

CS 383/613 – Machine Learning

Logistic Regression

Slides adapted from material created by E. Alpaydin Prof. Mordohai, Prof. Greenstadt, Pattern Classification (2nd Ed.), Pattern Recognition and Machine Learning

Objectives

• Logistic Regression

- Logistic Regression is a terrible name!
 - It's not regression at all!
 - It's classification
- But it is extremely similar to linear regression
 - Hence it's name!

• With logistic regression we assume **binary classification**, and want to provide a probability for one of the classes (often referred to as the *positive* class, with y=1):

$$0 \le P(y = 1 | \mathbf{x}) \le 1$$

• For logistic regression, we compute this value P(y=1|x) as:

$$P(y = 1|x) = g(x) = \frac{1}{1 + e^{-(xw+b)}}$$

- Where:
 - w is a (column) vector of weights, one per feature of x
 - b is a bias weight

$$P(y = 1|x) = g(x) = \frac{1}{1 + e^{-(xw+b)}}$$

Note the similarity to *linear* regression:

$$g(\mathbf{x}) = \mathbf{x}\mathbf{w} + b$$

- So, just like with linear regression we can roll the bias weight into the weight vector by adding a bias feature to x!
- If we do this, we have:

$$g(x) = \frac{1}{1 + e^{-xw}}$$

$$P(y = 1|\mathbf{x}) = g(\mathbf{x}) = \frac{1}{1 + e^{-x\mathbf{w}}}$$

- The function $g(z) = \frac{1}{1+e^{-z}}$ is called the *sigmoid* or *logistic* function (or logistic sigmoid)
 - Tends to 0 as z decreases
 - Tends to 1 as z increases
- In addition to resulting in values that can be interpreted as probabilities, it has the nice characteristic in that it's differentiable!

If we consider

•
$$P(y = 1|x) = g(x) = \frac{1}{1 + e^{-xw}}$$

- Then we can compute the probability of being from the other class as:
 - P(y = 0 | x) = 1 g(x)
- Ultimately, we want to find the weights w to minimize the classification error
 - Or conversely, to find the weights maximize the correct class likelihood

Fit Weights Based on Maximum Likelihood

- Given a supervised observation (x, y), we'll let \hat{y} be our prediction that y = 1
 - Which again, for logistic regression is computed as $\hat{y} = \frac{1}{1 + e^{-xw}}$
- We can then compute the **likelihood** that we are correct as $J = \ell(y|\mathbf{x}) = (\hat{y})^y (1-\hat{y})^{(1-y)}$
- So, what do we do with this likelihood J?
 - We want to maximize it!
- The process of finding the weights to maximize the likelihood is called....maximum likelihood estimate (MLE)

Log Likelihood

$$J = \ell(y|x) = (\hat{y})^y (1 - \hat{y})^{(1-y)}$$

- To find the optimal weights we're going to use calculus.
 - Remember the nice property that the logistic sigmoid function is differentiable!
- But instead of taking the derivative of the likelihood (which deals with products and exponents), we can instead look to maximize the log of the likelihood!
- From the properties of logarithms
 - $\log_b(mn) = \log_b(m) + \log_b(n)$
 - $\log_b(m^n) = n \cdot \log_b(m)$
- So, applying the log to $J = \hat{y}^y (1 \hat{y})^{(1-y)}$ we get: $J = y \ln(\hat{y}) + (1-y) \ln(1-\hat{y})$

Log Loss

$$J = y \ln(\hat{y}) + (1 - y) \ln(1 - \hat{y})$$

• It is more common to minimize the negation of this, which is referred to as the *log loss:*

$$J = -(y \ln(\hat{y}) + (1 - y) \ln(1 - \hat{y}))$$

- So, how do we use calculus to find the weights the minimize this?
- Recall that in general, when attempting to use calculus to find the weights to minimize (or maximize) and objective function, we'll use two approaches:
 - Direct
 - Iterative

Log Loss

$$J = -(y \ln(\hat{y}) + (1 - y) \ln(1 - \hat{y}))$$

- For this particular objective, function is there a direct solution?
 - No 🕾
- So, we'll have to use the iterative approach!
- So lets compute the gradients $\frac{\partial J}{\partial w_j}$!

Gradients for Log Loss

$$J = -(y \ln(\hat{y}) + (1 - y) \ln(1 - \hat{y}))$$

• Since our objective function includes logs, recall how to take a derivative of a log:

$$\frac{\partial}{\partial x}(\ln x) = \frac{1}{x} \cdot \frac{\partial}{\partial x}(x)$$

Therefore

$$\frac{\partial J}{\partial w_j} = -\left(\frac{y}{\hat{y}}\frac{\partial}{\partial w_j}(\hat{y}) + \frac{1-y}{1-\hat{y}}\frac{\partial}{\partial w_j}(1-\hat{y})\right) = \frac{1-y}{1-\hat{y}}\frac{\partial}{\partial w_j}(\hat{y}) - \frac{y}{\hat{y}}\frac{\partial}{\partial w_j}(\hat{y})$$

• But what is $\frac{\partial}{\partial w_j} \hat{y}$ when $\hat{y} = g(x)$ is the logistic sigmoid function?

Gradients for Log Loss

$$\hat{y} = g(x) = \frac{1}{1 + e^{-xw}}$$

•
$$\frac{\partial \hat{y}}{\partial w_j} = \frac{\partial}{\partial w_j} g(\mathbf{x}) = \frac{\partial}{\partial w_j} \left(\frac{1}{1 + e^{-xw}} \right) = \frac{\partial}{\partial w_j} (1 + e^{-xw})^{-1}$$

• =
$$-1(0 - e^{-xw}x_j)(1 + e^{-xw})^{-2} = \frac{e^{-xw}}{(1 + e^{-xw})^2}x_j$$

$$\bullet = \frac{1}{1+e^{-xw}} \frac{e^{-xw}}{1+e^{-xw}} x_j$$

•
$$= g(\mathbf{x})(1 - g(\mathbf{x}))x_j = \hat{y}(1 - \hat{y})x_j$$

Gradients for Log Loss

$$\frac{\partial J}{\partial w_i} = \frac{\partial}{\partial w_i} \left(-(y \ln(\widehat{y}) + (1 - y) \ln(1 - \widehat{y})) \right)$$

From the previous slide we have

$$\frac{\partial \hat{y}}{\partial w_j} = \frac{\partial}{\partial w_j} g(\mathbf{x}) = \hat{y}(1 - \hat{y})x_j$$

And from earlier

$$\frac{\partial J}{\partial w_j} = \frac{1 - y}{1 - \hat{y}} \frac{\partial}{\partial w_j} (\hat{y}) - \frac{y}{\hat{y}} \frac{\partial}{\partial w_j} (\hat{y})$$

Putting it all together (and simplifying) we get:

$$\frac{\partial J}{\partial w_j} = (\hat{y} - y)x_j$$

Leveraging Linear Algebra

$$\frac{\partial J}{\partial w_j} = (\hat{y} - y)x_j$$

- We can ones again leverage linear algebra to compute a vector of the gradients and do batching!
- Vector of the gradients for a single observation:

$$\frac{\partial J}{\partial \boldsymbol{w}} = \boldsymbol{x}^T (\hat{y} - y)$$

Batching:

$$\frac{\partial J}{\partial \mathbf{w}} = \frac{1}{N} X^T (\hat{Y} - Y)$$

Numeric Stability

- In ML, there's (at least) two places where *numeric stability* can come into account:
 - 1. Divide by zero
 - $2. \quad Log(0)$
- If at any point one of these are possible, it's common to add in a *numeric stability* constant to the area where this might happen (denominator or log).
- This is typically a small number like $\epsilon = 10^{-7}$
- With logistic regression, since $0 \le \hat{y} \le 1$, we see this possibility when we compute

$$J = -(y \ln(\widehat{y}) + (1 - y) \ln(1 - \widehat{y}))$$

So, let's compute this more safely as:

$$J = -(y \ln(\hat{y} + \epsilon) + (1 - y) \ln(1 - \hat{y} + \epsilon))$$

Logistic Regression Example

 Let's classifying whether a person will buy a product or not

	Y	X-Variables							
							(Omit-	Prev	Prev
Obs.			Is	Is	Has	Is Pro-	ted Vari-	Child	Parent
No.	Buy	Income	Female	Married	College	fessional	ables)	Mag	Mag
1	0	24000	1	0	1	1		0	0
2	1	75000	1	1	1	1		1	0
3	0	46000	1	1	0	0		0	0
4	1	70000	0	1	0	1		1	0
5	0	43000	1	0	0	0		0	1
6	0	24000	1	1	0	0		0	0
7	0	26000	1	1	1	0		0	0
8	0	38000	1	1	0	0		0	0
9	0	39000	1	0	1	1		0	0
10	0	49000	0	1	0	0		0	0
								-	
-								-	-
654	0	10000	1	0	0	0		0	0
655	1	75000	0	1	0	1		0	0
656	0	72000	0	0	1	0		0	0
657	0	33000	0	0	0	0		0	0
658	0	58000	0	1	1	1		0	0
659	1	49000	1	1	0	0		0	0
660	0	27000	1	1	0	0		0	0
661	0	4000	1	0	0	0		0	0
662	0	40000	1	0	1	1		0	0
663	0	75000	1	1	1	0		0	0
664	0	27000	1	0	0	0		0	0
665	0	22000	0	0	0	1		0	0
666	0	8000	1	1	0	0		0	0
667	1	75000	1	1	1	0		0	0
668	0	21000	0	1	0	0		0	0
669	0	27000	1	0	0	0		0	0
670	0	3000	1	0	0	0		0	0
671	1	75000	1	1	0	1		0	0
672	1	51000	1	1	0	1		0	0
673	0	11000	0	1	0	0		0	0

Logistic Regression Example

- Make some design decisions:
 - Randomize data
 - Use 2/3 training, 1/3 validation
 - Z-score features using training data
 - Add a bias feature.
 - Initialize weights to random values in the range $\pm 10^{-4}$
 - Learning rate of $\eta = 0.1$
 - Since our equation is based on log loss, let's terminate when change in mean of log loss doesn't change more than 2^{-32} or 10,000 epochs have run
 - Recall the log loss of an example being correct is

$$-(y\ln(\hat{y}+\epsilon)+(1-y)\ln(1-\hat{y}+\epsilon))$$

Let's do full batch learning

Example_{0.7}

w =4.7168 0.7976 0.5490 0.0849 -0.3296 -0.4418 -0.0377 0.1836 -0.0246 0.6571 0.3369 0.0472 0.8088 1.0618 0.1782 0.1871 -6.4500

Example

• Choosing Class 1 if $P(y = 1 | x) \ge 0.5$ we get:

Class Priors

$$P(y = 0) = 0.831$$

$$P(y = 1) = 0.169$$

Metric	Training Set	Validation Set	P(y
Precision	0.865	0.776	
Recall	0.842	0.776	
F-Measure	0.853	0.776	
Accuracy	0.951	0.902	

Dealing with Overfitting

- Since logistic regression is similar to the gradient based approach of linear regression, it's techniques for dealing with overfitting are similar.
- General approaches:
 - Try to get more data for training to generalize better
 - Or get more data for training via cross-validation.
 - Don't use all the features.
- Algorithm-specific approaches:
 - Use validation set to determine number of training epochs (perhaps stopping early).
 - Do *stochastic* gradient learning where each epoch uses a randomly selected subset (batch) from the training data.
 - Add some noise to our training, changing it each time.
 - Or we could add a regularization term to our objective function to penalize complexity.