Assignment 1

Team member 1: Name: Varun Vaddi

PeopleSoft number: 2347481

Name on Kaggle leaderboard: Vamsi n Varun

Contribution Description: Developed the code along with Vamsi for both perceptron and SoftMax. Ran 3 models of Perceptron & 4 models of SoftMax (but when merging both the code models, ran into issue where the name of all 8 files of SoftMax are named as vyeruban, couldn't re-run due to time constraints). Prepared the Report document for submission.

Team member 2:

Name: Vamsi Krishna Yerubandi PeopleSoft number: 2351142

Name on Kaggle leaderboard: Vamsi_n_Varun

Contribution Description: Developed the code along with Varun for both perceptron and SoftMax.

Ran 3 models of Perceptron & 4 models of SoftMax. Prepared the Kaggle submission and Zip file.

Theory

A1	- Perceptron		
	- Logistic Regression		
	- Stochastic Gradient Descent		
A2	Gradient Descent:		
	-It computes Gradient of Loss function for the whole training dataset.		
	- As a result, convergence is slow, as it need to run whole dataset for each iteration.		
	- Expensive and takes more time to process for large datasets.		
	Stochastic Gradient Descent (SGD):		
	-It computes Gradient of Loss function for the randomly selected subset of the training		
dataset.			
	- Convergence is quicker.		
	-Less time to process large datasets, as it only considers a small subset of data.		
	In simple terms, Gradient Descent is more stable but slower, while SGD is quicker but		
	can be a bit more unpredictable.		
	can be a bit more unpredictable.		
А3	Binary Cross-entropy Loss/ Log Loss		

(3) Loss function - Lugistic Regression: $\hat{y} = \sigma(\omega^T x + b) = sigmoid(\omega^T x + b)$ the loss in Logistic Regression is called as

"Log Loss" cor) "Binary cross-entropy loss".

It measures the difference (V) between

Predicted probability & true label, thereby

Penalizing incorrect classifications $L(\omega_1 b \mid D) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)}, \log \hat{y}^{(i)} + (1 - y^{(i)}), \log (1 - \hat{y}^{(i)})$ where, $y^{(i)} = \text{true label}$ $y^{(i)} = \text{predicted probability}.$ $\sigma = \text{sigmoid function}$ $L(\omega_1 b; D) = \text{Negative Likelihood function}$

A4 Derive the SGD for Log Reg

computing gradients for Loss function Lart (W)

$$\frac{\partial L}{\partial W} = -\frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)}) \cdot x_i$$

computing gradient for Loss function wort (b)

$$\frac{\partial L}{\partial b} = -\frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})$$

When $\leftarrow N_{014} = N - \frac{\partial L}{\partial W}$

Now $\leftarrow N_{014} - N - \frac{\partial L}{\partial W}$
 $N \rightarrow \text{Learning rate.}$

Perceptron:

You should also mention whether adding a learning rate decay helped and how you implemented this decay.

Experimentation

Lxperimentation				
Experiment #	1			
Hyperparameter	Learning rate = 0.01, epoch = 200, decay = 0.8			
S				
Training	39.47			
accuracy				
Validation	28.1			
accuracy				
Test accuracy	30.94			
Loss vs number	Experiment 1 Perceptron, vyeruban			
of iterations plot	Loss vs No of Iterations - (alpha=0.01, epochs=200)			
using matplotlib	0.72 -			
	3.72			
	0.70 -			
	0.68 -			
	<u>§</u> 0.66 -			
	0.64 -			
	0.62 -			
	0.60			
	0 25 50 75 100 125 150 175 200 Iterations			

Hyperparameters of Kaggle model

Softmax:

Also report your training, validation, and testing accuracy with your optimal hyperparameter setting.

Experimentation

Experiment #	1
Hyperparameter	Learning rate = 0.01, epoch = 100, regularization constant = 0.01
S	
Training	24.25
accuracy	
Validation	23.59
accuracy	
Test accuracy	23.3
Loss vs number	Experiment 1 Softmax, vyeruban
of iterations plot	Loss vs No of Iterations - (alpha=0.01, epochs=100, reg constant=0.01)
using matplotlib	100 -
	90 - 80 - 80 - 70 - 60 - 50 - alpha=0.01, epochs=100, reg_const=0.01
	0 20 40 60 80 100 Iterations

Hyperparameters of Kaggle model

