Canon Canola CINCTIONS

SCIENTIFIC FUNCTIONS

0

0

0

0

Instructions

CONTENTS

I	Fu	nction keys								
	1.	Keys and Switch	3							
	2.	Explanation	3							
П	Ma	nual Calculations								
	1.	How to use Function Keys in								
		Manual Calculations	3							
		1-1 Preparation	3							
		1-2 Key operation	3							
	2.	Manual Calculation Examples	4							
		2-1 Calculation to obtain the period T								
		of a conical pendulum	4							
		2-2 Calculation to obtain the spacing d								
		in Bragg Reflection	4							
Ш	Pro	ogrammed Calculations								
	1.	Explanation of Instructions for Functions	4							
	2.	Table of Instructions for Functions	5							
	3.	Programmed Calculation Examples	6							
		3-1 Calculation to determine								
		the decaying time	6							
		3-2 Making a table for the								
		trigonometric functions	8							

I Function Keys

1. Keys and Switch

Function Keys

Slide Switch (Angle Form Slide Switch)

2. Explanation

Angle Form Slide Switch

Designates the angle form for the values or variables of the trigonometric functions in manual calculation or programmed calculation.

RAD : Radian GRD : Gradian DEG : Degree

DMS: Degrees, minutes and seconds

The Function Block

The function operates on the value in the buffer register, and the calculated value takes the place of it.

Function Section

sin

Finds a sine value,

tan

Finds a cosine value. Finds a tangent value.

a ^{3′,″}

Converts a value shown in degrees, minutes and seconds into a value in decimal degree system.

arc

Finds an arc trigonometrical function in combination with the sin , cos or tan key.

Converts a value shown in decimal degree system into a value in degrees, minutes and seconds. Used in combination with the Area key.

×

Finds an exponential function to the base

e.

Finds an exponential function to the base

In log

10X

Finds a natural logarithm. Finds a common logarithm.

n!

Finds a factorial.

II Manual Calculations

1. How to Use Function Keys in Manual Calculations

1-1 Preparation

If you intend to use a key related to trigonometric functions, set Angle Form Slide Switch.

1-2 Key Operation

After these preparation, intended result can be obtained by depressing the function keys after entering the numerals.

, Functions	Key Operation	Input Range
sin	Sin	(∞, ∞)
cos	cos	(-∞, ∞)
tan	tan	(-∞,∞)
arc sin	arc sin	[-1, 1]
arc cos	arc cos	[-1, 1]
arc tan	arc tan	(-∞, ∞)
TO DEG	a → 1	(∞, ∞)
TO DMS	arc a arc	(-∞, ∞)
ex	e ^x	(-∞, ∞)
10 ^x	Iox	(-∞, ∞)
In	<u>In</u>	(0, ∞)
log	log	(0, ∞)
n!	n!	[0, 69]
е	arc ex	
π	arc arc	

Note: In case of using as a substitution for "The Table of Functions":

Functions obtained are shown as values without being rounded, so, if you want to obtain a rounded value, depress the key.

III Programmed Calculations

2. Manual Calculation Examples

2-1 Calculation to obtain the period T of a conical pendulum.

Example:

$$\begin{cases}
l = 30 \text{ cm} \\
\theta = 15^{\circ}30'
\end{cases} \quad \mathbf{T} = 2\pi \sqrt{\frac{30 \cdot \cos 15^{\circ}30'}{980}}$$

$$g = 980 \text{ cm/sec}^{2} = 1.079 \text{ sec}$$

Decimal Point Selector Dial: 3
Round Form Slide Switch: 5/4
Angle Form Slide Switch: DMS

Key Operation:

2 x arc arc x (30 x 15.30 cos +
980 [- (1.079)

2-2 Calculation to obtain the spacing d in Bragg Reflection

Example:
$$d = \frac{\lambda}{2 \cdot \sin \theta} = \frac{1.539}{2 \cdot \sin 37^{\circ} 15'}$$

$$\theta = 37^{\circ} 15' = 1.271 \text{ Å}$$

$$\lambda = 1.539 \text{ Å}$$

Decimal Point Selector Dial: 3 Round Form Slide Switch: 5/4 Angle Form Slide Switch: DMS

Key Operation:

1.539 ÷ 2 ÷ 37.15 sin = (1.271)

1. Explanation of Instructions for Functions Instructions for Functions

Instructs to obtain sine value. Input

	range. (=\omega, \omega)
cos	Instructs to obtain cosine value. Input
	range: (—∞, ∞)
tan	Instructs to obtain tangent value. Input
	range: (-∞, ∞)
sin ⁻¹	Instructs to obtain inverse cosine value.
	Input range: [-1, 1]
	Depress keys as follows: arc sin
cos ⁻¹	Instructs to obtain inverse cosine value.
	Input range: [-1, 1]
	Depress keys as follows: arc cos
tan ⁻¹	Instructs to obtain inverse tangent value.
	Input range: (-∞, ∞)
	Depress keys as follows: arc ten
In the abo	ve instructions, operations are regulated by
setting the	position of the Angle Form Slide Switch.
TO DEG	instructs to convert a value stored in the
	buffer register represented in degrees,
	minutes, and seconds into a value in
	decimal degrees.
TO DMS	Instructs to convert a value stored in the
	buffer register represented in decimal
	degrees into a value in degrees, minutes
	and seconds.
	Depress keys as follows: arc a
e^X	Instructs to obtain an exponential func-
	tion to the base e. Input range: $(-\infty, \infty)$
10 ^{<i>x</i>}	Instructs to obtain an exponential func-
	tion value to the base 10. Input range:
	(-∞, ∞)
In	Instructs to obtain a natural logarithm
	value. Input range: (0, ∞)
log	Instructs to obtain a common logarithm
	value. Input range: (0, ∞)
n!	Instructs to obtain a factorial value. Input
	range: (0, 69)
a	Instructs to obtain an absolute value.
	Depress keys as follows: MST B 6
Integer	Instructs to take out only the integer

part.

Depress keys as follows: INST B B

Fraction Instructs to take out only the decimal fraction part.

Depress keys as follow: NST 8 7

Instructions for Constant

e Instructs to enter the constant, e.

Depress Keys as follows: arc ex

 π Instructs to enter the constant, π .

Depress Keys as follows: arc arc

2. Table of Instructions for Functions

Instruction	Interpretation	Key Operation	Print Symbol
sin	Sine	sin	SIM
cos	Cosine	COS	C08
tan	Tangent	tan	MAT
arc sin	Arc sine	arc sin	ASIM
arc cos	Arc cosine	arc cos	ACOS
arc tan	Arc tangent	arc tan	ATAN
TO 050	Conversion from Degree Second Minute Mode	a Trim	r. r. a
TO DEG	to Decimal Degree Mode		DEG
TO DMS	Conversion from Decimal Degree Mode to Degree	arc a°	DMS
10 9/42	Second Minute Mode	a.c.) (a)	Dilo
ex	Exponential function to the base e	e ^x	€*
10 ^x	Exponential function to the base 10	10×	10"
ln ·	Natural logarithms	<u>In</u>	LM
log	Common logarithms	log	LOG
n!	Factorial	n!	N!
a	Absolute value	MST B 6	lal
INTEGER	Integer part of a value	INST 8 8	INT
FRACTION	Fraction part of a value	INST B 7	FR
е	Constant e	arc e ^y	E:
π	Constant π	arc arc	T

3. Programmed Calculation Examples

3-1. Calculation to determine the decaying time

Calculation to determine the decaying time when the decay ratio and the half-life of the nuclide are known.

Formula:

$$t = -\frac{t_{\frac{1}{2}}}{\ln 2} \cdot \ln \frac{A}{A_{\circ}}$$

 $t_{\frac{1}{2}}$ = Half-life

A.: Number of nucleons at t=0

A: Number of nucleons at t=x

 $1-\frac{A}{A_o}$: Decay ratio

In this example:

Half-life: $t_{\frac{1}{2}} = 1622 \text{ years}$ Decay ratio : $1 - \frac{A}{A_o} = \frac{1}{100} (1\%)$

Printout Format

HALF-LIFE ?
DECAY % ? 1622

> TIME 23.5183

E E

Program Coding

Sten: 72

RM

t_½ (year)

Step: 72	Da	ta memory: 2		
	Instruc-		Key	
Step	tion	Remark	Operation	Step
000	SP			050
1	00			1
2	LF		1	2
3	SPACE			3
4	12			4
5	CHA			5
6	Н	48		6
7	Α	41		7
8	L	4C		8
9	F	46		9
010	_	2d	1.	060
1	L	4C	 	1
2		49		2
3	F	46		3
4	E .	45		4
5	SPACE	20	 	5
6	?	3f	- 	6
7	SPACE	20		7
8	CHA	20		8
9	ENT	Input half-life	 	9
020	SM	проспанне	- 	070
1	00		 	1
	SPACE			2
3	14			3
4	CHA		1 1	
5	D	44	- 	
6	E	45	!	1
7	C	43	 	1
8	A	41		1
9		59		-
030	SPACE	20		-
1	%	25		-
2	SPACE	20	1	1
3	?	3f		1
4	SPACE	20	1	1
5	CHA	20	1 1	-
6	ENT	Input decay-ratio (%)		1
7	SM	mpat decay satio (x)		-
8	01			-
9	LF		+ ; •	1
040	SPACE			1
1	19		 	1
2	CHA		1	+
3	T	54		1
4	- ;	49	+ + + + + + + + + + + + + + + + + + + +	1
H	M	4d	+ -	1
5 6	E	45		1
	SPACE	20		-
7		20		-
8	CHA	†	- - 	-

Operation Procedure

1. LEARN

Instruc-

tion

00

Х

{

1

RM

01

÷

1

0

0

)

LN

÷

2

LN

SIGN CHG

F1X 5/4

04

 \Diamond

LF

ΕP 00 Remark

(1-A/A_o) x 100 (%)

1-A/A_o

In A/A。

Writing t

A/A_o

In 2

- 2. 🖒 🛴
- 3. Learn the program
- 4. OPE
- 6. Unlock the PRINTER key. (Printer ON)
- 7.
- 8. Input the half-life
- 10. Input the decay ratio in percentage

Repeat from operation 7 to perform the next calculations.

Key

Operation

FIX: 5

3-2. Making a table for the trigonometric functions.

Arrange the program such that the function values for Sin, Cos, and Tan are printed with designated digits, with the initial angle and regular interval of the angle given in Degree, Minute, Second Mode, according to the print-out format. Furthermore, print out "INFINITY" when the function value is infinity (overflow).

Study Points:

- Utilizing function keys
- SED & RED function
- INTEGER & FRACTION

NOTE: Integer and Fraction Instruction

These instructions are used in this example to edit the sexagesimal number.

5 to.

The way of editing sexsagesimal is illustrated and explained as follows:

normalized into scientific floating.

Therefore, when you print the value, FIX instruction before putting print (\Diamond or COL) instruction must be done.

Printout Format

		THI	GONOME TRIC	FUNCTION	THELE
	Xª		SIN	cos	THH
S	Ø			1.0000	0.00000
45 90	9	0 0	0.7071 1.0000		
135		<u> </u>	A . 7071	0,0000 -0.7071	
180	3	0	0.0000	-1.0000	
225		Ø	-0.7071	-0.7071	
270			-1.6000	0.0000	
315	Ø	0		0.7071	
350		Ŋ	0.0000	1.0000	
405	Ø	Ø	0.7071	0.7071	1.00000

Program Coding

Step: 184 Data memory: 4

Step	Instruc-	Remark	Key	Step	Instruc-		Remark	Ke	·y
Осер	tion	115111011	Operation	Осер	tion		TIGITISTA	Opera	ition
000	SP			050	CHA				
1	50		1	1	SPACE				
2	LF			2	07			į	
3	LF		i	3	CHA			i	
4	SPACE			4	С	43		t I	
5	09			5	0	4f		i	
6	CHA		i i	6	S	53		t t	
7	Т	54		7	CHA			1	
8	R	52		8	SPACE			1	
9	1	49		9	08			i	
010	G	47		060	CHA			1	
1	0	4f	!	1	T	54		1	
2	N	4e		2	А	41		;	
3	0	4f		3	N	4e			
4	М	4d	- 1	4	CHA				
5	E	45		5	LF			<u> </u>	
6	Т	54		6	LF	-		1	
_	R	52	i	7	ENT	Input ini	tial value, α° (DMS)		
. 8	1	49		8	DEG		al degree mode	a°··	
9	c	43		9	SM				
020	SPACE	20		070	00				
1	F	46		1	ENT	Input and	gle interval, h(DMS)		
2	 . U	55		2	DEG	1		a° , ,,	
3	N	4e		3	SM				
4	C	43		4	01				
5	Т	54		5	ENT	Input ou	tput-number, n	<u>-</u>	
6	 	49		6	SM	111001.00			
7	0	4f		7	02	-			<u>l</u>
	N	4e		8	FLAG			-	
9	SPACE	20		9	00	-			
	T	54	<u> </u>	+	RM			+	
030	A	41	!	080	00	-		+	
1		42	<u> </u>	1 1	-	T. dans			a°, ;
2	В			2	DMS	10 degre	e-minute-second mode	arc	
3	L	4C 45	1	3	FIX5/4	-		FIX	5
4	E	45		4	04				
5	CHA			5	SM			<u> </u>	
6	LF		<u> </u>	6	03	1.			
7	LF			7	INT	Integer	Editing and	INST	
8	SPACE			8	FIX	1	Writing	FIX	0_
9	06			9	00		degree part		
040	CHA			090	COL				
1	X	58		1 1	05			i	
2	۰	df	<u> </u>	2	RM	1			
3	CHA			3	03	-			
4	SPACE		!	4	FRC	Fraction	Editing of	INST	_8,
5	07		!	5	X	-	second part	· 1	
6	CHA			6	1			i	
7	S	53		7	0		,	1	
8	ı	49	;	8	0			†	
9	N	4e		9	=		J	1	

Program Coding

Step: 184 Data memory: 4

	Instruc-	1	K	еу		Instruc-	Remark	Key
Step	tion	Remark	Oper		Step	tion	Remark	Operation
100	SM	Storing second and		-	150	SPACE	20	
1	03	minute parts			1	SPACE	20	
2	FIXT		FIX	0	2	SPACE	20	
3	00	Editing and writing		1	3	"	de	
4	COL	second part		1	4	1	49	
5	03			, ,	5	N	4e	
6	RM			1	6	F	46	
7	03			!	7	1	49	
8	FRC		INST	8 7	8	N	4e	
9	×	Editing and writing		i i	9	1	49	
110	1	minute part	 		160	T	54	
1	0				1	Y	59	
2	0				2	"	de	
3	=			1	3	CHA		
4	FIXフ		FIX	0	4	FLAG		
5	00			, ,	5	02		
6	COL			1	6	LF		
7	03			,	7	RM	1	
8	RM			1	8	01	α' + h	
9	00				9	ΣΜ		
120	SIN	Sin value calculation	-	<u> </u>	170	00		
1	FIXつ	and writing	FIX	0	1	1		
2	04				2	SC	Count	
3	COL			1 .	3	ΣΜ		
4	09				. 4	02		
5	RM			,	5	RM		1
6	00	Cosine value calculation			6	02		
7	cos	and writing			7	1F≑O	If the writing values	IF: =
8	FIX¬		FIX	0	8	00	are accomplished?	1
9	04				9	LF		
130	COL			1	180	LF		1
_1	10				1	EP		
2	SED	SET ERROR-DISABLE	INST	F9	2	50		
3	RM							
4	_00	Tangent value			1			
5	TAN	calculation						
6	IFER	Error check	IF	CE				
7	01							
8	RED	RESET ERROR-DISABLE	INST					
9	FIX ¬		FIX	0				
140	05	Tangent value						
1	COL	writing						
2	11							
3	GOTO							
4	02							
5	FLAG						·	
6	01		1					
7	RE	RESET ERROR	INST					
8	RED	RESET ERROR-DISABLE	INST	F7				

12

CHA

Operation Procedure

Set the Angle Form Slide Switch to Degree mode. Set the Printer Switch off.

- 1. LEARN
- 2. 💿 🛍
- 3. Learn the program
- 4. OPE
- 5. 💿
- 6.
- 7. Input initial value, α. (DMS)
- 8.
- 9. Input interval, h. (DMS)
- 10.
- 11. Input output-number, n
- 12.

とうこうかつ ううりつうりつ うりゅうしょく

Repeat from operation 6 to perform the next calculations.

Canon

PUB. IE3094G 1175B0.635

PRINTED IN JAPAN

Hoe te programmeren.

Het is aan te bevelen het programma-deel in de data-geheugens altijd als sub-program te noteren. Druk de volgende toetsen in :

LEARN - C - C-ALL-1/OF- OPE 5000 START-LEARN.

Na deze handeling verschijnt in het afleesvenster 5000 u kunt nu starten met het programmeren van uw sub-routine. Het vastleggen van dit geprogrammeerde deel gaat nu via DATA-TRANS EN RECORD.

Heeft u in een voorafgaand deel van uw programma de geheugens 00 t/m 10 in gebruik dan toetst u i.p.v. 5000, 5100 in.

Voorbeeld:

<u> </u>	10+		5000 E	
50001 50002 50000 5000 5000 5000 5001 5001		5014 3 7 6 8 7 6 8 7 6 8 7 6 8 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5025 5026 C 5026 C 5027 A 5028 A 5033 C 5033 B 5033 B 5033 C 5036 C	5637 E 5638 N 5638 S 5646 CHA 5641 EP 5642 84
	•			

Vanuit het hoofdprogramma dient nu de verwijzing naar de sub-routine te worden aangegeven. Aansluitend op het voorbeeld wordt dit alsvolgt geprogrammeerd:

0000 GS

Na het indrukken van de toetsen OPE- C en START geeft de SX het volgende resultaat :

DEZE TEKST STAAT IN DE DATA-GEHEUGENS

Nogmaals de waarschuwing : Gebruik nooit de F1 instruktie in uw programma als u data-geheugens heeft gebruikt voor de opslag van programma stappen. Het weergeven van de geprogrammeerde stappen in data-geheugens geeft enige problemen. Hiervoor zijn twee mogelijkheden.

- Laad het programma gedeelte van de machine met het als sub-routine geprogrammeerde deel, de zogenaamde data-kaart of data-cassette. Na het laden vanaf stap 000 kunt u een normale print-out met de PROG. PRINT verkrijgen.
- 2. Via PROG. SELECT. In het hoofdprogramma staat de instruktie GOTOSP 8a. We drukken nu de toets progselect in en op de toets a. De SX geeft de tekst weer of voert het programma uit. Hierna drukken wij PROG. PRINT. Het programma start nu met stap 5002. De SP 8a instruktie wordt niet op de strook weergegeven.

Voorbeeld:

1. 2.

6986 84 6881 84 6888 688 6888 6	6623 (6624 8 6625 6626 D	0626 TEKST 5002 CHA 5003 D 5004 5	STAAT 1M DE CATA-GEHEUG 5022 5023 D	ERG
- 6965 E - 6966 E - 6967	6027 A 6028 T 6029 A 8030 -	5005 <u>2</u> 5006 E 5007	5624 6 5625 5626 D	
0008 T 0008 E 0010 K	9031 6 6032 6 6033 H	5008 T 5009 E 5010 K 5011 S	5027 A 5026 T 5029 A	
6011 S 6012 T 6013	0034 E 0035 U 0036 G	5012 T 5013 5014 S	5030 - 5031 G 5032 E 5033 H	
0014 5 0015 T 0016 A 0017 A	2037 E 2038 N 3035 S 2040 CHA	5015 T 5016 A 5017 A	5034 E 5035 U 5036 G	
2012 T 6613 9620 I	0041 EP 0042 84	5018 T 5019 5020 I	5037 E 5038 N 5039 S	
0021 N 0022		5021 N	5040 CHA 5041 EP 5042 :=	

INDIRECTE ADRESSERING.

Indirect adresseren is gebruik maken van één geheugen als adres voor andere. M.a.w. de inhoud van het adresgeheugen is de verwijzing naar welk geheugen of in welk geheugen een in te stellen getal, de variabele, dient te worden opgeslagen.

Voorbeeld:

Een serie variabele getallen dient in opeen volgende geheugens te worden opgeslagen.

Programma zonder indirect :

jee sp 1381 12

Zonder de indirect funktie is volgens het programma voorbeeld de opslag van 10 getallen in 10 geheugens mogelijk. Met gebruik van de indirect funktie kunt u de totale geheugen kapaciteit gebruiken.

Dus indirect bespaart een groot aantal programma-stappen.

Ditzelfde programma kunt u gebruiken voor het akkumuleren van diverse getallen in de geheugens door i.p.v. SM de
§M te programmeren en ook voor het automatisch terugroepen door i.p.v. de SM de RM te programmeren.

De INDIRECT funktie kunt u ook gebruiken voor het opbergen, verzamelen en terugroepen van getallen in gesplitste geheugens.

Voorbeeld:

Een serie getallen van ieder maximaal 6 cijfers worden respectievelijk vastgelegd in het linker deel van het geheugen het tweede getal wordt geakkumuleerd in het rechter geheugendeel.

Het werken met de INDIRECT funktie ook bij gesplitste geheugenkapaciteit.

Voorbeeld:

De inhoud van het linker geheugendeel wordt vermenigvuldigd met de inhoud van het rechter geheugendeel. Afgerond en uitgeschreven. Wanneer alle geheugens zijn verwerkt stopt de machine en geeft vier regelspaties.

```
3014 ÷1
3515 /
1886 1
1881 Th
1888 58
1888 184
 JASET 22
 SEEP LF
 COES LF
 TORO LE
 JUEL LE
 TOBE EF
```

Het werken met de INDIRECT funktie ook bij gesplitste geheugenkapaciteit.

Voorbeeld:

De inhoud van het linker geheugendeel wordt vermenigvuldigd met de inhoud van het rechter geheugendeel. Afgerond en uitgeschreven. Wanneer alle geheugens zijn verwerkt stopt de machine en geeft vier regelspaties.

```
lego SP
2001 99
1 300
was so
aggu sa
4005 FLE
1905 CE
beer int
OPPE L
9999 AM
8918 88
9011 ×
EMIZ INC
edia a
eelu Em
0015 90
201E =
0017 FIXE
0018 08
2019 0
0020 l
0021 IM
 3022 96
 SSES INC
 DBE4 Am
 JOZE CO
 BOBS IFNE
 9027 30
 SOES LF
 OGES LF
 0030 LF
 0031 LF
 COBE EF
```

0033 00

Thativeiet

```
Copyright Summer en O)
            (vany geheugen ur. A opræpen)
   SM
    XX
B
            (B (asutal) galungers operagen).
    SM
   00
                                                  33
   Flag
1100
                                                  SM
                                                  7
SM
    RM
    XX
                                                  21
   Fixs
                                                  flag
                                                 MND
                                                  RM
    10
   1
2M
                                                            33 34
                                                 Fix 5
   XX
SC
SM
                                                  ÖΖ
                                                  COL
                                                  10
   ORM
                                                  1
                                                  2M
 JANZ.
                                                           (34) (35)
                                                  20
                                                  $c
                                                  ٤M
                                                            (6) (5)
                                                  21
                                                  RM
                                                            (6) (5) ----(0)
                                                  21
                                                 ifNZ
                                                  16
```

as, SP, fl. en gete..

SPC = | Seag in gric human in conduct | progression Echines SP06 homes | lead in mil. zerten EP. | lewist wordt, gast het progressed in GS06, | SP08 | GS06 | SP08 | EP00 | EP00

holland systema b.v.

HOOFDKANTOOR: WEESP - POSTBUS 178 - TEL. 02940 -15315*

BANKIERS AMSTERDAM-ROTTERDAM BANK N.V. - ALGEMENE BANK NEDERLAND N.V., AMSTERDAM - POSTGIRO 475480 - GEM. GIRO H 2402 - TELEGR. ADP.: 9UND4F0D

Het gebruik van DATA geheugens voor het vastleggen van programmastappen.

Bij de CANON SX modellen zijn zowel de programma-registers als de dataregisters uit dezelfde componenten opgebouwd en in serie geschakeld.

Indien wij b.v. een SX 300 tot volle kapaciteit uitbreiden en tevens gebruik maken van een Memory-box, is de totaal kapaciteit 5000 programmastappen en 500 data-memories.

In feite is de kapaciteit 1000 registers van elk 10 bytes.

(1 byte = 2 cijfers of 1 programmastap).

Voor het programma zijn nu de eerste 500 registers geschakeld (000-499) en voor de data-geheugens de volgende 500 registers (500-999). In de hardware van de SX is de schakeling voor het gebruik van data-geheugens (CM, SM, ξ M en RM) zodanig dat automatisch de waarde "500" wordt geteld bij het register adres.

Dit heeft tot gevolg dat we geen enkele data direkt in de eerste 500 registers kunnen plaatsen, waardoor automatisch de bescherming van het programma-deel ontstaat.

Wat wij echter wel kunnen bereiken, zijn de data-registers. Weliswaar niet automatisch, dit zoû de mogelijkheid tot vergissingen geven doch via onze I/O funktie.

We kunnen namelijk stellen dat ons data-register start bij programmastap 5000.

Indien wij starten bij stap 5000 met een bepaald programma-onderdeel, wordt voor iedere 10 programmastappen een data-geheugen gebruikt, dus voor stap 5000 tot 5009 wordt geheugen 00 in gebruik genomen; voor stap 5010 tot stap 5019 geheugen 01 etc. etc. Page 0 van het data-register is in wezen page 5 van het programma-register.

Programma-onderdelen, geprogrammeerd in data-geheugens, kunnen niet op normale wijze worden gelezen.

Dit moet altijd gebeuren via "data transport".

Ook dient u er rekening mee te houden dat indien programma-onderdelen in data-geheugens zijn geprogrammeerd, nooit de F 1 (het schoonmaken van alle data-registers) instruktie en de CM mogen worden gebruikt, aangezien anders deze programma-onderdelen uit de registers worden verwijderd. Ook de CaALL toets mag onder geen enkele voorwaarde worden gebruikt.

WEESP: BLOEMEND ALERWEG 45 ROTTERDAM: HOOGSTRAAT 38a, TEL. 010-138652