

FIZIKA KAFEDRASI

Fizika I

2018

MEXANIKA

6 – ma'ruza

K.P.Abduraxmanov, V.S.Xamidov

TÁBIYIY HÁM GUMANITAR PÁNLER KAFEDRASÍ

Fizika I

2020

MEXANIKA

6 – lekciya

Qaraqalpaq tiline awdarmalagan S.G. Kaypnazarov

Lekciya rejesi

- Inercial emes sanaq sistemaları.
- Inerciya kúshi.
- Inercial sanaq sistemaları.
- Galiley túrlendiriwleri.
- Eynshteyn postulatları.
- Lorenc túrlendiriwleri.
- Lorenc túrlendiriwlerine salıstırganda háreket teńlemesiniń invariantlığı.

Galiley túrlendiriwleri

-eki inercial sanaq sistemalarında júz beretuğın hádiyseniń kooordinata hám waqtın ózara baylanıstırıwshı teńleme. Hádiyse júz bergen orın (x, y, z kooordinatalar) hám t waqıt momenti menen belgilenedi.

Galileydiń salıstırmalılıq principi:

BIRINSHI DIFFERENCIALLAW				
$\frac{dx}{dt} = \frac{dx'}{dt} + \frac{d(vt)}{dt}$	$v_X = v_X' + v$			
y = y'	$v_Y = v_Y'$			
z=z'	$v_Z = v_Z'$			
EKINSHI DIFFERENCIALLAW				
$\frac{dv_X}{dt} = \frac{dv_X'}{dt} + \frac{dv}{dt}$	$a_{X}=a_{X}'$			
$\frac{dy}{dt} = \frac{dy'}{dt}$	$a_Y = a_Y'$			
$\frac{dz}{dt} = \frac{dz'}{dt}$	$a_z = a_z'$			

Klassikalıq mexanikada tezliklerdi qosıw qağıydası

Berilgen sanaq sistemasınıń tınısh halatta bolıwı yaki tuwrı sızıqlı hám teń ólshewli háreket etiwin hesh qanday mexanikalıq tájriybeler arqalı dáliyllew múmkin emes .

Bárshe inercial sanaq sistemalarında mexanika nızamları birdey kóriniste boladı.

Galiley túrlendiriwleriniń nátiyjeleri:

- eki sanaq sistemalarında waqıt ótiwi birdey.
 - t = t' Nyuton mexanikasında waqıttın absolyutlığı.
- eki sanaq sistemalarında massalardıń teńligi.
 - m = m'- hár túrli inercial sanaq sistemalarında massalardın absolyutlığı.
- eki sanaq sistemalarında massalar tezleniwleriniń teńligi.

$$\vec{a} = \vec{a}'$$

- barlıq inercial sanaq sistemalarında tezleniwdiń teńligi.
- inercial sanaq sistemalarında materiallıq noqatlar ózara tásir kúshleriniń teńligi. $\vec{F}=\vec{F}'$
- Galiley túrlendiriwlerine salıstırganda kúshtiń invariantlıgı (ózgermesligi).

Úlken tezliklerde Nyuton mexanikasınıń qanatlandırılmawı

$$v_X = v_X' + v = c + v$$

QARAMA-QARSILIQ!!!

Arnawlı salıstırmalılıq teoriyasınıń (AST) postulatları

- Salıstırmalılıq principi: sanaq sisteması tınısh halatın buzbawı yaki tuwrı sızıqlı teń ólshewli hárekette bolıwın hesh qanday fizikalıq tájiriybeler arqalı ornatıw múmkin emes.
- Basqasha ańlatıw: barlıq inercial sistemalar ushın tábiyattıń barlıq nızamları birdey ańlatıladı.
- Jaqtılıq tezliginiń ózgermew (turaqlılıq) principi: barlıq inercial sanaq sistemalarında vakuumdağı jaqtılıq tezligi derektiń háreketi yaki jaqtılıq qabıl etiwshiniń háreketine baylanıslı emes.

Lorenc túrlendiriwleri

Lorenc túrlendiriwleri – eki inercial sanaq sistemalarında qandayda bir hádiyseniń koordinataları hám waqtın baylıstırıwshı teńlemeler bolıp tabıladı.

Galiley túrlendiriwlerinen parıqlı Lorenc túrlendiriwleri AST postulatlarına qarsı emes: yağnıy hárekettin absolyutlığın hám jaqtılıq tezligi turaqlılığın baqlay almaw postulatı.

- K hám K'sanaq sistemaların baqlayıq. K sanaq sistemasın shártli qozgalmas dep esaplaymız. Qandayda bir hádiyse payda bolıp atırganlığın oylayıq.
- x, y, z, t K sanaq sistemasındağı hádiysenin koordinataları hám waqıttın mánisleri; K' sanaq sistemasında bolsa x', y', z', t' mánisleri menen belgilenedi. K' sanaq sisteması jaqtılıq tezligine jaqın tezlik penen háreketlenedi.

Arnawlı salıstırmalılıq teoriyasında bir sanaq sistemasınan ekinshisine ótiwdin Lorenc túrlendiriwleri

Tuwrı túrlendiriw		Keri túrlendiriw	
$x = \frac{x' + vt'}{\sqrt{1 - \beta^2}}$	$x = \gamma \left(x' + vt' \right)$	$x' = \frac{x - vt}{\sqrt{1 - \beta^2}}$	$x' = \gamma (x - vt)$
y = y' $z = z'$	$\beta = \frac{v}{c}$	$\beta < 1$	
$t = \frac{t' + \frac{v}{c^2}}{\sqrt{1 - \rho}}$	$\gamma = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$	$ \frac{\sqrt{1-\beta^2}}{\sqrt{1-\beta^2}} $	$\frac{\gamma > 1}{c^2} \left(\frac{v}{c^2} \right)$
K sanaq sistemasınan K'sanaq sistemasına ótiw		K' sanaq sistemasınan K sanaq sistemasına ótiw	

- Relyativistlik mexanika háreket teńlemeleri bir sanaq sistemasınan ekinshisine ótiwde ózgermey qalganda gana jaratıladı.
- Bul ańlatpalarda:
- c = 3·108 m/s –jaqtılıqtıń vaakumdağı tezligi.

$$\beta = \frac{v}{c} \qquad \beta < 1$$

$$\gamma = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} = \frac{1}{\sqrt{1 - \beta^2}} \qquad \gamma > 1$$

β << 1 jaqtılıq tezliginen júda kishi tezliklerde Lorenc túrlendiriwleri Galiley túrlendiriwlerine ótedi:

$$x = x' + vt$$
, $y = y'$, $z = z'$, $t = t'$
 $x' = x - vt$, $y' = y$, $z' = z$, $t' = t$

• Galiley túrlendiriwleri óz mánislerin jaqtılıq tezliginen júda kishi tezliklerde saqlap qaladı.

Lorenc túrlendiriwleri nátiyjeleri

- bir waqıttalıqtıń salıstırmalılığı;
- waqıt aralıqlarınıń salıstırmalılığı;
- uzınlıqtıń (aralıqtıń) salıstırmalılığı;
- massanıń salıstırmalılığı;
- tezliklerdi almastırıw imkanıyatı.

Bir waqıttalıqtıń salıstırmalılığı

K sistemada birinshi hádiyseniń júz bergen

waqtı: $t_1 = \gamma \left(t_1' + \frac{v}{c^2} x_1' \right)$

K sistemada ekinshi hádiyseniń júz bergen waqtı:

 $t_2 = \gamma \left(t_2' + \frac{v}{c^2} x_2' \right)$

Bunnan $t_2 > t_1$, sebebi $x'_2 > x'_1$.

K sanaq sistemasında hádiyse bir waqıtta júz bermeydi, yağnıy bir sanaq sistemasında bir waqıtta júz bergen hádiyse ekinshisinde bir waqıtta júz bermeydi.

Waqıt aralığının salıstırmalılığı

K' sanaq sistemasında x' koordinatalı noqatta t'_1 hám t'_2 waqıtlarda eki hádiyse júz bergen ($\Delta t' = t'_2 - t'_1$ waqıt aralığında).

K sistemada bolsa, usı hádiyseler t_1 hám t_2 waqıtlarda júz beredi

$$(\Delta t = t_2 - t_1 \text{waqıt aralığında}).$$

Lorenc túrlendiriwlerinen paydalanıp tómendegilerge iye bolamız:

$$\Delta t = t_2 - t_1 = \frac{t_2' - t_1'}{\sqrt{1 - \beta^2}} = \gamma \Delta t'$$

$$t_1 = \frac{t_1' + \frac{v}{c^2} x'}{\sqrt{1 - \beta^2}}$$

$$t_2 = \frac{t_2' + \frac{v}{c^2} x'}{\sqrt{1 - \beta^2}}$$

bárhama γ birden úlken bolganı ushın, $\Delta t > \Delta t'$. Bul bolsa, inercial sanaq sistemasına salıstırganda háreketlenip atırgan saat qozgalmas saatlarga salıstırganda áste júriwin bildiredi hám eki hádiyse arasındagı waqıttın kemligin kórsetedi.

Uzınlıqtıń (aralıqtıń) salıstırmalılığı

Hár dayım γ birden úlken bolganı ushın, I > I₀.
 Sol sebepli, háreketlenip atırgan sterjennin uzınlığı tınısh halatta turgan sterjennin uzınlığınan hár dayım kishi boladı.

Tezliklerdi ózgertiw.

Tezliklerdi qosıwdıń relyativistlik qağıydasına muwapıq, jaqtılıq tezliginen kishi yaki oğan teń bolgan eki tezliktiń jıyındısı jaqtılıq tezliginen úlken bolmaydı.

K sistemada materiallıq noqat γ tezlik penen, K' sistemanıń ózi bolsa K sistemaga salıstırganda u tezlik penen háreketlenip atırgan bolsın. K sistemada bóleksheniń ${\bf V}$ tezligi qurawshıları tómendegi ańlatpalar menen anıqlanadı: $v_x=\frac{dx}{dt}, \quad v_y=\frac{dy}{dt}, \quad v_z=\frac{dz}{dt}.$

$$v_x = \frac{dx}{dt}, \quad v_y = \frac{dy}{dt}, \quad v_z = \frac{dz}{dt}.$$

K' sistemada sol bóleksheniń $\tilde{\mathcal{V}}$ tezlik qurawshıları tómendeğilerge teń:

$$v'_{x'} = \frac{dx'}{dt'}, \quad v_{y'} = \frac{dy'}{dt'}, \quad v'_{z'} = \frac{dz'}{dt'}.$$

Lorenc túrlendiriwlerinen paydalanıp:

$$v_{x} = \frac{v'_{x'} + u}{1 + \frac{uv'_{x'}}{c^{2}}}, \quad v_{y} = \frac{v'_{y'}\sqrt{1 - \frac{u^{2}}{c^{2}}}}{1 + \frac{uv'_{x'}}{c^{2}}}, \quad v_{z} = \frac{v'_{z'}\sqrt{1 - \frac{u^{2}}{c^{2}}}}{1 + \frac{uv'_{x'}}{c^{2}}}$$

Sebebi,
$$x = \frac{x' + u \cdot t'}{\sqrt{1 - \frac{u^2}{c^2}}}$$
 $v_x = \frac{dx}{dt} = \frac{d}{dt} \left(\frac{x' + u \cdot t'}{\sqrt{1 - \frac{u^2}{c^2}}} \right) = \frac{dt'}{dt} \cdot \frac{\frac{dx'}{dt'} + u}{\sqrt{1 - \frac{u^2}{c^2}}} = \frac{dt'}{dt} \cdot \frac{v_x' + u}{\sqrt{1 - \frac{u^2}{c^2}}}$

$$t = \frac{t' + \left(\frac{u}{c^2}\right) \cdot x'}{\sqrt{1 - \frac{u^2}{c^2}}} \longrightarrow \frac{dt}{dt'} = \frac{1 + \left(\frac{u}{c^2}\right) \cdot \frac{dx'}{dt}}{\sqrt{1 - \frac{u^2}{c^2}}} = \frac{1 + \left(\frac{u}{c^2}\right) \cdot v_x'}{\sqrt{1 - \frac{u^2}{c^2}}}$$

$$v_{x} = \frac{dt'}{dt} \cdot \frac{v'_{x} + u}{\sqrt{1 - \frac{u^{2}}{c^{2}}}} = \frac{\sqrt{1 - \frac{u^{2}}{c^{2}}}}{1 + \left(\frac{u}{c^{2}}\right) \cdot v'_{x}} \cdot \frac{v'_{x} + u}{\sqrt{1 - \frac{u^{2}}{c^{2}}}} = \frac{v'_{x} + u}{1 + \left(\frac{u}{c^{2}}\right) \cdot v'_{x}}$$

Usıgan uqsas:

$$v_{y} = \frac{v'_{y}\sqrt{1 - \frac{u^{2}}{c^{2}}}}{1 + \frac{uv'_{x}}{c^{2}}}, \qquad v_{z} = \frac{v'_{z}\sqrt{1 - \frac{u^{2}}{c^{2}}}}{1 + \frac{uv'_{x}}{c^{2}}}$$

Relyativistlik dinamika

Relyativistlik impuls

Klassikalıq mexanikada,

$$v << c$$
 bolganda $\vec{p} = m\vec{v}$

Relyativistlik mexanikada,

$$\overrightarrow{p} = \frac{m_0 \overrightarrow{v}}{\sqrt{1 - \frac{v^2}{c^2}}} = \gamma m_0 \overrightarrow{v}$$

Háreket teńlemesi

Klassikalıq maxanikadağığa uqsas,

$$\frac{dp}{dt} = \vec{F}$$

$$\frac{d}{dt} \left(\frac{m_0 v}{\sqrt{1 - v^2/c^2}} \right) = F$$

Kúshtiń invariant bolmagan shama ekenligi kórinip turıptı.

Energiyanıń relyativistlik ańlatpası

Kúsh

$$\frac{d}{dt} \left(\frac{m_0 v}{\sqrt{1 - v^2/c^2}} \right) = F$$

$$dA = FdS = Fvdt = vdp = vd(mv) = v^{2}dm + mvdv =$$

$$= m_0 v^2 d \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}} + m_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}} v dv =$$

$$= m_0 v^3 \left(1 - \frac{v^2}{c^2} \right)^{-3/2} + m_0 v \left(1 - \frac{v^2}{c^2} \right)^{-1/2} dv = \frac{m_0 v dv}{\left(1 - \frac{v^2}{c^2} \right)^{3/2}}$$

Energiyanıń relyativistlik ańlatpası

Relyativistlik mexanikada jumis bólekshe massasının artıwı menen anıqlanadı

$$dA = c^{2}dm = d(mc^{2}) dA = dE_{\kappa}$$

$$dE_{\kappa} = d(mc^{2}) \Rightarrow E_{\kappa} = mc^{2} - const$$

Bizge belgili,
$$E_{\kappa}(\upsilon_0=0)=0 \implies const=m_0c^2$$

$$E_{_{\kappa}}=mc^2-m_{_{\! 0}}c^2$$
 $\left[E_{_{\! 0}}=m_{_{\! 0}}c^2$ $ight]$ -tınıshlıqtağı energiya

Toliq energiya

$$E = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}} = \gamma m_0 c^2$$

$$E = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}} = \gamma m_0 c^2$$

$$E_k = E - E_0 = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}} - m_0 c^2$$

Relyativistlik invariantlıq

$$\vec{p} = m\vec{v}$$

$$E = mc^{2}$$

$$p = \frac{E}{c^{2}}v$$

$$p = \frac{m_{0}v}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} \implies p^{2} = \frac{m_{0}^{2}v^{2}}{1 - \frac{v^{2}}{c^{2}}} \implies v^{2} = \frac{p^{2}c^{2}}{p^{2} + m_{0}^{2}c^{2}}$$

$$p^{2} = \frac{p^{2}E^{2}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} \implies p^{2}E^{2} \implies F = \sqrt{r^{2} + m_{0}^{2}c^{2}}$$

$$p^{2} = \frac{p^{2}E^{2}}{(p^{2} + m_{0}^{2}c^{2})c^{2}} \qquad E = c\sqrt{p^{2} + m_{0}^{2}c^{2}}$$

$$\frac{E^2}{c^2} - p^2 = m_0^2 c^2 = inv$$

$$E = c\sqrt{p^2 + m_0^2 c^2}$$

Juwmaq: energiya hám impuls relyativistlik mexanikada hár dayım saqlanıp qalmaydı.

PAYDALANÍLGAN ÁDEBIYATLAR

- 1. Q.P.Abduraxmanov, V.S.Xamidov, N.A.Axmedova. FIZIKA. Darslik. Toshkent. "Aloqachi nashriyoti". 2018 y. OʻzR OOʻMTV 2017.24.08 dagi "603"-sonli buyrugʻi.
- 2. B.A.Ibragimov, G.Q.Atajanova. "FIZIKA". Oqıwlıq. Tashkent. 2018 j.
- 3. Q.P.Abduraxmanov, O'.Egamov. "FIZIKA". Darslik. Toshkent. O'quv-ta'lim metodika" bosmaxonasi. 2015 y. O'zROO'MTV 2009.26.02. dagi "51"-sonli buyrug'i.
- 4. Douglas C. Giancoli. Physics. Principles with Applicathions. 2004 USA ISBN-13 978-0-321-62592-2.
- 5. Physics for Scientists and Engineers, Raymond A. Serway, John W. Jewett. 9th Edition, 2012.
- 6. "Umumiy Fizika fani boʻyicha taqdimot multimediali ma'ruzalar toʻplami". Elektron oʻquv qoʻllanma. Toshkent. 2012 y. OʻzR OOʻMTV 2012.15.08 dagi "332/1"-sonli buyrugʻi.
- 7. "Fizika-1 kursi boʻyicha taqdimot multimediali ma'ruzalar toʻplami". Elektron oʻquv qoʻllanma. Toshkent. 2019 y. OʻzR OOʻMTV 2019.04.10 dagi "892"-sonli buyrugʻi.

«Interstellar» filmi

