Proyecto Simulación

Modelado de un Sistema de Ascensores

Consideremos un ascensor que se puede comandar por los siguientes eventos: arriba, abajo, parar. Cada piso a su vez cuenta con un sensor que indica la presencia del ascensor, de modo tal que la salida del sistema"ascensor" son los eventos producidos por dichos sensores.

Algunas consideraciones:

- El ascensor sube y baja a velocidades contantes de 1 metro por segundo.
- La distancia entre un piso y otro es de 2 metros.
- El edificio tiene 10 pisos.

Desarrollar tres políticas diferentes para los ascensores, luego realizar un análisis de los tiempo de espera de un ascensor.

- 1. Los pedidos se alternan si o si entre los 2 ascensores.
- 2. Se envía siempre a uno disponible, priorizando el elevador 1.
- 3. Se envía al elevador que según ciertos cálculos llegara más rápido al piso detino.

Ezequiel Depetris - Gaston Massimino

Devs Ascensor S_{init} (1,0,0,∞,false)

 $X = \{subir, bajar, parar\}x\{0\}$

//entrada del controlador

 $Y = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}x\{0\}$

//salida del piso corriente para el controlador

S = (IRxIRx{subiendo,bajando,parado}xIR)

//piso corriente, distancia al próximo piso, estado, sigma

$$\delta_{ext}(S,e,X) = \delta_{ext}((pc,dps,est,\sigma),e,x=$$

(p,2,subiendo,2) si est=parado^X=subir//ascensor parado y llega un subir (p,2,bajando,2) si est=parado^X=bajar//ascensor parado y llega un subir (p,0,parado,∞) si est≠parado^X=parar//ascensor en movimiento y llega un parar (p,dps-V.e,est,2-V.e) si est≠parado^X≠parar//ascensor en movimiento y llega un subir o bajar

$$\delta_{int}(S) = \delta_{int}(pc,dps,est,\sigma) =$$

$$(pc+1,2,subiendo,2)$$
 si est=subiendo $(pc-1,2,bajando,2)$ si est=bajando $(p,2,parado,\infty)$ si est=parar

$$Ta(s)=Ta(pc,dps,est,\sigma)=\sigma$$

$$\lambda(s) = \lambda (pc, dps, est, \sigma) = pc$$

Devs Controlador Ş_{nit} (1,1,libre,∞,false)

$$X = (IR \times \{0,1\})$$

//numero de piso por el puerto 0 o 1

Y =({subir, bajar, parar}x0) U ({libre}x1)

//salida para ascensor por puerto 0, salida para panel por puerto 1

$$S = (IRxIRxIRx\{0,1\})$$

//piso corriente, piso destino, sigma, flag

$$\delta_{\text{ext}}(S,e,X) = \delta_{\text{ext}}((pc,pd,\sigma,output),e,(valor,puerto) =$$

(pc,valor,0,0) si puerto=0 //nro de piso que viene del panel

(valor,pd,0,0) si puerto= 1^{α} valor=pd //piso que viene del ascensor y es el destino (valor,pd, ∞ ,0) si puerto= 1^{α} valor \neq pd //piso que viene del ascensor y no es el destino

Ta(s)=Ta (pc,pd, σ ,output)= σ

$$\lambda(s) = \lambda(pc,pd,\sigma,output) =$$

$$\delta_{int}(S) = (pc,pd,\infty,0)$$
 si output = 1
 $(pc,pd,0,1)$ si output = 0

```
Devs Tablero - Prioridad S_{init} ([], libre, libre, \infty)
  X = (IR \times 1) \cup (\{libre\} \times \{0,2\})
  //numero de piso por el puerto 1, libre/ocupado de los controladores por los puertos 0,2
  Y = IR \times \{0, 1\}
  //numero de piso de salida para el ascensor
  S = [IR] x {libre, ocupado} x {libre, ocupado} x IR
  //cola de pisos, estado controlador1, estado controlador2, sigma
  \delta_{ext}(S,e,X)=\delta_{ext}((ps,est1,est2,\sigma),e,(valor, puero)=
(valor ps, est 1, est 2, 0) si (est 1 = libre v est 2 = libre) puerto = 1
//entrada por puerto 1 y alguno de los dos controladores libre
(valor ps, est 1, est 2, ∞) si est 1 = ocupado est 2 = ocupado puerto = 1
//entrada por puerto 1 y los dos controladores ocupados
(ps,valor,est2,0) si ps≠[]^puerto=0
//entrada por puerto 0 y hay pisos en la cola
(ps,est1,valor,0) si ps≠[]^puerto=2)
//entrada por puerto 2 y hay pisos en la cola
(ps,valor,est2,∞) si ps=[]^puerto=0
//entrada por puerto 0 y no hay pisos en la cola
(ps,est1,valor,∞) si ps=[]^puerto=2)
//entrada por puerto 2 y no hay pisos en la cola
```

(xs,ocupado,est2, ∞) si est1 = libre

 $(xs, est1, ocupado, \infty)$ si est2 = libre

Devs Tablero - Alternado S_{init} ([],libre,libre,2,∞)

```
X = (IR \times 1) \cup (\{libre\} \times \{0,2\})
```

//numero de piso por el puerto 1, libre/ocupado de los controladores por los puertos 0,2

$$Y = IR \times \{0, 1\}$$

//numero de piso de salida para el ascensor

//cola de pisos, estado controlador1, estado controlador2, ultimo controlador, sigma

$$\delta_{ext}(S,e,X) = \delta_{ext}$$
 ((ps,est1,est2,last, σ),e,(valor,puerto)=

(xs,est1,libre,last, ∞) si (puerto=2^(last=2 v xs=[])

//entrada del controlador2 pero no es su turno o no hay pisos en la cola

Ta(s)=Ta (pisos,est1,est2,last, σ)= σ

$$\lambda(s) = (x, last-1)$$

//desencola un piso donde x es xs x = [pisos] //el valor de last-1 indica el puerto de la salida

```
δ Int = (xs,ocupado,est2,1,∞) si last =2 (xs,est1,ocupado,2,∞) si last =1
```

Devs Tablero - Heurística S_{init} ([],libre,libre,1,1,1,1,0,0,∞)

```
X = (IR \times 1) \cup (\{libre\} \times \{0,2\})
```

//numero de piso por el puerto 1, libre/ocupado de los controladores por los puertos 0,2

$$Y = IR \times \{0, 1\}$$

//numero de piso de salida para el ascensor

S = [IR]x{libre,ocupado}x{libre,ocupado}xIRxIRxIRxIRxIRxIRxIR

```
// lista o cola de pisos
// estado del controlador 1
// estado del controlador 2
// piso de origen para controlador 1
// piso de origen para controlador 2
// piso de destino para controlador 1
// piso de destino para controlador 2
// tiempo en el que sale el controlador 1
// tiempo en el que sale el controlador 2
// puerto por el que hay sacar algún valor
// sigma
```

```
\delta_{ext}(S,e,X) = \delta_{ext}((ps,est1,est2,po1,po2,pd1,pd2,t1,t2,output,\sigma),e,(valor,puerto) =
(valor ps, libre, est2, pd1, po2, pd1, pd2, t, t2, output, 0)
  si puerto=1 ^ ((func()=1 ^ est1=libre) v (func()=2^est2=libre))
//entrada del generador, el controlador1 esta libre y es quien primero atenderá el pedido o
// el controlador2 esta libre y es quien primero atenderá el pedido
(valor ps, libre, est2, pd1, po2, pd1, pd2, t, t2, output, ∞)
      puerto=1 ^ ((func()=1 ^ est1=ocupado) v (func()=2^est2=ocupado))
//entrada del generador, el controlador1 esta ocupado y es quien primero atenderá el
pedido o el controlador2 esta ocupado y es quien primero atenderá el pedido
(ps,valor,est2,po1,po2,pd1,pd2,t1,t2,output,0) si puerto=0 \land ps \neq [] \land func()=1
 //entrada del controlador1, hay pisos en la cola y este mismo controlador es quien primero
 atenderá el pedido
(ps,valor,est2,po1,po2,pd1,pd2,t1,t2,output,\infty) si puerto=0 \( (ps=[] \v (ps\neq[] \\ func()=2))
 //entrada del controlador1, hay pisos en la cola pero no atenderá el pedido primero
(ps,est1,libre,po1,pd2,pd1,pd2,t1,t,output,0) si puerto=2 ^ ps≠[] ^ func()=2
 //entrada del controlador1, hay pisos en la cola y este mismo controlador es quien primero
 atenderá el pedido
```

(ps,est1,libre,po1,pd2,pd1,pd2,t1,t,output,∞) si puerto=2 ^ (ps=[] v (ps≠[] ^ func()=1)) //entrada del controlador2, hay pisos en la cola pero no atenderá el pedido primero

```
\begin{split} \delta_{lnt}((ps,est1,est2,po1,po2,pd1,pd2,t1,t2,output,\sigma),e,(valor,puerto) = \\ (ps,est1,est2,po1,po2,pd1,pd2,t1,t2,0,\infty) \quad si \quad output = 0 \\ (ps,est1,est2,po1,po2,pd1,pd2,t1,t2,1,\infty) \quad cc \end{split}
```

Ta (s) = Ta (ps,est1,est2,po1,po2,pd1,pd2,t1,t2,output, σ) = σ

 λ (s) = λ (ps,est1,est2,po1,po2,pd1,pd2,t1,t2,output, σ) = p //where ps > p

Modelo preliminar del problema

ascensor en promedio se mueve 3,3

$$\frac{\lambda}{n * \mu} = \frac{1/9}{1/6.6} < 1$$
 Cola Estable $\mu = \frac{1}{6.6}$

Análisis de Salida

A continuación se presentan los resultados de las simulaciones discriminando por política de asignación de pedidos a los ascensores que muestran el tiempo medio de espera de un pedido en la cola (tiempo que un pedido espera a ser atendido por alguna ascensor) a partir del método de intervalo de confianza con precisión especifica con un error del 5%.

Politica Alternante

Se realizaron 7 simulaciones de 15000segundos cada una y se observaron y calcularon los siguientes valores:

Media de las Medias: 16.0711235659862

Varianza: 24.5607904910495

- Aproximando con la distribución normal vemos que el numero mínimo de simulaciones a correr son 37741 ya que la variaza que obtenemos y que sirve como parámetro para aproximar al numero mínimo de simulaciones resulta muy grande.
- Si se quisiera obtener datos mas representativos se deberían hacer mas simulaciones con mucho de mas tiempo ya que la cola parece estar aun en el periodo inestable.

Politica de Prioridad

Se realizaron 7 simulaciones de 15000segundos cada una y se observaron y calcularon los siguientes valores:

Media de las Medias: 0.813029709470629

Varianza: 0.00438696052113936

- Aproximando con la distribución normal vemos que el numero mínimo de simulaciones a correr son 7 ya que la aproximación arroja como resultado 6.74117901520359.
- Aproximando con la distribución T-student vemos que el primer paso de aproximación casualmente cumple que el valor obtenido es menor o igual que el numero de muestras con el que estamos aproximando por lo que afirmamos que se necesitan 7 simulaciones para obtener el tiempo medio que demora un pedido en ser atendido por cualquier ascensor, con un error del 5%.

Politica con uso de Heurística

Se realizaron 7 simulaciones de 15000segundos cada una y se observaron y calcularon los siguientes valores:

Media de las Medias: 1.93806445789856

Varianza: 4.73655218220657

- Aproximando con la distribución normal vemos que el numero mínimo de simulaciones a correr son 7279 ya que la variaza que obtenemos y que sirve como parámetro para aproximar al numero mínimo de simulaciones resulta lo suficientemente grande.
- Si se quisiera obtener datos mas representativos se deberían hacer mas simulaciones con mucho de mas tiempo ya que la cola parece estar aun en el periodo inestable.

Comparación entre las Políticas tomadas

Política Prioridad: el tiempo medio de espera de un pedido en la cola se encuentra en el rango de 0.76s a 0.86s con una media de 0.81s.

Política Alternante: no se pudo calcular el tiempo medio de espera de un pedido en la cola pero se podría hacer con mas simulaciones y de mayor duración.

Política Heurística: no se pudo calcular el tiempo medio de espera de un pedido en la cola pero se podría hacer con mas simulaciones y de mayor duración.