Fachrichtung Mathematik
Fakultät für Mathematik und Informatik
Universität des Saarlandes
Prof. Dr. Michael Bildhauer
M.Sc. Nils Gutheil

Bachelor plus MINT Präsenzübung, Blatt 8 **Höhere Mathematik für (Naturwiss. und) Ingenieure II** Sommersemester 2020

Aufgabe 1.

i) Es seien $f: I \to \mathbb{R}$ von der Klasse $C^n(I)$ und $x_0 \in I$. Zeigen Sie, dass

$$\lim_{x \to x_0} \frac{R_n(x - x_0)}{(x - x_0)^n} = 0.$$

ii) Benutzen Sie die Taylorsche Formel und die Lagrangesche Restgliedformel, um die Ungleichung

$$1 + x + \frac{x^2}{2} < e^x < 1 + x + \frac{x^2}{2}e^x$$

für alle x > 0 zu zeigen.

Aufgabe 2.

i) Es sei $f \colon \mathbb{R} \to (-\pi/2, \pi/2), f(x) = \arctan(x)$. Zeigen Sie, dass

$$f^{(n)}(x) = (n-1)! \sin\left(n\left(f(x) + \frac{\pi}{2}\right)\right) \cos^n(f(x))$$

für alle $n \in \mathbb{N}$ und folgern Sie, dass

$$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

für $|x| \leq 1$.

[Hinweis: Benutzen Sie die Lagrangesche Restgliedformel um zu zeigen, dass $\lim_{n\to\infty} R_n(x-0) = 0$ für $|x| \le 1$.]

ii)Berechnen Sie den Wert der Reihe $\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}.$

Bitte wenden.

Aufgabe 3.

i)Berechnen Sie die Taylor-Reihe mit Entwicklungspunkt $x_0=1$ der Funktion

$$f(x) = \frac{x}{1 - 2x}$$

und bestimmten Sie ihren Konvergenzradius.

ii)Berechnen Sie die Taylor-Reihe mit Entwicklungspunkt $x_0=0$ der Funktion

$$f(x) = \frac{10}{x^2 - 2x - 24}$$

und bestimmten Sie ihren Konvergenzradius.