

$$\Rightarrow$$
 $\beta = \underset{\beta}{\text{arg max}} \widehat{\prod} P(\gamma_i | x_i, \beta)$

= arg mox
$$\sum_{i=1}^{n} Pog(P(Yi|Xi,Q))$$

= arg max
$$\sum_{i=1}^{n} \left[y_i \log \left(f(x_i; \beta) \right) + (i-y_i) \log \left(i - f(x_i; \beta) \right) \right]$$

= argmin
$$-\sum_{i=1}^{n} [Y_i \log (f(x_i; \beta)) + (1-Y_i) \log (1-f(x_i; \beta))]$$

$$:= \underset{i=1}{\operatorname{argmin}} \left\{ \begin{array}{l} \sum_{i=1}^{n} \operatorname{Cross-Entropy}\left(\begin{bmatrix} \gamma_{i} \\ i-\gamma_{i} \end{bmatrix}, \begin{bmatrix} f(x_{i}) \\ i-f(x_{i}) \end{bmatrix} \right) \\ \sum_{i=1}^{n} \operatorname{D_{KL}}\left(\begin{bmatrix} \gamma_{i} \\ i-\gamma_{i} \end{bmatrix} \middle| \begin{bmatrix} f(x_{i}) \\ i-f(x_{i}) \end{bmatrix} \right) \end{array} \right.$$

3. Property of Logistic Regression Loss Function

$$L(\beta) = -\sum_{i=1}^{n} \left[Y_i \log (f(x_i)) + (1-Y_i) \log (1-f(x_i)) \right]$$

$$= -\sum_{i=1}^{n} \left[y_i \log \left(\frac{f(x_i)}{|-f(x_i)} \right) + \log \left(|-f(x_i)| \right) \right]$$

$$= - \sum_{i=1}^{n} \left[\gamma_i \cdot \beta^{7} x_i - \log \left(1 + \exp \left(\beta^{7} x_i \right) \right) \right]$$

GLM Result

1 Gradient Calculation

5. Optimization Algo for LASSO [Summary from my side]
Recap: for [LR.] LASSO Regularization is:
$\widehat{\omega}_{LASSO} = \underset{\omega}{\operatorname{argmin}} \ \chi \omega - \gamma \ _{2}^{2} + \lambda \ \omega \ _{1}$ $\underset{differentiable}{\operatorname{convex}}$
for Logistic Regression, LASSO Regularization is:
$\hat{W}_{LASSO} = \underset{\omega}{\operatorname{argmin}} \sum_{i=1}^{n} \left[\log \left(1 + \exp \left(\omega^{T} x_{i} \right) \right) - y_{i} \omega^{T} x_{i} \right] + \lambda \ \omega \ _{1}$
differentiable (convex) non-differentiable
-> since objective = non-differentiable + differentiable
penalty tem original obj
then Gradient-based method cannot work!
-> Introduce Non-smooth Optimization Algorithm
Proximal Gradient Method (PG)
6. Proximal Gradient Method (MA5243)
1) Morean-Yosida Regularization
$\phi_{\xi}(y) = f(y) + \left[\frac{1}{2\xi} \ y - x \ _{2}^{2}\right] \rightarrow \left[\text{Quodratic convex term}\right]$
$\psi_{ff}(x) := \min_{x \to \infty} \phi_{f}(x) $ $\psi_{f}(x) \Rightarrow convex, differentiable$

Proximal Mapping (minimizer)

Peff (x) = argmin {
$$tf(y) + \frac{1}{2} ||y-x||_2^2$$
 }

$$= \underset{x}{\operatorname{arg min}} \quad \phi_{f}(y)$$

$$= \underset{x}{\operatorname{min}} \quad f(x) = \underset{x}{\operatorname{min}} \quad \psi_{f,t}(x)$$

$$= \underset{x}{\operatorname{arg min}} \quad f(x) = \underset{x}{\operatorname{arg min}} \quad \psi_{f,t}(x)$$

(4) How to calculate
$$\sqrt{x} f_{1+}(x)$$
?

Idea: $\hat{x} = \underset{x}{\operatorname{argmin}} f(x) \rightarrow \underset{x}{\operatorname{convex}} \text{ but non-smooth}$

$$\hat{x} = \underset{x}{\operatorname{argmin}} f_{1+}(x) \rightarrow \underset{x}{\operatorname{smooth}}$$

then we should know
$$\left(\nabla_{x} \psi_{f,t}(x)\right)$$

$$\longrightarrow \left(\nabla_{x} \psi_{f,t}(x)\right) = t^{-1} \left(x - P_{tf}(x)\right)$$

How to calculate
$$P_{ff}(x)$$
?

$$\begin{cases}
M-Y & \text{ Decomposition } x = P_{f}(x) + P_{f} \times (x) \\
f & \text{ positive homogeneous } \hookrightarrow f \times (x) = S_{\{x \in J_{f(o)}\}}
\end{cases}$$

$$\begin{cases}
f = S_{f} \Rightarrow P_{f}(x) = T_{f}(x)
\end{cases}$$

$$\Rightarrow$$
 can determine $f = ||\cdot||_1$, $P_f(x) = ?$

a)
$$\partial d(o)$$
 $x \in \partial f(o)$
 $\Rightarrow f(y) - f(o) \Rightarrow x^{T}y \quad \forall y$
 $\Rightarrow ||y||_{\frac{1}{4}} \Rightarrow \langle x, y \rangle \quad \forall y$
 $\Rightarrow ||x||_{\frac{1}{4}} \in 1$
 $\Rightarrow ||x||_{\frac{1}{4}} \in 1$

b)
$$P_{f}(x) = x - P_{f}(x)$$

= $x - \prod_{B_{x}^{2}}(x)$
 $B_{x}^{1} := \{x \in \mathbb{R}^{n} : \|x\|_{x} \le 1\}$

6 Proximal Gradient Algo Framework

$$\rightarrow$$
 min $Y_{t,f}(x)$
 $Y_{f,t}: M-Y$ Regularization

$$\rightarrow \chi^{(k+1)} = \chi^{(k)} - t_k \nabla_{\chi} \psi_{t_k, f} (\chi^{(k)})$$

$$\rightarrow \chi^{(kn)} = Pt_k f(\chi^{(k)})$$

$$\rightarrow \chi^{(kn)} \approx \underset{y}{\text{arg min}} f(y) + \frac{1}{2tR} ||y - \chi^{(k)}||_{2}^{2}$$

We hope we can approximately solve this part through closed-form solution Real Application

$$= \underset{y}{\operatorname{argunin}} f(x^{(k)}) + \underset{z}{\nabla} f(x^{(k)})^{T} (y-x^{(k)})$$

$$+ g(y) + \frac{1}{2t_{R}} \|y-x^{(k)}\|_{2}^{2}$$

$$= \underset{y}{\operatorname{argunin}} \nabla_{x} f(x^{(k)})^{T} y + g(y) + \frac{1}{2t_{R}} \|y-x^{(k)}\|_{2}^{2}$$

= arginin
$$g(y) + \frac{1}{2tR} || y + tR \nabla f(x^{(hs)}) - x^{(hs)}|_{x}^{2}$$

=
$$P_{t_{k}g(\cdot)}$$
 (t_k $\nabla_{x} f(x^{(k)}) - x^{(k)}$)

Note: here
$$P_{t_{R}gC}(x)$$
 will have closed-form solution!

If $gC > = |I \cdot II_1| \rightarrow LASSO$ Regularizedtion $P_{t_{R}I \cdot I_{1}}(y^{(k)})$

then $P_{t_{R}g}(x) = x - P_{(t_{R}g)} \times (x)$

$$= \underset{u}{\operatorname{argmin}} \{ |I_{t_{R}II_{1}}| + \frac{1}{2} |I_{l_{1}} - y^{(k)}||_{2}^{2} \}$$

$$= x - T_{B_{t_{R}}} (x)$$

$$= x - T_{B_{t_{R}}} (x)$$

$$= p_{|H|_{1}}(\frac{y^{(k)}}{t_{R}}) \cdot h$$

$$= p_{|H|_{1}}(\frac{y^{(k)}}{t_{R}}) \cdot h$$

Another calculation:

Ptrill (x) = arguin tr ||y||1 +
$$\frac{1}{2}$$
 || y - x||²

= arg min
$$\frac{1}{tR} ||y||_2 + \frac{1}{2tR} ||y - x||_2^2$$

= arginin
$$\|\frac{y}{tk}\|_1 + \frac{1}{2}\|\frac{y}{tk} - \frac{x}{tk}\|_2$$

= tk arginin $\|x\|_1 + \frac{1}{2}\|x - \frac{x}{tk}\|_2$