Переход от упрощённой схемы (1.9.1) к неявной форме (1.9.2)

0. Исходные уравнения

Рассмотрим одномерную квази-одномерную систему гемодинамики:

$$\begin{cases}
\frac{\partial S}{\partial t} + \frac{\partial (Su)}{\partial x} = 0, \\
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0,
\end{cases} \qquad p = p_0 + K \left(\frac{S}{S_0} - 1 \right). \tag{0.1}$$

Сетка: $x_i = ih, i = 0, ..., N, t^n = n\tau$. Обозначим вектор неизвестных:

$$y_i^n = \begin{pmatrix} S_i^n \\ u_i^n \end{pmatrix}, \qquad y^n = [S_0^n, \dots, S_N^n, u_0^n, \dots, u_N^n]^T.$$

1. Пространственная дискретизация (центральные разности)

$$\left(\frac{\partial f}{\partial x}\right)_i \simeq D_x f_i = \frac{f_{i+1} - f_{i-1}}{2h}.$$

Правая часть системы (0.1) в дискретном виде:

$$F_{S,i}(y) = -(u_i D_x S_i + S_i D_x u_i), (0.2)$$

$$F_{u,i}(y) = -\left(u_i D_x u_i + \frac{1}{\rho} D_x p_i\right), \qquad p_i = p_0 + K\left(\frac{S_i}{S_0} - 1\right).$$
 (0.3)

2. Временная σ -схема (формула (1.9.1))

$$\begin{cases} \frac{S_i^{n+1} - S_i^n}{\tau} = (1 - \sigma) F_{S,i}(y^n) + \sigma F_{S,i}(y^{n+1}), \\ \frac{u_i^{n+1} - u_i^n}{\tau} = (1 - \sigma) F_{u,i}(y^n) + \sigma F_{u,i}(y^{n+1}). \end{cases}$$

При $\sigma=0$ схема полностью явная (Эйлера вперёд), при $\sigma=1$ — полностью неявная (Эйлера назад), при $\sigma=\frac{1}{2}$ — схема Кранка—Николсона (второго порядка по времени).

3. Неявная форма и невязка $G(y^{n+1})$ (формула (1.9.2)) Перенесём всё влево и введём векторную функцию

$$G(y^{n+1}) = \begin{pmatrix} G_S \\ G_u \end{pmatrix},$$

где компоненты:

$$G_{S,i} = S_i^{n+1} - S_i^n - \tau \left[(1 - \sigma) F_{S,i}(y^n) + \sigma F_{S,i}(y^{n+1}) \right], \tag{0.4}$$

$$G_{u,i} = u_i^{n+1} - u_i^n - \tau \left[(1 - \sigma) F_{u,i}(y^n) + \sigma F_{u,i}(y^{n+1}) \right]. \tag{0.5}$$

Неявная схема формулируется как задача нахождения

$$G(y^{n+1}) = 0. (1.9.2)$$

4. Почему система нелинейная

В выражениях $F_{S,i}$ и $F_{u,i}$ входят произведения $u_iD_xS_i$, $S_iD_xu_i$, а также $p_i=p_0+K(S_i/S_0-1)$. Следовательно, G зависит нелинейно от всех компонент S_i^{n+1} и u_i^{n+1} . Решать такую систему можно итерационными методами — обычно методом Ньютона.

Метод Ньютона для (1.9.2)

На каждом временном шаге n требуется найти y^{n+1} , удовлетворяющее $G(y^{n+1})=0.$

Метод Ньютона:

$$J(y^{(k)}) \Delta y^{(k)} = -G(y^{(k)}), \qquad y^{(k+1)} = y^{(k)} + \Delta y^{(k)}$$

где

$$J(y) = \frac{\partial G}{\partial y}$$

— Якобиан размера $2(N+1) \times 2(N+1)$. Итерации продолжаются, пока $\|G\|$ или $\|\Delta y\|$ не станут достаточно малы.

2

6. Структура Якобиана

Якобиан имеет блочную структуру:

$$J = \begin{pmatrix} \frac{\partial G_S}{\partial S} & \frac{\partial G_S}{\partial u} \\ \frac{\partial G_u}{\partial S} & \frac{\partial G_u}{\partial u} \end{pmatrix},$$

и каждая подсекция — трёхдиагональная по индексу i (из-за центральных разностей). Следовательно, J — разреженная блочно-трёхдиагональная матрица.

_

7. Элементы Якобиана (аналитические выражения)

Для узла i:

$$F_{S,i} = -\left(u_i \frac{S_{i+1} - S_{i-1}}{2h} + S_i \frac{u_{i+1} - u_{i-1}}{2h}\right), \quad F_{u,i} = -\left(u_i \frac{u_{i+1} - u_{i-1}}{2h} + \frac{1}{\rho} \frac{p_{i+1} - p_{i-1}}{2h}\right)$$

где
$$p_j = p_0 + \frac{K}{S_0}(S_j - S_0).$$

Ненулевые производные (локальные):

$$\frac{\partial F_{S,i}}{\partial S_{i+1}} = -\frac{u_i}{2h}, \quad \frac{\partial F_{S,i}}{\partial S_{i-1}} = \frac{u_i}{2h}, \quad \frac{\partial F_{S,i}}{\partial S_i} = -\frac{u_{i+1} - u_{i-1}}{2h},$$
$$\frac{\partial F_{S,i}}{\partial u_{i+1}} = -\frac{S_i}{2h}, \quad \frac{\partial F_{S,i}}{\partial u_{i-1}} = \frac{S_i}{2h}, \quad \frac{\partial F_{S,i}}{\partial u_i} = -\frac{S_{i+1} - S_{i-1}}{2h},$$

$$\begin{split} \frac{\partial F_{u,i}}{\partial u_{i+1}} &= -\frac{u_i}{2h}, & \frac{\partial F_{u,i}}{\partial u_{i-1}} &= \frac{u_i}{2h}, & \frac{\partial F_{u,i}}{\partial u_i} &= -\frac{u_{i+1} - u_{i-1}}{2h}, \\ \frac{\partial F_{u,i}}{\partial S_{i+1}} &= -\frac{1}{\rho} \frac{K}{2hS_0}, & \frac{\partial F_{u,i}}{\partial S_{i-1}} &= \frac{1}{\rho} \frac{K}{2hS_0}. \end{split}$$

Подставляя в $\frac{\partial G}{\partial y}$:

$$\frac{\partial G_{S,i}}{\partial S_{j}^{n+1}} = \delta_{ij} - \tau \sigma \frac{\partial F_{S,i}^{n+1}}{\partial S_{j}^{n+1}}, \quad \frac{\partial G_{S,i}}{\partial u_{j}^{n+1}} = -\tau \sigma \frac{\partial F_{S,i}^{n+1}}{\partial u_{j}^{n+1}},
\frac{\partial G_{u,i}}{\partial S_{j}^{n+1}} = -\tau \sigma \frac{\partial F_{u,i}^{n+1}}{\partial S_{j}^{n+1}}, \qquad \frac{\partial G_{u,i}}{\partial u_{j}^{n+1}} = \delta_{ij} - \tau \sigma \frac{\partial F_{u,i}^{n+1}}{\partial u_{j}^{n+1}}.$$

8. Итоговый переход от (1.9.1) к (1.9.2)

- 1. Берём σ -схему (1.9.1) в общей форме ().
- 2. Переносим всё влево и вводим невязку $G(y^{n+1})$, получая систему (1.9.2).
- 3. Замечаем, что G нелинейна (содержит $u_i D_x S_i$, $S_i D_x u_i$, p(S)).
- 4. Применяем метод Ньютона: $J\Delta y = -G, \ y^{k+1} = y^k + \Delta y.$
- 5. Строим аналитический Якобиан J (или численный через конечно-разностнув аппроксимацию).
- 6. Решаем систему для Δy (обычно разрежённый блочно-трёхдиагональный solver).
- 7. После сходимости получаем y^{n+1} , затем вычисляем p^{n+1} .

9. Ключевые выводы

- Формула (1.9.2) представляет собой неявную σ -схему для системы уравнений гемодинамики.
- При $\sigma = 0$ схема становится явной (1.9.1) предсказатель-корректор.
- При $\sigma=1/2$ получаем схему Кранка–Николсона второго порядка точности по времени.
- Метод Ньютона обеспечивает решение нелинейной системы на каждом временном шаге.
- Матрица Якобиана имеет блочно-трёхдиагональную структуру и может эффективно решаться разрежёнными методами.