# Algorithm Homework 2

龙肖灵

Xiaoling Long Student ID.:81943968 email:longxl@shanghaitech.edu.cn

October 23, 2017

#### Collecting Toys

There are n types of toys that you wish to collect. Each time you buy a toy, its type is randomly determined from a uniform distribution (i.e., all possible types have equal probabilities). Let  $p_{i,j}$  be the probability that just after you have bought your ith toy, you have exactly j toy types in your collection, for  $i \geq 1$  and  $0 \leq j \leq n$ .

- (a) Find a recursive equation of  $p_{i,j}$  in terms of  $p_{i-1,j}$  and  $p_{i-1,j-1}$  for  $i \geq 2$  and  $1 \leq j \leq n$ .
- (b) Describe how the recursion from (a) can be used to calculate  $p_{i,j}$ .

Solution.

- (a) Recursive equation of  $p_{i,j}$ :  $p_{i,j} = \frac{j}{n} p_{i-1,j} + \frac{n-j+1}{n} p_{i-1,j-1}$ .
- (b) First we should initialize the initial probability  $p_{i,j} = 0$  s.t. i < j or  $i \neq 0$  & j = 0 and  $p_{0.0} = 1$ . Then we can calculate all probability  $p_{i,j}$

Done.

## Knapsack II

Given n objects and a knapsack, item i weighs  $w_i > 0$  kilograms and has value  $v_i$  where  $n > v_i > 0$ . The knapsack has capacity of W kilograms. The numbers n,  $v_i$  are integers and  $w_i$ , W are real numbers. What is the maximum total value of items that we can fill the knapsack with? Design an efficient algorithm. For comparison, our algorithm runs in  $O(n_3)$ .

Solution. We can using DP algorithm to minimize the weight on constant value.

- 1) Compute  $V = \sum_{i=1}^{n} v_i$  and we know that  $V < n \times max(v_i) < n^2$ .
- 2) Define OPT(i, v) is min weights of items selected from  $1, \dots, i$  whose total value equal v. And if  $1, \dots, i$  can make total value be v, then OPT(i, v) = 0.
- 3) Then we have

$$OPT(i, v) = \begin{cases} 0 & if \ i = 0 \\ w_i + OPT(i - 1, v - v_i) & if \ OPT(i - 1, v) = 0 \\ min\{w_i + OPT(i - 1, v - v_i), OPT(i - 1, v)\} & otherwise \end{cases}$$

4) We can get all probability  $p_{i,j}$ .

And the run time is  $O(nV) < O(n^3)$  Done.

### Counting Friends

There are n students and each student i has 2 scores  $x_i, y_i$ . Students i, j are friends if and only if  $x_i < x_j$  and  $y_i > y_j$ . How many friends are there? Design an efficient algorithm. For comparison, our algorithm runs in O(nlogn) time.

Solution.

- 1) First we sort based on score  $x_i$ . And we now that for all  $i > j \rightarrow x_i > x_j$ .  $(O(n \log n))$
- 2) Use Divide-and-Conquer to counting inversions of  $y_i < y_j$ .
  - (1) Divide: separate list two pieces.
  - (2) Conquer: recursively count inversions in each half.
  - (3) Combine: count inversions where  $y_i$  and  $y_j$  are in different halves(merge and count), and returns sum of three quantities.( $O(n \log n)$ )

So total run time is  $O(n \log n + n \log n) = O(n \log n)$ . Done.

#### XOR Convolution

Given two arrays  $A = a_0, a_1, \dots, a_{n-1}$  and  $B = b_0, b_1, \dots, b_{n-1}$ , return an array  $C = c_0, c_1, \dots, c_{m-1}$ , where  $c_i = \sum_{j \oplus k=i} a_i b_k$ . Design an efficient algorithm. For comparison, our algorithm runs in  $O(n \log n)$ 

 $\oplus$  is the bitwise XOR operator:  $https://en.wikipedia.org/wiki/Bitwise_operation #XOR$ Hint: Define  $x^i \cdot x^j = x^{i \oplus j}$ , and imitate the Karatsuba algorithm.

Solution.

- 1) We have that  $0 \oplus R = R$ ,  $R \oplus R = 0$  and  $A \oplus X \oplus A \oplus Y = X \oplus Y$ .
- 2) So we can use Divide-and-Conquer to solve this problem.
- 3) Before divide we have  $n \times n$  cicle. So we divide the A, B into two parts  $(A_1, A_2), (B_1, B_2)$ . And we have that



If  $j \oplus k = i$ , we calculate together so we didn't need  $n \times n$ . We compute  $\oplus$  first.  $A_1 - B_2$  and  $A_2 - B_1$  is same. And  $A_2 - A_2$  we can convert to same as  $A_1 - B_2$  because of  $A \oplus X \oplus A \oplus Y = X \oplus Y$ . So we just need to compute 2 parts $(A_1 - B_1, A_1 - B_2)$ . And we recursively do these operation. Combine we just merge same  $i = j \oplus k$ . So sum all  $a_j b_k$ .

And the run time is  $O(n \log n)$ .

Done.

#### **DNA Pattern Recognition**

There are four possible bases in a DNA sequence: A, G, C, T. Suppose we have two DNA sequences S and P with length n and m where  $\sqrt{n} < m < n - \sqrt{n}$ . Design an efficient algorithm to find out the minimum number of bases in P that we have to change so that P is a substring of S. For comparison, our algorithm runs in  $O(n \log n)$  time.

For instance, S = AGCTAGGCTCT, P = AAGTCTC. The answer is 2. We can change P to TAGGCTC.

Hint: An application of FFT.

Solution.

#### 2D Inversions

Given an array of 2D pairs  $A = a_0, a_1, \dots, a_{n-1}$  where  $a_i = (x_i, y_i, \text{ define } a_i > a_j \text{ as } x_i > y_j \text{ and } y_i > y_j$ .

- (a) How many half-inversions are there?  $a_i$  and  $a_j$  are half-inverted if i < j,  $x_i > x_j$  and  $y_i \ge y' > y_j$  where y' is a fixed constant. Design an efficient algorithm. For comparison, our algorithm runs in  $O(n \log n)$  time.
- (b) How many cross-inversions are there?  $a_i$  and  $a_j$  are cross-inverted if  $i < i' \le j$  and  $a_i > a_j$  where i' is a fixed constant. Design an efficient algorithm. For comparison, our algorithm runs in  $O(n \log n)$  time.
- (c) How many inversions are there?  $a_i$  and  $a_j$  are inverted if i < j and  $a_i > a_j$ . Design an efficient algorithm. For comparison, our algorithm runs in  $O(n \log^2 n)$  time.

Solution.

- (a) Use Divide-and-Conquer.
  - Divide: separate list two pieces.
  - Conquer: recursively sort  $a_i$  based on  $x_i$  and count inversions in each half.
  - Combine: count inversions where  $x_i > x_j$  and meanwhile satisfy that  $y_i \ge y' > y_j$  are in different halves(merge and count), and returns sum of three quantities. $(O(n \log n))$ .

The run time of algorithm is same as counting inversions. It's  $O(n \log n)$ .

- (b) Similar with question (a). But we don't recuisively count. We sort, merge and count inversion.
  - Divide: separate list two pieces from i'.
  - Sort: Sort  $a_i$  based on  $x_i$  in both two parts.  $(O(n \log n))$
  - Count: Merge and count. If  $x_i > x_j$  and meanwhile satisfy that  $y_i > y_j$  are in different halves, then the number of cross-inversions plus 1. (O(n)).

The run time of algorithm is same as counting inversions. It's  $O(n \log n)$ .

(c) Similar with question (a).

- Divide: separate list two equal pieces.
- Conquer: recursively sort  $a_i$  based on  $x_i$  count inversions in each half.
- Combine: count inversions where  $x_i > x_j$  and meanwhile satisfy that  $y_i > y_j$  are in different halves(merge and count), and returns sum of three quantities.  $(O(n \log n))$ .

The run time of algorithm is same as counting inversions. It's  $O(n \log n)$ .

Done.