

# COMPUTER ORGANIZATION AND ARCHITETCURE Dr. K. Geetha

Senior Assistant Professor, CSE, SOC



#### Outline

- Number systems
- Number systems conversion
- Representing numbers
  - Unsigned magnitude
  - Signed magnitude
  - 1's complement
  - 2's complement
  - Floating point
- Representing characters & symbols
  - ASCII
  - Unicode



# Data Representation



#### **Qualitative**

- Represents quality or characteristics
- Not proportional to a value
- Name, NIC no, index no, Address

#### **Quantitative**

- Quantifiable
- Proportional to value  $\alpha$
- No of students, marks, CGPA



# Data Representation (Contd.)





# Data Representation in Computers

- Data are stored in Registers
- Registers are limited in number & size



- With a n-bit register
  - Min value0
  - Max value 2<sup>n</sup>-1
  - MSB n-1th bit = Sign





A number system of *base*, or *radix*, r is a system that uses r distinct symbols.

Numbers are represented by a string of digit.

A number N in base or radix b can be written as: N = I.F

$$(N)_b = d_{n-1} d_{n-2} - - - - d_1 d_0 d_{-1} d_{-2} - - - - d_{-m}$$

In the above,  $d_{n-1}$  to  $d_0$  is integer part referred as I, then follows a radix point, and then  $d_{-1}$  to  $d_{-m}$  is fractional part referred as F.

 $d_{n-1}$  = Most significant bit (MSB) ,  $d_{-m}$  = Least significant bit (LSB)



# Number Systems

- $\square$  <u>Decimal</u> number system r = 10
  - **1** 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

| 10 <sup>5</sup> | 104 | 103 | 10 <sup>2</sup> | 10 <sup>1</sup> | 100 |
|-----------------|-----|-----|-----------------|-----------------|-----|
| 179             |     |     | ek.             | 19              | 46  |

- □ Binary number system r = 2
  - **0**, 1

| 25 | 24 | 23 | 22 | 21 | 20 |
|----|----|----|----|----|----|
|----|----|----|----|----|----|

Each binary digit is also called a **bit.** Rightmost digit is **least significant bit (LSB)** leftmost digit is called **most significant bit (MSB)**.



### Number Systems contd...

- $\square$  Octal number system r = 8
  - **0**, 1, 2, 3, 4, 5, 6, 7

| 85 | 84 | 83 | 82 | 81 | 80 |
|----|----|----|----|----|----|
|    |    |    |    | l. |    |

- □ <u>Hexadecimal</u> number system r = 16
  - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

| 16 <sup>5</sup> 16 <sup>4</sup> 16 <sup>3</sup> 16 <sup>2</sup> 16 <sup>1</sup> 16 |
|------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------|



# Number Systems relationship

| HEXADECIMAL | DECIMAL | OCTAL | BINARY        |
|-------------|---------|-------|---------------|
| 0           | 0       | 0     | 0000          |
| 1           | 1       | 1     | 0001          |
| 2           | 2       | 2     | 0010          |
| 3           | 3       | 3     | 0011 <b>I</b> |
| 4           | 4       | 4     | 0100          |
| 5           | 5       | 5     | 0101 I        |
| 6           | 6       | 6     | 0110          |
| 7           | 7       | 7     | 0111          |
| 8           | 8       | 10    | 1000          |
| 9           | 9       | 11    | 1001          |
| А           | 10      | 12    | 1010          |
| В           | 11      | 13    | 1011          |
| С           | 12      | 14    | 1100          |
| D           | 13      | 15    | 1101          |
| Е           | 14      | 16    | 1110          |
| F           | 15      | 17    | 1111          |

| System     | Radix | Symbols                            |
|------------|-------|------------------------------------|
| Binary - B | 2     | 0,1                                |
| Octal - O  | 8     | 0,1,2,3,4,5,6,7                    |
| Decimal- D | 10    | 0,1,2,3,4,5,6,7,8,9                |
| Неха - Н   | 16    | 0,1,2,3,4,5,6,7,8,9<br>A,B,C,D,E,F |

COA- Data Representation-NumberSystems





COA- Data Representation-NumberSystems

K. Geetha



- I. Conversion from decimal to any base r = 2,8,16 (Integer part)
  - Divide I by r, collect the quotient q and remainders rem
  - 2. Repeat step 1 with **I** = **q** until **q** becomes 0
  - 3. Write the **rem** from **bottom to top** to provide the integer equivalent of the result.

```
162/2 = 81 rem 0

81/2 = 40 rem 1

40/2 = 20 rem 0

20/2 = 10 rem 0

10/2 = 5 rem 0

5/2 = 2 rem 1

2/2 = 1 rem 0

1/2 = 0 rem 1
```

Example: 162.375: So,  $(162.375)_{10} = (10100010.011)_2$ 



# I. Conversion from **decimal** to any **base** r = 2.8.16 **Fraction part** Example: 162.375: So, $(162.375)_{10} = (10100010.011)_2$

- 1. Multiply **F** by **r** and find the product
- 2. Repeat step 1 with **F** part of the product until any of the following is satisfied
  - 1. F = 0
  - 2. F recurs again
  - 3. Repeat for **p** times where **P** refers to precision in terms of no. of digits
- 3. Write the **I** part of the product from **top to bottom** to provide the fraction equivalent of the result



#### Decimal to Octal $(152.512)_{10} = (?)_8$

|   |   | Ī   | 1  |           |
|---|---|-----|----|-----------|
| _ | 8 | 152 | Re | mainder 🗚 |
| _ | 8 | 19  | 0  | LSB       |
|   |   | 2 _ | 3  |           |
|   |   | -   | 2  | MSB       |

$$0.513 \times 8 = 4.104$$
 4  
 $0.104 \times 8 = 0.832$  0  
 $0.832 \times 8 = 6.656$  6  $(0.513)_{10} = (0.40651...)_{8}$   
 $0.656 \times 8 = 5.248$  5  
 $0.248 \times 8 = 1.984$  1

Complete answer is (152.512)10 = (230.40651...)8



#### Decimal to Hexa $(2607.565)_{10} = (?)_{16}$

|   | 16 | 2607 | Ren | nainder <sub>1</sub> |
|---|----|------|-----|----------------------|
| _ | 16 | 162  | 15  | LSB                  |
| _ |    | 10_  | 2   |                      |
| _ |    | 3    | 10  | MSB                  |

$$(2607)_{10} = (A2F)_{16}$$

| 0.555150.04               |             | ı                                                 |
|---------------------------|-------------|---------------------------------------------------|
| 0.565 x 16 = <b>9.</b> 04 | 9           |                                                   |
| $0.04 \times 16 = 0.64$   | 0           |                                                   |
| 0.64 x 16 = <b>10</b> .24 | 10 = A      |                                                   |
| 0.24 x 16 = 3.84          | 3           | (0.565) <sub>10</sub> = (0.90A3D70) <sub>16</sub> |
| 0.84 x 16 = <b>13</b> .44 | 13 = D      |                                                   |
| 0.44 x 16 = <b>7</b> .04  | 7           |                                                   |
| 0.04 x 16 = <b>0</b> .64  | 0           | ,                                                 |
| Complete answer is        | s (2607.565 | ) <sub>10</sub> = (A2F. 90A3D70) <sub>16</sub>    |
|                           |             |                                                   |



#### Thank You

#### Binary Number System

2 digits { 0, 1 }, called b inary digits or "bits"

#### \* Weights

Sum of "Bit x Weight"

**★** Groups of bits

$$=(5.25)_{10}$$

$$(101.01)_2$$

4 bits = 
$$Nibble$$

$$8 \text{ bits} = Byte$$

#### Octal Number System

- **★** Base = 8
  - 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }
- \* Weights
  - Weight = (Base) Position
- **★ Magnitude** 
  - Sum of "Digit x Weight"
- **★ Formal Notation**



#### Decimal Number System

- ★ Base (also called radix) = 10
  - 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }



- **★ Digit Position** 
  - Integer & fraction
- **★ Digit Weight** 
  - Weight = (Base) Position
- **★ Magnitude** 
  - Sum of "Digit x Weight"
- **★ Formal Notation**



 $(512.74)_{10}$ 

K. Geetha

COA – Data Representation – Number Systems

#### Hexa Decimal Number System

• 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }

#### **★** Weights

• Weight = (Base) Position

#### **★** Magnitude

- Sum of "Digit x Weight"
- **★** Formal Notation



(1E5.7A)<sub>16</sub>

#### Powers of 2

| n | 2 <sup>n</sup> |
|---|----------------|
| 0 | 20=1           |
| 1 | 21=2           |
| 2 | 22=4           |
| 3 | 23=8           |
| 4 | 24=16          |
| 5 | 25=32          |
| 6 | 26=64          |
| 7 | 27=128         |

| n  | 2 <sup>n</sup>        |
|----|-----------------------|
| 8  | 28=256                |
| 9  | 29=512                |
| 10 | 2 <sup>10</sup> =1024 |
| 11 | 211=2048              |
| 12 | 212=4096              |
| 20 | 2 <sup>20</sup> =1M   |
| 30 | 2 <sup>30</sup> =1G   |
| 40 | 2 <sup>40</sup> =1T   |

Kilo

Mega

Giga

Tera

COA- Data Representation-NumberSystems

#### Number base Conversions



COA – Data Representation – Number Systems



I. Conversion from any base r = 2,8,16 to decimal

A number N in base or radix b can be written as:  $N = I \cdot F$ 

$$(N)_b = d_{n-1} d_{n-2} - - - - d_1 d_0 d_{-1} d_{-2} - - - - d_{-m}$$

$$I = (d_{n-1} * r^{n-1}) + (d_{n-2} * r^{n-2}) + (d_{n-3} * r^{n-3}) + \dots + (d_1 * r^1) + (d_0 * r^0)$$

$$F = (d_{-1} * r^{-1}) + (d_{-2} * r^{-2}) + \dots + (d_{-m} * r^{-m})$$



# Number System Conversion examples....

#### **Binary to Decimal conversion**

$$(1101.01)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{(-1)} + 1 \times 2^{(-2)} = (13.25)_{10}$$

#### Octal to Decimal conversion

$$(431.2)_8 = 4 \times 8^2 + 3 \times 8^1 + 1 \times 8^0 + 2 \times 8^{(-1)} = (281.25)_{10}$$

#### Hexadecimal to Decimal conversion

$$(6E9.D8)_{16} = 6 \times 16^2 + 14 \times 16^1 + 9 \times 16^0 + 13 \times 16^{(-1)} + 8 \times 16^{(-2)} =$$

$$(1769.84375)_{10}$$



Binary to Octal Conversion  $(2^1 ---> 2^3)$ 

**step 1a:** Split the Integer part of given binary number into groups of 3 bits from right (LSB).

**Step 1 b**: Split the fraction part of given binary number into groups of 3 bits from left (MSB)

**step 2:** Add 0s to the left side in Integer part and, add 0s to the right side in the fraction for lack of 3 bits.

**step 3:** Find the Octal equivalent for each group in both integer and fraction portion

step 4: Form the each group Octal number together in the same order.



#### Solved Example:

#### Binary - Octal Conversion

$$*8 = 2^3$$

★ Each group of 3 bits represents an octal digit

#### Example:



| Octal | Binary |
|-------|--------|
| 0     | 000    |
| 1     | 001    |
| 2     | 010    |
| 3     | 011    |
| 4     | 100    |
| 5     | 101    |
| 6     | 110    |
| 7     | 111    |

Works both ways (Binary to Octal & Octal to Binary)



Binary to Hexa Conversion  $(2^1 ---> 2^4)$ 

**step 1a:** Split the Integer part of given binary number into groups of 4 bits from right (LSB).

**Step 1 b**: Split the fraction part of given binary number into groups of 4 bits from left (MSB)

**step 2:** Add 0s to the left side in Integer part and, add 0s to the right side in the fraction for lack of 4 bits.

**step 3:** Find the Hexa equivalent for each group in both integer and fraction portion

step 4: Form the each group Hexa number together in the same order.



#### **Solved Example:**

#### Binary - Hexadecimal Conversion

$$\star 16 = 2^4$$

**★** Each group of 4 bits represents a hexadecimal digit

Example:



| Hex | Binary |
|-----|--------|
| 0   | 0000   |
| 1   | 0001   |
| 2   | 0010   |
| 3   | 0011   |
| 4   | 0100   |
| 5   | 0101   |
| 6   | 0110   |
| 7   | 0111   |
| 8   | 1000   |
| 9   | 1001   |
| A   | 1010   |
| В   | 1011   |
| C   | 1100   |
| D   | 1101   |
| E   | 1110   |
| F   | 1111   |

Works both ways (Binary to Hex & Hex to Binary)

COA- Data Representation-NumberSystems

#### Number System Chart

| ecimal | Binary | Octal | Hex |
|--------|--------|-------|-----|
| 00     | 0000   | 00    | 0   |
| 01     | 0001   | 01    | 1   |
| 02     | 0010   | 02    | 2   |
| 03     | 0011   | 03    | 3   |
| 04     | 0100   | 04    | 4   |
| 05     | 0101   | 05    | 5   |
| 06     | 0110   | 06    | 6   |
| 07     | 0111   | 07    | 7   |
| 08     | 1000   | 10    | 8   |
| 09     | 1001   | 11    | 9   |
| 10     | 1010   | 12    | A   |
| 11     | 1011   | 13    | В   |
| 12     | 1100   | 14    | C   |
| 13     | 1101   | 15    | D   |
| 14     | 1110   | 16    | E   |
| 15     | 1111   | 17    | F   |

### 1's Complement

- **★ 1's Complement (Diminished Radix Complement)** 
  - All '0's become '1's
  - All '1's become '0's

Example (10110000)<sub>2</sub>

 $\Rightarrow (010011111)_2$ 

If you add a number and its 1's complement ...

 $10110000 \\ + 01001111 \\ \hline 11111111$ 

#### 2's Complement

```
★ 2's Complement (Radix Complement)
```

Take 1's complement then add 1

Toggle all bits to the left of the first '1' from the right

#### Example:

OR

```
Number: 10110000 10110000

1's Comp.: 01001111

+ 1

01010000 01010000
```

COA – Data Representation – Number Systems

#### Types of representation





### Unsigned – magnitude rep.



An n-bit pattern can represent  $2^n$  distinct integers.

Range 0 to  $(2^n)$ -1, as tabulated below

Can represent only +ve nos.

| n  | Minimum | Maximum                                             |
|----|---------|-----------------------------------------------------|
| 8  | 0       | (2^8)-1 (=255)                                      |
| 16 | 0       | (2^16)-1 (=65,535)                                  |
| 32 | 0       | (2^32)-1 (=4,294,967,295) (9+ digits)               |
| 64 | 0       | (2^64)-1 (=18,446,744,073,709,551,615) (19+ digits) |

#### Negative numbers

- \* Computers Represent Information in '0's and '1's
  - '+' and '-' signs have to be represented in '0's and '1's
- **★3 Systems** 
  - Signed Magnitude
  - 1's Complement
  - 2's Complement

All three use the *left-most bit* to represent the sign:

- '0' ⇒ positive
- ♦ '1' 
  ⇒ negative

### Signed magnitude representation

**★** Magnitude is magnitude, does not change with sign

S Magnitude (Binary)
$$(+3)_{10} \Rightarrow (0\ 0\ 1\ 1)_{2}$$

$$(-3)_{10} \Rightarrow (1\ 0\ 1\ 1)_{2}$$
Sign Magnitude

\* Can't include the sign bit in 'Addition'

$$\begin{array}{c} 0\ 0\ 1\ 1 \Rightarrow (+3)_{10} \\ + \ 1\ 0\ 1\ 1 \Rightarrow (-3)_{10} \\ \hline \\ 1\ 1\ 1\ 0 \Rightarrow (-6)_{10} \end{array}$$

COA – Data Representation – Number Systems

### 1's Complement representation

- **★** Positive numbers are represented in "Binary"
  - Magnitude (Binary)
- \* Negative numbers are represented in "1's Comp."
  - 1 Code (1's Comp.)
  - $(+3)_{10} \Rightarrow (0\ 011)_2$
  - $(-3)_{10} \Rightarrow (1\ 100)_2$
- **★** There are 2 representations for '0'

$$(+0)_{10} \Rightarrow (0\ 000)_2$$

$$(-0)_{10} \Rightarrow (1\ 111)_{2}$$

COA – Data Representation – Number Systems

### 1's Complement range

| Decimal | 1's Comp. |
|---------|-----------|
| +7      | 0111      |
| +6      | 0110      |
| + 5     | 0101      |
| +4      | 0100      |
| +3      | 0011      |
| + 2     | 0010      |
| +1      | 0001      |
| +0      | 0000      |
| -0      | 1111      |
| -1      | 1110      |
| -2      | 1101      |
| -3      | 1100      |
| -4      | 1011      |
| -5      | 1010      |
| -6      | 1001      |
| -7      | 1000      |

COA- Data Representation-NumberSystems

# 2's Complement representation

**★** Positive numbers are represented in "Binary" Magnitude (Binary) ★ Negative numbers are represented in "2's Comp." Code (2's Comp.)  $(+3)_{10} \Rightarrow (0\ 011)_{2}$  $(-3)_{10} \Rightarrow (1\ 101)_{2}$ **★** There is 1 representation for '0' 1's Comp.  $(+0)_{10} \Rightarrow (0\ 000)_{2}$  $(-0)_{10} \Rightarrow (0\ 000)_{10}$ 

# 2's Complement range

**★ 4-Bit Representation**

$$2^{4} = 16 \text{ Combinations}$$

$$-8 \le \text{Number} \le +7$$

$$-2^{3} \le \text{Number} \le +2^{3}-1$$
**★ n-Bit Representation**

$$-2^{n-1} \le \text{Number} \le +2^{n-1}-1$$

| Decimal | 2's Comp. |
|---------|-----------|
| +7      | 0111      |
| +6      | 0110      |
| + 5     | 0101      |
| +4      | 0100      |
| + 3     | 0011      |
| + 2     | 0010      |
| +1      | 0001      |
| + 0     | 0000      |
| -1      | 1111      |
| - 2     | 1110      |
| -3      | 1101      |
| -4      | 1100      |
| -5      | 1011      |
| -6      | 1010      |
| -7      | 1001      |
| -8      | 1000      |



# All types of representation

#### **★**4-Bit Example

|          | Unsigned<br>Binary | Signed<br>Magnitude | 1's Comp. | 2's Comp.   |
|----------|--------------------|---------------------|-----------|-------------|
| Range    | 0 ≤ N ≤ 15         | -7 ≤ N ≤ +7         | -7≤N≤+7   | -8 ≤ N ≤ +7 |
| Positive |                    | 0 0 0               | 0 0 0     | 0 0 0       |
|          | Binary             | Binary              | Binary    | Binary      |
| Negative | X                  | 1000                | 1000      |             |
| 0.072    | 5.895394.5         | Binary              | 1's Comp. | 2's Comp.   |



# Binary arithmetic

#### Binary addition:-

| А | В | Sum | Carry |
|---|---|-----|-------|
| 0 | 0 | 0   | 0     |
| 0 | 1 | 1   | 0     |
| 1 | 0 | 1   | 0     |
| 1 | 1 | 0   | 1     |

#### Binary subtraction:-

| А | В | Difference | Borrow |
|---|---|------------|--------|
| 0 | 0 | 0          | 0      |
| 0 | 1 | 1          | 1      |
| 1 | 0 | 1          | 0      |
| 1 | 1 | 0          | 0      |

#### **Binary Multiplication:-**

| A | В | Output |
|---|---|--------|
| 0 | 0 | 0      |
| 0 | 1 | 0      |
| 1 | 0 | 0      |
| 1 | 1 | 1      |

#### **Binary Division:-**

| A        | В             | Output      |
|----------|---------------|-------------|
| 0        | 1             | 0           |
| 1        | 1             | 1           |
| Division | by zero is me | eaning less |

COA- Data Representation-NumberSystems

### 1's complement addition



With one's complement addition, the carry bit is "carried around" and added to the sum.

 Example: Using one's complement binary arithmetic, find the sum of 48 and - 19



We note that 19 in binary is 00010011, so -19 in one's complement is: 11101100.

### 2's complement addition





#### 2's complement addition contd...

```
Case 1: Two positive numbers
+29 ---- 0 001 1101 (Augend)
+19 ---- 0 001 0011 (Addend)
       0 \ 011 \ 0000 \ (Sum = +48)
Case 2: Positive augend & negative addend
+39 ---- 0 010 0111 (Augend)
- 22 ---- 1 110 1010 (Addend)-2's comp.
    1 0 001 0001 (Sum = +17)
  Discarded
```

COA – Data Representation – NumberSystems



### 2's complement addition contd...

```
Case 3: Positive addend & negative augend
- 47 ---- 1 101 0001 (Augend)
+29 ---- 0 001 1101 (Addend)
       1 110 1110 (Sum = -18)-2's comp
Case 4: Two negative numbers
-32 ---- 1 110 0000 (Augend)
-44 ---- 1 101 0100 (Addend)
    1 1 011 0100 (Sum = -76)-2's comp
```

COA – Data Representation – Number Systems

discarded



# Binary Subtraction – 1's complement

- ★ Change "Subtraction" to "Addition"
- ★ If "Carry" = 1 then add it to the LSB, and the result is positive (in Binary)
- ★ If "Carry" = 0 then the result is negative (in 1's Comp.)



COA- Data Representation-NumberSystems



# Binary Subtraction – 2's complement

- ★ Change "Subtraction" to "Addition"
- ★ If "Carry" = 1 ignore it, and the result is positive (in Binary)
- ★ If "Carry" = 0 then the result is negative (in 2's Comp.)





## 2's complement Subtraction

```
Case 1: Two positive numbers
+28 ---- 0 001 1100 (Minuend)
+19 ---- 1 110 1101 (Subtrahend)-2's comp
1 000 1001 (Sum = +9)
```

Case 2: Positive no. & smaller Negative no. +39 ---- 0 010 0111 (Minuend) -21 ---- 0 001 0101 (Subtrahend)-2's comp 0 011 1100 (Sum = +60)



#### 2's complement subtraction contd...

Case 3: Positive No. & larger Negative No.

#### Case 4: Two negative numbers

COA – Data Representation – Number Systems

#### Thank You



#### Binary Arithmetic Problems

#### Add the following binary numbers:

- 1. (1001)<sub>2</sub> and (0101)<sub>2</sub>
- 2. (101.01)<sub>2</sub> and (1101.10)<sub>2</sub>

#### Subtract the following binary numbers:

- 1. (0110)<sub>2</sub> from (1010)<sub>2</sub>
- 2. (01011)<sub>2</sub> from (11011)<sub>2</sub>



#### Binary Arithmetic Problems

#### Solve the following binary multiplication

- 1.  $(101)_2$  and  $(11)_2$  1. 5\*3=15=1111
- 2.  $(1011)_2$  and  $(1001)_2$  2. 2. 11\*9 = 99 =**01100011**



#### Binary Arithmetic Problems

Solve the following division

- 1.(11001) by (101)
- 2. (110000) by (100)
- 1. 25 / 5 = 5, 101 2. 48 / 4 = 12, **01100**



### Binary Codes

- $\star$  Group of *n* bits
  - Up to 2" combinations
  - Each combination represents an element of information
- **★ Binary Coded Decimal (BCD)** 
  - Each Decimal Digit is represented by 4 bits
  - (0 9) ⇒ Valid combinations

| Decimal | BCD  |
|---------|------|
| 0       | 0000 |
| 1       | 0001 |
| 2       | 0010 |
| 3       | 0011 |
| 4       | 0100 |
| 5       | 0101 |
| 6       | 0110 |
| 7       | 0111 |
| 8       | 1000 |
| 9       | 1001 |

COA – Data Representation – Number Systems



#### BCD addition

#### **★** One decimal digit + one decimal digit

 If the result is 1 decimal digit (≤9), then it is a simple binary addition

Example:

$$5 \qquad 0101$$

$$+ 3 \qquad + 0011$$

$$8 \iff 1000$$

 If the result is two decimal digits (≥ 10), then binary addition gives invalid combinations

Example: 
$$5 0101$$
  
 $+5 + 0101$   
 $001 0000 \iff 10$   
 $1010$ 

COA – Data Representation – Number Systems



#### Binary Coded addition

#### **BCD Addition ★** If the binary result 0101 is greater than 9, + 5 0101 correct the result by adding 6 10 1010 0110 0001 Multiple Decimal Digits **Two Decimal Digits** 0001

COA – Data Representation – Number Systems



# Reflected code / Unweighted code

#### **Gray Code**

- ★ One bit changes from one code to the next code
- **★** Different than Binary



| Decimal | Gray |
|---------|------|
| 00      | 0000 |
| 01      | 0001 |
| 02      | 0011 |
| 03      | 0010 |
| 04      | 0110 |
| 05      | 0111 |
| 06      | 0101 |
| 07      | 0100 |
| 08      | 1100 |
| 09      | 1101 |
| 10      | 1111 |
| 11      | 1110 |
| 12      | 1010 |
| 13      | 1011 |
| 14      | 1001 |
| 15      | 1000 |

| Binary |
|--------|
| 0000   |
| 0001   |
| 0010   |
| 0011   |
| 0100   |
| 0101   |
| 0110   |
| 0111   |
| 1000   |
| 1001   |
| 1010   |
| 1011   |
| 1100   |
| 1101   |
| 1110   |
| 1111   |

COA- Data Representation-NumberSystems



### Floating point numbers

- Programming languages support numbers with fraction
  - Called floating-point numbers
  - ♦ Examples:

```
3.14159265...(\pi)
```

2.71828... (e)

0.00000001 or 1.0 × 10<sup>-9</sup> (seconds in a nanosecond)

86,400,000,000,000 or 8.64 × 10<sup>13</sup> (nanoseconds in a day)

last number is a large integer that cannot fit in a 32-bit integer

- We use a scientific notation to represent
  - ♦ Very small numbers (e.g. 1.0 × 10<sup>-9</sup>)
  - ♦ Very large numbers (e.g. 8.64 × 10<sup>13</sup>)
  - ♦ Scientific notation: ± d. f₁f₂f₃f₄ ... × 10 ± e₁e₂e₃



# Floating point numbers Contd...

- Examples of floating-point numbers in base 10 ...
  - ♦ 5.341×10³, 0.05341×10⁵, -2.013×10⁻¹, -201,3×10⁻³
- Examples of floating-point numbers in base 2 ...
  - ♦ 1.00101×2<sup>23</sup>, 0.0100101×2<sup>25</sup>, -1.101101×2<sup>-3</sup>, -1101.101×2<sup>-6</sup>
  - Exponents are kept in decimal for clarity
  - $\Rightarrow$  The binary number  $(1101.101)_2 = 2^3 + 2^2 + 2^0 + 2^{-1} + 2^{-3} = 13.625$
- Floating-point numbers should be normalized
  - Exactly one non-zero digit should appear before the point
    - In a decimal number, this digit can be from 1 to 9
    - In a binary number, this digit should be 1
  - ♦ Normalized FP Numbers: 5.341×10³ and –1.101101×2-³
  - NOT Normalized: 0.05341×10<sup>5</sup> and -1101.101×2<sup>-6</sup>

binary point -



## Floating point Representation

- A floating-point number is represented by the triple
  - S is the Sign bit (0 is positive and 1 is negative)
    - Representation is called sign and magnitude
  - E is the Exponent field (signed)
    - Very large numbers have large positive exponents
    - Very small close-to-zero numbers have negative exponents
    - More bits in exponent field increases range of values
  - F is the Fraction field (fraction after binary point)
    - More bits in fraction field improves the precision of FP numbers



Value of a floating-point number =  $(-1)^{S} \times val(F) \times 2^{val(E)}$ 



# Floating point Standard

- Found in virtually every computer invented since 1980
  - Simplified porting of floating-point numbers
  - Unified the development of floating-point algorithms
  - Increased the accuracy of floating-point numbers
- Single Precision Floating Point Numbers (32 bits)
  - 1-bit sign + 8-bit exponent + 23-bit fraction

| Exponent <sup>8</sup> | - 4 00                 |
|-----------------------|------------------------|
| -vnonento             | Fraction <sup>23</sup> |
| -Apoliolit            | Traction               |

- Double Precision Floating Point Numbers (64 bits)
  - ♦ 1-bit sign + 11-bit exponent + 52-bit fraction

| S | Exponent <sup>11</sup> | Fraction <sup>52</sup> |  |
|---|------------------------|------------------------|--|
|   |                        | (continued)            |  |



## Floating point Normalization

❖ For a normalized floating point number (S, E, F)

$$F = f_1 f_2 f_3 f_4 \dots$$

- Significand is equal to  $(1.F)_2 = (1.f_1f_2f_3f_4...)_2$ 
  - ♦ IEEE 754 assumes hidden 1. (not stored) for normalized numbers
  - ♦ Significand is 1 bit longer than fraction
- Value of a Normalized Floating Point Number is

$$(-1)^{S} \times (1.F)_{2} \times 2^{\text{val}(E)}$$
  
 $(-1)^{S} \times (1.f_{1}f_{2}f_{3}f_{4}...)_{2} \times 2^{\text{val}(E)}$   
 $(-1)^{S} \times (1 + f_{1} \times 2^{-1} + f_{2} \times 2^{-2} + f_{3} \times 2^{-3} + f_{4} \times 2^{-4}...)_{2} \times 2^{\text{val}(E)}$ 

 $(-1)^S$  is 1 when S is 0 (positive), and -1 when S is 1 (negative)



### Biased Exponent representation

- How to represent a signed exponent? Choices are ...
  - Sign + magnitude representation for the exponent
  - Two's complement representation
  - Biased representation
- IEEE 754 uses biased representation for the exponent
  - ♦ Value of exponent = val(E) = E Bias (Bias is a constant)
- Recall that exponent field is 8 bits for single precision
  - ♦ E can be in the range 0 to 255
  - $\Rightarrow$  E = 0 and E = 255 are reserved for special use (discussed later)
  - $\Rightarrow$  E = 1 to 254 are used for normalized floating point numbers
  - $\Rightarrow$  Bias = 127 (half of 254), val(E) = E 127
  - $\Rightarrow$  val(E=1) = -126, val(E=127) = 0, val(E=254) = 127



### Biased exponent Contd...

- For double precision, exponent field is 11 bits
  - ♦ E can be in the range 0 to 2047
  - $\Rightarrow$  E = 0 and E = 2047 are reserved for special use
  - $\Leftrightarrow E = 1$  to 2046 are used for normalized floating point numbers
  - $\Rightarrow$  Bias = 1023 (half of 2046), val(E) = E 1023
  - $\Rightarrow$  val(E=1) = -1022, val(E=1023) = 0, val(E=2046) = 1023
- Value of a Normalized Floating Point Number is

$$(-1)^{S} \times (1.F)_{2} \times 2^{E-Bias}$$
  
 $(-1)^{S} \times (1.f_{1}f_{2}f_{3}f_{4}...)_{2} \times 2^{E-Bias}$   
 $(-1)^{S} \times (1+f_{1}\times 2^{-1}+f_{2}\times 2^{-2}+f_{3}\times 2^{-3}+f_{4}\times 2^{-4}...)_{2} \times 2^{E-Bias}$ 



### Single precision - example

- What is the decimal value of this Single Precision float?
  - 101111100010000000000000000000000
- Solution:
  - ♦ Sign = 1 is negative
  - $\Rightarrow$  Exponent =  $(011111100)_2 = 124$ , E bias = 124 127 = -3
  - $\Rightarrow$  Significand =  $(1.0100 ... 0)_2 = 1 + 2^{-2} = 1.25 (1. is implicit)$
  - $\Rightarrow$  Value in decimal = -1.25 × 2<sup>-3</sup> = -0.15625
- What is the decimal value of?
  - 010000010010011000000000000000000
- Solution:

 $\Rightarrow$  Value in decimal = +(1.01001100 ... 0)<sub>2</sub> × 2<sup>130-127</sup> = (1.01001100 ... 0)<sub>2</sub> × 2<sup>3</sup> = (1010.01100 ... 0)<sub>2</sub> = 10.375



## Double precision - example

What is the decimal value of this Double Precision float?



#### Solution:

- ♦ Value of exponent = (10000000101)<sub>2</sub> Bias = 1029 1023 = 6
- $\Rightarrow$  Value of double float =  $(1.00101010...0)_2 \times 2^6 (1. is implicit) = <math>(1001010.10...0)_2 = 74.5$
- What is the decimal value of ?

❖ Do it yourself! (answer should be -1.5 × 2<sup>-7</sup> = -0.01171875)



### FP decimal to Binary

- Convert –0.8125 to binary in single and double precision
- Solution:
  - Fraction bits can be obtained using multiplication by 2

```
• 0.8125 \times 2 = 1.625

• 0.625 \times 2 = 1.25

• 0.25 \times 2 = 0.5

• 0.5 \times 2 = 1.0

• 0.5 \times 2 = 1.0
```

- · Stop when fractional part is 0
- $\Rightarrow$  Fraction =  $(0.1101)_2$  =  $(1.101)_2 \times 2^{-1}$  (Normalized)

Single Precision

Double Precision



## Largest Normalized Float

- What is the Largest normalized float?
- Solution for Single Precision:

- ♦ Significand = (1.111 ... 1)₂ = almost 2
- ♦ Value in decimal ≈ 2 × 2<sup>127</sup> ≈ 2<sup>128</sup> ≈ 3.4028 ... × 10<sup>38</sup>
- Solution for Double Precision:



- ♦ Value in decimal ≈ 2 × 2<sup>1023</sup> ≈ 2<sup>1024</sup> ≈ 1.79769 ... × 10<sup>308</sup>
- Overflow: exponent is too large to fit in the exponent field



#### Smallest Normalized float

- What is the smallest (in absolute value) normalized float?
- Solution for Single Precision:
  - 0000000100000000000000000000000

  - ♦ Significand = (1.000 ... 0)<sub>2</sub> = 1
  - ♦ Value in decimal = 1 × 2<sup>-126</sup> = 1.17549 ... × 10<sup>-38</sup>
- Solution for Double Precision:

  - ♦ Value in decimal = 1 × 2<sup>-1022</sup> = 2.22507 ... × 10<sup>-308</sup>
- Underflow: exponent is too small to fit in exponent field



# Character Representation (Cont.)

- With a single byte (8-bits) 256 characters can be represented
- Standards
  - ASCII American Standard Code for Information Interchange
  - EBCDIC Extended Binary-Coded Decimal Interchange Code
  - Unicode



#### ASCII Code

- De facto world-wide standard
- Used to represent
  - Upper & lower-case Latin letters
  - Numbers
  - Punctuations
  - Control characters
- There are 128 standard ASCII codes
  - Can be represented by a 7 digit binary number
    - □ 000 0000 through 111 1111
  - Plus parity bit



#### ASCII code

#### **American Standard Code for Information Interchange**

| Info | 7-bit Cod |
|------|-----------|
| A    | 1000001   |
| В    | 1000010   |
| •    | :         |
| Ż    | 1011010   |
| a    | 1100001   |
| b    | 1100010   |
| :    |           |
| Z    | 1111010   |
| @    | 1000000   |
| ?    | 0111111   |
| +    | 0101011   |



# **ASCII Table**

| ASCII | Hex | Symbol |  |  |
|-------|-----|--------|--|--|
| 0     | 0   | NUL    |  |  |
| 1     | 1   | SOH    |  |  |
| 2     | 2   | STX    |  |  |
| 3     | 2 3 | ETX    |  |  |
| 4     | 4   | EOT    |  |  |
| 5     | 5   | ENQ    |  |  |
| 6     | 6   | ACK    |  |  |
| 7     | 7   | BEL    |  |  |
| 8     | 8   | BS     |  |  |
| 9     | 9   | TAB    |  |  |
| 10    | Α   | LF     |  |  |
| 11    | В   | VT     |  |  |
| 12    | С   | FF     |  |  |
| 13    | D   | CR     |  |  |
| 14    | E   | SO     |  |  |
| 15    | F   | SI     |  |  |

| ASCII | Hex | Symbol  |  |  |  |
|-------|-----|---------|--|--|--|
| 32    | 20  | (space) |  |  |  |
| 33    | 21  | ! ,     |  |  |  |
| 34    | 22  | "       |  |  |  |
| 35    | 23  | #       |  |  |  |
| 36    | 24  | \$      |  |  |  |
| 37    | 25  | %       |  |  |  |
| 38    | 26  | &       |  |  |  |
| 39    | 27  | 1       |  |  |  |
| 40    | 28  | (       |  |  |  |
| 41    | 29  | )       |  |  |  |
| 42    | 2A  | *       |  |  |  |
| 43    | 2B  | +       |  |  |  |
| 44    | 2C  | ,       |  |  |  |
| 45    | 2D  | -       |  |  |  |
| 46    | 2E  |         |  |  |  |
| 47    | 2F  | /       |  |  |  |

| ASCII | Hex | Symbol           |
|-------|-----|------------------|
| 48    | 30  | 0                |
| 49    | 31  | 1                |
| 50    | 32  | 2                |
| 51    | 33  | 1<br>2<br>3<br>4 |
| 52    | 34  | 4                |
| 53    | 35  | 5                |
| 54    | 36  | 6                |
| 55    | 37  | 7                |
| 56    | 38  | 8                |
| 57    | 39  | 9                |
| 58    | 3A  | :                |
| 59    | 3B  |                  |
| 60    | 3C  | <                |
| 61    | 3D  | =                |
| 62    | 3E  | ><br>?           |
| 63    | 3F  | ?                |

COA- Data Representation-NumberSystems



# ASCII Table (Cont.)

| ASCII | Hav | Symbol | ACCII | How | Cymbol | ACCII | Uov | Symbol |
|-------|-----|--------|-------|-----|--------|-------|-----|--------|
| ASCII | Hex | Symbol | ASCII | Hex | Symbol | ASCII | Hex | Symbol |
| 64    | 40  | @      | 80    | 50  | Р      | 96    | 60  | `      |
| 65    | 41  | Α      | 81    | 51  | Q      | 97    | 61  | a      |
| 66    | 42  | В      | 82    | 52  | R      | 98    | 62  | b      |
| 67    | 43  | C      | 83    | 53  | S      | 99    | 63  | С      |
| 68    | 44  | D      | 84    | 54  | Т      | 100   | 64  | d      |
| 69    | 45  | E      | 85    | 55  | U      | 101   | 65  | е      |
| 70    | 46  | F      | 86    | 56  | V      | 102   | 66  | f      |
| 71    | 47  | G      | 87    | 57  | W      | 103   | 67  | g      |
| 72    | 48  | H      | 88    | 58  | X      | 104   | 68  | h      |
| 73    | 49  | 1      | 89    | 59  | Y      | 105   | 69  | i      |
| 74    | 4A  | J      | 90    | 5A  | Z      | 106   | 6A  | j      |
| 75    | 4B  | K      | 91    | 5B  | ]      | 107   | 6B  | k      |
| 76    | 4C  | L      | 92    | 5C  | \      | 108   | 6C  | 1      |
| 77    | 4D  | M      | 93    | 5D  | ]      | 109   | 6D  | m      |
| 78    | 4E  | N      | 94    | 5E  | ٨      | 110   | 6E  | n      |
| 79    | 4F  | 0      | 95    | 5F  | _      | 111   | 6F  | 0      |

COA- Data Representation-NumberSystems



#### Unicode

- Designed to overcome limitation of number of characters
- Assigns unique character codes to characters in a wide range of languages
- □ 65,536 (2<sup>16</sup>) distinct Unicode characters

Unicode provides a unique number for every character, no matter what the platform, no matter what the program, no matter what the language



#### Unicode Goals

- ➤ Universal Should be the only character set ever needed
- >Semantics All characters must have well defined semantics
- ➤ Unicode Transformation Format (UTF) is available as 8,16,32 and are referred as
- **>**UTF − 8, UTF − 16, UTF − 32



#### Error detecting codes

#### \* Parity

One bit added to a group of bits to make the total number of '1's (including the parity bit) even or odd



**★** Good for checking single-bit errors