傅里叶变换笔记

Leoeon

2014.02.18

Contents

1	连续傅里叶		
	1.1	经典定义	3
		1.1.1 傅里叶变换	3
		1.1.2 特殊坐标系	4
		1.1.2.1 极坐标 $(r, heta)$	4
	1.2	现代定义	4
		$1.2.1$ 速降函数 ϕ 定义 \dots	4
		1.2.2 内积定义	4
		1.2.3 傅里叶变换定义	5
		1.2.4 内积性质	5
	1.3	性质	5
		1.3.1	5
		1.3.2	5
		1.3.3	5
		1.3.4	5
		1.3.5	5
2	<u> 11,</u>		
		····	6
	2.1		6
	2.2	1100-20	6
	2.3	矩阵形式	7
	2.4	FFT	7
3	其他		8
	3.1	δ	8
		3.1.1 δ经典定义	8
			8
			8
			8
	3.2		8
	J		0

Chapter 1

连续傅里叶

1.1 经典定义

1.1.1 傅里叶变换

对
$$f(t+1) = f(t)$$

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{n} A_k \cos(2\pi kt + \phi_k) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos(2\pi kt + \phi_k) + b_k \sin(2\pi kt))$$

$$= \sum_{k=1}^{n} \frac{1}{2} A_k e^{-i\phi_k} e^{-i2\pi kt} + \frac{a_0}{2} + \sum_{k=1}^{n} \frac{1}{2} A_k e^{i\phi_k} e^{i2\pi kt}$$

$$= \sum_{k=-n}^{n} c_k e^{2\pi ikt}$$

$$c_k = \int_{0}^{1} e^{-2\pi ikt} f(t) dt$$

对
$$f(t+T) = f(t)$$

$$f(t) = \sum_{k=-\infty}^{+\infty} c_k e^{2\pi i \frac{k}{T} t} \frac{1}{T}$$

$$c_k = \int_{-\frac{T}{2}}^{+\infty} f(t) e^{-2\pi i \frac{k}{T} t} dt$$

对
$$f(t+\infty) = f(t)$$

$$f(t) = \int_{-\infty}^{+\infty} F(s)e^{2\pi ist}ds = \mathcal{F}^{-1}[F(s)](t)$$

$$F(s) = \int_{-\infty}^{+\infty} f(t)e^{-2\pi ist}dt = \mathcal{F}[f(t)](s)$$

$$\begin{split} \vec{\mathcal{T}}f(\vec{t}+\infty) &= f(\vec{t}) \\ f(\vec{t}) &= \int\limits_{-\infty}^{+\infty} F(\vec{s}) e^{2\pi i \vec{s} \vec{t}} d\vec{s} &= \mathcal{F}^{-1}[F(\vec{s})](\vec{t}) \\ F(\vec{s}) &= \int\limits_{+\infty}^{+\infty} f(\vec{t}) e^{-2\pi i \vec{s} \vec{t}} d\vec{t} &= \mathcal{F}[f(\vec{t})](\vec{s}) \end{split}$$

1.1.2 特殊坐标系

1.1.2.1 极坐标 (r, θ)

对径向函数 $f(r_t)$ 有

$$F(r_s, \theta_s) = \int_0^{+\infty} \int_0^{2\pi} f(r_t) e^{-2\pi i r_s r_t \cos(\theta_s - \theta_t)} r_t dr_t d\theta_t = \int_0^{+\infty} f(r_t) J_0(2\pi r_t r_s r_t dr_t) dr_t$$

 $(其中<math>J_0$ 为零阶贝塞尔函数)

1.2 现代定义

1.2.1 速降函数 ϕ 定义

- φ(x) 为光滑函数
- $\forall m, n \geq 0$, $\lim_{x \to \infty} |x|^m |\frac{d^n}{dx^n} \phi(x)| \to 0$

(Porseval/Radey等式(速降函数性质): $\int\limits_{-\infty}^{+\infty} |\mathcal{F}[\phi]|^2 ds = \int\limits_{-\infty}^{+\infty} |\phi|^2 dt)$

1.2.2 内积定义

$$\langle f, \phi \rangle = \int_{-\infty}^{+\infty} f(t)\phi(t)dt$$

1.3. 性质

1.2.3 傅里叶变换定义

$$\left\{ \begin{array}{rcl} \langle \mathcal{F}[f], \phi \rangle & = & \langle f, \mathcal{F}[\phi] \rangle & (\ \underset{-\infty}{\mathbb{H}} \int\limits_{-\infty}^{+\infty} \mathcal{F}[f(t)](s) \phi(s) ds = \int\limits_{-\infty}^{+\infty} f(t) \mathcal{F}[\phi(s)](t) dt)) \\ \langle \mathcal{F}^{-1}[F], \phi \rangle & = & \langle F, \mathcal{F}^{-1}[\phi] \rangle & (\ \underset{-\infty}{\mathbb{H}} \int\limits_{-\infty}^{+\infty} \mathcal{F}^{-1}[F(s)](t) \phi(t) dt = \int\limits_{-\infty}^{+\infty} F(s) \mathcal{F}^{-1}[\phi(t)](s) ds) \end{array} \right.$$

1.2.4 内积性质

$$\langle f',\phi\rangle=-\langle f,\phi'\rangle$$

$$\langle fg,\phi\rangle=\langle g,f\phi\rangle\ (f\phi$$
需满足速降函数定义)

泊松求和公式:

$$\sum_{n=-\infty}^{+\infty} \phi(n) = \sum_{m=-\infty}^{+\infty} \mathcal{F}[\phi](m)$$

1.3 性质

1.3.1

$$\mathcal{F}[f(-t)] = \mathcal{F}^{-1}[f(t)]$$
$$\mathcal{F}[\mathcal{F}[f(t)]] = \mathcal{F}^{-1}[\mathcal{F}^{-1}[f(t)]] = f(-t)$$

1.3.2

$$\mathcal{F}[f(\vec{t} \pm \vec{b})](\vec{s}) = e^{\pm 2\pi i \vec{s} \vec{b}} \mathcal{F}[f(\vec{t})](\vec{s})$$

1.3.3

标量a,矩阵A

$$\mathcal{F}[f(at)](t) = \frac{1}{|a|} \mathcal{F}[f(t)](\frac{s}{a})$$

$$\mathcal{F}[f(A\vec{t})](\vec{s}) = \frac{1}{|\det(A)|} \mathcal{F}[f(\vec{t})](A^{-1T}\vec{s})$$

1.3.4

$$\mathcal{F}[f^{(n)}(t)](s) = (2\pi i s)^n \mathcal{F}[f(t)](s)$$
$$(\mathcal{F}[f(t)](s))^{(n)} = \mathcal{F}[(-2\pi i t)^n f(t)](s)$$

1.3.5

若
$$f(\vec{t}) = f_1(t_1) \cdots f_n(t_n)$$
,则 $F(\vec{s}) = \mathcal{F}[f(\vec{t})](\vec{s}) = \mathcal{F}[f_1(t_1)](s_1) \cdots \mathcal{F}[f_n(t_n)](s_n)$

Chapter 2

离散傅里叶

2.1 香农采样定理

周期性函数

$$V_R(t) = \sum_{n=-\infty}^{+\infty} V(r - nR) = (V * \coprod_R)(t)$$

香农采样定理:滤去 $\mathcal{F}[f]$ 中大于 $|\frac{R}{2}|$ 的频率,内插重现原函数(抽样速率R)

$$\mathcal{F}[f] = \prod_R (\mathcal{F}[f] * \amalg_R) \qquad \qquad \mathcal{F}[g] \neq \prod_R (\mathcal{F}[g] * \amalg_R) \\ \qquad \qquad \qquad \qquad \qquad \downarrow \\ f(t) = \sum_{n=-\infty}^{+\infty} f(\frac{n}{R}) sinc(R(t-\frac{n}{R})) \qquad \qquad$$
无法还原,高频被破坏

2.2 离散近似

f的 离散近似的 傅里叶变换的 离散近似(f与F都必须周期延拓(故可1 MN或0 MN-1等等))

2.3. 矩阵形式 7

或

则

或

2.3 矩阵形式

$$\Rightarrow w \stackrel{def}{=} e^{2\pi i \frac{1}{MN}}$$
,则

$$\hat{f}_{n} = \frac{1}{MN} \sum_{m=1}^{MN} w^{mn} \hat{F}_{m}$$

$$\begin{bmatrix} \hat{F}_{1} \\ \vdots \\ \hat{F}_{m} \\ \vdots \\ \hat{F}_{m} \end{bmatrix} = \begin{bmatrix} w^{-1} & \cdots & w^{-n} & \cdots & w^{-MN} \\ \vdots & & \vdots & & \vdots \\ w^{-m} & \cdots & w^{-mn} & \cdots \\ \vdots & & \vdots & & \vdots \\ w^{-MN} & & \cdots & w^{-M^{2}N^{2}} \end{bmatrix} \begin{bmatrix} \hat{f}_{1} \\ \vdots \\ \hat{f}_{n} \\ \vdots \\ \hat{f} \end{bmatrix}$$

 $\hat{F}_m = \sum_{m=1}^{MN} w^{-mn} \hat{f}_n$

$$\begin{bmatrix} \hat{f}_1 \\ \vdots \\ \hat{f}_n \\ \vdots \\ \hat{f}_{MN} \end{bmatrix} = \frac{1}{MN} \begin{bmatrix} w^1 & \cdots & w^m & \cdots & w^{MN} \\ \vdots & & \vdots & & \vdots \\ w^n & \cdots & w^{mn} & \cdots \\ \vdots & & \vdots & & \vdots \\ w^{MN} & \cdots & & w^{M^2N^2} \end{bmatrix} \begin{bmatrix} \hat{F}_1 \\ \vdots \\ \hat{F}_m \\ \vdots \\ \hat{F}_{MN} \end{bmatrix}$$

$$\hat{f} = \mathcal{F}^{-1}\hat{F} = \frac{1}{MN}\mathcal{F}^{+}\hat{F}$$

2.4 FFT

$$\vec{N}m = 0, \cdots, \frac{MN}{2} - 1, \quad \diamondsuit n' = \frac{n}{2}$$

$$F(\frac{m}{M}) = \sum_{\substack{n'=0 \\ \frac{MN}{2} - 1}}^{\frac{MN}{2} - 1} f(\frac{2n'}{N}) e^{-2\pi i \frac{mn'}{\frac{MN}{2}}} + e^{-2\pi i \frac{m}{MN}} \sum_{\substack{n'=0 \\ \frac{MN}{2} - 1}}^{\frac{MN}{2} - 1} f(\frac{2n'+1}{N}) e^{-2\pi i \frac{mn'}{\frac{MN}{2}}}$$

$$F(\frac{m + \frac{MN}{2}}{M}) = \sum_{\substack{n'=0 \\ \frac{MN}{2} - 1}}^{\frac{MN}{2} - 1} f(\frac{2n'}{N}) e^{-2\pi i \frac{mn'}{\frac{MN}{2}}} - e^{-2\pi i \frac{m}{MN}} \sum_{\substack{n'=0 \\ n'=0}}^{\frac{MN}{2} - 1} f(\frac{2n'+1}{N}) e^{-2\pi i \frac{mn'}{\frac{MN}{2}}}$$

Chapter 3

其他

3.1 δ

3.1.1 δ 经典定义

•
$$\delta(x) = \begin{cases} 0 & , & x \neq 0 \\ \infty & , & x = 0 \end{cases}$$

$$\bullet \int_{-\infty}^{+\infty} \delta(x) dx = 1$$

$$\bullet \int_{-\infty}^{+\infty} \delta(x) f(x) dx = f(0)$$

3.1.2 性质

3.1.2.1

$$\delta(a-x)f(x) = \delta(a-x)f(a)$$

$$(\delta * f)(a) = \int_{-\infty}^{+\infty} \delta(a-x)f(x)dx = f(a)$$

$$(\delta(x-a) * f(x))(y) = f(y-a)$$

3.1.2.2

$$\delta(A\vec{x}) = \frac{1}{|det(A)|}\delta(x)$$

3.2 II

3.3. 巻积 9

3.3 卷积

$$(g*f)(u) \stackrel{def}{=} \int\limits_{-\infty}^{+\infty} g(u-x)f(x)dx$$

$$\mathcal{F}[f(t)](s)\mathcal{F}[g(t)](s) = \mathcal{F}[(f*g)(u)](s)$$
 若 $x_1\cdots x_n$ 独立,则 $\int\limits_{x_1+\cdots+x_n\leq t} p_1(x_1)\cdots p_n(x_n)dx_1\cdots dx_n = \int\limits_{-\infty}^{+\infty} (p_1*\cdots*p_n)(v)dv$ $(f*g)'=f'*g$ (只要f可微,则 $f*g$ 可微) 一般而言, $f*g$ 比 f 、g都光滑