Rio, 08/07/2025

Relatório Machine Learning

Alunos:

Brenno Cezário de Oliveira Pereira

Paulo José Gomes de Almeida

1- Descrição do Problema

Os dados vêm por meio de uma planilha .csv, contendo dados de diversas

amostras de vinhos, branco ou vermelho.

Por meio de técnicas de treinamento de dados, o objetivo é conseguir

prever a Qualidade, que é nosso alvo (target), de um vinho.

2- Justificativa e Descrição da Ferramenta Escolhida

Escolhemos a linguagem de programação Python por termos certa

familiaridade por conta de outros trabalhos, e foi utilizado as bibliotecas

scikit-learn, PyTorch, NumPy, Pandas, Matplotlib, Seaborn e skorch.

Usos de cada biblioteca no projeto:

torch - deep learning, numpy - operações numéricas, pandas - ler csv,

matplotlib e seaborn - criar gráficos, skorch - GridSearchCV.

Os parâmetros utilizados para projeto foram:

Divisão dos Dados: Treino (75%) e Teste (25%)

Nós da camada oculta: 512

Número de Épocas de treino: 150

Taxa de Aprendizagem: 0.001

Função de Perda: Entropia cruzada

Otimizador: Adam

3- Descrição do Dataset Escolhido

São duas planilhas, um de vinho branco e um de vinho vermelho.

Fonte: Wine Quality UCI Machine Learning

Segue as 5 primeiras linhas da planilha de vinho vermelho:

	Acidez fixa	Acidez volátil	Ácido cítrico	Açúcar residual	Cloretos	 Densidade	pН	Sulfatos	Álcool	Qualidade
0	7.4	0.70	0.00	1.9	0.076	 0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	 0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	 0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	 0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	0.9978	3.51	0.56	9.4	5

Acidez fixa Acidez volátil Ácido cítrico Açúcar residual Cloretos ...

Densidade		pH Sulfatos	Alcool Qua			
0	7.4	0.70	0.00	1.9	0.076	0.9978 3.51
0.56	9.4	5				
1	7.8	0.88	0.00	2.6	0.098	0.9968 3.20
0.68	9.8	5				
2	7.8	0.76	0.04	2.3	0.092	0.9970 3.26
0.65	9.8	5				
3	11.2	0.28	0.56	1.9	0.075	0.9980 3.16
0.58	9.8	6				
4	7.4	0.70	0.00	1.9	0.076	0.9978 3.51
0.56	9.4	5				

Legenda de qualidade do vinho:

3 e 4 = Ruim

5 e 6 = Médio

7 e 8 = Bom

9 e 10 = Excelente

São 1600 amostras para cada tipo de vinho, com as seguintes características (colunas):

Acidez fixa, Acidez volátil, Ácido cítrico, Açúcar residual, Cloretos, Dióxido de enxofre livre, Dióxido de enxofre total, Densidade, pH, Sulfatos, Álcool e Qualidade.

É removido do eixo X o atributo de qualidade e colocado em Y. Qualidade é o nosso alvo, target, e o atributo alvo fica em Y. Se deixássemos em X, por exemplo, os dados seriam treinados junto com a qualidade, meio que "trapaceando" nos testes.

As amostras não são balanceadas, então temos muito mais vinhos de qualidade normal do que excelentes ou ruins, dificultando o treino.

Segue diversos gráficos que descrevem o Dataset:

4- Apresentação dos resultados

Sem Agrupamento

Com Agrupamento

5- Discussão dos resultados

Ao terminar de desenvolver o projeto, verificamos uma baixa acurácia e um dos fatores se deve à grande quantidade de amostras desbalanceadas.

Utilizando a técnica de agrupamento (clustering) conseguimos aumentar consideravelmente a acurácia, indo de ≈60% à ≈80%.

Testando o modelo com um vinho de teste com os atributos, o observamos como tendo qualidade 5 (Médio):

AF AV AC AR Clo DEL DET Den pH Sulf Alc 6.3,0.45,0.1,1.2,0.03335,15.5,21.0,0.9946,3.39,0.47,10.0

AF AV AC AR Clo DEL DET Den pH Sulf Alc

6.3, 0.45, 0.1, 1.2, 0.03335, 15.5, 21.0, 0.9946, 3.39, 0.47, 10.0

Legenda siglas:

AF - Acidez fixa

AV - Acidez volátil

AC - Ácido cítrico

AR - Açúcar residual

Clo - Cloretos

DEL - Dióxido de enxofre livre

DET - Dióxido de enxofre total

Den - Densidade

Sulf - Sulfatos

Alc - Álcool