

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

Студент	Лубянов Александр Дмитриевич		
Группа	РК6-62Б		
Тип задания	лабораторная работа		
Тема лабораторной работы	Многошаговые методы численного решения задачи Коши		
Студент		Лубянов А. Д.	
	подпись, дата	фамилия, и.о.	
Преподаватель		Першин А. Ю.	
	подпись, дата	фамилия, и.о.	
Преподаватель		_ Соколов А. П.	
1	подпись, дата	фамилия, и.о.	
Оценка	·		

Оглавление

Задание на лабораторную работу	3
Цель выполнения лабораторной работы	5
Задачи, выполненные в процессе реализации лабораторной работы	5
Многошаговые методы численного решения задачи Коши	6
Заключение	11
Список использованных источников	12

Задание на лабораторную работу

Задача 13 (Многошаговые методы численного решения задачи Коши)

Дано нестационарное уравнение теплопроводности:

$$\frac{\partial T}{\partial t} - \frac{\partial^2 T}{\partial x^2} - \frac{\partial^2 T}{\partial y^2} = f(x, y), \quad (1)$$

где T = T(x, y, t) – температура в точке (x, y) в момент времени t, f(x, y) = 1 – функция тепловых источников, описывающая в данном случае равномерный нагрев. Рассматривается пространство $(x, y) \in [0; 1] \times [0; 1]$, однородные (t, y) е нулевые) граничные условия: T(x, 0, t) = T(0, y, t) = T(x, 1, t) = T(1, y, t) = 0. и нулевые начальные условия T(x, y, 0) = 0.

Требуется:

1. Используя результаты лабораторной работы 3 (вариант 2), провести дискретизацию пространства с N = 18 узлами вдоль каждого направления и дискретизацию по времени с шагом Δt, используя метод Адамса-Башфорта 4-го порядка и метод Рунге–Кутты 4-го порядка. Например, для метода Адамса–Башфорта 4-го порядка результатом дискретизации должен быть итерационный метод вида

$$T_{n+1} = T_n + \Delta t \sum_{k=1}^4 a_k (\mathbf{A} \mathbf{T}_{n-k+1} + \mathbf{f}),$$
 (2)

где \mathbf{A} и \mathbf{f} были выведены в лабораторной работе 3 (вариант 2).

- 2. Написать функцию *ab4()*, которая проводит одну итерацию метода Адамса–Башфорта 4-го порядка, используя решения системы ОДУ на трех предыдущих итерациях. Аргументы функции следует определить самостоятельно.
- 3. Написать функцию *rk4()*, которая проводит одну итерацию метода Рунге–Кутты, используя решение системы ОДУ на предыдущей итерации. Аргументы функции следует определить самостоятельно.
- 4. Написать функцию *ode_solve*(*f*, *t_final*, *delta_t*), которая находит решение ОДУ с правой частью, выраженной функцией f, до момента времени *t_final* с шагом по времени *delta_t*, используя метод Рунге–Кутты 4-го порядка для инициализации первых трех шагов и метод Адамса—Башфорта 4-го порядка для дальнейших итераций.
- 5. Проведя несколько вычислительных экспериментов с помощью функции $ode_solve()$, определить с точностью до порядка максимальное значение Δt , обозначаемое Δt_{max} , при котором решение заданного дифференциального уравнения является неустойчивым. Требуется продемонстрировать неустойчивость решения с помощью графика

- зависимости температуры, усредненной по области $[0; 1] \times [0; 1]$, от времени.
- 6. Используя Δt на порядок меньшее, чем Δt_{max} , построить:
 - линии уровня функции T(x,y,t) для нескольких моментов времени, демонстрирующих сходимость решения;
 - график зависимости температуры, усредненной по области $[0; 1] \times [0; 1]$, от времени.
- 7. Сравнить решение, к которому сходится численное решение заданного дифференциального уравнения, с решением, полученным в лабораторной работе 3 (вариант 2). Сравнив их дополнительно с решением, полученным при шаге Δt_{max} , сделать вывод об устойчивости решения и устойчивости метода. [1]

Цель выполнения лабораторной работы

Цель выполнения лабораторной работы — овладеть методами Адамса-Башфорта 4 порядка и Рунге-Кутты 4 порядка.

Задачи, выполненные в процессе реализации лабораторной работы

- 1. Написана функция *ab4()*, которая проводит одну итерацию метода Адамса—Башфорта 4-го порядка.
- 2. Написана функция rk4(), которая проводит одну итерацию метода Рунге– Кутты 4-го порядка.
- 3. Написана функция $ode_solve(f, t_final, delta_t)$, которая находит решение ОДУ с правой частью, выраженной функцией f, до момента времени t_final с шагом по времени $delta_t$, используя функции ab4() и rk4().
- 4. Проведены расчеты и сделаны выводы об устойчивости метода.

Многошаговые методы численного решения задачи Коши

В лабораторной работе №3 была проведена дискретизация по пространству:

$$-\frac{\partial^2 \mathbf{T}}{\partial \mathbf{x}^2} - \frac{\partial^2 \mathbf{T}}{\partial \mathbf{y}^2} = -\frac{T\left(x_{i-1}, y_j\right) - 2T\left(x_i, y_j\right) + T\left(x_{i+1}, y_j\right)}{(\Delta x)^2} - \frac{T\left(x_i, y_{j-1}\right) - 2T\left(x_i, y_j\right) + T\left(x_i, y_{j+1}\right)}{(\Delta y)^2}.$$
 (3)

Подставив выражение (3) в (1), получим:

$$\frac{\partial T}{\partial t} = 1 + \frac{T(x_{i-1}, y_j) - 2T(x_i, y_j) + T(x_{i+1}, y_j)}{(\Delta x)^2} + \frac{T(x_i, y_{j-1}) - 2T(x_i, y_j) + T(x_i, y_{j+1})}{(\Delta y)^2}.$$
(4)

Разработана функция ab4(h, f, T, i), которая проводит одну итерацию метода Адамса—Башфорта 4-го порядка, где h — шаг по времени, f — функция, выражающая правую часть ОДУ, T — матрица со значениями температур. Она возвращает значение, полученное по формуле (2), где коэффициенты a_k равны[2]:

$$a_1 = \frac{55}{24}$$
, $a_2 = \frac{-59}{24}$, $a_3 = \frac{37}{24}$, $a_4 = \frac{-9}{24}$. (5)

Разработана функция rk4(alpha, h, f), которая проводит одну итерацию метода Рунге–Кутты 4-го порядка, где alpha — начальное значение для результирующего вектора, h — шаг по времени, f — функция, выражающая правую часть ОДУ. Она возвращает значение, рассчитанное по формуле (6):

$$w_{i+1} = w_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4),$$
 (6)

где коэффициенты k_i рассчитываются по формулам:

$$k_1 = h f(w_n),$$
 (7)
 $k_2 = h f(w_n + k_1/2),$ (8)
 $k_3 = h f(w_n + k_2/2),$ (9)
 $k_4 = h f(w_n + k_3).$ (10)

Разработана функция $ode_solve(f, t_final, delta_t)$, которая находит решение ОДУ с правой частью, выраженной функцией f, до момента времени t_final с шагом по времени $delta_t$. Для первых трех шагов использовался метод Рунге-Кутты, для последующих — Адамса-Башфорта.

После проведения нескольких вычислительных экспериментов с помощью функции $ode_solve(f, t_final, delta_t)$ определено максимальное значение Δt , при

котором решение заданного дифференциального уравнения является неустойчивым: $\Delta t_{max} = 10^{-3}$. Линии уровня функции T(x, y, t) для $\Delta t = 10^{-3}$ и $t_{max} = 0.3$ изображены на рисунке 1. Соответствующий график зависимости температуры, усредненной по области $[0; 1] \times [0; 1]$, от времени представлен на рисунке 2.

Рисунок 1. Линии уровня функции T(x, y, t) для $\Delta t = 10^{-3}$

Рисунок 2. График зависимости температуры, усредненной по области $[0;1] \times [0;1]$, от времени для $\Delta t = 10^{-3}$

Аналогичные линии уровня при $\Delta t = 10^{-4}$ в некоторые моменты времени представлены на рисунках 3-5. Соответствующий график зависимости усредненной температуры от времени – на рисунке 6.

Рисунок 3. Линии уровня функции T(x, y, t) для $\Delta t = 10^{-4}$ на 1000 из 2998 итераций

Рисунок 4. Линии уровня функции T(x, y, t) для $\Delta t = 10^{-4}$ на 2000 из 2998 итераций

Рисунок 5. Линии уровня функции T(x, y, t) для $\Delta t = 10^{-4}$ на 2998 из 2998 итераций

Рисунок 6. График зависимости температуры, усредненной по области $[0;1] \times [0;1]$, от времени для $\Delta t = 10^{-4}$

Решение стационарной задачи, полученное в Лабораторной работе №3, показано на рисунке 7.

Рисунок 7. Решение стационарной задачи, полученное в Л. р. №3

Графики, представленные на рисунках 5 и 7, идентичны. По графику на рисунке 6 видно, что решение нестационарной задачи с течением времени сходится к решению нестационарной при $\Delta t < \Delta t_{max}$. При использовании шага по времени больше максимально допустимого решение является неустойчивым.

Заключение

Решение задачи методами Адамса-Башфорта 4 порядка и Рунге-Кутты 4 порядка устойчиво только при $\Delta t < \Delta t_{max}$, т.е. устойчивость зависит от шага дискретизации. Значит, данный метод решения системы ОДУ является условно устойчивым.

Список использованных источников

- [1] Соколов, А.П., Першин, А.Ю. Инструкция по выполнению лабораторной работы (общая). Соколов, А.П., Першин, А.Ю., Москва, 2018.
- [2] Першин, А.Ю. Лекции по вычислительной математике. Першин А.Ю., Москва, 2019.