Variance Reduction with Efficient Important Sampling

Ryan Dai Quantitative Finance, National Tsing Hua University

October 4, 2025

Default Probability Estimation 1

Algorithm for estimating P(X > c)

```
Algorithm 1 Efficient Importance Sampling for P(X > c)
```

Require: N: sample size, c: threshold, μ : twisting parameter

Ensure: Estimated \hat{p} , standard error SE

// Basic Monte Carlo

1: $X \sim N(0,1)$

▶ Generate standard normal samples

- 2: $p_{\text{BMC}} = \frac{1}{N} \sum_{i=1}^{N} I(X_i > c)$ 3: $\sigma_{\text{BMC}}^2 = \text{Var}(I(X > c))$
- 4: $SE_{\rm BMC} = \sigma_{\rm BMC}/\sqrt{N}$

// Efficient Importance Sampling ($\mu=c$)

- \triangleright Generate samples under new measure
- 5: $Z \sim N(c, 1)$ \Rightarrow Go
 6: $p_{\text{IS}} = \frac{1}{N} \sum_{i=1}^{N} I(Z_i > c) \cdot \exp(\frac{c^2}{2} cZ_i)$
- 7: $\sigma_{\rm IS}^2 = \operatorname{Var}(I(Z > c) \cdot \exp(\frac{c^2}{2} cZ))$
- 8: $SE_{\rm IS} = \sigma_{\rm IS}/\sqrt{N}$

1.2 Results

Table 1: Default Probability Estimation Comparison (BMC vs. EIS)

c	True DP	BMC Mean (SE)	EIS Mean (SE)	CPU Time (s)	GPU Time (s)
1	0.1587	0.158855 (0.000365)	0.158891 (0.000192)	0.042	0.006
2	0.0228	$0.022784 \ (0.000149)$	0.0227618 (3.48e-05)	0.039	0.006
3	0.0013	0.001324 (3.67e-05)	0.00134977 (2.48e-06)	0.040	0.006
4	3.17e-05	3.1e-05 (5.63e-06)	3.16525e-05 (6.73e-08)	0.042	0.006

Note. GPU times and CPU times are the sum of BMC and EIS methods.

2 CVaR Estimation

2.1 Algorithm for estimating CVaR

```
Algorithm 2 Importance Sampling for E[X | X > c]
Require: N (sample size), c (threshold), proposal density g (e.g. N(c,1))
Ensure: Estimates of \hat{m} = E[X \mid X > c], \hat{p} = P(X > c), and standard errors
        // Target & likelihood ratio
  1: f(x) = \phi(x) is the N(0,1) density; w(x) = \frac{f(x)}{g(x)} \Rightarrow If g = N(c,1) then
       w(x) = \exp\left(\frac{c^2}{2} - cx\right)
       // 1) Basic Monte Carlo (BMC) under f
 2: Draw X_i \sim N(0,1) for i = 1,...,N

3: \hat{p}_{\text{BMC}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}\{X_i > c\}

4: \hat{m}_{\text{BMC}} = \frac{\sum_{i=1}^{N} X_i \mathbf{1}\{X_i > c\}}{\sum_{i=1}^{N} \mathbf{1}\{X_i > c\}}
  5: r_i^{\text{BMC}} = (X_i - \hat{m}_{\text{BMC}}) \mathbf{1} \{X_i > c\}; \ s_{\text{BMC}}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (r_i^{\text{BMC}})^2
  6: SE_{\rm BMC} = \sqrt{s_{\rm BMC}^2/(N\,\hat{p}_{\rm BMC}^2)}
        // 2) Importance Sampling (IS) under g
  7: Draw Z_i \sim g for i = 1, \ldots, N
 8: b_i = \mathbf{1}\{Z_i > c\} w(Z_i); \quad a_i = Z_i b_i

9: \hat{p}_{\text{IS}} = \frac{1}{N} \sum_{i=1}^{N} b_i
10: (Self-normalized IS) \hat{m}_{\mathrm{IS}} = \frac{\sum_{i=1}^{N} a_i}{\sum_{i=1}^{N} b_i} = \frac{\sum_{i=1}^{N} Z_i \, \mathbf{1}\{Z_i > c\} \, w(Z_i)}{\sum_{i=1}^{N} \mathbf{1}\{Z_i > c\} \, w(Z_i)}
11: SE for ratio (delta): r_i^{\mathrm{IS}} = a_i - \hat{m}_{\mathrm{IS}} \, b_i; \quad s_{\mathrm{IS}}^2 = \frac{1}{N-1} \sum_{i=1}^{N} \left(r_i^{\mathrm{IS}}\right)^2
12: SE_{\rm IS} = \sqrt{s_{\rm IS}^2/(N\,\hat{p}_{\rm IS}^2)}
       // 3) Comparison
13: Output (\hat{m}_{BMC}, SE_{BMC}) and (\hat{m}_{IS}, SE_{IS})
```

c	BMC $CVaR$ (SE)	True $CVaR$	IS CVaR (SE)
3	3.2936 (7.303e-03)	3.283	3.2824 (4.145e-04)
4	4.2244 (3.476e-02)	4.226	4.2262 (3.740e-04)
5	— (—)	5.187	5.1864 (3.391e-04)

2.2 Results

Importance Sampling to E[XI(X>c)] Estimation

Algorithm for estimating $E[X \mathbf{1}\{X > c\}]$

```
Algorithm 3 Efficient Importance Sampling for E[X \mathbf{1}\{X > c\}]
Require: N: sample size, c: threshold, \mu: twisting parameter
Ensure: Estimated \hat{m}, standard error SE
     // Basic Monte Carlo (BMC) under f(x) = \phi(x), X \sim N(0,1)
 1: X \sim N(0,1)
                                                     ▶ Generate standard normal samples
 2: \hat{m}_{BMC} = \frac{1}{N} \sum_{i=1}^{N} X_i \mathbf{1}\{X_i > c\}
3: \sigma_{BMC}^2 = \text{Var}(X \mathbf{1}\{X > c\})
```

4: $SE_{\rm BMC} = \sigma_{\rm BMC}/\sqrt{N}$ // Efficient Importance Sampling (μ = c) with g(x) = $\phi_{\mu}(x)$ =

5: $Z \sim N(c, 1)$ \triangleright Generate samples under new measure g▶ Likelihood ratio

6: $w(Z) = \frac{f(Z)}{g(Z)} = \exp\left(\frac{c^2}{2} - cZ\right)$ 7: $\hat{m}_{IS} = \frac{1}{N} \sum_{i=1}^{N} Z_i \mathbf{1}\{Z_i > c\} w(Z_i)$ 8: $\sigma_{IS}^2 = \operatorname{Var}(Z \mathbf{1}\{Z > c\} w(Z))$

9: $SE_{\rm IS} = \sigma_{\rm IS}/\sqrt{N}$

3.2 Results

Note. For $X \sim N(0,1)$, the theoretical value is $E[X \mathbf{1}\{X>c\}] = \int_{0}^{\infty} x \, \phi(x) \, dx =$ $\phi(c)$, where ϕ denotes the standard normal density.

Table 3: $E[\,X\,\mathbf{1}\{X>c\}]$ Estimation Comparison (BMC vs. EIS)

\overline{c}	True Value	BMC Mean (SE)	EIS Mean (SE)	CPU Time (s)	GPU Time (s)
1	0.2420	0.241924 (5.845184e-04)	$0.242071 \ (2.552147e-04)$	0.049042	0.008566
2	0.0540	$0.053713 \ (3.567679e-04)$	$0.053971 \ (7.568887e-05)$	0.044671	0.008445
3	0.0044	$0.004453 \ (1.210529e-04)$	0.004429 (7.769168e-06)	0.049960	0.009137
4	1.39 - 04	0.000147 (2.479159e-05)	0.000134 (2.758473e-07)	0.046925	0.008501

References

[1] Chuan-Hsiang Han. Stochastic Computation in Finance. Taipei, Taiwan: Shin-Lu Publishing, 2012. (in Chinese)