Matematyczne podstawy deep learningu

• Perceptron (McCulloch, Pitts, 1943; Rosenblatt 1957):

Funkcje aktywacji

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Źródło: https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092

 Dużo bardziej interesujące od perceptronów są sieci z warstwami ukrytymi:

• Problem uczenia sieci neuronowych możemy de facto sprowadzić do problemu aproksymacji pewnej funkcji $\phi(x)$ za pomocą złożenia funkcji: $\hat{\phi}(x;\theta) = f^{(L)}(...f^{(2)}(f^{(1)}(x,\theta^{(1)}),\theta^{(2)}),\theta^{(L)})$, gdzie $f^{(i)}$ oznacza **funkcję aktywacji** na i-tej warstwie, a $\theta^{(i)}$ wektor wag na i-tej warstwie.

• Problem uczenia sieci neuronowych możemy de facto sprowadzić do problemu aproksymacji pewnej funkcji $\phi(x)$ za pomocą złożenia funkcji: $\hat{\phi}(x;\theta) = f^{(L)}(...f^{(2)}(f^{(1)}(x,\theta^{(1)}),\theta^{(2)}),\theta^{(L)})$, gdzie

 $f^{(i)}$ oznacza funkcję aktywacji na i-tej warstwie, a $\theta^{(i)}$ wektor wag na

i-tej warstwie.

Źródło: https://stackoverflow.com/questions/1565115/approximating-function-with-neural-network

- O ile funkcje aktywacji f musimy zadać z góry (są one hiperparametrami modelu), tak wagi θ są parametrami na które mamy wpływ (możemy je uczyć).
- Celem jest efektywna aproksymacja funkcji ϕ za pomocą aproksymaty $\hat{\phi}$.
- Rozwiązaniem tego problemu jest zoptymalizowanie wag θ tak aby funkcja $\hat{\phi}$ była jak najbliższa rzeczywistej funkcji ϕ .
- Nie możemy jednak zrobić tego wprost (nie znamy przebiegu funkcji ϕ , mamy tylko jej realizację w postaci zebranych danych) optymalizacja w procesie uczenia sieci neuronowych musi odbywać się w sposób niejawny za pomocą zdefiniowanej **funkcji kosztu** $J(\theta)$.

• Funkcje kosztu $J(\theta)$ definiujemy zazwyczaj jako przeciętną wartość funkcji straty L:

$$J(\theta) = \mathbb{E}_{(x,y) \sim \mathcal{D}} L(\hat{\phi}(x;\theta), y)$$

gdzie \mathcal{D} to rozkład zmiennych x i y.

• Naszym celem jest **minimalizacja** funkcji $J(\theta)$, czyli znalezienie takiego wektora wag θ dla którego **błąd aproksymacji** będzie możliwie najniższy.

• Funkcje kosztu $J(\theta)$ definiujemy zazwyczaj jako przeciętną wartość funkcji straty L:

$$J(\theta) = \mathbb{E}_{(x,y) \sim \widehat{\mathcal{D}}} L(\widehat{\phi}(x;\theta), y)$$

gdzie $\widehat{\mathcal{D}}$ to rozkład empiryczny zmiennych x i y.

• Naszym celem jest **minimalizacja** funkcji $J(\theta)$, czyli znalezienie takiego wektora wag θ dla którego zarówno **błąd aproksymacji** jak i **błąd estymacji** będą możliwie najniższe.

Definicja uczenia maszynowego

Pierwotna definicja uczenia statystycznego (Vapnik, 1999):

Dla zadanej klasy funkcji $\mathcal{F} = \{\alpha \in \Lambda : \hat{f}(x, \alpha)\}$, procesu generującego dane $\mathcal{D} = (X, Y)$ oraz funkcji straty $L(Y, \hat{Y})$ należy rozwiązać problem:

$$\hat{\alpha} = \underset{\alpha \in \Lambda}{\operatorname{argmin}} \left(\mathbb{E} \left(L(\hat{f}(x; \alpha), y) \right) \right)$$

Na podstawie próby (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) niezależnych i mających jednakowe rozkłady zmiennych losowanych z \mathcal{D} .

Table 1: List of losses analysed in this paper. \mathbf{y} is true label as one-hot encoding, $\hat{\mathbf{y}}$ is true label as +1/-1 encoding, \mathbf{o} is the output of the last layer of the network, $\cdot^{(j)}$ denotes jth dimension of a given vector, and $\sigma(\cdot)$ denotes probability estimate.

symbol	name	equation
\mathcal{L}_1	L_1 loss	$\ \mathbf{y} - \mathbf{o}\ _1$
\mathcal{L}_2	L_2 loss	$\ \mathbf{y} - \mathbf{o}\ _2^2$
$\mathcal{L}_1\circ\sigma$	expectation loss	$\ \mathbf{y} - \sigma(\mathbf{o})\ _1$
$\mathcal{L}_2 \circ \sigma$	regularised expectation loss ¹	$\ \mathbf{y} - \sigma(\mathbf{o})\ _2^2$
$\mathcal{L}_{\infty}\circ\sigma$	Chebyshev loss	$\max_j \sigma(\mathbf{o})^{(j)} - \mathbf{y}^{(j)} $
hinge	hinge [13] (margin) loss	$\sum_{i} \max(0, \frac{1}{2} - \hat{\mathbf{y}}^{(j)} \mathbf{o}^{(j)})$
hinge^2	squared hinge (margin) loss	$\sum_{j}^{j} \max(0, \frac{1}{2} - \hat{\mathbf{y}}^{(j)} \mathbf{o}^{(j)})^2$
${ m hinge}^3$	cubed hinge (margin) loss	$\sum_{j}^{j} \max(0, \frac{1}{2} - \hat{\mathbf{y}}^{(j)} \mathbf{o}^{(j)})^3$
\log	log (cross entropy) loss	$-\sum_{i}\mathbf{y}^{(j)}\log\sigma(\mathbf{o})^{(j)}$
\log^2	squared log loss	$-\sum_{j}^{\sigma}[\mathbf{y}^{(j)}\log\sigma(\mathbf{o})^{(j)}]^{2} \ -\sum_{j}^{\sigma}\sigma(\mathbf{o})^{(j)}\mathbf{y}^{(j)}$
tan	Tanimoto loss	$\ \sigma(\mathbf{o})\ _{2}^{2} + \ \mathbf{y}\ _{2}^{2} - \sum_{i} \sigma(\mathbf{o})^{(j)} \mathbf{y}^{(j)}$
D_{CS}	Cauchy-Schwarz Divergence [3]	$-\log \frac{\sum_{j} \sigma(\mathbf{o})^{(j)} \mathbf{y}^{(j)}}{\ \sigma(\mathbf{o})\ _{2} \ \mathbf{y}\ _{2}}$

Źródło: (Janocha, Czarnecki 2017): https://arxiv.org/pdf/1702.05659.pdf

 Zazwyczaj nie robimy tego w sposób deterministyczny – optymalizacja funkcji kosztu dla każdej obserwacji ze zbioru testowego byłaby nieefektywna i powolna. Efektywniejszym rozwiązaniem jest optymalizacja stochastyczna.

 Najczęściej wykorzystywanym algorytmem optymalizacji uczenia sieci neuronowej są algorytmy z rodziny stochastycznych algorytmów gradientowych.

```
Algorithm 8.1 Stochastic gradient descent (SGD) update

Require: Learning rate schedule \epsilon_1, \epsilon_2, \dots

Require: Initial parameter \boldsymbol{\theta}
k \leftarrow 1
while stopping criterion not met do

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(m)}\} with corresponding targets \boldsymbol{y}^{(i)}.

Compute gradient estimate: \hat{\boldsymbol{g}} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})
Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon_k \hat{\boldsymbol{g}}
k \leftarrow k + 1
end while
```


- W przypadku ich wykorzystywania kluczowe jest wybranie odpowiedniej wartości stopy uczenia (learning rate) η
- Zazwyczaj nie przyjmuje się jej na stałym poziomie dla wszystkich iteracji algorytmu, tylko maleje ona z czasem.

• Warunki gwarantujące zbieżność algorytmu (Robbinsa-Munro):

$$\sum_{i=1}^k \eta_i = \infty$$
 $\sum_{i=1}^k \eta_i^2 < \infty$

Błąd generalizacji

• Dla funkcji straty:

$$J(\theta) = \mathbb{E}_{(x,y) \sim \mathcal{D}} L(\hat{\phi}(x;\theta), y)$$

• I miary empirycznego ryzyka postaci:

$$\hat{J}(\theta) = \frac{1}{k} \sum_{i=1}^{k} L(\hat{\phi}(x_i; \theta), y_i)$$

• Błąd generalizacji definiujemy jako:

$$\hat{J}(\theta) - J(\theta)$$

Twierdzenie Hardta

Hardt M., Recht B., Singer Y. *Train faster, generalize better: Stability of stochastic gradient descent,* Mathematics of Control, Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48, s. 1225-1234, 2016

 Zgodnie z twierdzeniem każdy model uczony za pomocą stochastycznej metody gradientów jest w stanie osiągnąć pomijalnie błąd generalizacji za pomocą dostatecznie dużej liczby kroków.

Twierdzenie Hardta

• Zdefiniujmy A(S) jako algorytm generujący modele na próbce losowej $S=(z_1,z_2,\ldots,z_n)$ generowanej \mathcal{D} . Wtedy górną granicę błędu generalizacji możemy przedstawić jako:

$$\mathbb{E}_{S,A}[\hat{J}(A(S)) - J(A(S))] \le \epsilon_S(A,n)$$

Twierdzenie Hardta

Twierdzenie:

Niech $\forall y \ \phi(\cdot, y)$ będzie funkcją wypukłą spełniającą warunek L Lipschitza i niech $\nabla \phi$ spełnia warunek β Lipschitza. Przyjmijmy, że uruchomiliśmy algorytm stochastycznego gradientu T razy z krokiem $\eta_t \leq 2/\beta$. Wtedy:

$$\epsilon_{S} = \frac{2L^2}{n} \sum_{t=1}^{T} \eta_t$$

 Algorytmem wykorzystywanym do optymalizacji jest zazwyczaj algorytm propagacji wstecznej (backpropagation).

• Proces propagacji danych wewnątrz sieci neuronowej jest intuicyjny:

• Wartość każdego neuronu wewnątrz sieci jest kombinacją liniową danych z poprzedniej warstwy przetworzonych przed odpowiednią funkcję wprowadzającą nieliniowość f:

• Wartość każdego neuronu wewnątrz sieci jest kombinacją liniową danych z poprzedniej warstwy przetworzonych przed odpowiednią funkcję wprowadzającą nieliniowość f:

 Nietrywialne jest jednak uczenie sieci. Jesteśmy w stanie wyznaczyć błąd na wyjściowej warstwie:

• Jak jednak wyznaczyć błąd dla warstw ukrytych?

 Rozwiązaniem tego problemu jest wykorzystanie algorytmu propagacji wstecznej.

 Okazuje się, że błąd otrzymany na wyjściu można w efektywny sposób wykorzystać do wyznaczenia błędu na pozostałych warstwach. "Odwracając" ścieżkę jaką przechodzimy w sieci:

 Okazuje się, że błąd otrzymany na wyjściu można w efektywny sposób wykorzystać do wyznaczenia błędu na pozostałych warstwach. "Odwracając" ścieżkę jaką przechodzimy w sieci:

• Do modyfikacji wag wykorzystujemy algorytm gradientowy:

Sieć neuronowa jako aproksymata

- Dlaczego jednak sieć neuronowa jest efektywniejsza niż inne algorytmy aproksymacyjne?
- Okazuje się, że za pomocą jednokierunkowej sieci neuronowej z jedną warstwą ukrytą i sigmoidalną funkcją aktywacji $\sigma(x)$:

$$\sigma(t) \to \begin{cases} 1 \ gdy \ x \to +\infty \\ 0 \ gdy \ x \to -\infty \end{cases}$$

jesteśmy w stanie aproksymować dowolną funkcję f(x) z zadaną dokładnością ϵ .

Twierdzenie Cybenki (twierdzenie o uniwersalnym aproksymatorze).

- Cybenko G., Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals, and Systems, 2, s. 303-314, 1989
- Zgodnie z twierdzeniem Cybenki okazuje się, że możliwa jest aproksymacja funkcji d-wymiarowej zmiennej rzeczywistej $x \in \mathbb{R}^d$ z zadaną dokładnością za pomocą skończonej liniowej kombinacji postaci:

$$G(x) = \sum_{i=1}^{n} \alpha_i \sigma(w_i^T x + b_i)$$
gdzie $w_i \in \mathbb{R}^d$ i $\alpha_i, b_i \in \mathbb{R}$ są stałe.

 Wystarczy, że powyższa sieć neuronowa zawiera dostatecznie dużą liczbę neuronów na warstwie ukrytej.

- Aby móc formalnie wyprowadzić to twierdzenie zdefiniujmy kilka potrzebnych pojęć. Niech:
 - I_n oznacza n-wymiarowy hipersześcian jednostkowy $[0,1]^n$
 - $\mathbf{C}(I_n)$ przestrzeń ciągłych funkcji na I_n
 - ||f|| oznacza normę supremum $f \in C(I_n)$
 - $\mathcal{M}(I_n)$ jest przestrzenią skończonych, borelowskich regularnych miar znakowanych na I_n

- Zdefiniujmy pojęcie funkcji dyskryminującej:
 - Funkcja σ jest **dyskryminująca** jeżeli dla miary $\mu \in \mathcal{M}(I_n)$

$$\int_{I_n} \sigma(w^T x + b) d\mu(X) = 0 \qquad \forall w \in \mathbb{R}^n \ i \ b \in \mathbb{R}$$

oznacza, że $\,\mu=0\,$

Twierdzenie 1:

Niech σ będzie dowolną ciągłą funkcją dyskryminującą. Wtedy skończona suma postaci:

$$G(X) = \sum_{i=1}^{n} a_i \sigma(w_i^T x + b_i)$$

jest zbiorem gęstym w $C(I_n)$.

Innymi słowy, dla dowolnego $f \in C(I_n)$ i $\varepsilon > 0$ istnieje taka suma G(X), dla której:

$$||G(X) - f(X)||_{\infty} < \varepsilon$$

Twierdzenie 2:

Niech σ będzie dowolną ciągłą funkcją sigmoidalną. Wtedy skończona suma postaci:

$$G(X) = \sum_{i=1}^{n} a_i \sigma(w_i^T x + b_i)$$

jest zbiorem gęstym w $C(I_n)$.

Innymi słowy, dla dowolnego $f \in C(I_n)$ i $\varepsilon > 0$ istnieje taka suma G(X), dla której:

$$||G(X) - f(X)||_{\infty} < \varepsilon$$

Twierdzenie 3:

Niech σ będzie dowolną ciągłą funkcją sigmoidalną. Niech f będzie funkcją decyzyjną dla dowolnego mierzalnego fragmentu I_n . Wtedy dla każdego $\epsilon>0$ istnieje skończona suma postaci:

$$G(X) = \sum_{i=1}^{n} a_i \sigma(w_i^T x + b_i)$$

i zbiór $D \subset I_m$ taki, że miara Lebesque'a $m(D) \geq 1 - \epsilon$ oraz:

$$||G(X) - f(X)||_{\infty} < \varepsilon \operatorname{dla} x \in D$$

Twierdzenie Cybenki

 Twierdzenie Cybenki swoją treścią przypomina klasyczny wynik teorii aproksymacji:

Twierdzenie Stone'a-Weierstrassa:

Jeżeli funkcja f(x) jest określona i ciągła na skończonym przedziale [a,b], to dla każdego $\epsilon>0$ istnieje takie n i wielomian $W_n(x)$ stopnia n, dla którego zachodzi nierówność:

$$|f(x) - W_n(x)| < \epsilon$$

na przedziale [a, b].

Twierdzenie Cybenki

Sieć neuronowa jako aproksymata

 Twierdzenie Cybenki dotyczy jedynie specyficznego przypadku funkcji sigmoidalnej. Czy dla innych funkcji aktywacji aproksymacja jest podobnie efektywna?

Twierdzenie Hornika

- Hornik K., Approximation Capabilities of Multilayer Feedforward
 Networks , Neural Networks, Vol. 4, pp. 251-257, 1991
- Twierdzenie Hornika rozszerza wyniki otrzymane przez Cybenkę na znacznie szerszą przestrzeń funkcji σ , pokazując de facto że to sama w sobie architektura sieci neuronowej a nie wybór funkcji aktywacji wpływa na zdolność sieci do bycia aproksymatorem.

Sieć neuronowa jako aproksymata

- Oba wymienione twierdzenia pokazują siłę sieci neuronowych jako narzędzi aproksymacyjnych.
- Ale żadne z nich nie pokazuje jak powinna wyglądać sieć zdolna do efektywnej aproksymacji, jaka powinna być liczba neuronów na warstwie ukrytej, etc.
- Istnieje jednak cały szereg twierdzeń wykazujących rząd wielkości błędu oszacowania sieci w zależności od liczby neuronów i jej głębokości.

- Barron A.E., Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. on Information Theory, 39, s. 930-945, 1993
- Zajmijmy się sytuacją w której naszym celem jest aproksymacja pewnej funkcji f(X) za pomocą znanej już nam sieci neuronowej postaci: $G(X) = \sum_{i=1}^{n} a_i \sigma(w_i^T x + b_i)$
- Naszym celem jest osacowanie koniecznej liczby neuronów na warstwie ukrytej.

 Jedną z podstawowych miar odległości jest MISE (mean integrated squared error) definiujemy ją jako:

$$MISE = E||G - f||_{2}^{2} = E[\int (G(X) - f(X))^{2} dX]$$

• Rozpatrujemy klasę funkcji $f \colon \mathbb{R}^d \to \mathbb{R}$ i $f \in \Gamma_C$ dla których istnieje transformata Fouriera postaci:

$$f(x) = \int_{\mathbb{R}^d} e^{i\omega \cdot x} \hat{f}(\omega) d\omega$$

gdzie $\hat{f}(\omega)$ jest funkcją zespoloną dla której wyrażenie $\omega \hat{f}(\omega)$ jest różniczkowalne. Zdefiniujmy:

$$C_f = \int_{\mathbb{R}^d} \hat{f}(\omega) |\omega| d\omega$$

gdzie $|\omega| = (\omega \cdot \omega)^{1/2}$, a Γ_C jest zbiorem funkcji f takich, że: $C_f \leq C$ i 0 < C.

Twierdzenie:

Dla dowolnej funkcji $f \in \Gamma_c$, dowolnej sigmoidalnej funkcji σ , dowolnej miary prawdopodobieństwa μ rozpiętej na kuli $B_r = \{x: |x| \le r\}$ i $n \ge 1$ istnieje taka liniowa kombinacja n funkcji sigmoidalnych postaci

$$G(X) = \sum_{i=1}^{n} a_i \sigma(w_i^T x + b_i) + a_0$$
, że:

$$\int (G(X) - f(x))^2 \mu(dx) \le \frac{(2rC_f)^2}{n}$$

przy czym współczynniki wewnątrz funkcji G(X) muszą spełnić $\overline{2}$ warunki:

1.
$$\sum_{i=1}^{n} |w_i| \le 2rC$$

2. $a_0 = f(0)$

2.
$$a_0 = f(0)$$

• Błąd aproksymacji jest rzędu co najwyżej $O\left(\frac{1}{n}\right)$ a błąd estymatora opartego na jednowarstwowej sieci neuronowej:

$$O\left(\frac{1}{n}\right) + O\left(\frac{nd}{M}\ln M\right)$$

gdzie *M* oznacza wielkość próby losowej.

- Widzimy też, że błąd aproksymacji zależy jedynie od liczby neuronów na warstwie ukrytej.
- Oznacza to, że sieć neuronowa jest modelem, stosując który możemy uniknąć przekleństwa wymiarowości (Curse of Dimensionality).

- Jednak nadal problemem może być liczba neuronów na warstwie ukrytej konieczna do wygenerowania efektywnie aproksymującej sieci neuronowej.
- W najgorszym przypadku odpowiadać ona może wszystkim możliwym kombinacjom danych wejściowych 2^d .

- Okazuje się jednak, że efektywną metodą przeciwdziałania tego typu problemom jest zastosowanie więcej niż jednej ukrytej warstwy w swojej sieci.
- W wielu przypadkach budowa głębszego modelu pozwala na redukcję liczby neuronów potrzebnych do odpowiedniego reprezentowania aproksymowanej funkcji.
- O rzędzie wielkości błędu aproksymacji secie z wieloma warstwami ukrytymi mówią kolejne twierdzenia, które omówimy.

- Telgarsky M., Representation Benefits of Deep Feedforward Networks
- Na bardzo prostym przykładzie Telgarsky pokazuje jak działa taki mechanizm.

Funkcję postaci:

$$m(x) = \begin{cases} 2x \ gdy \ x \in [0,0.5] \\ 2(1-x) \ gdy \ x \in [0.5,1] \end{cases}$$

 Jesteśmy w stanie wyaprosymować ze 100% dokładnością za pomocą sieci neuronowej:

$$f(x) = \sigma_R(2\sigma_R(x) - 4\sigma_R(x - 0.5))$$

Gdzie σ_R to funkcja aktywacji ReLU: $\sigma_R(x) = \max(0, x)$

Taka sieć neuronowa ma postać:

A jej funkcje aktywacji wyglądają następująco:

Źródło: http://elmos.scripts.mit.edu/mathofdeeplearning/2017/04/09/mathematics-of-deep-learning-lecture-2/

- Przy każdym kolejnym złożeniu funkcji $m\left(...\left(m(x)\right)\right) = m^{(k)}(x)$ dla k=1,2,... dwukrotnie wzrasta ilość jej "zębów".
- Każdy nowy trójkąt ma o połowę mniejszą szerokość i taką samą wysokość.
- Funkcja $m^{(k)}(x)$ ma dokładnie 2^k przedziałów liniowych.
- Do jej aproksymacji ze 100% dokładnością możemy wykorzystać sieć neuronową o strukturze podanej wcześniej i dokładnie 3k+1 neuronach.

Figure 2: $f_{\rm m}$, $f_{\rm m}^2$, and $f_{\rm m}^3$.

Twierdzenie:

Niech $x_i = i/2^k$, $y_i = m^{(k)}(x_i)$ i $y_i \in \{0,1\}$. Dla zadanej funkcji F i zbioru punktów (x_i, y_i) zdefiniujmy błąd klasyfikacji jako:

$$R(F) = \frac{1}{n} \sum_{i} \mathbf{1} \{ \tilde{F}(x) \neq y_i \},$$

gdzie $\tilde{F}(x) = \mathbf{1}\{F(x_i) \ge 1/2\}$ to funkcja klasyfikująca. Dla prezentowanej wcześniej sieci neuronowej f(x) o 2^k warstwach ukrytych i 2 dwóch neuronach na każdej z warstw błąd klasyfikacji jest zawsze zerowy:

$$R(f) = 0$$

Dla dowolnej sieci neuronowej g(x) o l warstwach i szerokości każdej z warstw $w < 2^{(n-k)/l-1}$ dolne oszacowanie błędu wynosi:

$$R(g) > \frac{1}{2} - \frac{1}{3 * 2^{k-1}}$$

- Montúfar G.F., Pascanu R., Cho K., and Bengio, Y., On the number of linear regions of deep neural networks, in: NIPS'2014, 2014
- Twierdzenie Montufara omawia bardziej ogólny przypadek, sieć neuronowa z przedziałami liniową funkcją aktywacji (np. ReLU) może aproksymować dowolną funkcje z dokładnością rosnącą wykładniczo wraz ze wzrostem głębokości sieci \(\ell\).

 Dzieje się tak dlatego, że głęboka sieć neuronowa jest zdolna do identyfikowania obszarów funkcji posiadających taki sam przebieg i mapowania ich do tego samego neuronu na kolejnej warstwie.
 Formalnie:

Definition 1. A map F identifies two neighborhoods S and T of its input domain if it maps them to a common subset F(S) = F(T) of its output domain. In this case we also say that S and T are identified by F.

 Intuicyjnie można to porównać do składania funkcji narysowanej na kartce papieru wzdłuż jej osi symetrii – co ważne symetria może dotyczyć jedynie pewnych obszarów funkcji a nie jej całości.

Figure 3: Space folding of 2-D space in a non-trivial way. Note how the folding can potentially identify symmetries in the boundary that it needs to learn.

• Oznacza to, że głęboka sieć neuronowa z wektorem danych wejściowych o długości d, głębokością ℓ i n neuronami na warstwie ukrytej może wyaproksymować następującą liczbę liniowych regionów:

$$O\left(\binom{n}{d}^{d(\ell-1)}n^d\right)$$

- W rezultacie efektywność aproksymacji rośnie wraz z liczbą warstw ukrytych, różnica jest szczególnie widoczna w porównaniu z siecią z tylko jedną warstwą ukrytą.
- Sieć z jedną warstwą ukrytą musi wykorzystać pewną ilość neuronów do aproksymacji każdego fragmentu funkcji – nawet takich, których przebieg jest dokładnie taki sam (co do osi symetrii).

- W przypadku sieci głębokich symetryczne fragmenty są mapowane do tego samego neuronu na kolejnej warstwie.
- Dzięki temu każdą kolejna warstwa aproksymuje mniejszy kawałek funkcji z większą precyzją.
- Prowadzi to też do ważnego wniosku na temat aproksymowanej funkcji – im bardziej jest ona symetryczna tym większa jest dokładność jaką możemy uzyskać za pomocą naszego modelu.

Dodatkowa praca domowa

 Wykaż, że algorytm propagacji wstecznej poprawnie wyznacza błąd na każdym z neuronów sieci neuronowej (5 punktów).