

RESPOSTAS DE EXERCÍCIOS

1.
$$\mathbf{x} = (37)_{10} = (100101)_2$$

 $\mathbf{y} = (2345)_{10} = (100100101001)_2$
 $\mathbf{z} = (0.1217)_{10} = (0.000111110010...)_2$

2.
$$x = (101101)_2 = (45)_{10}$$

 $y = (110101011)_2 = (427)_{10}$
 $z = (0.1101)_2 = (0.8125)_{10}$
 $w = (0.1111111101)_2 = (0.994140625)_{10}$

3. a)
$$x + y + z = 0.7240 \times 10^4$$

b) $x - y - z = 0.7234 \times 10^4$

c)
$$x/y = 0.3374 \times 10^8$$

$$d$$
) (xy) / z = 0.6004

$$e$$
) $x(y/z) = 0.6005$

$$|ER_{x+y+z}| < 10^{-3}$$

 $|ER_{x-y-z}| < 1.0002 \times 10^{-3}$
 $|ER_{x/y}| < \frac{1}{2} \times 10^{-3}$
 $|ER_{(xy)/z}| < 10^{-3}$
 $|ER_{x(y/z)}| < 10^{-3}$

4.
$$|ER_u| < 10^{-t+1}$$
 e $|ER_w| < 10^{-t+1}$

5.
$$|ER_u| < 10^{-t+1}$$
 e $|ER_w| < \frac{4}{3} \times 10^{-t+1}$

6.
$$|ER_u| < 2 \times 10^{-t+1}$$
 e $|ER_w| < \frac{7}{3} \times 10^{-t+1}$

9. a)
$$m = 0.1000 \times 10^{-5} = 10^{-6}$$

 $M = 0.9999 \times 10^{5} = 99990$

b) no arredondamento: 0.7376×10^2 no truncamento: 0.7375×10^2

c)
$$a + b = 0.4245 \times 10^5 + 0.00003 \times 10^5 = 0.42453 \times 10^5$$
.

Mas o resultado será armazenado com 4 dígitos na mantissa, portanto: $a + b = 0.4245 \times 10^5$

d)
$$S = 0.4245 \times 10^5$$

e)
$$S = 0.4248 \times 10^5$$

f) Observar que a opção (wz)/t conduz a um overflow nesta máquina.

CAPÍTULO 2

1. a)
$$4\cos(x) - e^{2x} = 0$$

Uma raiz positiva no intervalo [0, 1]. Infinitas raízes negativas k nos intervalos $[k(-\pi), (k-1)(-\pi)]$, k = 1, 2, ...

$$b) \ \frac{x}{2} - tg(x) = 0$$

 $\xi = 0$ é uma raiz.

As outras raízes estão nos intervalos:

$$(k\pi, k\pi + \frac{\pi}{2})$$
 para $k = 1, 2, 3, \dots e(k\pi - \frac{\pi}{2}, k\pi)$ para $k = -1, -2, -3, \dots$

- c) $1 x \ln(x) = 0$ $\xi \in [1, 2].$
- d) $2^{x} 3x = 0$ $\xi \in [0, 1].$
- e) $x^3 + x 1000 = 0$ $\xi \in [9, 10].$
- 3. a) $k > \frac{\log (b_0 a_0) \log (\epsilon)}{\log(2)} 1$.
- 4. Não. Verifique que neste exemplo o método da posição falsa vai manter o extremo inferior do intervalo fixo e a sequência gerada não oscila em torno da raiz. Assim, a única possibilidade seria testar se (b − a) < 10⁻⁵, o que não é viável neste caso. Redija agora uma resposta explicando os detalhes.
- Observe que a sequência está oscilando e convergindo para a raiz exata. Neste caso, obtenha o menor intervalo que contém a raiz.
- 6. a) Observe que 1/a é a solução da equação ax = 1 que é o mesmo que f(x) = a 1/x = 0. Aplicando o método de Newton, conclua que 1/a pode ser obtido iterativamente por x_{k+1} = 2x_k - ax_k² e esta expressão não requer nenhuma divisão. Complete a resolução do exercício.
 - b) 0.230769219 com ε < 6.7 x 10⁻⁷.
 (Observação: A aproximação inicial para o método de Newton tem de ser cuidado-samente escolhida.)
- 7. b) Para qualquer $x_0 \neq 0$, ela será oscilante.
 - c) Não. Analise outros exemplos.
- 8. Pelo Teorema do Valor Médio temos que $x_{k+1} \xi = \phi'(c_k)(x_k \xi)$ com c_k entre x_k e ξ . Analise os sinais de $x_j \xi$, $j = 0, 1, \dots$

- 9. a) Observe que $|\xi x_k| = |\xi x_{k+1} x_k + x_{k+1}|$, que $\xi = \varphi(\xi)$ e que $x_{j+1} = \varphi(x_j)$ para todo j.
 - b) M < 1/2.

10.
$$\varphi(x) = \frac{1}{x} + \frac{1}{x^2}$$

$$x_0 = 1$$

$$x_1 = 2$$

$$x_2 = 0.75$$

$$x_3 = 3.111...$$

$$x_4 = 0.424744898$$

$$x_5 = 7.897338779$$

$$x_6 = 0.142658807$$

$$x_7 = 56.14607424$$

Calcule $\varphi'(x)$ e verifique que $|\varphi'(x)| > 1$ para |x| < 1.

- 11. a) $\bar{x} = 4.2747827467$
 - b) $\bar{\mathbf{x}} = 0.9047940617$
 - c) $\bar{x} = 1.4309690826$
- 12. Obtém a raiz aproximada $\bar{x} = -2.00000007$ após 9 iterações. Para justificar, observe que $f(x_0) = 3.939$ e $f'(x_0) = 0.23$.
- 14. a) O ponto x_{k+1} será a intersecção, com o eixo \overrightarrow{ox} , da reta que passa por $(x_k, f(x_k))$ e é paralela à reta tangente à curva f(x) no ponto $(x_0, f(x_0))$.
- 15. a) MPF obtém $\bar{x} = 0.714753186$ após 8 iterações.
 - b) O método de Newton obtém $\bar{x} = 0.71481186$ após 3 iterações.

- 16. a) $\bar{x} = 3.1415926533$ com $f(\bar{x}) \approx 2.9 \times 10^{-10}$ em 2 iterações.
 - b) x̄ = 3.14131672164 com f(x̄) ≈ 3.8 x 10⁻⁸ em 9 iterações.
 Encontre uma explicação teórica para estas respostas.
- 17. a) 0.128373 < k < 1
 - b) 0.070913 < k < 0.128373
- 18. Esta função tem apenas um ponto crítico. Justifique isto. Usando o método de Newton com $x_0 = 0.5$, $\bar{x} = 0.567138988$ com $\epsilon = 10^{-4}$.
- 19. $x_1 = -0.906179$ $x_2 = -0.538452$ $x_3 = 0$ $x_4 = 0.538452$ $x_5 = 0.906179$
- 20. $\xi = e \in [2, 3],$ $\epsilon = 10^{-5}$

	Bissecção	Posição falsa	$ MPF \varphi(x) = x/ln(x) $	Newton	Secante
Dados iniciais	[2, 3]	[2, 3]	x ₀ = 2.5	$x_0 = 2.5$	$x_0 = 2$ $x_1 = 3$
x	2.718276	2.718277	2.718283	2.718282	2.718283
f(x)	0.4850915 × 10 ⁻⁵	0.4796514 × 10 ⁻⁵	-0.6421441 × 10 ⁻¹⁰	-0.64214411 × 10 ⁻¹⁰	0.6621836 × 10 ⁻⁸
erro em x	0.15258789 × 10 ⁻⁴	0.2818186	0.1868436 × 10 ⁻⁴	0.1868436 × 10 ⁻⁴	-0.17101306 × 10 ⁻⁴
nº iteração	16	4	3	3	5

- 21. a) $f(x) = xe^{-x} e^{-3}$ é contínua em [0, 1], f(0) < 0 e f(1) > 0.
 - b) $|f(x_{13})| \approx 4.037 \times 10^{-3}$; $x_0 = 0.9$ está próximo de um zero de f'(x); verifique isto.

23.
$$v = 2$$

$$\begin{cases} v - p = 0 & ou \\ v - p = 2 \end{cases}$$
, então
$$\begin{cases} p = 2 & ou \\ p = 0 \end{cases}$$

portanto, pela regra de sinal de Descartes, esta equação ou tem 2 raízes ou não tem raiz no intervalo [0, 1].

- 24. Usando o teorema de Sturm com $\alpha = 0$ e $\beta = 1$ verifica-se que $p(x) = 3x^5 x^4 x^3 + x + 1 = 0$ não tem raiz no intervalo [0, 1].
- 25. Para $x_0 = 1.5$, $\overline{x} = 3.00072$ e $f(\overline{x}) = 0.5256642 \times 10^{-5}$.

- O número de operações é da ordem de n².
- 4. c) $x^* = (0.8 \quad 0.6 \quad 0.4 \quad 0.2)^T$
- 5. $x^* = (1 2 1 0)^T$
- 6. a) Infinitas soluções.
 - b) Não admite solução.
- 7. Na fase da eliminação pode-se efetuar sobre a matriz dos coeficientes as operações (i), (ii) e (iii) enunciadas no Teorema 1. Das propriedades de determinantes temos que:
 - i) trocar duas linhas resulta numa troca do sinal do determinante.
 - multiplicar uma linha da matriz por uma constante n\u00e3o nula resulta que o determinante fica multiplicado por esta constante;

iii) adicionar um múltiplo de uma linha a uma outra linha não altera o valor do determinante.

Destas propriedades e do fato que o determinante de uma matriz triangular é o produto dos elementos da diagonal, sai facilmente o método pedido pelo exercício.

9.
$$f$$
) $x^* = (1 1 1 1)^T$

10.
$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{pmatrix}$$
 e $U = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & -3 \\ 0 & 0 & 0 \end{pmatrix}$.

Observar que a matriz A é singular.

 b) Constate que a matriz A⁻¹ pode ser obtida através da resolução de n sistemas lineares:

$$Ax = e_i$$
 $i = 1, ..., n$
onde e_i é a coluna i da matriz identidade de ordem n.

c) A fatoração LU é o método mais indicado (justifique por quê!).

$$d) \ \ A^{-1} = \begin{pmatrix} 0.2948 & 0.0932 & 0.0282 & 0.0861 & 0.0497 & 0.0195 \\ 0.0932 & 0.3230 & 0.0932 & 0.0497 & 0.1056 & 0.0497 \\ 0.0282 & 0.0932 & 0.2948 & 0.0195 & 0.0497 & 0.0861 \\ 0.0861 & 0.0497 & 0.0195 & 0.2948 & 0.0932 & 0.0282 \\ 0.0497 & 0.1056 & 0.0497 & 0.0932 & 0.3230 & 0.0932 \\ 0.0195 & 0.0497 & 0.0861 & 0.0282 & 0.0932 & 0.2948 \end{pmatrix}$$

13. Se A = LDU, o vetor x será obtido resolvendo: Ly = b, Dz = y e Ux = z.

16.
$$A^{-1} = \begin{pmatrix} -0.848 & -0.156 & 0.720 \\ 0.136 & -0.008 & -0.040 \\ 0.072 & 0.084 & -0.080 \end{pmatrix}$$
.

17. $\bar{x} = (1 \quad 0.94)^{T}$ usando o arredondamento.

$$\bar{x} = (0.93 \quad 1.1)^{T}$$
 usando o truncamento.

- 18. a) $\bar{\mathbf{x}} = (-0.02127 \quad 0.2206)^{\mathrm{T}}$.
 - b) Não tem solução.
- Demonstre que x^TCx > 0, x ∈ ℝⁿ, x ≠ 0, e observe a necessidade da matriz A ter posto completo.
- 22. $\beta = \max_{1 \le i \le 3} \beta_i = 0.2 < 1 \text{ e x*} = (1 \quad 1 \quad 1)^T;$

$$\beta = \max_{1 \le i \le 4} \beta_i = 0.3281 < 1 e$$

$$\mathbf{x}^* = (0.36364 \quad 0.45455 \quad 0.45455 \quad 0.36364)^{\mathrm{T}}.$$

- 23. a) |k| > 4.
 - b) k = 5 e, usando $x^{(0)} = (0 \ 0 \ 0)^T$, obtemos $x^{(2)} = (0.04857 \ 0.25 \ 0.20734)^T$.
- a) As sequências geradas por Gauss-Jacobi e Gauss-Seidel não convergem para a solução.
 - b) Permutando as equações, os métodos geram sequências convergentes para $x^* = (1 1)^T$.
- 28. a) Calculando o vetor $r^{(k)} = Ax^{(k)} b$ e verificando se

$$\max_{1 \le i \le n} |r_i| < \epsilon \text{ onde } \epsilon \approx 0 \quad (\epsilon = 10^{-4}, \text{ por exemplo}).$$

- 29. A solução $x^* = (1 \ 1 \ 1 \ 1)^T$ pode ser obtida facilmente, bastando observar que as equações 2, 3 e 5 envolvem apenas uma variável.
- 31. a) infinitas soluções.
 - b) solução única.
 - c) infinitas soluções.
 - d) infinitas soluções.

- e) infinitas soluções.
- f) solução única.
- g) infinitas soluções.
- h) infinitas soluções.
- i) não tem solução.
- i) não tem solução.
- k) solução única.
- 33. a) $x^* = (1 \ 1 \ 1)^T$.
 - b) $x^* = (0 \ 1 \ 1)^T$.
- 34. a) G = $\begin{pmatrix} \sqrt{5} & 0 \\ 7/\sqrt{5} & 4/\sqrt{5} \end{pmatrix}$.
 - b) Observar que sobre a matriz R não é imposta a condição da diagonal ser positiva; desta forma, uma das três possibilidades é:

$$R = \begin{pmatrix} -\sqrt{5} & 0 \\ 7/\sqrt{5} & 4/\sqrt{5} \end{pmatrix}.$$

- 2. a) $x^* = (1 1)^T$.
 - b) $x^* = (1.93177 -0.51822)^T$.
 - c) $x^* = (-0.17425 -0.71794)^T$.
 - d) $x^* = (1 \ 1)^T$.
 - e) $\mathbf{x}^* = \begin{pmatrix} -0.57072 & -0.68181 & -0.70221 & -0.70551 & -0.70491 & -0.7015 \\ -0.69189 & -0.66580 & -0.59604 & -0.41642 \end{pmatrix}^{\mathrm{T}}$.
 - f) $x^* = (1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1)^T$.

- 1. a) Escolhendo os pontos $x_0 = 2.8$, $x_1 = 3.0$ e $x_2 = 3.2$, obteremos: $f(3.1) \approx 22.20375$.
 - b) $|E(3.1)| \le 1.23 \times 10^{-2}$.
- 2. Sugestão: Verifique que o máximo da função $g(x) = |(x x_0)(x x_1)|$ ocorre para $\overline{x} = (x_1 + x_0)/2$ e obtenha $g(\overline{x})$.
- 3. Escolhendo $x_0 = 25$, $x_1 = 30$ e $x_2 = 35$ obtemos $f(32.5) \approx 0.99820$ e f(x) = 0.99837 para $x \approx 27.88$.
- 4. Usando o processo de interpolação inversa para f(x), sobre os pontos: y₀ = 0.67, y₁ = 0.549 e y₂ = 0.449 obtemos: f(0.5101) ≈ 0.6 e aplicando o processo de interpolação inversa para g(x) sobre os pontos y₀ = 0.32, y₁ = 0.48 e y₂ = 0.56 obtemos g(1.4972) ≈ 0.5101, portanto, para x ≈ 1.4972: f(g(1.4972)) ≈ f(0.5101) ≈ 0.6.
- 5. A função cos(x) deverá ser tabelada em, no mínimo, 260 pontos.
- 7. Usando um processo de interpolação inversa e escolhendo y₀ = f(0) = -1, y₁ = f(0.5) = -0.1065 e y₂ = f(1) = 0.6321 obtemos f(0.5673) ≈ 0. E, usando a tabela de diferenças divididas e os pontos y(0), y(0.5), y(1) e y(1.5) a estimativa do erro será: | E(0) | ≈ 0.17851 × 10⁻⁴.
- 8. $|E(115)| \le 1.631 \times 10^{-3}$.
- 9. Polinômio de grau 3 porque as diferenças divididas de grau 3 são aproximadamente constantes. Escolhendo $x_0 = 0.5$, $x_1 = 1.0$, $x_2 = 1.5$ e $x_3 = 2.0$ obtemos $f(1.23) \approx -1.247$ com $|E(1.23)| \approx 2.327 \times 10^{-5}$.
- 10. Processo 1: construindo $p_2(x)$ que interpola f(x) em $x_0 = 0.25$, $x_1 = 0.30$, $x_2 = 0.35$ e calculando x tal que $p_2(x) = 0.23$ obtemos $x \approx 0.3166667$.

Processo 2: interpolação inversa, escolhendo $y_0 = 0.19$, $y_1 = 0.22$ e $y_2 = 0.25$ obtemos: $p_2(0.23) = 0.3166667$, e portanto, $f(0.3166667) \approx 0.23$. Neste caso, é possível estimar o erro cometido $|E(0.23)| \approx 1.666 \times 10^{-3}$.

- 11. $cos(1.07) \approx 0.4801242$ $|E(1.07)| \approx 1.202 \times 10^{-6}$.
- 12. d = 3a 8b + 6c.
- 17. Usando o processo de interpolação inversa e os pontos: $y_0 = 1.5735$, $y_1 = 2.0333$ e $y_2 = 2.6965$ obtemos $f(0.623) \approx 2.3$.
- 18. Usando o processo de interpolação inversa e escolhendo os pontos: $y_0 = 0$, $y_1 = 1.5$ e $y_2 = 5.3$ obtemos: $f(1.5037) \approx 2$.

CAPÍTULO 6

- 2. a) 0.21667x + 0.175.
 - b) $0.01548x^2 + 0.07738x + 0.40714$.

A comparação pode ser feita através do cálculo de $\sum_{k=1}^{8} d_k^2$: para a reta,

$$\sum_{k=1}^{8} d_k^2 = 0.08833 \text{ e, para a parábola, } \sum_{k=1}^{8} d_k^2 = 0.04809.$$

Como o menor valor para a soma dos quadrados dos desvios foi para a parábola, o melhor ajuste para os dados, entre as duas possibilidades, é a parábola.

- 3. Curva de ajuste escolhida: $\varphi(x) = \alpha_1 \ln(x) + \alpha_2$. Obteve-se: $\varphi(x) = 5.47411 \ln(x) + 0.98935$.
- 4. b) 52.7570x 20.0780, trabalhando com as alturas em metros.

- c) peso de um funcionário com 1.75 m de altura ~ 72.2467 kg; altura de um funcionário com 80 kg ~ 1.897 m.
- d) 0.0159x + 0.6029.
- e) peso de um funcionário com 1.75 m de altura ~ 72.14 kg; altura de um funcionário com 80 kg ~ 1.871 m.
- 5. a) Mudamos a escala dos anos por $t = \frac{\text{ano} 1800}{10}$ e a seguir fizemos o ajuste por $\phi(x) = \alpha_1 e^{\alpha_2 x}$ cuja solução foi $\phi(x) = 1.8245e^{0.2289x}$, donde pop (2000) $\approx \phi(20) = 177.56$.
 - b) Em 1974.

6. a)
$$y = \frac{1}{0.1958 + 0.0185x}$$
.

b)
$$y \approx 5.5199(0.8597)^{x}$$
.

7. b)
$$\varphi(x) = ab^x$$
, onde $a = 32.14685$
 $b = 1.42696$.
 $\varphi(x) = ax^b$, onde $a = 38.83871$
 $b = 0.9630$.

Observação: neste último caso, para se efetuar o ajuste desprezamos o primeiro dado: 0.32 para que fosse possível a linearização $ln(y) \sim ln(a) + b ln(x)$.

9.
$$a$$
) $\varphi(x) = ae^{bx}$.

O resíduo que foi minimizado foi de 1/y como função de x.

10.
$$g(x) = 1 + 0.9871e^{1.0036x}$$

11. y(t) = ab^t. Além do teste de alinhamento ser razoável para esta função, a outra possibilidade apresenta problemas. Verifique.

13. Para
$$j = 0$$
, $a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx$.

Para
$$j \ge 1$$
, $a_j = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(jx) dx$.

Para
$$j \ge 1$$
, $b_i = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(jx) dx$.

1.	a)	n	4	6
	ē	Trapézios	4.6950759	4.6815792
		Simpson	4.670873	4.6707894

2.	a)	n	(a)	(b)	(c)
		Trapézios	249	238	1382
		Simpson	10	20	80

3.
$$\varepsilon \leq 5 \times 10^{-4}$$
.

- a) 0.4700171.
- b) 0.4702288.
- 5. Erro por Simpson: Zero

$$I_{s} = 172$$

Por Trapézios, com 5 pontos, I_{TR} = 184 ($|E_{TR}| \le 24$)

- h < 0.580819.
- 7. $I_s = 44.0833...$ com erro zero.
- 10. $m \ge 8$.
- 11. b) $I_{TR} = 2.086$.
- 12. $w_0 = w_2 = 4/3$ $w_1 = -2/3$.
- 13. 4.227527 (Trapézios no primeiro intervalo e o restante por 1/3 Simpson).
- 14 a) Trapézios: 6.203.

Simpson: 6.208.

b) Trapézios: 0.55509.

Simpson: 0.55515.

15.
$$I_s = 0.69315$$
.

$$ln(2) = 0.693147.$$

16.
$$I_s = 0.785392$$
.

$$\pi /4 \simeq 0.785398$$
.

17. a) Is =
$$0.746855$$

b)
$$I_{QG} = 0.746594$$

c2) m = 27 (se usarmos
$$M_2 \le 2$$
)

1.
$$y_{n+1} = y_n + hf(x_n + \frac{h}{2}, y_n + \frac{h}{2}y'_n)$$

3.	<i>a</i>) e <i>c</i>)	h	Euler Aperfeiçoado	Euler
	8	0.5	-3	-5
		0.25	-3	-1.75
		0.125	-3	-2.375
		0.1	-2.999995	-2.499994

6.
$$y_{n+1} = y_n + \frac{h}{2}(f_n + f_{n+1}).$$

8.	h	Euler	Euler Aperfeiçoado	R. Kutta 4ª ordem	
	0.2	2.047879	1.906264	1.909298	
	0.1	1.979347	1.90854	1.909297	
	0.05	1.944512	1.909108	1.909298	
	0.025	1.926953	1.909251	1.909298	

9. a) (Euler Aperfeiçoado) $h = 2 \Rightarrow y(16) \approx 12.00999$.

b)
$$h = 4 \Rightarrow y(16) \approx 11.998$$
.

c)
$$\begin{cases} h = 2 \Rightarrow y(16) \approx 11.99199. \\ h = 4 \Rightarrow y(16) \approx 11.94514. \end{cases}$$

10.
$$h = 0.2$$
 $y(1.6) \approx 2.7$.

$$h = 0.1$$
 $y(1.6) \approx 2.8242597$.

11.
$$h = 0.1$$
, $y(5) = -2.5$

$$h = 0.125, y(5) = -2.3750$$

$$h = 0.25, y(5) = -1.75$$

$$h = 0.5, y(5) = -0.5$$

14.	h	Euler	Euler Aperfeiçoado	R. Kutta 4ª ordem
	0.2	2.7	2.971514	3.019671
	0.1	2.85455	3.006242	3.019977
	0.05	2.928572	3.016337	3.019999
	0.025	2.973171	3.019055	3.020001

15. Euler: $y(1) \approx 4.488320$.

Runge-Kutta de 4^a ordem: $y(1) \approx 4.718251$.

$$y(1) = 4.718282.$$

16. a) e b)
$$y(0.2) = y(0.25) = ... = 1.00$$

17. a) e b) e c)

h = 0.25

x	Euler	Euler Aperfeiçoado	Runge-Kutta	Valor Exato
0.25	0.75000	0.78711	0.78287	0.78287
0.5	0.57422	0.63838	0.63234	0.63234
0.75	0.46655	0.55016	0.54369	0.54369
1.00	0.41552	0.52007	0.51342	0.51342
1.25	0.41552	0.55664	0.54938	0.54938
1.50	0.47396	0.69499	0.68728	0.68729
1.75	0.62207	1.03875	1.03700	1.03713
2.00	0.94282	1.89693	1.94632	1.94773

h = 0.5

X	Euler	Euler Aperfeiçoado	Runge-Kutta	Valor Exato
0.5	0.50000	0.65625	0.63234	0.63234
1.0	0.31250	0.53320	0.51335	0.51342
1.5	0.31250	0.69983	0.68700	0.68729
2.0	0.50781	1.77144	1.93321	1.94773

18. $y(1) \approx 0.87997$.

 $y'(1) \approx 6.47989.$

9. b)	x	y(x)	y'(x)
	0.25	1.56250	-3.50000
	0.5	0.34570	-5.46875
	0.75	-1.09711	-4.87744
	1.00	-2.07648	-1.89056

20. a) e b)		Eu	ıler	Euler Ap	erfeiçoado
	x	y(x)	y'(x)	y(x)	y'(x)
	0.2	0.20000	1.39192	0.24000	1.44098
	0.4	0.47838	1.84145	0.57610	1.95954
-	0.6	0.84667	1.33276	1.02305	2.54350

22. c)
$$| \text{erro} | \le \frac{|\mathbf{x}|^3}{6}, \ \mathbf{x} > 0$$

 $| \text{erro} | \le \frac{e^{-\mathbf{x}} |\mathbf{x}|^3}{6}, \ \mathbf{x} < 0$

23.
$$y'(0) = 0.841471$$

 $y''(0) = 2.162722$
 $y'''(0) = 1.748426$
 $y(0.2) \approx 1.213880$

24.
$$y(0.25) \approx 1.107487$$

 $y(0.5) \approx 0.529106$
 $y(0.75) \approx 0.180622$

28. Para $h = 0.1$	Diferenças Avançadas	Diferenças Centradas
	2.8354	2.7050
	2.5800	2.4739
	2.3467	2.2614
	2.1327	2.0652
	1.9354	1.8831
	1.7528	1.7134
	1.5829	1.5544
	1.4241	1.4047
	1.2748	1.2632
	1.1338	1.1286
Para h = 0.05	Diferenças Avançadas	Diferenças Centradas
	2.7743618	2.7150249
	2.6497296	2.5961115

2.5305392

2.4164371

2.3070913

2.2021902

2.1014410

2.0045693

1.9113174

2.4822230

2.3730328

2.2682345

2.1675402

2.0706798

1.9773998

1.8874621

1.8214434	1.8006436
1.7347207	1.7167348
1.6509366	1.6355394
1.5698915	1.5568732
1.4913986	1.4805637
1.4152827	1.4064489
1.3413795	1.3343774
1.2695352	1.2642070
1.1996058	1.1958047
1.1314563	1.1290459
1.0649604	1.0638141