Engenharia de Serviços em Rede - TP1 - PL43

Afonso Xavier Cardoso Marques :: PG53601 Pedro Alexandre da Silva Oliveira :: PG55093 Vasco Rafael Barroso Gonçalves Rito :: PG55097

Outubro 2024

Universidade do Minho

Escola de Engenharia

1 Introdução

O presente relatório foi desenvolvido no âmbito da unidade curricular de Engenharia de Serviços em Rede como proposta de resolução ao Trabalho Prático 1. Os leitores encontram no documento as conclusões que o grupo retirou face aos resultados empíricos do trabalho experimental proposto pela equipa docente.

Contents

1	Introdução	2
2	Parte Experimental - Questões e Respostas	4
	2.1 Etapa 1 - Streaming HTTP simples sem adaptação dinâmica de	
	débito	10
	2.2 Etapa 2 - Streaming adaptativo sobre HTTP (MPEG-DASH)	10
	2.3 Etapa 3 - Streaming RTP/RTCP unicast sobre UDP e multicast com anúncios SAP	15
3	Comentários Finais	19
4	Anexos	20
	4.1 Eatapa 1 - Resultados dos streams nos hosts Jasmine, Bela e	
	Monstro	20
	4.2 Eatapa 2 - Resultados dos streams nos hosts Bela e Alladin	20

2 Parte Experimental - Questões e Respostas

Para o trabalho experimental, a equipa docente disponibilizou uma topologia de rede que se baseia em cinco hosts, dois switchs e dois routers.

Os resultados são levados a cabo pela interação entre os 5 hosts: **VStreamer**, **Jasmine**, **Alladin**, **Bela** e **Monstro**.

 ${\bf A}$ baixo colocamos uma figura com a topologia e os destaques supramencionados.

Figure 1: Topologia e os seus destaques

2.1 Etapa 1 - Streaming HTTP simples sem adaptação dinâmica de débito

Questão 1: Capture três pequenas amostras de trágefo no link de saída do servidor, respetivamente com 1 cliente (VLC), com 2 clientes (VLC e Firefox) e com 3 clientes (VLC, Firefox e ffplay). Identifique a taxa em bps necessária (usando o ffmpeg -i videoA.mp4 e/ou o próprio wireshark).

- a): Comente os protocolos utilizados na transferência, bem como a experiência que o utilizador terá caso o link utilizado tenha perdas.
- b): Identifique o número total de fluxos gerados e elabore um gráfico que demonstre a evolução do débito dependendo do número de clientes.
- c): Comente a escalabilidade da solução para 1000 utilizadores, assim como 10000 utilizadores. Crie uma expressão matemática que expresse o débito necessário para que o servidor envie vídeo para N clientes.

Para esta etapa decidimos que os três clientes seriam as máquinas Jasmine com o VLC, a Bela com o Firefox e o Monstro com o ffplay. A taxa em bps esperada para transmitir o video foi de 18 kbps e pode ser consultada através do comando ffmpeg -i video A.mp4, como podemos ver na figura abaixo.

```
| Company | Comp
```

Figure 2: Taxa em bps esperada - 28kbs

Sabemos assim que a taxa apresentada é de 28 kbps, no entanto, ao capturarmos o tráfego no link de saída do servidor com 1 cliente (VLC) podemos observar que a taxa necessária para transmitir o vídeo sobre TCP foi de 149 kbps . Na figura 3, podemos ver a variância da taxa de bps ao longo da captura para apenas um cliente. Nas figuras 5 e 6 podemos ver que a taxa para o tráfego com 2 clientes (VLC e Firefox) e com 3 clientes (VLC, Firefox e ffplay) é 186 e 357 kbps respetivamente.

Figure 3: Variação de bps para o cliente Jasmine

	Percent Packets	Packets	Percent Bytes	Bytes	Bits/s	End Packets	End Bytes	End Bits/s
	100.0	2849	100.0	2005731	157 k	0	0	0
	100.0	2849	2.0	39886	3124	0	0	0
n 6	0.4	10	0.0	400	31	0	0	0
irst	0.4	10	0.0	360	28	10	360	28
n 4	99.4	2833	2.8	56660	4439	0	0	0
Protocol	97.6	2781	95.0	1905969	149 k	2780	1905803	149 k
	0.0	1	0.0	134	10	1	134	10
	1.8	52	0.1	2288	179	52	2288	179
ocol	0.2	6	0.0	168	13	6	168	13
F	n 6 First n 4 of Protocol fer Protocol First	n 6 0.4 First 0.4 n 4 99.4 I Protocol 97.6 er Protocol 0.0 First 1.8	100.0 2849 n 6 0.4 10 First 0.4 10 n 4 99.4 2833 il Protocol 97.6 2781 er Protocol 0.0 1 First 1.8 52	n 6 0.4 10 0.0 First 0.4 10 0.0 First 0.4 10 0.0 First 0.4 10 0.0 First 0.5 2781 55.0 First 0.0 1 0.0 First 1.8 52 0.1	n 6	n 6	100.0 2849 2.0 39886 3124 0 n 6 0.4 10 0.0 400 31 0 First 0.4 10 0.0 360 28 10 n 4 99.4 2833 2.8 56660 483.9 0 n 1 Protocol 97.6 2781 95.0 1905999 349 k 2780 er Protocol 0.0 1 0.0 134 10 1 First 1.8 52 0.1 2288 179 52	100.0 2849 2.0 39886 3124 0 0 n 6 0.4 10 0.0 400 31 0 0 First 0.4 10 0.0 360 28 10 360 n 4 99.4 2833 2.8 56600 4439 0 0 I Protocol 97.6 2781 95.0 1905995 149 kg 2780 1905803 er Protocol 0.0 1 0.0 134 10 1 134 First 1.8 52 0.1 2288 179 52 2288

Figure 4: Protocol Hierarchy do tráfego com V Streamer para um cliente - Jasmine

Protocol 2 clientes *	Percent Packets	Packets	Percent Bytes	Bytes	Bits/s	End Packets	End Bytes	End Bits/s
▼ Frame	100.0	1366	100.0	953147	196 k	0	0	0
▼ Ethernet	100.0	1366	2.0	19124	3939	0	0	0
▼ Internet Protocol Version 6	0.3	4	0.0	160	32	0	0	0
Open Shortest Path First	0.3	4	0.0	144	29	4	144	29
▼ Internet Protocol Version 4	99.3	1356	2.8	27120	5586	0	0	0
 Transmission Control Protocol 					186 k	1334	905030	186 k
Hypertext Transfer Protocol	0.1	2	0.0	457	94	- 2	457	94
Open Shortest Path First	1.5	20	0.1	880	181	20	880	181
Address Resolution Protocol	0.4	6	0.0	168	34	6	168	34

Figure 5: Protocol Hierarchy do tráfego com VStreamer para dois clientes - Jasmine e Bela

Protocol 3 clientes *	Percent Packets	Packets	Percent Bytes	Bytes	Bits/s	End Packets	End Bytes	End Bits/s
▼ Frame	100.0	7622	100.0	5443138	375 k	0	0	0
▼ Ethernet	100.0	7622	2.0	106708	7355	0	0	0
▼ Internet Protocol Version 6	0.1	11	0.0	440	30	0	0	0
Open Shortest Path First	0.1	11	0.0	396	27	11	396	27
▼ Internet Protocol Version 4	99.7	7597	2.8	151940	10 k	0	0	0
 Transmission Control Protocol 	98.9	7538		5180666	357 k	7535	5179979	357 k
Hypertext Transfer Protocol	0.0	3	0.0	591	40	3	591	40
Open Shortest Path First	0.8	59	0.0	2596	178	59	2596	178
Address Resolution Protocol	0.2	14	0.0	392	27	14	392	27

Figure 6: Protocol Hierarchy do tráfego Com VStreamer para três clientes - Jasmine, Bela e Monstro

O aumento na taxa de bits por segundo entre o valor esperado (28 kbps) e o obtido nas três capturas poderá estar relacionado com o facto da transmissão ser feita em TCP, que acaba por adicionar muito overhead a cada pacote transmitido.

Na figura 7 conseguimos ver que a comunicação entre o servidor VStreamer e os três clientes, Jasmine, Bela e Monstro ocorreu maioritariamente em TCP. No que diz respeito ao uso do TCP para streaming de vídeo, este pode ser escolhido pois permite fazer controlo de congestão, através do ajuste da taxa de transmissão de acordo com as condições da rede; faz correção de erros através do envio de ACKs e da retransmissão de pacotes perdidos e garante uma entrega ordenada, evitando dados fora de sequência.

Figure 7: Captura dos pacotes - etapa 1

No entanto, num cenário onde a rede seja fraca e propicia a falhas, a retransmissão de pacotes perdidos pode afetar o desempenho de várias maneiras, tais como:

• Enquanto ocorre o reenvio do pacote perdido, o vídeo pode ficar parado, aguardando a chegada do pacote que falta. Isso introduz atrasos que

podem ser percetíveis como pausas ou buffering no vídeo.

• O controlo de congestionamento pode levar à diminuição da largura de banda disponível para o stream. Como consequência, a qualidade do vídeo pode ser reduzida automaticamente (em streams adaptativos como o Youtube ou Netflix) ou ocorrer uma pausa para permitir o carregamento dos dados, causando uma experiência instável para o utilizador.

Relativamente ao número total de fluxos gerados recorremos ao filtro tcp.stream, que permite identificar as diferentes sessões TCP que ocorrem entre o servidor e os clientes numa rede. Como se trata de um cenário onde temos três clientes a receber um stream de um servidor, a expetativa é que o numero de fluxos TCP a decorrer seja também de três, onde para o primeiro cliente, Jasmine, o fluxo seria o 0, para a Bela o 1 e para o Monstro o 2.

As seguintes capturas demonstram um segmento de cada um dos fluxos individuais.

Figure 8: Fluxo 0 - Jasmine

Figure 9: Fluxo 1 - Bela

Figure 10: Fluxo 2 - Monstro

Figure 11: Fluxo 3 - Não existe fluxo

Para calcular o débito (D), podemos multiplicar a bitrate (b) do vídeo pelo número de clientes que acedem ao stream (N). A bitrate do vídeo foi obtida consultando o fluxo de stream de cada um dos clientes e calculando a média.

```
bps_jasmine = 177 kbps

bps_bela = 143 kbps

bps_monstro = 178 kbps

b = \frac{bps\_jasmine + bps\_bela + bps\_monstro}{3} = 166 kbps
D = b x N = 166 kbps * N
```

O que permite construir o seguinte gráfico, onde fica bastante claro que a largura de banda aumenta linearmente conforme o número de clientes a assistir ao stream.

Por fim, a escalabilidade para 1000 ou 10000 utilizadores, da maneira como está implementado, obrigaria o servidor a enviar uma cópia do vídeo para cada um desses utilizadores, o que iria aumentar linearmente o débito da saída do servidor conforme o número de utilizadores aumentava. Com um número elevado de utilizadores e as ligações serem feitas utilizando o protocolo TCP, o overhead associado ao controlo de congestionamento e correção de erros poderia gerar atrasos significativos na transmissão.

2.2 Etapa 2 - Streaming adaptativo sobre HTTP (MPEG-DASH)

Questão 2: Utilize o wireshark para determinar a largura de banda necessária, em bits por segundo, para que o cliente de streaming consiga receber o vídeo no firefox e qual a pilha protocolar usada neste cenário. Explique como obteve esta informação.

Nesta segunda questão, foi pedido para determinar a largura de banda necessária para que o cliente streaming consiga receber o vídeo no firefox.

Figure 12: Topologia com links limitados a 4600kpbs

Dessa forma, e após limitar os nós de ligação pretendidos, chegou-se à conclusão de que apenas uma largura de banda de $4600~\rm kbps$ conseguia transmitir a resolução de $960x720~\rm consistentemente$, enquanto o manifest especifica que essa resolução só requer $509.1~\rm kbps$.

```
<Representation id="3" mimeType="video/mp4" codecs="avc3.64001f" width="960" height="720" frameRate="11456/384" sar="1:1" startWithSAP="0" bandwidth="509086">
<BaseURL>videoB 960 720 1000k dash.mp4</BaseURL>
-SegmentUIst timescale="11456" duration="5750">
<SegmentUIst timescale="11456" duration="5750">
<SegmentURL mediaRange="297-24931" indexRange="927-970"/>
<SegmentURL mediaRange="24932-48807" indexRange="24932-24975"/>
<SegmentURL mediaRange="48808-73448" indexRange="24932-24975"/>
<SegmentURL mediaRange="3489-132819" indexRange="3449-73492"/>
<SegmentURL mediaRange="133280-153706" indexRange="3490-132863"/>
<SegmentURL mediaRange="133707-183534" indexRange="183535-183578"/>
<SegmentURL mediaRange="183535-255704" indexRange="183535-183578"/>
<SegmentURL mediaRange="255705-279255" indexRange="255705-255748"/>
<SegmentURL mediaRange="279256-301153" indexRange="279256-279299"/>
<SegmentURL mediaRange="379256-301153" indexRange="301154-301197"/>
<SegmentURL mediaRange="301154-302891" indexRange="301154-301
```

Figure 13: Largura necessária descrita no video_manifest.mpd

Com isso, e comparando com o manifest, conseguimos notar que há algumas possíveis causas para o sucedido, tais como:

- Oscilações de rede, como o vídeo é muito pequeno, qualquer oscilação na largura de banda pode causar o reprodutor a optar por uma qualidade inferior, o que pode explicar por que apenas uma largura de banda tão alta como 4600 kbps consegue garantir a qualidade máxima de forma consistente.
- Buffering, o atributo minBufferTime="PT1.500S" sugere que o reprodutor precisa de acumular pelo menos 1.5 segundos de vídeo antes de começar a reproduzir. Se o sistema tiver dificuldades em manter esse buffer com menos largura de banda, ele pode estar a alternar para uma qualidade inferior para evitar pausas na reprodução.

```
-<MPD minBufferTime="PT1.500S" type="static" mediaPresentationDuration="PT0H0M4.760S"
-<ProgramInformation moreInformationURL="http://gpac.sourceforge.net">
<Title>video manifest.mpd generated by GPAC</Title>
```

• Overhead protocolar, a largura de banda total usada durante a transmissão será maior devido ao overhead dos protocolos de transporte (como TCP ou HTTP).

Ao utilizarmos o Streaming adaptativo sobre HTTP (MPEG-DASH), teremos várias versões do vídeo com diferentes bitrates. Estes vídeos estão divididos em vários segmentos, o que pode ser visto no ficheiro de manifesto. Periodicamente o cliente vai verificando a largura de banda. através de pedidos HTTP ao servidor. A pilha protocolar corresponde à camada da aplicação por HTTP.

Figure 14: Captura pacotes HTTP

Para sabermos qual a pilha protocolar usada basta observar um dos pacotes HTTP enviados, onde estão presentes os protocolos Ethernet (dados), IPv4 (rede), TCP (transporte) e HTTP (aplicação).

Questão 3: Compare a largura de banda medida na questão anterior com a que é disponibilizada pelo ffplay. Qual é a razão para a diferença entre as duas?

De forma a fazer a comparação, recorremos à ferramenta ffplay no vídeo de mais alta resolução, videoB_960_720_1000k.mp4, onde obtivemos o valor de 502 kbps para a largura de banda.

```
coreeBela:-/Desktop/ESR-2425/TP15 ffplay video8 960 720 1000k.mp4
ffplay version 4.2.7-0ubuntu0 1 copyright (c) 2003-2022 the Ffmpeg developers
built with gcc 9 (Ubuntu0 4.6-lubuntu1-20 04.1)
configuration: --prefixe/usr --extra-version-redubuntu0 1. --toolchain-hardened --libdir=/usr/lib/x86 64-linux-gnu --incdir=/usr/incl
tripping --enable-avresample --disable-filter=resample --enable-avisynth --enable-gnutls --enable-ladspa --enable-libom --enable-lib
reduced --enable-libchdo --enable-libsh --enable-libfilter-enable-libfilter-enable-libfreetyne --enable-libfreetyne --enable-libsh --enable-libworish --enable-libvorish --enable-libvorish
```

Figure 15: Informações obtidas com ffplay

O valor da largura de banda medido na questão anterior é superior, isto devese ao facto do wireshark não medir apenas o payload mas também o overhead de cada camada de rede e devido também aos motivos explicados na questão anterior. Enquanto o fiplay mede somente o bitrate do vídeo sem qualquer tipo de overhead dos protocolos.

Questão 4: Ajuste o débito dos links da topologia de modo que o cliente no portátil Bela exiba o vídeo de menor resolução e o cliente no portátil Alladin exiba o vídeo com mais resolução. Mostre evidências e justifique a largura de banda necessária para que o stream de vídeo sofra alterações.

De maneira a sabermos a que largura de banda deveríamos de restringir o portátil da Bela de forma a que ela exiba o vídeo de maior resolução é analisarmos o ficheiro de manifesto, não é necessário aplicar nenhuma restrição ao Alladin pois como foi visto na alínea anterior ele exibe o vídeo de maior resolução.

Figure 16: Manifest vídeo menor resolução

A largura de banda necessária pra o vídeo de menor resolução é 107715 bps e para o de resolução intermédia é 280940 bps o que significa que temos de limitar o link ao portátil da Bela entre estes dois valores.

Como pode ser visto na foto abaixo limitamos o link entre o Switch 1 e o router 1 a 157.72 kpbs.

Figure 17: Topologia com limitação

No.	Time	Source	Destination	Protocol	Length Info		E
1401	160 26.166607836	10.0.0.10	10.0.2.20	HTTP	741 HTTP/1.1 404 Not Found (text/html)		ı
	166 26.323202058	10.0.2.20	10.0.0.10	HTTP	476 GET /video_manifest.mpd HTTP/1.1		ı
	168 26.323336978	10.0.0.10	10.0.2.20	HTTP	273 HTTP/1.1 304 Not Modified		ı
	293 30.053643343	10.0.2.20	10.0.0.10	HTTP	419 GET /video manifest init.mp4 HTTP/1.1		ı
	295 30.053941866	10.0.0.10	10.0.2.20	HTTP	257 HTTP/1.1 304 Not Modified		ı
	610 38.774871584	10.0.2.20	10.0.0.10	HTTP	399 GET /videoB 960 720 1000k dash.mp4 HTTP/1.1		ı
	1390 69.533259761	10.0.2.20	10.0.0.10	HTTP	399 GET /videoB 960 720 1000k dash.mp4 HTTP/1.1		Г
	1446 70.494757487	10.0.2.20	10.0.0.10	HTTP	398 GET /videoB_720_540_500k_dash.mp4 HTTP/1.1		
	1652 77.684814618	10.0.0.10	10.0.2.20	MP4	903	1	
	1693 80.975568619	10.0.2.20	10.0.0.10	HTTP	399 GET /videoB_300_226_200k_dash.mp4 HTTP/1.1		
	1757 82.316986486	10.0.0.10	10.0.2.20	MP4	646	_	1
	1791 84.441063453	10.0.2.20	10.0.0.10	HTTP	400 GET /v1deoB_300_226_200k_dash.mp4 HTTP/1.1		
	1855 85.750057502	10.0.0.10	10.0.2.20	MP4	646		
	1890 87.863744672	10.0.2.20	10.0.0.10	HTTP	400 GET /videoB_300_226_200k_dash.mp4 HTTP/1.1		
	1954 89.213516207	10.0.0.10	10.0.2.20	MP4	646		
	1995 91.286555700	10.0.2.20	10.0.0.10	HTTP	400 GET /videoB_300_226_200k_dash.mp4 HTTP/1.1		
	2062 92.657518395	10.0.0.10	10.0.2.20	MP4	646		ŀ

Figure 18: Captura de pacotes relativos ao cliente Bela

Na captura podemos ver o portátil da Bela a fazer dois pedidos GET do vídeo de maior resolução, as quais não recebeu nenhuma resposta com o chunck de vídeo, depois fez um GET do vídeo de resolução intermédia mas os restantes foram todos GET do vídeo de menor resolução pois era o único que a sua ligação permitia receber a transmissão haver interrupções.

Figure 19: Captura de pacotes relativos ao cliente Alladin

Na imagem acima podemos ver que o portátil do Alladin apresentou sempre o vídeo de maior resolução pois não tinha nenhuma limitação na ligação.

Questão 5: Descreva o funcionamento do DASH neste caso concreto, referindo o papel do ficheiro MPD criado e comparando o modelo de streaming com o que foi utilizado na Questão 1.

Como foi anteriormente referido o DASH (Dynamic Adaptative Streaming over HTTP) consiste na representação de diferentes versões de bitrate de um ficheiro de multimédia. Cada uma dessas representações está dividida em diferentes segmentos/chunks de vídeo. Toda essa informação encontra-se armazenada num ficheiro de manifesto que fornece os URL's para chuncks diferentes. Assim, inicialmente, os clientes fazem o pedido ao servidor desse ficheiro de manifesto e, periodicamente, avaliam a largura de banda disponível. Deste modo, o cliente irá solicitando ao servidor o chunck que tenha um bitrate máximo para as condições de rede disponíveis do seu lado. Logo, a qualquer momento a representação do vídeo que o cliente recebe poderá mudar, pelo que a qualidade do vídeo irá se ajustar/adaptar em conformidade com a largura de banda no momento.

O modelo de streaming utilizado na questão 1 é o Streaming HTTP Simples (Sem Adaptação Dinâmica de Débito). Conforme foi dito acima, no DASH, o conteúdo é segmentado em pequenos pedaços e codificado em vários bitrates, sendo a qualidade do vídeo ajustada automaticamente conforme as condições de rede do cliente, enquanto no Streaming HTTP Simples o conteúdo é transmitido num único bitrate independentemente das condições da rede. O DASH oferece uma experiência ao cliente mais suave, minimizando o buffering em redes mais lentas, por outro lado o Streaming de HTTP Simples é mais simples de implementar.

2.3 Etapa 3 - Streaming RTP/RTCP unicast sobre UDP e multicast com anúncios SAP

Questão 6: Compare o cenário unicast aplicado com o cenário multicast. Mostre vantagens e desvantagens na solução multicast ao nível da rede, no que diz respeito a escalabilidade (aumento do n^0 de clientes) e tráfego na rede. Tire as suas conclusões também para os cenários de 1000 e 10000 clientes.

Nesta etapa, foram avaliados diferentes cenários de rede, considerando a transmissão de dados por unicast e multicast. Unicast é um método de endereçamento de pacotes que se destina a um único destinatário, sendo que a entrega é direcionada de forma simples, ou seja, ponto-a-ponto. Já o multicast envia dados para um grupo de destinatários, reduzindo assim a sobrecarga de tráfego na rede.

No nível de rede, o unicast acaba por ser um tipo de transmissão mais desvantajosa, uma vez que, caso seja necessário transmitir para mais do que um destino, haverá a necessidade de existirem N fluxos, uma vez que a ligação é de um para um, ao contrário do multicast que apenas envia uma vez os dados e, posteriormente, os switches e routers replicam para os vários destinatários. Podemos comprovar estes factos, com a observação das seguintes capturas do wireshark em cenários de unicast e multicast.

			[Q ← → 3 ←	≯						
A	Apply a display filter <ctrl-></ctrl->									
No.	Time	Source	Destination	Protocol	Length Info					
_	1 0.000000000	10.0.0.10	10.0.2.21	UDP	355 44592 → 6666 Len=313					
	2 0.048449856	10.0.0.10	10.0.2.21	UDP	1414 44592 → 6666 Len=1372					
	3 0.104205622	10.0.0.10	10.0.2.21	UDP	681 44592 → 6666 Len=639					
	4 0.148476855	10.0.0.10	10.0.2.21	UDP	818 44592 → 6666 Len=776					
	5 0.203322665	10.0.0.10	10.0.2.21	UDP	982 44592 → 6666 Len=940					
	6 0.244723585	10.0.0.10	10.0.2.21	UDP	1107 44592 → 6666 Len=1065					
	7 0.297604474	10.0.0.10	10.0.2.21	UDP	972 44592 → 6666 Len=930					
	8 0.353235834	10.0.0.10	10.0.2.21	UDP	1106 44592 → 6666 Len=1064					
	9 0.396064294	10.0.0.10	10.0.2.21	UDP	806 44592 → 6666 Len=764					
	10 0.447926757	10.0.0.10	10.0.2.21	UDP	534 44592 → 6666 Len=492					
	11 0.500698502	10.0.0.10	10.0.2.21	UDP	1514 44592 → 6666 Len=1472					
	12 0.500740839	10.0.0.10	10.0.2.21	UDP	1514 44592 → 6666 Len=1472					
	13 0.500753988	10.0.0.10	10.0.2.21	UDP	1514 44592 → 6666 Len=1472					
	14 0.500764874	10.0.0.10	10.0.2.21	UDP	1514 44592 → 6666 Len=1472					
	15 0.500775498	10.0.0.10	10.0.2.21	UDP	1514 44592 → 6666 Len=1472					
	16 0.500786121	10.0.0.10	10.0.2.21	UDP	1248 44592 → 6666 Len=1206					
	17 0.553643257	10.0.0.10	10.0.2.21	UDP	669 44592 → 6666 Len=627					
	18 0.595890673	10.0.0.10	10.0.2.21	UDP	912 44592 → 6666 Len=870					
	19 0.648109568	10.0.0.10	10.0.2.21	UDP	649 44592 → 6666 Len=607					
	20 0.700141668	10.0.0.10	10.0.2.21	UDP	1131 44592 → 6666 Len=1089					
	21 0.753023904	10.0.0.10	10.0.2.21	UDP	987 44592 → 6666 Len=945					
	22 0.804123368	10.0.0.10	10.0.2.21	UDP	745 44592 → 6666 Len=703					
	23 0.848594011	10.0.0.10	10.0.2.21	UDP	573 44592 → 6666 Len=531					
	24 0.903709543	10.0.0.10	10.0.2.21	UDP	726 44592 → 6666 Len=684					

Figure 20: Captura unicast

No cenário em unicast o vídeo é enviado diretamente do VStreamer para o Monstro, esta transmissão é feita sobre UDP (connectionless). Em ambos os cenários de transmissão é da responsabilidade da camada de aplicação fazer o controle de fluxos, de erros e de congestionamento

Figure 21: Captura multicast

Por outro lado, no cenário com multicast, este apenas envia para um grupo multicast (neste caso o 224.0.0.224 porta 6666) em UDP, onde qualquer host consegue aceder desde que se encontre à escuta para este grupo.

Para comparar ambos os cenários no que diz respeito aos débitos de transmissões efetuadas, observamos que os dados enviados em unicast foram chegando a uma taxa de 211 kbps enquanto que em multicast o valor foi de 210 kbps

Figure 22: Taxa de transmissão em unicast

Figure 23: Taxa de transmissão em multicast

Relativamente ao unicast, este é mais fácil de implementar, no entanto existe um desperdício de largura de banda.

No que diz respeito ao multicast, uma grande vantagem é a sua escalabilidade, uma vez que é bem mais eficiente quando existem vários clientes na rede e à

medida que o número destes aumenta a sobrecarga na rede permanece relativamente constante. Esta vantagem está diretamente relacionada com um melhor tráfego na rede, economizando banda larga.

Embora existam grandes vantagens no serviço multicast, há também algumas desvantagens. Uma delas é a complexidade de roteamento que pode ser mais difícil de gerir e manter. Há também dispositivos de rede que não possuem suporte completo para multicast, o que pode limitar a implementação em certos cenários. A eficiência do multicast é alcançada através da redução da flexibilidade, sendo que a capacidade de negociar parâmetros de transmissão e utilização com o emissor é limitada ou ausente.

Em jeito de conclusão, a escolha de um ou outro, acaba por depender do número de clientes e das necessidades do sistema. Por exemplo, num sistema com 1000 ou 10000 clientes, a escolha mais acertada e menos taxadora seria o multicast.

3 Comentários Finais

Em modo de conclusão, neste trabalho prático aprofundámos o nosso conhecimento relativamente aos vários protocolos de *streaming* de dados. Deste modo, foi possível analisar o HTTP estático e o funcionamento do DASH, ambos sobre protocolo TCP. Também foi possível comparar os cenários de unicast e multicast e concluir que no geral o mais benéfico será o multicast.

4 Anexos

4.1 Eatapa 1 - Resultados dos streams nos hosts Jasmine, Bela e Monstro

Figure 24: Resultado nos três hosts

4.2 Eatapa 2 - Resultados dos streams nos hosts Bela e Alladin

Figure 25: Resultado no host "Bela"

Figure 26: Resultado no host "Alladin"