Outputs of Secant Method:

Output 1:

a. Solution

PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method> gcc 01.c PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method> .\a.exe Enter values of initial guesses x0 and x1:2 3

Enter absolute value of tolerable error e:0.00001

Enter maximum number of iterations N:10

Iterations x0		x1	x2	f(x2)	
1	2.000000	3.000000	2.058824	-0.390799	
2	3.000000	2.058824	2.081264	-0.147203	
3	2.058824	2.081264	2.094824	0.003043	
4	2.081264	2.094824	2.094549	-0.000023	
5	2.094824	2.094549	2.094552	0.000001	

The approximate root is: 2.094551563

PS D:\Engineering BEI\Sem IV\Numerical Methods\NM Lab\Lab4 Secant_method>

b. Mathematical error case

PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method> .\a.exe Enter values of initial guesses x0 and x1:2 2

Enter absolute value of tolerable error e:0.0001

Enter maximum number of iterations N:10

Iterations x0 x1 x2 f(x2)

Mathematical error.

PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method>

c. Not convergent case

PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method> gcc 01.c PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method> .\a.exe Enter values of initial guesses x0 and x1:2 3

Enter absolute value of tolerable error e:0.000001

Enter maximum number of iterations N:2

Iterations x0 x1 x2 f(x2)

1 2.000000 3.000000 2.058824 -0.390799

2 3.000000 2.058824 -0.147203

The solution doesnot converge.

PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method>

Output 2:

PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method> .\a.exe Enter values of initial guesses x0 and x1:0 1
Enter absolute value of tolerable error e:0.0001
Enter maximum number of iterations N:10

Itera	ations x0	X1	x2	f(x2)
1	0.000000	1.000000	0.470990	0.265159
2	1.000000	0.470990	0.307508	-0.134822
3	0.470990	0.307508	0.362613	0.005479
4	0.307508	0.362613	0.360461	0.000099

The approximate root is: 0.360461473

PS D:\Engineering BEI\Sem IV\Numerical Methods\NM Lab\Lab4 Secant method>

Output 3:

PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method> gcc 3.c PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method> .\a.exe Enter values of initial guesses x0 and x1: 1 2 Enter absolute value of tolerable error e:0.0001 Enter maximum number of iterations N:10

Itera	ations x0	X1	X2	f(x2)
1	1.000000	2.000000	0.832673	1.241793
2	2.000000	0.832673	0.728779	0.764440
3	0.832673	0.728779	0.562401	0.140970
4	0.728779	0.562401	0.524782	0.021497
5	0.562401	0.524782	0.518014	0.000779
6	0.524782	0.518014	0.517759	0.000005

The approximate root is: 0.517758846

PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method> .\a.exe Enter values of initial guesses x0 and x1:

Output 4:

PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method> .\a.exe Enter values of initial guesses x0 and x1:2 3
Enter absolute value of tolerable error e:0.0001
Enter maximum number of iterations N:10

Iterati	ions x0	X1	x2	f(x2)
1	2.000000	3.000000	2.588860	0.371910
2	3.000000	2.588860	2.270700	-0.208566
3	2.588860	2.270700	2.385015	0.039225
4	2.270700	2.385015	2.366920	0.003791
5	2.385015	2.366920	2.364983	-0.000074

The approximate root is: 2.364983320

PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method>

PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method> .\a.exe Enter values of initial guesses x0 and x1:-2 -3
Enter absolute value of tolerable error e:0.00001
Enter maximum number of iterations N:10

Iterati	ons x0	X1	X2	f(x2)
1	-2.000000	-3.000000	-2.588860	-0.371910
2	-3.000000	-2.588860	-2.270700	0.208566
3	-2.588860	-2.270700	-2.385015	-0.039225
4	-2.270700	-2.385015	-2.366920	-0.003791
5	-2.385015	-2.366920	-2.364983	0.000074
6	-2.366920	-2.364983	-2.365021	-0.000000

The approximate root is: -2.365020514

PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method>

Output 5:

PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method> gcc 5.c PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method> .\a.exe Enter values of initial guesses x0 and x1:1 2 Enter absolute value of tolerable error e:0.00001 Enter maximum number of iterations N:10

Itera	ations x0	X1	X2	f(x2)
1	1.000000	2.000000	2.150298	-2.294334
2	2.000000	2.150298	2.020091	0.267581
3	2.150298	2.020091	2.033691	0.069319
4	2.020091	2.033691	2.038446	-0.023978
5	2.033691	2.038446	2.037224	0.001089
6	2.038446	2.037224	2.037277	0.000014
7	2.037224	2.037277	2.037277	-0.000001

The approximate root is: 2.037277460

PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method>

Output of False Position Method:

PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method\Regula_falsi_method> .\a.exe Enter values of initial guesses x0 and x1:2 3 Enter absolute value of tolerable error e:0.00001

Iterations	x0	x1	x2	f(x0)	f(x1)	f(x2)
1	2.000000	3.000000	2.058824	-1.000000	16.000000	-0.390799
2	2.058824	3.000000	2.081264	-0.390799	16.000000	-0.147203
3	2.081264	3.000000	2.089639	-0.147203	16.000000	-0.054677
4	2.089639	3.000000	2.092740	-0.054677	16.000000	-0.020203
5	2.092740	3.000000	2.093884	-0.020203	16.000000	-0.007450
6	2.093884	3.000000	2.094306	-0.007450	16.000000	-0.002745
7	2.094306	3.000000	2.094461	-0.002745	16.000000	-0.001010
8	2.094461	3.000000	2.094518	-0.001010	16.000000	-0.000372
9	2.094518	3.000000	2.094539	-0.000372	16.000000	-0.000137
10	2.094539	3.000000	2.094547	-0.000137	16.000000	-0.000050
11	2.094547	3.000000	2.094550	-0.000050	16.000000	-0.000018
12	2.094550	3.000000	2.094551	-0.000018	16.000000	-0.000007

The approximate root is: 2.094551

PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method\Regula_falsi_method>

Output of Fixed Point Iteration Method:

PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method\Fixed_point_iteration_method> gcc 1.c PS D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method\Fixed_point_iteration_method> .\a.exe

Enter initial guess x0: 0.5 Enter tolerable error e: 0.00001

Enter maximum number of iterations $N:\ 15$

Iterations	x0	phi(x)	
1	0.500000	0.816497	
2	0.816497	0.741964	
3	0.741964	0.757671	
4	0.757671	0.754278	
5	0.754278	0.755007	
6	0.755007	0.754850	
7	0.754850	0.754884	
8	0.754884	0.754876	

Approximate real root is: 0.754876

PS. D:\Engineering_BEI\Sem IV\Numerical Methods\NM_Lab\Lab4_Secant_method\Fixed_point_iteration_method>