# Simulating network formation using Game theory approach

# **Objective**

In this project, we have tried to represent the network formation and analyze its various situations/possibilities, which include cases of sequential entry, various equilibrium situations and herd behavior.

#### **Theoretical Aspects That Were Covered:**

#### **Sequential Entry**

A sequential entry game is in which the player enters in an exogenously given sequence, each agent has a type  $\theta i \in [0, 1]$ , each agent may choose only one existing agent to connect and agents have the aim to attract connections.

#### Nash Equilibrium

Nash equilibrium is a set of strategies which no player wants to change knowing their payoffs, as they will not gain anything by changing their strategy.

#### **Herd Behavior**

Herd behavior is seen when everyone is doing what everyone else is doing even if their private information suggests them to do something else.

- A network is represented by an array of integers A.
- Where i th agent is connecting with agent A[i].
- Agents enter the game in an exogenously given sequence(i.e. A[i] < i)</li>
- Each agent has a type  $\theta i \in [0, 1]$ .  $\alpha \in (0, 1)$  is an impatentient factor and  $\delta \in (0, 1)$  is the utility received by  $i \in N$  from a direct link with an existing agent  $I \in N$  with the highest type.

Utility Function is given by,

Model

$$U_{i}(x) = \sum_{j=1,2,3...(i-1).} \delta^{|pij|} \theta_{j} + \sum_{k=(i+1),(i+2),...} \alpha^{(k-1)-i} \delta^{|pij|} \theta_{k}$$

where i, j,  $k \in \mathbb{N}$ ;  $\delta \in (0, 1)$  and pij is the shortest path connecting i and j.

Finding a distance matrix for given network :

## Model

```
vector<vector<int>> distance Matrix(vector<int>net) {
    int n = net.size();
    vector<vector<int>>dm(n+1, vector<int>(n+1,0));
    for(int i=1;i<n+1;i++){
        for(int j=i+1;j<n+1;j++) {
            dm[i][j] = dm[i][net[j-1]]+1;
            dm[j][i] = dm[i][j];
    return dm;
```

# Model

• Calculating payoff for each agent in the network:

```
vector<ld> calculate Payoff(vector<vector<int>>dm,ld
delta,ld alpha,vector<ld>theta){
   int n = dm.size();
   vector<ld>payoff(n,0);
   for(int i=1;i<n;i++){
        for(int j=1;j<i;j++){
           payoff[i]+=(pow(delta,dm[i][j])*theta[j]);
        for(int k=i+1;k<n;k++){
payoff[i]+=((pow(delta,dm[i][k]))*(theta[k])*(pow(alpha
,k-i-1)));
   return payoff;
```

Generating all possible networks with given number of agents:

```
Model
```

```
void Networks (vector<int>&net, int n,ld delta,ld
alpha, vector<ld>theta) {
    if(n==1){
        vector<vector<int>>dm;
        dm = distance Matrix(net);
        vector<ld>payoff;
        payoff =
calculate Payoff(dm,delta,alpha,theta);
        for(auto x:net){
             cout << x << ";
        cout << endl;
        for(int i=1;i<payoff.size();i++){</pre>
             cout<<setprecision(9)<<payoff[i]<<" ";</pre>
        cout<<endl:
        cout << endl;
        cout << endl;
    for(int i=1;i<n;i++) {
        net[n-1] = i;
        Networks (net, n-1, delta, alpha, theta);
```

### • Finding a perfect equilibrium

```
1d mx payoff = 0;
   int ind = 0;
    for(int i=2;i<net.size();i+=1){</pre>
        int z = net[i];
        for(int j=1;j<=i;j++){
            net[i] = j;
            vector<vector<int>>dm;
            dm = distance Matrix(net);
            vector<ld>payoff;
            payoff =
calculate Payoff(dm,delta,alpha,theta);
            if(payoff[i+1]>mx payoff) {
                mx payoff = payoff[i+1];
                ind = j;
            for(auto x:net) {
                cout<<x<<" ";
```

```
cout<<endl;
    for(int i=1;i<payoff.size();i++){</pre>
         cout<<payoff[i]<<" ";</pre>
    cout<<endl;
    cout<<endl;</pre>
net[i] = ind;
mx payoff = 0;
ind = 0;
```

## Model

• Checking convergence in sequential entry game :

# Model



## When $\alpha$ and $\delta$ are kept 0.9

- Number of agents taken is 6
- $oldsymbol{\Theta}$  Values are take as 0.1 for 1 and 0.9 for others .

# **Observations**

- Then 0.1 for 1 and 2 and 0.9 for rest.
- This was done till all Θs become 0.1.
- In all these cases Network formed was



## When $\alpha$ is 0.9 and $\delta$ is 0.001

•  $\Theta$  Values are take as 0.1 for 1 and 0.9 for others.

Equilibrium obtained:  $-\{\phi,1,2,2,2,2\}$ 



## **Observations**

The value of  $\Theta$  for first two players is 0.1 and 0.9 for rest of the players

Equilibrium obtained: -  $\{\phi,1,1,3,3,3\}$ 



## Previous case continued.....

The value of Θ for first three players is 0.1 and 0.9 for rest of the players
 Equilibrium obtained: - {φ,1,1,4,4}



## **Observations**

The value of Θ for first four players is 0.1 and 0.9 for rest of the players
 Equilibrium obtained: - {φ,1,1,1,1,5}



## Previous case continued.....

• The value of Θ for first five players is 0.1 and 0.9 for rest of

the players

Equilibrium obtained: -  $\{\phi,1,1,1,1,1\}$ 

## **Observations**

The value of Θ for all six players is 0.1 Equilibrium obtained: - {φ,1,1,1,1,1}



 We saw that agents were connecting to the agents having same Θ value, like in case 2, where Θ for 1 and 2 were same and Θ for 3,4,5,6 were same we saw, 2 connected with 1 but 4,5,6 connected with 3. Similar patterns were seen for other cases as well.

## When $\alpha$ is 0.001 and $\delta$ is 0.9

- $\Theta$  Values are take as 0.1 for 1 and 0.9 for others .
- Then 0.1 for 1 and 2 and 0.9 for rest.
- This was done till all  $\Theta$ s become 0.1.
- In all these cases Network formed was

{ф,1,1,1,1,1}



# **Observations**

## When $\alpha$ and $\delta$ are kept 0.9

• The value of Θ for player 2 is 0.9 and 0.1 for rest of the players.

Equilibrium obtained: -  $\{\phi,1,2,2,2,2\}$ 



## **Observations**

The value of  $\Theta$  is as follows 0.1,0.3,0.5,0.7,0.9,0.9 for player 1,2,3,4,5,6 respectively

Equilibrium obtained: -  $\{\phi,1,2,3,4,5\}$ 



# When $\alpha$ and $\delta$ are kept 0.9 also all $\Theta$ s are 0.9 but agents change their strategy

 When player 3 makes a mistake and connects with 2

Equilibrium obtained: -  $\{\phi,1,2,2,2,2\}$ 



Player 2 always connects with 1, let say player 3
makes a mistake and decides to connect with player 1,
now the best choice for player 4 would be to connect
to player 2 and so on for other players.

# **Observations**

### Previous case continued.....

#### Player 4 commits a mistake.

- When player 3 connects with player 1 while player 4 commits a mistake and connects to 2. In these cases 5 and 6 can either go to 1 or 2 it wont make a difference for any of the players as the payoff will be the same in either case. So we will have equilibrium networks.



**Observations** 

1. Player 5 connects with player 1,

Equilibrium obtained: -  $\{\phi,1,1,2,1,1\}$ 

2. Player 5 connects with player 2,

Equilibrium obtained: -  $\{\phi,1,1,2,2,2\}$ 



## Simulation result for analyzing convergence for 4th player: -

- $\alpha = 0.9$ ;  $\delta = 0.9$ ;
- For n=4 considering one of the equilibrium  $\{\phi,1,1,3\}$ .
- On increasing n the equilibrium for the above network shifts to {φ,1,1,1,1}
- On further increasing n the equilibrium for the 4th player converges to the player 1.
- As we can see from the output when N=4 player 4 wants to connect with player 3 but as the number of players in the game increases the player 4 changes his/her strategy by connecting to player 1 hence, we can say that convergence is happening in terms of players actions as the N increases.

```
for N = 5 equilibrium will be
for N = 6 equilibrium will be
for N = 7 equilibrium will be
```

 Payoffs are majorly influenced by δ values, it is seen by the fact that δ values were the same for the cases 1 and 3, and 2 and 4, and so are the observations.



• After  $\delta$ , theta values are the important factor to define the structure of the network