Machine Learning Lecture 2: Linear Regression

Vladislav Goncharenko MIPT, 2019

Recap

Lecture 1: Intro to ML

- ML thesaurus
- Main problem statements (so far)
 - Supervised
 - Classification
 - Regression
 - Unsupervised
 - Dimensionality reduction
 - Clustering
- Maximum Likelihood Estimation (MLE)
- Naïve Bayes classifier
- kNN

Outline

- Linear Models overview
- Regression problem statement
- Linear Regression analytical solution
 - Gauss-Markov theorem
 - Instability
- Regularization
 - L2 aka Ridge
 - Analytical solution
 - L1 aka LASSO
 - Weights decay rule
 - Elastic Net
- Metrics in regression
- Model building cycle

Regression models

Dependent Variable

Independent Variable

Outcome Variable

Predictor Variable

Response Variable

Explanatory Variable

- Regression models
- Classification models

- Regression models
- Classification models
- Unsupervised models

- Regression models
- Classification models
- Unsupervised models
- Building block of other models (ensembles, NNs, etc.)

a simple neural network

Linear Regression

Regression model

Can be written in the form

$$\mathbb{E}(Y|X) = f(X)$$

or equivalently

$$Y = f(X) + \varepsilon$$

Linear Regression model

When estimator is linear

$$f_w(x) = w_0 + \sum_{i=1}^p w_i x_i \equiv x^T w$$

regression gets linear

Note: x and w are supposed to include bias term (conventional notation)

$$w = (w_0, w_1, \dots, w_n)^T$$
$$x = (1, x_1, \dots, w_n)^T$$

Linear Regression problem

Observed objects

$$(x^i, y^i), i = 1, \dots, n$$

 $x^i \in R^p, y^i \in R$

Matrix form of data

$$X = [x^{1}, \dots, x^{n}]^{T}, X \in R^{n \times p}$$

 $Y = [y^{1}, \dots, y^{n}]^{T}, Y \in R^{n}$

Linear Regression

$$f_w(X) = Xw = \hat{Y} \approx Y$$

Linear Regression problem

How to choose weights?

Empirical risk =
$$\sum_{\text{by objects}} \text{Loss on object} \to \min_{\text{model params}}$$

$$Q(X) = \sum_{i=1}^{n} L(y^i, f_w(x^i)) \to \min_{w}$$

Loss functions

MSE:
$$L(y_t, y_p) = (y_t - y_p)^2$$

MAE:
$$L(y_t, y_p) = |y_t - y_p|$$

Note: MSE minimization equivalents
Maximum Likelihood Estimation
in certain conditions (e.g. Gaussian noise)

Linear Regression analytical solution

For MSE closed form solution exists

$$Q_{\text{MSE}}(X) = \sum_{i=1}^{n} (y^i - f_w(x^i))^2 = ||Y - Xw||^2 = (Y - Xw)^T (Y - Xw) \to \min_{w}$$

$$\nabla_w Q(X) = \nabla_w (Y^T Y - (Xw)^T Y - Y^T X w + (Xw)^T X w) = 0$$
$$= 0 - Y^T X - Y^T X + 2X^T X w^T = 0$$

$$w^* = (X^T X)^{-1} X^T Y$$

Gauss-Markov theorem

$$Y = f(X) + \varepsilon$$

$$\mathbb{E}(\varepsilon_i) = 0 \quad \forall i$$

$$\operatorname{Var}(\varepsilon_i) = \sigma^2 < \inf \quad \forall i$$

$$\operatorname{Cov}(\varepsilon_i, \varepsilon_j) = 0 \quad \forall i \neq j$$

Minimizing MSE loss gives

Best Linear Unbiased Estimation (BLUE)

(Estimator with minimal Variance from all unbiased estimators)

$$w^* = (X^T X)^{-1} X^T Y$$
$$\mathbb{E}(w^*) = w_{\text{true}}$$
$$Var(w^*) = min$$

Instability

$$w^* = (X^T X)^{-1} X^T Y$$

What if this matrix is singular? e.g. strongly correlated features

Numerical inversion would be unstable

```
w_true
array([ 2.68647887, -0.52184084, -1.12776533])

w_star = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(Y)
w_star
array([ 2.68027723, -186.0552577, 184.41701118])
```

L2 Regularization

How to fix instability?

Add 100% invertible matrix

$$w = (X^T X + \lambda^2 I)^{-1} X^T Y$$

Turns out that this value is optimal solution for a penalized (by L2 norm of w) loss function

$$|L_2| = ||Y - Xw||_2^2 + \lambda^2 ||w||_2^2$$

Derivation is identical to vanilla Linear Regression case discussed above

This type of regularization is called Tikhonov regularization or Ridge regression or L2 regularization

17

L1 Regularization

What if we add L1 norm of w to our loss? This technique is called LASSO

$$L_1 = ||Y - Xw||_2^2 + \lambda^2 ||w||_1$$

For this case there is no such an elegant solution as for L2 regularization, however solution exists for orthonormal design (see Spokoiny's book p.173)

$$\widehat{\theta}_{j} = \begin{cases} (\widetilde{\theta}_{j} - \lambda)_{+} & \widetilde{\theta}_{j} \geq 0, \\ -(|\widetilde{\theta}_{j}| - \lambda)_{+} & \widetilde{\theta}_{j} < 0 \end{cases}$$

Thus this type of regularization performs implicit feature selection

Regularizations geometrical interpretation

ElasticNet Regularization

Applying both types of regularization also works

$$L_{EN} = ||Y - Xw||_2^2 + \lambda_1^2 ||w||_1 + \lambda_2^2 ||w||_2^2$$

Metrics in regression

Metrics in regression

- MSE Mean Square Error
- MAE Mean Absolute Error
- RMSE Root Mean Square Error
- MAPE Mean Absolute Percentage Error
- SMAPE Symmetric Mean Absolute Percentage Error
- R2 "R squared" aka coefficient of determination
- ... (any combination you like)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y_i}}{y_i} \right|$$

SMAPE =
$$\frac{1}{n} \sum_{i=1}^{n} \frac{2 \cdot |y_i - \hat{y_i}|}{|y_i| + |\hat{y_i}|}$$

Model building cycle

Parameters vs Hyperparameters

	Parameters	Hyperparameters
Changes	Optimized during training	Fixed before training
Choice depends on	Training set	Validation set
kNN	None	#neighbours
Linear Regression	vector w	regularization

Runge's phenomenon

Runge function interpolation on uniform grid

$$f(x) = \frac{1}{1+25x^2}, x \in (-1,1)$$
 $x_i = \frac{2i}{n} - 1, i = 0, \dots, n$

by polynomials of n-th degree

$$P_n(x) = p_n x^n + \dots + p_1 x + p_0$$
$$P_n(x_i) = f(x_i)$$

is infinitely bad on the whole interval

$$\lim_{n \to \infty} \left(\max_{-1 \le x \le 1} |f(x) - P_n(x)| \right) = +\infty$$

Underfitting vs. Overfitting

Underfitting vs. Overfitting

Revise

- Linear Models overview
- Regression problem statement
- Linear Regression analytical solution
 - Gauss-Markov theorem
 - Instability
- Regularization
 - □ L2 aka Ridge
 - Analytical solution
 - L1 aka LASSO
 - Weights decay rule
 - Elastic Net
- Metrics in regression
- Model building cycle

Next time

- Linear classification
- Logistic regression
- Metrics in classification

Thanks for attention

Questions?