Problem 1. Let $G = C_2 = \langle a : a^2 = 1 \rangle$, and let $V = F^2$ (where F is a field). For $(\alpha, \beta) \in V$, define the action of G on V by $1(\alpha, \beta) = (\alpha, \beta)$ and $a(\alpha, \beta) = (\beta, \alpha)$, and extend by linearity to make V into an FG-module. Find all FG-submodules of V.

First note that the submodules correspond to subspaces that are invariant under the action of FG. In this case, due to the transposition, the only such subspaces are $\{0\}, V, \{(\alpha, \alpha) \in V\}$, and $\{(\alpha, \beta) \in V | \alpha + \beta = 0\}$.

Problem 2. If $G = C_2 \times C_2 = \langle a, b : a^2 = b^2 = 1, ab = ba \rangle$, write the real group ring $\mathbb{R}G$ as a direct sum of $\mathbb{R}G$ -submodules, each of which is 1-dimensional over \mathbb{R} .

Treat this as a vector space over \mathbb{R} with basis (e_1, e_2, e_3, e_4) where the corresponding representation acts as

$$\varphi(a) = (e_2, e_1, e_3, e_r), \varphi(b) = (e_1, e_2, e_4, e_3)$$

Then we can express this as the direct sum of the four following 1-dimensional subspaces that are invariant under the action:

- $\bullet \{(xe_1 + xe_2) | x \in \mathbb{R}\}$
- $\bullet \ \{(xe_3 + xe_4) | x \in \mathbb{R}\}\$
- $\{(xe_1 + ye_2)|x + y = 0\}$
- $\{(xe_3 + ye_4)|x + y = 0\}$

Problem 3. Let $G = D_{12} = \langle a, b : a^6 = b^2 = 1, b^{-1}ab = a^{-1} \rangle$. Define matrices A, B, C, D over \mathbb{C} by

$$A = \left[\begin{array}{cc} e^{i\pi/3} & 0 \\ 0 & e^{-i\pi/3} \end{array} \right], B = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], C = \left[\begin{array}{cc} 1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{array} \right], D = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]$$

- (a) Verify that each of the functions $\rho_k : G \to GL(2,\mathbb{C})$ (k = 1,2,3,4), given by (i) $\rho_1(a^rb^s) = A^rB^s$, (ii) $\rho_2(a^rb^s) = A^{3r}(-B)^s$, (iii) $\rho_3(a^rb^s) = (-A)^rB^s$, (iv) $\rho_4(a^rb^s) = C^rD^s$ for $0 \le r \le 5, 0 \le s \le 1$, is a representation of G.
- (b) Which of the representations ρ_k are faithful?
- (c) Which of the representations are equivalent?
- (d) Which are irreducible?
- (a) To show that the ρ_k are representations we will verify that the relations of D_{12} are fulfilled after applying ρ_k .

For ρ_1 :

$$\rho_1(a)^6 = \begin{pmatrix} \left(\frac{1}{2}i\sqrt{3} + \frac{1}{2}\right)^6 & 0\\ 0 & \left(-\frac{1}{2}i\sqrt{3} + \frac{1}{2}\right)^6 \end{pmatrix} = I_2 = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}^2 = \rho_1(b)^2$$

$$\rho_1(b)^{-1}\rho_1(a)\rho_1(b) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \left(\frac{1}{2}i\sqrt{3} + \frac{1}{2}\right)^6 & 0 \\ 0 & \left(-\frac{1}{2}i\sqrt{3} + \frac{1}{2}\right)^6 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}i\sqrt{3} + \frac{1}{2} & 0 \\ 0 & \frac{1}{2}i\sqrt{3} + \frac{1}{2} \end{pmatrix}$$

For ρ_2 :

$$\rho_2(a)^6 = \begin{pmatrix} \left(\frac{1}{2}i\sqrt{3} + \frac{1}{2}\right)^{18} & 0\\ 0 & \left(-\frac{1}{2}i\sqrt{3} + \frac{1}{2}\right)^{18} \end{pmatrix} = I_2 = \begin{pmatrix} 0 & -1\\ -1 & 0 \end{pmatrix}^2 = \rho_2(b)^2$$

$$\rho_2(b)^{-1}\rho_2(a)\rho_2(b) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \left(\frac{1}{2}i\sqrt{3} + \frac{1}{2}\right)^3 & 0 \\ 0 & \left(-\frac{1}{2}i\sqrt{3} + \frac{1}{2}\right)^3 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} \left(-\frac{1}{2}i\sqrt{3} + \frac{1}{2}\right)^3 & 0 \\ 0 & \left(\frac{1}{2}i\sqrt{3} + \frac{1}{2}\right)^3 \end{pmatrix}$$

For ρ_3 :

$$\rho_3(a)^6 = \begin{pmatrix} \left(-\frac{1}{2}i\sqrt{3} - \frac{1}{2} \right)^6 & 0\\ 0 & \left(\frac{1}{2}i\sqrt{3} - \frac{1}{2} \right)^6 \end{pmatrix} = I_2 = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}^2 = \rho_3(b)^2$$

$$\rho_3(b)^{-1}\rho_3(a)\rho_3(b) = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} -\frac{1}{2}i\sqrt{3} - \frac{1}{2} & 0 \\ 0 & \frac{1}{2}i\sqrt{3} - \frac{1}{2} \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) = \left(\begin{array}{cc} \frac{1}{2}i\sqrt{3} - \frac{1}{2} & 0 \\ 0 & -\frac{1}{2}i\sqrt{3} - \frac{1}{2} \end{array}\right)$$

For ρ_4 :

$$\rho_4(a)^6 = \begin{pmatrix} \frac{1}{2} & \frac{1}{2}\sqrt{3} \\ -\frac{1}{2}\sqrt{3} & \frac{1}{2} \end{pmatrix}^6 = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^2 = \rho_4(b)^2$$

$$\rho_4(b)^{-1}\rho_4(a)\rho_4(b) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2}\sqrt{3} \\ -\frac{1}{2}\sqrt{3} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & \frac{1}{2} \end{pmatrix}$$

- (b) We can see that both ρ_1 and ρ_4 are faithful as the order A and D are both 6. However ρ_2 and ρ_3 are not faithful as the order of $\rho_2(a)$ is 2 and the order of $\rho_3(a)$ is 3.
- (c) To start ρ_2 and ρ_3 are not equivalent to either of the other two, or each other for that matter, due to the orders of the elements that a is sent to.

However we can see that ρ_1 and ρ_4 are equivalent as A and C have the same eigenvalues $(e^{i*\pi/3}, e^{-i\pi/3})$ and so do matrices B and D (1, -1).

(d)

Problem 4. Find the missing row in the following character table:

Order of the conjugacy class	(1)	(3)	(6)	(6)	(8)
$Conjugacy\ class$	Cl(1)	Cl(a)	Cl(b)	Cl(c)	Cl(d)
χ_1	1	1	1	1	1
χ_2	1	1	-1	-1	1
χ_3	3	-1	1	-1	0
χ_4	3	-1	-1	1	0
χ_5					

First note that the order of the group is 24. Then using the second orthogonality relation from Dummit $(\sum_{i=1}^r \chi_i(x) \overline{\chi_i(y)})$ we know what each column with itself should be the size of the centralizer. This gives us

$$24 - (1+1+9+9) = 4$$

$$8 - (1+1+1+1) = 4$$

$$4 - (1+1+1+1) = 0$$

$$4 - (1+1+1+1) = 0$$

$$3 - (1+1) = 1$$

Then when we fill in our table we get

Order of the conjugacy class	(1)	(3)	(6)	(6)	(8)
Conjugacy class	Cl(1)	Cl(a)	Cl(b)	Cl(c)	Cl(d)
${\chi_1}$	1	1	1	1	1
χ_2	1	1	-1	-1	1
χ_3	3	-1	1	-1	0
χ_4	3	-1	-1	1	0
χ_5	2	2	0	0	1

Problem 5. The character table of S_3 is

Conjugacy class	Cl(1)	$Cl((1\ 2))$	$Cl((1\ 2\ 3))$
χ_1	1	1	1
χ_2	1	-1	1
χ_3	2	0	-1

Let ϕ be a character such that $\phi(1) = 5$, $\phi((1\ 2)) = 1$, $\phi((1\ 2\ 3)) = 2$.

- (a) Compute the inner products $\langle \phi, \chi_1 \rangle, \langle \phi, \chi_2 \rangle$, and $\langle \phi, \chi_3 \rangle$.
- (b) Write the character ϕ as a linear combination of χ_1, χ_2, χ_3 .
- (a) If we calculate the inner products we get

$$\langle \phi, \chi_1 \rangle = 2, \langle \phi, \chi_2 \rangle = 1, \langle \phi, \chi_3 \rangle = 1$$

(b)
$$\phi = 2\chi_1 + \chi_2 + \chi_3$$

Various bits of code that I used to help get a handle on some of this material.

```
A = Matrix(SR,[[e^(i*pi/3),0],[0,e^(-i*pi/3)]])
B = Matrix(SR,[[0,1],[1,0]])
C = Matrix(SR,[[1/2,sqrt(3)/2],[-sqrt(3)/2,1/2]])
D = Matrix(SR,[[1,0],[0,-1]])
G = DihedralGroup(6)
r,s = G.gens()
```

def p1(g):

```
if g in [r^i for i in range(0,6)]:
    return A^([r^i for i in range(0,6)].index(g))
elif g in [r^i*s for i in range(0,6)]:
```

```
return A^([r^i*s for i in range(0,6)].index(g))*B
def p2(g):
    if g in [r^i \text{ for i in range}(0,6)]:
        return A^(3*[r^i for i in range(0,6)].index(g))
    elif g in [r^i*s for i in range(0,6)]:
        return A^{(3*[r^i*s for i in range(0,6)].index(g))*(-B)}
def p3(g):
    if g in [r^i for i in range(0,6)]:
        return (-A)^([r^i for i in range(0,6)].index(g))
    elif g in [r^i*s for i in range(0,6)]:
        return (-A)^([r^i*s for i in range(0,6)].index(g))*B
def p4(g):
    if g in [r^i for i in range(0,6)]:
        return C^{([r^i \text{ for i in range}(0,6)].index(g))}
    elif g in [r^i*s for i in range(0,6)]:
        return C^([r^i*s for i in range(0,6)].index(g))*D
def orth1(x1,x2,G):
    return 1/len(G) * sum([x1(g)*conjugate(x2(g)) for g in G])
def orth2(x,y,Cs):
    return sum([c(x)*conjugate(c(y)) for c in Cs])
S3 = SymmetricGroup(3)
cl1 = S3(()).conjugacy_class()
cl12 = S3((1,2)).conjugacy_class()
cl123 = S3((1,2,3)).conjugacy_class()
def x1(g):
    return 1
def x2(g):
    if g in cl1:
        return 1
    if g in cl12:
        return -1
    if g in cl123:
        return 1
def x3(g):
    if g in cl1:
        return 2
    if g in cl12:
        return 0
    if g in cl123:
        return -1
def phi(g):
    if g in cl1:
```

return 5
if g in cl12:
 return 1
if g in cl123:
 return 2