# 챗봇 프로젝트 다알아



대구 AI 스쿨 김동영 장창대 김성진 조유경

# 목차

- **1.** 개요
- 2. 프로젝트 깃 허브
- 3. 데이터 구성 및 전처리
- 4. 모델
- 5. 기능 및 기술 설명
- 6. 시연
- 7. 어려웠던점

### 1. 개요

기술 발전에 따른 소프트 웨어 복잡도 상승으로, 개인 사용자의 하드웨어를 주기적으로 업그레이드 하지 않으면 최신 소프트웨어를 온전히 활용하기 힘들다.

### 1. 개요

특히,최신 게임 소프트웨어 등을 플레이하기 위해 개인 사용자들은 주기적으로 그래픽 카드 등을 업그레이드하는데, 이 때 성능과 가격이 천차만별인 하드웨어 시장에서 명확한 가이드라인이 제공될 필요가 있다.

### **1**. 개요

개발목표:

사용자 발화로부터 컴퓨터 사용 목적을 인식하고, 해당 목적에 맞는 컴퓨터 구매 견적을 인터넷에서 검색한 링크를 제공하는 챗봇 개발

# 2. 프로젝트 깃허브

주소: https://github.com/withdongyeong/chatbot

설치 및 요구사양 등에 대한 명시

label 종류:

[롤, 오버워치, 배틀그라운드, 로스트아크, 인사, 감사] 6가지

데이터 수:453개

학습 및 평가 비율:8대2

- a. 자연어 처리를 위해, 각 단어에 정수값을 부여하여 사전을 만들어야 한다
- b. 이 때, 모델에 들어가는 입력값 크기를 맞추기 위해 특정 단어 개수를 기준 개수에 맞춰서 패딩시킨다
- c. 20개를 기준으로 하였으며, 토큰화된 단어의 개수가 20개보다 적을 경우, '<PAD>"를 한 단어로 20개 개수를 맞추도록 추가한다
- d. 20개보다 많을 경우, 앞의 20개 단어까지만 인식하고 뒤의 단어는 무시한다
- e. <PAD>의 경우 정수 인덱스를 0을 부여한다

a. 자연어 처리를 위해, 각 단어에 정수값을 부여하여 사전을 만들어야 한다

b. 이 때, 모델에 들어가는 입력값 크기를 맞추기 위해 특정 단어 개수를 기준 개수에 맞춰서 패딩시킨다

c. 20개를 기준으로 하였으며, 토큰화된 단어의 개수가 20개보다 적을 경우, '<PAD>"를 한 단어로 20개 개수를 맞추도록 추가한다

d. 20개보다 많을 경우, 앞의 20개 단어까지만 인식하고 뒤의 단어는 무시한다

e. <PAD>의 경우 정수 인덱스를 0을 부여한다

참고링크:

https://github.com/BlueWhaleKo/NLP\_sentiment\_classification

해당 프로젝트 내용 중 LSTM 모델을 확장하였음

```
class LSTM(nn.Module):
   def __init__(self, token2idx, max_sequence, vocab_size, embed_size, hid_size, n_layers, dropout, bidirectional,
               n_category):
       super(LSTM, self). init_()
       self.vocab_size = vocab_size # 고유한 단어의 수
       self.embed_size = embed_size # 임베딩 차원의 크기
       self.padding_index = token2idx['<PAD>'] # 패딩 토큰
       self.embed = nn.Embedding(
          num_embeddings=vocab_size,
          embedding_dim=embed_size,
          padding_idx=self.padding_index
       self.max_sequence = max_sequence # 한 문장의 최대 길이
       self.hid_size = hid_size # LSTM 뉴런의 갯수
       self.n_layers = n_layers # LSTM layer의 수
       self.drouput = dropout # 드롭아웃
       self.n_category = n_category # 분류 카테고리 갯수
       self.bidirectional = bidirectional # optimal, True : bidirectional
       self.lstm = nn.LSTM(embed_size, hid_size, n_layers, batch_first=True, bidirectional=True)
```

```
# save dict
with open('chatbot.pickle', 'wb') as fw:
    pickle.dump(idx2token, fw)
```

#### 변경사항:

- a. 분류 클래스 2개 -> 6개
- b. 학습 데이터 포맷
- c. 단어 토큰 기준 : 띄어쓰기 -> 형태소(konlpy, Komoran 사용)
- d. 학습 및 테스트시 생성한 단어 사전(int:word 형태의 dict)에 없는 단어를 예측하는 경우가 고려되어있지 않아서, 이경우 정수 0을 부여하도록 구현
- e. 매번 예측시 단어사전이 필요한데, 학습 과정을 생략하기 위해 pickle 라이브러리를 사용하여 직렬화하여 파일 저장

다음 파라미터에 대해 정확도 0.989

```
batch_size = 4
train_ratio = 0.8
epochs = 100
lr = 0.01
```

Test Epoch: 99, Test Loss: 0.014, Test Accuracy: 0.989

보고서에 자세히 서술하였으므로 간단히 소개

- a. gui 메신저 형태로 구현
  - i. PyQt5 라이브러리



b. 버튼 생성시 함수, 파라미터를 연결시켰는데 버튼을 생성할 때 호출되지 않고, 버튼을 클릭할 때 호출되도록 하기 위해 다음과 같이 구현

```
# 이렇게 만든 이유는, 버튼마다 다른 argument를 전달하고 싶은데
# 버튼을 생성할 때, 함수를 connect하는 순간 작업(링크 띄우는일)을 하지 않도록 하기 위함

def workCPU():
    tempChoiceButton.clicked.connect(func(label))

# 이렇게 만든 이유는, 버튼마다 다른 argument를 전달하고 싶은데
# 버튼을 생성할 때, 함수를 connect하는 순간 작업(링크 띄우는일)을 하지 않도록 하기 위함

def workCPU():
    target = (self.requirements[self.customEncoding[pr]]['구매추천']['CPU'])
    print(self.requirements[self.customEncoding[pr]]['구매추천']['CPU'])
    goDestination(target)

return workCPU
```

def cpuLink(self, pr):

- c. 사용자 사양 분석
  - i. wmi 라이브러리 사용
  - ii. 사용자의 cpu, gpu, ram 사양 분석

```
computer = wmi.WMI()

os_info = computer.Win32_OperatingSystem()[0]
cpu_info = computer.Win32_Processor()[0]
gpu_info = computer.Win32_VideoController()[0]
```

- d. 추천 구매 제품 팝업
  - i. selenium 및 chromedriver\_autoinstaller 라이브러리 사용
  - ii. 추천 구매 제품의 검색 결과 링크를 브라우저에 팝업

```
def goDestination(target):
    chrom_options = Options()
    chrom_options.add_experimental_option("detach", True)

url = "http://search.danawa.com/dsearch.php?k1=" + target + "&module=goods&act=dispMain"
    path = chromedriver_autoinstaller.install()
    driver = webdriver.Chrome(path)
    driver.get(url)
```

- e. 이해 못한 발화 저장
  - i. 신뢰도 점수가 낮을 경우, 못 알아 들었다고 판단하고 이 발화들을 텍스트 파일로 저장



# 6. 시연



# 7. 어려웠던점

원래기획의도:

새로 구매/업그레이드 목적을 분리, 업그레이드의 경우 사용자의 현재 사양과 권장사양을 비교하여 구매가 필요한 경우에만 해당 하드웨어를 추천하려고 했으나 amd, intel 등의 정량적 비교에 대한 기준을 세워야하는 문제가 있었고, 충분히 고려하지 못 해서 보류하였음

# 7. 어려웠던점

추천 제품을 다나와에서 바로 검색할 경우, 특히 출시한지 오래된 제품의 경우 예를 들어 cpu 완제품이 검색되는 것이 아니라 해당 cpu가 들어있는 노트북이 검색되는 문제

```
'로스트아크':{
    '권장사양';;{
    'CPU': "intel i5",
    'GPU': "Geforce RTX 2080",
    'RAM': "16GB"
},
'구매추천': {
    'CPU': "intel i7-8700k",
    'GPU': "Geforce RTX 2080",
    'RAM': "DDR4-3200 8GB"
}
```

- -> 크롤링 기술을 적용하여 cpu 완제품에 체크를 하는 등의 처리를 해야했으나 시간 부족으로 미구현
- -> 적당히 출시일이 최근인 제품으로 구매 추천 사양을 정의하였음

### 7. 어려웠던점

konlpy를 사용하여 모델 구현을 9.27일에 작업하는 도중, 이전 프로젝트에서는 잘 사용하였음에도 처음 보는 오류가 발생하고 검색으로 해결이 안 되었음.

아는 사람이 개발 중에 모듈이 업데이트되어 호환성 문제가 생겼다는 이야기를 한적이 있어서, 체크해보니

konlpy의 하위 모듈 tweepy가 9.26에 최신 버전이 릴리즈되었음. 이를 지원하지 않으므로 다운 그레이드해서 사용