DATA SCIENCE MODEL EVALUATION METRICS

Regression:

Root Mean Squared Error

Classification:

- Confusion Matrix
- ROC Curve (and AUC)

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

- Used for regression problems
- Square root of the mean of the squared errors
- Easily interpretable (in the "y" units)
- "Punishes" larger errors

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

Example #1

$$y = [100, 50, 30]$$

$$\hat{y} = [90,60,40]$$

$$RMSE = \sqrt{\frac{10^2 + 10^2 + 10^2}{3}} = 10$$

Example #2

$$y = [100,50,30]$$

$$\hat{y} = [100, 50, 60]$$

$$RMSE = \sqrt{\frac{0^2 + 0^2 + 30^2}{3}} = 17.32$$

Confusion Matrix: table to describe the performance

	Predicted:	Predicted:
n=165	NO	YES
Actual:		
NO	50	10
Actual:		
YES	5	100

Example: Test for presence of disease NO = negative test = False = 0

- How many classes are there?
- How many patients?
- How many times is disease predicted?
- How many patients actually have the disease?

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Basic Terminology:

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP)
- False Negatives (FN)

Accuracy:

- Overall, how often is it correct?
- (TP + TN) / total = 150/165 = 0.91

Misclassification Rate (Error Rate):

- Overall, how often is it wrong?
- (FP + FN) / total = 15/165 = 0.09

CONFUSION MATRIX

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

False Positive Rate:

- When actual value is negative, how often is prediction wrong?
- FP / actual no = 10/60 = 0.17

Sensitivity:

- When actual value is positive, how often is prediction correct?
- TP / actual yes = 100/105 = 0.95
- "True Positive Rate" or "Recall"

Specificity:

- When actual value is negative, how often is prediction correct?
- TN / actual no = 50/60 = 0.83

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

Every email is assigned a "spamminess" score by our classification algorithm. To actually make our predictions, we choose a numeric cutoff for classifying as spam.

An ROC Curve will help us to visualize how well our classifier is doing without having to choose a cutoff!

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

The ROC plots the True Positive Rate (TRP) on the y-axis against the False Positive Rate (FPR) on the x-axis.

<u>TPR</u>: When actual value is **spam**, how often is prediction **correct**?

<u>FPR</u>: When actual value is **ham**, how often is prediction **wrong**?

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

<u>TPR</u>: When actual value is **spam**, how often is prediction **correct**?

<u>FPR</u>: When actual value is **ham**, how often is prediction **wrong**?

Cutoff	TPR (y)	FPR (x)	Cutoff	TPR (y)	FPR (x)
0			0.50		
0.05			0.65		
0.15			0.85		
0.25			1		

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

<u>TPR</u>: When actual value is **spam**, how often is prediction **correct**?

<u>FPR</u>: When actual value is **ham**, how often is prediction **wrong**?

Cutoff	TPR (y)	FPR (x)	Cutoff	TPR (y)	FPR (x)
0	1	1	0.50	0.75	0.25
0.05	1	0.75	0.65	0.5	0
0.15	1	0.5	0.85	0.25	0
0.25	1	0.25	1	0	0

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

Email Number	Score	True Label
5	0.99	Spam
8	0.98	Spam
2	0.97	Spam
1	0.97	Ham
7	0.96	Spam
3	0.95	Ham
4	0.94	Ham
6	0.93	Ham

Q: Would the ROC Curve (and AUC) change if the scores changed but the ordering remained the same?

A: Not at all! The ROC Curve is only sensitive to rank ordering and does not