1. (1 point) To find u_1 and u_2 we would need to integrate which of the following? Mark all that apply.

• A.
$$-\frac{f(x)W}{y_2}$$

• B.
$$\frac{y_2 f(x)}{W}$$

• C.
$$\frac{f(x)W}{y_1}$$

• D.
$$-\frac{y_2W}{f(x)}$$

• E.
$$\frac{y_1 f(x)}{W}$$

• F.
$$-\frac{y_1f(x)}{W}$$

• G.
$$-\frac{y_2f(x)}{W}$$

• H.
$$\frac{y_1W}{f(x)}$$

• I. None of the above

Solution:

SOLUTION:

The correct answer is EG. *Correct Answers:*

• EG

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

Consider the differential equation $x^4y'' - 16x^4y = 3x^7$. Note that the general solution to the underlying homogeneous differential equation is $y_h = c_1e^{4x} + c_2e^{-4x}$. With the notation given in the video, what are the y_1 , y_2 , and f(x) that we would use to find u_1' and u_2' ?

• A.
$$y_1 = e^{4x}$$
, $y_2 = e^{-4x}$, $f(x) = x^{16}$

• B.
$$y_1 = e^{4x}$$
, $y_2 = e^{-4x}$, $f(x) = 3x^7$

• C.
$$y_1 = e^{4x}$$
, $y_2 = e^{-4x}$, $f(x) = 3x^3$

• D.
$$y_1 = x^4$$
, $y_2 = x^{-4}$, $f(x) = 3x^3$

Solution:

SOLUTION:

The correct answer is C.

Correct Answers:

• (

3. (1 point) Suppose we have a differential equation $y'' + P(x)y' + Q(x)y = x^6$, and we know $y_1 = x^2$ and $y_2 = x^5$ form a fundamental set of solutions for the homogeneous differential equation y'' + P(x)y' + Q(x)y = 0.

Then

1

$$W(y_1, y_2) =$$
______.

 $u_1 =$ ______.

 $u_2 =$ ______.

Correct Answers:

- 3*x^6
- -1/18*x^6
- 1/9*x^3