Вывести отсюда формулу

$$e = 2 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \frac{\theta_n}{n!n},$$
 (*)

где $0 < \theta_n < 1$, и вычислить число e с точностью до 10^{-5} .

73. Доказать, что число е иррационально.

74. Доказать неравенство

$$\left(\frac{n}{e}\right)^n < n! < e\left(\frac{n}{2}\right)^n$$
.

75. Доказать неравенства:

a)
$$\frac{1}{n+1} < \ln\left(1+\frac{1}{n}\right) < \frac{1}{n}$$
,

где п — любое натуральное число;

6)
$$1 + \alpha < e^{\alpha}$$

где а — вещественное число, отличное от нуля.

76. Доказать, что $\lim_{n\to\infty} n (a^{1/n} - 1) = \ln a (a > 0)$, где $\ln a$ есть логарифм числа a при основании e=2,718...

Пользуясь теоремой о существовании предела монотонной и ограниченной последовательности, доказать сходимость следующих последовательностей:

77.
$$x_n = p_0 + \frac{p_1}{10} + \ldots + \frac{p_n}{10^n}$$
 $(n = 1, 2, \ldots),$

где p_i ($i=0,1,2,\ldots$) — целые неотрицательные числа, не превышающие 9, начиная с p_1 .

78.
$$x_n = \frac{10}{1} \cdot \frac{11}{3} \cdot \dots \cdot \frac{n+9}{2n-1}$$

79. $x_n = \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{4}\right) \cdot \dots \left(1 - \frac{1}{2^n}\right)$

80. $x_n = \left(1 + \frac{1}{2}\right) \left(1 + \frac{1}{4}\right) \cdot \dots \left(1 + \frac{1}{2^n}\right)$

81. $x_1 = \sqrt{2}$, $x_2 = \sqrt{2 + \sqrt{2}}$, ..., $x_n = \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}$

Пользуясь критерием Коши, доказать сходимость следующих последовательностей: