Gretel Rajamoney May 17, 2022 CS 321 Assignment 8

Section 9.1 (Question 1):

Input	Result
a	Reject
b	Reject
ab	Reject
ba	Reject
abab	Accept
baba	Reject
aabbaabb	Accept
aabaabb	Reject
ababab	Reject
aaabbbaaabbb	Accept

States: {q0, q1, q2, q3, q4, q5, q6}

Input Alphabet: {a, b}

Tape Alphabet: {a, b, k, y, z}

Blank Symbol: {□} Initial State: {q0} Final State: {q6}

Transitions:

$\delta (q0, a) = \{(q1, \square, R)\}$
$\delta (q0, y) = \{(q2, y, R)\}$
δ (q1, a) = {(q1, a, R)}
δ (q1, b) = {(q4, y, R)}
$\delta (q1, y) = \{(q1, y, R)\}$
δ (q2, \square) = {(q6, \square , R)}
$\delta (q2, k) = \{(q2, k, R)\}$
$\delta (q2, y) = \{(q2, y, R)\}$
$\delta (q2, z) = \{(q2, z, R)\}$
$\delta (q3, \square) = \{(q0, \square, R)\}$
δ (q3, a) = {(q3, a, L)}

$$\delta$$
 (q3, b) = {(q3, b, L)}
 δ (q3, k) = {(q3, k, L)}
 δ (q3, y) = {(q3, y, L)}
 δ (q3, z) = {(q3, z, L)}
 δ (q4, a) = {(q5, z, R)}
 δ (q4, b) = {(q4, b, R)}
 δ (q4, z) = {(q4, z, R)}
 δ (q5, a) = {(q5, a, R)}
 δ (q5, b) = {(q3, k, L)}
 δ (q5, k) = {(q5, k, R)}

Section 9.1 (Question 2):

Input	Output	Result
1	11111	Accept
11	1111111	Accept
111	111111111	Accept
1111	11111111111	Accept
11111	1111111111111	Accept
111111	111111111111111	Accept
1111111	111111111111111111	Accept

States: {q0, q1, q2, q3, q4, q5, q6, q7}

Input Alphabet: {1}
Tape Alphabet: {1, X}
Blank Symbol: {□}
Initial State: {q0}
Final State: {q4}

Transitions:

$$\delta$$
 (q0, 1) = {(q7, X, R)}

$$\delta(q7, 1) = \{(q7, 1, R)\}$$

$$\delta$$
 (q7, \square) = {(q6, \square , R)}

$$\delta$$
 (q6, 1) = {(q6, 1, R)}

$$\delta$$
 (q6, \Box) = {(q6, 1, L)}

$$\delta$$
 (q5, \square) = {(q5, \square , L)}

$$\delta$$
 (q5, 1) = {(q5, 1, L)}

$$\delta$$
 (q5, X) = {(q5, X, R)}

$$\delta$$
 (q0, \Box) = {(q1, 1, L)}

$$\delta$$
 (q1, X) = {(q1, 1, L)}

$$\delta$$
 (q1, \Box) = {(q2, 1, L)}

$$\delta$$
 (q2, \Box) = {(q3, 1, L)}

$$\delta$$
 (q3, \square) = {(q4, \square , R)}

Section 9.1 (Question 3):

Let's use the function f(x) = 3x + 3, where x is a positive integer represented in unary. The tape will halt the run if there is a '0' present somewhere within the tape. We get the following turing machine:

Input	Result
0	Accept
1	Cancelled
	Accept
10	Accept
111	Cancelled

Although we cannot test this turing machine in JFLAP, we can see that whenever there is a '0' present within the input, the tape halts and accepts. Meanwhile, when there is no '0' present within the input, the tape repeatedly iterates and eventually cancels.

States: {q0, q1}

Input Alphabet: {0, 1}

Tape Alphabet: {□, 0, 1}

Blank Symbol: {□}

Initial State: {q0}

Final State: {q1}

Transitions:

 δ (q0, \square) = {(q0, \square , R)}

 $\delta(q0, 0) = \{(q1, 0, R)\}$

 δ (q0, 1) = {(q0, 1, R)}