Thesis: Seventh meeting Some minor additions

Minor additions

Georgy Gomon

November 4, 2021

Model 3A1

Minor additions

•000000

Y_1 scaled entirely with independent Slope & Intercept

$$i = 1, ..., N; j = 1, ..., n$$

$$\begin{cases} m_{ij} = (\beta_0^1 + u_{0,i}^1) + \beta_x^1 \cdot x_i + \left(\beta_t^1 + u_{t,i}^1\right) \cdot \textit{Period}_{i,j} \\ y_{i,j}^1 = m_{ij} + \epsilon_{i,j}^1 \\ y_{i,j}^2 = \gamma \cdot m_{ij} + (\beta_0^2 + u_{0,i}^2) + \beta_x^2 \cdot x_i + \left(\beta_t^2 + u_{t,i}^2\right) \cdot \textit{Period}_{i,j} + \epsilon_{i,j}^2 \end{cases}$$
 with

$$u_{0,i}^1 \sim \mathcal{N}(0, \sigma_{1,0}^2); \quad u_{t,i}^1 \sim \mathcal{N}(0, \sigma_{1,t}^2); \quad \begin{bmatrix} u_{0,i}^2 \\ u_{t,i}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{2,0}^2 & \sigma_{2,(0,t)} \\ \sigma_{2,(t,0)} & \sigma_{2,t}^2 \end{pmatrix} \end{bmatrix};$$

$$egin{bmatrix} egin{pmatrix} \epsilon_i^1 \ \epsilon_i^2 \end{bmatrix} \sim \mathcal{N}_{2j}(\mathbf{0}, \mathbf{I}_{2j})$$

Model 3A2

Minor additions

0000000

Y_1 scaled entirely with dependent Slope & Intercept

$$i = 1, ..., N; j = 1, ..., n$$

$$\begin{cases} m_{ij} = (\beta_0^1 + u_{0,i}^1) + \beta_x^1 \cdot x_i + (\beta_t^1 + u_{t,i}^1) \cdot Period_{i,j} \\ y_{i,j}^1 = m_{ij} + \epsilon_{i,j}^1 \\ y_{i,j}^2 = \gamma \cdot m_{ij} + (\beta_0^2 + u_{0,i}^2) + \beta_x^2 \cdot x_i + (\beta_t^2 + u_{t,i}^2) \cdot Period_{i,j} + \epsilon_{i,j}^2 \end{cases}$$

To-do

with

$$\begin{bmatrix} u_{0,i}^1 \\ u_{t,i}^1 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{1,0}^2 & \sigma_{1,(0,t)} \\ \sigma_{1,(t,0)} & \sigma_{1,t}^2 \end{pmatrix} \end{bmatrix}; \quad \begin{bmatrix} u_{0,i}^2 \\ u_{t,i}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{2,0}^2 & \sigma_{2,(0,t)} \\ \sigma_{2,(t,0)} & \sigma_{2,t}^2 \end{pmatrix} \end{bmatrix};$$

$$egin{bmatrix} m{\epsilon}_i^1 \ m{\epsilon}_i^2 \end{bmatrix} \sim \mathcal{N}_{2j}(m{0},m{\mathsf{I}}_{2j})$$

Models 3A in INLA

Minor additions

0000000

- Although Models 3A1 and 3A2 are very similar and even nested, they are implemented in INLA very differently (One can implement models in a multitude of ways in INLA).
- I show the difference in implementation between the 2 models since the simulation results are very different.

Model 3A1 in INLA

Minor additions

0000000

• The copy trick is used and fixed effects are modelled as random effects with 2 levels: Each outcome has it's own level.

To-do

• Every term involved in each of the models is copied in this way.

```
$coefficients
                  INLA true_combi INLA_combi
         true
          2.0 1.961858
beta 0^1
                               2.0
                                     1.961858
beta x^1
          4.0 3.997196
                               4.0
                                     3.997196
beta t^1
          2, 5 2, 501245
                                     2,501245
beta 0^2
          3.0 4.193585
                                     5,341272
beta x∧2
          1.5 3.981618
                               6.3
                                     6.319978
                               6.5
                                     6.589832
beta t∧2
          3.5 5.126604
          1.2 0.585000
gamma
                                NΔ
                                            NΔ
```

```
$U1
                                $112
$U1$true
                                $U2$true
            [.1]
                         [.2]
                                          [.1]
                                                    Γ.21
     2.06292431 -0.04536504
                                [1.] 2.978606 1.420168
[2.] -0.04536504
                   2.71835906
                                [2.] 1.420168 3.870316
$U1$TNLA
                                $U2$INLA
         [,1]
                   [,2]
                                            [.1]
                                                        [,2]
[1.] 2.134135 0.000000
                                       5.0079391 -0.5584875
[2.] 0.000000 2.744491
                                     -0.5584875
                                                  7.6892306
```

Minor additions

0000000

- Data fit as 3 likelihood model
- First likelihood is outcome Y1
- Second likelihood is outcome Y2
- Third likelihood is a Gaussian with very low noise and outcome Y3=0. Only random effects u can be copied, so we need the linear predictors of model Y_1 as random effects u. For this we use that $\eta_1 = u \rightarrow \eta_1 u = 0$ to ensure the random effects u are the linear predictors for Y_1 , which we then copy to Y_2 .

```
$coefficients
                                                 $U1
                                                                            $112
                   INLA true combi INLA combi
         true
                                                 $U1$true
                                                                            $U2$true
beta 0^1
          2.0 1.871538
                              2.00
                                     1.871538
                                                          [.1]
                                                                                      [.1]
beta_x^1
          4.0 4.000832
                              4.00
                                     4.000832
                                                 [1.] 2.085740 1.600423
                                                                             [1,] 2,924897 1,572376
beta tA1
          2, 5, 2, 331,216
                              2.50
                                     2.331216
                                                 [2.] 1.600423 2.873966
                                                                             [2.] 1.572376 3.754722
                              5.60
                                      5.664190
beta 0^2
          3.0 3.175045
beta xA2 1.5 1.365655
                              6.70
                                     6.686761
                                                 $U1$INLA
                                                                            $U2$INLA
beta t^2 3.5 3.396343
                              6.75
                                      6.496861
                                                           [.1]
                                                                      Γ.21
                                                                                                  Γ.21
gamma
          1.3 1.330000
                                NΑ
                                                 [1,] 2.5746415 0.6685351
                                                                             [1.] 3.6629548 0.9051673
                                                 [2.] 0.6685351 0.3646141
                                                                             [2.] 0.9051673 0.4174495
```

Included Unbalanced Design and Missing Data

Model Parameters:

Minor additions

0000000

- ▶ N: Number of of Patients
- n: Maximum number of measurements per patient
- p₁: probability that a measurement is observed
- p₂: probability that covariate x is measured
- How does INLA deal with missing covariates?
 - ▶ INLA has no way to 'impute' or integrate-out missing covariates. You have to adjust your model to account for missing covariates. Sometimes, you can formulate a joint model for the data and the covariates, but this is case-specific.
 - ▶ If x[i] = NA this means that x[i] is not part of the linear predictor for y[i]. For fixed effects, this is equivalent to x[i]=0.

PIT (Probability Integral Transform

Minor additions

0000000

Computed for each observation as:

$$PIT_i = \pi(y_i^{new} \leq y_i|y_{-i})$$

• Measures probability for new observation y_i^{new} to be lower than y_i given all observations except for v_i .

- For a good model the PIT's should be approximately uniformly distributed on [0, 1]
- Kolmogorov Smirnov non-parametric test has been used to test whether the PIT's are uniformly distributed

Previous meetings

Simulations

Minor additions

- N = 75, n = 7, $p_1 = 0.7$, $p_2 = 0.9$, CV = 5
- Models 0, 2A, 2C1, 2C2, 3A1, 3A2, 3B1
- 3 times INLA failed: 2* model 2A, 1* model 3A2

Simulation 3: Models 0 & 2A

> round(Mo	del_co									
	true	Model_0	Model_1A	Model_2A	Model_2B	Model_2C1	Model_2c2	Model_3A1	Model_3A2	Model_3B1
beta_0^1	2.0	2.054	NA	1.657	NA	2.188	2.177	1.984	2.047	2.028
beta_x^1	4.0	3.971	NA	3.208	NA	3.880	3.892	3.977	3.950	3.988
beta_t^1	2.5	2.503	NA	1.969	NA	2.466	2.484	2.451	2.485	2.509
beta_0^2	3.0	2.978	NA	2.264	NA	2.924	2.893	2.947	2.996	2.981
beta_x^2	1.5	1.449	NA	1.101	NA	1.248	1.238	1.387	1.481	1.450
beta_t^2	3.5	3.536	NA	2.880	NA	3.571	3.576	3.497	3.555	3.535
MLIK	NA	-1748.083	NA	-1886.484	NA	-2237.132	-2303.754	-1801.186	-3279.242	-1768.688
DIC_approx	NA	3496.165	NA	3772.969	NA	4474.264	4607.507	3602.372	6558.485	3537.376
DIC	NA	2714.622	NA	3480.144	NA	3961.460	4006.514	2775.814	430.750	2770.717
WAIC	NA	2718.874	NA	3487.437	NA	4016.850	4063.332	2769.720	316.461	2765.140
PIT	NA	0.043	NA	0.051	NA	0.063	0.057	0.040	0.176	0.040
CPO	NA	1398.959	NA	1748.647	NA	2055.452	2071.026	1421.023	537.682	1418.437
> round(Mo	del_co									
	true							Model_3A1		
beta_0^1	2.0	2.058	NA	2.038	NA				2.024	2.065
beta_x^1	4.0	3.974	NA	3.977	NA			3.982	3.964	3.986
beta_t^1	2.5	2.506	NA	2.510	NA	2.509	2.507	2.511	2.490	2.503
beta_0^2	3.0	2.939	NA	2.930	NA			2.935		2.940
beta_x^2	1.5	1.453	NA	1.466	NA	1.460		1.442	1.405	1.454
beta_t^2	3.5	3.491	NA.	3.492	NA.	3.489	3.489	3.481	3.473	3.491
MLIK	NA	-1476.651	NA	-1453.937	NA			-1514.907		
DIC_approx	NA	2953.301	NA		NA	2959.559	2974.619	3029.814	6131.554	2967.435
DIC	NA	2615.436	NA	2599.689	NA	2622.528	2626.535	2638.587	555.853	2646.145
WAIC	NA	2620.082	NA	2607.338	NA	2628.554	2632.216	2639.295		2646.777
PIT	NA	0.045	NA	0.048	NA	0.044	0.046	0.048	0.173	0.045
CPO	NA	1324.910	NA	1308.418	NA	1327.216	1327.770	1331.194	559.197	1334.704

Previous meetings

Previous meetings

Simulation 3: Models 2C1 & 2C2

> round(Model_comparison_big\$Model_2C1\$outcomes, 3) Model 0 Model 1A Model 2A Model 2B Model 2C1 Model 2C2 Model 3A1 Model 3A2 Model 3B1 beta_0^1 2.0 2.058 2.096 NA 2.105 2.132 1.987 2.047 2.028 NA beta x^1 4.0 3.970 3.858 3.822 3.850 3.974 3.950 3.985 NA NΑ beta_t^1 2.5 2.471 2.470 2.478 2.474 2.430 2.452 2.477 NΑ NΑ beta_0^2 3.0 2.935 NΔ 2.872 2.877 2.854 2.897 2.934 2.934 NΔ 1.5 beta x^2 1.445 NA 1.380 ΝΔ 1.242 1.212 1.367 1.433 1,446 beta t^2 3.5 3.532 NA 3.582 3.573 3.560 3.487 3.524 3.532 NA MLTK NA -1750.133 NA -2343,481 -2203.346 -2234.194 -1798.279 -3270.808 -1773.908 3500.266 4686,961 4406.692 4468.389 3596.559 6541.616 3547,817 DIC_approx 3928.159 2779,528 444.036 DIC 2720,114 4344.374 3913.100 2779,793 3968,779 3985.730 WAIC NA 2722,445 NA 4354,656 NA 2772.889 330,819 2771,551 PTT NA 0.041 NA 0.068 NA 0.057 0.056 0.038 0.176 0.040 CPO 1404.303 2182.770 2029.339 2032.891 1424.032 542.822 1423,468 > round(Model_comparison_big\$Model_2C2\$outcomes. 3) Model_2A Model_2B Model_2C1 Model_2C2 Model_3A1 Model_3A2 Model_3B1 Model_0 Model_1A true beta 0A1 2.0 2.054 2.081 2.133 2.150 1.992 2.049 2.030 NA NA 3.963 3.870 3.806 3.817 3.976 3.949 3.985 beta_x^1 4.0 NΔ NΔ beta_t^1 2.5 2.516 2.507 2.505 2.495 2,460 2,495 2,522 NΔ beta 0^2 3.0 2.935 2.888 2.928 2.903 2.932 2.930 2.933 NΔ NΔ beta x^2 1.5 1.445 NA 1.408 NA 1,226 1,220 1.420 1.425 1.447 3.572 3.5 3, 554 3.594 3, 572 3.541 3, 543 3.554 beta tA2 NA MLTK NA -1749, 952 NA -2372.049 -2244.561 -2290.603 -1809.352 -3285.456 -1781.830 3499,903 4744.098 4489.122 4581,206 3618.704 6570,912 DIC_approx 3563,661 NΑ DIC 2706,094 4384.055 3987.776 4016,442 2779, 284 438.455 2774.774 NΔ WAIC NA 2709.358 4395,450 4044.784 4073,223 2772.288 324.355 2768, 259 PIT 0.042 0.072 NA 0.068 0.066 0.040 0.176 0.041 NΑ NA 1394.794 2203.476 2068.135 2076, 706 1422, 851 540, 641 1420.717 CPO

16: 13 1 11 4: 13 9:44 1

Simulation 3: Models 3A1 & 3A2

Minor additions

> round(Mo	de l_cc									
	true	Model_0	Model_1A	Model_2A	Model_2B	Model_2C1	Model_2c2	Model_3A1	Model_3A2	Model_3B1
beta_0^1	2.0	2.049	NA	1.834	NA	2.180	2.143	1.988	2.049	2.054
beta_x^1	4.0	3.970	NA	3.230	NA	3.885	3.923	3.971	3.948	3.961
beta_t^1	2.5	2.468	NA	1.961	NA	2.439	2.454	2.422	2.445	2.466
beta_0^2	3.0	3.071	NA	2.691	NA	3.176	3.214	3.034	3.085	3.078
beta_x^2	1.5	1.451	NA	1.196	NA	1.143	1.127	1.445	1.470	1.453
beta_t^2	3.5	3.471	NA	2.793	NA	3.480	3.485	3.467	3.481	3.469
MLIK	NA	-1803.768	NA	-1968.144	NA	-2319.771	-2299.474	-1841.867	-3282.387	-1807.930
DIC_approx	NA	3607.535	NA	3936.289	NA	4639.543	4598.949	3683.734	6564.774	3615.860
DIC	NA	2730.578	NA	3689.090	NA	4183.360	4210.751	2740.338	424.577	2707.425
WAIC	NA	2732.059	NA	3697.635	NA	4234.121	4259.236	2738.879	311.833	2709.207
PIT	NA	0.042	NA	0.052	NA	0.075	0.070	0.042	0.166	0.041
CPO	NA	1415.781	NA			2150.883	2155.218	1418.732	534.786	1399.975
> round(Mo	del_co									
	true	Model_0	Model_1A	Model_2A	Model_2B	Model_2C1	Model_2C2	Model_3A1	Model_3A2	Model_3B1
beta_0^1	2.0	2.053	NA	2.122	NA	2.196	2.190			2.059
beta_x^1										
	4.0	3.969	NA	3.998	NA	3.867	3.923	3.978	3.947	3.965
beta_t^1	4.0 2.5	3.969 2.524	NA NA	2.502						
					NA	2.482	2.515	2.469	2.503	2.523
beta_t^1	2.5	2.524	NA NA	2.502	NA NA	2.482 3.170	2.515 3.173	2.469 3.028	2.503 3.086	2.523 3.077
beta_t^1 beta_0^2	2.5	2.524 3.071	NA NA NA	2.502 3.070	NA NA NA	2.482 3.170 1.105	2.515 3.173 1.075	2.469 3.028 1.423	2.503 3.086	2.523 3.077 1.452
beta_t^1 beta_0^2 beta_x^2	2.5 3.0 1.5 3.5	2.524 3.071 1.452 3.545 -1793.906	NA NA NA NA	2.502 3.070 1.360	NA NA NA	2.482 3.170 1.105 3.537	2.515 3.173 1.075 3.570	2.469 3.028 1.423	2.503 3.086 1.471 3.555	2.523 3.077 1.452 3.542
beta_t^1 beta_0^2 beta_x^2 beta_t^2	2.5 3.0 1.5 3.5 NA	2.524 3.071 1.452 3.545	NA NA NA NA	2.502 3.070 1.360 3.575 -2481.395	NA NA NA NA	2.482 3.170 1.105 3.537 -2349.244	2.515 3.173 1.075 3.570 -2315.303	2.469 3.028 1.423 3.537	2.503 3.086 1.471 3.555 -3290.847	2.523 3.077 1.452 3.542 -1807.798
beta_t^1 beta_0^2 beta_x^2 beta_t^2 MLIK	2.5 3.0 1.5 3.5 NA	2.524 3.071 1.452 3.545 -1793.906	NA NA NA NA NA	2.502 3.070 1.360 3.575 -2481.395 4962.789	NA NA NA NA	2.482 3.170 1.105 3.537 -2349.244 4698.488	2.515 3.173 1.075 3.570 -2315.303 4630.606	2.469 3.028 1.423 3.537 -1839.229 3678.458	2.503 3.086 1.471 3.555 -3290.847	2.523 3.077 1.452 3.542 -1807.798 3615.597
beta_t^1 beta_0^2 beta_x^2 beta_t^2 MLIK DIC_approx	2.5 3.0 1.5 3.5 NA	2.524 3.071 1.452 3.545 -1793.906 3587.813	NA NA NA NA NA	2.502 3.070 1.360 3.575 -2481.395 4962.789	NA NA NA NA	2.482 3.170 1.105 3.537 -2349.244 4698.488	2.515 3.173 1.075 3.570 -2315.303 4630.606 4277.798	2.469 3.028 1.423 3.537 -1839.229 3678.458	2.503 3.086 1.471 3.555 -3290.847 6581.695 418.409	2.523 3.077 1.452 3.542 -1807.798 3615.597
beta_t^1 beta_0^2 beta_x^2 beta_t^2 MLIK DIC_approx DIC	2.5 3.0 1.5 3.5 NA NA	2.524 3.071 1.452 3.545 -1793.906 3587.813 2715.076	NA NA NA NA NA NA	2.502 3.070 1.360 3.575 -2481.395 4962.789 4635.182	NA NA NA NA NA NA	2.482 3.170 1.105 3.537 -2349.244 4698.488 4237.194 4290.033	2.515 3.173 1.075 3.570 -2315.303 4630.606 4277.798 4330.753	2.469 3.028 1.423 3.537 -1839.229 3678.458 2764.952	2.503 3.086 1.471 3.555 -3290.847 6581.695 418.409	2.523 3.077 1.452 3.542 -1807.798 3615.597 2705.713

Minor additions

```
> round(Model_comparison_big$Model_3B1$outcomes, 3)
```

	true	Model_0	Model_1A	Model_2A	Model_2B	Model_2C1	Model_2C2	Model_3A1	Model_3A2	Model_3B1
beta_0^1	2.0	2.049	NA	2.127	NA	2.172	2.161	1.979	1.656	2.059
beta_x^1	4.0	3.970	NA	3.971	NA	3.901	3.910	3.966	3.172	3.962
beta_t^1	2.5	2.468	NA	2.453	NA	2.439	2.441	2.421	1.978	2.466
beta_0^2	3.0	3.076	NA	2.829	NA	2.828	2.779	2.989	2.508	3.082
beta_x^2	1.5	1.456	NA	1.389	NA	1.379	1.350	1.432	1.131	1.456
beta_t^2	3.5	3.599	NA	3.665	NA	3.668	3.678	3.585	2.806	3.599
MLIK	NA	-1801.974	NA	-2464.282	NA	-2323.225	-2366.542	-1831.292	-2660.278	-1799.014
DIC_approx	NA	3603.948	NA	4928.564	NA	4646.450	4733.085	3662.584	5320.556	3598.028
DIC	NA	2729.300	NA	4600.511	NA	4171.442	4202.531	2723.047	391.176	2704.466
WAIC	NA	2730.985	NA	4611.220	NA	4221.125	4248.222	2724.711	300.086	2707.422
PIT	NA	0.042	NA	0.069	NA	0.072	0.064	0.043	0.139	0.042
CPO	NA	1414.722	NA	2310.537	NA	2146.458	2152.619	1406.626	456.698	1396.219

Bibliography

To-do

Minor additions

- Complete model configuration in INLA
 - ▶ Model 3
 - ★ Implement model 3A2 in INLA using both methods ('copy' trick and 'extra likelihood' trick)
 - ★ Compare INLA implementation with JMBayes2 (ask Ed)
 - ▶ Model 1: Inspect other residual error covariance structures
- Model assessment
 - Look at posterior probabilities of fitted values
 - ★ Calculate CPO, PIT manually
 - ★ Calculate MSE per outcome using posterior means
 - ★ Let INLA fit new data
- Theoretical results
 - Give Likelihood for every model
 - Try to write them as LGM
- Simulating Data
 - ▶ Change unbalanced design such that both outcomes are not measured at same time-points
 - ▶ Inspect simulated data more closely using e.g. Spaghetti plots

Models so far

- In order to compare all models using model assessment all models were rewritten into similar form.
- All models (except for some type 3 models) are implemented

Model 0

Minor additions

No association

$$i = 1, ..., N; j = 1, ..., n$$

$$\begin{cases} y_{i,j}^{1} = (\beta_{0}^{1} + u_{0,i}^{1}) + \beta_{x}^{1} \cdot x_{i} + (\beta_{t}^{1} + u_{t,i}^{1}) \cdot Period_{i,j} + \epsilon_{i,j}^{1} \\ y_{i,j}^{2} = (\beta_{0}^{2} + u_{0,i}^{2}) + \beta_{x}^{2} \cdot x_{i} + (\beta_{t}^{2} + u_{t,i}^{2}) \cdot Period_{i,j} + \epsilon_{i,j}^{2} \end{cases}$$

with

$$\begin{bmatrix} u_{0,i}^1 \\ u_{t,i}^1 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{1,0}^2 & \sigma_{1,(0,t)} \\ \sigma_{1,(t,0)} & \sigma_{1,t}^2 \end{pmatrix} \end{bmatrix}; \quad \begin{bmatrix} u_{0,i}^2 \\ u_{t,i}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{2,0}^2 & \sigma_{2,(0,t)} \\ \sigma_{2,(t,0)} & \sigma_{2,t}^2 \end{pmatrix} \end{bmatrix}$$

$$egin{bmatrix} egin{pmatrix} egin{pmatrix} elde{\epsilon}_i^1 \ eta_i^2 \end{bmatrix} \sim \mathcal{N}_{2j}(\mathbf{0}, \mathbf{I}_{2j})$$

Model 1A

Minor additions

Association via residual errors

$$i = 1, ..., N; j = 1, 2$$

$$\begin{cases} y_{i,j}^1 = \beta_0^1 + \beta_x^1 \cdot x_i + \beta_t^1 \cdot Period_{i,j} + \epsilon_{i,j}^1 \\ y_{i,j}^2 = \beta_0^2 + \beta_x^2 \cdot x_i + \beta_t^2 \cdot Period_{i,j} + \epsilon_{i,j}^2 \end{cases}$$

To-do

with

$$\begin{bmatrix} \epsilon_{i,1}^1 \\ \epsilon_{i,2}^1 \\ \epsilon_{i,1}^2 \\ \epsilon_{i,1}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{1,1}^2 & \dots & \dots & \dots \\ \dots & \sigma_{1,2}^2 & \dots & \dots \\ \dots & \dots & \sigma_{2,1}^2 & \dots \\ \dots & \dots & \dots & \sigma_{2,2}^2 \end{pmatrix} \end{bmatrix}$$

Model 2A

Minor additions

Random Intercept only

$$i = 1, ..., N; j = 1, ..., n$$

$$\begin{cases} y_{i,j}^{1} = (\beta_{0}^{1} + u_{0,i}^{1}) + \beta_{x}^{1} \cdot x_{i} + \beta_{t}^{1} \cdot Period_{i,j} + \epsilon_{i,j}^{1} \\ y_{i,j}^{2} = (\beta_{0}^{2} + u_{0,i}^{2}) + \beta_{x}^{2} \cdot x_{i} + \beta_{t}^{2} \cdot Period_{i,j} + \epsilon_{i,j}^{2} \end{cases}$$

with

$$\begin{bmatrix} u_{0,i}^1 \\ u_{0,i}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{1,0}^2 & \sigma_{(1,2),0} \\ \sigma_{(2,1),0} & \sigma_{2,0}^2 \end{pmatrix} \end{bmatrix}; \qquad \begin{bmatrix} \boldsymbol{\epsilon}_i^1 \\ \boldsymbol{\epsilon}_i^2 \end{bmatrix} \sim \mathcal{N}_{2j}(\mathbf{0}, \mathbf{I}_{2j})$$

Model 2B

Minor additions

Random Intercept & correlated residuals

$$i = 1, ..., N; j = 1, 2$$

$$\begin{cases} y_{i,j}^1 = (\beta_0^1 + u_{0,i}^1) + \beta_x^1 \cdot x_i + \beta_t^1 \cdot Period_{i,j} + \epsilon_{i,j}^1 \\ y_{i,j}^2 = (\beta_0^2 + u_{0,i}^2) + \beta_x^2 \cdot x_i + \beta_t^2 \cdot Period_{i,j} + \epsilon_{i,j}^2 \end{cases}$$

with

$$egin{bmatrix} u_{0,i}^1 \ u_{0,i}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} oldsymbol{0}, egin{pmatrix} \sigma_{1,0}^2 & \sigma_{(1,2),0} \ \sigma_{(2,1),0} & \sigma_{2,0}^2 \end{bmatrix} ;$$

$$\begin{bmatrix} u_{0,i}^1 \\ u_{0,i}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{1,0}^2 & \sigma_{(1,2),0} \\ \sigma_{(2,1),0} & \sigma_{2,0}^2 \end{pmatrix} \end{bmatrix}; \qquad \begin{bmatrix} \epsilon_{i,1}^1 \\ \epsilon_{i,2}^2 \\ \epsilon_{i,1}^2 \\ \epsilon_{i,2}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{1,1}^2 & \dots & \dots & \dots \\ \dots & \sigma_{1,2}^2 & \dots & \dots \\ \dots & \dots & \sigma_{2,1}^2 & \dots \\ \dots & \dots & \dots & \sigma_{2,2}^2 \end{pmatrix} \end{bmatrix}$$

000000000

Model 2C1

Minor additions

Random Slope & Intercept: Independent

$$i = 1, ..., N; i = 1, ..., n$$

$$\begin{cases} y_{i,j}^{1} = (\beta_{0}^{1} + u_{0,i}^{1}) + \beta_{x}^{1} \cdot x_{i} + (\beta_{t}^{1} + u_{t,i}^{1}) \cdot Period_{i,j} + \epsilon_{i,j}^{1} \\ y_{i,j}^{2} = (\beta_{0}^{2} + u_{0,i}^{2}) + \beta_{x}^{2} \cdot x_{i} + (\beta_{t}^{2} + u_{t,i}^{2}) \cdot Period_{i,j} + \epsilon_{i,j}^{2} \end{cases}$$

with

$$\begin{bmatrix} u_{0,i}^1 \\ u_{0,i}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{1,0}^2 & \sigma_{(1,2),0} \\ \sigma_{(2,1),0} & \sigma_{2,0}^2 \end{pmatrix} \end{bmatrix}; \quad \begin{bmatrix} u_{t,i}^1 \\ u_{t,i}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{1,t}^2 & \sigma_{(1,2),t} \\ \sigma_{(2,1),t} & \sigma_{2,t}^2 \end{pmatrix} \end{bmatrix}$$

$$egin{bmatrix} egin{pmatrix} egin{pmatrix} elde{\epsilon}_i^1 \ oldsymbol{\epsilon}_i^2 \end{bmatrix} \sim \mathcal{N}_{2j}(oldsymbol{0}, oldsymbol{\mathsf{I}}_{2j})$$

Model 2C2

Minor additions

Random Slope & Intercept: Dependent

$$i = 1, ..., N; j = 1, ..., n$$

$$\begin{cases} y_{i,j}^{1} = (\beta_{0}^{1} + u_{0,i}^{1}) + \beta_{x}^{1} \cdot x_{i} + (\beta_{t}^{1} + u_{t,i}^{1}) \cdot Period_{i,j} + \epsilon_{i,j}^{1} \\ y_{i,j}^{2} = (\beta_{0}^{2} + u_{0,i}^{2}) + \beta_{x}^{2} \cdot x_{i} + (\beta_{t}^{2} + u_{t,i}^{2}) \cdot Period_{i,j} + \epsilon_{i,j}^{2} \end{cases}$$

To-do

with

$$\begin{bmatrix} u_{0,i}^1 \\ u_{0,i}^2 \\ u_{1,i}^1 \\ u_{t,i}^2 \\ u_{t,i}^2 \end{bmatrix} \sim \mathcal{N}_4 \begin{bmatrix} \boldsymbol{0}, \begin{pmatrix} \sigma_{1,0}^2 & \cdots & \cdots & \cdots \\ \cdots & \sigma_{1,t}^2 & \cdots & \cdots \\ \cdots & \cdots & \sigma_{2,0}^2 & \cdots \\ \cdots & \cdots & \cdots & \sigma_{2,2}^2 \end{pmatrix} \end{bmatrix}; \begin{bmatrix} \boldsymbol{\epsilon}_i^1 \\ \boldsymbol{\epsilon}_i^2 \end{bmatrix} \sim \mathcal{N}_{2j}(\boldsymbol{0}, \boldsymbol{\mathsf{I}}_{2j})$$

Model 3A1

Minor additions

Y_1 scaled entirely with independent Slope & Intercept

$$i = 1, ..., N; j = 1, ..., n$$

$$\begin{cases} m_{ij} = (\beta_0^1 + u_{0,i}^1) + \beta_x^1 \cdot x_i + \left(\beta_t^1 + u_{t,i}^1\right) \cdot \textit{Period}_{i,j} \\ y_{i,j}^1 = m_{ij} + \epsilon_{i,j}^1 \\ y_{i,j}^2 = \gamma \cdot m_{ij} + (\beta_0^2 + u_{0,i}^2) + \beta_x^2 \cdot x_i + \left(\beta_t^2 + u_{t,i}^2\right) \cdot \textit{Period}_{i,j} + \epsilon_{i,j}^2 \end{cases}$$
 with

$$u_{0,i}^1 \sim \mathcal{N}(0, \sigma_{1,0}^2); \quad u_{t,i}^1 \sim \mathcal{N}(0, \sigma_{1,t}^2); \quad \begin{bmatrix} u_{0,i}^2 \\ u_{t,i}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{2,0}^2 & \sigma_{2,(0,t)} \\ \sigma_{2,(t,0)} & \sigma_{2,t}^2 \end{pmatrix} \end{bmatrix};$$

$$egin{bmatrix} \epsilon_i^1 \ \epsilon_i^2 \end{bmatrix} \sim \mathcal{N}_{2j}(\mathbf{0}, \mathbf{I}_{2j})$$

Model 3B1

Minor additions

Random Y_1 -effects scaled independently; independent Slope & Intercept

$$i = 1, ..., N; j = 1, ..., n$$

$$\begin{cases} y_{i,j}^{1} = (\beta_{0}^{1} + u_{0,i}^{1}) + \beta_{x}^{1} \cdot x_{i} + (\beta_{t}^{1} + u_{t,i}^{1}) \cdot Period_{i,j} + \epsilon_{i,j}^{1} \\ y_{i,j}^{2} = \gamma_{1} \cdot u_{0,i}^{1} + \gamma_{2} \cdot u_{t,i}^{1} + (\beta_{0}^{2} + u_{0,i}^{2}) + \beta_{x}^{2} \cdot x_{i} + (\beta_{t}^{2} + u_{t,i}^{2}) \cdot Period_{i,j} + \epsilon_{i,j}^{2} \end{cases}$$

$$u_{0,i}^1 \sim \mathcal{N}(0,\sigma_{1,0}^2); \quad u_{t,i}^1 \sim \mathcal{N}(0,\sigma_{1,t}^2); \quad \begin{bmatrix} u_{0,i}^2 \\ u_{t,i}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{2,0}^2 & \sigma_{2,(0,t)} \\ \sigma_{2,(t,0)} & \sigma_{2,t}^2 \end{pmatrix} \end{bmatrix};$$

$$egin{bmatrix} egin{bmatrix} egin{aligned} egin{aligned} eta_i^1 \ oldsymbol{\epsilon}_i^2 \end{bmatrix} \sim \mathcal{N}_{2j}(oldsymbol{0}, oldsymbol{\mathsf{I}}_{2j}) \end{aligned}$$

Marginal Assessment methods in INLA

Minor additions

- Within INLA the following Model assessment criteria exist:
 - MLIK (Marginal Likelihood)
 - ► DIC (Deviance Information Criterion)
 - WAIC (Watanabe-Akaike Information Criterion)
 - CPO (Conditional Predictive Ordinates)
 - PIT (Predictive Integral Transform)

Marginal Likelihood $\pi(y)$

Minor additions

- Probability of observed data under given model
- In INLA approximated as:

$$\widetilde{\pi}(y) = \int \frac{\pi(\theta, x, y)}{\widetilde{\pi}_{G}(x|\theta, y)}|_{x=x^{*}(\theta)} d\theta$$

• When considering set of M models $\{\mathcal{M}_m\}_{m=1}^M$, the marginal likelihoods are $\pi(y|\mathcal{M}_m)$.

- Posterior can be computed via model priors: $\pi(\mathcal{M}_m|y) \propto \pi(y|\mathcal{M}_m)\pi(\mathcal{M}_m)$
- Can be used to compute Bayes factor for models \mathcal{M}_1 and \mathcal{M}_2 :

$$\frac{\pi(\mathcal{M}_1|y)}{\pi(\mathcal{M}_2|y)} = \frac{\pi(y|\mathcal{M}_1)\pi(\mathcal{M}_1)}{\pi(y|\mathcal{M}_2)\pi(\mathcal{M}_2)}$$

DIC & WAIC

DIC

Minor additions

► Given by:

$$DIC = D(\hat{x}, \hat{\theta}) + 2p_D$$

▶ Takes into account goodness of fit $(D(\hat{x}, \hat{\theta}))$ and penalty for number of parameters $(2p_D)$.

- ▶ D is the deviance with \hat{x} the posterior mean and $\hat{\theta}$ the posterior mode (might be skewed).
- WAIC is similar to DIC but p_D is calculated differently

• Computed for each observation as:

Minor additions

$$CPO_i = \pi(y_i|y_{-i})$$

- Posterior probability of observing y_i when model is fit without y_i .
- Low value may indicate outlier
- Summarized over all data as:

$$CPO = -\sum_{i=1}^{N} ln(CPO_i)$$

Bibliography

PIT (Predictive Integral Transform)

Minor additions

• Computed for each observation as:

$$PIT_i = \pi(y_i^{new} \leq y_i|y_{-i})$$

- Measures probability for new observation y_i^{new} to be lower than y_i given all observations except for y_i .
- ullet For a good model the PIT's should be approximately uniformly distributed on [0,1]

Simulations

Minor additions

- Data was generated from each of the 8(6) models. In total 8(6) datasets were generated.
- Each dataset was fit by every model 8(6) (only in INLA). The coefficients and Model Assessment criteria were recorded.
- This was done 2 times:
 - 0 N = 750, n = 2. All models participated
 - 2 N = 500, n = 4. Models 1A and 2B did not participate,
 - ***** They model association via an unstructured variance-covariance matrix for the residual errors, which can only be modelled in INLA for n = 2.

Bibliography

Simulation 2

$$N = 500$$
, $n = 4$
Models 0, 2A, 2C1, 2C2, 3A1, 3B1

Minor additions

\$Model_0\$	Model	l_0_df					
	true	Model_0	Model_2A	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	2.129866	2.127995	2.129451	2.129671	2.113251	2.129382
beta_x^1	4.0	4.015218	3.986687	4.008675	4.012158	4.008108	4.007623
beta_t^1	2.5	2.599241	2.600256	2.599472	2.599348	2.594592	2.599510
beta_0^2	3.0	3.112763	3.119732	3.111930	3.112714	3.110197	3.112676
beta_x^2	1.5	1.520176	1.629831	1.507061	1.519394	1.515059	1.518827
beta_t^2	3.5	3.684672	3.680893	3.685136	3.684700	3.681410	3.684719
MLIK	NA	-8381.279613	-10622.260731	-8456.818098	-8421.715350	-8462.436164	-8442.100242
DIC	NA	12865.935243	19833.113670	12862.875267	12878.800789	12859.426281	12865.640575
WAIC	NA	12843.868420	19877.082468	12803.035691	12856.227218	12817.404958	12823.729900
CPO	NA	6773.535911	9977.461558	6828.089741	6773.182060	6799.374018	6802.389827
\$Model_2A	\\$Mod€	21_2A_df					
	true	Model_0	Model_2A	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	2.097733	2.097733	2.097734	2.097732	2.090256	2.097732
beta_x^1	4.0	4.002521	4.000894	4.001353	4.000890	4.000405	4.000966
beta_t^1	2.5	2.480511	2.480513	2.480512	2.480513	2.480947	2.480513
beta_0^2	3.0	2.954926	2.954938	2.954935	2.954935	2.952751	2.954934
beta_x^2	1.5	1.453171	1.456217	1.455051	1.455108	1.440928	1.454644
beta_t^2	3.5	3.474924	3.474920	3.474921	3.474922	3.468346	3.474922
MLIK	NA	-6897.256372	-6847.404247	-6871.094009 <u>-</u>	-6879.428477	-6903.710711	-6877.569841
DIC	NA	12113.799456	12143.023504	12112.394116	12108.052727	12123.662912	12122.342153
WAIC	NA	12147.357605	12184.018332	12146.199373	12145.191976	12159.782075	12159.436708
CPO	NA	6156.133611	6131.611256	6147.268539	6146.035832	6140.935794	6140.782805

Bibliography

Simulation 2: Models 2C1 & 2C2

Minor additions

\$Mode1_2C	1\$Mode	21_2C1_df					
	true	Model_0	Model_2A	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	2.097733	2.097618	2.097731	2.097731	2.089620	2.097734
beta_x^1	4.0	4.002780	3.980313	4.000695	4.000915	4.001743	4.001821
beta_t^1	2.5	2.399231	2.399276	2.399225	2.399224	2.391553	2.399231
beta_0^2	3.0	2.954909	2.954914	2.954923	2.954922	2.950497	2.954916
beta_x^2	1.5	1.448278	1.472289	1.451368	1.451349	1.437566	1.449916
beta_t^2	3.5	3.323889	3.323887	3.323878	3.323878	3.317111	3.323887
MLIK			-10450.343520				
DIC	NA 1	12922.015663	19776.053749	12895.802346	12909.911187	12918.496001	12904.086970
WAIC	NA 1	12871.429198		12848.019719		12859.350676	12853.248810
CPO	NA	6843.523154	9941.981285	6819.326053	6821.665613	6838.080212	6830.165684
\$Mode1_2C	2\$Mode	e1_2c2_df					
	true	Model_0	Model_2A	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	2.097729	2.097649	2.097733	2.097724	2.088923	
beta_x^1	4.0	4.003316	3.996762	4.001333	4.002722	4.001716	4.002305
beta_t^1	2.5	2.457149	2.457178	2.457145	2.457143	2.449463	2.457155
beta_0^2	3.0	2.954909	2.954935	2.954923	2.954924	2.942093	2.954916
beta_x^2	1.5	1.448775	1.481918	1.451457	1.451896	1.420161	
beta_t^2	3.5	3.370851	3.370839	3.370842	3.370836	3.352603	3.370846
MLIK			-10554.654633				
DIC	NA 1	L2848.046465		12828.597370			
WAIC	NA 1	12808.011012	19850.700034	12766.348677			12772.385227
CPO	NA	6764.142319	9961.687452	6783,885676	6731.922986	6784.445274	6780.338331

Simulation 2: Models 3A1 & 3B1

Minor additions

\$Mode1_3A	41\$Mo	del_3A1_df					
	true	Model_0	Model_2A	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	2.097735			2.097727	2.089939	
beta_x^1	4.0	4.003397	3.980725	4.002853	4.003129	4.002232	4.003454
beta_t^1	2.5	2.441049	2.441096	2.441041	2.441040	2.433857	2.441050
beta_0^2	3.0	2.982998			2.982988	2.979523	
beta_x^2	1.5	1.455043	1.476305	1.452601	1.452923	1.453170	1.452393
beta_t^2	3.5	3.306117		3.306121	3.306113	3.304296	
MLIK		-8485.784612					-8480.428140
DIC		12915.629262		12874.087816			
WAIC	NA	12866.076356	20218.309156	12815.501148			12840.831961
CPO	NA	6832.886151	10143.175916	6817.070009	6798.283022	6831.933536	6803.806640
\$Mode1_3B	1\$Mod	lel_3B1_df					
	true	Model_0	Model_2A	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	2.097735	2.097585	2.097724	2.097751	2.089780	2.097729
beta_x^1	4.0	4.003409	3.983855	4.001807	4.014631	4.002131	4.003408
beta_t^1	2.5	2.441049	2.441091	2.441027	2.441008	2.434081	2.441052
beta_0^2	3.0	2.982996	2.982820	2.982996	2.982976	2.979989	2.982981
beta_x^2	1.5	1.454259	1.456724	1.452645	1.451898	1.447676	1.451559
beta_t^2	3.5	3.276508	3.276577	3.276500	3.276479	3.275273	3.276509
MLIK	NA	-8637.959223	-11115.931909	-8471.794750	-8526.312867	-8678.940036	-8629.961380
DIC	NA	12933.011639	21187.604996	12861.907384	13414.745128	12926.460545	12896.425117
WAIC	NA	12880.063870		12804.146016		12870.271504	12848.227873
CPO	NA	6856.409569	10639.158957	6801.257805	6954.081126	6857.957757	6816.796811

Simulation 1

$$N = 750, n = 2$$

Models 0, 1A, 2A, 2B, 2C1, 2C2, 3A1, 3B1

Simulation 1: Models 0 & 1A

Minor additions

\$Mode1_0\$M	Model.	_0_df							
1	true	Model_0	Model_1A	Model_2A	Model_2B	Model_2C1	Model_2c2	Model_3A1	Model_3B1
beta_0^1	2.0	2.062555	2.062551	2.062406	2.062524	2.062554	2.062547	2.058499	2.062551
beta_x^1	4.0	3.994878	3.995314	4.013629	3.998129	3.994915	3.995740	3.994106	
beta_t^1	2.5	2.529890	2.529896	2.530182	2.529940	2.529890			
beta_0^2	3.0	3.138011	3.138012	3.138134	3.138012	3.138044	3.138011	3.138730	3.138004
beta_x^2	1.5	1.481725	1.481527	1.466400	1.481810	1.477839	1.481640	1.484109	
beta_t^2	3.5	3.529583	3.529580	3.529364	3.529584	3.529526			
MLIK		-6473.577169			-6540.734366		-6423.443748		
DIC								-13208.705298	
WAIC	NA	10978.342196	-34406.926848	12459.289241	-34406.926809	-18120.952881	11053.801535	-14225.961044	-3013.651656
CPO	NA	5962.388187	-14505.925676	6361.865738	-14505.925265	-6297.703708	5961.902173	-4414.884958	107.657495
\$Model_1A	\$Mode	1_1A_df							
	true	Model_0	Model_1A	Model_2A	Model_2B	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	1.947935	1.947892			1.947919	1.947934	1.940167	1.947929
beta_x^1	4.0	4.032881	4.038846		4.033802		4.033792	4.034340	4.035810
beta_t^1	2.5	2.545497	2.545544				2.545506	2.543746	2.545504
beta_0^2	3.0	3.041790	3.041723		3.041801	3.041817	3.041804	3.046431	3.041805
beta_x^2	1.5	1.519116	1.535394	1.514392			1.514896	1.520036	1.515016
beta_t^2	3.5	3.449960	3.450000		3.449956		3.449953	3.453001	3.449949
MLIK	NA	-6413.163102		-6379.644607		-6374.434150		0.20.02000	6398.109654
DIC		12276.846445						12271.401998 1	
WAIC	NA				-34406.926257			12307.466984 1	
CPO	NA	6247.565414	-14505.919316	6202.012515	-14505.923884	6153.812560	6009.408817	6197.178540	6202.414744

To-do

Georgy Gomon

Simulation 1: Models 2A & 2B

Minor additions

\$Model_2	A\$Mod	el_2A_df							
	true	Model_0	Model_1A	Model_2A	Model_2B	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	1.955696	1.955707	1.955709	1.955706	1.955706	1.955708	1.950829	1.955707
beta_x^1	4.0	4.020166	4.017974	4.017217	4.017997	4.017823	4.017529	4.016688	4.017643
beta_t^1	2.5	2.531249	2.531243	2.531240	2.531243	2.531242	2.531241	2.530182	2.531242
beta_0^2	3.0	2.980848	2.980857	2.980860	2.980857	2.980860	2.980859	2.967714	2.980859
beta_x^2	1.5	1.519238	1.517028	1.516225	1.516982	1.516246	1.516328	1.486431	1.516397
beta_t^2	3.5	3.475404	3.475399	3.475396	3.475398		3.475396	3.456185	3.475396
MLIK	NA	-5623.561814	-5619.900372	-5587.065983	-5480.472438	-5590.733690	-5603.848759	-5633.463099	-5605.276716
DIC	NA	9620.788523	-33486.369651	9784.697084	-33486.369667	9654.370843	9731.584817	9705.418215	9684.344051
WAIC	NA	9637.660147	-34406.927145	9802.080993	-34406.927165	9661.558879	9736.742625	9690.361150	9687.131617
CPO	NA	5083.410842	-14505.927214	5058.243902	-14505.927262	5061.136981	5061.755725	5060.561054	5060.202948
\$Model_2E	B\$Mod	el_2B_df							
	true	Model_0	Model_1A	Model_2A	Model_2B	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	1.926926	1.926926	1.926934	1.926926	1.926917	1.926926	1.919334	1.926931
beta_x^1	4.0	4.034246	4.035865	4.033621	4.035664	4.038539	4.035717	4.031976	4.034335
beta_t^1	2.5	2.545501	2.545511	2.545497	2.545511	2.545515	2.545511	2.540654	2.545500
beta_0^2	3.0	3.006339	3.006346	3.006360	3.006346	3.006361	3.006348	3.000786	3.006358
beta_x^2	1.5	1.514451	1.513085	1.509271	1.513016	1.508440	1.512585	1.492554	1.510016
beta_t^2	3.5	3.449947	3.449948	3.449933	3.449948	3.449932	3.449947	3.438864	3.449935
MLIK		-6849.963356	-6811.244393		-6684.695111		-6771.620631		
DIC	NA	12610.671284	-33486.368685	12681.946793	-33486.368694	12285.088363	11899.246840	12648.105376	12652.690583
WAIC	NA	12637.450311	-34406.926271	12710.735544	-34406.926280	12257.484441		12680.988466	12676.876908
CPO	NA	6487.543230	-14505.924018	6463.083064	-14505.923997	6381.703660	6307.621430	6465.126718	6464.026157

Previous meetings

00000000 00000 00000000

Simulation 1: Models 2C1 & 2C2

Minor additions

\$Mode1_2C	1\$Mo	del_2C1_df							
	true	Model_0	Model_1A	Model_2A	Model_2B	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	1.955868	1.955875	1.955943	1.955877	1.955878	1.955873	1.951153	1.955865
beta_x^1	4.0	3.966042	3.964373	3.942856	3.963773	3.963621	3.965017	3.943641	3.967733
beta_t^1	2.5	2.607244	2.607234	2.607184	2.607232	2.607232	2.607236	2.603580	2.607248
beta_0^2	3.0	2.980952	2.980922	2.980967	2.980924	2.980929	2.980924	2.981361	2.980937
beta_x^2	1.5	1.486335	1.496275	1.482183	1.495729	1.494285	1.495670	1.483777	1.491427
beta_t^2	3.5	3.415953	3.415976	3.415949	3.415974	3.415970		3.414693	3.415967
MLIK	NA	-6436.800701	-6434.293272	-6543.466389	-6419.819028	-6398.947179	-6388.958380	-6497.078009	-6449.312907
DIC	NA	11880.936110	-33486.368935	12445.207333	-33486.368935	10758.427525	11690.009414	12009.445033	11443.256350
WAIC	NA	11845.161995	-34406.926554	12479.318102	-34406.926546	10576.818072	11650.886131		11340.267668
CPO	NA		-14505.925115	6314.207829	-14505.925051	6092.884596	6084.854690	6195.681026	6157.586279
\$Mode1_2C	:2\$Mo	del_2C2_df							
	true	Model_0	Model_1A		Model_2B				Model_3B1
beta_0^1	2.0	1.955796	1.955816	1.955897	1.955812	1.955814	1.955818	1.949278	1.955802
beta_x^1	4.0	3.987327	3.980462	3.956155	3.981061	3.982928	3.979929	3.983381	3.986389
beta_t^1	2.5	2.581123	2.581100	2.581044	2.581098	2.581106	2.581099	2.573173	2.581121
beta_0^2	3.0	2.980923	2.980898	2.980930	2.980877	2.980903	2.980902	2.980561	2.980919
beta_x^2	1.5	1.495044	1.503940	1.493211	1.506495	1.501500	1.502642	1.488733	1.496805
beta_t^2	3.5	3.382313	3.382331	3.382317	3.382327	3.382325	3.382327	3.379775	3.382317
MLIK	NA	-6471.173412	-6448.167363	-6679.595361	-6452.594694	-6439.453617	-6323.306268	-6503.568057	-6478.627661
DIC	NA	11470.117769	-33486.369206	12501.519073	-33486.369199	6396.364226	11217.180452	-1628.298306	-1861.511312
WAIC	NA	11407.622734	-34406.926862	12531.072933	-34406.926745	6439.324195	11176.406842	-2606.110799	-2243.681927
CPO	NA	6097.650133	-14505.925416	6370.785045	-14505.925079	5958.275713	5969.357302	212.923448	418.585437

Simulation 1: Models 3A1 & 3B1

Minor additions

\$Model_3A	1\$Mo	del_3A1_df											
	true	Model_0	Model_1A	Model_2A	Model_2B	Mo	del_2c1	Mode	1_2C2	Mod	le1_3A1	Mo	del_3B1
beta_0^1	2.0	1.955716	1.955703	1.955722	NA	1	.955702	1.9	55694	1.	951377	1	.955701
beta_x^1	4.0	4.013707	4.016508	4.010417	NA	4	.016969	4.0	19107	4.	021408	4	.017387
beta_t^1	2.5	2.480880	2.480884	2.480875	NA	2	.480885	2.4	80892	2.	475474	2	.480891
beta_0^2	3.0	3.083040	3.083038	3.083150	NA	3	.083050	3.0	83031	3.	075170	3	.083028
beta_x^2	1.5		1.506122	1.470687	NA		. 502925		08065		498191		. 509141
beta_t^2	3.5			3.393263	NA		. 393335		93349		385820		. 393355
MLIK	NA	-6545.895839	-6548.561624	-6705.595984	NA	-6505	. 596862	-6541.3	81528 -	-6579.	721299 -	-6547	.787680
DIC		11698.771557									651221 1		
WAIC	NA		-34406.926731		NA						386888 1		
CPO	NA		-14505.925633	6395.637957	NA	48	.978159	6126.9	17631	6177.	789901	6152	.630117
\$Mode1_3B	1\$Mo	del_3B1_df											
	true					e1_2B		1_2C1	Model_		Model_		Model_3B1
beta_0^1	2.0		1.956119	1.955716		55698		55696	1.955		1.950		1.955699
beta_x^1	4.0		3.897429	4.011802		L7805		L8933	4.019		4.022		4.017945
beta_t^1	2.5		2.480469	2.480879		80878		30881	2.480		2.474		2.480892
beta_0^2	3.0		3.083536	3.083178		83046		33057	3.083		3.079		3.083025
beta_x^2	1.5		1.365191	1.461668		03214		00601	1.504		1.508		1.510566
beta_t^2	3.5		3.355086	3.355474		55557		55552	3.355		3.354		3.355590
MLIK		-6703.762707		-6876.675075	-6603.58						6735.277		-6698.642638
DIC		12054.506284	-33486.368881										11656.606677
WAIC	NA		-34406.925965										11493.347321
CPO	NA	6390.051954	-14505.922939	6621.167449	-14505.92	24678	-122.30	09984 6	115.235	178	6411.125	399	6374.150934

Georgy Gomon

To-do

Minor additions

- Complete model configuration in INLA
 - ▶ Complete model 3: dependent copied random effects
 - ▶ Model 1: Inspect other residual error covariance structures
- Theoretical results
 - Give Likelihood for every model
 - Try to write them as LGM
- Implement models on Dataset
 - Open dataset
 - ★ Back to PBC?
 - Duchenne
 - COVID

Bibliography

Minor additions

H. Rue. S. Martino. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations, 2009, JRSS B

- J. van Niekerk, H. Bakka, H. Rue, Joint models as latent Gaussian models not reinventing the wheel, 2019, arXiv
- J. van Niekerk, H. Bakka, H. Rue, Competing risks joint models using R-INLA, 2021, Statistical Modelling
- R. Weiss, Modelling Longitudinal Data, 2005, Chapter 13