Computació Numèrica

Tema 5.1 - Derivació Numèrica

M. Àngela Grau Gotés

Departament de Matemàtiques Universitat Politècnica de Catalunya · BarcelonaTech.

17 d'abril de 2023

Drets d'autor

"Donat el caràcter i la finalitat exclusivament docent i eminentment il·lustrativa de les explicacions a classe d'aquesta presentació, l'autor s'acull a l'article 32 de la Llei de propietat intel·lectual vigent respecte de l'ús parcial d'obres alienes com ara imatges, gràfics o altre material contingudes en les diferents diapositives"

© 2023 by M. Àngela Grau Gotés.

Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional.

Índex

- Introducció
- Fórmules Bàsiques
 - Ordre de les fórmules
 - Comportament de l'error
 - Extrapolació de Richardson
- Altres fórmules
- Derivades parcials
- Guia estudi

Introducció

El problema és calcular la derivada d'una funció de la que sols coneixem un nombre finit de valors. Els dos mètodes més usuals de resolució són:

- Derivar el polinomi d'interpolació construït mitjançant algun dels mètodes estudiats en el capítol previ. Les fórmules obtingudes d'aquesta manera reben el nom de fórmules de derivació interpolatòria.
- Calcular directament la derivada utilitzant per a això aproximacions de la funció mitjançant els polinomis de Taylor. Les fórmules obtingudes d'aquesta manera reben el nom de fórmules de diferències finites.

Taula de dades

L'any 2009 (a Berlín) Usain Bolt va situar el record dels 100m en 9.58s. Les dades de la carrera són les següents

r	0	10	20	30	40	50	60	70	80	90	100
t(r)	0	1.85	2.89	3.78	4.64	5.49	6.31	7.11	7.92	8.74	9.58

on la primera fila és la distància recorreguda en metres i la segona el temps emprat en segons

(font: NBC, http://www.universalsports.com/news/article/newsid=385633.html).

Primeres fórmules

Mètode

La derivació numèrica avalua la derivada d'una funció en un punt a partir de valors numèrics d'aquesta funció, sense necessitat per tant de conèixer l'expressió analítica d'aquesta derivada.

És molt sensible a petites pertorbacions en les dades o la precisió d'aquestes.

Aproximació geomètrica

Fórmules i ordre de l'aproximació

Sigui $f:D\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ una funció real de variable real derivable dues/tres vegades amb continuïtat en un entorn de x, de la fórmula de Taylor s'obté:

$$\frac{f(x) - f(x - h)}{h} - f'(x) = \frac{h}{2}f''(\xi) \to 0 \quad \text{si } (h \to 0),$$

$$\frac{f(x + h) - f(x)}{h} - f'(x) = \frac{h}{2}f''(\xi) \to 0 \quad \text{si } (h \to 0),$$

$$\frac{f(x+h)-f(x-h)}{2h}-f'(x)=\frac{h^2}{6}f^{(3)}(\xi)\to 0\quad \text{si } (h\to 0).$$

Ordre de les aproximacions (deducció)

Fórmula endavant f'(x)

$$f(x + h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f'''(x)}{6}h^3 + \cdots$$

Si aïllem de la igualtat f'(x) s'obté la **fórmula endavant** més un reste de primer ordre $\mathcal{O}(h)$

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{f''(x)}{2}h + \cdots \approx \frac{f(x+h) - f(x)}{h}$$

Fórmula enrere f'(x)

$$f(x-h) = f(x) - f'(x)h + \frac{f''(x)}{2}h^2 - \frac{f'''(x)}{6}h^3 + \cdots$$

Si aïllem de la igualtat f'(x) s'obté la **fórmula enrere** més un reste de primer ordre $\mathcal{O}(h)$

$$f'(x) = \frac{f(x) - f(x-h)}{h} + \frac{f''(x)}{2}h + \cdots \approx \frac{f(x) - f(x-h)}{h}$$

Fórmula centrada f'(x)

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f'''(x)}{6}h^3 + \cdots$$
$$f(x-h) = f(x) - f'(x)h + \frac{f''(x)}{2}h^2 - \frac{f'''(x)}{6}h^3 + \cdots$$

Si restem les dues igualtats i aïllem f'(x) s'obté la **fórmula** centrada més un reste de segon ordre $\mathcal{O}(h^2)$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{f'''(x)}{6}h^2 + \cdots \approx \frac{f(x+h) - f(x-h)}{2h}$$

Fórmula centrada f''(x)

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f'''(x)}{6}h^3 + \cdots$$
$$f(x-h) = f(x) - f'(x)h + \frac{f''(x)}{2}h^2 - \frac{f'''(x)}{6}h^3 + \cdots$$

Si sumem les dues igualtats i aïllem f''(x) s'obté la **fórmula** centrada més un reste de segon ordre $\mathcal{O}(h^2)$

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} - \frac{f^{(4)}(x)}{12}h^2 + \cdots$$

$$\approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Comportament de l'error

Comportament de l'error

L'aparició en moltes fórmules de diferències de quantitats molt properes, amb la corresponent cancel·lació de termes, fa que pensar que pendre passos de derivació h molt petits no millorarà les aproximacions numèriques.

Cal fer atenció als errors d'arrodoniment que apareixen.

Observació

$$\left|f'(x_0) - \frac{\widetilde{f}(x_0+h) - \widetilde{f}(x_0)}{h}\right| \leq \frac{2\epsilon}{h} + \frac{h}{2}K, \qquad |f''| < K.$$

El pas òptim és el que minimitza l'error total $\left(\Rightarrow h = \left(\frac{4\epsilon}{K}\right)^{1/2}\right)$.

Pràctica!

Exemple

```
Càlcul de la derivada de ln(x) en x = 2

f=@(x)log(x);
k=0:14;
h=1./10.^k;
fp(k)=(f(2+h)-f(2))./h;
er = abs(fp-0.5);
taula=[h; fp; er]'
```

La derivació numèrica és un problema mal condicionat.

Ordre $\mathcal{O}(h^2)$

- Si es coneix l'**ordre de l'error**, el valor exacte es pot aproximar a partir de dues aproximacions successives amb valors h/2 i h.
- 2 Diem $D_2(h) = \frac{f(x+h) f(x-h)}{2h}$ i calculem $f'(x) = D_2(\frac{h}{2}) + C\frac{h^2}{4}$ i $f'(x) = D_2(h) + Ch^2$.
- Restem la segona equació de la primera multiplicada per 4:

$$3f'(x) \approx 4D_2(h) - D_2(2h)$$
, llavors $f'(x) \approx \frac{4D_2(h) - D_2(2h)}{3}$

4 El resultat és una fórmula d'ordre $\mathcal{O}(h^4)$

$$f'(x) \approx \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h}$$

Ordre $\mathcal{O}(h^2)$

Si es té una fórmula del tipus

$$F(h) = a_0 + a_1 h^2 + a_2 h^4 + \mathcal{O}(h^6)$$

quan $h \to 0$ el valor a_0 es pot aproximar a partir de dues aproximacions calculades per h i h/2, q > 0.

$$F(h) = a_0 + a_1 h^2 + a_2 h^4 + \mathcal{O}(h^6)$$

$$F(h/2) = a_0 + a_1 h^2 / 4 + a_2 h^4 / 16 + \mathcal{O}(h^6).$$

Multiquem la segona equació per 4 i restem les dues equacions, s'obté

$$a_0 = F(h/2) + \frac{F(h/2) - F(h)}{3} + \mathcal{O}(h^4)$$

Fórmula per calcular a_0 d'ordre $\mathcal{O}(h^4)$.

Taula d'extrapolació

Ordre $\mathcal{O}(h^2)$

$$N_1(h) = F(h), \quad N_{j+1}(h) = N_j\left(\frac{h}{2}\right) + \frac{N_j\left(\frac{h}{2}\right) - N_j\left(h\right)}{4^j - 1}, \quad j \geq 1.$$

$\mathcal{O}(h^2)$	$\mathcal{O}(h^4)$	$\mathcal{O}(h^6)$	$\mathcal{O}(h^8)$
$1:N_1(h)$			
2 :N ₁ (h/2)	3 :N ₂ (h)		
4 :N ₁ (h/4)	5 : $N_2(h/2)$	6 :N ₃ (h)	
7 : <i>N</i> ₁ (<i>h</i> /8)	8 :N ₂ (h/4)	9 : $N_3(h/2)$	10 : N ₄ (h)

Taula: Extrapolació de Richardson de $F(h) = a_0 + a_1 h^2 + a_2 h^4 + \mathcal{O}(h^6)$

Ordre $\mathcal{O}(h^p)$

Si p i r són nombres naturals tals que r>p>1, i per $h\to 0$ es té una fórmula del tipus

$$F(h) = a_0 + a_1 h^p + \mathcal{O}(h^r)$$

el valor a_0 es pot tornar a aproximar a partir de dues aproximacions calculades per h i h/q, q>0.

$$F(h) = a_0 + a_1 h^p + \mathcal{O}(h^r)$$

$$F(h/q) = a_0 + a_1 (h/q)^p + \mathcal{O}(h^r)$$

Sistema d'equacions amb dues incògnites, a_0 i a_1 . Multiquem la segona equació per q^p i restem les dues equacions,

$$a_0=F(h/q)+rac{F(h/q)-F(h)}{q^p-1}+\mathcal{O}(h^r)$$

Fórmula per calcular a_0 d'ordre $\mathcal{O}(h^r)$, amb r > p.

S'ha augmentat l'ordre sense disminuir h

Taula d'extrapolació

Ordre $\mathcal{O}(h)$

$$N_{j+1}(h) = N_{j}\left(rac{h}{q}
ight) + rac{N_{j}\left(rac{h}{q}
ight) - N_{j}\left(h
ight)}{q^{j} - 1}, \quad j \geq 1.$$

$\mathcal{O}(h)$	$\mathcal{O}(h^2)$	$\mathcal{O}(h^3)$	$\mathcal{O}(h^4)$
1:N ₁ (h)			
$2:N_1(h/q)$	$3:N_2(h)$		
4 : $N_1(h/q^2)$	$ 5: N_2(h/q) $	6 :N ₃ (h)	
7 : $N_1(h/q^3)$	8 : $N_2(h/q^2)$	9 : $N_3(h/q)$	10 :N ₄ (h)

Taula: Extrapolació de Richardson de $F(h) = K_1 + K_2h + K_3h^2 + \dots$

Fórmules i derivades d'ordre superior

Discretització

Generalment es divideix l'interval on es calcula en punts equiespaïats: donat n prenem

$$t_i = a + ih$$
, per $i = 0, 1, 2, ..., n$, amb $h = t_i - t_{i-1} = \frac{b - a}{n}$.

Els mètodes ens permetran trobar la derivada aproximada en $f'_i \simeq f'(t_i)$ en els punts del domini.

Fórmules derivada primera.

Donat h, siguin $x_k = x_0 + k h$, i $f_k = f(x_k)$, per $k \in \mathbb{Z}$

2
$$f'(x_0) = \frac{f_1 - f_{-1}}{2h} + \mathcal{O}(h^2)$$

$$f'(x_0) = \frac{-3f_0 + 4f_1 - f_2}{2h} + \mathcal{O}(h^2)$$
$$f'(x_0) = \frac{3f_0 - 4f_{-1} + f_{-2}}{2h} + \mathcal{O}(h^2)$$

Fórmules derivada segona

$$f''(x_0) = \frac{f_2 - 2f_1 + f_0}{h^2} + \mathcal{O}(h)$$

$$f''(x_0) = \frac{f_1 - 2f_0 + f_{-1}}{h^2} + \mathcal{O}(h^2)$$

$$f''(x_0) = \frac{-f_3 + 4f_2 - 5f_1 + 2f_0}{h^2} + \mathcal{O}(h^2)$$

$$f''(x_0) = \frac{-f_2 + 16f_1 - 30f_0 + 16f_{-1} - f_{-2}}{12h^2} + \mathcal{O}(h^4)$$

Fórmules derivades ordre superior

$$f'''(x_0) = \frac{f_3 - 3f_2 + 3f_1 - f_0}{h^3} + \mathcal{O}(h)$$

$$f'''(x_0) = \frac{f_2 - 2f_1 + 2f_{-1} - f_{-2}}{8h^3} + \mathcal{O}(h^2)$$

Derivades parcials

Derivades parcials primeres

Per una funció de dues variables que només es coneixen

$$u_{ij} = u(x_i, y_i), \qquad 1 \le i \le n, \ 1 \le j \le m,$$

valors en la malla equiespaida, $h = x_{i+1} - x_i$ i $k = y_{i+1} - y_i$ Les fórmules centrades per les derivades primeres són:

$$u_x(x_i,y_j) \approx \frac{1}{2h} \left(u_{i+1j} - u_{i-1j}\right)$$

$$u_y(x_i, y_j) \approx \frac{1}{2k} (u_{ij+1} - u_{ij-1})$$

Derivades parcials segones

u(x, y)

Le fórmules centrades per les derivades segones són:

$$u_{xx}(x_i, y_j) \approx \frac{1}{h^2} (u_{i+1j} - 2u_{ij} + u_{i-1,j})$$

$$u_{yy}(x_i, y_j) \approx \frac{1}{k^2} (u_{ij+1} - 2u_{ij} + u_{ij-1})$$

$$u_{xy}(x_i, y_j) \approx \frac{1}{4hk} (u_{i+1j+1} - u_{i+1j-1} - u_{i-1j+1} + u_{i-1j-1})$$

$$h = x_{i+1} - x_i$$
, $1 \le i \le n$, $k = y_{i+1} - y_i$, $1 \le j \le m$.

Guia estudi subtema

Llibre Càlcul numèric: teoria i pràctica

• Conceptes associats: Capítol 5, Derivació i integració numèrica. Des de la pàgina 160 fins a la 164.

Llibre Cálculo Científico con MATLAB y Octave

- Conceptes i exercicis resolts: capítol 4, pàgines 107 a 109.
- Problemes i pràctiques proposades: del 4.1 al 4.4

Llibres de consulta online

- Llibre de consulta Accès UPCommons, Càlcul numèric: teoria i pràctica
- Llibre de consulta Accès UPCommons, Cálculo numérico
- Llibre de consulta Accès Biblioteca, Cálculo Científico con MATLAB y Octave by A. Quarteroni, F. Saleri
- Métodos Numéricos, J. Douglas Faires & Richard Burden. Ed. Thomson 3era edición. 2004.