Решения задач экзаменационной контрольной работы по физике

1А. (Локшин Г.Р.) Угол между двумя пучками $\delta \varphi$ для длин волн λ и $\lambda + \delta \lambda$ определяется законом дисперсии $\pi(\lambda)$: $\delta \varphi = \alpha \delta n = \alpha \frac{dn}{d\lambda} \delta \lambda$. Высота призмы $H = \frac{b}{\lg \alpha} \approx \frac{b}{\alpha} = 4$ см. Падающий на призму пучок полностью освещает призму, поэтому угловая расходимость пучка, прошедшего через призму, $\Delta \varphi_0 = \frac{\lambda}{H}$. При фокусировке пучков объективом \mathcal{J} возникает дополнительное угловое уширение пучков $\Delta \varphi_1 = \frac{\lambda}{D}$. Полная угловая расходимость пучков $\Delta \varphi = \frac{\lambda}{H} + \frac{\lambda}{D}$. Предел разрешения определяется критерием Релея $\delta \varphi = \Delta \varphi$:

$$lpha \frac{dn}{d\lambda} \delta \lambda = \lambda \left(\frac{1}{H} + \frac{1}{D} \right) \Rightarrow \frac{\lambda}{\delta \lambda} = \frac{\alpha \frac{dn}{d\lambda}}{\left(\frac{\alpha}{b} + \frac{1}{D} \right)} = \frac{\alpha b D \frac{dn}{d\lambda}}{(\alpha D + b)} = \frac{0.2 \cdot 0.8 \cdot 1 \cdot 10^3}{0.2 \cdot 1 + 0.8} = 160$$
.

Грубую оценку $(D \ll H)$ $\frac{\lambda}{\delta \lambda} = \alpha D \frac{dn}{d\lambda} = 200$ не считать ошибкой.

2А. (Овчинкин В.А., Судаков О.А.) Если М — порядок интерференции в центре колец, то

$$d\cos\theta = (M-m)\lambda$$
, $(d+\Delta d)\cos\theta = (M-m)\lambda + \lambda$,

$$\Delta d \cos \theta = \lambda \implies \Delta d = \frac{\lambda}{\cos \theta} = \frac{0.5 \cdot 2}{\sqrt{3}} \approx 0.577 \text{ MKM}.$$

Отверстия при $m = 1$:

3А. (Локшин $\Gamma.P.$) Радиус отверстия при m=1:

$$\frac{D}{2} = \sqrt{m \frac{a \cdot (a/2)}{a + a/2} \lambda} = \sqrt{\frac{1}{3} m \, a \, \lambda} = \sqrt{\frac{1}{3} a \lambda}.$$

положение изображения источника после установки линзы $\frac{1}{a} + \frac{1}{a'} = -\frac{1}{a} \implies a' = -a/2$, т.е. мнимое изображение источника S' находится на расстоянии a/2 слева от линзы. Число зон Френеля m'находим из равенства

$$\frac{D}{2} = \sqrt{m' \frac{(a/2) \cdot (a.2)}{a/2 + a/2}} \lambda = \sqrt{\frac{1}{4} m' a \lambda}$$
, откуда $m' = \frac{4}{3} m = \frac{4}{3}$.

После установки линзы изменяется интенсивность в т. Р в отсутствии экрана с отверстием. Без линзы поток энергии Фо, идущий от источника в угловой раствор φ освещает в плоскости наблюдения круг диаметра $\varphi\left(a+\frac{a}{2}\right)=\frac{3}{2}\ \varphi a.$ После установки линзы тот же поток, идущий теперь от мнимого источника в угловой раствор 2ф, освещает в плоскости наблюдения круг диаметра 2фа.

Для интенсивностей в т. P, равных отношению потока энергии к площади соответствующего круга, получим

$$\frac{I_0}{I} = \frac{\Phi_0}{\left(\frac{3}{2}\varphi a\right)^2} \cdot \frac{(2\,\varphi a)^2}{\Phi_0} = \frac{16}{9} \implies A = \frac{3}{4}A_0.$$

До установки линзы (см. рис.) $A_1 = 2 A_0$. После установки линзы (см. рис.) $A_2 = 2A \sin 60^\circ = \sqrt{3}A = \frac{3\sqrt{3}}{4}A_0$. Отношение интенсивностей

$$\frac{I_2}{I_1} = \frac{A_2^2}{A_1^2} = \frac{27}{16} \cdot \frac{1}{4} = \boxed{\frac{27}{64}}.$$

4А. (Данилин В.А., Попов П.В.) Плоскость поляризации волны поворачивается из-за различия фаз φ_1 и φ_2 , набираемых волнами с правой и левой поляризацией круговой распространения ходу волны.

До установки линзы

После установки линзы

Показатель преломления

$$n_{1,2} = \sqrt{1 - \frac{v_p^2}{v(v \pm v_H)}} \approx 1 - \frac{v_p^2}{2v(v \pm v_H)} \approx 1 - \frac{v_p^2}{2v^2} \mp \frac{v_p^2 v_H}{2v^3}.$$

Угол поворота плоскости поляр

$$\theta = \frac{\varphi_2 - \varphi_1}{2} = \pi \frac{vh}{c} (n_2 - n_1) = \frac{\pi v_H v_p^2}{c^2 v^2}, \qquad \Rightarrow \qquad v_p = \sqrt{\frac{\Delta \theta v^2 c}{\pi v_H h}} \approx \left(\frac{0.03 \cdot 10^{18} \cdot 3 \cdot 10^8}{3 \cdot 10^6 \cdot 30 \cdot 10^3}\right)^{\frac{1}{2}} = \boxed{10 \text{ MFq}}$$

5А. (Локшин Г.Р., Попов П.В.) Функция пропускания решётки 2 представима в виде $t_2(x) = \frac{1}{2} + \frac{1}{2} t_p(x)$, где $t_p(x)$ — функция пропускания обычной дифракционной решётки с периодом d и N = D/d щелями размером b. Амплитуда для картины дифракции на такой решётке пропорциональна

$$A_{\rm p} \propto b \cdot \frac{\sin(\frac{1}{2}kb\sin\theta)}{\frac{1}{2}kb\sin\theta} \cdot \frac{\sin(\frac{1}{2}kNd\sin\theta)}{\sin(\frac{1}{2}kd\sin\theta)}$$

В главном максимуме ($\theta \to 0$) амплитуда $A_{p0} \propto bN$.

Постоянное слагаемое ответственно за дифракцию на щели шириной D = Nd:

$$A_{\rm eq} \propto D \frac{\sin(\frac{1}{2}kD\sin\theta)}{\frac{1}{2}kD\sin\theta}.$$

В главном максимуме ($\theta \to 0$) имеем $A_{\text{int}0} \propto D = Nd$.

Таким образом, в главном максимуме решётки 2 имеем амплитуду

$$A_{20} = \frac{1}{2}A_{\rm p0} + \frac{1}{2}A_{\rm m0} \propto \frac{1}{2}(d+b)N.$$

Функции пропускания $t_1(x)$ и $t_2(x)$ связаны соотношением $t_1(x) = 1 - t_2(x)$, т.е. решётка $t_2(x)$ является дополнительным экраном к решётке $t_1(x)$. Поэтому в главном максимуме имеем

$$A_{10} = A_{uu} - A_{20} \propto Nd - \frac{1}{2}(b+d)N = \frac{1}{2}(d-b)N.$$

Таким образом,

$$\frac{A_{20}}{A_{10}} = \frac{d+b}{d-b} = \frac{6}{5} \implies \frac{I_{20}}{I_{10}} = \boxed{\frac{36}{25}}.$$

 $\frac{A_{20}}{A_{10}} = \frac{d+b}{d-b} = \frac{6}{5} \implies \frac{I_{20}}{I_{10}} = \frac{36}{25}$.

Альтернативно: непосредственно из метода Рэлея для задачи дифракции находим амплитуду в нулевом максимуме: $A_0 \propto \int_{-D/2}^{D/2} t(x) dx = N \int_0^d t(x) dx$. Следовательно,

$$\frac{A_{20}}{A_{10}} = \frac{\frac{1}{2}(d-b) + 1 \cdot b}{\frac{1}{2}(d-b) + 0 \cdot b} = \frac{d+b}{d-b} = \frac{6}{5}.$$

ВАРИАНТ Б

1Б. (Локшин $\Gamma.P.$) Направления на m-ый максимум для близких спектральных линий λ и $\lambda + \delta\lambda$: $d\sin\varphi = m\lambda$ и $d\sin(\varphi+\delta\varphi)=m(\lambda+\delta\lambda)$ отличаются на $\delta\varphi\approx m\;\delta\lambda/d$ при $\varphi\ll 1$. Угловая расходимость каждого из пучков (для λ и $\lambda + \delta\lambda$) из-за дифракции на решётке: $\Delta \varphi_0 = \frac{\lambda}{Nd}$. Ограничение, обусловленное размерами линзы J, приводит к дополнительному уширению $\Delta \varphi_1 = \frac{\lambda}{D}$, поэтому полная угловая ширина : $\Delta \varphi = \frac{\lambda}{Nd} + \frac{\lambda}{D}$. По критерию Релея предел разрешения $\delta \varphi = \Delta \varphi$:

$$\frac{m \delta \lambda}{d} = \lambda \left(\frac{1}{Nd} + \frac{1}{D}\right) \Rightarrow \frac{\lambda}{\delta \lambda} = \frac{m}{\left(\frac{1}{Nd} + \frac{1}{D}\right)d} = \frac{mND}{D + Nd} = \frac{1 \cdot 600 \cdot 1}{1 + 600 \cdot 0,015} = \boxed{60}.$$

Грубую оценку $\frac{\lambda}{62} = \frac{mD}{d} = \frac{-1}{0.015} \approx 66,7$ не считать ошибкой.

2Б. (Овчинкин В.А., Судаков О.А.) Если M — порядок интерференции в центре колец, то $d\cos\theta = (M-3)\lambda$, $(d + \Delta d)\cos\theta = (M-2)\lambda$, откуда

$$\frac{d+\Delta d}{d} = \frac{M-2}{M-3} \quad \Rightarrow \quad 1 + \frac{\Delta d}{d} = 1 + \frac{1}{M-3} \quad \Rightarrow \quad M = \frac{d}{\Delta d} + 3 = \boxed{103}.$$

3Б. (Локшин $\Gamma.P$) Радиус отверстия при m = 2/3:

$$\frac{D}{2} = \sqrt{m\frac{(\alpha/2)\cdot(\alpha/2)}{\alpha/2 + \alpha/2}\lambda} = \sqrt{\frac{1}{4}m\alpha\lambda} = \sqrt{\frac{1}{6}\alpha\lambda}.$$

Найдем положение изображения источника после установки линзы: $\frac{1}{a/2} + \frac{1}{a'} = \frac{1}{a} \implies a' = -a$, т.е. мнимое изображение источника S' находится на расстоянии a слева от линзы. Теперь число зон Френеля m' находим из равенства

До установки линзы

$$\frac{D}{2}=\sqrt{m'\frac{(a/2)\cdot a}{a/2+a}}\lambda=\sqrt{\frac{1}{3}m'a\lambda},$$
 откуда $m'=\frac{3}{4}m=\frac{1}{2}.$

После установки линзы изменяется интенсивность в т. P в отсутствии экрана с отверстием. Без линзы поток энергии Φ_0 , идущий от источника в угловой раствор φ освещает в плоскости наблюдения круг диаметра φa . В плоскости наблюдения круг диаметра в плоскости наблюдения круг диаметра в плоскости наблюдения круг диаметра

$$\frac{\varphi}{2}\left(a+\frac{a}{2}\right)=\frac{3}{4}\,\,\varphi a.$$

Для интенсивностей в т. P, равных отношению потока энергии к площади соответствующего круга, получим

$$\frac{I_0}{I} = \frac{\Phi_0}{(\varphi a)^2} \cdot \frac{\left(\frac{3}{4}\varphi a\right)^2}{\Phi_0} = \frac{9}{4} \quad \Longrightarrow \quad A = \frac{4}{3}A_0.$$

До установки линзы (см. рис.) $A_1=2\,A_0\sin 60^\circ=\sqrt{3}A_0$. После установки линзы (см. рис.) $A_2=\frac{4}{3}A_0\sqrt{2}$. Отношение интенсивностей

$$\frac{I_2}{I_1} = \frac{A_2^2}{A_1^2} = \frac{32}{9} \cdot \frac{1}{3} = \boxed{\frac{32}{27}}$$

4Б. (Локиим Г.Р., Филатов Ю.Н.) Толщина пластинки должна быть в " λ " для одной из спектральных компонент: $\frac{2\pi}{\lambda_1}(n_0-n_e)d=2\pi m$, и в " $\lambda/2$ " для другой:

$$\frac{2\pi}{\lambda_2}(n_0-n_e)d=2\pi(m+\ell)+\pi$$
, где m и ℓ — целые числа.

$$\frac{\lambda_1}{\lambda_2} = \frac{2m}{2m + 2\ell + 1}.$$

При λ_1 =500 нм и λ_2 =550 нм для m получим уравнение: m=10 $\ell+5$, которое имеет минимальное решение при m=5, $\ell=0$. В этом случае через систему полностью проходит лишь одна спектральная компонента λ_1 . При этом минимальная толщина пластинки составит:

$$d = \frac{m\lambda_1}{\Delta n} = \frac{5 \cdot 0.5}{0.0091} \approx 275 \text{ MKM}.$$

Через систему полностью проходит лишь одна спектральная компонента λ_1 , λ_2 без потери интенсивности пройти не может. Действительно, в этом случае уравнение для m получается перестановкой индексов "1" и "2" у спектральных компонент: m=-11 $\ell-5$,5, которое в целых числах не имеет решений.

5Б. (Покшин $\Gamma.P$) Функцию пропускания экрана со щелями можно представить в виде суммы двух слагаемых $t_1 = \frac{1}{5}$ (константа) и

$$t_2 = \frac{4}{5}t_p(x)$$
:

$$t(x) = \frac{1}{5} + \frac{4}{5}t_p(x)$$
 (1)

где $t_p(x)$ — функция пропускания решётки со щелями шириной b (см. рис.). Соответственно, дифракционная картина (комплексная амплитуда) есть сумма двух дифракционных картин: одна из них —

дифракция на щели ширины D, прикрытая однородным экраном с прозрачностью $t_1=1/5$, амплитуда которой пропорциональна

$$A_1 \propto \frac{1}{5} D \left(\frac{\sin(\pi D/\lambda \sin \theta)}{\pi D/\lambda \sin \theta} \right)$$

другая — дифракция на решётке $\frac{4}{5}t_{\rm p}(x)$ с шириной щелей b, амплитуда которой пропорциональна

$$A_2 \propto \frac{4}{5}b \left(\frac{\sin(\pi b/\lambda \sin \theta)}{\pi b/\lambda \sin \theta} \right) \left(\frac{\sin(N \pi d/\lambda \sin \theta)}{\sin(\pi d/\lambda \sin \theta)} \right).$$

Для главного максимума $\sin\theta=0$ и с точностью до константы амплитуды A_1 и A_2 принимают значения: $f_{10}=\frac{1}{5}D,\, f_{20}=\frac{4}{5}bN.$ С учетом знака "+" выражении (1) для суммарной волны получим

$$f_0 = f_{10} + f_{20} = \frac{D + 4Nb}{5}.$$

Для максимума 1-ого порядка $\sin\theta=\lambda/d$ и с точностью до константы амплитуды A_1 и A_2 принимают значения: $f_{11}=0,\,f_{21}=\frac{4}{5}b\frac{\sin(\pi\,b/d)}{\pi\,b/d}\,N\approx\frac{4}{5}bN$ (здесь использовано, что $\frac{b}{d}=\frac{bN}{D}=0,1\ll 1$) Для суммарной волны получим

$$f_1 = f_{11} + f_{21} = \frac{4Nb}{5}.$$

Таким образом, окончательно получаем

$$\frac{f_0}{f_1} = 1 + \frac{D}{4bN} = 1 + \frac{2}{4 \cdot 10^{-3} \cdot 200} = \frac{7}{2} \implies \frac{I_0}{I_{11}} = \left(\frac{f_0}{f_1}\right)^2 = \boxed{\frac{49}{4}} = 12,25.$$

Вниманию преподавателей!

Инструкция для проверяющих

За задачу ставится полных 2 балла, если задача решена верно: приведено обоснованное решение и даны ответы на все вопросы задачи. Возможно наличие арифметических ошибок, не влияющих на ход решения и не приводящих к ошибке в порядке или знаке величины. В противном случае балл за задачу определяется согласно таблице:

1,5 балла	Ход решения в целом верен и получены ответы на все вопросы задачи, но решение содержит ошибки, не касающиеся физического содержания (арифметические ошибки, не влияющие на порядок или знак величины; ошибки в выкладках, не влияющие на ход решения и т. п.).
1 балл	Задача решена частично, либо решение содержит грубые ошибки (напр., имеются вычислительные ошибки, влияющие на ход решения; ошибки в размерности; отсутствуют необходимые промежуточные доказательства и т. п.), но все основные законы корректно применены к залаче.
0,5 балла	Задача не решена, но есть некоторые подвижки в её решении (сформулированы физические законы, на основе которых задача может быть решена).
0 баллов	Задача не решена: основные физические законы применены с грубыми ошибками, перечислены не полностью или использованы законы, не имеющие отношения к задаче / решение задачи не соответствует условию / попытки решить задачу не было.

К баллам за письменную работу добавляются баллы за еданные задания:

omn: + 2 б./задание; хор: + 1 б./задание; удовл: 0 б./задание; не сдано: - 3 б./задание. Итоговая сумма округляется до целых. Результат определяет максимальную оценку на устном экзамене (минимальная оценка всегда «неуд(1)»). Примеры заполнения:

1	2	3	4	5	Σ
0,5	1,0	1.5	1,0	1.0	5,0

Зад	a-			
ние		Итог		
I	П			
+1	-3	3		

1	2	3	4	5	Σ
1,0	2,0	1,5	2,0	2,0	8,5

Зада	200	Итог	
I	11		
+1	+2	12	

В примере слева максимально возможная оценка на устном экзамене — удовл(3), справа — отл(10). Обсуждение замечаний, критериев проверки и результатов — на форуме кафедры board.physics.mipt.ru.

Обсуждение письменного экзамена состоится в понедельник 04.06.2018 в 8 час. 40 мин. в Главной Физической аудитории.