Lecture 15: Triple Integrals in Cylindrical Coordinates

Material Covered: Section 16.5 of text and Reading Assignment 2 Reference material (Section 3.2) **Objectives**: Develop Tools for Sketching and Computing Triple Integrals in Cylindrical Coordinates **Concepts/Visualization Skills**:

- Integration bounds for radius r, angle θ and z
- Visualization of bounding surfaces in cylindrical coordinates
- Differential volume in cylindrical coordinates

Cylindrical Coordinates

Interactive Demonstration of Constant Surfaces in Cylindrical Coordinates

bccalcet03 1605 16-47.cdf

Cylindrical Coordinate Transformations

Transformations Between Cylindrical and Rectangular Coordinates

Rectangular $ o$ Cylindrical	Cylindrical → Rectangular
$r^2=x^2+y^2$	$egin{aligned} x &= r \cos heta \ y &= r \sin heta \end{aligned}$
$ an \; heta = y/x \ z = z$	$y = r \sin \theta$ $z = z$

To Establish Boundary

To Establish Jacobian

Transforming Surfaces in Cartesian Coordinates to Cylindrical Coordinates

Name	Description	Example
Cylinder	$\{(r, heta,z):r=a\},a>0$	z y
Cylindrical shell	$\{(r, heta,z):0< a\leq r\leq b\}$	a b y

Transforming Surfaces in Cartesian Coordinates to Cylindrical Coordinates

Name	Description	Example
Vertical half-plane	$\{(r, heta,z): heta= heta_0\}$	$\frac{z}{\theta_0}$
Horizontal plane	$\{(r, heta,z):z=a\}$	z a y

Transforming Surfaces in Cartesian Coordinates to Cylindrical Coordinates

Name	Description	Example
Cone	$\{(r, heta,z):z=ar\},a eq0$	y y

Integration in Cylindrical Coordinates

Riemann Sum: eg. f(x, y, z) is a mass density (units $\left[\frac{kg}{m^3}\right]$)

$$Mass = \lim_{\substack{\Delta V_k \to 0 \\ n \to \infty}} \sum_{k=1}^n f(r_k^* cos(\theta_k^*), r_k^* sin(\theta_k^*), z_k^*) \Delta V_k = \iiint_D f(x, y, z) dV = \iiint_D f(x, y, z) r dr d\theta dz$$

$$\Delta V_k = r_k^* \Delta r \Delta \theta \Delta z$$

Theorem 16.6 Change of Variables for Triple Integrals in Cylindrical Coordinates

Let f be continuous over the region D, expressed in cylindrical coordinates as

$$D = \{(r, \theta, z) : 0 \le g(\theta) \le r \le h(\theta), \ \alpha \le \theta \le \beta, \ G(x, y) \le z \le H(x, y)\}.$$

Then *f* is integrable over *D*, and the triple integral of *f* over *D* is

$$\iiint\limits_D f(x,\ y,\ z)\ dV = \int_{lpha}^{eta} \int_{g(heta)}^{h(heta)} \int_{G(r\ \cos\ heta,\ r\ \sin\ heta)}^{H(r\ \cos\ heta,\ r\ \sin\ heta)} f(r\ \cos\ heta,\ r\ \sin\ heta,\ z)\ dz\ r\ dr\ d heta.$$

Differential Volume in Cylindrical Coordinates

Approximate volume $\Delta V_k = r_k^* \Delta r \Delta \theta \Delta z$

$$\begin{aligned} dxdydz \rightarrow \left| \begin{bmatrix} \boldsymbol{J} \end{bmatrix} \right|_{det} \left| dzdrd\theta \right| &= \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{bmatrix}_{det} dzdrd\theta \\ &= \begin{vmatrix} \cos\theta & -r\sin\theta & 0 \\ \sin\theta & r\cos\theta & 0 \\ 0 & 0 & 1 \end{vmatrix}_{det} dzdrd\theta = rdzdrd\theta \end{aligned}$$

Note: equations were set up in a right handed coordinate system so the Jacobian matrix is positive

Interactive Demonstration of Differential Volume in Cylindrical Coordinates

bccalcet03 1605 16-50.cdf

Boundary of Domain in Cylindrical Coordinates

Example Problem 1

Problem Statement:

Evaluate the integral
$$I=\int_0^{2\sqrt{2}}\int_{-\sqrt{8-x^2}}^{\sqrt{8-x^2}}\int_{-1}^2\sqrt{1+x^2+y^2}\,dzdydx$$

Interactive Demonstration of Problem 1

bccalcet03 1605 16-52b.cdf

In cylindrical coordinates, integrate in z with $-1 \le z \le 2$; then integrate over R with $0 \le r \le 2\sqrt{2}$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

Example Problem 1 Solution

Integrand: $f(x, y, z) = \sqrt{1 + x^2 + y^2} = \sqrt{1 + r^2}$

Region of Integration: $D = \left\{ (r, \theta, z) : 0 \le r \le 2\sqrt{2}, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, -1 \le z \le 2 \right\}$

Solution to Integral:

$$\iiint_{D}^{\pi/2} f(x, y, z) dV = \int_{-\pi/2}^{\pi/2} \int_{0}^{2\sqrt{2}} \int_{-1}^{2} \sqrt{1 + r^{2}} dz r dr d\theta = 3 \int_{-\pi/2}^{\pi/2} \int_{0}^{2\sqrt{2}} \sqrt{1 + r^{2}} r dr d\theta$$
$$= \int_{-\pi/2}^{\pi/2} (1 + r^{2})^{3/2} \Big|_{0}^{2\sqrt{2}} d\theta = \int_{-\pi/2}^{\pi/2} 26 d\theta = 26\pi$$

Example Problem 2

Problem Statement:

Find the mass of the cylinder D bounded by the paraboloid $z=4-r^2$ and the plane z=0, where the mass density of the solid in units of $\left[\frac{kg}{m^3}\right]$, given in cylindrical coordinates, is f(x,y,z)=5-z (heavy near the base and light near the vertex).

Interactive Demonstration of Problem 2

bccalcet03 1605 16-53b.cdf

Integrate first in z with $0 \le z \le 4 - r^2$; then integrate over R with $0 \le r \le 2$, $0 \le \theta \le 2 \pi$.

Example Problem 2 Solution

Integrand: f(x, y, z) = 5 - z

Region of Integration: $D = \{(r, \theta, z): 0 \le r \le 2, \ 0 \le \theta \le 2\pi, 0 \le z \le 4 - r^2\}$

Solution to Integral:

$$\iiint_{D} f(x,y,z)dV = \int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{4-r^{2}} (5-z)dz r dr d\theta = \int_{0}^{2\pi} \int_{0}^{2} \left(5z - \frac{z^{2}}{2}\right) \Big|_{0}^{4-r^{2}} r dr d\theta$$
$$= \frac{1}{2} \int_{0}^{2\pi} \int_{0}^{2} (24r - 2r^{3} - r^{5}) dr d\theta = \int_{0}^{2\pi} \frac{44}{3} d\theta = \frac{88\pi}{3}$$

Example Problem 3

Problem Statement:

Find the volume of the solid D between the cone $z=\sqrt{x^2+y^2}$ and the inverted paraboloid $z=12-x^2-y^2$.

Interactive Demonstration of Problem 3

bccalcet03 1605 16-54b.cdf

Integrate first in z with $r \le z \le 12 - r^2$; then integrate over R with $0 \le r \le 3$, $0 \le \theta \le 2 \pi$.

Example Problem 3 Solution

Integrand: f(x, y, z) = 1 (no units)

Region of Integration: $D = \{(r, \theta, z): 0 \le r \le 3, \ 0 \le \theta \le 2\pi, \ r \le z \le 12 - r^2\}$

Note: region R on the xy plane is determined by the intersection line obtained by equating the upper and lower bounding surfaces

$$z = \sqrt{x^2 + y^2} = 12 - x^2 - y^2.$$

The only valid solution is $x^2 + y^2 = 9$ therefore the region R is $x^2 + y^2 \le 9$

Solution to Integral:

$$\iiint_{D}^{\square} f(x,y,z)dV = \int_{0}^{2\pi} \int_{0}^{3} \int_{r}^{12-r^{2}} dz r dr d\theta = \int_{0}^{2\pi} \int_{0}^{3} (12-r^{2}-r) r dr d\theta = \int_{0}^{2\pi} \frac{99}{4} d\theta = \frac{99\pi}{2}$$

Lect 15 Q&A Scratch Pad