COMP3121 ASSIGNMENT1 QUESTION5

5. Determine if f(n) = O(g(n)) or g(n) = O(f(n)) or both (i.e., $f(n) = \Theta(g(n))$) or neither of the two, for the following pairs of functions

(a)
$$f(n) = (\log_2(n))^2$$
; $g(n) = \log_2(n^{\log_2 n})^2$; (6 points)

(b)
$$f(n) = n^{10}$$
; $g(n) = 2^{\frac{10}{N}}$; (6 points)

(c)
$$f(n) = n^{1+(-1)^n}$$
; $g(n) = n$. (8 points)

Answer:

(a) We want to show that $f(n) = \theta(g(n))$ we have to show that f(n) = O(g(n)) and $f(n) = \Omega(g(n))$ Use $\log(a^b) = b \log a$.

$$g(n) = \log_2(n^{\log_2 n})^2 = \log_2(n^{2\log_2 n}) = 2\log_2 n \cdot \log_2 n = 2(\log_2 n)^2$$

For $f(n) = \Omega(g(n))$ we need to show that $C \cdot g(n) \le f(n)$ for some positive c and all sufficiently large n. We take $c = \frac{1}{2}$ then is enough to show $\frac{1}{2}(2(\log_2 n)^2) \le (\log_2(n))^2$ for all sufficiently large n.

So
$$f(n) = \Omega(g(n))$$
.

For f(n) = O(g(n)) we need to show that $f(n) \le C \cdot g(n)$ for some positive c and all sufficiently large n. we take c = 1 then is enough to show $(\log_2(n))^2 < 2(\log_2(n))^2$ for all sufficiently large n.

So
$$f(n) = O(g(n))$$
.
In this case, we can show that $f(n) = \theta(g(n))$.

(b) We want to show that f(n) = O(g(n)). We have to show that $n^{10} < c * \left(2^{1\sqrt[4]{n}}\right)$ for some positive c and all sufficiently large n. But, since the log function is monotonically increasing, this will hold just in case

$$\log n^{10} < \log C + \log \left(2^{\frac{10}{\sqrt{n}}}\right)$$

$$10\log n < \log C + \sqrt[10]{n}$$

We now see that if we take c = 1 then it is enough to show that

$$10 \log n < \sqrt[10]{n}$$

$$\frac{10\log n}{\sqrt[10]{n}} < 1$$

We know that L'Hopital's rule can replace $\lim_{x\to\infty}\frac{f(x)}{g(x)}$ with $\lim_{x\to\infty}\frac{f'_{(x)}}{g'_{(x)}}$

$$\lim_{n \to \infty} \frac{10 \log n}{\sqrt[10]{n}} = \lim_{n \to \infty} \frac{100^{10} \sqrt{n^9}}{\ln(2)n} = \lim_{n \to \infty} \frac{90}{\ln(2)^{10} \sqrt{n}}$$

For all sufficiently large n, we can know that

$$\lim_{n \to \infty} \frac{90}{\ln(2)^{10} \sqrt{n}} = 0$$

In this case for sufficiently large n we have $\frac{10\log n}{10\sqrt{n}} < 1$

(c) Just note that $1+(-1)^n$ cycles, with one period equal to $\{0,2\}$ Thus, for all n is even number we have 1+1=2 and for all n is odd number we have 1-1=0. Thus for any fixed constant c>0 for all n is even number eventually $n^{1+(-1)^n}=n^2>C\cdot n$ and for all n is odd number we have $n^{1+(-1)^n}=n^0=1$ and so $n^{1+(-1)^n}=1< C\cdot n$ Thus neither $f(n)=O\bigl(g(n)\bigr)$ nor $g(n)=O\bigl(f(n)\bigr)$