

Princípios de Sistemas de Telecomunicações

Unidades de medidas logarítmicas em telecomunicações

Marcos Moecke São José - SC, 2006 (b)

SUMÁRIO

1. UNIDADES DE MEDIDAS LOGARÍTMICAS EM

TELECOMUNICAÇÕES1
1.1 Introdução1
1.2 USO DO DECIBEL PARA RAZÕES DE POTÊNCIA3
1.3 MEDIDA ABSOLUTA DE POTÊNCIA EM DB (DBM)4
1.4 MEDIDA ABSOLUTA DE TENSÃO EM DB (DBU)5
1.5 OPERAÇÕES COM DB:6
1.6 OPERAÇÕES COM DBM:7
1.7 DECIBEL RELATIVO (DBR)8
1.8 POTÊNCIA ABSOLUTA DO PONTO DE REFERÊNCIA (DBM0)9
1.9 USO DE DBU PARA MEDIR DBM10
1.10 OUTRAS UNIDADES DE MEDIDAS EM DB10
1.11 Prefixos para múltiplos decimais para unidades11
1.12 Exercícios:12
1.12 Exercícios:12

1. UNIDADES DE MEDIDAS LOGARÍTMICAS EM TELECOMUNICAÇÕES

1.1 Introdução

O decibel (dB) é uma medida da <u>razão</u> entre duas quantidades, sendo usado para uma grande variedade de medições em <u>acústica</u>, <u>física</u>, <u>eletrônica</u> e <u>telecomunicações</u>. Por ser uma razão entre duas quantidades iguais o <u>decibel</u> é uma unidade de medida adimensional semelhante a <u>percentagem</u>. O dB usa o logaritmo decimal (log₁₀) para realizar a compressão de escala. Um exemplo típico de uso do dB é na medição do ganho/perda de potência em um sistema. Além do uso do dB como medida relativa, também existem outras aplicações na medidas de valores absolutos tais como potência e tensão entre outros (dBm, dBV, dBu). O emprego da subunidade dB é para facilitar o seu uso diário (Um decibel (dB) corresponde a um décimo de bel (B)).

1.1.1 O bel é uma unidade do sistema SI?

Embora o <u>Comitê Internacional de Pesos e Medidas</u> (BIPM) recomende a inclusão do decibel no sistema <u>SI</u>, ele ainda não é uma unidade do SI. Apesar disso, seguem-se as convenções do SI, sendo a letra **d** grafada em minúscula por corresponder ao prefixo **deci-** do SI, e a letra **B** grafada em maiúscula pois é uma abreviação da unidade <u>bel</u> que é derivada de nome Alexander Graham **Bell**.

1.1.2 História e uso do bel e decibel

O bel foi inventado por engenheiros do <u>Bell Labs</u> para quantificar a redução no nível acústico sobre um <u>cabo telefônico</u> padrão com 1 <u>milha</u> de comprimento. Originalmente era chamado de **unidade de**

transmissão ou **TU**, mas foi renomeado entre 1923 e 1924 em homenagem ao fundador do laboratório *Alexander Graham Bell*.

1.1.3 Vantagens do uso do decibel

As vantagens do uso do decibel são:

- É mais conveniente somar os ganhos em decibéis em estágios sucessivos de um sistema do que multiplicar os seus ganhos lineares.
- Faixas muito grandes de razões de valores podem ser expressas em decibéis em uma faixa mais moderada possibilitando uma melhor visualização dos valores grandes e pequenos.
- Na acústica o decibel usado como uma escala logarítmica da razão de intensidade sonora se ajusta melhor a intensidade percebida pelo ouvido humano. O aumento do nível de intensidade em decibéis corresponde aproximadamente ao aumento percebido em qualquer intensidade, fato conhecido com a Lei de potências de Stevens. Por exemplo, um humano percebe um aumento de 90 dB para 95 dB como sendo o mesmo que um aumento de 20 dB para 25 dB.

1.1.4 Outras escalas logarítmicas

O neper é uma unidade similar que usa o logaritmo natural. A escala Richter também usa números expressos em bels. Na espectrometria e na óptica as unidades de absorbância são equivalentes a -1 B. Na astronomia a magnitude aparente que mede o brilho das estrelas também é uma unidade logarítmica, uma vez que da mesma forma que o ouvido responde de modo logarítmico a potencia acústica, o olho também responde de modo logarítmico a intensidade luminosa.

V.2006 2

1.2 Uso do decibel para razões de potência

O cálculo da relação de potência em dB $G_{\rm dB}$ entre dois valores de potência corresponde ao ganho de potência, sendo dado por

$$G_{dB} = 10\log\left(\frac{P_1}{P_0}\right)$$

ou vice-versa

$$\frac{P_1}{P_0} = 10^{(G_{dB}/10)}$$

onde P_0 e P_1 são níveis de potências absolutas expressas na mesma unidade (W, mW, pW, etc), e $G_{\rm dB}$ é a razão entre as potências (ganho) expressa em dB. A relação entre 2 potências é conhecida como ganho linear

$$G_{WW} = \frac{P_1}{P_0}$$

O recíproco do ganho é conhecido como atenuação

$$A_{\text{w/w}} = \frac{1}{G_{\text{w/w}}}$$

Em decibéis a atenuação é dada por

$$A_{dB} = 10\log\left(\frac{P_1}{P_2}\right)^{-1} = -G_{dB}$$

Como o dB é uma unidade de comparação de níveis de potência. Não é correto dizer que uma potência vale X dB e sim que uma potência P_1 é X dB maior ($G_{\rm dB}$ >0) ou menor ($G_{\rm dB}$ <0) que a outra potência P_0 . Quando P_1 representar a potência de um sinal (S - *Signal*) e P_0 a potência de um ruído (N - *Noise*) designamos a razão entre as potências de razão sinal/ruído (SNR – *Signal Noise Ratio*).

A razão entre <u>tensões</u> também pode ser expressas em decibéis através da equação

$$G_{dB} = 10\log \frac{\left(V_1^2/Z_0\right)}{\left(V_0^2/Z_0\right)} = 20\log \left|\frac{V_1}{V_0}\right|$$

ou vice-versa

$$\left| \frac{V_1}{V_0} \right| = 10^{(G_{dB}/20)}$$

Essa relação de tensões em dB é equivalente a relação de potencias entre os pontos se as <u>impedâncias</u> Z_0 e Z_1 forem iguais. No entanto se forem diferentes, é incorreto utilizar essa medida. Veja porque abaixo:

$$G_{dB} = 10\log\left(\frac{P_1}{P_0}\right) = 10\log\frac{\left(V_1^2/Z_1\right)}{\left(V_0^2/Z_0\right)}$$

se $Z_1 = Z_0$ então

$$G_{dB} = 10\log\left(\frac{V_1}{V_0}\right)^2 = 20\log\left|\frac{(V_1)}{(V_0)}\right|$$

se $Z_1 \neq Z_0$ então

$$G_{dB} = 20\log \left| \frac{V_1}{V_0} \right| + 10\log \frac{Z_0}{Z_1}$$

1.3 Medida absoluta de potência em dB (dBm)

O dBm ou dBmW é o nível absoluto de potência em dB, em relação à potência de 1mW. É usado em telecomunicações como uma medida de potência absoluta devido a sua capacidade de expressar tanto valores muito grandes como muito pequenos de uma forma curta. A grande vantagem do uso do dBm é que sua medida independe da impedância.

Para expressar um potência $P_{\scriptscriptstyle \mathrm{mW}}$ como $P_{\scriptscriptstyle \mathrm{dBm}}$ usa-se

$$P_{dBm} = 10\log \frac{P_W}{1\text{mW}}$$

e vice-versa

$$P_{\rm mW} = (1 \, \rm mW) 10^{(P_{\rm dBm}/10)}$$

Quando o valor $P_{\rm dBm}=x>0$, então a potência $P_{\rm mW}$ é x dB maior que 1mW. Se $P_{\rm dBm}=x<0$, então a potência $P_{\rm mW}$ é x dB menor que 1mW.

Outras medidas de potência absoluta que são raramente usadas:

dBW — potência absoluta relativa a 1 watt.

dBf — potência absoluta relativa a 1 femtowatt.

dBk — potência absoluta relativa a 1 kilowatt.

Nível	Potência	Potência	Situação prática em que ocorre
80 dBm	80 dBm 100000 W		Potência típica de uma transmissora de radio FM
60 dBm	1000 W	1000 W 1 kilowatt Potência de RF dentro de um forno microondas.	
27 dBm	500 mW	½ kilowatt	Potência típica de transmissão do telefone celular
20 dBm	100 mW		
10 dBm	10 mW		
0 dBm	1.0 mW	1 miliwatt	
−10 dBm	0.1 mW		
−20 dBm	0.01 mW	10 microwatt	
−55 dBm	0,00000316 mW	3,16 nanowatt	Potência típica de recepção do telefone celular
−80 dBm	0,00000001 mW	10 picowatt	
−127.5 dBm	0,0000000000018 mW	0,18 femtowatt	Potência de recepção do aparelho GPS

Figura 1 - Potências típicas em Watt e dBm

1.4 Medida absoluta de tensão em dB (dBu)

Se na equação de definição do ganho em dB

$$G_{dB} = 20\log|\frac{V_1}{V_0}|$$

substituirmos a tensão V_0 pelo valor $0.775\,\mathrm{V}$ que equivale a potência de 1mW (0dBm) quando aplicado a uma impedância de 600Ω , teremos uma forma de expressar em valores absolutos a tensão de um ponto do sistema. A impedância de 600Ω é o valor padronizado para a maioria dos circuitos de voz em telefonia pelo ITU-T. A unidade obtida é

conhecida por V_{dBu} . A transformação de uma tensão V_{1} em dBu é feita através de:

$$G_{dB} = 20\log \frac{V_1}{0,775}$$

e vice-versa

$$|V_1| = (0.775 \text{ V})10^{(V_{dBu}/20)}$$

As vezes também é usada a abreviação dBv, mas dBu é mais comum pois dBv é facilmente confundida com dBV que é a medida da tensão absoluta relativa a 1 **volt**.

$$V_{dBV} = 20\log \left| \frac{V_1}{1V} \right|$$

e vice-versa

$$|V_1| = 10^{(V_{dBu}/20)} V$$

1.5 Operações com dB:

As únicas operações possíveis entre dois valores expressos em dB são a soma e a subtração, sendo o resultado também expresso em dB. Como as razões expressas dB estão em escala logarítmica, a operação de soma em dB corresponde a uma multiplicação na escala linear e a subtração em dB a uma divisão.

$$G3_{dB} = G1_{dB} + G2_{dB} \Rightarrow G1_{\frac{w}{w}} \times G2_{\frac{w}{w}}$$

$$G3_{dB} = G1_{dB} - G2_{dB} \Rightarrow \frac{G1_{\frac{w}{w}}}{G2_{\frac{w}{w}}}$$

A tabela a seguir apresenta alguns valores típicos de parcelas em dB e o significado equivalente, em escala linear, da soma ou subtração dessas parcelas.

ESCALA LOGARÍTMICA	ESCALA LINEAR		
Parcela a somar (ou subtrair)	Fator a multiplicar (ou dividir)		
0dB	=1		
1dB	~1,25		
2dB	~1,6		
3dB	~2		
4dB	~2,5		
5dB (3dB + 2dB)	~3,2 (2 x 1,6)		
6dB (3dB+3dB)	~4 (2 x 2)		
7dB (10dB – 3dB)	~5 (10 ÷ 2)		
10dB	=10		
- 3dB	~0,5 (1 ÷ 2)		
-10dB	=0,1 (1 ÷ 10)		
20dB (10dB + 10dB)	=100 (10 x 10)		
23dB (20dB + 3dB)	~200 (100 x 2)		
27dB (30dB - 3dB)	~500 (1000 ÷ 2)		
30dB (10dB + 10dB + 10dB)	=1000 (10 x 10 x 10)		

Figura 2 – Escala Logarítmica x escala linear

1.6 Operações com dBm:

Dada uma certa potência absoluta expressa em dBm, a soma (ou subtração) de um valor em dB significa, em escala linear, a multiplicação (ou divisão) da potência pelo fator correspondente. O resultado é uma nova potência absoluta, portanto expressa em dBm.

$$P2_{dBm} = P1_{dBm} + G_{dB} \Rightarrow P2_w = P1_w \times G_{\frac{w}{w}}$$

Assim, se dobramos uma potência teremos em dB

$$P2_{dBm} = P1_{dBm} + 3 dB \Rightarrow P2_w = P1_w \times 2_{\frac{w}{w}}$$

Se reduzimos a potência a metade então

$$P2_{dBm} = P1_{dBm} - 3 dB \Rightarrow P2_{w} = \frac{P1_{w}}{2_{\frac{w}{w}}}$$

Ou seja, somar 3dB equivale a dobrar a potência enquanto diminuir 3dB corresponde reduzir a potência à metade.

A comparação de dois valores expressos em dBm pode ser feita subtraindo os valores $P_{2,dBm}$ - $P_{1,dBm}$ e obtendo-se a razão entre as

potências (P_2/P_1) em dB. Note que neste caso o resultado é em dB, pois se trata de uma razão entre potencias e não é uma potência absoluta.

$$G_{dB} = 10\log\left(\frac{P_2}{P_1}\right) = P2_{dBm} - P1_{dBm}$$

A subtração de duas potências dadas em dBm resulta no valor em dB da razão dessas duas potências. O valor de potência em dBm somado (ou subtraído) à dB resulta num novo valor de potência em dBm. Duas potências dadas em dBm não podem ser somadas.

Quanto tivermos duas ou mais potências dadas em dBm e quisermos saber a soma resultante, desde que os sinais que produzem essas potências sejam descorrelacionados, as potências terão que ser passadas para a escala linear (w), somas e o resultado retornado para a escala logarítmica (dBm).

$$P_{dBm} = 10 \log 10^{[P1_{dbm}/10]} + 10^{[P2_{dbm}/10]} \dots + 10^{[P3_{dbm}/10]}$$

1.7 Decibel relativo (dBr)

Esta unidade, denominada dB relativo, é utilizada para indicar a atenuação ou o ganho em um ponto qualquer de um sistema, em relação a um ponto de referência do sistema. O ponto de referência é definido como tendo um nível de 0dBr, e todos os outros pontos tem seus níveis indicados com níveis relativos a esse de referência. O ponto de referência pode, em princípio, ser arbitrariamente definido como sendo qualquer ponto do sistema, ou mesmo fora dele.

Deve-se notar que os níveis relativos não estão relacionados diretamente com a potência ou amplitudes reais no sistema, podendo ser indicados mesmo na ausência de qualquer sinal.

Figura 3 - Sistema

Na figura 3 o nível relativo no ponto D, igual a 3dBr, indica que neste ponto o nível é 3dB acima do ponto de referencia (A). Por exemplo, se um sinal de 10mW (10dBm) for aplicado em A (0dBr), o nível no ponto D (3dBr) estará valor 3dB acima, ou seja, 10dBm + 3dB → 13dBm (20mW). Por outro lado se o sinal aplicado em A for de 1mW (0dBm), então em D teremos 3dBm (2mW).

1.8 Potência absoluta do ponto de referência (dBm0)

A unidade dBm0 é a potência absoluta, em dBm, medida no ponto de referência - nível relativo zero do sistema (0dBr). Esta unidade é normalmente usada para indicar a potência de sinais de níveis fixos tais como: sinais de teste, tons de sinalização, pilotos, etc. Acrescenta-se o zero "0" para significar que o nível em dBm corresponde ao valor medido no ponto de referência.

Em um sistema se o ponto de referência tem um determinado nível absoluto (por exemplo -20dBm), então se diz que em qualquer ponto do sistema este sinal tem essa potência em -20dBm0. A potência absoluta nos diversos pontos do sistema é obtida somando-se a potência dBm0 com a potência dBr do ponto.

$$P_{A,\text{dBm}} = P_{A,\text{dBm0}} + P_{A,\text{dBr}}$$

Assim por exemplo, um ponto com 5dBr e potência de -20dBm0 terá -15dBm de potencia absoluta.

1.9 Uso de dBu para medir dBm

Em telecomunicações, para se medir o nível de potência em dBm de um determinado ponto de um circuito, normalmente se termina o sistema com uma carga resistiva igual a impedância nominal do sistema e mede-se a tensão através de um

voltímetro que tem uma escala calibrada conforme a figura mostrada ao lado. Se a impedância característica no ponto de teste é de 600Ω , a potência em dBm é a mesma do nível obtido em dBu.

$$P_{\rm dBm} = V_{\rm dBu}$$

Se a impedância for diferente de 600Ω , então a potência em dBm será obtida pela leitura em dBu acrescido do fator de correção K.

$$P_{\text{dBm}} = V_{\text{dBu}} + K$$
 onde $K = 10 \log \frac{600}{Z_1}$

A tabela abaixo mostra o fator de correção K para alguns valores de impedância.

Z	1200Ω	600Ω	300Ω	150Ω	120Ω	75Ω	60Ω
K	-3dB	0dB	3dB	6dB	7dB	9dB	10dB

Figura 4 - Fatores de correção K de impedância

1.10 Outras unidades de medidas em dB

- dBµ intensidade do campo elétrico relativo a 1 microvolt por metro.
- dBd medida de **ganho de antena** com relação a uma antena de **dipolo** de 1/2 comprimento de onda.
- dBi medida de **ganho de antena** com relação a uma antena **isotrópica**.
- dBrn potencia de **ruído** acima do ruído de referencia (1 picowatt → -90dBm).

1.11 Prefixos para múltiplos decimais para unidades

Fator	Valor completo	palavra	Prefixo SI	Símbolo SI
1.0E+24	1 000 000 000 000 000 000 000 000	septilhão	yotta	Υ
1.0E+21	1 000 000 000 000 000 000 000	sextilhão	zetta	Z
1.0E+18	1 000 000 000 000 000 000	quintilhão	exa	E
1.0E+15	1 000 000 000 000 000	quadrilhão	peta	P
1.0E+12	1 000 000 000 000	trilhão	tera	T
1.0E+9	1 000 000 000	bilhão	giga	G
1.0E+6	1 000 000	milhão	mega	M
1.0E+3	1 000	mil	kilo	k
1.0E+2	100	cem	hecto	h
1.0E+1	10	dez	deka	da
1.0E 0	1	unidade	um	-
1.0E-1	0.1	décimo	deci	d
1.0E-2	0.01	centésimo	centi	C
1.0E-3	0.001	milésimo	milli	m
1.0E-6	0.000 001	milhonésimo	micro	μ
1.0E-9	0.000 000 001	bilhonésimo	nano	n
1.0E-12	0.000 000 000 001	trilhonésimo	pico	p
1.0E-15	0.000 000 000 000 001	quadrilhonésimo	femto	p f
1.0E-18	0.000 000 000 000 000 001	quintilhonésimo	atto	a
1.0E-21	0.000 000 000 000 000 000 001	sextilhonésimo	zepto	Z
1.0E-24	0.000 000 000 000 000 000 000 001	septilhonésimo	yocto	у

Figura 5 – Múltiplos, submúltiplos e prefixos do sistema internacional (SI)

1.12 Exercícios:

- 1) Calcule, em dB, a relação entre as potências:
- 2) 100mW e 10mW
- **3)** 10pW e 1mW
- 4) 2fw e 10kW
- 5) A potência de saída transmitida pelo telefone celular é de +30dBm. No receptor o sinal recebido está com apenas 5pW. Qual é a atenuação $A_{\rm dB}$ do sinal entre o transmissor e receptor?
- Num ponto A de um sistema foi determinada que a potencia do sinal é de 1mW, e a potencia do ruído de 1pW. Qual é a SNR em dB?
- 7) Determine qual a razão de potências P_1/P_0 que equivale a -55dB, -10dB, 0dB, 1dB, 6dB, 10dB, 50dB, 56dB e 100dB.
- 8) Determine qual a razão de tensões V_1/V_0 que equivale a -55dB, -10dB, 0dB, 1dB, 6dB, 10dB, 50dB, 56dB e 100dB.
- 9) Um sistema com 0,3mV na entrada, fornecer 3V na saída. Calcule o seu ganho em dB.
- **10)** Aumentando-se em 6dB uma potência P = 10mW, quanto vale a nova potência obtida?
- **11)** Dada uma potência P = 10mW, calcule os valores de potência que estão 5dB acima e 7dB abaixo.
- **12)** Dada uma potência P = 7pW, calcule o valor da potência 62 dB acima.

- 13) Determine em dBm as potências
 - **14)** 3500pW
 - **15)** 250mW
 - **16)** 12fW
 - **17)** 6,12pW
 - **18)** 0,00000000023W
- **19)** Determine -18dBm em potência absoluta (Watts).
- **20)** Qual é o valor em dBm (e em mW)
 - **21)** do dobro de uma potência igual a 32dBm?
 - **22)** da metade de uma potência a 32dBm?
 - 23) de uma potência 8 vezes maior que 32dBm?
 - **24)** de uma potência 8 vezes menor que 32dBm?
- **25)** Qual é o resultado da soma de dois sinais descorrelacionados com potência de -40dBm e -45dBm?
- **26)** Qual é o resultado da soma de dois sinais descorrelacionados com potência de -40dBm e 95dBm?
- **27)** Qual o resultado da soma de duas potências iguais a 32 dBm?
- 28) Qual a razão entre a potência 23dBm e a potência 10dBm?
- **29)** Quantas vezes a potência de 10dBm é superior a -30 dBm?
- **30)** Um nível de -35dBu é medido num ponto de 600Ω de impedância. Qual é o nível em dBm?
- **31)** Qual é o nível medido em dBu de ponto do sistema, cuja impedância é 75Ω , e potência de 5dBm?

- 32) Um sinal de teste senoidal é medido em um ponto com impedância de 600Ω de um sistema. O valor medido com voltímetro é de $130\text{mV}_{\text{RMS}}$. Qual é o valor da tensão de pico, o valor pico a pico e os valores equivalentes em dBu, dBV, dBm? Qual é a potência equivalente em Watts?
- 33) Quais seriam os valores se a impedância no ponto fosse 60Ω e o valor medido com voltímetro é de $130\text{mV}_{\text{RMS}}$?
- 34) Dado o sistema abaixo com os pontos de medição A, B, C e D:

- a) Determine as potências para cada ponto em dBm.
- b) Determine as potências para cada ponto em Watts.
- c) Considerando que a impedância nesses pontos é de 600Ω , determine a tensão produzida para cada ponto pela potência calculada em (b).
- d) Determine para cada ponto o nível em dBu.
- e) Considere o ponto C como sendo o ponto de referência. Qual seria o nível dBr de cada ponto.
- 35) Dado o sistema abaixo e as potências nos pontos de medição A, B, e C:

- a) Determine as potências em dBm de cada ponto.
- b) Determine o ganho (perda) em cada estágio em (dB) e em razão de

potências.

- c) Considerando que a impedância é de 75Ω em todos os pontos, qual seria o nível medido em dBu nestes pontos.
- **36)** Dado o sistema abaixo:

- a) Aplicando-se um sinal de nível igual a 12dBm no ponto A, qual será o nível em dBm desse sinal nos pontos C, B e D?
- b) Qual é o nível em dBr no ponto de referência do sistema?
- c) Qual seria a potencia em dBm, nos pontos A, B, C e D, de um sinal de teste de -30dBm0?
- 37) O ruído térmico gerado por um resistor depende dos fatores temperatura, resistência e largura de banda na qual a medida é feita. Sabe-se que a tensão RMS V_n produzida pelo ruído térmico é dada por:

$$V_n = \sqrt{4k_B T DfR}$$

onde k_B =1,3806505 · 10⁻²³ J/K é a constante de Boltzmann, T é a temperatura em Kelvin T(K)= 273,15 + T(°C), Df é a largura de banda de fregüência em Hz, e R é a resistência.

Determine o ruído térmico em V, dBu, dBm e dBrn de um resistor de 600Ω para:

- a) A temperatura de 25°C e a largura de banda é de 20kHz?
- b) A temperatura de 85°C e a largura de banda é de 20kHz?
- c) A temperatura de 85°C e a largura de banda é de 2MHz?
- d) A temperatura de -212°C e a largura de banda é de 2MHz?

- e) A temperatura de 0°C e a largura de banda é de 1Hz?
- f) A temperatura de -273,15°C e a largura de banda é de 2MHz?
- **38)** Um amplificador tem uma entrada de 10mV e saída de 2V. Qual é o ganho de tensão em dB?
- **39)** O menor sinal que uma pessoa jovem consegue ouvir em condições de silêncio é um sinal de 0dB_{SPL}. O nível mais alto que a mesma pessoa pode ouvir sem que tenha danos no seu sistema auditivo é de 110 dB_{SPL}. Qual é o aumento de potência que deve ser dado ao Altofalante para que a potência passe do mínimo audível para o máximo suportável sem prejuízo para o ouvido?

dB _{SPL}	Fonte (distância)
194	Limite teórico da intensidade de um uma onda sonora a pressão atmosférica de 1 atm.
180	Motor de foguete a 30 m; Explosão do Krakatoa a 160 km
150	Motor a jata a 30 m
140	<u>Disparo</u> de um rifle a 1 m
130	Limiar da dor do ouvido humano; apito de trem a 10 m
120	Concerto de Rock; avião a jato na decolagem a 100 m
110	Motocicleta acelerando 5 m; Motoserra a 1 m
100	Dentro de uma discoteca
90	Fabrica barulhenta, caminhão pesado a 1 m
80	Aspirador de pó a 1 m, calçada em um rua engarafada
70	Trafego pesado a 5 m
60	Dentro de escritórios e restaurantes
50	Dentro de um <u>restaurant</u> e silencioso
40	Área Residencial a noite
30	Dentro de um teatro, com ninguém falando
10	Respiração de uma pessoa a 3 m
0	Limiar de audição do ser humano

Figura 6 - Níveis sonoros de diversas fontes (FONTE: Wikipedia)