SECTION 8: HASHING APPLICATIONS, SET RESEMBLANCE & PRIMALITY TESTING

ISABELLE ZHENG

Assignment Project Exam Help

nttps://powcoder.com

TABLE OF CONTENTS

Assignment Project Exam Help

- Hashing Applications: Bloom Filters and Fingerprinting https://powcoder.com
- Set resemblance

- Primality Testing
- Section Problems

BLOOM FILTERS

A **Bloom filter** is a probabilistic data structure used for set membership problems. It is more space efficient than Assignment Project Exam Help conventional hashing schemes.

- There are m bits and k hash functions $f_1, f_2, ... f_k$.
- When adding an element x to the set, set piss $f/pow(x) def_k(x)$ to the set, check if x is already in the set, check if the corresponding bits are set to 1.

With Bloom filters, we trade away correctness for space — it's possible we say x is in the Bloom filter when it is not. However, with Bloom filters, we only need m bits of memory.

BLOOM FILTERS EXAMPLE

Assignment Project Exam Help

https://powcoder.com

$$f_1(x_1) = 1, f_2(x_1) = 4$$

$$f_1(x_1) = 1, f_2(x_1) = 4$$
 $f_1(x_2) = 5, f_2(x_2) = 4$ $f_1(x_3) = 5, f_2(x_3) = 1$ Add WeChat powcoder

$$f_1(x_3) = 5, f_2(x_3) = 1$$

0	0	0		0

FINGERPRINTING

Goal: use a short, identifying "fingerprint" for some pattern P to pattern match in a larger file.

- Hash each set of |P| consecutive charactern sixty P into P into P into P into P (or other size) by taking mods.
- Randomly select some prime p.
- Instead of taking mods for every set of |P| consecutive characters naively, we can just modify the hashed value for the previous set of |P| characters, which we call N. Let a be the leftmost digit of N and b be the rightmost digit of our new number N'. $N' \triangle d + W = Chat|_{P} OW = Chat|_{P$

When we update, we remove the leftmost digit a and insert a new rightmost digit b.

We can use multiple primes to make the probability of a false positive small.

FINGERPRINTING EXAMPLE

$$|P| = 5$$
 $p = 13$ Assignment Project Exam $He\bar{p}^{(10(N-10^{|P-1|}a)+b) \mod p}$

3 https://powcoder.com 2

SET RESEMBLANCE

Our goal: determine whether or not two documents are "near duplicates" - the document similarity problem Assignment Project Exam Help

How?

- Find a way to estimate resemblance efficiently

 https://powcoder.com
- Turn document similarity into a set resemblance problem Add WeChat powcoder

DEFINING RESEMBLANCE

Consider two sets A and B. We define the resemblance of A and B (also called the Jaccard Coefficient) to be:

Assignment Project Exam Help

resemblance(A, B) =
$$R(A, B) = \frac{|A \cap B|}{\text{Hoth}}$$

https://powcoder.

Notice that:

0 ≤ R(AAPd WeChat powcoder

R(A,B) = 0 If two sets are disjoint

R(A, B) = 1 If two sets are identical

How long does it take to compare two sets this way?

 $O(n^2)$ Naive

 $O(n \log n)$ Sort, then compare

O(n) Using hashing

RANDOM PERMUTATIONS

We need a "black box" BB that will efficiently output random permutations on our universe. For example,

$$BB(1,x) = \pi_1(x)$$
 Assignment Project Exam Help

Say our random permutations are in the fantips://powcocceptsform. they might look like:

x	0	I	2	3	4	Add		Chat	pow	code	r ₁₀	11	12	13	14	15
$\pi_1(x)$	9	2	14	П	6	3	7	8	15	10	4	13	12	0	1	5
$\pi_2(x)$	3	4	7	12	6	14	1	5	2	8	15	7	П	13	10	9

We use $\pi_i(A)$ to denote the set of elements obtained by computing BB(i,x) for every x in A ("calling card").

If we have a set $A = \{3, 5, 11, 4\}$ what is $\pi_2(A)$?

ESTIMATING RESEMBLANCE

If we compute $\pi_1(A)$ and $\pi_1(B)$, note that $\min\{\pi_1(A)\} = \min\{\pi_1(B)\}$ only if some element x such that $\pi_1(x) = \min\{\pi_1(A)\} = \min\{\pi_1(B)\}$.

Assignment Project Exam Help

Then, x, the minimum of the union of two sets $A \cup B$, has to lie in the intersection $A \cap B$.

Pr[min{
$$\pi_1(A)$$
} = min{ $\pi_1(B)$ }]

= Pr[min{ $\pi_1(A)$ } = min{ $\pi_1(B)$ }]

= $\frac{|A \cap B|}{|A \cup B|}$ = $R(A, B)$

We can just estimate resemblance by taking many permutations and computing their minimums! Then our estimate for resemblance is just:

Estimate for
$$R(A, B) = \frac{\# of \ matches}{\# of \ permutations}$$

APPLYING TO DOCUMENT SIMILARITY

We turn **documents** into **sets** using shingling, where we hash k consecutive words each into a 64 bit (or so) hash value to get a smaller set.

Assignment Project Exam Help

An example of shingling where k = 5:

CS 124 is a great class! My favorite part is dynamic programming.

COMPUTING SKETCHES

Then, for each document D, you have a set S_D of shingles. Then, we compute a sketch for the document. The sketch of a document, with 100 permutation $\{\pi_1(S_D)\}$ $\{\pi_1(S_D)\}$ $\{\pi_1(S_D)\}$

Example: Let's say our shingles are $S_D = \{6, 2, 12, 5\}$ What does our sketch look like?

	x	0	_	2	3	4		6		8	9	10	11	12	13	14	15
π_1	(x)	9	2	14	П	6	Add	yvec		P ₁ GW(code	4	13	12	0	_	5
π_2	$_{2}(x)$	3	4	7	12	6	14	ı	5	2	8	15	7	П	13	10	9

PRIMALITY TESTING

Sometimes we want a prime number p, and sometimes it's so large we can't just check whether it's divisible by 1 to \sqrt{p} . So, instead we want efficient algorithms that can tell us it a number is prime.

https://powcoder.com

FERMAT TESTING

Fermat's Little Theorem: If p is prime, and $1 \le a < p$ (note p is not divisible by a), then $a^{p-1} = 1 \mod p$.

Assignment Project Exam Help For example, if p = 7 and a = 3, $3^6 = 729 = 1 \mod 7$. (Or, $729 \mod 7 = 1$)

https://powcoder.com

Our test:

- Given prime candidate n, pick a < n.
 Calculate aⁿ⁻¹ mod n.
 Add WeChat powcoder
- 3. If $a^{n-1} \mod n = 1$ (so $a^{n-1} \mod 1 = n$), then n is an a-pseudoprime. Otherwise, we say n is composite. (Note we can calculate a^{n-1} efficiently with repeated squaring).

In practice, you will want to try this on many choices of a! However, there are some numbers where n will be an apseudoprime for all choices of a. These are called Carmichael numbers, and some examples of them include 561, 1105, and 1729, among infinitely many more.

EXAMPLE OF FERMAT TESTING

n = 299

a = 116

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

What about a = 155?

RABIN-MILLER TESTING

Our test:

- I. Given prime candidate n, let u be such that n 1 Project Exam Help
- For some a, calculate a^u and its subsequent squares $(a^{2u}, a^{4u}, \text{etc.})$ If at any time we have: https://powcoder.com
 - 1. $a^{2^{i-1}u} \neq \pm 1 \mod n$
 - 2. And $a^{2^i u} = 1 \mod n$ Add WeChat powcoder

Then, we have a nontrivial square root of $1 \mod n$ and n must be composite. We call a a "witness" to the compositeness of n.

The Rabin-Miller primality test is very efficient, because if n is composite, a randomly selected a will be a witness with probability at least $\frac{3}{4}$, which means we don't need to check many a's to determine, with high probability, that some n is prime.

EXAMPLE OF RABIN-MILLER TESTING

$$n = 1729$$

 $a = 671$

Assignment Project Exam Help

https://powcoder.com

PROBLEM I

Let's explore an application of fingerprinting that checks integer multiplication.

Assignment Project Exam Help

We are given three integers a,b, and c, and we want to determine whether or not $a\cdot b=c$. Suppose that $0\le a<10^{250,000}$ and $0\le c<10^{500,000}$, so it is in the perform the multiplication!

- 1. Suppose someone told you to check whether 23898339. 19392981 383431298313 is true. How can you tell the answer is *false* immediately?
- 2. Generalize your strategy to come up with an algorithm that tests whether $a \cdot b = c$. Be sure your algorithm is randomized so it works well on average for any a, b, c (hint: choose a prime number!).
- 3. Using the Prime Number Theorem, which says that there are $\Theta(n/\ln n)$ primes less than n, bound the failure probability of your algorithm, assuming that you randomly choose a prime number below 10^{18} .

PROBLEM 2

Prove that if the resemblance between two documents R(A,B) = 0, then our set resemblance algorithm always gives a correct estimate of the resemblance $Project\ Exam\ Help$

https://powcoder.com

PROBLEM 3

Consider the number 1105.

- a) Does 1105 pass Fermat's test? Assignmenta Project Exam Help
- b) Does 1105 pass the Rabin-Miller test?

https://powcoder.com