Actuators

Kjartan Halvorsen

February 28, 2022

Mechanical requirements

Mechanical energy

From Encyclopaedia Britannica

Mechanical energy The sum of kinetic energy (the energy in movement) and the potential energy (energy stored in a system due to the position of its parts).

$$E_M = \underbrace{K}_{\text{Kinetic energy}} + \underbrace{U}_{\text{Potential energy}}$$

Mechanical energy

From Encyclopaedia Britannica

Mechanical energy The sum of kinetic energy (the energy in movement) and the potential energy (energy stored in a system due to the position of its parts).

$$E_M = \underbrace{K}_{\text{Kinetic energy}} + \underbrace{U}_{\text{Potential energy}}$$

A point mass m with velocity v at a height h above the reference level, has mechanical energy $E_M = \frac{1}{2}mv^2 + mgh$.

Work

From Encyclopaedia Britannica
Work In physics, the measure of transfer of energy when an object is diplaced
a certain distance by an external force which has a component in the direction
of the displacement..

Work

Activity A mass of $50~\mathrm{kg}$ is lifted a distance of $10~\mathrm{m}$. What is the work done?

Power

Definition The time-derivative of work.

Power

Activity A mass of $50~\rm kg$ is lifted a distance of $10~\rm m$ in 5 seocnds. What is the average power required?

Power and acceleration

Activity The new Hummer EV has a mass of $m=5000~{\rm kg}$, and can accelerate from $0-100~{\rm km/h}$ in three seconds. What is the average power required to achieve this (ignoring wind- and rolling resistance)?

Power in rotating systems

Torque multiplied with angular velocity

$$P = T\omega$$

Moment of inertia

Source: Georgia State University

Moment of inertia is a parameter in Newton's law that determines

▶ the tendency of a body to resist angular acceleration:

$$\mathbf{J}\dot{\omega}=\sum T_i$$

the kinetic energy of a body rotating at a certain angular velocity:

$$K = \frac{1}{2} J\omega^2$$
.

Power and torque requirements for an elevator

An elevator with mass $M=1000~{\rm kg}$, and a counterweight with mass $m=800~{\rm kg}$ are connected by a wire which runs over a pulley with radius of $r=0.4~{\rm m}$. An electric motor is connected to the pulley via a transmission with gear ratio of 12:1 (12 revolutions of the motor for each revolution of the pulley). The motor has a moment of inertia of $J_m=0.3~{\rm kgm^2}$. The inertia of the pulley can be ignored.

Activity (a) At what angular velocity is the motor rotating when the elevator is ascending at $4~\mathrm{m/s?}$ (b) Determine the power and the motor torque necessary to lift the elevator at $4~\mathrm{m/s}$ (assuming no friction). (c) The elevator takes two seconds to reach the velocity $4~\mathrm{m/s}$ from zero. During this time, the elevator has moved up $4~\mathrm{m}$. Determine the average power and torque during the start.

The DC motor

Source: Wikipedia Source: Siemens AG

Force on an electrical conductor in a magnetic field

FIG. 1.14 Primitive linear d.c. motor.

FIG. 1.15 Diagrammatic sketch of primitive linear d.c. motor.

Source

Force on an electrical conductor in a magnetic field

The electromagnetic force in a conductor is proportional to the current and the strength of the magnetic field:

$$F = k_m I = (BI_m)I,$$

where B is the magnetic flux density in the gap, I is the current, an I_m is the length of the conductor.

Activity In a large motor of 4 MW with an axial length of $I_m = 2 \text{ m}$, the magnetic flux density is B = 0.8 T and the current is I = 3 kA. How many parallel conductors are needed to achieve a force of F = 259.2 kN?

The two equations of the DC motor

The force on the electrical conductor in the magnetic field

$$F(t) = k_m i(t) \Leftrightarrow T(t) = k_m r i(t),$$

where r is the radius of the motor.

Voltage generated in a conductor that moves in a magnetic field

$$e(t) = k_{\nu}v(t) \Leftrightarrow e(t) = k_{\nu}r\omega(t)$$

e(t) is called Back electro-motive force (Back e.m.f.).

Electrical and mechanical power

With constant velocity v and ignoring friction and electrical resistance:

Electromagnetic force = Mechanical force
$$\Leftrightarrow$$
 $F = k_m I = B I_m I = mg$
Electric power = Mechanical power \Leftrightarrow $\underbrace{V_1 I}_{P_e} = \underbrace{Fv = B I_m Iv}_{P_m}$

It is necessary to apply a voltage V_1 across the cable to maintain the current I. This voltage is equal to the back e.m.f.

$$V_1I = BI_mIv \Rightarrow V_1 = (BI_m)v = k_vv = E$$
 Back e.m.f.

Actividad What is the relationship between the two constants k_v and k_m ?

Electrical and mechanical power

In practice some energy is lost due to the resistance in the electrical circuit.

Electrical power drawn = Heat production + Mechanical power
$$V_2I=RI^2+EI$$

Where
$$V_2 > V_1 = (BI_m)v = E$$
.

The efficiency of the motor

efficiency =
$$\frac{\text{Mechanical power}}{\text{Electrical power drawn}} = \frac{EI}{V_2I} = \frac{E}{RI + E}$$

Activity An electri motor has a motor constant $k=0.05~\mathrm{kN/A}$ and an armature resistance of $R=2~\mathrm{m}\Omega$. It is producing a mechanical power of $4~\mathrm{MW}$ at a velocity of $v=10~\mathrm{m/s}$. Calculate the back e.m.f E, the current I, then voltage V_2 and the efficiency.

Rotation

FIG. 3.1 Conventional (brushed) d.c. motor.

FIG. 3.2 Excitation (field) systems for d.c. motors (A) two-pole permanent magnet; (B) four-pole wound field.

Source: Hughes and Drury

Equivalent circuit

$$L\frac{d}{dt}i(t) + Ri(t) + k\omega(t) = V$$

$$Ri(t) + k\omega(t) = V$$

Newton:
$$J_{dt}^{\underline{d}}\omega(t) = ki(t) - T_I(t)$$

Velocity with constant load

$$L\frac{d}{dt}i(t) + Ri(t) + k\omega(t) = V(t)$$
(1)

$$J\frac{d}{dt}\omega(t) = ki(t) - T_I(t)$$
 (2)

In steady-state: i(t) = I, $\omega(t) = \omega$.

$$RI + k\omega = V \tag{3}$$

$$0 = kI - T_I \tag{4}$$

Activity Write the angular velocity as function of the load T_I and the volage V

$$\omega = f(V, T_I) = \frac{V}{k} - \frac{RT_I}{k^2}$$

Velocity with constant load

$$\omega = f(V, T_I) = \frac{V}{k} - \frac{RT_I}{k^2}$$

A specific motor has a motor constant $k=4~\mathrm{Nm/A}$ and armature resistence $R=1~\Omega$. A voltage of $V=100~\mathrm{V}$ is applied over the armature circuit.

Activity Sketch how the steady-state velocity depends on the load T_I . What is the stall torque (the torque that will cause the motor to stand still)?

Start-up

For a motor that is not rotating, the back e.m.f is zero, and only the resistance and the inductance of the armature limits the current.

$$L\frac{d}{dt}i(t) + Ri(t) + k\omega(t) = V$$

It is necessary to be careful with applying too much voltage at start-up to avoid excessive current in the motor.

Block-diagram of the equivalent circuit

