



# ICPC Gruppe 2

Organisatorisches/Grundlagen Elias Schaut, Dennis Kobert, Niklas Kniep, Lam Vo, Ilia Bozhinov | 25.10.2018



### **Termine**



- Vorlesung und Übung
  - Mittwoch 9:45 11:15 Vorlesung
  - Freitag 9:45 11:15 Vorlesung/Übung
- Tutorium
  - Donnerstags, 15:45 17:15
  - 50.34 Informatikbau, -107
- Übungsblätter
  - Jede Woche
  - Ausgabe Mittwochs, Abgabe Freitags bis 12:30 eine Woche drauf
- Klausur
  - Termin am 19.03.2018 11:00-13:00



# Übungsschein



- min. 50% aller Punkte auf Übungsblättern richtig
- Rückgabe im Tutorium
- Bestehen ist keine Voraussetzung für die Klausur, aber fürs Modul!
- Gemeinsames Abgeben, Abschreiben verboten
- Übungsblätter und später auch Musterlösungen im ILIAS

Relationen und Abbildungen

#### **Tutorium**



- Alle Tutorienfolien im Ilias (nach dem Tutorium)
- Bei Fragen:uxkln@student.kit.edu
- Oder einfach hier
- Keine Anwesenheitspflicht
- Möglichkeit andere Tutorien zu besuchen

### Signale und Nachrichten



- Objekt: 101
  - Eins null eins oder 101 als Zahl oder 5 in binär oder zwei merkwürdige Striche mit einem Kreis dazwischen?
  - Vom Kontext abhängig.
  - Zunächst einfach ein konkretes Objekt.



Elias Schaut, Dennis Kobert, Niklas Kniep, Lam Vo, Ilia Bozhinov - Grundbegriffe der Informatik

Relationen und Abbildungen

### Signale und Nachrichten



- Signal
  - Physikalische Veränderung
  - Lässt sich verschieden interpretieren.
  - Beispiele:
    - Notfallalarm in Serverraum



- Für Besucher nur schönes Leuchten
- Für Security die Information, zu kommen
- Für Techniker die Information, Ausrüstung zu holen
- Nachricht : Objekt wie oben, das von Signal unabhängig ist
  - Roter Notfallalarm ist ein anderes Signal als ein blauer Notfallalarm, aber vielleicht dieselbe Nachricht.



Relationen und Abbildungen

### Signale und Nachrichten



- Der interessante Teil: Informationen
- Bedeutung einer Nachricht
- Der vorher fehlende Kontext.
- Im obigen Beispiel:
  - Rote Alarmleuchte ist ein Signal (blaue Signalleuchte in Raum nebendran vielleicht auch)
  - "Alarm": Nachricht
  - Information: Security soll herkommen, Techniker sollen das Werkzeug bereit halten, Besucher sollten Platz machen.



### Mengen



Erster wirklich wichtiger Teil.



Elias Schaut, Dennis Kobert, Niklas Kniep, Lam Vo, Ilia Bozhinov - Grundbegriffe der Informatik

Relationen und Abbildungen

### Mengen



### Definition: Mengen

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden) zu einem Ganzen."

- Beispiel: {a, b, c, d} =: A, {a, c, 4} =: B, {10, 11} =: C
- lacksquare Das Objekt c ist in A enthalten :  $c \in A$  ,  $c \in B$  , c 
  otin C
- Reihenfolge gleich :  $\{a, b\} = \{b, a\}$
- Elemente doppelt?  $\{a, a, b, a\} = \{a, b\}$



### Mehr über Mengen



- Kardinalität oder Größe : Die Anzahl der Elemente der Menge
  - $A := \{a, b, c\} . |A| = 3$
  - $B := \{c, d\} \cdot |B| = 2$
  - Was ist |{1,2,3,2}|? 3!
  - Was ist |∅|? 0

#### Leere Menge

Die Menge, die nichts enthält, nennen wir die leere Menge , und schreiben sie als  $\{\}$  oder  $\emptyset.$ 

Was ist  $|\{\emptyset\}|$ ? 1!  $\{\emptyset\}$  enthält eine leere Menge, die selbst ein Element ist.



### Mehr über Mengen



Seien  $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$ 

- Teilmenge :  $A \subseteq B$  , also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- **Echte Teilmenge**:  $A \subset B$  genau dann, wenn  $A \subseteq B$  und  $A \neq B$ .
  - Beispiele:  $B \subseteq A$ , sogar  $B \subseteq A$ .  $C \subseteq B$  und  $B \subseteq C$ , aber  $C \not\subset B$  und  $B \not\subset C$ .
- Schnittmenge :  $A \cap B = \{b, c\}$ .  $A \cap B$  enthält *genau* die Elemente, die in A *und* in B sind.
- Vereinigungsmenge :  $A \cup D = \{a, b, c, d\}$ .  $A \cup B$  enthält *genau* die Elemente, die in *A oder* in *B* sind.
- Mengendifferenz:  $A \setminus B = \{a\}$ , also alle Elemente in A, die nicht in B sind.



# Rechenregeln für Mengen



- $A \setminus B = \emptyset$  bedeutet das gleiche wie  $A \subseteq B$
- $M \cup \emptyset = M$
- $M \cap \emptyset = \emptyset$
- $A \cup (B \cup C) = (A \cup B) \cup C$  (analog für Durchschnitt)
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$  (analog Vertauschen von  $\cup$  und  $\cap$ )
- $|A \cup B| = |A| + |B| |A \cap B|$



### Potenzmenge



### Potenzmenge

Die Potenzmenge  $2^M$  einer Menge M enthält genau alle Mengen, die Teilmenge von M sind.

Was bedeutet das allgemein?

- $M \in 2^M$
- $\emptyset \in 2^M$
- Konkretes Beispiel: Was ist  $2^M$  mit  $M = \{0, 1\}$ ?
  - Natürlich  $\emptyset \in 2^M$  und  $\{0,1\} \in 2^M$ .
  - $\{0\} \in 2^M \text{ und } \{1\} \in 2^M$ .
  - Weitere? Nein, diese vier Mengen sind alle möglichen Teilmengen.
  - $\Rightarrow 2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\}.$



### Potenzmenge



- Also 2<sup>{{},{0},{1},{0,1}}</sup>.
- Natürlich  $\emptyset \in 2^M$  und  $2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\} \in 2^{2^M}$ .

```
\begin{aligned} 2^{2^M} &= \{ \\ \{ \}, \\ \{ \{ \} \}, \{ \{ 0 \} \}, \{ \{ 1 \} \}, \{ \{ 0, 1 \} \}, \\ \{ \{ \}, \{ 0 \} \}, \{ \{ \}, \{ 1 \} \}, \{ \{ \}, \{ 0, 1 \} \}, \{ \{ 0 \}, \{ 1 \} \}, \\ \{ \{ 0 \}, \{ 0, 1 \} \}, \{ \{ 1 \}, \{ 0, 1 \} \}, \{ \{ \}, \{ 1 \}, \{ 0, 1 \} \}, \{ \{ 0 \}, \{ 1 \}, \{ 0, 1 \} \}, \\ \{ \{ \}, \{ 0 \}, \{ 1 \}, \{ 0, 1 \} \} \\ \} \end{aligned}
```



### **Alphabete**



#### **Alphabet**

Ein Alphabet ist eine *endliche*, *nichtleere* Menge von Zeichen.

Was davon sind Alphabete?  $\{d, 34, \pi, \%\}$ ,  $\{a, b, c, \dots, y, z\}$ ,  $\emptyset$ ,  $\mathbb{N}$ .

- $\{d, 34, \pi, \%\}$  und  $\{a, b, c, \dots, y, z\}$  sind Alphabete.
- Ø ist leer und damit kein Alphabet.
- $\mathbb{N} = \{1, 2, 3, ...\}$  enthält alle natürlichen Zahlen und ist damit nicht endlich, also kein Alphabet.
- {0,1} ist das Alphabet, das alle Binärzahlen enthält.
- $\{\cdot,+,-,/\}=:R$  ist ein Alphabet von Rechenzeichen.  $R\cup\{0,1,\ldots,9\}$  ist ein Alphabet, das ein Taschenrechner als Eingabealphabet benutzen könnte.



### **Paare und Tupel**



#### Paar

Ein Paar ist eine geordnete Menge der Kardinalität 2.

Schreibweise mit runden Klammern ().

- Beispiel:  $(a, 4) \neq (4, a)$ 
  - Beispiel für eine Menge aus Tupeln: {(StarWars, Sci Fi), (HarryPotter, Fantasy), (FightClub, Thriller)}



# **Tupel**



#### Tupel

Ein Tupel ist eine geordnete Menge. Konkret ist ein n-Tupel ein Tupel der Kardinalität n.

Also wie ein Paar, nur mit beliebiger Kardinalität. Ein Paar ist spezifisch ein 2-Tupel.

Beispiel:  $(4tb, 512gb, 128gb, 4mb) \neq (512gb, 4mb, 4tb, 128gb)$ .



#### Kartesisches Produkt



Zwei Mengen:  $A := \{a, b, c\}$  und  $B := \{1, 2, 3\}$ .

Wir wollen alle Tupel mit erstem Element aus A und zweiten Element aus B.

$$\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),(c,1),(c,2),(c,3)\}$$
  
=  $A \times B$ 

#### Kartesisches Produkt von zwei Mengen

Zu zwei Mengen A und B ist das kartesische Produkt definiert als Menge aller Paare (a, b) mit  $a \in A$  und  $b \in B$ .



#### Kartesisches Produkt



### Kartesisches Produkt von zwei Mengen

Zu zwei Mengen A und B ist das kartesische Produkt  $A \times B$  definiert als Menge aller Paare (a, b) mit  $a \in A$  und  $b \in B$ .

### Kartesisches Produkt von n Mengen

Zu n Mengen  $M_1, M_2, \ldots, M_n$  ist das Kreuzprodukt  $M_1 \times M_2 \times \cdots \times M_n$  definiert als Menge aller n-Tupel  $(e_1, e_2, \ldots, e_n)$  mit  $e_1 \in M_1, e_2 \in M_2, \ldots, e_n \in M_n$ .

### Mengenpotenz

$$\underbrace{A\times A\times \cdots \times A}=A^{n}.$$

n× mal



# Kartesisches Produkt: Beispiele



### Kartesisches Produkt von zwei Mengen

Zu zwei Mengen A und B ist das kartesische Produkt  $A \times B$  definiert als Menge aller Paare (a, b) mit  $a \in A$  und  $b \in B$ .

$$A := \{a, b\}, B := \{1, 2\}. A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2)\}.$$



Elias Schaut, Dennis Kobert, Niklas Kniep, Lam Vo, Ilia Bozhinov - Grundbegriffe der Informatik

Relationen und Abbildungen

# Kartesisches Produkt: Beispiele



### Kartesisches Produkt von n Mengen

Zu n Mengen  $M_1, M_2, \ldots, M_n$  ist das kartesische Produkt  $M_1 \times M_2 \times \cdots \times M_n$  definiert als Menge aller n-Tupel  $(e_1, e_2, \ldots, e_n)$  mit  $e_1 \in M_1, e_2 \in M_2, \ldots, e_n \in M_n$ .

$$A := \{a, b\}, B := \{1, 2\}, C := \{\omega\}. A \times B \times C$$
  
=  $\{(a, 1, \omega), (a, 2, \omega), (b, 1, \omega), (b, 2, \omega)\}.$ 



Elias Schaut, Dennis Kobert, Niklas Kniep, Lam Vo, Ilia Bozhinov - Grundbegriffe der Informatik

Relationen und Abbildungen

# Kartesisches Produkt: Beispiele



### Mengenpotenz

$$\underbrace{A \times A \times \cdots \times A}_{nmal} = A^n.$$

- $A := \{a, b\}. A^2 = \{(a, b), (b, a), (a, a), (b, b)\}$  $A^3 = \{(a, a, a), (a, a, b), (a, b, b), \dots\}.$
- A beliebige Menge.  $A^0$ ? =  $\emptyset$
- Achtung!  $2^M \neq M^2$ . Potenzmengen nicht mit Mengenpotenz verwechseln!



#### Relation



#### Binäre Relation

Eine binäre Relation auf zwei Mengen A und B ist eine Menge  $R \subseteq A \times B$ .

- Für die Mengen  $M_{Filme} = \{StarWars, HarryPotter, FightClub\},$  $M_{Genre} = \{Sci - Fi, Fantasy, Thriller\}$  sind folgendes mögliche Relationen:
  - {(StarWars, Sci − Fi), (HarryPotter, Fantasy), (FightClub, Thriller)}
  - $\qquad \qquad \{(\textit{StarWars}, \textit{Sci} \textit{Fi}), (\textit{FightClub}, \textit{Thriller}) \\$
  - Ø
- "Kleinergleichrelation" auf  $M = \{1, 2, 3\}$ :  $R_{\leq} = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\} \subseteq M \times M$



#### Relation



#### Binäre Relation

Eine binäre Relation auf zwei Mengen A und B ist eine Menge  $R \subseteq A \times B$ .

#### Ternäre Relation

Eine ternäre Relation auf drei Mengen A, B und C ist eine Menge  $R \subseteq A \times B \times C$ .

#### n-äre Relation

Eine *n*-äre Relation auf *n* Mengen  $M_1$ ,  $M_2$  ...  $M_n$  ist eine Menge  $R \subseteq M_1 \times M_2 \times \cdots \times M_n$ .



25.10.2018

#### Linkstotalität



#### Linkstotale Relation

Eine Relation  $R \subseteq A \times B$  heißt linkstotal , wenn für jedes  $a \in A$  ein  $b \in B$  existiert mit  $(a, b) \in R$ .

Die linke Seite der Relation ist also "total" aufgefüllt.





#### Rechtstotalität



#### Rechtstotale Relation

Eine Relation  $R \subseteq A \times B$  heißt rechtstotal, wenn für jedes  $b \in B$  ein  $a \in A$ existiert mit  $(a, b) \in R$ .

Die rechte Seite der Relation ist also "total" aufgefüllt.

Wenn die Relation zusätzlich eine Abbildung ist, heißt diese dann surjektiv.





### Linkseindeutigkeit



### Linkseindeutige Relation

Eine Relation  $R \subseteq A \times B$  heißt linkseindeutig, wenn für zwei beliebige Elemente  $(a, \alpha) \in R$ ,  $(b, \beta) \in R$  aus der Relation R gilt: wenn  $a \neq b$ , dann gilt auch  $\alpha \neq \beta$ .

Also: Keine zwei Elemente der linken Seite der Relation haben dasselbe rechte Element.

Angenommen,  $a \neq b$  und  $\alpha = \beta$ .  $\Rightarrow$  offenbar nicht linkseindeutig. Wenn die Relation zusätzlich eine Abbildung ist, heißt diese dann injektiv.





27/31

### Rechtseindeutig



#### Rechtseindeutige Relation

Eine Relation  $R \subseteq A \times B$  heißt rechtseindeutig , wenn für zwei beliebige Elemente  $(a, \alpha) \in R, (b, \beta) \in R$  aus der Relation R gilt: wenn  $\alpha \neq \beta$ , dann gilt auch  $a \neq b$ .

Also: Keine zwei Elemente der rechten Seite der Relation haben dasselbe linke Element.





# **Abbildung**



#### **Abbildung**

Eine Relation *R* heißt eine Abbildung, wenn sie linkstotal *und* rechtseindeutig sind.

- Injektive Funktion: linkstotal, rechtseindeutig, linkseindeutig
- Surjektive Funktion: linkstotal, rechtseindeutig, rechtstotal

#### Bijektivität

Eine Relation heißt bijektiv, wenn sie injektiv und surjektiv ist.

Damit ist sie linkstotal und rechtseindeutig (weil es eine Abbildung ist) und linkseindeutig (injektiv) und rechtstotal (surjektiv).

Tolle Eigenschaft: Für jedes Element  $(a, b) \in R$  der bijektiven Relation R ist  $jedem\ a\ genau\ ein\ b\ zugeordnet$ .



# Abbildungen Schreibweise



Seien  $A = B = \mathbb{R}$ ,  $f \subseteq A \times B$ . Wir suchen Relation, die für jedes  $a \in A$  ein Element  $(a, b) \in f$  enthält mit  $b = a^2$ .

$$f = \{(0,0), (0.1,0.01), (2,4), \dots\}$$

Unendlich viele Elemente, und unmöglich alle zu nennen.

(Mathematischere) Schreibweise für Abbildungen:

$$f: A \rightarrow B, a \mapsto a^2$$
, also Quadratfunktion.

Ist diese Funktion injektiv oder surjektiv?

- Nicht injektiv, da z.B. f(1) = f(-1), also  $(1,1) \in f$  und  $(-1,1) \in f$ .
- Nicht surjektiv, da z.B. -1 nie als Funktionswert angenommen wird , daher  $(a, -1) \not\in f$  für beliebige  $a \in A$ .





Organisatorisches

Signale und Nachrichten

Mengen 0000000

Alphabete 0 Relationen und Abbildungen 0000000000000000

25.10.2018

Elias Schaut, Dennis Kobert, Niklas Kniep, Lam Vo, Ilia Bozhinov - Grundbegriffe der Informatik

31/31