

FCC SAR TEST REPORT

Report No.: SET2018-13582

Product: Industrial tablet

Brand Name: CHAINWAY

Model No.: P80

FCC ID: 2AC6AP80

Applicant: Shenzhen Chainway Information Technology Co.,Ltd.

Address: 9/F, Building 2, Daqian Industrial Park, Longchang Rd., District 67,

Bao'an. Shenzhen

Issued by: CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd.

Lab Location: Building 28/29, East of Shigu Xili Industrial Zone, Nanshan District

Shenzhen, Guangdong 518055, China

Tel: 86 755 26627338 Fax: 86 755 26627238

Mail: manager@ccic-set.com Website: http://www.ccic-set.com

This test report consists of 52 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

CCIC-SET/T-I (00) Page 1 of 52

Test Report

Product.: Industrial tablet Model No.: P80 Brand Name....: **CHAINWAY** FCC ID..... 2AC6AP80 Shenzhen Chainway Information Technology Co.,Ltd. Applicant....: 9/F, Building 2, Dagian Industrial Park, Longchang Rd., District Applicant Address.....: 67, Bao'an, Shenzhen Shenzhen Chainway Information Technology Co.,Ltd. Manufacturer....: 9/F, Building 2, Dagian Industrial Park, Longchang Rd., District Manufacturer Address: 67, Bao'an, Shenzhen Test Standards..... § 2.1093- Radiofrequency Radiation Exposure 47CFR Evaluation: Portable Devices; ANSI C95.1-1992: Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz -300 GHz.(IEEE Std C95.1-1991) IEEE 1528-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) the Human Head from Wireless Communications Devices: Measurement Techniques Test Result....: **Pass** Test Date....: Mei Chun 2018-11-01 Tested by: Chun Mei, Test Engineer Chris You 2018-11-01 Reviewed by....: You Xingjin, Senior Egineer Approved by....: 2018-11-01 Zhu Qi, Manager

CCIC-SET/T-I (00) Page 2 of 52

Contents

Tes	t Report	2
1.	Administrative Data	4
2.	Equipment Under Test (EUT)	5
3.	SAR Summary	7
4.	Specific Absorption Rate (SAR)	7
5.	Tissue check and recommend Dielectric Parameters	12
6.	SAR System validation	15
7.	SAR measurement procedure	17
8.	Conducted RF Output Power	18
9.	SAR test Exclusion and estimate SAR calculation:	35
10.	Scaling Factor calculation	38
11.	Test Results	40
12.	Simultaneous Transmissions Analysis	46
13.	Measurement Uncertainty	47
14.	Equipment List	51
AN	NEX A: Appendix A: SAR System performance Check Plots	52
AN	NEX B: Appendix B: SAR Measurement results Plots	52
AN	NEX C: Appendix C: Calibration reports	52
AN	NEX D: Appendix D: SAR Test Setup	52

1. Administrative Data

1.1 Testing Laboratory

Test Site: CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd

Address: Electronic Testing Building, No. 43 Shahe Road, Xili Jiedao, Nanshan

District, Shenzhen, Guangdong, China

CNAS Lab Code: CCIC-SET is a third party testing organization accredited by China

National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is

L1659.

NVLAP Lab Code: CCIC-SET is a third party testing organization accredited by NVLAP

according to ISO/IEC 17025. The accreditation certificate number is

201008-0.

FCC Registration: CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC

Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Designation Number: CN5031,

valid time is until December 31, 2018.

ISED Registration: CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC

Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 11185A-1 on Aug. 04, 2016, valid time is until Aug.

03, 2019.

Test Environment Temperature ($^{\circ}$ C): 21 $^{\circ}$ C

Condition: Relative Humidity (%): 60%

Atmospheric Pressure (kPa): 86KPa-106KPa

CCIC-SET/T-I (00) Page 4 of 52

2. Equipment Under Test (EUT)

Identification of the Equipment under Test

Device Type: Portable

Exposure Category: Population/Uncontrolled

Sample Name: Industrial tablet

Brand Name: CHAINWAY

Model Name: P80

GSM850MHz/1900MHz,CDMA BC0

Support Band WCDMA 850MHz/1900MHz,

LTE Band2/4/7/12/13,WIFI 2.4G, BT,GPS

GPRS850MHz/1900MHz,CDMA BC0

Test Band WCDMA 850MHz /1900MHz,

LTE Band 2/4/5/7/26/41,WIFI

IMEI No. 357881013575388

Device Class B

Multi Class GPRS: Class 12; EGPRS: Class 12

General Accessories Power Supply

description: Hotspot 2.4GHz WLAN support Hotspot mode

Antenna type Internal Antenna

Operation mode GSM /CDMA/WCDMA / LTE /WIFI

GSM(GMSK),UMTS(QPSK),LTE(QPSK,16QAM),

Modulation mode WIFI(OFDM/DSSS) ,BT(GFSK/π /4-DQPSK/8-DPSK)

DTM mode Not support

Hardware Version \

Software Version \

Max. RF Power 32.03dBm

Max. SAR Value Body: 0.862W/kg(Limit:1.6W/Kg, 0mm distance)

NOTE:

a. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

CCIC-SET/T-I (00) Page 5 of 52

EUT testing configuration

Tested frequency range(s)	Transmitter Frequency Range	Receiver Frequency Range			
GSM850:	824-849 MHz	869-894 MHz			
GSM1900:	1850-1910 MHz	1930-1990 MHz			
CDMA BC0:	815-849 MHz	860-894 MHz			
UMTS Band II:	1850-1910 MHz	1930-1990 MHz			
UMTS Band V:	824-849 MHz	869-894 MHz			
LTE Band2:	1850-1910 MHz	1930-1990 MHz			
LTE Band4:	1710-1755 MHz	2110-2155 MHz			
LTE Band5:	824-849 MHz	869-894 MHz			
LTE Band7:	2500-2570 MHz	2620-2690 MHz			
LTE Band26:	810-85	0 MHz			
LTE Band41	2498-2688 MHz				
WIFI(tested):	2412-2462 MHz				
	5180-52	40 MHz			
Bluetooth:	2402-24	80 MHz			
NFC:	13.56				
	128-190-251(GSM850)				
	512-661-810(GSM1900)				
	9262-9400-9538(UMTS Band II)				
	4132-4183-4233(UMTS Band V)				
	1024-234-799(CDMA BC0)				
	18700-18900-19100(LTE Band 2 Bandwidth 20M)				
Test channels(low-mid-high):	20050-20175-20300(LTE Band 4 Bandwidth 20M)				
	20450-20525-20600(LTE Band 5 Bandwidth 10M)				
	20850-21100-21350(LTE Band 7 B	andwidth 20M)			
	26775-26865-26965(LTE Band 26	Bandwidth 15M)			
	39750-40620-41490(LTE Band 41	Bandwidth 20M)			
	1-6-11(Wife 2.4G 802.11b)				
	5180(Wife 2.4G 802.11a)				

CCIC-SET/T-I (00) Page 6 of 52

3. SAR Summary

Highest Standalone SAR Summary

Exposure	Frequency	Scaled	Highest Scaled		
Position	Band	1g-SAR(W/kg)	1g-SAR(W/kg)		
	GSM850	0.862			
	GSM1900	0.817			
	CDMA BC0	0.774			
	WCDMA Band V	0.061			
	WCDMA Band II	0.393			
Body-worn	LTE Band 2	0.364			
Accessory	LTE Band 4	0.279	0.862		
(0mm Gap)	LTE Band 5	0.095			
	LTE Band 7	0.350			
	LTE Band 26	0.140			
	LTE Band 41	0.605			
	WIFI 2.4G 802.11b	0.496			
	WIFI 5G 802.11a	0.688			

Highest Simultaneous SAR Summary

Exposure Position	Frequency Band	Highest Scaled 1g-SAR(W/kg)
Hotspot (0mmGap)	WWAN(GSM850)&WIFI	1.542

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

CCIC-SET/T-I (00) Page 7 of 52

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \frac{\delta T}{\delta t}$$

where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

CCIC-SET/T-I (00) Page 8 of 52

4.2 Applicable Standards and Limits

4.2.1 Applicable Standards

Radiofrequency Radiation Exposure Evaluation: Portable Devices						
Safety Levels with Respect to Human Exposure to Radio Frequency						
Electromagnetic Fields, 3 kHz – 300 GHz.(IEEE Std C95.1-1991)						
IEEE Recommended Practice for Determining the Peak Spatial-Average						
Specific Absorption Rate (SAR) in the Human Head from Wireless						
Communications Devices: Measurement Techniques						
v02r02 802.11 Wi-Fi SAR						
v06 General RF Exposure Guidance						
v01r02 SAR for laptop and tablets						
v01r03 Handset SAR						
v01r04 SAR Measurement 100MHz to 6GHz						
v01r02 SAR Exposure Reporting						
v03r01 3G SAR Procedures						
v02r05 SAR for LTE Devices						
v02r01 Hotspot Mode						

4.2.2 RF exposure Limits

Human Exposure	Uncontrolled Environment General Population
Spatial Peak SAR* (Brain/Body)	1.60 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g
Spatial Peak SAR*** (Limbs)	4.00 mW/g

The limit applied in this test report is shown in bold letters. Notes:

- * The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
 - ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

CCIC-SET/T-I (00) Page 9 of 52

4.3 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SATIMO. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

4.4 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SATIMO as an integral part of the COMOSAR test system.

The device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder

CCIC-SET/T-I (00) Page 10 of 52

4.5 Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents,

e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.

Frequency 700 MHz to 3 GHz;

Linearity: ± 0.5 dB (700 MHz to 3 GHz)

Directivity ± 0.25 dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal to probe

axis)

Dynamic Range 1.5 μ W/g to 100 mW/g;

Linearity: ± 0.5 dB

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 5 mm

Distance from probe tip to dipole centers: <2.7 mm

Application General dosimetry up to 3 GHz

Dosimetry in strong gradient fields

Compliance tests of P80 LTE USB Modems

Compatibility COMOSAR

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

CCIC-SET/T-I (00) Page 11 of 52

5. Tissue check and recommend Dielectric Parameters

5.1 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness Power drifts in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Table 1: Recommended Dielectric Performance of Tissue

Ingredients	Frequency (MHz)											
(% by weight)	450		835		915		1900		2450		2600	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.46	52.4	41.05	56.0	54.9	40.4	62.7	73.2	55.24	64.49
Salt (Nacl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	0.5	0.024
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	44.45	32.25
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.2	52.5	39.0	52.5
Conductivity (s/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.80	1.78	1.96	2.16

MSL/HSL750 (Body and Head liquid for 650 – 850 MHz)

Item	Head Tissue Simulation Liquid HSL750						
	Muscle(body)Tissu	e Simulation Liquid	MSL750				
H2O	Water, 35 - 58%						
Sucrese	Sugar, white, refine	ed, 40-60%					
NaCl	Sodium Chloride, 0)-6%					
Hydroxyethel-cellulsoe	Medium Viscosity (CAS# 9004-62-0), «	<0.3%				
Preventol-D7	Preservative: aque	ous preparation, (C	AS# 55965-84-9), c	ontaining			
	5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone,						
	0.1-0.7%						
Frequency (MHz)	Head εr Head σ(S/m) Body εr Bodyσ(S/m)						
750	41.9	0.89	55.2	0.97			

Note: The liquid of 700MHz&2600MHz typical liquid composition is provided by SATIMO.

CCIC-SET/T-I (00) Page 12 of 52

Table 2 Recommended Tissue Dielectric Parameters

Fragues et (MITE)	Head	Tissue	Body Tissue		
Frequency (MHz)	€ _r	σ(S/m)	€ r	σ(S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

CCIC-SET/T-I (00) Page 13 of 52

5.2 Simulate liquid

Liquid check results:

Table 3: Dielectric Performance of Body Tissue Simulating Liquid

	Temperature: 23.2°C;	; Humidity: 64%;	
/	Frequency	Frequency Permittivity ε	
Target value	850MHz	55.2±5%	0.97±5%
Validation value (2018-10-27)	850MHz	55.02	0.97
Target value	1900MHz	53.3±5%	1.52±5%
Validation value (2018-10-28)	1900MHz	53.23	1.51
Target value	2450MHz	52.7±5%	1.95±5%
Validation value (2018-10-29)	2450MHz	52.88	1.93
Target value	2600MHz	52.5±5%	2.16±5%
Validation value (2018-10-30)	2600MHz	52.45	2.11
Target value	5200MHz	49±5%	5.3±5%
Validation value (2018-10-31)	5200MHz	49.45	5.21

CCIC-SET/T-I (00) Page 14 of 52

SAR System validation

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of ±10%. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The following procedure, recommended for performing validation tests using box phantoms is based on the procedures described in the IEEE standard P1528. Setup according to the setup diagram below:

With the SG and Amp and with directional coupler in place, set up the source signal at the relevant frequency and use a power meter to measure the power at the end of the SMA cable that you intend to connect to the balanced dipole. Adjust the SG to make this, say, 0.01W (10 dBm). If this level is too high to read directly with the power meter sensor, insert a calibrated attenuator (e.g. 10 or 20 dB) and make a suitable correction to the power meter reading.

- Note 1: In this method, the directional coupler is used for monitoring rather than setting the exact feed power level. If, however, the directional coupler is used for power measurement, you should check the frequency range and power rating of the coupler and measure the coupling factor (referred to output) at the test frequency using a VNA.
- Note 2: Remember that the use of a 3dB attenuator (as shown in Figure 8.1 of P1528) means that you need an RF amplifier of 2 times greater power for the same feed power. The other issue is the cable length. You might get up to 1dB of loss per meter of cable, so the cable length after the coupler needs to be guite short.
- Note 3: For the validation testing done using CW signals, most power meters are suitable. However, if you are measuring the output of a modulated signal from either a signal generator or a handset, you must ensure that the power meter correctly reads the modulated signals.

The measured 1-gram averaged SAR values of the device against the phantom are provided in Tables 5 and Table 6. The humidity and ambient temperature of test facility

CCIC-SET/T-I (00) Page 15 of 52

were 64% and 23.2°C respectively. The body phantom were full of the body tissue simulating liquid. The EUT was supplied with full-charged battery for each measurement.

The distance between the back of the EUT and the bottom of the flat phantom is 10 mm (taking into account of the IEEE 1528 and the place of the antenna).

Table 4: Body SAR system validation (1g)

Frequency	Duty cycle	Target value (W/kg)	Test valu	ue (W/kg) 1W
835MHz(2018-10-27)	1:1	10.31±10%	0.1021	10.21
1900MHz(2018-10-28)	1:1	40.81±10%	0.4071	40.71
2450MHz(2018-10-29)	1:1	51.42±10%	0.5161	51.61
2600MHz(2018-10-30)	1:1	57.55±10%	0.5641	56.41
5200MHz(2018-10-31)	1:1	155.78±10%	1.5551	155.51

^{*} Note: Target value was referring to the measured value in the calibration certificate of reference dipole. Note: All SAR values are normalized to 1W forward power.

CCIC-SET/T-I (00) Page 16 of 52

6. SAR measurement procedure

The SAR test against the head phantom was carried out as follow:

Establish a call with the maximum output power with a base station simulator, the connection between the EUT and the base station simulator is established via air interface.

After an area scan has been done at a fixed distance of 2mm from the surface of the phantom on the source side, a 3D scan is set up around the location of the maximum spot SAR. First, a point within the scan area is visited by the probe and a SAR reading taken at the start of testing. At the end of testing, the probe is returned to the same point and a second reading is taken. Comparison between these start and end readings enables the power drift during measurement to be assessed.

Above is the scanning procedure flow chart and table from the IEEEp1528 standard. This is the procedure for which all compliant testing should be carried out to ensure that all variations of the device position and transmission behavior are tested.

CCIC-SET/T-I (00) Page 17 of 52

7. Conducted RF Output Power

8.1 GSM Conducted Power

		Burst-A	veraged outp	out Power	Division	Frame	-Average	d output
GS	M850	(dBm)				Power (dBm)		m)
		128CH	190CH	251CH	Factors	128CH	190CH	251CH
GSM (CS)		31.49	32.03	31.98	-9.03	22.46	23.00	22.95
	1 Tx Slot	30.25	30.48	30.96	-9.03	21.22	21.45	21.93
GPRS	2 Tx Slots	27.66	27.75	27.88	-6.02	21.64	21.73	21.86
(GMSK)	3 Tx Slots	26.05	26.14	26.23	-4.26	21.79	21.88	21.97
	4 Tx Slots	24.86	24.90	24.99	-3.01	21.85	21.89	21.98
	1 Tx Slot	25.36	25.47	24.87	-9.03	16.33	16.44	15.84
EDGE	2 Tx Slots	23.57	23.68	23.35	-6.02	17.55	17.66	17.33
(8PSK)	3 Tx Slots	22.14	22.26	22.03	-4.26	17.88	18.00	17.77
	4 Tx Slots	20.65	20.76	20.55	-3.01	17.64	17.75	17.54
		Burst-Averaged output Power			Division	Frame-Averaged output		
GSI	M1900		(dBm)			Power (dBm)		
		512CH	661CH	810CH	Factors	512CH	661CH	810CH
GSN	M (CS)	29.38	29.67	29.36	-9.03	20.35	20.64	20.33
	1 Tx Slot	28.36	28.97	29.07	-9.03	19.33	19.94	20.04
GPRS	2 Tx Slots	25.87	26.12	26.18	-6.02	19.85	20.10	20.16
(GMSK)	3 Tx Slots	24.05	24.26	24.04	-4.26	19.79	20.00	19.78
	4 Tx Slots	23.36	23.66	23.35	-3.01	20.35	20.65	20.34
	1 Tx Slot	25.05	25.47	25.60	-9.03	16.02	16.44	16.57
EDGE	2 Tx Slots	23.25	23.58	23.37	-6.02	17.23	17.56	17.35
(8PSK)	3 Tx Slots	22.01	22.17	22.00	-4.26	17.75	17.91	17.74
	4 Tx Slots	20.84	20.96	20.83	-3.01	17.83	17.95	17.82

Note: Per KDB 447498 D01 v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.

For hotspot SAR, EUT was performed at GPRS Class 12 multi-slots(4TX) mode

For Head and Body-worn SAR testing, EUT was set in GSM Voice mode for both GSM850 and GSM1900

Timeslot consignations

No. Of Slots	Slot 1	Slot 2	Slot 3	Slot 4	
Slot Consignation 1Up4Down		2UpDown	3UpDown	4Up1Down	
Duty Cycle	1:8	1:4	1:2.67	1:2	
Crest Factor	-9.03dB	-6.02dB	-4.26dB	-3.01dB	

CCIC-SET/T-I (00) Page 18 of 52

8.2 CDMA Conducted output Power

Conducted Power (Unit:dBm)							
Band	CDMA2000 BC0						
Channel	1013	384	777				
Frequency(MHz)	824.7	836.52	848.31				
1xRTT RC1 + SO55	23.35	23.47	23.48				
1xRTT RC3 + SO55	23.26	23.39	23.27				
1xRTT RC3 + SO32(+ F-SCH)	23.24	23.19	23.26				
1xRTT RC3 + SO32(+SCH)	23.31	23.32	23.27				
1xEVDO Rev A RETAP	22.76	22.65	22.49				

8.3 WCDMA Conducted output Power

	band	W	CDMA 8	550	WCDMA 1900			
Item	Frequency	4132	4183	4233	9262	9400	9538	
	Subtest		dBm			dBm		
WCDMA	RMC 12.2Kbps	22.02	22.77	22.88	22.09	22.66	22.74	
	1	22.01	22.63	22.72	22.05	22.45	22.54	
HSDPA	2	21.85	21.84	21.85	21.89	21.86	21.83	
ПЗДГА	3	21.52	21.53	21.54	21.53	21.42	21.47	
	4	21.12	21.24	21.35	21.33	21.24	21.34	
	1	21.89	22.47	22.56	22.03	21.78	21.53	
	2	21.62	21.64	21.62	21.57	21.63	21.42	
HSUPA	3	21.42	21.36	21.54	21.43	21.42	21.32	
	4	21.33	21.30	21.36	21.25	21.26	21.23	
	5	21.25	21.26	21.32	21.16	21.23	21.17	

Note:

WCDMA SAR was tested under PMC 12.2kbps with HSPA Inactive per KDB Publication 941225
D01v03r01.HSPA SAR was not requires since the average output power of the HSPA subtests was not
more than 0.25dB higher than the RMC level and SAR was less than 1.2W/kg.

CCIC-SET/T-I (00) Page 19 of 52

2. It is expected by the manufacturer that MPR for some HSPA subtests may be up to 2dB more than specified by 3GPP, but also as low as 0dB according to the chipset implementation in this model

8.3 LTE Conducted peak output Power

LTE Test Configurations

The CMW500 Wide Band Radio Communication Tester was used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR test were performed with the same number of RB and RB offsets transmitting on all frames.

1) Spectrum Plots for RB configurations

A properly configured base station simulator was used for LTE output power measurements and SAR testing. Therefore, spectrum plots for RB configurations were not required to be included in this report.

2) MPR

When MPR is implemented permanently within the UE, regardless of network requirements, only those RB configurations allowed by 3GPP for the channel bandwidth and modulation combinations may be tested with MPR active. Configurations with RB allocations less than the RB thresholds required by 3GPP must be tested without MPR.

The allowed Maximum Power Reduction(MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101:

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Channel	MPR (dB)					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2

3)A-MPR LTE procedures for SAR testing

A-MPR(Additional MPR) has been disabled for all SAR tests by using Network Signaling Value of "NS 01" on the base station simulator.

4)LTE procedures for SAR testing

A) Largest channel bandwidth standalone SAR test

requirements i) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel.

CCIC-SET/T-I (00) Page 20 of 52

When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

1. LTE Band 2 Conducted Power Test Verdict:

L	TE FDD B	and 2		Condu	cted Pow	ver(dBm)
5 1 1 1 1 1		RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	18607	18900	19193
		1	0	21.25	21.36	21.42
		1	3	21.12	21.26	21.3
		1	5	21.14	21.25	21.29
	QPSK	3	0	20.42	20.54	20.57
		3	2	20.43	20.53	20.54
		3	3	20.44	20.55	20.55
4 48411-		6	0	20.3	20.42	20.44
1.4MHz		1	0	20.12	20.21	20.31
		1	3	19.97	20.1	20.18
		1	5	20.1	20.18	20.3
	16QAM	3	0	19.19	19.29	19.49
		3	2	19.27	19.39	19.52
		3	3	19.29	19.4	19.46
		6	0	19.17	19.3	19.31
Dondwidth	Modulation	RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	18615	18900	19185
	QPSK	1	0	21.58	21.89	21.71
		1	7	21.45	21.79	21.59
		1	14	21.47	21.78	21.58
		8	0	20.75	21.07	20.86
		8	4	20.76	21.06	20.83
		8	7	20.77	21.08	20.84
3MHz		15	0	20.63	20.95	20.73
SIVITIZ		1	0	20.45	20.74	20.6
		1	7	20.3	20.63	20.47
		1	14	20.43	20.71	20.59
	16QAM	8	0	19.52	19.82	19.78
		8	4	19.6	19.92	19.81
		8	7	19.62	19.93	19.75
		15	0	19.5	19.83	19.6
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Danuwiuin	Modulation	size	offset	18625	18900	19175
5MHz	QPSK	1	0	22.02	21.85	21.76
JIVII 12	QI OIX	1	13	21.89	21.75	21.64

CCIC-SET/T-I (00) Page 21 of 52

						Report N	υ.
		1	24	21.91	21.74	21.63	
		12	0	21.19	21.03	20.91	
		12	6	21.2	21.02	20.88	
		12	13	21.21	21.04	20.89	
		25	0	21.07	20.91	20.78	
		1	0	20.89	20.7	20.65	
		1	13	20.74	20.59	20.52	
		1	24	20.87	20.67	20.64	
	16QAM	12	0	19.96	19.78	19.83	
		12	6	20.04	19.88	19.86	
		12	13	20.06	19.89	19.8	
		25	0	19.94	19.79	19.65	
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	
bandwidth	Modulation	size	offset	18650	18900	19150	
		1	0	21.88	22.04	22.15	
	QPSK	1	25	21.75	21.94	22.03	
		1	49	21.77	21.93	22.02	
		25	0	21.05	21.22	21.3	
		25	13	21.06	21.21	21.27	
		25	25	21.07	21.23	21.28	
10MHz		50	0	20.93	21.1	21.17	
IUIVITZ		1	0	20.75	20.89	21.04	
		1	25	20.6	20.78	20.91	
		1	49	20.73	20.86	21.03	
	16QAM	25	0	19.82	19.97	20.22	
		25	13	19.9	20.07	20.25	
		25	25	19.92	20.08	20.19	
		50	0	19.8	19.98	20.04	
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	
Danuwidin	Modulation	size	offset	18675	18900	19125	
		1	0	22.23	22.35	22.28	
		1	38	22.1	22.25	22.16	
		1	74	22.12	22.24	22.15	
	QPSK	36	0	21.4	21.53	21.43	
		36	18	21.41	21.52	21.4	
		36	39	21.42	21.54	21.41	
15MHz		75	0	21.28	21.41	21.3	
		1	0	21.1	21.2	21.17	
		1	38	20.95	21.09	21.04	
	16QAM	1	74	21.08	21.17	21.16	
	IOQAIVI	36	0	20.17	20.28	20.35	
		36	18	20.25	20.38	20.38	
		36	39	20.27	20.39	20.32	

CCIC-SET/T-I (00) Page 22 of 52

		75	0	20.15	20.29	20.17
Pandwidth.	Madulation	RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	18700	18900	19100
		1	0	22.45	22.67	22.36
		1	50	22.32	22.57	22.24
		1	99	22.34	22.56	22.23
	QPSK	50	0	21.62	21.85	21.51
		50	25	21.63	21.84	21.48
		50	50	21.64	21.86	21.49
20MHz		100	0	21.5	21.73	21.38
ZUIVITZ		1	0	21.32	21.52	21.25
		1	50	21.17	21.41	21.12
		1	99	21.3	21.49	21.24
	16QAM	50	0	20.39	20.6	20.43
		50	25	20.47	20.7	20.46
		50	50	20.49	20.71	20.4
		100	0	20.37	20.61	20.25

2. LTE Band 4 Conducted Power Test Verdict:

L	TE FDD B	and 4	Conduc	cted Pov	ver(dBm)	
Dan duvidth	Madulation	RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	19957	20175	20393
		1	0	21.33	21.41	21.52
		1	3	21.2	21.31	21.4
		1	5	21.22	21.3	21.39
	QPSK	3	0	20.5	20.59	20.67
		3	2	20.51	20.58	20.64
		3	3	20.52	20.6	20.65
1.4MHz		6	0	20.38	20.47	20.54
		1	0	20.2	20.26	20.41
		1	3	20.05	20.15	20.28
		1	5	20.18	20.23	20.4
	16QAM	3	0	19.27	19.34	19.59
		3	2	19.35	19.44	19.62
		3	3	19.37	19.45	19.56
		6	0	19.25	19.35	19.41
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Danawidin	Modulation	size	offset	19965	20175	20385
		1	0	21.55	21.83	21.77
3MHz	QPSK	1	7	21.42	21.73	21.65
		1	14	21.44	21.72	21.64

CCIC-SET/T-I (00) Page 23 of 52

						Report N
		8	0	20.72	21.01	20.92
		8	4	20.73	21	20.89
		8	7	20.74	21.02	20.9
		15	0	20.6	20.89	20.79
		1	0	20.42	20.68	20.66
		1	7	20.27	20.57	20.53
		1	14	20.4	20.65	20.65
	16QAM	8	0	19.49	19.76	19.84
		8	4	19.57	19.86	19.87
		8	7	19.59	19.87	19.81
		15	0	19.47	19.77	19.66
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
bandwidth	iviodulation	size	offset	19975	20175	20375
		1	0	21.89	21.91	21.86
		1	13	21.76	21.81	21.74
		1	24	21.78	21.8	21.73
	QPSK	12	0	21.06	21.09	21.01
		12	6	21.07	21.08	20.98
		12	13	21.08	21.1	20.99
5MHz		25	0	20.94	20.97	20.88
SIVIFIZ		1	0	20.76	20.76	20.75
		1	13	20.61	20.65	20.62
		1	24	20.74	20.73	20.74
	16QAM	12	0	19.83	19.84	19.93
		12	6	19.91	19.94	19.96
		12	13	19.93	19.95	19.9
		25	0	19.81	19.85	19.75
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Bandwidti	Modulation	size	offset	20000	20175	20350
		1	0	22.26	22.31	22.48
		1	25	22.13	22.21	22.36
		1	49	22.15	22.2	22.35
	QPSK	25	0	21.43	21.49	21.63
		25	13	21.44	21.48	21.6
		25	25	21.45	21.5	21.61
10MHz		50	0	21.31	21.37	21.5
IUIVINZ		1	0	21.13	21.16	21.37
		1	25	20.98	21.05	21.24
		1	49	21.11	21.13	21.36
	16QAM	25	0	20.2	20.24	20.55
		25	13	20.28	20.34	20.58
		25	25	20.3	20.35	20.52
		50	0	20.18	20.25	20.37

CCIC-SET/T-I (00) Page 24 of 52

Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	20025	20175	20325
		1	0	22.61	22.39	22.54
		1	38	22.48	22.29	22.42
		1	74	22.5	22.28	22.41
	QPSK	36	0	21.78	21.57	21.69
		36	18	21.79	21.56	21.66
		36	39	21.8	21.58	21.67
45MU-		75	0	21.66	21.45	21.56
15MHz		1	0	21.48	21.24	21.43
		1	38	21.33	21.13	21.3
		1	74	21.46	21.21	21.42
	16QAM	36	0	20.55	20.32	20.61
		36	18	20.63	20.42	20.64
		36	39	20.65	20.43	20.58
		75	0	20.53	20.33	20.43
	Demokratisk Moduletier					
Randwidth	Modulation	RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	RB size	RB offset	Channel 20050	Channel 20175	Channel 20300
Bandwidth	Modulation					
Bandwidth	Modulation	size	offset	20050	20175	20300
Bandwidth	Modulation	size 1	offset 0	20050 22.65	20175 22.74	20300 22.56
Bandwidth	Modulation QPSK	size 1 1	offset 0 50	20050 22.65 22.52	20175 22.74 22.64	20300 22.56 22.44
Bandwidth		size 1 1 1	0 50 99	20050 22.65 22.52 22.54	20175 22.74 22.64 22.63	20300 22.56 22.44 22.43
Bandwidth		size 1 1 1 50	offset 0 50 99 0	20050 22.65 22.52 22.54 21.82	20175 22.74 22.64 22.63 21.92	20300 22.56 22.44 22.43 21.71
		size 1 1 1 50 50	offset 0 50 99 0 25	20050 22.65 22.52 22.54 21.82 21.83	20175 22.74 22.64 22.63 21.92 21.91	20300 22.56 22.44 22.43 21.71 21.68
Bandwidth 20MHz		size 1 1 1 50 50 50	offset 0 50 99 0 25 50	20050 22.65 22.52 22.54 21.82 21.83 21.84	20175 22.74 22.64 22.63 21.92 21.91 21.93	20300 22.56 22.44 22.43 21.71 21.68 21.69
		size 1 1 1 50 50 50 100	offset 0 50 99 0 25 50 0	20050 22.65 22.52 22.54 21.82 21.83 21.84 21.7	20175 22.74 22.64 22.63 21.92 21.91 21.93 21.8	20300 22.56 22.44 22.43 21.71 21.68 21.69 21.58
		size 1 1 1 50 50 50 100 1	0 50 99 0 25 50 0 0	20050 22.65 22.52 22.54 21.82 21.83 21.84 21.7 21.52	20175 22.74 22.64 22.63 21.92 21.91 21.93 21.8 21.59	20300 22.56 22.44 22.43 21.71 21.68 21.69 21.58 21.45
		size 1 1 1 50 50 50 100 1	offset 0 50 99 0 25 50 0 0 50	20050 22.65 22.52 22.54 21.82 21.83 21.84 21.7 21.52 21.37	20175 22.74 22.64 22.63 21.92 21.91 21.93 21.8 21.59 21.48	20300 22.56 22.44 22.43 21.71 21.68 21.69 21.58 21.45 21.32
	QPSK	size 1 1 1 50 50 50 100 1 1 1	offset 0 50 99 0 25 50 0 0 50 99	20050 22.65 22.52 22.54 21.82 21.83 21.84 21.7 21.52 21.37 21.5	20175 22.74 22.64 22.63 21.92 21.91 21.93 21.8 21.59 21.48 21.56	20300 22.56 22.44 22.43 21.71 21.68 21.69 21.58 21.45 21.32 21.44
	QPSK	size 1 1 1 50 50 50 100 1 1 1 50	offset 0 50 99 0 25 50 0 0 50 99 0	20050 22.65 22.52 22.54 21.82 21.83 21.84 21.7 21.52 21.37 21.5 20.59	20175 22.74 22.64 22.63 21.92 21.91 21.93 21.8 21.59 21.48 21.56 20.67	20300 22.56 22.44 22.43 21.71 21.68 21.69 21.58 21.45 21.32 21.44 20.63

CCIC-SET/T-I (00) Page 25 of 52

3. LTE Band 5 Conducted Power Test Verdict:

L	TE FDD B	and 5	Conducted Power(dBm)			
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Ballawiatii	Modulation	size	offset	20407	20525	20643
		1	0	22.15	22.23	22.31
		1	3	22.02	22.12	22.2
		1	5	22	22.08	22.17
	QPSK	3	0	21.34	21.37	21.45
		3	2	21.3	21.4	21.49
		3	3	21.31	21.39	21.44
4 48411-		6	0	21.16	21.2	21.34
1.4MHz		1	0	21.02	21.11	21.16
		1	3	20.91	20.96	21.05
		1	5	21	21.07	21.14
	16QAM	3	0	20.11	20.19	20.33
		3	2	20.14	20.28	20.39
		3	3	20.2	20.3	20.3
		6	0	20.06	20.12	20.09
D	Marabalatian	RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	20415	20525	20635
		1	0	22.48	22.59	22.55
		1	7	22.33	22.45	22.41
	QPSK	1	14	22.37	22.46	22.4
		8	0	21.66	21.74	21.72
		8	4	21.67	21.77	21.74
		8	7	21.68	21.75	21.67
0.541.1		15	0	21.5	21.62	21.56
3MHz		1	0	21.36	21.46	21.38
		1	7	21.21	21.31	21.23
		1	14	21.33	21.4	21.35
	16QAM	8	0	20.44	20.52	20.57
		8	4	20.5	20.64	20.66
		8	7	20.55	20.62	20.55
		15	0	20.4	20.46	20.31
Dorraka 141	Ma ded at	RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	20425	20525	20625
		1	0	22.65	22.58	22.71
		1	13	22.5	22.43	22.6
534 17	ODOK	1	24	22.52	22.46	22.56
5MHz	QPSK	12	0	21.83	21.75	21.9
		12	6	21.84	21.74	21.87
		12	13	21.82	21.71	21.86

CCIC-SET/T-I (00) Page 26 of 52

						-1
		25	0	21.68	21.59	21.713
		1	0	21.51	21.46	21.55
		1	13	21.38	21.32	21.41
		1	24	21.46	21.44	21.48
	16QAM	12	0	20.57	20.54	20.7
		12	6	20.7	20.6	20.83
		12	13	20.69	20.63	20.69
		25	0	20.54	20.52	20.45
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Danawiath	Modulation	size	offset	20450	20525	20600
	QPSK	1	0	22.85	22.97	22.71
		1	25	22.67	22.85	22.56
		1	49	22.69	22.85	22.6
		25	0	22.04	22.14	21.88
		25	13	22	22.13	21.89
		25	25	22.02	22.16	21.9
10MHz		50	0	21.91	22.01	21.7
TOWINZ		1	0	21.72	21.82	21.56
		1	25	21.61	21.71	21.45
		1	49	21.67	21.74	21.53
	16QAM	25	0	20.81	20.88	20.72
		25	13	20.86	20.93	20.8
		25	25	20.87	20.96	20.68
		50	0	20.74	20.79	20.46

4. LTE Band 7 Conducted Power Test Verdict:

LTE FDD Band 7				Conducted Power(dBm)		
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
bandwidth	Modulation	size	RD Ollset	20775	21100	21425
		1	0	20.85	20.71	20.79
		1	13	20.74	20.56	20.64
		1	24	20.72	20.58	20.68
	QPSK	12	0	19.97	19.86	19.96
		12	6	20	19.9	19.93
		12	13	20.02	19.88	19.94
5MHz		25	0	19.86	19.68	19.85
		1	0	19.74	19.59	19.63
		1	13	19.62	19.46	19.52
	16QAM	1	24	19.69	19.54	19.62
		12	0	18.83	18.61	18.78
		12	6	18.86	18.75	18.87
		12	13	18.88	18.7	18.8

CCIC-SET/T-I (00) Page 27 of 52

	1	25	0	18.77	18.55	18.68
		RB	U	Channel	Channel	Channel
Bandwidth	Modulation	size	RB offset	20800	21100	21400
		1	0	21.01	21.03	20.95
		1	25	20.9	20.88	20.8
		1	49	20.88	20.9	20.84
	QPSK	25	0	20.13	20.18	20.12
		25	13	20.16	20.22	20.09
		25	25	20.18	20.2	20.1
		50	0	20.02	20	20.01
10MHz		1	0	19.9	19.91	19.79
		1	25	19.78	19.78	19.68
		1	49	19.85	19.86	19.78
	16QAM	25	0	18.99	18.93	18.94
		25	13	19.02	19.07	19.03
		25	25	19.04	19.02	18.96
		50	0	18.93	18.87	18.84
		RB		Channel	Channel	Channel
Bandwidth	Modulation	size	RB offset	20825	21100	21375
		1	0	21.05	21.08	21.11
		1	38	20.94	20.93	20.96
		1	74	20.92	20.95	21
	QPSK	36	0	20.17	20.23	20.28
		36	18	20.2	20.27	20.25
		36	39	20.22	20.25	20.26
458011-		75	0	20.06	20.05	20.17
15MHz		1	0	19.94	19.96	19.95
		1	38	19.82	19.83	19.84
		1	74	19.89	19.91	19.94
	16QAM	36	0	19.03	18.98	19.1
		36	18	19.06	19.12	19.19
		36	39	19.08	19.07	19.12
		75	0	18.97	18.92	19
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Danawiatii	Wioddiation	size	TID GIRGO	20850	21100	21350
		1	0	21.25	21.33	21.18
		1	50	21.14	21.18	21.03
		1	99	21.12	21.2	21.07
20MHz	QPSK	50	0	20.37	20.48	20.35
		50	25	20.4	20.52	20.32
		50	50	20.42	20.5	20.33
		100	0	20.26	20.3	20.24
	16QAM	1	0	20.14	20.21	20.02

CCIC-SET/T-I (00) Page 28 of 52

1	50	20.02	20.08	19.91
1	99	20.09	20.16	20.01
50	0	19.23	19.23	19.17
50	25	19.26	19.37	19.26
50	50	19.28	19.32	19.19
100	0	19.17	19.17	19.07

5. LTE Band 26 Conducted Power Test Verdict:

LTE FDD Band 26				Conducted Power(dBm)		
		RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	26697	26865	27033
		1	0	22.11	22.25	22.03
		1	3	21.98	22.15	21.91
		1	5	22	22.14	21.9
	QPSK	3	0	21.28	21.43	21.18
		3	2	21.29	21.42	21.15
		3	3	21.3	21.44	21.16
4 48411-		6	0	21.16	21.31	21.05
1.4MHz		1	0	20.98	21.1	20.92
		1	3	20.83	20.99	20.79
		1	5	20.96	21.07	20.91
	16QAM	3	0	20.05	20.18	20.1
		3	2	20.13	20.28	20.13
		3	3	20.15	20.29	20.07
		6	0	20.03	20.19	19.92
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Balluwiutii	Modulation	size	offset	26705	26865	27025
		1	0	22.29	22.31	22.26
		1	7	22.16	22.21	22.14
		1	14	22.18	22.2	22.13
	QPSK	8	0	21.46	21.49	21.41
		8	4	21.47	21.48	21.38
		8	7	21.48	21.5	21.39
3MHz		15	0	21.34	21.37	21.28
SIVIFIZ		1	0	21.16	21.16	21.15
		1	7	21.01	21.05	21.02
		1	14	21.14	21.13	21.14
	16QAM	8	0	20.23	20.24	20.33
		8	4	20.31	20.34	20.36
		8	7	20.33	20.35	20.3
		15	0	20.21	20.25	20.15
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel

CCIC-SET/T-I (00) Page 29 of 52

						кероп по.
		size	offset	26715	26865	27015
		1	0	22.15	22.38	22.23
		1	13	22.02	22.28	22.11
		1	24	22.04	22.27	22.1
	QPSK	12	0	21.32	21.56	21.38
		12	6	21.33	21.55	21.35
		12	13	21.34	21.57	21.36
5MU-		25	0	21.2	21.44	21.25
5MHz		1	0	21.02	21.23	21.12
		1	13	20.87	21.12	20.99
		1	24	21	21.2	21.11
	16QAM	12	0	20.09	20.31	20.3
		12	6	20.17	20.41	20.33
		12	13	20.19	20.42	20.27
		25	0	20.07	20.32	20.12
Danish didi	MandadaGaa	RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	26740	26865	26990
		1	0	22.39	22.51	22.41
		1	25	22.26	22.41	22.29
	QPSK	1	49	22.28	22.4	22.28
		25	0	21.56	21.69	21.56
		25	13	21.57	21.68	21.53
		25	25	21.58	21.7	21.54
40001		50	0	21.44	21.57	21.43
10MHz		1	0	21.26	21.36	21.3
		1	25	21.11	21.25	21.17
		1	49	21.24	21.33	21.29
	16QAM	25	0	20.33	20.44	20.48
		25	13	20.41	20.54	20.51
		25	25	20.43	20.55	20.45
		50	0	20.31	20.45	20.3
Donalis i dela	Madulatian	RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	26765	26865	26965
		1	0	22.43	22.57	22.39
		1	38	22.3	22.47	22.27
		1	74	22.32	22.46	22.26
	QPSK	36	0	21.6	21.75	21.54
455511		36	18	21.61	21.74	21.51
15MHz		36	39	21.62	21.76	21.52
		75	0	21.48	21.63	21.41
		1	0	21.3	21.42	21.28
	16QAM	1	38	21.15	21.31	21.15
		1	74	21.28	21.39	21.27

CCIC-SET/T-I (00) Page 30 of 52

36	0	20.37	20.5	20.46
36	18	20.45	20.6	20.49
36	39	20.47	20.61	20.43
75	0	20.35	20.51	20.28

6. LTE Band 41 Conducted Power Test Verdict

			168t vertic			
LTE TDD Band 41				Conducted Power(dBm)		
Dan duvidéh	Madulation	RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	39675	40620	41565
		1	0	20.56	20.85	20.79
		1	13	20.41	20.73	20.68
		1	24	20.37	20.7	20.67
	QPSK	12	0	19.71	19.99	19.96
		12	6	19.65	19.98	19.84
		12	13	19.63	19.99	19.84
ENALL-		25	0	19.58	19.81	19.83
5MHz		1	0	19.41	19.71	19.65
		1	13	19.23	19.6	19.5
		1	24	19.37	19.66	19.57
	16QAM	12	0	18.45	18.78	18.82
		12	6	18.56	18.72	18.94
		12	13	18.58	18.73	18.8
		25	0	18.44	17.93	18.51
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	39700	40620	41540
		1	0	20.81	20.95	20.88
		1	25	20.66	20.83	20.77
		1	49	20.62	20.8	20.76
	QPSK	25	0	19.96	20.09	20.05
		25	13	19.9	20.08	19.93
		25	25	19.88	20.09	19.93
10MHz		50	0	19.83	19.91	19.92
TOWINZ		1	0	19.66	19.81	19.74
		1	25	19.48	19.7	19.59
		1	49	19.62	19.76	19.66
	16QAM	25	0	18.7	18.88	18.91
		25	13	18.81	18.82	19.03
		25	25	18.83	18.83	18.89
		50	0	18.69	18.03	18.6
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Danuwiuth	Modulation	size	offset	39725	40620	41515
15MHz	QPSK	1	0	21.05	21.11	21.08

CCIC-SET/T-I (00) Page 31 of 52

		1	38	20.9	20.99	20.97
		1	74	20.86	20.96	20.96
		36	0	20.2	20.25	20.25
		36	18	20.14	20.24	20.13
		36	39	20.12	20.25	20.13
		75	0	20.07	20.07	20.12
		1	0	19.9	19.97	19.94
		1	38	19.72	19.86	19.79
		1	74	19.86	19.92	19.86
	16QAM	36	0	18.94	19.04	19.11
		36	18	19.05	18.98	19.23
		36	39	19.07	18.99	19.09
		75	0	18.93	18.19	18.8
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Danuwium	iviodulation	size	offset	39750	40620	41490
		1	0	21.22	21.29	21.26
		1	50	21.07	21.17	21.15
		1	99	21.03	21.14	21.14
	QPSK	50	0	20.37	20.43	20.43
		50	25	20.31	20.42	20.31
		50	50	20.29	20.43	20.31
20MHz		100	0	20.24	20.25	20.3
ZUIVITZ		1	0	20.07	20.15	20.12
	16QAM	1	50	19.89	20.04	19.97
		1	99	20.03	20.1	20.04
	16QAM	50	0	19.11	19.22	19.29
	16QAM	50 50	0 25	19.11 19.22	19.22 19.16	19.29 19.41
	16QAM		_			

CCIC-SET/T-I (00) Page 32 of 52

8.4 WLAN 2.4GHz Band Conducted Power

Channal/Frag (MILL)	Maximum Conducted Out Power (dBm) Average					
Channel/Freq.(MHz)	802.11b	802.11g	802.11n(HT20)			
1(2412)	16.59	16.54	15.78			
6(2437)	17.06	17.12	16.15			
11(2462)	18.48	18.05	17.06			
Channel/Freq.(MHz)	Maximum Conducted Out					
Chamlely Freq.(IVIFIZ)	802.11					
3(2422)	15.4					
6(2437)	15.0					
9(2452)	15.4					

WLAN 5GHz Band Conducted Power

U-NII-1 AVGSA Output Power						
Mode	Test Frequency (MHz)	Max Conducted Output Power (dBm)				
802.11n (20MHz)	5180	14.12				
802.11n (20MHz)	5220	14.05				
802.11n (20MHz)	5240	14.14				
802.11n (40MHz)	5190	15.19				
802.11n (40MHz)	5230	14.88				
802.11a (20MHz)	5180	14.34				
802.11a (20MHz)	5220	14.13				
802.11a (20MHz)	5240	14.08				

Note:

- 1. Per KDB248227 D01 v02r02, choose the highest output power channel to test SAR and determine further SAR exclusion
- 2. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at lowest data rate
- 3. Per KDB248227 D01 v02r02, 802.11g /11n-HT20/11n-HT40 is not required. . When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/Kg. Thus the SAR can be excluded.

CCIC-SET/T-I (00) Page 33 of 52

8.5 Bluetooth Output Power

Channel	Frequency	BT3.	Average		
Channel	(MHz)	GFSK	π /4-DQPSK	8-DPSK	
CH 0	2402	7.46	7.52	8.23	
CH 39	2441	7.81	8.29	8.53	
CH 78	2480	8.66	9.24	9.46	
Channel	Frequency	BT4.0 Output	BT4.0 Output Power(dBm)Peak		
Chamer	(MHz)	G	GFSK		
CH 0	2402	-(
CH 20	2442	(
CH 39	2480	-(0.241		

8.7 NFC Output Power

Frequency (MHz)	Output Power(dBµV/m)
13.56	38.063

CCIC-SET/T-I (00) Page 34 of 52

8. SAR test Exclusion and estimate SAR calculation:

Note:

1. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100MHz to 6GHz at test separation distances ≤ 50mm are determined by:[(max. power of channel, including tune-up tolerance,

mW)/(min. test separation distance, mm)] • [$^{\sqrt{f}}$ (GHz)] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR

- (1) f(GHz) is the RF channel transmit frequency in GHz
- (2) Power and distance are round to the nearest mW and mm before calculation
- (3) The result is rounded to one decimal place for comparison
- (4) If the test separation distance(antenna-user) is < 5mm, 5mm is used for excluded SAR calculation

(5)

BT3.0 Max Power (dBm)	mW	Test Distance (mm)	Frequency(GHz)	Exclusion Thresholds	
9.5 8.913		5	2.45	2.790	

Per KDB 447498 D01v06 exclusion thresholds is 2.790<3, RF exposure evaluation is not required.

BT estimated SAR value=Exclusion Thresholds/7.5=2.790/7.5=0.372W/Kg

BT4.0 Max Power (dBm)	mW	Test Distance (mm)	Frequency(GHz)	Exclusion Thresholds
0.5	1.122	5	2.45	0.351

Per KDB 447498 D01v06 exclusion thresholds is 0.351<3, RF exposure evaluation is not required.

BT estimated SAR value=Exclusion Thresholds/7.5=0.351/7.5=0.047W/Kg

The estimated SAR value is used for simultaneous transmission analysis.

CCIC-SET/T-I (00) Page 35 of 52

Antenna Location:

Edge D

Antenna-to-User (Edge Side) distance (mm):

Antenna	Front	Back	Edge A	Edge B	Edge C	Edge D
WWAN Main Antenna	12	4	10	12	125	194
WIFI Antenna	12	4	10	149	105	10

Note: The diagonal distance of the overall section is 15cm.

CCIC-SET/T-I (00) Page 36 of 52

The Body SAR measurement positions of each band are as below:

Antenna	Front	Back	Edge A	Edge B	Edge C	Edge D	
WWAN Antenna	Yes	Yes	No	No	No	No	
Body-worn							
WWAN Antenna	Yes	Yes	No	Yes	Yes	Yes	
hotspot	105	105	110	105	105	105	
WIFI Antenna	Yes	Yes	No	No	Nic	No	
Body-worn	ies	168	NO	NO	No	No	
WIFI Antenna	Yes	Yes	Yes	No	No	Yes	
hotspot	ies	ies	ies	NO	NO	ies	

Note: According to KDB 941225 D06 v02r01, when antenna-to-edge>2.5cm, SAR is not required.

CCIC-SET/T-I (00) Page 37 of 52

9. Scaling Factor calculation

Operation Mode	Channel	Output Power(dBm)	Tune up Power in tolerance(dBm)	Scaling Factor
GPRS850(GPRS)	128	24.86	24.5 ± 1.0	1.159
, ,	190	24.90	24.5 ± 1.0	1.148
4Tx	251	24.99	24.5 ± 1.0	1.125
0000(000(0000)	512	23.36	23.0 ± 1.0	1.159
GPRS1900(GPRS)	661	23.66	23.0 ± 1.0	1.081
4Tx	810	23.35	23.0 ± 1.0	1.161
ODMA	1013	23.35	23.0±1.0	1.161
CDMA	384	23.47	23.0±1.0	1.130
(1XEVDO Rel.0)	777	23.48	23.0±1.0	1.127
	4132	22.02	22.0 ± 1.0	1.253
WCDMA850	4183	22.77	22.0 ± 1.0	1.054
	4233	22.88	22.0 ± 1.0	1.028
	9262	22.09	22.0 ± 1.0	1.233
WCDMA1900	9400	22.66	22.0 ± 1.0	1.081
	9538	22.74	22.0 ± 1.0	1.062
LTE DO COMUL-	18700	22.45	22.0 ± 1.0	1.135
LTE B2 20MHz	18900	22.67	22.0 ± 1.0	1.079
1RB#0	19100	22.36	22.0 ± 1.0	1.159
LTE DO COMU-	18700	21.62	21.0 ± 1.0	1.091
LTE B2 20MHz 50RB#0	18900	21.85	21.0 ± 1.0	1.035
30ND#0	19100	21.51	21.0 ± 1.0	1.119
LTE B4 20MHz	20050	22.65	22.0 ± 1.0	1.084
1RB#0	20175	22.74	22.0 ± 1.0	1.062
TND#0	20300	22.56	22.0 ± 1.0	1.107
LTE B4 20MHz	20050	21.82	21.0 ± 1.0	1.042
50RB#0	20175	21.92	21.0 ± 1.0	1.019
301/0#0	20300	21.71	21.0 ± 1.0	1.069
LTE B5 10MHz	20450	22.85	22.0 ± 1.0	1.035
1RB#0	20525	22.97	22.0 ± 1.0	1.007
11\D#U	20600	22.71	22.0 ± 1.0	1.069
LTE B5 10MHz	20450	22.04	21.5 ± 1.0	1.112
25RB#0	20525	22.14	21.5 ± 1.0	1.086
23110#0	20600	21.88	21.5 ± 1.0	1.153
LTE B7 20MHz	20850	21.25	20.5 ± 1.0	1.059
1RB#0	21100	21.33	20.5 ± 1.0	1.040
וועש#ט	21350	21.18	20.5 ± 1.0	1.076
LTE B7 20MHz	20850	20.37	19.5 ± 1.0	1.030
50RB#0	21100	20.48	19.5 ± 1.0	1.005
JUND#U	21350	20.35	19.5 ± 1.0	1.035

CCIC-SET/T-I (00) Page 38 of 52

LTE B26 15MHz	26775	22.43	22.0 ± 1.0	1.140
	26865	22.57	22.0 ± 1.0	1.104
1RB#0	26965	22.39	22.0 ± 1.0	1.151
LTE B26 15MHz	26775	21.60	21.0 ± 1.0	1.096
36RB#0	26865	21.75	21.0 ± 1.0	1.059
30KD#U	26965	21.54	21.0 ± 1.0	1.112
LTE B41 20MHz	39750	21.22	20.5 ± 1.0	1.067
50RB#0	40620	21.29	20.5 ± 1.0	1.050
30KD#0	41490	21.26	20.5 ± 1.0	1.057
LTE B41 20MHz	39750	21.37	20.5 ± 1.0	1.030
50RB#0	40620	20.43	20.5 ± 1.0	1.279
30KD#0	41490	20.43	20.5 ± 1.0	1.279
	1	16.59	17.5 ± 1.0	1.552
WIFI 802.11b	6	17.06	17.5 ± 1.0	1.393
	11	18.48	17.5 ± 1.0	1.005
WIFI 802.11a	5180	14.12	13.5 ± 1.0	1.091
BT	20	0.016	8.5 ± 1.0	1.118

Note: for LTE power tolerance, only QPSK modulation mode was provide here.

CCIC-SET/T-I (00) Page 39 of 52

10.Test Results

Table 1: SAR Values of GSM 850MHz Band

	Tempera	ature: 23.0~23.	.5°C, humidit	y: 62~64%	, 0.		
		Channel	SA	R(W/Kg),	1.6 (1g average	e)	Plot
Test Position	ons	/Frequency	SAR	Scaled	Scaled SAR	Power	No.
		(MHz)	(W/Kg),1g	Factor	(W/Kg),1g	drift (%)	INO.
		124/824.2	0.719	1.159	0.833	-0.32	-
	Face Upward	190/836.6	0.744	1.148	0.854	1.25	
		251/848.8	0.733	1.125	0.825	1.34	
	Face Upward repeated	124/824.2	0.717	1.159	0.831	2.44	-
Dadywan		190/836.6	0.742	1.148	0.852	0.53	-
Body-worn (0mm Separation)		251/848.8	0.732	1.125	0.824	2.10	
(onim ocparation)		124/824.2	0.723	1.159	0.838	0.23	
GPRS (4Tx)	Back Upward	190/836.6	0.751	1.148	0.862	-0.75	1
		251/848.8	0.739	1.125	0.831	1.23	-
	Dook Upword	124/824.2	0.718	1.159	0.832	-3.42	-
	Back Upward	190/836.6	0.743	1.148	0.853	1.28	
	repeated	251/848.8	0.732	1.125	0.824	1.01	
	Edge A	190/836.6	0.346	1.148	0.397	3.25	
	Edge B	190/836.6	0.359	1.148	0.412	1.55	

Table 2: SAR Values of GSM1900 MHz Band

		Tempe	rature: 23.0~2	3.5°C, humidity	y: 62~64%).			
			Channel	SAI	R(W/Kg),	1.6 (1g average))	Plot	
Te	est Posit	ions	/Frequency	SAR	Scaled	Scaled SAR	Power	No.	
			(MHz)	(W/Kg), 1g	Factor	(W/Kg),1g	drift (%)	140.	
			512/1850.2	0.699	1.159	0.810	-1.36		
		Face Upward	661/1880.0	0.701	1.081	0.758	-2.33		
			810/1909.8	0.704	1.161	0.817	-1.12	2	
Hatamat	GPR		512/1850.2	0.694	1.159	0.804	0.45		
Hotspot (0mm	S	Face Upward repeated	661/1880.0	0.700	1.081	0.757	2.30		
Separation)	(4Tx)	Topodiod	810/1909.8	0.702	1.161	0.815	2.11		
			512/1850.2	0.654	1.159	0.758	1.23		
		Back Upward	661/1880.0	0.629	1.081	0.680	-2.35		
			810/1909.8	0.685	1.161	0.795	4.12		
		Edge A	661/1880.0	0.572	1.081	0.618	2.69		
		Edge B	661/1880.0	0.182	1.081	0.197	3.49		

CCIC-SET/T-I (00) Page 40 of 52

Table 3: SAR Values of WCDMA850

	Temperature: 23.0~23.5°C, humidity: 62~64%.										
		Channel	SA	R(W/Kg), 1	.6 (1g average)		Plot				
Test Positions		/Frequency (MHz)	SAR (W/Kg), 1g	Scaled Factor	Scaled SAR (W/Kg),1g	Power drift (%)	No.				
	Face Upward	4183/836.6	0.065	1.054	0.069	1.36					
		4132/826.4	0.054	1.253	0.068	2.23					
Hotspot	Back Upwlard	4183/836.6	0.068	1.054	0.072	-1.18	3				
(0mm		4233/846.6	0.061	1.028	0.063	0.21					
Separation)	Edge A	4183/836.6	0.058	1.054	0.061	1.01					
	Edge B	4183/836.6	0.043	1.054	0.045	-1.33	1				

Table 4: SAR Values of WCDMA1900

	Temperature: 23.0~23.5°C, humidity: 62~64%.											
Test Positions		Channel /Frequency (MHz)	SAR (W/Kg),1g	AR(W/Kg), 1. Scaled Factor	6 (1g average) Scaled SAR (W/Kg),1g	Power drift (%)	Plot No.					
	Face Upward	9400/1880	0.193	1.081	0.209	1.33						
Hotspot		9262/1852.4	0.291	1.233	0.359	2.36	-					
(0mm	Back Upward	9400/1880	0.364	1.081	0.393	-1.73	4					
Separation)		9538/1907.6	0.325	1.062	0.345	3.69	-					
, ,	Edge A	9400/1880	0.158	1.081	0.171	-4.25						
	Edge B	9400/1880	0.265	1.081	0.286	4.35						

Table 5: SAR Values of LTE Band 2,10MHz, QPSK

	Te	mperature: 23.0	~23.5°C, hun	nidity: 62~	64%.		
		Channel	SA	R(W/Kg),	1.6 (1g average	9)	Plot
Test P	ositions	/Frequency	SAR	Scaled	Scaled SAR	Power	No.
		(MHz)	(W/Kg),1g	Factor	(W/Kg),1g	drift (%)	140.
	1RB #0						
		18700/1860	0.301	1.135	0.342	-1.33	
Body (0mm	Face Upward	18900/1880	0.337	1.079	0.364	-1.59	5
Separation)		19100/1900	0.305	1.159	0.353	1.23	
Hotspot	Back Upward	18900/1880	0.231	1.079	0.249	0.33	
	Edge A	18900/1880	0.200	1.079	0.216	1.58	
	Edge B	18900/1880	0.058	1.079	0.063	-2.22	
		50)%RB #0				
	Face Upward	18900/1880	0.285	1.035	0.295	1.23	
Body (0mm	Back Upward	18900/1880	0.211	1.035	0.218	3.32	
Separation) Hotspot	Edge A	18900/1880	0.185	1.035	0.191	1.35	
	Edge B	18900/1880	0.043	1.035	0.045	1.32	

CCIC-SET/T-I (00) Page 41 of 52

Table 6: SAR Values of LTE Band 4, 20MHz, QPSK

	Te	emperature: 23.0~	23.5°C, humi	dity: 62~6	64%.		
		Channel	SA	R(W/Kg),	1.6 (1g average)	Diet
Test F	Positions	/Frequency	SAR	Scaled	Scaled SAR	Power	Plot
			(W/Kg),1g	Factor	(W/Kg),1g	drift (%)	No.
		1F	RB #0			•	
		20050/1732.5	0.245	1.084	0.266	1.23	
Dody (Orom	Face Upward	20175/1732.5	0.263	1.062	0.279	-0.20	6
Body (0mm		20300/1745	0.251	1.107	0.278	0.33	-
Separation) Hotspot	Back Upward	20175/1732.5	0.234	1.062	0.249	0.39	
Ποιδροί	Edge A	20175/1732.5	0.185	1.062	0.196	0.42	
	Edge B	20175/1732.5	0.155	1.062	0.165	1.58	
		50%	6RB #0				
Pody (Omm	Face Upward	20175/1732.5	0.231	1.019	0.235	1.31	
Body (0mm Separation)	Back Upward	20175/1732.5	0.187	1.019	0.191	2.36	
Hotspot	Edge A	20175/1732.5	0.156	1.019	0.159	-4.21	
Ποισροί	Edge B	20175/1732.5	0.111	1.019	0.113	3.35	

Table 7: SAR Values of LTE Band 5,10MHz, QPSK

	Т	emperature: 23.	0~23.5°C, hun	nidity: 62~	64%.		
		Channel	SA	R(W/Kg),	1.6 (1g average)		Plot
Test	Positions	/Frequency (MHz)	SAR (W/Kg),1g	Scaled Factor	Scaled SAR(W/Kg),1g	Power drift (%)	No.
			1RB #0				
	Face Upward	20525/836.5	0.076	1.007	0.077	2.25	
	Back Upward	20450/829	0.091	1.035	0.094	1.33	
Body (0mm		20525/836.5	0.094	1.007	0.095	-1.47	7
Separation) Hotspot		20600/844	0.085	1.069	0.091	2.36	
i iotopot	Edge A	20525/836.5	0.036	1.007	0.036	4.12	
	Edge B	20525/836.5	0.061	1.007	0.061	3.46	
		5	0%RB #0				
	Face Upward	20525/836.5	0.061	1.086	0.066	-2.25	
Body (0mm	Back Upward	20525/836.5	0.074	1.086	0.080	-2.36	
Separation) Hotspot	Edge A	20525/836.5	0.025	1.086	0.027	2.14	
	Edge B	20525/836.5	0.056	1.086	0.061	1.25	

CCIC-SET/T-I (00) Page 42 of 52

Table 8: SAR Values of LTE Band 7,20MHz, QPSK

	Т	emperature: 23.	0~23.5°C, hun	nidity: 62~	64%.		
		Channel	SA	R(W/Kg),	1.6 (1g average)		Plot
Test	Test Positions		SAR (W/Kg),1g	Scaled Factor	Scaled SAR(W/Kg),1g	Power drift (%)	No.
		, , ,	1RB #0		· · · · · · · · · · · · · · · · · · ·	, ,	
	Face Upward	21100/2535	0.253	1.040	0.263	1.25	
	Back Upward	20850/2510	0.315	1.059	0.334	0.36	
Body (0mm		21100/2535	0.337	1.040	0.350	1.27	8
Separation) Hotspot		21350/2560	0.301	1.079	0.325	0.31	
Поторог	Edge A	21100/2535	0.258	1.040	0.268	3.25	
	Edge B	21100/2535	0.037	1.040	0.038	4.11	
		5	0%RB #0				
	Face Upward	21100/2535	0.234	1.005	0.235	1.25	
Body (0mm	Back Upward	21100/2535	0.315	1.005	0.317	2.36	
Separation) Hotspot	Edge A	21100/2535	0.211	1.005	0.212	2.65	
1.0.0001	Edge B	21100/2535	0.025	1.005	0.025	1.77	

Table 9: SAR Values of LTE Band 26,10MHz, QPSK

	Т	emperature: 23.	0~23.5°C, hun	nidity: 62~	64%.		
		Channel	SA	R(W/Kg),	1.6 (1g average)	Plot
Test P	ositions	/Frequency	SAR	Scaled	Scaled SAR	Power	No.
		(MHz)	(W/Kg),1g	Factor	(W/Kg),1g	drift (%)	140.
1RB #0							
	Face Upward	26865/831.5	0.103	1.104	0.114	0.25	
	Back Upward	26775/822.5	0.115	1.140	0.131	1.22	
Body (0mm		26865/831.5	0.127	1.104	0.140	0.24	9
Separation) Hotspot		26965/841.5	0.120	1.151	0.138	2.36	
	Edge A	26865/831.5	0.085	1.104	0.094	2.36	
	Edge B	26865/831.5	0.069	1.104	0.076	-3.66	
		5	0%RB #0				
	Face Upward	26865/831.5	0.085	1.059	0.090	4.12	
Body (0mm	Back Upward	26865/831.5	0.113	1.059	0.120	1.58	
Separation) Hotspot	Edge A	26865/831.5	0.074	1.059	0.078	2.55	
	Edge B	26865/831.5	0.052	1.059	0.055	2.33	

CCIC-SET/T-I (00) Page 43 of 52

Table 10: SAR Values of LTE Band 41,20MHz, QPSK

	Т	emperature: 23.	0~23.5°C, hun	nidity: 62~	64%.		
		Channel	SA	R(W/Kg),	1.6 (1g average	e)	Plot
Test P	ositions	/Frequency (MHz)	SAR (W/Kg),1g	Scaled Factor	Scaled SAR (W/Kg),1g	Power drift (%)	No.
			1RB #0				
	Face Upward	40620/2593	0.334	1.050	0.351	0.25	-
		39750/2506	0.515	1.067	0.550	1.22	-
Body (0mm	Back Upward	40620/2593	0.576	1.050	0.605	1.17	10
Separation) Hotspot		41490/2680	0.534	1.057	0.359	1.36	-
i iotopot	Edge A	40620/2593	0.336	1.050	0.353	2.31	-
	Edge B	40620/2593	0.088	1.050	0.092	2.45	
		5	0%RB #0				
	Face Upward	40620/2593	0.215	1.279	0.275	-1.11	
Body (0mm	Back Upward	40620/2593	0.351	1.279	0.449	2.36	
Separation) Hotspot	Edge A	40620/2593	0.218	1.279	0.279	3.15	
. 1010001	Edge B	40620/2593	0.055	1.279	0.070	-0.25	

Table 11: SAR Values of Wi-Fi 802.11b

		Channel		SAR(W/Kg	g), 1.6 (1g average	9)	Plot
Test	Test Positions		SAR(W/ Kg)1g	Scaled Factor	Scaled SAR(W/Kg),1g	Power drift (%)	No.
		1/2412	0.256	1.552	0.397	1.22	
Hotspot	Face Upward	6/2437	0.356	1.393	0.496	0.25	11
(0mm		12/2462	0.331	1.005	0.333	0.36	
Separation)	Back Upward	6/2437	0.203	1.393	0.283	1.25	
,	Edge A	6/2437	0.189	1.393	0.263	1.52	
	Edge D	6/2437	0.136	1.393	0.189	1.68	

Table 12: SAR Values of Wi-Fi 802.11a

		Channel	SAR(W/Kg), 1.6 (1g average)						
Test Positions		/Frequency (MHz)	SAR(W/ Kg)1g	Scaled Factor	Scaled SAR(W/Kg),1g	Power drift (%)	Plot No.		
Hotomot	Face Upward	5180/36	0.631	1.091	0.688	0.05	12		
Hotspot	Back Upward	5180/36	0.582	1.091	0.635	1.23			
(0mm	Edge A	5180/36	0.542	1.091	0.591	2.33			
Separation)	Edge D	5180/36	0.611	1.091	0.667	3.21			

CCIC-SET/T-I (00) Page 44 of 52

Table 15: SAR Values of CDMA BC0(850MHz) Band

		Channel		SAR(W/Kg	g), 1.6 (1g average)	Plot
Test Positions		/Frequency (MHz)	SAR(W/ Kg)1g	Scaled Factor	Scaled SAR(W/Kg),1g	Power drift (%)	No.
Hotomot	Face Upward	384/836.52	0.575	1.130	0.650	1.59	
Hotspot	Back Upward	384/836.52	0.685	1.130	0.774	1.32	13
(0mm Separation)	Edge A	384/836.52	0.123	1.130	0.139	2.33	
Separation)	Edge B	384/836.52	0.362	1.130	0.406	2.17	

Note:

Per KDB941225 D06 v02r01, When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested. As the manufacture requirement the separation distance use 5mm for Hotspot mode.

Per KDB Publication 941225 D01v03r01. RMC 12.2kbps was as primary mode SAR, when the primary mode SAR less than 1.2W/kg, secondary SAR (HSPA) was not requires.

When the 1-g SAR for the mid-band channel or the channel with the highest output power satisfy the following conditions, testing of the other channels in the band is not required. (Per KDB 447498 D01 General RF Exposure Guidance v06)

- \leq 0.8 W/kg, when the transmission band is \leq 100 MHz
- ≤ 0.6 W/kg, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg, when the transmission band is ≥ 200 MHz

CCIC-SET/T-I (00) Page 45 of 52

11. Simultaneous Transmissions Analysis

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 6 of this report. Maximum localized SAR is **below** exposure limits specified in the relevant standards.

Simultaneous SAR

No.	Transmitter Combinations	Scenario	Supported for Mobile
INO.	Transmitter Combinations	Supported or not	Hotspot or not
1	GSM/CDMA+ BT	Yes	No
2	GSM/CDMA + WIFI	Yes	Yes
3	WCDMA +BT	Yes	No
4	WCDMA +WIFI	Yes	Yes
5	LTE+BT	Yes	No
6	LTE+WIFI	Yes	Yes
7	WIFI+BT	No	No

Simultaneous Tx Combination of GSM/CDMA/WCDMA/LTE and BT/WIFI (Body).

	Test Position	Face	Back	Edge A	Edge B	Edge C	Edge D
	GPRS850	0.854	0.862	0.397	0.412	/	/
	GPRS1900	0.817	0.795	0.618	0.197	/	/
	WCDMA 850	0.069	0.072	0.061	0.045	/	/
	WCDMA 1900	0.209	0.393	0.171	0.286	/	/
Hatanat	LTE Band2	0.364	0.249	0.216	0.063	/	/
Hotspot	LTE Band4	0.279	0.249	0.196	0.165	/	/
0mm	LTE Band5	0.077	0.095	0.036	0.061	/	/
separation MAX 1-g	LTE Band7	0.263	0.350	0.268	0.038	/	/
SAR(W/Kg)	LTE Band26	0.114	0.140	0.094	0.076	/	/
SAIX(W/Rg)	LTE Band41	0.351	0.605	0.353	0.092	/	/
	CDMA BC0	0.650	0.774	0.139	0.406	/	/
	WIFI 802.11b	0.496	0.283	0.263	/	/	0.189
	WIFI 802.11a	0.688	0.635	0.591	/	/	0.667
	BT	0.372*	0.372*	0.372*	0.372*	0.372*	0.372*
WIFI Simulta	neous Σ 1-g SAR(W/Kg)	1.542	1.497	1.209	/	/	/
BT Simultar	neous ∑1-g SAR(W/Kg)	1.226	1.234	0.99	0.784	/	/

Simultaneous Tx Combination of GSM/CDMA/WCDMA/LTE and WIFI (Body).

The estimated SAR value with * Signal

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required

CCIC-SET/T-I (00) Page 46 of 52

12. Measurement Uncertainty

No.	Uncertainty Component	Туре	Uncertainty Value (%)	Probability Distribution	k	ci	Standard Uncertainty (%) ui(%)	Degree of freedom Veff or vi				
	Measurement System											
1	- Probe Calibration	В	5.8	N	1	1	5.8	8				
2	Axial isotropy	В	3.5	R	$\sqrt{3}$	0.5	1.43	80				
3	—Hemispherical Isotropy	В	5.9	R	$\sqrt{3}$	0.5	2.41	80				
4	– Boundary Effect	В	1	R	$\sqrt{3}$	1	0.58	∞				
5	– Linearity	В	4.7	R	$\sqrt{3}$	1	2.71	∞				
6	– System Detection Limits	В	1.0	R	$\sqrt{3}$	1	0.58	∞				
7	Modulation response	В	3	N	1	1	3.00					
8	- Readout Electronics	В	0.5	N	1	1	0.50	∞				
9	– Response Time	В	1.4	R	$\sqrt{3}$	1	0.81	∞				
10	 Integration Time 	В	3.0	R	$\sqrt{3}$	1	1.73	∞				
11	- RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.73	8				
12	- Probe Position Mechanical tolerance	В	1.4	R	$\sqrt{3}$	1	0.81	∞				
13	Probe Position with respect to Phantom Shell	В	1.4	R	$\sqrt{3}$	1	0.81	∞				
14	Extrapolation,Interpolation and IntegrationAlgorithms for Max. SARevaluation	В	2.3	R	$\sqrt{3}$	1	1.33	∞				

CCIC-SET/T-I (00) Page 47 of 52

			Uncertair	nties of the DU	Γ			
15	- Position of the DUT	Α	2.6	N	$\sqrt{3}$	1	2.6	5
16	– Holder of the DUT	А	3	N	$\sqrt{3}$	1	3.0	5
17	- Output Power Variation -SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.89	∞
		Р	hantom and Ti	ssue Paramet	ers			
18	- Phantom Uncertainty(shape and thickness tolerances)	В	4	R	$\sqrt{3}$	1	2.31	∞
19	Uncertainty in SAR correction for deviation(in permittivity and conductivity)	В	2	N	1	1	2.00	
20	- Liquid Conductivity Target -tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	∞
21	- Liquid Conductivity -measurement Uncertainty)	В	4	N	$\sqrt{3}$	1	0.92	9
22	- Liquid Permittivity Target tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	∞
23	- Liquid Permittivity -measurement uncertainty	В	5	N	$\sqrt{3}$	1	1.15	∞
Con	nbined Standard Uncertainty			RSS			10.63	
(0	Expanded uncertainty Confidence interval of 95 %)			K=2			21.26	

System Check Uncertainty

No.	Uncertainty Component	Туре	Uncertainty Value (%)	Probability Distribution	k	ci	Standard Uncertainty (%) ui(%)	Degree of freedom Veff or vi		
	Measurement System									
1	- Probe Calibration	В	5.8	N	1	1	5.8	8		

CCIC-SET/T-I (00) Page 48 of 52

_						176	DORTINO. SETZ	.010-13302	
2	2 – Axial isotropy	В	3.5	R	$\sqrt{3}$	0.5	1.43	∞	
3	Hemispherical Isotropy	В	5.9	R	$\sqrt{3}$	0.5	2.41	8	
4	- Boundary Effect	В	1	R	$\sqrt{3}$	1	0.58	8	
5	5 – Linearity	В	4.7	R	$\sqrt{3}$	1	2.71	8	
6	S – System Detection Limits	В	1	R	$\sqrt{3}$	1	0.58	8	
7	Modulation response	В	0	N	1	1	0.00		
8	- Readout Electronics	В	0.5	N	1	1	0.50	8	
9	– Response Time	В	0.00	R	$\sqrt{3}$	1	0.00	8	
1	0 - Integration Time	В	1.4	R	$\sqrt{3}$	1	0.81	8	
1	1 - RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.73	8	
1	- Probe Position Mechanical tolerance	В	1.4	R	$\sqrt{3}$	1	0.81	∞	
1	- Probe Position with respect to Phantom Shell	В	1.4	R	$\sqrt{3}$	1	0.81	8	
1	Extrapolation, Interpolation and Integration Algorithms for Max. SAR evaluation	В	2.3	R	$\sqrt{3}$	1	1.33	8	
			Uncertair	nties of the DU	Т				
1	Deviation of experimental source from numberical source	Α	4	N	1	1	4.00	5	
1	Input Power and SAR drift measurement	Α	5	R	$\sqrt{3}$	1	2.89	5	
1	Dipole Axis to Liquid Distance	В	2	R	$\sqrt{3}$	1	1.2	&	

CCIC-SET/T-I (00) Page 49 of 52

		Р	hantom and Ti	ssue Paramet	ers			
18	- Phantom Uncertainty(shape and thickness tolerances)	В	4	R	$\sqrt{3}$	1	2.31	∞
19	Uncertainty in SAR correction for deviation(in permittivity and conductivity)	В	2	N	1	1	2.00	
20	- Liquid Conductivity Target -tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	∞
21	- Liquid Conductivity -measurement Uncertainty)	В	4	N	$\sqrt{3}$	1	0.92	9
22	Liquid Permittivity Target tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	8
23	- Liquid Permittivity -measurement uncertainty	В	5	N	$\sqrt{3}$	1	1.15	∞
Cor	mbined Standard Uncertainty			RSS			10.15	
(1	Expanded uncertainty Confidence interval of 95 %)			K=2			20.29	

CCIC-SET/T-I (00) Page 50 of 52

13. Equipment List

This table is a complete overview of the SAR measurement equipment. Devices used during the test described are marked \square .

	EQUIPMENT	Model	Serial number	Calibration Date	Due Date
\boxtimes	SAR Probe	SSE5	SN 43/15 EP276	2017/11/27	2018/11/26
	Dipole	SID750	SN 23/15 DIP0G750-378	2017/11/27	2018/11/26
	Dipole	SID900	SN 09/13 DIP0G900-215	2017/11/27	2018/11/26
	Dipole	SID1800	SN 09/13 DIP1G800-216	2017/11/27	2018/11/26
	Dipole	SID1900	SN 09/13 DIP1G900-218	2017/11/27	2018/11/26
\boxtimes	Dipole	SID2450	SN_09/13_DIP2G450-220	2017/11/27	2018/11/26
	Dipole	SID2600	SN 32/14_DIP2G600-338	2017/11/27	2018/11/26
	SAR Probe	SSE2	SN27/15 EPGO261	2017/11/27	2018/11/26
	Dipole	SWG5500	SN15/15 WGA39	2017/11/27	2018/11/26
	Multimeter	Keithley-2000	4085310	2017/09/08	2018/09/07
	System Simulator(R&S)	CMU200	A0304212	2017/11/08	2018/11/07
	System Simulator(Agilent 8960)	E5515C	GB 47200710	2017/11/08	2018/11/07
	System Simulator(R&S)	CMW500	130805	2017/08/29	2018/08/28
	Vector Network Analyzer(R&S)	ZVB8	A0802530	2017/05/04	2018/05/03
	PC 3.5 Fixed Match Calibration Kit	ZV-Z32	100571	2017/11/29	2018/11/28
\boxtimes	Dielectric Probe Kit	SCLMP	SN 09/13 OCPG51	2017/11/27	2018/11/26
	Signal Generator	SMU200A	A140801889	2017/05/04	2018/05/03
	Amplifier	Nucletudes	143060	2018/03/27	2019/03/28
\boxtimes	Directional Coupler	DC6180A	305827	2018/03/27	2019/03/28
	Power Meter	NRP2	A140401673	2018/03/27	2019/03/28
	Power Sensor	NPR-Z11	1138.3004.02-114072-nq	2018/03/27	2019/03/28
	Power Meter	NRVS	A0802531	2018/03/27	2019/03/28
	Power Sensor	NRV-Z4	100069	2018/03/27	2019/03/28

CCIC-SET/T-I (00) Page 51 of 52

ANNEX A: Appendix A: SAR System performance Check Plots

(Please See Appendix A)

ANNEX B: Appendix B: SAR Measurement results Plots

(Please See Appendix B)

ANNEX C: Appendix C: Calibration reports

(Please See Appendix C)

ANNEX D: Appendix D: SAR Test Setup

(Please See Appendix D)

—End of the Report—

CCIC-SET/T-I (00) Page 52 of 52