Übung zur Vorlesung Physik für ET/IT und IKT Prof. Dr. H. Wipf

Sommersemester 2004 Übungsblatt 9

Aufgabe 9.1 (mögliche Präsenzaufgabe)

Die Temperatur T_1 eines Zimmers wird durch Heizen auf die Temperatur T_2 erhöht. Um welchen Wert ändert sich dadurch die gesamte kinetische Translationsenergie E_k der Luftmoleküle innerhalb des Zimmers?

Aufgabe 9.2 (mögliche Präsenzaufgabe)

Eine mit Strom betriebene Kompressor-Wärmepumpe mit (idealem Carnotschen Wirkungsgrad η_{WP} wird zum Heizen eines Hauses benutzt. Dazu soll Wasser mit der Temperatur $T=40\,^{\circ}$ C in die Rohre einer Fußbodenheizung geleitet werden, wo dann pro Zeiteinheit die Wärme $\dot{q}=3\,\mathrm{kW}$ zum Heizen abgegeben wird. Ein Teil dieser Wärme wird von der Außenluft genommen (Fachausdruck "gestohlen").

- a) Welche Leistung P_1 muss der Kompressor aufbringen, wenn die Temperatur der Ausßenluft $T_1 = 5$ °C beträgt?
- b) Welche Leistung P_2 muss de Kompressor bei einer Außentemperatur $T_1 = 20\,^{\circ}$ C leisten? Lohnt sich dann noch einer energetisch betrachtet der Einsatz der Wärmepumpe, wenn zur Stromerzeugung fossile Energieträger (Kohle, Erdöl, Erdgas) verwendet werden und für die Stromerzeugung der Vergleichsweise hohe Wirkungsgrad $\eta_{Strom} = 0,4$ angenommen wird?

Aufgabe 9.3 (mögliche Präsenzaufgabe)

Welcher Wert müsste die Masse m zweier positiver (oder negativer) Elementarladungen $e = 1,602 \cdot 10^{19}$ As haben, wenn die anziehende Gravitatonwechselwirkung die abstoßende Coulombwechselwirkung gerade kompensieren soll? Wie verhält sich die Masse m zur Masse eines Elektrons ($m_e = 9,11 \cdot 10^{31}$ kg)?

Aufgabe 9.4

Wasser habe die spez. Wärmekapazität $C=4,18\,\mathrm{J/(g\cdot K)}$ und die Dichte $\rho=1\,\mathrm{g/cm^3}$. Wegen der geringen thermischen Ausdehnung kann der Unterschied zwischen der Wärmekapazität bei konstantem Volumen und bei konstantem Druck vernachlässigt werden; ebenso sei die Temperaturabhängigkeit der Wärmekapazität und der Dichte vernachlässigt. Für die Beantwortung der folgenden Frage sollen Änderungen der Entropie S mit Hilfe der Entropiedefinition $dS=\delta Q/T$ berechnet werden, wobei δQ eine (infinitesimal kleine) zugefÄijhrte Wärme ist.

- a) Um welchen Wert S_{12} ändert sich die Entropie von Wasser mit dem Volumen $V_0=1$ l, wenn das Wasser von $T_1=20\,^{\circ}$ C auf $T_2=80\,^{\circ}$ C erwärmt wird?
- b) Ineinem Dewar befindet sich Wasser mit der Temperatur $T_1=20\,^{\circ}\text{C}$ und dem Volumen $V_1=41$ (das Dewar verhindert eine Wärmeabgabe an die Umgebung, deine Wärmekapazität soll hier vernachlässigt werden). Es wird heißes Wasser mit der Temperatur $T_2=80\,^{\circ}\text{C}$ und dem Volumen $V_2=21$ dazugegeben. Welchen Wert hat die Mischtemperatur T_M ?
- c) Um welchen Wert ΔS erhöht sich die Entropie der Welt durch diese Mischung?

Übung zur Vorlesung Physik für ET/IT und IKT

Name, Vorname:	Matrikelnummer: பபபபபட

Aufgabe 9.5

Die Temperatur der Sonnenoberfläche beträgt $T_S = 6000$ °C. Welche Temperatur T_E erwartet man damit für die Erde unter folgenden Annahmen:

- Erde und Sonne sind schwarze Strahler.
- Die Erde habe eine Homogene Temperatur (z.B. kein Unterschied Tag-Nacht)
- Ratioaktive und alle sonstigen Prozesse, die eine zusätzliche Erwärmung der Erde bewirken, sind zu vernachlässigen.
- Der Sonnenradius beträgt $R_S = 6,96 \cdot 10^6 \,\mathrm{m}$.
- Der Abstand der Erde von der Sonne beträgt $a=1,495\cdot 10^{11}\,\mathrm{m}$

Aufgabe 9.6

Auf der X-Achse eines kartesischen Koordinatensystems befindet sich an der Stelle $x_1 = -a$ die negative Punktladung $Q_1 = -Q$ und an der Stelle $x_2 = +a$ die positive Ladung $Q_2 = +Q$.

- a) Berechnen Sie das elektrisch Feld E_1 längs der X-Achse als Funktion von x und das elektrische Feld E_2 längs der Y-Achse als Funktion von y. In welcher Richtung zeigen die Felder?
- b) Welche Abhängigkeit von x bzw. y haben E_1 und E_2 für die Grenzfällte $x \gg a$ und $y \gg a$? Es handelt sich hierbei um das "Fernfeld eines elektrischen Dipols" mit dem Dipolmoment 2aQ.