

Progress Presentation

Sponsors: Focused Ultrasound Foundation

Faculty Mentor: Heman Shakeri

Student Team: Rose Eluvathingal Muttikkal, Abhishek Singh, Skye Jung, Reanna Panagides

Project Purpose and Background

 Problem: The current literature review process is timely, inefficient, and prone to error

 Proposed solution: Utilize machine learning techniques to enhance the efficiency of classifying scientific literature about emerging applications and indications of focused ultrasound therapies

Meng et al, 2021

Project Plan

Data format 🗸

Excel to pandas dataframe

EDA ✓

~480 labeled

Data prep

Remove irrelevant characters

Train

SL approac SBERT Assess

Test data FUSF feedback

Updates 1/26/24

0 4411 48

Name: fus_related, dtype: int64

Sean's work

- Retrieve articles related to ML/Al in focused ultrasound or its related domains
- PDF processor that enables users to input any PDF article
- Article summarized → ChatGPT's API/analyzer that rates sentence relevance
- Classification of articles →
 FUS/Non-FUS,
 Supervised/Unsupervised)

prostate	6
UF	4
AD	3
bone mets	3
liver	3
ET, PD	2
obesity	3 3 3 2 2
stroke intracerebral hemorrha	ge 2
pd	2
DIPG	2
uf	2
tendon contracture	1
spinal cord injury	1
soft tissue tumors	1
ut adenomyos	1
Retained placenta	1
Ablation- other	1
OCD	1
PD	1
Pancreatic ca	1
lichen sclerosis	1
heart failure	1
GBM	1
ET,	1
cervicitis	1
Cervical cancer	1
atherosclerosis	1
ut adenomyosis	1
Name: ind_list, dtype: int64	

Updates 2/9/24

SPRINT 2 - Model(s) Building 02/01 02/14

- Sean Meeting
 - Current usage of Sean's work?
 - Cost to host Sean's work?
- Obtaining summer data? (Samarth + Eric)
- SIEDS Abstract
 - https://docs.google.com/document/d/1TsKA0zhi0HTdYaJ6m2Ui5fgWGKMLzGt
 CrjeQSBfLA6I/edit?usp=sharing
 - o Co-author?
- Currently working on...
 - \circ Running previous scripts locally \rightarrow app.py, model file
 - Web scraping FUS website
 - Running BERT model on "test data"

Updates 2/21/24

- Sprint 2 (Model Building) Complete
 - Finished SIEDS Registration
 - Sean's work
 - Met with him
 - Got access to Sean's data (~90 labelled manuscripts)
 - Understood model development (limitations)
 - Ran BERT mode on "test data"
- Started Sprint 3 (Train + Evaluate models)
 - Training and test DistilBERT (FUS/non-FUS)
 - Training and test SVM, log regression, naive bayes (FUS/non-FUS)
 - Train and test another BERT (FUS/non-FUS)
 - Training and test multiclass BERT (indications)
 - Project Progress Report 1

Updates 3/22/24

SPRINT 4 - Resolve Model Issues		02/29	03/27	42	28	~	~	
Compile supplementary data source (sean's data, fust website data, zotero databse) organize data sources	Rose	02/29	03/27	42	28	In Progress 🔻	~	
Clean data before tokenisizing (get rid of background objective other filler words)	Rose	02/29	03/27	42	28	In Progress 🔻	*	
Create template of final report in overleaf	Reanna	02/29	03/27	42	28	Complete *	*	
Start documenting process of model creation in overleaf final report	All	02/29	03/27	42	28	In Progress 🔻	~	
Start working on multi-class model	Skye	02/29	03/27	42	28	In Progress 🔻	~	
Make a workflow map → datasource → train-test split → model (epochs), other fine tuning steps	Rose	02/29	03/27	42	28	In Progress 🔻	~	
Finish FUS/non-FUS classification (DistilBERT, old models, tinyBERT, medBERT, docBERT)	All	02/29	03/27	42	28	In Progress 🔻	~	

Updates 4/5/24

- Updates on dataset zotero_data.csv
 - All articles in Zotero database (except veterinary)
 - Non-FUS "ultrasound diagnostic" in PubMed article titles
- Best model SciBERT
- Tags instead of multiclass classification
- Next Sprint:
 - Additional dataset from most recent Pubmed extraction
 - September 2023-March 2024
 - Example cases
 - Compiling/comparing models
 - Hyper-parameter fine-tuning
 - Model inferencing
 - Excel script
 - Finish SIEDS paper
 - Meet with data management team

```
{'eval_loss': 0.2066207230091095,
  'eval_accuracy': 0.947075208913649,
  'eval_f1': 0.94933333333333334,
  'eval_precision': 0.9035532994923858,
  'eval_recall': 1.0,
  'eval_runtime': 1.5817,
  'eval_samples_per_second': 226.966,
  'eval_steps_per_second': 14.541,
  'epoch': 1.0}
```


Recap

Training

2906 Abstracts ~80% of dataset

Hyper-params

323 Abstracts ~9% of dataset

Testing

359 Abstracts ~10% of dataset

Recap

Model	Accuracy	Precision	Recall	F1	
Naive Bayes	0.87	0.89	0.87	0.87	
SVM	0.89	0.90	0.89	0.89	
Logistic Regression	0.90	0.91	0.90	0.90	
TinyBERT	0.88	0.82	0.98	0.89	
SciBERT	0.89	0.89	0.99	0.90	
DistilBERT	0.90	0.84	0.99	0.91	
Bio-ClinicalBERT	0.91	0.85	0.99	0.91	

TABLE IV: Performance comparison of different models

Recap

ubMed ID	Article Title	Author List	Publication Type	Abstract	Link	(actual classification)	Prediction	Confidence	Logits	
34921489	Treatment of super	Jacek Calik, Tomas	Journal Article	Background: Existing therapet Methods: Two volunteer subjet Results: During treatment, blot Conclusion: High intensity foct Keywords: HIFU; cherry angior	https://pubmed.ncl	1	1	97.51520753	[[-1.675523161888	31226, 1.994294285774231]
36444908	Low-Intensity Focu	Shenrong Zhong,	Qianyun Cai, Longhe 2	Objectives: This study aims to Methods: Sprague-Dawley rat Results: LIFU reduced heart ra Conclusions: LIFU ameliorates 2 Keywords: AchRa7; HMGB1; 1	https://pubmed.ncl	1	1	97.46402502	[[-1.666393160820	00073, 1.9825135469436646
36541473	Autonomic modula	Ning Ji, Yuanheng	Journal Article	Objective.Our previous study Keywords: autonomic modula	https://pubmed.ncl	1	1	97.73917198	[[-1.737029552459	97168, 2.0295417308807373
35396078	American Associati	Sina Jasim, Kepal I	Journal Article	Objective: The objective of thi Methods: A literature search v Results: Minimally invasive the Conclusion: Surgery and radio Keywords: ethanol; radiofrequ	https://pubmed.ncl	1	1	97.89092541	[[-1.776582002639	97705, 2.061021089553833]
35326687	Applications of Foc	John Panzone, Tin	Journal Article	Traditional cancer treatments	https://pubmed.ncl	1	1	97.96125293	[[-1.784214138984	16802, 2.088022708892822
25753877	Application of ultra	W-X Fu, Q Wang,	Journal Article	Ultrasound is commonly used	https://pubmed.ncl	C	0	99.07332659	[[2.402134895324	707, -2.2698824405670166
37682185	The ambiguous "in	Jing Ning, Gang Zh	Journal Article	Rationale: Congenital anatom Patient concerns: A 61-year-ol Diagnoses: The patient was di Interventions: After relevant p Outcomes: The patient recove Lessons: Congenital absence of	https://pubmed.ncl	C	0	99.40914512	[[2.568174362182	617, -2.557249069213867]]
22608626	Bipolar disorder	Daniel J Smith, Eliz	Journal Article	Bipolar disorder is a serious di l	https://pubmed.ncl	C	0	99.82409477	[[3.347535371780	3955, -2.993705272674560
28748549	Ultrasound Curricu	Usman Tarique, B	Journal Article	The clinical applications of poi Keywords: curricula; educatio	https://pubmed.ncl	c	0	99.76135492	[[3.210164785385	132, -2.8253657817840576
3519082	Ultrasound instrum	R J Bartrum Jr	Journal Article	This article begins by reviewin l	https://pubmed.ncl		0	99.5505929	[[2 763708829879	7607, -2.636791467666626

Demo

https://github.com/rteb8/MSDS_FUSCapstone23/tree/main

- 1. Access handover files
 - Google drive folder <u>FUS handover</u>
 - Github repo "handover" folder, access fusBERT.pt using <u>huggingface</u>
- 2. Modify + run export_excel.ipynb
 - We recommend using google colab to execute .ipynb file

Demo

https://github.com/rteb8/MSDS_FUSCapstone23/tree/main

- 1. Runtime to PyTorch 2.0.1, Hardware accelerator to T4-GPU
- 2. Install torch, transformers, pandas, openxyl packages
 - o pip install torch, pip install transformers, pip install pandas, pip install openxyl
- 3. Make sure excel file is in folder/repository where the .ipynb file is
 - Use "Sample Data.xlsx" for demo
- 4. Edit .ipynb file to have the correct path, then run all cells in the file
 - o model, tokenizer, input data, output file path

```
# path where the model and tokenizer were saved
model_save_path = '/content/drive/MyDrive/MSDS Capstone/FUS_handover/fusBERT.pt'
tokenizer_save_path = '/content/drive/MyDrive/MSDS Capstone/FUS_handover/tokenizer'

file_path = '/content/drive/MyDrive/MSDS Capstone/FUS_handover/Sample Data.xlsx' #update file path to relevant file
df = pd.read_excel(file_path)

# Save to a new Excel file
output_file_path = '/content/drive/MyDrive/MSDS Capstone/FUS_handover/double_updated_test.xlsx'
df.to_excel(output_file_path, index=False)
```


April Data

Actual classification

0 419

1 75

Name: fus_related, dtype: int64

Model prediction

1 493

0 1

Name: Prediction, dtype: int64

Potential Causes

- BERT models have lower precision scores than recall scores → may need to achieve higher precision scores
 - More likely to predict a false positive than false negative
- Difference between non-FUS related articles BERT models used for training + monthly reviews
 - o Initial dataset \rightarrow 48 FUS related, 441 non-FUS
 - Final dataset → 1794 FUS related, 1794 non-FUS
- Articles on FUS changes over time (concept drift) → Feb-Aug 2023 + supplemental articles may be different than April 2024 articles

Recommendations

- Further work needs to be done before incorporating BERT models into literature review pipeline
 - BERT (language models) models are data intensive, initial dataset was too small and didn't have enough FUS-related articles to fine tune BERT models
 - Re-train BERT models → with only articles used for monthly literature review
 - Train models that are less data-hungry to perform classification
 - Assess difference between non-FUS articles in test dataset + April 2024 data
 - More guidance on labeling of "non-FUS" articles
 - Develop a feedback loop into the model pipeline which can incorporate human review of model output + learn from it
 - Address changes concept drift of FUS articles without needing to changing modeling approach

Future Work

- Multi-class classification of FUS manuscript indications
 - Modify PubMed web-scraper to pull in tags
- Explore other transformer architectures for text classification
- Develop feedback loop into modeling pipeline to address concept drift
- Incorporate "explainable AI" features into model prediction

Tags pulled in by Zotero

rags panea in by Zotero
Info Notes Tags Attachments Related
16 tags
*Epilepsy/therapy
○ *Music Therapy
Acoustic Stimulation
○ Anticonvulsants
○ Auditory
Auditory Perception
Brain/diagnostic imaging
Electroencephalography
○ Epilepsy
O Humans
○ Infrasound
○ Mozart
O Music
○ Seizures
○ Sound
○ Ultrasound

Questions?