(NATURAL SCIENCE)

Vol. 61 No. 9 JUCHE104(2015).

주체104(2015)년 제61권 제9호

에록시카르보닐-에틸에스테르화법에 의한 아미노산의 유도체화반응에 미치는 인자들의 영향

한찬현, 위경석

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《기초과학을 발전시키지 않고서는 인민경제 여러 부문에서 나서는 과학기술적문제를 원 만히 풀어나갈수 없습니다.》(《김정일선집》 중보판 제11권 138폐지)

모세관탑기체크로마토그라프법에서 아미노산의 유도체화방법으로 가장 주목되는것은 알콕시카르보닐—알킬에스테르화법이다. 아미노산들의 카르보닐화제로서는 클로로개미산메틸에스테르, 클로로개미산에틸에스테르, 클로로개미산부틸에스테르, 클로로개미산 i—부틸에스테르 등이 리용된다.[1-4]

클로로개미산알킬에스테르를 리용한 유도체화반응은 방온도의 수용액매질에서 쉽게 진행되며 유도체화률이 높고 기체크로마토그라프법으로 분석할 때 안정하므로 매우 전망성 있는 유도체화반응으로 되고있다.[4]

우리는 에톡시카르보닐—에틸에스테르화법에 의한 아미노산의 유도체화반응의 최적반 응조건을 확립하였다.

실 험 방 법

반응식은 다음과 같다.

시약으로는 아미노산혼합표준용액(2.5mmol/L, 17가지), 분석순의 클로로개미산에틸에스테르, 에타놀, 피리딘, 클로로포름, 초산에틸, n-옥탄, 무수류산나트리움, n-헥사데칸(99.99%), 아미노산유도체표준(《SERVA》)을, 장치로는 수소불길이온화검출기가 달린 기체크로마토그라프(《GC-9A》), 자체로 제조한 《OV-1701-19》형 용융실리카모세관탑(0.25mm×0.25μm×30m), pH메터(《PHS-25》), 항온수욕조(±0.5℃)를 리용하였다.

10mL들이 시험관에 각각 증류수, 6mol/L HCl, 6mol/L NaOH로 pH를 1~10으로 맞춘 아미노산혼합표준용액 0.5mL, 에타놀+피리딘(4:1)용액 0.5mL를 넣고 클로로개미산에틸에스테르를 각이한 량으로 첨가하여 진탕시킨 다음 10s동안 방치하였다. 다음 내부표준(n—헥사데칸 0.1mg/mL)이 들어있는 1% 클로로개미산에틸에스테르—클로로포름용액 1mL를 넣고 반응온도 6~30℃, 반응시간 30s~10min의 조건에서 반응시킨다. 5min동안 진탕하고 5min동안 방치하였다.

분충된 클로로포름충을 취하여 무수류산나트리움을 넣어 탈수시키고 각이한 추출용매로 추출시간과 추출회수를 변화시키면서 아미노산유도체들을 추출하고 기체크로마토그라 프로 분석하였다. 추출회수는 상대추출률(%)이 가장 큰 회수로 결정하였다.

상대 추출률 =
$$\frac{S_{i, n}/S_{m, n}}{\sum\limits_{n=1}^{3} S_{i, n}/S_{m, n}} \times 100$$

여기서 $S_{i,n}$ 은 n차추출때 아미노산봉우리높이, $S_{m,n}$ 은 n차추출때 내부표준봉우리높이이다.

기체크로마토그람으로부터 각이한 조건에서 개별아미노산들과 내부표준봉우리의 높이 비값이 가장 큰 반응조건을 확정하였다.

아미노산의 유도체화률 아미노산유도체표품과 우에서 확정한 유도체화반응조건으로 유 도체화한 아미노산유도체를 기체크로마토그라프로 분석하고 유도체표준봉우리높이에 대한 유도체봉우리높이의 백분률로 유도체화률을 결정하였다.

기체크로마토그라프분리조건 초기온도 100°C(5min), 승온속도 8°C/min, 마감온도 270°C (10min), 수송기체 H₂, 류속 1mL/min, 주입구온도 250°C, 검출기온도 280°C, 시료주입량 1μL, 분할비 1:50으로 하였다.

실험결과 및 해석

pH의 영향 클로로개미산에틸에스테르의 첨가량 70μL, 반응온도 25℃, 반응시간 10min의 조건에서 pH에 따르는 아미노산봉우리의 상대높이는 표 1과 같다.

아미노산	рН				아미노산	рН				
아미도산 	1.0	4.0	7.0	10.0	아미도산	1.0	4.0	7.0	10.0	
Ala(알라닌)	0.13	0.18	0.18	0.16	Met(메티오닌)	0.11	0.13	0.17	0.15	
Gly(글리신)	0.10	0.14	0.15	0.14	Glu(글루타민산)	0.01	0.02	0.04	0.03	
Val(발린)	0.18	0.25	0.27	0.25	Phe(페닐알라닌)	0.20	0.23	0.26	0.23	
Leu(로이신)	0.14	0.17	0.21	0.20	Lys(리진)	0.07	0.10	0.12	0.11	
Ile(이소로이신)	0.02	0.03	0.06	0.04	His(히스티딘)	0.05	0.08	0.08	0.07	
Ser(세린)	0.07	0.11	0.11	0.10	Tyr(티로신)	0.19	0.21	0.23	0.22	
Thr(트레오닌)	0.04	0.05	0.07	0.06	Trp(트립토판)	0.12	0.17	0.17	0.14	
Pro(프 롤 린)	0.22	0.30	0.31	0.26	Cys(시스틴)	0.05	0.06	0.09	0.06	
Asp(아스파라긴산)	0.13	0.14	0.15	0.14						

표 1. pH에 따르는 아미노산봉우리의 상대높이

표 1에서 보는바와 같이 pH 1.0에서 봉우리의 상대높이가 가장 작고 pH 7.0에서 가장 높다. 따라서 반응용액의 pH를 7.0으로 선정하였다.

클로로개미산에틸에스테르첨가량의 영향 pH 7.0, 반응온도 25℃, 반응시간 10min의 조건에서 클로로개미산에틸에스테르의 첨가량에 따르는 아미노산봉우리의 상대높이는 표 2와 같다.

아미노산		;	첨가량/ <i>/</i>	иL		아미노산 .	첨가량/μL				
	10	30	50	80	100	1126	10	30	50	80	100
Ala	0.11	0.13	0.15	0.18	0.17	Met	0.11	0.12	0.14	0.17	0.13
Gly	0.08	0.10	0.13	0.16	0.16	Glu	0.01	0.03	0.04	0.07	0.06
Val	0.09	0.14	0.20	0.24	0.22	Phe	0.13	0.20	0.23	0.28	0.24
Leu	0.10	0.15	0.17	0.23	0.18	Lys	0.04	0.06	0.07	0.12	0.10
Ile	0.01	0.02	0.03	0.07	0.06	His	0.02	0.06	0.07	0.12	0.09
Ser	0.01	0.02	0.05	0.08	0.07	Tyr	0.12	0.17	0.19	0.22	0.20
Thr	0.01	0.05	0.05	0.09	0.08	Trp	0.11	0.15	0.16	0.18	0.15
Pro	0.13	0.19	0.22	0.29	0.27	Cys	0.02	0.05	0.06	0.09	0.07
Asp	0.01	0.09	0.11	0.12	0.11						

표 2. 클로로개미산에틸에스테르의 첨가량에 따르는 아미노산봉우리의 상대높이

표 2에서 보는바와 같이 클로로개미산에틸에스테르의 첩가량이 80μL일 때 아미노산봉 우리들의 상대높이가 가장 높다.

반응온도의 영향 pH 7.0, 클로로개미산에틸에스테르의 첨가량 80μL, 반응시간 10min의 조 건에서 반응온도에 따르는 아미노산봉우리의 상대높이는 표 3과 같다.

아미노산 -		반응은	일도/°C		아미노산 -	반응온도/℃				
1-1-2-6	6	10	20	30	17126	6	10	20	30	
Ala	0.11	0.14	0.18	0.16	Met	0.11	0.13	0.18	0.17	
Gly	0.09	0.12	0.13	0.11	Glu	0.02	0.04	0.07	0.03	
Val	0.21	0.27	0.28	0.23	Phe	0.18	0.25	0.26	0.23	
Leu	0.16	0.20	0.23	0.17	Lys	0.08	0.11	0.13	0.10	
Ile	0.02	0.05	0.06	0.05	His	0.04	0.08	0.09	0.09	
Ser	0.04	0.07	0.09	0.06	Tyr	0.17	0.18	0.22	0.21	
Thr	0.08	0.11	0.12	0.10	Trp	0.12	0.15	0.17	0.14	
Pro	0.24	0.29	0.30	0.28	Cys	0.04	0.08	0.09	0.08	
Asp	0.07	0.11	0.12	0.10						

표 3. 반응온도에 따르는 아미노산봉우리의 상대높이

표 3에서 보는바와 같이 아미노산봉우리의 상대높이는 반응온도 20℃에서 가장 높다. 반믕시간의 영향 pH 7.0, 클로로개미산에틸에스테르의 첨가량 80μL, 반응온도 20℃의 조 건에서 아미노산봉우리의 상대높이는 표 4와 같다.

표 4 반응시간에 따르는 아미노산봉우리이 상대높이

					VIII—E 0 1 2		721177 01
아미 노사		시긴	ŀ/min	아미노사 _		ス	
1-1-1-1	0.5	1	5	10	7 1-1-2 -	0.5	1

아미노산 -		시간	/min		아미노산 -	시간/min				
-1	0.5	1	5	10	1-1-1-2	0.5	1	5	10	
Ala	0.12	0.16	0.20	0.17	Met	0.12	0.14	0.19	0.16	
Gly	0.07	0.12	0.15	0.14	Glu	0.01	0.02	0.02	0.02	
Val	0.18	0.21	0.26	0.25	Phe	0.21	0.25	0.29	0.26	
Leu	0.15	0.19	0.20	0.20	Lys	0.08	0.11	0.11	0.11	
Ile	0.03	0.04	0.05	0.03	His	0.02	0.06	0.07	0.06	
Ser	0.02	0.05	0.06	0.05	Tyr	0.18	0.20	0.21	0.20	
Thr	0.08	0.10	0.12	0.11	Trp	0.11	0.15	0.18	0.15	
Pro	0.24	0.25	0.29	0.27	Cys	0.03	0.06	0.07	0.07	
Asp	0.11	0.14	0.16	0.14						

표 4에서 보는바와 같이 반응시간 5min일 때 아미노산봉우리의 상대높이가 가장 높다.

이상의 결과로부터 아미노산의 유도체화반응조건을 pH 7.0, 클로로개미산에틸에스테르의 첨가량 80 LL, 반응온도 20℃, 반응시간 5min으로 하는것이 적합하다는것을 알수 있다.

추출조건의 영향 기체크로마토그라프로 반응생성물을 추출할 때 추출용매와 추출시간에 따르는 아미노산봉우리의 상대높이와 추출회수에 따르는 상대추출률은 표 5-7과 같다.

아미노산		용매		아미노산 -	용 매			
어미그겐	클로로포름	초산에틸	n-옥탄	어디고겐	클로로포름	초산에틸	n-옥탄	
Ala	0.15	0.09	0.01	Met	0.15	0.11	0.06	
Gly	0.11	0.08	0	Glu	0.07	0.04	0	
Val	0.19	0.16	0.12	Phe	0.21	0.20	0.16	
Leu	0.17	0.16	0.14	Lys	0.17	0.11	0.09	
Ile	0.04	0.02	0.03	His	0.08	0.04	0	
Ser	0.08	0.04	0	Tyr	0.25	0.21	0.12	
Thr	0.15	0.09	0	Trp	0.19	0.15	0.02	
Pro	0.24	0.23	0.16	Cys	0.09	0.08	0.01	
Asp	0.13	0.07	0.03					

표 5. 추출용매에 따르는 아미노산봉우리의 상대높이

표 6. 추출시간에 따르는 아미노산 봉우리의 상대높이

표 7. 추출회수에 따르는 상대추출률(%)

_ : -:-: 0 -::= 11																	
아미	시간	ŀ/mi	in	아미	시	간/m	in	아미		회수		변동	아미		회수		변동
노산	1 :	5	10	노산	1	5	10	노산	1	2	3	곁수/%	노산	1	2	3	곁수/%
Ala	0.14 0.	.19	0.17	Met	0.13	0.17	0.16	Ala	92	8	0	7.1	Met	93	7	0	6.9
,	0.18 0.							Gly	91	9	0	7.0	Glu	96	4	0	6.9
	0.20 0.							Val	93	7	0	6.9	Phe	86	14	0	6.7
	0.16 0.			-				Leu	95	5	0	6.9	Lys	100	0	0	6.6
lle	0.03 0.	.07	0.06	His	0.11	0.15	0.14	Ile	92	8	0	6.7	His	96	4	0	6.8
Ser	0.10 0.	.10	0.10	Tyr	0.27	0.27	0.25	Ser	91	9	0	7.1	Tyr	93	7	0	7.1
Thr	0.11 0.	.14	0.12	Trp	0.21	0.23	0.20	Thr	86	14	0	7.2	Trp	100	0	0	7.0
Pro	0.21 0.	.27	0.26	Cys	0.13	0.13	0.11	Pro	79	21	0	7.0	Cys	92	8	0	6.9
Asp	0.15 0.	.15	0.13					Asp	70	30	0	6.8					

표 5-7에서 보는바와 같이 추출용매 클로로포름, 추출시간 5min, 추출회수 2회(변동 결수 7.2%이하)일 때 아미노산봉우리의 상대높이가 가장 높다.

아미노산들의 유도체화률 우와 같은 반응조건과 추출조건에서 아미노산들의 유도체화률 은 표 8과 같다.

표 8. 개별아미노산들의 유도체화률

아미	유도체화률	변동곁수	아미	유도체화률	변동곁수	아미	유도체화률	변동곁수
노산	/%	/%	노산	/%	/%	노산	/%	/%
Ala	93	6.8	Leu	99	6.8	Glu	90	6.8
Gly	99	6.7	Ile	99	6.6	Lys	91	6.7
Pro	97	6.4	Ser	93	6.8	Tyr	99	6.6
Val	99	6.6	Met	99	6.5	His	92	6.5
Asp	79	6.7	Phe	99	6.5	Trp	94	6.6
Thr	95	6.5	Cys	99	6.5			

표 8에서 보는바와 같이 아스파라긴산(79%)을 제외한 모든 개별아미노산들의 유도체화률은 90~99%(변동결수 6.8%이하)이다.

맺 는 말

에톡시카르보닐-에틸에스테르화법에 의한 아미노산유도체화반응의 최적조건은 반응용액의 pH 7.0, 클로로개미산에틸에스테르의 첨가량 80μL, 반응온도 20℃, 반응시간 5min, 추출용매 클로로포름, 추출용매량 10mL, 추출시간 5min, 추출회수는 2회이며 이 조건에서 아스파라긴산(79%)을 제외한 모든 아미노산들의 유도체화률은 90~99%(변동결수 6.8%이하)이다.

참 고 문 헌

- [1] C. Podiez et al.; J. Chromatogr., A 915, 207, 2001.
- [2] Susana Casal et al.; J. Chromatogr., A 866, 221, 2000.
- [3] P. Simek et al.; Anal. Chem., 80, 15, 5776, 2008.
- [4] T. G. Sobelesky et al.; J. Chromatogr., B 800, 101, 2004.

주체104(2015)년 5월 5일 원고접수

Influence of Factors on Derivative Reaction of Amino Acid by Ethoxycarbonyl-Ethylesterification

Han Chan Hyon, Wi Kyong Sok

The optimum condition of derivative reaction of amino acids by ethoxycarbonyl-ethylesterification is pH 7.0, amounts of ethylchloroformate 80μ L, reaction temperature 20°C, reaction time 5min, extractant chloroform, amount of solvent 10mL, extraction time 5min, extraction times 2.

Under this condition, the degree of derivative reaction for all amino acids excepted aspartic acid(79%) is $90\sim99\%$, coefficient of variation less then 6.8%.

Key words: ethoxycarbonyl-ethylesterification, amino acid, derivative reaction