ECON300 Econometrics

Lecture 1 Introduction

Outline

- Course information
- Introduction to econometrics
- Causal question examples
- Structure of data

Basic information

• Lecture Session:

-Location: Burnham Hall Room 317

-Time: Monday & Wedneaday 4:30-5:45 pm

• Instructor: Salman Khan

- Office: UH819

- E-mail: skhan275@uic.edu

- Office Hours: Tuesday 11:15-12:15p

• Teaching Assistant: Taisiia Stanishevska

- Office: UH813

- E-mail: : tstani4@uic.edu

- Office hour: Thursday 1-2pm

Access to STATA

- Option 1: Use lab computers- Stata 14 is now installed in SCE401, LIB IDEA Commons, and BSB B001. Contact ACCC if you have questions about STATA availability.
- Option 2 (requires Internet access at all times): One option requires internet access to login to a remote server. A license for the semester is \$25 from the UIC web store.
 - https://webstore.illinois.edu/shop/product.aspx?zpid=3777
- Option 3 (does not require internet access): An alternative is to download & install a copy that you can buy directly from Stata for \$48 for a 6-month license.
 - https://www.stata.com/order/new/edu/gradplans/student-pricing/

STATA (useful resources)

Several resources for learning to use Stata:

- Official: http://www.stata.com/support/documentation/
- Tutorials: http://www.ats.ucla.edu/stat/stata/modules/
- Forum: http://www.statalist.org/forums/

Course requirements

Total points:1000

• Exams:600

• Problem Sets: 300

• Quizzes:100

Course requirements

- Exams (600 pts)
 - Exam 1 (200 points) is scheduled for ,Wednesday, Feb 19th
 - Exam 2 (200 points) is scheduled for Wednesday, Mar 19th
 - A **cumulative** final exam (200 points) will take place during the final week
- Problem Sets (50*6=3000 pts)
 - The problem sets cover materials from lecture sessions and book.
 - There are 6 problem sets in total; May give a extra credit problem set
 - Only hard copies are accepted
 - No late homework is accepted

Course requirements

- Quizzes (100 pts)
 - Given randomly at the beginning of regular lecture.
 - Serve as review and attendance tool
 - No makeup quizzes

Grading

Grades will be based on the following distribution:

```
A 900 – 1000 points
```

- B 800 899 points
- C 700 799 points
- D 600 699 points
- F 0-599 points

Textbook

• Textbook:

Real Econometrics: The Right Tools to Answer Important Questions (ISBN: 9780190296827)

Recommended Textbook:

Josh Angrist & Jörn-Steffen Pischke, *Mastering Metrics*, (ISBN 9780691152844)

Some tips about learning Econometrics

- Come to class and participate.
- Most returns to understanding and asking questions in class.
- Review notes for pop quizzes before each lecture
- Focus on the study guides before actual exams.
- For STATA questions, don't hesitate to contact me or TA for help if you get stuck with coding
- Talk to TA/me/peers for any learning difficulties/feedback

What is econometrics?

- "Economists' use of data to answer cause-and-effect questions;
 Analyze and interpret data using statistical inference"-Mastering
 'Metrics
- "Statistical methods for estimating economic relationships, testing economic theories, and evaluating and implementing policy"
 Introductory Econometrics A modern Approach
- Prerequisites: Econ270 Statistics for economics or equivalent

Course goals

- Gain familiarity with common econometric techniques (the Furious Five)
 - Regression
 - Random assignment
 - Regression discontinuity
 - Differences-in-differences
- Become capable of evaluating public policies/non-technical articles
- Develop data analyzing skills using STATA

Course structure

- Statistics Review and Regression
 - Foundation
 - Week 1-6
- Cause and effects techniques
 - Advanced micro-econometrics
 - Week 1 and Week 7-15

Example 1- Return to selective colleges

- Does going to Harvard University increase one's earning?
- https://www.youtube.com/watch?v=iPBV3BIV7jk
- Naïve comparison: compare earnings of people who went to Harvard with those went to UMass? Is it a trust-worthy comparison? Why?
- What is the ideal comparison?

 Ideal comparison: compare earnings of a person who went to Harvard with the same person if he had gone

-Mission impossible!

Example 2-Health Insurance

The Affordable Care Act (ACA)
 https://www.youtube.com/watch?v=C2nskzMgZ_g

- Is it a good thing? What is your opinion?
 - -Cost vs. benefit? From a social planner perspective
- One important question on the benefit side: does health insurance make people healthier?
 - -A big research question in the field of health economics
 - -How would you approach this question?

Mean comparison:

- Naïve comparison: compare the health status of people who have health insurance with those who have not. Is this a good comparison? Why?
 - -People with insurance are NOT the same as people without insurance!
 - -Jargon: we are not comparing **apple to apple**, or the uninsured are NOT good **counterfactuals** of the insured.
- What is the ideal comparison?
 - -Compare the health status of the same person at the same point in time with and without insurance, other things equal (ceteris paribus)
 - -This is never possible
 - -"The Road not taken"

Exercise

- Obesity: https://www.youtube.com/watch?v=lkoC3HZwe7Q
- Research Question: does fast foods make people heavier?
- To make it simple, assume there are two types of people: who eat only fast foods, and who never eat fast foods
- What is the naive comparison? Why is it misleading?
- What is the ideal comparison?

Two types of "econometrics"

- "Model based":
 - -Apply multiple models to fit data; identify the best model according to certain criteria, e.g. forecasting, machine learning
- "Design based":
 - -Most applied micro-econometrics belong here focus on research designs: finding credible answers to causal questions
- This course focuses on the second type

Structure of data

- Common types of data:
 - -Cross-sectional data
 - -Time series data
 - -Pooled cross-sectional data
 - -Panel or longitudinal data

Cross-sectional data

Consists of a sample of individuals (households, firms, cities, etc.) taken at a given point in time

variables (column)

observations — (row)

Note: year doesn't vary, ID varies

	ID	year	wage	education	female	married
•	1	1998	3.10	11	1	0
	2	1998	3.24	12	1	1
	3	1998	3.00	11	0	0
	4	1998	6.00	8	0	1
	5	1998	5.30	12	0	1
	•	•	•	•	•	•
	•	•	•	•	•	•
		•			•	
	525	1998	11.56	16	0	1
	526	1998	3.50	14	1	0

More about categorical variable

- As a general rule, we convert categorical variables into numerical format
- Example: education level has three categories-high school dropout;
 high school grad and some college; college grad and above. We code it as 0 for HS dropout, 1 for HS grad and 2 for college grad
- Specifically, if a categorical variable takes on only two values such as gender, whether age 18 or above, etc. We code it as a 0, 1 variable, and call it a dummy variable
- Once coding a category as 0, we can think of it as a baseline category

Time series data

 Consists of the same observation over time; e.g. stock prices, annual GDP, annual homicide rates, etc.; the frequency that data is collected can be daily, weekly, monthly, yearly, etc.

Note: ID doesn't vary, year varies

ID	year	unemployment	GNP
1	1950	15.4	878.7
1	1951	16.0	925.0
1	1952	14.8	1015.9
1	1986	18.9	4281.6
1	1987	16.8	4496.7

Pooled cross-sectional data

• A data set with both cross-sectional and time series features e.g. combining two cross-sectional data sets of U.S. household surveys, one taken in 1993 and one in 1995

Note: Both ID and year vary, but the 1995 observations are NOT the same as in 1993

ID	year	house price	square feet	bedrooms
1	1993	85,500	1,600	3
2	1993	67,300	1,440	3
				•
		•		
251	1993	243,600	2,600	4
252	1995	65,000	1,250	2
-		•	•	•
520	1995	57,200	1,100	2

Panel or longitudinal data

• Consists of time series for each cross-sectional member of the data set; e.g. city crime history for a set of cities followed over a twenty-year period

-Note: Both ID and year vary, and the 1990 observations are the same as in 1986.

-This is the key difference between Panel data and pooled cross-sectional data!

City ID	year	murders	population
1	1986	5	350,000
1	1990	8	359,200
2	1986	2	64,300
2	1990	1	65,100
149	1986	10	260,700
149	1990	6	245,000
150	1986	25	543,000
150	1990	32	546,200

Exercise

Which type of data are the followings?

- US GDP growth: http://www.multpl.com/us-gdp-growth-rate/table/by-year
- Illinois high school ranking: http://www.schooldigger.com/go/IL/schoolrank.aspx?level=3
- NBA champions: https://www.ticketcity.com/nba/nba-finals-tickets/nba-finals-champions.html
- Current Population Survey (CPS)

Review for quizzes:

- Be able to translate a problem into mean comparison
- Why naïve comparison is misleading
- What is the ideal comparison
- Be able to recognize four types of data