We Claim:

1. A compound of Formula I:

$$R^1$$
 N
 R^2
 R^3
 R^3

5 where:

15

20

 R^1 is $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_1-C_6$ alkyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkenyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkynyl) or C_3-C_7 cycloalkyl, each optionally substituted with up to three groups independently selected from halo, hydroxy, thiol, cyano, trifluoromethyl, trifluoromethoxy, C_1-C_7 alkoxy, C_3-C_7 cycloalkoxy, oxo, and NR^4R^5 , biphenyl optionally

$$\mathbb{R}^{6}$$
 \mathbb{X}^{10} or \mathbb{R}^{8} \mathbb{R}^{9} ;

10 substituted with halo, hydrogen,

 R^2 is C_1 - C_3 alkyl, benzyl optionally monosubstituted in the phenyl ring with a substituent selected from the group consisting of halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, or benzyl optionally disubstituted in the phenyl ring with a first substituent independently selected from halo and a second substituent independently selected from halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl;

R³ is:

i) a piperidin-2-yl moiety of formula:

ii) a tetrahydropyridin-2-yl moiety of formula:

iii) a piperazin-2-yl moiety of formula:

iv) homopiperidin-2-yl;

5 v) 1,2,3,4-tetrahydroisoquinolin-3-yl optionally substituted with one or two substituents selected from halo, C₁-C₆ alkyl, and C₁-C₆ alkoxy;

vi) 2-azabicyclo[2.2.2]oct-(5Z)ene-3-yl;

vii) 2-azabicyclo[2.2.1]hept-3-yl optionally substituted with C_1 - C_{10} alkyl optionally substituted with C_1 - C_4 alkoxy; or

viii) 2-azabicyclo[2.2.2]oct-3-yl optionally substituted with oxo, or optionally substituted with one or two substituents independently selected from hydroxy, fluoro, and C_1 - C_6 alkyl;

X is CH, N, or N⁺-O⁻;

Y is CR¹¹, N, or N⁺-O⁻;

15 $Q \text{ is } CR^{12}, N, \text{ or } N^+-O^-;$

20

 R^4 is hydrogen, C_1 - C_6 alkyl optionally substituted up to three times with fluoro, or phenyl;

 R^5 is hydrogen, C_1 - C_6 alkyl optionally substituted up to three times with fluoro, phenyl, $-C(O)(C_1$ - C_6 alkyl optionally substituted up to three times with fluoro), or $-SO_2(C_1$ - C_6 alkyl optionally substituted up to three times with fluoro);

R⁶ and R⁷ are independently selected from the group consisting of methyl, ethyl, and propyl;

 R^8 is hydrogen or C_1 - C_6 alkyl;

R⁹ is C₃-C₅ cycloalkyl, sec-butyl, or -CH₂R¹³;

10

 R^{10} is $-CF_2R^{14}$, $-OR^{15}$, $-CH_2C(O)CH_3$, $-S(O)_{1-2}R^{16}$, $-NR^{17}SO_2R^{18}$, $(C_1-C_3$ alkoxy)-carbonyl, phenyl optionally substituted with halo, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,1-dioxo-2,3,4,5-tetrahydroisothiazol-2-yl, or tetrazol-5-yl optionally substituted with C_1-C_3 alkyl;

R¹¹ is hydrogen, chloro, isobutyl, CH₂R¹⁹; CF₂R²⁰, 1,1,1-trifluoro-2-hydroxyeth-2-yl, C₂-C₄ alkenyl optionally substituted with one or two fluorine atoms, OR²¹, C(O)R²², N(methyl)(methylsulfonyl), N(methyl)(acetyl), pyrrolidin-2-on-1-yl, methylsulfonyl, N,N-dimethylaminosulfonyl, phenyl optionally substituted with one or two substituents selected from the group consisting of hydroxymethyl, methoxy, fluoro, and methylsulfonyl, 1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, pyridinyl, thiazolyl, oxazolyl, or 1,2,4-oxadiazolyl optionally substituted with methyl;

R¹² is hydrogen or fluoro;

R¹³ is ethynyl or cyclopropyl;

15 R¹⁴ is hydrogen or methyl;

R¹⁵ is difluoromethyl or methanesulfonyl:

R¹⁶ is C₁-C₄ alkyl, C₃-C₆ cycloalkyl, phenyl, or -NR²⁵R²⁶;

 R^{17} is hydrogen, C_1 - C_3 alkyl optionally substituted with up to 3 fluorine atoms, or C_3 - C_6 cycloalkyl;

20 R^{18} is C_1 - C_3 alkyl or C_3 - C_6 cycloalkyl;

R¹⁹ is fluoro, hydroxy, or C₁-C₃ alkoxy;

R²⁰ is hydrogen, phenyl, or furyl;

R²¹ is C₁-C₃ alkyl optionally substituted with one or two fluorine atoms;

R²² is C₁-C₃ alkyl, C₃-C₅ cycloalkyl, C₂-C₃ alkenyl, C₁-C₃ alkoxy, NR²³R²⁴,

25 pyrrolidin-1-yl optionally substituted with methyl or one or two fluorine atoms, piperidin-1-yl, phenyl, pyridinyl, or furyl;

R²³ is hydrogen or methyl;

R²⁴ is methyl, ethyl, or propyl;

R²⁵ is hydrogen or methyl;

 R^{26} is methyl; or

R²⁵ and R²⁶ taken together with the nitrogen atom to which they are attached form a pyrrolidine or piperidine ring;

10

15

20

25

R²⁹ is hydrogen or C₁-C₆ alkyl;

R³⁰ is hydrogen or C₁-C₆ alkyl;

 R^{29} and R^{30} taken together with the carbon to which they are attached form a C_3 - C_6 cycloalkyl ring;

 R^{31} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, or phenyl optionally monosubstituted with C_1 - C_6 alkyl;

 R^{32} is hydrogen, R^{33} , or $-(CH_2)_{0-2}$ - OR^{33} ;

 R^{33} is C_1 - C_{10} alkyl optionally substituted with 1-6 fluorine atoms, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, or - $(CH_2)_{0-3}$ - R^{34} ;

 R^{34} is C_3 - C_7 cycloalkyl or phenyl each optionally substituted with one or two substitutents independently selected from the group consisting of halo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, trifluoromethyl, and trifluoromethoxy, thienyl optionally substituted with halo, benzothienyl optionally substituted with halo, thiazolyl optionally substituted with C_1 - C_4 alkyl, or adamantyl;

 $R^{35} is \text{-}(CH_2)_{0\text{-}6}\text{-}R^{34}, \text{-}C(O)\text{-}(CH_2)_{0\text{-}6}\text{-}R^{34}, \text{-}C(O)\text{-}(C_1\text{-}C_{10} \text{ alkyl}), \text{-}C(O)\text{-}(C_1\text{-}C_4 \text{ alkoxy optionally substituted with phenyl}), $C_1\text{-}C_{10}$ alkyl optionally substituted with $1\text{-}6$ fluorine atoms, $C_2\text{-}C_{10}$ alkenyl, or $C_2\text{-}C_{10}$ alkynyl;}$

 R^{36} and R^{37} are both hydrogen or, taken together with the carbon atom to which they are attached form a carbonyl group; or a pharmaceutically acceptable salt thereof; provided that: a) no more than one of X, Y, and Q may be N or N^+ - O^- ; and b) when X is CH, Y is CR^{11} , and Q is CR^{12} , then one of R^{11} and R^{12} is other than hydrogen.

- 2. The use of a compound of Claim 1 for the manufacture of a medicament for the treatment of Alzheimer's disease.
- 3. The use of a compound of Claim 1 for the manufacture of a medicament for the prevention of the progression of mild cognitive impairment to Alzheimer's disease.
- The use of a compound of Claim 1 for the manufacture of a medicament for
 treating a disease or condition capable of being improved or prevented by inhibition of BACE..

- 5. A pharmaceutical formulation adapted for the treatment of conditions resulting from excessive levels of A- β peptide comprising a compound of Claim 1 in combination with one or more pharmaceutically acceptable excipients, carriers, or diluents.
- 6. A pharmaceutical formulation comprising a compound of Claim 1, in combination with a pharmaceutically acceptable carrier, diluent, or excipient.

7. A compound of Formula III:

$$\begin{array}{c|cccc}
R^{27} & OR^{38} \\
\hline
R^1 & N & & \\
O & R^2 & & \\
\hline
III
\end{array}$$

10

15

20

25

5

where:

 R^1 is $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_1-C_6$ alkyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkenyl), (C_3-C_7) cycloalkyl)₀₋₁ (C_2-C_6) alkynyl) or C_3-C_7 cycloalkyl, each optionally substituted with up to three groups independently selected from halo, hydroxy, thiol, cyano, trifluoromethyl, trifluoromethoxy, C_1-C_7 alkoxy, C_3-C_7 cycloalkoxy, oxo, and NR^4R^5 , biphenyl optionally

$$\mathbb{R}^{7}$$
 \mathbb{N} \mathbb{Q} or \mathbb{R}^{8} \mathbb{N}

substituted with halo, hydrogen,

 R^2 is C_1 - C_3 alkyl, benzyl optionally monosubstituted in the phenyl ring with a substituent selected from the group consisting of halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, or benzyl optionally disubstituted in the phenyl ring with a first substituent independently selected from halo and a second substituent independently selected from halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl;

10

15

20

R³' is:

ix) a piperidin-2-yl moiety of formula:

x) a tetrahydropyridin-2-yl moiety of formula:

$$R^{28}$$
 R^{29}
 R^{30}
 R^{30}
 R^{32}
 R^{32}
 R^{32}
 R^{32}
 R^{32}
 R^{32}
 R^{33}
 R^{32}
 R^{33}
 R^{32}
 R^{33}

xi) a piperazin-2-yl moiety of formula:

- xii) homopiperidin-2-yl substituted in the 1-position with variable R²⁸;
- xiii) 1,2,3,4-tetrahydroisoquinolin-3-yl substituted in the 1-position with variable R^{28} and optionally further substituted with one or two substituents selected from halo, C_1 - C_6 alkyl, and C_1 - C_6 alkoxy;
- xiv) 2-azabicyclo[2.2.2]oct-(5Z)ene-3-yl substituted in the 2-position with variable R²⁸;
- xv) 2-azabicyclo[2.2.1]hept-3-yl substituted in the 2-position with variable R^{28} and optionally further substituted with C_1 - C_{10} alkyl optionally substituted with C_1 - C_4 alkoxy; or
- xvi) 2-azabicyclo[2.2.2]oct-3-yl substituted in the 2-position with variable R²⁸ and optionally further substituted with oxo, or optionally further substituted with one or two substituents independently selected from hydroxy, fluoro, and C₁-C₆ alkyl;

20

25

X is CH, N, or N^+ -O⁻;

Y is CR¹¹, N, or N⁺-O;

Q is CR¹², N, or N⁺-O⁻;

 R^4 is hydrogen, C_1 - C_6 alkyl optionally substituted up to three times with fluoro, or phenyl;

 R^5 is hydrogen, C_1 - C_6 alkyl optionally substituted up to three times with fluoro, phenyl, $-C(O)(C_1$ - C_6 alkyl optionally substituted up to three times with fluoro), or $-SO_2(C_1$ - C_6 alkyl optionally substituted up to three times with fluoro);

R⁶ and R⁷ are independently selected from the group consisting of methyl, ethyl, and propyl;

R⁸ is hydrogen or C₁-C₆ alkyl;

R⁹ is C₃-C₅ cycloalkyl, sec-butyl, or -CH₂R¹³;

 R^{10} is $-CF_2R^{14}$, $-OR^{15}$, $-CH_2C(O)CH_3$, $-S(O)_{1-2}R^{16}$, $-NR^{17}SO_2R^{18}$, $(C_1-C_3$ alkoxy)-carbonyl, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,1-dioxo-2,3,4,5-tetrahydroisothiazol-2-yl, or tetrazol-5-yl optionally substituted with C_1-C_3 alkyl;

R¹¹ is hydrogen, chloro, isobutyl, CH₂R¹⁹; CF₂R²⁰, 1,1,1-trifluoro-2-hydroxyeth-2-yl, C₂-C₄ alkenyl optionally substituted with one or two fluorine atoms, OR²¹, C(O)R²², N(methyl)(methylsulfonyl), N(methyl)(acetyl), pyrrolidin-2-on-1-yl, methylsulfonyl, N,N-dimethylaminosulfonyl, phenyl optionally substituted with one or two substituents selected from the group consisting of hydroxymethyl, methoxy, fluoro, and methylsulfonyl, 1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, pyridinyl, thiazolyl, oxazolyl, or 1,2,4-oxadiazolyl optionally substituted with methyl;

R¹² is hydrogen or fluoro;

R¹³ is ethynyl or cyclopropyl;

R¹⁴ is hydrogen or methyl;

R¹⁵ is difluoromethyl or methanesulfonyl;

 R^{16} is C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, phenyl, or $-NR^{25}R^{26}$;

 R^{17} is hydrogen, C_1 - C_3 alkyl optionally substituted with up to 3 fluorine atoms, or C_3 - C_6 cycloalkyl;

 R^{18} is C_1 - C_3 alkyl or C_3 - C_6 cycloalkyl;

R¹⁹ is fluoro, hydroxy, or C₁-C₃ alkoxy;

R²⁰ is hydrogen, phenyl, or furyl;

 R^{21} is C_1 - C_3 alkyl optionally substituted with one or two fluorine atoms;

R²² is C₁-C₃ alkyl, C₃-C₅ cycloalkyl, C₂-C₃ alkenyl, C₁-C₃ alkoxy, NR²³R²⁴, pyrrolidin-1-yl optionally substituted with methyl or one or two fluorine atoms, piperidin-

5 1-yl, phenyl, pyridinyl, or furyl;

R²³ is hydrogen or methyl;

R²⁴ is methyl, ethyl, or propyl;

R²⁵ is hydrogen or methyl;

R²⁶ is methyl; or

10 R²⁵ and R²⁶ taken together with the nitrogen atom to which they are attached form a pyrrolidine or piperidine ring;

R²⁷ is hydrogen or a nitrogen protecting group;

R²⁸ is hydrogen or a nitrogen protecting group;

R²⁹ is hydrogen or C₁-C₆ alkyl;

15 R^{30} is hydrogen or C_1 - C_6 alkyl;

25

30

 R^{29} and R^{30} taken together with the nitrogen to which they are attached form a C_3 - C_6 cycloalkyl ring;

 R^{31} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, or phenyl optionally monosubstituted with C_1 - C_6 alkyl;

20 R^{32} is hydrogen, R^{33} , or $-(CH_2)_{0-2}$ - OR^{33} ;

 R^{33} is C_1 - C_{10} alkyl optionally substituted with 1-6 fluorine atoms, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, or -(CH₂)₀₋₃- R^{34} ;

 R^{34} is C_3 - C_7 cycloalkyl or phenyl each optionally substituted with one or two substitutents independently selected from the group consisting of halo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, trifluoromethyl, and trifluoromethoxy, thienyl optionally substituted with halo, benzothienyl optionally substituted with halo, thiazolyl optionally substituted with C_1 - C_4 alkyl, or adamantyl;

 R^{35} is -(CH₂)₀₋₆- R^{34} ,-C(O)-(CH₂)₀₋₆- R^{34} , -C(O)-(C₁-C₁₀ alkyl), -C(O)-(C₁-C₄ alkoxy optionally substituted with phenyl), C₁-C₁₀ alkyl optionally substituted with 1-6 fluorine atoms, C₂-C₁₀ alkenyl, or C₂-C₁₀ alkynyl;

R³⁶ and R³⁷ are both hydrogen or, taken together with the carbon atom to which they are attached form a carbonyl group;

 R^{38} is hydrogen or an oxygen protecting group; or an acid addition salt thereof provided that: a) no more than one of X, Y, and Q may be N or N⁺-O⁻; b) when X is CH, Y is CR^{11} , and Q is CR^{12} , then one of R^{11} and R^{12} is other than hydrogen; and c) at least one of R^{27} , R^{28} , and R^{38} is other than hydrogen.

5

8. A compound of Formula IV:

10 where:

 R^1 is $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_1-C_6$ alkyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkenyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkynyl) or C_3-C_7 cycloalkyl, each optionally substituted with up to three groups independently selected from halo, hydroxy, thiol, cyano, trifluoromethyl, trifluoromethoxy, C_1-C_7 alkoxy, C_3-C_7 cycloalkoxy, oxo, and NR^4R^5 , biphenyl optionally

substituted with halo, hydrogen,

 R^2 is C_1 - C_3 alkyl, benzyl optionally monosubstituted in the phenyl ring with a substituent selected from the group consisting of halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, or benzyl optionally disubstituted in the phenyl ring with a first substituent independently selected from halo and a second substituent independently selected from halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl;

R³' is:

25

15

20

ix) a piperidin-2-yl moiety of formula:

x) a tetrahydropyridin-2-yl moiety of formula:

$$R^{28}$$
 R^{29}
 R^{30}
 R^{30}
 R^{32}
 R^{32}
 R^{32}
 R^{32}
 R^{32}
 R^{33}
 R^{32}
 R^{33}
 R^{32}
 R^{33}
 R^{33}
 R^{32}
 R^{33}

xii) a piperazin-2-yl moiety of formula:

5

- xii) homopiperidin-2-yl substituted in the 1-position with variable R²⁸;
- xiii) 1,2,3,4-tetrahydroisoquinolin-3-yl substituted in the 1-position with variable R²⁸ and optionally further substituted with one or two substituents selected from halo, C₁-C₆ alkyl, and C₁-C₆ alkoxy;

10

- xiv) 2-azabicyclo[2.2.2]oct-(5Z)ene-3-yl substituted in the 2-position with variable R²⁸;
- xv) 2-azabicyclo[2.2.1]hept-3-yl substituted in the 2-position with variable R^{28} and optionally further substituted with C_1 - C_{10} alkyl optionally substituted with C_1 - C_4 alkoxy; or

15

xvi) 2-azabicyclo[2.2.2]oct-3-yl substituted in the 2-position with variable R^{28} and optionally further substituted with oxo, or optionally further substituted with one or two substituents independently selected from hydroxy, fluoro, and C_1 - C_6 alkyl;

X is CH, N, or N^+ -O;

20 Y is CR^{11} , N, or N^+ -O⁻;

Q is CR¹², N, or N⁺-O⁻;

 R^4 is hydrogen, C_1 - C_6 alkyl optionally substituted up to three times with fluoro, or phenyl;

 R^5 is hydrogen, C_1 - C_6 alkyl optionally substituted up to three times with fluoro, phenyl, $-C(O)(C_1$ - C_6 alkyl optionally substituted up to three times with fluoro), or $-SO_2(C_1$ - C_6 alkyl optionally substituted up to three times with fluoro);

 ${\ensuremath{R}}^6$ and ${\ensuremath{R}}^7$ are independently selected from the group consisting of methyl, ethyl, and propyl;

R⁸ is hydrogen or C₁-C₆ alkyl;

10 R⁹ is C₃-C₅ cycloalkyl, <u>sec</u>-butyl, or -CH₂R¹³;

 R^{10} is $-CF_2R^{14}$, $-OR^{15}$, $-CH_2C(O)CH_3$, $-S(O)_{1-2}R^{16}$, $-NR^{17}SO_2R^{18}$, $(C_1-C_3 \text{ alkoxy})$ -carbonyl, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,1-dioxo-2,3,4,5-tetrahydroisothiazol-2-yl, or tetrazol-5-yl optionally substituted with C_1-C_3 alkyl;

R¹¹ is hydrogen, chloro, isobutyl, CH₂R¹⁹; CF₂R²⁰, 1,1,1-trifluoro-2-hydroxyeth-2-yl, C₂-C₄ alkenyl optionally substituted with one or two fluorine atoms, OR²¹, C(O)R²², N(methyl)(methylsulfonyl), N(methyl)(acetyl), pyrrolidin-2-on-1-yl, methylsulfonyl, N,N-dimethylaminosulfonyl, phenyl optionally substituted with one or two substituents selected from the group consisting of hydroxymethyl, methoxy, fluoro, and methylsulfonyl, 1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dioxan-2-yl

yl, 1,3-dithian-2-yl, pyridinyl, thiazolyl, oxazolyl, or 1,2,4-oxadiazolyl optionally substituted with methyl;

R¹² is hydrogen or fluoro;

R¹³ is ethynyl or cyclopropyl;

R¹⁴ is hydrogen or methyl;

25 R¹⁵ is difluoromethyl or methanesulfonyl;

 R^{16} is C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, phenyl, or $-NR^{25}R^{26}$;

 R^{17} is hydrogen, C_1 - C_3 alkyl optionally substituted with up to 3 fluorine atoms, or C_3 - C_6 cycloalkyl;

R¹⁸ is C₁-C₃ alkyl or C₃-C₆ cycloalkyl;

 R^{19} is fluoro, hydroxy, or C_1 - C_3 alkoxy;

R²⁰ is hydrogen, phenyl, or furyl;

 R^{21} is C_1 - C_3 alkyl optionally substituted with one or two fluorine atoms;

20

25

30

 R^{22} is C_1 - C_3 alkyl, C_3 - C_5 cycloalkyl, C_2 - C_3 alkenyl, C_1 - C_3 alkoxy, $NR^{23}R^{24}$, pyrrolidin-1-yl optionally substituted with methyl or one or two fluorine atoms, piperidin-1-yl, phenyl, pyridinyl, or furyl;

R²³ is hydrogen or methyl;

R²⁴ is methyl, ethyl, or propyl;

R²⁵ is hydrogen or methyl;

R²⁶ is methyl; or

 ${\rm R}^{25}$ and ${\rm R}^{26}$ taken together with the nitrogen atom to which they are attached form a pyrrolidine or piperidine ring;

10 R²⁸ is hydrogen or a nitrogen protecting group;

R²⁹ is hydrogen or C₁-C₆ alkyl;

 R^{30} is hydrogen or C_1 - C_6 alkyl;

 R^{29} and R^{30} taken together with the nitrogen to which they are attached form a C_3 - C_6 cycloalkyl ring;

15 R^{31} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, or phenyl optionally monosubstituted with C_1 - C_6 alkyl;

 R^{32} is hydrogen, R^{33} , or $-(CH_2)_{0-2}$ - OR^{33} ;

 R^{33} is C_1 - C_{10} alkyl optionally substituted with 1-6 fluorine atoms, C_2 - C_6 alkenyl, or -(CH₂)₀₋₃- R^{34} ;

 R^{34} is C_3 - C_7 cycloalkyl or phenyl each optionally substituted with one or two substitutents independently selected from the group consisting of halo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, trifluoromethyl, and trifluoromethoxy, thienyl optionally substituted with halo, benzothienyl optionally substituted with halo, thiazolyl optionally substituted with C_1 - C_4 alkyl, or adamantyl;

 R^{35} is -(CH₂)₀₋₆- R^{34} ,-C(O)-(CH₂)₀₋₆- R^{34} , -C(O)-(C₁-C₁₀ alkyl), -C(O)-(C₁-C₄ alkoxy optionally substituted with phenyl), C₁-C₁₀ alkyl optionally substituted with 1-6 fluorine atoms, C₂-C₁₀ alkenyl, or C₂-C₁₀ alkynyl;

 ${
m R}^{36}$ and ${
m R}^{37}$ are both hydrogen or, taken together with the carbon atom to which they are attached form a carbonyl group;

R³⁸ is hydrogen or an oxygen protecting group;

 R^{39} and R^{40} are independently selected from methyl, ethyl, or propyl; or an acid addition salt thereof provided that no more than one of X, Y, and Q may be N or N⁺-O⁻.