MATH 2023 Fall 2021 Multivariable Calculus

Written By: Ljm

Chapter 13 Application of Partial Derivatives

1 Extreme Values

Recall that in single variable calculus:

 x_1 is a relative maximum point, if $f'(x_1) = 0$ and $f''(x_1) < 0$, x_2 is a relative minimum point, if $f'(x_2) = 0$ and $f''(x_2) > 0$.

Similarly, in multi-variable calculus, the critical point is where

$$\nabla f(\mathbf{r}_0) = (f_{x_1}(\mathbf{r}_0), f_{x_2}(\mathbf{r}_0), \cdots, f_{x_n}(\mathbf{r}_0)) = \mathbf{0}$$

And, if h has a **relative extremum** at a point \mathbf{r}_0 , then \mathbf{r}_0 is a **critical point**, and $\nabla f(\mathbf{r}_0) = \mathbf{0}$. However, if \mathbf{r}_0 is a critical point, we *cannot infer* that \mathbf{r}_0 is a relative extremum. The reason is similar in single variable calculus.

Different from single variable, a critical point which is not a relative extremum can be a maximum point, minimum point, or a saddle point.

However, to classify the critical points, we need the **second derivative test**, or **D-test**.

Second Derivative Test

Suppose f(x,y) has a critical point at $\mathbf{r}_0 = (x_0, y_0)$ (i.e. $\nabla f(\mathbf{r}_0) = \mathbf{0}$) and the second partial derivative of f(x,y) are continuous in a disk with center $\mathbf{r}_0 = (x_0, y_0)$. Let

$$D = \begin{vmatrix} f_{xx}(\mathbf{r}_0) & f_{xy}(\mathbf{r}_0) \\ f_{yx}(\mathbf{r}_0) & f_{yy}(\mathbf{r}_0) \end{vmatrix} = f_{xx}(\mathbf{r}_0) f_{yy}(\mathbf{r}_0) - f_{xy}^2(\mathbf{r}_0)$$

D	$f_{xx}\left(\mathbf{r}_{0}\right) \text{ or } f_{yy}\left(\mathbf{r}_{0}\right)$	nature of \mathbf{r}_0
> 0	> 0	relative minimum
> 0	< 0	relative maximum
< 0		saddle point
= 0		no conclusion can be drawn

I'd like to omit the proof of D-Test here.

This example shows basic use of D-Test.

[Example.] Find the relative minima and maxima of $f(x,y) = x^3 + y^3 - 3x - 12y + 20$.

$$f_x = 3x^2 - 3$$
 and $f_y = 3y^2 - 12$

[Solution.] For critical points, $f_x = f_y = 0 \implies x = \pm 1, y = \pm 2.$

(1,2),(-1,2),(1,-2),(-1,-2) are critical points.

To apply D-Test, compute: $f_{xx} = 6x$, $f_{yy} = 6y$, $f_{xy} = 0$, hence $D = f_{xx} \cdot f_{yy} - (f_{xy})^2 = 36xy$

Point	f_{xx}	f_{yy}	f_{xy}	D	Type
(1,2)	6	12	0	72	min
(-1, 2)	-6	12	0	-72	saddle
(1, -2)	6	-12	0	-72	saddle
(-1, -2)	-6	-12	0	72	max

This example shows how to find extrema on a closed and bounded region.

[Example.] Find the absolute extrema of the function

$$z = f(x, y) = xy - x - 3y$$

on the *closed* and *bounded* set R, where R is the triangular region with vertices (0,0),(0,4) and (5,0).

[Solution.]
$$f_x = y - 1, f_y = x - 3, f_{xy} = f_{yx} = 1, f_{xx} = f_{yy} = 0, D = -1$$

For critical points, $\nabla f = (f_x, f_y) = (0, 0) \Rightarrow x = 3, y = 1.$

This point is inside the domain. But we still need to find possible extreme points on the boundary of domain.

(1) Along OA:, $\mathbf{r}_0=(0,0)$, $\mathbf{r}_1=(5,0)$, so the parametric representation of line OA is:

$$\mathbf{r}(t) = (1-t)\mathbf{r}_0 + t\mathbf{r}_1, = (5t, 0), \ t \in [0, 1]$$

hence
$$z = f(\mathbf{r}(t)) = -5t, \ t \in [0, 1]$$

So along OA, the possible extreme points are (0,0) and (5,0).

(2) Along OB:, similarly, $\mathbf{r}(t) = (0, 4t), t \in [0, 1], z = f(\mathbf{r}) = -12t$,

So along OB, the possible extreme points are (0,0) and (0,4).

(3) Along
$$AB : \mathbf{r}(t) = (5 - 5t, 4t), \ t \in [0, 1], \ z = -20t^2 + 13t - 5, \ t \in [0, 1]$$

There is one critical point on AB, when dz/dx=0, at $\left(\frac{27}{8},\frac{13}{10}\right)$.

Then we compute the value of all possible extremum points,

(x,y)	f(x,y)
(3,1)	-3
	$-\frac{231}{80}$
(0,0)	0
(5,0)	-5
(0,4)	-12

Therefore, absolute maximum value is 0 which occurs at (0,0), absolute minimum value is -12 which occurs at (0,4).

This example converts the problem to max/min problem.

[Example.] Find the points on the surface $z^2 = xy + 1$ that are closest to the origin.

[Solution.] $d^2 = (x-0)^2 + (y-0)^2 = x^2 + y^2 + xy + 1 = f(x,y)$, only need to minimize this function.

2 Lagrange multipliers

Motivation: sometimes we want to maximize/minimize f(x,y) subject to g(x,y)=k.

How to find the maximum or minimum value?

1. Find all values of ${\bf r}$ and λ such that

$$\nabla f(\mathbf{r}) = \lambda \nabla g(\mathbf{r})$$

and

$$g(\mathbf{r}) = k$$

2. Evaluate f at all the points \mathbf{r} that arise from step (1). The largest (smallest) of these values is the maximum (min) value of f.

Remark: Lagrange's method only finds critical points, it *does not tell* whether the function is maximized or minimized.