Control Engineering TBKRT05E

Claudio De Persis

Lecture 2 ver. 1.5.2

Overview today

- Basics of modeling based on EL equations Reader, Section 1.2
- ▶ Equations of motion for simple mechanical (and electrical) systems
- State space representations

The Euler-Lagrange equation 0

Preliminary facts

- A particle is a body whose dimensions may be neglected in describing its motion
- ▶ The position of a particle in the space is defined by a vector r in \mathbb{R}^3 given by its Cartesian coordinates

$$r = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3$$

Hence to define the position of a system of N particles, we need N vectors r_1, r_2, \ldots, r_N

- ▶ The number n of independent quantities q_1, q_2, \ldots, q_n which must be specified in order to define uniquely the position of any particle is called the number of <u>degrees of freedom</u> and the quantities q_1, q_2, \ldots, q_n generalized coordinates.
- ▶ The generalized coordinates <u>need not be</u> the Cartesian coordinates of the particles and <u>n need not be</u> equal to <u>N</u> because coordinates might be constrained by relations of the form

$$f_j(r_1,\ldots,r_N)=0, \quad j=1,2,\ldots,m \qquad (n=3N-m)$$

Landau, Lifshitz (1976). Mechanics. Butterworth-Heinemann.

Example mass-spring-damper system

Mass-spring-damper system (no gravity) (Lecture 1)

$$m\ddot{q} + c(\dot{q}) + kq = F$$

 m mass k spring coefficient q cart displacement from rest pos. $c(\dot{q}) = c\dot{q}$ linear damper F external force or control acting on the mass along the direction of motion

Particle

Space

Cartesian reference

horizontal line pointing to the right with origin at the rest position of the spring

Position in space Generalized coordinate $= r = q \in \mathbb{R}$

q (in this case, same as Cartesian coordinate) n=1

no constraints

Two particles (N = 2) in \mathbb{R}^2 whose positions in the Cartesian coordinates are given by

$$r_1 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$
 $r_2 = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$

Hence a total of 4 variables define the positions of the two particles.

ightharpoonup The two particles are constrained to be at a constant distance d > 0

$$||r_1-r_2||=d$$

In this case m = 1 (number of constraints) and

$$f_1(r_1,r_2) = ||r_1 - r_2|| - d$$

The two particles are constrained to evolve on the surface

$$M = \{(r_1, r_2) \in \mathbb{R}^4 : ||r_1 - r_2|| = d\}$$

Each particle obeys Newton's equation of motion

$$m_i \ddot{r}_i = F_i + F_i^{(c)}$$
 $i = 1, 2$

where $F_i^{(c)}$, i=1,2, are forces that constrain the two particles to be at the constant distance d: they are unknown but such that the vector $\begin{bmatrix} F_1^{(c)\top} & F_2^{(c)\top} \end{bmatrix}^\top$ is orthogonal to the tangent space to M at each point.

Because of the constraint, the positions of the two particles are determined by 3 independent variables: 2 are the position variables of particle 1, and 1 is the angle θ that the vector of length d pointing from particle 1 to particle 2 forms with the horizontal axis. Hence, n=3 and

$$\begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} := \begin{bmatrix} x_1 \\ y_1 \\ \theta \end{bmatrix}$$

The position variables r_1 , r_2 and the generalized coordinates q_1 , q_2 , q_3 are related by a so-called <u>immersion formula</u>:

$$r := \frac{\begin{bmatrix} r_1 \\ r_2 \end{bmatrix}}{\begin{bmatrix} r_2 \\ q_2 \end{bmatrix}} = \frac{\begin{bmatrix} q_1 \\ q_2 \\ q_2 \end{bmatrix} + d \begin{bmatrix} \cos q_3 \\ \sin q_3 \end{bmatrix}}{\sin q_3} =: X(q)$$

For each $q \in \mathbb{R}^3$ the resulting vector r = X(q) belongs to the surface M

$$||r_1 - r_2|| = ||d \begin{bmatrix} \cos q_3 \\ \sin q_3 \end{bmatrix}|| = d((\cos q_3)^2 + (\sin q_3)^2)^{1/2} = d$$

▶ Given the point $r \in M$ with corresponding coordinates q related by r = X(q), the columns of the matrix

$$\frac{\partial X}{\partial q} = \begin{bmatrix} \frac{\partial X}{\partial q_1} & \frac{\partial X}{\partial q_2} & \frac{\partial X}{\partial q_3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & -d\sin q_3 \\ 0 & 1 & d\cos q_3 \end{bmatrix}$$

span the tangent space to the surface M at the point r.

▶ By the orthogonality of $\begin{bmatrix} F_1^{(c)\top} & F_2^{(c)\top} \end{bmatrix}^\top$ to the tangent space to M at each point, we have

$$\begin{bmatrix} F_1^{(c)\top} & F_2^{(c)\top} \end{bmatrix} \begin{bmatrix} \frac{\partial X}{\partial q_1} & \frac{\partial X}{\partial q_2} & \frac{\partial X}{\partial q_3} \end{bmatrix} = \begin{bmatrix} F_1^{(c)\top} & F_2^{(c)\top} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & -d \sin q_3 \\ 0 & 1 & d \cos q_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

which returns

$$F_1^{(c)} = -F_2^{(c)}$$
 $F_2^{(c)} \perp \begin{bmatrix} -\sin q_3 \\ \cos q_3 \end{bmatrix}$

The Euler-Lagrange equation I

► Consider Newton's equations of motion for the two particles

$$\begin{bmatrix} m_1\ddot{r}_1 \\ m_2\ddot{r}_2 \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \end{bmatrix} + \begin{bmatrix} F_1^{(c)} \\ F_2^{(c)} \end{bmatrix}$$

and multiply both sides by $\frac{\partial X}{\partial q_i}^{\top}$, i=1,2,3, to obtain

$$\frac{\partial X}{\partial q_i}^\top \begin{bmatrix} m_1 \ddot{r}_1 \\ m_2 \ddot{r}_2 \end{bmatrix} = \frac{\partial X}{\partial q_i}^\top \begin{bmatrix} F_1 \\ F_2 \end{bmatrix} \qquad \mathrm{where} \qquad \frac{\partial X}{\partial q_i}^\top \begin{bmatrix} F_1^{(c)} \\ F_2^{(c)} \end{bmatrix} = 0$$

It can be shown that

$$\frac{\partial X}{\partial q_i}^{\top} \begin{bmatrix} m_1 \ddot{r}_1 \\ m_2 \ddot{r}_2 \end{bmatrix} = \frac{d}{dt} \frac{\partial T^*}{\partial \dot{q}_i} - \frac{\partial T^*}{\partial q_i} \quad \text{where} \quad T^*(q, \dot{q}) = \frac{1}{2} (m_1 \dot{r}_1^{\top} \dot{r}_1 + m_2 \dot{r}_2^{\top} \dot{r}_2)_{\dot{r} = \frac{\partial X}{\partial q} \dot{q}}$$

Assume that the forces $F_i(r)$ are given by the gradient of a potential function $\hat{V}(r)$

$$F_i(r) = -\frac{\partial \hat{V}(r)}{\partial r_i}$$
 $i = 1, 2$

Then $\hat{V}(r)$ in the q-coordinates $V(q) = \hat{V}(r)|_{r=X(q)}$ satisfies (chain rule)

$$\frac{\partial V}{\partial q_i} = \frac{\partial \hat{V}}{\partial r} \bigg|_{r=X(r)}^{r} \frac{\partial X}{\partial q_i} = -\begin{bmatrix} F_1^{\top} & F_2^{\top} \end{bmatrix} \frac{\partial X}{\partial q_i}$$

The Euler-Lagrange equation I

From Newton's equations of motion, we obtained

$$\frac{\partial X}{\partial q_i}^{\top} \begin{bmatrix} m_1 \ddot{r}_1 \\ m_2 \ddot{r}_2 \end{bmatrix} = \frac{\partial X}{\partial q_i}^{\top} \begin{bmatrix} F_1 \\ F_2 \end{bmatrix} \qquad i = 1, 2, 3$$

where

$$\frac{\partial X}{\partial q_i}^{\top} \begin{bmatrix} m_1 \ddot{r}_1 \\ m_2 \ddot{r}_2 \end{bmatrix} = \frac{d}{dt} \frac{\partial T^*}{\partial \dot{q}_i} - \frac{\partial T^*}{\partial q_i}$$

and

$$\frac{\partial V}{\partial q_i} = \left. \frac{\partial \hat{V}}{\partial r} \right|_{r=X(q)}^{\top} \frac{\partial X}{\partial q_i} = - \begin{bmatrix} F_1^{\top} & F_2^{\top} \end{bmatrix} \frac{\partial X}{\partial q_i}$$

Hence

$$\frac{d}{dt}\frac{\partial T^*}{\partial \dot{a}_i} - \frac{\partial T^*}{\partial a_i} + \frac{\partial V}{\partial a_i} = 0 \qquad i = 1, 2, 3$$

▶ Define the Lagrangian function $L(q, \dot{q}) = T^*(q, \dot{q}) - V(q)$. Then

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0 \qquad i = 1, 2, 3$$

which are the so-called Euler-Lagrangian function.

You can use these equations to derive the equations of motions of the 2 particles constrained to evolve at a constant distance and subject to conservative forces.

Example unforced mass-spring system

Mass-spring-damper system (no gravity)

Lagrangian function

$$m\ddot{q}+c(\dot{q})+kq=F$$
 m mass k spring coefficient q cart displacement from rest pos. $c(\dot{q})=0$ (no damper) $\overline{F}=0$ no external force or control acting on the mass along the direction of motion

$$L(q, \dot{q}) = \frac{1}{2}m\dot{q}^2 - \frac{1}{2}kq^2 \ (q \in \mathbb{R}, \ n = 1)$$

$$\frac{\partial L}{\partial \dot{q}} = m\dot{q} \ \Rightarrow \ \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}}\right) = m\ddot{q}$$

$$\frac{\partial L}{\partial g} = -kq$$

The force exerted by the spring on the mass is -kq, which is a conservative force as it can be expressed as the derivative (gradient) of a potential function V(q)

$$-kq = -\frac{dV}{dq}$$
 \Rightarrow $V(q) = k\frac{q^2}{2}$ $(V(0) = 0)$

The EL equations in the presence of external forces

External forces

- Controls u and external disturbances d
- Dissipation

To take into account the action of these non-conservative forces, the Lagrangian is modified as

$$L_{NC}(q,\dot{q}) = L(q,\dot{q}) + (Bu+d)^{\top}q + \int_0^t \mathcal{D}(\dot{q}(s))ds$$

where

▶ Bu+d is an n-dimensional vector (with $B \in \mathbb{R}^{n \times m}$ a full-column rank matrix) obtained by projecting the non-conservative forces $F_{NC} \in \mathbb{R}^N$ in the Cartesian coordinates onto the tangent space to M, that is

$$(Bu+d)_i := F_{NC}^{\top} \frac{\partial X}{\partial q_i} \quad i=1,2,\ldots,n$$

 $ightharpoonup \mathcal{D}(\dot{q})$ is the so-called Rayleigh dissipation function, which by definition satisfies

$$\dot{q}^{\top} \frac{\partial \mathcal{D}}{\partial \dot{q}} = \sum_{i=1}^{n} \dot{q}_{i} \frac{\partial \mathcal{D}}{\partial \dot{q}_{i}} \geq 0, \quad \text{for all } \dot{q} \in \mathbb{R}^{n}$$

In most of the practical cases (linear friction or constant resistances)

$$\mathcal{D}(\dot{q}) = \frac{1}{2}\dot{q}^{\top}R\dot{q} = \sum_{i=1}^{n}\frac{1}{2}R_{i}\dot{q}_{i}^{2}, \quad R \geq 0 \text{ and diagonal}$$

Ortega, R et al (1998). Passivity-based control of Euler-Lagrange systems, Springer-Verlag.

The Euler-Lagrange equations in the presence of external forces

Modified Lagrangian

$$L_{NC}(q,\dot{q}) = L(q,\dot{q}) + (Bu+d)^{\top}q + \int_0^t \mathcal{D}(\dot{q}(s))ds$$

As a result, the EL equations become

$$\frac{d}{dt} \left(\frac{\partial L_{NC}}{\partial \dot{q}_{i}} \right) - \frac{\partial L_{NC}}{\partial q_{i}} \stackrel{(*)}{=} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{i}} + \int_{0}^{t} \frac{\partial \mathcal{D}(\dot{q})}{\partial \dot{q}_{i}} ds \right) - \left(\frac{\partial L}{\partial q_{i}} + (Bu + d)_{i} \right) \\
= \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{i}} \right) + \frac{\partial \mathcal{D}(\dot{q})}{\partial \dot{q}_{i}} - \left(\frac{\partial L}{\partial q_{i}} + (Bu + d)_{i} \right) \\
= 0, \quad i = 1, \dots, n$$

that is

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) - \frac{\partial L}{\partial q_i} + \frac{\partial \mathcal{D}(\dot{q})}{\partial \dot{q}_i} = (Bu)_i + d_i, \quad i = 1, \dots, n$$

(*) Let
$$c = Bu + d$$
; then $(Bu + d)^{\top}q = c^{\top}q = \sum_{j=1}^{n}c_{j}q_{j}$. Hence

$$\frac{\partial (Bu+d)^{\top} q}{\partial q_i} = \frac{\partial \sum_{j=1}^n c_j q_j}{\partial q_i} = c_i = (Bu+d)_i$$

Example mass-spring-damper system

Mass-spring-damper system (no gravity)

$$\begin{array}{c|c}
 & q \\
\hline
 & c(\dot{q}) \\
\hline
 & m \\
\hline
 & k
\end{array}$$

$$m\ddot{q}+c(\dot{q})+kq=F$$
 m mass k spring coefficient q cart displacement from rest pos. $c(\dot{q})=c\dot{q}$ linear damper F external force or control acting on the mass along the direction of motion

$$L(q,\dot{q}) = \frac{1}{2}m\dot{q}^2 - \frac{1}{2}kq^2 \ (q \in \mathbb{R}, \ n = 1)$$

Modified Lagrangian

$$L_{NC}(q, \dot{q}) = L(q, \dot{q}) + (Bu + d)^{\top}q + \int_{0}^{t} \mathcal{D}(\dot{q}(s))ds$$

$$(Bu + d)^{\top}q = (1 \cdot F + 0)q = Fq$$
(work done by F to cause displ. q)

$$\mathcal{D}(\dot{q}) = \frac{1}{2}c\dot{q}^2$$

Example mass-spring-damper system

Mass-spring-damper system (no gravity)

$$m\ddot{q} + c(\dot{q}) + kq = F$$

 m mass
 k spring coefficient
 q cart displacement from rest pos.
 $c(\dot{q}) = c\dot{q}$ linear damper
 F external force or control acting on the mass along the direction of motion

$$L_{NC}(q,\dot{q}) = \frac{1}{2}m\dot{q}^{2} - \frac{1}{2}kq^{2} + Fq + \int_{0}^{t} \frac{1}{2}c\dot{q}^{2}(s)ds$$

$$\downarrow \downarrow$$

$$\frac{d}{dt}\left(\frac{\partial L_{NC}(q,\dot{q})}{\partial \dot{q}}\right) = \frac{d}{dt}\left(m\dot{q} + \int_{0}^{t}c\dot{q}(s)ds\right) = m\ddot{q} + c\dot{q}$$

$$\frac{\partial L_{NC}(q,\dot{q})}{\partial q} = -kq + F$$

Hence $0 = m\ddot{q} + c\dot{q} - (-kq + F)$, which is $m\ddot{q} + c\dot{q} + kq = F$

The Euler-Lagrange equation II

To recap, the approach to modeling adopted here rests on the use of the **Euler-Lagrange equations** of motion

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) - \frac{\partial L}{\partial q_i} = (Bu)_i + d_i, \qquad i = 1, \dots, n.$$

where

- n is the number of degrees of freedom
- L is the Lagrangian function

$$L(q,\dot{q}) = T^*(q,\dot{q}) - V(q)$$

- $ightharpoonup T^*(q,\dot{q})$ is the total kinetic (co-)energy
- \triangleright V(q) is the total **potential energy**
- ▶ $(Bu)_i + d_i$ are the non-conservative forces (control + disturbances) acting on the system (the force F_i may also be 0).

Euler-Lagrange equations III

The Euler-Lagrange equations can be derived following these steps:

- 1. Identify a generalized displacement vector $q \in \mathbb{R}^n$ (basic independent variables of the physical components)
- 2. Determine the kinetic co-energy $T^*(q, \dot{q})$ and the potential energy V(q) associated with elements respectively
- 3. Determine the Lagrangian function $L(q,\dot{q})=T^*(q,\dot{q})-V(q)$
- 4. Differentiate $L(q, \dot{q})$ with respect to q_i and \dot{q}_i
- 5. Write the EL equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) - \frac{\partial L}{\partial q_i} = F_i, \quad i = 1, \dots, n.$$

Euler-Lagrange equations IV

Euler-Lagrange equations can be written in compact (matrix) form

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} + \frac{\partial \mathcal{D}}{\partial \dot{q}} = F,$$

where

$$\frac{\partial L}{\partial \dot{q}} = \begin{pmatrix} \frac{\partial L}{\partial \dot{q}_1} \\ \vdots \\ \frac{\partial L}{\partial \dot{q}_n} \end{pmatrix}, \quad \frac{\partial L}{\partial q} = \begin{pmatrix} \frac{\partial L}{\partial q_1} \\ \vdots \\ \frac{\partial L}{\partial q_n} \end{pmatrix}, \quad \frac{\partial D}{\partial \dot{q}} = \begin{pmatrix} \frac{\partial D}{\partial \dot{q}_1} \\ \vdots \\ \frac{\partial D}{\partial \dot{q}_n} \end{pmatrix} \quad F = \begin{pmatrix} F_1 \\ \vdots \\ F_n \end{pmatrix}$$

and the derivation operator $\frac{d}{dt}$ is applied component-wise

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) = \begin{pmatrix} \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_1}\right) \\ \vdots \\ \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_n}\right) \end{pmatrix}$$

Example mass-spring-damper system

Autonomous or unforced system (no external force on the system) (Lecture 1)

 $m\ddot{q} + c(\dot{q}) + kq = F$ m mass k spring coefficient q cart displacement from rest pos. F external force or control acting on the mass along the direction of motion

Equations obtainable via

$$\begin{array}{ccc} \mathrm{EL\ equations} & \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} + \frac{\partial \mathcal{D}}{\partial \dot{q}} = F \\ & \mathrm{Kinetic\ (co\text{-})energy\ (mass)} & T^*(\dot{q}) = \frac{1}{2}m\dot{q}^2 \\ & \mathrm{Potential\ energy\ (spring)} & E(q) = \frac{1}{2}kq^2 \\ & \mathrm{Rayleigh\ dissipation\ function} & \mathcal{D}(\dot{q}) = \frac{1}{2}c\dot{q}^2 \\ & \mathrm{Lagrangian\ function} & L(q,\dot{q}) = T^*(\dot{q}) - E(q) \end{array}$$

19 / 38

Linear Euler-Lagrange systems

The mass-spring system is a special case of an **ideal linear system** (Reader, Section 1.2.2) for which the kinetic (co-)energy is

$$T^*(\dot{q}) = \frac{1}{2} \, \dot{q}^T M \dot{q}$$

with $M \ge 0$ ($M \ n \times n$ mass inertia matrix). Often M > 0. Also, for the potential energy, we often have

$$V(q) = \frac{1}{2} q^T Q q,$$

with $Q \ge 0$.

▶ <u>Definition</u> An $n \times n$ symmetric matrix M is <u>positive semidefinite</u>, denoted as $M \ge 0$, if

$$x^T M x \ge 0$$
, for all $x \in \mathbb{R}^n$

▶ <u>Definition</u> An $n \times n$ symmetric matrix M is <u>positive definite</u>, denoted as M > 0, if

$$x^T M x > 0$$
, for all $x \in \mathbb{R}^n$ such that $x \neq 0$

Linear Euler-Lagrange systems

The mass-spring system is a special case of an **ideal linear system** for which the kinetic (co-)energy is

$$T^*(\dot{q}) = \frac{1}{2} \, \dot{q}^T M \dot{q}$$

with $M \ge 0$ ($M \ n \times n$ mass inertia matrix). Often M > 0. Also, for the potential energy, we often have

$$V(q) = \frac{1}{2} q^T Q q,$$

with $Q \ge 0$.

- An $n \times n$ symmetric matrix M is positive semidefinite if and only if all its eigenvalues are non-negative and at least one is equal to zero.
- An $n \times n$ symmetric matrix M is positive definite if and only if all its eigenvalues are positive

Linear Euler-Lagrange systems

The Lagrangian function is

$$L_{NC}(q,\dot{q}) = rac{1}{2}\,\dot{q}^{T}M\dot{q} - rac{1}{2}\,q^{T}Qq + (Bu+d)^{T}q + \int_{0}^{t}rac{1}{2}\dot{q}(s)^{T}C\dot{q}(s)ds$$

with $M, Q, C \geq 0$.

The Euler-Lagrange equation becomes (Tutorial 1, Exercise 3, for the calculations when n=2) :

$$0 = \frac{d}{dt} \left(M\dot{q} + \int_0^t C\dot{q}(s)ds \right) - \left(-Qq + Bu + d \right)$$

= $M\ddot{q} + C\dot{q} + Qq - (Bu + d)$

that is

$$M\ddot{q} + C\dot{q} + Qq = Bu + d$$

Example: 1 DOF robot manipulator I

Frictionless robot manipulator schematically:

Example: 1 DOF robot manipulator II

Cartesian coordinates
$$r = \begin{bmatrix} z \\ X \end{bmatrix}$$
; generalized coordinate $q = \theta$

$$\text{Immersion function } \begin{bmatrix} z \\ X \end{bmatrix} = \ell \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} =: X(q)$$

Kinetic energy $T^*(\dot{r}) = \frac{1}{2}m(\dot{z}^2 + \dot{x}^2)$. In the generalized coordinates it becomes

$$T^*(\dot{q}) = T^*(\dot{r})|_{\dot{r} = \frac{\partial X}{\partial q}\dot{q}} = \frac{1}{2}M\dot{q}^2, \quad \text{with } M = m\ell^2$$

The gravity force $F(r) = \begin{bmatrix} mg \\ 0 \end{bmatrix}$ is a conservative force because

$$F(r) = -\frac{\partial \hat{V}}{\partial r}$$
, with $\hat{V}(r) = -mgz$

In the generalized coordinates it becomes $V(q) = \hat{V}(r)|_{r=X(q)} = -mg\ell\cos\theta$

Hence,
$$L(q,\dot{q})=T^*(\dot{q})-V(q)=rac{1}{2}M\dot{q}^2+mg\ell\cos heta$$
 and

$$0 = \frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = M\ddot{q} - (-mg\ell\sin\theta) = M\ddot{q} + mg\ell\sin\theta$$

Example: 1 DOF robot manipulator II

Euler-Lagrange equations in the presence of non-conservative forces F_{NC}

▶ Denote by u the projection of the non-conservative force $F_{NC} \in \mathbb{R}^2$ in the Cartesian coordinates onto the tangent space to M, that is

$$u := F_{NC}^{\top} \frac{\partial X}{\partial q}$$

See next slide for an explicit expression of \boldsymbol{u} and its geometric interpretation.

The modified Lagrangian function L_{NC} can then be written as:

$$L_{NC}(q, \dot{q}) = L(q, \dot{q}) + uq = \frac{1}{2}M\dot{q}^2 + mg\,\ell\cos(q) + uq$$

and the Euler-Lagrange equations become

$$0 = \frac{d}{dt}M\dot{q} - (-mg\ell\sin(q) + u)$$

that is,

$$M\ddot{q} + mg\ell\sin(q) = u$$

▶ 2 DOF (degree of freedom) robot manipulator in reader. Calculate T^* expressing kinetic (co-)energy $T^*(v) = \frac{1}{2} \sum_{i=1,2} m_i v_i^2$ in terms of the generalized displacement vector $q = (\theta_1, \theta_2)$ and its derivative \dot{q} . It is a useful exercise.

Example: 1 DOF robot manipulator II

Physical interpretation of u. Recall that $(Bu+d)_i:=F_{NC}^\top \frac{\partial X}{\partial q_i}$, $i=1,2,\ldots,n$ (for this example, n=1 and d=0)

$$\begin{split} r &= \begin{bmatrix} z & x \end{bmatrix}^\top \in \mathbb{R}^2, \ q = \theta \in \mathbb{R} \\ F_{NC} &= \begin{bmatrix} F_z & F_x \end{bmatrix}^\top \in \mathbb{R}^2 \\ \text{Immersion function } \begin{bmatrix} z \\ x \end{bmatrix} = \ell \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} =: X(q) \\ \text{In this case } n = 1, \ B = 1, \ d = 0 \ \text{and } u \ \text{is} \end{split}$$

$$u = \begin{bmatrix} F_z & F_x \end{bmatrix} \ell \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$
$$= \ell (-F_z \sin \theta + F_x \cos \theta)$$

which is the non-conservative force (the input) acting on the pendulum along the direction of the tangent space (which in this case is a line) at each point of the surface (the circle or radius ℓ) where the motion is evolving — see figure on the left

Example: RLC circuit

"Particle"

"Position in space"

the electron

 $q \in \mathbb{R}$ is the electric charge (transported by the current $i = \dot{q}$ in the circuit in a period of time)

Magnetic energy of the inductor

Electrical energy of the capacitor

Rayleigh function associated to the resistor

 $= T^*(\dot{q}) = \frac{1}{2}L\dot{q}^2$

 $E(q) = \frac{1}{2} \frac{1}{C} q^2$

 $= \mathcal{D}(\dot{q}) = \frac{1}{2}R\dot{q}^2$

Energy required to move charge q through potential V

qV

Example: RLC circuit

$$L_{NC}(q,\dot{q}) = rac{1}{2}L\dot{q}^2 - rac{1}{2}rac{1}{C}q^2 + qV + \int_0^t rac{1}{2}R\dot{q}(s)^2ds$$

RLC circuit dynamic equations - EL systems with dissipation

$$0 = \frac{d}{dt} \left(L\dot{q} + \int_0^t R\dot{q}(s)ds \right) - \left(-\frac{1}{C}q + V \right) \ \Rightarrow \ L\ddot{q} + R\dot{q} + \frac{1}{C}q = V$$

Remarks

▶ How EL modelling works for general electrical circuits is explained in the reader. Reading assignment: Chapter 1. Section 1.2 is the most important.

There is a systematic way to convert an *n*th order linear differential equation

$$\frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \ldots + a_n y = u$$

where

- t is the time variable
- y is the output variable
- u is the is the input variable
- ▶ $a_1, \ldots, a_n \in \mathbb{R}$ are constant parameters
- $ightharpoonup \frac{d^iy}{dt^i}$ denotes the *i*th derivative wrt time

into a system of first order linear differential equations.

Example Mass-spring-damper system $m\ddot{q} + c\dot{q} + kq = F$ is a special case of the system above, with y = q, n = 2, $a_1 = \frac{c}{m}$,

$$a_2 = \frac{k}{m}$$
, $u = \frac{F}{m}$ (recall the notation $\frac{dq}{dt} = \dot{q}$, $\frac{d^2q}{dt^2} = \ddot{q}$).

The *n*th order differential equation

$$\frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \ldots + a_n y = u$$

can be written as a Linear Time Invariant (LTI) system, that is, a system of n linear differential equations of the first order (derivative of order 1).

Set

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} \frac{d^{n-1}y}{dt^{n-1}} \\ \frac{d^{n-2}y}{dt^{n-2}} \\ \vdots \\ \frac{dy}{dt} \\ y \end{pmatrix}$$

The *n*th order differential equation

$$\frac{d^{n}y}{dt^{n}} + a_{1}\frac{d^{n-1}y}{dt^{n-1}} + \dots + a_{n}y = u \quad (*)$$

$$\dot{x}_{1} = \frac{d}{dt}\frac{d^{n-1}y}{dt^{n-1}} = \frac{d^{n}y}{dt^{n}}$$

$$\stackrel{(*)}{=} -a_{1}\frac{d^{n-1}y}{dt^{n-1}} - \dots - a_{n}y + u$$

$$= -a_{1}x_{1} - \dots - a_{n}x_{n} + u$$

$$\Rightarrow \dot{x}_{2} = \frac{d}{dt}\frac{d^{n-2}y}{dt^{n-2}} = \frac{d^{n-1}y}{dt^{n-1}} = x_{1}$$

$$\vdots \\
\dot{y} \qquad \dot{x}_{n} = \dot{y} = \frac{dy}{dt} = x_{n-1}$$

$$y = x_{n}$$

Then

$$\dot{x} = \frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} -a_1 x_1 - \dots - a_n x_n \\ x_1 \\ \vdots \\ x_{n-2} \\ x_{n-1} \end{pmatrix} + \begin{pmatrix} u \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad y = x_n$$

or,

$$\dot{x} = \begin{pmatrix}
-a_1 & -a_2 & \dots & -a_{n-1} & -a_n \\
1 & 0 & \dots & 0 & 0 \\
0 & 1 & \dots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \dots & 1 & 0
\end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} u$$

$$y = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \end{pmatrix} x$$

which is the familiar system $\dot{x} = Ax + Bu$, y = Cx + Du (D = 0)

Example: mass-spring-damper system

$$m\ddot{q} + c\dot{q} + kq = F$$

 m mass
 k spring coefficient
 q cart displacement from rest pos.
 F external force

Define **output**
$$y(t) = q(t)$$
, **input** $u(t) = F(t)$, **states** $x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} q(t) \\ \dot{q}(t) \end{bmatrix}$. Then
$$\dot{x}(t) = \underbrace{\begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix}}_{A} x(t) + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{B} u(t)$$
 $y(t) = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{A} x(t)$

The state space representation is not unique and different choices of coordinates lead to a different state space representation. For instance what state representation is obtained if one sets

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} y \\ \frac{dy}{dt} \\ \vdots \\ \frac{d^{n-2}y}{dt^{n-2}} \\ \frac{d^{n-1}y}{dt^{n-1}} \end{pmatrix}$$
?

Other examples in Tutorial 2.

We will see in one of the next lectures that these state space models are equivalent.

For a more detailed discussion on the canonical forms of linear systems, read A.D. Lewis, "A Mathematical Approach to Classical Control", Section 2.5

State space systems - Examples

Analogous state space representations can be found also for some nonlinear systems that we considered.

1 DOF robot manipulator $M\ddot{q} + mgl\sin(q) = F$

This is a second-order non-linear o.d.e. that can be transformed in the state space form. Define the state, input and output variables

$$x_1=q, \quad x_2=\dot{q}, \quad u=F, \quad y=q.$$

Then the state space equations are (recall that $M = ml^2$)

$$\frac{d}{dt}\underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{x} = \underbrace{\begin{pmatrix} x_2 \\ -\frac{mg \, l}{ml^2} \sin x_1 \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{ml^2} \end{pmatrix} u}_{f(x,u)}$$

$$y = \underbrace{\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{h(x)}$$

Today

- ▶ Basic facts about Euler-Lagrange modeling
- ► Examples of mechanical, electrical systems
- Linear and nonlinear systems in state space

Next

Reading assignment

Chapter 2 of the textbook for additional information on modelling Chapter 1 of the reader for the Euler-Lagrange equations