Машинное обучение в экономике

Семинар 3. Деревья

Задание №1

У вас имеется выборка из n=8 наблюдений, характеризующих успешность стартапов в зависимости от наличия рекламной кампании и опытных членов команды, а также того, связан ли стартап с тематикой здоровья.

Успех Реклама Опыт Здорог	DDC
1 1 1 0	
0 1 1 1	
1 0 1 1	
0 0 0 1	
1 1 1 0	
0 0 0 0	
1 0 1 0	
0 0 1 0	

Вы обучаете решающее дерево глубины 2, прогнозирующее успех стартапа с помощью всех имеющихся в данных признаков (реклама, опыт и здоровье). В качестве критерия разбиения используется энтропия. Прогнозируется, что стартап окажется успешным, если условная вероятность этого события превышает 0.4.

Подсказка: вместо логарифма с основанием 2 эквивалентно использовать натуральный логарифм, необходимые значения которого указаны ниже:

$$\begin{split} &\ln(1/8)\approx -2.079 & \ln(2/8)\approx -1.386 & \ln(3/8)\approx -0.981 & \ln(4/8)\approx -0.693 \\ &\ln(5/8)\approx -0.470 & \ln(6/8)\approx -0.288 & \ln(7/8)\approx -0.134 & \ln(8/8)=-0.000 \\ &\ln(1/6)\approx -1.792 & \ln(2/6)\approx -1.099 & \ln(4/6)\approx -0.405 & \ln(5/6)\approx -0.182 \\ &\ln(1/5)\approx -1.609 & \ln(2/5)\approx -0.916 & \ln(3/5)\approx -0.511 & \ln(4/5)=-0.223 \end{split}$$

- 1. Изобразите обученное решающее дерево графически, в каждом листе указав долю успешных стартапов.
- 2. Используя обученное решающее дерево спрогнозируйте, окажется ли успешным стартап с опытными участниками, без рекламы и посвященный тематике здоровья.

Задание №2

Вы прогнозируете вероятность дефолта по кредиту в зависимости от дохода индивида. Вы используете бэггинг, в котором в качестве базового используется метод двух ближайших соседей с расстоянием Манхэттен (для классификации).

Как в методе ближайших соседей, так и в ансамбле в случае равного количества 0 и 1 прогнозируется 1. Напомним, что в методе ближайших соседей в обучающей выборке наблюдение является одним из собственных ближайших соседей.

Доход $_i$	2	0	5	0	0	5	2	0	2	5	2	5	5	5	5
Дефолт $_i$	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0
Выборка	Исходная		Бутстрап 1			Бутстрап 2			Бутстрап 3			Бутстрап 4			

- 1. Получите прогноз дефолта для каждого наблюдения в исходной и бутстрапированной выборках. Результат представьте в форме таблицы.
- 2. Посчитайте ООВ ошибку, руководствуясь критерием точности МАЕ.

Задание №3

Рассмотрим ансамбль из k решающих деревьев, основанный на бэггинге. Корреляция между прогнозами решающих деревьев равняется 0.6. Известно, что дисперсия прогноза ансамбля ровно в 1.25 раза меньше дисперсии прогноза одного решающего дерева.

- 1. Определите количество решающих деревье, используемых в ансамбле.
- 2. На тех же данных с использованием бэггинга оценили еще один аналогичный ансамбль с таким же количеством деревьев (значение k, найденное в предыдущем пункте). Найдите корреляцию между прогнозами этих двух ансамблей.
- 3. Определите, к чему будет стремиться корреляция между прогнозами ансамблей из предыдущих пунктов (с равным количеством деревьев) по мере стремления числа деревьев k к бесконечности. Сделайте вывод о том, насколько вероятно то, что при очень большом числе деревьев k эти ансамбли дадут существенно различающиеся прогнозы. Ответ подробно обоснуйте.

Задание №4

У вас имеется один бинарный признак X_i и целевая переменная Y_i , которая имеет условное (на признак) распределение Пуассона с параметром $\lambda=2X_i$. Кроме того, известно, что $P(X_i=1)=0.75$.

- 1. Найдите функцию F(x), которая минимизирует среднеквадратическую ошибку прогноза целевой переменной.
- 2. Оцените условные на то, что признак принял значение x, смещение, дисперсию и шум прогнозов, получаемых с помощью функции, найденной в предыдущем пункте.
- 3. Допустим, что теперь для прогнозирования вы используете следующую функцию:

$$\hat{y}(x, X, Y) = x \times \frac{\sum_{i=1}^{n} X_i Y_i}{n}$$

Повторите предыдущий пункт для соответсвующего прогноза.