Artificial Intelligence/Machine Learning/Deep Learning: 'Bridging the Skills Gap'

Lesson 3: Classification and Classification Performance Metrics

In this lesson we will briefly repeat what we have seen in terms of classification in lesson 1 and we will go deeper into the performance KPIs for a classifier.

Assume that we want to develop an algorithm that takes as input the (x,y) coordinates of a point and output whether the point is to be black or white. The performance of the algorithm can be defined as the % of the points that are correctly classified.

We need a transformation that cleanly separates the black from the white dots. In this case the transformation is simply a coordinate change.

Solution:

- black points: x>0
- white points x<0.

In this case we made the coordinate change by hand but in ML the computer will search for a better representation of the data.

In above example the boundary is linear, but boundaries can also be non-linear. In binary classification we have only 2 classes: example no tumor (negative class)/tumor (positive class)

We can also have Multi-Class Classification, for example recognizing handwritten digits 0→9. This is often called Softmax but more about this later.

For classification, MSE is unlikely to give a good solution as we are not trying to predict a continuous variable. We need a classifier that converts a linear score to a probability with interval [0,1]

We will look at a bunch of classifiers in this course including:

Classification Algorithm	Coding Exercise (Yes/No)	Comment		
K-Nearest Neighbors (KNN)	V			
Perceptron – Multi-Layer Perceptron	X	Perceptron is the simplest form of a Neural Network.		
Naïve Bayes	V			
Logistics Regression	V			
Support Vector Machines and Kernel Functions	√			
Decision Trees	√			
Neural Networks	1	Will be discussed during multiple NN sessions		

In previous session we discussed the example of classifying credit card transactions into fraud or not-fraud classes. Fraud cases are typically rare and are in the range of 0.3%. In this case we deal with a dataset that is very imbalanced. The machine could perform at 99.7% accuracy if it would decide on not-fraud for all cases. However this is not what we want. We want the machine to find the 0.3% fraud cases. Therefore we will use other metrics as classifier performance KPIs.

Classification Performance Metrics:

- Confusion Matrix
- AUC-ROC = Area Under the Curve Receiver Operating Characteristic
- F1-Score

-> 2×2 NATRIX -> 2×2 NATRIX

example charifier that predicts if a person is OBESE given his her weight

1 feature X

O XXXX XXXXX > weight

X: obese

X : Not OBESE

		Predict				
# TRAINIII SAMPLE	NG_	>10	NOT OBESE	OBEJE		
ACTUAL	NOT	3	τρ/ 1	4		
	OBESE	T.	4T.	6		
			/4	6		
	y _P	2 0	PROR			

, Type I CRROR

TP: TRUE Positive

FP: Fabe Positive

TN : TRUE NEGATIVE

FN: FALSE NEGATIVE

Accuracy = TP+TN

Recall SENSitivity TRUE Pos Rate

ROC RECEIVER OPERATOR characteristic

so for -> Treshhold T=0.5

What happens if we change T?

FPR = predicted obere but person is Actually NOT obese L> 1 = 25%

