Комбинаторика представлений алгебры Ли \mathfrak{sl}_n Лаборатория Зеркальной Симметрии и Автоморфных Форм

Рыбин Дмитрий

Национальный исследовательский университет «Высшая школа экономики»

26.11.2020

Введение и Мотивация

Я изучаю дополнительную градуировку на характерах классической алгебры Ли \mathfrak{sl}_n , имеющую два определения - комбинаторное, через FFLV многогранник, и алгебраическое, через PBW фильтрацию. Эта градуировка определяет q-деформацию характера и многие стат-суммы.

О связи данной деформации с темами Математической Физики неизвестно, но имеется ряд общих свойств с такими объектами, как многогранник Люстига и супер-многочлены из квантовых инвариантов узлов.

Основные определения, PBW теорема

Пусть $\mathfrak{g}-$ алгебра Ли над полем k, и $\mathrm{U}(\mathfrak{g})$ её универсальная обёртывающая алгебра.

По Теореме Пуанкаре—Бирхгофа—Витта $\mathrm{U}(\mathfrak{g})$ имеет фильтрацию

$$\mathrm{F}^0\mathrm{U}(\mathfrak{g})\subset\mathrm{F}^1\mathrm{U}(\mathfrak{g})\subset\mathrm{F}^2\mathrm{U}(\mathfrak{g})\subset...,$$

причём подпространство $\mathrm{F}^s\mathrm{U}(\mathfrak{g})$ определяется как

$$F^{s}U(\mathfrak{g}) = \operatorname{span}\left(\prod_{i=1}^{k} x_{i} \mid x_{i} \in \mathfrak{g}, 0 \leq k \leq s\right).$$

И имеет место изоморфизм

$$\operatorname{gr} U(\mathfrak{g}) \cong S(\mathfrak{g}).$$

Основные определения, PBW фильтрация

Данную фильтрацию можно "спустить" на представления алгебры Ли \mathfrak{g} , а именно:

Пусть теперь $\mathfrak{g}=\mathfrak{sl}_n(\mathbb{C})$. Тогда все конечномерные неприводимые представления являются циклическими, классифицируются старшим весом $\lambda=\sum \lambda_i\omega_i$ и имеют описание вида

$$V(\lambda) = (U(\mathfrak{sl}_n) \otimes_{U(\mathfrak{b}^+)} \mathbb{C}_{\lambda})/M,$$

где \mathbb{C}_{λ} является единственным одномерным представлением алгебры Ли верхнетреугольных матриц \mathfrak{b}^+ , с действием каждого простого корня α_i посредством умножения на λ_i , а M максимальный собственный подмодуль.

Фильтрация $\mathrm{F}^s V(\lambda)$ приходит из фильтрации на $\mathrm{U}(\mathfrak{sl}_n)$.

Основные определения, q-размерность

Строго говоря, получающаяся фильтрация зависит от выбора \mathfrak{b}^+ , но размерности присоединённых градуированных пространств не зависят. Это легко доказать, но далее будет явно видно из необходимого нам описания через *FFLV* многогранник.

Определение

Для неприводимого представления $V(\lambda)$ q-размерность это

$$\dim_q V(\lambda) = \sum_s \dim \mathbf{F}^s V(\lambda)/\mathbf{F}^{s-1} V(\lambda) \cdot q^s.$$

Пример

В случае \mathfrak{sl}_2 имеем

$$\dim_q V(\lambda_1 \omega_1) = 1 + q + q^2 + ... + q^{\lambda_1}.$$

Основные определения, q-характер

Определение

Для неприводимого представления $V(\lambda)$ q-характер это

$$\operatorname{ch}_q V(\lambda) = \sum_{\mu} \dim_q V(\lambda)^{\mu} \cdot e^{\mu},$$

где $V(\lambda)^\mu$ это весовое подпространство.

Пример

B случае \mathfrak{sl}_2 имеем

$$\operatorname{ch}_q V(\lambda_1 \omega_1) = e^{\lambda_1 \omega_1} + q e^{(\lambda_1 - 2)\omega_1} + \dots + q^{\lambda_1} e^{-\lambda_1 \omega_1}.$$

Основные определения, конструкция $FFLV(\lambda)$

В работе [1] доказано существование выпуклого многогранника $FFLV(\lambda)$, целые точки которого имеют явную биекцию с базисом неприводимого представления $V(\lambda)$ алгебры Ли \mathfrak{sl}_n . Для \mathfrak{sl}_n имеется n-1 фундаментальных весов.

Пусть $\lambda = \sum \lambda_i \omega_i$, определим *FFLV* (λ) как многогранник в $\mathbb{R}^{\frac{n(n-1)}{2}}$ с координатами $x_{ij}, 1 \le i \le j \le n-1$, и неравенствами:

$$x_{ij} \geq 0 \, orall x_{ij},$$
 $\sum_{ij \in p} x_{ij} \leq \lambda_i + \lambda_{i+1} + ... + \lambda_j,$ $orall p -$ путь Дика из x_{ii} в $x_{jj}.$

[1] Evgeny Feigin, Ghislain Fourier, Peter Littelmann, PBW filtration and bases for irreducible modules in type A_n , https://arxiv.org/abs/1002.0674

Основные определения, конструкция $FFLV(\lambda)$

Пример

Пусть n=6, тогда фундаментальных весов 5, и на рисунке приведён пример пути Дика из x_{22} в x_{55} , и соответствующее ему неравенство.

Основные определения, биекция с базисом

Для данной целой точки $\mathbf{s}=(s_{ij})_{1\leq i\leq j\leq n-1}$ внутри многогранника $\mathit{FFLV}(\lambda)$, соответсвующий базисный вектор $V(\lambda)$ это

$$v_{\mathsf{s}} = \prod_{i < j} f_{i,j}^{s_{ij}} v_{\lambda},$$

где $v_{\lambda}=1\otimes v\in (\mathrm{U}(\mathfrak{sl}_n)\otimes_{\mathrm{U}(\mathfrak{b}_+)}\mathbb{C}_{\lambda})/M$, а $f_{i,j}$ это матричная единица в j-ой строке i-го столбца. PBW градуировка $v_{\mathbf{s}}$ равняется $\sum s_{ij}$, (то есть сумма координат).

Как следствие, $\dim_q V(\lambda)$ это производящая функция числа целых точек в $FFLV(\lambda)$ с фиксированной суммой координат.

Замечание

Комбинаторика многогранника FFLV(λ) связана с комбинаторикой многогранника $GZ(\lambda)$, но эквивалентны они (т.е. имеют одинаковое кол-во гиперрёбер и их инцидентность) лишь для n=2,3.

Представления со старшим весом $\lambda_i \omega_i$

Пример

Пусть n=6, и $\lambda=\lambda_3\omega_3$. Тогда достаточно оставить неравенства соответствующие путям из x_{13} в x_{35} (т.е. между противоположными вершинами прямоугольника).

q-размерность представлений старшего веса $\lambda_i \omega_i$

Теорема

Пусть ω_i один из фундаментальных весов \mathfrak{sl}_n , тогда:

$$\dim_q(V(\lambda_i\cdot\omega_i))=s_\mu(\underbrace{1,1,...,1}_i,\underbrace{q,...,q}_{n-i}),$$

где μ диаграмма Юнга из і строк длины λ_i , и s_μ многочлен Шура.

Рассмотрим присоединённое действие GL_n на \mathfrak{sl}_n , которое продолжается на $V(\lambda_i\omega_i)$. Действуя на всё представление элементом $\mathrm{diag}(\underbrace{1,1,...,1}_{i},\underbrace{q,...,q}_{i})$ тора и взятие следа даёт:

$$s_{\mu}(\underbrace{1,1,...,1}_{i},\underbrace{q,...,q}_{n-i}).$$

Завершение доказательства

Вычислим ту же величину используя базис определяемый FFLV многогранником.

Сопряжение элемента $f_{k,l}$ с $l \geq i$ и $k \leq i$ даёт $q \cdot f_{k,l}$, а для остальных индексов собственное значение равняется 1. Значит $\prod_{i < j} f_{i,j}^{s_{ij}}$ умножается на $q^{\sum s_{ij}}$, действие на $\operatorname{gr} V(\lambda)$ диагонально и сумма собственных значений даёт q-размерность.

Замечание

Данная специализация многочленов Шура не упоминается в литературе, в отличие от распространённой главной (principal) специализации:

$$s_{\mu}(1, q, q^2, q^3, ..., q^{n-1}).$$

Комбинаторные следствия

Итого мы получили производящую функцию (или стат. сумму с весом $q^{\sum s_j}$) для заполнений прямоугольника $i \times n - i$ целыми неотрицательными числами, у которых сумма вдоль любого пути из нижнего левого угла в правый верхний не превосходит λ_i .

Следствие

Математическое ожидание PBW градуировки для представления $V(\lambda_i\cdot\omega_i)$ алгебры Ли \mathfrak{sl}_n равняется

$$\lambda_i \cdot \frac{i(n-i)}{n}$$
,

в частности оно линейно по λ_i , что неверно для старших весов другого вида.

Доказательство следствия

Доказательство.

Мат. ожидание это значение производной производящей функции в точке q=1 делённое на значение самой функции в этой точке.

$$\frac{\partial}{\partial q} \left(s_{\mu}(\underbrace{1,...,1}_{i},\underbrace{q,...,q}_{n-i}) \right) \Big|_{q=1} = (n-i) \cdot s_{\mu}'(1,...,1) =$$

$$= (n-i) \cdot \frac{i \cdot \lambda_{i} \cdot s_{\mu}(1,...,1)}{n}$$

Где $s_{\mu}^{'}$ это частная производная многочлена Шура по любой переменной, её мы вычислим из тожества Эйлера:

$$\sum_{i=1}^{k} x_{i} \frac{\partial}{\partial x_{i}} f(x_{1},...,x_{k}) = \operatorname{deg} f \cdot f \Longrightarrow n \cdot s_{\mu}^{'}(1,...,1) = i \cdot \lambda_{i} \cdot s_{\mu}(1,...,1).$$

Производящие функции

Допустим мы хотим вычислить производящие функции для q-характера или q-размерности некоторого семейства неприводимых представлений.

Рассмотрим более простой вопрос — вычисление обычных производящих функций характеров и размерностей.

Строго говоря, для производящей функции характеров имеется замкнутое выражение, получающееся из формулы Вейля:

$$\operatorname{ch} V(\lambda) = \frac{\sum\limits_{w \in W} \operatorname{sgn}(w) \cdot e^{w(\lambda + \rho) - \rho}}{\prod\limits_{\alpha \in \Delta^+} (1 - e^{-\alpha})}$$

$$\sum_{\lambda} \operatorname{ch} V(\lambda) x^{\lambda} = \frac{1}{e^{\rho} \prod\limits_{\alpha \in \Delta^{+}} (1 - e^{-\alpha})} \sum_{w \in W} \operatorname{sgn}(w) \sum_{\lambda} x^{\lambda} e^{w(\lambda + \rho)}$$

Но получение производящей функции для размерностей из неё (путём главной специализации) затруднено.

Размерность $V(\lambda_i \omega_i)$

Лемма

Число
$$\dim V(\lambda_i\omega_i)=s_\mu(\underbrace{1,...,1}_n)$$
, где μ прямоугольник $i imes \lambda_i$,

равняется числу трёхмерных диаграмм Юнга внутри параллелепипеда $i \times (n-i) \times \lambda_i$.

Доказательство.

Видно сведение формулы для числа диаграмм внутри параллелепипеда $a \times b \times c$:

$$\mathbb{Y}_{a,b,c} = \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2},$$

к формуле Вейля:

$$\dim V(c\omega_a) = \prod_{i=1}^a \prod_{i=1}^b \frac{c+i+j-1}{i+j-1}.$$

Производящая функция размерности

Пусть C(d,n) это множество путей на решетке \mathbb{Z}^d из (0,0,...,0) в (n,n,...,n) в подмножестве $\{(x_1,...,x_d)|\ 0\leq x_1\leq x_2\leq ...\leq x_d\}$. Для $p\in C(d,n)$ пара последовательных шагов на векторы e_i и e_j называется подъём (спуск) (ascent, descent) если i< j (i>j).

Определение

Числа Нараяны размерности d, N(d,n,k), — это количество путей $p\in C(d,n)$ имеющих k подъёмов.

Пример

N(2, n, k) это число путей Дика длины $2n \ c \ k + 1$ (и каждый из k спусков расположен между последовательными подъёмов).

Определение

Многочлен Нараяны размерности d это

$$\mathcal{N}_{d,n}(z) = \sum_k N(d,n,k) z^k = \sum_{p \in C(d,n)} z^{\mathrm{asc}(p)}.$$

Производящая функция размерности

Теорема

Пусть $V(j\cdot \omega_i)$ с $i\in \mathbb{Z}_{\geq 0}$ представления \mathfrak{sl}_n . Тогда имеется равенство

$$\frac{\mathcal{N}_{i,n-i}(z)}{(1-z)^{i(n-i)+1}} = \sum_{j=0}^{\infty} \dim V(j\cdot\omega_i)z^j.$$

Доказательство.

Шаг 1: Соответствие $p \in C(i, n-i)$ и SYT формы $i \times (n-i)$.

Шаг 2: Формула (7.96) на странице 364 Перечислительная Комбинаторика Том 2:

$$\sum_{i=0}^{\infty} s_{\lambda/\mu}(\underbrace{1,1,...,1}_{i},0,...)z^{i} = \frac{\sum\limits_{T} z^{\deg(T)+1}}{(1-z)^{|\lambda/\mu|+1}}.$$

Шаг 3: (по Лемме)
$$s_{(b^s)}(\underbrace{1,1,...,1}_{s+c},0,...) = s_{(c^s)}(\underbrace{1,1,...,1}_{s+b},0,...).$$

Рыбин Дмитрий

Ряды Гильберта

Стоит отметить, что правая часть равенства теоремы задаёт ряд Гильберта для Gr(k,n), то есть производящую функцию

$$\sum_{j=0}^{\infty} \dim R_j z^j,$$

где $R=\bigoplus R_j$ - это однородное разложение координатного кольца Gr(k,n).

Производящие функции q-размерности

Производящие функции q-размерности являются некоторой деформацией полученных производящих функций размерности, но не очевидной.

Для любого n легко вычислить:

$$\sum_{\lambda_1,\lambda_2\geq 0}\dim_q(V(\lambda_1\cdot\omega_1+\lambda_{n-1}\cdot\omega_{n-1}))x^{\lambda_1}z^{\lambda_{n-1}}=$$

$$=\frac{1-qxz}{(1-x)(1-z)(1-qx)^{n-1}(1-qz)^{n-1}}.$$

В частности, имеем полный ответ для $\mathfrak{sl}_3.$

Для i = 2 и n = 5:

$$\sum_{\lambda_2 > 0} \dim_q V(\lambda_2 \omega_2) y^{\lambda_2} = \frac{1 + 2qy - 2q^3 y^2 - q^4 y^3}{(1 - y)(1 - qy)^4 (1 - q^2 y)^3}.$$

Производящие функции q-размерности

Для случая \mathfrak{sl}_4 прямым вычислением имеем:

$$\sum_{\lambda_1,\lambda_2,\lambda_3\geq 0} \dim_q V(\lambda_1\omega_1 + \lambda_2\omega_2 + \lambda_3\omega_3) x^{\lambda_1} y^{\lambda_2} z^{\lambda_3} = 1 + qy - qxz - 2q(1+q)y(x+z) + q^2y(x^2+z^2) + q^3y^2(x^2+z^2) + q(1+3q+q^2)xyz(1+qy) - q^4xy^3z - 2q^3(1+q)xy^2z(x+z) + q^4x^2y^2z^2(1+qy) - (1-x)(1-y)(1-z)(1-qx)^3(1-qy)^3(1-qz)^3(1-q^2y).$$

В частности, для i=2 и n=4 выражение неявно упомянуто в OEIS A133826:

$$\sum_{j=0}^{\infty} \dim_q(V(j \cdot \omega_2)) z^j = \frac{1 + qz}{(1-z)(1-qz)^3(1-q^2z)}.$$

Об инвариантах узлов и Многогранниках Люстига

Видно, что случай $\lambda=\lambda_i\omega_i$ поддаётся куда более явному описанию, чем остальные. В таком же положении находится описание:

- супер-многочленов узла восьмёрки
- ullet кристальной структуры для многогранников Люстига $\mathcal{L}_{\lambda_i\omega_i}=\mathit{FFLV}(\lambda_i\omega_i)$