得分	教师签名	批改日期

深圳大学实验报告

课程名称:	大学	学物理实验 ((<u> </u>		
实验名称:	金属	电子逸出功			
学 院:		文学与统计学	丝院		_
指导教师 <u>:</u>	,	倪燕翔、李	<u>颖贞</u>		
报告人:	王曦	组号: _	20)	-
学号 <u>202</u>	1192010	实验地点	致 原	<u>楼 212A</u>	
实验时间:		≦ 12	月	15	_日
提交时间.	202	2年12月14	5 FI		

1

一、实验目的

- 1. 了解热电子发射的基本规律.
- 2. 学习用理查森直线法测量钨的逸出电势 V.
- 3. 学习数据处理的方法.

二、实验原理

1. 金属电子逸出功

逸出功:指要使电子从固体表面逸出,所必须提供的最小能量,用 $\Delta \Phi$ 表示.

费米-狄拉克分布规律:在金属内部,电子按由低能态到高能态的次序占据,服从:

$$f(E,T) = \frac{1}{1 + \exp[(E - E_F)/kT]}$$
 (1).

如下图所示:

图 1:不同温度下f(E,T) 随 $E-E_F$ 的变化关系

在绝对零度时电子的最大动能是 E_F .当温度升高时,有少部分电子的能量大于 E_F ,能量的变化在 $0\sim0.1~{
m eV}$ 量级

测量时,逸出功等于费米能与真空能级之间的能量差,如下图为金属钨表面电子的势能曲线.

图 2:钨表面电子的势能曲线

$$\Delta \Phi = E_{Vacuum} - E_{Fermi} = eU$$
 (2).

上式中U为逸出电势.

- 2. 电子逸出功的测量方法
- 1. 里查逊一杜西曼公式(Richardson-Dushman formula)

$$I = AST^2 \exp\left(-\frac{eU}{kT}\right)_{(3)}$$

上式中:

I 是热电子发射的电流强度,单位: A .

S 是阴极金属的有效发射面积,单位: cm^2 .

T 是热阴极的绝对温度,单位K.

A 是与阴极化学纯度有关的系数,单位 $\mathbf{A} \cdot \mathbf{cm}^2 \cdot \mathbf{K}^{-2}$.

k 是玻尔兹曼常数、 $k = 1.38 \times 10^{-23} \,\mathrm{J\cdot K^{-1}}$.

e 是元电荷、 $e = 1.602 \times 10^{-19} \, \mathrm{C}$.

U 是逸出电势.

问题: A 和 S 难测定.

方法: 里查逊直线法.

2. 里查逊直线法

(3)式可化为:

$$\frac{I}{T^2} = AS \exp\left(-\frac{eU}{kT}\right)_{(4)}.$$

取对数得:

$$\lg \frac{I}{T^2} = \lg(AS) - \frac{eU}{k} \lg(e) \frac{1}{T}_{(5)}$$

代入常数得:

$$\lg \frac{I}{T^2} = \lg(AS) - 5.04 \times 10^3 U \frac{1}{T}_{(6)}.$$

故
$$\lg \frac{1}{T^2} \frac{1}{\pi} \frac{1}{T}$$
 成线性关系,斜率为 $5.04 \times 10^3 U$.

优点:不必测出 A 和 S 的具体数值,只需测出 I 与 T 的关系,由斜率可得逸出电势 U .

温度可由通过灯丝的电流给出:

$I_f(A)$	0.58	0.60	0.62	0.64	0.66	0.68	0.70
$T(10^3 K)$	2.06	2.10	2.14	2.18	2.22	2.26	2.30

3. 用外延法求零场电流

图 3: 外延法求零场电流电路图

测金属丝做成的阴极 K ,通过电流加热,在阳极加正向电压,则在连接这两个电极的外围电路中将有电流 I_{a} 通过.用I 表示在阴极与阳极间不存在加速电场情况下的热电子发射电,根据肖特基效应,I 和 I_{a} 的关系是:

$$I_a = I \exp\left(0.439 \frac{\sqrt{E_a}}{T}\right) \tag{7}$$

取对数得:

$$\lg I_a = \lg I + rac{0.439}{2.30T} \sqrt{E_a}_{(8)}.$$

若阴极和阳极做成共轴圆柱形,则

$$E_a = rac{U_a}{r_1 imes \ln rac{r_2}{r_1}}$$
 (9).

代入(8)式得:

$$\lg I_a = \lg I + rac{0.439 \sqrt{U_a}}{2.30 T \sqrt{r_1 imes \ln rac{r_2}{r_1}}}$$
 (10).

做 $\lg I_a$ 和 $\sqrt{U_a}$ 的关系曲线,当 $\sqrt{U_a}=0$ 时, $\lg I_a=\lg I$.

图 4:不同温度下 $\lg I_a$ 和 $\sqrt{U_a}$ 的关系曲线

如上图,拟合曲线的截距即该温度下的 $^{\lg I}$.利用(5)式求逸出电势 U .

三、实验仪器:

WH-II 型金属电子逸出功测定仪

图 5: WH-II 型金属电子逸出功测定仪面板

四、实验内容与步骤

- 1. 取理想二极管灯丝电流 $_{\mathrm{I:M}}$ $^{0.55}\sim0.75$ $_{\mathrm{A}}$ $_{\mathrm{, 54}}$ $_{\mathrm{H}7}$ $_{\mathrm{C}9}$ $_{\mathrm{H}7}$ $_{\mathrm{C}9}$ $_{\mathrm{C}9}$ $_{\mathrm{H}7}$ $_{\mathrm{C}9}$ $_{\mathrm{C}9}$
- 2. 将表 1 中的数据换算成表 2 的数据.
- 3. 作出 $\lg I_a \sqrt{U_a}$ 曲线, 并用最小二乘法拟合曲线, 求出截距 $\lg I$,即可得到在不同灯丝温度时的零场 热电子发射电流 I .根据发射电流 I 计算表 3 中的数据.
- $\lg \frac{1}{T^2} \frac{1}{T}$ 4. 利用表 1 中记录的数据作出 $\lg \frac{1}{T^2} \frac{1}{T}$ 曲线, 并用最小二乘法拟合曲线, 求得直线斜率 k 的值.
- 5. 计算出 $\Delta \Phi$ 的数值, 并与理论值 $\Delta \Phi = 4.54$ eV 作比较.

五、数据记录:
组号:; 姓名
5. 1
六、数据处理
6.1
七、结果陈述: 7.1
7.2
八、实验总结与思考题
8.1 实验总结.
(1)
8.2 思考题.
(1)
(2)

指导教师批阅意见:									
成绩评定:									
	预习	操作及记录		思考题	报告整体		1		
			数据处理与结果陈述 30 分)分		总分			
	(20分)	(40分)		10分	印象				