这就证明了 $\ker \varphi + S \subseteq \varphi^{-1}(\varphi(S))$ 。从而有 $\varphi^{-1}(\varphi(S)) = \ker \varphi + S$ 。

18.33

证明: 不妨记 $F_1 = \langle A_1, +_1, *_1 \rangle$, $F_2 = \langle A_2, +_2, *_2 \rangle$ 。

由教材定理 18.6 知, $\ker \varphi$ 是 F_1 是理想。由教材例 18.11 知, F_1 中的理想只有 $\{0\}$ 和 F_1 。 由于 $\varphi(F_1) \neq \{0\}$,所以存在 $x \in F_1$,使得 $\varphi(x) \neq 0$, $x \notin \ker \varphi$ 。从而 $\ker \varphi \neq F_1$ 。因此,必有 $\ker \varphi = \{0\}.$

注意到, φ 也是群 $\langle A_1, +_1 \rangle$ 到群 $\langle A_2, +_2 \rangle$ 的同态。由 $\ker \varphi = \{0\}$ 和教材定理 17.33 知, φ 是从 $\langle A_1, +_1 \rangle$ 到 $\langle A_2, +_2 \rangle$ 的单同态。这就是说, φ 是从 A_1 到 A_2 的单射,从而也是 F_1 到 F_2 的 单同态。

18.34

证明: 显然,对任何 $f, g \in \text{End } G$, f + g 和 $f \circ g$ 仍是函数。对任意 $x, y \in G$,

$$(f+g)(x+y) = f(x+y) + g(x+y)$$

$$= f(x) + f(y) + g(x) + g(y)$$

$$= f(x) + g(x) + f(y) + g(y)$$

$$= (f+g)(x) + (f+g)(y)$$

$$(f \circ g)(x+y) = f(g(x+y))$$

$$= f(g(x) + g(y))$$

$$= f(g(x)) + f(g(y))$$

$$= (f \circ g)(x) + (f \circ g)(y)$$

$$(定义)$$

$$(定义)$$

$$(f \wr E \sqcap E)$$

这就证明了 f + g 和 $f \circ g$ 都是 G 的自同态。从而 + 和 \circ 都是 End G 上的二元运算。

+ 运算显然满足交换律、结合律, 且零同态 φ_0 是加法单位元。令 $\varphi: G \to G$, $\forall x \in G$, $\varphi(x) = -x$ 。由习题 17.61 结论知, φ 是自同构。对任意 $f \in \operatorname{End} G$,显然有 $\varphi \circ f \in \operatorname{End} G$ 和 $f + \varphi \circ f = \varphi_0$ 。从而 End G 中每个元素均有加法逆元。因此,〈End G, +〉 是 Abel 群。

由教材定理 2.5 知, \circ 运算是可结合的。从而 $\langle \operatorname{End} G, \circ \rangle$ 是半群。

对任意 $f, g, h \in \text{End } G$, $x \in G$,

$$(f \circ (g+h))(x) = f((g+h)(x))$$
 (○运算定义)
 $= f(g(x) + h(x))$ (+运算定义)
 $= f(g(x)) + f(h(x))$ (f是同态)
 $= (f \circ g)(x) + (f \circ h)(x)$ (○运算定义)
 $((g+h) \circ f)(x) = (g+h)(f(x))$ (○运算定义)
 $= g(f(x)) + h(f(x))$ (○运算定义)
 $= (g \circ f)(x) + (h \circ f)(x)$ (○运算定义)

从而。运算对+运算是可分配的。

这就证明了 $\langle \operatorname{End} G, +, \circ \rangle$ 是环。

对循环群上的任何自同态 $\varphi: G \to G$, 若 $\varphi(a) = ia$, 则必有 $\varphi(ka) = k\varphi(a) = kia$, $k, i \in \mathbb{Z}$. 从而循环群上的自同态具有 $\varphi_i(ka) = kia, \forall ka \in G$ 的形式。显然,

$$\varphi_i = \varphi_j \iff i \equiv j \pmod{n},$$