МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка параметров надежности программ по временным моделям
обнаружения ошибок

Студент гр. 8304	Рыжиков А.В.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2022

Цель работы.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Ход выполнения.

1. Равномерный закон

a.	100% (n =	= 30)
a.	100/0/	

i	X	i	X	i	X
1	1.322	11	7.449	21	13.366
2	1.406	12	7.724	22	13.428
3	1.494	13	8.288	23	14.222
4	1.804	14	8.712	24	15.345
5	4.581	15	8.897	25	17.805
6	5.783	16	9.637	26	17.985
7	6.186	17	9.648	27	18.764
8	6.618	18	9.923	28	19.102
9	6.968	19	10.094	29	19.155
10	7.126	20	10.094	30	19.378

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 20.1596$$

Найдём *т*≥*n*+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; g_n(m, A) = \frac{n}{m-A}$$

m	f	g	f-g
31	3.995	2.767	1.227
32	3,027	2.534	0.4935
33	2,558	2.336	0.2221
34	2,255	2.167	0.0878
35	2,035	2.021	0.0133
36	1,863	1.894	0.0304

Минимум разности при m = 35

Первоначальное количество ошибок B = m - 1 = 34

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1)X_{i}} = \frac{n}{(\hat{B} + 1)\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} iX_{i}}$$

K = 0.0066705

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}.$$

i	31	32	33	34
X_i	37.478	49.971	74.956	149.914

3

Время до полного завершения тестирования: 312.32

Полное время тестирования: 615.374

b.
$$80\%$$
 $(n = 24)$

i	X	i	X	i	X
1	0.211	9	6.427	17	12.55
2	2.048	10	6.685	18	12.909
3	2.148	11	8.166	19	14.102
4	2.419	12	9.83	20	14.905
5	2.568	13	10.44	21	17.912
6	5.055	14	10.458	22	17.99
7	5.883	15	11.453	23	18.316
8	5.97	16	11.899	24	19.895

Проверка существования максимума B^{$^{\circ}$}:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 16.55$$

Найдём *т*≥*n*+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; g_n(m,A) = \frac{n}{m-A}$$

m	f	g	f-g
25	3.776	2.842	0.934
26	2.816	2.541	0.275
27	2.354	2.297	0.0565
28	2.058	2.097	0.03898
29	1.843	1.928	0.0847

Минимум разности при m = 28

Первоначальное количество ошибок B = m - 1 = 27

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1)X_{i}} = \frac{n}{(\hat{B} + 1)\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} iX_{i}}$$

K = 0.009108

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}.$$

i	25	26	27
X_i	36.596	54.8945	109.789

Время до полного завершения тестирования: 201.28

Полное время тестирования: 431.52

c.
$$60\% (n = 18)$$

i	X	i	X	i	X
1	2.267	7	5.762	13	13.326
2	2.783	8	7.195	14	13.635
3	3.091	9	7.366	15	14.677
4	3.563	10	7.864	16	15.371
5	3.704	11	8.794	17	15.512
6	5.285	12	10.478	18	17.42

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 12.36$$

$$12.36 > 9.5$$

Найдём *т*≥*n*+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; g_n(m,A) = \frac{n}{m-A}$$

m	f	g	f-g
19	3.495	2.711	0.7833
20	2.548	2.356	0.1910
21	2.098	2.083	0.0138
22	1.812	1.867	0.0556

Минимум разности при m = 21

Первоначальное количество ошибок B = m - 1 = 20

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1)X_i} = \frac{n}{(\hat{B} + 1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

K = 0.0131811

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}.$$

i	19	20
\boldsymbol{X}_{i}	37.93	75.86

Время до полного завершения тестирования: 113.79

Полное время тестирования: 271.9

2. Экспоненциальный закон

a. 100% (n = 30)

i	X	i	X	i	X
1	0.481	11	5.071	21	10.315
2	1.207	12	5.086	22	10.323
3	1.714	13	6.745	23	10.323
4	2.361	14	6.775	24	18.304
5	3.036	15	6.92	25	20.715
6	3.857	16	7.936	26	31.759
7	3.979	17	8.214	27	35.32
8	4.222	18	9.499	28	42.272
9	4.657	19	9.741	29	46.589
10	4.949	20	10.232	30	61.853

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 23.44$$

Найдём *т*≥*n*+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; g_n(m,A) = \frac{n}{m-A}$$

31	<i>f</i> 3,995	<i>g</i> 3.9687	f - g 0.0262
32	3,027	3.505	0.4777

Минимум разности при т = 31

Первоначальное количество ошибок B = m - 1 = 30

B = n, найдены все ошибки - тестирование завершено

Полное время тестирования: 396.52

b.
$$80\%$$
 $(n = 24)$

i	X	i	X	i	X
1	0.231	9	3.195	17	10.563
2	0.241	10	3.474	18	12.3
3	0.409	11	5.768	19	15.472
4	0.46	12	7.758	20	19.88
5	1.915	13	8.143	21	22.554
6	2.032	14	8.729	22	24.157
7	2.114	15	8.85	23	32.703
8	2.281	16	8.895	24	36.484

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 18.8894$$

18.8894 > 12.5

Найдём *т*≥*n*+1:

$$f_n(m) = \sum_{i=1}^{n} \frac{1}{m-i}; g_n(m,A) = \frac{n}{m-A}$$

m	f	$oldsymbol{g}$	f-g
25	3.776	3.927	0.1516
26	2.816	3.3752	0.5593

Минимум разности при m = 25

Первоначальное количество ошибок B = m - 1 = 24

B = n, найдены все ошибки - тестирование завершено

Полное время: 238.61

c.
$$60\% (n = 18)$$

i	X	i	X	i	X
1	0.763	7	3.027	13	13.205
2	0.815	8	3.895	14	14.89
3	1.811	9	4.079	15	18.88
4	1.955	10	5.203	16	19.573
5	2.386	11	5.813	17	29.878
6	2.885	12	11.568	18	31.794

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 14.183$$

Найдём *т*≥*n*+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; g_n(m, A) = \frac{n}{m-A}$$

m	f	g	f-g
19	3,495	3.73682	0.241717
20	2,548	3.09442	0.54667

Минимум разности при т = 19

Первоначальное количество ошибок B = m - 1 = 18

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1)X_{i}} = \frac{n}{(\hat{B} + 1)\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} iX_{i}}$$

K = 0.0216728

Полное время: 172.43

3. Релеевский закон

a. 100% (n = 30)

i	X	i	X	i	X
1	1.274	11	9.311	21	12.457
2	1.477	12	9.409	22	13.036
3	2.113	13	9.585	23	13.562
4	3.289	14	9.781	24	13.728
5	4.761	15	10.157	25	13.957
6	5.762	16	10.234	26	14.79

7	6.26	17	10.704	27	15.524
8	6.951	18	10.943	28	16.868
9	7.718	19	11.481	29	19.672
10	8.182	20	12.413	30	21.957

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 19.57$$

Найдём *т*≥*n*+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; g_n(m,A) = \frac{n}{m-A}$$

m	f	g	f-g
31	3,995	2.624	1.3702
32	3,027	2.413	0.6136
33	2,558	2.233	0.3246
34	2,255	2.079	0.1764
35	2,035	1.944	0.09058
36	1,863	1.825	0.03749
37	1,7245	1.7211	0.00336
38	1,609	1.627	0.01906

Минимум разности при m = 37

Первоначальное количество ошибок B = m - 1 = 36

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1)X_i} = \frac{n}{(\hat{B} + 1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

K = 0.0056

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}.$$

i	31	32	33	34	35	36
X_i	29.762	35.714	44.643	59.52	89.29	178.57

Время до полного завершения тестирования: 437.51

Полное время тестирования: 744.86

b.
$$80\%$$
 $(n = 24)$

i	X	i	X	i	X
1	0.986	9	6.473	17	10.361
2	1.711	10	6.536	18	11.02
3	3.054	11	7.209	19	11.606
4	3.443	12	7.733	20	12.002
5	4.582	13	7.888	21	13.379
6	5.374	14	8.653	22	15.122
7	6.028	15	10.269	23	17.767
8	6.358	16	10.304	24	18.763

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 16.075$$

Найдём *т*≥*n*+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \ g_n(m,A) = \frac{n}{m-A}$$

m	f	g	f-g
25	3,776	2.689	1.086
26	2,816	2.418	0.3977
27	2,354	2.196	0.1575
28	2,058	2.0126	0.0454
29	1,844	1.856	0.01307
30	1,678	1.723	0.0452

Минимум разности при т = 29

Первоначальное количество ошибок B = m - 1 = 28

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1)X_i} = \frac{n}{(\hat{B} + 1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

K = 0.00898705

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}.$$

i	25	26	27	28
X_i	27.817	37.09	55.635	111.27

Время до полного завершения тестирования 231.81

Полное время: 438.44

c.
$$60\% (n = 18)$$

i	X	i	X	i	X
1	1.689	7	5.955	13	11.268
2	2.803	8	7.657	14	11.915
3	4.026	9	8.341	15	12.101
4	4.264	10	8.448	16	15.489
5	4.461	11	8.467	17	19.585
6	4.891	12	10.845	18	20.392

Проверка существования максимума *B*^{*}:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 12.4017$$

Найдём *т*≥*n*+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; g_n(m, A) = \frac{n}{m-A}$$

m	f	g	f-g
19	3,495	2.7279	0.7671
20	2,548	2.3689	0.1787
21	2,098	2.093	0.0043
22	1,812	1.875	0.063

Минимум разности при m = 21

Первоначальное количество ошибок B = m - 1 = 20

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1)X_{i}} = \frac{n}{(\hat{B} + 1)\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} iX_{i}}$$

K = 0.01287502

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}.$$

i	19	20
Xi	38.834	77.669

Время до полного завершения тестирования: 116.5

Полное время тестирования: 279.11

4. Итоги

а. Оценка первоначального числа ошибок

Закон распределения \ кол-во данных	n=30	n=24	n=18
Равномерный	34	27	20
Экспоненциальный	30	24	18
Релеевский	36	28	20

b. Оценка полного времени проведения тестирования

Закон распределения \ кол-во данных	n=30	n=24	n=18
Равномерный	615.374	431.52	271.9
Экспоненциальный	396.52	238.61	172.43
Релеевский	744.86	438.44	279.11

Выводы

В ходе выполнения лабораторной работы были исследованы показатели надежности программ, характеризуемые моделью обнаружения ошибок Джелинского-Моранды для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. В результате было получено, что показатели для данных, сгенерированных по экспоненциальному закону распределения, являются лучшими, что объясняется предположением модели Джелинского-Моранды — время до следующего отказа программы распределено экспоненциально.