************ from test 2

$$3 \int_0^1 \int_0^x xy \, dy \, dx =$$

- (A) 0
- (B) $\frac{1}{8}$
- (C) $\frac{1}{3}$
- (D) 1
- (E) 3

5. All functions / defined on the xy-plane such that

$$\frac{\partial f}{\partial x} = 2x + y$$
 and $\frac{\partial f}{\partial y} = x + 2y$

are given by f(x, y) =

- (A) $x^2 + xy + y^2 + C$
- (C) $x^2 xy y^2 + C$

- (D) $x^2 + 2xy + y^2 + C$
- (B) $x^2 xy + y^2 + C$ (E) $x^2 2xy + y^2 + C$

22
$$\int_0^1 \left(\int_0^{\sin y} \frac{1}{\sqrt{1-x^2}} dx \right) dy =$$

- (A) $\frac{1}{3}$
- (B) $\frac{1}{2}$
- (C) $\frac{\pi}{4}$
- (D) I
- (E) $\frac{\pi}{3}$

42. In xyz-space, the degree measure of the angle between the rays

$$z = x \ge 0$$
, $y = 0$

$$z = y \ge 0, x = 0$$

- (A) 0°
- (B) 30°
- (C) 45°
- (D) 60°
- (E) 90°

************ from test 3

11. If $\phi(x, y, z) = x^2 + 2xy + xz^{\frac{3}{2}}$, which of the following partial derivatives are identically zero?

- III. $\frac{\partial^2 \phi}{\partial z \partial y}$
- (A) III only
 (B) I and II only
- (C) I and III only
- (D) II and III only (E) I, II, and III

20. Which of the following double integrals represents the volume of the solid bounded above by the graph of $\frac{2}{3} = 6 - x^2 - 2y^2$ and bounded below by the graph of $z = -2 + x^2 + 2y^2$?

(A)
$$4\int_{x=0}^{x=2} \int_{y=0}^{y=\sqrt{2}} (8 - 2x^2 - 4y^2) dy dx$$

(B)
$$\int_{x=-2}^{x=2} \int_{y=-\sqrt{(4-x^2)/2}}^{y=\sqrt{(4-x^2)/2}} (8-2x^2-4y^2) dy dx$$

(C)
$$4\int_{y=0}^{y=\sqrt{2}} \int_{x=-\sqrt{4-2y^2}}^{x=\sqrt{4-2y^2}} dx dy$$

(D)
$$\int_{y=-\sqrt{2}}^{y=\sqrt{2}} \int_{x=-2}^{x=2} (8-2x^2-4y^2) dx dy$$

(E)
$$2\int_{y=0}^{y=\sqrt{2}} \int_{x=0}^{x=\sqrt{4-2y^2}} (8-2x^2-4y^2) dx dy$$

26. Let i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1). The vectors v_1 and v_2 are orthogonal if $v_1 = i + j - k$ and $v_2 =$

(A)
$$i + j - k$$

(B)
$$\mathbf{i} - \mathbf{j} + \mathbf{k}$$

$$(C)$$
 $i + k$

(D)
$$\mathbf{j} - \mathbf{k}$$

(E)
$$i + j$$

27. If the curve in the yz-plane with equation z = f(y) is rotated around the y-axis, an equation of the resulting surface of revolution is

(A)
$$x^2 + z^2 = [f(y)]^2$$

(B)
$$x^2 + z^2 = f(y)$$

(C)
$$x^2 + z^2 = |f(y)|$$

(D)
$$y^2 + z^2 = |f(y)|$$

(E)
$$y^2 + z^2 = [f(x)]^2$$

47. Let C be the ellipse with center (0, 0), major axis of length 2a, and minor axis of length 2b. The value

of
$$\oint_C x \, dy - y \, dx$$
 is

(A) $\pi \sqrt{a^2 + b^2}$

(A)
$$\pi \sqrt{a^2 + b^2}$$

(B)
$$2\pi\sqrt{a^2+b^2}$$

- (C) 2nab
- (D) nab
- (E) $\frac{\pi ab}{2}$

53.	Let $r > 0$ and let	C be the circle $ z = r$	in the complex plane. If	P is a polynomial function,
	then $\int_{C} P(z) dz =$	and the second s		

- (D) $2\pi P(0)i$
- (E) P(r)
- 63. Let R be the circular region of the xy-plane with center at the origin and radius 2.

Then
$$\int_{B} \int e^{-(x^{2}+y^{2})} dx dy =$$

- ·(A) 4n
- (B) пе⁻⁴
- (C) 4πe⁻⁴
- (D) $n(1 e^{-4})$
- (E) $4\pi(e^{-e^{-4}})$

************* from test 1

- 26. Let $f(x, y) = x^2 2xy + y^3$ for all real x and y. Which of the following is true?
 - (A) f has all of its relative extrema on the line x = y.
 - (B) f has all of its relative extrema on the parabola $x = y^2$.
 - (C) f has a relative minimum at (0, 0).
 - (D) f has an absolute minimum at $\left(\frac{2}{3}, \frac{2}{3}\right)$.
 - (E) f has an absolute minimum at (1, 1).
- 34. The minimal distance between any point on the sphere $(x-2)^2 + (y-1)^2 + (z-3)^2 = 1$ and any point on the sphere $(x + 3)^2 + (y - 2)^2 + (z - 4)^2 = 4$ is
 - (A) 0
- (B) 4
- (C) $\sqrt{27}$ (D) $2(\sqrt{2}+1)$ (E) $3(\sqrt{3}-1)$
- 41. Let C be the circle $x^2 + y^2 = 1$ oriented counterclockwise in the xy-plane. What is the value of the line integral $\oint_C (2x - y) dx + (x + 3y) dy?$

- (A) 0 (B) 1 (C) $\frac{\pi}{2}$ (D) π (E) 2π

Test 2

3 B $\left(\frac{1}{8}\right)$

(5) A $x^2 + xy + y^2 + C$

(12) D 60°

test3

(ii)+(iii)

(20) (B) $V = \int_{-2}^{2} \int_{-\sqrt{(u-x^2)/2}}^{+\sqrt{(u-x^2)/2}} (8-2x^2-uy^2) dy dx$

26 C V = 1+j-k

 $(27) \quad (A) \qquad \qquad \chi^2 + Z^2 = \left[f(\gamma)\right]^2$

(47) (C) 217ab

(53) (A) O

(63) (D) $R(1-e^4)$

TesT 1

(on line x=y) (=3(5-1)) (=217)