Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

9 de diciembre de 2020

Transformaciones Lineales

Definición

Se llama **conjunto solución del sistema** Ax = b, al conjunto total de sus soluciones.

Verifique que dos sistemas de ecuaciones lineales equivalentes tienen el mismo conjunto solución.

Se llama matriz aumentada del sistema Ax = b a la matriz $[A \mid b]$.

Ejemplo

Halle el conjunto solución del sistema

luego el sistema anterior lo llevamos a forma de matriz aumentada

$$[A \mid b] = \begin{bmatrix} 1 & 1 & -1 & 4 & 3 & | & 6 \\ 3 & -1 & 2 & -6 & -5 & | & 1 \\ 2 & 0 & -1 & -4 & 2 & | & -7 \\ 2 & -2 & 3 & -10 & -8 & | & -5 \end{bmatrix}.$$

Haciendo operaciones elementales llegamos a la solución $S = \{(0, 13, 7, 0, 0) + t(1, -7, -2, 1, 0) + w(0, -1, 2, 0, 1)/t, w \in \mathbb{R}\}$

Definición

Sea $A \in \mathbb{R}(m, n)$ una matriz, la dimensión de su espacio fila se llama rango por filas, y lo denotamos por $r_f(A)$, es decir, $r_f(A) = dim(\mathcal{F}(A))$.

También, la dimensión de su espacio columna $\mathscr{C}(A) = \mathscr{L}(\{a^1, \dots, a^n\})$ se llama **rango por columnas** y lo denotamos por $r_c(A)$, es decir, $r_c(A) = dim(\mathscr{C}(A))$.

Nota

El rango por filas de una matriz A, es igual al número de filas no nulas de A_0 , la matriz elemental reducida asociada a la matriz A, de donde tenemos $r_f(A) \leq m$.

Además, los 1-capitales de A_0 se encuentran en columnas distintas, de donde se tiene que $r_f(A) \le n$.

De esta forma se obtiene que

$$r_f(A) \leq \min(\{m,n\}).$$

Si $r_f(A)$ =mín($\{m, n\}$), entonces diremos que el $r_f(A)$ es total, también llamado rango full.

Recordar que el sistema homogéneo $Ax = \mathbf{0}$ siempre posee solución, la cual es $x = \mathbf{0}$.

Sin embargo, nos interesa determinar todas las soluciones del sistema homogénemo.

Observe que el conjunto total de soluciones de $Ax=\mathbf{0}$ es un subespacio de $\mathbb{K}(n,1)$, de donde

$$\mathcal{N}(A) = \{x \in \mathbb{K}(n,1)/Ax = \mathbf{0}\}.$$

En la siguiente proposición determinamos la dimensión de este subsespacio.

Proposición

Para toda matriz $A \in \mathbb{K}(m, n)$ se tiene que $dim(\mathcal{N}(A)) = n - r_f(A)$.

Prueba:

Consideremos A_0 la matriz elemental reducida asociada a la matriz A, entonces $Ax = \mathbf{0}$ y $A_0x = \mathbf{0}$ tienen el mismo conjunto solución, es decir, $\mathcal{N}(A) = \mathcal{N}(A_0)$.

Ahora, en la ecuación $A_0x = \mathbf{0}$, las variables dependientes corresponden a las columnas donde se hallan los 1—capitales, mientras que las demás variables son independientes.

Luego si $r_f(A) = p$, entonces se tienen p variables dependientes y_1, \dots, y_p y q variables independientes z_1, \dots, z_q . de $A_0x = \mathbf{0}$, de donde se tienen

$$y_1 = \sum_{i=1}^{q} \gamma_{i1} z_i$$

$$y_2 = \sum_{i=1}^{q} \gamma_{i2} z_i$$

$$\vdots$$

$$y_p = \sum_{i=1}^{q} \gamma_{ip} z_i$$

Luego, las componentes de todo vector $v \in \mathcal{N}(A)$ están expresadas como combinación lineal de z_1, \ldots, z_a .

Para cada $i=1,\cdots,q$, consideremos $u^i\in\mathcal{N}(A)$ el vector que se obtiene tomando $z_i=1$ y $z_j=0$ para $j\neq i$. Entonces los vectores $\{u^1,\cdots,u^q\}$ son linealmente independiente y generan a $\mathcal{N}(A)$. Luego

$$dim(\mathcal{N}(A)) = q = n - p = n - r_f(A).$$

$$2x + y + 9z + w = 0
-x + y - 6z + 6w = 0
5x + y + 24z - 2w = 0
x + y + 4z + 2w = 0.$$

De donde haciendo las operaciones elementales correspondientes llegamos a

$$A = \begin{bmatrix} 2 & 1 & 9 & 1 \\ -1 & 1 & 6 & 6 \\ 5 & 1 & 24 & -2 \\ 1 & 1 & 4 & 2 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & 5 & -1 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = A_0.$$

Entonces $r_f(A) = r_f(A_0) = 2$. Por tanto, el sistema inicial es equivalente a

$$x + 5z - w = 0$$

 $y - z + 3w = 0$

observamos que las variables dependientes son x, y y las variables independientes z, w.

Luego si $v=(x,y,z,w)\in\mathcal{N}(A)$, entonces

$$v = (-5z + w, z - 3w, z, w) = z(-5, 1, 1, 0) + w(1, -3, 0, 1)$$

Por tanto una base de $\mathcal{N}(A)$ es $\{(-5,1,1,0),(1,-3,0,1)\}$, y de manera tenemos

$$dim(\mathcal{N}(A)) = 2 = 4 - 2 = 4 - r_f(A).$$

Observamos que los sistemas homogénos poseen siempre solución, y aquí podemos deducir que un sistema homogéneo:

- posee solución única (si m = n y la matriz es inversible)
- posee infinitas soluciones.

Sistema no Homogéneo

En esta parte nos encontramos con sistemas que pueden poseer

- solución única (si m = n y la matriz es inversible) $\mathbf{\acute{o}}$
- infinitas soluciones ó
- no posee solución.

Definición

Sean $A \in \mathbb{K}(m, n)$, $b \in \mathbb{K}(n, 1)$, entonces el sistema de ecuaciones lineales Ax = b se llama **consistente**, si posee alguna solución. En caso contrario, se llama **inconsistente**.

Proposición

Sean $A \in \mathbb{K}(m, n)$, $b \in \mathbb{K}(n, 1)$, entonces el sistema de ecuaciones lineales Ax = b posee solución si $b \in \mathcal{L}(a^1, \dots, a^n)$, donde a^1, \dots, a^n son los vectores columnas de A.

Proposición (Criterio de la matriz aumentada)

Un sistema Ax = b posee solución si, y solo si

$$r_f(A) = r_f([A \mid b])$$

Prueba:

Denotaremos por $\mathscr{L} = \mathscr{L}(a^1, \dots, a^n)$ y $\mathscr{L}' = \mathscr{L}(a^1, \dots, a^n, b)$.

Si el sistema posee solución, entonces por la porposición anterior se tiene $b\in\mathcal{L}$. Luego $\mathcal{L}=\mathcal{L}'$ y además

$$r_f(A) = dim(\mathscr{L}) = dim(\mathscr{L}') = r_f([A \mid b]).$$

Recíprocamente, si $r_f(A) = r_f([A \mid b])$, es decir, $dim(\mathcal{L}) = dim(\mathcal{L}')$, de donde $\mathcal{L} \subset \mathcal{L}'$ y esto implica que $\mathcal{L} = \mathcal{L}'$.

Por tanto, $b \in \mathcal{L}' = \mathcal{L}$ y por la proposición anterior se tiene que el sistema posee solución.

12 / 18

Una **solución particular** del sistema Ax = b, es cualquier solución de este sistema.

Proposición

Si $x^0 \in \mathbb{K}(n,1)$ es un aolución particular del sistema Ax = b, entonces el conjunto total de soluciones de este sistema está dada por

$$x^0 + \mathcal{N}(A) = \{x^0 + z/z \in \mathcal{N}(A)\}\$$

Prueba:

Consideremos $CS = \{x \in \mathbb{K}(n,1)/Ax = b\}.$

Veamos que $CS = x^0 + \mathcal{N}(A)$:

 \subset) Sea $x \in CS$, entonces Ax = b. Luego

$$A(x-x^{0}) = Ax - Ax^{0} = b - b = \mathbf{0},$$

entonces $z = x - x^0 \in \mathcal{N}(A)$, luego $x \in x^0 + \mathcal{N}(A)$, es decir, $CS \subset x^0 + \mathcal{N}(A)$.

⊃) Sea $x \in x^0 + \mathcal{N}(A)$, entonces existe $x \in \mathcal{N}(A)$ tal que $x = x^0 + z$, luego

$$Ax = A(x^{0} + z) = Ax^{0} + Az = Ax + \mathbf{0} = Ax = b,$$

de donde $x \in CS$, es decir $x^0 + \mathcal{N}(A) \subset CS$.

Por tanto $CS = x^0 + \mathcal{N}(A)$.

Sistema Inconsistente

Empezaremos con el siguiente sistema, a modo de ejemplo

$$2x + 3y + z = 1$$

 $x + 4y = 2$
 $-x + y - z = -4$

aplicando operaciones elmentales a la matriz aumentada tenemos

$$\begin{bmatrix} 2 & 3 & 1 & | & 1 \\ 1 & 4 & 0 & | & 2 \\ -1 & 1 & -1 & | & -4 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & -1 & 1 & | & 4 \\ 0 & 5 & -1 & | & -2 \\ 0 & 5 & -1 & | & -7 \end{bmatrix},$$

donde observamos que $\left[\begin{array}{cc|ccc}1&-1&1&|&4\\0&5&-1&|&-2\\0&0&0&|&-5\end{array}\right]$ y en le última fila se

tiene 0 = -5 lo cual no puede ser, y de acuerdo a la penúltima proposición tenemos que, $b = [1, -2, 4]^t \notin \mathcal{L}(\{a^1, a^2, a^3\})$.

Sean V,W espacios vectoriales de dimensiones n y m, respectivamente, y $\Gamma = \{v^1, \cdots, v^n\}$ una base de $V, \Omega = \{w^1, \cdots, w^m\}$ una base de W. Si $T:V \longrightarrow W$ es una transformación lineal tal que

$$T(v^{j}) = \sum_{i=1}^{m} a_{ij}w^{i}, \quad j = 1, 2, \cdots, n$$

determinan una matriz

$$A_T = [a_{ij}] \in \mathbb{K}(m, n),$$

llamada **matriz asociada** a T en las base Γ y Ω .

Ejemplo

Sea $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ una transfomación definida por

$$T(x,y) = (x + y, x - y, 2x - 3y.)$$

Ahora procedemos a calcular la matriz asociada a T,

1. En las base cacnónicas $\{e^1, e^2\}$ de \mathbb{R}^2 y $\{f^1, f^2, f^3\}$ de \mathbb{R}^3 , entonces

$$T(e^1) = (1, 1, 2) = f^1 + f^2 + 2f^3$$

 $T(e^2) = (1, -1, -3) = f^1 - f^2 - 3f^3$

Luego tenemos la matriz $A_T = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 2 & -3 \end{bmatrix}$ es la matriz asociada

a T en las bases canónicas de \mathbb{R}^{2} y \mathbb{R}^{3} .

2. Ahora considere otras bases de \mathbb{R}^2 y \mathbb{R}^3 , digamos $\{v^1=(3;5), v^2=(2;3)\}$ para \mathbb{R}^2 y $\{w^1=(3,1,2), w^2=(-1,1,-1), w^3=(2,1,1)\}$ para \mathbb{R}^3 , de donde

$$A_{T} = \begin{bmatrix} -45 & -26 \\ -19 & -11 \\ 62 & 36 \end{bmatrix}$$

los detalles como ejercicio.