

CONCEITOS ABORDADOS

- Variáveis Aleatórias
- População e Amostra
- Modelos Probabilisticos
 - Discretos
 - Continuous
- Teorema do Limite Central

01 INTRODUÇÃO A **ESTATÍSTICA INFERENCIAL**

TIPOS DE VARIAVEIS

TIPOS DE VARIAVEIS

VARIÁVEL DISCRETA

Variável originada de um processo de contagem e sempre estará associada ao conjunto dos números naturais.

- Número de filhos das famílias de uma determinada região.
- Número de peças com defeitos de uma fábrica.
- Número de palavras amor em determinado texto.

DISTRIBUIÇÃO DE PROBABILIDADE

É o conjunto de probabilidade de todos os valores possíveis por uma variável aleatória.

X	P(x)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6
Total	1

VARIÁVEL CONTÍNUAS

Variável originada de um processo de medição e podem assumir infinitos valores em um intervalo.

- Altura de estudantes.
- Peso de atletas de uma academia.
- Variação de consumo de uma população.

DISTRIBUIÇÃO DE PROBABILIDADE

02

MODELOS PROBABILISTICOS

Discreta

MODELOS DE BERNOULLI

Ao lançar um dado temos interesse na face 5, assim a distribuição de probabilidade é:

X	Eventos	P(X)
1	Sucesso	1/6
0	Fracasso	5/6
Total		1

MODELOS DE BINOMIAL

Se o nosso problema possuir **mais de 1 experimento**, onde o resultado for **sucesso**(evento acontecer) ou **fracasso** (evento não acontecer), então devemos utilizar o modelo de **Binomial**.

$$P(X) = C_n^x p^x \cdot q^{n-x}$$

Continuas

IDENTIFICAR

TRANSFORMAR

ANALIZAR

Podemos utilizar diversas técnicas de normalidade, como:

- Técnica gráfica
- Teste de Kolmogorov-Smirnov
- Teste de Anderson-Darling
- Teste de Shapiro-Wilk
- Teste de Ryan-Joiner

Transformamos todas as nossas variáveis utilizando a fórmula abaixo:

$$Z = \frac{X - \mu}{\sigma}$$

- Localizar a area correspondente a probabilidade pedida
- Consultar a tabela Z de probabilidade
- Realizar o calculo de probabilidade.

IDENTIFICAR

A forma mais simples de identificar é por visualização, onde

- Contém a forma de um sino
- Simétrica em torno da média.

TRANSFORMAÇÃO

Após a transformação a distribuição terá a sua média 0 e desvio padrão igual a 1

ANALISE

Quando analisarmos semelhança ou diferença devemos realizar uma análise bilateral.

Caso contrário devemos utilizar a análise unilateral (direita ou esquerda).

MODELOS DE BINOMIAL

A probabilidade de que o aluno acertar uma prova com 6 questão é 0,3. Qual é a probabilidade de acertar 4 questões?

$$egin{aligned} P(4) &= C_6^4(0,3)^4.\,(1-0,3)^{6-4} \ &iggle Piggl(4iggr) &\cong 0,0595 \end{aligned}$$

03

Leis e Teoremas

Teorema Limite Central

Teorema do Limite Central

"Toda variável aleatória distribuída independente se aproxima de uma distribuição normal."

Leis dos Grandes Números

Leis dos Grandes Números

"Para um grande número de experiência a frequência relativa de um evento é aproximadamente a sua probabilidade."