PREDICTING THE SEVERITY OF A CAR CRASH

By Andrew Lin

INFORMATION ABOUT THE SEVERITY OF A CAR CRASH IS USEFUL

- People can make decisions on where, when, or how to travel if they knew how severe a crash could be going a certain route
- This could also be beneficial to first responders if they were notified about how severe a crash could be

DATA

- The data I am using is from the Seattle Department of Transportation
- It has data from 2004 Present
- 194673 observations and 37 features in the raw dataset

DATA EXPLORATION

- Insights
 - There are some observations where there were 0 people affected or 0 vehicles involved
 - It doesn't take a lot of cars to affect a lot of people
 - 81 people affected, 2 vehicles involved

PERSONCOUNT VS. VEHCOUNT

(3.1 IN REPORT)

DATA CLEANING

- I got rid of all observations that had 0 as a value in PERSONCOUNT or VEHCOUNT because those are not very informative
- I calculated what 2 standard deviations above the mean for PERSONCOUNT and VEHCOUNT would be and dropped those observations to get rid of the outliers and reduce noise
- I decided to fill the null values in my chosen features by imputing the mode for each respective column

THE FEATURES

- I decided to make a vehicle to person ratio variable because I thought it would be more informative and it did show an accuracy improvement in the models
- The features I used in the model were the encoded versions of ADDRTYPE,
 COLLISIONTYPE, ROADCOND, LIGHTCOND, and veh_per_pep
- The total features in the final model is 32

THE MODELS

- I tried out 3 different models to predict severity of a car crash
- The 3 I tried out are KNN, Decision Tree, and Logistic Regression

KNN

DECISION TREE

LOGISTIC REGRESSION

- For Logistic Regression I used a Grid Search to find the best parameters
- The best parameters were
 - C = 0.001
 - Penalty = I1
 - Solver = liblinear

The accuracy score was 0.77315, the highest out of the three models

EVALUATION METRICS OF EACH MODEL

	Algorithm	Jaccard	F1-score	LogLoss
0	KNN	0.77	0.73	NA
1	Decision Tree	0.77	0.72	NA
2	LogisticRegression	0.77	0.72	0.46

THE CHOSEN MODEL

- The model I decided to use is the Logistic Regression model
- The accuracy was the best and the evaluation metrics were relatively great
- This model also gives probabilities for each severity code, so that could be useful for a first responder to receive, so they can better prepare

```
LogisticRegression(C = .001, solver = 'liblinear', penalty = 'l1')
```

CONCLUSION AND RECOMMENDATIONS

Built a model that can help predict the severity of the crash

Looking back and forward

- I would like to have imputed the data in a better way that would have led to some sort of improvement rather than just imputing the mode
- If there is any way to get data on the type of vehicle or age of the people involved in the accident then that would probably help out a lot
- I would also have liked to seen more than just severity codes I and 2. In the metadata, it referenced severity codes 2b and 3.

THE PHOTOS MISSING IN THE REPORT

(5.1 IN REPORT)

[[22867	263] 1988]	•				Confusion Matrice	[[22591 539]
,		precision	recall	f1-score	support		[6796 2236]] precision
	1	0.76	0.99	0.86	23130			
	2	0.88	0.22	0.35	9032	Classification Report	1	0.77
							2	0.81
accura	асу			0.77	32162			
macro a	avg	0.82	0.60	0.61	32162		accuracy	
weighted a	avg	0.80	0.77	0.72	32162		macro avg	0.79
							weighted avg	0.78

KNN

recall f1-score

0.86

0.38

0.77

0.62

0.73

0.98

0.25

0.61 0.77 support

23130

9032

32162

32162

32162

Decision Tree

[[22764 [6931	366 2101	•			
		precision	recall	f1-score	support
	1	0.77	0.98	0.86	23130
	2	0.85	0.23	0.37	9032
accui	racv			0.77	32162
	-				
macro	avg	0.81	0.61	0.61	32162
weighted	avg	0.79	0.77	0.72	32162

Logistic Regression

CORRELATION MATRIX

(3.1 IN REPORT)

000 0.128745 -0.2	100.10
	49046
745 1.000000 0.3	67250
0.367250 1.0	00000