

Student ID		Name	!								
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Total	
For Instructor/TA only,											

Academic Honor Pledge

I affirm that I will not at any time be involved with cheating or plagiarism while enrolled as a student Programming Language class at SungKyunKwan University. I understand that violation of this code will result in penalties as severe as indefinite suspension from the university.

Your signature:	
-----------------	--

1. [20 pts] For each of the following statements, indicate whether it is TRUE or FALSE. You will get 2 points for each correct answer, -2 point for each incorrect answer, and 0 point for each answer left blank or both answers marked.						
(a)	Given relations R(A, B) and S(A, C), the natural join $R \bowtie S$ is equal to $R \cap S$.	Т	F ✓			
(b)	In the WHERE clause of a SQL query, the condition 'John Doe' = NULL is evaluated to be true.		✓			
(c)	In the WHERE clause of a SQL query, the condition NULL = NULL is evaluated to be true.		✓			
(d)	It is possible to declare multiple different sets of attributes as UNIQUE in the same relation R	✓				
(e)	If we define a foreign key in relation R, the DBMS checks the foreign-key constraint whenever a tuple in R is deleted	✓				
(f)	A weak entity set does not have any attribute that belongs to its key		\checkmark			
(g)	If a functional dependency $A \to B$ holds in relation R(A, B, C), then $AC \to B$ also holds	✓				
(h)	If a relation R is in 3NF, R is also in BCNF		\checkmark			
(i)	The BCNF decomposition algorithm does not preserve functional dependencies of the initial relation R	✓				
(j)	The leaf nodes of a B+tree are stored sequentially on disk		✓			

2. [10 pts] Consider the two relations:

•
$$R(A,B) = (p,1), (q,5), (r,3)$$

•
$$S(B,C)=(1,p), (5,q), (5,r), (6,p)$$

Show the output relation for each of the following relational algebras.

• (a) $\Pi_{A,B}(R \bowtie S)$

```
answer:

p 1
q 5
.
```

• (b) $\sigma_{A=C}(R \bowtie S)$

```
answer:

p 1 p
q 5 q
.
```

- 3. [20 pts] Write each of the following queries in SQL for the given relations.
 - Seller(<u>seller_id</u>, seller_name, city)
 - Item(<u>item_id</u>, item_name, price)
 - Buyer(buyer_id, buyer_name, street, city, phone)
 - Order(<u>order_no</u>, seller_id, buyer_id, received, shipped)
 - Order_details(order_no, item_id, qty)
 - a. Get order numbers for the orders where buyer and seller are in the same city.

```
answer (5 pts):

select order_number
from Seller join Order join Buyer
where Seller.city = Buyer.city
or

select order_number
from Seller natural join Order natural join Buyer
```

b. Get each seller's name and the total sales (i.e., total price of sold items) for each seller.

```
answer (5 pts):

select seller_name, sum(price)
from Seller join Order join Order_details join Item
group by seller_id
```

c. Get the buyer IDs of buyers who have placed orders with ALL sellers from 'Suwon'.

4. [10 pts] Write SQL DDL statements for the following ER-diagram. Note: all attributes are of VARCHAR(10) type.

- 5. [15 pts] Consider the following relations and functional dependencies (FDs) below.
 - Prescription(doctor_id, doctor_name, patient_id, diagnosis)
 - FD1: $doctor_id \rightarrow doctor_name$
 - FD2: doctor_id, patient_id \rightarrow diagnosis
 - FD3: patient_id, diagnosis → doctor_id
 - (a) Decompose this relation into BCNF

(b) Decompose the relation into 3NF.

answer:
Same...

(c) What are the advantage and disadvantage of 3NF compared to BCNF?

answer:

- BCNF does not always preserve dependency. Too much decomposition results in lossy join.
- ${\text -}\ 3{\text NF}$ guarantees lossless-join while preserving dependency, but it allows some redundancy and lots of NULL values.

6. [10 pts] Below is the state of blocks used for a heap file.

	ВО	B1	В2	В3	B4	B5	В6	В7	B8	В9	B10	B11	B12	B13	B14	B15
used block																
free block																

(a) Draw a free-space map and its second-level free-space map for the given heap file (B0 \sim B15). Both the first-level and second-level free-space maps use 2 bits per entry.

(b) Suppose block B1 is used to store records in the heap file. Show how the free-space maps will change.

7. [10 pts] Consider the following two tables - r and s are stored in a multitable clustering file.

Α	В	C			
Χ	1	а			
Χ	1	b			
Υ	2	b			
Υ	4	С			
r					

В	D				
1	а				
2	а				
2	b				
5					

(a) Draw how the records in r and s will be laid out in the file.

(b) What is the main advantage and disadvantage of using multitable clustering file?

advantage:

Good for join operations disadvantage:

Bad for queries that access only one table.

8. [10 pts] Below is the state of B+tree with degree 4. Draw the state of the B+tree after inserting 15.

9. [10 pts] Below is the state of extendible hash table after inserting four data entries. We use the least significant bits of keys and $\%2^G$ as the hash function. Draw a diagram showing the state of the extendible hash table after inserting the following 6 more data entries.

1010, 1011, 1010, 1101, 1100, 1001

