19. Balance the following half-reactions.

(a)
$$Ce^{4+}$$
 \longleftarrow Ce^{2+}

(c)
$$Mn^{2+}$$
 \longrightarrow MnO_2 (acidic solution)

(d)
$$O_2 \iff H_2O_2$$
 (acidic solution)

(e)
$$S_2O_8^{2-}$$
 \Longrightarrow HSO_4^- (acidic solution)

(f)
$$H_3AsO_4 \iff HAsO_2$$
 (acidic solution)

(g)
$$H_2SeO_3$$
 \Longrightarrow Se (acidic solution)

(h)
$$N_2H_4 \iff N_2$$
 (basic solution)

(i)
$$HO_2^- \iff O_2$$
 (basic solution)

(j)
$$\mathrm{HXeO_4^-}$$
 \longrightarrow $\mathrm{HXeO_6^{3-}}$ (basic solution)

(k)
$$HC_2H_3O_2 \iff C_2H_5OH$$
 (acidic solution)

(l)
$$Cr(OH)_3 \iff CrO_4^{2-}$$
 (basic solution)

(m)
$$CH_3CHO \iff CH_2CH_2$$
 (acidic solution)

20. In the half-reaction $NO_2^- \longrightarrow NO_3^-$:		
	(a)	calculate the oxidation numbers for N on both sides of the equation.
	(b)	calculate " Δ ON" (the "change in Oxidation Number"), and decide on a sign for the value of Δ ON. (Hint: the change equals the oxidation number of the nitrogen on the product side minus the oxidation number of the nitrogen on the reactant side.)
	(c)	balance the half-reaction in acid solution.
	(d)	look at the number of electrons involved and compare this to the value of Δ ON. Is the half-reaction a reduction or oxidation?

21. In the half-reaction $MnO_4^- \iff MnO_2$:		
(a) calculate the oxidation numbers for Mn on both sides of the equation.		
(b) calculate Δ ON and assign a sign for the value of Δ ON.		
(c) balance the half-reaction in acid solution.		
(d) look at the number of electrons involved and compare this to the value of Δ ON. Is the half-reaction a reduction or oxidation?		

22. Summarize the results of the above two exercises by completing the following sentence.

The OXIDATION NUMBER? during a REDUCTION reaction and? during an OXIDATION reaction.

- 23. For each of the half-reactions below
 - i) determine the change in oxidation number of the atom in bold type.
 - ii) state whether the half-reaction is an oxidation or a reduction.
 - (a) Te \longrightarrow TeO₄
 - (b) $ClO_3^- \iff Cl^-$
 - (c) $U^{4+} \longrightarrow UO_2^{2+}$
 - (d) C_2H_5OH \iff CH_3COOH (treat both carbons in CH.COOH identicaly)
 - (e) $PO_4^{3-} \iff HPO_3^{2-}$