臺北市立建國高級中學108學年度科學展覽作品說明書

科別:化學科

組別:高級中等學校組

作品名稱:纖維素奈米化後再改質對重金屬吸附的影響

關鍵詞: 奈米纖維素 、 重金屬 、吸附 (最多3個)

編號:

研究報告

作品名稱:纖維素奈米化後再改質對重金屬吸附的影響

摘要

地球的環境議題早已成為這個世紀的重大難題,如何讓地球回歸工業革命以前的乾淨是各國致力研究的目標,而一直不受重要關注的重金屬污染正在一點一滴的啃食我們的環境。 雖然目前似乎已經有不錯的過濾技術,但似乎都頗耗費能量,在處理污染的同時,又對地球 造成另一層傷害。

這時就可以利用重金屬帶正電荷的特性,用負電荷的離子進行吸附。而我們又讀到奈米 纖維素晶體可以利用上面的羥基來吸附微量的正離子,對奈米纖維素進行改質更可以增加吸 附量,藉由改質接上的羧酸基、硫酸基、醛基,增加吸附的量。而我們希望將改質後的纖維 素可以融合在濾紙上,使過濾後的沉澱物可以固定在濾紙上,達到濾除環境汙染因子的效 果。

青、研究動機

這幾年來,人類不斷在反思人與生態間的關係,自從工業革命以來,人類持續對地球造成傷害,不論是空氣汙染、全球暖化,抑或是廢油、廢熱汙染,都對地球上生物造成無法挽回的傷害。其中水質汙染也造成生態的浩劫,無論是工廠惡意排放也好,家庭廢水中的溶質也好,對生態都造成一定影響。

貳、研究目的

- 一、 從植物(酒糟、檸檬皮)纖維中萃取出 CNC(奈米纖維素晶體)
- 二、將 CNC 進行醛基化、羧酸化、磺酸化的改質
- 三、 製作 Cu(NH₃)₄²⁺濃度對吸光度的檢量線
- 四、 製作不同重量的紙,並比較過濾速度
- 五、 吸附劑直接吸附銅離子的效果
- 六、 將 CNC 在操紙時加入,並製作濾紙
- 七、同重量的紙中加入不同吸附劑,比較吸附劑的吸收效果
- 八、 比較在酸性環境下對各種 CNC 吸附效果的影響

參、研究設備及器材:

一、設備:

小型粉碎機、離心機、電磁加熱攪拌器、pH 計、電子天平、光電比色計、熱壓機、 操紙機、試管振盪器、移液器

二、器材:

離心管(15mL、50mL)、微量離心管(2mL)、96孔盤(比色用)、培養皿(製作CNC濾紙) 肆、研究過程及方法:

一、 製作 CNC:

(一) 前處理:

- 1. 把乾燥的 SDDGS(酒糟)放入 50°C 烘箱,隔天取出
- 2. 用打碎機將 SDDGS 打成粉

圖一:小型打碎機

(二) 鹼處理:

- 1. 取 9 克粉末在燒瓶內進行鹼處理,和 90mL 的 2% NaOH 在 80℃ 油浴中反應兩小時,結束後冷卻至室溫
- 2. 將燒瓶內的溶液移至離心管中,以 4000 rpm 離心 6 分鐘
- 3. 吸出上層澄清液(如圖四),加入去離子水
- 4. 重複步驟 2、3 兩次, 共三次離心
- 5. 再吸出澄清液後,加入少許去離子水,放入-20°C 冰箱冷凍,結凍後凍乾兩天
- 6. 將凍乾後的粉末球磨後過篩,取粒徑 250-450 µm 的粉末進行漂白

圖二: 過篩機 圖三: 離心機 圖四: 離心後纖維 沉積於底部

(三) 漂白:

- 在燒瓶內和 90mL 的 NaClO₂ (1 g: 10 ml DI water) 在 80°C 油浴中反應兩小時,結束後冷卻至室溫
- 2. 將燒瓶內的溶液移至離心管中,以 4300 rpm 離心 6 分鐘
- 3. 吸出上層澄清液,加入去離子水
- 4. 重複步驟 2、3 兩次,共三次離心

(四) 硫酸中水解:

- 1. 將鹼處理及漂白後的纖維秤重,然後和 64 % H₂SO₄置於燒瓶(1g SDDGS:10mL 64 % H₂SO₄),在 45°C 溫水浴中反應兩小時,結束後讓其降至室溫
- 2. 把燒瓶內溶液放入 9 倍的 4°C 去離子水中混合,靜置兩小時
- 3. 移除上層澄清液,再把下層的溶液移至離心管,以 4600 rpm 離心 6 分鐘
- 4. 吸出上層澄清液,加入去離子水

- 5. 重複步驟 3、4 兩次, 共三次離心
- 6. 吸出澄清液,加入少許水,把溶液裝入透析袋(MWCO: 12 kDa-14 kDa),透析兩天(如圖五)

圖五:透析裝置(以去離子水純化產物)

(五) 纖維素來源的選定:

纖維素的選定主要是根據兩種因素:取得的難易度,以及製作奈米纖維素的難易度。我們首先取得的是酒糟,因為釀酒剩下的廢料量十分大易取得。選擇纖維素還要確定是否適合製作奈米纖維素,例如在進行鹼處理時,主要目的是用NaOH來將纖維素孔徑撐開、打斷木質素的結構,而這種反應只適用於農業廢棄物及草本作物,而不適合用於木材,因此選用纖維素時也需要注意

二、將 CNC 進行醛基化、羧酸化、磺酸化的改質:

(一) 醛基化:

1. 步驟:

- (1) 錐形瓶中放入 1.5g CNC, 加 100mL 去離子水, 再加入 4.5g NaIO₄
- (2) 用鋁箔紙包覆錐形瓶,(反應需避光,如圖六),將溶液混和均匀,並調整 pH 值至 3-4 之間,在 45° C 溫水浴中反應 4 小時
- (3) 加入 2.25mL 乙二醇以去除多餘的 NaIO4
- (4) 把溶液裝入透析袋(MWCO: 12 kDa-14 kDa)內透析兩天

2. 原理:

利用過碘酸鉀來氧化相鄰碳原子上的二級羥基,並斷開碳原子之間的鍵結, 形成兩組接在纖維素上的醛基

(二) 磺酸化:

1. 步驟:

- (1) 將醛基化的 CNC 溶液中加入和 CNC 等重的 NaHSO4
- (2) 在室溫反應 72 小時
- (3) 把溶液裝入透析袋(MWCO: 12 kDa-14 kDa)內透析兩天

2. 原理:

利用亞硫酸氫鈉將醛基化後的奈米纖維素接上硫酸基。

(三) 羧酸化(TEMPO 氧化):

1. 步驟:

- (1) 錐形瓶中放入 1g CNC,加 100mL 去離子水,再加入 16mg TEMPO(四 甲基哌啶氧化物), 100mg NaBr, 2.5 m-mol NaClO
- (2) 常溫下反應 4 小時, pH 值低於 9 時慢慢加入 1M NaOH, 使其維持在 9-10
- (3) 把溶液裝入透析袋(MWCO: 12 kDa-14 kDa)內透析兩天

2. 原理:

將 CNC 羧基畫需要使用次氯酸鈉、溴化鈉、以及 TEMPO(2,2,6,6-四甲基哌 啶-1-氧化物), 反應機構如下,第一步是次氯酸鈉與溴化鈉的反應, 次氯酸

根離子及溴離子反應成次溴酸根離子及氯離子,第二步是次溴酸根離子與 TEMPO 反應,讓 TEMPO 的亞硝基反應成亞硝醯基,而次溴酸根及亞硝醯基便是此反應最主要的氧化劑。第三步是將碳鏈上的一級羥基氧化成羧酸鈉,而在過程中 TEMPO 上的亞硝醯基會反應成羥胺基,羥胺基再由亞硝醯基反應回 TEMPO,因此 TEMPO 在此反應可視為催化劑。而氧化一級羥基時會有醛基的中間產物,再氧化而成為羧基。

圖七:pH計

三、製作 Cu(NH3)42+濃度對吸光度的檢量線:

(一) 重金屬離子的選定:

環境汙水的排放來源有許多種,而重金屬汙染只是其中的一小部分,而重金屬 汙染的主要汙染源為汞、鎘、鉻、鉛、砷、銅,而其中最好取得及檢測的離子 為銅離子,因此先就銅離子做研究,往後再做更多重金屬離子的探討。檢測銅離子的方法為比色法,先讓銅離子及氨水形成錯合物,再藉由光電比色計讀值 來判斷銅離子濃度。

(二) 步驟:

- 1. 配出 0.005~0.020M 的硫酸銅溶液 (共 16 組) 各 2mL
- 2. 各在小離心管內加入 1mL 的硫酸銅溶液,並在 16 個小離心管內加入 0.125mL 的氨水,使其成為藍色的 Cu(NH₃)₄²⁺溶液,並且用震動器攪拌均匀
- 3. 各取 0.1mL 加入 96 孔比色盤內,並且將比色計的偵測波長調至 590nm
- 4. 將比色的結果對照濃度,並繪出檢量線

(三) 光電比色原理:

光電比色法是利用光電比色計先測定出標準溶液的吸光度,再將吸光度對濃度作圖,會產生一次線性的關係直線。而比色法便是運用光的吸收的原理,當一束白光通過一藍色物體時,因為藍色物體可以吸收其互補色的光,因此顯現出來的才會是如我們所見的藍色。比色計便是運用此原理,要檢測出藍色的深色程度,便調整波長至其互補色一橘色的波長,使光電比色計發出橘色的光,當光通過檢測物後,後面的檢測計便會測量通過後光束的強度,通過光束愈弱代表溶液的濃度愈深。

朗伯-比爾定律(Beer-Lambert Law),是個光吸收的基本定律,適用於所有電磁輻射和所有的吸光物質包括氣體、固體、液體、分子、原子和離子。光被吸收的量正比於光程中產生光吸收的分子數目,因而可以導出一個經驗公式:

A = Kbc

A 為吸光度,K 是摩爾吸收係數(與吸收物的性質及入射光的波長有關), b 為吸收層厚度, c 則是吸光物質的濃度。以我們做的實驗為例,同樣都是 CuSO4,同樣都是波長 590nm 的橙光,因此摩爾吸收常數值固定;每格的劑量固定,因此吸收層的厚度 b 固定,可以求得吸光度 A 與物質濃度 c 成正比。因此可以繪製吸光度對於物質濃度的回歸直線,求出各個吸光度值對應的濃度。

圖八:光電比色計及 96 孔比色盤

圖九:製作檢量線時不同 濃度的硫酸銅溶液

四、 製作不同重量的紙,並比較過濾速度:

- (一) 分別將 $4g \times 3g \times 2g \times 2g + 0.2gCNC$ 的紙漿加入果汁機打散(如圖十)
- (二) 開始操紙(如圖十一、十二),詳細步驟見附錄 P.S.
- (三) 烘乾後測量其物理性質 (包括厚度、面密度、過濾速度)
- (四) 將過濾設備架好,接上抽氣機,並將不同重量的紙分別放入過濾裝置,測量 10mL 的水所需要過濾的時間

圖十:果汁機打 散竹纖維紙漿

圖十一: 倒入紙漿操紙

圖十二:排水後紙張形成

五、吸附劑直接吸附銅離子的效果:

- (一) 將 50mg 的羧酸化、磺酸化、醛基化的 CNC 放入 10mL 的 0.005M CuSO₄ 溶液中,製成兩管,分別浸泡 4 小時及 24 小時
- (二) 浸泡後各取 2mL 的液體裝進小離心管中,將 CNC 離心出來(如圖十三)

(三) 取上層溶液 1mL 至另一小離心管中,並且加氨水比色

圖十四: 熱壓機

六、將 CNC 在操紙時加入,並製作濾紙:

- (一) 準備兩份的 2g 竹纖維,分別加入 150mg 的醛基化 CNC、羧酸化 CNC,並且放入果汁機打散
- (二) 開始操紙
- (三) 將操好的紙做 crosslink(步驟如後),取出後用 130℃熱壓 10 分鐘(如圖十四)
- (四) 將紙剪下 1/3(相當於 50mg CNC), 浸泡於 30mL 的 0.005M CuSO₄溶液一天
- (五) 取 1mL 澄清溶液至小離心管後,加氨水比色

七、同重量的紙中加入不同吸附劑,比較吸附劑的吸收效果:

- (一) 將一張濾紙平鋪在培養皿上,將改質後的 CNC 溶液慢慢淋在濾紙上,共加 50mg
- (二) 將濾紙烘乾後 crosslink(步驟如後),接著再用 160 ℃熱壓 10 分鐘
- (三) 將紙剪成小片,再泡入 20mL 的 0.005M CuSO4 溶液一天(如圖十五)
- (四) 將濾紙取出,並將澄清的 CuSO4 溶液加氨水比色

圖十五:濾紙吸附

八、比較在酸性環境下對各種 CNC 吸附效果的影響:

- (一) 以步驟七、的方法製作三張含有 50mg、醛基化、羧酸化、磺酸化 CNC 的濾紙
- (二) 配製 0.005M 的硫酸銅溶液,在 6 個培養皿中各倒入 12mL,並且另外取出 1mL 作為標準液
- (三) 取其中三個培養皿加入 0.012mL 的 1M 鹽酸
- (四) 把三張濾紙對半裁剪,一半放入一般的硫酸銅溶液,一半放入加入鹽酸的培養皿, 並標示 CNC 種類與是否加酸
- (五) 浸泡一天後取出,將溶液過濾,加入過量氨水後,用分光光度計測量吸光度

P.S. 操紙步驟:

- (一) 加水至容器一半高度以下
- (二) 倒入紙漿
- (三) 吹氣 2 次
- (四) 加水至8分滿
- (五) 進行排水
- (六) 打開容器,放上2張吸水紙及金屬板
- (七) 壓下吹氣用的橡皮,反覆吹氣
- (八) 拿起紙張,移除一張吸水紙後放到圓形的鐵製模具上
- (九) 用木棒擠壓出部分水分
- (十) 蓋上另一半的模具,放入真空的烘箱内

Crosslink 步驟:

- (一) 配出含有 16%檸檬酸及 1%的磷酸二氫鈉的水溶液
- (二) 將紙浸入此溶液中浸泡一天後取出

伍、研究結果與討論:

- 一、Cu(NH₃)₄²⁺濃度對吸光度的檢量線
 - (一) 配出各個濃度的硫酸銅溶液,各取 1mL 並加入過量氨水,至光電比色計比色
 - (二) 再將數據輸入電腦並求出檢量線

濃度(M)	第一組	第二組	第三組	avg
0.005	0.092	0.096	0.096 0.096	
0.006	0.109	0.112	0.114	0.112
0.007	0.121	0.125	0.131	0.126
0.008	0.129	0.130	0.132	0.130
0.009	0.142	0.146	0.148	0.145
0.010	0.156	0.159	0.160	0.158
0.011	0.169	0.169	0.168	0.169
0.012	0.176	0.186	0.184	0.182
0.013	0.193	0.200	0.198	0.197
0.014	0.201	0.198	0.201	0.200
0.015	0.228	0.213	0.214	0.218
0.016	0.221	0.214	0.216	0.217
0.017	0.234	0.243	0.241	0.239
0.018	0.240	0.239	0.239 0.240	
0.019	0.253	0.253	0.255	0.254
0.020	0.256	0.255	0.257	0.256

二、 4g、3g、2g 竹纖維紙的物理性質及過濾速度

- (一) 將紙漿 $4g \times 3g \times 2g \times 2g + CNC$ 放入操紙機操紙,取出後測量其厚度
- (二) 測量其重量及面積並計算其面密度
- (三) 將 10mL 水通過紙,並測量其過濾速度

厚度 重量	4g	3g	2g	2g + 0.2g
				CNC
量測次數				
1	0.050	0.044	0.036	0.038
2	0.046	0.040	0.038	0.036
3	0.048	0.040	0.036	0.036
4	0.046	0.040	0.036	0.038
5	0.046	0.038	0.038	0.040
6	0.048	0.040	0.036	0.038
7	0.050	0.038	0.036	0.038
8	0.052	0.040	0.038	0.038
9	0.052	0.040	0.038	0.038
10	0.052	0.038	0.040	0.036
avg	0.049	0.040	0.037	0.038

面密度(g/cm^2)	0.019	0.015	0.010	0.011
10mL 水通過 花費時間 (s)	16.59	24.78	0.85	1.12
	22.08	30.22	0.72	1.18
	20.58	30.55	0.85	1.22
	19.16	31.82	1.00	1.18
	21.55	27.14	0.96	0.99
	19.99	28.90	0.88	1.14
過濾速率(mL/s)	0.50	0.35	11.42	8.79

三、CNC 直接吸附(4 小時):

- (一) 將 50mg 的纖維素直接加入 0.005M 的硫酸銅溶液中,吸附 4 小時,測量其吸附 程度
- (二) 醛基化和磺酸化混和液的吸光度大於 0.095,可能是因為沒有完全分離其中的 CNC,參雜在溶液中。

吸光度 CNC 種類 組別	醛基化	磺酸化	羧酸化
第一組	0.150	0.209	0.072
第二組	0.159	0.222	0.074
第三組	0.157	0.227	0.074
Avg	0.155	0.219	0.073
濃度換算(M)	-	-	0.0023
m-mol(Cu)/50mg	-	-	0.027
mg(Cu)/1g(CNC)	-	-	34.56

四、CNC 直接吸附(24 小時):

- (一) 將 50mg 的纖維素直接加入 0.005M 的硫酸銅溶液中,吸附一天,測量其吸附程度
- (二) 由此可見, 浸泡時間愈久, 吸附的效果愈好, 也算出每克 CNC 可吸附銅離子的量約為 42.24mg/g(CNC)

吸光度 CNC 種類 組別	醛基化	磺酸化	羧酸化	
第一組	0.144	0.210	0.068	
第二組	0.147	0.222	0.067	
第三組	0.151	0.226	0.063	
Avg	0.147	0.219	0.066	
濃度換算(M)	-	-	0.0017	
m-mol(Cu)/50mg	-	-	0.033	
mg(Cu)/1g(CNC)	-	-	42.24	

五、操紙時加 CNC 的吸附:

- (一) 將 50mg 的 CNC 在操紙時混入 2g 的紙漿一同操紙,再將其浸泡於 0.005M 的硫酸銅溶液中浸泡一天,測量其吸附程度。
- (二) 實驗結果證明用這種方法操紙並無法使 CNC 留在紙裡面,因此需要再改良操 紙的方法

CNC 種類 吸光度 組別	醛基化	羧酸化	
第一組	0.087	0.090	
第二組	0.089	0.091	
第三組	0.092	0.092	
Avg	0.089	0.091	
濃度換算(M)			
m-mol(Cu)/50mg	幾日	P無吸附	
mg(Cu)/1g(CNC)			

六、濾紙灑上 CNC:

- (一) 將 30mg 的羧酸化 CNC 均勻灑在濾紙上並烘乾,再將濾紙浸泡在 20mL 0.005M 的硫酸銅溶液中吸附一天,測量其吸附結果。
- (二) 由此可知此方法可以將 CNC 留在濾紙內並且進行吸附,效果甚佳

吸光度 CNC 種類 組別	羧酸化	吸附前 CuSO4溶液	
第一組	0.084	0.103	
第二組	0.085	0.100	
第三組	0.085	0.093	
Avg	0.085	0.099	
濃度換算(M)	0.0034	0.0047	
m-mol(Cu)/50mg	0.043		
mg(Cu)/1g(CNC)	55.899		

七、各種 CNC 在酸性環境中的吸附效果:

- (一) 每組皆為 12mL 的 0.005M 硫酸銅溶液,pH 值約為 5,加酸的組別皆加入 1.0M 鹽酸 0.012mL,使其 pH 值約為 3。
- (二) 醛基化和磺酸化的吸附效果幾乎不受酸性環境影響,但是羧酸化在酸中吸附的量卻遠低於未加酸時的,可以推測酸性環境會影響羧基對銅離子的吸附。

(三) 吸附環境的探討:

吸附環境的溫度以及酸鹼性皆會影響 CNC 吸附的效果。

先是溫度的影響因素,因為我們的目標是吸附廢水,因此我們認為溫度並不會有 太大的變動,測試室溫的吸附程度即可。

再來便是酸鹼性的影響,由於我們目前的進度只到銅離子的吸附,因此鹼性溶液會使銅離子沉澱,無法測出 CNC 實際吸附情形,因此我們只針對酸性溶液作著墨。發現羧酸化 CNC 吸附效果不如原本 pH=5 好,每克的吸附量大概差了三倍,而其他種改質的 CNC 並沒有明顯差異。因此推測在酸性環境下,較多的羧酸基會接上氫離子而阻擋銅離子的吸附,吸附效果較差。

吸光度 CNC 種類 組別	吸附前 溶液	羧酸化	羧酸化 (酸)	醛基化	醛基化 (酸)	磺酸化	磺酸化 (酸)
第一組	0.093	0.062	0.087	0.084	0.084	0.091	0.088
第二組	0.096	0.061	0.082	0.086	0.089	0.090	0.091
第三組	0.098	0.063	0.088	0.091	0.087	0.092	0.094
Avg	0.096	0.062	0.086	0.087	0.087	0.091	0.091
濃度換算(M)	0.0045	0.0013	0.0035	0.0036	0.0036	0.0040	0.0040
吸附量 m-mol(Cu)/50mg		0.0768	0.024	0.0216	0.0216	0.012	0.012
吸附量 mg(Cu)/1g(CNC)		99.072	30.96	27.864	27.864	15.48	15.48

陸、結論與未來展望

目前我們發現 TEMPO 氧化改質的羧酸化 CNC 較適合吸附銅離子,也能將其和濾紙結合,並透過濾紙進行吸附,而其他改質的 CNC 雖然也可以吸附,但是只有微量的銅離子,效果並不是最好。

接下來我們將會針對不同金屬離子的吸附效果進行實驗,未來希望可以做出鉛、鎳等金屬吸附的檢測。

利用唾手可得的纖維素製造濾紙,對於生態並不會造成太大的危害,便可以達到改良農業抑或是生物生存環境的良藥。未來有機會也可以往濾水器有關的方向發展,製作效率高、容易取得、替換、乾淨不影響水體的濾材,對於養殖漁業濾水將會有很大的幫助。

柒、參考文獻:

- (—) Hugo Voisin, Lennart Bergström *, Peng Liu and Aji P. Mathew *(2017). Nanocellulose-Based Materials for Water Purification
- (二) Arne Quellmalz and Albert Mihranyan*(2015). Citric Acid Cross-Linked Nanocellulose-Based Paper for Size-Exclusion Nanofiltration
- (三) Greg T. Hermanson, in Bioconjugate Techniques (Third Edition), 2013. The Reactions of Bioconjugation
- (四) Carole Fraschini, Grégory Chauve & Jean Bouchard,2017. TEMPO-mediated surface oxidation of cellulose nanocrystals (CNCs)