Kotne funkcije

Bor Bregant

Podobni trikotniki $\alpha, 90^{\circ}$

i
$$\sin\alpha = \frac{\text{nepriležna kateta}}{\text{hipotenuza}} = \frac{a}{c}$$

ii
$$\cos \alpha = \frac{\text{priležna kateta}}{\text{hipotenuza}} = \frac{b}{c}$$

iii
$$\tan\alpha = \frac{\text{nepriležna kateta}}{\text{priležna kateta}} = \frac{a}{b}$$

iv
$$\cot \alpha = \frac{\text{priležna kateta}}{\text{nepriležna kateta}} = \frac{b}{a}$$

Kotne funkcije so odvisne od kota α

1 Zveze med kotnimi funkcijami

Izpeljave z oznakami stranic razen zadnji dve

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

$$\tan \alpha \cdot \cot \alpha = 1$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$$

$$1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha}$$

Zgled. Nariši ostri kot x, če je $\sin x = \frac{2}{5}$.

Zgled. Poenostavi izraz $\tan x - \sin x : (\cos x - \cos^{-1} x)$

Naloga 1. DN Naredi si plonk listek vseh pomembnih formul in zvez, 185, 188, 189

1 radian je kot, ki pripada loku, dolgemu natanko polmer krožnice.

$\text{Kot } \angle^{\circ} \rightarrow$	0°	30°	45°	60°	90°
↓ Funkcija ∠°					
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
		2	2	2	
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	ND
$\cot \theta$	ND	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

Izpeljava $\sin 60^\circ$ iz enakostraničnega trikotnika z višino (iz Pitagorovega). 30° vidimo v istem trikotniku zgoraj. 45° vidimo v diagonali kvadrata.

Naloga 2. DN Nauči se tabelo