Problem 1. (10pt) Determine if the following sentences are propositions. If the sentence is a proposition, mark it 'T'; otherwise, mark the sentence 'F.'

- (a) $_$: |3-5| > 10
- (b) : I just started watching 'The Chair.'
- (c) _____: The universe is infinite.
- (d) _____: n+1 is odd.
- (e) _____: Why are you doing this homework?

Problem 2. (10pt) Give an original example of a proposition.

Problem 3. (10pt) Give an original non-example of a proposition.

Problem 4. (5pt) Determine if the following propositions are true (T) or false (F).

- (a) $\underline{\hspace{1cm}}$: If n is an integer, then 2n is even.
- (b) _____: Every prime number is odd.
- (c) $x^2 + 1 > 0$
- (d) _____: It will either rain tomorrow or not.
- (e) _____: If $x^2 = 9$, then x = 3,

Problem 5. (10pt) Negate the following sentences:

- (a) $2 \cdot 2 = 4$ or $3 \cdot 3 = 6$
- (b) Everyone in the room has taken a Mathematic course.
- (c) She speaks German and English.
- (d) x > 1 and x is an integer.
- (e) If you study for the exam, then you will pass.

Problem 6. (10pt) Negate each of the following propositional formulas P by finding a formula logically equivalent P in which the negation applies only to individual atoms.

- (a) $P \lor (\neg Q)$
- (b) $\neg Q \rightarrow \neg P$
- (c) $(P \lor Q) \land (\neg P \lor \neg Q)$
- (d) $P \wedge Q \rightarrow P \vee Q$
- (e) $P \lor (Q \Leftrightarrow R)$

Problem 7. (10pt) Express the proposition "P unless Q" in terms of the propositions P and Q and the logical symbols $\neg, \land, \lor, \rightarrow$. [Unless can mean many things, here it means "if not."]

Problem 8. (10pt) Recall that the 'exclusive or', denoted \veebar , was defined by $P \veebar Q \Leftrightarrow (P \lor Q) \land \neg (P \land Q)$. Show that $P \veebar Q$ is logically equivalent to $P \leftrightarrow \neg Q$.

Problem 9. (10pt) Compute the truth tables for the following compound propositions. In each case, indicate whether the propositional formula is a tautology, contradiction, or neither.

(a)
$$(P \wedge Q) \wedge (R \wedge \neg Q)$$

(b)
$$(P \leftrightarrow Q) \leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)$$

(c)
$$(P \rightarrow T_0) \land (F_0 \rightarrow Q)$$

Problem 10. (10pt) Determine if the logical symbol \rightarrow is associative. Be sure to fully justify your answer.

Problem 11. (10pt) Give the converse/contrapositive of the following statements.

- (a) $P \rightarrow Q$
- (b) If it is snowing outside, then it is cold.

Problem 12. (10pt) Determine if the following argument is logical. Explain.

$$P \to R$$

$$\neg P \to Q$$

$$Q \to S$$

$$\therefore \neg R \to S$$