Application of Discrete Models

Adam Zlehovszky

October 23, 2023

1 Representation of Integers

1.1 Euclidean division

If $a, b \in \mathbb{Z}$ with $b \neq 0$ then $\exists !q, r \in \mathbb{Z}$ such that a = qb + r where $0 \leq r < |b|$. This is the *Euclidean division* or *long division* of the *dividend a* with the *divisor b*. The results of the division are the *quotient q* and the *remainder r*. The standard notation for the remainder is $a \mod b$. In algorithmic setting we use $q, r \leftarrow \operatorname{\mathbf{divmod}}(a, b)$.

1.2 Number systems

Let $1 < b \in \mathbb{Z}$ be the *base* of the *number system*. For each $0 \le n \in \mathbb{Z}$ there exists a unique $1 \le d \in \mathbb{Z}$ and a unique set of *digits* $0 \le n_1, n_2, \ldots, n_{d-1} < b$ all integers, such that

$$n = \sum_{k=0}^{d-1} n_k b^k.$$

If n = 0, then d = 1 and $n_0 = 0$. Otherwise $d = \lfloor \log_b n \rfloor + 1$ and we can extract the digits of n with long division, since

$$n = n_{d-1}b^{d-1} + \dots + n_2b^2 + n_1b + n_0$$

= $(n_{d-1}b^{d-2} + \dots + n_2b + n_1)b + n_0$

where the quotient $n_{d-1}b^{d-2} + \cdots + n_2b + n_1$ is a d-1 digit number and n_0 is the extracted digit.

We call n_0 the least significant digit and n_{d-1} the most significant digit. The storage order of digits is called little endian if we start at the least significant digits and move towards the most significant one. Otherwise it is called big endian.

1.3 Operations on Integers

1.3.1 Addition

Let us assume that we have two unsigned integers stored as digits in a number system with base b:

$$n^{(i)} = \sum_{k=0}^{d^{(i)}-1} n_k^{(i)} b^k,$$

for i=1,2. The following algorithm computes the digits of the sum $s=n^{(1)}+n^{(2)}=\sum_{k=0}^{d^{(s)}-1}s_kb^k$:

Algorithm 1 Standard addition

```
1: procedure StandardAddition(n^{(1)}, n^{(2)})
2: d^{(s)} \leftarrow \max(d^{(1)}, d^{(2)})
3: c \leftarrow 0
4: for k = 0, \dots, d^{(s)} - 1 do
5: c, s_k \leftarrow \mathbf{divmod}\left(n_k^{(1)} + n_k^{(2)} + c, b\right)
6: end for
7: return s
8: end procedure
```

In Algorithm 1 we assume that $n_k^{(i)} = 0$ if $k \ge d^{(i)}$ for i = 1, 2. The time complexity of the standard addition is $O(d^{(s)})$.

1.3.2 Multiplication

Let $n^{(i)}$'s defined same as above for i=1,2. We will compute the digits of the product $p=n^{(1)}\cdot n^{(2)}=\sum_{k=0}^{d^{(p)}-1}p_kb^k$ with the naive multiplication method: The time-complexity of Algorithm 2 is $O(d^{(1)}\cdot d^{(2)})=O(d^2)$, where d=1

The time-complexity of Algorithm 2 is $O(d^{(1)} \cdot d^{(2)}) = O(d^2)$, where $d = \max(d^{(1)}, d^{(2)})$.

Karatsuba's idea for faster multiplication can be demonstrated on two-digit numbers. Let

$$x = x_1b + x_0$$
, and $y = y_1b + y_0$

with $0 \le x_i, y_i < b$ integers. Naive multiplication of x and y is

$$z = xy = (x_1b + x_0) (y_1b + y_0)$$

= $x_1y_1b^2 + (x_1y_0 + x_0y_1) b + x_0y_0$
= $z_1b^2 + z_1b + z_0$.

This is 4 multiplication and 1 addition.

Algorithm 2 Naive multiplication

```
1: procedure NAIVEMULTIPLICATION(n^{(1)}, n^{(2)})
          d^{(p)} \leftarrow d^{(1)} + d^{(2)}
 2:
          for k = 0, ..., d^{(p)} - 1 do
 3:
              p_k \leftarrow 0
 4:
          end for
 5:
         for j = 0, \dots, d^{(2)} - 1 do
 6:
              c \leftarrow 0
 7:
              for i = 0, \dots, d^{(1)} - 1 do
 8:
                   c, p_{i+j} \leftarrow \mathbf{divmod} \left( p_{i+j} + n_i^{(1)} n_j^{(2)} + c, b \right)
 9:
10:
              p_{d^{(1)}+j} \leftarrow c
11:
          end for
12:
          return p
13:
14: end procedure
```

Now we can express

$$z_1 = x_1 y_0 + x_0 y_1$$

$$= x_1 y_0 + x_0 y_1 - x_1 y_1 + x_1 y_1 - x_0 y_0 + x_0 y_0$$

$$= (x_1 + x_0) y_1 + (x_1 + x_0) y_0 - x_1 y_1 - x_0 y_0$$

$$= (x_1 + x_0) (y_1 + y_0) - x_1 y_1 - x_0 y_0$$

$$= (x_1 + x_0) (y_1 + y_0) - z_2 - z_0.$$

This is 3 multiplication and 3 additions. By extending this idea to more than two digits recursively, the multiplication algorithm performs $O(d^{\log_2 3}) \approx O(d^{1.58})$ single-digit multiplication.

Fast Fourier Transform based algorithms can achieve $O(d \log d)$ complexity.

1.4 Exponentiation

We want to compute x^n for some $1 \leq n \in \mathbb{Z}$ and x that has multiplication as an operation.

Naive exponentiation By repeated multiplication, we can compute

$$x^n = \underbrace{x \cdot x \cdot \cdots x}_{n \text{ times}}.$$

This method requires n-1 multiplications.

Repeated squaring If $n = 2^s$ for $0 < s \in \mathbb{Z}$, then

$$x^{(2^s)} = (x^2)^{(2^{s-1})}$$
.

This way we can compute x^n with $\log_2 n = s$ multiplications with the algorithm below:

Algorithm 3 Repeated squaring

```
1: procedure Repeated Squaring (x, s)

2: y \leftarrow x

3: for k = 0, \dots, s - 1 do

4: y \leftarrow y^2

5: end for

6: return y

7: end procedure
```

Fast exponentiation If we write $n = \sum_{k=0}^{d-1} n_k 2^k$ in binary, then

$$x^{n} = x^{\left(\sum_{k=0}^{d-1} n_{k} 2^{k}\right)}$$

$$= \prod_{k=0}^{d-1} x^{\left(n_{k} 2^{k}\right)}$$

$$= \prod_{k=0}^{d-1} x^{\left(2^{k}\right)^{n_{k}}}.$$

Since $y^{n_k} = y$ if $n_k = 1$ and y = 1 otherwise, we arrive at the following algorithm:

Algorithm 4 Fast exponentiation

```
1: procedure FASTEXP(x, n)
 2:
        y \leftarrow 1
 3:
         z \leftarrow x
         while n > 0 do
 4:
             n, r \leftarrow \mathbf{divmod}(n, 2)
 5:
             if r = 1 then
 6:
 7:
                 y \leftarrow y \cdot z
             end if
 8:
             z \leftarrow z^2
 9:
         end while
10:
         return y
11:
12: end procedure
```

This algorithm requires $O(\log_2 n)$ multiplication.