Électrocinétique – chapitre 2

TD entraînement : circuits électriques

Diviseur de tension

1) Écrire la loi des mailles pour le montage ci-contre et en déduire l'expression de l'intensité du courant $I(R_2)$ qui parcourt cette maille. En déduire l'expression de la tension U_{BC} , aux bornes de la résistance R_1 .

On ajoute une résistance R_3 qui sera connectée en parallèle avec la résistance R_1 .

2) Est-ce que la valeur de la tension U_{BC} calculée à la question précédente va changer? Si oui, calculer les nouvelles valeurs de U_{BC} et $I(R_2)$.

II | Diviseur de courant

- 1) Exprimer les tensions aux bornes de R_1 et R_2 dans le montage ci-contre.
- 2) À partir de la loi des mailles, exprimer $I(R_2)$ en fonction de I, R_1 et R_2 .

On ajoute une résistance R_3 qui sera connectée en parallèle avec la résistance R_1 .

- 3) Faire un schéma. Est-ce que la valeur de l'intensité $I(R_2)$ va changer? Si oui, donner sa nouvelle expression.
- 4) Est-ce que la valeur de l'intensité délivrée par le générateur va changer? Si oui, donner sa nouvelle expression.

III Calcul d'intensité

- 1) En utilisant les lois fondamentales dans l'ARQS (dites lois de Kirchhoff), exprimer l'intensité traversant R dans le circuit ci-contre.
- 2) Faire de même avec un pont diviseur de courant d'une part.
- 3) Faire de même avec un diviseur de tension d'autre part.

IV Pont de Wheatstone

En électronique, on réalise régulièrement des ponts de mesure pour mesurer indirectement une résistance. On dispose d'un circuit comprenant un générateur de tension qui alimente un pont de Wheatstone composé des résistances R_1 et R_2 . La résistance R_i est inconnue, et la résistance R est variable (il s'agit d'un

1) potentiomètre). On fait évoluer R jusqu'à ce que le voltmètre Eindique une tension nulle. Le pont est alors équilibré.

À l'aide des lois de Kirchhoff, déterminer l'expression de la valeur de R_i en fonction des valeurs des autres résistances lorsque le pont est équilibré.

