МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Качество и метрология программного обеспечения»

ТЕМА: «Измерение характеристик динамической сложности программ с помощью профилировщика SAMPLER»

Студент гр. 6304	Иванов В.С.
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург 2020

Задание

- 1. Ознакомиться с документацией на монитор SAMPLER и выполнить под его управлением тестовые программы test_cyc.c и test_sub.c с анализом параметров повторения циклов, структуры описания циклов, способов профилирования процедур и проверкой их влияния на точность и чувствительность профилирования.
- 2. Скомпилировать и выполнить под управлением SAMPLER'а программу на С, разработанную в 1-ой лабораторной работе. Выполнить разбиение программы на функциональные участки и снять профили для двух режимов:
 - 1 измерение только полного времени выполнения программы;
- 2 измерение времен выполнения функциональных участков (ФУ). Убедиться, что сумма времен выполнения ФУ соответствует полному времени выполнения программы.
- 3. Выявить "узкие места", связанные с ухудшением производительности программы, ввести в программу усовершенствования и получить новые профили. Объяснить смысл введенных модификаций программ.

Ход работы

Использовался старый SAMPLER. Программы компилировались с помощью Borland C++. Компилирование выполнялось на Windows XP, профилирование – в DOSBox.

Тестовые программы

Результаты профилирования:

Код программы test_cyc.c с нумерацией строк представлен в приложении A.

NN Имя обработанного файла

1. TEST_CYC.CPP

Таблица с результатами измерений (используется 13 из 416 записей)

Исх.Поз. Прием.Поз. Общее время(мкс) Кол-во прох. Среднее время(мкс)

1:	8	1:	10	4335.47	1	4335.47
1:	10	1:	12	8675.98	1	8675.98
1:	12	1:	14	21671.50	1	21671.50
1:	14	1:	16	43348.87	1	43348.87
1:	16	1:	19	4337.15	1	4337.15
1:	19	1:	22	8668.43	1	8668.43
1:	22	1:	25	21672.34	1	21672.34
1:	25	1:	28	43348.03	1	43348.03
1:	28	1:	34	4334.64	1	4334.64
1:	34	1:	40	8670.11	1	8670.11
1:	40	1:	46	21676.53	1	21676.53
1:	46	1:	52	43348.87	1	43348.87

По результатам видно, что времена сильно завышены из-за накладных затрат эмулятора. В коде используется разная запись циклов с одинаковым количеством итераций, при этом отсутствует влияние на время. А также видна линейная зависимость времени от количества итераций.

Код программы test_sub.c с нумерацией строк представлен в приложении Б.

Результаты профилирования:

NN	Имя обработанного фай	іла	
1. TEST_SUB.	CPP		
Таблица с рез	ультатами измерений (используется 5 из 416	записей)
Исх.Поз. Прием.П	Юз. Общее время(мкс)	Кол-во прох. Среднее	время(мкс)
1: 30 1: 3		1	433699.86
1: 32 1: 3			867392.18
1: 34 1: 3	6 2168480.87	1	
1: 36 1: 3	8 4336949.16	1	4336949.16

По результатам можно сделать аналогичные выводы о том, что время выполнения:

- 1) линейно зависит от количества итераций цикла;
- 2) сильно завышено из-за накладных затрат эмулятора.

Программа из первой лабораторной работы

Код программы из первой лабораторной работы с нумерацией строк представлен в приложениях В (для измерения полного времени) и Γ (для измерения времен выполнения Φ У).

Результаты профилирования с измерением полного времени:

```
NN Имя обработанного файла

1. LR1_1.CPP

Таблица с результатами измерений ( используется 3 из 416 записей )

Исх.Поз. Прием.Поз. Общее время(мкс) Кол-во прох. Среднее время(мкс)

1 : 45 1 : 47 5198277.71

1 : 47 1 : 49 11125060.76

1 11125060.76
```

Общее время выполнения первой функции — 5198278 мкс, второй — практически в два раза больше и составляет 11125061 мкс. Результаты также завышены из-за накладных затрат эмулятора.

Результаты профилирования с измерением времен ФУ:

NN					обработанного фай		
	LR	1_2	. CI	PP			
Та	блиц	ца с	: р	езульт	атами измерений (используется 1	l7 из 416 записей)
Исх.П	оз. 	При	1ем	.Поз.	Общее время(мкс)	Кол-во прох.	Среднее время(мкс)
1:					3.35	1	3.35
1:	11	1	:	13	3438.71	999	3.44
					6797649.14		147.52
1:	13	1	:	21	11933956.32	60203	198.23
1:	15 	1	:	19	7090481.74	46081	153.87

				5436104.36		
1 : 1 :	21 21	1 : 1 :	13 23	19257288.09 2106.14	39749 999	484.47 2.11
1 : 1 :	23 23	1 : 1 :	11 25	57690.37 2.51	998 1	57.81 2.51
			34	6.70	1	6.70
			36	1.68	1	1.68
1:	36	1:	38	1076.12	972	1.11
1:	38	1:	40	2699.51	972	
1:	40	1:	42	9648944.84 34795041.82	48210	200.14
				11634988.02	48210	241.34
				8151851.36	48210	169.09
1:	47	1:	49	40013272.10 2354.21	972	2.42
	49	1:	36	1734.86 1.68		

По результатам измерений времени на ФУ видно, что время выполнения первой функции — 50578720.73 мкс, второй — 104251966.2 мкс. Данные времена отличаются от полученных ранее примерно в 10 раз, что также может быть вызвано использованием эмулятора, однако, время выполнения второй функции по-прежнему в 2 раза больше первой. Одной из причин является вызов функции *swap* внутри второй функции. Для усовершенствования производительности заменим вызов функции на её содержимое.

Измененная программа из первой лабораторной работы

Измененный код программы из первой лабораторной работы с нумерацией строк представлен в приложениях Д (для измерения полного времени) и Е (для измерения времен выполнения ФУ).

Результаты профилирования с измерением полного времени:

NN	Имя обработанного файла
1. LR1_3.CPP	

	Та	блиц	ца с	р	езуль	татами і	измерений (используется	3 из 416	записей)
Исх	к.П	оз.	При	1ем	.Поз.	Общее	время(мкс)	Кол-во прох.	Среднее	время(мкс)
1	:	42	1	:	44		5180792.50	1		5180792.50
1		44	1		16		9568359.34	1		9568359.34
	•	44		•	40		9900339.34	т.		9900999.34

Общее время выполнения первой функции не изменилось и составляет 5180792 мкс, время второй функции уменьшилось после изменений примерно на 15% и составляет 9568359 мкс. Результаты также завышены из-за накладных затрат эмулятора.

	Результаты профилирования с измерением времен ФУ:
1	Имя обработанного файла

| | LR1 | | |
 |
|------|-----|------|------|------|------|------|------|------|------|------|------|------|------|
|
 | |
 |

Таблица	_	NASVILTSTAMA	измараций	(используется 17 из 416 записей)	١
таолица	C	результатами	измерении (мспользуется 17 из 410 записей ј	,

Исх.Поз. Г	Ірием	.Поз.	Общее время(мкс)	Кол-во прох.	Среднее время(мкс)
1: 9	1:	11	2.51	1	2.51
1 : 11	1:	13	2595.58	999	2.60
1 : 13 1 : 13	1:	21 15	12578211.17 6778565.68	56647 49637	222.05 136.56
1 : 15	1:	19	6920225.78	49637	139.42
1: 19	1:	21	5534971.25	49637	111.51
1 : 21 1 : 21	1 : 1 :	13 23	20130039.06 1252.12	39749 999	506.43 1.25
1 : 23 1 : 23	1 : 1 :	11 25	1934.33 2.51	998 1	1.94 2.51
1 : 25	1:	29	5.87	1	5.87
1 : 29	1:	31	0.84	1	0.84
1 : 31	1 :	33	257.30	915	0.28
1: 33	1:	35	2068.42	915	2.26
1 : 35 1 : 35	1 : 1 :	44 37	31161548.13 9548283.58	19253 42864	1618.53 222.76
1 : 37	1:	42	10427956.39	42864	243.28
1 : 42	1:	44	7947496.61	42864	185.41

_	•	44 44	_	•		37930926.60 1462.48	61202 915	619.77 1.60
		46 46			_	830.55 0.84	914 1	0.91 0.84

По результатам измерений времени на Φ У видно, что время выполнения первой функции — 51948200 мкс, второй — 97020832 мкс. В результате можно сделать аналогичные выводы, что и для измерений полного времени.

Выводы

В результате выполнения данной лабораторной работы был изучен монитор SAMPLER, с помощью которого было выполнено профилирование тестовых программ test_cyc.c и test_sub.c.

Было проанализировано полное время выполнения программы, разработанной в 1-ой лабораторной работе, и время выполнения её ФУ.

Удалось частично усовершенствовать производительность программы из 1-ой лабораторной работы за счёт удаления внутреннего вызова функции *swap*.

приложение а

TEST CYC.C

```
1 #include <stdlib.h>
2 #include "Sampler.h"
3 #define Size 10000
4 int i, tmp, dim[Size];
6 void main()
7 {
        SAMPLE;
8
9
        for(i=0;i<Size/10;i++){ tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };</pre>
10
        for(i=0;i<Size/5;i++){ tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };</pre>
11
12
        SAMPLE;
13
        for(i=0;i<Size/2;i++){ tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };</pre>
14
        SAMPLE;
        for(i=0;i<Size;i++) { tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };</pre>
15
16
        SAMPLE;
17
        for(i=0;i<Size/10;i++)</pre>
18
          { tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };
19
        SAMPLE;
20
       for(i=0;i<Size/5;i++)</pre>
21
          { tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };
22
       SAMPLE;
23
      for(i=0;i<Size/2;i++)</pre>
24
          { tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };
25
       SAMPLE;
26
       for(i=0;i<Size;i++)</pre>
27
          { tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };
       SAMPLE;
28
29
       for(i=0;i<Size/10;i++)</pre>
30
          { tmp=dim[0];
31
            dim[0]=dim[i];
32
            dim[i]=tmp;
33
          };
34
       SAMPLE;
35
       for(i=0;i<Size/5;i++)</pre>
36
         { tmp=dim[0];
37
            dim[0]=dim[i];
38
            dim[i]=tmp;
39
          };
       SAMPLE;
40
41
       for(i=0;i<Size/2;i++)</pre>
42
          { tmp=dim[0];
43
            dim[0]=dim[i];
44
            dim[i]=tmp;
45
          };
46
       SAMPLE;
       for(i=0;i<Size;i++)</pre>
47
48
          { tmp=dim[0];
49
            dim[0]=dim[i];
50
            dim[i]=tmp;
51
          };
52
       SAMPLE;
53 }
```

приложение Б

TEST_SUB.C

```
1 #include <stdlib.h>
2 #include "Sample.h"
3 const unsigned Size = 1000;
5
6 void TestLoop(int nTimes)
7 {
    static int TestDim[Size];
8
9
    int tmp;
10
     int iLoop;
11
     while (nTimes > 0)
12
13
     {
14
       nTimes --;
15
16
      iLoop = Size;
      while (iLoop > 0)
17
18
19
        iLoop --;
20
        tmp = TestDim[0];
21
        TestDim[0] = TestDim[nTimes];
22
        TestDim[nTimes] = tmp;
23
      }
24
25 } /* TestLoop */
26
27
28 void main()
29 {
     SAMPLE;
30
     TestLoop(Size / 10); // 100 * 1000
                                         ⁻®¢â®à¥-¨©
31
32
     SAMPLE;
33
     TestLoop(Size / 5); // 200 * 1000
                                          ⁻®¢â®à¥-"©
34
     SAMPLE;
35
     TestLoop(Size / 2); // 500 * 1000
                                          -®¢â®à¥-"©
36
     SAMPLE;
                                          ⁻®¢â®à¥-"©
37
     TestLoop(Size / 1); // 1000* 1000
38
     SAMPLE;
39 }
```

ПРИЛОЖЕНИЕ В

Полное время LR_1.C

```
1 #include <math.h>
2 #include <stdlib.h>
3 #include <time.h>
4 #include <stdio.h>
5 #include "Sampler.h"
7 void sort1(float* x, int n){
     float hold;
8
9
     for (int i = 0; i < n - 1; i++) {
10
          for (int j = i + 1; j < n; j++) {
              if (x[i] > x[j]) {
11
12
                   hold = x[i];
13
                   x[i] = x[j];
14
                   x[j] = hold;
15
               }
16
          }
17
      }
18 }
19 void swap(float *a, float *b) {
20
     float hold = (*a);
21
      *a = (*b);
22
      *b = hold;
23 }
24 void sort2(float *x, int n){
25
      int no_change = 0;
26
      while(!no_change) {
          no_change = 1;
27
28
          for (int j=0; j < n-1; j++) {
29
              if (x[j] > x[j+1]) {
30
                   swap(&x[j], &x[j+1]);
31
                   no_change = 0;
32
               }
33
          }
34
      }
35 }
36 int main(){
     float x[1000];
37
38
      float y[1000];
39
40
      srand(time(NULL));
41
      for (int i=0; i <1000; i++) {
42
          x[i] = 1 + rand() \% 999;
43
          y[i] = x[i];
44
      }
45
      SAMPLE;
46
      sort1(x,1000);
47
      SAMPLE;
48
      sort2(y,1000);
49
      SAMPLE;
50
      return 0;
51 }
```

ПРИЛОЖЕНИЕ Г

Время ФУ LR_1.C

```
1 #include <math.h>
2 #include <stdlib.h>
3 #include <time.h>
4 #include <stdio.h>
5 #include "Sampler.h"
7 void sort1(float* x, int n){
     float hold;
8
9
     SAMPLE;
10
      for (int i = 0; i < n - 1; i++) {
11
          SAMPLE;
12
          for (int j = i + 1; j < n; j++) {
13
               SAMPLE;
14
               if (x[i] > x[j]) {
                   SAMPLE;
15
                   hold = x[i];
16
17
                   x[i] = x[j];
18
                   x[j] = hold;
19
                   SAMPLE;
20
               }
               SAMPLE;
21
22
          SAMPLE;
23
24
      SAMPLE;
25
26 }
27 void swap(float *a, float *b) {
28
      float hold = (*a);
29
      *a = (*b);
      *b = hold;
30
31 }
32 void sort2(float *x, int n){
33
      int no_change = 0;
34
      SAMPLE;
35
      while(!no_change) {
36
          SAMPLE;
          no change = 1;
37
          SAMPLE;
38
39
          for (int j=0; j < n-1; j++) {
40
               SAMPLE;
41
               if(x[j] > x[j+1]) {
42
                   SAMPLE;
43
                   swap(&x[j], &x[j+1]);
44
                   no_change = 0;
45
                   SAMPLE;
46
               }
47
              SAMPLE;
48
          SAMPLE;
49
50
      SAMPLE;
51
52 }
53 int main(){
54
      float x[1000];
55
      float y[1000];
56
57
      srand(time(NULL));
      for (int i=0; i <1000; i++) \{
58
```

```
59     x[i] = 1 + rand() % 999;
60     y[i] = x[i];
61     }
62     sort1(x,1000);
63     sort2(y,1000);
64     return 0;
65 }
```

приложение д

Полное время измененной LR_1.C

```
1 #include <math.h>
2 #include <stdlib.h>
3 #include <time.h>
4 #include <stdio.h>
5 #include "Sampler.h"
7 void sort1(float* x, int n){
     float hold;
8
9
     for (int i = 0; i < n - 1; i++) {
10
          for (int j = i + 1; j < n; j++) {
              if (x[i] > x[j]) {
11
12
                   hold = x[i];
13
                   x[i] = x[j];
14
                   x[j] = hold;
15
              }
16
          }
17
      }
18 }
19 void sort2(float *x, int n){
20
       int no_change = 0;
21
       while(!no_change) {
22
           no_change = 1;
           for (int j=0; j < n-1; j++) {
23
24
               if(x[j] > x[j+1]) {
                    float hold = x[j];
25
26
                    x[j] = x[j + 1];
27
                    x[j + 1] = hold;
28
                    no_change = 0;
29
               }
30
           }
31
       }
32 }
33 int main(){
       float x[1000];
34
35
       float y[1000];
36
37
       srand(time(NULL));
38
       for (int i=0; i <1000; i++) {
39
           x[i] = 1 + rand() \% 999;
40
           y[i] = x[i];
41
       SAMPLE;
42
43
       sort1(x,1000);
44
       SAMPLE;
45
       sort2(y,1000);
46
       SAMPLE;
47
       return 0;
48 }
```

ПРИЛОЖЕНИЕ Е

Время ФУ измененной LR_1.C

```
1 #include <math.h>
2 #include <stdlib.h>
3 #include <time.h>
4 #include <stdio.h>
5 #include "Sampler.h"
7 void sort1(float* x, int n){
      float hold;
8
9
      SAMPLE;
       for (int i = 0; i < n - 1; i++) {
10
11
           SAMPLE;
12
           for (int j = i + 1; j < n; j++) {
13
                SAMPLE;
14
                if (x[i] > x[j]) {
                    SAMPLE;
15
16
                    hold = x[i];
17
                    x[i] = x[j];
18
                    x[j] = hold;
19
                    SAMPLE;
20
                SAMPLE;
21
22
           SAMPLE;
23
24
25
       SAMPLE;
26 }
27 void sort2(float *x, int n){
28
       int no_change = 0;
29
       SAMPLE;
30
       while(!no_change) {
31
           SAMPLE;
32
           no_change = 1;
33
           SAMPLE;
34
           for (int j=0; j < n-1; j++) {
35
                SAMPLE;
                if (x[j] > x[j+1]) {
36
37
                    SAMPLE;
38
                    float hold = x[j];
39
                    x[j] = x[j + 1];
                    x[j + 1] = hold;
40
41
                    no_change = 0;
42
                    SAMPLE;
43
44
                SAMPLE;
45
           }
           SAMPLE;
46
47
       SAMPLE;
48
49 }
50 int main(){
51
       float x[1000];
52
       float y[1000];
53
54
       srand(time(NULL));
55
       for (int i=0; i <1000; i++) {
           x[i] = 1 + rand() \% 999;
56
57
           y[i] = x[i];
       }
58
```