Análise do Dataset Water Meters

(Kaggle)

Trabalho da Disciplina de Tópicos Especiais em IA

Estudantes: Anderson Oliveira, Bárbara Talita, Jeovane Santos, Quele Andrade, Ricardo

Teixeira

Orientador: Dr. Tiago Pagano

Curso: Bacharelado em Engenharia de Computação

16 de dezembro de 2024

UFRB Dataset Water Meters 16 de dezembro de 2024

Sumário

- 1 Resumo
- 2 Introdução
 - Contextualização
 - Justificativa
 - Objetivo
- 3 Metodologia
 - Análise do Dataset

- Pré-Processamento
- Arquitetura do Modelo
- 4 Resultados esperados
- 5 Resultados Parciais
 - Loss
 - Métrica MAE
 - Predição
- 6 Considerações finais

Resumo

Este projeto apresenta modelo de aprendizado profundo para a detecção e segmentação de hidrômetros em imagens. Utilizando o dataset "Water Meters Dataset"do Kaggle, composto por 1244 imagens e máscaras segmentadas, implementamos este modelo baseado na arquitetura InceptionV3 pré-treinada.

Palavras-Chave: Detecção de hidrômetros; Segmentação de imagens; Regressão de coordenadas; InceptionV3.

JFRB Dataset Water Meters 16 de dezembro de 2024

Contextualização

Introdução

- A aplicação de redes neurais convolucionais (CNNs) em tarefas de visão computacional, como a detecção de objetos, tem se mostrado altamente eficaz. Estudos demonstram que CNNs são capazes de identificar e localizar objetos em imagens com precisão significativa, mesmo em condições desafiadoras [1].
- A leitura manual de hidrômetros é um processo demorado e sujeito a erros, especialmente em condições adversas [2].
- Automatizar a leitura de hidrômetros, reduz erros manuais e aumentando a eficiência, com impacto direto na otimização de recursos e na gestão inteligente do consumo de água [3].

Justificativa

Introdução

- A leitura manual de hidrômetros enfrenta erros humanos e desafios causados por fatores como iluminação inadequada e reflexos.
- A automação com aprendizado profundo e visão computacional permite realizar a leitura com maior precisão e eficiência.
- A automação reduz erros, possibilita monitoramento em tempo real e torna o processo de medição mais ágil.
- O uso de tecnologias avançadas contribui para uma gestão sustentável e consciente dos recursos hídricos.

Objetivo

Desenvolver um modelo de visão computacional baseado em técnicas de inteligência artificial avançada para detectar e localizar hidrômetros em imagens, utilizando redes neurais convolucionais e técnicas de regressão, com o objetivo de explorar os fundamentos de inteligência artificial aplicados a problemas reais.

Introdução **Metodologia** Resultados esperados Resultados Parciais Considerações finais Referências

OOO ● OOOOOO OO OO OO OO OO

Metodologia

A metodologia está dividida em três etapas principais:

- Análise do Dataset: Estudo das características e classes do conjunto de dados.
- Pré-Processamento: Preparação dos dados, incluindo redimensionamento, normalização e separação para treino, validação e teste.
- Arquitetura do Modelo: Definição do modelo de rede neural, utilizando um modelo pré-treinado e ajustado para a tarefa.

UFRB

Metodologia: Análise do Dataset

- O dataset utilizado é o YandexToloka Water Meters Dataset, disponível no Kaggle.
- Link: https://www.kaggle.com/datasets/tapakah68/ yandextoloka-water-meters-dataset
- O objetivo do dataset é a detecção e localização de hidrômetros em imagens.
- Número total de imagens: 1244.
- As imagens variam em termos de ângulo, iluminação e obstrução.

UFRB Dataset Water Meters 16 de dezembro de 2024

Referências Metodologia

Metodologia: Análise do Dataset

- O conjunto de dados inclui 3 pastas:
 - Colagem: Imagens de hidrômetros com caixas delimitadoras.
 - Imagens: Imagens originais de hidrômetros.
 - Máscaras: Máscaras de segmentação para as imagens.
- O arquivo '.csv' inclui as seguintes informações:
 - Nome da imagem.
 - Valor do hidrômetro.
 - Localização da caixa delimitadora.

16 de dezembro de 2024

Metodologia: Análise do Dataset

Figura 1: Exemplos de imagens do dataset YandexToloka Water Meters, apresentando variações de ângulo, iluminação e obstruções. Fonte: Kucev Roman, 2019, Kaggle

CETEC

Centro de Ciências
Exatas e Tecnológicas

Metodologia: Pré-Processamento

- Redimensionamento das Imagens para 299x299.
- Normalização de pixels para valores entre 0 e 1.
- Padronização de Pontos de Interesse.
- Separação do dataset em treino, validação e teste.

Metodologia: Arquitetura do Modelo

- Base do modelo:
 - Rede pré-treinada: InceptionV3.
 - Camadas congeladas inicialmente para preservar pesos aprendidos.
- Ajustes para regressão:
 - Camadas adicionais:
 - GlobalAveragePooling2D para reduzir dimensionalidade.
 - Camada densa (*Dense layer*) para prever coordenadas de referência.
 - Saída ajustada para prever coordenadas $(x_{min}, y_{min}, x_{max}, y_{max})$.

uFRB

Metodologia: Arquitetura do Modelo

- Configuração de treinamento:
 - Otimizador: Adam.
 - Função de perda: Mean Squared Error (MSE).
 - Métrica de avaliação: Mean Absolute Error (MAE).
- Modelos desenvolvidos:
 - Modelo com 2 pontos: Previsão da localização de 2 pares ordenados (ponto superior direito e ponto inferior esquerdo).
 - Modelo com 8 pontos: Previsão de 8 pares ordenados para bordas mais detalhadas do hidrômetro.
- Técnica de ajuste fino:
 - Descongelamento de 100 camadas da base para fine-tuning.
 - Uso de callback ReduceLROnPlateau para ajustar a taxa de aprendizado dinamicamente.

UFRB Dataset Water Meters 16 de dezembro de 2024

Resultados esperados

Os resultados esperados são a forma concreta para alcançar os objetivos do projeto, portanto deve existir uma correspondência estreita entre esses aspectos.

- Identificação eficiente dos hidrômetros nas imagens.
- Melhor desempenho de modelo com base nas métricas de avaliação.
- Geração de um pipeline robusto e aplicável a diferentes cenários.

UFRB

Resultados esperados

A continuidade do desenvolvimento do modelo visa a obtenção de resultados que:

- Proporcionem precisão e desempenho otimizado para a tarefa de detecção.
- Permitirão a adaptação do modelo a novos conjuntos de dados de hidrômetros.
- Resultem em um modelo capaz de generalizar bem para diferentes condições de imagem.

B Datase

Resultados Parciais

Figura 2: Gráfico da função de perda (loss) ao longo das épocas, indicando a convergência do modelo durante o treinamento.

Centro de Ciências Exatas e Tecnológicas

UFRB Dataset Water Meters

Resultados Parciais

Figura 3: Evolução da métrica *Mean Absolute Error* (MAE) ao longo do treinamento, demonstrando melhorias na precisão das predições do modelo.

Centro de Ciências Exatas e Tecnológicas

Resultados Parciais

Figura 4: Exemplo de predição gerada pelo modelo, com coordenadas previstas CETEC sobrepostas à imagem original do hidrômetro (bounding box).

Exatas e Tecnológicas

Considerações Finais

- O modelo desenvolvido, baseado na arquitetura InceptionV3, demonstrou resultados promissores na tarefa de detecção e localização de hidrômetros.
- Métricas como loss e MAE indicaram que o modelo está aprendendo de forma consistente e aprimorando sua capacidade de previsão.
- Limitações como variações extremas de iluminação ainda representam desafios, mas podem ser mitigadas com ajustes no treinamento e na coleta de dados.
- Este trabalho reforça a aplicabilidade de técnicas de aprendizado profundo na automação de tarefas complexas, como a leitura de hidrômetros.
- Futuras melhorias incluem:
 - Avaliação do modelo em datasets mais variados;
 - Implementação de técnicas adicionais de fine-tuning.

JFRB Dataset Water Meters 16 de dezembro de 2024 19 / 22

Referências I

- [1] Bruno Romão. "Redes neurais convolucionais para a detecção de objetos". Acesso aberto. Dissertação de Mestrado. Programa de Pós-Graduação em Gestão de Redes de Telecomunicações (PPGRT), abr. de 2023. URL: https://repositorio.sis.puc% 20campinas.edu.br/handle/123456789/16933.
- [2] Nattanon Saetan e Kwankamon Dittakan. "Thailand Water Meter Reading Using Convolutional Neural Networks From Smartphone Imagery". Em: Proceedings of the 9th International Conference on Digital Arts, Media, and Technology (DAMT) and the 7th ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (NCON). Thailand, 2024.

Referências II

[3] Yuhao Shen, Xiangqian Wang e Minghong Yin. "Reconhecimento de leitura de medidores de água com base em aprendizado profundo". Em: ADMIT '23: Anais da 2ª Conferência Internacional de Algoritmos, Mineração de Dados e Tecnologia da Informação. ACM, nov. de 2023, pp. 27–33. DOI: 10.1145/3625403.3625409. URL: https://doi.org/10.1145/3625403.3625409.

UFRB

B Datase

Contato:

anderson.oliveira@aluno.ufrb.edu.br barbarans@aluno.ufrb.edu.br jeovanessantos@aluno.ufrb.edu.br queleandrade@aluno.ufrb.edu.br ricardoteixeirasantos@aluno.ufrb.edu.br

