3.5 - Cauchy Criterion Problems (Textbook)

Problem 2, (a)

Problem

Show that the following sequence is a Cauchy Sequence

$$X = \frac{n+1}{n} \tag{1}$$

Solution

Layout the Proof In order to show that the sequence X is a cauchy sequence it must be shown that:

$$\forall \varepsilon > 0, \ \exists H \in \mathbb{N} :$$

$$m, n > H \implies |x_n - x_m| < \varepsilon$$
(2)

so first we will consider the restriction required by ε and work backwards to find a sufficient value for H.

Consider the ε Restriction

$$\left| \frac{n+1}{n} - \frac{m+1}{m} \right| = \left| \frac{mn+m-mn+n}{mn} \right|$$

$$= \left| \frac{m+n}{mn} \right|$$

$$= \frac{m+n}{mn}$$
Because $m, n \in \mathbb{N}$

$$= (m+n) \cdot \frac{1}{mn}$$
(3)

Hence we have:

$$|\frac{n+1}{n} - \frac{m+1}{m}| < \varepsilon$$

$$\implies (m+n) \cdot \frac{1}{mn} < \varepsilon$$
(4)

Assume a Value for H Now assume an arbitrary value for for H, we will use $H \geq 3$, this implies from (2):

$$m, n \ge H$$

$$m, n \ge 3$$

$$m \cdot n \ge 9$$

$$\frac{1}{mn} \le \frac{1}{9}$$

$$\frac{1}{mn} \le \frac{1}{9}$$

$$(m+n) \cdot \frac{1}{mn} \le \frac{1}{9} \cdot mn$$

and from (4) we have:

$$(m+n) \cdot \frac{1}{mn} \le \varepsilon$$

Apply the restriction to H So we will choose H:

$$\frac{1}{9}(m+n) > \varepsilon \tag{5}$$

So re arranging this to solve some value for m, n, H

$$\frac{1}{9}(m+n) > \varepsilon$$

$$(m+n) > 9 \cdot \varepsilon$$
(6)

So if we choose a H value such that $H>\frac{9\varepsilon}{2}$ then we will have $m>\frac{9\varepsilon}{2}$ and $n>\frac{9\varepsilon}{2}$ and so $(m+n)>\varepsilon$

Choose the Specific H Value Now there are two values for H, we need a value of $H \geq 3$ and $H > \frac{9\varepsilon}{2}$, this is satisfied by taking $H = \sup \left\{ 9 \cap \left(\frac{2\varepsilon}{2}, \infty \right) \right\}$

The actual proof

$$\forall \varepsilon, \ \exists H = \sup \left\{ 9 \cap \left(\frac{9\varepsilon}{2}, \infty \right) \right\}$$

Now assume that m, n > H, and consider $\mid x_n - x_m \mid$:

$$|x_n - x_m| = |\frac{n+1}{n} - \frac{m+1}{m}|$$
 (7)
= $(m+n) \cdot \frac{1}{mn}$

$$= (m+n) \cdot \frac{1}{mn} \tag{8}$$

Now because $H \geq 9$ and $m, n \geq H$

$$<\frac{1}{9}\left(m+n\right)$$

because $H > \frac{9\varepsilon}{2}$

$$<\frac{1}{9} \cdot \left(\frac{9\varepsilon}{2} + \frac{9\varepsilon}{2}\right)$$

< ε (9)

Now because we have shown that $\forall \varepsilon, \ \exists H = \sup \left\{9 \cap \left(\frac{9\varepsilon}{2}, \infty\right)\right\}$ such that:

 $m, n \ge H \implies |x_n - x_m < \varepsilon|$

It is established that X must be a Cauchy Sequence.