Maths Problem Set 5

Tim Munday OSM Boot Camp 2018

July 22, 2018

Thanks to Matt and Reiko for the latex code for the dictionaries.

8.5

(i)

$$\begin{array}{ll} \text{maximize} & 3x_1+x_2\\ \text{subject to} & x_1+3x_2+w_1=15\\ & 2x_1+3x_2+w_2=18\\ & x_1-x_2+w_3=4\\ & x_1,x_2,w_1,w_2,w_3\geq 0 \end{array}$$

Optimizer: (6,2)

Optimum value: 20 (ii)

maximize
$$4x + 6y$$

subject to $-x + 3x_2 + w_1 = 11$
 $x + y + w_2 = 27$
 $2x + 5y + w_3 = 90$
 $x, y, w_1, w_2, w_3 \ge 0$

ζ	=			4x	+	6y
w_1	=	11	+	x	_	y
w_2	=	27	_	x	_	y
w_3	=	90	_	2x	_	5y
ζ	=	66	+	10 <i>x</i>	_	$6w_1$
y	=	11	+	x	_	w_1
w_2	=	16	_	2x	+	w_1
w_3	=	35	_	7x	+	$5w_1$
$\overline{\zeta}$	=	116	+	$\frac{8}{7}w_1$	_	$\frac{10}{7}w_3$
$\frac{\overline{\zeta}}{y}$	=	116 16	+	$\frac{8}{7}w_1$ $\frac{2}{7}w_1$	_ _	$\frac{10}{7}w_3$ $\frac{1}{7}w_3$
	= = =		+		_ _ +	
\overline{y}	= = = =	16	+ +	$\frac{2}{7}w_1$	_ _ + _	$\frac{1}{7}w_3$
y w_2	= = =	16 6	+ - + +	$\frac{2}{7}w_1$ $\frac{3}{7}w_1$	- + -	$\frac{1}{7}w_3$ $\frac{2}{7}w_3$
y w_2 x	= = = =	16 6 5	+ - + + + +	$\frac{2}{7}w_1$ $\frac{3}{7}w_1$ $\frac{5}{7}w_1$	- + -	$\frac{1}{7}w_3$ $\frac{2}{7}w_3$ $\frac{1}{7}w_3$
$ \begin{array}{c} y\\w_2\\x\\\hline \zeta \end{array} $	= = = =	16 6 5 132	+ - + + - + -	$\frac{2}{7}w_1$ $\frac{3}{7}w_1$ $\frac{5}{7}w_1$ $\frac{8}{3}w_2$	- + - - - +	

Optimizer: (15, 12) Optimum value: 132

8.6

maximize
$$4b + 3j$$

subject to $15b + 10j + w_1 = 1800$
 $2b + 2j + w_2 = 300$
 $j + w_3 = 200$
 $b, j, w_1, w_2, w_3 \ge 0$

ζ	=			4b	+	3j
w_1	=	1800	_	15b	_	10j
w_2	=	300	_	2b	_	2j
w_3	=	200	_	j		
ζ	=	450	+	b	_	$\frac{3}{2}w_2$
$\overline{w_1}$	=	300	_	5b	+	$5w_2$
j	=	150	_	b	_	$\frac{1}{2}w_2$
w_3	=	50	+	b	+	$\frac{1}{2}w_2$
ζ	=	510	_	$\frac{1}{5}w_1$	_	$\frac{1}{2}w_2$
b	=	60	_	$\frac{1}{5}w_1$	+	$\overline{w_2}$
j	=	90	+	$\frac{1}{5}w_1$	_	$\frac{3}{2}w_{2}$
w_3	=	110	_	$\frac{1}{5}w_1$	+	$\frac{3}{2}w_2$

Optimal choice: 60 GI Barb soldiers, 90 Joey dolls

Maximal profit: \$510

8.7

• (i)

maximize
$$x_1 + 2x_2$$

subject to $-4x_1 - 2x_2 + x_3 = -8$
 $-2x_1 + 3x_2 + x_4 = 6$
 $x_1 + x_5 = 3$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Auxiliary problem:

maximize
$$-x_0$$

subject to $-4x_1 - 2x_2 + x_3 - x_0 = -8$
 $-2x_1 + 3x_2 + x_4 - x_0 = 6$
 $x_1 + x_5 - x_0 = 3$
 $x_0, x_1, x_2, x_3, x_4, x_5 \ge 0$

Optimal point: (3,4) Optimal value: 11

• (ii)

$$\begin{array}{ll} \text{maximize} & 5x_1+2x_2\\ \text{subject to} & 5x_1+3x_2+x_3=15\\ & 3x_1+5x_2+x_4=15\\ & 4x_1-3x_2+x_5=-12\\ & x_1,x_2,x_3,x_4,x_5\geq 0 \end{array}$$

Auxiliary problem:

maximize
$$-x_0$$

subject to $5x_1 + 3x_2 + x_3 - x_0 = 15$
 $3x_1 + 5x_2 + x_4 - x_0 = 15$
 $4x_1 - 3x_2 + x_5 - x_0 = -12$
 $x_0, x_1, x_2, x_3, x_4, x_5 \ge 0$

$$\frac{\zeta}{x_3} = 15 - 5x_1 - 3x_2 + x_0
x_4 = 15 - 3x_1 - 5x_2 + x_0
x_5 = -12 - 4x_1 + 3x_2 + x_0
\hline
\zeta = -12 - 4x_1 + 3x_2 - x_5
\hline
x_3 = 27 - x_1 - 6x_2 + x_5
x_4 = 27 + x_1 - 8x_2 + x_5
\hline
x_0 = 12 + 4x_1 - 3x_2 + x_5
\hline
\zeta = -\frac{15}{8} - \frac{29}{8}x_1 - \frac{3}{8}x_4 - \frac{5}{8}x_5
\hline
x_3 = \frac{27}{4} - \frac{7}{4}x_1 + \frac{3}{4}x_4 + \frac{1}{4}x_5
x_2 = \frac{27}{8} + \frac{1}{8}x_1 - \frac{1}{8}x_4 + \frac{1}{8}x_5
x_0 = \frac{15}{8} + \frac{29}{8}x_1 + \frac{3}{8}x_4 + \frac{5}{8}x_5$$

We see that the optimum for the auxillary problem is nonzero, so there is no way to make x_0 become 0, and therefore we say that the original problem has no feasible points.

• (iii)

Optimal point: (0,2)Optimal value: 2

$$\begin{array}{ll} \text{maximize} & -x-y-z\\ \text{subject to} & -x+y \leq 1\\ & x-y \leq 1\\ & x-z \leq 1\\ & -x+z \leq 1\\ & x,y,z \geq 0 \end{array}$$

gives an unbounded closed feasible region.

$$\begin{array}{ll} \text{maximize} & x+y+z\\ \text{subject to} & -x+y \leq 1\\ & x-y \leq 1\\ & x-z \leq 1\\ & -x+z \leq 1\\ & x,y,z \geq 0 \end{array}$$

The minimum of the objective function is (0,0), but now there is is no maximum.

8.10

$$\begin{array}{ll} \text{maximize} & x+y+z\\ \text{subject to} & -x+y \leq -1\\ & x-y \leq -1\\ & x-z \leq -1\\ & -x+z \leq -1\\ & x,y,z \geq 0 \end{array}$$

There are no points which satisfy both of the first two constraints, so the feasible region is empty.

$$\begin{array}{ll} \text{maximize} & x+y+z\\ \text{subject to} & -x+y \leq 1\\ & x-y \leq 1\\ & x-z \leq 1\\ & -x+z \leq 1\\ & -x-y-z \leq -1\\ & x+y+z \leq 5\\ & x,y,z \geq 0 \end{array}$$

The auxiliary problem is:

$$\begin{array}{ll} \text{maximize} & -x_0 \\ \text{subject to} & -x+y+x_0 \leq 1 \\ & x-y+x_0 \leq 1 \\ & x-z+x_0 \leq 1 \\ & -x+z+x_0 \leq 1 \\ & -x-y-z+x_0 \leq -1 \\ & x+y+z+x_0 \leq 5 \\ & x,y,z \geq 0 \end{array}$$

If this problem solves with an optimum $-x_0 = 0$, then the point we get will be a feasible point for the original problem.

8.12

maximize
$$-3x_1 + x_2$$

subject to $x_2 + x_3 = 4$
 $-2x_1 + 3x_2 + x_4 = 6$
 $x_1, x_2, x_3, x_4 \ge 0$

maximize
$$10x_1 - 57x_2 - 9x_3 - 24x_4$$

subject to $0.5x_1 - 1.5x_2 - 0.5x_3 + x_4 + x_5 = 0$
 $0.5x_1 - 5.5x_2 - 2.5x_3 + 9x_4 + x_6 = 0$
 $x_1 + x_7 = 0$
 $x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$

Optimal point: (1,0,1,0)

Optimal value: 1

8.17

Let the primal problem be

$$\begin{aligned} \text{maximize}_x & c^T x \\ \text{subject to} & Ax \leq b \\ & x \geq 0 \end{aligned}$$

then the dual is:

$$\begin{aligned} \text{maximize}_y & b^T y \\ \text{subject to} & A^T y \succeq c \\ & y \succeq 0 \end{aligned}$$

Then by definition the dual of the dual is

$$\begin{aligned} \text{maximize}_z & & c^T z \\ \text{subject to} & & (A^T)^T z \succeq b \\ & & z \succeq 0 \end{aligned}$$

and since $(A^T)^T = A$, this is just the primal problem.

8.18

maximize
$$x_1 + x_2$$

subject to $2x_1 + x_2 + w_1 = 3$
 $x_1 + 3x_2 + w_2 = 5$
 $2x_1 + 3x_2 + w_3 = 4$
 $x_1, x_2, w_1, w_2, w_3 \ge 0$

$$\zeta = x_1 + x_2$$

$$w_1 = 3 - 2x_1 - x_2$$

$$x_2 = 5 - x_1 - 3x_2$$

$$x_5 = 4 - 2x_1 - 3x_2$$

$$\frac{\zeta}{\zeta} = \frac{3}{2} + \frac{1}{2}x_2 - \frac{1}{2}w_1$$

$$x_1 = \frac{3}{2} - \frac{1}{2}x_2 - \frac{1}{2}w_1$$

$$w_2 = \frac{7}{2} - \frac{5}{2}x_2 + \frac{1}{2}w_1$$

$$w_3 = 1 - 2x_2 + w_1$$

$$\frac{\zeta}{\zeta} = \frac{7}{4} - \frac{1}{4}w_1 - \frac{1}{4}w_1$$

$$x_1 = \frac{5}{4} - \frac{3}{4}w_1 + \frac{1}{4}w_3$$

$$w_2 = \frac{9}{4} - \frac{3}{4}w_1 + \frac{5}{4}w_3$$

$$x_2 = \frac{1}{2} + \frac{1}{2}w_1 - \frac{1}{2}w_3$$

Optimal point: $(\frac{5}{4}, \frac{1}{2})$ Optimum value: $\frac{7}{4}$ Dual:

minimize
$$3y_1 + 5y_2 + 4y_3$$

subject to $2y_1 + y_2 + 2y_3 \ge 1$
 $y_1 + 3y_2 + 3y_3 \ge 1$
 $y_1 + 3y_2 + 3y_3 \ge 1$
 $y_1, y_2, y_3 \ge 0$

Dual in standard form:

maximize
$$-3y_1 - 5y_2 - 4y_3$$

subject to $-2y_1 - y_2 - 2y_3 + v_1 - v_0 = -1$
 $-y_1 - 3y_2 - 3y_3 + v_2 - v_0 = -1$
 $y_1, y_2, y_3, v_1, v_2 \ge 0$

Optimal point: $(\frac{1}{4}, 0, \frac{1}{4})$ Optimum value: $\frac{7}{4}$