

School of Computing

Tutorial 10: Shortest Paths I

October 31, 2022

Gu Zhenhao

* Partly adopted from tutorial slides by Wang Zhi Jian.

Shortest Path

How to find the shortest path between two nodes?

Single-Source Shortest Path

The Single-Source Shortest

Paths (SSSP) problem tries to

find the shortest path from one

vertex u to all other vertices.

From 1 to	1	2	3	4	5
Shortest distance	0	2	6	5	7

Idea:

• In the i-th iteration, go through all edges and calculate the shortest path from u to v using at most i edges $D_i[v]$.

\overline{v}	1	2	3	4	5
$D_0[v]$	0	∞	∞	∞	∞

Idea:

• In the *i*-th iteration, go through all edges and calculate the shortest path from \boldsymbol{u} to \boldsymbol{v} using at most \boldsymbol{i} edges $D_i[\boldsymbol{v}]$.

\overline{v}	1	2	3	4	5
$D_1[v]$	0	2	6	7	∞

Question: How do we calculate $D_2[4]$?

The shortest path P from 1 to 4 using \leq 2 edges can be:

- P uses only 1 edge, $D_2[4] = D_1[4]$.
- P uses 2 edges, and the last edge is (2, 4). $D_2[4] = D_1[2] + w[2,4]$.

\overline{v}	1	2	3	4	5
$D_2[v]$	0	2	6	5	∞

The shortest path P from u to v using $\leq i$ edges can be:

- P uses only i-1 edges, $D_i[v] = D_{i-1}[v]$.
- P uses i edges, and the last edge is (t, v). $D_i[v] = D_{i-1}[t] + w[t, v]$.

$$D_{i}[v] = \min \begin{cases} D_{i-1}[v] \\ \min_{(t,u) \in E} \{D_{i-1}[t] + w[t,v]\} \end{cases}$$

for each node $v \in V$ do

$$D_0[v] \leftarrow \infty$$
;

$$D_0[u] \leftarrow 0$$
;

for $i \leftarrow 1$ to n do

for each edge $(t, v) \in E$ do

Need to store an additional row storing $D_{i-1}[v]!$

$$D_i[v] \leftarrow \min\{D_{i-1}[v], D_{i-1}[t] + w[t, v]\};$$

Bellman-Ford Algorithm: Improvement

for each node $v \in V$ do

$$D[v] \leftarrow \infty$$
;

 $D[u] \leftarrow 0$;

for $i \leftarrow 1$ to n do

Can terminate early if D is no longer updating!

for each edge $(t, v) \in E$ do

 $D[v] \leftarrow \min\{D[v], D[t] + w[t, v]\};$

// If D keeps updating on the n-th iteration \rightarrow we have a negative cycle!

Solving Problems Using Graph

How to apply graph algorithms to solve problems?

Graph-related Problem Solving

1. Model the problem using graph.

What should the vertices and edges be representing?

2. Identify equivalent graph problem.

What standard graph problem can you reduce the problem to? MST? SSSP? #(S)CC? Graph Traversal?

3. Find suitable algorithm.

What is the fastest algorithm for the problem, based on properties of graph?

- We have a four digit lock with code U (4-digit integer between 0000 and 9999).
- The lock is initially set to L (0000 $\leq L \leq$ 9999).
- We have R buttons. Pressing the i-th button adds K_i to the lock.
- Only the last 4 digits of the sum are kept.

Goal: find the minimum number of button pressing to reach U.

- Example: we have only one button.
- Initial value L = 3000, goal U = 1000.

$$3000 \xrightarrow{A} 5000 \xrightarrow{A} 7000 \xrightarrow{A} 9000 \xrightarrow{A} 1000$$

- Example: we have two buttons.
- Initial value L = 3000, goal U = 1000.

Idea: Model the process as a **tree**, with root being L.

- A node can get to its children with one button press.
- ullet Go through each level in the tree and search for U.

Question: Can there be a problem?

What if L is not reachable... do we go on forever?

Better Idea: Model the process as a graph,

- Vertices: different code on the lock.
- Edges: unweighted, directed edges. An edge (u, v) means u gets to v with one button press.

Equivalent problem: find the shortest path from vertex L to vertex U.

Better Idea: Model the process as a graph, each vertex being a code.

• This is an unweighted graph: use **BFS**!

Question: How to check if U is reachable from L?

• If we complete the BFS without finding U, we conclude that we can never reach U!

You are given a maze (R rows and C columns), filling with

- #: a wall.
- .: a passable spot.
- Y: position of you, which is also passable.
- F: the spot is on fire.

Goal: Find the earliest time that you can safely exit the maze, if possible.

```
#####
```

You are given a maze (R rows and C columns), filling with

- #: a wall.
- .: a passable spot.
- Y: position of you, which is also passable.
- F: the spot is on fire.

Goal: Find the earliest time that you can safely exit the maze, if possible.

```
#####
```

You are given a maze (R rows and C columns), filling with

- #: a wall.
- .: a passable spot.
- Y: position of you, which is also passable.
- F: the spot is on fire.

Goal: Find the earliest time that you can safely exit the maze, if possible.

#####

#FFF#

#FF##

#YF.#

You are given a maze (R rows and C columns), filling with

- #: a wall.
- .: a passable spot.
- Y: position of you, which is also passable.
- F: the spot is on fire.

Goal: Find the earliest time that you can safely exit the maze, if possible.

#####

#FFF#

#FF##

#FFF#

Y

Problem 2.a

Idea: represent the problem using a graph.

- Vertices: spots that are not walls.
- Edges: unweighted, undirected edge if two spots are adjacent to each other.


```
#####
#YF.#
#..##
#..#
```

Suppose there is no fire...

Equivalent problem: find the shortest path from the initial position to the exits.

Suitable algorithm: BFS on undirected and unweighted graph!


```
#####
#Y..#
#..##
```

Suppose there is no fire...

Equivalent problem: find the shortest path from the initial position to the exits.

Suitable algorithm: BFS on undirected and unweighted graph!

Suppose there is no fire...

Equivalent problem: find the shortest path from your initial position to the exits.

Suitable algorithm: BFS on undirected and unweighted graph!

Now there is fire. How to find when a spot will be on fire?

Equivalent problem: multi-source shortest path from initial positions of fires.

Suitable algorithm: still BFS on undirected and unweighted graph!

Problem 2.b

Now there is fire. How to find when a spot will be on fire?

Equivalent problem: multi-source shortest path from initial positions of fires.

Suitable algorithm: still BFS on undirected and unweighted graph!

Now there is fire. How to find when a spot will be on fire?

Equivalent problem: multi-source shortest path from initial positions of fires.

Suitable algorithm: still BFS on undirected and unweighted graph!

• n currencies and m exchange rates.

• **Goal**: find if there is a way to end up at the same currency but with more money than we had at first.

• Idea: Model the problem as a graph.

- Vertices: different currencies,
- Edges: directed and weighted edges representing exchange relationship.

Let's try! Suppose we have 1 USD. Will we make money going through this cycle?

$$1 \times 0.8 \times 0.8 \times 1.7$$

= 1.088 > 1

Equivalent problem: detect a cycle so that the product of edge weights is > 1.

Is there a way to find the sum instead?

Idea: Let the edge weight be negative log of exchange rate,

$$1 \times 0.8 \times 0.8 \times 1.7 > 1$$

 $\Leftrightarrow \log 0.8 + \log 0.8 + \log 1.7 > 0$
 $\Leftrightarrow -\log 0.8 - \log 0.8 - \log 1.7 < 0$

Equivalent problem: find if there is a negative cycle in the graph.

Use **Bellman-Ford** algorithm!

• N areas of different height, and N-1 descriptions like "area B_i higher than area A_i by N_i centimeters".

```
2 higher than 3 by 10cm
```

- 3 higher than 1 by 20cm
- 3 higher than 4 by 5 cm

• **Goal**: Answer Q queries of whether an area X is higher than an area Y, $1 \le X, Y \le N$.

• Idea: Represent the problem as a graph.

2 higher than 3 by 10cm

3 higher than 1 by 20cm

3 higher than 4 by 5 cm

- Vertices: different areas,
- Edges: weighted, directed. The weight represent relative height.

- Example: How to find if 2 is higher than 1?
- **Idea**: Can use BFS/DFS starting from 2, and find a path to 1.

• Example: How to find if 1 is higher than 4?

No path between 1 and 4... BFS/DFS doesn't work!

- Question: How to link 1 and 4 together?
- **Idea**: We can also include edges in reverse directions.

Each query requires one BFS/DFS, in total O(QN) time.

Can we do better?

- Example: Suppose we already know that
 - 2 is higher than 1 by 30cm,
 - 4 is higher than 1 by 15cm,

Do we know the relative position of 2 and 4?

Idea: Simply find the relative position of all areas to one area (e.g. 1)!

Equivalent problem: find the sum of weight on the path from all vertices to **1**.

- **Idea**: as we don't need to find the shortest path, we can just use BFS/DFS.
 - Traverse through all nodes starting from 1,
 - obtain the relative height and store in an array pos.
 - when we query(x, y), simply return
 pos[x] pos[y].
- Pre-processing takes O(N) time and each query will take O(1) time. In total O(N+Q) time.

End of File

Thank you very much for your attention :-)