Задание 2, номер задачи 1

Численное решение краевой задачи принципа максимума в задаче оптимального управления методом стрельбы

Содержание отчёта

Постановка задачи	стр. 1	Исследование оптимальности экстремалей	стр. 6
Формализация задачи	стр. 1	Аналитическое решение и сопряжённая точка	стр. 8
Система необходимых условий оптимальности	стр. 2	Результаты решения задачи и их анализ	стр. 12
Анормальный случай и исследование задачи	стр. 3	Правило Рунге	стр. 14
Краевая задача	стр. 3	Просчёт назад	стр. 16
Численное решение краевой задачи методом стрельбы	стр. 3	Полученные фазовые переменные и значения функционала	стр. 17
Тест решения задачи Коши – гармонический осциллятор	стр. 4	Дополнение. Литературный обзор	стр. 24
Оценка точности решения задачи Коши	стр. 5	Литература	стр. 24

1. Постановка задачи.

Рассматривается задача Лагранжа с фиксированным временным отрезком, без ограничений вида "меньше или равно":

$$B_0 = \int_0^T (\ddot{x}^2 - \dot{x}^2 - x^2) dt \longrightarrow \text{extr},$$

$$x(0) = x(T) = 0, \ \dot{x}(T) = 1,$$
(1)

где T- известная константа, параметр задачи.

Требуется формализовать задачу как задачу оптимального управления, принципом максимума Понтрягина свести задачу к краевой задаче, численно решить полученную краевую задачу методом стрельбы и обосновать точность полученных результатов, проверить полученные экстремали Понтрягина на оптимальность при различных значениях параметра $T = \{0.1, 1, 2, 3, 3.5, 10, 20\}$.

2. Формализация задачи.

Формализуем задачу как задачу оптимального управления. Для этого обозначим $u = \ddot{x}, y = \dot{x}$. Тогда исходная система (1) перепишется в виде:

$$\begin{cases}
\dot{x} = y, \\
\dot{y} = u, \\
u \in \mathbb{R}, \\
x(0) = 0, \\
x(T) = 0, \\
y(T) = 1, \\
T = const \in \{0.1, 1, 2, 3, 3.5, 10, 20\}, \\
B_0 = \int_0^T (u^2 - y^2 - x^2) dt \longrightarrow \inf.
\end{cases}$$
(2)

О выборе условия $B_0 \longrightarrow \inf$, а не $B_0 \longrightarrow \sup$ подробнее см. конец п. 9.

3. Система необходимых условий оптимальности

Выпишем функции Лагранжа и Понтрягина:

$$\mathcal{L} = \int_0^T L dt + l,$$
 лагранжиан $L = \lambda_0 (u^2 - y^2 - x^2) + p_x (\dot{x} - y) + p_y (\dot{y} - u),$ терминант $l = \lambda_1 x(0) + \lambda_2 x(T) + \lambda_3 (y(T) - 1),$ $H = p_x y + p_y u - \lambda_0 (u^2 - y^2 - x^2).$

Применим к задаче оптимального управления (2) принцип максимума Понтрягина. Необходимые

условия оптимальности:

а) уравнения Эйлера-Лагранжа (сопряжённая система уравнений, условие стационарности по $\begin{pmatrix} x \\ y \end{pmatrix}$), $\begin{pmatrix} \dot{p}_x \\ \dot{p}_y \end{pmatrix} = -\begin{pmatrix} \frac{\partial H}{\partial x} \\ \frac{\partial H}{\partial y} \end{pmatrix}$:

$$\begin{cases} \dot{p}_x = -2\lambda_0 x, \\ \dot{p}_y = -p_x - 2\lambda_0 y; \end{cases}$$

б) условие оптимальности по управлению, $u = \arg \operatorname*{abs} \max H(u)$: $u = \arg \operatorname*{abs} \max (p_y u - \lambda_0 u^2) = \frac{p_y}{2\lambda_0}, \quad \text{при } \lambda_0 \neq 0, \text{ так как парабола } H(u) = \begin{cases} 0 & \text{р}_y \\ -\lambda_0 u^2 + p_y u \text{ с ветвями, направленными вниз } (\lambda_0 \geqslant 0, \text{ см. ниже пункт (e)}), \\ \text{достигает максимума в вершине, при указанном значении аргумента } u; \end{cases}$

в) условия трансверсальности по $\binom{x}{y}$, $p_x(t_k) = (-1)^k \frac{\partial l}{\partial x(t_k)}$, $p_y(t_k) = (-1)^k \frac{\partial l}{\partial y(t_k)}$, где $k=0,\ 1,\ t_0=0,\ t_1=T$:

$$p_y(0) = 0, (4)$$

$$p_x(0) = \lambda_1, \ p_x(T) = -\lambda_2, \ p_y(T) = -\lambda_3;$$
 (5)

- г) условия стационарности по t_k : нет, так как в задаче (2) t_k известные константы;
- д) условия дополняющей нежёсткости: нет, так как в задаче (2) отсутствуют условия вида "меньше или равно";
- е) условие неотрицательности: $\lambda_0 \ge 0$;
- ж) условие нормировки (множители Лагранжа могут быть выбраны с точностью до положительного множителя);
- з) НЕРОН (множители Лагранжа НЕ Равны Одновременно Нулю).

4. Анормальный случай и исследование задачи

Исследуем возможность анормального случая $\lambda_0 = 0$. При $\lambda_0 = 0$ из (2) и (3) получим систему дифференциальных уравнений:

$$\begin{cases}
\dot{x} = y, \\
\dot{y} = u, \\
\dot{p}_x = 0, \\
\dot{p}_y = -p_x.
\end{cases}$$
(6)

Отсюда получаем, $p_x(t)=c,\ \dot{p}_y(t)=-c$. Так же из условия б) оптимальности по управлению имеем $p_y(t)\equiv 0$, иначе $u(t)=\pm\infty$, и такой управляемый процесс не является допустимым. Следовательно, $c=0,\ p_x(t)\equiv 0$. Из условий трансверсальности (5) получаем $\lambda_1=\lambda_2=\lambda_3=0$. Таким образом, если $\lambda_0=0$, то все множители Лагранжа равны 0 и получается противоречие с условием з) НЕРОН. Значит, анормальный случай невозможен.

Так как $\lambda_0 \neq 0$, в силу однородности функции Лагранжа по множителям Лагранжа выберем следующее условие нормировки:

$$\lambda_0 = \frac{1}{2}.\tag{7}$$

Тогда из условия б) определяется управление:

$$u = p_y. (8)$$

5. Краевая задача

Таким образом, на основе принципа максимума Понтрягина задача оптимального управления (2) сводится к краевой задаче (9)–(10). А именно, из (2)–(4), (7) и (8) имеем:

$$\begin{cases}
\dot{x} = y, \\
\dot{y} = p_y, \\
\dot{p}_x = -x, \\
\dot{p}_y = -p_x - y,
\end{cases} \tag{9}$$

$$x(0) = 0, \quad x(T) = 0,$$

$$p_y(0) = 0, \quad y(T) = 1,$$

$$T \in \{0.1, 1, 2, 3, 3.5, 10, 20\}.$$
(10)

6. Численное решение краевой задачи методом стрельбы

Краевая задача (9)–(10) решается численно методом стрельбы. В качестве параметров пристрелки выбираются недостающие для решения задачи Коши значения при t=0: $\alpha_1=y(0)$, $\alpha_2=p_x(0)$. Задав эти значения каким-либо образом и решив задачу Коши на отрезке [0,T], получим соответствующие выбранному значению $\vec{\alpha}:=\{\alpha_1,\alpha_2\}$ функции $x(\cdot)[\alpha_1,\alpha_2],\ y(\cdot)[\alpha_1,\alpha_2],\ p_x(\cdot)[\alpha_1,\alpha_2],\ p_y(\cdot)[\alpha_1,\alpha_2]$ и, в частности, значения $x(T)[\alpha_1,\alpha_2],\ y(T)[\alpha_1,\alpha_2]$. Задача Коши для системы дифференциальных уравнений (9), начальных условий в 0 момент времени (10) и условий $y(0)=\alpha_1,\ p_x(0)=\alpha_2$ решается численно явным методом Рунге-Кутты 8-го порядка, основанным на расчётных формулах Дормана-Принса 8(7) DOPRI8 с автоматическим выбором шага (то есть с контролем относительной локальной погрешности на шаге по правилу Рунге). Для решения краевой задачи необходимо подобрать значения $\alpha_1,\ \alpha_2$ так, чтобы выполнились условия:

$$x(T)[\alpha_1, \alpha_2] = 0,$$

 $y(T)[\alpha_1, \alpha_2] - 1 = 0,$ (11)

соответственно вектор-функцией невязок будет функция $X(\vec{\alpha}) = \binom{x(T)[\alpha_1,\alpha_2]}{y(T)[\alpha_1,\alpha_2]-1}$. Таким образом, в результате выбора вычислительной схемы метода стрельбы, решение краевой задачи свелось к решению системы двух алгебраических уравнений от двух неизвестных. Корень $\vec{\alpha}$ системы алгебраических уравнений $X(\vec{\alpha}) = 0$ находится методом Ньютона с модификацией Исаева-Сонина. Решение линейной системы уравнений внутри модифицированного метода Ньютона осуществляется методом Гаусса с выбором главного элемента по столбцу, с повторным пересчётом.

Схема численного решения краевой задачи методом стрельбы выбрана таким образом, что при отсутствии ошибок в программной реализации решения задачи Коши, найденный методом Ньютона корень будет правильным (без учёта погрешности численного интегрирования), даже если внутри метода Ньютона есть какие-то ишибки. Напротив, ошибка в решении задачи Коши делает бесполезным полученный результат, даже если всё остальное запрограммировано правильно и методу Ньютона удалось найти корень.

Исходя из этого крайне важен следующий тест части программы, решающей задачу Коши, на системе дифференциальных уравнений с известным аналитическим решением.

7. Тест решения задачи Коши – гармонический осциллятор.

В таблице ниже приведены результаты численного интегрирования системы дифференциальных уравнений гармонического осциллятора $\begin{cases} \dot{x}=y, \\ \dot{y}=-x, \end{cases}$ с начальными условиями $\begin{cases} x(0)=0, \\ y(0)=1, \end{cases}$ явным методом Рунге-Кутты с оценкой погрешности на шаге через 8-ую производную для различного конечного времени T и различных значений максимально допустимой относительной погрешности на шаге интегрирования $\Delta_{\text{лок}}$. steps — общее число сделанных шагов интегрирования (число принятых шагов); |x(T)| и $|y(T)-\cos T|$ — невязки в конце; $\Delta x(\cdot)$ и $\Delta y(\cdot)$ — максимальное отличие полученного решения от известного аналитического $\begin{cases} x(t)=\sin t, \\ y(t)=\cos t, \end{cases}$ по всем шагам; $\delta_K(T)$ — оценка глобальной погрешности по формуле $\delta_K(t_{i+1})=r_i+\delta_K(t_i)\cdot e^{L_i}$, где r_i — главный член в оценке локальной погрешности, а $L_i=\int\limits_{t_i}^{t_{i+1}}\mu dt;\;\mu$ — логарифмическая норма матрицы Якоби исходной системы дифференциальных уравнений, $J=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, равная максимальному собственному значению матрицы $(J+J^T)/2=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, то есть $0\Rightarrow\delta_K(t_{i+1})=r_{i+1}+\delta_K(t_i);\;R_x=\left|\frac{x_{10}-8(T)-x_{10}-10(T)}{x_{10}-10(T)-x_{10}-12(T)}\right|,\;R_y=\left|\frac{y_{10}-8(T)-y_{10}-10(T)}{y_{10}-10(T)-y_{10}-12(T)}\right|$ должны быть примерно равны $100^{\frac{7}{8}}\approx 56.23$ — проверка правила Рунге.

Гармонический осциллятор.

T	$\Delta_{\scriptscriptstyle m JOK}$	steps	x(T)	$ y(T) - \cos T $	$\Delta x(\cdot)$	$\Delta y(\cdot)$	$\delta_K(T)$	R_x	R_y
	10^{-8}	6	$7.01 \cdot 10^{-10}$	$7.06 \cdot 10^{-10}$	$9.10 \cdot 10^{-10}$	$7.06 \cdot 10^{-10}$	$1.9 \cdot 10^{-8}$		
π	10^{-10}	10	$4.06 \cdot 10^{-12}$	$5.38 \cdot 10^{-12}$	$5.27 \cdot 10^{-12}$	$5.38 \cdot 10^{-12}$	$3.6 \cdot 10^{-10}$	173.16	130.95
	10^{-12}	17	$2.85 \cdot 10^{-14}$	$3.40 \cdot 10^{-14}$	$3.62 \cdot 10^{-14}$	$3.40 \cdot 10^{-14}$	$6.8 \cdot 10^{-12}$		
	10^{-8}	52	$8.10 \cdot 10^{-9}$	$8.21 \cdot 10^{-9}$	$1.11 \cdot 10^{-8}$	$1.08 \cdot 10^{-8}$	$2.1 \cdot 10^{-7}$		
10π	10^{-10}	93	$4.22 \cdot 10^{-11}$	$5.60 \cdot 10^{-11}$	$6.72 \cdot 10^{-11}$	$6.46 \cdot 10^{-11}$	$3.8 \cdot 10^{-9}$	192.41	146.40
	10^{-12}	164	$2.99 \cdot 10^{-13}$	$3.32 \cdot 10^{-13}$	$4.35 \cdot 10^{-13}$	$4.12 \cdot 10^{-13}$	$6.7 \cdot 10^{-11}$		
	10^{-8}	520	$8.17 \cdot 10^{-8}$	$8.27 \cdot 10^{-8}$	$1.16 \cdot 10^{-7}$	$1.14 \cdot 10^{-7}$	$2.1 \cdot 10^{-6}$		
$10^2\pi$	10^{-10}	922	$4.20 \cdot 10^{-10}$	$5.58 \cdot 10^{-10}$	$6.96 \cdot 10^{-10}$	$6.83 \cdot 10^{-10}$	$3.8 \cdot 10^{-8}$	194.98	148.13
	10^{-12}	1637	$3.26 \cdot 10^{-12}$	$3.31 \cdot 10^{-12}$	$4.64 \cdot 10^{-12}$	$4.53 \cdot 10^{-12}$	$6.7 \cdot 10^{-10}$		
	10^{-8}	5193	$8.17 \cdot 10^{-7}$	$8.27 \cdot 10^{-7}$	$1.16 \cdot 10^{-6}$	$1.16 \cdot 10^{-6}$	$2.1 \cdot 10^{-5}$		
$10^3\pi$	10^{-10}	9219	$4.20 \cdot 10^{-9}$	$5.58 \cdot 10^{-9}$	$6.97 \cdot 10^{-9}$	$6.96 \cdot 10^{-9}$	$3.8 \cdot 10^{-7}$	194.33	148.05
	10^{-12}	16369	$1.95 \cdot 10^{-11}$	$3.31 \cdot 10^{-11}$	$3.89 \cdot 10^{-11}$	$3.89 \cdot 10^{-11}$	$6.7 \cdot 10^{-9}$		
	10^{-8}	51923	$8.17 \cdot 10^{-6}$	$8.27 \cdot 10^{-6}$	$1.16 \cdot 10^{-5}$	$1.16 \cdot 10^{-5}$	$2.1 \cdot 10^{-4}$		
$10^4\pi$	10^{-10}	92181	$4.27 \cdot 10^{-8}$	$5.58 \cdot 10^{-8}$	$7.03 \cdot 10^{-8}$	$7.02 \cdot 10^{-8}$	$3.8 \cdot 10^{-6}$	192.88	148.05
	10^{-12}	163686	$5.82 \cdot 10^{-10}$	$3.31 \cdot 10^{-10}$	$7.53 \cdot 10^{-10}$	$7.54 \cdot 10^{-10}$	$6.7 \cdot 10^{-8}$		

Продолжение на следующей странице

T	$\Delta_{\text{лок}}$	steps	x(T)	$ y(T) - \cos T $	$\Delta x(\cdot)$	$\Delta y(\cdot)$	$\delta_K(T)$	R_x	R_y
	10^{-8}	519229	$8.17 \cdot 10^{-5}$	$8.27 \cdot 10^{-5}$	$1.16 \cdot 10^{-4}$	$1.16 \cdot 10^{-4}$	$2.1 \cdot 10^{-3}$		
$10^{5}\pi$	10^{-10}	921810	$4.03 \cdot 10^{-7}$	$5.58 \cdot 10^{-7}$	$6.88 \cdot 10^{-7}$	$6.88 \cdot 10^{-7}$	$3.8 \cdot 10^{-5}$	198.95	148.06
	10^{-12}	1636856	$5.57 \cdot 10^{-9}$	$3.31 \cdot 10^{-9}$	$1.10 \cdot 10^{-8}$	$1.10 \cdot 10^{-8}$	$6.7 \cdot 10^{-7}$		
	10^{-8}	5192286	$8.17 \cdot 10^{-4}$	$8.27 \cdot 10^{-4}$	$1.16 \cdot 10^{-3}$	$1.16 \cdot 10^{-3}$	$2.1 \cdot 10^{-2}$		
$10^{6}\pi$	10^{-10}	9218092	$4.13 \cdot 10^{-6}$	$5.58 \cdot 10^{-6}$	$6.95 \cdot 10^{-6}$	$6.95 \cdot 10^{-6}$	$3.8 \cdot 10^{-4}$	188.52	148.06
	10^{-12}	16368556	$1.80 \cdot 10^{-7}$	$3.31 \cdot 10^{-8}$	$3.37 \cdot 10^{-7}$	$3.37 \cdot 10^{-7}$	$6.7 \cdot 10^{-6}$		

Увеличение числа шагов интегрирования в 10 раз при увеличении длины отрезка интегрирования в 10 раз для всех значений $\Delta_{\text{лок}}$; уточнение 2 знаков в решении при различных значениях T и увеличении точности $\Delta_{\text{лок}}$ на 2 порядка, а также падение точности решения на порядок при фиксированной $\Delta_{\text{лок}}$ и увеличении на порядок длины отрезка интегрирования, которое видно из колонок |x(T)|, $|y(T) - \cos T|$, $\Delta x(\cdot)$, $\Delta y(\cdot)$, $\delta_K(T)$ позволяет предположить отсутствие ошибок в программной реализации решения задачи Коши указанным методом численного интегрирования.

Особенно следует отметить значения, полученные в колонках R_x и R_y . Они намного превышают теоретическую оценку 56.23 и свидетельствуют о большом запасе точности в методе — при уменьшении максимально допустимой относительной погрешности на шаге интегрирования на 2 порядка происходит существенное уточнение решения, метод в данном случае работает как метод более высокого порядка. Это в первую очередь связано с коэффициентами в расчётных формулах метода и особенностями системы дифференциальных уравнений гармонического осциллятора.

8. Оценка точности решения задачи Коши

Матрица Якоби системы дифференциальных уравнений (9) имеет вид:

$$J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \end{pmatrix}$$

Для определения скорости распространения ошибки в оценках глобальной погрешности определяется логарифмическая норма матрицы $\mu(J)$ – максимальное собственное значение матрицы $(J+J^T)/2$ и норма матрицы ||J|| – максимальное сингулярное число:

$$J^T = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \qquad (J+J^T)/2 = \begin{pmatrix} 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & 0 \\ -\frac{1}{2} & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & 0 \end{pmatrix}.$$

$$\begin{vmatrix} -\lambda & \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & -\lambda & 0 & 0 \\ -\frac{1}{2} & 0 & -\lambda & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & -\lambda \end{vmatrix} = \lambda^2 \cdot \begin{vmatrix} -\lambda & -\frac{1}{2} \\ -\frac{1}{2} & -\lambda \end{vmatrix} - \frac{1}{2} \cdot \frac{1}{2} \cdot \begin{vmatrix} -\lambda & -\frac{1}{2} \\ -\frac{1}{2} & -\lambda \end{vmatrix} - \frac{1}{2} \cdot \begin{vmatrix} \frac{1}{2} & -\lambda & 0 \\ -\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & -\lambda \end{vmatrix} =$$
$$= \left(\lambda^2 - \frac{1}{4}\right) \left(\lambda^2 - \frac{1}{4}\right) - \frac{1}{2}\lambda \begin{vmatrix} -\frac{1}{2} & -\frac{1}{2} \\ 0 & -\lambda \end{vmatrix} = \left(\lambda^2 - \frac{1}{4}\right)^2 - \frac{1}{4}\lambda^2 = \left(\lambda^2 - \frac{1}{2}\lambda - \frac{1}{4}\right) \left(\lambda^2 + \frac{1}{2}\lambda - \frac{1}{4}\right) = 0.$$
 Корни
$$\mu_{1,2} = \frac{\frac{1}{2} \pm \sqrt{\left(\frac{1}{4} + 1\right)}}{2} = \frac{1 \pm \sqrt{5}}{4}, \ \mu_{3,4} = \frac{-1 \pm \sqrt{5}}{4}.$$

Отсюда максимальное собственное значение матрицы $(J+J^T)/2$, $\mu(J)=\frac{1+\sqrt{5}}{4}$. Теперь вычислим максимальное сингулярное число:

$$J^{T}J = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad \det\left(J^{T}J - \lambda E\right) = \begin{vmatrix} 1 - \lambda & 0 & 0 & 0 \\ 0 & 2 - \lambda & 1 & 0 \\ 0 & 1 & 1 - \lambda & 0 \\ 0 & 0 & 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^{2} \left(\lambda^{2} - 3\lambda + 1\right) = 0 \Rightarrow$$
$$\|J\| = \sqrt{\lambda_{\text{max}}} = \frac{1 + \sqrt{5}}{2}.$$

Так как $\frac{1+\sqrt{5}}{4} = \mu \leqslant ||J|| = \frac{1+\sqrt{5}}{2}$, то применима следующая оценка глобальной погрешности:

$$\|\vec{x}(t) - \vec{v}(t)\| \le e^{L(t)} \left(\delta_K(0) + \int_0^t e^{-L(s)} \rho(s) ds \right),$$

где \vec{x} – вектор точного значения фазовых переменных системы (9),

 \vec{v} – вектор фазовых переменных системы (9), вычисляемый в результате решения задачи Коши, $\rho(s)$ – ошибка в вычисленных правых частях системы (9) в момент времени s,

 $\delta_K(t)$ — ошибка в вычисленных значениях фазовых переменных задачи (9) в момент времени t, для оценки точности решения задачи Коши мы предполагаем, что в начальный момент времени значения фазовых переменных заданы правильно, то есть $\delta_K(0)=0$,

$$L(t) = \int_{0}^{t} l(s)ds$$
, где $l(s) = \mu(J(s, x(s), y(s), p_x(s), p_y(s)))$.

Так как для логарифмической нормы получена аналитическая формула, не зависящая от t, x(t), y(t), $p_x(t), p_y(t), - l = \frac{1+\sqrt{5}}{4}$, то интеграл $L_i = \int\limits_{t_i}^{t_{i+1}} l ds$ можно не только оценивать, но и вычислить явно: $L_i = \int\limits_{t_i}^{t_{i+1}} l ds = \frac{1+\sqrt{5}}{4}(t_{i+1}-t_i)$, в частности $L(T) = \int\limits_{0}^{T} l ds = \frac{1+\sqrt{5}}{4}T$. Тогда величина глобальной погреш-

ности решения задачи Коши $\delta_K(T)$ может быть оценена через C_ρ , где контанта $C_\rho \geqslant \rho(s)$ оценивает сверху $\rho(s)$:

$$\delta_K(T) \leqslant e^{L(T)} \left(\delta_K(0) + \int_0^T e^{-L(s)} \rho(s) ds \right) = e^{\frac{1+\sqrt{5}}{4}T} \cdot \int_0^T e^{-\frac{1+\sqrt{5}}{4}s} C_\rho ds = \frac{4}{1+\sqrt{5}} C_\rho \cdot \left(e^{\frac{1+\sqrt{5}}{4}T} - 1 \right)$$
(12)

Таким образом, глобальная ошибка в решении задачи Коши оценивается по формуле (12), где C_{ρ} – максимум ошибки в вычислении правых частей.

9. Исследование оптимальности экстремалей

Для исследования экстремалей в задаче Лагранжа (2) рассмотрим пространство $X = C^1([0;T],\mathbb{R})$ $\times C([0;T])$. Элементы этого пространства $\xi := \{x(\cdot),\,y(\cdot),\,u(\cdot)\}$ называются управляемыми процессами. Элемент этого пространства, удовлетворяющий системе необходимых условий оптимальности, определённый в результате решения краевой задачи (9)–(10), для которого проверяется выполнение необходимых и достаточных условий оптимальности второго порядка обозначается $\xi := \{\hat{x}(\cdot),\,\hat{y}(\cdot),\,\hat{u}(\cdot)\}$.

Оператор типа равенства

$$\begin{cases} \dot{x} = y, \\ \dot{y} = u, \end{cases} \qquad u \in \mathbb{R}, \tag{13}$$

$$x(0) = 0, \quad x(T) = 0, \quad y(T) = 1, \quad T \in \{0.1, 1, 2, 3, 3.5, 10, 20\}$$
 (14)

действует из пространства X в пространство $Y := C([0, T], \mathbb{R}^2) \times \mathbb{R}^2$.

Обозначим через $\delta \xi := \{\delta x, \, \delta y, \, \delta u\}$ элемент касательного пространства к многообразию, определяемому в точке $\hat{\xi}$ пространства X условиями (13), (14).

Принадлежность элемента $\delta \xi$ касательному пространству, совпадающему в силу теоремы Люстерника с ядром производной оператора, определяющего условие типа равенства (13), (14), накладывает на δ_x , δ_u , условия:

$$\dot{\delta}x = \delta y,
\dot{\delta}y = \delta u,
\delta u \in \mathbb{R},
\delta x(0) = 0,
\delta x(T) = 0,
\delta y(T) = 1.$$
(15)

Вторая вариация функции Лагранжа \mathcal{L} в данной задаче имеет вид:

$$\mathcal{L}_{\xi\xi} = \int_{0}^{T} \left((\delta u)^2 - (\delta y)^2 - (\delta x)^2 \right) dt. \tag{16}$$

Необходимым условием оптимальности является неотрицательная определённость $\mathcal{L}_{\xi\xi}[\delta\xi,\,\delta\xi]\geqslant 0$ на допустимых вариациях, а достаточным условием второго порядка — положительная определённость на допустимых экстремалях: $\mathcal{L}_{\xi\xi}[\delta\xi,\,\delta\xi]\geqslant \varepsilon\varphi(\delta\xi),\,\,\varepsilon>0,\,\,\varphi(\delta\xi)=\int\limits_0^T(\delta u)^2dt.$

Необходимое для неотрицательной определённости второй вариации $\mathcal{L}_{\xi\xi}[\delta\xi,\delta\xi]$ условие Лежандра выполняется в усиленной форме: $L_{uu}=1>0$. Поэтому для неотрицательности второй вариации необходимо отсутствие на интервале (0;T) сопряжённых точек, то есть выполнение условия Якоби, для положительности второй вариации достаточно выполнения усиленного условия Якоби: на полуинтервале (0;T] нет сопряжённых точек.

В нашей задаче точка au называется сопряжённой, если существует нетривиальное решение краевой задачи:

$$\dot{\delta}x = \delta y,
\dot{\delta}y = q_y,
\dot{\delta}q_x = -\delta x,
\dot{\delta}q_y = -q_x - \delta y,
\delta u = q_y,
\delta x(0) = 0,
\delta x(T) = 0,
\delta y(T) = 1,
q_y(0) = 0.$$
(17)

Она может быть формально получена в результате применения необходимых условий оптимальности (принцип Лагранжа) к задаче минимизации квадратичного функционала (16) при выполнении системы линейных условий (15) на временном интервале $[0;\tau]$ после замены T на τ в (15), (16). Множитель Лагранжа при функционале в задаче (17) выбран равным $\frac{1}{2}$. Первые два дифференциальные уравнения в (17) являются уравнениями в вариациях основной системы (13), следующие два – уравнениями в вариациях сопряжённой системы (3), пятое соотношение, условие оптимальности, соответствует вариации условия оптимальности исходной задачи (8). Так как система дифференциальных уравнений рассматриваемой краевой задачи (17) линейна и однородна, то все решения задач Коши, удовлетворяющие двум условиям при $t=0,\ x(0)=0$ и $q_y(0)=0$, могут быть получены в виде линейных комбинаций

двух линейно-независимых решений задач Коши с начальными условиями:

$$\begin{pmatrix}
\delta x^{1}(0) \\
\delta y^{1}(0) \\
q_{x}^{1}(0) \\
q_{y}^{1}(0)
\end{pmatrix} = \begin{pmatrix}
0 \\
1 \\
0 \\
0
\end{pmatrix} \qquad \text{if} \qquad \begin{pmatrix}
\delta x^{2}(0) \\
\delta y^{2}(0) \\
q_{x}^{2}(0) \\
q_{y}^{2}(0)
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
1 \\
0
\end{pmatrix}.$$
(18)

Если в некоторый момент $\tau \in (0; T]$

$$\begin{vmatrix} \delta y^1(\tau) & \delta y^2(\tau) \\ q_x^1(\tau) & q_x^2(\tau) \end{vmatrix} = 0, \tag{19}$$

то краевая задача (17) имеет нетривиальное решение и точка τ будет сопряжённой.

Напоследок отметим, что при формализации исходной задачи (1) из условия $B_0 \longrightarrow \exp$ ехtr было выбрано именно условие $B_0 \longrightarrow \inf$ из следующих соображений. При выборе условия $B_0 \longrightarrow \sup \Leftrightarrow -B_0 \longrightarrow \inf$ получаем лагранжиан $L = \frac{1}{2}(-u^2+y^2+x^2)+p_x(\dot{x}-y)+p_y(\dot{y}-u)$. И тогда вторая вариация по управлению $L_{uu} = -1 < 0$ — не выполняется необходимое условие слабого минимума Лежандра, значит полученные экстремали не были бы оптимальными, и поэтому не искались.

10. Аналитическое решение и сопряжённая точка

Краевая задача решается аналитически. Из (9) имеем:

$$x = -\dot{p}_x = \ddot{p}_y + \dot{y} = y^{(3)} + \dot{y} = x^{(4)} + x^{(2)}.$$

Таким образом, система дифференциальных уравнений краевой задачи (9) сводится к линейному дифференциальному уравению:

$$x^{(4)} + x^{(2)} - x = 0. (20)$$

Найдём общее решение (20). Характеристическое уравнение $\lambda^4 + \lambda^2 - 1 = 0$ имеет корни $\lambda_1 = \sqrt{\frac{\sqrt{5}+1}{2}} i$, $\lambda_2 = \sqrt{\frac{\sqrt{5}-1}{2}}$, $\lambda_3 = -\sqrt{\frac{\sqrt{5}-1}{2}}$, $\lambda_4 = -\sqrt{\frac{\sqrt{5}+1}{2}} i$. Общее решение:

$$x = a_0 e^{\lambda_1 t} + b_0 e^{\lambda_2 t} + c_0 e^{\lambda_3 t} + d_0 e^{\lambda_4 t} =$$

$$a\cos\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\mathrm{t}\right) + b\sin\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\mathrm{t}\right) + c\cosh\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\mathrm{t}\right) + d\sinh\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\mathrm{t}\right). \tag{21}$$

Дифференцируя это решение, получим выражения для искомых функций в краевой задаче (9)–(10):

$$y = -a\sqrt{\frac{\sqrt{5}+1}{2}}\sin\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,t\right) + b\sqrt{\frac{\sqrt{5}+1}{2}}\cos\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,t\right) + c\sqrt{\frac{\sqrt{5}-1}{2}}\sinh\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,t\right) + d\sqrt{\frac{\sqrt{5}-1}{2}}\cosh\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,t\right),$$

$$p_y = -a\frac{\sqrt{5}+1}{2}\cos\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,t\right) - b\frac{\sqrt{5}+1}{2}\sin\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,t\right) + c\frac{\sqrt{5}-1}{2}\cosh\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,t\right) + d\frac{\sqrt{5}-1}{2}\sinh\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,t\right),$$

$$p_x = -\dot{p}_y - y = -a\left(\sqrt{\frac{\sqrt{5}+1}{2}}\right)^3\sin\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,t\right) + b\left(\sqrt{\frac{\sqrt{5}+1}{2}}\right)^3\cos\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,t\right) - c\left(\sqrt{\frac{\sqrt{5}-1}{2}}\right)^3\sinh\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,t\right) - d\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,t\right) - d\left(\sqrt{\frac{\sqrt{5}-1}-1}\,t\right) - d\left(\sqrt{\frac{5}-1}-1}\,t\right) - d\left(\sqrt{\frac{5}-1}-1}\,t\right) - d\left($$

$$+ b \left(\left(\sqrt{\frac{\sqrt{5}+1}{2}} \right)^3 - \sqrt{\frac{\sqrt{5}+1}{2}} \right) \cos \left(\sqrt{\frac{\sqrt{5}+1}{2}} \operatorname{t} \right) - c \left(\left(\sqrt{\frac{\sqrt{5}-1}{2}} \right)^3 + \sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{sh} \left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{t} \right) - d \left(\left(\sqrt{\frac{\sqrt{5}-1}{2}} \right)^3 + \sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{ch} \left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{t} \right) \right) \right) - d \left(\left(\sqrt{\frac{\sqrt{5}-1}{2}} \right)^3 + \sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{ch} \left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{t} \right) \right) - d \left(\left(\sqrt{\frac{\sqrt{5}-1}{2}} \right)^3 + \sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{ch} \left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{t} \right) \right) \right) - d \left(\left(\sqrt{\frac{\sqrt{5}-1}{2}} \right)^3 + \sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{ch} \left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{t} \right) \right) - d \left(\sqrt{\frac{\sqrt{5}-1}} \operatorname{t} \right) - d \left(\left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{t} \right) \right) - d \left(\left(\sqrt{\frac{\sqrt{5}-1}} \operatorname{t} \right) \right) - d \left(\left(\sqrt{\frac{5}-1} \operatorname{t} \right) \right) - d \left(\left(\sqrt{\frac{\sqrt{5}-1}} \operatorname{t} \right) \right) - d \left(\left(\sqrt{\frac{\sqrt{5}-1}} \operatorname{t} \right) \right) - d \left(\left(\sqrt{\frac{5}-1} \operatorname{t} \right) \right) - d \left(\left(\sqrt{\frac{5}-1} \operatorname{t} \right) \right) - d \left(\left(\sqrt{\frac{5}-1} \operatorname{t} \right) \right) - d \left(\left(\sqrt{\frac{5}$$

После подстановки их в краевые условия (10) получится система линейных алгебраических уравнений относительно неизвестных коэффициентов a, b, c, d:

$$\begin{cases} a+c=0, \\ a\cos\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\mathrm{T}\right) + b\sin\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\mathrm{T}\right) + c\cosh\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\mathrm{T}\right) + d\sinh\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\mathrm{T}\right) = 0, \\ -a\sqrt{\frac{\sqrt{5}+1}{2}}\sin\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\mathrm{T}\right) + b\sqrt{\frac{\sqrt{5}+1}{2}}\cos\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\mathrm{T}\right) + c\sqrt{\frac{\sqrt{5}-1}{2}}\sinh\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\mathrm{T}\right) + d\sqrt{\frac{\sqrt{5}-1}{2}}\cosh\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\mathrm{T}\right) = 1, \\ -a\sqrt{\frac{\sqrt{5}+1}{2}} + c\sqrt{\frac{\sqrt{5}-1}{2}} = 0. \end{cases}$$
(23)

 \Diamond

$$\begin{cases} a = 0, \\ b \sin\left(\sqrt{\frac{\sqrt{5} + 1}{2}} \operatorname{T}\right) + d \operatorname{sh}\left(\sqrt{\frac{\sqrt{5} - 1}{2}} \operatorname{T}\right) = 0, \\ b \sqrt{\frac{\sqrt{5} + 1}{2}} \cos\left(\sqrt{\frac{\sqrt{5} + 1}{2}} \operatorname{T}\right) + d \sqrt{\frac{\sqrt{5} - 1}{2}} \operatorname{ch}\left(\sqrt{\frac{\sqrt{5} - 1}{2}} \operatorname{T}\right) = 1, \\ c = 0. \end{cases}$$

1

$$\begin{cases} a = 0, \\ b = \frac{\sqrt{2}}{\sqrt{\sqrt{5} + 1} \cos\left(\sqrt{\frac{\sqrt{5} + 1}{2}} \operatorname{T}\right) - \sqrt{\sqrt{5} - 1} \sin\left(\sqrt{\frac{\sqrt{5} + 1}{2}} \operatorname{T}\right) \operatorname{cth}\left(\sqrt{\frac{\sqrt{5} - 1}{2}} \operatorname{T}\right),} \\ c = 0, \\ d = \frac{\sqrt{2}}{\sqrt{\sqrt{5} - 1} \operatorname{ch}\left(\sqrt{\frac{\sqrt{5} - 1}{2}} \operatorname{T}\right) - \sqrt{\sqrt{5} + 1} \operatorname{sh}\left(\sqrt{\frac{\sqrt{5} - 1}{2}} \operatorname{T}\right) \operatorname{ctg}\left(\sqrt{\frac{\sqrt{5} + 1}{2}} \operatorname{T}\right).} \end{cases}$$
(24)

Таким образом, система уравнений (21),(22) и коэффициентов (24) является аналитическим решением исходной задачи (2).

При t=0 получаем значения параметров пристрелки для краевой задачи (9)–(10):

$$y(0) = b\sqrt{\frac{\sqrt{5}+1}{2}} + d\sqrt{\frac{\sqrt{5}-1}{2}},$$

$$p_x(0) = b\left(\left(\sqrt{\frac{\sqrt{5}+1}{2}}\right)^3 - \frac{\sqrt{5}+1}{2}\right) - d\left(\left(\sqrt{\frac{\sqrt{5}-1}{2}}\right)^3 + \frac{\sqrt{5}-1}{2}\right).$$
(25)

При заданных в постановке задачи значениях параметра T получаем:

Точные значения параметров пристрелки.

	To impro one remini mape.	r r r
T	y(0)	$p_x(0)$
0.1	-0.500250428907321520	-299.800335788296933970
1	-0.529658917112056926	-2.834528013273604152
2	-0.704254201775864619	-0.715004207901699607
3	-2.766260060093759243	-1.285304255998773959
3.5	3.123090362102298290	1.433593817232580836
10	1.119116338125226484	0.691834549816588429
20	1.305664794863987899	0.806945383366553415

Исследуем оптимальность полученных экстремалей. Как выяснилось в п. 9., на всех полученных экстремалях выполняется усиленное условие Лежандра. В силу линейности системы ограничений и квазиквадратичности рассматриваемого функционала, система дифференциальных уравнений Якоби в (17) совпадает с системой дифференциальных уравнений краевой задачи (9). Как было получено выше решение такой системы имеет вид:

$$\begin{split} \delta x = & a' \cos \left(\sqrt{\frac{\sqrt{5}+1}{2}} \, \mathbf{t} \right) + b' \sin \left(\sqrt{\frac{\sqrt{5}+1}{2}} \, \mathbf{t} \right) + c' \operatorname{ch} \left(\sqrt{\frac{\sqrt{5}-1}{2}} \, \mathbf{t} \right) + d' \operatorname{sh} \left(\sqrt{\frac{\sqrt{5}-1}{2}} \, \mathbf{t} \right), \\ \delta y = & - a' \sqrt{\frac{\sqrt{5}+1}{2}} \sin \left(\sqrt{\frac{\sqrt{5}+1}{2}} \, \mathbf{t} \right) + b' \sqrt{\frac{\sqrt{5}+1}{2}} \cos \left(\sqrt{\frac{\sqrt{5}+1}{2}} \, \mathbf{t} \right) + c' \sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{sh} \left(\sqrt{\frac{\sqrt{5}-1}{2}} \, \mathbf{t} \right) + d' \operatorname{sh} \left(\sqrt{\frac{\sqrt{5}-1}{2}} \, \mathbf{t} \right) + d' \operatorname{sh} \left(\sqrt{\frac{\sqrt{5}-1}{2}} \, \mathbf{t} \right) + c' \sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{sh} \left(\sqrt{\frac{\sqrt{5}-1}{2}} \, \mathbf{t} \right) + b' \sqrt{\frac{\sqrt{5}+1}{2}} \frac{\sqrt{5}-1}{2} \cos \left(\sqrt{\frac{\sqrt{5}+1}{2}} \, \mathbf{t} \right) - c' \sqrt{\frac{\sqrt{5}-1}{2}} \frac{\sqrt{5}+1}{2} \operatorname{sh} \left(\sqrt{\frac{\sqrt{5}-1}{2}} \, \mathbf{t} \right) - d' \sqrt{\frac{\sqrt{5}-1}{2}} \frac{\sqrt{5}+1}{2} \operatorname{ch} \left(\sqrt{\frac{\sqrt{5}-1}{2}} \, \mathbf{t} \right), \\ q_y = & - a' \frac{\sqrt{5}+1}{2} \cos \left(\sqrt{\frac{\sqrt{5}+1}{2}} \, \mathbf{t} \right) - b' \frac{\sqrt{5}+1}{2} \sin \left(\sqrt{\frac{\sqrt{5}+1}{2}} \, \mathbf{t} \right) + c' \frac{\sqrt{5}-1}{2} \operatorname{ch} \left(\sqrt{\frac{\sqrt{5}-1}{2}} \, \mathbf{t} \right) + d' \frac{\sqrt{5}-1}{2} \operatorname{ch} \left(\sqrt{\frac{\sqrt{5}-1}{2}} \, \mathbf{t} \right). \end{split}$$

Начальные условия (18) однозначно определяют два набора коэффициентов:

$$\begin{cases} a_1' + c_1' = 0, \\ b_1' \sqrt{\frac{\sqrt{5} + 1}{2}} + d_1' \sqrt{\frac{\sqrt{5} - 1}{2}} = 1, \\ b_1' \sqrt{\frac{\sqrt{5} + 1}{2}} \frac{\sqrt{5} - 1}{2} - d_1' \sqrt{\frac{\sqrt{5} - 1}{2}} \frac{\sqrt{5} + 1}{2} = 0, \\ -a_1' \frac{\sqrt{5} + 1}{2} + c_1' \frac{\sqrt{5} - 1}{2} = 0. \end{cases}$$

$$\begin{cases} a_2' + c_2' = 0, \\ b_2' \sqrt{\frac{\sqrt{5} + 1}{2}} + d_2' \sqrt{\frac{\sqrt{5} - 1}{2}} = 0, \\ b_2' \sqrt{\frac{\sqrt{5} + 1}{2}} + d_2' \sqrt{\frac{\sqrt{5} - 1}{2}} = 0, \\ -a_2' \frac{\sqrt{5} + 1}{2} + c_2' \frac{\sqrt{5} - 1}{2} = 0. \end{cases}$$

$$\begin{cases} a_2' + c_2' = 0, \\ b_2' \sqrt{\frac{\sqrt{5} + 1}{2}} + d_2' \sqrt{\frac{\sqrt{5} - 1}{2}} = 0, \\ -a_2' \frac{\sqrt{5} + 1}{2} + c_2' \frac{\sqrt{5} - 1}{2} = 0. \end{cases}$$

Откуда получаем:

$$\begin{cases} a_1' = 0, \\ b_1' = \sqrt{\frac{\sqrt{5} + 1}{10}}, \\ c_1' = 0, \\ d_1' = \sqrt{\frac{\sqrt{5} - 1}{10}}, \end{cases}$$
 If
$$\begin{cases} a_2' = 0, \\ b_2' = \sqrt{\frac{\sqrt{5} - 1}{10}}, \\ c_2' = 0, \\ d_2' = -\sqrt{\frac{\sqrt{5} + 1}{10}}. \end{cases}$$

Пусть $\tau^+ = \sqrt{\frac{\sqrt{5}+1}{2}}\,\tau,\ \tau^- = \sqrt{\frac{\sqrt{5}-1}{2}}\,\tau.$ Тогда условие (19) преобразуется к виду:

$$\begin{vmatrix} \frac{\sqrt{5}+1}{2\sqrt{5}}\cos\left(\sqrt{\frac{\sqrt{5}+1}}\,\tau\right) + \frac{\sqrt{5}-1}{2\sqrt{5}}\operatorname{ch}\left(\sqrt{\frac{\sqrt{5}-1}}\,\tau\right) & \sqrt{\frac{\sqrt{5}+1}}\,\sqrt{\frac{\sqrt{5}-1}}\cos\left(\sqrt{\frac{\sqrt{5}+1}}\,\tau\right) - \sqrt{\frac{\sqrt{5}+1}}\,\sqrt{\frac{\sqrt{5}+1}}\cot\left(\sqrt{\frac{\sqrt{5}-1}}\,\tau\right) \\ \frac{\sqrt{5}+1}{2\sqrt{5}}\frac{\sqrt{5}-1}{2}\cos\left(\sqrt{\frac{\sqrt{5}+1}}\,\tau\right) - \frac{\sqrt{5}-1}{2\sqrt{5}}\frac{\sqrt{5}-1}{2}\operatorname{ch}\left(\sqrt{\frac{\sqrt{5}-1}}\,\tau\right) & \frac{\sqrt{5}-1}{2}\sqrt{\frac{\sqrt{5}+1}}\sqrt{\frac{\sqrt{5}-1}}\cos\left(\sqrt{\frac{\sqrt{5}+1}}\,\tau\right) - \sqrt{\frac{\sqrt{5}+1}}\sqrt{\frac{\sqrt{5}-1}}\cos\left(\sqrt{\frac{\sqrt{5}-1}}\,\tau\right) \\ \frac{\sqrt{5}+1}{2\sqrt{5}}\frac{\sqrt{5}-1}{2}\cos\left(\sqrt{\frac{\sqrt{5}+1}}\,\tau\right) - \frac{\sqrt{5}-1}{2\sqrt{5}}\frac{\sqrt{5}-1}{2}\operatorname{ch}\left(\sqrt{\frac{\sqrt{5}-1}}\,\tau\right) & \frac{\sqrt{5}-1}{2}\sqrt{\frac{\sqrt{5}-1}}\sqrt{\frac{\sqrt{5}-1}}\cos\left(\sqrt{\frac{\sqrt{5}-1}}\,\tau\right) + \frac{\sqrt{5}-1}{2\sqrt{5}}\sqrt{\frac{\sqrt{5}-1}}\sqrt{\frac{\sqrt{5}-1}}\cos\left(\sqrt{\frac{\sqrt{5}-1}}\,\tau\right) \\ \frac{\sqrt{5}-1}{2\sqrt{5}}\frac{\sqrt{5}-1}{2\sqrt{5}}\cos\left(\sqrt{\frac{\sqrt{5}-1}}\,\tau\right) - \frac{\sqrt{5}-1}{2\sqrt{5}}\sqrt{\frac{\sqrt{5}-1}}\cos\left(\sqrt{\frac{\sqrt{5}-1}}\,\tau\right) \\ \frac{\sqrt{5}-1}{2\sqrt{5}}\cos\left(\sqrt{\frac{\sqrt{5}-1}}\,\tau\right) - \frac{\sqrt{5}-1}\sqrt{\frac{5}-1}\cos\left(\sqrt{\frac{\sqrt{5}-1}}\,\tau\right) \\ \frac{\sqrt{5}-1}{2\sqrt{5}}\cos\left(\sqrt{\frac{\sqrt{5}-1}}\,\tau\right) - \frac{\sqrt{5}-1}\sqrt{\frac{5}-1}\cos\left(\sqrt{\frac{\sqrt{5}-1}}\,\tau\right) \\ \frac{\sqrt{5}-1}\sqrt{\frac{5}-1}\cos\left(\sqrt{\frac{\sqrt{5}-1}}\,\tau\right) - \frac{\sqrt{5}-1}\sqrt{\frac{5}-1}\cos\left(\sqrt{\frac{\sqrt{5}-1}}\,\tau\right) \\ \frac{\sqrt{5}-1}\sqrt{\frac{5}-1}\cos\left(\sqrt{\frac{\sqrt{5}-1}}\,\tau\right) - \frac{\sqrt{5}-1}\sqrt{\frac{5}-1}\cos\left(\sqrt{\frac{\sqrt{5}-1}}\,\tau\right) \\ \frac{\sqrt{5}-1}\sqrt{\frac{5}-1}\cos\left(\sqrt{\frac{5}-1}\,\tau\right) - \frac{\sqrt{5}-1}\sqrt{\frac{5}-1}\cos\left(\sqrt{\frac{5}-1}\,\tau\right) \\ \frac{\sqrt{5}-1}\sqrt{\frac{5}-1}\cos\left(\sqrt{\frac{5}-1}\,\tau\right) - \frac{\sqrt{5}-1}\sqrt{\frac{5}-1}\cos\left(\sqrt{\frac{5}-1}\,\tau\right) \\ \frac{\sqrt{5}-1}\cos\left(\sqrt{\frac{5}-1}\,\tau\right) - \frac{\sqrt{5}-1}\cos\left(\sqrt{\frac{5}-1}\,\tau\right) \\ \frac{\sqrt{5}-1}\cos\left(\sqrt{\frac{5}-1}\,\tau\right) -$$

$$\begin{vmatrix} (\sqrt{5} + 1)\cos \tau^{+} + (\sqrt{5} - 1)\operatorname{ch} \tau^{-} & 2\cos \tau^{+} - 2\operatorname{ch} \tau^{-} \\ 2\cos \tau^{+} - 2\operatorname{ch} \tau^{-} & (\sqrt{5} - 1)\cos \tau^{+} + (\sqrt{5} + 1)\operatorname{ch} \tau^{-} \end{vmatrix} = 0.$$

$$\begin{split} 4\cos^2\tau^+ + 4\operatorname{ch}^2\tau^- + (6 - 2\sqrt(5))\cos\tau^+ &\operatorname{ch}\tau^- + (6 + 2\sqrt(5))\cos\tau^+ &\operatorname{ch}\tau^- - 4\cos^2\tau^+ - 4\operatorname{ch}^2\tau^- + \\ &+ 4\operatorname{ch}\tau^-\cos\tau^+ - 4\operatorname{ch}\tau^-\cos\tau^+ = 0. \end{split}$$

$$\cos\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\tau\right) \operatorname{ch}\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\tau\right) = 0.$$

Минимальный положительный корень этого уравнения определяется условием $\sqrt{\frac{\sqrt{5}+1}{2}}\,\tau^*=\frac{\pi}{2}\Leftrightarrow \pi^*=\frac{\pi}{\sqrt{2}\sqrt{\sqrt{5}+1}}=1.234883696486107629$. Таким образом, на интервале $(0,\tau^*)$ сопряжённые точки отсутсвуют, и на экстремалях задачи (2) при $T\in(0,\tau^*)$ выполняется условие Квазирегулярности (усиленное условие Вейерштрасса, функция L является выпуклой функцией управления u, т.е. L_{uu} положительно определена в окрестности экстремали), то на экстремалях достигается сильный локальный минимум. Так как задача линейно-квадратичная, сильный локальный минимум совпадает с абсолютным минимумом. При $T>\tau^*$ не выполняется необходимое условие Якоби слабого минимума. Таким

образом, при $T \in \{0.1, 1\}$ на единственной существующей экстремали задачи достигается абсолютный минимум; при $T \in \{2, 3, 3.5, 10, 20\}$ полученные экстремали неоптимальны, на самом деле можно по-казать, что минимизируемый функционал B_0 в этом случае можно сделать сколь угодно маленьким $(B_0 \to -\infty)$.

11. Результаты решения задачи и их анализ

Для каждого значения T задача была решена с различными значениями максимально допустимой относительной погрешности на шаге решения задачи Коши $\Delta_{\text{лок}}=10^{-8},\,10^{-10},\,10^{-12}.$ При этом точность решения задачи (удовлетворения условию $X(\alpha)=0$) выбиралась равной $10\cdot\Delta_{\text{лок}}$, начальный шаг для решения задачи Коши брался равным T/10, максимальный шаг -T. Для T=0.1 задача была решена для случайно выбранных значений параметров пристрелки $\vec{\alpha}=\begin{pmatrix} 0\\0 \end{pmatrix}$, для каждого следующего значения $T\in\{0.1,\,1,\,2,\,3,\,3.5,\,10,\,20\}$ решение было получено в результате выбора значений параметров пристрелки равными полученным значениям при решении задачи с предыдущим значением параметра T, то есть фактически был реализован метод продолжения по параметру со схемой $\vec{X}(\vec{\alpha}_{i+1})=(1-\beta)\vec{X}(\vec{\alpha}_i)$, причём решения нашлись сразу, при шаге $\beta=1$.

В приведённой ниже таблице с результатами численного решения задачи T — значение параметра T, при котором решалась задача; $\Delta_{\text{лок}}$ — относительная погрешность на шаге решения задачи Коши; it — число итераций, за которое сошёлся метод Ньютона; y(0) и p(0) — полученные численно методом Ньютона искомые значения параметров пристрелки; $\Delta y(0)$ и $\Delta p_x(0)$ — их отличие от точного аналитического решения, полученного в п. 10.; |x(T)| и |y(T)-1| — невязки.

T	$\Delta_{ m nok}$	it	y(0)	$p_x(0)$	$\Delta y(0)$	$\Delta p_x(0)$	x(T)	y(T) - 1
	10^{-8}	2	-0.50025042890612	-299.80033578830376	$1.2 \cdot 10^{-12}$	$6.8 \cdot 10^{-12}$	$4.3 \cdot 10^{-16}$	$1.2 \cdot 10^{-14}$
0.1	10^{-10}	2	-0.50025042890610	-299.80033578827931	$1.2 \cdot 10^{-12}$	$1.8 \cdot 10^{-11}$	$2.4 \cdot 10^{-15}$	$8.9 \cdot 10^{-14}$
	10^{-12}	2	-0.50025042890601	-299.80033578828113	$1.3 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	$7.2 \cdot 10^{-15}$	$1.2 \cdot 10^{-14}$
	10^{-8}	2	-0.52965892026664	-2.83452796121925	$3.2 \cdot 10^{-9}$	$5.2 \cdot 10^{-8}$	$1.1 \cdot 10^{-8}$	$2.6 \cdot 10^{-8}$
1	10^{-10}	2	-0.52965891711176	-2.83452801327526	$3.0 \cdot 10^{-13}$	$1.7 \cdot 10^{-12}$	$2.1 \cdot 10^{-13}$	$3.2 \cdot 10^{-13}$
	10^{-12}	2	-0.52965891711207	-2.83452801327367	$9.2 \cdot 10^{-15}$	$6.2 \cdot 10^{-14}$	$1.8 \cdot 10^{-15}$	$1.5 \cdot 10^{-14}$
	10^{-8}	2	-0.70425420123460	-0.71500420778796	$5.4 \cdot 10^{-10}$	$1.1 \cdot 10^{-10}$	$1.5 \cdot 10^{-14}$	$8.2 \cdot 10^{-15}$
2	10^{-10}	2	-0.70425420177211	-0.71500420790060	$3.7 \cdot 10^{-12}$	$1.1 \cdot 10^{-12}$	$7.7 \cdot 10^{-17}$	$4.4 \cdot 10^{-16}$
	10^{-12}	2	-0.70425420177584	-0.71500420790169	$2.5 \cdot 10^{-14}$	$7.2 \cdot 10^{-15}$	$9.5 \cdot 10^{-16}$	$7.8 \cdot 10^{-16}$
	10^{-8}	2	-2.76626005127567	-1.28530425197541	$8.8 \cdot 10^{-9}$	$4.0 \cdot 10^{-9}$	$9.1 \cdot 10^{-15}$	$2.5 \cdot 10^{-14}$
3	10^{-10}	2	-2.76626006002568	-1.28530425596694	$6.8 \cdot 10^{-11}$	$3.2 \cdot 10^{-11}$	$7.4 \cdot 10^{-15}$	$2.9 \cdot 10^{-15}$
	10^{-12}	2	-2.76626006009351	-1.28530425599866	$2.5 \cdot 10^{-13}$	$1.1 \cdot 10^{-13}$	$1.7 \cdot 10^{-14}$	$5.9 \cdot 10^{-14}$
	10^{-8}	2	3.12309036920618	1.43359382014942	$7.1 \cdot 10^{-9}$	$2.9 \cdot 10^{-9}$	$2.7 \cdot 10^{-15}$	$4.0 \cdot 10^{-15}$
3.5	10^{-10}	2	3.12309036213535	1.43359381724514	$3.3 \cdot 10^{-11}$	$1.3 \cdot 10^{-11}$	$1.5 \cdot 10^{-13}$	$2.1 \cdot 10^{-13}$
	10^{-12}	2	3.12309036210207	1.43359381723247	$2.3 \cdot 10^{-13}$	$1.1 \cdot 10^{-13}$	$7.2 \cdot 10^{-14}$	$2.0 \cdot 10^{-13}$
	10^{-8}	2	1.11911633115119	0.69183454550194	$7.0 \cdot 10^{-9}$	$4.3 \cdot 10^{-9}$	$4.3 \cdot 10^{-12}$	$2.6 \cdot 10^{-12}$
10	10^{-10}	2	1.11911633808935	0.69183454979438	$3.6 \cdot 10^{-11}$	$2.2 \cdot 10^{-11}$	$1.1 \cdot 10^{-11}$	$1.3 \cdot 10^{-11}$
	10^{-12}	2	1.11911633812499	0.69183454981644	$2.3 \cdot 10^{-13}$	$1.5 \cdot 10^{-13}$	$5.4 \cdot 10^{-12}$	$4.2 \cdot 10^{-12}$
	10^{-8}	2	1.30566477586467	0.80694537162433	$1.9 \cdot 10^{-8}$	$1.2 \cdot 10^{-8}$	$5.4 \cdot 10^{-9}$	$4.3 \cdot 10^{-9}$
20	10^{-10}	3	1.30566479475366	0.80694538329837	$1.1 \cdot 10^{-10}$	$6.8 \cdot 10^{-11}$	$4.2 \cdot 10^{-12}$	$3.3 \cdot 10^{-12}$
	10^{-12}	7	1.30566479486329	0.80694538336612	$7.0 \cdot 10^{-13}$	$4.3 \cdot 10^{-13}$	$4.0 \cdot 10^{-12}$	$3.1 \cdot 10^{-12}$

Таблица 1: Результаты численного решения задачи (2).

Фактически, колонками $\Delta y(0)$ и $\Delta p_x(0)$ оценивается точность решения краевой задачи. Значение it=7 при T=20 и относительной локальной погрешности на шаге 10^{-12} означает плохую сходимость метода Ньютона в окрестности этой точки T=20. Увеличение числа правильных знаков y(0), $p_y(0)$ и улучшение невязок при увеличении точности на шаге соответствует правилу Рунге (см. таблицу 3).

В основном, точность решения задачи оценивается таблицей 2- в ней приведены максимумы отличия всех фазовых и сопряжённых переменных от аналитического решения по всем точкам, в которые был сделан шаг при решении задачи Коши, с разными относительными погрешностями на шаге. $\Delta H(\cdot)$ — изменение первого интеграла задачи, функции Понтрягина, по всем сделанным шагам (т.е. max(H(t)) - min(H(t))), δ_K — оценка глобальной погрешности в решении задачи Коши, вычисляемая из соотношения $\delta_K(t_{i+1}) = r_i + \delta_K(t_i) \cdot e^{L_i}$, где L_i — функция из п. 8., а r_i — главный член в оценке локальной погрешности, вычисляемый на каждом шаге решения задачи Коши.

T	$\Delta_{ ext{ iny JOK}}$	$\Delta x(\cdot)$	$\Delta y(\cdot)$	$\Delta p_x(\cdot)$	$\Delta p_y(\cdot)$	$\delta_K(T)$	$\Delta H(\cdot)$
	10^{-8}	$1.3 \cdot 10^{-13}$	$1.3 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	$1.7 \cdot 10^{-12}$	$5.9 \cdot 10^{-14}$	$9.0 \cdot 10^{-14}$
0.1	10^{-10}	$1.3 \cdot 10^{-13}$	$1.3 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	$1.7 \cdot 10^{-12}$	$1.3 \cdot 10^{-14}$	$2.6 \cdot 10^{-14}$
	10^{-12}	$1.3 \cdot 10^{-13}$	$1.3 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	$1.7 \cdot 10^{-12}$	$5.7 \cdot 10^{-14}$	$2.4 \cdot 10^{-14}$
	10^{-8}	$1.3 \cdot 10^{-10}$	$2.9 \cdot 10^{-10}$	$1.7 \cdot 10^{-10}$	$2.1 \cdot 10^{-10}$	$9.2 \cdot 10^{-9}$	$8.9 \cdot 10^{-10}$
1	10^{-10}	$7.2 \cdot 10^{-13}$	$1.4 \cdot 10^{-12}$	$9.1 \cdot 10^{-13}$	$1.2 \cdot 10^{-12}$	$1.5 \cdot 10^{-10}$	$4.5 \cdot 10^{-12}$
	10^{-12}	$5.9 \cdot 10^{-15}$	$1.5 \cdot 10^{-14}$	$6.8 \cdot 10^{-14}$	$7.1 \cdot 10^{-14}$	$2.7 \cdot 10^{-12}$	$2.5 \cdot 10^{-14}$
	10^{-8}	$4.9 \cdot 10^{-10}$	$3.5 \cdot 10^{-10}$	$2.2 \cdot 10^{-10}$	$7.8 \cdot 10^{-10}$	$2.6 \cdot 10^{-8}$	$8.2 \cdot 10^{-10}$
2	10^{-10}	$3.1 \cdot 10^{-12}$	$1.8 \cdot 10^{-12}$	$1.1 \cdot 10^{-12}$	$5.1 \cdot 10^{-12}$	$5.5 \cdot 10^{-10}$	$6.0 \cdot 10^{-12}$
	10^{-12}	$1.4 \cdot 10^{-14}$	$2.5 \cdot 10^{-14}$	$1.8 \cdot 10^{-14}$	$2.3 \cdot 10^{-14}$	$1.2 \cdot 10^{-11}$	$4.0 \cdot 10^{-14}$
	10^{-8}	$1.6 \cdot 10^{-9}$	$3.0 \cdot 10^{-9}$	$1.8 \cdot 10^{-9}$	$2.7 \cdot 10^{-9}$	$2.0 \cdot 10^{-7}$	$1.2 \cdot 10^{-8}$
3	10^{-10}	$1.3 \cdot 10^{-11}$	$2.5 \cdot 10^{-11}$	$1.5 \cdot 10^{-11}$	$2.1 \cdot 10^{-11}$	$6.3 \cdot 10^{-9}$	$1.2 \cdot 10^{-10}$
	10^{-12}	$1.8 \cdot 10^{-13}$	$2.5 \cdot 10^{-13}$	$2.0 \cdot 10^{-13}$	$2.6 \cdot 10^{-13}$	$9.4 \cdot 10^{-11}$	$5.7 \cdot 10^{-13}$
	10^{-8}	$1.9 \cdot 10^{-9}$	$4.0 \cdot 10^{-9}$	$2.5 \cdot 10^{-9}$	$3.0 \cdot 10^{-9}$	$3.5 \cdot 10^{-7}$	$1.9 \cdot 10^{-8}$
3.5	10^{-10}	$1.2 \cdot 10^{-11}$	$2.4 \cdot 10^{-11}$	$1.5 \cdot 10^{-11}$	$2.0 \cdot 10^{-11}$	$8.6 \cdot 10^{-9}$	$1.3 \cdot 10^{-10}$
	10^{-12}	$1.6 \cdot 10^{-13}$	$2.3 \cdot 10^{-13}$	$1.6 \cdot 10^{-13}$	$2.4 \cdot 10^{-13}$	$1.6 \cdot 10^{-10}$	$7.6 \cdot 10^{-13}$
	10^{-8}	$3.8 \cdot 10^{-9}$	$4.3 \cdot 10^{-9}$	$2.7 \cdot 10^{-9}$	$6.1 \cdot 10^{-9}$	$3.8 \cdot 10^{-5}$	$9.5 \cdot 10^{-9}$
10	10^{-10}	$2.2 \cdot 10^{-11}$	$2.9 \cdot 10^{-11}$	$1.6 \cdot 10^{-11}$	$3.7 \cdot 10^{-11}$	$7.2 \cdot 10^{-7}$	$6.3 \cdot 10^{-11}$
	10^{-12}	$1.6 \cdot 10^{-12}$	$1.3 \cdot 10^{-12}$	$2.2 \cdot 10^{-12}$	$1.2 \cdot 10^{-12}$	$1.4 \cdot 10^{-8}$	$3.8 \cdot 10^{-13}$
	10^{-8}	$8.3 \cdot 10^{-9}$	$1.4 \cdot 10^{-8}$	$7.8 \cdot 10^{-9}$	$1.6 \cdot 10^{-8}$	$1.4 \cdot 10^{-1}$	$2.6 \cdot 10^{-8}$
20	10^{-10}	$3.9 \cdot 10^{-9}$	$3.1 \cdot 10^{-9}$	$4.9 \cdot 10^{-9}$	$2.4 \cdot 10^{-9}$	$2.8 \cdot 10^{-3}$	$1.7 \cdot 10^{-10}$
	10^{-12}	$3.9 \cdot 10^{-9}$	$3.1 \cdot 10^{-9}$	$5.0 \cdot 10^{-9}$	$2.4 \cdot 10^{-9}$	$5.2 \cdot 10^{-5}$	$1.0 \cdot 10^{-12}$

Таблица 2: Точность полученных экстремалей.

Для каждого фиксированного значения T, для всех $\Delta_{\text{лок}}$ значения параметров пристрелки брались одинаковыми, равными соотвествующим значениям, полученным при решении краевой задачи с $\Delta_{\text{лок}}=10^{-12}$. Для сравнения результатов при различных $\Delta_{\text{лок}}$ задачу Коши необходимо начинать решать из одной и той же точки.

При анализе результатов, представленных в таблице следует обратить внимание на то, что при уменьшении $\Delta_{\text{лок}}$ в 100 раз число совпадающих знаков в среднем увеличивается на два, и также на два порядка порядка уменьшаются величины ΔH и δ_K . В общем случае это не является доказательством правильности решения задачи, но этот необходимый признак реально позволяет хоть как-то убедиться в корректности вычислений. В нашей задаче ситуация упрощается, в связи с нахождением аналитического решения можно говорить о правильности полученных результатов.

Опираясь на совпадение знаков, можно предположить, что точность решения задачи Коши примерно совпадает с погрешностью ΔH .

Отметим, что несоответствие величин $\delta_K(T)$ и $\Delta_{\text{лок}}$ друг другу кажущееся, так как $\delta_K(T)$ — оценка абсолютных, а $\Delta_{\text{лок}}$ — относительных величин.

12. Правило Рунге

В таблице 3, приведённой ниже, проверяется правило Рунге. А именно, были посчитаны отличия $\Delta x(t), \ \Delta y(t), \ \Delta p_x(t)$ и $\Delta p_y(t)$ фазовых и сопряжённых переменных от точного аналитического решения при t=0, T/4, T/2, 3T/4, T для различных значений максимально допустимой относительной погрешности на шаге. |H(t)-H(0)| — отличие H(t) от H(0), то есть контроль за изменением первого интеграла задачи.

Таблица 3: Правило Рунге.

$\Delta_{ ext{jok}}$	t	$\Delta x(t)$	$\Delta y(t)$	$\Delta p_x(t)$	$\Delta p_y(t)$	H(t) - H(0)
31011		()	T=	0.1	19()	1 () ()1
	0	0.0	$1.3 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	0.0	0.0
	0.025	$3.3 \cdot 10^{-14}$	$1.3 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	$4.3 \cdot 10^{-13}$	$4.0 \cdot 10^{-10}$
10^{-8}	0.050	$6.6 \cdot 10^{-14}$	$1.3 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	$8.6 \cdot 10^{-13}$	$4.0 \cdot 10^{-10}$
	0.075	$9.7 \cdot 10^{-14}$	$1.3 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	$1.3 \cdot 10^{-12}$	$4.1 \cdot 10^{-10}$
	0.100	$1.3 \cdot 10^{-13}$	$1.2 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	$1.7 \cdot 10^{-12}$	$4.0 \cdot 10^{-10}$
	0	0.0	$1.3 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	0.0	0.0
	0.025	$3.3 \cdot 10^{-14}$	$1.3 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	$4.3 \cdot 10^{-13}$	$4.0 \cdot 10^{-10}$
10^{-10}	0.050	$6.6 \cdot 10^{-14}$	$1.3 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	$8.6 \cdot 10^{-13}$	$4.0 \cdot 10^{-10}$
	0.075	$9.7 \cdot 10^{-14}$	$1.3 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	$1.3 \cdot 10^{-12}$	$4.1 \cdot 10^{-10}$
	0.100	$1.3 \cdot 10^{-13}$	$1.2 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	$1.7 \cdot 10^{-12}$	$4.0 \cdot 10^{-10}$
	0	0.0	$1.3 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	0.0	0.0
	0.025	$3.3 \cdot 10^{-14}$	$1.3 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	$4.3 \cdot 10^{-13}$	$4.0 \cdot 10^{-10}$
10^{-12}	0.050	$6.6 \cdot 10^{-14}$	$1.3 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	$8.6 \cdot 10^{-13}$	$4.0 \cdot 10^{-10}$
	0.075	$9.7 \cdot 10^{-14}$	$1.3 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	$1.3 \cdot 10^{-12}$	$4.1 \cdot 10^{-10}$
	0.100	$1.3 \cdot 10^{-13}$	$1.2 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	$1.7 \cdot 10^{-12}$	$4.0 \cdot 10^{-10}$
			T=			
	0	0.0	$1.3 \cdot 10^{-14}$	$6.6 \cdot 10^{-14}$	0.0	0.0
0	0.25	$1.9 \cdot 10^{-15}$	$1.4 \cdot 10^{-14}$	$6.8 \cdot 10^{-14}$	$1.7 \cdot 10^{-14}$	$9.0 \cdot 10^{-14}$
10^{-8}	0.5	$4.5 \cdot 10^{-15}$	$6.2 \cdot 10^{-13}$	$4.4 \cdot 10^{-13}$	$3.0 \cdot 10^{-14}$	$1.9 \cdot 10^{-12}$
	0.75	$3.1 \cdot 10^{-13}$	$1.2 \cdot 10^{-12}$	$7.7 \cdot 10^{-13}$	$5.2 \cdot 10^{-13}$	$3.7 \cdot 10^{-12}$
	1	$8.6 \cdot 10^{-13}$	$1.5 \cdot 10^{-12}$	$9.5 \cdot 10^{-13}$	$1.4 \cdot 10^{-12}$	$5.5 \cdot 10^{-12}$
	0	0.0	$1.3 \cdot 10^{-14}$	$6.6 \cdot 10^{-14}$	0.0	0.0
10	0.25	$1.9 \cdot 10^{-15}$	$1.4 \cdot 10^{-14}$	$6.8 \cdot 10^{-14}$	$1.7 \cdot 10^{-14}$	$9.0 \cdot 10^{-14}$
10^{-10}	0.5	$4.5 \cdot 10^{-15}$	$6.2 \cdot 10^{-13}$	$4.4 \cdot 10^{-13}$	$3.0 \cdot 10^{-14}$	$1.9 \cdot 10^{-12}$
	0.75	$2.8 \cdot 10^{-13}$	$1.1 \cdot 10^{-12}$	$7.1 \cdot 10^{-13}$	$4.8 \cdot 10^{-13}$	$3.4 \cdot 10^{-12}$
	1	$5.3 \cdot 10^{-13}$	$9.0 \cdot 10^{-13}$	$6.1 \cdot 10^{-13}$	$9.0 \cdot 10^{-13}$	$3.4 \cdot 10^{-12}$
	0	0.0	$1.3 \cdot 10^{-14}$	$6.6 \cdot 10^{-14}$	0.0	0.0
10-19	0.25	$2.5 \cdot 10^{-15}$	$1.2 \cdot 10^{-14}$	$6.6 \cdot 10^{-14}$	$1.9 \cdot 10^{-14}$	$8.4 \cdot 10^{-14}$
10^{-12}	0.5	$4.7 \cdot 10^{-15}$	$7.1 \cdot 10^{-15}$	$6.6 \cdot 10^{-14}$	$3.7 \cdot 10^{-14}$	$8.9 \cdot 10^{-14}$
	0.75	$5.4 \cdot 10^{-15}$	$3.1 \cdot 10^{-15}$	$6.6 \cdot 10^{-14}$	$5.4 \cdot 10^{-14}$	$9.2 \cdot 10^{-14}$
	1	$3.3 \cdot 10^{-15}$	$1.7 \cdot 10^{-14}$	$6.5 \cdot 10^{-14}$	$6.9 \cdot 10^{-14}$	$9.7 \cdot 10^{-14}$
	0	0.0	T=		0.0	0.0
	0	0.0	$2.5 \cdot 10^{-14} \\ 1.9 \cdot 10^{-12}$	$9.7 \cdot 10^{-15} \\ 1.2 \cdot 10^{-12}$	0.0	0.0
10^{-8}	0.5	$3.7 \cdot 10^{-14} \\ 9.7 \cdot 10^{-11}$	$\frac{1.9 \cdot 10^{-12}}{2.4 \cdot 10^{-10}}$	$1.2 \cdot 10^{-12}$ $1.5 \cdot 10^{-10}$	$6.1 \cdot 10^{-14}$ $1.6 \cdot 10^{-10}$	$2.7 \cdot 10^{-12} \\ 3.5 \cdot 10^{-10}$
10 -	1	$9.7 \cdot 10^{-10}$ $1.9 \cdot 10^{-10}$	$\frac{2.4 \cdot 10^{-10}}{1.2 \cdot 10^{-10}}$	$7.1 \cdot 10^{-11}$	$3.0 \cdot 10^{-10}$	$3.5 \cdot 10^{-10}$ $3.5 \cdot 10^{-10}$
	$\frac{1.5}{2}$	$3.7 \cdot 10^{-10}$	$8.7 \cdot 10^{-11}$	$5.7 \cdot 10^{-11}$	$6.0 \cdot 10^{-10}$	$6.3 \cdot 10^{-10}$
		9.1 . 10 -0	0.1 · 10	0.7 · 10 -1	0.0 - 10 -	0.9 · 10

Продолжение на следующей странице

$\Delta_{ exttt{JIOK}}$	t	$\Delta x(t)$	$\Delta y(t)$	$\Delta p_x(t)$	$\Delta p_y(t)$	H(t) - H(0)
—лок	0	0.0	$\frac{-g(c)}{2.5 \cdot 10^{-14}}$	$9.7 \cdot 10^{-15}$	$\frac{-pg(t)}{0.0}$	0.0
	0.5	$1.7 \cdot 10^{-14}$	$7.1 \cdot 10^{-13}$	$4.5 \cdot 10^{-13}$	$2.6 \cdot 10^{-14}$	$1.0 \cdot 10^{-12}$
10^{-10}	1	$6.3 \cdot 10^{-13}$	$1.1 \cdot 10^{-12}$	$7.0 \cdot 10^{-13}$	$1.0 \cdot 10^{-12}$	$2.0 \cdot 10^{-12}$
	1.5	$1.5 \cdot 10^{-12}$	$6.2 \cdot 10^{-13}$	$3.8 \cdot 10^{-13}$	$2.4 \cdot 10^{-12}$	$3.0 \cdot 10^{-12}$
	2	$2.1 \cdot 10^{-12}$	$9.0 \cdot 10^{-13}$	$5.7 \cdot 10^{-13}$	$3.4 \cdot 10^{-12}$	$4.2 \cdot 10^{-12}$
	0	0.0	$2.5 \cdot 10^{-14}$	$9.7 \cdot 10^{-15}$	0.0	0.0
	0.5	$1.2 \cdot 10^{-14}$	$1.3 \cdot 10^{-14}$	$1.8 \cdot 10^{-15}$	$1.7 \cdot 10^{-14}$	$3.0 \cdot 10^{-14}$
10^{-12}	1	$1.3 \cdot 10^{-14}$	$2.5 \cdot 10^{-15}$	$8.9 \cdot 10^{-15}$	$1.5 \cdot 10^{-14}$	$2.1 \cdot 10^{-14}$
	1.5	$7.8 \cdot 10^{-15}$	$9.3 \cdot 10^{-15}$	$1.6 \cdot 10^{-14}$	$1.8 \cdot 10^{-15}$	$1.6 \cdot 10^{-14}$
	2	$1.0 \cdot 10^{-15}$	$5.2 \cdot 10^{-15}$	$1.8 \cdot 10^{-14}$	$1.8 \cdot 10^{-14}$	$7.4 \cdot 10^{-15}$
			T=	-		
	0	0.0	$2.5 \cdot 10^{-13}$	$1.1 \cdot 10^{-13}$	0.0	0.0
	0.75	$5.1 \cdot 10^{-11}$	$3.2 \cdot 10^{-10}$	$2.0 \cdot 10^{-10}$	$8.4 \cdot 10^{-11}$	$1.4 \cdot 10^{-9}$
10^{-8}	1.5	$7.0 \cdot 10^{-10}$	$4.1 \cdot 10^{-10}$	$2.6 \cdot 10^{-10}$	$1.1 \cdot 10^{-9}$	$4.1 \cdot 10^{-9}$
	2.25	$1.1 \cdot 10^{-9}$	$7.9 \cdot 10^{-10}$	$4.8 \cdot 10^{-10}$	$1.8 \cdot 10^{-9}$	$6.6 \cdot 10^{-9}$
	3	$1.6 \cdot 10^{-10}$	$2.1 \cdot 10^{-9}$	$1.3 \cdot 10^{-9}$	$2.7 \cdot 10^{-10}$	$8.7 \cdot 10^{-9}$
	0	0.0	$2.5 \cdot 10^{-13}$	$1.1 \cdot 10^{-13}$	0.0	0.0
. 10	0.75	$1.7 \cdot 10^{-12}$	$7.4 \cdot 10^{-12}$	$4.6 \cdot 10^{-12}$	$2.8 \cdot 10^{-12}$	$3.5 \cdot 10^{-11}$
10^{-10}	1.5	$8.2 \cdot 10^{-12}$	$3.5 \cdot 10^{-12}$	$2.3 \cdot 10^{-12}$	$1.3 \cdot 10^{-11}$	$5.0 \cdot 10^{-11}$
	2.25	$1.0 \cdot 10^{-11}$	$9.7 \cdot 10^{-12}$	$5.8 \cdot 10^{-12}$	$1.7 \cdot 10^{-11}$	$7.4 \cdot 10^{-11}$
	3	$5.1 \cdot 10^{-13}$	$2.0 \cdot 10^{-11}$	$1.2 \cdot 10^{-11}$	$3.5 \cdot 10^{-13}$	$8.9 \cdot 10^{-11}$
	0	0.0	$2.5 \cdot 10^{-13}$	$1.1 \cdot 10^{-13}$	0.0	0.0
10^{-12}	0.75	$1.6 \cdot 10^{-13}$	$1.2 \cdot 10^{-13}$	$2.8 \cdot 10^{-14}$	$2.2 \cdot 10^{-13}$	$1.2 \cdot 10^{-12}$
	1.5	$1.6 \cdot 10^{-13}$	$6.7 \cdot 10^{-14}$	$1.1 \cdot 10^{-13}$	$1.9 \cdot 10^{-13}$	$1.1 \cdot 10^{-12}$
	2.25	$5.5 \cdot 10^{-14} \\ 2.7 \cdot 10^{-15}$	$1.2 \cdot 10^{-13}$ $3.7 \cdot 10^{-14}$	$1.9 \cdot 10^{-13}$ $1.9 \cdot 10^{-13}$	$5.6 \cdot 10^{-14}$ $2.6 \cdot 10^{-13}$	$9.3 \cdot 10^{-13} \\ 8.0 \cdot 10^{-13}$
	3	2.7 · 10	T=		2.0 · 10	8.0 · 10
	0	0.0	$2.3 \cdot 10^{-13}$	$\frac{3.3}{1.1 \cdot 10^{-13}}$	0.0	0.0
	0.875	$1.9 \cdot 10^{-10}$	$6.9 \cdot 10^{-10}$	$4.3 \cdot 10^{-10}$	$3.1 \cdot 10^{-10}$	$3.4 \cdot 10^{-9}$
10^{-8}	1.75	$8.0 \cdot 10^{-10}$	$1.1 \cdot 10^{-10}$		$1.3 \cdot 10^{-9}$	$4.8 \cdot 10^{-9}$
10	2.625	$8.1 \cdot 10^{-10}$				$8.9 \cdot 10^{-9}$
	3.5	$1.0 \cdot 10^{-9}$	$2.1 \cdot 10^{-9}$	$1.3 \cdot 10^{-9}$	$1.6 \cdot 10^{-9}$	$1.2 \cdot 10^{-8}$
	0	0.0	$2.3 \cdot 10^{-13}$	$1.1 \cdot 10^{-13}$	0.0	0.0
	0.875	$2.4 \cdot 10^{-12}$	$6.3 \cdot 10^{-12}$	$3.9 \cdot 10^{-12}$	$3.9 \cdot 10^{-12}$	$3.6 \cdot 10^{-11}$
10^{-10}	1.75	$8.8 \cdot 10^{-12}$	$3.3 \cdot 10^{-14}$	$8.2 \cdot 10^{-14}$	$1.4 \cdot 10^{-11}$	$5.8 \cdot 10^{-11}$
	2.625	$6.1 \cdot 10^{-12}$	$1.6 \cdot 10^{-11}$	$9.8 \cdot 10^{-12}$	$1.0 \cdot 10^{-11}$	$9.3 \cdot 10^{-11}$
	3.5	$1.1 \cdot 10^{-11}$	$1.8 \cdot 10^{-11}$	$1.0 \cdot 10^{-11}$	$1.7 \cdot 10^{-11}$	$1.1 \cdot 10^{-10}$
	0	0.0	$2.3 \cdot 10^{-13}$	$1.1 \cdot 10^{-13}$	0.0	0.0
	0.875	$1.5 \cdot 10^{-13}$	$7.4 \cdot 10^{-14}$	$7.2 \cdot 10^{-15}$	$2.2 \cdot 10^{-13}$	$1.2 \cdot 10^{-12}$
10^{-12}	1.75	$1.1 \cdot 10^{-13}$	$1.1 \cdot 10^{-13}$	$1.3 \cdot 10^{-13}$	$9.8 \cdot 10^{-14}$	$1.0 \cdot 10^{-12}$
	2.625	$9.1 \cdot 10^{-15}$	$5.5 \cdot 10^{-14}$	$1.6 \cdot 10^{-13}$	$1.7 \cdot 10^{-13}$	$8.3 \cdot 10^{-13}$
	3.5	$3.7 \cdot 10^{-14}$	$1.7 \cdot 10^{-13}$	$1.4 \cdot 10^{-13}$	$2.5 \cdot 10^{-13}$	$7.2 \cdot 10^{-13}$
			T=			
	0	0.0	$2.4 \cdot 10^{-13}$	$1.5 \cdot 10^{-13}$	0.0	0.0
100	2.5	$7.2 \cdot 10^{-10}$	$10.0 \cdot 10^{-10}$	$6.2 \cdot 10^{-10}$	$1.2 \cdot 10^{-9}$	$2.4 \cdot 10^{-9}$
10^{-8}	5	$1.3 \cdot 10^{-9}$	$1.9 \cdot 10^{-9}$	$1.2 \cdot 10^{-9}$	$2.1 \cdot 10^{-9}$	$4.5 \cdot 10^{-9}$
	7.5	$1.8 \cdot 10^{-9}$	$2.9 \cdot 10^{-9}$	$1.8 \cdot 10^{-9}$	$2.9 \cdot 10^{-9}$	$6.6 \cdot 10^{-9}$
	10	$2.3 \cdot 10^{-9}$	$4.0 \cdot 10^{-9}$	$2.5 \cdot 10^{-9}$	$3.7 \cdot 10^{-9}$	$8.8 \cdot 10^{-9}$

Продолжение на следующей странице

$\Delta_{ ext{jok}}$	t	$\Delta x(t)$	$\Delta y(t)$	$\Delta p_x(t)$	$\Delta p_y(t)$	H(t) - H(0)
	0	0.0	$2.4 \cdot 10^{-13}$	$1.5 \cdot 10^{-13}$	0.0	0.0
	2.5	$3.6 \cdot 10^{-12}$	$6.4 \cdot 10^{-12}$	$3.9 \cdot 10^{-12}$	$5.8 \cdot 10^{-12}$	$1.5 \cdot 10^{-11}$
10^{-10}	5	$6.6 \cdot 10^{-12}$	$1.3 \cdot 10^{-11}$	$7.9 \cdot 10^{-12}$	$1.1 \cdot 10^{-11}$	$3.0 \cdot 10^{-11}$
	7.5	$9.5 \cdot 10^{-12}$	$2.0 \cdot 10^{-11}$	$1.3 \cdot 10^{-11}$	$1.5 \cdot 10^{-11}$	$4.6 \cdot 10^{-11}$
	10	$1.0 \cdot 10^{-11}$	$2.9 \cdot 10^{-11}$	$1.5 \cdot 10^{-11}$	$2.0 \cdot 10^{-11}$	$6.2 \cdot 10^{-11}$
	0	0.0	$2.4 \cdot 10^{-13}$	$1.5 \cdot 10^{-13}$	0.0	0.0
	2.5	$3.7 \cdot 10^{-14}$	$2.0 \cdot 10^{-13}$	$1.2 \cdot 10^{-13}$	$4.9 \cdot 10^{-14}$	$5.0 \cdot 10^{-13}$
10^{-12}	5	$2.8 \cdot 10^{-14}$	$1.3 \cdot 10^{-13}$	$1.4 \cdot 10^{-13}$	$1.2 \cdot 10^{-13}$	$4.1 \cdot 10^{-13}$
	7.5	$3.2 \cdot 10^{-13}$	$3.0 \cdot 10^{-13}$	$2.3 \cdot 10^{-13}$	$5.0 \cdot 10^{-15}$	$3.2 \cdot 10^{-13}$
	10	$1.6 \cdot 10^{-12}$	$1.3 \cdot 10^{-12}$	$2.2 \cdot 10^{-12}$	$1.2 \cdot 10^{-12}$	$2.2 \cdot 10^{-13}$
			T=			
	0	0.0	$7.0 \cdot 10^{-13}$	$4.3 \cdot 10^{-13}$	0.0	0.0
	5	$1.5 \cdot 10^{-9}$	$2.3 \cdot 10^{-9}$	$1.4 \cdot 10^{-9}$	$2.5 \cdot 10^{-9}$	$6.3 \cdot 10^{-9}$
10^{-8}	10	$2.7 \cdot 10^{-9}$	$4.8 \cdot 10^{-9}$	$3.0 \cdot 10^{-9}$	$4.4 \cdot 10^{-9}$	$1.2 \cdot 10^{-8}$
	15	$3.5 \cdot 10^{-9}$	$7.5 \cdot 10^{-9}$	$4.5 \cdot 10^{-9}$	$5.9 \cdot 10^{-9}$	$1.8 \cdot 10^{-8}$
	20	$2.2 \cdot 10^{-10}$	$1.4 \cdot 10^{-8}$	$1.4 \cdot 10^{-9}$	$9.2 \cdot 10^{-9}$	$2.4 \cdot 10^{-8}$
	0	0.0	$7.0 \cdot 10^{-13}$	$4.3 \cdot 10^{-13}$	0.0	0.0
	5	$7.8 \cdot 10^{-12}$	$1.5 \cdot 10^{-11}$	$9.1 \cdot 10^{-12}$	$1.3 \cdot 10^{-11}$	$4.1 \cdot 10^{-11}$
10^{-10}	10	$1.2 \cdot 10^{-11}$	$3.2 \cdot 10^{-11}$	$1.7 \cdot 10^{-11}$	$2.3 \cdot 10^{-11}$	$8.3 \cdot 10^{-11}$
	15	$5.9 \cdot 10^{-11}$	$1.1 \cdot 10^{-10}$	$6.7 \cdot 10^{-11}$	$7.5 \cdot 10^{-11}$	$1.2 \cdot 10^{-10}$
	20	$3.9 \cdot 10^{-9}$	$3.1 \cdot 10^{-9}$	$4.9 \cdot 10^{-9}$	$2.4 \cdot 10^{-9}$	$1.7 \cdot 10^{-10}$
	0	0.0	$7.0 \cdot 10^{-13}$	$4.3 \cdot 10^{-13}$	0.0	0.0
	5	$6.5 \cdot 10^{-14}$	$5.8 \cdot 10^{-13}$	$4.1 \cdot 10^{-13}$	$1.7 \cdot 10^{-13}$	$1.8 \cdot 10^{-12}$
10^{-12}	10	$1.3 \cdot 10^{-12}$	$6.9 \cdot 10^{-13}$	$2.2 \cdot 10^{-12}$	$1.2 \cdot 10^{-12}$	$1.5 \cdot 10^{-12}$
	15	$7.7 \cdot 10^{-11}$	$6.0 \cdot 10^{-11}$	$9.8 \cdot 10^{-11}$	$4.8 \cdot 10^{-11}$	$1.3 \cdot 10^{-12}$
	20	$3.9 \cdot 10^{-9}$	$3.1 \cdot 10^{-9}$	$5.0 \cdot 10^{-9}$	$2.4 \cdot 10^{-9}$	$1.0 \cdot 10^{-12}$

При анализе данных из таблицы видно, что при увеличении точности на шаге уточняются значения фазовых и сопряжённых переменных. Причём в среднем $\frac{y_t^{-8}-y_t^{-10}}{y_t^{-10}-y_t^{-12}} \approx (100)^{\frac{7}{8}}$, где y соответствует фазовым переменным $x,\,y,\,p_x,\,p_y;\,t$ соответствует временам $T/4,\,T/2,\,3T/4,\,T;$ а верхние индексы — точностям на шаге. Отсутствие уточнения при T=20 соответствует плохой сходимости, так как T сильно "далеко" за сопряжённой точкой и накоплением большой ошибки в результате решения задачи Коши. Отсутствие улучшения знаков при T=0.1 соответствует тому, что во все приведённые в таблице точки мы попадаем за один шаг, и данная оценка неприменима.

13. Просчёт назад

В таблице 4 приведены результаты "просчёта назад". Для каждого из заданных в условии значений параметра T были выбраны численно полученные в п. 11. при $\Delta_{\text{лок}}=10^{-12}$ начальные значения параметров пристрелки. После этого с разной относительной точностью на шаге для каждого T была решена задача Коши от 0 до T. В результате этого были получены значения фазовых и сопряжённых переменных в момент времени T. После этого задача Коши решалась назад от времени T до 0 и были вычислены разности исходных значений x, y, p_x, p_y в 0 момент времени и новых значений в 0, полученных в результате просчёта задачи Коши вперёд-назад. При решении задачи могут быть допущены случайные ошибки и систематические ошибки (например, неправильно заданные правые части). Просчёт назад помогает отслеживать белый шум, то есть случайные ошибки.

T	$\Delta_{ ext{nok}}$	$\Delta x(0)$	$\Delta y(0)$	$\Delta p_x(0)$	$\Delta p_y(0)$
	10^{-8}	$1.87 \cdot 10^{-17}$	$3.33 \cdot 10^{-16}$	0.0	$5.97 \cdot 10^{-15}$
0.1	10^{-10}	$1.41 \cdot 10^{-18}$	$1.11 \cdot 10^{-16}$	$5.68 \cdot 10^{-14}$	$6.51 \cdot 10^{-16}$
	10^{-12}	$6.95 \cdot 10^{-18}$	$1.11 \cdot 10^{-16}$	0.0	$5.97 \cdot 10^{-15}$
	10^{-8}	$1.17 \cdot 10^{-10}$	$3.27 \cdot 10^{-10}$	$1.97 \cdot 10^{-10}$	$1.89 \cdot 10^{-10}$
1	10^{-10}	$2.87 \cdot 10^{-13}$	$1.98 \cdot 10^{-12}$	$1.20 \cdot 10^{-12}$	$4.68 \cdot 10^{-13}$
	10^{-12}	$1.19 \cdot 10^{-15}$	$1.14 \cdot 10^{-14}$	$7.55 \cdot 10^{-15}$	$1.53 \cdot 10^{-15}$
	10^{-8}	$1.00 \cdot 10^{-10}$	$7.75 \cdot 10^{-10}$	$4.76 \cdot 10^{-10}$	$1.62 \cdot 10^{-10}$
2	10^{-10}	$3.25 \cdot 10^{-13}$	$5.89 \cdot 10^{-12}$	$3.62 \cdot 10^{-12}$	$5.26 \cdot 10^{-13}$
	10^{-12}	$2.71 \cdot 10^{-15}$	$3.92 \cdot 10^{-14}$	$2.39 \cdot 10^{-14}$	$3.85 \cdot 10^{-15}$
	10^{-8}	$2.30 \cdot 10^{-10}$	$3.98 \cdot 10^{-9}$	$2.47 \cdot 10^{-9}$	$3.72 \cdot 10^{-10}$
3	10^{-10}	$2.88 \cdot 10^{-12}$	$3.52 \cdot 10^{-11}$	$2.18 \cdot 10^{-11}$	$4.66 \cdot 10^{-12}$
	10^{-12}	$5.13 \cdot 10^{-15}$	$1.95 \cdot 10^{-13}$	$1.18 \cdot 10^{-13}$	$3.62 \cdot 10^{-15}$
	10^{-8}	$2.39 \cdot 10^{-10}$	$5.49 \cdot 10^{-9}$	$3.40 \cdot 10^{-9}$	$3.87 \cdot 10^{-10}$
3.5	10^{-10}	$1.45 \cdot 10^{-12}$	$3.75 \cdot 10^{-11}$	$2.33 \cdot 10^{-11}$	$2.35 \cdot 10^{-12}$
	10^{-12}	$3.89 \cdot 10^{-15}$	$2.21 \cdot 10^{-13}$	$1.40 \cdot 10^{-13}$	$1.08 \cdot 10^{-14}$
	10^{-8}	$9.18 \cdot 10^{-12}$	$7.55 \cdot 10^{-9}$	$4.67 \cdot 10^{-9}$	$1.46 \cdot 10^{-11}$
10	10^{-10}	$1.79 \cdot 10^{-13}$	$5.05 \cdot 10^{-11}$	$3.11 \cdot 10^{-11}$	$1.83 \cdot 10^{-13}$
	10^{-12}	$3.60 \cdot 10^{-14}$	$2.70 \cdot 10^{-13}$	$2.33 \cdot 10^{-13}$	$2.49 \cdot 10^{-14}$
	10^{-8}	$8.34 \cdot 10^{-11}$	$1.75 \cdot 10^{-8}$	$1.08 \cdot 10^{-8}$	$1.45 \cdot 10^{-10}$
20	10^{-10}	$2.13 \cdot 10^{-10}$	$2.85 \cdot 10^{-10}$	$1.99 \cdot 10^{-10}$	$1.32 \cdot 10^{-10}$
	10^{-12}	$2.92 \cdot 10^{-10}$	$2.30 \cdot 10^{-10}$	$3.71 \cdot 10^{-10}$	$1.80 \cdot 10^{-10}$

При $T \in \{1, 2, 3, 3.5, 10\}$ из таблицы видно, что увеличение относительной локальной погрешности на 2 порядка на 2 порядка уточняет решение задачи Коши, что свидетельствует о работе правила Рунге. При T=0.1, при увеличении точности на шаге, уточнение решения задачи не происходит засчёт малого числа шагов и полученной уже при ошибке на шаге 10^{-8} точности близкой к машинной. Ухудшение результатов при T=20 соответствует тому, что это значение T находится "далеко" за сопряжённой точкой, метод сходится плохо, что так же обусловлено большой накапливаемой погрешностью (см. оценки δ_K из табл. 2).

14. Полученные фазовые переменные и значения функционала.

Решением (ответом) в исходной задаче оптимального управления (2) являются фазовые переменные $x(\cdot)$, $y(\cdot)$, управление $u(\cdot)$, которое совпадает с сопряжённой переменной $p_y(\cdot)$, см. (8) и значение исходного функционала B_0 для всех значений $T \in \{0.1, 1, 2, 3, 3.5, 10, 20\}$. Так как в п. 10. было получено аналитическое решение (21),(22),(24), и в таблице 2 приведено отличие решения, полученного численно методом стрельбы, от аналитического, то далее, вместо таблиц со значениями фазовых переменных и управления в различных точках, приводятся их графики.

Приведённые ниже графики отображают значения фазовых переменных и управления, полученные численным интегрированием с максильно допустимой относительной локальной погрешностью на шаге $\Delta_{\text{лок}}=10^{-12},$ при этом ставилось ограничение на максимальный шаг T/100, чтобы получить покрайней мере 100 точек. Далее будем считать функционал $B_0=\int\limits_0^T \left(u^2-y^2-x^2\right)dt$ функцией от t, $B_0(t)=\int\limits_0^t \left(u^2(\zeta)-y^2(\zeta)-x^2(\zeta)\right)d\zeta.$ Пусть также $f(t)=u^2(t)-y^2(t)-x^2(t).$

Вычисление значения функционала $B_0(T)$ "стандартным" способом, то есть вычисление интеграла на отрезке [0, T] по полученным численным интегрированием точкам суммированием методом прямоугольников, трапеций или каким-либо схожим образом даст сильно неточный результат из-за того что T "достаточно большое", $T \geqslant 0.1$, а число полученных интегрериванием с выбором оптимального шага точек "слишком маленькое" – при увеличении T от 0.1 до 20 это число меняется от 3 до 133. Если же "заставить" метод Рунге сделать больше шагов интегрирования, установив максимально допустимый шаг маленьким, так чтобы диаметр разбиения при подсчёте интеграла был меньше 10^{-6} , то за такое большое число шагов интегрирования накопится огромная вычислительная ошибка, и значение интеграла опять будет неверным. Тем не менее есть несколько способов достаточно точного вычисления интеграла $B_0(T)$, результаты вычислений по которым приведены в табл. 5 ниже:

- 1. Так как функции x(t), y(t), u(t) известны, то упомянутый выше метод прямоугольников или трапеций может быть применён для получения площади под графиком функции $f(t) = u^2(t) y^2(t) x^2(t)$;
- 2. Являющиеся комбинацией тригонометрических и гиперболических функций, функции x(t), y(t), u(t) таковы, что интеграл от $u^2(t) y^2(t) x^2(t)$ может быть вычислен аналитически;
- 3. Наконец, исходя из формулы дифференцирования $\left(\int\limits_0^t f(\zeta)d\zeta\right)_t'=f(t)$ в методе численного интегрирования задачи Коши в систему дифференциальных уравнений можно добавить формальное соотношение $\dot{B}_0=u^2-y^2-x^2$.

Остановимся подробнее на аналитическом вычислении $\int\limits_0^T \left(u^2-y^2-x^2\right) dt$. В п. 10. было получено:

$$u = p_y = -b\frac{\sqrt{5}+1}{2}\sin\left(\sqrt{\frac{\sqrt{5}+1}{2}}t\right) + d\frac{\sqrt{5}-1}{2}\sin\left(\sqrt{\frac{\sqrt{5}-1}{2}}t\right),$$

$$y = b\sqrt{\frac{\sqrt{5}+1}{2}}\cos\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\mathbf{t}\right) + d\sqrt{\frac{\sqrt{5}-1}{2}}\cosh\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\mathbf{t}\right),$$

$$x = b\sin\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\mathbf{t}\right) + d\sinh\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\mathbf{t}\right),$$

$$\text{где} \quad b = \frac{1}{\sqrt{\frac{\sqrt{5}+1}{2}}\cos\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\mathbf{T}\right) - \sqrt{\frac{\sqrt{5}-1}{2}}\sin\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\mathbf{T}\right)\coth\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\mathbf{T}\right)},$$

$$d = \frac{1}{\sqrt{\frac{\sqrt{5}-1}{2}}\cosh\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\mathbf{T}\right) - \sqrt{\frac{\sqrt{5}+1}{2}}\sinh\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\mathbf{T}\right)\cot\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\mathbf{T}\right)}.$$
 Обозначив $\nu = \sqrt{\frac{\sqrt{5}+1}{2}}, \ \eta = \sqrt{\frac{\sqrt{5}-1}{2}}; \ \nu^2 + \eta^2 = \sqrt{5}, \ \nu\eta = 1, \text{ отсюда получаем:}$
$$u^2 - y^2 - x^2 = b^2\left(\frac{3+\sqrt{5}}{2}\right)\sin^2\nu t + d^2\left(\frac{3-\sqrt{5}}{2}\right)\sinh^2\eta t - 2bd\sin\nu t \sinh\eta t - b^2\left(\frac{\sqrt{5}+1}{2}\right)\cos^2\nu t - d^2\left(\frac{\sqrt{5}-1}{2}\right)\cosh^2\eta t - 2bd\cos\nu t \cosh\eta t - b^2\sin^2\nu t - d^2\sinh\nu t \sinh\eta t =$$

$$= b^2(1+\sqrt{5})\sin^2\nu t + d^2(1-\sqrt{5})\sinh^2\eta t - 4bd\sin\nu t \sinh\eta t - 2bd\cos\nu t \cosh\eta t - \frac{\sqrt{5}+1}{2}b^2 - \frac{\sqrt{5}-1}{2}d^2.$$

Используя следующие тождества,

$$\int_{0}^{T} \sin^{2}\nu t dt = \left(\frac{t}{2} - \frac{\sin 2\nu t}{4\nu}\right)\Big|_{0}^{T} = \frac{T}{2} - \frac{\sin 2\nu T}{4\nu},$$

$$\int_{0}^{T} \sinh^{2}\eta t dt = \left(\frac{\sinh 2\eta t}{4\eta} - \frac{t}{2}\right)\Big|_{0}^{T} = \frac{\sinh 2\eta T}{4\eta} - \frac{T}{2},$$

$$\int_{0}^{T} \cos\nu t \cosh\eta t dt = \left(\frac{\nu \sin\nu t \cot\eta t + \eta \cos\nu t \sinh\eta t}{\nu^{2} + \eta^{2}}\right)\Big|_{0}^{T} = \frac{\nu \sin\nu T \cot\eta T + \eta \cos\nu T \sinh\eta T}{\nu^{2} + \eta^{2}}$$

$$\int_{0}^{T} \sin\nu t \sinh\eta t dt = \left(\frac{\eta \sin\nu t \cot\eta t - \nu \cos\nu t \sinh\eta t}{\nu^{2} + \eta^{2}}\right)\Big|_{0}^{T} = \frac{\eta \sin\nu T \cot\eta T - \nu \cos\nu T \sinh\eta T}{\nu^{2} + \eta^{2}},$$

$$\text{получим:} \int_{0}^{T} \left(u^{2} - y^{2} - x^{2}\right) dt = b^{2}(1 + \sqrt{5})\left(\frac{T}{2} - \frac{\sin 2\nu T}{4\nu}\right) + d^{2}(1 - \sqrt{5})\left(\frac{\sinh 2\eta T}{4\eta} - \frac{T}{2}\right) - \frac{4}{\sqrt{5}}bd(\eta \sin\nu T \cot\eta T - \nu \cos\nu T \sinh\eta T) - \frac{2}{\sqrt{5}}bd(\nu \sin\nu T \cot\eta T + \eta \cos\nu T \sinh\eta T) - \left(\frac{\sqrt{5} + 1}{2}b^{2} + \frac{\sqrt{5} - 1}{2}d^{2}\right)T = -b^{2}(\sqrt{5} + 1)\frac{\sin 2\nu T}{4\nu} - d^{2}(\sqrt{5} - 1)\frac{\sinh 2\eta T}{4\eta} - \frac{4}{\sqrt{5}}bd(\eta \sin\nu T \cot\eta T - \nu \cos\nu T \sinh\eta T) - \frac{2}{\sqrt{5}}bd(\nu \sin\nu T \cot\eta T + \eta \cos\nu T \sin\eta T).$$

В таблице 5 приведены результаты вычисления функционала B_0 3 способами, указанными выше. При этом величина $\Delta_{\text{лок}}$ бралась равной 10^{-12} , в методе трапеций длина отрезков разбиения бралась равной 10^{-8} . В колонке ΔB_0 приведено отличие численно посчитанного значения функционала B_0 от полученного аналитически.

T	u(T)	B_0 , метод трапеций	B_0 , аналитически	B_0 , численно	ΔB_0
0.1	29.97997522283958	29.97997522284124	29.97997522284028	29.97997522283852	$1.8 \cdot 10^{-12}$
1	2.77353355446152	2.77353355446218	2.77353355446153	2.77353355446152	$1.2 \cdot 10^{-14}$
2	0.82026089496566	0.82026089496562	0.82026089496565	0.82026089496568	$3.1 \cdot 10^{-14}$
3	-2.82838540446885	-2.82838540446891	-2.82838540446899	-2.82838540446897	$1.9 \cdot 10^{-14}$
3.5	4.92783452668161	4.92783452667936	4.92783452668001	4.92783452668291	$2.9 \cdot 10^{-12}$
10	-0.30144870717617	-0.30144870717648	-0.30144870717615	-0.30144870717626	$1.1 \cdot 10^{-13}$
20	-0.69503967158763	-0.69503967159371	-0.69503967159332	-0.69503967158224	$1.1 \cdot 10^{-11}$

Таблица 5: Значения минимизируемого функционала B_0 .

Столь странный результат, который можно видеть на графиках приведённых выше и в табл. 5, — достаточно точное совпадение $\int\limits_0^T \left(u^2-y^2-x^2\right)dt$ и u(T), что сразу на первый взгляд ниоткуда не следует, может быть обоснован аналитически. А именно, подставим b и d со стр. 22 в выражения для $\int\limits_0^T \left(u^2-y^2-x^2\right)dt,\ u(T)$ и упростим их.

$$\begin{split} u(T) &= -b\frac{\sqrt{5}+1}{2}\sin\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\mathbf{t}\right) + d\frac{\sqrt{5}-1}{2}\operatorname{sh}\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\mathbf{t}\right) = \\ &= -\frac{\sqrt{5}+1}{2}\frac{1}{\sin\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\mathbf{T}\right)}\frac{1}{\sqrt{\frac{\sqrt{5}+1}{2}}\operatorname{ctg}\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\mathbf{T}\right) - \sqrt{\frac{\sqrt{5}-1}{2}}\operatorname{cth}\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\mathbf{T}\right)}\operatorname{sin}\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\mathbf{T}\right) + \\ &+ \frac{\sqrt{5}-1}{2}\frac{1}{\operatorname{sh}\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\mathbf{T}\right)}\frac{1}{\sqrt{\frac{\sqrt{5}-1}{2}}\operatorname{cth}\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\mathbf{T}\right) - \sqrt{\frac{\sqrt{5}+1}{2}}\operatorname{ctg}\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\mathbf{T}\right)}\operatorname{sh}\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\mathbf{T}\right) = \\ &= \frac{\sqrt{5}}{\sqrt{\frac{\sqrt{5}-1}{2}}\operatorname{cth}\left(\sqrt{\frac{\sqrt{5}-1}{2}}\,\mathbf{T}\right) - \sqrt{\frac{\sqrt{5}+1}{2}}\operatorname{ctg}\left(\sqrt{\frac{\sqrt{5}+1}{2}}\,\mathbf{T}\right)}}. \end{split}$$

Далее, используя соотношения,

$$b^{2} = \frac{1}{\sin^{2}\left(\sqrt{\frac{\sqrt{5}+1}{2}}T\right)} \frac{1}{\left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{cth}\left(\sqrt{\frac{\sqrt{5}-1}{2}}T\right) - \sqrt{\frac{\sqrt{5}+1}{2}} \operatorname{ctg}\left(\sqrt{\frac{\sqrt{5}+1}{2}}T\right)\right)^{2}},$$

$$d^{2} = \frac{1}{\sinh^{2}\left(\sqrt{\frac{\sqrt{5}-1}{2}}T\right)} \frac{1}{\left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{cth}\left(\sqrt{\frac{\sqrt{5}-1}{2}}T\right) - \sqrt{\frac{\sqrt{5}+1}{2}} \operatorname{ctg}\left(\sqrt{\frac{\sqrt{5}+1}{2}}T\right)\right)^{2}},$$

$$bd = \frac{1}{\sin\left(\sqrt{\frac{\sqrt{5}+1}{2}}T\right) \operatorname{sh}^{2}\left(\sqrt{\frac{\sqrt{5}-1}{2}}T\right)} \frac{1}{\left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{cth}\left(\sqrt{\frac{\sqrt{5}-1}{2}}T\right) - \sqrt{\frac{\sqrt{5}+1}{2}} \operatorname{ctg}\left(\sqrt{\frac{\sqrt{5}+1}{2}}T\right)\right)^{2}},$$

получим:

$$\begin{split} \int\limits_0^T \left(u^2-y^2-x^2\right) dt &= -\frac{1}{\left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{cth}\left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{T}\right) - \sqrt{\frac{\sqrt{5}+1}{2}} \operatorname{ctg}\left(\sqrt{\frac{\sqrt{5}+1}{2}} \operatorname{T}\right)\right)^2} \left(\frac{\sqrt{5}+1}{2\sqrt{\frac{\sqrt{5}+1}{2}}} \operatorname{ctg}\left(\sqrt{\frac{\sqrt{5}+1}{2}} \operatorname{T}\right) + \frac{\sqrt{5}-1}{2\sqrt{\frac{\sqrt{5}-1}{2}}} \operatorname{cth}\left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{T}\right)\right) + \frac{2}{\sqrt{5} \left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{cth}\left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{T}\right) - \sqrt{\frac{\sqrt{5}+1}{2}} \operatorname{ctg}\left(\sqrt{\frac{\sqrt{5}+1}{2}} \operatorname{T}\right)\right)^2} \left(\left(2\sqrt{\frac{\sqrt{5}-1}{2}} + \sqrt{\frac{\sqrt{5}+1}{2}}\right) \operatorname{cth}\left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{T}\right) + \left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{cth}\left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{T}\right) - \sqrt{\frac{\sqrt{5}+1}{2}} \operatorname{ctg}\left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{T}\right)\right)^2 \right) \\ &+ \left(\sqrt{\frac{\sqrt{5}-1}{2}} - 2\sqrt{\frac{\sqrt{5}+1}{2}}\right) \operatorname{ctg}\left(\sqrt{\frac{\sqrt{5}+1}{2}} \operatorname{T}\right) \right) = \frac{\sqrt{5}}{\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{cth}\left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{T}\right) - \sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{ctg}\left(\sqrt{\frac{\sqrt{5}-1}{2}} \operatorname{T}\right)}\right). \end{split}$$

Таким образом, мы доказали, что на полученных экстремалях действительно

$$\mathbf{u}(\mathbf{T}) = \int\limits_0^\mathbf{T} \left(\mathbf{u^2} - \mathbf{y^2} - \mathbf{x^2}\right) \mathbf{dt} = \frac{\sqrt{5}}{\sqrt{\frac{\sqrt{5} - 1}{2}} \operatorname{cth}\left(\sqrt{\frac{\sqrt{5} - 1}{2}} \, \mathrm{T}\right) - \sqrt{\frac{\sqrt{5} + 1}{2}} \operatorname{ctg}\left(\sqrt{\frac{\sqrt{5} + 1}{2}} \, \mathrm{T}\right)}.$$

На этом исследование задачи завершено.

15. Дополнение. Литературный обзор.

При исследовании задачи использовались теоремы из [1] (также см. литературу в нём). Были использованы следующие численные методы. Явный метод Рунге-Кутты решения задачи Коши 8-го порядка, основанный на расчётных формулах Дормана-Принса 8(7) DOPRI8 с автоматическим выбором шага (контролем погрешности на шаге, правило Рунге), модифицированный метод Ньютона (модификация Исаева-Сонина), решение системы линейных алгебраических уравнений методом Гаусса с выбором главного элемента по столбцу и повторным пересчётом. Таблицы были сгенерированы автоматически (программа на С выдавала код для L^AT_EX'а, который впоследствии копировался в соответствующий файл).

Программы реализующие метод стрельбы, были написаны на C++, рисунки построены в advanced grapher'е и сохранены в формате .bmp, затем перекодированы в формат .eps программой Adobe Photoshop CS4 и вставлены в файл отчёта. Для автоматического генерирования таблиц необходимо было многократно запускать одну и ту же программу с разными константами, для этого были реализованы скрипты, написанные на bash. Отчёт был набран в LATEX'e (MiKTeX 2.7).

Постановка задачи была взята из [1]. Исследование задачи было проведено аналогичное исследованию примеров из [1]. Так же в [1] описан метод стрельбы численного решения задач оптимального управления. Книга [1] была написана как дополнение и расширение [2]. В [2] описан использовавшийся модифицированный метод Ньютона. Численное решение задачи Коши и теоремы об оценках точности полученного решения описаны и были взяты из [3].

Список литературы

- [1] *И. С. Григорьев*. Методическое пособие по численным методам решения краевых задач принципа максимума в задачах оптимального управления. М., Издательство Центра прикладных исследований при механико-математическом факультете МГУ, 2005.
- [2] В. В. Александров, Н. С. Бахвалов, К. Г. Григорьев, Г. Ю. Данков, М. И. Зеликин, С. Я. Ищенко, С. В. Конягин, Е. А. Лапшин, Д. А. Силаев, В. М. Тихомиров, А. В. Фурсиков. Практикум по численным методам в задачах оптимального управления М.: Издательство Московского университета, 1988.
- [3] Эрист Хайрер, Сиверт Пауль Нёрсетт, Герхард Ваннер. Решение обыкновенных дифференциальных уравнений М.: Мир, 1989.