreco.2010.04.036

Turvemaapellot (12 % kaikista pelloista)

Metsäojitetut suot (20 % kaikista metsistä)

= 5 miljoonaa ha

= 17 miljoonaa t / vuosi

pelto = 15×metsä

