

Load Store Unit of Xiangshan Processor

Huaqiang Wang 王华强 ICT, CAS BOSC 2023.4.26

Outline

- Xiangshan LSU overview
- LSU of Xiangshan Nanhu
 - Main modules
 - Load/store pipeline, load/store queue
 - Store combine buffer, Data cache
 - DTLB
 - Key Memory Access Mechanisms
 - Load miss, TLB miss, fence & atomic instructions etc.
- LSU of Xiangshan Kunminghu: a preview

LSU of Xiangshan: Overview

- Xiangshan Nanhu
 - Stable branch, RTL frozen
 - Pass all tests
- Xiangshan Kunminghu
 - Active develop branch
 - Pass basic smoke tests
 - Have many potential bugs
 - Many micro-architecture changes
 - compared with Nanhu
 - More like a modern commercial design
 - · Read RF after issue
 - Decoupled load rar / raw / replay ... queue
 - L2 hit signal directed miss replay
 -

LSU of Xiangshan Nanhu: Overview

- 2 load pipeline, 4 stages
- 2 store address pipeline, 2+2 stages
- 2 store data pipeline, 2 stages
- 80 entry unified load queue
- 64 entry store queue
- 16 entry store combine buffer
 - (store coalescing buffer)
- VIPT L1 cache
 - 128 KB, 8 way or 64 KB, 4 way
 - **16** MSHRs
- RISC-V Weak Memory Ordering (RVWMO)

Main modules

- Load/store pipeline
- Load/store queue
- Store combine buffer
- Data cache
- DTLB

\$\times\$ Load Pipeline: Overview

Store Pipeline: Overview

Store address pipeline (STA)

• Store data pipeline (STD)

Store Pipeline: Overview

SCB enq pipeline

Store Pipeline: Overview

• SCB deq pipeline

Load Queue in Nanhu

- 80 entry unified queue
 - Replay missed load
- For each cycle:
 - Allocate 2 entries @ dispatch
 - 2 insts from load pipe can update LQ
 - Replay 2 missed load insts
 - Missed, but now successfully refilled
 - Priority: LQ < load RS

- L1 data cache refill half a cache line to load queue every cycle
- Load queue parse refilled addr. & data, then replay missed load with

Store Queue in Nanhu

- 64 entry queue, 64 bit per entry
- For each cycle:
 - Allocate 2 entry @ dispatch stage
 - Update info for 2 insts from store pipe
 - Write up to 2 store insts to SCB (2x64 bit)
- Provide STLF result for 2 load pipelines

Store Combine Buffer in Nanhu

- **16** entry
- 512 bit (cacheline size) per entry
- For each cycle:
 - Receive up to 2 store (2x64 bit)
 - Write 1 entry (512 bit) to dcache
 - (Support "set cacheline to 0" inst.)
- Provide STLF result for 2 load pipelines

 Missed store will wait in SCB if dcache MSHR is full

Data Cache

- Parameters
 - 64KB, 4-way or 128KB, 8-way
 - 8 banks
 - 2x64 bit load port
 - 1x512 bit store port (for SCB)
 - 16 MSHRs (Miss Queue)
- Load pipeline
 - Load and dcache prefetch
- Main pipeline
 - Replace, probe(snoop), store etc.

\$\times\$ Load Pipeline in Data Cache

***** Key Memory Access Mechanisms

- Data cache miss: replay from LQ, refill 256 bits/cycle
- TLB miss: replay from reservation station
- STLF: vaddr based STLF (VASTLF, VACAM)
 - Vaddr based fast path for forwarding
 - Paddr based slow path for result check & recovering
- Memory dependency predict
 - Store Sets like MDP
- Atomic instructions / fence
 - Block backend, always do atomic operation at dcache
 - No barrier-load OoO

DCache Miss Refill in Nanhu

• If load miss, listen for L1 DCache refill result in load queue

Nanhu load queue refill

Replay from reservation station

- Instructions remain in reservation station (RS) after issue until:
 - Load / store pipeline report replay will not be needed
- Nanhu LSU request replay from reservation station when:
 - TLB miss
 - L1 data cache MSHR full / bank conflict
 - Store address valid but data is still invalid yet
- Otherwise, if there nothing wrong:
 - Nanhu LSU inform RS that inst. can leave it safely

Store to Load Forward (STLF)

- Virtual address based STLF
 - (VASTLF / VACAM)
- Virtual address based address match & data gen.
 - Vaddr Match, Paddr Fix
- Use physical address to check if forward is right later

- No TLB lookup in STLF data path
- TLB lookup is in STLF control path, which is less critical

STLF in Nanhu load pipeline.

Red line: data path. Blue line: control path.

Load-store ordering Violation

- Check
 - Start check when store arrives at store address stage 1

- Error recover
 - Rollback immediately if we found a conflict
 - No need to wait for instruction commit

Load-load ordering Violation

- load-load ordering check uses a released flag in LQ
- Released flag in LQ update is pipelined for better timing

		probe write meta	probe send release hint to load queue	release hint update load queue	
case 1			load read meta	load-load vio. check start	load update load queue
			DCache load pipe gets new meta, find out that the block has been probed. That load inst. will miss	Report vio.check failure if a probe hint is sent to lq. That load will be replayed from RS (better than always replay from fetch)	
case 2		probe write meta	probe send release hint to load queue	release hint update load queue	
		load read meta	load-load vio. check start	load update load queue	
		DCache load pipe		Add extra check here to update	
		gets old meta		released flag	
case 3		probe write meta	probe send release hint to load queue	release hint update load queue	
	load read meta	-	load update load queue		
			Add extra check here to update released flag		
	mainpip	e, writeback queue a	and load queue data cache	load pipeline	

Pointer Tracing

Pointer Tracing Bypass Network reduces load to load latency from 4 to 3

Memory Dependence Prediction

- Predict memory dependence near dispatch stage using PC
 - Store Sets like MDP
- Predictor supported
 - Load Wait Table[1]
 - Store Sets[2]

- If the predictor believes that load violation may happen
 - load wait in reservation station until all former store is finished

^[1] Kessler R E . The Alpha 21264 Microprocessor[J]. IEEE Micro, 1999, 19(2):24-36.

^[2] Chrysos G Z, Emer J S. Memory Dependence Prediction using Store Sets[J]. ACM SIGARCH Computer Architecture News, 2002, 26(3):142-153.

Atomic / fence Instructions

• For now, there is **no performance optimization** for atomic instructions / fence in Xiangshan

- Fence will always drain SB & SCB
- Atomic inst. / fence will not issue until all former insts has been committed
- Issued atomic inst. / fence will block backend

- Xiangshan Nanhu always do atomic operation at data cache
- No out of order barrier-load execution

Optimization in Kunminghu

- LQ split
- L2 hit signal directed miss replayVector

♠ Q & A

- Load Queue / Store Queue / Store Combine Buffer
- Store to Load Forwarding (STLF)
- Load violation check
- Load violation predict / delay
- Uncached memory access (MMIO)
- Dcache miss / TLB miss
- Memory inst. replay
- Commit / exception