JIAN Qiuhua (简秋华)'s TA report for assignment06; SID: 12132202 Github: https://github.com/Jansansan277/ESE5023_Assignments_12132202 Responsible TA: HUANG Hao Grade: 36

1. Matrix multiplication

[ese-jiangh@login03 fort	<pre>ran_demo1]\$ gfortran Matrix</pre>	_multip.f90 Main.f90 -o Q1.x
[ese-jianqh@login03 fort	_	_ ,
M is following:		
19.480000000000000	15.78999999999999	19.28000000000001
19.28000000000001	12.920000000000000	15.85999999999999
15.85999999999999	11.28999999999999	14.03999999999999
11.930000000000000	18.600000000000001	18.230000000000000
19.280000000000001	12.920000000000000	15.85999999999999
N is following:		
7.719999999999998	4.1100000000000003	1.439999999999999
4.79999999999998	5.54999999999998	
5.549999999999998	4.79999999999998	4.0400000000000000
0.589999999999997	8.5800000000000001	
0.589999999999997	8.5800000000000001	2.25999999999998
7.719999999999998	4.1100000000000003	
MN is following:		
249.39530000000002	321.2771999999999	135.4155999999998
251.66170000000000	322.8329999999997	
229.9049999999997	277.33560000000000	115.8036000000000
222.6059999999999	283.0421999999998	
193.38229999999999	239.83980000000000	100.1803999999999
191.1778999999999	242.5955999999996	
206.08529999999999	294.72569999999996	133.52300000000000
208.97360000000000	300.72480000000002	
229.90499999999997	277.33560000000000	115.8036000000000
222.6059999999999	283.0421999999998	
[ese-jianqh@login03 fort	ran_demo1]\$ nano MN.dat	

```
GNU nano 2.3.1
                                                          File: MN.dat
249.40
          321.28
                   135.42
                             251.66
                                       322.83
229.90
          277.34
                   115.80
                             222.61
                                       283.04
193.38
          239.84
                   100.18
                             191.18
                                       242.60
206.09
          294.73
                   133.52
                             208.97
                                       300.72
                   115.80
229.90
          277.34
                             222.61
                                       283.04
```

2. Calculate the Solar Elevation Angle 21/25

For 2.1, I think it is good to write the code for calculating the number of days before a 2.1 Declination_angle given date, although that is beautiful enough. Please refer to this method for calculating the number of days: https://www.cnblogs.com/Pupa/p/10467523.html

> As well, you did not calculate the j, i.e., declination angle, correctly. Firstly, that is sin(-23.44*2*pi/180), not sin(-23.44*2*pi/360.0). Second if you wanted to calculate a sin(value) with the value in degree, I suggest you to use sind() directly.

Better formula

The following equation gives a more accurate value of the declination angle.

$$\delta = \sin^{-1} \left[\sin(-23.44^{\circ}) \cos \left(\frac{360}{365.24} (d+10) + \frac{360}{\pi} \times 0.0167 \sin \left(\frac{360}{365.24} (d-2) \right) \right) \right]$$

2.2 Solar_hour_angle

见网站公式

Please use correct name for the document, it should be Solar_hour_angle.f90, not Solar_hour_angle. But the code you wrote is roughly correct.

2.3 Solar_elevation_angle.f90

见网站公式

本答案未跑通, 仅提交f90文件

I tried running your code, and you need to check at least the following bugs.

- 1. I think that is not right to integer:: yy,mm,dd,days=0 within subroutine since yy,mm,dd,days are as input values.
- 2. I am not sure whether you can use the list of integer::dayofmonth(12)=[31,28,31,30,31,30,31,30,31,30,31,30,31] in Fortran.
- 3. use endif instead of end if

Beside, for 2.3 and 2.4, I can not know whether you have understood how to use model and how to create library and compile by using library in your report or code. So, 3 points were deducted.