

6) Proof:

Speece N_{1} and N_{2} are positive integers, and then exists integer values a_{1}, a_{2} such that N_{2} disables $(a-a_{1})$ and N_{2} disables $(a-a_{2})$. Let x be $gcd(N_{2},N_{2})$ when $x \in \mathbb{Z}$. Then there exists $v_{1}v_{1}\in \mathbb{Z}$ such that $N_{1}=v_{2}v_{3}$ and $N_{2}=v_{2}v_{3}$ and gcd(u,v)=1. If N_{2} disables $(a-a_{2})$, then there exists d_{1} , such that $d_{1}\in \mathbb{Z}$ and $a-a_{2}=N_{2}C$. If N_{2} disables $(a-a_{2})$, then there exists d_{1} , such that $d_{1}\in \mathbb{Z}$ and $a-a_{2}=n_{2}d$. Thus, $(a-a_{2})-(a-a_{1})=N_{2}d-N_{1}C$. So, $a_{2}-a_{2}=N_{2}d-N_{1}C=xv_{1}d-xu_{1}C$. Shoplithed, $a_{1}-a_{2}=x(v_{1}d-u_{2})$. Therefore, show x is $gcd(N_{1},N_{2})$ and a_{1} and a_{2} are integers so that $a_{1}-a_{2}$ is an integer, x divides $a_{1}-a_{2}$, or rater, $gcd(N_{1},N_{2})$ divides $(a_{1}-a_{2})$.