CLAIMS:

What is claimed is:

- 1. A communication unit for a multiple code rate communication system comprising:
 - a codeword defining N codeword elements and K information elements coded at a code rate R=K/(N-P), wherein P is a number of punctured elements of the codeword;
 - a first storage location for storing an error reduction code mother code; a second storage location for storing a maximum puncture sequence S_{max} , wherein S_{max} is the puncture sequence for a maximum code rate R_{max} , and further wherein S_{max} comprises a subset S_1 that is a puncture sequence for a minimum code rate R_1 .
- 2. The communication unit of claim 1 wherein the unit is one of a transmitter that outputs the codeword or a receiver that receives the codeword.
- 3. The communication unit of claim 1 wherein $S_{max}=S_{N-K}$.
- 4. The communication unit of claim 1 wherein S_{max} further comprises at least two subsets S_i that is a puncture sequence for a code rate R_i , wherein i is an integer greater than or equal to one and each sequentially higher ith code rate is higher than the sequentially lower ith code rate.
- 5. The communication unit of claim 4 wherein each S_i comprises at least one memory element, and each S_i with at least two memory elements has at least one memory element in common with another S_i and with S_{max} .
- 6. The communication unit of claim 4 wherein $S_1 \subseteq S_2 \subseteq ... \subseteq S_{max-1} \subseteq S_{max}$.
- 7. The communication unit of claim 1 wherein the second storage location comprises a plurality of memory elements for storing S_{max} , each memory element storing a variable degree.

- 8. The communication unit of claim 1 wherein the second storage location comprises a plurality of memory elements for storing S_{max} , each memory element storing a variable node location.
- 9. The communication unit of claim 1 wherein the second storage location comprises a plurality of memory elements for storing S_{max}, each memory element storing one of a variable degree, a check degree, a variable node location, or a check node location.
- 10. The communication unit of claim 1 wherein the error reduction code mother code is a low-density parity-check (LDPC) mother code.
- 11. A transceiver for transmitting and receiving a codeword at any of three coding rates R₁, R₂ and R₃, wherein the codeword defines N codeword elements, K information elements, and P punctured elements, and the coding rates R₁=K/(N-P₁) < R₂=K/(N-P₂) < R₃=K/(N-P₃), comprising:

a transmitter, a receiver, and storage for storing a low-density parity-check (LDPC) mother code;

a plurality of memory elements that in combination store a puncture sequence S_3 that corresponds to R_3 ;

a first set of computer instructions for retrieving a first subset of the plurality of memory elements to yield a puncture sequence S_1 that corresponds to R_1 ; and

a second set of computer instructions for retrieving a second subset of the plurality of memory elements to yield a puncture sequence S_2 that corresponds to R_2 .

- 12. A computer program embodied on a computer readable medium for determining a puncture sequence for a codeword, comprising:
 - a first storage location for storing a low-density parity-check (LDPC) mother code;

a second storage location for storing a plurality of memory elements Mall

that in combination comprise a maximum rate puncture sequence S_{max} that corresponds to a maximum code rate R_{max} ; and

a first set of computer instructions for reading a first subset of memory elements M_{set1} , wherein the number of M_{set1} is less than the number of M_{all} , wherein M_{set1} comprises a puncturing sequence S_1 that corresponds to a code rate $R_1 < R_{max}$.

- 13. The computer program of claim 12 further comprising a second set of computer instructions for reading a second subset of memory elements M_{set2} , wherein the number of M_{set2} is greater than the number of M_{set1} , wherein M_{set2} comprises a puncturing sequence S_2 that corresponds to a code rate $R_2 > R_1$, and further wherein at least one memory element is a memory element of both M_{set1} and M_{set2} .
- 14. A method for determining a puncture sequence for an ensemble of low-density parity-check (LDPC) codes comprising:

selecting at least one design criteria for an ensemble of LDPC codes and a stop criteria;

calculating a mean input LLR values, m_{u_0} , that achieves the design criteria on the ensemble of codes;

selecting a variable degree j within the design criteria for puncturing that requires one of a smallest mean input LLR value or a smallest decoding complexity;

appending the variable degree to the puncturing sequence;

adjusting the puncturing probability for the punctured variable degree, $\pi_{j}^{(0)}$; and

repeating the calculating and subsequent steps until the stop criteria is reached.

15. The method of claim 14 wherein adjusting the puncturing probability for the punctured variable degree, $\pi_j^{(0)}$ includes accounting for a specific code length and a finite number of variable nodes of each variable degree.

- 16. The method of claim 14 wherein the stop criteria comprises a code rate equal to one.
- 17. The method of claim 14 wherein the stop criteria comprises a length of a puncturing sequence that corresponds to a Binary Erasure Channel (BEC) threshold for random errors.
- 18. The method of claim 17 wherein the stop criteria comprises a fraction of punctured variable nodes that reaches or exceeds the BEC threshold.
- 19. The method of claim 14 wherein the at least one design criteria is selected from at least one of the group consisting of: a target bit error rate (BER) within a finite number of iterations; an asymptotic E_b/N_0 threshold; and a number of decoding iterations for a target BER.