Measuring the immesurable analyzing the impact of different scheduling algorithms

Mgr. Šimon Tóth

Faculty of Informatics @ Masaryk University

April 9, 2013

available for non-commercial research

- available for non-commercial research
- interesting hardware

- available for non-commercial research
- interesting hardware
 - GPU clusters
 - clusters with infiniband
 - machines with up to 1TB RAM

- available for non-commercial research
- interesting hardware
 - GPU clusters
 - clusters with infiniband
 - machines with up to 1TB RAM
- a lot of very expensive and useful software

http://metavo.metacentrum.cz

April 9, 2013

3/22

Parallel job scheduling problem

(FI@MU) Measuring the immesurable

Parallel job scheduling problem

Problem specifics in GRID context

- multi-dimensional
 - each job can request a large set of resources
 - CPU, Memory, GPU, Scratch, Licenses,...
- on-line
 - jobs are not known until they arrive into the system
 - at any time any amount of jobs from any user can arrive
- non-clairvoyant
 - we only have upper bounds for job run times
 - jobs appearing as 24 hour long can easily end in 10 minutes

Wait-time and Slowdown

- most commonly used "quality" indicators
- both suffer from similar flaws
 - large sets of jobs from single user
 - different representations of equivalent requests

Example of bad evaluation

(FI@MU) Measuring the immesurable April 9, 2013

Example of bad evaluation

(FI@MU) Measuring the immesurable

April 9, 2013

Fairness

- many different representations
- commonly used approach is fairshare
 - priority balancing algorithm
 - using the system decreases priority

$$\forall i; \lim_{\substack{time \to \infty}} Usage(User_i) = TotalUsage \times DesignatedFraction(User_i)$$

Fundamentals

- quality based of user satisfaction
- modeling user expectations

The model

- each user given "bandwidth"

 - CPU 8 core second memory 16 GB second
- for each job a deadline is calculated according to available bandwidth

Deadlines example

- 4 jobs
 - 4 CPU cores
 - 8 GB RAM
 - 4 hour runtime

Deadlines:

- 4 hours for first and second job
- 8 hours for third and fourth job

Alea - the Grid Simulation Environment

- created by RNDr. Dalibor Klusáček, Ph.D.
- uses real data sets from CERIT and MetaCentrum

(FI@MU) Measuring the immesurable April 9, 2013 12 / 22

April 9, 2013

13 / 22

Scheduling algorithms

- trivial FIFO
- FIFO with backfilling
- combinations with fairshare variants

(FI@MU) Measuring the immesurable

April 9, 2013

14/22

Overview graphs

(FI@MU) Measuring the immesurable

Trivial FIFO

FIFO with backfilling

(FI@MU) Measuring the immesurable April 9, 2013

FIFO with fairshare

(FI@MU) Measuring the immesurable April 9, 2013

Fairshare and backfilling

(FI@MU) Measuring the immesurable April 9, 2013

19 / 22

Trivial FIFO

(FI@MU) Measuring the immesurable April 9, 2013

Future work

users with different priorities

Future work

- users with different priorities
- users with different tolerance towards deadline violation

(FI@MU) Measuring the immesurable April 9, 2013

Future work

- users with different priorities
- users with different tolerance towards deadline violation
- users with special access to particular machines

parallel job scheduling in grids

Summary

- parallel job scheduling in grids
- measuring quality of algorithms for job scheduling

Summary

- parallel job scheduling in grids
- measuring quality of algorithms for job scheduling
- model for quantifying the quality schedules

Summary

- parallel job scheduling in grids
- measuring quality of algorithms for job scheduling
- model for quantifying the quality schedules
- examples of real measurements

