Adaptive MCMC algorithm with normal proposal and vanishing adaptation

1: Set starting values X_0 , μ_0 , Σ_0 , λ_0 , α^* , δ ($\delta > 0$), and draws T.

2: Set t = 0 and repeat steps 3-10 while t < T:

3: Draw a candidate $Y_t \sim MVN(X_t, \lambda_t \Sigma_t)$.

4: Compute $\alpha(Y_t, X_t) = \min \left\{ \frac{\pi(Y_t)}{\pi(X_t)}, 1 \right\}$.

5: Set $X_{t+1} = Y_t$ with prob. $\alpha(Y_t, X_t)$, $X_{t+1} = X_t$ otherwise.

6: Compute weighting parameter $\gamma_t = \frac{1}{(1+t)^{\delta}}$.

7: Update $\lambda_{t+1} = \exp \{ \gamma_t (\alpha(Y_t, X_t) - \alpha^*) \} \lambda_t$.

8: Update $\mu_{t+1} = \mu_t + \gamma_t (X_{t+1} - \mu_t)$.

9: Update $\Sigma_{t+1} = \Sigma_t + \gamma_t \{ (X_{t+1} - \mu_t) (X_{t+1} - \mu_t)' - \Sigma_t \}$.

10: Increment t. Output: The sequence $(X_t)_{t=1}^T$.