COT 4521: INTRODUCTION TO COMPUTATIONAL GEOMETRY

Segment Intersection Line Sweep

Paul Rosen Assistant Professor University of South Florida

SWEEP ALGORITHM

SWEEP ALGORITHM

SWEEP ALGORITHM – WHERE DO EVENTS OCCUR?

EVENTS

- WHEN DO THE EVENTS HAPPEN?
 - When the sweep is:
 - At an upper endpoint of the line segment;
 - At a lower endpoint of the line segment; or
 - At an intersection point of line segments
 - At each type, the status changes

INTERSECTION OF LINE SEGMENTS

- ALGORITHM IDEA (SHAMOS-HOEY ALGORITHM)
- CRUCIAL OBSERVATION:
 - For two segments s_1 and s_2 to intersect, there must be some Y for which s_1 and s_2 are consecutive in the X ordering.
 - This suggests that the sequence of intersections of the segments with the horizontal line contains the information needed to find the intersections between the segments.

- Plane sweep algorithms often use two data structures:
 - I. Sweep-line status
 - 2. Event-point schedule

INTERSECTION OF LINE SEGMENTS

- SWEEP-LINE STATUS
 - The sweep-line status is a list of the currently comparable segments, ordered by the relation in X.
- The sweep-line status data structure L is used to store the ordering of the currently comparable segments. Because the set of currently comparable segments changes, the data structure for L must support these operations:
 - I. INSERT(s, L). Insert segment s into the total order in L.
 - 2. DELETE(s, L). Delete segment s from L.
 - 3. LEFT(s, L). Return the name of the segment immediately left of s in the ordering in L.
 - 4. RIGHT(s, L). Return the name of the segment immediately right of s in the ordering in L.
- These operations can be performed in $O(\log N)$ time (or better).

INTERSECTION OF LINE SEGMENTS

- EVENT-POINT SCHEDULE
 - As the sweep-line is swept from top to bottom, the set of the currently comparable segments and/or their ordering by the relation of X changes at a finite set of y values; those are known as events.
- THE EVENTS FOR THIS PROBLEM ARE SEGMENT ENDPOINTS AND SEGMENT INTERSECTIONS. THE EVENT-POINT SCHEDULE DATA STRUCTURE E IS USED TO STORE EVENTS PRIOR TO THEIR PROCESSING. FOR ETHE FOLLOWING OPERATIONS ARE NEEDED:
 - 1. MIN(E). Determine the smallest element in E (based on y), return it, and delete it.
 - 2. INSERT(p, E). Insert abscissa p, representing an event, into E.
 - 3. MEMBER(p, E). Determine if abscissa p is a member of E.
- THE PRIORITY QUEUE DATA STRUCTURE CAN PERFORM ALL OF THESE OPERATIONS IN O(LOG N) TIME.

SWEEP ALGORITHM

What Data Structures Should We Use?

• Self-balancing trees (AVL, Red-black)

				_	
\Box				ı.	tree
Ke		nı	ar	ĸ	Tree
	M	vi	uv	П.	

Type tree

Invented 1972

Invented by Rudolf Bayer

Time complexity in big O notation

Algorithm	Average	Worst case
Space	O(n)	O(n)
Search	$O(\log n)^{[1]}$	$O(\log n)^{[1]}$
Insert	$O(\log n)^{[1]}$	$O(\log n)^{[1]}$
Delete	$O(\log n)^{[1]}$	$O(\log n)^{[1]}$

What Data Structures Should We Use?

Priority Queue

Operation	Binary ^[6]	Leftist	Binomial ^[6]	Fibonacci ^{[6][2]}	Pairing ^[7]	Brodal ^{[8][a]}	Rank-pairing ^[10]	Strict Fibonacci ^[11]	2-3 heap
find-min	<i>Θ</i> (1)	Θ(1)	Θ(log <i>n</i>)	<i>Θ</i> (1)	<i>Θ</i> (1)	<i>Θ</i> (1)	<i>Θ</i> (1)	<i>Θ</i> (1)	?
delete-min	Θ(log <i>n</i>)	Θ(log n)	Θ(log <i>n</i>)	<i>O</i> (log <i>n</i>) ^[b]	<i>O</i> (log <i>n</i>) ^[b]	<i>O</i> (log <i>n</i>)	$O(\log n)^{[b]}$	O(log n)	$O(\log n)^{[b]}$
insert	<i>O</i> (log <i>n</i>)	Θ(log n)	Θ(1) ^[b]	<i>Θ</i> (1)	<i>Θ</i> (1)	<i>Θ</i> (1)	<i>Θ</i> (1)	<i>Θ</i> (1)	$O(\log n)^{[b]}$
decrease-key	Θ(log <i>n</i>)	Θ(n)	Θ(log <i>n</i>)	Θ(1) ^[b]	$o(\log n)^{[b][c]}$	<i>Θ</i> (1)	Θ(1) ^[b]	Θ(1)	<i>Θ</i> (1)
merge	Θ(n)	Θ(log <i>n</i>)	$O(\log n)^{[d]}$	Θ(1)	<i>Θ</i> (1)	<i>Θ</i> (1)	Θ(1)	Θ(1)	?

INTERSECTION OF LINE SEGMENT

- ANALYSIS OF SHAMOS-HOEY ALGORITHM
 - Preprocessing: $O(N \log N)$; sort of endpoints.
 - Query: $O((N + K) \log N)$;
 - each of 2N endpoints and K intersections are inserted into E, an O(log N) operation.
 - Storage: O(N + K); at most 2N endpoints and K intersections are stored in E.

COMMENTS

- As given, assumption that no segments of S are horizontal.
- As given, assumption that no three (or more) segments meet at a point.
- Care must be taken with intersections at segment end points.
- Query time of $O((N + K) \log N)$ is suboptimum; an optimum $O(N \log N + K)$ algorithm exists but is quite difficult.

