Notes and exercises from Elementary Probability Theory

John Peloquin

Introduction

This document contains notes and exercises from [1].

Chapter 2

Exercise (3). Let Ω be a sample space and P a probability measure on Ω . Let $A_1 + \cdots + A_n = \Omega$ be a partition and $a_1, \ldots, a_n > 0$. Define

$$Q(S) = \frac{a_1 P(SA_1) + \dots + a_n P(SA_n)}{a_1 P(A_1) + \dots + a_n P(A_n)} \qquad (S \subseteq \Omega)$$

Then Q is a probability measure on Ω .

Proof. By unity and additivity of P,

$$1 = P(\Omega) = P(A_1 + \dots + A_n) = P(A_1) + \dots + P(A_n)$$

so there is at least one $P(A_k) \neq 0$ and hence $a_k P(A_k) \neq 0$. By nonnegativity of P, $a_i P(SA_i) \geq 0$ for all $1 \leq i \leq n$ and $S \subseteq \Omega$. It follows (taking $S = \Omega$) that $\alpha = a_1 P(A_1) + \cdots + a_n P(A_n) > 0$, and $Q(S) \geq 0$ for all $S \subseteq \Omega$, so Q is well-defined and nonnegative. Also $Q(\Omega) = \alpha / \alpha = 1$, so Q is unital.

Finally, let $\{S_k\}$ be a countable family of disjoint subsets of Ω and $S = \sum S_k$.

Then

$$\alpha Q(S) = a_1 P(SA_1) + \dots + a_n P(SA_n)$$

$$= a_1 P\left(\sum S_k A_1\right) + \dots + a_n P\left(\sum S_k A_n\right)$$
 by distributivity
$$= a_1 \sum P(S_k A_1) + \dots + a_n \sum P(S_k A_n)$$
 by additivity of P

$$= \sum \left[a_1 P(S_k A_1) + \dots + a_n P(S_k A_n)\right]$$

$$= \sum \alpha Q(S_k)$$

$$= \alpha \sum Q(S_k)$$

so $Q(S) = \sum Q(S_k)$ and Q is additive.

Exercise (6). Let Ω be a sample space, $P_1, ..., P_n$ probability measures on Ω , and $a_1, ..., a_n \ge 0$ with $a_1 + \cdots + a_n = 1$. Then

$$Q = a_1 P_1 + \dots + a_n P_n$$

is a probability measure on Ω .

Proof. By nonnegativity of each P_i , $a_i P_i(S) \ge 0$ and hence $Q(S) \ge 0$ for all $S \subseteq \Omega$, so Q is nonnegative. By unity of each P_i ,

$$Q(\Omega) = a_1 P_1(\Omega) + \dots + a_n P_n(\Omega) = a_1 \cdot 1 + \dots + a_n \cdot 1 = a_1 + \dots + a_n = 1$$

so Q is unital. If $\{S_k\}$ is a countable family of disjoint subsets of Ω , then by additivity of each P_i ,

$$Q(\sum S_k) = a_1 P_1(\sum S_k) + \dots + a_n P_n(\sum S_k)$$

$$= a_1 \sum P_1(S_k) + \dots + a_n \sum P_n(S_k)$$

$$= \sum [a_1 P_1(S_k) + \dots + a_n P_n(S_k)]$$

$$= \sum Q(S_k)$$

so Q is additive.

Exercise (21). Let Ω be a sample space, P a probability measure on Ω , and $\{A_k\}$ a countable family of subsets of Ω .

- (a) If $A_k \subseteq A_{k+1}$ for all $k \ge 1$ and $A = \bigcup A_k$, then $P(A) = \lim_{k \to \infty} P(A_k)$.
- (b) If $A_k \supseteq A_{k+1}$ for all $k \ge 1$ and $A = \bigcap A_k$, then $P(A) = \lim_{k \to \infty} P(A_k)$.

Proof. (a) Set $A_0 = \emptyset$. Then $A = \sum (A_k - A_{k-1})$, so by additivity of P,

$$\begin{split} P(A) &= \sum P(A_k - A_{k-1}) \\ &= \sum \left[P(A_k) - P(A_{k-1}) \right] \\ &= \lim_{n \to \infty} \sum_{k=1}^{n} \left[P(A_k) - P(A_{k-1}) \right] \\ &= \lim_{n \to \infty} P(A_n) \end{split}$$

(b) Observe $A_k^c \subseteq A_{k+1}^c$ for all $k \ge 1$ and $A^c = \bigcup A_k^c$. By part (a),

$$1 - P(A) = P(A^{c}) = \lim_{k \to \infty} P(A_{k}^{c}) = \lim_{k \to \infty} \left[1 - P(A_{k}) \right] = 1 - \lim_{k \to \infty} P(A_{k})$$
 so $P(A) = \lim_{k \to \infty} P(A_{k})$.

References

[1] Chung, K. L. *Elementary Probability Theory with Stochastic Processes*, 3rd ed. Springer, 1979.