Ethical, Legal, Societal Aspects

- Artificial vs natural intelligence
- Ethics
- Future of AI
- Social impact of Al
- Practical aspects of today's life
- Ethically aligned design of AI systems

Humans vs Computers

- We talk about computers: Turing machine
- Many things humans do but computers cannot do by themselves
 - Prove or disprove that a grammar is unambiguous
- Yet, many of these things are added to the list of those done by computers
 - Driving vehicles
 - Playing soccer or ping pong, etc

- Many things computers can do better than us, or we can't do
 - Add two one-billion digit numbers
 - Even some tasks when driving a car!
 - Play Chess, Go, Jeopardy, etc

Human vs Robots

- Robots can do a lot of tasks humans do
- ... And better than us
 - Better means faster, more accurate, cheaper, etc.
- Examples:
 - Playing soccer, ping pong, etc.
 - Run Amazon's warehouse
 - https://spectrum.ieee.org/automaton/robotics/industrialrobots/amazon-introduces-two-new-warehouse-robots
 - Agility robots can beat Usain Bolt
 - https://spectrum.ieee.org/automaton/robotics/industrialrobots/agility-robotics-introduces-cassie-a-dynamic-andtalented-robot-delivery-ostrich
- But how can they beat the humans on everything?
- Societal impact:
 - Tons of people's jobs will be taken by Al/Robots

https://lnkd.in/e64Dan5

Can machines really think?

- Church-Turing thesis
 - A function on natural numbers can be computed by an algorithm iff it can be computed by a Turing machine
- Turing Test
 - A computer pretends to be a human
 - Ask questions to computer and reveal its identity (human/computer)

Mathematical view:

- Godel's incompleteness theorem
 - In any axiomatic system F
 - Powerful enough to do arithmetic
 - There are sentences, aka G(F) that cannot be proved within F
 - Put in other words:
 - ➤ G(F) can be proved to be true or false, unless supported by external evidence
 - This is the main issue of unsupervised learning!

Can machines really act as humans?

- Computers don't feel emotions
 - love, lie intentionally, have religious beliefs
 - Well... so far
- The debate is still open

Ethics and Risks – Societal Impact

- Obvious implications of progress in AI
 - People might lose their jobs due to automation
 - > Example: Amazon's warehouse
 - People might have too much time for leisure -> laziness
 - People might lose their sense of being unique
 - Al systems might be used toward undesirable ends
 - The use of AI systems might lose accountability

- People might lose their ability to think
- The success of Al might imply the end of the human race
 - ➤ Too drastic though!
- Problems of liability
 - ➤If a driverless car gets involved in an accident,
 - >whom are we going to blame?
 - what will insurance cover?

Ethically Aligned Design (EAD) by IEEE

Three main pillars of the Ethically Aligned Design Conceptual Framework [2]

- Universal Human Values
 - All systems should be designed to protect human rights, human values and well being
 - Should safeguard environment and natural sources
 - Should be in the service of people
 - Not benefiting solely smaller groups

- Political Self-Determination and Data Agency
 - Encourage and align to political freedom and democracy
 - Accordance with cultural precepts
 - Grant people have access to and control over data
- Technical Dependability
 - Al should deliver services that can be trusted
 - Trust means reliable, safe and accomplish objectives for which they were designed

© Luis Rueda, 2019

General Principles of Ethically Aligned Design

- Human Rights
- Well-being
- Data Agency
- Effectiveness
- Transparency
- Accountability
- Awareness of Misuse
- Competence

8

Mapping the Pillars to the Principles

		EAD Pillars								
		Universal Human Values	Political Self-Determination Data Agency	Technical Dependability						
EAD General Principles	Human Rights	•	•							
	Well-being									
	Data Agency									
	Effectiveness									
	Transparency		•							
	Accountability									
	Awareness of Misuse									
	Competence									

Chapters in EAD, First Edition

- From Principles to Practice
- General Principles
- Classical Ethics in Al
- Well-being
- Affective Computing
- Personal Data and Individual Agency

- Methods to Guide Ethical Research and Design
- Al fro Sustainable Development
- Embedding Values into Autonomous and Intelligent Systems
- Policy
- Law

Full chapter content available in [2]

Mapping the Principles to Contents of Chapters

		EAD Chapters									
		General Principles	Classical Ethics in A/IS	Well-being	Affective Computing	Data & Individual Agency	Methods A/IS Design	A/IS for Sustainable Dev.	Embedding Values into A/IS	Policy	Law
EAD General Principles	Human Rights	•		•				•			
	Well-being	•		-							
	Data Agency	•									
	Effectiveness	•									
	Transparency	•									
	Accountability	•									
	Awareness of Misuse	•									
	Competence	•									

Indicates General Principle mapped to Chapter.

Indicates primary EAD Chapter providing elaboration on a General Principle.

From Principles to Practice

EAD Conceptual Framework: From Principles to Practice

Practical Aspects of AI – when robots're not ready

- Practical case: personal view
 - Robot pool cleaner vs manual vacuum
 - Manual vacuum cleaner:
 - ➤ Need 50 minutes of work per week (usually done on Sundays):
 - ➤ Setting up vacuum system
 - > Raking leaves, cleaning bottom, edges, etc.
 - > Filter draining, backwashing, etc.
 - ➤ The "actual cleaning" takes 10-15 minutes.
 - Robot cleaner:
 - Cleaning bottom (robot) takes 10 minutes.
 - ➤ But I need to maintain the robot (charge battery, cleaning, etc.). This add up more time.
 - ➤ When I manually clean the pool, I do other things (included in the 50 minutes)
 - > Costs of robot \$500+ to \$1,000s
 - Utility-based decision: not profitable

State of the Art in Industry

Tesla's autopilot

- Advanced sensor coverage
- 360 degree visibility
- Up to 250 meters of range
- 12 ultrasonic sensors for vision
- Forward facing radar
- Enhanced and redundant processing
- Can see through heavy rain, fog, dust and even the car ahead
- Can drive from point to point with no assistance
- Not perfect though
 - Full self-driving in almost all circumstances

The Future of Al

- Improved sensors
 - Cameras, infrared, gyroscopes,
 GPS, smell, taste, etc.
- Modeling
 - Learning schemes being improved
 - Agent architectures
- Computing
 - Improved hardware, but with limitations
 - Biocomputing, quantum computing

- The abstract computer (Turing machine) stays the same!
- NP completeness: Is P = NP?
- Definition of rationality
 - Perfect, calculative, bounded, probabilistic

References

- 1. Artificial Intelligence: A Modern Approach, 3rd Edition, by R. Norvig. Pearson Hall.
- 2. Ethically Aligned Design: The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems, First Edition, 2019. https://ethicsinaction.ieee.org/