Esperienza 3

9/12/2021

Indice

1	Obiettivo dell'esperienza		
2	Strumenti e materiali	2	
3	Onda quadra	2	
	3.1 Dati ed errori	2	
	3.2 Analisi dati	2	
4	Onda sinusoidale	4	
	4.1 Dati ed errori	4	
	4.2 Analisi dati	4	
5	Conclusioni	4	

1 Obiettivo dell'esperienza

Lo scopo dell'esperienza è quello di calcolare il valore della resistenza e della capacità di un circuito RC. Per farlo si analizza come varia la differenza di potenziale ai capi di R (Figura 1a) e/o ai capi di C (Figura 1b) quando si sottoposto il circuito ad una tensione variabile.

Figura 1: Schema circuito

3 Onda quadra Pag. 2

2 Strumenti e materiali

- Generatore di tensione AC
- Multimetro digitale (utilizzato come ohmetro)
- Oscilloscopio
- Cavi
- Breadboard
- Resistore
- Condensatore

3 Onda quadra

La prima parte dell'esperimento consiste nell'applicare ai capi del circuito una tensione variabile secondo un'onda quadra di ampiezza V_0 . La frequenda dell'onda è stata scelta in modo da permettere al condensatore di completare il regime transitorio, passando da una tensione $V_0/2$ fino ad una tensione $V_0/2$. La curva osservata nell'oscilloscopio rappresenta la tensione V_C ai capi del condensatore in funzione del tempo t e segue l'Equazione 3.1.

$$V_C = V_0 \cdot e^{-t/RC} - V_0/2 \tag{3.1}$$

Per prendere le misure il sistema di riferimento è stato traslato in modo da porre come 0 delle ordinate il valore $-V_0/2$ e ottenere l'Equazione 3.2.

$$V = V_0 \cdot e^{-t/RC} \tag{3.2}$$

Noto il valore di $R=(1.874\pm0.004)~\mathrm{k}\Omega,$ misurato tramite il multimetro, si vuole ottenere il valore di C.

3.1 Dati ed errori

Attraverso l'oscilloscopio si è fissato il primo cursore in corrispondenza dell'asintoto della curva a $-V_0/2$, questo sarà lo 0 delle ordinale, il secondo cursore è stato fatto variare in modo da ottenere la differenza di potenziale al variere del tempo. Le misure ottenute sono riportate, insieme ai loro errori già arrotondati, nella Tabella 1.

3 Onda quadra Pag. 3

V(V)	$\delta V\left(V\right)$	$t (\mu s)$	$\delta t \; (\mu s)$
7.00	0.10	0.0	0.3
6.52	0.10	0.9	0.3
6.00	0.10	2.0	0.3
5.52	0.10	3.1	0.3
5.00	0.10	4.5	0.3
4.52	0.10	5.9	0.3

7.5

9.2

11.4

13.8

17.0

20.8

26.0

35

0.3

0.3

0.5

0.5

0.5

1.0

1.0

3

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

4.00

3.52

3.00

2.52

2.00

1.52

1.00

0.52

Tabella 1: Misure dell'onda quadra

3.2 Analisi dati

$$V = V_0 \cdot e^{-t/RC} \implies \ln(V) = \ln(V_0 \cdot e^{-t/RC}) = \ln(V_0) - \frac{t}{RC}$$

Quindi riportando le misure in un grafico semi-logaritmico, come fatto in Figura 2, ci si aspetta di ottenere una funzione lineare

Figura 2: Grafico semi-logaritmico misure dell'onda quadra

La retta di massima pendenza passa per i punti (-0.2,7) e (35,0.6) mentre la retta di minima pendenza passa per i punti (0.2,7) e (34,0.5)

5 Conclusioni Pag. 4

$$m_{max} = \frac{\ln(7/0.6)}{-0.2 - 35} = -0.06979$$
 $m_{min} = \frac{\ln(7/0.5)}{0.2 - 34} = -0.07808$

$$m_{best} = \frac{m_{max} + m_{min}}{2} = -0.0739 \approx -0.074$$

$$\delta m = \frac{m_{max} - m_{min}}{2} = 0.0041 \approx 0.004$$

$$m = -0.074 \pm 0.004 \tag{3.3}$$

Essendo $m=\frac{1}{RC}$ e conoscendo il valore di $R=(1.874\pm0.004)~\mathrm{k}\Omega.$

$$\varepsilon_R = \frac{0.004}{1.874} = 0.0021 \approx 0.002$$

$$\varepsilon_m = \frac{0.004}{0.074} = 0.054 \approx 0.05$$

$$\varepsilon_C = \sqrt{\varepsilon_R^2 + \varepsilon_m^2} = 0.050$$

$$C = \frac{R}{m} = 25.32 \pm 1.27 \approx (25.3 \pm 1.3) \text{ nF}$$
 (3.4)

4 Onda sinusoidale

- 4.1 Dati ed errori
- 4.2 Analisi dati
- 5 Conclusioni