Spojité funkce na intervalu

Definice:

Je-li (a, b) interval, pak a nazýváme **počátečním bodem** intervalu, b pak **koncovým bodem** a $x \in (a, b)$ **vnitřními body** intervalu. Obdobně pro uzavřené a polouzavřené intervaly.

Definice:

Řekneme, že funkce f je **spojitá na intervalu** I, jestliže je spojitá zprava ve všech bodech intervalu kromě koncového a zároveň spojitá zleva ve všech bodech intervalu kromě počátečího.

VĚTA 8 (Darbouxova):

Nechť f je spojitá na uzavřeném intervalu $[a,b], a < b, a,b \in \mathbb{R}$ a f(a) < f(b). Pak

$$\forall y \in (f(a), f(b)) \ \exists \ x \in (a, b) : \ f(x) = y$$

(Neboli spojitá funkce nabývá na intervalu všech mezihodnot.)

DŮKAZ:

T-O-D-O: diagram

Definujeme množinu $M:=\{x\in [a,b]: f(x)< y\}$. Je neprázdná $(a\in M)$ a omezená $(M\subseteq [a,b])$.

Označ $x_0 = \sup M$. Tvrdíme, že $f(x_0) = y$. To nyní dokážeme sporem s vlastnostmi suprema. Předpokládejme:

$$f(x_0) < y \Rightarrow \exists \varepsilon > 0 : f(x_0) \notin \mathcal{U}(y, \varepsilon) \Rightarrow y \notin \mathcal{U}(f(x_0), \varepsilon)$$

Funkce je spojitá, tedy k $\varepsilon \exists \delta > 0$ taková, že

$$f(x) \notin \mathcal{U}(y, \varepsilon) \qquad \forall x \in \mathcal{U}(x_0, \delta) \cap [a, b]$$

 $(f(x_0)$ je "strašně" daleko od ya nevejde se do $\varepsilon\text{-}\mathrm{okoli}\ y)$ T-O-D-O: Diagram

Čili x_0 není supremem množiny M, neboť existují body $x > x_0$, což je spor s první vlastností suprema!

Nechť $f(x_0)>y$. To je ve sporu s druhou vlastností suprema. $\exists \, \varepsilon>0$ takové, že $y\notin \mathcal{U}(f(x_0),\varepsilon)$. K ε potom $\exists \, \delta>0$ taková, že

$$\forall x \in \mathcal{U}(x_0, \varepsilon) : f(x) > y \Rightarrow \forall x \in (x_0 - \delta, x_0) : f(x) > y$$

VĚTA 9 (zobrazení intervalu spojitou funkcí):

(Nebo také "o spojitém obrazu intervalu".)

Nechť I je interval a nechť $f: I \to \mathbb{R}$ je spojitá. Pak f(I) je interval. (Pozor, obrazem otevřeného intervalu je uzavřený interval.)

DŮKAZ:

LEMMA:

Nechť $\emptyset \neq M \subset \mathbb{R}$ a nechť platí

$$\forall x, y \in M, \ \forall z \in \mathbb{R}: \ x < z < y \Rightarrow z \in M$$

Pak M je interval.

/L:1.616