RÉPUBLIQUE ISLAMIQUE DE MAURITANIE MINISTÈRE DE L'ÉDUCATION NATIONALE DIRECTION DES EXAMENS ET DE L'ÉVALUATION SERVICE DES EXAMENS

Série : Sciences de la nature Épreuve : Mathématiques

Durée : 4heures Coefficient : 6

Baccalauréat 2010 session Normale

Exercice 1(3points)

On considère une fonction f dérivable sur son domaine de définition D_f de dérivée f'. Son tableau de variation est donné ci-dessous . On nomme (C) la courbe représentative de la fonction f dans le plan muni d'un repère orthogonal $(0; \vec{\iota}, \vec{j})$

: X	&	-2	1	+ &
f'(x)	+	11:	- 0	+
f(x)	-3	+88+	∞ √4	7+œ

Pour chaque question, parmi les réponses proposées une seule réponse est exacte

	<u> </u>			
N°	Question	Réponse A	Réponse B	Réponse C
1	L'ensemble de définition de f est :	R \{−2}	$\mathbb{R}\setminus\{-2,1\}$	R\{1}
2	L'équation $f(x)=0$ admet dans D_f exactement	3 solutions	2 solutions	1 solution
3	La courbe (C) admet une asymptote d'équation	x = 1	x = -2	y = -2
4	La fonction f est une fonction	Paire	Impaire	ni paire ni impaire
5	L'équation de la tangente à (C) au point d'abscisses $x_0 = 1$ est	x = 1	y = 0	y = -4

Recopie sur la feuille de réponse et complète le tableau ci- dessous. Aucune justification n'est demandée.

N° question	1	2	3	4	5	
Réponse Exacte						

Exercíce 2 (4points)

Pour tout nombre z on pose : $p(z) = z^3 - z^2 - 4z - 6$

1°)a) Calculer p(3)

- b) Déterminer les réels a, b tels que pour tout z on a $p(z)=(z-3)(z^2+az+b)$
- c)Résoudre dans l'ensemble des nombres complexes l'équation p(z) = 0
- 2°) On considère dans le plan complexe muni d'un repère orthonormé $(0; \vec{u}, \vec{v})$.les points A, B, C et D d'affixes respectifs $Z_A = 3 + 2i; Z_B = -1 + i, z_C = -1 i$ et $Z_D = 3$
- a) Placer les points A, B, C et D dans le repère $(0; \vec{u}, \vec{v})$
- b) Comparer l'affixe du milieu de [AC] à celle du milieu de [BD]
- c) En déduire la nature du quadrilatère ABCD
- d) Déterminer et construire l'ensemble des points M d'affixes z telle que :

$$|z-3| = |z+1-i|$$

Exercíce 3 (4points)

On considère la suite numérique (U_n) définie pour tout entier $n \ge 1$ par :

$$U_n = \frac{n^2+n+1}{n(n+1)}$$

1a) Calculer u_1 , u_2 et u_3

- b) Justifier que la suite (\bar{U}_n) ; n'est pas arithmétique, n'est pas géométrique ; est convergente.
- 2°) pour tout entier $n \ge 1$ on pose : $v_n = \frac{n^2 1}{n}$

a) Montrer que : $U_n = V_{n+1} - V_n$

- b) En déduire l'expression de la somme $S_n = U_1 + U_2 + \cdots + U_n$ en fonction de n
- 3) Pour tout entier $n \ge 2$ on pose $w_n = \ln V_n$ et $s'_n = W_2 + W_3 + \dots + W_n$ Démontrer que $S'_n = \ln \left[\frac{(n+1)!}{2n}\right]$

Exercíce 4 (9points)

On considère la fonction numérique f définie par $f(x) = x + 2 + e^x$ soit (C) sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$ d'unité 1cm

1a) Calculer les limites de f(x) en $-\infty$ et $+\infty$

b) Calculer et donner une interprétation graphique de $\lim_{x\to\infty} (f(x)-(x+2))$ et

$$\lim_{x\to +\infty}\frac{f(x)}{x}$$

- 2) Dresser le tableau de variation de f
- 3°) Montrer que f réalise une bijection de R sur un intervalle J que l'on déterminera
- 4°) Montrer que l'équation f(x) = 0 admet une unique solution α puis vérifier que $-2, 5 < \alpha < -2$
- 5°) Construire (C) et (C') représentant respectivement la fonction f et sa réciproque f^{-1} dans le repère $(0;\vec{\imath},\vec{\jmath})$
- 6a) Déterminer la primitive F de f qui vérifie F(0) = 0

Soit A (α) l'aire du domaine plan limité par la courbe (C) l'axe des abscisses et les droites d'équations respectives $x = \alpha$ et x = 0

- b) Calculer $A(\alpha)$ en fonction de α . Montrer que $A(\alpha) = \frac{6-2\alpha-\alpha^2}{2}$
 - 7a) Déterminer une équation de la tangente (T) à (C) au point d'abscisse $x_0 = \alpha$
 - b) Vérifier que $(f^{-1})'(0) = \frac{-1}{\alpha+1}$
 - 8) On considère la fonction g définie par $g(x) = \ln(x + 2 + e^x)$
 - a) Déterminer l'ensemble de définition de g
 - b) Dresser le tableau de variation de g
 - c) Construire la courbe (Γ) de g dans un nouveau repère orthonormé $(0; \vec{u}, \vec{v})$.

FIN