NLP - 문서의 표현

1. 문서의 표현

2. BoW

- 활용사례

3. TDM

4. 기타

- TF-IDF

-LSA

- 단어-동시빈도 행렬

- 단어-문맥 행렬

Document Representation

문서의 표현

문서의 표현 (Document Representation)

- 문서를 자연어처리를 위해 연산할 수 있도록 숫자로 표현하는 방법
- 문서를 벡터로 표현하는 방법

BOW

Bag of Words

BoW (Bag of Words)

- 문서 내 단어 출현 순서는 무시, 빈도수만으로 문서를 표현하는 방법

BoW 생성 방법

문서 1: 오늘 동물원에서 코끼리를 봤어

문서 2: 오늘 동물원에서 원숭이에게 사과를 줬어

Step 1. 각 토큰에 고유 인덱스 부여

token	index
오늘	0
동물원에서	1
코끼리를	2
봤어	3
원숭이에게	4
사과를	5
줬어	6

Step 2. 각 인덱스 위치에 토큰 등장 횟수를 기록

	오늘	동물원 에서	코끼리 를	봤어	원숭이 에게	사과를	줬어
문서 1	1	1	1	1	0	0	0

	오늘	동물원 에서	코끼리 를	봤어	원숭이 에게	사과를	줬어
문서 2	1	1	0	0	1	1	1

한계

- 단어의 <u>순서를 고려 하지 않음</u>
- BoW 는 Spare 함. 벡터 공간의 낭비, 연산 비효율성 초래
- <u>단어 빈도수가 중요도를 바로 의미 하지 않음.</u> 단어가 자주 등장한다고 중요한 단어는 아님.
- 전처리가 매우 중요함. 같은 의미의 다른 단어 표현이 있을 경우 다른 것으로 인식될 수 있음. (뉴스와 같이 정제된 어휘를 사용하는 매체는 좋으나, 소셜에서는 활용하기 어려움)

TDM

단어-문서 행렬

TDM (Term-Document Matrix)

- BoW 중 하나

- 문서에 등장하는 각 단어 빈도를 행렬로 표현한 것

문서 1: 동물원 코끼리

문서 2: 동물원 원숭이 바나나

문서 3: 엄마 코끼리 아기 코끼리

문서 4: 원숭이 바나나 코끼리 바나나

	동물원	코끼리	원숭이	바나나	엄마	아기
문서 1	1	1	0	0	0	0
문서 2	1	0	1	1	0	0
문서 3	0	2	0	0	1	1
문서 4	0	1	1	2	0	0

	Tweet 1	Tweet 2	Tweet 3		Tweet N
Term 1	0	0	0	0	0
Term 2	1	1	0	0	0
Term 3	1	0	0	0	0
•••	0	0	3	1	1
Term M	0	0	0	1	0

	Term 1	Term 2	Term 3		Term M
Tweet 1	0	1	1	0	0
Tweet 2	0	1	0	0	0
Tweet 3	0	0	0	3	0
	0	0	0	1	1
Tweet N	0	0	0	1	0

Term Document Matrix (TDM)

Document Term Matrix (DTM)

한계

- 단어의 <u>순서를 고려 하지 않음</u>
- <u>TDM은 Spare</u> 함. 벡터 공간의 낭비, 연산 비효율성 초래
- <u>단어 빈도수가 중요도를 바로 의미 하지 않음.</u> the와 같은 단어는 빈번하게 등장하고 TDM에서
- 중요한 단어로 판단 될 수 있음
 - → 이를 보완하기 위하여 TF-IDF를 사용

etc.

기타

TF-IDF

- TDM보다 더 정확하게 문서 비교가 가능

LSA (Latent Semantic Analysis)

- 잠재의미 분석
- DTM행렬의 특이값 분해(SVD)를 통해 문서 벡터를 표현

단어-동시빈도 행렬 (Term-Cooccurrence Matrix)

- 단어간의 동시등장(co-occurrence) 행렬

단어-문맥 행렬 (Term-Context Matrix)

- 단어-문맥 간의 동시등장(co-occurrence) 행렬
- 문맥은 사용자가 설정한 window의 크기로 결정
- 문맥 내 등장하는 단어의 빈도를 표기

		I	like	enjoy	deep	learning	NLP	flying	
X =	I	0	2	1	0	0	0	0	0]
	like	2	0	0	1	0	1	0	0
	enjoy	1	0	0	0	0	0	1	0
	deep	0	1	0	0	1	0	0	0
	learning	0	0	0	1	0	0	0	1
	NLP	0	1	0	0	0	0	0	1
	flying	0	0	1	0	0	0	0	1
		0	0	0	0	1	1	1	0]

