REVISITING FEW-SAMPLE BERT FINE-TUNING

Contents

- 1. Introduction
- 2. Background and Related Work
- 3. Experimental Methodology
- 4. Optimization Algorithm
- 5. Initialization
- 6. Training Iterations
- 7. Conclusion

1. Introduction

Introduction

- 현재 NLP tasks에서의 S.O.T.A
 - Fine-tuning self-supervised pre-trained model
- 그 중 효율적인 모델인 BERT
- But,
 - Fine-tuning은 여전히 불안정
 - 소규모 데이터셋에서 BERTLarge 사용할 때 더 불안정
- 불안정?
 - 여러 랜덤 값에 의해 같은 모델 같은 데이터셋을 사용해도 검증 지표가 제각각
 - 모델 배포 코스트와 시간을 증가 시킴
 - 과학적인 비교 어려움

How?

- 최적화 프로세스를 위한 optimizer 알고리즘
- Fine-tuning 모델 초기화 방식
- Fine-tuning 학습의 iteration 횟수 선정

2. Background and Related Work

Background

BERT

• Fine-tuning

Fine-tuning Instability

- 큰 intermediate task에서 pre-train 모델을 fine-tuning 하면 작은 데이터셋에서 fine-tuning이 안정화 됨 (Phang et al. (2018))
- Pre-train된 가중치에 가깝게 유지하도록 fine-tuning 모델을 제한하여 안정화 시킴 (Lee et al. (2020))
- 학습 과정에서 최종 성능이 낮게 나올 가능성이 있는 랜 덤 시드 필터링을 위한 조기 중단 (Dodge et al. (2020))
- BERT의 optimizer인 BERTAdam이 fine-tuning의 불안정성을 초래 (Mosbach et al. (2020))

BERT Representation Transferability

- BERT의 pre-train된 representation은 중간 레이어의 pre-train된 피쳐가 fine-tuning 후 더 많이 변경되는 경우, 이후 레이어의 피쳐보다 더 transferability하거나 새로운 task에 적용할 수 있음 (Peters et al., 2019; Merchant et al., 2020)
- 즉, fine-tuning 후, later(상위) 레이어의 가중치가 더 많 이 바뀐다고 함
- 본 논문에서는 pre-train된 가중치가 fine-tuning 프로세 스에 어떻게 영향을 미치는지에 대해 중점을 두고 연구

3. Experimental Methodology

Data

- GLUE benchmark
 - Natural language inference (RTE, QNLI, MNLI)
 - Paraphrase detection (MRPC, QQP)
 - Sentiment classification (SST-2)
 - Linguistic acceptability (CoLA)

Task	RTE	MRPC	STS-B	CoLA	SST-2	QNLI	QQP	MNLI
	NLI	Paraphrase	Similarity	Acceptibility	Sentiment	NLI	Paraphrase	NLI
# of training samples	2.5k	3.7k	5.8k	8.6k	61.3k	104k	363k	392k
# of validation samples	139	204	690	521	1k	1k	1k	1k
# of test samples	139	205	690	521	1.8k	5.5k	40k	9.8k
Evaluation metric	Acc.	F1	SCC	MCC	Acc.	Acc.	Acc.	Acc.
Majority baseline (val)	52.9	81.3	0	0	50.0	50.0	50.0	33.3
Majority baseline (test)	52.5	81.2	0	0	49.1	50.5	63.2	31.8

Experimental Setup

- 선행 연구의 하이퍼파라미터와 동일 (Lee et al. (2020))
- 24 layer BERT_{Large}
- 배치 사이즈: 32, 드롭아웃: 0.1, 에폭: 3
- 최대 학습률: 2 × 10⁻⁵
 - 업데이트 이후 10% 동안 선형 학습률 워밍업
 - 이후 선형 감쇠
- Mixed precision training 사용
 - 실험 속도 향상을 위한 것
 - 통계적으로 유의하지 않아 사용 가능

	CoLA	MRPC	RTE	STS-B
Mixed precision Full precision		89.2 ± 1.2 88.7 ± 1.4		90.1 ± 0.7 90.1 ± 0.7

- 조기 중단 적용 (validation 성능 10번 평가 후)
- 20개의 랜덤 시드 사용

4. Optimization Algorithm: Debiasing Omission in BERTAdam

BERTAdam

- Adam 에서 편향 보정 생략
- 본 논문에서는 BERT fine-tuning의 불안정성 요인으로 생각

Algorithm 1: the ADAM pseudocode adapted from Kingma & Ba (2014), and provided for reference. g_t^2 denotes the elementwise square $g_t \odot g_t$. β_1 and β_2 to the power t are denoted as β_1^t β_2^t . All operations on vectors are element-wise. The suggested hyperparameter values according to Kingma & Ba (2014) are: $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$, and $\epsilon = 10^{-8}$. BERTADAM (Devlin et al., 2019) omits the bias correction (lines 9–10), and treats m_t and v_t as \widehat{m}_t and \widehat{v}_t in line 11.

```
Require: α: learning rate; β₁, β₂ ∈ [0, 1): exponential decay rates for the moment estimates; f(θ): stochastic objective function with parameters θ; θ₀: initial parameter vector; λ ∈ [0, 1): decoupled weight decay.
1: m₀ ← 0 (Initialize first moment vector)
2: v₀ ← 0 (Initialize second moment vector)
3: t ← 0 (Initialize timestep)
4: while θ₁ not converged do
5: t ← t + 1
6: g₁ ← ∇₀f₁(θ₁-1) (Get gradients w.r.t. stochastic objective at timestep t)
7: m₁ ← β₁ · m₁-1 + (1 − β₁) · g₁ (Update biased first moment estimate)
8: v₁ ← β₂ · v₁-1 + (1 − β₂) · g₂² (Update biased second raw moment estimate)
9: m̂₁ ← m₁/(1 − β₁¹) (Compute bias-corrected first moment estimate)
10: v̂₁ ← v₁/(1 − β₂²) (Compute bias-corrected second raw moment estimate)
11: θ₁ ← θ₁-1 − α · m̂₁/(√v̂₁ + ϵ) (Update parameters)
12: end while
13: return θ₁ (Resulting parameters)
```


- 학습 iteration에 따른 편향된 추정값과 편향되지 않은 추정값을 사용한 업데이트 간의 비율 $(\frac{\widehat{m}_t}{\sqrt{\widehat{v}_t}})$
- 편향이 1로 수렴하면 편향 추정치 무시 가능

- 작은 데이터셋은 편향 비율이 1보다 높아 학습 어려움
- MNLI는 수렴하는 영역에서 발생 → 상대적 안정적

- 50개의 랜덤 시드에서 실험
- → few-sample fine-tuning에서는 debiasing Adam이 안정적

5. Initialization: Re-initializing BERT Pre-trained Layers

Re-initializing BERT Pre-trained Layers

- 일반적으로 BERT fine-tuning은 pre-train된 가중치를 사용해 모든 레이어를 초기화 시킴
- Pre-train된 하위 레이어: 일반적인 피쳐 학습
- Pre-train된 상위 레이어: 좀 더 전문화된 피쳐 학습
- 본 논문에서는 pre-train된 가중치를 모두 사용하는 것 과 일부만 사용하는 것으로 나누어 비교 실험
 - → BERT에서 사용한 방식이 가장 효과적인 방법이 아님을 증명하 기 위함
- Re-init
 - 상위 L개의 레이어를 재초기화함
 - $-N(0, 0.02^2)$

Re-initializing BERT Pre-trained Layers

- Re-init이 모델의 성능에 끼친 영향
- Re-init된 레이어 수에 따른 민감도

 수렴과 파라미터 변경에 대한 영향

6. Training Iterations: Fine-tuning BERT for Longer

Fine-tuning BERT for Longer

• 일반적으로 BERT는 기울어진 삼각형 학습률로 finetuning을 진행

• GLUE를 fine-tuning 하는데 있어 가장 좋은 3 에폭

• BERT fine-tuning을 좀 더 길게 하면 안정성과 성능 모

두 향상

- Setup
 - 8가지 데이터셋들에 대한 fine-tuning iteration을 증가 시켜보며 그 효과를 연구
 - 3 에폭이 96 스텝에 해당하는 1,000개의 다운샘플링된 데이터 셋의 경우 iteration 횟수를 {200, 400, 800, 1600, 3200}으로 조 정

Fine-tuning BERT for Longer

- 대부분 3 에폭 설정의 학습보다 더 오래 학습했을 때, 성 능이 향상
- 1,000개로 다운샘플링된 데이터셋에서 더 두드러짐

Dataset	RTE		MRPC		STS-B		CoLA	
Standard Re-init	3 Epochs 69.5 ± 2.5 72.6 ± 1.6	Longer $\frac{72.3 \pm 1.9}{73.1 \pm 1.3}$	$3 \text{ Epochs} \\ 90.8 \pm 1.3 \\ \underline{91.4} \pm 0.8$	Longer 90.5 ± 1.5 91.0 ± 0.4	$3 \text{ Epochs} \\ 89.0 \pm 0.6 \\ 89.4 \pm 0.2$	Longer 89.6 ± 0.3 89.9 ± 0.1	3 Epochs 63.0 ± 1.5 $\underline{63.9} \pm 1.9$	Longer 62.4 ± 1.7 61.9 ± 2.3
Dataset	RTE (1k)		MRPC (1k)		STS-B (1k)		CoLA (1k)	
Standard Re-init	3 Epochs 62.5 ± 2.8 65.6 ± 2.0	Longer $\frac{65.2 \pm 2.1}{65.8 \pm 1.7}$	$3 \text{ Epochs} \\ 80.5 \pm 3.3 \\ 84.6 \pm 1.6$	Longer 83.8 ± 2.1 86.0 ± 1.2	$3 \text{ Epochs} \\ 84.7 \pm 1.4 \\ 87.2 \pm 0.4$	Longer 88.0 ± 0.4 88.4 ± 0.2	$3 \text{ Epochs} 45.9 \pm 1.6 47.6 \pm 1.8$	Longer $\frac{48.8 \pm 1.4}{48.4 \pm 2.1}$
Dataset	SST (1k)		QNLI (1k)		QQP (1k)		MNLI (1k)	
Standard Re-init	$3 \text{ Epochs} 89.7 \pm 1.5 90.8 \pm 0.4$	Longer 90.9 ± 0.5 91.2 ± 0.5	$3 \text{ Epochs} 78.6 \pm 2.0 81.9 \pm 0.5$	Longer 81.4 ± 0.9 82.1 ± 0.3	$ \begin{array}{c c} \hline 3 \text{ Epochs} \\ 74.0 \pm 2.7 \\ 77.2 \pm 0.7 \\ \end{array} $	Longer $\frac{77.4 \pm 0.8}{77.6 \pm 0.6}$	3 Epochs $52.2 \pm 4.2 $ $66.4 \pm 0.6 $	Longer 67.5 ± 1.1 $\underline{68.8} \pm 0.5$

7. Conclusion

Conclusion

Few-sample BERT fine-tuning이 안정적이기 위한 3가지

- 1. Debiasing Omission in BERTAdam
 - BERTAdam의 편향 보정 제거가 성능 저하 원인!
 - Debiased Adam을 사용하는 것이 더욱 효과적
- 2. Re-initializing BERT Pre-trained Layers
 - Pre-train된 상위 레이어가 학습 딜레이 등 fine-tuning에 나쁜 영향을 줌!
 - 이러한 레이어를 다시 초기화하여 성능 향상 및 학습 속도 up
- 3. Fine-tuning BERT for Longer
 - 더 많은 iteration이면 fine-tuning이 안정화!