# Steady 2D Diffusion

## Computational Fluid Dynamics (AM5630) Assignment 2

## Contents

| 1            | Steps Followed |                                                                                                                                                                                              |    |  |
|--------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|              | 1.1            | Mesh Geometry                                                                                                                                                                                | 1  |  |
|              | 1.2            | Computations                                                                                                                                                                                 | 2  |  |
| <b>2</b>     | Plo            | ts with varying parameter                                                                                                                                                                    | 2  |  |
|              | 2.1            | Plot with $n = 10 \dots \dots \dots \dots$                                                                                                                                                   | 3  |  |
|              | 2.2            | Plot with $n = 20$                                                                                                                                                                           | 3  |  |
|              | 2.3            | $n=30\ \dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots$ | 4  |  |
|              |                | Plot with $n = 40 \dots \dots \dots \dots \dots \dots \dots$                                                                                                                                 | 6  |  |
| 3            | Cor            | nvergence History                                                                                                                                                                            | 7  |  |
| 1            | St             | teps Followed                                                                                                                                                                                |    |  |
| 1.           | 1 N            | Mesh Geometry                                                                                                                                                                                |    |  |
| Οŀ           | ojecti         | ve : Define the Mesh Geomety                                                                                                                                                                 |    |  |
| $\mathbf{S}$ | ГEР            | 1 first create a differential 2D Control Volume with                                                                                                                                         |    |  |
| le           | $_{ m ngth}$   | $\mathbf{along} \ \mathbf{x} \ \mathrm{delta}_{\mathbf{x}}$                                                                                                                                  |    |  |
| le           | ngth           | $\mathbf{along} \ \mathbf{y} \ \mathrm{delta_y}$                                                                                                                                             |    |  |
| n            | -              | ared number of such differential control volumes required to construd<br>ll ${\rm CV}$                                                                                                       | et |  |

STEP 2 Compute the computational nodes for each differential control volume

src/mesh\_geometry.jl

#### 1.2 Computations

Objectives : COMPUTATIONS

STEP 1 identify the boundary nodes and apply the boundary conditions

Boundary 1 : T<sub>1</sub> = 15 Boundary 2 : T<sub>2</sub> = 10 Boundary 3 : T<sub>3</sub> = 
$$5(1-y/H) + 15 * \sin(pi*y/H)$$

STEP 2 write the equation for boundary 4

STEP 3 write the equation for internal nodes

STEP 4 setup the conditions for tolerance Approach:

- 1. pick n random nodes from grid
- 2. save temperature before each iteration
- 3. find the temperature after iteratrion
- 4.  $diff = after_{iteration temperature} before_{temperature}$
- 5. elementwise square each difference diff.<sup>2</sup>
- 6.  $\max(\text{diff.}^2) < \text{tolerance}$

and

prepare the required helper function for computation

STEP 5 perform the computations

### 2 Plots with varying parameter

tolerance is set to 0.00001

 $\mathbf{delta_x}$  length of differential cv in x direction

delta<sub>v</sub> length of differential cv in y direction

**n** number of grids

#### 2.1 Plot with n = 10

 $delta_x$  1.0

 $delta_y$  1.0

Temperature Distribution



## $2.2 \quad Plot \ with \ n=20$

 $delta_x$  0.1

 $delta_y$  0.1



2.3 n = 30

 $delta_x$  0.01

 $delta_y$  0.01



 $delta_x$  1.0

 $delta_y$  1.0



## 2.4 Plot with n = 40

 $delta_x$  0.01

 $delta_y$  0.01



## 3 Convergence History

This section contain the number of iteration required to achive desired convergence . the data is obtained and convergence history is plotted against logarithmic tolerane value

| Tolerance | Iteration Number |
|-----------|------------------|
| 0.1       | 7                |
| 0.01      | 14               |
| 0.001     | 81               |
| 0.0001    | 135              |
| 1e-05     | 187              |
| 1e-06     | 238              |
| 1e-07     | 289              |
| 1e-08     | 341              |
| 1e-09     | 392              |
| 1e-10     | 443              |
| 1e-11     | 495              |

