액체 밀도 측정 실험

조		3조	
조원/작성자	20215545 김윤진	20215692 김이찬	20216793 김준섭

[1] 실험값

- (1) $C_2H_5OH(l)$ 의 밀도 측정
 - ① 1회
 - 액체 시료의 온도 측정

시료 이름	$C_2H_5OH(l)$	$H_2O(l)$		
온도(℃)	(T_a) 16 $(^{\circ}\mathbb{C})$	(T_w) 17 (°C)		

- 측정한 온도에서의 $H_2O(l)$ 의 밀도

 $0.9988(g/cm^3)$ (소주의 에탄을 도수와 밀도 환산표에 표기된 대로라면 유효숫자가 소수점 이하 4자리이므로 소수 4자리로 표기하도록 한다.)

- 액체 기둥의 높이 측정값 및 $C_2H_5OH(l)$ 의 밀도 (g/cm^3) 계산

	$C_2H_5OH(l)$					$H_2O(l)$				밀도(g/cm³)
회	h_a	회	$h_a{'}$	$h_a - h_a'$	회	h_w	회	h_w'	$h_w - h_w$	$\rho_a(=(\frac{h_w-{h_w}'}{h_a-{h_a}'})\rho_w)$
1	49.5	5	32.1	17.4	1	38.4	5	24.7	13.7	$0.7864(g/cm^3)$
2	43.9	6	27.5	16.4	2	33.9	6	21.1	12.8	$0.7795(g/cm^3)$
3	39.4	7	23.5	15.9	3	30.4	7	17.9	12.5	$0.7852(g/cm^3)$
4	35.9	8	19.9	16	4	27.7	8	15.1	12.6	$0.7866(g/cm^3)$
									평균	0.7844 (g/cm ³)

② 2회

- 액체 시료의 온도 측정

시료 이름	$C_2H_5OH(l)$	$H_2O(l)$		
온도(℃)	(<i>T_a</i>) 16 (℃)	(<i>T_w</i>) 17 (℃)		

- 측정한 온도에서의 $H_2O(l)$ 의 밀도 $0.9988(g/cm^3)$

- 액체 기둥의 높이 측정값 및 $C_2H_5OH(l)$ 의 밀도 (g/cm^3) 계산

	$C_2H_5OH(l)$					$H_2O(l)$				밀도(g/cm³)
회	h_a	회	$h_a{'}$	$h_a - h_a'$	회	h_w	회	h_w'	$h_w - h_w$	$\rho_a (= (\frac{h_w - h_{w'}}{h_a - h_{a'}}) \rho_w)$
1	49.7	5	30.0	19.7	1	38.6	5	23.1	15.5	$0.7859(g/cm^3)$
2	45.6	6	23.9	21.7	2	35.2	6	18.2	17.0	$0.7825(g/cm^3)$
3	40.4	7	19.5	20.9	3	31.2	7	14.7	16.5	$0.7885(g/cm^3)$
4	34.7	8	14.9	19.8	4	26.8	8	11.1	15.7	$0.7920 (g/cm^3)$
									평균	$0.7872(g/cm^3)$

(2) 소주의 알코올 도수 측정

- 액체 시료의 온도 측정

시료 이름	소주(l)	$H_2O(l)$		
온도(℃)	(T_s) 16 $(^{\circ}C)$	(T_w) 17 $(^{\circ}C)$		

- 측정한 온도에서의 $H_2O(l)$ 의 밀도 $0.9988(g/cm^3)$

- 액체 기둥의 높이 측정값 및 소주(l)의 밀도 (g/cm^3) 계산

	소주(l)					$H_2O(l)$				밀도(g/cm³)
회	h_s	회	h_s'	$h_s - h_s'$	회	h_w	회	h_w'	$h_w - h_w$	$\rho_{\scriptscriptstyle S}(=(\frac{h_w-h_{w'}^{\;\prime}}{h_{\scriptscriptstyle S}-h_{\scriptscriptstyle S}^{\;\prime}})\rho_w)$
1	49.5	5	22.3	27.2	1	49.7	5	23.3	26.4	0.9694 (g/cm ³)
2	48.1	6	20.3	27.8	2	48.3	6	21.4	26.9	0.9665 (g/cm ³)
3	46.5	7	18.2	28.3	3	46.7	7	19.2	27.5	0.9706(g/cm ³)
4	44.2	8	16.0	28.2	4	44.4	8	17	27.4	$0.9705 (g/cm^3)$
									평균	0.9692 (g/cm ³)

- 소주의 알코올 도수 측정값 27%
- 소주병에 기재된 알코올 도수 값 25%

[2] 결과 분석

(1) 실험(1)의 오차 값 분석 및 비교(참값: $ho_{C_2H_0OH(l)}=0.7894(g/cm^3)$)

① 실험(1)-1회

회	밀도(g/cm³)	밀도의 절대오차(g/cm³)	밀도의 상대오차(%)	밀도의 표준 편차
1	$0.7864(g/cm^3)$	$0.0030(g/cm^3)$	0.3800(%)	
2	$0.7796(g/cm^3)$	$0.0098(g/cm^3)$	1.2414(%)	
3	$0.7852(g/cm^3)$	$0.0042(g/cm^3)$	0.5320(%)	0.4924
4	$0.7866(g/cm^3)$	$0.0028(g/cm^3)$	0.3547(%)	
평균	$0.7845(g/cm^3)$	$0.005(g/cm^3)$	0.6271(%)	

② 실험(1)-2회

회	밀도(g/cm³)	밀도의 절대오차(<i>g/cm</i> ³)	밀도의 상대오차(%)	밀도의 표준 편차
1	$0.7825(g/cm^3)$	$0.0069(g/cm^3)$	0.8741(%)	
2	$0.7885(g/cm^3)$	$0.0009(g/cm^3)$	0.1140(%)	
3	$0.7920(g/cm^3)$	$0.0026(g/cm^3)$	0.3294(%)	0.4935
4	$0.7872(g/cm^3)$	$0.0022(g/cm^3)$	0.2787(%)	
평균	$0.7876(g/cm^3)$	$0.0032(g/cm^3)$	0.399(%)	

③ 1회와 2회의 비교

밀도의 표준 편차를 보았을 때 1회의 실험이 2회의 실험보다 정확하게 진행되었다고 할 수 있다.(random error는 배제한 경우) 실험 1회의 경우 1-4회가 가장 정확하게 진행되었으며 1-2회가 가장 부정확하게 진행되었다. 또한, 실험 2회에서는 2-2회가 가장 정확하게 진행되었으며 2-1회가 부정확하게 진행되었다.

(2) 실험(2)의 오차 값 분석(15℃에서와 16℃에서 25%의 소주의 밀도가 같다고 가정)

① 실험(2)의 오차 값 분석

	밀도(g/cm³)	밀도의 절대오차(g/cm³)	밀도의 상대오차(%)	밀도의 표준 편차
1	$0.9694(g/cm^3)$	$0.0017(g/cm^3)$	0.2154(%)	
2	$0.9665(g/cm^3)$	$0.0046(g/cm^3)$	0.5827(%)	
3	$0.9706(g/cm^3)$	$0.0005(g/cm^3)$	0.0633(%)	0.4977
4	$0.9705(g/cm^3)$	$0.0006(g/cm^3)$	0.0760(%)	
평균	$0.9693(g/cm^3)$	$0.0018(g/cm^3)$	0.2344(%)	

도수 참값(%)	도수 측정값(%)	도수의 절대오차(%p)	도수의 상대오차(%)
25(%)	27(%)	2(%p)	8(%)

실험(2)은 밀도의 표준 편차를 보았을 때 실험(1)에서 진행한 어떤 회차의 실험보다 부정확하게 진행되었다고 할 수 있다. 또한, 상대오차로 보았을 때 밀도 값을 기준으로 한다면 0.2344(%)의 차이가 나지만 도수를 기준으로 하면 약 8(%)의 차이가 나는 것을 알 수 있다. 이를 통해 도수는 밀도와 비교하면 상당히 민감한 것을 알 수 있다.

[3] 오차 논의 및 검토

(1) 실험(1)에 대한 논의 및 검토

① 오차 원인 추정

- 각 높이 측정 시 온도를 측정하지 않아 정확한 물의 밀도를 알 수 없으며 동시에 실험 중 측정한 $C_2H_5OH(l)$ 의 밀도가 일정하지 않을 수 있다.
- 높이 측정 시 눈으로 보고 판단하였기에 정확하지 않다.
- 모세관 현상은 비중에 반비례하므로 온도가 다르다면 비중 역시 변화할 것이며 이에 따른 높이차가 발생할 수 있다.
- 해당 실험을 하는 도중 $C_2H_5OH(l)$, $H_5O(l)$ 가 증발 또는 응축할 수 있다.

② 해결책 제시

- 높이 측정 시 디지털 온도계를 이용하여 각각의 온도를 기록하여 물의 밀도를 이용해 기록하여야 하며 $C_2H_5OH(l)$ 의 열팽창계수를 이용하여 밀도를 환산하여야 한다.
- 높이를 판단할 시 정확한 측정 장비를 이용해야 한다.
- 모세관 현상에 따른 높이 변화와 관련된 식과 $C_2H_5OH(l)$ 의 열팽창계수 등을 이용하여 밀도에 대한 예측값을 이용한 높이 변화를 고려해야 한다.
- 만약 응축 속도가 기체 분자의 부분 압력에 영향을 받는다고 하면 작은 오차는 불

가피하며 해결하기 위해서는 닫힌계 중 기체 분자가 있는 부피의 변화에 따라 액체에서 증발하는 양을 구하거나 최대한 빠르게 실험을 하여 액체의 증발량을 최소화하는 방법이 있을 수 있다.

(2) 실험(2)에 대한 논의 및 검토

- ① 오차 원인 추정
 - 액체는 온도에 따라 부피가 변화하므로 온도에 따른 밀도가 다르다. 하지만 제공 된 소주의 알코올 도수와 밀도 환산표가 15℃ 기준의 환산표이다.
 - 실험(1)에서 추정한 모든 오차 원인은 실험(2)의 오차 원인으로 추정할 수 있다.
- ② 해결책 제시
 - 16℃ 기준의 도수와 밀도 환산표가 제공되어야 한다.
 - 실험(1)에서 논의한 해결책은 실험(2)에도 적용할 수 있다.

[4] 결론

Hare의 장치를 이용해 각 용액($H_2O(l)$, $C_2H_5OH(l)$, 소주(l))의 온도를 알 때 하나의 용액($H_2O(l)$)의 밀도를 기준으로 다른 용액(소주(l), $C_2H_5OH(l)$)의 밀도를 측정할 수 있으며 밀도차를 통해 어떤 두 용액($H_2O(l)$, $C_2H_5OH(l)$)이 혼합(소주(l))되어 있을 때 그 비율(도수(%))을 알 수 있다.