

Olimpiada Natională de Matematică Etapa Naţională, Braşov, 2 aprilie 2013

SOLUTII SI BAREME ORIENTATIVE, CLASA a IX-a

Problema 1. Un șir de numere este numit complet dacă are termeni naturali nenuli și orice număr natural nenul are cel puțin un multiplu printre termenii șirului.

Arătați că o progresie aritmetică este șir complet dacă și numai dacă rația sa divide primul termen.

Soluție. Dacă rația r divide primul termen a_1 , atunci $a_1 = dr$, $d \in \mathbb{N}$ și $a_n = (d+n-1)r$, iar un multiplu al numărului natural nenul k se obține luând d+n-1 multiplu de $k \dots 3p$ Deoarece $r \neq 0$ și, conform ipotezei, există un multiplu al lui r de forma $a_1 + (n-1)r$,

Problema 2. Fie $f: \mathbb{R} \to \mathbb{R}$ o funcție arbitrară și $g: \mathbb{R} \to \mathbb{R}$ o funcție de gradul al doilea, având proprietatea:

pentru orice numere reale m și n, ecuația f(x) = mx + n are soluții dacă și numai $dac \ a \ ecuatia \ q(x) = mx + n \ are \ solutii.$

Arătați că funcțiile f și g sunt egale.

Solutie. Observăm că, dacă graficul funcției $h: \mathbb{R} \to \mathbb{R}, h(x) = mx + n$ este tangent la graficul funcției $g: \mathbb{R} \to \mathbb{R}, g(x) = ax^2 + bx + c$, atunci ecuația $ax^2 + bx + c = mx + n$, $a,b,c,m,n\in\mathbb{R},\ a\neq 0$ are discriminantul nul, deci funcția $k:\mathbb{R}\to\mathbb{R}, k(x)=ax^2+bx+c-b$ mx - n se anulează într-un punct și are semn constant în celelalte puncte (*) 1p Putem presupune, fără a restrânge generalitatea, că $g(x) = ax^2 + bx + c$, a > 0.

Să presupunem că există x_0 astfel încât $f(x_0) < g(x_0)$. Alegem m și n astfel încât graficul funcției h(x) = mx + n să fie tangent la graficul lui g în punctul $(x_0, g(x_0))$. Fie $n'=n-g(x_0)+f(x_0)$. Atunci ecuația f(x)=mx+n' are soluția x_0 iar ecuația g(x)=mx+n'nu are soluții, deoarece, conform (*), $g(x) \ge mx + n > mx + n', \forall x \in \mathbb{R}$ – fals 3p

Rezultă $f(x) \geq g(x), \forall x \in \mathbb{R}$ (**). Dacă presupunem acum că există x_0 astfel încât $f(x_0) > g(x_0)$, atunci alegem din nou m și n astfel încât graficul funcției h(x) = mx + nsă fie tangent la graficul lui g în punctul $(x_0, g(x_0))$. În acest caz, din (**) și (*) rezultă că $f(x) > mx + n, \forall x \in \mathbb{R}$, pe când ecuația g(x) = mx + n are soluția x_0 - fals3p

Problema 3. Fie P un punct în interiorul unui triunghi ascuțitunghic ABC și D, E, Fintersecțiile dreptelor AP, BP, CP cu [BC], [CA], respectiv [AB].

- a) Arătati că aria triunghiului DEF este cel mult un sfert din aria triunghiului ABC.
- b) Arătați că raza cercului înscris în triunghiul DEF este cel mult un sfert din raza cercului circumscris triunghiului ABC.

b) Se ştie că perimetrul triunghiului DEF este mai mare sau egal decât perimetrul triunghiului ortic $A'B'C'$
Problema 4. Considerăm un număr natural nenul n și funcția
$f: \mathbb{N} \to \mathbb{N}, \ f(x) = \begin{cases} \frac{x}{2}, \text{dacă } x \text{ este par} \\ \frac{x-1}{2} + 2^{n-1}, \text{dacă } x \text{ este impar} \end{cases}.$
Determinați mulțimea
$A = \{ x \in \mathbb{N} \mid (\underbrace{f \circ f \circ \ldots \circ f}_{\text{de } n \text{ ori } f})(x) = x \}.$
$Soluție. \ \text{Observăm că} \ f(x) < x \ \text{pentru} \ x \geq 2^n, \ \text{deci} \ A \subset \{0,1,\dots,2^n-1\} \dots \dots 2\mathbf{p}$ Arătăm că $A = \{0,1,\dots,2^n-1\}.$ Din $f(2^n-1) = 2^n-1$ deducem $2^n-1 \in A.$ Apoi, $2f(x) \in \{x,x+2^n-1\}, \ \text{deci} \ 2f(x) \ \text{este congruent cu} \ x \ \text{modulo} \ 2^n-1 \dots 2\mathbf{p}$ Rezultă inductiv că $x \equiv 2^n f^{[n]}(x) \equiv f(x) \ (\text{mod} \ 2^n-1).$ Cum $f(x) < 2^n-1$ pentru $x < 2^n-1, \ \text{deducem} \ f^{[n]}(x) = x \ \text{dacă} \ x \in \{0,1,\dots 2^n-2\} \ (\text{am notat} \ f^{[n]} = \underbrace{f \circ \dots \circ f}_{\text{de} \ n \ \text{ori} \ f}).$ 3 p
$\begin{array}{llllllllllllllllllllllllllllllllllll$