1 Skalární součin

Definice 1.1 (Standardní skalární součin)

Buďte $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$. Pak standardní skalární součin \mathbf{u} a \mathbf{v} definujeme jako $\mathbf{u} \cdot \mathbf{v} = \overline{u_1} \cdot v_1 + \ldots + \overline{u_n} \cdot v_n$.

Definice 1.2 (Euklidovská norma)

Nechť · je standardní skalární součin na \mathbf{V} . Potom $\forall \mathbf{v} \in \mathbf{V}$ definujeme euklidovskou normu jako $||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$.

Definice 1.3 (Skalární součin)

Nechť \mathbf{V} je vektorový prostor nad \mathbb{C} . Skalární součin je zobrazení $\cdot: \mathbf{V} \times \mathbf{V} \to \mathbb{C}$, které $(\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{V} \text{ a } \forall t \in \mathbb{C})$ splňuje:

$$\mathbf{u} \cdot \mathbf{v} = \overline{\mathbf{v} \cdot \mathbf{u}}, \text{ (Symetričnost)}$$

$$\mathbf{u} \cdot (t\mathbf{v}) = t(\mathbf{u} \cdot \mathbf{v}), \ \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}, \ \text{(Linearita)}$$

$$\langle \mathbf{u}, \mathbf{u} \rangle \ge 0 \wedge (\langle \mathbf{u}, \mathbf{u} \rangle = 0 \Leftrightarrow \mathbf{u} = \mathbf{o}).$$

Definice 1.4 (Hermitovsky sdružená matice)

Nechť $A = (a_{ij}) \in \mathbb{C}^{m \times n}$, potom hermitovsky sdružená matice je $A^* = (\overline{a_{ji}})$.

Čtvercová matice je Hermitovská, pokud je rovna své hermitovsky sdružené matici.

Definice 1.5

Buď $\mathbb{T}=\mathbb{R}$ nebo \mathbb{C} a buď $A=T^{n\times n}$. Pak A je pozitivně definitní, pokud je hermitovská a platí

$$\mathbf{u} * Au \ge 0 \land (\mathbf{u} * Au = 0 \Leftrightarrow \mathbf{u} = \mathbf{o}).$$

Důsledek

 $\langle\cdot,\cdot\rangle_A=\cdot^*A\cdot$ je skalární součin, právě kdyžAje pozitivně definitní.

Definice 1.6 (Norma)

Buď V VP nad $\mathbb R$ nebo $\mathbb C$ se skalárním součinem $\langle \cdot, \cdot \rangle$. Pak normou vektoru $\mathbf u \in V$ rozumíme $||\mathbf u|| = \sqrt{\langle \mathbf u, \mathbf u \rangle}$.

Tvrzení 1.1 (Vlastnosti normy)

$$||\mathbf{u}|| \ge 0 \land (||\mathbf{u}|| = 0 \Leftrightarrow \mathbf{u} = \mathbf{o}).$$

$$\forall t \in \mathbb{T} : ||t\mathbf{u}|| = |t| \cdot ||\mathbf{u}||.$$

$$||\mathbf{u} + \mathbf{v}||^2 + ||\mathbf{u} - \mathbf{v}||^2 = 2||\mathbf{u}||^2 + 2||\mathbf{v}||^2.$$

$$\Re(\langle \mathbf{u}, \mathbf{v} \rangle) = \frac{1}{2} ||\mathbf{u} + \mathbf{v}||^2 - ||\mathbf{u}||^2 - ||\mathbf{v}||^2.$$

Věta 1.2 (Cauchy-Schwarzova nerovnost)

 $Bud \ \mathbb{T} = \mathbb{R} \ nebo \ \mathbb{C}, \ \mathbf{V} \ VP \ nad \ \mathbb{T} \ se \ skalárním \ součinem \ \langle \cdot, \cdot \rangle. \ Pak \ platí \ \forall \mathbf{u}, \mathbf{v} \in \mathbf{V} : \ |\langle \mathbf{u}, \mathbf{v} \rangle| \le ||\mathbf{u}|| \cdot ||\mathbf{v}||. \ Rovnost \ platí \ právě \ tehdy, \ pokud \ (\mathbf{u}, \mathbf{v}) \ je \ lineárně \ závislá.$

 $D\mathring{u}kaz$

Případ 1): (\mathbf{u}, \mathbf{v}) je LZ: Buď $\mathbf{u} = t\mathbf{v}$: $|\langle \mathbf{u}, \mathbf{v} \rangle| = |\langle \mathbf{u}, t \cdot \mathbf{u} \rangle| = |t| \cdot |\langle \mathbf{u}, \mathbf{u} \rangle| = |t| \cdot ||\mathbf{u}|| \cdot ||\mathbf{u}|| = ||\mathbf{u}|| \cdot ||\mathbf{v}||$.

Případ 2): (\mathbf{u}, \mathbf{v}) je LN: Víme, že $||\mathbf{u} - t\mathbf{v}||^2 > 0$. Zvolme t tak, aby $\langle \mathbf{v}, \mathbf{u} - t\mathbf{v} \rangle = 0$. (To lze, protože $\langle \mathbf{v}, \mathbf{u} - t\mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle - t \langle \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle - t ||\mathbf{v}||^2 \implies t = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{||\mathbf{v}||^2}$.) $0 < ||\mathbf{u} - t\mathbf{v}||^2 = \langle \mathbf{u} - t\mathbf{v}, \mathbf{u} - t\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} - t\mathbf{v} \rangle - \overline{t} \cdot \langle \mathbf{v}, \mathbf{u} - t\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} - t\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle - t \langle \mathbf{u}, \mathbf{v} \rangle = ||\mathbf{u}||^2 - \frac{\langle \mathbf{v}, \mathbf{u} \rangle \cdot \langle \mathbf{u}, \mathbf{v} \rangle}{||\mathbf{v}||^2} = ||\mathbf{u}||^2 - \frac{|\langle \mathbf{u}, \mathbf{v} \rangle \cdot \langle \mathbf{u}, \mathbf{v} \rangle}{||\mathbf{v}||^2}.$

Tj.
$$0 < ||\mathbf{u}||^2 \cdot ||\mathbf{v}||^2 - |\langle \mathbf{u}, \mathbf{v} \rangle|^2$$
, tedy $|\langle \mathbf{u}, \mathbf{v} \rangle| \le ||\mathbf{u}|| \cdot ||\mathbf{v}||$.

Důsledek (Trojúhelníková nerovnost)

Buď $\mathbb{T}=\mathbb{R}$ nebo $\mathbb{C},$ \mathbf{V} VP nad \mathbb{T} se skalárním součinem $\langle\cdot,\cdot\rangle$. Pak platí $\forall \mathbf{u},\mathbf{v}\in\mathbf{V}:$ $||\mathbf{u}+\mathbf{v}||\leq ||\mathbf{u}||+||\mathbf{v}||$. Rovnost platí právě tehdy, pokud (\mathbf{u},\mathbf{v}) je lineárně závislá.

 $D\mathring{u}kaz$

$$||\mathbf{u}+\mathbf{v}||^2 = \langle \mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle = ||\mathbf{u}||^2 + \langle \mathbf{u}, \mathbf{v} \rangle + \overline{\langle \mathbf{u}, \mathbf{v} \rangle} + ||\mathbf{v}||^2 = ||\mathbf{u}||^2 + 2\Re(\langle \mathbf{u}, \mathbf{v} \rangle) + ||\mathbf{v}||^2 \le ||\mathbf{u}||^2 + 2|\langle \mathbf{u}, \mathbf{v} \rangle| + ||\mathbf{v}||^2 \le ||\mathbf{u}||^2 + 2 \cdot ||\mathbf{u}|| \cdot ||\mathbf{v}|| + ||\mathbf{v}||^2 = (||\mathbf{u}|| + ||\mathbf{v}||)^2.$$

Definice 1.7 (Kolmost)

Buď \mathbf{V} VP se skalárním součinem $\langle \cdot, \cdot \rangle$ a $\mathbf{u}, \mathbf{v} \in \mathbf{V}$. Řekneme, že \mathbf{u} a \mathbf{v} jsou kolmé, značíme $\mathbf{u} \perp \mathbf{v}$, pokud $\langle \mathbf{u}, \mathbf{v} \rangle$.

Poznámka

Ze skoro symetrie (SSS) plyne, že relace jsou kolmé je symetrická.

Definice 1.8 (Kolmost množin)

Množina nebo posloupnost M vektorů VP \mathbf{V} s $\langle\cdot,\cdot\rangle$ se nazývá ortogonální, pokud každá dvojice různých prvků M je kolmá. Nazývá se ortonormální, pokud je ortogonální a každý prvek má normu 1.

Důsledek

Kanonická báze je ortonormální. Normovaná (tj. každý prvek vydělíme normou) ortogonální množina / posloupnost je ortonormální.

Tvrzení 1.3 (Pythagorova věta)

 \mathbf{V} vektorový prostor se $\langle \cdot, \cdot \rangle$, buďte $\mathbf{u}, \mathbf{v} \in \mathbf{V}$ kolmé vektory. Pak

$$||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2.$$

 \Box $D\mathring{u}kaz$

$$||\mathbf{u}+\mathbf{v}||^2 = \langle \mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle + 0 + 0 + \langle \mathbf{v}, \mathbf{v} \rangle = ||\mathbf{u}||^2 + ||\mathbf{v}||^2.$$

Důsledek

Je-li $(\mathbf{v}_1,\dots,\mathbf{v}_k)$ ortogonální posloupnost, pak $||\mathbf{v}_1+\dots+\mathbf{v}_k||^2=||\mathbf{v}_1||^2+\dots+||\mathbf{v}_k||^2.$

 $D\mathring{u}kaz$

Indukcí triviálně.

Tvrzení 1.4

Buď **V** vektorový prostor s $\langle \cdot, \cdot \rangle$ a $(\mathbf{v}_1, \dots, \mathbf{v}_k)$ ortogonální posloupnost nenulových vektorů. Pak je $(\mathbf{v}_1, \dots, \mathbf{v}_k)$ LN.

 $D\mathring{u}kaz$

Předpokládejme, že $0 = a_1 \mathbf{v}_1 + \ldots + a_k \mathbf{v}_k$, kde $a_1, \ldots, a_k \in \mathbb{T}$ ($\mathbb{T} = \mathbb{R} \vee \mathbb{T} = \mathbb{C}$). Chceme ukázat, že $a_1 = \ldots = a_k = 0$.

$$\forall i \in [k] : 0 = \langle v_i, \mathbf{o} \rangle = \langle \mathbf{v}_i, a_1 \mathbf{v}_1 + \ldots + a_k \mathbf{v}_k \rangle = a_1 \langle \mathbf{v}_i, \mathbf{v}_1 \rangle + \ldots + a_k \langle \mathbf{v}_i, \mathbf{v}_k \rangle = a_i \cdot ||\mathbf{v}_i||^2 \implies a_i = 0.$$

1.1 Ortonormální báze a vyjádření vektorů vzhledem k nim

Tvrzení 1.5

 $\mathbf{V}\ VP\ s\ \langle\cdot,\cdot\rangle,\ B=(\mathbf{v}_1,\ldots,\mathbf{v}_n)\ ortonormální\ báze.\ Pak\ pro\ každý\ \mathbf{u}\in\mathbf{V}\ platí:$

$$\mathbf{u} = \langle \mathbf{v}_1, \mathbf{u} \rangle \cdot \mathbf{v}_1 + \ldots + \langle \mathbf{v}_n, \mathbf{u} \rangle \cdot \mathbf{v}_n.$$

To jest $[\mathbf{u}]_B = (\langle \mathbf{v}_1, \mathbf{u} \rangle, \dots, \langle \mathbf{v}_k, \mathbf{u} \rangle)^T.$ $D\mathring{u}kaz$ Vezmeme $a_1, \ldots, a_n \in \mathbb{T}$ tak, aby $\mathbf{u} = a_1 \mathbf{v}_1 + \ldots + a_n \mathbf{v}_n$. Máme $\langle \mathbf{v}_i, \mathbf{u} \rangle = \langle \mathbf{v}_i, a_1 \mathbf{v}_1 + \ldots + a_n \mathbf{v}_n \rangle = \langle \mathbf{v}_i, a_1 \mathbf{v}_1 + \ldots + a_n \mathbf{v}_n \rangle$ $a_1 \cdot 0 + \ldots + a_i + \ldots + a_n \cdot 0 = a_i.$

Poznámka

Kdyby B byla jen ortogonální, pak $[\mathbf{u}]_B = (\frac{\langle \mathbf{v}_1, \mathbf{u} \rangle}{||\mathbf{v}_1||}, \dots, \frac{\langle \mathbf{v}_k, \mathbf{u} \rangle}{||\mathbf{v}_k||})^T$.

Poznámka

 a_1, \ldots, a_n se někdy nazývají Fourierovy koeficienty.

Tvrzení 1.6

 $\mathbf{V} \ VP \ s \ \langle \cdot, \cdot \rangle, \ B = (\mathbf{v}_1, \dots, \mathbf{v}_n) \ ortonormální \ báze, \ \mathbf{u}, \mathbf{w} \in \mathbf{V}. \ Pak \ \langle \mathbf{u}, \mathbf{w} \rangle = [\mathbf{u}]_B \cdot [\mathbf{w}]_B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ $[\mathbf{u}]_B^*[\mathbf{w}]_B$.

 $D\mathring{u}kaz$ Bud $[\mathbf{u}]_B = (a_1, \dots, a_n)^T$, $[\mathbf{w}]_B = (b_1, \dots, b_n)^T$. Pak $\langle \mathbf{u}, \mathbf{v} \rangle = \langle a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n, b_1 \mathbf{v}_1 + \dots + b_n \mathbf{v}_n \rangle = \sum_{i=1}^n \sum_{j=1}^n \overline{a_i} \cdot b_j \cdot \langle \mathbf{v}_i, \mathbf{v}_j \rangle = \sum_{i=1}^n \overline{a_i} b_i \cdot \langle \mathbf{v}_i, \mathbf{v}_i \rangle = [\mathbf{u}]_B^* [\mathbf{w}]_B.$

Kolmost množin 1.2

Definice 1.9 (Kolmost množin)

 \mathbf{V} VP s $\langle \cdot, \cdot \rangle$, $\mathbf{v} \in \mathbf{V}$, $M, N \subseteq \mathbf{V}$. Pak řekneme, že \mathbf{v} je kolmý k M, značíme $\mathbf{v} \perp M$, pokud $\mathbf{v} \perp \mathbf{w} \ \forall \mathbf{w} \in M$, a řekneme, že M je kolmá k N, značíme $M \perp N$, pokud $\mathbf{v} \perp \mathbf{w} \ \forall \mathbf{v} \in$ $M \ \forall \mathbf{w} \in N.$

Definice 1.10

Buď \mathbf{V} VP s $\langle \cdot, \cdot \rangle$ a buď $\mathbf{W} \leq \mathbf{v}$. Je-li $\mathbf{v} \in \mathbf{V}$, ortogonální projekcí vektoru \mathbf{v} na podprostor **W** rozumíme vektor **w** takový, že $\mathbf{w} \in \mathbf{W}$ a $\mathbf{v} - \mathbf{w} \perp \mathbf{w}$.

Věta 1.7

Buď \mathbf{V} VP s $\langle \cdot, \cdot \rangle$, buď $\mathbf{W} \leq \mathbf{V}$, $\mathbf{v} \in \mathbf{V}$ a $\mathbf{w} \in \mathbf{W}$ ortogonální projekce \mathbf{v} na \mathbf{W} . Potom pro $ka\check{z}d\acute{y}\ vektor\ \mathbf{u}\in\mathbf{W}\ r\mathring{u}zn\acute{y}\ od\ \mathbf{w}\ plat\'{i}:||\mathbf{v}-\mathbf{w}||<||\mathbf{v}-\mathbf{u}||.$

Speciálně existuje-li ortogonální projekce v na W, pak je určena jednoznačně.

Důkaz
Z předpokladu \mathbf{w} , \mathbf{u} , a tedy i $\mathbf{w} - \mathbf{u}$ jsou vektory \mathbf{W} . Tudíž $\mathbf{v} - \mathbf{w} \perp \mathbf{w} - \mathbf{u}$ ($\mathbf{v} - \mathbf{w} \perp \mathbf{W}$).
Z Pythagorovy věty: $||\mathbf{v} - \mathbf{u}||^2 = ||\mathbf{v} - \mathbf{w}||^2 + ||\mathbf{w} - \mathbf{u}||^2 > ||\mathbf{v} - \mathbf{w}||^2$.

Tvrzení 1.8

 $\mathit{Bud}\,\mathbf{V}\,\mathit{VP}\,\mathit{s}\,\langle\cdot,\cdot\rangle\,\mathit{a}\,\mathit{budte}\,\mathit{M}, N\subseteq\mathbf{V}.\,\mathit{Pak}\,\mathit{M}\perp\mathit{N}\Leftrightarrow\mathit{M}\perp\mathit{LO}(N)\ (\Leftrightarrow\mathit{LO}(\mathit{M})\perp\mathit{LO}(N)).$

 $D\mathring{u}kaz$

 \iff : Triviální (protože $N \subseteq LO(N)$).

 \Longrightarrow : Předpokládejme, že $M \perp N$. Vezměme $\mathbf{v} \in M$ a $\mathbf{w} = a_1 \mathbf{w}_1 + \ldots + a_n \mathbf{w}_n \in \mathrm{LO}(N)$. Pak $\langle \mathbf{v}, \mathbf{w} \rangle = a_1 \langle \mathbf{v}_1, \mathbf{w}_1 \rangle + \ldots + a_n \langle \mathbf{v}_n, \mathbf{w}_n \rangle = 0$.

Tvrzení 1.9

Buď \mathbf{V} VP s $\langle \cdot, \cdot \rangle$ a $\mathbf{W} \leq \mathbf{V}$, který má ortonormální bázi $B = (\mathbf{u}_1, \dots, \mathbf{u}_n)$. Pak pro libovolné $\mathbf{v} \in \mathbf{V}$ je

$$\mathbf{w} := \langle \mathbf{u}_1, \mathbf{v} \rangle \cdot \mathbf{u}_1 + \langle \mathbf{u}_2, \mathbf{v} \rangle \, \mathbf{u}_2 + \ldots + \langle \mathbf{u}_k, \mathbf{v} \rangle \cdot \mathbf{u}_k$$

ortogonální projekcí do W.

 \Box $D\mathring{u}kaz$

Zjevně $\mathbf{w} \in LO(B) = \mathbf{W}$. Chceme ukázat, že $\mathbf{v} - \mathbf{w} \perp \mathbf{W}$. Podle tvrzení výše stačí ukázat, že $\mathbf{v} - \mathbf{w} \perp \mathbf{u}_i, \forall i \in [k]$. Označme $a_i := \langle \mathbf{u}_i, \mathbf{v} \rangle$.

$$\langle \mathbf{u}_i, \mathbf{v} - \mathbf{w} \rangle = \langle \mathbf{u}_i, \mathbf{v} - a_1 \mathbf{u}_1 - a_2 \mathbf{u}_2 - \ldots - a_k \mathbf{u}_k \rangle = a_i - a_1 \cdot 0 - \ldots - a_i \cdot 1 - \ldots - a_k \cdot 0 = \mathbf{o}.$$

Definice 1.11 (Gramova-Schmidtova ortogonalizace)

Postup, který vezme LN posloupnost $(\mathbf{v}_1, \dots, \mathbf{v}_k)$ z VP s $\langle \cdot, \cdot \rangle$ a vytvoří ortonormální posloupnost $(\mathbf{u}_1, \dots, \mathbf{u}_k)$ taková, že $\forall i \in [k] : \text{LO}\{\mathbf{v}_1, \dots, \mathbf{v}_i\} = \text{LO}\{\mathbf{u}_1, \dots, \mathbf{u}_i\}$.

1) $\mathbf{u}_1 := \frac{\mathbf{v}_1}{||\mathbf{v}_1||}$. 2) Pro každé $i = 2, \ldots, k$ spočítáme $\mathbf{w}_i = \langle \mathbf{u}_1, \mathbf{v}_i \rangle \cdot \mathbf{u}_1 + \ldots + \langle \mathbf{u}_{i-1}, \mathbf{v}_i \rangle \cdot \mathbf{u}_{i-1}$ a položíme $\mathbf{u}_i = \frac{\mathbf{v}_i - \mathbf{w}_i}{||\mathbf{v}_i - \mathbf{w}_i||}$.

Důkaz

To, že $(\mathbf{u}_1,\ldots,\mathbf{u}_i)$ je ortonormální $\forall i\in[k]$ dokážeme triviálně indukcí.

Stejně tak, že LO $\{\mathbf{v}_1, \dots, \mathbf{v}_i\} = \text{LO}\{\mathbf{u}_1, \dots, \mathbf{u}_i\}.$

$$\mathbf{u}_{i} = \frac{\mathbf{v}_{i}}{||\ldots||} - \frac{\mathbf{w}_{i}}{||\ldots||}, \frac{\mathbf{w}_{i}}{||\ldots||} \in \mathrm{LO}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{i-1}\right\} \stackrel{\mathrm{IP}}{=} \mathrm{LO}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}\right\}.$$

 \mathbf{v}_i také z definice.

Nakonec musíme ukázat, že nikdy nedělíme nulou (naopak, pokud dostaneme špatný (= LZ) vstup, tak dělíme). Ukáže se, že kdybychom dělili, tak nějaké $\mathbf{u}_i \in LO \{\mathbf{u}_1, \dots, \mathbf{u}_{i-1}\}$.

Věta 1.10

Máme-li \mathbf{V} VP s $\langle \cdot, \cdot \rangle$ a aplikujeme-li GS ortogonalizaci na LN posloupnost vektorů z \mathbf{V} , pak dostaneme ortonormální posloupnost, že se jejich LO rovnají.

 $D\mathring{u}kaz$

Viz předchozí důkaz.

Důsledek

Každý konečně generovaný VP se skalárním součinem má ortonormální bázi.

Důsledek

Máme-li **V** konečně generovaný VP s $\langle \cdot, \cdot \rangle$ a ortonormální posloupnost $(\mathbf{u}_1, \dots, \mathbf{u}_k)$, můžeme ji doplnit na ortonormální bázi.

 $D\mathring{u}kaz$

Doplníme na bázi a aplikujeme GS ortogonalizaci, kde si rozmyslíme, že nám nezmění původní posloupnost. $\hfill\Box$

Důsledek

Je-li **V** konečně generovaný VP s ortonormální bází $B = (\mathbf{u}_1, \dots, \mathbf{u}_n)$ a s $\langle \cdot, \cdot \rangle$, pak existuje isomorfismus $\mathbf{V} \to T^n$ takový, že $\forall \mathbf{v}, \mathbf{w} : \langle \mathbf{v}, \mathbf{w} \rangle = f(\mathbf{v}) \cdot f(\mathbf{w})$.

Poznámka

Aplikováním GS ortogonalizace na \mathbb{T}^n dostaneme tzv. QR - rozklad matice, kde $A=Q\cdot R$ a A má za sloupce původní vektory, Q má ortonormální posloupnost sloupců a R je horní trojúhelníková s nezápornými reálnými čísly na diagonále.

1.3 Ortogonální doplněk, Gramova matice

Definice 1.12

Buď \mathbf{V} VP s $\langle \cdot, \cdot \rangle$ nad $\mathbb{T} = \mathbb{R}$ nebo \mathbb{C} . Je-li $M \subseteq \mathbf{V}$ množina vektorů, pak ortogonálním doplňkem kM ve \mathbf{V} , rozumíme

$$M^{\perp} = \{ \mathbf{v} \in \mathbf{v} | \mathbf{v} \perp M \} = \{ \mathbf{v} \in \mathbf{V} | (\forall \mathbf{u} \in M : \langle \mathbf{v}, \mathbf{u} \rangle = 0) \}.$$

Důsledek

 $M\perp M^\perp$ a M^\perp je největší taková množina vzhledem k inkluzi.

Tvrzení 1.11

 $\mathbf{V} \ \mathit{VP} \ \mathit{s} \ \langle \cdot, \cdot \rangle, \ \mathit{M} \subseteq \mathbf{V}. \ \mathit{Pak} \ \mathit{M}^{\perp} = \overline{(\operatorname{LO} \mathit{M})^{\perp}, \ \mathit{M}^{\perp} \ \mathit{je} \ \mathit{podprostor} \ \mathbf{V}, \ \mathit{M} \subseteq \mathit{N} \ \Longrightarrow \ \mathit{N}^{\perp} \subseteq \mathit{M}^{\perp}.}$

Důkaz

$$\mathbf{v} \in M^{\perp} \Leftrightarrow \mathbf{v} \perp M \Leftrightarrow \mathbf{v} \perp \mathrm{LO}\,M \Leftrightarrow \mathbf{v} \in (\mathrm{LO}\,M)^{\perp}.$$

Vezmeme $\mathbf{w}_1, \mathbf{w}_2 \in M^{\perp}$ a $t \in \mathbb{T}$, pak $\forall \mathbf{v} \in M : \langle \mathbf{v}, \mathbf{w}_1 + \mathbf{w}_2 \rangle = \langle \mathbf{v}, \mathbf{w}_1 \rangle + \langle \mathbf{v}, \mathbf{u}_2 \rangle = 0 + 0 = 0$ a $\langle \mathbf{v}, t \cdot \mathbf{w}_1 \rangle = t \cdot \langle \mathbf{v}, \mathbf{w}_1 \rangle = t \cdot 0 = 0 \implies \mathbf{w}_1 + \mathbf{w}_2, t \cdot \mathbf{w}_1 \in M^{\perp}$.

At
$$M \subseteq N$$
. Pak $\mathbf{v} \in N^{\perp} \Leftrightarrow \mathbf{v} \perp N \implies \mathbf{v} \perp M \Leftrightarrow \mathbf{v} \in M^{\perp}$.

Věta 1.12

Buď \mathbf{V} VP s $\langle \cdot, \cdot \rangle$ nad \mathbb{R} nebo \mathbb{C} . Buď $\mathbf{W} \leq \mathbf{V}$ konečně generovaný. Pak platí:

$$1)\mathbf{V} = \mathbf{W} \oplus \mathbf{W}^{\perp}.$$

$$2)(\mathbf{W}^{\perp})^{\perp} = \mathbf{W}.$$

- 3) Každý vektor $\mathbf{v} \in \mathbf{V}$ má (jednoznačnou) ortogonální projekci jak na \mathbf{W} , tak ne \mathbf{W}^{\perp} .
- 4) Je-li \mathbf{V} konečně generovaný dimenze n, pak $n = \dim \mathbf{W} + \dim \mathbf{W}^{\perp}$.

 $D\mathring{u}kaz$

- 1) Triviálně $\mathbf{W} \cap \mathbf{W}^{\perp} = \{\mathbf{o}\}$. Navíc použitím toho, že existuje ortogonální projekce (a toho, že je kolmá) na \mathbf{W} máme, že $\mathbf{W} + \mathbf{W}^{\perp} = \mathbf{V}$.
- 2) $\mathbf{W} \subseteq (\mathbf{W}^{\perp})^{\perp}$: je-li $\mathbf{w} \in \mathbf{W}$, pak $w \perp (\mathbf{W}^{\perp})$, tj. $w \in (\mathbf{w}^{\perp})^{\perp}$. Naopak $(\mathbf{W}^{\perp})^{\perp} \subseteq \mathbf{W}$: vezměme $\mathbf{v} \in (\mathbf{W}^{\perp})^{\perp}$. Uvažujme ortogonální projekci \mathbf{v} na \mathbf{W} :

$$(\mathbf{W}^{\perp})^{\perp} \ni \mathbf{v} = \mathbf{w} + (\mathbf{v} - \mathbf{w}) \wedge \mathbf{v} - \mathbf{w} \in (\mathbf{W}^{\perp})^{\perp} \implies (\mathbf{v} - \mathbf{w}) \perp (\mathbf{v} - \mathbf{w}) \implies \mathbf{v} - \mathbf{w} = \mathbf{o} \implies \mathbf{v} = \mathbf{w} \in \mathbf{W}.$$

Víme, že ortogonální projekce na \mathbf{W} existuje. Je-li tedy $\mathbf{v} \in \mathbf{V}$, pak můžeme psát $\mathbf{v} = \mathbf{w} + (\mathbf{v} - \mathbf{w}) = (\mathbf{v} - \mathbf{w}) + \mathbf{w}$, potom $(\mathbf{v} - \mathbf{w}) \in \mathbf{W}^{\perp}$ je podle definice ortogonální projekce na \mathbf{W}^{\perp} . $(\mathbf{w} \in (\mathbf{W}^{\perp})^{\perp}$.)

Použijeme 1) a větu o dimenzi součtu a průniku podprostorů.

Definice 1.13 (Gramova matice)

Buď V VP s $\langle \cdot, \cdot \rangle$ nad \mathbb{R} nebo \mathbb{C} . Buď $(\mathbf{u}_1, \dots, \mathbf{u}_k)$ posloupnost vektorů. Pak Gramovu matici posloupnosti $(\mathbf{u}_1, \dots, \mathbf{u}_k)$ definujeme jako:

$$(\langle \mathbf{u}_i, \mathbf{u}_j \rangle)_{k \times k}.$$

Tvrzení 1.13

Buď \mathbf{V} VP s $\langle \cdot, \cdot \rangle$, $(\mathbf{u}_1, \dots, \mathbf{u}_k)$ posloupnost vektorů \mathbf{V} , B Gramova matice. Vezměme $\mathbf{v} \in \mathbf{V}$ a $\mathbf{w} = a_1\mathbf{u}_1 + \dots + a_k\mathbf{u}_k \in \mathbf{W} := \mathrm{LO}\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$. Pak následující je ekvivalentní:

- 1) w je ortogonální projekce v na W.
- 2) $B \cdot (a_1, \ldots, a_k)^T = (\langle \mathbf{u}_1, \mathbf{v} \rangle, \ldots, \langle \mathbf{u}_k, \mathbf{v} \rangle).$

 $D\mathring{u}kaz$

1)
$$\Leftrightarrow$$
 $\mathbf{v} - \mathbf{w} \perp \mathbf{W} \Leftrightarrow \forall i \in [k] : \Leftrightarrow \mathbf{u}_i \perp \mathbf{v} - \mathbf{w} \Leftrightarrow \forall i \in [k] : \langle \mathbf{u}_i, \mathbf{v} - \mathbf{w} \rangle = 0 \Leftrightarrow \forall [k] : \langle \mathbf{u}_i, \mathbf{w} \rangle = \langle \mathbf{u}_i, \mathbf{v} \rangle \Leftrightarrow \forall i \in [k] : \langle \mathbf{u}_i, \mathbf{u}_1 \rangle \cdot a_1 + \langle \mathbf{u}_i, \mathbf{u}_k \rangle \cdot a_k = \langle \mathbf{u}_i, \mathbf{v} \rangle \Leftrightarrow 2).$

Důsledek

Buď A matice typu $n \times k$ nad \mathbb{R} nebo \mathbb{C} . Buď $\mathbf{v} \in \mathbb{R}^n$ nebo \mathbb{C}^n a $x \in \mathbb{C}^k$ nebo \mathbb{R}^k . Pak následující je ekvivalentní:

- 1) Ax je ortogonální projekce **v** na $\Im A$.
- 2) $A^*A \cdot x = A^* \cdot \mathbf{v}$.

Tvrzení 1.14 (8.80)

Buď $(\mathbf{u}_1, \dots, \mathbf{u}_k)$ posloupnost vektorů ve VP \mathbf{V} s $\langle \cdot, \cdot \rangle$ a buď $B \in T^{k \times k}$ gramova matice. Pak platí:

- 1) B je regulární $\Leftrightarrow (\mathbf{u}_1, \dots, \mathbf{u}_k)$ LN.
- 2) B je hermitovská (v reálném případě symetrická). 3) Je-li $(\mathbf{u}_1, \ldots, \mathbf{u}_k)$ LN, pak B je pozitivně definitní.

Důkaz

- 1) aplikujeme tvrzení výše na $\mathbf{v} = \mathbf{o}$. První podmínka se přepíše na $0 = a_1 \mathbf{u}_1 + \ldots + a_k \mathbf{u}_k \Leftrightarrow B \cdot (a_1, \ldots, a_k)^T = \mathbf{o} \Leftrightarrow (a_1, \ldots, a_k)^T \in \text{Ker } B$. Ale jádro je $\{\mathbf{o}\} \Leftrightarrow B$ je regulární.
 - 2) Plyne z rovnosti: $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = \overline{\langle \mathbf{u}_j, \mathbf{u}_i \rangle}$.
- 3) Vezměme ortonormální bázi C prostoru LO $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ a položme $A = ([\mathbf{u}_1]_C | \dots | [\mathbf{u}_k]_C)$. Pak A je regulární, tj. A^*A je pozitivně definitní.

1.4 Unitární a ortogonální matice

Definice 1.14 (Unitární a ortogonální matice)

Čtvercová matice nad $\mathbb R$ se nazývá ortogonální, pokud má ortonormální posloupnost sloupců vzhledem ke standardnímu skalárnímu součinu.

Čtvercová matice nad \mathbb{C} se nazývá unitární, pokud má ortonormální posloupnost sloupců vzhledem ke standardnímu skalárnímu součinu.

Tvrzení 1.15

Buď Q čtvercová komplexní matice řádu n. Pak následující je ekvivalentní: 1) Q je unitární, 2) $Q^* \cdot Q = I_n$, 3) Q^* je unitární, 4) $Q \cdot Q^* = I_n$, 5) Q^T je unitární, 6) f_Q zachovává standardní skalární součin, tj. $\forall \mathbf{u}, \mathbf{v} \in \mathbb{C}^n : f(\mathbf{u}) \cdot f(\mathbf{v}) = \mathbf{u} \cdot \mathbf{v}$.

Speciálně je každá unitární matice regulární a $Q^{-1} = Q^*$.

Důkaz

- 1) \Leftrightarrow 2), 3) \Leftrightarrow 4): z definice. 2) \Longrightarrow 4): 2) \Longrightarrow Q má levou inverzi Q^* \Longrightarrow Q regulární a $Q^{-1}=Q^*$ \Longrightarrow $Q\cdot Q^{-1}=Q\cdot Q^*=I_n$. 4) \Longrightarrow 2): analogicky.
- $3) \Leftrightarrow 5$): 5) říká, že Q má ortonormální posloupnost řádků, 3) říká, že když komplexně sdružíme všechny prvky Q, pak dostaneme ortonormální posloupnost řádků. Z toho to už jednoduše dostaneme.
- 2) \Longrightarrow 6): Předpokládejme 2), uvažujme $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$. Pak $f_Q(\mathbf{u}) \cdot f_Q(\mathbf{v}) = (Q\mathbf{u})^*(Q\mathbf{v}) = \mathbf{u}^*(Q^*Q)\mathbf{v} = \mathbf{u}^*\mathbf{v}$.
- 6) \implies 1) $Q=(f_Q(e_1)|\dots|f_Q(e_n))$ \implies $(f_Q(e_1),\dots,f_Q(e_n))$ ortonormální \implies Q unitární.

Důsledek

Součin unitárních matic stejného řádu je unitární matice.

Tvrzení 1.16

Je-li A regulární komplexní matice a $Q_1R_1=A=Q_2R_2$ jsou 2 QR rozklady, pak nutně $Q_1=Q_2$ a $R_1=R_2$.

 $D\mathring{u}kaz$

Z regularity $Q_1R_1 = Q_2R_2 \implies Q_2^*Q_1 = Q_2^{-1}Q_1 = R_2R^{-1} =: (\mathbf{c}_1|\dots|\mathbf{c}_n)$. Chceme ukázat, ze $\mathbf{c}_i = e_i \forall i$. To ukážeme indukcí podle i. Víme, že $R_2R_1^{-1}$ je horní trojúhelníková, tedy každé \mathbf{c}_i musí mít kladný prvek na i-té pozici a zároveň všude výše musí mít nulu, aby byl kolmý ke všem předchozím (o kterých z IP víme, že jsou to jednotkové vektory). \square

Definice 1.15

Buď **V** komplexní VP s $\langle \cdot, \cdot \rangle_{\mathbf{V}}$ a **W** komplexní VP s $\langle \cdot, \cdot \rangle_{\mathbf{W}}$. Pak lineární zobrazení $f: \mathbf{V} \to \mathbf{W}$ se nazývá unitární, pokud $\forall \mathbf{u}, \mathbf{v} \in \mathbf{V} : \langle f(\mathbf{v}), f(\mathbf{w}) \rangle_{\mathbf{W}} = \langle \mathbf{u}, \mathbf{v} \rangle_{\mathbf{V}}$.

Tvrzení 1.17

Buď $f: \mathbf{V} \to \mathbf{W}$ lineární zobrazení, \mathbf{V} , \mathbf{W} komplexní VP se skalárním součinem, pak následující je ekvivalentní: 1) f je unitární, 2) $\forall \mathbf{u} \in \mathbf{V}: ||f(\mathbf{u})_{\mathbf{W}} = ||\mathbf{u}||_{\mathbf{V}}$ (f zachovává normu), 3) f zobrazí každou ortonormální posloupnost $(\mathbf{u}_1, \ldots, \mathbf{u}_k)$ na ortonormální posloupnost $(f(\mathbf{u}_1, \ldots, f(\mathbf{u}_k)))$, 4) f zobrazuje jednotkové vektory na jednotkové vektory.

Speciálně: každé unitární zobrazení je prosté.

Důkaz

Ve skriptech. Dodatek plyne z 2) a f prosté \Leftrightarrow Ker $f = \{\mathbf{o}\}$. 1) \Longrightarrow 2) \Longrightarrow 4), 1) \Longrightarrow 3) \Longrightarrow 4) jednoduché. 4) \Longrightarrow 2): $\mathbf{o} \neq \mathbf{v} \in \mathbf{V}$, pak $\mathbf{v} = t\mathbf{u}$ pro $t = ||\mathbf{v}||_{\mathbf{V}}$, \mathbf{u} jednokový. $||f(\mathbf{v})||_{\mathbf{W}} = t \cdot ||f(\mathbf{u})||_{\mathbf{W}} = t = ||\mathbf{v}||_{\mathbf{V}}$.

2)
$$\Longrightarrow$$
 1): Polarizační identity: $\Re \langle \mathbf{u}, \mathbf{v} \rangle$, $\Im \langle \mathbf{u}, \mathbf{v} \rangle = \frac{1}{2}(\ldots)$.

Poznámka

Unitární zobrazení může zobrazovat i do prostoru větší dimenze.

1.5 Přibližné řešení SLR metodou nejmenších čtverců

Definice 1.16

Vektor $\mathbf{c} \in \mathbb{C}^n$ je přibližné řešení SLR $A\mathbf{x} = \mathbf{b}$ metodou nejmenších čtverců, pokud

$$||A\mathbf{c} - \mathbf{b}|| = \min_{\mathbf{x} \in \mathbb{C}^n} ||A\mathbf{x} - \mathbf{b}||.$$

Důsledek

 \mathbf{c} je ortogonální projekce \mathbf{b} do Im A.

Poznámka

Používá se například, když chybou měření soustava nemá řešení, ale my víme, že řešení mít má.

Jmenuje se podle čtverců ve výpočtu normy.

Tvrzení 1.18

 \mathbf{c} je přibližné řešení $A\mathbf{x} = \mathbf{b}$ metodou nejmenších čtverců, právě když $A^*A\mathbf{x} = A^*\mathbf{b}$.

2 Lineární dynamické systémy, vlastní čísla a vlastní vektory

Definice 2.1 (Vlastní čísla a vlastní vektory)

Buď \mathbb{T} těleso, A čtvercová matice řádu n (tj. máme $f_a: \mathbb{T}^n \to \mathbb{T}^n$). $\lambda \in \mathbb{T}$ se nazývá vlastní číslo matice A, pokud $\exists \mathbf{v} \in T^n, \mathbf{v} \neq \mathbf{o}$ takový, že $A \cdot \mathbf{V} = \lambda \cdot \mathbf{v}$. Je-li $\lambda \in \mathbb{T}$ vlastní číslo matice A, pak $\mathbf{w} \in \mathbb{T}^n$ je vlastním vektorem příslušným k λ , pokud $A \cdot \mathbf{w} = \lambda \cdot \mathbf{w}$.

Definice 2.2 (Vlastní čísla a vlastní vektory)

Buď \mathbb{T} těleso, \mathbf{V} VP nad \mathbb{T} a $f: \mathbf{V} \to \mathbf{V}$ lineární operátor. $\lambda \in \mathbb{T}$ se nazývá vlastní číslo operátoru f, pokud $\exists \mathbf{v} \in \mathbf{V}, \mathbf{v} \neq \mathbf{o}$ takový, že $f(\mathbf{V}) = \lambda \cdot \mathbf{v}$. Je-li $\lambda \in \mathbb{T}$ vlastní číslo operátoru f, pak $\mathbf{w} \in \mathbf{V}$ je vlastním vektorem příslušným k λ , pokud $f(\mathbf{w}) = \lambda \cdot \mathbf{w}$.

Pozorování

A má vlastní číslo $0 \Leftrightarrow \operatorname{Ker} A \neq \{\mathbf{o}\} \Leftrightarrow (\operatorname{pro} \, \check{\operatorname{ctvercove}}) \, A$ je singulární $\Leftrightarrow \det A = 0$.

f má vlastní číslo $0 \Leftrightarrow \operatorname{Ker} f \neq \{\mathbf{o}\}.$

Navíc množina vlastních vektorů příslušných k 0 je přesně Ker A (Ker f).

Pozorování

A má vlastní číslo $\lambda \Leftrightarrow \operatorname{Ker}(A - \lambda I_n) \neq \{\mathbf{o}\} \Leftrightarrow A - \lambda I_n \text{ singulární } \Leftrightarrow \det(A - \lambda I_n) = 0.$

f má vlastní číslo $\lambda \Leftrightarrow \operatorname{Ker}(f - \lambda \cdot \operatorname{id}_{\mathbf{V}}) \neq \{\mathbf{o}\}.$

Navíc množina M_{λ} vlastních vektorů A (resp. f) příslušných k λ je v tom případě rovna $\operatorname{Ker}(A - \lambda I_n)$ (resp. $\operatorname{Ker}(f - \lambda \cdot \operatorname{id}_{\mathbf{V}})$). Speciálně $M_{\lambda} \leq \mathbb{T}^n$ (resp. $M_{\lambda} \leq \mathbf{V}$).

Definice 2.3 (Charakteristický polynom)

Buď A čtvercová matice nad \mathbb{T} . Potom charakteristickým polynomem A rozumíme polynom v λ :

$$p_A(\lambda) = \det(A - \lambda I_n).$$

Tvrzení 2.1

Buď $A = (a_{ij})$ matice řadu n nad \mathbb{T} . A $p_A(\lambda)$ charakteristický polynom. Pak

- 1. $p_A(\lambda)$ je polynom stupně n.
- 2. Koeficient $u \lambda^n$ je roven $(-1)^n$.
- 3. Koeficient u λ^{n-1} je roven $(-1)^{n-1} \cdot (a_{11} + \ldots + a_{nn})$ (tzv. stopa matice $\cdot (-1)^{n-1}$).
- 4. Absolutní člen je roven det A.

Definice 2.4 (Podobné matice)

Čtvercové matice X a Y jsou podobné, pokud $Y = RXR^{-1}$ pro R regulární.

Tvrzení 2.2

 $X, Y \ podobn\'e \implies p_X(\lambda) = p_Y(\lambda).$

Definice 2.5 (Diagonalizovatelný operátor)

 \mathbb{T} těleso, \mathbf{V} konečně generovaný vektorový prostor. $f: \mathbf{V} \to \mathbf{V}$ lineární operátor. Pak f je diagonalizovatelný, pokud \exists báze B prostoru \mathbf{V} taková, že $[f]_B^B$ je diagonální.

Poznámka (Značení)

$$\operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) := \begin{pmatrix} \lambda_1 & \dots & \\ & \lambda_2 & \dots & \\ & \vdots & \vdots & \ddots & \\ & & & \lambda_n \end{pmatrix}.$$

Tvrzení 2.3

Buď $f: \mathbf{V} \to \mathbf{V}$ lineární operátor na konečně generovaném VP \mathbf{V} nad \mathbb{T} a buď $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ nějaká báze. Pak:

$$[f]_B^B = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \Leftrightarrow \forall i : \mathbf{v}_i \text{ je vlastn\'i vektor p\'r\'islušn\'y } k \lambda_i.$$

Důsledek

Za stejných předpokladů: f diagonalizovatelný $\Leftrightarrow \mathbf{V}$ má bázi z vlastních vektorů f.

Definice 2.6 (Diagonalizovatelnost pro matice)

Buď \mathbb{T} těleso a A čtvercová matice řádu n nad \mathbb{T} . Pak A je diagonalizovatelná, pokud je $f_A: \mathbb{T}^n \to T^n$ diagonalizovatelný lineární operátor.

Důsledek

A je diagonalizovatelná $\Leftrightarrow \mathbb{T}^n$ má bázi z vlastních vektorů A.

Tvrzení 2.4

Buď $A \in \mathbb{T}^{n \times n}$. Pak následující tvrzení jsou ekvivalentní:

- 1. A je diagonalizovatelná.
- 2. \mathbb{T}^n má bázi z vlastních vektorů matice A.
- 3. A je podobná diagonální matici.

2.1 Lineární nezávislost vlastních vektorů

Věta 2.5

Buď \mathbb{T} těleso a $f: \mathbf{V} \to \mathbf{V}$ lineární operátor na $VP \mathbf{V}$ nad \mathbb{T} . Je-li $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ posloupnost vlastních vektorů f popořadě příslušných k vlastním číslům $(\lambda_1, \dots, \lambda_n)$ a $\lambda_1, \dots, \lambda_n$ jsou po dvou různá, pak je $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ LN.

 $D\mathring{u}kaz$

Indukcí podle n. n=1 je triviální $(\mathbf{v}_1 \neq 0).$ n>1: Uvažujme $a_1,\ldots,a_{n-1} \in \mathbb{T}$ taková, že $a_1\mathbf{v}_1 + \ldots + a_n\mathbf{v}_n = \mathbf{o}.$ $a_1f(\mathbf{v}_1) + \ldots + a_nf(\mathbf{v}_n) = 0 \Leftrightarrow \lambda_1a_1\mathbf{v}_1 + \ldots + \lambda_na_n\mathbf{v}_n = 0.$ Také můžeme původní rovnici vynásobit λ_n : $\lambda_na_1\mathbf{v}_1 + \ldots + \lambda_na_n\mathbf{v}_n = 0.$ Následně můžeme odečíst tyto rovnice od sebe a dostaneme $(\lambda_1 - \lambda_n)a_1\mathbf{v}_1 + \ldots + (\lambda_{n-1} - \lambda_n)a_{n-1}\mathbf{v}_{n-1} = 0.$ Ale z IP $(\lambda_1 - \lambda_n)a_1 = \ldots = (\lambda_{n-1} - \lambda_n)a_{n-1} = 0.$ Ale vlastní čísla jsou po dvou různá, tedy $a_1 = \ldots = a_{n-1} = 0.$

Důsledek

Má-li lineární operátor $f: \mathbf{V} \to \mathbf{V}$ na prostoru dimenze n n po 2 různých vlastních čísel, pak je f diagonalizovatelný.

Má-li čtvercová matice A řádu n po 2 různých vlastních čísel, pak je A diagonalizo-

2.2 Geometrická násobnost vlastních čísel

Definice 2.7 (Geometrická násobnost)

Buď A čtvercová matice řádu n nad \mathbb{T} , $\lambda \in \mathbb{T}$ vlastní číslo. Uvažujme podprostor

$$M_{\lambda} := \{ \mathbf{v} \in \mathbb{T}^n | A\mathbf{v} = \lambda \mathbf{v} \} \leq \mathbb{T}^n.$$

Pak geometrickou násobností λ rozumíme dim M_{λ} .

Tvrzení 2.6

Máme-li lineární operátor $f: \mathbf{V} \to \mathbf{V}$ na konečně dimenzionálním vektorovém prostoru \mathbf{V} nad \mathbb{T} a máme-li vlastní číslo λ operátoru f, pak geometrická násobnost $\lambda \leq$ algebraická násobnost λ .

Tvrzení 2.7 (Pomocné tvrzení o determinantech)

Buď \mathbb{T} těleso, $1 \leq k < n$ a buď A matice blokově trojúhelníkovéůo tvaru, tj. $a_{ij} = 0$ pro $i > k \geq j$. Pak $\det A = (\det B) \cdot (\det D)$, kde B je prvních k sloupců a řádků, D je posledních n - k sloupců a řádků.

 $D\mathring{u}kaz$

Indukcí podle k: k=1: Rozvoj det A podle 1. sloupce nám dá chtěnou rovnost. k>1: taktéž vezmeme rozvoj podle prvního sloupce: det $A=a_{11}$ det $M_{11}-a_{21}$ det $M_{21}+\ldots$ M_{ij} jsou ale takové matice pro $k \leftarrow k-1$. Tedy je spočítáme: det $A=a_{11}(\det B_{11})(\det D) \cdot a_{21}(\det B_{21})(\det D) + \ldots = (\det B) \cdot (\det D)$.

 $D\mathring{u}kaz$

Buď k geometrická násobnost vlastního čísla λ . Tj. dim $M_{\lambda} = k$, kde $M_{\lambda} = \{\mathbf{v} \in \mathbf{V} | f(v) = \lambda \mathbf{v}\} \le \mathbf{V}$. Vezmeme si bázi $(\mathbf{v}_1, \dots, \mathbf{v}_k)$ prostoru M_{λ} a doplníme na bázi $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ prostoru \mathbf{V} . $A = [f]_B^B$ splňuje předpoklady předchozího tvrzení $(B = \operatorname{diag}(\lambda, \dots, \lambda))$. Tedy $\det A - \mu \cdot I_n = (\lambda - \mu)^k \cdot \det D$. Tedy λ je minimálně k-násobným kořenem $\det A - \mu \cdot I_n$, tedy má algebraickou násobnost \geq geometrické.

Věta 2.8

Buď $f: \mathbf{V} \to \mathbf{V}$ lineární operátor na VP dimenze n nad \mathbb{T} . Pak následující tvrzení jsou ekvivalentní:

- 1. f je diagonalizovatelný.
- 2. f má n vlastních čísel včetně algebraických násobností a současně geometrická násobnost každého vlastního čísla je rovna jeho algebraické násobnosti.

Důkaz

1) \Longrightarrow 2): f je diagonalizovatelný, tedy máme bázi $B=(\mathbf{v}_1,\ldots,\mathbf{v}_n)$ z vlastních vektorů. Řekněme, že $\mathbf{V}_1,\ldots,\mathbf{v}_{m_1}$ jsou vlastní vektory příslušné vlastnímu číslu $\lambda_1,\ldots,\mathbf{v}_{m_1+m_2+\ldots+m_{k-1}+1},\ldots,\mathbf{v}_{v_n}$ jsou vlastní vektory příslušné vlastnímu číslu λ_k . $\forall i\in[k]$: Geometrická násobnost i algebraická násobnost λ_i je $\geq m_i$. Na druhou stranu součet algebraických násobností je nejvýše n, tedy násobnosti λ_i jsou m_i .

2) \Longrightarrow 1): Buďte $\lambda_1,\ldots,\lambda_k$ po dvou různá vlastní čísla, m_i algebraická (tj. i geometrická) násobnost $\lambda_i=\dim M_{\lambda_i}$ a $n=m_1+\ldots+m_k$. Zvolme si bázi M_{λ_i} $B_i=(\mathbf{v}_1^i,\ldots,\mathbf{v}_{m_i}^i)$. Ukáže se, že $B=(\mathbf{v}_1^1,\ldots,\mathbf{v}_{m_k}^k)$ je báze \mathbf{V} . B má $n=\dim \mathbf{V}$ prvků, tedy stačí dokázat, že B je LN. Uvažujme $0=a_1^1\mathbf{v}_1^1+\ldots+a_{m_k}^k\mathbf{v}_{m_k}^k$. Součty násobků prvků jednotlivých prostorů M_{λ_i} jsou zase v M_{λ_i} , takže jsou (až na právě ty nulové) LN, protože jsou to vlastní vektory příslušné po dvou různým vlastním číslům. Tedy musí být všechny nulové, ale v jednotlivých M_{λ_i} byla $(\mathbf{v}_1^i,\ldots,\mathbf{v}_{m_i}^i)$ báze, tedy všechny koeficienty musí být nulové. \square

Poznámka

Dále se probírali lineární systémy v \mathbb{R}^2 . Viz přednáška.

2.3 Jordanův kanonický tvar

Definice 2.8 (Jordanova buňka)

Buď $\mathbb T$ těleso, $k\geq 1$ a $\lambda\in\mathbb T$. Pak Jordanovou buňkou řádu k příslušnou k prvku λ rozumíme matici:

$$J_{\lambda,k} = \begin{pmatrix} \lambda & 1 & \dots & 0 \\ & \lambda & 1 & \dots & \\ & & \ddots & ddots & \\ & & & & 1 \\ 0 & & & & \lambda \end{pmatrix}.$$

Definice 2.9

Řekneme, že čtvercová matice J nad tělesem \mathbb{T} je v Jordanově kanonickém tvaru, pokud je blokově diagonální a čtvercové bloky na diagonále jsou Jordanovy buňky. Tj.

$$J = \operatorname{diag}(J_{\lambda_1, k_1}, \dots, J_{\lambda_s, k_s}).$$

Definice 2.10 (Zobecnění diagonalizovatelnosti)

Buď $f: \mathbf{V} \to \mathbf{V}$ lineární operátor na konečně generovaném VP nad \mathbb{T} . Řekneme, že existuje Jordanův kanonický tvar (operátoru f), pokud existuje báze B prostoru \mathbf{V} taková, že $[f]_B^B$ je v Jordanově tvaru.

Podobně je-li A čtvercová matice nad \mathbb{T} , pak A má Jordanův kanonický tvar, pokud

pro f_A existuje Jordanův kanonický tvar.

Pozorování

A má jordanův kanonický tvar $\Leftrightarrow \exists$ matice v Jordanově tvaru, která je podobná matici A.

Tvrzení 2.9 (Mocnění matice v J. tvaru)

Buď \mathbb{T} těleso a $J = \operatorname{diag}(J_{\lambda_1,k_1},\ldots,J_{\lambda_s,k_s})$ matice v Jordanově tvaru.

Pozorování

 $J^n = \operatorname{diag}(J^m_{\lambda_1, k_1}, \dots, J^m_{\lambda_s, k_s}).$

Tvrzení 2.10 (Mocnění Jordanovy buňky příslušné k 0)

$$Pro \ m < k : J_{0,k}^{m} = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \text{diag} & \vdots \\ 0 \mid \mid 0 & \dots & 1 \\ 0 & 0 & 0 \\ \vdots & \vdots & \vdots \end{pmatrix}.$$

Pro $m \ge k$: $J_{0,k}^m = 0$.

Tvrzení 2.11 (Mocniny obecné Jordanovy buňky)

$$J_{\lambda,k}^m = (\lambda \cdot I_k + J_{0,k})^m \overset{Binomick\'{a} \ v\check{e}ta, \ komutativita \ I_k}{=} \sum_{i=0}^m \binom{m}{i} \lambda^i \cdot J_{0,k}^{m-i}.$$

Definice 2.11 (Jordanův řetízek, zobecněné vlastní vektory)

Buď $f: \mathbf{V} \to \mathbf{V}$ lineární operátor na VP \mathbf{V} , buď λ vlastní číslo f a buď $(\mathbf{V}_1, \dots, \mathbf{v}_k)$ posloupnost vektorů. Řekneme, že $(\mathbf{v}_1, \dots, \mathbf{v}_k)$ je Jordanův řetízek délky k příslušný vlastnímu číslu λ s počátkem \mathbf{v}_1 , pokud

$$\mathbf{v}_k \xrightarrow{f-\lambda \operatorname{id}} \mathbf{v}_{k-1} \xrightarrow{f-\lambda \operatorname{id}} \dots \xrightarrow{f-\lambda \operatorname{id}} \mathbf{v}_1 \xrightarrow{f-\lambda \operatorname{id}} \mathbf{o}.$$

Vektory $\mathbf{v}_1, \dots, \mathbf{v}_k$ se pak nazývají zobecněné vlastní vektory příslušné λ .

Tvrzení 2.12

 $\overline{Bud\ f: \mathbf{V}} \to \mathbf{V}$ lineární operátor na konečně generovaném $VP\ \mathbf{V}$ s bází $B = (\mathbf{v}_1, \dots, \mathbf{v}_k)$ pak $[f]_B^B = J_{\lambda,k} \Leftrightarrow B$ je Jordanův řetízek délky k příslušný k λ s počátkem ve \mathbf{v}_1 .

Tvrzení 2.13

Buď $f: \mathbf{V} \to \mathbf{V}$ lineární operátor na konečně generovaném $VP \mathbf{V}$ a B báze \mathbf{V} , pak

 $[f]_B^B = \operatorname{diag}(J_{\lambda_1,k_1},\ldots,J_{\lambda_s,k_s}), \text{ právě } když B = B_1\ldots B_s \text{ je spojením Jordanových řetíz-ků } B_1,\ldots,B_s, \text{ kde } B_i \text{ je délky } k_i \text{ a příslušný } \lambda_i.$

Dusledek

 $f: \mathbf{V} \to \mathbf{V}$ má Jordanův kanonický tvar právě tehdy, když existuje báze B prostoru \mathbf{V} , která je spojením Jordanových řetízků.

Věta 2.14

Buď \mathbb{T} těleso, $f: \mathbf{V} \to \mathbf{V}$ lineární operátor na $VP \mathbf{V}$ nad \mathbb{T} . Buďte B_1, \ldots, B_s jordanovy řetízky popořadě délek k_1, \ldots, k_s příslušné vlastním číslům $\lambda_1, \ldots, \lambda_s$. Předpokládejme, že $\forall \lambda \in \{\lambda_1, \ldots, \lambda_s\}$ je posloupnost počátků těch B_i , které jsou příslušné λ , LN. Pak už je spojení $B_1 \ldots B_s$ LN.

Důkaz

Označme $B_i = (\mathbf{v}_1^i, \dots, \mathbf{v}_{k_i}^i), (f - \lambda_i \operatorname{id})(\mathbf{v}_j^i) = \mathbf{v}_{j-1}^i (\mathbf{v}_0^i := \mathbf{o} \operatorname{kvůli značení}).$ $B := B_1 \dots B_s$. Indukce podle délky B, tj. podle $k = k_1 + k_2 + \dots + k_s$. Případ k = 1: Máme nutně s = 1, $B = B_1 = (\mathbf{v}_1^1)$, z předpokladu $\mathbf{v}_1^1 \neq \mathbf{o}$, tedy B je LN.

Pro k>1: BÚNO $\lambda_1=\lambda_2=\ldots=\lambda_r,\,\forall i>r:\lambda_i\neq\lambda_1.$ Uvažujme lineární kombinaci $a_1^1\mathbf{v}_1^1+\ldots+a_n^{a_{k_s}^s}\mathbf{v}_{k_s}^s=\mathbf{o}.$ Na ní aplikujeme $f-\lambda_1\operatorname{id}_{\mathbf{v}}:\mathbf{V}\to\mathbf{V}.$ \mathbf{o} zobrazí na \mathbf{o} , prvních \mathbf{v}_1^i pro $i\leq r$ zobrazí také na \mathbf{o} a $\mathbf{v}_j^i,$ kde $i\leq r$ a 1< j, zobrazí na $\mathbf{v}_{j-1}^i.$ Ostatní \mathbf{v}_i^j zobrazí na $\lambda_i\mathbf{v}_j^i+\mathbf{v}_{j-1}^i-\lambda_1\mathbf{v}_j^i.$ Tedy dostaneme lineární kombinaci vektorů z řetízků, ale ubrali jsme vektor řetízků příslušících λ_1 , tedy můžeme použít IP.

Takto se můžeme zbavit všech členů, kromě: $a_1^1\mathbf{v}_1^1 + a_1^2\mathbf{v}_1^2 + \ldots + a_1^r\mathbf{v}_1^r + \ldots + a_1^s\mathbf{v}_1^s$. BÚNO shlukneme jednotlivá vlastní čísla. Stejně tak shlukneme vlastní vektory příslušící jednomu vlastnímu číslu, tedy $\mathbf{w}_k = a_1^i\mathbf{v}_1^i + \ldots$ jsou vlastní vektory příslušné po dvou různým vlastním číslům (nebo \mathbf{o}). Podle věty výše jsou takové vlastní vektory nezávislé, tedy \mathbf{o} . Tudíž $a_i^j = 0$.

Věta 2.15 (Kritérium existence jordanova kanonického tvaru)

Buď $f: \mathbf{V} \to \mathbf{V}$ lineární operátor na prostoru dimenze n nad \mathbb{T} . Pak následující je ekvivalentní: 1. pro $f \exists$ Jordanův kanonický tvar a 2. f má $n = \dim \mathbf{V}$ vlastních čísel včetně algebraické násobnosti.

Důsledek

 $\mathbb{T} = \mathbb{C}$: Jordanův kanonický tvar vždy existuje (ze základní věty algebry).

3 Invariantní podprostory lineárního operátoru

Definice 3.1 (Invariantní podprostor)

Buď $f: \mathbf{V} \to \mathbf{V}$ lineární operátor na vektorovém prostoru \mathbf{V} nad \mathbb{T} . Pak řekneme, že $\mathbf{W} \leq \mathbf{V}$ je invariantním podprostorem operátoru f, pokud $\forall \mathbf{v} \in \mathbf{W}: f(\mathbf{v}) \in \mathcal{W}$ (jinými slovy $f(\mathbf{W}) \subseteq \mathbf{W}$).

Pozorování

 $id_{\mathbf{V}}$, a dokonce $id_{\mathbf{V}} \cdot \lambda$ mají (**V** má při těchto zobrazení) všechny podprostory invariantní.

Tvrzení 3.1

Buď $f: \mathbf{V} \to \mathbf{V}$ lineární operátor a buďte $\mathbf{U}, \mathbf{W} \leq \mathbf{V}$ invariantní podprostory f. Pak i $\mathbf{U} + \mathbf{V}$ a $\mathbf{U} \cap \mathbf{W}$ jsou invariantní podprostory f.

 $D\mathring{u}kaz$

Pro $\mathbf{U} + \mathbf{W}$: každý vektoru z $\mathbf{U} + \mathbf{W}$ je tvaru $\mathbf{u} + \mathbf{v}$. Potom $f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v}) \in \mathbf{U} + \mathbf{W}$.

 $\text{Pro } \mathbf{U} \cap \mathbf{W} \text{: Bud'} \, \mathbf{v} \in \mathbf{U} \cap \mathbf{W} \text{, tj. } \mathbf{v} \in \mathbf{U} \wedge \mathbf{v} \in \mathbf{W} \implies f(\mathbf{V}) \in \mathbf{U}, \mathbf{W} \text{, tj. } f(\mathbf{v}) \in \mathbf{U} \cap \mathbf{W}. \quad \Box$

Důsledek

LO spojení (konečně mnoha) Jordanových řetízků f je vždy invariantní podprostor f.

Tvrzení 3.2

Buď $f: \mathbf{V} \to \mathbf{V}$ lineární operátor na konečně dimenzionálním VP \mathbf{V} nad \mathbb{T} , buď $\mathbf{W} \leq \mathbf{V}$ invariantní podprostor a $g = f|_{\mathbf{W}}: \mathbf{W} \to \mathbf{W}$. Pak $p_q(\lambda)$ dělí $p_f(\lambda)$.

 $D\mathring{u}kaz$

Zvolíme bázi $C = (\mathbf{v}_1, \dots, \mathbf{v}_k)$ prostoru \mathbf{W} . C rozšíříme na bázi $B = (\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{v}_{k+1}, \dots, \mathbf{v}_n)$ prostoru \mathbf{V} . Uvažujme $G := [f]_B^B = ([f(\mathbf{v}_1)]_B|\dots|[f(\mathbf{v}_k)]_B|[f(\mathbf{v}_{k+1})]_B|\dots|[f(\mathbf{v}_n)]_B)$. Prvních k vektorů je z $[\mathbf{W}]_B$, tedy G je blokově horní trojúhelníková, přičemž levý horní blok je $A = [g]_C^C$. Tedy $p_f(\lambda) = \det(G - \lambda I_n) = \det(A = \lambda I_k) \cdot \det(F - \lambda I_{n-k}) = p_g(\lambda) \cdot \dots$ (Podle lemma o blokově trojúhelníkové matici. F je pravá dolní matice...)

Důsledek

Buď $f: \mathbf{V} \to \mathbf{V}$, \mathbf{V} konečně generovaný, $n = \dim \mathbf{V}$. $\mathbf{W} \leq \mathbf{V}$ invariantní podprostor, $g = f_{\mathbf{W}}: \mathbf{W} \to \mathbf{W}$, $m = \dim \mathbf{W} (\leq n)$. Má-li f n vlastních čísel včetně algebraické násobnosti, pak g má m vlastních čísel včetně algebraické násobnosti.

Důkaz (Stručně)

Ekvivalentně dokazujeme: $p_f(\lambda)$ je součinem lineárních polynomů, tedy $p_g(\lambda)$ musí být také součinem lineárních polynomů (viz Algebra), jelikož dělí $p_f(\lambda)$.

Tvrzení 3.3

Buď \mathbf{V} VP a $\mathbf{W} \leq \mathbf{V}$ podprostor. Pak jsou-li $f,g:\mathbf{V} \to \mathbf{V}$ takové, že \mathbf{W} je invariantním podprostorem f i g, pak \mathbf{W} je invariantním podprostorem f+g. Je-li \mathbf{W} invariantním podprostorem f a $t \in \mathbb{T}$, pak \mathbf{W} je invariantním podprostorem $t \cdot f$.

Důkaz

 $(f+g)(\mathbf{w})=f(\mathbf{w})+g(\mathbf{w})\in\mathbf{W}$, tj. \mathbf{W} je invariantním podprostorem f+g. Druhá část je analogicky.

Důsledek

Buď $f: \mathbf{V} \to \mathbf{V}$ lineární operátor, $\lambda \in \mathbb{T}$ a $g = f - \lambda \cdot \mathrm{id}_{\mathbf{V}}$. Pak f a g mají stejnou množinu invariantních podprostorů.

Důkaz (Kritérium existence jordanova kanonického tvaru)

 \iff : (Nebude u zkoušky?) Položme $n=\dim \mathbf{V}$. Následuje indukce podle n: n=1 jasné, n>1: Vezměme $\lambda\in\mathbb{T}$ vlastní číslo f (z předpokladů druhé části věty existuje) a položme $g=f-\lambda\operatorname{id}_{\mathbf{V}}$. pak máme podprostory g (tedy i f): Ker g, dim Ker g=k>0, Im g, dim Im g=n-k=:m< n. $h:=f|_{\mathbf{W}}$ splňuje předpoklad, tedy podle IP má bázi vzniklou spojením Jordanových řetízků.

Máme tedy řetízky h příslušné nějakému vlastnímu číslu λ , řekněme, že jich je r. Potřebujeme doplnit vektory do k. Doplníme je tedy dalšími vlastními vektory. Pak vše jen dáme dohromady a ověříme, že je to báze.

4 Cayleyho-Hamiltonova věta

Poznámka

Buď **V** VP nad **T** a $f: \mathbf{V} \to \mathbf{V}$ lineární operátor. Máme VP $Hom(\mathbf{V}, \mathbf{V})$ nad **T**, jehož prvky jsou lineární operátory: $f, g \in Hom(\mathbf{V}, \mathbf{V}) \implies f + g: \mathbf{V} \to \mathbf{V}, \mathbf{v} \mapsto f(\mathbf{v}) + g(\mathbf{v})$ a $f \in Hom(\mathbf{V}, \mathbf{V}), t \in \mathbf{T} \implies tf: \mathbf{V} \to \mathbf{V}, \mathbf{v} \mapsto t \cdot f(\mathbf{v}), \mathbf{o}: \mathbf{V} \to \mathbf{V}, \mathbf{v} \mapsto \mathbf{o}$.

Je-li $g(x) = \sum c_i x^i$ polynom, definujeme operátor $g(f) = \sum c_i \cdot f^i : \mathbf{V} \to \mathbf{V}, \mathbf{v} \mapsto \sum c_i f^i(\mathbf{v}).$

Je-li dim $\mathbf{V} = n$, pak dim $Hom(\mathbf{V}, \mathbf{V}) = n^2$. (Zvolíme-li $B(\mathbf{u}_1, \dots, \mathbf{u}_n)$ bázi \mathbf{V} , dostaneme izomofrismus: $Hom(\mathbf{V}, \mathbf{V}) \to \mathbb{T}^{n \times n}, f \mapsto [f]_B^B$).

Pozorování

Jsou-li g(x), h(x) polynomy nad $\mathbb{T}, f: \mathbf{V} \to \mathbf{V}$ operátor a je-li $h(x) = g(x) \cdot r(x)$, pak $h(f) = g(f) \circ r(f)$ a $h(f), g(f), r(f) : \mathbf{V} \to \mathbf{V}$.

 $D\mathring{u}kaz$

 $g(x) = \sum c_i x^i$, $r(x) = d_j x^j$, c_i , $d_j \in \mathbb{T}$, potom $h(x) = g(x) \cdot r(x) = \sum_{k=0}^{d+l} (\sum_{i+j=k} c_i d_j) \cdot x^k$. Dosadí se h(f) a $g(f) \cdot r(f)$ a vyjdou stejné operátory.

Věta 4.1 (Cayleyho-Hamiltonova)

 \mathbb{T} je těleso, \mathbf{V} konečně generovaný VP nad \mathbb{T} a $f: \mathbf{V} \to \mathbf{V}$ lineární operátor. Pak

$$p_f(f) = 0.$$

Důkaz

Budeme požadovat, aby p_f byl součinem lineárních polynomů, tj. $p_f(\lambda) = (\lambda_1 - \lambda)^{k_1} \cdot \ldots \cdot (\lambda_r - \lambda)^{k_r}$, $k_i \in \mathbb{N}$, $\lambda_1, \ldots, \lambda_r \in \mathbb{T}$ (tj. aby měl f Jordanův kanonický tvar). V případě potřeby budeme pracovat nad rozkladovým tělesem, viz Algebra.

Buď B báze vzniklá spojením Jordanových řetízků, tj. $[f]_B^B = \operatorname{diag}(J_{\lambda_1,k_1},\ldots,J_{\lambda_r,k_r}),$ $p_f(\lambda) = (\lambda_1 - \lambda)^{k_1} \cdot \ldots \cdot (\lambda_r - \lambda)^{k_r}$. Všimněme si, že z mocnění Jordanových buněk plyne, že $(J_{\lambda_i,k_i} - \lambda_i \cdot I_{k_i})^{k_i} = 0_{k_i \times k_i}$, tedy $p_f(J_{\lambda_i,k_i}) = o_{k_i \times k_i}$. Tedy $[p_f(f)]_B^B = p_f([f_B^B]) = 0_{r \times r}$, jelikož mocnění a násobení blokově diagonální matice odpovídá mocnění a násobení bloků. \square

Poznámka

Dále se pokračovalo vysvětlováním LA v Googlu;)

5 Unitární diagonalizovatelnost

Definice 5.1

Buď $A \in \mathbb{C}^{n \times n}$ čtvercová komplexní matice řádu n. Pak A je unitárně diagonalizovatelná, pokud existuje ortonormální báze B prostoru \mathbb{C}^n taková, že $[f]_B^B = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ je diagonální $(\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ jsou vlastní čísla).

Definice 5.2

Buď $A \in \mathbb{R}^{n \times n}$ čtvercová reálná matice řádu n. Pak A je ortogonálně diagonalizovatelná, pokud existuje ortonormální báze B prostoru \mathbb{R}^n taková, že $[f]_B^B = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ je

diagonální $(\lambda_1, \ldots, \lambda_n \in \mathbb{R} \text{ jsou vlastní čísla}).$

Definice 5.3

Matice $X,Y\in\mathbb{C}^{n\times n}$ jsou unitárně podobné, pokud $\exists U$ unitární matice taková, že $Y=U^*XU(=U^{-1}XU).$

Definice 5.4

Matice $X,Y\in\mathbb{R}^{n\times n}$ jsou ortogonálně podobné, pokud $\exists U$ ortogonální matice taková, že $Y=U^*XU(=U^{-1}XU).$

Tvrzení 5.1

Buď $A \in \mathbb{C}^{n \times n}$. Pak následující je ekvivalentní: 1. A je unitárně diagonalizovatelná. 2. \mathbb{C}^n má ortonormální bázi složenou z vlastních vektorů A. 3. A je unitárně podobná diagonální matici (v tom případě jsou na diagonále takové diagonální matice vlastní čísla A, včetně násobnosti).

Důkaz Cvičení / opakování.

Věta 5.2

Buď $A \in \mathbb{C}^{n \times n}$. Pak NTJE: 1. A je unitárně diagonalizovatelná, 2. Platí současně, že A má n vlastních čísel včetně algebraické násobnosti (pro \mathbb{C} splněno automaticky), geometrická násobnost každého čísla je rovna algebraické a \forall dvojici různých vlastních čísel λ a μ , $\lambda \neq \mu$, platí, že $M_{\lambda} \perp M_{\mu}$.

 $D\mathring{u}kaz$

 $1 \Longrightarrow 2$: První dvě vlastnosti plynou z dřívější věty o diagonalizovatelnosti. Navíc z této věty víme, že ortonormální báze B z vlastních vektorů A, kterou nám dává předpoklad 1, je tvaru $B = B_1 \ldots B_k$, kde B_i je (nutně ortonormální) báze $M_{\lambda_i}, \lambda_1, \ldots, \lambda_k$ jsou všechna po 2 různá vlastní čísla A. Navíc $B_i \perp B_j \forall i \neq j$, tj. $M_{\lambda_i} = \text{LO}\{B_i\} \perp \text{LO}\{B_j\} = M_{\lambda_j}$.

 $2 \implies 1$: At $\lambda_1, \ldots, \lambda_k$ jsou všechna vlastní čísla A, po 2 různá. Zvolíme $\forall i$ ortonormální bázi B_i podprostoru M_{λ_i} , položíme $B = B_1 \ldots B_k \implies B$ je ortonormální báze (je to báze ze zmiňované věty), $[f_A]_B^B$ je diagonální.

Pozorování Buď $x\in\mathbb{C}^m,y\in\mathbb{C}^n,A\in C^{m\times n}$. Pak platí $x\cdot(Ay)=(A^*x)\cdot y$. (· je skalární součin.) Důkaz $x\cdot Ay=x^*(Ay)=(x^*A^{**})y=(A^*x)^*y=A^*x\cdot y.$

6 Spektrální věty

Definice 6.1 (Normální matice)

 $A \in \mathbb{C}^{n \times n}$ je normální, pokud $A^*A = AA^*$.

Poznámka (Vlastnosti)

A normální, $t \in \mathbb{C} \implies t \cdot A$ normální, A^* normální.

Normální jsou matice: diagonální, Hermitovské, Antihermitovské, Unitární, ...

Tvrzení 6.1

Buď $A \in \mathbb{C}^{n \times n}$ a $\lambda \in \mathbb{C}$. Pak λ je vlastní číslo $A \Leftrightarrow \overline{\lambda}$ je vlastní číslo A^* .

 $D\mathring{u}kaz$

 λ je vlastní číslo $A \Leftrightarrow (A - \lambda I_n)$ není invertibilní $\Leftrightarrow (A - \lambda I_n)^* = A^* - \overline{\lambda} I_n$ není invertibilní $\Leftrightarrow \overline{\lambda}$ je vlastní číslo A^* .

Tvrzení 6.2

Buď A normální komplexní matice řádu n. Pak

1) $\forall t \in \mathbb{C} : A - t \cdot I_n \text{ je normální.}$

2) $\forall U \ unit\'{a}rn\'{i} : UAU^* \ je \ norm\'{a}ln\'{i}.$

 $D\mathring{u}kaz$

$$1)(A - t \cdot I_n)^* (A - t \cdot I_n) = (A^* - \overline{t} \cdot I_n)(A - t \cdot I_n) = A^* A - t \cdot A^* - \overline{t} \cdot A + |t|^2 I_n = \dots = (A - t \cdot I_n)(A - t \cdot I_n)^*.$$

$$2)(UAU^*)^*(UAU^*) = (UA^*U^*)(UAU^*) = UA^*U^*UAU^* = UA^*AAU^* = UAA^*U^* = \dots = (UAU^*)(UAU^*)$$

Tvrzení 6.3

 $\textit{Je-li A normální řádu n, pak} \ \forall \mathbf{v} \in \mathbb{C}^n : ||A \cdot \mathbf{v}|| = ||A^*\mathbf{v}||.$

 $D\mathring{u}kaz$

$$||A\mathbf{v}||^2 = A\mathbf{v} \cdot A\mathbf{v} = (A\mathbf{v})^*(A\mathbf{v}) = \mathbf{v}^*A^*A\mathbf{v} = \mathbf{v}^*AA^*\mathbf{v} = (A^*\mathbf{v})^*(A^*\mathbf{v}) = A^*\mathbf{v} \cdot A^*\mathbf{v} = ||A^*\mathbf{v}||^2.$$

Poznámka

 $\forall \mathbf{v} \in \mathbb{C}^n : ||A \cdot \mathbf{v}|| = ||A^* \mathbf{v}||$ je ekvivalentní normalitě.

Tvrzení 6.4

Buď $A \in \mathbb{C}^{n \times n}$ normální, buď $\lambda \in \mathbb{C}$ a $\mathbf{v} \in \mathbb{C}^n$. Pak

$$A\mathbf{v} = \lambda \mathbf{v} \Leftrightarrow A^* \mathbf{v} = \overline{\lambda} \mathbf{v}$$

čili množiny vlastních vektorů A a A* jsou stejné.

Důkaz

$$A\mathbf{v} = \lambda \mathbf{v} \Leftrightarrow (A - \lambda I_n) \cdot \mathbf{v} = \mathbf{o} \Leftrightarrow ||(A - \lambda I_n) \cdot \mathbf{v}|| = 0 \Leftrightarrow ||(A - \lambda I_n)^* \mathbf{v}|| = 0 \Leftrightarrow$$
$$\Leftrightarrow (A - \lambda I_n)^* \mathbf{v} = \mathbf{o} \Leftrightarrow (A^* - \overline{\lambda} I_n) \mathbf{v} = \mathbf{o} \Leftrightarrow A^* \mathbf{v} = \overline{\lambda} \mathbf{v}.$$

Věta 6.5 (Spektrální věta pro normální matice)

Buď $A \in \mathbb{C}^{n \times n}$. Pak A je normální $\Leftrightarrow A$ je unitárně diagonalizovatelná.

 \Box Důkaz

 \Longleftarrow : Buď tedy $A=UDU^*,\,D$ diagonální. PakD je normální a A je normální podle tvrzení výše bod 2.

 \Longrightarrow : Důkaz indukcí podle n. n=1: A je diagonální a není co dokazovat. n>1: Buď $A\in\mathbb{C}^{n\times n}$ normální a λ vlastní číslo A a $\mathbf{o}\neq\mathbf{v}_1\in\mathbb{C}^n$ příslušný vlastní vektor. BÚNO $||\mathbf{v}_1||=1$, můžeme doplnit na ortonormální bázi $B=(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n)$ prostoru \mathbb{C}^n . Označme $X=[f_A]_B^B$, tj. X je unitárně podobná A, speciálně normální. X má v prvním sloupci i řádku první prvek λ , jinak 0 (jelikož $\mathbf{v}_1\cdot A\mathbf{v}_i=A^*\mathbf{v}_1\cdot\mathbf{v}_i=\lambda(\mathbf{v}_1\cdot\mathbf{v}_i)=\lambda\cdot 0=0$). Tedy na její minor použijeme IP, tj. A je unitárně diagonalizovatelná.

6.1 Přehled spektrálních vět

Poznámka

V10.13: A normální $\Leftrightarrow A$ unitárně diagonalizovatelná.

V10.15: A Hermitovská \Leftrightarrow A unitárně diagonalizovatelná a vlastní čísla jsou reálná.

Důsl10.16: A symetrická \Leftrightarrow A ortogonálně diagonalizovatelná.

V10.20: A pozitivně definitní $\Leftrightarrow A$ unitárně diagonalizovatelná a vlastní čísla jsou kladná reálná.

V10.20: A pozitivně semidefinitní $\Leftrightarrow A$ unitárně diagonalizovatelná a vlastní čísla jsou

nezáporná reálná.

V10.23: A unitární \Leftrightarrow A unitárně diagonalizovatelná a $\forall \lambda$ vlastní číslo platí $|\lambda| = 1$.

Pozorování

Buď $A \in \mathbb{C}^{m \times n}$ libovolná matice, pak $B = A^*A$ je vždy pozitivně semidefinitní.

 $D\mathring{u}kaz$

$$\forall \mathbf{v} \in \mathbb{C}^n : \mathbf{v}^* B \mathbf{v} = ||A\mathbf{v}||^2 \ge 0.$$

Tvrzení 6.6

Tvrdí to samé, co předchozí pozorování plus: Každá pozitivně semidefinitní matice $B \in \mathbb{C}^{n \times n}$ je tvaru $B = A^*A$ pro nějakou matici $A = \mathbb{C}^{n \times n}$. Je-li B pozitivně definitní, je nutně A regulární.

 \Box $D\mathring{u}kaz$

Víme ze spektrálních vět, že $B = UOU^*$, kde U je unitární, $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Označíme $\sqrt{D} := \operatorname{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n})$. Pak $B = (U\sqrt{D}^*)(\sqrt{D}U^*) = A^*A$.

Je-liB pozitivně definitní, pak $\lambda_i>0.$ Tj. $D,\,\sqrt{D}$ jsou regulární, tím pádem je $A=\sqrt{D}U^*$ regulární. \qed

Tvrzení 6.7

Ortogonální operátor $f: \mathbb{R} \to \mathbb{R}$ je vždy buď reflexe ($\det[f]_B^B = -1$ pro libovolnou bázi) nebo otočení ($\det[f]_B^B = 1$ pro libovolnou bázi).

 $D\mathring{u}kaz$

Je-li f_A ortogonální, je A ortogonální matice (speciálně je A unitární nad \mathbb{C}), tedy $A = U \cdot \operatorname{diag}(\lambda_1, \lambda_2) \cdot U^*$, U unitární, $|\lambda_1| = |\lambda_2| = 1$. Tedy buď $\lambda_1, \lambda_2 \in \mathbb{R}$, potom λ_1, λ_2 mají různá znaménka, pak je to reflexe, když $\lambda_1 = \lambda_2$, pak je to otočení o 0 nebo π .

Nebo $\lambda_1 = \cos \varphi + i \sin \varphi$ a $\lambda_2 = \cos \varphi - i \sin \varphi$ a vlastní vektory \mathbf{v} a $\mathbf{v}_2 = \overline{\mathbf{v}}$. Vezmeme bázi $B = (\frac{1}{\sqrt{2}}(\mathbf{v} + \overline{\mathbf{v}}), \frac{i}{\sqrt{2}}(\mathbf{v} - \overline{\mathbf{v}}))$. Tato báze je ortonormální a $[f_A]_B^B$ je matice otočení. \square

Poznámka

 $V \mathbb{R}^3$ máme minimálně 1 reálný kořen, zbytek je jako v předchozím, tedy v \mathbb{R}^3 jsou to zase rotace a reflexe, tentokrát však i rotace s reflexí.

6.2 Singulární rozklad matice nad \mathbb{R} nebo \mathbb{C} (SVD)

Věta 6.8

Komplexní verze: Buď A komplexní matice typu $m \times n$ a hodnosti r. Pak existují ortonormální báze $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ prostoru \mathbb{C}^n a $C = (\mathbf{u}_1, \dots, \mathbf{u}_m)$ prostoru \mathbb{C}^m a $\sigma_1, \dots, \sigma_r$ kladná reálná čísla taková, že

$$[f_A]_C^B = (\operatorname{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0)|0).$$

Reálná verze: Buď A reálná matice typu $m \times n$ a hodnosti r. Pak existují ortonormální báze $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ prostoru \mathbb{R}^n a $C = (\mathbf{u}_1, \dots, \mathbf{u}_m)$ prostoru \mathbb{R}^m a $\sigma_1, ..., \sigma_r$ kladná reálná čísla taková, že

$$[f_A]_C^B = (\operatorname{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0)|0).$$

Maticové verze: Viz skripta.

Pozorování

Buď $f: \mathbb{C}^n \to \mathbb{C}^n$ lineární operátor a B ortonormální báze \mathbb{C}^n a C ortonormální báze \mathbb{C}^m . Uvažujme $f_{A^*}: \mathbb{C}^m \to \mathbb{C}^n$. Pak $[f_{A^*}]_B^C = ([f_A]_C^B)^*$.

Důkaz

$$A = [f_A]_K^K = [id]_K^C [f_A]_C^B [id]_B^K,$$

$$A^* = [f_{A^*}]_K^K = [id]_K^B [f_{A^*}]_B^C [id]_C^K.$$

Jelikož jsou báze ortogonální, tak matice přechodu jsou k sobě hermitovsky sdružené: $[f_A]_C^B = U^*AV$, $[f_{A^*}] = V^*A^*U = (U^*AV)^* = [f_A]_C^B$.

Definice 6.2

Buď $A \in 2C^{m \times n}$. Pak singulárními hodnotami matice A rozumíme druhé odmocniny vlastních čísel matice A^*A .

Důkaz (Věty výše)

Označme $\operatorname{diag}_{m\times n}(\sigma_1,\ldots,\sigma_r)=(\operatorname{diag}(\sigma_1,\ldots,\sigma_r,0,\ldots,0)|0).$ Uvažujme vlastní čísla $\lambda_1\geq \lambda_2\geq \ldots\geq \lambda_r>0=\lambda_{r+1}=\lambda_n$ matice A^*A řádu n. Za bázi $B=(\mathbf{v}_1,\ldots,\mathbf{v}_n)$ zvolíme ortonormální bázi vlastních vektorů A^*A , kde \mathbf{v}_i je příslušný $\lambda_i.$ Tedy $[f_{A^*A}]_B^B=\operatorname{diag}(\lambda_1,\ldots,\lambda_r,0,\ldots,0).$

Pro $i \in [r]$ položíme $\sigma_i = \sqrt{\lambda_i}$. Aby mohl platit závěr věty, musí být $\forall i \in [r] : A\mathbf{v}_i = \sigma_i\mathbf{u}_i$. Čili pro $i \in [r]$ položíme $\mathbf{u}_i = \frac{1}{\sigma_i}A\mathbf{v}_i$. Ověříme, že $(\mathbf{u}_1, \dots, \mathbf{u}_r)$ je ortonormální:

$$\mathbf{u}_i \cdot \mathbf{u}_j = (\frac{1}{\sigma_i} A \mathbf{v}_i) \cdot (\frac{1}{\sigma_j} A \mathbf{v}_j) = \frac{1}{\sigma_i \sigma_j} (A \mathbf{v}_i \cdot A \mathbf{v}_j) = \frac{1}{\sigma_i \sigma_j} ((A^* A) \mathbf{v}_i \cdot \mathbf{v}_j) = \frac{1}{\sigma_i \sigma_j} (\lambda_i \mathbf{v}_i \cdot \mathbf{v}_j).$$

Jelikož B je ortogonální, tak výsledkem tohoto bude nula, pokud $i \neq j$, a $\frac{\lambda_i}{\sigma_i^2} = 1$, pokud i = j. Následně doplníme $(\mathbf{u}_1, \dots, \mathbf{u}_r)$ na ortonormální bázi $C = (\mathbf{u}_1, \dots, \mathbf{u}_m)$ prostoru \mathbb{C}^m . Tedy

pro
$$i \leq r : f_A(\mathbf{v}_i) = \sigma_i \mathbf{u}_i$$
. Pro $i > r : [f_A(\mathbf{v}_i)]_C = 0$. Tedy $[f_A]_C^B = \operatorname{diag}_{m \times n}(\sigma_1, \dots, \sigma_r)$. \square

Pozorování

Je-li A normální, pak singulární hodnoty jsou $\sigma_i = |\mu_i|$, kde μ_1, \ldots, μ_r jsou nenulová vlastní čísla A. Je-li navíc A pozitivně definitní, pak jsou toto všechna vlastní čísla.

6.3 Aplikace SVD

Definice 6.3 (Spektrální norma matice)

Mějme $A \in \mathbb{C}^{m \times n}$, $f_A : \mathbb{C}^n \to \mathbb{C}^m$. Potom

$$||A|| := \max \left\{ \frac{||A\mathbf{x}||}{||\mathbf{x}||} |\mathbf{o} \neq \mathbf{x} \in \mathbb{C}^n \setminus {\mathbf{o}} \right\} = \max \{||A\mathbf{y}|| : \mathbf{y} \in \mathbb{C}^n, ||\mathbf{y}|| = 1\}$$

se nazývá spektrální norma matice.

Tvrzení 6.9

Buď $A \in \mathbb{C}^{m \times n}$ (nebo $\mathbb{R}^{m \times n}$). Pak $\forall \mathbf{o} \neq \mathbf{x} \in \mathbb{C}^n : ||A\mathbf{x}|| \leq \sigma_1 ||\mathbf{x}||$, kde σ_1 je největší singulární hodnota A, rovnost nastane přesně pro vlastní vektory \mathbf{x} matice A^*A příslušné σ_1^2 . Speciálně $||A|| = \sigma_1$.

 $D\mathring{u}kaz$

Buď $\mathbf{x} \neq \mathbf{0}$, položme $\mathbf{y} = \frac{\mathbf{x}}{||\mathbf{x}||}$, $[f_A]_C^B = \text{diag}(\sigma_1, \dots, \sigma_r)$, $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r > 0$, B, C ortonormální. Pak

$$||A\mathbf{y}|| = ||[A]C^B \cdot [y]_B|| = ||\sigma_1 y_1 + \ldots + \sigma_r y_r|| \le ||\sigma_1 y_1 + \ldots + \sigma_1 y_r|| = \sigma_1 ||\mathbf{y}||.$$

_

7 Bilineární a kvadratické formy

Definice 7.1 (Bilineární forma)

Buď V vektorový prostor nad tělesem \mathbb{T} . Bilineární formou na V rozumíme zobrazení $f:V\times V\to \mathbb{T}$, které splňuje:

$$(BL1)\forall \mathbf{v}, \mathbf{w} \in \mathbf{V} \ \forall t \in \mathbb{T} : f(t\mathbf{v}, \mathbf{w}) = t \cdot f(\mathbf{v}, \mathbf{w}) = f(\mathbf{v}, t\mathbf{w}),$$

$$(BL2)\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{W} : f(\mathbf{u} + \mathbf{v}, \mathbf{w}) = f(\mathbf{u}, \mathbf{w}) + f(\mathbf{v}, \mathbf{w}) \wedge f(\mathbf{w}, \mathbf{u} + \mathbf{v}) = f(\mathbf{w}, \mathbf{u}) + f(\mathbf{w}, \mathbf{v}).$$

Definice 7.2 (Kvadratická forma)

Buď **V** vektorový prostor nad tělesem \mathbb{T} a $f: \mathbf{V} \times \mathbf{V} \to \mathbb{T}$ bilineární forma. Pak kvadratickou formou na **V** vytvořenou bilineární formou f (též příslušnou formě f) rozumíme zobrazení $f_2: \mathbf{V} \to \mathbb{T}, \mathbf{v} \mapsto f(\mathbf{v}, \mathbf{v})$

7.1 Matice bilineární formy

Definice 7.3

Buď **V** konečně generovaný vektorový prostor nad \mathbb{T} s bází $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$. Buď $f : \mathbf{V} \times \mathbf{V} \to \mathbb{T}$ bilineární forma. Buď $\mathbf{u} = x_1\mathbf{v}_1 + \dots + x_n\mathbf{v}_n$, $\mathbf{w} = y_1\mathbf{v}_1 + \dots + y_n\mathbf{v}_n$. Potom $f(\mathbf{u}, \mathbf{w})$ lze vyjádřit maticí $(\sum_{i=1}^n a_{ij}x_iy_j)$. Této matici říkáme matice bilineární formy f vzhledem k bázi B. $([f]_B = (f(\mathbf{v}_i, \mathbf{v}_j))_{i,j})$.

Tvrzení 7.1

Buď $f: \mathbf{V} \times \mathbf{V} \to \mathbb{T}$ bilineární forma na konečně generovaném vektorovém prostoru \mathbf{V} nad \mathbb{T} a buď $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ báze \mathbf{V} . Pak

1)
$$\forall \mathbf{u}, \mathbf{w} \in \mathbf{V} : f(\mathbf{u}, \mathbf{w}) = [\mathbf{u}]_B^T [f]_B [\mathbf{w}]_B,$$

$$(2)A \in \mathbb{T}^{n \times n} \wedge \forall \mathbf{u}, \mathbf{w} \in \mathbf{V} : f(\mathbf{u}, \mathbf{w}) = [\mathbf{u}]_B^T A[\mathbf{v}]_B \implies A = [f]_B.$$

 $D\mathring{u}kaz$

Viz přednáška.

Tvrzení 7.2

 \mathbf{V} konečně generovaný VP s bází $B=(\mathbf{v}_1,\ldots,\mathbf{v}_n)$. Je-li $A\in\mathbb{T}^{n\times n},\ n=\dim\mathbf{V},\ pak$ zobrazení:

$$f: \mathbf{V} \times \mathbf{V} \to \mathbb{T}, (\mathbf{u}, \mathbf{w}) \mapsto [\mathbf{u}]_B^T A[\mathbf{w}]_B$$

je bilineární formou a $[f]_B = A$.

 $D\mathring{u}kaz$

To, že f je bilineární, plyne z vlastností maticového násobení.

Poznámka (Terminologie)

Rozepsání bilineární formy na $\sum_{i,j=1}^n a_{ij} x_i y_i$ se nazývá analytické vyjádření f.

Tvrzení 7.3

Buď \mathbf{V} konečně generovaný VP s bázemi B a C. Buď $f: \mathbf{V} \times \mathbf{V} \to \mathbb{T}$ bilineární forma. Potom

$$[f]_C = P^T[f]_B P$$
, $kde\ P = [id]_B^C$.

Důkaz

Buďte $\mathbf{x}, \mathbf{y} \in \mathbf{V}$. Pak $[\mathbf{x}]_B = [\mathrm{id}]_B^C[\mathbf{x}]_C = P[\mathbf{x}]_C$, $[\mathbf{y}]_B = [\mathrm{id}]_B^C[\mathbf{y}]_C = P[\mathbf{y}]_C$. Odtud

$$(P[\mathbf{x}]_B)^T[f]_B(P[\mathbf{y}]_C) = [\mathbf{x}]_B^T(P^T[f]_BP)[\mathbf{y}]_C[\mathbf{x}]_B^T[f]_B[\mathbf{y}]_B = f(\mathbf{x}, \mathbf{y}) = [\mathbf{x}]_C^T[f]_C[\mathbf{y}]_C.$$

Jelikož toto platí $\forall \mathbf{x}, \mathbf{y} \in \mathbf{V}$, tak z jednoznačnosti matice f vzhledem k C dostaneme $[f]_C = P^T[f]_B P$.

7.2 Symetrické a antisymetrické bilineární formy

Definice 7.4

Buď $f: \mathbf{V} \times \mathbf{V} \to \mathbb{T}$ bilineární forma na libovolném VP nad \mathbb{T} . Řekneme, že

- f je symetrická, pokud $\forall \mathbf{x}, \mathbf{y} \in \mathbf{V} : f(\mathbf{x}, \mathbf{y}) = f(\mathbf{y}, \mathbf{x}).$
- f je antisymetrická, pokud $\forall \mathbf{x}, \mathbf{y} \in \mathbf{V} : f(\mathbf{x}, \mathbf{y}) = -f(\mathbf{y}, \mathbf{x}).$

Tvrzení 7.4

Buď \mathbf{V} konečně generovaný VP s bází B, buď $f: \mathbf{V} \times \mathbf{V} \to \mathbb{T}$ bilineární forma. Pak 1) f je symetrická $\Leftrightarrow [f]_B$ je symetrická matice, 2) f je antisymetrická $\Leftrightarrow [f]_B$ je antisymetrická matice.

 $D\mathring{u}kaz$

1)
$$\Longrightarrow$$
: f symetrická \Longrightarrow $[f]_B^T = (f(\mathbf{v}_i, \mathbf{v}_j))_{n \times n}^T = (f(\mathbf{v}_j, \mathbf{v}_i))_{n \times n} = (f(\mathbf{v}_i, \mathbf{v}_j))_{n \times n} = [f]_B$.

 $\Leftarrow: [f]_B$ symetrická matice $\implies f(\mathbf{y}, \mathbf{x}) = (\mathbf{y})_B^T[f]_B[\mathbf{x}]_B = ([\mathbf{y}]_B^T[f]_B[\mathbf{x}]_B)^T = [\mathbf{x}]_B^T[f]_B^T[\mathbf{y}] = f(\mathbf{x}, \mathbf{y}).$

2) analogicky.

Tvrzení 7.5

Buď \mathbf{V} vektorový prostor nad tělesem charakteristiky $\neq 2$. Pak každá bilineární forma $f: \mathbf{V} \times \mathbf{V}$ lze jednoznačně zapsat jako $f = f_s + f_a$, kde $f_s: \mathbf{V} \times \mathbf{V} \to \mathbb{T}$ je symetrická a $f_a: \mathbf{V} \times \mathbf{V} \to \mathbb{T}$ je antisymetrická.

Navíc
$$f_s(\mathbf{x}, \mathbf{y}) = \frac{f(\mathbf{x}, \mathbf{y}) + f(\mathbf{y}, \mathbf{x})}{2} \ a \ f_a(\mathbf{x}, \mathbf{y}) = \frac{f(\mathbf{x}, \mathbf{y}) - f(\mathbf{y}, \mathbf{x})}{2}.$$

 $D\mathring{u}kaz$

Jednoduše $\forall \mathbf{x}, \mathbf{y} \in \mathbf{V} : f(\mathbf{x}, \mathbf{y}) = f_s(\mathbf{x}, \mathbf{y}) + f_a(\mathbf{x}, \mathbf{y}), f_s(\mathbf{x}, \mathbf{y}) = f_s(\mathbf{y}, \mathbf{x}), f_a(\mathbf{x}, \mathbf{y}) = -f_a(\mathbf{y}, \mathbf{x})$ pro f_s, f_a jako ve znění.

Kdyby
$$f = f_s + f_a = g_s + g_a$$
, pak $h := f_s - g_s = g_a - f_a \implies \forall \mathbf{x}, \mathbf{y} : h(\mathbf{x}, \mathbf{y}) = h(\mathbf{y}, \mathbf{x}) = -h(\mathbf{x}, \mathbf{y}) \implies \forall \mathbf{x}, \mathbf{y} : 2h(\mathbf{x}, \mathbf{y}) = 0 \implies \forall \mathbf{x}, \mathbf{y} : h(\mathbf{x}, \mathbf{y}) = 0.$ Tedy $f_s = g_s$, $f_a = g_a$.

Pozorování

 \mathbf{V} konečně generovaný s bází $B, f, g : \mathbf{V} \times \mathbf{V} \to \mathbb{T}$ bilineární, $t \in \mathbb{T}$. Pak $[f+g]_B = [f]_B + [g]_B$, $[tf]_B = t[f]_b$.

7.3 Kvadratické formy

Tvrzení 7.6

Buď \mathbb{T} těleso charakteristiky $\neq 2$. Máme-li bilineární formy $f, g: \mathbf{V} \times \mathbf{V} \to \mathbb{T}$, \mathbf{V} vektorový prostor nad \mathbb{T} , pak $f_2 = g_2 \Leftrightarrow f_s = g_s$. $(f_2, g_2: \mathbf{V} \to \mathbb{T}.)$

Navíc platí $\forall \mathbf{x}, \mathbf{y} \in \mathbf{V} : f_s(\mathbf{x}, \mathbf{y}) = \frac{1}{2} (f_2(\mathbf{x} + \mathbf{y}) - f_2(\mathbf{x}) - f_2(\mathbf{y})).$

□ Důkaz

 $\Leftarrow=:$ Předpokládejme, že $f_s=g_s$, kde $f=f_s+f_a$, $g=g_s+g_a$. Pak $\forall \mathbf{x} \in \mathbf{V}: f_2(\mathbf{x})=f(\mathbf{x},\mathbf{x})+f_a(\mathbf{x},\mathbf{x})=f(\mathbf{x},\mathbf{x})=g_s(\mathbf{x},\mathbf{x})=\ldots=g_2(\mathbf{x})$, jelikož antisymetrie nám říká, že $f_a(\mathbf{x},\mathbf{x})=-f_a(\mathbf{x},\mathbf{x})$.

 \Longrightarrow : plyne z toho, že $\forall \mathbf{x},\mathbf{y}\in\mathbf{V}$ platí

$$\frac{1}{2}(f_2(\mathbf{x} + \mathbf{y}) - f_2(\mathbf{x}) - f_2(\mathbf{y})) = \frac{1}{2}(f_s(\mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y}) - f_s(\mathbf{x}, \mathbf{x}) - f_s(\mathbf{y}, \mathbf{y})) =$$

$$=\frac{1}{2}(f_s(\mathbf{x},\mathbf{x})+f_s(\mathbf{x},\mathbf{y})+f_s(\mathbf{y},\mathbf{x})+f_s(\mathbf{y},\mathbf{y})-f_s(\mathbf{x},\mathbf{x})-f_s(\mathbf{y},\mathbf{y}))=\frac{1}{2}(f_s(\mathbf{x},\mathbf{y})+f_s(\mathbf{y},\mathbf{x}))=f_s(\mathbf{x},\mathbf{y}).$$

Definice 7.5 (f-ortogonální)

Buď **V** vektorový prostor nad \mathbb{T} , $f: \mathbf{V} \times \mathbf{V} \to \mathbb{T}$ symetrická bilinearní forma. Řekneme, že vektory $\mathbf{v}, \mathbf{w} \in V$ jsou f-ortogonální, pokud $f(\mathbf{v}, \mathbf{w}) = 0$ (= $f(\mathbf{w}, \mathbf{v})$). Značíme $\mathbf{v} \perp_f \mathbf{w}$.

Posloupnost (nebo báze) vektorů $(\mathbf{v}_1,\ldots,\mathbf{v}_n)$ prostoru \mathbf{V} je f-ortogonální, pokud $\mathbf{v}_i\perp_f \mathbf{v}_j \ \forall i\neq j.$

Definice 7.6 (Hodnost bilineární formy)

Buď V konečně generovaný VP, B, C báze, $f: \mathbf{V} \times \mathbf{V} \to \mathbb{T}$ symetrická bilineární forma. Pak $[f]_C = P^T[f]_B P$, kde $P = [\mathrm{id}]_B^C$ je regulární. Tj. $\mathrm{rank}([f]_C) = \mathrm{rank}([f]_B)$. Hodnost f potom definujeme jako hodnost $[f]_B$ vzhledem k libovolné bázi B (značíme rank f).

Hodnost kvadratické formy $g: \mathbf{V} \to \mathbb{T}$ definujeme jako hodnost příslušné symetrické bilineární formy (značíme rank g).

Pokud je $[f]_B$ regulární, pak řekneme, že f je regulární / nedegenerovaná (podobně pro g).

Věta 7.7

Buď \mathbb{T} těleso charakteristiky $\neq 2$. Je-li \mathbf{V} konečně generovaný vektorový prostor a $f: \mathbf{V} \times \mathbf{V} \to \mathbb{T}$ symetrická bilineární forma, pak existuje f-ortogonální báze B (tj. $[f]_B$ je diagonální).

$D\mathring{u}kaz$

Vezmeme nejprve libovolnou bázi C prostoru \mathbf{V} , označíme $A = [f]_C$ (symetrická matice řádu $n = \dim \mathbf{V}$). Najdeme regulární matici G takovou, že $D = GAG^T$ je diagonální, tak, že provedeme něco jako Gaussovu eliminaci se symetrickými úpravami. (Pokud máme prvek v aktuálním levonahoře nenulový, tak ho odečteme od ostatních v řádku / sloupci jsou na diagonále nenulové prvky, tak je prohodíme, jinak něco přičteme.)

Tvrzení 7.8

Buď A symetrická matice nad tělesem \mathbb{T} charakteristiky $\neq 2$. Předpokládejme, že pří Gaussově eliminaci A nemusíme prohazovat řádky. Pak \exists dolní trojúhelníková matice $L \in \mathbb{T}^{n \times n}$ a diagonální matice $D \in \mathbb{T}^{n \times n}$ taková, že $A = LDL^T$.

$D\mathring{u}kaz$

Provedeme Gaussovu eliminaci A. Úpravy se vynásobí na dolní trojúhelníkovou matici. Symetrické úpravy pak dají horní trojúhelníkovou a zbude diagonální.

Pozorování

 \mathbb{T} je těleso charakteristiky $\neq 2, f: \mathbf{V} \times \mathbf{V} \to \mathbb{T}$ symetrická bilineární forma. $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ báze \mathbf{V} nad \mathbb{T} . Předpokládejme, že $[f]_B = \operatorname{diag}(a_1, \dots, a_n)$. Vezměme $C = (t_1\mathbf{v}_1, \dots, t_n\mathbf{v}_n)$, kde $t_1, \dots, t_n \in \mathbb{T}$. Potom $[f]_c = (f(t_i\mathbf{v}_i, t_i\mathbf{v}_i))_{i,j} = (t_it_if(\mathbf{v}_i, \mathbf{v}_i))_{i,j} = \operatorname{diag}(t_1^2a_1, \dots, t_n^2a_n)$.

Pozorování

Je-li $\mathbb{T} = \mathbb{C}$, můžeme pro každé $a_i \neq 0$ vzít $t_i \in \mathbb{C} : t_i^2 a_i = 1$. Pro každou symetrickou bilineární formu nad \mathbb{C} na konečně generovaném VP \mathbf{V} existuje báze B prostoru \mathbf{V} taková, že $[f]_B = (1, \ldots, 1, 0, \ldots, 0)$.

Pozorování

Je-li $\mathbb{T} = \mathbb{R}$, můžeme pro každé $a_i \neq 0$ vzít $t_i \in \mathbb{R} : t_i = \sqrt{\frac{1}{a_i}}$. Pro každou symetrickou bilineární formu nad \mathbb{R} na konečně generovaném VP \mathbf{V} existuje báze B prostoru \mathbf{V} taková, že $[f]_B = (1, \ldots, 1, -1, \ldots, -1, 0, \ldots, 0)$.

Věta 7.9 (Zákon setrvačnosti reálných kvadratických forem)

Buď **V** konečně dimenzionální reálný VP, $f: \mathbf{V} \times \mathbf{V} \to \mathbb{R}$ symetrická bilineární forma a $C = (\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}_1, \dots, \mathbf{v}_l, \mathbf{w}_1, \dots, \mathbf{w}_m)$ taková báze **V**, že $[f]_C = (1, \dots, 1, -1, \dots, -1, 0, \dots, 0)$ (k, l, m) jedniček, mínus jedniček a nul), $C' = (\mathbf{u}'_1, \dots, \mathbf{u}'_{k'}, \mathbf{v}'_1, \dots, \mathbf{v}'_{l'}, \mathbf{w}'_1, \dots, \mathbf{w}'_{m'})$ taková báze **V**, že $[f]_{C'} = (1, \dots, 1, -1, \dots, -1, 0, \dots, 0)$. Pak nutně k = k', l = l', m = m'.

 $D\mathring{u}kaz$

Víme $m = m' = \dim \mathbf{V} - \operatorname{rank}(f)$. Buď pro spor k > k' (případ k < k' analogicky). Položme $\mathbf{U} = \operatorname{LO}\{\mathbf{u}_1, \dots, \mathbf{u}_k\} \leq \mathbf{V}, \mathbf{W} = \operatorname{LO}\{\mathbf{v}_1', \dots, \mathbf{v}_{l'}', \mathbf{w}q', \dots, \mathbf{w}_{m'}'\}$.

Pozorování: $\mathbf{U} \cap \mathbf{W} \neq \{\emptyset\}$, totiž dim $(\mathbf{U} \cap \mathbf{W}) = \dim \mathbf{U} + \dim \mathbf{W} - \dim(\mathbf{U} + \mathbf{W}) > k' + l' + m' - n = 0$. Vezměme tedy $\mathbf{o} \neq \mathbf{x} \in \mathbf{U} \cap \mathbf{W} = a_1\mathbf{u}_1 + \ldots + a_k\mathbf{u}_k = b_1\mathbf{v}_1 + \ldots + b'_l\mathbf{v}'_{l'} + c_1\mathbf{w}'_1 + \ldots + c_{m'}\mathbf{w}'_{m'}$.

Tudíž
$$f_2(\mathbf{x}) = [\mathbf{x}]_C^T[f]_C[\mathbf{x}]_C = 1 \cdot a_1^2 + \ldots + 1 \cdot a_k^2 > 0 \text{ a } f_2(\mathbf{x}) = [\mathbf{x}]_{C'}^T[f]_{C'}[\mathbf{x}]_C = -1 \cdot b_1^2 + \ldots + (-1) \cdot b_{l'}^2 + 0 \cdot c_1^2 + \ldots + 0 \cdot c_{m'}^2 \le 0.$$

Poznámka

 $k =: n_+(f)$ je pozitivní index setrvačnosti, $l =: n_f(f)$ je negativní index setrvačnosti a $m =: n_0(f)$ se nazývá nulita f. Dohromady se nazývají signatura $f: (n_0(f), n_+(f), n_-(f))$.

Definice 7.7 (Pozitivně semidefinitní reálné symetrické bilineární (a kvadratické) formy)

 ${\bf V}$ reálný VP, $f: {\bf V} \times {\bf V} \to \mathbb{C}$ symetrická bilineární forma. Pak řekneme, že f je pozitivně definitní, pokud $\forall 0 \neq {\bf x} \in {\bf V}: f_2({\bf x}) > 0$. A je pozitivně semidefinitní, pokud $\forall {\bf x} \in {\bf V}: f_2({\bf x}) \geq 0$.

Pozorování

Buď V konečně generovaný a B jeho báze. Pak f je pozitivně (semi)definitní symetrická bilineární forma $\Leftrightarrow [f]_B$ je pozitivně (semi)definitní matice.

 $D\mathring{u}kaz$

Plyne okamžitě z toho, že $\forall \mathbf{x} \in \mathbf{V} : f_2(\mathbf{x}) = [\mathbf{x}]_B^T[f]_B[\mathbf{x}]_B$.

Poznámka

Skalární součin je totéž co pozitivně definitní symetrická bilineární forma.

Tvrzení 7.10

Buď \mathbf{V} VP nad \mathbb{R} dimenze n a buď $f: \mathbf{V} \times \mathbf{V} \to \mathbb{R}$ symetrická bilineární forma. Pak f je pozitivně definitní $\Leftrightarrow n_+(f) = n$. Navíc f je pozitivně semidefinitní $\Leftrightarrow n_-(f) = 0$.

 $D\mathring{u}kaz$

Najdeme bázi B prostoru $\mathbf V$ takovou, že $[f]_B=(1,\ldots,1,-1,\ldots,-1,0,\ldots,0)$. Vše pak plyne z toho, že pro $[\mathbf x]_B=(x_1,\ldots,x_n)^T$ platí $f(x)=x_1^2+\ldots+x_{n_+(f)}^2-x_{n_+(f)+1}^2-\ldots-x_{n_+(f)+n_-(f)}^2+0+\ldots+0$.

7.4 Charakterizace pozitivně definitních matic

Věta 7.11

Buš A reálná symetrická matice řádu n. Pak NTJE:

- 1. A je pozitivně definitní.
- 2. (Sylvestrovo kritérium) $\forall i \in [n] : \det A_i > 0$, kde A_i je prvních i sloupců a řádků A.
- 3. Gaussova eliminace A proběhne bez prohazování řádků a všechny pivoty jsou kladné.
- 4. Existuje vyjádření $A = LDL^T$, kde L je dolní \triangle s 1 na diagonále a D je diagonální a má kladné prvky na diagonále.
- 5. (Choleského rozklad) $\exists R \ dolni \triangle \ regulárni \ taková, že \ A = RR^T$.

 $D\mathring{u}kaz$

1 \Longrightarrow 2: Máme-li $\mathbf{x} \in \mathbb{R}^n$ tvaru $\mathbf{o} \neq (x_1, \dots, x_i, 0, \dots, 0)^T$ a označíme-li $\mathbf{y} = (x_1, \dots, x_i)^T \in \mathbb{R}^i$ a je-li A pozitivně definitní, pak $0 < \mathbf{x}^T A \mathbf{x} = \mathbf{y}^T A_i \mathbf{y} \Longrightarrow A_i$ pozitivně definitní $\forall i$. Podle důsledku o ortogonální diagonalizaci $\exists U_i$ ortogonální : $U_i^T A_i U_i = \operatorname{diag}(\lambda_1, \dots, \lambda_i)$, ale det $A_i = \lambda_1 \cdot \dots \cdot \lambda_i$ a $\lambda_1, \dots, \lambda_i > 0$ podle jedné ze spektrálních vět.

 $2 \implies 3$: Předpokládejme, že $\forall i \in [n]: \det A_i > 0$. Dokážeme indukcí podle n: Vynulujeme první sloupec a symetricky první řádek (krom $a_{1,1}$). A bez prvního řádku a sloupce je potom pozitivně definitní (jen jsme změnili bázi).

 $3 \implies 4$: Přesně tvrzení výše.

 $4 \implies 5$: $A = LDL^T$, položíme $R = L\sqrt{D} \implies RR^T = L\sqrt{D}(L\sqrt{D})^T = LDL^T = A$.

5 \Longrightarrow 1: Bylo $\forall 0 \neq \mathbf{x} \in \mathbb{R}^n : \mathbf{x}^T A \mathbf{x} = \mathbf{x}^T R R^T \mathbf{x} = R^T \mathbf{x} \cdot R^T \mathbf{x} > 0.$

Tvrzení 7.12

Buď \mathbf{V} konečně generovaný reálný vektorový prostor se $<\cdot,\cdot>$. Buď $f:\mathbf{V}\times\mathbf{V}\to\mathbb{R}$ symetrická bilineární forma. Pak existuje ortonormální (vzhledem $k<\cdot,\cdot>$) báze B, která je zároveň f-ortogonální (tj. $[f]_B$ je diagonální).

 $D\mathring{u}kaz$

Vezmeme si nejprve nějakou ortonormální bázi C prostoru \mathbf{V} . Položme $A = [f]_C$, tj. $A \in \mathbb{R}^{n \times n}$ symetrická $(n = \dim \mathbf{V})$. Pak $\exists U \in \mathbb{R}^{n \times n}$ ortogonální $(U^T U = I_n = U U^T)$ taková, že $U^T A U = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Zvolíme bázi $B = (\mathbf{v}_1, \ldots, \mathbf{v}_n)$ takovou, že $U = [f]_C^B$, tj. $U = ([\mathbf{v}_1]_C | \ldots)$. Tj. $[f]_B = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, čili B je f-ortogonální, a protože C je ortonormální a U je ortogonální, je i B ortonormální.

8 Shodná zobrazení v \mathbb{R}^n

Definice 8.1 (Shodné zobrazení)

Zobrazení $g: \mathbb{R}^n \to \mathbb{R}^n$ je shodné zobrazení (též shodnost), pokud $\forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^n: ||g(\mathbf{u}) - g(\mathbf{v})|| = ||\mathbf{u} - \mathbf{v}||.$

Věta 8.1

Zobrazení $g: \mathbb{R}^n - \mathbb{R}^n$ je shodnost, právě když g je dáno předpisem g(u) = An + p, kde $\mathbf{p} \in \mathbb{R}^n$ a $A \in \mathbb{R}^{n \times n}$ je ortogonální matice.

 $D\mathring{u}kaz$

$$\forall \mathbf{u} : g(\mathbf{u}) = A\mathbf{u} + \mathbf{p} \implies g \text{ shodnost. Cvičení.}$$

g shodnost $\Longrightarrow \exists A, \mathbf{p} \ \forall n: g(n) = An + \mathbf{p}$: Položíme $p:=g(\mathbf{o}) \in \mathbb{R}^n$. Uvažujme shodnost $h: \mathbb{R}^n \to \mathbb{R}^n, \ \mathbf{u} \mapsto g(\mathbf{u}) - \mathbf{p}, \ \mathbf{o} \mapsto \mathbf{o}$. Chceme ukázat, že h je ortogonální (lineární!) zobrazení. Ukážeme $\forall \mathbf{u}L||h(\mathbf{u})|| = ||h(\mathbf{u}) - h(\mathbf{o})|| = ||\mathbf{u} - \mathbf{o}|| = ||\mathbf{u}||. \ \forall \mathbf{u}, v: h(\mathbf{u}) \cdot h(\mathbf{v}) = \frac{1}{2}(||h(\mathbf{u})||^2 + ||h(\mathbf{v})||^2 - ||h(\mathbf{u}) - h(\mathbf{v})||^2) = \frac{1}{2}(||\mathbf{u}||^2 + ||\mathbf{v}||^2 - ||\mathbf{u} - \mathbf{v}||^2) = \mathbf{u} \cdot \mathbf{v}$ $\Longrightarrow (h(\mathbf{e}_1), \dots, h(\mathbf{e}_n))$ ortonormální báze \mathbb{R}^n . $h(\mathbf{e}_i) = \mathbf{v}_i$.

Položíme $A = (\mathbf{v}_1 | \dots | \mathbf{v}_n)$ (nutně ortogonální matice). TODO.

Důsledek

g shodnost $\implies g$ bijekce a g^{-1} shodnost.