Probabilites

3 April 2017

Table of Contents I

- Probability and conditional probability
 - Conditional probability
 - Random variables and marginals

- 2 Independence
 - (Conditional) Independence
 - Marginal and MAP Queries

Rolling a die (with numbers 1, ..., 6). Chance of getting a 5 = ?


```
Rolling a die (with numbers 1, ..., 6). Chance of getting a 5 = ? 1/6 Chance of getting a 5 or 4 = ?
```



```
Rolling a die (with numbers 1, ..., 6). Chance of getting a 5 = ? 1/6 Chance of getting a 5 or 4 = ? 2/6
```


Rolling a die (with numbers 1, ..., 6). Chance of getting a 5 =? 1/6 Chance of getting a 5 or 4 =? 2/6

Probability \approx a degree of confidence that an **outcome** or a number of outcomes (called **event**) will occur.

Probability Space

Probability space (a.k.a Probability triple) (Ω, \mathcal{F}, P) :

- Outcome space (or sample space), denoted Ω (read "Omega"): the set of all possible outcomes¹.
 - roll a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$. flip a coin: $\Omega = \{\textit{Head}, \textit{Tail}\}$.
- σ -**Field** (read "sigma-field", a set of events), denoted \mathcal{F} : An event $(\alpha \in \mathcal{F})$ is a set of outcomes.
 - roll a die to get 1: $\alpha = \{1\}$;
 - to get 1 or 3: $\alpha = \{1, 3\}$
 - roll a die to get an even number: $\alpha = \{2,4,6\}$
- **Probability measure** *P*: the assignment of probabilities to the events; *i.e.* a function returning an event's probability.

¹of the problem that you are considering

Probability measure

Probability measure (or distribution) P over (Ω, \mathcal{F}) : a function from \mathcal{F} (events) to [0,1] (range of probabilities), such that,

- $P(\alpha) \geq 0$ for all $\alpha \in \mathcal{F}$
- $P(\Omega) = 1, P(\emptyset) = 0.$
- For $\alpha, \beta \in \mathcal{F}$, $P(\alpha \cup \beta) = P(\alpha) + P(\beta) P(\alpha \cap \beta)$

Interpretations of Probability

- Frequentist Probability: $P(\alpha)$ = frequencies of the event. *i.e.* fraction of times the event occurs if we repeat the experiment indefinitely.
 - A die roll: $P(\alpha) = 0.5$, for $\alpha = \{2, 4, 6\}$ means if we repeatedly roll this die and record the outcome, then the fraction of times the outcomes in α will occur is 0.5.

Interpretations of Probability

- Frequentist Probability: $P(\alpha)$ = frequencies of the event. *i.e.* fraction of times the event occurs if we repeat the experiment indefinitely.
 - A die roll: $P(\alpha) = 0.5$, for $\alpha = \{2, 4, 6\}$ means if we repeatedly roll this die and record the outcome, then the fraction of times the outcomes in α will occur is 0.5.
 - Problem: non-repeatable event e.g. "it will rain tomorrow morning" (tmr morning happens exactly once, can't repeat).
- Subjective Probability: $P(\alpha)$ = one's own degree of belief that the event α will occur.

Event α : "students with grade A"

Event β : "students with high intelligence"

Event $\alpha \cap \beta$: "students with grade A and high intelligence"

Event α : "students with grade A"

Event β : "students with high intelligence"

Event $\alpha \cap \beta$: "students with grade A and high intelligence"

Question: how do we update the our beliefs given new evidence?

Event α : "students with grade A"

Event β : "students with high intelligence"

Event $\alpha \cap \beta$: "students with grade A and high intelligence"

Question: how do we update the our beliefs given new evidence? *e.g.* suppose we learn that a student has received the grade A, what does that tell us about the person's intelligence?

Event α : "students with grade A"

Event β : "students with high intelligence"

Event $\alpha \cap \beta$: "students with grade A and high intelligence"

Question: how do we update the our beliefs given new evidence? *e.g.* suppose we learn that a student has received the grade A, what does that tell us about the person's intelligence?

Answer: Conditional probability.

Conditional probability of β given α is defined as

$$P(\beta|\alpha) = \frac{P(\alpha \cap \beta)}{P(\alpha)}$$

Chain rule and Bayes' rule

- Chain rule: $P(\alpha \cap \beta) = P(\alpha)P(\beta|\alpha)$ More generally, $P(\alpha_1 \cap ... \cap \alpha_k) = P(\alpha_1)P(\alpha_2|\alpha_1) \cdots P(\alpha_k|\alpha_1 \cap ... \cap \alpha_{k-1})$
- Bayes' rule:

$$P(\alpha|\beta) = \frac{P(\beta|\alpha)P(\alpha)}{P(\beta)}$$

Random Variables

Assigning probabilities to events is intuitive.

Assigning probabilities to attributes (of the outcome) taking various values might be more convenient.

- a patient's attributes such "Age", "Gender" and "Smoking history" ...
 - "Age = 10", "Age = 50", ..., "Gender = male", "Gender = female"
- a student's attributes "Grade", "Intelligence", "Gender" ...

P(Grade = A) = the probability that a student gets a grade of A.

Random Variables

Random Variable² can take different types of values *e.g.* discrete or continuous.

- Val(X): the set of values that X can take
- x: a value $x \in Val(X)$

Shorthand notation:

- P(x) short for P(X = x)
- $\sum_{x} P(x)$ shorthand for $\sum_{x \in Val(X)} P(X = x)$

$$\sum_{x} P(x) = 1$$

²formal definition is omitted

Example

```
P(Grade, Intelligence).

Grade \in \{A, B, C\}

Intelligence \in \{high, low\}.
```

$$P(Grade = B, Intelligence = high) = ?$$

 $P(Grade = B) = ?$

		Intell	igence	
		low	high	S. SOLL
Grade	A	0.07	0.18	0.25
	B	0.28	0.09	0.37
	C	0.35	0.03	0.38
11 150		0.7	0.3	1

Marginal and Conditional distribution

Distributions:

- Marginal distribution $P(X) = \sum_{y \in Val(Y)} P(X, Y = y)$ or shorthand as $P(x) = \sum_{y} P(x, y)$
- Conditional distribution $P(X|Y) = \frac{P(X,Y)}{P(Y)}$

Rules for events carry over for random variables:

- Chain rule: P(X, Y) = P(X)P(Y|X)
- Bayes' rule: $P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$

Independence and conditional independence

Independences give factorisation.

Independence

$$X \perp Y \Leftrightarrow P(X,Y) = P(X)P(Y)$$

- Extension: $X \perp Y, Z$ means $X \perp H$ where H = (Y, Z). $\Leftrightarrow P(X, Y, Z) = P(X)P(Y, Z)$
- Conditional Independence

$$X \perp Y|Z \Leftrightarrow P(X,Y|Z) = P(X|Z)P(Y|Z)$$

• Independence: $X \perp \!\!\! \perp Y$ can be considered as $X \perp \!\!\! \perp Y | \emptyset$

Properties

For conditional independence:

- Symmetry: $X \perp \!\!\! \perp Y|Z \Rightarrow Y \perp \!\!\! \perp X|Z$
- Decomposition: $X \perp \!\!\! \perp Y, W|Z \Rightarrow X \perp \!\!\! \perp Y|Z$ and $X \perp \!\!\! \perp W|Z$
- Weak union: $X \perp \!\!\! \perp Y, W|Z \Rightarrow X \perp \!\!\! \perp Y|Z, W$
- Contraction: $X \perp \!\!\! \perp W|Z, Y \text{ and } X \perp \!\!\! \perp Y|Z \Rightarrow X \perp \!\!\! \perp Y, W|Z$
- Intersection: $X \perp Y \mid W, Z \text{ and } X \perp W \mid Y, Z \Rightarrow X \perp Y, W \mid Z$

For independence: let $Z = \emptyset$ *e.g.*

$$X \perp \!\!\!\perp Y \Rightarrow Y \perp \!\!\!\perp X$$

 $X \perp \!\!\!\perp Y, W \Rightarrow X \perp \!\!\!\perp Y \text{ and } X \perp \!\!\!\perp W$

. . .

Marginal and MAP Queries

Given joint distribution P(Y, E), where

- Y, query random variable(s), unknown
- E, evidence random variable(s), observed i.e. E = e.

Two types of queries:

- Marginal queries (a.k.a. probability queries) task is to compute P(Y|E=e)
- MAP queries (a.k.a. most probable explanation) task is to find $y^* = \operatorname{argmax}_{y \in Val(Y)} P(Y|E=e)$

That's all

Thanks!