18. MOTOR ELÉTRICO MONOFÁSICO

Também chamado de motor de indução monofásico, é uma máquina de corrente alternada capaz de acionar máquinas em geral e bombas d'água a partir de uma rede elétrica monofásica. É composto, principalmente de um estator com um enrolamento principal ou de trabalho e um enrolamento auxiliar de partida; um rotor do tipo gaiola de esquilo, com eixo e rolamentos que se encaixam nos mancais das tampas. Um sistema de partida ou de arranque que é composto de mecanismo centrífugo, interruptor e capacitor que agem sobre o enrolamento auxiliar. Em algumas aplicações dos motores monofásicos, estes partem sem carga, e dependendo de sua fabricação pode ser dispensado o capacitor, cuja função é aumentar o torque de partida. Como exemplos temos os ventiladores e esmerilhadoras. As várias partes são montadas e ajustadas por quatro parafusos longos que prendem as tampas.

Normalmente, o motor é acionado através de chaves, que podem ser de partida direta ou com reversão de giro. A chave de reversão manual permite ao motor monofásico girar em dois sentidos, horário e anti-horário, proporcionando o movimento da máquina ou de seus componentes para cima ou para baixo, para frente ou para o lado esquerdo ou direito, atendendo as necessidades do trabalho.

das por quatro parafu-	
_	
68	
<u></u> €	
9)	
7	
o atravás do abayos	
o através de chaves,	
m reversão de giro. A	
notor monofásico girar	
rio, proporcionando o	
mponentes para cima	
o esquerdo ou direito,	
0.	
129——— SENAI-PR	
OFIAULI IX	

.....

.....

.....

.....

.....

.....

.....

.....

.....

18.1. COMO FUNCIONA O MOTOR MONOFÁSICO

Os motores monofásicos de fase auxiliar podem ser de dois tipos: motores de partida sem capacitor e com capacitor.

Nos motores de partida sem capacitor, durante a partida o enrolamento auxiliar fica ligado diretamente em paralelo com o enrolamento principal. Quando o motor atinge certa velocidade, cerca de 75% da velocidade normal, um interruptor automático desliga o enrolamento auxiliar, passando o motor a funcionar apenas com o enrolamento principal.

Os motores de partida com capacitor têm funcionamento igual ao acima descrito, tendo apenas ligado em série com o enrolamento auxiliar um capacitor.

130	
SENAI-PR	

A velocidade dos motores monofásicos depende do nú-	
mero de pólos e da freqüência da rede de alimentação.	
Os motores monofásicos de fase auxiliar são	
normalmenteencontrados com 2,4 e 6 pólos, para as freqüên-	
cias de 50 a 60 Hz.	
Os motores monofásicos de fase auxiliar dotados de	
capacitor possuem um torque (arranque) mais vigoroso. Nor-	
malmente, o capacitor é usado em motores que partem com	
carga considerável.	
Podem-se encontrar motores de fase auxiliar com dois,	
quatro ou seis terminais de saída, que podem combinar-se	
para várias tensões de rede e para inversão da rotação por	
meio de chave reversora.	
Quando o motor monofásico está parado, as molas fa-	
zem com que as massas centrífugas empurrem o carretel so-	
bre os contatos, fechando o circuito do bobinado de arran-	
que.	
O motor está assim em condições de arrancar. Quando	
o motor alcançar aproximadamente 75% de sua velocidade	
de funcionamento a força centrífuga desloca as massas, ar-	
rastando o carretel e abrindo os contatos que desligam o	
bobinado de arranque. A partir daí o motor passa a funcionar	
somente com o bobinado principal. Ao desligar o motor o dis-	
positivo age de forma inversa, deixando o motor em condi-	
ções de um novo arranque.	
in it	
Apror o relocidode	
Refor peredo obertos obertos	
1	
l .	

18.2. CHAVE BIPOLAR DE REVERSÃO MANUAL

É um dispositivo de manobra para motores monofásicos de fase auxiliar, que reverte a rotação nos dois sentidos (horário e anti-horário). É composta de uma alavanca que possui uma haste metálica cilíndrica com rosca nas extremidades e peça esférica de baquelite ou ebonite enroscada numa de suas extremidades. Eixo metálico forrado com material isolante; dois (2) contatos metálicos móveis em forma de L, seis (6) contatos metálicos fixos; caixa metálica; barra de material isolante de ebonite ou fenolite e tampa metálica dotada de furos para fixação à caixa.

18.3. COMO FUNCIONA A CHAVE BIPOLAR DE REVERSÃO MANUAL

As chaves de reversão manual são utilizadas em motores monofásicos de fase auxiliar e são encontradas no comércio em vários modelos de diferentes fabricantes. No entanto, o importante é selecionar uma chave que atenda as características do motor (potência), proporcionando segurança de operação e que tenha três posições.

Com a alavanca à esquerda, o eixo do motor gira numa determinada direção; com a alavanca ao centro, o motor não se move e com a alavanca à direita, o eixo gira em direção aposta.

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

Vejamos os diagramas a seguir: trata-se de um motor de fase auxiliar com seis terminais, ligado com chave de reversão em 110 V. Ilustração 1 - A chave está à esquerda, portanto, o motor deverá girar no sentido anti-horário. Ilustração 2 - A chave está à direita, portanto, o motor deverá girar no sentido horário. Para a inversão do sentido de rotação do motor monofásico em rede de 200 V as ligações à chave serão as seguintes: Vamos agora estudar os diagramas unifilar e multifilar da instalação do motor monofásico com chave de reversão.

MULTIFILAR		UNIFILAR	
USU∆L	THEA	USUAL	ABNI
100			
	(しん)	93	110

18.4. DIAGRAMA UNIFILAR

O diagrama unifilar é representado em elevação, pois dá uma visualização real do traçado do percurso e localização das peças. Por isso, é muito utilizado nas instalações de motores. Abaixo, temos um diagrama deste tipo, cujas representações gráficas são as seguintes: motor (1); voltas (2); chave de reversão (3); fusíveis (4); chave de proteção (5); caixa de passagem (6); rede (7) e condutores.

19.5. DIAGRAMA MULTIFILAR

A rede (fase e neutro) está ligada à chave de proteção; dois condutores interligam a chave de operação (lado dos fusíveis) à chave de reversão, sendo esta interligada ao motor por quatro condutores. Ao fazer as conexões dos condutores, siga rigorosamente o diagrama, pois a troca de posição de um simples condutor trará sérias conseqüências, até mesmo a queima do motor.

