HEXAWARE TRAINING

ASSIGNMENT-1

DATA WAREHOUSE:

A **Data Warehouse** is a centralized repository that stores data collected from multiple sources. It is specifically designed to facilitate querying and analysis, rather than transaction processing. This data is typically structured, historical, and subject-oriented, which helps organizations make informed business decisions.

Data warehouses are optimized for **read-heavy operations**, where the focus is on retrieving large amounts of data efficiently. Unlike operational databases, which handle real-time updates and deletions, data warehouses support complex queries, trend analyses, and business intelligence tasks.

Key characteristics of a data warehouse include:

- Subject-Oriented: Focused on key business subjects like sales, customers, or inventory.
- Integrated: Consolidates data from different sources into a unified format.
- Non-Volatile: Data is stable; it's rarely deleted or updated.
- **Time-Variant:** Stores historical data for analysis over different time periods.

DATA WAREHOUSE ARCHITECTURE:

The architecture of a data warehouse typically includes the following components:

1. Data Sources

Data originates from various **heterogeneous sources**, which may include:

- **Operational Systems:** Such as ERP, CRM, or legacy systems that manage day-to-day transactions.
- **Flat Files:** Including CSV, XML, or spreadsheet files containing semi-structured or unstructured data.

These sources provide the raw data needed for decision-making and analysis.

2. Data Staging Area (ETL / ELT Process)

The data staging area serves as an intermediate zone where data undergoes ETL (Extract, Transform, Load) or ELT (Extract, Load, Transform) processes:

- Extract: Data is gathered from various source systems.
- **Transform:** Data is cleaned, validated, and reformatted to meet warehouse standards.
- Load: The transformed data is loaded into the data warehouse for storage.

This step ensures the consistency, accuracy, and completeness of data before it enters the warehouse.

DATA WAREHOUSE ARCHITECTURE

3. Data Warehouse Storage

Once processed, the data is stored in a **centralized data warehouse**, which consists of three main components:

- **Meta Data:** Describes data definitions, source details, and usage.
- Raw Data: Stores detailed, unprocessed data for backup or auditing.
- **Summary Data:** Pre-aggregated, high-level data for faster querying and reporting.

This layered storage enables both detailed and high-level analysis.

4. Data Marts

Data Marts are specialized repositories derived from the data warehouse. Each data mart is focused on a specific business domain or department, such as:

- Sales
- Marketing
- Engineering

They are optimized for departmental access and improve query performance by narrowing the data scope.

5. Users / Analysts

Different user groups utilize the data for various analytical purposes:

- Analysis: Business analysts explore patterns and metrics.
- Mining: Data scientists use algorithms to extract insights.
- **Reporting:** Executives and managers generate reports for strategic decisions.

These users interact with the system through dashboards, query tools, or business intelligence platforms.

NEED FOR DATA WAREHOUSE:

- **1. Handling Large Volumes of Data**: Traditional databases can only store a limited amount of data (MBs to GBs), whereas a data warehouse is designed to handle much larger datasets (TBs), allowing businesses to store and manage massive amounts of historical data.
- **2. Enhanced Analytics**: Transactional databases are not optimized for analytical purposes. A data warehouse is built specifically for data analysis, enabling businesses to perform complex queries and gain insights from historical data.
- **3.** Centralized Data Storage: A data warehouse acts as a central repository for all organizational data, helping businesses to integrate data from multiple sources and have a unified view of their operations for better decision-making.
- **4. Trend Analysis**: By storing historical data, a data warehouse allows businesses to analyze trends over time, enabling them to make strategic decisions based on past performance and predict future outcomes.
- **5. Support for Business Intelligence**: Data warehouses support business intelligence tools and reporting systems, providing decision-makers with easy access to critical information, which enhances operational efficiency and supports data-driven strategies.

TYPES OF DATA WAREHOUSES:

The different types of Data Warehouses are:

- 1. **Enterprise Data Warehouse (EDW)**: A centralized warehouse that stores data from across the organization for analysis and reporting.
- 2. **Operational Data Store (ODS)**: Stores real-time operational data used for day-to-day operations, not for deep analytics.
- 3. **Data Mart**: A subset of a data warehouse, focusing on a specific business area or department.
- 4. **Cloud Data Warehouse**: A data warehouse hosted in the cloud, offering scalability and flexibility.
- 5. **Big Data Warehouse**: Designed to store vast amounts of unstructured and structured data for big data analysis.
- 6. **Virtual Data Warehouse**: Provides access to data from multiple sources without physically storing it.

- 7. **Hybrid Data Warehouse**: Combines on-premises and cloud-based storage to offer flexibility.
- 8. **Real-time Data Warehouse**: Designed to handle real-time data streaming and analysis for immediate insights.

REAL-TIME APPLICATIONS:

1. Banking

Use Case: Fraud detection, risk management, and customer insights.

- o Consolidates transaction data from ATMs, mobile apps, and branches.
- o Detects unusual patterns in transactions to prevent fraud.
- Assesses credit risk before approving loans.
- o Generates reports for regulatory compliance.

2. E-Commerce

Use Case: Personalized recommendations, order tracking, and logistics.

- o Stores clickstream data to analyze user browsing behavior.
- o Integrates inventory, shipping, and user data to optimize delivery.
- o Powers product recommendations based on past purchases and search history.
- o Enables dynamic pricing based on demand.

3. Healthcare

Use Case: Patient records, treatment history, and diagnostics.

- o Centralizes patient data from labs, diagnostics, and consultations.
- o Tracks treatment effectiveness across time and regions.
- o Supports predictive analytics for early disease detection.
- Assists in operational planning like staff allocation and equipment use.

4. Telecommunications

Use Case: Customer churn prediction, network optimization, and billing.

- o Tracks call records, data usage, and complaint logs.
- o Identifies customers likely to switch providers (churn).
- o Optimizes network usage by analyzing peak traffic zones.
- o Consolidates billing data for accurate invoicing.