

Modeling for Public Health Review

Dr. Rachel Sippy University of St Andrews

Objectives

- Review materials from the modeling workshop
- Basics for R software
- Overview of upcoming sessions

Post Questions in the Chat!

(we will have breaks to answer these during the workshop)

Workshop Schedule

Time	Topics
2:00-2:10 pm	Outline & Introduction
2:10-2:50 pm	Model Review
2:50-3:00 pm	Upcoming Workshop
3:00-3:10 pm	Break
3:10-4:00 pm	Introduction to R

Introductions!

- Dr Rachel Sippy
- Lecturer in Statistics at University of St Andrews

Types of Models

And Modeling Approaches!

- Statistical models
 - Regression (many!), time series
- Mathematical models
 - Compartmental, mechanistic, agent-based
- Machine learning
 - Uses algorithms and statistical models

Three Major Model Types

(used in epidemiology)
(general modeling approaches)

Relationships

Relationships

Agent-SIR Linear based Mixed regression model model Mathematical **Statistical** Elastic net Reed-Frost regression Logistic regression Machine with GEE learning Neural networks

Relationships - Overlap

Same model, different context

Agent-SIR based model

Mathematical

Reed-Frost

Linear Mixed regression model **Statistical** Elastic net regression Logistic regression Machine with GEE learning Neural networks

Relationships - Evaluation

to evaluate other models Agent-SIR based Linear Mixed regression model model Mathematical **Statistical** Elastic net Reed-Frost regression Logistic regression Machine with GEE learning Neural networks

Statistical methods often used

Relationships – Parameter Estimates

be used in mathematical models Agent-SIR based Linear Mixed regression model model Mathematical **Statistical** Elastic net Reed-Frost regression Logistic regression Machine with GEE learning Neural networks

Statistical models

produce estimates to

Statistical Modeling

- Uses methods based in theory (frequentist, Bayesian, likelihood)
- Way to understand data and sources of its variability
- Concepts:
 - Our data are a sample from some larger population
 - Our data come from a distribution (parametric) or not (non-parametric)
- Generalization of statistical test

Statistical Modeling

- We start with the data
- Our data and question of interest will determine the model we use
- For our model results, we want to have an unbiased estimate of the relationship between the inputs and the outcome
- A high quality statistical model will have limited biases and an appropriate model
 - Results should account for uncertainty
 - Hopefully uncertainty is limited

Statistical Modeling Questions

- What is the effect of temperature on mosquito abundance?
- Does vaccination affect disease risk?
- What will the life expectation be for people with certain characteristics?

Mathematical Modeling

- Formal description of a process we are interested in
- Model structure/form is critical first decision
 - Often depends on type of disease being studied
- Parameters/inputs for the model often come from previous knowledge or other literature
- Models commonly formulated with differential equations
- A high-quality mathematical model should examine multiple scenarios
 - Validated if possible
 - Results should account for uncertainty
 - Hopefully uncertainty is limited

Mathematical Modeling

- We start with our model: based on system processes
- Often, we use equations to create a scenario (set of conditions)
 - Example: population of city, level of interaction, certain disease, susceptibility of population
- If we can create a realistic model, then we can make changes to model and see what happens
 - Example: what happens when we vaccinate some people?
- This is similar to running many experiments and observing what happens
- Results from these observations can be compared to real data
 - Example: do model results match what happened in real life?

Mathematical Modeling Questions

- If we vaccinate the population, how many cases will occur?
- Why does the disease have a biennial pattern?
- Given the current population and disease conditions, how many deaths will occur?

Machine Learning

- Subset of artificial intelligence developed in computer science
- Using computers to develop predictions from data
- Need to make predictions in scenarios where statistical models were inappropriate
 - Image recognition
 - Handwriting recognition
 - Financial markets

Machine Learning

- Methods may be very complex and difficult to understand, usually not interpretable
- Many models run repeatedly
- Focus on prediction results

Machine Learning Questions

- Will people with certain characteristics get the disease?
- What is the temperature in this location?
- What are the types of houses in this village?

Statistical vs. Mathematical Models

- Statistical: we are finding the relationship between the variables that is the most likely explanation for the data we have (or the relationship with least uncertainty)
 - We are estimating the <u>size</u> and <u>direction</u> of the relationships
 - These are our parameters
- Mathematical: we assume relationships/model structure, make changes and calculations, then compare to real data (validation)
 - We are estimating or predicting outcome size
 - Our inputs are our parameters

What Can We Do with Models?

(and what can't we do)

What is the Goal of Modeling?

- Inference
- Prediction

Model Use: Inference

- Estimate relationships between outcome and input data
 - Are inputs associated with the outcome?

•

How are inputs related to outcome?

•

- Understand how data were generated
 - Why are we observing a particular pattern of data?

•

Model Use: Inference

- Estimate relationships between outcome and input data
 - Are inputs associated with the outcome?
 - Are climate variables associated with COVID-19 rates?
 - How are inputs related to outcome?
 - How is population size related to measles incidence?
- Understand how data were generated
 - Why are we observing a particular pattern of data?
 - Why are gonorrhea levels staying at a low level?

Model Use: Prediction

- Predicting outcomes
 - Predict general outcomes
 - •
 - Predicting outcomes for an individual
 - •
 - Predict impact of controls
 - •
- Forecasting
 - Predicting what will happen in the future
 - •

Model Use: Prediction

- Predicting outcomes
 - Predict general outcomes
 - What is the average effect of treatment on population?
 - Predicting outcomes for an individual
 - Will a person with certain characteristics get the disease?
 - Predict impact of controls
 - How will vaccination affect the number of cases?
- Forecasting
 - Predicting what will happen in the future
 - How many cases will there be in total?

Compartmental Models & Parameters

SIR + more

Epidemic Parameters

- · Doubling time: time until # cases to double
- Reproductive number (R): Ro, R+

 Reproductive number (R): Ro, R+

 Ro, R+

 People in fected by I care

 Resolution Resolu
- · Generation time: time between infections state
- Herd immunity: | 5 R proportion
- Final size

$$DT = \frac{ln}{ln} \frac{2}{(cT)}$$

Generation Time & Epidemics

- Incubation period
 - time between infection and development of symptoms
- Latent period
 - time between infection and becoming infectious
- Infectious period
 - period when a case is infectious
- Generation time is most important
 - depends on biological factors and number of contacts

Data for Parameters

- How do we know what values to enter for our model parameters?
- How do we know what to use for starting values?
- Models (depending on the structure) need a lot of inputs, such as:
 - birth rates
 - death rates
 - transmission rate
 - latency rate
 - recovery rate

- natural history (important term) parameters
- number in each compartment
- Where might we find these numbers?

Compartmental models

SIR Model: Kermack & McKendrick

- B is a transmission coefficient
 - it is the probability of a susceptible becoming infected if they contact an infected person

$$\begin{cases} \frac{dS(t)}{dt} = -\beta S(t)I(t) \\ \frac{dI(t)}{dt} = \beta S(t)I(t) - \gamma I(t) \\ dR(t) \end{cases}$$

- γ is the recovery rate
 - 1/ γ is the duration of infectiousness

Thought Process for Building Models

- The basic SIR model can be adapted for many situations
- For any new model, consider:
 - What is changing?
 - Do I need a new compartment? Fewer compartments?
 - Do I need to change rates?
 - Do I need additional transitions?
- Translate this to your differential equations
 - represent the flow of individuals between compartments
 - update your equations to reflect any new transitions

SIR Model Output

- We can examine the epidemic dynamics
- We will have values for S(t), I(t), and R(t) for each time step t
 - these can be expressed as population proportions and plotted
 - we can also find totals for each compartment at the end of the epidemic

SIR Model Output

- In our first examples last week, we input parameter values and starting values
 - parameter values for beta and gamma
 - starting values for number of people in each compartment S, I, R
- What about our other epidemic determinants?

SIR Model Output

 Shape of curves will depend on epidemic determinants

• solid lines $\rightarrow R_0 = 3.6$ • dotted lines $\rightarrow R_0 = 13.2$

 What differences can we note about these two epidemics with two different basic reproductive numbers?

dynamics different!

Reproductive Number during Epidemic

 Can translate R0 to R based on proportion of susceptibles at specific time points

$$R_0 \rightarrow R_t$$

epidemic stable? growing? decreasing? R7/ RX/

Reproductive Number during Epidemic

- The basic reproductive number is driving the behavior of the epidemic
 - how we calculate R0 depends on the type of model
- During the epidemic, we can use the relationship between R0*S and 1 to see when the epidemic will increase, stabilize, or decrease

Model Development

- Important to reflect on purpose of model & wider considerations
- 9-step process from Habbema et al., 1996

Upcoming Workshop

Surveillance

Surveillance Workshop Topics

- Surveillance Goals & Uses
- Case-based Surveillance
- Serological Surveillance
- Molecular Surveillance
- Genetic Surveillance

- Wildlife/Veterinary Surveillance
- Tracking Vaccination
- Surveillance Assessment
- Example Programs
- Bangladesh Case Study
- Bangladesh Assessment

R Session Topics

- Exploratory Analysis
- Data Manipulation
- Mapping
- Tidyverse
- Debugging
- Plotting & Visualization
- Forecasting

Additional Materials

- To be sent:
 - Link to videos/materials from modeling workshop
 - Syllabus (when dates are set)
 - Copies of slides/script

Workshop Schedule

Time	Topics
2:00–2:10 pm	Outline & Introduction
2:10–2:50 pm	Model Review
2:50-3:00 pm	Upcoming Workshop
3:00-3:10 pm	Break
3:10-4:00 pm	Introduction to R