Practice Quiz 4

18.100B R2 Fall 2010

Closed book, no calculators.

YOUR NAME:	SOLUT	TIONS	

This is a 30 minute in-class exam. No notes, books, or calculators are permitted. Point values are indicated for each problem. Do all the work on these pages.

Problem 1. [15 points] Fix $n \in \mathbb{N}$ and let $f : [0,1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{1}{2^n} & \text{if } x = \frac{k}{2^n} \text{ for } k \text{ odd }, 0 < k < 2^n, \\ 0 & \text{otherwise.} \end{cases}$$

Show that f is Riemann integrable on [0,1], and that $\int_0^1 f(x) dx = 0$.

•
$$L(f, \rho = (x_i)) = \sum_{i=1}^{n} \inf_{x \in [x_{i-1}, x_i]} f(x) (x_i - x_{i-1}) > 0$$

$$\Rightarrow L(f) = \sup_{\rho} L(f, \rho) > 0$$

•
$$U(f, P = (x_i)) = \sum_{i=1}^{n} \sup_{x \in [x_{i-1}, x_i]} (x_i - x_{i-1})$$

Given E>O, pick a partition

$$P^{\varepsilon} = \left(0_{12^{n}}^{-1} - \delta_{12^{n}}^{-1} + \delta_{12^{n}}^{-3} - \delta_{12^{n}}^{-3} + \delta_{12^{n}}^{-3} + \delta_{12^{n}}^{-3} - \delta_{12^{n}}^{-3} + \delta_{11}^{-3}\right)$$
with $\delta < \frac{1}{2^{n}} \left(\text{hence } \frac{1}{2^{n}} + \delta < \frac{3}{2^{n}} - \delta\right)$ and $\delta \le \varepsilon$, then
$$U(f_{1} P^{\varepsilon}) = \sum_{k=1}^{2^{n}} \sup_{1 \mid l_{2^{n}}} \delta < 2\delta < \varepsilon$$

$$k = 1 \quad \text{if } l_{2^{n}}^{-1} = 2\delta$$
from other intervals
from intervals $\left[\frac{k}{2^{n}} - \delta, \frac{k}{2^{n}} + \delta\right]$

Together with Rudin $(L(f) \in U(f))$ this shows $0 \le L(f) \le U(f) \le \varepsilon \quad \forall \varepsilon > 0 \implies L(f) = U(f) = 0$ $\implies f$ integrable, $\int f dx = L(f) = 0$

Problem 2. [10 points] Suppose that $f:[a,b]\to\mathbb{R}$ is continuous, nonnegative (i.e. $f(x)\geq 0$ for all $x\in[a,b]$), and $\int_a^b f(x)dx=0$. Show that f(x)=0 for all $x\in[a,b]$.

f continuous
$$\Rightarrow$$
 integrable \Rightarrow $L(f)=0$

Sup $L(f,P)$
 \Rightarrow $\forall partition P \ L(f,P) \leq 0$

Suppose by contradiction $f(x_0)>0$ for some $x_0 \in [a_1b]$, then by continuity find $\delta>0$ s.t.

$$|x-x_0|<\delta \implies |f(x)-f(x_0)|<\frac{1}{2}f(x_0)$$

$$\implies f(x) \geqslant f(x_0)-\frac{1}{2}f(x_0)=\frac{1}{2}f(x_0)$$

Now consider any equidistant partition P with $\Delta \times < \delta$, then

$$L(f,\rho) = \sum_{i=1}^{n} \inf_{[x_{i1},x_{i1}] \ni x} \inf_{[x_{i1},x_{i1}] \ni x} \inf_{x \in [x_{i0-1},x_{i0}]} \sup_{x \in [x_{i0-1},x_{i0}]} \sup_{x \in [x_{i0-1},x_{i0}]} \lim_{x \in [x_{i0}] \mapsto x_{i0}} \lim_{x \in [x_{i0}] \mapsto x_{i0}}$$

just looking at an interval that contains xo

in contradiction to L(f, P)≤0

Problem 3. [5+7+8 points]

(a) Consider the sequence of partial sums

$$f_n(x) = \sum_{k=1}^n e^{-kx} \cos(kx).$$

For any a > 0 show that f_n converges uniformly on $[a, \infty)$.

m>n

$$||f_{n}-f_{m}||_{\infty} = ||\sum_{k=n+1}^{m} e^{-kx} \cos(kx)||_{\infty} \leq \sum_{k=n+1}^{m} \sup_{x \neq a} e^{kx} |\cos kx|$$

$$\leq \sum_{k=n+1}^{m} e^{-ka} \xrightarrow[n\to\infty]{} 0 \quad \text{since } \sum e^{-ka} = \sum (e^{-a})^{k}$$

$$\text{converges due to } |e^{-a}| < 1$$

This shows uniform convergence by the "Carely criterion" (in Rudin).

(b) Let f(x) denote the limit of the sequence $f_n(x)$ in (a). Show that f(x) is continuous on $(0, \infty)$.

To show that f is continuous at $x_0 \in (0, \infty)$ note that

- each for is continuous on [x02,2x0]
- $f_n \rightarrow f$ uniformly on $[x_0, 2x_0]$ by (a)

So, by Rudin, f is continuous on [xo2, 2xo], which contains xo.

(c) Using the function $f:(0,\infty)\to\mathbb{R}$ from (b), find (and prove) an explicit upper bound for $|\int_1^\infty f(x)dx|$, such as 2 or $\frac{e}{e-1}$. (Hint: You only need to integrate e^{-nx} for this estimate.)

$$\int_{1}^{6} f(x) dx = \lim_{b \to \infty} \int_{1}^{6} f(x) dx = \lim_{b \to \infty} \lim_{n \to \infty} \int_{1}^{6} f_{n}(x) dx$$
by def^{n} by Rudin

$$\lim_{n\to\infty} \int_{1}^{b} f_{n}(x) dx = \lim_{n\to\infty} \sum_{k=1}^{b} \int_{1}^{-k \times} conk \times dx \quad exists by comparison with the absolubely linewity of integral
$$\lim_{n\to\infty} \int_{1}^{b} e^{-k \times} convergent \quad \text{with the absolubely convergent series } \sum_{k>1}^{b} e^{-k},$$$$

$$\left|\int_{1}^{b} f(x)dx\right| = \left|\lim_{n \to \infty} \int_{1}^{b} f_{n}(x) dx\right| \leq \sum_{k=1}^{n} \int_{1}^{b} e^{-kx} dx = \sum_{k=1}^{n} \left[-\frac{1}{k}e^{-kx}\right]^{b} \leq \sum_{k=1}^{n} \frac{1}{k}e^{-kx}$$

$$\leq \sum_{k=1}^{n} (\frac{1}{e})^{k} \leq \sum_{k=1}^{\infty} (\frac{1}{e})^{k} = \frac{1}{1-\frac{1}{e}} = \frac{e}{e-1}$$

Similarly, lim Sfdx exists since for 67,6

$$|\int_{1}^{b^{2}} f dx - \int_{1}^{b^{2}} f dx| = \lim_{n \to \infty} |\int_{b}^{b^{2}} f_{n} dx| \leq \sum_{k=1}^{\infty} \frac{1}{k} (e^{-bk} - e^{-b'k}) \leq \sum_{k=1}^{\infty} (e^{-b})^{k} = \frac{1}{1 - e^{-b}}$$

converges to 0 as b->00. (Honce the same holds for any sequence bi-700, onaking stax a Cauchy sequence. Completeness of IR then implies convergence as i→∞; and the limit for all seguences bi ->∞ is the same since otherwise one could make a divergent (oscillating) say unce.)

So
$$\int_{1}^{\infty} f dx = xists$$
, and $\int_{1}^{\infty} f dx = \lim_{b \to \infty} \int_{1}^{\infty} f dx \leq \lim_{b \to \infty} \frac{e}{e-1} = \frac{e}{e-1}$.

Problem 4. [20 points: +4 for each correct true/false, -4 for each incorrect true/false; you can opt for 'unsure' and gain up to +2 for giving your thoughts.]

a) Suppose $f:[a,b]\to\mathbb{R}$ is differentiable on (a,b). Then f is Riemann integrable.

TRUE

UNSURE

FALSE

differentiable implies continuous, but not bounded – eg. $f(x) = x^{-1}$ on [0,1] is diffile on (0,1)

b) Let $f:[a,b]\to\mathbb{R}$ be Riemann integrable. Then the function $F:[a,b]\to\mathbb{R}$ given by $F(x)=\int_a^x f(t)dt$ is continuous.

c) If $f:[a,b]\to\mathbb{R}$ is Riemann integrable and satisfies $f(x)\leq 0$ for all $x\in[a,b]\cap\mathbb{R}$, then $\int_a^b f(x)dx\leq 0$.

TRUE UNSURE FALSE

$$L(f,P) = \sum \inf_{\substack{x \in X \\ x \in Y}} f(x) \cdot \Delta x = 0 \implies L(f) = \int f(x) \leq 0$$

$$\leq 0 \text{ since any interval contains } \times \in \mathbb{R} \setminus \mathbb{Q}$$

d) If $f_n : [a,b] \to \mathbb{R}$ is a sequence of continuous functions, and $f_n \to f$ converges uniformly, then the limit f is uniformly continuous.

TRUE

UNSURE

FALSE

the limit is continuous by Rudin 7..., and uniformly continuous since [a, b] is compact

e) If $f_n : [a, b] \to \mathbb{R}$ is a sequence of almost everywhere continuous functions, and $f_n \to f$ converges uniformly, then the limit f is almost everywhere continuous.

TRUE

UNSURE

FALSE

almost everywhere continuous (=> Riemann integrable

so result fallows from "fne R, 11fr-floo-70 => fcR"

MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.