Geometric primitives

Given 3 points in the plane, we want to answer the following question:


```
//return true if c is (strictly) left of ab, false otherwise
bool left(point2d a, b, c)
```

- Why? This will be our basic primitive and based on it we'll develop others
 (e.g. do two segments ab and cd intersect? is a point inside a polygon? etc)
- To answer, we'll use the sign of the cross product

The cross product in 3D

Given two vectors a, b in 3D

- The cross product $a \times b$ is a vector
 - direction: perpendicular to a and b
 - its magnitude: the area of the parallelogram defined by a and b: $|a| \cdot |b| \cdot sin(\theta)$

There are two possible directions perpendicular on a, b.

The direction of the cross product: the right hand rule

If θ is the angle from a to b, note that

- $\sin(\theta) > 0$ when $\theta < \pi$ (b is left of a)
- $\sin(\theta) < 0$ when $\theta \in (\pi, 2\pi)$ (b is right of a)
- $\sin(\theta) = 0$ when $\theta = 0$ or $\theta = \pi$ (a, b on same line)

If we knew the sign of $\sin(\theta)$ we could tell if a is left/right of b

The cross product in 3D

We can calculate the cross product as:

$$a \times b = \overrightarrow{n} \cdot (\text{area parallelogram}) = \overrightarrow{n} \cdot |a| |b| \sin(\theta)$$

where \overrightarrow{n} is the unit vector in the direction of the normal

Also as:

$$a \times b = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a \cdot x & a \cdot y \cdot & a \cdot z \\ b \cdot x & b \cdot y & b \cdot z \end{vmatrix} = \overrightarrow{i} \begin{vmatrix} a \cdot y & a \cdot z \\ b \cdot y & b \cdot z \end{vmatrix} - \overrightarrow{j} \begin{vmatrix} a \cdot x & a \cdot z \\ b \cdot x & b \cdot z \end{vmatrix} + \overrightarrow{k} \begin{vmatrix} a \cdot x & a \cdot y \\ b \cdot x & b \cdot y \end{vmatrix}$$

If the vectors are in 2D:

$$a = \begin{bmatrix} a \cdot x \\ a \cdot y \\ 0 \end{bmatrix} \qquad b = \begin{bmatrix} b \cdot x \\ b \cdot y \\ 0 \end{bmatrix}$$

$$a \times b = \overrightarrow{k} \cdot (\text{area parallelogram}) = \overrightarrow{k} \cdot |a| |b| \sin(\theta)$$

$$a \times b = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a \cdot x & a \cdot y \cdot & 0 \\ b \cdot x & b \cdot y & 0 \end{vmatrix} = \overrightarrow{k} \begin{vmatrix} a \cdot x & a \cdot y \\ b \cdot x & b \cdot y \end{vmatrix} = \overrightarrow{k} (a \cdot x \cdot b \cdot y - a \cdot y \cdot b \cdot x)$$

this is a signed quantity

• if
$$> 0 \Rightarrow \sin(\theta) > 0 \Rightarrow$$
 b left of a

· if
$$< 0 \Rightarrow \sin(\theta) < 0 \Rightarrow$$
 b right of a

• if
$$= 0 \Rightarrow$$
 a,b on same line

is point c left of line ab?

$$A = \begin{bmatrix} b \cdot x - a \cdot x \\ b \cdot y - a \cdot y \end{bmatrix}$$

$$B = \begin{bmatrix} c \cdot x - a \cdot x \\ c \cdot y - a \cdot y \end{bmatrix}$$

$$A \times B = \overrightarrow{k}(A \cdot x \cdot B \cdot y - A \cdot y \cdot B \cdot x)$$

this is a signed quantity = $2 \cdot SignedArea(abc)$

- if $> 0 \Rightarrow$ B=ac left of A=ab => c left of ab
- if $< 0 \Rightarrow$ B=ac right of A=ab => c right of ab
- if $= 0 \Rightarrow$ a, b, c collinear

```
//return 2 x the area of the triangle from ab to c
int two_signed_area(point2d a, b, c) {
    Ax = b.x - a.x;
    Ay = b.y - a.y;
    Bx = c.x -a.x;
    By = c.y - aa.y;
    return Ax By - Ay Bx;
}
```

```
//return true if c is (strictly) left of ab, false otherwise
bool left(point2d a, b, c) {
   return two_signed_area(a, b, c) > 0;
}
//return true if c is (strictly) right of ab, false otherwise
 bool right(point2d a, b, c) {
     return two signed area(a, b, c) < 0;
 }
 //return true if a, b, c collinear, false otherwise
 bool collinear(point2d a, b, c) {
  return two signed area(a, b, c) == 0;
 }
```