Lecture 04 Bipolar junction transistors

Topics

- Transistor physic operation
- Transistor operation modes
- Transistor current-voltage characteristics

Transistor=Transfer resistor

Two categories of transistor

- 1. BJT
- 2. FET
 - MOSFET
 - JFET

L'effet transistor a été découvert en <u>1947</u> par les <u>américains</u> John Bardeen, William Shockley et Walter Brattain, chercheurs de la compagnie <u>Bell</u> Téléphone. Ils ont reçu le <u>prix Nobel de physique</u> en <u>1956</u>.

Quelques jalons (Intel)

- •1971 : 4004 : 2 300 transistors
- •1978: 8086: 29 000 transistors
- •1982 : 80286 275 000 transistors
- •<u>1989</u>: <u>80486</u>: 1,16 millions de transistors
- •1993: Pentium: 3,1 millions de transistors
- •1995 : Pentium Pro : 5,5 millions de transistors
- •1997 : Pentium II : 27 Millions de transistors
- •2001 : Pentium 4 : 42 millions de transistors
- •2004 : Pentium 4 EE : 169 millions de transistors

Structure of transistor

射極:代號E,寬度居三者之中,參雜濃度最濃。

基極:代號B,寬度最薄,參雜濃度最低。

集極:代號C,寬度最大,參雜濃度適中。

BJT operation mode		
mode	EB junction	CB junction
active	forward	reverse
Reverse active	reverse	forward
saturation	forward	forward
cutoff	reverse	reverse

comparison

- NPN (electrons) fast than PNP (holes)
- NPN easy to product

PNP transistor in open circuit

NPN transistor (Active mode)

- 1. J_{E} forward-Biased: electrons injected from emitter into base (i_{En}), holes injected from base into emitter (i_{Ep}).
- 2. In base: some electrons combined with holes (i_{B2}), most of electrons diffused to collector (i_{Cn}).
- 3. J_C reverse-Biased: electrons swept across the depletion region (i_{Cn}), small saturation current in depletion region (i_{Cn}),

$$i_{E} = i_{En} + i_{Ep}$$
 $i_{C} = i_{Cn} + i_{Cp}$
 $i_{B} = i_{Ep} + i_{B2} - i_{Cp}$
 $i_{B2} = i_{En} - i_{Cn}$

$$i_{En} >> i_{Ep}$$
 $i_{Cn} >> i_{Cp}$

$$i_E = i_C + i_B$$

Minority-carrier concentrations

$$i_B = \frac{i_C}{\beta}$$

$$\Rightarrow i_B = \frac{I_S}{\beta} e^{V_{BE}/V_T}$$

$$i_E = i_C + i_B$$

$$\Rightarrow i_E = \frac{1+\beta}{\beta}i_C = \frac{1}{\alpha}i_C$$

(b)

$\frac{NPN\ transistor\ (reverse\ active\ mode)}{J_E\ reverse\ and\ J_C\ forward}$

(Active mode)

NPN transistor (Ebers_Moll mode) (for four modes)

NPN transistor (saturation mode)

J_E Forward and J_C Forward

Electronic Switch

pnp transistor Exercise

Characteristic in Active mode (for Amplifier)

$$i_{C} = I_{S}e^{V_{BE}/V_{T}}$$

$$i_{C} = \beta i_{B}$$

$$i_{E} = \frac{1}{2}i_{C}$$

$$\beta >> 1$$
 $\alpha \approx 1$

$$i_C = I_S e^{V_{EB}/V_T}$$
 $i_C = \beta i_B$
 $i_E = \frac{1}{C} i_C$

Example 5.1

Consider J_{BE} :

$$V_2 - V_1 = V_T \ln \frac{I_2}{I_1}$$

Ref. to lecture 02 page24

$$V_{BE} - 0.7 = V_T \ln \frac{2mA}{1mA}$$

$$\Rightarrow V_{BE} = 0.717V$$

$$=\frac{10V}{10}=5k\Omega$$

$$R_C = \frac{10V}{2mA} = 5k\Omega$$

$$I_E = I_C + I_B = 2mA + \frac{2mA}{100} = 2.02$$

$$V_E = -V_{BE} = -0.717$$

$$R_E = \frac{-0.717 - (-15)}{2.02} = 7.07k\Omega$$

-15 V

(a)

2006 Microelectronic Circuit by meiling CHEN

19

+15 V

(b)

 $I_E = I_C + I_B$

Exercise 5.11

given
$$V_B = +1V$$
, $V_E = +1.7V$
find $\alpha, \beta, and V_C$

$$I_{E} = \frac{10-1.7}{5k} = 1.66mA$$

$$I_{B} = \frac{1}{100k} = 0.01mA$$

$$I_{C} = I_{E} - I_{B} = 1.65mA$$

$$\beta = \frac{I_{C}}{I_{B}} = \frac{1.65}{0.01} = 165$$

$$\alpha = \frac{\beta}{\beta+1} = 0.994$$

$$V_{BE(sat)} = 0.8V$$

$$V_{CE(sat)} = 0.2V$$

$$I_{C(sat)} \times 1K + 0.2 + (I_{C(sat)} + I_{B(sat)}) \times 1K = 14V$$

$$I_{B(sat)} \times 10K + 0.8 + (I_{C(sat)} + I_{B(sat)}) \times 1K = 14V$$

$$I_{C(sat)} = 6.6mA$$

$$I_{B(sat)} = 0.6mA$$

$$\beta_{\min} = \frac{6.6}{0.6} = 11$$

Example (TTL circuit)

$$V_A$$
 and $A_B = +5V$

Q1: reverse active

Q2 and Q3: saturation

Q4 and D1: cut-off

$$V_A$$
 or $A_B = +0.1 \sim 0.2V$

Q1: saturation

Q2 and Q3: cut off

Q4: saturation

D1: on

Open collector

Current-voltage characteristics

- *i*_C -- V_{BE}
- *i_C* -- V_{CB}
- *i_C* -- V_{CE}

BJT configurations

- Common-Base (CB)
- Common-Emitter (CE)
- Common-Collector (CC)

Transistor i_C -- V_{BE} Characteristic (change T)

$$i_C = I_S e^{V_{BE}/V_T}$$

Transistor i_C -- V_{CB} Characteristic (change i_E)

Transistor i_C -- V_{CE} Characteristic (change I_B)

 β short circuit common-Emitter current gain

2006

 $eta_{DC} = rac{I_{CQ}}{I_{BO}} \qquad eta_{ac} = h_{fe} \equiv rac{\Delta i_C}{\Delta i_D} \left| v_{CE} \right|_{v_{CE} = K}$

Microelectronic Circuit by meiling CHEN

Zero signal component between Emitter and collector (short circuit)

Transistor i_C -- V_{CE} Characteristic (change V_{BE})

Given
$$V_{BE}$$
, if $V_{CE} \uparrow \rightarrow V_{CB} \uparrow$

 J_C depletion region \uparrow effective base width \downarrow

$$I_{s} = \frac{A_{E}qn_{i}^{2}D_{n}}{WN_{A}} \implies I_{S} \uparrow :: i_{C} \propto I_{S} \implies i_{C} \uparrow$$

Early effect

Large-signal equivalent circuit (Common Emitter in active mode)

$$\frac{1}{r_o} = \frac{\partial i_C}{\partial v_{CE}} \Big|_{V_{BE} = K}$$

Transistor i_C -- V_{CE} Characteristic (CE saturation mode)

$$i_c \neq \beta i_B$$

$$V_{CE} \approx 0.2V$$

saturation mode equivalent circuit ¹csat

Transistor breakdown

1. punch-through breakdown

 $V_{CE} \nearrow \nearrow \rightarrow J_E$ and J_C depletion region $\nearrow W_B \rightarrow 0$

2. Avalanche breakdown (Impact ionization)

$$V_{CE}///\rightarrow V_{CB}//$$

1. large-scale Equivalent-circuit model

$$V_{BE} = 0.7V$$
 $V_{CE} \ge 0.3V$
 $V_{BC} < 0.4V$
 $i_C = \beta i_B$
 $i_C = \alpha i_E$

2. Ebers-moll Equivalent-circuit model

$$i_{DE} = I_{SE}(e^{\frac{V_{BE}}{V_T}} - 1)$$
 $i_{DC} = I_{SC}(e^{\frac{V_{BC}}{V_T}} - 1)$

$$i_{DC} = I_{SC}(e^{\frac{V_{BC}}{V_T}} - 1)$$

1. Saturation Equivalent-circuit model

$$V_{BE} = 0.7 \sim 0.8V$$

$$V_{CE} = 0.1 \sim 0.2V$$

$$V_{CE} = 0.1 \sim 0.2V$$
$$V_{BC} = 0.5 \sim 0.6V$$