Amphibian Quadcopter

Ninfa

\$F.76

Problem Statement

Reptiles and **amphibians** are sometimes thought of as primitive, dull and dimwitted. In fact, of course, they can be lethally fast, spectacularly beautiful, surprisingly affectionate and very sophisticated.

- Sir David Frederick

Problem Statement

Nowadays, drones can only operate in the one dimensional space of the sky. It makes a lot of places inaccessible due to the fact that most drones aren't waterproof or not dexterous underwater. Waterproof quadcopter can be applied to geological surveys or military use.

Motivation

We want to break the boundaries of the operational space of the drone. In this sense, we can expand a vast possibilities of the applications of drones

Project Breakdown

Underwater maneuvering

Robot control

Architecture

Schedule and Milestone

Underwater maneuvering

Robot control

Architecture

Schedule and Milestone

Underwater Problems

Underwater Maneuvering

Plan A

Plan A

Underwater maneuvering

Robot control

Architecture

Schedule and Milestone

Block Diagram

EAGLE Schematics

Board Components

- Oscillator: CSTCE8M00G55-R0
 - 8MHz Ceramic Resonator
- Voltage Regulator: MIC5219-3.3YM5-TR
 - Input up to 12V
 - Output 3.3V
- MOSFET: IRLML6244TRPBF
 - \vee Vds(Max) = 20V
 - Low Rds(on) and low thermal resistance
- WiFi Module: nRF24L01
 - Single chip 2.4GHz transceiver
- IMU: MPU6050
 - Accelerometer & Gyroscope
 - Can calculate Roll, Pitch and Yaw using DMP

Yaw, Pitch and Roll

Yaw, Pitch and Roll

Feedback Control Diagram

PID Controller

Per Axis PID structure

- Error is the difference between the desired value and actual value
 - Angular Velocity in Rate PID
 - Angle in Stabilise PID
- Use the PID output to control the motors
- A separate set of PID Coefficients for each axis

Underwater maneuvering

Robot control

Architecture

Schedule and Milestone

Electronics Enclosures

- All electronics(Motor Control Circuit & Raspberry Pi) goes inside the waterproof project box
- Drill holes for motor cables and use liquid rubber for waterproofing
- Dimension: 158 x 90 x 60mm

Raspberry Pi & Camera

- We use Raspberry Pi(a small Linux Machine) Camera Module for Video Streaming from quadcopter
- 5 megapixel sony sensor for HD video and still pictures
- Interfacing camera: VLC software on Linux can be used for streaming feature through WiFi
- Liquid Rubber for camera case waterproofing

Actuators

- Use four 2212 KV960 waterproof motors as actuators for quadcopter
- For 11.1V input voltage and 2A current can provide 250G

 Thrust
- Weight: 65g

Quadcopter Frame

- FY450 Quadcopter Frame compatible for standard 2212
 Motors
- Motors and waterproof box will be screwed on frame
- Weight: 262g

Battery

- Tenergy 11.1V 2200mAh 25C LIPO Battery
- Lipo battery: lighter than other types of battery for same battery life
- 2200mAh is enough for testing and also save budget

Bill of Materials (BOM)

N/A

N/A

N/A

N/A

N/A

576-1281-1-ND

490-1195-1-ND

311-1343-1-ND

311-1446-1-ND

311-1448-1-ND

399-4697-1-ND

1715-1032-1-ND MPU-6050

nRF24L01

IRLML6244TRPBFCT-ND

ATMEGA328P-AURCT-ND

CR0603-FX-1002GLFCT-ND

CR0603-JW-221GLFCT-ND

CR0603-JW-183ELFCT-ND

DB2W40300LCT-ND

Raspberry Pi

Motor

Battery

Diode

Electronic Project Box N/A

Raspberry Pi Camera N/A

Quadcoptor Frame

Quadcoptor Blade

Voltage Regulator

N-Channel MOSFE

Ceramic Resonator

Microcontroller

Resistor 10kΩ

Resistor 220Ω

Resistor 18kΩ

Capacitor 1uF

Capacitor 10uF

Capacitor 100uF

Radio Module

Switch

Capacitor 100nF

http://docs-e N/A

Ebay

Ebay

Taobao

Taobao

All-Battery.com

https://store. Invensense Onlir Gyroscope

eBay

http://ww1.m Digi-Key

http://www.in Digi-Key

http://www.m Digi-Key

http://www.a Digi-Key

http://www.sc Digi-Key

http://www.b Digi-Key

http://www.b Digi-Key

http://www.b Digi-Key

http://www.va Digi-Kev

http://www.ya Digi-Key

http://www.ya Digi-Key

http://www.kc Digi-Key

http://media. Digi-Key

https://www.: GearBest

N/A

N/A

N/A

N/A

Raspberry Pi

Raspberry Pi

N/A

JFRC

Feiyue

Tenergy

Bourns Inc

Bourns Inc

Bourns Inc

Yageo

Yageo Yageo

KEMET

RAFIUSA

Invensense

APC

Raspberry Pi Model B

FY450 TL2749-05

CR0603-FX-1002GLF

CR0603-JW-221GLF

CR0603-JW-183ELF

CC0603ZRY5V9BB104

CC0603KRX7R7BB105

CC0603MRX5R5BB106

C1210C107M9PACTU

1.14001.5030000

MPU-6050

Raspberry Pi Camera Module

Tenergy 11.1V 2200mAh 25C LIPO N/A

N/A

U2212

Microchip Technol MIC5219-3.3YM5-TR

Murata Electronic: CSTCE8M00G55-R0

Microchip Technol ATMEGA328P-AUR

Parasonic Electro DB2W40300L

Nordic Semicondu nRF24L01

Infineon Technolo IRLML6244TRPBF

APC 1147

\$9.71	\$9.71	https://world.taob	Support Motors
\$4.49	\$8.98	http://www.ebay.c	For Motor
\$19.99	\$19.99	http://www.all-bat	Power Supply
\$0.92	\$0.92	http://www.digike	Voltage Regulation
\$0.36	\$1.80	http://www.digike	Motor Control
\$0.46	\$0.46	http://www.digike	MCU Timing Contro
\$3.81	\$3.81	http://www.digike	Microcontroller
\$0.55	\$2.20	http://www.digike	Motor Control
\$0.10	\$0.60	http://www.digike	Motor Control
\$0.10	\$0.30	http://www.digike	LED Circuit
\$0.10	\$0.10	http://www.digike	Voltage Divider
\$0.10	\$0.50	http://www.digike	Decoupling Capacito
\$0.10	\$0.20	http://www.digike	For Voltage Regulat
\$0.21	\$0.21	http://www.digike	For Antenna
\$1.06	\$4.24	http://www.digike	Smooth out motor transient
\$2.34	\$2.34	http://www.digike	Reset Button
\$5.45	\$5.45	https://store.inve	Measure acceleration, angul
\$0.93	\$1.86	http://www.gearb	Wireless Communication
	\$150.62		

Vendor Link

\$53.12 https://world.taob Actuators

Primary Use

\$19.99 https://www.spar Camera Interfacing Preown

\$3.85 http://www.ebay.c Waterproof Casing

\$9.99 http://www.ebay.c Video Streaming

Total Price

\$19.99

\$3.85

\$9.99

\$13.28

\$9.71

Underwater maneuvering

Robot control

Architecture

Schedule and Milestone

Project Management

Task	Owner	Status	Notes
Camera Streaming Configuration	Likai		
Chassis Building	Kevin Likai Jerry		
Circuit Soldering	Likai		
Coding and Adjustment	Kevin Jerry		
Waterproof Coating	Kevin		
Underwater Testing	Kevin Likai Jerry		
Air-to-water Landing Test	Kevin Likai Jerry		

Timeline & Milestones

Time	Status	Metrics
Week 1-4		Quadcopter fully functional in air
Week 4-7		Waterproof implementation & Underwater Control finished
Week 7-10		Testing

Potential Challenges

- No previous experiences with Machining and knowledge about UCLA Machine resources
- Figure out right PID parameters for controlling quadcopter
- Weight tradeoff
- Transitions:
 - Air to water
 - Water to air
- How to achieve motion underwater
- Testing
 - How to test robot underwater
 - What if electronics damaged by water leakage

One more thing...

Concern: 2.4GHz Microwave tended to be absorbed really well by water

Solution 1:

 Stay with wireless and test out the functional depth of quadcopter underwater

Solution 2:

Use waterproof wire for Raspberry Pi and Motor Control

Solution 3:

- Only goes into shallow water for stable connection

Solution 4:

Install antenna stick out of water surface for signal transmission

Expected Results

Design and implement a quadcopter that is able to move smoothly both in air and underwater. It can also provide stable camera stream, allowing pilot to wirelessly control quadcopter.

Questions