組込みシステム概論

第7章 小マイクロプロセッサ

学習のポイント

- マイクロプロセッサの仕組みは
 - 順序処理系:連続する命令を順次実行
 - データ転送処理系: データ転送と演算を繰り 返す
- プログラムは"順序処理系"により"データ転送処理系"の動きを制して各命令を実行

しっかり理解すれば マイクロプロセッサの 設計, 命令追加もできる

図7.1 マイクロプロセッサの仕組み

(a)順序処理系

図7.2命令の実行

ゲート		В	С	Α	D	IN	OUT
	クロック	ALUI1	ALUI2	ALUO	メモリ 10	入力	出力
入力	Cn		*			*	
出力	Cm			*			*
演算	C1	*				*	
	C2		*		*		
	C3			*	*		

順序処理系からの制御コードと データ転送処理系

図7.1 マイクロプロセッサの仕組み 演算の実行(1)

(a)順序処理系

演算の実行(2)

(a)順序処理系

6

演算の実行(3)

(a)順序処理系

図7.3 マイクロプロセッサの構造

7

図7.4 小マイクロプロセッサアーキテクチャ

7.2 (1)ハードウェアとその機能

i. プログラムメモリ 256語 16ビット

ii. データメモリ 64語 8ビット

iii. 加算器 8ビット

iv. 入出力ポート In, Out (各8ビット)

v. レジスタ A,B,C,D,F(各8ビット)

vi. プログラムカウンタ 8ビット

vii. サブルーチンコール 3段

10

7.2 (2)命令セットがもつべき必要機能

- I. プロセッサ内部と外部のデータ交換
- Ⅱ. プロセッサ内部に定数を設定
- Ⅲ. プロセッサ内部でデータの移動
- IV. プログラム実行: 順序実行, ジャンプ, 条件付きジャンプ
- V. サブルーチンの挿入

7.2 (3)命令セットの作成(省略)

- a. 入力命令
- b. 出力命令
- c. データ転送命令
- d. 定数設定命令
- e. 分岐命令
- f. 条件分歧命令
- g. サブルーチン呼出し命令
- h. 戻り(リターン) 命令

図7.4 命令実行のタイミング

クロックに合わせゲートを開閉することで 命令が実行される

i) 入力命令 (114ページ)

入力命令: 0204h

命令によってどのゲートが開閉されるか?

14

入力命令: 0204h の実行

iv) 定数設定命令(115ページ)

定数設定命令: 42CAh

レジスタBに定数 CAh 設定

定数設置命令: 42CAh の実行

v) 加算の実行(115ページ)

加算命令: 0110h

17

18

加算命令: 0110h の実行

iii) データ転送命令 (114ページ)

データ転送命令: 0801h

データ転送命令: 0801hの実行

ii) 出力命令 (114ページ)

出力命令: 0408h

出力命令: 0408hの実行

vi) 分岐命令(115ページ)

分岐命令: 808Eh

アドレス 8Eh に分岐

21

22

分岐命令: 808Eh の実行

表7.1 CAL命令、RT命令の例題プログラムリスト

番地	命令	16進	PC/SP	実働PC/S	待機PC/S	
40H	OUT A	0401H	0	PC/S 0 = 41H		1,2,3
41H	CAL 70H	C070H	1	PC/S 1 = 70H ← IM	0=42H	,2,3
42H	IN B	0204H	0	PC/S 0 = 43H		1,2,3
70H	SD 10H	4210H	1	PC/S 1 = 71H	0=42H	,2,3
71H	IN D	0802H	1	PC/S 1 = 72H	0=42H	,2,3
•	•		1	PC/S 1 = 73H	0=42H	,2,3
80H	OUT D	0408H	1	PC/S 1 = 81H	0=42H	,2,3
81H	RT	D000H	0	PC/S 0 = 42H	PC/S 1 =	82H
82H	•					

25

まとめ

- マイクロプロセッサの仕組みは
 - 順序処理系:連続する命令を順次実行
 - データ転送処理系:データ転送と演算を繰り返す
- 命令は、クロックに合わせゲートを開閉 することで実行
- 命令を自分で拡張できるプロセッサも

演習問題

教科書119ページの設問1,2,5に答えよ

設問1 マイクロプロセッサを構成しているハードウェア にはどのようなものがあるか

設問2 マイクロプロセッサの構成しているハードウェア について、そのコンピュータにおける役割を示せ

設問5 7.2 節(3) に示した命令と、機能が異なる命令を示せ、ただし、図7.4 のコンピュータアーキテクチャで実現できるものに限るとする

26