Quantum Technologies

Homework Solutions

Andrew Simon Wilson

9th December, 2022

EMIMEO Programme

Module Coordinator: Prof. Artoni Maurizio

CONTENTS Quantum Technologies

Author Details

Andrew Simon Wilson, BEng

Post-graduate Master's Student - EMIMEO Programme

@ andrew.wilson@protonmail.com

in andrew-simon-wilson

AS-Wilson

J +44 7930 560 383

Contents

1	Homework One	1
2	Homework One 2.1 ●	1
3	Homework Two 3.1 ●	2
4	Homework Three 4.1 ●	3
5	Homework Four 5.1 ●	4
6	Homework Five 6.1 ●	5
7	Homework Six 7.1 ●	6
	Homework Seven	7

Explanation and Introduction of this Document

I wrote this document for the students studying Quantum Technologies to have a nice set of notes, and correct reference code and graphs for the module. I hope that it is sufficient for this task and it helps all of your studies. I spent have spent a lot of time developing the template used to make this LaTEX document, I want others to benefit from this work so the source code for this template is available on GitHub [?].

2 HOMEWORK ONE Quantum Technologies

1 Homework One

- 1. In the Bohr's model of the Hydrogen atom, give an expression for:
 - (a) The electron speed as a function of the orbit radius.
 - (b) The total energy as a function of the orbit radius.
- 2. How many different photons could be emitted upon a transition from the n=5 down to the fundamental n=1 of an H atom.
 - (a) Compute the exact frequency for one of the transitions.
- 3. A commercial (green) laser pointer has a max/output power, $P \le 1mW$, and a beam spot, $w_0 = 1.1mm$, if $\lambda = 532nm$ is the wavelength of the light source, compute the following:
 - (a) The pointer photon's flux; and,
 - (b) The number of photons emitted in 10 sec when you purposely cover half of the exit hole with your finger. (Neglect divergence).
- 4. (a) Give the potential energy of a charge, q_2 , located at point, r_2 , due to the presence of a charge, q_1 , located at a point, r_1 .
 - (b) Derive the force exerted on the charge, q_2 , as due to the charge, q_1 .
 - (c) Discuss the two charge possibilities.
 - (d) Apply the above results to the case of an electron placed at a distance, r, from a nucleus of a Hydrogen atom (Bohr's model).
 - (e) Redo part (d.) for a nucleus of charge Z_e .

Extra: In a photoelectric experiment Ca is used as photo-cathode and the following values of stopping potential, V_s , vs wavelength, λ , are measured, using these values calculate the Planck constant, \hbar , and the work function, Φ .

2 Homework One

2.1

3 HOMEWORK TWO Quantum Technologies

3 Homework Two

3.1 •

4 HOMEWORK THREE Quantum Technologies

4 Homework Three

4.1 •

5 HOMEWORK FOUR Quantum Technologies

5 Homework Four

5.1 •

6 HOMEWORK FIVE Quantum Technologies

6 Homework Five

6.1 •

7 HOMEWORK SIX Quantum Technologies

7 Homework Six

7.1 •

8 HOMEWORK SEVEN Quantum Technologies

8 Homework Seven

8.1 •