Semester: V						
FINITE AUTOMATA AND FORMAL LANGUAGES						
(Theory)						
Course Code	:	CS354TA		CIE Marks	:	100
Credits: L:T:P	:	3:0:0		SEE Marks	:	100
Total Hours	:	40L		SEE Duration	:	3 Hrs

- 1. Find a grammar that generates L={ $a^n b^{n+1}$: $n \ge 0$ }
- 2. Find a grammar that generates the language $L = \{w: n_a(w) = n_b(w)\}$
- 3. Consider the grammar $G = (\{A,S\}, \{a,b\}, S, P_1)$ with P_1 consisting of the production $S \rightarrow aAb \mid \lambda$, $A \rightarrow aAb \mid$. Find the language generated by this grammar.
- 4. Find grammars for $\Sigma = \{a,b\}$ that generate the sets of (a) all strings with exactly one a, (b) all strings with at least one a.
- 5. Find grammars for the following languages on $\Sigma = \{0\}$. (a) L= $\{w: |w| \mod 3 = 0\}$, (b) L = $\{w: |w| \mod 3 > 0\}$.
- 6. Convert the following NFA to a DFA

7. Convert to a DFA the following NFA

8. Consider the following ε -NFA.(a) Compute the ε -closure of each state. (b) Convert the automaton to a DFA.

9. Do same as (8) for

- 10. Let L be the language accepted by a NFA M_N . Show that there exists a DFA M_D such that $L(M_N) = L(M_D)$.
- 11. Define a regular expression(RE). Write RE for the language consisting of the set of strings over alphabet {a,b,c} containing at least one a & at least one b.

- 12. Write REs for the following languages over {0,1} (a) the set of all strings of 0's & 1's such that every pair of adjacent 0's appears before any pair of adjacent 1's. (b) All strings ending in 01.
- 13. Find the language generated by the following REs (a) $r = (a+b)^*(a+bb)$ (b) $r = (aa)^*(bb)^*b$
- 14. Show that if r is a RE then there exists a finite automata which accepts L(r).
- 15. Define regular language. If L is a regular language then prove that there exists a RE r such that L = L(r).
- 16. Transition table for a DFA is give below

- (a) give all the REs $R_{ij}^{(0)}$ (b) Give all the REs $R_{ij}^{(1)}$. Simplify the expressions as much as possible. (c) Construct the transition diagram for the DFA & give a RE for its language by eliminating state q.
- 28. Convert the following DFA to a RE, using the state elimination technique

δ	0	1
→* p	S	p
q	p	S
r	r	q
S	a	r

- 29. Convert the following REs to NFA's with ε -transitions. (a) 01^* , (b) $00(0+1)^*$.
- 30. Write a note on applications of REs.
- 31. State and prove Pumping Lemma(PL) for regular languages.
- 32. Prove that following languages are not regular using PL. (a) $\{0^n1^n : n \ge 1\}$ (b) $\{0^n10^n : n \ge 1\}$.
- 33. Using PL show that the following languages are not regular. (a) $\{0^n : n \text{ is a perfect square}\}\ (b) \{0^n1^m : m \ge n\}.$
 - 34. If L & M are regular languages then show that LUM is also regular language.
- 35. If L is a regular language over alphabet Σ then prove that Σ^* L is also a regular language.
 - 36. If L & M are regular languages then prove that $L \cap M$ is also regular.
 - 37. Show that L-M is regular language if L & M are regular.
 - 38. If L is a regular language prove that L^{R} is also regular.
- 39. If L is a regular language over alphabet Σ & h is a homomorphism on Σ then prove that h(L) is also regular.
- 40. Let h be the homomorphism from the alphabet $\{0,1,2\}$ to the alphabet $\{a,b\}$ defined by h(0) = a, h(1) = ab, & h(2) = ba. (a) What is h(0120), h(21120)? (b) If L is the language $L(01^*2)$, what is h(L)? (c) If L is the language $L(a(ba)^*)$ what is $h^{-1}(L)$?
- 41. Define equivalence of states. What are distinguishable & indistinguishable states.
 - 42. Minimize the states of the following DFA using table-filling algorithm.

$$\begin{array}{cccc} \delta & & 0 & & 1 \\ \rightarrow A & & B & & A \\ B & & A & & C \end{array}$$

C	D	В
*D	D	Α
E	D	F
F	G	E
G	F	G
Н	G	D

43. Do same as (42) for the following DFA

δ	0	1
$\rightarrow A$	В	Е
В	C	F
*C	D	Н
D	E	Н
E	F	I
* F	G	В
G	Н	В
Н	I	C
*I	A	Е

- 44. Define CFG, leftmost derivation, rightmost derivation, language of a grammar, sentential form, derivation tree, parse tree.
- 45. Design CFG for the following languages (a) $\{0^n1^n : n\ge 1\}$ (b) $\{a^ib^jc^k : i\ne j \text{ or } j\ne k\}$.
- 46. Consider the grammar G with productions S \rightarrow A | B, A \rightarrow 0A | ϵ , B \rightarrow 0B | 1B | ϵ . Give leftmost & rightmost derivations of the following strings (a) 00101 (b) 1001.
- 47. Given the following CFG $E \rightarrow E+T \mid T$, $T \rightarrow T*F \mid F$, $F \rightarrow (E) \mid a \mid b \mid c$ draw parse tree for the following sentences (a) (a+b)*c (b) (a)+b*c.
 - 48. Define ambiguous grammar & inherent ambiguity in a grammar with an example.
 - 49. Show that the following grammar ambiguous S→AB | aaB, A→a | Aa, B→b. Construct an unambiguous grammar equivalent to above grammar.
 - 50. Show that the following grammar is ambiguous. Also obtain unambiguous grammar for the following grammar $E \rightarrow E + E \mid E + E \mid E \mid E \mid E \mid E \mid E \mid a \mid b$.
 - 51. Let G be the grammar S→aA | a | SS, A→SbA | ba. For the string aabaa find (a) leftmost derivation (b) rightmost derivation (c) derivation tree.
 - 52. Define CNF & GNF, Useless productions, Unit productions, λ-productions.
 - 53. Eliminate all useless productions from the grammar $S \rightarrow aS \mid AB, A \rightarrow bA, B \rightarrow AA$.
 - 54. Eliminate all useless productions from the grammar S→AB | CA, A→a, B→BC | AB, C→aB | b.
 - 55. Eliminate useless productions from S \rightarrow a | aA | B | C, A \rightarrow aB | λ , B \rightarrow Aa, C \rightarrow cCD, D \rightarrow ddd.
 - 56. Eliminate all λ -productions from S \rightarrow AaB | aaB, A $\rightarrow\lambda$, B \rightarrow bbA | λ .
 - 57. Find a CFG without λ -productions equivalent to the grammar defined by S \rightarrow ABaC, A \rightarrow BC, B \rightarrow b | λ , C \rightarrow D | λ , D \rightarrow d.
 - 58. Eliminate all unit productions from the grammar S→Aa | B, B→A | bb, A→a | bc | B.
 - 59. Eliminate all unit productions from the grammar $E \rightarrow T \mid E+T, T \rightarrow F \mid T*F, F \rightarrow I \mid (E), I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1.$

- 60. Put the grammar with productions given below into CNF S \rightarrow ASB | ϵ , A \rightarrow aAS | a, B \rightarrow SbS | A | bb.
- 61. Convert the following grammar into CNF S \rightarrow 0A0 | 1B1 | BB, A \rightarrow C, B \rightarrow S | A, C \rightarrow S | ϵ .
- 62. Transform the grammar with productions S \rightarrow abAB, A \rightarrow bAB | ϵ , B \rightarrow Baa | A | ϵ into CNF.
- 63. Convert the following grammar into GNF S \rightarrow AA | 0, A \rightarrow SS | 1.
- 64. Convert the grammar S→ab | aS | aaS into GNF.
- 65. Convert the grammar $S \rightarrow ABb \mid a, A \rightarrow aaA \mid B, B \rightarrow bAb$ into GNF.
- 66. State & prove Pumping Lemma(PL) for Context Free Languages(CFL).
- 67. Using CFL PL show that $\{a^ib^jc^k \mid i \le j \le k\}$ is not CFL.
- 68. Using CFL PL show that $\{0^i1^j \mid j=i^2\}$ is not CFL.
- 69. Show that CFL's are closed under union & concatenation.
- 70. Prove that CFL's are closed under closure & homomorphism.
- 71. Show that CFL's are not closed under intersection.
- 72. Define PDA. Design a PDA to accept the language $L = \{ ww^R \mid w \text{ is a string consisting of 0's and 1's} \}$. Draw transition diagram.
- 73. Define NPDA. Design a PDA to accept the language $L = \{ a^i b^j c^k : i+j = k, i \ge 0, j \ge 0 \}$. Draw the transition diagram.
- 74. Design an NPDA for L = $\{a^nb^{2n} : n \ge 0\}$.
- 75. Obtain a PDA to accept the language $L = \{ a^n b^n \mid n \ge 0 \}$ by a final state. Give the graphical representation for PDA obtained. Show the moves made by the PDA for the string aaabbb.
- 76. For any CFL L, show that there exists an NPDA M such that L = L(M).
- 77. Construct a PDA that accepts the language generated by grammar with productions S→aSbb | a,
- 78. Construct an NPDA that accepts the language generated by the grammar $S\rightarrow aA$, $A\rightarrow aABC \mid bB \mid a, B\rightarrow b, C\rightarrow c$.
- 79. If L = L(M) for some NPDA M then show that L is a CFL.
- 80. Define Turing Machine(TM). Design a TM that accepts the strings of the form 0ⁿ1ⁿ. Write transition diagram.
- 81. Design a TM that accepts the language $L = \{ a^n b^n c^n : n \ge 1 \}$. Give graphical representation of the TM.
- 82. Do the same as Q(81) for $L = \{ww^R : w \text{ is any string of 0's \& 1's}\}.$
- 83. Define counter machines. Describe a counter machine that accepts the language $\{0^n1^m: 1 \le m \le n\}$.
- 84. Prove that every language accepted by a multitape TM is recursively enumerable.
- 85. Write short notes on (a) Multitape TM, (b) Nondeterministic TM.
- 86. Explain the general structure of multitape & multidimensional TMs, show that those are equivalent to standard TM.
- 87. Explain the programming techniques for TMs.
- 88. Explain the techniques for simulating a TM by computer.
- 89. Explain the method for simulating computer by a TM.
- 90. Write short notes on (a) TMs with semi-infinite tapes (b) Multistack machines.
- 91. What is meant by halting problem of TM? Explain the blank tape halting problem.

- 92. Define recursively enumerable language, recursive language & universal languages.
- 93. Show that if L is a recursive language so its complement.
- 94. Define Post's correspondence Problem(PCP) & the modified PCP
- 95. Write notes on (a) PCP (b) Halting problem
- 96. Write notes on (a) Application of Finite Automata (b) Applications of CFG's
- 97. Write notes on (a) Homomorphism (b) Multitape TMs.
- 98. Solve the PCP given below

	List A	List B
i	\mathbf{W}_{i}	\mathbf{X}_{i}
1	10	101
2	011	11
3	101	011

99. Solve the PCP given below

	List A	List E
i	\mathbf{W}_{i}	\mathbf{X}_{i}
1	11	111
2	100	001
3	111	11

100. Solve the PCP given below

Tiet A List B

	List A	List E
i	\mathbf{W}_{i}	$\mathbf{X}_{\mathbf{i}}$
1	1	111
2	10111	10
3	10	0