

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра теоретической и прикладной информатики

Лабораторная работа № 3
по дисциплине «Методы принятия оптимальных решений»

Решение матричных игр

Бригада 7 ПОБЕДИНСКИЙ СЕРГЕЙ

Группа ПМ-84 ФАДЕЙКИН ЛЕОНИД

Преподаватель ЛЕМЕШКО БОРИС ЮРЬЕВИЧ

Новосибирск, 2021

Вариант 3

1. Цель работы

Ознакомиться с методами решения задач игр методами линейного программирования.

2. Задание

Упрощенный покер

Первый игрок получает одну из карт Ст и Мл с равными вероятностями, а затем может или «сделать ставку» или «спасовать». Если первый делает ставку, то второй может «спасовать» и потерять α или «уравнять игру», и выиграть или потерять β в зависимости от того, имеется ли на руках у первого игрока карта Мл или Ст. Если первый игрок пасует, то второй может также пасовать, что даёт выигрыш 0, или сделать ставку, выигрывая α , если у первого игрока карта Мл, и теряя β , если у первого игрока Ст.

3. Математическая модель

Построим дерево игры для нашего условия:

Где

🔵 - Начало игры

Ст – Старшая карта

Мл – Младшая карта

Став – Игрок делает ставку

Пас – Игрок пассует

 $(\gamma, -\gamma)$ – Выигрыш. γ - выигрыш первого игрока и проигрыш второго.

Составим платёжную матрицу игры:

У первого игрока будет 4 стратегии, а у второго – 2.

Величина выигрыша первого игрока при выборе і-ой стратегии и величина проигрыша второго игрока при выборе ј-ой стратегии записывается в a_{ij} элемент матрицы.

$$A = \begin{pmatrix} \beta & \alpha \\ \beta & 0 \\ -\beta & \alpha \\ -\alpha & 0 \end{pmatrix}$$

Пусть F_1 – выигрыш первого игрока, который нужно максимизировать, тогда:

$$F_1 = V \rightarrow max$$

При условиях:

$$\begin{cases} \beta x_1 + \beta x_2 - \beta x_3 - \alpha x_4 \ge V \\ \alpha x_1 + \alpha x_3 \ge V \\ x_1 + x_2 + x_3 + x_4 = 1 \\ x_j \ge 0, j = \overline{1,4} \end{cases}$$

Пусть F_2 – проигрыш второго игрока, который нужно минимизировать, тогда,

$$F_2 = V \rightarrow min$$

При условиях:

$$\begin{cases} \beta y_1 + \alpha y_2 \leq V \\ \beta y_1 \leq V \\ -\beta y_1 + \alpha y_2 \leq V \\ -\alpha y_1 \leq V \\ y_1 + y_2 = 1 \\ y_j \geq 0, j = \overline{1,2} \end{cases}$$

4. Решение

(В конце будет приведена программа решения данной двойственной задачи для проверки найденного аналитического решения)

Решим задачу максимизации, используя симплекс-метод искусственного базиса.

0) Означим $V = x_5$

Для каждого ограничения с неравенством добавляем дополнительные переменные x6 и x7.

В целевую функцию добавляем искусственные переменные с коэффициентом -M, где M — очень большое число.

С	0	0	0	0	1	0	0	-M	-M	-M	0
базис	x1	x2	х3	x4	x5	х6	x7	u1	u2	u3	b
u1	b	b	-b	-a	-1	-1	0	1	0	0	0

u2	а	0	а	0	-1	0	-1	0	1	0	0
u3	1	1	1	1	0	0	0	0	0	1	1

Условия задачи с учётом добавленных искусственных переменных:

$$F_{1} = 1x_{5} - Mu_{1} - Mu_{2} - Mu_{3} \rightarrow max$$

$$\beta \cdot x_{1} + \beta \cdot x_{2} - \beta \cdot x_{3} - \alpha \cdot x_{4} - x_{5} - x_{6} + u_{1} = 0$$

$$\alpha \cdot x_{1} + \alpha \cdot x_{3} - x_{5} - x_{7} + u_{2} = 0$$

$$x_{1} + x_{2} + x_{3} + x_{4} + u_{3} = 1$$

Вычислим дельты по формуле $\Delta_i = C_8 * a_{1i} + C_9 * a_{2i} + C_{10} * a_{3i} - C_i$

С	0	0	0	0	1	0	0	-M	-M	-M	0
базис	x1	x2	х3	x4	x5	х6	x7	u1	u2	u3	b
u1	b	b	-b	-a	-1	-1	0	1	0	0	0
u2	а	0	а	0	-1	0	-1	0	1	0	0
u3	1	1	1	1	0	0	0	0	0	1	1
Δ	-M(a+b+1)	-M(b+1)	-M(1+a-b)	-M(1-a)	-1+2M	М	М	0	0	0	-M

План не оптимален, так как $\Delta_1 < 0$

1) Выберем разрешающим элементом $a_{11} = b$

Делим разрешающую строку на разрешающий элемент. Из остальных строк вычитаем значения первой строки, умноженной на соответствующий элемент в разрешающем столбце.

И вычисляем новые дельты: $\Delta_i = \mathcal{C}_1 * a_{1i} + \mathcal{C}_9 * a_{2i} + \mathcal{C}_{10} * a_{3i} - \mathcal{C}_i$

С	0	0	0	0	1	0	0	-M	-M	-M	0
базис	x1	x2	х3	х4	x5	х6	x7	u1	u2	u3	b
x1	1	1	-1	-a/b	-1/b	-1/b	0	1/b	0	0	0
u2	0	-a	2a	a^2 / b	(a-b)/b	a/b	-1	-a/b	1	0	0
u3	0	0	2	(a+b)/b	1/b	1/b	0	-1/b	1	1	1
Δ	0	aM	-M(2a+2)	-M(a^2+a+b)	-1-M((a-b+1)/b)	-M((a+b)/b)	М	M((a+b)/b)	0	0	-M

План не оптимален, так как $\Delta_3 < 0$

2) Выберем разрешающим элементом $a_{23}=2a$

Делим разрешающую строку на разрешающий элемент. Из остальных строк вычитаем значения первой строки, умноженной на соответствующий элемент в разрешающем столбце.

И вычисляем новые дельты: $\Delta_i = \mathcal{C}_1 * a_{1i} + \mathcal{C}_3 * a_{2i} + \mathcal{C}_{10} * a_{3i} - \mathcal{C}_i$

С	0	0	0	0	1	0	0	-M	-M	-M	0
базис	x1	x2	х3	x4	x5	х6	x7	u1	u2	u3	b
x1	1	1/2	0	-a/2b	-(a+b)/2ab	-1/2b	-1/2a	1/2b	1/2a	0	0

	х3	0	-1/2	1	a/2b	(a-b)/2ab	1/2b	-1/2a	-1/2b	1/2a	0	0
Ī	u3	0	1	0	1	1/a	0	1/a	0	-1/a	1	1
Ī	Δ	0	-M	0	-M	-1-M(1/a)	0	-M(1/a)	М	M(1+1/a)	0	-M

План не оптимален, так как $\Delta_2 < 0$

3) Выберем разрешающим элементом $a_{12} = 1/2$

Делим разрешающую строку на разрешающий элемент. Из остальных строк вычитаем значения первой строки, умноженной на соответствующий элемент в разрешающем столбце.

И вычисляем новые дельты: $\Delta_i = C_2 * a_{1i} + C_3 * a_{2i} + C_{10} * a_{3i} - C_i$

С	0	0	0	0	1	0	0	-M	-M	-M	0
базис	x1	x2	х3	x4	x5	х6	x7	u1	u2	u3	b
x2	2	1	0	-a/b	-(a+b)/ab	-1/b	-1/a	1/b	1/a	0	0
х3	1	0	1	0	-1/a	0	-1/a	0	1/a	0	0
u3	-2	0	0	(a+b)/b	(2b+a)/ab	1/b	2/a	-1/b	-2/a	1	1
Δ	2M	0	0	-M(a+b)/b	-1-M(2b+a)/ab	-M/b	-2M/a	M(b+1)b	M(2+a)/a	0	-M

План не оптимален, так как $\Delta_4 < 0$

4) Выберем разрешающим элементом $a_{34}=rac{lpha+eta}{eta}$

Делим разрешающую строку на разрешающий элемент. Из остальных строк вычитаем значения первой строки, умноженной на соответствующий элемент в разрешающем столбце.

И вычисляем новые дельты: $\Delta_i = C_2*a_{1i} + C_3*a_{2i} + C_4*a_{3i} - C_i$

С	0	0	0	0	1	0	0	-M	-M	-M	0
базис	x1	x2	х3	x4	x5	х6	x7	u1	u2	u3	b
x2	2b/(a+b)	1	0	0	-b/a(a+b)	-1/(a+b)	(a-b)/a(a+b)	1/(a+b)	(b-a)/a(a+b)	a/(a+b)	a/(a+b)
х3	1	0	1	0	-1/a	0	-1/a	0	1/a	0	0
x4	-2b/(a+b)	0	0	1	(2b+a)/a(a+b)	1/(a+b)	2b/a(a+b)	-1/(a+b)	-2b/a(a+b)	b/(a+b)	b/(a+b)
Δ	0	0	0	0	-1	0	0	М	М	М	0

План не оптимален, так как $\Delta_5 < 0$

5) Выберем разрешающим элементом $a_{35} = \frac{\alpha + 2\beta}{\alpha(\alpha + \beta)}$

Делим разрешающую строку на разрешающий элемент. Из остальных строк вычитаем значения первой строки, умноженной на соответствующий элемент в разрешающем столбце.

И вычисляем новые дельты: $\Delta_i = C_2 * a_{1i} + C_3 * a_{2i} + C_5 * a_{3i} - C_i$

С	0	0	0	0	1	0	0	-M	-M	-M	0
базис	x1	x2	х3	x4	x5	х6	x7	u1	u2	u3	b
x2	2b/(a+2b)	1	0	b/(2b+a)	0	-1/(2b+a)	1/(2b+a)	1/(2b+a)	-1/(2b+a)	(a+b)/(2b+a)	(a+b)/(2b+a)
х3	a/(2b+a)	0	1	(a+b)/(2b+a)	0	1/(2b+a)	-1/(2b+a)	-1/(2b+a)	1/(2b+a)	b/(2b+a)	b/(2b+a)
x5	-2ab/(2b+a)	0	0	a(a+b)/(2b+a)	1	a/(2b+a)	2b/(2b+a)	-a/(2b+a)	-2b/(2b+a)	ab/(2b+a)	ab/(2b+a)
Δ	-2ab/(2b+a)	0	0	a(a+b)/(2b+a)	0	a/(2b+a)	2b/(2b+a)	-a/(2b+a)+M	-2b/(2b+a)+M	ab/(2b+a)+M	ab/(2b+a)

План не оптимален, так как $\Delta_1 < 0$

Далее следует рассмотреть случаи, когда $\beta > \alpha$ и $\beta < \alpha$, так как от этого зависит выбор разрешающего элемента

6.1) $\beta > \alpha$: Выбираем разрешающим элементом $a_{11} = 2\beta/(\alpha + 2\beta)$

Делим разрешающую строку на разрешающий элемент. Из остальных строк вычитаем значения первой строки, умноженной на соответствующий элемент в разрешающем столбце.

И вычисляем новые дельты: $\Delta_i = C_1 * a_{1i} + C_3 * a_{2i} + C_5 * a_{3i} - C_i$

С	0	0	0	0	1	0	0	-M	-M	-M	0
базис	x1	x2	х3	x4	x5	х6	x7	u1	u2	u3	b
x1	1	(a+2b)/2b	0	1/2	0	-1/2b	1/2b	1/2b	-1/2b	(a+b)/2b	(a+b)/2b
х3	0	-a/2b	1	1/2	0	1/2b	-1/2b	-1/2b	1/2b	(b-a)/2b	(b-a)/2b
x5	0	a	0	а	1	0	1	0	-1	a	a
Δ	0	а	0	а	0	0	1	М	-1+M	a+M	а

Отрицательные дельты отсутствуют, следовательно, план оптимален.

$$x = \left(\frac{\beta + \alpha}{2\beta}, \ 0, \ \frac{\beta - \alpha}{2\beta}, \ 0\right)$$
$$V = \alpha$$

6.2) $\beta < \alpha$: Выбираем разрешающим элементом $a_{21} = \alpha/(\alpha + 2\beta)$

Делим разрешающую строку на разрешающий элемент. Из остальных строк вычитаем значения первой строки, умноженной на соответствующий элемент в разрешающем столбце.

И вычисляем новые дельты: $\Delta_i = C_2 * a_{1i} + C_1 * a_{2i} + C_5 * a_{3i} - C_i$

С	0	0	0	0	1	0	0	-M	-M	-M	0
базис	x1	x2	х3	x4	x5	х6	x7	u1	u2	u3	b
x2	0	1	-2b/a	-b/a	0	-1/a	1/a	1/a	-1/a	(a-b)/a	(a-b)/a
x1	1	0	(2b+a)/a	(a+b)/a	0	1/a	-1/a	-1/a	1/a	b/a	b/a
x5	0	0	2b	b+a	1	1	0	-1	0	b	b
Δ	0	0	2b	b+a	0	1	0	-1+M	М	7+M	7

Отрицательные дельты отсутствуют, следовательно, план оптимален.

$$x = \left(\frac{\beta}{\alpha}, \frac{\alpha - \beta}{\alpha}, 0, 0\right)$$
$$V = \beta$$

Аналогично выглядят вычисления для решения двойственной задачи.

Обобщим полученные результаты.

Всего имеется 3 случая:

$$V = \min(\alpha, \beta)$$

$\alpha = \beta$	$\alpha < \beta$	$\alpha > \beta$
x = (1, 0, 0, 0) y = (0.5, 0.5)	$x = \left(\frac{\beta + \alpha}{2\beta}, 0, \frac{\beta - \alpha}{2\beta}, 0\right)$ $y = (0, 1)$	$x = \left(\frac{\beta}{\alpha}, \frac{\alpha - \beta}{\alpha}, 0, 0\right)$ $y = (1, 0)$

Проверим условия ограничений для каждого случая

1)
$$\alpha = \beta$$

$$\begin{cases} \beta x_1 + \beta x_2 - \beta x_3 - \alpha x_4 \ge V \\ \alpha x_1 + \alpha x_3 \ge V \end{cases} = \begin{cases} \beta * 1 \ge \beta \\ \alpha * 1 \ge \alpha \\ 1 + 0 + 0 + 0 = 1 \end{cases}$$

$$x_j \ge 0, j = \overline{1,4} \end{cases} = \begin{cases} \beta y_1 + \alpha y_2 \le V \\ \beta y_1 \le V \\ -\beta y_1 + \alpha y_2 \le V \\ -\alpha y_1 \le V \end{cases} = \begin{cases} \beta * 0.5 + \alpha * 0.5 \le \beta \\ \beta * 0.5 \le \beta \\ -\beta * 0.5 + \alpha * 0.5 \le \beta \end{cases} = \begin{cases} \beta \le \beta \\ 0.5\beta \le \beta \\ 0.5\beta \le \beta \end{cases}$$

$$0 \le \beta \begin{cases} 0.5 + \alpha * 0.5 \le \beta \\ 0.5 + \alpha * 0.5 \le \beta \end{cases} = \begin{cases} 0.5 + \alpha * 0.5 \le \beta \\ 0.5 = 1 \end{cases}$$

$$0 \le \beta \begin{cases} 0.5 + \alpha * 0.5 \le \beta \\ 0.5 = 1 \end{cases}$$

$$0 \le \beta \begin{cases} 0.5 + \alpha * 0.5 \le \beta \\ 0.5 = 1 \end{cases}$$

$$0 \le \beta \begin{cases} 0.5 + \alpha * 0.5 \le \beta \\ 0.5 = 1 \end{cases}$$

$$0 \le \beta \begin{cases} 0.5 + \alpha * 0.5 \le \beta \\ 0.5 = 1 \end{cases}$$

$$0 \le \beta \begin{cases} 0.5 + \alpha * 0.5 \le \beta \\ 0.5 = 1 \end{cases}$$

$$0 \le \beta \begin{cases} 0.5 + \alpha * 0.5 \le \beta \end{cases}$$

$$0 \le \beta \begin{cases} 0.5 + \alpha * 0.5 \le \beta \end{cases}$$

$$0 \le \beta \begin{cases} 0.5 + \alpha * 0.5 \le \beta \end{cases}$$

$$0 \le \beta \begin{cases} 0.5 + \alpha * 0.5 \le \beta \end{cases}$$

$$0 \le \beta$$

$$0 \le \beta \end{cases}$$

$$0 \le \beta$$

Все условия выполняются

2)
$$\alpha < \beta$$

$$\begin{cases} \beta * \frac{\beta + \alpha}{2\beta} + \beta * 0 - \beta * \frac{\beta - \alpha}{2\beta} - \alpha * 0 \ge \alpha \\ & \alpha * \frac{\beta + \alpha}{2\beta} + \alpha * \frac{\beta - \alpha}{2\beta} \ge \alpha \\ & \frac{\beta + \alpha}{2\beta} + 0 + \frac{\beta - \alpha}{2\beta} + 0 = 1 \\ & x_{j} \ge 0, j = \overline{1,4} \end{cases} = > \begin{cases} \alpha \ge \alpha \\ \alpha \ge \alpha \\ 1 = 1 \\ x_{j} \ge 0, j = \overline{1,4} \end{cases}$$

$$\begin{cases} \beta y_{1} + \alpha y_{2} \le V \\ \beta y_{1} \le V \\ -\beta y_{1} + \alpha y_{2} \le V \\ -\alpha y_{1} \le V \\ y_{1} + y_{2} = 1 \\ y_{j} \ge 0, j = \overline{1,2} \end{cases} = \begin{cases} \alpha \le \alpha \\ 0 \le \alpha \\ \alpha \le \alpha \\ 0 \le \alpha \\ 0 + 1 = 1 \\ y_{j} \ge 0, j = \overline{1,2} \end{cases}$$

Все условия выполняются

3)
$$\alpha > \beta$$

$$\begin{cases} \beta x_1 + \beta x_2 - \beta x_3 - \alpha x_4 \ge V \\ \alpha x_1 + \alpha x_3 \ge V \\ x_1 + x_2 + x_3 + x_4 = 1 \\ x_j \ge 0, j = \overline{1,4} \end{cases} = > \begin{cases} 0.5\beta + 0.5\beta \ge \beta \\ 0.5\alpha + 0.5\alpha \ge \beta \\ 0.5 + 0.5 + 0 + 0 = 1 \end{cases} = > \begin{cases} \beta \ge \beta \\ \alpha \ge \beta \\ 1 = 1 \\ x_j \ge 0, j = \overline{1,4} \end{cases}$$

$$\begin{cases} \beta y_1 + \alpha y_2 \le V \\ \beta y_1 \le V \\ -\beta y_1 + \alpha y_2 \le V \\ -\alpha y_1 \le V \\ y_1 + y_2 = 1 \\ y_i \ge 0, j = \overline{1,2} \end{cases}$$

$$\begin{cases} 1\beta \le \beta \\ 1\beta \le \beta \\ -1\beta \le \beta \\ 0 \le \beta \\ 1 + 0 = 1 \\ y_i \ge 0, j = \overline{1,2} \end{cases}$$

Все условия выполняются.

Так же эту задачу можно решить, используя понятие седловой точки.

1)
$$\beta = \alpha$$

$$A = \begin{pmatrix} \alpha & \alpha \\ \alpha & 0 \\ -\alpha & \alpha \\ -\alpha & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ 0 \\ -\alpha \\ -\alpha \end{pmatrix}$$
$$\min(\alpha, \alpha)$$

Седловыми точками являются элементы a_{11} и a_{12}

Решение игры $V = \alpha = \beta$

То есть первому игроку при таком условии выгоднее всего выбрать 1 стратегию, а второму можно выбрать любой из вариантов хода.

2)
$$\alpha < \beta$$

$$A = \begin{pmatrix} \beta & \alpha \\ \beta & 0 \\ -\beta & \alpha \\ -\alpha & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ 0 \\ -\beta \\ -\alpha \end{pmatrix}$$

$$\min(\beta, \alpha)$$

Седловой точкой является элемент a_{12}

То есть первому игроку выгоднее всего выбрать 1 стратегию, а второму при таких условиях следует пасануть.

Решение игры V=lpha

3)
$$\alpha > \beta$$

max

$$A = \begin{pmatrix} \beta & \alpha \\ \beta & 0 \\ -\beta & \alpha \\ -\alpha & 0 \end{pmatrix} \begin{pmatrix} \beta \\ 0 \\ -\beta \\ -\alpha \end{pmatrix}$$
$$\min(\beta, \alpha)$$

Седловой точкой является элемент a_{11}

То есть первому игроку выгоднее выбрать 1 стратегию, а второму при таком условии поддержать ставку.

Решение игры $V = \beta$

5. Вывод

Для того, чтобы максимизировать выигрыш первому игроку, ему следует придерживаться первой стратегии, что очевидно, когда на руках самая большая карта, то стоит поддерживать и повышать ставку.

Второму игроку стоит опасаться повышения ставки в размере больше начальной, и можно рисковать, когда повышение ставки незначительно относительно начальной. В случае удвоения ставки второму игроку можно выбирать на своё усмотрение: поддерживать ставку или пасануть.

6. Текст программы

```
import scipy.optimize as opt
def fun(y, sign, V):
    return sign * y[V]
def do max(a,b):
    print("V -> max:")
    cons = ({
                'type': 'ineq',
                'fun': lambda t: b*t[0] + b*t[1] - b*t[2] - a*t[3] - t[4]
            },
            {
                'type': 'ineq',
                'fun': lambda t: a*t[0] + a*t[2] - t[4]
            },
            {
                'type': 'eq',
                'fun': lambda t: t[0] + t[1] + t[2] + t[3] - 1
            })
    bnc = ((0, None), (0, None), (0, None), (0, None), (None, None))
    res = opt.minimize(fun, x0=(1, 1, 1, 1, 1), args=(-1, 4), method='SLSQP',
constraints=cons, bounds=bnc, options={'ftol': 1e-7})
    print(res)
def do min(a,b):
    print("V -> min:")
    cons = ({
                'type': 'ineq',
                'fun': lambda t: t[2] - b*t[0] - a*t[1]
            },
            {
                'type': 'ineq',
```

```
'fun': lambda t: t[2] - b*t[0]
             },
             {
                 'type': 'ineq',
                 'fun': lambda t: t[2] + b*t[0] - a*t[1]
             },
             {
                 'type': 'ineq',
                 'fun': lambda t: t[2] + a*t[0]
             },
             {
                 'type': 'eq',
                 'fun': lambda t: t[0] + t[1] - 1
             })
    bnc = ((0, None), (0, None), (None, None))
   res = opt.minimize(fun, x0=(1, 1, 1), method='SLSQP', args=(1, 2), con-
straints=cons, bounds=bnc, options={'ftol': 1e-7})
    print(res)
if __name__=="__main__":
    \overline{a} = \overline{int}(\overline{input}("BBEQUTE первую ставку) a = "));
    b = int(input("Введите вторую ставку) b = "));
    do max(a,b)
    print('\n\n')
    do min(a,b)'
```