Resumo Um Curso de Álgebra Linear-Edusp-2013 Flávio Ulhoa Coelho Mary Lilian Lourenço

Gino Chen Hsiang-Jan

11 de Julho de 2016

Contents

T	Preliminares				
	1.1	Números			
		1.1.1 Números Naturais, Inteiros, Racionais e Reais	5		
		1.1.2 Números Complexos	5		
		1.1.3 Teorema Fundamental da Álgebra	5		
	1.2	Corpos	6		
	1.3	Resolução de Sistemas Lineares			
	1.4	Matrizes			
	1.4	Manizes	U		
2	Esp	paços Vetoriais	9		
	2.1	Espaços Vetoriais	9		
	2.2	Base	9		
	2.3	Subespaços			
	$\frac{2.0}{2.4}$	Método Prático de Complemento de Base			
	$\frac{2.4}{2.5}$	-			
	_	Somas Diretas			
	2.6	Espaço Quociente			
	2.7	Apêndice	11		
3	Tra	nsformações Lineares	13		
	3.1	Conceitos Básicos			
	3.2	O Núcleo e a Imagem de uma Transformação Linear			
	3.3	Isomorfismo			
	3.4	Matrizes de Transformações			
	3.5	O Espaço $\mathscr{L}(U,V)$	10		
4	Funcionais Lineares 1'				
	4.1	Espaço Dual	17		
	4.2	Espaço Bidual			
	4.3	Hiperplanos			
	4.4	Anuladores			
	4.5	Transpostas de Transformações			
5	For	mas Canônicas	19		
	5.1	Operadores Diagonalizáveis			
	5.2	Subespaços T-Invariantes	20		
	5.3	Polinômios Minimais de Operadores e O Teorema de Cayley-Hamilton	20		
	5.4	Espaços Vetoriais T-Cíclicos	20		
	5.5	Operadores Nilpotentes	21		
	5.6	Formas de Jordan	21		
	_				
6	_	paços com Produto Interno	23		
	6.1	Produto Interno	23		
	6.2	Ortogonalidade	24		
		6.2.1 Processo de Ortogonalização Gram-Schmidt	24		
		6.2.2 Decomposição QR - Gram-Schmidt	24		
	6.3	Subespaço Ortogonal	25		
	6.4	A Melhor Aproximação	25		
	6.5	Transformações que Preservam o Produto Interno			

7 Adjuntos		27
	7.1 Funcionais Lineares e Adjuntos	27
	7.2 Autoadjuntos	27
	7.3 Operadores Unitários	28
	7.4 Operadores Normais	28
8	Formas Bilineares	

Preliminares

1.1 Números

1.1.1 Números Naturais, Inteiros, Racionais e Reais

Números Naturais $\mathbb{N} = \{1, 2, 3, \dots\}, \mathbb{N}_0 = \{0, 1, 2, 3, \dots\}$

Números Inteiros $\mathbb{Z} = \{\ldots, -3, 1, 0, 1, 2, 3, \ldots\}, \mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$

Números Racionais $\mathbb{Q}=\{\frac{p}{q}:p,q\in\mathbb{Z}\text{ e }q\neq 0\},\,\mathbb{Q}^*=\mathbb{Q}\setminus\{0\}$

Números Reais Denotado por \mathbb{R} , $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$

1.1.2 Números Complexos

$$\mathbb{C} = \{ a + b\mathbf{i} : a, b \in \mathbb{R} \text{ e } \mathbf{i}^2 = -1 \}$$

Considere $z=a+b{\rm i}, w=c+d{\rm i}\in\mathbb{C}.$ Definimos a soma como:

$$z + w = (a+c) + (b+d)i$$

Definimos o produto como:

$$z.w = (ac - bc) + (bc + ad)i$$

Número complexo usando coordenadas polares, em \mathbb{R}^2 :

Seja r = |z| temos:

 $a = r \cos \theta$

 $b = r \operatorname{sen} \theta$

 $\overline{z} := a - bi$

 $z = r e^{\theta i}$

 $\overline{z} = r e^{-\theta i}$

1.1.3 Teorema Fundamental da Álgebra

Teorema 1.1.1. Todo polinômio com coeficientes em \mathbb{C} possui raízes complexas.

Definição 1.1.2. Um conjunto que satisfaz a propriedade do teorema acima é chamado de algebricamente fechado.

Observação 1.1.3. O conjunto $\mathbb C$ é algebricamente fechado e $\mathbb Q$, nR não são. Ou seja, existem polinômio em $\mathbb Q$ e nR que não possuem raízes nestes conjuntos.

1.2 Corpos

Definição 1.2.1. Um conjunto não vazio K é um corpo se em K pudermos definir duas operações, denotadas por +(adição) e . (multiplicação). satisfazendo as seguintes propriedades:

propriedade comutativa (A1) $a + b = b + a, \forall a, b \in K$

propriedade associativa (A2) $a + (b + c) = (a + b) + c, \forall a, b, c \in K$

elemento neutro da soma (A3) Existe um elemento em K, denotado por 0 e chamado de elemento neutro da adição, que satisfaz $0 + a = a + 0 = a, \forall a \in K$

inserso aditivo (A4) Para cada $a \in K$, existe um número em K, denotado por -a e chamado de oposto de a (ou inverso aditivo de a) tal que a + (-a) = 0

propriedade comutativa (M1) $a.b = b.a, \forall a, b \in K$ (propriedade comutativa)

propriedade associativa (M2) $a.(b.c) = (a.b).c, \forall a, b, c \in K$ (propriedade associativa)

elemento neutro da multiplicação (M3) Existe um elemento em K, denotado por 1 e chamado de elemento neutro da multiplicação, tal que $1.a = a.1 = a, \forall a \in K$

inverso multiplicativo (M4) Para cada elemento não nulo $a \in K$, existe um elemento em K, denotado por a^{-1} e chamando de inverso multiplicativo de a, tal que $a.a^{-1} = a^{-1}.a = 1$.

1.3 Resolução de Sistemas Lineares

Definição 1.3.1. Dizemos que dois sistemas de equações a n incógnitas são equivalentes se tiverem as menas soluções.

Definição 1.3.2. Um Sistema linear

$$\begin{cases} b_{11}x_1 & +\dots + & b_{1n}x_n & = 0 \\ \vdots & \vdots & \vdots & \vdots \\ b_{r1}x_1 & +\dots + & b_{rn}x_n & = 0 \end{cases}$$

será chamado de escalonado se existirem $1 \le l_1 < l_2 < \cdots < l_r \le n$ tais que $b_{il_i} \ne 0$, para cada $i = 1, \ldots, r$ e $b_{ij} = 0$ se $1 \le j < l_i$.

Proposição 1.3.3. Todo sistema linear com m equações e com coeficientes em um corpo \acute{e} equivalente a um sistema escalonado com $r \le m$ equações.

Proposição 1.3.4. Se o número de equações em um sistema linear homogêneo com coeficientes em um corpo for menor do que o número de suas incógnitas, então tal sistema terá uma solução não trivial.

1.4 Matrizes

Definição 1.4.1. Sejam m, n dois inteiros positivos. Uma matriz m por n A sobre K \acute{e} dada por $m \times n$ valores $a_{ij} \in K$, com $1 \le i \le m$, $1 \le j \le n$ agrupados em m linhas e n colunas e será representado como:

$$A = (a_{ij})_{i,j} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix}$$

Definição 1.4.2. O conjunto de todas as matrizes $m \times n$ sobre K é denotado por: $\mathcal{M}_{m \times n}(K)$

Definição 1.4.3. O conjunto de todas as matrizes quadradas $n \times n$ sobre K é denotado por: $\mathcal{M}_n(\mathsf{K})$

Definição 1.4.4 (Soma de Matrizes). Se $A = (a_{ij})_{i,j}$, $B = (b_{ij})_{i,j} \in \mathscr{M}_{m \times n}(\mathsf{K})$, então a soma A + B é a matriz $C = (c_{ij})_{i,j} \in \mathscr{M}_{m \times n}(\mathsf{K})$, tal que, para cada par (i,j), temos $c_{ij} = a_{ij} + b_{ij}$, isto é:

$$A + B = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & b_{13} & \dots & b_{1n} \\ b_{21} & b_{22} & b_{23} & \dots & b_{2n} \\ b_{31} & b_{32} & b_{33} & \dots & b_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & b_{m3} & \dots & b_{mn} \end{pmatrix} =$$

1.4. MATRIZES 7

$$= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} & \dots & a_{2n} + b_{2n} \\ a_{31} + b_{31} & a_{32} + b_{32} & a_{33} + b_{33} & \dots & a_{3n} + b_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & a_{m3} + b_{m3} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

Definição 1.4.5 (Multiplicação por escalar). Se $A = (a_{ij})_{i,j} \in \mathscr{M}_{m \times n}(\mathsf{K})$ e $\lambda \in \mathsf{K}$, então o produto de λ por A é a matriz $B = (b_{ij})_{i,j} \in \mathscr{M}_{m \times n}(\mathsf{K})$, tal que, para cada par (i,j), temos $b_{ij} = \lambda a_{ij}$, isto é:

$$\lambda A = \lambda \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix} = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \lambda a_{13} & \dots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \lambda a_{23} & \dots & \lambda a_{2n} \\ \lambda a_{31} & \lambda a_{32} & \lambda a_{33} & \dots & \lambda a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \lambda a_{m3} & \dots & \lambda a_{mn} \end{pmatrix}$$

Definição 1.4.6 (Produto de Matrizes). Sejam $A = (a_{ij})_{i,j} \in \mathcal{M}_{m \times n}(\mathsf{K})$ e $B = (b_{ij})_{i,j} \in \mathcal{M}_{n \times p}(\mathsf{K})$, isto é, o número de colunas de A é igual ao número de linhas de B. Então o produto de A por B é a matriz $C = (c_{ij})_{i,j} \in \mathcal{M}_{m \times p}(\mathsf{K})$, tal que, para cada par (i,j), temos $c_{ij} = \sum_{l=1}^{n} a_{il}b_{lj}$, $i = 1, 2, 3, \ldots, m$ e $j = 1, 2, \ldots, p$, ou então:

$$A.B = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} & b_{13} & \dots & b_{1n} \\ b_{21} & b_{22} & b_{23} & \dots & b_{2n} \\ b_{31} & b_{32} & b_{33} & \dots & b_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & b_{m3} & \dots & b_{mn} \end{pmatrix} = \\ \begin{pmatrix} \sum_{l=1}^{n} a_{1l}b_{l1} & \sum_{l=1}^{n} a_{1l}b_{l2} & \sum_{l=1}^{n} a_{1l}b_{l3} & \dots & \sum_{l=1}^{n} a_{1l}b_{lp} \\ \sum_{l=1}^{n} a_{2l}b_{l1} & \sum_{l=1}^{n} a_{2l}b_{l2} & \sum_{l=1}^{n} a_{2l}b_{l3} & \dots & \sum_{l=1}^{n} a_{2l}b_{lp} \\ \sum_{l=1}^{n} a_{3l}b_{l1} & \sum_{l=1}^{n} a_{3l}b_{l2} & \sum_{l=1}^{n} a_{3l}b_{l3} & \dots & \sum_{l=1}^{n} a_{3l}b_{lp} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum_{l=1}^{n} a_{ml}b_{l1} & \sum_{l=1}^{n} a_{ml}b_{l2} & \sum_{l=1}^{n} a_{ml}b_{l3} & \dots & \sum_{l=1}^{n} a_{ml}b_{lp} \end{pmatrix}$$

Definição 1.4.7 (Matriz Identidade). Chama-se matriz identidade de dimensão n, denotada por Id_n ou I_n definida como:

$$\operatorname{Id}_{n} = (a_{ij})_{i,j} = \begin{cases} 1, & \text{se } i = j \\ 0, & \text{se } i \neq j \end{cases}$$

isto é:

$$\operatorname{Id}_{n} = \delta_{ij} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Definição 1.4.8 (Matriz Transposta). Seja $A = (a_{ij})_{i,j} \in \mathcal{M}_{m \times n}(\mathsf{K})$, definimos a sua transposta, denotada por A^t ou A' sendo $A^t = (b_{ij})_{i,j} \mathcal{M}_{n \times m}(\mathsf{K})$ tal que $b_{ij} = a_{ji}$.

Definição 1.4.9 (Função Traço). Sejam $A = (a_{ij})_{i,j} \in \mathcal{M}_n(\mathsf{K})$, definimos o traço de A, denotado por trA como sendo a soma dos elementos da sua diagonal principal, isto \acute{e} :

$$\operatorname{tr} A = \sum_{i=1}^{n} a_{ii}$$

Definição 1.4.10 (Posto). Seja $A = (a_{ij})_{i,j} \in \mathcal{M}_{m \times n}(\mathsf{K})$, definimos o seu posto como sendo o número de linhas não nulas em sua forma escalonada.

Definição 1.4.11 (Matriz Invertível). Uma matriz $A = (a_{ij})_{i,j} \in \mathscr{M}_n(\mathsf{K})$ é invertível se existir uma matriz $B = (b_{ij})_{i,j} \in \mathscr{M}_n(\mathsf{K})$ tal que $A.B = B.A = \mathrm{Id}_n$.

Teorema 1.4.12 (Teorema de Laplace). Seja uma matriz $A = (a_{ij})_{i,j} \in \mathscr{M}_n(\mathsf{K})$ então:

$$\det A = \begin{cases} a_{11} & , se \ n = 1\\ \sum_{j=1}^{n} (-1)^{j+1} a_{1j} \det A_{1j} & , se \ n > 1 \end{cases}$$

, onde $A_{ij} \in \mathcal{M}_{n-1}(\mathsf{K})$ é a matriz formada a partir de A retirando a sua i-ésima linha e a sua j-ésima coluna.

Teorema 1.4.13 (Teorema de Laplace). Uma matriz $A=(a_{ij})_{i,j}\in \mathscr{M}_n(\mathsf{K})$ é invertível se e somente se det $A\neq 0$

Definição 1.4.14 (Matriz Adjunta). Seja $A = (a_{ij})_{i,j} \in \mathcal{M}_{m \times n}(\mathsf{K})$, denotado por $\mathrm{adj}(A)$ ou $\mathrm{ad}(A)$ a matriz adjunta de A, $\mathrm{ad}(A) = (b_{ij})_{i,j}$ tal que, para cada par (i,j), $b_{ij} = (-1)^{i+j+1} \mathrm{det} A_{ij}$, onde $A_{ij} \in \mathcal{M}_{n-1}(\mathsf{K})$ é a matriz formada a partir de A retirando a sua i-ésima linha e a sua j-ésima coluna. Os elementos b_{ij} são chamados de cofatores em (i,j) de A.

Lema 1.4.15. Sejam $A = (a_{ij})_{i,j} \in \mathcal{M}_{m \times n}(\mathsf{K}), \ e \ b_{ij} \ um \ cofator \ em \ (i,j) \ de \ A.$

$$\bullet \sum_{j=1}^{n} a_{ij} b_{lj} = \delta_{il}$$

•
$$A.ad(A) = ad(A).A = (det A).Id_n$$

Espaços Vetoriais

2.1 Espaços Vetoriais

Definição 2.1.1. Um conjunto não vazio V é um espaço vetorial sobre um corpo K se em seus elementos, denominados vetores, estiverem definidas as seguintes duas operações:

- (A) A cada par u, v de vetores de V corresponde um vetor $u + v \in V$, chamados de soma de u e v de modo que:
 - (A1) propriedade comutativa $u + v = v + u, \forall u, v \in V.$
 - (A2) propriedade associativa $(u+v)+w=v+(u+w), \forall u,v\in V.$
 - **(A3) vetor nulo** existe em V um vetor, denominado vetor nulo e denotado por 0, tal que $v + 0 = 0 + v = v \,\forall v \in V$.
 - (A4) inverso aditivo a cada vetor $v \in V$ existe em V, denotado por -v, tal que v + (-v) = 0.
- (M) A cada par $\alpha \in K$, corresponde um vetor $\alpha.v \in V$, denominado produto por escalar de α por v de modo que:
 - (M1) propriedade comutativa $(\alpha\beta).v = \alpha(\beta.v), \forall \alpha, \beta \in K \ e \ \forall v \in V.$
 - (M2) elemento identidade de K $1.v = v, \forall v \in V.$
- **(D1)** distributiva $\alpha.(u+v) = \alpha.u + \alpha.v, \forall \alpha \in K \ e \ \forall u, v \in V.$
- **(D2)** distributiva $(\alpha + \beta)v = \alpha \cdot v + \beta \cdot v, \forall \alpha, \beta \in K \ e \ \forall v \in V.$

Definição 2.1.2 (Espaço de Funções). Sejam X um conjunto qualquer não vazio e $\mathscr{F}(X,\mathsf{K})$ o conjunto de todas as funções $f:X\to\mathsf{K}$. Definimos as seguintes operações em $\mathscr{F}(X,\mathsf{K})$:

- 1. $para f, g \in \mathcal{F}(X, \mathsf{K})$, a soma das funções f e g, denotado por f + g tal que, $f + g : X \to \mathsf{K}$ dado por: $(f + g)(x) = f(x) + g(x), \forall x \in X$.
- 2. para $f \in \mathscr{F}(X,\mathsf{K})$ e $\alpha \in \mathsf{K}$, o produto de α e f, denotado por $\alpha.f$ tal que, $\alpha.f: X \to \mathsf{K}$ dado por: $(\alpha.f)(x) = \alpha.f(x), \ \forall x \in X.$

2.2 Base

Definição 2.2.1. Seja V um espaço vetorial sobre K.

1. Um vetor $v \in V$ é uma combinação linear dos vetores $v_1, \ldots, v_n \in V$ se existirem escalares $\alpha_1, \ldots, \alpha_n \in K$ tais que

$$v = \alpha_1 v_1 + \dots + \alpha_n v_n = \sum_{i=1}^n \alpha_i v_i.$$

- 2. Seja $\mathcal B$ um cojunto de V. Dizemos que $\mathcal B$ é um conjunto gerador de V, ou $\mathcal B$ gera V se todo elemento de V for uma combinação linear de um número finito de elementos de $\mathcal B$.
- 3. O conjunto vazio gera o espaço vetorial $\{0\}$.

Lema 2.2.2. Todo espaço vetorial possui um conjunto gerador.

Lema 2.2.3. Seja \mathcal{B} um cojunto gerador de um espaço vetorial V. Todo subconjunto de V que contenha \mathcal{B} é um cojunto gerador.

Lema 2.2.4. Seja V um K-espaço vetorial e $\{v_1, \ldots, v_n\} \subseteq V$. O subconjunto de V formado por todas as combinações lineares de v_1, \ldots, v_n é também um K-espaço vetorial.

Definição 2.2.5. Sejam V um espaço vetorial sobre K e B um subconjunto de V.

- 1. Dizemos que \mathcal{B} é linearmente independente, ou l.i., ou LI, se $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$, para $v_i \in \mathcal{B}$ e $\alpha_i \in K$, $i = 1, \ldots, n$. implica que $\alpha_1 = \cdots = \alpha_n = 0$.
- 2. O conjunto é chamado B linearmente dependente, ou l.d., ou LD, se não for linearmente independente.
- 3. O conjunto vazio é linearmente independente.

Lema 2.2.6. Todo conjunto de contendo o vetor nulo é LD.

Lema 2.2.7. Todo espaço vetorial não nulo possui um conjunto LI não vaio.

Lema 2.2.8. Todo subconjunto de um conjunto linearmente independente é linearmente independente.

Definição 2.2.9. Seja V um espaço vetorial sobre K. Dizemos que B um subconjunto de V é uma base de V se.

- 1. \mathcal{B} for um conjunto gerador de V.
- 2. \mathcal{B} for linearmente independente.

Lema 2.2.10. O conjunto vazio é uma base do espaço vetorial {0}.

Definição 2.2.11. Dizemos que um espaço vetorial V sobre K é finitamente gerado se possuir um conjunto gerador finito.

Proposição 2.2.12. Seja V um K-espaço vetorial finitamente gerado não nulo e assuma que $\{v_1, \ldots, v_m\}$ seja um conjunto gerador de V. Então todo conjunto linearmente independente de vetores em V tem no máximo m elementos.

Corolário 2.2.13. Seja V um K-espaço vetorial finitamente gerado não nulo. Então duas bases quaisquer de V têm o mesmo número de elementos.

Definição 2.2.14 (Dimensão de uma base). Sejam V um espaço vetorial sobre K. Se V admite uma base finita, então chamamos de dimensão de V o número de elementos de tal base. Caso contrário dizemos que a dimensão de V é infinita.

Corolário 2.2.15. Seja V um espaço vetorial de dimensão $n \ge 1$ e seja $\mathcal B$ um subconjunto de V com n elementos. As seguintes afirmações são equivalentes:

- 1. B é uma base.
- 2. \mathcal{B} for linearmente independente.
- 3. B é um conjunto gerador de V.

Proposição 2.2.16. Sejam V um espaço vetorial sobre K e considere $\mathcal{B} = \{v_1, \ldots, v_m\}$ um conjunto LI em V. Se existir um $v \in V$ que não seja combinação linear dos elementos de \mathcal{B} , então $\{v_1, \ldots, v_m, v\}$ é linearmente independente.

Teorema 2.2.17. Todo espaço vetorial finitamente gerado não nulo possui uma base.

Teorema 2.2.18. Seja V um espaço vetorial finitamente gerado e seja $\mathcal B$ conjunto LI em V. Então existe uma base de V contendo $\mathcal B$.

Proposição 2.2.19. Seja V um K-espaço vetorial de dimensão $n \ge 1$ e seja $\mathcal{B} \subseteq V$. As seguintes afirmações são equivalentes:

- 1. B é uma base de V.
- 2. Cada elemento de V se escreve de maneira única como combinação linear de \mathcal{B} .

Definição 2.2.20. Seja V um espaço vetorial de dimensão $n \ge 1$ e seja $\mathcal{B} = \{v_1, \dots, v_n\}$ uma base de V. Uma base ordenada de V é uma sequência ordenada dos elementos de \mathcal{B} . Dado um $v \in V$, existe univocamente valores $\alpha_1, \dots, \alpha_n \in K$ tais que $v = \alpha_1 v_1 + \dots + \alpha_n v_n$. Denotaremos como $[v]_{\mathcal{B}} = (\alpha_1, \dots, \alpha_n)_{\mathcal{B}}$ e dizemos que $\alpha_1, \dots, \alpha_n$ são coordenadas da base ordenada \mathcal{B} .

Definição 2.2.21. Seja V um espaço vetorial de dimensão $n \ge 1$ e seja $\mathcal{B} = \{v_1, \dots, v_n\}$ uma base de V. Uma base ordenada de V é uma sequência ordenada dos elementos de \mathcal{B} .

2.3 Subespaços

Definição 2.3.1 (Subespaços Vetoriais). Seja V um espaço vetorial sobre um corpo K. Um subconjunto W de V é um subespaço vetorial de V se a restrição das operações de V a W torna esse conjunto um K-espaço vetorial.

Proposição 2.3.2. Sejam V um espaço vetorial sobre um corpo K um subconjunto e $W \subseteq V$ um subconjunto. Então W é um subespaço de V se e somente se satisfaz as seguintes propriedades:

- (a) $0 \in W$
- (b) se $v_1, v_2 \in W$ então $v_1 + v_2 \in W$
- (c) se $\lambda \in K$ e $v \in W$ então $\lambda v \in W$

Proposição 2.3.3. Sejam V um espaço vetorial e W₁ e W₂ dois subespaços vetoriais de V, ambos de dimensão finita. Então:

$$dim_{\mathsf{K}}(\mathsf{W}_1 + \mathsf{W}_2) = dim_{\mathsf{K}}\,\mathsf{W}_1 + dim_{\mathsf{K}}\,\mathsf{W}_2 - dim_{\mathsf{K}}(\mathsf{W}_1 \cap \mathsf{W}_2)$$

Definição 2.3.4 (Soma de subespaços vetoriais). Sejam V um espaço vetorial não nulo sobre K, W_1 e W_2 dois subespaços de V. Chama-se de soma de subespaços vetoriais W_1 e W_2 , denotado por, $W_1 + W_2$ definido por $W_1 + W_2 := \{v_1 + v_2 : v_1 \in W_1 \land v_2 \in W_2\}$.

Lema 2.3.5. Sejam V um espaço vetorial não nulo sobre K, W_1 e W_2 dois subespaços de V. W_1+W_2 e $W_1\cap W_2$ são subespaços de V.

Atenção 2.3.6. Em geral $W_1 \cup W_2$ não é subespaço de V (veja lema acima)

2.4 Método Prático de Complemento de Base

2.5 Somas Diretas

Definição 2.5.1 (Soma Direta). Sejam dois W_1 e W_2 dois subespaços vetoriais de um espaço vetorial V. Diremos que soma $W_1 + W_2$ é direta se $W_1 \cap W_2 = \{0\}$ e, neste caso, denotamos como $W_1 \oplus W_2$.

Definição 2.5.2. Sejam V um espaço vetorial sobre um corpo Ke sejam W_1 e W_2 dois subespaços de V. Dizemos que V é a soma direta de W_1 e W_2 se $V = W_1 \oplus W_2$.

Proposição 2.5.3. Seja V um K-espaço vetorial e W_1 e W_2 dois subespaços de V. Então, $V = W_1 \oplus W_2$ se e só se cada elemento de $v \in V$ se escreve de maneira única como uma soma $x_1 + x_2$ com $x_1 \in W_1$ e $x_2 \in W_2$.

Proposição 2.5.4 (Complemento de um subespaço). Sejam V um espaço vetorial finitamente gerado e não nulo e W_1 um subespaço de V. Então existe um subespaço W_2 de V tal que $V = W_1 \oplus W_2$.

2.6 Espaço Quociente

2.7 Apêndice

Transformações Lineares

3.1 Conceitos Básicos

Definição 3.1.1. Sejam U e V espaços vetoriais sobre um corpo K. Uma função $T:U\to V$ é uma transformação linear se

- 1. $T(u_1 + u_2) = T(u_1) + T(u_2), \forall u_1, u_2 \in U$
- 2. $T(\lambda u) = \lambda T(u), \forall \lambda \in K \ e \ \forall u \in U$

Lema 3.1.2. Sejam U e V espaços vetoriais sobre um corpo K. Uma função $T:U\to V$ é uma transformação linear se e somente se

$$T(\lambda u_1 + u_2) = \lambda T(u_1) + T(u_2), \, \forall u_1, u_2 \in \mathsf{U}, \, \forall \lambda \in \mathsf{K}$$

Lema 3.1.3. Sejam U e V espaços vetoriais sobre um corpo K. Uma função $T:U\to V$ é uma transformação linear. Então:

- 1. $T(0_U) = 0_V$, onde 0_U e 0_V denotan vetores nulos em U e V, respectivamente.
- 2. $T(-u) = -T(u), \forall u \in U$
- 3. $T\left(\sum_{i=1}^{m} \alpha_i u_i\right) = \sum_{i=1}^{m} \alpha_i T(u_i)$, onde $\alpha_i \in K$ e $u_i \in U$, para $i = 1, \dots, m$.

Teorema 3.1.4. Sejam U e V dois espaços vetoriais sobre um corpo K. Se $\{u_1, \ldots, u_n\}$ for uma base de U e se $\{v_1, \ldots, v_n\} \subseteq V$, então exite uma única transformação linear $T: U \to V$ tal que $T(u_i) = v_i$, para cada $i = 1, \ldots, n$.

3.2 O Núcleo e a Imagem de uma Transformação Linear

Definição 3.2.1. Sejam U e V espaços vetoriais sobre um corpo K e T : U → V uma transformação linear.

- 1. O conjunto $\{u \in U : T(u) = 0\}$ é chamado de núcleo de T e denotado por Nuc T ou Ker T
- 2. O conjunto $\{v \in V : \exists u \in U \text{ com } T(u) = 0\}$ é chamado de imagem de T e denotado por Im T.

Proposição 3.2.2. Sejam U e V espaços vetoriais sobre um corpo K. e $T:U \to V$ uma transformação linear. Então:

- 1. Nuc T é um subespaço vetorial de U e Im T é um subespaço vetorial de V.
- 2. T é injetora se e somente se $\operatorname{Nuc} T = \{0\}.$

Definição 3.2.3. Sejam U e V espaços vetoriais sobre um corpo K. e $T:U \to V$ uma transformação linear.

- 1. A dim Nuc T é chamado de nulidade de T.
- 2. A dim Im T é chamado de posto de T.

Lema 3.2.4. Sejam U e V espaços vetoriais sobre um corpo K. Uma função $T: U \to V$ é uma transformação linear. Se $\mathcal{B} = \{u_1, \ldots, u_n\}$ é uma base de U, então $\{T(u_1), \ldots, T(u_n)\}$ gera $\operatorname{Im} T$.

3.3 Isomorfismo

Definição 3.3.1. Sejam U e V espaços vetoriais sobre um corpo K.

1. Seja $T: U \to V$ uma transformação linear. Se T for bijetora (isto é, injetora e sobrejetora) então dizemos que ela é um isomorfismo.

2. Se existir um isomorfismo $T:U\to V$, então que U e V são espaço vetorial isomorfos e indicaremos por $U\cong V$.

Definição 3.3.2. Sejam $F: U \to V$ uma função bijetora. Chama-se função inversa de F uma transformação linear $G: V \to U$ tal que $F \circ G = \operatorname{Id}_V e \ G \circ F = \operatorname{Id}_U$. Denotamos a inversa de $F: U \to V$ como $F^{-1}: V \to U$.

Proposição 3.3.3. A inversa de uma transformação linear bijetora é também linear.

Proposição 3.3.4. Sejam U e V espaços vetoriais sobre um corpo K de mesma dimensão finita $n \ge 1$ e $T: U \to V$ uma transformação linear. Então as seguintes afirmações são equivalentes:

- 1. T é um isomorfismo.
- 2. T é injetora.
- 3. T é sobrejetora.

Teorema 3.3.5. Dois espaços vetoriais de mesma dimensão finita são isomorfos.

Corolário 3.3.6. Todo K-espaço vetorial de dimensão n > 1 é isomorfo a K^n .

3.4 Matrizes de Transformações

Definição 3.4.1. Sejam U e V espaços vetoriais sobre um corpo K de dimensões n e m respectivamente. e $T: U \to V$ uma transformação linear. Sejam $\mathcal{B} = \{u_1, \ldots, u_n\}$ e $\mathcal{B}' = \{v_1, \ldots, v_m\}$ uma base de U e V respectivamente.

Para cada $T(u_j)$ existem $a_{ij} \in K$ tais que:

$$\begin{cases}
T(u_1) &= a_{11}v_1 + a_{21}v_1 + \dots + a_{m1}v_m = \sum_{i=1}^m a_{i1}v_i \\
T(u_2) &= a_{12}v_1 + a_{22}v_1 + \dots + a_{m2}v_m = \sum_{i=1}^m a_{i2}v_i \\
\vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\
T(u_n) &= a_{1n}v_1 + a_{2n}v_1 + \dots + a_{mn}v_m = \sum_{i=1}^m a_{in}v_i
\end{cases}$$

Dado um $u = \alpha_1 u_1 + \cdots + \alpha_n u_n \in U$ onde $\alpha_i \in K$, para $i = 1, \dots, m$. Temos:

$$T(u) = T\left(\sum_{j=1}^{n} \alpha_{j} u_{j}\right) = \sum_{j=1}^{n} T\left(\alpha_{j} u_{j}\right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} \alpha_{j} a_{ij} v_{i}\right) = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_{j} a_{ij}\right) v_{i} =$$

$$= \sum_{i=1}^{m} \beta_{i} v_{i}, \text{ onde } \beta_{i} = \sum_{j=1}^{n} \alpha_{j} a_{ij}, \text{ para } i = 1, \dots, m$$

 $[T(u)]_{\mathcal{B}'} = (\beta_1, \dots, \beta_m)_{\mathcal{B}'}, \text{ para } i = 1, \dots, m$

Podemos escrever $[T(u)]_{\mathcal{B}'}$ como produto de matrizes, v = Au, onde

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}_{\mathcal{B}, \mathcal{B}}$$

ou seja:

$$\begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \vdots \\ \beta_m \end{bmatrix}_{\mathcal{B}'} = Au = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}_{\mathcal{B}, \mathcal{B}'} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \vdots \\ \alpha_n \end{bmatrix}_{\mathcal{B}}$$

1. A matriz $A = (a_{ij}) \in \mathcal{M}_{m \times n}(\mathsf{K})$ é chamada de matriz de transformação linear T com relação às bases \mathcal{B} e \mathcal{B}' e é denotada por $[T]_{\mathcal{B},\mathcal{B}'}$

2. Se $\mathcal{B} = \mathcal{B}'$, denotations: $[T]_{\mathcal{B}}$

Proposição 3.4.2. Sejam V e W dois espaços vetoriais sobre K com dimensões n e m, respectivamente. Dadas bases \mathcal{B} e \mathcal{C} de V e W, respectivamente e uma matriz em $\mathcal{M}_{m \times n}(K)$, então existe uma única transformação linear $T: V \to W$ tal que $[T]_{\mathcal{B},\mathcal{C}} = M$.

Teorema 3.4.3. Sejam $F: U \to V$ e $G: V \to W$ duas transformações lineares onde U, V e W são espaços vetoriais sde dimensões n, m e r, respectivamente. Fixe bases $\mathcal{B}, \mathcal{B}'$ e \mathcal{B}'' para U, V e W, respectivamente. Então:

$$[G\circ F]_{\mathcal{B},\mathcal{B}''}=[G]_{\mathcal{B}',\mathcal{B}''}[F]_{\mathcal{B},\mathcal{B}'}$$

Corolário 3.4.4. Sejam U e V espaços vetoriais sobre um corpo K de dimensões $n \ge 1$ e considere bases \mathcal{B} e \mathcal{B}' de U e V, respectivamente. Uma transformação linear $T: U \to V$ é um isomorfismo se e somente se a matriz $[T]_{\mathcal{B},\mathcal{B}'}$ for invertível. Além disso, neste caso, $[T^{-1}]_{\mathcal{B},\mathcal{B}'} = ([T]_{\mathcal{B},\mathcal{B}'})^{-1}$.

Definição 3.4.5. Seja U espaço vetorial sobre um corpo K de dimensões $n \ge 1$ e sejam $\mathcal{B} = \{u_1, \ldots, u_n\}$ e $\mathcal{B}' = \{v_1, \ldots, v_m\}$ duas bases de U. Considere a matriz $M = (a_{ij})_{i,j} = [\operatorname{Id}]_{\mathcal{B},\mathcal{B}'}$, isto é, a matriz dada pelos coeficientes

Para cada $T(u_j)$ existem $a_{ij} \in K$ tais que:

$$\begin{cases} u_1 &= a_{11}v_1 + a_{21}v_1 + \dots + a_{n1}v_n = \sum_{i=1}^n a_{i1}v_i \\ u_2 &= a_{12}v_1 + a_{22}v_1 + \dots + a_{n2}v_n = \sum_{i=1}^n a_{i2}v_i \\ \vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\ u_n &= a_{1n}v_1 + a_{2n}v_1 + \dots + a_{mn}v_n = \sum_{i=1}^n a_{in}v_n \end{cases}$$

Com isso, se $u = \in U$ e escrevendo $v = (\alpha_1, \dots, \alpha_n)_{\mathcal{B}} = (\beta_1, \dots, \beta_n)_{\mathcal{B}'}$, teremos:

$$\begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \vdots \\ \beta_m \end{bmatrix}_{\mathcal{B}'} = Au = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix}_{\mathcal{B}, \mathcal{B}'} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \vdots \\ \alpha_m \end{bmatrix}_{\mathcal{B}}$$

isto é, a multiplicação de M pelas coordenadas de v na base $\mathcal B$ fornece-nos as coordenadas de v na base $\mathcal B'$. A matriz M é chamada de matriz de mudança de base $\mathcal B$ e $\mathcal B'$.

Lema 3.4.6. A matriz de mudança de base é sempre invertível.

Lema 3.4.7. Seja U espaço vetorial sobre um corpo K de dimensões $n \ge 1$ e sejam \mathcal{B} e \mathcal{B}' duas bases de U. Se M é a matriz de mudança de base de \mathcal{B} para \mathcal{B}' . Então M^{-1} é a matriz de mudança de base de \mathcal{B}' para \mathcal{B} .

Lema 3.4.8. Seja U espaço vetorial sobre um corpo K de dimensões $n \ge 1$, sejam \mathcal{B} e \mathcal{B}' duas bases de U e seja $T: U \to U$ uma transformação linear. Se P é a matriz de mudança de base de \mathcal{B} para \mathcal{B}' . então:

$$[T]_{\mathcal{B}} = P^{-1}[T]_{\mathcal{B}'}P$$

Definição 3.4.9 (Semelhança de matrizes). Duas matrizes M e N são ditas semelhantes se existir uma matriz invertível P tal que $M = P^{-1}NP$.

3.5 O Espaço $\mathcal{L}(\mathsf{U},\mathsf{V})$

Definição 3.5.1. Sejam U e V dois espaços vetoriais sobre um corpo K, denotamos por $\mathcal{L}(U,V)$ o conjunto de todas as transformações lineares de U a V.

Teorema 3.5.2. Sejam U e V dois espaços vetoriais sobre um corpo K com dimensões n e m, respectivamente. Então o espaço $\mathcal{L}(U,V)$ tem dimensão $m \times n$.

Corolário 3.5.3. Sejam U e V dois espaços vetoriais sobre um corpo K com dimensões n e m, respectivamente. Então $\mathcal{L}(U,V)$ é um isomorfismo a $\mathcal{M}_{m\times n}(K)$.

Definição 3.5.4. Seja U um espaço vetorial sobre um corpo K um operador linear \acute{e} uma transformação linear $T:U\to U$.

Definição 3.5.5 (Potência). Seja U um espaço vetorial sobre um corpo K. Seja T : U → U um operador linear.

1.
$$T^0 = Id$$

$$2. \ \mathbf{T}^n = \underbrace{\mathbf{T} \circ \cdots \circ \mathbf{T}}_n$$

Definição 3.5.6 (Projeção). Seja V um espaço vetorial sobre um corpo K e $W \subseteq V$ um subespaço. Um operador linear $\pi: V \to V$ é chamado de projeção sobre W se:

1.
$$Im(\pi) = W$$

2.
$$\pi(w) = w, \forall w \in W$$

Proposição 3.5.7. Seja $\pi: V \to V$ um operador linear e escreva $V = W_1 + W_2$ onde $W_1 = \operatorname{Im} \pi$ e $W_2 = \operatorname{Im} (\operatorname{Id} - \pi)$. As seguintes afirmações são equivalentes:

- 1. π é uma projeção de W_1 .
- 2. $\pi^2 = \pi$
- 3. A soma $W_1 + W_2$ é direta, isto é, $W_1 \cap W_2 = \{0\}$.

Corolário 3.5.8. Seja $\pi: V \to V$ uma projeção sobre $\operatorname{Im} \pi$ então o subespaço $\operatorname{Im} (\operatorname{Id} - \pi)$ é o núcleo de π .

Teorema 3.5.9. $Seja \ V = W_1 \oplus \cdots \oplus W_r$ espaços vetoriais sobre um corpo K. Então existem operadores lineares π_1, \ldots, π_r sobre V tais que:

- 1. $\pi_i(v) = w_i$, para cada $v = w_1 + \dots + w_r$, com $w_i \in W_i$, para $i = 1, \dots, r$.
- 2. $\pi_i \circ \pi_j = 0$, se $i \neq j$ e $\pi_i^2 = \pi_i$, para i = 1, ..., r.
- 3. Id = $\pi_1 + \cdots + \pi_r$
- 4. Im $\pi_i = W_i$, para cada i = 1, ..., r.

Reciprocamente, se π_1, \ldots, π_r são operadores lineares sobre V que satisfazem (i), (ii) e (iii) e se $V_i = \operatorname{Im} \pi_i$, então $V = V_1 \oplus \cdots \oplus V_r$.

Funcionais Lineares

4.1 Espaço Dual

Definição 4.1.1 (Funcional Linear). Seja V um K-espaço vetorial. Um funcional linear em V é um transformação linear $f:V\to K$.

Definição 4.1.2 (Espaço Dual). Seja V um K-espaço vetorial e $f: V \to K$ um funcional linear não nulo. O conjunto $\mathcal{L}(V,K)$ dos funcionais lineares \acute{e} chamado de espaço dual e denotado por V^* .

Definição 4.1.3 (Funcional Linear). Seja V um espaço vetorial sobre um corpo K de dimensão finita e seja $\mathcal{B} = \{v_1, \dots, v_n\}$ uma base de V. Seja $f_i : V \to K$, para cada $i = 1, \dots, n$ um funcional linear, tal que:

$$f_i(v_j) = \delta_{ij} = \begin{cases} 0, & se \quad i \neq j \\ 1, & se \quad i = j \end{cases}$$

Seja $v = \sum_{j=1}^{n} \alpha_j v_j$, com $\alpha_1, \dots, \alpha_n \in K$, temos:

$$f_i(v) = f_i\left(\sum_{j=1}^n \alpha_j v_j\right) = \sum_{j=1}^n \alpha_j f_i(v_j) \sum_{j=1}^n \alpha_j \delta_{ij}$$

isto é, $\alpha_i = f_i(v)$, Logo:

$$v = \sum_{j=1}^{n} f_j(v) v_j$$

Chama-se de base dual de V^* , denotado por, \mathcal{B}^* , é base de V^* relacionada com \mathcal{B} tal que $\mathcal{B}^* = \{f_1, \dots, f_n\}$

Teorema 4.1.4. Seja V um espaço vetorial sobre um corpo K de dimensão finita e seja $\mathcal{B} = \{v_1, \ldots, v_n\}$ uma base de V. Então existe uma única base $\mathcal{B}^* = \{f_1, \ldots, f_n\}$ de V* tal que $f_i(v_j) = \delta_{ij}$, para $i, j = 1, \ldots, n$. Além disso, para cada $v \in V$, temos:

$$v = \sum_{i=1}^{n} f_i(v) v_i$$

 $e para cada f \in V^* temos$

$$f = \sum_{i=1}^{n} f(v_i) f_i$$

4.2 Espaço Bidual

Definição 4.2.1 (Espaço Bidual). Seja V um espaço vetorial sobre um corpo K. Chamamos de o espaço $(V^*)^*$ de espaço bidual de V e denotaremos por V^{**} . Ou seja $V^{**} = \{\phi \in V^{**} | \phi : V^* \to K\}$.

Observação 4.2.2. Sejam V um espaço vetorial sobre um corpo K e $v \in V$. Denota-se ϕ_v , um elemento $\phi_v \in V^{**}$ tal que:

$$\begin{array}{cccc} \phi_v: & \mathsf{V}^* & \to & \mathsf{K} \\ & f & \mapsto & \phi_v(f) = \mathrm{f}(v) \end{array}$$

Lema 4.2.3. A função $\Phi: V \to V^{**}$ dada por $\Phi(v) = \phi_v$ é linear e injetora.

Corolário 4.2.4. Seja V um espaço vetorial sobre um corpo K. Então toda base de V* é a dual de alguma base de V.

4.3 Hiperplanos

Definição 4.3.1 (Hiperplano). Seja V um espaço vetorial não nulo. Um hiperplano em V é um subespaço próprio W tal que se W' for um subespaço de V satisfazendo $W \subseteq W' \subseteq V$, então W = W' ou W' = V.

Proposição 4.3.2. Seja V um espaço vetorial sobre um corpo K de dimensão $n \ge 1$ e V é um subespaço próprio de V então W é um hiperplano de V se e somente se $\dim_K = n - 1$.

Teorema 4.3.3. Seja V um espaço vetorial sobre um corpo K não nulo. Se $f \in V^*$ é um funcional linear não nulo, então Nuc f é um hiperplano de V. Inversamente, existe um funcional linear não nulo $f \in V^*$ tal que H = Nuc f, onde H é um hiperplano de V.

Definição 4.3.4 (Hiperplano Afim). Seja V um espaço vetorial sobre um corpo K e seja H um hiperplano de V. Para um vetor ⊨₀∈ V o conjunto

$$v_0 + H = \{v_0 + v | v \in H\}$$

é chamado de Hiperplano Afim de V

4.4 Anuladores

Definição 4.4.1. Seja V um espaço vetorial sobre um corpo K e seja $S \subseteq V$ um subconjunto de V. Chamamos de anulador de S ao subconjunto S^0 dos funcionais lineares de V^* que se anulam nos vetores de S, isto \acute{e} ,

$$S^0 = \{ f \in V^* : f(u) = 0, \forall u \in S \}.$$

Lema 4.4.2. Seja V um espaço vetorial sobre um corpo K e seja $S \subseteq V$ um subconjunto de V. Então S^0 é um subespaço de V^* .

Lema 4.4.3. Seja V um espaço vetorial sobre um corpo K e seja $S \subseteq V$ um subconjunto de V. Se $S = \{0\}$, então $S^0 = \{f \in V^* | f(u) = 0, \forall u \in S\} = V^*$.

Lema 4.4.4. Seja V um espaço vetorial sobre um corpo K e seja $S \subseteq V$ um subconjunto de V. Se S = V, então $S^0 = \{0\}$.

Teorema 4.4.5. Seja V um espaço vetorial sobre um corpo K de dimensão finita e seja $W \subseteq V$ um subespaço de V. Então

$$\dim_{\mathsf{K}} \mathsf{V} = \dim_{\mathsf{K}} \mathsf{W} + \dim_{\mathsf{K}} \mathsf{W}^0$$

Teorema 4.4.6. Seja U um espaço vetorial sobre um corpo K. Se $U = V \oplus W$, então $U^* = V^0 \oplus W^0$, V^* é isomorfismo a W^0 e W^* é isomorfismo a V^0 .

4.5 Transpostas de Transformações

Teorema 4.5.1. Sejam U e V espaços vetoriais sobre um corpo K e T : $U \to V$ uma transformação linear $T^t: V^* \to U^*$ dada por $T^t(g)(u) = g(T(u))$ para todo $g \in V^*$ e para todo $u \in U^*$.

Definição 4.5.2. A transformação linear T^t definida acima é chamada transposta de T.

Teorema 4.5.3. Sejam U e V espaços vetoriais sobre um corpo K e $T \in \mathcal{L}(U,V)$. Então:

1. Nuc $T^t = (\text{Im } T)^0$.

Se as dimensões de U e V forem finitas

- 1. $\dim \operatorname{Im} T^t = \dim \operatorname{Im} T$, ou seja, posto $T^t = \operatorname{posto} T$
- 2. Im $T^t = (\operatorname{Nuc} T)^0$

Teorema 4.5.4. Sejam V e W espaços vetoriais sobre um corpo K, ambos de dimensão finita. Sejam \mathcal{B} uma base de V, \mathcal{B}^* a base dual de \mathcal{B} , \mathcal{C} uma base de W e \mathcal{C}^* uma base de \mathcal{C} . Se T é uma transformação linear de V em W, então a transposta da matriz T com relação às bases \mathcal{B} e \mathcal{C} é igual à matriz da transposta de T com relação às bases \mathcal{C}^* e \mathcal{B}^* , isto é:

$$[T]_{\mathcal{B},\mathcal{C}}^t = [T^t]_{\mathcal{B}^*,\mathcal{C}^*}$$

Corolário 4.5.5. Seja $A = (a_{ij})_{i,j} \in \mathcal{M}_{m \times n}(\mathsf{K})$. Então o posto-linha de A é igual ao posto-coluna de A.

Formas Canônicas

5.1 Operadores Diagonalizáveis

Ao longo do resumo, K é um corpo qualquer, V um espaço vetorial sobre um corpo K, $T:V\to V$ um operador linear e Id: $V\to V$ é a transformação identidade em V.

Definição 5.1.1. Seja T : $V \to V$ um operador linear e suponha que exista uma base $\mathcal{B} = \{v_1, \dots, v_n\}$ de V tal que a matriz $[T]_{\mathcal{B}}$ tenha a forma diagonal. isto é, tal que:

$$[T]_{\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ 0 & 0 & \lambda_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

 $com \ \lambda_i \in \mathsf{K} \ para \ i = 1, \ldots, n$, isto é, a imagem de qualquer vetor da base $\mathcal{B} \ por \ \mathsf{T} \ \acute{e} \ um \ m\'ultiplo \ deste \ vetor.$

- 1. Um autovalor de T é um elemento $\lambda \in K$ tal que existe um vetor não nulo $v \in V$ com $T(v) = \lambda v$.
- 2. Se λ é um autovalor de T, então todo vetor não nulo de $v \in V$ tal que $T(v) = \lambda v$ é chamado de autovetor de T associado a λ . Denotaremos por $Aut_T(\lambda)$ o subespaço de V gerado por todos os vetores associados a λ .
- 3. Suponha que $\dim_{\mathsf{K}} = n < \infty$. Dizemos que T é diagonalizável se existir uma base \mathcal{B} tal que $[T]_{\mathcal{B}}$ é diagonal por autovalores de T.

Lema 5.1.2. Seja $T: V \to V$ um operador linear não injetor. Então 0 é um autovalor de T.

Lema 5.1.3. Seja $T: V \to V$ um operador linear. Se $\lambda \in K$ for um autovalor de T, então existe $v \neq 0$ tal que $T(v) = \lambda v \Leftrightarrow (\lambda Id - T)(v) = 0$. Então as seguintes afirmações são verdadeiras:

- 1. λ é autovalor de T
- 2. Nuc $(\lambda Id T) \neq 0$
- 3. $(\lambda Id T)$ não é invertível
- 4. $\det[\lambda \mathrm{Id} \mathrm{T}] = 0$

 \Leftrightarrow

Definição 5.1.4 (Polinômio característico). Seja \mathcal{C} uma base de V. Chamamos o polinômio $\det[x.Id-T]_{\mathcal{C}}$ de polinômio característico de T e denotado por $p_T(x)$.

Lema 5.1.5. O polinômio $\det[x.Id-T]_{\mathcal{C}}$ é um invariante de T, para qualquer base \mathcal{C} de V.

Teorema 5.1.6. Seja $T: V \to V$ um operador linear e sejam $\lambda_1, \ldots, \lambda_t, \ t \geq 1$ autovalores T, dois a dois distintos.

- 1. Se $v_1 + \cdots + v_t = 0$ com $v_i \in Aut_T(\lambda_i)$, $i = 1, \dots, t$, então $v_i = 0$, para cada i.
- 2. Para cada $i=1,\ldots,t$, seja \mathcal{B}_i um conjunto linearmente independente contido em $Aut_T(\lambda_i)$. Então $\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_t$ é linearmente independente.

Corolário 5.1.7. Seja $T: V \to V$ um operador linear e sejam $\lambda_1, \ldots, \lambda_t, \ t \geq 1$ autovalores T, então T é diagonalizável se e somente se

$$\dim_{\mathsf{K}} \mathsf{V} = \sum_{i=1}^{t} \dim_{\mathsf{K}} Aut_{\mathsf{T}}(\lambda_i)$$

Definição 5.1.8 (Multiplicidade algébrica e geométrica). Seja λ um autovalor de um operador linear $T: V \to V$ e suponhamos que $p_T = (x - \lambda)^m q(x)$, com $q(x) \neq 0$, seja o polinômio característico de T. O número m é chamado de multiplicidade algébrica de λ e denotamos por $ma(\lambda)$. Chamamos de multiplicidade geométrica de λ à dimensão do subespaço $Aut_T(\lambda)$ e denotamos por $mg(\lambda)$

Proposição 5.1.9. Seja λ um autovalor de um operador linear $T: V \to V$ Então $mq(\lambda) \leq ma(\lambda)$.

Teorema 5.1.10. Seja $T: V \to V$ um operador linear e sejam $\lambda_1, \ldots, \lambda_t, \ t \geq 1$ autovalores T, dois a dois distintos. As seguintes afirmações são equivalentes.

- 1. T é diagonalizável
- 2. $p_T = (x \lambda_1)^{n_1} \dots (x \lambda_t)^{n_t}, n_i \ge 1 \ e \ mg(\lambda_i) = ma(\lambda_i), \ para \ cada \ i = 1, \dots, t.$
- 3. $\dim_{\mathsf{K}} \mathsf{V} = \sum_{i=1}^{t} \dim_{\mathsf{K}} Aut_{\mathsf{T}}(\lambda_i)$

5.2 Subespaços T-Invariantes

Definição 5.2.1 (Subespaço T-Invariante). Seja $T : V \to V$ um operador linear e seja $W \subseteq V$ um subespaço de V. Dizemos que W é um subespaço T-Invariante de V se $T(w) \in W$ para todo $w \in W$.

5.3 Polinômios Minimais de Operadores e O Teorema de Cayley-Hamilton

Definição 5.3.1 (Polinômio Minimal). O polinômio minimal de um operador linear T em $\mathcal{L}(V, V)$ é o polinômio mônico $m_T(x)$ de menor grau tal que $m_T(T)(v) = 0$, $\forall v \in V$.

Teorema 5.3.2 (Cayley-Hamilton). Um operador $T \in \mathcal{L}(V, V)$ é um zero de seu polinômio característico $p_T(x)$, isto é, $p_T(T) = 0$.

Proposição 5.3.3. Sejam V um K-espaço vetorial de dimensão $n \ge 1$ e $T \in \mathcal{L}(V,V)$. Então, os polinômios característico e minimal de T têm as mesmas raízes a menos de multiplicidade.

5.4 Espaços Vetoriais T-Cíclicos

Definição 5.4.1. Sejam V um K-espaço vetorial de dimensão n > 1 e $T \in \mathcal{L}(V, V)$.

- 1. Dizemos que $v \in V$ é um vetor T-Cíclico se $V = C_T(v)$ ou equivalentemente, se $\{v, T(v), \dots, T^{n-1}(v)\}$ for uma base de V.
- 2. Dizemos que V é T-Cíclico se V possuir um vetor T-Cíclico.

Definição 5.4.2. Sejam $V = C_T(v)$ um espaço T-Cíclico de dimensão n, $m_{T,v}(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ e $\mathcal{B} = \{v, T(v), \dots, T^{n-1}(v)\}$ uma base de V. A matriz $[T]_{\mathcal{B}}$ é definida por:

$$[T]_{\mathcal{B}} = \begin{pmatrix} 0 & 0 & 0 & \dots & -a_0 \\ 1 & 0 & 0 & \dots & -a_1 \\ 0 & 1 & 0 & \dots & -a_2 \\ 0 & 0 & 1 & \dots & -a_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -a_{n-1} \end{pmatrix}$$

 $[T]_{\mathcal{B}}$ é chamada matriz companheira de $m_{T,v}(x)$.

Lema 5.4.3. Seja $T: V \to V$ um operador linear onde V é um K-espaço vetorial de dimensão finita. Então existe um vetor $v \in V$ tal que $m_{T,v}(x) = m_T(x)$.

Corolário 5.4.4. Seja $T: V \to V$ um operador linear onde V é um K-espaço vetorial de dimensão finita. Então existe um subespaço T-Cíclico de V com dimensão igual ao grau do polinômio m_T .

Teorema 5.4.5. Seja $T: V \to V$ um operador linear onde V é um K-espaço vetorial de dimensão finita. As seguintes afirmações são equivalentes:

- 1. V é T-Cíclico
- 2. o grau de $m_{\rm T}$ é n.
- 3. $m_{\rm T} = p_{\rm T}$.

5.5 Operadores Nilpotentes

Definição 5.5.1. Um operador linear $T \in \mathcal{L}(V,V)$ é chamado de nilpotente se existir um m > 0 tal que $T^m = 0$. O índice de nilpotência de um tal operador será o menor índice com esta propriedade.

Lema 5.5.2. Um operador linear $T \in \mathcal{L}(V, V)$ é nilpotente e dim $V \ge 1$, então Nuc $T \ne \{0\}$.

Teorema 5.5.3. Seja T: V → V um operador linear, onde V é um K-espaço vetorial de dimensão finita. Então T é a soma direta de um operador nilpotente e um operador invertível. Além disso, tal decomposição é única.

Proposição 5.5.4. Seja $T: V \to V$ um operador linear nilpotente de índice de nilpotência $m \ge 1$, onde V é um K-espaço vetorial de dimensão finita. Se $v \in V$ é tal que $T^{m-1}(v) \ne 0$, então:

- 1. O conjunto $\{v, T(v), \dots, T^{m-1}(v)\}\ \acute{e}\ LI$.
- 2. Existe um subespaço T-invariante W de V tal que $V = U \oplus W$, onde $U = [v, T(v), \dots, T^{m-1}(v)]$.

Definição 5.5.5 (Bloco de Jordan). Um bloco de bloco de Jordan $r \times r$ em λ é uma matriz $J_r(\lambda)$ em $\mathcal{M}(\mathsf{K})$ que tem λ na diagonal principal e 1 na diagonal abaixo da principal, isto é,

$$J_r(\lambda) = \begin{pmatrix} \lambda & 0 & 0 & \dots & 0 \\ 1 & \lambda & 0 & \dots & 0 \\ 0 & 1 & \lambda & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{pmatrix}$$

Teorema 5.5.6. Seja $T: V \to V$ um operador nilpotente com índice de nilpotência $m \ge 1$, onde V é um K-espaço vetorial de dimensão finita. Então existem números positivos t, m_1, \ldots, m_t e vetores $v_1, \ldots, v_t \in V$ tais que:

- 1. $m=m_1\geq \cdots \geq m_t$.
- 2. O conjunto $\mathcal{B} = \{v_1, T^1(v_1), \dots, T^{m_1-1}(v_1), v_2, T^1(v_2), \dots, T^{m_2-1}, \dots, v_t, T^1(v_t), \dots, T^{m_2-1}(v_t)\}$ é uma base de V.
- 3. $T^{m_i}(v_i) = 0$, para cada i = 1, ..., t.
- 4. Se S for um operador linear em um K-espaço vetorial W de dimensão finita, então os inteiros t, m_1, \ldots, m_t associados a S e a T são iguais se e somente se existir um isomorfismo $\Phi : V \to W$ com $\Phi T \Phi^{-1} = S$.

5.6 Formas de Jordan

Teorema 5.6.1. Seja $T: V \to V$ um operador linear, onde V é um K-espaço vetorial de dimensão finita tal que $p_T(x) = (x - \lambda_1)^{m_1} \dots (x - \lambda_r)^{m_r}, m_r \ge 1$ e $\lambda_i \ne \lambda_j$, se $i \ne j$. Então $V = U_1 \oplus \dots \oplus U_r$, onde, para $i = 1, \dots, r$, temos:

- 1. $\dim_{\mathsf{K}} \mathsf{U}_i = m_i$.
- 2. o subespaço U_i é T-invariante.
- 3. a restrição do operador $\lambda_i \operatorname{Id} \operatorname{T} a \operatorname{U}_i$ é nilpotente.

Definição 5.6.2 (Forma de Jordan). Seja $T: V \to V$ um operador linear, onde V é um K-espaço vetorial de dimensão finita tal que $p_T(x) = (x - \lambda_1)^{m_1} \dots (x - \lambda_r)^{m_r}, m_r \ge 1$ e $\lambda_i \ne \lambda_j$, se $i \ne j$ e seja $V = U_1 \oplus \dots \oplus U_r$, onde, para $i = 1, \dots, r$, satisfazendo as propriedades do teorema anterior, sejam \mathcal{B}_i a base de U_i e números $t_i, m_{i1}, \dots, m_{it}$, tais que

$$[T_i]_{\mathcal{B}_i} = \begin{pmatrix} J_{m1}(\lambda_i) & 0 & 0 & \dots & 0 \\ 0 & J_{m2}(\lambda_i) & 0 & \dots & 0 \\ 0 & 0 & J_{m3}(\lambda_i) & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & J_{mt_i}(\lambda_i) \end{pmatrix}$$

onde, para cada $i = 1, \ldots, r$ e $j = 1, \ldots, t_i$,

$$J_{m_{ij}}(\lambda_i) = \begin{pmatrix} \lambda_i & 0 & 0 & \dots & 0 \\ 1 & \lambda_i & 0 & \dots & 0 \\ 0 & 1 & \lambda_i & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_i \end{pmatrix} \in \mathcal{M}_{m_{ij}}(\mathsf{K})$$

 $A \ matriz:$

$$[T]_{\mathcal{B}} = \begin{pmatrix} [T_1]_{\mathcal{B}_1} & 0 & 0 & \dots & 0 \\ 0 & [T_2]_{\mathcal{B}_2} & 0 & \dots & 0 \\ 0 & 0 & [T_3]_{\mathcal{B}_3} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & [T_r]_{\mathcal{B}_r} \end{pmatrix}$$

 \acute{e} chamada de forma de Jordan associada a T.

Espaços com Produto Interno

6.1 Produto Interno

Definição 6.1.1 (Produto Interno). Seja V um K-espaço vetorial, onde $K = \mathbb{R}$ ou $K = \mathbb{C}$. Um produto interno sobre V é uma função $\langle , \rangle : V \times V \to K$ que satisfaz as seguintes quatro propriedades:

P1
$$\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle, \forall u,v,w\in V$$

P2
$$\langle \lambda u, v \rangle = \lambda \langle u, v \rangle, \forall \lambda \in K, \forall u, v \in V$$

P3
$$\langle u, v \rangle = \overline{\langle v, u \rangle}, \forall u, v \mathsf{V}$$

P4
$$\langle u, u \rangle > 0, u \in V \ e \ u \neq 0$$

Lema 6.1.2. Outras propriedades:

$$\langle 0, v \rangle = \langle v, 0 \rangle = 0, \forall v \in \mathsf{V}$$

$$\langle v, v \rangle = 0 \Leftrightarrow v = 0$$

P5
$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle, \forall u, v, w \in V$$

P6
$$\langle u, \lambda v \rangle = \overline{\langle \lambda v, y \rangle} = \overline{\lambda} \overline{\langle v, u \rangle} = \overline{\lambda} \langle u, v \rangle, \forall \lambda \in K, \forall u, v \in V$$

Definição 6.1.3. Seja V e W dois K-espaços vetorial e seja ⟨,⟩ um produto interno sobre V. Se T : W → V for uma transformação linear injetora. Então podemos definir um produto interno em W como:

$$\langle,\rangle_{\mathrm{T}} := \langle \mathrm{T}(u),\mathrm{T}(v)\rangle, \,\forall u,v \in \mathsf{W}$$

Definição 6.1.4 (Norma). Seja V um K-espaço vetorial munido de produto interno \langle , \rangle . Para cada $v \in V$, chamamos de norma de v ao número real dado por:

$$\|v\| = \sqrt{\langle v,v\rangle}$$

Lema 6.1.5. Seja V e W dois K-espaços vetorial e seja \langle , \rangle um produto interno sobre V.

- 1. $||u|| \ge 0, \forall u \in \mathsf{V}$
- 2. $||u|| = 0, \Leftrightarrow u = 0$
- 3. $\|\alpha u\| = \alpha \|u\|, \forall \alpha \in \mathsf{K} \ e \ \forall u \in \mathsf{V}$

Proposição 6.1.6 (Identidade de Polarização). Seja V um K-espaço vetorial com produto interno \langle,\rangle e sejam $u,v\in V$.

Para $K = \mathbb{R}$:

$$\langle u,v \rangle = \frac{1}{4} \|u+v\|^2 - \frac{1}{4} \|u-v\|^2$$

 $Para\ \mathsf{K}=\mathbb{C}$:

$$\langle u, v \rangle = \frac{1}{4} \|u + v\|^2 - \frac{1}{4} \|u - v\|^2 + \frac{i}{4} \|u + iv\|^2 - \frac{i}{4} \|u - iv\|^2$$

Teorema 6.1.7 (Desigualdade de Cauchy-Schwarz). Seja V um K-espaço vetorial com produto interno \langle,\rangle . Então

$$|\langle u, v \rangle| \le ||u|| ||v||, \forall u, v \in \mathsf{V}.$$

A igualdade $|\langle u, v \rangle| = ||u|| ||v||$ é válida se e somente se $\{u, v\}$ for linearmente dependente.

Corolário 6.1.8 (Desigualdade de Triangular). Seja V um K-espaço vetorial com produto interno \langle, \rangle . Então

$$||u+v|| < ||u|| + ||v||, \forall u, v \in V.$$

6.2 Ortogonalidade

Definição 6.2.1 (Ortogonalidade). Seja V um K-espaço vetorial munido de produto interno \langle , \rangle e sejam $u,v \in V$. Dizemos que u e v são ortogonais, denotado por $u \perp v$, se $\langle u,v \rangle = 0$. Um subconjunto A de V é chamado de ortogonal se os seus elementos são ortogonais dois a dois e dizemos que A é um conjunto ortonormal se for um conjunto ortogonal e se ||u|| = 1, $\forall u \in A$.

Lema 6.2.2. Seja V um K-espaço vetorial munido de produto interno \langle , \rangle . O vetor nulo é ortogonal a todos os elementos de V, pois $\langle 0, u \rangle = 0$, $\forall u \in V$.

Proposição 6.2.3. Seja V um K-espaço vetorial com produto interno \langle , \rangle e seja A um subconjunto ortogonal de V formado por vetores não nulos.

(a) Se $v \in [v_1, \ldots, v_n]$, com $v_i \in A$, então:

$$v = \sum_{i=1}^{n} \frac{\langle v, v_i \rangle}{\|v_i\|^2} v_i$$

(b) A é linearmente independente.

Corolário 6.2.4. Seja V um K-espaço vetorial com produto interno \langle , \rangle e seja $\{v_1, \ldots, v_n\}$ uma base ortonormal de V. Então para $v \in V$, temos

$$v = \sum_{i=1}^{n} \langle v, v_i \rangle v_i$$

6.2.1 Processo de Ortogonalização Gram-Schmidt

[Anton,AlgLinApl-pt,2010] Para converter uma base $\{u_1, u_2, u_3, \dots, u_n\}$ numa base ortogonal $\{v_1, v_2, v_3, \dots, v_n\}$, efetue as seguintes contas:

$$v_{1} = u_{1}$$

$$v_{2} = u_{2} - \frac{\langle u_{2}, v_{1} \rangle}{\|v_{1}\|^{2}} v_{1}$$

$$v_{3} = u_{3} - \frac{\langle u_{3}, v_{1} \rangle}{\|v_{1}\|^{2}} v_{1} - \frac{\langle u_{3}, v_{2} \rangle}{\|v_{2}\|^{2}} v_{2}$$

$$\vdots$$

$$v_{n} = u_{n} - \frac{\langle u_{n}, v_{1} \rangle}{\|v_{1}\|^{2}} v_{1} - \frac{\langle u_{n}, v_{2} \rangle}{\|v_{2}\|^{2}} v_{2} - \frac{\langle u_{n}, v_{3} \rangle}{\|v_{3}\|^{2}} v_{3} + \dots - \frac{\langle u_{n}, v_{n} \rangle}{\|v_{n}\|^{2}} v_{n}$$

Para converter a base ortogonal numa base ortonormal $\{q_1, q_2, q_3, \dots, q_n\}$ normalize os vetores da base ortonormal:

$$q_i = \frac{v_i}{\|v_i\|}, i = 1, 2, 3, \dots, n$$

6.2.2 Decomposição QR - Gram-Schmidt

[Anton,AlgLinApl-pt,2010] Seja A uma matriz $m \times n$ tal que $A = [u_1 \ u_2 \ u_3 \dots u_n]$ e $u_1, u_2, u_3, \dots, u_n$ são vetores de dimensão m linearmente independentes. Existe uma matriz $Q = [q_1 \ q_2 \ q_3 \dots q_n]$, através do processo de Gram-Schmidt, formado por uma base ortonormal projetados pelos vetores de $u_1, u_2, u_3, \dots, u_n$. Temos então:

$$\begin{cases} u_1 = \langle u_1, q_1 \rangle q_1 + \langle u_1, q_2 \rangle q_2 + \langle u_1, q_3 \rangle q_3 + \dots \langle u_1, q_n \rangle q_n \\ u_2 = \langle u_2, q_1 \rangle q_1 + \langle u_2, q_2 \rangle q_2 + \langle u_2, q_3 \rangle q_3 + \dots \langle u_2, q_n \rangle q_n \\ u_3 = \langle u_3, q_1 \rangle q_1 + \langle u_3, q_2 \rangle q_2 + \langle u_3, q_3 \rangle q_3 + \dots \langle u_3, q_n \rangle q_n \\ \vdots \\ u_n = \langle u_n, q_1 \rangle q_1 + \langle u_n, q_2 \rangle q_2 + \langle u_n, q_3 \rangle q_3 + \dots \langle u_n, q_n \rangle q_n \end{cases} \Leftrightarrow \begin{bmatrix} \langle u_1, q_1 \rangle & \langle u_1, q_2 \rangle & \langle u_1, q_3 \rangle & \dots \langle u_n \rangle q_n \\ \vdots & \langle u_n, q_n \rangle q_n & \langle u_n, q_n \rangle q_n \end{cases}$$

$$\begin{bmatrix} \vdots \\ u_n = \langle u_n, q_1 \rangle q_1 + \langle u_n, q_2 \rangle q_2 + \langle u_n, q_3 \rangle q_3 + \dots \langle u_n, q_n \rangle q_n \\ A = QR = \begin{bmatrix} q_1 q_2 q_3 \dots q_n \end{bmatrix} \begin{bmatrix} \langle u_1, q_1 \rangle & \langle u_1, q_2 \rangle & \langle u_1, q_3 \rangle & \dots & \langle u_1, q_n \rangle \\ 0 & \langle u_2, q_2 \rangle & \langle u_2, q_3 \rangle & \dots & \langle u_2, q_n \rangle \\ 0 & 0 & \langle u_3, q_3 \rangle & \dots & \langle u_3, q_n \rangle \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \langle u_n, q_n \rangle \end{bmatrix}$$

Teorema 6.2.5. Todo espaço vetorial de dimensão finita $n \ge 1$ com produto interno possui uma base ortonormal.

Corolário 6.2.6. Seja V um K-espaço vetorial munido de produto interno. Sejam $\mathcal{B} = \{u_1, \dots, u_n\}$ e $\mathcal{B}' = \{v_1, \dots, v_n\}$ duas bases ortonormais de V. Se M é a matriz de mudança de base \mathcal{B} para \mathcal{B}' . então $M\overline{M^T} = \overline{M^T}M = \operatorname{Id}_n$.

6.3 Subespaço Ortogonal

Definição 6.3.1. Seja V um espaço vetorial com produto interno, e seja $S \subseteq V$ um subconjunto V. Chamamos de ortogonal de S ao subconjunto $S^{\perp} = \{v \in V : \langle v, u \rangle = 0, \forall u \in S\}$.

Lema 6.3.2. Seja S um subconjunto de um espaço vetorial V com produto interno. O conjunto S^{\perp} é um subespaço de V.

Lema 6.3.3. Seja S um subconjunto de um espaço vetorial V com produto interno. Se $S = \{0\}$ Então $S^{\perp} = V$.

Lema 6.3.4. Seja S um subconjunto de um espaço vetorial V com produto interno. Se S coniver uma base de V então $S^{\perp} = \{0\}$.

Lema 6.3.5. Seja S um subconjunto de um espaço vetorial V com produto interno. $S^{\perp} = \{v \in V : \langle u, v \rangle = 0, \forall u \in S\}.$

Proposição 6.3.6. Seja V um K-espaço vetorial munido de produto interno. Sejam W \subseteq V um subespaço e $\mathcal{B} = \{w_1, \dots, w_k\}$ um gerador para W. Então $v \in W^{\perp}$ se e somente se $\langle v, w_i \rangle$, para cada $i = 1, \dots, k$.

Proposição 6.3.7. Seja V um K-espaço vetorial de dimensão $n \ge 1$ e com produto interno e seja $W \subsetneq V$ um subespaço próprio de V. Então $V = W \oplus W^{\perp}$.

Corolário 6.3.8. Seja V um K-espaço vetorial de dimensão finita com produto interno e seja W ⊊ V um subespaço de V. Então

 $dim_K V = dim_K W + dim_K W^{\perp}$

6.4 A Melhor Aproximação

Proposição 6.4.1. Sejam V um K-espaço vetorial munido de produto interno e $W \subseteq V$ um subespaço de V com dimensão finita. Então, dado $v \in V$, existe um único $w \in W$ tal que $v - w \in W^{\perp}$.

Definição 6.4.2. Sejam V um K-espaço vetorial munido de produto interno $e \ W \subseteq V$ um subespaço de V. Se dado $v \in V$, existir $w \in W$ tal que $v - w \in W^{\perp}$, chamamos o vetor w de projeção ortogonal de v sobre W e denotado por $w = proj_W v$.

Proposição 6.4.3 (Melhor Aproximação). Sejam V um K-espaço vetorial munido de produto interno e W um subespaço de V. As seguintes afirmações são equivalentes para um vetor $w_0 \in W$:

- 1. $v w_0 \in W^{\perp}$.
- 2. $||v w_0|| < ||v w_0||, \forall w \in W \ e \ w \neq w_0.$

6.5 Transformações que Preservam o Produto Interno

Definição 6.5.1. Sejam V e W dois K-espaços vetoriais munido de produto interno. Dizemos que uma transformação $T \in \mathcal{L}(V,W)$ é uma transformação que preserva o produto interno se $\langle T(u), T(v) \rangle = \langle u, v \rangle$, para todo $u, v \in V$. Um isomorfismo entre espaços com produto interno é um isomorfismo que preserva o produto interno.

Observação 6.5.2. Uma transformação linear que preserva o produto interno é necessariamente injetora.

Teorema 6.5.3. Sejam V e W dois K-espaços vetoriais de dimensão finita com produto interno, tal que $\dim_K V = \dim_K W$ e seja $T \in \mathcal{L}(V,W)$. As seguintes afirmações são equivalentes:

- 1. T preserva o produto interno.
- 2. T é um isomorfismo de espaços com produto interno.
- 3. T leva toda base ortonormal de V em base ortonormal de W.
- 4. T leva alguma base ortonormal de V em uma base ortonormal de W.

Teorema 6.5.4. Sejam V e W dois K-espaços vetoriais munido de produto interno. e $T \in \mathcal{L}(V, W)$. Então T preserva o produto interno se e somente se $||T(v)|| = ||v||, \forall v \in V$

Adjuntos

7.1 Funcionais Lineares e Adjuntos

Proposição 7.1.1. Seja V um K-espaço vetorial de dimensão finita com produto interno. Se $f \in V^*$, então existe um único $w \in V$ tal que $f(u) = \langle u, w \rangle$ para todo $u \in V$.

Teorema 7.1.2. Seja V um K-espaço vetorial de dimensão finita com produto interno. Se $T \in \mathcal{L}(V, V)$, então existe um único operador $T^* \in V$ tal que $\langle T(u), v \rangle = \langle u, T^*(v) \rangle$ para todo $u, v \in V$.

Definição 7.1.3. Seja $T \in \mathcal{L}(V, V)$, onde V é um K-espaço vetorial de dimensão finita com produto interno. Dizemos que T possui um adjunto se existir um operador $T^* \in \mathcal{L}(V, V)$ tal que $\langle T(u), v \rangle = \langle u, T^*(v) \rangle$ para todo $u, v \in V$. Diremos, neste caso, que T^* é adjunto de T.

Proposição 7.1.4. Seja V um K-espaço vetorial com produto interno. Sejam $T, S \in \mathcal{L}(V, V)$ operadores lineares que admitem adjuntos T^* e S^* , respectivamente e $\lambda \in K$. Então:

- 1. T + S admite adjunto $e(T + S)^* = T^* + S^*$
- 2. λT admite adjunto $e(\lambda T)^* = \overline{\lambda} T^*$
- 3. $T \circ S$ admite adjunto $e(T \circ S)^* = S^* \circ T^*$
- 4. T^* admite adjunto $e(T^*)^* = T$

Proposição 7.1.5. Seja V um K-espaço vetorial com produto interno e de dimensão finita. Seja $\mathcal{B} = \{v_1, \dots, v_n\}$ uma base ortonormal de V e $T \in \mathcal{L}(V, V)$. Se $[T]_{\mathcal{B}} = (a_{ij})_{i,j}$ então $a_{ij} = \langle T(v_j), v_i \rangle, \forall i, j = 1, \dots, n$.

Teorema 7.1.6. Seja V um K-espaço vetorial com produto interno e de dimensão finita, e seja $T \in \mathcal{L}(V,V)$. Em relação a qualquer base ortonormal de V a matriz T^* é igual à transposta conjugada da matriz T.

7.2 Autoadjuntos

Definição 7.2.1. Seja $T \in \mathcal{L}(V,V)$, onde V é um K-espaço vetorial de dimensão finita com produto interno. Dizemos que T possui um autoadjunto se T admite um adjunto T^* e $T^* = T$. No caso em que $K = \mathbb{C}$, usamos também o termo hermitiano e no caso em que $K = \mathbb{R}$, usamos também o termo simétrico.

Teorema 7.2.2. Seja V um K-espaço vetorial com produto interno e de dimensão finita, e $T \in \mathcal{L}(V,V)$. As seguintes afirmações são equivalentes:

- 1. T é autoadjunto.
- 2. $\overline{[T]}_{\mathcal{B}}^t = [T]_{\mathcal{B}}$ para toda base ortonormal de \mathcal{B} de V.
- 3. Existe uma base ortonormal de \mathcal{B} de V tal que $\overline{[T]}_{\mathcal{B}}^t = [T]_{\mathcal{B}}$.

Lema 7.2.3. Seja V um \mathbb{C} -espaço vetorial com produto interno e de dimensão finita, e $T \in \mathcal{L}(V,V)$. As seguintes afirmações são equivalentes:

- 1. T = 0.
- 2. $\langle T(u), u \rangle = 0, \forall u \in V V$.
- 3. $\langle T(u), v \rangle = 0, \forall u, v \in V V$.

Proposição 7.2.4. Seja V um \mathbb{C} -espaço vetorial com produto interno, e $T \in \mathcal{L}(V,V)$. Então T é um operador hermitiano se e somente se $\langle T(v), v \rangle \in \mathbb{R}$.

Observação 7.2.5. A proposição acima não vale se $K = \mathbb{R}$.

7.3 Operadores Unitários

Definição 7.3.1 (Operador Unitário). Seja $T \in \mathcal{L}(V,V)$, onde V é um K-espaço vetorial com produto interno. Dizemos que T é unitário se for um isomorfismo de espaços com produto interno.

Lema 7.3.2. Seja $T_1, T_2 \in \mathcal{L}(V, V)$, onde $V \notin um$ K-espaço vetorial com produto interno.

- 1. Se T_1, T_2 são unitários então $T_1 \circ T_2$ é unitário.
- 2. Se T_1 é unitário então T_1^{-1} é unitário.

Proposição 7.3.3. Seja $T \in \mathcal{L}(V,V)$, onde V é um K-espaço vetorial com produto interno. Então T é unitário se e somente se o adjunto T^* existir e $T \circ T^* = T^* \circ T = \operatorname{Id}$.

7.4 Operadores Normais

Definição 7.4.1 (Operador Normal). Seja V um espaço vetorial com produto interno, e $T \in \mathcal{L}(V, V)$. Dizemos que T é normal se existir T^* e $T \circ T^* = T^* \circ T$.

Lema 7.4.2. Todo operador autoadjunto é normal.

Lema 7.4.3. Todo múltiplo escalar de um operador normal é normal.

Observação 7.4.4. A soma de operadores normais não é necessariamente normal.

Proposição 7.4.5. Seja V um espaço vetorial com produto interno e $T \in \mathcal{L}(V, V)$. Então:

- 1. $\|T(v)\| = \|T^*(v)\|, \forall v \in V$
- 2. Se $T(v) = \alpha v$, para $\alpha \in K$, então $T^*(v) = \overline{\alpha}v$
- 3. Se $T_1(v_1) = \alpha_1 T(v_1)$ e $T_2(v_2) = \alpha_2 T(v_2)$, para $v_1, v_2 \in V$ e $\alpha_1, \alpha_2 \in K$, com $\alpha_1 \neq \alpha_2$ então $\langle v_1, v_2 \rangle = 0$

Teorema 7.4.6. Seja V um espaço vetorial com produto interno. Se $T \in \mathcal{L}(V,V)$ é autoadjunto, então T possui um autovetor.

Lema 7.4.7. Seja V um espaço vetorial com produto interno e de dimensão finita e $T \in \mathcal{L}(V, V)$. Se W é um subespaço de T-invariante de V, então W^{\perp} é T^* -invariante.

Proposição 7.4.8. Seja V um espaço vetorial com produto interno e de dimensão finita. Se $T \in \mathcal{L}(V, V)$ é autoadjunto, então existe uma base ortonormal de V cujos vetores são autovetores de T.

Corolário 7.4.9. Seja $A \in \mathscr{M}_n(\mathbb{R})$ uma matriz de simétrica. Então existem uma matriz invertível $M \in \mathscr{M}_n(\mathbb{R})$ tal que M^tAM é diagonal.

Teorema 7.4.10. Seja V um \mathbb{C} -espaço vetorial com produto interno e de dimensão finita e $T \in \mathcal{L}(V,V)$. Então T é um operador normal se e somente se existir uma base ortonormal de V cujos vetores sejam autovetores de T.

Formas Bilineares