INDIAN INSTITUTE OF TECHNOLOGY MADRAS Department of Chemical Engineering

CH5115: Parameter and State Estimation

Assignment 1

Due: Thursday, October 22, 2020

- 1. (a) Determine if the random process $v[k] = A\cos^2(2\pi f k + \phi)$, where ϕ is a constant but A is a random variable with zero mean and unit variance, is covariance stationary.
 - (b) The random walk process v[k] = v[k-1] + e[k] is known to be variance non-stationary. Assuming v[0] = 0, prove this result. Verify your finding numerically using MATLAB.
- 2. A process evolves as $y[k] = y^*[k] + e[k]$, where $y^*[k] = \frac{b_2^0 q^{-2}}{1 + f_1^0 q^{-1}} u[k]$, u[k] is a known signal and y[k] is the measured version of $y^*[k]$. The measurement noise is $e[k] \sim \mathsf{WN}(0, \sigma_e^2)$ and $u[k] \sim \mathsf{WN}(0, \sigma_u^2)$. Assume $\sigma_{eu}[l] = 0, \ \forall l$.
 - (a) Develop expressions for σ_y^2 , $\sigma_{yy}[1]$, $\sigma_{yu}[1]$, and $\sigma_{yu}[2]$ in terms of the variances of u[k] and the white-noise sequences, i.e., σ_u^2 and σ_e^2 respectively.
 - (b) Generate N=500 observations of y[k] with $\sigma_u^2=2$. Adjust σ_e^2 such that the SNR $\sigma_{y^\star}^2/\sigma_e^2$ is set to 10. Estimate the quantities (variance, auto-covariance and cross-covariance) in (2a) and compare their closeness with the theoretical answers in (2a).
- 3. For the series given in a2_q3.mat,
 - (a) Determine the presence of any integrating effects.
 - (b) Fit a suitable ARIMA model. Report all the necessary steps and the final model.
- 4. (a) For a GWN process $y[k] \sim \mathcal{N}(\mu, \sigma^2)$, where $0 \leq \mu < \infty$, derive the ML estimate and Fisher information of μ given N observations and known σ^2 .
 - (b) Consider the linear regression problem $Y=aX+b+\varepsilon$. Determine the Fisher information of parameters a and b contained in N observations $\{(y[k],x[k])\}_{k=1}^N$ assuming X is free of randomness and $\varepsilon \sim \mathcal{N}(0,\sigma_e^2)$. Verify your analytical answer (for the ML estimate) with simulation in MATLABby plotting the likelihood functions and locating the maximum. Choose N=100, $\sigma_e^2=1$, a=2,b=3 and $\mu_0=1$ (true value).