CS 4110

Programming Languages & Logics

Encodings

The pure λ -calculus contains only functions as values. It is not exactly easy to write large or interesting programs in the pure λ -calculus. We can however encode objects, such as booleans, and integers.

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

AND TRUE FALSE = FALSE NOT FALSE = TRUE IF TRUE $e_1 e_2 = e_1$ IF FALSE $e_1 e_2 = e_2$

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

AND TRUE FALSE
$$=$$
 FALSE NOT FALSE $=$ TRUE IF TRUE $e_1 e_2 = e_1$ IF FALSE $e_1 e_2 = e_2$

Let's start by defining TRUE and FALSE:

TRUE
$$\triangleq$$
 FALSE \triangleq

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

AND TRUE FALSE
$$=$$
 FALSE NOT FALSE $=$ TRUE IF TRUE $e_1 e_2 = e_1$ IF FALSE $e_1 e_2 = e_2$

Let's start by defining TRUE and FALSE:

TRUE
$$\triangleq \lambda x. \lambda y. x$$

FALSE $\triangleq \lambda x. \lambda y. y$

We want the function IF to behave like

 $\lambda b. \lambda t. \lambda f.$ if b is our term TRUE then t, otherwise f

We want the function IF to behave like

 $\lambda b. \lambda t. \lambda f.$ if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

$$\mathsf{IF} \triangleq \lambda b.\,\lambda t.\,\lambda f.\,b\,t\,f$$

We want the function IF to behave like

 $\lambda b. \lambda t. \lambda f.$ if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

$$\mathsf{IF} \triangleq \lambda b.\,\lambda t.\,\lambda f.\,b\,t\,f$$

We can also write the standard Boolean operators.

$$NOT \triangleq$$
 $AND \triangleq$
 $OR \triangleq$

We want the function IF to behave like

 $\lambda b. \lambda t. \lambda f.$ if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

$$\mathsf{IF} \triangleq \lambda b.\,\lambda t.\,\lambda f.\,b\,t\,f$$

We can also write the standard Boolean operators.

NOT
$$\triangleq \lambda b. b$$
 FALSE TRUE
AND $\triangleq \lambda b_1. \lambda b_2. b_1 b_2$ FALSE
OR $\triangleq \lambda b_1. \lambda b_2. b_1$ TRUE b_2

Let's encode the natural numbers!

We'll write \overline{n} for the encoding of the number n. The central function we'll need is a *successor* operation:

SUCC
$$\overline{n} = \overline{n+1}$$

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

$$\begin{array}{ccc} \overline{0} & \triangleq & \lambda f. \ \lambda x. \ x \\ \overline{1} & \triangleq & \lambda f. \ \lambda x. \ f \ x \\ \overline{2} & \triangleq & \lambda f. \ \lambda x. \ f \ (f \ x) \end{array}$$

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

$$\begin{array}{ccc}
\overline{0} & \triangleq & \lambda f. \ \lambda x. \ x \\
\overline{1} & \triangleq & \lambda f. \ \lambda x. \ f \ x \\
\overline{2} & \triangleq & \lambda f. \ \lambda x. \ f \ (f \ x)
\end{array}$$

We can write a successor function that "inserts" another application of *f*:

$$SUCC \triangleq \lambda n. \, \lambda f. \, \lambda x. \, f(n \, f \, x)$$

Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural number $n_1 + n_2$ is the result of applying the successor function n_1 times to n_2 .

PLUS ≜

Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural number $n_1 + n_2$ is the result of applying the successor function n_1 times to n_2 .

PLUS $\triangleq \lambda n_1$. λn_2 . n_1 SUCC n_2

SUCC
$$\triangleq \lambda n. \lambda f. \lambda x. f(n f x)$$

PLUS $\triangleq \lambda n_1. \lambda n_2. n_1$ SUCC n_2

SUCC
$$\triangleq \lambda n. \lambda f. \lambda x. f(n f x)$$

PLUS $\triangleq \lambda n_1. \lambda n_2. n_1$ SUCC n_2

SUCC
$$\triangleq \lambda n. \lambda f. \lambda x. f(n f x)$$

PLUS $\triangleq \lambda n_1. \lambda n_2. n_1$ SUCC n_2
TIMES $\triangleq \lambda n_1. \lambda n_2. n_1$ (PLUS n_2) $\overline{0}$

SUCC
$$\triangleq \lambda n. \lambda f. \lambda x. f(n f x)$$

PLUS $\triangleq \lambda n_1. \lambda n_2. n_1$ SUCC n_2
TIMES $\triangleq \lambda n_1. \lambda n_2. n_1$ (PLUS n_2) $\overline{0}$
ISZERO $\triangleq \lambda n. n (\lambda z. \text{ FALSE})$ TRUE