TMA4315: Project 1

Jim Totland, Martin Gudahl Tufte

Problem 1

a)

Since the response variables $y_i \sim \text{Bernoulli}(\pi_i)$, where $\pi_i = \Pr(y_i = 1 \mid \boldsymbol{x}_i) = \Phi(\boldsymbol{x}_i^T \boldsymbol{\beta})$, the conditional mean is given by $Ey_i = \pi_i$, which is connected to the covariates via the following relationship:

$$\boldsymbol{x}_i^T \boldsymbol{\beta} =: \eta_i = \Phi^{-1}(\pi_i),$$

which implies that $\pi_i = \Phi(\eta_i)$. This results in the likelihood function

$$L(\beta) = \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$
$$= \prod_{i=1}^{n} \Phi(\eta_i)^{y_i} (1 - \Phi(\eta_i))^{1 - y_i}.$$

Thus, the log-likelihood becomes

$$l(\beta) := \ln(L(\beta)) = \sum_{i=1}^{n} y_i \ln(\Phi(\eta_i)) + (1 - y_i) \ln(1 - \Phi(\eta_i)) = \sum_{i=1}^{n} l_i(\beta).$$

To find the score function, we calculate

$$\begin{split} \frac{\partial l_i(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} &= \frac{y_i}{\Phi(\eta_i)} \frac{\partial \Phi(\eta_i)}{\partial \boldsymbol{\beta}} - \frac{1 - y_i}{1 - \Phi(\eta_i)} \frac{\partial \Phi(\eta_i)}{\partial \boldsymbol{\beta}} \\ &= \frac{y_i}{\Phi(\eta_i)} \phi(\eta_i) \boldsymbol{x}_i - \frac{1 - y_i}{1 - \Phi(\eta_i)} \phi(\eta_i) \boldsymbol{x}_i \\ &= \frac{y_i(1 - \Phi(\eta_i)) - (1 - y_i) \Phi(\eta_i)}{\Phi(\eta_i)(1 - \Phi(\eta_i))} \phi(\eta_i) \boldsymbol{x}_i \\ &= \frac{y_i - \Phi(\eta_i)}{\Phi(\eta_i)(1 - \Phi(\eta_i))} \phi(\eta_i) \boldsymbol{x}_i. \end{split}$$

Consequently, the score function is given by

$$s(\boldsymbol{\beta}) = \sum_{i=1}^{n} \frac{y_i - \Phi(\eta_i)}{\Phi(\eta_i)(1 - \Phi(\eta_i))} \phi(\eta_i) \boldsymbol{x}_i.$$

Next, we find the expected Fisher information, $F(\beta)$. We find it by using the result

$$F(\beta) = \operatorname{Var}(\boldsymbol{s}(\beta)) = \operatorname{Var}\left(\sum_{i=1}^{n} \frac{y_{i} - \Phi(\eta_{i})}{\Phi(\eta_{i})(1 - \Phi(\eta_{i}))} \phi(\eta_{i}) \boldsymbol{x}_{i}\right)$$

$$= \sum_{i=1}^{n} \left[\frac{\phi(\eta_{i})}{\Phi(\eta_{i})(1 - \Phi(\eta_{i}))}\right]^{2} \operatorname{Var}(y_{i} \boldsymbol{x}_{i}) = \sum_{i=1}^{n} \left[\frac{\phi(\eta_{i})}{\Phi(\eta_{i})(1 - \Phi(\eta_{i}))}\right]^{2} \boldsymbol{x}_{i} \operatorname{Var}(y_{i}) \boldsymbol{x}_{i}^{T}$$

$$= \sum_{i=1}^{n} \left[\frac{\phi(\eta_{i})}{\Phi(\eta_{i})(1 - \Phi(\eta_{i}))}\right]^{2} \pi_{i}(1 - \pi_{i}) \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} = \sum_{i=1}^{n} \frac{\phi(\eta_{i})^{2}}{\Phi(\eta_{i})(1 - \Phi(\eta_{i}))} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T},$$

Where in the third equality we have used that the y_i 's are independent. The expected Fisher information can also be verified to have this expression by the relationship

$$F(\beta) = \sum_{i=1}^{n} \frac{h'(\eta_i)^2}{\operatorname{Var}(y_i)} \boldsymbol{x}_i \boldsymbol{x}_i^T,$$

where $h'(\eta_i) = \Phi'(\eta_i) = \phi(\eta_i)$ and $Var(y_i) = \pi_i(1 - \pi_i) = \Phi(\eta_i)(1 - \Phi(\eta_i))$.

b) The expected Fisher information is given by

$$F(\beta) = \sum_{i=1}^{n} \frac{\phi(\eta_i)^2}{\Phi(\eta_i)(1 - \Phi(\eta_i))} \boldsymbol{x}_i \boldsymbol{x}_i^T = \boldsymbol{x}^T W \boldsymbol{x},$$

where $W = \operatorname{diag}\left(\frac{\phi(\eta_i)^2}{\Phi(\eta_i)(1-\Phi(\eta_i))}\right)$.

The Fisher scoring algorithm states that the next iterate is given by

$$\boldsymbol{\beta}^{(t+1)} = \boldsymbol{\beta}^{(t)} + F(\boldsymbol{\beta}^{(t)})^{-1} s(\boldsymbol{\beta}^{(t)}).$$

Inserting the expected Fisher information and the score function we get

$$\boldsymbol{\beta}^{(t+1)} = (\boldsymbol{x}^T W^{(t)} \boldsymbol{x})^{-1} \boldsymbol{x}^T W^{(t)} \tilde{\boldsymbol{y}}^{(t)},$$

where the working response vector $\tilde{\boldsymbol{y}}^{(t)}$ has element i given by

$$\tilde{y}_i^{(t)} = \boldsymbol{x}_i^T \boldsymbol{\beta}^{(t)} + \frac{y_i - h(\boldsymbol{x}_i^T \boldsymbol{\beta}^{(t)})}{h'(\boldsymbol{x}_i^T \boldsymbol{\beta}^{(t)})} = \eta_i^{(t)} + \frac{y_i - \Phi(\eta_i^{(t)})}{\phi(\eta_i^{(t)})}.$$

Implementing myglm in R:

```
Phi <- function(x) return (pnorm(x))
phi <- function(x) return (dnorm(x))

myglm <- function(formula, data, start = NULL){

# response variable
resp <- all.vars(formula)[1]
y <- as.matrix( data[resp] )

# model matrix
X <- model.matrix(formula, data)
n <- dim(X)[1]</pre>
```

```
p <- dim(X)[2]
  # starting beta
  if (is.null(start)){
   beta = rep(0, p)
  else {
   beta = start
  # Fisher scoring algorithm
  max_iter <- 50</pre>
  tol <- 1e-10
  iter <- 0
  rel.err <- Inf
  while (rel.err > tol & iter < max_iter){</pre>
    # calculate eta, y tilde, W
    eta <- X %*% beta
    y.tilde <- eta + (y - Phi(eta)) / (phi(eta))</pre>
    W <- diag( as.vector(phi(eta)^2 / (Phi(eta)*(1-Phi(eta)))), n, n )</pre>
    # update beta
    A <- t(X) %*% W %*% X
    b <- t(X) %*% W %*% y.tilde
    beta.new <- solve(A, b)</pre>
    iter <- iter + 1</pre>
    rel.err <- max(abs(beta.new - beta) / abs(beta.new))</pre>
    beta <- beta.new</pre>
  }
  # remains to find the coefficients matrix, deviance and estimated variance matrix
  coeff <- 1
  deviance <- 1
  vcov <- 1
 return (beta)
#beta <- myglm(menarche ~ age, juul.girl)</pre>
#beta
#X <- model.matrix(menarche ~ age, juul.girl)</pre>
```

c)

```
# probability
x = runif(1000, 0, 1)
# draw n bernoulli with prob x
y < - rbinom(1000, 1, x)
df <- data.frame(y, x)</pre>
### fit using glm
model <- glm(y ~ poly(x,2), family = binomial(link = "probit"), data = df)</pre>
# beta
model$coefficients
## (Intercept) poly(x, 2)1 poly(x, 2)2
## -0.09374391 31.03161186 -2.60413526
# υςου
vcov(model)
                (Intercept) poly(x, 2)1 poly(x, 2)2
## (Intercept) 0.002426007 -0.01218563 0.02679824
## poly(x, 2)1 -0.012185629 2.99247682 -0.41782912
## poly(x, 2)2 0.026798236 -0.41782912 2.80409964
# deviance
# ...
### fit using myglm
beta <- myglm(y \sim poly(x,2), data = df)
# beta
t(beta)
        (Intercept) poly(x, 2)1 poly(x, 2)2
## [1,] -0.09374407 31.03161 -2.604142
# vcov
# ...
# deviance
```

Problem 2

a)

```
#install.packages("ISwR")
library(ISwR) # Install the package if needed
data(juul)
juul$menarche <- juul$menarche - 1
juul.girl <- subset(juul, age>8 & age<20 & complete.cases(menarche))</pre>
```

?juul head(juul.girl) ## age menarche sex igf1 tanner testvol

```
## 167 8.96
                      0
                          2
                               NA
                      0
                          2
                              682
                                        2
## 343 13.01
                                               NA
## 743
        8.03
                      0
                          2
                               NA
                                               NA
## 744
        8.08
                      0
                          2
                               NA
                                               NA
## 745
        8.13
                              210
                                               NA
## 746
        8.17
                             564
                                               NA
                                      NA
```

```
model <- glm(menarche ~ age, family=binomial(link="probit"), data= juul.girl)
anova(model, test = "Chisq")</pre>
```

```
## Analysis of Deviance Table
## Model: binomial, link: probit
##
## Response: menarche
##
##
  Terms added sequentially (first to last)
##
##
##
        Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                          518
                                  719.39
                                  197.39 < 2.2e-16 ***
                522
                          517
## age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The low p-value suggests that age has an effect on the response variable.

b)

Relating to the juul data set, we define for each observation/individual

$$y_i = \begin{cases} 0, & \text{if menarche has occured.} \\ 1, & \text{if menarche has not occured.} \end{cases}$$

and t_i as the age at the time of examination, which corresponds to age in the data set. Let $T_i \sim N(\mu, \sigma)$, where T_i is the time until menarche occurs for the *i*'th individual. Furthermore, let

$$\pi_i := P(y_i = 1) = P(T_i \le t_i)$$

$$= P\left(\frac{T_i - \mu}{\sigma} \le \frac{t_i - \mu}{\sigma}\right) = \Phi\left(\frac{t_i - \mu}{\sigma}\right)$$

This, in turn, gives

$$\Phi^{-1}(\pi_i) = -\frac{\mu}{\sigma} + \frac{1}{\sigma}t_i = \beta_0 + \beta_1 t_i,$$

where $\beta_0 = -\mu/\sigma$ and $\beta_1 = 1/\sigma$.