Q1. If x is real, then the values of $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not lie in								
(a) [5,9]								
(b) (-∞,5]								
(c) [9,∞)								
(d) $R - (5,9)$								
Q2. If α, β are the roots of the quadratic equation $x^2 - 2(1 - \sin 2\theta)x - 2\cos^2 2\theta = 0, (\theta \in R)$								
then the minimum val	lue of	$(\alpha^2 + \beta^2)$ is eq	ual t	o: mathongo				
(a) -4 mathongo								
(b) 8 mathongo								
(c) 0 mathongo								
(d) 2 mathongo								
Q3. If $f(x) = 4x^2 - 4x \sin\theta -\cos^2\theta $, then the minimum value of $f(x)$ is equal to								