パケット分類について

2015 年度 前期輪講
"Survey and Taxonomy of Packet Classification Techniques"
Abstract and Introduction

原田崇司

神奈川大学大学院 理学研究科 情報科学専攻 田中研究室

2015年4月21日

目次

フィルタリング

フィルタリングにおける制約、状況

問題の回避

フィルタリングルール

	Action				
SA	DA	Prot	DP	FlowID	PT
11010010	*	TCP	[3:15]	0	3
10011100	*	*	[1:1]	1	5
101101*	001110*	*	[0 : 15]	2	8†
10011100	01101010	UDP	[5:5]	3	2
*	*	ICMP	[0:15]	4	9†
:	i	i :	÷	:	:
01110010	*	TCP	[3:15]	12	4 [†]
10011100	01101010	TCP	[0:1]	13	3
01110010	*	*	[3:3]	14	3
100111*	011010*	UDP	[1:1]	15	4

フィルタリングの例

SA= 10011100, DA= 01101010, Prot=UDP, DP= 1

	Action				
SA	DA	Prot	DP	FlowID	PT
11010010	*	TCP	[3 : 15]	0	3
10011100	*	*	[1:1]	1	5
101101*	001110*	*	[0:15]	2	8^{\dagger}
10011100	01101010	UDP	[5:5]	3	2
*	*	ICMP	[0 : 15]	4	9†
:	:	:	i i	:	:
01110010	*	TCP	[3:15]	12	4^{\dagger}
10011100	01101010	TCP	[0:1]	13	3
01110010	*	*	[3:3]	14	3
100111*	011010*	UDP	[1:1]	15	4

NonExclusive Filter

NonExclusive Filter

Run-Based Trie の決定木は,NonExclusive Filter に対応しない

テーブル探索の複雑さ

効率的なテーブル探索は難しい問題

▽ ネットワークにおける,パフォーマンスボトルネック

遅延を減らすパケット分類技術が必要

パケットフィルタリング技術

- アルゴリズムによる方法
 - 決定木などのデータ構造を用いる方法
 - * HiCuts
 - * Run-Based Trie
 - * 階層型トライ
 - ルールリスト並び替えによる遅延を減らす方法
 - * Sub-Graph Merging
 - * 昆金法
 - * 竹山法
- アーキテクチャによる方法
 - Ternary Content Addressable Memory

通信速度

フィルタリングにおける制約、状況

現在の通信速度

- UTP ケーブル: 1Gbs(Cat5,6), 10Gbs(Cat6e.7)
- 光ケーブル : 1Pbs (NTT, 北大, その他)

TCPでは、通信路を確保し、確認応答を行う。 (データ受信受信側が、受信した証に送信元ヘサイズが40バイ トのパケットを送る)

例. 10Gb の通信速度をサポートするルータは、ポートごとに $(10^9/(40\times8)=)$ 3.125 × 10^7 pps の処理能力を要求される.

フィルタリングアルゴリズムの性能

ほとんどのアルゴリズムは、平均的には十分なものである.

しかし、病的な場合の探索能力を考えなければならない (一番都合の悪いフィルタ、パケットがくる場合)

• ネットワーク : 最悪の処理能力を保証する

インターネット:処理能力を保証しない,

ベストエフォートサービスを提供

ルータの性能

入出力ポートが同じである充分に長いパケットを考える.

□ バッファが溢れてしまう.

ルータのスイッチング技術は、最悪の状況には対応できない.

フィルタリングルール数

インターネットの爆発的な成長

□ ルール数の増加(エントリ数 2~3k → 10k)

拡張可能性, 10 100k エントリのルールリストを考慮

IP lookupsとIPパケット分類の回避

転送を加速させるために、IP ヘッダの情報を使わない.

ヘッダ情報を使わない?アルゴリズム

- MPLS
- Tag-Switching
- ATM 仮想回線 (ATM Virtual Circuit)

Multi Protocol Label Switching

IP情報回避の問題

確かに、自律システム内では使用していない しかし、境界上のルータは、パケットをラベル付けする (分類する) 必要がある

パケット分類技術は必要且つ重要