

MATH437/537

Fall, 2022

## Homework 2. Due September 22

1. Suppose a symmetric  $4 \times 4$  matrix  $\boldsymbol{S}$  has eigenvector decomposition  $\boldsymbol{S} = \boldsymbol{U}\boldsymbol{D}\boldsymbol{U}^{\top}$ , where  $\boldsymbol{D} = \text{diag}\{4, 2, -1, -5\}$ .

- (a) Determine all the singular values of S
- (b) Determine all the singular values of the orthogonal matrix  $oldsymbol{U}$
- (c) Provide an example of an orthogonal  $3 \times 3$  matrix different from the identity
- 2. Consider the linear model

$$y = A\beta + \varepsilon$$
,

where  $\boldsymbol{A}$  is a fixed  $n \times p$  matrix of rank p and  $\boldsymbol{\varepsilon}$  is an  $n \times 1$  random vector with mean zero and nonsingular covariance matrix  $\boldsymbol{\Sigma}$ . The weighted least-squares estimate,  $\hat{\boldsymbol{\beta}}$ , of  $\boldsymbol{\beta}$  is obtained by minimizing

$$F(\boldsymbol{x}) = (\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x})$$

over  $\boldsymbol{x} \in \mathbb{R}^p$ .

- (a) Differentiate F with respect to  $\boldsymbol{x}$  to find  $\hat{\boldsymbol{\beta}}$
- (b) Find the mean and covariance matrix of  $\hat{\beta}$  using the properties of  $\mathbb{E}$ ,  $\mathbb{V}$  are and  $\mathbb{C}$  ov
- (c) Find the mean and covariance matrix of the residual vector  $m{r} = m{y} m{A} \hat{m{\beta}}$
- 3. Let

$$\boldsymbol{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \boldsymbol{b} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}, \quad \boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$$

Determine each of the following:

- (a)  $\boldsymbol{a} \otimes \boldsymbol{A}$
- (b)  $\boldsymbol{A} \otimes \boldsymbol{b}$
- (c)  $\boldsymbol{I}_2 \otimes \boldsymbol{A}$
- (d)  $\boldsymbol{A} \otimes \boldsymbol{I}_2$
- (e)  $\boldsymbol{A} \otimes \boldsymbol{A}$
- (f)  $(\boldsymbol{A} \otimes \boldsymbol{A})(\boldsymbol{I}_2 \otimes \boldsymbol{A})$

4. Suppose  $Z_1, Z_2, Z_3, Z_4$  are iid N(0,1). Set  $\mathbf{Y} = (Z_1 + Z_2, Z_1 - Z_4, Z_3, Z_3^2)^{\top}$ .

(a) Find  $\mathbb{E} Y$ .

- (b) Find  $Var(\mathbf{Y})$ .
- (c) Let  $\boldsymbol{U}$  be the random matrix

$$\boldsymbol{U} = \begin{pmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{pmatrix}.$$

Find  $\mathbb{E} U$  and  $\mathbb{V}ar(U)$ .

5. Let  $\boldsymbol{X} = (X_1, X_2)^{\top}$  be multivariate Gaussian with  $\boldsymbol{\mu} = \mathbb{E} \, \boldsymbol{X} = (1, 1)^{\top}$  and

$$\mathbb{V}\mathrm{ar}(\boldsymbol{X}) = \boldsymbol{\Sigma} = \begin{pmatrix} 1 & -2 \\ -2 & 5 \end{pmatrix}.$$

- (a) Determine the distribution of  $X_1$  and that of  $X_2$
- (b) Find the joint distribution of  $X_1$  and  $X_1 X_2$
- (c) Find the joint distribution of  $X_1 + X_2$  and  $X_1 X_2$
- (d) Determine the mean and covariance matrix of  $\boldsymbol{A}\boldsymbol{X}$  where  $\boldsymbol{A}$  is defined in question 2
- (e) Determine the mean and covariance matrix of  $\boldsymbol{AXb}$ , where  $\boldsymbol{b}$  is the vector defined in question 3 (use the transformation formulas from class)
- (f) Find a linear combination  $aX_1 + bX_2$  that is independent of  $X_1 + X_2$
- 6. Show that the covariance matrix  $\Sigma$  of any  $p \times 1$  random vector has to be non-negative definite. That is,  $\boldsymbol{a}^{\top} \Sigma \boldsymbol{a} \geq 0$  for any  $p \times 1$  vector  $\boldsymbol{a}$ .