1 递归问题

1.1 河内塔

使用递归方法解决河内塔问题。先从n为1的情况考虑该问题。为了递归式的完整?将n等于0也纳入考虑

$$T_0 = 0$$

$$T_1 = 1$$

$$T_2 = 3$$

$$T_3 = 7$$

从圆盘的移动规律可以看出,要将 n 个圆盘从 A 柱移动到 C 柱上,首先需要将 n-1 个圆盘移动到 B 柱上,再移动最大的圆盘到 C 柱上,最后将 n-1 个圆盘从 B 柱移动到 A 柱上。

书中使用

$$T_n \leqslant 2T_{n-1} + 1$$
$$T_n \geqslant 2T_{n-1} + 1$$

得到 $T_n = 2T_{n-1} + 1$ 。将 n 等于 0 的情况作为初始条件,得到完整的递归式 (recurrence)

1

$$T_0 = 0$$

 $T_n = 2T_{n-1} + 1, \quad n > 0$ (1)

计算得到

$$T_n = 2^n - 1, \quad n \geqslant 0 \tag{2}$$

数学归纳法 (mathematical induction)1

¹数学归纳法的难点并不在于证明本身,而是如何得到关系式

- 1. 基础 basis, n 取最小值 no 证明该命题
- 2. 归纳 induction, 假设 k = n 1 时归纳结果成立,证明 k = n 时该结果也成立 使用数学归纳法证明河内塔问题递归式

证明. 证明河内塔问题递归式 1. k=0 时, $T_0=2^0-1=0$

- 2. 假设 k = n 1 时 $T_{n-1} = 2^{n-1} 1$ 成立。
- 3. k = n H, $T_n = 2 * T_{n-1} + 1 = 2 * (2^{n-1} 1) + 1 = 2^n 1$

评论 1. 研究小的情形

- 2. 求解递归式(1)
- 3. 求解递归式 (2)

Q: 递归式 $T_n = 2^n - 1$ 是怎样得到的?

$$T_0 + 1 = 1$$

 $T_n + 1 = 2T_{n-1} + 2 = 2(T_{n-1} + 1)$

 $\diamondsuit U_n = T_n + 1$

$$U_0 = 1$$

$$U_n = 2U_{n-1}, \quad n > 0.$$

容易推出 $U_n = 2^n, T_n = 2^n - 1$

1.2 平面上的直线

平面上n条直线所界定的区域最大个数 L_n 是多少?

$$L_0 = 1$$
 $L_1 = 2$
 $L_2 = 4$
 $L_3 = 7$
...
 $L_n \leqslant L_{n-1} + n, \quad n > 0$

$$L_n = L_{n-1} + n$$

$$= L_{n-2} + (n-1) + n$$

$$= \cdots$$

$$= L_0 + 1 + 2 + \cdots + n$$

$$= 1 + S_n$$

其中 $S_n = 1 + 2 + \cdots + n$ 被称为三角形数。

$$S_n = \frac{n(n+1)}{2} \tag{3}$$

由此得到平面分割数 $L_n = \frac{n(n+1)}{2} + 1$.

使用数学归纳法证明该公式

证明. 1. $k=0, L_0=1$.

2. 设
$$k = n - 1$$
, $L_{n-1} = \frac{(n-1)((n-1)+1)}{2} + 1 = \frac{(n-1)n}{2} + 1$ 成立.

3.
$$k = n, L_n = L_{n-1} + n = \frac{(n-1)n}{2} + 1 + n = \frac{n(n+1)}{2} + 1$$

评论 将直线的情况拓展到折线。

$$Z_1 = 2$$
$$Z_2 = 7$$

做法,将折线补齐成两条直线2

$$Z_n = L_2 n - 2n$$
 锯齿点不在交点
= $\frac{2n(2n+1)}{2} + 1 - 2n$
= $2n^2 - n + 1$, $n \ge 0$

1.3 约瑟夫问题

n 个人围成一圈, 从第一个人开始, 每隔一个删除一个。

表 1: 约瑟夫问题最终剩余数字 J(n) 与全体数字 n 之间的关系

n	1	2	3	4	5	6	7	8	9
J(n)	1	1	3	1	3	5	7	1	3

人数总数为偶数 $J(2n)=2J(n)-1, n\geqslant 1$. 人数总数为奇数 $J(2n+1)=2J(n)+1, n\geqslant 1$.

递归式

$$J(1) = 1$$

$$J(2n) = 2J(n) - 1, n \geqslant 1$$

$$J(2n+1) = 2J(n) + 1, n \geqslant 1$$

 $[\]frac{1}{2L_n \sim \frac{1}{2}n^2}$ $Z_n \sim 2n^2$

计算得到 $n = 2^m + l$, 封闭形式 $J(2^m + l) = 2l + 1, m \ge 0, 0 \le l < 2^m$.

证明. 1. 1 is even.

$$J(2^{m} + l) = 2J(2^{m} + \frac{l}{2}) - 1$$
$$= 2(2 * \frac{l}{2} + 1) - 1$$
$$= 2l + 1$$

2. 1 is odd.

$$J(2^{m} + l) = 2J(2^{m} + \frac{l-1}{2}) - 1$$
$$= 2(2 * \frac{l-1}{2} + 1) - 1$$
$$= 2l + 1$$

$$J(2n+1) - J(2n) = 2 (4)$$

评论 将 n 和 J(n) 以 2 为基数表示 (表示为二进制). 假设:

$$n = (b_m b_{m-1} \dots b_1 b_0)_2$$

= $b_m 2^m + b_{m-1} 2^{m-1} + \dots + b_1 2^1 + b_0 2^0$

其中 $b_m = 1, b_i = 0$ 或1 $(0 \le i < m, i \in \mathbb{N}^+)$

$$n = 2^{m} + l$$

$$n = (1b_{m-1}b_{m-2} \dots b_1b_0)_2$$

$$l = (0b_{m-1}b_{m-2} \dots b_1b_0)_2$$

$$2l = (b_{m-1}b_{m-2} \dots b_1b_0)_2$$

$$2l + 1 = (b_{m-1}b_{m-2} \dots b_1b_0)_2$$

$$J(n) = (b_{m-1}b_{m-2} \dots b_1b_0)_2$$

因此我们得到 $J((1b_{m-1}b_{m-2}\dots b_1b_0)_2)=(b_{m-1}b_{m-2}\dots b_1b_01)_2$. n 向左循环移动一位得到 J(n)!

案例 1
$$J((1011)_2) = (0111)_2 = (111)_2$$
, 该式即 $J(11) = 7$

注意: 0 移动至首位会消失, 而不需要保留空位。

 $2^{\nu(n)}-1$, 其中 $\nu(n)$ 为 n 转换成的二进制数中 1 的个数

案例 2 n=13,
$$(13)_{10} = (1101)_2$$
, $\mu(13) = 3$. $J(J(\dots(J(13))\dots)) = 2^3 - 1 = 7$

案例3 n=23403,
$$\mu(23403)=10$$
, therefore $J(J(\dots(J(23403))\dots))=2^{10}-1=1023$

回到第一个猜测 $J(n) = \frac{n}{2}$ n 为偶数。这个猜想在什么情况下成立?目前已知 $n = 2^m + l$,

$$J(n) = \frac{n}{2}$$

$$2l + 1 = (2^m + l)/2$$

$$\frac{3}{2}l = 2^{m-1} - 1$$

$$l = \frac{1}{3}(2^{m-1} - 2)$$

m 为奇数, 2^m-2 是 3 的倍数

m 为偶数, 2^m-2 不是 3 的倍数

 $J(n) = \frac{n}{2}$ 有无穷多组解

表 2: J(n) 关系式之间的关系

m	1	$n = 2^m + l$	$J(n) = 2l + 1 = \frac{n}{2}$	$(n)_2$
1	0	2	1	10
3	2	10	5	1010
5	10	42	21	101010
7	42	170	85	10101010

评论 再推广, 引入常数 α, β, γ .

$$\begin{cases} f(1) = \alpha \\ f(2n) = 2f(n) + \beta, & n \geqslant 1 \\ f(2n+1) = 2f(n) + \gamma, & n \geqslant 1 \end{cases}$$
 (5)

假设 f(n) 具有如下迭代形式

$$f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma \tag{6}$$

表 3: f(n) 常数的变化规律

n	f(n)	α	β	γ
1	α	1	0	0
2	$2\alpha + \beta$	2	1	0
3	$2\alpha + \gamma$	2	0	1
4	$4\alpha + 3\beta$	4	3	0
5	$4\alpha + 2\beta + \gamma$	4	2	1
6	$4\alpha + \beta + 2\gamma$	4	1	2
7	$4\alpha + 3\gamma$	4	0	3
8	$8\alpha + 7\beta$	8	7	0
9	$8\alpha + 6\beta + \gamma$	8	6	1

看起来似乎有

$$\begin{cases}
A(n) = 2^m & n = 2^m + l, \\
B(n) = 2^m - 1 - l & 0 \leqslant l \leqslant 2^m \\
C(n) = l & (n \geqslant 1)
\end{cases}$$
(7)

使用归纳法证明过程较为繁琐,可选用特殊值组合

1.
$$\alpha = 1, \beta = \gamma = 0$$
, 此时 $f(n) = A(n)$, 式5 变为

$$\begin{cases}
A(1) = 1 \\
A(2n) = 2A(n), & n \geqslant 1 \\
A(2n+1) = 2A(n), & n \geqslant 1
\end{cases}$$

此时由归纳法可得 $A(2^m + l) = 2^m$

表 4: f(n) 在 $\alpha = 1, \beta = \gamma = 0$ 时的变化情况

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
f(n)																		

2.
$$f(n) = 1$$

$$\begin{cases} 1 = \alpha \\ 1 = 2 \times 1 + \beta \rightarrow \\ 1 = 2 \times 1 + \gamma \end{cases} \begin{cases} \alpha = 1 \\ \beta = -1 \\ \gamma = -1 \end{cases}$$

$$A(n) - B(n) - C(n) = f(n) = 1$$

3.
$$f(n) = n$$

$$\begin{cases} 1 = \alpha \\ 2n = 2 \times n + \beta \rightarrow \begin{cases} \alpha = 1 \\ \beta = 0 \end{cases} \\ 2n + 1 = 2 \times n + \gamma \end{cases}$$

$$A(n) + C(n) = f(n) = n$$

当 $n = 2^m + l, 0 \le l < 2^m$ 时,由上述三种情况可以得到

$$\begin{cases} A(n) &= 2^m \\ A(n) - B(n) & -C(n) = 1 \\ A(n) & +C(n) = n = 2^m + l \end{cases}$$

解得

$$\begin{cases} A(n) = 2^m \\ B(n) = 2^m - 1 - 1 \end{cases}$$
$$C(n) = l$$

以上为求解递归式的**成套方法** (repertorire method)

评论 约瑟夫递归式二进制解的推广

已知约瑟夫递归式的解为

$$J((b_m b_{m-1} \dots b_1 b_0)_2) = (b_{m-1} b_{m-2} \dots b_1 b_0 b_m)_2, \quad b_m = 1$$

推广的约瑟夫递归式有无这种形式的解?

$$\Rightarrow \beta_0 = \beta, \beta_1 = \gamma$$

$$\begin{cases} f(1) = \alpha \\ f(2n+j) = 2f(n) + \beta_j, & j = 0, 1, n \leq 1 \end{cases}$$

$$f((b_m b_{m-1} \dots b_3 b_2 b_1 b_0)_2) = 2f((b_m b_{m-1} \dots b_3 b_2 b_1)_2) + \beta_{b_0}$$

$$= 2f((b_m b_{m-1} \dots b_3 b_2)_2) + 2\beta_{b_1} + \beta_{b_0}$$

$$= \vdots$$

$$= 2^m f((b_m)_2) + 2^{m-1} f((b_{m-1})_2) + \dots + 2\beta_{b_1} + \beta_{b_0}$$

$$= 2^m \alpha + 2^{m-1} \beta_{b_{m-1}} + \dots + 2\beta_{b_1} + \beta_{b_0}$$

$$f((b_m b_{m-1} \dots b_1 b_0)_2) = (\alpha b_{m-1} \dots b_1 b_0)_2$$

使用成套方法再次求解约瑟夫问题

表 5: 成套方法各项系数

n	f(n)	J(n)
1	α	1
2	$2\alpha + \beta$	1
3	$2\alpha + \gamma$	3
4	$4\alpha + 2\beta + \beta$	1
5	$4\alpha + 2\beta + \gamma$	3
6	$4\alpha + \beta + 2\gamma$	5
7	$4\alpha + 3\gamma$	7
8	$8\alpha7\beta$	1
7	$4\alpha6\beta + \gamma$	3

总结:

$$n = (1 1 0 0 1 0 0)_{2} = 100$$

$$f(n) = (\alpha \gamma \beta \beta \beta \gamma \beta \beta)_{2}$$

$$= (1 1 -1 -1 1 -1 -1)_{2}$$

$$= +2^{6} +2^{5} -2^{4} -2^{3} +2^{2} -2^{1} -2^{0} = 73$$

由于在 n 的二进制表示中每一块二进制数字 (1000 ... 00)2 都被变换成

$$(1-1-1-1...-1-1)_2 = (000...01)_2$$
(8)

因而推出循环移位性质

$$f(j) = \alpha_j \qquad 1 \le j < d.$$

$$f(dn+j) = cf(n) + \beta_j \qquad 0 \le j < d, \quad n \le 1$$

有变动基数的解

$$f((b_m b_{m-1} \dots b_1 b_0)_d) = (\alpha_{b_m} \beta_{b_{m-1}} \dots \beta_{b_1} \beta_{b_0})_c$$
(9)

前一式基数为d, 后一式基数为c3

example:

$$f(1) = 34$$

 $f(2) = 5$
 $f(3n) = 10f(n) + 76,$ $n \ge 1$
 $f(3n+1) = 10f(n) - 2,$ $n \ge 1$
 $f(3n+2) = 10f(n) + 8,$ $n \ge 1$

计算 f(19).

Solve: 通过基数方法可知 d = 3, c = 10.

$$\alpha_1 = 34$$

$$\alpha_2 = 5$$

$$\beta_1 = 76$$

$$\beta_2 = -2$$

$$\beta_3 = 8$$

$$(19)_{10} = 2 \times 3^{2} + 0 \times 3^{1} + 1 \times 3^{0} = (201)_{3}$$

$$f((19)_{10}) = f((201)_{3})$$

$$= (5 \quad 76 \quad -2)_{10}$$

$$= 5 \times 10^{2} + 76 \times 10^{1} + (-2) \times 10^{0}$$

$$= 500 + 760 - 2$$

$$= 1258$$

³之后会用 tikz 绘图标注