Einsatz von Reinforcement Learning am Beispiel einer Stromregelung durch eine RL-Last

Oktober 2024

Stromkreis mit resistiver und induktiver Last

Spule:

- Strom erzeugt Magnetfeld (→ Selbstinduktion)
- Phasenverschiebung bei Wechselstrom: Strom gegenüber Spannung verzögert

Widerstand:

- Umwandlung von Strom in Wärme (z.B. elektrische Heizung)
- keine Phasenverschiebung bei Wechselstrom

Ziel: Stromregelung durch Anpassung der Spannung

- konstanter Gleichstrom (z.B. für Erzeugung von stabilem Magnetfeld)
- stabiler Wechselstrom (z.B. für Induktion in Elektromotor)

Regelkreis

Störgrößen (hier: zeitliche Änderungen von R und L)

Regelgröße

Return: -320

$$\sum_{t} - \big| I(t) - I_{ref}(t) \big|$$

Messung alle 0,001 s

RL-Last: PT₁-Glied

Führungsgröße I_{ref}

- konstanter Gleichstrom
- stabiler Wechselstrom

Differenzialgleichung:
$$U_0 + \Delta U(t)$$

$$U(t) = R \cdot I(t) + L \cdot \frac{dI(t)}{dt}$$

Stellgröße

Benchmarks

PID-Regler (mit Begrenzung)

Regelung alle 0,01 s

PID:
$$y_R(t) = K_{PR} \cdot e(t) + K_I \cdot \int e(t) dt + K_D \cdot \frac{de(t)}{dt}$$

Model Predictive Control (MPC)

Optimal-Control Methode

1. Benutzung von Modell des Systems, um künftige Entwicklung zu prognostizieren (potentiell mittels Machine Learning)

hier:
$$I(t+1) = I(t) \cdot \frac{dI(t)}{dt} \cdot \Delta t = I(t) \cdot \frac{U(t) - R \cdot I(t)}{L} \cdot \Delta t$$

- 2. Optimierung: Anpassung der Stellgröße (U(t)) zur Minimierung der Abweichung der Regelgröße (z.B. $\left(I(t)-I_{ref}(t)\right)^2$) über mehrere Schritte
- 3. Ausführung nur des ersten Schrittes, dann Wiederholung des Prozesses

im Gegensatz zu Reinforcement Learning Kenntnis des Modells nötig

MPC Ergebnisse

Reinforcement Learning

Reinforcement Learning

State: Größen zur Beschreibung des aktuellen Systemzustands

hier: I(t), U(t)

Action: Entscheidung des Agenten in einem bestimmten Zustand

hier: $\Delta U(t)$

Reward: numerische Antwort der Umgebung auf eine Action

hier: $-|I(t) - I_{ref}(t)|$

Action Policy: Strategie bestehend aus Aktionen für jeden Zustand (Action-Sequenz)

Ziel: Policy zur Maximierung der Summe der künftigen (verzögerten) Rewards

Lernen durch zielgerichtete Interaktion mit der Umgebung (trial and error)

→ weder Input-Output Beispiele (supervised learning) noch Modell der Umgebung nötig

Action-Policy Suche

Methoden in Reinforcement Learning:

Sampling: (zufällige) Stichproben von Action-Sequenzen

- Monte Carlo: vollständige Episode
- TD learning: nur nächster Schritt

Bootstrapping: Abschätzung des Wertes des aktuellen Zustands (oder der Action) mittels der geschätzten Werte der möglichen Folgezustände → Rekursion

Modell der

State & Action Values

Idee:

Summe der erwarteten künftigen Rewards, ausgehend vom betreffenden State (bzw. der betreffenden Action)

→ Ausdruck der langfristigen Attraktivität von States/Actions

Motivation:

Verbesserung der Effizienz der Suche nach einer guten Action Policy

→ Wähle Actions mit höchsten Action Values

State-Value Funktion

Backup diagram for v_{π}

Discount-Faktor: zwischen 0 und 1 (essentiell für kontinuierliche Probleme)

$$= \sum_{a_t} \pi(a_t|s_t) \sum_{s'_{t+1}, r_{t+1}} p(s'_{t+1}, r_{t+1}|s_t, a_t) [r_{t+1} + \gamma v_{\pi}(s'_{t+1})]$$
Bootstrapping (Rekursion)

Action-Policy (potentiell stochastisch)

Übergangswahrscheinlichkeiten (Modell) der Umgebung (potentiell stochastisch)

source

Q-Learning

q_{π} backup diagram

source

Action-Value Funktion:

$$q_{\pi}(s_t, a_t) = \sum_{s'_{t+1}, r_{t+1}} p(s'_{t+1}, r_{t+1} | s_t, a_t) \left[r_{t+1} + \gamma \sum_{a'_{t+1}} \pi(a'_{t+1} | s'_{t+1}) \ q_{\pi}(s'_{t+1}, a'_{t+1}) \right]$$

entfällt für deterministische Umgebung

$Q(s_t, a_t) = r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a_{t+1})$

Q-learning:

Approximation mit $\max q(s_{t+1}, a_{t+1})$

DQN

Deep Q-Network (DQN)

Idee: Approximation der Q-Funktion durch ein neuronales Netzwerk

→ Generalisierung mittels supervised learning

Zustandsgrößen des betrachteten States (z.B. *I*, *U*)

Q-Werte für die verschiedenen Actions (z.B. diskrete ΔU Werte)

Zielgröße:

$$Q(s_t, a_t) = r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a_{t+1})$$

falls 0, nur unmittelbarer Reward

DQN Ergebnisse

Verbesserung während des Trainings

Besonderheiten im DQN-Training

Tricks zur Stabilisierung des Trainings:

experience replay

Anpassung der Netzwerk-Gewichte anhand von zufällig ausgewählten (zuvor gespeicherten) Beobachtungen (Korrelation aufeinanderfolgender Schritte) (Beobachtungen potentiell mit anderer Policy erzeugt → off-policy Methode)

separates target network

Kopie des Q-Netzwerks, aber nur langsam aktualisiert (dynamische Zielgröße)

Exploration

Action Policy nach dem Training:

wähle in jedem Schritt Action mit höchstem Q-Wert (Exploitation)

Action Policy während des Trainings:

- wähle manchmal zufällige Action (Exploration)
- z.B. mittels Epsilon-Greedy Algorithmus
- andernfalls Gefahr bessere Strategien zu übersehen

Policy Gradients

Direkte Policy Suche: Policy Gradient Methode

Neuronales Netzwerk (z.B.) mit Actions als Ausgabe/Zielgröße: Policy Netzwerk

Action-Wahrscheinlichkeiten

beobachtete discounted Returns (Monte Carlo Sampling)

zu minimierender Loss: $-\log P(a_t|s_t; \mathbf{w}) \cdot (r_{t+1} + \gamma r_{t+2} + \cdots)$

gradient ascent: wähle Actions Richtung größerer Rewards für stochastisch ausgewählte Action

→ implizite Exploration, on-policy Methode

Actor-Critic Methoden

Interpretation:
$$-\log P(a_t|s_t; \mathbf{w}) \cdot (r_{t+1} + \gamma r_{t+2} + \cdots)$$
Actor Critic

keine Veränderung für Gradient bei Subtraktion von Action-unabhängiger Baseline:

zu minimierender Loss:
$$-\log P(a_t|s_t; \mathbf{w}) \cdot [(r_{t+1} + \gamma r_{t+2} + \cdots) - B]$$

mögliche Baselines:

- mittlerer discounted Return
- Value Funktion (Monte Carlo → TD)
- → Reduktion der Varianz der Gradienten

Advantage

PG - Diskrete Actions

PG - Kontinuierliche Actions

Prognose von Wahrscheinlichkeitsverteilung für Action

- z.B. für Gaußverteilung: zwei Ausgabeknoten für Mittelwert und Standardabweichung
- Action wird zufällig gemäß dieser Verteilung gezogen und $\log P$ dann für die gezogene Action bestimmt

Zusammenfassung

Regler bei steigender Komplexität der Regelung:

PID: reaktiv

• MPC: optimale Planung mittels (approximativem) Modell (So machen das wir Menschen. Ok, nicht unbedingt optimal ©.)

 Reinforcement Learning: erlernen einer Strategie durch Interaktion mit der Umgebung (Versuch und Irrtum, Brute-Force Methode)