Emission Sources Mapping and Preparation of Local Action Plan around Air Pollution Hotspot

Sirifort Area, Delhi

Introduction

Rising air pollution in Indian cities is a grave concern from last few years and seeking efficient and effective air quality management planning to obtain acceptable air quality. However, the success of any Air Quality Management Planning (AQMP) depends upon the integration and linkage between its key components that are policy objectives, monitoring network, emission inventory, source apportionment, air quality modelling, health exposure assessment, control strategies, and public participation. The selection of control is the key for success of management plan; however, it is very challenging to select the effective control options in Indian cities considering the high spatio-temporal variations in pollution level. This high variation leads to formation of air pollution hotspot in certain areas in the city, which needs specially efforts to bring down the pollution level first on city average then to bring it below specified standards. This complexity needs a thorough understanding the air pollution level around the air pollution hotspot and mapping of sources properly which leads to selection of appropriate control option.

Graphs and Tables:

Fig. 3.1: Study Map showing locations of Fixed EPS Air Quality Monitors

Fig.3.6: Time series plot of daily average pollutant concentration

Fig.3.7: Boxplot and whiskers for the different Parameters and Pollutants

Fig.3.8: Histogram of various Fixed monitors showing frequency of $PM_{2.5}$ concentration.

Fig.3.9: Histogram of various Fixed monitors showing frequency of NO_2 concentration.

Fig. 3.10: Diurnal plot of PM_{2.5} concentrations for Weekdays and Weekends during January-February 2023

Fig. 3.11: Diurnal plot of NO₂ concentrations for Weekdays and Weekends during January-February 2023

Fig.3.12: Spatial distribution of $PM_{2.5}$, NO_2 , Temperature, and Humidity during monitoring.

Fig.3.15: Windrose diagram for the study period

Fig 3.16: Polar plot of PM_{2.5} concentrations showing dominant wind sector (Speed & direction) responsible for air pollution level, prepared using OpenAir tool

Fig 3.17: Polar plot of NO₂ concentrations showing dominant wind sector (Speed & direction) responsible for air pollution level, prepared using OpenAir tool

Fig. 4.3: Grid-wise Land-Utilization map depicting different major activity levels in the study area

Fig. 4.4: Vehicles fleet composition at 15 road locations in Siri-fort Study area

Fig. 4.5: Diurnal profile of vehicles at 15 monitored locations in Siri-fort Study area

Fig 4.13: Source's contribution in overall all emission load of PM_{2.5} and NO₂

Fig. 4.14: Grid-wise source contribution in overall Emission load of PM_{2.5}

Fig. 4.15: Grid-wise source contribution in overall Emission load of NO₂

Fig. 4.16: Overall Emission map of different pollutant from different sources

Table 5.3: Description of the Control options in 10 scenarios

Scenario	Scenario Description
Base	Present Scenarios
S1	Replacement of Diesel Cars with CNG cars: It is proposed to replace all Diesel cars
	with CNG cars in the study area. Out of total cars, the diesel cars were 22% which
	replaced with CNG cars and proportion of CNG cars increased from 9% to 30%. This
	can be possible by declaring low emission zone for cars.
S2	Replacement of Diesel Cars with Electric Vehicles (EV) cars: Diesel cars were
	substituted with Electric cars. The electric cars usages increased to 24% of total cars.
	This can be possible by declaring the study area as zero emission zone for car.
S3	Reduce Diesel (100%), Petrol (50%) & Motor Bike (50%) to Electric Vehicles:
	Diesel car (22%), Petrol car (67%), Electric car (3%) and 9% CNG cars were present
	in base scenarios. Now after this scenario, the new fuel composition in traffic would be
	75% Petrol cars, 0% diesel car, 6% electric cars and 20% CNG cars, along with 50%
1	petrol and 50% electric bikes.
S4	Reduce Vehicles count to 90%: A total of 1,243,169 vehicles in a day were
	estimated on all major and minor roads. After reducing 90% of the total vehicles, the
	remaining vehicle counts on different roads would be 124317 in a day.
S5	Road dust cleaning through mechanical road sweeper (silt load reduction by
	80%): For the major roads, the silt load was initially 1.6 g/m², 0.9 g/m², 0.7 g/m², and
	1.1 g/m² which further reduced to 80%. The revised silt load will be 0.32 g/m², 0.18
	g/m², 0.14 g/m² and 0.22 g/m², respectively.
S6	Replacement of LPG based stove/tandoors with Induction based stove/tandoors
	in Hotel and Eateries: In the study area, total 852 numbers of Hotels, Restaurants
	and open eateries are being operated. Out of which 221 were Hotel & Restaurants and
	498 were Open eateries and 133 Dhaba's. Approx. 84 numbers of Hotels and Eateries
	were operating LPG stove/tandoors. Most of the open eateries uses LPG as fuels. It is
	proposed to shift LPG base stove/tandoor with induction-based stove/tandoor in all
	open eateries and Restaurants.
S7	Hotel and Eateries: Zero Emission from Hotel and Eateries
	Emission from all types of fuel used should be taken as Zero.
S8	Restriction of Open Solid Biomass burning: During winter season in Delhi, open
	biomass burning is a common practice for heating purposes. Most of the families in
	road side shelter burns the biomass. The security guards also use to burn on wood for
	heating purposes. During the field survey, the small scale burning observed by the
	study team. It is proposed to strict ban on this type of open biomass burning in the
	study area. The open burning can be stopped by spreading the awareness, strict
	monitoring and by supplying electric heaters to security guards and road side shelters
	resident.

S9	Replace Crematoria with electric crematoria (fuel emission = 0, body emission
	as per previous one): It is proposed to ban the use of wood in the crematoria and
	replace with electric crematoria.
S10	Reduce emission from Construction activities by 70% by applying best practices
	at construction sites.

Fig. 5.5: Reduction in Pollutant concentration due to implementation of different Scenarios w.r.t Base