Lecture 12 Scribe

MCS 2-Linear Algebra . Monsoon 2023 Roll no.-2023201022

1 Linear Transformation

1.1 Linear Functional

If V is a vector space over the field F, a linear transformation f from V into the scalar field F is also called a linear functional on V.

Example-

$$f: F^n - > F$$

$$f(x_1, \cdots, x_n) = \sum_{n=1}^{n} x_i a_i$$

where $a_1 \cdots a_n, x_1 \cdots x_n \in F$

1.2 Hyper Space

In a vector of dimension **n**, a subspace of dimension (**n-1**) is called a hyper space.

Null Space(f) is a hyper space.

1.3 The Annihilator of a Set $S \subseteq V$.

Annihilator of a set $S \subseteq V$ is the set of all linear functional on V such that

$$f(\alpha) = 0 \quad \forall \quad \alpha \in S$$
 (1)
$$S^0 = Annihilator \quad of \quad S$$

$$\mathbf{S} = \{0\}$$

 $\mathbf{S}^0 = \text{Collection of all linear functional} = \mathbf{V}^*$

If
$$\mathbf{S} = V$$

 $\mathbf{S}^0 = \{0\}$ is a zero subspace of \mathbf{V}^*

Theorem 1- If V be a vector space over F and W be a subspace of V ,then.

$$\dim(W) + \dim(W^0) = \dim(V) \tag{2}$$

Proof. Let $\{\alpha_1, \dots \alpha^k\}$ be a basis of W

Now choose $\{\alpha_k + 1, \dots \alpha^n\}$ such that

 $\{\alpha_1, \cdots \alpha^n\}$ is a basis of W.

Then define $B^* = \{f_1, \dots f_n\}$ be the basis of $V^* =$

such that $f_i(\alpha_j) = \delta_i j$

Claim. $\{f_k+1,\cdots f_n\}$ is a basis for W^0

Proof. 1.

$$f_i \in W^0$$

$$\forall \alpha \in W, \quad f_i(\alpha) = 0$$

$$\alpha = \sum_{j=1}^k x_j \alpha_j$$

$$f_i(\alpha) = \sum_{j=1}^k x_j f_i(\alpha_j) = 0$$

2. $\{f_k+1,\cdots f_n\}$ are linearly independent.

By definition as $\{f_1, \dots f_n\}$ is a basis function

3. $\{f_k+1,\cdots,f_n\}$ spans $W^0.$ For any functional f in

$$V^*: f = \sum_{j=1}^k x_j f_i(\alpha_j)$$

If $f \in W^0$ then

$$f = \sum_{j=1}^{k} f(\alpha_i) f_i + \sum_{j=k+1}^{n} f(\alpha_i) f_i$$

$$\alpha_i \quad (i=1\cdots k)\in W$$

$$f = \sum_{j=k+1}^{n} f(\alpha_i) \cdot f_i$$

$$\dim(W^0)$$
=n-K
 $\dim(W^0)$ =dim V - dim W

$$\dim(\mathbf{W}) + \dim(\mathbf{W}^0) = \dim(\mathbf{V})$$

1.4 The Double Dual

$$V^{**} = \mathbf{Dual} \ \mathbf{of} \ V^*$$

$$\dim(V) = \dim(V^*) = \dim(V^{**})$$

If α is a vector in \mathbf{V} , then α induces a linear functional \mathbf{L}_{α} on V^*

$$L_{\alpha}(f) = f(\alpha) \forall f \in V^*$$

$$L_{\alpha}: V^* \to F$$

Note: If $\alpha \neq 0$, then \exists a linear functional f such that L_{α}

Proof. $\beta = \{\alpha_{k+1}, \dots, \alpha^n\}$ is a basis for V, where $\alpha_i \neq 0$ for all $i = 1, \dots, n$.

Defining $\alpha = \alpha_1$.

f is a linear functional which arranges each vector in V by its first coordinate in β .

$$f(\alpha) = 1 \neq 0$$

Theorem. Let V be a vector space over F. For each vector $\alpha \in V$, define

 $L_{\alpha}(f) = f(\alpha)$ for all $f \in V^*$.

Then the mapping $\alpha \to L_{\alpha}$ is an isomorphism from V onto V^{**} .

Proof. Linearity

$$L_{c\alpha+\beta}(f) = cL_{\alpha}(f) + L_{\beta}(f)$$

$$L_{c\alpha+\beta}(f) = f(c\alpha+\beta) = cf(\alpha) + f(\beta)$$

$$L_{c\alpha+\beta}(f) = f(c\alpha+\beta) = cL_{\alpha}(f) + L_{\beta}(f)$$

OI

 $\alpha \to L_{\alpha}$ is a linear transformation from V into V^{**}

Note $L_{\alpha} = 0$ if and only if $\alpha = 0$ $\Rightarrow \alpha \mapsto L(\alpha)$ is a non-singular transformation.

1.5 Transposition of Linear Transformation

V, W are finite dimensional vector spaces over F

and
$$T: V \to W$$

Goal: We want to define the transpose of T.

Suppose g is a linear functional on W, i.e., $g \in W^*$.

Define
$$f(\alpha) = g(T(\alpha))$$
 for all $\alpha \in V$, where $f(\alpha) \in \text{range}(T)$. $f \in V^*, g \in W^*$

$$V^* = \text{Dual of } V$$

 $W^* = \text{Dual of } W$

Then we can define $f = T^t \cdot g$ for each $g \in W^*$. Thus $T^t : W^* \to V^*$ such that

$$f = T^t \cdot g.$$

$$f(\alpha) = (T^t \cdot g) \cdot (\alpha)$$

$$f(\alpha) = (g(T(\alpha)))$$

Note

$$T^{t}(cg_{1}+g_{2})=cT^{t}g_{1}+T^{t}g_{2}\forall g_{1},g_{2}\in W^{*}$$

Proof.

$$T^{t}(cg_{1} + g_{2})(\alpha) = (cg_{1} + g_{2})T(\alpha)$$

$$T^{t}(cg_{1} + g_{2})(\alpha) = c(g_{1}T(\alpha)) + (g_{2}T(\alpha))$$

$$T^{t}(cg_{1} + g_{2})(\alpha) = (cT^{t}g_{1})(\alpha) + (T^{t}g_{2})(\alpha)$$

 $T^t \cdot g(\alpha) = g(T(\alpha))$ is a linear transformation and is called the transpose of T.

Theorem. V, W are vector spaces, $T: V \to W$. Then

- 1) The null space of T^t is the annihilator of $\beta(T) = \text{Range of } T$.
- 2) $\operatorname{rank}(T^t) = \operatorname{rank}(T)$.
- 3) The range of T^* is the annihilator of the null space of T.

Proof. If g is in W^* , then by definition

$$(T^t q)(\alpha) = q(T\alpha) \tag{3}$$

for each α in V. The statement that g is in the null space of T^t means that $g(T\alpha) = 0$ for every α in V. Thus, the null space of T^t is precisely the annihilator of the range of T.

Suppose that V and W are finite-dimensional, say dim V = n and dim W = m.

For (1): Let r be the rank of T, i.e., the dimension of the range of T. By theorem, the annihilator of the range of T then has dimension (m-r). By the first statement of this theorem, the nullity of T^t must be (m-r). But then since T^t is a linear transformation on an m-dimensional space, the rank of T^t is m-(m-r), and so T and T^t have the same rank.

For (2): Let N be the null space of T. Every functional in the range of T^t is in the annihilator of N; for, suppose $f = T^t g$ for some g in W^* ; then, if α is in N,

$$f(\alpha) = (T^t g)(\alpha) = g(T\alpha) = g(0) = 0$$
(4)

Now the range of T^t is a subspace of the space N^0 , and

$$\dim N^0 = n - \dim N = \operatorname{rank}(T) = \operatorname{rank}(T^t) \tag{5}$$

so that the range of T^t must be exactly N^0 .

Example- Let V be the vector space of all polynomial functions over the field of real numbers. Let a and b be fixed real numbers and let f be the linear functional on V defined by

$$f(p) = \int_{a}^{b} p(x)dx$$

If D is the differentiation operator on V, what is

$$D^t f$$
?

Solution- Let $p(x) = c_0 + c_1 x + ... + c_n x^n$.

$$D^t f(p) = f(D(p))$$

$$D^{t}f(p) = f(c_1 + 2c_2x + 3c_3x^2 + \dots + nc_nx^{n-1})$$

$$D^t f(p) = c_1 + c_2 x^2 + \ldots + c_n x^n \mid b_0$$

$$D^t f(p) = p(b) - p(a)$$