Devoir nº 1*

Alexandre PACHOT

31 janvier 2020

Question 1

(a) Actions

Action Niveau Transport d'unité de flot de l'entrepôt i=1,2 au client j=1,2,3. x_{ij}

(b) Objectif

Minimiser le cout total de transport : $3x_{11} + 5x_{12} + 3x_{13} + 2x_{21} + 7x_{22} + x_{23}$

(c) Contraintes

$x_{11} + x_{21} = 8$	(Demande client 1)
$x_{12} + x_{22} = 7$	(Demande client 2)
$x_{13} + x_{23} = 5$	(Demande client 3)
$x_{11} + x_{12} + x_{13} = 12$	(Offre entrepôt 1)
$x_{21} + x_{22} + x_{23} = 8$	(Offre entrepôt 2)
Non-négativité : $x_{i,i} \ge$	0 i = 1, 2 j = 1, 2, 3

(d) Simplification

$$x_{11} + x_{21} = 8$$
 $\implies x_{21} = 8 - x_{11}$
 $x_{12} + x_{22} = 7$ $\implies x_{22} = 7 - x_{12}$
 $x_{11} + x_{12} + x_{13} = 12 \implies x_{13} = 12 - x_{11} - x_{12}$
Étant donné que la demande $(8 + 7 + 5)$ est égale à l'offre $(12 + 8)$, on a $x_{23} = x_{11} + x_{12} - 7$.

Lorsqu'on remplace x_{13} , x_{21} , x_{22} et x_{23} par les valeurs trouvées ci-dessus, la fonction à minimiser devient $94 - x_{11} - 4x_{12}$. Ce qui revient à minimiser $-x_{11} - 4x_{12}$.

 x_{13} , x_{21} , x_{22} et x_{23} étant des variables positives, on a :

$$x_{21} = 8 - x_{11}$$
 $\Longrightarrow x_{11} \le 8$
 $x_{22} = 7 - x_{12}$ $\Longrightarrow x_{12} \le 7$
 $x_{13} = 12 - x_{11} - x_{12} \Longrightarrow x_{11} + x_{12} \le 12$
 $x_{23} = x_{11} + x_{12} - 7$ $\Longrightarrow x_{11} + x_{12} \ge 7$

Remarque : Il s'agit d'une fonction à minimiser, les coefficients de x_{11} et x_{12} sont négatifs. Il faut trouver x_{11} et x_{12} le plus grand possible. La dernière équation $(x_{11}+x_{12}\geq 7)$ est redondante avec l'équation à minimiser, par conséquent nous n'allons pas la prendre en compte dans notre modèle.

(e) Modèle

Min
$$z = -x_{11} - 4x_{12}$$

Sujet à: $x_{11} \le 8$
 $x_{12} \le 7$
 $x_{11} + x_{12} \le 12$
 $x_{11}, x_{12} \ge 0$

Question 2

(a) Actions

Action	Niveau
Porte-patio, cadre en bois	\boldsymbol{x}
Porte-patio, cadre en aluminium	y

^{*}IFT 1575 - Modèles de recherche opérationnelle - Université de Montréal - Jean-Yves Potvin

(b) Objectif

Maximiser le profit : 60x + 30y

(c) Contraintes

 $x \le 6$ (cadre en bois)

 $y \le 4$ (cadre en aluminium)

 $6x + 8x \le 48$ (Verre) Non-négativité : $x, y \ge 0$.

(d) Modèle

(e) Résolution graphique

D'après la première contrainte, la solution se trouve à gauche de la droite $x \le 6$. De même, afin de respecter la deuxième contrainte, la solution se trouve sous la droite $y \le 4$. Et finalement, la troisième contrainte impose que la solution soit sous la droite $3x + 4y \le 24$. En y incluant les contraintes de non-négativité, l'ensemble solution est représenté par la zone hachurée. La solution optimale se situe à l'intersection de la droite $2x + y \le 1$, 5, il s'agit du point de coordonnées (6; 1,5), cf. fig 1.

(f) Profit porte-patio, cadre en bois: $60 \$ \rightarrow 20 \$$

Le fait de modifier le profit des portes-patio ayant un cadre en bois, cela modifie le coefficient directeur de la fonction à maximiser. Ce qui modifie la solution optimale, comme on peut le voir à la figure 2. La solution optimale correspond au point d'abscisse $\frac{8}{3}$ (= 2, $\underline{6}$) et d'ordonnée 4.

(g) Production portes-patio, cadre en bois : 6/jour → 5/jour

Si la personne qui produit 6 portes-patio avec cadre en bois par jour ne peut en produire plus 5, cela va réduire l'ensemble solution. Au lieu d'avoir une

droite y = 6, on va avoir une droite y = 5 (cf. fig 3). Étant donné que l'ancienne solution optimale était à l'intersection de la droite y = 6 et de la fonction à optimiser, cela va avoir une conséquence sur la solution optimale qui devient le point (5, 2,25).

Question 3

(a) Actions

Action Niveau Unité des produits P_i à fabriquer, i = 1,2,3. x_i

(b) Objectif

Maximiser le profit hebdomadaire : $4x_1 + 12x_2 + 3x_3$

(c) Contraintes

 $x_1 \le 1000$ (Produit P₁) $x_2 \le 500$ (Produit P₂) $x_3 \le 1500$ (Produit P₃)

$$\frac{x_1}{50} + \frac{x_2}{25} + \frac{x_3}{75} \le 45$$
 (Capacité de production)
Non-négativité : $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$

(d) Modèle

Max
$$4x_1 + 12x_2 + 3x_3$$

Sujet à: x_1 ≤ 1000
 x_2 ≤ 500
 x_3 ≤ 1500
 $\frac{x_1}{50} + \frac{x_2}{25} + \frac{x_3}{75} \leq 45$
 $x_1, x_2, x_3 \geq 0$

(e) Résolution

Lorsqu'on utilise la machine pendant une heure, cela nous permet de fabriquer 50 produits P_1 , et chacun de ces produits assure un profit de 4 \$, ce qui fait un total 200 \$. Pour les produits P_2 et P_3 , ces montants sont respectivement de 300 \$ et 225 \$. Les produits les plus intéressants à produire sont P_2 , P_3 puis P_1 . On peut fabriquer 500 produits P_2 , ce qui va prendre 20 heures, puis 1500 produits P_3 , ce qui va prendre un deuxième 20 heures. Il nous reste finalement 5 heures, pour fabriquer 250 produits P_1 .

La solution optimale est: $250 P_1$, $500 P_2$ et $1500 P_3$.

Question 4

(a) Modèle initial

Max
$$7x_1 + 5x_2$$

Sujet à: $4x_1 + 3x_2 \le 2400$ (1)
 $2x_1 + 0.5x_2 \le 500$
 $x_1 \ge 100$ (2)

(b) Analyse

La contrainte (2) est inutile. Considérons un x_1 qui ne respecte pas la contrainte (2), par exemple $x_1 = 99$. Afin de respecter la contrainte (1), x_2 ne peut pas dépasser 668 et la fonction à maximiser vaudra 4033. À l'opposé, si

 $x_1 = 100$, alors la valeur maximum de x_2 est $666 + \frac{2}{3}$ et la fonction à maximiser vaut $4033 + \frac{1}{3}$. Le système fait qu'il est plus intéressant que x_1 soit supérieur à 100, par conséquent l'équation (2) n'est pas contraignante, on peut l'ignorer.

(c) Modèle optimisé

Max
$$7x_1 + 5x_2$$

Sujet à: $4x_1 + 3x_2 \le 2400$
 $4x_1 + x_2 \le 1000$
 $x_1, x_2 \ge 0$

Question 5

(a) Algorithme du simplexe

	Variables								Termes
	dépendantes	x_1	x_2	x_3	x_4	x_5	x_6	-z	de droite
	x_4	1	3	4	1				256
	x_5	1	2	3		1			128
	x_6	1	1	2			1		96
ĺ	-z	-2	-4	-5				1	0

Min{-2, -4, -5} = -5, la variable d'entrée est x_3 . Min { $\frac{256}{4}$, $\frac{128}{3}$ $\frac{96}{2}$ } = Min {64, $42+\frac{2}{3}$, 48} = $42+\frac{2}{3}$, la variable de sortie est x_5 .

Variables								Termes
dépendantes	x_1	x_2	x_3	x_4	x_5	x_6	-z	de droite
x_4	-1/3	1/3		1	-4/3			256/3
x_3	1/3	(2/3)	1		1/3			128/3
x_6	1/3	-1/3			-2/3	1		32/3
-z	-1/3	-2/3			5/3		1	640/3

Min $\{-\frac{1}{3}, -\frac{2}{3}, 0\} = -\frac{2}{3}$, la variable d'entrée est x_2 . Min $\{256, 64\} = 64$, la variable de sortie est x_3 .

Variables								Termes
dépendantes	x_1	x_2	x_3	x_4	x_5	x_6	-z	de droite
x_4	-1/2		-1/2	1	-3/2			64
x_2	1/2	1	3/2		1/2			64
x_6	1		1/2		-1/2	1		32
-z			1		2		1	256

Une solution optimale est $x_1 = 0$, $x_2 = 64$ et $x_3 = 0$. La valeur de l'objectif pour cette solution est z = -256.

(b) Unicité de la solution optimale

La solution optimale n'est pas unique. En effet, dans le dernier tableau, les coefficients de x_1 et x_2 sont nuls tous les deux. On pourrait faire entrer x_1 et faire sortir x_6 . On obtiendrait comme solution $x_1 = 64$, $x_2 = 32$ et $x_3 = 0$. Il y a une infinité de solutions optimales, elles sont solutions du système a.(0,64,0) + b.(64,32,0) avec a + b = 1.