Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva

Diplomski seminar Očitavanje rukom pisanih slova

Filip Gulan

Zagreb, svibanj 2017.

Sadržaj

- Uvod
- Pretprocesiranje slike
 - Binarizacija
 - Segmentacija i skaliranje slova
- Konvolucijske neuronske mreže
 - Konvolucijski sloj
 - Sloj sažimanja
- Skup podataka
- Učenje i rezultati
 - Arhitektura
 - Učenje
 - Rezultati

Uvod

- Sustav za prepoznavanje rukom pisanih slova.
- Uporaba: automatsko ispravljanje obrazaca s odgovorima na ispitu.
- Prikupljanje skupa podataka obrasci.
- Obrada pojedinog slova
- Klasifikacija: konvolucijska neuronska mreža.

• Crno-bijela slika.

4 / 18

- Crno-bijela slika.
- Dva razreda slikovnih elemenata: prednji plan ili objekt te pozadina.

- Crno-bijela slika.
- Dva razreda slikovnih elemenata: prednji plan ili objekt te pozadina.
- Prag binarizacije.

- Crno-bijela slika.
- Dva razreda slikovnih elemenata: prednji plan ili objekt te pozadina.
- Prag binarizacije.
- Izbjegavanje ovisnosti o konstantnom pragu Otsuova metoda.

- Crno-bijela slika.
- Dva razreda slikovnih elemenata: prednji plan ili objekt te pozadina.
- Prag binarizacije.
- Izbjegavanje ovisnosti o konstantnom pragu Otsuova metoda.
- Izračun histograma slike.

Prikaz rada algoritma

• Binarna slika, iznimno lako pronaći pravokutni okvir slova.

- Binarna slika, iznimno lako pronaći pravokutni okvir slova.
- Pronalazak najbližeg i najdaljeg crnog slikovnog elementa po visini i širini slike.

- Binarna slika, iznimno lako pronaći pravokutni okvir slova.
- Pronalazak najbližeg i najdaljeg crnog slikovnog elementa po visini i širini slike.
- Skaliranje na uniformne dimenzije (30×30) olakšano izlučivanje značajki.

- Binarna slika, iznimno lako pronaći pravokutni okvir slova.
- Pronalazak najbližeg i najdaljeg crnog slikovnog elementa po visini i širini slike.
- Skaliranje na uniformne dimenzije (30 × 30) olakšano izlučivanje značajki.
- Metode skaliranja:
 - bilinearna interpolacija,
 - bikubična interpolacija,
 - metoda najbližeg susjeda korištena,
 - ...

Prikaz rada algoritma

• Nadogradnja nad višeslojnim unaprijednim neuronskim mrežama.

- Nadogradnja nad višeslojnim unaprijednim neuronskim mrežama.
- Prilagođene za rad sa slikama.

- Nadogradnja nad višeslojnim unaprijednim neuronskim mrežama.
- Prilagođene za rad sa slikama.
- Slojevi:
 - Konvolucijski sloj
 - Sloj sažimanja
 - Potpuno povezani sloj

- Nadogradnja nad višeslojnim unaprijednim neuronskim mrežama.
- Prilagođene za rad sa slikama.
- Slojevi:
 - Konvolucijski sloj
 - Sloj sažimanja
 - Potpuno povezani sloj

Slika: Konvolucijska neuronska mreža *LeNet-5*, preuzeto iz *Gradient-based learning applied to document recognition*, *Y. LeCun*

• Jezgra funkcionalnosti konvolucijske neuronske mreže.

- Jezgra funkcionalnosti konvolucijske neuronske mreže.
- Sastoji se od više filtra.

- Jezgra funkcionalnosti konvolucijske neuronske mreže.
- Sastoji se od više filtra.
- Filtar:
 - Prostorna matrica dimenzija $w \times h \times d$
 - Težine uče se

- Jezgra funkcionalnosti konvolucijske neuronske mreže.
- Sastoji se od više filtra.
- Filtar:
 - Prostorna matrica dimenzija $w \times h \times d$
 - Težine uče se
- Konvoluiranje filtra.

- Jezgra funkcionalnosti konvolucijske neuronske mreže.
- Sastoji se od više filtra.
- Filtar:
 - Prostorna matrica dimenzija $w \times h \times d$
 - Težine uče se
- Konvoluiranje filtra.
- Izlaz niz aktivacijskih mapa (odziva filtra).

- Jezgra funkcionalnosti konvolucijske neuronske mreže.
- Sastoji se od više filtra.
- Filtar:
 - Prostorna matrica dimenzija $w \times h \times d$
 - Težine uče se
- Konvoluiranje filtra.
- Izlaz niz aktivacijskih mapa (odziva filtra).
- Hiperparametri broj filtra, veličina filtra, korak pomaka filtra.

Sloj sažimanja

• Cilj: smanjenje prostornih dimenzija ulaza - aktivacijskih mapa.

Sloj sažimanja

- Cilj: smanjenje prostornih dimenzija ulaza aktivacijskih mapa.
- Nakon jednog ili više konvolucijskih slojeva.

Sloj sažimanja

- Cilj: smanjenje prostornih dimenzija ulaza aktivacijskih mapa.
- Nakon jednog ili više konvolucijskih slojeva.
- Vrste:
 - Sažimanje srednjom vrijednosti
 - Sažimanje maksimalnom vrijednosti
 - Sažimanje L2 normom
 - Sažimanje težinskim usrednjavanjem

2	3	1	3
2	4	2	1
0	5	1	2
2	1	2	1

4	3
5	2

• 16 000 slika slova hrvatske i engleske abecede.

- 16 000 slika slova hrvatske i engleske abecede.
- 7 750 slika velikih slova, 7 750 slika malih slova, 500 slika znaka "-".

- 16 000 slika slova hrvatske i engleske abecede.
- 7 750 slika velikih slova, 7 750 slika malih slova, 500 slika znaka "-".
- Podjela:
 - Skup za učenje 12 000
 - Skup za provjeru 4000
 - Skup za testiranje 1000

- 16 000 slika slova hrvatske i engleske abecede.
- 7 750 slika velikih slova, 7 750 slika malih slova, 500 slika znaka "-".
- Podjela:
 - Skup za učenje 12 000
 - Skup za provjeru 4000
 - Skup za testiranje 1000
- Crno-bijele slike 30×30 .

Arhitektura

- Konvolucijski sloj: 32 filtra 3 × 3, korak pomaka 1, ReLU.
- Sloj sažimanja maksimalnom vrijednosti 2 × 2.
- Konvolucijski sloj: 64 filtra 3 × 3, korak pomaka 1, ReLU.
- Sloj sažimanja maksimalnom vrijednosti 2 × 2.
- Potpuno povezani sloj 128 neurona, ReLU.
- Potpuno povezani sloj 128 neurona, ReLU.
- Izlazni sloj 32 neurona, softmax.

• Python, Kreas, TensorFlow

- Python, Kreas, TensorFlow
- Algoritam učenja ADADELTA

- Python, Kreas, TensorFlow
- Algoritam učenja ADADELTA
- Regularizacija dropout:
 - Između potpuno povezanoga sloja i sloja sažimanja 0.25
 - Između dva potpuno povezana sloja 0.5

(e) Bez regularizacije

(f) Uz regularizaciju

Rezultati

Slovo	Točnost		Slovo	Točnost		Slo
Α	34/35	-	ı	25/31	•	
В	31/31	-	J	21/25	-	J
С	29/29	-	K	32/34	-	\
Č	30/32		L	31/39		7
Ć	28/28	-	М	32/34	-	
D	31/32	-	N	27/30	-	>
Ð	27/29	=	0	23/24		\
E	31/33	-	Р	26/26	-	V
F	34/35	-	R	35/37	-	(
G	30/31	=	S	28/32		-
Н	22/24		Š	45/45	-	Uku
		-			-	

Slovo	Točnost
Т	47/47
U	26/27
V	30/32
Z	26/27
Ž	26/28
X	29/29
Υ	23/24
W	23/25
Q	23/30
-	35/35
Ukupno	94%

Tablica: Točnost na skupu za testiranje

Rezultati

Zaključak

- Dobiveni rezultati vrlo zadovoljavajući za dani skup podataka:
 - Završni rad obična neuronska mreža, ručno izlučivanje značajki -78.44%
- Potreban veći skup podataka.
- Naprednija konvolucijska neuronska mreža.
- Poboljšati algoritam učenja.

Hvala na pažnji!

