

METACODER

RESEARCH ARTICLE

Metacoder: An R package for visualization and manipulation of community taxonomic diversity data

Zachary S. L. Foster¹, Thomas J. Sharpton^{2,3,4}, Niklaus J. Grünwald⁵*

1 Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America, 2 Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America, 3 Department of Statistics, Oregon State University, Corvallis, Oregon, United States of America, 4 Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America, 5 Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, Oregon, United States of America

* nik.grunwald@ars.usda.gov

Metacoder can be applied to any dataset that can be organized hierarchically such as:

- > community taxonomic diversity data
- > gene expression
- > geographic data
- > ..

COLOMIERS CASTELSARRASIN
RAMONVILLE-SAINT-AGNE MONTAUBAN
BALMA MOISSAC

BLAGNAC

CAHORS

TOULOUSE

LOURDES

SAINT-JEAN TARN-ET-GARONNE TARBES

LOT

FONSORBES HAUTES-PYRENEES PAMIERS

CUGNAUX ARIEGE AUCH

HAUTE-GARONNE GERS

MIDI-PYRENEES ONET-LE-CHATEAU

L'UNION AVEYRON

VILLEFRANCHE-DE-ROUERGUE

TOURNEFEUILLE

RODEZ

PLAISANCE-DU-TOUCH

MURET

TARN

MILLAU

.....

CARMAUX

SAINT-ORENS-DE-GAMEVILLE

LAVAUR

CASTANET-TOLOSAN SAINT-GAUDENS GRAULHET

GAILLAC

Geographical data

with metacoder

Datasets with hierarchical component: taxonomic

Datasets with hierarchical component: taxonomic

Bacteria

Proteobacteria

Gammaproteobacteria

Enterobacteriales

Enterobacteriaceae

Escherichia-Shigella

Escherichia coli

6

Datasets with hierarchical component: taxonomic

Explore microbiome (Bacteria DNA sequencing)

Bacteroides dorei

Escherichia coli

Bacteria composition

Bacteria composition

6 décembre 2018

Bacteria composition with metacoder

(extension of taxa package)

The taxa package is intended to:

- Provide a set of classes to store taxonomic data and any userspecific data associated with it
- Provide functions to convert commonly used formats to these classes
- Provide generally useful functionality, such as filtering and mapping functions

taxmap class object

(extension of taxa package)

From a taxmap object (taxa package)

- R6 class object to hold taxonomic and associated data
- parsing specific file formats used in metagenomics research (mother, qiime, phyloseq, greengenes, rdp, silva)
- <u>subsetting</u> complex hierarchical data sets using dplyr datamanipulation philosophy
- plotting function enables quantitative representation of up to 4 arbitrary statistics simultaneously in a tree format by mapping statistics to the color and size of tree nodes and edges

(extension of taxa package)

How it works:

- parse_tax_data(): create tax_map object
- heat_tree(): to visualize tree

(extension of taxa package)

(extension of taxa package)

(extension of taxa package)

How it works: a simple case

layout = igraph parameters

16

(extension of taxa package)

(extension of taxa package)

```
> obj
<Taxmap>
9 taxa: b. Mammalia, c. Theria ... i. Haloplorrhini, j. Simiiformes
9 edges: NA->b, b->c, c->d, c->e, d->f, e->g, f->h, g->i, i->j
1 data sets:
    tax_data: a named vector of 'character' with 2 items
    h. Mammalia; Theria; [truncated] ... j. Mammalia; Theria; [truncated]
0 functions:

- taxmap object
- different taxa
- 9 different taxa
- 9 edges

"Mammalia; Theria; Metatheria; Diplodontia; Macropodiformes"

"Mammalia; Theria; Eutheria; Primates; Haloplorrhini; Simiiformes"
```


(extension of taxa package)

```
> obj
<Taxmap>
    9 taxa: b. Mammalia, c. Theria ... i. Haloplorrhini, j. Simiiformes
    9 edges: NA->b, b->c, c->d, c->e, d->f, e->g, f->h, g->i, i->j
    1 data sets:
        tax_data: a named vector of 'character' with 2 items
              h. Mammalia; Theria; [truncated] ... j. Mammalia; Theria; [truncated]
    0 functions:
```

- *taxmap* object
- 9 different taxa
- 9 edges

```
> obj$edge_list
  from to

1 <NA> b
2   b  c
3   c  d
4   c  e
5   d  f
6   e  g
7   f  h
8   g  i
```


(extension of taxa package)

```
How it works: a simple case + tuning
```

(~ 70 parameters)

20

(extension of taxa package)

How it works: a real case

The Human Microbiome Project (subset):

- > 50 samples from human
- > 1000 OTU (clusters) identified
- > Sample information:
 - Sex: male, female
 - Body site: Saliva, Skin, Stool, Throat, Nose

(extension of taxa package)

Creating *taxmap* object: abundance matrix

```
> hmp_otus
# A tibble: 1,000 x 52
   otu id lineage `700035949`
                                                        `700111314`
                               `700097855`
                                            700100489`
   <chr> <chr>
                         <int>
                                     <int>
                                                  <int>
                                                              <int>
                                                                           <int>
1 OTU 9~ r Roo~
2 OTU_9~ r__Roo~
                                                                               0
3 OTU_9~ r__Roo~
4 OTU 9~ r Roo~
                                                     10
                                        36
                                                                              66
5 OTU_9~ r__Roo~
                                        25
                                                      0
                                                                               0
6 OTU 9~ r Roo~
                                       277
                                                                 22
                                                                              85
                                                     16
7 OTU_9~ r__Roo~
                                        17
                                                     21
                                                                  1
                                                                              74
8 OTU 9~ r Roo~
                                                                               0
9 OTU 9~ r Roo~
                                                                               1
10 OTU 9~ r Roo~
  ... with 990 more rows, and 45 more variables: `700109581` <int>,
    `700111044` <int>, `700101365` <int>, `700100431` <int>,
    `700016050` <int>, `700032425` <int>, `700024855` <int>,
    `700103488` <int>, `700096869` <int>,
                                            `700107379`
    `700096422` <int>.
                       `700102417` <int>.
                                            `700114168
    `700037540` <int>, `700106397` <int>,
                                            700113498
    `700033743` <int>, `700105205` <int>,
                                            700024238
    `700034183` <int>,
                       `700038390` <int>,
                                            `700015973`
    `700038124` <int>, `700107206` <int>,
                                           700037403
    `700098429` <int>, `700101224` <int>,
                                           `700114615`
    `700024234` <int>,
                       `700108596` <int>,
                                            700101076
    `700105882` <int>, `700016902` <int>,
                                           `700102242`
    `700038231` <int>, `700109394` <int>,
                                           `700102530`
                                                        <int>,
    `700108229` <int>,
                       `700099013` <int>.
                                           `700098680`
    `700106938`
                       `700014916` <int>,
                                           `700095535` <int>,
               <int>.
```

`700102367` <int>, `700101358` <int>

(extension of taxa package)

Creating taxmap object: sample data

```
> hmp_samples
# A tibble: 50 x 3
# Groups: body_site, sex [10]
   sample_id sex
                    body_site
   <chr>>
             <chr>>
                   <chr>
 1 700035949 female Nose
 2 700097855 female Nose
 3 700100489 female Nose
 4 700111314 female Nose
 5 700033744 female Nose
 6 700109581 male
                    Nose
 7 700111044 male
                    Nose
 8 700101365 male
                    Nose
 9 700100431 male
                    Nose
10 700016050 male
                    Nose
# ... with 40 more rows
```


(extension of taxa package)

Creating taxmap object:

(extension of taxa package)

Creating taxmap object:

```
> hmp_data
<Taxmap>
  174 taxa: ab. Root, ac. Proteobacteria, ad. Bacteroidetes ... gr. Blautia, gs. Clostridium
  174 edges: NA\rightarrowab, ab\rightarrowac, ab\rightarrowad, ab\rightarrowae, ab\rightarrowaf, ab\rightarrowag ... bu\rightarrowgo, dk\rightarrowgp, cm\rightarrowgq, cf\rightarrowgr, cw\rightarrowgs
  2 data sets:
    tax_data:
      # A tibble: 1,000 x 53
        taxon id otu id lineage `700035949` `700097855` `700100489` `700111314` `700033744`
                   <chr> <chr>
                                           <int>
                                                        <int>
                                                                      <int>
                                                                                   <int>
      1 dm
                  OTU 9~ r Roo~
                  OTU_9~ r__Roo~
      2 dn
                                                                                                                  Θ
      3 do
                  OTU_9~ r__Roo~
                                                                                                                  Θ
      # ... with 997 more rows, and 44 more variables: `700111044` <int>, `700101365` <int>,
           `700100431` <int>, `700016050` <int>, `700032425` <int>, `700024855` <int>, `700103488` <int>,
      # `700096869` <int>, `700107379` <int>, `700096422` <int>, ...
    class_data:
      # A tibble: 5,922 x 5
        taxon_id input_index tax_rank tax_name
                                                                 regex_match
        <chr>>
                          <int> <chr>
                                          <chr>>
                                                                 <chr>>
      1 ab
                              1 r
                                          Root
                                                                 r__Root
                                                                 p__Proteobacteria
      2 ac
                                          Proteobacteria
                                          Gammaproteobacteria c__Gammaproteobacteria
      3 aj
                              1 c
      # ... with 5,919 more rows
  0 functions:
```


metacoder

Package metacoder

(extension of taxa package)

Visualizing *taxmap* object:

heat_tree(hmp_data)

26

(extension of taxa package)

Visualizing *taxmap* object:

(extension of taxa package)

Visualizing *taxmap* object:

save the plot in using ggsave

(extension of taxa package)

Manipulating taxmap object: dplyr-like functions

filtering:

filter_taxa

filter_obs

subsetting:

select_obs

adding columns:

mutate_obs

sampling:

sample_n_taxa
sample_n_obs

sample_frac_taxa

sample_frac_obs

sorting:

arrange_taxa arrange_obs

(extension of taxa package)

Visualizing *taxmap* object:

hmp data %>% filter_taxa(taxon_names %in% c("Proteobacteria", "Actinobacteria", "Firmicutes"), subtaxa = TRUE) %>% heat tree (node label = taxon names, node size = n obs, node color = n obs, layout = "fr") Nodes 1.0 13.8 41.5 83.9 141.0 213.0 300.0

(extension of taxa package)

Statistics on *taxmap* object: compare_groups() function

It applies a function to compare data, usually abundance, from pairs of treatments/groups

By default: Wilcoxon Rank Sum test on the differences in median abundance for the samples

(extension of taxa package)

Statistics on *taxmap* object: compare_groups() function

Differences in abundance between microbiome communities in different parts of the human body

create new data in hmp_data

diff table

(extension of taxa package)

Statistics on *taxmap* object: compare_groups() function

1740 tests correction "fdr"

```
hmp data <- mutate obs(hmp data, "diff table",</pre>
              wilcox p value = p.adjust(wilcox p value, method = "fdr"),
              log2 median ratio = ifelse(wilcox p value < 0.05 | is.na(wilcox p value),</pre>
              log2 median ratio, 0))
    > obj$data$diff_table
    # A tibble: 1,740 x 7
       taxon_id treatment_1 treatment_2 log2_median_ratio median_diff mean_diff wilcox_p_value
                                                     <dbl>
                                                                 <dbl>
                                                                            <dbl>
       <chr>>
                 <chr>>
                             <chr>>
                                                                                           <dbl>
     1 ab
                Nose
                            Saliva
                                                                -362
                                                                            682.
                                                                                         0.628
                            Saliva
                                                                -346
                                                                          -248.
                                                                                         0.0238
     2 ac
                Nose
                                                     -1.81
                                                                -612
                                                                          -731.
     3 ad
                Nose
                            Saliva
                                                     -5.17
                                                                                         0.00116
                            Saliva
                                                                1161
                                                                          2141.
     4 ae
                                                      5.00
                Nose
                                                                                         0.00116
     5 af
                Nose
                            Saliva
                                                                -434.
                                                                          -369.
                                                                                         0.249
                                                   -Inf
                                                                 -64.5
     6 ag
                Nose
                            Saliva
                                                                          -112.
                                                                                         0.00116
     7 ah
                Nose
                            Saliva
                                                                            -0.3
                                                                                         0.143
     8 ai
                            Saliva
                                                                              Θ
                Nose
                                                                                       NaN
                                                     -2.23
                            Saliva
                                                                -173
                                                                          -145.
                                                                                         0.0187
     9 aj
                Nose
    10 ak
                                                                                         0.00150
                Nose
                            Saliva
                                                     -5.27
                                                                 -37.5
                                                                           -61.9
    # ... with 1,730 more rows
```


(extension of taxa package)

Visualizing comparison: heat_tree_matrix() function

(extension of taxa package)

Edges

3330

Package metacoder

(extension of taxa package)

Metacoder and Tara oceans dataset (20 200 OTU)

10Gb RAM few min ...

4 statistics

(extension of taxa package)

Metacoder gene expression

Displaying the results of gene expression studies by associating differential expression with gene ontology (GO) annotations

(extension of taxa package)

Metacoder gene expression

Cellular component

(extension of taxa package)

Creating object from public database (NCBI, ...):

id → lookup_tax_data → taxmap

```
ids <- c("JQ086376.1", "AM946981.2", "JQ182735.1", "CP001396.1", "J02459.1",
         "AC150248.3", "X64334.1", "CP001509.3", "CP006698.1", "AC198536.1")
contaminants <- lookup_tax_data(ids, type = "seq_id")</pre>
print(contaminants)
## <Taxmap>
     32 taxa: 10239. Viruses ... 1385755. synthetic Escherichia coli C321.deltaA
     32 edges: NA->10239, NA->131567 ... 83333->511145, 511145->1385755
     2 data sets:
       tax_data:
         # A tibble: 32 x 4
                                       ncbi name
                                                    ncbi rank ncbi id
           taxon_id
              <chr>
                                           <chr>
                                                        <chr>
                                                                <chr>>
                                        Viruses superkingdom
                                                                10239
         1 10239
##
              35237 dsDNA viruses, no RNA stage
                                                      no rank
                                                                35237
              28883
                                   Caudovirales
                                                        order
                                                                28883
         # ... with 29 more rows
##
       query_data: JQ086376.1, AM946981.2 ... CP001509.3, CP006698.1, AC198536.1
     0 functions:
```


(extension of taxa package)

Metacoder and geographical data

Results of the 2016 Democratic primary election in US

Hierarchy:

- Region
 - Division
 - State
 - County

(extension of taxa package)

To conclude:

Pros:

Can handle any hierarchical dataset
Provides a large panel of functions for manipulating data (based on dplyr)
Creates customizable graph (based on ggplot), ~ 70 parameters
Allows to add any type of data linked with hierarchical dataset
Compare_groups() function

Cons:

Requires time at the beginning (*taxa* package environment) *taxmap* object complexity
Many parameters (~ 70 for heat_tree)
Can be slow for large datasets

QUESTIONS?

42

Article:

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005404

Website:

https://grunwaldlab.github.io/metacoder_documentation/index.html

Taxa package article:

https://f1000research.com/articles/7-272/v2