

Universidade Federal de São João del-Rei – UFSJ Departamento de Engenharia Elétrica – DEPEL Coordenadoria do Curso de Engenharia Elétrica – COELE

RELATÓRIO DA LISTA DE EXERCÍCIOS 01 ANÁLISE DE SISTEMAS ELÉTRICOS DE POTÊNCIA

Aluno: Lucas Xavier de Morais - 190950011

Professor: Fernando Aparecido de Assis

São João del Rei2024

- 1. Para o sistema abaixo, utilize o mecanismo de Ajustes Alternados e faça o controle da tensão V3, utilizando as tensões nas Barras 1 (V1) e 2 (V2) como variáveis de controle, ou seja, busque um "balanço" entre as injeções de reativo nas Barras 1 e 2 a fim de controlar a tensão na Barra 3. A tensão V3 deve ser igual a 1,00 pu, com tolerância de 10-3. Considere o despacho do gerador na Barra 2 igual a 80 MW. Apresente um relatório das iterações realizadas para ajuste das variáveis de controle. Para esse sistema, responda:
- a) Quais os valores de geração de potência reativa dos geradores nas Barras 1 e 2 antes da realização do controle?
- b) Quais os novos valores de geração de potência reativa dos geradores nas Barras 1 e 2 após a realização do controle?

Figura 1: Sistema do exercício 1

1.1 RESOLUÇÃO

Para solucionar o problema, foi criada uma rotina me python que realiza ajustes alternados nas tensões da barra 3, controlando as tensões das barras 1 e 2.

O relatório abaixo indica os resultados:

			Relatório (das potênci	ias nas bai	rras em PU			
BARRA #	TENSAO (PU)	THETA (DEG)	PI [QI	PG	QG (PU)	SG	PD	QD]
1 2 3	1.00000 1.00000 0.96299	0.00000 -0.77528 -4.95629	0.7000 0.3000 -1.0000	0.1789 0.3620 -0.4400	0.7000 0.8000 0.0000	0.1789 0.5220 0.0000	0.7225 0.9553 0.0000	0.0000 0.5000 1.0000	0.0000 0.1600 0.4400
Total					1.5000	0.7009	1.6777	1.5000	1.5000
Total de	Total de Perdas Perdas Ativas = 0.0000 pu Perdas Reativas = 0.1009 pu								

Figura 2: Sistema iniciais do problema 1

A partir das imagens acima, percebe-se que a tensão atingiu o valor especificado, porém houve uma leve alteração nos despachos de potências reativas dos geradores em 1 e 2.

			 Relatório	das potênci	ias nas ba	rras em PU			
BARRA #	TENSA0 (PU)	THETA (DEG)	PI [QI	PG	QG (PU)	SG	PD	QD]
1 2 3	1.03450 1.03450 0.99902	0.00000 -0.72419 -4.61886	0.7000 0.3000 -1.0000	0.1763 0.3575 -0.4400	0.7000 0.8000 0.0000	0.1763 0.5175 0.0000	0.7219 0.9528 0.0000	0.0000 0.5000 1.0000	0.0000 0.1600 0.4400
Total					1.5000	0.6938	1.6746	1.5000	1.5000
Total de	Perdas 	Per	das Ativas	= 0.0000	ou 	Perd	as Reativas	5 = 0.0938	pu

Figura 3: Sistema após os ajustes do problema 1

Antes dos ajustes, o Gerador da barra 1 produzia 17,89 Mvar, e o Gerador 2 52,20 Mvar. Após os ajustes, as potências geradas foram de 17,63 Mvar e 51,75 Mvar respectivamente para os geradores 1 e 2.

Abaixo encontra-se um relatório das correções que foram aplicadas a cada iteração do ajuste.

```
Correcao por barra: 0.012953
1 / 100 || 1.00%
Correcao por barra: 0.008212
2 / 100 || 2.00%
Correcao por barra: 0.005210
3 / 100 || 3.00%
Correcao por barra: 0.003307
4 / 100 || 4.00%
Correcao por barra: 0.002100
5 / 100 || 5.00%
Correcao por barra: 0.001333
6 / 100 || 6.00%
Correcao por barra: 0.000847
7 / 100 || 7.00%
Correcao por barra: 0.000538
8 / 100 || 8.00%
Convergiu em 8 iteracoes
```

Figura 4: Ajustes alternados da correção

- 2. Para o sistema do exercício anterior (Ex. 1), considere manter os ajustes de tensão nas Barras 1 e 2 encontrados. Considere, ainda, que as cargas nas Barras 2 e 3 foram acrescidas em 20 por cento tanto a parcela ativa quanto a reativa. Para este novo cenário, responda:
- a) Quais os valores das potências reativas geradas nas Barras 1 e 2 neste novo cenário? Imagine que os geradores das Barras 1 e 2 possuem limites de capacidade para geração de potência reativa de -50 MVAr a 50 MVAr. Para o novo cenário de carga, há violação do limite de reativo gerado nessas barras? Se sim, que ajuste pode ser realizado a fim de manter essas gerações dentro dos limites?

2.1 RESOLUÇÃO

			Relatório (das potênci	ias nas bai	rras em PU			
BARRA #	TENSA0 (PU)	THETA (DEG)	PI [QI	PG	QG (PU)	SG	PD	QD]
1 2 3		0.00000 -1.17799 -5.79458	1.0000 0.2000 -1.2000	0.2247 0.4462 -0.5280	1.0000 0.8000 0.0000	0.2247 0.6382 0.0000	1.0249 1.0234 0.0000	0.0000 0.6000 1.2000	0.0000 0.1920 0.5280
Total					1.8000	0.8629	2.0483	1.8000	1.8000
Total de F	Total de Perdas Perdas Ativas = 0.0000 pu Perdas Reativas = 0.1429 pu								

Figura 5: Sistema Exercício 2

Agora, conforme os resultados acima, as potências reativas nos geradores 1 e 2 foram 22,47 Mvar e 63,82 Mvar.

Neste caso será necessário aplicar um ajuste a fim de diminuir o despacho de potência reativa no gerador 2.

Um ajuste que pode ser feito é um banco e capacitores de 14Mvar ou um compensador síncrono, que o problema seria solucionado. Para a simulação foi escolhido o banco.

BARRA #	TENSAO (PU)	THETA (DEG)	PI [QI 	PG	QG (PU)	SG 	PD	QD
1	1.03450	0.00000	1.0000	0.2247	1.0000	0.2247	1.0249	0.0000	0.000
2	1.03450	-1.17799	0.2000	0.2964	0.8000	0.4884	0.9373	0.6000	0.192
3	0.99087	-5.79458	-1.2000	-0.5280	0.0000	0.0000	0.0000	1.2000	0.528
otal					1.8000	0.7131	1.9622	1.8000	1.8000

Figura 6: Resposta do Sistema do Exercício 2

Com essa solução, a tensão se manteve próxima de 1 pu na barra 3, que era o objetivo inicial, e também foram respeitados os limites do gerador.

3. Para o sistema a seguir, faça o controle remoto de tensão na Barra 4 considerando a relação de transformação do LTC entre as Barras 1 e 3. A tensão na Barra 4 deve ser de 1,01 pu. Utilize o método de ajustes alternados com tolerância de 10-3. Apresente um relatório das iterações realizadas para ajuste da variável de controle. Qual o valor da magnitude da tensão na barra 3 considerando o controle solicitado?

Figura 7: Sistema para o exercício 3 e 4

3.1 RESOLUÇÃO

Utilizando então ajustes alternados através de uma rotina, para o qual foi selecionado após algumas tentativas, um alpha de 1,5, chega-se aos seguintes relatórios:

Figura 8: Relatório antes do ajuste

Figura 9: Relatório após o ajuste

```
Tap Inicial: 1.000000

Correcao no tap: 0.059526

1 / 100 || 1.00%

Correcao no tap: 0.031686

2 / 100 || 2.00%

Correcao no tap: 0.016904

3 / 100 || 3.00%

Correcao no tap: 0.009027

4 / 100 || 4.00%

Correcao no tap: 0.004824

5 / 100 || 5.00%

Correcao no tap: 0.002578

6 / 100 || 6.00%

Convergiu em 6 iteracoes

Tap Final: 1.124546, para uma diferença de 0.124546
```

Figura 10: Relatório da variação no tap

Antes do ajuste, a tensão na barra 4 era 0,97032 pu. Após o ajuste, a tensão foi para $1.00908~\mathrm{pu}.$

Já o tap, sofreu um incremento no seu tap de 0.124546, atingindo um valor final de 1.124546.

4. Para o sistema a seguir, faça o controle do fluxo de potência ativa entre as Barras 3 e 4 (P34) considerando o ajuste da fase inserido pelo transformador defasador instalado entre as Barras 1 e 3. Nesse caso, determine a defasagem a ser inserida pelo transformador de modo que o fluxo de potência ativa P34 seja de 30 MW. Utilize o método de ajustes alternados com tolerância de 10-3. Apresente um relatório das iterações realizadas para ajuste da variável de controle. Qual a variação de fluxo de potência ativa observada nos demais circuitos considerando os casos sem e com defasagem inserida pelo transformador?

Figura 11: Sistema para o exercício 3 e 4

4.1 RESOLUÇÃO

Utilizando ajustes alternados novamente, agora, através de tentativa e erro, foi utilizado um alpha de 15,5. foram então produzidos os seguintes relatórios:

Figura 12: Relatório nas barras antes do ajuste

Figura 13: Relatório nas barras após o ajuste

			 Relatório das potêr	ncias nos circuito	s km em PU
	RRA PARA [QKM (F	SKM PU)	Capacidade]
1 1 2 3	2 3 4 4	0.1831 0.5169 0.4831 0.0169	0.0025 0.2403 0.2831 -0.0285	0.1831 0.5700 0.5599 0.0331	1.0 1.0 1.0 1.0
			Relatório das potêr	ncias nos circuito	s mk em PU
	RRA PARA [SMK PU)	
2 3 4 4	1 1 2 3	-0.1831 -0.5169 -0.4831 -0.0169	0.0025 -0.1915 -0.2486 0.0286	0.1831 0.5513 0.5433 0.0332	1.0 1.0 1.0 1.0

Figura 14: Relatório nos circuitos antes do ajuste

			Relatório das po	otências nos circuitos	km em PU
	RRA PARA [PKM	QKM	SKM _ (PU)	Capacidade]
1 1 2 3	2 3 4 4	-0.0995 0.7995 0.2005 0.2995	0.0007 0.2895 0.2830 -0.0390	0.0995 0.8502 0.3469 0.3020	1.0 1.0 1.0 1.0
			Relatório das po	otências nos circuitos	mk em PU
	RRA PARA [QMK		Capacidade]
2 3 4 4	1 1 2 3	0.0995 -0.7995 -0.2005 -0.2995	0.0007 -0.1810 -0.2698 0.0498	0.0995 0.8197 0.3362 0.3036	1.0 1.0 1.0

Figura 15: Relatório nos circuitos após o ajuste

```
Defasagem Inicial: 0.000000
Correcao na defasagem: 4.387457
1 / 100 || 1.00%
Correcao na defasagem: 2.179106
2 / 100 || 2.00%
Correcao na defasagem: 1.085063
3 / 100 || 3.00%
Correcao na defasagem: 0.541277
4 / 100 || 4.00%
Correcao na defasagem: 0.270294
5 / 100 || 5.00%
Correcao na defasagem: 0.135049
6 / 100 || 6.00%
Correcao na defasagem: 0.067495
7 / 100 || 7.00%
Correcao na defasagem: 0.033737
8 / 100 || 8.00%
Correcao na defasagem: 0.016865
9 / 100 || 9.00%
Convergiu em 9 iteracoes
Defasagem Inicial: 0.000000, Defasagem Final: 8.716343, para uma diferença de 8.716343
```

Figura 16: Relatório da variação na defasagem

Conforme os relatórios acima, principalmente os relatórios das figuras 14 e 15, é possível comparar os fluxos.

Nota-se uma redução no fluxo aparente entre as barras 1 e 2 para aproximadamente a metade do flxuo anterior.

Já no circuito entre as barra 1 e 3, houve um incremente no fluxo.

Na linha entre 2 e 4 houve um decréssimo no fluxo aparente.

Por fim, nentre 3 e 4, o fluxo ativo foi ajustado conforme o requisito, mas percebeu-se um aumento de aproximadamente 10 vezes no fluxo de potência aparente.