AY2020/2021 Semester 1

13 Aug 2020

- Exercise 1 Let \mathcal{C} be a collection of subsets of Ω and $\Gamma = \{\mathcal{F} : \mathcal{F} \text{ is a } \sigma\text{-field on } \Omega \text{ and } \mathcal{C} \subset \mathcal{F}\}$. Show that $\Gamma \neq \emptyset$ and $\sigma(\mathcal{C}) = \bigcap_{\mathcal{F} \in \Gamma} \mathcal{F}$.
- Exercise 2 Let (Ω, \mathcal{F}) be a measurable space. $f : \Omega \to \mathcal{R}$ is Borel if and only if $f^{-1}(a, \infty) \in \mathcal{F}$ for all $a \in \mathcal{R}$.
- Exercise 3 Show that a monotone function from \mathcal{R} to \mathcal{R} is Borel
- Exercise 4 Let f be a Borel function on \mathbb{R}^2 . Define a function g from \mathbb{R} to \mathbb{R} as $g(x) = f(x, y_0)$, where y_0 is a fixed point in \mathbb{R} . Show that g is Borel.

AY2020/2021 Semester 1

18 Aug 2020

Exercise 1 Suppose that $\{f_n\}$ is a sequence of Borel functions on a measure space $(\Omega, \mathcal{F}, \nu)$ and $f_n(\omega) \to f(\omega)$ for $\omega \in \Omega$ with $\nu(\Omega) < \infty$. For any $\epsilon > 0$, define $A_k = \{x \in \Omega : |f_k(x) - f(x)| \ge \epsilon\}$, show that

$$\lim_{j \to \infty} m(\bigcup_{k=j}^{\infty} A_k) = 0. \tag{1}$$

Exercise 2 Prove the Egoroff's theorem:

Suppose that $\{f_n\}$ is a sequence of Borel functions on a measure space $(\Omega, \mathcal{F}, \nu), f_n(\omega) \to f(\omega) \nu$ -a.e., and $\nu(\Omega) < \infty$. Show that for any $\epsilon > 0$, there is a $B \in \mathcal{F}$ with $\nu(B) < \epsilon$ such that $f_n(\omega) \to f(\omega)$ uniformly on B^c , i.e., for any small $\eta > 0$, one can find an $N_{\eta} \in \mathbb{N}$ such that $|f_n(\omega) - f(\omega)| < \eta, \forall n \geq N_{\eta}$ and $\forall \omega \in B^c$.

Exercise 3 Prove the monotone convergence theorem:

If $0 \le f_1 \le \cdots$ and $\lim_n f_n = f$ a.e., then

$$\int \lim_{n} f_n \, d\nu = \lim_{n} \int f_n \, d\nu. \tag{2}$$

AY2020/2021 Semester 1

20 Aug 2020

Exercise 1 (Generalization of Hölder's inequality). For 0 and <math>q = -p/(1-p)

$$E|XY| \ge (E|X|^p)^{1/p} (E|Y|^q)^{1/q}$$

Exercise 2 (Generalization of Minkowski's inequality).

$$\left(E\left(\sum_{j=1}^{n} |X_j| \right)^r \right)^{1/r} > \sum_{j=1}^{n} \left(E |X_j|^r \right)^{1/r} \quad \text{for } 0 < r < 1$$

- Exercise 3 Let Y be measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) and Z a function from (Ω, \mathcal{F}) to \mathcal{R}^k . If Z is Borel on $(\Omega, \sigma(Y))$, then there is a Borel function h from (Λ, \mathcal{G}) such that $Z = h \circ Y$
- Exercise 4 Let ϕ_X be a ch.f. of X. Show that $|\phi_X| \leq 1$, and uniformly continuous.
- Exercise 5 Find the ch.f. and m.g.f. for the Cauchy distribution (i.e., P_X has p.d.f. $f(x) = (\pi(1+x^2))^{-1}$
- Exercise 6 If X_i has the Cauchy distribution C(0,1), $i=1,\ldots,k$, then Y/k has the same distribution as X_1 .

AY2020/2021 Semester 1

25 Aug 2020

Exercise 1 Suppose f and g are independent and identically distributed. Show that

$$E(f \mid f + g) = (f + g)/2$$
, a.s. (1)

Exercise 2 Suppose F(x) is a continuous CDF of P, where P is a probability measure on $(\mathcal{R}, \mathcal{B})$. Show that $\int F(x) dP(x) = 1/2$

Exercise 3 Suppose ν is a σ -finite measure on (Ω, \mathcal{F}) , f is a nonnegative measurable function and $\alpha > 0$. Show that

$$\int f^{\alpha} d\nu = \alpha \int_{0}^{\infty} t^{\alpha - 1} \nu(f > t) dt$$
 (2)

Exercise 4 Suppose ν and ϕ are finite measures on (Ω, \mathcal{F}) . Show that there exist two measures ϕ_c and ϕ_s such that

- (a) $\phi = \phi_c + \phi_s$,
- (b) $\phi_c \ll \nu$, and
- (c) there exists $N \in \mathcal{F}$ such that $\phi_s(N) = \nu(N^c) = 0$. (Note that in this case, we denote $\phi_s \perp \nu$ and say that ϕ_s and ν are singular with each other.)

(Hint: make use of $\frac{d\phi}{d(\phi+\nu)}$ by Radon-Nikodym theorem)

Remark. This result can be generalized to σ -finite measures, and is known as *Lebesgue decomposition*.

AY2020/2021 Semester 1

27 Aug 2020

Exercise 1 (Stein's identity). Suppose the distribution of X has density in an exponential family whose support is $(-\infty, \infty)$. If g is any differentiable function such that $E|g'(X)| < \infty$, then

$$E\left\{\left[\frac{h'(X)}{h(X)} + \sum_{i=1}^{p} \eta_i T_i'(X)\right] g(X)\right\} = -Eg'(X),$$

where η_i 's are the coordinates of $\eta(\theta)$ and T_i 's are the coordinates of T(X).

When p = 1 and h'(X) = 0 (e.g., the normal family with fixed σ), the identity becomes

$$E\{(X - \mu)g(X)\} = \sigma^2 E g'(X),$$

- Exercise 2 Show that if two random variables X and Y are independent, then their characteristic functions ϕ_X and ϕ_Y satisfy $\phi_X(t)\phi_Y(t) = \phi_{X+Y}(t)$ for all $t \in \mathcal{R}$.
- Exercise 3 Find an example of two random variables X and Y such that X and Y are not independent but their characteristic functions ϕ_X and ϕ_Y satisfy $\phi_X(t)\phi_Y(t) = \phi_{X+Y}(t)$ for all $t \in \mathcal{R}$
- Exercise 4 Let X be an integrable random variable on the probability space (Ω, \mathcal{F}, P) , \mathcal{A} and \mathcal{A}_0 be σ -fields satisfying $\mathcal{A}_0 \subset \mathcal{A} \subset \mathcal{F}$. Show that $E[E(X \mid \mathcal{A}) \mid \mathcal{A}_0] = E(X \mid \mathcal{A}_0) = E[E(X \mid \mathcal{A}_0) \mid \mathcal{A}]$ a.s.
- Exercise 5 Let X be an integrable random variable on the probability space $(\Omega, \mathcal{F}, P), \mathcal{A}$ be a sub- σ -field of \mathcal{F} , and Y be another random variable satisfying $\sigma(Y) \subset \mathcal{A}$ and $E|XY| < \infty$. Show that

$$E(XY \mid \mathcal{A}) = YE(X \mid \mathcal{A})$$
 a.s.

AY2020/2021 Semester 1

8 Sep 2020

Exercise 1 Suppose X has an exponential family distribution with density

$$p_{\theta}(x) = h(x)e^{\eta(\theta)T(x)-A(\theta)}$$

Derive the mean and variance formulas

$$E_{\theta}[T(X)] = \frac{A'(\theta)}{\eta'(\theta)}, \quad V_{\theta}[T(X)] = \frac{A''(\theta)}{[\eta'(\theta)]^2} - \frac{\eta''(\theta)A'(\theta)}{[\eta'(\theta)]^3}$$

- Exercise 2 Let X and Y be two random variables such that Y has the binomial distribution $Bi(\pi, N)$ and, given Y = y, X has the binomial distribution Bi(p, y)
 - (a) Suppose that $p \in (0,1)$ and $\pi \in (0,1)$ are unknown and N is known. Show that (X,Y) is minimal sufficient for (p,π) .
 - (b) Suppose that π and N are known and $p \in (0,1)$ is unknown. Show whether X is sufficient for p and whether Y is sufficient for p

Exercise 3 Let X_1, \ldots, X_n be i.i.d. random variables having the Lebesgue p.d.f.

$$f_{\theta}(x) = \exp\left\{-\left(\frac{x-\mu}{\sigma}\right)^4 - \xi(\theta)\right\}$$

where $\theta = (\mu, \sigma) \in \Theta = \mathcal{R} \times (0, \infty)$.

Show that $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is an exponential family, where P_{θ} is the joint distribution of X_1, \ldots, X_n and that the statistic

$$T = \left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2, \sum_{i=1}^{n} X_i^3, \sum_{i=1}^{n} X_i^4\right)$$

is minimal sufficient for $\theta \in \Theta$.

AY2020/2021 Semester 1

10 Sep 2020

- Exercise 1 Let X_1, \ldots, X_n be i.i.d. random variables having the Lebesgue p.d.f. $\theta^{-1}e^{-(x-\theta)/\theta}I_{(\theta,\infty)}(x)$, where $\theta > 0$ is an unknown parameter.
 - (a) Find a statistic that is minimal sufficient for θ .
 - (b) Show whether the minimal sufficient statistic in (a) is complete.
- Exercise 2 Let X_1, \ldots, X_n be i.i.d. from the $N\left(\theta, \theta^2\right)$ distribution, where $\theta > 0$ is a parameter. Find a minimal sufficient statistic for θ and show whether it is complete.
- Exercise 3 Suppose that $(X_1, Y_1), \ldots, (X_n, Y_n)$ are i.i.d. random 2-vectors having the normal distribution with $EX_1 = EY_1 = 0$, $Var(X_1) = Var(Y_1) = 1$, and $Cov(X_1, Y_1) = \theta \in (-1, 1)$
 - (a) Find a minimal sufficient statistic for θ .
 - (b) Show whether the minimal sufficient statistic in (a) is complete or not.
 - (c) Prove that $T_1 = \sum_{i=1}^n X_i^2$ and $T_2 = \sum_{i=1}^n Y_i^2$ are both ancillary but (T_1, T_2) is not ancillary.

AY2020/2021 Semester 1

15 Sep 2020

Exercise 1 Let X_1, \ldots, X_n be i.i.d. from a uniform distribution on $(-\theta, \theta)$, where $\theta > 0$ is an unknown parameter.

- (a). Find a minimal sufficient statistic T.
- (b). Define

$$V = \frac{\bar{X}}{\max_i X_i - \min_i X_i}$$

where \bar{X} is the sample mean. Are T and V are independent?

Exercise 2 An object with weight θ is weighed on scales with different precision. The data X_1, \ldots, X_n are independent, with $X_i \sim N\left(\theta, \sigma^2\right), i = 1, \ldots, n$ with the standard deviation σ known. Consider the absolute deviation loss $L(\theta, a) = |\theta - a|$.

- (a). What is the risk of the naive estimator X_1 ?
- (b). Use Rao-Blackwell theorem to find a better estimator.

Exercise 3 Consider an estimation problem with a parametric family $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ and the squared error loss. If $\theta_0 \in \Theta$ satisfies that $P_{\theta} \ll P_{\theta_0}$ for any $\theta \in \Theta$, show that the estimator $T \equiv \theta_0$ is admissible.

AY2020/2021 Semester 1

17 Sep 2020

Exercise 1. Let X_1, \ldots, X_n be i.i.d. random variables having the exponential distribution $E(0, \theta), \theta \in (0, \infty)$. Consider estimating θ under the squared error loss.

Calculate the risks of the sample mean \bar{X} and $cX_{(1)}$, where c is a positive constant.

Is \bar{X} better than $cX_{(1)}$ for some c?

Exercise 2. Consider the estimation of an unknown parameter $\theta \geq 0$ under the squared error loss. Show that if T and U are two estimators such that $T \leq U$ and $R_T(P) < R_U(P)$, then $R_{T_+}(P) < R_{U_+}(P)$, where f_+ denotes the positive part of f.

Exercise 3. Let X be a random variable having the binomial distribution Bi(p, n) with an unknown $p \in (0, 1)$ and a known n. Consider the problem of estimating $\theta = p^{-1}$. Show that there is no unbiased estimator of θ .