Name: Vikram Sahai Saxena

Net ID: vs799 RUID: 219004709

Module 10 Exercise: Functional Form Fitting

i. The entire R code used when creating the scatter plot in (1), and the quadratic curve in (2)

a<-read.csv("penguin.csv")
year<-a\$Year
png<-a\$Penguins
plot(a\$Year, a\$Penguins, xlab="Year", ylab="Number of Penguins", main="Number of
Penguins in each of the given Years")
yearSqu<-year*year
quadm<-lm(png~year+yearSqu)
s<-seq(0,3000,0.5)
pc<-predict(quadm, list(year=s, yearSqu=s^2))
lines(s, pc, col="red", lwd=4)

ii. Screenshot of the scatter plot created in (1) with the quadratic curve created in (2)

Number of Penguins in each of the given Years

iii. Your opinion about the correlation (or lack thereof) between Penguins and Year

- The discrepancy between the scatter plot and the fitted quadratic curve across various data points suggests that the model fails to demonstrate a significant or consistent correlation between penguin numbers and the years.
- There are noticeable discrepancies where data points stray from the curve, indicating that the quadratic model may fall short in capturing the complex nature of the data.
- The displayed "inverted-U-shaped" curve pattern indicates an initial rise in the penguin population, which peaks at a certain year before it starts to decrease, pointing to a complex and non-linear connection that cannot be simply defined by a direct correlation between the two factors.

iv. The entire R code used when creating the scatter plot in (4), and the exponential/logarithmic curve in (5)

```
a<-read.csv("beerfroth.csv")
plot(a$Time, a$Foam, xlab="Time", ylab="Height of Beer Foam", main="Height of Beer
Foam as Time passes")
em<-lm(log(a$Foam)~a$Time)
pd<-exp(predict(em, list(a$Time)))
lines(a$Time, pd, col="green", lwd=4)
```

v. Screenshot of the scatter plot created in (4) with the exponential/logarithmic curve created in (5)

Height of Beer Foam as Time passes

.

vi. Your opinion about the correlation (or lack thereof) between beer foam height and time

- The scatter plot closely aligns with the exponential curve for most data points, suggesting a robust agreement between the model and actual observations.
- Both the scatter plot and the fitted exponential curve show a pronounced negative correlation, with beer foam height diminishing over time.
- The model portrays an exponential decrease in foam height, characterized by a swift initial drop that gradually levels off, consistent with empirical observations.
- This examination validates the predictability of foam height over time, offering potential utility for the beverage industry.