LAPORAN TUGAS KECIL 2 IF2211 STRATEGI ALGORITMA

IMPLEMENTASI CONVEX HULL DENGAN ALGORITMA DIVIDE AND CONQUER

Disusun oleh:

Wesly Giovano 13520071

TEKNIK INFORMATIKA SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA INSTITUT TEKNOLOGI BANDUNG

2022

DAFTAR ISI

1	Alş	goritma Divide and Conquer untuk Convex Hull	. 2
2	Soi	ırce Code Program	. 2
	2.1	myConvexHull.py	. 2
	2.2	main-iris.py	. 4
	2.3	main-wine.py	. 5
	2.4	main-breast-cancer.py	. 6
3	Ek	sperimen	. 7
	3.1	Dataset Iris	. 7
	3.2	Dataset Wine	. 8
	3.3	Dataset Breast Cancer	. 9
4	Ta	bel Penyelesaian Tugas Kecil	. 9

1 Algoritma Divide and Conquer untuk Convex Hull

Langkah-langkah algoritma divide and conquer dalam implementasi fungsi convex hull adalah sebagai berikut.

- 1. Cari titik ekstrem minimum p_{min} dan maksimum p_{max} dari himpunan titik yang diberikan. Titik minimum/maksimum adalah titik yang memiliki nilai absis terkecil/terbesar. Jika terdapat beberapa titik dengan nilai absis yang sama, pilih titik yang memiliki nilai ordinat terkecil/terbesar.
- 2. Misalkan p₁ adalah p_{min} dan p₂ adalah p_{max}.
- 3. Cari titik, misalkan p₃, yang memiliki jarak terjauh dari garis yang melalui titik p₁ dan p₂ sedemikian sehingga p₁, p₂, p₃ secara berurutan membentuk arah *counter-clockwise* (arah ini menjamin titik berada di luar *convex hull* yang terbentuk). Jika terdapat beberapa titik dengan jarak terjauh yang sama, pilih titik yang mengakibatkan ∠ p₃ p₁ p₂ memiliki nilai terbesar. Jika tidak ada titik yang memenuhi kondisi tersebut, masukkan p₂ ke dalam himpunan *convex*.
- 4. Ulangi langkah (3) dengan p₃ sebagai p₂ dan p₃ sebagai p₁. Kedua hasil digabung ke dalam himpunan *convex*.
- 5. Ulangi langkah (3) dengan p_{max} sebagai p₁ dan p_{min} sebagai p₂.
- 6. Himpunan yang diperoleh adalah himpunan yang membentuk *convex hull* dari himpunan titik yang diberikan.

2 Source Code Program

Dalam penyusunan laporan ini, dituliskan empat buah file *source code* dengan satu file *myConvexHull* dan tiga file sebagai contoh penggunaan, yaitu *main-iris*, *main-wine*, dan *main-breast-cancer*. Seluruh *source code* program disimpan dalam repository git dengan alamat https://github.com/weslygio/myConvexHull.

2.1 myConvexHull.py

```
import numpy as np

def search_min(points: np.ndarray) -> np.ndarray:
    minpoint = points[0]
    for i in range(1, len(points)):
        if points[i, 0] < minpoint[0]:
            minpoint = points[i]
        elif points[i, 0] == minpoint[0]:
            if points[i, 1] < minpoint[1]:
                  minpoint = points[i]
    return minpoint

def search_max(points: np.ndarray) -> np.ndarray:
    maxpoint = points[0]
    for i in range(1, len(points)):
        if points[i, 0] > maxpoint[0]:
```

```
if dist > 0:
    subpoints = np.append(subpoints, testpoint.reshape(1,2), axis=0)
    if dist > max_dist:
        max_dist = dist
        p_extreme = testpoint
    elif dist == max_dist:
        if angle(testpoint, p1, p2) > angle(p_extreme, p1, p2):
            p_extreme = testpoint

if subpoints.size == 0:
    return np.array([p2])

hull1 = ConvexHull2(subpoints, p1, p_extreme)
hull2 = ConvexHull2(subpoints, p_extreme, p2)

return np.append(hull1, hull2, axis=0)
```

2.2 main-iris.py

```
import pandas as pd
import matplotlib.pyplot as plt
from itertools import cycle
data = datasets.load iris()
df = pd.DataFrame(data.data, columns=data.feature names)
df['Target'] = pd.DataFrame(data.target)
plt.figure(figsize=(10, 6))
colors = ['b','r','g']
plt.title('Sepal Length vs Sepal Width')
plt.xlabel(data.feature names[0])
plt.ylabel(data.feature names[1])
     hull = ConvexHull(bucket)
plt.legend()
plt.show()
plt.clf()
plt.figure(figsize=(10, 6))
plt.title('Petal Length vs Petal Width')
plt.xlabel(data.feature names[2])
plt.ylabel(data.feature names[3])
```

```
for i in range(len(data.target_names)):
    bucket = df[df['Target'] == i]
    bucket = bucket.iloc[;,[2,3]].values
    hull = ConvexHull(bucket)
    plt.scatter(bucket[:, 0], bucket[:, 1], label=data.target_names[i])

    hull_iter = cycle(hull)
    p1 = next(hull_iter)
    for _ in range(len(hull)):
        p2 = next(hull_iter)
        plt.plot([p1[0], p2[0]], [p1[1], p2[1]], colors[i])
        p1 = p2

plt.legend()
plt.show()
```

2.3 main-wine.py

```
import pandas as pd
from itertools import cycle
data = datasets.load wine()
df = pd.DataFrame(data.data, columns=data.feature names)
df['Target'] = pd.DataFrame(data.target)
plt.figure(figsize=(10, 6))
colors = ['b','r','g']
plt.title('Nonflavanoid phenols vs Total phenols')
plt.xlabel(data.feature_names[7])
plt.ylabel(data.feature names[5])
    hull = ConvexHull(bucket)
    hull iter = cycle(hull)
plt.legend()
plt.show()
plt.clf()
plt.figure(figsize=(10, 6))
plt.title('Alcohol vs Total phenols')
plt.xlabel(data.feature names[0])
plt.ylabel(data.feature names[5])
```

```
bucket = df[df['Target'] == i]
bucket = bucket.iloc[:,[0,5]].values
hull = ConvexHull(bucket)
plt.scatter(bucket[:, 0], bucket[:, 1], label=data.target_names[i])

hull_iter = cycle(hull)
p1 = next(hull_iter)
for _ in range(len(hull)):
    p2 = next(hull_iter)
    plt.plot([p1[0], p2[0]], [p1[1], p2[1]], colors[i])
    p1 = p2

plt.legend()
plt.show()
```

2.4 main-breast-cancer.py

```
from sklearn import datasets
from myConvexHull import ConvexHull
from itertools import cycle
data = datasets.load breast cancer()
df = pd.DataFrame(data.data, columns=data.feature names)
df['Target'] = pd.DataFrame(data.target)
plt.figure(figsize=(10, 6))
colors = ['orangered','royalblue']
plt.title('Smoothness vs Compactness')
plt.xlabel(data.feature names[4])
plt.ylabel(data.feature names[5])
    hull iter = cycle(hull)
plt.legend()
plt.show()
plt.clf()
plt.figure(figsize=(10, 6))
plt.title('Concavity vs Concave points')
plt.xlabel(data.feature names[6])
plt.ylabel(data.feature names[7])
```

```
bucket = bucket.iloc[:,[6,7]].values
hull = ConvexHull(bucket)
plt.scatter(bucket[:, 0], bucket[:, 1], label=data.target_names[i], c=colors[i])

hull_iter = cycle(hull)
pl = next(hull_iter)
for _ in range(len(hull)):
    p2 = next(hull_iter)
    plt.plot([p1[0], p2[0]], [p1[1], p2[1]], colors[i])
    p1 = p2

plt.legend()
plt.show()
```

3 Eksperimen

Eksperimen dilakukan terhadap tiga buah *dataset*, yaitu *iris*, *wine*, dan *breast cancer*. Berikut adalah hasil visualisasi.

3.1 Dataset Iris

Pada dataset iris, dua buah plot dibentuk, dengan plot pertama adalah "Sepal Length vs Sepal Width" dan plot kedua adalah "Petal Length vs Petal Width".

3.2 Dataset Wine

Pada dataset wine, dua buah plot dibentuk, dengan plot pertama adalah "Nonflavonoid phenols vs Total phenols" dan plot kedua adalah "Alcohol vs Total phenols".

3.3 Dataset Breast Cancer

Pada dataset breast cancer, dua buah plot dibentuk, dengan plot pertama adalah "Smoothness vs Compactness" dan plot kedua adalah "Concavity vs Concave points".

4 Tabel Penyelesaian Tugas Kecil

Poin	Ya	Tidak
1. Pustaka <i>myConvexHull</i> berhasil dibuat dan tidak ada	$\sqrt{}$	
kesalahan.		
2. Convex hull yang dihasilkan sudah benar.	$\sqrt{}$	
3. Pustaka <i>myConvexHull</i> dapat digunakan untuk menampilkan	$\sqrt{}$	
convex hull setiap label dengan warna yang berbeda.		
4. Bonus: program dapat menerima input dan menuliskan	$\sqrt{}$	
output untuk dataset lainnya.		