See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/279293252

Stabilization of Silicon-Carbon Mixed Oxides

ARTICLE *in* JOURNAL OF THE AMERICAN CHEMICAL SOCIETY · JUNE 2015

Impact Factor: 12.11 · DOI: 10.1021/jacs.5b05202

READS

20

6 AUTHORS, INCLUDING:

Yuzhong Wang University of Georgia

51 PUBLICATIONS **2,117** CITATIONS

SEE PROFILE

Mingwei Chen

19 PUBLICATIONS 119 CITATIONS

SEE PROFILE

Stabilization of Silicon—Carbon Mixed Oxides

Yuzhong Wang, Mingwei Chen, Yaoming Xie, Pingrong Wei, Henry F. Schaefer, III, and Gregory H. Robinson*

Department of Chemistry and the Center for Computational Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States

Supporting Information

ABSTRACT: The first carbene-stabilized silicon—carbon mixed oxide, (SiO₂)₂CO₂ (4), was synthesized by CO₂ oxidation of either carbene-stabilized disilicon, L:Si=Si:L $(L: = :C\{N(2,6-Pr_{2}^{i}C_{6}H_{3})CH\}_{2})$ (1), or carbene-stabilized Si₂O₃ (2) (which can be obtained via N₂O oxidation of 1). The structure and bonding of 4 was probed by both experimental and computational methods.

he chemistry of the two simplest oxides of carbon, carbon monoxide and carbon dioxide, is exceedingly well developed. Considering the pejorative environmental impact of carbon dioxide, a principal hydrocarbon combustion product,² the chemical utilization of CO₂ as a renewable carbon resource is attracting increasing attention.^{3,4} The oligomerization of CO2, a unimolecular gas, to form dimers [1,3-dioxetanedione (Figure 1a) and 1,2-dioxetanedione

Figure 1. Oligomers of CO₂ and SiO₂ (a-e and g), (SiO₂)₂CO₂ (f), and $SiO_2(CO_2)_2$ (h).

(Figure 1c)] and a cyclic trimer [1,3,5-trioxanetrione (Figure 1d)] are energetically costly.⁵ Notably, oligomers of carbon dioxide (a, c, and d in Figure 1) have been proposed as intermediates in the formation of an extended CO₂ solid.^{6,7}

In contrast to molecular CO2, naturally occurring silica (SiO₂) is a network solid wherein each tetrahedrally coordinated silicon atom is bound to four oxygen atoms. Due to highly reactive silicon-oxygen double bonds, as well as low-oxidation state silicon atoms, molecular SiO₂ and other

simple silicon oxides have remained elusive. 9-15 Recently, this laboratory synthesized a carbene-stabilized Si₂O₃ complex [L: $(O)Si(\mu-O)Si(O):L$ (2)] and a carbene-stabilized Si_2O_4 complex [L:(O)Si(μ -O)₂Si(O):L (3)] via N₂O (Scheme 2) and O2 oxidation of the soluble L:Si=Si:L complex (L: = $:C\{N(2,6-Pr_2^iC_6H_3)CH\}_2)$ (1), respectively. ¹⁶ While Si_2O_4 , the dimer of SiO2, was experimentally realized in 3, the cyclic isomer of trimeric SiO₂ (Figure 1e) has only been computationally studied. Significantly, the cyclic isomer of (SiO₂)₃ (Figure 1e) is energetically less favored than the isomer with a double-oxygen bridged structure (Figure 1g).¹⁷

Silicon carbide (SiC), possessing native silicon dioxide (SiO₂), is regarded as a wide-band gap (WBG) semiconductor. 18 However, its utility in electronic devices has been impeded by the poor SiC-SiO₂ interface quality. 19-21 Consequently, investigations of the structural properties of the SiC-SiO₂ interfaces have been increasing. The possibility of the formation of crystalline phases for silicon oxycarbide (i.e., Si₂CO₆) near the SiC-SiO₂ interfaces has been theoretically studied.21 It is noteworthy that the chemical properties of molecular $(SiO_2)_2CO_2$ (Figure 1f) and $SiO_2(CO_2)_2$ (Figure 1h), valence isoelectronic with (CO₂)₃ (Figure 1d) and (SiO₂)₃ (Figure 1e), remain unexplored owing to their high reactivity. Although bulk SiO₂ is quite inert relative to CO₂ under ambient conditions, the pressure-induced reaction between CO2 and silicalite, a microporous SiO2 zeolite, has been observed (at 18-26 GPa), giving a silicon carbonate phase.²² We were curious if molecular silicon oxides would react with gaseous CO2 under ambient conditions, possibly forming a new type of silicon-carbon mixed oxides. Carbene-stabilized silicon oxides (2 and 3)¹⁶ provide a unique platform from which this chemistry may be approached. Herein, we report the molecular structure²³ and computational²³ analysis of carbene-stabilized (SiO₂)₂CO₂ (4), which was synthesized via CO₂ oxidation of either 1 or 2.23 To the best of our knowledge, compound 4 represents the first compound containing a carbon-silicon mixed oxide core, prepared under ambient conditions.

Since the discovery of carbon dioxide oxidation of decamethylsilicocene nearly two decades ago, 24 CO2 has been utilized as an oxidant for various low oxidation state group 14 compounds [i.e., disilenes, 25 coordinated disilyne (5 in Scheme 1),²⁶ amido-digermyne (7 in Scheme 1),²⁷ and silylenes^{28,29}].

This laboratory synthesized the first carbene-stabilized disilicon(0) complex (1 in Scheme 2) 30 and subsequently

Received: May 19, 2015 Published: June 29, 2015

Scheme 1. CO₂ Oxidation of Base-Stabilized Disilyne and Amido-digermyne

Scheme 2. Synthesis of Compound 4

explored its reactivity toward main group (BH₃)³¹ and transition metal (CuCl)³² moieties. Encouraged by our recent synthesis of carbene-stabilized $P_2O_4^{\ 33}$ through O_2 oxidation of carbene-stabilized $P_2^{\ 34}$ we investigated the O_2 and N_2O oxidation of 1.16 Considering its dual reactive sites, the Si=Si double bond and the silicon-based lone pair, 1 was also expected to exhibit unusual reactivity toward CO2. Indeed, in contrast to the CO₂-mediated transformation of disilene to oxadisiletane, 25 reaction of 1 (red color) with CO2 resulted in colorless 4 (49.3% yield), which involved the cleavage of a Si= Si double bond as a result of the insertions of an oxygen atom and a CO₃ unit between two silicon atoms (Scheme 2). In addition to the direct transformation of 1 to 4, we discovered that the CO₂ oxidation of carbene-stabilized Si₂O₃ (2) also afforded 4 (54.2% yield) (Scheme 2) via the insertion of the CO_3 unit into the Si-Si σ -bond in 2. Notably, the CO_2 mediated insertions of oxygen (and CO₃) into the Si-Si and Ge-Ge single bonds have been observed in the synthesis of 6 and 8, respectively (Scheme 1). 26,27 In contrast to 2, reaction of carbene-stabilized Si₂O₄ (3) with CO₂ only resulted in immediate decomposition, giving L:CO2 as the only characterized byproduct. Moreover, reaction of either 1 or 2 with excess CO_2 , or combining 4 with CO_2 only gave the $L:CO_2$ adduct and uncharacterized silicon—carbon-based oxide powder, suggesting the importance of controlling the amount of CO_2 added to the reaction system.

The imidazole ¹H NMR resonance (in C₆D₆) shifts upfield from 1 (6.58 ppm) to 2 (6.30 ppm), 3 (6.32 ppm), 16,30 and then to 4 (6.20 ppm). Meanwhile, the singlet ²⁹Si NMR resonance (in THF-d8) shifts dramatically upfield from 1 (224.5 ppm) to 2 (-49.1 ppm), 3 (-76.3 ppm), ^{16,30} and then to 4 (-91.5 ppm). The -91.5 ppm 29 Si NMR resonance of 4 is comparable to those for 6 $(-100.7 \text{ and } -101.6 \text{ ppm})^{26}$ The carbonyl ¹³C NMR resonance (142.5 ppm, in THF-d₈) of 4 is similar to that for $[(Me_5C_5)_2SiO_2CO]_2$ (143.9 ppm)²⁴ and for 6 (148.8 and 148.9 ppm).²⁶ While the infrared (IR) absorption of the Si=O stretch in 4 (1165 cm⁻¹) is similar to that of the **4-Ph** model (1169 cm⁻¹), the ν (C=O) band is red-shifted from the $(SiO_2)_2CO_2$ model (1911 cm⁻¹) to the 4-Ph model (1806 cm⁻¹), and then to 4 (1751 cm⁻¹).²³ Moreover, the C= O stretching mode (1751 cm⁻¹) of 4 compares well to that for a bridged silicon carbonate species $(1780 \text{ cm}^{-1})^{22}$ and for metal carbonates (1776 and 1781 cm⁻¹) which were formed via CO₂ adsorption on the surfaces of metal oxide catalysts.³⁵

Monomeric $(SiO_2)_2CO_2$ in the gas phase (Figure 2b) is planar with $C_{2\nu}$ symmetry.²³ Due to the coordination of two carbene ligands, however, in the solid state the (SiO₂)₂CO₂ core in 4 adopts C_2 symmetry with the terminal oxygen atom at each silicon atom residing at each side of the almost planar sixmembered Si₂CO₃ ring (Figure 2a). The Si-O_{terminal} bonds in 4 [1.521(4) Å, av], comparing well to those for $(SiO_2)_2CO_2$ (1.512 Å),²³ **2** [1.5347(18) Å], and 3 [1.5260(14) Å],¹⁶ are the shortest among the reported Lewis base stabilized Si=O double bonds [1.526(3)-1.579(3) Å]. ^{28,36,37} The Si-O_{ring} bonds in 4 (1.651 Å, av), similar to that in the $(SiO_2)_2CO_2$ model (1.647 Å, av),²³ are significantly longer than the Si– Oterminal bonds in 4 [1.521(4) Å, av]. The nonbonded siliconsilicon distance in 4 (2.944 Å) is much longer than that in 6 $(2.4151 \text{ Å})^{26}$ and the sum of silicon covalent radii $(2.34 \text{ Å})^{.36}$ While the five-coordinate silicon atoms in 6 adopt a distorted trigonal bipyramidal geometry,²⁶ the four-coordinate silicon atoms in 4 have a distorted tetrahedral geometry. The Si-C bond distances in 4 (1.929 Å, av) correspond to the usual Si-C_{NHC} bond distances. The C=O bond distance in 4 [1.185(5) Å] is similar to that in a bis(silyl) carbonate $[1.198(5) \text{ Å}]^{29}$ and in 6 [1.201(2) Å].26

To further probe the bonding nature of 4, the DFT computation of the geometry and electronic structure of the simplified model 4-Ph [optimized in C_2 symmetry), L: = $:C\{N(C_6H_5)CH\}_2$] was performed using the B3LYP/6-311+G** level of theory. In contrast to the almost planar Si₂CO₃ ring in 4 [O(4)-Si(1)-O(1)-C(55) torsion angle = 2.1°], the Si₂CO₃ ring in 4-Ph is somewhat distorted [O(4)-Si(1)-O(1)-C(55) torsion angle = -28.4°]. This suggests that the planar conformation of the Si₂CO₃ ring in 4 may be ascribed to the steric effect of the carbene ligands and crystal packing effects. The bond distances computed for 4-Ph $[d_{Si-O(ring)} = 1.683 \text{ Å (av)}; d_{Si-O(terminal)} = 1.545 \text{ Å (av)}; d_{Si-C} = 1.953 \text{ Å (av)}]$ are comparable to those of 4 $[d_{Si-O(ring)} = 1.651 \text{ Å (av)}; d_{Si-O(terminal)} = 1.521(4) \text{ Å, (av)}; d_{Si-C} = 1.929 \text{ Å (av)}]$. Natural bond orbital (NBO) analysis shows that the Si-C bonds (Figure 3a) in 4-Ph [Wiberg bond index (WBI) = 0.59].

bonds (Figure 3a) in 4-Ph [Wiberg bond index (WBI) = 0.59], similar to those of 2-Ph and 3-Ph, are strongly polarized (78.7%) toward carbon. For 4-Ph, the Si-O_{terminal} σ -bond

Journal of the American Chemical Society

Figure 2. (a) Molecular structure of 4. Thermal ellipsoids represent 30% probability. Hydrogen atoms omitted for clarity. Selected bond distances (Å) and angles (deg): $Si(1) \cdots Si(2)$ 2.944, Si(1) - O(1) 1.666(4), Si(1) - O(4) 1.629(4), Si(1) - O(5) 1.515(4), Si(1) - C(1) 1.926(5), C(5S) - O(1) 1.329(6), C(5S) - O(2) 1.339(6), C(5S) - O(3) 1.185(5), C(1) - Si(1) - O(1) 101.80(18), C(1) - Si(1) - O(4) 105.2(2), C(1) - Si(1) - O(5) 108.9(2), Si(1) - O(4) - Si(2) 129.11(19). (b) The $(SiO_2)_2CO_2$ model (optimized in $C_{2\nu}$ symmetry). Selected bond distances (Å) and angles (deg): Si(1) - O(1) 1.653, Si(1) - O(4) 1.641, Si(1) - O(5) 1.512, C(1) - O(1) 1.370, C(1) - O(3) 1.178, Si(1) - O(4) - Si(2) 129.4, O(1) - Si(1) - O(4) 103.8, O(4) - Si(1) - O(5) 129.5, O(1) - Si(1) - O(5) 126.7, O(1) - C(1) - O(2) 114.7, O(1) - C(1) - O(3) 122.6.

(Figure 3d, 81.4% toward O and 18.6% toward Si) is less polarized than the Si– $O_{\rm ring}$ σ -bonds [Figure 3b–c, 86.3% toward O (av) and 13.7% toward Si (av)]. This may be due to the fact that the two degenerate lone pair orbitals for each terminal oxygen atom (residing at silicon) in 4-Ph (one of them is shown as Figure 3e) are significantly distorted toward silicon. In addition, the 1.10 Si– $O_{\rm terminal}$ WBI value for 4-Ph, similar to those for 2-Ph (1.05) and 3-Ph (1.11), is approximately double those (0.51 and 0.56) for the Si– $O_{\rm ring}$ bonds in 4-Ph, revealing the modest double bond character of the Si– $O_{\rm terminal}$ bond in 4 (see the resonance structure 4B in Figure 4). Meanwhile, for 4-Ph, each silicon has a +2.19 positive charge, whereas the oxygen atoms in the ring and at the terminals of the silicon atoms have a –0.89 to –1.26 negative charge. In terms of both LMOs and NBO analysis of 4-Ph, the

Figure 3. Selected localized molecular orbitals (LMOs) of **4-Ph.** (a) Si–C σ -bonding orbital; (b and c) Si–O_{ring} σ -bonding orbitals; (d) Si–O_{terminal} σ -bonding orbital; (e and f) lone pair orbitals of O_{terminal}

Figure 4. Resonance contributors of **4.** Zwitterionic **4A** represents the major resonance structure.

zwitterionic resonance structure 4A (Figure 4) may represent the predominate formulation of 4.

As an extension of our recent work on carbene-stabilized Si_2O_3 , Si_2O_4 , and P_2O_4 , 16,33 synthesis of 4, the first carbene-stabilized silicon—carbon mixed oxide, indicates that carbenes may be also employed in stabilizing highly reactive mixed main group oxide clusters.

ASSOCIATED CONTENT

S Supporting Information

Complete ref 23, full details of the syntheses, computations, and X-ray crystal determination, including cif files. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b05202.

AUTHOR INFORMATION

Corresponding Author

*robinson@uga.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the National Science Foundation for support: CHE-1265212 (G.H.R., Y.W.) and CHE-1361178 (H.F.S.).

REFERENCES

- (1) Cotton, F. A.; Wilkinson, G.; Bochmann, M.; Murillo, C. Advanced Inorganic Chemistry, 6th ed.; Wiley: New York, 1998.
- (2) Halmann, M. M.; Steinberg, M. Greenhouse Gas Carbon Dioxide Mitigation: Science and Technology; Lewis Publishers: Boca Raton, FL, 1998.
- (3) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365-2387.
- (4) Darensbourg, D. J. Inorg. Chem. 2010, 49, 10765-10780.
- (5) Lewars, E. THEOCHEM 1996, 363, 1-15.
- (6) Dunlap, B. I.; Schweigert, I. V.; Purdy, A. P.; Snow, A. W.; Hu, A. J. Chem. Phys. **2013**, 138, 134304.
- (7) Iota, V.; Yoo, C. S.; Cynn, H. Science 1999, 283, 1510-1513.
- (8) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, 1997.
- (9) Anderson, J. S.; Ogden, J. S. J. Chem. Phys. 1969, 51, 4189-4196.
- (10) Mehner, T.; Göcke, H. J.; Schunck, S.; Schnöckel, H. Z. Anorg. Allg. Chem. 1990, 580, 121–130.
- (11) Iraqi, M.; Goldberg, N.; Schwarz, H. J. Phys. Chem. 1993, 97, 11371–11372.
- (12) Goldberg, N.; Iraqi, M.; Koch, W.; Schwarz, H. Chem. Phys. Lett. **1994**, 225, 404–409.
- (13) Wang, L.-S.; Wu, H.; Desai, S. R.; Fan, J.; Colson, S. D. J. Phys. Chem. 1996, 100, 8697–8700.
- (14) Wang, L.-S.; Desai, S. R.; Wu, H.; Nichloas, J. B. Z. Phys. D 1997, 40, 36-39.
- (15) Jutzi, P., Schubert, U., Eds. Silicon Chemistry: From the Atom to Extended Systems; Wiley-VCH: Weinheim, 2003.
- (16) Wang, Y.; Chen, M.; Xie, Y.; Wei, P.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. *Nat. Chem.* **2015**, *7*, 509–513.
- (17) Lu, W. C.; Wang, C. Z.; Nguyen, V.; Schmidt, M. W.; Gordon, M. S.; Ho, K. M. J. Phys. Chem. A 2003, 107, 6936–6943.
- (18) Cadady, J. B.; Johnson, R. W. Solid-State Electron. 1996, 39, 1409-1422.
- (19) Di Ventra, M. Appl. Phys. Lett. 2001, 79, 2402-2404.
- (20) Buczko, R.; Pennycook, S. J.; Pantelides, S. T. Phys. Rev. Lett. **2000**, 84, 943–946.
- (21) da Silva, C. R. S.; Justo, J. F.; Pereyra, I. Appl. Phys. Lett. 2004, 84, 4845–4847.
- (22) Santoro, M.; Gorelli, F.; Haines, J.; Cambon, O.; Levelut, C.; Garbarino, G. *Proc. Natl. Acad. Sci. U.S.A.* **2011**, *108*, 7689–7692.
- (23) See the Supporting Information for synthetic, computational, and crystallographic details.
- (24) Jutzi, P.; Eikenberg, D.; Möhrke, A.; Neumann, B.; Stammler, H.-G. Organometallics 1996, 15, 753-759.
- (25) Wiberg, N.; Niedermayer, W.; Polborn, K.; Mayer, P. Chem.— Eur. J. 2002, 8, 2730–2739.
- (26) Gau, D.; Rodriguez, R.; Kato, T.; Saffon-Merceron, N.; de Cozar, A.; Cossio, F. P.; Baceiredo, A. *Angew. Chem., Int. Ed.* **2011**, *50*, 1092–1096.
- (27) Li, J.; Hermann, M.; Frenking, G.; Jones, C. Angew. Chem., Int. Ed. 2012, 51, 8611–8614.
- (28) Yao, S.; Xiong, Y.; Brym, M.; Driess, M. J. Am. Chem. Soc. 2007, 129, 7268–7269
- (29) Liu, X.; Xiao, X.-Q.; Xu, Z.; Yang, X.; Li, Z.; Dong, Z.; Yan, C.; Lai, G.; Kira, M. Organometallics **2014**, 33, 5434–5439.
- (30) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. *Science* **2008**, *321*, 1069–1071.
- (31) Abraham, M. Y.; Wang, Y.; Xie, Y.; Wei, P.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. *J. Am. Chem. Soc.* **2011**, *133*, 8874–8876.
- (32) Chen, M.; Wang, Y.; Xie, Y.; Wei, P.; Gilliard, R. J., Jr.; Schwartz, N. A.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. *Chem.—Eur. J.* **2014**, *20*, 9208–9211.
- (33) Wang, Y.; Xie, Y.; Wei, P.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. *J. Am. Chem. Soc.* **2013**, *135*, 19139–19142.
- (34) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. *J. Am. Chem. Soc.* **2008**, *130*, 14970–14971.

- (35) Philipp, R.; Fujimoto, K. J. Phys. Chem. 1992, 96, 9035-9038.
- (36) Xiong, Y.; Yao, S.; Driess, M. Angew. Chem., Int. Ed. 2013, 52, 4302-4311.
- (37) Filippou, A. C.; Baars, B.; Chernov, O.; Lebedev, Y. N.; Schnakenburg, G. Angew. Chem., Int. Ed. 2014, 53, 565-570.
- (38) Corey, J. Y. In *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport, Z., Eds.; John Wiley & Sons: Chichester, 1989; Vol. 1, chap. 1.