104536875

WO 2004/050838

JC20 Rec'd PCT/PTO 2 7 MAY 2005

SEQUENCE LISTING

<110> BRIGGS, Kristen

<120> Plant production of immunoglobulins with reduced fucosylation <130> 38136-5001-WO <150> US 60/429,385 <151> 2002-11-27 <160> 85
<150> US 60/429,385 <151> 2002-11-27
<151> 2002-11-27
<160> 85
<170> PatentIn version 3.1
<210> 1 <211> 1494 <212> DNA <213> Herpes simplex virus
<220> <221> CDS <222> (1)(1494) <223>
<220> <221> misc_feature <223> HSV Heavy Chain sequence
<pre><400> 1 atg gga tgg agc tgg atc ttt ctc ttc ctc ctg tca gga gct gca ggt 48</pre>
Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Ser Gly Ala Ala Gly 1 10 15
gtc cat tgc cag gtt cag ctc gtg cag tca ggt gct gag gtg aag aag 96 Val His Cys Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys 20 25 30
cct ggc tcc tcg gtg aag gtc tcc tgc aag gct tct gga ggt tcc ttc Pro Gly Ser Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Ser Phe 35 40 45
agc tcc tat gct atc aac tgg gtg agg caa gct cct gga caa ggg ctt 192 Ser Ser Tyr Ala Ile Asn Trp Val Arg Gln Ala Pro Gly Gln Gly Leu 50 55 60
gag tgg atg gga ggg ctc atg cct atc ttt ggg aca aca aac tac gcg Glu Trp Met Gly Gly Leu Met Pro Ile Phe Gly Thr Thr Asn Tyr Ala

65	70	75	80
cag aag ttc cag gac Gln Lys Phe Gln Asp 85	agg ctc acg att ac Arg Leu Thr Ile Th 90	c gcg gac gta tcc ac r Ala Asp Val Ser Th 95	g agt 288 r Ser
aca gcc tac atg caa Thr Ala Tyr Met Gln 100	ctg agc ggc ctg ac Leu Ser Gly Leu Th 105	a tat gaa gac acg gc ir Tyr Glu Asp Thr Al 110	c atg 336 a Met
tat tac tgt gcg aga Tyr Tyr Cys Ala Arg 115	gtt gcc tac atg ct Val Ala Tyr Met Le 120	t gaa cct acc gtc ac u Glu Pro Thr Val Th 125	gca 384 Ala
ggt ggt ttg gac gtc Gly Gly Leu Asp Val 130	tgg ggc caa ggg ac Trp Gly Gln Gly Th 135	c ttg gtc acc gtc tc ir Leu Val Thr Val Se 140	c tcc 432 r Ser
gca tcc ccg acc agc Ala Ser Pro Thr Ser 145	ccg aag gtc ttc cc Pro Lys Val Phe Pr 150	eg ctg agc ctc tgt ag To Leu Ser Leu Cys Se 155	c acc 480 r Thr 160
cag cca gat ggg aac Gln Pro Asp Gly Asn 165	gtg gtc atc gcc tg Val Val Ile Ala Cy 17	gc ctg gtc cag ggc tt rs Leu Val Gln Gly Ph ro 17	e Phe
cct cag gag cca ctc Pro Gln Glu Pro Leu 180	agt gtg acc tgg ag Ser Val Thr Trp Se 185	gc gaa agc gga cag gg er Glu Ser Gly Gln Gl 190	c gtg 576 y Val
acc gcc agg aac ttc Thr Ala Arg Asn Phe 195	cca ccc agc cag ga Pro Pro Ser Gln As 200	at gcc tcc gga gac ct sp Ala Ser Gly Asp Le 205	g tac 624 u Tyr
acc acg tcc agc cag Thr Thr Ser Ser Gln 210	ctg acc ctt ccg go Leu Thr Leu Pro Al 215	ce aca cag tgc cta gc .a Thr Gln Cys Leu Al 220	g ggc 672 a Gly
aag tcc gtg aca tgc Lys Ser Val Thr Cys 225	cac gtg aag cac ta His Val Lys His Ty 230	nc acg aat ccc agc ca vr Thr Asn Pro Ser Gl 235	g gat 720 n Asp 240
gtg act gtg ccc tgc Val Thr Val Pro Cys 245	Pro Val Pro Ser Th	et cca cct acc cca tc nr Pro Pro Thr Pro Se 50 25	r Pro
tcg act cca cct acc Ser Thr Pro Pro Thr 260	cca tct ccc tca tc Pro Ser Pro Ser Cy 265	gc tgc cac ccc agg ct vs Cys His Pro Arg Le 270	g tca 816 ı Ser
ctg cac agg cct gcc Leu His Arg Pro Ala 275	ctc gag gac ctg ct Leu Glu Asp Leu Le 280	cc tta ggt tcg gaa gc eu Leu Gly Ser Glu Al 285	g aac 864 a Asn
ctc acg tgc aca ctc Leu Thr Cys Thr Leu 290	acc ggc ctg aga ga Thr Gly Leu Arg As 295	at gcg tca ggt gtc ac sp Ala Ser Gly Val Th 300	c ttc 912 r Phe
acc tgg acg ccc tca Thr Trp Thr Pro Ser 305	agt ggt aag agc gc Ser Gly Lys Ser Al 310	et gtt caa ggc cca cc a Val Gln Gly Pro Pr 315	gag 960 Glu 320

PCT/US2003/037905

WO 2004/050838

cgt Arg	ga g Asj	c cto	c tg ı Cy:	t ggd s Gly 329	Cys	c tac s Tyn	c ago	gtg Val	g too l Sei 330	r Sei	gto Val	c ctt l Lei	ccg Pro	339 339	c tgt y Cys	1008
gco	gag Glu	g cct 1 Pro	tgg Trp 340) Asr	cat n His	ggg Gly	g aag ′Lys	aco Thr	Phe	act Thr	tgo Cys	e act	gct Ala 350	ı Ala	tac Tyr	1056
Pro	gag Glu	g ago Ser 355	. гъ	g acc	e ccg	g cta Leu	acc Thr 360	Ala	acc Thr	cto Leu	tc <u>c</u> Ser	aaa Lys 365	Ser	ggc Gly	aac Asn	1104
aca Thr	Phe 370	Arg	Pro	gag Glu	gtc Val	Cac His 375	ctg Leu	ctg Leu	ccg Pro	ccg Pro	Pro 380	Ser	gag Glu	gag Glu	ctg Leu	1152
385	Leu	Asn	GLU	Leu	390	Thr	Leu	Thr	Cys	Leu 395	Ala	Arg	Gly	Phe	400	1200
PIO	гуя	Asp	Vai	ctg Leu 405	vai	Arg	Trp	Leu	Gln 410	Gly	Ser	Gln	Glu	Leu 415	Pro	1248
Arg	GIU	гуѕ	1yr 420	ctg Leu	Thr	Trp	Ala	Ser 425	Arg	Gln	Glu	Pro	Ser 430	Gln	Gly	1296
1111	IIIL	435	Pne	gct Ala	Va.I	Thr	Ser 440	Ile	Leu	Arg	Val	Ala 445	Ala	Glu	Asp	1344
ırp	450	гуѕ	GIA	gac Asp	Thr	Phe 455	Ser	Cys	Met	Val	Gly 460	His	Glu	Ala	Leu	1392
465	neu	Ala	Pne		470	ьуs	Thr	Ile	Asp	Arg 475	Leu	Ala	Gly	Lys	Pro 480	1440
acc Thr	cat His	gtc Val	aat Asn	gtg Val 485	tct Ser	gtt Val	gtc Val	Met .	gcg Ala 490	gag Glu	gtg Val	gac Asp	Gly	acc Thr 495	tgc Cys	1488
tac Tyr	tga															1494
<210:	> 2															

- <211> 497
- <212> PRT
- <213> Herpes simplex virus
- <400> 2

Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Ala Ala Gly 10

Val His Cys Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys 20 25

Pro	Gly	Ser 35	Ser	Val	Lys	Val	Ser 40	Cys	Lys	Ala	Ser	Gly 45	Gly	Ser	Phe
Ser	Ser 50	Tyr	Ala	Ile	Asn	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Gln	Gly	Leu
Glu 65	Trp	Met	Gly	Gly	Leu 70	Met	Pro	Ile	Phe	Gly 75	Thr	Thr	Asn	Tyr	Ala 80
Gln	Lys	Phe	Gln	Asp 85	Arg	Leu	Thr	Ile	Thr 90	Ala	Asp	Val	Ser	Thr 95	Ser
Thr	Ala	Tyr	Met 100	Gln	Leu	Ser	Gly	Leu 105	Thr	Tyr	Glu	Asp	Thr 110	Ala	Met
Tyr	Tyr	Cys 115	Ala	Arg	Val	Ala	Tyr 120	Met	Leu	Glu	Pro	Thr 125	Val	Thr	Ala
Gly	Gly 130	Leu	Asp	Val	Trp	Gly 135	Gln	Gly	Thr	Leu	Val 140	Thr	Val	Ser	Ser
Ala 145	Ser	Pro	Thr	Ser	Pro 150	Lys	Val	Phe	Pro	Leu 155	Ser	Leu	Cys	Ser	Thr 160
Gln	Pro	Asp	Gly	Asn 165	Val	Val	Ile	Ala	Cys 170	Leu	Val	Gln	Gly	Phe 175	Phe
Pro	Gln	Glu	Pro 180	Leu	Ser	Val	Thr	Trp 185	Ser	Glu	Ser	Gly	Gln 190	Gly	Val
Thr	Ala	Arg 195	Asn	Phe	Pro	Pro	Ser 200	Gln	Asp	Ala	Ser	Gly 205	Asp	Leu	Tyr
Thr	Thr 210	Ser	Ser	Gln	Leu	Thr 215	Leu	Pro	Ala	Thr	Gln 220	Cys	Leu	Ala	Gly
Lys 225	Ser	Val	Thr	Cys	His 230	Val	Lys	His	Tyr	Thr 235	Asn	Pro	Ser	Gln	Asp 240
Val	Thr	Val	Pro	Cys 245	Pro	Val	Pro	Ser	Thr 250	Pro	Pro	Thr	Pro	Ser 255	Pro
Ser	Thr	Pro	Pro 260	Thr	Pro	Ser	Pro	Ser 265	Cys	Cys	His	Pro	Arg 270	Leu	Ser
Leu	His	Arg 275	Pro	Ala	Leu	Glu	Asp 280	Leu	Leu	Leu	Gly	Ser 285	Glu	Ala	Asn
Leu	Thr 290	Cys	Thr	Leu	Thr	Gly 295	Leu	Arg	Asp	Ala	Ser 300	Gly	Val	Thr	Phe
Thr 305	Trp	Thr	Pro	Ser	Ser 310	Gly	Lys	Ser	Ala	Val 315	Gln	Gly	Pro	Pro	Glu 320
Arg	Asp	Leu	Cys	Gly 325	Суз	Tyr	Ser	Val	Ser 330	Ser	Val	Leu	Pro	Gly 335	Cys
Ala	Glu	Pro	Trp 340	Asn	His	Gly	Lys	Thr 345	Phe	Thr	Cys	Thr	Ala 350	Ala	Tyr
Pro	Glu	Ser	Lys	Thr	Pro	Leu	Thr	Ala	Thr	Leu	Ser	Lys	Ser	Gly	Asn

PCT/US2003/037905

	355		360)				365				
Thr Phe	e Arg Pro	Glu Val	His Leu 375	ı Leu	Pro	Pro	Pro 380	Ser	Glu	Glu	Leu	
Ala Lei 385	ı Asn Glı	Leu Val 390	Thr Lev	Thr		Leu 395	Ala	Arg	Gly	Phe	Ser 400	
Pro Lys	s Asp Val	Leu Val 405	Arg Trp	Leu	Gln 410	Gly	Ser	Gln	Glu	Leu 415	Pro	
	420			425					430		_	
Thr Thr	Thr Phe	Ala Val	Thr Ser	Ile	Leu i	Arg		Ala 445	Ala	Glu	Asp	
450		Asp Thr	455			4	460					
105		Thr Gln 470			. 4	175					480	
Thr His	Val Asn	Val Ser 485	Val Val	Met A	Ala 0 190	3lu V	/al /	Asp (Thr 495	Cys	
Tyr								٠.				
<211> 5 <212> 1	3 57 DNA Artificia	l sequen	ce									
<220> <223> H	leavy cha	in signal	l peptid	e								
	DS 1)(57)											
<400> 3 atg gga Met Gly	rrh ser	tgg atc t Trp Ile P	tt ctc t he Leu I	tc ct he Le	eu Le	g to eu Se	ca go er Gl	ga g ly A	ct g la A 1	la G	gt ly	48
gtc cat (57
<210> 4 <211> 19 <212> PF <213> Ar	T	sequence	e									
<220> <223> He	avy chai	n signal	peptide									
<400> 4												•

Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Ala Ala Gly 1 5 10 15

Val His Cys

<210 <211 <212 <213	> 1 > D	.368 NA Artif	icia	ıl se	equen	ıce										
<220 <223		latur	e he	avy	chai	n se	equer	nce								
<220 <221 <222 <223	> C > (DS (1)	(136	58)												
<400 cag Gln 1	att	caq	ctc Leu	gtg Val 5	cag Gln	tca Ser	ggt Gly	gct Ala	gag Glu 10	gtg Val	aag Lys	aag Lys	cct Pro	ggc Gly 15	tcc Ser	48
tcg Ser	gtg Val	aag Lys	gtc Val 20	tcc Ser	tgc Cys	aag Lys	gct Ala	tct Ser 25	gga Gly	ggt Gly	tcc Ser	ttc Phe	agc Ser 30	tcc Ser	tat Tyr	96
gct Ala	atc Ile	aac Asn 35	tgg Trp	gtg Val	agg Arg	caa Gln	gct Ala 40	cct Pro	gga Gly	caa Gln	Gly 999	ctt Leu 45	gag Glu	tgg Trp	atg Met	144
gga Gly	999 Gly 50	ctc Leu	atg Met	cct Pro	atc Ile	ttt Phe 55	gly aaa	aca Thr	aca Thr	aac Asn	tac Tyr 60	gcg Ala	cag Gln	aag Lys	ttc Phe	192
cag Gln 65	gac Asp	agg Arg	ctc Leu	acg Thr	att Ile 70	acc Thr	gcg Ala	gac Asp	gta Val	tcc Ser 75	acg Thr	agt Ser	aca Thr	gcc Ala	tac Tyr 80	240
atg Met	caa Gln	ctg Leu	agc Ser	ggc Gly 85	ctg Leu	aca Thr	tat Tyr	gaa Glu	gac Asp 90	acg Thr	gcc Ala	atg Met	tat Tyr	tac Tyr 95	tgt Cys '	288
gcg Ala	aga Arg	gtt Val	gcc Ala 100	tac Tyr	atg Met	ctt Leu	gaa Glu	cct Pro 105	acc Thr	gtc Val	act Thr	gca Ala	ggt Gly 110	ggt Gly	ttg Leu	336
gac Asp	gtc Val	tgg Trp 115	ggc Gly	caa Gln	gly ggg	acc Thr	ttg Leu 120	gtc Val	acc Thr	gtc Val	tcc Ser	tcc Ser 125	gca Ala	tcc Ser	ccg Pro	384
acc Thr	agc Ser 130	ccg Pro	aag Lys	gtc Val	ttc Phe	ccg Pro 135	ctg Leu	agc Ser	ctc Leu	tgt Cys	agc Ser 140	acc Thr	cag Gln	cca Pro	gat Asp	432
999 Gly 145	aac Asn	gtg Val	gtc Val	atc Ile	gcc Ala 150	tgc Cys	ctg Leu	gtc Val	cag Gln	ggc Gly 155	ttc Phe	ttc Phe	cct Pro	cag Gln	gag Glu 160	480
cca	ctc	agt	gtg	acc	tgg	agc	gaa	agc	gga	cag	ggc	gtg	acc	gcc	agg	528

Pro Leu	Ser Va	165	rp Ser	Glu S	er Gly 170	Gln Gl	y Val Th	r Ala Arg 175	
aac ttc Asn Phe	cca co Pro Pr 18	o ser c	ag gat In Asp	Ala S	cc gga er Gly 85	gac ct Asp Le	g tac aco u Tyr Th:	c acg tcc r Thr Ser	576
agc cag Ser Gln	ctg ac Leu Th 195	c ctt c r Leu P	cg gcc ro Ala	aca co Thr Gi 200	ag tgc ln Cys	cta gc	g ggc aag a Gly Lys 205	g tcc gtg s Ser Val	624
210	nis va	т пуѕ н	215	Thr As	sn Pro	Ser Gli 220	n Asp Val	act gtg Thr Val	672
225	PIO Va.	2:	er Thr	Pro Pr	o Thr	Pro Ser 235	Pro Ser	act cca Thr Pro 240	720
	10 561	245	er Cys (Cys Hi	.s Pro 250	Arg Leu	Ser Leu	255	768
cct gcc (Pro Ala I	260	Asp Le	u Leu I	Leu Gl 26	y Ser 5	Glu Ala	Asn Leu 270	Thr Cys	816
	.nr Gry 275	Leu Ar	g Asp A	Ala Se: !80	r Gly	Val Thr	Phe Thr 285	Trp Thr	864
ccc tca a Pro Ser S 290	er Gry	гуда ге	r Ala V 295	al Glr	n Gly 1	Pro Pro 300	Glu Arg	Asp Leu	912
tgt ggc t Cys Gly C 305	ys lyl	31:	ser s	er Val	. Leu I	Pro Gly	Cys Ala	Glu Pro 320	960
tgg aat c Trp Asn H	rs Gry	325	Phe T	hr Cys	330	la Ala	Tyr Pro	Glu Ser 335	1008
aag acc co Lys Thr Pi	340	III Ale	i inr Le	eu Ser 345	Lys S	er Gly	Asn Thr 350	Phe Arg	1056
ccc gag gt Pro Glu Va 35		ctg ctg Leu Leu	ccg cc Pro Pr 36	o Pro	tcg g Ser G	lu Glu	ctg gcc (Leu Ala) 365	ctg aac Leu Asn	1104
gag ctg gt Glu Leu Va 370	g acg	ctg acg Leu Thr	tgc ct Cys Le 375	g gcg u Ala	cgc gg Arg G	gc ttc a ly Phe s 380	agc ccc a Ser Pro I	ag gac ys Asp	1152
gtg ctg gt Val Leu Va 385	t cgc	tgg ctg Irp Leu 390	cag gg Gln Gl	c tca y Ser	cag ga Gln Gl	lu Leu I	ect agg g Pro Arg G	ag aag lu Lys 400	1200
tac ctg ac Tyr Leu Th	t tgg g r Trp 1	gca tcc Ala Ser	cgg cag Arg Gli	g gag n Glu	ccc ag Pro Se	c caa g r Gln G	gc acc a ly Thr T	cc acc hr Thr	1248

PCT/US2003/037905

405		410	415
ttc gct gtg acc tcg Phe Ala Val Thr Ser 420	Ile Leu Arg Va	al Ala Ala Glu Asp'	tgg aag aag 1296 Irp Lys Lys 430
ggt gac acc ttc tcc Gly Asp Thr Phe Ser 435	tgc atg gtg gg Cys Met Val Gl 440	gc cac gag gcc ctt o ly His Glu Ala Leu : 445	ccg ctg gcc 1344 Pro Leu Ala
ttc aca cag aag acc Phe Thr Gln Lys Thr 450			1368
<210> 6 <211> 456 <212> PRT <213> Artificial s	equence		
<220> <223> Mature heavy	chain sequence	e	
<400> 6 Gln Val Gln Leu Val 1 5	Gln Ser Gly A	la Glu Val Lys Lys 10	Pro Gly Ser 15
Ser Val Lys Val Ser 20	Cys Lys Ala Se		Ser Ser Tyr 30
Ala Ile Asn Trp Val	Arg Gln Ala Pr 40	ro Gly Gln Gly Leu 45	Glu Trp Met
Gly Gly Leu Met Pro	Ile Phe Gly Th	hr Thr Asn Tyr Ala 60	Gln Lys Phe
Gln Asp Arg Leu Thr	Ile Thr Ala As	sp Val Ser Thr Ser 75	Thr Ala Tyr 80
Met Gln Leu Ser Gly 85	Leu Thr Tyr G	lu Asp Thr Ala Met 90	Tyr Tyr Cys 95
Ala Arg Val Ala Tyr 100		ro Thr Val Thr Ala	Gly Gly Leu 110
Asp Val Trp Gly Gln 115	Gly Thr Leu Va	al Thr Val Ser Ser 125	Ala Ser Pro
Thr Ser Pro Lys Val	Phe Pro Leu Se	er Leu Cys Ser Thr	Gln Pro Asp
Gly Asn Val Val Ile 145	Ala Cys Leu Va 150	al Gln Gly Phe Phe 155	Pro Gln Glu 160
Pro Leu Ser Val Thr		er Gly Gln Gly Val	Thr Ala Arg 175
Asn Phe Pro Pro Ser		er Gly Asp Leu Tyr 85	Thr Thr Ser 190
Ser Gln Leu Thr Leu	Pro Ala Thr G	ln Cys Leu Ala Gly	Lys Ser Val

PCT/US2003/037905

WO 2004/050838

195 200 2

Thr Cys His Val Lys His Tyr Thr Asn Pro Ser Gln Asp Val Thr Val 210 215 220

Pro Cys Pro Val Pro Ser Thr Pro Pro Thr Pro Ser Pro Ser Thr Pro 225 230 235 240

Pro Thr Pro Ser Pro Ser Cys Cys His Pro Arg Leu Ser Leu His Arg 245 250 255

Pro Ala Leu Glu Asp Leu Leu Leu Gly Ser Glu Ala Asn Leu Thr Cys 260 . 265 . 270

Thr Leu Thr Gly Leu Arg Asp Ala Ser Gly Val Thr Phe Thr Trp Thr 275 280 285

Pro Ser Ser Gly Lys Ser Ala Val Gln Gly Pro Pro Glu Arg Asp Leu 290 295 300

Cys Gly Cys Tyr Ser Val Ser Ser Val Leu Pro Gly Cys Ala Glu Pro 305 310 315 320

Trp Asn His Gly Lys Thr Phe Thr Cys Thr Ala Ala Tyr Pro Glu Ser 325 330 335

Lys Thr Pro Leu Thr Ala Thr Leu Ser Lys Ser Gly Asn Thr Phe Arg

Pro Glu Val His Leu Leu Pro Pro Pro Ser Glu Glu Leu Ala Leu Asn 355 360 365

Glu Leu Val Thr Leu Thr Cys Leu Ala Arg Gly Phe Ser Pro Lys Asp 370 375 380

Val Leu Val Arg Trp Leu Gln Gly Ser Gln Glu Leu Pro Arg Glu Lys 385 390 395 400

Tyr Leu Thr Trp Ala Ser Arg Gln Glu Pro Ser Gln Gly Thr Thr 405 410 415

Phe Ala Val Thr Ser Ile Leu Arg Val Ala Ala Glu Asp Trp Lys Lys
420 425 430

Gly Asp Thr Phe Ser Cys Met Val Gly His Glu Ala Leu Pro Leu Ala 435 440 445

Phe Thr Gln Lys Thr Ile Asp Arg

<210> 7

<211> 69

<212> DNA

<213> Artificial sequence

<220>

<223> heavy chain tailpiece

<220>

<221> CDS

```
<222> (1)..(69)
<223>
<400> 7
ttg gcg ggt aaa ccc acc cat gtc aat gtg tct gtt gtc atg gcg gag
                                                                      48
Leu Ala Gly Lys Pro Thr His Val Asn Val Ser Val Val Met Ala Glu
                                   10
                                                                       69
gtg gac ggc acc tgc tac tga
Val Asp Gly Thr Cys Tyr
            20
<210> 8
<211> 22
<212> PRT
<213> Artificial sequence
<220>
<223> heavy chain tailpiece
<400> 8
Leu Ala Gly Lys Pro Thr His Val Asn Val Ser Val Val Met Ala Glu
Val Asp Gly Thr Cys Tyr
            20
<210> 9
<211> 702
<212> DNA
<213> Herpes simplex virus
<220>
<221> CDS
<222> (1)..(702)
<223>
<220>
<221> misc_feature
<223> HSV light chain sequence
atg gga tgg tcc tgg atc ttt ctc ttc ctt ctg tca gga gct gca ggt
                                                                      48
Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Ala Ala Gly
                                                                      96
gtc cac tgc gag atc gtg ctc acg cag tct cca ggc acc ctg tct ttg
Val His Cys Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu
                                25
tcg cca ggg gaa cgt gcc acc ctc tcc tgc cgg gcc agt cag tcc gtt
                                                                      144
Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val
                                                                     192
tcc agc gcg tac ctt gcc tgg tac cag cag aag cct ggc caa gct ccc
Ser Ser Ala Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro
agg ctc ctc atc tat ggt gcg tcc agc agg gct act ggc att cca gac
                                                                     240
```


Arg Lo	eu I	Leu	Ile	Tyr	Gly 70	Ala	Ser	Ser	Arg	Ala 75	Thr	Gly	Ile	Pro	Asp 80	
cgc to Arg Pl																288
agg c Arg L																336
cgc to	er I															384
gtg go Val A	_	-			-											432
aag to Lys Se 145																480
aga ga Arg G																528
aac to Asn Se		3ln														576
agc ct Ser Le	eu S	_			-		_	_			_					624
aag gt Lys Va 23																672
aca aa Thr Ly 225									tga							702
<210><211><211><212><213>	23 PR	8 3 RT	s si	mple	x vi	rus										
<400> Met G] 1			Ser	Trp 5	Ile	Phe	Leu	Phe	Leu 10	Leu	Ser	Gly	Ala	Ala 15	Gly	
Val Hi	is C	-	Glu 20	Ile	Val	Leu	Thr	Gln 25	Ser	Pro	Gly	Thr	Leu 30	Ser	Leu	
Ser Pr		Sly (Glu	Arg	Ala	Thr	Leu 40	Ser	Cys	Arg	Ala	Ser 45	Gln	Ser	Val	
Ser Se		ala '	Tyr	Leu	Ala	Trp 55	Tyr	Gln	Gln	Lys	Pro 60	Gly	Gln	Ala	Pro	

Arg 65	Leu	Leu	Ile	Tyr	Gly 70	Ala	Ser	Ser	Arg	Ala 75	Thr	Gly	Ile	Pro	Asp 80	
Arg	Phe	Ser	Gly	Ser 85	Gly	Ser	Gly	Thr	Asp 90	Phe	Thr	Leu	Thr	Ile 95	Ser	
Arg	Leu	Glu	Pro 100	Glu	Asp	Phe	Ala	Val 105	Tyr	Tyr	Cys	Gln	Gln 110	Tyr	Gly	
Arg	Ser	Pro 115	Thr	Phe	Gly	Gln	Gly 120	Thr	Lys	Val	Glu	Ile 125	Lys	Arg	Thr	
Val	Ala 130	Ala	Pro	Ser	Val	Phe 135	Ile	Phe	Pro	Pro	Ser 140	Asp	Glu	Gln	Leu	
Lys 145	Ser	Gly	Thr	Ala	Ser 150	Val	Val	Cys	Leu	Leu 155	Asn	Asn	Phe	Tyr	Pro 160	
Arg	Glu	Ala	Lys	Val 165	Gln	Trp	Lys	Val	Asp 170	Asn	Ala	Leu	Gln	Ser 175	Gly	
Asn	Ser	Gln	Glu 180	Ser	Val	Thr	Glu	Gln 185	Asp	Ser	Lys	Asp	Ser 190	Thr	Tyr	
Ser	Leu	Ser 195	Asn	Thr	Leu	Thr	Leu 200	Ser	Lys	Ala	Asp	Туг 205	Glu	Lys	His	
Lys	Val 210	Tyr	Ala	Cys	Glu	Val 215	Thr	His	Gln	Gly	Leu 220	Arg	Ser	Pro	Val	
Thr 225	Lys	Ser	Phe	Asn	Arg 230	Gly	Glu	Cys		•			•			
<210 <210 <210 <210	1> 2>	11 57 DNA Arti:	ficia	al s	equei	nce										
<22 <22		Light	t ch	ain	sign	al p	epti	de								
<22					,	-	-									
<22 <22 <22	1> 2>	CDS (1).	. (57)												
<40 atg Met 1	gga	11 tgg Trp	tcc Ser	tgg Trp 5	atc Ile	ttt Phe	ctc Leu	ttc Phe	ctt Leu 10	ctg Leu	tca Ser	gga Gly	gct Ala	gca Ala 15	ggt Gly	48
_		tgc Cys														57
<21 <21 <21 <21	1> 2>	12 19 PRT Arti	fici	al s	eque:	nce										

WO 2004/050838 PCT/US2003/037905

<220> <223> Light chain signal peptide	
<pre><400> 12 Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Ala Ala Gly 1</pre>	
<210> 13 <211> 642 <212> DNA <213> Artificial sequence	
<220> <223> Mature light chain sequence	
<220> <221> CDS <222> (1)(642) <223>	
<pre><400> 13 gag atc gtg ctc acg cag tct cca ggc acc ctg tct ttg tcg cca ggg Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1</pre>	48
gaa cgt gcc acc ctc tcc tgc cgg gcc agt cag tcc gtt tcc agc gcg Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ala 20 25 30	96
tac ctt gcc tgg tac cag cag aag cct ggc caa gct ccc agg ctc ctc Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45	144
atc tat ggt gcg tcc agc agg gct act ggc att cca gac cgc ttc tca Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60	192
ggc agt ggg tct ggg aca gac ttc acg ctc acc att agc agg ctg gaa Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 . 80	240
cct gag gat ttt gca gtg tac tac tgt cag cag tat ggt cgc tca ccc Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Arg Ser Pro 85 90 95	288
acg ttc ggc cag ggg acc aag gtg gag atc aag cgc act gtg gct gca Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110	336
ccg tcg gtc ttc ata ttc ccg cca tcc gat gag cag ctg aag tct ggc Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125	384
act gcc tct gtt gtg tgc ctg ctg aat aac ttc tat ccg aga gag gcg Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140	432

	Val					Asp					Ser				caa Gln 160	480
gag Glu	ser	gtt Val	aca Thr	gag Glu 165	Gln	gac Asp	agc Ser	aag Lys	gac Asp 170	Ser	acc Thr	tac Tyr	ago Ser	ctc Leu 175	agc Ser	528
				Leu					Tyr						tac Tyr	576
			Val					Leu					Thr		agc Ser	624
		Arg		gag Glu												642
<21	0>	14														
	2>			_												
		Arti	fici	al s	eque:	nce										
<22 <22		Matu	re l	ight	cha	in s	eque	nce								
<40 Glu 1		14 Val	Leu	Thr 5	Gln	Ser	Pro	Gly	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly	
Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ser 30	Ser	Ala	
Tyr	Leu	Ala 35	Trp	Tyr	Gln	Gln	Lys 40	Pro	Gly	Gln	Ala	Pro 45	Arg	Leu	Leu	
Ile	Tyr 50	Gly	Ala	Ser	Ser	Arg 55	Ala	Thr	Gly	Ile	Pro 60	Asp	Arg	Phe	Ser	
Gly 65	Ser	Gly	Ser	Gly	Thr 70	Asp	Phe	Thr	Leu	Thr 75	Ile	Ser	Arg	Leu	Glu 80	
Pro	Glu	Asp	Phe	Ala 85	Val	Tyr	Tyr	Cys	Gln 90	Gln	Tyr	Ġly	Arg	Ser 95	Pro	
Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Thr	Val 110	Ala	Ala	
Pro	Ser	Val 115	Phe	Ile	Phe	Pro	Pro 120	Ser	Asp	Glu	Gln	Leu 125	Lys	Ser	Gly	
Thr	Ala 130	Ser	Val	Val	Суѕ	Leu 135	Leu	Asn	Asn	Phe	Tyr 140	Pro	Arg	Glu	Ala	
Lys 145	Val	Gln	Trp	Lys	Val 150	Asp	Asn !	Ala	Leu	Gln 155	Ser	Gly	Asn	Ser	Gln 160	
Glu	Ser	Val	Thr	Glu	Gln	Asp	Ser	Lys	Asp	Ser	Thr	Tyr	Ser	Leu	Ser	

165	170	175
	170	1/5

Asn Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190

Ala Cys Glu Val Thr His Gln Gly Leu Arg Ser Pro Val Thr Lys Ser

Phe Asn Arg Gly Glu Cys 210

<210> 15

<211> 9144

<212> DNA

<213> Artificial sequence

<220>

<223> pDAB635 (ubiH) sequence

<400> 15

<400> 15						
tcgcgcgttt	cggtgatgac	ggtgaaaac	c tctgacaca	t gcagctccc	g gagacggtca	60
cagcttgtct	gtaagcggat	gccgggagc	a gacaagccc	g tcagggcgc	g tcagcgggtg	120
ttggcgggtg	tcggggctgg	cttaactat	g cggcatcaga	a gcagattgt.	a ctgagagtgc	180
accatatgcg	gtgtgaaata	ccgcacagat	c gcgtaaggag	g aaaataccg	c atcaggcgcc	240
attcgccatt	caggctgcgc	aactgttggg	g aagggcgato	ggtgcgggc	tcttcgctat	300
tacgccagct	ggcgaaaggg	ggatgtgctg	g caaggcgatt	aagttgggta	a acgccagggt	360
tttcccagtc	acgacgttgt	aaaacgacgg	, ccagtgaatt	acaccggtgt	gatcatgggc	420
cgcgattaaa	aatcccaatt	atatttggto	: taatttagtt	tggtattgag	, taaaacaaat	480
tcgaaccaaa	ccaaaatata	aatatatagt	ttttatatat	atgcctttaa	gacttttat	540
agaattttct	ttaaaaaata	tctagaaata	tttgcgactc	ttctggcatg	taatatttcg	600
ttaaatatga a	agtgctccat	ttttattaac	tttaaataat	tggttgtacg	atcactttct	660
tatcaagtgt t	tactaaaatg	cgtcaatctc	tttgttcttc	catattcata	tgtcaaaatc	720
tatcaaaatt o	ttatatatc	tttttcgaat	ttgaagtgaa	atttcgataa	tttaaaatta	780
aatagaacat a	tcattattt	aggtatcata	ttgattttta	tacttaatta	ctaaatttgg	840
ttaactttga a	agtgtacat	caacgaaaaa	ttagtcaaac	gactaaaata	aataaatatc	900
atgtgttatt a	agaaaattc	tcctataaga	atattttaat	agatcatatg	tttgtaaaaa	960
aaattaattt t	tactaacac	atatatttac	ttatcaaaaa	tttgacaaag	taagattaaa	1020
ataatattca t	ctaacaaaa	aaaaaaccag	aaaatgctga	aaacccggca	aaaccgaacc	1080
aatccaaacc g						1140
atttgcaccc c	taatcataa 1	tagctttaat	atttcaagat	attattaagt	taacgttgtc	1200

aatatcctgg	aaattttgca	aaatgaatca	agcctatatg	gctgtaatat	gaatttaaaa	1260
gcagctcgat	gtggtggtaa	tatgtaattt	acttgattct	aaaaaaatat	cccaagtatt	1320
aataatttct	gctaggaaga	aggttagcta	cgatttacag	caaagccaga	atacaaagaa	1380
ccataaagtg	attgaagctc	gaaatatacg	aaggaacaaa	tatttttaaa	aaaatacgca	1440
atgacttgga	acaaaagaaa	gtgatatatt	ttttgttctt	aaacaagcat	cccctctaaa	1500
gaatggcagt	tttcctttgc	atgtaactat	tatgctccct	tcgttacaaa	aattttggac	1560
tactattggg	aacttcttct	gaaaatagtg	gccaccgctt	aattaacacc	ggtggcccgg	1620
gcaagcggcc	gcattcccgg	gaagctaggc	caccgtggcc	cgcctgcagg	ggaagettge	1680
atgcctgcag	atccccgggg	atcctctaga	gtcgacctgc	agtgcagcgt	gacccggtcg	1740
tgcccctctc	tagagataat	gagcattgca	tgtctaagtt	ataaaaaatt	accacatatt	1800
ttttttgtca	cacttgtttg	aagtgcagtt	tatctatctt	tatacatata	tttaaacttt	1860
aatctacgaa	taatataatc	tatagtacta	caataatatc	agtgttttag	agaatcatat	1920
aaatgaacag	ttagacatgg	tctaaaggac	aattgagtat	tttgacaaca	ggactctaca	1980
gttttatctt	tttagtgtgc	atgtgttctc	cttttttt	gcaaatagct	tcacctatat	2040
aatacttcat	ccattttatt	agtacatcca	tttagggttt	agggttaatg	gtttttatag	2100
actaatttt	ttagtacatc	tattttattc	tattttagcc	tctaaattaa	gaaaactaaa	2160
actctatttt	agttttttta	tttaataatt	tagatataaa	atagaataaa	ataaagtgac	2220
taaaaattaa	açaaataccc	tttaagaaat	taaaaaaact	aaggaaacat	ttttcttgtt	2280
tcgagtagat	aatgccagcc	tgttaaacgc	cgtcgacgag	tctaacggac	accaaccagc	2340
gaaccagcag	cgtcgcgtcg	ggccaagcga	agcagacggc	acggcatctc	tgtcgctgcc	2400
tctggacccc	tctcgagagt	teegeteeac	cgttggactt	gctccgctgt	cggcatccag	2460
aaattgcgtg	gcggagcggc	agacgtgagc	cggcacggca	ggcggcctcc	tcctcctctc	2520
acggcacggc	agctacgggg	gattcctttc	ccaccgctcc	ttcgctttcc	cttcctcgcc	2580
cgccgtaata	aatagacacc	ccctccacac	cctctttccc	caacctcgtg	ttgttcggag	2640
cgcacacaca	cacaaccaga	tctcccccaa	atccacccgt	cggcacctcc	gcttcaaggt	2700
acgccgctcg	tectecece	cccccctct	ctaccttctc	tagatcggcg	ttccggtcca	2760
tgcatggtta	gggcccggta	gttctacttc	tgttcatgtt	tgtgttagat	ccgtgtttgt	2820
gttagatccg	tgctgctagc	gttcgtacac	ggatgcgacc	tgtacgtcag	acacgttctg	2880
attgctaact	tgccagtgtt	tctctttggg	gaatcctggg	atggctctag	ccgttccgca	2940
gacgggatcg	atttcatgat	tttttttgtt	tcgttgcata	gggtttggtt	tgcccttttc	3000
ctttatttca	atatatgccg	tgcacttgtt	tgtcgggtca	tcttttcatg	cttttttttg	3060

WO 2004/050838 PCT/US2003/037905

tettggttgt gatgatgtgg tetggttggg eggtegttet agateggagt agaattetgt	3120
ttcaaactac ctggtggatt tattaatttt ggatctgtat gtgtgtgcca tacatattca	3180
tagttacgaa ttgaagatga tggatggaaa tatcgatcta ggataggtat acatgttgat	3240
gcgggtttta ctgatgcata tacagagatg ctttttgttc gcttggttgt gatgatgtgg	3300
tgtggttggg cggtcgttca ttcgttctag atcggagtag aatactgttt caaactacct	3360
ggtgtattta ttaattttgg aactgtatgt gtgtgtcata catcttcata gttacgagtt	3420
taagatggat ggaaatatcg atctaggata ggtatacatg ttgatgtggg ttttactgat	3480
gcatatacat gatggcatat gcagcatcta ttcatatgct ctaaccttga gtacctatct	3540
attataataa acaagtatgt tttataatta ttttgatctt gatatacttg gatgatggca	3600
tatgcagcag ctatatgtgg atttttttag ccctgccttc atacgctatt tatttgcttg	3660
gtactgtttc ttttgtcgat gctcaccctg ttgtttggtg ttacttctgc agggtacccc	3720
cggggtcgac catggccaac aagcacctga gcctctccct cttcctcgtg ctcctcggcc	3780
teteegeete eetegeeage ggeeaggtte agetegtgea gteagggget gaggtgaaga	3840
agcctgggtc ctcggtgaag gtctcctgca aggcttctgg aggttccttc agcagctatg	3900
ctatcaactg ggtgcgacag gcccctggac aagggcttga gtggatggga gggctcatgc	3960
ctatetttgg gacaacaaae taegeacaga agtteeagga cagaeteaeg attaeegegg	4020
acgtatccac gagtacagcc tacatgcagc tgagcggcct gacatatgaa gacacggcca	4080
tgtattactg tgcgagagtt gcctatatgt tggaacctac cgtcactgca gggggtttgg	4140
acgtctgggg caaagggacc acggtcaccg tctccccagc atccccgacc agccccaagg	4200
tetteceget gageetetge ageacecage cagatgggaa egtggteate geetgeetgg	4260
tecagggett ettececeag gagecaetea gtgtgaeetg gagegaaage ggaeagggeg	4320
tgaccgccag aaacttccca cccagccagg atgcctccgg ggacctgtac accacgagca	4380
gccagctgac cctgccggcc acacagtgcc tagccggcaa gtccgtgaca tgccacgtga	4440
agcactacac gaatcccagc caggatgtga ctgtgccctg cccagttccc tcaactccac	4500
ctaccccate teceteaact ecaectacce catetecete atgetgeeac eccegaetgt	4560
cactgcaccg accggccctc gaggacctgc tcttaggttc agaagcgaac ctcacgtgca	4620
cactgaccgg cctgagagat gcctcaggtg tcaccttcac ctggacgccc tcaagtggga	4680
agagegetgt teaaggacea eetgagegtg acetetgtgg etgetacage gtgtecagtg	4740
toctgoogg ctgtgoogg cottggaata atgggaaga att	4800
acceegagte caagaceeeg ctaacegeea ceeteteaaa ateeggaaae acatteegge	4860

ccgaggtcca	cctactacca	ccgccgtcgg	aggagetgge	cctgaacgag	ctggtgacgc	4920
		ttcagcccca				4980
		aagtacctga				5040
		accagcatac				5100
						5160
		gtgggccacg				5220
		aaacccaccc				
		gttaaactga				5280
		attttgttta				5340
atgatcgatc	tttggggttt	tatttaacac	attgtaaaat	gtgtatctat	taataactca	5400
atgtataaga	tgtgttcatt	cttcggttgc	catagatctg	cttatttgac	ctgtgatgtt	5460
ttgactccaa	aaaccaaaat	cacaactcaa	taaactcatg	gaatatgtcc	acctgtttct	5520
tgaagagttc	atctaccatt	ccagttggca	tttatcagtg	ttgcagcggc	gctgtgcttt	5580
gtaacataac	aattgttacg	gcatatatcc	aacggccggc	ctaggccacg	gtggccagat	5640
ccactagttc	tagagcggcc	gcttaattaa	atttaaatgt	ttaaactagg	cctcctgcag	5700
ggtttaaact	tgccgtggcc	tattttcaga	agaagttccc	aatagtagtc	caaaattttt	5760
gtaacgaagg	gagcataata	gttacatgca	aaggaaaact	gccattcttt	agaggggatg	5820
cttgtttaag	aacaaaaaat	atatcacttt	cttttgttcc	aagtcattgc	gtatttttt	5880
aaaaatattt	gttccttcgt	atatttcgag	cttcaatcac	tttatggttc	tttgtattct	5940
ggctttgctg	taaatcgtag	ctaaccttct	tcctagcaga	aattattaat	acttgggata	6000
tttttttaga	atcaagtaaa	ttacatatta	ccaccacatc	gagctgcttt	taaattcata	6060
ttacagccat	ataggcttga	ttcattttgc	aaaatttcca	ggatattgac	aacgttaact	6120
taataatatc	ttgaaatatt	aaagctatta	tgattagggg	tgcaaatgga	ccgagttggt	6180
tcggtttata	tcaaaatcaa	accaaaccaa	ctatatcggt	ttggattggt	tcggttttgc	6240
cgggttttca	ģcattttctg	gtttttttt	tgttagatga	atattattt	aatcttactt	6300
tgtcaaattt	ttgataagta	aatatatgtg	ttagtaaaaa	ttaattttt	ttacaaacat	6360
atgatctatt	aaaatattct	tataggagaa	ttttcttaat	aacacatgat	atttatttat	6420
tttagtcgtt	tgactaattt	ttcgttgatg	tacactttca	aagttaacca	aatttagtaa	6480
ttaagtataa	aaatcaatat	gatacctaaa	taatgatatg	ttctatttaa	ttttaaatta	6540
tcgaaatttc	acttcaaatt	cgaaaaagat	atataagaat	tttgatagat	tttgacatat	6600
gaatatggaa	gaacaaagag	attgacgcat	tttagtaaca	cttgataaga	aagtgatcgt	6660
acaaccaatt	atttaaagtt	aataaaaatg	gagcacttca	tatttaacga	aatattacat	6720

gccagaagag	tcgcaaatat	tictagatat	tttttaaaga	aaattctata	aaaagtctta	6780
aaggcatata	tataaaaact	atatatttat	attttggttt	ggttcgaatt	tgttttactc	6840
aataccaaac	taaattagac	caaatataat	tgggatttt	aatcgcggcc	: cactagtcac	6900
cggtgtgctt	ggcgtaatca	tggtcatagc	tgtttcctgt	gtgaaattgt	tatccgctca	6960
caattccaca	caacatacga	gccggaagca	taaagtgtaa	ı agcctggggt	gcctaatgag	7020
tgagctaact	cacattaatt	gcgttgċgct	cactgcccgc	: tttccagtcg	ggaaacctgt	7080
cgtgccagct	gcattaatga	atcggccaac	gcgcggggag	aggcggtttg	cgtattgggc	7140
gctcttccgc	ttcctcgctc	actgactcgc	tgcgctcggt	cgttcggctg	cggcgagcgg	7200
tatcagctca	ctcaaaggcg	gtaatacggt	tatccacaga	atcaggggat	aacgcaggaa	7260
agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	taaaaaggcc	gcgttgctgg	7320
cgtttttcca	taggctccgc	ccccctgacg	agcatcacaa	aaatcgacgc	tcaagtcaga	7380
ggtggcgaaa	cccgacagga	ctataaagat	accaggcgtt	tececetgga	agctccctcg	7440
tgcgctctcc	tgttccgacc	ctgccgctta	ccggatacct	gtccgccttt	ctcccttcgg	7500
gaagcgtggc	gctttctcat	agctcacgct	gtaggtatct	cagttcggtg	taggtcgttc	7560
gctccaagct	gggctgtgtg	cacgaacccc	ccgttcagcc	cgaccgctgc	gccttatccg	7620
gtaactatcg	tcttgagtcc	aacccggtaa	gacacgactt	atcgccactg	gcagcagcca	7680
ctggtaacag	gattagcaga	gcgaggtatg	taggcggtgc	tacagagttc	ttgaagtggt	7740
ggcctaacta	cggctacact	agaaggacag	tatttggtat	ctgcgctctg	ctgaagccag	7800
ttaccttcgg	aaaaagagtt	ggtagctctt	gatccggcaa	acaaaccacc	gctggtagcg	7860
gtggttttt	tgtttgcaag	cagcagatta	cgcgcagaaa	aaaaggatct	caagaagatc	7920
ctttgatctt	ttctacgggg	tctgacgctc	agtggaacga	aaactcacgt	taagggattt	7980
tggtcatgag	attatcaaaa	aggatcttca	cctagatcct	tttaaattaa	aaatgaagtt	8040
ttaaatcaat	ctaaagtata	tatgagtaaa	cttggtctga	cagttaccaa	tgcttaatca	8100
gtgaggcacc	tatctcagcg	atctgtctat	ttcgttcatc	catagttgcc	tgactccccg	8160
tcgtgtagat	aactacgata	cgggagggct	taccatctgg	ccccagtgct	gcaatgatac	8220
cgcgagaccc	acgctcaccg	gctccagatt	tatcagcaat	aaaccagcca	gccggaaggg	8280
ccgagcgcag a	aagtggtcct	gcaactttat	ccgcctccat	ccagtctatt	aattgttgcc	8340
gggaagetag a	agtaagtagt	tcgccagtta	atagtttgcg	caacgttgtt	gccattgcta	8400
caggcatcgt o	ggtgtcacgc	tcgtcgtttg	gtatggcttc	attcagctcc	ggttcccaac	8460
gatcaaggcg a	agttacatga	tcccccatgt	tgtgcaaaaa	agcggttagc	tccttcggtc	8520

ctccgatcgt	tgtcagaagt	aagttggccg	cagtgttatc	actcatggtt	atggcagcac	8580
tgcataattc	tcttactgtc	atgccatccg	taagatgctt	ttctgtgact	ggtgagtact	8640
caaccaagtc	attctgagaa	tagtgtatgc	ggcgaccgag	ttgctcttgc	ccggcgtcaa	8700
tacgggataa	taccgcgcca	catagcagaa	ctttaaaagt	gctcatcatt	ggaaaacgtt	8760
cttcggggcg	aaaactctca	aggatcttac	cgctgttgag	atccagttcg	atgtaaccca	8820
ctcgtgcacc	caactgatct	tcagcatctt	ttactttcac	cagcgtttct	gggtgagcaa	8880
aaacaggaag	gcaaaatgcc	gcaaaaaagg	gaataagggc	gacacggaaa	tgttgaatac	8940
tcatactctt	cctttttcaa	tattattgaa	gcatttatca	gggttattgt	ctcatgagcg	9000
gatacatatt	tgaatgtatt	tagaaaaata	aacaaatagg	ggttccgcgc	acatttcccc	9060
gaaaagtgcc	acctgacgtc	taagaaacca	ttattatcat	gacattaacc	tataaaaata	9120
ggcgtatcac	gaggcccttt	cgtc				9144

<210> 16

<211> 8352 <212> DNA

<213> Artificial sequence

<220>

<223> pDAB636 (ubiL) sequence

<400> 16 tegegegttt eggtgatgae ggtgaaaace tetgacaeat geageteeeg gagaeggtea 60 caqcttqtct gtaagcggat gccgggagca gacaagcccg tcaggggggg tcagcgggtg 120 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180 accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240 attogocatt caggotgogo aactgttggg aagggogato ggtgogggoo tottogotat 300 tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 360 tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt acaccggtgt gatcatgggc 420 cgcgattaaa aatcccaatt atatttggtc taatttagtt tggtattgag taaaacaaat 480 tcgaaccaaa ccaaaatata aatatatagt ttttatatat atgcctttaa gactttttat 540 600 agaattttct ttaaaaaata tctagaaata tttgcgactc ttctggcatg taatatttcg 660 ttaaatatga agtgctccat ttttattaac tttaaataat tggttgtacg atcactttct tatcaagtgt tactaaaatg cgtcaatctc tttgttcttc catattcata tgtcaaaatc 720 tatcaaaatt cttatatatc tttttcgaat ttgaagtgaa atttcgataa tttaaaatta 780 aatagaacat atcattattt aggtatcata ttgattttta tacttaatta ctaaatttgg 840 900 ttaactttga aagtgtacat caacgaaaaa ttagtcaaac gactaaaata aataaatatc

atgtgttatt aagaaaattc tcctataaga atattttaat agatcatatg tttgtaaaaa	960
aaattaattt ttactaacac atatatttac ttatcaaaaa tttgacaaag taagattaaa	1020
ataatattca totaacaaaa aaaaaaccag aaaatgotga aaaccoggca aaaccgaacc	1080
aatccaaacc gatatagttg gtttggtttg attttgatat aaaccgaacc aactcggtcc	1140
atttgcaccc ctaatcataa tagctttaat atttcaagat attattaagt taacgttgtc	1200
aatateetgg aaattttgea aaatgaatea ageetatatg getgtaatat gaatttaaaa	1260
gcagctcgat gtggtggtaa tatgtaattt acttgattct aaaaaaatat cccaagtatt	1320
aataatttot gotaggaaga aggttagota ogatttacag caaagocaga atacaaagaa	1380
ccataaagtg attgaagctc gaaatatacg aaggaacaaa tatttttaaa aaaatacgca	1440
atgacttgga acaaaagaaa gtgatatatt ttttgttctt aaacaagcat cccctctaaa	1500
gaatggcagt tttcctttgc atgtaactat tatgctccct tcgttacaaa aattttggac	1560
tactattggg aacttettet gaaaatagtg gecaeegett aattaaeaee ggtggeeegg	1620
gcaagcggcc gcattcccgg gaagctaggc caccgtggcc cgcctgcagg ggaagcttgc	1680
atgeetgeag ateccegggg atectetaga gtegacetge agtgeagegt gaeeeggteg	1740
tgcccctctc tagagataat gagcattgca tgtctaagtt ataaaaaatt accacatatt 1	1800
ttttttgtca cacttgtttg aagtgcagtt tatctatctt tatacatata tttaaacttt]	1860
aatctacgaa taatataatc tatagtacta caataatatc agtgttttag agaatcatat 1	1920
aaatgaacag ttagacatgg tctaaaggac aattgagtat tttgacaaca ggactctaca 1	L980
gttttatett tttagtgtge atgtgttete etttttttt geaaataget teacetatat 2	2040
aatacttcat ccattttatt agtacatcca tttagggttt agggttaatg gtttttatag 2	100
actaattttt ttagtacatc tattttattc tattttagcc tctaaattaa gaaaactaaa 2	160
actctatttt agttttttta tttaataatt tagatataaa atagaataaa ataaagtgac 2:	220
taaaaattaa acaaataccc tttaagaaat taaaaaaact aaggaaacat ttttcttgtt 2:	280
togagtagat aatgocagoo tgttaaaogo ogtogaogag totaaoggao accaaocago 23	340
gaaccagcag cgtcgcgtcg ggccaagcga agcagacggc acggcatctc tgtcgctgcc 24	400
tetggaceee tetegagagt teegeteeae egttggaett geteegetgt eggeateeag 24	460
aaattgcgtg gcggagcggc agacgtgagc cggcacggca	520
acggcacggc agctacgggg gattcctttc ccaccgctcc ttcgctttcc cttcctcgcc 25	580
cgccgtaata aatagacacc ccctccacac cctctttccc caacctcgtg ttgttcggag 26	540
cgcacacaca cacaaccaga tctcccccaa atccacccgt cggcacctcc gcttcaaggt 27	00

acgccgctcg	tcctccccc	cccccctct	ctaccttctc	tagatcggcg	ttccggtcca	2760
tgcatggtta	gggcccggta	gttctacttc	tgttcatgtt	tgtgttagat	ccgtgtttgt	2820
gttagatccg	tgctgctagc	gttcgtacac	ggatgcgacc	tgtacgtcag	acacgttctg	2880
attgctaact	tgccagtgtt	tctctttggg	gaatcctggg	atggctctag	ccgttccgca	2940
gacgggatcg	atttcatgat	ttttttgtt	tcgttgcata	gggtttggtt	tgcccttttc	3000
ctttatttca	atatatgccg	tgcacttgtt	tgtcgggtca	tcttttcatg	cttttttttg	3060
tcttggttgt	gatgatgtgg	tctggttggg	cggtcgttct	agatcggagt	agaattctgt	3120
ttcaaactac	ctggtggatt	tattaatttt	ggatctgtat	gtgtgtgcca	tacatattca	3180
tagttacgaa	ttgaagatga	tggatggaaa	tatcgatcta	ggataggtat	acatgttgat	3240
gcgggtttta	ctgatgcata	tacagagatg	ctttttgttc	gcttggttgt	gatgatgtgg	3300
tgtggttggg	cggtcgttca	ttcgttctag	atcggagtag	aatactgttt	caaactacct	3360
ggtgtattta	ttaattttgg	aactgtatgt	gtgtgtcata	catcttcata	gttacgagtt	3420
taagatggat	ggaaatatcg	atctaggata	ggtatacatg	ttgatgtggg	ttttactgat	3480
gcatatacat	gatggcatat	gcagcatcta	ttcatatgct	ctaaccttga	gtacctatct	3540
attataataa	acaagtatgt	tttataatta	ttttgatctt	gatatacttg	gatgatggca	3600
tatgcagcag	ctatatgtgg	attttttag	ccctgccttc	atacgctatt	tatttgcttg	3660
gtactgtttc	ttttgtcgat	gctcaccctg	ttgtttggtg	ttacttctgc	agggtacccc	3720
cggggtcgac	catggccaac	aagcacctga	gcctctccct	cttcctcgtg	ctcctcggcc	3780
teteegeete	cetegecage	ggcgaaattg	tgctcacgca	gtctccaggc	accctgtctt	3840
tgtctccagg	ggaaaaagcc	accetetect	gcagggccag	tcagagtgtt	agtagcgcct	3900
acttagcctg	gtaccagcag	aaacctggcc	aggctcccag	gctcctcatc	tatggtgcat	3960
ccagcagggc	cactggcatc	ccagacaggt	tcagtggcag	tgggtctggg	acagacttca	4020
ctctcaccat	cagcagactg	gaacctgaag	attttgcagt	gtattactgt	cagcagtatg	4080
gtaggtcacc	cactttcggc	ggagggacca	aggtggagat	caaacgaact	gtggctgcac	4140
catctgtctt	catcttcccg	ccatctgatg	agcagttgaa	atctggaact	gcctctgttg	4200
tgtgcctgct	gaataacttc	tatcccagag	aggccaaagt	acagtggaag	gtggataacg	4260
ccctccaatc	gggtaactcc	caggagagtg	tcacagagca	ggacagcaag	gacagcacct	4320
acageeteag	caacaccctg	acgctgagca	aagcagacta	cgagaaacac	aaagtctacg	4380
cctgcgaagt	cacccatcag	ggcctgagat	cgcccgtcac	aaagagcttc	aacaggggag	4440
agtgttgagt	taaactgagg	gcactgaagt	cgcttgatgt	gctgaattgt	ttgtgatgtt	4500
ggtggcgtat	tttgtttaaa	taagtaagca	tggctgtgat	tttatcatat	gatcgatctt	4560

tggggtttta tttaacacat tgtaaaatgt gtatctatta ataactcaat gtataagatg 4620 tgttcattct tcggttgcca tagatctgct tatttgacct gtgatgtttt gactccaaaa 4680 accaaaatca caactcaata aactcatgga atatgtccac ctgtttcttg aagagttcat 4740 ctaccattcc agttggcatt tatcagtgtt gcagcggcgc tgtgctttgt aacataacaa 4800 ttgttacggc atatatecaa cggccggcct aggccacggt ggccaqatec actaqttcta 4860 gageggeege ttaattaaat ttaaatgttt aaactaggee teetgeaggg tttaaaettg 4920 ccgtggccta ttttcagaag aagttcccaa tagtagtcca aaatttttgt aacgaaggga 4980 gcataatagt tacatgcaaa ggaaaactgc cattetttag aggggatget tgtttaagaa 5040 caaaaaatat atcactttct tttgttccaa gtcattgcgt atttttttaa aaatatttgt 5100 tccttcgtat atttcgagct tcaatcactt tatggttctt tgtattctgg ctttgctgta 5160 aatcgtagct aaccttcttc ctagcagaaa ttattaatac ttgggatatt tttttagaat 5220 caagtaaatt acatattacc accacatcga gctgctttta aattcatatt acagccatat 5280 aggettgatt cattttgeaa aattteeagg atattgaeaa egttaaetta ataatatett 5340 gaaatattaa agctattatg attaggggtg caaatggacc gagttggttc ggtttatatc 5400 aaaatcaaac caaaccaact atateggttt ggattggtte ggttttgeeg ggtttteage 5460 attttctggt ttttttttg ttagatgaat attattttaa tcttactttg tcaaattttt 5520 gataagtaaa tatatgtgtt agtaaaaatt aattttttt acaaacatat gatctattaa 5580 aatattotta taggagaatt ttottaataa cacatgatat ttatttattt tagtogtttg 5640 actaattttt cgttgatgta cactttcaaa gttaaccaaa tttagtaatt aagtataaaa 5700 atcaatatga tacctaaata atgatatgtt ctatttaatt ttaaattatc gaaatttcac 5760 ttcaaattcg aaaaagatat ataagaattt tgatagattt tgacatatga atatggaaga 5820 acaaagagat tgacgcattt tagtaacact tgataagaaa gtgatcgtac aaccaattat 5880 ttaaagttaa taaaaatgga gcacttcata tttaacgaaa tattacatgc cagaaqagtc 5940 gcaaatattt ctagatattt tttaaagaaa attctataaa aagtcttaaa ggcatatata 6000 taaaaactat atatttatat tttggtttgg ttcgaatttg ttttactcaa taccaaacta 6060 aattagacca aatataattg ggatttttaa tcgcggccca ctagtcaccg gtgtgcttgg 6120 cgtaatcatg gtcatagctg tttcctgtgt gaaattgtta tccgctcaca attccacaca 6180 acatacgagc cggaagcata aagtgtaaag cctggggtgc ctaatgagtg agctaactca 6240 cattaattgc gttgcgctca ctgcccgctt tccagtcggg aaacctgtcg tgccagctgc 6300 attaatgaat cggccaacgc gcggggagag gcggtttgcg tattgggcgc tcttccgctt 6360

cctcgctcac	tgactcgctg	cgctcggtcg	ttcggctgcg	gcgagcggta	tcagctcact	6420
caaaggcggt	aatacggtta	tccacagaat	caggggataa	cgcaggaaag	aacatgtgag	6480
caaaaggcca	gcaaaaggcc	aggaaccgta	aaaaggccgc	gttgctggcg	tttttccata	6540
ggctccgccc	ccctgacgag	catcacaaaa	atcgacgctc	aagtcagagg	tggcgaaacc	6600
cgacaggact	ataaagatac	caggcgtttc	cccctggaag	ctccctcgtg	cgctctcctg	6660
ttccgaccct	gccgcttacc	ggatacctgt	ccgcctttct	cccttcggga	agcgtggcgc	6720
tttctcatag	ctcacgctgt	aggtatctca	gttcggtgta	ggtcgttcgc	tccaagctgg ·	6780
gctgtgtgca	cgaacccccc	gttcagcccg	accgctgcgc	cttatccggt	aactatcgtc	6840
ttgagtccaa	cccggtaaga	cacgacttat	cgccactggc	agcagccact	ggtaacagga	6900
ttagcagagc	gaggtatgta	ggcggtgcta	cagagttctt	gaagtggtgg	cctaactacg	6960
gctacactag	aaggacagta	tttggtatct	gcgctctgct	gaagccagtt	accttcggaa	7020
aaagagttgg	tagctcttga	tccggcaaac	aaaccaccgc	tggtagcggt	ggttttttg	7080
tttgcaagca	gcagattacg	cgcagaaaaa	aaggatctca	agaagatcct	ttgatctttt	7140
ctacggggtc	tgacgctcag	tggaacgaaa	actcacgtta	agggattttg	gtcatgagat	7200
tatcaaaaag	gatcttcacc	tagatccttt	taaattaaaa	atgaagtttt	aaatcaatct	7260
aaagtatata	tgagtaaact	tggtctgaca	gttaccaatg	cttaatcagt	gaggcaccta	7320
tctcagcgat	ctgtctattt	cgttcatcca	tagttgcctg	actccccgtc	gtgtagataa	7380
ctacgatacg	ggagggctta	ccatctggcc	ccagtgctgc	aatgataccg	cgagacccac	7440
gctcaccggc	tccagattta	tcagcaataa	accagccagc	cggaagggcc	gagcgcagaa	7500
gtggtcctgc	aactttatcc	gcctccatcc	agtctattaa	ttgttgccgg	gaagctagag	7560
taagtagttc	gccagttaat	agtttgcgca	acgttgttgc	cattgctaca	ggcatcgtgg	7620
tgtcacgctc	gtcgtttggt	atggcttcat	tcagctccgg	ttcccaacga	tcaaggcgag	7680
ttacatgatc	ccccatgttg	tgcaaaaaag	cggttagctc	cttcggtcct	ccgatcgttg	7740
tcagaagtaa	gttggccgca	gtgttatcac	tcatggttat	ggcagcactg	cataattctc	7800
ttactgtcat	gccatccgta	agatgctttt	ctgtgactgg	tgagtactca	accaagtcat	7860
tctgagaata	gtgtatgcgg	cgaccgagtt	gctcttgccc	ggcgtcaata	cgggataata	7920
ccgcgccaca	tagcagaact	ttaaaagtgc	tcatcattgg	aaaacgttct	tcggggcgaa	7980
aactctcaag	gatcttaccg	ctgttgagat	ccagttcgat	gtaacccact	cgtgcaccca	8040
actgatcttc	agcatctttt	actttcacca	gcgtttctgg	gtgagcaaaa	acaggaaggc	8100
aaaatgccgc	aaaaaggga	ataagggcga	cacggaaatg	ttgaatactc	atactcttcc	8160
tttttcaata	ttattgaagc	atttatcagg	gttattgtct	catgagcgga	tacatatttg	8220

WO 2004/050838 PCT/US2003/037905

aatgtattta gaaaaataaa caaatagggg ttccgcgcac atttccccga aaagtgccac	8280
ctgacgtcta agaaaccatt attatcatga cattaaccta taaaaatagg cgtatcacga	8340
ggccctttcg tc	8352
<pre><210> 17 <211> 12380 <212> DNA <213> Artificial sequence <220> <223> pDAB637 (ubi H+L) sequence <400> 17</pre>	
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca	60
cagettgtet gtaageggat geegggagea gacaageeeg teagggegeg teagegggtg	120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc	180
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc	240
attegecatt caggetgege aactgttggg aagggegate ggtgegggee tettegetat	300
tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt	360
tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt acaccggtgt gatcatgggc	420
cgcgattaaa aatcccaatt atatttggtc taatttagtt tggtattgag taaaacaaat	480
togaaccaaa ccaaaatata aatatatagt ttttatatat atgootttaa gaotttttat	540
agaattttct ttaaaaaata tctagaaata tttgcgactc ttctggcatg taatatttcg	600
ttaaatatga agtgctccat ttttattaac tttaaataat tggttgtacg atcactttct	660
tatcaagtgt tactaaaatg cgtcaatctc tttgttcttc catattcata tgtcaaaatc	720
tatcaaaatt cttatatatc tttttcgaat ttgaagtgaa atttcgataa tttaaaatta	780
aatagaacat atcattattt aggtatcata ttgattttta tacttaatta ctaaatttgg	840
ttaactttga aagtgtacat caacgaaaaa ttagtcaaac gactaaaata aataaatatc	900
atgtgttatt aagaaaattc tcctataaga atattttaat agatcatatg tttgtaaaaa	960
aaattaattt ttactaacac atatatttac ttatcaaaaa tttgacaaag taagattaaa	1020
ataatattca tctaacaaaa aaaaaaccag aaaatgctga aaacccggca aaaccgaacc	1080
aatccaaacc gatatagttg gtttggtttg attttgatat aaaccgaacc aactcggtcc	1140
atttgcaccc ctaatcataa tagctttaat atttcaagat attattaagt taacgttgtc	1200
aatatcctgg aaattttgca aaatgaatca agcctatatg gctgtaatat gaatttaaaa	1260
gcagctcgat gtggtggtaa tatgtaattt acttgattct aaaaaaatat cccaagtatt	1320

aataatttct	gctaggaaga	aggttagcta	cgatttacag	caaagccaga	atacaaagaa	1380
ccataaagtg	attgaagctc	gaaatatacg	aaggaacaaa	tatttttaaa	aaaatacgca	1440
atgacttgga	acaaaagaaa	gtgatatatt	ttttgttctt	aaacaagcat	cccctctaaa	1500
gaatggcagt	tttcctttgc	atgtaactat	tatgctccct	tcgttacaaa	aattttggac	1560
tactattggg	aacttcttct	gaaaatagtg	gccaccgctt	aattaacacc	ggtggcccgg	1620
ccgcattccc	gggaagctag	gccaccgtgg	cccgcctgca	ggggaagctt	gcatgcctgc	1680
agateceegg	ggatcctcta	gagtcgacct	gcagtgcagc	gtgacccggt	cgtgcccctc	1740
tctagagata	atgagcattg	catgtctaag	ttataaaaaa	ttaccacata	tttttttgt	1800
cacacttgtt	tgaagtgcag	tttatctatc	tttatacata	tatttaaact	ttaatctacg	1860
aataatataa	tctatagtac	tacaataata	tcagtgtttt	agagaatcat	ataaatgaac	1920
agttagacat	ggtctaaagg	acaattgagt	attttgacaa	caggactcta	cagttttatc	1980
tttttagtgt	gcatgtgttc	teetttttt	ttgcaaatag	cttcacctat	ataatacttc	2040
atccatttta	ttagtacatc	catttagggt	ttagggttaa	tggtttttat	agactaattt	2100
ttttagtaca	tctattttat	tctattttag	cctctaaatt	aagaaaacta	aaactctatt	2160
ttagttttt	tatttaataa	tttagatata	aaatagaata	aaataaagtg	actaaaaatt	2220
aaacaaatac	cctttaagaa	attaaaaaaa	ctaaggaaac	atttttcttg	tttcgagtag	2280
ataatgccag	cctgttaaac	gccgtcgacg	agtctaacgg	acaccaacca	gcgaaccagc	2340
agcgtcgcgt	cgggccaagc	gaagcagacg	gcacggcatc	tctgtcgctg	cctctggacc	2400
cctctcgaga	gttccgctcc	accgttggac	ttgctccgct	gtcggcatcc	agaaattgcg	2460
tggcggagcg	gcagacgtga	gccggcacgg	caggcggcct	cctcctcctc	tcacggcacg	2520
gcagctacgg	gggattcctt	tcccaccgct	ccttcgcttt	cccttcctcg	cccgccgtaa	2580
taaatagaca	cccctccac	accetette	cccaacctcg	tgttgttcgg	agcgcacaca	2640
cacacaacca	gatctccccc	aaatccaccc	gtcggcacct	ccgcttcaag	gtacgccgct	2700
cgtcctcccc	cccccccct	ctctaccttc	tctagatcgg	cgttccggtc	catgcatggt	2760
tagggcccgg	tagttctact	tctgttcatg	tttgtgttag	atccgtgttt	gtgttagatc	2820
cgtgctgcta	gcgttcgtac	acggatgcga	cctgtacgtc	agacacgttc	tgattgctaa	2880
cttgccagtg	tttctctttg	gggaatcctg	ggatggctct	agccgttccg	cagacgggat	2940
cgatttcatg	atttttttg	tttcgttgca	tagggtttgg	tttgcccttt	tootttattt	3000
caatatatgc	cgtgcacttg	tttgtcgggt	catcttttca	tgctttttt	tgtcttggtt	3060
gtgatgatgt	ggtctggttg	ggcggtcgtt	ctagatcgga	gtagaattct	gtttcaaact	3120
acctggtgga	tttattaatt	ttggatctgt	atgtgtgtgc	catacatatt	catagttacg	3180

aattgaagat gatggatgga aatatcgatc taggataggt atacatgttg atgcgggttt	3240
tactgatgca tatacagaga tgctttttgt tcgcttggtt gtgatgatgt ggtgtggttg	3300
ggcggtcgtt cattcgttct agatcggagt agaatactgt ttcaaactac ctggtgtatt	3360
tattaatttt ggaactgtat gtgtgtgtca tacatcttca tagttacgag tttaagatgg	3420
atggaaatat cgatctagga taggtataca tgttgatgtg ggttttactg atgcatatac	3480
atgatggcat atgcagcate tattcatatg etetaacett gagtacetat etattataat	3540
aaacaagtat gttttataat tattttgatc ttgatatact tggatgatgg catatgcagc	3600
agctatatgt ggattttttt agccctgcct tcatacgcta tttatttgct tggtactgtt	3660
tettttgteg atgeteacce tgttgtttgg tgttaettet geagggtace eeeggggteg	3720
accatggcca acaagcacct gagcctctcc ctcttcctcg tgctcctcgg cctctccgcc	3780
teeetegeea geggeeaggt teagetegtg cagteagggg etgaggtgaa gaageetggg	3840
teeteggtga aggteteetg caaggettet ggaggtteet teageageta tgetateaae	3900
tgggtgcgac aggcccctgg acaagggctt gagtggatgg gagggctcat gcctatcttt	3960
gggacaacaa actacgcaca gaagttccag gacagactca cgattaccgc ggacgtatcc	4020
acgagtacag cctacatgca gctgagcggc ctgacatatg aagacacggc catgtattac	4080
tgtgcgagag ttgcctatat gttggaacct accgtcactg cagggggttt ggacgtctgg	4140
ggcaaaggga ccacggtcac cgtctcccca gcatccccga ccagccccaa ggtcttcccg	4200
ctgagcctct gcagcaccca gccagatggg aacgtggtca tegcctgcct ggtccagggc	4260
ttetteecee aggageeaet cagtgtgaee tggagegaaa geggaeaggg egtgaeegee	4320
agaaacttcc cacccagcca ggatgcctcc ggggacctgt acaccacgag cagccagctg	4380
accetgeegg ceacacagtg cetageegge aagteegtga catgecaegt gaageactae	4440
acgaatecca gecaggatgt gaetgtgeee tgeccagtte ceteaaetee acetaceeca	4500
teteceteaa etecacetae eccateteee teatgetgee acceegaet gteactgeae	4560
cgaccggccc tcgaggacct gctcttaggt tcagaagcga acctcacgtg cacactgacc	4620
ggcctgagag atgcctcagg tgtcaccttc acctggacgc cctcaagtgg gaagagcgct	4680
gttcaaggac cacctgageg tgacctctgt ggctgctaca gegtgtccag tgtcctgccg	4740
ggctgtgccg agccttggaa tcatgggaag accttcactt gcactgctgc ctaccccgag	4800
tccaagaccc cgctaaccgc caccctctca aaatccggaa acacattccg gcccgaggtc	4860
cacctgctgc cgccgccgtc ggaggagctg gccctgaacg agctggtgac gctgacgtgc	4920
ctggcacgtg gcttcagccc caaggacgtg ctggttcgct ggctgcaggg gtcacaggag	4980

ctgccccgcg	agaagtacct	gacttgggca	teceggeagg	agcccagcca	gggcaccacc	5040
accttcgctg	,tgaccagcat	actgcgcgtg	gcagccgagg	actggaagaa	gggggacacc	5100
ttctcctgca	tggtgggcca	cgaggccctg	ccgctggcct	tcacacagaa	gaccatcgac	5160
cgcttggcgg	gtaaacccac	ccatgtcaat	gtgtctgttg	tcatggcgga	ggtggacggc	5220
acctgctact	gagttaaact	gagggcactg	aagtcgcttg	atgtgctgaa	ttgtttgtga	5280
tgttggtggc	gtattttgtt	taaataagta	agcatggctg	tgattttatc	atatgatcga	5340
tctttggggt	tttatttaac	acattgtaaa	atgtgtatct	attaataact	caatgtataa	5400
gatgtgttca	ttcttcggtt	gccatagatc	tgcttatttg	acctgtgatg	ttttgactcc	5460
aaaaaccaaa	atcacaactc	aataaactca	tggaatatgt	ccacctgttt	cttgaagagt	5520
tcatctacca	ttccagttgg	catttatcag	tgttgcagcg	gcgctgtgct	ttgtaacata	5580
acaattgtta	cggcatatat	ccaacggccg	gcctaggcca	cggtggccag	atccactagt	5640
tctagagcgg	ccgcgggcaa	attcccggga	agctaggcca	ccgtggcccg	cctgcagggg	5700
aagcttgcat	gcctgcagat	ccccggggat	cctctagagt	cgacctgcag	tgcagcgtga	5760
cccggtcgtg	ccctctcta	gagataatga	gcattgcatg	tctaagttat	aaaaaattac	5820
cacatatttt	ttttgtcaca	cttgtttgaa	gtgcagttta	tctatcttta	tacatatatt	5880
taaactttaa	tctacgaata	atataatcta	tagtactaca	ataatatcag	tgttttagag	5940
aatcatataa	atgaacagtt	agacatggtc	taaaggacaa	ttgagtattt	tgacaacagg	6000
actctacagt	tttatctttt	tagtgtgcat	gtgttctcct	tttttttgc	aaatagcttc	6060
acctatataa	tacttcatcc	attttattag	tacatccatt	tagggtttag	ggttaatggt	6120
ttttatagac	taatttttt	agtacatcta	ttttattcta	ttttagcctc	taaattaaga	6180
aaactaaaac	tctattttag	ttttttatt	taataattta	gatataaaat	agaataaaat	6240
aaagtgacta	aaaattaaac	aaataccctt	taagaaatta	aaaaaactaa	ggaaacattt	6300
ttcttgtttc	gagtagataa	tgccagcctg	ttaaacgccg	tcgacgagtc	taacggacac	6360
caaccagcga	accagcagcg	tcgcgtcggg	ccaagcgaag	cagacggcac	ggcatctctg	6420
togotgooto	tggacccctc	tcgagagttc	cgctccaccg	ttggacttgc	teegetgteg	6480
gcatccagaa	attgcgtggc	ggagcggcag	acgtgagccg	gcacggcagg	cggcctcctc	6540
ctcctctcac	ggcacggcag	ctacggggga	ttcctttccc	accgctcctt	cgctttccct	6600
teetegeeeg	ccgtaataaa	tagacacccc	ctccacaccc	tctttcccca	acctcgtgtt	6660
gttcggagcg	cacacacaca	caaccagatc	tcccccaaat	ccacccgtcg	gcacctccgc	6720
ttcaaggtac	gccgctcgtc	ctccccccc	cccctctct	accttctcta	gatcggcgtt	6780
ccggtccatg	catggttagg	gcccggtagt	tctacttctg	ttcatgtttg	tgttagatcc	6840

gtgtttgtgt tagatccgtg ctgctagcgt tcgtacacgg atgcgacctg tacgtcagac	6900
acgttetgat tgetaacttg ceagtgttte tetttgggga ateetgggat ggetetagee	6960
gttccgcaga cgggatcgat ttcatgattt tttttgtttc gttgcatagg gtttggtttg	7020
cccttttcct ttatttcaat atatgccgtg cacttgtttg tcgggtcatc ttttcatgct	7080
tttttttgtc ttggttgtga tgatgtggtc tggttgggcg gtcgttctag atcggagtag	7140
aattotgttt caaactacct ggtggattta ttaattttgg atotgtatgt gtgtgccata	7200
catattcata gttacgaatt gaagatgatg gatggaaata tcgatctagg ataggtatac	7260
atgttgatgc gggttttact gatgcatata cagagatgct ttttgttcgc ttggttgtga	7320
tgatgtggtg tggttgggcg gtcgttcatt cgttctagat cggagtagaa tactgtttca	7380
aactacctgg tgtatttatt aattttggaa ctgtatgtgt gtgtcataca tcttcatagt	7440
tacgagttta agatggatgg aaatatcgat ctaggatagg tatacatgtt gatgtgggtt	7500
ttactgatgc atatacatga tggcatatgc agcatctatt catatgctct aaccttgagt	7560
acctatctat tataataaac aagtatgttt tataattatt ttgatcttga tatacttgga	7620
tgatggcata tgcagcagct atatgtggat ttttttagcc ctgccttcat acgctattta	7680
tttgcttggt actgtttctt ttgtcgatgc tcaccctgtt gtttggtgtt acttctgcag	7740
ggtacccccg gggtcgacca tggccaacaa gcacctgagc ctctccctct tcctcgtgct	7800
cctcggcctc tccgcctccc tcgccagcgg cgaaattgtg ctcacgcagt ctccaggcac	7860
cctgtctttg tctccagggg aaaaagccac cctctcctgc agggccagtc agagtgttag	7920
tagegeetae ttageetggt accageagaa acctggeeag geteecagge teeteateta	7980
tggtgcatcc agcagggcca ctggcatccc agacaggttc agtggcagtg ggtctgggac	8040
agacttcact ctcaccatca gcagactgga acctgaagat tttgcagtgt attactgtca 🔠	8100
gcagtatggt aggtcaccca ctttcggcgg agggaccaag gtggagatca aacgaactgt 8	8160
ggctgcacca tctgtcttca tcttcccgcc atctgatgag cagttgaaat ctggaactgc	8220
ctctgttgtg tgcctgctga ataacttcta tcccagagag gccaaagtac agtggaaggt 8	3280
ggataacgcc ctccaatcgg gtaactccca ggagagtgtc acagagcagg acagcaagga 8	3340
cagcacctac agcetcagca acaccetgac getgagcaaa gcagactacg agaaacacaa 8	3400
agtctacgcc tgcgaagtca cccatcaggg cctgagatcg cccgtcacaa agagcttcaa 8	1460
Caggggagag tgttgagtta aagtgaggga agtgaagt	520
gtgatgttgg tggcgtattt tgtttaaata agtaagcatg gctgtgattt tatcatatga 8	580
togatottta aggitttatt taacacatta taacacatta	640

ataagatgtg ttcattctt	c ggttgccata	gatctgctta	tttgacctgt	gatgttttga	8700
ctccaaaaac caaaatcac	a actcaataaa	ctcatggaat	atgtccacct	gtttcttgaa	8760
gagttcatct accattcca	g ttggcattta	tcagtgttgc	agcggcgctg	tgctttgtaa	8820
cataacaatt gttacggca	t atatccaacg	gccggcctag	gccacggtgg	ccagatccac	8880
tagttctaga gcggccgct	t aattaaattt	aaatgtttaa	actaggcctc	ctgcagggtt	8940
taaacttgcc gtggcctat	t ttcagaagaa	gttcccaata	gtagtccaaa	atttttgtaa	9000
cgaagggagc ataatagtt	a catgcaaagg	aaaactgcca	ttctttagag	gggatgcttg	9060
tttaagaaca aaaaatata	t cactttcttt	tgttccaagt	cattgcgtat	ttttttaaaa	9120
atatttgttc cttcgtata	t ttcgagcttc	aatcacttta	tggttctttg	tattctggct	9180
ttgctgtaaa tcgtagcta	a ccttcttcct	agcagaaatt	attaatactt	gggatatttt	9240
tttagaatca agtaaatta	c atattaccac	cacatcgagc	tgcttttaaa	ttcatattac	9300
agccatatag gcttgattc	a ttttgcaaaa	tttccaggat	attgacaacg	ttaacttaat	9360
aatatcttga aatattaaa	g ctattatgat	taggggtgca	aatggaccga	gttggttcgg	9420
tttatatcaa aatcaaacc	a aaccaactat	atcggtttgg	attggttcgg	ttttgccggg	9480 [.]
ttttcagcat tttctggtt	t tttttttgtt	agatgaatat	tattttaatc	ttactttgtc	9540
aaatttttga taagtaaat	a tatgtgttag	taaaaattaa	tttttttac	aaacatatga	9600
tctattaaaa tattcttat	a ggagaatttt	cttaataaca	catgatattt	atttatttta	9660
gtcgtttgac taatttttc	g ttgatgtaca	ctttcaaagt	taaccaaatt	tagtaattaa	9720
gtataaaaat caatatgat	a cctaaataat	gatatgttct	atttaatttt	aaattatcga	9780
aatttcactt caaattcga	a aaagatatat	aagaattttg	atagattttg	acatatgaat	9840
atggaagaac aaagagatt	g acgcatttta	gtaacacttg	ataagaaagt	gatcgtacaa	9900
ccaattattt aaagttaat	a aaaatggagc	acttcatatt	taacgaaata	ttacatgcca	9960
gaagagtcgc aaatatttc	t agatattttt	taaagaaaat	tctataaaaa	gtcttaaagg	10020
catatatata aaaactata	t atttatattt	tggtttggtt	cgaatttgtt	ttactcaata	10080
ccaaactaaa ttagaccaa	a tataattggg	atttttaatc	gcggcccact	agtcaccggt	10140
gtgcttggcg taatcatgg	t catagctgtt	tcctgtgtga	aattgttatc	cgctcacaat	10200
tccacacaac atacgagcc	g gaagcataaa	gtgtaaagcc	tggggtgcct	aatgagtgag	10260
ctaactcaca ttaattgcg	t tgcgctcact	gcccgctttc	cagtcgggaa	acctgtcgtg	10320
ccagctgcat taatgaatc	g gccaacgcgc	ggggagaggc	ggtttgcgta	ttgggcgctc	10380
ttccgcttcc tcgctcact	g actegetgeg	ctcggtcgtt	cggctgcggc	gagcggtatc	10440
agctcactca aaggcggta	a tacggttatc	cacagaatca	ggggataacg	caggaaagaa	10500

agtgccacct gacgtctaag aaaccattat tatcatgaca ttaacctata aaaataggcg 12360 tatcacgagg ccctttcgtc 12380

<210> 18

<211> 16

<212> PRT <213> Artificial sequence

<220>

<223> CDR3 region of heavy chain FabHSV 8-CDR3

<400> 18

Val Ala Tyr Met Leu Glu Pro Thr Val Thr Ala Gly Gly Leu Asp Val 1 5 10 15

<210> 19

<211> 122

<212> PRT

<213> Artificial sequence

<220>

<223> Heavy chain V region FabSHV 8

<400> 19

Leu Glu Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys

1 10 15

Val Ser Cys Lys Ala Ser Gly Gly Ser Phe Ser Ser Tyr Ala Ile Asn 20 25 30

Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly Gly Leu 35 40 45

Met Pro Ile Phe Gly Thr Thr Asn Tyr Ala Gln Lys Phe Gln Asp Arg
50 55 60

Leu Thr Ile Thr Ala Asp Val Ser Thr Ser Thr Ala Tyr Met Gln Leu 65 70 75 80

Ser Gly Leu Thr Tyr Glu Asp Thr Ala Met Tyr Tyr Cys Ala Arg Val 85 90 95

Ala Tyr Met Leu Glu Pro Thr Val Thr Ala Gly Gly Leu Asp Val Trp
100 105 110

Gly Gln Gly Thr Thr Val Thr Val Ala Ser

<210> 20

<211> 18

<212> PRT

<213> Artificial sequence

<220>

<223> tryptic+ Asp-N peptide of N269

<400> 20

WO 2004/050838 PCT/US2003/037905

```
Asp Leu Leu Gly Ser Glu Ala Asn Leu Thr Cys Thr Leu Thr Gly
 Leu Arg
 <210> 21
 <211> 18
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> peptide tryptic fragment L-T1
 <400> 21
 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
 Glu Arg
 <210> 22
 <211> 6
 <212> PRT
<213> Artificial sequence
 <220>
 <223> peptide tryptic fragment L-T2
 <400> 22
Ala Thr Leu Ser Cys Arg
     . 5
<210> 23
<211> 22
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T3
<400> 23
Ala Ser Gln Ser Val Ser Ser Ala Tyr Leu Ala Trp Tyr Gln Gln Lys
                                   10
Pro Gly Gln Ala Pro Arg
           20
<210> 24
<211> 9
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment L-T4
<400> 24
Leu Leu Ile Tyr Gly Ala Ser Ser Arg
```

```
<210> 25
<211>
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T5
<400> 25
Ala Thr Gly Ile Pro Asp Arg
<210> 26
<211> 16
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment L-T6
<400> 26
Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg
                                    10
               5
<210> 27
<211> 16
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T7
Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Arg
                                    10
<210> 28
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T8
<400> 28
Ser Pro Thr Phe Gly Gln Gly Thr Lys
1
<210> 29
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T11
```

WO 2004/050838 PCT/US2003/037905

```
<400> 29
 Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln
                                     10
 Leu Lys
 <210>
        30
 <211>
        16
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> peptide tryptic fragment L-T12
 Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg
                                     10
 <210> 31
 <211> 4
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> peptide tryptic fragment L-T14
 <400> 31
 Val Gln Trp Lys
 1
<210> 32
<211> 20
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T15
Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu
Gln Asp Ser Lys
            20
<210> 33
<211> 14
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T16
<400> 33
Asp Ser Thr Tyr Ser Leu Ser Asn Thr Leu Thr Leu Ser Lys
               5
                                   10
```

```
<210> 34
<211> 5
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T17
<400> 34
Ala Asp Tyr Glu Lys
<210> 35
<211> 12
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T19
<400> 35
Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Arg
<210> 36
<211> 5
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T20
<400> 36
Ser Pro Val Thr Lys
               5
<210> 37
<211> 4
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T21
<400> 37
Ser Phe Asn Arg
1
<210> 38
<211> 23
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T5-6
```

```
<400> 38
  Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp
                                    10
  Phe Thr Leu Thr Ile Ser Arg
              20
  <210> 39
  <211> 32
  <212> PRT
  <213> Artificial sequence
  <220>
  <223> peptide tryptic fragment L-T6-7
 <400> 39
 Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg
                                    10
 Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Arg
                                                    30
 <210> 40
 <211> 13
 <212> PRT
 <213> Artificial sequence
 <223> peptide tryptic fragment L-T8-9
 Ser Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
<210> 41
 <211> 19
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T10-11
<400> 41
Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
                                   10
Gln Leu Lys
<210> 42
<211> 19
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T12-13
```

10.000

```
<400> 42
 Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg
Glu Ala Lys
 <210> 43
 <211> 7
 <212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment L-T13-14
<400> 43
Glu Ala Lys Val Gln Trp Lys
<210> 44
<211> 24
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T14-15
<400> 44
Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu
Ser Val Thr Glu Gln Asp Ser Lys
            20
<210> 45
<211> 7
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T17-18
Ala Asp Tyr Glu Lys His Lys
                5
<210> 46
<211> 14
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment L-T18-19
<400> 46
His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Arg
               5
```

```
<210> 47
  <211> 9
  <212> PRT
  <213> Artificial sequence
  <220>
  <223> peptide tryptic fragment L-T20-21
 <400> 47
 Ser Pro Val Thr Lys Ser Phe Asn Arg
         5
 <210> 48
 <211>
        7
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> peptide tryptic fragment L-T21-22
 <400> 48
 Ser Phe Asn Arg Gly Glu Cys
                 5
 <210> 49
 <211> 12
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> peptide tryptic fragment H-T1
<400> 49
Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys
                5
<210> 50
<211> 7
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T2
<400> 50
Lys Pro Gly Ser Ser Val Lys
<210> 51
<211> 15
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T4
```

The

```
<400> 51
Ala Ser Gly Gly Ser Phe Ser Ser Tyr Ala Ile Asn Trp Val Arg
<210> 52
<211> 25
<211> 23
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T5
<400> 52
Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly Gly Leu Met Pro Ile
                                    10
Phe Gly Thr Thr Asn Tyr Ala Gln Lys
<210> 53
<211> 4
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T6
<400> 53
Phe Gln Asp Arg
<210> 54
<211> 31
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T7
Leu Thr Ile Thr Ala Asp Val Ser Thr Ser Thr Ala Tyr Met Gln Leu
Ser Gly Leu Thr Tyr Glu Asp Thr Ala Met Tyr Tyr Cys Ala Arg
<210> 55
<211> 34
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T8
Val Ala Tyr Met Leu Glu Pro Thr Val Thr Ala Gly Gly Leu Asp Val
```

```
Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Pro Thr Ser
  Pro Lys
  <210> 56
  <211> 44
  <212> PRT
  <213> Artificial sequence
  <220> .
  <223> peptide tryptic fragment H-T9
  <400> 56
 Val Phe Pro Leu Ser Leu Cys Ser Thr Gln Pro Asp Gly Asn Val Val
                                     10
 Ile Ala Cys Leu Val Gln Gly Phe Phe Pro Gln Glu Pro Leu Ser Val
 Thr Trp Ser Glu Ser Gly Gln Gly Val Thr Ala Arg
 <210> 57
 <211> 30
 <212> PRT
 <213> Artificial sequence
 <223> peptide tryptic fragment H-T10
 Asn Phe Pro Pro Ser Gln Asp Ala Ser Gly Asp Leu Tyr Thr Thr Ser
Ser Gln Leu Thr Leu Pro Ala Thr Gln Cys Leu Ala Gly Lys
<210> 58
<211> 7
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T11
<400> 58
Ser Val Thr Cys His Val Lys
<210> 59
<211>
<212>
      PRT
<213> Artificial sequence
```

<220>

```
<223> peptide tryptic fragment H-T12
His Tyr Thr Asn Pro Ser Gln Asp Val Thr Val Pro Cys Pro Val Pro
Ser Thr Pro Pro Thr Pro Ser Pro Ser Thr Pro Pro Thr Pro Ser Pro
Ser Cys Cys His Pro Arg
       35
<210> 60
<211> 27
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T13
<400> 60
Leu Ser Leu His Arg Pro Ala Leu Glu Asp Leu Leu Leu Gly Ser Glu
Ala Asn Leu Thr Cys Thr Leu Thr Gly Leu Arg
<210> 61
<211> 15
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T14
<400> 61
Asp Ala Ser Gly Val Thr Phe Thr Trp Thr Pro Ser Ser Gly Lys
               5
                                   10
<210> 62
<211> 9
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T15
Ser Ala Val Gln Gly Pro Pro Glu Arg
<210> 63
<211> 23
<212> PRT
<213> Artificial sequence
<220>
```

```
<223> peptide tryptic fragment H-T16
 Asp Leu Cys Gly Cys Tyr Ser Val Ser Ser Val Leu Pro Gly Cys Ala
 Glu Pro Trp Asn His Gly Lys
             20
 <210> 64
 <211> 12
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> peptide tryptic fragment H-T17
 Thr Phe Thr Cys Thr Ala Ala Tyr Pro Glu Ser Lys
 <210> 65
 <211> 9
 <212> PRT
 <213> Artificial sequence
 <223> peptide tryptic fragment H-T18
 <400> 65
Thr Pro Leu Thr Ala Thr Leu Ser Lys
                5
<210> 66
<211> 32
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T19
<400> 66
Ser Gly Asn Thr Phe Arg Pro Glu Val His Leu Leu Pro Pro Pro Ser
Glu Glu Leu Ala Leu Asn Glu Leu Val Thr Leu Thr Cys Leu Ala Arg
<210> 67
<211> 5
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T20
<400> 67
```

```
Gly Phe Ser Pro Lys
<210> 68
<211>
       5
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T21
<400> 68
Asp Val Leu Val Arg
<210> 69
<211> 10
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T22
<400> 69
Trp Leu Gln Gly Ser Gln Glu Leu Pro Arg
                5
<210> 70
<211> 7
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T24
<400> 70
Tyr Leu Thr Trp Ala Ser Arg
                5
<210> 71
<211> 17
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T25
<400> 71
Gln Glu Pro Ser Gln Gly Thr Thr Thr Phe Ala Val Thr Ser Ile Leu
                5
                                    10
Arg
<210> 72
<211> 7
<212> PRT
```

```
<213> Artificial sequence
  <223> peptide tryptic fragment H-T26
 <400> 72
 Val Ala Ala Glu Asp Trp Lys
 <210> 73
 <211> 20
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> peptide tryptic fragment H-T28
 Gly Asp Thr Phe Ser Cys Met Val Gly His Glu Ala Leu Pro Leu Ala
 Phe Thr Gln Lys
            20
 <210> 74
 <211> 4
 <212> PRT ·
 <213> Artificial sequence
<223> peptide tryptic fragment H-T29
<400> 74
Thr Ile Asp Arg
<210> 75
<211> 22
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T30
<400> 75
Leu Ala Gly Lys Pro Thr His Val Asn Val Ser Val Val Met Ala Glu
                5
Val Asp Gly Thr Cys Tyr
           20
<210> 76
<211>
      19
<212> PRT
<213> Artificial sequence
<220>
```

```
<223> peptide tryptic fragment H-T1-2
Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
Ser Val Lys
<210> 77
<211> 11
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T2-3
<400> 77
Lys Pro Gly Ser Ser Val Lys Val Ser Cys Lys
      5
<210> 78
<211>
      19
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T3-4
Val Ser Cys Lys Ala Ser Gly Gly Ser Phe Ser Ser Tyr Ala Ile Asn
Trp Val Arg
<210> 79
<211> 21
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T17-18
Thr Phe Thr Cys Thr Ala Ala Tyr Pro Glu Ser Lys Thr Pro Leu Thr
                                   10
Ala Thr Leu Ser Lys
           20
<210> 80
<211> 10
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T20-21
```

```
<400> 80
  Gly Phe Ser Pro Lys Asp Val Leu Val Arg
                5
  <210> 81
  <211>
        15
  <212>
       PRT
  <213> Artificial sequence
  <220>
 <223> peptide tryptic fragment H-T21-22
 Asp Val Leu Val Arg Trp Leu Gln Gly Ser Gln Glu Leu Pro Arg
 <210>
       82
 <211>
       12
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> peptide tryptic fragment H-T22-23
 <400> 82
 Trp Leu Gln Gly Ser Gln Glu Leu Pro Arg Glu Lys
 <210> 83
 <211> 21
 <212> PRT
 <213> Artificial sequence
<223>
      peptide tryptic fragment H-T27-28
<400> 83
Lys Gly Asp Thr Phe Ser Cys Met Val Gly His Glu Ala Leu Pro Leu
Ala Phe Thr Gln Lys
           20
<210> 84
<211> 5118
<212> DNA
<213> Artificial sequence
<220>
<223> pDAB3014 sequence
<400> 84
ttagctcact cattaggcac cccaggcttt acactttatg cttccggctc gtatgttgtg
```

tggaattgtg agcggataac aatttcacac aggaaacagc tatgaccatg attacgccaa 180 gcttcccggg aatgcggccg ctagctagcg gccgcattcc cgggaagcta gcggccgcat 240 300 tcccgggaag ctagcggccg cttcccggga agcttgggct gcaggtcaat cccattgctt ttgaagcagc tcaacattga tctctttctc gaggtcattc atatgcttga gaagagagtc 360 gggatagtcc aaaataaaac aaaggtaaga ttacctggtc aaaagtgaaa acatcagtta 420 aaaggtggta taaagtaaaa tatcggtaat aaaaggtggc ccaaagtgaa atttactctt 480 540 ttctactatt ataaaaattg aggatgtttt tgtcggtact ttgatacgtc atttttgtat 600 gaattggttt ttaagtttat tcgcttttgg aaatgcatat ctgtatttga gtcgggtttt aagttcgttt gcttttgtaa atacagaggg atttgtataa gaaatatctt taaaaaaacc 660 catatgctaa tttgacataa tttttgagaa aaatatatat tcaggcgaat tctcacaatg 720 780 aacaataata agattaaaat agctttcccc cgttgcagcg catgggtatt ttttctagta 840 aaaataaaag ataaacttag actcaaaaca tttacaaaaa caacccctaa agttcctaaa 900 ccccagtcca gccaactgga caatagtctc cacacccccc cactatcacc gtgagttgtc 960 cgcacgcacc gcacgtctcg cagccaaaaa aaaaaaaaga aagaaaaaaa agaaaaagaa 1020 1080 aaaacagcag gtgggtccgg gtcgtggggg ccggaaacgc gaggaggatc gcgagccagc gacgaggccg gccctccctc cgcttccaaa gaaacgcccc ccatcgccac tatatacata 1140 coccccctc tecteceate ecceaacec taccaccace accaccacca ectecacete 1200 1260 cteccecte getgeeggae gaegeeteec ecetecceet cegeegeege egegeeggta accaccccgc ccctctcctc tttctttctc cgttttttt ttccgtctcg gtctcgatct 1320 1380 ttggccttgg tagtttgggt gggcgagagg cggcttcgtg cgcgcccaga tcggtgcgcg ggagggggg gatctcgcgg ctggggctct cgccggcgtg gatccggccc ggatctcgcg 1440 1500 gggaatgggg ctctcggatg tagatctgcg atccgccgtt gttgggggag atgatggggg 1560 gtttaaaatt tccgccatgc taaacaagat caggaagagg ggaaaagggc actatggttt atatttttat atatttctgc tgcttcgtca ggcttagatg tgctagatct ttctttcttc 1620 1680 tttttgtggg tagaatttga atccctcagc attgttcatc ggtagttttt cttttcatga tttgtgacaa atgcagcete gtgeggaget tttttgtagg tagaccatgg etteteegga 1740 1800 gaggagacca gttgagatta ggccagctac agcagctgat atggccgcgg tttgtgatat 1860 cgttaaccat tacattgaga cgtctacagt gaactttagg acagagccac aaacaccaca agagtggatt gatgatctag agaggttgca agatagatac ccttggttgg ttgctgaggt 1920 1980 tgagggtgtt gtggctggta ttgcttacgc tgggccctgg aaggctagga acgcttacga

ttggacagtt gagagtactg tttacgtgtc acataggcat caaaggttgg gcctaggatc	2040
cacattgtac acacatttgc ttaagtctat ggaggcgcaa ggttttaagt ctgtggttgc	2100
tgttataggc cttccaaacg atccatctgt taggttgcat gaggctttgg gatacacagc	2160
ccggggtaca ttgcgcgcag ctggatacaa gcatggtgga tggcatgatg ttggtttttg	2220
gcaaagggat tttgagttgc cagctcctcc aaggccagtt aggccagtta cccagatctg	2280
aggtaccctg agctcggtcg cagcgtgtgc gtgtccgtcg tacgttctgg ccggccgggc	2340
cttgggegeg egateagaag egttgegttg gegtgtgtgt gettetggtt tgetttaatt	2400
ttaccaagtt tgtttcaagg tggatcgcgt ggtcaaggcc cgtgtgcttt aaagacccac	2460
cggcactggc agtgagtgtt gctgcttgtg taggctttgg tacgtatggg ctttatttgc	2520
ttctggatgt tgtgtactac ttgggtttgt tgaattatta tgagcagttg cgtattgtaa	2580
ttcagctggg ctacctggac attgttatgt attaataaat gctttgcttt	2640
tctttaagtg ctgaattcac tggccgtcgt tttacaacgt cgtgactggg aaaaccctgg	2700
cgttacccaa cttaatcgcc ttgcagcaca tccccctttc gccagctggc gtaatagcga	2760
agaggeeege acegategee etteecaaca gttgegeage etgaatggeg aatggegeet	2820
gatgcggtat tttctcctta cgcatctgtg cggtatttca caccgcatat ggtgcactct	2880
cagtacaatc tgctctgatg ccgcatagtt aagccagccc cgacacccgc caacacccgc	2940
tgacgcgccc tgacgggctt gtctgctccc ggcatccgct tacagacaag ctgtgaccgt	3000
ctccgggagc tgcatgtgtc agaggttttc accgtcatca ccgaaacgcg cgagacgaaa	3060
gggcctcgtg atacgcctat ttttataggt taatgtcatg ataataatgg tttcttagac	3120
gtcaggtggc acttttcggg gaaatgtgcg cggaacccct atttgtttat ttttctaaat	3180
acattcaaat atgtatccgc tcatgagaca ataaccctga taaatgcttc aataatattg	3240
aaaaaggaag agtatgagta ttcaacattt ccgtgtcgcc cttattccct tttttgcggc	3300
attttgcctt cctgtttttg ctcacccaga aacgctggtg aaagtaaaag atgctgaaga	3360
tcagttgggt gcacgagtgg gttacatcga actggatctc aacagcggta agatccttga	3420
gagttttege ceegaagaae gtttteeaat gatgageaet tttaaagtte tgetatgtgg	3480
cgcggtatta teccgtattg acgccgggca agagcaactc ggtcgccgca tacactattc	3540
tcagaatgac ttggttgagt actgaggagt	3600
agtaagagaa ttatggagtg gtgggataag astaasta	3660
totgacaacg atoggaggag connegat connective to	3720
tgtaactcgc cttgatcgtt gggaaggga getaatt	3780

tgacaccacg	atgcctgtag	caatggcaac	aacgttgcgc	aaactattaa	ctggcgaact	3840
acttactcta	gcttcccggc	aacaattaat	agactggatg	gaggcggata	aagttgcagg	3900
accacttctg	cgctcggccc	ttccggctgg	ctggtttatt	gctgataaat	ctggagccgg	3960
tgagcgtggg	tctcgcggta	tcattgcage	actggggcca	gatggtaagc	cctcccgtat	4020
cgtagttatc	tacacgacgg	ggagtcaggc	aactatggat	gaacgaaata	gacagatcgc	4080
tgagataggt	gcctcactga	ttaagcattg	gtaactgtca	gaccaagttt	actcatatat	4140
actttagatt	gatttaaaac	ttcattttta	atttaaaagg	atctaggtga	agatcctttt	4200
tgataatctc	atgaccaaaa	tcccttaacg	tgagttttcg	ttccactgag	cgtcagaccc	4260
cgtagaaaag	atcaaaggat	cttcttgaga	tcctttttt	ctgcgcgtaa	tctgctgctt	4320
gcaaacaaaa	aaaccaccgc	taccagcggt	ggtttgtttg	ccggatcaag	agctaccaac	4380
tcttttccg	aaggtaactg	gcttcagcag	agcgcagata	ccaaatactg	ttcttctagt	4440
gtagccgtag	ttaggccacc	acttcaagaa	ctctgtagca	ccgcctacat	acctcgctct	4500
gctaatcctg	ttaccagtgg	ctgctgccag	tggcgataag	tcgtgtctta	ccgggttgga	4560
ctcaagacga	tagttaccgg	ataaggcgca	geggteggge	tgaacggggg	gttcgtgcac	4620
acagcccagc	ttggagcgaa	cgacctacac	cgaactgaga	tacctacagc	gtgagctatg	4680
agaaagcgcc	acgcttcccg	aagggagaaa	ggcggacagg	tatccggtaa	gcggcagggt	4740
cggaacagga	gagcgcacga	gggagcttcc	agggggaaac	gcctggtatc	tttatagtcc	4800
tgtcgggttt	cgccacctct	gacttgagcg	tcgatttttg [.]	tgatgctcgt	caggggggcg	4860
gagcctatgg	aaaaacgcca	gcaacgcggc	ctttttacgg	ttcctggcct	tttgctggcc	4920
ttttgctcac	atgttctttc	ctgcgttatc	ccctgattct	gtggataacc	gtattaccgc	4980
ctttgagtga	gctgataccg	ctcgccgcag	ccgaacgacc	gagcgcagcg	agtcagtgag	5040
cgaggaagcg	tgcgcagcgg	aagagcgccc	aatacgcaaa	ccgcctctcc	ccgcgcgttg	5100
gccgattcat	taatgcag					5118

```
<210> 85
<211> 13680
```

<212> DNA

<213> Artificial sequence

<220>

<223> pDAB8505 sequence

<220>

<221> misc_feature <222> (1)..(13680)

 $[\]langle 223 \rangle$ n = a or c or g or t !

<400> 85

tegegegttt	cggtgatgac	ggtgaaaacc	tctgacacat	gcagctcccg	gagacggtca	60
cagettgtet	gtaagcggat	gccgggagca	gacaagcccg	tcagggcgcg	tcagcgggtg	120
ttggcgggtg	teggggetgg	cttaactatg	cggcatcaga	gcagattgta	ctgagagtgc	180
accatatgcg	gtgtgaaata	ccgcacagat	gcgtaaggag	aaaataccgc	atcaggcgcc	240
attcgccatt	caggetgege	aactgttggg	aagggcgatc	ggtgcgggcc	tcttcgctat	300
tacgccagct	ggcgaaaggg	ggatgtgctg	caaggcgatt	aagttgggta	acgccagggt	360
tttcccagtc	acgacgttgt	aaaacgacgg	ccagtgaatt	acaccggtgt	gatcatgggc	420
cgcgattaaa	aatcccaatt	atatttggtc	taatttagtt	tggtattgag	taaaacaaat	480
tcgaaccaaa	ccaaaatata	aatatatagt	ttttatatat	atgcctttaa	gactttttat	540
agaattttct	ttaaaaaata	tctagaaata	tttgcgactc	ttctggcatg	taatatttcg	600
ttaaatatga	agtgctccat	ttttattaac	tttaaataat	tggttgtacg	atcactttct	660
tatcaagtgt	tactaaaatg	cgtcaatctc	tttgttcttc	catattcata	tgtcaaaatc	720
tatcaaaatt	cttatatatc	tttttcgaat	ttgaagtgaa	atttcgataa	tttaaaatta	780
aatagaacat	atcattattt	aggtatcata	ttgattttta	tacttaatta	ctaaatttgg	840
ttaactttga	aagtgtacat	caacgaaaaa	ttagtcaaac	gactaaaata	aataaatatc	900
atgtgttatt	aagaaaattc	tcctataaga	atattttaat	agatcatatg	tttgtaaaaa	960
aaattaattt	ttactaacac	atatatttac	ttatcaaaaa	tttgacaaag	taagattaaa	1020
ataatattca	tctaacaaaa	aaaaaaccag	aaaatgctga	aaacccggca	aaaccgaacc	1080
aatccaaacc	gatatagttg	gtttggtttg	attttgatat	aaaccgaacc	aactcggtcc	1140
atttgcaccc	ctaatcataa	tagctttaat	atttcaagat	attattaagt	taacgttgtc	1200
aatatcctgg	aaattttgca	aaatgaatca	agcctatatg	gctgtaatat	gaatttaaaa	1260
gcagctcgat	gtggtggtaa	tatgtaattt	acttgattct	aaaaaatat	cccaagtatt	1320
aataatttct	gctaggaaga	aggttagcta	cgatttacag	caaagccaga	atacaaagaa	1380
ccataaagtg	attgaagctc	gaaatatacg	aaggaacaaa	tatttttaaa	aaaatacgca	1440
atgacttgga	acaaaagaaa	gtgatatatt	ttttgttctt	aaacaagcat	cccctctaaa	1500
gaatggcagt	tttcctttgc	atgtaactat	tatgctccct	tcgttacaaa	aattttggac	1560
tactattggg	aacttcttct	gaaaatagtg	gccaccgctt	aattaaggcg	cgccatgccc	1620
ggccgcattc	ccgggaagct	aggccaccgt	ggcccgcctg	caggggaagc	ttagctgaaa	1680
caacccggcc	ctaaagcact	atcgtatcac	ctatctgaaa	taagtcacgg	gtttcgaacg	1740
tccacttgcg	tcgcacggaa	ttgcatgttt	cttgttggaa	gcatattcac	gcaatctcca	1800
cacataaagg	tttatgtata	aacttacatt	tagctcagtt	taattacagt	cttatttgga	1860

					1.1.1.4 4	1000
			ttagagtaaa			1920
ttaattcact	ccaacatata	tggattgagt	acaatactca	tgtgcatcca	aacaaactac	1980
ttatattgag	gtgaatttgg	atagaaatta	aactaactta	cacactaagc	caatctttac	2040
tatattaaag	caccagtttc	aacgatcgtc	ccgcgtcaat	attattaaaa	aactcctaca	2100
tttctttata	atcaacccgc	actcttataa	tctcttctct	actactataa	taagagagtt	2160
tatgtacaaa	ataaggtgaa	attatgtata	agtgttctgg	atattggttg	ttggctccat	2220
attcacacaa	cctaatcaat	agaaaacata	tgttttatta	aaacaaaatt	tatcatatat	2280
catatatata	tatatacata	tatatatata	tatatataaa	ccgtagcaat	gcacgggcat	2340
ataactagtg	caacttaata	catgtgtgta	ttaagatgaa	taagagggta	tccaaataaa	2400
aaacttgttc	gcttacgtct	ggatcgaaag	gggttggaaa	cgattaaatc	tcttcctagt	2460
caaaattgaa	tagaaggaga	tttaatctct	cccaatcccc	ttcgatcatc	caggtgcaac	2520
cgtataagtc	ctaaagtggt	gaggaacacg	aaacaaccat	gcattggcat	gtaaagctcc	2580
aagaatttgt	tgtatcctta	acaactcaca	gaacatcaac	caaaattgca	cgtcaagggt	2640
attgggtaag	aaacaatcaa	acaaatcctc	tctgtgtgca	aagaaacacg	gtgagtcatg	2700
ccgagatcat	actcatctga	tatacatgct	tacagctcac	aagacattac	aaacaactca	2760
tattgcatta	caaagatcgt	ttcatgaaaa	ataaaatagg	ccggacagga	caaaaatcct	2820
tgacgtgtaa	agtaaattta	caacaaaaaa	aaagccatat	gtcaagctaa	atctaattcg	2880
ttttacgtag	atcaacaacc	tgtagaaggc	aacaaaactg	agccacgcag	aagtacagaa	2940
tgattccaga	tgaaccatcg	acgtgctacg	taaagagagt	gacgagtcat	atacatttgg	3000
caagaaacca	tgaagetgee	tacagccgtc	tcggtggcat	agaacacaag	aaattgtgtt	3060
aattaatcaa	agctataaat	aacgctcgca	tgcctgtgca	cttctccatc	accaccactg	3120
ggtcttcaga	ccattagctt	tatctactcc	agagcgcaga	agaacccgat	cgacaccatg	3180
ggatggagct	ggatetttet	cttectcctg	tcaggagctg	caggtgtcca	ttgccaggtt	3240
cagetegtge	: agtcaggtgc	tgaggtgaag	aagcctggct	cctcggtgaa	ggtctcctgc	3300
aaggcttctg	gaggttcctt	cagetectat	gctatcaact	gggtgaggca	agctcctgga	3360
caagggcttg	agtggatggg	agggctcatg	cctațctttg	ggacaacaaa	ctacgcgcag	3420
aagttccagg	g acaggeteac	gattaccgcg	gacgtatcca	cgagtacagc	ctacatgcaa	3480
ctgagcggc	tgacatatga	agacacggco	atgtattact	gtgcgagagt	tgcctacatg	3540
cttgaaccta	ccgtcactgo	: aggtggtttg	gacgtctggg	gccaagggac	cttggtcacc	3600
				•	tagcacccag	3660

ccagatggga acgtggtcat cgcctgcctg gtccagggct tcttccctca ggagccactc	3720
agtgtgacct ggagcgaaag cggacagggc gtgaccgcca ggaacttccc acccagccag	3780
gatgcctccg gagacctgta caccacgtcc agccagctga cccttccggc cacacagtgc	3840
ctagegggea agteegtgae atgecaegtg aageaetaea egaateeeag eeaggatgtg	3900
actgtgccct gcccagttcc ctcaactcca cctaccccat ctccctcgac tccacctacc	3960
ccatetecet catgetgeea ecceaggetg teaetgeaca ggeetgeect egaggaeetg	4020
ctcttaggtt cggaagcgaa cctcacgtgc acactcaccg gcctgagaga tgcgtcaggt	4080
gtcaccttca cctggacgcc ctcaagtggt aagagcgctg ttcaaggccc acctgagcgt	4140
gacctctgtg gctgctacag cgtgtccagt gtccttccgg gctgtgccga gccttggaat	4200
catgggaaga cottoacttg cactgotgoo taccoogaga gcaagaccoo gotaacogoo	4260
accetetega aateeggeaa cacatteegg ceegaggtee acetgetgee geegeegteg	4320
gaggagetgg ecetgaaega getggtgaeg etgaegtgee tggegegegg etteageece	4380
aaggacgtgc tggttcgctg gctgcagggc tcacaggagc tgcctaggga gaagtacctg	4440
acttgggcat cccggcagga gcccagccaa ggcaccacca ccttcgctgt gacctcgata	4500
ctgcgcgtgg cagccgagga ctggaagaag ggtgacacct tctcctgcat ggtgggccac	4560
gaggeeette egetggeett eacacagaag accategace gettggeggg taaacceace	4620
catgtcaatg tgtctgttgt catggcggag gtggacggca cctgctactg agagctcgct	4680
gagggcactg aagtcgcttg atgtgctgaa ttgtttgtga tgttggtggc gtattttgtt	4740
taaataagta agcatggctg tgattttatc atatgatcga tctttggggt tttatttaac	4800
acattgtaaa atgtgtatct attaataact caatgtataa gatgtgttca ttcttcggtt	4860
gccatagatc tgcttatttg acctgtgatg ttttgactcc aaaaaccaaa atcacaactc	4920
aataaactca tggaatatgt ccacctgttt cttgaagagt tcatctacca ttccagttgg	4980
catttatcag tgttgcagcg gcgctgtgct ttgtaacata acaattgtta cggcatatat	5040
ccaacggccg gcctagctag gccacggtgg ccagatccac tagttctaga gcggccgggc	5100
aagcggccgc attcccggga agctaggcca ccgtggcccg cctgcagggg aagcttagct	5160
gaaacaaccc ggccctaaag cactatcgta tcacctatct gaaataagtc acgggtttcg	5220
aacgtccact tgcgtcgcac ggaattgcat gtttcttgtt ggaagcatat tcacgcaatc	5280
tecacacata aaggittatg tataaaetta catttagete agittaatta cagiettatt	5340
tggatgcata tgtatggttc tcaatccata taagttagag taaaaaataa gtttaaattt	5400
tatettaatt cactecaaca tatatggatt gagtacaata eteatgtgea tecaaacaaa	5460
ctacttatat tgaggtgaat ttggatagaa attaaactaa cttacacact aagccaatct	5520

		tttcaaccat	cgtcccgcgt	caatattatt	aaaaaactcc	5580
						5640
			ataatctctt			5640
agtttatgta	caaaataagg	tgaaattatg	tataagtgtt	ctggatattg	gttgttggct	5700
ccatattcac	acaacctaat	caatagaaaa	catatgtttt	attaaaacaa	aatttatcat	5760
atatcatata	tatatatata	catatatata	tatatatata	taaaccgtag	caatgcacgg	5820
gcatataact	agtgcaactt	aatacatgtg	tgtattaaga	tgaataagag	ggtatccaaa	5880
taaaaaactt	gttcgcttac	gtctggatcg	aaaggggttg	gaaacgatta	aatctcttcc	5940
tagtcaaaat	tgaatagaag	gagatttaat	ctctcccaat	ccccttcgat	catccaggtg	6000
caaccgtata	agtcctaaag	tggtgaggaa	cacgaaacaa	ccatgcattg	gcatgtaaag	6060
ctccaagaat	ttgttgtatc	cttaacaact	cacagaacat	caaccaaaat	tgcacgtcaa	6120
gggtattggg	taagaaacaa	tcaaacaaat	cctctctgtg	tgcaaagaaa	cacggtgagt	6180
catgccgaga	tcatactcat	ctgatataca	tgcttacagc	tcacaagaca	ttacaaacaa	6240
ctcatattgc	attacaaaga	tcgtttcatg	aaaaataaaa	taggccggac	aggacaaaaa	6300
tccttgacgt	gtaaagtaaa	tttacaacaa	aaaaaaagcc	atatgtcaag	ctaaatctaa	6360
ttcgttttac	gtagatcaac	aacctgtaga	aggcaacaaa	actgagccac	gcagaagtac	6420
agaatgattc	cagatgaacc	atcgacgtgc	tacgtaaaga	gagtgacgag	tcatatacat	6480
ttggcaagaa	accatgaagc	tgcctacagc	cgtctcggtg	gcatagaaca	caagaaattg	6540
tgttaattaa	tcaaagctat	aaataacgct	cgcatgcctg	tgcacttctc	catcaccacc	6600
actgggtctt	cagaccatta	gctttatcta	ctccagagcg	cagaagaacc	cgatcgacac	6660
catgggatgg	tectggatet	ttctcttcct	tctgtcagga	gctgcaggtg	tccactgcga	6720
gatcgtgctc	acgcagtctc	caggcaccct	gtctttgtcg	ccaggggaac	gtgccaccct	6780
ctcctgccgg	gccagtcagt	ccgtttccag	cgcgtacctt	gcctggtacc	agcagaagcc	6840
tggccaagct	cccaggetee	tcatctatgg	tgcgtccagc	agggctactg	gcattccaga	6900
ccgcttctca	ggcagtgggt	ctgggacaga	cttcacgctc	accattagca	ggctggaacc	6960
tgaggatttt	gcagtgtact	actgtcagca	gtatggtcgc	tcacccacgt	teggeeaggg	7020
gaccaaggtg	gagatcaago	gcactgtggc	tgcaccgtcg	gtcttcatat	tecegecate	7080
cgatgagcag	, ctgaagtctg	gcactgcctc	tgttgtgtgc	ctgctgaata	acttctatcc	7140
gagagaggcg	, aaggtacagt	; ggaaggtgga	taacgccctc	caatcgggta	actcccaaga	7200
gtccgttaca	ı gagcaggaca	gcaaggacag	cacctacago	ctcagcaaca	ccttgacgct	7260
					atcaaggcct	7320

gcgctcgccc gtcacaaaga gcttcaaccg gggagagtgt tgagagctcg ctgagggcac	7380
tgaagtcgct tgatgtgctg aattgtttgt gatgttggtg gcgtattttg tttaaataag	7440
taagcatggc tgtgatttta tcatatgatc gatctttggg gttttattta acacattgta	7500
aaatgtgtat ctattaataa ctcaatgtat aagatgtgtt cattcttcgg ttgccataga	7560 '
totgottatt tgacotgtga tgttttgact ocaaaaacca aaatcacaac toaataaact	7620
catggaatat gtccacctgt ttcttgaaga gttcatctac cattccagtt ggcatttatc	7680
agtgttgcag cggcgctgtg ctttgtaaca taacaattgt tacggcatat atccaacggc	7740
cggcctagct aggccacggt ggccagatcc actagttcta gagcggccgc ttaattaaat	7800
ttaaatgttt aaactaggaa atccaagctt gggctgcagg tcaatcccat tgcttttgaa	7860
gcagctcaac attgatetet ttetegaggt catteatatg ettgagaaga gagtegggat	7920
agtccaaaat aaaacaaagg taagattacc tggtcaaaag tgaaaacatc agttaaaagg	7980
tggtataagt aaaatatcgg taataaaagg tggcccaaag tgaaatttac tcttttctac	8040
tattataaaa attgaggatg ttttgtcggt actttgatac gtcatttttg tatgaattgg	8100
tttttaagtt tattegegat tttggaaatg catatetgta tttgagtegg gttttaagtt	8160
cgtttgcttt tgtaaataca gagggatttg tataagaaat atctttaaaa aaaccatatg	8220
ctaatttgac ataatttttg agaaaaatat atattcaggc gaattctcac aatgaacaat	8280
aataagatta aaatagettg eeeeegttge agegatgggt attttteta gtaaaataaa	8340
agataaactt agactcaaaa catttacaaa aacaacccct aaagtcctaa agcccaaagt	8400
gctatgcacg atccatagca agcccagccc aacccaaccc	8460
agccaactgg caaatagtct ccacaccccg gcactatcac cgtgagttgt ccgcaccacc	8520
gcacgtctcg cagccaaaaa aaaaaaaaga aagaaaaaaa agaaaaagaa aaaacagcag	8580
gtgggtccgg gtcgtggggg ccggaaaagc gaggaggatc gcgagcagcg acgaggccgg	8640
ccctccctcc gcttccaaag aaacgccccc catcgccact atatacatac cccccctct	8700
ceteccatee ecceaaceet accaecacea ceaecaceae etectecee etegetgeeg	8760
gacgacgeet ecceetece ecteegeege egeeggtaac caceeegeee eteteetett	8820
tettteteeg ttttttttt egteteggte tegatetttg geettggtag tttgggtggg	8880
cgagagcggc ttcgtcgccc agatcggtgc gcgggagggg cgggatctcg cggctggcgt	8940
ctccgggcgt gagtcggccc ggatcctcgc ggggaatggg gctctcggat gtagatctgc	9000
gatccgccgt tgttggggga gatgatgggg ggtttaaaat ttccgccatg ctaaacaaga	9060
tcaggaagag gggaaaaggg cactatggtt tatattttta tatatttctg ctgcttcgtc	9120
aggettagat gtgctagate ttetttett ettettttg tgggtagaat ttgaateeet	9180

		٠				0010
cagcattgtt (9240
agcttttttg t						9300
ctacagcagc t	tgatatggcc	gcggtttgtg	atatcgttaa	ccattacatt	gagacgtcta	9360
cagtgaactt 1	taggacagag	ccacaaacac	cacaagagtg	gattgatgat	ctagagaggt	9420
tgcaagatag	atacccttgg	ttggttgctg	aggttgaggg	tgttgtggct	ggtattgctt	9480
acgctgggcc	ctggaaggct	aggaacgctt	acgattggac	agttgagagt	actgtttacg	9540
tgtcacatag	gcatcaaagg	ttgggcctag	gatccacatt	gtacacacat	ttgcttaagt	9600
ctatggaggc	gcaaggtttt	aagtctgtgg	ttgctgttat	aggccttcca	aacgatccat	9660
ctgttaggtt	gcatgaggct	ttgggataca	cagcccgggg	tacattgcgc	gcagctggat	9720
				ggattttgag		9780
				caatgagctc		9840
				gcgcgcgatc		9900
				aagtttgttt		9960
				ctggcagtga		10020
				gatgttgtgt		10080
				ctgggctacc		10140
					ttcatatttc	10200
					atagtagtcc	10260
					ccattcttta	10320
					agtcattgcg	10380
					: ttatggttct	10440
					a attattaata	10500
					g agctgctttt	10560
					g gatattgaca	10620
					gcaaatggac	10680
					t tggattggtt	10740
					a tattattta	10800
						10860
					t taatttttt	10920
					a acacatgata	10980
tttatttatt	ttagtcgtt	t gactaattt	t togttgatg	t acactttca	a agttaaccaa	

atttagtaat taagtataaa aatcaatatg atacctaaat aatgatatgt tctatttaat 11040 tttaaattat cgaaatttca cttcaaattc gaaaaagata tataagaatt ttgatagatt ttgacatatg aatatggaag aacaaagaga ttgacgcatt ttagtaacac ttgataagaa 11160 11220 agtgatcgta caaccaatta tttaaagtta ataaaaatgg agcacttcat atttaacgaa atattacatg ccagaagagt cgcaaatatt tctagatatt ttttaaagaa aattctataa 11280 aaagtottaa aggoatatat ataaaaacta tatatttata ttttggtttg gttcgaattt 11340 11400 gttttactca ataccaaact aaattagacc aaatataatt gggattttta atcgcggccc actagicace ggiggigetig gegiaateat ggicalaget gitteetgig igaaatigit 11460 11520 atcogotoac aattocacac aacatacgag coggaagcat aaagtgtaaa gootggggtg cctaatgagt gagctaactc acattaattg cgttgcgctc actgcccgct ttccagtcgg 11580 11640 gaaacctgtc gtgccagctg cattaatgaa tcggccaacg cgcggggaga ggcggtttgc gtattgggcg ctcttccgct gcgcacgctg cgcacgctgc gcacgcttcc tcgctcactg 11700 11760 actegetgeg eteggtegtt eggetgegge gageggtate ageteaetea aaggeggtaa tacggttatc cacagaatca ggggataacg caggaaagaa catgtgagca aaaggccagc 11820 11880 aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg ctccgccccc 11940 ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg acaggactat 12000 aaagatacca ggcgtttccc cctggaagct ccctcgtgcg ctctcctgtt ccgaccctgc 12060 cgcttaccgg atacctgtcc gcctttctcc cttcgggaag cgtggcgctt tctcatagct cacgetgtag gtateteagt teggtgtagg tegttegete caagetggge tgtgtgcaeg 12120 12180 aacccccgt tcagcccgac cgctgcgcct tatccggtaa ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg taacaggatt agcagagcga 12240 12300 ggtatgtagg cggtgctaca gagttcttga agtggtggcc taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac cttcggaaaa agagttggta 12360 12420 getettgate eggeaaacaa accaeegetg gtageggtgg tttttttgtt tgeaageage 12480 agattacgcg cagaaaaaaa ggatctcaag aagatccttt gatcttttct acggggtctg 12540 acgctcagtg gaacgaaaac tcacgttaag ggattttggt catgagatta tcaaaaagga 12600 tetteaceta gateetttta aattaaaaat gaagttttaa ateaatetaa agtatatatg agtaaacttg gtctgacagt taccaatgct taatcagtga ggcacctatc tcagcgatct 12660 gtctatttcg ttcatccata gttgcctgac tccccgtcgt gtagataact acgatacggg 12720 12780 agggettace atetggeece agtgetgeaa tgatacegeg agacecaege teaceggete 12840 cagatttatc agcaataaac cagccagccg gaagggccga gcgcagaagt ggtcctgcaa

PCT/US2003/037905

ct	ttatccgc	ctccatccag	tctattaatt	gttgccggga	agctagagta	agtagttcgc	12900
Cā	ngttaatag	tttgcgcaac	gttgttgcca	ttgctacagg	catcgtggtg	tcacgctcgt	12960
cg	gtttggtat	ggcttcattc	agctccggtt	cccaacgatc	aaggcgagtt	acatgatccc	13020
c	catgttgtg	caaaaaagcg	gttagctcct	teggteetee	gatcgttgtc	agaagtaagt	13080
tç	gccgcagt	gttatcactc	atggttatgg	cagcactgca	taattctctt	actgtcatgc	13140
Cá	atccgtaag	atgcttttct	gtgactggtg	agtactcaac	caagtcattc	tgagaatagt	13200
gt	tatgcggcg	accgagttgc	tcttgcccgg	cgtcaatacg	ggataatacc	gcgccacata	13260
g	cagaacttt	aaaagtgctc	atcattggaa	aacgttcttc	ggggcgaaaa	ctctcaagga	13320
t	cttaccgct	gttgagatcc	agttcgatgt	aacccactcg	tgcacccaac	tgatcttcag	13380
C	atcttttac	tttcaccagc	gtttctgggt	gagcaaaaac	aggaaggcaa	aatgccgcaa	13440
a	aaagggaat	aagggcgaca	cggaaatgtt	gaatactcat	actetteett	tttcaatatt	13500
a	ttgaagcat	ttatcagggt	tattgtctca	tgagcggata	catatttgaa	tgtatttaga	13560
a	aaataaaca	aataggggtt	ccgcgcacat	ttccccgaaa	agtgccacct	gacgtctaag	13620
a	aaccattat	tatcatgaca	ttaacctata	aaaataggcg	tatcacgagg	ccctttcgtc	13680