Explanation

We begin the analogy with the Naiver-Stokes equation which governs Incompressible Newtonian fluids. Let v denote the velocity vector field of the fluid, which associates to each position r = (x, y, z) and time t, a vector representative of fluids velocity. Let p be a scalar that denotes pressure. The equation is,

$$v_t + v \cdot \nabla v = -\nabla p + \nu \nabla v, \ \nabla \cdot v = 0.$$
 (1)

The designation that $\nabla \cdot v = 0$ is termed divergence free, i.e. v is a divergence free velocity field. A stream function $\Psi(x,y)$ is a scalar function that satisfies the relationship $\nabla^{\perp} = v = (v_x, v_y)$, i.e., $\nabla \Psi_y = v_x, \nabla \Psi_x = -v_y$. The vorticity of flow field is $\omega = \nabla \times v$.

We can take the curl of (1),
$$\nabla \times (v_t + v \cdot \nabla v) = \nabla \times (-\nabla p + \nu \nabla v)$$

$$\nabla \times (v_t + v \cdot \nabla v) = \nabla \times v_t + \nabla \times (v \cdot \nabla v) \text{ since } \nabla \times (A + B) = \nabla \times A + \nabla \times B.$$

$$= \frac{\delta(\nabla \times v)}{\delta t} + \nabla(v \cdot \nabla v) \text{ since } \delta \times \frac{\delta A}{\delta t} = \frac{\delta}{\delta t} (\nabla \times A)$$

$$= w_t + \nabla \times (v \cdot \nabla v) \text{ since } w = \nabla \times v \text{ by definition.}$$

$$= w_t + (v \cdot \nabla)(\nabla \times v) - (w \cdot \nabla)(v) \text{ for some reason. Since } w \text{ is a scalar value, } \nabla \cdot w = 0. \text{ Hence,}$$

$$\nabla \times (v_t + v \cdot \nabla v) = w_t + (v \cdot \nabla)w.$$

The right hand side becomes $\nu \nabla w$, hence, $w_t + (v \cdot \nabla)w = \nu \nabla w$.

With the assumption that the fluid has no viscocity, i.e., $\nu = 0$, we have that $\omega_t + (v \cdot \nabla)\omega = 0$. Furthermore, with the assumption of a steady state flow, $w_t = 0$, we have that $(v \cdot \nabla)\omega = 0$. Noticing that $\Delta \Psi = \omega$, $(v \cdot \nabla)\Delta \Psi = 0$.

$$(v \cdot \nabla) \triangle \Psi = 0.$$

$$v \cdot \nabla \triangle \Psi = 0.$$

By definition,
$$\frac{\delta \Psi}{\delta y} = v_x$$
 and $\frac{\delta \Psi}{\delta x} = -v_y$, hence,

$$\nabla^{\perp}\Psi = (v_x, v_y)$$
 and so,

$$\nabla^{\perp}\Psi \cdot \nabla \triangle \Psi = 0.$$

"which says that the Laplacian of the stream function, and hence the vorticity, must have the same level curves as the steam function".

Explanation Draft

To see this, $\nabla \Psi$ is normal to streamlines of Ψ since streamlines are the level curves of Ψ . $\nabla^{\perp}\Psi$ is a 90 degree rotation of $\nabla \Psi$, hence, tangent to streamlines of Ψ . The equation implies that the tangents of stream lines are orthogonal to gradients of the Laplacian of I. Since the gradient of ΔI is orthogonal to level curves of ΔI , it follows that the streamlines of I are parallel to the level curves of I.

This derivation justifies the use of the technique. "The concept of smooth continuation of information in the level-lines direction has been addressed in [2]". ... "The proposed algorithm propagates the image Laplacian in the level-lines (isophotes) direction. The algorithm attempts to imitate basic approaches used by professional restorators."

With the justification sorted, we use (1) with the stream function Ψ now being represented by the image intensity I. We begin with equation $\omega_t + v \cdot \nabla w = \nu \triangle w$ which was obtained with the assumption of steady state flow and no viscocity. We add anistrophic diffusion through g.