A method for the estimation of distal dendro-dendritic gap-junctional parameters

Isak Falk, Yulia Timofeeva

i.falk@warwick.ac.uk, y.timofeeva@warwick.ac.uk Complexity Science, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL

Background

Neurons are specialised cells which form the fundamental computing unit of the brain and the central nervous system. Each neuron consist of a cell body, dendrites and an axon, where the dendrites receive pulses of voltage from other neurons axons, which act like an output.

Figure 1: A neuron with an action potential going down the axon [?]

Through voltage, the neurons may communicate to each other and this is what gives rise to the cognitive processes in any animal. When enough voltage enter a neuron, it spikes and send signals at a constant rate to all neurons connected to it, a so called action potential.

Figure 2: Recording of membrane potential of a neuron [?]

On the level of a small scale network, or a single neuron, knowing the input/output relation when the cell membrane is subjected to an electrical current or spike lets us know a lot about the dynamics.

By finding a map between something easily measured, like voltage, and the strength and distance of a gap junction, it would be possible for experimentalists to recover the parameters of the gap junction, something that is hard to do directly. It is this question that I have considered in my research project.

References

[1]

[2]

Acknowledgement

I would like to thank the University of Warwick URSS for supporting me these weeks and my supervisor Yulia Timofeeva for guiding me and making this researh possible.

Method

We use a model based on the cable equation modelling the voltage dynamics on the cell membranes of neurons. As the model is linear, we can specify the dynamics of the membrane-voltage completely by the so called Green's function $G_{ij}(x,y,t)$ which specifies how the voltage at length x of branch i develops in time with regards to a delta spike at length y of branch j at start. Throughout my project I only focused on the Green's function on the twin-cell network.

Figure 3: Schema of twin-cell network

To calculate the Green's function in the frequency domain we use the method of local point matching which depends on trips over the network from x to y.

The above figures show the type of nodes in the network and how the trips are modified by multiplication of constants depending on how they traverse the network going from x to y. I looked at the dynamics of the network by plotting and analysing how the strength and distance of the gap-junction change the dynamics.

Results

I calculated the response function for cell 1 and 2 in the symmetrical twin-cell network, input at the cell bodies and output at the cell body of cell 1 and different distances up until the gap junction for cell 2, the graphs show how the output (frequency domain) depends on distance and strength of gap junction for a specific distance of input from cell body.

Figure 4: Graphs of cell 1 and cell 2, L_{gj} is the distance and g_{gj} the strength of the gap junction

Conclusions