Localizing Changes in High-Dimensional Regression Models

Alessandro Rinaldo, Daren Wang, Qin Wen, Rebecca Willett, and Yi Yu

Introduction

We observe (y_t, x_t) for t = 1, ..., T, where $y_t = x_t \beta_t^* + \epsilon_t$. The β s are piecewise constant over t, and we want to find the times where the β s change.

Problem Formulation

- Model: $y_t = x_t^{\top} \beta_t^* + \varepsilon_t$, $t = 1, \ldots, n$, where $\{(x_t, y_t)\}_{t=1}^n \subset \mathbb{R}^p \times \mathbb{R}$. $\{\varepsilon_t\}_{t=1}^n \sim \text{sub Gaussian}(\sigma_{\varepsilon}^2)$. $\exists \ 1 = \eta_0 < \eta_1 < \ldots < \eta_{K+1} = n+1 \text{ such that } \beta_t^* \neq \beta_{t-1}^*$, if and only if $t \in \{\eta_k\}_{k=1}^K$.
- Goal: Consistent estimators $\{\hat{\eta}_k\}_{k=1}^{\widehat{K}}$, s.t. as the sample size $n\to\infty$, it holds with probability \to 1 that

$$\widehat{\mathbf{K}} = \mathbf{K}$$
 and $\epsilon = \max_{k=1,...,K} |\widehat{\eta}_{\mathbf{k}} - \eta_{\mathbf{k}}| = \mathrm{o}(\Delta),$

where $\Delta = \min_{k=1,...,K+1} \eta_k - \eta_{k-1}$.

Dynamic Programming Approach

Let \mathcal{P} be an integer interval partition of $\{1,\ldots,n\}$ into $K_{\mathcal{P}}$ intervals, For a positive tuning parameter $\gamma>0$, let

$$\widehat{\mathcal{P}} \in \underset{\mathcal{P}}{\operatorname{arg\,min}} \left\{ \sum_{I \in \mathcal{P}} \sum_{t \in I} (y_t - x_t^{\top} \widehat{\beta}_I^{\lambda})^2 + \gamma |\mathcal{P}| \right\}, \tag{1}$$

where for another tuning parameter $\lambda \geq 0$,

$$\widehat{\beta}_I^{\lambda} = \arg\min_{v \in \mathbb{R}^p} \left\{ \sum_{t \in I} (y_t - x_t^{\top} v)^2 + \lambda \sqrt{\max\{|I|, \log(n \vee p)\}} \|v\|_1 \right\}$$
(2)

In Theorem 1 and Corollary 2, we assume that

- Sparsity. d_0 = the number of nonzero elements in β_t .
- $\Delta \kappa^2 \gtrsim d_0^2 K \sigma_{\varepsilon}^2 \log^{1+\xi}(n \vee p)$, where $\xi > 0$, $\kappa = \min_{k=1,...,K+1} \|\beta_{\eta_k}^* \beta_{\eta_{k-1}}^*\|_2$.

Theorem 1: Let $\{\widetilde{\eta}_k\}_{k=1}^{\widehat{K}}$ be the solution to (1) and (2) with $\lambda = \mathcal{O}\left(\sqrt{d_0\log(n\vee p)}\right)$, $\gamma = \mathcal{O}\left((K+1)d_0^2\log(n\vee p)\right)$, then

$$\mathbb{P}\left\{\widehat{K} = K, \max_{k=1,\dots,K} |\widetilde{\eta}_k - \eta_k| = \mathcal{O}\left(\frac{\mathbf{Kd_0^2}\log(n \vee p)}{\kappa^2}\right)\right\} \ge 1 - C(n \vee p)^{-c},$$

The localization error converges to zero in probability since

$$\max_{k=1,\dots,K} \frac{|\hat{\eta}_k - \eta_k|}{\Delta} = \mathcal{O}\left(\frac{Kd_0^2 \log(n \vee p)}{\kappa^2 \Delta}\right) = \mathcal{O}\left(1/\log^{\xi}(n \vee p)\right) \to 0.$$

Local Refinement

The localization error of the previous method can be improved using a second, more refined estimator.

Algorithm 1 Local Refinement

- 1: INPUT: Data $\{(x_t,y_t)\}_{t=1}^n$, $\{\widetilde{\eta}_k\}_{k=1}^{\widetilde{K}}$, $\zeta>0$, $(\widetilde{\eta}_0,\widetilde{\eta}_{\widetilde{K}+1})\leftarrow(0,n)$
- 2: for $k=1,\ldots,\widetilde{K}$ do
- $\mathbf{3}:\ (s_k,e_k) \leftarrow (2\widetilde{\eta}_{k-1}/3+\widetilde{\eta}_k/3,\widetilde{\eta}_k/3+2\widetilde{\eta}_{k+1}/3)$

$$\left(\widehat{\beta}_{1}, \widehat{\beta}_{2}, \widehat{\eta}_{k}\right) \leftarrow \underset{\substack{\eta \in \{s_{k}+1, \dots, e_{k}-1\}\\\beta_{1}, \beta_{2} \in \mathbb{R}^{p}, \ \beta_{1} \neq \beta_{2}}}{\underset{\beta_{1}, \beta_{2} \in \mathbb{R}^{p}, \ \beta_{1} \neq \beta_{2}}{\arg \min}} \left\{ \sum_{t=s_{k}+1}^{\eta} \left\| y_{t} - \beta_{1}^{\top} x_{t} \right\|_{2}^{2} + \sum_{t=\eta+1}^{e_{k}} \left\| y_{t} - \beta_{2} x_{t} \right\|_{2}^{2} + \sum_{t=\eta+1}^{e_{k}} \left\| y_{t} - \beta_{2} x_{t} \right\|_{2}^{2} + \sum_{t=\eta+1}^{q} \left\|$$

4: end for 5: OUTPUT: $\{\widehat{\eta}_k\}_{k=1}^{\widetilde{K}}$.

Corollary 2: Let $\{\widetilde{\eta}_k\}_{k=1}^K$ be a set of time points satisfying $\max_{k=1} |\widetilde{\eta}_k - \eta_k| \leq \Delta/7,$

 $\{\widehat{\eta}_k\}_{k=1}^{\widehat{K}}$ be the change point estimators generated from Algorithm 1 with $\zeta = \mathcal{O}\left(\sqrt{\log(n\vee p)}\right)$ as inputs. Then,

$$\mathbb{P}\left\{\widehat{K} = K, \max_{k=1,\dots,K} |\widehat{\eta}_k - \eta_k| = \mathcal{O}\left(\frac{\mathbf{d_0}\log(n \vee p)}{\kappa^2}\right)\right\} \ge 1 - Cn^{-c},$$

Compared to Theorem 1, in Algorithm 1

- The use of the group Lasso-type penalty brings down the error from d_0^2 to d_0 ;
- The refinement is done locally within each disjoint interval, so the procedure is parallelizable.

Lower Bounds

Lower Bounds:

- No algorithm is guaranteed to be consistent in the regime $\kappa^2\Delta\lesssim d_0\sigma_\varepsilon^2$
- In the consistency regime, a minimax lower bound on the localization errors is $d_0\sigma_\varepsilon^2\kappa^{-2}$.
- The change point localization task is impossible when $\kappa^2\Delta\lesssim d_0\sigma_\varepsilon^2$
- When $\Delta \kappa^2 \gtrsim d_0^2 K \sigma_{\varepsilon}^2 \log^{1+\xi} (n \vee p)$, it can be solved by our algorithms at a nearly minimax optimal rate.

Numerical Experiments

Simulations: Methods: dynamic programming (**DP**), efficient binary segmentation algorithm (**EBSA**)[1], local refinement initialized by DP (**DP.LR**), and initialized by EBSA (**EBSA.LR**).

Fig. 1: Plots A,B: $\kappa = 4$, $d_0 \in \{10, 20\}$; Plots C,D: $\kappa = 6$, $d_0 \in \{10, 20\}$.

Air Quality Data in Northern Taiwan, 2015:

- Response variable: PM10 in Banqiao
- Covariates: environment factors; PM10 in other districts

- EBSA detects no changes
- DP.LR and EBSA.LR both detect May 15th (typhoon) and October 25th, 2015 as the change points (severe air pollution reaching "purple alert")

References

[1] Florencia Leonardi and Peter Bühlmann. "Computationally efficient change point detection for high-dimensional regression". In: arXiv preprint arXiv:1601.03704 (2016).