Graph Models II

6 December 2018

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model Properties of WS Graphs

Barabasi-Albert Model Properties of BA Graphs

Rakhi Saxena Deshbandhu College, University of Delhi, Delhi, India.

.1

Outline

Graph Models II
Rakhi Saxena

Introduction

Watts-Strogatz Model
Properties of WS Graphs

Barabasi-Albert Model Properties of BA Graphs

1 Introduction

2 Watts-Strogatz Model Properties of WS Graphs

Outline

Graph Models II Rakhi Saxena

Introduction

Watts-Strogatz Model
Properties of WS Graphs
Barabasi-Albert Model
Properties of BA Graphs

1 Introduction

Watts-Strogatz Model Properties of WS Graphs

 Hubs represent most striking difference between a random and real-world network. Raises several fundamental questions: Graph Models II

Rakhi Saxena

ntroduction

Watts-Strogatz Model Properties of WS Graphs

- Hubs represent most striking difference between a random and real-world network. Raises several fundamental questions:
- Why does the random network model of Erdős and Rényi fail to reproduce the hubs and the power laws observed in many real networks?

Graph Models II

Rakhi Saxena

ntroduction

Watts-Strogatz Model Properties of WS Graphs

 Hubs represent most striking difference between a random and real-world network. Raises several fundamental questions:

- Why does the random network model of Erdős and Rénvi fail to reproduce the hubs and the power laws observed in many real networks?
- How to explain the small-world property of real-world networks?

Graph Models II

Rakhi Saxena

Watts-Strogatz Model Properties of WS Graphs

 Hubs represent most striking difference between a random and real-world network. Raises several fundamental questions:

- Why does the random network model of Erdős and Rényi fail to reproduce the hubs and the power laws observed in many real networks?
- How to explain the small-world property of real-world networks?
- Why do so different systems as the WWW or the cell converge to a similar scale-free architecture?

Graph Models II

Rakhi Saxena

ntroduction

Watts-Strogatz Model Properties of WS Graphs

- Hubs represent most striking difference between a random and real-world network. Raises several fundamental questions:
- Why does the random network model of Erdős and Rényi fail to reproduce the hubs and the power laws observed in many real networks?
- How to explain the small-world property of real-world networks?
- Why do so different systems as the WWW or the cell converge to a similar scale-free architecture?

	Cellular Network	www
Nodes	proteins or metabolites	documents
Links	chemical reactions	hyperlinks
Purpose	production of chemicals cells needed to survive	information access and delivery
History	4 billion years of evolution	few decades old

Graph Models

Graph Models II Rakhi Saxena

Watts-Strogatz Model Properties of WS Graphs

Barabasi-Albert Model Properties of BA Graphs

- High Clustering Coefficient

characteristics of real-world graphs

Researchers have developed models that can explain

Scale-free

Graph Models

Graph Models II

Rakhi Saxena

Watts-Strogatz Model Properties of WS Graphs

- Researchers have developed models that can explain characteristics of real-world graphs
 - High Clustering Coefficient
 - Scale-free
- Watts-Strogatz (WS) Model [WS98]
 - Random graph model fails to exhibit a high clustering coefficient, but it is small-world
 - WS model tries to explicitly model high local clustering

- Researchers have developed models that can explain characteristics of real-world graphs
 - High Clustering Coefficient
 - Scale-free
- Watts-Strogatz (WS) Model [WS98]
 - Random graph model fails to exhibit a high clustering coefficient, but it is small-world
 - WS model tries to explicitly model high local clustering
- Barabási-Albert (BA) Model [BA99]
 - BA model tries to capture the scale-free degree distributions of real-world graphs via a generative process

Outline

Graph Models II
Rakhi Saxena

Introduction

Watts-Strogatz Model

Properties of WS Graphs

Barabasi-Albert Model

Properties of BA Graphs

1 Introduction

2 Watts-Strogatz Model Properties of WS Graphs

Watts-Strogatz Small-world Graph Model [WS98]

- Model starts with a regular graph of degree 2k with n nodes arranged in a circular layout
- Each node has edges to its *k* nbrs on the right and left

Graph Models II

Rakhi Saxena

Introduction

Natts-Strogatz Mode

Properties of WS Graphs

Watts-Strogatz Small-world Graph Model [WS98]

- Model starts with a regular graph of degree 2k with n nodes arranged in a circular layout
- Each node has edges to its k nbrs on the right and left Watts-Strogatz Regular Graph: n = 8, k = 2

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Mode Properties of WS Graphs

Watts-Strogatz Small-world Graph Model [WS98]

- Model starts with a regular graph of degree 2k with n nodes arranged in a circular layout
- Each node has edges to its k nbrs on the right and left
 Watts-Strogatz Regular Graph: n = 8, k = 2

Regular Graph has high clustering coefficient

 Surprisingly, adding a small amount of randomness leads to emergence of small-world phenomenon Graph Models II

Rakhi Saxena

Watts-Strongtz Mode

Properties of WS Graphs

Barabasi-Albert Mode Properties of BA Graphs

Image courtesy of [ZJ14]

.7

• Consider the subgraph G_v induced by the 2k neighbours of a node v

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model
Properties of WS Graphs

- Consider the subgraph G_v induced by the 2k neighbours of a node v
- Clustering coefficient of v is given as

$$C(v) = \frac{m_{v}}{M_{v}} \tag{1}$$

• m_v is the actual number of edges, and M_v is the maximum possible number of edges, among the neighbours of v

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model
Properties of WS Graphs

- Consider the subgraph G_v induced by the 2k neighbours of a node v
- Clustering coefficient of v is given as

$$C(v) = \frac{m_v}{M_v} \tag{1}$$

- m_v is the actual number of edges, and M_v is the maximum possible number of edges, among the neighbours of v
- Consider some node r_i at a distance of i hops $(1 \le i \le k)$ from v to the right, considering only the backbone edge

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model
Properties of WS Graphs

- Consider the subgraph G_v induced by the 2k neighbours of a node v
- Clustering coefficient of v is given as

$$C(v) = \frac{m_v}{M_v} \tag{1}$$

- m_v is the actual number of edges, and M_v is the maximum possible number of edges, among the neighbours of v
- Consider some node r_i at a distance of i hops $(1 \le i \le k)$ from v to the right, considering only the backbone edge
- Node r_i has edges to k − i of its immediate neighbours and to k − 1 of its left neighbours

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model Properties of WS Graphs

• Clustering coefficient of *v* is given as

$$C(v) = \frac{m_{v}}{M_{v}} \tag{1}$$

- m_v is the actual number of edges, and M_v is the maximum possible number of edges, among the neighbours of v
- Consider some node r_i at a distance of i hops $(1 \le i \le k)$ from v to the right, considering only the backbone edge
- Node r_i has edges to k i of its immediate neighbours and to k 1 of its left neighbours
- Due to the symmetry about v, a node l_i that is at a distance of i backbone hops from v to the left has the same number of edges
- Degree of any node that is i backbone hops away from v is given as

$$d_i = (k - i) + (k - l) = 2k - i - l$$
 (2)

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model
Properties of WS Graphs

 Each edge contributes to the degree of its two incident nodes, summing the degrees of all neighbours of v

$$2m_{v} = 2\left(\sum_{i=1}^{k} 2k - i - 1\right)$$

$$m_{v} = 2k^{2} - \frac{k(k+1)}{2} - k$$

$$m_{v} = \frac{3}{2}k(k-1) \quad (3)$$

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model
Properties of WS Graphs

 Each edge contributes to the degree of its two incident nodes, summing the degrees of all neighbours of v

$$2m_{v} = 2\left(\sum_{i=1}^{k} 2k - i - 1\right)$$

$$m_{v} = 2k^{2} - \frac{k(k+1)}{2} - k$$

$$m_{v} = \frac{3}{2}k(k-1) \quad (3)$$

 Also the number of possible edges among the 2k neighbours of v

$$M_{\rm v} = {2k \choose 2} = \frac{2k(2k-2)}{2} = k(2k-1)$$
 (4)

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model
Properties of WS Graphs

Barabasi-Albert Model Properties of BA Graphs

.9

 Each edge contributes to the degree of its two incident nodes, summing the degrees of all neighbours of v

$$2m_{v} = 2\left(\sum_{i=1}^{k} 2k - i - 1\right)$$

$$m_{v} = 2k^{2} - \frac{k(k+1)}{2} - k$$

$$m_{v} = \frac{3}{2}k(k-1) \quad (3)$$

 Also the number of possible edges among the 2k neighbours of v

$$M_{\rm v} = {2k \choose 2} = \frac{2k(2k-2)}{2} = k(2k-1)$$
 (4)

$$\Rightarrow C_{v} = \frac{m_{v}}{M_{v}} = \frac{3k - 3}{4k - 2} \tag{5}$$

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model
Properties of WS Graphs

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model
Properties of WS Graphs

Barabasi-Albert Model Properties of BA Graphs

Clustering coefficient of node v given by

$$C(v) = \frac{m_v}{M_v} = \frac{3k - 3}{4k - 2} \tag{6}$$

- As k increases, clustering coefficient approaches $\frac{3}{4}$ because $C(G) = C(v) \rightarrow \frac{3}{4}$ as $k \rightarrow \infty$
- WS graph has high clustering coefficient

WS Regular Graph: Diameter

Graph Models II
Rakhi Saxena

nann oaxona

Introduction

Watts-Strogatz Model
Properties of WS Graphs

Barabasi-Albert Model Properties of BA Graphs

• Along the backbone, farthest node from v has a distance of at most $\frac{n}{2}$ hops

• Since each node is connected to k neighbours on either side, furthest node reachable in at most $\frac{n/2}{k}$ hops

- Along the backbone, farthest node from v has a distance of at most $\frac{n}{2}$ hops
- Since each node is connected to k neighbours on either side, furthest node reachable in at most $\frac{n/2}{k}$ hops
- Diameter of WS Regular graph

$$d(g) = \begin{cases} \lceil \frac{n}{2k} \rceil, & \text{if n is even} \\ \lceil \frac{n-1}{2k}, & \text{if n is odd} \end{cases}$$

 Thus diameter of regular WS graph scales linearly in the number of nodes

- Along the backbone, farthest node from v has a distance of at most ⁿ/₂ hops
- Since each node is connected to k neighbours on either side, furthest node reachable in at most $\frac{n/2}{k}$ hops
- Diameter of WS Regular graph

$$d(g) = \begin{cases} \lceil \frac{n}{2k} \rceil, & \text{if n is even} \\ \lceil \frac{n-1}{2k}, & \text{if n is odd} \end{cases}$$

- Thus diameter of regular WS graph scales linearly in the number of nodes
- WS Regular Graph is not small-world

Random Perturbation of a Random Graph

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model

Properties of WS Graphs

Random Perturbation of a Random Graph

• Edge Rewiring:

- For each edge(u, v), with probability r, replace v with another randomly chosen node avoiding loops and duplicate edges
- WS graph has m = kn total edges, after rewiring, rm of edges are random and (1 r)m are regular

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model
Properties of WS Graphs

• Edge Rewiring:

- For each edge(u, v), with probability r, replace v with another randomly chosen node avoiding loops and duplicate edges
- WS graph has m = kn total edges, after rewiring, rm of edges are random and (1 r)m are regular

Edge Shortcuts:

- Add a few edges between random pairs of nodes, with probability r, per edge, of adding a successful edge
- Total number of random shortcut edges added to the network are mr = knr
- Total number of edges in the graph is m + mr = (1 + r)m = (1 + r)kn

Watts-Strogatz Graph: Shortcut Edges

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model
Properties of WS Graphs

Barabasi-Albert Model Properties of BA Graphs

□ ▶ ← □ ▶ ← □ Image courtesy of [ZJ14]

- Consider the shortcut approach, each vertex has degree at least 2k
- Additionaly, the shortcut edge follow a Binomial distribution
- Each node can have n' = n 2k 1 additional shortcut edges, so we take n' as the number of independent trials to add edges
- Since a node has degree 2k, with shortcut edge probability
 of r, we expect roughly 2kr shortcuts from that node, but
 the node can connect to at most n 2k 1 other nodes
- ⇒ probability of success is

$$\rho = \frac{2kr}{n-2k-1} = \frac{2kr}{n'} \tag{7}$$

- Let X denote random variable denoting number of shortcuts for each node
- Probability of a node with j shortcut edges is given as

$$f(j) = P(X = j) = \binom{n'}{j} p^{j} (1 - p)^{n^{j} - j}$$
 (8)

- with E[X] = n'p = 2kr and $p = \frac{2kr}{n-2k-1} = \frac{2kr}{n'}$
- Therefore, expected degree of each node in the network is

$$2k + E[X] = 2k + 2kr = 2k(1+r)$$
 (9)

- Clear that the degree distribution of the WS graph does not adhere to a powerlaw
- WS networks are not scale-free

Watts-Strogatz Model
Properties of WS Graphs

Barabasi-Albert Mode
Properties of BA Graphs

Clustering Coefficient:

$$C(v) \approx \frac{3(k-1)}{(1+r)(4kr+2(2k-1))} = \frac{3k-3}{4k-2+2r(2kr+4k-1)}$$

- Thus for small values of r clustering coefficient remains high
- Diameter:
- Small values of shortcut edge probability r are enough to reduce the diameter from O(n) to O(logn)

Watts-Strogatz Model: Diameter(circles) and Clustering Coefficient(triangles)

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model
Properties of WS Graphs

Outline

Graph Models II Rakhi Saxena

Introduction

Watts-Strogatz Model Properties of WS Graphs

Properties of BA Graphs

Watts-Strogatz Model Properties of WS Graphs

Barabasi-Albert Scale-Free Model [BA99]

 BA model yields a scale-free degree distribution based on preferential attachment **Graph Models II**

Rakhi Saxena

Introduction

Watts-Strogatz Model
Properties of WS Graphs

Properties of BA Graphs

Barabasi-Albert Scale-Free Model [BA99]

- BA model yields a scale-free degree distribution based on preferential attachment
 - Edges from a new node are more likely to connect to higher degree nodes
- Let G_t denote graph at time t, let n_t denote number of nodes, m_t denote number of edges in G_t

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model Properties of WS Graphs

Barabasi-Albert Scale-Free Model [BA99]

- BA model yields a scale-free degree distribution based on preferential attachment
 - Edges from a new node are more likely to connect to higher degree nodes
- Let G_t denote graph at time t, let n_t denote number of nodes, m_t denote number of edges in G_t
- **Initialization:** BA model starts with G_0 , with each node connected to its left and right neighbors in a circular layout. Thus $m_0 = n_0$

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model Properties of WS Graphs

- BA model yields a scale-free degree distribution based on preferential attachment
 - Edges from a new node are more likely to connect to higher degree nodes
- Let G_t denote graph at time t, let n_t denote number of nodes, m_t denote number of edges in G_t
- Initialization: BA model starts with G_0 , with each node connected to its left and right neighbors in a circular layout. Thus $m_0 = n_0$
- **Growth and Preferential Attachment:** BA model derives a new graph G_{t+1} from G_t by adding exactly one new node u and adding $q \le n_0$ new edges from u to q distinct nodes $v_i \in G_t$, where node v_j is chosen with probability $\pi_t(v_j)$ proportional to its degree in G_t , given as

$$\pi_i(\mathbf{v}_t) = \frac{d_j}{\sum_{\mathbf{v}_j \in G_t} d_j} \tag{11}$$

Example: BA Model

$$n_0 = 3, q = 2, t = 12$$

At t=0, start with 3 vertices v_0 , v_1 , and v_2 fully connected (shown in gray). At t=1, vertex v_3 is added, with edges to v_1 and v_2 , chosen according to the distribution

$$\pi_0(v_i) = 1/3 \text{ for } i = 0, 1, 2$$

At t = 2, v_4 is added. Nodes v_2 and v_3 are preferentially chosen according to the probability distribution

$$\pi_1(v_0) = \pi_1(v_3) = \frac{2}{10} = 0.2$$
 $\pi_1(v_1) = \pi_1(v_2) = \frac{3}{10} = 0.3$

Image courtesy of [ZJ14]

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model Properties of WS Graphs

Properties of BA Graphs

Barabasi-Albert Graphs: Degree Distribution

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model
Properties of WS Graphs

Barabasi-Albert Model

Properties of BA Graphs

Degree of BA Graphs is given by

$$f(k) = \frac{(q+2)(q+1)q}{(k+2)(k+1)k} \cdot \frac{2}{(q+2)} = \frac{2q(q+1)}{k(k+1)(k+2)}$$
 (12)

- For constant q and large k, degree distribution scales as $f(k) \approx k^{-3}$
- BA model yields a power-law degree distribution wit $\gamma=3$, especially for large degrees

Barabasi-Albert Graphs: Diameter

Graph Models II Rakhi Saxena

Introduction

Watts-Strogatz Model Properties of WS Graphs

Barabasi-Albert Model

Properties of BA Graphs

Diameter: of BA graph scales as

$$d(G_t) = O\left(\frac{logn_t}{loglogn_t}\right)$$
 (13)

 suggesting that they exhibit ultra-small-world behaviour, when q > 1

Barabasi-Albert Graphs: Diameter

Graph Models II

Rakhi Saxena

Introduction

Watts-Strogatz Model
Properties of WS Graphs

Barabasi-Albert Model

Properties of BA Graphs

Diameter: of BA graph scales as

$$d(G_t) = O\left(\frac{logn_t}{loglogn_t}\right)$$
 (13)

- suggesting that they exhibit ultra-small-world behaviour, when q > 1
- Clustering Coefficient: Expected clustering coefficient scales as

$$E[C(G_t)] = O\left(\frac{(logn_t)^2}{n_t}\right)$$
 (14)

which is only slightly better than for random graphs

Example: BA Model - Degree Distribution

$$n_0 = 3, q = 2, t = 997$$

Graph Models II

Rakhi Saxena

Introduction

Image courtesy of [ZJ14]

Watts-Strogatz Model
Properties of WS Graphs

Barabasi-Albert Model

References I

- Albert-Laszlo Barabasi and Reka Albert, Emergence of Scaling in Random Networks, Science 286 (1999), no. 5439, 509–512.
- Duncan J. Watts and Steven H. Strogatz, Collective dynamics of 'small-world' networks, Nature 393 (1998), 440–442.
- Mohammed J. Zaki and Wagner Meira Jr, Data Mining and Analysis: Fundamental Concepts and Algorithms, Cambridge University Press, New York, NY, USA, 2014.