Cálculo I

Lista: limites

Exercício 1. Resolva as inequações

1.
$$|x + 27| \ge 0$$

3.
$$|2x+3| > 0$$

2.
$$|x^2 - 1| < 1$$

4.
$$x > 2|x-2|$$

Exercício 2. Faça um esboço no plano cartesiano da reta descrita pelas equações abaixo:

•
$$y = 2x - 3$$

•
$$y = -1$$

$$\bullet \ x + 2y = 0$$

Exercício 3. Determine quais curvas abaixo são (ou não são) gráficos de funções. Quando for um gráfico, dê a função associada.

Exercício 4. Calcule o conjunto imagem das seguintes funções. Aqui, D denota o domínio da função.

1.
$$f(x) = -2x + 1$$
 $D = \mathbb{R}$

3.
$$f(x) = sen(x)/3$$
 $D = \mathbb{R}$

2.
$$f(x) = -2x + 1$$
 $D = (-1, 1)$

4.
$$f(x) = sen(x)$$
 $D = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Exercício 5. Determine quais das funções f abaixo são pares ou ímpares (justificando a sua resposta). Quando não for nem par nem ímpar, dê um contra-exemplo.

1

•
$$f(x) = \frac{x^2}{sen(x)}$$

$$f(x) = x + 1$$

•
$$f(x) = x^l com l impar$$

•
$$f(x) = sen(sen(x))$$

•
$$f(x) = \frac{x^2}{(x^4-1)}$$

•
$$f(x) = sen(cos(x))$$

Exercício 6. Use o gráfico da função f(x) para responder cada questão. Use $+\infty$, $-\infty$ ou $N\tilde{A}O$ EXISTE quando for o caso.

- (a) f(0) =
- (b) f(2) =
- (c) f(3) =
- $(d) \quad \lim_{x \to 0^-} f(x) =$
- (e) $\lim_{x \to 0} f(x) =$
- $(f) \quad \lim_{x \to 3^+} f(x) =$
- (g) $\lim_{x \to 3} f(x) =$
- (h) $\lim_{x \to -\infty} f(x) =$

- (a) f(0) =
- (b) f(2) =
- (c) f(3) =
- (d) $\lim_{x \to -1} f(x) =$
- (e) $\lim_{x \to 0} f(x) =$
- $(f) \quad \lim_{x \to 2^+} f(x) =$
- (g) $\lim_{x \to \infty} f(x) =$

Exercício 7. Determine cada limite. Use ∞ , $-\infty$ ou $N\tilde{A}O$ EXISTE, quando for o caso. Relembre que ∞ significa $+\infty$.

(a)
$$\lim_{x\to 0} \frac{x^2-25}{x^2-4x-5}$$

(b)
$$\lim_{x\to 5} \frac{x^2 - 25}{x^2 - 4x - 5}$$

(c)
$$\lim_{x\to 1} \frac{7x^2-4x-3}{3x^2-4x+1}$$

(d)
$$\lim_{x \to -2} \frac{x^4 + 5x^3 + 6x^2}{x^2(x+1) - 4(x+1)}$$

(e)
$$\lim_{x \to -3} |x+1| + \frac{3}{x}$$

(f)
$$\lim_{x\to 3} \frac{\sqrt{x+1}-2}{x^2-9}$$

(g)
$$\lim_{x\to 3} \frac{\sqrt{x^2+7}-3}{x+3}$$

(h)
$$\lim_{x\to 2} \frac{x^2 + 2x - 8}{\sqrt{x^2 + 5} - (x + 1)}$$

(i)
$$\lim_{y\to 5} \left(\frac{2y^2+2y+4}{6y-3}\right)^{1/3}$$

(j)
$$\lim_{x\to 0} \sqrt[4]{2\cos(x) - 5}$$

(k)
$$\lim_{x\to 0} \frac{\frac{1}{3+x} - \frac{1}{3-x}}{x}$$

(1)
$$\lim_{x \to -6} \frac{\frac{2x+8}{x^2-12} - \frac{1}{x}}{x+6}$$

(m)
$$\lim_{x \to \infty} \sqrt{x^2 - 2} - \sqrt{x^2 + 1}$$

(n)
$$\lim_{x \to -\infty} \sqrt{x-2} - \sqrt{x}$$

(o)
$$\lim_{x\to 7} \sqrt[6]{2x-14}$$

(p)
$$\lim_{x\to 1^-} \sqrt{3-3x}$$

$$(\mathbf{q}) \quad \lim_{x \to \infty} \frac{x^4 - 10}{4x^3 + x}$$

(r)
$$\lim_{x\to-\infty} \sqrt[3]{\frac{x-3}{5-x}}$$

(s)
$$\lim_{x \to \infty} \frac{3x^3 + x^2 - 2}{x^2 + x - 2x^3 + 1}$$

(t)
$$\lim_{x \to \infty} \frac{x+5}{2x^2+1}$$

(u)
$$\lim_{x \to -\infty} \cos \left(\frac{x^5 + 1}{x^6 + x^5 + 100} \right)$$

(v)
$$\lim_{x\to 2} \frac{2x}{x^2-4}$$

(w)
$$\lim_{x\to -1} \frac{3x}{x^2 + 2x + 1}$$

(x)
$$\lim_{x\to -1} \frac{x^2 - 25}{x^2 - 4x - 5}$$

(y)
$$\lim_{x\to 3} \frac{\sqrt{x^2-5}+2}{x-3}$$

$$\mathrm{(z)} \quad \lim_{x \to 0} \, \frac{2^x + \sin(x)}{x^4}$$

(A)
$$\lim_{x\to 1^-} \frac{1}{x-1} + e^{x^2}$$

(B)
$$\lim_{x \to \infty} 2x^2 - 3x$$

(C)
$$\lim_{x\to 0} \frac{\sqrt{x+2} - \sqrt{2-x}}{x}$$

(D)
$$\lim_{x\to 0^+} \frac{e^x}{1 + \ln(x)}$$

(E)
$$\lim_{x\to\infty} \sqrt{x^2+1} - 2x$$

(F)
$$\lim_{x\to 1} \frac{\sqrt[3]{x}-1}{\sqrt{x}-1}$$

Exercício 8. Encontre os limites:

1.
$$\lim_{x\to 9} \frac{\sqrt{x}-3}{x-9}$$

2.
$$\lim_{x\to 0} \frac{\cos(x)-1}{x}$$

3.
$$\lim_{x\to 0} \frac{tg(x)}{x}$$

4.
$$\lim_{y\to 3} \frac{sen(y-3)}{y^2+y-15}$$

5.
$$\lim_{x\to 0} \frac{sen(\pi x)}{sen(3x)}$$

6.
$$\lim_{x\to 0} \frac{\cos(x)^2 - \cos(x)}{\cos(x) - 1}$$

7.
$$\lim_{x\to 2} \frac{sen(2x-4)}{5x-10}$$

8.
$$\lim_{x\to 1} \frac{sen(x^2-1)}{x-1}$$

9.
$$\lim_{\theta \to 0} \frac{sen(5\theta)}{\theta cos(\theta)}$$

10.
$$\lim_{x\to 1} \frac{sen(2x-2)}{x-1}$$

Exercício 9. Encontre o valor de a para que o seguinte limite exista. Em seguida, determine o valor do limite.

$$\lim_{x \to 5} \frac{x^2 + ax - 20}{x - 5}$$

Exercício 10. Determine os valores de a e b parar os quais o limite abaixo exista. Em seguida, determine o valor do limite.

$$\lim_{x \to +\infty} \left(\frac{3x^2 + bx - 1}{x + 2} - ax \right)$$

Exercício 11. Demonstre que a área de um círculo de raio R é πR^2 usando aproximação por polígonos regulares inscritos no círculo.

Exercício 12. Determine os seguintes limites

(i)
$$\lim_{x \to 1} \frac{x^2 - 1}{|x - 1|}$$
 (ii) $\lim_{x \to -2} \frac{1}{|x + 2|} + x^2$ (iii) $\lim_{x \to 3^-} x^2 \frac{|x - 3|}{|x - 3|}$

Exercício 13. Considere a função

$$f(x) = \begin{cases} sen(\pi x) & x < 1 \\ 2^{x^2} & x > 1 \end{cases} \qquad g(x) = \begin{cases} x^2 & x < -2 \\ \frac{x+6}{x^2 - x} & -1 < x < 2 \\ 3x - 2 & x \ge 2 \end{cases}$$

Determine (caso existam)

1.
$$f(1)$$
 6. $g(3/2)$

2.
$$\lim_{x\to 0} f(x)$$
 7. $\lim_{x\to -2} g(x)$

3.
$$\lim_{x\to 1} f(x)$$
 8. $\lim_{x\to -1^+} g(x)$

4.
$$g(-3/2)$$
 9. $\lim_{x\to 2} g(x)$

5.
$$g(2)$$
 10. $\lim_{x\to 0} g(x)$

Exercício 14. Dadas as funções abaixo determine: o domínio, assintotas verticas, assíntotas horizontais.

1.
$$f(x) = \frac{x^2 + x - 2}{x^2 - x + 6}$$
 5. $f(x) = \frac{x^2 - 4}{x + 3}$

2.
$$f(x) = \frac{2x^2}{x^2 - 1}$$
 6. $f(x) = \frac{x^2 - x}{x + 1}$

3.
$$f(x) = \frac{3}{x-2}$$
 7. $f(x) = \frac{x^2-9}{x^2-2x-3}$

4.
$$f(x) = \frac{2x-1}{x}$$
 8. $f(x) = \frac{4x^3+x}{x^3-1}$

Exercício 15. Sejam $f: \mathbb{R} \longrightarrow \mathbb{R}$ e $g: \mathbb{R} \longrightarrow \mathbb{R}$ duas funções tais que $|f(x)| \leq g(x)$ para todo $x \in \mathbb{R}$. Suponha ainda que onde $g \notin uma$ função positiva, isto \acute{e} , g(x) > 0 para todo $x \in \mathbb{R}$. Determine $\lim_{x\to 0} \frac{f(x)}{g(x)}$