Methods for sensitive genotyping in nonmodel organisms

Adam Orr

@AdamJOrr

5/17/19

Somatic Mutations Occur During Replication Even Without Exposure to Mutagens

- DNA Polymerase β
- Mutation rate $\sim 10^{-9}$

PDB: 7ICG

Why are somatic mutations difficult to detect?

Mutations are very rare, but sequencing errors are very common.

Sequencing error alone is $\sim 10^{-2}$ while mutation rate after error-checking is $\sim 10^{-9}$

- Errors accumulate during PCR prior to sequencing then propagate.
- Tag $\sim 10^{-4}$
- Technical error from sequencer

⁰Potapov V, Ong JL (2017) Examining S<u>ources of Error in PCR by Single-Molecule Sequencing</u>

3/25

Why Care About Somatic Mutations?

Disease

Cancer

Development

 Understanding the relationship between tissues

Agriculture

 Looking for interesting phenotypes in clonally reproducing species

Evolution

 Determining the relationship between somatic and germline mutation rate

https://commons.wikimedia.org/wiki/File:White_nectarine_and_cross_section02_edit.jpg

Plants Grow Directionally

 The genetic structure of the plant should mirror its physical structure.

⁰Heidstra & Sabatini (2014) Plant and animal stem cells: similar yet different.

A Genetic Mosaic

- Edwards identified as mosaic in 1993¹
- Sheep pen in Yeoval, New South Wales
- Differential oil production gives protection from Christmas beetles

¹Edwards PB, Wanjura WJ, Brown WV. Oecologia 1993, 95:551–557.

Project Goals

Is it possible?

Can we detect mutations with sufficient accuracy? A good test would be to reconstruct its physical structure.

What does the lack of a segregated germline mean for evolution?

What's the mutation rate like? Is there evidence of hypermutation?

Study Methodology

- Sequence 8 samples in triplicate
- \sim 10X coverage for each replicate
- Align sequence to genome of Eucalyptus grandis
- Use replicates to remove false positives

Mutation Pattern Approximately Matches Tree Structure

9/25

Most Reads Are Not Mapped to the E. grandis Reference

Approximating a Genome

Use *E. melliodora* genome as a starting place, then generate a new reference and map to that reference.

Our New Reference Has Fewer Unmapped Reads

Unmapped Reads For Each Reference

Filtering Variants

Remove variants likely from alignment errors:

- at sites with excessive depth (>500).
- with excessive levels of heterozygosity.
- within 50 bases of an indel.
- in repeat regions

Filtering and Reference Refinement Improve Tree Topology

Using Tree Topology Gives Higher Recall Rate

- Thus, it's reasonable to assume the physical topology when inferring mutations
- *DeNovoGear* is a variant-calling method that uses information in the tree topology to call variants.
- By simulation, we introduced 14000 mutations on the tree

GATK	DeNovoGear
3859 mutations	4193 mutations
27%	30%

Mutation Rates

- Detected 90 mutations.
- 20 mutations in genes.
- Estimated recall of $\sim 30\%$.
- $90 \times \frac{1}{.3} = 300$ mutations.
- $ho \sim 3.3$ mutations per meter of length
- 2.7×10^{-9} mutations per base per meter
- Somatic mutations account for ~ 55 mutations per leaf tip.

Extrapolating Beyond the Range of the Data

We studied *one* individual, but we can make conjectures about the population.

- The average height of a eucalypt is 22.5 M
- Mutation rate per base, per generation is 6.2×10^{-8}
- We estimated $\theta = 0.025$
- Since $\theta = 4N_e\mu$, $N_e = 102,000$

This per-generation rate is $\sim 10\times$ larger than Arabidopsis, but Eucalyptus is $100\times$ larger.

Errors make variant calling difficult - but we can predict them

- FASTQ format data has a quality score
- Quality scores represent P(error) on a phred scale.

$$P(error) = 10^{\frac{-Q}{10}}$$

$$Q = -10\log_{10} P(error)$$

Quality Score	P(error)
1	0.8
2	0.6
3	0.5
4	0.4
5	0.3
6	0.3
7	0.2
8	0.2
9	0.1
10	0.1
20	0.01
30	0.001
40	0.0001

Quality scores are predictions

- A quality score is a prediction about whether a base call is correct.
- Predictions are said to be calibrated if the predicted event occurs as often as predicted.
- The weather forecast contains a prediction about whether it will rain.
- If it rains on a day with a 30% chance of rain, what does that mean?

Measured Frequency

Quality scores aren't well-calibrated

- If quality scores were well-calibrated, it would be easy to identify errors
- Base Quality Score Recalibration can be done to fix calibration issues.
- Current GATK method for BQSR require a database of variable sites in your data then assumes mismatches at nonvariable sites are errors.

BQSR uses a linear model to determine how much to adjust each quality score

Error correctors can find some errors without a reference

- Error correction methods exist that use k-mers to identify errors rather than an alignment and reference.
- Most error correctors don't update quality scores.

K-mer-Based Base Quality score recalibration

- Combining error correction and BQSR is surprisingly effective
- Method implemented in kbbq software

Future Plans

- Evaluate GATK's robustness to false-negative and false-positive rates
- Evaluate performance of other error correctors
- Evaluate downstream impact on quality of variant calls

Acknowledgements

- Robert Lanfear, Australian National University

 ORobLanfear

Pipeline: O https://github.com/adamjorr/somatic-variation

KBBQ: https://github.com/adamjorr/kbbq Talk: https://github.com/adamjorr/talks

This work is supported by grants NIH R01-HG007178 and NSF DBI-1356548.