

Information Visualization

Basics

Today's Topic

- Techniques for interactive systems
 - Manipulation of viewing
 - Synchronization of multiple views
 - Interactive detail
 - Filtering, etc.
- All common to Sci- and InfoVis
- All only valuable for computer-based visualization
- What about the basics of showing information, e.g., data types, color, visual variables, human perception, etc.?

Today's Agenda

- The Visualization Pipeline
- Basic Visualization techniques valid for both InfoVis and SciVis
 - Focus and Context
 - Multiple Coordinated Views

Visualization

https://www.ventusky.com/?p=50.702;10.445;9&l=g ust&m=icon&w=fast

Visualization Pipeline

Visualization pipeline

A model for the steps necessary to produce images from data

[dos Santos and Brodlie 2004]

Data Analysis

- Noise removal / reduction
- Interpolation of missing values
- Correction of erroneous measurements
- Mostly done by computer

 no or little user interaction

Filtering

- Selection of data points for visualization
- Mostly user driven
- Examples:
 - Clipping (Min, Max)
 - Statistics
 - User-defined attributes / criteria

Mapping

- Mapping of data to geometric primitives (points, lines, etc.) and their attributes (color, position, size, etc.)
 - InfoVis: choice of visualization technique
 - SciVis: Transfer function

Rendering

Transform geometric data to images

Depicted using computer graphics

Prepared data

Filtering

Raw

data

Data

Analysis

Focus

data

Visualization Pipeline

 Video: Lark – modifying attributes in the visualization pipeline

Focus and Context

Categorization of Focus and Context Techniques

- Needed when all information can not be shown at once
- Overview + Detail
 - spatial separation
- Zooming interfaces
 - temporal separation
- Focus + Context (at the same time, in the same place)
 - present focus and context in single view

Overview + Detail

- Simultaneous display of overview and detailed view
 - in distinct space
- Examples
 - google maps
 - thumbnails for page overviews
 - computer games
 - lenses
- Widely used

Overview + Detail: Maps in Games

Overview + Detail: World in Miniature

Overview + Detail: World in Miniature

Overview + Detail: Lenses

- Separation in z
- Lens = Alter visualization in locally confined region

Examples in Sci-Vis

Zooming

- Temporal separation of Overview and Detail
- Can be combined with Overview + Detail
- Modes
 - Continuous
 - Discrete
 - Region select

Semantic zoom

- Visualize information in different levels of abstraction
- Objects change (e.g. size, label)

maps.google.com

DEMO

Seamless Focus in Context

- Integrates focus and context in a single view
- All parts are concurrently visible
- Distortion based
- Cue based

Distortion Examples

Perspective Wall [Mackinlay et al. 1991]

FishEye Menus [Bederson 2000]

Document Lens [Robertson and Mackinlay

Perspective Wall

Bifocal Display

Cue-Based Methods

- Adapt how things are rendered, not their size
- Very general
- Modulating saliency saliency: the state or quality of an item that stands out relative to neigboring items
- Examples:
 - Highlighting
 - Text labels
 - Focus blurring
 - Halos
 - Modulate image properties such as contrast, brightness

Saliency Modulated

Original

Modulated

[Mendez et al. 2010]

Saliency Modulated

Focus and Context in Mixed Reality by Modulating First Order Salient Features

Submission id: 132 Smart Graphics 2010

Coordinated & Multiple Views

Coordinated & Multiple Views

- Premise: View and interact with data through different representations
- Show the same data in different form

or

- Show relations between different data sets
- Coordinate interaction
- Some examples seen in Focus and Context section
- Common Types
 - navigational slaving (transformation, rotation)
 - brushing

Guidelines for Using MV

- Aspects of impact on the system utility
 - Cognitive aspect
 - The time and effort required to learn the system
 - The load on the user's working memory
 - The effort required for comparison
 - The effort required for context switching

- System aspect
 - Computational requirements
 - Display space requirements

Rule of diversity

Use multiple views when there is a diversity of attributes, models, user profiles, level of abstraction, or genres.

Figure 1: A multiple views presentation of diverse information relating to legal cases [20].

Rule of diversity

- Major positive impacts on utility
 - Working memory
- Major negative impacts on the utility
 - Learning
 - Computational overhead
 - Display space overhead

Figure 1: A multiple views presentation of diverse information relating to legal cases [20].

Rule of complementarity

Use multiple views when different views bring out correlations and/or disparities.

Figure 2: Complementary views of the barnase molecule [24]. Reprinted by permission of Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc.

Rule of complementarity

- Major positive impacts on utility
 - Working memory
 - Effort for comparison
 - Context switching
- Major negative impacts on the utility
 - Learning
 - Computational overhead
 - Display space overhead

Figure 2: Complementary views of the barnase molecule [24]. Reprinted by permission of Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc.

Rule of decomposition

Divide & Conquer

Partition complex data into multiple views to create manageable chunks and to provide insight into the interaction among different dimensions

Figure 3: Two views of a single table of baseball data [12].

Rule of decomposition

- Major positive impacts on utility
 - Working memory
 - Effort for comparison
- Major negative impacts on the utility
 - Learning
 - Computational overhead
 - Display space overhead

Figure 3: Two views of a single table of baseball data [12].

Rule of parsimony

Use multiple views minimally.

- Major positive impacts on utility
 - Learning
 - Computational overhead
 - Display space overhead
- Major negative impacts on the utility
 - Working memory
 - Effort for comparison
 - Context switching

Linking and Brushing

Brushing

- Highlight or select groups of data points using
 - geometric functions such as:
 - rectangles, angles, free-form, lassos, etc.
 - queries
- Can be composite (AND, OR)

[Doleisch et al. 2004]

43

Linking: Brushing in MCV

[Hauser et al. 2002]

References

- [1] A. Cockburn, A. Karlson, and B. B. Bederson, "A review of overview+detail, zooming, and focus+context interfaces," ACM Comput. Surv., vol. 41, no. 1, pp. 1-31, 2008.
- [2] J. C. Roberts, "State of the Art: Coordinated & Multiple Views in Exploratory Visualization," in International Conference on Coordinated and Multiple Views in Exploratory Visualization, vol. 0, pp. 61-71, 2007.
- [3] M. Q. W. Baldonado, A. Woodruff, and A. Kuchinsky, "Guidelines for using multiple views in information visualization," in AVI '00: Proceedings on Advanced visual interfaces, pp. 110-119, 2000.

