Session 12: Gradient Descent

Optimization and Computational Linear Algebra for Data Science

BYOD & VANDENBHERGE-CHAPS FRANCIS BACH -> CHAPS.

Marylou Gabrié (based on material by Léo Miolane)

Contents

- 1. Gradient descent
- 2. Convergence analysis for convex functions
- 3. Improvements

Clarification about saddle points

A critical is always either a local minimum or a local maximum, a saddle point.

Definitions:

- A critical point x^* is a local extrema for a small $\delta > 0$ for any $x \in B(x^*, \delta)$, f(x) is bigger/smaller than $f(x^*)$.
- If a critical point not a local extrema, then it is a saddle point.

Caracterizations (sufficient but not necessary conditions):

Examine Hessian $H_f(x^*)$:

- is positive definite ⇒ local minimum.
- has strictly positive and strictly negative eigenvalues ⇒ saddle

1. Gradient descent

Gradient descent algorithm

Goal: minimize a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$.

Starting from a point $x_0 \in \mathbb{R}^n$, perform the updates:

$$x_{t+1} = x_t - \alpha_t \nabla f(x_t).$$

$$d_t = \int_{\text{degring rate}} d_t \in \mathbb{R}$$

$$d_t = \int_{\text{degring rate}} d_t = \int_{\text{degring rate$$

1. Gradient descent

Convex vs non-convex

Numerical observations

1. Gradient descent

Numerical observations

- If the step size α is small enough, gradient descent converges to x^* **but** this may take a while.
- If the step size α is large, gradient descent moves faster **but** it may oscilate or even diverge.
- The convergence is faster when the eigenvalues of the Hessian

 H_f are of close to each other.

2. Convergence analysis for convex functions

Smoothness and strong convexity

Definition

Given $L, \mu > 0$, we say that a twice-differentiable convex function $f: \mathbb{R}^n \to \mathbb{R}$ is

- L-smooth if for all $x \in \mathbb{R}^n$, $\lambda_{\max}(H_f(x)) \leq L$.
- μ -strongly convex if for all $x \in \mathbb{R}^n$, $\lambda_{\min}(H_f(x)) \geq \mu$.

$$f(x) + \nabla f(x) \cdot h + \frac{4||h||^2}{2} \int f(x+h) \left(f(x) + \nabla f(x) \cdot h + \frac{1}{2} ||h||^2 \right)$$

Speed for L-smooth functions

Proposition

Assume that f is convex, L-smooth and admits a global minimizer $x^\star \in \mathbb{R}^n$. Then, gradient descent with constant step size $\alpha_t = 1/L$ verifies: $f(x_t) - f(x^\star) \leq \frac{2L \|x_0 - x^\star\|^2}{t+4}. = O\left(\frac{1}{t}\right)$

$$f(x_t) - f(x^*) \le \frac{2L\|x_0 - x^*\|^2}{t + 4} \cdot = O\left(\frac{1}{t}\right)$$

how close in terms of function value we are often t step of GD

Why step
$$\alpha_t = \frac{1}{L}$$
: $f(n_t + h) \leq f(n_t) + \nabla f(n_t) \cdot h + \frac{L}{2} ||h||^2$

$$h^* = -\frac{1}{L} \nabla f(2t)$$

L-smooth + μ -strongly cvx functions

Theorem

Assume that f is convex, L-smooth and μ -strongly convex. Then, gradient descent with constant step size $\alpha_t = 1/L$ verifies:

$$f(x_t) - f(x^*) \leq \left(1 - \frac{\mu}{L}\right)^t (f(x_0) - f(x^*)). = O(e^{-y_t t})$$
distance to solution at
$$1/\kappa \qquad \text{inchialization}.$$

Remark:
$$K = \frac{L}{\mu}$$
 > $\frac{max}{n} \lambda max Hg(n)$ > λ . Constition Number

I speed of convergence if K7

Proof

Recall that
$$f(n+h) \leq f(x) + \nabla f(n) \cdot h + \frac{1}{2} \|h\|^2$$

Apply this for: $n = x_1$ and $h = -\frac{1}{L} \nabla f(n_1)$
 $\Rightarrow f(n_{1+1}) \leq f(n_1) - \frac{1}{2L} \|\nabla f(n_1)\|^2$

By strong convexity: $f(x_1) - f(x^*) \leq \frac{1}{2L} \|\nabla f(x_1)\|^2$

Plant $f(x_1) = f(x_1) + \frac{1}{2L} \|\nabla f(x_1)\|^2$
 $f(x_1) = f(x_1) + \frac{1}{2L} \|\nabla f(x_1)\|^2$
 $f(x_1) = f(x_1) + \frac{1}{2L} \|\nabla f(x_1)\|^2$
 $f(x_1) = f(x_1) + \frac{1}{2L} \|\nabla f(x_1)\|^2 \leq \frac{1}{2L} \|\nabla f(x_1) - f(x_1)\|^2$
 $f(x_1) = f(x_1) + \frac{1}{2L} \|\nabla f(x_1)\|^2 \leq \frac{1}{2L} \|\nabla f(x_1) - f(x_1)\|^2$

Convergence analysis for convex functions

 $f(x_1) = f(x_1) + \frac{1}{2L} \|\nabla f(x_1)\|^2 \leq \frac{1}{2L} \|\nabla f(x_1) - f(x_1)\|^2$

Convergence analysis for convex functions

2. Convergence analysis for convex functions

Choosing the step size

Backtracking line search

decrease by at least 19, 0 f (mt) 1)

Start with $\alpha = 1$ and while

$$f(x_t - \alpha \nabla f(x_t)) \ge f(x_t) - \frac{\alpha}{2} \|\nabla f(x_t)\|^2$$

update let's say $\alpha = 0.8\alpha$.

2. Convergence analysis for convex functions

3. Improvements

Issues with gradient descent

When the condition number $\kappa=L/\mu$ is large:

1. the norm $\|\nabla f(x)\|$ is sometimes too small.

- - \rightarrow gradient descent steps are too small.

- 2. The vector $-\nabla f(x)$ does « not really » points towards the minimizer x^{\star} .
 - \rightarrow gradient descent oscilates.

Gradient descent + momentum

Idea: mimic the trajectory of an « heavy ball » that goes down the slope:

Newton's method

Assume that f is μ -strongly convex and L-smooth.

Newton's method perform the updates:

$$x_{t+1} = x_t - H_f(x_t)^{-1} \nabla f(x_t).$$

IDEA: Optimizing the learning rate by considering the newnot order Taylor expansion.

$$f(n_{t+1}) = f(n_t + h) = f(n_t) + h.\nabla f(n_t) + \frac{1}{2}h^T H_g(n_t) h.$$

= Q(h) HQ(h) = Hg(n) is PSD.

$$= h = -Hg^{-1}(n_t)\nabla f(n_t).$$

Graphical interpretation

Advantages and drawbacks

Extremly fast there exists $C, \rho > 0$ such that

$$||x_t - x^*||^2 < Ce^{-\rho 2^t}.$$

- Computationally expensive: requires $\sim n^3$ operations to compute the inverse of the $n \times n$ matrix $H_f(x_t)$.
- In non-convex setting, Newton's method gets attracted by any critical points (which could be saddle points/maximas...).

Quasi-Newton methods: try to approximate $H_f(\bar{x_t})$ by matrices B_t that are easier to compute.

Questio	ns?		

Questio	ns?		