STEEL FOR INDUCTION HARDENING

Publication number: JP4254547

Publication date: 1992-09-09

UNO MITSUO; NAKAZATO FUKUKAZU

Applicant:

SUMITOMO METAL IND

Classification:

- international:

C22C38/00; C22C38/04; C22C38/00; C22C38/04;

(IPC1-7): C22C38/00; C22C38/04

- European:

Application number: JP19910035437 19910205 Priority number(s): JP19910035437 19910205

Report a data error here

Abstract of JP4254547

PURPOSE:To obtain a steel for machine structural use capable of forming 'a surface hardened layer having sufficient hardness and free from dispersion of hardness' only by ordinary induction hardening treatment. CONSTITUTION:The steel for induction hardening is constituted so that it has a chemical composition consisting of 0.30-0.60% C, <=1.00% Si, 0.30-2.00% Mn, 0.040-0.100% S, and the balance Fe with inevitable impurities or further containing, if necessary, one or more kinds among <=3.50% Ni, <=2.00% Cr, <=2.00% MO, <=1.00% Cu, 0.0003-0.0050% B, 0.010-0.100% Al, 0.010-0.100% Ti, 0.010-0.100% Nb, 0.01-0.30% V, 0.0005-0.0100% Ca, and 0.01-0.20% Pb. Moreover, the structure of this steel is regulated to a structure where the average grain size of ferrite is <=20mum.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-254547

(43)公開日 平成4年(1992)9月9日

(51) Int.Cl.⁵

識別記号 庁内整理番号

FΙ

技術表示箇所

C 2 2 C 38/00

38/00 3 0 1 A 7217-4K 38/04

審査請求 未請求 請求項の数2(全 5 頁)

(21)出顧番号

特願平3-35437

(22)出願日

平成3年(1991)2月5日

(71)出願人 000002118

住友金属工業株式会社

大阪府大阪市中央区北浜 4 丁目 5 番33号

(72)発明者 宇野 光男

福岡県北九州市小倉北区許斐町1番地 住

友金属工業株式会社小倉製鉄所内

(72)発明者 中里 福和

福岡県北九州市小倉北区許斐町1番地 住

友金属工業株式会社小倉製鉄所内

(74)代理人 弁理士 今井 毅

(54) 【発明の名称】 高周波焼入れ用鋼

(57) 【要約】

〔目的〕 通常の高周波焼入れ処理のみで"十分な硬さを有する硬度パラツキの無い表面硬化層"が得られる機 被構造用鋼を実現する。

[構成] 高周波焼入れ用鋼を、C:0.30~0.60%, Si:1.00%以下, Mn:0.30~2.00%及びS:0.040~0.100%を含有するか、或いは、必要に応じて更に、Ni:3.50%以下, Cr:2.00%以下, Mo:2.00%以下, Cn:1.00%以下, B:0.0003~0.0050%, Al:0.010~0.100%, Ti:0.010~0.100%, Nb:0.010~0.100%, V:0.01~0.30%, Ca:0.0005~0.0100%, Pb:0.01~0.20%の1種以上をも含むと共に、残部がFe及び不可避的不純物から成る化学成分組成に構成し、かつフェライトの平均粒径が20μm以下である組織に調整する。

1

【特許請求の範囲】

【請求項1】 重量割合にて

Si:1.00%以下。 Mn: $0.30\sim2.00\%$, $C: 0.30 \sim 0.60\%$

S:0.040 ~0.100 %

を含むと共に、残部がFe及び不可避的不純物から成り、 * 徴とする高周波焼入れ用鋼。 かつフェライト平均粒径が20 um以下であることを特* 【請求項2】 重量割合にて

 $C: 0.30 \sim 0.60\%$ Si:1.00%以下, $Mn: 0.30\sim 2.00\%$

S:0.040 ~0.100 %

を含有し、更に

Ni: 3.50%以下,

Cr: 2.00%以下。

Mo: 2.00%以下,

Cu: 1.00%以下.

B: $0.0003\sim0.0050\%$, Al: $0.010\sim0.100\%$,

Ti: 0.010 ~0.100 %, Nb: 0.010 ~0.100 %,

 $V: 0.01 \sim 0.30\%$

Ca: 0.0005~0.0100%, Pb: 0.01~0.20%

の1種以上をも含むと共に、残部がFe及び不可避的不純 物から成り、かつフェライト平均粒径が20 µm以下で あることを特徴とする高周波焼入れ用鋼。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、自動車、建設機械或 いは産業機械に使用されるシャフト、ポルト、歯車等の 如き、高周波焼入れを必要とする部材用として好適な機 20 のような知見を得ることができた。 械構造用鋼(高周波焼入れ鋼)に関するものである。

[0002]

【従来技術とその課題】「高周波焼入れ」は、鋼材の耐 摩耗性や疲労特性の向上を図る目的でその表層部(1~ 3 mm) のみを焼入れする焼入れ方法の1種であるが、処 理時間が非常に短くて作業性が良いことから、広く一般 に適用されている処理の1つである。

【0003】ところが、この高周波焼入れでは、加熱時 間が通常の焼入れ(25mm直径当り30~60分の加 全焼入れ(前組織の残存或いは炭化物の不完全固溶)と なることが多く、硬さの低下や硬度パラツキを生じるこ とがしばしば記きていた。

【0004】そこで、上記不都合を防止するため、最近 では高周波焼入れに先立ち一度通常の焼入れ・焼戻しを 施して合金元素を完全に固溶させると共に、組織を焼戻 マルテンサイト組織にしておく等の対策を採ることが多 41

【0005】しかしながら、高周波焼入れの前に通常の 焼入れ・焼戻しを施すことは作業性の低下と同時にコス 40 されたものであり、「高周波焼入れ用鋼を、 トアップにもつながり、そのためこの前処理(通常の焼※

 $C: 0.30 \sim 0.60\%$

SI:1.00%以下。

Mn: $0.30\sim2.00\%$,

S: 0.040 ~0.100 %

を含有するか、或いは必要に応じて更に

NI: 3.50%以下.

Cr: 2.00%以下。

Mo: 2,00%以下.

Cu:1.00%以下,

B: $0.0003\sim0.0050\%$, Al: $0.010\sim0.100\%$,

Ti: 0.010 ~0.100 %, Nb: 0.010 ~0.100 %, V: 0.01~0.30%,

Ca: $0.0005\sim0.0100\%$, Pb: $0.01\sim0.20\%$

の1種以上をも含むと共に、残部がPe及び不可避的不純

均粒径が20μm以下である組織に調整することによっ 物から成る化学成分組成に構成し、かつフェライトの平 50 て、格別な前処理を要することなく高周波焼入れのみで

※入れ・焼戻し)を省略しても所望性能を安定して確保で きる高周波焼入れ鋼の開発が望まれていた。

[0006]

【課題を解決するための手段】本発明者等は、上述のよ うな観点から、通常の高周波焼入れ処理のみで"十分な 硬さを有する硬度パラツキの無い表面硬化層"が得られ る機械構造用鋼を実現すべく鋭意研究を行った結果、次

【0007】(a) 高周波焼入れによる焼入れ層の硬さ 不足や硬さパラツキの発生は、高周波焼入れ前における 鋼のフェライト粒径と密接な関係がある。(b) そし て、高周波焼入れ前のフェライトの平均粒径を20 um 以下に制御した場合には、通常の高周波焼入れ(加熱温 度:900~1000℃、加熱時間:1~2秒)を単独 で施すだけでもパラツキの無い十分な硬度を有する焼入 れ層を安定して形成できるようになる、(c) ところ で、この種の材料に必要な強度を確保するためCを0.30 熱)に比べ極めて短時間($1\sim2$ 秒)であるが故に不完 30 %以上(以降、成分割合を表わす%は重量%とする)含 有させた鋼では、フェライト粒径を20μm以下に調整 するには鍛造或いは圧延後の冷却速度を60℃/min以上 に制御する必要があって少なからぬ作業上の困難を余儀 無くされる。しかし、鋼中にMn及びSの特定量を複合添 加した場合には、フェライトの析出核としてのMoSが微 細に分散析出されることとなって、鍛造或いは圧延後の 冷却速度が60℃/min未満であってもフェライト粒径を 20μm以下に制御できるようになる。

【0008】本発明は、上記知見事項等を基にして完成

.3

硬度パラツキが極力小さい上に十分な硬さを有する表面 焼入れ層を安定して実現できるようにした点」に大きな 特徴を有している。ここで、「フェライトの粒径」と は、図1に示したような"単独フェライトの粒径"及び "集合フェライトの粒径"の何れをも意味するものであ る。

[0009]

【作用】上述の如く、本発明は鋼のCやSIの含有量を調 整して所望特性の確保を図ったほか、特にMan、Sの添加 量を特定範囲に調整することによりフェライトの析出核 10 となる微細分散細Sを生成させてフェライトを微細析出 させ、これによってフェライト平均粒径を20 μm以下 に制御することで高周波焼入れ後の硬さ低下、硬さパラ ツキを防止した機械構造用鋼に係わるものであるが、以 下、構成化学成分の含有量並びにフェライト平均粒径を 前記の如くに数値限定した理由をその作用と共により詳 細に説明する。

【00010】(A) 化学成分C

Cには何の静的強度及び硬さを向上させる作用がある が、高周波焼入れ用鋼として所定の硬さを得るためには 20 0.30%以上の含有量を確保する必要がある。一方、0.60 %を超えてCを含有させても硬度上昇効果は飽和する。 従って、C含有量は0.30~0.60%と定めた。

[00011] Si

Siは、鯛の脱酸促進剤としての作用のほか、鯛に静的強 度を付与する作用を有する有効な成分であるが、 1.0% を超えて含有させてもその効果が飽和してしまうばかり か、冷間加工性の低下を招くようになる。従って、Siの 添加量は 1.0%以下と定めた。

[00012] Mn

Mnは、Siと同様に銅の脱酸に有効な元素であるが、本発 明の主要な狙いであるMnSを形成しフェライトの微細分 散析出を促してフェライト平均粒径を20μm以下に制 御するためには、所定量のSと共に0.30%以上のMn含有 量を確保する必要がある。一方、2.00%を超えてMnを含 有させると飼の冷間加工性を低下させるようになる。従 って、MI含有量は0.30~2.00%と定めた。

[00013] S

Sは鋼の切削性向上に有効な元素であるが、本発明の主 0μm以下に制御するためには、所定量のMmと共に 0.0 40%以上のS含有量を確保する必要がある。一方、 0.1 00%を超えてSを含有させると鯛の靱性低下を招く。従 って、S含有量は 0.040~ 0.100%と定めた。

[00014]

Ni, Cr, Mo, Cu, B, Al, Ti, Nb, V, Ca及びPb これらの元素は各々鋼の焼入れ性、靱性、強度或いは切 削性を改善する作用を有しているため、必要に応じて1 種又は2種以上が添加・含有せしめられるが、各成分に 関する含有量の限定理由は次の通りである。

[00015]a) Ni

Niは鋼の焼入れ性を改善しかつ靱性を向上させる作用を 有しているが、3.50%を超えて含有させても前配作用に よる効果が飽和して経済性を損なうようになることか ら、Ni添加量は3.50%以下と定めた。

[00016]b) Cr

CrもNiと同様に鋼の焼入れ性改善に有効な元素である が、2.00%を超えて添加してもそれに見合うだけの改善 効果が得られなくなるばかりか、靱性低下を招くように なる。従って、Cr添加量は2.00%以下と定めた。

[00017]c) Mo

Moは焼入れ性向上及び靱性向上に極めて有効な元素であ るが、2.00%を超えて含有させてもその効果が飽和して 経済性を損なうようになることから、Mo添加量は2.00% 以下と定めた。

[00018]d) Cu

Ciは鋼の焼入れ性向上及び静的強度の改善に有効な元素 であるが、1.00%を超えて含有させると熱間加工性の低 下、更には静的強度の低下を招くようになることから、 Cu含有量は1.00%以下と定めた。

[00019]e) B

Bは鋼の焼入れ性を向上させ静的強度を改善するのに有 効な元素であるが、その含有量が0.0003%未満では十分 な効果が得られない。一方、0.0050%を超えてBを含有 させると結晶粒の粗大化を招いて靱性低下を来たすよう になる。従って、B含有量は0.0003~0.0050%と定め た。

[00020]f) Al

Alは鯛の結晶粒を微細化させ、靭性を向上させるのに有 30 効な元素であるが、その効果を十分に発揮させるために は 0.010%以上の添加が必要である。しかし、 0.100% を超えて添加すると逆に結晶粒の粗大化を招いて靱性低 下を来たすようになる。従って、AI含有量は 0.010~ 0.100%と定めた。

[00021]g) Ti

TiもAIと同様に結晶粒を微細化させ靱性を向上させるの に有効な元素であるが、その効果を十分に発揮させるた めには 0.010%以上の添加が必要である。しかし、 0.1 00%を超えて含有させると切削性が低下すると共に結晶 要な狙いである㎞Sを形成してフェライト平均粒径を2 40 粒が逆に粗大化して靱性低下を来たすようになる。従っ て、Ti含有量は 0.010~ 0.100%と定めた。

[00022]b) Nb

NbもAl, Tiと同様に結晶粒を微細化させて靭性を向上さ せるのに有効な元素であるが、その効果を十分に発揮さ せるためには 0.010%以上の添加が必要である。しか し、 0.100%を超えて添加すると切削性の低下を招くよ うになる。従って、Nb含有量は 0.010~ 0.100%と定め た。

[00023]i) V

50 Vは、鋼中で炭窒化物を析出して鋼の高温強度を高める -5

のに有効な元素であるが、その効果を十分に発揮させる ためには0.01%以上の添加が必要である。しかし、0.30 %を超えて添加すると熱間加工性の低下を招くようにな る。従って、V含有量は0.01~0.30%と定めた。

[00024]j) Ca

Caは鋼の切削性を向上させる元素であるが、その効果を十分に発揮させるためには0.0005%以上の添加が必要である。しかし、0.0100%を超えて含有させると鋼の靱性を低下させることから、Ca含有量は0.0005~0.0100%と定めた。

[00025]k) Pb

Pbも餌の切削性を向上させるのに有効な元素であるが、その効果を十分に発揮させるためには0.01%以上の含有量を確保する必要がある。しかし、0.20%を超えて含有させると鯛の靭性を低下させることから、Pb含有量は0.

01~0.20%と定めた。

【00026】(B) フェライト平均粒径フェライト平均粒径 (単独フェライト平均粒径及び集合フェライト平均粒径) が20 μ mよりも大きいと、通常の焼入れ・焼戻し等の前処理を施すことなく高周波焼入れ層の "硬さ低下"や "硬さパラツキの発生"を防止することが困難となる。従って、フェライト平均粒径を20 μ m以下と定めた。

6

[00027] 続いて、本発明の効果を実施例により更 10 に具体的に説明する。

【実施例】表1及び表2に示す各成分組成の網を50kg の大気炉にて溶製した後、それぞれ直径が50mmφと2 5mmφの棒材に鍛伸して供試材とした。

【表1】

R 1																				
ı			在年政分(新産所)															集会787()	T .	
	Ł	C	81	b.	P	\$	Ça	Mi	Cr	ш	1)	Ti	γ	•	В	Ča.	74	PAD び不扱物	デカン (水田)	パラア中国
	1	0.85	0.27	8.72	0.01B	0.066	_	9.87	0.51	0.00	B. 022	-	0.14	0.039	0.0047	_	_	8	16	1.5
	2	0.48	0.61	1.38	0.022	0.00	0.23	1.15	1.83	1.28	0.063	8.081	_	0.098	_		0. 05	8.	12	1.7
	1	0.82	0.23	1.49	0.021	0.085	0.55	<u> -</u>	0.13	1.98	D. ME	8.019	0.09	_	8.0008	_	_	- 15	1.8	1.9
	4	0.39	0.38	0.31	0.015	0.068	_	0.49	0.68	0.74	0.123	1	0.24	0.017	0.0037	8.0035	-	践	15	1.8
	8	0.48	0.72	0.89	0.012	0.064	느	_	0.29	0.41	0.672	B. 089	_	0.025	1	_	0.11	A	13	1.4
ı	8	0.88	0.24	1.53	0.028	0.047	0.98	_	0.24	0.29	0.023	8.011	9.18		0.0005	_	_	B	16	1.5
*	1	0.20	0.41	0.41	0.016	0.050	0.27	_	0.99	1.21	0.634	1	2.29	0.627	_	-	-	甚	17	1.1
,	•	0.26	0.49	9.90	0.025	0.078	<u> </u>	0.19	1.17	-	0.623	9.014	-	0.025	€.0008	_	0.19	*	14	1.5
	9	0.43	Q. B3	1.98	0.013	0.062	0.87	0.5t	0.23	0.37	0.029	D. 024	0.11	0.071	4.8021	9.0008	_	84	11	1.8
~	10	0.36	0.55	8. 45	0.013	0.081	6.83	3.45	0.89	-	0.049	1	8.02	8.030	0.6003	-	_	8	1 3	L.3
_	11	0.58	0.06	1.72	0.0 3	0.067	L	_	1.45	0.46	0.027	-	-	0.011	_	_	-	#	9	Lž
	12	0.37	0.50	0.63	0.018	0.099	8	0.82	0.46	_	0.098	0.037	R.18	8.086	0.0006	-	1	费	12	1.1
	18	0.57	0.21	1.25	0.030	0.649	0.42	0.15	1.98	0.53	0.058	0.051	_	8,023	_	_	_	**	0	1.1
_	14	0.41	0.88	0.B\$	0.016	0.066	0.18	_	ı	_	ı	-	1	1	_	_	-	72	1.2	1.5
	15	0.86	0.24	1.41	0.012	0.075	ı	1.50	1	_	1	-	_	_	_	-	1	3	11	1.1
- 1	16	0.28	0.63	1.72	G. 918	0.008	1	_	1.18	-	1	_	-	_	_	-	1	#	B	1.1
	17	0.49	0.49	0.55	0.628	0.047	_	-	ı	0.45	_	_	_	-	-	-	-	费	2 B	1.6
	18	0.54	0.92	0.95	0.021	0.082	-	-	_	1	0.037	_	_	-	1	1	_	25	1.2	1.5
	19	0.58	0.39	0.63	0.011	0.045	-	1	_	-	-	0.018	-	-	1	1	_	25	17	1.0
	20	8.50	0.03	0.99	0.018	0.967	-	-	_	_	_	-	Q. 128	_	-	-	_	25	14	1.4

【表2】

	2																			
1	1		C. 平 線 分 (設施N)																S-67x3()	
Ŀ	t	U	23	1	P	8	Č.	I II	Ċr	80	'n	71	٧	70.	В	Ca	Pb	AMS不利力	字字型區 (am)	パラツ中室
#	11	1.4	0.π	1.16	0.624	6.85	-	1	-	1	1	1	_	Ć. 028	-		_	*	12	Lì
R	Ħ	8.35	0.31	1.37	0.018	0.075	1	ı	ı	-	1	ı	_	-	0.0021	_	_	*	11	1.3
,	22	0.28	0.19	0.71	0.016	0.962	1	-	ı	1	1	ı	_	-	ı	B. 0018	-	*	16	15
	Ħ	0.29	0.BL	0.86	0.016	0.849	1	ı	_	-	ı	1	_	1	1	_	0.11	5	17	1.8
	8	0.E	0. c	-0.23	0.018	0.960	8.27	-	0.99	1.21	0.034	١	0.28	0.027	-	_	1	#	2.9	4.1
	83	0.80	0.41	0.85	D. 00,7	40.018	0.27	ı	0.98	1.21	0.035	1	8.28	0.025	-	-	ı	ĸ	3 4	5.5
1	ዬ	0.33	0.40	+0.28	0.018	•0.019	9.25	-	0.99	1.26	0.035	1	L.25	8.525	1	_	-	3	39	7.3
ı	8	0.43	0.73	+0.57	5.012	0.64	1	-	0.99	0.41	0.072	12.098	-	4.025	_	_	8.10	3	3.5	3.8
-	82	0.44	0.70	1.20	0.013	-0.019	1	_	0.99	0.43	0.068	0.097	_	0.026	—	_	0.11	. 8	2.7	8.6
_	8	0.44	0.71	+0.37	0.01)	-0.019	-	-	0.98	0,41	0.071	0.098	_	0.023	_	_	9.09	表	3.6	5.8
_	33	6	0.21	+0.29	0.029	0.049	0.43	0.15	1.98	0.53	0.058	0.051	-	0.028	-	_	-	摄	2.1	2.1
_	88	0.67	0.29	0.69	0.030	-0.017	0, 61	4.15	1.58	0.52	0.056	9.049		0.025	—	-	-	#	21	2.1
•	23	0.57	0.29	40.28	0.018	-0.019	0.41	4.14	1.58	0.51	0.057	0.050	_	0.024	-	-	1	*	2 7	8.8
	24	0.46	0.27	0.75	0.026	-0.018	_	-	-	١	0.037	_	-	-	-	_	ı	表	24	2.9
	12	0.55	0.29	0.84	0.618	≈0.£M	1	-	1.15	Q-18	0.031	_	_	_	1	-	1	3	2.0	8.8
	35	0.41	0.25	0.81	0.012	•0.021	_	-	1.11		0.025	_	_	-	-	_	_	Æ	2 7	8.5

(注1) *印は、本典質で製定する条件から外れていることを示す。

(注2) 「発動網54: 「社根銀石」及び「辻松屋路」は、それぞれ「Jis らもらに相当前」。「Jia SCMも85知当前」及び「Jia SCF4もの相当前」である。

【00028】次に、上記各供試材を800~900℃ 20 した。 の温度域に 1.5時間加熱した後に空冷して (50mmφ材 の冷却速度:30~40℃/min,25mmφ材の冷却速 度:60~80℃/min) 焼ならしを行った。そして、そ の後、これら供試材を「直径20mmo×長さ50mm」の 試験片に加工し、周波数:200kHz,加熱温度:95 0℃,移動速度:3mm/sec(加熱から冷却までの時間: 約2秒) の条件で高周波焼入れを実施した。

【00029】次いで、高周波焼入れ後の供試材につき 硬さ測定を行って"硬さパラツキ"を調査し、高周波焼 入れの前に実施された"集合フェライト平均粒径の調査 30 結果"と共に表1、表2に併記した。なお、硬さパラツ キの評価は、図2に示したように、25㎜の鍛伸材(焼 ならし時の冷却速度が速かったためにフェライト粒径が 細かくなっており、そのため硬度パラツキが殆ど無い) の硬さ分布曲線内に滑らかな挿入線を引き、その挿入線 と実際の硬さ分布を示す硬さ分布曲線との差により生じ た面積を求めてパラツキ度を算出する手法によった。そ して、パラツキ度はA= [50mφ材の面積]/[25 mmo材の面積〕なる式で求められる面積比(A)で表わ

【00030】表1, 表2に示される結果らも明らかな ように、本発明鋼は何れも高周波焼入れ後の硬さパラツ キ度は 2.0以下であるのに対し、比較鋼ではパラツキ度 が 2.1~7.1 となって極めて硬さパラツキの大きいこと が分かる。

[00031]

【効果の総括】以上に説明した如く、特に高周波焼入れ 鋼のフェライト粒径を制御するためにMn及びSの適正量 を複合添加する点を重要な骨子とする本発明によれば、 高周波焼入れ硬化層の硬さパラツキを著しく小さくする ことができる上に十分な硬度を安定して確保することも 可能となり、高周波焼入れ前の予備処理としての"焼入 れ・焼戻し処理"を省略できるなど、産業上極めて有用 な効果がもたらされる。

【図面の簡単な説明】

【図1】フェライト粒径の定義を示した説明図である。

【図2】「硬さパラツキ度」を求める手法の説明図であ る。

[図1]

【図2】

