Title:

Classification of Line and Character Pixels on Raster Maps Using Discrete Cosine Transformation Coefficients and Support Vector Machines

Author:

Yao-Yi Chiang* and Craig A. Knoblock* **
yychiang@geosemble.com
knoblock@isi.edu

Affiliation:

*GeosembleTechnologies, Inc California, United State http://www.geosemble.com

**University of Southern California, Department of Computer Science and Information Sciences Institute, California, United State http://www.isi.edu

Abstract (cont'd):

Raster maps are widely available on the Internet. Valuable information such as street lines and labels, however, are all hidden in the raster format. To utilize the information, it is important to recognize the line and character pixels for further processing.

Abstract:

This work presents a novel algorithm using 2-D Discrete Cosine Transformation (DCT) coefficients and Support Vector Machines (SVM) to classify the pixels of lines and characters on raster maps. The experiment results show that our algorithm achieves 98% precision and 85% recall in classifying the line pixels and 83% precision and 96% recall in classifying the character pixels on a variety of raster map sources.

The Problem:

 To understand the information on raster maps

 How? Recognize the line and characters on the raster map for

The Solution:

- Steps to recognize the lines and characters:
 - -FIND AREAS of characters
 - –For each area, SEPARATE and REBUILD lines and characters
 - Send characters to OpticalCharacter Recognitioncomponent
 - –Send lines to **Vectorization** component
- These steps are interrelated

Related Work:

- •Bixler 00', Fletcher 88', and Velazquez 03' assume that the line and character pixels are not overlapping
- Li et al. work in local areas to separate the characters from lines
- Cao et al. use the different length of line segments to separate characters from line arts
- We do not use geometric properties as the previous work

Approach (cont'd):

Approach:

- We use texture classification approach to classify pixels
- •Features:

Discrete Cosine Transformation (DCT) coefficients

•Classifier:

Support vector machine

Discrete Cosine Transformation

 DCT gives us the strength of each component to build a single image

Discrete Cosine Transformation

Remove background

- We apply DCT transformation for each pixel
- The DCT coefficients represent the variation around each pixel
- The pixels with low variation (near 0) around them are the background pixels

Classify Line and Character pixels

- We apply DCT transformation for each foreground pixel
- The DCT coefficients now represent the variation around each foreground pixel
- We use the DCT coefficients as features for SVM to classify the pixels

Classify Line and Character pixels

- Training
 - One MapQuest map for character samples

 One Google map and one Viamichline map for line

samples

Classify Line and Character pixels

- Classification
 - The testing maps are disjoint from the training samples

Result:

	Precision/Recall of Classification			
Map Source	Line Pixels		Character Pixels	
	Ours	Cao's	Ours	Cao's
A9	99/91%	95/91%	79/98%	77/85%
MSN	99/79%	91/87%	75/99%	81/86%
Google	99/99%	95/99%	98/99%	95/72%
Yahoo	95/91%	70/96%	91/92%	88/30%
Mapquest	99/78%	88/73%	84/98%	76/85%
Map24	95/74%	97/70%	73/96%	70/98%
ViaMichelin	83/34%	44/57%	87/96%	90/68%
Multimap	89/82%	98/64%	63/90%	46/97%
TIGER/Line	99/94%	97/89%	83/99%	67/90%
Average	98/85%	85/82%	83/96%	71/71%

- Computation time:
 - -For a 400x400 Google Map:
 - 2 seconds to remove background
 - 4 seconds to classify line and character pixels
- No threshold needed

Future Work:

- For the road lines:
 - Combine with vectorization program and conflation technologies from Geosemble to automatically georeferencing the map and align the map with other geo-spatial sources

Future Work:

- For the characters:
 - Combine with OCR and conflation technologies from Geosemble to automatically and accurately label satellite imagery

