JP5295645

Publication number: JP5295645

Publication date:

1993-11-09

Inventor:

TANAKA SHIGEKI

Applicant:

TOYO BOSEKI

Classification:

- international:

B01D39/16; D04H3/00; B01D39/16; D04H3/00; (IPC1-

7): D04H3/00; B01D39/16

- european:

Application number: JP19920097945 19920417 Priority number(s): JP19920097945 19920417

Report a data error here

Abstract of JP5295645

PURPOSE:To obtain a contact bonded nonwoven fabric, excellent in filtration performance in both the vapor and liquid phases and suitable as filters, heat insulating materials, separators or medical cloths by spinning polypropylene through a specific nozzle according to a melt blowing method and depositing the resultant fiber on a collecting plate. CONSTITUTION:The objective nonwoven fabric is obtained by spinning polypropylene having 250-1000 melt index through a nozzle having 0.1-0.5mm orifice diameter and 0.5-2.0mm pitch between the centers of nozzles at 0.05-0.8g/min throughput per unit hole according to a melt blowing method, pulling and attenuating the fiber with a high-pressure stream under 0.2kg/cm<2> gauge pressure, taking off the attenuated fiber on a collecting plate located at a position 5-40cm under the nozzle and forming a nonwoven fabric of the ultrafine fiber having 0.5-7mum average fiber diameter and <=55% coefficient of variation (CV). The nonwoven fabric is regulated to 8-20% filling ratio and provided with 150-600mmAq average value of ventilation resistance at 3.4m/sec wind velocity for 40g/m<2> basis weight in the width direction and 30% difference (R) between the maximum and the minimum values of ventilation resistance, or the objective nonwoven fabric having the filling ratio regulated 55-85% and <=40mum and <=2.0mum maximum and average pore sizes at <=2.9 ratio thereof is obtained.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12) 公 開 特 許 公 報 (A)

(11)特許出願公開番号

特開平5-295645

(43)公開日 平成5年(1993)11月9日

(51)Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

D 0 4 H 3/00

J 7199-3B

B 0 1 D 39/16

A

審査請求 未請求 請求項の数4(全 10 頁)

(21)出願番号

特願平4-97945

(71)出願人 000003160

東洋紡績株式会社

(22)出願日

平成 4年(1992) 4月17日

大阪府大阪市北区堂島浜2丁目2番8号

(72)発明者 田中 茂樹

滋賀県大津市堅田二丁目1番1号 東洋紡

績株式会社総合研究所内

(54)【発明の名称】 不織布およびその製造方法

(57)【要約】

濾材として用いた際に安定して優れた濾過 【目的】 性能を示す不織布およびその製造方法を提供する。

極細繊維からなり通気抵抗のばらつきを小 さくした不織布、孔径の揃った不織布及びその製造方 法。

エレクトロニクス、食品分野、医療分野な 【構成】 どの液体濾過に好適な濾過材として利用可能な不織布が 安定して供給される。

50

【特許請求の範囲】

【請求項1】 平均繊維径が $0.5 \mu m$ 以上 $7 \mu m$ 以下の極細繊維からなり、充填率が $8\% \sim 20\%$ の不織布であって、該不織布の幅方向の目付 $40g/m^2$ 当りの風速3. 4m/秒での通気抵抗の平均値が150mmAq以上600mmAq以下であり、前記通気抵抗の最大値と最小値との差が前記平均値に対して30%以下であることを特徴とする不織布。

【請求項2】 極細繊維の繊維径のCV%が55%以下である請求項1に記載の不織布。

【請求項3】 充填率が55%~85%の間にある圧着不織布において、最大ポアーサイズが4.0 μ m以下で、且つ平均ポアーサイズが2.0 μ m以下であって、該平均ポアサイズに対する該最大ポアーサイズの比が2.9以下であることを特徴とする圧着不織布。

【請求項4】メルトブロー法により、メルトインデックスが250~1000のポリプロピレンの溶融ポリマーをノズルから紡出し、ゲージ圧で0.2kg/cm²の高速エアー流で牽引細化させて捕集板に引き取って不織布にする際に、前記ノズルのオリフィス径を0.1mm以上20.5mm以下にし、該ノズルの孔の中心間ピッチを0.5mm以上2.0mm以下にし、単孔当りの吐出量を0.05g/分~0.8g/分にし、前記ノズルと前記捕集板との距離を5cm~40cmにすることを特徴とする不織布の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、極細繊維よりなる不織 布に関し、更に詳しくは液体フィルターなどに好適に利 用される不織布及びその製造方法に関する。

[0002]

【従来の技術】極細繊維不織布としては、メルトブロー法(特開昭 49-10258 号公報、特開昭 49-48 9 2 1 号公報、特開昭 50-123157 号公報参照)により作られた平均繊維径が 0.1μ m~ 20.0μ mである極細繊維不織布が知られている。

[0003]

【発明が解決しようとする課題】これらのメルトブロー 法により得られる不織布は、シート中にロープと呼ばれる複数本の繊維が絡み合ってできる東状繊維を多く含ん 40でおり、このロープが存在するとフィルターとしての性能を充分向上させることが難しく、厳しい精度を要求される膜素材などの用途に対しては著しく信頼性が劣るという問題があった。

【0004】かかる問題を解決するためにエアー風量を大きくし、吐出量を小さくしてコールドプレスする方法が提案されている(米国特許第4925601号明細書参照)。しかしながら、この方法によってもサブミクロン粒子を気相濾過精度及び液相濾過精度良く濾過することは、充填率が低く、通気抵抗が適切でなく、不十分で

あった。

【0005】そこで、本発明は、充填率、通気抵抗、ポアーサイズなどに工夫を加え、フィルターに好適な不織布およびその製造方法を提供することを課題とするものである。

[0006]

【課題を解決するための手段】本発明は、かかる課題を 解決するために次の手段をとるものである。すなわち、 本発明は、平均繊維径が O. 5 μ m以上 7 μ m以下の極 細繊維からなり、充填率が8%~20%の不織布であっ 10 て、該不織布の幅方向の目付40g/m² 当りの風速 3. 4m/秒での通気抵抗の平均値が150mmAq以 上600mmAq以下であり、前記通気抵抗の最大値と 最小値との差が前記平均値に対して30%以下であるこ とを特徴とする不織布、充填率が55%~85%の間に ある圧着不織布において、最大ポアーサイズが4.0μ m以下で、且つ平均ポアサイズが2.0 μ m以下であっ て、該平均ポアサイズに対する該最大ポアーサイズの比 が2.9以下であることを特徴とする圧着不織布、メル トブロー法により、メルトインデックスが250~10 00のポリプロピレンの溶融ポリマーをノズルから紡出 し、ゲージ圧で0.2 kg/cm²~0.98 kg/c m² の高速エアー流で牽引細化させて捕集板に引き取っ て不織布にする際に、前記ノズルのオリアフィスカ径を 0.1mm以上0.5mm以下にし、該ノズルの孔の中 心間ピッチをO.5mm以上2.0mm以下にし、単孔 当りの吐出量を0.05g/分~0.8g/分にし、前 記ノズルと前記捕集板との距離を5cm~40cmにす ることを特徴とする不織布の製造方法である。

【0007】以下、本発明を詳細に説明する。まず、本発明の不織布を構成する材質としては、メルトブロー法の適用できるものであれば、有機物、無機物またはこれらの混合物が挙げられる。代表的な有機物としては、ポリオレフィンやポリエステル、ポリアミドなどが、挙げられる。また、無機物としては、ガラスや石英質の材質が挙げられる。このなかで、生産性が良い点からオレフィン系のポリマーが好ましく、特にポリプロピレンのポリマーが好ましい。また、ポリエステル系のポリマーでは液体フィルターとして用いた際に、濾材自身からの抽出物が少ないため、食料品関係を中心に好ましい。

【0008】 これらの材質により形成される極細繊維の 平均繊維径は、 0.5μ m~ 7μ m好ましくは 0.5μ m~ 3μ mである。平均繊維径が 7μ mをこえると、微 小な粒子の高い捕集効率を得ることが難しくなる。他 方、 0.5μ mより細くなると、不織布のハンドリング が悪くなるだけでなく、濾過抵抗が高すぎて問題となる。

【0009】また、メルトブロー法によって得られる繊維の繊維径は、ばらつきが大きく、そのため太い繊維が存在し、濾過効率が低下する。したがって、繊維径の標

準偏差を平均値で割ったCV%が55%より大きくなると濾過性能が低下するので、CV%は55%以下が好ましく、さらに好ましくは40%以下、特に好ましくは30%以下である。原因については、CV%が55%をこえると太い繊維が存在するために太い繊維の近傍でチャンネリングが起こるためと推定される。また、不織布をカレンダー加工して用いる際にプレス加工の抵抗となるため安定した充填率調整が難しくなる。

【0010】不織布の風速3.4m/秒の通気抵抗は、 目付40g/m² 当り150mmAq以上600mmA q以下、好ましくは250mmAq以上500mmA a、さらに好ましくは300mmAq以上480mmA q以下である。通気抵抗の最適値は繊維径が小さいほど その値が大きくなる。目付が40g/m でない場合に は、その目付での通気抵抗を以下の式により計算して、 40g/m² 当りに換算する。40g/m² 目付当り通 気抵抗 (mmAq) =実目付の通気抵抗 (mmAq) × 40 (g/m²)/実目付 (g/m²)······(I) 【0011】通気抵抗は、目付当りに換算すると、充填 率 (%) に依存するが、本発明領域での充填率でこの通 20 気抵抗の範囲にあることが好ましい。また、通気抵抗の ばらつきが小さいことが、フィルター性能の安定化につ ながる。この通気抵抗は、不織布の幅方向に1インチ間 隔で直径1インチの円盤形の不織布部分を風速340c m/秒で測定した目付40g/m² 当りの値であるが、 この通気抵抗の最大値と最小値との差が平均の通気抵抗 に対して30%以下、好ましくは25%以下である。

【0012】従来においては、繊維の分散性が悪く、繊維本数の粗密が存在することにより通気抵抗のばらつきが大きく、通気抵抗の最大値と最小値との差が平均の通気抵抗に対して30%をこえる場合が少なくないという問題があった。これに対して本発明においては、繊維の分散性を良くして、通気抵抗の平均値を所定範囲におさめるとともに、気相系のエアフィルターとして不織布を用いる際の充填率は8%~20%におさめるようにしたものである。充填率が低すぎると濾過効率が低下し、他方、充填率が高すぎると気相での濾過抵抗が高く、用途が著しく制限される。

【0013】本発明においては通気抵抗は、繊維の粗密を反映するように、不織布の幅方向に1インチ間隔で直径1インチの円盤形の部分を風速340cm/秒で測定し、目付40g/ m^2 当りに換算した値を用いる。本測定で測定を1インチにしたのは、小さな部位での繊維の分散性をより正確に評価するためである。

【0014】また、本発明の圧着不織布は、カレンダー処理等をして、液体フィルター用として好適に用いられるものであるが、充填率55%~85%の間にあることが好ましい。充填率55%より小さいと、液相濾過精度が上がらなくなる。また、カレンダー処理した不織布にシワ等が入ったり、プリーツ加工などの後加工を行う際50

に、部分的に充填率が変化するという問題が生じる。他 方、85%を超えると濾過抵抗が大きくなりすぎて使用 に問題がある。また、通常充填率が上がると濾過精度は 向上するが、充填率が75%より高くなった所から、濾 過抵抗が上昇する割には濾過精度が向上しないことが明 らかとなった。この原因として、充填率が85%をこえ ると繊維により形成されるポアーが遺れすぎて閉塞する 個所が増加するためと考えられる。

【0015】前記の圧着不織布は、毛細管吸引力を測定するポロメーター(コールタール社)により測定した平均ポアーサイズが2.0 μ m以下でなければならない。これは、最大ポアーサイズの大きさと相俟って液相濾過精度を上げるためである。また、最大ポアーサイズは4.0 μ m以下、好ましくは3.0 μ m以下である。通液抵抗を上げずに平均ポアーサイズの大きさと相俟って液相濾過精度を上げるためである。

【0016】次に、最大ポアーサイズと平均ポアーサイズとの比(以下「ポアーインデックス」という。)が2.9以下であることが必要である。このポアーインデックスが小さいことは、不織布又は圧着不織布のポアーサイズが均一であることを示し、ポアーインデックスが小さいほど同じ濾過精度で通気抵抗又は通液抵抗を小さくすることを示す目安となるものである。通常の濾過では最大ポアーサイズが濾過の精度を支配的に決定することから、同一充填率では濾過精度が高く、他方、同一濾過精度では濾過抵抗を小さくすることができる。また、濾材の目付を小さくしても、濾過精度の大きな低下がないことにも関連する。すなわち、本発明の圧着不織布は、濾過精度と濾過抵抗のバランスに優れた濾材として好適に使用される。

【0017】本発明の圧着不織布は、構成繊維がすでに述べたような平均繊維径が $0.5\mu m \sim 7\mu m$ の極細繊維からなるものが好ましく、また、その繊維径のCV%が55%以下であることが好ましい。

【0018】本発明の不織布をエアーフィルターとして 用いる際には荷電処理を実施することによりいわゆるエ レクトレット化を実施することが好ましい。

【0019】液体フィルターとして本発明の充填率が8~20%の不織布を用いる際には、不織布を積層して用いることが好ましい。不織布一枚でのサブミクロン粒子の濾過を実施する際には濾過効率を上げることが難しくなる。従って、少なくとも5層、好ましくは10層以上、更に好ましくは14層以上積層することが好ましい。不織布を積層する効果は粒子が多分散である場合や粒子が完全に固体でない場合に効果を特に発揮する。粒子が多分散であるというのは、単分散ポリスチレンラテックスなどのように粒子径がそろっておらず、ここでは粒子径の標準偏差が平均粒子径の5~10%より大きい場合をさし、また、粒子が完全な固体でないというのは、粒子が濾過層内で何等かの刺激や応力により変形す

ることをいい、ゲル状物や血液中の血球などをその代表 としてあげられ、積層数をあげて行くと、濾過抵抗が高 まるが、通気抵抗の合計が7000mmAq以下である ことが好ましい。1枚当りの通気抵抗の小さいときには 積層効果が大きい。

【0020】他方、カレンダー処理して充填率を55~ 85%に調整した不織布は、その積層効果が少なく、多 くても10層以下、更に好ましくは5層以下であること が好ましい。これは、不織布の表面での濾過が深さ方向 の濾過に対して寄与するものが大きいことによると考え られる。また、全体の圧力損失が大きくなりすぎること も問題である。

【0021】また、他のタイプの不織布や織布または多 孔フイルムなど多孔質材料と積層して用いて濾過精度や ライフの改善を実施することもでき、粒状または繊維状 活性炭などの吸着材と併用して使うことも脱臭や脱イオ ン、脱溶剤等の観点から望ましい形態である。その他、 繊維をコロナ放電、電子線照射や親水化剤添付などの後 加工により親水化処理をし、初期の濡れ性を改善するこ とも好ましい。

【0022】次に、本発明の製造方法を説明する。メル トブロー法により、メルトインデックスが250~10 00のポリプロピレンの溶融ポリマーをオリフィス径が O. 1 mm~O. 5 mmのノズルから紡出する。オリフ ィス径がO. 1 mmより小さいと、オリフィスの加工精 度からオリフィス形状が不揃いになり、繊維径のCV% が大きくなるので好ましくない。また、ポリマーの劣化 などにより長期運転時に孔がつまり易いという問題が生 じるので好ましくない。他方、O.5mmより大きいと 極細繊維を得ることが困難になるので好ましくない。

【0023】オリフィスの中心孔間の距離は0.5mm ~2. 0mm、好ましくは0. 75mm~1. 5mmさ らに好ましくは0.80mm~1.2mmである。0. 5mmより小さくなるとロープが発生しやすくなり、濾 過精度が低下する。これは、隣の繊維との接触の確率が 増大し、繊維が絡まってロープが発生しやすくなるため と考えられる。

【0024】他方、2.0mmをこえると、繊維同志の 交絡がきわめて低下し、不織布の寸法安定性が低下し、 不織布の強力低下や毛羽立ちの問題が生じる。また、単 孔吐出量は0.05g/分~0.8g/分、好ましくは 0.1g/分~0.5g/分である。吐出量が0.05 g/分より小さくなると生産性が低くなるだけでなく、 フライと呼ばれる繊維の糸切れが発生しやすくなり、連 続操業運転時に孔詰りが生じやすい。他方、0.8g/ 分より大きくなると、ショットと呼ばれる玉状の繊維が 発生しやすくなり、また、ポリマーの熱容量が大きいた め繊維の冷却が遅れ、未固化の繊維がすでに形成された 不織布シートに落ちて、シートに貫通孔が明けられると いう問題が生じる。

【0025】また、ポリプロピレンのポリマーのメルト インデックスは250~1000であるが、250 (g /10分)未満になると細化が不充分となって好ましく なく、1000 (g/10分) をこえると糸切れが増え たり、糸径のばらつきが大きくなってあまり好ましくな

【0026】さらに、高速エアー流はゲージ圧で0.2 kg/cm^{*}~0.98kg/cm^{*}であるが、0.2k g/cm²未満になると、糸条の細化が不充分となり好 ましくない。他方、0.98kg/cm²をこえると、 牽引エアー速度が超音速流となり、流れの非定常が高く なり好ましくない。

【0027】また、ノズルと捕集板との距離は5cm~ 40 c m である。好ましくは、6 cm~30 c m、さらに 好ましくは7 cm~25 cmである。5 cmより小さく なると、繊維の冷却遅れにより不織布に貫通孔が生じた り、牽引流体流の捕集板上での速度が早くなって不織布 の表面を毛羽だたせたりして好ましくない。他方、40 c mより大きくなると、ロープが増加し繊維の分散性が 著しく低下するので好ましくない。不織布シートの貫通 孔がなく、ロープ状物が小さい不織布をえるためには、 単孔吐出量とオリフィス間ピッチ、牽引流体流量に応じ てノズルと捕集板との間の距離の最適化を図ることが必 要であると考えられる。なお、ミストクエンチなどの冷 却強化手段を用いると、この距離はさらに短くすること が可能であり、5~10cmの距離が液相フィルターと して利用する際に特に好ましい。

[0028]

20

【実施例】

実施例1~13、比較例1~14

メルトブロー法により、ポリプロピレンのポリマーを表 1~表6に示す条件により同表の不織布(目付40g/ m²) を製造して、その特性を測定した。また、該不織 布を熱プレスローラー(表面温度90~130℃、圧着 力50~150kg/cm) により圧着して所望の充填 率に調整したものも測定した。気相での濾過効率の測定 に用いる不織布は20KVで10秒間エレクトレット処 理を行った。

【0029】なお、測定方法は、次のとおりである。

- ① 平均繊維径およびCV%:シートの表面の走査型電 子顕微鏡写真を1000~3000倍の倍率で撮影し、 その写真の繊維径をランダムに200本測定して、その 算術平均値を平均繊維径(µm)とした。
- ② 目付(g/m²):20cm角のサンプル(n= 5) の重量を測定し、1 m2 当りに換算した平均値を目 付 (g/m²) とした。

【0030】 3 充填率(%):シートの厚み(m)を JIS L-1096のダイヤルゲージ法により7g/ c m² の荷重下で測定した。シートの目付(g/m²) 50 を厚み(m)で割り、百分率(%)であらわした。

Φ 気相濾過精度(%): 0.3 μ mの空気塵の捕集効率を線速度5.3 c m/秒で測定し、{(入口濃度-出口濃度)/入口濃度}×100で求めた。

7

- ⑤ 通気抵抗 (mm A q): 空気の通気抵抗を直径25 mmの円形サンプルを用いて線速度3.4 m/秒で差圧計により測定した。
- ⑤ 通液抵抗 (mmAq):線速度2.2cm/分のときの水の通液抵抗を差圧計により求めた。なお、サンプルの大きさは直径140cmの円形部分である。
- * ⑦ 液相濾過精度(%):日本合成ゴム社製の0.43 μmのポリスチレンラテックスの濾過精度を濾過速度 2.2 cm/分で、 {(入口濃度-出口濃度)/入口濃度} ×100により求めた。
 - ® 最大ポアーサイズ及び平均ポアーサイズ: コールター社ポロメーターIIにより測定した(ASTMF316 -70)。

[0031]

【表1】

	יסיסיס ללמטלול ולייוני	· · · · · · · · · · · · · · · · · · ·	L24 4 1		
	種別		実力	色 例	
Ţ	Ĭ I	1	2	3	4
	MI (g/10分)	1000	300	300	300
	単孔吐出量(g/分)	0. 1	0.3	0.3	0. 2
製	オリフィス径 (mm)	0. 2	0, 3	0.3	0.3
造	オリフィスピッチ (mm)	1. 0	1.0	1.0	1.2
条	エアー圧力 (kg/cm²)	0.3	0.5	0.5	0.45
件	エアー温度 (℃)	320	300	300	300
namarre	ポリマー吐出温度 (℃)	250	250	250	250
	ノズル捕集板間距離 (cm)	20	20	15	20
	平均繊維径 (μm)	1. 2	2. 5	2.5	2.5
	繊維径CV(%)	35	40	40	30
不	充塡率 (%)	8	10	15	10
織	通気抵抗(平均) (mmAg)	550	460	520	465
布	同上最大値	600	510	570	500
	同上最小値	480	430	490	435
	気相濾過精度(%)	99. 99	99. 99	99. 99	99. 99
	液相濾過精度(%) 10枚積層	99	72	93	79
	471人1人1名		<u> </u>		

	9	(6)			10
	種別		実 旅	医例	
Į		5	6	7	8
	MI (g/10分)	300	300	300	1000
	単孔吐出量(g/分)	0.3	0. 3	0. 15	0.7
製	オリフィス径 (mm)	0.3	0.3	0.2	0.5
造	オリフィスピッチ(mm)	0.6	1. 5	1	1
条	エアー圧力 (kg/cm²)	0.5	0.5	0. 5	0. 55
件	エアー温度(℃)	300	300	300	350
	ポリマー吐出温度 (℃)	250	250	250	250
	ノズル捕集板間距離 (cm)	20	20	10	30
	平均繊維径(μm)	2.5	2. 5	2	3
	繊維径CV(%)	40	40	30	45
不	充塡率(%)	9	10	15	13
織	通気抵抗(平均) (mmAq)	440	500	580	420
布	同上最大値	490	520	600	505
	同上最小値	415	440	555	385
	気相濾過精度(%)	99. 99	99, 99	99. 99	99. 8
	液相濾過精度(%) 10枚積層	65	80	91	56

【表3】

	11	`	17			12
/	種別		比	較 6)]	
IJ	1 1	1	2	3	4	5
	Ml (g/10分)	1000	300	800	300	1000
	単孔吐出量(g/分)	0. 1	0. 3	1.0	0. 3	0, 8
製	オリフィス径(㎜)	0.2	0. 3	0.6	0.3	0.5
造	オリフィスピッチ (mm)	1.0	0.4	0.5	1.0	2, 5
条	エアー圧力(kg/cm²)	0.3	0. 6	0. 55	0.5	0. 45
件	エアー温度 (℃)	320	280	250	300	280
	ポリマー吐出温度 (℃)	245	265	250	250	240
	ノズル捕集板間距離 (cm)	45	30	1 5	4	20
	平均繊維径(μm)	1.2	2. 5	7	2.5	10
	繊維径CV(%)	35	60	35	40	75
不	充塡率(%)	4	8	27	25	28
織	通気抵抗(平均) (mmAq)	520	450	350	800	55
布	同上最大值	610	570	480	850	70
	同上最小值	420	310	250	410	35
	気相濾過精度(%)	99. 99	99. 99	90	99.7	31
	液相濾過精度(%) 10枚積層	73	34	12	85	0

【表4】

[0034]

	13	(8)			14
	種別		比東	交 例	
I)	Ĭ I	6	7	8	9
	MI (g/10分)	300	300	300	1000
	単孔吐出量(g/分)	0.4	0.3	0. 3	0.8
製	オリフィス径 (mm)	0, 3	0. 3	0, 7	0.5
造	オリフィスピッチ (mm)	0.5	1	1	1
条	エアー圧力 (kg/cm²)	0.5	0.5	0. 5	0.6
件	エアー温度(℃)	300	300	300	350
	ポリマー吐出温度 (℃)	270	250	250	250
	ノズル捕集板間距離 (cm)	25	50	40	50
	平均繊維径(μm)	2. 5	2. 5	4. 5	3. 5
	繊維径CV(%)	60	40	65	60
不	充塡率(%)	8	7	8	30
織	通気抵抗(平均) (mm A q)	420	320	110	615
布	同上最大値	490	345	180	690
	同上最小値	230	190	60	510
	気相濾過精度(%)	99. 8	81	55	79
	液相濾過精度(%) 10枚積層	41	32	7	17

[0035]

【表5】

rs-	17				10
	種別		実 が	色 例	
項目		1 0	1 1	12	1 3
	原反NO	実施例1	実施例 2	実施例 2	実施例2
圧	充填率(%)	75	75	60	80
者不	最大ポアーサイズ (μm)	1. 8	2. 7	4.0	2. 75
織	平均ポアーサイズ (μm)	0.95	1. 3	1.85	1. 15
布	ポアーインデックス	1.9	2. 1	1.6	2. 4
	通液抵抗	0.18	0. 1	0.05	0. 13
	液相濾過精度(%) 1枚	99. 9	99	80	99

[0036]

* *【表6】

	種別		上 輔	交 例	
項目		1 1	1 2	13	1 4
	原反NO	実施例2	実施例2	比較例2	比較例3
圧	充填率(%)	50	90	75	75
着不	最大ポアーサイズ (μm)	8. 4	2. 4	3, 75	18. 7
織	平均ポアーサイズ (μm)	2. 7	1. 1	1. 25	5. 5
布	ポアーインデックス	3. 1	2. 2	3	3. 4
	通液抵抗	0. 03	0. 24	0.09	0.3
	液相濾過精度(%) 1枚	39	99	80	18

実施例1~4と比較例1~5とから明らかなように、同 一繊維径では気相および液相の濾過精度が実施例の方が 優れている。通気抵抗についてみると、繊維が細い程高 40 もバラツキが大きく濾過精度も良くない。 くなるが、充填率が20%より高くなると通気抵抗が大 きくなりすぎて、気相のフィルターとしての用途が著し く阻害される。比較例3、5のように繊維径が太くなり すぎると充填率を高くしても精度は期待できない。

【0037】実施例5~8、比較例6~9で明らかな様 に、オリフィス径が大きくなると繊維を細くしにくく、 紡糸応力が低下するためか繊維径のCV%が増加する。 また、オリフィスピッチが小さすぎると、シート中にロ ープが増え、繊維径CV%も高くなる。繊維の充填率が 高すぎると、濾過抵抗が大きくフィルターとして好まし 50 低く、両者のバランスが不充分であった。

くない。ノズル、捕集間距離は繊維径が太いほど大きく とる必要があるが、繊維の分散性が悪くなり、通気抵抗

【0038】実施例10~13、比較例11~14に示 すものは、圧着不織布の例であるが、比較例10は充填 率が低く、しかも最大ポアーサイズも平均ポアーサイズ もポアーインデックスが範囲外であるので液相濾過精度 が悪かった。比較例14は、特に最大ポアーサイズが特 に大きいため液相濾過精度は特に悪かった。比較例12 は充填率が高すぎて液相濾過精度は良いものの、通液抵 抗が大きく不充分であった。比較例13はポアーインデ ックスが2.9をこえているために通液濾過精度は若干

[0039]

【発明の効果】本発明により液相および気相の両方で濾 過精度が高く、通気抵抗の小さい優れた濾過性能を示す

17

濾過材として好適に用いられる不織布を得ることができる。また、この不織布はその特性から保温材やセパレータ、医療用布としても用いることができる。