Mathématiques 1

Chapitre 2 : Fonctions usuelles

Mohamed Essaied Hamrita

IHEC, Université de Sousse

Octobre 2021

Table des matières

- Fonctions polynôme, rationnelle et racine
 - Fonction polynôme
 - Fonction rationnelle
 - Fonction racine
- Logarithme et exponentielle
 - Logarithme
 - Exponentielle
- 3 Fonctions circulaires inverses
 - Fonction arcsin
 - Fonction arccos
 - Fonction arctg

Polynôme

Définition

On appelle fonction polynôme toute fonction f définie sur \mathbb{R} pour laquelle il existe un entier naturel n et des nombres réels a_0, a_1, \ldots, a_n avec $a_n \neq 0$ tels que :

$$f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$$

Le nombre entier naturel n s'appelle le degré de f. Les nombres réels a_0, a_1, \ldots, a_n s'appellent les coefficients de f. $a_0, a_1x, a_2x^2, \ldots, a_nx^n$ s'appellent les monômes de f.

Exemple

La fonction f définie par f(x) = 2x - 7 est une fonction polynôme de degré 1.

Les fonctions affines sont des fonctions polynômes de degré 1.

Polynôme

La fonction polynôme a les propriétés suivantes :

- La somme, la différence et le produit de deux fonctions polynômes est une fonction polynôme.
- 2 Le degré du produit de deux polynômes est la somme des degrés de ces deux polynômes.
- Deux fonctions polynômes non nulles sont égales si et seulement si elles ont le même degré et les coefficients de leurs monômes de même degré sont égaux.
- lacktriangle La fonction polynôme est définie, continue et dérivable sur \mathbb{R} .
- $\lim_{\infty} f(x) = \lim_{\infty} a_n x^n$

Rationnelle

Définition

On appelle fonction rationnelle toute fonction f définie par le rapport de deux polynômes P(x) et Q(x) telle que $Q(x) \neq 0$.

Exemple

Les fonction définies par $f(x) = \frac{1}{x^2}$ et $g(x) = \frac{2x^2 - 1}{x + 1}$ sont deux fonctions rationnelles.

La limite en l'infini d'une fonction rationnelle est définie par :

$$\lim_{\infty} = \lim_{\infty} \frac{a_n x^n}{b_m x^m}$$

où $a_n x^n$ et $b_m x^m$ sont les monômes les plus haut degré des polynômes P(x) et Q(x) respectivement.

Racine

Définition

La fonction racine carrée est la fonction f définie $[0, +\infty[$ sur par $f(x) = \sqrt{x}$.

La fonction racine n—ième est la fonction g définie $[0, +\infty[$ sur par $g(x) = \sqrt[n]{x} = x^{1/n}$.

La fonction racine est une fonction continue te dérivable sur son domaine de définition et elle est croissante sur $[0, +\infty[$ et on a $\lim_{+\infty} f(x) = +\infty.$

si
$$a \ge 0$$
 et $b > 0$, $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$, et $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$.

Pour tout réel a, $\sqrt{a^2} = |a|$.

Proposition

Il existe une unique fonction, notée $\ln:]0, +\infty[\to \mathbb{R}$ telle que :

$$\ln'(x) = \frac{1}{x}$$
 (pour tout $x > 0$) et $\ln(1) = 0$.

Proposition

Il existe une unique fonction, notée $\ln:]0, +\infty[\to \mathbb{R}$ telle que :

$$\ln'(x) = \frac{1}{x}$$
 (pour tout $x > 0$) et $\ln(1) = 0$.

Proposition

Il existe une unique fonction, notée $\ln:]0, +\infty[\to \mathbb{R}$ telle que :

$$\ln'(x) = \frac{1}{x}$$
 (pour tout $x > 0$) et $\ln(1) = 0$.

Proposition

Il existe une unique fonction, notée $\ln:]0, +\infty[\to \mathbb{R}$ telle que :

$$\ln'(x) = \frac{1}{x}$$
 (pour tout $x > 0$) et $\ln(1) = 0$.

- In est une fonction continue, strictement croissante et définit une bijection de $]0,+\infty[$ sur \mathbb{R} ,

Proposition

Il existe une unique fonction, notée $\ln:]0, +\infty[\to \mathbb{R}$ telle que :

$$\ln'(x) = \frac{1}{x}$$
 (pour tout $x > 0$) et $\ln(1) = 0$.

- - In est une fonction continue, strictement croissante et définit une bijection de $]0,+\infty[$ sur $\mathbb{R},$
 - **1** $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$,

Proposition

Il existe une unique fonction, notée $\ln:]0, +\infty[\to \mathbb{R}$ telle que :

$$\ln'(x) = \frac{1}{x}$$
 (pour tout $x > 0$) et $\ln(1) = 0$.

- - In est une fonction continue, strictement croissante et définit une bijection de $]0,+\infty[$ sur $\mathbb{R},$

 - **1** Ia fonction \ln est concave et $\ln x \le x 1$ (pour tout x > 0).

 $\ln x$ s'appelle le logarithme naturel ou aussi logarithme népérien. Il est caractérisé par $\ln(e)=1$. On définit le logarithme en base a par

$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$

Telle que $\log_a(a)=1$. Pour a=10 on obtient le logarithme décimal \log_{10} qui vérifie $\log_{10}(10)=1$ (et donc $\log_{10}(10^n)=n$). Dans la pratique on utilise l'équivalence :

$$x = 10^y \iff y = \log_{10}(x)$$

La fonction In admet les limites suivantes :

$$\begin{split} &\lim_{+\infty} \ln x = +\infty & \lim_{0^+} \ln x = -\infty & \lim_{0^+} \ln x = 0 \\ &\lim_{+\infty} \frac{\ln x}{x} = 0 & \lim_{+\infty} \frac{\ln x}{x^n} = 0 & \lim_{0} \frac{\ln (1+x)}{x} = 1 \end{split}$$

La courbe représentative de la fonction In est comme suit :

Définition

La bijection réciproque de $\ln:]0, +\infty[\to \mathbb{R}$ s'appelle la fonction exponentielle, notée $\exp: \mathbb{R} \to]0, +\infty[$.

Sa courbe représentative est donnée comme suit :

Pour $x \in \mathbb{R}$ on note aussi e^x pour $\exp x$.

Proposition

Pour $x \in \mathbb{R}$ on note aussi e^x pour $\exp x$.

Proposition

- $\exp(\ln x) = x$ pour tout x > 0 et $\ln(\exp x) = x$ pour tout $x \in \mathbb{R}$

Pour $x \in \mathbb{R}$ on note aussi e^x pour $\exp x$.

Proposition

- **1** $\exp(\ln x) = x$ pour tout x > 0 et $\ln(\exp x) = x$ pour tout $x \in \mathbb{R}$

Pour $x \in \mathbb{R}$ on note aussi e^x pour $\exp x$.

Proposition

- **1** $\exp(\ln x) = x$ pour tout x > 0 et $\ln(\exp x) = x$ pour tout $x \in \mathbb{R}$

- $\exp: \mathbb{R} \to]0, +\infty[$ est une fonction continue, strictement croissante vérifiant $\lim_{-\infty} \exp x = 0$ et $\lim_{+\infty} \exp x = +\infty$.

Pour $x \in \mathbb{R}$ on note aussi e^x pour $\exp x$.

Proposition

- $\exp(\ln x) = x$ pour tout x > 0 et $\ln(\exp x) = x$ pour tout $x \in \mathbb{R}$

- $\exp: \mathbb{R} \to]0, +\infty[$ est une fonction continue, strictement croissante vérifiant $\lim_{-\infty} \exp x = 0$ et $\lim_{+\infty} \exp x = +\infty$.
- **1** La fonction exponentielle est dérivable et $\exp' x = \exp x$, pour tout $x \in \mathbb{R}$. Elle est convexe et $\exp x \ge 1 + x$.

Pour $x \in \mathbb{R}$ on note aussi e^x pour $\exp x$.

Proposition

- $\exp(\ln x) = x$ pour tout x > 0 et $\ln(\exp x) = x$ pour tout $x \in \mathbb{R}$

- $\exp: \mathbb{R} \to]0, +\infty[$ est une fonction continue, strictement croissante vérifiant $\lim_{-\infty} \exp x = 0$ et $\lim_{+\infty} \exp x = +\infty$.
- **3** La fonction exponentielle est dérivable et $\exp' x = \exp x$, pour tout $x \in \mathbb{R}$. Elle est convexe et $\exp x \ge 1 + x$.

$$\lim_{n \to \infty} x^n \exp x = 0 \qquad \lim_{n \to \infty} x^n \exp x = 0 \qquad \lim_{n \to \infty} x^n \exp -x = 0$$

$$\lim_{n \to \infty} \frac{\exp x}{x} = +\infty \qquad \lim_{n \to \infty} \frac{\exp x}{x^n} = +\infty \qquad \lim_{n \to \infty} \frac{\exp x - 1}{x} = 1$$

- **1** Montrer que $\ln(1 + e^x) = x + \ln(1 + e^{-x})$, pour tout $x \in \mathbb{R}$.
- **②** Soit la fonction f définie sur] − 3,3[par :

$$f(x) = \ln\left(\frac{3-x}{3+x}\right)$$

- a) Montrer que f est bien définie sur]-3,3[.
- b) Étudier la parité de f.

- **1** Montrer que $\ln(1+e^x) = x + \ln(1+e^{-x})$, pour tout $x \in \mathbb{R}$.
- **2** Soit la fonction f définie sur]-3,3[par :

$$f(x) = \ln\left(\frac{3-x}{3+x}\right)$$

- a) Montrer que f est bien définie sur]-3,3[.
- b) Étudier la parité de f.
- 1) $\forall x \in \mathbb{R}$, on a $1 + e^x = e^x(e^{-x} + 1)$ $\implies \ln(1 + e^x) = \ln(e^x(e^{-x} + 1)) = \ln(e^x) + \ln(e^{-x} + 1) = x + \ln(e^{-x} + 1).$

- **1** Montrer que $\ln(1 + e^x) = x + \ln(1 + e^{-x})$, pour tout $x \in \mathbb{R}$.
- 2 Soit la fonction f définie sur] -3,3[par :

$$f(x) = \ln\left(\frac{3-x}{3+x}\right)$$

- a) Montrer que f est bien définie sur]-3,3[.
- b) Étudier la parité de f.
- 1) $\forall x \in \mathbb{R}$, on a $1 + e^x = e^x(e^{-x} + 1)$ $\longrightarrow \ln(1 + e^x) - \ln(e^x(e^{-x} + 1)) - \ln(e^x) + \ln(e^{-x} + 1) - x + \ln(e^{-x} + 1)$
- $\implies \ln(1 + e^{x}) = \ln(e^{x}(e^{-x} + 1)) = \ln(e^{x}) + \ln(e^{-x} + 1) = x + \ln(e^{-x} + 1).$ 2) a) $x \in D_f \iff \frac{3 x}{3 + x} > 0$ et $3 + x \neq 0 \iff x \in]-3,3[$.

- Montrer que $\ln(1+e^x)=x+\ln(1+e^{-x})$, pour tout $x\in\mathbb{R}$.
- Soit la fonction f définie sur]-3,3[par :

$$f(x) = \ln\left(\frac{3-x}{3+x}\right)$$

- a) Montrer que f est bien définie sur]-3,3[.
- b) Étudier la parité de f.
- 1) $\forall x \in \mathbb{R}$, on a $1 + e^x = e^x(e^{-x} + 1)$

$$\implies \ln(1 + e^{x}) = \ln(e^{x}(e^{-x} + 1)) = \ln(e^{x}) + \ln(e^{-x} + 1) = x + \ln(e^{-x} + 1).$$
2) a) $x \in D_f \iff \frac{3 - x}{3 + x} > 0 \text{ et } 3 + x \neq 0 \iff x \in]-3,3[.$

2) a)
$$x \in D_f \iff \frac{3-x}{3+x} > 0$$
 et $3+x \neq 0 \iff x \in]-3,3[$.

b)
$$\forall x \in]-3,3[$$
, $f(-x) = \ln\left(\frac{3-(-x)}{3+(-x)}\right) = \ln\left(\frac{3+x}{3-x}\right) = \ln\left(\frac{1}{\frac{3-x}{3+x}}\right)$
= $-\ln\left(\frac{3-x}{3+x}\right) = -f(x)$, donc la fonction f est impaire.

Définition

La fonction sin est continue strictement croissante sur l'intervalle $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$, donc elle définit une bijection de $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ sur [-1;1]. La fonction réciproque est appelée arcsin et elle est continue strictement croissante sur [-1;1].

$$y = \arcsin(x), |x| \le 1 \iff x = \sin(y), |y| \le \frac{\pi}{2}$$

On a
$$\forall x \in [-1,1]$$
, $\cos^2(\arcsin(x)) = 1 - x^2$ et $\cos(\arcsin(x)) = \sqrt{1-x^2}$. $\forall x \in]-1,1[,\tan(\arcsin(x)) = \frac{x}{\sqrt{1-x^2}}$

Exercice

Déterminer arcsin de $0,1,\frac{\sqrt{2}}{2},\frac{\sqrt{3}}{2}$

Exercice

Déterminer arcsin de $0, 1, \frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}$

Pour trouver ces valeurs, on rappelle que sin(arcsin(x)) = x, $\forall x \in [-1, 1]$. Soit $\theta = arcsin(x)$.

$$\arcsin(0) = \theta \Longrightarrow \sin(\theta) = 0 \Longrightarrow \theta = 0$$
. Donc $\arcsin(0) = 0$.

$$\arcsin(1) = \theta \Longrightarrow \sin(\theta) = 1 \Longrightarrow \theta = \frac{\pi}{2}$$
. Donc $\arcsin(1) = \frac{\pi}{2}$.

$$\arcsin(\frac{\sqrt{2}}{2}) = \theta \Longrightarrow \sin(\theta) = \frac{\sqrt{2}}{2} \Longrightarrow \theta = \frac{\pi}{4}$$
. Donc $\arcsin(\frac{\sqrt{2}}{2}) = \frac{\pi}{4}$.

$$\arcsin(\frac{\sqrt{3}}{2}) = \theta \Longrightarrow \sin(\theta) = \frac{\sqrt{3}}{2} \Longrightarrow \theta = \frac{\pi}{3}$$
. Donc $\arcsin(\frac{\sqrt{3}}{2}) = \frac{\pi}{3}$.

arccos

Définition

La fonction cos est continue strictement décroissante sur l'intervalle $[0; \pi]$, donc elle définit une bijection de $[0; \pi]$ sur [-1; 1]. La fonction réciproque est appelée arccos et elle est continue strictement décroissante sur [-1; 1]. $y = \arccos(x), |x| \le 1 \iff x = \cos(y), y \in [0, \pi]$

arccos

Les courbes des fonctions cos et arccos

arctg

Définition

La fonction tan est continue strictement croissante sur l'intervalle $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$, donc elle définit une bijection de $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ sur \mathbb{R} . La fonction réciproque est appelée arctan et elle est continue strictement croissante sur \mathbb{R} .

$$y = \arctan(x), xin\mathbb{R} \iff x = \tan(y), |y| < \frac{\pi}{2}$$

