CSE547: Machine Learning for Big Data Homework 3

Answer to Question 1(a)

proof: $w(r') = \sum_{i=1}^n r_i' = \sum_{i=1} \sum_{j=1} M_{ij} r_j = \sum_{j=1} \sum_{i=1} M_{ij} r_j = \sum_{j=1} r_j \sum_{i=1} M_{ij} = \sum_{j=1} r_j$ (since if there is no dead end, $\sum_j M_{ij} = 1$ for every i.)

Answer to Question 1(b)

solution: $w(r') = \sum_i r'_i = \beta \sum_i \sum_j M_{ij} r_j + (1 - \beta) = \beta \sum_j r_j + (1 - \beta) = \sum_j r_j = 1$ if and only if $\sum_j r_j = 1$

Answer to Question 1(c)

$$r'_{i} = \beta \left(\sum_{live j} M_{ij} r_{j} + \sum_{dead j} r_{j} / n \right) + (1 - \beta) / n.$$
Thus, $w(r') = \sum_{i} \left(\beta \left(\sum_{live j} M_{ij} r_{j} + \sum_{dead j} r_{j} \right) + (1 - \beta) / n \right)$

$$= \beta \left(\sum_{live j} r_{j} + \sum_{dear j} r_{j} \right) + (1 - \beta)$$

$$= \beta w(r) + (1 - \beta) = 1$$

Answer to Question 2(a)

highest:

```
\begin{array}{c} (840,\,1.0),\\ (155,\,0.9499618624906542),\\ (234,\,0.8986645288972261),\\ (389,\,0.8634171101843792),\\ (472,\,0.8632841092495216)\\ \text{lowest:}\\ (558,\,0.0003286018525215297),\\ (93,\,0.0003513568937516577),\\ (62,\,0.00035314810510596274),\\ (424,\,0.00035481538649301454),\\ (408,\,0.00038779848719291705)\\ \end{array}
```

Answer to Question 2(b)

HUBBINESS:

highest: (840, 1.0), (155, 0.9499618624906542), (234, 0.8986645288972261), (389, 0.8634171101843792), (472, 0.8632841092495216)

lowest: (558, 0.0003286018525215297), (93, 0.0003513568937516577), (62, 0.00035314810510596274), (424, 0.00035481538649301454), (408, 0.00038779848719291705)

AUTHORITY:

highest: (893, 1.0), (16, 0.9635572849634397), (799, 0.9510158161074016), (146, 0.9246703586198444), (473, 0.899866197360405)

lowest: (19, 0.05608316377607618), (135, 0.06653910487622793), (462, 0.07544228624641901), (24, 0.08171239406816945), (910, 0.08571673456144878)

Answer to Question 3(a)

- 1. According to the definition of E[S], we have the following result: $2|E[S]| = 2\rho(S)|S| > \sum_v deg_S(v) = \sum_{v \in S \setminus A(S)} deg_S(v) > 2(1+\epsilon)\rho(S)|S \setminus A(S)|,$ which indicates that $|S| > |S \setminus A(S)|(1+\epsilon) = (|S| |A(S)|)(1+\epsilon)$ Therefore, $A(S) \ge \frac{\epsilon}{1+\epsilon}|S|$.
- 2. At each iteration, we replace S by $S \setminus A(S)$ and since $|S| > |S \setminus A(S)|(1 + \epsilon)$, the number of nodes becomes less than $\frac{|S|}{(1+\epsilon)}$. The number of initial number is n. Suppose after k iterations, the number of nodes is 0 and the algorithm stops, or equivalently, $\frac{|S|}{(1+\epsilon)^m} \geq 1$., which is equivalent to $m \leq log_{1+\epsilon}n$.

Answer to Question 3(b)

- 1. Assume that there is one node in S*, for which $deg_{S*}(v) < \rho^*(G)$. Then we remove the node from S* and get a new set S**. $|E[S^{**}]| > |E[S^*] \rho^*(G)$ and $|S^{**}| = |S^*| 1$. Therefore, we have: $\rho(S^{**}) = \frac{|E[S^{**}]|}{|S^{**}|} > \frac{|E[S^*]| \rho^*(G)}{|S^*| 1} = \frac{|E[S^*]| \frac{|E[S^*]|}{|S^*| 1}}{|S^*| 1} = \frac{(|S^*| 1)|E[S^*]|}{(|S^*| 1)|S^*|} = \rho(S^*) \ge \rho(S^{**})$ (since S^* has the largest density among all the subsets of G), a contradiction.
- 2. At first, S=V, and thus $S^* \subseteq S$. Consider the first iteration of while loop, where there exists a node $v \in S^*$ and $v \in A(S)$, before this iteration, for every node $u \in S(A)$, $v \in S^*$ u is not in S^* . Thus, before this iteration, we never remove the node in S^* from S, and therefore $S^* \subseteq S$. $deg_{S^*}(v) \leq deg_{S}(v)$. In this iteration, since $v \in S^*$, we have: $deg_{S^*}(v) \geq \rho^*(G)$. And since $v \in A(S)$, we have: $deg_{S}(v) \leq 2(1+\epsilon)\rho(S)$. Therefore, $\rho^*(G) \leq deg_{S^*}(v) \leq deg_{S}(v) \leq 2(1+\epsilon)\rho(S)$
- 3. There must exist some iteration s.t. $v \in S^* \cap A(S)$. According to the above proof, we have $\rho^*(G) \leq 2(1+\epsilon)\rho(S)$, and $\rho(\tilde{S}) \geq \rho(S) \geq \frac{\rho^*(G)}{2(1+\epsilon)}$.

Answer to Question 4(a)

- 1. Since L = D-A, we have: $L_{ii} = d_i$, $L_{ij} = -A_{ij}$ for $i \neq j$. Let M = $\sum_{\{i,j\} \in E} (e_i - e_j) (e_i - e_j)^T$, we have $M = \sum_{\{i,j\} \in E} N_{ij}$, where $N_{ij} (i \neq j)$ is a matrix where the elements on (i,j) and (j,i) are -1, and the elements on (i,i) and (j,j) are 1. Thus, $M_{ii} = \sum_{j \in I} \sum_{i,j \in E} 1 = d_i$ and $M_{ij} (i \neq j) = -1$ (if $\{i,j\} \in E$), 0(else) = $-A_{ij}$. Thus we have proved L = M.
- 2. $x^T L x = x^T (\sum_{\{i,j\} \in E} (e_i e_j)(e_i e_j)^T) x = \sum_{\{i,j\} \in E} \{x^T (e_i e_j)\} \{(e_i e_j)^T x\} = \sum_{\{i,j\} \in E} (x_i x_j)^2$
- 3. $x_S^T L x_S = \sum_{\{i,j\} \in E} (x_S^{(i)} x_S^{(j)})^2$. if $i \in S$ and $j \notin S$ or $j \in S$ and $i \notin S$, $(x_i - x_j)^2 = \frac{vol(\bar{S})}{vol(S)} + \frac{vol(S)}{vol(\bar{S})} - 2$. If $i \in S$ and $j \in S$ or $i \notin S$ and $j \in S$, then $(x_i - x_j)^2 = 0$. Thus, $x_S^T L x_S = \sum_{\{i,j\} \in E, i \in S, j \notin S} \frac{vol(\bar{S})}{vol(S)} + \frac{vol(S)}{vol(\bar{S})} + 2 + \sum_{\{i,j\} \in E, i \notin S, j \in S} \frac{vol(\bar{S})}{vol(\bar{S})} + \frac{vol(S)}{vol(\bar{S})} + 2$ $= cut(S) \left(\frac{vol(\bar{S}) + vol(S)}{vol(S)} + \frac{vol(S) + vol(\bar{S})}{vol(\bar{S})} \right) + cut(\bar{S}) \left(\frac{vol(\bar{S}) + vol(S)}{vol(\bar{S})} + \frac{vol(\bar{S}) + vol(\bar{S})}{vol(\bar{S})} \right)$ $= trace(D) \left(\frac{cut(S)}{vol(S)} + \frac{cut(\bar{S})}{vol(\bar{S})} \right) = trace(D) NCUT(S) \text{ and } c = trace(D)$
- 4. For i-th element of $x_S^T D$, if $i \in S$, then it is $\sqrt{\frac{vol(\bar{S})}{vol(S)}} d_i$; if $i \notin S$, then it is $-\sqrt{\frac{vol(S)}{vol(\bar{S})}} d_i$. We then sum all the elements of $x_S^T D$ and the sum is $\sum_{i \in S} \sqrt{\frac{vol(\bar{S})}{vol(S)}} d_i + \sum_{i \notin S} -\sqrt{\frac{vol(S)}{vol(\bar{S})}} d_i = \sqrt{vol(S)vol(\bar{S})} \sqrt{vol(S)vol(\bar{S})} = 0$
- 5. $x_S^T D x_S = \sum_{i \in S} \sqrt{\frac{vol(\bar{S})}{vol(S)}} di \sqrt{\frac{vol(\bar{S})}{vol(S)}} + \sum_{i \notin S} + \sqrt{\frac{vol(S)}{vol(\bar{S})}} d_i \sqrt{\frac{vol(\bar{S})}{vol(\bar{S})}} d_i = \sum_{i \in S} \frac{vol(\bar{S})}{vol(\bar{S})} di + \sum_{i \notin S} \frac{vol(\bar{S})}{vol(\bar{S})} d_i = vol(S) + vol(\bar{S}) = \sum_{i \in S} d_i = 2m$

Answer to Question 4(b)

First notice that L = D-A. Le = (D-A)e = De-Ae. De is a n*1 matrix with i-th element $= \deg(i)$. Ae is also a n*1 matrix with i-th element $= \sum_{i} A_{ij} \deg(i)$. Thus Le = 0 = 0e, which indicates that 0 is an eigenvalue of L and e is its eigenvector. Besides, according to the second problem of part(a), we have L is a positive semidefinite matrix, and therefore all eigenvalues are nonnegative. Hence, e is the eigenvector corresponding to smallest eigenvalue

Next, we let $z = D^{1/2}x$, and the optimization problem is changed to: minimize $z^T \mathcal{L} z/z^T z$

subject to $z^T D^{1/2} e = 0, z^T z = 2m$.

Since we have proved that e is the eigenvector corresponding to the smallest eigenvalue of L, then $v_1 = D^{1/2}e$ is the eigenvector corresponding to the smallest eigenvalue of \mathcal{L} .

Besides, since \mathcal{L} is a symmetric matrix, and suppose $v_1, v_2, ..., v_n$ is eigenvectors corresponding to eigenvalues $\mu_1 \leq \mu_2, ..., \leq \mu_n$ of \mathcal{L} , then we could wrrte $\mathcal{L} = \sum_i \mu_i v_i v_i^T$.

At this time, the optimization problem is as follows:

minimize $z^T \mathcal{L} z/z^T z$

subject to $z^T v_1 = 0, z^T z = 2m$.

We are supposed to find z^* , $z^* \perp v_1$ and $||z^*|| = 2m$, s.t $z^{*T} \mathcal{L} z^* / z^{*T} z^*$ is the smallest. Since $v_2 \perp v_1$, and $\frac{v_2 \mathcal{L} v_2}{v_2^T v_2} = \mu_2$. Thus we have: $\mu_2 \geq \frac{z^{*T} \mathcal{L} z^*}{z^{*T} z^*}$. On the other hand, for any

 $z \in R^n$, $z^Tz = 2m$ and $z \perp v_1$, we have $z = \sum_{i=2} a_i v_i$. Thus, $\frac{z^T \mathcal{L}z}{z^T z} = z^T (\sum_i \mu_i v_i v_i^T) z/2m = (1/2m)(\sum_{i=2} a_i v_i^T)(\sum_k \mu_k v_k v_k^T)(\sum_{j=2} a_j v_j) = (1/2m)\sum_{i,j=2} \sum_k \mu_k a_i a_j v_i^T v_k v_k^T v_j = (1/2m)\sum_{k=2} \mu_k a_k^2 \ge (1/2m)\mu_2 \sum_{k=2} a_k^2 = \mu_2 \text{(since } z^T z = 2m \text{ we have } \sum_i a_i^2 = 2m).$ Therefore, $\frac{z^* T \mathcal{L}z^*}{z^* T z^*} \ge \mu_2 \ge \frac{z^* T \mathcal{L}z^*}{z^* T z^*}$ which directly gives: $\mu_2 = \frac{z^* T \mathcal{L}z^*}{z^* T z^*}$. And when $z = v_2$, we have: $\frac{v_2^T \mathcal{L}v_2^*}{v_2^T v_2} = \mu_2$. Thus, $z^* = v_2$ is the minimizer of the optimization

Go back to the original problem, we have $x^* = D^{-1/2}v_2$ is the solution.

Answer to Question 4(c)

Answer to Question 4(c)
$$Q(y) = \frac{\sum_{i,j=1} [A_{ij} - \frac{d_i d_j}{2m}] \delta(y_i, y_j)}{2m}$$

$$= \frac{\sum_{i,j \in S} [A_{ij} - \frac{d_i d_j}{2m}] + \sum_{i,j \notin S} [A_{ij} - \frac{d_i d_j}{2m}]}{2m}$$

$$= \frac{\sum_{i,j \in S} A_{ij} + \sum_{i,j \notin S} A_{ij} - \frac{1}{2m} (\sum_{i,j \in S} d_i d_j + \sum_{i,j \notin S} d_i d_j)}{2m}$$

$$= \frac{\sum_{i,j} A_{ij} - \sum_{i \in S,j \notin S} A_{ij} - \sum_{i \notin S,j \in S} A_{ij} - \frac{1}{2m} [(vol(S))^2 + vol(\bar{S})^2]}{2m}$$

$$= \frac{\sum_{i} d_i - cut(S) - cut(\bar{S}) - \frac{1}{2m} [(vol(S) + vol(\bar{S}))^2 - 2vol(S)vol(\bar{S})]}{2m}$$

$$= \frac{\sum_{i} d_i - cut(S) - cut(\bar{S}) - \frac{1}{2m} \sum_{i} [di^2 - 2vol(S)vol(\bar{S})]}{2m}$$

$$= \frac{2m}{2m}$$

$$= \frac{2m - 2cut(S) - 2m + \frac{vol(S)vol(\bar{S})}{m}}{2m}$$

$$= \frac{-2cut(S) + \frac{vol(S)vol(\bar{S})}{m}}{2m} \text{ (Here we used the fact that } \sum_{i} d_i = 2m)$$