Functions

- Let f be a function from X to Y, Now we say that X is a domain of f and Y is the co-domain of f. If f(x) = y, we say that y is the image of x and x is a preimage of y.
- The range of f is the set of all images of elements of Y. It is denoted by R_f and defined by $R_f = \{y/\text{there exist } x \text{ such that } X \text{ and } y = f(x)\}$
- **❖** Eg: 1.Consider the two sets $A = \{1,2,3\}$, $B = \{1,4,9,16\}$ Let f: A→B defined by $f(x) = x^2$; $f = \{(1,1), (2,4), (3,9)\}$
- **❖** Eg.2 Let $A = \{a,b,c\}$, $B = \{x,y,z\}$. Then f: A → B is defined by **❖** f(a) = y, f(c) = z
 - f(a)=x, f(a)=y, f(b)=z, f(c)=y. Check whether it is a function

injective

Classification of Functions

❖ One-to-one Function:

A function $f: X \rightarrow Y$ is said to be one-one or 1-1 or (<u>injective</u>) if distinct elements in X have distinct images in Y under f.

f is 1-1 then
$$x\neq y \Rightarrow f(x) \neq f(y)$$
; $x,y \in X$ or equivalently $f(x) = f(y) \Rightarrow x = y$; $x,y \in X$

Onto Function:

A function $f: X \rightarrow Y$ is said to be onto (surjective) if every element of Y has a pre-image in X, (i.e) if the range of f=Y then f is onto

Bijective Function:

If $f: X \rightarrow Y$ is both 1-1 and onto(i.e both injective and surjective) then f is said to be 1-1 correspondence or bijective function.

reither injetive

10:36:51 AM

Classification of Functions

***** Constant Function:

A function f: $A \rightarrow B$ is called a constant function if every element of A has the same image in B, (ie) f(x) = c where c is constant.

The range of the function is a singleton.

PR = {63

! Inverse Function:

If f: X \rightarrow Y be a bijection. Then for each y \in Y, there exists a unique element x $\in X$ such that f(x) = y. We now define $f^{-1}: Y \to X$ by $f^{-1}(y) = x$. f^{-1} is called the inverse of a function f. It is also called as invertible function.

¥ : × →> ሃ $\times f^{-1}:Y \rightarrow X$

10:36:51 AM

Composition of Functions

- functions $g \cdot f: X \to Z$ by the rule $g \cdot f(x) = g(f(x))$ for all $x \in X$.
- Note: $X \rightarrow Y$
 - \bullet The composition $g \cdot f$ cannot be defined unless the range of f is a subset of the domain of g .
 - \bullet In general $g \cdot f \neq f \cdot g$ not communitive
 - \bullet f •g means f is acting on g
- ***** Example:
 - f: R \rightarrow R is given by $f(\underline{x}) = x^2$
 - \Leftrightarrow g: R \rightarrow R is given by $g(x) = \sin x$
 - f.g(x)=f(g(x))=f(sinx)= $(sinx)^2$
 - $g.f(x) = g(f(x)) = g(x^2) = \sin x^2$

$$f_0 g(x) = f(g(x))$$
= $f(S_1 \cap x) = (S_1 \cap x)^2$

$$= f(S_1 \cap x) = (S_1 \cap x)^2$$

$$f_0 f(x) = g(f(x)) = g(x^2) = S_1 \cap x^2$$

$$= f(S_1 \cap x) = g(x^2) = S_1 \cap x^2$$

fog + 90 f

