LISTING OF CLAIMS:

This listing of claims will replace all prior versions of claims in the application:

- 1 1. (currently amended) A method for manufacturing a magnetoresistive sensor 2 comprising: 3 providing a substrate: forming a photoresist mask over a desired sensor area 4 5 depositing a magnetic hard bias material; removing said photoresist mask to form a trench in said layer of magnetic hard 6 7 bias material; depositing a plurality of sensor layers as full film layers such that a portion of the 8 9 sensor layers is deposited into the trench and another portion of the sensor 10 layers is deposited outside the trench; and 11 chemical mechanical polishing sufficiently to remove portions of said sensor 12 layers formed outside said sensor area.
- 1 2. (Original) A method as in claim 1 wherein said plurality of sensor layers includes
- 2 a free layer, said method further comprising:
- 3 before forming said photoresist mask and before depositing said hard bias
- 4 material, depositing a dielectric material of such a thickness that said hard bias
- 5 material will align with said free layer.

- 1 3. (Original) A method as in claim 2 further comprising, after removing said
- 2 photoresist mask, perfoming a material removal process to remove portions of said
- 3 dielectric material not covered by said hard magnetic material.
- 1 4. (Original) A method as in claim 2 further comprising, after removing said
- 2 photoresist mask, performing a reactive ion etch (RIE).
- 1 5. (Original) A method as in claim 2, wherein said dielectric material comprises
- 2 SiO₂.
- 1 6. (Original) A method as in claim 1, wherein said substrate is a magnetic,
- 2 electrically conductive material.
- 1 7. (Original) A method as in claim 1, further comprising, after depositing said hard
- 2 magnetic material, depositing an electrically insulating material.
- 1 8. (Original) A method as in claim 1, further comprising, after removing said
- 2 photoresist mask, depositing a dielectric material, and then performing a reactive ion etch
- 3 to remove horizontally disposed portions of said dielectric material.

- 1 9. (Original) A method as in claim 8 wherein said dielectric material comprises 2 SiO₂. 1 10. (Currently amended) A method of manufacturing a current perpendicular to plane 2 (CPP) magnetoresistive sensor, comprising: 3 forming a first electrode; 4 depositing a first full film layer of electrically insulating material onto said first 5 electrode; 6 forming a photoresist mask over a desired sensor area; 7 depositing an electrically conductive seed layer; 8 electroplating a magnetic, high coercivity hard bias material onto said seed layer 9 laeyr; 10 depositing a second electrically insulating layer; 11 removing said photoresist mask to form a trench in the layer of magnetic material; 12 depositing SiO2, conformally to cover horizontal and non-horizontal surfaces: perform a reactive ion etch (RIE). : 13 14 depositing a plurality of full film sensor layers such that a portion of the sensor layers is deposited into the trench and another portion of the sensor layers is 15 16 deposited outside of the trench; 17 performing a chemical mechanical polishing (CMP) process; and 18 depositing a second electrode__.
- 1 11. (Cancelled)

- 1 12. (currently amended) A method of manufacturing a magnetoresistive sensor, 2 comprising: 3 providing a substrate; 4 forming a photoresist mask in a sensor area, said mask having first and second 5 laterally opposed sides; 6 depositing a magnetic material, at least a portion of said magnetic material 7 defining first and second magnetic layers extending from said laterally opposed 8 sides of said mask; 9 removing said photoresist mask to define a trench between said first and second 10 magnetic layers; and depositing sensor material layers, at least a portion of said sensor material layers being 11 12 deposited in said trench; and A method as in claim 11 further comprising, after depositing said sensor material layers, performing a chemical mechanical 13 14 polishing process to removed portions of said sensor material disposed outside of
- 1 13. (Original) A method as in claim 12 further comprising, after depositing said
 2 magnetic material, depositing a physically hard insulating material layer.

15

said trench.

14. (Original) A method as in claim 13 wherein said physically hard insulating
 material layer is alumina (Al₂O₃).

- 1 15. (Original) A method as in claim 13 wherein said physically hard insulating
- 2 material layer is diamond like carbon (DLC).
- 1 16. (Original) A method as in claim 13, wherein said physically hard insulating
- 2 material layer is SiO₂.
- 1 17. (currently amended) A method for manufacturing a magnetoresistive sensor,
- 2 comprising:
- providing a first electrode having an upper surface;
- 4 depositing a layer first layer of SiO₂ onto said upper surface of said electrode;
- forming a photoresist mask on said first layer of SiO₂;
- 6 depositing an electrically conductive seed layer;
- depositing a high coercivity magnetic material onto said seed layer;
- 8 <u>lifting off the photoresist mask to form a trench in said high coercivity magnetic</u>
- 9 material;
- depositing a physically hard insulating material;
- depositing a second layer of SiO2;
- performing a reactive ion etch process;
- depositing sensor material layers such that a portion of the sensor material layers
- is deposited into the trench and another portion of the sensor material layers is
- deposited outside of the trench;
- perform a chemical mechanical polishing process; and
- depositing an electrically conductive material to form a second electrode.

1.	18.	(Withdrawn) A magnetic head comprising:
2		a first electrode;
3		a magnetoresistive sensor having first and second laterally opposed sides
4		a and formed upon said first electrode'
5		first and second electrically insulating walls formed at said first and second sides
6		of said sensor;
7		first and magnetic hard bias layers extending laterally outward from said first and
8		second walls;
9		first and second physically hard electrically insulating layers formed over said
10		first and second hard bias layers; and
11		a second electrode formed over said sensor and said physically hard electrically
12		insulating layers.
1	19.	(Withdrawn) A magnetic head as in claim 18, wherein said physically hard
2	ele	ctrically insulating layers comprise alumina (Al ₂ O ₃).
1	20.	(Withdrawn) A magnetic data memory system, comprising:
2		magnetic disk;
3		a motor connected with said disk rotating said disk;
4		a slider;
5		an actuator connected with said slider to position said slider adjacent said disk;

6	a magnetic sensor connected with said slider, said sensor comprising:
7	a first electrode;
8	a magnetoresistive sensor having first and second laterally opposed sides
9	a and formed upon said first electrode'
10	first and second electrically insulating walls formed at said first and
11	second sides of said sensor;
12	first and magnetic hard bias layers extending laterally outward from said
13	first and second walls;
14	first and second physically hard electrically insulating layers formed
15	over said first and second hard bias layers; and
16	a second electrode formed over said sensor and said physically hard
17	electrically insulating layers.