Pandas

Data Science 2 / Data & AI 3

Reference: J. VanderPlas - O'Reilly 2022 (second edition)

Revision

Revision - Indexing

 What is the proper indexing to retrieve the the values in the yellow squares?

• The blue squares?

The red squares?

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30

Revision

What is the type of this numpy array?

```
X= np.array(
    [[1,2,3],
    [4,"5",6],
    [7,8,9]
])
```

Revision

 How to replace items that satisfy a condition without affecting the original array?

```
The input is:
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

The expected output is:
array([ 0, -1, 2, -1, 4, -1, 6, -1, 8, -1])
```

Agenda

- 1. Introduction to Pandas
- 2. Indexing and Selection
 - Bis: Reading files
- 3. Operations and Missing Values
- 4. Merge and Join
- 5. Aggregation and Grouping
- 6. Working with Strings

Introduction to Pandas

What is Pandas

Python library with flexible data structures developed for Data Scientists

DataFrame

Series

Data Structures are build on Numpy arrays

Series

Series

DataFrame

	apples
0	3
1	2
2	0
3	1

	oranges
0	0
1	3
2	7
3	2

	apples	oranges
0	3	0
1	2	3
2	0	7
3	1	2

source: https://www.learndatasci.com/tutorials/python-pandas-tutorial-complete-introduction-for-beginners/

What is Pandas

Importing exporting and processing multiple data sources

Uniform handling missing data

N.A.

Explicitly defined indexes enabling advanced indexing, slicing and subsetting

Time series functionality

Advanced data manipulation

- GroupBy
- Joining
- 0 ..

Pandas Series

Series as generalized NumPy array

- Numpy array: implicitly defined integer index
- Pandas Series: explicitly defined index

```
import pandas as pd
data = pd.Series([0.25, 0.5, 0.75, 1.0], index=[2, 5, 3, 7])
data[5] # 0.5
data.values
data.index
data.dtype
```

```
2 0.25
5 0.50
3 0.75
7 1.00
dtype: float64
```

Series as specialized dictionary

- Python dictionary: values can have different types
- Pandas Series: all values have the same type (efficiency!)

```
population = pd.Series({'be': 10, 'nl': 8})
data['be'] # 10
```

```
be 10
nl 8
dtype: int64
```

Pandas Dataframes

Dataframe as generalized 2D NumPy array

population		area
0	11.7	30688
1	17.7	41850

Dataframe as specialized dictionary

```
population = pd.Series({'be': 11.7, 'nl': 17.7})
area = pd.Series({'be': 30688, 'nl': 41850})
countries = pd.DataFrame({'population': population, 'area': area})
countries['area'] # or countries.area
```

population		area
be	11.7	30688
nl	17.7	41850

Data Indexing and Selection

Indexing and Selection

- 1. Data Selection in Series
 - Series as dictionary
 - Series as one-dimensional array
 - Indexers: loc, iloc, and ix
 - -Avoid *ix* because it is no longer available in modern pandas versions
- 2. Data Selection in DataFrame
 - DataFrame as a dictionary
 - DataFrame as two-dimensional array
 - Additional indexing conventions

Indexing and Selection - Series

```
data = pd.Series(['a', 'b', 'c'], index=[1, 3, 5])
# explicit index: .loc
data.loc[1] # 'a'
# slicing
data.loc[1:3] # 1 a
               # 3 b, explicit index: final index is included
# implicit index: .iloc
data.iloc[1] # 'b'
# slicing
data.iloc[1:3] # 3 b
               # 5 c, implicit index: final index is excluded
# masking and fancy indexing
data[(data == 'a') | (data == 'b')]
data.loc[[1,3]]
```

- p.14

Indexing and Selection - Dataframe

```
data= pd.DataFrame([ {'popul': 11.7, 'area': 30688},
                      {'popul': 17.7, 'area': 41850}],
                      index=['be', 'nl'])
                                                        population
                                                                      density
                                                                 area
# add new column
                                                            11.7 30688 0.000381
data['density'] = data['popul'] / data['area']
                                                            17.7 41850 0.000423
# implicit index: .iloc
data.iloc[:1, :1] # implicit index: final index is excluded
                      \# -> 1 \times 1
# explicit index: .loc
data.loc[: 'nl ', : 'area'] # explicit index: final index is included
                               \# -> 2 \times 2
# with masking and fancy indexing
data.loc[data.popul > 15, ['area', 'density']]
```


Reading Files

Reading files

- 1. Reading Data
- 2. Reading CSV files and working with a dataframe
- 3. Categorical Variables

Reading files

```
# reading csv file
data = pd.read csv('file name')
# separator is ;
data = pd.read csv('file name', sep=';')
# decimal point is ,
data = pd.read csv('file name', sep='; ', decimal=',')
# if header is not in file
data = pd.read csv('file name', names=['n1', 'n2'])
# categorical variables, default: ordered = False
bloodtype = pd.Categorical(['O-', 'B-', 'B-', 'A+'],
               categories=['O-','O+','B-','B+','A-','A+','AB-','AB+'])
# define columns as categorical
laptops = pd.read csv('laptops.csv',
                      dtype={'cpu': 'category', 'brand': 'category'})
```


Operations and Missing Values in Pandas

Operating on Data in Pandas

Operations in Pandas

Ufuncs: Index Preservation

Ufuncs: Index Alignment

Operations Between DataFrame and Series

Operations on Data in Pandas

area be 30688 **nl** 41850

create new column: index aligment

countries['pop_per_area'] = population / countries['area'] # NaN

	area	pop_per_area
be	30688	0.000381
nl	41850	NaN

with fill_value

countries['pop_per_area'] = population.div(countries['area'], fill_value=0)

Python Operator	Pandas Method(s)
+	add()
-	<pre>sub() , subtract()</pre>
*	<pre>mul() , multiply()</pre>
/	<pre>truediv(), div(), divide()</pre>
//	<pre>floordiv()</pre>
%	mod()
**	pow()

	area	pop_per_area
be	30688	0.000381
nl	41850	0.000000

Missing values

- 1. Handling Missing Data
- 2. Trade-Offs in Missing Data Conventions*
- 3. Missing Data in Pandas*
 - `None`: Pythonic missing data*
 - `NaN`: Missing numerical data*
 - NaN and None in Pandas*
- 4. Operating on Null Values
 - Detecting null values
 - Dropping null values
 - Filling null values
- * Reading for context suffices

Missing Values

Pandas treats None and NaN as essentially interchangeable for indicating missing or null values

1 2

0

```
df = pd.DataFrame([[1,np.nan,2],
                                                                       1.0 NaN 2
                    [2,3,511)
                                                                       2.0
                                                                            3.0 5
                                                                       0
                                                                            1
# detecting null values
df.isnull()
                                                                   O False True False
df.notnull()
                                                                     False False False
                                                                        0
                                                                            1 2
# dropping null values
                                                                      2.0
                                                                          3.0 5
df.dropna()
                                      # drops rows
df.dropna(axis='columns', thresh=3) # drops columns, with min 3 Nas
# filling null values
df.fillna(0)
                                    # fill with Nas with O
```


- 1. Combining Datasets: Merge and Join
- 2. Relational Algebra
- 3. Categories of Joins
 - One-to-one joins
 - Many-to-one joins
 - Many-to-many joins
- 4. Specification of the Merge Key
 - The `on` keyword
 - The `left_on` and `right_on` keywords
 - The `left_index` and `right_index` keywords
- 5. Specifying Set Arithmetic for Joins
- 6. Overlapping Column Names: The `suffixes` Keyword
- 7. Example: US States Data

```
df1
                                                                     df2
df1 = pd.DataFrame({'employee': ['Bob', 'Jake'],
                                                        employee group
                                                                       employee hire_date
                      'group': ['Acc', 'Eng',]})
                                                                                 2012
df2 = pd.DataFrame({'employee': [ 'Jake', 'Bob'],
                                                            Bob
                                                                 Acc
                                                                           Jake
                      'hire date': [ 2012, 2008]})
                                                            Jake
                                                                 Eng
                                                                     1
                                                                           Bob
                                                                                 2008
# merge detects common column
                                                                employee group hire_date
pd.merge(df1, df2)
                                                                                2008
                                                                    Bob
                                                                          Acc
# can merge one-to-one, many-to-one, many-to-many
                                                                          Eng
                                                                                2012
                                                              1
                                                                    Jake
# merge with different column names
# result has both 'employee' and 'name' -> .drop('name', axis=1)
pd.merge(df1, df3, left on="employee", right on="name")
# merge on index, e.g. df1a = df1.set index('employee')
dfla.join(df2a) # pd.merge(df1a, df2a, left index=True, right index=True)
# merge on index and column
pd.merge(df1a, df3, left index=True, right on='name')
```

Sue

Sue

Sue

```
name food
                                                                                        name drink
                                                                              fish
                                                                        Peter
                                                                                        Mary
# default is 'inner' join
                                                                         Paul beans
                                                                                    1 Joseph
# 'outer', 'left', and 'right' joins
                                                                        Mary bread
pd.merge(df6, df7, how='outer')
pd.merge(df6, df7) pd.merge(df6, df7, how='outer') pd.merge(df6, df7, how='left')
                                                             name food drink
    name food drink
                           name food drink
                                                                    fish
   Mary bread wine
                                  fish
                                      NaN
                                                          0 Peter
                                                                        NaN
                            Peter
                                                          1 Paul beans
                            Paul beans
                                                                       NaN
                                     NaN
                            Mary bread
                                      wine
                                                          2 Mary bread
                                                                        wine
                        3 Joseph NaN
                                      beer
# overlapping column names
pd.merge(df8, df9, on="name", suffixes=["_L", "_R"])
                              pd.merge(df8, df9, on="name", suffixes=[" L", " R"])
 df8
               df9
                                 name rank_L rank_R
    name rank
                  name rank
 0
     Bob
                0
                    Bob
                               0
                                  Bob
                                                3
     Jake
                   Jake
                                  Jake
                                                1
 2
     Lisa
           3
                2
                    Lisa
                                  Lisa
                                                4
```

2

df6

df7

wine

beer

Aggregation and Grouping

Aggregation and Grouping

- 1. Aggregation and Grouping
- 2. Planets Data
- 3. Simple Aggregation in Pandas
- 4. GroupBy:
 - Split, apply, combine
 - The GroupBy object
 - Column indexing
 - Iteration over groups
 - Dispatch methods

Aggregation and Grouping

- 4. GroupBy: Split, Apply, Combine
 - Aggregate, filter, transform, apply
 - Aggregation
 - Filtering
 - Transformation
 - The apply() method
- Specifying the split key
 - A list, array, series, or index providing the grouping keys
 - A dictionary or series mapping index to group
 - Any Python function
 - A list of valid keys
 - Grouping example

Simple Aggregation

df = pd.DataFrame({'A': [1, 2, 3], 'B': [3, 4, 5]})

df.mean() # axis=0 !

df.mean(axis=1)

df.describe()

Α	2.0
В	4.0

0 2.0 1 3.0 2 4.0

	Α	В
count	3.0	3.0
mean	2.0	4.0
std	1.0	1.0
min	1.0	3.0
25%	1.5	3.5
50%	2.0	4.0
75%	2.5	4.5
max	3.0	5.0

	Α	В
0	1	3
1	2	4
2	3	5

Aggregation	Description
count()	Total number of items
<pre>first() , last()</pre>	First and last item
<pre>mean(), median()</pre>	Mean and median
min(), max()	Minimum and maximum
std(), var()	Standard deviation and variance
mad()	Mean absolute deviation
prod()	Product of all items
sum()	Sum of all items

GroupBy

```
        key
        data1
        data2

        0
        A
        0
        2

        1
        B
        1
        3

        2
        A
        2
        4

        3
        B
        3
        5
```

#	group	bу	key	and	take	sum
df	.group	oby	('key	/ ').s	sum()	

```
        data1
        data2

        key
        6

        B
        4
        8
```

```
# grouped sum of 1 column

df.groupby('key')['data1'].sum()  # df.groupby('key').sum()['data1']

# df[['key', 'data1']].groupby('key').sum()
```


key A 2 B 4

GroupBy: aggregate, apply, filter

```
      key
      data1
      data2

      0
      A
      0
      2

      1
      B
      1
      3

      2
      A
      2
      4

      3
      B
      3
      5
```

```
# different aggregations at ones
df.groupby('key').aggregate(['min', 'max'])
# different aggregations on different columns
df.groupby('key').aggregate({'data1':'min','data2':'max'})
# aggregation with own function
def norm by sum(x):
    return x /= x.sum()
df.groupby('key').apply(norm by sum)
# original df elements with grouped filter
def filter func(x):
    return x['data2'].sum() > 6
df.groupby('key').filter(filter func)
```

	data1		data2	
	min	max	min	max
key				
Α	0	2	2	4
В	1	3	3	5

key	‡	‡	data1	‡	data2	\$
Α		0		0.000		0.333
Α		2		1.000		0.667
В		1		0.250		0.375
В		3		0.750		0.625

	key	data1	data2
1	В	1	3
3	В	3	5

Working with Strings

Working with strings

- 1. Vectorized String Operations
- 2. Introducing Pandas String Operations
- 3. Tables of Pandas String Methods
 - Methods similar to Python string methods
 - Methods using regular expressions
 - Miscellaneous methods
 - Vectorized item access and slicing
 - Indicator variables

Working with strings

len()	lower()	translate()	islower()
ljust()	upper()	startswith()	isupper()
rjust()	<pre>find()</pre>	endswith()	isnumeric()
center()	rfind()	isalnum()	isdecimal()
zfill()	index()	isalpha()	<pre>split()</pre>
strip()	rindex()	isdigit()	rsplit()
rstrip()	<pre>capitalize()</pre>	isspace()	partition()
<pre>lstrip()</pre>	swapcase()	istitle()	rpartition()