Neural Machine Translation By Jointly Learning To Align And Translate

(Bahdanau et al. 2015)

- Introduction
- Background
- Attention
- Experiments
- Results
- Related Works

Introduction

- Machine translation uses encoder-decoder models
- The model need to encode all information in a fixed-size vector
- The fixed-size vector is the bottleneck of the model
- The model should learn which part of the input sentence is important for a translation

Background

RNN encoder-decoder

- Encoder turns an input sequence $x=(x_1,...,x_{T_x})$ into a fixed-size vector c
 - $c = q(\lbrace h_1, h_2, \dots, h_{T_x} \rbrace)$
 - $h_t = f(x_t, h_{t-1})$
- Decoder turns a fixed-size vector c into a sequence y
 - $p(y) = \prod_{t=1}^{T} p(y_t | \{y_1, ..., y_{t-1}\}, c)$
 - $g(y_{t-1}, s_t, c)$
 - $s_t = f(s_{t-1}, y_{t-1}, c)$

Attention

- The Encoder is a bidirectional RNN
 - Reads the input sequence forward and backwards
 - Hidden states are concatenated $h_j = \begin{bmatrix} h_{>j}, h_{< j} \end{bmatrix}$

Attention

- Decoder $g(y_{i-1}, s_i, c_i)$
- $s_i = f(s_{i-1}, y_{i-1}, c_i)$
- $c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$
- $\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_{\chi}} \exp(e_{ik})}$
- $\bullet \ e_{ij} = a(s_{i-1}, h_j)$

Figure 1: The graphical illustration of the proposed model trying to generate the t-th target word y_t given a source sentence (x_1, x_2, \ldots, x_T) .

Dataset

- Bilingual, parallel corpus from ACL WMT 14
- List of 30000 most frequent words in each language as dictionary
- Words not on the list are mapped to an "unknown" token
- No other preprocessing is used

Experiments

- One traditional encoder-decoder model (RNNencdec)
 - Encoder and decoder have 1000 hidden units
- One encoder-decoder with attention (RNNsearch)
 - Forward and backward encoder have 1000 hidden units each
 - Decoder has 1000 hidden units
 - Attention MLP is single layer
- Models are trained twice, once with sentences of up to 30 words and once with sentences of up to 50 words

Quantitative Results

- RNNsearch outperforms RNNencdec
- Comparable to phrase-based system
- Better if unknown words are removed from the test set

Model	A11	No UNK°
RNNencdec-30	13.93	24.19
RNNsearch-30	21.50	31.44
RNNencdec-50	17.82	26.71
RNNsearch-50	26.75	34.16
RNNsearch-50*	28.45	36.15
Moses	33.30	35.63

Quantitative Results

- RNNsearch-50 performs consistent for growing sequence lengths
- RNNsearch-30 is similar to RNNencdec

Translations

Source sentence:

An admitting privilege is the right of a doctor to admit a patient to a hospital or a medical centre to carry out a diagnosis or a procedure, based on his status as a health care worker at a hospital.

RNNencdec50:

Un privilège d'admission est le droit d'un médecin de reconnaître un patient à l'hôpital ou un centre médical <u>d'un diagnostic ou de prendre un diagnostic en fonction de son état de santé.</u>

RNNsearch50:

Un privilège d'admission est le droit d'un médecin d'admettre un patient à un hôpital ou un centre médical pour effectuer un diagnostic ou une procédure, selon son statut de travailleur des soins de santé à l'hôpital.

Qualitative Results

- Weights visualize soft alignments
- Words are aligned to several words in the output

(c)

(d)

Related Works

- Transformer
- Attention in CNNs