

- Números Reais -

1. Qual é o erro do seguinte argumento?

Sejam x e y dois números reais quaisquer tais que x = y. Então

$$x^{2} = xy \quad \Rightarrow \quad x^{2} - y^{2} = xy - y^{2} \quad \Rightarrow \quad (x+y)(x-y) = y(x-y)$$
$$\Rightarrow \quad x+y=y \quad \Rightarrow \quad 2y=y \quad \Rightarrow \quad 2=1$$

- 2. Nos exercícios seguintes substitua o símbolo * por <,> ou = de modo a obter afirmações
- (a) $\frac{3}{8} * 0.37$ (b) $0.33 * \frac{1}{3}$ (c) $\sqrt{2} * 1.414$
- (d) $5*\sqrt{25}$ (e) $\frac{3}{7}*0.428571$ (f) $\frac{22}{7}*\pi$
- 3. Represente os seguintes números racionais sob a forma de quociente de números inteiros:
 - (a) 2,25

- (b) 3,721 (c) 5,(4) (d) 0,(17) (e) 3,2(7) (f) 3,66(087)
- 4. Apresente um exemplo de:
 - (a) um número irracional pertencente ao intervalo $\left[\frac{3}{100}, \frac{4}{100}\right]$;
 - (b) um número racional pertencente ao intervalo $\left[\frac{\pi}{11}, \frac{\pi}{10}\right]$.
- 5. Sejam x e y dois números reais tais que x < y. Diga, justificando, se cada uma das seguintes relações é verdadeira ou falsa:

- (a) |x| < |y| (b) $x^2 < y^2$ (c) $\frac{1}{x} < \frac{1}{y}$ $(x, y \neq 0)$ (d) $x^3 < y^3$ (e) $x < \frac{x+y}{2} < y$ (f) $\frac{1}{|x|} < \frac{1}{|y|}$ $(x, y \neq 0)$
- 6. Em cada uma das alíneas seguintes encontre uma desigualdade da forma $|x-a|<\epsilon$ cuja solução seja o intervalo dado:
 - (a)]-2,2[(b)]-4,0[(c)]0,4[(d)]-3,7[(e)]-7,3[

7. Exprima cada uma dos conjuntos seguintes na forma de intervalo ou reunião de intervalos:

(a) $\{x \in \mathbb{R} : 1 - x \le 2\}$

(b) $\{x \in \mathbb{R} : 0 \le 1 - 2x \le 1\}$

(c) $\{x \in \mathbb{R} : x^2 > 5\}$

(d) $\{x \in \mathbb{R} : x^2(x^2 - 1) > 0\}$

(e) $\{x \in \mathbb{R} : |5x+2| \le 1\}$

(f) $\{x \in \mathbb{R} : |3 - x| \ge 2\}$

(g) $\{x \in \mathbb{R} : x^3 > 4x\}$

(h) $\{x \in \mathbb{R} : 6x^2 - 5x < -1\}$

(i) $\{x \in \mathbb{R} : 2 < |x| < 3\}$

(j) $\{x \in \mathbb{R} : \frac{1-x}{2x+3} > 0\}$

(k) $\{x \in \mathbb{R} : |x^2 - 1| < 1\}$

(1) $\{x \in \mathbb{R} : 2x^2 \le 4\}$

(m) $\{x \in \mathbb{R} : 4 < x^2 < 9\}$

(n) $\{x \in \mathbb{R} : \frac{x}{x-2} \le 0\}$

(o) $\{x \in \mathbb{R} : |x-3| < 2|x|\}$

(p) $\{x \in \mathbb{R} : |x+1| > |x-3|\}$

8. Indique em extensão os seguintes conjuntos:

(a) $\{x \in \mathbb{R} : |x+4| = 3\}$

(b) $\{x \in \mathbb{R} : \sqrt{(x+1)^2} = 3\}$

(c) $\{x \in \mathbb{R} : |x| = |x+2|\}$ (d) $\{x \in \mathbb{R} : (x^2 - 7)^2 = 0\}$

9. Indique quais das seguintes relações são verdadeiras. Dê um contraexemplo para as relações que forem falsas.

(a) $\sqrt{x+y} = \sqrt{x} + \sqrt{y}$ (b) $(x+y)^n = x^n + y^n$ (c) $(xy)^n = x^n y^n$

10. Verifique se os seguintes subconjuntos de \mathbb{R} são majorados, minorados, limitados. Indique ainda se têm supremo, ínfimo, máximo ou mínimo:

(a) $A = [0, 2] \cup [3, 5] \cup \{6, 7\}$ (b) $B =]-\infty, 2[$ (c) $C =]1, 2] \cap \mathbb{R} \setminus \mathbb{Q}$

(d) $D = [1, \sqrt{2}] \cap \mathbb{Q}$

(e) $E = [1, +\infty[$ (f) $F = \{x \in \mathbb{Q} : x^2 < 5\}$

(g) $G = \left\{ x \in \mathbb{Z} : x^2 < \frac{16}{25} \right\}$ (h) $H = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ (i) $I = \left\{ \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$

11. Determine o interior, o fecho (ou aderência) e o derivado de cada um dos seguintes conjuntos e indique quais são abertos e quais são fechados:

(a) N

(b) ℝ

(c) \mathbb{Z}

(d) $\mathbb{R}\setminus\mathbb{Q}$

(e) Q

(f) [0, 2]

(g) [0,3]

(h)]5, 10[

(i) $\mathbb{Q} \cap [-2, 0[$

(j) $(\mathbb{R}\setminus\mathbb{Q})\cap[0,2]$

(k) $]0,3[\setminus\{1\}\cup\{4,5\}]$ (l) $\left\{\frac{1}{n}:n\in\mathbb{N}\right\}$

- 12. Quando possível, apresente um subconjunto A de \mathbb{R} que:
 - (a) não seja aberto nem fechado;
 - (b) seja simultaneamente aberto e fechado;
 - (c) seja aberto e limitado;
 - (d) seja fechado e não limitado;
 - (e) tenha o interior vazio e seja não limitado;
 - (f) seja limitado mas não seja aberto nem fechado;
 - (g) não contenha o seu derivado;
 - (h) coincida com o seu derivado;
 - (i) tenha um único ponto de acumulação;
 - (j) seja fechado e tal que $\overline{\text{int } A} \neq A$;
 - (k) seja aberto e tal que int $\overline{A} \neq A$;
 - (l) tenha apenas dois pontos de acumulação.
- 13. Diga, justificando, se cada uma das seguintes afirmações é verdadeira ou falsa:
 - (a) se $A \subseteq \mathbb{R}$ é aberto então A não é limitado;
 - (b) se $A\subseteq \mathbb{R}$ é aberto e $B\subseteq \mathbb{R}$ é fechado então $A\,\cup\, B\,$ não é aberto nem fechado;
 - (c) se $A,B\subseteq\mathbb{R}$ não são abertos nem fechados então $A\cap B$ não é aberto nem fechado;
 - (d) o conjunto $A =]0, 4[\cap \mathbb{Q} \text{ \'e aberto};$
 - (e) o conjunto $A = [0, 7] \cap \mathbb{Q}$ é fechado;
 - (f) o conjunto $A = \{x \in \mathbb{R} : 6 x^2 < 1\}$ é limitado superiormente;
 - (g) o conjunto $A = \{x \in \mathbb{R} : |x| \le 7\}$ é fechado e limitado.
- 14. Para cada um dos seguintes conjuntos determine o interior, a aderência, o derivado, o conjunto dos majorantes, o conjunto dos minorantes, o supremo, o ínfimo, o máximo e o mínimo (caso existam).
 - (a) $A = \mathbb{R} \setminus \mathbb{Z}$
 - (b) $B = \{x \in \mathbb{R} : x^2 < 2\}$
 - (c) $C = \{x \in \mathbb{R} \setminus \mathbb{Q} : x^2 < 50\}$
 - (d) $D = \{x \in \mathbb{R} : x < |x|\}$
 - (e) $E = \{x \in \mathbb{R} : x^5 > x^3\}$
 - (f) $F = \{x \in \mathbb{Q} : |x| < 2\} \cup \{x \in \mathbb{R} \setminus \mathbb{Q} : 1 \le x \le \pi\}$
 - (g) $G = \{x \in \mathbb{Q} : |x+4| < 3\} \cup \{x \in \mathbb{R} \setminus \mathbb{Q} : x^2 3 < 0\}$
 - (h) $H = [0,1] \setminus \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$