Analytic Number Theory (Fall 2018) – Homework #2

posted September 11, 2018; due September 20, 2018

Problems: References are to *Not always buried deep*; "Exercise A.B" means Exercise B at the end of Chapter A. Point values are listed in brackets. You *may* use outside resources, including published papers, but your write-up should mention which references you consulted.

1. [10] Recall that "f(x) = O(g(x)) as $x \to \infty$ " means that there is some x_0 with f(x) = O(g(x)) on $[x_0, \infty)$. Now suppose g(x) is a positive-valued function with $\lim_{x\to\infty} g(x) = 0$. Show that, as $x\to\infty$, one has

$$\frac{1}{1 + O(g(x))} = 1 + O(g(x)), \quad e^{O(g(x))} = 1 + O(g(x)), \quad \log(1 + O(g(x))) = O(g(x)).$$

[Here interpret the first equation to mean that if f(x) = O(g(x)) as $x \to \infty$, then 1/(1+f(x)) = 1 + O(g(x)), as $x \to \infty$. Similarly for the others.]

2. [10] Show that as $x \to \infty$, we have

$$\left(1 + \frac{1}{x}\right)^x = e - \frac{e}{2x} + O\left(\frac{1}{x^2}\right).$$

3. [5] Recall that with $S(x) := \sum_{p \le x} \frac{\log p}{p}$, we have $S(x) = \log x + O(1)$, for all $x \ge 2$. What goes wrong if you attempt to deduce an asymptotic formula for $\pi(x)$ from this, starting from

$$\pi(x) = \int_1^x \frac{t}{\log t} \, dS(t) \quad ?$$

- 4. [10] Exercise 3.8. Here " O_m " means that for different m you are allowed to choose different values of the implied constant.
- 5. [10] Exercise 3.9.
- 6. [15] Exercise 3.14. ("Full form of Bertrand's postulate" means that (x, 2x] contains a prime for all real $x \ge 1$.)
- 7. [10] Exercise 3.18.
- 8. [20] Exercise 3.33.