Week assignment 9

Task 1

Question

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wetbulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Umidità: **Relative humidity**, Pressione atmosferica: **Air total pressure** (1 hPa: 0.1 kPa), Temperatura effettiva: **temperature to be utilized**.

Answer

Il tempo oggi in Piacenza Martedì, 03 Dicembre 2019												
	13:00	14:00	16:00	18:00	20:00	21:00	22:00					
	LightCloud	LightCloud	PartlyCloud	Light Cloud	Sun	Sun	Sun					
Temperatura effettiva	9°C	10°C	8°C	6°C	4°C	2°C	2°C					
Temperatura percepita	7°C	10°C	6°C	4°C	2°C	0°C	0°C					
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm					
Umidità	67 %	65 %	69 %	70 %	75 %	83 %	87 %					
Pressione atmosferica	1025 hPa	1025 hPa	1025 hPa	1026 hPa	1027 hPa	1027 hPa	1028 hPa					

The time now is 18:00, from the data given in the website https://www.meteo-oggi.it/italia/regione-emilia-romagna/tempo-piacenza/

umidità: 70%, i.e., the relative humidity ϕ =70%;

pressione atmosferica: 1026 hPa, i.e., the total air pressure P =102.6 kPa;

temperatura effttiva: 6 °C; the temperature in Kelvin temperature scale T =279.15 K

Utilize the psychrometric chart, we can see,

the humidity ratio, i.e., the absolute humidity m = 0.0045

The web-bulb temperature Twb = 8 °C

$$\omega = \frac{0.622Pv}{Pa} = \frac{0.622Pv}{P-Pv}$$
, $\omega = 0.0045$

introduce P = 102.6 kPa into this equation and solve it:

$$P_v = 0.737 \text{ kPa}$$

autem,
$$\Phi = \frac{mv}{mg} = 70\%$$
 (1)

ideal gas
$$m = \frac{PV}{Rsp T}$$

from class water vapour - R_{sp} = 0.4615 , introduce the pressure of water 0.737 kPa and define the volume of aula A is V, than we have :

$$m_v = \frac{0.737V}{0.4615*279,15} = \frac{0.737V}{128,83} = 0.00572 \text{ V} = 5.72 \times 10^{-3} \text{ V}$$

put this volume to equation(1) and calculate the maximum water vapour

$$m_g = \frac{mv}{70\%} = 0,00817 \text{ V} = 8,17 \times 10^{-3} \text{ V}$$

Question

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry (height of 2.5 m, considering two occupants and one bed room calculate, and a conditioned floor area of 200 N2 and wall area is 144 N2, calculate the internal gains, infiltration, and ventilation loads) as that of the example which is located in Brindisi, Italy.

		BRINDISI, Italy													WMO#:	163200	
		40.65N		17.95E	Elev	: 10	StdP	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	WBAN:	99999	
	Annual He	ating and h	lumidificat	ion Design C	onditions												
					Hun	nidification D	P/MCDB and	HR		Coldest month WS/MCDB					MCWS/PCWD		
	Coldest Heating DB				99.6% 99%				0.4% 1%				to 99.6% DB				
	Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD		
	(0)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)		
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	ooling, Deh	umidificatio	on, and Enth	alpy Design	n Condition											
					.,												
	Hottest	Hottest			DB/MCWB	Evaporation WB/MCDB					MCWS/PCW						
	Month	Month 0.4% 1%				DB 2	% MCWB	0.4% 1%			% MCDB	2% DB WB MCDB M			% DB		
	(0)	DB Range	DB	MCWB	DB	MCWB		(h)	WB (i)	MCDB	WB		(m)		MCWS	PCWD	
(0)	(a) 8	7.1	(c) 32.8	(d) 23.6	(e) 31.1	24.3	(g) 29.9	24.3	27.2	(j) 29.7	26.3	(1) 29.0	25.6	(n) 28.3	(o) 4.2	(p) 180	(0)
(2)		7.1	32.0					24.3	21.2	29.1	20.3			20.3	4.2		(2)
				Dehumidific		CDB and HF	₹	***		Enthalpy/MCDB 0.4% 1%					2% Hours 8 to 4 8		
	DP	0.4% HR	MCDB	DP	1% HR	MCDB	DP	2% HR	MCDB	Enth	MCDB	Enth 1	% MCDB	Enth 2	% MCDB	8 to 4 & 12.8/20.6	
	(0)	(b)	(c)	(d)	(e)	(f)	(9)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	(p)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
Extreme Annual Design Conditions																	
	Extr	eme Annual	WS	Extreme Max	e Extreme Annual DB Mean Standard deviation				n-Year Return Period Values of E n=5 years n=10 years n=20				years n=50 years				
1% 2.5% 5%		WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max			
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

Answer

Internal gains,

Calculate the sensibile cooling load from internal gains,

$$q_{ig,s}$$
= 136 + 2.2 A_{cf} + 22 N_{oc} = 136 + 2.2 × 200 + 22 × 2 = 620 W

Calculate the latent cooling load from internal gains,

$$q_{iq,l} = 20 + 0.22A_{cf} + 12N_{oc} = 20 + 0.22 \times 200 + 12 \times 2 = 88 \text{ W}$$

Infiltration,

for a house with a good construction quality, unit leakage area $A_{ul} = 1.4 cm^2/m^2$ and the exposed surface $A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344 m^2$

$$A_L = A_{es} \times A_{ul} = 344 \times 1.4 = 481.6 \text{ cm}^2$$

• Define the cooling temperature $T_{cooling}$ =24 °C, and heating temperature $T_{heating}$ =20 °C in Brindisi

$$\Delta T_{cooling}$$
 = 31.1 °C — 24 °C = 7.1 °C = 7.1 K
 $\Delta T_{heating}$ = 20 °C — (—4.1 °C) = 24.1 °C = 24.1 K
DR = 7.1 °C = 7.1 K

Given that

IDF_{heating} = 0.073
$$\frac{L}{s * cm2}$$
IDF_{cooling} = 0.033 $\frac{L}{s * cm2}$

Calculate infiltration airflow rate,

$$Q_{i,heating} = A_L \times IDF_{heating} = 481.6 \times 0.073 = 35.157 \frac{L}{s}$$

$$Q_{i,cooling} = A_L \times IDF_{cooling} = 481.6 \times 0.033 = 15.893 \frac{L}{s}$$

• The required miminum whole-building vetilation rate is

Qv = 0.05Acf + 3.5(N_{br}+1) = 0.05 × 200 + 3.5 × (1 + 1) = 17
$$\frac{L}{s}$$

Q_{i-v,heating}= Q_{i,heating} + Q_v = 35.157 + 17 = 52.157 $\frac{L}{s}$

Q_{i-v,cooling}= Q_{i,cooling} + Q_v= 15.893 + 17 = 32.893 $\frac{L}{s}$

• Given that C_{sensible} = 1.23 , C_{latent} = 3010, Δ ω_{Cooling} = 0.0039

$$\begin{aligned} \dot{q}inf_{ventilation_{cooling}} &= C_{sensible}Q_{i-v,cooling} \ \Delta \ T_{Cooling} \ = 1.23 \ \times 32.893 \times 7.1 = 287.25 \ W \\ \dot{q}inf_{ventilation_{cooling}} &= C_{latent}Q_{i-v,cooling} \ \Delta \ \omega_{Cooling} \ = 3010 \times 32.893 \times 0.0039 = 287.25 \ W \\ \dot{q}inf_{ventilation_{heati}} &= C_{sensible}Q_{i-v,heating} \ \Delta \ T_{heating} \ = 1.23 \ \times 52.157 \times 24.1 = 1546.09 \ W \end{aligned}$$