

ey concept T4 L3

Recap Variables

Random Variable

outcomes of an experiment with probabilistic occurrence

Topic 3 T4

Discrete Random Variable

a counting process

(e.g. number of courses you are taking in this semester)

Topic 3 T5

Continuous Random Variable

a measurement

(e.g. your annual salary, or your weight)

Probability Distribution

- Discrete Probability Distribution
- Binomial Distribution

- Continuous Probability Distribution
- Normal Distribution

Discrete Probability Distributions

- Probability distribution
 - Mutually exclusive
 - o = nothing in common = independent
 - Collectively exhaustive
 - = nothing left out = sum is 1 = all possible outcomes
 - Source: Priori knowledge / empirical approach
- Sumamry measures
 - Center Expected value/mean

$$\mu = E(X) = \sum_{i=1}^{N} x_i P(X = x_i)$$

- Variation
 - Variance
 - Standard deviation (s.d.)

$$\sigma^{2} = \sum_{i=1}^{N} [x_{i} - E(X)]^{2} P(X = x_{i})$$

$$\sigma = \sqrt{\sigma^{2}} = \sqrt{\sum_{i=1}^{N} [x_{i} - E(X)]^{2} P(P = x_{i})}$$

Topic 2

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$\mu = \frac{\sum_{i=1}^{N} X_i}{N}$$

$$\sigma^{2} = \frac{\sum_{i=1}^{N} (X_{i} - \mu)^{2}}{N} \quad S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$

Binomial Distribution

- \circ Bi = 2
- Binomial = 2 outcomes
 - a special case of Discrete Distribution
 - Mutually exclusive
 - Collectively exhaustive
- What is the probability that x out of n obs meet the criterion?

$$P(X = x) = \frac{n!}{x! (n-x)!} \pi^{x} (1-\pi)^{(n-x)}$$

- X event of interest/meet the criterion
- \circ x no. of event of interest
- o n no. of obs
- \circ π probability of an event of interest

Topic 2

- 2. $(k_1)(k_2)\cdots(k_n)$
 - If there are k₁ events on the first trial, k₂ events on the second trial, ... and k_n events on the nth trial
- 3. $n! = (n)(n-1)\cdots(1)$
 - o n items can be arranged in order
- 5. Combinations: ${}_{n}C_{X} = \frac{n!}{X!(n-X)!}$
 - o selecting X objects from n objects
 - ignore order

Binomial Distribution

- Summary measures
 - Center Expected value/mean

$$\mu = n\pi$$

- Variation
 - Variance
 - Standard deviation (s.d.)

$$\sigma^2 = n\pi(1-\pi)$$

$$\sigma = \sqrt{n\pi(1-\pi)}$$

- Shape
 - \circ π

 $\pi = 0.5 =>$ symmetrical $\pi < 0.5 =>$ right-skewed $\pi > 0.5 =>$ left-skewed $\pi > 0.5 =>$ concentration

$$n = 4$$
, $\pi = 0.1$

Distribution and Summary measures

- Steps of calculating measures (center, variation)
 - 1. calculate the probability of each x out of n
 P(X=x_i)
 - 2. construct a distribution table
 - o x_i and $P(X=x_i)$
 - 3. calculate measures

$$\mu = E(X) = \sum_{i=1}^{N} x_i P(X = x_i)$$

$$\sigma^2 = \sum_{i=1}^{N} [x_i - E(X)]^2 P(X = x_i)$$

$$\sigma = \sqrt{\overline{\sigma^2}} = \sqrt{\sum_{i=1}^{N} [x_i - E(X)]^2 P(P = x_i)}$$

D(V - v) -	n!	-X/1	-\ (n-x)
P(X = x) =	x!(n-x)!	m (1 –	щ

x _i	P(X=x _i)
0	0.59049
1	0.32805
2	0.0729
3	0.0081
4	0.00045
5	0.00001

Prove and Understand

1. Probability mean/variation V.S. Normal mean/variation

2. Binominal distribution probability

What is the probability that, among 3 students, any 2 of them getting a pass in the test, with the probability of passing the test equals 0.7?

Student	Α	В	С	Probability
Case 1	Р	Р	F	$0.7 \times 0.7 \times 0.3 = 0.147$
Case 2	Р	F	Р	$0.7 \times 0.3 \times 0.7 = 0.147$
Case 3	F	Р	Р	$0.3 \times 0.7 \times 0.7 = 0.147$
Total				0.147+0.147+0.147=0.441

$$P(X = x) = \frac{n!}{x! (n-x)!} \pi^{x} (1-\pi)^{(n-x)}$$

3. Binomial mean/variation

ey concept T6 L3

Probability Distribution

- Discrete Probability Distribution
- Binomial Distribution

- Continuous Probability Distribution
- Normal Distribution

Continuous Probability Distribution

- Continuous uncountable number of values
 - In practice, a discrete variable with large range of values is also considered as continuous variable
- Probability distribution

			Relative
_	Amount of Fill (liters)	Frequency	Frequency
	< 1.025	48	0.0048
	1.025 < 1.030	122	0.0122
	1.030 < 1.035	325	0.0325
	1.035 < 1.040	695	0.0695
	1.040 < 1.045	1198	0.1198
	1.045 < 1.050	1664	0.1664
	1.050 < 1.055	1896	0.1896
	1.055 < 1.060	1664	0.1664
	1.060 < 1.065	1198	0.1198
	1.065 < 1.070	695	0.0695
	1.070 < 1.075	325	0.0325
	1.075 < 1.080	122	0.0122
	1.080 or above	48	0.0048
		_	1.0000

Topic 1

- Summary table
 - o Frequency distribution
 - Cumulative percentage distribution

Amount Spent (\$)	Frequency	Relative Frequency
0 -< 100	40	0.40
100 - < 200	22	0.22
200 - < 300	15	0.15
300 - < 400	7	0.07
400 - < 500	5	0.05
500 - < 600	7	0.07
600 - < 700	0	0.00
700 - < 800	2	0.02
800 - < 900	2	0.02
900 - < 1000	0	0.00
Total	100	1.00

Continuous Probability Distribution

- Relative frequency histogram
 - relative frequency = percentage = Area
 - Area under a single point, P(X=x)=0
 - o area ≈ Percentage polygon area

- Probability Density Function
 - Likelihood for X to be a certain value xi
 - o $f(x) \ge 0$ for all x_i of X
 - Total area below f(x) = 1
 - most important form Normal Density Function

Connect mid-points Fit a math curve
 Histogram -----> Polygon ----> Mathematical Curve
 (multi-rectangles) (a smooth line)

Know how to calculate: P(X < 1.042)

Normal Distribution

o continuous random variable X follows Normal Distribution $X \sim N(\mu, \sigma^2)$:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(\frac{1}{2})[\frac{x-\mu}{\sigma}]^2}$$

where

x =any value that the continuous random variable X can take in the range of $-\infty$ to $+\infty$

 $\mu =$ mean of the population

 σ = standard deviation of the population

e = constant, 2.71828... $\pi = \text{constant}, 3.14159...$

- o Bell shaped, symmetrical about $X = \mu$
- mean=median=mode
- \circ spread is determined by σ

For smaller σ - clustered more closely around μ For larger σ - more spread out and away from μ

- Has an infinite theoretical range, i.e. $-\infty$ to $+\infty$
- Follows the Empirical Rule

- Area within $\mu \pm \sigma$ equals 68% approximately
- Area within $\mu + 2\sigma$ equals 95% approximately
- ullet Area within $\mu \pm 3\sigma$ equals 99.7% approximately

Normal Distribution

- Some rules
 - total area under the curve = 1
 - Probability = Area under the curve
 - o Probability of any individual value is zero by definition, i.e. P(X=a)=0

$$P(a \le X \le b) = P(a < X < b)$$

- How do the distribution change when
 - \circ change μ
 - o Increase? Decrease?
 - \circ change σ
 - o Increase? Decrease?
 - (important for understanding why we can standardize any normal distribution)

- Standard Normal Distribution $Z \sim N(0,1^2)$
 - \circ μ =0, σ =1
 - Cumulative standardized normal tables = Z table
 - Find the probability of P(Z<a)

Know how to use the table

The Cumulative Standardized Normal Distribution Entry represents area under the cumulative standardized normal distribution from $-\infty$ to Z

The Cumulative Standardized Normal Distribution (Continued)
Entry represents area under the cumulative standardized normal
distribution from -∞ to Z

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-6.0	0.00000001									
-5.5	0.00000019									
-5.0	0.00000287									
-4.5	0.000003398									
-4.0	0.000031									
-3.9	0.00005	0.00005	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00003	0.00003
-3.8	0.00007	0.00007	0.00007	0.00006	0.00006	0.00006	0.00006	0.00005	0.00005	0.00005
-3.7	0.00011	0.00010	0.00010	0.00010	0.00009	0.00009	0.00008	0.00008	0.00008	0.00008
-3.6	0.00016	0.00015	0.00015	0.00014	0.00014	0.00013	0.00013	0.00012	0.00012	0.00011
-3.5	0.00023	0.00022	0.00022	0.00021	0.00020	0.00019	0.00019	0.00018	0.00017	0.00017
-3.4	0.00034	0.00032	0.00031	0.00030	0.00029	0.00028	0.00027	0.00026	0.00025	0.00024
-3.3	0.00048	0.00047	0.00045	0.00043	0.00042	0.00040	0.00039	0.00038	0.00036	0.00035
-3.2	0.00069	0.00066	0.00064	0.00062	0.00060	0.00058	0.00056	0.00054	0.00052	0.00050
-3.1	0.00097	0.00094	0.00090	0.00087	0.00084	0.00082	0.00079	0.00076	0.00074	0.00071
-3.0	0.00135	0.00131	0.00126	0.00122	0.00118	0.00114	0.00111	0.00107	0.00103	0.00100
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7518	0.7549
0.7	0.7580	0.7612	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817

o For any $X \sim N(\mu, \sigma^2)$, it can be standardized to $Z \sim N(0, 1^2)$ with the following formula

$$Z = \frac{X - \mu}{\sigma}$$

why we can standardize any normal distribution???

Know how to calculate probabilities

$$P(X = a) = 0$$

$$P(X \le a) = P\left(\frac{x-\mu}{\sigma} \le \frac{a-\mu}{\sigma}\right)$$
$$= P\left(Z \le \frac{a-\mu}{\sigma}\right)$$

$$P(X \ge a) = 1 - P(X \le a)$$
$$= 1 - P\left(Z \le \frac{a - \mu}{\sigma}\right)$$

$$P(a \le X \le b) = P(X \le b) - P(X \le a)$$
$$= P\left(Z \le \frac{b-\mu}{\sigma}\right) - P\left(Z \le \frac{a-\mu}{\sigma}\right)$$

$$\begin{split} P(X \leq a) + P(X \geq b) &= P(X \leq a) + [1 - P(X \leq b)] \\ &= P\left(Z \leq \frac{a - \mu}{\sigma}\right) + [1 - P\left(Z \leq \frac{b - \mu}{\sigma}\right)] \end{split}$$

$$X \sim N(\mu, \sigma^2) \rightarrow Z \sim N(0, 1^2) \rightarrow \text{Probability}$$

Step 1: always change to \leq first because Z table by definition is P(Z<a)

Step 2: use formula to standardize

$$Z = \frac{X - \mu}{\sigma}$$

Step 3: calculate Z

Step 4: find probability in Z table

$$X \sim N(\mu, \sigma^2) \leftarrow Z \sim N(0, 1^2) \leftarrow \text{Probability}$$

Step 1: always change to \leq first because Z table by definition is P(Z<a)

Step 2: find Z with given probability in Z table If the prob is exactly in the middle of two numbers, take an average

Step 3: use formula to calculate X $X = Z\sigma + \mu$

