Ultimate Geotechnical Data Analysis Application Executive Technical OverviewSystem Complexity Metrics

CRITICAL FINDINGS & OPTIMIZATION OPPORTUNITIES:

- ☐ CRITICAL BOTTLENECKS IDENTIFIED:
- Complete application rerun on every parameter change (2-4s impact)
 No parameter change isolation light changes trigger heavy processing
- All 13 tabs render simultaneously regardless of usage
- CBR/WPI tab: Most complex component with 25+ parameters

- Expensive data processing operations not cached
 Heavy matplotlib figure generation (1-2s per plot)
- Session state operations with unnecessary updates
- Memory usage grows linearly with data size

☐ OPTIMIZATION POTENTIAL:

- 3-5x overall performance improvement achievable
- Smart caching strategy implementation possible
- Parameter classification system for targeted optimization
- Lazy loading for tabs and components

□ BUSINESS IMPACT:

- Current state: Poor user experience, slow development cycles
- Optimized state: Professional-grade responsiveness, faster iterations
- Implementation effort: 3-4 weeks for complete optimization
- ROI: Significant improvement in user adoption and development efficiency

Complete System Topology & Component Relationships

UML-Style Class and Function Architecture

Module Dependency Network & Import Relationships

Complete User Journey & Interaction Flow Analysis

PERFORMANCE BOTTLENECK ANALYSIS

Data Processing: 2-4s per change Optimization: 80% Plot Generation: 1-2s per plot Optimization: 75%

Tab Switching: 2-3s delay

CURRENT VS OPTIMIZED USER EXPERIENCE TIMELINE

User Interaction Sequence Diagrams

File Upload Sequence

File Upload Flow: 1. User selects file

- 2. Streamlit processes3. Pandas loads data
- 4. Cache stores result 5. UI updates

Error Handling Flow

Optimized Parameter Flow

Error Handling:

- 1. Error occurs
- 2. Exception caught3. User notification
- 4. Graceful recovery
- 5. State preservation

- Optimized Flow:
 1. Parameter change detected
 2. Impact classified
 3. Route to appropriate handler
 4. Use cached data if possible
 5. Minimal reprocessing

Complete Data Flow & Transformation Pipeline

Detailed Processing Pipeline & Data Transformations

Performance Engineering Analysis Overview

Critical Performance Bottleneck Analysis & Solutions

Complete Optimization Implementation Roadmap

IMPLEMENTATION TIMELINE & DEPENDENCIES

Week 1 Week 2 Week 3 Week 4+ Parameter detection Advanced caching Async processing Testing Documentation Basic caching Tab isolation Pre-computation Loading indicators Memory optimization Advanced features Deployment **SUCCESS METRICS & VALIDATION Response Time: 2-4s → 0.5-1s** Memory Usage: 650MB → 400MB **Cache Hit Rate: 45% → 80%** User Satisfaction: Poor → Excellent

Testing & Quality Assurance Framework

Automated E2E Testing IMPLEMENTED Screenshot-based validation

Screenshot-based validation User interaction simulation

Performance Monitoring

BASIC

Response time tracking Memory usage analysis

Unit Testing PARTIAL

Core functions covered

Integration Testing

MISSING

Module interaction tests Data flow validation

Detailed Implementation Timeline & Critical Path

Architecture Evolution Strategy

Future Architecture Vision & Technology Roadmap

