Add WeChat edu_assist_pr

Assignment Project Exam Help

https://eduassistpro.github.

Remember duality

Given a minimization problem

Assignment Project Exam Help

we dehttps://eduassistpro.github.

 $\mathbf{Add} \overset{L(x,u,v) = f(x) + \sum^{\cdots} u_i h}{\mathbf{VeChat}} \mathbf{edu_assist_pr}$

and Lagrange dual function:

$$g(u,v) = \min_{x \in \mathbb{R}^n} L(x, u, v)$$

The subsequent dual problem is:

$$\max_{u \in \mathbb{R}^m, v \in \mathbb{R}^r} g(u, v)$$

Assignment Project to u > 0 Exam Help

- . https://eduassistpro.github. weak duality: $f^* \ge g^*$
- Slater's condition, for convex primal if the assist primal $h_1(x) < 0, \ldots h_m(x) < 0$ and $h_1(x) < 0, \ldots h_m(x) < 0$

then **strong duality** holds: $f^* = g^*$. (Can be further refined to strict inequalities over nonaffine h_i , i = 1, ... m)

ven

Duality gap

Given primal feasible x and dual feasible u, v, the quantity

Assignment Project Exam Help is called the duality gap between x and u, v. Note that

https://eduassistpro.github.

u, v are dual optimal)

From an algorithm Vice bin battle GU _ assist_property $f(x)-g(u,v) \leq \epsilon$, then we are guaranteed th

Very useful, especially in conjunction with iterative methods ... more dual uses in coming lectures

Dual norms

Let ||x|| be a **norm**, e.g.,

• ℓ_p norm: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$, for $p \ge 1$

Assignment Project Exam Help

We define its **dual norm** x as

https://eduassistpro.github.

Gives us the inequality $|z^Tx| \leq \|z\| \|x$

Back thought we Chat edu_assist_pr

• Nuclear norm dual: $(\|X\|_{\mathrm{nuc}})_* = \|X\|_{\mathrm{spec}} = \sigma_{\mathrm{max}}(X)$

Dual norm of dual norm: it turns out that $||x||_{**} = ||x|| \dots$ connections to duality (including this one) in coming lectures

Outline

Assignment Project Exam Help

- https://eduassistpro.github.
- Uniqueness with 1-norm penalties
 Add WeChat edu_assist_pressure

Karush-Kuhn-Tucker conditions

Given general problem

Assignment $P_{\text{subject to}}^{\text{min}} P_{n_i(x)}^{f(x)} \underbrace{\text{Exam Help}}_{i=1,\dots,m}$

The https://eduassistpro.github.

- $u_i \cdot h_i(x) = 0$ for all i
- $h_i(x) \leq 0$, $\ell_i(x) = 0$ for all i, j
- $u_i \geq 0$ for all i

(primal feasibility)

(dual feasibility)

Necessity

Let x^\star and u^\star, v^\star be primal and dual solutions with zero duality $\mathbf{Ass}_{f(x^\star)}^{\text{gap}} \underbrace{\mathbf{Ct}_{f(x^\star)}^{\text{tstrong}} \mathbf{duality}_{f(x^\star)}^{\text{then}}}_{f(x^\star)} = g(u^\star, v^\star)$

https://eduassistpro.github.

 $\mathbf{Add} \underbrace{\mathbf{We}^{\leq f(x^{\star}) + \sum_{i=1}^{m} u_{i}^{\star} h_{i}(x^{\star})}}_{\leq f(x^{\star})} \mathbf{hat} \ \mathbf{edu_assist_pr}$

In other words, all these inequalities are actually equalities

Two things to learn from this:

• The point x^* minimizes $L(x, u^*, v^*)$ over $x \in \mathbb{R}^n$. Hence the subdifferential of $L(x, u^*, v^*)$ must contain 0 at $x = x^*$ —this

Assignment in the station pity condition Exam Help0, this implies $u^{\star}h_i(x^{\star})=0$ for every *i*—this is exactly

https://eduassistpro.github.

gap, the Q d*, v satisfy the third conduction assist_primar and dual solution assist_primar and dual solution.

(Note that this statement assumes nothing a priori about convexity of our problem, i.e. of f, h_i, ℓ_i)

Sufficiency

If there exists $x^{\star}, u^{\star}, v^{\star}$ that satisfy the KKT conditions, then

Assignment Project Exam Help

wher https://eduassistpro.github.

Therefore quality gap is zero (and x^* dual featings x^* in x^* dual featings x^* dua

If x^\star and u^\star,v^\star satisfy the KKT conditions, then x^\star and u^\star,v^\star are primal and dual solutions

Putting it together

In summary, KKT conditions:

always sufficient

Assignment Project Exam Help

Putt

For https://eduassistpro.github.
tion c
affine inequality contraints), $AddndWiere hat nedu_assist_processing the contraints and u*, v* satisfy the contraction of t$

(Warning, concerning the stationarity condition: for a differentiable function f, we cannot use $\partial f(x) = {\nabla f(x)}$ unless f is convex)

What's in a name?

Older folks will know these as the KT (Kuhn-Tucker) conditions:

• First appeared in publication by Kuhn and Tucker in 1951

Assignment of the key track the conditions In the lp

for uhttps://eduassistpro.github.

Note that we could have alternatively derived the

from studying primality entirely via subgradie assist_pr

$$0 \in \partial f(x^*) + \sum_{i=1}^m \mathcal{N}_{\{h_i \le 0\}}(x^*) + \sum_{i=1}^m \mathcal{N}_{\{\ell_j = 0\}}(x^*)$$

where recall $\mathcal{N}_C(x)$ is the normal cone of C at x

Quadratic with equality constraints

Consider for $Q \succeq 0$,

Assignment $\Pr_{x \in \mathbb{F}_p} \circ \Pr_{x \in \mathbb{F$

https://eduassistpro.github.

 \boldsymbol{x} is a solution if and only if

Add We Chat edu_assist_pr

for some u. Linear system combines stationarity, primal feasibility (complementary slackness and dual feasibility are vacuous)

Water-filling

Example from B & V page 245: consider problem

Assignment $x \in Project + Exam Help$

Infor https://eduassistpro.github.

$$-1/(\alpha_i + x_i) - u_i + v = 0$$

Add WeChatedu_assist_pr

Eliminate u:

$$1/(\alpha_i + x_i) \le v, \quad i = 1, \dots n$$

 $x_i(v - 1/(\alpha_i + x_i)) = 0, \quad i = 1, \dots n, \quad x \ge 0, \quad 1^T x = 1$

Can argue directly stationarity and complementary slackness imply

$$x_i = \begin{cases} 1/v - \alpha & \text{if } v \leq 1/\alpha \\ 0 & \text{if } v > 1/\alpha \end{cases} = \max\{0, 1/v - \alpha\}, \quad i = 1, \dots n$$

$$\text{Assignment Project Taxam Help}$$

https://eduassistpro.github.

Univariate equation, piecewise linear in

Add WeChat edu_assist_pr called water-filling

(From B & V page 246)

Lasso

Let's return the lasso problem: given response $y \in \mathbb{R}^n$, predictors $A \in \mathbb{R}^{n \times p}$ (columns $A_1, \dots A_n$), solve

Assignment, Project Exam Help

KKT

https://eduassistpro.github.

Add
$$W_{s_i}$$
 edu_assist_properties X_{s_i} if $X_{s_i} = 0$

Now we read off important fact: if $|A_i^T(y - Ax)| < \lambda$, then $x_i = 0$... we'll return to this problem shortly

Group lasso

Suppose predictors $A = [A_{(1)} \ A_{(2)} \ \dots \ A_{(G)}]$, split up into groups, with each $A_{(i)} \in \mathbb{R}^{n \times p_{(i)}}$. If we want to select entire groups rather than individual predictors, then we solve the **group lasso** problem: $\underbrace{\mathbf{Assignment}}_{x=(x \ , \dots x \)} \underbrace{\mathbf{Project}}_{p} \underbrace{\mathbf{Exam}}_{p_{(i)}} \|x_{(i)}\|_{2}$

https://eduassistpro.github.

Add WeChat edu_assist_pr

(From Yuan and Lin (2006), "Model selection and estimation in regression with grouped variables")

KKT conditions:

$$A_{(i)}^{T}(y - Ax) = \lambda \sqrt{p_{(i)}} s_{(i)}, \quad i = 1, \dots G$$

$Assign \stackrel{\text{where each } s_{(i)} \in \partial \|x_{(i)}\|}{\underset{x_{(i)} / x_{(i)}}{\text{Project Exam Help}}} E$

Henchttps://eduassistpro.github. hand, if $x_{(i)} \neq 0$, then

$$Add_{A(i)} + \underbrace{Add_{A(i)} + \underbrace{Add_{A(i)}}_{\|X_{(i)}\|_2} hat_{A(i)}}_{A(i)} = du_assist_pr$$

$$\text{ where } \ r_{-(i)} = y - \sum_{j \neq i} A_{(j)} x_{(j)}$$

Constrained and Lagrange forms

Often in statistics and machine learning we'll switch back and forth between **constrained** form, where $t \in \mathbb{R}$ is a tuning parameter,

Assignment Project Exam Help

and

https://eduassistpro.github.

and claim these are equivalent. Is this true (assumi

(C) to the first of the contract of the contr

$$f(x) + \lambda \cdot (f(x) - t)$$

so x^* is also a solution in (L)

(L) to (C): if x^* is a solution in (L), then the KKT conditions for (C) are satisfied by taking $t=h(x^*)$, so x^* is a solution in (C)

Conclusion:

Assignment (Project (Exam) Help

https://eduassistpro.github.

Strictly speaking the same aperfect equivalence (assist_properties). Note: when the only fallow t = 0, i.e.,

$${x: g(x) \le t} \ne \emptyset, {x: g(x) = t} = \emptyset \Rightarrow t = 0$$

(e.g., this is true if g is a norm) then we do get perfect equivalence

Uniqueness in 1-norm penalized problems

Using the KKT conditions and simple probability arguments, we can produce the following (perhaps surprising) result:

A specific property of the consider $f(Ax) + \lambda x_1$

If the trib n trib

Remark report must be strictly arrive that $P \gg 1$ (we could have $P \gg 1$)

Proof: the KKT conditions are

$$-A^T \nabla f(Ax) = \lambda s, \quad s_i \in \begin{cases} \{\operatorname{sign}(x_i)\} & \text{if } x_i \neq 0 \\ [-1, 1] & \text{if } x_i = 0 \end{cases}, \quad i = 1, \dots n$$

Note that Ax, s are unique. Define $S = \{j : |A_j^T \nabla f(Ax)| = \lambda\}$, also unique, and note that any solution satisfies $x_i = 0$ for all $i \notin S$

First assume that $\operatorname{rank}(A_S) < |S|$ (here $A \in \mathbb{R}^{n \times |S|}$, submatrix of Assprange prince of the form A is the same and A is the same

for cohttps://eduassistpro.github.

Add We hat edu_assist_pr

Taking an inner product with $-\nabla f(Ax)$,

$$\lambda = \sum_{j \in S \backslash \{i\}} (s_i s_j c_j) \lambda, \quad \text{i.e.,} \quad \sum_{j \in S \backslash \{i\}} s_i s_j c_j = 1$$

In other words, we've proved that $\operatorname{rank}(A_S) < |S|$ implies $s_i A_i$ is in the affine span of $s_j A_j$, $j \in S \setminus \{i\}$ (subspace of dimension < n)

We say that the matrix A has columns in general position if any Saffine suppose k+1 elements; of $\{\pm A_1,\ldots \pm A_p\}$ (excluding antipodal pairs)

over https://eduassistpro.github.

Add WeChat edu_assist_pr

Therefore, if entries of A are drawn from continuous probability distribution, any solution must satisfy $\operatorname{rank}(A_S) = |S|$ SSIGNMENT Project Exam Help Recalling the KKT conditions, this means the number of nonzero com

Furt https://eduassistpro.github.

$$\min_{x_S \in \mathbb{R}^{|S|}} f(A_S x_S) +$$

Finally Attitude now you clien at the Carly assist problem, and hence in our original problem

Back to duality

One of the most important uses of duality is that, under strong duality, we can **characterize primal solutions** from dual solutions

A Scilen meentg Pant, text conditions p for optimality. Given dual solutions p, p, any primal solution p satis

https://eduassistpro.github.

In oth Avdd x Wie Chrait edu_assist_pr

- Generally, this reveals a characterizatio
- In particular, if this is satisfied uniquely (i.e., above problem has a unique minimizer), then the corresponding point must be the primal solution

References

Assignment Project Exam Help

• https://eduassistpro.github.
University Press, Chapters 28–30

Add WeChat edu_assist_pr

tion.