Emma Deckers Math 301 Spring 22 Homework 4

Page 54 Problem 4 Find $a \equiv 97 \pmod{7}$ for $0 \le a \le 6$. Notice 97 = 13(7) + 6, so $6 \equiv 97 \pmod{7}$.

Page 64 Problem 6 Let k be an integer such that $k^2 = n$ for a positive integer in $n \in \mathbb{Z}$. Then k has 8 possible values mod 8: $k = \{0, 1, 2, 3, 4, 5, 6, 7\}$. Then $k^2(mod8)$ has the following values: $k^2 = \{0, 1, 4, 1, 0, 1, 4, 1\}$. Thus if $n = k^2$ is a perfect square, n is congruent mod 8 to either 0,1, or 4.

Page 64 Problem 15 Show that for $m \ge 0$, $17|(3 \cdot 5^{2m+1} + 2^{3m+1})$. Let m be a positive integer. First, notice that $5^2 \equiv 2^3 mod 17$. Let m = 0, then it is true that 17 divides $3 \cdot 5^1 + 2^1 = 17$. Suppose that for some n > m that $17|(3 \cdot 5^{2n+1} + 2^{3n+1})$. By definition, this means that $3 \cdot 5^{2n+1} \equiv -2^{3n+1} mod 17$. Using theorem 3.2 from the textbook, $3 \cdot 5^{2n+1}(5^2) \equiv -2^{3n+1}(2^3) mod 17$. Observe that

$$3 \cdot 5^{2n+1} \cdot 5^2 = 3 \cdot 5^{2n+3}$$

$$= 3 \cdot 5^{2(n+1)+1}$$
And,
$$-2^{3n+1} \cdot 2^3 = -2^{3n+4}$$

$$= -2^{3(n+1)+1}$$

Therefore, $3 \cdot 5^{2(n+1)+1} \equiv -2^{3(n+1)+1} \mod 17$ which by definition means $17 | (3 \cdot 5^{2(n+1)+1} + 2^{3(n+1)+1})$. By induction we have proven the theorem.

Page 76 Problem 6 Solve $9x \equiv 21 \pmod{12}$.

The associated diophantine equation is given by 9x+12y=21. (9,12)=3|21 so there will be a solution. Using the Euclidean Algorithm,

$$12 = 9 + 3$$

$$3 = 12(1) + 9(-1)$$

$$21 = 12(7) + 9(-7)$$

The general solution is given by X = -7 + 4t for $t \in \mathbb{Z}$.