

Introduction to Artificial Intelligence - 2023 Summer

Jul 27, 2023 Thu 4 PM

Kwangwoon University MI:RU wangwoon onwerany winno Artificial Intelligence Study

Agenda

In this course, you will learn

Part 1 – Quick Review of Partial Derivation and Chain Rule

Part 2 – Perceptron & Artificial Neuron Networks

Part 3 – Linear Regression & Backpropagation

Part 4 – Recurrent Neural Networks (RNN)

Quick review of Partial Derivative and Chain Rule

Partial derivative

$$f'_x, f_x, \partial_x f, D_x f, D_1 f, \frac{\partial}{\partial x} f, \text{ or } \frac{\partial f}{\partial x}.$$

Quick review of Partial Derivative and Chain Rule

Partial derivative

What we want to know

- Change rate of ONLY x
- Then, handle y as a constant=> We can get the change rate of xONLY!

$$f(x,y)=f_y(x)=x^2+xy+y^2$$
 .

Handle y as a constant => Then, y will be eliminated $\frac{\partial f}{\partial x}(x,y)=2x+y.$

Quick review of Partial Derivative and Chain Rule

Chain Rule

Chain rule

$$rac{dz}{dx} = rac{rac{dz}{dt}}{rac{dx}{dt}}$$
 OR $rac{dz}{dt} = rac{dz}{dx} \cdot rac{dx}{dt}$ $rac{dz}{dx} = rac{dz}{dy} \cdot rac{dy}{dx} = 2 \cdot 4 = 8$

Quick review of Partial derivation

 $f_x(x,y)$: y is fixed

 $f_y(x,y)$: x is fixed

Neuron

Deep Learning Timeline

Neuron

Perceptron

The first Perceptron machine

One-Page Schoolhouse: Perceptron (ronkowitz.blogspot.com)

Single-Layer Perceptron

Single Layer Perceptron

Classification using Single-Layer Perceptron

- A perspective of Logic gates

No problem occurred

Classification using Single-Layer Perceptron

- A perspective of Logic gates

x_1	x_2	у
0	0	0
0	1	1
1	0	1
1	1	0

Problem occurred!!!

Neuron

Deep Learning Timeline

Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron

= =

Sequentially connected Single Layer Perceptron

Deep Learning?

Deep Learning
==
Training a Deep Neural Network

Multi-Layer Perceptron (MLP)

Structure	Regions	XOR	Meshed regions
single layer	Half plane bounded by hyper- plane	A B B A	B
two layer	Convex open or closed regions	A B A	B
three layer	Arbitrary (limited by # of nodes)	A B A	B

Massey University of New Zealand Artificial Intelligence – Lecture 7 (The XOR problem)

Deep Neural Network

A Neural Network Playground (tensorflow.org)

Deep Neural Network (DNN)

Sequentially connected Multi-Layer Perceptron

==

Deep Neural Network (DNN)

Deep Neural Network (DNN)

Structure of Neuron being used in Deep Neural Network

Activation function is included

Deep Neural Network (DNN)

How does DNN works?

<u>Universal approximation theorem - Wikipedia</u>

Backpropagation

Deep Learning Timeline

Linear Regression (also known as least squares)

Fitting a line so we can see what the trend is

How do we estimate the fitting?

Linear Regression

We can measure how well this line fits the data by seeing how close it is to the data points

The distance between the line _____ and 1st data point is b – y1

Linear Regression

Score =
$$(b-y1) + (b-y2) + (b-y3) + (b-y4)$$

$$y4 > b$$

 \Rightarrow b-y4 will be negative.

 \Rightarrow Problem?

Score =
$$(b-y1) + (b-y2) + (b-y3) + (b-y4) + (b-y5)$$

Solution?

Score =
$$(b-y1) + (b-y2) + (b-y3) + (b-y4) + (b-y5)$$

Solution?

Score =
$$|(b-y1)| + |(b-y2)| + |(b-y3)| + |(b-y4)| + |(b-y4)|$$

y5)

Score =
$$(b-y1) + (b-y2) + (b-y3) + (b-y4) + (b-y5)$$

Linear Regression

Score = (b-y1) + (b-y2) + (b-y3) + (b-y4) + (b-y5)Solve this mathematical problem efficiently!

Linear Regression

Score =
$$(b-y1) + (b-y2) + (b-y3) + (b-y4) + (b-y5)$$

Solve this mathematical problem efficiently!

$$Score = (b - y1)^2 + (b - y2)^2 + (b - y3)^2 + (b - y4)^2 + (b - y5)^2$$

We can square each term!

Linear Regression Let's rotate the line a little bit

Score =
$$(b-y1)^2+(b-y2)^2+\cdots+(b-y4)^2+(b-y9)^2$$

= 23.45

Linear Regression Let's rotate the line a little bit

Score =
$$(b-y1)^2+(b-y2)^2+\cdots+(b-y4)^2+(b-y9)^2$$

= 23.45

The better result

Linear Regression
What if we rotate too much?

Score =
$$(b-y1)^2+(b-y2)^2+\cdots+(b-y4)^2+(b-y9)^2$$

= 34.56

Linear Regression Equation expression

Generic line equation: y = a * x + bGoal: Find optimal values for "a" and "b" so that we minimize the sum of squared residuals

Linear Regression Equation expression

Generic line equation: y = a * x + bGoal: Find optimal values for "a" and "b" so that we minimize the sum of squared residuals

Sum of squared residuals
=
$$((a * x_1 + b) - y_1)^2 + ((a * x_2 + b) - y_2)^2 + \cdots$$

+ $((a * x_9 + b) - y_9)^2$

Linear Regression Equation expression

Generic line equation: y = a * x + bGoal: Find optimal values for "a" and "b" so that we minimize the sum of squared residuals

Sum of squared residuals
=
$$((a * x_1 + b) - y_1)^2 + ((a * x_2 + b) - y_2)^2 + \cdots + ((a * x_9 + b) - y_9)^2$$

 $(a * x_1 + b)$: The value of the line at x_1 y_1 : observed value at x_1

Since we want the line that give us the smallest sum of squares, this methods for finding the best value of "a" and "b" is called "least squares".

Linear Regression
Visualization of each rotation

Linear Regression Visualization of each rotation

How do we find the optimal rotation for the line?

Linear Regression Visualization of each rotation

How do we find the optimal rotation for the line?

Derivatives!

Linear Regression Derivative

Linear Regression Two independent variables

$$y = a * x + b$$

We have two independent variables that needs to be optimized

- 1) a: the slope
- 2) *b*: the intercept

Linear Regression

If the intercept has fixed?

=> Partial derivative

$$y = a * x + b$$

We have two independent variables that needs to be optimized

- 1) a: the slope
- 2) *b*: the intercept

Linear Regression

Take the derivative for both independent variables

=> Total derivative

$$y = a * x + b$$

We have two independent variables that needs to be optimized

- 1) a: the slope
- 2) *b*: the intercept

Linear Regression Advanced topic: Gradient Descent

Deep Neural Network (DNN)

Visualized the loss map of Deep Neural Network

Linear Regression Advanced topic: Gradient Descent

Linear Regression Advanced topic: Gradient Descent

Linear Regression Advanced topic: Backpropagation

Linear Regression Advanced topic: Backpropagation

Calculate through the Chain rule!

What is RNN?

Normal DNN

What is RNN?

Output is calculated sequentially! (or Recursively)

Visualization of RNN

ETC

Ripple Carry Adder

RNN: Examples

One-to-many

Ex) Input: Word Output: Emotions

Many-to-many

Input: Words
Output: Classes

Many-to-many

Input: Stock

price

Output: Stock price

Equations for RNN

Hidden
$$h_t = \tanh(W_x x_t + W_h h_{t-1} + b)$$

Output $y_t = f(W_y h_t + b)$
 f is a nonlinear activation function.

d: Dimension of the input (vector) D_h : Size of the hidden state x_t : $(d \times 1)$ W: $(D_h \times d)$ W_h : $(D_h \times D_h)$ h_{t-1} : $(D_h \times 1)$ h_{t-1} : $(D_h \times 1)$

Equations for RNN

Visualization of RNN calculation

Batch size: 1

Hidden $h_t = \tanh(W_x x_t + W_h h_{t-1} + b)$ Output $y_t = f(W_y h_t + b)$ f is a nonlinear activation function. d: Dimension of the input (vector) D_h : Size of the hidden state x_t : $(d \times 1)$ W: $(D_h \times d)$ W_h : $(D_h \times D_h)$ h_{t-1} : $(D_h \times 1)$ h_{t-1} : $(D_h \times 1)$

Practice: Partial Derivatives for Linear Equations

Equations for RNN

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

 \mathbf{MSE} = mean squared error

n = number of data points

 Y_i = observed values

 \hat{Y}_i = predicted values

$$y = mx + c$$

$$\frac{\partial MSE}{\partial m} = \frac{2}{n} \sum -x_i (y_i - (mx_i + c)) \qquad \qquad \frac{\partial MSE}{\partial c} = \frac{2}{n} \sum -(y_i - (mx_i + c))$$

Practice: Partial Derivatives for Linear Equations

Equations for RNN

$$MSE = \frac{1}{n} \sum (y_i - (mx_i + c))^2 \qquad y = mx + c$$

$$\frac{\partial MSE}{\partial m} = \frac{2}{n} \sum -x_i (y_i - (mx_i + c))^2$$

$$\frac{\partial MSE}{\partial c} = \frac{2}{n} \sum -(y_i - (mx_i + c))^2$$

Problem

$$(x1, y1) = (1, 2)$$

$$(x2, y2) = (2, 3)$$

$$(x3, y3) = (3, 4)$$

$$y = x$$

Learning rate = 0.01

Practice: Partial Derivatives for Linear Equations

Equations for RNN

$$MSE = \frac{1}{n} \sum (y_i - (mx_i + c))^2 \qquad y = mx + c$$

$$\frac{\partial MSE}{\partial m} = \frac{2}{n} \sum -x_i (y_i - (mx_i + c))$$

$$\frac{\partial MSE}{\partial c} = \frac{2}{n} \sum -(y_i - (mx_i + c))$$
Initial condition m:1, c:0
$$y = x$$

Problem

$$(x1, y1) = (1, 2)$$

$$(x2, y2) = (2, 3)$$

$$(x3, y3) = (3, 4)$$

$$MSE = \frac{1}{3}[(2-1)^2 + (3-2)^2 + (4-3)^2] = 1$$

$$\frac{\partial MSE}{\partial m} = \frac{2}{3} \left[-1(2-1) - 2(3-2) - 3(4-3) \right] = -4$$

$$\frac{\partial MSE}{\partial c} = \frac{2}{3} \left[-(2-1) - (3-2) - (4-3) \right] = -2$$

https://youtube.com/playlist?list=PLblh5JKOoLUIzaEkCLI UxQFjPllapw8nU

Section 01 (massey.ac.nz)