第二章习题题解

2.7.2 计算题

- 2.1 MATLAB 提供了上三角、下三角、对角矩阵的生成函数 triu,tril 和 diag,读者可试用它们及 randintr 函数来生成随机的特殊矩阵。
- (a) 生成两个 4×4 的上三角随机方阵 **T**1 和 **T**2, 求 **T**1***T**2 及 **T**2***T**1, 说明为何上三角矩阵的乘积仍为上三角矩阵;为什么矩阵乘法不满足交换律;其对角线元素的乘积为何等于乘积的对角线元素。并说明这些规则是否适用于下三角矩阵,是否适用于任意方阵。

解: T1=tril(randintr(4)), T2=tril(randintr(4)), T12=T!*T2, T21=T2*T1

(b) 求上述两个上三角方阵 T1 和 T2 的转置 T3=T1'和 T4=T2'; 说明其为何成为下三角矩阵; 验证 (T1*T2)'=T1'*T2'是否成立? 应该是什么关系式; 求 T1 和 T2 的逆阵 V1 和 V2, 验证其乘积的逆阵与逆阵的乘积应满足何种关系。

T1=tril(randintr(5)), T2=tril(randintr(5)), T3=T1', T4=T2', E=T4*T3-(T1*T2)' 结果为 E=0

2.2 构建一个 4×4 的随机正整数矩阵 A, 取三次不同的 A, 检验下式是否满足:

$$(A+I)(A-I)=A^2-I$$

再生成三个 4×4 的随机正整数矩阵 B。然后检验下式是否满足:

$$(A+B)(A-B)=A^2-B^2$$

检验的方法可以靠读数比较。而更好的方法是列出"左端-右端"的语句,看结果是否为零。

证:程序为: A1=randintr(4), A2= randintr(4), A3 =randintr(4), B =randintr(4),

A=A1, E1=(A+eye(4))*(A-eye(4))-A^2+(eye(4))^2, E2=(A+B)*(A-B)-(A^2-B^2)

得到: E1=zeros(4), E2≠zeros(4), 故后一式不成立。

2.3 试证明:
$$\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm} \end{bmatrix} \begin{bmatrix} b_{11} & 0 & \cdots & 0 \\ b_{21} & b_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mm} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & 0 & \cdots & 0 \\ * & a_{22}b_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ * & * & \cdots & a_{mm}b_{mm} \end{bmatrix}, 即两下三角矩阵的乘$$

积仍为下三角矩阵,乘积的对角元素为两矩阵对应元素的乘积。消元初等矩阵 E 也有类似特性,设 E 为消元初等矩阵,说明 $L=\mathrm{inv}(E_3E_2E_1)$ 为什么为下三角矩阵。

证:在乘积 **C=A*B** 中的任意元素 cij 的表达式为: cij=ai1*b1j+ai2b2j+...+ainbnj, 在 i>j 的下三角区域内, aik 和 bkj 中必有一个数的第一下标大于第二下标,因而为零,所以乘积矩阵的诸下三角项均为零。

而其主对角线上的元素为: cii=ai1*b1i+ai2b2i+...+ainbni=d1+d2+...+dn。当 A,B 为下三角矩阵时,当 i<j 时,aij=bij=0。故 cii 的表达式中,前 i-1 项的 $a_{i,i-1}$ =0,\ 这些项的 $d_1,...,d_{i-1}$ =0,耐 i+1 到 n 各项的 d_i +1,...dn,又因 $b_i,i+1,...,b_i,i+n=0$ 而等于零,余下的只有 cii=aiibii 一项不为零,而 i 可取值 1,2,...,n。

乘积矩阵的上三角项则可能出现任何值。

由此命题得证。对两个上三角矩阵的乘积也可做类似的推理,证明其乘积必为上三角矩阵。

2.4 用题 2.3 的结论说明消元回代时矩阵主对角线上的元素为何不变,即 U1=ref1(A)和 U2=ref2(A)的 对角元素相同。用 MATLAB 生成 5 阶随机方阵来验证这一点。

解:因为用消元法进行回代以消除上三角区域中的非零项时,其消法矩阵 E 中的非零项将在上三角区域内,故 E 也是一个上三角矩阵,且其主对角线上各元素均为一。它与原来的上三角矩阵的乘积仍为上三角矩阵,且主对角线上所有的元素不变。

2.5 设
$$A = \begin{bmatrix} 8 & 7 & 6 \\ 8 & -8 & -9 \\ -2 & -3 & -7 \end{bmatrix}$$
,则什么样的 E_{21} 和 E_{31} 能使乘积 E_{21} A的(2,1)和 E_{31} A的(3,1)处生成零?

找出一个 $E=E_{21}E_{31}$,使得EA能同时在第一列下方生成两个零。

解:
$$\mathbf{E}_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $\mathbf{E}_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1/4 & 0 & 1 \end{bmatrix}$, $\mathbf{E} = \mathbf{E}_{21} * \mathbf{E}_{31} = \begin{bmatrix} 1.0000 & 0 & 0 \\ -1.0000 & 1.0000 & 0 \\ 0.2500 & 0 & 1.0000 \end{bmatrix}$

程序: A=[8,7,6;8,-8,-9;-2,-3,-7], E21=[1,0,0;-1,1,0;0,0,1], E31=[1,0,0;0,1,0;1/4,0,1],U1=E21*A,U2=E31*U1 E=E1*E31

运行结果
$$U_1 = E_{21}A = \begin{bmatrix} 8 & 7 & 6 \\ 0 & -15 & -15 \\ -2 & -3 & -7 \end{bmatrix}, \ U_2 = E_{31}U_1 = \begin{bmatrix} 8.0000 & 7.0000 & 6.0000 \\ 0 & -15.0000 & -15.0000 \\ 0 & -1.2500 & -5.5000 \end{bmatrix}$$

2.6 用分块乘积法可把第一列的下方消元为零: $EA = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -c/a & \mathbf{I} \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ \mathbf{0} & d-cb/a \end{bmatrix}$, 对于上题

所示矩阵 A, 对应本题中的 a、b、c、d 和 d-cb/a 都是什么值? 试用 MATLAB 检验其正确性。

解: 输入程序: a=8, b=[7,6], c=[0,-2]', d=[-15,-15;-3,-7], k= d-c*b/a

得到:
$$a = 8, b = \begin{bmatrix} 7 & 6 \end{bmatrix}, c = \begin{bmatrix} 0 & -2 \end{bmatrix}, d = \begin{bmatrix} -15 & -15 \\ -3 & -7 \end{bmatrix}, k = \begin{bmatrix} -15.0000 & -15.0000 \\ -1.2500 & -5.5000 \end{bmatrix}$$

2.7 设方阵
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 4 & 2 \\ 2 & 1 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 3 & 0 \\ 1 & 2 & 1 \\ 5 & 3 & -2 \end{bmatrix}$, 用列乘行分块乘法 $AB = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ [3 3 0] + … 计算乘积 AB ,

并对结果进行检验。读者也可自行生成四阶随机方阵进行检验。

解:

$$AB = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 3 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 4 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix} \begin{bmatrix} 5 & 3 & -2 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 0 \\ 6 & 6 & 0 \\ 6 & 6 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 4 & 8 & 4 \\ 1 & 2 & 1 \end{bmatrix} + \begin{bmatrix} 15 & 9 - 6 \\ 1 & 06 & -4 \\ 20 & 12 - 8 \end{bmatrix} = \begin{bmatrix} 18 & 12 - 6 \\ 2 & 02 & 00 \\ 27 & 20 - 7 \end{bmatrix}$$

用程序检验:

A=[1,0,3;2,4,2;2,1,4], B=[3,3,0;1,2,1;5,3,-2], C=A*B, 结果正确。

2.8 随机生成三个 3 × 3 同阶整数方阵 A , B , C , 验证公式: (a) A(B+C) = AB + AC ; (b) (AB)C = A(BC); (c) $(ABC)^{T} = C^{T}B^{T}A^{T}$; (d) $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$.

证:程序为: A=randintr(3), B= randintr(3), C=randintr(3),

E1=A*(B+C)-A*B-A*C, E2=(A*B)*C-A*(B*C), E3=(A*B*C)'-C'*B'*A',

E4=inv(A*B*C)-inv(C)*inv(B)*inv(A)

运行结果: E1=E2=E3=E4= 都等于 3×3 阶零矩阵,说明(a),(b),(c),(d)四个公式都是正确的。

2.9
$$\mbox{$\script{\psi}$} f(x) = x^5 + 4x^4 - 3x^3 + 2x - 7 \ , \ \mbox{$\sc i$} \mbox{$\sc i$}$$

程序为 A=[1,2,3,1;2,3,4,1;3,4,5,1;4,5,6,1], F=A^5+4*A^4-3*A^3+2*A-7运行结果为:

$$f(A) = \begin{bmatrix} 31627 & 45023 & 58419 & 13389 \\ 43365 & 61735 & 80105 & 18363 \\ 55103 & 78447 & 101791 & 23337 \\ 66841 & 95159 & 123477 & 28311 \end{bmatrix}$$

2.10 表 2-8 为某高校 2005 和 2006 年入学新生人数统计表。(1)求 2006 年与 2005 年相比,对应类别入学人数的增加情况。(2)若 2007 年与 2006 年入学相比,其增长人数比 2006 年相对于 2005 年入学的增长人数上再增加 10%,求 2007 年入学新生的人数分布情况。

表 2-0 赵 2.10 的数据表 					
2005 年新生人数统计表					
类别	一系	二系	三系	四系	五系
本科	200	200	150	150	180
硕士	25	20	30	20	18
2006 年新生人数统计表					
类别	一系	二系	三系	四系	五系
本科	220	210	200	160	200
硕士	35	28	30	26	28

表 2-8 题 2.10 的数据表

- 解:将两年新生的数目分别用矩阵 S1 和 S2 表示,2007 年新生用 S3 表示,则:
- (1) 2006 年比 2005 年的增长量为 dS1=S2-S1,
- (2) 设 2007 年比 2006 年的增长量为 dS2=S3-S2=0.1*dS1,则 S3=S2+dS2=S2+0.1*(S2-S1)

程序为: S1=[200,200,150,150,180;25,20,30,20,18],

S2=[220,210,200,160,200;35,28,30,26,28],

S3 = S2 + 0.1*(S2 - S1),

取整后 2007 年新生人数为:
$$round(S3) = \begin{bmatrix} 222 & 211 & 205 & 161 & 202 \\ 36 & 29 & 30 & 27 & 29 \end{bmatrix}$$

2.11 设
$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 4 & 2 \\ 6 & 3 & 5 \end{bmatrix}$$
,则用什么样的 \mathbf{E} 乘以 \mathbf{A} 能使 \mathbf{A} 变成上三角形式 \mathbf{U} ? 将 \mathbf{A} 分解为 $\mathbf{L}\mathbf{U}$ 中的 \mathbf{L}

与 E 有何关系?

解: A=[2,1,0;0,4,2;6,3,5], [L,U]=lu(A), E=inv(L)

$$L = \begin{bmatrix} 0.3333 & 0 & 1.0000 \\ 0 & 1.0000 & 0 \\ 1.0000 & 0 & 0 \end{bmatrix}, \ U = \begin{bmatrix} 6.0000 & 3.0000 & 5.0000 \\ 0 & 4.0000 & 2.0000 \\ 0 & 0 & -1.6667 \end{bmatrix},$$

$$E = \begin{bmatrix} 0 & 0 & 1.0000 \\ 0 & 1.0000 & 0 \\ 1.0000 & 0 & -0.3333 \end{bmatrix}, \ E*A = U$$

- 2.12 图 2-4 为五个城市之间的空运航线,用有向图表示。问:
- (1) 从城市 2 出发,最多经过 4 次转机(最多坐 5 次航班),到达城市 5,有几种不同的方法? (2) 从城市 5 出发,想到达城市 3,最少经过几次转机。

图 2-4 航站分布

解(a):
$$A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

A = [0,0,0,1,1;1,0,0,0,1;0,1,0,0,0;1,0,0,0,0;0,1,0,0,0]

K5=A+A^2+A^3+A^4+A^5

得到:
$$K5 = \begin{bmatrix} 6 & 4 & 0 & 4 & 7 \\ 7 & 6 & 0 & 4 & 8 \\ 4 & 4 & 0 & 3 & 6 \\ 4 & 3 & 0 & 3 & 4 \\ 4 & 4 & 0 & 3 & 6 \end{bmatrix},$$

K5(2,5)=8,故从城 2 到城 5 有八种方法。

解(b): 从任何城都不可能到达城 3, K5 的第三列所有元素均为零,故无解。

2.13 求矩阵的逆矩阵

(a)
$$\begin{bmatrix} 2 & 5 & 7 \\ 6 & 3 & 4 \\ 5 & -2 & -3 \end{bmatrix}$$
; (b)
$$\begin{bmatrix} 3 & -4 & 5 \\ 2 & -3 & 1 \\ 3 & -5 & -1 \end{bmatrix}$$
;

解: 计算程序为:

- (a) Va=inv([2,5,7;6,3,4;5,-2,-3]),
- (b) Vb=inv([3,-4,5;2,-3,1;3,-5,-1]),
- (c) Vc=inv([1,1,1,1,0,1,1,1,0,0,1,1,0,0,0,1]),
- (d) Vd=inv([5,2,0,0;2,1,0,0;0,0,1,-2;0,0,1,1]),

结果是:

$$Va = \begin{bmatrix} 1 & -1 & 1 \\ -38 & 41 & -34 \\ 27 & -29 & 24. \end{bmatrix}, \quad Vb = \begin{bmatrix} -8 & 29 & -11 \\ -5 & 18 & -7 \\ 1 & -3 & 1 \end{bmatrix}, \quad Vc = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad Vd = \begin{bmatrix} 1 & -2 & 0 & 0 \\ -2 & 5 & 0 & 0 \\ 0 & 0 & 0.3333 & 0.6667 \\ 0 & 0 & -0.3333 & 0.3333 \end{bmatrix}$$

2.14 (a) 计算图 2-5 所示网络的传输函数;

图 2-5 三级梯形网络

解: 第一级: u2=u1, i2-i1=-u1/R1, 写成矩阵形式为
$$\begin{bmatrix} u2 \\ i2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1/R1 & 1 \end{bmatrix} \begin{bmatrix} u1 \\ i1 \end{bmatrix} = A1 * \begin{bmatrix} u1 \\ i1 \end{bmatrix}$$
 第二级: u3-u2=-i2R2, i3=i2, 写成矩阵形式为 $\begin{bmatrix} u3 \\ i3 \end{bmatrix} = \begin{bmatrix} 1 & -R2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u2 \\ i2 \end{bmatrix} = A2 * \begin{bmatrix} u2 \\ i2 \end{bmatrix}$

第三级: u4=u3, i4-i3=-u3/R3, 写成矩阵形式为
$$\begin{bmatrix} u4 \\ i4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1/R3 & 1 \end{bmatrix} \begin{bmatrix} u3 \\ i3 \end{bmatrix} = A3*\begin{bmatrix} u3 \\ i3 \end{bmatrix}$$

syms R1 R2 R3, A1=[1,0;-1/R1,1],A2=[1,-R2;0,1],A3=[1,0;-1/R3,1],A=A3*A2*A1

得出:
$$A = A3*A2*A1 = \begin{bmatrix} 1 + R2/R1 & -R2 \\ -1/R3 - (R2/R3 + 1)/R1 & 1 + R2/R3 \end{bmatrix}$$

(b) 设
$$\mathbf{A} = \begin{bmatrix} 4/3 & -12 \\ -1/4 & 3 \end{bmatrix}$$
,设计一个三级梯形网络,使它的合成传输函数等于 \mathbf{A} 。

代入 A 矩阵的各元素, 形成 4 个等式, 可解得 R2=12, R1=36, R3=6。

2.15 解矩阵方程:

(a)
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} X = \begin{bmatrix} 3 & 5 \\ 5 & 9 \end{bmatrix}$$
; (b) $X \begin{bmatrix} 5 & 3 & 1 \\ 1 & -3 & -2 \\ -5 & 2 & 1 \end{bmatrix} = \begin{bmatrix} -8 & 3 & 0 \\ -5 & 9 & 0 \\ -2 & 15 & 0 \end{bmatrix}$;

(c)
$$\begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}{ll}$$

若将 A 转置一下,即令
$$A1 = A^T = \begin{bmatrix} 0 & -4 \\ 2 & 2 \\ 4 & 6 \end{bmatrix}$$
, 再求矩阵 X,为什么结果不同?

解: (a) Xa=inv([1,2;3,4])*[3,5;5,9],结果:
$$Xa = \begin{bmatrix} -1.0000 & -1.0000 \\ 2.0000 & 3.0000 \end{bmatrix}$$

(b) Xb=[-8,3,0;-5,9,0;-2,15,0]*inv([5,3,1;1,-3,-2;-5,2,1]),

结果为:
$$Xb = \begin{bmatrix} 1.0000 & 2.0000 & 3.0000 \\ 4.0000 & 5.0000 & 6.0000 \\ 7.0000 & 8.0000 & 9.0000 \end{bmatrix}$$

(c) A=[0,2,4;-4,2,6], B=[2,1,-1;-1,4,-1;1,-1,2], Xc=A*inv(B-eye(3))

结果:
$$Xc = \begin{bmatrix} -2 & 3 & 5 \\ -5 & 4 & 5 \end{bmatrix}$$

若将 A 转置成 A1=A', 代入 Xc=A1*inv(B-eye(3))

出错警告 Error using *

Inner matrix dimensions must agree. 矩阵乘法的内阶数不一致。乘号前 A1 为 3×2 阶,乘号后的 inv(B-eye(3))为 3×3 阶。内阶数不等,不能相乘。