UNIWERSYTET RADOMSKI

im. Kazimierza Pułaskiego w Radomiu

LABORATORIUM PODSTAW ELEKTRONIKI

SPRAWOZDANIE Z ĆWICZENIA

Wzmacniacz

Wydział:	WTEiI
Kierunek:	Informatyka
Rok Akademicki:	2024/2025
Semestr:	II
Grupa:	3
Zespół:	2
Wykonujący:	Jakub Oleszczuk
	Mateusz Ofiara
	Mikołaj Majewski
	Onolbataar Tumentur
Ocena:	

Cel ćwiczenia

Celem ćwiczenia było zbadanie działania wzmacniacza operacyjnego w różnych konfiguracjach, a także analiza wpływu kondensatora i rezystora na charakterystykę wzmacniacza. W szczególności badano:

- Wpływ kondensatora C_E na stabilność i czas reakcji wzmacniacza.
- Wpływ rezystora R_0 na impedancję wejściową i wyjściową wzmacniacza.
- Porównanie charakterystyk wzmacniacza w różnych konfiguracjach (z C_E i R_0 , bez C_E i R_0).

Wyniki pomiarów

Tabela wyników

Tabela 1: Konfiguracja bez kondensatora ${\cal C}_E$ i rezystora ${\cal R}_0$

f	U-we	U-wy	K	$\lg(f)$
2	0.5	0.04	0.08	0.301029996
3	0.5	0.136	0.272	0.477121255
5	0.5	0.376	0.752	0.698970004
10	0.5	0.936	1.872	1
100	0.5	1.84	3.68	2
500	0.5	1.72	3.44	2.698970004
1000	0.5	1.66	3.32	3
2000	0.5	1.46	2.92	3.301029996
3000	0.5	1.24	2.48	3.477121255
4000	0.5	1.04	2.08	3.602059991
6000	0.5	0.76	1.52	3.77815125

Tabela 3: Konfiguracja z kondensatorem ${\cal C}_E$ i rezystorem ${\cal R}_0$

f	U-we	U-wy	K	$\lg(f)$
2	0.5	0.004	0.008	0.301029996
3	0.5	0.07	0.14	0.477121255
5	0.5	0.336	0.672	0.698970004
10	0.5	1.16	2.32	1
100	0.5	3.56	7.12	2
500	0.5	3.04	6.08	2.698970004
1000	0.5	3.36	6.72	3
2000	0.5	2.16	4.32	3.301029996
3000	0.5	1.56	3.12	3.477121255
4000	0.5	1.24	2.48	3.602059991
6000	0.5	0.9	1.8	3.77815125

Tabela 2: Konfiguracja bez kondensatora C_E z rezystorem ${\cal R}_0$

f	U-we	U-wy	K	lg(f)
2	0.5	0.032	0.064	0.301029996
3	0.5	0.008	0.016	0.477121255
5	0.5	0.1	0.2	0.698970004
10	0.5	0.388	0.776	1
100	0.5	0.904	1.808	2
500	0.5	0.84	1.68	2.698970004
1000	0.5	0.84	1.68	3
2000	0.5	0.8	1.6	3.301029996
3000	0.5	0.76	1.52	3.477121255
4000	0.5	0.68	1.36	3.602059991
6000	0.5	0.576	1.152	3.77815125

Tabela 4: Konfiguracja z kondensatorem C_E i bez rezystora R_0

f	U-we	U-wy	K	lg(f)
2	0.5	0.9	1.8	0.301029996
3	0.5	1.36	2.72	0.477121255
5	0.5	1.8	3.6	0.698970004
10	0.5	2.52	5.04	1
100	0.5	4.32	8.64	2
500	0.5	5.72	11.44	2.698970004
1000	0.5	7.04	14.08	3
2000	0.5	2.98	5.96	3.301029996
3000	0.5	1.16	2.32	3.477121255
4000	0.5	0.42	0.84	3.602059991
6000	0.5	0.148	0.296	3.77815125

Wykres

Rysunek 1: Wykres zależności wzmocnienia od częstotliwości

Analiza wyników

Wyniki pomiarów wykazały, że kondensator C_E oraz rezystor R_0 mają istotny wpływ na charakterystykę wzmocnienia napięciowego wzmacniacza operacyjnego. W przypadku konfiguracji bez

kondensatora C_E i rezystora R_0 , maksymalne wzmocnienie wynosiło 3.680, co odpowiada 11.3 dB, a pasmo przenoszenia wynosiło 2990 Hz. Wprowadzenie rezystora R_0 spowodowało zmniejszenie maksymalnego wzmocnienia do 1.808 (5.1 dB) oraz rozszerzenie pasma przenoszenia do 3990 Hz. W konfiguracji z kondensatorem C_E i rezystorem R_0 , maksymalne wzmocnienie wzrosło do 7.120 (17.0 dB), ale pasmo przenoszenia zmniejszyło się do 1990 Hz. Natomiast w przypadku konfiguracji z kondensatorem C_E i bez rezystora R_0 , maksymalne wzmocnienie osiągnęło wartość 14.080 (23.0 dB), a pasmo przenoszenia wyniosło 1900 Hz.

Wnioski

Z przeprowadzonych badań wynika, że:

- Kondensator C_E znacząco zwiększa wzmocnienie napięciowe wzmacniacza, szczególnie w zakresie niskich częstotliwości.
- Obecność rezystora R_0 powoduje zmniejszenie wzmocnienia napięciowego K.
- Wzmacniacz w różnych konfiguracjach wykazuje odmienne charakterystyki częstotliwościowe, co pozwala na dobór odpowiednich elementów w zależności od wymagań aplikacji.
- Analiza charakterystyki wzmocnienia napięciowego w funkcji częstotliwości umożliwia lepsze zrozumienie działania wzmacniacza i jego optymalizację do konkretnych zastosowań.