Non-dominated Sorting Genetic Algorithm (NSGA-II)

Seminarski rad u okviru kursa Računarska inteligencija Matematički fakultet

Staša Đorđević

12. januar 2025.

Sažetak

Sažetak ako treba?

1 Uvod u genetske algoritme

Genetski algoritmi predstavljaju grupu optimizacionih metoda koje se zasnivaju na principima prirodne selekcije i evolucije. Inspirisani su biološkim procesima kao što su selekcija, ukrštanje (kroz reprodukciju), mutacija i nasleđivanje, koji omogućavaju preživljavanje i adaptaciju organizama u prirodi. Slično tome, osnovni koraci u implementaciji genetskih algoritama uključuju selekciju, ukrštanje i mutaciju. Ovi koraci se ponavljaju kroz više generacija kako bi se iz populacije rešenja razvila najbolja moguća rešenja za dati problem.

- **Selekcija** je proces odabira jedinki za ukrštanje na osnovu njihove prilagođenosti. Postoje dve osnovne varijante selekcije:
 - 1. **Turnirska selekcija** Odabir k slučajnih jedinki iz populacija i "turnirsko takmičenje" gde pobeđuje najprilagođenija od izabranih jedinki
 - 2. Ruletska selekcija U ovoj metodi, verovatnoća selekcije jedinke zavisi od njene uspešnosti u odnosu na ostale jedinke u populaciji. Prilagođenije jedinke imaju veću verovatnoću da budu izabrane, slično kao u ruletu.
- **Ukrštenje** omogućava kombinovanje gena odabranih jedinki, stvarajući nove potomke koji mogu naslediti najbolje karakteristike svojih "roditelja". Postoji nekoliko osnovnih varijanti ukrštanja:
 - 1. **Jednopoziciono ukrštanje** Genetski materijal od roditelja se deli na osnovu jedne slučajno odabrane tačke preseka, a potomci nasleđuju deo od oba roditelja prema toj tački.
 - 2. **Višepoziciono ukrštanje** Ova metoda koristi više tačaka preseka na genomima roditelja, što omogućava veću raznovrsnost u potomcima.
 - 3. **Uniformno ukrštanje** U ovoj varijanti, gene sa oba roditelja se nasumično kombinuju kako bi se stvorio potomak, bez fiksnih tačaka preseka.

 Mutacija se koristi da bi se unela nasumična promena u genetski kod jedinke, što omogućava istraživanje novih mogućnosti i sprečava algoritam da se žaglavi" u lokalnim ekstemumima.

Elitizam je metoda koja garantuje da će najbolje jedinke iz trenutne generacije biti prenete u sledeću generaciju bez promena. Elitizam se koristi kako bi se sprečilo da se najbolja rešenja izgube tokom evolucije.

Kroz ove procese, genetski algoritmi omogućavaju efikasno istraživanje prostora rešenja i postepeno poboljšanje kvaliteta rešenja tokom vremena.

2 Opis algoritma NSGA-II

NSGA je popularan genetski algoritam zasnovan na nedominaciji za višeciljnu optimizaciju. Njegova modifikovana verzija, NSGA-II, koja rešava neke probleme zbog kojih je kritikovana osnovna verzija algoritma, često se koristi kao efikasnije rešenje u primenama višeciljne optimizacije. Višeciljna optimizacija podrazumeva istovremenu optimizaciju dva ili više međusobno suprostavljenih ciljeva. Cilj je naći skup rešenja koji je najbolji kompromis između ciljeva. Ta rešenja formiraju tzv. **Pareto front**, u kojem nijedno rešenje nije bolje od drugog, osim ako se jedan cilj ne poboljša na račun pogoršanja drugog.

U NSGA-II algoritmu, termini non-dominated i dominated se koriste da opišu odnos između rešenja na osnovu njihovih performansi u odnosu na više ciljeva optimizacije.

Rešenje se smatra **nedominiranim** (engl. non-dominated) u odnosu na drugo rešenje ako nijedno od njih nije bolje u svim ciljevima. Drugim rečima, rešenje A je nedominirano u odnosu na rešenje B ako:

- A nije lošije u svim ciljevima od B,
- \bullet i B nije lošije u svim ciljevima od A.

Rešenje se smatra **dominiranim** (engl. dominated) u odnosu na drugo rešenje ako postoji rešenje koje je bolje u svim ciljevima. Drugim rečima, rešenje A je dominirano u odnosu na rešenje B ako:

- \bullet B je bolje ili jednako u svim ciljevima od A,
- \bullet i u barem jednom cilju B je bolje od A.

Kratak opis algoritma: Prvo se populacija inicijalizuje na standardan način, u skladu sa problemom koji rešavamo. Nakon toga, jedinke u njoj se sortiraju po frontovima prema principu nedominacije. Prvi front je potpuno nedominirani skup u trenutnoj populaciji, tj. skup svih rešenja od kojih ne postoji bolje rešenje u svim ciljevima. Drugi front sadrži jedinke koje su dominirane samo od strane jedinki iz prvog fronta, i tako dalje. Svakoj jedinki se dodeljuje rang na osnovu fronta kojem pripadaju - one iz prvog fronta dobijaju rang 1, iz drugog 2, i tako dalje. Pored ranga, svaka jedinka ima i novi parametar - distanca gužve (engl. crowding distance). To je mera koja se koristi za održavanje raznolikosti između rešenja unutar jednog pareto fronta. Predstavlja meru bliskosti jedinke njenim susedima. Veća prosečna distanca gužve rezultira boljom raznovrsnošću u populaciji. Favorizuje manje naseljene regione. Nakon sortiranja, unutar svakog fronta, računa se distanca gužve za jedinke u tom frontu. Primarni kriterijum za selekciju je

rang. Ako dve jedinke imaju isti rang, preferira se ona sa većom distancom gužve. Ovaj pristup osigurava da algoritam održava i intenzifikaciju (kroz rang) i diverzifikaciju (kroz distancu gužve). Roditelji se biraju iz populacije koristeći turnirsku selekciju. Odabrana populacija generiše potomke pomoću operacija ukrštanja i mutacije, koje će biti detaljnije opisane u narednom poglavlju. Populacija, zajedno sa trenutnom populacijom i trenutnim potomcima, ponovo se sortira prema principu nedominacije, i samo se najboljih N jedinki selektuje, gde je N veličina populacije. Selekcija se zasniva na rangu i distanci gužve u poslednjem pareto frontu.

3 Opis mog rešenja

Moje rešenje - implementacija opis

3.1 Grupisanje u pareto frontove - sortiranje

Ovaj algoritam koristi metod nedominiranog sortiranja da bi organizovao populaciju u Pareto frontove. U prvom koraku se inicijalizuje broj dominacija i lista dominiranih jedinki za svaku jedinku. Zatim, kroz dvostruki for petlju, algoritam poredi svaku jedinku sa svim ostalim u populaciji i ažurira broj dominacija i listu dominiranih jedinki. Nakon što su svi odnosi dominacije utvrđeni, jedinke se grupišu u Pareto frontove prema njihovoj dominaciji. Nakon što je jedinka pridružena određenom Pareto frontu, dodeljuje joj se rang na osnovu njega, koji će nam kasnije koristiti u selekciji.

```
1: Input: populacija
2: Output: pareto frontovi
3: pareto frontovi ← prazna lista
 4: broj dominacija ← prazna mapa
5: dominirane jedinke ← prazna mapa
6: n \leftarrow dužina populacije
7: for svaku jedinku u populaciji do
      broj dominacija[jedinka] \leftarrow 0
8:
      dominirane jedinke[jedinka] \leftarrow prazna lista
9:
10: end for
11: for i = 0 to n-1 do
      for j = 0 to n-1 do
12:
        if i \neq j then
13:
           if dominira(populacija[i], populacija[j]) then
14:
              dodaj populacija[j] u dominirane jedinke[populacija[i]]
15:
           else if dominira(populacija[j], populacija[i]) then
16:
             broj dominacija[populacija[i]] \leftarrow broj dominacija[populacija[i]] + 1
17:
           end if
18:
        end if
19:
20:
      end for
21: end for
22: trenutni front \leftarrow sve jedinke sa brojem dominacija 0
23: trenutni indeks \leftarrow 1
24: while trenutni front nije prazan do
      dodaj trenutni front u pareto frontovi
25:
```

```
sledeći front ← prazna lista
26:
      for svaku jedinku u trenutnom frontu do
27:
        rang jedinke \leftarrow trenutni indeks
28:
        for svaku dominiranu jedinku do
29:
           broj dominacija[dominirana] ← broj dominacija[dominirana] - 1
30:
           if broj dominacija[dominirana] == 0 then
31:
             dodaj dominiranu u sledeći front
32:
           end if
33:
        end for
34:
      end for
35:
      trenutni front \leftarrow sledeći front
36:
      trenutni indeks \leftarrow trenutni indeks + 1
37:
38: end while
39: return pareto frontovi
```

3.2 Određivanje distance gužve

Ova funkcija izračunava distancu gužve za svaku jedinku u Pareto frontu, koristeći sve ciljeve optimizacije. Za svaku jedinku u Pareto frontu, vrednost distance gužve se inicijalizuje na 0. Zatim se za svaki cilj, Pareto front sortira prema vrednostima cilja, a prvoj i poslednjoj jedinki dodeljuje se beskonačna vrednost distance gužve. Distanca za svaku jedinku i svaki cilj se izračunava kao odnos razlike između fitnesa susednih jedinki i razlike između minimalne i maksimalne vrednosti fitnesa (unutar trenutnog Pareto fronta) za dati cilj. Izračunata distanca se dodaje na ukupnu distancu gužve. Ovaj proces se ponavlja za svaki cilj.

```
1: Input: pareto front, broj ciljeva
   2: Output: ažurirani pareto front sa izračunatim distancama gužve
   3: n \leftarrow dužina pareto fronta
   4: for svaka jedinka u pareto frontu do
                       jedinka.distanca gužve \leftarrow 0
   6: end for
   7: \mathbf{for} \ \mathbf{i} = 0 \ \mathbf{to} \ \mathbf{broj} \ \mathbf{ciljeva} - 1 \ \mathbf{do}
                       sortiraj pareto front prema fitnesu[i]
   9:
                       pareto front[first].distanca gužve \leftarrow \infty
10:
                       pareto front[last].distanca gužve \leftarrow \infty
                       f_{-}min \leftarrow pareto front[first].fitness[i]
11:
                       f_{\max} \leftarrow \text{pareto front[last].fitness[i]}
12:
13:
                       for k = 1 to n-2 do
                                 distanca \leftarrow (pareto front[k+1].fitness[i] - pareto front[k-1].fitness[i]) / (f_max - front[k-1].fitness[i])
14:
                                 pareto front[k].distanca gužve ← pareto front[k].distanca gužve + distanca
15:
                       end for
16:
17: end for
18: return pareto front
```

3.3 Selekcija

U implementaciji je korišćena turnirsku selekciju. Bira se k nasumičnih jedinki iz populacije, i vraća se najbolja od njih. Kriterijum za određivanje najbolje jedinke je na osnovu ranga - što manji rang - to je bolja jedinka. Ako dve jedinke imaju isti rang, bolja je ona koja ima veću distancu gužve.

3.4 Ukrštanje

Zbog testiranja funkcije nad neprekidnim vrednostima, koristimo poseban algoritam ukrštanja: **SBX** (engl. *Simulated Binary Crossover*). Cilj SBX-a je da simulira ponašanje jednodelnog binarnog ukrštanja, ali u prostoru realnih brojeva. Njegova glavna prednost je kontrola stepena intenzifikacije i diverzifikacije kroz **distributivni indeks ukrštanja** (η_c).

SBX generiše dve nove jedinke (potomke) na osnovu dva roditelja, gde vrednosti gena potomaka leže između ili blizu vrednosti gena roditelja. Veća vrednost η_c dovodi do stvaranja potomaka bližih roditeljima (podstiče intenzifikaciju), dok manja vrednost omogućava šire istraživanje prostora rešenja (podstiče diverzifikaciju). Tipične vrednosti za η_c su u opsegu od 5 do 20, ali konkretan izbor zavisi od prirode problema i ciljeva optimizacije.

U implementaciji koristimo uniformno ukrštanje - gde se za svaki gen jedinke sa verovatnoćom 0.5 računa nova vrednost gena za potomke koristeći SBX formulu.

Koraci algoritma za SBX ukrštanje

1. Inicijalizacija i iteracija po genima:

- Veličina hromozoma (n) određuje se kao dužina atributa code roditelja.
- Algoritam iterira kroz svaki gen (poziciju) hromozoma.

2. Verovatnoća ukrštanja:

- Sa verovatnoćom 50% $(random.random() \le 0.5)$, algoritam računa nove vrednosti gena za potomke koristeći SBX formulu.
- Ako ukrštanje ne treba da se desi, potomci direktno nasleđuju gene roditelja.

3. Računanje parametra β_k :

- β_k određuje proporciju ukrštanja
- Generiše se uniformni slučajan broj $u \in [0, 1]$.
- Ako je $u \le 0.5$, računa se:

$$\beta_k = (2u)^{\frac{1}{\eta_c + 1}}$$

• Inače, računa se:

$$\beta_k = \left(\frac{1}{2(1-u)}\right)^{\frac{1}{\eta_c+1}}$$

4. Generisanje gena za potomke:

• Koristeći β_k , potomci nasleđuju kombinacije roditeljskih gena prema sledećim formulama:

$$child1[i] = 0.5 \times ((1 + \beta_k) \times parent1[i] + (1 - \beta_k) \times parent2[i])$$

 $child2[i] = 0.5 \times ((1 - \beta_k) \times parent1[i] + (1 + \beta_k) \times parent2[i])$

5. Ograničenje vrednosti gena:

• Osigurava se da svaki gen potomaka ostane u opsegu [0, 1] pomoću:

$$child.code[i] = min(max(child.code[i], 0), 1)$$

3.5 Mutacija

U ovom radu koristimo **polinomijalnu mutaciju** (engl. *Polynomial Mutation*), koja je popularna tehnika u evolutivnim algoritmima za probleme sa realnim vrednostima. Njen cilj je da unese dovoljno varijacije u populaciju kako bi se omogućilo efikasnije pretraživanje prostora rešenja i izbegavanje lokalnih ekstremuma.

Polinomijalna mutacija funkcioniše tako što modifikuje gene jedinke u skladu sa slučajnim brojem $r \in (0,1)$ i distribucionim indeksom mutacije η_m . Veće vrednosti η_m dovode do manjih promena u vrednostima gena, dok manje vrednosti omogućavaju veće promene, čime se podstiče istraživanje šireg prostora rešenja.

Koraci algoritma za polinomijalnu mutaciju

- 1. Iteracija kroz gene jedinke:
 - Algoritam prolazi kroz svaki gen i hromozoma jedinke.
 - Verovatnoća mutacije za svaki gen je definisana parametrom p.
- 2. Generisanje slučajnog broja r:
 - Ako random.random() < p, gen se menja.
 - Generiše se uniformno slučajan broj $r \in (0,1)$.
- 3. Računanje promene Δ_q :
 - Ako je r < 0.5, računa se:

$$\Delta_q = (2r)^{\frac{1}{\eta_m + 1}} - 1$$

• Ako je $r \ge 0.5$, računa se:

$$\Delta_q = 1 - (2(1-r))^{\frac{1}{\eta_m+1}}$$

4. Ažuriranje gena:

• Gen se ažurira dodavanjem Δ_q :

$$child.code[i] += \Delta_a$$

• Osigurava se da gen ostane u opsegu [0, 1]:

$$child.code[i] = min(max(child.code[i], 0), 1)$$

Efikasnost polinomijalne mutacije zavisi od pravilnog izbora parametara p i η_m . U ovom radu koristimo $\eta_m = 20$, što omogućava umeren stepen promene vrednosti gena, dok verovatnoća mutacije p zavisi od specifičnog problema i ciljeva optimizacije.

3.6 Implementacija algoritma NSGA-II

U nastavku je prikazana implementacija algoritma NSGA-II u programskom jeziku Python. Implementacija sledi osnovne korake algoritma opisane u prethodnom delu, uz dodatne detalje vezane za parametre i funkcionalnost.

Parametri funkcije nsga2

- population_size: Broj jedinki u populaciji.
- num_variables: Broj promenljivih koje definišu svaku jedinku.
- num_generations: Broj generacija (iteracija algoritma).
- tournament_size: Broj jedinki uključenih u turnirsku selekciju.
- mutation_prob: Verovatnoća mutacije za svaki gen jedinke.
- elitism_size: Broj najboljih jedinki koje se direktno prenose u narednu generaciju.
- objective_function: Ciljna funkcija koja se koristi za evaluaciju svake jedinke.

Opis implementacije

Algoritam se sastoji od sledećih koraka:

- 1. **Inicijalizacija populacije:** Početna populacija se generiše nasumično. Svaka jedinka se inicijalizuje sa brojem promenljivih num_variables, a njena vrednost ciljne funkcije se računa pomoću funkcije objective_function.
- 2. Sortiranje prema dominaciji: Na početku svake iteracije populacija se sortira u Pareto frontove koristeći funkciju non_dominated_sorting. Svakom frontu se dodeljuje rang, a jedinkama unutar frontova računa se distanca gužve (crowding distance) radi održavanja raznovrsnosti rešenja.
- 3. **Elitizam:** Najboljih **elitism_size** jedinki prenosi se direktno u sledeću generaciju. Ovaj pristup osigurava očuvanje najboljih rešenja tokom evolucije.
- 4. **Selekcija roditelja:** Roditelji se biraju korišćenjem turnirske selekcije, gde su jedinke sa manjim rangom i većom distancom gužve preferirane. Ovo osigurava da se favorizuju kvalitetna i raznovrsna rešenja.
- 5. **Generisanje potomaka:** Nad izabranim roditeljima se primenjuje ukrštanje i polinomijalna mutacija kako bi se generisale nove jedinke. Mutacija se primenjuje sa verovatnoćom mutation_prob.

- 6. **Ažuriranje populacije:** Kombinovanjem trenutne populacije i potomaka kreira se nova populacija veličine **population_size**. Selekcija novih jedinki se vrši na osnovu ranga i distance gužve.
- 7. **Vizualizacija rezultata:** Nakon završetka iteracija, krajnji Pareto front se prikazuje grafički kako bi se vizualizovala raspodela rešenja.

4 Eksperimentalni rezultati

U ovoj sekciji su predstavljeni rezultati NSGA-II algoritma za ciljne funkcije ZDT1, ZDT2, i ZDT3. Ove funkcije su standardni benchmark testovi u višeciljnoj optimizaciji.

4.1 Opis ciljnih funkcija

ZDT1

Pareto front ove funkcije je konveksan, što je čini jednostavnom za optimizaciju. Glavni cilj je testiranje sposobnosti algoritma da pronađe ravnomerno raspodeljena rešenja na frontu.

$$f_1(x) = x_1,$$

 $f_2(x) = g(x) \cdot \left(1 - \sqrt{\frac{f_1(x)}{g(x)}}\right),$

gde je:

$$g(x) = 1 + \frac{9}{n-1} \sum_{i=2}^{n} x_i,$$

i $x_1 \in [0, 1], x_i \in [0, 1]$ za $i = 2, 3, \dots, n$.

ZDT2

Ova funkcija ima konkavan Pareto front, što je izazovnije u poređenju sa ZDT1.

$$f_1(x) = x_1,$$

$$f_2(x) = g(x) \cdot \left(1 - \left(\frac{f_1(x)}{g(x)}\right)^2\right),$$

gde je:

$$g(x) = 1 + \frac{9}{n-1} \sum_{i=2}^{n} x_i,$$

i $x_1 \in [0, 1], x_i \in [0, 1]$ za $i = 2, 3, \dots, n$.

ZDT3

Pareto front je isprekidan i sastoji se od više nepovezanih delova, što predstavlja dodatni izazov za algoritam u održavanju raznovrsnosti.

$$f_1(x) = x_1,$$

 $f_2(x) = g(x) \cdot \left(1 - \sqrt{\frac{f_1(x)}{g(x)}} - \frac{f_1(x)}{g(x)} \cdot \sin(10\pi f_1(x))\right),$

gde je:

$$g(x) = 1 + \frac{9}{n-1} \sum_{i=2}^{n} x_i,$$

i $x_1 \in [0, 1], x_i \in [0, 1]$ za $i = 2, 3, \dots, n$.

4.2 Parametri algoritma

Eksperimenti su sprovedeni sa sledećim parametrima:

• Veličina populacije: 100

• Broj generacija: 200

• Veličina turnira: 3

• Verovatnoća mutacije: 0.1

• Broj promenljivih: 30

• Broj elitnih rešenja: 10

4.3 Rezultati za ZDT1 funkciju

Slika 1: Pareto front za ZDT1 funkciju dobijen NSGA-II algoritmom.

4.4 Rezultati za ZDT2 funkciju

Slika 2: Pareto front za ZDT2 funkciju dobijen NSGA-II algoritmom.

4.5 Rezultati za ZDT3 funkciju

Slika 3: Pareto front za ZDT3 funkciju dobijen NSGA-II algoritmom.

5 Poređenje mojih rezultata i onih iz literature

Poređenje rezultata - vizuelno i tekstualno

6 Zaključak

Kritički osvrt na sve što je urađeno i eventualni pravci daljeg unapređivanja

Literatura

- [1] A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II at: https://ieeexplore.ieee.org/abstract/document/996017
- [2] A fast elitist multiobjective genetic algorithm at: https://www.academia.edu/download/53297141/NSGA_II.pdf - ovde algoritam za polinomijalnu mutaciju i sbx - najvise odavde u implementaciji
- [3] Materijali sa kursa Računarska inteligencija
- [4] Analyzing the Simulated Binary Crossover Operator in Multi-Objective Evolutionary Algorithms

https://www.duo.uio.no/handle/10852/111478