Assignment # Chapter 3

- 1. Consider a hypothetical 32-bit microprocessor having 32-bit instructions composed of two fields: the first byte contains the opcode and the remainder the immediate operand or an operand address.
 - **a.** What is the maximum directly addressable memory capacity (in bytes)?
 - **b.** Discuss the impact on the system speed if the microprocessor bus has
 - 1) 32-bit local address bus and a 16-bit local data bus, or
 - 2) a 16-bit local address bus and a 16-bit local data bus.
 - **c.** How many bits are needed for the program counter and the instruction register?
- **2.** Consider a hypothetical microprocessor generating a 16-bit address (for example, assume that the program counter and the address registers are 16 bits wide) and having a 16-bit data bus.
 - **a.** What is the maximum memory address space that the processor can access directly if it is connected to a "16-bit memory"?
 - **b.** What is the maximum memory address space that the processor can access directly if it is connected to an "8-bit memory"?
 - **c.** What architectural features will allow this microprocessor to access a separate "I/O space"?
 - **d.** If an input and an output instruction can specify an 8-bit I/O port number, how many 8-bit I/O ports can the microprocessor support? How many 16-bit I/O ports? Explain.
- 3. Consider a 32-bit microprocessor, with a 16-bit external data bus, driven by an 8-MHz input clock. Assume that this microprocessor has a bus cycle whose minimum duration equals four input clock cycles. What is the maximum data transfer rate across the bus that this microprocessor can sustain, in bytes/s? To increase its performance, would it be better to make its external data bus 32 bits or to double the external clock frequency supplied to the microprocessor? State any other assumptions you make, and explain. *Hint:* Determine the number of bytes that can be transferred per bus cycle.

Note:

Date of Submission: 14 Aug 2016 by 0900 hrs.