第二章 复变函数的积分*

目录

§1	复积	! 分的定义和基本性质	25
	§1.1	曲线的方向	25
	§1.2	复积分的定义与存在性	25
	§1.3	复积分的基本性质	27
§2	复积分的计算		
	§2.1	*用定义计算	27
	$\S 2.2$	曲线积分方法	28
	§2.3	参数方程法	29
§3	Cauchy 积分定理		
	§3.1	Cauchy 积分定理	30
	§3.2	*Cauchy 积分定理的证明	31
	§3.3	Cauchy 积分定理的推论	34
	$\S 3.4$	复通区域的 Cauchy 积分定理	35
§4	Cauchy 积分公式及其推论		37
	§4.1	Cauchy 积分公式	37
	$\S 4.2$	*无界区域的 Cauchy 积分公式	39
	§4.3	解析函数的高阶导数	40
	§4.4	*Liouville 定理	41
		*代数基本定理	41
ネトラ	在 习罪	.	12

^{*ⓒ 1992-2018} 林琼桂

本讲义是中山大学物理学院学生学习数学物理方法课程的参考资料,由林琼桂编写制作.欢迎任何个人复制用于学习或教学参考.欢迎批评指正.请勿用于出售.

本章的 Cauchy 积分定理是整个解析函数理论的基础.

§1 复积分的定义和基本性质

§1.1 曲线的方向

本章提到的曲线一般都指光滑或逐段光滑的平面曲线. 若一段曲线的方程为 y = f(x),则光滑指的是 f'(x) 连续. 若其方程为参数方程 x = x(t)、 y = y(t),则光滑指的是 x'(t) 和 y'(t) 连续. 由有限条光滑曲线衔接而成的曲线称为逐段光滑曲线. 折线就是最简单的逐段光滑曲线. 曲线的方向定义如下.

- 1. 简单曲线: 没有重点的曲线称为简单曲线. 图 1 中的 a 是简单曲线, 而 b 则不是. 简单曲线的方向由起点指向终点. 所以规定了起点和终点就确定了它的方向.
 - 2. 围线 (contour): 即简单闭曲线. 图 1 中的 c 是简单闭曲线, 而 d 则不是.

如果沿着围线走,其所包围的区域在左边,则该方向称为正方向,其实就是逆时针方向.

§1.2 复积分的定义与存在性

一元实变函数的积分定义在x轴上的有限区间内(无限区间的广义积分通过极限过程得到),而复变函数的积分(简称复积分)总是定义在曲线上,参看图 2.

定义(复积分) 设函数 f(z) 沿曲线 C 有定义, 在 C 上从起点 a 到终点 b 取分点

$$a = z_0, z_1, \dots, z_{k-1}, z_k, \dots, z_{n-1}, z_n = b$$

将 C 分为 n 个弧段, 在 z_{k-1} 至 z_k 的弧段上任取一点 ζ_k , 作和数

$$S_n = \sum_{k=1}^n f(\zeta_k) \Delta z_k,$$

其中 $\Delta z_k = z_k - z_{k-1}$. 若 $n \to \infty$ 且 $\max_{1 \le k \le n} |\Delta z_k| \to 0$ 时, $S_n \to I$,则称 f(z) 沿 C 可积,并称 I 为 f(z) 沿 C 的积分,记作

$$I = \int_C f(z) \, \mathrm{d}z.$$

C 称为积分路径,沿相反方向的积分记作 $\int_{C^-} f(z) dz$.

注 当 b = a,即 C 为围线时,如果没有特别说明,则沿围线 C 积分总是指逆时针方向的积分.

以上积分的定义与实变函数积分的定义是很类似的. 在复变函数论中,积分理论具有非常基本的地位. 事实上,关于复积分的 Cauchy 积分定理是解析函数理论的基础. 解析函数的微分性质的证明大都是由这个定理出发的.

定义了复积分,首先遇到的问题是,给定函数和曲线,如何判断积分是否存在.与实 变情况类似,我们有下述

图 1: a 是简单曲线,而 b 不是; c 是简单闭曲线,而 d 不是

图 2: f(z) 沿曲线 C 的积分

定理(积分存在) 设函数 $f(z)=u(x,y)+\mathrm{i} v(x,y)$ 沿曲线 C 连续,则 f(z) 沿 C 可积,且

$$\int_C f(z) dz = \int_C u dx - v dy + i \int_C v dx + u dy.$$
 (1)

注 形式上,只要将 f(z) = u(x,y) + iv(x,y) 和 dz = dx + idy 代入左边,分开实部和虚部,即可得到右边的结果. 这可以帮助我们把握这一公式,虽然不能用这种方法来证明它.

证明 设 $z_k = x_k + \mathrm{i} y_k$,记 $\Delta x_k = x_k - x_{k-1}$, $\Delta y_k = y_k - y_{k-1}$,则 $\Delta z_k = \Delta x_k + \mathrm{i} \Delta y_k$. 又设 $\zeta_k = \xi_k + \mathrm{i} \eta_k$,记 $u_k = u(\xi_k, \eta_k)$, $v_k = v(\xi_k, \eta_k)$,则 $f(\zeta_k) = u_k + \mathrm{i} v_k$,于是

$$\sum_{k=1}^{n} f(\zeta_k) \Delta z_k = \sum_{k=1}^{n} (u_k \Delta x_k - v_k \Delta y_k) + i \sum_{k=1}^{n} (v_k \Delta x_k + u_k \Delta y_k),$$

由于 f(z) 沿 C 连续,故 u(x,y) 和 v(x,y) 沿 C 连续,所以上式右边两项均有极限,于是左边也有极限,即 f(z) 沿 C 可积. 上式的极限正是式 (1). 证毕.

式(1)同时也给出了复积分的计算方法,它把复积分的计算转化为实变函数的曲线积分的计算,我们将在下一节进一步讨论.

§1.3 复积分的基本性质

设 f(z) 和 g(z) 沿 C 连续,复积分有下列基本性质.

1.
$$\int_C [\alpha f(z) + \beta g(z)] dz = \alpha \int_C f(z) dz + \beta \int_C g(z) dz.$$

2.
$$\int_{C_1+C_2} f(z) dz = \int_{C_1} f(z) dz + \int_{C_2} f(z) dz.$$

3.
$$\int_{C^{-}} f(z) dz = -\int_{C} f(z) dz$$
.

4.
$$\left| \int_C f(z) \, \mathrm{d}z \right| \le \int_C |f(z)| \, |\mathrm{d}z| = \int_C |f(z)| \, \mathrm{d}s.$$

最后一个积分中的 ds = |dz| 就是弧长的微分. 这些性质都可以直接由积分的定义来证明. 比如,利用三角不等式,有

$$\left| \sum_{k=1}^{n} f(\zeta_k) \Delta z_k \right| \le \sum_{k=1}^{n} |f(\zeta_k)| |\Delta z_k|,$$

取极限即得性质 4.

§2 复积分的计算

本节讨论复积分的计算,这有三方面的目的.第一,加深对复积分的了解;第二,通过计算获得一些有用的具体结果;第三,建立 Cauchy 积分定理的特例,从而对这一抽象的定理获得感性认识.

§2.1 *用定义计算

对于比较简单的函数,可以直接用定义来计算.下面就计算两个例子.

例1 $C \in a$ 到 b 的任一简单曲线,求 $\int_C dz$.

 \mathbf{H} f(z)=1,则 $f(\zeta_k)=1$.按定义作和数,有

$$S_n = \sum_{k=1}^n f(\zeta_k) \Delta z_k = \sum_{k=1}^n (z_k - z_{k-1}) = z_n - z_0 = b - a,$$

故当 $n \to \infty$ 、 $\max_{1 \le k \le n} |\Delta z_k| \to 0$ 时, $S_n \to b - a$,即

$$\int_C \mathrm{d}z = b - a. \tag{2}$$

例2 $C \in A$ 到 b 的任一简单曲线, 求 $\int_C z \, dz$.

 $\mathbf{f}(z) = z$,则 $f(\zeta_k) = \zeta_k$.按定义作和数,有

$$S_n = \sum_{k=1}^n f(\zeta_k) \Delta z_k = \sum_{k=1}^n \zeta_k (z_k - z_{k-1}),$$

先取 $\zeta_k = z_k$,得 $S_n^{(1)} = \sum_{k=1}^n z_k (z_k - z_{k-1})$,再取 $\zeta_k = z_{k-1}$,得 $S_n^{(2)} = \sum_{k=1}^n z_{k-1} (z_k - z_{k-1})$. 由于 f(z) = z 是连续函数,按上节定理,积分存在,记作 I,则当 $n \to \infty$ 、 $\max_{1 \le k \le n} |\Delta z_k| \to 0$ 时,应有 $S_n^{(1)} \to I$, $S_n^{(2)} \to I$,于是 $S_n^{(1)} + S_n^{(2)} \to 2I$. 另一方面,

$$S_n^{(1)} + S_n^{(2)} = \sum_{k=1}^n (z_k + z_{k-1})(z_k - z_{k-1}) = \sum_{k=1}^n (z_k^2 - z_{k-1}^2) = z_n^2 - z_0^2 = b^2 - a^2,$$

因此, $S_n^{(1)} + S_n^{(2)} \rightarrow b^2 - a^2$. 比较即得 $I = (b^2 - a^2)/2$,即

$$\int_C z \, \mathrm{d}z = \frac{1}{2} (b^2 - a^2). \tag{3}$$

§2.2 曲线积分方法

从上一小节看到,直接用定义来计算复积分,即使对于象 f(z) = z 这样简单的函数,都需要一定的技巧. 对于较复杂的函数,这种方法显然是不现实的. 注意到上节的定理不仅解决了积分的存在性问题,而且式 (1) 同时也给出了计算复积分的一种方法,即把复积分转化为实变函数的曲线积分来计算. 在简单情况下,可以找到曲线积分的原函数,这时就很容易得到结果. 为了叙述方便,我们把这种方法称为曲线积分方法.

例 3 用曲线积分方法重新计算例 1.

解 f(z) = 1, 即 u(x,y) = 1, v(x,y) = 0. 按式 (1), 有

$$\int_C dz = \int_C dx + i \int_C dy = x|_a^b + iy|_a^b = (x + iy)|_a^b = z|_a^b = b - a.$$

例 4 用曲线积分方法重新计算例 2.

解 f(z) = z, 即 u(x, y) = x, v(x, y) = y. 接式 (1), 有

$$\int_C z \, dz = \int_C x \, dx - y \, dy + i \int_C y \, dx + x \, dy = \int_C d \left[\frac{1}{2} (x^2 - y^2) \right] + i \int_C d(xy)$$
$$= \frac{1}{2} (x^2 - y^2 + i2xy) \Big|_a^b = \frac{1}{2} (x + iy)^2 \Big|_a^b = \frac{1}{2} z^2 \Big|_a^b = \frac{1}{2} (b^2 - a^2).$$

由以上两例看到,积分的结果只与起点和终点有关,而与路径无关,这是与被积函数的解析性紧密相关的.事实上,这一方法可以用于任何具体的解析函数,如指数、三角函数等,并得到类似的结果.后面将会看到,对于解析函数,存在着与实变积分类似的Newton-Leibniz 公式.

如果被积函数不是解析的,比如 *z*,其积分一般都依赖于路径,而不仅仅是起点和终点. 这时用上面的曲线积分方法并不方便. 实际上,实变函数中的曲线积分在一般情况下还是要化成定积分来计算的. 所以,下面就讨论计算复积分的参数方程法.

§2.3 参数方程法

设曲线 C 的参数方程为 z = z(t) ($\alpha \le t \le \beta$), f(z) 沿 C 连续, 则

$$\int_C f(z) dz = \int_{\alpha}^{\beta} f[z(t)]z'(t) dt.$$
(4)

这一公式将复积分化为实变数 t 的定积分. 形式上,只要将 z = z(t) 和 $\mathrm{d}z = z'(t)\,\mathrm{d}t$ 代入 左边,即可得到右边的结果. 当然这不是证明. 右边的定积分可能需要分开实部和虚部来 计算,但若能直接找到原函数,也可以不必分开.

式(4)证明如下. 由式(1)出发,根据微积分中曲线积分的计算公式,有

$$\int_C f(z) dz = \int_{\alpha}^{\beta} \left[u(t)x'(t) - v(t)y'(t) \right] dt + i \int_{\alpha}^{\beta} \left[v(t)x'(t) + u(t)y'(t) \right] dt,$$

其中 u(t) = u[x(t), y(t)], v(t) = v[x(t), y(t)], 上式可以改写为

$$\int_C f(z) dz = \int_{\alpha}^{\beta} [u(t) + iv(t)][x'(t) + iy'(t)] dt.$$

这就是式 (4).

利用式(4),马上可以得到例1和例2的结果.它们是下述更一般结果的特例.

例 5 由于 $z^n(t)z'(t)$ 的原函数显然是 $z^{n+1}(t)/(n+1)$, 故有

$$\int_{a}^{b} z^{n} dz = \frac{1}{n+1} (b^{n+1} - a^{n+1}), \quad n = 0, 1, 2, \cdots.$$
 (5)

结果与曲线 C 的细节无关,而只依赖于起点和终点. 如果 C 是围线,即 b=a,则

$$\int_C z^n \, \mathrm{d}z = 0, \quad n = 0, 1, 2, \cdots, \forall \, \mathbb{B} \not\in C. \tag{6}$$

式 (6) 可由式 (5) 经 $b \to a$ 的极限过程得到. 也可以将围线 C 分为两段,再由式 (5),两段的积分互相抵消,从而得到式 (6). 注意式 (6) 对任意围线成立.

注 由式 (6) 容易推知,对于任意多项式 $P_n(z)$ 和围线 C,均有 $\int_C P_n(z) \, \mathrm{d}z = 0$. 由此我们可以推测,对于一般的解析函数 f(z),亦有 $\int_C f(z) \, \mathrm{d}z = 0$,这基本上就是 Cauchy 积分定理了.

下面再计算一个例子.

例 6 计算积分
$$\int_{|z-a|=\varrho} \frac{\mathrm{d}z}{(z-a)^n}$$
, 其中 $n \in \mathbb{Z}$, $a \in \mathbb{C}$.

解 当 $n \le 0$,由式 (6) 可知结果为 0,这与下面的结果一致. 圆周 $|z - a| = \rho$ 的参数方程为 $z(\theta) = a + \rho e^{i\theta}$ (0 $\le \theta \le 2\pi$),这里我们将参数写作 θ ,因为它是角度. 按式 (4),有

$$\int_{|z-a|=\rho} \frac{\mathrm{d}z}{(z-a)^n} = \int_0^{2\pi} \frac{\mathrm{i}\rho e^{\mathrm{i}\theta} \,\mathrm{d}\theta}{\rho^n e^{\mathrm{i}n\theta}} = \frac{\mathrm{i}}{\rho^{n-1}} \int_0^{2\pi} e^{-\mathrm{i}(n-1)\theta} \,\mathrm{d}\theta,$$

如果 $n \neq 1$,易得原函数为 $-e^{-i(n-1)\theta}/(n-1)\rho^{n-1}$,代入上下限,结果为 0. 若 n=1,则结果显然为 $2\pi i$. 所以

$$\int_{|z-a|=\rho} \frac{\mathrm{d}z}{(z-a)^n} = \begin{cases} 2\pi \mathrm{i}, & (n=1), \\ 0, & (n \in \mathbb{Z}, n \neq 1), \end{cases}$$
 (7)

这是一个重要的结果.

注 ① 这一结果与 a 和 ρ 的数值无关. ② 后面将证明,这一结果对任何包围 a 点的围线成立. ③ n=1 时结果不为 0,这是因为被积函数在积分围线内存在奇点 z=a. 由此可以进一步推测,Cauchy 积分定理中的 f(z) 应该在围线 C 及其内部解析,而不仅仅是在围线 C 上解析. ④ 虽然 $n=2,3,\cdots$ 时,结果也为 0,但这只是一个具体的结果,没有必然性.

习题 1. 计算 $\int_{C_1} \bar{z} \, \mathrm{d}z$ 和 $\int_{C_2} \bar{z} \, \mathrm{d}z$,其中 C_1 是上半单位圆($z=1 \to z=-1$), C_2 是下半单位圆($z=1 \to z=-1$).

习题 2. 设 f(z) 在原点的邻域内连续,试证 $\lim_{r\to 0} \int_0^{2\pi} f(r\mathrm{e}^{\mathrm{i}\theta}) \,\mathrm{d}\theta = 2\pi f(0)$.

§3 Cauchy 积分定理

§3.1 Cauchy 积分定理

由上节看到,对于简单的解析函数 $P_n(z)$,有 $\int_C P_n(z) dz = 0$, C 为任意围线. 实际上,这是下面定理的一个特例.

定理(Cauchy 积分定理) 设函数 f(z) 在单通区域 D 内解析,C 为 D 内的任一围线,则

$$\int_C f(z) \, \mathrm{d}z = 0. \tag{8}$$

这是复变函数论中最基本的定理.

如果假定 f'(z) 连续,则上述定理的证明是很容易的. 这时 u、v 的一阶偏导数连续,可将 Green 公式应用于式 (1) 而得

$$\int_C f(z) dz = -\int_G \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) dx dy + i \int_G \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx dy,$$

其中 G 是围线 C 所包围的区域. 由 CR 条件,上式右边两个积分都为 0,故得式 (8). 但我们知道,f(z) 解析的定义只是 f'(z) 存在,并不一定连续,所以上面证明的只是一种特殊情况. 下一小节将介绍严格的证明,供有兴趣的读者参考.

值得注意的是,Cauchy 在 1825 年给出上述定理,那时候 f(z) 解析的定义是 f'(z) 连续,所以上面的证明是严格的. 1900 年,Goursat 发表了新的证明,免去了 f'(z) 连续的条件. 也就是说,只要 f'(z) 存在,Cauchy 积分定理就成立. 此后 f(z) 解析的定义才改为现在的样子. 这无疑是一个实质性的进步,但期间经历了七十多年的时间.

Cauchy 积分定理也可以表述为

定理(Cauchy 积分定理的等价表述) C 为复平面上的围线,D 是 C 所包围的单通 区域,函数 f(z) 在闭域 $\bar{D} = D + C$ 上解析,则

$$\int_C f(z) \, \mathrm{d}z = 0.$$

这与上面的形式是等价的. 但从这一形式容易看出它和下面强化的形式有什么区别.

定理(Cauchy 积分定理的强化形式) C 为复平面上的围线,D 是 C 所包围的单通区域,函数 f(z) 在 D 内解析,在 $\bar{D}=D+C$ 上连续,则

$$\int_C f(z) \, \mathrm{d}z = 0.$$

应当指出,即使证明了上面的定理,要得到这一强化形式也并不是轻而易举的.

§3.2 *Cauchy 积分定理的证明

先证明下面的

引理 设 f(z) 在区域 D 内连续, Γ 是 D 内的简单曲线或围线,则 \forall $\varepsilon > 0$,总可找到内接于 Γ 且完全位于 D 内的折线 P,使得

$$\left| \int_{\Gamma} f(z) \, \mathrm{d}z - \int_{P} f(z) \, \mathrm{d}z \right| < \varepsilon. \tag{9}$$

注 ① 这一引理的大意是沿曲线的积分总可以用沿折线的积分来任意逼近. ② 这里只要求 f(z) 连续,而不必解析. ③ 区域 D 也不必是单通的.

证明 设曲线 Γ 的长度为 L. 在区域 D 内取区域 G,使 $\bar{G} \subset D$ 而 Γ 完全在 G 内. 由于 f(z) 在区域 D 内连续,故在 \bar{G} 上一致连续。也就是说, $\forall \, \varepsilon > 0$, $\exists \, \delta > 0$,使得对于 \bar{G} 内的任意两点 z' 和 z'',只要 $|z'-z''| < \delta$,就有 $|f(z')-f(z'')| < \varepsilon/2L$. 今在 Γ 上从起点 a 到终点 b 取分点

$$a = z_0, z_1, \dots, z_{k-1}, z_k, \dots, z_{n-1}, z_n = b.$$

依次连接各分点作成折线 P,如图 3 所示. 我们将 Γ 上从 z_{k-1} 到 z_k 的弧段记作 Γ_k ,相应的线段记作 P_k ,并记 Γ_k 的长度为 L_k . 只要分点取得足够密,就可以使所有 $L_k < \delta$,并使所有 P_k 完全落在 G 内. 这样,对任意 k, Γ_k 上的任意点 z 都满足 $|f(z)-f(z_k)| < \varepsilon/2L$, P_k 上的任意点亦然. 由上节例 1,

$$\int_{\Gamma_{k}} f(z_{k}) dz = \int_{P_{k}} f(z_{k}) dz = f(z_{k})(z_{k} - z_{k-1}),$$

所以

$$\left| \int_{\Gamma} f(z) \, dz - \int_{P} f(z) \, dz \right| = \left| \sum_{k=1}^{n} \int_{\Gamma_{k}} f(z) \, dz - \sum_{k=1}^{n} \int_{P_{k}} f(z) \, dz \right|$$

$$= \left| \sum_{k=1}^{n} \int_{\Gamma_{k}} [f(z) - f(z_{k})] \, dz - \sum_{k=1}^{n} \int_{P_{k}} [f(z) - f(z_{k})] \, dz \right|$$

$$\leq \sum_{k=1}^{n} \left| \int_{\Gamma_{k}} [f(z) - f(z_{k})] \, dz \right| + \sum_{k=1}^{n} \left| \int_{P_{k}} [f(z) - f(z_{k})] \, dz \right|$$

$$\leq \sum_{k=1}^{n} \int_{\Gamma_{k}} |f(z) - f(z_{k})| \, |dz| + \sum_{k=1}^{n} \int_{P_{k}} |f(z) - f(z_{k})| \, |dz|$$

图 3: 引理的证明

$$< \frac{\varepsilon}{2L} \left(\sum_{k=1}^{n} \int_{\Gamma_k} |\mathrm{d}z| + \sum_{k=1}^{n} \int_{P_k} |\mathrm{d}z| \right)$$

$$\leq \frac{\varepsilon}{2L} 2L = \varepsilon.$$

其中第三步用了三角不等式,第四步用了积分的性质 4,第五步用了 $|f(z)-f(z_k)|< \varepsilon/2L$ (在 Γ_k 或 P_k 上均成立),最后一步用了 $\sum_{k=1}^n \int_{\Gamma_k} |\mathrm{d}z| = \int_{\Gamma} |\mathrm{d}z| = L$,而 $\sum_{k=1}^n \int_{P_k} |\mathrm{d}z| \leq L$. 证毕.

现在证明 Cauchy 积分定理. C 是单通区域 D 内的任一围线,由于 f(z) 在 D 内解析,故必在 D 内连续,根据上述引理, $\forall \, \varepsilon > 0$,总可找到内接于 C 且完全位于 D 内的闭折线 P (即多边形),使 $\left| \int_C f(z) \, \mathrm{d}z - \int_P f(z) \, \mathrm{d}z \right| < \varepsilon$. 如果能够证明,对于 D 内的任意闭折线 P,都有

$$\int_{P} f(z) \, \mathrm{d}z = 0,\tag{10}$$

则上式变成 $|\int_C f(z) \, \mathrm{d}z| < \varepsilon$,但 ε 是任意的,故 $|\int_C f(z) \, \mathrm{d}z| = 0$. 反过来,如果 Cauchy 积分定理成立,则式 (10) 也应该成立,因为 P 也是 D 内的围线. 因此问题归结为证明式 (10).

由于 D 是单通区域,所以 P 及其内部都完全在 D 内. 今适当连接 P 的各项点作对角线,将 P 所包围的多边形分解为若干三角形,如图 4a 所示,则沿各三角形边界的积分都存在,且其和等于沿 P 的积分,这是因为在和式中,沿各对角线的积分都出现两次,而且方向相反,所以互相抵消. 如果能证明沿 D 内任一三角形边界 T 的积分为 0:

$$\int_{T} f(z) \, \mathrm{d}z = 0,\tag{11}$$

则式 (10) 成立. 反过来,如果式 (10) 成立,则式 (11) 也应成立,因为 T 就是最简单的闭折线. 因此问题归结为证明式 (11). 为此,记

$$M = \left| \int_T f(z) \, \mathrm{d}z \right|,$$

只要证明 M=0 即可.

由于 D 是单通区域,所以 T 及其内部都完全在 D 内. 将 T 及其内部所构成的闭域,即闭三角形,记作 \triangle ,则 \triangle \subset D. 今连接三角形各边中点,将 \triangle 分解为四个三角形,如图 4b 所示,将其边界记作 T_1 、 T_2 、 T_3 、 T_4 ,则 $\int_T f(z) \, \mathrm{d}z = \sum_{i=1}^4 \int_{T_i} f(z) \, \mathrm{d}z$,而 $M = \left| \int_T f(z) \, \mathrm{d}z \right| \leq \sum_{i=1}^4 \left| \int_{T_i} f(z) \, \mathrm{d}z \right|$,因此,右边各项中必有一项不小于 M/4,记该项所在的三角形为 $T^{(1)}$,所包围的闭域为 \triangle_1 ,则

$$M_1 \equiv \left| \int_{T^{(1)}} f(z) \, \mathrm{d}z \right| \ge \frac{M}{4}.$$

图 4: Cauchy 积分定理的证明

再将 \triangle_1 分解为四个三角形,重复上面的论证,然后继续同样的过程,我们就可以得到一系列的三角形

$$\triangle$$
, \triangle_1 , \triangle_2 , \cdots , \triangle_n , \cdots ,

其边界为

$$T, T^{(1)}, T^{(2)}, \cdots, T^{(n)}, \cdots,$$

在这些边界上的积分满足

$$M_n \equiv \left| \int_{T^{(n)}} f(z) \, dz \right| \ge \frac{M_{n-1}}{4} \ge \frac{M}{4^n}, \quad n = 1, 2, \cdots,$$
 (12)

其中 $M_0 \equiv M$.

记 \triangle 的周长为 L, 则 \triangle_n 的周长为 $L_n = L/2^n$, 显然,

$$\triangle \supset \triangle_1 \supset \triangle_2 \supset \cdots \supset \triangle_n \supset \cdots$$

而 $L_n \to 0$ $(n \to \infty)$,故存在唯一一点 z_0 属于所有的 \triangle_n (这里用到了一个定理,称为闭集套定理,又称 Cantor 定理,但这一结论是相当直观的),当然 $z_0 \in D$. 今 f(z) 在 z_0 解析,则存在有限导数 $f'(z_0)$,成立

$$\lim_{z \to z_0} \left[\frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right] = 0,$$

换句话说, $\forall \varepsilon > 0$, $\exists \delta > 0$,使得当 $|z - z_0| < \delta$ 时,有

$$\left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| < \varepsilon,$$

或

$$|f(z) - f(z_0) - f'(z_0)(z - z_0)| < \varepsilon |z - z_0|.$$

由于 $L_n \to 0$ $(n \to \infty)$, 故当 n 足够大时,有 $L_n < \delta$, 这时,对于 $T^{(n)}$ 上的任意点 z,都满足 $|z-z_0| < L_n < \delta$,故上面的不等式在 $T^{(n)}$ 上成立. 由上节例 1 和例 2 知道, $\int_{T^{(n)}} f(z_0) dz = 0$, $\int_{T^{(n)}} f'(z_0)(z-z_0) dz = 0$,因此

$$M_{n} = \left| \int_{T^{(n)}} f(z) \, dz \right| = \left| \int_{T^{(n)}} [f(z) - f(z_{0}) - f'(z_{0})(z - z_{0})] \, dz \right|$$

$$\leq \int_{T^{(n)}} |f(z) - f(z_{0}) - f'(z_{0})(z - z_{0})| |dz|$$

$$< \int_{T^{(n)}} \varepsilon |z - z_{0}| \, |dz| < \varepsilon L_{n} \int_{T^{(n)}} |dz| = \varepsilon L_{n}^{2} = \frac{L^{2} \varepsilon}{4^{n}}.$$
(13)

比较式 (12) 和式 (13),可得 $M/4^n \le M_n < L^2 \varepsilon/4^n$,即 $M < L^2 \varepsilon$,但 ε 可以任意小,故 M = 0.这样就完成了 Cauchy 积分定理的证明.

§3.3 Cauchy 积分定理的推论

由 Cauchy 积分定理,马上可以得到以下

推论 设函数 f(z) 在单通区域 D 内解析, $z_1, z_2 \in D$,则积分 $\int_{z_1}^{z_2} f(z) dz$ 与 z_1 到 z_2 的路径无关.

证明 任取 D 内由 z_1 到 z_2 的两条路径 C_1 和 C_2 , 有

$$\int_{C_1} f(z) dz - \int_{C_2} f(z) dz = \int_{C_1} f(z) dz + \int_{C_2^-} f(z) dz = \int_{C_1 + C_2^-} f(z) dz = 0,$$

其中前两步都是用积分的基本性质,最后一步用了 Cauchy 积分定理,因为 $C_1 + C_2^-$ 构成 D 内的围线. 证毕.

现在我们将积分的起点固定在 z_0 ,而让终点 z 变化,这就是变上限积分. 由上面的推论,这一变上限积分是 z 的单值函数,类似于实变函数的情况,我们有下述结论

定理 (变上限积分) 设函数 f(z) 在单通 区域 D 内解析, $z_0 \in D$ 是定点,则由 $F(z) = \int_{z_0}^z f(\zeta) d\zeta$ 定义的函数在 D 内解析,且 F'(z) = f(z).

注 在一元实变函数的相应定理中,只要求被积函数 f(x) 连续,而不必可导,但这里必须要求 f(z) 解析,否则积分与路径有关,就不是上限 z 的单值函数了. 另外,所考虑的区域必须是单通的,这一点也很重要.

证明 考虑 $z \in D$,任取 z_0 到 z 的路径,记作 C_1 ,又任取 z_0 到 $z + \Delta z$ 的路径,记作 C_2 ,当然 C_1 和 C_2 都应在 D 内. 又记 z 到 $z + \Delta z$ 的线段为 P,只要 Δz 足够小,P 也必在 D 内. 今

$$F(z) = \int_{C_1} f(\zeta) d\zeta, \quad F(z + \Delta z) = \int_{C_2} f(\zeta) d\zeta.$$

由上面的推论, $\int_{C_2} f(\zeta) d\zeta = \int_{C_1} f(\zeta) d\zeta + \int_P f(\zeta) d\zeta$,则

$$\Delta F \equiv F(z + \Delta z) - F(z) = \int_{\mathcal{D}} f(\zeta) \,\mathrm{d}\zeta,$$

由上节例 1,又有 $\int_P f(z) d\zeta = f(z)\Delta z$,故

$$\frac{\Delta F}{\Delta z} - f(z) = \frac{1}{\Delta z} \int_{P} [f(\zeta) - f(z)] d\zeta,$$

而

$$\left|\frac{\Delta F}{\Delta z} - f(z)\right| = \frac{1}{|\Delta z|} \left| \int_P [f(\zeta) - f(z)] \, \mathrm{d}\zeta \right| \le \frac{1}{|\Delta z|} \int_P |f(\zeta) - f(z)| \, |\mathrm{d}\zeta|.$$

由于 f(z) 在 D 内解析, 故必在 D 内连续, 所以, $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得当 $|\zeta - z| < \delta$ 时, 有 $|f(\zeta) - f(z)| < \varepsilon$. 今取 $|\Delta z| < \delta$, 则线段 P 上的各点均满足 $|f(\zeta) - f(z)| < \varepsilon$, 于是

$$\left| \frac{\Delta F}{\Delta z} - f(z) \right| < \frac{\varepsilon}{|\Delta z|} \int_{P} |\mathrm{d}\zeta| = \varepsilon,$$

也就是说,

$$\lim_{\Delta z \to 0} \frac{\Delta F}{\Delta z} = f(z), \quad z \in D.$$

证毕.

类似于实变积分,下面引入原函数的概念.

定义 (原函数) 设函数 f(z) 在区域 D 内解析,若有函数 $\Phi(z)$ 满足 $\Phi'(z) = f(z)$,则 $\Phi(z)$ 称为 f(z) 的一个不定积分或原函数.

注 ① 本来在这一定义中并没有必要要求 f(z) 解析,但后面我们会看到,当 $\Phi(z)$ 解析(因为 $\Phi'(z) = f(z)$ 存在),则 $\Phi'(z)$ 亦必解析,从而 $f(z) = \Phi'(z)$ 也解析.换句话说,如果 f(z) 不解析,它也不可能存在原函数.所以上述定义只针对解析函数就是很自然的了.② 原函数显然不是唯一的,因为如果 $\Phi(z)$ 是 f(z) 的原函数,则 $\Phi(z) + c$ 也是它的原函数,其中 c 是复常数.但任意两个原函数也只能相差一个常数,因为如果 $\Phi(z)$ 和 $\Psi(z)$ 都是 f(z) 的原函数,则 $[\Psi(z) - \Phi(z)]' = 0$,由此易证 $\Psi(z) - \Phi(z) = c$.

定义了原函数,就可以给出一个计算积分的公式,但仍然要注意它的条件.

定理(Newton-Leibniz 公式) 设函数 f(z) 在单通区域 D 内解析, $\Phi(z)$ 是 f(z) 的任一原函数,则

$$\int_{z_0}^{z} f(\zeta) \,\mathrm{d}\zeta = \Phi(z) - \Phi(z_0), \quad z, z_0 \in D$$
(14)

证明 记 $F(z) = \int_{z_0}^z f(\zeta) d\zeta$,则 F'(z) = f(z),又已知 $\Phi(z)$ 是 f(z) 的原函数,则根据上面的讨论有 $\Phi(z) = F(z) + c$. 以 z_0 代入,可得 $\Phi(z_0) = F(z_0) + c = c$,所以 $F(z) = \Phi(z) - c = \Phi(z) - \Phi(z_0)$,此即式 (14). 证毕.

例1 利用这一公式,马上可以得到式(5).

例 2 在不包含原点的单通区域内计算积分 $\int_{z}^{b} \frac{1}{z} dz$, 其中 $b \neq a$.

解 1/z 在去掉原点的复平面上是解析的,但这是复通区域,在其中积分可能与路径有关.上节例 6 证实了这一点.这样,如果不指定路径,则积分就没有意义.但在不包含原点的单通区域内,比如右半平面,则积分与路径无关. 1/z 的原函数是 $\operatorname{Ln} z$,根据上面的公式 (14),

$$\int_{a}^{b} \frac{1}{z} \, \mathrm{d}z = \operatorname{Ln} b - \operatorname{Ln} a.$$

在所考虑的单通区域内, $\operatorname{Ln} z$ 可以分出单值分支,所以结果是确定的,而且与所取的分支无关. 事实上,取定一个单值分支,其中 a 和 b 的辐角分别为 θ_a 和 θ_b ,则

$$\int_a^b \frac{1}{z} dz = \ln|b| - \ln|a| + i(\theta_b - \theta_a).$$

若取定另一分支,其中 a 和 b 的辐角分别为 $\theta_a + 2k\pi$ 和 $\theta_b + 2k\pi$ ($k \in \mathbb{Z}$),易见结果不变.

但是,对于不同的单通区域,结果却可能不同. 比如当 a=i, b=-i,在单通区域 $0<\operatorname{Arg} z<2\pi$ 内(即去掉 x 轴正半轴的复平面), $\theta_b-\theta_a=\pi$,积分结果为 πi ; 但在单通区域 $-\pi<\operatorname{Arg} z<\pi$ 内(即去掉 x 轴负半轴的复平面), $\theta_b-\theta_a=-\pi$,积分结果为 $-\pi i$.

以上结果可以这样理解,在单通区域 $0 < \operatorname{Arg} z < 2\pi$ 内,沿各种可能路径的积分等于沿左半单位圆由 i 到 -i 的积分,记作 I_1 ,而在单通区域 $-\pi < \operatorname{Arg} z < \pi$ 内,沿各种可能路径的积分等于沿右半单位圆由 i 到 -i 的积分,记作 I_2 , $I_1 - I_2$ 等于沿单位圆正向的积分,由上节例 6,它等于 $2\pi i$,所以 $I_1 \neq I_2$ 就是很自然的。而且,上面的计算也给出 $I_1 - I_2 = 2\pi i$,与上节例 6 一致,如所期望。

§3.4 复通区域的 Cauchy 积分定理

上节讨论 Cauchy 积分定理及其相关结论时,我们多次强调单通区域,因为在复通区域内,它一般是不能成立的. 不过在复通区域 D 内,只要围线 C 及其内部完全在 D

图 5: 复通区域及其 Cauchy 积分定理的证明

内,它还是成立的. 比如 1/z 在去掉原点的复平面上是解析的,这是复通区域,在其中 Cauchy 积分定理不能成立,因为沿单位圆的积分就不为 0,但对于不包围原点的围线,比如右半平面上的围线,积分为 0. 另一方面,我们知道,1/z 在以原点为圆心的一切圆周上,其积分结果相同. 这是复通区域的 Cauchy 积分定理的一个特例. 本小节就是要讨论 Cauchy 积分定理在复通区域内的推广形式.

考虑 n+1 条围线 C_0 、 C_1 、 \cdots 、 C_n ,其中 C_1 、 \cdots 、 C_n 全在 C_0 内部,且互不相交也互不包含,如图 5a. 在 C_0 内部而在 C_1 、 \cdots 、 C_n 外部的点集构成一个复通区域 D,它的边界包括以上各围线,称为复围线 C,即

$$C = C_0 + C_1^- + \dots + C_n^-,$$

其中 C_0 取正向,而 C_1 、···、 C_n 取反向,以便沿边界绕行时,其所包围的区域 D 总在左边.

定理(复通区域的 Cauchy 积分定理) 设 D 是由复围线 $C=C_0+C_1^-+\cdots+C_n^-$ 围成的复通区域,函数 f(z) 在 \bar{D} 上解析,则

$$\int_{C} f(z) dz = \int_{C_0} f(z) dz + \int_{C_1^{-}} f(z) dz + \dots + \int_{C_n^{-}} f(z) dz = 0,$$
 (15a)

或

$$\int_{C_0} f(z) dz = \int_{C_1} f(z) dz + \dots + \int_{C_n} f(z) dz.$$
 (15b)

注 定理的条件可以减弱为 f(z) 在 D 内解析, 在 \bar{D} 上连续.

证明 考虑只有两条围线 C_0 和 C_1 的情况. 如图 5b,作线段 L_1 和 L_2 连接 C_0 和 C_1 ,这样区域 D 就被分为 D' 和 D'' (但注意 $D \neq D' \cup D''$),显然 D' 和 D'' 都是单通区域,而且 f(z) 在 \bar{D}' 和 \bar{D}'' 上解析,根据 Cauchy 积分定理,有

$$\int_{\partial D'} f(z) dz = 0, \quad \int_{\partial D''} f(z) dz = 0,$$

所以

$$\int_{\partial D' + \partial D''} f(z) \, \mathrm{d}z = 0,$$

图 6: Cauchy 积分公式的证明

但 $\partial D' + \partial D'' = C_0 + C_1^- + L_1 + L_2 + L_1^- + L_2^-$,而 $\int_{L_1 + L_1^-} f(z) \, \mathrm{d}z = 0$, $\int_{L_2 + L_2^-} f(z) \, \mathrm{d}z = 0$,所以

$$\int_C f(z) dz = \int_{C_0} f(z) dz + \int_{C_1^-} f(z) dz = 0,$$

此即式 (15a),由积分的基本性质易得式 (15b).对于有多条围线的情况,可以类似证明.证毕.

以后我们说到 Cauchy 积分定理,就包括复通区域的情况.比较式 (15a) 与 Cauchy 积分定理的等价表述,可以看出,只要积分路径包括全部的边界,那么复通与单通情况下的 Cauchy 积分定理在形式上并没有什么区别.

例3 由上面的定理和前面的结果(7)可知

$$\int_C \frac{\mathrm{d}z}{(z-a)^n} = \begin{cases} 2\pi i, & (n=1), \\ 0, & (n \in \mathbb{Z}, n \neq 1), \end{cases}$$

其中 C 是包围 a 点的任一围线.

如果围线 C 不包围 a 点,则积分显然为 0. 于是,当 $n \neq 1$ 时,无论围线 C 是否包围 a 点,积分都是 0. 但是必须注意,对于 n > 1,围线不能经过 a 点,否则积分不存在.

§4 Cauchy 积分公式及其推论

§4.1 Cauchy 积分公式

由 Cauchy 积分定理,可以推出下面的 Cauchy 积分公式,我们把它写成定理.

定理(Cauchy 积分公式) 设区域 D 的边界是围线或复围线 C,函数 f(z) 在 \bar{D} 上解析,则

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} d\zeta, \quad z \in D.$$
 (16)

注 ① Cauchy 积分公式表明,对于解析函数,只要边界上的函数值给定,则区域内的函数值也就完全确定了.这说明函数值在各点的分布是互相牵制、紧密关联的,其实Cauchy 积分定理也表明了这种关联.而上一章的 CR 条件则表明解析函数的实部和虚部

也互相牵制、紧密关联,给定了其中一个,另一个也就确定了(最多可以差一常数项).可见解析性对于复变函数是一个很强的限制.在实变函数中,没有任何类似的结论,无论要求函数多么光滑,其变化都还是可以相当任意的,区间端点的函数值完全不能决定区间内部的函数值.② 将公式改写为

$$\int_C \frac{f(z)}{z-a} \, \mathrm{d}z = 2\pi \mathrm{i} f(a), \quad a \in D$$
(16')

则可以用来计算某些积分. ③ 定理的条件可以减弱为 f(z) 在 D 内解析,在 \bar{D} 上连续. ④ 由 Cauchy 积分定理可以推出 Cauchy 积分公式(见下面的证明),反过来,由 Cauchy 积分公式也可以推出 Cauchy 积分定理,所以两者是等价的. 事实上,设 F(z) 是 \bar{D} 上的任意解析函数,则 (z-a)F(z) 也是 \bar{D} 上的解析函数,根据 Cauchy 积分公式,就有 $\int_C F(z) \, \mathrm{d}z = \int_C [(z-a)F(z)]/(z-a) \, \mathrm{d}z = 2\pi\mathrm{i}[(z-a)F(z)]|_{z=a} = 0$,这就是 Cauchy 积分定理.

证明 设 D 的边界是复围线 $C=C_0+C_1^-+\cdots+C_n^-$. $\forall z\in D$,以 z 为中心, ρ 为半径作圆周 Γ_ρ : $|\zeta-z|=\rho$,使 Γ_ρ 在 C_0 的内部,而在 C_1 、…、 C_n 的外部.今 $f(\zeta)/(\zeta-z)$ 在 $C+\Gamma_\rho^-$ 所围成的区域(即区域 D 挖去闭圆 $|\zeta-z|\leq \rho$ 后所剩余的点集)及其边界上解析.由 Cauchy 积分定理和积分的基本性质,有

$$0 = \int_{C + \Gamma_0^-} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta = \int_C \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta + \int_{\Gamma_0^-} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta = \int_C \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta - \int_{\Gamma_0} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta,$$

所以

$$\int_C \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta = \int_{\Gamma_0} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta.$$

根据式 (7), 有

$$\int_{\Gamma_0} \frac{f(z)}{\zeta - z} \, \mathrm{d}\zeta = f(z) \int_{\Gamma_0} \frac{1}{\zeta - z} \, \mathrm{d}\zeta = 2\pi \mathrm{i} f(z).$$

结合两式,可得

$$\int_C \frac{f(\zeta)}{\zeta - z} d\zeta - 2\pi i f(z) = \int_{\Gamma_\rho} \frac{f(\zeta) - f(z)}{\zeta - z} d\zeta,$$

于是

$$\left| \int_C \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta - 2\pi \mathrm{i} f(z) \right| \le \frac{1}{\rho} \int_{\Gamma_0} |f(\zeta) - f(z)| \, |\mathrm{d}\zeta|.$$

由于 $f(\zeta)$ 在 D 内解析,故在 $\zeta = z$ 处连续,故 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\exists |\zeta - z| < \delta$ 时,有 $|f(\zeta) - f(z)| < \varepsilon/2\pi$.取 $\rho < \delta$,则上式在 Γ_{ρ} 上成立,于是

$$\left| \int_C \frac{f(\zeta)}{\zeta - z} \, d\zeta - 2\pi i f(z) \right| < \frac{\varepsilon}{2\pi\rho} \int_{\Gamma_0} |d\zeta| = \varepsilon.$$

这就是说,只要 ρ 足够小,上式就成立. 但上式左边实际上与 ρ 无关,所以它必须为 0,如此即得式 (16). 证毕.

例 1 计算积分 $I = \int_C \frac{\mathrm{d}z}{z^2 - 1}$,其中围线 C 是:(1) |z| = 1/2;(2) |z - 1| = 1/2;(3) |z + 1| = 1/2;(4) |z| = 2.

- **解** (1) 由于被积函数在围线 C 及其内部解析,故 I=0.
 - (2) 由式 (16'),

$$I = \int_{|z-1|=1/2} \frac{\mathrm{d}z}{z^2 - 1} = \int_{|z-1|=1/2} \frac{1/(z+1)}{z-1} \, \mathrm{d}z = 2\pi i \left. \frac{1}{z+1} \right|_{z=1} = \pi i.$$

(3) 由式 (16'),

$$I = \int_{|z+1|=1/2} \frac{\mathrm{d}z}{z^2 - 1} = \int_{|z+1|=1/2} \frac{1/(z-1)}{z+1} \, \mathrm{d}z = 2\pi i \left. \frac{1}{z-1} \right|_{z=-1} = -\pi i.$$

(4) 由复通区域的 Cauchy 积分定理和 (2)、(3) 的结果,

$$I = \int_{|z|=2} \frac{\mathrm{d}z}{z^2 - 1} = \int_{|z-1|=1/2} \frac{\mathrm{d}z}{z^2 - 1} + \int_{|z+1|=1/2} \frac{\mathrm{d}z}{z^2 - 1} = \pi \mathbf{i} - \pi \mathbf{i} = 0.$$

§4.2 *无界区域的 Cauchy 积分公式

既然解析函数在围线上的函数值可以决定其内部的函数值,人们自然会问,围线上的函数值是否也可以决定其外部的函数值?答案就在下面的定理中.

定理(无界区域的 Cauchy 积分公式) 设函数 f(z) 在围线 C 及其外部的无界区域 D 上解析,且当 $z \to \infty$ 时, $f(z) \Rightarrow 0$,则有

$$f(z) = \frac{1}{2\pi i} \int_{C^{-}} \frac{f(\zeta)}{\zeta - z} d\zeta, \quad z \in D,$$
(17)

其中积分取 C 的反方向, 实即 ∂D 的正方向.

注 ① $z \to \infty$ 时 $f(z) \Rightarrow 0$ (一致趋于 0) 的大意是 $f(z) \to 0$ 的速度与 z 的辐角无关. 精确地说,就是 $\forall \, \varepsilon > 0$, $\exists \, R_0 > 0$ 与 θ 无关,当 $|z| > R_0$ 时,就有 $|f(z)| < \varepsilon$. ② 这一定理的条件也可以减弱为 f(z) 在 D 内解析,在 D+C 上连续. ③ 如果 f(z) 在围线 C 的内部也解析,则式 (17) 中的被积函数在围线 C 及其内部解析,根据 Cauchy 积分定理,积分为 0. 换句话说,在 D 上,f(z) = 0. 由 f(z) 的连续性,在 C 上也有 f(z) = 0. 再根据 Cauchy 积分公式,则在 C 的内部也有 f(z) = 0. 这就是说,在整个 z 平面上, $f(z) \equiv 0$. 这是什么原因呢?根据假定,f(z) 在整个 z 平面上解析(称为整函数,entire function),又因为 $z \to \infty$ 时, $f(z) \Rightarrow 0$,所以它一定是有界的($\forall \, \varepsilon > 0$,引 $R_0 > 0$,当 $|z| > R_0$ 时, $|f(z)| < \varepsilon$,而在闭圆 $|z| \le R_0$ 上, $\exists \, M_0 > 0$,使 $|f(z)| \le M_0$,取 $M = M_0 + \varepsilon$,则在整个 z 平面上 $|f(z)| < M_0$,即有界),根据 Liouville 定理,有界整函数必为常数(见后),而条件 $z \to \infty$ 时, $f(z) \Rightarrow 0$ 使得该常数为 0. ④ 该定理可以推广到多条围线外的情况,只要将式(17)右边看作各围线的积分之和即可.

证明 作大圆 Γ_R : $|\zeta|=R$, 使得围线 C 和点 z 均在 Γ_R 内部,根据 Cauchy 积分公式,

$$f(z) = \frac{1}{2\pi i} \int_{C_{-}} \frac{f(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi i} \int_{\Gamma_{-}} \frac{f(\zeta)}{\zeta - z} d\zeta, \tag{18}$$

由此

$$\int_{\Gamma_R} \frac{f(\zeta)}{\zeta - z} \, d\zeta = 2\pi i f(z) - \int_{C^-} \frac{f(\zeta)}{\zeta - z} \, d\zeta.$$
 (19)

由定理条件, $\forall \ \varepsilon > 0$, $\exists \ R_0 > 0$,当 $R > R_0$ 时,在 Γ_R 上可有 $|f(\zeta)| < \varepsilon/4\pi$,今取 $R > \max\{R_0,2|z|\}$,则在 Γ_R 上还成立 $|\zeta-z| > R-|z| > R/2$,于是 $1/|\zeta-z| < 2/R$,故

$$\left| \int_{\Gamma_R} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta \right| \le \int_{\Gamma_R} \frac{|f(\zeta)|}{|\zeta - z|} \, |\mathrm{d}\zeta| < \frac{\varepsilon}{4\pi} \frac{2}{R} \int_{\Gamma_R} |\mathrm{d}\zeta| = \varepsilon.$$

但由式 (19) 可知,上式左边实际上与 R 无关,所以它必须为 0,代入式 (18),即得式 (17). 证毕.

§4.3 解析函数的高阶导数

我们在前面曾提到,解析函数存在各阶导数,即一次可微导致任意次可微,这是复变函数所特有的结论.而且,边界上的函数值不仅确定了所围区域内的函数值,也确定了其中各阶导数的函数值.下面关于高阶导数的定理给出了这一结论的精确表述.

定理(Cauchy 高阶导数公式) 设区域 D 以围线或复围线 C 为边界,函数 f(z) 在 闭域 \bar{D} 上解析,则 f(z) 在区域 D 内有各阶导数,且

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta, \quad z \in D, \quad n = 1, 2, \dots$$
 (20)

注 ① 将 Cauchy 积分公式 (16) 两边求导,对右边交换求导与积分的次序,立得一阶导数的 Cauchy 公式. 继续求导,重复同样的操作,即得 Cauchy 高阶导数公式. 这样的做法显然是不严格的,因为求导与积分交换次序的合法性并未得到证明. 然而,这一做法能帮助我们熟悉高阶导数公式,并使得我们能够在记得 Cauchy 积分公式的情况下立即将高阶导数公式"推导"出来. ② 让我们再看看怎样可以做得严格一些. 以 n=1 为例,对 z 和 $z+\Delta z$ 分别用 Cauchy 积分公式,可得

$$\frac{\Delta f}{\Delta z} = \frac{f(z + \Delta z) - f(z)}{\Delta z} = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)(\zeta - z - \Delta z)} d\zeta, \tag{21}$$

两边取 $\Delta z \to 0$ 的极限,对右边交换求极限与积分的次序,立得一阶导数的 Cauchy 公式. 类似可得高阶导数公式. 必须指出,这样的做法仍然是不严格的,因为求极限与积分交换次序的合法性也未得到证明. 不过,我们已经向严格证明的方向迈进了重要的一步. ③ 类似于 Cauchy 积分公式,Cauchy 高阶导数公式也可以用来计算某些积分. ④ 定理的条件可减弱为 f(z) 在区域 D 上解析,在闭域 \bar{D} 上连续.

证明 以下只证明 n=1 的情况,用数学归纳法可以证明一般情况。由式 (21), $\forall z \in D$,有

$$\left| \frac{\Delta f}{\Delta z} - \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^2} d\zeta \right| = \frac{|\Delta z|}{2\pi} \left| \int_C \frac{f(\zeta)}{(\zeta - z)^2 (\zeta - z - \Delta z)} d\zeta \right|.$$

我们的思路是证明左边当 $\Delta z \to 0$ 时可以任意小,这样它的极限就必须为 0. 由于右边含有因子 $|\Delta z|$,故主要需证明右边的积分有界。由于 f(z) 在闭域 \bar{D} 上连续,故在 C 上有界,设 $\max_{\zeta \in C} |f(\zeta)| = M$ (如此则 $|f(\zeta)| \le M$, $\forall \zeta \in C$)。又设 z 与边界 C 的距离为 d,即 $\min_{\zeta \in C} |\zeta - z| = d$ (如此则 $|\zeta - z| \ge d$, $\forall \zeta \in C$)。今暂取 $|\Delta z| < d/2$,则 $|\zeta - z - \Delta z| \ge |\zeta - z| - |\Delta z| > d - d/2 = d/2$ 。于是

$$\left| \int_C \frac{f(\zeta)}{(\zeta - z)^2 (\zeta - z - \Delta z)} \, \mathrm{d}\zeta \right| \le \int_C \frac{|f(\zeta)|}{|\zeta - z|^2 |\zeta - z - \Delta z|} \, |\mathrm{d}\zeta| \le \frac{M}{d^3/2} \int_C |\mathrm{d}\zeta| = \frac{2ML}{d^3},$$

其中L是C的长度,而

$$\left| \frac{\Delta f}{\Delta z} - \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^2} \, d\zeta \right| \le \frac{ML}{\pi d^3} |\Delta z|,$$

上式当 $|\Delta z| < d/2$ 时成立,若同时又有 $|\Delta z| < \varepsilon \pi d^3/ML$,则上式左边 $< \varepsilon$.取 $|\Delta z| < \min\{d/2, \varepsilon \pi d^3/ML\}$,则上式左边 $< \varepsilon$, $\forall \, \varepsilon > 0$,于是

$$f'(z) = \lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^2} d\zeta.$$

§4.4 *Liouville 定理

Cauchy 积分公式和高阶导数公式有许多有趣的推论,我们只介绍其中的一个,即 Liouville 定理,在下一小节中,我们要用它来证明代数基本定理. 我们在前面曾提到整函数 (entire function),下面正式给出定义.

定义(整函数) 在整个z平面上解析的函数称为整函数.

例 多项式、指数函数、正弦、余弦等函数都是整函数.

定理(Liouville) 有界整函数 f(z) 必为常数.

注 这一定理表明,一个解析函数,要么有奇点,要么当 $z \to \infty$ 时,至少在某些方向是无限的,除非是常数. 因此,不存在什么处处解析、处处有限而非平庸的"理想"解析函数. 这使得我们对于解析函数的函数值分布的特性有了一个大致的图象.

证明 由于 f(z) 有界,故 $\exists M > 0$, $\forall z \in \mathbb{C}$,有 $|f(z)| \leq M$. 今任取固定点 z,作圆周 Γ_R : $|\zeta - z| = R$,由高阶导数公式

$$f'(z) = \frac{1}{2\pi i} \int_{\Gamma_R} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta,$$

故

$$|f'(z)| \le \frac{1}{2\pi} \int_{\Gamma_R} \frac{|f(\zeta)|}{R^2} |\mathrm{d}\zeta| \le \frac{1}{2\pi} \frac{M}{R^2} \int_{\Gamma_R} |\mathrm{d}\zeta| = \frac{1}{2\pi} \frac{M}{R^2} 2\pi R = \frac{M}{R}.$$

今 $\forall \varepsilon > 0$,只要 $R > M/\varepsilon$,就有 $|f'(z)| < \varepsilon$,但 f'(z) 实际上与 R 无关,故 f'(z) = 0,又因为 z 是任意的,故 f(z) 为常数. 证毕.

§4.5 *代数基本定理

在复变函数理论中,可以很简单地证明代数基本定理,这是复变函数理论的应用之一.

定理(代数基本定理) 在 z 平面上,n 次多项式 $P_n(z) = \sum_{k=0}^n a_k z^k$ 至少有一个零点.

证明 设 $P_n(z)$ 在 z 平面上没有零点,则 $f(z) = 1/P_n(z)$ 在 z 平面上解析,即为整函数.又

$$\lim_{z \to \infty} f(z) = \lim_{z \to \infty} \frac{1}{P_n(z)} = \lim_{z \to \infty} \frac{1}{\sum_{k=0}^n a_k z^k} = \lim_{z \to \infty} \frac{1}{z^n \sum_{k=0}^n a_k z^{-(n-k)}} = 0,$$

所以 f(z) 有界. 事实上,由上面的极限可知, $\exists R > 0$,当 |z| > R 时,有 |f(z)| < 1,而由 f(z) 的连续性,在 $|z| \le R$ 上, $\exists M > 0$,使 $|f(z)| \le M$,所以在 z 平面上,|f(z)| < M + 1,即有界. 由 Liouville 定理,在 z 平面上,f(z) 为常数,从而 $P_n(z)$ 为常数,这显然是不对的. 证毕.

习题 计算下列积分

1.
$$\int_{|z|=2} \frac{1}{z^4 - 1} dz$$
 2. $\int_{|z|=3} \frac{e^z}{z^2 (z - 2)^2} dz$.

补充习题

计算下列积分.

1.
$$\int_{|z|=1} \frac{\cosh z}{z^{n+1}} dz$$
,其中 $n = 1, 2, \cdots$

答案: $\pi i[1+(-)^n]/n!$.

2.
$$\int_{|z|=1} \frac{\sin^2 z}{z^4} \, \mathrm{d}z$$
.

答案: 0.

3.
$$\int_{|z|=1} \left(z+\frac{1}{z}\right)^{2n} \frac{\mathrm{d}z}{z}$$
, 其中 $n=1,2,\cdots$.

答案: $2\pi i C_{2n}^n$.

4.
$$\int_{|z|=2} \frac{\sin(e^z)}{z} dz.$$

答案: $2\pi i \sin 1$.

$$5. \int_{|z|=2} \frac{e^z}{\cosh z} dz.$$

提示: $\pm i\pi/2$ 是奇点,将原积分化为 $z \mp i\pi/2 = \delta e^{i\theta}$ 上的积分之和,其中 δ 很小,然后作变换 $\zeta = e^z$. 第五章补充习题 10 可与本题互相印证. 答案: $4\pi i$.

6. (1)
$$\int_{|z|=1} \frac{\mathrm{d}z}{z}$$
, (2) $\int_{|z|=1} \frac{|\mathrm{d}z|}{z}$, (3) $\int_{|z|=1} \frac{\mathrm{d}z}{|z|}$, (4) $\int_{|z|=1} \left|\frac{\mathrm{d}z}{z}\right|$.

答案: $2\pi i$, 0, 0, 2π .