KHÔLLE Nº 15

Exercice 1.

1. On pose, pour $i \in \llbracket 1,n \rrbracket$, les événements F_i : « la i-ème pièce tombe sur FACE, » G_i : « le joueur i gagne, » et G: « un joueur gagne la partie. » D'après les règles du jeu, on sait que, pour tout $i \in \llbracket 1,n \rrbracket$,

$$G_i = \left(F_i \cap \bigcap_{\substack{j \in \llbracket 1, n \rrbracket \\ i \neq i}} \bar{F}_i\right) \cup \left(\bar{F}_i \cap \bigcap_{\substack{j \in \llbracket 1, n \rrbracket \\ i \neq i}} F_i\right),$$

et cette union est disjointe. Ainsi, pour $i \in [1, n]$,

$$\begin{split} P(G_i) &= P\Big(F_i \cap \bigcap_{j \neq i} \bar{F}_i\Big) + P\Big(\bar{F}_i \cap \bigcap_{j \neq i} F_i\Big) \\ &= P(F_i) \times \prod_{j \neq i} P(\bar{F}_i) + P(\bar{F}_i) \times \prod_{j \neq i} P(F_i) \text{ par indépendance des lancers} \\ &= \frac{1}{2} \times \prod_{j \neq i} \frac{1}{2} + \frac{1}{2} \times \prod_{j \neq i} \frac{1}{2} \\ &= \prod_{j \neq i} \frac{1}{2} \\ &= \left(\frac{1}{2}\right)^{n-1} \end{split}$$

Et, $G = \bigcup_{i=1}^n G_i$ et cette union est disjointe. On en déduit donc que

$$p = P(G) = \sum_{i=1}^{n} P(G_i) = \sum_{i=1}^{n} \left(\frac{1}{2}\right)^{n-1} = \frac{n}{2^{n-1}}.$$

2. Chaque partie jouée représente une épreuve de Bernoulli de probabilité de succès p. Ces épreuves sont indépendantes. Et, la variable X représente le temps d'attente d'un premier succès. On a donc $X \sim \mathcal{G}(p)$. Ainsi, pour tout $k \in \mathbb{N}^*$, $P(X = k) = p \, q^{k-1}$ où q = 1 - p. On en déduit

$$P(X = k) = \frac{n}{2^{n-1}} \cdot \left(1 - \frac{n}{2^{n-1}}\right)^{k-1}.$$

3. Comme $X \sim \mathcal{G}(p)$, on a

$$E(X) = \frac{1}{p}$$
 et $V(X) = \frac{q}{p^2}$.

Exercice 2.

- 1. Soit $a\in\mathbb{R}$, et soit $h\geqslant 0$. On a $(X\leqslant a)\subset (X\leqslant a+h)$, d'où, par croissance de P, $P(X\leqslant a)\leqslant P(X\leqslant a+h)$. Ainsi, $F_X(a)\leqslant F_X(a+h)$. On en déduit que F_X est croissante.
- 2. Soient a et b deux réels, tels que $a \le b$. On sait que $\overline{(a < X \le b)} = (X \le a) \cup (X > b)$, et cette union est disjointe. Ainsi,

$$P(a < X \le b) = 1 - P(\overline{a < X \le B})$$

$$= 1 - [P(X \le a) + P(X > b)]$$

$$= 1 - [F_X(a) + [1 - P(X \le b)]]$$

$$= 1 - F_X(a) - 1 + F_X(b)$$

$$= F_X(b) - F_X(a)$$

3. On a, pour tout $n \in \mathbb{N}$, $A_{n+1} = (X \leq a_{n+1}) \subset (X \leq a_n) = A_n$ car $a_{n+1} \leq a_n$. Ainsi, par continuité décroissante,

$$P\Big(\bigcap_{n\in\mathbb{N}}A_n\Big)=\lim_{n\to\infty}P(A_n).$$

Or, $\bigcap_{n\in\mathbb{N}}A_n=\varnothing$. En effet, par l'absurde, soit $u\in\bigcap_{n\in\mathbb{N}}A_n$, alors $\forall n\in\mathbb{N},\ u\leqslant a_n$, ce qui est absurde car a_n tend vers $-\infty$. On a donc

$$0 = P\left(\bigcap_{n \in \mathbb{N}} A_n\right) = \lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} F_X(a_n).$$

Par la caractérisation séquentielle de la limite, on en déduit que $F_X(x) \xrightarrow[x \to -\infty]{} 0$.

4. Soit $(b_n)_{n\in\mathbb{N}}$ une suite tendant vers $+\infty$ en croissant. On pose, pour tout $n\in\mathbb{N}$, $B_n=(X>b_n)=\overline{(X\leqslant b_n)}$. Ainsi, on a $B_{n+1}\supset B_n$. Et donc, par continuité croissante,

$$0 = P\left(\bigcup_{n \in \mathbb{N}} B_n\right) = \lim_{n \to \infty} P(B_n) = 1 - \lim_{n \to \infty} F_X(b_n),$$

car l'événement $\bigcup_{n\in\mathbb{N}} B_n$ est impossible. On en déduit donc que $\lim_{n\to\infty} F_X(b_n) = 1$. Par la caractérisation séquentielle de la limite, on a bien

$$F_X(x) \xrightarrow[x \to +\infty]{} 1.$$

Exercice 3.

1. Oui. En effet, soient \vec{x} et \vec{y} deux vecteurs orthogonaux, alors

$$\langle \lambda g(\vec{x}) \mid \lambda g(\vec{y}) \rangle = \lambda^2 \langle g(\vec{x}) \mid g(\vec{y}) \rangle = \lambda^2 \langle \vec{x} \mid \vec{y} \rangle = 0.$$

L'endomorphisme λg conserve donc l'orthogonalité.

2. (a) La base $\mathfrak{B}=(\vec{e}_1,\ldots,\vec{e}_n)$ étant orthonormée, on a

$$\langle \vec{e}_i + \vec{e}_j \mid \vec{e}_i - \vec{e}_j \rangle = \langle \vec{e}_i \mid \vec{e}_i \rangle + \langle \vec{e}_j \mid \vec{e}_i \rangle - \langle \vec{e}_i \mid \vec{e}_j \rangle - \langle \vec{e}_j \mid \vec{e}_j \rangle = \|\vec{e}_i\|^2 - \|\vec{e}_j\|^2 = 0$$
Comme f conserve l'orthogonalité, on a $\langle f(\vec{e}_i + \vec{e}_j) \mid f(\vec{e}_i - \vec{e}_j) \rangle = 0$. Mais,

$$\begin{split} & \langle f(\vec{e}_i + \vec{e}_j) \mid f(\vec{e}_i - \vec{e}_j) \rangle \\ &= \langle f(\vec{e}_i) + f(\vec{e}_j) \mid f(\vec{e}_i - f(\vec{e}_j)) \rangle \\ &= \langle f(\vec{e}_i) \mid f(\vec{e}_i) \rangle + \langle f(\vec{e}_i) \mid f(\vec{e}_j) \rangle - \langle f(\vec{e}_j) \mid f(\vec{e}_i) \rangle - \langle f(\vec{e}_j) \mid f(\vec{e}_j) \rangle \\ &= \| f(\vec{e}_i) \|^2 - \| f(\vec{e}_j) \|^2 \end{split}$$

car $\langle \vec{e}_i \mid \vec{e}_j \rangle = 0$ et f conserve l'orthogonalité. Ainsi, $\|f(\vec{e}_i)\| = \|f(\vec{e}_j)\|$ car la norme d'un vecteur est positive.

(b) Soient \vec{x} et \vec{y} deux vecteurs de E. On pose $\vec{x}=x_1\vec{e}_1+\cdots+x_n\vec{e}_n$, et $\vec{y}=y_1\vec{e}_1+\cdots+y_n\vec{e}_n$. On a

$$\begin{split} \langle f(\vec{x}) \mid f(\vec{y}) \rangle &= \sum_{i=1}^{n} x_i \langle f(\vec{e}_i) \mid f(\vec{y}) \rangle \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j \langle f(\vec{e}_i) \mid f(\vec{e}_j) \rangle \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j \delta_{i,j} \| f(\vec{e}_i) \| \\ &= \sum_{i=1}^{n} x_i y_i \| f(\vec{e}_i) \|^2 \\ &= \| f(\vec{e}_1) \|^2 \sum_{i=1}^{n} x_i y_i \\ &= \| f(\vec{e}_i) \|^2 \langle \vec{x} \mid \vec{y} \rangle \end{split}$$

D'où, $\lambda = ||f(\vec{e}_1)||$.

3. On a montré que, si f conserve l'orthogonalité, alors il existe $\lambda \in \mathbb{R}$ tel que $\langle f(\vec{x}) \mid f(\vec{y}) \rangle = \lambda^2 \ \langle \vec{x} \mid \vec{y} \rangle$, pour tous vecteurs \vec{x} et \vec{y} . On suppose λ non nul (le cas $\lambda = 0$ est traité après). Ainsi, l'endomorphisme $g = f/\lambda$ conserve l'orthogonalité par bilinéarité du produit scalaire, et donc

 $\langle g(\vec{x}) \mid g(\vec{y}) \rangle = \langle \vec{x} \mid \vec{y} \rangle \ \text{pour tous vecteurs } \vec{x} \text{ et } \vec{y}.$

On a donc $g \in \mathcal{O}(E)$. Ainsi, on a bien montré qu'il existe une isométrie vectorielle g telle que $f = \lambda g$. Si $\lambda = 0$, alors $\forall \vec{x}, \vec{y} \in E$, $\langle f(\vec{x}) \mid f(\vec{y}) \rangle = 0$, en particulier $\|f(\vec{x})\|^2 = 0$, d'où $f : \vec{x} \mapsto \vec{0}$. Ainsi, on pose $g = \mathrm{id}_E$, et on a $f = \lambda g$.

Réciproquement, soient $\lambda \in \mathbb{R}$ et $g \in \mathcal{O}(E)$, tels que $f = \lambda g$, alors f conserve l'orthogonalité d'après la question 1.