TRBTRG_EL1, Trace Buffer Trigger Counter Register

The TRBTRG EL1 characteristics are:

Purpose

Specifies the number of bytes of trace to capture following a Detected Trigger before a Trigger Event.

Configuration

AArch64 System register TRBTRG_EL1 bits [63:0] are architecturally mapped to External register <u>TRBTRG_EL1[63:0]</u> when FEAT_TRBE_EXT is implemented.

This register is present only when FEAT_TRBE is implemented. Otherwise, direct accesses to TRBTRG_EL1 are undefined.

Attributes

TRBTRG EL1 is a 64-bit register.

Field descriptions

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

03 02 01 00 33 30 37 30 33 31 33 32 31 30 13 10 17 10 13 11 13 12 11 10 33 30 37 30 33 31 33 32
RES0
TRG
21 20 20 20 27 26 25 24 22 22 21 20 10 10 17 16 15 14 12 12 11 10 0 0 7 6 5 4 2 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (

Bits [63:32]

Reserved, res0.

TRG, bits [31:0]

Trigger count.

Specifies the number of bytes of trace to capture following a Detected Trigger before a Trigger Event.

TRBTRG_EL1 decrements by 1 for every byte of trace written to the trace buffer when all of the following are true:

- TRBTRG EL1 is nonzero.
- TRBSR EL1.TRG is 1.

The architecture places restrictions on the values that software can write to the counter.

Note

As a result of the restrictions an implementation might treat some of TRG[M:0] as res0, where M is defined by TRBIDR_EL1.Align.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally unknown value.

Accessing TRBTRG EL1

The PE might ignore a write to TRBTRG_EL1 if any of the following apply:

- <u>TRBLIMITR_EL1</u>.E == 1, and either FEAT_TRBE_EXT is not implemented or the Trace Buffer Unit is using Self-hosted mode.
- <u>TRBLIMITR_EL1</u>.XE == 1, FEAT_TRBE_EXT is implemented, and the Trace Buffer Unit is using External mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRBTRG EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b1001	0b1011	0b110

```
elsif EL2Enabled() && MDCR EL2.E2TB == 'x0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && (MDCR EL3.NSTB[0] == '0' |
MDCR_EL3.NSTB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE !=
SCR EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = TRBTRG\_EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSTB[0] == '0'
MDCR_EL3.NSTB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE !=
SCR EL3.NSE)) then
        UNDEFINED;
    elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' |
MDCR_EL3.NSTB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE !=
SCR_EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = TRBTRG\_EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = TRBTRG\_EL1;
```

MSR TRBTRG_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b00	0 0b100	1 0b1013	l 0b110

```
elsif EL2Enabled() && MDCR EL2.E2TB == 'x0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && (MDCR EL3.NSTB[0] == '0' |
MDCR_EL3.NSTB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE !=
SCR EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRBTRG\_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSTB[0] == '0' |
MDCR_EL3.NSTB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE !=
SCR EL3.NSE)) then
        UNDEFINED;
    elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' |
MDCR_EL3.NSTB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE !=
SCR_EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRBTRG EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
    TRBTRG\_EL1 = X[t, 64];
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.