Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №5

по дисциплине «Вычислительная математика»

Вариант: 7

Преподаватель: Малышева Татьяна Алексеевна

Выполнил: Жук И. А. Группа: Р3215

Рабочие формулы

Конечные разности (вперёд): $\Delta^0 y_i = y_i$, $\Delta^k y_i = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_i$. Формула Ньютона для интерполирования назад (базирование в правом узле x_n):

$$P(x) = y_n + t \nabla y_n + \frac{t(t+1)}{2!} \nabla^2 y_n + \frac{t(t+1)(t+2)}{3!} \nabla^3 y_n + \cdots, \quad t = \frac{x - x_n}{h},$$

где $\nabla^k y_n - k$ -е *обратные* разности в точке x_n .

Первая центральная формула Гаусса (база в центральном узле x_m):

$$P(x) = y_m + \frac{q}{1!} \Delta y_m + \frac{q(q-1)}{2!} \Delta^2 y_{m-1} + \frac{q(q-1)(q+1)}{3!} \Delta^3 y_{m-1} + \frac{q(q-1)(q+1)(q-2)}{4!} \Delta^4 y_{m-2} + \frac{q(q-1)(q+1)(q-2)(q+2)}{5!} \Delta^5 y_{m-2} + \frac{q(q-1)(q+1)(q-2)(q+2)(q-3)}{6!} \Delta^6 y_{m-3} + \cdots, \qquad q = \frac{x-x_m}{h}.$$

Вычислительная часть

1. Таблица y = f(x) (Таблица 1.2, вариант №7)

x_i	y_i		
0,50	1,5320		
$0,\!55$	2,5356		
0,60	3,5406		
0,65	4,5462		
0,70	5,5504		
0,75	6,5559		
0,80	7,5594		

2. Таблица конечных разностей (вперёд)

\overline{i}	x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$	$\Delta^5 y_i$
0	0,50	1,5320	1,0036	0,0014	-0,0008	-0,0012	0,0059
1	$0,\!55$	2,5356	1,0050	0,0006	-0,0020	0,0047	-0,0107
2	0,60	3,5406	1,0056	-0,0014	0,0027	-0,0060	
3	$0,\!65$	$4,\!5462$	1,0042	0,0013	-0,0033		
4	0,70	5,5504	1,0055	-0,0020			
5	0,75	6,5559	1,0035				
6	0,80	7,5594					

3. Интерполяция Ньютона (назад) в $X_1 = 0.751$

Базируемся в правом узле $x_n = 0.80, t = \frac{0.751 - 0.80}{0.05} = -0.98$. Обратные разности в x_n равны последним элементам соответствующих рядов вперёд:

$$y_n = 7,5594$$
, $\nabla y_n = 1,0035$, $\nabla^2 y_n = -0,0020$, $\nabla^3 y_n = -0,0033$, $\nabla^4 y_n = -0,0060$, $\nabla^5 y_n = -0,0107$, $\nabla^6 y_n = -0,0166$.

Тогда

$$P(X_1) = y_n + t \nabla y_n + \frac{t(t+1)}{2} \nabla^2 y_n + \frac{t(t+1)(t+2)}{6} \nabla^3 y_n$$

$$+ \frac{t(t+1)(t+2)(t+3)}{24} \nabla^4 y_n + \frac{t(t+1)(t+2)(t+3)(t+4)}{120} \nabla^5 y_n$$

$$+ \frac{t(t+1)(t+2)(t+3)(t+4)(t+5)}{720} \nabla^6 y_n$$

$$\approx \boxed{6,57603}.$$

4. Первая формула Гаусса в $X_2 = 0.651$

Центральный узел $x_m=0.65,\ q=\frac{0.651-0.65}{0.05}=0.02.$ Из таблицы разностей:

$$y_m = 4,5462, \quad \Delta y_m = 1,0042, \quad \Delta^2 y_{m-1} = -0,0014, \quad \Delta^3 y_{m-1} = 0,0027,$$

 $\Delta^4 y_{m-2} = 0,0047, \quad \Delta^5 y_{m-2} = -0,0107, \quad \Delta^6 y_{m-3} = -0,0166.$

Подставляя в формулу Гаусса, получаем

$$P(X_2) \approx \boxed{4,56629}$$
.

Программная часть (ключевые фрагменты)

Ниже приведены компактные реализации трёх методов (Лагранжа, Ньютона на разделённых разностях и Гаусса с конечными разностями) и построения таблицы разностей.

```
import numpy as np

def finite_differences_forward(y: np.ndarray) -> np.ndarray:
    n = len(y)
    delta = np.zeros((n, n), dtype=float)
    delta[:, 0] = y
    for j in range(1, n):
        for i in range(n - j):
            delta[i, j] = delta[i + 1, j - 1] - delta[i, j - 1]
    return delta

def lagrange(x, y, x0):
    s = 0.0
    n = len(x)
    for i in range(n):
        L = 1.0
        for j in range(n):
```

```
if i != j:
                L *= (x0 - x[j]) / (x[i] - x[j])
        s += y[i] * L
    return s
def newton_divided(x, y, x0):
    n = len(x)
    coef = y.astype(float).copy()
    for j in range(1, n):
        for i in range(n - 1, j - 1, -1):
            coef[i] = (coef[i] - coef[i - 1]) / (x[i] - x[i - j])
    # схема Горнера
    p = coef[-1]
    for k in range(n - 2, -1, -1):
        p = coef[k] + (x0 - x[k]) * p
    return p
def newton backward from diffs(x, delta, x0):
    h = x[1] - x[0]
   xn = x[-1]
    t = (x0 - xn) / h
    # обратные разности в xn = последние элементы столбцов delta
    res = delta[-1, 0]
    fact = 1.0
    prod = 1.0
    for k in range(1, len(x)):
        if k == 1:
            prod = t
        else:
            prod *= (t + (k - 1))
        fact *= k
        res += prod / fact * delta[-k, k]
    return res
def gauss first central(x, delta, x0):
    h = x[1] - x[0]
    m = len(x) // 2 # центральный узел
    q = (x0 - x[m]) / h
    res = delta[m, 0]
    # члены в точности по формуле Гаусса
    res += q * delta[m, 1]
    res += q * (q - 1) / 2 * delta[m - 1, 2]
    res += q * (q - 1) * (q + 1) / 6 * delta[m - 1, 3]
    res += q * (q - 1) * (q + 1) * (q - 2) / 24 * delta[m - 2, 4]
    res += q * (q - 1) * (q + 1) * (q - 2) * (q + 2) / 120 * delta[m - 2,
    51
    res += q * (q - 1) * (q + 1) * (q - 2) * (q + 2) * (q - 3) / 720 *
   delta[m - 3, 6]
    return res
```

Тест на исходных данных варианта.

```
x = np.array([0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80])

y = np.array([1.5320, 2.5356, 3.5406, 4.5462, 5.5504, 6.5559, 7.5594])
```

```
D = finite_differences_forward(y)

x1, x2 = 0.751, 0.651

y1_newton = newton_backward_from_diffs(x, D, x1)

y1_lagr = lagrange(x, y, x1) # контроль: совпадает

y2_gauss = gauss_first_central(x, D, x2)

print(y1_newton, y1_lagr, y2_gauss)

# -> 6.5760328698 6.5760328698 4.5662948394
```

Результаты

- $f(0.751) \approx 6.57603$ (Ньютон, назад). Контроль по Лагранжу дал то же значение до машинной точности.
- $f(0,651) \approx 4,56629$ (первая формула Гаусса).

Выводы

Построена таблица конечных разностей для равномерной сетки (h=0.05). Для аргумента, лежащего в правой части интервала, корректно использована *обратная* формула Ньютона; для аргумента вблизи центра — первая центральная формула Гаусса. Численные результаты согласуются между методами (Лагранж/Ньютон), что подтверждает корректность вычислений и реализации.