

# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет"

#### РТУ МИРЭА

Институт информационных технологий (ИТ) Кафедра Общей информатики

# ОТЧЕТ ПРАКТИЧСКИМ РАБОТАМ №10:

Изучение работы триггеров **по дисциплине** «ИНФОРМАТИКА»

| Выполнил студент группы 1       | ИНБО-15-20   |         | Ло Ван Хунг |
|---------------------------------|--------------|---------|-------------|
| Принял<br>Старший преподаватель |              |         | Шагалин Я.В |
| Практическая работа выполнена   | « <u> </u> » | 2020 г. |             |
| «Зачтено»                       | « <u>_</u> » | 2020 г. |             |

### СОДЕРЖАНИЕ

| 1. Постановка задачи                    | 3  |
|-----------------------------------------|----|
| 2. Схемы триггеров и таблицы истинности | 4  |
| ВЫВОДЫ                                  | 11 |
| СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ        | 12 |

### 1. Постановка задачи

Изучить на практике работу триггеров, показанных на рисунках ниже (рис. 1-9).

#### 2. Схемы триггеров и таблицы истинности

#### 2.1 Одноступенчатый асинхронный RS-триггер на элементах И-НЕ

Таблица истинности триггера (табл. 1) и его функциональная схема.

Таблица 1.

| Ī | $\overline{R}$ | Q(t+1) | $\overline{Q(t+1)}$ | Режим                  |
|---|----------------|--------|---------------------|------------------------|
| 0 | 0              | 1      | 1                   | Запрещенная комбинация |
| 0 | 1              | 1      | 0                   | Установка 1            |
| 1 | 0              | 0      | 1                   | Установка 0            |
| 1 | 1              | Q(t)   | $\overline{Q(t)}$   | Хранение               |



Рис.1 Одноступенчатый асинхронный RS-триггер на элементах И-НЕ

### 2.2 Одноступенчатый асинхронный RS-триггер на элементах ИЛИ-НЕ

Таблица истинности триггера (табл. 2) и его функциональная схема.

Таблица 2.

| S | R | Q(t+1) | $\overline{Q(t+1)}$ | Режим                  |
|---|---|--------|---------------------|------------------------|
| 0 | 0 | Q(t)   | $\overline{Q(t)}$   | Хранение               |
| 0 | 1 | 0      | 1                   | Установка 0            |
| 1 | 0 | 1      | 0                   | Установка 1            |
| 1 | 1 | 0      | 0                   | Запрещенная комбинация |



Рис.2 Одноступенчатый асинхронный RS-триггер на элементах ИЛИ-НЕ

#### 2.3 Одноступенчатый синхронный RS-триггер на элементах И-НЕ

Таблица истинности триггера (табл. 3) и его функциональная схема.

Таблица 3.

| С | S | R | Q(t+1) | $\overline{Q(t+1)}$ | Режим                  |
|---|---|---|--------|---------------------|------------------------|
| 0 | * | * | Q(t)   | $\overline{Q(t)}$   | Хранение               |
| 1 | 0 | 0 | Q(t)   | $\overline{Q(t)}$   | Хранение               |
| 1 | 0 | 1 | 0      | 1                   | Установка 0            |
| 1 | 1 | 0 | 1      | 0                   | Установка 1            |
| 1 | 1 | 1 | 1      | 1                   | Запрещенная комбинация |



Рис. 3 Одноступенчатый синхронный RS-триггер на элементах И-НЕ

# 2.4 Двухступенчатый синхронный RS-триггер триггер с асинхронными входами предустановки, выполненный на элементах И-НЕ

Таблица истинности триггера (табл. 4) и его функциональная схема.

Таблица 4.

| С | $\bar{s}$ | $\overline{R}$ | S | R | Q(t+1) | $\overline{Q(t+1)}$ | Режим                  |
|---|-----------|----------------|---|---|--------|---------------------|------------------------|
| * | 0         | 0              | * | * | 1      | 1                   | Запрещенная комбинация |
| * | 0         | 1              | * | * | 1      | 0                   | Асинхронная 1          |
| * | 1         | 0              | * | * | 0      | 1                   | Асинхронный 0          |
| 0 | 1         | 1              | * | * | Q(t)   | $\overline{Q(t)}$   | Хранение               |
| 1 | 1         | 1              | * | * | Q(t)   | $\overline{Q(t)}$   | Хранение               |
| J | 1         | 1              | 0 | 1 | 0      | 1                   | Синхронная установка 0 |
| J | 1         | 1              | 1 | 0 | 1      | 0                   | Синхронная установка 1 |
| 丁 | 1         | 1              | 1 | 1 | 1      | 1                   | Запрещенная комбинация |



Рис. 4 Двухступенчатый синхронный RS-триггер с асинхронными входами предустановки, выполненный на элементах И-НЕ

#### 2.5 Одноступенчатый D-триггер, выполненный на элементах И-НЕ

Таблица истинности триггера (табл. 5) и его функциональная схема

Таблица 5.

| С | D | Q(t+1) | $\overline{Q(t+1)}$ | Режим       |
|---|---|--------|---------------------|-------------|
| 0 | * | Q(t)   | Q(t)                | Хранение    |
| 1 | 0 | 0      | 1                   | Установка 0 |
| 1 | 1 | 1      | 0                   | Установка 0 |



Рис. 5 Одноступенчатый D-триггер, выполненный на элементах И-НЕ

# 2.6 Динамический RS-триггер, работающий по переднему фронту, выполненный на элементах И-НЕ

Таблица истинности триггера (табл. 6) и его функциональная схема.

Таблица 6.

| С | $\bar{s}$ | $\overline{R}$ | Q(t+1) | $\overline{Q(t+1)}$ | Режим                  |
|---|-----------|----------------|--------|---------------------|------------------------|
| 0 | *         | *              | Q(t)   | $\overline{Q(t)}$   | Хранение               |
| 1 | *         | *              | Q(t)   | $\overline{Q(t)}$   | Хранение               |
| 丁 | 0         | 0              | 0      | 0                   | Запрещенная комбинация |
| 」 | 0         | 1              | 1      | 0                   | Синхронная установка 1 |
| J | 1         | 0              | 0      | 1                   | Синхронная установка 0 |
| * | 1         | 1              | Q(t)   | $\overline{Q(t)}$   | Хранение               |



Рис. 6 Динамический RS-триггер, работающий по переднему фронту, выполненный на элементах И-НЕ

### 2.7 Динамический RS-триггер, работающий по заднему фронту, выполненный на элементах ИЛИ-НЕ

Таблица истинности триггера (табл. 7) и его функциональная схема.

Таблица 7.

| С | $\bar{s}$ | $\overline{R}$ | Q(t+1) | $\overline{Q(t+1)}$                 | Режим                  |
|---|-----------|----------------|--------|-------------------------------------|------------------------|
| 0 | *         | *              | Q(t)   | $\overline{Q(t)}$                   | Хранение               |
| 1 | *         | *              | Q(t)   | $\overline{Q(t)}$                   | Хранение               |
| L | 0         | 0              | 1      | 1                                   | Запрещенная комбинация |
| L | 0         | 1              | 1      | 0                                   | Синхронная установка 1 |
| L | 1         | 0              | 0      | 1                                   | Синхронная установка 0 |
| * | 1         | 1              | Q(t)   | $\overline{\mathrm{Q}(\mathrm{t})}$ | Хранение               |



Рис. 7 Динамический RS-триггер, работающий по заднему фронту, выполненный на элементах ИЛИ-НЕ

# 2.8 Т-триггер с асинхронными входами предустановки, выполненный на основе двухступенчатого RS-триггера

Таблица истинности триггера (табл. 8) и его функциональная схема.

Таблица 8.

| T | $\bar{S}$ | $\overline{R}$ | Q(t+1)            | $\overline{Q(t+1)}$ | Режим                     |
|---|-----------|----------------|-------------------|---------------------|---------------------------|
| * | 0         | 0              | 1                 | 1                   | Запрещенная комбинация    |
| * | 0         | 1              | 1                 | 0                   | Асинхронная 1             |
| * | 1         | 0              | 0                 | 1                   | Асинхронная 0             |
| 0 | 1         | 1              | Q(t)              | $\overline{Q(t)}$   | Хранение                  |
| 1 | 1         | 1              | Q(t)              | $\overline{Q(t)}$   | Хранение                  |
| 丁 | 1         | 1              | $\overline{Q(t)}$ | Q(t)                | Переключение в            |
|   |           |                |                   |                     | противоположное состояние |



Рис. 8 Т-триггер с асинхронными входами предустановки, выполненный на снове двухступенчатого RS-триггера

# **2.9 ЈК-триггер** Таблица истинности триггера (табл. 9) и его функциональная схема.

Таблица 9.

|   | $\bar{s}$ | $\overline{R}$ | J | K | Q(t+1) | $\overline{Q(t+1)}$ | Режим                  |
|---|-----------|----------------|---|---|--------|---------------------|------------------------|
| * | 0         | 0              | * | * | 1      | 1                   | Запрещенная комбинация |
| * | 0         | 1              | * | * | 1      | 0                   | Асинхронная 1          |
| * | 1         | 0              | * | * | 0      | 1                   | Асинхронный 0          |
| 0 | 1         | 1              | * | * | Q(t)   | $\overline{Q(t)}$   | Хранение               |
| 1 | 1         | 1              | 1 | L | 0      | 1                   | Подмена входов С и К   |
| 1 | 1         | 1              | ٦ | 1 | 1      | 1                   | Подмена входов С и R   |
| L | 1         | 1              | 0 | 1 | 0      | 1                   | Синхронная установка 0 |
| L | 1         | 1              | 1 | 0 | 1      | 0                   | Синхронная установка 1 |
| L | 1         | 1              | 1 | 1 | 1      | 1                   | Режим Т-триггера       |



Рис. 9 ЈК-триггер, выполненный по схеме без инвертора

#### выводы

Я узнал, что такое триггеры, как они работаю, как классифицируются. Узнал, чем отличаются T, D, RS, JK-триггеры, чем отличаются синхронные от асинхронных триггеров. Также я узнал, какая комбинация является запрещенной для каждого из триггеров, как происходит хранение, запись, сброс.

### СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Конспекты лекций.
- 2. Методические указания для выполнения лабораторных работ.