ZETTEL 10

FLORIAN LERCH(2404605)/WALDEMAR HAMM(2410010)

Aufgabe 35.

a).
$$\alpha^{\vee}(t) = \{1, 2, 3, 4, 5, 6, 7\} \setminus (\{1\} \setminus \{1, 2, 3, 4, 5\})$$

= $\{0, 1, 2, 3, 4, 5, 6, 7\} \setminus \emptyset = \{1, 2, 3, 4, 5, 6, 7\}$

b).
$$\alpha^{\wedge}(P)$$
 für p_1t ist 1 bzw. wahr da $|\{0,1,2,3,4,5,6,7\}| \leq 100$ $\alpha^{\wedge}(P)$ für \tilde{p}_1t ist 1 bzw. wahr da $|\{0,1,2,3,4,5,6,7\}| = 8$ und 8 ist gerade

c).
$$\alpha^{\wedge}(A)$$
 für $A = \bigwedge_{x_5} p_1 t$ ist wahr

d).
$$\alpha^{\wedge}(B)$$
 für $B = (\bigwedge_{x_5} p_1 t) \wedge (\bigvee_{x_4} \tilde{p}_1 t)$ ist 1 bzw. wahr.

Aufgabe 36.

a).
$$\alpha^{\vee}(t) = 5 * 4^2 * 3^2 = 720$$

b).
$$a^{\wedge}(P) = 1$$
 bzw. wahr da $(2 * 5) < (5 * 4^2 * 3^2) \Leftrightarrow 10 < 720$

c). Sei
$$x_3 = 0 \Rightarrow \alpha^{\wedge}(t) = 0 \Rightarrow$$
 es existiert kein $m \in \mathbb{N}$ so dass gilt: $(2m < 0) \Rightarrow \alpha^{\wedge}(A) = 0$

d). Es gilt die selbe Begründung wie schon in c), also $\alpha^{\wedge}(B) = 0$, da es in jedem Fall ein $x_3 \in \mathbb{N}$ gibt, so dass die Aussage falsch ist.