Machine Learning I: Foundations Exercise Sheet 3

Prof. Marius Kloft TA: Billy Joe Franks

12.05.2020

Deadline: 19.05.2020

1) (MANDATORY) 10 Points

Suppose that $k_1, \ldots, k_n : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ are kernels. Let $c_1, \ldots, c_n \in \mathbb{R}^+$ and $p \in \mathbb{N}$. Prove that the following functions k are also kernels.

- a) Scaling: $k(\mathbf{x}, \mathbf{x}') := c_1 k_1(\mathbf{x}, \mathbf{x}')$
- b) **Sum**: $k(\mathbf{x}, \mathbf{x}') := k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$
- c) Linear combination: $k(\mathbf{x}, \mathbf{x}') := \sum_{i=1}^{n} c_i k_i(\mathbf{x}, \mathbf{x}')$
- d) **Product**: $k(\mathbf{x}, \mathbf{x}') := k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$
- e) **Power**: $k(\mathbf{x}, \mathbf{x}') := k_1(\mathbf{x}, \mathbf{x}')^p$
- 2) In the lecture a few kernels were proposed, and here we will prove them to be kernels. Prove the following statements:
 - a) Polynomial kernel: $k(\mathbf{x}, \mathbf{x}') := (\mathbf{x}^T \mathbf{x}' + c)^d$ is a kernel.
 - b) **Limits**: If $k_i : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, $i \in \mathbb{N}$, are kernels and $k(\mathbf{x}, \mathbf{x}') := \lim_{n \to \infty} k_n(\mathbf{x}, \mathbf{x}')$ exists for all \mathbf{x}, \mathbf{x}' , then $k(\mathbf{x}, \mathbf{x}')$ is a kernel. Use the definition of positive semi-definiteness.
 - c) **Exponents**: If \tilde{k} is a kernel, then $k(\mathbf{x}, \mathbf{x}') := \exp(\tilde{k}(\mathbf{x}, \mathbf{x}'))$ is a kernel.
 - d) **Functions**: If \tilde{k} is a kernel and $f: \mathbb{R}^d \to \mathbb{R}$ then $k(\mathbf{x}, \mathbf{x}') := f(\mathbf{x})\tilde{k}(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$ is a kernel.
 - e) Gaussian RBF kernel: $k(\mathbf{x}, \mathbf{x}') := \exp\left(-\frac{\|\mathbf{x} \mathbf{x}'\|}{2}\right)$ is a kernel.

Hint: Use the results from Exercise 1 above.

3) Prove the following lemma:

Lemma 1 Let V be a vector space and I a set. Let $f_i: V \to \mathbb{R}$ be a collection of functions indexed by $i \in I$. If f_i is convex for all i, then the function

$$f(x) = \max_{i \in I} f_i(x)$$

is also convex.

4) Solve programming task 3.