

Final de Sistemas Operativos

06/12/2022

Nota:			

Apellido y Nombre	Profesor	Tomé conocimiento de la nota: (Sólo aplazos)

Preguntas teóricas					Ejercicios		
1	2	3	4	5	1 2		

A) Teoría: Explícitamente defina como VERDADERA o FALSA cada una de estas afirmaciones justificando brevemente.

- 1) No es posible que haya condición de carrera sobre el uso de estructuras de datos que no pueden ser modificadas.
- 2) La Estrategia de Detección asegura que no se producirá Deadlock, analizando cada solicitud de recursos antes de asignarlos.
- 3) Todas las interrupciones implican algún tipo de error producido en el sistema, implicando una finalización del proceso afectado
- 4) En una referencia a memoria, el acceso exitoso a una TLB (encontrando el valor buscado) tiene como ventaja evitar un fallo de página
- 5) El uso de hard links permite lograr accesos directos a un archivo sin generar inodos extra en el sistema (a diferencia de los symbolic links)

B) Práctica: Resuelva los ejercicios justificando las respuestas

1)

Se dispone de un sistema operativo con planificador de corto plazo RR con q=3, la siguiente traza de ejecución

	Llegada	CPU	I/O	CPU	I/O	CPU	
P1	0	2	5	2	4	1	$ NTT = \sum tiempos en Ready + \sum ráfagas cpu $
P2	1	8	1	5	-	-	∑ ráfagas cpu
Р3	2	8	-	-	-	-	

- a) Realice el diagrama de gantt
- b) Calcule la métrica "Normalized turnaround time" (NTT) para cada proceso y en base a dicha métrica mencione si existió proceso perjudicado y porqué
- c) Proponga otro algoritmo de planificación (que sea con desalojo y limite las ráfagas de los procesos en 3 unidades) que mejore el rendimiento del proceso afectado en el punto anterior, y justifique realizando los dos puntos anteriores nuevamente

2) Considerando las siguientes matrices

МА	R1	R2	R3	R4	ММ	R1	R2	R3	R4
P1	0	3	1	3	P1	2	3	2	5
P2	1	1	3	2	P2	1	2	6	3
P3	0	2	1	0	Р3	0	2	4	5
P4	2	0	2	0	P4	3	0	5	2
P5	1	3	5	2	P5	3	4	5	4

- a) Si se sabe que se cuenta con un disponible de (1,0,9,4), utilice el algoritmo del banquero para determinar si el sistema es seguro o no
- b) Considerando que el número de cada proceso corresponde con su número de llegada y se utiliza el algoritmo FCFS, indique si las primeras tres peticiones serían satisfechas (asuma que cada proceso pide todo lo pendiente)