二次超曲面

黄利兵

数学科学学院

2023年5月8日

主要内容

- 1 直角坐标变换
- ② 二次超曲面的分类
- ③ 平面二次曲线

标准正交标架

令 $\mathbb{R}^n = \mathbb{R}^{n \times 1}$, 将 \mathbb{R}^n 中的元素称为点. 任取 $p \in \mathbb{R}^n$, 并取标准正交基 \mathbf{e}_1, \cdots , \mathbf{e}_n , 称 $(p; \mathbf{e}_1, \cdots, \mathbf{e}_n)$ 为 \mathbb{R}^n 的一个标准正交标架.

例

如果取 $O = (0, \dots, 0)', \varepsilon_1 = (1, 0, \dots, 0)', \dots, \varepsilon_n = (0, \dots, 0, 1)', 则$ $(O; \varepsilon_1, \dots, \varepsilon_n)$ 是一个标准正交标架, 称为 \mathbb{R}^n 的典范标架或自然标架.

在标架 $(p; \mathbf{e}_1, \dots, \mathbf{e}_n)$ 中, 点 q 的坐标定义为 q - p 在基 $\mathbf{e}_1, \dots, \mathbf{e}_n$ 下的坐标. 特别地, 在自然标架中, 点 q 的坐标仍为 q.

由于每个点在标准正交标架下都有坐标,我们也称这个标架诱导了一个(直角)坐标系.

坐标变换

现在,设 $(p; \mathbf{e}_1, \cdots, \mathbf{e}_n)$ 和 $(\tilde{p}; \tilde{\mathbf{e}}_1, \cdots, \tilde{\mathbf{e}}_n)$ 是两个标准正交标架. 我们来讨论同一点在两个标架中的坐标之间的关系. 假设点 \tilde{p} 在前一标架中的坐标为 b_0 , 即

$$\widetilde{p}-p=(\mathbf{e}_1,\cdots,\mathbf{e}_n)\ b_0.$$

又设标准正交基 $\mathbf{e}_1, \cdots, \mathbf{e}_n$ 到 $\tilde{\mathbf{e}}_1, \cdots, \tilde{\mathbf{e}}_n$ 的过渡矩阵为 Q, 即

$$(\widetilde{\mathbf{e}}_1,\cdots,\widetilde{\mathbf{e}}_n)=(\mathbf{e}_1,\cdots,\mathbf{e}_n)Q.$$

现在, 若点 q 在两个标架中的坐标分别为 \mathbf{x} 和 $\tilde{\mathbf{x}}$, 则有

$$q - p = (\mathbf{e}_1, \cdots, \mathbf{e}_n) \mathbf{x},$$

 $q - \widetilde{p} = (\widetilde{\mathbf{e}}_1, \cdots, \widetilde{\mathbf{e}}_n) \widetilde{\mathbf{x}}.$

综合以上信息即可得到

$$\mathbf{x} = Q\widetilde{\mathbf{x}} + b_0.$$

这个等式称为 (直角) 坐标变换公式.

イロト イ団ト イヨト (日)

黄利兵 (数学科学学院)

通过选取合适的标准正交标架,可以使我们方便地识别一些图形.

例

在 \mathbb{R}^2 的自然标架中, 考虑二次方程 $11x^2 - 24xy + 4y^2 + 20x - 40y + 20 = 0$ 所 定义的曲线.

令 p=(-2,-1)', $\mathbf{e}_1=(3/5,4/5)',$ $\mathbf{e}_2=(-4/5,3/5)',$ 则 $(p;\mathbf{e}_1,\mathbf{e}_2)$ 是另一个标准正交标架. 新标架下的坐标 $\widetilde{\mathbf{x}}=(\widetilde{x},\widetilde{y})'$ 与原坐标 $\mathbf{x}=(x,y)'$ 之间的关系是

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3/5 & -4/5 \\ 4/5 & 3/5 \end{bmatrix} \begin{bmatrix} \widetilde{x} \\ \widetilde{y} \end{bmatrix} + \begin{bmatrix} -2 \\ -1 \end{bmatrix},$$

原二次曲线的方程在新的标架下可以写为 $\frac{\widehat{x}^2}{4} - \widehat{y}^2 = 1$. 可见该二次曲线是双曲线.

二次超曲面

定义

在 \mathbb{R}^n 的自然标架中, 满足方程

$$\mathbf{x}'A\mathbf{x} + 2\beta'\mathbf{x} + c = 0$$

的所有点 $\mathbf x$ 所构成的集合 Γ 称为二次超曲面, 其中 $A \in \mathbb{R}^{n \times n}$ 为对称矩阵, $\beta \in \mathbb{R}^{n \times 1}$, $c \in \mathbb{R}$. 特别地, 当 n = 2 时, Γ 称为二次曲线; n = 3 时, Γ 称为二次曲面.

经坐标变换 $\mathbf{x} = Q\tilde{\mathbf{x}} + b_0$, 上述二次超曲面 Γ 的方程变为

其中
$$\widetilde{\mathbf{x}}'\widetilde{A}\widetilde{\mathbf{x}} + 2\widetilde{\beta}'\widetilde{\mathbf{x}} + \widetilde{c} = 0,$$

其中 $\widetilde{A} = Q'AQ,$
 $\widetilde{\beta} = Q'(Ab_0 + \beta),$
 $\widetilde{c} = b'_0Ab_0 + 2\beta'b_0 + c.$

怎样选取合适的正交矩阵 Q 和列向量 b_0 , 可以使得 \tilde{A} , $\overset{\sim}{\beta}$, \tilde{c} 最简单?

◆□▶ ◆□▶ ◆荳▶ <荳 → りへ⊙

黄利兵 (数学科学学院)

二次超曲面的分类

我们分两种情况来讨论.

• 情形一: $\operatorname{rank}(A \ \beta) = \operatorname{rank}(A)$. 这时线性方程组 $A\mathbf{x} = -\beta$ 有解, 取 b_0 为一个解, 则 $\widetilde{\beta} = Q'(Ab_0 + \beta) = 0$. 再取正交矩阵 Q 使得 $\widetilde{A} = Q'AQ = \operatorname{diag}(\lambda_1, \cdots, \lambda_n)$ 为对角矩阵. 这样, 在新的坐标系下, 二次超曲面的方程为

$$\lambda_1 \widetilde{x}_1^2 + \dots + \lambda_n \widetilde{x}_n^2 + \widetilde{c} = 0.$$

• 情形二: $\operatorname{rank}(A \ \beta) > \operatorname{rank}(A)$. 这时线性方程组 $A\mathbf{x} = -\beta$ 无解. 设 A 的列向量组张成的子空间为 W, 则 $\dim W < n$ 且 $\beta \not\in W$. 设 β 在 W 上的正交投影为 β_1 , 并设 $\beta_2 = \beta - \beta_1$ 的长度为 d, 那么, $\xi = \frac{1}{d}\beta_2$ 是与 W 正交的单位向量, 因而 ξ 与 A 的列向量都正交, $A\xi = 0$, 即 ξ 是 A 的属于特征值 0 的特征向量. 利用这一点, 我们可按下面的步骤找到合适的正交矩阵 Q 和列向量 b_0 .

首先, 取 A 的特征向量构成的正交矩阵 Q, 使得 Q 的第 n 列为 ξ , 则

$$\widetilde{A} = Q'AQ = \operatorname{diag}(\lambda_1, \cdots, \lambda_{n-1}, 0).$$

其次, 取列向量 b_1 , 使得 $Ab_1 = -\beta_1$ (注: b_1 是方程组 $A\mathbf{x} = -\beta$ 的一个最小二乘解); 这时 $b_0 = b_1 - t\xi$ 仍满足 $Ab_0 = -\beta_1$, 其中实数 t 待定. 于是

$$\widetilde{\beta} = Q'(Ab_0 + \beta) = Q'\beta_2 = (0, \cdots, 0, d)'.$$

最后, 取 $t = \frac{1}{2d}(b_1'Ab_1 + 2\beta'b_1 + c)$, 则 $\tilde{c} = b_0'Ab_0 + 2\beta'b_0 + c = 0$. 按如上方式取正交矩阵 Q 和列向量 b_0 , 则在新坐标系中, Γ 的方程成为

$$\lambda_1 \widetilde{x}_1^2 + \dots + \lambda_{n-1} \widetilde{x}_{n-1}^2 + 2 d \widetilde{x}_n = 0.$$

定理

若 Γ 是 \mathbb{R}^n 中的二次超曲面,则在适当的标准正交标架下, Γ 的方程可以写为

$$\begin{split} \lambda_1 \widetilde{x}_1^2 + \dots + \lambda_n \widetilde{x}_n^2 + \widetilde{c} &= 0, \\ \mathring{\otimes} \ \lambda_1 \widetilde{x}_1^2 + \dots + \lambda_{n-1} \widetilde{x}_{n-1}^2 + 2d \widetilde{x}_n &= 0. \end{split}$$

◆□▶◆圖▶◆臺▶◆臺▶ 臺 釣९♂

黄利兵 (数学科学学院)

平面二次曲线的分类

在上述定理中取 n=2, 就有

定理

平面二次曲线 Γ 在适当的标准正交标架下的方程为以下 9 种类型之一

	非退化	退化
椭圆型	(椭圆) $\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$	(相交虚直线) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$
	(虚椭圆) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + 1 = 0$	
双曲型	(双曲线) $\frac{x^2}{a^2} - \frac{y^2}{b^2} - 1 = 0$	$(相交直线)\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$
抛物型	$(抛物线)x^2 - 2py = 0$	$(平行直线)x^2 - a^2 = 0$
		(平行虚直线) $x^2 + a^2 = 0$
		(重合直线) $x^2 = 0$

思考题

(**) 判断 $x^2 - xy + y^2 = x + y$ 是何种曲线.

空间二次曲面的分类

当 n=3 时,则有

定理

若 Γ 是空间二次曲面,则在适当的标准正交标架下, Γ 的方程可以写为以下17种类型之一

- 非退化 (6 种)
 - ▶ 椭圆型: (椭球面) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{a^2} 1 = 0$; (虚椭球面) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{a^2} + 1 = 0$;
 - ▶ 双曲型: (单叶) $\frac{x^2}{x^2} + \frac{y^2}{x^2} \frac{z^2}{x^2} 1 = 0$; (双叶) $\frac{x^2}{x^2} + \frac{y^2}{x^2} \frac{z^2}{x^2} + 1 = 0$;
 - ▶ 抛物型: (椭圆抛物面) $\frac{x^2}{x^2} + \frac{y^2}{12} 2z = 0$; (双曲抛物面) $\frac{x^2}{x^2} \frac{y^2}{12} 2z = 0$;
- 退化 (11 种)
 - ▶ 锥面: (虚锥面) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$; (实锥面) $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 0$; ▶ 柱面: 将 xOy 平面的二次曲线沿 z 轴平移形成的柱面, 共 9 种.

思考题

(***) 判断 xy + yz + zx = x + y + 1 是何种曲面.

二次曲线方程的不变量

在上面的讨论中, 我们解决了平面二次曲线的类型判别问题, 但它的代价是比较高的, 即需要找到合适的坐标变换. 那么, 能否不经过坐标变换, 而直接在原坐标系中解决这个问题? 为此, 我们来寻找坐标变换过程中方程系数的不变量. 设二次曲线 Γ 在自然标架下的方程为

$$\mathbf{x}'A\mathbf{x} + 2\beta'\mathbf{x} + c = 0.$$

经坐标变换 $\mathbf{x} = Q\tilde{\mathbf{x}} + b_0$,它在新坐标系中的方程为

$$\widetilde{\mathbf{x}}'\widetilde{A}\widetilde{\mathbf{x}} + 2\widetilde{\beta}'\widetilde{\mathbf{x}} + \widetilde{c} = 0,$$

其中

$$\widetilde{A} = Q'AQ$$
, $\widetilde{\beta} = Q'(Ab_0 + \beta)$, $\widetilde{c} = b'_0Ab_0 + 2\beta'b_0 + c$.

由第一个关系式可以看出, \widetilde{A} 与 A 是相似的, 所以它们有相同的迹和行列式.

定义

对于二次曲线 $\mathbf{x}'A\mathbf{x}+2\beta'\mathbf{x}+c=0$, 分别将二次项部分的迹 $\mathrm{tr}(A)$ 和行列式 $\mathrm{det}(A)$ 记作 \mathbf{I}_1 , \mathbf{I}_2 . 它们是方程 (在直角坐标变换下) 的不变量.

与前面的列表对照, 容易发现

- 当 $I_2 > 0$ 时, 曲线是椭圆型的;

为了继续探索其他的不变量, 我们把 $\mathbf{x}'A\mathbf{x}+2\beta'\mathbf{x}+c=0$ 改写为 $X'\mathbb{A}X=0$, 其中

$$X = \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}, \quad \mathbb{A} = \begin{bmatrix} A & \beta \\ \beta' & c \end{bmatrix}.$$

称 ▲ 为该二次曲线的矩阵.

若记
$$\widetilde{X} = \begin{bmatrix} \widetilde{\mathbf{x}} \\ 1 \end{bmatrix}$$
, $T = \begin{bmatrix} Q & b_0 \\ 0 & 1 \end{bmatrix}$, 则坐标变换 $\mathbf{x} = Q\widetilde{\mathbf{x}} + b_0$ 也可写为

$$X = T\widetilde{X}$$
.

4□ ト 4団 ト 4 豆 ト 4 豆 ・ 夕 Q ○

因此,在新坐标系中,二次曲线的方程可写为 $\widetilde{X}'\widetilde{\mathbb{A}}\widetilde{X}=0$,其中 $\widetilde{\mathbb{A}}=T'\mathbb{A}T$.由于 $\det(T)=1$,所以 $\det(\mathbb{A})=\det(\widetilde{\mathbb{A}})$.也就是说, \mathbb{A} 的行列式也是二次曲线方程的一个不变量,我们把它记作 \mathbb{I}_3 .与前面的列表对照, 容易发现

- 当 $\mathbf{I}_3 = 0$ 时, 二次曲线是退化的.

下面看一个简单的例子.

例

判断曲线 $x^2 + 6xy + 2y^2 - 4x - 2y - 1 = 0$ 的类型.

解答

该二次曲线二次项部分的矩阵为 $A=\begin{bmatrix}1&3\\3&2\end{bmatrix}$,一次项部分的矩阵为 $\beta=\begin{bmatrix}-2\\-1\end{bmatrix}$,常数项 c=-1. 因此 $\mathbf{I}_2=-7$, $\mathbf{I}_3=c\mathbf{I}_2-\beta'A^*\beta=10$.

由 $\mathbf{I}_3 \neq 0$ 可知该曲线非退化. 由 $\mathbf{I}_2 < 0$ 可知该曲线是双曲型的. 因此它是双曲线.

4 □ ▶ 4 □ ▶ 4

对于一般的二次曲线 Γ ,

- 当 $\mathbf{I}_3 \neq 0$ 时, Γ 是非退化的. 进一步, 如果 $\mathbf{I}_2 < 0$, 则 Γ 为双曲线; 如果 $\mathbf{I}_2 = 0$, 则 Γ 为抛物线. 而当 $\mathbf{I}_2 > 0$ 时, Γ 到底是椭圆还是虚椭圆呢? 这时 \mathbf{I}_1 可以派上用场了: 若 $\mathbf{I}_1\mathbf{I}_3 < 0$, 则 Γ 是椭圆; 若 $\mathbf{I}_1\mathbf{I}_3 > 0$, 则 Γ 是虚椭圆.
- 当 $I_3 = 0$ 时, Γ 是退化的. 进一步, 如果 $I_2 > 0$, 则 Γ 是相交虚直线; 如果 $I_2 < 0$, 则 Γ 是相交直线. 而当 $I_2 = 0$ 时, Γ 到底是平行直线, 虚平行直线, 还是重合直线呢? 事实上, $I_2 = 0$ 表明方程的二次部分可以配成完全平方式, $I_3 = 0$ 表明一次项也可配进去. 我们只需要完成配方就可回答了.

例

判断曲线 $x^2 + 4xy + 4y^2 + 4x + 8y - 1 = 0$ 的类型.

解答

曲线的方程可以配方为 $(x+2y+2)^2-5=0$, 可见它是两条平行直线.

对于 $I_2 = I_3 = 0$ 这种情形, 如果继续从不变量的角度来考虑, 也可以利用矩阵 A 的正惯性指数和负惯性指数来进行判断. 为了方便地获得这些信息, 我们再引进一个量.

对于三阶实对称矩阵 \mathbb{A} , 当它的行列式 $\mathbb{I}_3=0$ 时, 存在正交矩阵 U 使得 $U'\mathbb{A}U=\mathrm{diag}(t_1,t_2,0)$. 两端取伴随矩阵可得 $U^*\mathbb{A}^*U'^*=\mathrm{diag}(0,0,t_1t_2)$. 再取 迹就得到

$$\operatorname{tr}(\mathbb{A}^*) = t_1 t_2.$$

定义

令 $K_1 = \operatorname{tr}(\mathbb{A}^*)$, 称 K_1 为二次曲线的半不变量 (它仅在 $\mathbf{I}_3 = 0$ 时起作用).

由于 $\widetilde{\mathbb{A}}$ 与 \mathbb{A} 是合同的, 它们有相同的正惯性指数和负惯性指数, 因此它们的半不变量 K_1 的符号相同.

容易看出, 当 $\mathbf{I}_2 = \mathbf{I}_3 = 0$ 时,

- 若 $K_1 > 0$, 则 Γ 为虚平行直线;
- 若 $K_1 < 0$, 则 Γ 为平行直线;
- 若 $K_1 = 0$, 则 Γ 为重合直线.

◆□▶ ◆□▶ ◆■▶ ◆■ ◆○○○

例

判断曲线 $x^2 + 4xy + 4y^2 + 4x + 8y - 1 = 0$ 的类型.

解答

该二次曲线的矩阵为
$$\mathbb{A} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & -1 \end{bmatrix}$$
,可见 $\mathbf{I}_2 = \mathbf{I}_3 = 0$. 注意

$$K_1 = \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} + \begin{vmatrix} 4 & 4 \\ 4 & -1 \end{vmatrix} = -25 < 0,$$

所以该曲线是一对平行直线.

至此, 我们利用不变量 \mathbf{I}_1 , \mathbf{I}_2 , \mathbf{I}_3 , K_1 完整回答了平面二次曲线的分类问题. 需要指出的是, 虽然我们是针对直角坐标变换来讨论的, 但分类结果其实对仿射坐标变换也成立. 这是因为, 我们只用到了 \mathbf{I}_1 , \mathbf{I}_2 , \mathbf{I}_3 , K_1 的符号, 而不需要用到它们的具体数值. 当过渡矩阵 Q 不是正交矩阵时, 它们的符号仍是保持不变的.

对于空间二次曲面,原则上我们也可找到一组不变量来判断它的类型,但这时不变量的计算不见得比坐标变换更简单,这里就不介绍了.

圆锥曲线的几何特征

非退化二次曲线也称为圆锥曲线,主要包括(虚、实)椭圆,双曲线和抛物线.其中椭圆和双曲线都有对称中心,称为中心型曲线或有心圆锥曲线;而抛物线没有对称中心,称为无心圆锥曲线.圆锥曲线的中心、顶点、对称轴和渐近线等称为它的几何特征.

设圆锥曲线 Γ (在自然标架下) 的方程为 $\mathbf{x}'A\mathbf{x} + 2\beta'\mathbf{x} + c = 0$. 当 $\mathbf{I}_2 = \det(A) \neq 0$ 时, Γ 是中心型曲线. 经适当的坐标变换 $\mathbf{x} = Q\mathbf{x} + b_0$, 可将 Γ 的方程变为

$$\lambda_1 \widetilde{x}^2 + \lambda_2 \widetilde{y}^2 + \widetilde{c} = 0.$$

从中可以看到

- 中心的坐标为 $b_0 = -A^{-1}\beta = -\frac{1}{I_2}A^*\beta$.
- λ_1 和 λ_2 是 A 的特征值, 因此

$$\lambda_1 + \lambda_2 = \mathbf{I}_1, \quad \lambda_1 \lambda_2 = \mathbf{I}_2.$$

此外, $\tilde{c}\lambda_1\lambda_2 = \mathbf{I}_3$, 所以 $\tilde{c} = \mathbf{I}_3/\mathbf{I}_2$.

• 矩阵 Q 的两个列向量分别是矩阵 A 的属于特征值 λ_1 和 λ_2 的特征向量,它们分别是两条对称轴的方向向量.

◆□▶ ◆圖▶ ◆團▶ ◆團▶ ■

证明 $5x^2 + 6xy + 5y^2 - 4x - 12y = 0$ 是椭圆, 并求出它的长轴、短轴和焦距.

解答

由该曲线的矩阵容易求得 $\mathbf{I}_1=10$, $\mathbf{I}_2=16$, $\mathbf{I}_3=-128$. 由于 $\mathbf{I}_2>0$, $\mathbf{I}_1\mathbf{I}_3<0$, 所以它是椭圆. 进一步, 由 $\lambda_1+\lambda_2=10$, $\lambda_1\lambda_2=16$ 可知两个特征值分别为 2 和 8. 而 $\widetilde{c}=\mathbf{I}_3/\mathbf{I}_2=-8$, 表明经坐标变换后它的方程为 $2\widetilde{x}^2+8\widetilde{y}^2-8=0$. 因此, 它的长轴和短轴的长度分别为 4 和 2, 焦距为 $2\sqrt{3}$.

在这个例子中, 如果继续算出中心和对称轴的方向, 则不难画出椭圆的草图.

思考题

• (***) 设 Γ 是有心圆锥曲线, 且 A 的两个互相正交的特征向量分别为 ξ_1 , ξ_2 . 证明: Γ 的两条对称轴分别是

$$\xi_1'(A\mathbf{x} + \beta) = 0, \quad \xi_2'(A\mathbf{x} + \beta) = 0.$$

• (**) 设 Γ 是有心圆锥曲线, 且 A 的两个特征值分别为 λ_1 , λ_2 . 证明: Γ 的两条对称轴分别经过坐标为 $-\frac{1}{\lambda_1}\beta$ 和 $-\frac{1}{\lambda_2}\beta$ 的点.

黄利兵 (数学科学学院) 二次超曲面 2023 年 5 月 8 日 18 / 20

双曲线的渐近线

现在设 Γ 是双曲线. 方程 $\mathbf{x}'A\mathbf{x} + 2\beta'\mathbf{x} + c = 0$ 经坐标变换后成为

$$\lambda_1 \widetilde{x}^2 + \lambda_2 \widetilde{y}^2 + \widetilde{c} = 0, \quad \widetilde{c} = b_0' A b_0 + 2\beta' b_0 + c.$$

可见, 如果把 Γ 方程中的常数项 c 修改为 $c - \tilde{c}$, 则所得曲线在新坐标系中方程的常数项为零. 容易看出, 它恰好是双曲线的渐近线.

例

证明 $x^2 + xy - x - 2y - 1 = 0$ 是双曲线, 并求出它的渐近线.

解答

由曲线的方程可以算得 ${f I}_2=-1/4,\,{f I}_3=-1/4.$ 因此它是双曲线. 只要将方程的常数项减去 $\widetilde c={f I}_3/{f I}_2=1,$ 就得到渐近线的方程 $x^2+xy-x-2y-2=0.$

思考题

(***) 若双曲线 Γ 的一条渐近线平行于向量 \mathbf{v} , 证明 $\mathbf{v}'A\mathbf{v}=0$, 这里 A 是 Γ 的方程中二次部分的矩阵.

抛物线的对称轴

当 Γ 是抛物线时, A 的行列式 $\mathbf{I}_2=0$, 且 $A\neq 0$, 因此 A 的秩为 1, 它的两列成比例. 我们取 A 中的非零列向量 η , 则 η 是 A 的一个特征向量 (属于非零特征值), 这也就是与 Γ 的对称轴垂直的方向.

平行于 η 方向的弦的中点都在 Γ 的对称轴上. 利用这一点不难求出 Γ 的对称轴方程为

$$\eta'(A\mathbf{x} + \beta) = 0.$$

回忆一下, 经坐标变换 $\mathbf{x} = Q\tilde{\mathbf{x}} + b_0$, 我们可将 Γ 的方程写为

$$\lambda_1 \widetilde{x}^2 + 2d\widetilde{y} = 0.$$

其中 $\lambda_1 = \mathbf{I}_1$ 为 A 的非零特征值, 而 $-d^2\lambda_1 = \mathbf{I}_3$, 可知 $d = \sqrt{-\mathbf{I}_3/\mathbf{I}_1}$, 抛物线的焦点到准线的距离为 $d/|\mathbf{I}_1|$.

思考题

(**) 证明 $x^2 + 4xy + 4y^2 - 10x - 10y + 1 = 0$ 是抛物线, 并求出它的顶点和对称轴.