데이터베이스시스템

06. 관계데이터 구조와 제약

나홍석 교수

6 LESSON

관계데이터 구조와 제약

학습 목표

- 1 관계데이터 구조를 이해하고, 관계모델을 정의할 수 있다.
- 관계모델에서 적용되는 제약조건을 이해하고 릴레이션 설계에 적용할 수 있다.

학습 내용

- 1 관계 데이터 구조
- 2 관계 데이터 제약

<u>Chapter 01</u> 관계 데이터 구조

관계 모델 특징

- ☑ 1970년 IBM 연구소의 "A Relational Model for Large Shared Data Banks" 라는 논문에서 처음으로 소개
- ☑ 수학적 릴레이션(Mathmatical relation)의 개념을 사용해서 테이블의 형태로 표현
- ☑ 현재 대부분의 상업용 DBMS에서 지원

▶ 논리적 데이터베이스 설계의 기반 모델 (관계형 DBMS를 사용할 경우)예) ORACLE, SQL Server, MySQL, IBM DB2 등

관계 모델 정의

▲ 관계 모델에서는 데이터베이스를 다음과 같이 정의

(관계형) 데이터베이스 = 릴레이션(테이블)의 집합

릴레이션 구조

▲ 테이블 형태로 데이터를 저장

4 용어 정의

용어	정의
릴레이션(Relation)	■ 2차원 형태의 행과 열로 구성된 테이블
애트리뷰트(Attribute) ■ 릴레이션에서 최소 데이터의 단위 ● 혼자 존재할 때에는 그 의미를 가질 수 없음	
튜플(Tuple)	■ 릴레이션의 행 ■ 튜플은 속성들이 모여 구성된 것으로서, 의미를 제공(저장)하는 최소 단위
도메인(Domain) ■ 속성이 가질 수 있는 값의 범위 또는 값의 집합	
차수(Degree) ■ 릴레이션에서의 속성의 개수(학생 릴레이션은 차수가 7)	
카디날러티(Cardinality)	■ 릴레이션을 구성하는 튜플의 수

2 관계 모델 정의

- 1 도메인(domain D)
 - ☑ 하나의 애트리뷰트가 취할 수 있는 같은 타입의 모든 원자 값(atomic value)의 집합
 - ☑ 도메인의 이름과 데이터타입을 붙여서 표현하는 것이 바람직함
 - ☑ 데이터베이스 설계 시 도메인에 대한 분석이 수행되어야 함

- phone_numbers : 한국에서 사용하는 10자리 전화번호의 집합
- student_names : 학생이름 { 김하늘, 남기욱, ... }
- mid_exam_score : 중간고사 점수 { 0부터 100사이의 값 }
- department_codes : 학과코드 집합 { IT, MD, BZ, ... }

릴레이션 스키마(relation schema R)

- ☑ R: 릴레이션 이름
- **☑** A₁, A₂, ..., A_n: 애트리뷰트
- ☑ 릴레이션의 차수(degree): 릴레이션 스키마 R이 가지는 애트리뷰트의 수
- ☑ Dom(A;) = D : 애트리뷰트 Ai가 가질 수 있는 값은 도메인 D에 포함됨

- 릴레이션 스키마 : R(A₁, A₂, A₃, ..., A_n)
- 릴레이션 스키마 예
 - 학생(아이디, 이름, 성별, 주소, 휴대전화, 생년, 학과)

튜플(tuple t)

- ☑ 릴레이션 스키마 R(A₁, A₂, ..., A_n)의 인스턴스
- ☑ n개의 값의 순서 리스트(애트리뷰트에 값이 들어간 형태)

- $t = \langle v_1, v_2, ..., v_n \rangle$
- v_i는 dom(A_i)의 원소이거나 널(null) 값을 갖는다.
- 릴레이션 학생의 튜플
 - <'ST001', '최현주', '여', '서울', '010-1234-1234', '1973', 'SE'>

2 관계 모델 정의

4 릴레이션(relation r)

- ☑ 릴레이션 = 튜플 들의 집합
- ☑ 릴레이션 스키마 R의 튜플 들을 모아놓은 것

- $r = \{t_1, t_2, ..., t_n\}$
- t[A_i] : 튜플 t에서 애트리뷰트 A_i에 대응되는 i 번째 값

릴레이션 r의 수학적 정의

- ☑ 릴레이션 r
 - : n개의 도메인 dom(A₁), dom(A₂), ... , dom(A_n)상의 수학적 릴레이션
- R을 정의하는 도메인들의 카티션 프로덕트(cartesian product)의 부분집합

$r \subseteq dom(A_1) \times dom(A_2) \times ... \times dom(A_n)$

- 릴레이션 스키마 : R(A₁, A₂, ..., A_n)
- 튜플: t = <v₁, v₂, ..., v_n>
- 값: v_i(1 ≤ i ≤ n)는 dom(A_i)의 원소이거나 널값

카티션 프로덕트(X)

☑ 연산에 참여하는 두 집합의 모든 원소들을 상대방의 원소와 연결시킨 후,☑ 각 집합의 원소의 쌍을 원소로 하는 새로운 집합을 생성시키는 연산

3 릴레이션의 특징

1 릴레이션의 특징 - 요약

- 1 집합이론(Set theory)에 기초한다.
- 2 한 릴레이션에 포함된 튜플들은 모두 상이하다.
- 3 모든 애트리뷰트 값은 원자값(Atomic value)이다.
- 4 한 릴레이션을 구성하는 튜플과 애트리뷰트 사이에는 순서가 없다.

튜플의 유일성

- ☑ 한 릴레이션에 포함된 튜플 들은 모두 상이함
- ☑ 두 개의 똑같은 튜플은 한 릴레이션에 포함될 수 없음
- ☑ 하나의 집합에는 똑같은 원소가 중복해서 포함될 수 없음

아이디	이름	성별	주소	휴대전화	생년	학과
ST001	최현주	Ф	서울	010-1234-1234	1973	SE
ST001	최현주	Ø	서울	010-1234-1234	1973	SE
ST002	강하늘	남	서울	010-2222-2344	1990	BZ
ST003	이성민	남	서울	010-3293-9345	1978	SE
ST004	박정수	여	경기	010-8323-8342	2000	EE
ST005	홍민호	남	대전	010-2342-6547	1985	BZ

원자값(Atomic value)

- ☑ 모든 애트리뷰트 값은 원자값(Atomic value)이다.
- ☑ 튜플 내의 각 값은 하나(원자값)이다.
- ☑ 개념적 모델의 복합값 속성과 다중값 속성은 허용되지 않는다.

아이디	이름	성별	주소	휴대전화	생년	학과
ST001	최현주	여	서울, 경기	010-1234-1234	1973	SE
ST001	최현주	여	서울	010-1234-1234	1973	SE, BZ
ST002	강하늘	남	서울	010-2222-2344	1990	BZ
ST003	이성민	남	서울	010-3293-9345	1978	SE
ST004	박정수	여	경기	010-8323-8342	2000	EE
ST005	홍민호	남	대전	010-2342-6547	1985	BZ

3 릴레이션의 특징

4 무순서

- ☑ 한 릴레이션을 구성하는 튜플과 애트리뷰트 사이에는 순서가 없다.
- ☑ 릴레이션 스키마 = 애트리뷰트 들의 집합

아이디	이름	성별	주소
ST002	강하늘	남	서울
ST003	이성민	计	서울
ST004	박정수	여	경기
ST005	홍민호	남	대전
ST001	최현주	여	서울

아이디	이름	성별	주소
ST001	최현주	여	서울
ST002	강하늘	남	서울
ST003	이성민	남	서울
ST004	박정수	여	경기
ST005	홍민호	남	대전

4 ER모델의 릴레이션 변환

변환 예제 - 학교 데이터베이스

Q 다음 ER모델을 릴레이션 구조로 변환한 결과를 생각해보세요.

ER모델의 릴레이션 변환

릴레이션 스키마

➡ 학교 데이터베이스의 릴레이션 스키마

학생 (학번, 이름, 성별, 주소, 학과) 학번 성별 학과 이름 과목 (<u>과목번호</u>, 과목명, 학점) 과목번호 과목명 학점 과목번호 등록 (학번, 과목번호, 성적) 성적 학번

릴레이션의 상태

어느 한 시점에서의 릴레이션의 내용

학생

학번	이름	성별	주소	학과
ST001	최현주	여	서울	SE
ST002	강하늘	남	서울	BZ
ST003	이성민	남	서울	SE
ST004	박정수	여	경기	EE
ST005	홍민호	남	대전	BZ

등록

학번	과목번호	성적
ST001	SE0101	А
ST001	BZ0011	В
ST002	SE0102	В
ST002	SE0101	С
ST002	GE0011	Α
ST002	SE0102	Α
ST003	SE0102	С
ST003	BZ0013	D
ST004	GE0011	Α

과목

과목번호	과목명	학점
SE0101	컴퓨터학 개론	3
BZ0011	경영학 원론	3
SE0102	자바언어	3
BZ0013	이비즈니스	3
GE0011	디자인씽킹	3

<u>Chapter 02</u> 관계 데이터 제약

1 튜플의 유일성

- ☑ 릴레이션은 집합이기 때문에, 한 릴레이션에 있는 모든 튜플들은 유일, 즉 서로 달라야 함
- ☑ 애트리뷰트를 전부 이용하면 모든 튜플을 유일하게 식별할 수 있어야 함
- ☑ 키(Key)란 모든 튜플을 유일하게 식별할 수 있는 최소한의 애트리뷰트의 집합

키(key)의 정의 #1

"릴레이션 스키마 R(A1, A2, ..., An)의 한 애트리뷰트 집합
K(={A1, A2, ..., Ak})가 집합 A의 부분 집합이면서(K⊆A)
항상 다음과 같은 두 성질(유일성, 최소성) 을 만족한다면
이 K를 릴레이션 R의 키(Key) 또는 후보키(Candidate key)라고 한다."

키(key)의 정의 #2

유일성 (Uniqueness)

- 키로 표현되는 값(튜플)은 모드 다르고 유일하다.
- 릴레이션에 있는 모든 튜플에 대해 K(={A₁, A₂, ..., A_k}의 값<v₁, v₂, ..., v_k>는 모두 다르고 유일하다.

최소성 (Minimality)

- 꼭 필요한 애트리뷰트로만 구성된다.
- 유일성을 가진 K가 둘 이상의 애트리뷰트로 구성되어 있을 때 어느 한 애트리뷰트라고 제외시키는 경우에는 튜플의 유일성이 깨어진다.

키(key)의 정의 #3

Q 다음 릴레이션에서 키를 찾아보세요.

학생

학번	이름	성별	주소	휴대전화	학과
ST001	최현주	뀽	서울	010-1234-1234	SE
ST002	강하늘	加	서울	010-2222-2344	BZ
ST003	이성민	加	서울	010-3293-9345	SE
ST004	박정수	뀽	경기	010-8323-8342	EE
ST005	홍민호	加	대전	010-2342-6547	BZ

과목

과목번호	과목명	학점	이수구분	담당교수
SE0101	컴퓨터학 개론	3	전공	나홍석
BZ0011	경영학 원론	3	전공	박남기
SE0102	자바언어	3	전공	김수영
BZ0013	이비즈니스	3	전공	최정원
GE0011	디자인씽킹	3	향 교	한성욱

등록

악민	<u> </u>	징 징
ST001	SE0101	А
ST001	BZ0011	В
ST002	SE0102	В
ST002	SE0101	C
ST002	GE0011	А
ST002	SE0102	А
ST003	SE0102	C
ST003	BZ0013	D
ST004	GE0011	А

키(key)의 종류 #1

□ 키의 역할과 특성에 따라 다음과 같이 구분함

7	설명
후보키(Candidate key)	튜플을 유일하게 식별할 수 있는 최소의 애트리뷰트 집합
기본키(Primary key)	후보키 중 하나, 데이터베이스 설계자가 선정
대체키(Alternate key)	후보키 중 기본키를 제외한 나머지 키
슈퍼키(Super key)	후보키를 포함하는 모든 애트리뷰트의 집합
복합키(Complex key)	두 개 이상의 애트리뷰트가 합쳐져야 후보키의 역할을 하는 경 우

키(key)의 종류 #2

➡ 학교 데이터베이스의 키 식별

7	키 식별			
후보키	학생 릴레이션의 후보키 : (학번), (휴대전화) 과목 릴레이션의 후보키 : (과목번호), (과목이름) 등록 릴레이션의 후보키 : (학번, 과목번호) → 복합키			
기본키	학생 릴레이션의 기본키 : (학번) 과목 릴레이션의 기본키 : (과목번호) 등록 릴레이션의 기본키 : (학번, 과목번호) → 복합키			
대체키	학생 릴레이션의 대체키 : (휴대전화) 과목 릴레이션의 대체키 : (과목이름) 등록 릴레이션의 대체키 : 없음			

외래키(Foreign Key) #1

에) 릴레이션 R에 속한 어떤 애트리뷰트(집합) A가 있다고 하자. A의 값은 반드시 어떤 릴레이션 S의 기본키 값이어야 한다고 할 때,

- ☑ A를 릴레이션 R의 외래키(Foreign key)라고 함
- ☑ R의 외래키 A와 S의 기본키의 도메인은 같아야 함
- ☑ NULL 값을 가질 수 있음

- **1** 키(key) 제약조건
- 4 외래키(Foreign Key) #2
 - 1 등록 릴레이션의 학번 애트리뷰트
 - 학생 릴레이션의 기본키인 학번 애트리뷰트를 참조
 - 등록 릴레이션의 외래키가 됨

- 2 등록 릴레이션의 과목번호 애트리뷰트
 - 과목 릴레이션의 기본키인 과목번호 애트리뷰트를 참조
 - 등록 릴레이션의 외래키가 됨

4

외래키(Foreign Key) #3

학생

<u>학번</u>	이름	성별	주소	휴대전화	학과
ST001	최현주	여	서울	010-1234-1234	SE
ST002	강하늘	남	서울	010-2222-2344	BZ
ST003	이성민	남	서울	010-3293-9345	SE
ST004	박정수	여	경기	010-8323-8342	EE
ST005	홍민호	남	대전	010-2342-6547	BZ

과목

과목번호	과목명	학점	이수구분	담당교수
SE0101	컴퓨터학 개론	3	전공	나홍석
BZ0011	경영학 원론	3	전공	박남기
SE0102	자바언어	3	전공	김수영
BZ0013	이비즈니스	3	전공	최정원
GE0011	디자인씽킹	3	교양	한성욱

등록

학번	과목번호	성적
ST001	SE0101	А
ST001	BZ0011	В
ST002	SE0102	В
ST002	SE0101	С
ST002	GE0011	А
ST002	SE0102	А
ST003	SE0102	С
ST003	BZ0013	D
ST004	GE0011	А

외래키(Foreign Key) #4

- 교수(교수번호, 교수이름, 소속학과, 직급)
- 학과(학과번호, 학과이름, 설립년도)

• 학생(<u>학번</u>, 학생이름, 소속학과, 멘토번호)

외래키(Foreign Key) #4

- 교수(<u>교수번호</u>, 교수이름, 소속학과(FK), 직급)
- 학과(학과번호, 학과이름, 설립년도)

• 학생(<u>학번</u>, 학생이름, 소속학과(FK), 멘토번호(FK))

외래키(Foreign Key) #5

- ☑ 교수 릴레이션의 소속학과는 교수 릴레이션의 외래키가 되어 반드시 학과 릴레이션에 존재하는 학과번호 값 중의 하나이어야 함
- ☑ 릴레이션 R의 외래키는 R의 기본키가 될 필요는 없음
- ☑ 멘토번호의 값은 반드시 학생 릴레이션의 기본키 학번에 나타나는 값을 가져야 함
- ☑ 기본키와 외래키가 하나의 릴레이션에서 정의될 수 있음

1 개체 무결성(Entity Integrity) 제약조건 #1

- 1 개체의 인스턴스는 서로 구별되어야 함
 - 릴레이션의 튜플을 유일하게 식별할 수 있어야 한다.(기본키)
 - 기본키에 속해있는 애트리뷰트는 널(Null) 값을 가질 수 없다.

2 개체를 유일하기 식별하기 위해서는 임의의 식별자를 생성하기도 함

1 개체 무결성(Entity Integrity) 제약조건 #2

- h 1 기본키 값이 널 값을 갖게 된다면 튜플을 유일하게 식별할 수 없게 됨
 - 2 데이터 정의문에서 어떤 속성이 릴레이션의 기본키인지 알려주어야 함

<u>학번</u>	이름	성별	주소	휴대전화	학과
ST001	최현주	여	서울	010-1234-1234	SE
ST002	강하늘	남	서울	010-2222-2344	BZ
ST003	이성민	남	NULL	010-3293-9345	SE
NULL	박정수	여	경기	010-8323-8342	EE
ST005	홍민호	남	대전	010-2342-6547	BZ

개체 무결성(Entity Integrity) 제약조건 #3

☞ 널(NULL) 값

- 데이터베이스에서 널(NULL)은 아직 알려지지 않은(모르는) 값(unknown value) 이나, 해당 없음(Inapplicable) 등의 이유로 정보 부재를 명시적으로 표시하기 위해 사용하는 특수한 데이터 값
- 릴레이션에서는 널 값을 가질 수 없는 애트리뷰트는 낫널(NOT NULL)이라는 제약 조건을 별도로 명시해서 사용
- 공백(Blank)나 영(Zero)과는 분명히 다른 개념

참조 무결성(Referencial Integrity) 제약조건 #1

외래키를 통해 릴레이션은 참조할 수 없는 값을 가질 수 없도록 함으로써 두 릴레이션 간의 데이터 무결성을 유지하는 것

- 릴레이션은 참조할 수 없는 외래키 값을 가져서는 안 된다.
- 릴레이션 R1의 기본키 K를 참조하는 외래키 FK가 R2에 명세되어 있다면, 이 FK의 값은 반드시 R1에 나타나 있는 기본키 K의 어떤 값과 같던지 아니면 널(NULL) 값이어야 한다.

참조 무결성(Referencial Integrity) 제약조건 #2

1 사원 릴레이션의 부서번호 속성에는 부서 릴레이션의 부서번호 속성에 없는 값은 입력할 수 없다.

(부서가 없는 경우 NULL 값으로 입력)

2 등록 릴레이션의 학번 속성에는 학생 릴레이션의 학번 속성에 없는 값은 입력할 수 없다.

(학생이 존재해야 등록이 존재)

참조 무결성(Referencial Integrity) 제약조건 #3

☑ 외래키에 의한 참조관계에서 데이터 불일치가 발생하는 상황

예) 부서 릴레이션에서 20번 부서를 삭제하려 할 때

- 제한(restrict): 사원릴레이션에서 참고하므로 삭제를 거절
- 연쇄(cascade): 삭제된 부서 번호 값을 갖는 사원릴레이션 튜플도 함께 삭제
- 널 값으로 대체(nullify) : 삭제연산을 수행한 뒤 삭제된 부서 번호 값을 갖는 사원릴레이션의 튜플에서 부서번호를 NULL로

대체

도메인 무결성(Domain Integrity) 제약조건 #1

- ☑ 해당 애트리뷰트의 값이 그 애트리뷰트가 정의한 도메인 내에서 속한 값이어야 함
- ☑ 데이터의 변경이 발생할 때 마다 DBMS에 의해서 체크됨
- SQL의 CHECK 조건으로 구현함

학번	과목번호	성적
ST001	SE0101	А
ST001	BZ0011	В
ST002	SE0102	В
ST002	SE0101	С
ST002	GE0011	90

도메인 무결성(Domain Integrity) 제약조건 #2

예) 도메인 정의서(예)

	도메인그룹	도메인명	데이터 타입	설명
$^{\prime}$		전화번호	VARCHAR2(13)	
灲	번호	우편번호	CHAR(5)	
	닌오	비밀번호	VARCHAR2(10)	영문, 숫자, 특수문자 조합
		사원번호(PK)	NUMBER	시퀀스를 PK로 사용
	금액	금액(N, 13)	NUMBER(13)	
		금액(N, 6)	NUMBER(6)	
	명칭	이름	VARCHAR2(16)	
	00	제목	VARCHAR2(128)	
	수량	주문수량	NUMBER	{0 100}
	여부	사용여부	CHAR(1)	{Y, N}
		일자	VARCHAR2(14)	YYYYMMDD
	날짜	월	VARCHAR2(2)	MM
		년도	VARCHAR2(4)	YYYY

학습 정리

관계 데이터 구조

■ 릴레이션은 튜플의 집합

정리

🜏 관계 데이터 제약

■ 키 제약조건

- 후보키, 기본키, 대체키, 슈퍼키
- 외래키

■ 무결성 제약조건

- 개체무결성 제약조건
- 참조무결성 제약조건
- 도메인무결성 제약조건

무허

네 데이터베이스 시스템 7판, Ramez Elmasri, Shamkant B. Navathe 지음, 황규영 등 옮김, 홍릉과학출판사, 2018년 8월

www.wikipedia.org

❷사용서체: 나눔글꼴(네이버)

