Lecture 3 Search Space Pruning

Nadia Polikarpova

Logistics

Reviews

• due tomorrow

Project

- teams due Friday
- use `seach-for-teammates` slack channel

Today

Pruning techniques for enumerative search

- Equivalence reduction
- Top-down specification propagation

The problem statement

Enumerative search

=

Explicit / Exhaustive Search

Idea: Sample programs from the grammar one by one and test them on the examples

```
L ::= sort(L)
                              L[N..N]
                              bottom-up
                                                     top-down
                       N ::= find(L,N)
                              0
   0
X
sort(x) x[0..0] x + x
                                                 L[N..N] L + L
                       [0]
                                       x sort(L)
                                                                 [N]
find(x,0)
sort(sort(x))
              sort(x[0..0])
                                               sort(sort(L)) sort([N])
                                       sort(x)
sort(x + x) sort([0])
                                       sort(L[N..N]) sort(L + L)
                                       x[N..N] (sort L)[N..N] ...
x[0..find(x,0)]
```

How to make it scale

Prune

Discard useless subprograms

$$m * N^2$$

$$m * (N - 1)^2$$

Prioritize

Explore more promising candidates first

When can we discard a subprogram?

It's equivalent to something we have already explored

Equivalence reduction

(also: symmetry breaking)

No matter what we combine it with, it cannot satisfy the spec

Top-down propagation

Equivalent programs

```
X
                                                                                                                                                                                                                                                                                                                                               0
                                                                                                                                                                                                                                                                                                                \frac{1}{x} = \frac{x[0..0]}{x} + x = \frac{[0]}{x} = \frac{1}{x} = \frac{[0]}{x} = \frac{1}{x} = \frac{[0]}{x} = \frac{
 L ::= sort(L)
                                                     L[N..N]
                                                                                                                                                                                                                                                                                                            sort(sort(x)) sort(x + x) sort(x[0..0])
                                                                                                                                                                                            bottom_up
                                                     L + L
                                                                                                                                                                                                                                                                                                            sort([0]) x[0..find(x,0)] x[find(x,0)..0]
                                                       x[find(x,0)..find(x,0)] sort(x)[0..0]
N ::= find(L,N)
                                                                                                                                                                                                                                                                                                            x[0..0][0..0] (x + x)[0..0] [0][0..0]
                                                                                                                                                                                                                                                                                                            x + (x + x) x + [0] sort(x) + x x[0..0] + x
                                                                                                                                                                                                                                                                                                             (x + x) + x [0] + x x + x[0..0] x + sort(x)
```

Equivalent programs

```
0
                                                                                                                                                                                                                                               |x[0..0]| \times |x[0]| \times |x[0]| = |x| 
L ::= sort(L)
                                         L[N..N]
                                                                                                                                                                                                                                            sort(sort(x)) sort(x + x) sort(x[0..0])
                                                                                                                                                    bottom_up
                                          L + L
                                                                                                                                                                                                                                            sort([0]) \times [0..find(x,0)] \times [find(x,0)..0]
                                           \lceil N \rceil
                                                                                                                                                                                                                                            x[find(x,0)..find(x,0)] sort(x)[0..0]
N ::= find(L,N)
                                                                                                                                                                                                                                            x[0..0][0..0](x + x)[0..0][0][0..0]
                                                                                                                                                                                                                                             x + (x + x) x + [0] sort(x) + x x[0..0] + x
                                                                                                                                                                                                                                             (x + x) + x [0] + x x + x[0..0] x + sort(x)
```

Equivalent programs

```
0
                                 x[0..0] \times x = x [0] find(x,0)
L ::= sort(L)
     L[N..N]
                                               sort(x + x)
                     bottom_up
     L + L
      [N]
                                           x[0..find(x,0)]
N ::= find(L,N)
                                 x + (x + x) x + [0] sort(x) + x
                                                                 x + sort(x)
                                             [0] + x
```

Bottom-up + equivalence reduction

```
bottom-up (<Σ, N, R, S>, [i → o]):
  bank[A,d] := {} forall A, d
  for d in [0..]:
    forall (A → rhs) in R:
      forall p in new-terms(A→rhs, d, bank):
        if (A = S ∧ p([i]) = [o]):
           return p
        if forall p' in bank . !equiv(p,p'):
        bank[A,d] += p
```

How do we implement equiv?

- In general undecidable
- For SyGuS problems: expensive
- Doing expensive checks on every candidate defeats the purpose of pruning the space!

```
new-terms(A \rightarrow \sigma(A_1...A_n), d, bank):

if (d = 0 \land n = 0) yield \sigma

else forall \langle d_1,...,d_n \rangle in [0...d-1]^n s.t. max(d_1,...,d_n) = d-1:

forall \langle p_1,...,p_n \rangle in bank[A_1,d_1] \times ... \times bank[A_n,d_n]:

yield \sigma(p_1,...,p_n)
```

```
bottom-up (⟨Σ, N, R, S⟩, [i → o])
{ ... }

equiv(p, p') {
    return p([i]) = p'([i])
}

sort(x) x[0..0] x + x [0] find(x,0)
```

In PBE, all we care about is equivalence on the given inputs!

- easy to check efficiently
- even more programs are equivalent

```
sort(x + x)
x[0..find(x,0)]
```

$$x + (x + x) x + [0] sort(x) + x$$

 $[0] + x$ $x + sort(x)$

```
bottom-up (<Σ, N, R, S>, [i → o])
{ ... }

equiv(p, p') {
   return p([i]) = p'([i])
}

sort(x) x[0..0] x + x [0] find(x,0)

x[0..find(x,0)]
```

$$x + (x + x) x + [0] sort(x) + x$$
 $[0] + x$
 $x + sort(x)$

```
bottom-up (⟨Σ, N, R, S⟩, [i → o])
{ ... }

equiv(p, p') {
   return p([i]) = p'([i])
}

x[0..0] x + x
```

$$x + (x + x)$$

Proposed simultaneously in two papers:

- Udupa, Raghavan, Deshmukh, Mador-Haim, Martin, Alur: <u>TRANSIT:</u> specifying protocols with concolic snippets. PLDI'13
- Albarghouthi, Gulwani, Kincaid: Recursive Program Synthesis. CAV'13

Variations used in most bottom-up PBE tools:

- ESolver (baseline SyGuS enumerative solver)
- Lens [Phothilimthana et al. ASLPOS'16]
- EUSolver [Alur et al. TACAS'17]
- Probe [Barke et al. OOPSLA'20]

User-specified equations

[Smith, Albarghouthi: VMCAI'19]

$$x = 0$$
 $sort(x) = x[0..0] = x + x = [0] = find(x,0)$
 $sort(sort(x)) = rule 1 applies, not in normal form$

Built-in equivalences

For a predefined set of operations, equivalence reduction can be hard-coded in the tool or built into the grammar

```
L ::= sort(L)

L[N..N]

L + L

[N]

X

N ::= find(L,N)

0
```

Built-in equivalences

Used by:

- λ^2 [Feser et al.'15]
- Leon [Kneuss et al.'13]

Leon's implementation using attribute grammars described in:

• Koukoutos, Kneuss, Kuncak: An Update on Deductive Synthesis and Repair in the Leon tool [SYNT'16]

Equivalence reduction: comparison

Observational

- Very general, no user input required
- Finds more equivalences
- Can be costly (with many examples, large outputs)
- If new examples are added, has to restart the search

Term rewriting

- Fast
- Requires equations

Built-in

- Even faster
- Restricted to built-in operators
- Only certain symmetries can be eliminated by modifying the grammar
- Q1: Can any of them apply to top-down?
- Q2: Can any of them apply beyond PBE?

When can we discard a subprogram?

It's equivalent to something we have already explored

Equivalence reduction

No matter what we combine it with, it cannot fit the spec

Top-down propagation

Top-down search: reminder

```
generates a lot of non-ground terms
                          only discards ground terms
iter 0: L
iter 1: L[N..N]
                                                              L ::= L[N..N]
iter 2: L[N..N]
                                                             N ::= find(L,N)
iter 3: x[N..N]
                L[N..N][N..N]
                x[find(L,N)..N] L[N..N][N..N]
iter 4: x[0..N]
                                                             [[1,4,0,6] \rightarrow [1,4]]
iter 5: x[0..0] x[0.. find(L,N)] x[find(L,N)..N]
iter 6: x[0..find(L,N)] x[find(L,N)..N] ... ...
iter 7: x[0..find(x,N)] x[0..find(L[N..N],N)]
iter 8: x[0...find(x,0)] \propto x[0...find(x,find(L,N))]
iter 9:
```

Top-down propagation

Idea: once we pick the production, infer specs for subprograms

If $spec1 = \bot$, discard E1 @ E2 altogether!

For now: spec = examples

When is TDP possible?

Depends on @!

Works when the function is injective!

Q: when would we infer \bot ? A: If at least one of the outputs is []!

When is TDP possible?

Depends on @!

When is TDP possible?

Depends on @!

Something in between?

Works when the function is "sufficiently injective"

 output examples have a small pre-image

λ²: TDP for list combinators

[Feser, Chaudhuri, Dillig '15]

```
map f x
                     map (\y . y + 1) [1, -3, 1, 7] \rightarrow [2, -2, 2, 8]
filter f x
                     filter (\y . y > 0) [1, -3, 1, 7] \rightarrow [1, 1, 7]
fold f acc x fold (\y z . y + z) 0 [1, -3, 1, 7] \rightarrow 6
                     fold (\y z . y + z) \emptyset [] \rightarrow \emptyset
```

λ^2 : TDP for list combinators

λ^2 : TDP for list combinators

Condition abduction

Smart way to synthesize conditionals

Used in many tools (under different names):

- FlashFill [Gulwani '11]
- Escher [Albarghouthi et al. '13]
- Leon [Kneuss et al. '13]
- Synquid [Polikarpova et al. '13]
- EUSolver [Alur et al. '17]

In fact, an instance of TDP!

Condition abduction

Q: How does EUSolver decide how to split the inputs?

Q: How does EUSolver generate C?

How to make it scale

Prune

Discard useless subprograms

$$m * N^2$$

$$m * (N - 1)^2$$

Prioritize

Explore more promising candidates first

EUSolver

Q1: What does EUSolver use as behavioral constraints? Structural constraint? Search strategy?

- First-order formula
- Conditional expression grammar
- Bottom-up enumerative + pruning

Why do they need the specification to be pointwise?

- Example of a non-pointwise spec?
- How would it break the enumerative solver?

EUSolver

Q2: What are pruning/decomposition techniques EUSolver uses to speed up the search?

Condition abduction + special form of equivalence reduction

Why does EUSolver keep generating additional terms when all inputs are covered?

How is the EUSolver equivalence reduction differ from observational equivalence we saw in class?

 How do they overcome the problem that it's not robust to adding new points?

Can we discard a term that covers a subset of the points covered by another term?

EUSolver

Q3: What would be a naive alternative to decision tree learning for synthesizing branch conditions?

- Learn atomic predicates that precisely classify points
 - why is this worse?
 - is it as bad as ESolver?
- Next best thing is decision tree learning w/o heuristics
 - why is this worse?

EUSolver: strengths

Divide-and-conquer (aka condition abduction)

- scales better on conditional expressions
- but: they didn't invent it

Neat application of decision tree learning

• leverages the structure of Boolean expressions

EUSover: weaknesses

Only applies to conditional expressions

Does not always generate the smallest expression

• but eventually it's always as good as enumerative solver

Only works for pointwise specifications

• but so do ALL CEGIS-based approaches

Next week

Topics:

Prioritizing/biasing the search

Paper: Lee, Heo, Alur, Naik: <u>Accelerating Search-Based Program</u> Synthesis using Learned Probabilistic Models. PLDI'18

Review due Wednesday

Project:

- Proposals due in two weeks
- Talk to me about the topic