

A DOCPHOENIX

APPL PARTS	NPL	CTNF
ALLETANIO	Non-Patent Literature	Count Non-Final
	OATH	CTRS
Internal Misc. Paper	Oath or Declaration	Count Restriction
LET	PET	EXIN
Misc. Incoming Letter	Petition	Examiner Interview
371P	RETMAIL	M903
PCT Papers in a 371Application	Mail Returned by USPS	DO/EO Acceptance
A	SEQLIST	M905
Amendment Including Elections	Sequence Listing	DO/EO Missing Requirement
ABST	Specification SPEC	NFDR
		Formal Drawing Required
Application Data Sheet	SPEC NO Specification Not in English	NOA Notice of Allowance
AF/D	-	
Affidavit or Exhibit Received	TRNA Transmittal New Application	PETDEC Petition Decision
APPENDIX	Transmittal New Application	r endorr bedisjon
Appendix		
ARTIFACT	OUTCOING	INCOMING
Artifact	OUTGOING	INCOMING
BIB	CTMS	AP.B
Bib Data Sheet	Misc. Office Action	Appeal Brief AP.B
CLM	1449	C.AD
Claim	1449 Signed 1449	Change of Address
COMPUTER	892	N/AP
Computer Program Listing	892	Notice of Appeal
CRFL	ABN	PA
All CRF Papers for Backfile	Abandonment	Change in Power of Attorney
DIST	APDEC	REM
Terminal Disclaimer Filed	Board of Appeals Decision	Applicant Remarks in Amendment
DRW	APEA	XT/
Drayings/	Examiner Answer	Extension of Time filed separate
04/12/02 FOR 280	CTAV	
Foreign Reference	Count Advisory Action	
FRPR	CTEQ	
Foreign Priority Papers	Count Ex parte Quayle	
IDS Including 1449	CTFR Count Final Rejection	File Wrapper
IDO Indidding 1743	Count I mai Nejection	
Internal	ECBOX	FWCLM
iiiGiiiai	Evidence Copy Box Identification	File Wrapper Claim
SRNT	WCLM	IIFW
Examiner Search Notes	Claim Worksheet	File Wrapper Issue Information
CLMPTO_	WFEE	SRFW
	E 18/ J - E	11

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATER'S COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07K

(11) International Publication Number: WO 99/60014

(43) International Publication Date: 25 November 1999 (25.11.99)

(21) International Application Number: PCT/US99/06899 (74) Agents: BRADBURNE, James, A., Cooley Godward LLP,

(30) Priority Data: 60/079,956 60/113,146

(22) International Filing Date:

30 March 1998 (30.03.98) US

30 March 1999 (30.03.99)

16 December 1998 (16.12.98) US

(71) Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 12th floor, 1111 Franklin Street, Oakland, CA 94607-5200 (US).

(72) Inventors: BAXTER, John, D.; 131 San Pablo Avenue, San Francisco, CA 94127 (US). DARIMONT, Beatrice; 1441 Tenth Avenue, San Francisco, CA 94122 (US). FENG, Weijun; 105 Johnstone Drive, San Francisco, CA 94131 (US). FLETTERICK, Robert; 15 Christopher Avenue, San Francisco, CA 94131 (US). KUSHNER, Peter, J.; 1362 6th Avenue, San Francisco, CA 94122 (US). WAGNER, Richard, L.; 1701 Waller Street, San Francisco, CA 94117 (US). WEST, Brian, L.; 142 Anderson Street, San Francisco, CA 94110 (US). YAMAMOTO, Keith, R.; 332 Douglass Street, San Francisco, CA 94114 (US).

(74) Agents: BRADBURNE, James, A.; Cooley Godward LLP, 3000 El Camino Real, Five Palo Alto Square, Palo Alto, CA 94306-2155 (US) et al.

(81) Designated States: AU, CA, JP, KR, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: METHODS AND COMPOUNDS FOR MODULATING NUCLEAR RECEPTOR COACTIVATOR BINDING

(57) Abstract

The present invention relates to methods and agonist/antagonist compounds for modulating nuclear receptor coactivator binding. The invention includes a method for identifying residues comprising a coactivator binding site for a nuclear receptor of interest. Also included is a method of identifying agonists and/or antagonists that bind to a coactivator binding site of a nuclear receptor of interest. Agonists and antagonists of coactivator binding to nuclear receptors also are provided. The invention is exemplified by identification and manipulation of the coactivator binding site of the thyroid receptor (TR), and compounds that bind to these sites. The methods can be applied to other nuclear receptors including RAR, RXR, PPAR, VDR, ER, GR, PR, MR, and AR.

METHODS AND COMPOUNDS FOR MODULATING NUCLEAR RECEPTOR **COACTIVATOR BINDING**

ACKNOWLEDGEMENTS

This invention was supported in part by grants from the National Institutes of Health: Grant 15 Nos. DK 51083, DK 51281, and P41-RR01081 and from the Army of the United States: Grant No. AIBS#562. The U.S. Government may have rights in this invention.

INTRODUCTION

20

25

10

Technical Field

The present invention relates to methods and compounds for modulating nuclear receptor coactivator binding.

Background

Cells contain receptors that can elicit a biological response by binding various molecules including proteins, hormones and/or drugs. Nuclear receptors represent a super family of proteins that are hormone/ligand-activated transcription factors that enhance or repress transcription in a cell type-, ligand- and promoter-dependent manner. The nuclear receptor family includes receptors for glucocorticoids (GRs), androgens (ARs), mineralocorticoids (MRs), progestins (PRs), estrogens (ERs), thyroid hormones (TRs), vitamin D (VDRs), retinoids (RARs and RXRs), peroxisomes 30 (XPARs and PPARs) and icosanoids (IRs). The so-called "orphan receptors" for which ligands have not been identified are also part of the nuclear receptor superfamily, as they are structurally homologous to the classic nuclear receptors, such as steroid and thyroid receptors.

Relevant Literature

Wagner et al., (Nature (1995) 378:690-697) disclose the crystal structure of rat TR-alpha LBD. Various references disclose mutations in carboxyl-terminal helices of nuclear receptors (Henttu et al., supra; O'Donnell et al., Mol. Endocrinol. (1991) 5:94-99; Whitfield et al., Mol. Endocrinol. (1995) 9:1166-79; Saatcioglu et al., Mol. Cell Biol. (1997) 17:4687-95; Collingwood et al., supra; Kamei et al., Cell (1996) 85:403-14). Hong et al. (Proc. Natl. Acad. Sci. USA (1996) 93(10):498-49452) and Hong et al. (Mol. Cell. Biol. (1997) 17:2735-2744) disclose cloning and expression of GRIP1 coactivator. Torchia et al., (Nature (1997) 387:677-84), Le Douarin et al., (EMBO J (1996) 15:6701-6715) and Heery et al. (Nature (1997) 387:733-736) disclose sequence alignment of various coactivator proteins showing a (SEQ ID NO: 1) LxxLL motif.

15

20

25

30

10

5

SUMMARY OF THE INVENTION

The present invention relates to identification and manipulation of the coactivator binding site of nuclear receptors. Identification of this site permits design and obtention of compounds that bind to the coactivator binding site of nuclear receptors and modulate coactivator binding to the receptor. The compounds include agonists and antagonists that modulate nuclear receptor activity by promoting (agonists) or blocking (antagonists) hormone-dependent coactivator binding to the receptor, particularly antagonists. The compounds of the invention can be receptor-, cell- and/or tissue-specific.

The present invention also includes protein cocrystals of nuclear receptors with a molecule bound to the coactivator binding site and methods for making them. The cocrystals provide means to obtain atomic modeling information of the specific amino acids and their atoms forming the coactivator binding site and that interact with molecules that bind to the site, such as coactivator. The cocrystals also provide modeling information regarding the coactivator:nuclear receptor interaction, as well as the structure of coactivators bound thereto.

The present invention further provides methods for identifying and designing small molecules that bind to the coactivator binding site using atomic models of nuclear receptors. The method involves modeling test compounds that fit spacially into a nuclear receptor coactivator binding site of interest using an atomic structural model comprising a nuclear receptor coactivator binding site or portion thereof, screening the test compounds in a biological assay characterized by

binding site of interest using an atomic structural model of a nuclear receptor coactivator binding site, selecting a compound that interacts with one or more residues of the coactivator binding site unique in the context of that site, and identifying in an assay for coactivator binding activity a compound that selectively binds to the coactivator binding site compared to other nuclear receptors. The unique features involved in receptor-selective coactivator binding can be identified by comparing atomic models of different receptors or isoforms of the same type of receptor.

The invention finds use in the selection and characterization of peptide, peptidomimetic, as well as other small molecule compounds, such as small organic molecules, identified by the methods of the invention, particularly new lead compounds useful in treating nuclear receptor-based disorders.

15

20

25

30

10

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the specific effects of mutations on hTRβ1 transcriptional activation in HeLa cells and correlation with effects on binding to GST-GRIP1. T₃ dependent activation of transcription of a reporter gene, expressed as the percentage of WT is plotted for each mutant. GST-GRIP1 binding, analyzed by autoradiography after separation using 10% SDS-PAGE, was also expressed as the percentage of WT and plotted for each mutant. The GST-GRIP1 used included GRIP1 amino acids 721-1121; the same results were obtained using a GST-GRIP1 construct including GRIP1 amino acids 563-1121 (data not shown).

Figure 2 shows that overexpression of full-length GRIP1 rescues loss of transcriptional activation by hTRβ1 mutants. Indicated amounts of the expression vector for full-length GRIP1, pSG5-GRIP1, is included in the cotransfections, which otherwise are performed as in Figure 1. The WT or different representative hTRβ1 mutants are indicated.

Figure 3 shows specific hERα surface mutants cause loss of transcriptional activation in HeLa cells in parallel with their loss of *in vitro* GRIP1 binding. The fold E₂ activation, expressed as the percentage of WT, and the phosphorimager quantitation of *in vitro* binding of [³⁵S]-labeled hERα WT and mutants to GST-GRIP1 (GRIP1 amino acids 721-1121) also expressed as the percentage of WT is plotted for each mutant.

Figure 11 shows binding affinity assays for mutant GRIP1 and NR-box 2- and 3-peptides and their interaction with TR LBD. The individual leucine residues of the (SEQ ID NO: 1) LxxLL motif are crucial for binding of the GRIP-1 NR interaction domain to TRB LBD.

Figure 12 shows the contents of the asymmetric unit of the crystallized hTRB LBD:GRIP1 NR-box 2 peptide complex. The crystal lattice consists of a repeating unit containing a 2:2 complex of hTR LBD and GRIP1 site 2 peptide. Positions of the two GRIP1 site 2 peptides are boxed, in green (site1), and red (site 2), with the peptides drawn as a C-alpha trace. The two NCS related monomers of the hTR LBD are shown as a secondary structure ribbon drawing, with monomer 1 in light grey, and monomer 2 in dark grey. The side chains of the hydrophobic residues I689, L690, L693, L694 of the GRIP1 NR-box 2 peptides are drawn to emphasize those interactions observed in both bound peptides.

Figure 13 shows a ribbon diagram depicting the interaction of the GRIP1 NR-box 2 peptide with the hTRß LBD. The GRIP1 NR-box 2 peptide (dark grey) forms three turns of α-helix, and binds the hTR LBD (light gray) in a hydrophobic cleft defined by helices H3, H4, H5, and H12. Portions of the hTRß LBD, and the neighboring monomer, are omitted for clarity.

Figure 14 shows interface between the GRIP1 NR-box 2 peptide and the hTRß LBD. Side chains of residues of the hTRß LBD within 4.5Å of the GRIP-1 NR-box 2 peptide are labeled. The color of the individual side chains reflects the chemical nature of the residue: acidic residues are red, basic residue are blue, aliphatic residues are green, aromatic residues are brown, and polar residues are orange. The peptide is depicted as a C-alpha trace with the side chains of (SEQ ID NO: 2) ILxxLL motif shown explicitly.

Figure 15 shows residues in the hTRß LBD that are necessary for transactivation. The transactivation mutations are mapped onto the interface between the GRIP1 NR-box 2 peptide and the hTRß LBD.

Figure 16 shows molecular surface of the hTR LBD. The side chains of the leucines resides fit within a hydrophobic groove formed from helices H3, H5, and H12, while the side chain of the non-conserved isoleucine residue packs against the outside edge of the groove. The remainder of the peptide is shown as main chain.

5

10

15

20

DESCRIPTION OF SPECIFIC EMBODIMENTS

The present invention provides methods and compositions for identifying compounds that modulate nuclear receptor activity. The compounds can be nuclear receptor agonists or antagonists that bind to the coactivator binding site (and that act as mimetics to the coactivator in this regard), and promote (agonists) or block (antagonists) binding of the coactivator to the target nuclear receptor. Compounds that bind to the coactivator binding site also are provided. The compounds can be natural or synthetic. Preferred compounds are small organic molecules, peptides and peptidomimetics (e.g., cyclic peptides, peptide analogs, or constrained peptides).

As described in the Examples, mutagenesis and coactivator binding studies, coupled with analysis of atomic models derived from cocrystals, reveals for the first time a previously unknown structure for nuclear receptors, the coactivator binding site. By "coactivator binding site" is intended a structural segment or segments of nuclear receptor polypeptide chain folded in such a way so as to give the proper geometry and amino acid residue conformation for binding a coactivator. This is the physical arrangement of protein atoms in three-dimensional space forming a coactivator binding site pocket or cavity. Residues forming the site are amino acids corresponding to (i.e., the same as or equivalent to) human TR residues of C-terminal helix 3 (Ile280, Thr281, Val283, Val284, Ala287, and Lys288), helix 4 (Phe293), helix 5 (Gln301, Ile302, Leu305, Lys306), helix 6 (Cys309), and helix 12 (Leu454, Glu457, Val458 and Phe459). The coactivator binding site is highly conserved among the nuclear receptor super family (Figure 19). Thus, this site corresponds to a surprisingly small cluster of residues on the surface of the LBD that form a prominent hydrophobic cleft. The hydrophobic cleft is formed by hydrophobic residues corresponding to human TR residues of C-terminal helix 3 (Ile280, Val283, Val284, and Ala287), helix 4 (Phe293), helix 5 (Ile302 and Leu305), helix 6 (Cys309), and helix 12 (Leu454, Val458 and Phe459). The hydrophobic cleft of the coactivator binding site also is highly conserved among the nuclear receptor super family (Figure 19).

The invention also includes compositions and methods for identifying coactivator binding sites of nuclear receptors. The methods involve examining the surface of a nuclear receptor of interest to identify residues that modulate coactivator binding. The residues can be identified by homology to the coactivator binding site of human TR described herein. A preferred method is alignment with the residues of any nuclear receptor corresponding to (i.e., equivalent to) human TR

5

10

15

20

for example, the atomic coordinates provided to the modeling system can contain atoms of the nuclear receptor LBD, part of the LBD such as atoms corresponding to the coactivator binding site or a subset of atoms useful in the modeling and design of compounds that bind to a coactivator binding site.

The atomic coordinates of a compound that fits into the coactivator binding site also can be used for modeling to identify compounds or fragments that bind the site. By "modeling" is intended quantitative and qualitative analysis of molecular structure/function based on atomic structural information and receptor-coactivator agonists/antagonists interaction models. This includes conventional numeric-based molecular dynamic and energy minimization models, interactive computer graphic models, modified molecular mechanics models, distance geometry and other structure-based constraint models. Modeling is preferably performed using a computer and may be further optimized using known methods. By "fits spacially" is intended that the three-dimensional structure of a compound is accommodated geometrically by a cavity or pocket of a nuclear receptor coactivator binding site.

Compounds of particular interest fit spacially and preferentially into the coactivator binding By "fits spacially and preferentially" is intended that a compound possesses a threedimensional structure and conformation for selectively interacting with a nuclear receptor coactivator binding site. Compounds that fit spacially and preferentially into the coactivator binding site interact with amino acid residues forming the hydrophobic cleft of this site. In particular, the hydrophobic cleft of the coactivator binding site comprises a small cluster of hydrophobic residues. The site also contains polar or charged residues at its periphery. The present invention also includes a method for identifying a compound capable of selectively modulating coactivator binding to different nuclear receptors. The method comprises the steps of modeling test compounds that fit spacially and preferentially into the coactivator binding site of a nuclear receptor of interest using an atomic structural model of a nuclear receptor, screening the test compounds in a biological assay for nuclear receptor activity characterized by preferential binding of a test compound to the coactivator binding site of a nuclear receptor, and identifying a test compound that selectively modulates the activity of a nuclear receptor. Such receptor-specific compounds are selected that exploit differences between the coactivator binding sites of one type of receptor versus a second type of receptor, such as the differences depicted in Figure 19.

The invention also is applicable to generating new compounds that distinguish nuclear receptor isoforms. This can facilitate generation of either tissue-specific or function-specific compounds. For instance, GR subfamily members have usually one receptor encoded by a single

10

15

20

25

30

For modeling, docking algorithms and computer programs that employ them can be used to identify compounds that fit into the coactivator binding site. For example, docking programs can be used to predict how a small molecule of interest can interact with the nuclear receptor coactivator binding site. Fragment-based docking also can be used in building molecules *de novo* inside the coactivator binding site, by placing chemical fragments that complement the site to optimize intermolecular interactions. The techniques can be used to optimize the geometry of the binding interactions. This design approach has been made possible by identification of the coactivator binding site structure thus, the principles of molecular recognition can now be used to design a compound which is complementary to the structure of this site. Compounds fitting the coactivator binding site serve as a starting point for an iterative design, synthesis and test cycle in which new compounds are selected and optimized for desired properties including affinity, efficacy, and selectivity. For example, the compounds can be subjected to addition modification, such as replacement and/or addition of R-group substituents of a core structure identified for a particular class of binding compounds, modeling and/or activity screening if desired, and then subjected to additional rounds of testing.

Computationally small molecule databases can be screened for chemical entities or compounds that can bind in whole, or in part, to a nuclear receptor coactivator binding site of interest. In this screening, the quality of fit of such entities or compounds to the binding site may be judged either by shape complementarity (DesJalais et al., *J. Med. Chem.* (1988) 31:722-729) or by estimated interaction energy (Meng et al., *J. Comp. Chem.* (1992) 13:505-524). The molecule databases include any virtual or physical database, such as electronic and physical compound library databases, and are preferably used in developing compounds that modulate coactivator binding.

Compounds can be designed intelligently by exploiting available structural and functional information by gaining an understanding of the quantitative structure-activity relationship (QSAR), using that understanding to design new compound libraries, particularly focused libraries having chemical diversity of one or more particular groups of a core structure, and incorporating any structural data into that iterative design process. For example, one skilled in the art may use one of several methods to screen chemical entities or fragments for their ability to associate with the coactivator binding site of a nuclear receptor of interest. This process may begin by visual inspection of, for example, the coactivator binding site on the computer screen. Selected fragments or chemical entities may then be positioned into all or part of the site. Docking may be accomplished using software such as Quanta and Sybyl, followed by energy minimization and

5

10

15

20

25

30

Useful programs to aid one of skill in the art in connecting the individual chemical entities or fragments include: CAVEAT (Bartlett et al., "CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologically Active Molecules", In: *Molecular Recognition in Chemical and Biological Problems*", Special Pub., *Royal Chem. Soc.* (1989) 78:182-196; CAVEAT is available from the University of California, Berkeley, CA); 3D Database systems such as MACCS-3D (MDL Information Systems, San Leandro, CA; reviewed in Martin, *J. Med. Chem.* (1992) 35:2145-2154); and HOOK (available from Molecular Simulations, Burlington, MA).

In addition to building a compound in a step-wise fashion, one fragment or chemical entity at a time as described above, compounds that bind to a coactivator binding site of interest also may be designed as a whole or *de novo* using either an empty coactivator binding site or optionally including some portion(s) of a molecule known to binds to the site, such as an NR-box type peptide. These methods include: LUDI (Bohm, *J. Comp. Aid. Molec. Design* (1992) 6:61-78; LUDI is available from Biosym Technologies, San Diego, CA); LEGEND (Nishibata et al., *Tetrahedron* (1991) 47:8985; LEGEND is available from Molecular Simulations, Burlington, MA); and LeapFrog (available from Tripos Associates, St. Louis, MO).

Other molecular modeling techniques may also be employed in accordance with this invention. See, for example, Cohen et al., *J. Med. Chem.* (1990) 33:883-894); Navia et al., *Curr. Opin. Struct. Biol.* (1992) 2:202-210). For example, where the structures of test compounds are known, a model of the test compound may be superimposed over the model of the structure of the invention. Numerous methods and techniques are known in the art for performing this step, any of which may be used. See, for example, Farmer, "*Drug Design*," Ariens, E.J., ed., 10:119-143 (Academic Press, New York, 1980); U.S. Patent No. 5,331,573; U.S. Patent No. 5,500,807; Verlinde, *Structure*, (1994) 2:577-587); and Kuntz et al., *Science*, (1992) 257:1078-1082). The model building techniques and computer evaluation systems described herein are not a limitation on the present invention.

Using these computer modeling systems a large number of compounds may be quickly and easily examined and expensive and lengthy biochemical testing avoided. Moreover, the need for actual synthesis of many compounds can be substantially reduced and/or effectively eliminated.

Compounds identified through modeling can be screened in an assay characterized by binding of the compound to a coactivator binding site of interest for coactivator binding activity, such as a biologically based assay. Screening can be *in vitro* and/or *in vivo*. Preferred assays include cell-free competition assays and cell culture based assays. The biological screening

5

10

15

20

25

30

Of particular interest is use of such compounds in a method of modulating nuclear receptor activity in a mammal by administering to a mammal in need thereof a sufficient amount of a compound that fits spatially and preferentially into a coactivator binding site of a nuclear receptor of interest. By "modulating" is intended increasing or decreasing activity of a nuclear receptor. For example, pre-clinical candidate compounds can be tested in appropriate animal models in order to measure efficacy, absorption, pharmacokinetics and toxicity following standard techniques known in the art. Compounds exhibiting desired properties are then tested in clinical trials for use in treatment of various nuclear receptor-based disorders. These include ER-based disorders, such as postmenopausal symptoms and cancer resulting from loss of estrogen production, and osteoporosis and cardiovascular disease stemming from traditional estrogen replacement therapy. Others include TR-based disorders including cardiovascular disease, metabolic disorders, hyperthyroidism, glaucoma and skin disorders. GR-based disorders include Type II diabetes and inflammatory conditions such as rheumatic diseases.

The invention also provides for cocrystals made from nuclear receptor ligand binding domains with a molecule bound to the coactivator binding site. As exemplified in the Examples, TR LBDs are co-crystallized with a peptide molecule comprising a coactivator NR-box 2 peptide sequence bound to the coactivator binding site, and the hormone/ligand T₃.

Crystals are made from purified nuclear receptor LBDs that are usually expressed by a cell culture, such as *E. coli*. Preferably, different crystals (cocrystals) for the same nuclear receptor are separately made using different coactivators-type molecules, such as protein fragments, fusions or small peptides. The coactivator-type molecules preferably contain NR-box sequences necessary for binding to the coactivator binding site, or derivatives of NR-box sequences. Other molecules can be used in co-crystallization, such as small organics that bind to the coactivator or hormone binding site(s). Heavy atom substitutions can be included in the LBD and/or a co-crystallizing molecule.

After the three dimensional structure of the cocrystal is determined, the structural information can be used in computational methods to design synthetic compounds for the nuclear receptor, and further structure-activity relationships can be determined through routine testing using the assays described herein and known in the art.

Since nuclear receptor LBDs may crystallize in more than one crystal form, the structure coordinates of such receptors or portions thereof, as provided in **Appendix 1**, are particularly useful for solving the structure of those other crystal forms of nuclear receptors. They may also be used to

5

10

15

20

25

30

that bind heat shock proteins as these nuclear receptors are generally more difficult to express in bacteria, with the exception of ER, which can be expressed in bacteria. Representative nuclear receptors or their ligand binding domains have been cloned and sequenced: human RAR-α, human RAR-γ, human RXR-α, human PPAR-α, human PPAR-β, human PPAR-γ, human VDR, human ER (as described in Seielstad *et al.*, *Molecular Endocrinol.*, (1995) 9:647-658, incorporated herein by reference), human GR, human PR, human MR, and human AR. The LBD for each of these receptors has been identified.

Coactivator proteins can be expressed using techniques known in the art, particularly members of the p160 family of coactivator proteins that have been cloned and/or expressed previously, such as SRC-1, AIB1, RAC3, p/CIP, and GRIP1 and its homologues TIF 2 and NcoA-2. A preferred method for expression of coactivator protein is to express a fragment that retains transcriptional activation activity using the "yeast 2-hybrid" method as described by Hong et al. (PNAS <u>supra</u>; and MCB <u>supra</u>), for GRIP1 expression, which reference is herein incorporated by reference.

The proteins can be expressed alone, as fragments of the mature or full-length sequence, or as fusions to heterologous sequences. For example, TR can be expressed without any portion of the DBD or amino-terminal domain. Portions of the DBD or amino-terminus can be included if further structural information with amino acids adjacent the LBD is desired. Generally, for the TR the LBD used for crystals will be less than 300 amino acids in length. Preferably, the TR LBD will be at least 150 amino acids in length, more preferably at least 200 amino acids in length, and most preferably at least 250 amino acids in length. For example the LBD used for crystallization can comprise amino acids spanning from Met 122 to Val 410 of the rat TR-α or Glu 202 to Asp 461 of the human TR-β.

Typically the LBDs are purified to homogeneity for crystallization. Purity of LBDs can be measured with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), mass spectrometry (MS) and hydrophobic high performance liquid chromatography (HPLC). The purified LBD for crystallization should be at least 97.5 % pure, preferably at least 99.0% pure, more preferably at least 99.5% pure.

Initially, purification of the unliganded receptor can be obtained by conventional techniques, such as hydrophobic interaction chromatography (HPLC), ion exchange chromatography (HPLC), and heparin affinity chromatography.

5

10

15

20

25

30

components and concentrations and temperature can be adjusted, for instance, as described in the Examples. In the handing drop method, to obtain suitable crystals for x-ray diffraction analysis, seeding of prepared drops with microcrystals of the complex can be used. Collection of structural information can be determined by molecular replacement using the structure of TR LBD determined herein or previously by Wagner et al., <u>supra</u>. The structure is refined following standard techniques known in the art.

There are many uses and advantages provided by the present invention. For example, the methods and compositions described herein are useful for identifying peptides, peptidomimetics or small natural or synthetic organic molecules that modulate nuclear receptor activity. The compounds are useful in treating nuclear receptor-based disorders. Methods and compositions of the invention also find use in characterizing structure/function relationships of natural and synthetic coactivator compounds.

The following examples illustrate various aspects of this invention. These examples do not limit the scope of this invention.

5

10

Directed Mutagenesis Kits (Stratagene). The mutated sequences were verified by DNA sequencing using Sequenase Kits (Stratagene).

C. Human ERα LBD

The human ERα-LBD 297-554 was overexpressed as described previously (Seielstad, et al., supra) in BL21(DE3)pLysS cells transformed with a modified pET-23d-ERG vector that contained the sequence Met-Asp-Pro fused to residues 297 to 554 of the hERα (provided by Paul Sigler of Yale University). Clarified bacterial lysates were adjusted to 3 M in urea and 0.7 M in NaCl and then applied to a 10-ml column of estradiol-Sepharose (Greene, et al., Proc. Natl. Acad. Sci. USA (1980) 77:5115-5119; Landel, et al., Mol. Endocrinol. (1994) 8:1407-1419; Landel, et al., J. Steroid Biochem. Molec. Biol. (1997) 63:59-73).

To carboxymethylate the solvent-accessible cysteines, the bound hERα-LBD was treated with 5 mM iodoacetic acid in 10 mM Tris, pH 8.1, 250 mM NaSCN (Hegy, et al., Steroids (1996) 61:367-373). Protein was eluted with 3 x 10-5 M ligand (either DES or OHT) in 30-100 ml of 50 mM Tris, 1 mM EDTA, 1 mM DTT and 250 mM NaSCN, pH 8.5. The yield of hERα-LBD was typically close to 100% (Seielstad, et al., Biochemistry (1995) 34:12605-12615). The affinity-purified material was concentrated and exchanged into 20 mM Tris, 1 mM EDTA, 4 mM DTT, pH 8.1 by ultrafiltration. The protein was bound to a Resource Q column (Pharmacia) and then eluted with a linear gradient of 25-350 mM NaCl in 20 mM Tris, pH 8.1, 1 mM DTT. The hERα-LBD-ligand complexes eluted at 150-200 mM NaCl. Pooled fractions were concentrated by ultrafiltration and analyzed by SDS-PAGE, native PAGE, and electrospray ionization mass spectrometry.

D. Human ER mutants

To test the importance of the NR box peptide/LBD interface observed in the crystal, a series of site-directed mutations were introduced into the ER α LBD. These mutations were designed either to simultaneously perturb the structural integrity and the nonpolar character of the floor of the binding groove (Ile 358->Arg, Val 376->Arg and Leu 539->Arg) or to prevent the formation of the capping interactions (Lys 362->Ala and Glu 542->Lys). Fusions of glutathione-S-transferase (GST) to the wild-type and mutant LBDs were analyzed for their ability to bind 35 S-labeled GRIP1 in the absence of ligand or in the presence of DES or OHT.

10

15

20

25

provided by. C. Costa), fusion proteins were produced in *E. coli* strain HB101 as per the manufacturer's protocol (Pharmacia Biotech).

G. Coactivator GRIP1 563-767 His6 GST fusion protein

GRIP1 563-767 was cloned as a Bam HI-Xho I fragment derived from pGEX-2TK GRIP1 563-1121 into the corresponding sites of pGEX-4T1. A His6-tag was added by inserting a Xho I-Nae I fragment of pET23a into Xho I-Bsa AI sites of this pGEX-4T1 construct yielding pGEX GRIP1 563-767His6. Mutants of GRIP1 563-767 were generated by PCR or single stranded mutagenesis using oligonucleotides carrying the mutations and a pSG5 GRIP1 vector as template. The mutations were confirmed by sequence analysis and integrated into pGEX GRIP1 563-767His6 as NgoMI - Xho I fragments. The GRIP1 563-767 His6 GST fusion protein was expressed in HB101 at 37°C. Protein expression was induced with 1mM IPTG at an optical density (600 nm) of 0.7 and extended for 4 hours after induction. Cells were harvested by centrifugation, resuspended in sonication buffer (20mM TrisHCl pH 8.0, 0.1M NaCl, 10%glycerol, 0.1mM PMSF and protease inhibitors (Complete, EDTA free, Boehringer Mannheim)). The resuspended cells were freezethawed once, incubated on ice with 0.1mg/ml lysozyme for 20 minutes and lysed per sonication. The lysate was cleared by ultracentrifugation (Ti 45, 36000rpm, 1h 4°C), the supernatant filtered (Costar 0.2 µm top filter) and loaded on a Talon column (Clontech). The column was washed with 10 column volumes of sonication buffer supplemented with 12mM imidazole and eluted with an imidazole gradient [12 - 100mM]. At this step the fusion proteins are about 95% pure. Imidazole was removed by gelfiltration on NAP columns (Pharmacia), and protein concentrations determined using the Biorad protein assay. Equal concentrations of the different derivatives of the fusion fragment were incubated with glutathione agarose (1h, 4°C) which was equilibrated in binding buffer (sonication buffer supplemented with 1mM DTT, 1mM EDTA and 0.01% NP-40). Beads were washed with at least 20 volumes of this buffer, diluted in binding buffer with 20% glycerol to 40%, frozen in aligots and stored at -70°C.

H. Coactivator GRIP1 563-767 His6

GRIP1 563-767 was cloned as a Bam HI - Xho I fragment derived fron pGEX GRIP1 563-767His6 into corresponding cloning sites of pET23a yielding pETGRIP1 563-767His6. The fragment was expressed in BL21DE3. Expression, cell lysis and Talon purification was identical as described for GST GRIP1 563-767His6. The protein eluted from a Talon column in two fractions, one at 12mM and one between 40 and 70mM imidazole. In the earlier eluting fraction the fragment was associated with a 70 kDa protein which was removed by a MonoQ run in 50mM TrisHCl

5

10

15

20

25

30

receptors. However, no differences in the results were noted by adding the peptides after half of the incubation of the GST GRIP1 fragment with nuclear receptors. This demonstrates that equilibrium is reached under the chosen conditions. Beads were washed five times with 200μl binding buffer + BSA at 4°C before elution of the bound proteins in 20μl SDS loading buffer. Eluted beads and input labeled protein were subjected to SDS-PAGE. The fraction of bound nuclear receptors was determined by phosphoimager analysis.

B. GST-hTRβ1 Pull-down Assays

Assay and analysis was performed as for Example 3A. *In vitro* binding of [³⁵S]-labeled full-length GRIP1, [³⁵S]-labeled full-length SRC-1a, and [³⁵S]-labeled full-length hRXRα, to GST-hTRβ1 wild-type (WT) and mutants was performed. Mutants V284R, K288A, I302R, L454R, and E457K all bound to hRXRα with an affinity equivalent to wild type hTR. All of these mutants showed decreased ability to bind GRIP1 and SRC-1a, as expected from the results of Example 3A. The same results were obtained when a GST-SRC1 construct including SRC-1a amino acids 381-882 was tested for binding of [³⁵S]-Met-labeled full-length hTRβ1 WT and mutants (data not shown).

20 C. GST-hERα LBD Pull-down Assays

The wild-type and mutant GST-hERα LBDs were expressed in BL21(DE3) cells. Total ligand binding activity was determined by a controlled pore glass bead assay (Greene, et al., *Mol. Endocrinol.* (1988) 2:714-726) and protein levels were monitored by western blotting with a monoclonal antibody to hERα (H222). Cleared extracts containing the GST- hERα LBDs were incubated in buffer alone (50 mM Tris, pH 7.4, 150 mM NaCl, 2 mM EDTA, 1 mM DTT, 0.5% NP-40 and a protease inhibitor cocktail) or with 1 μM of either DES or OHT for 1 hour at 4°C. Extract samples containing thirty pmol of GST-LBD were then incubated with 10 μl glutathione-Sepharose-4B beads (Pharmacia) for 1 hour at 4°C. Beads were washed five times with 20 mM HEPES, pH 7.4, 400 mM NaCl, and 0.05% NP-40. ³⁵S-labeled GRIP1 was synthesized by *in vitro* transcription and translation using the TNT Coupled Reticulocyte Lysate System (Promega) according to the manufacturer's instructions and pSG5-GRIP1 as the template. Immobilized GST-hERα LBDs were incubated for 2.5 hours with 2.5 μl aliquots of crude translation reaction mixture diluted in 300 μl of Tris-buffered saline (TBS). After five washes in TBS containing 0.05% NP-40,

15

25

or cells selected that express a single reporter, can be used for transfection assays, including MCF-7 cells expressing ER (Webb et al., supra), and GC cells expressing TR (Norman et al., J. Biol. Chem. (1989) 264:12063-12073).

For hERa assays, 5 µg of estrogen responsive reporter plasmid encoding chloramphenicol acetyltransferase (CAT), pERE-collTATA (Sadovsky, et al., Mol Cell Biol. (1995) 15:1554), 0.5 µg expression vector encoding full-length hERa, pSG5-er HEGO (WT or mutants), and 2 µg of pj3lacz, were used. For the experiments of Figures 2 and 4, 0.5 µg of a full-length GRIP1 expression vector, pSG5-GRIP1, was also included in the transfection. Transfected cells were treated with or without 1 µM T₃ or E₂, as indicated. After culturing for 24 hrs, the LUC or CAT activities were assayed and the \(\beta_{\text{galactosidase}} \) activities were also assayed to correct for differences in transfection efficiencies. The triplicate points were averaged and standard deviations were less than 10%.

Example 5: Hormone binding assays for wild-type and mutant TRs

The T₃ binding affinity constants (Kd) for in vitro -translated WT and mutant TRs were measured using [125I] 3,5,3' triiodo-L-thyronine ([125I]T₃) in gel filtration binding assays as described (Apriletti et al., Protein Expr. Purif. (1995) 6:363). Both the Kd and standard error (S.E.) values were calculated using the Prism computer program (GraphPad Software, Inc.). Mutations are indicated by the single-letter amino acid abbreviations, with the native residue name, followed by the primary sequence position number, and then the mutated residue name. The affinity of the WT TR is 81 ± 12 pM. The relative affinity was determined by dividing the WT Kd by each mutant Kd. The 37 mutants tested with their relative affinities are: E217R (123%), E227R (109%), K242E (92%), E267R (117%), H271R (123%), T277R (7%), T281R (145%), V284R (105%), D285A (89%), K288A (98%), C294K (94%), E295R (118%), C298A (87%), C298R (141%), E299A (171%), I302A (86%), I302R (99%), K306A (6%), K306E (6%), P384R (164%), A387R (107%), E390R (151%), E393R (146%), L400R (95%), H413R (109%), H416R (153%), M423R (156%), R429A (48%), S437R (170%), L440R (174%), V444R (89%), T448R (234%), E449R (36%), P453E (32%), L454R (26%), L456R (46%), E457K (71%).

Example 6: Coactivator binding assays for wild-type and mutant TRs

Wild type (WT) TR and most of the TR mutants liganded to 3.5.3'-triiodo-L-thyronine (T₃) bind equally well to the coactivator, GRIP1. In all cases, GRIP1 binding was hormone-dependent

10

20

indicate that the mutational effects are specific, the amount of input labeled TR in the different reactions is comparable, and the levels of expression of the mutant TRs are comparable to those of WT receptors.

Example 9: Coactivator binding site in ER

5

10

15

20

25

30

Three separate mutations (K362A, V376R, and E542K) were created in human estrogen receptor-α (hERα) which align to three of the effective positions in hTRβ1 (K288A, I302R, and E457K). All three mutations diminish GRIP1 binding and abolish transcriptional activation (Figure 3), and mutant V376R, with 10% residual GRIP1 binding, was rescued partially by overexpression of GRIP1 (Figure 4). As a control, the ER mutants demonstrated a normal hormone-dependent ability to activate a vitellogenin-LUC hybrid reporter gene, GL45, which responds to the ER amino-terminal activation function (Berry et al., EMBO J (1990) 9:2811-2818) (data not shown). The finding that similar residues are required for GRIP1 binding and transcription activation activity in the TR and ER suggests that the coactivator binding site residues are similar in different nuclear receptors.

Example 10: Coactivator NR-box binding affinity for TR

To study the interaction between nuclear receptors and GRIP1 in vitro, a fragment of GRIP1 (563-767) was purified that contains all three NR-boxes (Figures 6 and 7). The fragment was found to be highly soluble and, in agreement with a secondary structure prediction using PhD, displays a mainly alpha-helical far UV-CD spectrum (data not shown). Three of the four helices predicted for the fragment include the NR-boxes at their C-terminus, suggesting that these boxes are part of amphipathic alpha-helices. These results show that the NR-boxes of GRIP1 are contained in a soluble, alpha-helical 24kD fragment.

Binding assays show that GRIP1 NR-boxes 1, 2 and 3, interact differentially with hTRB LBD (Figure 7). A GST-fusion of the GRIP1 (563-767) fragment strongly binds TR (kD or EC50) in a ligand depend fashion. Replacement of the hydrophobic residues of NR-box 3 with alanine does not reduce binding of TR significantly, whereas similar replacement of NR-box 2 results in loss of TR binding of about 50%. By titrating the amount of GRIP1 fragment, about a 4-fold stronger binding of TR for NR-box 2 (EC50 = 1.0 μ M) over NR-box 3 (EC50 = 4.0 μ M) was estimated. In the absence of functional NR-boxes 2 and 3, almost no binding to TR was detected suggesting that under these experimental conditions NR-box 1 is not a cognate binding site for TR.

Peptides of NR-box 2 or 3 compete GRIP1 (563-767) containing functional NR-boxes 2 and 3 or a mutant of this fragment that contains only a functional NR-box 2 with comparable affinity. Thus, while TR can bind both NR-box 2 and 3, in a GRIP1 coactivator peptide fragment containing both boxes, TR preferentially binds NR-box 2.

These results show the preference of TR for NR-box 2 is sequence dependent.

The same types of assays for TR competition are performed to assess coactivator peptide binding affinity for GR. The peptide concentrations are normalized relative to TR for obtaining comparable dose response curves.

Example 13: Binding affinity of TR for extended coactivator peptides

Sequence identity between all three central NR-boxes of the p160 coactivator family is limited to the conserved leucine residues of the (SEQ ID NO: 1) LxxLL motif (Figure 6). However, the sequence conservation of a particular NR-box can extend into neighboring residues. To investigate the contribution of these neighboring residues to affinity and specificity of the different NR-boxes for TR, the ability of peptides containing individual NR-boxes with different lengths of adjacent sequences to compete with the interaction of GRIP1 (563-767) with hTRB LBD were compared (Figure 10).

A peptide consisting of the minimal motif of NR-box 3 (residues 12-17 of SEQ ID NO: 7; LLRYLL) does not compete the TR LBD interaction with GRIP1 (563-767). A peptide consisting of the NR-box 2 (residues 15-20 of SEQ ID NO: 6; ILHRLL) also does not sufficiently compete the interaction (data not shown). Extending peptides containing a (SEQ ID NO: 1) LxxLL motif to include adjacent residues increased affinity for both NR-box motifs and magnified the preference of TR for NR-box 2 (NR-box 2 peptides: (residues 11-23 SEQ ID NO: 6) EKHKILHRLLQDS and (residues 7-23 of SEQ ID NO: 6) TSLKEKHKILHRLLQDS; and NR-box 3 peptides: (residues 8-24 of SEQ ID NO: 7) KENALLRYLLDKDDTKD and (residues 5-24 of SEQ ID NO: 7) PKKKENALLRYLLDKDDTKD). A chimeric peptide containing the NR-box 3 motif in the context of the NR-box 2 flanking sequences (SEQ ID NO: 31; TSLKEKHKLLRYLLQDSS) binds like a NR-box 2 peptide.

These results demonstrates that preference of TR for NR-box 2 is at least partially due to features of the bound peptide (residues 15-20 of SEQ ID NO: 6; ILHRLL), but that their affinity and specificity is modulated by adjacent sequences.

5

10

15

20

25

35

isoleucine is located on the rim of this cleft where structural changes can be more easily accommodated (See Example 18). In agreement with this structure, replacement of this residue by alanine or phenylalanine reduced binding to hTRB LBD to a less extent than the comparable mutations of the conserved leucine residues. The surface generated by the three conserved leucines (L690, L693, L694) of the NR-box 2 peptide (residues 12-24 of SEQ ID NO: 6) 686-KHKILHRLLQDSS-698 is highly complementary to the corresponding binding site in the hTRB LBD (Figures 16 and 17). Comparison of this binding site to other nuclear receptors shows that it contains a structural motif that is unique, highly conserved and present in all known structures of nuclear receptor LBDs (Wurtz et al., Nat Struct Biol. (1996) 3:87-94; Wagner et al., supra; Renaud et al., Nature (1995) 378:681-689; Bourguet et al., Nature (1995) 375:377-382; and Brzozowski et al., Nature (1997) 389:753-758).

Interaction of highly conserved hydrophobic motifs, which are part of amphipathic alphahelices, with complementary hydrophobic surfaces resembles a feature observed for the interaction of several other transcriptional activators with their target proteins (p53:MDM2, VP16:TAFII31 or CREB:KIX-CBP). However, the motifs of p53 (FxxLW), VP16 (FxxAL) and CREB (YxxIL) differ from the (SEQ ID NO: 1) LxxLL motif of nuclear receptor coactivators. A Fxxxh motif may be generally involved in interaction with TAFII31, where "h" represents any hydrophobic residue. Though with respect to the known structures, complementarity of the interacting hydrophobic surfaces identified here seem to be a common feature of these interactions, cross-reactions between different motifs are possible. For instance, VP16, p53, and p65 (FxxFL) are able to functionally interact with TAFII31, or p53 and E2F1-DP1 (FxxLL) both interact with MDM2. These interactions are sensitive to mutations in the Fxxxh motif. Therefore it appears that either complementarity of the hydrophobic surfaces is not an absolute requirement or that induced fitting of the interacting surfaces is possible.

Based on these observations, studies were performed to determine whether GRIP1 interacts with TAFII31 or MDM2. However, no interaction was detected. GRIP1 mutants changing NR-box 2 (SEQ ID NO: 1; LxxLL) to VP16 (SEQ ID NO: 4; FxxAL) or p53 (SEQ ID NO: 3; FxxLW) like binding sites also failed to bind TAFII31 or MDM2 demonstrating that the presence of the correct binding site is not sufficient to create binding (data not shown). Moreover, peptides containing the VP16 or p53 binding sites are not able to compete the interaction of GRIP1 with TR, even in very high concentration, but do compete the interaction with GR (data not shown). The affinity of this interaction is weak, but comparable to affinity of a peptide of NR-box 2 that, in the context of a

5

10

15

20

25

30

of prepared drops with microcrystals of the hTRß LBD:GRIP1 NR-box 2 peptide complex. Structure of the hTRß LBD:GRIP1 NR-box 2 peptide complex was determined by molecular replacement using the structure of the hTRß LBD determined previously (Wagner et al., <u>supra</u>), and refined to a resolution of 3.6Å (Table 1). The refined model consists of residues K211-P254 and V264-D461 of monomer 1 of the hTRß LBD, residues K211-P254 and G261-D461 of monomer 2 of the hTRß LBD, and the GRIP1 NR-box 2 peptides (residues 14-24 of SEQ ID NO: 6) 688-KILHRLLQDSS-698, and (residues 14-22 of SEQ ID NO: 6) 688-KILHRLLQD-696 (Appendix 1).

Briefly, the complex between the hTRß LBD and the GRIP1 NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) was prepared by mixing (equal) volumes of a solution of 9mg/ml hTRß LBD in 20mM HEPES pH 7.4 with a solution of 14 mM GRIP1 in 0.4mM ammonium acetate pH 4.72, and incubating the mixture on ice for 1 hour. Crystals were obtained after 2 days at 4°C using hanging drop vapor diffusion from a drop containing 1.5μl of hTRß LBD:GRIP1 complex, prepared as described, and 0.5μl 15%PEG 4K, 0.2M sodium citrate pH 4.9, suspended above a reservoir containing 10% PEG 4K, 0.1M ammonium acetate, and 0.05 M sodium citrate (pH 5.6). After allowing the drop to equilibrate for 1 hour, 0.2μl of 10-3 to 10-5 dilutions of microcrystals in reservoir buffer were introduced to provide nucleation. Crystals are of space group P3121 (a=95.2, b=95.2, c=137.6) and contain two molecules of the hTRß LBD and two molecules of the GRIP1 NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6).

5

10

15

Crystallization of hERa LBD with DES and GRIP1 NR-box 2 Peptide B.

Crystals of a DES-hER α LBD-GRIP1 NR-box 2 peptide complex were obtained by hanging drop vapor diffusion. Prior to crystallization, the DES-hERa LBD (residues 297-554) complex was incubated with a 2-4 fold molar excess of the GRIP1 NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) for 7-16 hr. Two μL samples of this solution were mixed with equal volume samples of reservoir buffer consisting of 25-27% (w/v) PEG 4000, 90 mM Tris (pH 8.75-9.0) and 180 mM Na Acetate and suspended over wells containing 800 μL of the reservoir buffer. After 4-7 days at 19-21°C, rod-like crystals were obtained. The coactivator complex crystals lie in the spacegroup P2₁ with cell dimensions a=54.09, b=82.22, c=58.04 and β =111.34. Two molecules each of the DES-LBD and the coactivator peptide form the asymmetric unit. A 200 $\mu m \times 40 \ \mu m \times 40 \ \mu m$ crystal was transferred to a cryosolvent solution containing 25% (w/v) PEG 4000, 10% (w/v) ethylene glycol, 100 mM Tris (pH 8.5), 200 mM Na Acetate and 10 μM peptide and frozen in an N₂ stream at -170°C in a rayon loop. Diffraction data from this crystal were measured at -170°C using a 300 mm MAR image plate at the Stanford Synchrotron Radiation Laboratory (SSRL) at beamline 7-1 at a wavelength of 1.08 Å. The diffraction images were processed with DENZO and scaled with SCALEPACK (Otwinowski, et al., Methods Enzymol. 20 (1997) 276:307-326) using the default -3 σ cutoff.

Crystallization of hERa LBD with OHT C.

Crystals of the hER α LBD (residues 297-554) complexed to OHT were obtained by the hanging drop vapor diffusion method. Equal volume aliquots (2 μ L) of a solution containing 3.9 mg/mL protein-ligand complex and the reservoir solution containing 9% (w/v) PEG 8000, 6% (w/v) ethylene glycol, 50 mM HEPES (pH 6.7) and 200 mM NaCl were mixed and suspended over 800 μL of the reservoir solution. Hexagonal plate-like crystals formed after 4-7 days at 21-23°C. Both crystal size and quality were improved through microseeding techniques. These crystals belong to the space group P6522 with cell parameters a=b=58.24 Å and c=277.47 Å. The asymmetric unit consists of a single hER α LBD monomer; the dimer axis lies along a crystallographic two-fold. A single crystal (400 μ m x 250 μ m x 40 μ m) was briefly incubated in a cryoprotectant solution consisting of 10% (w/v) PEG 8000, 25% (w/v) ethylene glycol, 50 mM HEPES (pH 7.0) and 200 mM NaCl and then flash frozen in liquid N2 suspended in a rayon loop. Diffraction data were measured at -170°C using a 345 mm MAR image plate at SSRL at beamline 9-1 and at a

5

10

15

25

suite: programs for protein crystallography", Acta Crystallogr. (1994) D50:760-763) indicated the presence of a noncrystallographic dyad. The two LBDs in the asymmetric were located by molecular replacement in AMoRe (CCP4, 1994) using a partial polyalanine model of the human RARy LBD (Renaud, et al., supra) as the search probe (R=58.2%, CC=35.6% after placement of both monomers). Given that the model at this point was both inaccurate (r.m.s.d. 1.7 Å between this model and the final model based on Ca positions) and incomplete (accounting for only ~45% of the total scattering matter in the asymmetric unit), an aggressive density modification protocol was undertaken. Iterative cycles of two-fold NCS averaging in DM (CCP4, 1994) interspersed with model building in MOLOC (Muller, et al., Bull. Soc. Chim. Belg. (1988) 97:655-667) and model refinement in REFMAC (Murshudov, et al., Acta Crystallogr. (1997) D53:240-255) (using tight NCS restraints) were used to quickly build a model of the LBD alone. For this procedure, MAMA (Kleywegt, et al., "Halloween...masks and bones. In From First Map to Final Model", Bailey, et al, eds., Warrington, England. SERC Daresbury Laboratory, 1994) was used for all mask manipulations and PHASES (Furey, et al., PA33 Am. Cryst. Assoc. Mtg. Abstr. (1990) 18:73) and the CCP4 suite (CCP4, 1994) were used for the generation of structure factors and the calculation of weights.

However, although the DES-hERα LBD-NR complex model accounted for ~90% of the scattering matter in the asymmetric unit, refinement was being hampered by severe model bias. The high-resolution data set of the DES-hERa LBD-NR-box 2 peptide complex became available when the R_{free} of the OHT-hER\alpha LBD model was ~31\%. Both monomers in the asymmetric unit of the DES complex crystal were relocated using AMoRe and the incompletely refined OHT-hERa LBD model (with helix 12 and the loop between helices 11 and 12 removed) as the search model. The missing parts of the model were built and the rest of the model was corrected using MOLOC and two-fold averaged maps generated in DM. Initially, refinement was carried out with REFMAC using tight NCS restraints. At later stages, the model was refined without NCS restraints using the simulated annealing, minimization and B-factor refinement protocols in X-PLOR and a maximumlikelihood target. All B-factors were refined isotropically and anisotropic scaling and a bulk solvent correction were used. The R_{free} set contained a random sample of 6.5% of all data. In refinement, all data between 27 and 2.03 Å (with no o cutoff) were used. The final model was composed of residues 305-549 of monomer A, residues 305-461 and 470-554 of monomer B, residues 687-697 of peptide A, residues 686-696 of peptide B, 164 waters, two carboxymethyl groups and a chloride ion. According to PROCHECK, 93.7% of all residues in the model were in the core regions of the Ramachandran plot and none were in the disallowed regions. Thus, the structure of the DES-hERα

5

10

15

20

25

30

5		Table 2									
	Summary o	f Crystallographic Statistics									
		Lig	and								
	Data Collection	<u>DES</u>	<u>OHT</u>								
	Space group	P2 ₁	P6 ₅ 22								
10	Resolution	2.03	1.90								

R_{sym}(%)^a 7.8 7.0
15 Average I/σI 9.8 16.1

Observations

Completeness (%)

Unique

Refinement Number of non-hydrogen atoms 4180 2070 R_{cryst} (%)^b/ R_{free} (%) 23.0/26.1 19.9/25.0 Bond r.m.s. deviation (Å) 0.006 0.006 Angle r.m.s. deviation (°) 1.05 1.05 Average B factor $(Å^2)$ 40.4 34.0

^a $R_{sym} = \sum_{i} |I_{i} - \langle I_{i} \rangle| / \sum_{i} I_{i}$ where $\langle I_{i} \rangle$ is the average intensity over symmetry equivalents

104189

30265

98.4

269253

23064 99.1

 $R_{cryst} = \sum |F_o - F_c| / \sum |F_o|$

C. Structure of hERa LBD-OHT complex

The OHT complex data set was then collected. Starting with one of the monomers of the preliminary low-resolution DES-hERα LBD-NR-box 2 peptide model as the search probe, molecular replacement in AMoRe was used to search for the location of LBD in this crystal form in both P6₁22 and P6₅22. A translation search in P6₅22 yielded the correct solution (R=53.8%, CC=38.2%). In order to reduce model bias, DMMULTI (CCP4, 1994) was then used to project averaged density from the DES complex cell into the OHT complex cell. Using MOLOC, a model of the hERα LBD was built into the resulting density. The model was refined initially in REFMAC and later with the simulated annealing, positional and B-factor refinement protocols in X-PLOR

20

25

30

The common interface between both cocrystal peptides and the hTRß LBD buries the hydrophobic residues that define the cocrystal peptide (SEQ ID NO: 1) LxxLL sequence motif, residues Ile689, Leu690, Leu693, and Leu694; against the surface of the receptor LBD (Figures 16 and 17). The presence of the second peptide in the crystal, duplicating the interactions of the hydrophobic residues, suggests those interactions are specific and drive the interaction of the peptide with the hTRß LBD, while the hydrophilic interactions provide a fortuitous crystal contact and account for the dependence of crystallization on the presence and concentration of the peptide.

PCT/US99/06899

B. Structure of the GRIP1 NR-box 2 peptide

The GRIP1 NR-box 2 peptide used in the crystallization is 13 amino acids long (residues 12-24 of SEQ ID NO: 6; 686-KHKILHRLLQDSS-698). For the NR-box 2 peptide in monomer 1 (peptide 1), 12 amino acids are ordered in the crystal. Residues K688 - Q694 form an amphipathic helix, with residues K686-H687 and D695-S698 on either end in extended coil conformations. For the NR-box 2 peptide in monomer 2 (peptide 2), residues K688 - Q694 again form an amphipathic helix, but the ends of the peptide are disordered. While the resolution of the current data prevents absolute assignment of hydrogen bonds, it is evident from the periodicity of the side chain density that the central residues form an alpha-helix. In the absence of TR the far UV-CD spectrum of the GRIP1 NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) appears to be random coil (data not shown). Stable helix formation may thus be induced by the interaction of the hydrophobic amino acids with the receptor LBD as it has been proposed in other protein:protein interactions, such as p53:MDM2 (Kussie et al., Science (1996) 274:948-953), VP16:TAF31 (Uesugi et al., Science (1996) 277:1310-1313), and CREB:KIX-CBP (Radhakrishnan et al., Cell (1997) 91:741-752).

C. Structure of the hTRB LBD:GRIP1 NR-box 2 peptide interface

The hTRB LBD of the cocrystal contributes residues from three helices, H3, H5, and H12 to the interface, which pack against one another to create a hydrophobic cleft. The residues lining the cleft are I280, T281, V283, V284, A287, and K288 from H3; Q301, I302, L305, and K306 from H5; and L454, E457, V458, and F459 from H12. A cysteine residue (C309) from H6 appears to provide a partial surface that is buried deep within the bottom of the cleft.

The GRIP1 NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) binds at the junction of H3 and H12. Leu690 of the bound peptide inserts into a shallow but

5

10

15

20

25

complex, the main chain from residues 339 to 341, 421 to 423, and 527 to 530 form parts of helices 3, 8 and 11 respectively. In contrast, these regions adopt an extended conformation in the OHT complex. In addition, the composition and orientation of helix 12 are different in the two structures. Helix 12 in the DES complex consists of residues 538 to 546 whereas helix 12 in the OHT complex consists of residues 536 to 544. Most dramatically, rather than covering the ligand binding pocket as it does in the DES complex, helix 12 in the OHT complex occupies the part of the coactivator binding groove formed by residues from helices 3, 4, and 5, and the turn connecting helices 3 and 4. This alternative conformation of helix 12 appears to be similar to that observed in the RAL complex (Brzozowski, et al., supra).

Example 20: Coactivator binding site structure and function

A. TR coactivator binding site

The above examples demonstrate that nuclear receptors, exemplified by TR, GR and ER, are recognized by specific coactivators that bind thereto through a coupling surface comprising a hydrophobic cleft and a charged hydrophobic perimeter. Identification and characterization of this coupling surface and the coactivator binding site of nuclear receptors offers a new target for the design and selection of compounds that modulate binding of coactivator to nuclear receptors.

Residues forming the coactivator binding site were found to cluster within a surprisingly small area with well-defined borders (see, e.g., Figures 5, 14, and 15). As is shown in above Examples, mutated residues nearby this area do not affect coactivator binding or transcriptional activation. Additionally, the coactivator binding assays and structural analyses demonstrated that NR-box containing proteins and peptides bind to this site. These results also showed that the GRIP1 coactivator protein binds to the site through a highly (SEQ ID NO: 1) LxxLL.

The structural analyses showed that residues contacting a conserved leucine residue of the (SEQ ID NO: 1) LxxLL motif included V284, F293, I302, L305 and L454. Residues within 4.5Å of an atom of the bound peptide included T281, V284, K288, F293, Q301, I302, L305, K306, P453, L454 and E457. Structural analyses also revealed two other features of the site: a hydrophobic residue from helix 12 (Phe459) that contributes to local packing, and a cysteine residue contributed by helix 6 (Cys309) that provides a partial surface buried deep within the site. Mutational analyses showed that residues which block GRIP1 and SRC-1 coactivator binding when mutated are residues V284, K288, I302, K306, L454, and V458. Mutated residues likely to undergo a conformational change upon hormone binding included Leu454 and Glu457. Thus, the site identified by

5

10

15

20

25

30

LBD, supports the findings for TR that residues forming the coactivator binding site of nuclear receptors is composed of a well defined hydrophobic cleft and a charged hydrophobic perimeter. These residues are highly conserved among the nuclear receptor super family (Figure 19). Structural characterization of the coactivator peptide-bound ER LBD also supports the concept of exploiting the slight differences among the coactivator binding sites of nuclear receptors in designing and identifying compounds that target specific nuclear receptors.

The ERα LBD interacts primarily with the hydrophobic face of the NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) α helix formed by the side chains of Ile 689 and the three (SEQ ID NO: 1) LxxLL motif leucines (Leu 690, Leu 693 and Leu 694). The side chain of Leu 690 is deeply embedded within the groove and forms van der Waals contacts with the side chains of Ile 358, Val 376, Leu 379, Glu 380 and Met 543. The side chain of Leu 694 is similarly isolated within the groove and makes van der Waals contacts with the side chains of Ile 358, Lys 362, Leu 372, Gln 375, Val 376 and Leu 379. In contrast, the side chains of both Ile 689 and the second NR box leucine, Leu 693, rest against the rim of the groove. The side chain of Ile 689 lies in a shallow depression formed by the side chains of Asp 538, Leu 539 and Glu 542. The side chain of Leu 693 makes nonpolar contacts with the side chains of Ile 358 and Leu 539.

The charged and polar side chains which form the hydrophilic face of the peptide helix project away from the ER α receptor and either interact predominantly with solvent or form symmetry contacts. None of the side chains of the polar and charged residues outside the helical region of either peptide in the asymmetric unit, with the exception of Lys 688 of peptide B, is involved in hydrogen bonds or salt bridges with its associated ER α LBD monomer. The ϵ -amino group of Lys 688 of peptide B hydrogen bonds to the side chain carboxylate of Glu 380 of monomer B. This interaction is presumably a crystal artifact; the main chain atoms of the N-terminal three residues of peptide B are displaced from monomer B and interact extensively with a symmetry-related ER α LBD.

In addition to interacting with the hydrophobic face of the peptide helix, the ER α LBD stabilizes the main chain conformation of the NR box peptide by forming capping interactions with both ends of the peptide helix. Glu 542 and Lys 362 are positioned at opposite ends of the peptide binding site. The side chains of Glu 542 and Lys 362 form van der Waals contacts with main chain and side chain atoms at the N- and C-terminal turns of the peptide helix respectively. These interactions position the stabilizing charges of the γ -carboxylate of Glu 542 and ϵ -amino group of Lys 362 near the ends of the NR box peptide helix. The side chain carboxylate of Glu 542

10

15

20

25

30

5 OHT complex buries more solvent accessible surface area (~1200 Ų) than the NR box peptide in the DES-ERα LBD-peptide complex.

Identification and characterization of the coactivator binding site for TR, and extension of this information to other nuclear receptors shows that this site is common for all nuclear receptors identified to date. Additionally, sequence and structural comparison, coupled with the Examples showing differential specificity for coactivator binding to TR, GR and ER, reveal that minor differences between the receptors, such as found in helix 12, are likely to influence specificity of a coactivator for different types of nuclear receptors. Thus, the Examples presented herein demonstrate that information derived from the structure and function of the TR coactivator binding site can be applied in design and selection of compounds that modulate binding of coactivator proteins to nuclear receptors for all members of the nuclear receptor super family.

REFERENCES

1. U.S. Patent No. 5,331,573

10

- 2. U.S. Patent No. 5,500,807
- Adams, P. D., Pannu, N. S., Read, R. J., and Brunger, A. T. (1997). Proc. Natl. Acad. Sci. USA 94, 5018-23.
 - 4. Apriletti et al., Protein Expr. Purif. (1995) 6:363
 - 5. Bartlett et al., In: Molecular Recognition in Chemical and Biological Problems", Special Pub., Royal Chem. Soc. (1989) 78:182-196
- 25 6. Berry, M., Metzger, D., and Chambon, P. (1990). EMBO J 9, 2811-8.
 - 7. Bohm, J. Comp. Aid. Molec. Design (1992) 6:61-78
 - 8. Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H., and Moras, D. (1995). Nature 375, 377-82.
- 9. Brzozowski, A., Pike, A., Dauter, Z., Hubbard, R., Bonn, T., Engstrom, O., Ohman, L., Greene, G., Gustafsson, J., and Carlquist, M. (1997). Nature 389, 753-758.
 - 10. Chang et al., Proc. Natl. Acad. Sci. USA (1997) 94(17):9040-9045
 - 11. Cohen et al., J. Med. Chem. (1990) 33:883-894)
 - 12. Collingwood et al. Proc. Natl. Acad Sci. (1997) 94:248-253
 - 13. DesJalais et al., J. Med. Chem. (1988) 31:722-729

- 5 37. Landel, C., Kushner, P., and Greene, G. (1994). Mol. Endocrinol. 8, 1407-1419.
 - 38. Landel, C., Potthoff, S., Nardulli, A., Kushner, J., and Greene, G. (1997). J. Steroid Biochem. Molec. Biol. 63, 59-73.
 - 39. Lazennec, G., Ediger, T. R., Petz, L. N., Nardulli, A. M., and Katzenellenbogen, B. S. (1997). Mol. Endocrinol. 11, 1375-86.
- 40. Le Douarin, B., Nielsen, A. L., Garnier, J. M., Ichinose, H., Jeanmougin, F., Losson, R., and Chambon, P. (1996). EMBO J 15, 6701-15.
 - 41. Lee et al., Mol. Endocrinol. (1992) 6:1867-1873
 - 42. Lin et al., Mol. Cell Biol. (1997) 17(10):6131-6138
 - 43. Masayama et al., Mol. Endocrinol. (1997) 11:1507-1517
- 15 44. Meng et al., J. Comp. Chem. (1992) 13:505-524
 - 45. Miranker et al., Proteins: Structure, Function and Genetics, (1991) 11:29-34
 - 46. Muller, K., Amman, H. J., Doran, D. M., Gerber, P. R., Gubernator, K., and Schrepfer, G. (1988). Bull. Soc. Chim. Belg. 97, 655-667.
 - 47. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997). Acta Crystallogr. D 53, 240-255.
- 20 48. Navia et al., Curr. Opin. Struct. Biol. (1992) 2:202-210
 - 49. Nishibata et al., Tetrahedron (1991) 47:8985;
 - 50. Norman et al., J. Biol. Chem. (1989) 264:12063-12073
 - 51. Norris, J. D., Fan, D., Stallcup, M. R., and McDonnell, D. P. (1998). J Biol Chem 273, 6679-88.
 - 52. O'Donnell et al., Mol. Endocrinol. (1991) 5:94-99
- 25 53. Onate et al., Science (1995) 270:1354-1357
 - 54. Radhakrishnan et al., Cell (1997) 91:741-752
 - 55. Renaud, J., Rochel, N., Ruff, M., Vivat, V., Chambon, P., Gronemeyer, H., and Moras, D. (1995). Nature *378*, 681-689.
 - 56. Saatcioglu et al., Mol. Cell Biol. (1997) 17:4687-4695
- 30 57. Sadovsky, et al., Mol Cell Biol. (1995) 15:1554
 - 58. Seielstad, D., Carlson, K., Katzenellenbogen, J., Kushner, P., and Greene, G. (1995a). Mol. Endocrinol. 9, 647-658.
 - 59. Seielstad, et al., Biochemistry (1995) 34:12605-12615
 - 60. Shiau et al. Gene (1996) 179(2):205-10

WO 99/60014 PCT/US99/06899

Appendix 1

5

Atomic Coordinates for Human TR-B Complexed With T3, and a GRIP1 NR-box 2 Peptide

```
REMARK full length numbering
10
    REMARK all residue names correct
    REMARK peptide sequence
    REMARK two molecules of TRB - CHAIN A and CHAIN B
    REMARK two molecules of T3 - CHAIN J and CHAIN K
    REMARK two molecules of GRIP-1 peptide - CHAIN X and CHAIN Y
    REMARK chain X lies between A and B
15
    REMARK chain Y interacts with B only
    REMARK residues differing between A and B include:
    REMARK A 217 Glu, A 252 Gln, A 263 Lys (missing side chains)
    REMARK B 237 Ser, B239 His, B 394 Lys (missing side chains)
    REMARK additionally Gly 261, Gly 262 are not visible in chain A
20
    REMARK residues differing between X and Y include:
    REMARK A 692 Arg
    REMARK additionally, residues Lys 688, Lys 689; Ser 697, Ser 698
    REMARK are not visible in chain Y
                                                                           7
25
    MOTA
               1
                 N
                      LYS A 211
                                      52.546
                                             23.912
                                                      35.239
                                                              1.00 45.76
    MOTA
               2
                 CA
                    LYS A 211
                                      52.944
                                             24.345
                                                      36.586
                                                              1.00 43.42
                                                                           6
                                                              1.00 35.68
               3
                  С
                      LYS A 211
                                      52.035
                                             23.665
                                                      37.836
                                                                           6
    MOTA
                                              22.556
                  0
                      LYS A 211
                                      51.511
                                                      37.763
                                                              1.00 33.58
               4
    MOTA
                  CB LYS A 211
                                      52.610
                                             25.825
                                                      36.779
                                                              1.00 46.72
                                                                           6
               5
    ATOM
                                                      39.199
                                                              1.00 35.64
                                                                           7
                      PRO A 212
                                      51.678
                                             24.182
30
               6
                  N
    MOTA
                     PRO A 212
                                     52.082
                                             25.474
                                                      39.842
                                                              1.00 38.60
                                                                           6
               7
                  CD
    MOTA
                                                              1.00 38.35
                                                                           6
                                      50.809 23.379
                                                      40.166
               8
                  CA
                     PRO A 212
    MOTA
                                             24.194
                                                      41.440
                                                              1.00 38.95
                      PRO A 212
                                      50.670
    MOTA
               9
                  CB
                                                      41.255
                                                              1.00 42.00
                      PRO A 212
                                      51.455
                                             25.469
                                                                           6
    MOTA
              10
                 CG
                      PRO A 212
                                      49.433
                                             23.097
                                                      39.594
                                                              1.00 38.78
                                                                           6
35
    MOTA
             11
                  С
                                      48.920 23.949
                                                      38.802
                      PRO A 212
                                                              1.00 34.64
                                                                           8
             12
                 0
    ATOM
                                                                           7
                                      48.901 21.948
                                                      40.014
                                                              1.00 40.31
             13
                  N
                      GLU A 213
    MOTA
                      GLU A 213
                                      47.609
                                             21.419
                                                      39.529
                                                             1.00 43.87
                                                                           6
             14
                 CA
    MOTA
                                             20.307
                      GLU A 213
                                      47.943
                                                      38.520
                                                             1.00 45.16
                                                                           6
    MOTA
             15
                 CB
                      GLU A 213
                                             20.708
                                                              1.00 47.60
                                      49.125
                                                      37.601
                                                                           6
40
             16
                 CG
    ATOM
                                      49.284
                                             19.828
                                                      36.353
                                                              1.00 50.68
                                                                           6
                      GLU A 213
    ATOM
             17
                 CD
                                                              1.00 59.18
                                             18.547
                                                      36.474
    ATOM
             18
                 OE1 GLU A 213
                                      49.355
                                                      35.180
                                                              1.00 49.06
             19
                 OE2 GLU A 213
                                      49.356 20.368
    MOTA
                                             20.988
                                                      40.747
                                                              1.00 45.96
                                                                           6
                      GLU A 213
                                      46.711
    MOTA
              20
                 С
                      GLU A 213
                                      47.111
                                             21.136
                                                      41.910
                                                              1.00 43.13
                                                                           8
45
    MOTA
             21
                 0
                                                                           7
                                      45.463 20.460
                                                      40.515
                                                              1.00 46.52
                      PRO A 214
    MOTA
             22
                 N
                      PRO A 214
                                      44.985
                                             20.184
                                                      39.148
                                                              1.00 46.44
                                                                           6
    MOTA
             23
                 CD
                      PRO A 214
                                      44.447
                                             20.124
                                                      41.596
                                                              1.00 47.52
                                                                           6
             24
                 CA
    MOTA
                                                              1.00 45.40
                                      43.249
                                             19.629
                                                      40.816
             25
                      PRO A 214
                                                                           6
    MOTA
                  CB
                                                              1.00 49.89
                      PRO A 214
                                      43.588
                                             19.674
                                                      39.327
                                                                           6
50
    ATOM
             26
                 CG
                                      44.787
                                             19.082
                                                      42.625
                                                              1.00 45.70
                                                                           6
             27
                 С
                      PRO A 214
    MOTA
                      PRO A 214
                                      45.816 18.466
                                                      42.535
                                                              1.00 44.49
    MOTA
             28
                 0
                                                      43.606
                                                              1.00 45.24
                                                                           7
                      THR A 215
                                      43.915
                                             18.876
    ATOM
              29
                 N
                                                              1.00 49.36
    ATOM
              30
                 CA
                      THR A 215
                                      44.161
                                             17.890
                                                      44.686
                                                                           6
                      THR A 215
                                                              1.00 44.86
55
                                     44.163 18.586
                                                      46.093
                                                                           6
                 CB
    ATOM
              31
                                                              1.00 52.26
                                      42.878 18.447
                                                      46.728
                                                                           8
                  OG1 THR A 215
    MOTA
              32
                                      44.514
                                             20.031
                                                      45.974
                                                              1.00 39.43
                 CG2 THR A 215
                                                                           6
    MOTA
             33
                                      42.934 16.995 44.667 1.00 52.51
    MOTA
              34 C
                      THR A 215
```

_							26 400	0.1 071	41.628	1 00	39.09	7
5	ATOM	89	N	ILE			35.498	20.871				6
	ATOM	90	CA	ILE			35.192	21.226	40.254		35.47	6
	ATOM	91	CB	ILE			36.379	20.997	39.343		33.74	
	ATOM	92	CG2	ILE			35.970	21.182	37.893		28.86	6
	ATOM	93	CG1	ILE	Α	222	37.532	21.922	39.707		33.33	6
10	ATOM	94	CD1	ILE	Α	222	38.804	21.586	39.004	1.00	34.85	6
	MOTA	95	С	ILE	Α	222	34.067	20.365	39.735	1.00	34.26	6
	MOTA	96	0	ILE	Α	222	33.033	20.873	39.319	1.00	31,90	8
	ATOM	97	N	LYS			34.301	19.058	39.750	1.00	39.49	7
	ATOM	98	CA	LYS			33.316	18.100	39.276	1.00	44.43	6
15	ATOM	99	СВ	LYS			33.603	16.713	39.852	1.00	50.81	6
13	ATOM	100	CG	LYS			32.741	15.631	39.227	1.00	62.51	6
		101	CD	LYS			32.859	14.291	39.943		72.22	6
	MOTA			LYS			31.798	13.318	39.430		74.55	6
	ATOM	102	CE				31.900	11.985	40.106		75.78	7
	ATOM	103	ΝZ	LYS					39.681		42.81	6
20	MOTA	104	С			223	31.913	18.565				8
	MOTA	105	0	LYS			30.936	18.323	38.984		40.36	
	ATOM	106	N	THR			31.849	19.236	40.833		39.89	7
	MOTA	107	CA	THR			30.602	19.792	41.378		39.93	6
	MOTA	108	CB	THR	Α	224	30.805	20.206	42.851		40.57	6
25	ATOM	109	OG1	THR	Α	224	31.330	19.113	43.616		39.27	8
	MOTA	110	CG2	THR	Α	224	29.500	20.684	43.461	1.00	38.11	6
	ATOM	111	С	THR	A	224	30.167	21.011	40.533	1.00	39.96	6
	ATOM	112	0	THR	Ä	224	29.313	20.899	39.655	1.00	36.67	8
	ATOM	113	N	VAL			30.777	22.160	40.832	1.00	38.02	7
30	ATOM	114	CA	VAL			30.532	23.426	40.137	1.00	38.12	6
50	ATOM	115	СВ	VAL			31.797	24.292	40.122	1.00	38.19	6
	ATOM	116	CG1	VAL			31.512	25.636	39.491	1.00	36.77	6
	ATOM	117	CG2	VAL			32.343	24.464	41.505		41.76	6
		118	C	VAL	•		30.070	23.195	38.706		37.52	6
25	ATOM					225	29.119	23.803	38.239		36.77	8
35	ATOM	119	0				30.783	22.316	38.018		34.02	7
	ATOM	120	N	THR				21.971	36.636		34.67	6
	MOTA	121	CA	THR			30.489		36.083		30.56	6
	ATOM	122	CB	THR			31.565	20.999			32.20	8
	ATOM	123	OGI	THR			32.805	21.696	35.889			
40	ATOM	124	CG2	THR			31.108	20.346	34.783		20.99	6
	ATOM	125	С	THR			29.100	21.361	36.510		36.41	6
	MOTA	126	0	THR	A	226	28.255	21.877	35.785		39.64	8
	MOTA	127	N	ALA	A	227	28.880	20.260	37.222		39.20	7
	ATOM	128	CA	ALA	А	227	27.602	19.562	37.204		36.93	6
45	ATOM	129	CB	ALA	Α	227	27.526	18.600	38.381	1.00	38.06	6
	MOTA	130	С	ALA	А	227	26.507	20.604	37.318	1.00	37.69	6
	ATOM	131	0	ALA			25.444	20.489	36.718	1.00	40.94	8
	ATOM	132	N	ALA			26.811	21.630	38.107	1.00	32.86	7
	ATOM	133		ALA			25.903	22.734	38.356	1.00	32.48	6
50	ATOM	134	СВ	ALA			26.448	23.587	39.486		28.25	6
50				ALA			25.732	23.570	37.101		36.12	6
	ATOM	135	С	ALA			24.673	23.560	36.473		37.86	8
	ATOM	136	0						36.752		33.58	7
	ATOM	137	N	HIS			26.782	24.306			32.97	6
	ATOM	138	CA	HIS			26.762	25.158	35.585			
55	MOTA	139	CB	HIS			28.155	25.691	35.266		33.69	6
	MOTA	140	CG	HIS			28.250	26.333	33.929		28.39	6
	ATOM	141		HIS			29.025	26.081	32.838		28.83	6
	MOTA	142	ND1	HIS	A	229	27.386	27.368	33.542	1.00	30.47	7

PCT/US99/06899 WO 99/60014

							01 410	01 707	1 00 75 47	0
5	ATOM	197	0	SER A		26.605	21.418	21.797	1.00 75.47	8
	MOTA	198	N	HIS A		24.648	22.410	22.353	1.00 75.56	7
	ATOM	199	CA	HIS A		23.842	21.981	21.236	1.00 75.46	6
	ATOM	200	CB	HIS A	238	22.990	20.732	21.661	1.00 75.85	6
	ATOM	201	CG	HIS A	238	22.408	19.933	20.542	1.00 40.00	6
10	ATOM	202	CD2	HIS A	238	22.790	18.757	19.957	1.00 40.00	6
	ATOM	203	ND1	HIS A	238	21.223	20.303	19.875	1.00 40.00	7
	ATOM	204	CE1	HIS A	238	20.951	19.365	18.953	1.00 40.00	6
	ATOM	205	NE2	HIS A	238	21.874	18.444	18.994	1.00 40.00	7
	ATOM	206	С	HIS A		22.971	23.284	20.964	1.00 74.10	6
15	ATOM	207	0	HIS A		21.863	23.137	20.441	1.00 75.34	8
1.5	ATOM	208	N	TRP A		23.487	24.510	21.368	1.00 73.39	7
	ATOM	209	CA	TRP A		22.872	25.894	21.195	1.00 74.02	6
	ATOM	210	CB	TRP F		23.563	27.026	22.005	1.00 81.77	6
		211	CG	TRP A		25.022	27.366	21.688	1.00 89.67	6
20	ATOM		CD2	TRP A		25.532	28.662	21.240	1.00 93.19	6
20	ATOM	212			•	26.961	28.522	21.136	1.00 95.46	6
	MOTA	213	CE2	TRP F		24.936	29.911	20.969	1.00 95.35	6
	ATOM	214	CE3	TRP A			26.548	21.781	1.00 94.16	6
	MOTA	215	CDl	TRP A		26.102		21.701	1.00 94.10	7
0.5	MOTA	216	NE1	TRP A		27.268	27.241	20.764	1.00 96.23	6
25	MOTA	217	CZ2	TRP A		27.798	29.598		1.00 96.23	6
	MOTA	218	CZ3	TRP A		25.763	30.967	20.569		6
	ATOM	219	CH2	TRP A	,	27.171	30.825	20.482	1.00 97.32	6
	MOTA	220	С	TRP A		22.799	26.407	19.774	1.00 70.77	8
	ATOM	221	0	TRP A		21.706	26.562	19.263	1.00 71.70	7
30	ATOM	222	N	LYS A		23.946	26.701	19.157	1.00 67.10	6
	ATOM	223	CA	LYS A	,	23.978	27.180	17.783	1.00 65.63	
	ATOM	224	CB	LYS A		25.314	26.780	17.153	1.00 66.65	6
	MOTA	225	CG	LYS A		26.529	27.342	17.872	1.00 69.83	6
	ATOM	226	CD	LYS A		27.805	27.037	17.108	1.00 71.49	6
35	ATOM	227	CE	LYS A		28.980	27.720	17.776	1.00 71.31	6
	ATOM	228	NZ	LYS A		30.238	27.438	17.034	1.00 72.23	7
	ATOM	229	С	LYS A		22.808	26.699	16.895	1.00 66.19	6
	ATOM	230	0	LYS A		22.550	27.298	15.851	1.00 65.20	8
	ATOM	231	N	ASN A		22.113	25.640	17.325	1.00 66.69	7
40	MOTA	232	CA	ASN A	-	20.976	25.078	16.599	1.00 67.53	6
	ATOM	233	СВ	ASN A	241	21.122	23.562	16.550	1.00 67.98	6
	MOTA	234	CG	ASN A		22.304	23.121	15.693	1.00 70.19	6
	MOTA	235		ASN A		22.404	23.506	14.503	1.00 71.37	8
	ATOM	236	ND2	ASN A		23.176	22.310	16.271	1.00 71.48	7
45	ATOM	237	С	ASN A		19.570	25.421	17.152	1.00 66.62	6
	ATOM	238	0	ASN A	241	18.581	24.822	16.731	1.00 64.76	8
	ATOM	239	N	LYS A	242	19.475	26.380	18.069	1.00.66.86	7
	ATOM	240	CA	LYS A	242	18.191	26.786	18.642	1.00 67.46	6
	ATOM	241	СВ	LYS A	242	18.164	26.396	20.119	1.00 67.93	6
50	ATOM	242	CG	LYS A	242	18.250	24.896	20.337	1.00 71.52	6
	ATOM	243	CD	LYS A	242	17.004	24.149	19.821	1.00 74.32	6
	ATOM	244	CE	LYS A	242	15.755	24.491	20.643	1.00 74.41	6
	ATOM	245	NZ	LYS A		15.927	24.161	22.109	1.00 74.44	7
	ATOM	246	С	LYS A		18.143	28.291	18.483	1.00 66.28	6
55	ATOM	247	0	LYS A		17.102	28.923	18.592	1.00 67.61	8
	ATOM	248	N	ARG A		19.334	28.813	18.204	1.00 64.19	7
	ATOM	249	CA	ARG A		19.617	30.219	17.975	1.00 62.43	6
	ATOM	250	СВ	ARG A		21.070	30.274	17.463	1.00 60.12	6
			25			• •				

5	ATOM	305	CB	ASP	Α	249	12.088	45.531	12.116	1.00 62.97	6
	ATOM	306	CG	ASP	A	249	11.277	44.527	12.870	1.00 64.63	6
	ATOM	307	OD1	ASP	А	249	11.687	43.352	12.963	1.00 64.84	8
	ATOM	308	OD2	ASP	Α	249	10.183	44.880	13.395	1.00-66.52	8
	ATOM	309	С	ASP	Α	249	13.371	46.062	14.130	1.00 64.31	6
10	ATOM	310	0	ASP	A	249	13.310	47.250	14.468	1.00 64.73	8
	MOTA	311	N	ILE	A	250	13.274	45.049	14.997	1.00 63.09	7
	MOTA	312	CA	ILE	Α	250	13.133	45.318	16.418	1.00 64.39	6
	MOTA	313	СВ	ILE	A	250	13.035	44.034	17.214	1.00 65.79	6
	MOTA	314	CG2	ILE	Α	250	12.001	44.104	18.336	1.00 64.78	6
15	MOTA	315	CG1	ILE	Α	250	12.611	42.860	16.341	1.00 65.28	6
	MOTA	316	CD1	ILE	Α	250	11.753	41.852	17.088	1.00 65.08	6
	MOTA	317	С	ILE	Α	250	14.404	46.104	17.276	1.00 65.21	6
	MOTA	318	0	ILE	Α	250	15.155	45.506	18.047	1.00 64.05	8
	MOTA	319	N	GLY	Α	251	14.670	47.529	17.299	1.00 65.48	7
20	ATOM	320	CA	GLY	Α	251	15.871	48.326	18.042	1.00 67.32	6
	ATOM	321	С	GLY	Α	251	16.595	49.110	16.895	1.00 68.52	6
	ATOM	322	0	GLY	Α	251	17.528	48.616	16.266	1.00 65.49	8
	ATOM	323	N	GLN	Α	252	16.162	50.356	16.557	1.00 72.26	7
	ATOM	324	CA	GLN	Α	252	16.541	50.930	15.207	1.00 74.10	6
25	ATOM	325	CB	GLN	Α	252	15.316	50.844	14.295	1.00 75.82	6
	ATOM	326	С	GLN		,	16.995	52.403	15.084	1.00 77.17	6
	ATOM	327	Ο.	GLN			17.572	52.955	15.986	1.00 76.50	8
	ATOM	328	N	ALA			16.374	53.372	13.908	1.00 80.78	7
	ATOM	329	CA	ALA			16.687	54.725	13.567	1.00 83.70	6
30	ATOM	330	СВ	ALA			16.381	54.956	12.093	1.00 83.23	6
	ATOM	331	С	ALA	Α	253	16.159	55.960	14.345	1.00 85.59	6
	ATOM	332	0	ALA	A	253	15.317	56.721	13.798	1.00 85.69	8
	ATOM	333	N	PRO	Α	254	16.384	56.155	16.264	1.00 35.05	7
	ATOM	334	CD	PRO	Ä	254	17.102	55.053	16.908	1.00 33.97	6
35	ATOM	335	CA	PRO	Α	254	16.002	57.231	17.219	1.00 35.89	6
	ATOM	336	CB	PRO	Α	254	16.534	56.756	18.563	1.00 33.94	6
	ATOM	337	CG	PRO	Α	254	17.146	55.441	18.349	1.00 33.31	6
	ATOM	338	С	PRO	Α	254	16.717	58.498	16.731	1.00 37.75	6
	ATOM	339	0	PRO	Α	254	17.838	58.804	17.100	1.00 38.78	8
40	TER				•						
	ATOM	1	N	LYS	Ą	263	18.045	57.462	23.875	1.00 61.71	7
	ATOM	2	CA	LYS	Α	263	16.824	56.712	24.215	1.00 64.36	6
	MOTA	3	CB	LYS	Α	263	15.758	57.004	23.141	1.00 63.50	6
	ATOM	4	С	LYS			16.841	55.180	24.429	1.00 63.41	6
45	ATOM	5	0	LYS			17.877	54.542	24.409	1.00 61.93	8
	ATOM	6	N	VAL	À	264	15.615	54.664	24.654	1.00 61.15	7
	ATOM	7	CA	VAL			15.292	53.229	24.856	1.00 59.46	6
	ATOM	8	CB	VAL	•		1,4.251	52.974	25.978	1.00 59.03	6
	ATOM	9	CG1	VAL	Α	264	14.229	51.494	26.368	1.00 53.79	6
50	ATOM	10	CG2	VAL	Α	264	14.449	53.818	27.142	1.00 55.32	6
	ATOM	11	С	VAL	Α	264	14.590	52.820	23.554	1.00 60.96	6
	ATOM	12	0	VAL	A	264	14.734	53.468	22.508	1.00 62.13	8
	ATOM	13	N	ASP	A	265	13.802	51.755	23.634	1.00 62.59	7
	ATOM	14	CA	ASP			12.995	51.263	22.526	1.00 64.95	6
55	ATOM	15	CB	ASP	A	265	13.825	51.077	21.271	1.00 64.32	6
	ATOM	16	CG	ASP			13.282	50.048	20.485	1.00 67.70	6
	ATOM	17		ASP			12.795	50.011	19.446	1.00 72.59	8
	ATOM	18	OD2	ASP	A	265	13.354	48.867	20.294	1.00 68.84	8

5	ATOM	73	CG	PHE A	272	15.953	42.413	25.282	1.00	33.39	6
.5	ATOM	74		PHE A		16.619	43.615	25.093	1.00		6
	ATOM	75		PHE A		16.138	41.394	24.346	1.00		6
	ATOM	76	CE1	PHE A		17.454	43.807	23.988	1.00		6
	ATOM	77	CE2	PHE A		16.973	41.585	23.244	1.00		6
10	ATOM	78	CZ	PHE A		17.634	42.786	23.068	1.00		6
10	ATOM	70 79	C	PHE A		13.650	40.528	27.764	1.00		6
		80	0	PHE A		14.081	39.476	28.227	1.00		8
	ATOM	81	N	THR A		12.756	41.266	28.428	1.00		7
	ATOM	82	CA	THR A		12.730	40.854	29.757	1.00		6
15	ATOM	83	CB	THR A		11.651	42.025	30.506	1.00		6
13	ATOM	84	OG1	THR A		10.442	42.422	29.859	1.00		8
	ATOM	85	CG2	THR A		12.601	43.211	30.565	1.00		6
	ATOM	86	CGZ	THR A		11.267	39.731	29.664	1.00		6
	ATOM ATOM	87	0	THR A		10.854	39.183	30.680	1.00		8
20	ATOM	88	N	LYS A		10.849	39.412	28.440	1.00		7
20	ATOM	89	CA	LYS A		9.871	38.362	28.211	1.00		6
	ATOM	90	CB	LYS A		9.414	38.405	26.773	1.00		6
	ATOM	91	C	LYS A		10.498	37.015	28.515	1.00		6
	ATOM	92	0	LYS A		9.789	36.044	28.759	1.00		8
25	ATOM	93	N	ILE A		11.836	36.973	28.491	1.00		7
23	ATOM	94	CA	ILE A		12.609	35.746	28.767	1.00		6
	ATOM	95	CB	ILE A		13.444	35.346	27.543	1.00		6
	ATOM	96	CG2	ILE A		12.568	34.829	26.429	1.00		6
	ATOM	97	CG1	ILE A		14.238	36.532	27.026	1.00		6
30	ATOM	98	CD1	ILE Á		15.001	36.242	25.771	1.00	37.22	6
	ATOM	99	С	ILE A		13.541	35.870	29.982	1.00 5	51.78	6
	ATOM	100	0	ILE À	-	14.014	34.873	30.503	1.00	49.80	8
	ATOM	101	N	ILE A		13.790	37.107	30.415	1.00	51.76	7
	ATOM	102	CA	ILE A	276	14.681	37.389	31.537	1.00	52.58	6
35	ATOM	103	CB	ILE A	276	14.691	38.877	31.844	1.00	55.04	6
	ATOM	104	CG2	ILE A	276	13.311	39.340	32.261	1.00	53.28	6
	ATOM	105	CG1	ILE A	276	15.675	39.206	32.976	1.00	57.31	6
	ATOM	106	CD1	ILE A	276	17.096	38.942	32.655	1.00		6
	ATOM	107	С	ILE A	276	14.323	36.644	32.828	1.00		6
40	ATOM	108	0	ILE A	276	15.177	36.458	33.691	1.00		8
	ATOM	109	N	THR A	277	13.072	36.209	32.963	1.00		7
	ATOM	110	CA	THR A		12.631	35.523	34.158	1.00		6
	MOTA	111	CB	THR A		11.098	35.456	34.217	1.00		6
	ATOM	112		THR A		10.545	36.777	34.102	1.00		8
45	ATOM	113	CG2	THR A		10.657	34.838	35.539	1.00		6
	ATOM	114	С	THR A		13.211	34.118	34.304	1.00		6
	ATOM	115	0	THR A		13.796	33.796	35.365	1.00		8
	MOTA	116	N	PRO A		13.055	33.261	33.288	1.00		7
	MOTA	117	CD	PRO A		12.370	33.534	32.023	1.00		6
50	ATOM	118	CA	PRO A		13.595	31.894	33.363	1.00		6
	ATOM	119	CB	PRO A		13.153	31.244	32.064	1.00		6
	ATOM	120	CG	PRO A		12.573	32.291	31.239	1.00		6
	ATOM	121	С	PRO A		15.101	31.932	33.476	1.00		6
	ATOM	122	0	PRO A		15.746	30.981	33.898	1.00		8
55	ATOM	123	N	ALA A		15.656	33.051	33.035	1.00		7
	ATOM	124	CA	ALA A		17.087	33.277	33.041	1.00		6
	ATOM	125	СВ	ALA A		17.376	34.599	32.348	1.00		6
	ATOM	126	С	ALA A	279	17.624	33.312	34.452	1.00	33.47	6

5	7 more	101	CD2	PHE	7	206	25.931	29.218	39.199	1 00	33.83	6
5	ATOM	181 182		PHE			27.331	26.860	39.161		39.55	6
	ATOM			PHE	-		27.307	29.233	39.387		38.08	6
	ATOM	183	CZ	PHE			28.008	28.052	39.371		34.44	6
	ATOM	184	C	PHE			23.631	27.105	41.083		36.83	6
10	ATOM	185					24.317	26.192	41.504		35.61	8
10	ATOM	186	0	PHE				28.228	41.752		37.33	7
	ATOM	187	N	ALA			23.393		43.087		36.34	6
	ATOM	188	CA	ALA			23.917	28.448	43.555		36.40	6
	ATOM	189	CB	ALA			23.523	29.828			38.76	6
	ATOM	190	С	ALA			23.346	27.393	44.027		41.98	8
15	ATOM	191	0	ALA			23.994	26.973	44.981		38.28	7
	MOTA	192	N	LYS			22.114	26.979	43.735			6
	ATOM	193	CA	LYS			21.429	25.971	44.538		45.26	6
	ATOM	194	CB	LYS			19.994	25.746	44.054		48.35	
	ATOM	195	CG	LYS			19.025	26.819	44.464		51.43	6
20	ATOM	196	CD	LYS			17.628	26.246	44.682		60.23	6
	MOTA	197	CE	LYS			17.135	25.478	43.485		62.81	6
	ATOM	198	NZ	LYS			17.196	26.327	42.268		64.69	7
	ATOM	199	С	LYS			22.120	24.632	44.536		43.31	6
	MOTA	200	0	LYS			21.967	23.857	45.462		45.66	8
25	ATOM	201	N	LYS			22.865	24.366	43.467		41.70	7
	MOTA	202	CA	LYS			23.571	23.120	43.351		40.67	6
	ATOM	203	CB	LYS			23.655	22.708	41.877		42.25	6
	ATOM	204	CG	LYS			22.271	22.492	41.247		39.53	6
	ATOM	205	CD	LYS			22.331	21.606	40.012		43.19	6
30	ATOM	206	CE	LYS			20.941	21.362	39.447		45.74	6
	ATOM	207	NZ	LYS.			20.273	20.165	40.006		52.49	7
	ATOM	208	С	LYS	A	289	24.948	23.185	44.003		41.50	6
	ATOM	209	0	LYS			25.642	22.184	44.080		39.77	8
	ATOM	210	N	LEU			25.312	24.370	44.490		40.68	7
35	ATOM	211	CA	LEU	Α	290	26.594	24.583	45.149		39.33	6
	ATOM	212	CB	LEU	Α	290	27.153	25.972	44.829		36.14	6
	ATOM	213	CG	LEU			27.358	26.290	43.365		34.81	6
	MOTA	214		LEU			27.945	27.675	43.208		29.07	6
	ATOM	215	CD2	LEU			28.267	25.242	42.757		33.45	6
40	ATOM	216	С	LEU			26.434	24.405	46.652		40.08	6
	ATOM	217	0	LEU	A	290	25.803	25.235	47.333		42.00	8
	ATOM	218	N	PRO	Α	291	27.028	23.333	47.210		40.27	7
	MOTA	219	CD	PRO	Α	291	27.851	22.330	46.519		39.65	6
	ATOM	220	CA	PRO	A	291	26.905	23.096	48.659		38.28	6
45	ATOM	221	CB	PRO	Α	291	27.755	21.860	48.911		35.88	6
	ATOM	222	CG	PRO	Α	291	28.202	21.355	47.585		34.19	6
	ATOM	223	С	PRO	Α	291	27.327	24.298	49.522		40.05	6
	ATOM	224	0	PRO	Α	291	26.571	24.739	50.391		41.33	8
	ATOM	225	N	MET	Α	292	28.522	24.843	49.299		40.59	7
50	ATOM	226	CA	MET	Α	292	29.021	25.957	50.097		42.86	6
	ATOM	227	CB	MET	Α	292	30.313	26.475	49.477	1.00	43.28	6
	ATOM	228	CG	MET	Α	292	31.269	25.378	49.050	1.00	50.35	6
	ATOM	229	SD	MET	Α	292	32.895	26.096	48.757	1.00	51.17	16
	ATOM	230	CE	MET			33.812	24.647	48.074	1.00	54.63	6
55	ATOM	231	С	MET			27.984	27.066	50.149		41.05	6
	ATOM	232	Ō	MET			27.986	27.886	51.057		39.66	8
	ATOM	233	N			293	27.080	27.078	49.172	1.00	39.30	7
	ATOM	234	CA			293	26.030	28.091	49.114	1.00	40.92	6
	- · -	•										

_							01 467	25 765	53.294	1 00	45.17	7
5	ATOM	289	N	ASP			21.467	35.765 36.042	52.509		43.32	6
	ATOM	290	CA	ASP			22.661	35.513	53.213		37.38	6
	ATOM	291	CB	ASP			23.919	36.239	54.473		36.23	6
	MOTA	292	CG	ASP			24.223		54.493		35.87	8
	ATOM	293		ASP			24.153	37.488	55.483		40.14	8
10	ATOM	294		ASP			24.572	35.575			42.81	6
	ATOM	295	С	ASP			22.514	35.390	51.138			8
	ATOM	296	0	ASP			22.775	36.021	50.113		46.02	7
	MOTA	297	N	GLN			22.095	34.124	51.137		38.60	6
	ATOM	298	CA	GLN			21.896	33.390	49.902		40.00	
15	MOTA	299	CB	GLN			20.991	32.179	50.137		38.59	6
	ATOM	300	CG	GLN			21.644	31.003	50.808		40.26	6
	ATOM	301	CD	GLN			20.690	29.824	50.988		44.15	6
	MOTA	302	OE1	GLN	A	301	19.658	29.957	51.675		45.73	8
	ATOM	303	NE2	GLN	A	301	21.027	28.685	50.394		46.13	7
20	ATOM	304	С	GLN			21.242	34.305	48.877		41.64	6
	ATOM	305	0	GLN	Α	301	21.482	34.185	47.686		45.02	8
	ATOM	306	N	ILE	Α	302	20.413	35.228	49.372		41.01	7
	MOTA	307	CA	ILE	A	302	19.726	36.179	48.511		40.23	6
	MOTA	308	CB	ILE	A	302	18.502	36.774	49.217		39.52	6
25	MOTA	309	CG2	ILE	A	302	17.818	37.788	48.342	1.00	31.98	6
	ATOM	310	CG1	ILE	Α	302	17.502	35.673	49.581	1.00	40.77	6
	ATOM	311	CD1	ILE	Α	302	17.003	34.897	48.385	1.00	45.43	6
	ATOM	312	С	ILE	Α	302	20.698	37.268	48.096		38.58	6
	ATOM	313	0	ILE	Α	302	20.960	37.453	46.906	1.00	40.81	8
30	ATOM	314	N	ILE	Α	303	21.228	37.972	49.097	1.00	37.50	7
	ATOM	315	CA	ILE	Α	303	22.179	39.060	48.874	1.00	39.33	6
	MOTA	316	CB	ILE	Α	303	23.023	39.338	50.109	1.00	39.06	6
	ATOM	317	CG2	ILE	Α	303	23.946	40.522	49.861	1.00	36.19	6
	ATOM	318	CG1	ILE	Α	303	22.141	39.653	51.313	1.00	40.15	6
35	ATOM	319	CD1	ILE	Α	303	22.916	39.806	52.589	1.00	36.93	6
	ATOM	320	С	ILE	А	303	23.093	38.705	47.722	1.00	36.49	6
	ATOM	321	0	ILE			23.354	39.509	46.835	1.00	36.58	8
	ATOM	322	N	LEU	Α	304	23.580	37.477	47.762	1.00	32.91	7
	ATOM	323	CA	LEU			24.465	36.964	46.734	1.00	27.55	6
40	ATOM	324	CB	LEU		304	24.935	35.554	47.123	1.00	22.35	6
	MOTA	325	CG	LEU	Α	304	26.150	35.480	48.029	1.00	26.88	6
	ATOM	326		LEU			26.267	36.731	48.876	1.00	24.82	6
	ATOM	327		LEU			26.084	34.226	48.861	1.00	23.69	6
	ATOM	328	С	LEU			23.764	36.968	45.389	1.00	28.05	6
45	ATOM	329	0	LEU			24.212	37.623	44.443	1.00	24.68	8
	ATOM	330	N	LEU			22.657	36.236	45.318	1.00	26.34	7
	ATOM	331	CA	LEU			21.892	36.147	44.089	1.00	30.91	6
	ATOM	332	CB	LEU			20.565	35.434	44.359		32.50	6
	ATOM	333	CG	LEU			20.637	33.950	44.635		33.36	6
50	ATOM	334		LEU			19.247	33.370	44.779		33.87	6
50	MOTA	335		LEU			21.340	33.280	43.466		31.72	6
	ATOM	336	C	LEU			21.665	37.524	43.477		29.76	6
		337	0	LEU			21.954	37.747	42.301		29.33	8
	ATOM ATOM	338	N			306	21.157	38.439	44.298		29.72	7
55		339	CA			306	20.868	39.800	43.864		34.28	6
در	ATOM					306	20.293	40.615	45.026		35.98	6
	ATOM	340	CB CG			306	18.919	40.013	45.511		43.35	6
	ATOM	341	CD			306	18.397	40.103	46.559		51.50	6
	ATOM	342	CD	717	H	200	10.001	31.16/				•

5	ATOM	397	CA	SER	A	314	2	6.005	38.472	31.197	1.00	27.98	6
	MOTA	398	CB	SER	A	314	2	26.354	39.914	31.581	1.00	29.64	6
	MOTA	399	OG	SER	A	314	2	26.956	39.972	32.858	1.00	43.44	8
	ATOM	400	С	SER	Α	314	2	27.275	37.679	30.851	1.00	22.30	6
	ATOM	401	0	SER	Α	314	2	27.675	37.629	29.690	1.00	24.18	8
10	MOTA	402	N	LEU	Α	315	2	7.905	37.048	31.845	1.00	23.99	7
	MOTA	403	CA	LEU	Α	315	2	9.099	36.261	31.563	1.00	25.07	6
	ATOM	404	CB	LEU	A	315	2	9.685	35.593	32.816	1.00	19.11	6
	ATOM	405	CG	LEU	Α	315	3	30.675	34.479	32.505	1.00	20.39	6
	ATOM	406	CD1	LEU	Α	315	3	31.866	35.040	31.756	1.00	18.92	6
15	ATOM	407	CD2	LEU	A	315	3	31.125	33.789	33.765	1.00	12.93	6
	ATOM	408	С	LEU	Α	315	2	8.700	35.180	30.597	1.00	24.53	6
	ATOM	409	0	LEU	Α	315	2	9.304	35.036	29.556	1.00	26.32	8
	ATOM	410	N	ARG	Α	316	. 2	7.678	34.426	30.982	1.00	28.18	7
	ATOM	411	CA	ARG	Α	316	2	7.151	33.312	30.216	1.00	27.54	6
20	ATOM	412	CB	ARG	Α	316	2	5.915	32.752	30.928	1.00	27.39	6
	ATOM	413	CG	ARG			2	6.188	32.190	32.336	1.00	22.00	6
	ATOM	414	CD	ARG			2	4.934	31.526	32.901	1.00	18.78	6
	ATOM	415	NE	ARG			2	5.245	30.376	33.721	1.00	26.57	7
	ATOM	416	CZ	ARG			2	4.341	29.468	34.054	1.00	30.81	6
25	ATOM	417	NH1	ARG				3.084	29.614	33.639	1.00	33.71	7
,	MOTA	418	NH2	ARG	A	316	2	4.701	28.416	34.776	1.00	33.13	7
	ATOM	419	С	ARG				6.774	33.660	28.794	1.00	28.09	6
	MOTA	420	0	ARG			2	6.737	32.792	27.931	1.00	32.41	8
	ATOM	421	N	ALA				6.484	34.936	28.571	1.00	28.36	7
30	ATOM	422	CA	ALA			2	6.094	35.411	27.264	1.00	26.64	6
	ATOM	423	CB	ALA			2	5.232	36.666	27.418	1.00	22.93	6
	MOTA	424	С	ALA	Α	317	2	7.323	35.714	26.417	1.00	28.35	6
	ATOM	425	0	ALA			2	7.398	35.342	25.252	1.00	32.10	8
	ATOM	426	N	ALA	Α	318	2	8.286	36.396	27.026	1.00	29.12	7
35	MOTA	427	CA	ALA			2	9.515	36.760	26.350	1.00	27.50	6
	ATOM	428	CB	ALA	Α	318	3	0.434	37.452	27.333	1.00	28.39	6
	ATOM	429	С	ALA	A	318	3	0.181	35.502	25.825	1.00	28.10	6
	MOTA	430	0	ALA	Α	318	3	0.600	35.447	24.678	1.00	28.18	8
	MOTA	431	N	VAL	Α	319	3	0.255	34.491	26.700	1.00	29.16	7
40	ATOM	432	CA	VAL	Α	319	3	0.880	33.198	26.393	1.00	35.24	6
	MOTA	433	CB	VAL	Α	319	3	0.703	32.210	27.547	1.00	27.34	6
	ATOM	434	CG1	VAL	Α	319	3	0.895	32.891	28.858	1.00	29.96	6
	ATOM	435	CG2	VAL	A	319	2	9.353	31.552	27.482	1.00	31.70	6
	MOTA	436	С	VAL	A	319	3	0.215	32.608	25.165	1.00	40.01	6
45	ATOM	437	0	VAL	Α	319	3	0.640	31.575	24.680	1.00	42.70	8
	ATOM	438	N	ARG	A	320	2	9.176	33.284	24.683	1.00	38.64	7
	ATOM	439	CA	ARG	Α	320	2	8.415	32.822	23.545	1.00	38.61	6
	ATOM	440	CB	ARG	Α	320	2	7.031	32.458	24.043	1.00	37.26	6
	ATOM	441	CG	ARG	A	320	2	6.863	30.991	24.192	1.00	43.12	6
50	ATOM	442	CD	ARG	Α	320	2	5.637	30.642	25.014	1.00	50.79	6
	ATOM	443	NE	ARG	A	320	2	5.258	29.256	24.770	1.00	54.71	7
	ATOM	444	CZ	ARG	A	320	2	4.331	28.625	25.501	1.00	57.89	6
	ATOM	445	NH1	ARG	A	320	2	3.667	29.291	26.440	1.00	49.08	7
	ATOM	446	NH2	ARG	A	320	2	3.964	27.385	25.242	1.00	59.59	7
55	ATOM	447	С	ARG	Α	320	2	8.292	33.825	22.405		42.14	6
	ATOM	448	0	ARG	A	320	2	7.251	33.909	21.748		46.30	8
	MOTA	449	N	TYR	A	321	2	9.352	34.583	22.173		42.04	7
	MOTA	450	CA	TYR	Α	321	2	9.366	35.555	21.098	1.00	42.70	6

5	ATOM	505	С	THR	А	327	25.767	37.562	19.038	1.00	39.49	6
,	ATOM	506	0	THR			26.284	36.458	18.903	1.00	40.50	8
	ATOM	507	N	LEU			25.250	37.987	20.184	1.00	36.64	7
	ATOM	508	CA	LEU			25.264	37.141	21.381	1.00	37.73	6
	ATOM	509	СВ	LEU			25.148	37.999	22.650	1.00	37.78	6
10	ATOM	510	CG	LEU			26.102	39.150	22.843	1.00	36.26	6
••	ATOM	511		LEU			26.066	39.623	24.272	1.00	36.56	6
	ATOM	512		LEU			27.481	38.688	22.500	1.00	39.85	6
	ATOM	513	С	LEU		-	24.063	36.220	21.244	1.00	37.27	6
	ATOM	514	0	LEU	Α	328	23.306	36.337	20.279	1.00	34.96	8
15	ATOM	515	N	THR			23.891	35.317	22.205	1.00	39.73	7
	ATOM	516	CA	THR	A	329	22.785	34.376	22.180	1.00	40.81	6
	ATOM	517	СВ	THR	Α	329	23.241	32.991	21.699	1.00	42.67	6
-	ATOM	518	OG1	THR	Α	329	23.879	33.103	20.421		42.52	8
	ATOM	519	CG2	THR	Α	329	22.026	32.057	21.589	1.00	43.52	6
20	ATOM	520	С	THR	А	329	. 22.168	34.245	23.548		44.31	6
	ATOM	521	0	THR	A	329	22.526	33.370	24.320		43.72	8
	MOTA	522	N	LEU	A	330	21.237	35.149	23.830		44.62	7
	ATOM	523	CA	LEU	Α	330	20.532	35.170	25.111		45.09	6
	MOTA	524	CB	LEU	A	330	19.677	36.444	25.195		44.66	6
25	MOTA	525	CG	LEU			20.436	37.750	25.259		51.06	6
	MOTA	526		LEU			21.405	37.831	24.104		48.58	6
	ATOM	527	CD2	LEU			19.466	38.909	25.238		45.18	6
	MOTA	528	С	LEU			19.656	33.919	25.301		48.06	6
	MOTA	529	0	LEU			19.049	33.422	24.359		49.33	8 7
30	MOTA	530	N	ASN			19.618	33.431	26.540		52.20 54.41	6
	ATOM	531	CA	ASN			18.842	32.256	26.913 27.009		54.41	6
	MOTA	532	CB	ASN			17.361	32.628 32.112	28.269		60.35	6
	MOTA	533	CG	ASN			16.724	32.112	29.383		61.84	8
25	ATOM	534		ASN			17.124 15.750	31.238	28.117		65.92	7
35	ATOM	535		ASN ASN			19.016	31.108	25.934		58.00	6
	MOTA	536 537	C 0	ASN			18.243	30.157	25.941		60.17	8
	ATOM	538	N	GLY			20.063	31.196	25.114		58.45	7
	ATOM ATOM	539	CA	GLY			20.341	30.161	24.131		58.55	6
40	MOTA	540	C	GLY			19.316	30.016	23.021		59.79	6
40	MOTA	541	0	GLY			19.413	29.094	22.213		61.32	8
	ATOM	542	N	GLU			18.346	30.929	22.983	1.00	60.28	7
	ATOM	543	CA			333		30.883	21.985	1.00	59.13	6
	ATOM	544	СВ	GLU			15.919	30.875	22.662	1.00	62.40	6
45	MOTA	545	CG	GLU			15.667	29.750	23.658	1.00	75.69	6
	ATOM	546	CD	GLU			14.341	29.865	24.346	1.00	80.41	6
	ATOM	547		GLU			14.052	30.932	24.945	1.00	79.98	8
	ATOM	548		GLU			13.549	28.884	24.329		83.81	8
	ATOM	549	С	GLU			17.356	32.090	21.073		57.18	6
50	ATOM	550	0	GLU	Α	333	17.239	31.969	19.852		57.50	8
	ATOM	551	N	MET	Α	334	17.512	33.258	21.696		55.20	7
	ATOM	552	CA	MET	A	334	17.561	34.529	20.980		50.85	6
	ATOM	553	CB	MET	Α	334	16.751	35.556	21.763		48.70	6
	ATOM	554	CG	MET	Α	334	16.859	36.947	21.212		45.39	6
55	ATOM	555	SD	MET	A	334	15.881	38.186	22.127		44.56	16
	ATOM	556	CE	MET	A	334	14.229	37.371	22.113		45.25	6
	ATOM	557	С	MET	A	334	18.956	35.087	20.713		51.59	6
	MOTA	558	0	MET	A	334	19.739	35.268	21.633	1.00	52.52	8

5	ATOM	613	CG	LYS A	342	23.655	50.536	23.240	1.00 40.00	6
	ATOM	614	CD	LYS A	342	24.673	51.109	22.245	1.00 34.48	6
	ATOM	615	CE	LYS A	342	25.514	52.229	22.873	1.00 37.54	6
	ATOM	616	NZ	LYS A	342	26.655	52.634	21.987	1.00 42.32	7
	ATOM	617	С	LYS A		20.796	49.349	23.774	1.00 38.29	8
10	ATOM	618	0	LYS A		20.345	49.711	24.861	1.00 36.23	8
10	ATOM	619	N	ASN A		20.223	49.622	22.603	1.00 39.25	7
	ATOM	620	CA	ASN A		18.993	50.385	22.485	1.00 40.19	6
		621	CB	ASN A		18.521	50.373	21.033	1.00 37.96	6
	ATOM		CG	ASN A		19.664	50.550	20.052	1.00 39.22	6
1.5	ATOM	622				20.428	51.537	20.125	1.00 42.37	8
15	ATOM	623	OD1	ASN A		19.773	49.612	19.125	1.00 42.19	7
	ATOM	624	ND2	ASN A			49.748	23.375	1.00 42.13	6
	MOTA	625	С	ASN A		17.928			1.00 36.01	8
	ATOM	626	0	ASN A		17.010	50.417	23.859		7
	ATOM	627	N	GLY A		18.073	48.433	23.568	1.00 40.95	
20	ATOM	628	CA	GLY A		17.152	47.670	24.394	1.00 39.25	6
	MOTA	629	C	GLY A		17.039	48.092	25.842	1.00 38.26	6
	ATOM	630	0	GLY A	-	16.072	47.724	26.512	1.00 35.69	8
	ATOM	631	N	GLY A	345	18.017	48.857	26.329	1.00 35.89	7
	ATOM	632	CA	GLY A	345	17.964	49.301	27.706	1.00 34.00	6
25	MOTA	633	С	GLY A	345	19.273	49.199	28.443	1.00 38.64	6
	ATOM	634	0	GLY A	345	19.469	49.888	29.441	1.00 38.14	8
	ATOM	635	N	LEU A	346	20.170	48.337	27.973	1.00 39.52	7
	ATOM	636	CA	LEU A	346	21.444	48.180	28.649	1.00 36.05	6
	MOTA	637	CB	LEU A	346	22.124	46.876	28.209	1.00 35.72	6
30	ATOM	638	CG	LEU A	346	21.355	45.617	28.501	1.00 34.89	6
	ATOM	639	CD1	LEU A	346	22.295	44.413	28.422	1.00 44.09	6
	ATOM	640	CD2	LEU A	346	20.786	45.721	29.902	1.00 34.84	6
	MOTA	641	С	LEU A		22.358	49,361	28.396	1.00 33.52	6
	ATOM	642	0	LEU A		23,267	49.653	29.178	1.00 35.58	8
35	ATOM	643	N	GLY A		22.087	50.056	27.295	1.00 30.47	7
	ATOM	644	CA	GLY A		22.909	51.192	26.931	1.00 33.01	6
	ATOM	645	C	GLY A	1.0	24.360	50.768	26.747	1.00 30.72	6
	ATOM	646	0	GLY A		24.669	49.775	26.082	1.00 30.89	8
	ATOM	647	N	VAL A		25.244	51.556	27.355	1.00 31.30	7
40	ATOM	648	CA	VAL A		26.671	51.325	27.286	1.00 31.27	6
40	ATOM	649	CB	VAL A		27.441	52.294	28.184	1.00 31.66	6
	ATOM	650		VAL A		27.067	52.107	29.631	1.00 20.19	6
	ATOM	651		VAL A		28.931	52.138	27.986	1.00 24.77	6
		652	C	VAL A		27.063	49.892	27.678	1.00 33.84	6
15	ATOM	653	0	VAL A		28.095	49.392	27.225	1.00 29.99	8
45	MOTA			VAL A	•	26.253	49.227	28.514	1.00 33.31	7
	MOTA	654	N				47.881	28.906	1.00 32.23	6
	ATOM	655	CA	VAL A		26.568		29.858	1.00 32.23	6
	MOTA	656	CB	VAL A		25.581	47.259		1.00 32.55	6
	MOTA	657		VAL A		25.865	45.795	29.985	1.00 33.00	
50	ATOM	658		VAL A		25.687	47.899	31.213		6
	ATOM	659	С	VAL A		26.706	46.985	27.726	1.00 34.91	6
	ATOM	660	0	VAL A		27.583	46.136	27.735	1.00 33.73	8
	ATOM	661	N	SER F		25.875	47.134	26.702	1.00 32.81	7
	ATOM	662	CA.	SER A		26.001	46.252	25.556	1.00 30.10	6
55	ATOM	663	CB	SER A	350	25.119	46.665	24.411	1.00 24.95	6
	ATOM	664	OG	SER A		25.209	45.675	23.394	1.00 23.16	8
	MOTA	665	С	SER F	350	27.445	46.257	25.129	1.00 31.59	6
	ATOM	666	0	SER A	350	28.116	45.244	25.284	1.00 37.62	8

									-		
5	ATOM	721	СВ	MET A	A 35	35.1	43 40.6			34.56	6
	ATOM	722	CG	MET A	A 35	33.9	49 41.1	45 20.290		46.43	6
	MOTA	723	SD	MET A	A 35	34.2	07 42.7	76 19.514	1.00	42.13	16
	ATOM	724	CE	MET A	A 35	34.5	07 43.8	55 20.994	1.00	44.29	6
	ATOM	725	С	MET A	A 35	36.2	56 38.7	62 22.230	1.00	33.26	6
10	ATOM	726	0	MET A	A 35	36.8	94 37.8	07 21.795	1.00	36.39	8
	ATOM	727	N	SER A	A 35	36.6	37 39.4	91 23.281	1.00	33.31	7
	ATOM	728	CA	SER A	A 35	37.8	60 39.2	26 24.019	1.00	34.39	6
	ATOM	729	СВ	SER A	A 35	37.8	69 40.0	67 25.295	1.00	30.84	6
	MOTA	730	OG	SER A	A 35	39.1	35 40.0	08 25.930		47.14	8
15	ATOM	731	С	SER A	A 35	37.9	84 37.7	48 24.357	1.00	36.43	6
	ATOM	732	0	SER A	A 35	38.9	00 37.0	78 23.896		35.46	8
	ATOM	733	N	LEU A	A 36	37.0	46 37.2	64 25.166		36.74	7
	ATOM	734	CA	LEU Z	A 36	37.0	17 35.8	75 25.604	1.00	35.44	6
	ATOM	735	CB	LEU A	A 36	35.7	08 35.5	79 26.336	1.00	34.16	6
20	MOTA	736	CG	LEU A	A 36	35.4	71 36.2	90 27.644		34.59	6
	ATOM	737	CD1	LEU A	A 36	34.2	25 35.7	65 28.312	1.00	33.53	6
	ATOM	738	CD2	LEU Z	A 36	36.6	58 36.0	52 28.541	1.00	31.69	6
	ATOM	739	С	LEU Z	A 36	37.2	03 34.8	62 24.500	1.00	38.72	6
	ATOM	740	0	LEU A	A 36	37.8	20 33.8	28 24.728	1.00	38.29	8
25	ATOM	741	N	SER A	A 36	36.6	35.1	47 23.328	1.00	40.96	7
	ATOM	742	CA	SER I	A 36	1 36.7	77 34.2	62 22.186	1.00	45.67	6
	ATOM	743	СВ	SER I			18 35.0	45 20.904	1.00	46.45	6
	ATOM	744	OG	SER Z	A 36	35.2	10 35.5	98 20.906	1.00	51.81	8
	ATOM	745	С	SER A	A 36	1 38.1	66 33.6	27 22.145	1.00	44.49	6
30	ATOM	746	0	SER A	A 36	38.3	47 32.5	38 21.625	1.00	46.67	8
	ATOM	747	N	SER A			34 34.3	48 22.703		41.44	7
	ATOM	748	CA	SER A	A 36	2 40.5	25 33.9	18 22.790		42.13	6
	MOTA	749	CB	SER	A 36	2 41.4	08 35.1	31 23.066	1.00	42.61	. 6
	ATOM	750	OG	SER A	A 36	2 41.2	19 36.1	36 22.076	1.00		8
35	ATOM	751	С	SER	A 36	2 40.7	98 32.8			38.41	6
	MOTA	752	0	SER .	A 36	2 41.5	53 31.9			38.01	8
	ATOM	753	N	PHE .	A 36	3 40.1	.98 33.0			34.55	7
	ATOM	754	CA	PHE .	A 36	3 40.4				32.96	6
	ATOM	755	CB	PHE .	A 36	3 39.8				31.99	6
40	ATOM	756	CG	PHE .							6
	ATOM	757	CD1	PHE .						30.61	6
	MOTA	758	CD2	PHE .	A 36				1.00	32.02	6
	MOTA	759		PHE .						33.67	6
	ATOM	760	CE2	PHE .						30.91	6
45	MOTA	761	CZ	PHE .						29.33	6
	ATOM	762	С	PHE .						30.52	6
	ATOM	763	0	PHE .						32.19	8
	ATOM	764	N	ASN.						33.51	7
	ATOM	765	CA	ASN						38.03	6
50	ATOM	766	CB	ASN	A 36	4 39.2				42.32	6
	ATOM	767	CG	ASN	A 36					53.11	6
	ATOM	768		ASN						59.51	8
	ATOM	769	ND2	ASN						55.95	7
	ATOM	770	С	ASN						31.89	6
55	MOTA	771	0	ASN						30.28	8
	MOTA	772	N	LEU						27.62	7
	ATOM	773	CA	LEU						29.36	6
	MOTA	774	CB	LEU	A 36	5 36.	195 29.8	66 29.237	1.00	27.54	6

5	ATOM	829	CD2	LEU	Α	372	35.675	26.204	39.880	1.00	20.90	6
	MOTA	830	С	LEU	Α	372	34.098	29.966	38.396		21.34	6
	MOTA	831	0	LEU	Α	372	33.828	30.572	39.439	1.00	23.16	8
	MOTA	832	N	LEU	Α	373	34.288	30.561	37.223	1.00	24.42	7
	ATOM	833	CA	LEU	Α	373	34.214	32.007	37.074	1.00	23.78	6
10	ATOM	834	CB	LEU	Α	373	34.296	32.360	35.575	1.00	22.18	6
	ATOM	835	CG	LEU	Α	373	34.784	33.726	35.165	1.00	31.52	6
	ATOM	836	CD1	LEU	Α	373	36.000	34.084	35.962	1.00	31.93	6
	ATOM	837	CD2	LEU			35.103	33.720	33.693	1.00	30.24	6
	ATOM	838	С			373	32.904	32.480	37.720	1.00	25.69	6
15	ATOM	839	0	LEU			32.895	33.410	38.532		30.13	8
	ATOM	840	N	GLN			31.814	31.800	37.368	1.00	26.24	7
	ATOM	841	CA	GLN			30.487	32.104	37.896		21.60	6
	ATOM	842	CB	GLN			29.454	31.121	37.335		24.57	6
	ATOM	843	CG	GLN			29.310	31.145	35.821		21.02	6
20	ATOM	844	CD	GLN			28.224	30.201	35.331		22.86	6
20	ATOM	845	OE1	GLN			28.037	30.042	34.123		24.07	8
	ATOM	846	NE2	GLN			27.515	29.590	36.249		25.59	7
		847	C	GLN			30.421	32.039	39.422		20.66	6
	ATOM	848						32.832	40.048		24.47	8
25	ATOM		0	GLN			29.717				16.26	7
25	ATOM	849	N	ALA			31.136	31.074	40.004			6
	ATOM	850	CA	ALA			31.155	30.889	41.445		17.16	
	ATOM	851	CB	ALA			31.805	29.568	41.780		19.53	6
	ATOM	852	С	ALA			31.907	32.025	42.108		25.13	6
20	ATOM	853	0	ALA			31.397	32.646	43.034		23.81	8
30	ATOM	854	N	VAL			33.122	32.277	41.611		24.57	7
	ATOM	855	CA	VAL			33.959	33.354	42.118		25.80	6
	ATOM	856	CB	VAL			35.101	33.658	41.164		26.48	6
	ATOM	857	CG1				35.926	34.812	41.697		23.20	6
	MOTA	858	CG2	VAL			35.959	32.429	40.952		19.08	6
35	ATOM	859	С	VAL			33.107	34.599	42.312		25.69	6
	ATOM	860	0	VAL			33.297	35.364	43.251		27.87	8
	ATOM	861	N	LEU	Α	377	32.159	34.781	41.399		23.09	7
	MOTA	862	CA	LEU	Α	377	31.242	35.915	41.423	1.00	22.86	6
	ATOM	863	CB	LEU	A	377	30.540	36.031	40.061	1.00	18.50	6
40	ATOM	864	CG	LEU	Α	377	31.424	36.368	38.885	1.00	22.65	6
	ATOM	865	CD1	LEU	Α	377	30.689	36.227	37.601	1.00	16.70	6
	ATOM	866	CD2	LEU	Α	377	31.916	37.776	39.051	1.00	19.58	6
	ATOM	867	С	LEU	Α	377	30.228	35.719	42.543	1.00	26.14	6
	MOTA	868	0	LEU	Α	377	30.131	36.532	43.452	1.00	20.62	8
45	ATOM	869	N	LEU	Α	378	29.483	34.614	42.468	1.00	28.99	7
	ATOM	870	CA	LEU			28.469	34.303	43.475	1.00	28.87	6
	ATOM	871	СВ	LEU			28.053	32.826	43.397	1.00	26.89	6
	ATOM	872	CG	LEU			27.110	32.344	44.472		28.83	6
	ATOM	873		LEU			25.915	33.252	44.525		27.97	6
50	ATOM	874		LEU			26.693	30.928	44.205		27.69	6
-	ATOM	875	C	LEU			28.992	34.617	44.853		31.09	6
	ATOM	876	0	LEU			28.399	35.421	45.573		31.77	8
	ATOM	877	N	MET			30.118	33.991	45.189		31.44	7
	ATOM	878	CA	MET			30.736	34.141	46.494		32.62	6
55	ATOM	879	CB	MET			31.690	32.960	46.744		31.45	6
رر		880	CG	MET			30.984	31.595	46.792		38.75	6
	ATOM	881	SD	MET			29.741	31.595	48.107		41.27	16
	ATOM								47.851		35.68	
	ATOM	882	CE	MET	А	319	28.896	30.036	41.001	1.00	22.08	6

5 24.802 37.234 57.854 1.00 56.47 MOTA 937 CB ALA A 387 27.289 37.385 57.659 1.00 55.52 ALA A 387 ATOM 938 С 37.940 58.134 28.275 1.00 53.75 939 ALA A 387 ATOM 0 36.120 57.253 1.00 56.03 **ATOM** 940 Ν CYS A 388 27.273 28.412 35.236 57.370 1.00 59.57 CYS A 388 ATOM 941 CA 27.923 33.803 57.172 1.00 59.23 10 MOTA 942 CB CYS A 388 26.397 58.009 CYS A 388 33.431 1.00 58.64 16 ATOM 943 SG 35.581 56.328 1.00 62.18 CYS A 388 29.482 ATOM 944 С 34.821 55.400 1.00 67.88 CYS A 388 29.720 MOTA 945 0 36.747 56.495 ATOM 946 N VAL A 389 30.110 1.00 60.78 55.590 31.173 37.212 1.00 57.70 15 ATOM 947 CA VAL A 389 948 CB VAL A 389 31.740 38.567 56.024 1.00 57.09 MOTA 32.795 39.037 55.041 1.00 59.03 CG1 VAL A 389 MOTA 949 30.640 39.598 56.171 1.00 53.98 950 CG2 VAL A 389 MOTA 36.182 55.550 1.00 57.77 VAL A 389 32.297 ATOM 951 С 20 VAL A 389 32.358 35.336 54.662 1.00 60.94 MOTA 952 0 36.292 56.528 1.00 52.68 MOTA 953 N ALA A 390 33.182 ALA A 390 34.347 35.431 56.684 1.00 48.41 954 CA MOTA 35.321 58.185 34.703 1.00 45.19 ATOM 955 CB ALA A 390 34.040 56.082 ALA A 390 34.224 1.00 47.63 ATOM 956 С 33.597 35.107 55.348 1.00 51.95 25 MOTA 957 0 ALA A 390 ARG A 391 33.366 56.391 ATOM 958 N 33.117 1.00 47.11 55.885 ATOM 959 CA ARG A 391 32.879 32.018 1.00.51.64 ARG A 391 31.520 31.498 56.383 1.00 54.22 ATOM 960 CB 30.012 56.059 1.00 64.20 ARG A 391 31.267 ATOM 961 CG 29.489 56.602 1.00 73.80 30 ARG A 391 29.930 962 CD MOTA 56.454 1.00 79.76 29.787 28.044 ATOM 963 NE ARG A 391 27.140 57.043 1.00 84.27 MOTA 964 CZARG A 391 30.573 MOTA 965 NH1 ARG A 391 31.598 27.535 57.806 1.00 85.28 NH2 ARG A 391 30.340 25.840 56.849 1.00 86.84 7 MOTA 966 31.986 54.358 1.00 48.18 35 32.922 MOTA 967 С ARG A 391 31.080 53.756 1.00 49.57 ARG A 391 33.494 MOTA 968 0 32.993 53.762 1.00 45.01 ILE A 392 32.281 MOTA 969 N 33.148 52.319 1.00 48.77 ATOM 970 CA ILE A 392 32.196 ATOM 971 CB ILE A 392 31.224 34.297 51.963 1.00 46.45 40 CG2 ILE A 392 31.241 34.582 50.479 1.00 42.35 MOTA 972 52.402 1.00 49.69 CG1 ILE A 392 29.791 33.953 MOTA 973 28.792 35.039 52.113 1.00 51.09 CD1 ILE A 392 MOTA 974 51.641 33.554 33.356 1.00 50.90 ATOM 975 С ILE A 392 50.732 1.00 - 52.21 MOTA 976 0 ILE A 392 33.914 32.605 8 45 MOTA 977 GLU A 393 34.298 34.374 52.071 1.00 50.43 7 N 1.00 50.30 35.592 34.684 51.471 6 978 GLU A 393 ATOM CA 52.387 1.00 53.97 6 ATOM 979 **GLU A 393** 36.437 35.561 CB 36.558 36.966 51.844 1.00 62.18 MOTA **GLU A 393** 6 980 CG MOTA 981 CD GLU A 393 37.546 37.777 52.564 1.00 67.69 6 50 ATOM 982 OE1 GLU A 393 38.149 38.741 52.119 1.00 66.42 8 37.856 37.640 53.729 1.00 70.64 ATOM 983 OE2 GLU A 393 33.429 51.230 1.00 49.31 36.341 GLU A 393 6 MOTA 984 С 36.755 33.089 50.125 1.00 49.53 MOTA 985 0 GLU A 393 8 32.730 52.303 1.00 46.07 7 ATOM 986 N LYS A 394 36.552 55 MOTA 987 LYS A 394 37,265 31.543 52.078 1.00 45.76 6 CA LYS A 394 37.396 30.800 53.373 1.00 43.85 6 MOTA 988 CB 38.207 31.617 54.394 1.00 40.00 ATOM 989 CG LYS A 394 6 53.705 1.00 40.00 39.372 32.374 6 ATOM LYS A 394 990 CD

PCT/US99/06899

6

6

8

7

6

6

6

8

7

6

6

6

6

6

8

7

6

6

6

8

7

6

6

6

6

7

6

7

6

8

7

6

6

6

6

6

6

5	ATOM	1045	CD1	LEU	Α	400	39.803	34.531	44.256		26.60	6
	ATOM	1046	CD2				39.065	33.479	42.137		29.44	6
	MOTA	1047	С	LEU	Α	400	40.941	29.872	42.947		38.84	6
	ATOM	1048		LEU			41.367	29.632	41.821		40.38	8
	ATOM	1049		LEU			41.464	29.350	44.055	1.00	42.79	7
10	ATOM	1050	CA	LEU	Α	401	42.605	28.449	43.988	1.00	43.48	6
10	ATOM	1051		LEU			42.900	27.821	45.355	1.00	44.73	6
	ATOM	1052	CG	LEU			44.105	26.899	45.354	1.00	51.39	6
	ATOM	1053	CD1				45.374	27.749	45.143	1.00	50.11	6
	ATOM	1054	CD2				44.205	26.122	46.662	1.00	49.30	6
15	ATOM	1055	C	LEU			42.324	27.340	42.981	1.00	41.62	6
13	ATOM	1056	Ö	LEU			43.052	27.180	42.004	1.00	45.14	8
	ATOM	1057	N	ALA			41.269	26.574	43.245	1.00	37.92	7
	ATOM	1058	CA	ALA			40.873	25.469	42.386	1.00	29.90	6
	ATOM	1059	СВ	ALA			39.522	24.928	42.834	1.00	30.70	6
20	ATOM	1060	C	ALA			40.798	25.909	40.929	1.00	28.88	6
20	ATOM	1061	0	ALA			41.277	25.203	40.034	1.00	32.14	8
	ATOM	1062	N	PHE		403	40.200	27.086	40.707	1.00	31.07	7
	ATOM	1063	CA	PHE	:	403	40.052	27.642	39.363	1.00	29.90	6
	ATOM	1064	CB	PHE	٠.	403	39.379	29.019	39.438	1.00	27.03	6
25	ATOM	1065	CG	PHE		403	38.943	29.574	38.100	1.00	26.97	6
23	ATOM	1066	CD1	PHE		403	38.228	30.758	38.033	1.00	25.55	6
•	ATOM	1067		PHE		403	39.224	28.905	36.925	1.00	19.75	6
	ATOM	1068	CE1	PHE		403	37.784	31.266	36.808	1.00	27.90	6
	ATOM	1069	CE2	PHE		403	38.780	29.416	35.694	1.00	22.56	6
30	ATOM	1070	CZ	PHE		•	38.063	30.596	35.640	1.00	22.24	6
30	ATOM	1071	C	PHE		1 .	41.429	27.756	38.719	1.00	28.82	6
	ATOM	1072	0	PHE		•	41.666	27.210	37.646	1.00	26.00	8
	ATOM	1072	N	GLU		-	42.329	28.463	39.402	1.00	30.25	7
	ATOM	1074	CA	GLU			43.695	28.665	38.922	1.00	34.03	6
35	ATOM	1075	CB	GLU			44.513	29.416	39.983	1.00	39.45	6
33	ATOM	1076	CG	GLU		•	45.867	29.935	39.489	1.00	47.68	6
	ATOM	1077	CD	GLU			46.734	30.507	40.571	1.00	54.02	6
	ATOM	1078	OE1	GLU			46.236	31.298	41.408	1.00	57.27	8
	ATOM	1079	OE2	GLU			47.956	30.202	40.606	1.00	63.85	8
40	ATOM	1080	C			404	44.352	27.322	38.634	1.00	36.01	6
70	ATOM	1081	0			404	44.936	27.112	37.574	1.00	38.64	8
	ATOM	1082	N			405	44.259	26.420	39.610	1.00	29.56	7
	ATOM	1083	CA			405	44.840	25.093	39.468	1.00	31.69	6
	ATOM	1084	СВ			405	44.540	24.228	40.694	1.00	33.75	6
45	ATOM	1085	CG			405	45.292	24.657	41.908	1.00	34.75	6
73	ATOM	1086		HIS		** .	46.198	25.640	42.130	1.00	34.58	6
	ATOM	1087		HIS	•	•	45.161	23.984	43.130	1.00	32.43	7
	ATOM	1088		HIS			45.975	24.568	44.018	1.00	36.15	6
	ATOM	1089		HIS			46.601	25.561	43.430	1.00	39.84	7
50	ATOM	1090	C			405	44.274	24.445	38.225	1.00	34.21	6
50	ATOM	1091	0			405	45.029	23.949	37.386	1.00	37.06	8
	ATOM	1092	N			406	42.947	24.453	38.100	1.00	30.83	7
		1093	CA			406	42.313	23.859	36.930	1.00	28.85	6
	ATOM	1093	CB			406	40.805	24.080	36.934		31.48	6
55	ATOM	1094	CG			406	40.139	23.494	35.709		23.49	6
55	ATOM ATOM	1095				406	40.073	22.123	35.532		19.42	6
		1090				406	39.517	21.577	34.382		23.80	6
	ATOM	1097				406	39.646	24.313	34.704		21.81	6
	ATOM	1030	CD2	111		÷00	33.0.0					

5	MOTA	1153	CA	HIS A	412	45.984	27.722	27.705	1.00	48.67	6
	ATOM	1154	CB		412	45.124	28.884	28.201	1.00	43.14	6
	ATOM	1155	CG	HIS A	412	43.812	28.480	28.755	1.00	41.36	6
	ATOM	1156	CD2	HIS A		43.429	28.064	29.987	1.00	35.44	6
	ATOM	1157		HIS A		42.651	28.440	27.966	1.00	38.19	7
10	ATOM	1158		HIS A		41.648	28.014	28.723	1.00	34.75	6
	ATOM	1159		HIS A		42.094	27.780	29.942	1.00	35.52	7
	ATOM	1160	C		412	47.231	28.303	27.101	1.00	46.35	6
	ATOM	1161	0		412	48.269	28.452	27.775	1.00	42.73	8
	ATOM	1162	N		413	47.116	28.696	25.839	1.00	48.92	7
15	ATOM	1163	CA		413	48.234	29.290	25.146	1.00	53.15	6
1.5	ATOM	1164	CB	HIS A		48.404	28.666	23.755	1.00	55.27	6
	ATOM	1165	CG	HIS A		49.326	29.446	22.886	1.00	58.77	6
	ATOM	1166		HIS A		49.213	30.660	22.304		61.65	6
	ATOM	1167		HIS A		50.617	28.997	22.564		60.31	7
20	ATOM	1168		HIS A		51.214	29.924	21.828		63.01	6
20	ATOM	1169		HIS A		50.386	30.941	21.658		62.93	7
	ATOM	1170	C		413	47.932	30.768	24.998		53.19	6
	ATOM	1171	0		4 413	47.639	31.301	23.934		54.93	8
	ATOM	1172	N	VAL A		47.964	31.413	26.139		53.77	7
25	ATOM	1173	CA		414	47.735	32.811	26.146		51.06	6
23	ATOM	1174	CB		414	46.291	33.183	26.417		51.49	6
	ATOM	1175	CG1			46.186	34.715	26.603		45.22	6
	ATOM	1176		VAL		45.419	32.732	25.263		52.67	6
	ATOM	1177	C		414	48.623	33.283	27.226		54.28	6
30	ATOM	1178	0	VAL A	•	48.427	33.029	28.409		55.49	8
30	ATOM	1179	N		415	49.706	33.863	26.733		56.28	7
	ATOM	1180	CA		415	50.721	34.484	27.557		57.83	6
	ATOM	1181	CB		415	51.268	35.675	26.758		59.64	6
	ATOM	1182	OG1	THR A		51.605	36.754	27.636	-	66.69	8
35	ATOM	1183	CG2		A 415	50.197	36.158	25.745		59.42	6
33	ATOM	1183	C		A 415	50.146	35.049	28.879		56.98	6
	ATOM	1185	0		A 415	48.933	35.146	29.051		55.70	8
	ATOM	1186	N		416	51.068	35.330	29.795		57.44	7
	ATOM	1187	CA		A 416	50.808	36.011	31.047		57.34	6
40	ATOM	1188	CB		A 416	51.346	37.422	30.708	1.00	61.35	6
70	MOTA	1189	CG		416	51.872	38.237	31.821		69.78	6
	MOTA	1190		HIS		53.114	38.297	32.390		71.42	6
	ATOM	1191		HIS		51.135	39.263	32.416		72.49	7
	ATOM	1192		HIS		51.914	39.884	33.290	1.00	75.50	6
45	ATOM	1193		HIS		53.099	39.323	33.291		73.91	7
73	ATOM	1194	C		A 416	49.261	35.892	31.297		53.79	6
	ATOM	1195	0		A 416	48.499	36.779	30.902		52.81	8
	ATOM	1196	N		A 417	48.806	34.779	31.911		48.05	7
	ATOM	1197	CA		A 417	47.355	34.428	32.061		47.99	6
50	ATOM	1198	CB		A 417	47.165	32.954	31.996		46.11	6
20		1199	CG		A 417	45.835	32.590	31.399		44.27	6
	ATOM	1200		PHE		45.680	32.720	30.046		41.79	6
	ATOM	1200		PHE		44.758	32.135	32.164		40.23	6
	ATOM			PHE		44.498	32.397	29.422		44.30	6
55	ATOM	1202 1203		PHE		43.540	31.802	31.529		36.80	6
55	ATOM		CE2		A 417	43.427	31.928	30.144		40.69	6
	ATOM	1204 1205	C		A 417	46.427	34.836	33.196		46.69	6
	ATOM		0		A 417	46.147	36.004	33.331		43.35	8
	ATOM	1206	J	rne.	± 41.	30.13/	50.004	JJ.JJ.			

5	ATOM	1261	N	LYS	A	424	38.791	39.752	33.975	1.00		7
_	ATOM	1262	CA	LYS	Α	424	37.470	39.529	33.423	1.00		6
	ATOM	1263	СВ	LYS			37.446	38.205	32.658	1.00	30.56	6
	ATOM	1264	CG	LYS			38.394	38.192	31.455	1.00	30.07	6
	ATOM	1265	CD	LYS			38.050	39.326	30.488	1.00	33.22	6
10	ATOM	1266	CE	LYS			39.032	39.433	29.322	1.00	28.75	6
10	ATOM	1267	NZ	LYS			40.394	39.942	29.707	1.00	31.01	7
	ATOM	1268	C	LYS			36.418	39.558	34.524	1.00	29.26	6
		1269	0	LYS			35.307	39.998	34.289	1.00		8
	ATOM	1209	N	VAL			36.796	39.098	35.719	1.00		7
1.5	ATOM			VAL			35.897	39.107	36.866	1.00		6
15	ATOM	1271	CA	VAL			36.541	38.460	38.094	1.00		6
	ATOM	1272	CB				35.673	38.642	39.320	1.00		6
	ATOM	1273	CG1	VAL			36.764	36.985	37.849	1.00		6
	ATOM	1274		VAL				40.548	37.161		32.03	6
	ATOM	1275	С	VAL			35.512	40.839	37.101		31.95	8
20	ATOM	1276	0	VAL			34.350		37.124		33.61	7
	MOTA	1277	N	THR			36.496	41.444	37.124		30.76	6
	MOTA	1278	CA	THR			36.248	42.866				6
	MOTA	1279	СВ	THR		•	37.559	43.670	37.360	1.00		8
	ATOM	1280	OG1	THR	•	-	38.209	43.565	38.630		33.07	6
25	ATOM	1281	CG2	THR			37.302	45.131	37.015		25.40	6
	ATOM	1282	С	THR		•	35.363	43.324	36.211		32.53	8
	ATOM	1283	0	THR		•	34.357	44.006	36.405		35.19	7
	ATOM	1284	N	ASP	•		35.763	42.929	35.006		28.83	6
	ATOM	1285	CA	ASP			35.011	43.272	33.810		35.12	6
30	ATOM	1286	CB	ASP			35.556	42.524	32.578		39.14	6
	MOTA	1287	CG	ASP			36.837	43.103	32.057		45.80	8
	ATOM	1288		ASP			36.982	44.346	32.024		41.97	8
	ATOM	1289		ASP			37.735	42.333	31.616		50.06	6
	ATOM	1290	С	ASP			33.537	42.925	34.028		33.94	8
35	ATOM	1291	0	ASP			32.659	43.712	33.702		38.02	7
	ATOM	1292	N	LEU		•	33.283	41.745	34.584		27.15	6
	ATOM	1293	CA	LEU			31.925	41.293	34.850		29.99	
	MOTA	1294	CB	LEU			31.924	39.786	35.133		22.49	6
	ATOM	1295	CG	LEU			32.104	38.873	33.939		25.54	6 6
40	MOTA	1296		LEU			32.202	37.421	34.353		20.60	
	MOTA	1297	CD2	LEU			30.920	39.083	33.029		17.24	6
	ATOM	1298	С	LEU			31.276	42.057	35.991		28.94	6
	ATOM	1299	0	LEU			30.082	42.306	35.939		31.26	8
	ATOM	1300	N	ARG			32.059	42.423	37.011		27.64	7
45	ATOM	1301	CA	ARG			31.527	43.162	38.147		28.13	6
	ATOM	1302	CB	ARG	A	429	32.564	43.298	39.264		29.59	6
	MOTA	1303	CG	ARG	Α	429	32.818	42.040	40.080		34.85	6
	MOTA	1304	CD	ARG	Α	429	33.588	42.360	41.367		47.18	6
	ATOM	1305	NE	ARG	Α	429	34.093	41.175	42.049		57.93	7
50	ATOM	1306	CZ	ARG	Α	429	33.327	40.210	42.547		63.62	6
	ATOM	1307	NH1	ARG	Α	429	31.998	40.270	42.396		60.71	7
	ATOM	1308	NH2	ARG	Α	429	33.900	39.165	43.150		62.38	7
	ATOM	1309	С	ARG	Α	429	31.099	44.536	37.707		29.81	6
	ATOM	1310	0			429	30.044	45.009	38.101		30.81	8
55	ATOM	1311	N			430	31.941	45.176	36.901		29.64	7
	MOTA	1312	CA			430	31.644	46.502	36.383		34.72	6
	ATOM	1313	CB			430	32.745	46.955	35.434		34.97	6
	ATOM	1314	CG			430	33.937	47.597	36.080	1.00	45.34	6

WO 99/60014 PCT/US99/06899 -_

5	ATOM	1369	CZ	ARG	Α	438		20.063	52.718	29.809	1.00	49.71	6
,	ATOM	1370		ARG				20.046	53.958	30.318	1.00	50.91	7
	ATOM	1371		ARG				19.198	52.354	28.865	1.00	46.86	7
	ATOM	1372	С	ARG				19.147	50.922	34.240	1.00	42.37	6
	ATOM	1373	Ō	ARG				18.147	51.297	33.625	1.00	40.58	8
10	ATOM	1374	N	PHE				19.080	50.120	35.298	1.00	42.25	7
10	ATOM	1375	CA	PHE				17.803	49.624	35.763	1.00	42.81	6
	ATOM	1376	CB	PHE				17.975	48.794	37.013	1.00	42.18	6
	ATOM	1377	CG	PHE				16.739	48.053	37.413		42.48	6
	ATOM	1378		PHE				16.198	47.111	36.562	1.00	47.09	6
15	ATOM	1379		PHE				16.105	48.320	38.613	1.00	39.76	6
13	ATOM	1380		PHE				15.047	46.427	36.905		49.17	6
	ATOM	1381		PHE				14.940	47.630	38.963		45.10	6
	ATOM	1382	CZ	PHE			,	14.411	46.683	38.098		46.36	6
	ATOM	1383	C	PHE				16.921	50.803	36.075		44.79	6
20	ATOM	1384	Ö	PHE				15.830	50.903	35.554		40.26	8
20	ATOM	1385	N	LEU				17.410	51.681	36.951		42.77	7
	ATOM	1386	CA	LEU				16.660	52.871	37.344		42.96	6
	ATOM	1387	CB	LEU				17.546	53.824	38.150		37.19	6
	ATOM	1388	CG	LEU				17.943	53.297	39.500		36.97	6
25	ATOM	1389	CD1	LEU				18.620	54.389	40.316		33.65	6
23	ATOM	1390		LEU				16.679	52.837	40.216		35.42	6
	ATOM	1391	C.	LEU				16.025	53.596	36.168		45.47	6
	ATOM	1392	0	LEU				14.809	53.750	36.126		52.48	8
	ATOM	1393	N	HIS				16.836	54.060	35.223		49.15	7
30	ATOM	1394	CA	HIS				16.277	54.725	34.063	1.00		6
50	ATOM	1395	CB	HIS		•		17.329	54.955	33.031		56.68	6
	ATOM	1396	CG	HIS		•		18.134	56.161	33.282		62.73	6
	ATOM	1397		HIS				18.468	57.216	32.499		65.73	6
	ATOM	1398		HIS				18.701	56.431	34.538		66.01	7
35	ATOM	1399		HIS				19.332	57.594	34.473		65.55	6
23	ATOM	1400		HIS				19.205	58.085	33.255	1.00	60.09	7
	ATOM	1401	C	HIS				15.244	53.822	33.481	1.00	55.93	6
	ATOM	1402	0	HIS				14.149	54.263	33.170	1.00	57.33	8
	ATOM	1403	N	MET				15.605	52.549	33.313	1.00	57.81	7
40	ATOM	1404	CA			442		14.661	51.583	32.778	1.00	59.11	6
	ATOM	1405	СВ	MET				15.191	50.154	32.922	1.00	55.93	6
	ATOM	1406	CG	MET				16.336	49.813	32.022	1.00	58.52	6
	ATOM	1407	SD	MET				16.681	48.008	31.851	1.00	60.99	16
	ATOM	1408	CE			442		17.085	47.602	33.581	1.00	52.61	6
45	ATOM	1409	C			442		13.339	51.727	33.534	1.00	60.31	6
••	ATOM	1410	0			442		12.266	51.560	32.968	1.00	58.18	8
	ATOM	1411	N			443		13.425	52.054	34.818	1.00	61.45	7
	ATOM	1412	CA			443		12.236	52.202	35,626	1.00	64.90	6
	ATOM	1413	СВ			443		12.608	52.141	37.090	1.00	64.40	6
50	ATOM	1414	CG			443		11.461	51.748	37.959	1.00	69.12	6
-	ATOM	1415	CD			443		12.068	51.551	39.257	1.00	71.14	6
	ATOM	1416	CE			443		11.368	51.897	40.091	1.00	73.43	6
	ATOM	1417	NZ			443		11.883	51.712	41.415	1.00	67.97	7
	ATOM	1418	C			443		11.513	53.514	35.348		67.29	6
55	ATOM	1419	0			443		10.390	53.700	35.780		67.90	8
55	ATOM	1420	N			444		12.171	54.429	34.629		66.57	7
	ATOM	1421	CA			444		11.575	55.719	34.297	1.00	64.76	6
	ATOM	1422	СВ			444		12.569	56.869	34.560	1.00	62.76	6
								-					

5	አ ም ርአለ	1477	CD1	PHE A	451	9.426	47.507	33.963	1.00 62.92	6
)	ATOM	1477		PHE A		11.089	47.017	35.593	1.00 63.07	6
	MOTA		CE1	PHE A		10.199	48.598	33.521	1.00 65.12	6
	MOTA	1479	CE2	PHE A		11.860	48.102	35.156	1.00 64.66	6
	ATOM	1480	CZ	PHE A		11.410	48.897	34.118	1.00.67.12	6
10	ATOM	1481		PHE A		8.259	43.264	35.260	1.00 56.41	6
10	ATOM	1482	C			7.641	43.392	36.331	1.00 56.56	8
	MOTA	1483	0	PHE A		8.555	42.045	34.755	1.00 53.28	7
	MOTA	1484	N	PRO A			41.689	33.481	1.00 50.46	6
	MOTA	1485	CD	PRO A		9.177		35.543	1.00 50.46	6
	MOTA	1486	CA	PRO A		8.153	40.859		1.00 30.28	6
15	ATOM	1487	CB	PRO A		8.739	39.680	34.780	1.00 45.19	6
	ATOM	1488	CG	PRO A		9.178	40.206	33.482		6
	ATOM	1489	С	PRO A		8.770	40.999	36.935	1.00 49.62	8
	ATOM	1490	0	PRO A		9.867	41.529	37.094	1.00 52.35	7
	ATOM	1491	N	PRO A		8.139	40.425	37.947	1.00 51.50	
20	MOTA	1492	CD	PRO A		7.001	39.542	37.797	1.00 49.66	6
	ATOM	1493	CA	PRO A		8.610	40.528	39.323	1.00 50.89	6
	ATOM	1494	CB	PRO A		7.675	39.659	40.109	1.00 51.49	6
	MOTA	1495	CG	PRO A		6.703	39.141	39.185	1.00 50.82	6
	ATOM	1496	С	PRO A		10.015	40.084	39.532	1.00 50.99	6
25	ATOM	1497	0	PRO A		10.876	40.900	39.838	1.00 54.17	8
	ATOM	1498	N	LEU A		10.255	38.781	39.423	1.00 51.21	7
	MOTA	1499	CA	LEU A		11.585	38.298	39.674	1.00 47.17	6
	ATOM	1500	CB	LEU A	454	11.813	36.962	38.975	1.00 44.44	6
	ATOM	1501	CG	LEU A	454	13.167	36.375	39.289	1.00 41.33	6
30	ATOM	1502	CD1	LEU A	454	13.524	36.638	40.720	1.00 35.93	6
	MOTA	1503	CD2	LEU A	454	13.169	34.907	38.992	1.00 34.79	6
	ATOM	1504	С	LEU A	454	12.541	39.375	39.182	1.00 42.25	6
	ATOM	1505	0	LEU A	454	13.477	39.718	39.886	1.00 40.82	8
	ATOM	1506	N	PHE A	455	12.270	39.957	38.011	1.00 39.29	7
35	ATOM	1507	CA	PHE À	455	13.133	41.005	37.473	1.00 41.81	6
	ATOM	1508	CB	PHE A	455	12.527	41.592	36.192	1.00 47.22	6
	ATOM	1509	CG	PHE A	455	13.433	42.565	35.467	1.00 56.97	6
	MOTA	1510	CD1	PHE A	455	14.715	42.189	35.135	1.00 57.23	6
	MOTA	1511	CD2	PHE A	455	12.999	43.840	35.126	1.00 59.40	6
40	MOTA	1512	CE1	PHE A	455	15.557	43.059	34.466	1.00 56.58	6
	MOTA	1513	CE2	PHE A	455	13.848	44.716	34.452	1.00 61.80	6
	ATOM	1514	CZ	PHE A	455	15.129	44.322	34.126	1.00 59.94	6
	MOTA	1515	С	PHE A	455	13.273	42.085	38.534	1.00 45.12	6
	MOTA	1516	0	PHE A	455	14.361	42.323	39.034	1.00 39.95	8
45	MOTA	1517	N	LEU A	456	12.155	42.735	38.849	1.00 43.92	7
	ATOM	1518	CA	LEU A	456	12.122	43.803	39.840	1.00 44.08	6
	MOTA	1519	СВ	LEU A	456	10.680	44.251	40.093	1.00 50.20	6
	ATOM	1520	CG	LEU A		10.062	45.242	39.144	1.00 55.79	6
	ATOM	1521		LEU A		8.598	45.432	39.450	1.00 54.70	6
50	ATOM	1522		LEU A		10.807	46.548	39.295	1.00 53.01	6
30	ATOM	1523		LEU A		12.739	43.355	41.136	1.00 44.65	6
	ATOM	1524	0	LEU A		13.597	44.022	41.685	1.00 45.93	8
	ATOM	1525	N	GLU A		11.973	41.761	41.851	1.00 44.56	7
	ATOM	1526	CA	GLU A		12.475	41.179	43.105	1.00 46.37	6
55	ATOM	1527	C	GLU A		14.005	41.236	43.132	1.00 43.60	6
رر		1528	0	GLU A		14.583	41.724	44.117	1.00 42.69	8
	ATOM	1528	CB	GLU A		12.024	39.723	43.223	1.00 50.16	6
	ATOM	1530	CG	GLU A		11.114	39.476	44.427	1.00 20.00	6
	ATOM	1220	CG	Guu P	. 451	11.114	33.410			-

5	ATOM	15	С	PRO	R	212	-24.798	69.772	39.807	1.00	38.78	6
ر	ATOM	16	0	PRO		212	-24.350	70.045	38.696	1.00	34.64	8
	ATOM	17	N	GLU			-26.058	69.424	40.032	1.00	40.31	7
	ATOM	18	CA	GLU		213	-27.081	69.290	39.003	1.00	43.87	6
	ATOM	19	СВ	GLU		213	-27.895	68.004	39.265	1.00	45.16	6
10	ATOM	20	CG	GLU		,	-27.032	66.709	39.286	1.00	47.60	6
10	ATOM	21	CD	GLU			-27.807	65.421	39.199	1.00	50.68	6
	ATOM	22		GLU			-28.847	65.244	39.886	1.00	59.18	8
		23		GLU			-27.382	64.516	38.442	1.00	49.06	8
	ATOM	24	C	GLU			-27.924	70.576	39.080	1.00	45.96	6
15	ATOM	25	0	GLU			-27.624	71.467	39.859	1.00	43.13	8
15	ATOM	26	N	PRO			-28.987	70.698	38.308	1.00	46.52	7
	ATOM	27	CD	PRO		214	-29.484	69.635	37.446	1.00	46.44	6
	ATOM	28	CA	PRO		214	-29.843	71.907	38.302	1.00	47.52	6
	ATOM	29	CB	PRO		214	-30.799	71.639	37.210	1.00	45.40	6
20	MOTA	30	CG	PRO		214	-30.530	70.257	36.805		49.89	6
20	ATOM		C	PRO		214	-30.574	72.330	39.535		45.70	6
	MOTA	31 32	0	PRO			-30.597	71.595	40.483	1.00	44.49	8
	ATOM	3∠ 33		THR			-31.180	73.515	39.506		45.24	7
	ATOM		N CA	THR			-31.965	74.036	40.652		49.36	6
25	ATOM	34	CB	THR			-31.443	75.420	41.091		44.86	6
25	ATOM	35	OG1	THR			-32.249	76.464	40.534		52.26	8
	ATOM	36 37	CG2	THR			-30.011	75.617	40.659		39.43	6
	ATOM			THR			-33.386	74.239	40.114		52.51	6
	ATOM	38	С	THR	-		-33.562	74.868	39.078		53.48	8
20	ATOM	39	O N	ASP			-34.387	73.741	40.829		58.81	7
30	ATOM	40 41	CA	ASP			-35.795	73.865	40.435		61.51	6
	ATOM	42	CB	ASP			-36.674	74.005	41.650		70.57	6
	ATOM	43	CG	ASP			-37.675	72.981	41.710		78.07	6
	ATOM	44		ASP			-38.228	72.588	40.652		82.31	8
25	ATOM	45		ASP		216	-37.983	72.567	42.830		86.55	8
35	ATOM	46	C	ASP			-35.920	75.123	39.648	1.00	58.42	6
	ATOM	47	0	ASP			-36.847	75.317	38.827		56.85	8
	ATOM	48	N	GLU			-34.954	75.979	39.984	1.00	54.92	7
	MOTA	49	CA	GLU			-34.851	77.259	39.353		53.37	6
40	ATOM	50	CB	GLU			-34.104	78.264	40.251		51.02	6
40	ATOM	51	CG	GLU			-34.151	79.689	39.679		40.00	6
	MOTA	52	CD	GLU			-34.301	80.745	40.739	1.00	40.00	6
	ATOM	53		GLU			-34.089	80.443	41.945		40.00	8
	ATOM	54		GLU			-34.625	81.921	40.411		40.00	8
15	ATOM	55	C	GLU			-34.232	77.163	37.957		53.55	6
45	ATOM	56	0			217	-34.815	77.612	37.018	1.00	54.33	8
	ATOM	57	N			218	-33.063	76.572	37.839		49.20	7
	ATOM	58	CA			218	-32.318	76.385	36.608		45.94	6
	ATOM	59	CB			218	-30.965	75.793	36.981		43.43	6
50	ATOM	60	CG			218	-30.065	76.728	37.801		40.86	6
50	ATOM	61	CD			218	-28.713	76.159	38.072		39.88	6
	ATOM	62	OE1			218	-28.606	74.967	38.449		37.61	8
	ATOM		OE2			218	-27.707	76.901	37.945		34.01	8
	ATOM	63				218	-33.014	75.475	35.610		44.71	6
<i>E E</i>	ATOM	64 65	С			218	-32.935	75.686	34.405		45.31	8
55	ATOM	65 66	О И			219	-33.669	74.439	36.131		44.02	7
	ATOM	67	CA			219	-34.368	73.490	35.290		46.97	6
	ATOM	68	CB			219	-35.046	72.408	36.119		48.42	6
	ATOM	60	CD	IKP	D	217	55.040	,	- - ·			

5	ATOM	123	СВ	VAL	В	225		-32.869	77.015	26.348	1.00	38.19	6
	ATOM	124	CG1	VAL	В	225		-31.863	76.983	25.226	1.00	36.77	6
	ATOM	125	CG2	VAL	В	225		-32.483	78.050	27.353	1.00	41.76	6
	ATOM	126	С	VAL	В	225		-34.656	76.191	24.843	1.00	37.52	6
	ATOM	127	0	VAL	В	225		-34.621	76.364	23.638	1.00	36.77	8
10	ATOM	128	N			226		-35.005	75.046	25.410	1.00	34.02	7
	ATOM	129	CA			226		-35.423	73.887	24.638	1.00	34.67	6
	MOTA	130	CB			226		-35.677	72.707	25.574	1.00	30.56	6
	ATOM	131	OG1			226		-34.432	72.225	26.084	1.00	32.20	8
	ATOM	132	CG2	THR				-36.413	71.595	24.874	1.00	20.99	6
15	ATOM	133	С			226		-36.664	74.170	23.803	1.00	36.41	6
	ATOM	134	0			226		-36.633	74.054	22.578	1.00	39.64	8
	ATOM	135	N	ALA				-37.746	74.542	24.480	1.00	39.20	7
	ATOM	136	CA	ALA				-39.008	74.861	23.822	1.00	36.93	6
	ATOM	137	СВ	ALA				-39.914	75.631	24.785	1.00	38.06	6
20	ATOM	138	С	ALA				-38.686	75.719	22.608	1.00	37.69	6
	ATOM	139	0	ALA				-39.317	75.616	21.566		40.94	8
	ATOM	140	N	ALA				-37.677	76.572	22.785	1.00	32.86	7
	ATOM	141	CA	ALA				-37.216	77.483	21.753	1.00	32.48	6
	ATOM	142	СВ			228.		-36.252	78.458	22.358	1.00	28.25	6
25	ATOM	143	C	ALA	-			-36.545	76.704	20.638	1.00		6
	ATOM	144	0	ALA		228		-37.078	76.586	19.544		37.86	8
•	ATOM	145	N	HIS				-35.364	76.175	20.924	1.00	33.58	7
	ATOM	146	CA			229		-34.611	75.409	19.956		32.97	6
	ATOM	147	СВ			229		-33.418	74.721	20.597	1.00	33.69	6
30	ATOM	148	CG		В	229	•	-32.776	73.714	19.715	1.00	28.39	6
	ATOM	149				229		-32.535	72.384	19.863	1.00	28.83	6
	ATOM	150		HIS				-32.336	74.030	18.426	1.00	30.47	7
	ATOM	151		HIS	В	229		-31.867	72.929	17.855	1.00	26.95	6
	ATOM	152		HIS		229		-31.976	71.927	18.700	1.00	31.27	7
35	ATOM	153	С	HIS		229		-35.362	74.352	19.202	1.00	38.40	6
	ATOM	154	0	HIS		229		-35.069	74.131	18.045	1.00	41.49	8
	MOTA	155	N	VAL	В	230		-36.296	73.688	19.882	1.00	38.55	7
	ATOM	156	CA	VAL		230		-37.077	72.634	19.263	1.00	40.40	6
	ATOM	157	CB	VAL		230		-37.744	71.747	20.310	1.00	44.68	6
40	ATOM	158	CG1	VAL	В	230		-38.381	70.537	19.637	1.00	39.39	6
	ATOM	159	CG2	VAL	В	230		-36.742	71.311	21.356	1.00	42.18	6
	ATOM	160	С	VAL	В	230		-38.133	73.130	18.284	1.00	44.28	6
	ATOM	161	0	VAL				-38.375	72.505	17.248	1.00	45.94	8
	MOTA	162	N	ALA	В	231		-38.774	74.240	18.623	1.00	45.59	7
45	ATOM	163	CA	ALA	В	231		-39.820	74.804	17.792	1.00	47.84	6
	MOTA	164	СВ	ALA	В	231		-40.736	75.661	18.647	1.00	45.08	6
	ATOM	165	С	ALA	В	231		-39.235	75.636	16.673	1.00	48.04	6
	ATOM	166	0	ALA	В	231		-39.959	76.128	15.816	1.00	49.95	8
	MOTA	167	N	THR	B	232		-37.914	75.773	16.669	1.00	47.26	7
50	ATOM	168	CA	THR				-37.220	76.563	15.654	1.00	43.64	6
	ATOM	169	CB	THR	В	232		-36.482	77.746	16.315	1.00	41.93	6
	ATOM	170	OG1	THR	В	232		-35.385	77.270	17.098	1.00	39.10	8
	ATOM	171	CG2					-37.423	78.523	17.232	1.00	29.80	6
	ATOM	172	С	THR				-36.194	75.719	14.914	1.00	43.97	6
55	ATOM	173	0	THR				-35.401	76.252	14.155	1.00	40.55	8
	ATOM	174	N	ASN				-36.195	74.407	15.157	1.00	48.62	7
	ATOM	175	CA	ASN				-35.247	73.511	14.483	1.00	58.62	6
	MOTA	176	CB	ASN				-34.621	72.537	15.500	1.00	62.44	6
						• •							

5	ATOM	231	С			240		4.719		.331		.996		66.19	
	ATOM	232	0	LYS				4.321		.673		.031		65.20	
	ATOM	233	N	ASN				5.986		.727		.139		66.69	
	ATOM	234	CA			241		7.031		.393		.171		67.53	
	ATOM	235	СВ			241		3.240		.846		.915	1.00		
10	ATOM	236	CG	ASN				7.966		.479		.544	1.00		
	MOTA	237		ASN				7.561		.526		.845	1.00		
	ATOM	238	ND2	ASN				3.205		.370		.836	1.00		
	ATOM	239	С	ASN				7.496	62	.532		.255	1.00	66.62	
	ATOM	240	0	ASN				3.504		. 395		. 578		64.76	
15	MOTA	241	N			242		5.753		.633		.209		66.86	
	MOTA	242	CA	LYS			-37	7.096		.772		. 362		67.46	
	MOTA	243	CB	LYS				7.501		. 948		.258		67.93	
•	ATOM	244	CG	LYS			-38	3.746		. 684		.076		71.52	
	ATOM	245	CD	LYS				0.007		. 528		215	1.00	74.32	
20	MOTA	246	CE	LYS				.416		.852		564		74.41	
	ATOM	247	NZ	LYS				657		.941		575		74.44	
	ATOM	248	С	LYS		242		.826		.081		592	1.00	66.28	
	MOTA	249	0	LYS		242		.814	65	.799		601		67.61	
	MOTA	250	N		٠.	243		.763		.485		112		64.19	
25	MOTA	251	CA	ARG			-33	3.410		. 577		591		62.43	
	MOTA	252	CB	ARG				2.599		. 547		390		60.12	
	ATOM	253	CG	ARG				.128		. 558		171		40.00	
	MOTA	254	CD	ARG				.335		. 888		319		40.00	
	MOTA	255	NE	ARG				.269		. 428		296		40.00	
30	ATOM	256	CZ			243		.384		.724		009		40.00	
	ATOM	257	NH1			243		.510		. 357		798		40.00	
	ATOM	258	NH2	ARG		243		.355		401		908		40.00	
	ATOM	259	С	ARG		243		.408		252		100		62.97	6
	ATOM	260	0			243		.690		122		722		63.96	8
35	ATOM	261	N			244		.105		245		270		62.41	7
	ATOM	262	CA			244		.054		053		179		61.57	6
	ATOM	263	CB	LYS				.104		941		866		63.68	6
	ATOM	264	CG	LYS		244		.527		731		337	1.00		6
4.0	ATOM	265	CD	LYS				.566		549		107		73.83	6
40	ATOM	266	CE	LYS	_			.219		045		138		74.71	6
	ATOM	267	NZ	LYS				.169		689		219		73.32	7
	ATOM	268	С	LYS		•		.658		402		670		59.30	6
	ATOM	269	0	LYS				.317		570		852		56.34	8
4.5	ATOM	270	N	PHE				.858		359		875		57.06	7
45	ATOM	271	CA	PHE				.462		525		305		59.01	6
	ATOM	272	CB	PHE				.786		179		478		59.62	6
	ATOM	273	CG	PHE	•			.991		288		339		66.60	6
	ATOM	274		PHE				.200		669		172		67.17	6
50	ATOM	275		PHE	-			.012		117		593		69.25	6
50	ATOM	276		PHE				.404		882		911		69.92	6
	ATOM	277		PHE				.229		329		669		70.50	6
	ATOM	278	CZ	PHE				.418		714		830		70.89	6
	ATOM	279	С	PHE				.301		282		592		60.68	6
	ATOM	280	0	PHE				.859		911		619		62.37	8
55	ATOM	281	N	LEU				.495		336	-2.			60.10	7
	ATOM	282	CA	LEU				.201		199	-3.			59.44	6
	ATOM	283	CB	LEU				.248		332	-3.			57.43	6
	ATOM	284	CG	LEU	В	246	-27	.118	69.	474	-4.	207	1.00	54.41	6

5	MOTA	339	N	PRO	В	254	-13.	223	71.	944	-10	.246		35.		7
	ATOM	340	CD	PRO	В	254	-13.			217		.752		33.		6
	ATOM	341	CA	PRO	В	254	-12.	266	72.	177	-11	.351		35.		6
	ATOM	342	CB	PRO	В	254	-12.	275	73.	710	-11	.596		33.		6
	ATOM	343	CG	PRO	В	254	-13.	222	74.	277	-10	.688	1.00	33.	. 31	6
10	ATOM	344	С	PRO	В	254	-10.	827	71.	665	-11	.121	1.00	37.	.75	6
	ATOM	345	0	PRO	В	254	-10.	379	71.	426	-10	.009	1.00	38.	. 78	8
	TER															
	ATOM	1	N	GLY	В	261	-8.	238	79.	356	-2	.979	1.00	40.	.00	7
	ATOM	2	CA	GLY				314	78.	411	-3	.005	1.00	40.	.00	6
15	ATOM	3	С	GLY			-10.			717	-4	.355	1.00	40.	.00	6
	ATOM	4	0	GLY			-11.		79.	141	-4	.256	1.00	40.	.00	8
	ATOM	5	N	GLY				565		527		.597		40.		7
	ATOM	6	CA	GLY			-10.			609		.087		40.		6
	ATOM	7	C	GLY			-10.			966		.577		40.		6
20	ATOM	8	0	GLY			-10.			044		.543		40.		8
20	ATOM	9	N	LYS			-12.			687		.124		61.		7
	ATOM	10	CA	LYS			-13.			536		.428		64.		6
	ATOM	11	C	LYS			-14.			750		.614		63.		6
		12	0	LYS			-14.			579		.280		61.		8
25	ATOM	13	CB	LYS			-13.			405		.876		63.		6
23	ATOM			LYS			-13.			474		.881		20.		6
	ATOM	14	CG	LYS			-14.			897		.612		20.		6
	ATOM	15	CD	LYS	-		-13.			874		.742		20.		6
	ATOM	16	CE	LYS			-13. -13.					.341		20.		7
20	ATOM	17	NZ	VAL			-13. -15.			335		.307		61.		7
30	ATOM	18	N				-15. -16.			632		.619		59.		6
	MOTA	19	CA	VAL						703		.099		59.		6
	ATOM	20	CB	VAL			-17.			215		.979		53.		6
	ATOM	21	CG1				-18.					.562		55.		6
0.5	MOTA	22		VAL			-16.			938				60.		6
35	ATOM	23	С	VAL			-17.			824		.700		62.		8
	ATOM	24	0	VAL			-16.			873		.873		62.		7
	MOTA	25	N	ASP			-18.			098		.340				6
	ATOM	26	CA	ASP			-19.			339		.312		64.		6
	MOTA	27	CB	ASP			-18.			851		.270		64		
40	MOTA	28	CG	ASP			-19.			022		.584		67.		6 8
	ATOM	29		ASP			-20.			062		.295		72.		
	MOTA	30		ASP			-20.			959			1.00			8
	MOTA	31	С	ASP			-20.			614		.016		65		6
	MOTA	32	0	ASP			-21.			895		.313		68.		8
45	ATOM	33	N			266	-21.			737		.588		65.		7
	ATOM	34	CA	LEU			-22.			330		.499		63.		6
	MOTA	35	CB	LEU			-22.			448		.542		67.		6
	ATOM	36	CG	LEU			-21.			459		.399		69.		6
	ATOM	37		LEU			-20.					.712		68		6
50	MOTA	38	CD2	LEU			-21.			461		.344		70.		6
	ATOM	39	С			266	-23.			507		.602		59.		6
	ATOM	40	0			266	-24.			890		.988		53.		8
	ATOM	41	N	GLU	В	267	-23.	677		416		.371		58.		7
	ATOM	42	CA	GLU			-24.			640		.449		58.		6
55	ATOM	43	CB	GLU	В	267	-24.	752				.368		59.		6
	MOTA	44	CG			267	-25.					.268		62		6
	MOTA	45	CD	GLU	В	267	-26.	048				.328		67.		6
	MOTA	46	OE1	GLU	В	267	-25.	076	72.	645	-11	.512	1.00	69	.95	8
	·															

5	ATOM	101	CA	LYS	B 2	74	-31.983	79.774	-2.147	1.00	54.53	6
	ATOM	102	CB	LYS	B 2	74	-32.133	78.724	-3.232	1.00	54.36	6
	ATOM	103	С	LYS	B 2	74	-32.819	79.396	-0.931	1.00	56.88	6
	MOTA	104	0	LYS	B 2	74	-34.025	79.624	-0.906	1.00	57.98	8
	ATOM	105	N	ILE	B 2	75	-32.151	78.820	0.076	1.00	56.48	7
10	ATOM	106	CA	ILE	В 2	75	-32.791	78.381	1.332	1.00	52.64	6
	ATOM	107	СВ	ILE	B 2	75	-32.638	76.863	1.519	1.00	49.15	6
	ATOM	108	CG2	ILE	B 2	75	-33.505	76.105	0.529	1.00	47.42	6
	ATOM	109	CG1	ILE	B 2	75	-31.188	76.441	1.343	1.00	45.31	6
	ATOM	110	CD1	ILE	в 2	75	-30.990	74.952	1.391	1.00	37.22	6
15	ATOM	111	С	ILE	B 2	75	-32.241	79.086	2.574	1.00	51.78	6
	ATOM	112	0	ILE			-32.858	79.049	3.622	1.00	49.80	8
	ATOM	113	N	ILE			-31.071	79.709	2.435		51.76	7
	ATOM	114	CA	ILE			-30.410	80.409	3.533		52.58	6
	ATOM	115	СВ	ILE			-29.145	81.110	3.042		55.04	6
20	ATOM	116	CG2	ILE			-29.486	82.172	2.017		53.28	6
	ATOM	117	CG1				-28.396	81.786	4.203		57.31	6
	ATOM	118	CD1	ILE			-27.862	80.854	5.231		60.32	6
	ATOM	119	С	ILE			-31.282	81.461	4.237		50.70	6
	ATOM	120	0	ILE			-31.015	81.817	5.385		55.55	8
25	ATOM	121	N	THR			-32.322	81.953	3.568		47.33	7
	ATOM	122	CA	THR			-33.174	82.968	4.141		42.59	6
	ATOM	123	СВ	THR			-34.042	83.632	3.048		44.97	6
	ATOM	124	OG1	THR			-33.202	84.145	2.001		46.38	8
	ATOM	125	CG2	THR			-34.856	84.781	3.653		37.17	6
30	ATOM	126	C	THR			-34.069	82.447	5.267		39.84	6
-	ATOM	127	Ō	THR			-34.083	83.026	6.375		40.55	8
	ATOM	128	N	PRO			-34.832	81.385	5.017		38.20	7
	ATOM	129	CD	PRO		•	-34.925	80.666	3.747		36.34	6
	ATOM	130	CA	PRO			-35.711	80.834	6.059		36.63	6
35	ATOM	131	СВ	PRO			-36.475	79.715	5.357		32.95	6
	ATOM	132	CG	PRO			-35.833	79.516	4.056		35.75	6
	ATOM	133	С	PRO			-34.892	80.324	7.220	1.00	38.60	6
	ATOM	134	0	PRO			-35.372	80.157	8.331		37.67	8
	ATOM	135	N	ALA			-33.636	80.040	6.927		37.05	7
40	ATOM	136	CA	ALA			-32.696	79.525	7.903		33.18	6
	ATOM	137	СВ	ALA			-31.391	79.195	7.205		30.56	6
	ATOM	138	С	ALA			-32.447		8.991		33.47	6
	ATOM	139	0	ALA			-32.623	80.238	10.158		33.74	8
	ATOM	140	N	ILE			-32.010	81.728	8.577		29.96	7
45	ATOM	141	CA	ILE	• • •			82.809	9.501		25.94	6
	ATOM	142	CB	ILE				84.040	8.754		26.95	6
	ATOM	143		ILE				85.149	9.715		15.40	6
	ATOM	144		ILE			-29.904	83.696	8.007		26.73	6
	ATOM	145		ILE			-29.255	84.878	7.362		34.31	6
50	ATOM	146	Ç	ILE			-32.964	83.172	10.310		31.39	6
	ATOM	147	Ō	ILE			-32.882	83.378	11.522		35.69	8
	ATOM	148	N	THR			-34.113	83.233	9.647		30.90	7
	ATOM	149	CA	THR			-35.361	83.586	10.328		33.49	6
	ATOM	150	CB	THR I			-36.598	83.396	9.419		37.18	6
55	ATOM	151		THR			-36.703	82.034	9.005		46.48	8
	ATOM	152		THR I			-36.525		8.198		32.85	6
	ATOM	153	C	THR I			-35.523		11.556		29.94	6
	ATOM	154	0	THR I			-35.855	83.186	12.634		25.55	8
	01.1		•	T 111/		_	22.052	55.100	12.009	1.00	_0.00	3

5	ATOM	209	CE	LYS	В	288		-39.680	86.308	16.564		62.81	6
	ATOM	210	NZ	LYS	В	288		-38.897	85.460	15.614		64.69	7
	ATOM	211	С	LYS	В	288		-37.846	84.901	21.191	1.00	43.31	6
	ATOM	212	0	LYS	В	288		-38.650	85.532	21.857	1.00	45.66	8
	ATOM	213	N	LYS	В	289		-37.618	83.604	21.345	1.00	41.70	7
10	MOTA	214	CA	LYS	В	289		-38.313	82.849	22.351	1.00	40.67	6
	ATOM	215	СВ	LYS	В	289		-38.554	81.418	21.845	1.00	42.25	6
	ATOM	216	CG	LYS	В	289		-39.438	81.368	20.589	1.00	39.53	6
	MOTA	217	CD	LYS	В	289		-40.093	80.010	20.422	1.00	43.19	6
	ATOM	218	CE	LYS	В	289		-41.025	79.987	19.223	1.00	45.74	6
15	ATOM	219	NZ	LYS	В	289		-42.391	80.476	19.512	1.00	52.49	7
	ATOM	220	С	LYS	В	289		-37.555	82.871	23.668	1.00	41.50	6
	ATOM	221	0	LYS	В	289		-38.057	82.366	24.657	1.00	39.77	8
	ATOM	222	N	LEU	В	290	•	-36.365	83.482	23.661	1.00	40.68	7
	ATOM	223	CA	LEU	В	290		-35.539	83.599	24.854	1.00	39.33	6
20	ATOM	224	СВ	LEU	В	290		-34.053	83.499	24.491	1.00	36.14	6
	ATOM	225	CG	LEU	В	290		-33.640	82.240	23.767	1.00	34.81	6
	ATOM	226	CD1	LEU	В	290		-32.147	82.255	23.523	1.00	29.07	6
	ATOM	227	CD2	LEU	В	290		-34.013	81.040	24.607	1.00	33.45	6
	ATOM	228	С	LEU	В	290		-35.832	84.915	25.577	1.00	40.08	6
25	ATOM	229	0	LEU	В	290		-35.479	86.006	25.088	1.00	42.00	8
	ATOM	230	N	PRO	В	291		-36.462	84.840	26.765	1.00	40.27	7
	ATOM	231	CD	PRO	В	291		-36.819	83.613	27.494	1.00	39.65	6
	ATOM	232	CA	PRO	В	291		-36.782	86.069	27.501	1.00	38.28	6
	ATOM	233	СВ	PRO	В	291		-37.376	85.574	28.811	1.00	35.88	6
30	ATOM	234	CG	PRO	В	291		-37.549	84.110	28.695	1.00	34.19	6
	ATOM	235	С	PRO	В	291		-35.570	87.002	27.714	1.00	40.05	6
	ATOM	236	0	PRO	В	291		-35.625	88.197	27.403	1.00	41.33	8
	ATOM	237	N	MET	В	292		-34.474	86.476	28.258		40.59	7
	ATOM	238	CA	MET	В	292		-33.296	87.286	28.545		42.86	6
35	MOTA	239	CB	MET	В	292		-32.149	86.376	28.975	1.00	43.28	6
	MOTA	240	CG	MET	В	292		-32.553	85.302	29.970		50.35	6
	MOTA	241	SD	MET	В	292		-31.070	84.609	30.755		51.17	16
	ATOM	242	CE	MET	В	292		-31.797	83.212	31.701		54.63	6
	MOTA	243	С	MET	В	292		-32.895	88.077	27.315		41.05	6
40	MOTA	244	0	MET	В	292		-32.228	89.098	27.420		39.66	8
	ATOM	245	N	PHE	В	293		-33.322	87.604	26.143	1.00	39.30	7
	MOTA	246	CA	PHE	В	293		-33.017	88.271	24.878		40.92	6
	MOTA	247	CB	PHE	В	293		-33.296	87.329	23.707		40.98	6
	MOTA	248	CG	PHE	В	293		-32.937	87.909	22.365		42.78	6
45	MOTA	249	CD1	PHE	В	293		-31.653	88.354	22.120		44.40	6
	ATOM	250	CD2	PHE	В	293		-33.872	87.972	21.350		43.66	6
	ATOM	251	CE1	PHE	В	293		-31.306	88.869	20.872		39.83	6
	MOTA	252	CE2	PHE	В	293		-33.525	88.486	20.100		46.21	6
	ATOM	253	CZ	PHE	В	293		-32.239	88.926	19.859		45.18	6
50	ATOM	254	С	PHE	В	293		-33.873	89.518	24.744		45.54	6
	ATOM	255	0	PHE	В	293		-33.369	90.626	24.579		42.01	8
	ATOM	256	N	CYS	В	294		-35.181	89.305	24.808		47.05	7
	ATOM	257 -	CA	CYS	В	294		-36.146	90.382	24.689		50.15	6
	ATOM	258	СВ	CYS	В	294		-37.553	89.793	24.756		45.90	6
55	MOTA	259	SG			294		-37.899	88.607	23.449		51.50	16
	ATOM	260	С	CYS	В	294		~35.974	91.474	25.751		51.38	6
	MOTA	261	0			294		-36.585	92.536	25.656		53.83	8
	ATOM	262	N	GLU	В	295		-35.137	91.200	26.753	1.00	49.72	7
								-					

PCT/US99/06899 -_

5	7 001	217	_	CTN	n.	201	20 162	ſ	0.662	18.1	٥٥	1 00	45.02	8
ر	ATOM	317	0			301	-30.162		32.864	17.6			41.01	7
	ATOM	318	N			302	-29.916			16.3		1.00		6
	ATOM	319	CA			302	-29.424		32.692	15.4		1.00		6
	ATOM	320	CB			302	-29.584		3.978				31.98	6
10	ATOM	321		ILE			-29.034		93.792	14.1				6
10	ATOM	322	CG1				-31.059		94.385	15.4			40.77	
	ATOM	323	CD1	ILE		302	-31.939		93.317	14.7			45.43	6
	MOTA	324	С	ILE		302	-27.966		2.260	16.3			38.58	6
	MOTA	325	0	ILE		302	-27.613		1.197	15.8			40.81	8
	ATOM	326	N	ILE		303	-27.128		3.111	16.9			37.50	7
15	ATOM	327	CA	ILE			-25.692		2.846	17.0			39.33	6
	ATOM	328	CB	ILE		303	-25.066		3.648	18.2			39.06	6
	ATOM	329	CG2	ILE	В	303	-23.566		3.405	18.2			36.19	6
	ATOM	330	CG1	ILE	В	303	-25.309		5.143	18.0			40.15	6
	ATOM	331	CD1	ILE	В	303	-24.816		5.966	19.1			36.93	6
20	ATOM	332	C	ILE	В	303	-25.470	9	1.365	17.3			36.49	6
	ATOM	333	0	ILE	В	303	-24.619	2	0.725	16.7			36.58	8
	ATOM	334	N	LEU	В	304	-26.244	٥	0.843	18.2	66	1.00	32.91	7
	MOTA	335	CA	LEU	В	304	-26.194	8	9.433	18.6	33	1.00	27.55	6
	ATOM	336	CB	LEU	В	304	-27.172	8	9.182	19.7	93	1.00	22.35	6
25	ATOM	337	CG	LEU	В	304	-26.623	8	9.449	21.1	87	1.00	26.88	6
	ATOM	338	CD1	LEU	В	304	-25.540	g	0.495	21.1	36	1.00	24.82	6
	ATOM	339	CD2	LEU	В	304	-27.747	٤	9.840	22.1	21	1.00	23.69	6
	ATOM	340	С	LEU	В	304	-26.505	8	8.547	17.4	25	1.00	28.05	6
	ATOM	341	0	LEU	B	304	-25.668	8	7.751	16.9	83	1.00	24.68	8
30	ATOM	342	N	LEU	В	305	-27.716	8	8.700	16.8	97	1.00	26.34	7
	MOTA	343	CA		B	305	-28.145		7.939	15.7	41	1.00	30.91	6
	ATOM	344	CB	LEU		305	-29.460		8.514	15.1			32.50	6
	ATOM	345	CG	LEU		305	-30.699		8.305	16.0			33.36	6
	ATOM	346	CD1	LEU		305	-31.938		8.839	15.3	42	1.00	33.87	6
35	ATOM	347	CD2	LEU	В	305	-30.863		6.812	16.2		1.00	31.72	6
•	ATOM	348	С		В	305	-27.072		7.922	14.6		1.00	29.76	6
	ATOM	349	0		В	305	-26.687		6.860	14.2			29.33	8
	ATOM	350	N	LYS	В	306	-26.597		9.107	14.2			29.72	7
	ATOM	351	CA	LYS	B.	306	-25.576		9.254	13.2			34.28	6
40	ATOM	352	СВ		B	306	-25.224		0.732	13.0			35.98	6
	ATOM	353	CG		B	306	-26.350		1.581	12.4			43.35	6
	ATOM	354	CD	LYS		306	-25.852		2.987	12.1			51.50	6
	ATOM	355	CE	LYS			-24.706		2.932	11.1			53.26	6
	ATOM	356	NZ	LYS			-23.883		4.161	11.2			59.61	7
45	ATOM	357	C	LYS	٠.		-24.308		8.484	13.5			35.25	6
43	ATOM	358	0	LYS			-23.681		7.917	12.6			33.95	8
				GLY						14.8			35.79	7
	ATOM	359	N				-23.918		8.478				34.59	
	ATOM	360	CA	GLY			-22.702		7.793	15.2				6
50	ATOM	361	С	GLY			-22.811		6.291	15.3			33.80	6
50	ATOM	362	0	GLY			-21.944		5.564	14.8			31.59	8
	ATOM	363	N	CYS			-23.861		5.843	16.0			31.15	7
	ATOM	364	CA	CYS			-24.069		4.434	16.3			29.04	6
	MOTA	365	CB	CYS			-24.761		4.240	17.6			27.59	6
~-	MOTA	366	ŞG	CYS			-26.496		4.629	17.6			30.50	16
55	ATOM	367	C	CYS			-24.911		3.712	15.2			30.59	6
	ATOM	368	0	CYS			-25.088		2.499	15.3			33.77	8
	ATOM	369	N	CYS			-25.432		4.429	14.2			28.46	7
	ATOM	370	CA	CYS	В	309	-26.270	8	3.787	13.2	65	1.00	30.10	6

5	ATOM	425	CG	ARG E	316	-28.823	74.857	14.809	1.00 22.00	6
	MOTA	426	CD	ARG E	316	-30.074	75.657	14.451	1.00 18.78	6
	ATOM	427	NE	ARG E	316	-30.905	75.944	15.598	1.00 26.57	7
	ATOM	428	CZ	ARG E	316	-32.166	76.337	15.489	1.00 30.81	6
	ATOM	429	NH1	ARG E	316	-32.686	76.535	14.280	1.00 33.71	7
10	ATOM	430	NH2	ARG E	316	-32.900	76.542	16.581	1.00 33.13	7
	ATOM	431	С	ARG E	316	-27.128	72.028	12.830	1.00 28.09	6
	MOTA	432	0	ARG E	316	-27.852	71.053	12.760	1.00 32.41	8
	MOTA	433	N	ALA E	317	-26.187	72.309	11.941	1.00 28.36	7
	ATOM	434	CA	ALA E	317	-25.938	71.466	10.794	1.00 26.64	6
15	ATOM	435	СВ	ALA E		-25.337	72.300	9.675	1.00 22.93	6
	ATOM	436	С	ALA E		-24.998	70.327	11.150	1.00 28.35	6
	ATOM	437	0	ALA E		-25.223	69.187	10.773	1.00 32.10	8
	ATOM	438	N	ALA E		-23.941	70.659	11.882	1.00 29.12	7
	ATOM	439	CA	ALA E		-22.957	69.682	12.299	1.00 27.50	6
20	ATOM	440	CB	ALA E		-21.915	70.355	13.160	1.00 28.39	6
	ATOM	441	С	ALA E		-23.645	68.591	13.084	1.00 28.10	6
	ATOM	442	0	ALA E		-23.415	67.415	12.854	1.00 28.18	8
	ATOM	443	N	VAL E		-24.502	69.012	14.016	1.00 29.16	7
	ATOM	444	CA	VAL E		-25.259	68.107	14.889	1.00 35.24	6
25	ATOM	445	CB	VAL E		-26.228	68.897	15.765	1.00 27.34	6
	ATOM	446	CG1	VAL E		-25.576	70.149	16.246	1.00 29.96	6
	ATOM	447	CG2	VAL E		-27.505	69.212	15.022	1.00 31.70	6
	ATOM	448	С	VAL E		-26.066	67.146	14.043	1.00 40.01	6
	ATOM	449	0	VAL E	-	-26.701	66.250	14.578	1.00 42.70	8
30	ATOM	450	N	ARG E		-26.025	67.353	12.723	1.00 38.64	7
•	ATOM	451	CA	ARG E	,	-26.770	66.541	11.762	1.00 38.61	6
	ATOM	452	CB	ARG E		-27.838	67.409	11.123	1.00 37.26	6
	ATOM	453	CG	ARG E		-29.152	67.280	11.822	1.00 43.12	6
	ATOM	454	CD	ARG E	- 1	-30.145	68.340	11.387	1.00 50.79	6
35	ATOM	455	NE	ARG E		-31.500	67.911	11.705	1.00 54.71	7
	ATOM	456	CZ	ARG E		-32.555	68.723	11.597	1.00 57.89	6
	ATOM	457	NH1	ARG E	-	-32.398	69.957	11.130	1.00 49.08	7
	ATOM	458		ARG E		-33.773	68.302	11.844	1.00 59.59	7
	ATOM	459	С	ARG E	7	-25.937	65.910	10.670	1.00 42.14	6
40	ATOM	460	0	ARG E	320	-26.381	65.802	9.532	1.00 46.30	8
	ATOM	461	N	TYR E		-24.734		11.022	1.00 42.04	7
	ATOM	462	CA	TYR E		-23.858	64.848	10.063	1.00 42.70	6
	ATOM	463	CB	TYR E	321	-22.433	65.332	10.297	1.00 38.01	6
	MOTA	464	CG	TYR E	321	-21.393	64.396	9.756	1.00 37.94	6
45	MOTA	465		TYR E		-21.265	64.176	8.397	1.00 33.85	6
	ATOM	466		TYR E		-20.333	63.258	7.912	1.00 34.49	6
	ATOM	467	CD2	TYR E		-20.583	63.683	10.613	1.00 28.03	6
	ATOM	468	CE2	TYR E		-19.658	62.769	10.134	1.00 32.69	6
	ATOM	469	CZ	TYR E		-19.532	62.551	8.781	1.00 35.18	6
50	ATOM	470	ОН	TYR E		-18.616	61.661	8.292	1.00 39.48	8
	ATOM	471	С	TYR F		-23.897	63.347	10.234	1.00 45.51	6
	ATOM	472	0	TYR E		-23.560	62.857	11.292	1.00 48.02	8
	ATOM	473	N	ASP E		-24.317	62.642	9.188	1.00 44.56	7
	ATOM	474	CA	ASP E		-24.391	61.170	9.182	1.00 45.86	6
55	ATOM	475	СВ	ASP E		-25.570	60.749	8.294	1.00 46.64	6
	ATOM	476	CG	ASP E		-25.449	59.359	7.775	1.00 40.00	6
	ATOM	477		ASP E		-24.388	58.737	7.986	1.00 40.00	8
	ATOM	478		ASP E		-26.414	58.862	7.117	1.00 40.00	8
				•						

5	ATOM	533	0	THR	3 329	-29.432	69.801	7.535	1.00	43.72	8
	ATOM	534	N		3 330		70.413	5.546	1.00	44.62	7
	ATOM	535	CA	LEU I	4	-28.983	71.812	5.658	1.00	45.09	6
	MOTA	536	СВ		3 330	-28.354	72.608	4.510	1.00	44.66	6
	ATOM	537	CG		3 3 3 0	-26.847	72.735	4.539	1.00	51.06	6
10	ATOM	538		LEU I		-26.226	71.367	4.640	1.00	48.58	6
	ATOM	539		LEU I		-26.364	73.450	3.299	1.00	45.18	6
	ATOM	540	С		3 330	-30.508	71.965	5.652		48.06	6
	ATOM	541	0	LEU I		-31.211	71.244	4.959		49.33	8
	ATOM	542	N	ASN I		-30.988	72.911	6.458		52.20	7
15	ATOM	543	CA	ASN I		-32.407	73.214	6.588		54.41	6
	ATOM	544	СВ	ASN I		-32.870	74.013	5.370		54.94	6
	ATOM	545	CG	ASN I		-33.687	75.220	5.749		60.35	6
•	ATOM	546		ASN I		-33.182	76.130	6.430		61.84	8
	ATOM	547		ASN I		-34.935	75.242	5.324		65.92	7
20	ATOM	548	C	ASN I		-33.251	71.959	6.731		58.00	6
	ATOM	549	0	ASN I		-34.464	72.000	6.579		60.17	8
	ATOM	550	N	GLY H		-32.596	70.846	7.054		58.45	7
	ATOM	551	CA	GLY I		-33.295	69.587	7.235		58.55	6
	ATOM	552	C	GLY I		-33.909	69.004	5.984		59.79	6
25	ATOM	553	0	GLY I		-34.609	68.000	6.065		61.32	8
	ATOM	554	N	GLU I		-33.639	69.628	4.838		60.28	7
	ATOM	555	CA	GLU I		-34.196	69.182	3.571		59.13	6
	ATOM	556	CB	GLU I		-34.966	70.323	2.885		62.40	6
	ATOM	557	CG	GLU I		-36.099	70.963	3.690		75.69	6
30	ATOM	558	CD	GLU I		-36.720	72.135	2.998		80.41	6
50	ATOM	559	OE1	GLU I		-35.984	73.081	2.618		79.98	8
	ATOM	560	OE2	GLU I		-37.966	72.158	2.830		83.81	8
	ATOM	561	C	GLU I		-33.110	68.722	2.624		57.18	6
	ATOM	562	Ō	GLU I	,	-33.236	67.689	1.974		57.50	8
35	ATOM	563	N	MET I		-32.054	69.528	2.539		55.20	7
33	ATOM	564	CA	MET I		-30.926	69.259	1.653		50.85	6
	ATOM	565	CB	MET I		-30.514	70.563	0.984		48.70	6
	ATOM	566	CG	MET I		-29.244	70.460	0.194		45.39	6
	ATOM	567	SD	MET I		-28.743	72.008	-0.624		44.56	16
40	ATOM	568	CE	MET H		-30.307	72.445	-1.503		45.25	6
,,	ATOM	569	C	MET I		-29.711	68.634			51.59	6
	ATOM	570	0	MET I		-29.185	69.161	3.291		52.52	8
	ATOM	571	N	ALA I			67.515	1.758		51.00	7
	ATOM	572	CA	ALA I			66.802	2.267		48.98	6
45	ATOM	573	СВ	ALA E		-28.377	65.304	2.274		47.86	6
	ATOM	574	C	ALA I			67.108	1.371		51.01	6
	ATOM	575	0	ALA I			66.760	0.190		51.61	8
	ATOM	576	N	VAL E		-25.921	67.770	1.930		46.62	7
	ATOM	577	CA	VAL I		-24.730	68.142	1.152		42.35	6
50	ATOM	578	CB	VAL		-24.466	69.635	1.258		42.41	6
50	ATOM	579		VAL E		-25.695	70.418	0.860		42.00	6
	ATOM	580		VAL E		-24.018	70.004	2.642		40.32	6
	ATOM	581	C	VAL E		-23.493	67.390	1.611		45.33	6
	ATOM	582	0	VAL E		-23.464	66.775	2.681		47.42	8
55	ATOM	583	N	THR E		-22.461	67.478	0.781		41.60	7
ر د	ATOM	584	CA	THR E		-21.172	66.818	1.041		39.69	6
	ATOM	585	CB	THR E		-20.720	66.011	-0.173		41.35	6
	ATOM	586		THR E		-20.273	66,887	-1.213		49.35	8
	111011	200	001	\ L		~20.213	00,007	1.210			J

5	ATOM	641	С	GLY	Ъ	3.4.4	-19.867	77.636	-2.258	1.00 38.	26 6
,	ATOM	642	0	GLY			-20.715	78.501	-2.484	1.00 35.	
		643	N	GLY		345	-18.724	77.871	-1.619	1.00 35.	
	ATOM			GLY		345	-18.426	79.209	-1.159	1.00 34.	
	ATOM	644	CA	GLY				79.298	0.230	1.00 34.	
10	ATOM	645	С			345	-17.848	80.303	0.573	1.00 38.	
10	MOTA	646	0	GLY	-		-17.216			1.00 38.	
	ATOM	647	N	LEU			-18.071	78.266	1.041		
	ATOM	648	CA	LEU		346	-17.563	78.279	2.403	1.00 36.	
	ATOM	649	CB	LEU		346	-18.311	77.256	3.269	1.00 35.	
	ATOM	650	CG	LEU		346	-19.800	77.473	3.378	1.00 34.	
15	ATOM	651		LEU		346	-20.322	76.678	4.554	1.00 44.	
	ATOM	652		LEU		346	-20.086	78.937	3.612	1.00 34.	
	ATOM	653	С	LEU		346	-16.079	78.018	2.445	1.00 33.	
	ATOM	654	0	LEU		346	-15.392	78.387	3.394	1.00 35.	
	MOTA	655	N	GLY		347	-15.586	77.388	1.385	1.00 30.	
20	ATOM	656	CA	GLY		347	-14.174	77.078	1.305	1.00 33.	
	ATOM	657	С	GLY		347	-13.768	76.214	2.477	1.00 30.	
	MOTA	658	0	GLY		347	-14.433	75.243	2.808	1.00 30.	
	MOTA	659	N	VAL	В	348	-12.647	76.585	3.087	1.00 31.	
	MOTA	660	CA	VAL	В	348	-12.097	75.867	4.227	1.00 31.	
25	ATOM	661	CB	VAL	В	348	-10.889	76.609	4.817	1.00 31.	
	MOTA	662	CG1	VAL	В	348	-11.292	77.974	5.360	1.00 20.	
	MOTA	663	CG2	VAL	В	348	-10.250	75.786	5.905	1.00 24.	
	MOTA	664	С	VAL	В	348	-13.136	75.651	5.360	1.00 33.	
	ATOM	665	0	VAL	В	348	-13.002	74.707	6.153	1.00 29.	
30	ATOM	666	N	VAL	В	349	-14.157	76.518	5.449	1.00 33.	
	ATOM	667	CA	VAL	В	349	-15.147	76.339	6.483	1.00 32.	
	ATOM	668	CB	VAL	В	349	-16.226	77.393	6.476	1.00 32.	
	ATOM	669	CG1	VAL	В	349	-17.342	76.979	7.399	1.00 33.	
	ATOM	670		VAL	•	349	-15.667	78.703	6.959	1.00 32.	
35	MOTA	671	С	VAL	В	349	-15.792	74.987	6.380	1.00 34.	
	MOTA	672	0	VAL	Ŗ	349	-16.055	74.359	7.394	1.00 33.	
	ATOM	673	N	SER		350	-16.054	74.507	5.176	1.00 32.	
	ATOM	674	CA	SER		350	-16.695	73.215	5.100	1.00 30.	
	MOTA	675	CB	SER		350	-16.772	72.697	3.684	1.00 24.	
40	MOTA	676	OG	SER	В	350	-17.538	71.502	3.644	1.00 23.	
	ATOM	677	С	SER	В	350	-15.910	72.254	5.942	1.00 31.	
	ATOM	678	0			350	-16.417	71.807	6.950	1.00 37.	
	ATOM	679	N	ASP			-14.675	71.942	5.565	1.00 28	
	ATOM	680	CA	ASP			-13.905	71.010	6.378	1.00 29.	
45	ATOM	681	CB	ASP			-12.419	71.139	6.050	1.00 27.	
	ATOM	682	CG	ASP	В	351	-12.151	71.094	4.585	1.00 30.	
	ATOM	683	OD1	ASP	В	351	-12.013	72.174	3.954	1.00 32.	
	ATOM	684	OD2	ASP	В	351	-12.064	69.980	4.017	1.00 30.	
	ATOM	685	С	ASP	B	351	-14.176	71.343	7.861	1.00 30.	
50	MOTA	686	0	ASP	В	351	-14.458	70.474	8.681	1.00 29	
	ATOM	687	N	ALA	₿	352	-14.111	72.629	8.177	1.00 25	
	MOTA	688	CA	ALA	В	352	-14.346	73.092	9.533	1.00 28.	
	ATOM	689	CB	ALA	В	352	-14.252	74 .6 06	9.572	1.00 20.	
	MOTA	690	С	ALA	В	352	-15.690	72.630	10.086	1.00 29	
55	ATOM	691	0	ALA	В	352	-15.757	72.068	11.164	1.00 30	
	ATOM	692	N	ILE	В	353	-16.754	72.884	9.330	1.00 27	
	ATOM	693	CA			353	-18.096	72.506	9.729	1.00 27	
	ATOM	694	CB			353	-19.144	73.129	8.800	1.00 28	.04 6

5	ATOM	749	CD1	LEU	В	360	-21.394	69.181	17.212		33.53	6
	ATOM	750	CD2	LEU	В	360	-19.869	68.486	19.010	1.00	31.69	6
	ATOM	751	С	LEU	B	360	-20.464	64.397	17.924	1.00	38.72	6
	ATOM	752	0	LEU	В	360	-21.021	64.011	18.958	1.00	38.29	8
	ATOM	753	N	SER	В	361	-20.466	63.708	16.791	1.00	40.96	7
10	ATOM	754	CA	SER		361	-21.106	62.416	16.721	1.00	45.67	6
- •	ATOM	755	CB	SER		361	-20.532	61.630	15.551	1.00	46.45	6
	ATOM	756	OG	SER		361	-20.750	62.314	14.322	1.00	51.81	8
	ATOM	757	C	SER		361	-20.895	61.638	18.018	1.00	44.49	6
	ATOM	758	0	SER			-21.696	60.793	18.362		46.67	8
15	ATOM	759	N	SER		362	-19.811	61.953	18.726		41.44	7
13	ATOM	760	CA	SER		362	-19.453	61.309	19.972		42.13	6
	ATOM	761	CB	SER		362	-17.962	61.510	20.234		42.61	6
	ATOM	762	OG	SER		362	-17.164	61.025	19.158		51.87	8
	ATOM	763	C	SER			-20.228	61.812	21.174		38.41	6
20	ATOM	764	0	SER			-20.602	61.025	22.035		38.01	8
20		765	N	PHE			-20.455	63.123	21.228		34.55	7
	ATOM	766	CA	PHE			-21.150	63.735	22.346		32.96	6
	MOTA	767	CB	PHE		363	-21.130	65.245	22.285		31.99	6
	MOTA		CG	PHE		363	-19.578	65.719	22.378		29.97	6
25	ATOM	768				363	-19.286	67.058	22.447		30.61	6
25	ATOM	769		PHE PHE			-18.536	64.800	22.391		32.02	6
	MOTA	770		PHE		363	-17.966	67.489	22.543		33.67	6
	MOTA	771		PHE		•	-17.221	65.222	22.484		30.91	6
	MOTA	772					-16.927	66.557	22.554		29.33	6
20	ATOM	773	CZ	PHE PHE		363 363	-22.617	63.361	22.482		30.52	6
30	MOTA	774 775	С 0		В	363	-23.142	63.331	23.596		32.19	8
	ATOM			ASN		364	-23.142	63.075	21.361		33.51	7
	ATOM	776 777	N CA	ASN		364	-24.683	62.701	21.377		38.03	6
	MOTA	778	CB	ASN		364	-24.855	61.369	22.111		42.32	6
35	ATOM ATOM	779	CG	ASN			-24.008	60.271	21.524		53.11	6
33		780	OD1		Ë	364	-24.183	59.895	20.344		59.51	8
	ATOM	781		ASN		364	-23.102	59.746	22.325		55.95	7
	ATOM ATOM	782	C		B	364	-25.494	63.771	22.091		31.89	6
		783	0	ASN	, .	364	-26.279	63.471	22.990		30.28	8
40	ATOM ATOM	784	N	LEU	٠,	365	-25.306	65.018	21.673		27.62	7
40	ATOM	785	CA	LEU		365	-26.005	66.144	22.280		29.36	6
	ATOM	786		LEU			-25.402	67.443	21.743		27.54	6
		787	CG	LEU			-23.402	67.453	21.738		38.91	6
	ATOM ATOM	788		LEU			-23.391	68.766	21.190		34.47	6
45		789		LEU			-23.391	67.214	23.143		34.24	6
43	ATOM		CD2	LEU			-27.496	66.074	21.987		26.23	6
	ATOM	790 791		LEU			-27.911	65.790	20.863		27.06	8
	ATOM		0	ASP			-28.296	66.321	23.022		25.23	7
	MOTA	792	N	ASP			-29.752	66.320	22.878		26.07	6
50	MOTA	793	CA			4 .4.		65.651	24.076		29.68	6
50	MOTA	794	CB	ASP	-		-30.441	66.374	25.360		35.74	6
	ATOM	795	CG	ASP			-30.221		25.387		36.78	8
	MOTA	796		ASP			-30.277	67.617	26.410		41.23	
	ATOM	797		ASP			-30.017	65.711				.8 6
£	ATOM	798	С	ASP			-30.230	67.752	22.740 23.171		27.70 31.94	8
55	ATOM	799	0	ASP			-29.552	68.678	23.171		29.18	7
	ATOM	800	N	ASP			-31.409	67.913	21.930		32.72	6
	ATOM	801	CA	ASP			-32.031	69.225	22.071		38.04	6
	ATOM	802	CB	ASP	٥	307	-33.558	69.106	22.011	1.00	20.04	U

5	ATOM	857	OE1	GLN	В	374	-29.720	75.049	18.009		24.07	8
	ATOM	858	NE2	GLN	В	374	-30.473	76.980	18.901		25.59	7
	ATOM	859	С	GLN	В	374	-26.988	79.249	21.569		20.66	6
	ATOM	860	0	GLN	В	374	-26.733	80.307	20.994		24.47	8
	ATOM	861	N	ALA	В	375	-27.429	79.182	22.825		16.26	7
10	ATOM	862	CA	ALA	В	375	-27.639	80.374	23.631		17.16	6
	ATOM	863	CB	ALA	В	375	-28.435	80.025	24.865		19.53	6
	ATOM	864	С	ALA	В	375	-26.304	80.966	24.025	1.00	25.13	6
	ATOM	865	0	ALA	В	375	-26.074	82.154	23.833		23.81	8
	ATOM	866	N	VAL	В	376	-25.433	80.111	24.568	1.00	24.57	7
15	ATOM	867	CA	VAL	В	376	-24.102	80.526	24.986	1.00	25.80	6
	ATOM	868	CB	VAL	В	376	-23.192	79.321	25.234	1.00	26.48	6
	ATOM	869	CG1	VAL	В	376	-21.806	79.780	25.620	1.00	23.20	6
	ATOM	870	CG2	VAL	В	376	-23.771	78.433	26.310	1.00	19.08	6
	ATOM	871	C	VAL	В	376	-23.510	81.403	23.898		25.69	6
20	ATOM	872	0	VAL	В	376	-22.796	82.364	24.166	1.00	27.87	8
	ATOM	873	N	LEU	₿	377	-23.827	81.049	22.659	1.00	23.09	7
	ATOM	874	CA	LEU	В	377	-23.340	81.774	21.492	1.00	22.86	6
	ATOM	875	CB	LEU	В	377	-23.552	80.920	20.230	1.00	18.50	6
	ATOM	876	CG	LEU	₿	377	-22.756	79.638	20.146	1.00	22.65	6
25	ATOM	877	CD1	LEU	₿	377	-23.221	78.786	19.000	1.00	16.70	6
	ATOM	878	CD2	LEU	В	377	-21.300	79.995	20.000	1.00	19.58	6
	ATOM	879	C	LEU	В	377	-24.073	83.102	21.384	1.00	26.14	6
	ATOM	880	0	LEU	В	377	-23.464	84.164	21.419		20.62	8
	ATOM	881	N	LEU	В	378	-25.396	83.023	21.265	1.00	28.99	7
30	MOTA	882	CA	LEU	В	378	-26.228	84.217	21.147	1.00	28.87	6
	ATOM	883	CB	LEU	В	378	-27.696	83.894	21.450	1.00	26.89	6
	ATOM	884	CG	LEU	В	378	-28.648	85.068	21.500	1.00	28.83	6
	ATOM	885	CD1	LEU	В	378	-28.507	85.854	20.225	1.00	27.97	6
	ATOM	886	CD2	LEU	Ŗ	378	-30.072	84.605	21.692	1.00	27.69	6
35	MOTA	887	С	LEU	В	378	-25.738	85.280	22.090		31.09	6
	ATOM	888	0	LEU	В	378	-25.398	86.379	21.651		31.77	8
	ATOM	889	N	MET	В	379	-25.695	84.931	23.376		31.44	7
	ATOM	890	CA	MET	Ŗ	379	-25.291	85.851	24.434	1.00	32.62	6
	MOTA	891	CB	MET	₿	379	-25.797	85.335	25.793		31.45	6
40	MOTA	892	CG	MET	В	379	-27.332	85.262	25.883	1.00	38.75	6
	ATOM	893	SD	MET	В	379	-28.020	86.915	25.550		41.27	16
	MOTA	894	CE			379	-29.814	86.586	25.513		35.68	6
	ATOM	895	С	MET		379	-23.796	86.129	24.538		33.72	6
	MOTA	896	0	MET	В	379	-23.246	86.190	25.633		36.29	8
45	ATOM	897	N	SER	В	380	-23.152	86.335	23.399		34.49	7
	ATOM	898	CA	SER		380	-21.738	86.659	23.391		33.97	6
	ATOM	899	CB	SER		380	-21.132	86.360	22.010		31.24	6
	ATOM	900	OG	SER		380	-21.224	84.978	21.696		39.42	8
	ATOM	901	С	SER	В	380	-21.635	88.145	23.705		39.69	6
50	ATOM	902	0	SER			-22.084	88.989	22.933		44.64	8
	ATOM	903	N	SER		381	-21.053	88.451	24.857		41.04	7
	ATOM	904	CA	SER		381	-20.907	89.826	25.308		44.91	6
	ATOM	905	CB	SER			-20.610	89.832	26.797		44.50	6
	ATOM	906	OG	SER			-19.351	89.229	27.037		45.42	8
55	MOTA	907	С	SER		381	-19.815	90.614	24.602		44.59	6
	ATOM	908	0	SER		381	-19.725	91.825	24.751		49.32	8
	MOTA	909	N	ASP			-18.977	89.922	23.848		43.75	7
	ATOM	910	CA	ASP	В	382	-17.886	90.556	23.144	1.00	43.93	6

PCT/US99/06899 __

5	MOTA	965	N	ALA	В	3'90	-22.561	94.159	30.332	1.00	52.68	7
	ATOM	966	CA	ALA	В	390	-22.684	93.570	31.659	1.00	48.41	6
	ATOM	967	CB	ALA	В	390	-22.650	94.681	32.716	1.00	45.19	6
	ATOM	968	С	ALA		390	-23.905	92.697	31.877	1.00	47.63	6
	ATOM	969	0	ALA		390	-23.784	91.576	32.369	1.00	51.95	8
10	ATOM	970	N	ARG		391	-25.075	93.216	31.498		47.11	7
	ATOM	971	CA	ARG		391	-26.330	92.481	31.656		51.64	6
	ATOM	972	CB	ARG		391	-27.502	93.318	31.122		54.22	6
	ATOM	973	CG	ARG		391	-28.887	92.713	31.430		64.20	6
							-30.059	93.582	30.929		73.80	6
15	ATOM	974	CD	ARG		391		93.097			79.76	7
15	ATOM	975	NE	ARG		391	-31.361		31.378			6
	ATOM	976	CZ	ARG			-31.736	93.015	32.656	-	84.27	7
	ATOM	977		ARG		391	-30.887	93.372	33.625		85.28	
	ATOM	978		ARG		391	-32.957	92.566	32.955		86.84	7
	ATOM	979	С	ARG		391	-26.277	91.133	30.940		48.18	6
20	ATOM	980	0	ARG		391	-26.724	90.119	31.465		49.57	8
	ATOM	981	N	ILE	В	392	-25.743	91.167	29.718		45.01	7
	ATOM	982	CA	ILE	В	392	-25.592	89.999	28.867		48.77	6
	MOTA	983	CB	ILE	В	392	-25.112	90.424	27.469		46.45	6
	ATOM	984	CG2	ILE	В	392	-24.805	89.221	26.614	1.00	42.35	6
25	ATOM	985	CG1	ILE	В	392	-26.178	91.283	26.768	1.00	49.69	6
	ATOM	986	CD1	ILE	В	392	-25.762	91.768	25.386	1.00	51.09	6
	ATOM	987	С	ILE	В	392	-24.671	88.935	29.462	1.00	50.90	6
	ATOM	988	0	ILE	В	392	-25.086	87.780	29.605	1.00	52.21	8
	ATOM	989	N	GLU	В	393	-23.431	89.298	29.790	1.00	50.43	7
30	ATOM	990	CA	GLU	В	393	-22.504	88.328	30.378	1.00	50.30	6
	ATOM	991	СВ	GLU	В	393	-21.314	89.022	31.044	1.00	53.97	6
	ATOM	992	CG	GLU	В	393	-20.063	89.005	30.209	1.00	62.18	6
	ATOM	993	CD	GLU	В	393	-18.877	89.415	30.976	1.00	67.69	6
	ATOM	994	OE1	GLU	В	393	-17.709	89.264	30.656	1.00	66.42	8
35	ATOM	995	OE2	GLU	В	393	-18.897	89.976	32.052	1.00	70.64	8
	ATOM	996	С	GLU	В	393	-23.251	87.477	31.416	1.00	49.31	6
	ATOM	997	0	GLU	В	393	-23.226	86.260	31.303	1.00	49.53	8
	ATOM	998	N	LYS		394	-23.898	88.153	32.409	1.00	46.07	7
	ATOM	999	CA	LYS		394	-24.721	87.579	33.506	1.00	45.76	6
40	ATOM	1000	CB			394	-25.594	88.693	34.161		43.85	6
	ATOM	1001	C	LYS			-25.626	86.548	32.851		46.69	6
	ATOM	1002	0	LYS			-25.772	85.430			49.13	8
	ATOM	1003	N	TYR			-26.203	86.948	31.719		46.57	7
	ATOM	1003	CA	TYR			-27.076	86.078	30.938		43.33	6
45	ATOM	1005	CB	TYR			-27.621	86.821	29.716		48.44	6
43	ATOM	1005	CG	TYR			-28.827	87.688	29.980		53.83	6
		1003	CD1				-29.204	88.680	29.080		56.43	6
	MOTA	1007		TYR			-30.331	89.469	29.309		59.73	6
	ATOM		CE1				-29.596				56.47	6
50	ATOM	1009	CD2					87.509	31.113			6
50	ATOM	1010	CE2	TYR			-30.723	88.295	31.346		62.60	
	ATOM	1011	CZ	TYR			-31.090	89.281	30.446		63.18	6
	ATOM	1012	ОН	TYR			-32.189	90.068	30.671		64.46	8
	ATOM	1013	С	TYR			-26.276	84.867	30.485		37.30	6
	ATOM	1014	0	TYR			-26.611	83.737	30.825		34.10	8
55	ATOM	1015	N	GLN			-25.213	85.108	29.718		31.92	7
	MOTA	1016	CA	GLN			-24.380	84.018	29.244		34.81	6
	MOTA	1017	CB	GLN			-23.176	84.550	28.464		32.64	6
	MOTA	1018	CG	GLN	В	396	-22.184	83.470	28.103	1.00	29.57	6

5	ATOM	1073	CG	PHE	В	403	-24.557	73.908	28.359	1.00 26.97	6
	ATOM	1074	CD1	PHE	В	403	-23.916	74.494	27.272	1.00 25.55	6
	ATOM	1075	CD2	PHE	В	403	-24.939	72.583	28.271	1.00 19.75	6
	ATOM	1076	CE1	PHE	В	403	-23.670	73.765	26.104	1.00 27.90	6
	ATOM	1077	CE2	PHE	В	403	-24.693	71.848	27.102	1.00 22.56	6
10	ATOM	1078	CZ	PHE	В	403	-24.057	72.439	26.020	1.00 22.24	6
	ATOM	1079	С	PHE	В	403	-24.810	72.902	31.329	1.00 28.82	6
	ATOM	1080	0	PHE	В	403	-25.092	71.726	31.205	1.00 26.00	8
	ATOM	1081	N	GLU		404	-23.776	73.335	32.037	1.00 30.25	7
	ATOM	1082	CA	GLU		404	-22.865	72.419	32.712	1.00 34.03	6
15	ATOM	1083	СВ	GLU		404	-21.835	73.215	33.527	1.00 39.45	6
-	ATOM	1084	CG	GLÜ		404	-20.654	72.384	34.068	1.00 47.68	6
	MOTA	1085	CD	GLU		404	-19.750	73.129	34.996	1.00 54.02	6
	ATOM	1086	OE1	GLU		404	-19.372	74.290	34.701	1.00 57.27	8
	ATOM	1087	OE2		В	404	-19.369	72.555	36.048	1.00 63.85	8
20	ATOM	1088	C	GLU		404	-23.645	71.509	33.642	1.00 36.01	6
	ATOM	1089	0	GLU		404	-23.470	70.292	33.640	1.00 38.64	8
	ATOM	1090	N		В	405	-24.492	72.131	34.458	1.00 29.56	7
	ATOM	1091	CA		В	405	-25.306	71.387	35.405	1.00 31.69	6
	ATOM	1092	СВ		В	405	-26.245	72.324	36.173	1.00 33.75	6
25	ATOM	1093	CG		В	405	-25.536	73.185	37.163	1.00 34.75	6
	ATOM	1094	CD2		В	405	-24.234	73.286	37.524	1.00 34.58	6
	ATOM	1095	ND1		В	405	-26.223	74.101	37.969	1.00 32.43	7
	ATOM	1096	CE1		В	405	-25.334	74.703	38.769	1.00 36.15	6
	ATOM	1097	NE2		В	405	-24.139	74.222	38.511	1.00 39.84	7
30	ATOM	1098	С	HIS		405	-26.106	70.342	34.648	1.00 34.21	6
-	ATOM	1099	0		В	405	-26.087	69.160	35.006	1.00 37.06	8
	ATOM	1100	N	TYR		406	-26.806	70.776	33.598	1.00 30.83	7
	ATOM	1101	CA	TYR		406	-27.592	69.853	32.796	1.00 28.85	6
	ATOM	1102	СВ	TYR		406	-28.192	70.537	31.579	1.00 31.48	6
35	ATOM	1103	CG	TYR		406	-28.991	69.576	30.730	1.00 23.49	6
	ATOM	1104	CD1	TYR		406	-30.179	69.047	31.196	1.00 19.42	6
	ATOM	1105	CE1	TYR	В	406	-30.893	68.128	30.441	1.00 23.80	6
	ATOM	1106	CD2	TYR	В	406	-28.525	69.152	29.496	1.00 21.81	6
	ATOM	1107	CE2	TYR		406	-29.241	68.228	28.740	1.00 24.64	6
40	ATOM	1108	CZ	TYR	В	406	-30.420	67.713	29.217	1.00 21.56	6
	ATOM	1109	ОН	TYR	В	406	-31.120	66.802	28.480	1.00 24.96	8
	ATOM	1110	С	TYR	В	406	-26.697	68.725	32.304	1.00 24.24	6
	ATOM	1111	0	TYR	В	406	-27.155	67.609	32.110	1.00 27.08	8
	ATOM	1112	N	ILE	В	407	-25.422	69.056	32.084	1.00 25.76	7
45	ATOM	1113	CA	ILE	В	407	-24.428	68.092	31.628	1.00 33.75	6
	ATOM	1114	СВ	ILE	В	407	-23.090	68.778	31.274	1.00 34.23	6
	MOTA	1115	CG2	ILE	В	407	-21.959	67.774	31.230	1.00 32.46	6
	ATOM	1116		ILE			-23.214	69.514	29.936	1.00 43.30	6
	ATOM	1117	CD1	ILE	В	407	-23.655	68.612	28.804	1.00 40.40	6
50	ATOM	1118	С			407	-24.191	67.004	32.658	1.00 39.03	6
	ATOM	1119	0			407	-24.178	65.806	32.343	1.00 35.18	8
	ATOM	1120	N	ASN			-23.990	67.425	33.894	1.00 37.25	7
	ATOM	1121	CA	ASN			-23.739	66.475	34.943	1.00 37.01	6
	ATOM	1122	СВ	ASN			-23.524	67.221	36.256	1.00 32.27	6
55	ATOM	1123	CG	ASN			-22.296	68.137	36.202	1.00 33.56	6
	ATOM	1124		ASN			-21.194	67.696	35.823	1.00 31.99	8
	ATOM	1125		ASN			-22.478	69.397	36.604	1.00 31.23	7
	ATOM	1126	С			408	-24.876	65.453	35.036	1.00 38.14	6
								-			

5	ATOM	1181	CA	VAL	В	414	-16.845	60.674	27.788		51.06	6
	MOTA	1182	CB	VAL	В	414	-17.317	61.498	26.586	1.00	51.49	6
	ATOM	1183	CG1	VAL	В	414	-16.133	62.122	25.891	1.00	45.22	6
	ATOM	1184	CG2	VAL	В	414	-18.095	60.631	25.617	1.00	52.67	6
	ATOM	1185	С	VAL	В	414	-16.096	61.557	28.775	1.00	54.28	6
10	ATOM	1186	0	VAL	В	414	-16.700	62.283	29.574	1.00	55.49	8
	ATOM	1187	N	THR	В	415	-14.770	61.466	28.742	1.00	56.28	7
	ATOM	1188	CA	THR	В	415	-13.919	62.234	29.669	1.00	57.83	6
	ATOM	1189	СВ	THR	В	415	-12.488	61.686	29.658	1.00	59.64	6
	ATOM	1190	OG1	THR	В	415	-11.618	62.572	30.373	1.00	66.69	8
15	ATOM	1191	CG2	THR	В	415	-11.988	61.483	28.227	1.00	59.42	6
	ATOM	1192	С	THR	В	415	-13.840	63.726	29.352	1.00	56.98	6
	ATOM	1193	0	THR	В	415	-13.987	64.135	28.216	1.00	55.70	8
	ATOM	1194	N	HIS	В	416	-13.598	64.522	30.387	1.00	57.44	7
	ATOM	1195	CA	HIS	В	416	-13.485	65.972	30.237	1.00	57.34	6
20	ATOM	1196	CB	HIS	В	416	-12.114	66.326	29.653	1.00	61.35	6
	ATOM	1197	CG	HIS	В	416	-10.968	65.931	30.513	1.00	69.78	6
	ATOM	1198	CD2	HIS	В	416	-9.930	65.082	30.307	1.00	71.42	6
	ATOM	1199	ND1	HIS	В	416	-10.756	66.480	31.787	1.00	72.49	7
	ATOM	1200	CE1	HIS	В	416	-9.631	65.973	32.281	1.00	75.50	6
25	ATOM	1201	NE2	HIS	В	416	-9.120	65.131	31.408	1.00	73.91	7
	ATOM	1202	С	HIS	В	416	-14.560	66.515	29.320	1.00	53.79	6
	ATOM	1203	0	HIS	В	416	-14.334	67.477	28.591	1.00	52.81	8
	ATOM	1204	N	PHE	В	417	-15.746	65.921	29.372	1.00	48.05	7
	ATOM	1205	CA	PHE	В	417	-16.841	66.329	28.505		47.99	6
30	ATOM	1206	CB	PHE	В	417	-18.152	65.694	28.937	1.00	46.11	6
	ATOM	1207	CG	PHE	В	417	-19.233	65.781	27.898	1.00	44.27	6
	ATOM	1208	CD1	PHE	В	417	-19.280	64.856	26.870	1.00	41.79	6
	ATOM	1209	CD2	PHE	В	417	-20.118	66.846	27.893		40.23	6
	ATOM	1210	CE1	PHE	В	417	-20.233	64.959	25.869		44.30	6
35	ATOM	1211	CE2	PHE	В	417	-21.072	66.955	26.893		36.80	6
	ATOM	1212	CZ	PHE		417	-21.119	66.016	25.866		40.69	6
	ATOM	1213	С	PHE			-17.020	67.833	28.423		46.69	6
	ATOM	1214	0	PHE			-16.799	68.423	27.380		43.35	8
	ATOM	1215	N	TRP		418	-17.448	68.452	29.516		45.14	7
40	MOTA	1216	CA			418	-17.681	69.889	29.508		44.89	6
	ATOM	1217	CB			418	-18.045	70.398	30.898		42.24	6
	ATOM	1218	CG	TRP			-18.162	71.905	31.018		47.11	6
	MOTA	1219		TRP			-19.298	72.699	30.620		46.98	6
	ATOM	1220		TRP			-18.953	74.061	30.850		48.94	6
45	ATOM	1221		TRP			-20.560	72.401	30.086		45.23	6
	ATOM	1222		TRP			-17.223	72.778	31.462		46.24	6
	ATOM	1223		TRP			-17.690	74.071	31.368		50.63	7
	ATOM	1224		TRP			-19.819	75.109	30.571		45.46	6
	ATOM	1225		TRP			-21.422	73.447	29.809		44.50	6
50	ATOM	1226	CH2				-21.065	74.777	30.039		47.55	6
	ATOM	1227	С			418	-16.502	70.662	28.956		43.88	6
	ATOM	1228	0			418	-16.671	71.424	27.986		43.17	8
	ATOM	1229	N			419	-15.292	70.490	29.519		43.55	7
5.5	ATOM	1230	CD			419	-14.967	69.551	30.599		41.52	6
55	ATOM	1231	CA			419	-14.120	71.223	29.011		41.48	6
	ATOM	1232	CB			419	-12.956	70.582	29.724		39.21	6
	ATOM	1233	CG			419	-13.521	69.703	30.774		39.25 36.28	6 6
	ATOM	1234	С	PRO	В	419	-14.035	71.067	27.479	1.00	30.20	O

5	ATOM	1289	CG2	THR	В	426	-12.153	78.174	19.782	1.00 25.4	0 6
	ATOM	1290	С			426	-14.677	77.742	18.706	1.00 32.5	
	ATOM	1291	0			426	-14.639	78.530	17.763	1.00 35.1	
	ATOM	1292	N			427	-14.749	76.425	18.566	1.00 28.8	
	MOTA	1293	CA	ASP		427	-14.796	75.807	17.257	1.00 35.1	
10	ATOM	1294	СВ	ASP			-15.096	74.302	17.380	1.00 39.1	
	ATOM	1295	CG	ASP			-13.910	73.496	17.806	1.00 45.8	
	ATOM	1296	OD1				-12.786	73.774	17.348	1.00 41.9	
	ATOM	1297	OD2			427	-14.064	72.517	18.583	1.00 50.0	
	ATOM	1298	С	ASP		427	-15.883	76.502	16.429	1.00 33.9	
15	ATOM	1299	0	ASP		427	-15.673	76.815	15.262	1.00 38.0	
	ATOM	1300	N	LEU	В	428	-17.040	76.741	17.048	1.00 27.1	
	ATOM	1301	CA	LEU	В	428	-18.154	77.388	16.367	1.00 29.9	
	MOTA	1302	CB	LEU	В	428	-19.448	77.190	17.168	1.00 22.4	
	ATOM	1303	CG	LEU	В	428	-20.086	75.818	17.089	1.00 25.5	
20	ATOM	1304	CD1	LEU	В	428	-21.282	75.729	18.012	1.00 20.6	
	ATOM	1305	CD2	LEU	В	428	-20.509	75.564	15.651	1.00 17.2	
	ATOM	1306	С	LEU	В	428	-17.901	78.863	16.103	1.00 28.9	
	ATOM	1307	0	LEU	В	4.28	-18.328	79.388	15.076	1.00 31.2	
	ATOM	1308	N	ARG	В	429	-17.213	79.524	17.035	1.00 27.6	
25	ATOM	1309	CA	ARG	В	429	-16.894	80.937	16.883	1.00 28.1	
	ATOM	1310	CB	ARG	В	429	-16.274	81.507	18.160	1.00 29.5	
	ATOM	1311	CG	ARG	В	429	-17.246	81.752	19.302	1.00 34.8	5 6
	ATOM	1312	CD	ARG	В	429	-16.626	82.653	20.372	1.00 47.1	8 6
	ATOM	1313	NE	ARG			-17.373	82.714	21.620	1.00 57.9	3 7
30	ATOM	1314	CZ	ARG	B	429	-18.632	83.124	21.716	1.00 63.6	2 6
	ATOM	1315	NH1	ARG		429	-19.263	83.579	20.622	1.00 60.7	1 7
	ATOM	1316	NH2	ARG		429	-19.238	83.130	22.916	1.00 62.3	8 7
	ATOM	1317	С	ARG	4	429	-15.930	81.146	15.728	1.00 29.8	
2.5	ATOM	1318	0	ARG			-16.101	82.061	14.933	1.00 30.8	
35	ATOM	1319	N	MET			-14.908	80.295	15.670	1.00 29.6	
	ATOM	1320	CA			430	-13.920	80.343	14.614	1.00 34.72	
	ATOM	1321	CB	MET		4'30	-12.939	79.192	14.763	1.00 34.9	
	ATOM	1322	CG		В	430	-11.787	79.431	15.689	1.00 45.3	
40 .	ATOM	1323	SD			430	-10.729	80.768	15.158	1.00 52.59	
40	ATOM	1324	CE	MET			-10.070	80.157	13.610	1.00 55.50	
	ATOM	1325	C	MET			-14.638	80.217	13.284	1.00 34.01	
	ATOM ATOM	1326 1327	0	MET			-14.395	80.996	12.385	1.00 37.29	
	ATOM	1328	N	ILE			-15.516	79.217	13.176	1.00 29.99	
45	ATOM	1329	CA CB	ILE			-16.296	78.992	11.963	1.00 28.82	
7.7	ATOM	1330		ILE			-17.391	77.929	12.177	1.00 27.39	
	ATOM	1331		ILE			-18.314	77.841	10.959	1.00 23.87	
	ATOM	1331		ILE			-16.784	76.555	12.449	1.00 25.56	
	ATOM	1333	CDI	ILE :			-17.826	75.464	12.498	1.00 17.29	
50	ATOM	1334	0	ILE			-16.953	80.288	11.538	1.00 29.49	
50	ATOM	1335	N	GLY			-16.837	80.725	10.398	1.00 24.19	
	ATOM	1336	CA	GLY :			-17.657	80.904	12.474	1.00 25.25	
	ATOM	1337	CA	GLY :			-18.357 -17.395	82.142	12.179	1.00 30.38	
	ATOM	1338		GLY :			-17.531	83.209 83.740	11.725 10.637	1.00 32.75 1.00 36.38	
55	ATOM	1339	N	ALA			-16.431	83.740	12.586	1.00 36.38	
	ATOM	1340		ALA I			-15.407	83.522	12.299	1.00 26.77	
	ATOM	1341		ALA			-14.240	84.338	13.253	1.00 28.48	
	ATOM	1342		ALA			-14.905	84.433	10.867	1.00 30.73	
						-	_ ,,,,,,,	5			5

5	7.00	1202	CDI	ren	Б	440	14 210	91.352	3.402	1 00	33.65	6
3	ATOM	1397 1398		LEU LEU			-14.219 -16.577	91.591	2.574		35.42	6
	ATOM ATOM	1399	C			440	-16.099	88.561	-0.273		45.47	6
	ATOM	1400	0			440	-16.631	89.059	-1.265		52.48	8
	ATOM	1400	N			441	-15.238	87.549	-0.345		49.15	7
10		1401	CA	HIS			-14.929	86.956	-1.632		54.76	6
10	ATOM							85.700			56.68	6
	ATOM	1403	CB	HIS			-14.150		-1.448		62.73	6
	ATOM	1404	CG			441	-12.713	85.934	-1.230		65.73	6
	ATOM	1405		HIS			-11.602	85.418	-1.812			7
1.5	ATOM	1406		HIS			-12.245	86.850	-0.273		66.01	
15	ATOM	1407		HIS			-10.916	86.847	-0.309		65.55	6
	ATOM	1408		HIS			-10.512	85.993	-1.228		60.09	7
	ATOM	1409	C	HIS			-16.217	86.633	-2.301		55.93	6
	ATOM	1410	0	HIS			-16.418	86.938	-3.465		57.33	8
	ATOM	1411	N	MET			-17.106	85.997	-1.553		57.81	7
20	ATOM	1412	CA			442	-18.399	85.652	-2.106		59.11	6
	MOTA	1413	CB	MET			-19.340	85.162	-1.008		55.93	6
	MOTA	1414	CG	MET			-18.991	83.796	-0.456		58.52	6
	MOTA	1415	SD	MET			-20.310	82.994	0.505		60.99	16
	MOTA	1416	CE			442	-20.525	84.203	1.827		52.61	6
25	MOTA	1417	С			442	-18.991	86.879	-2.785		60.31	6
	MOTA	1418	0	MET.			-19.646	86.778	-3.817		58.18	8
	ATOM	1419	Ń	LYS	В	443	-18.731	88.045	-2.213	1.00	61.45	7
	MOTA	1420	CA	LYS	В	443	-19.267	89.268	-2.758	1.00	64.90	6
	ATOM	1421	CB	LYS	В	443	-19.182	90.358	-1.704	1.00	64.40	6
30	ATOM	1422	CG	LYS	В	443	-20.160	91.449	-1.982		69.12	6
	ATOM	1423	CD	LYS	В	443	-19.763	92.673	-1.306	1.00	71.14	6
	ATOM	1424	CE	LYS	В	443	-20.508	92.993	-0.491	1.00	73.43	6
	ATOM	1425	NZ	LYS	В	443	-20.174	94.242	0.151	1.00	67.97	7
	ATOM	1426	С	LYS	В	443	-18.528	89.704	-4.020	1.00	67.29	6
35	ATOM	1427	0	LYS	В	443	-18.979	90.586	-4.731	1.00	67.90	8
	ATOM	1428	N	VAL	В	444	-17.383	89.075	-4.285	1.00	66.57	7
	MOTA	1429	CA	VAL	В	444	-16.589	89.418	-5.455	1.00	64.76	6
	ATOM	1430	CB	VAL	В	444	-15.097	89.568	-5.082	1.00	62.76	6
	ATOM	1431	CG1	VAL	В	444	-14.269	89.857	-6.298	1.00	64.00	6
40	ATOM	1432	CG2	VAL	В	444	-14.905	90.678	-4.042	1.00	59.27	6
	ATOM	1433	С	VAL	В	444	-16.800	88.397	-6.569	1.00	68.61	6
	ATOM	1434	0	VAL	В	444	-16.968	88.774	-7.729	1.00	70.60	8
	ATOM	1435	N	GLU	В	445	-16.812	87.118	-6.219	1.00	70.71	7
	ATOM	1436	CA	GLU	В	445	-16.951	86.033	-7.197	1.00	71.45	6
45	ATOM	1437	CB	GLU	В	445	-16.169	84.809	-6.712	1.00	72.36	6
	ATOM	1438	CG	GLU	В	445	-14.736	85.090	-6.392	1.00	40.00	6
	ATOM	1439	CD	GLU			-13.998	83.890	-5.851	1.00	40.00	6
	ATOM	1440	OE1	GLU	В	445	-14.587	82.798	-5.665	1.00	40.00	8
	ATOM	1441		GLU			-12.775	83.995	-5.580		40.00	8
50	ATOM	1442	С	GLU			-18.375	85.574	-7.422		71.46	6
	ATOM	1443	0	GLU			-18.605	84.542	-8.064		73.02	8
	ATOM	1444	N	CYS			-19.328	86.333	-6.900		71.12	7
	ATOM	1445	CA	CYS			-20.694	85.942	-7.062		70.83	6
	ATOM	1446	CB	CYS			-21.196	85.230	-5.784		71.05	6
55	ATOM	1447	SG	CYS			-20.296	83.720	-5.349		72.83	16
	ATOM	1448	С	CYS			-21.563	87.135	-7.386		71.91	6
	ATOM	1449	0	CYS			-21.307	88.244	-6.911		72.06	8
	ATOM	1450	N	PRO			-22.550	86.928	-8.256		73.12	7
					-							•

5	ATOM	1505	0	PRO	В	453	-29	9.700	90.	206	3.	345	1.00	54.	17	8
	ATOM	1506	N	LEU	В	454	-32	1.807	89.	458	3.	631		51.		7
	MOTA	1507	CA	LEU	В	454	-32	1.538	88.	945	4.	948	1.00	47.	17	6
	ATOM	1508	СВ	LEU	В	454	-32	2.550	87.	858	5.	330	1.00) 44.	44	6
	ATOM	1509	CG	LEU	В	454	-32	2.347	87.	412	6.	748	1.00	41.	33	6
10	ATOM	1510	CD1	LEU	В	454	-33	1.987	88.	589	7.	631	1.00	35.	93	6
	MOTA	1511	CD2	LEU	В	454	-33	3.590	86.	732	7.	239	1.00	34.	79	6
	ATOM	1512	С	LEU	В	454	-30	0.099	88.	443	4.	928	1.00	42.	25	6
	ATOM	1513	0	LEU	В	454	-29	3.323	88.	774	5.	812	1.00	40.	82	8
	ATOM	1514	N	PHE		455	-29	716	87.	707	3.	885	1.00	39.	29	7
15	ATOM	1515	CA	PHE		455		3.347	87.	204	3.	770	1.00	41.	81	6
	ATOM	1516	СВ	PHE		455		3.132	86.		2.	418	1.00	47.	22	6
	ATOM	1517	CG	PHE				5.813	85.			292	1.00	56.	97	6
	ATOM	1518	CD1			455		5.437	84.			247	1.00	57.	23	6
	ATOM	1519		PHE				5.949	86.			236		59.		6
20	ATOM	1520	CE1	PHE				5.225	84.			153		56.		6
	ATOM	1521	CE2	PHE				1.720	85.			134		61.		6
	ATOM	1522	CZ	PHE		455		1.360	84.			103		59.		6
	ATOM	1523	C	PHE		455		7.400	88.			923		45.		6
	ATOM	1524	0	PHE		455		5.657	88.			889		39.		8
25	ATOM	1525	N	LEU		456		7.439	89.			949		43.		7
23	ATOM	1526	CA	LEU		456		5.597	90.			947) 44.		6
	ATOM	1527	CB	LEU		456		7.001	91.			802		50.		6
	ATOM	1528	CG	LEU		456		5.439	91.			432		55.		6
	ATOM	1529		LEU		456		7.064	92.			591		54.		6
30	ATOM	1530		LEU				1.920	91.			494		53.		6
30	ATOM	1530	CDZ	LEU				5.689	91.			264) 44.		6
	MOTA	1531	0	LEU		456		5.678	91.			886		45.		8
		1532	N	GLU	٠,			7.990	91.			265		44.		7
	ATOM	1534	CA	GLU				3.288	92.			497		46.		6
35	ATOM	1534	CA	GLU				7.434	91.			628		43.		6
33	ATOM	1536	0	GLU		457		5.754	92.			339		42.		8
	ATOM	1536		GLU		457		9.769	91.			855		50.		6
	ATOM	1537	CB	GLU		4.57).208	92.			954		20.		6
	ATOM		CG	GLU		457		1.646	93.			782		20.		6
40	ATOM	1539 1540	CD	GLU				2.351	92.			779		20.		8
40	ATOM			GLU				2.157	94.				1.00			8
	ATOM	1541		VAL					90.			281) 43.		7
	ATOM	1542	N	VAL				7.428				351		44.		6
	ATOM	1543	CA					5.706	89.			432		44.		6
15	ATOM	1544	CB	VAL				7.075	88.			646		49.		6
45	ATOM	1545		VAL				5.440	87.					40.		6
	ATOM	1546		VAL				3.562	88.			474				
	ATOM	1547	С	VAL				5.190	89.			311		42.		6
	ATOM	1548	0	VAL				1.551	90.			303		42.		8
50	ATOM	1549	N	PHE				1.605	89.			180		44.		7
50	ATOM	1550	CA	PHE				3.165	89.			077		48.		6
	ATOM	1551	CB	PHE				2.747	88.			065		43.		6
	MOTA	1552	CG	PHE				3.167	87.			441		40.		6
	ATOM	1553		PHE				1.494	86.			368		41.		6
	ATOM	1554		PHE				2.263	86.			009		39.		6
55	ATOM	1555		PHE				1.892	85.			889		40.		6
	MOTA	1556		PHE				2.649	85.			527		36.		6
	ATOM	1557	CZ	PHE				3.967	84.			455		36.		6
	ATOM	1558	С	PHE	В	459	-22	2.627	90:	758	6.	623	1.00	52.	/1	6

5	MOTA	4035	C11	Т3	K	1	-26.708	75.670	7.834	1.00	23.12	6
	ATOM	4036	C12	Т3	K	1	-24.521	78.610	5.376	1.00	19.67	6
	ATOM	4037	C13		K	1	-29.211	75.830	8.626	1.00	18.97	6
	ATOM	4038	C15		K	1	-29.181	74.567	9.488	1.00	19.32	6
	ATOM	4039	C17		K	1	-30.440	74.343	10.264	1.00	19.02	6
10	ATOM	4040	11	T3	K	1	-27.868	77.342	3.316		25.29	53
10	ATOM	4041	12	T3	K	1	-22.732	79.619	0.850		26.49	53
	ATOM	4042	13	T3	K	1	-23.602	75.792	7.334		25.67	53
			N1	T3	K	1	-28.680	73.342	8.762		15.12	7
	ATOM	4043						81.265	3.443		21.79	8
15	ATOM	4044	01	T3	K	1	-22.742		4.595		22.05	8
15	MOTA	4045	02	T3	K	1	-25.267	76.388				8
	ATOM	4046	03	T3	K	1	-30.816	73.159	10.382		20.38	
	MOTA	4047	04	Т3	K	1	-31.028	75.359	10.729	1.00	20.16	8
	TER											_
	MOTA	1	С	LYS			13.868	40.176	48.888		40.00	6
20	MOTA	2	0	LYS			13.914	40.120	47.639		40.00	8
	ATOM	3	N	LYS			14.374	42.245	50.489		40.00	7
	MOTA	4	CA	LYS	Х	686	14.937	41.070	49.710		40.00	6
	ATOM	5	N	HIS	Х	687	13.038	39.527	49.705	1.00	40.00	7
	ATOM	6	CA	HIS	Х	687	11.891	38.518	49.521	1.00	40.00	6
25	ATOM	7	CB	HIS	Х	687	10.639	39.000	50.212	1.00	40.00	6
	ATOM	8	CG	HIS	Х	687	10.981	39.526	51.563	1.00	40.00	6
	ATOM	9	CD2	HIS	Х	687	11.021	38.908	52.753	1.00	40.00	6
	ATOM	10		HIS			11.354	40.844	51.754	1.00	40.00	7
	ATOM	11	CE1	HIS	Х	687	11.614	40.994	53.034	1.00	40.00	6
30	ATOM	12		HIS			11.422	39.847	53.646	1.00	40.00	7
	ATOM	13	С	HIS			11.183	38.108	48.208		40.00	6
	ATOM	14	0	HIS			11.674	38.361	47.094		40.00	8
	ATOM	15	N	LYS			10.064	37.458	48.649		40.00	7
	ATOM	16	CA	LYS			8.911	36.858	47.931		40.00	6
35	ATOM	17	CB	LYS			8.292	37.850	46.968		40.00	6
33	ATOM	18	C	LYS			9.246	35.573	47.161		40.00	6
	ATOM	19	0			688	9.319	34.473	47.722		40.00	8
	ATOM	20	N			689	9.426	35.754	45.865		40.00	7
	ATOM	21	CA			689	9.661	34.640	44.924		40.00	6
40	ATOM	22	CB			689	9.731	35.167	43.498		40.00	6
40		23	CG2			689	9.638	34.053	42.453		40.00	6
	ATOM						8.597	36.141	43.176		40.00	6
	ATOM	24		ILE				36.183	41.688		40.00	6
	ATOM	25		ILE			8.250		45.228		40.00	6
15	ATOM	26	С			689	10.954	33.869				8
45	ATOM	27	0			689	10.920	32.657	45.511		40.00	
	ATOM	28	N			690	12.065	34.579	45.140		40.00	7
	ATOM	29	CA			690	13.391	33.996	45.397		40.00	6
	MOTA	30	CB			690	14.349	35.043	45.892		40.00	6
	ATOM	31	CG			690	14.450	36.168	44.906		40.00	6
50	MOTA	32		LEU			15.397	37.261	45.363		40.00	6
	MOTA	33	CD2	LEU	X	690	14.940	35.695	43.540		40.00	6
	ATOM	34	С	LEU	Х	690	13.271	32.999	46.466		40.00	6
	MOTA	35	0	LEU	Х	690	13.633	31.832	46.315	1.00	40.00	8
	ATOM	36	N.	HIS	Χ	691	12.773	33.472	47.541		40.00	7
55	ATOM	37	CA	HIS	Х	691	12.557	32.559	48.569		40.00	6
	ATOM	38	CB	HIS	X	691	11.729	33.212	49.658		40.00	6
	ATOM	39	CG	HIS	Х	691	12.588	34.116	50.564		40.00	6
	ATOM	40	CD2	HIS	Х	691	13.648	33.852	51.385	1.00	40.00	6

5	MOTA	95	0	SER	Х	698	13.253	17.158	42.026		40.00	8
	ATOM	96	OXT	SER	Х	698	13.131	18.976	40.714	1.00	40.00	8
	TER											
	ATOM	1	CB	LYS	Y	688	-33.793	96.885	6.491	1.00	40.00	6
	ATOM	2	С	LYS	Y	688	-35.002	95.370	8.130	1.00	40.00	6
10	ATOM	3	0	LYS	Y	688	-36.027	95.520	8.779	1.00	40.00	8
	ATOM	4	N	LYS	Y	688	-32.717	96.619	8.695	1.00	40.00	7
	ATOM	5	CA	LYS	Y	688	-34.040	96.591	7.954	1.00	40.00	6
	ATOM	6	N	ILE	Y	689	-34.578	93.781	6.908	1.00	40.00	7
	ATOM	7	CA	ILE			-35.862	93.106	7.268	1.00	40.00	6
15	ATOM	8	СВ	ILE			-35.971	91.759	6.572	1.00	40.00	6
	ATOM	9	CG2			689	-37.270	91.077	6.932	1.00	40.00	6
	ATOM	10	CG1			689	-35.917	91.937	5.062	1.00	40.00	6
	ATOM	11	CD1	ILE			-36.341	90.691	4.289	1.00	40.00	6
	ATOM	12	C				-36.032	92.870	8.780		40.00	6
20	ATOM	13	0	ILE			-36.913	93.446	9.442	1.00	40.00	8
20	MOTA	14	N	LEU			-35.019	92.834	9.787	1.00	40.00	7
	ATOM	15	CA	LEU			-34.956	92.320	11.163	1.00	40.00	6
	ATOM	16	CB	LEU			-33.528	92.432	11.697	1.00	40.00	6
		17	CG	LEU			-32.516	91.647	10.864	1.00	40.00	6
25	ATOM	18	CD1				-31.087	91.764	11.397	1.00	40.00	6
23	ATOM ATOM	19	CD2	LEU	-		-32.819	90.148	10.812		40.00	6
			CD2			690	-35.899	93.123	12.065	1.00	40.00	6
	ATOM	20 21				690	-36.570	92.492	12.928	1.00	40.00	8
	ATOM		0			691	-36.039	94.731	11.373	1.00	40.00	7
20	ATOM	22	N	HIS			-36.634	94.731	12.683		40.00	6
30	ATOM	23	CA	HIS		691		96.383	12.005		40.00	6
	MOTA	24	CB	HIS	Y		-36.854	97.153	13.078		40.00	6
	ATOM	25	CG	HIS		691	-35.610	97.133	12.159		40.00	6
	ATOM	26	CD2			691	-34.757	97.579	14.319		40.00	7
25	ATOM	27		HIS	-	691	-35.129		14.319		40.00	6
35	ATOM	28	CE1			691	-34.039	98.290	12.815		40.00	7
	ATOM	29		HIS		691	-33.786	98.346		1.00		6
	MOTA	30	С	HIS		691	-37.972	94.287	12.756		40.00	8
	ATOM	31	0	HIS		691	-38.240	93.417	13.545		40.00	7
4.0	ATOM	32	N	ARG			-38.265	94.388	11.505			6
40	MOTA	33	CA	ARG			-39.577	93.869	11.276		40.00	6
	MOTA	34	CB	ARG			-39.653	93.692	9.795		40.00	
	ATOM	35	CG	ARG			-40.759	92.764	9.329		40.00	6
	MOTA	36	CD	ARG			-40.618	92.422	7.848		40.00	6
	MOTA	37	NE	ARG			-41.849	92.641	7.091		40.00	7
45	ATOM	38	CZ	ARG			-41.898	92.758	5.763		40.00	6
	ATOM	39		ARG			-40.784	92.695	5.024		40.00	7
	MOTA	40	NH2	ARG			-43.034	92.940	5.080		40.00	7
	MOTA	41	С	ARG	•		-39.941	92.547	11.995		40.00	6
	ATOM	42	0	ARG			-41.001	92.440	12.649		40.00	8
50	MOTA	43	N	LEU			-39.095	91.576	11.816		40.00	7
	MOTA	44	CA	LEU	Y	693	-39.230	90.232	12.395		40.00	6
	ATOM	45	CB	LEU	Y	693	-38.362	89.337	11.615		40.00	6
	ATOM	46	CG	LEU	Y	693	-38.737	89.375	10.132		40.00	6
	MOTA	47		LEU			-37.794	88.570	9.247		40.00	6
55	ATOM	48	CD2	LEU	Y	693	-40.142	88.827	9.862		40.00	6
	ATOM	49	С	LEU	Y	693	-38.921	90.378	13.816		40.00	6
	ATOM	50	0	LEU	Y	693	-39.191	89.474	14.615		40.00	8
	ATOM	51	N	LEU	Y	694	-38.366	91.533	14.076	1.00	40.00	7

131

5 Appendix 2

At mic Coordinates for Human ERa Con	nplexed with DES, and a GRIP1 NR-box 2 Peptide
--------------------------------------	--

10	CRYST1	54.09	4 82	.217	58.	041	90.00	11	1.33	90	.00	P 21	2
10	OBICYI	1 00	0000	0.000	000	0 (00000	0	0000	0			
	ORIGX1 ORIGX2		00000	1.000			00000		0000				
	ORIGX2		0000	0.000			00000		0000				
	SCALE1		8486	0.000			07221		0000				
15	SCALE1		00000	0.012			00000		0000				
13	SCALE2		0000	0.000			18497		0000				
	SCALES	0.00	,0000	0.000	,000	0.0	,101,	•		•			
	MOTA	1	СВ	SER	Α	305	35.	230	-14	.787	-1.163		
	ATOM	2	C	SER	Α	305	35.	331	-14	.303	1.289		
20	ATOM .	3	0	SER	Α	305		146		.984	1.186		
	ATOM	4	N	SER	Α	305	36.	797		.033	0.285		
•	ATOM	5	CA	SER	Α	305		138		.713	0.061		
	ATOM	6	N	LEU	Α	306		982		.313	2.449		
	MOTA	7	CA	LEU	Α	306		.329		.950	3.702		
25	ATOM	8	CB	LEU	Α	306		251		.256	4.878		
	ATOM	9	С	LEU	Α	306		929		.478	3.719		
	ATOM	10	0	LEU	Α	306		. 580		.638	3.100		
	ATOM	11	N	ALA	Α	307		851		.176	4.434		
	MOTA	12	CA	ALA	Α	307		. 358		.810	4.541		
30	ATOM	13	CB	ALA .	A	307		841		.795	4.436		
	ATOM	14	С	ALA	A	307		. 792		.204	5.866		
	MOTA	15	0	ΑLĄ	A	307		878		.984	6.005		
	ATOM	16	N	LEU	A	308		.064		.062	6.842		
	ATOM	17	CA	LEU	A	308		.487		.598	8.156		
35	ATOM	18	CB	LEU	A	308		.423		.745	9.171		
	ATOM	19	CG	LĘŲ	Α	308		.214		.688	9.130		
	MOTA	20	CD1	LEU	Α	308		. 188			10.406		
	MOTA	21	CD2	LEU	A	308		.919		.898	8.989		
	MOTA	22	С	LEU	A	308		. 903		.037	8.100		
40	ATOM	23	0	LEU	A	308		.385		.445	9.066		
	ATOM	24	N	SER	A	309		.561		.219	6.77		
	ATOM	25	CA	SER	A	309		.928			5.934		
	ATOM	26	CB	SER	A	309		.720		.750 .283	4.606		
15	ATOM	27	OG G	SER	A	309		. 889 . 98 6		.373	6.099		
45	ATOM	28	C	SER	A	309		.965		.637	6.249		
	ATOM	29	O N	SER LEU	A	309 310		. 940		.038	5.352		
	MOTA	30	N CA		A	310		. 877		.759	4.658		
	ATOM	31	CA	LEU LEU	A n	310		.516		.596	3.974		
50	ATOM	32	CB CG	LEÜ	A	310		.301		.188	2.583		
50	ATOM ATOM	33 34	CD1	LEU	A A	310		.951		.728	2.055		
		3 4 35	CD2	LEU		310		.417		.755	1.650		
	ATOM	36	CD2	LEU	A A	310		.086		.589	5.609		
	ATOM		0			310		.605		.607	6.743		
55	ATOM	37 38	N	LEU THR	A A	311		.812		.576	5.148		
رر	ATOM	38 39	N CA	THR	A	311		.034		.380	5.949		
	ATOM ATOM	40	CB	THR	A	311		.313		.633	5.532		
	ATOM	41	OG1	THR	A	311		.079		.936	4.303		
	ATOM	42	CG2	THR	A	311		.464		.606	5.350		
60	ATOM	43	C	THR	A	311		.834		.475	5.674		
UU	ATON	4.J		1 1110	A	711	_0	. 054					

_								0 107 2 100	1 00	22 52
5	MOTA	101	N	LEU	Α	320	29.140	-0.195 -3.120	1.00	32.53
	MOTA	102	CA	LEU	Α	320	28.972	0.756 -4.212	1.00	35.33
	ATOM	103	CB	LEU	A	320	30.052	1.839 -4.155	1.00	33.52
	ATOM	104	CG	LEU	Α	320	29.974	2.899 -3.054	1.00	34.60
	ATOM	105	CD1	LEU	Α	320	31.060	3.940 -3.292	1.00	33.69
10	ATOM	106	CD2	LEU	Α	320	28.611	3.562 -3.044	1.00	31.05
	ATOM	107	С	LEU	Α	320	29.052	0.040 ~5.561	1.00	35.41
	ATOM	108	Ō	LEU	A	320	28.230	0.271 -6.446	1.00	39.16
	ATOM	109	N	AASP	A	321	30.042	-0.833 -5.720	0.50	36.33
	ATOM	110	N	BASP	A	321	30.041	-0.839 -5.695	0.50	35.76
15	ATOM	111	CA	AASP	A	321	30.214	-1.559 -6.977	0.50	37.71
13	ATOM					321	30.258	-1.595 -6.925	0.50	37.11
		112	CA	BASP	A			-2.334 -6.973	0.50	40.01
	ATOM	113	CB	AASP	A	321	31.537			39.41
	ATOM	114	CB	BASP	A	321	31.573	-2.374 -6.826	0.50	
20	ATOM	115	CG	AASP	A	321	31.694	-3.230 -8.195	0.50	41.93
20	MOTA	116	CG	BASP	A	321	32.770	-1.562 -7.284	0.50	39.96
	ATOM	117	OD1	AASP	A	321	31.523	-2.733 -9.329	0.50	42.11
	ATOM	118	OD1	BASP	A	321	33.312	-1.868 -8.366	0.50	43.41
	MOTA	119	OD2	AASP	Α	321	31.988	-4.432 -8.022	0.50	42.69
	ATOM	120	OD2	BASP	Α	321	33.170	-0.622 -6.564	0.50	41.33
25	ATOM	121	С	AASP	À	321	29.069	-2.524 -7.275	0.50	37.19
	ATOM	122	С	BASP	A	321	29.123	-2.565 -7.253	0.50	36.68
	ATOM	123	0	AASP	A	321	28.820	-2.861 -8.434	0.50	36.87
	ATOM	124	0	BASP	A	321	28.934	-2.942 -8.411	0.50	36.08
	ATOM	125	N	ALA	A	322	28.374	-2.968 -6.235	1.00	35.35
30	ATOM	126	CA	ALA	A	322	27.268	-3.902 -6.417	1.00	31.59
50	ATOM	127	CB	ALA	A	322	27.124	-4.781 -5.175	1.00	30.73
			CB			322	25.946	-3.204 -6.709	1.00	30.07
	ATOM	128		ĀĿĀ	Ą			-3.857 -7.036	1.00	26.53
	ATOM	129	0	ALA	A	322	24.955			27.98
26	ATOM	130	N	GĻŲ	A	323	25.932	-1.880 -6.596	1.00	
35	ATOM	131	CA	GLU	A	323	24.713	-1.117 -6.827	1.00	29.88
	MOTA	132	CB	GLU	Α	323	25.027	0.380 -6.855	1.00	30.98
	ATOM	133	CG	GĻU	A	323	24.870	1.068 -5.509	1.00	31.62
	MOTA	134	CD	GĽÜ	A	323	23.463	0.940 -4.960	1.00	31.98
	MOTA	135	OE1	GLU	A	323	23.183	-0.056 -4.257	1.00	33.10
40	MOTA	136	OE2	GĽŬ.	Α	323	22.640	1.836 -5.233	1.00	30.01
	MOTA	137	С	GLU	A	323	24.010	-1.515 -8.123	1.00	30.86
	ATOM	138	0	GLU	Α	323	24.655	-1.705 -9.151	1.00	28.86
	ATOM	139	N	PRO	Α	324	22.674	-1.659 -8.083	1.00	30.66
	ATOM	140	CD	PRO	Α	324	21.774	-1.466 -6.935	1.00	31.01
45	ATOM	141	CA	PRO	A	324	21.935	-2.032 -9.290	1.00	30.29
	ATOM	142	CB	PRO	A	324	20.613	-2.598 -8.760	1.00	31.42
	ATOM	143	CG	PRO	Α	324	20.626	-2.363 -7.258	1.00	33.66
	MOTA	144	С	PRO	Α	324	21.717	-0.785-10.138	1.00	27.46
	ATOM	145	0	PRO	A	324	21.893	0.332 -9.668	1.00	26.19
50	ATOM	146	N	PRO	A	325	21.335	-0.959-11.403	1.00	27.80
50	ATOM	147	CD	PRO	A	325	21.082	-2.198-12.161	1.00	27.35
		148	CA	PRO	A	325	21.125	0.242-12.211	1.00	25.59
	ATOM							-0.266-13.637	1.00	24.02
	MOTA	149	CB	PRO	A ,	325	21.258	-1.695-13.559		
	ATOM	150	CG	PRO	A	325	20.773		1.00	26.00
55	MOTA	151	С	PRO	A	325	19.749	0.830-11.954	1.00	23.73
	MOTA	152	0	PRO	A	325	18.873	0.165-11.402	1.00	24.83
	MOTA	153	N	ILE	Α	326	19.571	2.081-12.352	1.00	22.11
	MOTA	154	CA	ILE	A	326	18.296	2.762-12.212	1.00	24.01
	ATOM	155	CB	ILE	A	326	18.502	4.282-12.133	1.00	25.97
60	MOTA	156	CG2	ILE	Α	326	17.168	4.992-12.286	1.00	20.75
	MOTA	157	CG1	ILE	Α	326	19.189	4.632-10.805	1.00	29.31

_										
5	MOTA	215	0	PRO	Α	333	1.879	8.690-21.395	1.00	51.19
	ATOM	216	N	THR	A	334	0.457	6.956-21.532	1.00	52.26
	ATOM	217	CA	THR	A	334	-0.724	7.802-21.687	1.00	54.21
	ATOM	218	CB	THR	A	334	-1.997	6.949-21.813	1.00	53.90
	ATOM	219	OG1	THR	A	334	-1.971	6.256-23.065	1.00	53.92
10	ATOM	220	CG2	THR	Α	334	-3.237	7.821-21.761	1.00	54.15
	MOTA	221	C	THR	Α	334	-0.864	8.782-20.525	1.00	56.34
	MOTA	222	0	THR	Α	334	-1.389	8.443-19.461	1.00	56.44
	ATOM	223	N	ARG	Α	335	-0.386	10.002-20.766	1.00	58.24
	ATOM	224	CA	ARG	Α	335	-0.377	11.099-19.801	1.00	57.96
15	ATOM	225	CB	ARG	A	335	-0.569	12.427-20.531	1.00	60.22
	ATOM	226	C	ARG	Α	335	-1.349	10.996-18.627	1.00	56.61
	ATOM	227	0	ARG	Α	335	-0.919	10.908-17.475	1.00	60.70
	ATOM	228	N	PRO	Α	336	-2.667	11.015-18.889	1.00	52.43
	ATOM	229	CD	PRO	Α	336	-3.389	11.117-20.165	1.00	49.06
20	ATOM	230	CA	PRO	Α	336	-3.587	10.915-17.752	1.00	49.58
	ATOM	231	СВ	PRO	A	336	-4.911	11.456-18.302	1.00	48.66
	ATOM	232	CG	PRO	A	336	-4.645	11.809-19.760	1.00	51.33
	ATOM	233	С	PRO	A	336	~3.698	9.468-17.279	1.00	49.25
	ATOM	234	0	PRO	A	336	-4.340	8.644-17.929	1.00	48.06
25	ATOM	235	N	PHE	A	337	-3.063	9.170-16.147	1.00	47.90
22	ATOM	236	CA	PHE	A	337	-3.055	7.821-15.582	1.00	46.61
	ATOM	237	CB	PHE	A	337	-2.063	7.732-14.421	1.00	47.73
	ATOM	238	CG	PHE	A	337	-0.649	8.011-14.805	1.00	46.27
	ATOM	239	CD1	PHE	A	337	-0.017	9.168-14.368	1.00	46.55
30	ATOM	240	CD2	PHE	A	337	0.061	7.113-15.591	1.00	48.12
50	ATOM	241	CE1	PHE		337	1.305	9.429~14.707	1.00	48.09
		241	CE2		A A	337	1.386	7.364-15.938	1.00	47.57
	ATOM ATOM	242	CE2	PHE	A	337	2.009	8.525-15.495	1.00	48.40
	ATOM	243	C	PHE		337	-4.401	7.338-15.071	1.00	46.15
35					A		-5.250	8.127-14.671	1.00	48.34
,,	ATOM ATOM	245 246	0	PHE SER	A	337 338	-4.573	6.022-15.080	1.00	45.06
			N Ca		A	338	-5.781	5.385-14.578	1.00	45.12
	ATOM	247	CA CB	SER SER	A	338	-6.477	4.594-15.684	1.00	44.49
	MOTA	248		27.	A	338	-6.227	3.206-15.554	1.00	45.78
40	MOTA	249 250	OG C	SER	Ą		-5.292	4.439-13.488	1.00	47.04
40	ATOM ATOM			SER	A	338 338	-4.090	4.186-13.387	1.00	44.08
	ATOM	251	O N	SER	A	339	-6.206	3.916-12.676	1.00	45.63
		252	N C2	GĻU	Ą			3.012-11.608	1.00	45.40
	ATOM	253	CA	GĻU	A	339	-5.802	2.521-10.814	1.00	45.66
15	ATOM	254	CB	GĻŲ	A	339	-7.015	1.680 -9.600		46.81
45	ATOM	255	CG	GLU	A	339	-6.637			
	ATOM	256	CD	GLU	A	339	-7.717	1.652 -8.535	1.00	47.56
	ATOM	257	OE1	GLU	A	339	-8.471	0.656 -8.477	1.00	47.37
	ATOM	258	OE2	GLU	A	339	-7.810	2.625 -7.754	1.00	49.29
50	MOTA	259	C	GĽÚ	A	339	-5.040	1.821-12.170	1.00	45.23
50	ATOM	260	0	GLU	A	339	-3.862	1.641-11.872	1.00	46.51
	ATOM	261	N	ALA	A	340	-5.712	1.010-12.982	1.00	42.87
	ATOM	262	CA	ALA	A	340	-5.078	-0.158-13.574	1.00	40.24
	ATOM	263	CB	ALA	A	340	-6.055	-0.871-14.496	1.00	41.40
~ ~	ATOM	264	С	ALA	A	340	-3.837	0.273-14.350	1.00	38.83
55	ATOM	265	0	ALA	Α	340	-2.909	-0.515-14.543	1.00	35.58
	ATOM	266	N	SER	Α	341	-3.836	1.535-14.773	1.00	35.79
	ATOM	267	CA	SER	A	341	-2.742	2.133-15.537	1.00	36.58
	MOTA	268	CB	SER	Α	341	-3.231	3.454-16.154	1.00	39.01
<i>~</i>	ATOM	269	OG	SER	A	341	-2.211	4.130-16.864	1.00	36.09
60	ATOM	270	С	SER	Α	341	-1.480	2.376-14.691	1.00	35.63
	ATOM	271	0	SER	A	341	-0.389	1.913-15.038	1.00	33.20

5	ATOM	329	С	LEU	А	349	9.564	-2.335-11.734	1.00	22.94
3	ATOM	330	0	LEU	A	349	10.724	-2.749-11.717	1.00	23.97
	ATOM	331	N	ALA	A	350	8,705	-2.591-10.756	1.00	21.67
	ATOM	332	CA	ALA	A	350	9.113	-3.356 -9.586	1.00	21.83
	ATOM	333	CB	ALA	A	350	7.963	-3.441 -8.593	1.00	18.95
10	ATOM	334	C	ALA	A	350	9.568	-4.757 -9.985	1.00	21.90
	ATOM	335	ō	ALA	A	350	10.625	-5.221 -9.554	1.00	24.15
	ATOM	336	N	ASP	A	351	8.767	-5.423-10.810	1.00	23.24
	ATOM	337	CA	ASP	Α	351	9.093	-6.772-11.259	1.00	25.87
	ATOM	338	CB	ASP	A	351	8.028	-7.274-12.239	1.00	27.03
15	ATOM	339	CG	ASP	Α	351	8.103	-8.772-12.458	1.00	31.64
	ATOM	340	OD1	ASP	A	351	8.217	-9.196-13.628	1.00	35.06
	ATOM	341	OD2	ASP	Α	351	8.049	-9.525-11.464	1.00	36.86
	ATOM	342	С	ASP	Α	351	10.469	-6.825-11.912	1.00	22.36
	MOTA	343	0	ASP	Α	351	11.219	-7.773-11.702	1.00	25.15
20	MOTA	344	N	ARG	Α	352	10.810	-5.808-12.697	1.00	23.58
	MOTA	345	CA	ARG	Α	352	12.115	-5.787-13.347	1.00	21.07
	ATOM	346	CB	ARG	Α	352	12.120	-4.785-14.507	1.00	21.02
	MOTA	347	CG	ARG	Α	352	11.539	-5.352-15.797	1.00	20.44
	MOTA	348	CD	ARĢ	Α	352	11.554	-4.319-16.915	1.00	20.43
25	MOTA	349	NE	ARG	Α	352	10.592	-3.245-16.687	1.00	19.85
	MOTA	350	CZ	ARG	Α	352	10.910	-1.954-16.641	1.00	19.69
	MOTA	351	NH1	ARĜ	A	352	12.172	-1.564-16.813	1.00	17.36
	MOTA	352	NH2	ARG	À	352	9.962	-1.049-16.441	1.00	21.88
	MOTA	353	С	ARG	A	352	13.223	-5.442-12.350	1.00	22.11
30	ATOM	354	0	ARG	Α	352	14.346	-5.945-12.454	1.00	24.13
	MOTA	355	N	GĻŲ	A	353	12.909	-4.587-11.383	1.00	18.66
	MOTA	356	CA	GLÜ	A	353	13.888	-4.206-10.376	1.00	19.08
	ATOM	357	CB	GĻŲ	A	353	13.317	-3.102 -9.483	1.00	21.62
	MOTA	358	CG	GĻÜ	Α	353	13.295	-1.718-10.114	1.00	20.97
35	MOTA	359	CD	GĻŲ	Α	353	12.832	-0.648 -9.129	1.00	23.84
	MOTA	360	OE1	GĻŲ	A	353	11.611	-0.531 -8.926	1.00	24.76
	ATOM	361	OE2	GĽŲ	Ā	353	13.686	0.066 -8.557	1.00	24.95 20.14
	ATOM	362	C	GLÜ	A	353	14.246	-5.423 -9.512 -5.600 -9.104	1.00	19.40
40	MOTA	363	0	GLU	A	353	15.398	-6.257 -9.235	1.00	19.54
40	ATOM	364	N	LEU	A	354	13.246 13.434	-7.452 -8.415	1.00	21.77
	ATOM	365	CA	LEU	A	354	12.107	-8.209 -8.270	1.00	23.09
	MOTA	366	CB	LEU	A	354 354	11.160	-7.606 -7.223	1.00	25.00
	MOTA MOTA	367 368	CG CD1	LEU LEU	A A	354 354	9.720	-8.013 -7.510	1.00	23.49
45	MOTA	369	CD2	ΓΈΩ	A	354		-8.069 -5.839		
43	ATOM	370	CD2	ΓΕΏ	A	354	14.500	-8.386 -8.981	1.00	23.21
	ATOM	371	0	LEU	A	354	15.255	-9.007 -8.234	1.00	22.44
	ATOM	372	Ŋ	VAL	A	355	14.560	-8.490-10.302	1.00	22.52
	ATOM	373	CA	VAL	A	355	15.551	-9.343-10.935	1.00	21.66
50	ATOM	374	СВ	VAL	A	355	15.353	-9.365-12.466	1.00	24.35
50	MOTA	375	CG1	VÄĻ	A	355	16.435	-10.214-13.119	1.00	28.16
	ATOM	376	CG2	VAL	A	355	13.957	-9.886-12.798	1.00	21.59
	ATOM	377	C	VAL	A	355	16.944	-8.811-10.606	1.00	23.74
	ATOM	378	Ō	VAL	A	355	17.857	-9.581-10.291	1.00	23.51
55	ATOM	379	N	HIS	A	356	17.105	-7.489-10.669	1.00	21.27
7,7	ATOM	380	CA	HIS	Ā	356	18.392	-6.861-10.369	1.00	21.31
	ATOM	381	CB	HIS	A	356	18.384	-5.390-10.811	1.00	19.87
	MOTA	382	CG	HIS	A	356	18.494	-5.205-12.295	1.00	21.77
	ATOM	383	CD2	HIS	A	356	17.543	-5.048-13.248	1.00	21.66
60	ATOM	384	ND1	HIS	Α	356	19.704	-5.177-12.955	1.00	21.11
	ATOM	385	CE1	HIS	Α	356	19.496	-5.011-14.249	1.00	24.96

5	ATOM	443	CA	AARG	Ą	363	27.035	-9.254	-3.987	0.50	33.25
	ATOM	444	CA	BARG	A	363	27.035	-9.254	-3.987	0.50	32.83
	ATOM	445	CB	AARG	Α	363	27.031	-8.153	-5.044	0.50	34.67
	ATOM	446	CB	BARG	Α	363	27.031	-8.153	-5.045	0.50	34.20
	ATOM	447	CG	AARG	Α	363	26.933	-8.654	-6.478	0.50	36.32
10	ATOM	448	CG	BARG	A	363	26.930		-6.480	0.50	35.56
10	ATOM	449	CD	AARG	A	363	27.745		-7.415	0.50	38.39
			CD	BARG	A	363	27.752		-7.414	0.50	37.18
	ATOM	450		AARG			29.171		-7.091	0.50	39.98
	ATOM	451	NE		A	363			-8.762	0.50	37.39
1.5	ATOM	452	NE	BARG	A	363	27.195		-7.692	0.50	40.54
15	ATOM	453	CZ	AARG	A	363	30.086				40.02
	ATOM	454	CZ	BARG	A	363	27.905		-9.855	0.50	
	ATOM	455	NH1	AARG	Α	363	29.735		-8.675	0.50	38.13
	ATOM	456	NH1	BARG	A	363	29.205		-9.761	0.50	40.42
	ATOM	457	NH2	AARG	A	363	31.358		-7.326	0.50	43.19
20	MOTA	458	NH2	BARG	Α	363	27.311		-11.041	0.50	38.91
	ATOM	459	C	AARG	Α	363	27.207		-2.610	0.50	33.28
	ATOM	460	С	BARG	Α	363	27.207	-8.630	-2.610	0.50	32.81
	ATOM	461	0	AARG	Α	363	28.223		-2.344	0.50	34.18
	ATOM	462	0	BÄRG	Α	363	28.223	-7.992	-2.345	0.50	33.43
25	ATOM	463	N	VAL	Α	364	26.215	-8.798	-1.740	1.00	33.12
	ATOM	464	CA	VAL	Α	364	26.288	-8.240	-0.389	1.00	33.63
	ATOM	465	CB	VAL	A	364	24.898	-8.178	0.292	1.00	34.97
	ATOM	466	CG1	VAL	Α	364	25.036	-7.608	1.700	1.00	35.44
	ATOM	467	CG2	VAL	A	364	23.946	-7.328	-0.532	1.00	36.69
30	ATOM	468	С	VAL	Α	364	27.184	-9.157	0.428	1.00	34.27
	ATOM	469	0	VĄĻ .	Α	364	26.878	-10.341	0.603	1.00	34.95
	ATOM	470	N	PRO	A	365	28.306	-8.626	0.935	1.00	36.08
	ATOM	471	CD	PRO	Α	365	28.775	-7.235	0.793	1.00	34.84
	ATOM	472	CA	PRO	A	365	29.231	-9.442	1.733	1.00	37.82
35	ATOM	473	CB	PRO	A	365	30.110	-8.408	2.430	1.00	34.31
	ATOM	474	CG	PRO	A	365	30.127	-7.247	1.475	1.00	37.77
	ATOM	475	C	PRO	A	365	28.538	-10.373	2.720	1.00	37.61
	ATOM	476	0	PRO	A	365	27.692	-9.945	3.507	1.00	37.74
	ATOM	477	N	GLY	A	366	28.890	-11.654	2.654	1.00	39.04
40	ATOM	478	CA	GLY	A	366	28.307	-12.635	3.554	1.00	38.27
70	ATOM	479	C	GLŸ	A	366	26.991	-13.264	3.138	1.00	39.32
	ATOM	480	0	GLY	A	366		-14.336			39.53
						367		-12.615	2.236	1.00	38.60
	ATOM	481 482	N CA	PHE	A	367		-13.148	1.783	1.00	36.36
45	ATOM			PHE	A			-12.178	0.808	1.00	32.10
43	MOTA	483	CB	PHE	A	367		-12.173	0.581	1.00	30.12
	ATOM	484	CG	PHE	Α	367				1.00	28.95
	ATOM	485	CD1	PHE	A	367		-13.083			
	ATOM	486	CD2	PHE	A	367		-12.176	1.563	1.00	26.18
50	ATOM	487	CE1	PHE	A	367		-13.400		1.00	29.42
50	ATOM	488	CE2	PHE	A	367		-12.491	1.373	1.00	27.60
	ATOM	489	CZ	PHE	Α	367		-13.103	0.196	1.00	26.81
	ATOM	490	С	PHE	A	367		-14.519		1.00	36.82
	ATOM	491	0	PHE	Α	367		-15.398	1.359	1.00	36.55
	ATOM	492	N	VAL	Α	368		-14.694	0.276	1.00	38.28
55	ATOM	493	CA	VAL	A	368		-15.965		1.00	42.34
	ATOM	494	CB	VAL	Α	368		-15.850		1.00	41.78
	ATOM	495	CG1	VAL	Α	368		-14.831		1.00	44.60
	ATOM	496	CG2	VAL	Α	368	28.707	-15.457	-0.873	1.00	42.23
	ATOM	497	С	VAL	Α	368	26.664	-17.100	0.533	1.00	43.85
60	ATOM	498	0	VAL	Α	368	26.469	-18.274	0.216	1.00	44.85
	ATOM	499	N	ASP	Α	369		-16.750	1.699	1.00	44.93
				•							

_							17 056 0 420 1 00 20 20	,
5	MOTA	557	N G	VAĻ	A	376	16.617 -17.056 0.429 1.00 30.38 15.242 -16.907 -0.027 1.00 33.50	
	ATOM	558	CA	VAL	A	376		
	ATOM	559	CB	VAĻ	A	376		
	ATOM	560	CG1	VAL	A	376		
10	ATOM	561	CG2	VAL	A	376		
10	ATOM	562	C	VAL	A	376	14.393 -16.159 1.002 1.00 33.80	
	ATOM	563	0	VAL	A	376	13.653 -15.237 0.661 1.00 34.89	
	MOTA	564	N	HIS	A	377	14.500 -16.568 2.261 1.00 33.35	
	ATOM	565	CA	HIS	A	377	13.730 -15.941 3.329 1.00 32.81	
	MOTA	566	CB	HIS	A	377	13.966 -16.694 4.644 1.00 35.24	
15	MOTA	567	CG	HIS	A	377	13.429 -15.989 5.851 1.00 40.15	
	MOTA	568	CD2	HIS	Α	377	14.054 -15.495 6.946 1.00 40.86	
	ATOM	569	ND1	HIS	A	377	12.090 -15.703 6.012 1.00 43.08	
	ATOM	570	CE1	HIS	A	3 <i>7</i> ,7	11.913 -15.062 7.154 1.00 42.44	
	ATOM	571	NE2	HIS	A	377	13.089 -14.922 7.740 1.00 44.85	
20	ATOM	572	C	HIS	A	377	14.058 -14.454 3.507 1.00 28.63	
	ATOM	573	0	HIS	A	377	13.158 -13.619 3.613 1.00 29.20	
	ATOM	574	N	LEU	A	378	15.343 -14.125 3.544 1.00 24.41	
	ATOM	575	CA	LEU	A	378	15.759 -12.738 3.721 1.00 23.21	
_	ATOM	576	CB	LÉU	Α	378	17.289 -12.650 3.743 1.00 20.98	
25	ATOM	577	CG	LEU	A	378	17.960 -13.190 5.016 1.00 24.22	
	MOTA	578	CD1	LEU	A	378	19.471 -13.041 4.924 1.00 21.07	
	ATOM	579	CD2	LEU	Α	378	17.431 -12.446 6.221 1.00 20.24	
	MOTA	580	C	LEU	A	378	15.190 -11.827 2.630 1.00 24.78	
	MOTA	581	0	ΓĖŪ	A	378	14.638 -10.766 2.922 1.00 22.09	
30	MOTA	582	N	LEU	A	379	15.321 -12.242 1.374 1.00 24.13	
	ATOM	583	CA	LEU	Α	379	14.812 -11.447 0.262 1.00 25.02	
	ATOM	584	CB	ΓĒΩ	À	379	15.307 -12.025 -1.062 1.00 27.12	
	MOTA	585	CG	ΓĔЙ	Α	379	16.724 -11.600 -1.437 1.00 24.39	
	ATOM	586	CD1	Ϋ́Ε̈́Й	A	379	17.299 -12.557 -2.470 1.00 27.58	
35	MOTA	587	CD2	ΓΈЙ	A	379	16.679 -10.178 -1.983 1.00 29.05	
	MOTA	588	С	LEU	A	379	13.287 -11.355 0.246 1.00 27.61	
	ATOM	589	0	LEU	A	379	12.726 -10.301 -0.062 1.00 26.16	
	MOTA	590	N	GLŲ	À	380	12.616 -12.454 0.576 1.00 25.65	
	ATOM	591	CA	GĽÚ	A	380	11.154 -12.471 0.592 1.00 26.85	
40	MOTA	592	CB	GĽÜ	Α	380	10.640 -13.882 0.871 1.00 29.38	
	ATOM	593	CG	GLU	A	380	10.718 -14.796 -0.331 1.00 35.58	
	MOTA	594	CD	GLU	Α	380	10.228 -16.194 -0.025 1.00 39.31	
	MOTA	595	OE1	GLU	Ą	380	10.142 -17.008 -0.967 1.00 42.89	
	ATOM	596	OE2	GĽÚ	A	380	9.927 -16.478 1.153 1.00 39.45	
45	MOTA	597	C	GLU	Α	380	10.604 -11.526 1.649 1.00 25.43	
	MOTA	598	0	GLU	A	380	9.551 -10.925 1.469 1.00 27.75	
	MOTA	599	N	CYS	A	381	11.324 -11.400 2.753 1.00 25.57	
	ATOM	600	CA	CYS	Α	381	10.907 -10.530 3.843 1.00 26.46	
	ATOM	601	CB	CŸŚ	À	381	11.570 -11.000 5.149 1.00 31.46	
50	MOTA	602	SG	CYS	À	381	11.305 -9.946 6.623 1.00 45.32	
	MOTA	603	C	CYS	Α	381	11.262 -9.059 3.589 1.00 24.77	
	MOTA	604	0	CYS	Α	381	10.516 -8.166 3.975 1.00 25.01	
	MOTA	605	N	AĻĄ	A	382	12.377 -8.815 2.903 1.00 22.23	
	MOTA	606	CA	ALA	Α	382	12.855 -7.449 2.681 1.00 21.83	
55	ATOM	607	CB	ALA	Α	382	14.319 -7.383 3.095 1.00 21.56	
	MOTA	608	С	ALA	Α	382	12.705 ~6.778 1.311 1.00 19.78	
	MOTA	609	0	ΑLΑ	Α	382	12.996 -5.587 1.182 1.00 17.01	
	ATOM	610	N	TRP	Α	383	12.261 -7.507 0.294 1.00 17.61	
	ATOM	611	CA	TRP	Α	383	12.164 -6.915 -1.036 1.00 18.06	
60	MOTA	612	CB	TRP	Α	383	11.580 -7.928 -2.035 1.00 20.28	
	ATOM	613	CG	TRP	Α	383	10.105 -8.201 -1.919 1.00 20.50)

									•	
5	MOTA	671	C	ILE	A	389	15.333	3.322 -0.922	1.00	18.67
	ATOM	672	0	ILE	Α	389	15.813	4.453 -0.970	1.00	19.75
	ATOM	673	N	GLY	Α	390	15.410	2.477 -1.943	1.00	20.58
	ATOM	674	CA	GLY	A	390	16.049	2.895 -3.183	1.00	19.33
	MOTA	675	С	GLY	Α	390	15.243	4.021 -3.819	1.00	17.48
10	ATOM	676	0	GLY	A	390	15.801	4.994 -4.318	1.00	21.87
	ATOM	677	N	LEU	Α	391	13.920	3.888 -3.787	1.00	19.17
	ATOM	678	CA	LEU	Α	391	13.018	4.887 -4.343	1.00	21.50
	ATOM	679	CB	LEU	A	391	11.561	4.420 -4.194	1.00	18.25
	ATOM	680	CG	LEU	A	391	10.480	5.497 -4.342	1.00	21.98
15	ATOM	681	CD1	LEU	A	391	10.579	6.156 -5.725	1.00	21.39
15	MOTA	682	CD2	LEU	A	391	9.115	4.868 -4.148	1.00	17.15
	ATOM	683	C	LEU	A	391	13.208	6.216 -3.620	1.00	23.27
	ATOM	684	ō	LEU	A	391	13.440	7.255 -4.243	1.00	23.60
	ATOM	685	N	VAL	A	392	13.122	6.170 -2.295	1.00	23.04
20	ATOM	686	CA	VAL	A	392	13.282	7.357 -1.469	1.00	24.42
20		687	CB	VAL	A	392	13.186	6.993 0.042	1.00	27.38
	ATOM	688	CG1	VAL	A	392	13.733	8.129 0.897	1.00	30.37
	ATOM	689	CG2	VAL	A	392	11.739	6.712 0.414	1.00	23.48
	ATOM		C	VAL		392	14.626	8.014 -1.754	1.00	27.55
25	ATOM	690	0	LAV LAV	A	392	14.728	9.242 -1.832	1.00	27.50
23	ATOM	691			A	393	15.652	7.186 -1.924	1.00	23.65
	ATOM	692	N	TRP	A	393	16.999	7.670 -2.204	1.00	24.76
	ATOM	693	CA	TRP	A	393	17.977	6.491 -2.199	1.00	22.86
	ATOM	694	CB	TRP	A			6.784 -2.857	1.00	25.90
20	ATOM	695	CG	TRP	A	393	19.287 20.341	7.605 -2.339	1.00	28.09
30	ATOM	696	CD2	TRP	A	393	- ·	7.612 -3.302	1.00	29.94
	ATOM	697	CE2	TRP	A	393	21.375	8.335 -1.154	1.00	30.20
	ATOM	698	CE3	TRP	A	393	20.512	6.339 -4.077	1.00	26.55
	ATOM	699	CD1	TRP	A	393	19.710	6.833 -4.351	1.00	30.64
35	MOTA	700	NE1	TRP	A	393	20.963	8.323 -3.120	1.00	32.43
35	ATOM	701	CZ2	TRP	A	393	22.566	9.044 -0.971	1.00	34.58
	ATOM	702	CZ3	TRP	A	393	21.698	9.030 -1.950	1.00	36.54
	ATOM	703	CH2	TRP	A	393	22.709	8.414 -3.547	1.00	25.02
	ATOM	704	C	TRP	A	393	17.082	9.435 -3.650	1.00	20.97
40	ATOM	705	0	TRP	A	393	17.767		1.00	23.06
40	ATOM	706	N	ARG	A	394	16.399	7.897 -4.568	1.00	25.97
	ATOM	707	CA	ARG	A	394	16.412	8.531 -5.890 7.633 -6.965	1.00	24.05
	ATOM	708	CB	ARG	A	394	15.776		1.00	26.05
	MOTA	709	CG	ARG	A	394	16.243	6.195 -7.024 5.551 -8.352	1.00	22.70
45	ATOM	710	CD	ARG	A	394	15.830		1.00	20.71
45	MOTA	711	NE	ARG	A	394	14.443	5.071 -8.363		
	MOTA	712	CZ	ARG	A	394	14.053	3.912 -7.841	1.00	21.26 20.09
	ATOM	713	NHl	ARG	A	394	14.944	3.108 -7.267	1.00	
	ATOM	714	NH2	ARG	A	394	12.783	3.544 -7.907	1.00	21.26
	ATOM	715	C	ARG	A	394	15.622	9.833 -5.879	1.00	23.40
50	ATOM	716	0	ARG	Α	394	15.889	10.729 -6.677	1.00	28.61
	ATOM	717	N	SER	A	395	14.638	9.924 -4.988	1.00	26.65
	MOTA	718	CA	SER	Α	395	13.776	11.104 -4.902	1.00	27.46
	MOTA	719	CB	SER	Ą	395	12.395	10.696 -4.382	1.00	26.70
	MOTA	720	OG	SER	A	395	11.916	9.530 -5.029	1.00	22.95
55	MOTA	721	С	SER	Α	395	14.316	12.240 -4.033	1.00	31.45
	MOTA	722	0	SER	Α	395	13.726	13.324 -3.977	1.00	28.11
	MOTA	723	N	MET	A	396	15.437	11.986 -3.368	1.00	33.83
	ATOM	724	CA	MET	A	396	16.061	12.954 -2.475	1.00	38.83
	ATOM	725	CB	MET	A	396	17.466	12.483 ~2.112	1.00	39.47
60	ATOM	726	CG	MET	A	396	17.585	11.919 -0.715	1.00	41.37
	MOTA	727	SD	MET	Α	396	19.192	12.262 0.004	1.00	42.20
							and the second s			

5	ATOM	785	0	LEU.	A	403	12.428	7.257 -8.619	1.00	24.68
	MOTA	786	N	PHE	Α	404	10.306	7.319 -9.344	1.00	23.11
	ATOM	787	CA	PHE	Α	404	10.239	5.881 -9.546	1.00	26.93
	MOTA	788	CB	PHE	Α	404	8.826	5.470 -9.946	1.00	27.04
	ATOM	789	CG	PHE	Α	404	7.850	5.513 -8.816	1.00	27.89
10	ATOM	790	CD1	PHE	Α	404	7.028	6.623 -8.631	1.00	26.20
	ATOM	791	CD2	PHE.	Α	404	7.750	4.444 -7.925	1.00	23.10
	MOTA	792	CE1	PHE	Α	404	6.116	6.668 -7.573	1.00	25.29
	ATOM	793	CE2	PHE	Α	404	6.845	4.481 -6.870	1.00	21.01
	MOTA	794	CZ	PHE	Α	404	6.026	5.595 -6.693	1.00	22.91
15	ATOM	795	C	PHE	Α	404	11.232	5.507-10.637	1.00	26.04
	MOTA	796	0	PHE	Α	404	11.882	4.464-10.578	1.00	27.27
	ATOM	797	N	ALA	Α	405	11.348	6.383-11.626	1.00	28.80
	MOTA	798	CA	ALA	Α	405	12.271	6.195-12.740	1.00	29.21
	ATOM	799	CB	ALA	Α	405	11.650	5.287-13.806	1.00	26.89
20	ATOM	800	С	ALA	Α	405	12.549	7.578-13.317	1.00	30.23
	MOTA	801	0	ALA	Α	405	11.770	8.508-13.109	1.00	27.38
	ATOM	802	N	PRO	A	406	13.672	7.737-14.032	1.00	30.05
	ATOM	803	CD	PRO	A	406	14.712	6.745-14.352	1.00	26.31
25	ATOM	804	CA	PRO	A	406	13.977	9.053-14.604	1.00	32.10
25	ATOM	805	CB	PRO	À	406	15.232	8.800-15.438	1.00	31.28
	ATOM	806	CG	PRO	A	406	15.865	7.602-14.776	1.00	31.44
	ATOM	807	C	PRO	A	406	12.820	9.589-15.436	1.00	32.58 32.58
	ATOM	808 809	O N	PRO	A	406	12.605	10.796-15.507 8.690-16.053	1.00	32.86
30	ATOM ATOM	810	CA	asn Asn	A A	407 407	12.063 10.935	9.119-16.865	1.00	32.78
50	ATOM	811	CB	ASN	A	407	10.955	8.418-18.228	1.00	34.73
	ATOM	812	CG	ASN	Ą	407	10.884	6.907-18.121	1.00	35.37
	ATOM	813	OD1	ASN	A	407	11.189	6.317-17.077	1.00	30.24
	ATOM	814	ND2	ASN	A	407	10.486	6.268-19.215	1.00	34.08
35	ATOM	815	C	ASN	A	407	9.605	8.901-16.166	1.00	34.90
	ATOM	816	ō	ASN	A	407	8.549	8.897-16.798	1.00	36.09
	ATOM	817	N	LEU	A	408	9.660	8.724-14.851	1.00	33.56
	ATOM	818	CA	LEU	Α	408	8.452	8.544-14.061	1.00	35.59
	ATOM	819	CB	LEU	A	408	8.141	7.062-13.851	1.00	33.81
40	ATOM	820	CG	LEU	A	408	6.696	6.823-13.397	1.00	36.44
	ATOM	821	CD1	LEU	À	408	5.746	7.479-14.390	1.00	34.14
	MOTA	822	CD2	LEÜ	Α	408	6.406	5.334-13.287	1,00	32.96
	MOTA	823	C	LEU	Α	408	8.607	9.245-12.717	1.00	38.03
	MOTA	824	0	LEU	A	408	8.880	8.614-11.695	1.00	36.38
45	ATOM	825	N	LEŲ	A	409	8.441	10.563-12.741	1.00	37.87
	ATOM	826	CA	LEU	À	409	8.548	11.395-11.553	1.00	37.95
	MOTA	827	CB	LEU	A	409	9.373	12.636-11.877	1.00	39.52
	MOTA	828	CG	LEU	A	409	10.023	13.399-10.728	1.00	42.46
50	MOTA	829	CD1	LEU	Α	409	11.100	12.547-10.082	1.00	43.24
50	MOTA	830	CD2	LEU	À	409	10.614	14.691-11.266	1.00	46.05
	ATOM	831	C	LEU	A	409	7.132	11.792-11.163	1.00	37.13
	ATOM	832	0	LEU	A	409	6.482	12.546-11.882	1.00	35.70
	MOTA	833	N	LEU	A	410	6.654	11.284-10.030	1.00	35.29
55	ATOM	834	CA	LEU	A	410	5.297	11.576 -9.583	1.00	33.33
55	ATOM	835	CB	LEU	A	410	4.503	10.277 -9.449	1.00	29.37
	ATOM	836	CG	LEU	A	410	4.645	9.238-10.560	1.00	32.75
	ATOM	837	CD1	LEU	A N	410	4.026	7.925-10.104	1.00	29.16
	ATOM ATOM	838 839	CD2 C	LEU LEU	A A	410 410	3.958	9.744-11.819 12.332 -8.261	1.00	30.70 35.14
60	ATOM	840	0	LEU	A	410	5.207 6.078	12.332 -8.261	1.00	36.94
00	ATOM	841	N	ASP	A	411	4.141	13.108 -8.105	1.00	34.76

5	ATOM	899	CG1	VAL	Α	418	-3.670	2.563	-6.410	1.00	40.22
	ATOM	900	CG2	VAL	A	418	-3.071		-8.634	1.00	38.03
		901	C	VAL	A	418	~5.441		-5.818	1.00	41.46
	MOTA		0	VAL.		418	-4.883		-4.963	1.00	42.08
	ATOM	902	_	1.	A					1.00	40.95
10	ATOM	903	N	GLU	Α	419	-6.559		-5.579		42.51
10	MOTA	904	CA	GLU	Α	419	-7.223		-4.275	1.00	
	MOTA	905	CB	GLU	Α	419	-8.536		-4.333	1.00	44.52
	MOTA	906	CG	GLU	Α	419	-9.010		-2.984	1.00	50.42
	ATOM	907	CD	GLU	A	419	-10.413		-3.035	1.00	54.38
	MOTA	908	OE1	GLU	Α	419	-10.582		-3.590	1.00	54.09
15	MOTA	909	OE2	GLU	A	419	-11.347		-2.516	1.00	57.90
	ATOM	910	С	GLU	A	419	-6.370		-3.121	1.00	41.11
	MOTA	911	0	GLU	Α	419	-5.955		-3.116	1.00	39.42
	ATOM	912	N	GLY	Α	420	-6.129	4.419	-2.140	1.00	40.53
	MOTA	913	CA	GLY	A	420	-5.346	4.049	-0.973	1.00	37.61
20	ATOM	914	C	GLY	A	420	-3.854	4.258	-1.140	1.00	37.01
	MOTA	915	0	GLY	Α	420	-3.088	4.105	-0.190	1.00	32.59
	MOTA	916	N	MET	A	421	-3.444	4.623	-2.350	1.00	36.21
	ATOM	917	CA	MEŢ	Α	421	-2.035	4.825	-2.656	1.00	36.02
	MOTA	918	CB	MET	Α	421	-1.799	4.607	-4.160	1.00	32.84
25	ATOM	919	CG	MĒT	Α	421	-0.351	4.754	-4.617	1.00	35.82
	ATOM	920	SD	MET	A	421	0.806	3.611	-3.812	1.00	35.57
	ATOM	921	CE	MET	À	421	0.881	2.294	-5.005	1.00	32.51
	MOTA	922	C	MET	À	421	-1.474	6.180	-2.226	1.00	34.93
	ATOM	923	0	MET	A	421	-0.275		~1.985	1.00	35.17
30	ATOM	924	N	VAL	A	422	-2.319		-2.118	1.00	33.97
	MOTA	925	CA	VAL	Α	422	-1.823		-1.708	1.00	31.29
	ATOM	926	CB	VAL	A	422	-2.927		-1.766	1.00	33.14
	ATOM	927	CG1	VAL	A	422	-3.823		-0.533	1.00	30.10
	ATOM	928	CG2	VAL	A	422	-2.279	10.982		1.00	30.08
35	ATOM	929	C	VAL	A	422	-1.231		-0.296	1.00	32.64
	ATOM	930	0	VAL	A	422	-0.274	9.220	0.002	1.00	28.41
	ATOM	931	N	GLU	Α	423	-1.803	7.670	0.571	1.00	31.53
	ATOM	932	CA	GLU	A	423	-1.311	7.558	1.935	1.00	35.99
	ATOM	933	CB	GLU	A	423	-2.190	6.594	2.737	1.00	40.37
40	ATOM	934	CG	GLU	À	423	-3.588	7.129	3.043	1.00	49.41
	ATOM	935	CD	GLU	A	423	-4.438	7.336	1.795	1.00	52.38
	ATOM	936	OE1	GLŲ	Ā	423	-5.349	8.188	1.835	1.00	56.91
	ATOM	937	OE2	GLÜ	A	423	-4.200	6.652	0.776	1.00	54.53
	ATOM	938	C	GLU	A	423	0.127	7.043	1.886	1.00	34.83
45	ATOM	939	0	GPÖ	A	423	1.007	7.552	2.581	1.00	31.85
43	ATOM	940	N	ILE	À	424	0.369	6.038	1.050	1.00	30.17
	ATOM	941	CA	ILE	A	424	1.711	5.488	0.929	1.00	28.99
	ATOM	942	CB	ILE		424	1.696	4.195	0.109	1.00	30.96
				-	A.					1.00	27.20
50	ATOM	943	CG2	ILE	A	424	3.108	3.588	0.068	1.00	
30	ATOM	944	CG1	ILE	A	424	0.671	3.230	0.725		30.77
	ATOM	945	CD1	ILE	A	424	0.810	1.787	0.291	1.00	34.69
	ATOM	946	C	ILE	A	424	2.700	6.483	0.312	1.00	28.21
	ATOM	947	0	IĻĖ	Ą	424	3.856	6.551	0.735	1.00	28.48
c e	ATOM	948	N	PHE	A	425	2.253		-0.675	1.00	27.68
55	ATOM	949	CA	PHE	Α	425	3.119		-1.315	1.00	27.30
	ATOM	950	CB	PHE	A	425	2.381		-2.458	1.00	26.36
	ATOM	951	CG	PHE	A	425	2.538		-3.798	1.00	27.22
	MOTA	952	CD1	PHE	Α	425	2.619		-4.958	1.00	27.36
	ATOM	953	CD2	PHE	A	425	2.566		-3.905	1.00	27.89
60	ATOM	954	CE1	PHE	À	425	2.721		-6.207	1.00	29.63
	ATOM	955	CE2	PHE	A	425	2.668	6.282	-5.149	1.00	27.28

5	MOTA	1013	C	SER	Α	433	13.263	14.644	4.223	1.00	33.43
	MOTA	1014	0	SER	A	433	14.152	15.473	4.429	1.00	31.94
	MOTA	1015	N	ARG	Α	434	13.105	13.545	4.959	1.00	31.32
	ATOM	1016	CA	ARG	Α	434	13.980	13.236	6.086	1.00	29.78
	ATOM	1017	CB	ARG	Α	434	13.468	11.994	6.819	1.00	29.84
10	ATOM	1018	CG	ARG	Α	434	14.331	11.541	7.983	1.00	32.17
	ATOM	1019	CD	ARG	Α	434	14.626	12.672	8.958	1.00	37.00
	ATOM	1020	NE	ARG	Α	434	15.321	12.169	10.140	1.00	39.44
	ATOM	1021	CZ	ARG	Α	434	15.935	12.935	11.034	1.00	44.06
	ATOM	1022	NH1	ARG	Α	434	15.949	14.255	10.885	1.00	45.52
15	MOTA	1023	NH2	ARG	Α	434	16.528	12.381	12.084	1.00	45.01
	MOTA	1024	С	ARG	Α	434	15.413	13.014	5.605	1.00	29.24
	ATOM	1025	0	ARG	Α	434	16.352	13.563	6.173	1.00	29.72
	MOTA	1026	N	PHE	Α	435	15.577	12.206	4.561	1.00	28.95
	ATOM	1027	CA	PHE	A	435	16.901	11.935	4.000	1.00	30.59
20	ATOM	1028	CB	PHE	Α	435	16.777	11.045	2.758	1.00	32.03
	ATOM	1029	CG	PHE	A	435	16.795	9.563	3.051	1.00	31.88
	ATOM	1030	CD1	PHE	Α	435	16.758	9.084	4.359	1.00	35.60
	MOTA	1031	CD2	PHE	A	435	16.847	8.643	2.009	1.00	35.89
	ATOM	1032	CE1	PHE	A	435	16.771	7.709	4.622	1.00	35.36
25	ATOM	1033	CE2	PHE	Α	435	16.860	7.271	2.262	1.00	32.71
	ATOM	1034	CZ	PHE	Α	435	16.821	6.807	3.570	1.00	33.24
	ATOM	1035	С	PHE	Α	435	17.576	13.253	3.607	1.00	32.73
	MOTA	1036	0	PHE	Α	435	18.763	13.464	3.871	1.00	31.16
	ATOM	1037	N	ARG	Α	436	16.812	14.137	2.975	1.00	33.37
30	ATOM	1038	CA	ÁRG	Α	436	17.341	15.429	2.549	1.00	39.13
	MOTA	1039	CB	ARG	A	436	16.282	16.206	1.756	1.00	40.42
	ATOM	1040	CG	ARG	A	436	16.846	17.317	0.877	1.00	43.09
	ATOM	1041	CD	ARG	A	436	15.750	17.960	0.040	1.00	44.53
	ATOM	1042	NE	ARG	A	436	14.826	16.955	-0.472	1.00	48.34
35	ATOM	1043	CZ	ARG	Α	436	13.530	16.913	-0.184	1.00	48.81
	MOTA	1044	NHl	ARG	A	436	12.997	17.823	0.619	1.00	47.80
	ATOM	1045	NH2	ARG	Α	436	12.769	15.950	-0.687	1.00	49.53
	ATOM	1046	C	ARG	Α	436	17.792	16.250	3.753	1.00	38.10
	MOTA	1047	0	ARG	A	436	18.896	16.789	3.764	1.00	41.00
40	ATOM	1048	N	MET	A	437	16.936	16.334	4.766	1.00	39.47
	ATOM	1049	CA	MET	A	437	17.257	17.087	5.975	1.00	38.20
	ATOM	1050	CB	MET	A	437	16.102	16.998	6.965	1.00	39.79
	ATOM	1051	С	MET	Α	437	18.550	16.594	6.626	1.00	41.15
	MOTA	1052	0	MET	A	437	19.303	17.378	7.201	1.00	40.20
45	ATOM	1053	N	MET	Α	438	18.804	15.285	6.538	1.00	39.65
	ATOM	1054	CA	MET	Α	438	20.011	14.693	7.117	1.00	39.70
	ATOM	1055	CB	MET	Α	438	19.787	13.221	7.463	1.00	39.90
	ATOM	1056	CG	MET	Α	438	18.694	12.938	8.460	1.00	41.94
	ATOM	1057	SD	MET	Α	438	18.747	11.188	8.880	1.00	43.12
50	ATOM	1058	CE	MEŢ	Α	438	20.374	11.064	9.619	1.00	43.73
	ATOM	1059	С	MET	Α	43E	21.176	14.756	6.142	1.00	38.03
	MOTA	1060	0	MET	A	438	22.321	14.503	6.522	1.00	38.39
	ATOM	1061	N	ASN	Ą	439	20.886	15.070	4.895	1.00	37.64
	ATOM	1062	CA	ASN	Α	439	21.924	15.118	3.895	1.00	35.68
55	ATOM	1063	CB	ASN	A	439	23.019	16.125	4.243	1.00	40.98
	ATOM	1064	CG	ASN	A	439	23.933	16.407	3.090	1.00	45.09
	ATOM	1065	OD1	ASN	A	439	23.528	16.295	1.934	1.00	47.16
	ATOM	1066	ND2	ASN	A	435	25.197	16.733	3.372	1.00	46.87
	ATOM	1067	C	ASN	A	439	22.552	13.732	3.739	1.00	31.06
60	MOTA	1068	ō	ASN	A	439	23.764	13.581	3.649	1.00	29.54
	ATOM	1069	N	LEU	A	440	21.692	12.698	3.704	1.00	31.47

5	MOTA	1127	CA	CYS"	Α	447	25.155	0.503	4.025	1.00	24.17
	ATOM	1128	CB	CYS	Α	447	25.953	1.359	5.011	1.00	23.95
	ATOM	1129	SG	CYS	Α	447	27.738	1.324	4.731	1.00	28.57
	ATOM	1130	С	CYS	Α	447	23.781	0.178	4.618	1.00	21.14
	ATOM	1131	0	CYS	Α	447	23.512	-0.960	5.002	1.00	19.37
10	ATOM	1132	N	LEŲ	Α	448	22.915	1.186	4.680	1.00	19.28
	ATOM	1133	CA	LEU	Α	448	21.568	1.002	5.219	1.00	21.31
	ATOM	1134	CB	LEU	Α	448	20.803	2.324	5.207	1.00	21.90
	ATOM	1135	CG	LEU	Α	448	21.142	3.337	6.303	1.00	26.61
	ATOM	1136	CD1	LEU	Α	448	20.328	4.594	6.072	1.00	27.74
15	ATOM	1137	CD2	LEU	Α	448	20.827	2.760	7.672	1.00	24.03
	ATOM	1138	С	LEU	Α	448	20.766	-0.038	4.442	1.00	21.72
	ATOM	1139	0	LEU	Α	448	20.006	-0.803	5.030	1.00	20.87
	ATOM	1140	N	LYS	A	449	20.929	-0.055	3.119	1.00	21.42
	ATOM	1141	CA	LYS	Α	449	20.205	-0.997	2.269	1.00	20.98
20	ATOM	1142	CB	LYS	Α	449	20.440	-0.659	0.788	1.00	21.55
	ATOM	1143	CG	LYS	Α	449	19.438	-1.297	-0.173	1.00	24.82
	ATOM	1144	CD	LYS	Α	449	19.456	-0.613	-1.542	1.00	23.33
	ATOM	1145	CE	LYS	Α	449	20.816		-2.229	1.00	23.58
	ATOM	1146	NZ	LYS	Α	449	20.741	-0.482	-3.698	1.00	28.77
25	ATOM	1147	С	LYS	Ā	449	20.629	-2.436	2.548	1.00	20.33
	ATOM	1148	0	LYS	A	449	19.800	-3.345	2.552	1.00	20.57
	ATOM	1149	N	SER	Α	450	21.924	-2.637	2.777	1.00	19.25
	ATOM	1150	CA	SER	Α	450	22.451	-3.965	3.074	1.00	21.84
	ATOM	1151	СВ	SER	Α	450	23.982	-3.953	3.041	1.00	20.59
30	ATOM	1152	OG	SER	Α	450	24.460	-3.975	1.702	1.00	29.78
	ATOM	1153	C	SER	A	450	21.975	-4.408	4.454	1.00	21.58
	ATOM	1154	Ō	SER	A	450	21.728	-5.590	4.682	1.00	20.06
	ATOM	1155	N	ILE	Ä	451	21.853	-3.449	5.369	1.00	22.20
	ATOM	1156	CA	ILE	A	451	21.385	-3.741	6.726	1.00	22.82
35	ATOM	1157	СВ	ILE	Α	451	21.452	-2.476	7.616	1.00	19.62
	ATOM	1158	CG2	ILE	Α	451	20.593	-2.658	8.886	1.00	21.11
	ATOM	1159	CG1	ILE	A	451	22.909	-2.210	7.999	1.00	22.20
	ATOM	1160	CD1	ILE	A	451	23.115	-0.960	8.850	1.00	24.48
	ATOM	1161	C	ILÊ	A	451	19.952	-4.250	6.662	1.00	21.82
40	ATOM	1162	O	ILE	A	451	19.575	-5.184	7.369	1.00	21.72
	ATOM	1163	N	ILE	Α	452	19.152	-3.642	5.795	1.00	20.18
	ATOM	1164	CA	ILE	A	452	17.763	-4.058	5.649	1.00	18.13
	ATOM	1165	СВ	ILE	A	452	17.024	-3.145	4.627	1.00	19.72
	ATOM	1166	CG2	ILE	A	452	15.720	-3.792	4.169	1.00	18.99
45	ATOM	1167	CG1	IĻE	A	452	16.725	-1.788	5.282	1.00	18.33
	ATOM	1168	CD1	ILE	Α	452	16.284	-0.707	4.306	1.00	23.25
	ATOM	1169	С	ILE	Α	452	17.725	-5.517	5.191	1.00	19.50
	ATOM	1170	0	ILÉ	Α	452	16.980	-6.340	5.737	1.00	17.60
	ATOM	1171	N	LEU	A	453	18.555	-5.844	4.209	1.00	19.23
50	ATOM	1172	CA	LEÜ	A	453	18.589	-7.205	3.679	1.00	21.60
	MOTA	1173	CB	LEU	A	453	19.624	-7.316	2.554	1.00	21.50
	ATOM	1174	CG	LEU	A	453	19.835	-8.729	1.989	1.00	25.06
	ATOM	1175	CD1	LEU	A	453	18.550	-9.250	1.364	1.00	25.27
	ATOM	1176	CD2	LEU	A	453	20.948	-8.694	0.953	1.00	24.73
55	ATOM	1177	C	LEU	A	453	18.906	-8.245	4.746	1.00	19.41
	ATOM	1178	0	LEU	A	453	18.198	-9.241	4.891	1.00	20.75
	ATOM	1179	N	LEU	Ā	454	19.966	-7.997	5.499	1.00	21.35
	ATOM	1180	CA	LEU	A	454	20.410	-8.925	6.530	1.00	23.67
	ATOM	1181	CB	LEU	A	454	21.870	-8.625	6.878	1.00	20.69
60	ATOM	1182	CG	LEÜ	A	454	22.816	-8.584	5.673	1.00	24.92
	ATOM	1183	CD1	LEU	A	454	24.222	-8.268	6.132	1.00	24.27
					• •						·

-				ann		4.50	1 6 022	21 402 16 022	1 00	01 67
5	ATOM	1241	CB	SER	A	463	16.033	-21.483 16.833	1.00	91.67
	ATOM	1242	C	SER	A	463	16.189	-23.371 15.200	1.00	93.39 93.44
	MOTA	1243	0	SER	A	463	15.156	-24.034 15.102	1.00	
	ATOM	1244	N	SER	Ą	464	17.399	-23.917 15.167	1.00	93.82
• •	ATOM	1245	CA	SER	A	464	17.577	-25.355 15.015	1.00	93.85
10	ATOM	1246	CB	SER	Α	464	17.284	-25.769 13.577	1.00	93.74
	ATOM	1247	C	SER	A	464	18.997	-25.743 15.396	1.00	93.96
	MOTA	1248	0	SER	Α	464	19.815	-26.074 14.535	1.00	93.65
	ATOM	1249	N	THR	Α	465	19.279	-25.699 16.694	1.00	93.91
	ATOM	1250	CA	THR	A	465	20.600	-26.036 17.212	1.00	93.79
15	ATOM	1251	CB	THR	A	465	20.952	-27.483 16.863	1.00	93.38
	ATOM	1252	C	THR	A	465	21.640	-25.085 16.634	1.00	93.27
	ATOM	1253	0	THR	A	465	21.302	-24.017 16.121	1.00	93.03
	ATOM	1254	N	LEU	A	466	22.907	-25.479 16.723	1.00	93.26
• •	ATOM	1255	CA	LEU	A	466	23.999	-24.665 16.207	1.00	92.34
20	MOTA	1256	CB	LEU	A	466	25.335	-25.338 16.498	1.00	91.59
	ATOM	1257	C	LEU	A	466	23.829	-24.461 14.706	1.00	92.18
	ATOM	1258	0	LEU	A	466	24.411	-23.545 14.125	1.00	92.67
	ATOM	1259	N	LYS	A	467	23.028	-25.323 14.086	1.00	91.28
~~	MOTA	1260	CA	LYS	A	467	22.772	-25.238 12.653	1.00	90.02
25	MOTA	1261	CB	LYS	A	467	21.740	-26.287 12.240	1.00	89.93
	ATOM	1262	C	LYS	A	467	22.269	-23.841 12.308	1.00	88.35
	ATOM	1263	0	LYS	A	467	23.032	-22.990 11.849	1.00	88.50 86.02
	MOTA	1264	И	SER	Ā	468	20.981	-23.610 12.536	1.00	
20	MOTA	1265	CA	SER	A _.	468	20.384	-22.315 12.252 -22.333 12.620	1.00	84.10 84.08
30	MOTA	1266	CB	SER	A	468	18.901	-22.333 12.620	1.00	83.03
	ATOM	1267	OG	SER	A	468	18.229 21.109	-21.230 13.040	1.00	83.39
	MOTA	1268	C	SER	À À	468 468	21.109	-20.105 12.565	1.00	83.48
	ATOM	1269	0	SER LEU		469	21.254	-21.579 14.242	1.00	82.04
35	ATOM	1270	N		A A	469	22.276	-20.640 15.098	1.00	80.28
33	ATOM	1271 1272	CA CB	LEU LEU		469	22.595	-21.294 16.436	1.00	79.81
	ATOM	1272	СВ	LEU	A A	469	23.564	-20.174 14.419	1.00	79.18
	ATOM ATOM	1274	0	LEU	Ā	469	24.111	-19.122 14.756	1.00	78.61
	ATOM	1275	Ŋ	GLU	A	470	24.044	-20.969 13.466	1.00	76.69
40	ATOM	1276	CA	GLU	Ā	470	25.256	-20.638 12.726	1.00	74.84
40	ATOM	1277	CB	GLU	A	470	25.803	-21.880 12.032	1.00	74.12
	ATOM	1278	C	GLU	A	470	24.920	-19.565 11.697	1.00	73.77
	ATOM	1279	0	GLU	A	470	25.617	-18.556 11.581	1.00	72.94
	MOTA	1280	N	GLU	A	471	23.842	-19.792 10.953	1.00	72.08
45	ATOM	1281	CA	GLU	A	471		-18.842 9.945	1.00	70.05
	ATOM	1282	СВ	GĽU	A	471	22.461		1.00	71.52
	ATOM	1283	CG	GLÜ	A	471	23.150	-19.976 7.668	1.00	72.90
	ATOM	1284	CD	GĽŰ	A	471	24.512	-20.586 7.932	1.00	74.01
	ATOM	1285	OE1	GLÜ	A	471	25.469	-20.258 7.198	1.00	74.22
50	MOTA	1286	OE2	GĻŲ	A	471	24.626	-21.395 8.878	1.00	75.18
50	MOTA	1287	C	GLU	A	471	22.667	-17.692 10.630	1.00	67.33
	ATOM	1288	ō	GĻŲ	A	471	21.685	-17.165 10.107	1.00	67.77
	ATOM	1289	N	LYS	A	472		-17.319 11.811	1.00	62.63
	ATOM	1290	CA	LYS	A	472	22.564	-16.229 12.578	1.00	57.41
55	ATOM	1291	CB	LYS	A	472	21.697	-16.777 13.713	1.00	58.74
55	ATOM	1292	CG	LYS	A	472	20.683	-15.776 14.243	1.00	60.32
	ATOM	1293	CD	LYS	Ā	472	19.271	-16.342 14.219	1.00	60.73
	MOTA	1294	CE	LYS	A	472	18.485	-15.909 15.449	1.00	61.78
	ATOM	1295	NZ	LYS	A	472		-15.788 16.658	1.00	60.09
60	MOTA	1296	C	LYS	A	472		-15.339 13.150	1.00	53.42
	ATOM	1297	Ō	LYS	A	472		-14.120 12.978	1.00	50.87
				7.71						

5	ATOM	1355	CG	LEU	Α	479	23.211	-7.229 10.517	1.00	29.01
•	ATOM	1356	CD1	LEU	A	479	22.056	-7.503 11.481	1.00	27.05
	ATOM	1357	CD2	LEU	A	479	22.864	-6.063 9.584	1.00	24.92
	ATOM	1358	C	LEU	A	479	26.592	-5.582 11.369	1.00	25.39
			0	LEU	A	479	26.595	-4.370 11.158	1.00	27.39
10	MOTA	1359						-6.158 12.320	1.00	26.04
10	ATOM	1360	N	ASP	A	480	27.324			
	ATOM	1361	CA	ASP	A	480	28.206	-5.388 13.193	1.00	27.32
	ATOM	1362	CB	ASP	A	480	28.878	-6.305 14.222	1.00	26.67
	MOTA	1363	CG	ASP	A	480	27.990	-6.602 15.417	1.00	31.02
	ATOM	1364	OD1	ASP	Α	480	28.355	-7.505 16.198	1.00	31.50
15	ATOM	1365	OD2	ASP	Α	480	26.935	-5.944 15.580	1.00	32.21
	ATOM	1366	С	ASP	A	480	29.283	-4.699 12.361	1.00	25.59
	ATOM	1367	0	ASP	Α	480	29.672	-3.562 12.636	1.00	27.15
	ATOM	1368	N	LYS	Α	481	29.767	-5.394 11.340	1.00	25.17
	ATOM	1369	CA	LYS	A	481	30.794	-4.830 10.477	1.00	24.93
20	MOTA	1370	CB	LYS	Α	481	31.306	-5.890 9.512	1.00	28.42
20	ATOM	1371	CG	LYS	A	481	32.158	-6.953 10.188	1.00	35.59
		1372	CD	LYS	A	481	32.894	-7. 7 99 9. 1 57	1.00	41.21
	ATOM						33.883	-6.963 8.350	1.00	41.48
	MOTA	1373	CE	LYS	A	481			1.00	43.22
	MOTA	1374	NZ	LYS	A	481	34.954			
25	ATOM	1375	C	LYS	A	481	30.260	-3.635 9.696	1.00	26.12
	ATOM	1376	0	LYŞ	A	481	30.979	-2.657 9.463	1.00	23.73
	ATOM	1377	N	IŗĒ	Α	482	28.996	-3.705 9.291	1.00	25.44
•	MOTA	1378	CA	IĻĒ	À	482	28.421	-2.598 8.545	1.00	27.69
	ATOM	1379	CB	ΙĻĘ	À	482	27.066	-2.983 7.915	1.00	27.59
30	ATOM	1380	CG2	ILE	Α	482	26.470	-1.788 7.183	1.00	25.97
	ATOM	1381	CG1	ILE	Α	482	27.274	-4.131 6.922	1.00	23.80
	ATOM	1382	CD1	ILE	A	482	26.000	-4.838 6.533	1.00	21.30
	ATOM	1383	С	ILE	A	482	28.253	-1.408 9.481	1.00	27.33
	ATOM	1384	0	ILE	Α	482	28.312	-0.256 9.045	1.00	28.55
35	ATOM	1385	N	THR	A	483	28.046	-1.690 10.768	1.00	25.03
33	ATOM	1386	CA	THR	A	483	27.905	-0.632 11.760	1.00	23.62
	ATOM	1387	CB	THR	Α	483	27.535	-1.192 13.154	1.00	22.18
			OG1				26.181	-1.658 13.133	1.00	25.39
	ATOM	1388		THR	A	483	27.673	-0.111 14.226	1.00	25.84
40	ATOM	1389	CG2	THR	A	483		0.074 11.858	1.00	23.04
40	MOTA	1390	C	THR	A	483	29.257	1.306 11.846	1.00	23.55
	MOTA	1391	0	THR	A	483	29.331			22.24
	ATOM	1392	N	ASP	A	484	30.324	-0.714 11.960	1.00	
	ATOM	1393	CA	ASP	A	484	31.674	-0.152 12.039	1.00	25.48
	MOTA	1394	CB	ASP	À	484	32.718			
45	ATOM	1395	CG	ASP	Ą	484	32.629	-2.083 13.394		32.52
	ATOM	1396	OD1	ASP	Α	484	32.002	-1.608 14.366	1.00	33.68
	ATOM	1397	OD2	ASP	A	484	33.185	-3.198 13.434	1.00	34.63
	ATOM	1398	С	ASP	Α	484	31.930	0.715 10.807	1.00	25.16
	ATOM	1399	0	ASP	Ä	484	32.481	1.812 10.905	1.00	26.05
50	ATOM	1400	N	THR	Α	485	31.505	0.226 9.645	1.00	28.96
20	ATOM	1401	CA	THR	A	485	31.689	0.960 8.394	1.00	26.63
	ATOM	1402	СВ	THR	A	485	31.124	0.166 7.197	1.00	26.12
		1403	OG1	THR	A	485	31.753	-1.123 7.132	1.00	24.30
	ATOM							0.907 5.898	1.00	23.31
E	ATOM	1404	CG2	THR	A	485	31.381		1.00	28.90
55	ATOM	1405	C	THR	A	485	30.994			
	ATOM	1406	0	THR	A	485	31.583	3.354 8.137	1.00	27.26
	ATOM	1407	N	LEU	Α	486	29.743	2.310 8.915	1.00	24.76
	ATOM	1408	CA	LEU	Α	486	28.973	3.537 9.027	1.00	26.19
	ATOM	1409	CB	LEŲ	Α	486	27.567	3.233 9.547	1.00	27.27
60	ATOM	1410	CG	LEU	Α	486	26.508	2.921 8.486	1.00	23.50
	MOTA	1411	CD1	LEU	Α	486	25.210	2.550 9.183	1.00	22.03

5	MOTA	1469	CA	GLY	Α	494	34.903	14.904 10.873	1.00	41.63
	ATOM	1470	С	GLY	Α	494	33.857	15.060 11.965	1.00	41.18
	ATOM	1471	0	GLY	Α	494	33.916	16.011 12.747	1.00	38.22
	MOTA	1472	N	LEU	Α	495	32.905	14.138 12.043	1.00	39.53
	ATOM	1473	CA	LEU	Α	495	31.876	14.248 13.068	1.00	38.91
10	ATOM	1474	CB	LEU	Α	495	30.713	13.304 12.769	1.00	39.20
	ATOM	1475	CG	LEU	A	495	29.540	13.901 11.988	1.00	40.73
	ATOM	1476	CD1	LEU	A	495	29.976	14.170 10.553	1.00	37.80
	MOTA	1477	CD2	LEU	Α	495	28.349	12.943 12.026	1.00	40.94
	ATOM	1478	С	LEU	Α	495	32.461	13.923 14.431	1.00	36.01
15	ATOM	1479	0	LEU	Α	495	33.347	13.074 14.544	1.00	34.85
	ATOM	1480	N	THR	Α	496	31.979	14.604 15.459	1.00	37.52
	ATOM	1481	CA	THR	Α	496	32.462	14.350 16.812	1.00	35.45
	ATOM	1482	CB	THR	A	496	31.925	15.375 17.829	1.00	37.55
	ATOM	1483	OG1	THR	A	496	30.498	15.263 17.908	1.00	32.93
20	MOTA	1484	CG2	THR	Α	496	32.315	16.797 17.434	1:00	36.16
20	ATOM	1485	C	THR	A	496	31.933	12.987 17.210	1.00	35.67
	ATOM	1486	Ö	THR	Α	496	31.081	12.427 16.521	1.00	34.34
	ATOM	1487	N	LEU	A	497	32.429	12.452 18.319	1.00	34.88
	ATOM	1488	CA	LEU	A	497	31.965	11.151 18.786	1.00	35.67
25	ATOM	1489	CB	LEU	A	497	32.689	10.760 20.074	1.00	41.10
23	ATOM	1490	CG	LEU	A	497	33.714	9.640 19.896	1.00	45.27
	ATOM	1491	CD1	LEU	Á	497	34.755	9.692 21.008	1.00	45.09
	ATOM	1492	CD2	LEU	A	497	32.988	8.305 19.884	1.00	47.77
	ATOM	1493	C	LEU	A	497	30.455	11.198 19.026	1.00	33.72
30	ATOM	1494	Ō	LEU	A	497	29.712	10.350 18.534	1.00	33.20
30	ATOM	1495	N	GLN	A	498	30.006	12.202 19.773	1.00	30.82
	ATOM	1496	CA	GLN	A	498	28.586	12.348 20.062	1.00	31.47
	ATOM	1497	CB	GLN	Ā	498	28.344	13.566 20.951	1.00	30.51
	ATOM	1498	CG.	GLN	A	498	26.894	13.796 21.341	1.00	34.38
35	MOTA	1499	CD	GLN	A	498	26.712	15.130 22.015	1.00	38.60
55	MOTA	1500	OE1	GLN	A	498	27.363	16.112 21.686	1.00	42.92
	MOTA	1501	NE2	GLN	A	498	25.809	15.176 23.008	1.00	40.02
	MOTA	1502	C	GLN	A	498	27.776	12.476 18.773	1.00	30.47
	ATOM	1503	o	GLN	A	498	26.682	11.927 18.665	1.00	30.85
40	ATOM	1504	N	GLN	Α	499	28.311	13.196 17.793	1.00	29.52
10	ATOM	1505	CA	GLN	A	499	27.603	13.362 16.524	1.00	30.24
	ATOM	1506	CB	GLN	A	499	28.292	14.420 15.661	1.00	30.20
	ATOM	1507	ÇG	GLN	A	499	28.135	15.840 16.191	1.00	31.60
	MOTA	1508	CD	GLN	A	499	28.930	16.849 15.389	1.00	31.61
45	MOTA	1509	OE1	GLN	A	499	29.956	16.518 14.795	1.00	30.66
	ATOM	1510	NE2	GLN	A	499	28.457	18.089 15.364	1.00	34.17
	ATOM	1511	C	GLN	A	499	27.529	12.047 15.753	1.00	29.40
	ATOM	1512	0	GLN	A	499	26.567	11.793 15.032	1.00	30.04
	ATOM	1513	N	GĻŅ	A	500	28.550	11.214 15.903	1.00	25.67
50	ATOM	1514	CA	GLN	A	500	28.577	9.937 15.216	1.00	29.30
	ATOM	1515	CB	GLN	A	500	29.933	9.276 15.406	1.00	31.52
	ATOM	1516	CG	GLN	A	500	31.012	9.839 14.508	1.00	33.05
	MOTA	1517	CD	GLN	A	500	32.371	9.370 14.930	1.00	34.84
	ATOM	1518	OE1	GLN	A	500	32.612	8.194 15.141	1.00	36.47
55	ATOM	1519	NE2	GLN	A	500	33.301	10.324 15.082	1.00	38.25
رر	ATOM	1520	C	GLŅ	À	500	27.459	9.017 15.711	1.00	27.98
	ATOM	1521	0	GLN	A	500	26.700	8.469 14.908	1.00	24.84
	ATOM	1522	N	HIS	A	501	27.357	8.864 17.029	1.00	26.20
	ATOM	1523	CA	HIS	A	501	26.327	8.021 17.631	1.00	27.63
60	ATOM	1524	CB	HIS	A	501	26.535	7.919 19.145	1.00	27.97
00	ATOM	1525	CG	HIS	A	501	27.892	7.420 19.535	1.00	34.27
	212 014									

5	ATOM	1583	CA	LEU	Α	508	18.755	3.260	11.881	1.00	20.72
	MOTA	1584	СВ	LEU	Α	508	19.501	2.535	13.001	1.00	22.29
	ATOM	1585	CG	LEU	A	508	20.977	2.311	12.678	1.00	24.70
	ATOM	1586	CD1	LEU	Α	508	21.642	1.551	13.814	1.00	21.37
	ATOM	1587	CD2	LEU	Α	508	21.095	1.542	11.367	1.00	27.88
10	ATOM	1588	С	LEU	Α	508	17.279	3.396	12.239	1.00	19.14
	ATOM	1589	0	LEU	Α	508	16.498	2.478	12.003	1.00	17.80
	ATOM	1590	N	LEU	Α	509	16.895	4.530	12.815	1.00	19.23
	ATOM	1591	CA	LEU	Α	509	15.495	4.747	13,173	1.00	20.14
	ATOM	1592	CB	LEU	A	509	15.347	6.030	13.999	1.00	20.28
15	ATOM	1593	CG	LEU	Α	509	15.710	5.858	15.479	1.00	21.35
	ATOM	1594	CD1	LEU	Α	509	15.354	7.106	16.263	1.00	19.29
	ATOM	1595	CD2	LEU	Α	509	14.989	4.656	16.038	1.00	20.84
	ATOM	1596	С	LEU	Α	509	14.681	4.841	11.885	1.00	21.69
	ATOM	1597	0	LEU	A	509	13.493	4.514	11.854	1.00	22.40
20	ATOM	1598	N	ILE	Α	510	15.343	5.270	10.815	1.00	20.22
	ATOM	1599	CA	ILE	Α	510	14.710	5.397	9.508	1.00	20.40
	ATOM	1600	СВ	ILE	A	510	15.720	5.946	8.464	1.00	28.34
	ATOM	1601	CG2	ILE	Α	510	15.208	5.710	7.056	1.00	32.54
	ATOM	1602	CG1	ILE	À	510	15.965	7.438	8.696	1.00	28.23
25	ATOM	1603	CD1	ILE	Α	510	14.789	8.189	9.288	1.00	33.16
	ATOM	1604	C	ILE	Α	510	14.210	4.025	9.049	1.00	23.21
	ATOM	1605	0	ILE	Α	510	13.120	3.906	8.474	1.00	21.16
	ATOM	1606	N	LĘŲ	Α	511	14.998	2.989	9.323	1.00	18.38
	ATOM	1607	CA	LEU	A	511	14.633	1.634	8.917	1.00	20.10
30	ATOM	1608	CB	LEU	Α	511	15.754	0.656	9.267	1.00	21.69
	ATOM	1609	CG	LEU	À	511	17.128	1.022	8.692	1.00	26.03
	ATOM	1610	CD1	LEU	Ą	511	18.024	-0.206	8.724	1.00	22.68
	ATOM	1611	CD2	LEU	A	511	16.996	1.544	7.267	1.00	26.00
	MOTA	1612	С	LEU	A	511	13.326	1.181	9.543	1.00	18.51
35	ATOM	1613	0	LEU	À	511	12.663	0.283	9.025	1.00	17.40
	ATOM	1614	N	SER	Α	512	12.963	1.799	10.664	1.00	18.68
	MOTA	1615	CA	SER	Α	512	11.718	1.471	11.331	1.00	18.67
	ATOM	1616	CB	SER	A	512	11.661	2.117	12.720	1.00	18.58
	ATOM	1617	OG	SER	A	512	10.315	2.229	13.165	1.00	27.92
40	ATOM	1618	C	SER	Α	512	10.572	1.994	10.464	1.00	18.43
	ATOM	1619	0	SER	Α	512	9.584	1.296	10.236	1.00	13.91
	ATOM	1620	N	HIS	À	513	10.713	3.228	9.982	1.00	18.95
	ATOM	1621	CA	HIS	A	513	9.698	3.831	9.124	1.00	20.82
	ATOM	1622	CB	HIS	Α	513	10.013	5.315	8.894	1.00	24.36
45	MOTA	1623	CG	HIS	À	513	9.923	6.146	10.136	1.00	32.13
	ATOM	1624	CD2	HIS	Α	513	8.863	6.744	10.734	1.00	35.29
	ATOM	1625	ND1	HIS	Α	513	11.010	6.391	10.949	1.00	35.00
	ATOM	1626	CE1	HIS	Α	513	10.624	7.101	11.995	1.00	34.67
	ATOM	1627	NE2	HIS	Α	513	9.326	7.328	11.889	1.00	35.82
50	MOTA	1628	С	HIS	À	513	9.650	3.079	7.790	1.00	19.08
	ATOM	1629	0	HIS	Α	513	8.575	2.863	7.220	1.00	21.20
	ATOM	1630	N	ILE	Α	514	10.809	2.662	7.297	1.00	15.58
	MOTA	1631	CA	IĻĒ	Α	514	10.849	1.921	6.038	1.00	16.48
	ATOM	1632	СВ	ILE	Α	514	12.312	1.678	5.576	1.00	20.09
55	ATOM	1633	CG2	ILE	Α	514	12.349	0.602	4.499	1.00	19.55
	MOTA	1634	CG1	ILE	A	514	12.891	2.986	5.019	1.00	22.62
	ATOM	1635	CD1	ILE	Α	514	14.393	2.992	4.874	1.00	27.34
	ATOM	1636	C	ILE	A	514	10.112	0.590	6.210	1.00	16.40
	MOTA	1637	Ō	ILE	À	514	9.364	0.164	5.328	1.00	17.91
60	ATOM	1638	N	ARG	A	515	10.301	-0.071	7.347	1.00	18.20
-	ATOM	1639	CA	ARG	A	515	9.585	-1.327	7.564	1.00	18.05

PCT/US99/06899 -_ WO 99/60014

_	> mo>/	1607	CC	MEM	7\	522	3.396	-7.308	1.559	1.00	31.06
5	ATOM	1697	CG	MET	A A	522 522	4.572	-7.352	0.202	1.00	34.06
	ATOM	1698	SD	MET	A	522	6.125	-7.229	1.113	1.00	29.28
	ATOM	1699	CE	MET			0.893	-5.281	1.218	1.00	26.49
	ATOM	1700	C	MET	A	522	0.268	-5.920	0.361	1.00	25.47
10	ATOM	1701	0	MET	A	522	0.321	-4.790	2.318	1.00	24.95
10	ATOM	1702	N	GLU	A	523	-1.110	-4.954	2.566	1.00	27.15
	ATOM	1703	CA	GLU	A	523		-4.334	3.835	1.00	31.08
	ATOM	1704	CB	GLU	A	523	-1.555	-4.564	5.124	1.00	38.93
	ATOM	1705	CG	GLU	A	523	-0.830	-3.585	6.258	1.00	46.90
	ATOM	1706	CD	GLU	A	523	-1.153	-2.938	6.200	1.00	47.40
15	ATOM	1707	OE1	GLU	A	523	-2.225	-2.936	7.202	1.00	47.39
	ATOM	1708	OE2	GLU	A	523	-0.337	-4.368	1.381	1.00	26.10
	ATOM	1709	С	GLU	A	523	-1.872	-4.964	0.882	1.00	24.25
	ATOM	1710	0	GLU	A	523	-2.817	-3.182	0.882	1.00	24.74
20	ATOM	1711	N	HIS	A	524	-1.449	-2.505		1.00	26.17
20	MOTA	1712	CA	HIS	A	524	-2.093	-2.505		1.00	24.64
	ATOM	1713	CB	HIS	A	524	-1.481	-0.278		1.00	30.59
	MOTA	1714	CG	HIS	A	524	-2.233			1.00	32.15
	ATOM	1715	CD2	HIS	A	524	-3.227	-0.332	-1.172	1.00	27.46
	MOTA	1716	ND1	HIS	A	524	-2.008				34.58
25	ATOM	1717	CE1	HĮS	A	524	-2.829		-3.326	1.00	30.50
	MOTA	1718	NE2	HIS	A	524	-3.580		-2.413	1.00	28.06
	ATOM	1719	C	HIS	Ą	524	-1.996	-3.294		1.00	29.81
	MOTA	1720	0	HIS	À	524	-2.976	-3.419 -3.824		1.00	27.07
••	MOTA	1721	N	LEU	A	525	-0.811	-3.624		1.00	29.30
30	MOTA	1722	CA	LEU	À	525	-0.594	-5.039		1.00	26.39
	ATOM	1723	CB	LEU	À	525	0.865	-5.765		1.00	29.34
	ATOM	1724	CG	LEU	A	525	1.307	-5.076		1.00	29.61
	ATOM	1725	CD1	LEU	A	525	0.734 2.829	-5.769		1.00	29.22
25	MOTA	1726	CD2	LEU	À	525	-1.497	-5.822		1.00	31.67
35	ATOM	1727	C	LEU	A	525	-2.128	-6.133		1.00	32.45
	ATOM	1728	0	LEU	Á	525	-1.559	-6.512		1.00	36.14
	ATOM	1729	N	TYR	A	526 526	-2.397	-7.698		1.00	40.36
	ATOM	1730	CA	TYR	Ą	526 526	-2.221	-8.350		1.00	45.27
40	ATOM	1731	CB	TYR	A		-2.849	-9.722		1.00	50.62
40	ATOM	1732	CG	TYR	A	526 526	-2.114	-10.867		1.00	54.55
	ATOM	1733	CD1	TYR	A		-2.698	-12.136		1.00	57.27
	ATOM	1734	CE1	TYR	A	526		-9.876	0.142	1.00	53.48
	MOTA	1735	CD2	TYR	Ą	526 526	-4.188 -4.781	-11.141	0.201	1.00	55.93
15	ATOM	1736	CE2	TYR	Ā	526	-4.029	-12.264		1.00	56.60
45	ATOM	1737	CZ	TYŔ	A n	526	-4.603	-13.515		1.00	60.70
	ATOM	1738	OH	TYR	A	526	-3.852	-7.298		1.00	42.83
	ATOM	1739	C	TYR	A	526	-4.673	-8.094		1.00	43.49
	ATOM	1740	0	TYR	A	527	-4.158	-6.055		1.00	41.55
50	ATOM	1741	N	SER	Ą	527	-5.503	-5.523		1.00	44.04
50	ATOM	1742	CA	SER	Ā	527	-5.606	-4.169		1.00	43.47
	ATOM	1743	CB	SER	A	527 527	-6.954		-0.786	1.00	47.51
	ATOM	1744	OG	SER	À		-5.817		-3.172	1.00	44.18
	ATOM	1745	C	SER	À	527			-3.642	1.00	44.88
<i></i>	ATOM	1746	0	SER	A	527	-6.883 -4.883		-3.842	1.00	41.79
55	ATOM	1747	N	MET	À	528 528			-5.331	1.00	44.04
	ATOM	1748	CA	MET	A	528 528	-5.047		-5.870	1.00	44.78
	ATOM	1749	CB	MET	A À	528 528	-3.898 -3.85		-5.468	1.00	45.37
	ATOM	1750	CG	MET	A	528	-3.965 -5.652		-5.273	1.00	51.83
(0	ATOM	1751	SD	MET	A	528	-5.652 -5.553		-6.044	1.00	46.61
60	ATOM	1752	CE	MET	A A	528 528	-5.087		-6.071	1.00	44.29
	ATOM	1753	C	MET	A	328	-3.067	٥.٥/١	0.071		

										5 5 33
5	ATOM	1811	0	LEU	Α	536	2.414		1.00	55.33
	ATOM	1812	N	TYR	Α	537	2.601	-10.462-13.087	1.00	48.72
	ATOM	1813	CA	TYR	Α	537	4.057	-10.501-13.093	1.00	44.22
	ATOM	1814	CB	TYR	Α	53 7	4.627	-9.134-12.709	1.00	44.52
	ATOM	1815	CG	TYR	Α	537	4.331	-8.053-13.731	1.00	45.18
10	ATOM	1816	CD1	TYR	Α	537	3.623	-6.905-13.376	1.00	43.77
	ATOM	1817	CE1	TYR	Α	537	3.334	-5.915-14.317	1.00	45.23
	ATOM	1818	CD2	TYR	Α	537	4.747	-8.187-15.058	1.00	46.91
	ATOM	1819	CE2	TYR	Α	537	4.462	-7.202-16.008	1.00	43.93
	ATOM	1820	CZ	TYR	Α	537	3.757	-6.071-15.631	1.00	46.70
15	ATOM	1821	ОН	TYR	Α	537	3.472	-5.097-16.565	1.00	48.35
	ATOM	1822	С	TYR	Α	53 7	4.401	-11.562-12.056	1.00	41.29
	ATOM	1823	0	TYR	A	537	4.330	-11.319-10.856	1.00	41.82
	ATOM	1824	N	ASP	Α	538	4.748	-12.748-12.540	1.00	40.34
	ATOM	1825	CA	ASP	A	538	5.055	-13.896-11.691	1.00	38.84
20	ATOM	1826	CB	ASP	A	538	5.594	-15.037-12.554	1.00	43.47
20		1827	CG	ASP	A	538	4.571	-15.531-13.566	1.00	47.67
	MOTA	1828	OD1	ASP	A	538	4.931	-16.373-14.416	1.00	49.33
	ATOM	1829	OD2	ASP	A	538	3.405	-15.073-13.511	1.00	48.07
	ATOM	1830	C	ASP	A	538	5.991	-13.676-10.508	1.00	37.28
25	ATOM		0	ASP	A	538	5.620	-13.964 -9.371	1.00	38.55
25	ATOM	1831		LEU	A	539	7.196	-13.200-10.766	1.00	33.83
	MOTA	1832	N	LEU	A	539	8.155	-12.959 -9.692	1.00	32.80
	MOTA	1833	CA	ГЕЛ	A	539	9.419	-12.323-10.263	1.00	32.78
	MOTA	1834	CB		Ā	539	10.561	-12.031 -9.292	1.00	30.93
20	MOTA	1835	CG	rën rën		539	10.913	-13.280 -8.492	1.00	33.81
30	MOTA	1836	CD1	*****	A	539	11.758	-11.538-10.077	1.00	25.92
	ATOM	1837	CD2	LEU	A	539	7.558	-12.050 -8.614	1.00	31.85
	ATOM	1838	C	ĻĘŲ	A	539	7.590	-12.367 -7.423	1.00	25.63
	MOTA	1839	0	LEU	A	540	7.011	-10.917 -9.042	1.00	32.07
	MOTA	1840	N	ΤĒΛ	A	540	6.411	-9.976 -8.111	1.00	31.03
35	MOTA	1841	CA	LEU	A		5.792	-8.800 -8.861	1.00	30.56
	MOTA	1842	CB	LEU	A	540	5.124	-7.774 -7.945	1.00	31.12
	ATOM	1843	CG	LEU	A	540	6.092	-7.357 -6.838	1.00	29.76
	MOTA	1844	CD1	LEU	A	540	4.693	-6.572 -8.762	1.00	30.85
	MOTA	1845	CD2	LEŬ	A	540	5.337	-10.660 -7.282	1.00	34.55
40	MOTA	1846	С	ΓĔЙ	Α	540		-10.522 -6.063	1.00	31.60
	ATOM	1847	0	ĻĘŲ	A	540	5.316	-11.388 -7.941	1.00	35.64
	MOTA	1848	N	LEU	A	541	4.446	-12.101 -7.245	1.00	37.84
	MOTA	1849	CA	LEU	Α	541	3.378	·	1.00	38.49
	MOTA	1850	CB	LEU	A	541		-11.932 -8.678	1.00	39.80
45	MOTA	1851	CG	LEU	A	541			1.00	40.02
	MOTA	1852	CD1	LEU	A	541		-11.476 -7.448	1.00	40.48
	ATOM	1853	CD2	LEU	Α	541		-10.733 -9.485		40.10
	MOTA	1854	C	LEÚ	Α	541		-13.147 -6.275	1.00	
	ATOM	1855	0	ΓĔΩ	Α	541	3.472		1.00	42.72
50	ATOM	1856	N	GĽŬ	Ą	542		-13.915 -6.723	1.00	38.45
	MOTA	1857	CA	GĽÚ	A	542	5.535		1.00	39.59
	MOTA	1858	CB	\mathbf{GLU}	À	542	6.738		1.00	41.73
	ATOM	1859	CG	GĻŲ	A	542	6.396		1.00	48.34
	ATOM	1860		GĻŲ	Α	542	6.931		1.00	52.57
55	ATOM	1861		GĽU	Α	542		-17.961 -7.298	1.00	52.70
	ATOM	1862		GĻŲ	Α	542	6.230	-18.647 -8.331	1.00	53.69
	ATOM	1863		GĻŲ	Α	542		-14.299 -4.553	1.00	39.94
	ATOM	1864		GLU	Α	542	5.567	-14.710 -3.472	1.00	40.99
	ATOM	1865		MET	Α	543	6.844	-13.287 -4.663	1.00	38.29
60	ATOM	1866		MET	Ä	543	7.380	-12.580 -3.503	1.00	38.11
30	ATOM	1867		MET	Ä	543	8.242		1.00	37.34
	ATON.			- •=====		-				

										22 22
5	HETATM	1925	CPl	DES	A	600	2.987	-0.978 -3.784	1.00	23.92
	HETATM	1926	CP2	DES	A	600	1.597	-1.150 -3.684	1.00	29.77
	HETATM	1927	CP3	DES	A	600	0.842	-1.214 -4.871	1.00	31.40
	HETATM	1928	OP3	DES	Α	600	-0.506	-1.419 -4.824	1.00	33.36
	HETATM	1929	CP4	DES	A	600	1.421	-1.099 -6.143	1.00	27.01
10	HETATM	1930	CP5	DES	Α	600	2.793	-0.929 -6.230	1.00	27.40
	HETATM	1931	C7	DES	Α	600	5.671	0.461 -5.482	1.00	22.39
	HETATM	1932	C6	DES	Α	600	7.113	0.561 -5.809	1.00	21.75
	HETATM	1933	C5	DES	Α	600	7.541	0.306 -7.131	1.00	19.97
	HETATM	1934	C4	DES	Α	600	8.889	0.429 -7.477	1.00	23.81
15	HETATM	1935	C3	DES	Α	600	9.814	0.804 ~6.488	1.00	21.88
	HETATM	1936	03	DES	Α	600	11.125	0.901 -6.839	1.00	22.32
	HETATM	1937	C2	DES	Α	600	9.423	1.066 -5.161	1.00	19.74
	HETATM	1938	C1	DES	Α	600	8.066	0.937 -4.838	1.00	21.25
	HETATM	1939	C8	DES	Α	600	4.894	1.765 -5.443	1.00	21.47
20	HETATM	1940	C9	DES	A	600	4.959	2.468 -4.070	1.00	21.38
20	HETATM	1941	CL	CL	A	601	14.781	-3.035-17.739	1.00	24.10
	ATOM	1942	CB	SER	В	305	12.321	21.086 25.295	1.00	64.27
	ATOM	1943	C	SER	В	305	12.672	22.102 27.548	1.00	64.37
		1943	0	SER	В	305	13.701	22.760 27.702	1.00	66.90
25	ATOM	1945	N	SER	В	305	12.045	23.521 25.606	1.00	63.72
23	ATOM			SER	В	305	11.875	22.187 26.251	1.00	64.21
	ATOM	1946 1947	CA N	LEU	В	306	12.193	21.293 28.484	1.00	63.09
	ATOM					306	12.884	21.133 29.757	1.00	60.98
	ATOM	1948	CA	LEU	В		11.884	21.200 30.913	1.00	61.23
20	MOTA	1949	CB	LEU	В	306	12.221	20.417 32.183	1.00	62.23
30	ATOM	1950	CG	LEU	В	306		21.144 32.966	1.00	62.56
	ATOM	1951	CD1	LEU	В	306	13.304	20.258 33.027	1.00	64.31
	MOTA	1952	CD2	LEU	В	306	10.965	19.819 29.803	1.00	58.39
	MOTA	1953	C	LEU	В	306	13.660		1.00	58.56
	MOTA	1954	0	LEU	В	306	14.570	19.654 30.614	1.00	54.82
35	ATOM	1955	N	ALA	В	307	13.293	18.881 28.933	1.00	50.62
	MOTA	1956	CA	ALA	В	307	13.971	17.589 28.861		51.30
	MOTA	1957	CB	ALA	В	307	13.092	16.584 28.143	1.00	
	MOTA	1958	C	ALA	В	30 7	15.303	17.719 28.122	1.00	46.84
	ATOM	1959	0	ALA	В	307	16.196	16.885 28.274	1.00	45.62
40	MOTA	1960	N	LEU	В	308	15.431	18.769 27.320	1.00	43.46
	MOTA	1961	CA	LEU	В	308	16.643	18.983 26.542	1.00	43.01
	ATOM	1962	CB	LEU	В	308	16.413	20.100 25.526	1.00	41.32
	ATOM	1963	CG	LEU	В	308	16.315	19.708 24.051	1.00	43.10
	ATOM	1964	CD1	LEU	В	308	15.942	18.239 23.903		40.51
45	ATOM	1965	CD2	LEU	В	308	15.287	20.602 23.375	1.00	39.80
	MOTA	1966	C	LEU	В	308	17.874	19.297 27.385	1.00	42.11
	ATOM	1967	0	LEU	В	308	19.000	19.102 26.932	1.00	44.34
	ATOM	1968	N	SER	В	309	17.669	19.775 28.608	1.00	40.88
	MOTA	1969	CA	SER	В	309	18.796	20.100 29.475	1.00	42.79
50	ATOM	1970	CB	SER	В	309	18.562	21.447 30.163	1.00	41.25
	ATOM	1971	OG	SER	В	309	17.459	21.379 31.046	1.00	46.67
	ATOM	1972	С	SER	В	309	19.072	19.028 30.529	1.00	42.60
	ATOM	1973	Ó	SER	В	309	20.053	19.119 31.269	1.00	44.18
	ATOM	1974	N	LEU	В	310	18.217	18.012 30.596	1.00	39.44
55	ATOM	1975	CA	LEU	В	310	18.394	16.936 31.569	1.00	37.62
22	MOTA	1976	CB	LEU	В	310	17.205	15.969 31.499	1.00	38.84
	ATOM	1977	CG	LEU	В	310	16.216	15.873 32.668	1.00	42.43
	ATOM	1978	CD1	LEU	В	310	16.040	17.219 33.355	1.00	42.55
		1978	CD2	LEU	В	310	14.881	15.380 32.138	1.00	39.69
60	ATOM		CD2	LEU	В	310	19.691	16.174 31.285	1.00	
UU	ATOM	1980		LEU	В	310	20.111	16.070 30.139	1.00	34.41
	ATOM	1981	Ü	LEU	۵	210	20.111	10.070 30.232		

5	ATOM	2039	CB	LEU	В	319	13.050	6.635 31.548	1.00	22.03
	MOTA	2040	CG	LEU	В	319	13.264	7.622 30.394	1.00	20.71
	ATOM	2041	CD1	LEU	В	319	14.146	6.995 29.331	1.00	23.60
	ATOM	2042	CD2	LEU	В	319	11.918	8.020 29.803	1.00	23.82
	ATOM	2043	C	LEU	В	319	11.729	5.926 33.564	1.00	27.26
10		2043	0	LEU	В	319	10.615	5.396 33.488	1.00	28.91
10	ATOM						12.656	5.516 34.426	1.00	26.58
	MOTA	2045	N	LEU	В	320		4.405 35.334	1.00	26.73
	MOTA	2046	CA	LEU	В	320	12.399			
	ATOM	2047	CB	LEU	В	320	13.657	4.075 36.145	1.00	26.87
	ATOM	2048	CG	LEU	В	320	14.846	3.460 35.398	1.00	26.15
15	ATOM	2049	CD1	LEU	В	320	16.053	3.375 36.330	1.00	28.04
	ATOM	2050	CD2	LEU	В	320	14.484	2.076 34.895	1.00	26.96
	ATOM	2051	С	LEU	В	320	11.249	4.722 36.290	1.00	29.19
	ATOM	2052	ō	LEU	В	320	10.449	3.849 36.631	1.00	26.66
	ATOM	2053	N	ASP	В	321	11.160	5.976 36.719	1.00	29.72
20		2054	CA	ASP	В	321	10.112	6.371 37.647	1.00	31.36
20	ATOM				B	321	10.494	7.683 38.336	1.00	36.60
	ATOM	2055	CB	ASP			11.407	7.461 39.535	1.00	46.11
	MOTA	2056	CG	ASP	В	321				46.64
	ATOM	2057	OD1	ASP	В	321	10.897	7.058 40.605	1.00	
	ATOM	2058	OD2	ASP	В	321	12.635	7.676 39.402	1.00	45.98
25	MOTA	2059	C	ASP	В	321	8.742	6.494 36.989	1.00	28.29
	ATOM	2060	0	ASP	В	321	7.715	6.432 37.661	1.00	27.19
	ATOM	2061	N	ALA	В	322	8.726	6.650 35.672	1.00	28.34
•	ATOM	2062	CA	ALA	В	322	7.469	6.779 34.950	1.00	25.55
	ATOM	2063	CB	ALA	В	322	7.668	7.668 33.728	1.00	24.11
30	ATOM	2064	C	ALA	В	322	6.911	5.420 34.523	1.00	22.80
50	ATOM	2065	0	ALA	В	322	5.810	5.338 33.979	1.00	24.54
	ATOM	2066	N	GLU	В	323	7.662	4.355 34.781	1.00	20.16
			CA	GLU	В	323	7.229	3.021 34.386	1.00	21.44
	ATOM	2067		GLU	В	323	8.196	1.982 34.938	1.00	23.72
25	ATOM	2068	CB				9.393	1.746 34.024	1.00	23.58
35	ATOM	2069	CG	GLU	В	323		1.134 32.685	1.00	25.23
	ATOM	2070	CD	GLU	В	323	8.988			
	MOTA	2071	OE1	GLU	В	323	8.852	1.881 31.692	1.00	21.74
	ATOM	2072	OE2	GLU	В	323	8.809	-0.095 32.624	1.00	25.49
	ATOM	2073	С	GLU	В	323	5. 7 96	2.696 34.810	1.00	22.35
40	ATOM	2074	0	GLU	В	323	5.409	2.926 35.951	1.00	22.34
	ATOM	2075	N	PRO	В	324	4.986	2.165 33.880	1.00	19.10
	ATOM	2076	CD	PRO	В	324	5.286	1.806 32.483	1.00	19.11
	ATOM	2077	CA	PRO	В	324	3.607	1.839 34.242	1.00	22.04
	ATOM	2078	СВ	PRO	В	324	2.919	1.658 32.893	1.00	21.96
45	ATOM	2079		PRO	В	324	4.015	1.137 32.015	1.00	24.13
13	ATOM	2080	C	PRO	В	324	3.619	0.556 35.060	1.00	23.44
		2081	0	PRO	B	324	4.590	-0.200 35.028	1.00	22.20
	MOTA				В	325	2.540	0.287 35.801	1.00	24.88
	ATOM	2082	N	PRO			1.299	1.068 35.945	1.00	26.67
	ATOM	2083	CD	PRO	В	325				
50	MOTA	2084	CA	PRO	В	325	2.520	-0.940 36.603	1.00	25.10
	ATOM	2085	CB	PRO	В	325	1.394	-0.691 37.595	1.00	27.09
	ATOM	2086	CG	PRO	В	325	0.448	0.205 36.854	1.00	26.87
	MOTA	2087	С	PRO	В	325	2.270	-2.192 35.776	1.00	25.77
	ATOM	2088	0	PRO	В	325	1.853	-2.118 34.617	1.00	21.69
55	ATOM	2089	N	ILE	В	326	2.538	-3.344 36.379	1.00	24.05
55	ATOM	2090	CA	ILE	В	326	2.301	-4.620 35.722	1.00	22.51
	ATOM	2091	CB	ILE	В	326	3.303	-5.688 36.185	1.00	25.81
				ILE	В	326	3.011	-7.018 35.481	1.00	23.78
	ATOM	2092	CG2				4.729	-5.209 35.900	1.00	25.75
<i>(</i> 0	ATOM	2093	CG1	ILE	В	326			1.00	27.78
60	ATOM	2094	CD1	ILE	В	326	5.241	-5.585 34.533		
	MOTA	2095	С	ILE	В	326	0.893	-5.020 36.149	1.00	23.63

5	n mon	2152	0	PRO	В	333	-8 180	-22.340 35.351	1.00	63.90
3	ATOM ATOM	2153 2154	С 0	PRO	В	333		-23.214 35.007	1.00	63.70
	ATOM	2154	N	THR	В	334	-9,303	-22.084 34.683	1.00	63.83
		2156	CA	THR	В	334	-9.649	-22.832 33.475	1.00	63.77
	ATOM	2156	CB	THR	В	334	-11.065	-22.477 32.975	1.00	64.63
10	ATOM		OG1	THR	В	334		-21.078 32.675	1.00	65.95
10	ATOM	2158				334		-22.817 34.036	1.00	65.09
	MOTA	2159	CG2	THR	В			-22.499 32.388	1.00	62.62
	ATOM	2160	C	THR	В	334		-21.774 31.437	1.00	60.15
	ATOM	2161	0	THR	В	334 335		-23.043 32.553	1.00	63.14
	ATOM	2162	N	ARG	В		-6.324	-22.820 31.633	1.00	60.70
15	ATOM	2163	CA	ARG	В	335	-5.130	-23.667 32.050	1.00	58.73
	ATOM	2164	CB	ARG	В	335	-6.667	-23.086 30.174	1.00	59.71
	ATOM	2165	C	ARG	В	335	-6.302	-22.298 29.298	1.00	62.33
	ATOM	2166	0	ARG	В	335		-24.194 29.884	1.00	55.25
••	ATOM	2167	N	PRO	В	336		-25.227 30.769	1.00	53.53
20	ATOM	2168	CD	PRO	В	336	-7.938	-24.437 28.471	1.00	50.10
	ATOM	2169	CA	PRO	В	336	-7.698 -8.399	-25.799 28.476	1.00	49.70
	ATOM	2170	CB	PRO	В	336		-26.372 29.844	1.00	50.71
	ATOM	2171	CG	PRO	В	336	-8.164	-28.372 29.844	1.00	44.54
~ -	ATOM	2172	C	PRO	В	336	-8.602			44.14
25	ATOM	2173	0	PRO	В	336	-9.809	-23.342 28.179	1.00	39.18
	MOTA	2174	N	PHE	В	337	-8.007	-22.350 27.274	1.00	38.25
	MOTA	2175	CA	PHE	В	337		-21.223 26.742		36.23
	ATOM	2176	CB	PHE	В	337		-20.003 26.567	1.00	36.81
• •	ATOM	2177	CG	PHE	В	337		-19.517 27.846		38.89
30	MOTA	2178	CD1	PHE	В	337	-5.846	-19.511 28.002	1.00	35.97
	MOTA	2179	CD2	PHE	В	337	-8.023	-19.062 28.893	1.00	36.85
	MOTA	2180	CE1	PHE	B	337	-5.262	-19.059 29.185		37.15
	ATOM	2181	CE2	PHE	В	337	-7.449	-18.608 30.079	1.00	38.40
	ATOM	2182	CZ	PHE	В	337		-18.607 30.224	1.00	36.81
35	MOTA	2183	C	PHE	В	337		-21.535 25.402	1.00	36.26
	MOTA	2184	0	PHE	В	337	-8.962	-22.399 24.658	1.00	35.85
	ATOM	2185	N	SER	В	338	-10.504	-20.828 25.107	1.00	34.76
	MOTA	2186	CA	SER	В	338	-11.198	-20.981 23.836	1.00	34.76
	MOTA	2187	CB	SER	В	338	-12.713	-20.948 24.035	1.00	33.53
40	ATOM	2188	OG	SER	В	338	-13.164	-19.621 24.235 -19.761 23.037	1.00	34.99
	ATOM	2189	C	SER	В	338	-10.761		1.00	34.32
	ATOM	2190	0	SER	В	338	-10.143	-18.855 23.591	1.00	33.01
	MOTA	2191	N	GLU	В	339		-19.722 21.750		
	MOTA	2192		GLU	В	339		-18.579 20.950	1.00	
45	ATOM	2193	CB	GLU	В	339		-18.737 19.501	1.00	33.79
	ATOM	2194	CG	GLU	В	339		-17.553 18.623	1.00	39.11
	MOTA	2195	CD	GLU	В	339		-17.852 17.137	1.00	43.17
	MOTA	2196	OE1	GLU	В	339	-11.990	-17.785 16.600	1.00	45.28
	ATOM	2197	OE2	GLU	В	339		-18.152 16.510	1.00	39.19
50	ATOM	2198	C	GLU	В	339		-17.295 21.531	1.00	34.28
	MOTA	2199	0	GLU	В	339		-16.283 21.631	1.00	33.65
	MOTA	2200	N	ALA	В	340	-12.535	-17.339 21.920	1.00	31.12
	MOTA	2201	CA	ALA	В	340			1.00	29.10
	MOTA	2202	CB	ALA	В	340		-16.412 22.573	1.00	33.84
55	MOTA	2203	С	ALA	В	340		-15.731 23.826	1.00	28.98
	ATOM	2204	0	ALA	В	340		-14.541 24.060	1.00	30.48
	ATOM	2205	N	SER	В	341		-16.691 24.719	1.00	26.66
	ATOM	2206	CA	SER	В	341		-16.386 26.044	1.00	24.26
	MOTA	2207	CB	SER	В	341		-17.643 26.923	1.00	27.04
60	MOTA	2208	OG	SER	В	341		-18.541 26.515	1.00	33.84
	MOTA	2209	C	SER	В	341	-10.479	-15.793 25.960	1.00	23.97

5	ATOM	2267	CD2	LEU	В	349	-2.370	-8.504 29.672	1.00	21.28
	ATOM	2268	C	LEU	В	349	-5.131	-5.307 28.718	1.00	19.92
	ATOM	2269	0	LEU	В	349	-4.738	-4.322 29.349	1.00	16.56
	ATOM	2270	N	ALA	В	350	-5.067	-5.391 27.391	1.00	16.67
	ATOM	2271	CA	ALA	В	350	-4.529	-4.308 26.578	1.00	17.11
10	ATOM	2272	CB	ALA	В	350	-4.587	-4.690 25.095	1.00	14.15
	ATOM	2273	С	ALA	В	350	-5.272	-2.988 26.805	1.00	17.92
	ATOM	2274	0	ALA	В	350	-4.650	-1.926 26.904	1.00	18.71
	MOTA	2275	N	ASP	В	351	-6.600	-3.053 26.857	1.00	17.51
	ATOM	2276	CA	ASP	В	351	-7.409	-1.856 27.074	1.00	16.57
15	ATOM	227 7	CB	ASP	В	351	-8.902	-2.202 27.041	1.00	18.97
	ATOM	2278	CG	ASP	В	351	-9.785	-0.974 26.858	1.00	21.80
	ATOM	2279	OD1	ASP	В	351	-9.660	-0.292 25.824	1.00	24.62
	ATOM	2280	OD2	ASP	В	351	-10.604	-0.682 27.754	1.00	22.78
	ÁTOM	2281	С	ASP	В	351	-7.064	-1.228 28.415	1.00	16.81
20	ATOM	2282	0	ASP	В	351	-6.963	-0.009 28.534	1.00	15.75
	ATOM	2283	N	ARG	B	352	-6.894	-2.056 29.438	1.00	13.97
	ATOM	2284	CA	ARG	В	352	-6.552	-1.509 30.742	1.00	16.09
	ATOM	2285	CB	ARG	В	352	-6.728	-2.571 31.833	1.00	15.78
0.5	ATOM	2286	CG	ARG	В	352	-8.189	-2.819 32.189	1.00	17.93 19.84
25	ATOM	2287	CD	ARG	В	352	-8.323	-3.882 33.279	1.00	
	ATOM	2288	NE	ARG	В	352	-8.010	-5.222 32.785	1.00	21.36 21.18
	ATOM	2289	CZ	ARG	В	352	-7.187 -6.579	-6.075 33.387 -5.741 34.516	1.00	20.51
	ATOM	2290	NH1	ARG	В	352		-7.275 32.864	1.00	28.51
20	ATOM	2291	NH2	ARĞ	В	352	-6.980 -5.123	-0.975 30.728	1.00	15.81
30	ATOM	2292	C	ARG	В	352 352	-4.835	0.057 31.339	1.00	15.61
	ATOM	2293	N	ARG GLU	B B	352 353	-4.231	-1.665 30.019	1.00	15.45
	ATOM ATOM	2294 2295	CA	GLU	В	353	-2.838	-1.228 29.935	1.00	16.59
	ATOM	2296	CB	GLU	В	353	-1.990	-2.243 29.168	1.00	14.64
35	ATOM	2297	CG	GLU	В	353	-1.554	-3.456 29.973	1.00	18.23
22	ATOM	2298	CD	GLU	B	353	-0.620	-4.355 29.176	1.00	22.72
	ATOM	2299	OE1	GLU	В	353	-1.099	-5.078 28.275	1.00	21.94
	ATOM	2300	OE2	GLU	В	353	0.599	-4.324 29.442	1.00	24.41
	ATOM	2301	C	GĹU	В	353	-2.729	0.119 29.219	1.00	15.85
40	ATOM	2302	0	GLÜ	B	353	-1.872	0.939 29.540	1.00	13.76
	ATOM	2303	N	LEU	В	354	-3.594	0.335 28.235	1.00	12.93
	ATOM	2304	CA	LEU	В	354	-3.556	1.575 27.472	1.00	15.33
	ATOM	2305	CB	LEU	В	354	-4.616	1.534 26.360	1.00	16.44
	ATOM	2306	CG	LEU	В	354	-4.174	0.750 25.112	1.00	17.03
45	ATOM	2307	CD1	LEU	В	354	-5.373	0.509 24.189	1.00	16.70
	ATOM	2308	CD2	LEU	В	354	-3.069	1.531 24.384	1.00	14.52
	ATOM	2309	C	ΓĔŨ	В	354	-3.747	2.805 28.361	1.00	12.78
	ATOM	2310	0	LEU	В	354	-3.123	3.850 28.141	1.00	14.28
	ATOM	2311	N	VAL	В	355	-4.600	2.682 29.369	1.00	12.60
50	ATOM	2312	CA	VAL	В	355	-4.844	3.791 30.279	1.00	16.78
	MOTA	2313	CB	VAL	В	355	-5.925	3.429 31.327	1.00	16.84
	MOTA	2314	CG1	VAĻ	В	3 5 5	-6.070	4.561 32.344	1.00	19.88
	ATOM	2315	CG2	VAL	В	355	-7.254	3.187 30.639	1.00	19.33
	MOTA	2316	С	VAL	В	355	-3.533	4.161 30.986	1.00	19.17
55	MOTA	2317	0	VAL	В	355	-3.158	5.328 31.049	1.00	17.30
	ATOM	2318	N	HIS	В	356	-2.826	3.160 31.499	1.00	19.68
	MOTA	2319	CA	HIS	В	356	-1.559	3.418 32.177	1.00	20.64
	MOTA	2320	CB	HIS	В	356	-1.110	2.174 32.945	1.00	21.03
	MOTA	2321	CG	HIS	В	356	-2.018	1.818 34.085	1.00	22.88
60	MOTA	2322	CD2	HIS	В	356	-3.128	1.045 34.135	1.00	21.70
	MOTA	2323	ND1	HIS	В	356	-1.838	2.312 35.358	1.00	19.24

5	ATOM	2381	CA	ARG	В	363	5.996	11.414 32.109	1.00	27.74
	MOTA	2382	CB	ARG	В	363	5.887	10.457 33.298	1.00	28.93
	MOTA	2383	CG	ARG	В	363	4.650	10.704 34.158	1.00	36.07
	ATOM	2384	CD	ARG	В	363	4.569	9.745 35.344	1.00	42.83
	MOTA	2385	NE	ARG	В	363	4.477	8.344 34.928	1.00	49.79
10	MOTA	2386	CZ	ARG	В	363	3.395	7.582 35.080	1.00	51.48
	ATOM	2387	NH1	ARG	В	363	2.300	8.081 35.648	1.00	52.17
	ATOM	2388	NH2	ARG	В	363	3.405	6.316 34.668	1.00	40.24
	MOTA	2389	С	ARG	В	363	7.308	11.190 31.367	1.00	25.80
	ATOM	2390	0	ARG	В	363	8.374	11.183 31.975	1.00	29.36
15	ATOM	2391	N	VAL	В	364	7.231	11.009 30.053	1.00	24.28
	ATOM	2392	CA	VAL	В	364	8.431	10.823 29.248	1.00	21.87
	ATOM	2393	CB	VAL	В	364	8.116	10.048 27.947	1.00	21.84
	ATOM	2394	CG1	VAL	В	364	9.267	10.184 26.968	1.00	15.85
	MOTA	2395	CG2	VAL	В	364	7.860	8.560 28.268	1.00	16.24
20	ATOM	2396	С	VAL	В	364	8.925	12.241 28.923	1.00	28.14
	ATOM	2397	0	VAL	В	364	8.219	13.023 28.285	1.00	24.24
	ATOM	2398	N	PRO	В	365	10.141	12.591 29.375	1.00	28.57
	ATOM	2399	CD	PRO	В	365	11.061	11.726 30.137	1.00	30.58
	ATOM	2400	CA	PRO	В	365	10.719	13.919 29.138	1.00	32.16
25	MOTA	2401	CB	PRO	В	365	12.189	13.739 29.507	1,.00	32.70
	MOTA	2402	CG	PRO	В	365	12.170	12.671 30.545	1.00	33.35
	ATOM	2403	C	PRO	В	365	10.546	14.464 27.726	1.00	32.22
	MOTA	2404	0	PRO	В	365	11.056	13.897 26.766	1.00	37.04
	MOTA	2405	N	GĻŸ	В	366	9.821	15.570 27.609	1.00	34.09
30	ATOM	2406	CA	GLY	B	366	9.612	16.182 26.310	1.00	32.54
	ATOM	2407	C	GLY	В	366	8.241	15.969 25.700	1.00	33.46
	ATOM	2408	0	\mathtt{GLY}	В	366	7.791	16.779 24.886	1.00	33.73
	ATOM	2409	N	PHE	В	367	7.564	14.895 26.096	1.00	31.08
	ATOM	2410	CA	PḤE	В	367	6.250	14.593 25.542	1.00	28.60
35	MOTA	2411	CB	PHE	В	367	5.745	13.244 26.058	1.00	25.96
	MOTA	2412	CG	PHE	В	367	4.629	12.671 25.239	1.00	22.75
	ATOM	2413	CD1	PHE	В	367	3.313	12.771 25.669	1.00	22.62
	MOTA	2414	CD2	PHE	В	367	4.897	12.025 24.033	1.00	22.29
	ATOM	2415	CE1	PHE	В	367	2.272	12.233 24.914	1.00	25.63
40	ATOM	2416	CE2	PHE	В	367	3.867	11.486 23.272	1.00	20.82
	ATOM	2417	CZ	PHE	В	367	2.553	11.588 23.711	1.00	25.50
	ATOM	2418	C	PHE	В	367	5.178	15.646 25 <i>.</i> 781	1.00	26.79
	ATOM	2419	0	PHE	В	367	4.458	16.001 24.854	1.00	23.37
	MOTA	2420	N	VAL	В	368	5.049	16.143 27.009	1.00	31.26
45	MOTA	2421	CA	VAL	В	368	4.020	17.151 27.277	1.00	35.71
	ATOM	2422	CB	VAL	В	368	3.817	17.412 28.795	1.00	35.98
	ATOM	2423	CG1	VAL	В	368	2.944	16.320 29.392	1.00	37.64
	MOTA	2424	CG2	VAL	В	368	5.157	17.495 29.508	1.00	35.81
	ATOM	2425	С	VAL	В	368	4.328	18.482 26.598	1.00	35.87
50	ATOM	2426	0	VAL	В	368	3.450	19.330 26.457	1.00	37.71
	MOTA	2427	N	ASP	В	369	5.572	18.665 26.175	1.00	35.49
	ATOM	2428	CA	ASP	В	369	5.950	19.904 25.503	1.00	36.54
	MOTA	2429	CB	ASP	В	369	7.466	19.963 25.309	1.00	39.79
	MOTA	2430	CG	ASP	В	369	8.213	20.169 26.615	1.00	44.33
55	ATOM	2431	OD1	ASP	В	369	9.409	19.807 26.684	1.00	48.45
	MOTA	2432	OD2	ASP	B	369	7.604	20.693 27.572	1.00	43.27
	ATOM	2433	C	ASP	В	369	5.248	19.997 24.149	1.00	34.49
	ATOM	2434	0	ASP	В	369	5.131	21.074 23.571	1.00	34.51
	ATOM	2435	N	LEU	В	370	4.776	18.859 23.653	1.00	30.97
60	ATOM	2436	CA	LEU	В	370	4.086	18.809 22.370	1.00	29.80
	ATOM	2437	CB	LEU	В	370	4.145	17.389 21.799	1.00	27.27

5	ATOM	2495	CG	HIS	В	377	0.535	11.690 14.667	1.00	30.63
,	ATOM	2496	CD2	HIS	В	377	1.828	11.559 14.287	1.00	31.03
	ATOM	2497	ND1	HIS	В	377	-0.217	11.086 13.683	1.00	35.05
	ATOM	2498	CE1	HIS	В	377	0.588	10.607 12.750	1.00	33.12
	MOTA	2499	NE2	HIS	B	377	1.833	10.882 13.093	1.00	31.06
10	ATOM	2500	C	HIS	В	377	0.365	10.237 17.210	1.00	24.37
10	ATOM	2501	0	HIS	В	377	0.321	9.109 16.719	1.00	21.47
	ATOM	2502	N	LEU	В	378	1.307	10,609 18.072	1.00	19.24
	ATOM	2502	CA	LEU	В	378	2.365	9.691 18.474	1.00	20.09
		2504	CB	LEU	В	378	3.363	10.402 19.388	1.00	18.64
15	ATOM	2504	CG	LEU	В	378	4.230	11.489 18.736	1.00	22.15
13	ATOM	2505	CD1	LEU	В	378	5.104	12.148 19.796	1.00	22.51
	ATOM		CD2	LEU	В	378	5.094	10.885 17.638	1.00	20.68
	MOTA	2507	CDZ	LEU	В	378	1.832	8.433 19.161	1.00	18.91
	ATOM	2508	0	LEU	В	378	2.262	7.320 18.859	1.00	17.52
20	ATOM	2509	N	LEU	В	379	0.888	8.610 20.077	1.00	18.25
20	ATOM	2510	CA	LEU	В	379	0.317	7.486 20.795	1.00	18.60
	ATOM	2511	CB	LEU	В	379	-0.526	7.989 21.968	1.00	16.77
	ATOM	2512	CG	LEU	В	379	0.292	8.353 23.214	1.00	17.90
	ATOM	2513			В	379	-0.578	9.092 24.211	1.00	15.84
25	MOTA	2514	CD1	LEU	В	379	0.851	7.075 23.842	1.00	22.09
25	ATOM	2515	CD2	LEU LEU		379	-0.518	6.605 19.872	1.00	20.17
	MOTA	2516	C	LEU	B B	379	-0.476	5.377 19.968	1.00	18.11
	MOTA	2517	0	LEU		380	-1.273	7.222 18.971	1.00	19.40
	ATOM	2518	N	GĻŲ	B B	380	-2.086	6.435 18.049	1.00	20.19
20	MOTA	2519	CA	GĽÚ	B	380	-2.994	7.350 17.222	1.00	22.43
30	ATOM	2520	CB	GLU	в В	380	-4.182	7.874 18.007	1.00	25.30
	ATOM	2521	CG	GLU	В	380	-5.070	8.789 17.188	1.00	29.44
	MOTA	2522	CD	GLU	В	380	-6.206	9.066 17.625	1.00	31.70
	ATOM	2523	OE1	GLU	В	380	-4.631	9.230 16.110	1.00	31.75
25	ATOM	2524	OE2	GLU	В	380	-1.210	5.594 17.117	1.00	18.92
35	ATOM	2525	C	GLU	В	380	-1.586	4.491 16.722	1.00	19.83
	ATOM	2526	0	GLU	В	381	-0.039	6.113 16.772	0.75	17.41
	MOTA	2527	N	ACYS	В	381	-0.035	6.113 16.779	0.25	17.76
	ATOM	2528	N CA	BCYS ACYS	В	381		5.384 15.887	0.75	20.19
40	ATOM	2529	CA	BCYS	В	381	0.875	5.407 15.884	0.25	17.50
40	ATOM	2530	CA		В	381	1.870	6.342 15.248	0.75	24.20
	ATOM	2531	CB	ACYS	В	381	1.830	6.406 15.226	0.25	16.63
	ATOM	2532	CB	BCYS	В	381	1.167	7.518 14.060	0.75	33.54
	ATOM	2533	SG	ACYS			3.048	5.656 14.128	0.25	10.36
15	MOTA	2534	SG	BCYS	B	381 381	1.626	4.269 16.592	0.75	20.59
45	ATOM	2535	C	ACYS	B B	381	1.689	4.305 16.561	0.25	19.19
	MOTA	2536	C			381	1.737	3.161 16.069	0.75	19.16
	ATOM	2537	0	ACYS BCYS	В	381	1.904	3.241 15.982	0.25	19.25
	ATOM	2538	0		В		2.134	4.560 17.785	1.00	19.04
50	ATOM	2539	N	ALA	В	382	2.134	3.602 18.530	1.00	20.27
50	ATOM	2540	CA	ALA	В	382	4.135	4.364 19.143	1.00	18.68
	ATOM	2541	CB	ALA	В	382	2.356	2.702 19.607	1.00	16.82
	ATOM	2542	С	ALA	В	382	3.070	1.852 20.142	1.00	13.37
	ATOM	2543	0	ALA	В	382			1.00	15.30
c	ATOM	2544	N	TRP	В	383	1.074 0.487	2.855 19.916 2.089 21.013	1.00	15.80
55	ATOM	2545	CA	TRP	В	383			1.00	16.63
	MOTA	2546	CB	TRP	В	383	-1.009	2.410 21.160 1.775 20.129	1.00	19.93
	MOTA	2547	CG	TRP	В	383	-1.871		1.00	20.80
	ATOM	2548	CD2	TRP	В	383	-2.493	0.483 20.198 0.309 19.003	1.00	19.27
	MOTA	2549	CE2	TRP	В	383	-3.226		1.00	21.32
60	ATOM	2550	CE3	TRP	В	383	-2.506	-0.542 21.155	1.00	18.59
	MOTA	2551	CD1	TRP	В	383	-2.236	2.312 18.933	1.00	10.33

5	MOTA	2609	C	GLY	В	390	6.444	-5.702 27.463	1.00	18.54
	MOTA	2610	0	GLY	В	390	6.989	-6.282 28.403	1.00	16.54
	MOTA	2611	N	LEU	В	391	5.623	-6.325 26.628	1.00	16.15
	MOTA	2612	CA	LEU	В	391	5.334	-7.743 26.775	1.00	18.91
	MOTA	2613	CB	LEU	В	391	4.332	-8.179 25.699	1.00	19.55
10	ATOM	2614	CG	LEU	В	391	4.157	-9.689 25.457	1.00	20.91
	ATOM	2615	CD1	LEU	В	391	3.580	-10.351 26.699	1.00	19.41
	MOTA	2616	CD2	LEU	В	391	3.232	-9.913 24.268	1.00	20.70
	ATOM	2617	С	LEU	B	391	6.649	-8.518 26.625	1.00	20.31
	ATOM	2618	0	LEU	В	391	7.002	-9.352 27.465	1.00	18.66
15	ATOM	2619	N	VAL	B	392	7.378	-8.215 25.557	1.00	18.71
	ATOM	2620	CA	VAL	В	392	8.649	-8.868 25.278	1.00	19.51
	ATOM	2621	CB	VAL	В	392	9.288	-8.281 24.005	1.00	23.77
	ATOM	2622	CG1	VAL	В	392	10.751	-8.687 23.920	1.00	24.63
	ATOM	2623	CG2	VAL	В	392	8.520	-8.773 22.767	1.00	19.94
20	ATOM	2624	С	VAL	В	392	9.615	-8.707 26.450	1.00	22.80
	ATOM	2625	0	VAL	В	392	10.336	-9.637 26.811	1.00	19.36
	ATOM	2626	N	TRP	В	393	9.617	-7.522 27.046	1.00	22.10
	ATOM	2627	CA	TRP	В	393	10.492	-7.241 28.171	1.00	23.20
	ATOM	2628	CB	TRP	В	393	10.388	-5.773 28.578	1.00	19.22
25	ATOM	2629	CG	TRP	В	393	11.056	-5.479 29.895	1.00	22.53
	ATOM	2630	CD2	TRP	В	393	12.453	-5.591 30.193	1.00	20.36
	ATOM	2631	CE2	TRP	В	393	12.624	-5.208 31.545	1.00	25.65
	MOTA	2632	CE3	TRP	В	393	13.578	-5.976 29.449	1.00	22.12
	ATOM	2633	CD1	TRP	В	393	10.452	-5.046 31.044	1.00	23.02
30	ATOM	2634	NE1	TŖP	В	393	11.387	-4.881 32.037	1.00	24.91
	ATOM	2635	CZ2	TRP	В	393	13.876	-5.200 32.171	1.00	23.00
	ATOM	2636	CZ3	TRP	В	393	14.829	-5.968 30.072	1.00	23.98
	ATOM	2637	CH2	TRP	В	393	14.964	-5.582 31.423	1.00	23.20
	ATOM	2638	C	TRP	В	393	10.208	-8.114 29.388	1.00	24.36
35	ATOM	2639	0	TRP	В	393	11.128	-8.717 29.944	1.00	23.04
	ATOM	2640	N	ARG	В	394	8.952	-8.189 29.819	1.00	21.29
	ATOM	2641	CA	ARG	В	394	8.680	-9.003 30.990	1.00	22.43
	MOTA	2642	CB	ARG	В	394	7.365	-8.601 31.667	1.00	23.97
	ATOM	2643	CG	ARG	В	394	6.259	-8.149 30.759	1.00	26.16
40	MOTA	2644	CD	ARG	В	394	5.026	-7.727 31.574	1.00	20.86
	ATOM	2645	NE	ARG	В	394	3.817	-7.937 30.786	1.00	19.54
	ATOM	2646	CZ	ARG	B	394	3.327	-7.059 29.915	1.00	20.58
	ATOM	2647	NH1	ARG	В	394	3.944	-5.902 29.722	1.00	17.41
	MOTA	2648	NH2	ARG	В	394	2.229	-7.347 29.220	1.00	16.82
45	MOTA	2649	С	ARG	₿	394	8.695	-10.502 30.713	1.00	21.78
	MOTA	2650	0	ARG	В	394			1.00	23.44
	ATOM	2651	N	SER	В	395		-10.880 29.438	1.00	17.10
	MOTA	2652	CA	SER	В	395		-12.289 29.041	1.00	25.08
	ATOM	2653	CB	SER	В	395		-12.473 27.638	1.00	19.47
50	ATOM	2654	OG	SER	В	395	6.832	-12.136 27.619	1.00	21.73
	ATOM	2655	С	SER	В	395	10.239	-12.831 29.031	1.00	26.29
	ATOM	2656	0	SER	В	395		-14.030 28.854	1.00	23.75
	ATOM	2657	N	MET	B	396		-11.938 29.210	1.00	30.79
	ATOM	2658	CA	MET	В	396		-12.307 29.205	1.00	35.07
55	ATOM	2659	CB	MET	В	396	13.479	-11.063 29.423	1.00	33.84
	ATOM	2660	CG	MET	В	396	14.155	-10.569 28.171	1.00	36.88
	MOTA	2661	SD	MET	B	396	15.149	-9.127 28.491	1.00	40.96
	MOTA	2662	CE	MET	В	396	16.675	-9.849 28.998	1.00	39.67
	ATOM	2663	С	MET	В	396	12.983	-13.353 30.250	1.00	35.88
60	ATOM	2664	0	MET	В	396	13.828	-14.215 30.011	1.00	34.52
	ATOM	2665	N	GLU	В	397	12.348	-13.266 31.410	1.00	36.19

5 404 -0.026 -11.897 27.227 1.00 19.75 ATOM 2723 CG PHE В 0.364 -13.167 26.801 1.00 17.90 PHE 404 ATOM 2724 CD1 В 17.04 -0.210 -10.897 26.280 1.00 ATOM 2725 CD2 PHE В 404 0.572 -13.434 25.447 1.00 19.88 MOTA 2726 CE1 PHE В 404 -0.007 -11.148 24.924 1.00 18.47 MOTA 2727 CE₂ PHE В 404 0.386 -12.418 24.503 1.00 16.45 10 MOTA 2728 CZPHE В 404 2729 C PHE В 404 0.768 -10.403 30.685 1.00 21.95 ATOM 404 0.656 -9.177 30.804 1.00 22.99 ATOM 2730 0 PHE В 0.670 -11.247 31.702 1.00 21.12 ATOM 2731 N ALA В 405 CA ALA 405 0.424 -10.814 33.066 1.00 22.43 2732 В ATOM 15 -1.074 -10.603 33.304 1.00 24.69 2733 CB ALA 405 ATOM В 1.00 ALA 405 0.959 -11.926 33.962 22.40 MOTA 2734 C В 1.00 ALA 1.133 -13.061 33.517 21.67 2735 0 405 **ATOM** В 1.00 1.246 -11.612 35.230 25.60 PRO MOTA 2736 N В 406 PRO 406 1.129 -10.294 35.878 1.00 23.65 ATOM 2737 CD В 20 1.765 -12.632 36.148 1.00 25.91 CA PRO В 406 ATOM 2738 1.899 -11.882 37.475 1.00 27.04 ATOM 2739 CB PRO В 406 2.017 -10.431 37.068 1.00 26.56 ATOM 2740 CG PRO В 406 0.876 -13.873 36.259 1.00 25.12 ATOM 2741 C PRO В 406 MOTA 2742 0 PRO В 406 1.368 -14.967 36.538 1.00 28.92 25 ATOM 2743 Ν ASN В 407 -0.426 -13.713 36.039 1.00 23.53 2744 CA ASN В 407 -1.345 -14.852 36.109 1.00 24.09 ATOM MOTA 2745 CB ASN В 407 -2.553 -14.526 36.986 1.00 24.08 MOTA 2746 CG ASN 407 -3.327 -13.328 36.486 1.00 26.72 В 2747 -2.851 -12.574 35.635 1.00 22.65 ASN 407 ATOM OD1 В 1.00 30 -4.528 -13.140 37.019 26.46 ATOM 2748 ND2 ASN В 407 -1.820 -15.231 34.714 1.00 26.91 2749 C ASN B 407 **ATOM** -2.859 -15.870 34.548 1.00 28.68 2750 0 ASN В 407 ATOM 1.00 27.28 -1.059 -14.816 33.708 ATOM 2751 Ν LEU В 408 -1.387 -15.124 32.327 1.00 27.23 2752 CA LEU В 408 ATOM 35 -2.247 -14.030 31.699 1.00 26.61 LEU ATOM 2753 CB В 408 -2.815 -14.464 30.341 1.00 27.51 MOTA 2754 CG LEU В 408 2755 CD1 LEU В 408 -3.702 -15.692 30.546 1.00 28.75 **ATOM** CD2 2756 LEU 408 -3.598 -13.330 29.694 1.00 25.48 В ATOM -0.113 -15.316 31.514 1.00 27.56 MOTA 2757 C LEU В 408 40 0.247 -14.465 30.695 1.00 26.86 ATOM 2758 0 LEU 408 В 0.553 -16.426 31.759 1.00 27.54 2759 ATOM N LEU В 409 1.786 -16.774 31.065 1.00 31.96 ATOM 2760 CA LEU В 409 2.786 -17.355 32.058 1.00 31.88 ATOM 2761 CB LEU В 409 4.186 -17.703 31.562 1.00 37.72 2762 CG LEU В 409 ATOM 1.00 45 ATOM 2763 CD1 LEU В 409 4.773 -16.551 30.770 39.57 2764 CD2 LEU 409 5.066 -18.018 32.758 1.00 41.72 ATOM В 1.401 -17.805 30.009 1.00 31.53 ATOM 2765 C LEU В 409 1.00 ATOM 2766 0 LEU В 409 0.921 -18.892 30.340 32.67 ATOM 2767 N LEU В 410 1.604 -17.465 28.746 1.00 29.58

1.228 -18.361 27.660

0.192 -17.672 26.762

-1.047 -17.080 27.452

-1.770 -16.135 26.501

-1.979 -18.200 27.891

2.397 -18.839.26.814

3.427 -18.170 26.726

2.238 -20.013 26.206

3.275 -20.562 25.336

3.657 -21.990 25.752

2.476 -22.943 25.749

1.773 -23.035 24.719

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

31.55

29.83

28.55

26.92

30.49

33.88

36.49

38.80

38.39

44.53

44.90

45.70

50

55

60

ATOM

MOTA

MOTA

ATOM

MOTA

ATOM

ATOM

MOTA

MOTA

MOTA

ATOM

MOTA

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

CA

CB

CG

CD1

CD2

C

O

N

CA

CB

CG

QD1

LEU

LEU

LEU

LEU

LEU

LEU

LEU

ASP

ASP

ASP

ASP

ASP

В

В

В

В

В

В

В

В

 \mathbf{B}

В

В

В

410

410

410

410

410

410

410

411

411

411

411

411

5	MOTA	2837	N	GLU	В	419	~7 084	-18.388 15.740	1.00	33.44
)	ATOM	2838	CA	GLU	В	419	-6.554	-18.500 14.390	1.00	34.52
	ATOM	2839	CB	GLU	В	419	-7.681		1.00	36.21
	ATOM	2840	CG	GLU	В	419	-8.597		1.00	44.19
		2841	CD	GLU	В	419	-9.477		1.00	48.47
10	ATOM	2842	OE1	GLU	В	419	-9.157		1.00	51.04
10	ATOM	2843	OE1	GLU	В	419	-10.484	-16.993 11.813	1.00	48.91
	ATOM				В	419	-5.717		1.00	32.89
	MOTA	2844 2845	C 0	GLU GLU	В	419	-6.156	-16.144 14.123	1.00	31.09
	ATOM	2846	N	GLY	В	420		-17.562 13.535	1.00	32.84
15	ATOM	2847	CA	GLY	В	420		-16.506 13.122	1.00	34.37
13	ATOM	2848	CA	GLY	В	420	-2.722	-15.955 14.240	1.00	35.30
	ATOM	2849	0	GLY	В	420	-1.745	-15.246 13.975	1.00	35.94
	ATOM	2850	N	MET	В	421	-3.052	-16.285 15.486	1.00	30.08
	ATOM	2851	CA	MET	В	421	-2.289	-15.780 16.625	1.00	29.22
20	MOTA	2852	CB	MET	В	421		-15.922 17.914	1.00	22.54
20	ATOM	2853	CG	MET	В	421	-2.469		1.00	23.82
	ATOM	2854	SD	MET	В	421	-2.124	-13.494 18.872	1.00	28.40
	ATOM	2855	CE	MET	В	421	-3.697		1.00	24.67
	ATOM ATOM	2856	CE	MET	В	421		-16.416 16.821	1.00	29.67
25		2857	0	MET	В	421		-15.751 17.269	1.00	29.76
23	ATOM ATOM	2858	N	VAL	В	422	-0.766		1.00	30.63
		2859	CA	VAL	В	422	0.524	-18.338 16.675	1.00	29.90
	ATOM ATOM	2860	CB	VAL	B	422	0.482	-19.835 16.273	1.00	35.74
	ATOM	2861	CG1	VAL	В	422	0.514	-19.992 14.753	1.00	37.64
30	ATOM	2862	CG2	VAL	В	422	1.659	-20.555 16.897	1.00	31.68
30	ATOM	2863	C	VAL	В	422	1.669	-17.640 15.935	1.00	28.64
	ATOM	2864	0	VAL	В	422	2.788	-17.571 16.441	1.00	26.15
	ATOM	2865	N	GLU	В	423	1.402	-17.113 14.747	1.00	28.70
	ATOM	2866	CA	GLU	В	423	2.454	-16.435 13.997	1.00	31.34
35	ATOM	2867	CB	GLU	B	423	1.963	-16.050 12.596	1.00	36.21
55	ATOM	2868	CG	GLU	В	423	0.502	-16.376 12.325	1.00	45.83
	ATOM	2869	CD	GLU	В	423	0.250	-17.865 12.144	1.00	46.71
	ATOM	2870	OE1	GLU	В	423	-0.746	-18.368 12.706	1.00	45.97
	ATOM	2871	OE2	GLU	В	423	1.045	-18.530 11.442	1.00	50.05
40	ATOM	2872	C	GLÜ	В	423	2.928	-15.186 14.744	1.00	30.57
,,	ATOM	2873	ō	GLÜ	В	423	4.119	-14.870 14.759	1.00	26.59
	ATOM	2874	N	ILE	В	424	2.001	-14.478 15.378	1.00	26.19
	ATOM	2875	CA	ILE	В	424	2.381	-13.279 16.111	1.00	26.23
	ATOM	2876	CB	ILE	В	424	1.134	-12.435 16.452	1.00	29.33
45	ATOM	2877	CG2	ILE	В	424	1.492	-11.315 17.425	1.00	30.91
	ATOM	2878	CG1	ILE	B	424	0.584	-11.817 15.160	1.00	29.09
	ATOM	2879	CD1	ILE	В	424	-0.895		1.00	30.51
	ATOM	2880	C	ILE	В	424	3.153	-13.673 17.370	1.00	24.22
	ATOM	2881	0	ILE	В	424	4.152	-13.037 17.725	1.00	21.05
50	ATOM	2882	N	PHE	В	425	2.708	-14.746 18.023	1.00	21.71
	ATOM	2883	CA	PHE	В	425	3.370	-15.236 19.223	1.00	18.85
	ATOM	2884	CB	PHE	В	425	2.650	-16.479 19.768	1.00	22.98
	ATOM	2885	CG	PHE	В	425	1.580	-16.183 20.795	1.00	22.17
	ATOM	2886	CD1	PHE	В	425	1.287	-17.112 21.792	1.00	25.47
55	ATOM	2887	CD2	PHE	В	425	0.843	-15.001 20.747	1.00	26.30
	ATOM	2888	CE1	PHE	В	425	0.273		1.00	24.33
	ATOM	2889	CE2	PHE	В	425	-0.174	-14.749 21.676	1.00	25.03
	ATOM	2890	CZ	PHE	В	425		-15.684 22.663	1.00	26.44
	ATOM	2891	C	PHE	В	425		-15.610 18.885	1.00	20.00
60	ATOM	2892	0	PHE	В	425	5.741	-15.292 19.636	1.00	21.15
-	MOTA	2893	N	ASP	В	426	5.023	-16.281 17.754	1.00	19.87
				•						

1.00 31.56 5 ARG 434 16.437 -10.912 19.977 MOTA 2951 CB В -9.868 19.493 1.00 36.76 ATOM 2952 ÇG ARG R 434 17.428 18.694 -10.502 18.919 1.00 37.76 ATOM 2953 CD ARG В 434 -9.479 18.516 1.00 39.50 434 19.654 MOTA 2954 NE ARG R -9.673 18.418 20.965 1.00 44.17 434 MOTA 2955 CZ ARG В 21.492 -10.861 18.696 1.00 43.17 10 434 MOTA 2956 NH1 ARG В -8.671 18.048 1.00 43:05 21.750 2957 NH2 ARG В 434 ATOM 1.00 17.328 -10.827 22.326 29.15 2958 C ARG В 434 MOTA 18.515 -10.612 22.569 1.00 28.82 434 2959 0 ARG В MOTA 1.00 16.337 -10.297 23.039 24.88 2960 N PHE 435 MOTA В 16.600 -9.422 24.186 1.00 25.74 15 MOTA 2961 CA PHE В 435 -8.972 24.825 1.00 PHE 26.53 2962 В 435 15.278 ATOM CB -7.758 24.183 14.656 1.00 30.94 ATOM 2963 CG PHE В 435 -7.271 22.966 1.00 32.65 PHE В 435 15.118 2964 CD1 ATOM 2965 CD2 13.592 -7.108 24.797 1.00 33.60 PHE В 435 ATOM 20 14.529 -6.155 22.372 1.00 36.84 PHE 435 MOTA 2966 CE1 В 12.997 -5.989 24.208 1.00 34.96 2967 CE2 PHE В 435 ATOM 1.00 13.468 -5.516 22.995 31.64 ATOM 2968 CZ PHE В 435 2969 PHE 435 17.426 -10.184 25.233 1.00 25.39 MOTA C В -9.675 25.764 1.00 PHE 435 18.414 22.59 ATOM 2970 O В 16.999 -11.405 25.528 25 1.00 24.58 ARG 436 MOTA 2971 N В 17.675 -12.253 26.503 1.00 30.25 MOTA 2972 CA ARG В 436 16.898 -13.569 26.662 1.00 33.32 ATOM 2973 CB ARG В 436 17.232 -14.358 27.915 1.00 38.17 MOTA 2974 CG AŔĠ В 436 16.135 -15.367 28.260 1.00 37.27 ARG B 436 ATOM 2975 CD 15.646 -16.085 27.086 30 1.00 43.92 NE В 436 MOTA 2976 ARG 14.433 -15.923 26.557 1.00 46.68 ARG 436 ATOM 2977 CZВ 13.578 -15.061 27.097 1.00 45.59 MOTA 2978 NH1 ARĞ В 436 14.074 -16.620 25.486 1.00 46.25 2979 NH2 ARG B 436 MOTA 19.110 -12.531 26.048 1.00 29.82 ATOM 2980 C -ARG В 436 20.057 -12.397 26.823 1.00 28.76 35 2981 0 ARG 436 MOTA В AMET 19.269 -12.921 24.789 0.50 30.27 B 437 MOTA 2982 N 19.252 -12.906 24.781 BMET 0.50 31.41 437 MOTA 2983 N \mathbf{B} 20.591 -13.212 24.253 0.50 31.98 AMET ATOM 2984 CA В 437 20.547 -13.206 24.183 0.50 33.77 2985 BMET B 437 MOTA CA 20.489 -13.646 22.788 0.50 40 MOTA 2986 CB AMET В 437 31.34 20.348 -13.595 22.714 0.50 35.88 ATOM 2987 CB BMET В 437 20.179 -15.127 22.592 0.50 33.62 AMET В MOTA 2988 CG 437 21.605 -13.594 21.861 0.50 40.47 BMET В **ATOM** 2989 CG 437 20.354 -16.099 24.109 0.50 35.21 AMET B MOTA 2990 SD 437 21.247 -13.937 20.115 0.50 46.79 45 2991 SD BMET Ë 437 MOTA 0.50 33.20 AMET 22.155 ~16.194 24.259 ATOM 2992 CE B 437 21.837 -15.632 19.976 0.50 43.22 2993 CE BMET 437 MOTA В 21.498 -11.993 24.366 0.50 437 33.33 AMET ATOM 2994 C В 21.487 -12.005 24.289 0.50 34.45 BMET MOTA 2995 С В 437 22.702 -12.123 24.594 0.50 33.54 50 MOTA 2996 0 AMET В 437 22.699 -12.162 24.438 0.50 34.43 ATOM 2997 O BMET В 437 -10.809 24.215 1.00 32.07 2998 N 438 20.913 MOTA MET В 21.674 -9.560 24.298 1.00 32.48 438 ATOM 2999 CA MET ₿ 20.930 -8.437 23.578 1.00 29.74 MOTA 3000 CB MET В 438 21.161 -8.364 22.093 1.00 36.73 55 MOTA 3001 CG MET. В 438 20.425 -6.849 21.462 1.00 38.21 ATOM 3002 SD MET B 438 3003 CE MET B 438 21.693 -5.657 21.943 1.00 35.91 MOTA -9.122 25.738 1.00 ATOM 3004 С MET В 438 21.877 28.81 MET... 22.686 -8.240 26.013 1.00 30.13 ATOM 3005 0 В 438 -9.721 26.646 1.00 27.14 60 MOTA 3006 N ASN . В 439 21.120 1.00 -9.359 28.038 27.34 21.199 ATOM 3007 CA ASN_ B 439

5	ATOM	3065	CA	VAL.	В	446	13.074	2.269 29.112	1.00	16.78
	ATOM	3066	CB	VAL	В	446	13.165	2.895 30.531	1.00	18.32
	ATOM	3067	CG1	VAL	В	446	12.574	1.923 31.551	1.00	21.14
	ATOM	3068	CG2	VAL	В	446	14.598	3.251 30.879	1.00	21.04
	ATOM	3069	С	VAL	В	446	13.450	3.295 28.051	1.00	17.91
10	ATOM	3070	0	VAL	В	446	12.596	4.028 27.561	1.00	19.37
	ATOM	3071	N	CYS	В	447	14.723	3.335 27.674	1.00	18.81
	ATOM	3072	CA	CYS	B	447	15.161	4.255 26.635	1.00	17.34
	ATOM	3073	CB	CYS	В	447	16.682	4.224 26.512	1.00	19.33
	ATOM	3074	SG	CYS	В	447	17.538	5.134 27.798	1.00	23.60
15	ATOM	3075	С	CYS	В	447	14.537	3.826 25.301	1.00	18.09
	ATOM	3076	0	CYS	В	447	13.988	4.643 24.563	1.00	17.52
	MOTA	3077	N	LEU	В	448	14.623	2.533 25.006	1.00	15.60
	ATOM	3078	CA	LEU	В	448	14.072	1.994 23.767	1.00	16.67
	ATOM	3079	CB	LEU	В	448	14.328	0.490 23.684	1.00	14.82
20	ATOM	3080	CG	LEU	В	448	15.730	0.009 23.301	1.00	23.57
	ATOM	3081	CD1	LEU	В	448	15.722	-1.522 23.169	1.00	21.61
	ATOM	3082	CD2	LEU	В	448	16.167	0.658 21.986	1.00	18.92
	ATOM	3083	C	LEŲ	В	448	12.573	2.249 23.652	1.00	15.98
	MOTA	3084	0	LEU	В	448	12.078	2.633 22.590	1.00	18.91
25	ATOM	3085	N	LYS	В	449	11.849	2.037 24.745	1.00	17.94
	ATOM	3086	CA	LYS	В	449	10.405	2.232 24.733	1.00	16.66
	MOTA	3087	CB	LYS.	В	449	9.796	1.745 26.047	1.00	16.45
	ATOM	3088	CG	LYS	В	449	8.285	1.861 26.115	1.00	16.12
	ATOM	3089	CD	LYS	В	449	7.730	0.952 27.193	1.00	19.09
30	ATOM	3090	CE	LYS	В	449	8.201	1.380 28.580	1.00	17.04
	MOTA	3091	NZ	LYS	В	449	7.159	1.088 29.593	1.00	17.25
	MOTA	3092	C	LYS	В	449	10.058	3.696 24.486	1.00	18.78
	MOTA	3093	0	LYS	В	449	9.103	3.996 23.769	1.00	14.84
	MOTA	3094	N	SER	В	450	10.837	4.610 25.059	1.00	14.50
35	ATOM	3095	CA	SER	В	450	10.591	6.032 24.849	1.00	17.11
	ATOM	3096	CB	SER	В	450	11.440	6.866 25.815	1.00	21.20
	MOTA	3097	OG	SER	В	450	10.859	6.868 27.108	1.00	30.66
	MOTA	3098	C	SER	В	450	10.921	6.418 23.405	1.00	17.84 18.82
40	MOTA	3099	0	SER	В	450	10.279	7.292 22.821	1.00	16.82
40	ATOM	3100	N	ILE	В	451	11.926	5.768 22.828	1.00	17.11
	MOTA	3101	CA	ILE	В	451	12.305	6.063 21.450 5.268 21.025	1.00	16.69
	ATOM	3102	CB	ILE	В	451	13.564	5.298 19.505	1.00	19.31
	ATOM	3103	CG2	ILE	В	451	13.724	5.897 21.676	1.00	18.96
15	MOTA	3104	CG1	ILE	В	451	14.804 16.083	5.130 21.431	1.00	18.98
45	ATOM	3105	CD1	ILE	В	451	11.142	5.711 20.527	1.00	18.09
	ATOM	3106	C	ILE	В	451 451	10.820	6.464 19.608	1.00	17.07
	ATOM	3107	0	ILE	В		10.505	4.571 20.786	1.00	18.13
	ATOM	3108	N	ILE	B B	452 452	9.373	4.137 19.976	1.00	16.77
50	ATOM	3109	CA	ILE ILE	В	452	8.804	2.775 20.477	1.00	17.40
50	ATOM	3110	CB		В	452 452	7.464	2.496 19.831	1.00	14.33
	ATOM	3111	CG2	ILE		452	9.763	1.635 20.107	1.00	15.36
	ATOM	3112	CG1	ILE ILE	B B	452	9.449	0.323 20.805	1.00	17.76
	ATOM	3113	CD1 C	ILE	В	452	8.271	5.195 20.024	1.00	17.47
55	ATOM	3114		ILE	В	452	7.733	5.586 18.992	1.00	16.50
33	ATOM	3115	0	LEU	В	453	7.943	5.665 21.222	1.00	16.06
	ATOM ATOM	3116 3117	N CA	LEU	В	453	6.903	6.680 21.374	1.00	17.17
	MOTA	3117	CB	PEO	В	453	6.736	7.061 22.850	1.00	16.23
	ATOM	3118	CG	LEU	В	453	5.792	8.228 23.163	1.00	17.60
60	ATOM	3119	CD1	LEU	В	453	4.388	7.881 22.704	1.00	16.94
00	ATOM	3121	CD1	LEU	В	453	5.816	8.538 24.667	1.00	17.17
	AT OM	121	CD2	الاند	ے	~ ~ ~	5.010	3.333 21.337		

5	MOTA	3179	CG	PHE	В	461	4.235	14.789 13.492	1.00	74.32
	ATOM	3180	CD1	PHE	В	461	3.200	14.609 14.404	1.00	73.98
	ATOM	3181	CD2	PHE	В	461	5.517	15.025 13.975	1.00	75.22
	MOTA	3182	CE1	PHE	В	461	3.438	14.662 15.775	1.00	74.02
	MOTA	3183	CE2	PHE	В	461	5.765	15.080 15.344	1.00	74.50
10	MOTA	3184	CZ	PHE	В	461	4.722	14.897 16.245	1.00	74.10
	ATOM	3185	С	PHE	В	461	1.787	14.286 10.896	1.00	76.78
	ATOM	3186	0	PHE	В	461	1.775	14.279 9.645	1.00	77.08
	ATOM	3187	CB	GLU	В	470	7.873	23.789 14.718	1.00	80.19
	ATOM	3188	С	GLU	В	470	8.958	21.731 15.650	1.00	79.30
15	ATOM	3189	0	GLU	В	470	9.887	21.518 16.432	1.00	78.21
	MOTA	3190	N	GLU	В	470	9.096	22.235 13.227	1.00	80.22
	MOTA	3191	CA	GLU	В	470	9.060	22.830 14.595	1.00	80.03
	MOTA	3192	N	GLU	В	471	7.823	21.037 15.665	1.00	78.31
	ATOM	3193	CA	GLU	В	471	7.596	19.956 16.617	1.00	75.83
20	ATOM	3194	CB	GLU	В	471	6.118	19.543 16.604	1.00	76.70
-	ATOM	3195	CG	GLU	В	471	5.742	18.544 15.516	1.00	78.42
	ATOM	3196	CD	GLU	В	471	5.062	19.198 14.327	1.00	79.69
	ATOM	3197	OE1	GLU	В	471	3.829	19.398 14.378	1.00	80.26
	ATOM	3198	OE2	GLU	В	471	5.763	19.511 13.340	1.00	80.72
25	ATOM	3199	C	GLU	В	471	8.487	18.756 16.292	1.00	73.13
45	ATOM	3200	0	GLU	В	471	8.897	18.021 17.189	1.00	73.86
	ATOM	3201	N	LYS	В	472	8.785	18.565 15.009	1.00	69.65
	ATOM	3202	CA	LYS	В	472	9.639	17.461 14.581	1.00	64.40
	ATOM	3202	CB	LYS	В	472	9.578	17.293 13.060	1.00	63.78
30	ATOM	3204	CG	LYS	В	472	8.343	16.552 12.566	1.00	64.49
50	ATOM	3205	CD	LYS	В	472	8.544	16.002 11.161	1.00	63.81
	ATOM	3206	CE	LYS	В	472	7.379	16.368 10.249	1.00	64.90
	ATOM	3207	NZ	LYS	В	472	6.475	15.212 9.990	1.00	63.97
	ATOM	3208	C	LYS	В	472	11.071	17.749 15.014	1.00	61.03
35	ATOM	3209	0	LYS	В	472	11.848	16.833 15.287	1.00	60.28
33	ATOM	3210	N	ASP	В	473	11.413	19.033 15.076	1.00	56.84
	ATOM	3211	CA	ASP	В	473	12.745	19.451 15.488	1.00	51.69
	ATOM	3212	CB	ASP	В	473	12.923	20.940 15.242	1.00	50.36
	ATOM	3213	C	ASP	В	473	12.923	19.138 16.970	1.00	49.18
40	ATOM	3214	0	ASP	B	473	13.959	18.619 17.385	1.00	46.85
40	ATOM	3215	N	HIS	В	474	11.898	19.449 17.758	1.00	45.35
	ATOM	3216	CA	HIS	В	474	11.923	19.203 19.196	1.00	43.65
	ATOM	3217	CB	HIS	В	474	10.652	19.761 19.847	1.00	43.70
	ATOM	3218	CG	HIS	В	474	10.458	19.326 21.267	1.00	43.86
45	ATOM	3219		HIS	B	474	11.095	19.688 22.406	1.00	44.12
7.5	ATOM	3220		HIS	B	474	9.510	18.395 21.638	1.00	46.60
	ATOM	3221	CE1	HIS	В	474	9.572	18.202 22.943	1.00	45.29
		3222	NE2	HIS	В	474	10.526	18.975 23.434	1.00	47.96
	ATOM	3223	C	HIS	В	474	12.030	17.707 19.471	1.00	42.38
50	MOTA	3223	0	HIS	В	474	12.834	17.273 20.298	1.00	42.83
30	ATOM				В	475	11.214	16.923 18.773	1.00	38.86
	ATOM	3225	N	ILE	В	475	11.222	15.475 18.943	1.00	36.53
	ATOM	3226	CA	ILE		. 475	10.105	14.822 18.110	1.00	36.56
	ATOM	3227	CB	ILE	В		10.390	13.335 17.911	1.00	36.17
F	MOTA	3228	CG2	ILE	В	475		14.998 18.832	1.00	35.81
55	ATOM	3229	CG1	ILE	В	475	8.770	14.410 18.094	1.00	41.77
	ATOM	3230	CD1	ILE	В	475	7.598	14.898 18.532	1.00	33.72
	ATOM	3231	C	ILE	В	475	12.575		1.00	31.50
	MOTA	3232	0	ILE	В	475	13.112	14.023 19.207 15.375 17.429	1.00	33.65
<i>(</i>	MOTA	3233	N	HIS	В	476	13.121			
60	MOTA	3234		HIS	В	476	14.421	14.886 16.992	1.00	33.31
	MOTA	3235	CB	HIS	В	476	14.782	15.481 15.637	1.00	37.30

5	ATOM	3293	0	ILE	В	482	19.621	7.722 24.640	1.00	25.55
,	ATOM	3294	N	THR	В	483	19.569	8.896 22.722	1.00	21.89
	ATOM	3295	CA	THR	В	483	20.701	8.176 22.141	1.00	22.67
	ATOM	3296	СВ	THR	В	483	21.030	8.662 20.695	1.00	23.34
	ATOM	3297	OG1	THR	В	483	19.890	8.475 19.851	1.00	27.33
10	ATOM	3298	CG2	THR	В	483	22.203	7.882 20.116	1.00	24.46
	ATOM	3299	C	THR	В	483	21.913	8.441 23.035	1.00	23.51
	ATOM	3300	0	THR	В	483	22.650	7.520 23.381	1.00	27.01
	ATOM	3301	N	ASP	В	484	22.119	9.703 23.404	1.00	22.88
	ATOM	3302	CA	ASP	В	484	23.237	10.058 24.276	1.00	24.93
15	ATOM	3302	CB	ASP	В	484	23.201	11.546 24.652	1.00	28.69
13	MOTA	3304	CG	ASP	В	484	23.504	12.464 23.485	1.00	29.19
	ATOM	3305	OD1	ASP	В	484	23.982	11.984 22.437	1.00	29.63
	ATOM	3306	OD2	ASP	В	484	23.256	13.681 23.627	1.00	32.02
	MOTA	3307	C	ASP	В	484	23.125	9.249 25.567	1.00	24.40
20		3307	0	ASP	В	484	24.125	8.780 26.103	1.00	25.60
20	ATOM ATOM	3309	N	THR	В	485	21.899	9.096 26.066	1.00	20.16
	ATOM	3310	CA	THR	В	485	21.670	8.365 27.307	1.00	22.28
	ATOM	3311	CB	THR	В	485	20.203	8.521 27.763	1.00	24.64
	MOTA	3312	OG1	THR	В	485	19.878	9.914 27.830	1.00	24.28
25	ATOM	3313	CG2	THR	В	485	19.993	7.896 29.133	1.00	23.32
23	ATOM	3314	C	THR	В	485	22.017	6.881 27.188	1.00	22.13
	ATOM	3315	0	THR	В	485	22.574	6.284 28.115	1.00	23.30
	ATOM	3315	N	LEU	В	486	21.686	6.290 26.045	1.00	23.08
	ATOM	3317	CA	LEU	В	486	21.969	4.881 25.792	1.00	22.26
30	ATOM	3318	CB	LEU	В	486	21.346	4.452 24.464	1.00	20.93
30	ATOM	3319	CG	LEU	В	486	19.878	4.031 24.533	1.00	24.92
	ATOM	3320	CD1	LEU	В	486	19.295	4.003 23.123	1.00	21.96
	ATOM	3321	CD2	LEU	В	486	19.763	2.658 25.196	1.00	23.90
	ATOM	3322	C	LEU	В	486	23.477	4.634 25.742	1.00	24.12
35	ATOM	3323	0	LEU	В	486	23.984	3.681 26.334	1.00	24.02
55	ATOM	3324	N	ILE	В	487	24.191	5.490 25.022	1.00	24.53
	ATOM	3325	CA	ILE	В	487	25.640	5.345 24.913	1.00	25.16
	ATOM	3326	CB	ILE	В	487	26.207	6.379 23.899	1.00	25.57
	ATOM	3327	CG2	ILE	В	487	27.725	6.522 24.051	1.00	24.54
40	ATOM	3328	CG1	ILE	В	487	25.857	5.936 22.470	1.00	25.63
70	ATOM	3329	CD1	ILE	В	487	26.538	4.646 22.021	1.00	25.68
	ATOM	3330	C	ILE	В	487	26.275	5.518 26.307	1.00	23.60
	ATOM	3331	0	ILE	В	487	27.200	4.794 26.671	1.00	23.65
	ATOM	3332	N	HIS	В	488	25.755	6.456 27.081	1.00	21.75
45	ATOM	3333	CA	HIS	В	488	26.251	6.720 28.431	1.00	26.07
,,	ATOM	3334	CB	HIS	В	488	25.450	7.871 29.041	1.00	26.99
	ATOM	3335	CG	HIS	В	488	25.818	8.196 30.455	1.00	33.06
	ATOM	3336	CD2	HIS	В	488	25.245	7.838 31.629	1.00	32.79
	ATOM	3337	ND1	HIS	В	488	26.869	9.025 30.779	1.00	36.45
50	ATOM	3338	CE1	HIS	В	488	26.927	9.164 32.091	1.00	
50	ATOM	3339		HIS	В	488	25.953	8.453 32.630	1.00	33.88
	ATOM	3340	C	HIS	В	488	26.123	5.463 29.292	1.00	26.85
	ATOM	3341	0	HIS	В	488	27.071	5.054 29.967	1.00	28.52
	ATOM	3342	N	LEU	В	489	24.949	4.850 29.266	1.00	28.00
55	ATOM	3343	CA	LEU	В	489	24.715	3.642 30.040	1.00	25.94
,,	ATOM	3344	CB	LEU	В	489	23.298	3.127 29.788	1.00	27.07
	ATOM	3345	CG	LEU	В	489	22.158	3.909 30.445	1.00	31.71
	ATOM	3346	CD1	LEU	В	489	20.827	3.516 29.799	1.00	28.08
	ATOM	3347	CD2	LEU	В	489	22.143	3.616 31.949	1.00	29.30
60	ATOM	3348	C	LEU	В	489	25.718	2.561 29.642	1.00	26.84
00	ATOM	3349		LEU	В	489	26.241	1.832 30.486	1.00	20.86
			-		_					

ATOM

ATOM

ATOM

3461 N

3462 CA

3463 CB

LEU

LEU

LEU

В

В

В

504

504

504

24.414

23.375

23.972

0.714 19.969 1.00 19.33

2.117 19.855 1.00 16.25

PCT/US99/06899 ...

5	ATOM	3521	С	LEU	В	511	12.112	-1.771 15.397	1.00	16.65
	MOTA	3522	0	LEU	В	511	10.915	-1.578 15.242	1.00	17.09
	ATOM	3523	N	SER	В	512	12.901	-2.161 14.401	1.00	15.83
	ATOM	3524	CA	SER	В	512	12.355	-2.408 13.072	1.00	18.66
	MOTA	3525	CB	SER	В	512	13.484	-2.644 12.074	1.00	17.62
10	ATOM	3526	OG	SER	В	512	13.079	-3.550 11.062	1.00	32.77
	ATOM	3527	C	SER	В	512	11.454	-3.638 13.154	1.00	18.54
	ATOM	3528	0	SER	В	512	10.373	-3.683 12.545	1.00	17.01
	ATOM	3529	N	HIS	В	513	11.899	-4.625 13.929	1.00	15.54
	ATOM	3530	CA	HIS	В	513	11.141	-5.860 14.115	1.00	17.67
15	ATOM	3531	CB	HIS	В	513	12.0.3	-6.916 14.790	1.00	19.03
	MOTA	3532	CG	HIS	В	513	13.063	-7.475 13.886	1.00	27.06
	ATOM	3533	CD2	HIS	B	513	12.980	-8.364 12.868	1.00	28.40
	ATOM	3534	ND1	HIS	В	513	14.378	-7.066 13.932	1.00	28.92
	ATOM	3535	CE1	HIS	В	513	15.061	-7.678 12.981	1.00	30.75
20	ATOM	3536	NE2	HIS	В	513	14.235	-8.472 12.321	1.00	30.08
	ATOM	3537	С	HIS	В	513	9.895	-5.602 14.958	1.00	15.35
	ATOM	3538	0	HIS	В	513	8.846	-6.192 14.704	1.00	14.83
	MOTA	3539	N	ILE	В	514	10.012	-4.744 15.942	1.00	13.35
	ATOM	3540	CA	ILE	В	514	8.865	-4.417 16.776	1.00	15.48
25	ATOM	3541	CB	ILE	В	514	9.295	-3.534 17.967	1.00	20.02
	ATOM	3542	CG2	ILE	В	514	8.067	-2.918 18.650	1.00	12.84
	ATOM	3543	CG1	ILE	В	514	10.093	-4.397 18.962	1.00	22.87
	ATOM	3544	CD1	ILE	В	514	10.691	-3.641 20.115	1.00	29.62
	ATOM	3545	С	ILE	В	514	7.797	-3.717 15.923	1.00	15.16
30	MOTA	3546	0	ILE	В	514	6.606	-3.972 16.078	1.00	16.61
	ATOM	3547	N	ARG	В	515	8.224	-2.823 15.030	1.00	16.33
	ATOM	3548	CA	ARG	В	515	7.280	-2.138 14.150	1.00	17.54
	ATOM	3549	CB	ARG	В	515	8.010	-1.173 13.214	1.00	20.15
	ATOM	3550	CG	ARG	В	515	7.080	-0.454 12.234	1.00	21.47
35	ATOM	3551	CD	ARG	В	515	6.407	0.749 12.891	1.00	26.05
	ATOM	3552	NE	ARG	В	515	7.220	1.948 12.716	1.00	24.91
	ATOM	3553	CZ	ARG	В	515	6.734	3.175 12.547	1.00	24.61
	ATOM	3554	NH1	ARG	В	515	5.424	3.393 12.522	1.00	22.46
	ATOM	3555	NH2	ARG	В	515	7.569	4.182 12.374	1.00	23.15
40	MOTA	3556	C	ARG	В	515	6.545	-3.182 13.304	1.00	16.60
	ATOM	355 7	0	ARG	₿	515	5.332	-3.093 13.087	1.00	14.51
	ATOM	3558	N	HIS	В	516	7.298	-4.171 12.827	1.00	18.50
	ATOM	3559	CA	HIS	В	516	6.743	-5.237 11.997	1.00	17.26
	ATOM	3560	CB	HIS	В	516	7.861	-6.176 11.533	1.00	18.14
45	ATOM	3561	CG	HIS	В	516	7.405	-7.223 10.568	1.00	24.87
	ATOM	3562	CD2	HIS	В	516	7.060	-8.521 10.754	1.00	26.64
	MOTA	3563	ND1	HIS	В	516	7.258	-6.978 9.220	1.00	21.82
	ATOM	3564	CE1	HIS	В	516	6.839	-8.078 8.619	1.00	28.42
	ATOM	3565	NE2	HIS	В	516	6.711	-9.028 9.526	1.00	24.47
50	MOTA	3566	С	HIS	В	516	5.685	-6.028 12.759	1.00	16.87
	ATOM	3567	0	HIS	В	516	4.596	-6.303 12.240	1.00	14.81
	ATOM	3568	N	MET	В	517	5.999	-6.396 13.997	1.00	16.48
	ATOM	3569	CA	MET	В	517	5.049	-7.162 14.801	1.00	15.39
	ATOM	3570	CB	MET	В	517	5.701	-7.587 16.114	1.00	21.05
55	ATOM	3571	CG	MET	В	517	6.790	-8.638 15.917	1.00	20.76
	ATOM	3572	SD	MET	В	517	7.380	-9.320 17.470	1.00	23.96
	ATOM	3573	CE	MET	В	517	8.104	-7.879 18.226	1.00	20.45
	ATOM	3574	C	MET	В	517	3.789	-6.368 15.080	1.00	16.23
	ATOM	3575	ō	MET	В	517	2.688	-6.924 15.148	1.00	16.02
60	ATOM	3576	N	SER	В	518	3.954	-5.060 15.247	1.00	13.32
	ATOM	3577	CA	SER	В	518	2.827	-4.186 15.505	1.00	16.34
		,								

5	ATOM	3635	CD2	LEU	В	525	-6.414	-4.793 18.399	1.00	18.95
	MOTA	3636	C	LEU	В	525	-8.013	-6.995 14.842	1.00	26.84
	ATOM	3637	0	LEU	В	525	-9.154	-7.247 15.249	1.00	26.73
	ATOM	3638	N	TYR	В	526	-7.764	-6.271 13.757	1.00	26.86
	MOTA	3639	CA	TYR	В	526	-8.819	-5.726 12.918	1.00	30.89
10	ATOM	3640	CB	TYR	В	526	-8.201	-4.818 11.854	1.00	34.31
	ATOM	3641	CG	TYR	В	526	-9.183	-4.223 10.878	1.00	43.50
	ATOM	3642	CD1	TYR	В	526	-10.058	-3.211 11.267	1.00	47.66
	MOTA	3643	CE1	TYR	В	526	-10.943	-2.636 10.357	1.00	48.85
	MOTA	3644	CD2	TYR	В	526	-9.218	-4.651 9.552	1.00	48.52
15	ATOM	3645	CE2	TYR	В	526	-10.098	-4.083 8.634	1.00	52.43
	ATOM	3646	CZ	TYR	В	526	-10.955	-3.077 9.043	1.00	51.67
	ATOM	3647	OH	TYR	В	526	-11.810	-2.504 8.129	1.00	57.01
	ATOM	3648	С	TYR	В	526	-9.577	-6.880 12.265	1.00	30.90
	ATOM	3649	0	TYR	В	526	-10.793	-6.829 12.113	1.00	31.48
20	ATOM	3650	N	SER	В	527	-8.849	-7.926 11.889	1.00	31.39
	ATOM	3651	CA	SER	В	527	-9.460	-9.095 11.266	1.00	33.73
	ATOM	3652	CB	SER	В	527	-8.377	-10.048 10.749	1.00	34.13
	ATOM	3653	OG	SER	В	527	-8.945	-11.222 10.196	1.00	43.67
	ATOM	3654	C	SER	В	527	-10.339	-9.813 12.288	1.00	34.34
25	ATOM	3655	Ō	SER	В	527	-11.446	-10.261 11.973	1.00	33.42
	ATOM	3656	N	MET	В	528	-9.840	-9.916 13.517	1.00	31.66
	ATOM	3657	CA	MET	В	528	-10.574	-10.572 14.589	1.00	29.77
	ATOM	3658	СВ	MET	В	528	-9.682	-10.743 15.820	1.00	32.96
	ATOM	36 5 9	CG	MET	В	528	-8.651	-11.859 15.699	1.00	33.47
30	ATOM	3660	SD	MET	В	528	-9.359	-13.427 15.134	1.00	38.28
20	ATOM	3661	CE	MET	В	528	-10.265	-13.915 16.579	1.00	36.01
	ATOM	3662	С	MET	В	528	-11.800	-9.747 14.953	1.00	29.42
	ATOM	3663	O	MET	В	528	-12.835	-10.293 15.331	1.00	28.65
	ATOM	3664	N	LYS	В	529	-11.673	-8.429 14.850	1.00	30.64
35	ATOM	3665	CA	LYS	В	529	-12.781	-7.533 15.149	1.00	31.80
	ATOM	3666	CB	LYS	В	529	-12.323	-6.079 15.027	1.00	32.86
	MOTA	3667	CG	LYS	В	529	-13.436	-5.043 15.114	1.00	36.42
	ATOM	3668	CD	LYS	В	529	-13.114	-3.852 14.224	1.00	41.74
	ATOM	3669	CE	LYS	В	529	-13.734	-2.564 14.741	1.00	43.45
40	ATOM	3670	NZ	LYS	В	529	-15.221	-2.569 14.634	1.00	46.51
	ATOM	3671	C	LYS	В	529	-13.857	-7.840 14.116	1.00	36.60
	ATOM	3672	O	LYS	В	529	-15.049	-7.877 14.424	1.00	34.04
	ATOM	3673	N	CYS	В	530	-13.407	-8.083 12.889	1.00	40.04
	ATOM	3674	CA	CYS	В	530	-14.286	-8.409 11.773	1.00	44.58
45	ATOM	3675	CB	CYS	В	530	-13.460	-8.535 10.491	1.00	50.64
	MOTA	3676	SG	CYS	В	530	-13.369	-7.034 9.504	1.00	67.65
	ATOM	3677	C	CYS	В	530	-15.065	-9.692 12.016	1.00	42.88
	ATOM	3678	0	CYS	В	530	-16.274	-9.741 11.807	1.00	40.15
	ATOM	3679	N	LYS	В	531	-14.360	-10.733 12.447	1.00	41.92
50	ATOM	3680	CA	LYS	В	531	-14.980	-12.023 12.728	1.00	42.60
50	ATOM	3681	CB	LYS	В	531	-13.907		1.00	44.77
	ATOM	3682	C	LYS	В	531		-11.907 13.977	1.00	44.43
	ATOM	3683	ō	LYS	В	531	-16.623		1.00	44.09
	ATOM	3684	N	ASN	В	532	-15.678	-10.793 14.685	1.00	44.98
55	ATOM	3685	CA	ASN	В	532	-16.437	-10.496 15.893	1.00	44.10
در	ATOM	3686	CB	ASN	В	532	-17.833	-10.003 15.506	1.00	45.14
	ATOM	3687	CG	ASN	В	532	-18.526	-9.271 16.633	1.00	46.54
	MOTA	3688	OD1	ASN	В	532	-19.729	-9.424 16.837	1.00	50.62
	ATOM	3689	ND2	ASN	В	532	-17.771	-8.471 17.375	1.00	46.07
60	ATOM	3690	C C	ASN	В	532	-16.557	-11.657 16.882	1.00	43.34
UU	ATOM	3691		ASN	В	532	-17 655	-11.994 17.321	1.00	41.42
	AT OF	2021	$\overline{}$	*****			1,.000			

5	MOTA	3749	N	LEU	В	540	-9.487	0.803 23.239	1.00	18.23
	ATOM	3750	CA	LEU	В	540	-8.743	-0.048 22.319	1.00	18.05
	ATOM	3751	CB	LEU	В	540	-8.909	-1.528 22.701	1.00	16.38
	ATOM	3752	CG	LEU	В	540	-8.188	-2.554 21.821	1.00	19.81
	ATOM	3753	CD1	LEU	В	540	-6.679	-2.303 21.828	1.00	19.27
10	ATOM	3754	CD2	LEU	В	540	-8.473	-3.952 22.327	1.00	18.00
	ATOM	3755	С	LEU	В	540	-9.241	0.169 20.891	1.00	21.50
	ATOM	3756	0	LEU	В	540	-8.449	0.293 19.964	1.00	20.41
	ATOM	3757	N	LEU	В	541	-10.559	0.206 20.726	1.00	22.40
	ATOM	3758	CA	LEU	В	541	-11.164	0.419 19.413	1.00	23.27
15	ATOM	3759	CB	LEU	В	541	-12.686	0.429 19.527	1.00	25.12
-	ATOM	3760	CG	LEU	В	541	-13.410	-0.808 18.999	1.00	36.53
	ATOM	3761	CD1	LEU	В	541	-14.910	-0.671 19.273	1.00	30.98
	ATOM	3762	CD2	LEU	В	541	-13.136	-0.971 17.508	1.00	31.93
	ATOM	3763	С	LEU	В	541	-10.697	1.751 18.842	1.00	22.46
20	ATOM	3764	0	LEU	В	541	-10.359	1.845 17.666	1.00	26.29
	ATOM	3765	N	GLU	В	542	-10.694	2.781 19.680	1.00	23.96
	ATOM	3766	CA	GLU	В	542	-10.248	4.106 19.270	1.00	26.91
	ATOM	3767	CB	GLU	В	542	-10.250	5.050 20.468	1.00	30.84
	ATOM	3768	CG	GLU	В	542	-11.166	6.245 20.347	1.00	37.20
25	ATOM	3769	CD	GĻU	В	542	-11.138	7.105 21.597	1.00	39.98
	ATOM	3 7 70	OE1	GLU	В	542	-12.223	7.385 22.144	1.00	39.92
	ATOM	3771	OE2	GLU	В	542	-10.028	7.494 22.034	1.00	38.96
	ATOM	3772	С	GLŲ	В	542	-8.826	4.010 18.724	1.00	27.90
	ATOM	3773	O	GĻŲ	В	542	-8.530	4.492 17.634	1.00	29.32
30	ATOM	3774	N	MET	В	543	-7.945	3.388 19.499	1.00	26.41
	ATOM	3 7 75	CA	MET	В	543	-6.552	3.237 19.107	1.00	23.53
	MOTA	3776	CB	MET	В	543	-5.749	2.591 20.247	1.00	24.60
	MOTA	3777	CG	MET	В	543	-5.812	3.338 21.579	1.00	26.46
	ATOM	3778	SD	MEŢ	В	543	-5.373	5.084 21.467	1.00	29.45
35	ATOM	3 7 79	CE	MET	В	543	-3.585	4.971 21.349	1.00	25.43
	MOTA	3780	С	MET	В	543	-6.403	2.407 17.832	1.00	25.80
	ATOM	3781	0	MET	B	543	-5.535	2.686 17.004	1.00	23.59
	MOTA	3782	N	LEU	В	544	-7.254	1.394 17.673	1.00	27.74
	MOTA	3783	CA	LEU	В	544	-7.202	0.522 16.499	1.00	26.32
40	ATOM	3784	CB	LEU	В	544	-8.069	-0.721 16.719	1.00	26.75
	MOTA	3785	CG	LEU	В	544	-8.274	-1.632 15.502	1.00	28.12
	MOTA	3786	CD1	LEU	В	544	-6.956	-2.294 15.136	1.00	26.36
	ATOM	3 7 87	CD2	LEU	В	544	-9.330	-2.680 15.803	1.00	27.00
	ATOM	3788	С	LEU	В	544	-7.672	1.252 15.250	1.00	26.97
45	MOTA	3789	0	LEU	В	544	-7.036	1.181 14.195	1.00	24.25
	MOTA	3790	N	ASP	В	545	-8.787	1.961 15.372	1.00	30.37
	ATOM	3791	CA	ASP	В	545	-9.338	2.702 14.244	1.00	32.34
	MOTA	3792	CB	ASP	В	545	-10.668	3.346 14.637	1.00	36.61
	MOTA	3793	CG	ASP	В	545	-11.818	2.370 14.565	1.00	42.73
50	MOTA	3 7 94	OD1	ASP	В	545	-12.858	2.624 15.211	1.00	47.39
	MOTA	3 7 95	OD2	ASP	В	545	-11.676	1.342 13.863	1.00	46.96
	ATOM	3796	С	ASP	В	545	-8.382	3.762 13.711	1.00	31.27
	MOTA	3797	0	ASP	В	545	-8.443	4.120 12.532	1.00	30.53
	ATOM	3798	N	ALA	В	546	-7.506	4.272 14.572	1.00	29.02
55	ATOM	3799	CA	ALA	В	546	-6.543	5.280 14.141	1.00	31.21
	MOTA	3800	CB	ALA	В	546	-5.646	5.693 15.306	1.00	30.98
	MOTA	3801	C	ALA	В	546	-5.697	4.731 12.996	1.00	32.14
	ATOM	3802	0	ALA	В	546	-5.189	5.490 12.170	1.00	33.78
	ATOM	3803	N	HIS	В	547	~5.555	3.410 12.943	1.00	32.27
60	ATOM	3804	CA	HIS	В	547	-4.773	2.767 11.892	1.00	37.73
	ATOM	3805	CB	HIS	В	547	-3.991	1.576 12.457	1.00	35.83

5	ATOM	3977	0	PE Ĥ	D	690	-6.408	11.165 25.625	1.00	28.34
	ATOM	3978	N	HIS	D	691	-8.206	11.694 24.383	1.00	27.77
	ATOM	3979	CA	HIS	D	691	-8.107	13.125 24.665	1.00	29.16
	ATOM	3980	CB	HIS	D	691	-9.156	13.907 23.861	1.00	30.89
	ATOM	3981	CG	HIS	D	691	-8.903	13.935 22.386	1.00	37.09
10	ATOM	3982	CD2	HIS	D	691	-7. 7 50	14.000 21.679	1.00	41.39
	ATOM	3983	NDl	HIS	D	691	-9.920	13.906 21.458	1.00	41.65
	ATOM	3984	CE1	HIS	D	691	-9.407	13.953 20.242	1.00	44.64
	ATOM	3985	NE2	HIS	D	691	-8.091	14.010 20.347	1.00	41.94
	ATOM	3986	С	HIS	D	691	-8.338	13.373 26.159	1.00	26.65
15	ATOM	3987	0	HIS	D	691	-7.602	14.120 26.802	1.00	24.50
	ATOM	3988	N	ARG	D	692	-9.371	12.742 26.703	1.00	25.70
	ATOM	3989	CA	ARG	D	692	-9.691	12.912 28.114	1.00	29.11
	ATOM	3990	CB	ARG	D	692	-10.959	12.134 28.472	1.00	30.84
	ATOM	3991	CG	ARG	D	692	-11.255	12.129 29.963	1.00	41.63
20	ATOM	3992	CD	ARG	D	692	-12.502	11.327 30.290	1.00	48.83
	ATOM	3993	NE	ARG	D	692	-13.618	12.198 30.647	1.00	54.50
	ATOM	3994	CZ	ARG	D	692	-14.498	12.677 29.774	1.00	59.37
	ATOM	3995	NH1	ARG	D	692	-14.392	12.371 28.486	1.00	60.97
	ATOM	3996	NH2	ARG	D	692	-15.483	13.464 30.188	1.00	59.07
25	ATOM	3997	C	ARG	D	692	-8.548	12.451 29.011	1.00	28.30
	ATOM	3998	ō	ARG	D	692	-8.139	13.167 29.929	1.00	26.50
	ATOM	3999	N	LEU	D	693	-8.030	11.259 28.737	1.00	24.87
	ATOM	4000	CA	LEU	D	693	-6.943	10.705 29.536	1.00	27.17
	ATOM	4001	CB	LEU	D	693	-6.674	9.254 29.116	1.00	28.45
30	ATOM	4002	CG	LEU	D	693	-7.844	8.300 29.391	1.00	30.40
	ATOM	4003	CD1	LEU	D	693	-7.575	6.932 28.778	1.00	34.79
	ATOM	4004	CD2	LEU	D	693	-8.043	8.171 30.894	1.00	32.02
	ATOM	4005	C	LEU	D	693	-5.670	11.539 29.440	1.00	25.96
	ATOM	4006	0	LEU	D	693	-4.948	11.700 30.428	1.00	27.01
35	ATOM	4007	N	LEU	D	694	-5.395	12.080 28.257	1.00	25.33
33	ATOM	4008	CA	LEU	D	694	-4.207	12.906 28.062	1.00	27.22
	ATOM	4009	CB	LEU	D	694	-3.948	13.126 26.572	1.00	24.61
	ATOM	4010	CG	LEU	D	694	-3.118	12.080 25.825	1.00	22.20
	ATOM	4011	CD1	LEU	D	694	-3.230	12.332 24.324	1.00	21.13
40	ATOM	4012	CD2	LEU	D	694	-1.666	12.148 26.275	1.00	21.34
	ATOM	4013	C	LEU	D	694	-4.336	14.270 28.742	1.00	32.40
	ATOM	4014	0	LEU	D	694	-3.339	14.889 29.102	1.00	31.55
	ATOM	4015	N	GLN	D	695	-5.570	14.733 28.915	1.00	36.93
	ATOM	4016	CA	GLN	D	695	-5.820	16.032 29.528	1.00	43.18
45	ATOM	4017	CB	GLN	D	695	-7.022	16.694 28.862	1.00	40.48
	ATOM	4018	CG	GLN	D	695	-6.772	17.071 27.422	1.00	37.99
	ATOM	4019	CD	GLN	D	695	-7.943	17.764 26.795	1.00	35.86
	ATOM	4020	OE1	GLN		695	-7.863			
			NE2		D			18.895 26.342	1.00	38.84
50	ATOM ATOM	4021		GLN	D	695	-9.082	17.060 26.757	1.00	31.62
30		4022	C	GLN	D	695	-6.049	16.009 31.034	1.00	48.74
	ATOM	4023	0	GLN	D	695	-6.119	17.065 31.660	1.00	51.25
	ATOM	4024	N	ASP	D	696	-6.175	14.818 31.611	1.00	54.01
	ATOM	4025	CA	ASP	D	696	-6.398	14.702 33.047	1.00	62.23
55	ATOM	4026	CB	ASP	D	696	-6.217	13.238 33.485	1.00	63.97
55	ATOM	4027	CG	ASP	D	696	-7.527	12.467 33.475	1.00	67.72
	ATOM	4028	ODI	ASP	D	696	-8.528	12.996 32.941	1.00	68.11
	ATOM	4029	OD2	ASP	D	696	-7.552	11.333 34.003	1.00	68.95
	ATOM	4030	C	ASP	D	696	-5.456	15.622 33.840	1.00	65.60
<i>(</i> 0	ATOM	4031	0	ASP	D	696	-4.312	15.189 34.134	1.00	68.33
60	ATOM	4032	OXT	ASP	D	696	-5.874	16.755 34.140	1.00	69.20
	HETATM	4033	0	HOH		1	16.153	-0.605 -4.425	1.00	17.11

PCT/US99/06899 WO 99/60014

5	HETATM	4091	0	нон	59	28.442	-4.673 21.875	1.00	24.32
•	HETATM	4092	0	нон	60	1.094	-4.893 32.100	1.00	24.27
	HETATM	4093	0	нон	61	0.905	-7.306 32.783	1.00	21.33
	HETATM	4094	0	нон	62	3.396	-2.971 32.306	1.00	26.13
	HETATM	4095	0	нон	63	10.363	4.576 28.391	1.00	33.43
10	HETATM	4096	0	НОН	64	19.551	-6.473 16.597	1.00	35.38
10	HETATM	4097	Ō	НОН	65	-2.888	-19.627 15.665	1.00	27.99
	HETATM	4098	Ö	нон	66	-7.275	-9.745 31.077	1.00	27.00
	HETATM	4099	o	НОН	67	10.189	3.580 16.510	1.00	24.19
	HETATM	4100	0	НОН	68	2.741	0.716 28.382	1.00	16.48
15	HETATM	4101	o	нон	69	23.522	-4.323 13.943	1.00	27.48
13	HETATM	4102	0	нон	70	17.133	8.133 19.686	1.00	32.24
	HETATM	4102	0	нон	71	-0.295	4.535 35.884	1.00	33.42
		4103	0	нон	72	9.519	10.828 34.842	1.00	29.38
	HETATM		0	нон	73	6.291	14.878 29.070	1.00	28.21
20	HETATM	4105		HOH	74	-1.721	6.480 13.381	1.00	49.91
20	HETATM	4106	0		7 4 75	10.091	-15.427 26.194	1.00	24.17
	HETATM	4107	0	нон	75 76	5.029	7.461 17.718	1.00	18.91
	HETATM	4108	0	НОН		3.758	2.086 14.306	1.00	28.28
	HETATM	4109	0	нон	77	-1.390	-18.739 33.183	1.00	41.11
0.5	HETATM	4110	0	нон	78		-8.687 32.119	1.00	36.21
25	HETATM	4111	0	НОН	79	12.703	-6.451 14.844	1.00	33.21
	HETATM	4112	0	нон	80	22.270	4.605 34.026	1.00	23.59
	HETATM	4113	0	НОН	81	1.458	-2.158 30.374	1.00	28.78
	HETATM	4114	0	НОН	82	1.759	-21.372 23.188	1.00	31.14
	HETATM	4115	0	НОН	83	6.153		1.00	45.26
30	HETATM	4116	0	нон	84	36.525	0.463 20.792	1.00	33.12
	HETATM	4117	0	HOH	85	13.832	9.696 13.792	1.00	35.12
	HETATM	4118	0	НОН	86	31.166	6.635 24.924		48.80
	HETATM	4119	0	нон	87	8.844	-10.389 34.180	1.00	42.95
	HETATM	4120	0	нон	88	9.581	-6.956 34.136	1.00	39.35
35	HETATM	4121	0	HOH	89	-1.563	15.887 27.596	1.00	35.20
	HETATM	4122	0	нон	90	-5.286	10.345 32.757	1.00	
	HETATM	4123	0	нон	91	15.035	0.607 13.339	1.00	29.53
	HETATM	4124	0	HOH	92	-10.984	-1.500 30.272	1.00	29.84
	HETATM	4125	0	нон	93	-7.239	-0.271 -1.207	1.00	48.98
40	HETATM	4126	0	HOH	94	18.022	-4.902 34.286	1.00	35.28
	HETATM	4127	0	HOH	95	29.347	-6.319 19.920	1.00	37.20
	HETATM	4128	0	HOH	96	-14.309	-19.369 20.945		
	HETATM	4129	0	HOH	97	31.496	4.614 18.716	1.00	38.79
	HETATM	4130	0	HOH	98	26.567	9.759 25.629	1.00	29.72
45	HETATM	4131	0	HOH	99	2.848	14.531 1.134	1.00	38.08
	HETATM	4132	0	HOH	100	-9.373	5.699 -7.953	1.00	53.23
	HETATM	4133	0	HOH	101	-10.137	-0.553 -6.742	1.00	47.72
	HETATM	4134	0	нон	102	10.558	-10.363 15.403	1.00	40.97
	HETATM	4135	0	нон	103	21.079	17.166 18.929	1.00	32.40
50	HETATM	4136	0	нон	104	25.810	-5.921 22.506	1.00	37.69
	HETATM	4137	0	НОН	105	22.493	-1.311 34.465	1.00	49.94
	HETATM	4138	0	HOH	106	19.317	10.977 38.703	1.00	40.60
	HETATM	4139	0	НОН	107	4.479	13.951 3.045	1.00	45.33
	HETATM	4140	ō	нон	108	20.418		1.00	42.18
55	HETATM	4141	Ö	нон	109	-3.065		1.00	38.41
رر	HETATM	4142	0	нон	110	26.856		1.00	5 5 .67
	HETATM	4143	0	нон	111	2.032		1.00	42.23
	HETATM	4144	0	нон	112	0.601		1.00	40.57
	HETATM	4145	0	нон	113	4.903		1.00	47.72
60	HETATM	4146	0	нон	114	3.986		1.00	40.66
50		4147		нон	115		-19.561 2.741	1.00	40.76
	HETATM	~ 1 ~ 1	U	non	140	12.500			_

5 Appendix 3

Atomic Coordinates for Human ERa Complexed With OHT

	CRYST1	58.24	2 58.	242 2	77 46	7 90.00	90.00	120.00	P 65	2 2 12
10	011.2	30.2.			. , , , , , ,	, 50.00	50.00			
	ORIGX1	1.0	00000	0.000	000	0.00000	0.00	000		
	ORIGX2	0.0	00000	1.000	000	0.000000	0.00	000		
	ORIGX3	0.0	00000	0.000	000	1.000000	0.00	000		
	SCALE1	0.0	17170	0.009	913	0.000000	0.00	000		
15	SCALE2	0.00	00000	0.019	826	0.000000	0.00	000		
	SCALE3	0.0	00000	0.000	000	0.003604	0.00	000		
	ATOM	1	CB	LEU	306	6.638	11.502	3.989	1.00	61.20
	ATOM	2	С	LEU	306	7.381	10.684	6.231	1.00	61.47
20	ATOM	3	0	LEU	306	6.407	11.020	6,905	1.00	62.09
	ATOM	4	N	LEU	306	6.369	9.128	4.588	1.00	62.32
	ATOM	5	CA	LEU	306	7.232	10.330	4.754	1.00	61.30
	MOTA	6	N	ALA	307	8.609	10.605	6.730	1.00	60.52
	ATOM	7	CA	ALA	307	8.891	10.912	8.125	1.00	58.77
25	ATOM	8	CB	ALA	307	10.318	10.501	8.465	1.00	59.70
	ATOM	9	С	ALA	307	8.692	12.393	8.429	1.00	57.51
	ATOM	10	0	ALA	307	8.451	12.770	9.574	1.00	57.64
	ATOM	11	N	LEU	308	8.789	13.228	7.400	1.00	55.82
	ATOM	12	CA	LEU	308	8.638	14.668	7.573	1.00	56.62
30	ATOM	13	CB	LEU	308	9.298	15.402	6.406	1.00	57.48
	ATOM	14	CG	LEU	308	10.637	14.822	5.948	1.00	59.17
	ATOM	15	CD1	LEU	308	10.474	14.189	4.569	1.00	60.38
	ATOM	16	CD2	LEU	308	11.694	15.920	5.933	1.00	58.46
	ATOM	17	C	LEU	308	7.190	15.130	7.710	1.00	56.51
35	ATOM	18	0	LEU	308	6.935	16.307	7.961	1.00	55.58
	MOTA	19	N	SER	309	6.246	14.208	7.546	1.00	57.04
	ATOM	20	CA	SER	309	4.828	14.544	7.657	1.00	56.46
	ATOM	21	CB	SER	309	4.034	13.896	6.514	1.00	56.79
	MOTA	22	OG	SER	309	4.071	12.479	6.588	1.00	57.23
40	ATOM	23	C	SER	309	4.261	14.095	9.003	1.00	56.13
	ATOM	24	0	SER	309	3.166	14.507	9.398	1.00	55.17
	ATOM	25	N	LEU	310	5.016	13.257	9.706	1.00	54.31
	ATOM	26	CA	LEU	310	4.591	12.749	11.004	1.00	53.55
	MOTA	27	CB	LEU	310	5.651	11.811	11.582	1.00	54.40
45	MOTA	28	CG	LEU	310	5.586	10.333	11.189	1.00	56.49
	MOTA	29	CD1	LEU	310	5.530	10.200	9.676	1.00	57.06
	MOTA	30	CD2	LEU	310	6.809	9.610	11.739	1.00	57.28
	ATOM	31	C	LEU	310	4.330	13.865	12.003	1.00	53.18
	ATOM	32	0	LEU	310	4.993	14.905	11.984	1.00	53.17
50	ATOM	33	N	THR	311	3.352	13.641	12.874	1.00	51.71
	MOTA	34	CA	THR	311	3.017	14.604	13.912	1.00	49.93
	ATOM	35	CB	THR	311	1.527	14.554	14.275	1.00	48.96
	MOTA	36	OG1	THR	311	1.242	13.311	14.930	1.00	47.20
	MOTA	37	CG2	THR	311	0.666	14.688	13.027	1.00	50.99
55	ATOM	38	C	THR	311	3.815	14.201	15.145	1.00	48.84
	ATOM	39	0	THR	311	4.371	13.103	15.197	1.00	46.66
	ATOM	40	N	ALA	312	3.857	15.078	16.141	1.00	48.76
	ATOM	41	CA	ALA	312	4.590	14.798	17.369	1.00	47.75
	ATOM	42	CB	ALA	312	4.359	15.910	18.378	1.00	47.06
60	ATOM	43	C	ALA	312	4.171	13.460	17.964	1.00	47.41

1.00 43.36 5 8.334 5.332 24.112 MOTA CD2 LEU 320 101 41.11 8.466 2.642 20.843 1.00 ATOM 102 С LEU 320 41.87 ATOM 0 LEU 320 8.971 1.697 21.443 1.00 103 19.696 1.00 43.94 321 7.812 2.504 ATOM 104 N ASP 44.77 19.053 1.00 7.613 1.210 ATOM 105 CA ASP 321 48.39 17.860 1.00 10 106 CB ASP 321 6.669 1.372 ATOM 52.39 107 18.255 1.00 CG ASP 321 5.206 1.318 ATOM 19.464 1.00 53.56 **ASP** 4.901 1.422 MOTA 108 OD1 321 17.346 1.00 55.81 4.357 1.172 MOTA 109 OD2 ASP 321 1.00 44.37 ATOM 110 C **ASP** 321 8.911 0.565 18.568 44.67 15 MOTA 111 O **ASP** 321 9.030 -0.661 18.533 1.00 1.00 40.75 **ATOM** 112 N ALA 322 9.878 1.395 18.193 0.905 17.686 1.00 37.81 ATOM 113 CA ALA 322 11.153 38.07 11.772 1.954 16.776 1.00 **ATOM** 114 CB ALA 322 35.52 12.148 0.513 1.00 ATOM 115 C ALA 322 18.769 20 ALA 13.219 -0.020 18.473 1.00 36.11 ATOM 116 0 322 11.799 0.768 20.022 1.00 35.61 ATOM 117 N GLU 323 36.39 12.704 0.460 21.117 1.00 ATOM 118 CA GLU 323 35.09 12.042 0.768 22.459 1.00 ATOM 119 CB GLU 323 12.209 22.899 1.00 37.93 CG GLU 323 2.210 ATOM 120 25 13.657 2.569 23.200 1,00 37.29 CD GLU 323 MOTA 121 22.326 1.00 34.21 3.173 14.313 **ATOM** 122 OE1 GLU 323 1.00 38.02 2.245 24.309 123 OE2 GLU 323 14.134 ATOM 38.01 13.205 -0.978 21.110 1.00 124 С GLU 323 MOTA 20,999 1.00 38.37 12.425 -1.931 125 0 GLU 323 ATOM 36.03 21.225 1.00 30 14.527 -1.151 126 N PRO MOTA 324 36.69 21.345 1.00 -0.069 ATOM 127 CD PRO 324 15.522 36.42 21.240 1.00 PRO 15.158 -2.474 MOTA 128 CA 324 -2.166 35.75 21.003 1.00 ATOM 129 CB PRO 324 16.633 16.811 -0.807 21.610 1.00 35.46 130 CG PRO 324 ATOM -3.162 22.583 1.00 35.75 35 14.940 С PRO 324 MOTA 131 1.00 34.97 -2.517 23.580 14.616 ATOM 132 0 PRO 324 22.631 1.00 35.24 PRO 15.134 -4.485 ATOM 133 N 325 325 -5.386 21.534 1.00 37.02 CD PRO 15.530 ATOM 134 -5.208 23.889 1.00 34.65 CA 14.942 ATOM 135 PRO 325 40 -6.652 23.439 1.00 35.83 325 14.753 MOTA 136 CB PRO 1.00 -6.743 22.200 34.88 ATOM 137 CG PRO 325 15.589 16.132 -5.070 24.824 1.00 34.51 **ATOM** 138 С PRO 325 29.92 PRO 325 17.237 -4.723 24.399 1.00 139 0 MOTA 33.62 15.899 -5.322 26.106 1.00 140 N ILE 326 MOTA 1.00 35.02 45 16.975 -5.265 27.075 MOTA 141 CA ILE 326 1.00 38.11 16.458 -4.891 28.473 ATOM 142 CB ILE 326 38.70 CG2 ILE 17.557 -5.110 29.504 1.00 MOTA 143 326 1.00 40.48 15.987 -3.431 28.466 MOTA 144 CG1 ILE 326 1.00 -2.747 42,96 29.815 MOTA 145 CD1 ILE 326 16.035 50 ILE 326 17.567 -6.668 27.103 1.00 34.14 MOTA 146 C -7.634 ATOM 147 0 ILE 326 16.875 27.427 1.00 34.88 29.64 MOTA 148 N LEU 327 18.840 -6.784 26.745 1.00 1.00 29.54 ATOM 149 CA LEU 327 19.493 -8.083 26.716 27.76 **ATOM** 150 CB LEU 327 20.528 -8.135 25.587 1.00 29.02 55 ATOM 151 CG LEU 327 19.978 -7.800 24.196 1.00 28.76 ATOM 152 CD1 LEU 327 21.068 -7.993 23.139 1.00 -8.688 23.891 1.00 31.26 MOTA 153 CD2 LEU 327 18.775 28.030 1.00 31.21 ATOM 154 С LEU 327 20.156 -8.438 -7.578 30.12 0 28.891 1.00 MOTA 155 LEU 327 20.393

28.181

29.381

1.00

1.00

30.99

30.95

60

ATOM

MOTA

156

157

N

CA

TYR

TYR

328

328

20.445

-9.725

21.087 -10.229

5	ATOM	215	С	THR	334	26.982	-20.804	39.269	1.00	65.67
	ATOM	216	0	THR	334	27.432	-21.323	40.289	1.00	64.77
	ATOM	217	N	ARG	335	27.759	-20.308	38.313	1.00	65.65
	ATOM	218	CA	ARG	335	29.214	-20.360	38.421	1.00	66.60
	ATOM	219	CB	ARG	335	29.835	-20.500	37.030	1.00	66.74
10	ATOM	220	C	ARG	335	29.757	-19.113	39.123	1.00	67.09
10	ATOM	221	0	ARG	335	29.100	-18.071	39.148	1.00	67.31
	ATOM	222	N	PRO	336	30.968	-19.207	39.702	1.00	67.62
	ATOM	223	CD	PRO	336	31.820	-20.408	39.713	1.00	67.30
		224	CA	PRO	336	31.601	-18.086	40.410	1.00	67.42
15	ATOM	225	CB	PRO	336	32.982	-18.621	40.783	1.00	66.43
13	ATOM ATOM	225	CG	PRO	336	32.829	-20.097	40.779	1.00	67.52
			C	PRO	336	31.701	-16.828	39.561	1.00	68.26
	ATOM	227	0		336	31.701	-16.825	38.371	1.00	69.04
	ATOM	228		PRO			-15.681	40.183	1.00	69.49
20	MOTA	229	N	PHE	337	31.460	-14.408	39.480	1.00	71.39
20	ATOM	230	CA	PHE	337	31.529	-13.323	40.294	1.00	72.31
	ATOM	231	CB	PHE	337	30.818		39.921	1.00	73.21
	ATOM	232	CG	PHE	337	31.219	-11.924	38.833	1.00	72.82
	ATOM	233	CD1	PHE	337	30.632 32.191	-11.287 -11.245	40.653	1.00	73.43
25	ATOM	234	CD2	PHE	337		-11.245 -9.993	38.479	1.00	73.43
23	ATOM	235	CE1	PHE	337	31.006		40.306	1.00	73.20
	ATOM	236	CE2	PHE	337	32.573	-9. 9 50 -9. 32 3		1.00	72.90
	ATOM	237	CZ	PHE	337	31.980		39.217 39.245	1.00	72.30
	MOTA	238	. C	PHE	337	32.985	-14.013	38.189	1.00	71.56
20	MOTA	239	0	PHE	337	33.336	-13.487		1.00	71.53
30	ATOM	240	N	SER	338	33.825	-14.273	40.241	1.00	70.98
	ATOM	241	CA	SER	338	35.248	-13.947	40.172	1.00	70.43
	ATOM	242	CB	SER	338	35.957	-14.487	41.414 41.679	1.00	69.59
	ATOM	243	og	SER	338	35.547	-15.818		1.00	71.20
35	ATOM	244	C	SER	338	35.931	-14.504	38.924 38.475	1.00	71.35
33	MOTA	245	0	SER	338	36.951	-13.972	38.369	1.00	70.20
	ATOM	246	N	GLU	339	35.368	-15.573 -16.215	37.183	1.00	69.48
	ATOM ATOM	247	CA CB	GLU	339 339	35.930 35.279	-10.215	36.971	1.00	71.07
		248 249	CG	GLU GLU	339	35.275	-18.740	37.656	1.00	72.60
40	ATOM ATOM	250	CD	GLU	339	35.382	-20.089	37.318	1.00	74.26
40		251	OE1	GLU	339	34.786	-20.089	36.227	1.00	73.51
	MOTA	252	OE2	GLU	339	35.496	-21.020	38.144	1.00	76.44
	ATOM ATOM	252	C C	GLU	339	35.770	-15.385	35.910	1.00	68.15
	ATOM	253 254	0	GLU	339		-15.216	35.144	1.00	68.99
45	ATOM	255	N	AĻA	340	34.562	-14.874	35.694	1.00	64.41
73	ATOM	256	CA	ALA	340	34.246		34.507	1.00	60.69
	ATOM	257	CB	ALA	340	32.767	-13.709	34.523	1.00	61.17
		258	СВ	ALA	340	35.096	-12.824	34.326	1.00	57.00
	ATOM ATOM	259	0	ALA	340	35.634	-12.324	35.287	1.00	57.46
50		260		SER	341	35.034	-12.388	33.237	1.00	52.15
50	ATOM	261	N C7	SER	341	35.213	-11.188	32.736	1.00	46.53
	MOTA	262	CA		341		-11.439	31.497	1.00	48.64
	ATOM		CB OG	SER	341	36.839 37.184	-10.226	30.846	1.00	46.48
	ATOM	263		SER					1.00	43.52
55	ATOM	264	C	SER	341	34.957	-10.087	32.444	1.00	39.92
))	ATOM	265	O N	SER	341	34.090	-10.248 -8.978	31.589	1.00	41.24
	ATOM	266	N Ca	MET	342	35.052		33.166 32.960	1.00	42.46
	ATOM	267	CA	MET	342	34.121	-7.875 -6.723		1.00	45.61
	ATOM	268	CB	MET	342	34.449	-6.723	33.912	1.00	52.39
60	ATOM	269	CG	MET	342	33.228	-6.089 -7.201	34.560	1.00	57.92
υŪ	ATOM	270	SD	MET	342	31.791	-7.201 -7.801	34.631		56.18
	ATOM	271	CE	MET	342	31.999	-7.881	36.239	1.00	20.10

5	ATOM	329	0	ALA	350	26.649	-4.958	20.983	1.00	30.90
	MOTA	330	N	ASP	351	28.213	-6.509	21.420	1.00	27.20
	ATOM	331	CA	ASP	351	28.093	-7.143	20.112	1.00	29.75
	ATOM	332	CB	ASP	351	29.036	-8.345	20.010	1.00	34.16
	MOTA	333	CG	ASP	351	30.498	-7.940	19.978	1.00	37.50
10	ATOM	334	OD1	ASP	351	31.354	-8.831	20.148	1.00	37.55
	ATOM	335	OD2	ASP	351	30.789	-6.738	19.784	1.00	35.50
	ATOM	336	C	ASP	351	26.661	-7.600	19.813	1.00	30.52
	ATOM	337	Õ	ASP	351	26.193	-7.458	18.687	1.00	27.77
	ATOM	338	N	ARG	352	25.968	-8.150	20.811	1.00	27.18
15	MOTA	339	CA		352	24.593	-8.602	20.605	1.00	26.21
13				ARG		24.148	-9.534	21.752	1.00	26.52
	ATOM	340	CB	ARG	352	24.140	-10.991	21.532	1.00	31.03
	ATOM	341	CG	ARG	352		-10.991	22.666	1.00	29.80
	ATOM	342	CD	ARG	352	24.128		23.879	1.00	30.44
20	ATOM	343	NE	ARG	352	24.898	-11.675 -11.363	25.054	1.00	31.68
20	ATOM	344	CZ	ARG	352	24.364			1.00	31.18
	MOTA	345	NH1	ARG	352	23.050	-11.251	25.177	1.00	32.03
	ATOM	346	NH2	ARG	352	25.144	-11.148	26.104		27.16
	ATOM	347	C	ARG	352	23.642	-7.411	20.502	1.00	
26	MOTA	348	0	ARG	352	22.702	-7.426	19.708	1.00	26.65
25	ATOM	349	N	GLU	353	23.896	-6.370	21.291	1.00	24.30
	ATOM	350	CA	GLU	353	23.045	-5.178	21.261	1.00	26.39
	ATOM	351	CB	GLU	353	23.461	-4.204	22.365	1.00	24.91
	ATOM	352	CG	GĻŪ	353	23.147	-4.669	23.771	1.00	27.93
20	ATOM	353	CD	GLU	353	23.425	-3.587	24.795	1.00	30.71
30	MOTA	354	OE1	GLU	353	24.564	-3.534	25.304	1.00	30.09
	ATOM	355	OE2	GLU	353	22.506	-2.789	25.085	1.00	30.53
	MOTA	356	C	GLU	353	23.131	-4.456	19.920	1.00	24.27
	MOTA	357	0	GLU	353	22.169	-3.826	19.467	1.00	28.71
2.5	ATOM	358	N	LEU	354	24.296	-4.540	19.293	1.00	26.61
35	MOTA	359	CA	LEU	354	24.522	-3.872	18.017	1.00	26.62
	MOTA	360	CB	LEU	354	25.952	-4.121	17.543	1.00	26.36
	MOTA	361	CG	LEU	354	26.372	-3.257	16.351	1.00	29.24
	ATOM	362	CD1	LEU	354	26.243	-1.774	16.722	1.00	26.59
	MOTA	363	CD2	LEU	354	27.794	-3.607	15.962	1.00	28.88
40	MOTA	364	С	LEU	354	23.559	-4.300	16.926	1.00	27.72
	ATOM	365	0	LEU	354	23.074	-3.475	16.152	1.00	24.00
	MOTA	366	N	VAĻ	355	23.291	-5.598	16.854	1.00	28.82
	MOTA	367	CA	VAĻ	355	22.386	-6.125	15.844	1.00	29.45
	ATOM	368	CB	VAL	355	22.259	-7.655	15.975	1.00	31.76
45	MOTA	369	CG1	VAL	355	21.423	-8.205	14.834	1.00	33.55
	MOTA	370	CG2	VAL	355	23.649	-8.282	15.998	1.00	31.36
	ATOM	371	C	VAL	355	21.020	-5.499	16.035	1.00	27.71
	MOTA	372	0	VAL	355	20.382	-5.039	15.080	1.00	29.61
	MOTA	373	N	HIS	356	20.580	-5.473	17.288	1.00	27.76
50	ATOM	374	CA	HIS	356	19.291	-4.906	17.627	1.00	28.35
	MOTA	375	CB	HIS	356	18.936	-5.231	19.079	1.00	31.12
	MOTA	376	CG	HIS	356	18.602	-6.675	19.307	1.00	35.93
	ATOM	377	CD2	HIS	356	19.352	-7.700	19.779	1.00	33.95
	ATOM	378	ND1	HIS	356	17.363	-7.208	19.018	1.00	36.62
55	MOTA	379	CE1	HIS	356	17.364	-8.499	19.304	1.00	33.33
	ATOM	380	NE2	HIS	356	18.559	-8.823	19.767	1.00	32.16
	ATOM	381	С	HIS	356	19.300	-3.398	17.412	1.00	28.25
	ATOM	382	0	HIS	356	18.272	-2.812	17.100	1.00	28.99
	ATOM	383	N	MET	357	20.457	-2.765	17.574	1.00	25.31
60	ATOM	384	CA	MET	357	20.526	-1.322	17.369	1.00	24.63
	ATOM	385	CB	MET	357	21.902	-0.789	17.766	1.00	23.61

5	ATOM	443	NH2	ARG	363	8.143	-0.729	15.261	1.00	51.54
	MOTA	444	С	ARG	363	12.654	3.743	12.943	1.00	37.40
	MOTA	445	0	ARG	363	11.567	4.199	13.303	1.00	38.22
	ATOM	446	N	VAL	364	13.785	4.442	13.002	1.00	35.66
• •	ATOM	447	CA	VAL	364	13.804	5.836	13.431	1.00	34.06
10	ATOM	448	CB	VAL	364	15.231	6.271	13.827	1.00	33.87
	ATOM	449	CG1	VAL	364	15.293	7.779	13.995	1.00	31.08
	ATOM	450	CG2	VAL	364	15.641	5.571	15.113	1.00	31.30 33.19
	ATOM	451	C	VAL	364	13.360	6.591	12.171	1.00	33.19
15	ATOM	452	0	VAL	364	14.028	6.531	11.146 12.234	1.00	34.69
15	ATOM	453	N	PRO	365	12.225	7.310	13.413	1.00	34.19
•	ATOM	454	CD	PRO	365	11.359	7.492	11.069	1.00	35.96
	ATOM	455	CA	PRO	365	11.724	8.050	11.645	1.00	36.59
	ATOM	456	CB CG	PRO	365	10.608	8.918	12.842	1.00	39.59
20	ATOM ATOM	457 458	C	PRO PRO	365 365	10.135 12.756	8.157 8.878	10.321	1.00	37.19
20	ATOM	459	0	PRO	365	13.430	9.726	10.321	1.00	40.29
	ATOM	460	N	GLY	366	12.878	8.624	9.023	1.00	34.78
	ATOM	461	CA	GLY	366	13.816	9.371	8.212	1.00	33.54
	ATOM	462	C	GLY	366	15.168	8.722	8.007	1.00	34.26
25	MOTA	463	0	GLY	366	15.858	9.035	7.034	1.00	37.15
23	ATOM	464	N	PHE	367	15.554	7.814	8.901	1.00	33.13
	ATOM	465	CA	PHE	367	16.860	7.164	8.787	1.00	32.04
	MOTA	466	CB	PHE	367	17.138	6.291	10.016	1.00	30.22
	ATOM	467	CG	PHE	367	18.544	5.773	10.080	1.00	30.60
30	ATOM	468	CD1	PHE	367	18.827	4.446	9.751	1.00	31.94
	ATOM	469	CD2	PHE	367	19.589	6.601	10.485	1.00	29.20
	MOTA	470	CE1	PHE	367	20.133	3.950	9.828	1.00	28.30
	ATOM	471	CE2	PHE	367	20.896	6.122	10.568	1.00	28.12
	ATOM	472	CZ	PHE	367	21.171	4.791	10.240	1.00	25.41
35	MOTA	473	С	PHE	367	17.033	6.333	7.524	1.00	31.46
	MOTA	474	0	PHE	367	18.073	6.405	6.883	1.00	32.30
	ATOM	475	N	VAL	368	16.027	5.541	7.165	1.00	35.20
	MOTA	476	CA	VAL	368	16.123	4.718	5.959	1.00	38.98
	ATOM	477	CB	VAL	368	15.076	3.584	5.945	1.00	40.61
40	ATOM	478	CG1	VAL	368	15.543	2.447	6.843	1.00	41.48
	MOTA	479	CG2	VAL	368	13.717	4.113	6.390	1.00	41.60
	MOTA	480	С	VAL	368	15.965	5.523	4.673	1.00	40.06
	ATOM	481	0	VAL	368	16.156	4.992	3.579	1.00	41.66
4.5	MOTA	482	N	ASP	369	15.608	6.798	4.798	1.00	38.65
45	MOTA	483	CA	ASP	369	15.465	7.646	3.621	1.00	37.15
	ATOM	484	CB	ASP	369	14.700	8.929	3.954	1.00	39.89
	ATOM	485	CG	ASP	369	13.254	8.671	4.302	1.00	45.59
	ATOM	486	OD1	ASP	369	12.686	7.672	3.806	1.00	46.34
50	ATOM	487	OD2	ASP	369	12.681	9.472	5.074	1.00	49.13
50	ATOM	488	C	ASP	369	16.855	8.010	3.136	1.00	34.91 34.25
	ATOM	489	0	ASP	369	17.038	8.431	1.995	1.00	
	ATOM	490	N	LEU	370	17.838	7.841	4.016	1.00	31.76 28.08
	ATOM ATOM	491	CA	LEU	370	19.229	8.153	3.705 5.003	1.00	28.81
55	ATOM	492	CB	LEU	370	20.020	8.339		1.00	28.74
در	ATOM	493 494	CG CD1	LEU LEU	370 370	19. 52 3 20.315	9.395 9.275	6.000 7.299	1.00	30.81
	ATOM	494	CD1	LEU	370	19.693	10.792	5.404	1.00	29.77
	ATOM	495	CD2	LEU	370	19.884	7.043	2.893	1.00	31.25
	ATOM	497	0	LEU	370	19.341	5.943	2.784	1.00	31.78
60	ATOM	498	N	THR	371	21.052	7.333	2.331	1.00	28.86
	ATOM	499	CA	THR	371	21.793	6.336	1.569	1.00	32.90

5	ATOM	557	N	LEU	378	26.678	7.206	10.107	1.00	24.58
	MOTA	558	CA	LEU	378	26.015	7.695	11.315	1.00	26.40
	ATOM	559	CB	LEU	378	24.542	8.001	11.027	1.00	26.29
	ATOM	560	CG	LEU	378	24.291	9.180	10.073	1.00	28.06
	ATOM	561	CD1	LEU	378	22.778	9.353	9.869	1.00	27.66
10	ATOM	562	CD2	LEU	378	24.911	10.458	10.642	1.00	30.08
	ATOM	563	C	LEU	378	26.120	6.695	12.459	1.00	28.55
	MOTA	564	0	LEU	378	26.379	7.075	13.605	1.00	24.76
	ATOM	565	N	LEU	379	25.919	5.414	12.153	1.00	24.29
	ATOM	566	CA	LEU	379	26.000	4.388	13.182	1.00	27.03
15	ATOM	567	CB	LEU	379	25.401	3.073	12.667	1.00	28.53
	ATOM	568	CG	LEU	379	23.875	3.023	12.845	1.00	30.29
	ATOM	569	CD1	LEU	37 9	23.248	1.943	11.963	1.00	33.04
	ATOM	570	CD2	LEU	379	23.563	2.759	14.312	1.00	29.45
	ATOM	571	С	LEU	379	27.430	4.176	13.670	1.00	27.18
20	ATOM	572	0	LEU	379	27.653	3.979	14.866	1.00	25.95
	ATOM	573	N	GLU	380	28.402	4.236	12.762	1.00	25.86
	ATOM	574	CA	GLÜ	380	29.786	4.054	13.173	1.00	27.58
	ATOM	57 5	CB	GLU	380	30.730	4.036	11.968	1.00	30.36
	ATOM	576	CG	GLU	380	32.172	3.785	12.380	1.00	37.98
25	ATOM	577	CD	GLU	380	33.080	3.471	11.210	1.00	45.23
	ATOM	578	OE1	GLU	380	32.869	4.048	10.120	1.00	42.99
	ATOM	579	OE2	GLU	380	34.004	2.646	11.386	1.00	45.79
	ATOM	580	C	GLU	380	30.218	5.159	14.133	1.00	27.50
20	ATOM	581	0	GLU	380	31.056	4.937	15.010	1.00	26.67
30	ATOM	582	N	ACYS	381	29.637	6.339	13.965	0.75	24.89
	ATOM	583	N	BCYS	381	29.645	6.352	13.980	0.25	25.79
	ATOM	584	CA	ACYS	381	29.969	7.466	14.826	0.75	24.12
	ATOM	585	CA	BCYS	381	29.993	7.481	14.847	0.25	24.86
25	ATOM	586	CB	ACYS	381	29.621	8.781	14.122	0.75 0.25	25.96 25.62
35	ATOM	587	CB	BCYS	381	29.766	8.814	14.115 12.732	0.25	31.63
	MOTA	588	SG	ACYS	381	30.698	9.192	15.059	0.75	25.40
	ATOM	58 <i>9</i>	SG C	BCYS	381 381	30.227	10.312 7.422	16.162	0.75	22.07
	MOTA	590 591	C	ACYS BCYS	381	29.237 29.211	7.422	16.159	0.75	23.97
40	ATOM ATOM	592	0	ACYS	381	29.812	7.730	17.206	0.75	21.97
40	ATOM	593	0	BCYS	381	29.724	7.940	17.187	0.25	23.99
	ATOM	594	N	ALA	382	27.974	7.012	16.128	1.00	23.41
	ATOM	595	CA	ALA	382	27.140	7.015	17.318	1.00	22.83
	ATOM	596	CB	ALA	382	25.785	7.587	16.948	1.00	25.50
45	ATOM	597	C	ALA	382	26.913	5.755	18.131	1.00	25.39
.5	ATOM	598	0	ALA	382	26.374	5.837	19.234	1.00	23.09
	ATOM	599	N	TRP	383	27.311	4.602	17.615	1.00	25.98
	ATOM	600	CA	TRP	383	27.026	3.354	18.318	1.00	23.80
	ATOM	601	CB	TRP	383	27.669	2.172	17.580	1.00	22.52
50	ATOM	602	CG	TRP	383	29.130	2.054	17.762	1.00	24.42
50	ATOM	603	CD2	TRP	383	29.797	1.347	18.803	1.00	27.31
	ATOM	604	CE2	TRP	383	31.182	1.484	18.579	1.00	28.24
	ATOM	605	CE3	TRP	383	29.360	0.609	19.912	1.00	27.37
	ATOM	606	CD1	TRP	383	30.102	2.578	16.965	1.00	24.58
55	ATOM	607	NE1	TRP.	383	31.342	2.239	17.446	1.00	27.35
	ATOM	608	CZ2	TRP	383	32.133	0.909	19.420	1.00	28.76
	ATOM	609	CZ3	TRP	383	30.305	0.039	20.745	1.00	28.09
	ATOM	610	CH2	TRP	383	31.674	0.191	20.496	1.00	29. 7 7
	ATOM	611	C	TRP	383	27.356	3.309	19.802	1.00	23.54
60	MOTA	612	0	TRP	383	26.526	2.866	20.584	1.00	22.90
	ATOM	613	N	LEU	384	28.542	3.765	20.211	1.00	20.37

c								20 050	1 00	25 25
5	ATOM	671	CD2	LEU	391	26.709 22.603	1.619 3.070	30.958 31.104	1.00	25.25 30.84
	ATOM ATOM	672 673	С 0	LEU	391 391	22.156	2.669	32.186	1.00	29.19
	ATOM	674	N	VAL	392	22.130	4.355	30.850	1.00	28.91
	ATOM	675	CA	VAL	392	22.506	5.369	31.851	1.00	28.86
10	ATOM	676	CB	VAL	392	22.923	6.770	31.353	1.00	30.08
• •	ATOM	677	CG1	VAL	392	22.329	7.854	32.237	1.00	32.32
	MOTA	678	CG2	VAL	392	24.442	6.870	31.372	1.00	28.52
	ATOM	679	C	VAL	392	21.013	5.327	32.165	1.00	28.42
	ATOM	680	0	VAL	392	20.621	5.345	33.327	1.00	30.38
15	MOTA	681	N	TRP	393	20.191	5.241	31.125	1.00	28.23
	ATOM	682	CA	TRP	393	18.732	5.186	31.280	1.00	29.70
	MOTA	683	CB	TRP	393	18.066	5.046	29.906	1.00	30.09
	ATOM	684	CG	TRP	393	16.605	4.670	29.953	1.00	33.50
	ATOM	685	CD2	TRP	393	15.516	5.499	30.369	1.00	31.76
20	MOTA	686	CE2	TRP	393	14.336	4.725	30.264	1.00	38.11
	ATOM	687	CE3	TRP	393	15.419	6.821	30.824	1.00	32.56
	MOTA	688	CD1	TRP	393	16.057	3.459	29.618	1.00	34.31
	ATOM	689	NE1	TRP	393	14.696	3.486	29.801	1.00	34.36
	ATOM	690	CZ2	TRP	393	13.073	5.233	30.597	1.00	37.93
25	MOTA	691	CZ3	TRP	393	14.162	7.326	31.155	1.00	35.24
	ATOM	692	CH2	TRP	393	13.007	6.531	31.039	1.00	37.77
	MOTA	693	C	TRP	393	18.256	4.051	32.191	1.00	32.07
	ATOM	694	0	TRP	393	17.460	4.275	33.109	1.00	32.12
20	ATOM	695	N	ARG	394	18.738	2.837	31.957	1.00	31.90
30	ATOM ATOM	696 697	CA CB	ARG ARG	394 394	18.288 18.492	1.729 0.389	32.787 32.065	1.00	36.63 36.41
	ATOM	697 698	CG	ARG	394	19.914	0.009	31.764	1.00	36.50
	ATOM	699	CD	ARG	394	19.914	-1.132	30.748	1.00	36.34
	MOTA	700	NE	ARG	394	21.282	-1.561	30.417	1.00	33.97
35	ATOM	701	CZ	ARG	394	21.864	-1.350	29.239	1.00	31.61
	ATOM	702	NH1	ARG	394	21.208	-0.715	28.281	1.00	32.42
	ATOM	703	NH2	ARG	394	23.098	-1.784	29.022	1.00	29.81
	ATOM	704	С	ARG	394	18.911	1.697	34.180	1.00	36.69
	MOTA	705	0	ARG	394	18.445	0.966	35.048	1.00	37.07
40	ATOM	706	N	SER	395	19.954	2.492	34.395	1.00	33.63
	ATOM	707	CA	SER	395	20.603	2.564	35.701	1.00	35.69
	MOTA	708	CB	SER	395	22.112	2.784	35.540	1.00	32.94
	ATOM	709	OG	SER	395	22.696	1.811	34.688	1.00	32.37
	MOTA	710	С	SER	395	20.010	3.713	36.531	1.00	36.44
45	ATOM	711	0	SER	395	20.389	3.916	37.687	1.00	38.68
	ATOM	712	Ŋ	MET	396	19.076	4.449	35.937	1.00	36.46
	ATOM	713	CA	MET	396	18.431	5.588	36.589	1.00	43.08
	ATOM	714	CB	MET	396	17.275	6.104	35.725	1.00	43.87
50	ATOM	715	CG	MET	396	17.481	7.507	35.176	1.00	46.18
30	ATOM	716	SD	MET	396	15.962	8.278 8.298	34.581	1.00	49.58
	ATOM ATOM	717 718	CE C	MET	396 396	14.988 17.906	5.303	36.065 37.992	1.00	53.58 46.18
	ATOM	719	0	MET MET	396	18.125	6.089	38.913	1.00	46.34
	ATOM	720	N	GLU	397	17.215	4.180	38.152	1.00	49.39
55	ATOM	721	CA	GLU	397	16.645	3.821	39.444	1.00	52.12
55	ATOM	722	CB	GLU	397	15.296	3.130	39.246	1.00	55.34
	MOTA	723	CG	GLU	397	14.166	4.073	38.873	1.00	58.86
	ATOM	724	CD	GLU	397	13.195	3.448	37.891	1.00	63.28
	ATOM	725	OE1	GLU	397	13.660	2.925	36.854	1.00	64.68
60	ATOM	726	OE2	GLU	397	11.972	3.475	38.155	1.00	65.39
	ATOM	727	C	GLU	397	17.548	2.933	40.283	1.00	52.75

PCT/US99/06899 -_ WO 99/60014

5	A TOM	705	0	DITE	404	23.625	-4.175	30.538	1.00	28.09
3	ATOM ATOM	785 786	N O	PHE ALA	404 405	23.138	-4.173	32.594	1.00	30.25
	ATOM	787	CA	ALA	405	22.104	-5.910	32.163	1.00	29.78
	ATOM	788	CB	ALA	405	22.745	-7.172	31.598	1.00	29.97
	ATOM	789	C	ALA	405	21.309	-6.237	33.429	1.00	31.95
10	ATOM	790	0	ALA	405	21.785	-5.995	34.535	1.00	32.36
10		791	N	PRO	405	20.088	-6.779	33.288	1.00	34.40
	ATOM ATOM	792	CD	PRO	406	19.356	-7.102	32.053	1.00	35.81
		793	CA	PRO	406	19.303	-7.101	34.490	1.00	36.41
	ATOM	794	CB	PRO	406	17.985	-7.654	33.935	1.00	35.38
15	ATOM	79 4 795	CG	PRO	406	17.922	-7.153	32.519	1.00	36.49
13	ATOM ATOM	796	C	PRO	406	19.997	-8.084	35.433	1.00	37.32
	ATOM	797	0	PRO	406	19.698	-8.112	36.626	1.00	38.34
		798	N	ASN	407	20.924	-8.877	34.902	1.00	36.69
	ATOM ATOM	798 799	CA	ASN	407	21.652	-9.847	35.712	1.00	38.85
20	ATOM	800	CB	ASN ASN	407	21.582	-11.243	35.083	1.00	39.69
20	ATOM	801	CG	ASN	407	22.232	-11.306	33.711	1.00	44.10
	ATOM	802	OD1	ASN	407	22.345	-10.296	33.009	1.00	37.78
	ATOM	803	ND2	ASN	407	22.660	-12.503	33.319	1.00	45.74
	ATOM	804	C C	ASN	407	23.100	-9.435	35.874	1.00	38.12
25	MOTA	805	0	ASN	407	23.965	-10.256	36.178	1.00	39.81
±3	ATOM	806	N	LEU	408	23.364	-8.149	35.671	1.00	37.80
	MOTA	807	CA	LEU	408	24.713	-7.631	35.799	1.00	36.89
	ATOM	808	CB	LEU	408	25.449	-7.720	34.459	1.00	36.09
	ATOM	809	CG	LEU	408	26.972	-7.609	34.550	1.00	35.08
30	ATOM	810	CD1	LEU	408	27.525	-8.775	35.354	1.00	39.15
30	ATOM	811	CD2	FEA	408	27.578	-7.587	33.158	1.00	36.85
	ATOM	812	C	LEU	408	24.670	-6.187	36.286	1.00	40.55
	ATOM	813	ō	LEU	408	24.646	-5.248	35.491	1.00	38.29
	ATOM	814	N	LEU	409	24.644	-6.034	37.607	1.00	39.50
35	ATOM	815	CA	LEU	409	24.606	-4.733	38.257	1.00	41.00
	ATOM	816	СВ	LEU	409	23.392	-4.658	39.184	1.00	43.69
	ATOM	817	CG	LEU	409	23.164	-3.382	39.993	1.00	47.35
	ATOM	818	CD1	LEU	409	22.848	-2.233	39.058	1.00	47.09
	MOTA	819	CD2	LEU	409	22.014	-3.603	40.976	1.00	49.38
40	ATOM	820	С	LEU	409	25.894	-4.566	39.060	1.00	41.80
	MOTA	821	0	LEU	409	26.178	-5.358	39.960	1.00	41.00
	ATOM	822	N	LEU	410	26.676	-3.544	38.727	1.00	39.23
	MOTA	823	CA	LEU	410	27.931	-3.296	39.423	1.00	40.45
	ATOM	824	CB	LEU	410	29.106	-3.354	38.442	1.00	41.59
45	ATOM	825	CG	LEU	410	29.457	-4.660	37.716	1.00	44.87
	ATOM	826	CD1	LEU	410	30.972	-4.728	37.554	1.00	45.41
	MOTA	827	CD2	LEU	410	28.949	-5.872	38.484	1.00	47.02
	ATOM	828	С	LEU	410	27.946	-1.944	40.132	1.00	40.67
	ATOM	829	0	LEU	410	27.361	-0.970	39.652	1.00	40.22
50	ATOM	830	N	ASP	411	28.610	-1.890	41.281	1.00	41.57
	MOTA	831	CA	ASP	411	28.717	-0.640	42.025	1.00	42.69
	ATOM	832	CB	ASP	411	28.490	-0.874	43.528	1.00	44.44
	ATOM	833	CG	ASP	411	29.655	-1.578	44.210	1.00	46.70
	ATOM	834	OD1	ASP	411	29.537	-1.849	45.426	1.00	51.44
55	ATOM	835	OD2	ASP	411	30.680	-1.861	43.553	1.00	48.79
	ATOM	836	C	ASP	411	30.088	-0.016	41.779	1.00	43.70
	MOTA	837	0	ASP	411	30.933	-0.610	41.107	1.00	38.48
	MOTA	838	N	ARG	412	30.295	1.181	42.321	1.00	46.78
	MOTA	839	CA	ARG	412	31.554	1.905	42.171	1.00	49.97
60	MOTA	840	CB	ARG	412	31.601	3.090	43.138	1.00	51.28
	MOTA	841	CG	ARG	412	30.971	4.364	42.614	1.00	54.77

5	ATOM	899	С	GLU	419	38.761	-1.281	31.662	1.00	52.05
,	ATOM	900	ō	GLU	419	37.665	-1.481	31.131	1.00	49.82
	ATOM	901	N	GLY	420	39.465	-0.165	31.491	1.00	49.45
	ATOM	902	CA	GLY	420	38.983	0.908	30.642	1.00	46.22
	ATOM	903	C.	GLY	420	37.895	1.767	31.254	1.00	44.55
10	ATOM	904	Ö	GLY	420	37.417	2.705	30.619	1.00	42.08
10	ATOM	905	N	MET	421	37.503	1.471	32.488	1.00	43.41
	ATOM	906	CA	MET	421	36.449	2.248	33.123	1.00	42.48
	ATOM	907	CB	MET	421	35.306	1.327	33.554	1.00	42.34
	ATOM	908	CG	MET	421	34.590	0.635	32.396	1.00	38.22
15	ATOM	909	SD	MET	421	32.927	0.102	32.843	1.00	38.56
1)	ATOM	910	CE	MET	421	32.003	1.699	32.766	1.00	35.54
	ATOM	911	C	MET	421	36.923	3.059	34.312	1.00	41.64
	ATOM	912	0	MET	421	36.113	3.512	35.111	1.00	39.77
	ATOM	913	N	VAL	422	38.232	3.256	34.430	1.00	43.42
20	ATOM	913	CA	VAL	422	38.757	4.019	35.557	1.00	44.79
20		915	CB	VAL	422	40.285	4.248	35.433	1.00	46.54
	ATOM ATOM	916	CG1	VAL	422	40.285	5.086	34.206	1.00	48.25
	ATOM	917	CG2	VAL	422	40.813	4.920	36.696	1.00	46.24
	MOTA	918	C	VAL	422	38.056	5.372	35.689	1.00	44.09
25	ATOM	919	0	VAL	422	37.691	5.783	36.783	1.00	44.12
43	MOTA	920	N	GŤΩ Λετί	423	37.846	6.055	34.570	1.00	42.07
	ATOM	921	CA	GT.	423	37.192	7.356	34.616	1.00	40.24
	ATOM	922	CB	GLU	423	37.909	8.338	33.684	1.00	44.02
	ATOM	923	CG	GLU	423	39.411	8.467	33.893	1.00	50.04
30	ATOM	924	CD	GLU	423	40.096	9.158	32.719	1.00	55.64
30	MOTA	925	OE1	GLU	423	39.539	10.156	32.205	1.00	56.66
	ATOM	926	OE2	GLU	423	41.188	8.703	32.306	1.00	58.02
	ATOM	927	C	GLU	423	35.704	7.337	34.250	1.00	35.77
	ATOM	928	Ö	GLU	423	34.881	7.955	34.919	1.00	33.20
35	ATOM	929	N	ILE	424	35.345	6.617	33.197	1.00	36.16
	ATOM	930	CA	ILE	424	33.949	6.643	32.771	1.00	31.63
	ATOM	931	CB	ILE	424	33.803	6.087	31.347	1.00	33.58
	MOTA	932	CG2	ILE	424	34.639	6.936	30.395	1.00	33.48
	ATOM	933	CG1	ILE	424	34.204	4.617	31.296	1.00	34.46
40	ATOM	934	CD1	ILE	424	33.857	3.955	29.978	1.00	34.67
	ATOM	935	С	ILE	424	32.890	6.035	33.685	1.00	28.89
	ATOM	936	0	ILE	424	31.729	6.443	33.632	1.00	26.49
	ATOM	937	N	PHE	425	33.261	5.091	34.542	1.00	29.26
	ATOM	938	CA	PHE	425	32.257	4.520	35.447	1.00	29.87
45	MOTA	939	CB	PHE	425	32.903	3.529	36.423	1.00	31.26
	ATOM	940	CG	PHE	425	31.948	2.496	36.959	1.00	32.17
	MOTA	941	CD1	PHE	425	31.124	2.783	38.048	1.00	33.70
	ATOM	942	CD2	PHE	425	31.881	1.230	36.381	1.00	30.64
	ATOM	943	CE1	PHE	425	30.244	1.814	38.563	1.00	32.60
50	ATOM	944	CE2	PHE	425	31.010	0.256	36.881	1.00	31.55
	ATOM	945	CZ	PHE	425	30.189	0.549	37.973	1.00	33.34
	ATOM	946	С	PHE	425	31.594	5.649	36.240	1.00	30.17
	ATOM	947	0	PHĘ	425	30.368	5.774	36.276	1.00	26.71
	ATOM	948	N	ASP	426	32.415	6.483	36.870	1.00	29.45
55	MOTA	949	CA	ASP	426	31.893	7.587	37.661	1.00	32.29
	MOTA	950	CB	ASP	426	33.031	8.291	38.401	1.00	33.49
	ATOM	951	CG	ASP	426	33.455	7.546	39.655	1.00	39.42
	ATOM	952	OD1	ASP	426	32.767	6.574	40.038	1.00	38.35
	ATOM	953	OD2	ASP	426	34.480	7.934	40.256	1.00	39.58
60	ATOM	954	С	ASP	426	31.133	8.592	36.806	1.00	29.02
	MOTA	955	0	ASP	426	30.154	9.175	37.257	1.00	31.34

WO 99/60014 PCT/US99/06899 -_

5	ATOM	1013	CG	ARG	434	21.670	15.528	34.625	1.00	38.30
	ATOM	1014	CD	ARG	434	21.559	16.787	35.479	1.00	37.91
	ATOM	1015	NE	ARG	434	21.158	17.944	34.680	1.00	37.78
	ATOM	1016	CZ	ARG	434	20.488	18.995	35.149	1.00	41.06
	ATOM	1017	NH1	ARG	434	20.132	19.049	36.428	1.00	40.70
10	MOTA	1018	NH2	ARG	434	20.132	19.998	34.337	1.00	38.78
10										33.48
	ATOM	1019	C	ARG	434	19.937	13.491	35.873	1.00	
	ATOM	1020	0	ARG	434	18.996	14.266	36.053	1.00	30.54
	ATOM	1021	N	PHE	435	19.831	12.371	35.158	1.00	34.68
	ATOM	1022	CA	PHE	435	18.563	11.963	34.549	1.00	35.02
15	ATOM	1023	CB	PHE	435	18.727	10.634	33.796	1.00	34.96
	ATOM	1024	CG	PHE	435	19.240	10.779	32.386	1.00	37.63
	ATOM	1025	CD1	PHE	435	19.459	12.035	31.824	1.00	42.03
	ATOM	1026	CD2	PHE	435	19.521	9.649	31.623	1.00	41.24
	ATOM	1027	CE1	PHE	435	19.953	12.164	30.521	1.00	43.11
20	ATOM	1028	CE2	PHE	435	20.016	9.768	30.322	1.00	40.59
	ATOM	1029	CZ	PHE	435	20.233	11.029	29.775	1.00	40.63
	ATOM	1030	С	PHE	435	17.527	11.780	35.657	1.00	35.49
	ATOM	1031	ō	PHE	435	16.361	12.135	35.496	1.00	34.78
	ATOM	1032	N	ARG	436	17.968	11.216	36.777	1.00	38.27
25	ATOM	1032	CA	ARG	436	17.094	10.982	37.924	1.00	40.67
23	ATOM	1034	CB	ARG	436	17.844	10.215	39.012	1.00	40.70
			CG						1.00	44.98
	ATOM	1035		ARG	436	16.942	9.590	40.068		
	ATOM	1036	CD	ARG	436	17.648	8.459	40.810	1.00	48.09
20	MOTA	1037	NE	ARG	436	18.982	8.841	41.275	1.00	50.16
30	MOTA	1038	CZ	ARG	436	20.119	8.361	40.777	1.00	52.19
	MOTA	1039	NH1	ARG	436	20.099	7.472	39.790	1.00	49.34
	ATOM	1040	NH2	ARG	436	21.283	8.770	41.266	1.00	51.85
	ATOM	1041	С	ARG	436	16.576	12.302	38.493	1.00	40.40
	ATOM	1042	0	ARG	436	15.382	12.458	38.730	1.00	41.49
35	ATOM	1043	N	MET	437	17.477	13.252	38.706	1.00	40.02
	ATOM	1044	CA	MET	437	17.090	14.546	39.245	1.00	41.02
	ATOM	1045	CB	MET	437	18.329	15.427	39.440	1.00	40.29
	ATOM	1046	C	MET	437	16.099	15.221	38.299	1.00	40.81
	ATOM	1047	0	MET	437	15.111	15.805	38.734	1.00	42.46
40	ATOM	1048	N	MET	438	16.367	15.127	37.001	1.00	39.02
	ATOM	1049	CA	MET	438	15.510	15.732	35.988	1.00	40.11
	ATOM	1050	CB	MET	438	16.237	15.793	34.651	1.00	38.16
	ATOM	1051	CG	MET	438	17.352	16.794	34.601	1.00	41.52
	ATOM	1052	SD	MET	438	17.999	16.862	32.943	1.00	43.94
45	ATOM	1053	CE	MET	438	16.698	17.748	32.096	1.00	39.96
	ATOM	1054		MET	438	14.221	14.964	35.783	1.00	37.72
	ATOM	1055	0	MET	438	13.305	15.451	35.125	1.00	36.82
							13.759		1.00	38.81
	ATOM	1056	N	ASN	439	14.155		36.337		
50	ATOM	1057	CA	ÁSN	439	12.981	12.919	36.174	1.00	40.77
50	ATOM	1058	CB	ASN	439	11.762	13.556	36.847	1.00	44.52
	MOTA	1059	CG	ASN	439	10.566	12.620	36.887	1.00	48.29
	ATOM	1060	OD1	ASN	439	10.721	11.400	36.964	1.00	48.48
	ATOM	1061	ND2	ASN	439	9.365	13.189	36.829	1.00	50.23
	ATOM	1062	C	ASN	439	12.725	12.744	34.677	1.00	39.36
55	ATOM	1063	0	ASN	439	11.637	13.037	34.172	1.00	37.76
	MOTA	1064	N	LEU	440	13.749	12.274	33.972	1.00	37.65
	ATOM	1065	CA	LEU	440	13.655	12.052	32.532	1.00	35.22
	ATOM	1066	CB	LEU	440	14.999	11.576	31.987	1.00	34.70
	ATOM	1067	CG	LEU	440	15.022	11.467	30.462	1.00	35.45
60	ATOM	1068	CD1	LEU	440	14.890	12.862	29.869	1.00	35.24
	ATOM	1069	CD2	LEU	440	16.297	10.795	29.999	1.00	35.30
						,_,				•

5	ATOM	1127	N	LEU	448	15.969	11.686	22.538	1.00	27.28
	ATOM	1128	CA	LEŲ	448	17.392	11.938	22.729	1.00	25.30
	ATOM	1129	CB	LEU	448	17.733	11.932	24.220	1.00	27.72
	ATOM	1130	CG	LEU	448	17.248	13.135	25.040	1.00	29.54
	ATOM	1131	CD1	LEU	448	17.807	13.042	26.454	1.00	30.85
10	ATOM	1132	CD2	LEU	448	17.688	14.434	24.376	1.00	30.24
• •	ATOM	1133	С	LEU	448	18.245	10.902	22.008	1.00	27.62
	ATOM	1134	Ō	LEU	448	19.207	11.252	21.327	1.00	25.10
	ATOM	1135	N	LYS	449	17.905	9.621	22.162	1.00	25.16
	ATOM	1136	CA	LYS	449	18.673	8.570	21.506	1.00	27.55
15	ATOM	1137	CB	LYS	449	18.135	7.185	21.900	1.00	28.99
13	ATOM	1138	CG	LYS	449	19.134	6.052	21.694	1.00	34.70
	ATOM	1139	CD	LYS	449	18.737	4.789	22.459	1.00	32.67
			CE	LYS	449	17.267	4.419	22.220	1.00	31.87
	ATOM	1140	NZ		449	17.022	2.967	22.472	1.00	29.14
20	ATOM	1141		LYS			8.749	19.990	1.00	25.88
20	ATOM	1142	C	LYS	449	18.626		19.296	1.00	25.93
	MOTA	1143	0	LYS	449	19.610			1.00	26.07
	MOTA	1144	N	SER	450	17.482	9.197	19.480		27.24
	MOTA	1145	CA	SER	450	17.323	9.421	18.052	1.00	
~ ~	MOTA	1146	CB	SER	450	15.857	9.705	17.721	1.00	32.24
25	ATOM	1147	OG	SER	450	15.098	8.519	17.779	1.00	34.94
	ATOM	1148	С	SER	450	18.176	10.607	17.618	1.00	26.78
	MOTA	1149	0	SER	450	18.763	10.598	16.535	1.00	25.85
	MOTA	1150	N	ILE	451	18.231	11.632	18.463	1.00	26.94
•	ATOM	1151	CA	ILE	451	19.032	12.810	18.155	1.00	26.13
30	ATOM	1152	CB	ILE	451	18.950	13.850	19.291	1.00	27.72
	ATOM	1153	CG2	IĻE	451	20.019	14.929	19.101	1.00	20.53
	ATOM	1154	CG1	ILE	451	17.553	14.475	19.322	1.00	29.49
	ATOM	1155	CD1	ΙĻΕ	451	17.377	15.473	20.447	1.00	36.24
	ATOM	1156	C	ILE	451	20.489	12.381	17.989	1.00	24.88
35	MOTA	1157	0	ILE	451	21.161	12.771	17.034	1.00	26.96
	ATOM	1158	N	ILE	452	20.977	11.582	18.931	1.00	22.72
	ATOM	1159	CA	ILE	452	22.359	11.120	18.880	1.00	21.95
	MOTA	1160	CB	ILĘ	452	22.660	10.155	20.050	1.00	23.57
	ATOM	1161	CG2	ILE	452	23.982	9.435	19.804	1.00	22.10
40	ATOM	1162	CG1	ILE	452	22.718	10.949	21.371	1.00	21.70
	ATOM	1163	CD1	ILE	452	22.768	10.060	22.624	1.00	25.30
	MOTA	1164	C	ILE	452	22.656	10.419	17.557	1.00	23.02
	ATOM	1165	0	ILE	452	23.650	10.708	16.885	1.00	21.25
	ATOM	1166	N	LEU	453	21.779	9.497	17.173	1.00	22.83
45	MOTA	1167	CA	LEU	453	21.984	8.768	15.935	1.00	22.05
	ATOM	1168	CB	LEU	453	20.843	7.764	15.733	1.00	22.06
	ATOM	1169	CG	LEU	453	20.712	7.189	14.324	1.00	22.03
	ATOM	1170	CD1	LEU	453	21.815	6.165	14.107	1.00	24.81
	ATOM	1171	CD2	LEU	453	19.328	6.535	14.156	1.00	24.73
50		1172	C	LEU	453	22.092	9.687	14.717	1.00	23.95
50	ATOM				453	22.962	9.501	13.860	1.00	24.60
	ATOM	1173	0	LEU				14.638	1.00	26.72
	ATOM	1174	N	LEU	454	21.220	10.687		1.00	26.45
	MOTA	1175	CA	LEU	454	21.234	11.599	13.494		25.51
	ATOM	1176	CB	LEU	454	19.852	12.242	13.330	1.00	
55	ATOM	1177	CG	LEU	454	18.737	11.222	13.052	1.00	30.16
	ATOM	1178	CD1	LEU	454	17.405	11.926	12.955	1.00	28.76
	MOTA	1179	CD2	LEU	454	19.037	10.478	11.759	1.00	32.59
	MOTA	1180	C	LEU	454	22.292	12.703	13.552	1.00	28.24
	ATOM	1181	0	LEU	454	22.778	13.148	12.513	1.00	29.06
60	MOTA	1182	N	ASN	455	22.638	13.146	14.757	1.00	26.56
	MOTA	1183	CA	ASN	455	23.604	14.236	14.934	1.00	26. 7 9

5	ATOM	1241	0	LEU	462	33.725	14.590	2.680	1.00	73.45
	ATOM	1242	N	SER	463	32.043	14.141	1.253	1.00	73.22
	ATOM	1243	CA	SER	463	32.262	15.343	0.449	1.00	72.61
	ATOM	1244	CB	SER	463	32.544	14.942	-1.005	1.00	73.38
	ATOM	1245	C	SER	463	31.126	16.362	0.491	1.00	71.17
10	ATOM	1246	0	SER	463	30.455	16.528	1.511	1.00	72.05
	ATOM	1247	N	SER	464	30.932	17.049	-0.633	1.00	68.86
	ATOM	1248	CA	SER	464	29.892	18.063	-0.759	1.00	66.06
	ATOM	1249	CB	SER	464	30.514	19.457	-0.704	1.00	66.26
	ATOM	1250	C	SER	464	29.108	17.887	-2.060	1.00	63.72
15	ATOM	1251	0	SER	464	28.657	18.862	-2.662	1.00	62.88
	ATOM	1252	N	THR	465	28.954	16.638	-2.493	1.00	60.93
	ATOM	1253	CA	THR	465	28.205	16.343	-3.709	1.00	57.47
	ATOM	1254	CB	THR	465	28.185	14.824	-4.004	1.00	57.80
	ATOM	1255	OG1	THR	465	27.525	14.135	-2.934	1.00	54.75
20	ATOM	1256	CG2	THR	465	29.606	14.287	-4.149	1.00	57.49
20	ATOM	1257	C	THR	465	26.767	16.824	-3.523	1.00	54.93
		1258	0	THR	465	26.349	17.129	-2.407	1.00	54.26
	ATOM		N	LEU	466	26.013	16.892	-4.614	1.00	51.85
	ATOM	1259			466	24.625	17.330	-4.550	1.00	49.25
25	ATOM	1260	CA	LEU			17.330	-5.956	1.00	48.74
25	ATOM	1261	CB	LEU	466	24.013		-6.253	1.00	48.72
	ATOM	1262	CG	LEU	466	22.953	18.415		1.00	48.32
	ATOM	1263	CD1	LEU	466	22.156	18.002	-7.482		48.14
	ATOM	1264	CD2	LEU	466	22.033	18.594	-5.057	1.00	48.16
20	ATOM	1265	C	LEU	466	23.817	16.397	-3.650	1.00	
30	ATOM	1266	0	LEU	466	22.961	16.845	-2.883	1.00	45.90
	ATOM	1267	N	LYS	467	24.093	15.099	-3.750	1.00	46.47
	ATOM	1268	CA	LYS	467	23.399	14.100	-2.947	1.00	47.45
	ATOM	1269	CB	LYS	467	23.802	12.693	-3.395	1.00	49.38
	MOTA	1270	CG	LŸS	467	22.829	11.602	-2.974	1.00	52.70
35	ATOM	1271	CD	LYS	467	23.561	10.301	-2.682	1.00	56.48
	MOTA	1272	CE	LYS	467	23.105	9.180	-3.604	1.00	59.54
	ATOM	1273	NZ	LYS	467	24.150	8.117	-3.732	1.00	61.22
	ATOM	1274	C	LYS	467	23.738	14.284	-1.472	1.00	46.89
	MOTA	1275	0	LYS	467	22.884	14.108	-0.604	1.00	46.06
40	MOTA	1276	N	SER	468	24.989	14.644	-1.202	1.00	45.82
	ATOM	1277	CA	SER	468	25.457	14.854	0.160	1.00	46.82
	MOTA	1278	CB	SER	468	26.976	15.050	0.173	1.00	47.85
	ATOM	1279	OG	SER	468	27.407	15.537	1.435	1.00	55.73
	MOTA	1280	С	SER	468	24.778	16.063	0.790	1.00	44.24
45	ATOM	1281	0	SER	468	24.473	16.062	1.983	1.00	42.98
	MOTA	1282	N	LEU	469	24.547	17.100	-0.011	1.00	42.33
	ATOM	1283	CA	LEU	469	23.890	18.301	0.486	1.00	40.42
	ATOM	1284	CB	LEU	469	24.002	19.427	-0.545	1.00	44.47
	MOTA	1285	CG	LEU	469	25.438	19.874	-0.849	1.00	46.70
50	ATOM	1286	CD1	LEU	469	25.514	20.477	-2.246	1.00	46.70
	ATOM	1287	CD2	LEU	469	25.890	20.883	0.199	1.00	47.32
	MOTA	1288	C	LEU	469	22.423	17.996	0.786	1.00	39.06
	MOTA	1289	0	LEU	469	21.856	18.505	1.760	1.00	34.97
	MOTA	1290	N	GLU	470	21.814	17.151	-0.046	1.00	35.46
55	MOTA	1291	CA	GLU	470	20.418	16.768	0.145	1.00	34.38
	ATOM	1292	CB	GLU	470	19.914	15.963	-1.052	1.00	38.02
	MOTA	1293	CG	GLU	470	19.772	16.773	-2.329	1.00	42.67
	ATOM	1294	CD	GLU	470	19.339	15.923	-3.509	1.00	48.30
	MOTA	1295	OE1	GLU	470	19.671	14.716	-3.538	1.00	50.53
60	ATOM	1296	OE2	GLU	470	18.666	16.463	-4.412	1.00	51.06
	MOTA	1297	С	GLU	470	20.290	15.916	1.403	1.00	34.37

_						,				
5	MOTA	1355	CB	ARG	477	14.343	18.376	7.557	1.00	34.95
	MOTA	1356	CG	ARG	477	14.425	19.627	6.700	1.00	40.46
	ATOM	1357	CD	ARG	477	13.698	19.445	5.370	1.00	45.22
	MOTA	1358	NE	ARG	477	14.107	20.456	4.399	1.00	53.05
	ATOM	1359	CZ	ARG	477	13.647	21.705	4.376	1.00	55.89
10	ATOM	1360	NH1	ARG	477	12.756	22.106	5.274	1.00	56.17
	ATOM	1361	NH2	ARG	477	14.084	22.558	3.457	1.00	59.49
	ATOM	1362	С	ARG	477	14.310	17.582	9.931	1.00	30.70
	ATOM	1363	0	ARG	477	13.360	17.903	10.649	1.00	30.24
	ATOM	1364	N	VAL	478	14.863	16.375	9.972	1.00	29.67
15	ATOM	1365	CA	VAL	478	14.351	15.369	10.887	1.00	29.68
	ATOM	1366	CB	VAL	478	14.937	13.975	10.575	1.00	32.01
	ATOM	1367	CG1	VAL	478	14.461	12.973	11.609	1.00	32.93
	ATOM	1368	CG2	VAL	478	14.506	13.528	9.169	1.00	31.00
	ATOM	1369	С	VAL	478	14.696	15.774	12.316	1.00	29.81
20	ATOM	1370	0	VAL	478	13.860	15.677	13.220	1.00	30.25
	ATOM	1371	N	LEU	479	15.929	16.232	12.516	1.00	28.81
	ATOM	1372	CA	ΓĖΠ	479	16.360	16.674	13.836	1.00	28.74
	ATOM	1373	CB	LEU	479	17.799	17.210	13.779	1.00	26.65
	ATOM	1374	CG	LEU	479	18.910	16.152	13.853	1.00	26.05
25	ATOM	1375	CD1	LEU	479	20.231	16.772	13.395	1.00	25.81
	ATOM	1376	CD2	LEU	479	19.028	15.603	15.277	1.00	25.34
	ATOM	1377	C	LEU	479	15.411	17.777	14.313	1.00	29.54
	ATOM	1378	0	LEU	479	14.997	17.786	15.472	1.00	29.00
	ATOM	1379	N	ASP	480	15.076	18.703	13.415	1.00	31.52
30	MOTA	1380	CA	ASP	480	14.162	19.800	13.741	1.00	33.84
	ATOM	1381	CB	ASP	480	13.943	20.712	12.528	1.00	34.37
	MOTA	1382	CG	ASP	480	15.055	21.743	12.345	1.00	36.26
	MOTA	1383	OD1	ASP	480	15.119	22.354	11.257	1.00	36.56
	ATOM	1384	OD2	ASP	480	15.860	21.951	13.274	1.00	34.19
35	ATOM	1385	C	ASP	480	12.818	19.222	14.174	1.00	33.48
	ATOM	1386	0	ASP	480	12.186	19.724	15.105	1.00	33.89
	ATOM	1387	N	LYS	481	12.379	18.161	13.498	1.00	33.90
	ATOM	1388	CA	LYS	481	11.106	17.536	13.839	1.00	32.97
40	MOTA	1389	CB	LYS	481	10.719	16.489	12.784	1.00	34.66
40	MOTA	1390	C	LYS	481	11.164	16.895	15.225	1.00	33.57
	ATOM	1391	0	LYS	481	10.167	16.869	15.943	1.00	35.37
	MOTA	1392	N	ILE	482	12.328	16.377	15.607	1.00	32.71
	MOTA	1393	CA	ILE	482	12.457	15.764	16.922	1.00	31.60
4.5	ATOM	1394	CB	ILE	482	13.743	14.913	17.028	1.00	32.65
45	ATOM	1395	CG2	ILE	482	13.877	14.338	18.430	1.00	32.50
	ATOM	1396	CG1	ILE	482	13.697	13.785	15.995	1.00	32.72
	ATOM	1397	CD1	ILE	482	14.978	12.969	15.908	1.00	33.37
	ATOM	1398	C	ILE	482	12.456	16.853	17.994	1.00	31.69
50	ATOM	1399	0	ILE	482	11.946	16.649	19.097	1.00	29.98
50	ATOM	1400	N	THR	483	13.027	18.012	17.679	1.00	31.33
	ATOM	1401	CA	THR	483	13.022	19.109	18.644	1.00	31.71
	ATOM	1402	CB	THR	483	13.756	20.351	18.109	1.00	32.92
	ATOM	1403	OG1	THR	483	15.111	20.012	17.788	1.00	29.99
e e	ATOM	1404	CG2	THR	483	13.756	21.452	19.160	1.00	30.47
55	ATOM	1405	C	THR	483	11.559	19.483	18.920	1.00	32.85
	ATOM	1406	0	THR	483	11.146	19.598	20.070	1.00	31.83
	ATOM	1407	N	ASP	484	10.785	19.656	17.851	1.00	31.91
	ATOM	1408	CA	ASP	484	9.369	20.003	17.965	1.00	34.15
۲۵	ATOM	1409	CB	ASP	484	8.708	20.013	16.591	1.00	37.41
60	ATOM	1410	CG	ASP	484	9.270	21.080	15.680	1.00	42.02
	ATOM	1411	OD1	ASP	484	9.871	22.045	16.198	1.00	43.26

5) mon	1500	CC	07.17	506	20 424	22 027	21 045	1 00	22 49
5	ATOM ATOM	1583 1584	CG CD	GLN GLN	506 506	18.414 17.111	22.027 22.116	31.945 32.736	1.00	32.48 38.40
	ATOM	1585	OE1	GLN	506	16.319	21.167	32.754	1.00	35.97
	ATOM	1586	NE2	GLN	506	16.319	23.257	33.386	1.00	38.07
			C				19.509	29.217	1.00	24.53
10	ATOM	1587		GLN	506	19.500		29.217	1.00	26.42
10	ATOM	1588	0	GLN	506	20.536	18.889			
	ATOM	1589	N	LEU	507	18.505	19.017	28.484	1.00	26.78
	ATOM	1590	CA	LEU	507	18.578	17.678	27.902	1.00	26.18
	ATOM	1591	CB	LEU	507	17.225	17.286	27.295	1.00	31.48
1.5	ATOM	1592	CG	LEU	507	16.052	16.961	28.231	1.00	32.59
15	ATOM	1593	CD1	LEU	507	14.836	16.561	27.389	1.00	33.78
	ATOM	1594	CD2	LEU	507	16.431	15.838	29.174	1.00	30.18
	ATOM	1595	C	LEU	507	19.652	17.583	26.819	1.00	26.03
	ATOM	1596	0	LEU	507	20.421	16.621	26.771	1.00	27.28
20	ATOM	1597	N	LEU	508	19.713	18.583	25.950	1.00	24.31
20	ATOM	1598	CA	LEU	508	20.690	18.557	24.863	1.00	23.68
	MOTA	1599	CB	LEU	508	20.339	19.629	23.828	1.00	23.91
	ATOM	1600	CG	LEU	508	19.004	19.436	23.102	1.00	24.68
	ATOM	1601	CD1	LEU	508	18.905	20.416	21.945	1.00	25.11
25	ATOM	1602	CD2	LEU	508	18.903	17.994	22.580	1.00	27.53
25	ATOM	1603	C	LEU	508	22.127	18.727	25.341	1.00	22.93
	MOTA	1604	0	LEU	508	23.062	18.200	24.736	1.00	21.36
	ATOM	1605	N	LEU	509	22.302	19.451	26.441	1.00	23.86
	ATOM	1606	CA	LEU	509	23.637	19.661	26.991	1.00	26.28
20	ATOM	1607	CB	LEU	509	23.598	20.735	28.095	1.00	28.08
30	ATOM	1608	CG	LEU	509	23.578	22.214	27.672	1.00	33.98
	MOTA	1609	CD1	LEU	509	23.529	23.114	28.921	1.00	35.23
	MOTA	1610	CD2	LEU	509	24.818	22.525	26.856	1.00	30.48
	ATOM	1611	C	LEU	509	24.154	18.327	27.540	1.00	26.08
2.5	ATOM	1612	0	LEU	509	25.354	18.068	27.547	1.00	23.92
35	ATOM	1613	N	ILE	510	23.254	17.462	27.993	1.00	24.60
	ATOM	1614	CA	ILE	510	23.712	16.172	28.496	1.00	25.12
	ATOM	1615	CB	ILE	510	22.568	15.368	29.161	1.00	28.51
	ATOM	1616	CG2	ILE	510	23.051	13.965	29.506	1.00	31.67
40	ATOM	1617	CG1	ILE	510	22.141	16.060	30.459	1.00	31.18
40	MOTA	1618	CD1 C	ILE	510	20.712	15.749	30.882 27.364	1.00	37.16 23.86
	ATOM	1619 1620	0	ILE	510	24.337	15.351		1.00	24.14
	ATOM		N	ILE	510	25.225	14.534	27.600	1.00	25.10
	ATOM ATOM	1621 1622	CA	LEU	511 511	23.889	15.586	26.133 24.977	1.00	25.10
45						24.420	14.862			23.89
43	ATOM ATOM	1623 1624	CB CG	LEU	511	23.628	15.225	23.714	1.00	25.78
			CD1	LEU	511	22.152	14.801	23.659	1.00	26.55
	ATOM ATOM	1625		LEU	511	21.648	14.920	22.224	1.00	26.29
		1626	CD2	LEU	511	21.990	13.363	24.146		
50	ATOM	1627	C	LEU	511	25.912	15.152	24.771	1.00	27.10
30	ATOM	1628	0	LEU	511	26.641	14.332	24.214	1.00	24.98
	ATOM	1629	N	SER	512	26.372	16.319	25.213	1.00	24.75
	ATOM	1630	CA	SER	512	27.787	16.637	25.076	1.00	23.68
	ATOM	1631	CB	SER	512	28.023	18.129	25.358	1.00	26.12
66	MOTA	1632	OG	SER	512	29.271	18.327	25.986	1.00	37.17
55	MOTA	1633	C	SER	512	28.594	15.765	26.050	1.00	23.15
	MOTA	1634	0	SER	512	29.742	15.383	25.769	1.00	22.15
	MOTA	1635	N	AHIS	513	27.993	15.456	27.192	0.50	21.53
	ATOM	1636	N	BHIS	513	28.008	15.453	27.202	0.50	20.99
60	MOTA	1637	CA	AHIS	513	28.645	14.624	28.196	0.50	21.79
60	MOTA	1638	CA	BHIS	513	28.696	14.607	28.174	0.50	20.94
	ATOM	1639	CB	AHIS	513	27.920	14.776	29.536	0.50	23.59

PCT/US99/06899 __ WO 99/60014

5	ATOM	1697	0	SER	518	34.111	6.866	23.532	1.00	22.94
ر	ATOM	1698	И	ASN	519	33.923	9.097	23.713	1.00	22.42
	ATOM	1699	CA	ASN	519	35.295	9.309	23.260	1.00	21.87
	ATOM	1700	CB	ASN	519	35.605	10.807	23.157	1.00	24.46
	ATOM	1701	CG	ASN	519	34.864	11.469	22.021	1.00	29.02
10	ATOM	1701	OD1	ASN	519	34.661	10.864	20.965	1.00	31.93
10			ND2	ASN ASN	519	34.459	12.715	22.224	1.00	28.81
	ATOM	1703	C ND2			36.292	8.643	24.201	1.00	21.46
	MOTA	1704	0	asn asn	519 519	37.251	8.015	23.752	1.00	23.56
	ATOM	1705	Ŋ		520	36.070	8.782	25.504	1.00	23.23
15	ATOM	1706	CA	LYS	520 520	36.964	8.171	26.488	1.00	26.35
15	MOTA	1707 1708		LYS			8.592	27.912	1.00	27.53
	MOTA		CB	LYS	520	36.581	10.101	28.174	1.00	33.74
	ATOM	1709	CG	LYS	520	36.618	10.710	27.811	1.00	42.09
	ATOM	1710	CD	LYS	520	37.962	10.710	28.802	1.00	43.97
20	ATOM	1711	CE	LYS	520	39.047	11.480	29.254	1.00	48.07
20	MOTA	1712	NZ	LYS	520	39.858		26.376	1.00	27.71
	ATOM	1713	C	LYS	520	36.899	6.644	26.501	1.00	27.15
	ATOM	1714	0	LYS	520	37.913	5.9 57 6.117	26.141	1.00	25.02
	MOTA	1715	N	GLY	521	35.704		26.003	1.00	26.67
25	ATOM	1716	CA	GLY	521	35.562	4.676	24.753	1.00	27.06
25	ATOM	1717	C	GLY	521	36.254	4.168		1.00	26.84
	ATOM	1718	0	GLY	521	36.924	3.128	24.775 23.650	0.50	25.87
	ATOM	1719	N	AMET	522	36.101	4.893	23.658	0.50	27.62
	MOTA	1720	N	BMET	522	36.095	4.908	22.401	0.50	27.02
20	ATOM	1721	CA	AMET	522	36.727	4.491	22.384	0.50	30.14
30	ATOM	1722	CA	BMET	522	36.703	4.551	21.260	0.50	26.50
	ATOM	1723	CB	AMET	522	36.267	5.396	21.288	0.50	32.46
	ATOM	1724	CB	BMET	522	36.252	5.525	20.866	0.50	25.05
	ATOM	1725	CG	AMET	522	34.827	5.162 4.854	20.045	0.50	35.70
35	ATOM	1726	CG SD	BMET	522	35.681 34.585	3.587	20.020	0.50	27.07
33	MOTA	1727	SD	AMET	522 522	34.363	5.672	19.408	0.50	40.01
	MOTA	1728		BMET			4.017	19.400	0.50	31.29
	ATOM	1729 1730	CE CE	AMET BMET	522 522	33.142 34.733	6.085	17.745	0.50	42.12
	ATOM ATOM	1731	CE	AMET	522	38.242	4.532	22.512	0.50	28.99
40	ATOM	1732	C	BMET	522	38.224	4.567	22.483	0.50	30.76
40	ATOM	1732	0	AMET	522	38.939	3.743	21.870	0.50	31.65
	ATOM	1734	0	BMET	522	38.905	3.793	21.807	0.50	32.87
		1735	N	GLU	523	38.749	5.452	23.324	1.00	30.85
	ATOM ATOM	1736	CA	GTÜ.	523	40.190	5.576	23.513	1.00	34.09
45	ATOM	1737	CB	GLU	523 523	40.130	6.725	24.480	1.00	35.59
43	ATOM	1738	CG	GLU	523 523	40.513	8.079	23.784	1.00	43.35
		1739	CD	GĻŪ	523	40.560	9.265	24.739	1.00	46.63
	MOTA	1740	OE1	GĻU	523	39.832	10.240	24.416	1.00	47.64
	ATOM	1741	OE1	GĻU	523 523	41.212	9.225	25.805	1.00	43.09
50	ATOM	1742	C C	GĻŪ	523 523	41.212	4.260	24.061	1.00	34.62
30	ATOM						3.747	23.596	1.00	
	ATOM	1743	O N	GLU	523	41.733 40.021	3.700	25.042	1.00	36.33
	ATOM	1744	N	HIS	524 524	40.455	2.427	25.607	1.00	39.20
	ATOM	1745	CA	HIS.				26.878	1.00	40.75
55	ATOM	1746	CB	HIS	524 524	39.678	2.093 0.774	27.473	1.00	48.10
55	ATOM	1747	CG	HIS	524	40.061		28.104	1.00	48.56
	ATOM	1748	CD2	HIS	524 524	41.192	0.376 -0.338	27.412	1.00	48.84
	ATOM	1749	ND1	HIS	524 524	39.247 39.859	-0.338 -1.362	27.412	1.00	50.19
	ATOM	1750	CE1	HIS				28.407	1.00	51.61
60	ATOM	1751	NE2 C	HIS.	524 524	41.041	-0.956	24.613	1.00	38.06
60	MOTA	1752		HIS	524 524	40.290	1.282	24.013	1.00	38.18
	ATOM	1753	0	HIS	524	41.226	0.521	44.3/1	2.00	20.10

5	ATOM	1811	CB	VAL	533	39.155	-7.715	13.752	1.00	73.62
	ATOM	1812	CG1	VAL	533	39.690	-6.327	14.047	1.00	73.13
	ATOM	1813	CG2	VAL	533	37.662	-7.782	14.021	1.00	73.14
	ATOM	1814	С	VAL	533	38.685	-7.143	11.352	1.00	72.97
	ATOM	1815	0	VAL	533	39.024	-5.960	11.252	1.00	73.91
10	ATOM	1816	N	VAL	534	37.671	-7.666	10.666	1.00	70.02
	ATOM	1817	CA	VAL	534	36.866	-6.867	9.747	1.00	66.70
	ATOM	1818	CB	VAL	534	35.619	-7.646	9.328	1.00	67.32
	ATOM								1.00	63.87
		1819	C	VAL	534	36.463	-5.541	10.393		63.55
1.5	ATOM	1820	0	VAL	534	35.895	-5.519	11.486	1.00	
15	ATOM	1821	N	PRO	535	36.756	-4.415	9.719	1.00	60.92
	ATOM	1822	CD	PRO	535	37.424	-4.354	8.408	1.00	61.01
	MOTA	1823	CA	PRO	535	36.424	-3.077	10.229	1.00	56.83
	MOTA	1824	CB	PRO	535	36.867	-2.135	9.107	1.00	58.70
	ATOM	1825	CG	PRO	535	37.023	-3.009	7.893	1.00	61.55
20	ATOM	1826	C	PRO	535	34.944	-2.902	10.571	1.00	52.90
	ATOM	1827	0	PRO	535	34.067	-3.461	9.908	1.00	52.01
	ATOM	1828	N	LEU	536	34.672	-2.120	11.610	1.00	48.60
	ATOM	1829	CA	LEU	536	33.301	-1.874	12.042	1.00	45.08
	ATOM	1830	СВ	LEU	536	33.280	-0.796	13.128	1.00	44.35
25	ATOM	1831	CG	LEU	536	32.267	-0.911	14.273	1.00	43.48
	ATOM	1832	CD1	LEU	536	31.919	0.490	14.745	1.00	43.41
	ATOM	1833	CD2	LEU	536	31.022	-1.654	13.835	1.00	39.55
	ATOM	1834	C	LEU	536	32.434	-1.433	10.871	1.00	43.58
	ATOM	1835	0	LEU			-1.433	10.734	1.00	42.14
30				:	536	31.287				
30	ATOM	1836	N	TYR	537	32.992	-0.575	10.024	1.00	43.02
	ATOM	1837	CA	TYR	537	32.269	-0.066	8.866	1.00	43.34
	ATOM	1838	CB	TYR	537	33.200	0.786	7.997	1.00	44.76
	MOTA	1839	CG	TYR	537	32.483	1.558	6.913	1.00	48.28
	MOTA	1840	CD1	TYR	537	32.190	0.964	5.687	1.00	48.46
35	ATOM	1841	CE1	TYR	537	31.504	1.660	4.693	1.00	52.48
	ATOM	1842	CD2	TYR	537	32.073	2.875	7.123	1.00	49.99
	ATOM	1843	CE2	TYR	537	31.383	3.584	6.135	1.00	53.73
	MOTA	1844	CZ	TYR	537	31.100	2.967	4.924	1.00	54.01
	ATOM	1845	OH	TYR	537	30.401	3.648	3.952	1.00	55.90
40	ATOM	1846	С	TYR	537	31.683	-1.199	8.032	1.00	43.15
	MOTA	1847	0	TYR	537	30.500	-1.191	7.696	1.00	41.54
	MOTA	1848	N	ASP	538	32.521	-2.175	7.702	1.00	44.67
	ATOM	1849	CA	ASP	538	32.097	-3.309	6.893	1.00	45.49
	ATOM	1850	CB	ASP	538	33.322	-4.126	6.479	1.00	51.32
45	ATOM	1851	CG	ASP	538	34.361	-3.284	5.748	1.00	56.17
	ATOM	1852	OD1	ASP	538	35.436	-3.820	5.396	1.00	57.29
	ATOM	1853	OD2	ASP	538	34.097	-2.079	5.526	1.00	59.24
	ATOM	1854	C	ASP	538			7.587	1.00	43.48
						31.071	-4.195			43.95
50	ATOM	1855	0	ASP	538	30.177	-4.738	6.940	1.00	
30	ATOM	1856	N	LEU	539	31.193	-4.345	8.901	1.00	41.57
	ATOM	1857	CA	LEU	539	30.244	-5.157	9.654	1.00	39.11
	MOTA	1858	CB	LEU	539	30.734	-5.351	11.092	1.00	41.88
	MOTA	1859	CG	LEU	539	29.770	-6.065	12.044	1.00	46.11
	ATOM	1860	CD1	LEU	539	29.298	-7.379	11.423	1.00	46.99
55	ATOM	1861	CD2	LEU	539	30.474	-6.319	13.377	1.00	45.76
	ATOM	1862	С	LEU	539	28.891	-4.451	9.651	1.00	36.38
	ATOM	1863	0	LEU	539	27.849	-5.070	9.436	1.00	35.74
	MOTA	1864	N	LEU	540	28.919	-3.146	9.894	1.00	35.50
	ATOM	1865	CA	LEU	540	27.703	-2.336	9.903	1.00	35.59
60	ATOM	1866	CB	LEU	540	28.061	-0.877	10.219	1.00	37.63
	ATOM	1867	CG	LEU	540	27.856	-0.252	11.605	1.00	40.28
		_50,			~ 10	27.000				

5	ATOM	1925	NE2	HIS	547	17.936	-11.906	2.830	1.00	57.01
	ATOM	1926	C	HIS	547	16.603	-7.936	1.518	1.00	55.69
	ATOM	1927	0	HIS	547	16.362	-7.796	2.720	1.00	54.30
	ATOM	1928	N	ARG	548	15.653	-8.139	0.612	1.00	57.00
	ATOM	1929	CA	ARG	548	14.245	-8.212	0.987	1.00	60.65
10	ATOM	1930	CB	ARG	548	13.432	-7.171	0.208	1.00	62.69
	ATOM	1931	CG	ARG	548	14.272	-6.222	-0.637	1.00	67.54
	ATOM	1932	CD	ARG	548	13.448	-5.061	-1.171	1.00	71.92
	ATOM	1933	NE	ARG	548	13.702	-3.826	-0.432	1.00	76.95
	ATOM	1934	CZ	ARG	548	14.864	-3.178	-0.429	1.00	79.04
15	ATOM	1935	NH1	ARG	548	15.891	-3.644	-1.128	1.00	80.66
	ATOM	1936	NH2	ARG	548	15.001	-2.063	0.278	1.00	80.39
	ATOM	1937	С	ARG	548	13.695	-9.608	0.711	1.00	61.65
	ATOM	1938	0	ARG	548	12.500	-9.781	0.466	1.00	62.05
	ATOM	1939	N	LEU	549	•	-10.603	0.756	1.00	62.39
20	ATOM	1940	CA	LEU	549	14.188	-11.985	0.507	1.00	64.02
	ATOM	1941	CB	LEU	549		-12.828	0.195	1.00	62.14
	ATOM	1942	CG	LEU	549		-12.191	-0.753	1.00	60.76
	ATOM	1943	CD1	LEU	549		-13.074	-0.878	1.00	57.77
	ATOM	1944	CD2	LEU	549		-11.972	-2.108	1.00	58.38
25	ATOM	1945	C	LEU	549	13.431	-12.574	1.702	1.00	66.65
	ATOM	1946	ō	LEU	549		-13.600	1.577	1.00	67.15
	ATOM	1947	N	HIS	550	13.541	-11.920	2.856	1.00	67.72
	ATOM	1948	CA	HIS	550		-12.378	4.065	1.00	69.93
	ATOM	1949	CB	HIS	550		-12.190	5.298	1.00	70.76
30	ATOM	1950	CG	HIS	550		-13.054	5.306	1.00	71.50
50	ATOM	1951	CD2	HIS	550		-13.821	4.341	1.00	71.63
	ATOM	1952	ND1	HIS	550	15.793	-13.172	6.411	1.00	71.98
	ATOM	1953	CE1	HIS	550		-13.972	6.126	1.00	72.04
	ATOM	1954	NE2	HIS	550	16.674		4.876	1.00	71.39
35	ATOM	1955	C	HIS	550		-11.603	4.275	1.00	71.15
	ATOM	1956	ō	HIS	550	10.940	-11.684	5.340	1.00	70.66
	ATOM	1957	N	ALA	551	11.143	-10.851	3.258	1.00	72.22
	ATOM	1958	CA	ALA	551		-10.057	3.338	1.00	73.58
	ATOM	1959	CB	ALA	551	9.904	-9.014	2.221	1.00	73.21
40	ATOM	1960	C	ALA	551	8.658	-10.920	3.266	1.00	74.69
	ATOM	1961	0	ALA	551	7.684	-10.474	2.621	1.00	76.12
	ATOM	1962	OXT	ALA	551	8.651	-12.025	3.852	1.00	73.79
	HETATM	1963	C10	OHT	600	30.581	1.481	29.471	1.00	26.84
	HETATM	1964	C9	OHT	600	30.713	-0.043	29.358	1.00	22.85
45	HETATM	1965	C8	OHT	600	31.366	-0.385	28.037	1.00	25.56
	HETATM	1966	C11	OHT	600	32.761	0.051	27,916	1.00	27.51
	HETATM	1967		OHT	600	33.218	0.797	26.797	1.00	28.35
	HETATM	1968	C15	OHT	600	34.551	1.237	26.747	1.00	30.39
	HETATM	1969	C14	OHT	600	35.443	0.923	27.792	1.00	30.23
50	HETATM	1970	C13	OHT	600	35.004	0.185	28.890	1.00	31.45
5.0	HETATM	1971	C12	OHT	600	33.666	-0.241	28.955	1.00	27.93
	HETATM	1972	C7	OHT	600	30.682	-1.089	27.077	1.00	24.41
	HETATM	1973	C1	OHT	600	29.211	-1.258	27.052	1.00	24.26
	HETATM	1974	C2	ОНТ	600	28.644	-2.526	26.706	1.00	25.92
55	HETATM	1975	C3	OHT	600	27.254	-2.668	26.580	1.00	26.32
33	HETATM	1976	C4	OHT	600	26.438	-1.553	26.813	1.00	29.02
	HETATM	1977	04	OHT	600	25.072	-1.605	26.716	1.00	28.42
	HETATM	1978	C5	OHT	600	26.980	-0.286	27.130	1.00	26.98
	HETATM	1979	C6	OHT	600	28.362	-0.147	27.231	1.00	25.23
60	HETATM	1980	C17	OHT	600	31.370	-1.692	25.942	1.00	26.61
	HETATM	1981	C18	OHT	600	32.508	-2.498	26.151	1.00	26.77
								· · -		

5	HETATM	2039	01	нон	48	27.868	-10.898	28.271	1.00	31.27
	HETATM	2040	01	НОН	49	6.955	13.568	28.233	1.00	48.83
	HETATM	2041	01	нон	50	22.051	-15.030	28.603	1.00	36.91
	HETATM	2042	01	нон	51	7.026	31.002	30.284	1.00	46.73
	HETATM	2043	01	нон	52	-1.489	12.385	15.164	1.00	51.17
10	HETATM	2044	01	HOH	53	3.499	6.444	14.452	1.00	50.38
	HETATM	2045	01	HOH	54	18.655	-2.048	25.518	1.00	52.29
	HETATM	2046	01	HOH	55	28.188	-15.195	38.996	1.00	55.22
	HETATM	2047	01	нон	56	35.275	-10.556	38.061	1.00	57.39
	HETATM	2048	01	HOH	57	37.771	-9.103	34.605	1.00	54.17
15	HETATM	2049	01	HOH	58	31.403	-3.039	17.983	1.00	46.80
	HETATM	2050	01	нон	59	30.455	-6.352	17.005	1.00	47.05
	HETATM	2051	01	HOH	60	25.985	8.255	0.416	1.00	43.32
	HETATM	2052	01	HOH	61	35.679	0.749	10.462	1.00	42.99
	HETATM	2053	01	нон	62	14.741	4.029	33.936	1.00	49.59
20	HETATM	2054	01	HOH	63	16.333	2.592	35.952	1.00	45.13
	HETATM	2055	01	нон	64	23.809	7.186	39.798	1.00	45.36
	HETATM	2056	01	нон	65	27.012	-1.948	46.995	1.00	63.39
	HETATM	2057	01	HOH	66	25.956	-6.422	42.144	1.00	44.94
	HETATM	2058	01	нон	6 7	23.510	-8.414	39.036	1.00	39.06
25	HETATM	2059	01	HOH	6 8	41.475	0.971	33.110	1.00	55.50
	HETATM	2060	01	HOH	69	36.519	8.863	38.836	1.00	41.56
	HETATM	2061	01	нон	70	30.111	14.823	12.793	1.00	44.58
	HETATM	2062	01	нон	71	26.850	-6.092	1.594	1.00	40.15
••	HETATM	2063	01	НОН	72	20.448	-3.169	1.055	1.00	42.50
30	HETATM	2064	01	HOH	73	33.896	3.047	16.172	1.00	46.39
	HETATM	2065	01	HOH	74	16.884	0.446	26.043	1.00	61.50
	HETATM	2066	01	HOH	75	18.595	0.296	27.866	1.00	47.33
	HETATM	2067	01	HOH	76	6.166	21.439	19.124	1.00	47.94
2.5	HETATM	2068	01	HÕH	77	18.484	20.060	16.232	1.00	35.52
35	HETATM	2069	01	НОН	78	1.985	23.265	29.187	1.00	46.42
	HETATM	2070	01	HOH	79	12.729	30.461	27.530	1.00	62.79
	END									

screening said test compounds in an assay characterized by binding of a test compound to a nuclear receptor coactivator binding site, and

identifying a test compound that modulates coactivator binding to said nuclear receptor.

- 10 2. The method of claim 1, wherein said atomic structural model comprises atomic coordinates of amino acid residues corresponding to residues of human thyroid receptor selected from the group consisting of Val284, Phe293, Ile302, Leu305, and Leu454.
 - 3. The method of claim 1, wherein said atomic structural model comprises atomic coordinates of amino acid residues corresponding to residues of human thyroid receptor selected from the group consisting of Val284, Lys288, Ile302, Lys306, Leu454 and Glu457.
 - 4. The method of claim 1, wherein said atomic structural model comprises atomic coordinates of amino acid residues corresponding to residues of human thyroid receptor helix 3 residues Ile280, Thr281, Val283, Val284, Ala287, and Lys288, helix 4 residue Phe293, helix 5 residues Gln301, Ile302, Leu305, Lys306, helix 6 residue Cys309, and helix 12 residues Pro453, Leu454, Glu457, Val458 and Phe459.
- 5. The method of claim 1, wherein said nuclear receptor coactivator binding site comprises amino acid residues corresponding to residues of human thyroid receptor selected from the group consisting of helix 3 residues Ile280, Thr281, Val283, Val284, Ala287, and Lys288, helix 4 residue Phe293, helix 5 residues Gln301, Ile302, Leu305, Lys306, helix 6 residue Cys309, and helix 12 residues Pro453, Leu454, Glu457, Val458 and Phe459.
- The method of claim 5, wherein said amino acid residues corresponding to residues of human thyroid receptor comprise Val284, Phe293, Ile302, Leu305, and Leu454.
 - 7. The method of claim 5. wherein said amino acid residues corresponding to residues of human thyroid receptor comprise Val284, Lys288. Ile302, Lys306. Leu454 and Glu457.
 - 8. The method of claim 1, wherein said nuclear receptor coactivator binding site comprises amino acid residues corresponding to residues of human thyroid receptor of helix 3 residues Ile280. Thr281, Val283, Val284, Ala287, and Lys288, helix 4 residue Phe293, helix 5

35

15

2 18. A machine-readable data storage medium, comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of a molecular complex of a compound bound to a nuclear receptor coactivator binding site comprising structure coordinates of amino acids corresponding to human thyroid receptor amino acids selected from the group consisting of helix 3 residues Ile280, Thr281, Val283, Val284, Ala287, and Lys288, helix 4 residue Phe293, helix 5 residues Gln301, Ile302, Leu305, Lys306, helix 6 residue Cys309, and helix 12 residues Pro453, Leu454, Glu457, Val458 and Phe459, or a homologue of said molecular complex, wherein said homologue comprises a coactivator binding site that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

15

30

- 19. The machine readable storage medium of claim 18, wherein said nuclear receptor is a thyroid receptor.
- The machine readable storage medium of claim 19, wherein said thyroid receptor is human.
 - 21. The machine readable storage medium of claim 20, wherein said molecule is peptide.
- The machine readable storage medium of claim 21, wherein said peptide comprises a NR-box amino acid sequence, or derivative thereof.
 - 23. The machine-readable data storage medium according to claim 18, wherein said molecular complex is defined by the set of structure coordinates depicted in Appendix 1, or a homologue of said molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.
 - 24. A machine-readable data storage medium comprising a data storage material encoded with a first set of machine readable data which, when combined with a second set of machine readable data, using a machine programmed with instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data, wherein: said first set of data comprises a Fourier transform of at least a portion of the structural coordinates selected from the group

FIG. 5

FIG 13

FIG. 15

WO 99/60014 PCT/US99/06899

17/19

FIG. 17

PCT/US99/06899

```
5 ı
     <210> 5
    <211> 34
   <212> PRT
     <213> Homo sapiens
     <400> 5
    Ala Glu Gly His Ser Arg Leu His Asp Ser Lys Gly Gln Thr Lys Leu
15
    Leu Gln Leu Leu Thr Thr Lys Ser Glu Gln Met Glu Pro Ser Pro Leu
                 20
20
   Ala Ser
    <210> 6
25 <211> 34
    <212> PRT
    <213> Homo sapiens
    <220>
30
   <221> MUTAGEN
    <222> (15)
    <223> Ile --> Ala
    <220>
35
   <221> MUTAGEN
    <222> (16)
     <223> Leu --> Ala
    <220>
   <221> MUTAGEN
40
     <222> (19)
     <223> Leu --> Ala
    <220>
45
    <221> MUTAGEN
     <222> (20)
     <223> Leu --> Ala
    <220>
50
   <221> MUTAGEN
     <222> (16)..(20)
     <223> Leu(16) --> Ala; Leu(20) --> Ala
    <220>
55
    <221> MUTAGEN
     <222> (15)..(16)
     <223> LeuLeu --> AlaAla
    <220>
   <221> MUTAGEN
     <222> (17)..(18)
     <223> HisArg --> AlaAla
    <220>
   <221> MUTAGEN
65
    <222> (19)..(20)
     <223> LeuLeu --> AlaAla
```

```
5 <212> PRT
    <213> Homo sapiens
    Ser Gly Ser Thr His Gly Thr Ser Leu Lys Glu Lys His Lys Ile Leu
10
    His Arg Leu Leu Gln Asp Ser Ser Ser Pro Val Asp Leu Ala Lys Leu
                                   25
15
    Thr Ala
    <210> 10
20
   ~211> 31
    <212> PRT
    <213> Homo sapiens
    <400> 10
25
    Glu Pro Val Ser Pro Lys Lys Glu Asn Ala Leu Leu Arg Tyr Leu
    Leu Asp Lys Asp Asp Thr Lys Asp Ile Gly Leu Pro Glu Ile Thr
                                    25
30
    <210> 11
    <211> 34
    <212> PRT
35
   <213> Homo sapiens
    Ala Glu Gly His Ser Arg Leu His Asp Ser Lys Gly Gln Thr Lys Leu
                    5
40
    Leu Gln Leu Leu Thr Thr Lys Ser Glu Gln Met Glu Pro Ser Pro Leu
    Pro Ser
45
    <210> 12
    <211> 34
50
    <212> PRT
    <213> Homo sapiens
    <400> 12
    Pro Gly Ser Thr His Gly Thr Ser Leu Lys Glu Lys His Lys Ile Leu
55
    His Arg Leu Leu Gln Asp Ser Ser Pro Val Asp Leu Ala Lys Leu
                      25
60
    Thr Ala
    <210> 13
65
   <211> 31
    <212> PRT
    <213> Homo sapiens
```

```
Ala Glu Asn Gln Arg Gly Pro Leu Glu Ser Lys Gly His Lys Lys Leu
    Leu Gln Leu Leu Thr Cys Ser Ser Asp Asp Arg Gly His Ser Ser Leu
10
     Thr Asn
    <210> 18
15
     <211> 34
     <212> PRT
     <213> Homo sapiens
     Thr Ser Asn Met His Gly Ser Leu Leu Gln Glu Lys His Arg Ile Leu
20
     His Lys Leu Leu Gln Asn Gly Asn Ser Pro Ala Glu Val Ala Lys Ile
                   20
 25
      Thr Ala
 30
      <210> 19
      <211> 32
      <212> PRT
      <213> Homo sapiens
  35
       Glu Gln Leu Ser Pro Lys Lys Glu Asn Asn Ala Leu Leu Arg Tyr
       Leu Leu Asp Arg Asp Asp Pro Ser Asp Ala Leu Ser Lys Glu Leu Gln
  40
                    20
  45
       <210> 20
       <211> 34
        <212> PRT
       <213> Homo sapiens
   50
        Ser Glu Thr Pro Arg Gly Pro Leu Glu Ser Lys Gly His Lys Leu
        Leu Gln Leu Leu Thr Cys Ser Ser Glu Asp Arg Gly His Ser Ser Leu
   55
        Thr Asn
    60
         <210> 21
         <211> 34
       <212> PRT
         <213> Homo sapiens
```

```
5
    <400> 25
    Glu Leu Asp Ala Ala Lys Lys Glu Ser Lys Asp His Gln Leu Leu
                                      10
10
    Arg Tyr Leu Leu Asp Lys Asp Glu Lys Asp Leu Arg Ser Thr Pro Asn
    Leu Cys
15
    <210> 26
    <211> 34
    <212> PRT
20
    <213> Homo sapiens
    <220>
    <221> SITE
    <222> (2)
25
    <223> negatively charged amino acid
    <220>
    <221> SITE
    <222> (17)
30
   <223> hydrophobic amino acid
    <220>
    <221> SITE
    <222> (25)
35
   <223> negatively charged amino acid
    <400> 26
    Kaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ser Xaa Xaa Xaa Xaa Lys Leu
40
    25
    Xaa Xaa
45
    <210> 27
    <211> 34
50
   <212> PRT
    <213> Homo sapiens
    <220>
    <221> SITE
55
    <222> (12)
    <223> positively charged amino acid
    <220>
    <221> SITE
60
    <222> (14)
    <223> positively charged amino acid
    <220>
    <221> SITE
65
    <222> (18)
    <223> positively charged amino acid
```

```
Thr Ser Leu Lys Glu Lys His Lys Leu Leu Arg Tyr Leu Leu Gln Asp
    Ser Ser
10
    <210> 30
    <211> 33
    <212> PRT
15
    <213> Homo sapiens
    <220>
    <221> MUTAGEN
    <222> (5)
20
    <223> Thr --> Arg (T281R)
    <220>
    <221> MUTAGEN
    <222> (8)
    <223> Val --> Arg (V284R)
    <220>
    <221> MUTAGEN
    <222> (9)
30
   <223> Asp --> Ala (D285A)
    <220>
    <221> MUTAGEN
    <222> (12)
35
    <223> Lys --> Ala (K288A)
    <220>
     <221> MUTAGEN
     <222> (22)
40
    <223> Cys --> Arg (C298R)
     <220>
     <221> MUTAGEN
     <222> (26)
45
    <223> Ile --> Arg (I302R)
     <220>
     <221> MUTAGEN
    <222> (30)
50
    <223> Lys --> Ala (K306A)
     Thr Pro Ala Ile Thr Arg Val Val Asp Phe Ala Lys Lys Leu Pro Met
55
     Phe Cys Glu Leu Pro Cys Glu Asp Gln Ile Ile Leu Leu Lys Gly Cys
    Cys
60
    <210> 31
    <211> 12
65
    <212> PRT
     <213> Homo sapiens
```

```
WO 99/60014
 <211> 12
   Leu phe pro pro Leu phe Leu Glu Val phe Glu Asp
   <213> Homo sapiens
   <212> PRT
10
       <400> 36
Asp Lys Gln Leu Phe Thr Leu Val Glu Trp Ala Lys Arg Ile Pro His
15
      <210> 36
      <211> 33
      <212> PRT
        Phe Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu Lys Ala Gly
25
 15
   20
     25
          TIP
          <210> 37
            <211> 12
             Pro Ile ASP Thr phe Leu Met Glu Met Leu Glu Ala
       30
            <212> PRT
             <213> Homo sapiens
                 <400> 38
Val Glu Ala Val Gln Glu Ile Thr Glu Tyr Ala Lys Asn Ile Pro Gly
15
              <210> 38
                <211> 33
           40
                <212> PRT
                <213> Homo sapiens
                  Phe Ile Asn Leu Asp Leu Asn Asp 25
                 <400> 38
              50
                    val
                     <210> 39
                      <211> 12
                       Ser Leu His Pro Leu Leu Gln Glu Ile Tyr Lys Asp
                      <213> Homo sapiens
                      <212> PRT
                  60
                          1
                         <210> 40
<211> 33
                    65
```

----14A2.1_>

```
5
     <210> 44
     <211> 33
     <212> PRT
10
    <213> Homo sapiens
     <400> 44
     Gly Arg Gln Val Ile Ala Ala Val Lys Trp Ala Lys Ala Ile Pro Gly
15
     Phe Arg Asn Leu His Leu Asp Asp Gln Met Thr Leu Leu Gln Tyr Ser
                                    25
     Trp
20
     <210> 45
     <211> 12
    <212> PRT
     <213> Homo sapiens
     <400> 45
     Glu Phe Pro Glu Met Leu Ala Glu Ile Ile Thr Asn
30
                5
     <210> 46
     <211> 33
35
    <212> PRT
     <213> Homo sapiens
     Glu Arg Gln Leu Leu Ser Val Val Lys Trp Ser Lys Ser Leu Pro Gly
40
     Phe Arg Asn Leu His Ile Asp Asp Gln Ile Thr Leu Ile Gln Tyr Ser
                                    25
45
     Trp
     <210> 47
50
    <211> 12
     <212> PRT
     <213> Homo sapiens
     <400> 47
     Glu Phe Pro Glu Met Met Ser Glu Val Ile Ala Ala
            5
     <210> 48
60
    <211> 33
     <212> PRT
     <213> Homo sapiens
     <400> 48
     Gly Lys Gln Met Ile Gln Val Val Lys Trp Ala Lys Val Leu Pro Gly
```

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ :	A3	(11) International Publication Number: WO 99/60014			
G01N 33/50		(43) International Publication Date: 25 November 1999 (25.11.99)			
(21) International Application Number: PCT/US (22) International Filing Date: 30 March 1999 ((74) Agents: BRADBURNE, James, A.; Cooley Godward LLP, 3000 El Camino Real, Five Palo Alto Square, Palo Alto, CA 94306-2155 (US) et al.				
(30) Priority Data: 60/079,956 60/113,146 30 March 1998 (30.03.98) 16 December 1998 (16.12.98)		(81) Designated States: AU, CA, JP, KR, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).			
 (71) Applicant: THE REGENTS OF THE UNIVERS CALIFORNIA [US/US]; 12th floor, 1111 Frankl Oakland, CA 94607-5200 (US). (72) Inventors: BAXTER, John, D.; 131 San Pablo Ave Francisco, CA 94127 (US). DARIMONT, Beatri Tenth Avenue, San Francisco, CA 94122 (US). Weijun; 105 Johnstone Drive, San Francisco, C (US). FLETTERICK, Robert; 15 Christopher Ave Francisco, CA 94131 (US). KUSHNER, Peter, 6th Avenue, San Francisco, CA 94122 (US). W Richard, L.; 1701 Waller Street, San Francisco, C (US). WEST, Brian, L.; 142 Anderson Street, Scisco, CA 94110 (US). YAMAMOTO, Keith, R.; 2 glass Street, San Francisco, CA 94114 (US). 	in Streenue, Sice; 144 FENCA 9412 enue, Si J.; 136 //AGNE CA 941 San Fra	(88) Date of publication of the international search report: 18 May 2000 (18.05.00) 31 Jan 18 Jan			

(54) Title: METHODS AND COMPOUNDS FOR MODULATING NUCLEAR RECEPTOR COACTIVATOR BINDING

(57) Abstract

The present invention relates to methods and agonist/antagonist compounds for modulating nuclear receptor coactivator binding. The invention includes a method for identifying residues comprising a coactivator binding site for a nuclear receptor of interest. Also included is a method of identifying agonists and/or antagonists that bind to a coactivator binding site of a nuclear receptor of interest. Agonists and antagonists of coactivator binding to nuclear receptors also are provided. The invention is exemplified by identification and manipulation of the coactivator binding site of the thyroid receptor (TR), and compounds that bind to these sites. The methods can be applied to other nuclear receptors including RAR, RXR, PPAR, VDR, ER, GR, PR, MR, and AR.

, No
In-inational application No
Innational 37. PCT/US99/06899
PCINO
TARCH REPORT
INTERNATIONAL SEARCH REPORT OFFICE MATTER OFFICE MATTER
DITERNATION
A. CLASSIFICATION OF SURJECT MATTER A. CLASSIFICATION OF SURJECT MATTER PC(7)
CLASSIFICA 33/50 Joseph 1 Assification symbol Lassification symbol Lassi
A. CLASSIFICATION ON 33/50 IPC(7) 3357.1 US CL 4357.1 According to International Patent Classification system followed by classification symbols) R FIELDS SEARCHED Minimum documentation searched (classification system followed by classification system followed by classification system followed by classification system followed by classification symbols) Minimum documentation searched (classification system followed by classification symbols) Minimum documentation searched (classification system followed by classification symbols) Minimum documentation searched other than minimum documentation to the extent that such documents are included in the fields searched that such documents are included in the fields searched to the field searched other than minimum documentation to the extent that such documents are included in the fields searched to the field searched other than minimum documentation to the extent that such documents are included in the fields searched to the field searched other than minimum documentation to the extent that such documents are included in the fields searched to the field searched other than minimum documentation to the extent that such documents are included in the fields searched to the field searched that such documents are included in the fields searched that such documents are included in the fields searched that such documents are included in the fields searched that such documents are included in the fields searched that such documents are included in the fields searched that such documents are included in the fields searched that such documents are included in the fields searched that such documents are included in the fields searched that such documents are included in the fields searched that such documents are included in the fields searched that such documents are included in the fields searched that such documents are included in the fields searched that such documents are included in the fields searched that such documents are included in the fields searched that s
US CL internation to Internation of
According to Internation R. FIELDS SEARCHED Minimum documentation searched (classification system) Minimum documentation searched other than minimum documentation to the extent that such documents are inc. U.S.: 435/7.1 Documentation searched other than minimum documentation to the extent that such documents are inc. Please See Extra Sheet. Relevant to claim No. Relevant to claim No.
B. and documentation to the extension to
Minimum 435/7.1
U.S. searched other man ob (name of data val
Documentation seemational search v
Documentation and Documentation and Search No.
dala base consultation and the second surface of the second surfac
Electronic data bassages Please See Extra Sheet.
Please See In the thyrole in the thyrole
sor hormone in the indication, where approved in the pages 2-30
Electronic data base consulted devices and the consulted devices of the relevant passages. Please See Extra Sheet. Relevant passages In the thyroid in th
C. Citation of A structural A December 1 and 2 and
Category. Nature. 14 December 1 and 14 December
x hormone receptorally page of
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
See patent family annex. See patent family
See patent fam
See patent See pa
the Printer the printer to a complete
See patent faints See patent fa
Further documents are listed in the continuation of Box C. To later document published with the strip invention cannot be considered as and not in configuration of perticular relevance; the claimed invention cannot be principle or theory underlying for an inventive support of perticular relevance; the claimed invention cannot be considered as an inventive support of perticular relevance; the claimed invention cannot be considered as a constant of perticular relevance; the claimed invention cannot be considered or theory underlying the principle or theory underlying invention cannot be principle or theory underlying invention cannot be principle or the principl
Further documents are listed in the continuation of DUX Further documents are listed in the continuation of DUX Further documents are listed in the continuation of the art which is not considered Special categories of cited documents Special categories of cited of c
o document serticular for a library claims on of our compliance ou
adjust document per throw ation date of sales of
B document which this published wind of the international filing date but later than the published prior to the international filing date but later than the priority date class and document published prior to the international search the priority date classed the priority date classed the priority date classed the priority date classed the priority date of the international search.
document to the international search
or measured officer document published lamed of the international and the priority data completion of the international Authorized officer
come actual court
Date of the MICRUS O1 DECEMBER 1999 O1 DECEMBER 1999 Telephone No. Telephone No.
Date of the December 1999 On December 1999 Name and mailing address of the ISA/US Name and mailing address and Trademarks Name and mailing December 1992 None of Palents and Trademarks No. 20231 December 1999 No. 20231 No. 20231 No. 20231 No. 20231 No. 20231
and mallimb Paleuts with
Name Commissioned Commissioned Processing Processing Name Commissioned Processing No. 20231 Resulting No. 20231 A sheet (July 1992)*
Name Dissioner of the Communication of the Communic
Facsimilar OCT/ISA/210 (second
Form

CORRECTED VERSION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 November 1999 (25.11.1999)

(51) International Patent Classification7:

PCT

G01N 33/50

English

(10) International Publication Number WO 99/060014 A3

Keith, R.; 332 Douglass Street, San Francisco, CA 94114 (US).

(21) International Application Number: PCT/US99/06899

(74) Agents: HUNTER, Tom et al.; Law Offices of Jonathan Alan Quine P.O. Box 458, Alameda, CA 94501 (US).

(22) International Filing Date: 30 March 1999 (30.03.1999)

(81) Designated States (national): AU, CA, JP, KR.

English (26) Publication Language:

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

60/079,956 60/113,146

(25) Filing Language:

30 March 1998 (30.03.1998) US 16 December 1998 (16.12.1998) US

Published:

with international search report

(71) Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 12th floor, 1111 Franklin Street, Oakland, CA 94607-5200 (US).

(88) Date of publication of the international search report: 18 May 2000

(72) Inventors: BAXTER, John, D.; 131 San Pablo Avenue, San Francisco, CA 94127 (US). DARIMONT, Beatrice; 1441 Tenth Avenue, San Francisco, CA 94122 (US). Avenue, San Francisco, CA 94131 (US). KUSHNER, Pe(48) Date of publication of this corrected version: 29 August 2002

FENG, Weijun; 105 Johnstone Drive, San Francisco, CA 94131 (US). FLETTERICK, Robert; 15 Christopher ter, J.; 1362 6th Avenue, San Francisco, CA 94122 (US). WAGNER, Richard, L.; 1701 Waller Street, San Francisco, CA 94117 (US). WEST, Brian, L.; 142 Anderson

Street, San Francisco, CA 94110 (US). YAMAMOTO,

(15) Information about Correction:

see PCT Gazette No. 35/2002 of 29 August 2002, Section H

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND COMPOUNDS FOR MODULATING NUCLEAR RECEPTOR COACTIVATOR BINDING

(57) Abstract: The present invention relates to methods and agonist/antagonist compounds for modulating nuclear receptor coactivator binding. The invention includes a method for identifying residues comprising a coactivator binding site for a nuclear receptor of interest. Also included is a method of identifying agonists and/or antagonists that bind to a coactivator binding site of a nuclear receptor of interest. Agonists and antagonists of coactivator binding to nuclear receptors also are provided. The invention is exemplified by identification and manipulation of the coactivator binding site of the thyroid receptor (TR), and compounds that bind to these sites. The methods can be applied to other nuclear receptors including RAR, RXR, PPAR, VDR, ER, GR, PR, MR, and AR.

5

10

15

20

25

30

35

Although overall sequence conservation between nuclear receptors varies between different families of receptors, sequence conservation between functional regions, or modules, of the receptors is high. For example, nuclear receptors can be organized into functional modules comprising an N-terminal transcriptional activation domain, a central DNA binding domain (DBD), and a C-terminal ligand binding domain (LBD). The LBD of nuclear receptors represents a hormone/ligand-dependent molecular switch. Binding of hormone to a nuclear receptor's LBD changes its ability to modulate transcription of DNA, although they may have transcription-independent actions. Nuclear receptors also bind proteins, such as chaperone complexes, corepressors, or coactivators, that are involved in receptor function. Hormone binding by a nuclear receptor can increase or decrease binding affinity to these proteins, and can influence or mediate the multiple actions of the nuclear receptors on transcription. For example, nuclear receptors can stimulate transcription in response to hormone binding by recruiting coactivator proteins to promoters of responsive genes (Glass et al., Curr. Opin. Cell Biol. (1997) 9:222-32); and Horwitz et al., Mol. Endocrinol. (1996) 10:1167-77).

Coactivators of the p160 family mediate activity of a transcriptional activation domain, called AF2, that is part of the nuclear receptor's LBD. A few receptor mutants deficient in coactivator-dependent activation have been isolated (TR: Collingwood et al. *Proc. Natl. Acad. Sci.* (1997) 94:248-253; VDR: Jurutka et al., J. *Biol. Chem.* (1997) 227:14592-14599, Masayama et al., *Mol. Endocrinol.* (1997) 11:1507-1517; ER and RAR: Henttu et al., *Mol. Cell Biol.* (1997) 17:1832-1839). While these studies support the physiological relevance of the observed interaction, the structural and functional nature of the site to which coactivators bind has not been defined.

The medical importance of nuclear receptors is significant. They have been implicated in breast cancer, prostate cancer, cardiac arrhythmia, infertility, osteoporosis, hyperthyroidism, hypercholesterolemia, obesity and other conditions. However, limited treatments are available and current agonist/antagonist drugs used to target nuclear receptors are ligands that bind to the receptor's LBD buried deep within the receptor. Although additional targets on nuclear receptors are desired for drug development, the structural and functional basis of such sites, including the coactivator binding site, has not been described.

Accordingly, a need exists for identification and characterization of the coactivator binding sites of nuclear receptors, and molecules that affect their interaction with cellular coactivator proteins. This would provide a major new target for iterative drug design, synthesis, and selection. It also would be advantageous to devise methods and compositions for reducing the time required to discover compounds that target the coactivator binding site of nuclear receptors and administer them to organisms to modulate physiological processes regulated by nuclear receptors.

5 binding of a test compound to a nuclear receptor coactivator binding site, and identifying a test compound that modulates coactivator binding to the nuclear receptor.

The invention also includes compositions and methods for identifying coactivator binding sites of nuclear receptors. The methods involve examining the surface of a nuclear receptor of interest to identify residues that modulate coactivator binding. The residues can be identified by homology to the coactivator binding site of human TR described herein. Overlays and superpositioning with a three dimensional model of a nuclear receptor LBD, or a portion thereof that contains a coactivator binding site, also can be used for this purpose. Additionally, alignment and/or modeling can be used as a guide for the placement of mutations on the LBD surface to characterize the nature of the site in the context of a cell.

Also provided is a method of modulating the activity of a nuclear receptor. The method can be *in vitro* or *in vivo*. The method comprises administering, *in vitro* or *in vivo*, a sufficient amount of a compound that binds to the coactivator binding site. Preferred compounds bind to the site with greater affinity than coactivator proteins found in a cell of interest. Binding at this site, the compound can compete for binding of coactivator proteins, thereby inhibiting gene transcription, or in some cases promoting it, even when hormone is or is not bound.

The invention further includes a method for identifying an agonist or antagonist of coactivator binding to a nuclear receptor. The method comprises providing the atomic coordinates comprising a nuclear receptor coactivator binding site or portion thereof to a computerized modeling system; modeling compounds which fit spacially into the nuclear receptor coactivator binding site; and identifying in an assay for nuclear receptor activity a compound that increases or decreases activity of the nuclear receptor through binding the coactivator binding site.

Also provided is a machine-readable data storage medium with information for constructing and manipulating an atomic model comprising a coactivator binding site or portion thereof. The medium comprises a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of a molecule or molecular complex for a nuclear receptor coactivator binding site.

Also provided is a method of identifying a compound that selectively modulates the activity of one type of nuclear receptor compared to other nuclear receptors. The method is exemplified by modeling test compounds that fit spacially and preferentially into a nuclear receptor coactivator

35

10

15

20

25

Figure 4 shows a plot of the fold E₂ activation observed when the indicated amounts of the full-length GRIP1 expression vector, pSG5-GRIP1, are added to the co-transfection experiment, which otherwise is performed as for Figure 3. The WT or different hERα mutants are indicated. The data represent the averages of three independent experiments, with standard deviations less than 10%.

Figure 5 shows a CPK model of the $TR\alpha$ -LBD, indicating the LBD surface locations of mutations made in the full-length hTR β 1. Mutated residues having no effect on GRIP1 binding or effect on activation in HeLa cells are shaded gray. Mutated residues with diminished GRIP1 and SRC-1a binding and diminished activation in HeLa cells are colored to reflect chemical properties of the residues: red, blue (purple), and green indicate acidic, basic, and hydrophobic residues, respectively. The main chain structures of the $TR\alpha$ - and $TR\beta$ -LBDs are the same (data not shown).

Figure 6 shows sequence alignment of amino acid residues of members of the p160 coactivator family. Single amino acid designations are used. Members of the p160 coactivator family interact with the nuclear receptors through conserved (SEQ ID NO: 1) LxxLL motifs.

Figure 7 shows binding affinity assays of GST-GRIP1 constructs with NR-boxes 1, 2, and/or 3 and their interaction with TR LBD. GRIP-1 NR boxes 1,2 and 3 interact differently with TRβ LBD. Single letter designations are used for the amino acids.

Figure 8 shows binding affinity assays of GST-GRIP1 constructs with NR-boxes 1, 2, and/or 3 and their interaction with TR and GR LBDs. TR and GR differ in their interactions with GRIP-1.

Figure 9 shows binding affinity assays for NR-box 2- and 3-peptides and GRIP1 and their interaction with TR LBD. NR box 2- and 3-containing peptides reproduce the affinity and specificity of the NR interaction domain.

Figure 10 shows binding affinity assays for NR-box 2- and 3-peptides and their interaction with TR LBD. Sequence adjacent to the (SEQ ID NO: 1) LxxLL motif modulate the affinity of NR-box-TR β LBD interactions.

30

5

10

15

Figure 17 shows complementarity between the (SEQ ID NO: 1) LxxLL motif and the surface of the hTR LBD. The side chains of the (SEQ ID NO: 2) ILxxLL motif are shown in a CPK representation, with the main chain of the peptide drawn as a C-alpha trace. The three leucince residues fit into pockets of the coactivator binding site of the hTRß LBD, depicted as mesh, while the isoleucine residue rests on the edge of the site's cleft.

Figure 18 shows the coactivator binding site cleft, one side of which is formed by conformationally hormone-responsive residues. On the left is a view of the TR-LBD molecular surface showing the concave surfaces in gray. The cavity is shown at the center of the figure. On the right is shown a CPK model of the TR-LBD, overlaid with a molecular surface view, which is restricted to a 12Å radius of the hydrophobic cavity. Mutated residues of the coactivator binding site that are hormone-insensitive (V284, K288, I302 and K306) are located on one side of the cleft and are colored yellow. Mutated CBS residues likely undergo a conformational change upon hormone binding (L454 and E457) are located on the opposite side of the cleft and are colored red.

Figure 19 shows alignment of amino acid sequences (single letter amino acid designations) containing residues that form the coactivator binding sites of several nuclear receptors. The boxes represent residues of alpha-helix (H3, H4, H5, H6 and H12); lower case letters "h" and "q" represent hydrophobic and polar residues, respectively.

5

10

15

residues of the C-terminal helix 3 (Ile280, Thr281, Val283, Val284, Ala287, and Lys288), helix 4 (Phe293), helix 5 (Gln301, Ile302, Leu305, Lys306), helix 6 (Cys309), and helix 12 (Pro453, Leu454, Glu457, Val458 and Phe459). Overlays and superpositioning with a three-dimensional model of a nuclear receptor LBD, or a portion thereof that contains a coactivator binding site, also can be used for this purpose. For example, three-dimensional structures of TR, RAR, RXR and ER LBDs can be used for this purpose. For example, nuclear receptors identifiable by homology alignment include normal nuclear receptors or proteins structurally related to nuclear receptors found in humans, natural mutants of nuclear receptors found in humans, normal or mutant receptors found in animals, as well as non-mammalian organisms such as pests or infectious organisms, or viruses.

Alignment and/or modeling also can be used as a guide for the placement of mutations on the LBD surface to characterize the nature of the site in the context of a cell. Selected residues are mutated to preserve global receptor structure and solubility. To destroy the coactivator binding interaction, preferred mutations are to charged residues (e.g., Arg, Lys, or Glu) on the basis that bulky, surface charged residues might disrupt coactivator binding, yet preserve global receptor structure and solubility. Mutants can be tested for coactivator binding as well as the relative change in strength of the binding interaction. Ligand-dependent coactivator interaction assays also can be tested for this purpose, such as those described herein.

Compounds that bind to the coactivator binding site of nuclear receptors can be identified by computational modeling and/or screening. For example, coactivator agonists or antagonists can be identified by providing atomic coordinates comprising a nuclear receptor coactivator binding site or portion thereof to a computerized modeling system, modeling them, and identifying compounds that fit spacially into the coactivator binding site. By a "portion thereof" is intended the atomic coordinates corresponding to a sufficient number of residues or their atoms of the coactivator binding site that interact with a compound capable of binding to the site. This includes receptor residues having an atom within 4.5Å of a bound compound or fragment thereof. For instance, human TR residues V284, Phe293, Ile302, Leu305 and Leu454 contain side chain atoms that are within 4.5Å, and interact with, hydrophobic residues of a (SEQ ID NO: 1) LxxLL motif of an NR-box 2 coactivator peptide. As another example, an atomic structural model utilized for computational modeling and/or screening of compounds that bind to the coactivator binding site may include a portion of atomic coordinates of amino acid residues corresponding to the site composed of residues of human thyroid receptor selected from Val284, Lys288, Ile302, Lys306, Leu454 and Glu457, or their structural and functional equivalents found in other receptors. Thus,

gene, although there are exceptions. For example, there are two PR isoforms, A and B, translated from the same mRNA by alternate initiation from different AUG codons. There are two GR forms, one of which does not bind ligand. This method is especially applicable to the TR subfamily which usually has several receptors that are encoded by at least two (TR: α , β) or three (RAR, RXR, and PPAR: α , β , γ) genes or have alternate RNA splicing.

The receptor-specific compounds of the invention preferably interact with conformationally constrained residues of the coactivator binding site that are conserved among one type of receptor compared to a second type of receptor. "Conformationally constrained" is intended to refer to the three-dimensional structure of a chemical or moiety thereof having certain rotations about its bonds fixed by various local geometric and physical-chemical constraints. Conformationally constrained structural features of a coactivator binding site include residues that have their natural flexible conformations fixed by various geometric and physical-chemical constraints, such as local backbone, local side chain, and topological constraints. These types of constraints are exploited to restrict positioning of atoms involved in receptor-coactivator recognition and binding.

For instance, comparison of sequences of the GR and TR coactivator interaction surface shows a highly negatively charged sequence at the C-terminal end of TR helix 12 (E460 and D461) 20 that is neutral in the equivalent positions in GR helix 12 (GR residues T788 and N759, corresponding to TR residue positions 460 and 461, as depicted in Figure 19). As described in the Examples, the cocrystal of the hTRB LBD complexed with the GRIP1 NR-box 2 peptide shows that TR residues E460 and D461 interact with positively charged residues of the NR-box 2 peptide. Also, when comparing the RAR LBD structure to that of the TR LBD, conformation of helix 12 25 differs slightly, whereas helices 3, 4, 5 and 6 are substantially the same. Thus, differences in helix 12, particularly charge differences at the C-terminal end of the helix, may modulate preferential interaction of TR for NR-box 2 containing coactivators. As further demonstrated in the Examples, TR and GR differ in their specificity for different NR-boxes containing the conserved (SEQ ID NO: 1) LxxLL motif found in members of the p160 family of coactivator proteins. As also demonstrated 30 in the Examples, GR but not TR is able to interact with peptides containing the hydrophobic interaction motifs of p53 (SEQ ID NO: 3; FxxLW) and VP16 (SEQ ID NO: 4; FxxAL). Thus, TR exhibits preferential interaction with NR-box peptides comprising the (SEQ ID NO: 1) LxxLL motif, but GR does not discriminate and can bind peptides containing a generic amphipathic helix motif. Accordingly, these real differences among the various nuclear receptors can be exploited in 35 the identification and design of compounds that modulate coactivator binding to one nuclear receptor compared to another.

5

10

5 molecular dynamics with standard molecular mechanics force-fields, such as CHARMM and AMBER.

For example, compounds and/or fragments can be designed to fill up the hydrophobic cleft, the pocket deep within the cleft, the upper end of the site, and/or the lower end of the site. Residues comprising a coactivator binding site, when defined by the user as those residues having an atom within 4.5Å of an atom of a bound chemical entity, can be modeled to look for energetic contributions and interaction with the bound chemical entity. For example, a compound or fragment can be designed to contain hydrophobic groups that interact with hydrophobic residues of the coactivator binding site. As described in the examples, human TR residues V284, Phe293, Ile302, Leu305 and Leu454 contain side chain atoms that are within 4.5Å, and interact with, hydrophobic residues of a (SEQ ID NO: 1) LxxLL motif of an NR-box 2 coactivator peptide. Thus, for example, peptides and/or peptide mimetics having a hxxhh motif, where "h" is a hydrophobic residue and x is any residue, can be constructed. Small organic molecules that mimic one or more of these particular interactions also can be designed, for example, by including one or more R-groups that are hydrophobic and fit into the site.

Specialized computer programs may also assist in the process of selecting chemical entity fragments or whole compounds. These include: GRID (Goodford, *J. Med. Chem.* (1985) 28:849-857; available from Oxford University, Oxford, UK); MCSS (Miranker et al., *Proteins: Structure, Function and Genetics*, (1991) 11:29-34; available from Molecular Simulations, Burlington, MA); AUTODOCK (Goodsell et al., *Proteins: Structure, Function and Genetics* (1990) 8:195-202; available from Scripps Research Institute, La Jolla, CA); and DOCK (Kuntz et al, *J. Mol. Biol.* (1982) 161:269-288; available from University of California, San Francisco, CA).

Additional commercially available computer databases for small molecular compounds include Cambridge Structural Database and Fine Chemical Database (Rusinko, *Chem. Des. Auto. News* (1993) 8:44-47).

Once suitable chemical entities or fragments have been selected, they can be assembled into a single compound. Assembly may be proceeded by visual inspection of the relationship of the fragments to each other on the three-dimensional image displayed on a computer screen in relation to the structure coordinates of a nuclear receptor. This can be followed by manual model building using software such as Quanta or Sybyl.

10

15

20

25

preferably centers on activity-based response models, binding assays (which measure how well a compound binds to the receptor), and bacterial, yeast and animal cell lines (which measure the biological effect of a compound in a cell). The assays can be automated for high capacity - high throughput screening (HTS) in which large numbers of compounds can be tested to identify compounds with the desired activity.

As an example, in vitro binding assays can be performed in which compounds are tested for their ability to block the binding of a coactivator protein, fragment, fusion or peptide thereof, to a coactivator binding site of interest. For cell and tissue culture assays, they may be performed to assess a compound's ability to block function of cellular coactivators, such as members of the p160 family of coactivator proteins, such as SRC-1, AIB1, RAC3, p/CIP, and GRIP1 and its homologues TIF 2 and NcoA-2, and those that exhibit receptor and/or isoform-specific binding affinity. In a preferred embodiment, compounds of the invention bind to a nuclear receptor coactivator binding site with greater affinity than the cellular coactivator proteins. Tissue profiling and appropriate animal models also can be used to select compounds. Different cell types and tissues also can be used for these biological screening assays. Suitable assays for such screening are described herein and in Shibata et al. (Recent Prog. Horm. Res. 52:141-164 (1997)); Tagami et al. (Mol. Cell Biol. (1997) 17(5):2642-2648); Zhu et al. (J. Biol. Chem. (1997) 272(14):9048-9054); Lin et al. (Mol. Cell Biol. (1997) 17(10):6131-6138); Kakizawa et al. (J. Biol. Chem. (1997) 272(38):23799-23804); and Chang et al. (Proc. Natl. Acad. Sci. USA (1997) 94(17):9040-9045), which references are incorporated herein in their entirety by reference. For example, coactivators or binding fragments thereof can be expressed and/or assayed for binding as for GRIP1 (Hong et al., MCB supra; and Hong et al., PNAS supra) and/or SRC-1 (Spencer et al., Nature (1997) 389:194-198; Onate et al., Science (1995) 270:1354-1357), incorporated by reference.

The compounds selected can have agonist and/or antagonistic properties. The compounds also include those that exhibit new properties with varying mixtures of agonist and antagonist activities, depending on the effects of altering coactivator binding in the context of different activities of nuclear receptors, either hormone-dependent or hormone-independent, which are mediated by proteins other than coactivators, and which interact with the receptors at locations other than the coactivator binding site. The compounds also include those, which through their binding to receptor locations that are conformationally sensitive to hormone binding, have allosteric effects on the receptor by stabilizing or destabilizing the hormone-bound conformation of the receptor, or by directly inducing the same, similar, or different conformational changes induced in the receptor by the binding of hormone.

5

10

15

20

25

30

5 solve the structure of mutants or co-complexes of nuclear receptors having sufficient structural similarity.

One method that may be employed for this purpose is molecular replacement. In this method, the unknown crystal structure, may be determined using the structure coordinates of this invention as provided in **Appendix 1**. This method will provide an accurate structural form for the unknown crystal more quickly and efficiently than attempting to determine such information *ab initio*.

Atomic coordinate information gleaned from the crystals of the invention can be stored. In a preferred embodiment, the information is provided in the form of a machine-readable data storage medium. This medium contains information for constructing and/or manipulating an atomic model of a coactivator binding site or portion thereof. For example, the machine readable data for the coactivator binding site comprises structure coordinates of amino acids corresponding to human TR amino acids selected from C-terminal helix 3 (Ile280, Thr281, Val283, Val284, Ala287, and Lys288), helix 4 (Phe293), helix 5 (Gln301, Ile302, Leu305, Lys306), helix 6 (Cys309), and helix 12 (Pro453, Leu454, Glu457, Val458 and Phe459), or a homologue of the molecule or molecular complex comprising the site. The homologues comprise a coactivator binding site that has a root mean square deviation from the backbone atoms of the amino acids of not more than 1.5Å. A preferred molecule or complex represents a compound bound to the coactivator binding site.

The machine-readable data storage medium can be used for interative drug design and molecular replacement studies. For example, a data storage material is encoded with a first set of machine-readable data that can be combined with a second set of machine-readable data. For molecular replacement, the first set of data can comprise a Fourier transform of at least a portion of the structural coordinates of the nuclear receptor or portion thereof of interest, and the second data set comprises an X-ray diffraction pattern of the molecule or molecular complex of interest. Using a machine programmed with instructions for using the first and second data sets a portion or all of the structure coordinates corresponding to the second data can be determined.

Protein for crystals and assays described herein can be produced using expression and purification techniques described herein and known in the art. For example, high level expression of nuclear receptor LBDs can be obtained in suitable expression hosts such as *E. coli*. Expression of LBDs in *E. coli*, for example, includes the TR LBD and other nuclear receptors, including members of the steroid/thyroid receptor superfamily, such as the receptors ER, AR, MR, PR, RAR, RXR and VDR. Yeast and other eukaryotic expression systems can be used with nuclear receptors

10

15

20

25

30

To achieve higher purification for improved crystals of nuclear receptors, especially the TR subfamily and TR, the receptors can be ligand-shift-purified using a column that separates the receptor according to charge, such as an ion exchange or hydrophobic interaction column, and then bind the eluted receptor with a ligand, especially an agonist. The ligand induces a change in the receptor's surface charge such that when re-chromatographed on the same column, ligand-bound receptor is separated from unliganded receptor. Usually saturating concentrations of ligand are used in the column and the protein can be preincubated with the ligand prior to passing it over the column. The structural studies detailed herein indicate the general applicability of this technique for obtaining super-pure nuclear receptor LBDs for crystallization.

Purification can also be accomplished by use of a purification handle or "tag," such as with at least one histidine amino acid engineered to reside on the end of the protein, such as on the N-terminus, and then using a nickel or cobalt chelation column for purification. (Janknecht et al., *Proc. Natl. Acad. Sci. USA*, (1991) 88:8972-8976) incorporated by reference.

Typically purified LBD, such as TR LBD, is equilibrated at a saturating concentration of ligand at a temperature that preserves the integrity of the protein. Ligand equilibration can be established between 2 and 37°C, although the receptor tends to be more stable in the 2-20°C range. Preferably crystals are made with the hanging drop methods detailed herein. Regulated temperature control is desirable to improve crystal stability and quality. Temperatures between 4 and 25°C are generally used and it is often preferable to test crystallization over a range of temperatures. The crystals are then subjected to vapor diffusion and bombarded with x-rays to obtain x-ray diffraction pattern following standard procedures.

For co-crystallization with a peptide that binds to the coactivator binding site, various concentrations of peptides containing a sequence that binds to a coactivator binding site of a nuclear receptor of interest can be used in microcrystallization trials, and the appropriate peptides selected for further crystallization. Any number of techniques, including those assays described herein can assay peptides for binding to the coactivator binding site of a nuclear receptor of interest. In a preferred embodiment, a NR-box 2 sequence-containing peptide is used for crystallization with TR LBD. A preferred peptide contains a NR-box (SEQ ID NO: 1) LxxLL motif, and suitable flanking sequences necessary for binding and forming complex with coactivator binding site of the nuclear receptor of interest, such as a TR LBD. The binding peptides are then tested in crystallization trials at various concentrations and ratios of concentrations with a nuclear receptor of interest, for example, as described herein and in the Examples. For crystallization trials with TR LBD, the hanging drop vapor diffusion method is preferred. Conditions of pH, solvent and solute

5

10

15

20

25

30

5 <u>EXAMPLES</u>

Example 1: Expression and purification of wild-type and mutant nuclear receptors and coactivators

A. Human TRβ LBD

Human TRß LBD (His6-E202-D461) was expressed and purified as described (Shiau et al., Gene (1996) 179(2):205-10). Briefly, the protein was expressed from pET (e.g., pET3 and pET28) in BL21DE3 at 14°C, induced at OD(600nm) 0.7 with 1mM IPTG and incubation was extended for 24 hours. Cells were harvested and lysed in 50mM sodium-phosphate buffer (pH 8.0), 0.3M NaCl, 10% glycerol, 25mM β-merceptoethanol and 0.1mM PMSF as described above. The lysate was cleared by ultracentrifugation (Ti45, 36000 rpm, 1h, 4°C), loaded on a Talon column equilibrated in the sodium phosphate buffer described above, washed with 12mM imidazole and eluted with an imidazole gradient (12 - 300 mM). TRB LBD containing fractions were loaded in 0.6M ammonium sulfate on a TSK-phenyl hydrophobic interaction column and eluted with a reverse ammonium sulfate gradient [0.6 - 0 M] in 50% glycerol and 10% acetonitrile. Fractions containing TRB LBD were tested for hormone binding, pooled and incubated with a 3-fold molar excess of T₃ (Sigma). The hydrophobic interaction run was repeated with liganded receptor under the same conditions. Liganded receptor, which elutes earlier than unliganded receptor, was collected and buffer changed to 20mM Hepes pH7.0, 3mM DTT and 0.1 µM T₃ using NAP columns (Pharmacia). For crystallization, the protein was concentrated by ultrafiltration (Millipore UFV2BGC10 concentrators) to a final concentration of 9mg/ml. The yield was about 9.5mg protein per liter bacterial culture.

B. Human TR mutants

Thirty-seven thyroid receptor mutants were created by synthesizing double-stranded oligonucleotides which encode the mutant sequence and which have ends allowing them to be ligated as a cassette using pairs of the NsiI, PstI, SstI, AlwNI, ApoI, PflMI, BstXI, BseRI, BsmFI, PvuII, NspI, SmaI, PmII, BglII and BsmI restriction sites of the hTRβ1 cDNA sequence, or the 3' plasmid polylinker SalI, or BamHI restriction sites. The hTRβ1 sequences thus mutated were subcloned into the pCMX vector encoding the full-length 461 amino acid hTRβ1 sequence. Some of the mutations of the hTRβ1 in the CMX vector and all three mutations of the hERα in the pSG5-ER-HEGO vector (Tora et al., EMBO (1989) 8:1981) were created using Quick Change Site-

10

15

20

25

³⁵S-labeled GRIP1 was incubated with either immobilized GST, immobilized wild type GST-hERα LBD, or immobilized mutant GST-LBDs in the absence of ligand or in the presence of DES or OHT. The bound GRIP1 was quantitated after SDS-PAGE. I358R, mutant LBD containing a Ile->Arg substitution at residue 358; K362A, mutant LBD containing a Lys->Ala substitution at residue 362; V376R, mutant LBD containing a Val->Arg substitution at residue 376; L539R, mutant LBD containing a Leu->Arg substitution at residue 539; E542K, mutant LBD containing a Glu->Lys substitution at residue 542.

In the absence of ligand or in the presence of OHT, fusions to the wild-type protein and all of the mutant LBDs showed no detectable binding to GRIP1. The Ile 358->Arg, Val 376->Arg and Leu 539->Arg mutants were all unable to interact with coactivator in the presence of agonist, confirming the importance of the packing interactions observed in the crystal. Disruption of either the N- or C-terminal capping interaction also compromised GRIP1 binding in the presence of agonist. Only the wild-type GST-LBD was able to recognize the coactivator in the presence of DES.

E. Human ER LBD-GST Fusion Protein

A fusion between glutathione-S-transferase (GST) and amino acids 282-595 of hERα was constructed by subcloning the EcoRl fragment from pSG5 ERα-LBD (Lopez et al., submitted manuscript) into pGEX-3X (Pharmacia). The Ile 358-> Arg, Lys 362->Ala, and Leu 539->Arg mutations were introduced into the GST-LBD construct using the QuikChange Kit (Stratagene) according to the manufacturer's instructions. The Val 376->Arg and Glu 542->Lys mutations were created in the GST-LBD construct by subcloning the Bsml/HindIII fragments of derivatives of pSG5-ER-HEGO (Tora, et al., *supra*) into which these mutations had already been introduced. All constructs were verified by automated sequencing (University of Chicago Cancer Research Center DNA Sequencing Facility).

F. Radiolabeled full-length receptors and coactivator proteins

Wild-type (WT) or mutant pCMV-hTRβ1 vector and the pSG5-GRIP1 and pCMX-SRC-1a vectors were used to produce radiolabeled full-length receptors and coactivator proteins using the TNT coupled Reticulocyte Lysate System (Promega) and [35 S]-Met (DuPont). GST-GRIP1 (amino acids 721-1221), GST-GRIP1 (amino acids 563-1121), GST-SRC-1a (amino acids 381-882), GST-hTRβ1 (full-length, WT or mutants, WT provided by C. Costa), and the GST-hRXRα (full-length

5

10

15

20

25

5 pH7.5, 10% glycerol, 1mM EDTA, 1mM DTT, 0.1mM PMSF and protease inhibitors. GRIP1 563-767His6 eluted in the flow through and was concentrated by ultrafiltration. At this step the protein was more than 95% pure.

Example 2: Peptide synthesis

10

15

20

25

30

Coactivator peptides were obtained using standard techniques. All peptides were HPLC purified and analyzed by mass spectroscopy. Peptide concentrations were either determined spectroscopically using the tyrosine signal ($A_{276} = 1450 \text{ M-1cm-1}$) or by amino acid analysis following standard techniques.

Example 3: Binding assays with nuclear receptors and coactivators

A. GST-GRIP Pull-down Assays and Peptide Competition Assays

Binding experiments were performed by mixing glutathione beads containing 10 μ g of GST fusion proteins (Coomassie Plus Protein Assay Reagent, Pierce) with 1-2 μ l of the [35 S]-labeled wild-type or mutant hTR β 1 (25 fmoles, 4000 cpm of receptor), or coactivators in 150 μ l of binding buffer (20 mM HEPES, 150 mM KCl, 25 mM MgCl₂, 10% glycerol, 1 mM dithiothreitol, 0.2 mM phenylmethylsulfonyl fluoride, and protease inhibitors) containing 2 mg/ml BSA for 1.5 hrs in the presence or absence of 1 μ M T₃. Beads were washed 3 times with 1 ml of binding buffer and the bound proteins were separated using 10% SDS-PAGE and visualized by autoradiography. Binding was quantitated by phosphorimaging using ImageQuant (Molecular Dynamics).

For *in vitro* binding studies GR, TR and their derivatives were translated in the presence of [35S]methionine using the TNT Coupled Reticulocyte System (Promega). Separate translations were performed in the presence and absence of 10µM dexamcthasone or 1µM RU486 for GR and 10µM triiodothyronine for TR. Expression was quantified by phosphoimager analysis (BAS2000, Fuji). For all binding assays 50µl of a 20% bead suspension containing either 1.6 or 4.0 µM bound purified GST GRIP1 fragment (either 568-767 or 563-1121) was incubated with 0.2µl or 1.4µl *in vitro* transcribed and translated TR or GR, respectively. Binding was performed in the binding buffer described above supplemented with 20 µg/ml BSA and appropriate hormone. The chosen GST GRIP1 fragment concentrations were sufficient to bind either 70 or 100% of the TR derivatives. The reaction was incubated at 4°C under rotation for 2 hours. In case of competition experiments, the appropriate concentration of peptides were added to the reaction before addition of

5 proteins were eluted by boiling the beads for 10 minutes in sample buffer. Bound ³⁵S-GRIP1 was quantitated by fluorography following SDS-PAGE.

D. <u>Electrophoretic Mobility Shift Assays</u>

GRIP1, a mouse p160 coactivator, recognizes the ERα LBD in a ligand-dependent manner. The binding of agonists to the ERαLBD promotes recruitment of GRIP1, whereas binding of antagonists prevents this interaction (Norris, et al., *J. Biol. Chem.* (1998) 273:6679-88). While agonist-bound receptor will bind to all three of the NR boxes from GRIP1, ERα strongly prefers NR-box 2 (Ding, et al., *Mol. Endocrinol.* (1998) 12:302-13).

An electrophoretic mobility shift assay was used to directly assess the ability of the NR-box 2 peptide to bind the purified ER α LBD in the presence of either DES or OHT. Eight microgram samples of purified hER α -LBD bound to either DES or OHT were incubated in the absence of the peptide, i.e., buffer alone, or in the presence of either a 2-fold or 10-fold molar excess of the GRIP1 NR-box 2 peptide. The binding reactions were performed on ice for 45 minutes in 10 μ l of buffer containing 20mM Tris, pH 8.1, 1mM DTT, and 200mM NaCl and then subjected to 6% native PAGE. Gels were stained with GELCODE Blue Stain reagent (Pierce).

In the presence of the NR-box 2 peptide, the migration of the DES-hERα-LBD complex was retarded. In contrast, peptide addition had no effect on the mobility of the OHT-hERα-LBD complex. Hence, this peptide fragment of GRIP1 possesses the ligand-dependent receptor binding activity characteristic of the full-length protein.

Example: 4 Transfection assays with TR and hERa

HeLa cell transfection and assay conditions are described (Webb et al., *Mol Endocrinol* (1995) 9:443). For TR assays, 5 μg of the reporter p(DR-4)₂ -TK-LUC consisting of two copies of the DR-4 element (a direct repeat of the consensus TR response element (TRE) spaced by 4 base pairs) placed upstream of a minimal (-32/+45) thymidine kinase gene promoter linked to luciferase (LUC) coding sequences were used. A reporter containing palindromic TREs gave the same results (data not shown). Also, 2 μg of the hTRβ1 expression vector, pCMX-TR (WT or mutant), and 0.5 μg transfection control vector, pJ3LacZ, which contains the SV40 promoter linked to the β-galactosidase gene, were used. Other cells co-transfected with vector or receptor constructs can be used for same purpose. Alternative cells expressing sufficient levels of an endogenous receptor(s),

10

15

20

25

5 (data not shown). Mutations L454R and E457K in surface residues of helix 12 abolish GRIP1 binding (Figure 1). Mutations in two residues of helix 3, V284R and K288A, and two residues of helix 5, I302R and K306A, also impair binding (Figure 1). Five mutations with diminished GRIP1 binding (V284R, K288A, I302R, L454R, and E457K) also show decreased binding to another coactivator, SRC-1a (data not shown). Thus, these results show that two different coactivators recognize the same TR surface residues.

Example 7: TR residues involved in ligand-dependent transcription activation in context of a cell

Residues involved in ligand-mediated transcription activation were identified by testing the TR mutants of Example 8 in HeLa cells. T₃ increased reporter gene activity 5-fold in cells expressing either WT TR or mutated TRs showing normal GRIP1 binding (representative mutants are shown in Figure 1. By contrast, TR mutants with diminished or absent GRIP1 binding (V284R, K288A, I302R, K306A, L454R, and E457K) show a diminished or absent response to T₃ which correlates with the GRIP1 binding defect. Overexpression of GRIP1 increases activation by the WT TR and rescues activation by TR mutants roughly in proportion to the severity of the defect of GRIP1 binding and activation (Figure 2). These results suggest that the same residues are required for coactivator binding, function of the endogenous coactivator(s) in HeLa cells, and responsiveness of TRs to GRIP1.

Example 8: Effect of TR mutations on other receptor functions

The effects of the mutations on other receptor functions also were examined. All of the mutants bound radiolabeled thyroid hormone (Kd values, 6%-234% that for native receptor); occasional lower values were expected because some residues have partially buried side chains. None of the residues that decrease GRIP1 binding affected TR binding to a GST-RXR fusion protein or to DNA using three different DNA half-site arrangements and testing with or without added RXR (data not shown). Some mutations that affect GRIP1 binding occur in a region spanning helices 3-5, which has been suggested as important for TR/RXR heterodimerization (O'Donnell et al., *supra*; Lee et al., *Mol. Endocrinol.* (1992) 6:1867-1873). In contrast, however, the above results indicate that these residues do not contribute to TR/RXR heterodimerization. Further, TRs mutated in the CBS residues retain the ability of WT TR of T₃—dependent inhibition of the activity of the Jun and Fos transcription factors at an AP-1 site (Saatcioglu et al., *supra*), suggesting that the CBS residues do not participate in TR actions mediated through these proteins. These data

35

15

20

25

Full length TR or TR-LBD bound GRIP1 equally. These results show that TR recognizes GRIP1 NR-box 2 and 3, with preference for NR-box 2.

Example 11: Coactivator NR-box binding affinity for GR

GR also was found to bind GRIP1 (563-767) in a ligand-dependent manner (Figure 8). However, in contrast to TR, extension of GRIP1 (563-767) to residue 1121 increases binding to GR about 3-fold suggesting an additional binding site on GRIP1 for GR. Binding of the larger fragment remains ligand-dependent; no interaction can be observed in the presence of the GR partial antagonist RU486. These results are in agreement with *in vivo* 2-hybrid GR GRIP1 interaction studies. In the presence of ligand no difference was detected in the binding of GRIP1 by full length GR or a deletion mutant of GR that lacks the N-terminal activation domain AF-1. However in the absence of ligand, binding of GR to GRIP1 (563-1121) increased by about 10-fold indicating that sequences in the GR N-terminus are able to suppress binding of unliganded GR to this additional binding site in GRIP1. Additionally, GR did not bind to a GRIP1 (563-767) mutant in which both NR-box 2 and 3 are replaced by alanines, and binds most strongly to a fragment that lacks a functional NR-box 2. As with TR, GR does not recognize NR-box 1. In contrast to TR, the GR prefers NR-box 3 to NR-box 2. These results demonstrate that GR prefers binding to NR-box 3 and interacts with an additional GRIP1 site within the CREB (cAMP - response - element binding protein) - binding protein (CBP) binding site.

Example 12: Coactivator peptide binding affinity for TR

To investigate whether the preference of TR for NR-box 2 is dependent on the sequence or structural context of the NR-boxes, competition studies on the interaction of GRIP1 with hTRB LBD were performed using coactivator peptides containing different NR- boxes (NR-box 2 peptide (residues 11-23 of SEQ ID NO: 6) EKHKILHRLLQDS, and NR-box 3 peptide (residues 9-21 of SEQ ID NO: 7) ENALLRYLLDKDD) (Figure 9). Consistent with the interaction of hTR LBDB with GRIP1 (563-767) NR-box mutants, a peptide containing NR-box 1 competes the interaction of GRIP1 with hTRB LBD only at very high concentrations (EC50 = 130 μ M). Peptides containing either NR-box 2 or 3 compete GRIP1 (563-767) efficiently and display the preference of hTRB LBD for NR-box 2 (EC50 (NR-box 2) = 1.5 μ M, EC50 (NR-box 3) = 4 μ M). The apparent affinities (EC50) for peptides of NR-box 2 and 3 are comparable with the analogous GRIP1 (563-767) NR-box mutants suggesting that the preference of TR for NR-boxes is solely dependent on the sequence and independent of the structural context of the NR-boxes.

35

5

10

15

20

25

5 Example 14: Binding affinity of TR and GR for mutant coactivator

A. TR affinity for ILxxLL motif residues

To investigate the role of the hydrophobic residues in NR-box 2, individual residues of the (residues 15-20 of SEQ ID NO: 6) ILHRLL motif were replaced by alanine in the background of GRIP1 (563-767) containing a non-functional NR-box 3 (Figure 11). Surprisingly, replacement of any of the conserved leucines prevents binding to TR almost completely. Only replacement of the nonconserved isoleucine exhibited a lessened but still severe impact on the affinity of NR-box 2 for TR. As replacement of a single leucine by alanine is sufficient to overcome the interaction of both the remaining hydrophobic residues and adjacent sequences with hTRB LBD, it appears that their contribution to the affinity of NR-box 2 for hTRB LBD is cooperative rather than additive.

Similar results were obtained by competing the interaction of hTRß LBD with the GRIP1 (563-767) NR-box 3 mutant using peptides in which either IL, HR or LL of the NR-box 2 motif are replaced by alanines (Figure 11). Whereas the peptides containing the IL or LL replacement failed to interact with the hTRß LBD even at very high concentrations, in agreement with a proposed alpha-helical structure of the motif, replacement of the "HR spacer" by alanines showed a marginal effect on the affinity of the peptide for TR-LBD.

Replacement of single leucine residues of NR-box 2 by phenylalanine reduced the affinity of NR-box 2 peptides for TR LBD about 100-fold, replacement of the isoleucine about 10-fold (Figure 11). Therefore, the interaction of TR with GRIP1 relies not simply on the hydrophobicity of the (SEQ ID NO: 1) LxxLL motif, but also on positive contributions by the leucine residues themselves.

These results demonstrate that single mutations of the conserved leucines in the (SEQ ID NO: 1) LxxLL motif strongly reduce affinity of GRIP1 for hTRB LBD.

Collectively, the above examples demonstrate that peptides containing NR-boxes, particularly NR-box 2, reproduce the affinity and specificity of the interaction of GRIP1 (563-767) with hTRB LBD.

B. TR affinity of FxxLW and FxxAL motif residues

The three conserved leucines of the NR-box 2 (SEQ ID NO: 2) ILxxLL motif are embedded in the hydrophobic cleft of the hTRß LBD:NR-box 2 interaction surface, whereas the non conserved

10

15

20

25

GRIP1 mutant lacking NR-box 3, binds GR in vivo (Ding et al., <u>supra</u>). This binding is only about ten times less than a peptide containing NR-box 3, GR's primary binding site.

As shown above, GR binds GRIP1 (563-767) with about one-fifth the affinity than a comparable amount of TR. Thus, the high concentration of NR-box 3 peptide required to compete the interaction of GR with GRIP1 (563-767) may rather reflect a weak affinity of GR for the peptide rather than a particular strong interaction of GR with GRIP1 (563-767).

These results suggest that at least on the peptide level, other hydrophobic motifs besides (SEQ ID NO: 1) LxxLL can interact with the coactivator binding site, but that it is receptor dependent.

C. TR affinity for residues adjacent to ILxxLL motif

Peptides containing a FxxLL motif bind TR but with two orders of magnitude lower affinity than a (SEQ ID NO: 1) LxxLL motif (Figure 11). To test whether the additional changes in the hydrophobic motif or adjacent sequences of the VP16 peptide prevent its binding to TR, a chimeric peptide containing the NR box-2 motif (SEQ ID NO: 1) LxxLL in the context of the VP16 sequence was constructed. This peptide binds to TR but with an about 100-fold lower affinity than the original NR-box 2 peptide. Thus, the inability to bind the VP16 peptide appears to be due to the combination of an imperfect hydrophobic motif and the incompatibility of TR to adjacent sequences of the VP16 motif.

As the interaction of the chimeric peptide with GR was comparable to the original NR-box 2 and VP16 peptides, this incompatibility appears due to TR-specific features in the NR-box interaction surface. These results show sequences adjacent the NR-box motif LxxLL can reduce binding of NR-box 2 to TR, but not GR.

Example 15: Crystallization and Structure Determination of NR LBD Complexes

A. Crystallization of hTRB LBD with T₃ and GRIP1 NR-box 2 Peptide

Several peptides containing GRIP1 NR-box 2 were tested in crystallization trials with the hTRß LBD. The complex of the hTRß LBD with the GRIP1 NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) produced crystals that were dependent on both the presence and the concentration of the peptide. Without the peptide, the hTRß LBD precipitated immediately. However, nucleation was erratic, but could be overcome through seeding

30

10

15

20

Table 1

Data collection, phasing, and refinement statistics

			Da	ta collection	n					
Data set		lution (Å)	Reflec	tions	Coverage (%)	R _{sym}				
Native	3	.6	measured unique 35565 8490		96.3	0.007				
			Rot	ation searc	h					
Search model	Euler angles (°) Correlation coefficient									
		Θ_1	Θ_2	Highest false peal						
hTR β LBD	M1	60.12	80.68	241.90	16.3					
	M2	9.93	87.70	180.6	15.9	14.2				
			Tran	slation sear	rch					
			······································		·					
)	Fractional coor	dinates	Trans	lation function				
	Ì	Х	У	z	Highest peak (o)	Highest false peak (o)				
	Ml	0.522		0.250	19.52	10.02				
	M2	0.200	0.932	0.119	26.11	5.77				
			R	efinement						
	Res	solution (Å)	Refl	ection	R	R _{free}				
F > 2(25 - 3.7	76	14	0.2990	0.3219				
All data		25 - 3.7	7	851	0.3010	0.317				

 $\begin{aligned} &R_{\text{sym}} = \Sigma_h \; \Sigma_i \; | \; I_{h,i} \; \hat{\mathbf{u}} \; (I_h(\;|\;/\; \Sigma \; I_h \; \text{for the intensity} \; (I) \; \text{of} \; i \; \text{observations of reflection} \; h. \\ &\text{Correlation coefficient} = \Sigma_h E o^2 E c^2 - E o^2 E c^2 / \left[\Sigma_h \; (E o_2 - E o^2)^2 \; \Sigma_h \; (E c^2 - E c^2)^2 \right]^{1/2} \\ &\text{Translation function} \; (\mathbf{t_a}, \; \mathbf{t_b}, \; \dots) = \Sigma_h \; (|E o_{(h)}|^2 - \Sigma_h < |E o_{(h)}|^2 >) \; (E c_{(h,t_a,t_b,\dots)}|^2 - < |E c_{(h)}|^2) \end{aligned}$

Translation function $(t_a, t_b, ...) = \mathcal{L}_h (|Eo_{(h)}|^2 - \mathcal{L}_h < |Eo_{(h)}|^2) (|Eo_{(h)}t_a, t_b, ...)| - < |Eo_{(h)}|^2)$ where E_o represents the normalized observed structure factor amplitudes, and E_c represents the normalized structure factors for the search model in a triclinic unit cell with dimensions identical to that of the crystal. The reported peak height represents the value of the function for the translation (t_a, t_b) of the NCS monomers, divided by the rms value of the translation function density.

R factor = $\Sigma | F_{\text{obs}} - F_{\text{calc}}| / \Sigma | F_{\text{obs}}|$.

R_{free} is calculated the same as R factor, except only for 10% of the reflections that were set aside for cross validation and not used in refinement.

10

15

5 wavelength of 0.98 Å. The diffraction images were processed with DENZO and scaled with SCALEPACK (Otwinowski, et al., <u>supra</u>) using the default -3σ cutoff.

Example 16: Structure determination and refinement of NR LBD complexes

A. Structure of hTRB LBD with T₃ and GRIP1 NR-box 2 Peptide

Data were measured using Cu Ka radiation from an R-axis generator at 50 kV and 300 mA with a 0.3mM collimator and a Ni filter. Reflections were measured using an R-Axis II detector and integrated with Denzo, and equivalent reflections scaled using Scalepack (Otwinowski and Minor, "Processing of x-ray diffraction data collected in oscillation mode." In Macromolecular Crystallography, Part A (ed. C.W. Carter, Jr. and R.M. Sweet), pp. 307-326. Academic Press, New York, NY). Possible rotation function solutions were calculated using normalized amplitudes in AMORE from a model of hTRB LBD with the ligand, T₃, omitted; translation function solutions were subsequently determined using TFFC for the two rotation solutions with the highest correlation coefficients. For two hTR\$\mathbb{G}\$ LBD molecules in the asymmetric unit, the calculated solvent content is 52%. After rigid body refinement of the two hTRB LBD molecules, electron density maps were calculated. Strong positive density present in both the anomalous and conventional difference Fourier maps for the iodine atoms of the T₃ ligand confirmed the correctness of the solution. The iodine atoms for both T₃ ligands were modeled as a rigid body, and the structure refined with strict NCS symmetry using CNS. Both 2FoFc and FoFc electron density maps showed interpretable density, related by the NCS operator, near H12 of both molecules of the hTRß LBD. The electron density could be modeled as a short α-helix, and the observed side chain density was used to tentatively assign the sequence and direction to the chain. The refined model consists of residues of the hTRB LBD, and peptide residues of the GRIP1 NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6).

Atomic coordinates of the hTRB LBD:GRP1 site 2 peptide complex are attached as Appendix 1.

B. Structure of hERa LBD with DES and GRIP1 NR-box 2 Peptide

Initial efforts to determine the structure of the DES-hER α LBD-NR box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) complex utilized a low resolution (3.1 Å) data set (data not shown). A self-rotation search implemented with POLARRFN ("The CCP4

10

15

20

25

5 LBD-NR-box 2 peptide complex has been refined to a crystallographic R-factor of 19.9% (R_{free}=25.0%) using data to 2.03 Å resolution.

Ile 689 from the peptide interacts with three receptor residues (Asp 538, Glu 542 and Leu 539). The γ-carboxylate of Glu 542 forms hydrogen bonds to the amides of residues 689 and 690 of the peptide. A water-mediated hydrogen bond network is formed between the imidazole ring of His 377, the γ-carboxylate of Glu 380, and the amide of Tyr 537. Three residues (Glu 380, Leu 536 and Tyr 537) interact with each other through van der Waals contacts and/or hydrogen bonds. Intriguingly, mutations in each these three residues dramatically increase the transcription activity of unliganded ERα LBD (Eng, et al., *Mol. Cell. Biol.* (1997) 17:4644-4653); Lazennec, et al., *Mol. Endocrinol.* (1997) 11:1375-86; White, et al., *EMBO J.* (1997) 16:1427-35). Atomic coordinates of DES-LBD-peptide complex are attached as **Appendix 2**.

10

(Brunger, X-PLOR Version 3.843, New Haven, Connecticut: Yale University, 1996) using a maximum-likelihood target (Adams, et al., *Proc. Natl. Acad. Sci. USA* (1997) 94:5018-23). Anisotropic scaling and a bulk solvent correction were used and all B-factors were refined isotropically. Except for the R_{free} set (a random sampling consisting of 8% of the data set), all data between 41 and 1.9 Å (with no σ cutoff) were included. The final model consisted of residues 306-551, the ligand and 78 waters. According to PROCHECK (CCP4, 1994), 91.6% of all residues in the model were in the core regions of the Ramachandran plot and none were in the disallowed regions. Thus, the structure of the OHT-hERα LBD complex has been refined against data of comparable resolution (1.90 Å) to a crystallographic R-factor of 23.0% (R_{free}=26.2%). Atomic coordinates of OHT-hERα LBD complex are attached as Appendix 3.

15 Example 17: Structural analysis of hTRB LBD: GRIP 1 NR-box 2 peptide complex

A. Structure of cocrystal complex (contents of asu)

The asymetric unit (asu) of the crystal contains two monomers of the hTRß LBD and two molecules of the GRIP1 NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6), which observes the NCS relation of the two TR monomers (Figure 12). The structure of the hTRß LBD, which closely resembles that of the rTRα LBD (Wagner et al., supra), consists of twelve alpha-helices and two β-strands organized in three layers, resembling an alpha-helical sandwich. The only significant difference between the hTRß LBD and the rTRα LBD is disorder in the loop between helices H1 and H3. The GRIP1 NR-box 2 peptide forms an amphipathic α-helix of about 3 turns, preceded by 2 residues and followed by 3 residues in extended coil conformation.

The relation of the two monomers of the hTRß LBD is primarily translational, and does not resemble the homodimer structures reported for the hRXR, or the hER (Bourguet et al., <u>supra</u>; Brzozowski et al., <u>supra</u>). Furthermore, the interface between the two monomers does not involve residues necessary for formation of the physiological TR dimer. Instead, one of the cocrystal peptides appears to bridge the interaction between the two monomers. The hydrophobic face of the alpha-helix of the cocrystal peptide contacts monomer 1 of the hTRß LBD at H3, H5, and H12, while the hydrophilic face contacts monomer 2 at the hairpin turn preceding strand S3. The second cocrystal peptide also contacts monomer 2 at H3, H5, and H12, and the two cocrystal peptides observe the same NCS relation as TR LBD monomers.

5

10

20

25

defined depression at the base of the cleft, making van der Waals contact with L454 and V458 of H12, while peptide residue Ile689 packs against L454 of H12 outside the edge of the cleft; L454, then, interdigitates between the two residues. One further turn C-terminal along the alpha-helix, L693 and L694 of the bound peptide pack into complementary pockets within the hydrophobic cleft. Peptide residue L693 forms van der Waals contact with V284 of H3, while peptide residue L694, bound more deeply in the cleft, makes contact with F298 and L305 of H4 and H5. The hydrophobic interactions of the GRIP1 NR-box 2 peptide with the hTR\$\beta\$ LBD are observed for both cocrystal peptides 1 and 2 in their respective monomers of the crystal dimer complex, suggesting that the interactions are specific to the peptide, and not induced by crystallization.

Example 18: Overall Structure of the DES-hER\alpha-LBD-NR-box 2 Peptide Complex

The asymmetric unit of the DES-hERa LBD-NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) complex crystals contains the same noncrystallographic dimer of LBDs that has been observed in the previously determined structures of the LBD bound to both E2 and RAL (Brzozowski, et al., supra and Tanenbaum, et al., supra). Beyond the flexible loops between helices 2 and 3 and helices 9 and 10, the two LBDs of the dimer adopt similar structures (r.m.s.d. 0.47 Å based on Ca positions). The conformation of each LBD complexed with DES closely resembles that of the LBD bound to E_2 (Brzozowski, et al., <u>supra</u>); each monomer is a wedge shaped molecule consisting of three layers of eleven to twelve helices and a single beta hairpin. In each LBD, the hydrophobic face of helix 12 is packed against helices 3, 5/6 and 11 covering the ligand binding pocket. One NR-box 2 peptide is bound to each LBD in a hydrophobic cleft composed of residues from helices 3, 4, 5 and 12 and the turn between 3 and 4. The density for both peptides in the asymmetric unit is continuous and unambiguous. Residues 687 to 697 from peptide A and residues 686 to 696 from peptide B have been modeled; the remaining residues are disordered. Given that each peptide lies within a different environment within the crystal, it is striking that from residues Ile 689 to Gln 695 each peptide forms a two turn, amphipathic a helix. Flanking this region of common secondary structure, the peptides adopt dissimilar random coil conformations.

Example 19: Structure of the OHT-hERa LBD Complex

The binding of OHT induces a conformation of the hERa LBD that differs in both secondary and tertiary structural organization from that driven by DES binding. In the DES

5

10

15

20

25

mutational, binding assays and crystallography corresponds to a surprisingly small cluster of residues on the surface of the LBD that define a prominent hydrophobic cleft formed by hydrophobic residues corresponding to human TR residues of C-terminal helix 3 (Ile280, Val283, Val284, and Ala287), helix 4 (Phe293), helix 5 (Ile302 and Leu305), helix 6 (Cys309), and helix 12 (Leu454, Val458 and Phe459). Collectively, the Examples indicate that residues forming the site are amino acids corresponding to human TR residues of C-terminal helix 3 (Ile280, Thr281, Val283, Val284, Ala287, and Lys288), helix 4 (Phe293), helix 5 (Gln301, Ile302, Leu305, Lys306), helix 6 (Cys309), and helix 12 (Pro453, Leu454, Glu457, Val458 and Phe459). The coactivator binding site is highly conserved among the nuclear receptor super family (Figure 19).

The coactivator binding site of TR contains charged and hydrophobic residues at its periphery, but only hydrophobic residues at its center (see, e.g., Figures 5 and 18). The hydrophobic cleft at the center of the site may play a significant role in driving the coactivator binding reaction. The site is comprised of two parts (Figure 18), right). Residues contained in helices 3, 5 and 6 (Figure 18, yellow residues) likely form a constitutive part, since their positions are identical in all nuclear receptor structures reported, including the liganded, activated states of the TR, RAR, and ER, the unliganded RXR, and the inhibitor-liganded ER. By contrast, the residues of helix 12 (Figure 18, red residues) are differently positioned in the active and inactive states reported. Thus the coactivator binding site for the nuclear receptors is likely to be formed in response to an active hormone by positioning helix 12 against a scaffold formed by helices 3-6. Because the coactivator binding site is so small, it is easy to understand how even slight changes in the position of helix 12, which may, for example, be induced by an antagonist ligand, could impair coactivator binding, and thus receptor activation.

B. ER coactivator binding site

Binding of the NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) to the ERα LBD buries 1000 Å² of predominantly hydrophobic surface area from both molecules. The NR-box 2 peptide binding site is a shallow groove composed of residues Leu 354, Val 355, Ile 358, Ala 361 and Lys 362 from helix 3; Phe 367 and Val 368 from helix 4; Leu 372 from the turn between helices 3 and 4; Gln 375, Val 376, Leu 379 and Glu 380 from helix 5; and Asp 538, Leu 539, Glu 542 and Met 543 from helix 12. The floor and sides of this groove are completely nonpolar, but the ends of this groove are charged. Therefore, structural characterization of the binding site of the NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) to the ERα LBD, which is the same NR-box 2 peptide utilized to crystallize the T₃-TR

35

5

10

15

20

25

bydrogen bonds to the amides of the residues of N-terminal turn of the peptide helix (residues 688 and 689 of peptide A; residues 689 and 690 of peptide B). Similarly, the ε-amino group of Lys 362 hydrogen bonds to the carbonyls of the residues of the C-terminal turn of the peptide helix (residue 693 of peptide A; residues 693 and 694 of peptide B).

Except for the orientation of helix 12, the structure of the peptide binding groove of the ER α LBD is almost identical in the DES and OHT complexes. The region of this groove outside of helix 12 is referred to herein as the "static region" of the NR box binding site. Helix 12 in the OHT complex and the NR box peptide helix in the DES complex interact with the static region of the coactivator recognition groove in strikingly similar ways.

Helix 12 mimics the hydrophobic interactions of the NR box peptide with the static region of the groove with a stretch of residues (residues 540 to 544) that resembles an NR box ((residues 6-10 of SEQ ID NO: 43) <u>LLEML</u> instead of (SEQ ID NO: 1) LxxLL). The side chains of Leu 540 and Met 543 lie in approximately the same locations as those of the first and second motif leucines (Leu 690 and Leu 693) in the peptide complex. Leu 540 is inserted into the groove and makes van der Waals contacts with Leu 354, Val 376 and Glu 380. Met 543 lies along the edge of the groove and forms van der Waals contacts with the side chains of Leu 354, Val 355 and Ile 358. The side chain position of Leu 544 almost exactly overlaps that of the third NR box leucine, Leu 694. Deep within the groove, the Leu 544 side chain makes van der Waals contacts with the side chains of Ile 358, Lys 362, Leu 372, Gln 375, Val 376 and Leu 379.

Helix 12 in the OHT complex is also stabilized by N- and C-terminal capping interactions. Lys 362 interacts with the C-terminal turn of helix 12 much as it does with the equivalent turn of the peptide helix. The Lys 362 side chain packs against the C-terminal turn of the helix 12 with its ϵ -amino group hydrogen bonding to the carbonyls of residues 543 and 544. Given that the capping interaction at the N-terminal turn coactivator helix is formed by a helix 12 residue (Glu 542), the N-terminal turn of helix 12 in the antagonist complex is forced to interact with another residue, Glu 380. The Glu 380 γ -carboxylate forms van der Waals contacts with Tyr 537 and interacts with the amide of Tyr 537 through a series of water-mediated hydrogen bonds.

In addition to forming these "NR box-like" interactions, helix 12 also forms van der Waals contacts with areas of the ERa LBD outside of the coactivator recognition groove. The side chain of Leu 536 forms van der Waals contacts with Glu 380 and Trp 383 and that of Tyr 537 forms van der Waals contacts with His 373, Val 376 and Glu 380. As a result of these contacts, helix 12 in the

35

10

15

20

25

- 5 14. Ding, S., Anderson, C., Ma, H., Hong, H., Uht, R., Kushner, P., and Stallcup, M. (1998). Mol. Endocrinol. 12, 302-313.
 - 15. Eng, F. C. S., Lee, H. S., Ferrara, J., Willson, T. M., and White, J. H. (1997). Mol. Cell. Biol. 17, 4644-4653.
 - 16. Farmer, "Drug Design," Ariens, E.J., ed., 10:119-143 (Academic Press, New York, 1980)
- 10 17. Furey, et al., PA33 Am. Cryst. Assoc. Mtg. Abstr. (1990) 18:73
 - 18. Glass, C. K., Rose, D. W., and Rosenfeld, M. G. (1997). Nuclear receptor coactivators. Curr. Opin. Cell Biol. 9, 222-32.
 - 19. Goodford, J. Med. Chem. (1985) 28:849-857
 - 20. Goodsell et al., Proteins: Structure, Function and Genetics (1990) 8:195-202
- Greene, G., Harris, K., Bova, R., Kinders, R., Moore, B., and Nolan, C. (1988). Mol. Endocrinol. 2, 714-726.
 - 22. Greene, G., Nolan, C., Engler, J., and Jensen, E. (1980). Proc. Natl. Acad. Sci. USA 77, 5115-5119.
 - 23. Heery, D., Kalkhoven, E., Hoare, S., and Parker, M. (1997). Nature 387, 733-736.
- 20 24. Hegy, G., Shackleton, C., Carlquist, M., Bonn, T., Engstrom, O., Sjoholm, P., and Witkowska, H. (1996). Steroids 61, 367-373.
 - 25. Henttu, P. M., Kalkhoven, E., and Parker, M. G. (1997). Mol. Cell. Biol. 17, 1832-9.
 - 26. Hong et al., Mol. Cell Biol. (1997) 17:2735-44
- 27. Hong, H., Kohli, K., Trivedi, A., Johnson, D. L., and Stallcup, M. R. (1996). Proc. Natl. Acad.
 Sci. USA 93, 4948-4952.
 - 28. Horwitz et al., Mol. Endocrinol. (1996) 10:1167-77
 - 29. Janknecht et al., Proc. Natl. Acad. Sci. USA, (1991) 88:8972-8976
 - 30. Jurutka et al., J. Biol. Chem. (1997) 227:14592-14599
 - 31. Kakizawa et al., J. Biol. Chem. (1997) 272(38):23799-23804
- 32. Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., Lin, S. C., Heyman, R. A., Rose, D. W., Glass, C. K., and Rosenfeld, M. G. (1996). Cell 85, 403-14.
 - 33. Kuiper, G. G., Carlsson, B., Grandien, K., Enmark, E., Haggblad, J., Nilsson, S., and Gustafsson, J. A. (1997). Endocrinology 138, 863-70.
 - 34. Kuntz et al, *J. Mol. Biol*. (1982) *161*:269-288
- 35. Kuntz et al., Science, (1992) 257:1078-1082
 - 36. Kussie et al., Science (1996) 274:948-953

PCT/US99/06899

- 5 61. Shibata et al., Recent Prog. Horm. Res. 52:141-164 (1997)
 - 62. Spencer, T. E., Jenster, G., Burcin, M. M., Allis, C. D., Zhou, J., Mizzen, C. A., McKenna, N. J., Onate, S. A., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W. (1997). Nature 389, 194-8.
 - 63. Tagami et al., Mol. Cell Biol. (1997) 17(5):2642-2648
- 64. Tanenbaum, D. M., Wang, Y., Williams, S. P., and Sigler, P. B. (1998). Proc. Natl. Acad. Sci. U S A 95, 5998-6003.
 - 65. Tora, L., Mullick, A., Metzger, D., Ponglikitmongkol, M., Park, I., and Chambon, P. (1989). EMBO J 8, 1981-6.
 - 66. Torchia, J., Rose, D., Inostroza, J., Kamel, Y., Westin, S., Glass, C., and Rosenfeld, M. (1997). Nature 387, 677-684.
- 15 67. Uesugi et al., Science (1996) 277:1310-1313
 - 68. Verlinde, Structure, (1994) 2:577-587)
 - 69. Wagner, R., Apriletti, J., McGrath, M., West, B., Baxter, J., and Fletterick, R. (1995). Nature 378, 690-697.
 - 70. Webb et al., Mol Endocrinol (1995) 9:443
- 20 71. White, R., Sjoberg, M., Kalkhoven, E., and Parker, M. G. (1997). EMBO J 16, 1427-35.
 - 72. Whitfield et al., Mol. Endocrinol. (1995) 9:1166-79
 - 73. Wurtz, J. M., Bourguet, W., Renaud, J. P., Vivat, V., Chambon, P., Moras, D., and Gronemeyer, H. (1996). Nat. Struct. Biol. 3, 87-94.
 - 74. Zhu et al., J. Biol. Chem. (1997) 272(14):9048-9054

25

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

The invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the appended claims.

5	ATOM	35	0	THR	Α	215	41.816	17.50 ⁹	44	. 691	1.00	53.48	8
_	ATOM	36	N	ASP			43.118	15.683		.607		58.81	7
	ATOM	37	CA	ASP			41.973	14.740		.615	1.00	61.51	6
	ATOM	38	CB	ASP	A	216	42.386	13.451	45	.343	1.00	70.57	6
	ATOM	39	ÇG	ASP			42.399	12.283	44	.475	1.00	78.07	6
10	ATOM	40		ASP			41.532	12.161		.586		82.31	8
- •	ATOM	41		ASP			43.293	11.436		.684		86.55	8
	ATOM	42	С	ASP			40.640	15.311		.268		58.42	6
	ATOM	43	0	ASP			39.598	14.840		.924		56.85	8
	ATOM	44	N	GLU			40.673	16.270		.217		54.92	7
15	MOTA	45	CA	GLU			39.502	16.937		.856		53.37	6
••	ATOM	46	СВ	GLU			39.943	17.459		.216		51.02	6
	ATOM	47	C	GLU			39.113	18.144		.956		53.55	6
	ATOM	48	0	GLU			37.905	18.394		.695		54.33	8
	ATOM	49	N	GLU			40.162	18.895		.511		49.20	7
20	ATOM	50	CA	GLU			39.933	20.073		.661		45.94	6
20	ATOM	51	СВ	GLU			41.232	20.855		.304		43.43	6
	ATOM	52	CG	GLU			41.907	21.579		.479		40.86	6
	ATOM	53	CD	GLU			43.061	22.446		.074		39.88	6
	MOTA	54		GLU			43.895	22.019		.232		37.61	8
25	MOTA	55		GLU			43.183	23.583		.599		34.01	8
23	ATOM	56	C	GLU			39.249	19.647		.390		44.71	6
	ATOM	57	0	GLU			38.302	20.291		.964		45.31	8
	ATOM	58	Ŋ	TRP			39.720	18.553		2.797		44.02	7
•	ATOM	59	CA	TRP			39.109	18.061		.574		46.97	6
30	ATOM	60	CB	TRP			39.799	16.793		.074		48.42	6
30	ATOM	61	CG	TRP			40.879	17.029		1.141		54.61	6
	MOTA	62	CD2	TRP			40.755	17.256		.733		55.24	6
	ATOM	63	CE2	TRP			42.067	17.523		.245		53.67	6
	ATOM	64	CE3	TRP			39.691	17.234		.828		54.55	6
35	ATOM	65	CD1	TRP			42.159	17.159		.447		55.75	6
55	MOTA	66	NE1	TRP			42.895	17.485		.339		54.43	7
	ATOM	67	CZ2	TRP			42.330	17.851		.895		52.54	6
	ATOM	68	CZ3	TRP			39.943	17.535		5.509		55.17	6
	ATOM	69	CH2	TRP			41.239	17.820		.029		55.59	6
40	ATOM	70	C	TRP			37.646	17.743		.812		47.32	6
40	ATOM	71	0	TRP			36.788	18.028		.978		43.56	8
	ATOM	72	N	GLU			37.376	17.142		.965		49.91	7
	ATOM	73	CA	GLU			36.021	16.769		316		53.57	6
	ATOM	74	CB	GLU			36.052	16.055		.649		58.18	6
45	MOTA	75	CG	GLU			35.149	14.930		.672		73.13	6
7.5	MOTA	76	CD	GLU			35.735	13.935		.442		80.06	6
	ATOM	77		GLU			36.886	13.575		.173		82.12	8
	ATOM	78		GLU			35.078	13.478		3.378		82.78	8
	ATOM	70 79	C	GLU			35.161	18.026		3.381		50.51	6
50	ATOM	80	0	GLU			33.991	18.010		.995		49.94	8
50		81		LEU			35.761	19.120		8.865		43.71	7
	ATOM		N	LEU				20.398		.951		42.81	6
	ATOM	82	CA				35.047					39.21	6
	ATOM	83	CB	LEU			35.935	21.510 22.908		.510		36.34	6
55	MOTA	84	CG CD1	LEU			35.375			.836		36.93	6
כנ	ATOM	85 96		LEU			33.941	22.929				24.18	6
	ATOM	86 97		LEU			36.226	23.910		5.122		43.46	6
	MOTA	87	C	LEU			34.563	20.815		2.575			
	MOTA	88	0	LEU	A	22 L	33.392	21.104	4 2	.395	1.00	45.25	8

PCT/US99/06899

5	ATOM	143	CE1	HIS A		27.654	27.692	32,280	1.00 26.95	
	MOTA	144	NE2	HIS A		28.635	26.934	31.840	1.00 31.27	
	MOTA	145	С	HIS A	229	26.225	24.541	34.312	1.00 38.40	
	ATOM	146	0	HIS A	229	25.591	25.227	33.528	1.00 41.49	
	ATOM	147	N	VAL A	230	26.519	23.256	34.113	1.00 38.55	
10	MOTA	148	CA	VAL A	230	26.088	22.554	32.916	1.00 40.40	
	MOTA	149	CB	VAL A	230	26.890	21.256	32.701	1.00 44.68	
	ATOM	150	CG1	VAL A	230	26.557	20.656	31.345	1.00 39.39	
	ATOM	151	CG2	VAL A	230	28.381	21.509	32.817	1.00 42.18	3 6
	MOTA	152	С	VAL A	230	24.603	22.239	32.900	1.00 44.28	3 6
15	MOTA	153	0	VAL A	230	23.959	22.316	31.847	1.00 45.94	8
	ATOM	154	N	ALA A	231	24.072	21.862	34.059	1.00 45.59	7
	ATOM .	155	CA	ALA A	231	22.669	21.500	34.175	1.00 47.84	1 6
	MOTA	156	CB	ALA A		22.482	20.582	35.374	1.00 45.08	3 6
	ATOM	157	С	ALA A	231	21.792	22.734	34.314	1.00 48.04	1 6
20	ATOM	158	0	ALA A	231	20.565	22.647	34.324	1.00 49.95	5 8
	ATOM	159	N	THR A	232	22.436	23.894	34.384	1.00 47.26	5 7
	ATOM	160	CA	THR A		21.722	25.161	34.528	1.00 43.64	1 6
	ATOM	161	CB	THR A		22.112	25.832	35.850	1.00 41.93	3 6
	MOTA	162	OG1	THR A		23.467	26.283	35.791	1.00 39.10	8 (
25	ATOM	163	CG2	THR A		21.990	24.846	37.008	1.00 29.80) 6
	MOTA	164	С	THR A		22.055	26.114	33.387	1.00 43.9	7 6
	ATOM	165	0	THR A		21.679	27.279	33.436	1.00 40.55	5 8
	ATOM	166	N	ASN A		22.783	25.625	32.381	1.00 48.62	2 7
	ATOM	167	CA	ASN A		23.134	26.468	31.231	1.00 58.62	2 6
30	ATOM	168	CB	ASN A		24.626	26.283	30.880	1.00 62.44	1 6
	ATOM	169	CG	ASN A		25.141	27.355	29.927	1.00 68.35	5 6
	ATOM	170		ASN A		24.822	28.544	30.096	1.00 65.50	8 (
	ATOM	171		ASN A		25.951	26.951	28.959	1.00 74.29	7
	ATOM	172	С	ASN A		22.241	26.035	30.073	1.00 65.00	5 6
35	ATOM	173	0	ASN A		22.312	24.900	29.604	1.00 69.47	7 8
	ATOM	174	N	ALA A		21.381	26.954	29.646	1.00 68.80	7
	MOTA	175	CA	ALA A		20.423	26.708	28.564	1.00 70.98	3 6
	ATOM	176	CB	ALA A	234	19.748	28.015	28.186	1.00 71.43	3 6
	ATOM	177	С	ALA A	234	20.988	26.062	27.308	1.00 73.83	3 6
40	ATOM	178	0	ALA A		22.041	26.419	26.822	1.00 74.33	8 8
	ATOM	179	N	GLN A	235	20.227	25.096	26.819	1.00 75.0	7 7
	ATOM	180	CA	GLN A	235	20.562	24.363	25.629	1.00 76.32	2 6
	MOTA	181	CB	GLN A	235	20.328	25.239	24.391	1.00 76.98	3 6
	ATOM	182	CG	GLN A		18.887	25.292	23.908	1.00 77.0	7 6
45	ATOM	183	CD	GLN A	235	17.896	25.420	25.019	1.00 80.8	5 6
	ATOM	184	OE1	GLN A	235	17.668	24.448	25.768	1.00 82.03	L 8
	ATOM	185	NE2	GLN A	235	17.313	26.596	25.149	1.00 78.80	7
	ATOM	186	С	GLN A	235	21.960	23.840	25.573	1.00 77.19	5 6
	ATOM	187	0	GLN A		22.386	23.458	24.508	1.00 76.00	5 8
50	MOTA	188	N	GLY A	236	22.676	23.766	26.687	1.00 77.40	5 7
	ATOM	189	CA	GLY F		24.053	23.245	26.627	1.00 78.3	7 6
	ATOM	190	С	GLY F		24.923	23.491	25.390	1.00 79.43	3 6
	ATOM	191	0	GLY A		24.917	24.565	24.844	1.00 79.4	
	ATOM	192	N	SER A		25.739	22.526	24.991	1.00 77.98	
55	ATOM	193	CA	SER A		26.566	22.760	23.801	1.00 76.49	
	ATOM	194	CB	SER A		27.981	22.206	24.015	1.00 76.4	
	ATOM	195	OG	SER F		28.821	23.145	24.689	1.00 40.00	
	ATOM	196	C	SER F		25.938	22.127	22.542	1.00 75.3	

5	ATOM	251	CG	ARG A	243	21.665	31.636	17.305	1.00	40.00	6
-	ATOM	252	CD	ARG A		23.213	31.599	17.267	1.00	40.00	6
	ATOM	253	NE	ARG A		23.826	31.217	15.996	1.00	40.00	7
	MOTA	254	CZ	ARG A		25.113	31.439	15.714	1.00	40.00	6
	ATOM	255	NH1	ARG A		25.905	32.041	16.616		40.00	7
10	ATOM	256	NH2	ARG A		25.592	31.097	14.520		40.00	7
10	ATOM	257	C	ARG A		18.639	30.789	16.950		62.97	6
		258	0	ARG A		18.662	30.390	15.784		63.96	8
	ATOM			LYS A		17.771	31.692	17.393		62.41	7
	ATOM	259	N	LYS A		16.790	32.309	16.498		61.57	6
1.5	ATOM	260	CA				31.974	16.962		63.68	6
15	ATOM	261	CB	LYS A		15.368				71.29	6
	ATOM	262	CG	LYS A		15.102	30.471	17.104			6
	ATOM	263	CD	LYS A		13.641	30.167	17.468		73.83	
	ATOM	264	CE	LYS A		13.182	30.908	18.737		74.71	6
	ATOM	265	ΝZ	LYS A		13.951	30.536	19.970		73.32	7
20	ATOM	266	С	LYS A		17.009	33.806	16.501		59.30	6
	ATOM	267	0	LYS A		16.562	34.514	17.399		56.34	8
	ATOM	268	N		245	17.705	34.264	15.468		57.06	7
	ATOM	269	CA		245	18.045	35.692	15.333		59.01	6
	ATOM	270	CB	PHE A	4 245	18.825	35.947	14.049		59.62	6
25	ATOM	271	CG	PHE A	4 245	19.908	34.979	13.834		66.60	6
	MOTA	272	CD1	PHE A	4 245	19.618	33.714	13.399		67.17	6
	ATOM	273	CD2	PHE A	4 245	21.198	35.309	14.139		69.25	6
	ATOM	274	CE1	PHE A	A 245	20.614	32.794	13.255	1.00	69.92	6
	MOTA	275	CE2	PHE A	A 245	22.189	34.385	13.994	1.00	70.50	6
30	MOTA	276	CZ	PHE Z	4 245	21.897	33.126	13.552	1.00	70.89	6
	ATOM	277	С	PHE 2	A 245	16.856	36.620	15.340	1.00	60.68	6
	ATOM	278	0		4 245	15.946	36.516	14.528	1.00	62.37	8
	MOTA	279	N		246	16.919	37.558	16.272	1.00	60.10	7
	ATOM	280	CA	LEU A	246	15.884	38.554	16.437	1.00	59.44	6
35	ATOM	281	CB		A 246	16.227	39.510	17.585	1.00	57.43	6
	ATOM	282	CG	LEU Z	A 246	15.100	40.384	18.086	1.00	54.41	6
	MOTA	283		LEU Z		14.010	39.474	18.640	1.00	52.43	6
	ATOM	284	CD2		A 246	15.575	41.325	19.151	1.00	51.69	6
	ATOM	285	C		246	15.717	39.330	15.135	1.00	62.05	6
40	ATOM	286	0		A 246	16.706	39.609	14.430	1.00	59.85	8
	ATOM	287	N		A 247	14.473	39.668	14.784	1.00	63.33	7
	ATOM	288	CD		A 247	13.263	39.314	15.534		64.44	6
	ATOM	289	CA		A 247	14.198	40.421	13.558		63.56	6
	ATOM	290	СВ		A 247	12.687	40.671	13.600		64.42	6
45	MOTA	291	CG		A 247	12.161	39.922	14.729		64.90	6
73	ATOM	292	C		A 247	14.996	41.733	13.496		61.94	6
	ATOM	293	0		A 247	15.159	42.455	14.486		61.60	8
		294	N		A 248	15.506	42.006	12.299		61.33	7
	ATOM		CA		A 248	16.280	43.197	11.976		63.50	6
50	ATOM	295				16.481	43.273	10.437		66.94	6
50	ATOM	296	CB		A 248	17.012	44.671	9.966		68.70	6
	ATOM	297	CG		A 248		44.939	8.471		40.00	6
	ATOM	298	CD		A 248	16.981				40.00	8
	ATOM	299		GLU		16.432	44.144	7.644			
ہے	ATOM	300	OE2		A 248	17.509	46.015	8.086		40.00	8
55	ATOM	301	С		A 248		44.489	12.458		64.19	6
	ATOM	302	0		A 248	16.298	45.395	12.918		65.56	8
	ATOM	303	N		A 249		44.545	12.323		64.36	7
	ATOM	304	CA	ASP .	A 249	13.493	45.703	12.673	1.00	63.33	6

5	ATOM	19	C	ASP	A	265	12.3	326	49.943	22.9			65.64	6
	ATOM	20	0	ASP	A	265	12.	771	48.850	22.6	655		68.81	8
	MOTA	21	N	LEU	Α	266	11.3	256	50.152	23.7	702	1.00	65.12	7
	MOTA	22	CA	LEU	Α	266	10.3	368	49.169	24.2	288	1.00	63.40	6
	MOTA	23	CB	LEU	A	266	9.3	115	49.938	24.	708	1.00	67.34	6
10	ATOM	24	CG	LEU	Α	266	9.3	399	51.124	25.6	618	1.00	69.35	6
	ATOM	25	CD1	LEU	Α	266	8.3	304	52.148	25.5	533	1.00	68.24	6
	ATOM	26	CD2	LEU	Α	266	9.5	581	50.631	27.0)21	1.00	70.47	6
	ATOM	27	С	LEU	Α	266	9.9	940	47.888	23.5	559	1.00	59.67	6
	ATOM	28	0	LEU			9.	694	46.879	24.2	220	1.00	53.35	8
15	ATOM	29	N	GLU			9.8	815	47.904	22.2	235	1.00	58.01	7
	ATOM	30	CA	GLU					46.682	21.5	572	1.00	58.34	6
	ATOM	31	CB	GLU					46.855	20.0	048	1.00	59.21	6
	ATOM	32	CG	GLU					45.494	19.3		1.00	62.89	6
	ATOM	33	CD	GLU					45.592	17.8			67.66	6
20	ATOM	34	OE1	GLU					46.263	17.0			69.95	8
20	ATOM	35	OE2	GLU					44.974	17.			69.40	8
	ATOM	36	C	GLU			10.		45.683	21.8			57.67	6
	MOTA	37	0	GLU			10.3		44.485	21.9			58.34	8
	ATOM	38	N	ALA			11.		46.222	22.0			53.43	7
25	MOTA	39	CA	ALA			12.		45.454	22.3			49.00	6
23	ATOM	40	CB	ALA			14.		46.241	21.9			45.72	6
	ATOM	41	CD	ALA			12.		45.196	23.8			45.76	6
		42	0	ALA			12.		44.042	24.				8
	ATOM ATOM	43	N	PHE			12.		46.277	24.6			41.43	7
30		44	CA	PHE			12.		46.158	26.3			43.96	6
30	ATOM ATOM	45	CB	PHE			12.		47.426	26.			40.10	6
	ATOM	46	CG	PHE			12.		47.345	28.2			40.44	6
		47	CD1				13.		47.595	29.0			38.98	6
	MOTA	48		PHE			11.		46.946	28.9			37.15	6
35	ATOM ATOM	49		PHE			13.		47.469	30.4			32.12	6
33		50	CE2	PHE			11.		46.815	30.			38.41	6
	MOTA	51	CZ	PHE			12.		47.070	31.0			40.55	6
	MOTA	52	C	PHE			12.		45.012	26.			49.76	6
	ATOM	53	0	PHE			12.		44.324	27.			52.15	8
40	ATOM	5 <i>3</i>	Ŋ	SER			10.		44.835	25.				7
40	MOTA	54 55		SER					43.768	26.0				6
	MOTA		CA	SER					43.700	25.2			51.85	6
	ATOM	56 57	CB OG	SER					42.918	25.			53.42	8
	ATOM					270	10.		42.464	25.			49.38	6
45	MOTA	58 50	С			270	11.		41.741	26.			48.74	8
43	ATOM	59 60	0				10.		42.173	24.			50.15	7
	ATOM	60	N	HIS			11.		40.932	23.			51.67	6
	ATOM	61	CA	HIS					41.118	22.			58.52	6
	MOTA	62	CB	HIS			11.		40.885	21.			68.97	6
50	ATOM	63	CG	HIS			10.			20.			70.88	6
50	ATOM	64		HIS			10.		39.891	21.			70.88	7
	ATOM	65		HIS				673	41.732					6
	ATOM	66		HIS				936	41.242	20.			73.91	
	MOTA	67		HIS				495	40.132	19.			73.59	7
<i></i>	ATOM	68	С			271	12.		40.416	24.			48.33	6
55	MOTA	69	0			271		707	39.225	24.			48.39	8
	ATOM	70	N			272	13.		41.334	25.			41.34	7
	ATOM	71	CA			272		130	41.001	26.			39.44	6
	ATOM	72	CB	PHE	A	272	15.	077	42.194	26.	212	1.00	36.67	6

5	ATOM	127	0	ALA A	279	18.523	32.555	34.789	1.00 33.74	8
	ATOM	128	N	ILE A	280	17.060	34.215	35.260	1.00 29.96	7
	ATOM	129	CA	ILE A		17.459	34.362	36.646	1.00 25.94	6
	ATOM	130	СВ	ILE A		16.686	35.484	37.315	1.00 26.95	6
	ATOM	131	CG2	ILE A		17.109	35.632	38.733	1.00 15.40	6
10	ATOM	132	CG1	ILE A		16.931	36.808	36.595	1.00 26.73	6
10	ATOM	133	CD1	ILE A		16.292	38.002	37.272	1.00 34.31	6
	ATOM	134	C	ILE A		17.263	33.066	37.412	1.00 31.39	6
	ATOM	135	0	ILE A		18.116	32.679	38.207	1.00 35.69	8
				THR A		16.145	32.386	37.165	1.00 30.90	7
1.5	ATOM	136	N	THR A		15.854	31.118	37.103	1.00 33.49	6
15	ATOM	137	CA			14.598	30.413	37.031	1.00 37.18	6
	ATOM	138	CB	THR A		14.795	30.099	35.898	1.00 46.48	8
	ATOM	139	OG1	THR A				37.444	1.00 32.85	6
	ATOM	140	CG2	THR A		13.352	31.281		1.00 32.83	6
20	ATOM	141	C	THR A		17.045	30.176	37.713		8
20	ATOM	142	0	THR A		17.478	29.546	38.684	1.00 25.55	
	MOTA	143	N	ARG A		17.561	30.076	36.489	1.00 32.70	7
	ATOM	144	CA	ARG A		18.692	29.198	36.218	1.00 34.27	6
	MOTA	145	CB	ARG A		19.136	29.374	34.780	1.00 33.78	6
	MOTA	146	CG	ARG A		19.272	28.086	34.013	1.00 45.15	6
25	MOTA	147	CD	ARG A		18.179	27.921	32.977	1.00 58.24	6
	ATOM	148	NE	ARG A		18.041	29.077	32.117	1.00 68.41	7
	ATOM	149	CZ	ARG A	282	19.018	29.529	31.352	1.00 72.31	6
	MOTA	150	NH1	ARG A		20.190	28.886	31.327	1.00 77.89	7
	ATOM	151	NH2	ARG A		18.802	30.593	30.595	1.00 69.25	7
30	ATOM	152	С	ARG A		19.823	29.582	37.170	1.00 34.81	6
	ATOM	153	0	ARG A	282	20.380	28.735	37.855	1.00 36.03	8
	ATOM	154	N	VAL A	283	20.135	30.882	37.190	1.00 31.71	7
	MOTA	155	CA	VAL A	283	21.171	31.434	38.057	1.00 30.16	6
	MOTA	156	CB	VAL A	283	21,198	32.965	37.981	1.00 29.00	6
35	ATOM	157	CG1	VAL A	283	22.208	33.533	38.952	1.00 28.64	6
	ATOM	158	CG2	VAL A	283	21.525	33.415	36.578	1.00 28.28	6
	ATOM	159	С	VAL A	283	20.942	30.992	39.498	1.00 32.50	6
	ATOM	160	0	VAL A	283	21.879	30.717	40.229	1.00 33.48	8
	ATOM	161	N	VAL A	284	19.671	30.941	39.892	1.00 30.96	7
40	MOTA	162	CA	VAL A	284	19.289	30.527	41.239	1.00 29.14	6
	MOTA	163	CB	VAL A	284	17.822	30.865	41.548	1.00 31.27	6
	ATOM	164	CG1	VAL A	284	17.472	30.461	42.945	1.00 24.21	6
	MOTA	165	CG2	VAL A	284	17.555	32.334	41.360	1.00 30.51	6
	MOTA	166	С	VAL A	284	19.529	29.037	41.353	1.00 28.89	6
45	MOTA	167	0	VAL A		20.073	28.568	42.345	1.00 27.29	8
	MOTA	168	N	ASP A	285	19.121	28.296	40.327	1.00 28.76	7
	MOTA	169	CA	ASP A		19.277	26.842	40.306	1.00 35.32	6
	MOTA	170	СВ	ASP A		18.586	26.234	39.072	1.00 33.29	6
	ATOM	171	CG	ASP A		17.083	26.277	39.149	1.00 38.15	6
50	ATOM	172		ASP A		16.484	25.743	40.110	1.00 34.70	8
	ATOM	173		ASP A		16.431	26.828	38.231	1.00 34.43	8
	ATOM	174	C	ASP A		20.751	26.449	40.305	1.00 36.70	6
	ATOM	175	0	ASP A		21.106	25.389	40.808	1.00 37.96	8
	ATOM	176	N	PHE A		21.604	27.300	39.737	1.00 35.96	7
55	ATOM	177	CA	PHE A		23.029	27.022	39.704	1.00 37.10	6
))	ATOM	178	CB	PHE A		23.754	28.009	38.793	1.00 37.97	6
	ATOM	179	CG	PHE A		25.252	28.027	38.987	1.00 36.50	6
		180		PHE A		25.252	26.849	38.974	1.00 36.75	6
	ATOM	TOO	CDI	FRE P	200	20.903	20.033	50.514	1.00 30.75	-

5	ATOM	235	CB	PHE	A	293	25.398			40 715		\$0.98	6
	MOTA	236	CG	PHE	Α	293	24.348	29	.168	47.524		42.78	6
	MOTA	237	CD1	PHE	A	293	24.654	30	.493	47.747	1.00	44.40	6
	ATOM	238	CD2	PHE	A	293	23.071	. 28	.833	47.116	1.00	43.66	6
	ATOM	239	CE1	PHE	A	293	23.701	. 31	.478	47.564	1.00	39.83	6
10	MOTA	240	CE2	PHE	A	293	22.112	29	.819	46.930	1.00	46.21	6
	MOTA	241	CZ	PHE	A	293	22.430	31	.146	47.155	1.00	45.18	6
	ATOM	242	С	PHE	A	293	24.979	27	.772	50.164	1.00	45.54	6
	ATOM	243	0	PHE	А	293	24.686	28	.576	51.034	1.00	42.01	8
	ATOM	244	N	CYS	Α	294	24.426	26	.572	50.062	1.00	47.05	7
15	MOTA	245	CA	CYS			23.386	26	.125	50.962	1.00	50.15	6
	ATOM	246	СВ	CYS			22.944		.733	50.524	1.00	45.90	6
	ATOM	247	SG	CYS			22.303		.663	48.829	1.00	51.50	16
	ATOM	248	C	CYS			23.825		.125	52.423		51.38	6
	ATOM	249	0	CYS			23.008		.954	53.322		53.83	8
20	MOTA	250	N	GLU			25.119		.327	52.645		49.72	7
20	MOTA	251	CA	GLU			25.666		.384	53.996		52.53	6
	ATOM	252	CB	GLU			27.103		.830	54.015		57.40	6
	ATOM	253	CG	GLU			27.182		.309	54.061		69.63	6
	ATOM	253 254	CD	GLU			26.660		.747	55.342		78.49	6
25		255	OE1	GLU			27.291		.946	56.412		82.82	8
23	ATOM	255 256	OE1	GLU			25.590		.086	55.335		85.30	8
	ATOM	256 257	C	GLU			25.653		.831	54.488	1.00	48.54	6
	ATOM			GLU			26.365		.184	55.426	1.00	49.82	8
	MOTA	258	0				24.804		.631	53.846	1.00	43.79	7
20	MOTA	259	N O T	LEU			24.670		.034	54.159	1.00	45.42	6
30	ATOM	260	CA	LEU LEU			25.062		.864	52.923	1.00	41.04	6
	ATOM	261	CB				26.438		.658	52.315	1.00	42.74	6
	MOTA	262	CG	LEU		296			.030	50.861			6
	ATOM	263	CD1	LEU		296	26.447			53.086	1.00	39.44	6
25	ATOM	264	CD2	LEU		296	27.437		.454 .366	54.548		45.56	6
35	MOTA	265	С	LEU		296	23.239					43.07	8
	ATOM	266	0	LEU		296	22.301		.660	54.148 55.365		46.99	7
	ATOM	267	N	PRO		297	23.050		.405	55.930		47.12	6
	ATOM	268	CD	PRO		297	24.121			55.787		49.61	6
40	MOTA	269	CA	PRO			21.700		.811		1.00	49.81	6
40	MOTA	270	CB	PRO			21.93		.990	56.738 56.872	1.00		6
	ATOM	271	CG	PRO			23.401		.155		1.00	51.28	
	MOTA	272	C	PRO			20.864		.212	54.558		49.59	6
	MOTA	273	0	PRO			21.402		.684	53.556		51.66	8
	ATOM	274	N			298	19.545		.035	54.655		51.02	7
45	MOTA	275	CA	CYS			18.618		.369	53.567		52.86	6
	MOTA	276	CB			298	17.20		.877	53.915		54.57	6
	ATOM	277	SG	CYS			16.040		.162	54.440		67.87	16
	MOTA	278	С			298	18.583		.863	53.291		48.51	6
	MOTA	279	0			298	18.039		.288	52.282		49.58	8
50	MOTA	280	N			299	19.14		.654	54.202		44.17	7
	MOTA	281	CA			299	19.179		.096	54.016		47.57	6
	MOTA	282	CB	GLU	A	299	19.26		.833	55.360		49.92	6
	MOTA	283	CG			299	17.93		.996	56.125		59.30	6
	ATOM	284	CD	GLU	A	299	17.613		.904	57.095		63.80	6
55	MOTA	285	OE1	GLU	A	299	16.512		.952	57.706		69.03	8
	MOTA	286	OE2	GLU	A	299	18.43		.976	57.292		67.10	8
	ATOM	287	С	GLU	A	299	20.35	36	.492	53.152		46.57	6
	ATOM	288	0	GLU	A	299	20.26	5 37	.441	52.379	1.00	44.65	8

								7		,
5	ATOM	343	CE	LYS A			42.515	•	1.00 53.26	6
	MOTA	344	NZ	LYS A			43.548	47.038	1.00 59.61	7
	MOTA	345	С	LYS A			40.527	43.302	1.00 35.25	6
	MOTA	346	0	LYS A		21.972	41.286	42.334	1.00 33.95	8
	MOTA	347	N	GLY A		23.228	40.306	43.928	1.00 35.79	7
10	MOTA	348	CA	GLY A		24.445	40.962	43.482	1.00 34.59	6
	MOTA	349	С	GLY A		25.109	40.353	42.259	1.00 33.80	6
	MOTA	350	0	GLY A		25.489	41.087	41.344	1.00 31.59	8
	MOTA	351	N	CYS A		25.248	39.024	42.256	1.00 31.15	7
	MOTA	352	CA	CYS A		25.899	38.326	41.174	1.00 29.04	6
15	ATOM	353	CB	CYS A		26.604	37.089	41.704	1.00 27.59	6
	MOTA	354	SG	CYS A		25.472	35.770	42.071	1.00 30.50	16
	MOTA	355	С	CYS A		24.974	37.870	40.062	1.00 30.59	6
	MOTA	356	0	CYS A		25.458	37.319	39.077	1.00 33.77	8
	MOTA	357	N	CYS A		23.664	38.084	40.195	1.00 28.46	7
20	MOTA	358	CA	CYS 7		22.739	37.623	39.168	1.00 30.10	6
	MOTA	359	CB	CYS A			38.004	39.490	1.00 33.43	6
	MOTA	360	SG	CYS A			37.299	38.307	1.00 35.20	16
	MOTA	361	С	CYS A		23.065	38.123	37.788	1.00 27.72	6
	MOTA	362	0	CYS A		23.212	37.334	36.865	1.00 27.69	8
25	MOTA	363	N	MET A			39.439	37.639	1.00 26.15	7
	MOTA	364	CA	MET A		23.476	40.016	36.342	1.00 26.06	6
	MOTA	365	CB	MET A			41.547	36.419	1.00 25.32	6
	MOTA	366	CG	MET A			42.230	35.109	1.00 24.08	6
•	MOTA	367	SD	MET A			41.751	33.762	1.00 27.71	16
30	ATOM	368	CE	MET A			42.321	32.270	1.00 28.50	6
	ATOM	369	С	MET A			39.527	35.908	1.00 25.94	6
	ATOM	370	0	MET A			39.076	34.788	1.00 28.09	8
	ATOM	371	N	GLU A			39.638	36.826	1.00 25.39	7
2.5	ATOM	372	CA.	GLU A		27.176	39.234	36.589	1.00 27.03	6
35	ATOM	373	CB	GLU A			39.303	37.900	1.00 24.39	6
	MOTA	374	CG	GLU A			40.628	38.668	1.00 26.00	6
	ATOM	375	CD	GLU Z			40.720	39.870	1.00 23.95	6 8
	ATOM	376	OE1	GLU A			39.706 41.818	40.588 40.159	1.00 19.72 1.00 26.51	8
40	ATOM	377	OE2	1					1.00 28.51	6
40	ATOM	378	С	GLU A			37.827 37.620	35.997 35.014	1.00 27.31	8
	ATOM	379	0	GLU A					1.00 29.87	7
	ATOM	380	n ca		A 312 A 312		36.866 35.497	36.602 36.112	1.00 25.71	6
	ATOM	381 382	CB		312		34.518	37.123	1.00 23.71	6
45	MOTA	383	CG2	ILE A			33.123	36.533	1.00 20.27	6
43	ATOM ATOM	384		ILE			34.471	38.398	1.00 20.88	6
		385		ILE			33.342	39.341	1.00 18.15	6
	ATOM ATOM	386	CDI		4 312		35.371	34.791	1.00 27.91	6
	ATOM	387	0		A 312		34.593	33.934	1.00 28.96	8
50	MOTA	388	Ŋ	MET			36.130	34.633	1.00 27.66	7
50	ATOM	389	CA	MET A			36.081	33.395	1.00 30.18	6
	ATOM	390	CB	MET .			36.888	33.508	1.00 36.89	6
		391	CG	MET .			36.198	34.305	1.00 37.95	6
	ATOM	391	SD	MET .			36.817	34.055	1.00 37.33	16
55	ATOM ATOM	393	CE	MET .			38.503	34.740	1.00 40.68	6
JJ		393 394	CE	MET .			36.579	32.222	1.00 40.00	6
	ATOM ATOM	395	0	MET .			35.814	31.308	1.00 27.43	8
		396	N		a 314		37.859	32.253	1.00 24.88	7
	ATOM	350	1.0	JER.	, J14	23.209	57.059	52.255	2.00 24.00	,

	VV () 22/00										
5	ATOM	451	СВ	TYR A	321	30.083	36.810	21.575	1.00	38.01	6
	MOTA	452	CG	TYR A	321	30.601	37.650	20.448	1.00	37.94	6
	ATOM	453	CD1	TYR A	321	29.733	38.296	19.574	1.00	33.85	6
	ATOM	454	CE1	TYR A		30.235	39.037	18.494	1.00	34.49	6
	ATOM	455	CD2	TYR A		31.966	37.743	20,224	1.00	28.03	6
10	ATOM	456	CE2	TYR A		32.473	38.475	19.153		32.69	6
10	ATOM	457	CZ	TYR A		31.612	39.125	18.276		35.18	6
	MOTA	458	OH	TYR A		32.107	39.866	17.223		39.48	8
	ATOM	459	C	TYR A		30.085	35.005	19.877		45.51	6
	MOTA	460	0	TYR A		31.261	34.697	19.951		48.02	8
15				ASP A		29.354	34.879	18.773		44.56	7
15	MOTA	461	N	ASP A		29.912	34.400	17.502		45.86	6
	ATOM	462	CA							46.64	6
	ATOM	463	CB	ASP A		28.804	33.670	16.736			
	ATOM	464	CG	ASP A		29.050	33.608	15.255		40.00	6
	MOTA	465		ASP A		30.010	34.256	14.768		40.00	8
20	ATOM	466		ASP A		28.262	32.929	14.536		40.00	8
	ATOM	467	С	ASP A		30.460	35.629	16.755		45.82	6
	MOTA	468	0	ASP A		29.678	36.464	16.271		45.38	8
	MOTA	469	N	PRO A		31.800	35.735	16.584		46.53	7
	MOTA	470	CD	PRO A		32.774	34.719	16.991		47.16	6
25	MOTA	471	CA	PRO A		32.424	36.889	15.890		46.63	6
	MOTA	472	CB	PRO A		33.921	36.603	15.936		43.95	6
	MOTA	473	CG	PRO A		34.099	35.303	16.582		43.93	6
	MOTA	474	С	PRO A		31.953	37.087	14.453		48.34	6
	MOTA	475	0	PRO A		31.797	38.210	13.960		50.84	8
30	MOTA	476	N	GLU A	324	31.778	35.970	13.752	1.00	52.39	7
	ATOM	477	CA	GLU A	324	31.339	35.968	12.370	1.00	55.85	6
	MOTA	478	CB	GLU A	324	31.035	34.528	11.965	1.00	55.54	6
	MOTA	479	CG	GLU A	324	32.224	33.584	12.104	1.00	40.00	6
	MOTA	480	CD	GLU A	324	33.432	34.023	11.310	1.00	40.00	6
35	ATOM	481	OE1	GLU A	324	33.350	35.040	10.555	1.00	40.00	8
	MOTA	482	OE2	GLU A	324	34.506	33.356	11.415	1.00	40.00	8
	MOTA	483	С	GLU A	324	30.077	36.798	12.277	1.00	54.94	6
	MOTA	484	0	GLU A	324	30.070	37.892	11.730	1.00	59.81	8
	MOTA	485	N	SER A	325	29.009	36.212	12.810	1.00	52.95	7
40	ATOM	486	CA	SER A	325	27.695	36.812	12.839	1.00	50.10	6
	ATOM	487	CB	SER A	325	26.701	35.797	13.402	1.00	48.23	6
	ATOM	488	OG	SER A		27.183	35.239	14.615	1.00	48.71	8
	MOTA	489	С	SER A	325	27.651	38.093	13.659	1.00	50.61	6
	ATOM	490	0	SER A	325	26.885	38.992	13.354	1.00	52.19	8
45	MOTA	491	N	GLU A		28.495	38.168	14.687	1.00	45.64	7
	ATOM	492	CA	GLU A		28.567	39.341	15.546	1.00	43.35	6
	MOTA	493	СВ	GLU A		28.830	40.608	14.711		42.74	6
	ATOM	494	CG	GLU A		30.148	40.606	13.945		50.32	6
	ATOM	495	CD	GLU A		30.451	41.925	13.313		56.34	6
50	MOTA	496		GLU A		31.509	42.046	12.649		59.31	8
50	ATOM	497		GLU A		29.656	42.890	13.452		55.74	8
	MOTA	498	C	GLU A		27.288	39.526	16.340		40.23	6
	ATOM	499	0	GLU A		26.695	40.603	16.340		40.44	8
						26.888	38.474	17.051		35.90	7
55	MOTA	500	N Ca	THR A			38.506	17.860		37.29	6
55	MOTA	501	CA	THR A		25.663					
	MOTA	502	CB	THR A		24.466	38.057	17.024		37.63	6
	MOTA	503		THR A		24.661	36.709	16.580		38.12	8
	MOTA	504	(16 2	THR A	321	24.269	38.965	15.810	1.00	39.90	6

5	ATOM	559	N	ALA	A	335	19	.234	35.371	19.444	1.00	51.00	7
	ATOM	560	CA	ALA			20	.520	35.932	19.039	1.00	48.98	6
	ATOM	561	CB	ALA	A	335	20	.997	35.254	17.768	1.00	47.86	6
	ATOM	562	С	ALA				.342	37.420	18.805	1.00	51.01	6
	ATOM	563	0	ALA				.594	37.830	17.919		51.61	8
10	ATOM	564	N	VAL				.024	38.232	19.612		46.62	7
10	ATOM	565	CA	VAL				.910	39.699	19.502		42.35	6
	MOTA	566	CB	VAL				.517	40.325	20.840		42.41	6
	ATOM	567	CG1					.242	39.691	21.361		42.00	6
				VAL				.639	40.211	21.852		40.32	6
15	MOTA	568							40.211	19.036		45.33	6
15	MOTA	569	C	VAL				.204					
	ATOM	570	0	VAL				.263	39.691	19.025		47.42	8
	MOTA	571	N	THR				.090	41.590	18.668		41.60	7
	ATOM	572	CA	THR				.230	42.377	18.175		39.69	6
	ATOM	573	CB	THR				.882	43.061	16.852		41.35	6
20	ÁTOM	574	OG1					.987	44.157	17.080		49.35	8
	MOTA	575						.216	42.067	15.904		40.38	6
	ATOM	576	C	THR				.588	43.481	19.159		37.88	6
	ATOM	577	0	THR	A	337		.734	43.989	19.892	1.00	34.06	8
	ATOM	578	N	ARG	A	338	24	.865	43.849	19.138	1.00	37.61	7
25	MOTA	579	CA	ARG	A	338	25	.388	44.919	19.984	1.00	38.68	6
	ATOM	580	CB	ARG	A	338	26	.669	45.479	19.351	1.00	35.95	6
	ATOM	581	CG	ARG	Ą	338	27	.250	46.713	20.038	1.00	38.83	6
	ATOM	582	CD	ARG	A	338	28	.443	47.254	19.247	1.00	35.88	6
	ATOM	583	NE	ARG	A	338	29	.559	46.320	19.175	1.00	37.42	7
30	MOTA	584	CZ	ARG	Α	338	30	.449	46.122	20.145	1.00	30.20	6
	ATOM	585	NH1	ARG	A	338	30	.338	46.791	21.295	1.00	27.98	7
	MOTA	586	NH2	ARG	Α	338	31	.433	45.240	19.954	1.00	27.40	7
	ATOM	587	С	ARG	A	338	24	.333	46.010	20.085	1.00	38.09	6
	ATOM	588	0	ARG	Α	338	23	.894	46.397	21.169	1.00	34.12	8
35	ATOM	589	N	GLY	A	339	23	.915	46.496	18.922	1.00	41.25	7
	MOTA	590	CA	GLY	Α	339	22	.918	47.547	18.890	1.00	41.35	6
	MOTA	591	С	GLY	A	339	21	.692	47.140	19.672	1.00	41.23	6
	ATOM	592	0	GLY	Ą	339	21	.445	47.671	20.750	1.00	38.30	8
	MOTA	593	N	GLN			20	.924	46.203	19.105	1.00	38.58	7
40	ATOM	594	CA	GLN	A	340	19	.701	45.700	19.729	1.00	40.79	6
	ATOM	595	СВ	GLN				.436	44.260	19.253	1.00	40.82	6
	ATOM	596	CG	GLN				.087	44.146	17.767	1.00	41.10	6
	ATOM	597	CD	GLN				.876	42.705	17.305		48.84	6
	ATOM	598		GLN				.826	41.888	17.309		50.53	8
45	ATOM	599		GLN				.650	42.393	16.907		54.25	7
.5	ATOM	600	C	GLN				.779	45.750	21.263		41.50	6
	ATOM	601	0	GLN				.998	46.444	21.923		42.72	8
	ATOM	602	N	LEU				.758	45.026	21.806		42.00	7
	ATOM	603	CA	LEU				.952	44.947	23.243		38.10	6
50	ATOM	604	CB	LEU				.209	44.145	23.575		36.66	6
50		605	CG	LEU				.361	43.804	25.029		39.94	6
	ATOM	606		LEU				.219	42.884	25.410		34.98	6
	MOTA							.685	43.128			40.95	6
	ATOM	607		LEU						25.284			
£ 5	MOTA	608	С	LEU				.072	46.321	23.860		36.37	6
55	ATOM	609	0	LEU				.484	46.588	24.892		37.89	8
	ATOM	610	N	LYS				.848	47.184	23.209		33.29	7
	ATOM	611	CA	LYS				.089	48.546	23.679		35.17	6
	MOTA	612	CB	LYS	A	342	23	.057	49.242	22.721	1.00	34.97	6

								nu.	11.7	5.0.136	لحاثال	
5	MOTA	667	N	ASP			27.945		2.591		28.60	7
	MOTA	668	CA	ASP			29.351	47.437	24.183		29.82	6
	MOTA	669	CB	ASP		351	29.808	48.891	24.105		27.49	6
	MOTA	670	CG	ASP		351	28.875	49.744	23.303		30.22	6
	MOTA	671	ODI			351	28.055	50.483	23.909		32.61	8
10	MOTA	672	OD2	ASP		351	28.942	49.714	22.044		30.02	8
	MOTA	673	С	ASP	A	351	30.173	46.653	25.231		30.63	6
	ATOM	674	0			351	30.981	45.792	24.903		29.54	8
	ATOM	675	N	ALA		352	29.939	46.949	26.503		25.33	7
	MOTA	676	CA	ALA	Α	352	30.623	46.280	27.602	1.00	28.59	6
15	MOTA	677	CB	ALA	A	352	30.072	46.799	28.922	1.00	20.95	6
	MOTA	678	С	ALA	A	352	30.492	44.756	27.527	1.00	29.69	6
	MOTA	679	0	ALA	A	352	31.481	44.054	27.587	1.00	30.36	8
	MOTA	680	N	ILE	Α	353	29.260	44.260	27.413	1.00	27.63	7
	ATOM	681	CA	ILE	A	353	29.003	42.832	27.326	1.00	27.55	6
20	ATOM	682	CB	ILE	Α	353	27.512	42.528	27.429	1.00	28.04	6
	ATOM	683	CG2	ILE	Α	353	27.269	41.042	27.289	1.00	23.68	6
	ATOM	684	CG1	ILE	A	353	26.955	42.965	28.789	1.00	27.33	6
	ATOM	685	CD1	ILE	Α	353	25.452	42.688	28.944	1.00	26.23	6
	MOTA	686	С	ILE	Α	353	29.534	42.207	26.054	1.00	30.88	6
25	ATOM	687	0	ILE	A	353	30.007	41.076	26.068	1.00	31.22	8
	MOTA	688	N	PHE	Α	354	29.426	42.917	24.939	1.00	29.86	7
	ATOM	689	CA	PHE	A	354	29.922	42.369	23.686	1.00	31.08	6
	ATOM	690	CB	PHE	Α	354	29.371	43.146	22.487	1.00	28.80	6
	ATOM	691	CG	PHE	A	354	28.029	42.643	21.988	1.00	28.80	6
30	MOTA	692	CD1	PHE	A	354	26.872	42.842	22.724	1.00	30.96	6
	MOTA	693	CD2	PHE	A	354	27.950	41.953	20.783	1.00	29.45	6
	MOTA	694	CEl	PHE	A	354	25.657	42.360	22.250	1.00	27.12	6
	MOTA	695	CE2	PHE	Α	354	26.738	41.470	20.305	1.00	25.19	6
	MOTA	696	CZ	PHE	Α	354	25.590	41.672	21.038	1.00	28.09	6
35	ATOM	697	С	PHE	Α	354	31.444	42.399	23.682	1.00	29.17	6
	ATOM	698	0	PHE	A	354	32.087	41.389	23.398	1.00	32.62	8
	ATOM	699	N	ASP	A	355	32.013	43.569	23.980	1.00	23.86	7
	ATOM	700	CA	ASP	A	355	33.466	43.739	24.030	1.00	25.34	6
	ATOM	701	CB	ASP	A	355	33.820	45.053	24.737	1.00	21.41	6
40	MOTA	702	CG	ASP	A	355	33.841	46.226	23.809	1.00	32.08	6
	MOTA	703	OD1	ASP	A	355	32.979	46.322	22.902	1.00	33.58	8
	ATOM	704	OD2	ASP	A	355	34.711	47.117	23.968	1.00	33.20	8
	ATOM	705	C	ASP	A	355	34.074	42.559	24.781	1.00	27.86	6
	MOTA	706	0	ASP			35.131	42.053	24.410	1.00	32.42	8
45	MOTA	707	N	LEU	Α	356	33.387	42.128	25.843	1.00	26.84	7
	ATOM	708	CA	LEU	A	356	33.845	40.993	26.642	1.00	28.66	6
	MOTA	709	CB	LEU	Α	356	32.893	40.747	27.825	1.00	25.37	6
	ATOM	710	CG			356	33.235	39.608	28.755	1.00	27.61	6
	ATOM	711		LEU			34.538	39.917	29.451	1.00	25.43	6
50	ATOM	712		LEU			32.149	39.414	29.765	1.00	27.49	6
	ATOM	713	С			356	33.849	39.779	25.723	1.00	30.44	6
	ATOM	714	0			356	34.884	39.160	25.470	1.00	31.55	8
	ATOM	715	N			357	32.661	39.451	25.218		32.69	7
	ATOM	716	CA			357	32.511	38.304	24.338		29.87	6
55	ATOM	717	C			357	33.653	38.157	23.359		33.12	6
	ATOM	718	Ō			357	34.302	37.110	23.323		29.41	8
	MOTA	719	N			358	33.876	39.206	22.564		33.31	7
	MOTA	720	CA			358	34.949	39.206	21.580		35.87	6

5	MOTA	77 5	CG	LEU	A	365	36.990	31.150	29.185		38.91	6
	MOTA	776	CD1	LEU	A	365	36.316	32.216	30.036	1.00	34.47	6
	MOTA	777	CD2	LEU	Α	365	38.406	30.883	29.663	1.00	34.24	6
	ATOM	778	С	LEU	A	365	35.830	27.590	28.262	1.00	26.23	6
	ATOM	779	0	LEU	A	365	34.890	27.649	27.472	1.00	27.06	8
10	ATOM	780	N	ASP	Α	366	36.083	26.528	29.021	1.00	25.23	7
	MOTA	781	CA	ASP		366	35.213	25.358	28,988	1.00	26.07	6
	MOTA	782	CB	ASP			36.027	24.049	29.033		29.68	6
	MOTA	783	CG	ASP			36.799	23.874	30.303		35.74	6
	MOTA	784		ASP			36.285	24.177	31.402		36.78	8
15	ATOM	785		ASP			37.959	23.386	30.240		41.23	8
13	ATOM	786	C	ASP			34.278	25.434	30.181		27.70	, 6
							34.587	26.097	31.173		31.94	8
	MOTA	787	0	ASP								7
	ATOM	788	N	ASP			33.141	24.743	30.066		29.18	
0.0	MOTA	789	CA	ASP			32.120	24.679	31.120		32.72	6
20	MOTA	790	CB	ASP			31.472	23.284	31.147		38.04	6
	MOTA	791	CG	ASP			30.806	22.924	29.854		42.43	6
	MOTA	792		ASP			29.877	23.650	29.409		35.95	8
	MOTA	793	OD2	ASP			31.186	21.884	29.250		51.42	8
	ATOM	794	С	ASP			32.754	24.969	32.482		33.71	6
25	MOTA	795	0	ASP			32.484	26.000	33.098		38.30	8
	ATOM	796	N	THR			33.602	24.032	32.919	1.00	31.06	7
	MOTA	797	CA	THR	A	368	34.329	24.124	34.181		26.28	6
	MOTA	798	CB	THR	A	368	35.559	23.222	34.141		27.30	6
	MOTA	799	OG1	THR	Α	368	35.161	21.871	33.885	1.00	33.42	8
30	MOTA	800	CG2	THR	A	368	36.323	23.303	35.454	1.00	25.16	6
	ATOM	801	С	THR	A	368	34.764	25.557	34.479	1.00	21.13	6
	ATOM	802	0	THR	Α	368	34.408	26.153	35.503	1.00	23.17	8
	MOTA	803	N	GLU	A	369	35.545	26.092	33.551	1.00	21.32	7
	ATOM	804	CA	GLU	A	369	36.065	27.435	33.661	1.00	28.00	6
35	MOTA	805	CB	GLU	A	369	36.960	27.707	32.453	1.00	32.79	6
	MOTA	806	CG	GLU	A	369	38.089	26.663	32.346	1.00	36.29	6
	MOTA	807	CD	GLU	A	369	38.906	26.747	31.110	1.00	41.03	6
	MOTA	808	OE1	GLU	Α	369	38.337	26.744	29.994	1.00	42.05	8
	ATOM	809	OE2	GLU	Α	369	40.158	26.795	31.218	1.00	42.03	8
40	ATOM	810	С	GLU	Α	369	34.953	28.471	33.821	1.00	25.57	6
	MOTA	811	0	GLU	Α	369	34.987	29.256	34.760	1.00	20.56	8
	ATOM	812	N	VAL			33.967	28.463	32,921	1.00	25.39	7
	ATOM	813	CA	VAL			32.849	29.396	33.029	1.00	25.99	6
	ATOM	814	CB	JAV			31.763	29.131	31.987		26.15	6
45	MOTA	815		VAL			30.609	30.093	32.183		27.65	6
	ATOM	816		VAL			32.306	29.251	30.592		17.70	6
	ATOM	817	C	VAL			32.245	29.209	34.412		26.49	6
	ATOM	818	o	VAL			32.012	30.170	35.147		28.16	8
	ATOM	819	N	ALA			31.988	27.947	34.739		21.01	7
50		820	CA	ALA			31.393	27.554	36.011		19.57	6
50	ATOM	821	CB	ALA			31.441	26.039	36.145		18.62	6
	MOTA							28.211	37.177		23.48	6
	MOTA	822	C	ALA			32.116					8
	ATOM	823	0	ALA			31.531	28.989	37.931		32.67	
55	ATOM	824	N	LEU			33.401	27.893	37.305		22.89	7 6
55	ATOM	825	CA	LEU			34.217	28.447	38.369		23.28	
	ATOM	826	CB	LEU			35.675	27.996	38.178		27.76	6
	ATOM	827	CG	LEU			35.943	26.524	38.415		21.18	6
	ATOM	828	CD1	LEU	A	372	37.356	26.171	38.049	1.00	27.64	6

_						21 125		UG -ZAS	400013333 ₇₂	_
5	ATOM	883	C	MET A		31.485				6 8
	ATOM	884	0 .	MET A		32.567	35.450 36.555	47.305 46.315	1.00 36.29 1.00 34.49	7
	MOTA	885	N		380	30.889		46.550	1.00 34.49	6
	ATOM	886	CA		A 380	31.498 30.921	37.853 38.890	45.576	1.00 33.97	6
10	MOTA	887	CB		380			44.230	1.00 31.24	8
10	MOTA	888	OG		A 380	31.205	38.543	47.992	1.00 39.42	6
	ATOM	889	C		380	31.179	38.239	48.357	1.00 39.69	8
	ATOM	890	0		A 380	30.029	38.446	48.812	1.00 41.04	7
	ATOM	891	N		A 381	32.214	38.313			6
1.5	ATOM	892	CA		A 381	32.060	38.640	50.216	1.00 44.91 1.00 44.50	6
15	ATOM	893	CB		A 381	33.324	38.234	50.951 50.510		8
	ATOM	894	OG		A 381	34.431	39.002		1.00 45.42	6
	ATOM	895	С		A 381	31.795	40.106	50.499	1.00 44.59	8
	ATOM	896	0		A 381	31.476	40.470	51.618	1.00 49.32 1.00 43.75	7
20	ATOM	897	N		A 382	31.939	40.942	49.486	1.00 43.73	6
20	ATOM	898	CA		A 382	31.744	42.362	49.641	1.00 48.39	6
	ATOM	899	CB		A 382	32.673	43.111	48.677		6
	ATOM	900	CG		A 382	32.572	42.624	47.263	1.00 53.23	8
	MOTA	901	OD1	ASP A		32.705	41.400	47.034	1.00 56.97	
0.5	MOTA	902		ASP 2		32.358	43.454	46.333	1.00 58.91	8
25	ATOM	903	C		A 382	30.314	42.885	49.507	1.00 41.09 1.00 40.93	6 8
	ATOM	904	0		A 382	30.048	44.036	49.845	1.00 40.93	7
	ATOM	905	N		A 383	29.397	42.049	49.034	1.00 42.63	6
•	ATOM	906	CA	ARG		28.036	42.485	48.876	1.00 43.32	6
20	ATOM	907	CB		A 383	27.138	41.332	48.443	1.00 42.31	6
30	ATOM	908	CG		A 383	27.651 27.586	40.399 40.954	47.352 45.925	1.00 40.03	6
	ATOM	909	CD		A 383 A 383	27.768	39.878	44.975	1.00 37.33	7
	MOTA	910	NE CZ		A 383	28.037	40.058	43.693	1.00 37.35	6
	MOTA	911	NH1		A 383	28.142	41.292	43.198	1.00 33.70	7
35	ATOM	912 913	NH2	ARG .		28.194	38.992	42.918	1.00 35.46	7
33	ATOM ATOM	914	C	ARG A		27.523	42.989	50.216	1.00 33.40	6
	ATOM	915	0	ARG		27.744	42.344	51.260	1.00 45.60	8
	ATOM	916	N	PRO .		26.852	44.144	50.223	1.00 45.33	7
	ATOM	917	CD	PRO .		26.625	44.964	49.027	1.00 46.85	6
40	ATOM	918	CA	PRO .		26.298	44.738	51.446	1.00 47.37	6
70	ATOM	919	CB	PRO		25.841	46.130	51.012	1.00 46.90	6
	MOTA	920	CG		A 384	26.075	46.229	49.567	1.00 46.41	6
	MOTA	921	C		A 384	25.158	43.919	52.049	1.00 48.29	6
	ATOM	922	0		A 384	24.404	43.264	51.329	1.00 48.34	8
45	MOTA	923	N		A 385	25.039	43.983	53.383	1.00 49.88	7
	MOTA	924	CA		A 385	23.991	43.270	54.113	1.00 50.35	6
	ATOM	925	C		A 385	24.347	41.852	54.495	1.00 50.70	6
	ATOM	926	o		A 385	23.614	41.204	55.244	1.00 53.48	8
	ATOM	927	N		A 386	25.466	41.371	53.955	1.00 49.04	7
50	ATOM	928	CA		A 386	25.901	40.017	54.215	1.00 50.53	6
	ATOM	929	CB		A 386	27.224	39.751	53.492	1.00 45.17	6
	ATOM	930	CG		A 386	27.152	39.592	51.993	1.00 48.26	6
	ATOM	931			A 386	28.542	39.439	51.404	1.00 41.68	6
	ATOM	932			A 386	26.302	38.374	51.682	1.00 38.40	6
55	ATOM	933	C		A 386	26.045	39.776	55.691	1.00 52.13	6
	ATOM	934	0		A 386	26.296	40.692	56.459	1.00 53.67	8
	ATOM	935	N		A 387	25.861	38.522	56.077	1.00 53.42	7
	ATOM	936	CA		A 387	25.976	38.129	57.470	1.00 56.01	6

_					_			1384245	- 4	11989 40.00	_
5	ATOM	991	CE	LYS			40.136				6 7
	ATOM	992	NZ	LYS			41.516	33.602	54.162	1.00 40.00	6
	MOTA	993	C	LYS			36.568	30.778	50.966	1.00 46.69	8
	ATOM	994	0	LYS			37.215	30.427	49.988	1.00 49.13	7
	MOTA	995	N	TYR			35.269	30.514	51.095	1.00 46.57	6
10	MOTA	996	CA	TYR			34.553	29.823	50.022	1.00 43.33	6
	ATOM	997	CB	TYR			33.059	30.123	50.076	1.00 48.44	6
	MOTA	998	CG	TYR			32.275	29.236	50.994	1.00 53.83	
	ATOM	999	CD1	TYR			31.010	29.598	51.415	1.00 56.43	6
1.5	ATOM	1000	CE1	TYR			30.266	28.769	52.252	1.00 59.73	6
15	MOTA	1001	CD2	TYR			32.790	28.033	51.428	1.00 56.47	6
	ATOM	1002	CE2	TYR			32.054	27.198	52.265	1.00 62.60	6
	ATOM	1003	CZ	TYR			30.787	27.565	52.687	1.00 63.18	6
	MOTA	1004	OH	TYR			30.059	26.753	53.528	1.00 64.46	8
	ATOM	1005	C	TYR			35.120	30.356	48.716	1.00 37.30	6
20	ATOM	1006	0	TYR			35.643	29.601	47.908	1.00 34.10	8
	MOTA	1007	N	GLN			35.029	31.670	48.522	1.00 31.92	7
	MOTA	1008	CA	GLN			35.563	32.273	47.305	1.00 34.81	6
	MOTA	1009	CB	GLN			35.403	33.801	47.329	1.00 32.64	6
	MOTA	1010	CG	GLN			36.088	34.485	46.162	1.00 29.57	6
25	ATOM	1011	CD	GLN			35.616	35.891	45.927	1.00 29.46	6
	MOTA	1012	OE1	GLN			35.599	36.726	46.862	1.00 34.65	8
	MOTA	1013	NE2	GLN			35.245	36.173	44.689	1.00 27.21	7
	ATOM	1014	С	GLN			37.035	31.909	47.167	1.00 37.13	6
•	ATOM	1015	0	GLN			37.511	31.590	46.080	1.00 37.36	8
30	MOTA	1016	N	ASP			37.751	31.970	48.285	1.00 38.61	7
	MOTA	1017	CA	ASP			39.164	31.642	48.298	1.00 40.37	6
	MOTA	1018	CB	ASP			39.757	31.869	49.704	1.00 40.51	6
	ATOM	1019	CG	ASP			39.813	33.319	50.095	1.00 43.77	6
	ATOM	1020		ASP		397	40.397	34.123	49.334	1.00 46.50	8
35	MOTA	1021		ASP			39.299	33.702	51.184	1.00 51.34	8
	ATOM	1022	С	ASP			39.302	30.176	47.898	1.00 38.62	6
	MOTA	1023	0	ASP			40.230	29.809	47.199	1.00 39.20	8
	MOTA	1024	N	SER			38.350	29.359	48.344	1.00 37.84	7 6
10	ATOM	1025	CA	SER			38.348	27.929	48.063	1.00 37.80	
40	MOTA	1026	CB	SER			37.240	27.240	48.878	1.00 34.28 1.00 46.60	6 8
	ATOM	1027	OG ~	SER			37.297	25.826	48.755		6
	ATOM	1028	C	SER			38.164	27.639	46.581	1.00 38.41 1.00 39.98	-
	MOTA	1029	0	SER			38.677	26.642	46.075	1.00 39.96	8 7
4.5	ATOM	1030	N	PHE			37.419	28.507	45.893 44.462	1.00 34.82	6
45	ATOM	1031	CA	PHE			37.181	28.325			
	MOTA	1032	CB	PHE			35.873	28.983	44.015	1.00 35.75	6
	MOTA	1033	CG	PHE			34.632	28.216	44.403	1.00 39.30	6
	ATOM	1034		PHE			34.107	28.294	45.677	1.00 39.86	6
50	MOTA	1035		PHE			34.018	27.393	43.488	1.00 36.81 1.00 41.25	6
50	ATOM	1036		PHE			32.961	27.557	46.013		6
	MOTA	1037		PHE			32.880	26.661	43.825	1.00 43.61	6
	MOTA	1038	CZ	PHE			32.354	26.740	45.087	1.00 40.34	6
	ATOM	1039	C	PHE			38.328	28.890	43.630	1.00 33.48	6
e =	MOTA	1040	0	PHE			38.867	28.200	42.756	1.00 26.86	8
55	ATOM	1041	N	LEU			38.680	30.156	43.877	1.00 31.47	7
	MOTA	1042	CA	LEU			39.754	30.796	43.132 43.814	1.00 37.41 1.00 34.24	6
	ATOM	1043	CB	LEU			40.179	32.100			6
	MOTA	1044	CG	LEU	A	400	39.239	33.265	43.628	1.00 35.10	6

	WO //	7000014								
5	MOTA	1099	CE2	TYR A	406	39.090		JS . 551	Ju. 64	6
	MOTA	1100	CZ	TYR A	406	39.029	22.395	33.380	1.00 21.56	6
	MOTA	1101	OH	TYR A	406	38.489	21.850	32.236	1.00 24.96	8
	MOTA	1102	С	TYR A	406	42.882	24.504	35.672	1.00 24.24	6
	ATOM	1103	0	TYR A	406	42.958	23.872	34.621	1.00 27.08	8
10	ATOM	1104	N	ILE A		43.253	25.784	35.807	1.00 25.76	7
	ATOM	1105	CA	ILE A		43.824	26.548	34.705	1.00 33.75	6
	ATOM	1106	СВ	ILE A		43.986	28.033	35.070	1.00 34.23	6
	ATOM	1107	CG2	ILE A		44.967	28.712	34.139	1.00 32.46	6
	ATOM	1108	CG1	ILE A		42.615	28.728	35.042	1.00 43.30	6
15	MOTA	1109	CD1	ILE A		41.896	28.602	33.694	1.00 40.40	6
15		1110	C	ILE A		45.143	25.973	34.256	1.00 39.03	6
	ATOM					45.383	25.771	33.063	1.00 35.18	8
	ATOM	1111	0	ILE A						7
	ATOM	1112	N	ASN A		46.003	25.721	35.227	1.00 37.25	6
0.0	ATOM	1113	CA	ASN A		47.307	25.194	34.926	1.00 37.01	
20	ÁTOM	1114	CB	ASN A		48.107	25.017	36.213	1.00 32.27	6
	MOTA	1115	CG	ASN A		48.346	26.362	36.936	1.00 33.56	6
	MOTA	1116	OD1	ASN A		48.827	27.335	36.320	1.00 31.99	8
	MOTA	1117	ND2	ASN A		48.038	26.403	38.231	1.00 31.23	7
	MOTA	1118	С	ASN A	408	47.205	23.892	34.136	1.00 38.14	6
25	MOTA	1119	0	ASN A		47.900	23.734	33.124	1.00 42.16	8
	ATOM	1120	N	TYR A	409	46.334	22.981	34.568	1.00 35.62	7
	ATOM	1121	CA	TYR A	409	46.159	21.710	33.866	1.00 35.91	6
	ATOM	1122	CB	TYR A	409	45.051	20.859	34.507	1.00 34.41	6
	ATOM	1123	CG	TYR A	409	44.624	19.687	33.619	1.00 38.73	6
30	ATOM	1124	CD1	TYR A	409	45.563	18.765	33.155	1.00 41.34	6
	MOTA	1125	CE1	TYR A		45.186	17.709	32.321	1.00 47.16	6
	MOTA	1126	CD2	TYR A		43.292	19.515	33.232	1.00 46.20	6
	MOTA	1127	CE2	TYR A		42.913	18.455	32.397	1.00 50.74	6
	ATOM	1128	CZ	TYR A		43.863	17.551	31.946	1.00 50.88	6
35	MOTA	1129	ОН	TYR A		43.498	16.514	31.130	1.00 53.14	8
30	ATOM	1130	C	TYR A		45.760	21.966	32.424	1.00 38.16	6
	ATOM	1131	0	TYR A		46.202	21.281	31.502	1.00 41.83	8
	MOTA	1132	N	ARG A		44.872	22.943	32.272	1.00 42.25	7
	MOTA	1133	CA	ARG A		44.345	23.332	30.984	1.00 42.83	6
40	MOTA	1134	CB	ARG A		43.311	24.427	31.195	1.00 36.83	6
40	MOTA	1135	CG	ARG A		41.994	23.979	31.795	1.00 34.32	6
	ATOM .	1136	CD	ARG A		41.073	23.504	30.675	1.00 34.52	6
		1137	NE	ARG A		40.888	24.550	29.685	1.00 38.64	7
	ATOM	1137	CZ	ARG A		40.177	24.397	28.576	1.00 35.73	6
45	ATOM					39.572	23.230	28.348	1.00 33.73	7
43	ATOM	1139		ARG A				27.708	1.00 33.17	7
	MOTA	1140		ARG A		40.077	25.407			
	MOTA	1141	С	ARG A		45.442	23.850	30.083	1.00 46.67	6
	MOTA	1142	0	ARG A		45.467	23.591	28.882	1.00 41.78	8
~0	MOTA	1143	N	LYS A		46.360	24.577	30.710	1.00 52.99	7
50	MOTA	1144	CA	LYS A		47.467	25.194	30.017	1.00 58.32	6
	MOTA	1145	CB	LYS A		48.645	24.216	29.876	1.00 64.99	6
	MOTA	1146	CG	LYS A	411	48.349	22.835	29.367	1.00 70.48	6
	MOTA	1147	CD	LYS A	411	49.608	21.974	29.494	1.00 77.18	6
	MOTA	1148	CE	LYS A	411	49.461	20.621	28.795	1.00 84.30	6
55	MOTA	1149	NZ	LYS A	411	50.740	19.828	28.857	1.00 86.48	7
	ATOM	1150	С	LYS A	411	47.032	25.756	28.686	1.00 56.66	6
	ATOM	1151	0	LYS A		47.160	25.153	27.633	1.00 55.47	8
	ATOM	1152	N	HIS A		46.458	26.943	28.823	1.00 54.67	7

_					_		45 006		33.909	-1 00	45 34	-
5	MOTA	1207	N			418	45.906				45.14	7
	ATOM	1208	CA			418	44.982	33.867	35.065		44.89	6
	MOTA	1209	CB			418	45.545	33.099	36.255		42.24	6
	MOTA	1210	CG			418	44.959	33.452	37.598		47.11	6
	MOTA	1211	CD2			418	43.724	32.924	38.149		46.98	6
10	MOTA	1212	CE2	TRP	Α	418	43.534	33.565	39.413	1.00	48.94	6
	MOTA	1213	CE3	TRP	A	418	42.777	31.986	37 _. 688	1.00	45.23	6
	MOTA	1214	CD1	TRP	Α	418	45.434	34.350	38.512	1.00	46.24	6
	MOTA	1215	NE1	TRP	A	418	44.588	34.407	39.608	1.00	50.63	7
	MOTA	1216	CZ2	TRP	A	418	42.441	33.270	40.238	1.00	45.46	6
15	MOTA	1217	CZ3	TRP	A	418	41.686	31.706	38.500	1.00	44.50	6
	MOTA	1218	CH2	TRP	A	418	41.511	32.335	39.753	1.00	47.55	6
	MOTA	1219	С	TRP	Α	418	44.908	35.324	35.398	1.00	43.88	6
	MOTA	1220	0	TRP	Α	418	43.797	35.839	35.702	1.00	43.17	8
	ATOM	1221	N	PRO	A	419	46.084	35.976	35.461	1.00	43.55	7
20	MOTA	1222	CD	PRO	A	419	47.467	35.482	35.400	1.00	41.52	6
	MOTA	1223	CA	PRO	A	419	46.009	37.396	35.758	1.00	41.48	6
	ATOM	1224	CB	PRO	A	419	47.436	37.884	35.535	1.00	39.21	6
	ATOM	1225	CG			419	48.261	36.696	35.223	1.00	39.25	6
	MOTA	1226	С			419	44.960	38.090	34.817	1.00	36.28	6
25	ATOM	1227	0			419	44.208	38.978	35.237	1.00	37.08	8
-	ATOM	1228	N			420	44.915	37.701	33.540	1.00	35.96	7
	ATOM	1229	CA			420	43.977	38.287	32.575	1.00	40.82	6
	ATOM	1230	CB			420	44.314	37.805	31.155	1.00	40.78	6
	ATOM	1231	CG	LYS			45.684	38.244	30.641	1.00	48.62	6
30	ATOM	1232	CD	LYS			45.904	37.781	29.206	1.00	55.12	6
	ATOM	1233	CE			420	47.248	38.261	28.673		53.26	6
	ATOM	1234	ΝZ			420	47.448	37.884	27.222		52.69	7
	ATOM	1235	С			420	42.580	37.832	32.948		40.29	6
	ATOM	1236	Ō			420	41.656	38.626	32.982		39.66	8
35	MOTA	1237	N			421	42.461	36.537	33.245	1.00	38.33	7
•	ATOM	1238	CA			421	41.186	35.931	33.613		37.60	6
	ATOM	1239	СВ	LEU			41.397	34.433	33.915		43.66	6
	MOTA	1240	CG			421	40.204	33.518	33.828	1.00	46.50	6
	ATOM	1241		LEU			39.643	33.624	32.426		45.15	6
40	MOTA	1242		LEU			40.595	32.094	34.131		51.31	6
-	ATOM	1243	С			421	40.575	36.664	34.808		39.59	6
	ATOM	1244	0			421	39.371	36.910	34.837	1.00	40.66	8
	ATOM	1245	N	LEU			41.412	37.017	35.782	1.00	39.57	7
	ATOM	1246	CA			422	40.946	37.726	36.961	1.00	38.63	6
45	ATOM	1247	CB			422	42.085	37.890	37.971		41.79	6
	ATOM	1248	CG			422	42.424	36.671	38.798	1.00	42.74	6
	ATOM	1249		LEU			43.490	37.010	39.820		42.89	6
	ATOM	1250		LEU			41.168	36.216	39.523		39.27	6
	MOTA	1251	C			422	40.381	39.073	36.589		40.47	6
50	MOTA	1252	0			422	39.428	39.525	37.210		47.83	8
-	ATOM	1253	N			423	40.969	39.698	35.569		34.27	7
	ATOM	1254	CA			423	40.511	41.001	35.117		35.25	6
	ATOM	1255	CB			423	41.427	41.553	34.028		32.56	6
	ATOM	1256	CG			423	42.856	41.732	34.456		40.70	6
55	ATOM	1257	SD			423	43.707	43.101	33.619		47.65	16
J J	ATOM	1258	CE			423	43.348	42.776	31.848		47.16	6
	ATOM	1259	C			423	39.100	40.899	34.574		35.13	6
	ATOM	1260	0			423	38.315	41.829	34.696		29.85	8
	171 011	1200	_		7.7	120	50.515	11.023	34.000	1.00		•

							∼ वस् क ार	, 		
5	MOTA	1315	SD	MET A		33.520	49.120		1.00 52.55	16
	MOTA	1316	CE	MET A		32.942	50.174	35.585	1.00 55.56	6
	MOTA	1317	С	MET A		30.315	46.455	35.634	1.00 34.01	6
	MOTA	1318	0	MET A		29.455	47.295	35.854	1.00 37.29	8
	MOTA	1319	N	ILE A	431	30.180	45.468	34.740	1.00 29.99	7
10	ATOM	1320	CA	ILE A	431	28.954	45.269	33.969	1.00 28.82	6
	ATOM	1321	CB	ILE A	431	28.962	43.936	33.211	1.00 27.39	6
	ATOM	1322	CG2	ILE A	431	27.622	43.671	32.572	1.00 23.87	6
	ATOM	1323	CG1	ILE A	431	30.044	43.920	32.138	1.00 25.56	6
	ATOM	1324	CD1	ILE A	431	29.989	42.703	31.244	1.00 17.29	6
15	MOTA	1325	С	ILE A	431	27.769	45.269	34.907	1.00 29.49	6
	ATOM	1326	0	ILE A	431	26.810	45.993	34.712	1.00 24:19	8
	ATOM	1327	N	GLY A	432	27.839	44.435	35.936	1.00 25.25	7
	ATOM	1328	CA	GLY A	432	26.748	44.343	36.890	1.00 30.38	6
	MOTA	1329	С	GLY A	432	26.494	45.671	37.554	1.00 32.75	б
20	ATOM	1330	0	GLY A	432	25.411	46.206	37.469	1.00 36.38	8
	ATOM	1331	N	ALA A	433	27.514	46.189	38.221	1.00 26.77	7
	ATOM	1332	CA	ALA A	433	27.428	47.459	38.910	1.00 26.48	6
	MOTA	1333	CB	ALA A		28.836	47.970	39.203	1.00 19.90	6
	MOTA	1334	С	ALA A		26.663	48.502	38.114	1.00 30.73	6
25	ATOM	1335	0	ALA A	433	25.773	49.164	38.635	1.00 31.60	8
	ATOM	1336	N	CYS A		27.027	48.654	36.854	1.00 33.22	7
	ATOM	1337	CA	CYS A		26.371	49.616	35.996	1.00 34.34	6
	ATOM	1338	CB	CYS A		27.047	49.612	34.711	1.00 35.20	6
	ATOM	1339	SG	CYS A		27.789	50.811	34.285	1.00 54.48	16
30	ATOM	1340	С	CYS A		24.974	49.198	35.612	1.00 34.09	6
	MOTA	1341	0	CYS A	434	24.107	50.040	35.415	1.00 34.89	8
	ATOM	1342	N	HIS A		24.756	47.898	35.447	1.00 34.30	7
	ATOM	1343	CA	HIS A		23.453	47.423	35.042	1.00 35.44	6
	MOTA	1344	CB	HIS A	435	23.404	45.904	35.104	1.00 31.76	6
35	MOTA	1345	CG	HIS A		22.099	45.351	34.675	1.00 32.03	6
	ATOM	1346	CD2	HIS A		21.697	44.790	33.519	1.00 28.61	6
	ATOM	1347		HIS A		20.941	45.482	35.452	1.00 28.48	7
	ATOM	1348	CE1	HIS A	435	19.912	45.025	34.759	1.00 33.27	6
	ATOM	1349	NE2	HIS A	435	20.345	44.597	33.583	1.00 31.57	7
40	ATOM	1350	С	HIS A	435	22.400	47.974	35.972	1.00 32.74	6
	ATOM	1351	0	HIS A		21.304	48.284	35.565	1.00 32.87	8
	ATOM	1352	N	ALA A	436	22.777	48.046	37.241	1.00 31.01	7
	MOTA	1353	CA	ALA A	436	21.910	48.563	38.266	1.00 29.91	6
	ATOM	1354	CB	ALA A		22.661	48.595	39.580	1.00 21.23	6
45	ATOM	1355	С	ALA A	436	21.475	49.969	37.884	1.00 33.86	6
	MOTA	1356	0	ALA A		20.296	50.298	37.910	1.00 36.10	8.
	ATOM	1357	N	SER A		22.453	50.795	37.532	1.00 35.19	7
	ATOM	1358	CA	SER A		22.172	52.167	37.140	1.00 33.03	6
	ATOM	1359	СВ	SER A		23.441	52.815	36.603	1.00 35.31	6
50	ATOM	1360	OG	SER A		23.203	54.151	36.193	1.00 44.99	8
	ATOM	1361	С	SER A		21.110	52.158	36.055	1.00 38.39	6
	ATOM	1362	0	SER A		20.049	52.745	36.204	1.00 37.54	8
	ATOM	1363	N	ARG A		21.432	51.483	34.956	1.00 37.32	7
	MOTA	1364	CA	ARG A		20.534	51.379	33.821	1.00 39.30	6
55	MOTA	1365	CB	ARG A		21.114	50.402	32.786	1.00 42.97	6
	ATOM	1366	CG	ARG A		22.343	50.911	32.051	1.00 41.72	6
	MOTA	1367	CD	ARG A		21.955	52.134	31.251	1.00 45.23	6
	ATOM	1368	NE	ARG A		20.964	51.839	30.237	1.00 45.66	7
			_							

_					_		77 050	50 105 E	134.174	Giddl	-64 ! 33	4 ~
5	MOTA	1423		VAL			11.952					9 6
	MOTA	1424		VAL			12.999	56.891	36.035		59.27 68.61	6
	MOTA	1425	C	JAV			11.043	55.730	32.861			
	MOTA	1426	0	VAL			9.937	56.210	32.612		70.60	8 7
	ATOM	1427	N	GLU			11.814	55.173	31.935		70.71	6
10	MOTA	1428	CA	GLU			11.457	55.152	30.514		71.45	
	MOTA	1429	CB	GLU			12.725	55.255	29.664		72.36	6
	MOTA	1430	CG	GLU			13.598	56.429	30.022		40.00	6
	MOTA	1431	CD	GLU			14.875	56.472	29.239	1.00	40.00	6
	ATOM	1432	OE1	GLU			15.155	55.565	28.414		40.00	8
15	MOTA	1433	OE2	GLU			15.663	57.430	29.430		40.00	8
	MOTA	1434	С	GLU			10.724	53.912	30.049		71.46	6
	ATOM	1435	0	GLU			10.536	53.701	28.844		73.02	8
	MOTA	1436	N	CYS	A	446	10.301	53.099	30.999		71.12	7
	MOTA	1437	CA	CYS	A	446	9.628	51.899	30.634		70.83	6
20	MOTA	1438	CB	CYS	A	446	10.595	50.719	30.687		71.05	6
	MOTA	1439	SG	CYS	Α	446	12.009	50.842	29.573		72.83	16
	MOTA	1440	С	CYS	A	446	8.454	51.671	31.535		71.91	6
	MOTA	1441	0	CYS	Α	446	8.495	52.014	32.728		72.06	8
	MOTA	1442	N	PRO	A	447	7.372	51.133	30.978		73.12	7
25	MOTA	1443	CD	PRO	A	447	7.267	50.764	29.560	1.00	72.88	6
	ATOM	1444	CA	PRO	Α	447	6.150	50.853	31.740		74.22	6
	MOTA	1445	CB	PRO	A	447	5.187	50.281	30.714	1.00	72.98	6
	ATOM	1446	CG	PRO	A	447	5.875	50.271	29.437		74.77	6
	ATOM	1447	С	PRO	Α	447	6.435	49.843	32.831		75.94	6
30	MOTA	1448	0	PRO	A	447	7.181	48.908	32.612	1.00	76.67	8
	MOTA	1449	N	THR	A	448	5.820	50.002	33.997	1.00	76.91	7
	ATOM	1450	CA	THR	Α	448	6.024	49.066	35.113	1.00	78.24	6
	ATOM	1451	СВ	THR	A	448	5.528	49.734	36.401	1.00	81.33	6
	ATOM	1452	OG1	THR	Α	448	4.105	49.917	36.328	1.00	84.46	8
35	MOTA	1453	CG2	THR	A	448	6.192	51.081	36.585	1.00	83.51	6
	MOTA	1454	С	THR	A	448	5.113	47.912	34.755	1.00	77.42	6
	MOTA	1455	0	THR	Α	448	4.915	46.995	35.519	1.00	77.65	8
	MOTA	1456	N	GLU	A	449	4.539	48.021	33.565	1.00	76.29	7
	ATOM	1457	CA	GLU	Α	449	3.630	47.023	33.024	1.00	75.03	6
40	MOTA	1458	CB	GLU	Α	449	2.600	47.773	32.191	1.00	74.62	6
	MOTA	1459	CG	GLU	Α	449	2.145	47.051	31.001	1.00	40.00	6
	ATOM	1460	CD	GLU	Α	449	1.297	47.889	30.178	1.00	40.00	6
	MOTA	1461	OE1	GLU	Α	449	1.479	49.137	30.146	1.00	40.00	8
	ATOM	1462	OE2	GLU	Α	449	0.424	47.322	29.497	1.00	40.00	8
45	ATOM	1463	С	GLU	Α	449	4.434	46.036	32.179	1.00	73.49	6
	MOTA	1464	0	GLU	Α	449	3.882	45.142	31.559	1.00	70.24	8
	MOTA	1465	N	LEU	Α	450	5.747	46.224	32.161	1.00	70.80	7
	ATOM	1466	CA	LEU			6.608	45.347	31.378	1.00	68.82	6
	MOTA	1467	CB	LEU			7.301	46.154	30.277	1.00	71.91	6
50	ATOM	1468	CG	LEU			6.464	46.819	29.217	1.00	76.62	6
	ATOM	1469		LEU			7.337	47.662	28.328	1.00	77.95	6
	MOTA	1470	CD2				5.786	45.750	28.415	1.00	76.46	6
	ATOM	1471	C			450	7.669	44.673	32.243		66.22	6
	ATOM	1472	0			450	8.427	43.841	31.752		66.01	8
55	ATOM	1473	N			451	7.705	45.039	33.530		61.96	7
55	MOTA	1474	CA			451	8.681	44.506	34.480		58.44	6
	ATOM.	1475	CB			451	9.041	45.562	35.540		61.34	6
	ATOM	1476	CG			451	9.873	46.717	35.008		63.02	6

									35 11 534-3	6.13. C.	
5	MOTA	1531	CD	GLU			10.807		#18#	71:00 20:00	6
	MOTA	1532	OE1	GLU			11.673	37.099	44.311	1.00 20.00	8
	MOTA	1533	OE2	GLU	A	457	9.683	37.639	45.172	1.00 20.00	8
	MOTA	1534	N	VAL	Α	458	14.928	41.078	41.903	1.00 43.21	7
	MOTA	1535	CA	VAL	A	458	16.412	41.094	41.868	1.00 44.98	6
10	ATOM	1536	CB	VAL	A	458	16.881	40.306	40.642	1.00 44.83	6
	ATOM	1537	CG1	VAL	A	458	18.365	40.106	40.698	1.00 49.72	6
	ATOM	1538	CG2	VAL	Α	458	16.185	38.979	40.558	1.00 40.89	6
	ATOM	1539	С	VAL	A	458	17.130	42.420	41.877	1.00 42.72	6
	ATOM	1540	0	VAL			18.061	42.617	42.658	1.00 42.88	8
15	ATOM	1541	N	PHE			16.713	43.325	41.010	1.00 44.53	7
	ATOM:	1542	CA	PHE			17.385	44.606	40.892	1.00 48.18	6
	ATOM	1543	CB	PHE			17.281	45.104	39.494	1.00 43.60	6
	MOTA	1544	CG	PHE			17.915	44.190	38.547	1.00 40.79	6
	MOTA	1545		PHE			17.325	42.983	38.244	1.00 41.01	6
20	MOTA	1546	CD2	PHE			19.153	44.483	38.054	1.00 39.48	6
20	MOTA	1547	CE1	PHE			17.988	42.081	37.441	1.00 40.62	6
	MOTA	1548	CE2	PHE			19.814	43.589	37.257	1.00 36.87	6
	MOTA	1549	CZ	PHE			19.233	42.385	36.940	1.00 36.39	6
	ATOM	1550	C	PHE			16.837	45.648	41.744	1.00 52.71	6
25	ATOM	1551	0	PHE			17.492	46.682	42.017	1.00 51.34	8
23	ATOM	1552	N	GLU			15.606	45.422	42.161	1.00 62.92	7
	ATOM	1553	CA	GLU			15.066	46.428	42.965	1.00 69.33	6
	ATOM	1554	CB	GLU			13.552	46.352	43.094	1.00 72.95	6
	ATOM	1555	CG	GLU			12.978	47.767	42.957	1.00 78.35	6
30	ATOM	1556	CD	GLU			12.246	48.261	44.157	1.00 82.97	6
50	ATOM	1557	OE1	GLU			12.471	47.759	45.281	1.00 88.28	8
	MOTA	1558	OE2	GLU			11.422	49.200	44.017	1.00 84.80	8
	ATOM	1559	C	GLU			15.736	46.245	44.272	1.00 71.87	6
	ATOM	1560	0	GLU			16.187	45.170	44.691	1.00 74.51	8
35	ATOM	1561	Ŋ	ASP			15.790	47.373	44.917	1.00 78.50	7
55	ATOM	1562	CA	ASP			16.415	47.505	46.173	1.00 84.19	6
	MOTA	1563	CB	ASP			16.394	48.981	46.471	1.00 85.82	6
	MOTA	1564	CG	ASP			16.801	49.786	45.276	1.00 89.62	6
	MOTA	1565		ASP			16.692	49.344	44.086	1.00 93.00	8
40	MOTA	1566		ASP			17.239	50.923	45.482	1.00 93.04	8
40	ATOM	1567	C	ASP			15.639	46.703	47.214	1.00 86.80	6
	MOTA	1568	0	ASP			16.245	45.748	47.731	1.00 88.70	8
	ATOM	1569		ASP			14.457	47.026	47.451	1.00 88.70	8
	TER	1307	Q211	1101	_ 1	401	11.15	1,,000	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-
45	ATOM	1	CB	LYS	R	211	-20.802	66.251	39.780	1.00 46.72	6
73	ATOM	2	CG	LYS			-19.566	65.345	39.922	1.00 56.48	6
	ATOM	3	CD	LYS			-18.264	66.114	40.045	1.00 60.93	6
	ATOM	4	CE	LYS			-18.043	67.067	38.886	1.00 61.95	6
		5	NZ	LYS			-19.008	68.224	38.903	1.00 69.93	7
50	ATOM ATOM	6	C	LYS			-22.418	67.861	40.818	1.00 35.68	6
50		7	0	LYS			-23.356	67.113	40.454	1.00 33.58	8
	ATOM	8	Ŋ			211	-20.742	66.675	42.239	1.00 35.36	7
	ATOM	9	N CA	LYS			-20.742	67.285	40.894	1.00 43.70	6
	ATOM					211	-20.998	69.205	41.068	1.00 45.42	7
55	ATOM	10 11	СD И			212	-21.526	70.177	41.287	1.00 33.04	6
55	MOTA	11	CD				-21.526	69.861	41.287	1.00 38.35	6
	MOTA	12	CA			212 212	-23.943 -23.657	71.320	41.420	1.00 38.35	6
	MOTA	13 14	CB CG			212	-23.657 -22.226	71.320	41.420	1.00 38.93	6
	MOTA	14	CG	CKO	D	412	-22.220	17.414	41.701	1.00 12.00	•

WO 99/060014		PCT/US99/06899
--------------	--	----------------

5	ATOM	69	CG	TRP	В	219	-34.195	71.230	36.374		54.61	6
	ATOM	70	CD2	TRP	В	219	-34.048	70.120	35.478		55.24	6
	ATOM	71	CE2	TRP	В	219	-33.076	69.248	36.063	1.00	53.67	6
	MOTA	72	CE3	TRP	В	219	-34.615	69.771	34.252	1.00	54.55	6
	MOTA	73	CD1	TRP	В	219	-33.399	71.019	37.415	1.00	55.75	6
10	ATOM	74	NE1	TRP	В	219	-32.697	69.838	37.236	1.00	54.43	7
	MOTA	75	CZ2	TRP	В	219	-32.635	68.075	35.431	1.00	52.54	6
	ATOM	76	CZ3	TRP	В	219	-34.214	68.603	33.643	1.00	55.17	6
	ATOM	77	CH2	TRP	В	219	-33.234	67.758	34.214	1.00	55.59	6
	ATOM	78	С	TRP	В	219	-35.409	74.199	34.459	1.00	47.32	6
15	ATOM	79	0	TRP	В	219	-35.561	73.914	33.277	1.00	43.56	8
	ATOM	80	N	GLU	В	220	-36.126	75.130	35.084	1.00	49.91	7
	MOTA	81	CA	GLU	В	220	-37.158	75.874	34.402	1.00	53.57	6
	ATOM	82	СВ	GLU		220	-37.811	76.820	35,373	1.00	58.18	6
	ATOM	83	CG	GLU		220	-39.251	76.812	35.221	1.00	73.13	6
20	ATOM	84	CD	GLU			-39.824	76.858	36.489	1.00	80.06	6
	ATOM	85	OE1	GLU		220	-39.485	75.995	37.324	1.00	82.12	8
	ATOM	86	OE2	GLU		220	-40.635	77.740	36.718	1.00	82.78	8
	ATOM	87	C	GLU		220	-36.539	76.645	33.250	1.00	50.51	6
	ATOM	88	0	GLU		220	-37.160	76.793	32.195		49.94	8
25	MOTA	89	N	LEU		221	-35.312	77.135	33.455		43.71	7
	ATOM	90	CA	LEU		221	-34.604	77.884	32.411		42.81	6
	ATOM	91	СВ	LEU		221	-33.214	78.324	32.865	1.00	39.21	6
	MOTA	92	CG	LEU		221	-32.321	78.833	31.754		36.34	6
	ATOM	93	CD1	LEU			-33.073	79.843	30.927		36.93	6
30	ATOM	94	CD2	LEU			-31.058	79.446	32.331		24.18	6
50	MOTA	95	C	LEU			-34.454	77.011	31.192		43.46	6
	ATOM	96	0	LEU			-34.819	77.406	30.104		45.25	8
	MOTA	97	N	ILE			-33.878	75.829	31.398		39.09	7
	MOTA	98	CA	ILE			-33.687	74.857	30.330		35.47	6
35	ATOM	99	CB	ILE		222	-33.224	73.516	30.871		33.74	6
	MOTA	100	CG2	ILE		222	-33.204	72.488	29.776	1.00	28.86	6
	ATOM	101	CG1	ILE		222	-31.840	73.631	31.493	1.00	33.33	6
	ATOM	102	CD1	ILE		222	-31.435	72.419	32.264	1.00	34.85	6
	MOTA	103	C	ILE		222	-34.991	74.627	29.598		34.26	6
40	MOTA	104	0	ILE		222	-35.082	74.832	28.392	1.00	31.90	8
	ATOM	105	N	LYS			-35.992	74.183	30.346	1.00	39.49	7
	ATOM	106	CA	LYS			-37.300	73.892	29.785	1.00	44.43	6
	ATOM	107	СВ	LYS			-38.351	73.876	30.882		50.81	6
	MOTA	108	CG	LYS			-39.693	73.358	30.411	1.00	62.51	6
45	MOTA	109	CD	LYS			-40.795	73.532	31.449		72.22	6
.5	ATOM	110	CE	LYS			-42.163	73.249	30.827		74.55	6
	ATOM	111	NZ	LYS			-43.268	73.378	31.837		75.78	7
	ATOM	112	C	LYS			-37.648	74.942	28.755		42.81	6
	ATOM	113	0	LYS			-38.337	74.661	27.796		40.36	8
50	ATOM	114	N	THR			-37.146	76.156	28.979		39.89	7
50	ATOM	115	CA	THR			-37.353	77.293	28.074		39.93	6
	ATOM	116	CB	THR			-36.956	78.609	28.776		40.57	6
	ATOM	117	OG1				-37.646	78.740	30.028		39.27	8
			CG2	THR			-37.273	79.805	27.893		38.11	6
55	MOTA	118		THR			-36.521	77.094	26.789		39.96	6
در	ATOM	119	C	THR			-36.521 -37.043	76.677	25.756		36.67	8
	MOTA	120	O N3	VAL			-37.043	77.421	26.888		38.02	7
	MOTA	121	N	VAL			-33.231 -34.263	77.421	25.801		38.12	6
	MOTA	122	CA	Λ₩٣	ם	223	-54.203	11.293	20.001	1.00	JU, 12	0

5	ATOM	177	CG	ASN	В	233	-33.407	71.812	THE GAR	1.00	reg 1332	6
	ATOM	178	OD1	ASN			-32.569	72.427	14.256	1.00	65.50	8
	ATOM	179		ASN			-33.288	70.529	15.265	1.00	74.29	7
	ATOM	180	C	ASN			-36.033	72.755	13.437		65.06	б
	ATOM	181	0	ASN			-36.950	72.005	13.754		69.47	8
10		182	N	ALA			-35.674	72.986	12.182		68.80	7
10	ATOM			ALA			-36.352	72.376	11.036	1.00	70.98	6
	ATOM	183	CA									
	ATOM	184	CB	ALA			-35.585	72.701	9.769	1.00	71.43	6
	ATOM	185	С	ALA			-36.556	70.880	11.111	1.00	73.83	6
	ATOM	186	0	ALA			-35.677	70.142	11.501		74.33	8
15	ATOM	187	N			235	-37.754	70.479	10.717	1.00	75.07	7
	ATOM	188	CA	GLN			-38.149	69.095	10.690	1.00	76.32	6
	ATOM	189	CB	GLN	В	235	-37.468	68.365	9.533	1.00	76.98	6
	ATOM	190	CG	GLN	В	235	-38.120	68.540	8.170	1.00	77.07	6
	ATOM	191	CD	GLN	В	235	-38.572	69.940	7.909	1.00	80.85	6
20	ATOM	192	OE1	GLN	В	235	-39.575	70.401	8.491	1.00	82.01	8
	ATOM	193	NE2	GLN	В	235	-37.862	70.620	7.040	1.00	78.80	7
	MOTA	194	С	GLN	В	235	-37.904	68.331	11.953	1.00	77.15	6
	MOTA	195	O	GLN			-38.087	67.137	11.947	1.00	76.06	8
	ATOM	196	N	GLY			-37.511	68.985	13.039	1.00	77.46	7
25	ATOM	197	CA	GLY			-37.304	68.263	14.288	1.00	78.37	6
	ATOM	198	C	GLY			-36.717	66.882	14.217		79.43	6
	ATOM	199	0	GLY			-35.717	66.650	13.542		79.47	8
	MOTA	200	N	SER			-37.420	66.007	14.943		77.98	7
	ATOM	201	CA	SER			-37.117	64.600	15.092	1.00	76.49	6
30				SER			-38.118	63.953	16.066	1.00	76.46	6
30	ATOM	202	CB					63.895	13.737		75.35	6
	MOTA	203	С	SER			-37.181				75.47	8
	MOTA	204	0	SER			-36.493	62.911	13.524			7
	ATOM	205	N	HIS			-38.004	64.443	12.845		75.56	
0.5	MOTA	206	CA	HIS			-38.293	63.926	11.519		75.46	6
35	ATOM	207	CB	HIS			-39.663	64.397	11.096		75.85	6
	MOTA	208	С	HIS			-37.369	64.216	10.380		74.10	6
	MOTA	209	0	HIS			-37.747	64.135	9.222		75.34	8
	MOTA	210	N			239	-36.127	64.427	10.651		73.39	7
	MOTA	211	CA	TRP		239	-35.345	64.786	9.519		74.02	6
40	MOTA	212	CB	TRP		239	-34.121	65.542	9.934		81.77	6
	ATOM	213	CG	TRP			-33.085	64.786	10.737		89.67	6
	MOTA	214	CD2	TRP	В	239	-31.727	64.530	10.302		93.19	6
	MOTA	215	CE2	TRP	В	239	-31.069	63.848	11.393	1.00	95.46	6
	MOTA	216	CE3	TRP	В	239	-30.949	64.941	9.196	1.00	95.35	6
45	ATOM	217	CD1	TRP	В	239	-33.237	64.180	11.926	1.00	94.16	6
	MOTA	218	NE1	TRP	В	239	-32.022	63.631	12.347	1.00	97.48	7
	ATOM	219	CZ2	TRP	В	239	-29.706	63.475	11.348	1.00	96.23	6
	MOTA	220	CZ3	TRP	В	239	-29.613	64.533	9.128	1.00	96.75	6
	MOTA	221	CH2				-28.978	63.870	10.215	1.00	97.32	6
50	ATOM	222	С			239	-34.994	63.722	8.539		70.77	6
	ATOM	223	0			239	-35.423	63.772	7.388		71.70	8
	MOTA	224	N	LYS			-34.165	62.791	8.955		67.10	7
	ATOM	225	CA	LYS			-33.724	61.744	8.077		65.63	6
	MOTA	226	CB	LYS			-33.321	60.539	8.906		66.65	6
55		227	CG			240	-33.321 -32.210	60.824	9.905		69.83	6
,,	MOTA		CD	LYS			-32.210	59.553	10.602		71.49	6
	MOTA	228									71.43	6
	MOTA	229	CE	LYS			-30.576	59.843	11.493			7
	ATOM	230	NZ	LYS	В	∠4U	-30.106	58.604	12.157	1.00	72.23	1

_					_					~ f. 00 52.43	_
5	MOTA	285		LEU			-28.481				6
	MOTA	286	CD2	LEU			-26.112	70.470	-3.719	1.00 51.69	6
	ATOM	287	С	LEU			-27.585	66.379	-4.740	1.00 62.05	6
	ATOM	288	0	LEU			-26.789	65.446	-4.486	1.00 59.85	8
	MOTA	289	N	PRO			-27.930	66.693	-5.984	1.00 63.33	7
10	MOTA	290	CD	PRO		247	-28.839	67.781	-6.363	1.00 64.44	6
	MOTA	291	CA	PRO			-27.391	65.958	-7.130	1.00 63.56	6
	MOTA	292	CB	PRO			-27.976	66.675	-8.340	1.00 64.42	6
	ATOM	293	CG	PRO			-28.873	67.714	-7.841	1.00 64.90	6
	MOTA	294	С	PRO			-25.866	65.947	-7.143	1.00 61.94	6
15	ATOM	295	0	PRO			-25.223	66.944	-6.856	1.00 61.60	8
	MOTA	296	N	GLU	В		-25.333	64.771	-7.478	1.00 61.33	7
	MOTA	297	CA	GLU	В	248	-23.896	64.516	-7.590	1.00 63.50	6
	ATOM	298	CB	GLU			-23.630	63.154	-8.248	1.00 66.94	6
	MOTA	299	CG	GLU	В	248	-22.168	62.953	-8.713	1.00 68.70	6
20	ATOM ·	300	CD	GLU	В	248	-21.898	61.745	-9.580	1.00 40.00	6
	ATOM	301	OE1	GLU	В	248	-22.863	61.007	-10.035	1.00 40.00	8
	MOTA	302	OE2	GLU	В	248	-20.709	61.460	-9.838	1.00 40.00	8
	MOTA	303	С	GLU	В	248	-23.158	65.571	-8.415	1.00 64.19	6
	ATOM	304	0	GLU	В	248	-22.056	65.975	-8.066	1.00 65.56	8
25	MOTA	305	N	ASP	В	249	-23.796	66.019	-9.498	1.00 64.36	7
	ATOM	306	CA		В	249	-23.254	66.994	-10.436	1.00 63.33	6
	ATOM	307	CB			249	-24.122	67.031	-11.698	1.00 62.97	6
	ATOM	308	CG			249	-25.437		-11.489	1.00 64.63	6
	ATOM	309		ASP			-26.235		-10.629	1.00 64.84	8
30	MOTA	310			В		-25.726		-12.189	1.00 66.52	8
5.0	ATOM	311	С	ASP			-23.068	68.413	-9.960	1.00 64.31	6
	ATOM	312	Ō	ASP		249	-22.117		-10.355	1.00 64.73	8
	ATOM	313	N	ILE			-23.987	68.892	-9.136	1.00 63.09	7
	MOTA	314	CA	ILE			-23.921	70.281	-8.660	1.00 64.39	6
35	ATOM	315	CB	ILE			-25.124	70.575	-7.798	1.00 65.79	6
55	ATOM	316	CG2	ILE			-25.559	72.041	-7.858	1.00 64.78	6
	ATOM	317	CG1	ILE			-26.348	69.752	-8.206	1.00 65.28	6
	MOTA	318	CD1	ILE			-27.671	70.444	-7.887	1.00 65.08	6
	ATOM	319	C	ILE			-22.815	70.488	-7.714	1.00 65.21	6
40	ATOM	320	0	ILE			-22.754	69.847	-6.656	1.00 64.05	8
40	ATOM	321	N	GLY			-22.024	71.392	-8.103	1.00 65.48	7
	ATOM	322	CA	GLY			-20.873	71.721	-7.342	1.00 67.32	6
	ATOM	323	Ç	GLY			-19.808	70.806	-7.800	1.00 68.52	6
	ATOM	324	0	GLY			-19.791	70.548	-9.025	1.00 65.49	8
45	MOTA	325	N	GLN			-19.074	70.440	-6.799	1.00 72.26	7
40		326		GLN			-17.949	69.540	-6.883	1.00 74.10	6
	ATOM	327	CA	GLN			-18.460	68.098	-6.723	1.00 74.10	6
	ATOM		CB	GLN			-17.367	67.088	-6.356	1.00 73.02	6
	MOTA	328	CG					65.759	-5.824	1.00 77.81	6
50	ATOM	329	CD	GLN			-17.924		-6.549	1.00 79.38	8
50	MOTA	330		GLN			-18.615	65.042			
	MOTA	331		GLN			-17.661	65.380	-4.586	1.00 78.12	7
	MOTA	332	С	GLN			-17.258	69.727	-8.258	1.00 77.17	6
	ATOM	333	0	GLN			-17.977	70.009	-9.227	1.00 76.50	8
5.5	ATOM	334	N	ALA			-15.718	69.795	-8.279	1.00 80.78	7
55	ATOM	335	CA	ALA			-14.615	70.766	-8.544	1.00 83.70	6
	MOTA	336	CB			253	-13.794	70.914	-7.255	1.00 83.23	6
	MOTA	337	С			253	-13.605	70.732	-9.731	1.00 85.59	6
	MOTA	338	0	ALA	В	253	-13.186	69.691	-10.171	1.00 85.69	8

5	ATOM	47	OE2	GLU	В	267	-27.098	73.328	-12.008	1.00 69.40	8
	ATOM	48	С	GLU	В	267	-25.200	76.184	-8.032	1.00 57.67	6
	ATOM	49	0	GLU	В	267	-26.354	76.009	-7.643	1.00 58.34	8
	ATOM	50	N	ALA	В	268	-24.114	75.996	-7.285	1.00 53.43	7
	MOTA	51	CA	ALA	В	268	-24.151	75.560	-5.905	1.00 49.00	6
10	MOTA	52	CB	ALA	В	268	-22.816	74.956	-5.526	1.00 45.72	6
	MOTA	53	С	ALA	В	268	-24.421	76.775	-5.056	1.00 45.76	6
	MOTA	54	0	ALA	В	268	-25.419	76.823	-4.351	1.00 41.50	8
	ATOM	55	N	PHE	В	269	-23.533	77.766	-5.142	1.00 41.43	7
	ATOM	56	CA	PHE	В	269	-23.688	78.989	-4.358	1.00 43.96	6
15	ATOM	57	CB	PHE	В	269	-22.903	80.150	-4.971	1.00 40.10	6
	ATOM	58	CG	PHE	В	269	-23.057	81.458	-4.224	1.00 40.44	6
	MOTA	59	CD1	PHE	В	269	-22.284	81.727	-3.105	1.00 38.98	6
	ATOM	60	CD2	PHE	В	269	-24.033	82.372	-4.603	1.00 37.15	6
	MOTA	61	CE1	PHE	В	269	-22.472	82.921	-2.388	1.00 32.12	6
20	ATOM	62	CE2	PHE	В	269	-24.228	83.567	~3.890	1.00 38.41	6
	ATOM	63	CZ	PHE		269	-23.457	83.838	-2.780	1.00 40.55	6
	ATOM	64	С	PHE	В	269	-25.154	79.374	-4.320	1.00 49.76	6
	ATOM	65	0	PHE		269	-25.645	79.905	-3.336	1.00 52.15	8
	ATOM	66	N	SER		270	-25.840	79.112	-5.426	1.00 53.15	7
25	ATOM	67	CA	SER			-27.253	79.431	-5.520	1.00 52.29	6
	MOTA	68	CB	SER			-27.742	79.274	-6.948	1.00 51.85	6
	MOTA	69	OG	SER			-29.118	79.606	-7.048	1.00 53.42	8
	ATOM	70	С	SER			-28.012	78.486	-4.630	1.00 49.38	6
	ATOM	71	0	SER			-28.438	78.864	-3.548	1.00 48.74	8
30	ATOM	72	N	HIS			-28.185	77.253	-5.115	1.00 50.15	7
	ATOM	73	CA			271	-28.904	76.203	-4.382	1.00 51.67	6
	ATOM	74	СВ	HIS			-28.409	74.812	-4.782	1.00 58.52	6
	ATOM	75	CG	HIS			-29.096	74.248	-5.976	1.00 68.97	6
	ATOM	76	CD2		В	271	-29.987	73.233	-6.102	1.00 70.88	6
35	MOTA	77	ND1	HIS	В	271	-28.943	74.770	-7.270	1.00 71.98	7
	ATOM	78	CE1	HIS	В	271	-29.716	74.080	-8.100	1.00 73.91	6
	ATOM	79	NE2	HIS	В	271	-30.354	73.149	-7.419	1.00 73.59	7
	ATOM	80	С	HIS	В	271	-28.785	76.347	-2.886	1.00 48.33	6
	ATOM	81	0	HIS	В	271	-29.641	75.874	-2.156	1.00 48.39	8.
40	ATOM	82	N	PHE		272	-27.702	76.992	-2.444	1.00 41.34	7
	MOTA	83	CA	PHE			-27.440	77.224	-1.033	1.00 39.44	6
	MOTA	84	CB	PHE	В	272	-25,936	77.302	-0.801	1.00 36.67	6
	MOTA	85	CG	PHE	В	272	-25.241	75.945	-0.861	1.00 33.39	6
	ATOM	86	CD1	PHE			-23.856	75.857	-0.976	1.00 33.14	6
45	ATOM	87		PHE			-25.973	74.767	-0.732	1.00 38.28	6
	ATOM	88		PHE			-23.200	74.606	-0.989	1.00 38.26	6
	ATOM	89		PHE			-25.321	73.518	-0.743	1.00 43.28	6
	ATOM	90	CZ	PHE			-23.937	73.441	-0.856	1.00 39.74	6
	MOTA	91	С	PHE			-28.144	78.472	-0.477	1.00 40.75	6
50	MOTA	92	0	PHE			-28.803	78.393	0.558	1.00 35.51	8
	MOTA	93	N	THR			-28.027	79.621	-1.144	1.00 41.64	7
	ATOM	94	CA			273	-28.658	80.850	-0.652	1.00 45.97	6
	ATOM	95	СВ			273	-28.023	82.105	-1.283	1.00 51.52	6
	ATOM	96		THR			-28.292	82.151	-2.688	1.00 45.74	8
55	ATOM	97		THR			-26.511	82.123	-1.048	1.00 49.73	6
	ATOM	98	С			273	-30.142	80.859	-0.971	1.00 46.23	6
	ATOM	99	Ō			273	-30.862	81.751	-0.535	1.00 41.21	8
	ATOM	100	N			274	-30.583	79.876	-1.758	1.00 46.21	7

5	ATOM	155	N	ARG E	282	-35.296	81.405	11.378°	1.00 32.70	7
	MOTA	156	CA	ARG E	282	-35.439	80.449	12.475	1.00 34.27	6
	MOTA	157	CB	ARG E	282	-34.999	79.060	12.020	1.00 33.78	6
	ATOM	158	CG	ARG E		-35.986	77.944	12.280	1.00 45.15	6
	MOTA	159	CD	ARG E		-36.701	77.514	11.015	1.00 58.24	6
10	ATOM	160	NE	ARG E		-35.771	77.153	9.969	1.00 68.41	7
	MOTA	161	CZ	ARG E		-34.862	76.200	10.098	1.00 72.31	6
	ATOM	162		ARG E		-34.779	75.502	11.232	1.00 77.89	7
	ATOM	163	NH2	ARG E		-34.022	75.963	9.096	1.00 69.25	7
	ATOM	164	C	ARG E		-34.556	80.919	13.622	1.00 34.81	6
15	ATOM	165	0	ARG E		-35.008	81.034	14.753	1.00 36.03	8
13	ATOM	166	N	VAL E		-33.288	81.183	13.289	1.00 31.71	7
	ATOM	167	CA	VAL E		-32.304	81.667	14.249	1.00 30.16	6
	ATOM	168	CB	VAL E		-30.993	82.029	13.559	1.00 29.00	6
	ATOM	169	CG1	VAL E		-30.015	82.617	14.557	1.00 28.64	6
20	ATOM	170	CG2	VAL E		-30.385	80.816	12.915	1.00 28.28	6
20	ATOM	171	C	VAL E		-32.848	82.884	14.994	1.00 32.50	6
	ATOM	172	0	VAL E		-32.619	83.057	16.185	1.00 33.48	8
	ATOM	173	N	VAL E		-33.573	83.728	14.265	1.00 30.96	7
	ATOM	174	CA	VAL E		-34.177	84.925	14.844	1.00 29.14	6
25	ATOM	175	CB	VAL E		-34.672	85.892	13.751	1.00 31.27	6
23	MOTA	176		VAL E		-35.278	87.129	14.371	1.00 24.21	6
	MOTA	177		VAL E		-33.554	86.270	12.812	1.00 30.51	6
	ATOM	178	C	VAL E		-35.336	84.498	15.747	1.00 28.89	6
	ATOM	179	0	VAL E		-35.491	84.994	16.860	1.00 27.29	8
30	ATOM	180	N	ASP E		-36.143	83.564	15.250	1.00 28.76	7
50	ATOM	181	CA	ASP E		-37.299	83.057	15.983	1.00 35.32	6
	ATOM	182	CB	ASP E		-38.129	82.098	15.111	1.00 33.29	6
	ATOM	183	CG	ASP E		-38.881	82.795	14.013	1.00 38.15	6
	ATOM	184		ASP E		-39.660	83.729	14.305	1.00 34.70	8
35	MOTA	185		ASP E		-38.741	82.406	12.821	1.00 34.43	8
22	ATOM	186	C	ASP E		-36.863	82.339	17.257	1.00 36.70	6
	ATOM	187	Ō	ASP E		-37.606	82.304	18.237	1.00 37.96	8
	ATOM	188	N	PHE E		-35.663	81.755	17.235	1.00 35.96	7
	MOTA	189	CA	PHE E		-35.134	81.053	18.401	1.00 37.10	6
40	ATOM	190	ÇВ	PHE E		-33.870	80.262	18.052	1.00 37.97	6
	ATOM	191	CG	PHE E		-33.079	79.818	19.258	1.00 36.50	6
	ATOM	192		PHE E		-33.704	79.168	20.294	1.00 36.75	6
	ATOM	193		PHE E		-31.721	80.063	19.343	1.00 33.83	6
	ATOM	194		PHE E		-32.987	78.769	21,401	1.00 39.55	6
45	ATOM	195		PHE E		-30.997	79.662	20.456	1.00 38.08	6
••	MOTA	196	CZ	PHE E		-31.632	79.013	21.486	1.00 34.44	6
	ATOM	197	C	PHE E		-34.808	82.023	19.504	1.00 36.83	6
	ATOM	198	0	PHE E		-35.246	81.845	20.631	1.00 35.61	8
	ATOM	199	N	ALA E		-34.005	83.027	19.169	1.00 37.33	7
50	MOTA	200	CA	ALA E		-33.599	84.035	20.132	1.00 36.34	6
50	ATOM	201	СВ	ALA E		-32.644	85.008	19.469	1.00 36.40	6
	MOTA	202	C	ALA I		-34.831	84.769	20.657	1.00 38.76	6
	ATOM	202	0	ALA E		-34.882	85.193	21.814	1.00 41.98	8
	ATOM	204	N	LYS E		-35.820	84.912	19.779	1.00 38.28	7
55	ATOM	205	CA	LYS I		-37.066	85.584	20.112	1.00 45.26	6
55	ATOM	205	CB	LYS I		-37.983	85.690	18.898	1.00 48.35	6
	MOTA	207	CG	LYS I		-37.577	86.756	17.916	1.00 51.43	6
	ATOM	208	CD	LYS I		-38.806	87.359	17.226	1.00 60.23	6
	WION.	200	UD	ו ייים	,	20.000	0	1		•

5	ATOM	263	CA	GLU E	3 295	-34.839	92.159	27.816	1.00 52.53	6
	MOTA	264	CB	GLU E	3 295	-34.553	91.412	29.131	1.00 57.40	6
	MOTA	265	CG	GLU E	3 295	-35.811	90.978	29.874	1.00 69.63	6
	ATOM	266	CD	GLU E	3 295	-36.610	92.144	30.375	1.00 78.49	6
	ATOM	267	OE1	GLU E	3 295	-36.153	92.869	31.297	1.00 82.82	8
10	ATOM	268	OE2	GLU E	295	-37.730	92.385	29.860	1.00 85.30	8
	ATOM	269	С	GLU E	3 295	-33.629	93.009	27.415	1.00 48.54	6
	ATOM	270	0	GLU E	3 295	-32.981	93.627	28.260	1.00 49.82	8
	ATOM	271	N	LEU E	3 296	-33.374	93.030	26.109	1.00 43.79	7
	ATOM	272	CA	LEU E	3 296	-32.268	93.761	25.540	1.00 45.42	6
15	ATOM	273	СВ	LEU E	3 296	-31.319	92.769	24.838	1.00 41.04	6
	ATOM	274	CG	LEU F	3 296	-30.735	91.631	25.662	1.00 42.74	6
	ATOM	275	CD1	LEU E	3 296	-30.354	90.478	24.764	1.00 40.99	6
	MOTA	276	CD2	LEU E	3 296	-29.559	92.119	26.468	1.00 39.44	6
	MOTA	277	С	LEU E	3 296	-32.760	94.779	24.522	1.00 45.56	6
20	MOTA	278	0	LEU F	3 296	-33.845	94.600	23.924	1.00 43.07	8
	MOTA	279	N	PRO I	3 297	-32.004	95.875	24.338	1.00 46.99	7
	ATOM	280	CD	PRO I	3 297	-30.740	96.123	25.046	1.00 47.12	6
	ATOM	281	CA	PRO E	3 297	-32.388	96.912	23.363	1.00 49.61	6
	ATOM	282	CB	PRO E	3 297	-31.294	97.973	23.494	1.00 49.91	6
25	ATOM	283	CG	PRO I	3 297	-30.302	97.477	24.545	1.00 51.28	6
	ATOM	284	С	PRO I	3 297	-32.263	96.273	21.913	1.00 49.59	6
	MOTA	285	0	PRO I	3 297	-31.441	95.340	21.685	1.00 51.66	8
	ATOM	286	N	CYS I	3 298	-33.035	96.667	20.854	1.00 51.02	7
	ATOM	287	CA	CYS I	3 298	-32.761	96.150	19.456	1.00 52.86	6
30	ATOM	288	СВ	CYS I	3 298	-33.140	97.165	18.356	1.00 54.57	6
	ATOM	289	SG	CYS I	3 298	-34.884	97.085	17.836	1.00 67.87	16
	MOTA	290	С	CYS I	3 298	-31.385	96.330	19.127	1.00 48.51	6
	ATOM	291	0	CYS I	3 298	-30.579	95.506	18.744	1.00 49.58	8
	ATOM	292	N	GLU I	3 299	-31.107	97.447	19.230	1.00 44.17	7
35	MOTA	293	CA	GLU I	3 299	-29.989	97.645	18.718	1.00 47.57	6
	MOTA	294	CB	GLU I	3 299	-29.402	98.973	19.208	1.00 49.92	6
	MOTA	295	CG		3 299	-29.944	100.187	18.433	1.00 59.30	6
	MOTA	296	CD	GLU I		-31.090	100.887	19.164	1.00 63.80	6
	MOTA	297	OE1	GLU I		-31.673	101.904	18.629	1.00 69.03	8
40	MOTA	298	OE2	GLU I	3 299	-31.473	100.458	20.319	1.00 67.10	8
	MOTA	299	С		3 299	-28.993	96.533	18.987	1.00 46.57	6
	MOTA	300	0		3 299	-28.200	96.179	18.111	1.00 44.65	8
	MOTA	301	N		300	-29.045	95.989	20.203	1.00 45.17	7
	MOTA	302	CA		3 300	-28.152	94.908	20.584	1.00 43.32	6
45	MOTA	303	CB		300	-27.985	94.849	22.105	1.00 37.38	6
	MOTA	304	CG		3 3 0 0	-27.239	96.016	22.650	1.00 36.23	6
	ATOM	305		ASP I		-26.208	96.421	22.052	1.00 35.87	8
	ATOM	306		ASP 1		-27.661	96.543	23.716	1.00 40.14	8
	ATOM	307	C		в 300	-28.721	93.591	20.071	1.00 42.81	6
50	ATOM	308	0		в 300	-28.001	92.775	19.489	1.00 46.02	8
	ATOM	309	N		B 301	-30.019	93.399	20.306	1.00 38.60	7
	MOTA	310	CA		B 301	-30.712	92.197	19.858	1.00 40.00	6
	ATOM	311	CB		B 301	-32.234	92.418	19.836	1.00 38.59	6
۔ ۔	ATOM	312	CG		B 301	-32.908	92.380	21.187	1.00 40.26	6
55	ATOM	313	CD		B 301	-34.401	92.583	21.083	1.00 44.15	6
	ATOM	314		GLN :		-34.859	93.637	20.589	1.00 45.73	8
	ATOM	315		GLN :		-35.165	91.602	21.544	1.00 46.13	7 6
	ATOM	316	С	GTN .	В 301	-30.237	91.830	18.455	1.00 41.64	ъ
						102				

5	MOTA	371	CB	CYS				5.706	84.761	12.194		33.43	6
	MOTA	372	SG	CYS		309	-27	7.875	84.011	11.089	1.00	35.20	16
	ATOM	373	С	CYS	В	309	-25	5.617	82.608	12.603		27.72	6
	MOTA	374	0	CYS	В	309		5.170	81.518	12.610		27.69	8
	MOTA	375	N	MET	В	310		1.447	82.829	12.011	1.00	26.15	7
10	MOTA	376	CA	MET	В	310		3.737	81.748	11.352		26.06	6
	ATOM	377	CB	MET	В	310		2.439	82.263	10.712		25.32	6
	MOTA	378	CG	MET	В	310	-21	L.584	81.157	10.080	1.00	24.08	6
	MOTA	379	SD	MET	В	310		2.555	80.324	8.758		27.71	16
	MOTA	380	CE	MET	В	310	-21	L.549	78.826	8.427	1.00	28.50	6
15	ATOM	381	С	MET	В	310	-23	3.416	80.673	12.374	1.00	25.94	6
	MOTA	382	0	MET	В	310	-23	3.659	79.489	12.151	1.00	28.09	8
	MOTA	383	N	GLU	В	311	-22	2.865	81.117	13.500	1.00	25.39	7
	MOTA	384	CA	GLU	В	311	-22	2.466	80.231	14.576	1.00	27.03	6
	MOTA	385	CB	GLU	В	311	-22	2.036	81.048	15.797	1.00	24.39	6
20	ATOM	386	CG	GLU	В	311	-21	1.019	82.141	15.509	1.00	26.00	6
	ATOM	387	.CD	GLU	В	311	-20).524	82.835	16.740	1.00	23.95	6
	ATOM	388	OE1	GLU	В	311	-21	1.321	83.108	17.668	1.00	19.72	8
	ATOM	389	OE2	GLU	В	311	-19	9.313	83.163	16.815	1.00	26.51	8
	MOTA	390	С	GLU	В	311	-23	3.582	79.264	14.964	1.00	27.51	6
25	MOTA	391	0	GLU	В	311	-23	3.347	78.068	15.093	1.00	29.67	8
	MOTA	392	N	ILE	В	312	-24	1.794	79.792	15.145	1.00	26.82	7
	ATOM	393	CA	ILE	В	312	-25	5.933	78.967	15.527	1.00	25.71	6
	MOTA	394	СВ	ILE	В	312	-27	7.125	79.814	16.021	1.00	23.35	6
	MOTA	395	CG2	ILE	В	312	-28	3.327	78.933	16.276	1.00	20.27	6
30	ATOM	396	CG1	ILE	В	312	-26	5.771	80.541	17.325	1.00	20.88	6
	ATOM	397	CD1	ILE	В	312	-27	7.952	81.163	18.028	1.00	18.15	6
	MOTA	398	С	ILE	В	312		6.370	78.072	14.392	1.00	27.91	6
	ATOM	399	0	ILE	В	312	-26	6.769	76.926	14.605	1.00	28.96	8
	ATOM	400	N		В	313	-26	5.303	78.603	13.174	1.00	27.66	7
35	ATOM	401	CA	MET	В	313		6.696	77.832	11.999	1.00	30.18	6
	ATOM	402	СВ	MET	В	313		6.696	78.691	10.734		36.89	6
	MOTA	403	CG		В	313	-27	7.882	79.634	10.607		37.95	6
	ATOM	404	SD		В	313		3.238	80.275	8.907		42.38	16
	ATOM	405	CE	MET		313		5.787	81.316	8.639		40.68	6
40	ATOM	406	С	MET		313		5.791	76.632	11.808		27.43	6
	MOTA	407	0	MET				5.258	75.501	11.893		28.61	8
	MOTA	408	N	SER				4.508	76.882	11.549		24.88	7
	ATOM	409	CA	SER				3.533	75.824	11.346		27.98	6
	ATOM	410	СВ	SER				2.150	76.441	11.165		29.64	6
45	ATOM	411	OG	SER				1.844	77.316	12.227		43.44	8
	ATOM	412	C			314		3.514	74.774	12.465		22.30	6
	ATOM	413	0	SER				3.279	73.592	12.199		24.18	8
	ATOM	414	N	LEU				3.760	75.187	13.714		23.99	7
	ATOM	415	CA	LEU				3.792	74.219	14.811		25.07	6
50	ATOM	416	CB	LEU				4.095	74.869	16.169		19.11	6
50	MOTA	417	CG	LEU				4.507	73.860	17.234		20.39	6
	ATOM	418		LEU				3.390	72.878	17.493		18.92	6
	MOTA	419	CD2					4.895	74.560	18.514		12.93	6
	MOTA	420	C	LEU				4.892	73.219	14.517		24.53	6
55	ATOM	421	0			315		4.672	72.014	14.550		26.32	8
55	ATOM	421	N			316		6.079	73.762	14.254		28.18	7
	ATOM	423	CA			316		7.278	72.996	13.971		27.54	6
	ATOM	424	CB			316		8.432	73.941	13.651		27.39	6
	111 OF	747	Ç.	171/0	ט	210	10-		10.541	73.031	1.00	-1.37	3
							11)-	•					

5	MOTA	479	С	ASP			-23.044	60.659	8.682		45.82	6
	MOTA	480	0	ASP			-22.738	60.783	7.495		4,5.38	8
	MOTA	481	N	PRO	В	323	-22.242	60.005	9.549	1.00	46.53	7
	MOTA	482	CD	PRO	В	323	-22.594	59.676	10.934	1.00	47.16	6
	ATOM	483	CA	PRO	В	323	-20.910	59.487	9.162	1.00	46.63	6
10	ATOM	484	CB	PRO	В	323	-20.367	58.847	10.433	1.00	43.95	6
	ATOM	485	CG	PRO	В	323	-21.398	58.958	11.454	1.00	43.93	6
	MOTA	486	С	PRO	В	323	-20.933	58.489	8.017	1.00	48.34	6
	ATOM	487	0	PRO	В	323	-20.040	58.457	7.171	1.00	50.84	8
	ATOM	488	N	GLU	В	324	-21.951	57.631	8.022	1.00	52.39	7
15	ATOM	489	CA	GLU	В	324	-22.126	56.615	7.008	1.00	55.85	6
	ATOM	490	СВ	GLU	В	324	-23.491	55.960	7.216	1.00	55.54	6
	ATOM	491	CG	GLU	В	324	-23.678	55.332	8.581	1.00	40.00	6
	ATOM	492	CD	GLU	В	324	-22.642	54.294	8.888	1.00	40.00	6
	ATOM	493	OE1	GLU	В	324	-21.796	53.979	8.000	1.00	40.00	8
20	MOTA	494	OE2	GLU	В	324	-22.645	53.751	10.029	1.00	40.00	8
	MOTA	495	С	GLU	В	324	-22.087	57.292	5.655	1.00	54.94	6
	MOTA	496	0	GLU	В	324	-21.144	57.149	4.896	1.00	59.81	8
	MOTA	497	И	SER	В	325	-23.165	58.022	5.389	1.00	52.95	7
	MOTA	498	CA	SER	В	325	-23.358	58.762	4.163	1.00	50.10	6
25	MOTA	499	CB	SER	В	325	-24.768	59.357	4.163	1.00	48.23	6
	MOTA	500	OG	SER	В	325	-25.051	59.976	5.403	1.00	48.71	8
	ATOM	501	С	SER	В	325	-22.324	59.861	3.964	1.00	50.61	6
	ATOM	502	0	SER	В	325	-21.956	60.176	2.848	1.00	52.19	8
	ATOM	503	N	GLU	В	326	-21.851	60.422	5.070	1.00	45.64	7
30	ATOM	504	CA	GLU	В	326	-20.854	61.476	5.050	1.00	43.35	6
	ATOM	505	CB	GLU			-19.602	61.022	4.277	1.00	42.74	6
	ATOM	506	CG	GLU	В		-18.880	59.814	4.876	1.00		6
	MOTA	507	CD	GLU			-17.576	59.524	4.207		56.34	6
	MOTA	508	OE1	GLU			-16.898	58.545	4.608		59.31	8
35	MOTA	509	OE2	GLU		326	-17.177	60.255	3.266		55.74	8
	MOTA	510	С	GLU			-21.401	62.731	4.418		40.23	6
	MOTA	511	0	${\tt GLU}$			-20.793	63.285	3.514		40.44	8
	MOTA	512	N	THR		327	-22.528	63.208	4.934		35.90	7
	ATOM	513	CA	THR		327	-23.163	64.418	4.401		37.29	6
40	MOTA	514	CB	THR			-24.146	64.052	3.285		37.63	6
	ATOM	515		THR			-25.172	63.199	3.803		38.12	8
	ATOM	516		THR			-23.445	63.342	2.130		39.90	6
	MOTA	517	С			327	-23.961	65.125	5.473		39.49	6
4-	MOTA	518	0			327	-24.645	64.473	6.264		40.50	8
45	ATOM	519	N	LEU			-23.909	66.454	5.473		36.64	7
	MOTA	520	CA	LEU			-24.675	67.239	6.447		37.73	6
	MOTA	521	CB	LEU			-24.061	68.637	6.620		37.78	6
	MOTA	522	CG			328	-22.586	68.750	6.931		36.26	6
~~	MOTA	523		LEU			-22.260	70.145	7.411		36.56	6
50	ATOM	524		LEU			-22.231	67.751	8.000		39.85	6
	ATOM	525	С			328	-26.090	67.344	5.897		37.27	6
	ATOM	526	0			328	-26.358	66.855	4.805		34.96	8
	ATOM	527	N			329	-26.989	67.975	6.647		39.73	7
E E	ATOM	528	CA			329	-28.369	68.132	6.215		40.81	6
55	ATOM	529	CB			329	-29.279	67.135	6.918		42.67	6
	ATOM	530	OG1			329	-28.799	65.809	6.686		42.52	8 6
	ATOM	531	CG2				-30.702	67.255	6.375		43.52	6
	ATOM	532	С	THK	ם	329	-28.853	69.529	6.498	1.00	44.31	O
							106					

5	ATOM	587	CG2	THR E	337	-21.869	65.175	-0.702	1.00 40.38	6
	MOTA	588	С	THR E	337	-20.087	67.846	1.318	1.00 37.88	6
	ATOM	589	0	THR B	337	-20.141	68.975	0.832	1.00 34.06	8
	MOTA	590	N	ARG E	338	-19.097	67.417	2.095	1.00 37.61	7
	ATOM	591	CA	ARG E	338	-17.942	68.241	2.442	1.00 38.68	6
10	ATOM	592	СВ	ARG E	338	-16.770	67.333	2.823	1.00 35.95	6
	ATOM	593	CG	ARG B	338	-15.455	68.042	3.064	1.00 38.83	6
	MOTA	594	CD	ARG E	338	-14.348	67.029	3.319	1.00 35.88	6
	MOTA	595	NE	ARG E	338	-14.520	66.239	4.530	1.00 37.42	7
	MOTA	596	CZ	ARG E	338	-14.274	66.669	5.766	1.00 30.20	6
15	MOTA	597	NH1	ARG E	338	-13.794	67.892	5.973	1.00 27.98	7
	MOTA	598	NH2	ARG E	338	-14.481	65.847	6.788	1.00 27.40	7
	ATOM	599	С	ARG E	338	-17.581	69.075	1.229	1.00 38.09	6
	ATOM	600	0	ARG E	338	-17.537	70.299	1.284	1.00 34.12	8
	MOTA	601	N	GLY B	339	-17.345	68.383	0.117	1.00 41.25	7
20	ATOM	602	CA	GLY E	339	-16.981	69.054	-1.119	1.00 41.35	6
	MOTA	603	С	GLY E	339	-18.004	70.109	-1.460	1.00 41.23	6
	MOTA	604	0	GLY E	339	-17.736	71.291	-1.330	1.00 38.30	8
	MOTA	605	N	GLN E	340	-19.174	69.665	-1.909	1.00 38.58	7
	MOTA	606	CA	GLN E		-20.258	70.564	-2.276	1.00 40.79	6
25	MOTA	607	СВ	GLN E	340	-21.596	69.843	-2.079	1.00 40.82	6
	ATOM	608	CG	GLN E	340	-21.830	68.657	-3.029	1.00 41.10	6
	MOTA	609	CD.	GLN E	340	-23.154	67.937	-2.783	1.00 48.84	6
	MOTA	610	OE1	GLN E	340	-23.353	67.313	-1.715	1.00 50.53	8
	MOTA	611	NE2	GLN E	340	-24.050	68.015	-3.753	1.00 54.25	7
30	ATOM	612	С	GLN E	340	-20.239	71.872	-1.475	1.00 41.50	6
	ATOM	613	0	GLN E	340	-20.114	72.958	-2.032	1.00 42.72	8
	ATOM	614	N	LEU E	341	-20.352	71.736	-0.156	1.00 42.00	7
	MOTA	615	CA	LEU E	341	-20.375	72.879	0.746	1.00 38.10	6
	MOTA	616	CB	LEU E	341	-20.401	72.419	2.201	1.00 36.66	6
35	MOTA	617	CG	LEU E	341	-20.678	73.514	3.194	1.00 39.94	6
	ATOM	618	CD1	LEU E	341	-22.088	74.038	2.936	1.00 34.98	6
	ATOM	619	CD2	LEU E	341	-20.570	72,990	4.609	1.00 40.95	6
	ATOM	620	С	LEU E	341	-19.170	73.763	0.543	1.00 36.37	6
	ATOM	621	0	LEU E	341	-19.293	74.974	0.497	1.00 37.89	8
40	ATOM	622	N	LYS E	342	-18.003	73.136	0.433	1.00 33.29	7
	MOTA	623	CA	LYS E	342	-16.737	73.843	0.239	1.00 35.17	6
	ATOM	624	CB	LYS E	342	-15.603	72.821	0.176	1.00 34.97	6
	ATOM	625	CG	LYS E	342	-14.210	73.401	0.306	1.00 40.00	6
	ATOM	626	CD	LYS E	342	-13.155	72.288	0.316	1.00 34.48	6
45	ATOM	627	CE	LYS E			72.809	0.755	1.00 37.54	6
	ATOM	628	NZ	LYS E			71.680	0.981	1.00 42.32	7
	ATOM	629	С	LYS E	342	-16.744	74.685	-1.038	1.00 38.29	6
	ATOM	630	0	LYS E			75.911	-0.993	1.00 36.23	8
	ATOM	631	N	ASN E			73.990	-2.172	1.00 39.25	7
50	ATOM	632	CA	ASN E	343	-16.762	74.609	-3.481	1.00 40.19	6
	ATOM	633	CB	ASN E	343	-16.977	73.539	-4.551	1.00 37.96	6
	ATOM	634	CG	ASN E	343	-16.178	72.272	-4.277	1.00 39.22	6
	MOTA	635					72.313	-4.106	1.00 42.37	8
_	MOTA	636	ND2	ASN E			71.144	-4.259	1.00 42.19	7
55	MOTA	637	С	ASN E			75.624	-3.547	1.00 40.12	6
	ATOM	638	0	ASN E			76.600	-4.284	1.00 36.01	8
	MOTA	639	N	GLY E		-18.934	75.361	-2.756	1.00 40.95	7
	MOTA	640	CA	GLY E	344	-20.101	76.222	-2.709	1.00 39.25	6
						108				

5	MOTA	695	CG2	ILE	В	353	-20.	529	72.673	;	9.195	1.00	23.68	6
	MOTA	696	CG1	ILE	В	353	-19	.108	74.657	' 1	8.869	1.00	27.33	6
	MOTA	697	CD1	ILE	В	353	-20	141	75.313	; .	7.964	1.00	26.23	6
	ATOM	698	С	ILE	В	353	-18.	309	71.002		9.775	1.00	30.88	6
	ATOM	699	0	ILE	В	353	-19		70.499		0.639	1.00	31.22	8
10	ATOM	700	N	PHE		354		.728	70.279		8.822	1.00		7
	ATOM	701	CA	PHE	В	354	-17		68.831		3.797	1.00	31.08	6
	ATOM	702	CB	PHE		354	-17		68.249		7.439	1.00	28.80	6
	ATOM	703	CG	PHE	В	354	-18		68.233		6.405	1.00		6
	ATOM	704	CD1		В	354	-19		69.403		5.833	1.00	30.96	6
15	ATOM	705	CD2	PHE		354		150	67.027		6.034	1.00	29.45	6
1.5	ATOM	706	CE1	PHE		354		.066	69.362		4.902	1.00	27.12	6
	ATOM	707	CE2	PHE	В	354		186	66.978		5.104	1.00	25.19	6
	ATOM	708	CZ	PHE		354	-20. -20.		68.146		4.535	1.00	28.09	6
		708	C		В	354								
20	MOTA			PHE			-17		68.223		9.913		29.17	6
20	MOTA	710	0	PHE	В	354	-17.		67.429		0.700	1.00	32.62	8
	MOTA	711	N	ASP		355	-15.		68.593		9.972	1.00	23.86	7
	MOTA	712	CA	ASP		355	-14.		68.090		1.005	1.00	25.34	6
	MOTA	713	CB	ASP		355	-13.		68.929		1.045	1.00	21.41	6
25	MOTA	714	CG	ASP		355	-12		68.456		0.086	1.00	32.08	6
25	MOTA	715	OD1	ASP		355		899	68.069		3.944		33.58	8
	MOTA	716	OD2	ASP		355	-11.		68.477		0.450	1.00	33.20	8
	ATOM	717	С	ASP		355	-15.		68.153		2.357		27.86	6
	MOTA	718	0	ASP		355	-15.		67.257		3.182		32.42	8
•	MOTA	719	N	LEU		356	-16.		69.223		2.561		26.84	7
30	MOTA	720	CA	LEU		356	-17.		69.400		3.803	1.00	28.66	6
	ATOM	721	CB	LEU			-17.	.832	70.742	1.	3.800		25.37	6
	ATOM	722	CG	LEU			-18.	655	71.091		5.023	1.00	27.61	6
	MOTA	723	CD1	LEU			-17.	.729	71.248	1	6.191	1.00	25.43	6
	MOTA	724	CD2	LEU		356	-19.		72.363	1	4.808	1.00	27.49	6
35	MOTA	725	С	LEU	В	356	-18.	084	68.260	1.	3.883	1.00	30.44	6
	ATOM	726	0	LEU		356	-18.	054	67.445	14	4.804	1.00	31.55	8
	MOTA	727	N .	GLY	В	357	-18.	972	68.214	12	2.891	1.00	32.69	7
	MOTA	728	CA	GLY	В	357	-20.	001	67.186	12	2.846	1.00	29.87	6
	MOTA	729	С	GLY		357	-19.	486	65.832	1:	3.279	1.00	33.12	6
40	MOTA	730	0	GLY	В	357	-20.		65.246		4.207		29.41	8
	MOTA	731	N	MET	В	358	-18.	444	65.351	. 12	2.593	1.00	33.31	7
	MOTA	732	CA	MET	В	358	-17.	834	64.066	12	2.902	1.00	35.87	6
	MOTA	733	CB	MET	В	358	-16.	513	63.903	12	2.151	1.00	34.56	6
	MOTA	734	CG	MET	В	358	-16.	649	63.908	10	0.657	1.00	46.43	6
45	MOTA	735	SD	MET	В	358	-15.	094	63.597	· <u>·</u>	9.751	1.00	42.13	16
	MOTA	736	CE	MET	В	358	-14.	121	65.063	10	0.228	1.00	44.29	6
	MOTA	737	С	MET	В	358	-17.	552	63.976	14	4.392	1.00	33.26	6
	ATOM	738	0	MET	В	358	-18.	019	63.075	1:	5.075	1.00	36.39	8
	MOTA	739	N	SER	В	359	-16.	766	64.933	1	4.875	1.00	33.31	7
50	MOTA	740	CA	SER	В	359	-16.	380	64.998	16	5.270	1.00	34.39	6
	MOTA	741	CB	SER	В	359	-15.	724	66.339	1	6.541	1.00	30.84	6
	ATOM	742	OG	SER	В	359	-15.	130	66.355		7.825	1.00	47.14	8
	ATOM	743	С	SER	В	359		579	64.813		7.169		36.43	6
	ATOM	744	0	SER				635	63.853		7.922		35.46	8
55	ATOM	745	N	LEU			-18.		65.744		7.079		36.74	7
	ATOM	746	CA	LEU			-19.		65.729		7.889		35.44	6
	ATOM	747	СВ	LEU				706	66.817		7.405		34.16	6
	ATOM	748	CG	LEU			-20.		68.255		7.575		34.59	6
			•			-	110			-	_			-
							"							

5	MOTA	803	CG	ASP	В	367	-34.172	68.166	2Y.881'	74500	42.43	6
	MOTA	804	OD1	ASP	В	367	-34.051	68.373	19.854	1.00	35.95	8
	MOTA	805	OD2	ASP	В	367	-34.829	67.188	21.504	1.00	51.42	8
	MOTA	806	С	ASP	В	367	-31.496	70.238	22.959	1.00	33.71	6
	MOTA	807	0	ASP	В	367	-30.791	71.188	22.624	1.00	38.30	8
10	MOTA	808	N	THR	В	368	~31.858	69.997	24.218	1.00	31.06	7
	ATOM	809	CA	THR	В	368	-31.453	70.822	25.344	1.00	26.28	6
	ATOM	810	CB	THR	В	368	-31.567	70.020	26.643	1.00	27.30	6
•	MOTA	811	OG1	THR		368	-32.916	69.578	26.824	1.00	33.42	8
	ATOM	812	CG2	THR		368	-31.143	70.855	27.824	1.00	25.16	6
15	MOTA	813	C	THR		368	-30.025	71.315	25.181	1.00	21.13	6
	ATOM	814	Ö	THR		368	-29.746	72.508	25.150	1.00	23.17	8
	ATOM	815	N	GLU		369	-29.123	70.354	25.072	1.00	21.32	7
	ATOM	816	CA	GLU		369	-27.711	70.634	24.932	1.00	28.00	6
	ATOM	817	CB	GLU		369	-26.947	69.306	24.878	1.00	32.79	6
20	ATOM	818	CG	GLU		369	-27.229	68.433	26.130	1.00	36.29	6
20	ATOM	819	CD	GLU		369	-26.689	67.051	26.083	1.00	41.03	6
	ATOM	820	OE1	GLU		369	-26.960	66.318	25.102	1.00	42.05	8
	ATOM	821	OE2	GLU		369	-25.992	66.645	27.048	1.00	42.03	8
	ATOM	822	C	GLU		369	-27.428	71.527	23.731	1.00	25.57	6
25	ATOM	823	0	GLU		369	-26.780	72.549	23.731	1.00	20.56	8
23	ATOM	824	_	VAL		370	-27.922	72.349	22.548	1.00		7
			N									6
	ATOM	825	CA	VAL		370	-27.710	71.968	21.355		25.99	6
	ATOM	826	CB	VAL		370	-28.457	71.429	20.130		26.15	
20	MOTA	827		VAL		370	-28.255	72.358	18.953		27.65	6
30	MOTA	828	CG2	VAL		370	-28.014	70.021	19.788		17.70	6
	MOTA	829	С	VAL		370	-28.238	73.346	21.676		26.49	6 8
	MOTA	830	0	VAL		370	-27.580	74.351	21.445		28.16 21.01	o 7
	MOTA	831	N	ALA		371	-29.450	73.362	22.213			6
35	ATOM	832	CA	ALA		371	-30.145	74.589	22.573	1.00	19.57	6
33	MOTA	833	CB	ALA		371	-31.414	74.246	23.335	1.00	18.62	6
	MOTA	834	С	ALA		371	-29.256	75.501	23.401	1.00	23.48	8
	MOTA	835	0	ALA		371	-28.936	76.613	22.989	1.00	32.67	0 7
	MOTA	836	N	LEU		372	-28.860	75.008	24.571	1.00	22.89	. 6
40	MOTA	837	CA	LEU		372	-27.999	75.758	25.472	1.00	23.28	
40	MOTA	838	CB	LEU		372	-27.606	74.860	26.658	1.00	27.76	6
	MOTA	839	CG	LEU			-28.728	74.524	27.619		21.18	6
	ATOM	840		LEU			-28.272	73.529	28.648		27.64	6
	MOTA	841		LEU			-29.198	75.801	28.284		20.90	6
15	MOTA	842	C	LEU			-26.769	76.268	24.722		21.34	6
45	MOTA	843	0			372	-26.439	77.454	24.762		23.16	8
	ATOM	844	N			373	-26.111	75.349	24.023		24.42	7
	MOTA	845	CA	LEU			-24.916	75.669	23.254		23.78	6
	MOTA	846	CB	LEU			-24.525	74.446	22.396		22.18	6
7.0	ATOM	847	CG	LEU			-23.098	74.283	21.942		31.52	6
50	MOTA	848		LEU			-22.196	74.576	23.100		31.93	6
	ATOM	849		LEU			-22.873	72.889	21.457		30.24	6
	ATOM	850	С			373	-25.235	76.902	22.405		25.69	6
	ATOM	851	0			373	-24.491	77.880	22.416		30.13	8
	MOTA	852	N			374	-26.368	76.842	21.707		26.24	7
55	MOTA	853	CA			374	-26.836	77.922	20.839		21.60	6
	ATOM	854	CB			374	-28.196	77.571	20.221		24.57	6
	ATOM	855	CG			374	-28.188	76.330	19.348		21.02	6
	MOTA	856	CD	GLN	В	374	-29.538	76.071	18.698	1.00	22.86	6
							112					

5	ATOM	911	CB	ASP	В	382	-16.727	89.562	23.028	1.00	48.39	6
	MOTA	912	CG	ASP	В	382	-17.142	88.232	22.471	1.00	53.23	6
	MOTA	913	OD1	ASP	В	382	-18.102	87.621	23.002	1.00	56.97	8
	MOTA	914	OD2	ASP	В	382	-16.513	87.753	21.480	1.00	58.91	8
	MOTA	915	С	ASP	В	382	-18.191	91.172	21.772	1.00	41.09	6
10	ATOM	916	0	ASP	В	382	-17.366	91.899	21.229	1.00	40.93	8
	MOTA	917	N	ARG	В	383	-19.369	90.908	. 21.224	1.00	42.63	7
	MOTA	918	CA	ARG	В	383	-19.698	91.445	19.934	1.00	43.32	6
	ATOM	919	CB	ARG	В	383	-21.131	91.101	19.557	1.00	42.31	6
	MOTA	920	CG	ARG	В	383	-21.619	89.672	19.811	1.00	40.83	6
15	MOTA	921	CD	ARG	В	383	-21.144	88.627	18.804	1.00	38.09	6
	MOTA	922	NE	ARG	В	383	-21.922	87.415	18.943	1.00	37.33	7
	ATOM	923	CZ	ARG	В	383	-21.584	86.250	18.411	1.00	38.35	6
	MOTA	924	NHl	ARG	В	383	-20.465	86.143	17.700	1.00	33.70	7
	MOTA	925	NH2	ARG	В	383	-22.369	85.196	18.604	1.00	35.46	7
20	MOTA	926	С	ARG	В	383	-19.591	92.958	20.007	1.00	44.96	6
	ATOM	927	0	ARG	В	383	-20.050	93.577	20.980	1.00	45.60	8
	ATOM	928	N	PRO	В	384	-18.975	93.579	19.005	1.00	45.33	7
	ATOM	929	CD	PRO	В	384	-18.395	92.881	17.854	1.00	46.85	6
	MOTA	930	CA	PRO	В	384	-18.808	95.035	18.947	1.00	47.37	6
25	MOTA	931	CB	PRO	В	384	-17.868	95.255	17.764	1.00	46.90	6
	MOTA	932	CG	PRO	В	384	-17.575	93.934	17.187	1.00	46.41	6
	ATOM	933	С	PRO	В	384	-20.125	95.778	18.762	1.00	48.29	6
	MOTA	934	0	PRO	В	384	-21.048	95.277	18.120	1.00	48.34	8
	MOTA	935	N	GLY	В	385	-20.185	96.994	19.314	1.00	49.88	7
30	MOTA	936	CA	GLY	В	385	-21.371	97.838	19.192	1.00	50.35	6
	MOTA	937	C	GLY		385	-22.410	97.615	20.265	1.00	50.70	6
	MOTA	938	0	GLY		385	-23.382	98.363	20.374	1.00	53.48	8
	ATOM	939	N	LEU	В	386	-22.205	96.557	21.044	1.00	49.04	7
	ATOM	940	CA	LEU		386	-23.136	96.211	22.101	1.00	50.53	6
35	MOTA	941	CB		В	386	-22.640	94.972	22.853	1.00	45.17	6
	ATOM	942	CG	LEU		386	-22.744	93.653	22.121	1.00	48.26	6
	ATOM	943	CD1	LEU		386	-22.122	92.525	22.938	1.00	41.68	6
	ATOM	944	CD2	LEU		386	-24.215	93.376	21.852	1.00	38.40	6
	MOTA	945	С	LEU		386	-23.322	97.357	23.058	1.00	52.13	6
40	ATOM	946	0	LEU			-22.438	98.182	23.234	1.00	53.67	8
	MOTA	947	N	ALA			-24.499	97.398	23.666		53.42	7
	MOTA	948	CA	ALA			-24.830	98.441	24.624		56.01	6
	MOTA	949	CB	ALA			-26.223	98.993	24.339		56.47	6
4.5	MOTA	950	С	ALA			-24.775	97.853	26.024		55.52	6
45	MOTA	951	0	ALA			-23.798	98.027	26.753		53.75	8
	MOTA	952	N	CYS			-25.843	97.145	26.371		56.03	7
	ATOM	953	CA	CYS			-26.000	96.525	27.673		59.57	6
	ATOM	954	CB	CYS			-27.469	96.134	27.839		59.23	6
***	ATOM	955	SG	CYS			-28.620	97.392	27.264		58.64	16
50	ATOM	956	С	CYS			-25.105	95.283	27.798		62.18	6
	ATOM	957	0	CYS			-25.590	94.164	27.868		67.88	8
	MOTA	958	N			389	-23.789	95.510	27.824		60.78	7
	MOTA	959	CA	VAL			-22.797	94.434	27.959		57.70	6
~ -	ATOM	960	CB	VAL			-21.355	94.976	27.998		57.09	6
55	ATOM	961		VAL			-20.361	93.832	28.085		59.03	6
	MOTA	962		VAL			-21.065	95.845	26.791		53.98	6
	ATOM	963	C	VAL			-23.078	93.642	29.230		57.77	6
	ATOM	964	0	VAL	В	389	-23.727	92.602	29.203	1.00	60.94	8
							111					

5	MOTA	1019	CD	GLN	В	396	-21.2	14 8	33.871	27.016	1.00	29.46	6
	ATOM	1020	OE1	GLN	В	396	-20.5	47 8	34.930	27.109	1.00	34.65	8
	ATOM	1021	NE2	GLN	В	396	-21.1	12 8	33.032	25.992	1.00	27.21	7
	ATOM	1022	С	GLN	В	396	-23.9	3 80	33.207	30.434	1.00	37.13	6
	MOTA	1023	0	GLN	В	396	-23.8	76 8	31.986	30.384	1.00	37.36	8
10	ATOM	1024	N	ASP	В	397	-23.5	44 8	33.903	31.508	1.00	38.61	7
	ATOM	1025	CA	ASP			-23.0	69 8	33.250	32.717	1.00	40.37	6
	ATOM	1026	CB	ASP			-22.6		34.297	33.754	1.00	40.51	6
	ATOM	1027	CG	ASP			-21.3		35.025	33.352		43.77	6
	ATOM	1028		ASP		397	-20.3		34.366	33.054		46.50	8
15	ATOM	1029		ASP		397	-21.3		36.287	33.350		51.34	8
13	MOTA	1030	C	ASP		397	-24.2		32.422	33.267		38.62	6
	MOTA	1031	0	ASP		397	-24.0		31.327	33.778		39.20	8
	ATOM	1032	N	SER		398	-25.4		32.962	33.138		37.84	7
	ATOM	1032	CA	SER		398	-26.6		32.293	33.622		37.80	6
20	ATOM	1033	CB	SER		398	-27.8		33.246	33.501		34.28	6
20		1034	OG	SER		398	-28.9		32.715	34.114		46.60	8
	MOTA	1035	C	SER		398	-26.9 -26.9		30.997	32.867		38.41	6
	MOTA			SER		398	-20.9		30.047	33.433		39.98	8
	MOTA	1037	0									34.82	7
25	ATOM	1038	N	PHE		399	-26.5		30.963	31.587		35.96	
25	ATOM	1039	CA	PHE		399	-26.7		79.768	30.781			6
	MOTA	1040	CB			399	-26.8		30.100	29.293		35.75	6
	ATOM	1041	CG			399	-28.2		30.717	28.906		39.30	6
	ATOM	1042	CD1			399	-28.4		32.056	29.109		39.86	6
20	ATOM	1043	CD2			399	-29.1		79.938	28.355		36.81	6
30	ATOM	1044	CE1	PHE		399	-29.7		32.602	28.739		41.25	6 6
	ATOM	1045	CE2	PHE		399	-30.4		30.483	27.987		43.61	6
	ATOM	1046	CZ	PHE		399	-30.6		81.813	28.181 30.976		40.34	6
	ATOM	1047	С	PHE		399	-25.6		78.754 77.589	31.256		26.86	8
35	ATOM	1048	0			399	-25.9		79.187	30.796		31.47	7
33	ATOM	1049	N	LEU			-24.4 -23.2		78.291	30.796		37.41	6
	MOTA	1050	CA	LEU		400				31.030		34.24	6
	ATOM	1051	CB	LEU		400	-21.9		79.091				6
	ATOM	1052	CG	LEU			-21.4		79.642 80.304	29.726		35.10	6
40	ATOM	1053	CD1	LEU			-20.1			29.917		26.60	
40	ATOM	1054		LEU			-21.3		78.488	28.759		29.44	6
	ATOM	1055	C	LEU			-23.4		77.376	32.145		38.84	6
	ATOM	1056	0			400	-23.3		76.157	32.007		40.38	8
	ATOM	1057	N			401	-23.6		77.968	33.321		42.79	7
4.5	ATOM	1058	CA	LEU			-23.8		77.181	34.537		43.48	6
45	MOTA	1059	CB			401	-24.2		78.067	35.712		44.73	6
	MOTA	1060	CG			401	-24.3		77.303	37.012		51.39	6
	MOTA	1061		LEU			-22.9		76.844	37.484		50.11	6
	MOTA	1062		LEU			-25.0		78.163	38.083		49.30	6
	MOTA	1063	С			401	-24.8		76.095	34.311		41.62	6
50	MOTA	1064	0			401	-24.5		74.900	34.427		45.14	8
	MOTA	1065	N			402	-26.0		76.532	33.997		37.92	7
	MOTA	1066	CA			402	-27.1		75.631	33.752		29.90	6
	MOTA	1067	CB			402	-28.3		76.433	33.200		30.70	6
	MOTA	1068	С			402	-26.7		74.521	32.773		28.88	6
55	MOTA	1069	0			402	-27.0		73.347	32.996		32.14	8
	ATOM	1070	N			403	-26.0		74.908	31.698		31.07	7
	ATOM	1071	CA			403	-25.6		73.970	30.673		29.90	6
	ATOM	1072	CB	PHE	В	403	-24.8	47	74.715	29.607	1.00	27.03	6
							116						

5	ATOM	1127	0	ASN	В	408	-24.624	64.253	35.105	1.00	42.16	8
	ATOM	1128	N			409	-26.122	65.924	35.003	1.00	35.62	7
	ATOM	1129	CA			409	-27.273	65.024	35.073	1.00	35.91	6
	ATOM	1130	CB	TYR	В	409	-28.597	65.787	34.931	1.00	34.41	6
	ATOM	1131	CG	TYR	В	409	-29.788	64.868	34.685	1.00	38.73	6
10	ATOM	1132	CD1	TYR	В	409	-30.064	63.819	35.549	1.00	41.34	6
	ATOM	1133	CE1	TYR	В	409	-31.130	62.962	35.309	1.00	47.16	6
	MOTA	1134	CD2	TYR	В	409	-30.613	65.037	33.579	1.00	46.20	6
	ATOM	1135	CE2	TYR	В	409	-31.684	64.176	33.341	1.00	50.74	6
	ATOM	1136	CZ	TYR	В	409	-31.942	63.143	34.206	1.00	50.88	6
15	ATOM	1137	OH	TYR	В	409	-33.002	62.312	33.978	1.00	53.14	8
	ATOM	1138	С	TYR	В	409	-27.215	64.020	33.951	1.00	38.16	6
	ATOM	1139	0	TYR	В	409	-27.558	62.857	34.111	1.00	41.83	8
٠.	ATOM	1140	N	ARG	В	410	-26.824	64.528	32.796	1.00	42.25	7
	ATOM	1141	CA	ARG	В	410	-26.734	63.739	31.594	1.00	42.83	6
20	ATOM	1142	CB	ARG	В	410	-26.350	64.646	30.441	1.00	36.83	6
	ATOM	1143	CG	ARG	В	410	-27.440	65.585	29.945	1.00	34.32	6
	ATOM	1144	CD	ARG	В	410	-28.284	64.863	28.917	1.00	36.62	6
	ATOM	1145	NE	ARG	В	410	-27.455	64.378	27.829	1.00	38.64	7
	MOTA	1146	CZ	ARG	В	410	-27.926	63.656	26.824	1.00	35.73	6
25	MOTA	1147	NH1	ARG	В	410	-29.234	63.379	26.782		33.17	7
	ATOM	1148	NH2	ARG	В	410	-27.095	63.227	25.868	1.00	32.70	7
	ATOM	1149	С	ARG	В	410	-25.688	62.664	31.733	1.00	46.67	-6
	ATOM	1150	0	ARG	В	410	-25.859	61.547	31.257		41.78	8
	ATOM	1151	N	LYS	В	411	-24.602	63.028	32.413		52.99	7
30	ATOM	1152	CA	LYS	В	411	-23.471	62.145	32.609		58.32	6
	ATOM	1153	CB	LYS	В	411	-23.684	61.249	33.833		64.99	6
	MOTA	1154	CG	LYS	В	411	-24.998	60.544	33.968		70.48	6
	MOTA	1155	CD	LYS			-25.070	59.887	35.349		77.18	6
	MOTA	1156	CE			411	-26.272	58.944	35.474		84.30	6
35	MOTA	1157	NZ			411	-26.286	58.242	36.809		86.48	7
	ATOM	1158	С		В	411	-23.172	61.341	31.365		56.66	6
	ATOM	1159	0	LYS			-23.574	60.199	31.210		55.47	8
	MOTA	1160	N	HIS			-22.458	62.026	30.479		54.67	7
	MOTA	1161	CA	HIS			-22.019	61.474	29.214		48.67	6
40	ATOM	1162	СВ	HIS			-21.500	62.599	28.310		43.14	6
	ATOM	1163	CG	HIS	В	412	-22.559	63.501	27.784		41.36	6
	ATOM	1164					-23.159	64.603	28.299		35.44	6
	ATOM	1165	ND1	HIS	В	412	-23.163	63.290	26.539		38.19	7
	MOTA	1166	CE1	HIS	В	412	-24.076	64.238	26.353		34.75	6
45	ATOM	1167		HIS			-24.090	65.034	27.396		35.52	7
	MOTA	1168	C	HIS			-20.894	60.596	29.644		46.35	6
	ATOM	1169	0	HIS			-20.218	60.892	30.644		42.73	8
	ATOM	1170	N	HIS			-20.708	59.469	28.973		48.92	7
	MOTA	1171	CA	HIS			-19.593	58.614	29.371		53.15	6
50	ATOM	1172	СВ	HIS			-20.022	57.147	29.421		55.27	6
	MOTA	1173	CG	HIS			-20.814	56.823	30.636		58.77	6
	MOTA	1174		HIS			-22.019	56.223	30.822		61.65	6
	ATOM	1175		HIS			-20.360	57.159	31.921		60.31	7
	ATOM	1176		HIS			-21.267	56.758	32.809		63.01	6
55	ATOM	1177		HIS			-22.270	56.193	32.171		62.93	7
-	ATOM	1178	C	HIS				58.862	28.438		53.19	6
	ATOM	1179	0	HIS			-17.975	57.996	27.699		54.93	8
	ATOM	1180	N	VAL			-17.970	60.113	28.521		53.77	7
					_		118					•
							110					

5	ATOM	1235	0	PRO	В	419	-13.690	72.001	26.754	1.00	37.08	8
	ATOM	1236	N	LYS	В	420	-14.330	69.871	26.976	1.00	35.96	7
	MOTA	1237	CA	LYS	В	420	-14.278	69.609	25.538	1.00	40.82	6
	MOTA	1238	CB	LYS :	В	420	-14.452	68.103	25.271	1.00	40.78	6
	MOTA	1239	CG	LYS :	В	420	-13.349	67.214	25.830	1.00	48.62	6
10	ATOM	1240	CD	LYS	В	420	-13.565	65.746	25.480	1.00	55.12	6
	ATOM	1241	CE	LYS	В	420	-12.427	64.892	26.017	1.00	53.26	6
	ATOM	1242	NZ	LYS	В	420	-12.582	63.457	25.608	1.00	52.69	7
	ATOM	1243	С	LYS		420	-15.414	70.374	24.875	1.00	40.29	6
	ATOM	1244	0	LYS		420	-15.225	71.015	23.851	1.00	39.66	8
15	ATOM	1245	N	LEU		421	-16.591	70.300	25.499	1.00	38.33	7
	MOTA	1246	CA	LEU		421	-17.796	70.958	25.001	1.00	37.60	6
	ATOM	1247	СВ	LEU		421	-18.970	70.702	25.965	1.00	43.66	6
	AŢOM	1248	CG	LEU		421	-20.370	70.850	25.418		46.50	6
	ATOM	1249	CD1	LEU		421	-20.529	69.890	24.255	1.00	45.15	6
20	ATOM	1250	CD2	LEU		421	-21.383	70.538	26.486	1.00		6
20	ATOM	1251	C	LEU		421	-17.547	72.452	24.823	1.00	39.59	6
	ATOM	1252	0	LEU		421	-17.975	73.035	23.836		40.66	8
	ATOM	1253	N	LEU		422	-16.847	73.059	25.780	1.00		7
	ATOM	1254	CA	LEU		422	-16.534	74.478	25.715	1.00		6
25	ATOM	1255	CB	LEU		422	-15.829	74.936	26.992	1.00	41.79	6
23	ATOM	1256	CG	LEU		422	-16.714	75.149	28.191	1.00		6
	ATOM	1257	CD1			422	-15.911	75.685	29.360		42.89	6
	ATOM	1258	CD2	LEU		422	-17.783	76.162	27.813		39.27	6
	ATOM	1259	C	LEU		422	-15.677	74.788	24.513		40.47	6
30	ATOM	1260	0	LEU		422	-15.823	75.846	23.917		47.83	8
50	ATOM	1261	И	MET		423	-14.789	73.853	24.168		34.27	7
	ATOM	1262	CA	MET		423	-13.907	74.019	23.024		35.25	6
	ATOM	1263	CB	MET		423	-12.920	72.858	22.922		32.56	6
	ATOM	1264	CG	MET		423	-12.013	72.703	24.125		40.70	6
35		1265	SD	MET		423	-10.345	72.703	23.784		47.65	16
33	MOTA	1265		MET		423	-10.343	70.538	22.761		47.16	6
	ATOM	1267	CE C	MET		423	-14.709	74.100	21.738		35.13	6
	MOTA	1268	0	MET		423	-14.703	74.100	20.803		29.85	8
	MOTA	1269	N	LYS		423	-14.341	73.361	20.803	1.00	31.56	7
40	ATOM ATOM	1209				424	-15.611	73.351	20.544			6
40			CA	LYS LYS			-17.783		20.344		30.56	6
	MOTA	1271	CB	LYS				72.316 70.879	20.738		30.38	6
	MOTA	1272	CG	LYS			-17.257					6
	MOTA	1273	CD				-16.444	70.510	19.611		33.22	6
15	ATOM	1274	CE	LYS			-15.795	69.136	19.706		28.75	
45	ATOM	1275	NZ	LYS			-14.655	69.067	20.678		31.01	7
	ATOM	1276	C	LYS			-17.248	74.754	20.304		29.26	6
	ATOM	1277	0	LYS			-17.439	75.149	19.166		30.22	8
	ATOM	1278	N	VAL			-17.495	75.499	21.385		23.53	7
50	MOTA	1279	CA	VAL			-18.014	76.852	21.278		28.91	6
50	MOTA	1280	CB	VAL			-18.278	77.458	22.663		29.44	6
	MOTA	1281		VAL			-18.633	78.915	22.547		28.81	6
	ATOM	1282		VAL			-19.401	76.733	23.354		31.22	6
	MOTA	1283	С	VAL			-17.001	77.682	20.498		32.03	6
	ATOM	1284	0	VAL			-17.368	78.465	19.629		31.95	8
55	MOTA	1285	N	THR			-15.721	77.508	20.827		33.61	7
	MOTA	1286	CA	THR			-14.645	78.221	20.137		30.76	6
	MOTA	1287	СВ	THR			-13.270	77.912	20.761		32.34	6
	ATOM	1288	OG1	THR	В	426	-13.073	78.697	21.941	1.00	33.07	8
							120					

5	ATOM	1343	0	ALA	В	433	-14.849	85.432	10.171	1.00	31.60	8
	MOTA	1344	N	CYS		434	-14.534	83.246	10.439		33.22	7
	ATOM	1345	CA	CYS	В	434	-14.023	83.021	9.120		34.34	6
	ATOM	1346	CB	CYS		434	-13.553	81.661	9.226		35.20	6
	MOTA	1347	SG	CYS		434	-12.412	81.249	8.444	1.00	54.48	16
10	ATOM	1348	С	CYS	В	434	-15.106	83.116	8.062		34.09	6
	ATOM	1349	0	CYS	В	434	-14.844	83.555	6.952	1.00	34.89	8
	ATOM	1350	N	HIS	В	435	-16.318	82.699	8.394	1.00	34.30	7
	ATOM	1351	CA	HIS	В	435	-17.395	82.762	7.443	1.00	35.44	6
	ATOM	1352	CB	HIS	В	435	-18.700	82.404	8.103	1.00	31.76	6
15	MOTA	1353	CG	HIS	В	435	-19.845	82.425	7.149	1.00	32.03	6
	ATOM	1354	CD2	HIS	В	435	-20.483	81.419	6.515	1.00	28.61	6
	ATOM	1355	ND1	HIS	В	435	-20.345	83.600	6.607	1.00	28.48	7
	ATOM	1356	CE1	HIS	В	435	-21.241	83.293	5.672	1.00	33.27	6
	MOTA	1357	NE2	HIS	В	435	-21.341	81.977	5.605	1.00	31.57	7
20	MOTA	1358	C	HIS	В	435	-17.528	84.152	6.878	1.00	32.74	6
	MOTA	1359	0	HIS	В	435	-17.842	84.326	5.715	1.00	32.87	8
	MOTA	1360	N	ALA	В	436	-17.315	85.121	7.758	1.00	31.01	7
	ATOM	1361	CA	ALA	В	436	-17.376	86.520	7.405	1.00	29.91	6
	MOTA	1362	СВ	ALA	В	436	-17.008	87.352	8.618	1.00	21.23	6
25	MOTA	1363	С	ALA	В	436	-16.393	86.782	6.266	1.00	33.86	6
	MOTA	1364	0	ALA	В	436	-16.734	87.398	5.257	1.00	36.10	8
	ATOM	1365	N.	SER	В	437	-15.162	86.307	6.448	1.00	35.19	7
	ATOM	1366	CA	SER	В	437	-14.122	86.484	5.445	1.00	33.03	6
	MOTA	1367	CB	SER	В	437	-12.882	85.688	5.847	1.00	35.31	6
30	ATOM	1368	OG	SER	В	437	-11.855	85.824	4.879	1.00	44.99	8
	MOTA	1369	С	SER	В	437	-14.642	85.993	4.108	1.00	38.39	6
	MOTA	1370	0	SER	В	437	-14.700	86.730	3.127	1.00	37.54	8
	MOTA	1371	N	ARG	В	438	-15.008	84.719	4.096	1.00	37.32	7
	ATOM	1372	CA	ARG	В	438	-15.526	84.068	2.908	1.00	39.30	6
35	MOTA	1373	CB	ARG	В	438	-16.019	82.660	3.259	1.00	42.97	6
	ATOM	1374	CG	ARG	В	438	-14.910	81.673	3.590	1.00	41.72	6
	ATOM	1375	CD	ARG	В	438	-14.044	81.488	2.356	1.00	45.23	6
	MOTA	1376	NE	ARG	В	438	-14.781	80.936	1.235	1.00	45.66	7
	MOTA	1377	CZ	ARG	В	438	-14.482	81.175	-0.040	1.00	49.71	6
40	MOTA	1378	NH1	ARG	В	438	-13.458	81.977	-0.347		50.91	7
	MOTA	1379	NH2	ARG	В	438	-15.219	80.619	-1.002	1.00	46.86	7
	MOTA	1380	C	ARG			-16.659	84.859	2.287	1.00	42.37	6
	MOTA	1381	0	ARG			-16.841	84.832	1.072		40.58	8
	MOTA	1382	N	PHE			-17.417	85.575	3.117		42.25	7
45	MOTA	1383	CA	PHE			-18.531	86.354	2.614		42.81	6
	MOTA	1384	CB	PHE			-19.198	87.132	3.731		42.18	6
	MOTA	1385	CG	PHE	В	439	-20.487	87.769	3.323	1.00	42.48	6
	MOTA	1386		PHE			-21.535	86.981	2.912		47.09	6
	MOTA	1387		PHE			-20.638	89.141	3.334		39.76	6
50	ATOM	1388		PHE			-22.735	87.543	2.527	1.00	49.17	6
	ATOM	1389	CE2	PHE			-21.851	89.717	2.944	1.00	45.10	6
	MOTA	1390	CZ			439	-22.901	88.911	2.538		46.36	6
	ATOM	1391	С			439	-18.016	87.319	1.581	1.00	44.79	6
	ATOM	1392	0			439	-18.514	87.354	0.465		40.26	8
55	ATOM	1393	N	LEU			-17.021	88.117	1.987		42.77	7
	ATOM	1394	CA	LEU			-16.415	89.115	1.109		42.96	6
	ATOM	1395	CB	LEU			-15.169	89.718	1.768		37.19	6
	MOTA	1396	CG	LEU	В	440	-15.477	90.588	2.967	1.00	36.97	6

massesses 122's masses america america

5	MOTA	1451	CD	PRO	В	447	-22.837	85.637	-8.886	1.00	72.88	6
	ATOM	1452	CA	PRO			-23.461	87.997	-8.653	1.00		6
	ATOM	1453	CB	PRO	В	447	-24.399	87.338	-9.659	1.00	72.98	6
	ATOM	1454	CG	PRO	В	447	-23.981	85.934	-9.776	1.00	74.77	6
	ATOM	1455	С	PRO	В	447	-24.203	88.519	-7.451	1.00	75.94	6
10	ATOM	1456	0	PRO	В	447	-24.601	87.749	-6.611	1.00	76.67	8
	ATOM	1457	N	THR	В	448	-24.390	89.828	-7.373	1.00	76.91	7
	MOTA	1458	CA	THR	В	448	-25.134	90.436	-6.268	1.00	78.24	6
	ATOM	1459	CB	THR	В	448	-24.883	91.948	-6.276	1.00	81.33	6
	MOTA	1460	OG1	THR	В	448	-25.474	92.525	-7.451	1.00	84.46	8
15	MOTA	1461	CG2	THR	В	448	-23.394	92.234	-6.269	1.00	83.51	6
	MOTA	1462	С	THR	В	448	-26.594	90.160	-6.619	1.00	77.42	6
	MOTA	1463	0	THR	В	448	-27.512	90.649	-5.982	1.00	77.65	8
	ATOM	1464	N	GLU	В	449	-26.759	89.400	-7.697	1.00	76.29	7
	ATOM	1465	CA	GLU	В	449	-28.051	.89.017	-8.211	1.00	75.03	6
20	ATOM	1466	CB	GLU			-27.923	88.915	-9.719	1.00	74.62	6
	ATOM	1467	CG	GLU	В	449	-28.823	87.966	-10.343	1.00	40.00	6
	MOTA	1468	CD	GLU			-28.522	87.831	-11.756	1.00	40.00	6
	ATOM	1469	OE1	GLU			-27.366	88.072	-12.190	1.00	40.00	8
	ATOM	1470	OE2	GLU			-29.449		-12.492		40.00	8
25	ATOM	1471	C	GLU		449	-28.448	87.660	-7.609		73.49	6
23	ATOM	1472	0	GLU		449	-29.479	87.092	-7.953		70.24	8
	ATOM	1473	N	LEU			-27.624	87.158	-6.695		70.80	7
	ATOM	1474	CA	LEU			-27.879	85.879	-6.058		68.82	6
	ATOM	1475	CB	LEU			-26.772	84.887	-6.447		71.91	6
30	ATOM	1476	CG	LEU			-26.612	84.503	-7.900		76.62	6
30	ATOM	1477		LEU			-25.396	83.637	-8.059		77.95	6
	ATOM	1478		LEU			-27.849	83.775	-8.351		76.46	6
	ATOM	1479	C	LEU		450	-27.941	86.012	-4.536		66.22	6
	ATOM	1480	Ö	LEU		450	-28.251	85.039	-3.849		66.01	8
35	ATOM	1481	N	PHE			-27.666	87.215	-4.012		61.96	7
55	ATOM	1482	CA	PHE			-27.635	87.494	-2.585		58.44	6
	ATOM	1483	СВ	PHE			-26.579	88.573	-2.263		61.34	6
	MOTA	1484	CG	PHE			-25.153	88.078	-2.413		63.02	6
	MOTA	1485		PHE			-24.675	87.587	-3.626		62.92	6
40	MOTA	1486		PHE			-24.283	88.173	-1.346		63.07	6
	ATOM	1487		PHE			-23.327	87.217	-3.757		65.12	6
	ATOM	1488		PHE			-22.939	87.806	-1.472		64.66	6
	ATOM	1489	CZ	PHE			-22.459	87.335	-2.686		67.12	6
	ATOM	1490	C	PHE			-28.931	87.994	-1.962		56.41	6
45	ATOM	1491	0			451	-29.207	89.214	-1.908		56.56	8
	ATOM	1492	N			452	-29.791	87.072	-1.473		53.28	. 7
	ATOM	1493	CD			452	-29.767	85.611	-1.494		50.46	6
	ATOM	1494	CA			452	-31.037	87.598	-0.843		50.26	6
	ATOM	1494	CB			452	-31.746	86.375	-0.301		49.19	6
50		1495	CG			452	-31.024	85.197	-0.842		45.89	6
30	MOTA	1490				452	-30.636	88.567	0.251		49.62	6
	ATOM		C					88.401	0.906		52.35	8
	ATOM	1498	O			452	-29.628 -31.494	89.539	0.535		51.50	7
	ATOM	1499	N			453						6
55	MOTA	1500	CD			453	-32.853	89.644	0.022		49.66	6
55	MOTA	1501	CA			453	-31.184	90.573	1.530		50.89	
	ATOM	1502	CB			453	-32.422	91.401	1.625			6
	ATOM	1503	CG			453	-33.378	90.827	0.724		50.82	6
	ATOM	1504	С	PKO	R	453	-30.829	90.039	2.906	1.00	50.99	6
							174					

5	MOTA	1559	0	PHE	В	459	-21.414	91.050	6.791	1.00	51.34	8
	ATOM	1560	N	GLU	В	460	-23.489	91.531	5.976	1.00	62.92	7
	MOTA	1561	CA	GLU	В	460	-22.953	92.741	5.533	1.00	69.33	6
	ATOM	1562	СВ	GLU	В	460	-23.851	93.487	4.505	1.00	72.95	6
	ATOM	1563	CG	GLU	В	460	-22.917	94.002	3.412	1.00	78.35	6
10	ATOM	1564	CD	GLU	В	460	-22,908	95.480	3.256	1.00	82.97	6
	MOTA	1565	OE1	GLU	В	460	-23.257	96.213	4.217		88.28	8
	MOTA	1566	OE2	GLU		460	-22.524	95.977	2.167		84.80	8
	MOTA	1567	С	GLU		460	-22.790	93.576	6.786		71.87	6
	ATOM	1568	0	GLU		460	-23.471	93.391	7.802		74.51	8
15	ATOM	1569	N	ASP		461	-21.796	94.449	6.696		78.50	7
	MOTA	1570	CA	ASP			-21.401	95.328	7.701		84.19	6
	ATOM	1571	СВ	ASP		461	-20.182	96.032	7.125		85.82	6
	ATOM	1572	CG	ASP		461	-19.261	95.066	6.463		89.62	6
	ATOM	1573	OD1	ASP			-19.670	93.929	5.982		93.00	8
20	ATOM	1574	OD2	ASP		461	-18.084	95.361	6.387		93.04	8
	ATOM	1575	C	ASP		461	-22.540	96.291	8.012		86.80	6
	ATOM	1576	0	ASP		461	-23.063	96.176	9.139		88.70	8
	ATOM	1577	OXT	ASP		461	-22.962	97.048	7.098		88.70	8
	TER	13,,	ONI	ADI	ט	401	22.702	37.040	7.030	1.00	00.70	U
25	ATOM	4002	C1	т3	J	1	20.152	36.643	29.561	1 00	22.34	6
23	ATOM	4003	C2	т3	J	1	19.021	41.567	29.283		21.84	6
	ATOM	4004	C3	T3	J	1	18.880	37.086	29.226		23.43	6
	MOTA	4005	C4	T3	J	1	18.249	42.606	28.776		22.31	6
	ATOM	4006	C5	T3	J	1	18.747	38.372	28.866		24.83	6
30	ATOM	4007	C6	T3	J	1	17.938	43.621	29.664		25.16	6
50	MOTA	4008	C7	T3	J	1	19.799	39.296	28.753		24.65	6
	MOTA	4009	C8	T3	J	1	18.330	43.594	31.028		21.93	6
	MOTA	4010	C9	T3	J	1	21.101	38.940	29.075		25.09	6
	ATOM	4011	C10	T3	J	1	19.063	42.558	31.465		23.66	6
35	ATOM	4012	C11		J	1	21.254	37.600	29.456		23.12	6
55	ATOM	4013	C12		J	1	19.459	41.490	30.621		19.67	6
	MOTA	4014	C13		J	1	20.370	35.228	30.075		18.97	6
	ATOM	4015	C15	T3	J	1	21.549	34.480	29.455		19.32	6
	MOTA	4016	C17		J	1	21.535	33.003	29.710		19.02	6
40	MOTA	4017	I1	T3	J		16.898	39.029	28.661		25.29	53
. •	ATOM	4018	12	T3	J	1	17.058	45.327	29.154		26.49	53
	ATOM	4019	I3	T3	J	1	22.763	40.262	29.169		25.67	53
	ATOM	4020	N1	T3	J	1	21.800	34.859	28.024		15.12	7
	ATOM	4021	01	T3	J	1	17.934	44.682	31.806		21.79	8
45	ATOM	4022	02	т3	J	1	19.432	40.560	28.362		22.05	8
	ATOM	4023	03	T3	J	1	21.911	32.260	28.776		20.38	8
	MOTA	4024	04	T3	J	1	21.137	32.622	30.840		20.16	8
	TER	1021	04	10	Ü	*	21.157	52.022	30.040	1.00	20.10	U
	ATOM	4025	C1	т3	K	1	-28.131	75.928	7.543	1 00	22.34	6
50	MOTA	4026	C2	T3	K	1	-24.676	77.673	4.318		21.84	6
50	ATOM	4027	C3	T3	K	1	-28.490	76.351	6.201		23.43	6
	ATOM	4028	C4	T3	K	1	-24.217	77.893	2.989		22.31	6
	ATOM	4020	C5	T3	K	1	-27.485	76.499	5.233		24.83	6
	ATOM	4030	C6	T3	K	1	-23,545	79.124	2.700		25.16	6
55	ATOM	4030	C7	T3	K	1	-26.132	76.227	5.581		24.65	6
2,5	ATOM	4031	C8	T3	K	1	-23.382	80.104	3.772		21.93	6
	ATOM	4032	C9	T3	K	1	-25.685	75.833	6.855		25.09	6
	ATOM	4033	C10		K	1	-23.867	79.823	5.042		23.66	6
	111011	4034	Ç10		7.	_		12.023	5.042	1.00	23.00	0
							126					

5	MOTA	41		${\tt HIS}\ {\tt X}$	12.359	35.484	50.669		40.00	7
	MOTA	42		HIS X	13.242	35.991	51.513		40.00	6
	ATOM	43		HIS X	14.016	35.031	51.949		40.00	7
	ATOM	44	С	HIS X	11.954	31.331	47.861		40.00	6
	MOTA	45	0	HIS X	12.505	30.240	47.882		40.00	8
10	MOTA	46	N	ARG X	10.839	31.494	47.167		40.00	7
	ATOM	47	CA	ARG X	10.169	30.333	46.518		40.00	6
	ATOM	48	CB	ARG X	9.118	30.800	45.517		40.00	6
	ATOM	49	С	ARG X	11.153	29.402	45.752		40.00	6
	ATOM	50	0	ARG X	11.030	28.168	45.779		40.00	8
15	ATOM	51	N	LEU X	12.117	30.000	45.072		40.00	7
	MOTA	52	CA	TEN X	13.078	29.252	44.226	1.00	40.00	6
	ATOM	53	CB	LEU X	13.784	30.210	43.274		40.00	6
	ATOM	54	CG	LEU X	12.796	31.012	42.432		40.00	6
	ATOM	55	CD1	LEU X	13.479	31.969	41.458		40.00	6
20	ATOM	56	CD2	LEU X	11.884	30.126	41.579	1.00	40.00	6
	ATOM	57	С	TEO X	14.143	28.531	45.054	1.00	40.00	6
	ATOM	58	0	TEO X	14.702	27.508	44.633	1.00	40.00	8
	ATOM	59	N	LEU X	14.400	29.079	46.209	1.00	40.00	7
	MOTA	60	CA	LEU X	15.407	28.538	47.115		40.00	6
25	MOTA	61	CB	LEU X	15.871	29.626	48.084		40.00	6
	MOTA	62	CG	TEA X	16.692	30.716	47.404		40.00	6
	MOTA	63	CD1	LEU X	17.279	31.724	48.391		40.00	6
	ATOM	64	CD2	LEU X	17.879	30.156	46.619		40.00	6
• •	ATOM	65	С	LEU X	14.837	27.404	47.957		40.00	6
30	ATOM	66	0	LEU X	15.555	26.747	48.716		40.00	8
	ATOM	67	N	GLN X	13.554	27.157	47.809		40.00	7
	ATOM	68	CA	GLN X	12.883	26.188	48.685		40.00	6
	ATOM	69 70	C	GLN X	12.423	24.910	47.977		40.00	6
25	ATOM	70	0	GLN X	12.309	23.845	48.598	1.00	40.00	8 6
35	ATOM	71	CB	GLN X	11.681	26.858	49.322	1.00	40.00	6
	MOTA	72	CG	GLN X GLN X	12.074	28.125 28.768	50.080 50.801		20.00	6
	ATOM ATOM	73 74	CD OE1	GLN X	10.899 9.772	28.296	50.671	1.00	20.00	8
	MOTA	75	NE2	GLN X	11.092	29.828	51.560	1.00	20.00	7
40	ATOM	76	NEZ	ASP X	12.155	25.020	46.714	1.00	40.00	7
40	MOTA	77	CA	ASP X	11.698	23.885	45.910		40.00	6
	MOTA	78	CB	ASP X	11.450	24.400	44.497		40.00	6
	ATOM	79	CG	ASP X	10.782	23.411	43.548		40.00	6
	ATOM	80		ASP X	10.550	22.203	43.920		40.00	8
45	ATOM	81		ASP X	10.449	23.804	42.362		40.00	8
	ATOM	82	C	ASP X	12.774	22.806	45.876		40.00	6
	ATOM	83	o	ASP X	13.937	23.077	45.562		40.00	8
	ATOM	84	N	SER X	12.370	21.610	46.213		40.00	7
	ATOM	85	CA	SER X	13.258	20.453	46.128		40.00	6
50	MOTA	86	СВ	SER X	12.685	19.371	47.049		40.00	6
	ATOM	87	OG	SER X	12.535	19.899	48.374		40.00	8
	ATOM	88	C	SER X	13.329	20.130	44.613		40.00	6
	ATOM	89	0	SER X	14.247	20.573	43.914		40.00	8
	ATOM	90	N	SER X	12.355	19.357	44.183		40.00	7
55	ATOM	91	CA	SER X	11.985	19.100	42.752		40.00	6
	ATOM	92	CB	SER X	11.693	20.417	42.036		40.00	6
	ATOM	93	OG	SER X	10.510	21.000	42.577		40.00	8
	ATOM	94	С	SER X	12.887	18.340	41.758		40.00	6
					128					

5	ATOM	52	CA	LEU	Y	694	-38.174	91.885	15.435	1.00	40.00	6
	ATOM	53	CB	LEU	Y	694	-37.181	93.002	15.561	1.00	40.00	6
	ATOM	54	CG	LEU	Y	694	-35.799	92.377	15.869	1.00	40.00	6
	ATOM	55	CD1	LEU	Y	694	-34.897	93.275	16.702	1.00	40.00	6
	ATOM	56	CD2	LEU	Y	694	-35.897	91.055	16.661	1.00	40.00	6
10	ATOM	57	С	LEU	Y	694	-39.596	91.903	15.915	1.00	40.00	6
	ATOM	58	0	LEU	Y	694	-39.985	91.253	16.858	1.00	40.00	8
	ATOM	59	N	GLN	Y	695	-40.787	92.229	15.048	1.00	40.00	7
	ATOM	60	CA	GLN	Y	695	-42.034	91.457	15.543	1.00	40.00	6
	MOTA	61	С	GLN	Y	695	-43.054	90.901	14.240	1.00	40.00	6
15	ATOM	62	0	GLN	Y	695	-43.102	91.557	13.189	1.00	40.00	8
	ATOM	63	CB	GLN	Y	695	-42.362	92.025	16.923	1.00	40.00	6
	ATOM	64	CG	GLN	Y	695	-41.013	92.101	17.768	1.00	40.00	6
	MOTA	65	CD	GLN	Y	695	-40.943	91.235	19.059	1.00	40.00	6
	MOTA	66	OE1	GLN	Y	695	-41.828	90.426	19.318	1.00	40.00	8
20	MOTA	67	NE2	GLN	Y	695	-39.938	91.399	19.916	1.00	40.00	7
	MOTA	68	N	ASP	Y	696	-43.802	89.498	14.402	1.00	40.00	7
	ATOM	69	CA	ASP	Y	696	-44.784	88.354	13.428	1.00	40.00	6
	ATOM	70	С	ASP	Y	696	-46.034	88.934	12.759	1.00	40.00	6
	ATOM	71	0	ASP	Y	696	-46.266	88.655	11.529	1.00	40.00	8
25	ATOM	72	CB	ASP	Y	696	-45.211	87.192	14.322	1.00	40.00	6
	ATOM	73	CG	ASP	Y	696	-44.021	86.560	15.058	1.00	40.00	6
	ATOM	74	OD1	ASP	Y	696	-42.823	86.994	14.844	1.00	40.00	8
	ATOM	75	OD2	ASP	Y	696	-44.212	85.591	15.889	1.00	40.00	8
	END											
30												

5	ATOM	44	0	THR	Α	311	36.021	-2.776	4.800	1.00	42.12
	ATOM	45	N	ALA	Α	312	36.726	-1.372	6.409	1.00	42.16
	ATOM	46	CA	ALA	A	312	35.616	-0.444	6.228	1.00	40.10
	ATOM	47	СВ	ALA	A	312	35.741	0.709	7.205	1.00	40.07
	ATOM	48	C	ALA	A	312	35.561	0.090	4.799	1.00	41.80
10	ATOM	49	ō	ALA	A	312	34.510	0.074	4.154	1.00	37.81
	ATOM	50	N	ASP	A	313	36.698	0.564	4.304	1.00	42.35
	ATOM	51	CA	ASP	A	313	36.752	1.104	2.953	1.00	42.27
	ATOM	52	CB	ASP	A	313	38.133	1.703	2.680	1.00	43.74
	ATOM	53	CG	ASP	A	313	38.323	3.054	3.348	1.00	46.62
15	ATOM	54	OD1	ASP	A	313	39.414	3.645	3.205	1.00	51.01
13	ATOM		OD1	ASP		313	37.380	3.529	4.015	1.00	48.89
		55	C C		A A	313	36.422	0.027	1.926	1.00	38.68
	ATOM	56		ASP							
	MOTA	57	0	ASP	A	313	35.704	0.281	0.959	1.00	38.75
20	MOTA	58	N	GLN	A	314	36.931	-1.179	2.145	1.00	34.76
20	ATOM	59	CA	GLN	A	314	36.666	-2.277	1.229	1.00	33.55
	ATOM	60	CB	GLN	A	314	37.462	-3.512	1.643	1.00	36.90
	MOTA	61	CG	GLN	A	314	38.963	-3.384	1.436	1.00	40.45
	ATOM	62	CD	GLN	A	314	39.700	-4.610	1.905	1.00	43.13
25	MOTA	63	OE1	GLN	A	314	39.394	-5.196	2.935	1.00	43.60
25	ATOM	64	NE2	GLN	A	314	40.701	-5.032	1.117	1.00	44.03
	MOTA	65	C	GLN	A	314	35.176	-2.595	1.201	1.00	34.95
	ATOM	66	0	GLN	A	314	34.605	-2.860	0.140	1.00	32.89
	ATOM	67	N	MET	A	315	34.542	-2.564	2.374	1.00	32.54
20	ATOM	68	CA	MET	A	315	33.115	-2.848	2.470	1.00	35.46
30	ATOM	69	CB	MET	A	315	32.650	-2.794	3.926	1.00	37.09
	MOTA	70	CG	MET	A	315	31.137	-2.777	4.097	1.00	39.42
	MOTA	71	SD	MET	A	315	30.443	-4.426	4.053	1.00	46.55
	MOTA	72	CE	MET	A	315	31.351	-5.205	5.397	1.00	45.29
35	ATOM	73	C	MET	A	315	32.311	-1.859	1.640	1.00	31.83 32.10
33	MOTA	74	0	MET	A	315	31.453 32.587	-2.247	0.852	1.00	32.10
	ATOM	75 76	N	VAL	A	316		-0.560	1.830	1.00	31.09
	ATOM	76	CA	VAL	A	316	31.882 32.395	0.470 1.888	1.079 1.425	1.00	34.77
	MOTA	77	CB	VAL	A	316	32.395	2.899	0.461	1.00	34.77
40	MOTA	78 70	CG1	VAL	A	316	32.021	2.246	2.862	1.00	34.40
40	MOTA	79	CG2 C	VAL VAL	A	316	32.021		-0.414	1.00	33.48
	MOTA	80			A	316			-1.200		32.49
	MOTA	81	0	VAL	A	316	31.145			1.00	
	MOTA	82	N	SER	A	317	33.337	-0.027	-0.795		33.49
45	MOTA	83	CA	SER	A	317	33.682 35.165	-0.280		1.00	32.88 35.77
43	MOTA	84	CB	SER	A	317					
	MOTA	85	OG	SER	A	317	35.825		-3.154	1.00	42.70
	MOTA	86	C	SER	A.	317	32.849	-1.396		1.00	30.71
	MOTA	87	0	SER	A	317	32.279	-1.238		1.00	31.14
50	ATOM	88	N	ALA	A	318	32.792 32.035	-2.529		1.00 1.00	29.51
30	MOTA	89	CA	ALA ALA	A	318	32.035	-3.676			29.93
	ATOM	90	CB		A	318		-4.811		1.00	28.56
	MOTA	91	C	ALA	A	318	30.565	-3.305		1.00	31.55
	ATOM	92	0	ALA	A	318	29.961	-3.642		1.00	30.64
55	MOTA	93	N	LEU	A	319	29.997	-2.614		1.00	34.13
ננ	MOTA	94	CA	LEU	A	319	28.597	-2.212 -1.576		1.00	32.93
	MOTA	95 06	CB	LEU	A	. 319	28.170			1.00	31.15
	MOTA	96	CG CD1	LEU	A	319	28.076	-2.555	0.632	1.00	32.27
	ATOM	97 00	CD1	LEU	A	319	27.523	-1.840	1.852	1.00	32.14
60	MOTA	98	CD2	LEU	A	319	27.194	-3.733	0.243		
VV	MOTA	99 100	C O	LEU LEU	A	319	28.340		-3.020		34.41 35.23
	MOTA	100	J	⊔ਦ∪	A	319	27.430	-1.4/5	-7.0T0	1.00	22.63

_										
5	MOTA	158	CD1	ILE	A	326	19.301	6.120-10.525	1.00	32.91
	MOTA	159	С	ILE	A	326	17.506	2.408-13.471	1.00	25.72
	MOTA	160	0	ILE	A	326	17.906	2.758-14.581	1.00	25.55
	MOTA	161	N	LEU	A	327	16.392	1.703-13.301	1.00	25.57
	MOTA	162	CA	LEU	A	327	15.595	1.279-14.439	1.00	23.80
10	MOTA	163	CB	LEU	Α	327	14.872	-0.029-14.104	1.00	23.96
	MOTA	164	CG	LEU	Α	327	15.778	-1.210-13.728	1.00	19.89
	MOTA	165	CD1	LEU	A	327	14.944	-2.462-13.583	1.00	21.19
	MOTA	166	CD2	LEU	A	327	16.850	-1.415-14.805	1.00	17.53
	ATOM	167	C	LEU	Α	327	14.598	2.317-14.935	1.00	27.16
15	MOTA	168	0	LEU	A	327	14.161	3.202-14.194	1.00	25.98
	MOTA	169	N	TYR	A	328	14.251	2.207-16.210	1.00	26.56
	MOTA	170	CA	TYR	Α	328	13.303	3.123-16.814	1.00	24.45
	MOTA	171	CB	TYR	A	328	13.724	3.465-18.245	1.00	26.72
	MOTA	172	CG	TYR	A	328	14.587	4.693-18.314	1.00	27.73
20	MOTA	173	CD1	TYR .	A	328	14.021	5.949-18.518	1.00	28.56
	MOTA	174	CE1	TYR	A	328	14.798	7.092-18.509	1.00	29.10
	MOTA	175	CD2	TYR	Α	328	15.962	4.612-18.110	1.00	26.01
	ATOM	176	CE2	\mathtt{TYR}	A	328	16.750	5.753-18.098	1.00	30.63
	MOTA	177	CZ	TYR	Α	328	16.157	6.988-18.297	1.00	30.07
25	MOTA	178	OH	TYR	Α	328	16.917	8.130-18.265	1.00	37.94
	ATOM	179	С	TYR	A	328	11.923	2.501-16.827	1.00	24.95
	ATOM	180	0	TYR	A	328	11.774	1.274-16,846	1.00	27.02
	MOTA	181	N	SER	A	329	10.912	3.358-16.800	1.00	25.60
	MOTA	182	CA	SER	A	329	9.533	2.908-16.837	1.00	29.45
30	MOTA	183	CB	SER	A	329	8.661	3.858-16.020	1.00	30.80
	MOTA	184	OG	SER	Α	329	7.297	3.721-16.364	1.00	33.74
	MOTA	185	C	SER	A	329	9.129	2.947~18.313	1.00	31.30
	ATOM	186	0	SER	A	329	9.908	3.397-19.154	1.00	27.35
	MOTA	187	N	GLU	A	330	7.930	2.469-18.629	1.00	32.98
35	MOTA	188	CA	GLU	A	330	7.459	2.482-20.007	1.00	35.10
	MOTA	189	CB	GLU	A	330	6.031	1.968-20.074	1.00	34.67
	MOTA	190	С	GLU	A	330	7.532	3.924-20.505	1.00	40.06
	MOTA	191	0	GLU	A	330	7.068	4.841-19.826	1.00	42.65
40	MOTA	192	N	TYR	A	331	8.124	4.126-21.681	1.00	41.16
40	MOTA	193	CA	TYR	A	331	8.263	5.470-22.234	1.00	42.66
	MOTA	194	CB	TYR	A	331	9.323	5.482-23.350	1.00	42.54
	ATOM	195	CG	TYR	A	331	9.202	4.347-24.345		38.67
	ATOM	196	CD1	TYR	A	331	10.105	3.284-24.334	1.00	34.66
45	ATOM	197	CE1	TYR	A	331	9.985	2.228-25.233	1.00	34.89
43	ATOM	198	CD2	TYR	A	331	8.174	4.327-25.287	1.00	37.88
	MOTA	199	CE2	TYR	A	331	8.045	3.276-26.193	1.00	34.65
	ATOM	200	CZ	TYR	A	331	8.950	2.232-26.159	1.00	30.73
	MOTA	201	OH	TYR	A	331	8.814	1.191-27.042	1.00	30.97
50	MOTA	202	C	TYR	A	331	6.943	6.043-22.754	1.00	46.24
30	ATOM	203	0	TYR	A	331	6.018	5.301-23.096	1.00	45.38
	ATOM	204	N	ASP	A	332	6.868	7.372-22.792	1.00	49.11
	ATOM	205	CA	ASP	A	332	5.684	8.092-23.262	1.00	52.40
	MOTA	206	CB	ASP	A	332	5.781	8.321-24.772	1.00	52.86
55	MOTA	207	C	ASP	A	332	4.356	7.410-22.926	1.00	52.90
55	MOTA	208	0 N	ASP	A	332	3.561	7.116-23.818	1.00	53.94
	ATOM	209	N	PRO	A	333	4.103	7.144-21.632	1.00	53.63
	MOTA	210	CD	PRO	A	333	4.962	7.418-20.465	1.00	53.63
	MOTA	211	CA	PRO	A	333	2.840	6.497-21.253	1.00	53.55
60	ATOM	212	CB	PRO	A	333	3.070	6.076~19.802	1.00	53.78
υU	MOTA	213	CG	PRO	A	333	4.101	7.028-19.290	1.00	53.42
	ATOM	214	C	PRO	Α	333	1.673	7.478-21.398	1.00	52.17

5	MOTA	272	И	MET	Α	342	-1.626	3.115-13.595	1.00	35.92
	MOTA	273	CA	MET	A	342	-0.498	3.396-12.708	1.00	35.88
	MOTA	274	CB	MET	A	342	-0.912	4.396-11.623	1.00	35.96
	MOTA	275	CG	MET	Α	342	0.241	5.218-11.059	1.00	38.02
	MOTA	276	SD	MET	Α	342	-0.308	6.374 -9.780	1.00	44.73
10	ATOM	277	CE	MET	Α	342	0.626	7.815-10.205	1.00	42.49
	MOTA	278	C	MET	Α	342	-0.011	2.100-12.059	1.00	34.17
	MOTA	279	0	MET	\mathbf{A}	342	1.195	1.880-11.909	1.00	33.40
	ATOM	280	N	MET	A	343	-0.957	1.243-11.687	1.00	29.95
	MOTA	281	CA	\mathtt{MET}	Α	343	-0.640	-0.034-11.062	1.00	31.96
15	MOTA	282	CB	\mathtt{MET}	Α	343	-1.921	-0.810-10.751	1.00	31.70
	MOTA	283	CG	MET	Α	343	-2.667	-0.337 ~9.502	1.00	37.13
	MOTA	284	SD	MET	Α	343	-1.749	-0.507 -7.940	1.00	36.00
	MOTA	285	CE	MET	A	343	-1.468	-2.299 -7.886	1.00	32.14
	MOTA	286	C	MET	A	343	0.234	-0.875-11.979	1.00	31.72
20	MOTA	287	0	MET	Α	343	1.159	-1.558-11.527	1.00	30.26
	MOTA	288	N	GLY	A	344	-0.069	-0.823-13.272	1.00	29.04
	ATOM	289	CA	GLY	Α	344	0.688	-1.591-14.242	1.00	24.94
	MOTA	290	C	GLY	A	344	2.104	-1.085-14.396	1.00	26.01
	ATOM	291	0	GLY	Α	344	3.046	-1.873-14.463	1.00	28.72
25	MOTA	292	N	LEU	Α	345	2.257	0.232-14.471	1.00	26.97
	ATOM	293	CA	LEU	Α	345	3.576	0.839-14.608	1.00	31.15
	MOTA	294	CB	LEU	A	345	3.459	2.361-14.753	1.00	30.06
	ATOM	295	CG	LEU	A	345	2.765	2.924-15.995	1.00	33.50
	MOTA	296	CD1	LEU	A	345	2.901	4.439-15.999	1.00	33.52
30	MOTA	297	CD2	LEU	Α	345	3.379	2.324-17.257	1.00	33.22
	MOTA	298	C	LEU	A	345	4.433	0.534-13.383	1.00	30.31
	MOTA	299	0	LEU	A	345	5.564	0.061-13.505	1.00	32.80
	MOTA	300	N	LEU	Α	346	3.884	0.813-12.205	1.00	27.83
	MOTA	301	CA	Γ E Ω	A	346	4.595	0.596-10.947	1.00	26.19
35	MOTA	302	CB	LEU	A	346	3.729	1.063 -9.783	1.00	24.51
	MOTA	303	CG	LEU	Α	346	3.483	2.569 -9.682	1.00	26.33
	MOTA	304	CD1	LEU	A	346	2.623	2.844 -8.463	1.00	27.33
	MOTA	305	CD2	LEU	Α	346	4.809	3.317 -9.587	1.00	24.89
	MOTA	306	C	LEU	A	346	5.032	-0.848-10.707	1.00	25.72
40	MOTA	307	0	LEU	A	346	6.181	-1.102-10.345	1.00	29.86
	MOTA	308	N	THR	Α	347	4.117	-1.793-10.891	1.00	23.80
	MOTA	309	CA	THR	Α	347	4.436	-3.196-10.674	1.00	23.91
	MOTA	310	CB	THR	Α	347	3.164	-4.058-10.641	1.00	26.39
	MOTA	311	OG1	THR	A	347	2.421	-3.860-11.849	1.00	24.57
45	ATOM	312	CG2	THR	А	347	2.301	-3.682 -9.444	1.00	23.98
	MOTA	313	C	THR	А	347	5.366	-3.734-11.756	1.00	26.17
	ATOM	314	0	THR	A	347	6.176	-4.622-11.496	1.00	27.44
	MOTA	315	N	ASN	Α	348	5.242	-3.197-12.970	1.00	25.48
	ATOM	316	CA	ASN	Α	348	6.092	-3.617-14.082	1.00	23.77
50	ATOM	317	CB	ASN	A	348	5.657	-2.926-15.385	1.00	24.59
	MOTA	318	CG	ASN	Α	348	6.522	-3.302-16.571	1.00	29.93
	ATOM	319	OD1	ASN	A	348	7.616	-2.799-16.771	1.00	24.81
	MOTA	320	ND2	ASN	Α	348	6.010	-4.236-17.391	1.00	32.61
	ATOM	321	C	ASN	Α	348	7.532	-3.229-13.741	1.00	22.82
55	MOTA	322	0	ASN	A	348	8.453	-4.027-13.870	1.00	18.83
	ATOM	323	N	LEU	A	349	7.711	-1.993-13.288	1.00	22.58
	MOTA	324	CA	LEU	A	349	9.030	-1.507-12.914	1.00	21.85
	MOTA	325	CB	LEU	A	349	8.929	-0.028-12.536	1.00	22.00
	MOTA	326	CG	LEU	A	349	10.155	0.673-11.953	1.00	23.64
60	MOTA	327	CD1	LEU	Α	349	11.224	0.826-13.017	1.00	19.35
	MOTA	328	CD2	LEU	A	349	9.726	2.040-11.415	1.00	21.97

5	MOTA	. 386	NE2	HIS	A	356	18.192	-4.931-14.455	1.00	18.37
	ATOM	387	С	HIS	Α	356	18.702	-6.947 -8.875	1.00	21.41
	MOTA	388	0	HIS	A	356	19.864	-7.111 <i>-</i> 8.465	1.00	21.88
	ATOM	389	N	MET	Α	357	17.660	-6.843 -8.058	1.00	21.84
	MOTA	390	CA	MET	Α	357	17.837	-6.906 -6.610	1.00	21.51
10	MOTA	391	CB	MET	Α	357	16.503	-6.668 -5.898	1.00	17.60
	MOTA	392	CG	MET	A	357	16.629	-6.579 -4.369	1.00	19.36
	MOTA	393	SD	MET	Α	357	15.051	-6.755 -3.531	1.00	23.64
	MOTA	394	CE	MET	Α	357	14.189	-5.332 -4.163	1.00	23.13
	ATOM	395	C	MET	Α	357	18.411	-8.259 -6.192	1.00	23.69
15	MOTA	396	0	MET	A	357	19.337	-8.328 -5.389	1.00	24.41
	MOTA	397	N	ILE	Α	358	17.856	-9.331 -6.746	1.00	27.14
	ATOM	398	CA	ILE	Α	358	18.314	-10.672 -6.425	1.00	28.79
	MOTA	399	CB	ILE	Α	358	17.529	-11.725 -7.232	1.00	32.42
	MOTA	400	CG2	ILE	A	358	18.267	-13.064 -7.220	1.00	32.77
20	MOTA	401	CG1	ILE	A	358	16.125	-11.880 -6.644	1.00	31.94
	ATOM	402	CD1	ILE	A	358	15.062	-12.196 -7.680	1.00	34.85
	MOTA	403	C	ILE	A	358	19.801	-10.802 -6.728	1.00	28.75
	MOTA	404	0	ILE	A	358	20.569	-11.305 -5.912	1.00	31.60
	ATOM	405	N	ASN	А	359	20.207	-10.325 -7.897	1.00	27.91
25	ATOM	406	CA	ASN	A	359	21.601	-10.401 -8.293	1.00	29.16
	MOTA	407	CB	ASN	A	359	21.721	-10.172 -9.801	1.00	31.88
	MOTA	408	CG	ASN	Α	359	21.253	-11.381-10.599	1.00	39.34
	ATOM	409	OD1	ASN	Α	359	21.916	-12.422-10.612	1.00	41.27
	ATOM	410	ND2	ASN	А	359	20.102	-11.255-11.253	1.00	38.58
30	MOTA	411	C	ASN	Α	359	22.476	-9.436 -7.510	1.00	30.75
	MOTA	412	0	ASN	Α	359	23.686	-9.629 -7.412	1.00	33.35
	ATOM	413	N	TRP	A	360	21.872	-8.400 -6.940	1.00	30.07
	ATOM	414	CA	TRP	A	360	22.634	-7.451 -6.132	1.00	27.87
	ATOM	415	CB	TRP	A	360	21.849	-6.150 -5.948	1.00	24.80
35	MOTA	416	CG	TRP	A	360	22.196	-5.392 -4.691	1.00	23.04
	ATOM	417	CD2	TRP	A	360	21.501	-5.443 -3.438	1.00	19.83
	ATOM	418	CE2	TRP	A	360	22.147	-4.543 -2.564	1.00	22.31
	MOTA	419	CE3	TRP	A	360	20.392	-6.165 -2.972	1.00	20.09
40	ATOM	420	CD1	TRP	A	360	23.212	-4.488 -4.529	1.00	18.99
40	MOTA	421	NE1	TRP	A	360	23.187	-3.974 -3.255	1.00	21.17
	MOTA	422	CZ2	TRP	A	360	21.721	-4.340 -1.243	1.00	20.43
	MOTA	423	CZ3	TRP	A	360	19.968	-5.965 -1.661	1.00	20.12
	MOTA	424	CH2	TRP	A	360	20.635	-5.057 -0.812	1.00	18.54
15	MOTA	425	C	TRP	A	360	22.892	-8.099 -4.766	1.00	24.88
45	MOTA	426	0	TRP	A	360	23.978 21.879	-7.980 -4.198 -8.789 -4.252	1.00 1.00	25.00 24.08
	ATOM	427	N	ALA	A	361	21.873	-9.462 -2.958	1.00	26.06
	ATOM	428	CA	ALA	A	361		-10.203 -2.672	1.00	20.27
	MOTA	429	CB	ALA	A	361		-10.203 -2.872 -10.433 -2.897	1.00	28.44
50	ATOM	430	C	ALA ALA	A A	361 361		-10.433 -2.837	1.00	28.95
. 50	ATOM	431	0		A	362		-11.144 -3.992	1.00	31.41
	ATOM	432	N	LYS	A			-12.097 -4.047	1.00	33.33
	MOTA	433	CA	LYS	A	362				
	ATOM	434	CB	LYS	A n	362		-12.824 - 5.390	1.00	
55	ATOM	435	CG	LYS	A n	362 363		-13.608 -5.756 -14 178 -7 167		
رر	MOTA	436	CD	LYS	A	362 362		-14.178 -7.167	1.00	
	MOTA	437	CE	LYS	A	362 362		-15.193 -7.472	1.00	
	ATOM	438	NZ	LYS	A n	362 362		-15.322 -8.937 -11.351 -3.893	1.00	
	ATOM	439	C	LYS	A A	362 362		-11.351 -3.693	1.00	
60	ATOM	440	O M	LYS AARG	A	362 363		-10.059 -4.095	0.50	
00	MOTA	441	N					-10.059 -4.095	0.50	34.23
	ATOM	442	Ŋ	BARG	А	363	∠3.6∠6	-10.035 -4.035	0.50	J-4. U.S

5	MOTA	500	CA	ASP	Α	369	27.579	-17.755	2.688	1.00	44.96
	MOTA	501	CB	ASP	Α	369	28.336	-17.106	3.849	1.00	43.76
	MOTA	502	CG	ASP	Α	369	29.608	-16.413	3.404	1.00	43.04
	ATOM	503	OD1	ASP	A	369	30.121	-15.570	4.167	1.00	44.32
	MOTA	504	OD2	ASP	Α	369	30.097	-16.709	2.293	1.00	46.76
10	ATOM	505	C	ASP	A	369	26.340	-18.465	3.228	1.00	45.89
	ATOM	506	0	ASP	A	369	26.360	-19.671	3.475	1.00	48.61
	ATOM	507	N	LEU	A	370	25.261	-17.714	3.407	1.00	43.59
	ATOM	508	CA	LEU	A	370	24.020	-18.279	3.924	1.00	44.24
	ATOM	509	CB	LEU	Α	370	22.980	-17.173	4.110	1.00	41.42
15	ATOM	510	CG	LEU	A	370	23.404	-16.015	5.014	1.00	41.45
13	ATOM	511	CD1	LEU	A	370	22.219	-15.095	5.245	1.00	42.25
	MOTA	512	CD2	LEU	A	370	23.931	-16.552	6.332	1.00	38.35
	MOTA	513	C	LEU	A	370	23.449	-19.360	3.013	1.00	44.03
20	ATOM	514	0	LEU	A	370	23.773	-19.423	1.829	1.00	43.63
20	ATOM	515	N	THR	A	371	22.593	-20.206	3.575	1.00	44.29
	MOTA	516	CA	THR	A	371	21.968	-21.272	2.806	1.00	44.84
	MOTA	517	CB	THR	A	371	21.293	-22.302	3.730	1.00	45.65
	ATOM	518	OG1	THR	А	371	20.262	-21.663	4.495	1.00	46.43
	MOTA	519	CG2	THR	Α	371	22.314	-22.903	4.677	1.00	46.48
25	MOTA	520	C	THR	Α	371	20.923	-20.684	1.864	1.00	44.93
	ATOM	521	0	THR	А	371	20.418	-19.585	2.092	1.00	44.36
	MOTA	522	N	LEU	Α	372	20.607	-21.418	0.804	1.00	43.83
	MOTA '	523	CA	LEU	Α	372	19.624	-20.971	-0.166	1.00	44.62
	MOTA	524	CB	LEU	A	372	19.407	-22.043	-1.237	1.00	47.17
30	ATOM	525	CG	LEU	Α	372	18.512	-21.690	-2.429	1.00	46.91
	MOTA	526	CD1	LEU	Α	372	19.005	-20.417	-3.098	1.00	48.73
	MOTA	527	CD2	LEU	Α	372	18.521	-22.844	-3.420	1.00	51.12
	ATOM	528	С	LEU	A	372	18.307	-20.644	0.512	1.00	44.84
	ATOM	529	0	LEU	Α	372	17.705	-19.602	0.261	1.00	43.25
35	MOTA	530	N	HIS	Α	373	17.849	-21.558	1.382	1.00	43.14
	MOTA	531	CA	HIS	A	373	16.599	-21.353	2.100	1.00	42.23
	ATOM	532	CB	HIS	Α	373	16.318	-22.525	3.062	1.00	45.38
	ATOM	533	CG	HIS	Α	373	15.114	-22.315	3.934	1.00	51.43
	MOTA	534	CD2	HIS	A	373	13,808	-22.621	3.743	1.00	54.99
40	ATOM	535	ND1	HIS	A	373	15.187	-21.716	5.174	1.00	54.26
	ATOM	536	CE1	HIS	A	373	13.979	-21.663	5.709	1.00	53.77
	ATOM	537	NE2	HIS	A	373	13.124	-22.206	4.861	1.00	55.27
	ATOM	538	С	HIS	A	373	16.665	-20.047	2.885	1.00	39.78
	ATOM	539	Ō	HIS	A	373	15.677	-19.324	2.971	1.00	37.71
45	ATOM	540	N	ASP.	A	374	17.839	-19.738	3.440	1.00	36.38
	ATOM	541	CA	ASP	A	374	18.020	-18.516	4.219	1.00	37.21
	MOTA	542	CB	ASP	A	374	19.287	-18.620	5.073	1.00	38.17
	ATOM	543	CG	ASP	A	374					
							19.064	-19.425	6.344	1.00	41.47
50	MOTA	544	OD1	ASP	A	374	17.896	-19.543	6.772	1.00	37.09
30	MOTA	545	OD2	ASP	A	374	20.052	-19.940	6.912	1.00	44.40
	MOTA	546	C	ASP	A	374	18.083	-17.277	3.326	1.00	37.19
	ATOM	547	0	ASP	A	374	17.598	-16.208	3.696	1.00	38.13
	ATOM	548	N	GLN	A	375	18.688	-17.431	2.152	1.00	33.13
<i></i>	MOTA	549	CA	GLN	A	375	18.788	-16.339	1.198	1.00	31.94
55	MOTA	550	CB	GLN	A	375	19.634	-16.756		1.00	28.81
	ATOM	551	CG	GLN	А	375	21.125	-16.570	0.189	1.00	31.71
	MOTA	552	CD	GLN	A	375	21.920	-17.222	-0.922	1.00	34.49
	MOTA	553	OE1	GLN	A	375	21.478	-17.267	-2.067	1.00	36.09
	ATOM	554	NE2	GLN	·A	375	23.097	-17.736	-0.588	1.00	40.32
60	ATOM	555	C	GLN	Α	375	17.379	-16.009	0.730	1.00	31.50
UU	ATOM	556	0	GLN		375			0.653		

5	ATOM	614	CD2	TRP	A	383	9.049	-7.509 -2.599	1.00	22.48
	MOTA	615	CE2	TRP	Α	383	7.836	-8.138 -2.238	1.00	20.41
	ATOM	616	CE3	TRP	Α	383	9.012	-6.420 -3.482	1.00	22.06
	ATOM	617	CD1	TRP	A	383	9.506	-9.189 -1.190	1.00	23.38
	MOTA	618	NE1	TRP	Α	383	8.142	-9.159 ~1.377	1.00	22.59
10	ATOM	619	CZ2	TRP	A	383	6.598	-7.713 -2.724	1.00	21.98
	MOTA	620	CZ3	TRP	A	383	7.780	-5.998 -3.968	1.00	25.50
	ATOM	621	CH2	TRP	A	383	6.589	-6.647 -3.587	1.00	23.11
	ATOM	622	С	TRP	A	383	11.448	-5.564 -1.170	1.00	19.18
	ATOM	623	0	TRP	A	383	11.972	-4.663 -1.824	1.00	19.27
15	ATOM .	624	N	LEU	A	384	10.273	-5.396 -0.567	1.00	18.32
	ATOM	625	CA	LEU	A	384	9,586	-4.118 -0.719	1.00	16.38
	MOTA	626	CB	LEU	Α	384	8.125	-4.218 -0.258	1.00	16.79
	ATOM	627	CG	LEU	Α	384	7.211	-3.013 -0.577	1.00	18.39
	ATOM	628	CD1	LEU	A	384	7.464	-2.485 -1.995	1.00	13.91
20	ATOM	629	CD2	LEU	A	384	5.750	-3.432 -0.410	1.00	18.38
	ATOM	630	С	LEU	A	384	10.324	-3.027 0.051	1.00	18.80
	MOTA	631	0	LEU	Α	384	10.334	-1.870 -0.357	1.00	20.90
	ATOM	632	N	GLU	Α	385	10.949	-3.404 1.163	1.00	18.61
	ATOM	633	CA	GLU	A	385	11.718	-2.462 1.970	1.00	19.58
25	MOTA	634	CB	GLU	A	385	12.274	-3.154 3.213	1.00	17.43
	ATOM	635	CG	GLU	A	385	11.292	-3.237 4.357	1.00	22.92
	ATOM	636	CD	GLU	Α	385	11.963	-3.676 5.640	1.00	25.83
	MOTA	637	OE1	GLU	Α	385	12.431	-2.799 6.391	1.00	23.69
	ATOM	638	OE2	GLU	A	385	12.027	-4.897 5.889	1.00	27.64
30	ATOM	639	C	GLU	A	385	12.890	-1.934 1.156	1.00	19.46
	MOTA	640	0	GLU	A	385	13.206	-0.743 1.196	1.00	15.04
	ATOM	641	N	ILE	A	386	13.539	-2.842 0.431	1.00	13.32
	MOTA	642	CA	ILE	A	386	14.685	-2.484 -0.388	1.00	15.01
	ATOM	643	CB	ILE	A	386	15.475	-3.763 -0.807	1.00	17.43
35	ATOM	644	CG2	ILE	A	386	16.544	-3.424 -1.849	1.00	17.99
	MOTA	645	CG1	ILE	A	386	16.185	-4.338 0.432	1.00	20.31
	ATOM	646	CD1	ILE	A	386	16.682	-5.766 0.284	1.00	23.97
	MOTA	647	C	ILE	A	386	14.273	-1.645 -1.598	1.00	16.10
	MOTA	648	0	ILE	A	386	14.993	-0.724 -2.004	1.00	17.42
40	ATOM	649	N	LEU	A	387	13.112	-1.944 -2.167	1.00	17.61
	MOTA	650	CA	LEU	Α	387	12.620	-1.173 -3.304	1.00	18.20
	MOTA	651	CB	LEU	Α	387	11.359	-1.814 -3.882	1.00	17.51
	ATOM	652	CG	LEU	A	387	11.519	-3.064 -4.747	1.00	26.37
	MOTA	653	CD1	LEU	Α	387	10.173	-3.406 -5.395	1.00	24.63
45	MOTA	654	CD2	LEU	Α	387	12.589	-2.824 -5.808	1.00	21.58
	MOTA	655	C	LEU	Α	387	12.283	0.249 -2.838	1.00	17.60
	MOTA	656	0	LEU	Α	387	12.571	1.224 -3.530	1.00	17.15
	MOTA	657	N	MET	A	388	11.677	0.357 -1.660	1.00	17.65
	MOTA	658	CA	MET	Α	388	11.286	1.656 -1.121	1.00	18.49
50	MOTA	659	CB	MET	Α	388	10.302	1.460 0.034	1.00	19.65
	MOTA	660	CG	MET	A	388	8.893	1.105 -0.435	1.00	15.12
	MOTA	661	SD	MET	A	388	7.744	0.769 0.910	1.00	18.73
	MOTA	662	CE	MET	Α	388	6.163	0.908 0.048	1.00	18.34
	MOTA	663	С	MET	A	388	12.451	2.553 -0.691	1.00	22.62
55	MOTA	664	0	MET	A	388	12.417	3.767 -0.928	1.00	22.49
	MOTA	665	N	ILE	Α	389	13.482	1.988 -0.064	1.00	21.45
	MOTA	666	CA	ILE	A	389	14.604	2.831 0.331	1.00	18.54
	MOTA	667	CB	ILE	A	389	15.590	2.108 1.299	1.00	19.35
	MOTA	668	CG2	ILE	Α	3.89	16.362	0.998 0.578	1.00	15.50
60	MOTA	669	CG1	ILE	. A	389	16.556	3.142 1.889	1.00	21.95
	MOTA	670	CD1	ILE	A	389	17.373	2.658 3.080	1.00	15.86

5	ATOM	728	CE	MET	A	396	20.263	11.996 -1.404	1.00	42.84
	MOTA	729	C	MET	A	396	16.143	14.376 -3.018	1.00	40.69
	MOTA	730	0	MET	А	396	15.637	15.316 -2.403	1.00	38.85
	MOTA	731	N	GLU	A	397	16.794	14.526 -4.166	1.00	42.19
	MOTA	732	CA	GLU	A	397	16.971	15.831 -4.790	1.00	44.80
10	ATOM	733	CB	GLU	A	397	18.184	15.785 -5.729	1.00	46.02
	MOTA	734	CG	GLU	A	397	17.883	15.189 -7.096	1.00	54.42
	MOTA	735	CD	GLU	A	397	19.117	14.665 -7.810	1.00	59.40
	ATOM	736	OE1	GLU	Α	397	19.219	13.430 -7.990	1.00	60.63
	MOTA	737	OE2	GLU	Α	397	19.980	15.485 -8.196	1.00	62.71
15	MOTA	738	C	GLU	Α	397	15.735	16.322 -5.554	1.00	42.94
	ATOM	739	0	GLU	A	397	15.830	17.229 -6.376	1.00	44.68
	ATOM	740	N	HIS	A	398	14.579	15.728 -5.280	1.00	40.82
	MOTA	741	CA	HIS	Α	398	13.342	16.118 -5.950	1.00	39.21
	MOTA	742	CB	HIS	Α	398	12.924	15.043 -6.956	1.00	39.05
20	ATOM	743	CG	HIS	A	398	13.870	14.886 -8.104	1.00	41.57
	MOTA	744	CD2	HIS	Α	398	13.904	15.484 -9.318	1.00	39.28
	MOTA	745	ND1	HIS	A	398	14.940	14.017 -8.074	1.00	41.85
	MOTA	746	CE1	HIS	Α	398	15.592	14.086 -9.220	1.00	40.88
	ATOM	747	NE2	HIS	A	398	14.985	14.969 -9.993	1.00	42.30
25	ATOM	748	C	HIS	A	398	12.216	16.332 -4.944	1.00	37.04
	ATOM	749	ō	HIS	A	398	11.282	15.535 -4.864	1.00	36.51
	ATOM	750	N	PRO	A	399	12.283	17.427 -4.171	1.00	39.19
	ATOM	751	CD	PRO	A	399	13.328	18.467 -4.198	1.00	35.36
	ATOM	752	CA	PRO	A	399	11.243	17.709 -3.173	1.00	37.10
30	ATOM	753	CB	PRO	A	399	11.603	19.101 -2.654	1.00	37.86
50	ATOM	754	CG	PRO	A	399	13.050	19.267 -2.963	1.00	35.83
	ATOM	755	C	PRO	A	399	9.828	17.663 -3.744	1.00	37.02
	MOTA	756	ō	PRO	A	399	9.554	18.249 -4.789	1.00	38.52
	MOTA	757	Ŋ	GLY	A	400	8.938	16.954 -3.057	1.00	33.58
35	MOTA	758	CA	GLY	A	400	7.559	16.865 -3.503	1.00	32.12
33	MOTA	759	C	GLY	A	400	7.230	15.706 -4.428	1.00	32.43
	MOTA	760	0	GLY	A	400	6.063	15.344 -4.574	1.00	33.21
	MOTA	761	N	LYS	A	401	8.237	15.112 -5.055	1.00	31.35
	MOTA	762	CA	LYS	A	401	7.972	14.007 -5.966	1.00	30.75
40	ATOM	763	CB	LYS	A	401	8.235	14.430 -7.415	1.00	35.43
-10	ATOM	764	CG	LYS	A	401	8.130	15.927 -7.675	1.00	35.15
	MOTA	765	CD	LYS	A	401	9.096	16.353 -8.774	1.00	36.88
	ATOM	766	CE	LYS	A	401	8.733	17.721 -9.331	1.00	36.71
	ATOM	767	NZ	LYS	A	401	7.295	18.027 -9.116	1.00	34.22
45	ATOM	768	C	LYS	A	401	8.768	12.746 -5.677	1.00	30.97
7.5	MOTA	769	0	LYS	A	401	9.809	12.776 -5.006	1.00	27.60
	MOTA	770	И	LEU	A	402	8.256	11.635 -6.197	1.00	27.28
	MOTA	771	CA	LEU	A	402	8.889	10.334 -6.050	1.00	29.07
	ATOM	772	CB	LEU	A	402	7.866	9.294 -5.590	1.00	22.55
50		773	CG	LEU	A	402	7.265	9.555 -4.207	1.00	24.94
50	MOTA		CD1	LEU	A	402	6.126	8.583 -3.937	1.00	19.32
	MOTA	774 775	CD1	LEU	A	402	8.355	9.416 -3.157	1.00	21.54
	MOTA									28.78
	ATOM	776 777	C O	LEU	A A	402 402	9.448 8.704	9.948 -7.414 9.836 -8.389	1.00	29.98
55	ATOM	777		LEU	A					
55	ATOM	778	N	LEU	A	403	10.761	9.770 -7.487	1.00	27.57
	ATOM	779	CA	LEU	A	403	11.393	9.400 -8.744	1.00	27.17
	MOTA	780	CB	LEU	A	403	12.825	9.937 -8.816	1.00	26.95
	ATOM	781	CG	LEU	A	403	13.401	10.027-10.238	1.00	30.42
60	ATOM	782	CD1	LEU	A	403	14.519	11.046-10.288	1.00	30.76
60	MOTA	783	CD2	LEU	A	403	13.915	8.665-10.676	1.00	33.11
	ATOM	784	С	LEU	A	403	11.419	7.891 -8.901	1.00	24.78

5	A MON	0.40	a.	7.00	70	423	2 025	13.843 -6.873	· = ~~	25 40
3	ATOM	842	CA	ASP	A	411				35.40
	ATOM	843	CB	ASP	A	411	3.733	15.341 -7.144	1.00	40.02
	MOTA	844	CG	ASP	A	411	2.471	15.645 -7.928	1.00	41.32
	MOTA	845	OD1	ASP	A	411	1.570	14.785 -8.001	1.00	45.03
10	MOTA	846	OD2	ASP	A	411	2.383	16.764 -8.474	1.00	45.01
10	MOTA	847	C	ASP	A	411	2.727	13.234 -6.179	1.00	36.10
	MOTA	848	0	ASP	A	411	2.033	12.395 -6.762	1.00	34.08
	MOTA	849	И	ARG	A	412	2.480	13.647 -4.940	1.00	35.99
	MOTA	850	CA	ARG	A	412	1.375	13.099 -4.169	1.00	39.37
	MOTA	851	CB	ARG	A	412	1.260	13.824 -2.825	1.00	39.75
15	ATOM	852	CG	ARG	A	412	0.562	15.168 -2.870	1.00	40.49
	MOTA	853	CD	ARG	A	412	0.454	15.736 -1.465	1.00	40.65
	ATOM	854	NE	ARG	A	412	-0.261	14.826 -0.577	1.00	37.48
	ATOM	855	CZ	ARG	A	412	-1.574	14.855 -0.384	1.00	42.84
	MOTA	856	NH1	ARG	Α	412	-2.316	15.754 -1.024	1.00	40.82
20	MOTA	857	NH2	ARG	A	412	-2.150	13.986 0.438	1.00	38.32
	MOTA	858	C	ARG	A	412	0.034	13.108 -4.889	1.00	39.80
	MOTA	859	0	ARG	A	412	-0.775	12.201 -4.706	1.00	39.92
	MOTA	860	И	ASN	Α	413	-0.198	14.119 -5.717	1.00	41.64
	MOTA	861	CA	ASN	Α	413	-1.458	14.215 -6.440	1.00	43.19
25	MOTA	862	CB	ASN	А	413	-1.518	15.533 -7.210	1.00	46.44
	ATOM	863	CG	ASN	Α	413	-1.739	16.718 -6.299	1.00	47.86
	MOTA	864	OD1	ASN	A	413	-2.376	16.594 -5.249	1.00	48.05
	MOTA	865	ND2	ASN	Α	413	-1.213	17.876 -6.687	1.00	49.43
	MOTA	866	C .	ASN	Α	413	-1.673	13.044 -7.385	1.00	41.48
30	MOTA	867	0	ASN	Α	413	-2.792	12.567 -7.546	1.00	40.50
	MOTA	868	N	GLN	Α	414	-0.600	12.577 -8.010	1.00	42.82
	ATOM	869	CA	GLN	A	414	-0.703	11.448 -8.925	1.00	44.73
	MOTA	870	CB	GLN	A	414	0.585	11.307 -9.741	1.00	47.52
	MOTA	871	CG	GLN	A	414	0.572	12.088-11.049	1.00	50.47
35	MOTA	872	CD	GLN	A	414	1.914	12.713-11.375	1.00	53.91
	MOTA	873	OE1	GLN	Α	414	2.591	13.257-10.501	1.00	53.68
	MOTA	874	NE2	GLN	A	414	2.309	12.637-12.641	1.00	56.91
	MOTA	875	C	GLN	A	414	-0.970	10.163 ~8.141	1.00	43.21
	MOTA	876	0	GLN	Α	414	-1.491	9.193 -8.682	1.00	42.33
40	MOTA	877	N	GLY	A	415	-0.618	10.168 -6.860	1.00	41.97
	MOTA	878	CA	GLY	A	415	-0.836	8.992 -6.040	1.00	40.43
	MOTA	879	С	\mathtt{GLY}	A	415	-2.306	8.720 -5.804	1.00	40.80
	MOTA	880	0	\mathtt{GLY}	A	415	-2.696	7.601 -5.472	1.00	37.83
	MOTA	881	N	LYS	Α	416	-3.129	9.748 -5.978	1.00	42.16
45	MOTA	882	CA	LYS	A	416	-4.566	9.613 -5.779	1.00	
	ATOM	883	CB	LYS	A	416	-5.212	10.996 -5.704	1.00	45.65
	ATOM	884	CG	LYS	A	416	-4.761	11.819 -4.510	1.00	47.42
	ATOM	885	CD	LYS	A	416	-4.910	13.309 -4.777	1.00	50.97
	MOTA	886	CE	LYS	A	416	-5.992	13.924 -3.898	1.00	53.25
50	MOTA	887	NZ	LYS	A	416	-5.416	14.764 -2.809	1.00	56.95
	MOTA	888	C	LYS	Α	416	-5.227	8.793 -6.886	1.00	45.33
	ATOM	889	0	LYS	Α	416	-6.339	8.299 -6.714	1.00	46.50
	MOTA	890	N	CYS	A	417	-4.540	8.648 -8.015	1.00	45.18
	MOTA	891	CA	CYS	A	417	-5.066	7.890 ~9.148	1.00	46.25
55	MOTA	892	CB	CYS	A	417	-4.062	7.902-10.305	1.00	49.29
	MOTA	893	SG	CYS	A	417	-3.916	9.493-11.168	1.00	49.59
	MOTA	894	С	CYS	A	417	-5.373	6.452 -8.752	1.00	47.18
	MOTA	895	0	CYS	A	417	-6.220	5.794 -9.359	1.00	46.50
	ATOM	896	N	VAL	A	418	-4.671	5.968 -7.731	1.00	45.07
60	ATOM	897	CA	VAL	A	418	-4.866	4.612 -7.232	1.00	42.75
	MOTA	898	CB	VAL	Α	418	-3.525	3.841 -7.206	1.00	42.45

							_				
5	MOTA	956	CZ	PHE	Α	425	2.745	1U#UD 66		1.00	27.63
	MOTA	957	C	PHE	A	425	3.591		-0.312	1.00	25.66
	ATOM	958	0	PHE	A	425	4.757		-0.328	1.00	26.33
	ATOM	959	N	ASP	Α	426	2.680	9.746	0.552	1.00	27.92
	MOTA	960	CA	ASP	A	426	2.984	10.759	1.570	1.00	28.88
10	MOTA	961	CB	ASP	Α	426	1.721	11.102	2.369	1.00	32.58
	MOTA	962	CG	ASP	A	426	0.781	12.034	1.613	1.00	37.47
	ATOM	963	OD1	ASP	Α	426	-0.432	12.039	1.925	1.00	37.72
	MOTA	964	OD2	ASP	A	426	1.253	12.758	0.710	1.00	36.35
	MOTA	965	C	ASP	Α	426	4.071	10.278	2.532	1.00	26.96
15	MOTA	966	0	ASP	Α	426	4.974	11.030	2.900	1.00	27.20
	MOTA	967	N	MET	Α	427	3.978	9.022	2.947	1.00	25.76
	MOTA	968	CA	MET	A	427	4.981	8.468	3.856	1.00	25.89
	MOTA	969	CB	MET	A	427	4.567	7.070	4.309	1.00	21.17
	MOTA	970	CG	MET	Α	427	3.385	7.072	5.257	1.00	24.38
20	MOTA	971	SD	MET	A	427	3.153	5.489	6.080	1.00	34.32
	MOTA	972	CE	MET	A	427	2.173	4.637	4.910	1.00	21.03
	MOTA	973	C	MET	Α	427	6.321	8.410	3.128	1.00	22.29
	MOTA	974	0	MET	A	427	7.363	8.760	3.689	1.00	22.19
	MOTA	975	N	LEU	А	428	6.285	7.985	1.868	1.00	21.75
25	ATOM	976	CA	LEU	Α	428	7.506	7.892	1.075	1.00	22.91
	ATOM	977	CB	LEU	A	428	7.202		-0.287	1.00	18.47
	MOTA	978	CG	LEU	A	428	6.910		-0.176	1.00	19.24
	MOTA	979	CD1	LEU	A	428	6.278	5.222	-1.468	1.00	16.82
	MOTA	980	CD2	LEU	A	428	8.204	5.010	0.131	1.00	16.23
30	ATOM	981	С	LEU	A	428	8.148	9.269	0.902	1.00	23.98
	ATOM	982	0	LEU	A	428	9.366	9.416	1.034	1.00	23.06
	ATOM	983	N	LEU	A	429	7.328	10.281	0.628	1.00	23.91
	ATOM	984	CA	LEU	A	429	7.837	11.642	0.462	1.00	26.29
	MOTA	985	CB	LEU	A	429	6.714		-0.003	1.00	27.47
35	MOTA	986	CG	LEU	A	429	6.331		-1.476	1.00	30.78
	MOTA	987	CD1	LEU	A	429	5.022		-1.751	1.00	34.75
	ATOM	988	CD2	LEU	A	429	7.449		-2.350	1.00	31.96
	ATOM	989	C	LEU	A	429	8.425	12.166	1.776	1.00	25.83
40	ATOM	990	0	LEU	A.	429	9.482	12.808	1.793	1.00	26.42
40	MOTA	991	N	ALA	A	430	7.734	11.890	2.877	1.00	26.45
	MOTA	992	CA	ALA	A	430	8.201	12.333	4.185	1.00	26.11
	MOTA	993	CB	ALA	A	430	7.214	11.909	5.265	1.00	23.13
	ATOM	994	C	ALA	A	430	9.577	11.742	4.462		25.01
15	ATOM	995	0	ALA	A	430	10.455	12.409		1.00	24.31
45	ATOM	996	N	THR	A	431	9.767			1.00	25.25
	ATOM	997	CA	THR	A.	431	11.046	9.825		1.00	22.78
	ATOM	998	CB	THR	A	431	10.973	8.323		1.00	21.36
	MOTA	999	OG1	THR	A	431	9.924	7.727		1.00	20.27
50	ATOM	1000	CG2	THR	A	431	12.291	7.633	4.299	1.00	19.99
30	MOTA	1001	C	THR	A.	431	12.103	10.477		1.00	23.73 19.60
	ATOM	1002	O N	THR	A	431	13.234	10.667		1.00	24.32
	ATOM	1003	N Ca	SER	A	432	11.736 12.676	10.819		1.00	26.96
	ATOM	1004	CA	SER	A	432		11.479			
55	ATOM	1005	CB	SER	A.	432	12.067		-0.093	1.00	28.70
))	ATOM	1006 1007	OG C	SER	A	432	13.084		-1.039 1.876	1.00 1.00	33.42 27.92
	MOTA			SER	A n	432	13.033	12.850			30.78
	MOTA	1008 1009	NI O	SER	A A	432	14.176	13.294 13.521		1.00	28.96
	MOTA MOTA	1019	N CA	SER SER	A A	433 433	12.045 12.269	14.824		1.00	34.21
60	ATOM	1010	CB	SER	A	433	10.957	15.387		1.00	35.07
oo											
	MOTA	1012	OG	SER	A	433	10.175	15.961	2.591	1.00	42.38

5	MOTA	1070	CA	LEU	A	440	22.161	11.326	3.579	1.00	31.63
	MOTA	1071	CB	LEU	Α	440	20.991	10.344	3.380	1.00	33.05
	MOTA	1072	CG	LEU	Α	440	21.451	8.886	3.209	1.00	37.07
	ATOM	1073	CD1	LEU	Α	440	21.957	8.353	4.546	1.00	36.18
	ATOM	1074	CD2	LEU	A	440	20.318	8.032	2.682	1.00	32.33
10	ATOM	1075	C	LEU	A	440	23.146	11.161	2.435	1.00	32.10
10	MOTA	1076	0	LEU	A	440	22.925	11.671	1.333	1.00	32.76
	MOTA	1077	N	GLN	A	441	24.225	10.450	2.702	1.00	32.54
											31.97
	ATOM	1078	CA	GLN	A	441	25.255	10.220	1.699	1.00	
1.7	ATOM	1079	CB	GLN	A	441	26.632	10.320	2.345	1.00	31.75
15	MOTA	1080	CG	GLN	A	441	26.896	11.669	2.979	1.00	35.56
	MOTA	1081	CD	$\operatorname{GL}\!\mathbf{N}$	A	441	27.040	12.748	1.939	1.00	34.97
	MOTA	1082	OE1	GLN	A	441	27.985	12.782	1.167	1.00	35.51
	MOTA	1083	NE2	GLN	Α	441	26.053	13.659	1.899	1.00	35.41
	MOTA	1084	C	GLN	Α	441	25.100	8.860	1.038	1.00	34.08
20	MOTA	1085	0	GLN	A	441	24.540	7.931	1.625	1.00	30.73
	ATOM	1086	N	GLY	A	442	25.608	8.752	-0.187	1.00	32.78
	MOTA	1087	CA	GLY	A	442	25.528	7.503		1.00	32.91
	ATOM	1088	C	GLY	A	442	26.181	6.350		1.00	31.87
	ATOM	1089	Ö	GLY	A	442	25.642	5.245		1.00	33.18
25	ATOM	1090	N	GLU	A	443	27.340	6.603	0.416	1.00	30.60
2,3	ATOM		CA	GLU				5.567	1.150	1.00	30.85
		1091			A	443	28.057				
	MOTA	1092	CB	GLU	A	443	29.376	6.111	1.704	1.00	32.74
	MOTA	1093	CG	GLU	A	443	30.425	6.378	0.646	1.00	36.30
0.0	MOTA	1094	CD	GLU	A	443	30.310	7.770	0.066	1.00	40.92
30	ATOM	1095	OE1	GLU	A	443	29.677	8.630	0.716	1.00	42.27
	MOTA	1096	OE2	GLU	A	443	30.853		-1.038	1.00	46.82
	MOTA	1097	C	GLU	Α	443	27.206	5.048	2.299	1.00	30.43
	ATOM	1098	0	GLU	A	443	27.211	3.854	2.595	1.00	28.11
	MOTA	1099	N	GLU	Α	444	26.482	5.955	2.948	1.00	30.26
35	ATOM	1100	CA	GLU	Α	444	25.619	5.589	4.067	1.00	28.18
	MOTA	1101	CB	GLU	A	444	25.147	6.843	4.797	1.00	26.32
	MOTA	1102	CG	GLU	A	444	26.250	7.633	5.463	1.00	29.27
	ATOM	1103	CD	GLU	Α	444	25.748	8.944	6.023	1.00	29.62
	ATOM	1104	OE1	GLU	A	444	25.006	9.652	5.304	1.00	32.00
40	ATOM	1105	OE2	GLU	A	444	26.088	9.268	7.182	1.00	29.02
	MOTA	1106	C	GLU	A	444	24.403	4.813	3.572	1.00	26.93
	ATOM	1107	0	GLU	A	444	23.970	3.841	4.191	1.00	24.78
								5.256	2.443		
	MOTA	1108	N	PHE	A	445	23.861			1.00	27.79
15	ATOM	1109	CA	PHE	A	445	22.688	4.633	1.853	1.00	24.50
45	ATOM	1110	CB	PHE	A	445	22.254	5.416	0.610	1.00	25.40
	MOTA	1111	CG	PHE	A	445	21.372	4.634		1.00	23.74
	MOTA	1112	CD1	PHE	A	445	20.034	4.419		1.00	23.00
	MOTA	1113	CD2	PHE	A	445	21.885	4.094	-1.489	1.00	22.37
	ATOM	1114	CE1	PHE	A	445	19.215	3.670	-0.855	1.00	22.57
50	ATOM	1115	CE2	PHE	Α	445	21.079	3.349	-2.342	1.00	21.69
	MOTA	1116	CZ	PHE	A	445	19.741	3.138	-2.023	1.00	22.25
	MOTA	1117	С	PHE	A	445	22.913	3.169	1.489	1.00	22.81
	MOTA	1118	0	PHE	A	445	22.083	2.316	1.796	1.00	22.92
	MOTA	1119	N	VAL	A	446	24.019	2.868	0.822	1.00	22.46
55	ATOM	1120	CA	VAL	A	446	24.278	1.481	0.447	1.00	22.26
55	MOTA	1121	CB	VAL	A	446	25.522	1.360		1.00	22.87
										1.00	
	ATOM	1122	CGI	VAL	A	446	25.251	2.046			22.57
	ATOM	1123	CG2	VAL	A.	446	26.735	1.968	0.217	1.00	22.38
60	ATOM	1124	C	VAL	A	446	24.467	0.614	1.694	1.00	23.68
60	ATOM	1125	0	VAL	A	446	24.177	-0.586	1.680	1.00	22.91
	MOTA	1126	N	CYS	A	447	24.962	1.223	2.770	1.00	22.02

5	ATOM	1184	CD2	LEU	Α	454	22.785	-9.913 4.952	1.00	22.84
	MOTA	1185	С	LEU	Α	454	19.572	-8.945 7.807	1.00	26.06
	MOTA	1186	0	LEU	Α	454	19.413	-9.997 8.438	1.00	27.44
	MOTA	1187	N	ASN	A	455	19.011	-7.795 8.167	1.00	25.01
	MOTA	1188	CA	ASN	A	455	18.240	-7.681 9.400	1.00	26.10
10	MOTA	1189	CB	ASN	Α	455	18.439	-6.295 10.002	1.00	22.67
	ATOM	1190	CG	ASN	Α	455	17.627	-6.109 11.264	1.00	26.67
	MOTA	1191	OD1	ASN	Α	455	17.899	-6.751 12.270	1.00	25.16
	ATOM	1192	ND2	ASN	Α	455	16.615	-5.246 11.212	1.00	20.73
	ATOM	1193	С	ASN	Α	455	16.739	-7.957 9.418	1.00	25.78
15	ATOM	1194	0	ASN	A	455	16.230	-8.516 10.380	1.00	29.22
	ATOM	1195	N	SER	A	456	16.027	-7.549 8.381	1.00	28.51
	ATOM	1196	CA	SER	A	456	14.578	-7.704 8.371	1.00	32.52
	ATOM	1197	CB	SER	A	456	14.019	-7.213 7.033	1.00	35.98
	ATOM	1198	OG	SER	A	456	14.266	-5.818 6.897	1.00	30.88
20	ATOM	1199	C	SER	A	456	14.033	-9.086 8.711	1.00	33.00
20	ATOM	1200	0	SER	A	456	13.112	-9.202 9.523	1.00	33.07
		1201	И	GLY	Ā	457	14.597	-10.130 8.117	1.00	28.40
	ATOM						14.115	-11.464 8.413	1.00	36.28
	MOTA	1202	CA	GLY	A	457			1.00	40.41
25	ATOM	1203	C	GLY	A.	457	15.055	-12.289 9.277 -13.486 9.456	1.00	38.20
25	MOTA	1204	0	GLY	A	457	14.831	-13.466 9.436	1.00	44.13
	ATOM	1205	N	VAL	A	458	16.095		1.00	51.09
	ATOM	1206	CA	VAL	A	458	17.079	-12.356 10.647 -11.399 11.095		
	ATOM	1207	CB	VAL	A	458	18.214		1.00	51.06
20	ATOM	1208	CG1	VAL	A	458	17.688	-10.390 12.104	1.00	51.75 50.65
30	ATOM	1209	CG2	VAL	A	458	19.365	-12.199 11.692	1.00	57.26
	ATOM	1210	C	VAL	A	458	16.513	-13.060 11.885		
	ATOM	1211	0	VAL	A	458	17.085	-14.045 12.356	1.00	58.77
	ATOM	1212	N	TYR	A	459	15.401	-12.560 12.416	1.00	62.31
25	ATOM	1213	CA	TYR	A	459	14.793	-13.177 13.592	1.00	68.49
35	MOTA	1214	CB	TYR	A	459	14.293	-12.100 14.560	1.00	70.46
	MOTA	1215	CG	TYR	A	459	15.396	-11.196 15.069	1.00	71.73
	MOTA	1216	CD1	TYR	A	459	15.127	-9.888 15.462	1.00	71.93 72.60
	ATOM	1217	CE1	TYR	A.	459	16.147	-9.045 15.898 -11.644 15.128	1.00	
40	ATOM	1218	CD2	TYR	A	459	16.716			72.77
40	ATOM	1219	CE2	TYR	A	459	17.741	-10.812 15.560	1.00	73.55
	MOTA	1220	CZ	TYR	A	459	17.450	-9.514 15.941	1.00 1.00	72.93 74.56
	ATOM	1221	OH	TYR	A	459	18.467	-8.687 16.351		
	ATOM	1222		TYR	A	459		-14.097 13.187		71.86
4.5	ATOM	1223		TYR	A	459		-15.099 13.852	1.00	73.11
45	ATOM	1224		THR	A	460	12.981	-13.756 12.090		74.84
	ATOM	1225	CA	THR	A	460	11.881	-14.567 11.589		77.66
	ATOM	1226		THR	A.	460	11.246	-13.900 10.373	1.00	76.69
	MOTA	1227		THR	A	460	12.436	-15.938 11.212	1.00	80.26
50	MOTA	1228	0	THR	A	460	11.684		1.00	80.82
50	MOTA	1229		PHE	A	461	13.762	-16.051 11.231	1.00	82.69
	ATOM	1230		PHE	A	461		-17.299 10.905	1.00	85.63
	MOTA	1231		PHE	A	461		-17.034 10.630	1.00	85.47
	MOTA	1232		PHE	A	461		-18.288 12.059	1.00	87.52
	ATOM	1233		PHE	A	461	14.493			86.53
55	ATOM	1234		LEU	A	462				89.49
	MOTA	1235	CA	LEU	Α	462	13.711		1.00	91.34
	MOTA	1236		LEU	A	462	12.961			91.23
	MOTA	1237		LEU	A	462	15.016	-21.060 13.340		92.05
	MOTA	1238		LEU	Α	462		-21.165 12.664		91.91
60	MOTA	1239		SER	A	463		-21.357 14.635		
	MOTA	1240	CA	SER	A	463	16.131	-21.855 15.358	1.00	92.96

5	MOTA	1298	И	ASP	A	473	24.628			L.00	47.52
	ATOM	1299	CA	ASP	A	473	25.732	-15.194 14.4		1.00	45.55
	MOTA	1300	CB	ASP	A	473	26.613	-16.094 15.2		1.00	50.48
	MOTA	1301	CG	ASP	A	473	26.380	-15.885 16.7		L.00	55.50
	ATOM	1302	OD1	ASP	Α	473	25.272	-15.436 17.1		1.00	58.06
10	MOTA	1303	OD2	ASP	Α	473	27.304			1.00	59.81
	MOTA	1304	C	ASP	Α	473	26.557			1.00	42.62
	ATOM	1305	0	ASP	A	473	27.087			1.00	42.10
	ATOM	1306	N	HIS	Α	474	26.663	-15.364 12.1		1.00	38.05
	MOTA	1307	CA	HIS	A	474	27.416	-14.904 11.0	26 1	L.00	37.25
15	ATOM	1308	CB	HIS	A	474	27.429		41 1	L.00	35.07
	MOTA	1309	CG	HIS	A	474	28.036	-15.523 8.6	553 1	L.00	37.36
	ATOM	1310	CD2	HIS	Α	474		-15.113 8.3		L.00	38.86
	ATOM	1311	ND1	HIS	A	474	27.322	-15.452 7.4	76 1	1.00	41.31
	MOTA	1312	CE1	HIS	A	474	28.110	-15.020 6.5	09 1	1.00	40.86
20	MOTA	1313	NE2	HIS	A	474	29.311	-14.807 7.0		L.00	44.49
	ATOM	1314	C	HIS	A	474	26.749	-13.640 10.4	93 1	1.00	36.68
	MOTA	1315	0	HIS	Α	474	27.417	,		1.00	36.48
	MOTA	1316	N	ILE	Α	475	25.422	-13.652 10.4	47 1	1.00	35.93
	ATOM	1317	CA	ILE	A	475	24.683	-12.499 9.9	63 1	L.00	36.21
25	MOTA	1318	CB	ILE	A	475	23.174	-12.797 9.8	168 1	L.00	36.31
	MOTA	1319	CG2	ILE	Α	475	22.411	-11.527 9.5	3 1 3 1	L.00	38.19
	MOTA	1320	CG1	ILE	A	475	22.922	-13.874 8.8	313 1	1.00	36.97
	MOTA ·	1321	CD1	ILE	A	475	21.528	-14.454 8.8	369 1	L.00	35.59
	MOTA	1322	C	ILE	Α	475	24.893	-11.322 10.9		1.00	35.34
30	ATOM	1323	0	ILE	A	475	25.092	-10.189 10.4		1.00	33.20
	MOTA	1324	N	HIS	A	476	24.857	-11.596 12.2		L.00	35.95
	ATOM	1325	CA	HIS	Α	476	25.031	-10.540 13.1		1.00	35.06
	ATOM	1326	CB	HIS	A	476	24.681	-11.062 14.5		1.00	37.30
	MOTA	1327	CG	HIS	Α	476	23.210	-11.068 14.8		1.00	43.06
35	ATOM	1328	CD2	HIS	A	476	22.329	-10.051 15.0		1.00	43.93
	ATOM	1329	ND1	HIS	A	476	22.476	-12.230 14.9		L.00	45.60
	MOTA	1330	CE1	HIS	A	476	21.207			L.00	47.56
	ATOM	1331	NE2	HIS	A	476	21.091			L.00	46.21
	MOTA	1332	C	HIS	A	476	26.438	-9.966 13.1		1.00	35.40
40	MOTA	1333	0	HIS	A	476	26.634	-8.774 13.4		1.00	35.45
	MOTA	1334	N	ARG	A	477	27.420			1.00	34.07
	ATOM	1335		ARG	A	477		-10.331 12.7		L.00	34.18
	MOTA	1336		ARG	A	477		-11.506 12.6		L.00	41.04
4.0	ATOM	1337	CG	ARG	A	477		-12.459 13.7		L.00	47.61
45	ATOM	1338	CD	ARG	A	477	•	-13.599 13.5		L.00	55.67
	ATOM	1339	NE	ARG	A	477		-13.675 14.6		L.00	60.17
	MOTA	1340	CZ	ARG	A	477	32.780			1.00	61.98
	ATOM	1341	NH1	ARG	A	477	32.918			L.00	64.29
50	MOTA	1342	NH2	ARG	A	477	33.643	-12.955 15.7		L.00	62.79
50	MOTA	1343	C	ARG	A	477	28.906	-9.361 11.6		1.00	30.77
	ATOM	1344	0	ARG	A	477	29.462	-8.268 11.7		1.00	33.59
	MOTA	1345	N	VAL	A	478	28.369	-9.766 10.4		L.00	27.65
	MOTA	1346	CA	VAL	A	478	28.389	-8.930 9.2		1.00	27.07
~ ~	ATOM	1347	CB	VAL	A	478	27.658	-9.605 8.1		1.00	28.00
55	MOTA	1348	CG1	VAL	A	478	27.672	-8.678 6.8		L.00	25.83
	MOTA	1349	CG2	VAL	Α	478	28.319	-10.933 7.7		1.00	31.66
	ATOM	1350	C	VAL	A	478	27.689	-7.610 9.5		1.00	26.92
	MOTA	1351	0	JAV	A	478	28.216	-6.536 9.2		L.00	26.97
<i>(</i> 0	ATOM	1352	Ŋ	LEU	A	479	26.499	-7.702 10.1		1.00	25.74
60	ATOM	1353		LEU	A	479	25.727			1.00	27.97
	MOTA	1354	CB	LEU	A	479	24.474	-6.912 11.3	324 1	1.00	25.55

•					_		06 200		0	4 00	
5	MOTA	1412	CD2	LEU	A	486	26.309	4.128	7.577	1.00	21.35
	ATOM	1413	C	LEU	A	486	29.662	4.519	9.960	1.00	27.36
	MOTA	1414	0	LEU	A	486	29.745	5.710	9.669	1.00	25.87
	ATOM	1415	N	ILE	A	487	30.151		11.088	1.00	27.88
10	ATOM	1416	CA	ILE	A	487	30.843		12.055	1.00	28.40
10	ATOM	1417	CB	ILE	A	487	31.203		13.332	1.00	26.74
	ATOM	1418	CG2	ILE	Α	487	32.255		14.154	1.00	27.54
	ATOM	1419	CG1	ILE	A	487	29.937		14.163	1.00	25.93
	ATOM	1420	CD1	ILE	A	487	29.237		14.624	1.00	23.42
1.5	ATOM	1421	C	ILE	A	487	32.125		11.412	1.00	28.89
15	ATOM	1422	0	ILE	A	487	32.497		11.602	1.00	29.85
	ATOM	1423	N	HIS	A	488	32.791		10.649	1.00	29.71
	ATOM	1424	CA	HIS	A	488	34.031	4.898	9.967	1.00	34.12
	MOTA	1425	CB	HIS	A	488	34.585	3.691	9.207	1.00	36.61
~~	ATOM	1426	CG	HIS	A	488	35.799	3.997	8.385	1.00	42.74
20	MOTA	1427	CD2	HIS	Α	488	35.970	4.089	7.045	1.00	43.12
	MOTA	1428	ND1	HIS	A	488	37.034	4.239	8.946	1.00	43.13
	MOTA	1429	CE1	HIS	A	488	37.913	4.466	7.987	1.00	43.40
	MOTA	1430	NE2	HIS	A	488	37.293	4.381	6.825	1.00	45.63
o =	MOTA	1431	C	HIS	A	488	33.799	6.051	8.998	1.00	32.74
25	MOTA	1432	0	HIS	A	488	34.577	7.004	8.955	1.00	31.06
	MOTA	1433	N	LEU	A	489	32.721	5.958	8.223	1.00	33.56
	ATOM	1434	CA	LEU	A	489	32.384	6.992	7.258	1.00	30.78
	MOTA	1435	CB	LEU	A	489	31.145	6.587	6.464	1.00	34.67
2.0	MOTA	1436	CG	LEU	A	489	31.310	5.353	5.574	1.00	34.73
30	ATOM	1437	CD1	LEU	A	489	29.945	4.856	5.125	1.00	33.21
	MOTA	1438	CD2	LEU	A	489	32.183	5.701	4.378	1.00	35.92
	MOTA	1439	C	LEU	A	489	32.124	8.320	7.954	1.00	33.97
	ATOM	1440	0	LEU	A	489	32.587	9.365	7.507	1.00	33.22
2.5	MOTA	1441	N	MET	A	490	31.387	8.274	9.058	1.00	31.33
35	ATOM	1442	CA	MET	A	490	31.056	9.482	9.801	1.00	30.61
	ATOM	1443	CB	MET	A	490	30.000		10.862	1.00	32.34
	MOTA	1444	CG	MET	A	490	28.607		10.289	1.00	30.71
	MOTA	1445	SD	MET	A	490	27.457		11.496	1.00	31.14
40	MOTA	1446	CE	MET	A	490	26.321		10.418	1.00	30.36
40	MOTA	1447	C C	$_{\tt MET}^{\tt MET}$	A	490	32.287	10.108		1.00	32.22 28.25
	MOTA	1448 1449	И	ALA	A A	490 491	32.412 33.184	11.330	10.517	1.00	33.81
	MOTA	1449							11.585		
	ATOM			ALA	A 7	491	34.407 35.168		12.185	1.00	37.22
45	ATOM	1451	CB C	ALA ALA	A A	491 491	35.275	10.445		1.00	42.68
43	ATOM ATOM	1452 1453	0	ALA	A	491	35.865	11.487		1.00	45.32
			N	LYS	A	492	35.339	9.876	9.347	1.00	44.39
	ATOM ATOM	1454 1455	CA	LYS	A	492	36.122	10.440		1.00	44.80
			CB		A	492		9.477	7.052	1.00	46.96
50	ATOM	1456		LYS			36.136				47.20
30	ATOM	1457	CG	LYS LYS	A a	492 492	37.490	8.840 7.830	6.744 5.595	1.00	45.71
	MOTA	1458	CD CE	LYS	A A	492	37.390 38.631	6.937	5.518	1.00	45.55
	ATOM	1459	NZ	LYS	A	492	38.357	5.577	4.948	1.00	36.28
	ATOM	1460	C	LYS		492	35.534			1.00	45.61
55	ATOM ATOM	1461 1462	0	LYS	A A	492	36.227	11.780 12.604	7.809 7.215	1.00	46.18
55											
	ATOM	1463	N Ca	ALA ALA	A M	493 493	34.254	11.992 13.238	8.100 7.728	1.00	43.75 42.42
	MOTA	1464	CA		A ^		33.590				
	MOTA	1465	CB C	ALA ALA	A 7	493 493	32.097	13.001	7.528	1.00	40.92 41.78
60	ATOM ATOM	1466	0	ALA	A A	493	33.816 33.277	14.305 15.410	8.796 8.707	1.00	41.78
00		1467			A	493			9.811	1.00	40.76
	MOTA	1468	N	GLY	A	434	34.604	13.960	3.011	1.00	41.UI

_					_					25.20
5	MOTA	1526	CD2	HIS	A	501	28.726	6.540 18.931	1.00	36.10
	ATOM	1527	ND1	HIS	A	501	28.541	7.844 20.676	1.00	31.81
	ATOM	1528	CE1	HIS	A	501	29.716	7.244 20.758	1.00	34.89
	MOTA	1529	NE2	HIS	A	501	29.854	6.448 19.712	1.00	37.46
	MOTA	1530	С	HIS	A	501	24.935	8.572 17.348	1.00	24.93
10	MOTA	1531	0	HIS	Α	501	23.998	7.815 17.107	1.00	26.73
	MOTA	1532	N	GLN	A	502	24.796	9.892 17.379	1.00	22.79
	MOTA	1533	CA	GLN	A	502	23.504	10.498 17.119	1.00	26.14
	MOTA	1534	CB	GLN	Α	502	23.554	12.006 17.371	1.00	22.36
	MOTA	1535	CG	GLN	Α	502	23.460	12.378 18.848	1.00	26.19
15	ATOM	1536	CD	GLN	A	502	23.589	13.875 19.089	1.00	28.67
	MOTA	1537	OE1	GLN	Α	502	23.632	14.663 18.149	1.00	28.40
	MOTA	1538	NE2	GLN	Α	502	23.651	14.268 20.355	1.00	24.72
	ATOM	1539	C	GLN	Α	502	23.056	10.221 15.685	1.00	26.19
	MOTA	1540	0	GLN	A	502	21.913	9.822 15.453	1.00	24.09
20	ATOM	1541	N	ARG	A	503	23.955	10.429 14.727	1.00	24.88
	ATOM	1542	CA	ARG	Α	503	23.630	10.196 13.326	1.00	25.25
	MOTA	1543	CB	ARG	Α	503	24.772	10.668 12.418	1.00	27.63
	ATOM	1544	CG	ARG	Α	503	24.432	10.563 10.932	1.00	28.75
	MOTA	1545	CD	ARG	A	503	25.479	11.222 10.056	1.00	27.72
25	MOTA	1546	NE	ARG	A	503	25.072	11.214 8.654	1.00	29.35
	ATOM	1547	CZ	ARG	A	503	24.279	12.126 8.105	1.00	25.84
	ATOM	1548	NH1	ARG	A	503	23.804	13.120 8.840	1.00	27.35
	MOTA	1549	NH2	ARG	Α	503	23.962	12.044 6.820	1.00	30.63
	ATOM	1550	С	ARG	Α	503	23.347	8.716 13.065	1.00	24.53
30	MOTA	1551	0	ARG	A	503	22.425	8.375 12.321	1.00	25.90
	ATOM	1552	N	LEU	A	504	24.143	7.841 13.672	1.00	23.00
	ATOM	1553	CA	LEU	A	504	23.953	6.406 13.496	1.00	22.60
	MOTA	1554	CB	LEU	A	504	24.971	5.621 14.323	1.00	25.43
	ATOM	1555	CG	LEU	Α	504	24.781	4.100 14.344	1.00	25.23
35	ATOM	1556	CD1	LEU	A	504	25.166	3.505 12.991	1.00	28.52
	ATOM	1557	CD2	LEU	A	504	25.627	3.495 15.444	1.00	22.14
	ATOM	1558	С	LEU	A	504	22.541	6.030 13.934	1.00	22.84
	ATOM	1559	0	LEU	Α	504	21.846	5.288 13.245	1.00	21.51
	ATOM	1560	N	ALA	Α	505	22.120	6.547 15.083	1.00	20.16
40	ATOM	1561	CA	ALA	Α	505	20.784	6.262 15.585	1.00	21.08
	ATOM	1562	CB	ALA	Α	505	20.605	6.868 16.980	1.00	23.57
	ATOM	1563	С	ALA	A	505	19.738	6.832 14.628	1.00	20.20
	MOTA	1564	0	ALA	A	505	18.754	6.164 14.293	1.00	17.31
	MOTA	1565	N	GLN	A	506	19.954	8.066 14.184	1.00	22.11
45	MOTA	1566	CA	GLN	A	506	19.013	8.711 13.277	1.00	21.70
	MOTA	1567	CB	GLN	Α	506	19.502	10.111 12.903	1.00	22.26
	ATOM	1568	CG	GLN	Α	506	19.240	11.158 13.975	1.00	25.84
	ATOM	1569	CD	GLN	A	506	20.187	12.333 13.857	1.00	32.88
	MOTA	1570	OE1	GLN	A	506	20.704	12.614 12.777	1.00	31.23
50	ATOM	1571	NE2	GLN	A	506	20.423	13.025 14.968	1.00	32.97
50	ATOM	1572	C	GLN	A	506	18.813	7.881 12.016	1.00	23.57
	MOTA	1573	Ö	GLN	A	506	17.684	7.715 11.550	1.00	21.83
	ATOM	1574	N	LEU	A	507	19.905	7.354 11.474	1.00	19.98
	ATOM	1575	CA	LEU	A	507	19.827	6.537 10.263	1.00	22.03
55	MOTA	1576	CB	LEU	A	507	21.231	6.244 9.725	1.00	23.02
55	ATOM	1577	CG	LEU	A	507	22.026	7.457 9.225	1.00	25.80
	MOTA	1578	CD1	LEU	A	507	23.371	6.994 8.713	1.00	27.67
	ATOM	1579	CD2	LEU	A	507	21.264	8.176 8.130	1.00	25.62
	ATOM	1580	CD2	LEU	A	507	19.090	5.219 10.496	1.00	22.35
60	ATOM	1581	0	LEU	A	507	18.242	4.825 9.695	1.00	19.33
00								4.539 11.592	1.00	21.29
	MOTA	1582	N	LEU	A	508	19.402	4.333 11.334	1.00	44,47

5	MOTA	1640	CB	ARG	Α	515 ·	9.984	-1.980 8.889	1.00	18.36
	MOTA	1641	CG	ARG	Α	515	9.173	-3.237 9.213	1.00	17.84
	MOTA	1642	CD	ARG	Α	515	9.823	-4.470 8.606	1.00	17.94
	MOTA	1643	NE	ARG	A	515	11.038	-4.813 9.334	1.00	26.96
	ATOM	1644	CZ	ARG	A	515	11.406	-6.051 9.641	1.00	25.13
10	MOTA	1645	NH1	ARG	A	515	10.654	-7.080 9.281	1.00	23.49
10	ATOM	1646	NH2	ARG	A	515	12.511	-6.254 10.340	1.00	32.16
		1647	C	ARG	A	515	8.089	-1.020 7.594	1.00	18.29
	MOTA									16.23
	MOTA	1648	0	ARG	A	515	7.275	-1.759 7.038	1.00	
1.5	ATOM	1649	N	HIS	A	516	7.726	0.085 8.237	1.00	19.33
15	ATOM	1650	CA	HIS	A	516	6.317	0.441 8.330	1.00	17.78
	ATOM	1651	CB	HIS	A	516	6.126	1.702 9.166	1.00	16.84
	MOTA	1652	CG	HIS	A	516	4.692	2.101 9.312	1.00	18.16
	MOTA	1653	CD2	HIS	A	516	3.967	3.061 8.691	1.00	21.17
	MOTA	1654	ND1	HIS	Α	516	3.830	1.469 10.180	1.00	20.70
20	ATOM	1655	CE1	HIS	A	516	2.633	2.022 10.089	1.00	21.52
	ATOM	1656	NE2	HIS	Α	516	2.689	2.992 9.191	1.00	20.16
	MOTA	1657	C	HIS	Α	516	5.708	0.659 6.954	1.00	16.63
	MOTA	1658	0	HIS	Α	516	4.598	0.216 6.689	1.00	18.58
	ATOM	1659	N	MET	A	517	6.438	1.334 6.073	1.00	15.29
25	ATOM	1660	CA	MET	A	517	5.925	1.589 4.730	1.00	16.58
	MOTA	1661	CB	MET	A	517	6.837	2.576 4.002	1.00	18.66
	MOTA	1662	CG	MET	A	517	6.805	3.978 4.631		16.88
	· ATOM	1663	SD	MET	A	517	7.670	5.243 3.701	1.00	24.08
			CE	MET	A					14.30
30	ATOM	1664				517	9.390	4.777 3.962	1.00	
30	ATOM	1665	C	MET	A	517	5.773	0.289 3.940	1.00	17.86
	ATOM	1666	0	MET	A	517	4.791	0.101 3.224	1.00	18.25
	MOTA	1667	N	SER	A	518	6.741	-0.610 4.086	1.00	17.43
	MOTA	1668	CA	SER	A	518	6.697	-1.896 3.403	1.00	18.40
	MOTA	1669	CB	SER	A	518	7.974	-2.695 3.680	1.00	16.77
35	MOTA	1670	OG	SER	Α	518	7.834	-4.030 3.227	1.00	24.23
	ATOM	1671	C	SER	A	518	5.476	-2.695 3.854	1.00	17.91
	MOTA	1672	0	SER	Α	518	4.788	-3.295 3.030	1.00	18.97
	MOTA	1673	N	ASN	A	519	5.204	-2.697 5.159	1.00	21.82
	MOTA	1674	CA	ASN	A	519	4.047	-3.418 5.696	1.00	21.99
40	MOTA	1675	CB	ASN	A	519	3.957	-3.257 7.216	1.00	23.24
	ATOM	1676	CG	ASN	A	519	5.046	-4.011 7.957	1.00	31.14
	ATOM	1677	OD1	ASN	A	519	5.585	-4.999 7.461	1.00	32.50
	ATOM	1678	ND2	ASN	A	519	5.368	-3.545 9.163	1.00	29.10
	ATOM	1679	С	ASN	A	519	2.761	-2.871 5.079		23.76
45	ATOM	1680	0	ASN	A	519	1.902	-3.632 4.631		24.48
	ATOM	1681	N	LYS	A	520	2.627	-1.548 5.078		20.58
	MOTA	1682	CA	LYS	A	520	1.449	-0.900 4.512		25.49
	MOTA	1683		LYS	A	520		0.607 4.786		
			CB				1.484			24.73 32.31
50	MOTA	1684	CG	LYS	A	520	1.512	0.996 6.264		
50	ATOM	1685	CD	LYS	A	520	0.656	0.080 7.133	1.00	37.11
	ATOM	1686	CE	LYS	A	520	-0.787	0.547 7.181		41.56
	MOTA	1687	NZ	LYS	A	520	-1.560	-0.134 8.261		42.66
	MOTA	1688	С	LYS	A	520	1.380	-1.144 3.005		25.40
	MOTA	1689	O .		A	520	0.316	-1.436 2.467	1.00	26.44
55	MOTA	1690	N	GLY	A	521	2.520	-1.021 2.332	1.00	22.88
	MOTA	1691	CA	GLY	A	521	2.561	-1.236 0.897	1.00	21.53
	ATOM	1692	C	GLY	A	521	2.177	-2.655 0.536	1.00	24.79
	ATOM	1693	0	GLY	Α	521	1.426	-2.878 -0.413	1.00	25.71
	ATOM	1694	N	MET	A	522	2.696	-3.619 1.290		22.75
60	ATOM	1695	CA	MET	A	522	2.393	-5.027 1.058		23.40
	ATOM	1696	CB	MET	A	522	3.170	-5.898 2.042		25.74
								1.120 2.012		

5	MOTA	1754	0	MET	Α	528	-5.689	-5.979 -7.137	1.00	44.02
	ATOM	1755	N	LYS	Α	529	-4.443	-6.883 -5.499	1.00	46.78
	ATOM	1756	CA	LYS	Α	529	-4.413	-8.213 -6.099	1.00	51.28
	ATOM	1757	CB	LYS	A	529	-3.550	-9.158 -5.261	1.00	50.87
	MOTA	1758	CG	LYS	A	529	-2.798	-10.204 -6.071	1.00	50.55
10	MOTA	1759	CD	LYS	A	529	-3.548	-11.520 -6.104	1.00	51.25
	ATOM	1760	CE	LYS	A	529	-2.616		1.00	53.22
	ATOM	1761	NZ	LYS	A	529	-2.420	-12.954 -4.402	1.00	53.22
	ATOM	1762	C	LYS	A	529	-5.829	-8.768 -6.182	1.00	54.27
	ATOM	1762	0	LYS	A	529	-6.325	-9.069 -7.266	1.00	55.50
15										56.71
15	ATOM	1764	N	CYS	A	530	-6.472	-8.901 -5.027	1.00	
	MOTA	1765	CA	CYS	A	530	-7.833	-9.416 -4.961	1.00	58.35
	MOTA	1766	CB	CYS	A	530	-8.333	-9.380 -3.517	1.00	59.78
	MOTA	1767	SG	CYS	A	530	-7.289	-10.304 -2.358	1.00	63.19
	MOTA	1768	C	CYS	Α	530	-8.766	-8.609 -5.858	1.00	59.36
20	MOTA	1769	0	CYS	A	530	-9.644	-9.169 -6.514	1.00	59.52
	MOTA	1770	N	LYS	Α	531	-8.569	-7.293 -5.888	1.00	59.24
	ATOM	1771	CA	LYS	A	531	-9.390	-6.411 -6.713	1.00	60.14
	ATOM	1772	CB	LYS	Α	531	-9.158	-4.952 -6.317	1.00	58.92
	ATOM	1773	С	LYS	A	531	-9.073	-6.615 -8.195	1.00	61.48
25	ATOM	1774	0	LYS	Α	531	-9.618	-5.928 -9.061	1.00	61.74
	ATOM	1775	N	ASN	Α	532	-8.179	-7.561 -8.474	1.00	61.65
	ATOM	1776	CA	ASN	Α	532	-7.783	-7.890 -9.840	1.00	61.60
	ATOM	1777	СВ	AŞN	A	532	-8.966	-8.518-10.581	1.00	62.28
	MOTA	1778	CG	ASN	A	532	-8.750	-9.985-10.878	1.00	64.66
30	ATOM	1779	OD1	ASN	A	532	-8.344	-10.352-11.983	1.00	67.08
50	ATOM	1780	ND2	ASN	A	532	-9.016	-10.836 -9.891	1.00	62.68
			C		A	532	-7.247	-6.710-10.648	1.00	59.75
	MOTA	1781		ASN						
	MOTA	1782	0	ASN	A	532	-7.487	-6.615-11.850	1.00	57.50
25	ATOM	1783	N	VAL	A	533	-6.507	-5.822 -9.992	1.00	59.39
35	MOTA	1784	CA	VAL	A	533	-5.954	-4.656-10.669	1.00	58.22
	MOTA	1785	CB	VAL	Α	533	-6.223	-3.371 -9.865	1.00	59.20
	MOTA	1786	CG1	VAL	A	533	-6.181	-2.163-10.785	1.00	59.21
	MOTA	1787	CG2	VAL	A	533	-7.574	-3.467 -9.172	1.00	59.57
	MOTA	1788	C	VAL	A	533	-4.452	-4.767-10.907	1.00	57.86
40	MOTA	1789	0	VAL	A	533	-3.846	-3.874-11.499	1.00	60.56
	MOTA	1790	N	VAL	A	534	-3.852	-5.863-10.451	1.00	56.03
	MOTA	1791	CA	VAL	A	534	-2.417	-6.063-10.621	1.00	54.11
	MOTA	1792	CB	VAL	A	534	-1.767	-6.632 -9.341	1.00	54.02
	MOTA	1793	CG1	VAL	A	534	-0.300	-6.950 -9.601	1.00	52.37
45	MOTA	1794	CG2	VAL	A	534	-1.900	-5.635 -8.200	1.00	55.70
	MOTA	1795	С	VAL	Α	534	-2.089	-7.008-11.770	1.00	54.31
	MOTA	1796	0	VAL	Α	534	-2.519	-8.164-11.780	1.00	51.66
	MOTA	1797	N	PRO	Α	535	-1.315	-6.527-12.755	1.00	53.54
	MOTA	1798	CD	PRO	A	535	~0.749	-5.172-12.874	1.00	54.28
50	ATOM	1799	CA	PRO	A	535	-0.949	-7.373-13.893	1.00	53.24
	ATOM	1800	CB	PRO	A	535	0.011	-6.500-14.697	1.00	52.71
	ATOM	1801	CG	PRO	A	535	-0.353	-5.102-14.319	1.00	53.19
	MOTA	1802	C	PRO	A	535	-0.296	-8.664-13.411	1.00	54.25
<i>5 </i>	MOTA	1803	O N	PRO	A	535	0.121		1.00	54.56
55	MOTA	1804	N	LEU	A	536	-0.203	-9.645-14.299	1.00	53.63
	MOTA	1805	CA	LEU	A	536	0.382		1.00	53.11
	ATOM	1806	CB	LEU	A	536	-0.250		1.00	51.88
	ATOM	1807	CG	LEU	A	536	-0.686		1.00	51.83
_	MOTA	1808	CD1	LEU	A	536	-1.953	-12.917-13.173	1.00	49.51
60	MOTA	1809	CD2	LEU	Α	536	-0.905	-14.449-14.854	1.00	53.43
	MOTA	1810	C	LEU	A	536	1.895	-10.990-14.081	1.00	52.58

DCT	711500	/06899
PUL	ノレランソ	ハリのマン

WO	99/060014
----	-----------

5	ATOM	1868	CG	MET	Α	543		-11.797		1.00	40.59
	MOTA	1869	SD	MET	A	543		-12.223		1.00	45.64
	ATOM	1870	CE	MET	Α	543	12.014	-11.399	-5.151	1.00	42.61
	ATOM	1871	C	MET	Α	543	6.287	-12.064	-2.581	1.00	37.94
	MOTA	1872	0	MET	Α	543	6.413	-12.127	-1.358	1.00	39.20
10	ATOM	1873	N	LEU	A	544	5.218	-11.544	-3.175	1.00	39.44
	ATOM	1874	CA	LEU	Α	544	4.100	-11.013	-2.408	1.00	40.91
	MOTA	1875	CB	LEU	A	544		-10.344		1.00	39.88
	MOTA	1876	CG	LEU	A	544	1.775	-9.905		1.00	42.70
	ATOM	1877	CD1	LEU	A	544	2.060	-8.886		1.00	37.35
15	ATOM	1878	CD2	LEU	A	544	0.854	-9.317		1.00	38.47
15							3.420	•		1.00	42.83
	MOTA	1879	C	LEU	A	544					42.73
	MOTA	1880	0	LEU	A	544		-11.899		1.00	
	MOTA	1881	N	ASP	A	545		-13.313		1.00	46.32
	ATOM	1882	CA	ASP	A	545		-14.456		1.00	50.65
20	MOTA	1883	CB	ASP	Α	545		-15.617		1.00	53.67
	MOTA	1884	CG	ASP	· A	545	1.703	-15.278	-3.691	1.00	57.35
	MOTA	1885	OD1	ASP	Α	545	0.697	-14.568	-3.475	1.00	59.99
	MOTA	1886	OD2	ASP	Α	545	1.999	-15.718	-4.824	1.00	59.68
	ATOM	1887	С	ASP	A	545	3.559	-14.898	-0.327	1.00	50.74
25	ATOM	1888	0	ASP	A	545	3.004	-15.388	0.657	1.00	49.39
	ATOM	1889	N	ALA	A	546		-14.723	-0.401	1.00	51.82
	ATOM	1890	CA	ALA	A	546		-15.095	0.702	1.00	53.12
	ATOM	1891	CB	ALA	A	546		-14.678	0.395	1.00	53.19
		1892	G.	ALA	A	546		-14.424	1.987	1.00	54.67
30	MOTA						5.476		3.085	1.00	52.32
30	ATOM	1893	0	ALA	A	546					
	ATOM	1894	И	HIS	A	547	4.622		1.838	1.00	56.66
	MOTA	1895	CA	HIS	A	547		-12.520	2.978	1.00	59.19
	MOTA	1896	CB	HIS	A	547	4.144	-11.017	2.684	1.00	56.70
	MOTA	1897	CG	HIS	A	547		-10.394	2.896	1.00	54.64
35	MOTA	1898	CD2	HIS	A	547		-10.506	2.199	1.00	53.92
	MOTA	1899	ND1	HIS	Α	547	5.748	-9.514	3.925	1.00	52.17
	ATOM	1900	CE1	HIS	A	547	7.004	-9.111	3.853	1.00	52.16
	MOTA	1901	NE2	HIS	Α	547	7.570	-9.698	2.814	1.00	51.90
	MOTA	1902	C	HIS	A	547	2.668	-12.940	3.306	1.00	62.77
40	ATOM	1903	0	HIS	A	547	1.842	-12.120	3.707	1.00	63.24
	MOTA	1904	N	ARG	A	548	2.381	-14.224	3.133	1.00	68.37
	ATOM	1905	CA	ARG	A	548	1.053	-14.758	3.411	1.00	72.75
	ATOM	1906	CB	ARG	A	548	0.243	-14.864	2.113	1.00	73.73
	MOTA	1907		ARG	A	548		-14.243			
45	ATOM	1908	CD	ARG	A	548		-12.728	2.297	1.00	74.50
7.7				ARG	A	548		-12.167	2.863	1.00	75.04
	ATOM	1909	NE					-10.880		1.00	75.59
	ATOM	1910	CZ	ARG	A	548			3.149		
	ATOM	1911	NH1	ARG	A	548		-10.006	2.919	1.00	75.79
	MOTA	1912	NH2	ARG	A	548		-10.464	3.662	1.00	76.00
50	MOTA	1913	С	ARG	A	548		-16.133	4.061	1.00	74.94
	MOTA	1914	0	ARG	Α	548	0.197	-16.697	4.549	1.00	75.15
	MOTA	1915	N	LEU	A	549	2.398	-16.665	4.063	1.00	76.49
	MOTA	1916	CA	LEU	A	549	2.669	-17.969	4.653	1.00	78.14
	MOTA	1917	CB	LEU	A	549	2.971	-18.986	3.557	1.00	77.55
55	MOTA	1918	C	LEU	А	549	3.846	-17.870	5.619	1.00	79.13
	MOTA	1919	0	LEU	A	549		-17.317	5.215	1.00	80.40
	ATOM	1920	OXT	LEU	A	549		-18.341	6.769	1.00	79.46
	HETATM	1921	CP9	DES	A	600	5.390	-3.061		1.00	21.38
	HETATM	1922	CP8	DES	A	600	5.834			1.00	22.41
60	HETATM	1923	CP7	DES	A	600	5.038			1.00	21.32
00	HETATM	1923		DES	A	600	3.587			1.00	25.87
	1111 154111	エンムせ	CFU	والتورو	Ω	000	3.307	0.004		4.00	20.07

5	ATOM	1982	N	THR	В	311	20.339	15.662 32.326	1.00	34.04
_	ATOM	1983	CA	THR	В	311	21.564	14.888 32.127	1.00	32.34
	ATOM	1984	CB	THR	В	311	22.434	14.824 33.399	1.00	31.75
	ATOM	1985	OG1	THR	В	311	21.724	14.116 34.420	1.00	36.20
	MOTA	1986	CG2	THR	В	311	22.782	16.212 33.893	1.00	31.05
10	ATOM	1987	C	THR	В	311	21.145	13.460 31.790	1.00	32.37
10	ATOM	1988	0	THR	В	311	19.967	13.117 31.899	1.00	28.16
	ATOM	1989	N	ALA	В	312	22.106	12.628 31.396	1.00	33.23
	ATOM	1990	CA	ALA	В	312	21.811	11.237 31.053	1.00	35.63
	ATOM	1991	CB	ALA	В	312	23.077	10.527 30.577	1.00	34.00
15	ATOM	1992	C	ALA	В	312	21.210	10.489 32.240	1.00	34.29
13	ATOM	1993	0	ALA	В	312	20.226	9.766 32.089	1.00	33.10
	ATOM	1994	N	ASP	В	313	21.800	10.665 33.419	1.00	33.90
	ATOM	1995	CA	ASP	В	313	21.304	9.994 34.615	1.00	34.19
	ATOM	1996	CB	ASP	В	313	22.258	10.219 35.788	1.00	42.09
20	ATOM	1997	CG	ASP	В	313	23.494	9.358 35.700	1.00	44.87
20	ATOM	1998	OD1	ASP	В	313	24.586	9.858 36.040	1.00	51.57
	ATOM	1999	OD2	ASP	В	313	23.377	8.184 35.290	1.00	46.79
	ATOM	2000	C	ASP	В	313	19.925	10.520 34.971	1.00	31.99
	ATOM	2000	0	ASP	В	313	19.056	9.768 35.426	1.00	32.03
25	ATOM	2001	N	GLN	В	314	19.733	11.819 34.763	1.00	29.38
23	ATOM	2002	CA	GLN	В	314	18.458	12.457 35.046	1.00	29.73
	ATOM	2003	CB	GLN	В	314	18.562	13.966 34.832	1.00	32.88
	ATOM	2005	CG	GLN	В	314	18.970	14.732 36.085	1.00	36.47
	ATOM	2005	CD	GLN	В	314	19.213	16.208 35.815	1.00	36.76
30	ATOM	2007	OE1	GLN	В	314	19.300	16.634 34.664	1.00	38.79
50	ATOM	2008	NE2	GLN	В	314	19.327	16.995 36.880	1.00	39.72
	MOTA	2009	C	GLN	В	314	17.409	11.873 34.116	1.00	29.11
	ATOM	2010	Ö	GLN	В	314	16.274	11.620 34.522	1.00	28,82
	MOTA	2011	N	MET	В	315	17.801	11.657 32.864	1.00	27.27
35	ATOM	2012	CA	MET	В	315	16.900	11.079 31.872	1.00	30.41
20	ATOM	2013	CB	MET	В	315	17.595	11.029 30.509	1.00	30.10
	MOTA	2014	CG	MET	В	315	16.787	10.345 29.421	1.00	38.02
	ATOM	2015	SD	MET	В	315	15.252	11.220 29.065	1.00	41.12
	ATOM	2016	CE	MET	В	315	15.890	12.835 28.611	1.00	39.32
40	ATOM	2017	C	MET	В	315	16.490	9.665 32.311	1.00	27.99
	ATOM	2018	0	MET	В	315	15.302	9.351 32.396	1.00	26.60
	ATOM	2019	N	VAL	В	316	17.481	8.823 32.598	1.00	27.26
	ATOM	2020	CA	VAL	В	316	17.229	7.447 33.027	1.00	24.54
	ATOM	2021	CB	VAL	В	316	18.554	6.708 33.351	1.00	26.22
45	MOTA	2022	CG1	VAL	В	316	18.272	5.404 34.096	1.00	29.81
	ATOM	2023	CG2	VAL	В	316	19.302	6.410 32.074	1.00	29.75
	ATOM	2024	C	VAL	В	316	16.326	7.389 34.258	1.00	27.22
	ATOM	2025	0	VAL	В	316	15.397	6.579 34.318	1.00	25.55
	MOTA	2026	N	SER	В	317	16.601	8.243 35.242	1.00	24.40
50	ATOM	2027	CA	SER	В	317	15.799	8.268 36.460	1.00	27.63
	MOTA	2028	CB	SER	В	317	16.358	9.294 37.451	1.00	31.68
	MOTA	2029	OG	SER	В	317	17.492	8.771 38.112	1.00	39.97
	MOTA	2030	C	SER	В	317	14.346	8.600 36.154	1.00	26.73
	ATOM	2031	0	SER	В	317	13.434	7.932 36.648	1.00	25.65
55	ATOM	2032	N	ALA	В	318	14.135	9.634 35.342	1.00	24.19
	ATOM	2033	CA	ALA	В	318	12.786	10.049 34.969	1.00	24.17
	ATOM	2034	CB	ALA	В	318	12.850	11.250 34.022	1.00	21.44
	ATOM	2035	C	ALA	В	318	12.038	8.890 34.306	1.00	21.63
	MOTA	2036	0	ALA	В	318	10.902	8.598 34.648	1.00	20.25
60	ATOM	2037	N	LEU	В	319	12.695	8.225 33.364	1.00	23.37
	MOTA	2038	CA	LEU	В	319	12.098	7.102 32.652	1.00	25.42

5	ATOM	2096	0	ILE	В	326	0.632	-5.231 37.332	1.00	24.81
	MOTA	2097	N	LEU	В	327	-0.018	-5.104 35.188	1.00	19.44
	ATOM	2098	CA	LEU	В	327	-1.399	-5.437 35.493	1.00	17.03
	ATOM	2099	CB	LEU	В	327	-2.336	-4.747 34.493	1.00	18.39
	ATOM	2100	CG	LEU	В	327	-2.201	-3.216 34.373	1.00	20.69
10	ATOM	2101	CD1	LEU	В	327	-3.245	-2.679 33.406	1.00	14.87
	ATOM	2102	CD2	LEU	В	327	-2.384	-2.570 35.742	1.00	14.39
	ATOM	2103	C	LEU	В	327	-1.662	-6.928 35.499	1.00	19.87
	ATOM	2104	0	LEU	В	327	-0.854	-7.722 35.014	1.00	20.90
	ATOM	2105	Ŋ	TYR	B	328	-2.803	-7.300 36.066	1.00	20.92
15	MOTA	2106	CA	TYR	В	328	-3.202	-8.692 36.135	1.00	21.79
1.5	ATOM	2107	CB	TYR	В	328	-3.658	-9.050 37.550	1.00	22.91
	ATOM	2107	CG	TYR	В	328	-2.515	-9.376 38.468	1.00	24.60
	ATOM	2108	CD1	TYR	В	328	-2.118	-10.696 38.677	1.00	25.93
20	MOTA	2110	CE1	TYR	В	328	-1.034	-11.000 39.498	1.00	28.10
20	MOTA	2111	CD2	TYR	В	328	-1.802	-8.362 39.103	1.00	29.46
	MOTA	2112	CE2	TYR	В	328	-0.716	-8.654 39.926	1.00	35.30
	MOTA	2113	CZ	TYR	В	328	-0.338	-9.973 40.117	1.00	32.59
	ATOM	2114	OH	TYR	В	328	0.739	-10.257 40.923	1.00	37.24
25	ATOM	2115	C	TYR	В	328	-4.336	-8.944 35.168	1.00	22.25
25	MOTA	2116	0	TYR	В	328	-5.115	-8.039 34.849	1.00	19.77
	ATOM	2117	N	SER	В	329	-4.420	-10.180 34.698	1.00	25.81
	ATOM	2118	CA	SER	В	329	-5.480	-10.571 33.787	1.00	29.39
	ATOM	2119	CB	SER	В	329	-5.002	-11.710 32.887	1.00	27.65
20	ATOM	2120	OG ~	SER	В	329	-6.091	-12.329 32.233	1.00	28.98
30	MOTA	2121	C	SER	В	329	-6.625	-11.042 34.673	1.00	33.17
	ATOM	2122	0	SER	В	329	-6.453	-11.157 35.888	1.00	32.52
	ATOM	2123	N	GLU	В	330	-7.792	-11.289 34.084	1.00	38.75
	ATOM	2124	CA	GLU	В	330	-8.930	-11.776 34.859	1.00	44.91
2.5	ATOM	2125	CB	GLU	В	330	-10.134	-11.999 33.951	1.00	45.63
35	ATOM	2126	C	GLU	В	330	-8.493	-13.093 35.491	1.00	48.62
	MOTA	2127	0	GLU	В	330	-7.739	-13.851 34.882	1.00	52.37
	MOTA	2128	N	TYR	В	331	-8.952	-13.366 36.707	1.00	51.75
	MOTA	2129	CA	TYR	В	331	-8.575	-14.596 37.396	1.00	55.25
10	MOTA	2130	CB	TYR	В	331	-8.538	-14.365 38.911	1.00	53.04
40	MOTA	2131	CG	TYR	В	331	-9.769	-13.668 39.440	1.00	50.70
	MOTA	2132	CD1	TYR	В	331	-10.880	-14.400 39.856	1.00	47.09
	MOTA	2133	CE1	TYR	В	331	~12.035	-13.762 40.292	1.00	46.43
	ATOM	2134	CD2	TYR	В	331	-9.842		1.00	47.52
4.5	MOTA	2135	CE2	TYR	В	331		-11.625 39.913	1.00	43.98
45	ATOM	2136	CZ	TYR	В	331		-12.376 40.314	1.00	44.33
	MOTA	2137	OH	TYR	В	331	-13.239		1.00	45.31
	ATOM	2138	C	TYR	В	331	-9.528		1.00	60.11
	ATOM	2139	0	TYR	В	331	-10.748		1.00	63.13
	ATOM	2140	N	ASP	В	332	-8.952		1.00	61.60
50	ATOM	2141	CA	ASP	В	332		-18.124 36.490	1.00	63.58
	MOTA	2142	CB	ASP	В	332	-10.637	-17.895 35.298	1.00	65.11
	ATOM	2143	CG	ASP	В	332	-11.723	-18.953 35.200	1.00	65.32
	MOTA	2144	OD1	ASP	В	332	-11.420	-20.136 35.463	1.00	63.69
	ATOM	2145	OD2	ASP	В	332	-12.876	-18.602 34.866	1.00	63.61
55	ATOM	2146	С	ASP	В	332	-8.707	-19.227 36.153	1.00	62.86
	ATOM	2147	0	ASP	В	332	-7.853	-19.056 35.287	1.00	62.26
	MOTA	2148	N	PRO	В	333	-8.811	-20.379 36.833	1.00	63.96
	MOTA	2149	CD	PRO	В	333	-9.808	-20.690 37.875	1.00	64.24
	ATOM	2150	CA	PRO	В	333	-7.901	-21.503 36.596	1.00	64.24
60	ATOM	2151	CB	PRO	В	333	-8.015		1.00	64.70
	MOTA	2152	CG	PRO	В	333	-9.410	-22.071 38.347	1.00	65.00

5	MOTA	2210	0	SER	В	341	-10.171	-14.824 26.651	1.00	21.56
	MOTA	2211	N	MET	В	342	-9.631	-16.368 25.114	1.00	26.83
	MOTA	2212	CA	MET	В	342	-8.271	-15.865 24.954	1.00	27.24
	MOTA	2213	CB	MET	В	342	-7.477	-16.758 24.001	1.00	30.45
	MOTA	2214	CG	MET	В	342	-6.038	-16.300 23.802	1.00	35.35
10	MOTA	2215	SD	MET	В	342	-4.866	-17.667 23.777	1.00	44.57
	ATOM	2216	CE	MET	В	342	-4.034	-17.341 22.244	1.00	41.37
	ATOM	2217	C	MET	В	342	-8.322	-14.448 24.385	1.00	25.31
	MOTA	2218	0	MET	В	342	-7.653	-13.541 24.874	1.00	26.67
	MOTA	2219	N	MET	В	343	-9.114	-14.278 23.345	1.00	25.75
15	ATOM	2220	CA	MET	В	343	-9.262	-12.979 22.712	1.00	25.47
	MOTA	2221	CB	MET	В	343	-10.210	-13.088 21.528	1.00	23.51
	ATOM	2222	CG	MET	В	343	-9.540	-13.618 20.273	1.00	28.86
	MOTA	2223	SD	MET	В	343	-8.325	-12.456 19.609	1.00	29.25
	ATOM	2224	CE	MET	В	343	-9.344	-11.015 19.371	1.00	28.74
20	ATOM	2225	C	MET	В	343	-9.798	-11.966 23.712	1.00	25.37
	MOTA	2226	Ō	MET	В	343	-9.360	-10.810 23.728	1.00	24.98
	ATOM	2227	N	GLY	В	344	-10.739	-12.403 24.536	1.00	23.91
	MOTA	2228	CA	GLY	В	344	-11.320	-11.526 25.536	1.00	22.43
	ATOM	2229	C	GLY	В	344	-10.313	-11.103 26.592	1.00	22.06
25	ATOM	2229	0	GLY	В	344	-10.262	-9.934 26.982	1.00	20.87
23	ATOM	2231	N	LEU	В	345	-9.511	-12.048 27.063	1.00	19.36
		2231	CA	LEU	В	345	-8.520	-11.748 28.083	1.00	25.74
	MOTA MOTA		CB	LEU	В	345	-7.886	-13.040 28.600	1.00	26.78
		2233			В		-8.794	-14.010 29.362	1.00	30.04
30	MOTA	2234	CG	LEU		345 345	-8.794	-15.357 29.488	1.00	28.39
30	ATOM	2235	CD1	LEU	В	345 345	-8.099	-13.337 29.488	1.00	29.93
	ATOM	2236	CD2	LEU	В					
	ATOM	2237	C	LEU	В	345	-7.425	-10.822 27.550 -9.865 28.212	1.00	23.24
	ATOM	2238	0	LEU	B	345	-7.037		1.00	23.43
25	ATOM	2239	N	LEU	В	346	~6.937	-11.108 26.350	1.00	21.92
35	ATOM	2240	CA	LEU	В	346	-5.874	-10.303 25.763	1.00	22.71
	MOTA	2241	CB	LEU	В	346	-5.343	-10.962 24.486	1.00	23.17
	ATOM	2242	CG	LEU	В	346	-4.684	-12.331 24.668	1.00	20.66
	ATOM	2243	CD1	LEU	В	346	-4.303	-12.916 23.309	1.00	18.75
40	MOTA	2244	CD2	LEU	В	346	-3.464	-12.188 25.553	1.00	20.84
40	MOTA	2245	C	LEU	В	346	-6.304	-8.873 25.458	1.00	22.99
	MOTA	2246	0	LEU	В	346	-5.540	-7.935 25.695	1.00	22.07
	MOTA	2247	N	THR	В	347	-7.516	-8.699 24.937	1.00	20.53
	ATOM	2248	CA	THR	В	347	-7.987	-7.357 24.608	1.00	21.89
	ATOM	2249	CB	THR	В	347	-9.152	-7.388 23.601	1.00	21.65
45	MOTA	2250	OG1	THR	В	347	-10.218	-8.190 24.123	1.00	19.65
	ATOM	2251	CG2	THR	В	347	-8.676	-7.955 22.262	1.00	22.01
	MOTA	2252	C	THR	В	347	-8.426	-6.590 25.853	1.00	23.60
	MOTA	2253	0	THR	В	347	-8.358	-5.357 25.883	1.00	20.31
	ATOM	2254	N	ASN	В	348	-8.884	-7.314 26.874	1.00	22.27
50	MOTA	2255	CA	ASN	В	348	-9.293	-6.667 28.114	1.00	23.99
	ATOM	2256	CB	ASN	В	348	-10.008	-7.642 29.056	1.00	22.32
	ATOM	2257	CG	ASN	В	348	-10.342	-7.022 30.398	1.00	28.26
	MOTA	2258	OD1	ASN	В	348	-9.478	-Ġ.746 31.216	1.00	27.14
	ATOM	2259	ND2	ASN	В	348	-11.647	-6.764 30.625	1.00	27.02
55	ATOM	2260	С	ASN	В	348	-8.035	-6.120 28.798	1.00	19.48
	MOTA	2261	0	ASN	В	348	-8.014	-4.991 29.271	1.00	18.26
	ATOM	2262	N	LEU	В	349	-6.984	-6.931 28.832	1.00	19.07
	ATOM	2263	CA	LEU	В	349	-5.724	-6.516 29.446	1.00	20.37
	ATOM	2264	CB	LEU	В	349	-4.716	-7.674 29.434	1.00	18.21
60	ATOM	2265	CG	LEU	В	349	-3.297	-7.316 29.889	1.00	18.24
	ATOM	2266	CD1	LEU	В	349	-3.323	-6.904 31.356	1.00	12.44
				-						

5	MOTA	2324	CEl	HIS	В	356	-2.802	1.860 36.145	1.00	18.84
	MOTA	2325	NE2	HIS	В	356	-3.598	1.088 35.426	1.00	17.92
	MOTA	2326	C	HIS	В	356	-0.479	3.861 31.184	1.00	19.67
	MOTA	2327	0	HIS	В	356	0.424	4.614 31.547	1.00	19.61
	MOTA	2328	N	MET	В	357	-0.566	3.413 29.931	1.00	14.92
10	MOTA	2329	CA	MET	В	357	0.428	3.830 28.939	1.00	15.13
	ATOM	2330	CB	MET	В	357	0.239	3.099 27.604	1.00	13.94
	MOTA	2331	CG	MET	В	357	1.149	3.631 26.476	1.00	14.71
	MOTA	2332	SD	MET	В	357	0.747	3.014 24.826	1.00	17.75
	MOTA	2333	CE	MET	В	357	0.746	1.222 25.122	1.00	15.21
15	MOTA	2334	С	MET	В	357	0.316	5.334 28.699	1.00	14.94
	MOTA	2335	0	MET	В	357	1.319	6.031 28.560	1.00	17.02
	MOTA	2336	N	ILE	В	358	-0.909	5.839 28.659	1.00	18.01
	MOTA	2337	CA	ILE	В	358	-1.122	7.263 28.423	1.00	19.77
	MOTA	2338	CB	ILE	В	358	-2.634	7.577 28.287	1.00	23.11
20	MOTA	2339	CG2	ILE	В	358	-2.879	9.080 28.450	1.00	25.00
	ATOM	2340	CG1	ILE	В	358	-3.137	7.105 26.913	1.00	24.19
	MOTA	2341	CD1	ILE	B	358	-4.600	6.653 26.890	1.00	20.17
	MOTA	2342	C	ILE	В	358	-0.501	8.100 29.550	1.00	22.93
	MOTA	2343	0	ILE	В	358	0.080	9.153 29.299	1.00	23.33
25	ATOM	2344	N	ASN	В	359	-0.619	7.631 30.790	1.00	22.34
	MOTA	2345	CA	ASN	В	359	-0.029	8.341 31.924	1.00	23.24
	ATOM	2346	CB	ASN	В	359	-0.480	7.726 33.224	1.00	25.10
	MOTA	2347	CG	ASN	В	359	-1.831	8.171 33.649	1.00	32.65
	MOTA	2348	OD1	ASN	В	359	-2.421	9.069 33.042	1.00	32.98
30	MOTA	2349	ND2	ASN	В	359	-2.364	7.549 34 <i>.</i> 691	1.00	33.87
	ATOM	2350	C	ASN	В	359	1.473	8.306 31.837	1.00	24.77
	MOTA	2351	0	ASN	В	359	2.152	9.285 32.149	1.00	24.19
	ATOM	2352	N	TRP	В	360	1.995	7.149 31.438	1.00	20.82
	MOTA	2353	CA	TRP	В	360	3.439	6.965 31.310	1.00	19.29
35	MOTA	2354	CB	TRP	В	360	3.754	5.524 30.878	1.00	18.59
	MOTA	2355	CG	TRP	В	360	5.085	5.363 30.176	1.00	18.21
	ATOM	2356	CD2	TRP	В	360	5.310	5.308 28.756	1.00	14.38
	ATOM	2357	CE2	TRP	В	360	6.698	5.129 28.561	1.00	13.42
4.0	ATOM	2358	CE3	TRP	В	360	4.475	5.392 27.633	1.00	15.52
40	MOTA	2359	CD1	TRP	В	360	6.306	5.221 30.762	1.00	13.34
	MOTA	2360	NE1	TRP	В	360	7.283	5.078 29.800	1.00	16.05
	MOTA	2361	CZ2	TRP	В	360	7.272	5.032 27.288	1.00	16.84
	ATOM	2362		TRP	В	360	5.045	5.296 26.363		
45	ATOM		CH2	TRP	В	360	6.431	5.115 26.202	1.00	16.12
45	MOTA	2364	C	TRP	В	360	3.979	7.939 30.273	1.00	20.13
	MOTA	2365		TRP	В	360	4.991	8.606 30.497	1.00	17.26
	ATOM	2366	N	ALA	В	361	3.295	8.012 29.135	1.00	19.34
	ATOM	2367		ALA	В	361	3.708	8.900 28.051	1.00	22.01
50	ATOM	2368	CB	ALA	В	361	2.682	8.855 26.921	1.00	19.53
50	ATOM	2369	C	ALA	В	361	3.883	10.336 28.552	1.00	22.39
	ATOM	2370	0	ALA	В	361	4.858	11.005 28.210	1.00	19.57
	ATOM	2371		LYS	В	362	2.932	10.794 29.361	1.00	21.96
	MOTA	2372	CA	LYS	В	362	2.966	12.139 29.923	1.00	26.45
55	ATOM	2373	CB	LYS	В	362	1.741	12.363 30.811	1.00	29.79
55	MOTA	2374	CG	LYS	В	362	0.426	12.417 30.064	1.00	33.57
	MOTA	2375	CD	LYS	В	362	-0.563	13.304 30.805	1.00	
	MOTA	2376	CE	LYS	В	362	-1.620	12.490 31.512	1.00	36.89
	MOTA	2377		LYS	В	362	-2.873	13.276 31.664	1.00	39.07
60	MOTA	2378	C	LYS	В	362	4.223	12.379 30.757	1.00	27.77
UU	MOTA MOTA	2379		LYS	В	362	4.661 4.805	13.517 30.922	1.00	
	MION	2380	IA	ARG	В	363	4.005	11.302 31.278	1.00	26.61

_	7. TL C N A	2470	CC	וזכיו ד	В	370	5.522	16.733 21.688	1.00	28.07
5	ATOM ATOM	2438 2439	CG CD1	LEU LEU	В	370	5.353	15.242 21.400	1.00	30.38
	ATOM	2439	CD1	LEU	В	370 370	6.316	17.396 20.574	1.00	22.82
		2440	CD2	LEU	В	370	2.628	19.218 22.521	1.00	28.04
	MOTA				В				1.00	29.71
10	MOTA	2442	0	LEU		370	2.066	19.151 23.611	1.00	28.71
10	ATOM	2443	N	THR	В	371	2.011	19.645 21.425		
	MOTA	2444	CA	THR	В	371	0.602	20.014 21.474	1.00	30.31
	ATOM	2445	CB	THR	В	371	0.150	20.690 20.163 19.763 19.080	1.00	31.96
	ATOM	2446	OG1	THR	В	371	0.284		1.00	29.49
1.5	MOTA	2447	CG2	THR	В	371	0.991	21.930 19.878	1.00	29.98
15	ATOM	2448	.C	THR	В	371	-0.208	18.726 21.666	1.00	30.59
	MOTA	2449	0 .	THR	В	371	0.300	17.624 21.431	1.00	27.10
	ATOM	2450	N ~~	LEU	В	372	-1.461	18.863 22.087	1.00	27.65
	ATOM	2451	CA	LEU	В	372	-2.323	17.702 22.303	1.00	30.86
20	MOTA	2452	CB	LEU	В	372	-3.722	18.147 22.737	1.00	30.11
20	MOTA	2453	CG	LEU	В	372	-4.715	17.006 22.960	1.00	32.80
	MOTA	2454	CD1	LEU	В	372	-4.231	16.147 24.126	1.00	34.10
	ATOM	2455	CD2	LEU	В	372	-6.105	17.562 23.246	1.00	31.16
	MOTA	2456	С	LEU	В	372	-2.437	16.863 21.034	1.00	31.77
25	MOTA	2457	0	LEU	В	372	-2.417	15.629 21.078	1.00	27.06
25	ATOM	2458	Ŋ	HIS	В	373	-2.564	17.548 19.905	1.00	31.30
	MOTA	2459	CA	HIS	В	373	-2.685	16.888 18.614	1.00	31.35
	ATOM	2460	CB	HIS	В	373	-2.844	17.935 17.503	1.00	34.30
	ATOM	2461	CG	HIS	В	373	-2.503	17.430 16.132	1.00	41.27
20	ATOM	2462	CD2	HIS	В	373	-3.293	17.105 15.079	1.00	42.50
30	ATOM	2463	ND1	HIS	В	373	-1.205	17.220 15.715	1.00	43.69
	ATOM	2464	CE1	HIS	В	373	-1.210	16.787 14.465	1.00	48.87
	MOTA	2465	NE2	HIS	В	373	-2.465	16.708 14.056	1.00	43.72
	ATOM	2466	C	HIS	В	373	-1.468	16.012 18.337	1.00	28.29
25	ATOM	2467	0	HIS	В	373	-1.610	14.878 17.897	1.00	30.21
35	ATOM	2468	N	ASP	В	374	-0.275	16.541 18.589	1.00	28.85
	MOTA	2469	CA	ASP	В	374	0.950	15.783 18.350	1.00	28.28
	MOTA	2470	CB	ASP	B	374	2.178	16.678 18.535	1.00	31.33 39.07
	ATOM ATOM	2471	CG OD1	ASP ASP	B B	374 374	2.433	17.577 17.333 18.557 17.478	1.00	40.60
40		2472 2473	OD1	ASP	В	374	3.195 1.874	17.305 16.246	1.00	38.64
40	MOTA	2473	C	ASP	В	374	1.029	14.592 19.303	1.00	29.05
	ATOM ATOM	2474	0	ASP	В	374	1.432	13.494 18.908	1.00	24.26
	ATOM	2475	N	GLN	В	375	0.642	14.814 20.556	1.00	24.52
	ATOM	2477	CA	GLN	В	375	0.667	13.749 21.547	1.00	27.37
45	ATOM	2477	CB	GLN	В	375	0.213	14.270 22.901	1.00	26.66
73	MOTA	2479	CG	GLN	В	375	1.164	15.236 23.563	1.00	29.74
	ATOM	2479	CD	GLN	В	375	0.623	15.691 24.890	1.00	33.13
	ATOM	2480	OE1	GLN	В	375	-0.044	14.953 25.602	1.00	32.82
	ATOM	2481	NE2	GLN	В	375	0.895	16.953 25.236	1.00	33.98
50	ATOM	2483	C	GLN	В	375	-0.259	12.630 21.104	1.00	24.52
50	ATOM	2484	0	GLN	В	375	0.074	11.451 21.221	1.00	23.56
			N	VAL	В	376	-1.426	13.013 20.599	1.00	21.87
	ATOM	2485							1.00	23.44
	ATOM	2486	CA	VAL.	B B	376 376	~2.409 ~3.718	12.055 20.140 12.760 19.717	1.00	22.09
55	ATOM	2487	CB CG1	VAL	В	376 376	-3.718 -4.572		1.00	24.14
در	ATOM	2488	CG1	VAL		376 376	-4.572 -4.486	11.823 18.877	1.00	16.96
	ATOM	2489	CG2	VAL	В	376 376	-4.486	13.192 20.954	1.00	24.15
	ATOM	2490	C	VAL VAL	B B	376	-1.852	11.257 18.965 10.032 18.938	1.00	22.26
	MOTA	2491	M O	HIS	В	377	-1.949 -1.251	11.953 18.007	1.00	25.85
60	MOTA	2492	N CA		В	377	-1.251 -0.689	11.284 16.843	1.00	25.68
00	ATOM	2493 2494	CB	HIS HIS	В	377	~0.689	12.306 15.886	1.00	25.27
	ATOM	2474	CD	HTO	ı	311	~0.078	14.300 13.000	1.00	49.41

5	ATOM	2552	NE1	TRP	В	383	-3.051	1.439 18.250	1.00	23.67
	ATOM	2553	CZ2	\mathtt{TRP}	В	383	-3.963	-0.853 18.733	1.00	21.55
	MOTA	2554	CZ3	TRP	В	383	-3.243	-1.702 20.888	1.00	20.29
	MOTA	2555	CH2	TRP	В	383	-3.960	-1.844 19.686	1.00	19.03
	ATOM	2556	C	TRP	В	383	0.701	0.579 21.020	1.00	17.35
10	MOTA	2557	0	TRP	В	383	0.982	0.010 22.077	1.00	13.92
	ATOM	2558	N	LEU	В	384	0.568	-0.087 19.879	1.00	14.07
	ATOM	2559	CA	LEU	В	384	0.773	-1.532 19.903	1.00	15.98
	MOTA	2560	CB	LEU	В	384	0.181	-2.200 18.656	1.00	12.19
	ATOM	2561	CG	LEU	В	384	0.173	-3.735 18.720	1.00	12.97
15	ATOM	2562	CD1	LEU	В	384	-0.352	-4.240 20.089	1.00	10.65
10	MOTA	2563	CD2	LEU	В	384	-0.707	-4.259 17.586	1.00	17.84
	ATOM	2564	C	LEU	В	384	2.262	-1.861 20.034	1.00	14.64
	ATOM	2565	0	LEU	В	384	2.627	-2.833 20.690	1.00	13.78
	ATOM	2566	И	GLU	В	385	3.116	-1.046 19.414	1.00	14.96
20	ATOM	2567	CA	GLU	В	385	4.565	-1.260 19.509	1.00	13.79
20			CB	GLU	В	385	5.336	-0.179 18.739	1.00	15.75
	ATOM	2568	CG	GLU	В	385	5.297	-0.312 17.207	1.00	15.34
	ATOM	2569 2570	CD	GLU	В	385	6.162	0.738 16.520	1.00	23.97
	ATOM		OE1	GLU	В	. 385	7.381	0.500 16.358	1.00	21.03
25	MOTA MOTA	2571 2572	OE1	GLU	В	385	5.622	1.808 16.149	1.00	22.19
دے		2573	C	GLU	В	385	4.963	-1.161 20.987	1.00	15.79
	MOTA MOTA	2573	0	GLU	В	385	5.788	-1.942 21.463	1.00	15.04
	MOTA	2575	N	ILE	В	386	4.389	-0.213 21.690	1.00	13.32
	ATOM	2576	CA	ILE	В	386	4.723	-0.019 23.108	1.00	14.06
30	ATOM	2577	CB	ILE	В	386	4.173	1.326 23.614	1.00	15.36
50	ATOM	2578	CG2	ILE	В	386	4.374	1.451 25.130	1.00	15.97
	ATOM	2579	CG2	ILE	B	386	4.910	2.476 22.907	1.00	17.95
	ATOM	2579	CD1	ILE	В	386	4.118	3.768 22.874	1.00	21.12
	ATOM	2580	CDI	ILE	В	386	4.227	-1.164 23.993	1.00	14.97
35	ATOM	2582	0	ILE	В	386	4.905	-1.560 24.941	1.00	19.60
))	ATOM	2583	N	LEU	В	387	3.038	-1.675 23.709	1.00	15.18
	ATOM	2584	CA	LEU	B	387	2.516	-2.791 24.478	1.00	15.98
	ATOM	2585	CB	TEA	В	387	1.070	-3.097 24.470	1.00	17.15
	ATOM	2586	CG	LEU	В	387	-0.031	-2.113 24.486	1.00	19.65
40	ATOM	2587	CD1	LEU	В	387	-1.371	-2.628 23.972	1.00	17.77
40	ATOM	2588	CD2	LEU	В	387	-0.075	-1.966 26.002	1.00	15.38
	ATOM	2589	CDZ	LEU	В	387	3.391	-4.013 24.180	1.00	14.69
	ATOM	2590	0	LEU	В	387	3.712	-4.792 25.076	1.00	14.03
	ATOM	2591	N	MET	В	388	3.785	-4.178 22.921	1.00	16.43
45	MOTA	2592	CA	MET	В	388	4.602	-5.329 22.547	1.00	16.67
73	MOTA	2593	CB	MET	В	388	4.673	-5.460 21.026	1.00	14.83
	ATOM	2594	CG	MET	В	388	3.403	-6.066 20.453	1.00	13.91
	MOTA	2595	SD	MET	В	388	3.364	-6.193 18.675	1.00	17.23
	MOTA	2596	CE	MET	В	388	1.906	-7.225 18.511	1.00	14.97
50		2597	CE	MET	В	388	6.004	-5.332 23.133	1.00	20.19
50	ATOM ATOM	2597 2598		MET	В	388	6.460	-6.366 23.636	1.00	21.50
		2599	И О	ILE	В	389	6.707	-4.203 23.074		15.34
	ATOM									
	ATOM	2600	CA	ILE	В	389 389	8.044 8.836	-4.209 23.634 -2.911 23.322	1.00 1.00	15.59 14.95
55	ATOM	2601	CB		В					
JJ	ATOM	2602	CG2	ILE	В	389	8.330	-1.746 24.158	1.00	12.81
	ATOM	2603	CG1	ILE	В	389	10.325	-3.164 23.602	1.00	17.24
	ATOM	2604	CD1	ILE	В	389	11.228	-1.972 23.357	1.00	15.65
	ATOM	2605	C	ILE	В	389	7.950	-4.446 25.147	1.00	14.30
60	ATOM	2606	0	ILE	В	389	8.844	-5.044 25.739	1.00	18.72
υu	ATOM	2607	N	GLY	В	390	6.855	-4.007 25.761	1.00	13.99
	MOTA	2608	CA	GLY	В	390	6.681	-4.219 27.189	1.00	14.87

_								THE MARKET NAME OF STREET		
5	ATOM	2666	CA	GLU	В	397	12.604	11.206 32.492		
	ATOM	2667	CB	GLU	В	397	12.153	-13.605 33.821	1.00	44.38
	MOTA	2668	CG	GLU	В	397	12.983	-12.422 34.271	1.00	54.05
	MOTA	2669	CD	GLU	В	397	13.483	-12.587 35.686	1.00	56.78
	ATOM	2670	OE1	GLU	В	397	13.380	-11.621 36.470	1.00	60.90
10	ATOM	2671	OE2	GLU	В	397	13.975	-13.688 36.013	1.00	60.82
	MOTA	2672	С	GLU	В	397	11.878	-15.528 32.273	1.00	36.65
	ATOM	2673	0	GLU	В	397	12.021	-16.459 33.061	1.00	35.84
	ATOM	2674	N	HIS	В	398		-15.609 31.202	1.00	32.14
	ATOM	2675	CA	HIS	В	398		-16.823 30.914	1.00	29.48
15	ATOM	2676	CB	HIS	B	398	8.863	-16.567 31.178	1.00	29.87
13	ATOM	2677	CG	HIS	В	398	8.582	-16.111 32.574	1.00	31.80
	ATOM	2678	CD2	HIS	В	398	8.215	-16.801 33.678	1.00	29.12
	ATOM	2679	ND1	HIS	В	398	8.727	-14.799 32.972	1.00	33.27
						398	8.462		1.00	32.19
20	ATOM	2680	CE1	HIS	В			-14.701 34.262		
20	MOTA	2681	NE2	HIS	В	398	8.148	-15.902 34.714	1.00	33.48
	ATOM	2682	C	HIS	В	398		-17.317 29.492	1.00	25.95
	MOTA	2683	0	HIS	В	398		-17.291 28.672	1.00	27.47
	MOTA	2684	N	PRO	В	399	11.771	-17.801 29.186	1.00	29.09
0.5	ATOM	2685	CD	PRO	В	399	12.926	-17.922 30.096	1.00	29.93
25	ATOM	2686	CA	PRO	В	399	12.079	-18.300 27.845	1.00	27.40
	MOTA	2687	CB	PRO	В	399	13.434	-18.988 28.016	1.00	32.09
	ATOM	2688	CG	PRO	В	399	14.062	-18.284 29.170	1.00	30.81
	ATOM	2689	С	PRO	В	399	11.009	-19.246 27.319	1.00	29.76
	ATOM	2690	0	PRO	В	399		-20.137 28.035	1.00	29.18
30	MOTA	2691	N	GLY	В	400	10.601	-19.035 26.071	1.00	27.45
	ATOM	2692	CA	GLY	В	400	9.588	-19.884 25.466	1.00	26.93
	MOTA	2693	С	GLY	В	400	8.161	-19.537 25.849	1.00	26.73
	ATOM	2694	0	\mathtt{GLY}	В	400	7.220	-20.153 25.356	1.00	28.36
	ATOM	2695	N	LYS	В	401	7.996	-18.554 26.727	1.00	25.50
35	ATOM	2696	CA	LYS	В	401	6.668	-18.139 27.165	1.00	23.45
	ATOM	2697	CB	LYS	В	401	6.435	-18.563 28.619	1.00	28.50
	MOTA	2698	CG	LYS	В	401		-20.069 28.879	1.00	28.58
	MOTA	2699	CD	LYS	В	401	6.181	-20.353 30.349	1.00	35.47
	MOTA	2700	CE	LYS	В	401	6.073	-21.847 30.635	1.00	38.59
40	ATOM	2701	NZ	LYS	В	401	7.177	-22.611 29.989	1.00	42.39
	ATOM	2702	C	LYS	В	401	6.493	-16.622 27.060	1.00	21.78
	MOTA	2703	0	LYS	В	401	7.465	-15.872 27.035	1.00	21.45
	MOTA	2704	N	$\mathtt{FE}\mathtt{D}$	В	402	5.241	-16.181 26.995	1.00	23.45
	MOTA	2705	CA	LEU	В	402		-14.759 26.925	1.00	21.37
45	MOTA	2706	CB	LEU	В	402	4.088	-14.449 25.689	1.00	18.47
	MOTA	2707	CG	LEU	В	402	4.798	-14.673 24.360	1.00	16.89
	ATOM	2708	CD1	LEU	В	402	3.821	-14.395 23.211	1.00	21.23
	MOTA	2709	CD2	LEU	В	402	6.011	-13.760 24.277	1.00	23.15
	ATOM	2710	C	LEU	В	402	4.147	-14.399 28.179	1.00	19.66
50	MOTA	2711	0	LEU	В	402	3.024	-14.880 28.381	1.00	18.05
	MOTA	2712	N	LEU	В	403	4.743	-13.559 29.019	1.00	19.54
	ATOM	2713	CA	LEU	В	403	4.099	-13.148 30.259	1.00	20.21
	ATOM	2714	CB	LEU	В	403	5.155	-12.856 31.332	1.00	23.16
	MOTA	2715	CG	LEU	В	403	4.639	-12.682 32.766	1.00	29.54
55	MOTA	2716	CD1	LEU	В	403	5.519	-13.450 33.728	1.00	32.67
	MOTA	2717	CD2	LEU	В	403	4.626	-11.213 33.138	1.00	32.38
	ATOM	2718	C	LEU	В	403		-11.918 30.043	1.00	20.42
	ATOM	2719	0	LEU	В	403		-10.787 30.291	1.00	19.18
	ATOM	2720	N	PHE	В	404		-12.145 29.565	1.00	21.44
60	MOTA	2721	CA	PHE	В	404		-11.053 29.340	1.00	21.69
	ATOM	2722	CB	PHE	В	404	-0.199	-11.598 28.687	1.00	17.26

5	ATOM	2780	OD2	ASP	В	411	2 254	-23.603 26.786	1.00	50.54
3	ATOM	2781	C	ASP	В	411	2.745	-20.551 23.909	1.00	38.57
	ATOM	2782	0	ASP	В	411	1.549	-20.341 23.686	1.00	36.48
	ATOM	2783	N	ARG	В	412	3.635	-20.777 22.949	1.00	36.85
	MOTA	2784	CA	ARG	В	412	3.259	-20.763 21.541	1.00	38.32
10	ATOM	2785	CB	ARG	В	412	4.488	-21.083 20.675	1.00	38.69
10	ATOM	2786	CG	ARG	В	412	4.361	-22.314 19.799	1.00	40.05
	ATOM	2787	CD	ARG	В	412		-22.552 19.012	1.00	42.98
	ATOM	2788	NE	ARG	В	412	5.540	-22.099 17.626	1.00	40.95
	ATOM	2789	CZ	ARG	В	412	4.649	-22.559 16.753	1.00	41.11
15	ATOM	2790	NH1	ARG	В	412	3.777	-23.490 17.115	1.00	44.01
13			NH2	ARG	В	412	4.632	-22.091 15.515	1.00	41.28
	ATOM	2791 2792	Nn2 C	ARG	В	412	2.107	-21.712 21.217	1.00	37.64
	ATOM		0			412	1.287	-21.427 20.343	1.00	36.51
	ATOM	2793		ARG	В			-22.834 21.923	1.00	35.32
20	ATOM	2794	N	ASN	В	413	2.041			
20	ATOM	2795	CA	ASN	В	413	0.974	-23.798 21.688 -25.035 22.570	1.00	36.68 37.54
	ATOM	2796	CB	ASN	В	413	1.170		1.00 1.00	
	MOTA	2797	CG	ASN	В	413	2.017	-26.100 21.901	1.00	43.56 46.11
	ATOM	2798	OD1	ASN	В	413	2.309	-26.022 20.704		47.04
25	MOTA	2799	ND2	ASN	В	413	2.418	-27.104 22.671	1.00	
25	MOTA	2800	C	ASN	В	413	-0.383	-23.168 21.982	1.00	34.01
	ATOM	2801	0	ASN	В	413	-1.349	-23.372 21.247	1.00	32.43
	MOTA	2802	N	GLN	В	414	-0.447	-22.397 23.063	1.00	32.85
	ATOM	2803	CA	GLN	В	414	-1.685	-21.741 23.449	1.00	31.91
20	ATOM	2804	CB	GLN	В	414	-1.558	-21.172 24.863	1.00	33.17
30	ATOM	2805	CG	GLN	В	414	-1.528	-22.242 25.948	1.00	32.31
	ATOM	2806	CD	GLN	В	414	-1.293	-21.667 27.327	1.00	34.63
	ATOM	2807	OE1	GLN	В	414	-0.176	-21.277 27.666	1.00	33.23
	MOTA	2808	NE2	GLN	В	414	-2.349	-21.606 28.131	1.00	34.56
35	ATOM	2809	C	GLN	В	414	-2.052	-20.638 22.463	1.00	29.57
33	ATOM	2810	0	GLN	В.	414	-3.195	-20.204 22.409	1.00	31.32
	ATOM	2811	N	GLY	В	415	-1.077	-20.190 21.682	1.00	30.96
	MOTA	2812	CA	GLY	В	415	-1.350	-19.160 20.697	1.00	34.27
	MOTA	2813	C	GLY	В	415	-2.184	-19.725 19.562	1.00	35.27
40	MOTA	2814	0	GLY	В	415	-2.918	-19.000 18.887	1.00	33.20
40	MOTA	2815	N	LYS	В	416	-2.070	-21.031 19.354	1.00	35.28 38.26
	MOTA	2816	CA	LYS	В	416	-2.819	-21.707 18.299 -23.177 18.201		38.00
	MOTA	2817	CB	LYS	В	416	-2.398		1.00	40.05
	ATOM	2818	CG	LYS	В	416	-0.973	-23.407 17.736	1.00	
45	ATOM	2819	CD	LYS	В	416	-0.405	-24.668 18.369		44.10
43	ATOM	2820	CE	LYS	В	416		-25.541 17.346 -24.760 16.542	1.00	41.85
	MOTA	2821	NZ	LYS	В	416			1.00	45.63
	MOTA	2822	C	LYS	В	416		-21.645 18.559	1.00	36.93
	MOTA	2823	0	LYS	В	416		-21.790 17.638	1.00	38.36
50	MOTA	2824	И	CYS	В	417	-4.698	-21.430 19.817	1.00	37.10
50	MOTA	2825	CA	CYS	В	417		-21.371 20.196	1.00	36.46
	MOTA	2826	CB	CYS	В	417	-6.218	-21.226 21.717	1.00	39.01
	MOTA	2827	SG	CYS	В	417		-22.710 22.612	1.00	43.81
	ATOM	2828	C	CYS	В	417	-6.899	-20.277 19.491	1.00	35.19
<i>e</i>	ATOM	2829	0	CYS	В	417			1.00	33.92
55	MOTA	2830	N	VAL	В	418	-6.195	-19.316 18.906	1.00	36.04
	ATOM	2831	CA	VAL	В	418	-6.838	-18.236 18.163	1.00	34.59
	MOTA	2832	CB	VAL	В	418		-16.850 18.775	1.00	34.87
	ATOM	2833	CG1	VAL	В	418		-15.763 17.765	1.00	35.32
(0	ATOM	2834	CG2	VAL	В	418		-16.630 20.036	1.00	33.65
60	ATOM	2835	C	VAL	В	418		-18.317 16.764	1.00	34.17
	ATOM	2836	0	VAL	В	418	-5.020	-18.323 16.611	1.00	32.73

180

5	MOTA	2894	CA	ASP	В	426	6.378	-16.685 17.377	1.00	23.20
	MOTA	2895	CB	ASP	В	426	6.364	-17.510 16.090	1.00	26.53
	MOTA	2896	CG	ASP	В	426	5.992	-18.965 16.335	1.00	34.28
	ATOM	2897	OD1	ASP	В	426	6.242	-19.467 17.455	1.00	35.24
	MOTA	2898	OD2	ASP	В	426	5.448	-19.600 15.409	1.00	31.49
10	MOTA	2899	C	ASP	В	426	7.302	-15.489 17.198	1.00	21.84
	ATOM	2900	0	ASP	В	426	8.465	-15.526 17.593	1.00	21.55
	MOTA	2901	N	MET	В	427	6.788	-14.429 16.591	1.00	20.12
	MOTA	2902	CA	MET	В	427	7.597	-13.234 16.382	1.00	21.02
	MOTA	2903	CB	MET	В	427	6.836	-12.228 15.520	1.00	18.53
15	MOTA	2904	CG	MET	В	427	6.864	-12.559 14.038	1.00	27.92
	ATOM	2905	SD	MET	В	427	6.011	-11.341 13.024	1.00	32.84
	ATOM	2906	CE	MET	В	427	4.363	-11.532 13.581	1.00	33.63
	MOTA	2907	C	MET	В	427	7.945	-12.616 17.732	1.00	17.42
	ATOM	2908	0	MET	В	427	9.073	-12.180 17.950	1.00	22.09
20	MOTA	2909	N	LEU	B	428	6.968	-12.597 18.634	1.00	20.47
	MOTA	2910	CA	LEU	B	428	7.157	-12.033 19.968	1.00	20.13
	ATOM	2911	CB	LEU	В	428	5.812	-11.964 20.706	1.00	17.58
	MOTA	2912	CG	LEU	В	428	4.852	-10.887 20.179	1.00	18.41
	MOTA	2913	CD1	LEU	В	428	3.443	-11.155 20.687	1.00	11.95
25	ATOM	2914	CD2	LEU	В	428	5.324	-9.505 20.631	1.00	17.80
	MOTA	2915	C	LEU	В	428	8.159	-12.856 20.767	1.00	20.68
	MOTA	2916	0	LEU	В	428	9.028	-12.305 21.445	1.00	20.45
	MOTA	2917	N	LEU	В	429	8.037	-14.178 20.679	1.00	20.35
	MOTA	2918	CA	LEU	В	429	8.938	-15.082 21.382	1.00	19.82
30	MOTA	2919	CB	LEU	В	429	8.470	-16.532 21.211	1.00	23.13
	MOTA	2920	CG	LEU	В	429	7.189	-16.839 21.997	1.00	21.85
	MOTA	2921	CD1	LEU	В	429	6.551	-18.123 21.494	1.00	25.39
	MOTA	2922	CD2	LEU	\mathbf{B}	429	7.537	-16.944 23.475	1.00	24.91
	MOTA	2923	С	LEU	В	429	10.361	-14.936 20.865	1.00	20.74
35	MOTA	2924	0	LEU	В	429	11.318	-14.968 21.638	1.00	21.02
	MOTA	2925	N	ALA	В	430	10.495	-14.770 19.554	1.00	21.40
	MOTA	2926	CA	ALA	В	430	11.808	-14.609 18.947	1.00	22.77
	ATOM	2927	CB	ALA	В	430	11.677	-14.596 17.432	1.00	21.11
	MOTA	2928	C	ALA	В	430	12.467	-13.315 19.440	1.00	22.40
40	ATOM	2929	0	ALA	В	430	13.670	-13.277 19.713	1.00	20.62
	ATOM	2930	N	THR	В	431		-12.258 19.567	1.00	21.09
	MOTA	2931	CA	THR	В	431		-10.974 20.021		22.67
	ATOM	2932	CB	THR	В	431	11.128	-9.866 19.863	1.00	23.77
4.5	MOTA	2933	OG1	THR	В	431	10.572	-9.936 18.547	1.00	23.84
45	MOTA	2934	CG2	THR	В	431	11.762	-8.489 20.073	1.00	21.78
	ATOM	2935	С	THR	В	431		-11.037 21.480	1.00	21.98
	MOTA	2936	0	THR	В	431		-10.429 21.879	1.00	19.85
	ATOM	2937	N	SER	В	432		-11.773 22.280	1.00	24.24
	MOTA	2938	CA	SER	В	432		-11.906 23.693	1.00	26.96
50	MOTA	2939	CB	SER	В	432		-12.661 24.423	1.00	28.00
	ATOM	2940	OG	SER	В	432		-12.888 25.776	1.00	30.31
	MOTA	2941	C	SER	В	432		-12.660 23.820	1.00	27.67
	MOTA	2942	0	SER	В	432		-12.377 24.701	1.00	23.78
	MOTA	2943	N	SER	В	433			1.00	29.27
55	MOTA	2944	CA	SER	В	433		-14.421 22.928	1.00	31.96
	MOTA	2945	CB	SER	В	433		-15.575 21.938	1.00	30.84
	ATOM	2946	OG	SER	В	433		-16.808 22.625	1.00	38.26
	MOTA	2947	С	SER	В	433		-13.550 22.548	1.00	31.47
<i>c</i>	ATOM	2948	0	SER	В	433		-13.701 23.087	1.00	28.43
60	MOTA	2949	N	ARG	В	434		-12.641 21.607	1.00	29.55
	ATOM	2950	CA	ARG	В	434	16.926	-11.739 21.165	1.00	29.40

-					_					
5	ATOM	3008	CB	ASN	В	439	22.592	-9.524 28.598	1.00	34.85
	ATOM	3009	CG	ASN	В	439	22.624	-9.480 30.080	1.00	38.58
	MOTA	3010	OD1	ASN	В	439	21.584	-9.620 30.724	1.00	42.99
	ATOM	3011	ND2	ASN	В	439	23.801	-9.260 30.666	1.00	41.14
10	ATOM	3012	C	ASN	В	439	20.745	-7.903 28.212	1.00	26.24
10	MOTA	3013	0	ASN	В	439	21.396	-7.106 28.891	1.00	19.76
	ATOM	3014	N	LEU	В	440	19.625	-7.564 27.573	1.00	24.90
	ATOM	3015	CA	LEU	В	440	19.061	-6.214 27.633	1.00	25.04
	ATOM	3016	CB	LEU	В	440	17.761	-6.157 26.818	1.00	22.36
	ATOM	3017	CG	LEU	В	440	17.087	-4.786 26.740	1.00	26.33
15	ATOM	3018	CD1	LEU	В	440	17.958	-3.843 25.923	1.00	28.33
	ATOM	3019	CD2	LEU	В	440	15.704	-4.914 26.111	1.00	24.81
	MOTA	3020	C	LEU	В	440	18.782	-5.785 29.074	1.00	24.71
	ATOM	3021	0	LEU	В	440	18.131	-6.504 29.830	1.00	26.96
20	MOTA	3022	N	GLN	В	441	19.268	-4.609 29.452	1.00	25.54
20	ATOM	3023	CA	GLN	В	441	19.060	-4.099 30.807	1.00	25.82
	MOTA	3024	CB	GLN	В	441	20.250	-3.231 31.234	1.00	30.41
	ATOM	3025	CG	GLN	В	441	21.572	-3.956 31.228	1.00	30.50
	MOTA	3026	CD	GLN	В	441	21.610	-5.028 32.279	1.00	32.75
25	MOTA	3027	OE1	GLN	В	441	21.539	-4.772 33.473	1.00	36.52
25	MOTA	3028	NE2	GLN	В	441	21.703	-6.288 31.823	1.00	31.09
	MOTA	3029	C	GLN	В	441	17.789	-3.265 30.883	1.00	26.93
	MOTA	3030	0	GLN	В	441	17.303	-2.768 29.866	1.00	25.40
	MOTA	3031	N	GLY	В	442	17.266	-3.105 32.096	1.00	24.56
20	ATOM	3032	CA	GLY	В	442	16.058	-2.327 32.293	1.00	22.82
30	MOTA	3033	C	GLY	В	442	16.217	-0.873 31.885	1.00	24.19
	ATOM	3034	0	GLY	В	442	15.290	-0.279 31.341	1.00	20.21
	ATOM	3035	N	GLU	В	443	17.387	-0.293 32.141	1.00	22.92
	ATOM	3036	CA	GLU	В	443	17.635	1.102 31.778	1.00	23.33
35	ATOM	3037	CB	GLU	В	443	18.960	1.590 32.378	1.00	24.26
33	ATOM	3038	CG	GLU	В	443	19.005	1.525 33.895	1.00	32.31
	MOTA	3039	CD	GLU	В	443	19.701	0.270 34.402	1.00	37.68
	ATOM ATOM	3040 3041	OE1 OE2	GLU GLU	В	443	19.343	-0.841 33.948	1.00	35.23
	ATOM	3041	C C	GLU	В	443	20.607	0.394 35.252	1.00	42.47
40	ATOM	3042	0	GLU	B B	443 443	17.662	1.278 30.262	1.00	23.08
40	ATOM	3043	N	GLU	В	444	17.265 18.128	2.328 29.747 0.253 29.552	1.00	21.80
	MOTA	3045	CA	GLU	В	444	18.123	0.302 28.093	1.00	21.16 22.60
	MOTA	3045	CB	GLU	В	444	19.046			
	MOTA	3047	CG	GLU	В	444	20.545	-0.834 27.545 -0.617 27.705	1.00	20.89 23.24
45	ATOM	3048	CD	GLU	В	444	21.340	-1.869 27.393	1.00	22.11
	ATOM	3049		GLU	В	444	20.817	-2.978 27.629	1.00	20.89
	MOTA	3050		GLU	В	444	22.488	-1.746 26.914	1.00	25.49
	ATOM	3051	C	GLU	В	444	16.758	0.155 27.552	1.00	21.06
	MOTA	3052	ō	GLU	В	444	16.377	0.822 26.597	1.00	23.73
50	ATOM	3053	N	PHE	В	445	15.987	-0.730 28.176	1.00	19.01
50	ATOM	3054	CA	PHE	В	445	14.600	-0.969 27.792	1.00	19.44
	ATOM	3055	CB	PHE	В	445	13.989	-2.067 28.675	1.00	18.12
	MOTA	3056	CG	PHE	В	445	12.483	-2.055 28.709	1.00	18.13
	ATOM	3057	CD1	PHE	В	445	11.746	-2.386 27.575	1.00	18.34
55	MOTA	3058	CD2	PHE	В	445	11.802	-1.694 29.872	1.00	16.59
	ATOM	3059	CE1	PHE	В	445	10.346	-2.359 27.592	1.00	17.15
	ATOM	3060	CE2	PHE	В	445	10.346	-1.662 29.903	1.00	21.99
	ATOM	3061	CZ	PHE	В	445	9.674	-1.997 28.755	1.00	16.01
	ATOM	3062	C	PHE	В	445	13.758	0.304 27.888	1.00	15.87
60	ATOM	3063	o	PHE	В	445	13.008	0.617 26.966	1.00	20.27
-	ATOM	3064		VAL	В	446	13.872	1.044 28.986	1.00	15.90
							20.072	2.011 10.000	2.00	22.50

_			_		_					
5	ATOM	3122	C	LEU	B	453	7.198	7.941 20.566	1.00	19.33
	ATOM	3123	0	LEU	В	453	6.320	8.458 19.879	1.00	21.37
	ATOM	3124	N	LEU	В	454	8.434	8.428 20.636	1.00	17.68
	MOTA	3125	CA	LEU	В	454	8.789	9.653 19.933	1.00	20.93
	ATOM	3126	CB	LEU	В	454	9.959	10.347 20.653	1.00	24.33
10	ATOM	3127	CG	LEU	В	454	9.735	10.699 22.130	1.00	26.16
	MOTA	3128	CD1	LEU	В	454	11.046	11.170 22.749	1.00	24.82
	MOTA	3129	CD2	LEU	В	454	8.658	11.777 22.259	1.00	23.79
	MOTA	3130	С	LEU	В	454	9.120	9.494 18.449	1.00	20.75
	MOTA	3131	O ·	LEU	В	454	8.941	10.431 17.673	1.00	21.33
15	ATOM	3132	N	ASN	В	455	9.566	8.311 18.042	1.00	20.54
	MOTA	3133	CA	ASN	В	455	9.951	8.093 16.651	1.00	19.46
	MOTA	3134	CB	ASN	В	455	11.147	7.149 16.584	1.00	18.58
	MOTA	3135	CG	ASN	В	455	11.576	6.871 15.161	1.00	17.64
	MOTA	3136	OD1	ASN	В	455	12.106	7.749 14.496	1.00	18.40
20	MOTA	3137	ND2	ASN	В	455	11.343	5.648 14.686	1.00	15.06
	ATOM	3138	C	ASN	В	455	8.925	7.580 15.655	1.00	22.77
	MOTA	3139	0	ASN	В	455	8.790	8.127 14.564	1.00	21.94
	ATOM	3140	N	SER	В	456	8.224	6.514 16.023	1.00	25.90
	ATOM	3141	CA	SER	В	456	7.260	5.873 15.135	1.00	24.76
25	ATOM	3142	CB	SER	В	456	6.402	4.894 15.939	1.00	26.91
	MOTA	3143	OG	SER	В	456	7.212	3.818 16.390	1.00	26.24
	MOTA	3144	С	SER	В	456	6.385	6.774 14.272	1.00	26.52
	ATOM	3145	0	SER	В	456	6.323	6.588 13.055	1.00	29.22
	ATOM	3146	N	GLY	В	457	5.716	7.750 14.872	1.00	22.07
30	ATOM	3147	CA	GLY	В	457	4.879	8.627 14.076	1.00	25.19
-	ATOM	3148	C	GLY	В	457	5.510	9.973 13.765	1.00	28.59
	ATOM	3149	Ō	GLY	В	457	4.851	10.850 13.214	1.00	28.31
	ATOM	3150	N	VAL	В	458	6.789	10.130 14.092	1.00	31.65
	ATOM	3151	CA	VAL	В	458	7.486	11.396 13.879	1.00	38.50
35	MOTA	3152	CB	VAL	В	458	8.950	11.310 14.373	1.00	36.24
30	ATOM	3153	CG1	VAL	В	458	9.827	10.650 13.324	1.00	38.50
	ATOM	3154	CG2	VAL	В	458	9.463	12.699 14.701	1.00	39.84
	ATOM	3155	C	VAL	В	458	7.483	11.982 12.464	1.00	46.30
	ATOM	3156	0	VAL	В	458	7.567	13.201 12.302	1.00	47.67
40	ATOM	3157	N	TYR	В	459	7.393	11.138 11.442	1.00	50.45
	ATOM	3158	CA	TYR	В	459	7.385	11.640 10.069	1.00	57.07
	ATOM	3159	CB	TYR	В	459	8.233	10.740 9.170	1.00	57.05
	ATOM	3160	CG	TYR	В	459	9.673	10.680 9.611	1.00	59.29
	MOTA	3161	CD1	TYR	В	459	10.284	11.786 10.203	1.00	60.93
45	ATOM	3162	CE1	TYR	В	459	11.591	11.725 10.662	1.00	61.86
15	ATOM	3163	CD2	TYR	В	459	10.414	9.510 9.486	1.00	59.46
	ATOM	3164	CE2	TYR	В	459	11.726	9.439 9.943	1.00	59.67
	ATOM	3165	CZ	TYR	В	459	12.305	10.548 10.532	1.00	60.84
		3166	OH			459				61.39
50	ATOM			TYR	В		13.593	10.477 11.009	1.00	
50	ATOM	3167	C	TYR	В	459	5.976	11.753 9.514	1.00	61.22
	ATOM	3168	0	TYR	В	459	5.629	12.750 8.874	1.00	62.89
	ATOM	3169	N	THR	В	460	5.166	10.730 9.768	1.00	65.15
	MOTA	3170	CA	THR	В	460	3.783	10.702 9.309	1.00	67.76
55	ATOM	3171	CB	THR	В	460	3.178	9.283 9.464	1.00	68.02
55	ATOM	3172	OG1	THR	В	460	1.890	9.235 8.836	1.00	67.03
	MOTA	3173	CG2	THR	В	460	3.040	8.916 10.938	1.00	67.31
	ATOM	3174	C	THR	В	460	2.945	11.700 10.107	1.00	70.14
	ATOM	3175	0	THR	В	460	1.715	11.641 10.099	1.00	72.35
C D	ATOM	3176	N	PHE	В	461	3.625	12.620 10.788	1.00	72.64
60	MOTA	3177	CA	PHE	В	461	2.969	13.637 11.607	1.00	75.05
	MOTA	3178	CB	PHE	В	461	3.977	14.720 12.012	1.00	75.47

186

E	7.004	2006	~~		-	455		1 4 502 14 406		45 44
5	ATOM	3236	CG	HIS	В	476	14.132	14.781 14.486	1.00	43.64
	MOTA	3237	CD2	HIS	В	476	13.723	13.498 14.342	1.00	45.25
	ATOM	3238	ND1	HIS	В	476	13.816	15.419 13.306	1.00	48.37
	MOTA	3239	CE1	HIS	В	476	13.238	14.560 12.484	1.00	48.87
1.0	MOTA	3240	NE2	HIS	В	476	13.170	13.387 13.089	1.00	48.11
10	MOTA	3241	С	HIS	В	476	15.506	15.213 18.022	1.00	31.20
	ATOM	3242	0	HIS	В	476	16.442	14.436 18.208	1.00	27.25
	ATOM	3243	N	ARG	В	477	15.387	16.365 18.684	1.00	30.64
	MOTA	3244	CA	ARG	В	477	16.361	16.754 19.703	1.00	30.09
. ~	ATOM	3245	CB	ARG	В	477	16.144	18.214 20.121	1.00	33.46
15	MOTA	3246	CG	ARG	В	477	16.322	19.212 18.982	1.00	40.74
	ATOM	3247	CD	ARG	В	477	16.274	20.649 19.479	1.00	45.91
	ATOM	3248	NE	ARG	В	477	17.514	21.020 20.155	1.00	51.37
	ATOM	3249	CZ	ARG	В	477	18.375	21.927 19.702	1.00	53.68
•	ATOM	3250	NHl	ARG	В	477	18.140	22.567 18.560	1.00	53.04
20	ATOM	3251	NH2	ARG	В	477	19.480	22.185 20.389	1.00	51.79
	ATOM	3252	C	ARG	В	477	16.232	15.835 20.925	1.00	26.97
	MOTA	3253	0	ARG	В	477	17.233	15.387 21.486	1.00	27.34
	MOTA	3254	N	VAL	В	478	14.999	15.558 21.338	1.00	23.70
25	MOTA	3255	CA	VAL	В	478	14.780	14.685 22.482	1.00	24.79
25	ATOM	3256	CB	VAL	В	478	13.286	14.613 22.861	1.00	24.83
	MOTA	3257	CG1	VAL	В	478	13.088	13.646 24.022	1.00	26.23
	ATOM	3258	CG2	VAL	В	478	12.781	15.996 23.243	1.00	28.26
	MOTA	3259	C	VAL	В	478	15.284	13.294 22.112	1.00	26.10
20	ATOM	3260	0	VAL	В	478	15.919	12.613 22.927	1.00	24.28
30	MOTA	3261	N	LEU	В	479	15.021	12.889 20.870	1.00	22.92
	MOTA	3262	CA	LEU	В	479	15.456	11.584 20.379	1.00	21.96
	MOTA	3263	CB	LEU	В	479	14.992	11.372 18.930	1.00	22.63
	ATOM	3264	CG	LEU	В	479	13.575	10.798 18.756	1.00	20.82
35	ATOM	3265	CD1	LEU	В	479	13.231	10.689 17.274	1.00	22.53
33	ATOM	3266	CD2	LEU	В	479	13.495	9.440 19.420	1.00	23.08
	ATOM	3267	C	LEU	В	479	16.975	11.471 20.453	1.00	21.90
	MOTA	3268	O N	LEU	В	479	17.506	10.416 20.778	1.00	23.11
	ATOM ATOM	3269	N	ASP	В	480	17.675	12.560 20.143	1.00	23.65 24.29
40	ATOM	3270 3271	CA CB	ASP ASP	B B	480 480	19.141 19.692	12.566 20.198 13.889 19.649	1.00	26.88
40	ATOM	3271	CG	ASP	В	480	19.773	13.914 18.129	1.00	33.32
	MOTA	3272	OD1	ASP	В	480	19.773	12.836 17.499	1.00	35.44
	ATOM	3274	OD1		В	480	19.757		1.00	32.44
	MOTA	3275	C	ASP ASP	В	480	19.590	15.022 17.563 12.406 21.656	1.00	24.13
45	ATOM	3276	0	ASP	В	480	20.551	11.697 21.956	1.00	24.88
	ATOM	3277	N	LYS	В	481	18.887	13.077 22.560	1.00	25.18
	ATOM	3278	CA	LYS	В	481	19.213	13.010 23.980	1.00	26.78
	ATOM	3279	CB	LYS	В	481	18.262	13.898 24.785	1.00	31.37
	ATOM	3280	CG	LYS	В	481	18.962	14.788 25.804	1.00	43.84
50	MOTA	3281	CD	LYS	В	481	18.780	14.260 27.219	1.00	46.08
	MOTA	3282	CE	LYS	В	481	20.120	13.928 27.865	1.00	50.99
	ATOM	3283	NZ	LYS	В	481	21.177	14.922 27.511	1.00	54.35
	MOTA	3284	C	LYS	В	481	19.124	11.575 24.495	1.00	26.87
	ATOM	3285	0	LYS	В	481	19.951	11.145 25.305	1.00	20.37
55	ATOM	3286	N	ILE	В	482	18.124	10.830 24.027	1.00	23.26
	ATOM	3287	CA	ILE	B	482	17.981	9.452 24.472	1.00	21.07
	MOTA	3288	CB	ILE	В	482	16.655	8.828 24.015	1.00	19.80
	ATOM	3289	CG2	ILE	В	482	16.580	7.370 24.491	1.00	17.40
	ATOM	3290	CG1	ILE	В	482	15.479	9.606 24.602	1.00	17.16
60	MOTA	3291	CD1	ILE	В	482	14.136	9.209 23.991	1.00	19.43
	ATOM	3292	C	ILE	В	482	19.135	8.616 23.947	1.00	20.21
		222	~			- 02		0.010 20.71		24.21

•					_	400	05 070	0 452 00 245	1 00	22.00
5	ATOM	3350	N	MET	В	490	25.978	2.453 28.345	1.00	23.82
	MOTA	3351	CA	MET	В	490	26.900	1.438 27.857	1.00	26.38
	ATOM	3352	CB	MET	В	490	26.775	1.306 26.336	1.00	27.29
	ATOM	3353	CG	MET	В	490	25.418	0.776 25.895	1.00	21.68
	MOTA	3354	SD	MET	В	490	25.208	0.739 24.106	1.00	26.30
10	ATOM	3355	CE	MET	В	490	23.461	0.412 24.022	1.00	19.66
	ATOM	3356	C	MET	В	490	28.341	1.743 28.247	1.00	26.42
	ATOM	3357	0	MET	В	490	29.109	0.833 28.574	1.00	24.76
	MOTA	3358	N	ALA	В	491	28.713	3.018 28.207	1.00	26.67
	ATOM	3359	CA	ALA	В	491	30.074	3.394 28.577	1.00	30.73
15	ATOM	3360	CB	ALA	В	491	30.299	4.882 28.335	1.00	26.66
	ATOM	3361	C	ALA	В	491	30.250	3.053 30.056	1.00	32.08
	MOTA	3362	0	ALA	В	491	31.194	2.361 30.438	1.00	34.66
	ATOM	3363	N	LYS	В	492	29.316	3.523 30.878	1.00	33.17
	MOTA	3364	CA	LYS	В	492	29.354	3.267 32.309	1.00	32.82
20	MOTA	3365	CB	LYS	В	492	28.110	3.849 32.976	1.00	36.38
	MOTA	3366	CG	LYS	В	492	28.412	4.797 34.123	1.00	38.68
	MOTA	3367	CD	LYS	В	492	27.242	4.887 35.084	1.00	41.41
	ATOM	3368	CE	LYS	В	492	26.299	6.013 34.698	1.00	47.57
	MOTA	3369	NZ	LYS	В	492	26.395	7.184 35.618	1.00	50.76
25	MOTA	3370	С	LYS	В	492	29.453	1.771 32.619	1.00	34.08
	ATOM	3371	0	LYS	В	492	30.090	1.382 33.593	1.00	34.31
	MOTA	3372	N	ALA	В	493	28.835	0.935 31.788	1.00	32.03
	MOTA	3373	CA	ALA	В	493	28.867	-0.510 31.998	1.00	30.70
	ATOM	3374	CB	ALA	В	493	27.719	-1.181 31.245	1.00	28.80
30	ATOM	3375	С	ALA	В	493	30.201	-1.156 31.606	1.00	33.75
	MOTA	3376	0	ALA	В	493	30.402	-2.356 31.819	1.00	30.53
	MOTA	3377	N	GLY	В	494	31.102	-0.372 31.020	1.00	33.50
	ATOM	3378	CA	GLY	В	494	32.405	-0.903 30.656	1.00	33.71
	ATOM	3379	C	GLY	В	494	32.639	-1.360 29.230	1.00	34.40
35	MOTA	3380	0	GLY	В	494	33.663	-1.989 28.950	1.00	33.13
	ATOM	3381	N	LEU	В	495	31.712	-1.056 28.326	1.00	31.76
	ATOM	3382	CA	LEU	В	495	31.859	-1.452 26.925	1.00	30.57
	ATOM	3383	СВ	LEU	В	495	30.494	-1.415 26.216	1.00	30.67
	ATOM	3384	CG	LEU	В	495	29.610	-2.675 26.256	1.00	29.59
40	ATOM	3385	CD1	LEU	В	495	29.315	-3.058 27.700	1.00	26.60
,,,	ATOM	3386	CD2	LEU	В	495	28.307	-2.416 25.501	1.00	27.52
	ATOM	3387	C	LEU	В	495	32.829	-0.515 26.202	1.00	30.53
	ATOM		0	LEU	В	495	32.855	0.688 26.468	1.00	28.14
	ATOM	3389	N	THR	В	496	33.628	-1.064 25.291	1.00	28.03
45	ATOM	3390	CA	THR	В	496	34.567	-0.243 24.529	1.00	29.06
15	ATOM	3391	CB	THR	В	496	35.511	-1.095 23.665	1.00	29.40
	ATOM	3392	OG1	THR	В	496	34.753	-1.758 22.641	1.00	30.29
	ATOM	3393	CG2	THR	В	496	36.228	-2.122 24.515	1.00	28.12
	ATOM	3394	C	THR	В	496	33.770	0.652 23.590	1.00	30.12
50				THR		496		0.433 23.380	1.00	29.74
30	MOTA	3395	O NT	LEU	В	497	32.580 34.430	1.654 23.018	1.00	30.44
	ATOM	3396	N		В			2.567 22.104		
	MOTA	3397	CA	LEU	В	497	33.762		1.00	28.54
	MOTA	3398	CB	LEU	В	497	34.768	3.564 21.529	1.00	31.14
55	MOTA	3399	CG	LEU	В	497	35.209	4.719 22.434	1.00	33.58
55	ATOM	3400	CD1	LEU	В	497	36.120	5.659 21.652	1.00	31.42
	MOTA	3401	CD2	LEU	В	497	33.992	5.469 22.942	1.00	35.08
	MOTA	3402	C	LEU	В	497	33.095	1.800 20.967	1.00	27.35
	ATOM	3403	0	LEU	В	497	31.967	2.105 20.574	1.00	24.03
(0	ATOM	3404		GLN	В	498	33.798	0.797 20.447	1.00	26.17
60	MOTA	3405	CA	GLN	В	498	33.289	-0.009 19.348	1.00	26.32
	MOTA	3406	CB	GLN	В	498	34.411	-0.876 18.771	1.00	27.25

_					_	5.0.4		2 4 11 2 1 2 2 4 4	1 00	
5	MOTA	3464	CG	LEU	В	504	22.983	3.173 19.344	1.00	20.35
	MOTA	3465	CD1	LEU	В	504	21.930	3.449 20.427	1.00	17.97
	MOTA	3466	CD2	LEU	В	504	23.729	4.448 18.955	1.00	20.86
	ATOM	3467	C	LEU	В	504	22.659	0.357 18.667	1.00	21.22
10	ATOM	3468	0	LEU	В	504	21.433	0.478 18.566	1.00	19.28
10	ATOM	3469	N	ALA	В	505	23.428	-0.085 17.676	1.00	18.55
	ATOM	3470	CA	ALA	В	505	22.859	-0.473 16.396	1.00	18.20
	ATOM	3471	CB	ALA	В	505	23.973	-0.745 15.382	1.00	18.45
	ATOM	3472	C	ALA	В	505	21.986	-1.716 16.562	1.00	19.54
1 5	ATOM	3473	0	ALA	В	505	20.871	-1.774 16.041	1.00	17.63
15	ATOM	3474	N	GLN	В	506	22.497	-2.706 17.293	1.00	20.30
	ATOM	3475	CA	GLN	В	506	21.772	-3.955 17.513	1.00	19.48
	ATOM	3476	CB	GLN	В	506	22.590	-4.893 18.409	1.00	21.75
	ATOM	3477	CG	GLN	В	506	23.798	-5.551 17.727	1.00	20.85
20	ATOM	3478	CD	GLN	В	506	24.819	-6.070 18.736	1.00	26.18
20	ATOM	3479	OE1	GLN	В	506	24.564	-6.084 19.943	1.00	21.83
	ATOM	3480	NE2	GLN	В	506	25.977	-6.499 18.245	1.00	25.39
	ATOM	3481	C	GLN	В	506	20.421	-3.672 18.166	1.00	21.39
	ATOM	3482	0	GLN	В	506	19.396	-4.233 17.766	1.00	20.87
25	MOTA	3483	N	LEU	В	507	20.433	-2.800 19.171	1.00	19.52
25	ATOM	3484	CA	LEU	В	507	19.219	-2.418 19.884 -1.455 21.030	1.00	23.04 22.82
	ATOM	3485	CB	LEU	В	507	19.548	-2.011 22.313	1.00	26.12
	ATOM	3486	CG	LEU	В	507	20.182	-0.916 23.360	1.00	29.33
	ATOM	3487	CD1	LEU	В	507	20.203		1.00	29.33
30	ATOM	3488	CD2	LEU	В	507	19.415	-3.213 22.816 -1.730 18.971	1.00	27.80
30	ATOM	3489	C	LEU	В	507 507	18.212 17.036	-2.070 18.964	1.00	23.00
	ATOM	3490	O N	LEU	B B	508	18.678	-0.745 18.214	1.00	21.53
	MOTA	3491 3492	CA	LEU	В	508	17.797	0.006 17.332	1.00	20.60
	ATOM ATOM	3492	CB	LEU	В	508	18.535	1.236 16.805	1.00	17.57
35	ATOM	3494	CG	LEU	В	508	18.934	2.218 17.913	1.00	17.67
33	ATOM	3495	CD1	LEU	В	508 ·		3.446 17.301	1.00	20.04
	ATOM	3496	CD2	LEU	В	508	17.724	2.611 18.725	1.00	18.49
	ATOM	3497	C	LEU	В	508	17.235	-0.831 16.183	1.00	21.17
	MOTA	3498	0	LEU	В	508	16.118	-0.597 15.728	1.00	21.88
40	MOTA	3499	N	LEU	В	509	18.000	-1.813 15.713	1.00	21.89
, 0	ATOM	3500	CA	LEU	В	509	17.511	-2.657 14.631	1.00	22.81
	MOTA	3501	CB	LEU	В	509	18.603	-3.597 14.145	1.00	22.65
	ATOM	3502	CG	LEU	В	509	19.645	-2.891 13.278	1.00	29.11
	ATOM	3503	CD1	LEU	В	509	20.697	-3.888 12.829	1.00	25.69
45	MOTA	3504	CD2	LEU	В	509	18.965	-2.248 12.082	1.00	27.92
	ATOM	3505	C	LEU	В	509	16.302	-3.462 15.095	1.00	23.32
	MOTA	3506	0	LEU	В	509	15.409	-3.759 14.303	1.00	23.36
	ATOM	3507	N	ILE	В	510	16.264	-3.796 16.380	1.00	23.36
	MOTA	3508	CA	ILE	В	510	15.148	-4.562 16.912	1.00	20.99
50	MOTA	3509	CB	ILE	В	510	15.448	-5.041 18.361	1.00	28.60
	MOTA	3510	CG2	ILE	В	510	14.162	-5.435 19.075	1.00	28.10
	MOTA	3511	CG1	ILE	В	510	16.383	-6.260 18.308	1.00	26.57
	MOTA	3512	CD1	ILE	В	510	17.429	-6.301 19.419	1.00	30.14
	ATOM	3513	C	ILE	В	510	13.852	-3.746 16.846	1.00	17.65
55	ATOM	3514	Ō	ILE	В	510	12.767	-4.308 16.759	1.00	16.11
-	ATOM	3515	N	LEU	В	511	13.961	-2.421 16.867	1.00	18.12
	ATOM	3516	CA	LEU	В	511	12.772	-1.574 16.774	1.00	16.95
	ATOM	3517	CB	LEU	В	511	13.147	-0.100 16.981	1.00	22.66
	MOTA	3518	CG	LEU	В	511	13.607	0.262 18.406	1.00	22.13
60	MOTA	3519		LEU	В	511	13.404	1.751 18.652	1.00	25.29
	MOTA	3520	CD2	LEU	В	511	12.830	-0.549 19.425	1.00	25.08

5	MOTA	3578	CB	SER	В	518	3.316	-2.765 15.835	1.00	17.48
	MOTA	3579	OG	SER	В	518	2.234	-1.840 15.843	1.00	17.46
	MOTA	3580	C	SER	В	518	1.906	-4.147 14.284	1.00	14.73
	ATOM	3581	0	SER	В	518	0.688	-4.247 14.417	1.00	19.16
	ATOM	3582	N	ASN	В	519	2.474	-4.006 13.091	1.00	14.52
10	ATOM	3583	CA	ASN	В	519	1.622	-3.953 11.907	1.00	15.35
	MOTA	3584	CB	ASN	В	519	2.432	-3.509 10.698	1.00	19.21
	MOTA	3585	CG	ASN	В	519	2.700	-2.029 10.729	1.00	20.58
	ATOM	3586	OD1	ASN	В	519	1.839	-1.258 11.150	1.00	26.36
	ATOM	3587	ND2	ASN	В	519	3.891	-1.618 10.307	1.00	19.62
15	MOTA	3588	C	ASN	В	519	0.911	-5.280 11.658	1.00	16.74
12	MOTA	3589	0	ASN	В	519	-0.265	-5.299 11.297	1.00	20.58
	MOTA	3590	N	LYS	В	520	1.608	-6.387 11.885	1.00	18.60
	MOTA	3591	CA	LYS	В	520	0.992	-7.699 11.717	1.00	20.04
	ATOM	3592	CB	LYS	В	520	2.038	-8.801 11.872	1.00	25.44
20	ATOM	3593	CG	LYS	В	520	3.037	-8.849 10.728	1.00	31.68
20	ATOM	3594	CD	LYS	В	520	2.507	-9.663 9.558	1.00	42.56
	ATOM	3595	CE	LYS	В	520	2.186	-8.778 8.364	1.00	45.61
	ATOM	3596	NZ	LYS	В	520	1.435	-9.526 7.312	1.00	46.00
	ATOM	3597	C	LYS	В	520	-0.099	-7.868 12.769	1.00	18.88
25	ATOM	3598	0	LYS	В	520	-1.183	-8.358 12.478	1.00	21.75
23	ATOM	3599	N	GLY	В	521	0.191	-7.455 13.998	1.00	17.83
	ATOM	3600	CA	GLY	В	521	-0.792	-7.569 15.058	1.00	16.19
	ATOM	3600	C	GLY	В	521	-2.000	-6.674 14.833	1.00	16.59
	ATOM	3601	0	GLY	В	521	-3.128	-7.060 15.125	1.00	16.57
30	ATOM	3602	N	MET	В	522	-1.766	-5.467 14.326	1.00	17.48
30	ATOM	3604	CA	MET	В	522	-2.852	-4.527 14.042	1.00	18.25
	ATOM	3604	CB	MET	В	522	-2.276	-3.212 13.516	1.00	21.27
	ATOM	3605	CG	MET	В	522	-3.190	-2.018 13.707	1.00	26.97
	ATOM	3607	SD	MET	В	522	-3.199	-1.477 15.417	1.00	30.35
35	MOTA	3607	CE	MET	В	522	~1.659	-0.605 15.475	1.00	29.86
33	MOTA	3609	CE	MET	В	522	-3.794	-5.119 12.989	1.00	18.68
		3610	0	MET	В	522	-5.022	-5.008 13.097	1.00	18.80
	ATOM ATOM	3611	Ŋ	GLU	В	523	-3.205	-5.731 11.966	1.00	18.22
	MOTA	3612	CA	GLU	В	523	-3.968	-6.357 10.889	1.00	23.41
40	ATOM	3613	CB	GLU	В	523	-3.031	-6.946 9.830	1.00	28.74
40	ATOM	3614	CG	GLU	В	523	-2.224	-5.935 9.030	1.00	34.42
	ATOM	3615		GLU	В	523	-1.095	-6.597 8.239	1.00	
	ATOM	3616		GLU	В	523	-0.131	-5.894 7.857	1.00	49.48
	ATOM	3617		GLU	В	523	-1.169		1.00	45.97
45	ATOM	3618		GLU	В	523	-4.812		1.00	23.98
73	MOTA	3619		GLU	В	523	-5.993		1.00	22.08
			N	HIS	В	524	-4.187		1.00	23.46
	MOTA	3620		HIS	В	524 524	-4.846		1.00	26.20
	MOTA	3621	CA						1.00	27.26
50	ATOM	3622	CB	HIS	В	524	-3.824		1.00	30.91
30	MOTA	3623	CG	HIS	В	524	-4.378		1.00	30.91
	MOTA	3624	CD2	HIS	В	524	-4.308			
	MOTA	3625	ND1	HIS	В	524	-5.107		1.00	28.87
	ATOM	3626	CE1	HIS	В	524	-5.461		1.00	30.45
E	ATOM	3627	NE2	HIS	В	524	-4.989		1.00	29.19
55	ATOM	3628	C	HIS	В	524	-5.996		1.00	27.69
	ATOM	3629	0	HIS	В	524	-7.061		1.00	25.00
	ATOM	3630	N	LEU	В	525	-5.777		1.00	23.84
	MOTA	3631	CA	LEU	В	525	-6.786		1.00	25.77
C O	MOTA	3632	CB	LEU	В	525	-6.217		1.00	22.22
60	ATOM	3633	CG	LEU	В	525	-7.164		1.00	26.81
	ATOM	3634	CD1	LEU	В	525	-7.763	-6.922 18.321	1.00	23.32

5	7) TII (2602	NT.	17 N T	D	E22	15 424	12 264 17 242	1 00	42 45
5	ATOM ATOM	3692 3693	N CA	VAL VAL	B B	533 533		-12.264 17.243 -13.371 18.190	1.00	43.45 44.06
	ATOM	3694	CB	VAL	В	533	-14.170	-14.219 18.120	1.00	45.56
	MOTA	3695	CG1	VAL	В	533	-13.661	-14.263 16.683	1.00	45.67
	ATOM	3696	CG2	VAL	В	533	-13.107	-13.644 19.045	1.00	44.16
10	ATOM	3697	C	VAL	В	533	-15.670	-12.835 19.611	1.00	43.24
20	ATOM	3698	0	VAL	В	533		-13.602 20.548	1.00	44.21
	ATOM	3699	N	VAL	В	534		-11.511 19.755	1.00	40.44
	ATOM	3700	CA	VAL	В	534		-10.849 21.049	1.00	37.80
	MOTA	3701	СВ	VAL	В	534	-14.630	-11.259 22.038	1.00	36.38
15	ATOM	3702	CG1	VAL	В	534	-13.324	-10.575 21.658	1.00	34.35
	MOTA	3703	CG2	VAL	В	534	-15.021	-10.910 23.463	1.00	39.34
	MOTA	3704	C	VAL	В	534	-15.752	-9.329 20.857	1.00	37.97
	MOTA	3705	0	VAL	В	534	-15.026	-8.808 20.008	1.00	39.45
	MOTA	3706	Ñ	PRO	В	535	-16.575	-8.597 21.625	1.00	37.81
20	MOTA	3707	CD	PRO	В	535	-17.529	-9.078 22.640	1.00	38.74
	ATOM	3708	CA	PRO	В	535	-16.608	-7.135 21.492	1.00	36.79
	MOTA	3709	CB	PRO	В	535	-17.846	-6.729 22.288	1.00	36.98
	ATOM	3710	CG	PRO	В	535	-18.004	-7.809 23.298	1.00	39.77
	ATOM	3711	C	PRO	В	535	-15.338	-6.494 22.049	1.00	33.95
25	MOTA	3712	0	PRO	В	535	-14.786	-6.963 23.040	1.00	34.93
	MOTA	3713	И	LEU	В	536	-14.881	-5.426 21.409	1.00	33.42
	MOTA	3714	CA	LEU	В	536	-13.675	-4.732 21.851	1.00	33.40
	MOTA.	3715	CB	LEU	В	536	-12.829	-4.314 20.647	1.00	29.31
2.0	MOTA	3716	CG	LEU	В	536	-12.219	-5.433 19.798	1.00	30.06
30	MOTA	3717	CD1	LEU	В	536	-11.344	-4.822 18.714	1.00	30.85
	ATOM '	3718	CD2	LEU	В	536	-11.398	-6.370 20.676	1.00	28.96
	ATOM	3719	C	LEU	В	536	-14.036	-3.498 22.666	1.00	30.50
	MOTA	3720	0	LEU	В	536	-15.024	-2.829 22.383	1.00	29.91
35	ATOM	3721	N	TYR	В	537 537	-13.231	-3.194 23.676 -2.032 24.505	1.00	28.69
33	MOTA MOTA	3722 3723	CA CB	TYR TYR	B B	537 537	-13.494 -12.618	-2.032 24.303	1.00	29.89 .32.50
	MOTA	3723	CG	TYR	В	537	-12.849	-3.327 26.543	1.00	39.46
	MOTA	3725	CD1	TYR	В	537	-13.923	-3.431 27.421	1.00	41.90
	MOTA	3726	CE1	TYR	В	537	-14.174	-4.609 28.118	1.00	45.72
40	MOTA	3727	CD2	TYR	В	537	-12.022	-4.435 26.379	1.00	47.39
	MOTA	3728	CE2	TYR	В	537	-12.262	-5.620 27.072	1.00	49.93
	MOTA	3729	CZ	TYR	В	537	-13.340	-5.699 27.940	1.00	48.80
	MOTA	3730		TYR	В	537	-13.582	-6.872 28.624	1.00	53.90
	MOTA	3731	C	TYR	В	537	-13.262	-0.761 23.709	1.00	27.09
45	MOTA	3732	0	TYR	В	537	-12.518	-0.757 22.729	1.00	26.15
	ATOM	3733	N	ASP	В	538	-13.909	0.315 24.141	1.00	26.12
	ATOM	3734	CA	ASP	В	538	-13.830	1.598 23.461	1.00	25.27
	MOTA	3735	CB	ASP	В	538	-14.748	2.598 24.164	1.00	28.85
	ATOM	3736	CG	ASP	В	538	-16.227	2.285 23.940	1.00	33.90
50	MOTA	3737	OD1	ASP	В	538	-17.052	2.613 24.819	1.00	32.68
	MOTA	3738	OD2	ASP	В	538	-16.562	1.707 22.882	1.00	38.26
	MOTA	3739	С	ASP	В	538	-12.447	2.217 23.261	1.00	25.18
	MOTA	3740	0	ASP	В	538	-12.120	2.626 22.147	1.00	26.41
	MOTA	3741	N	LEU	В	539	-11.637	2.309 24.313	1.00	20.76
55	ATOM	3742	CA	LEU	В	539	-10.312	2.911 24.150	1.00	19.65
	ATOM	3743	CB	LEU	В	539	-9.567	2.991 25.496	1.00	17.48
	ATOM	3744	CG	LEU	В	539	-8.116	3.511 25.469	1.00	16.46
	ATOM	3745	CD1	LEU	В	539	-8.051	4.892 24.838	1.00	16.43
(0	ATOM	3746	CD2	LEU	В	539	-7.564		1.00	
60	ATOM	3747		LEU	В	539	-9.484		1.00	
	ATOM	3748	О	LEU	В	539	-8.862	2.716 22.249	1.00	20.36

_											
5	ATOM	3806	CG	HIS	В	547	-2.796		13.269	1.00	34.54
	MOTA	3807	CD2	HIS	В	547	-2.698		14.486	1.00	30.23
	MOTA	3808	ND1	HIS	В	547	-1.502		12.840	1.00	34.23
	MOTA	3809	CE1	HIS	В	547	-0.659		13.760	1.00	36.72
	ATOM	3810	NE2	HIS	В	547	-1.360		14.768	1.00	31.48
10	MOTA	3811	C	HIS	В	547	-5.649		10.735	1.00	43.69
	MOTA	3812	0	HIS	В	547	-5.178	2.152	9.606	1.00	46.04
	ATOM	3813	N	ARG	В	548	-6.919		11.019	1.00	48.35
	ATOM	3814	CA	ARG	В	548	-7.843	1.551	9.993	1.00	54.74
	MOTA	3815	CB	ARG	В	548	-8.522	0.267	10.452	1.00	54.66
15	MOTA	3816	C	ARG	В	548	-8.886	2.619	9.681	1.00	59.94
	ATOM	3817	0	ARG	В	548	-8.580	3.812	9.672	1.00	62.81
	MOTA	3818	N	LEU	В	549	-10.116	2.186	9.422	1.00	64.81
	ATOM	3819	CA	LEU	В	549	-11.204	3.109	9.112	1.00	67.59
	ATOM	3820	CB	LEU	В	549	-12.478	2.327	8.799	1.00	68.06
20	ATOM	3821	C	LEU	В	549	-11.449	4.069	10.275	1.00	69.12
	MOTA	3822	0	LEU	В	549	-11.451	5.297	10.036	1.00	68.96
	MOTA	3823	TXO	LEU	В	549	-11.634	3.579	11.412	1.00	70.70
	HETATM	3824	CP9	DES	В	600	-4.547	-6.077	22.000	1.00	18.55
	HETATM	3825	CP8	DES	В	600	-3.163	-6.365	21.467	1.00	17.72
25	HETATM	3826	CP7	DES	В	600	-2.897	-7.853	21.381	1.00	21.17
	HETATM	3827	CP6	DES	В	600	-3.719	-8.551	20.374	1.00	22.05
	HETATM	3828	CPl	DES	В	600	-3.405	-8.481	18.998	1.00	21.32
	HETATM	3829	CP2	DES	В	600	-4.239	-9.095	18.063	1.00	21.61
	HETATM	3830	CP3	DES	В	600	-5.388	-9.771	18.509	1.00	24.89
30	HETATM	3831	OP3	DES	В	600	-6.244	-10.339	17.600	1.00	24.94
	HETATM	3832	CP4	DES	В	600	-5.718	-9.858	19.860	1.00	24.08
	HETATM	3833	CP5	DES	В	600	-4.877	-9.240	20.791	1.00	24.67
	HETATM	3834	C7	DES	В	600	-1.998	-8.460	22.190	1.00	16.67
	HETATM	3835	C6	DES	В	600	-1.330	-7.834	23.325	1.00	15.39
35	HETATM	3836	C5	DES	В	600	-2.054	-7.642	24.522	1.00	17.62
	HETATM	3837	C4	DES	В	600	-1.433	-7.072	25.634	1.00	16.16
	HETATM	3838	C3	DES	В	600	-0.077	-6.685	25.542	1.00	20.04
	HETATM	383 <i>9</i>	03	DES	В	600	0.509	-6.113	26.655	1.00	15.55
	HETATM	3840	C2	DES	В	600	0.669	-6.866	24.353	1.00	18.94
40	HETATM	3841	C1	DES	В	600	0.035	~7.440	23.241	1.00	15.20
	HETATM	3842	C8	DES	В	600	-1.642	-9.903	21.942	1.00	17.6 1
	HETATM	3843	C9	DES	В	600	-0.440	-10.009	20.998	1.00	11.63
	HETATM	3844	Cl	CBM	В	417	-4.997	-22.994	25.273	1.00	55.80
	HETATM	3845	04	CBM	В	417	-4.789	-24.187	25.003	1.00	55.56
45	HETATM	3846	03	CBM	В	417	-4.798	-22.559	26.552	1.00	56.04
	HETATM	3847	C2	CBM	В	417	-5.468	-21.960	24.264	1.00	57.04
	HETATM	3848	Cl	CBM	В	530	-15,278	-5.124	10.243	1.00	87.39
	HETATM	3849	04	CBM	В	530	-15.852	-5.086	9.064	1.00	87.68
	HETATM	3850	03	CBM	В	530	~15.832		11.201	1.00	86.22
50	HETATM	3851	C2	CBM	В	530	-14.207		10.628	1.00	87.65
	ATOM	3852	CB	HIS	С	687		-20.030	-2.211	1.00	63.34
	MOTA	3853	С	HIS	С	687		-20.267		1.00	63.49
	ATOM	3854	0	HIS	C	687		-20.840		1.00	63.87
	ATOM	3855	N	HIS	C	687		-19.563		1.00	65.42
55	MOTA	3856	CA	HIS	Č	687		-19.484		1.00	64.86
	ATOM	3857	N	LYS	C	688		-20.281		1.00	62.00
	MOTA	3858	CA	LYS	Ċ	688		-20.999		1.00	60.81
	MOTA	3859	CB	LYS	Ċ	688	8.980			1.00	61.76
	MOTA	3860	C	LYS	C	688	11.050			1.00	57.47
60	ATOM	3861		LYS	C	688		-20.379		1.00	57.64
	ATOM	3862		ILE	C	689		-19.103		1.00	55.74
		2202			-						·

5	MOTA	3920	OE1	GLN	С	695		-24.928 -6.653	1.00	63.33
	MOTA	3921	NE2	GLN	С	695	17.720	-23.969 -8.608	1.00	60.37
	MOTA	3922	C	GLN	С	695	21.330	-20.414 -9.149	1.00	65.13
	ATOM	3923	0	GLN	C	695	22.517		1.00	65.87
	MOTA	3924	N	ASP	С	696	20.761		1.00	67.67
10	MOTA	3925	CA	ASP	C	696	21.492	-19.500-11.420	1.00	70.66
	MOTA	3926	CB	ASP	С	696	20.801	-18.348-12.151	1.00	71.06
	ATOM	3927	CG	ASP	С	696	20.127		1.00	71.70
	ATOM	3928	OD1	ASP	C	696	20.637	-18.455-14.521	1.00	72.47
	MOTA	3929	OD2	ASP	C	696	19.086	-19.478-13.342	1.00	71.41
15	MOTA	3930	C	ASP	C	696	22.951	-19.132-11.169	1.00	72.41
	ATOM	3931	0	ASP	C	696	23.245	-18.115-10.541	1.00	72.56
	MOTA	3932	N	SER	C	697	23.859	-19.967-11.668	1.00	74.67
	MOTA	3933	CA	SER	С	697	25.291	-19.741-11.507	1.00	76.45
	MOTA	3934	CB	SER	C	697	26.019	-21.076-11.377	1.00	76.00
20	MOTA	3935	C	SER	С	697	25.841	-18.960-12.696	1.00	78.44
	MOTA	3936	0	SER	С	697	26.286	-17.809-12.489	1.00	79.20
	MOTA	3937	OXT	SER	С	697	25.818	-19.510-13.820	1.00	80.07
	ATOM	3938	CB	LYS	D	686	-14.070	13.661 16.843	1.00	50.28
	ATOM	3939	C	LYS	D	686	-13.682	14.418 19.199	1.00	51.59
25	MOTA	3940	0	LYS	D	686	-12.629	14.738 19.759	1.00	50.42
	MOTA	3941	N	LYS	D	686	-12.910	15.796 17.283	1.00	50.43
	MOTA	3942	CA	LYS	D	686	-13.976	14.872 17.769	1.00	50.62
	MOTA	3943	N	HIS	D	687	-14.617	13.676 19.787	1.00	49.91
	MOTA	3944	CA	HIS	D	687	-14.447	13.176 21.144	1.00	51.28
30	MOTA	3945	CB	HIS	D	687	-15.806	12.984 21.828	1.00	54.12
	MOTA	3946	CG	HIS	D	687	-15.713	12.336 23.177	1.00	60.06
	MOTA	3947	CD2	HIS	D	687	-15.418	11.064 23.539	1.00	61.05
	MOTA	3948	ND1	HIS	D	687	-15.911	13.030 24.352	1.00	62.39
	ATOM	3949	CE1	HIS	D	687	-15.741	12.215 25.378	1.00	62.76
35	ATOM	3950	NE2	HIS	D	687	-15.441	11.016 24.912	1.00	63.46
	MOTA	3951	С	HIS	D	687	-13.691	11.849 21.163	1.00	49.55
	MOTA	3952	O	\mathtt{HIS}	D	687	-14.099	10.878 20.524	1.00	50.84
	MOTA	3953	И	LYS	D	688	-12.593	11.816 21.909	1.00	44.00
	MOTA	3954	CA	LYS	D	688	-11.784	10.611 22.038	1.00	40.31
40	MOTA	3955	CB	LYS	D	688	-10.446	10.773 21.299	1.00	41.42
	ATOM	3956	CG	LYS	D	688	-10.513	10.595 19.780	1.00	42.76
	MOTA	3957	CD	LYS	D	688	-9.123	10.716 19.152	1.00	38.€∜
	ATOM	3958	CE	LYS	D	688	-9.162	10.529 17.640	1.00	38.28
. ~	ATOM	3959	NZ	LYS	D	688	-7.894	10.970 16.986	1.00	31.58
45	ATOM		C	LYS	D	688	-11.506	10.378 23.517	1.00	36.70
	ATOM	3961		LYS	D	688	-11.271	11.326 24.266	1.00	33.38
	MOTA	3962	N	ILE	D	689	-11.549	9.122 23.942	1.00	33.06
	ATOM	3963	CA	ILE	D	689	-11.255	8.806 25.328	1.00	28.70
	MOTA	3964	CB	ILE	D	689	-11.438	7.301 25.607	1.00	30.88
50	MOTA	3965	CG2	ILE	D	689	-10.725	6.912 26.899	1.00	31.45
	MOTA	3966	CG1	ILE	D	689	-12.927	6.971 25.721	1.00	32.57
	ATOM	3967	CD1	ILE	D	689	-13.308	5.679 25.031	1.00	29.79
	ATOM	3968	C	ILE	D	689	-9.790	9.193 25.541	1.00	27.64
۔ ۔	ATOM	3969	0	ILE	D	689	-9.405	9.649 26.611	1.00	25.54
55	MOTA	3970	N	LEU	D	690	-8.985	9.021 24.496	1.00	24.25
	MOTA	3971	CA	LEU	D	690	-7.563	9.348 24.549	1.00	26.63
	MOTA	3972	CB	LEU	D	690	-6.903	9.021 23.200	1.00	22.83
	ATOM	3973	CG	LEU	D	690	-5.433	9.387 22.992	1.00	25.47
<i>(</i>	ATOM	3974	CD1	LEU	D	690	-4.595	8.772 24.108	1.00	24.03
60	MOTA	3975	CD2	LEU	D	690	-4.956	8.898 21.616	1.00	20.87
	ATOM	3976	С	LEU	D	690	-7.344	10.823 24.902	1.00	26.64

_									
5	HETATM	4034	0	нон	2	16.570	-5.304-16.560	1.00	21.44
	HETATM	4035	0	HOH	3	18.526	0.742 ~4.495	1.00	23.43
	HETATM	4036	0	нон	4	13.647	-2.187 8.588	1.00	25.82
	HETATM	4037	0	НОН	5 6	9.778	-5.825 2.509 -3.605 -8.015	1.00	20.58
10	HETATM HETATM	4038 4039	0	НОН НОН	7	17.072 24.920	-1.689 -2.780	1.00	18.38 25.74
10	HETATM	4040	0	нон	8	7.321	-5.649 5.061	1.00	24.11
	HETATM	4041	0	нон нон	9	25.976	-3.535 15.158	1.00	26.78
	HETATM	4041	0	нон	10	15.088	-7.006-15.192	1.00	19.64
	HETATM	4042	0	НОН	11	14.070	0.925 -5.953	1.00	20.55
15	HETATM	4044	0	НОН	12	18.008	3.407 -6.654	1.00	32.30
13	HETATM	4045	0	нон	13	31.949	-8.393 13.487	1.00	30.64
	HETATM	4046	0	нон	14	19.625	-2.804 -4.279	1.00	24.45
	HETATM	4047	0	нон	15	11.741	1.079-21.140	1.00	25.87
	HETATM	4048	0	нон	16	25.067	13.951 14.153	1.00	31.07
20	HETATM	4049	Ō	НОН	17	15.501	1.323-10.393	1.00	21.01
	HETATM	4050	ō	нон	18	13.880	3.349-11.482	1.00	24.28
	HETATM	4051	ō	нон	19	17.591	0.979 -8.828	1.00	35.26
	HETATM	4052	0	нон	20	23.682	-2.041 -0.314	1.00	37.90
	HETATM	4053	0	НОН	21	15.754	9.496 11.841	1.00	39.44
25	HETATM	4054	0	НОН	22	-4.943	7.574 -3.066	1.00	37.67
	HETATM	4055	0	HOH	23	6.877	0.354-15.982	1.00	36.92
	HETATM	4056	0	нон	24	15.806	-4.002 8.671	1.00	30.38
	HETATM	4057	0	нон	25	17.185	-3.158 -5.321	1.00	28.89
	HETATM	4058	0	нон	26	17.572	9.249 17.009	1.00	30.15
30	HETATM	4059	0	нон	27	24.096	-2.929 11.604	1.00	31.37
	HETATM	4060	0	HOH	28	22.324	-5.871-11.980	1.00	32.74
	HETATM	4061	0	HOH	29	27.547	-12.361 -0.801	1.00	36.61
	HETATM	4062	0	HOH	30	11.173	13.442 -2.719	1.00	35.41
	HETATM	4063	0	НОН	31	15.438	-9.527 5.483	1.00	29.88
35	HETATM	4064	0	нон	32	9.946	-6.564 5.983	1.00	35.05
	HETATM	4065	0	HOH	33	7.599	11.680-15.261	1.00	38.68
	METATM	4066	0	НОН	34	20.112	10.503 -5.109	1.00	42.66
	HETATM	4067	0	НОН	35	15.972	10.343 14.897	1.00	41.73
40	HETATM	4068	0	НОН	36	22.401	-5.914 -9.527	1.00	28.08
40	HETATM	4069	0	нон	37	16.128	-0.899 -8.109	1.00	33.13
	HETATM	4070	0	нон	38	3.581	15.655 -3.706	1.00	41.37
	HETATM	4071	0	HOH	39	31.900	13.545 21.339	1.00	37.79
	HETATM		0	HOH	40	20.058	-7.530 14.119	1.00	47.51
45	HETATM	4073	0	HOH	41	34.634	6.668 15.632	1.00	29.24
43	HETATM HETATM	4074 4075	0	нон нон	42 43	17.968 23.258	10.511 -9.085 -17.325 -4.088	1.00	44.60 44.10
	HETATM	4076	0	нон	44	4.034	-1.472 27.521	1.00	15.22
	HETATM	4077		нон	45	-5.943	-0.018 36.088	1.00	21.11
	HETATM	4078	0	нон	46	6.084	-1.509 29.478	1.00	19.51
50	HETATM	4079	0	нон	47	9.762	1.061 15.621	1.00	27.74
30	HETATM	4080	0	нон	48	1.804	0.717 17.260	1.00	20.97
	HETATM	4081	0	нон	49	0.929	0.421 30.281	1.00	19.64
	HETATM	4082	0	нон	50	9.627	4.271 31.231	1.00	19.02
	HETATM	4083	o	нон	51	2.121	-0.261 13.654	1.00	26.09
55	HETATM	4084	Ō	НОН	52	20.060	10.275 17.711	1.00	25.49
	HETATM	4085	Ö	нон	53	-6.786	0.736 33.483	1.00	22.34
	HETATM	4086	0	НОН	54	2.751	-4.136 27.760	1.00	19.93
	HETATM	4087	0	нон	55	5.994	-4.079 31.292	1.00	32.27
	HETATM	4088	0	нон	56	19.416	16.921 21.645	1.00	25.54
60	HETATM	4089	Ō	нон	57	4.833	2.325 29.006	1.00	19.00
	HETATM	4090	0	нон	58	-7.638	-8.931 37.809	1.00	24.79

5	НЕТАТМ	4148	0	нон	116	7.170	15.583 2.599	1.00	43.69
	HETATM	4149	0	нон	117	-1.966	10.606 3.572	1.00	52.63
	HETATM	4150	0	НОН	118	29.030	10.644 6.707	1.00	42.54
	HETATM	4151	0	HOH	119	0.468	4.354 8.374	1.00	38.69
	HETATM	4152	0	НОН	120	29.086	17.119 19.272	1.00	45.51
10	HETATM	4153	0	HOH	121	24.614	17.609 20.174	1.00	53.55
	HETATM	4154	0	HOH	122	-15.318	0.362 26.686	1.00	36.77
	HETATM	4155	0	HOH	123	-3.857	-24.786 28.325	1.00	39.64
	HETATM	4156	0	HOH	124	21.728	22.178 31.983	1.00	43.73
	HETATM	4157	0	HOH	125	31.650	-7.370 21.642	1.00	40.53
15	HETATM	4158	0	HOH	126	25.421	10.436 21.161	1.00	32.31
	HETATM	4159	0	HOH	127	10.317	-9.457 12.998	1.00	37.77
	HETATM	4160	0	HOH	128	22.723	14.887 15.427	1.00	47.90
	HETATM	4161	0	HOH	129	6.702	9.556 37.596	1.00	47.81
	HETATM	4162	0	HOH	130	27.987	13.557 7.167	1.00	41.15
20	HETATM	4163	0	HOH	131	30.798	16.499 7.588	1.00	58.47
	HETATM	4164	0	нон	132	10.071	-0.571-20.393	1.00	38.79
	HETATM	4165	0	нон	133	9.562	8.334-21.392	1.00	36.80
	HETATM	4166	0	HOH	134	6.712	6.058 8.822	1.00	37.43
	HETATM	4167	0	HOH	135	5.927	8.454 10.594	1.00	42.34
25	HETATM	4168	0	нон	136	4.472	6.306 10.973	1.00	37.35
	HETATM	4169	0	HOH	137	6.792	7.721 7.051	1.00	47.23
	HETATM	4170	0	HOH	138	24.513	11.582 33.724	1.00	45.55
	HETATM	4171	0	HOH	139	-2.528	-20.361 12.354	1.00	52.13
2.0	HETATM	4172	0	HOH	140	-7.864	7.706 19.248	1.00	47.82
30	HETATM	4173	0	HOH	141	11.577	-16.962 24.398	1.00	39.43
	HETATM	4174	0	HOH	142	18.087	12.263 -5.507	1.00	33.36
	HETATM	4175	0	HOH	143	-6.816	-14.190 10.674	1.00	51.32
	HETATM	4176	0	нон	144	-7.377	-16.701 33.528	1.00	57.11
2.5	HETATM	4177	0	нон	145	-5.379	-20.107 32.689	1.00	43.01
35	HETATM	4178	0	нон	146	8.766	-7.947-16.274	1.00	49.96
	HETATM	4179	0	HOH	147	10.946	-7.937-18.142	1.00	55.67
	END								

WO 99/060014		•	PCT/US99/06899
--------------	--	---	----------------

_										
5	MOTA	44	0	ALA	312	5.009	12.609	18.262	1.00	45.52
	MOTA	45	N	ASP	313	2.868	13.275	18.143	1.00	47.58
	MOTA	46	CA	ASP	313	2.367	12.032	18.714	1.00	47.63
	MOTA	47	CB	ASP	313	0.848	12.100	18.879	1.00	51.96
10	ATOM	48	CG	ASP	313	0.430	12.872	20.118	1.00	56.21
10	MOTA	49	OD1	ASP	313	1.314	13.234	20.929	1.00	56.38
	MOTA	50	OD2	ASP	313	-0.785	13.117	20.282	1.00	59.15
	ATOM	51	С	ASP	313	2.745	10.846	17.835	1.00	43.93
	MOTA	52	0	ASP	313	2.959	9.741	18.330	1.00	44.77
	MOTA	53	N	GLN	314	2.826	11.081	16.531	1.00	44.52
15	ATOM	54	CA	GLN	314	3.182	10.028	15.588	1.00	44.73
	MOTA	55	CB	GLN	314	2.849	10.464	14.156	1.00	45.05
	MOTA	56	CG	GLN	314	1.534	9.886	13.626	1.00	48.47
	MOTA	57	CD	GLN	314	0.982	10.646	12.428	1.00	50.37
• •	ATOM	58	OE1	GLN	314	1.649	11.515	11.856	1.00	49.38
20	MOTA	59	NE2	GLN	314	-0.248	10.318	12.043	1.00	51.74
	MOTA	60	С	GLN	314	4.673	9.722	15.707	1.00	43.26
	MOTA	61	0	GLN	314	5.100	8.580	15.555	1.00	43.93
	ATOM	62	N	MET	315	5.459	10.757	15.980	1.00	42.29
~ ~	MOTA	63	CA	MET	315	6.901	10.606	16.130	1.00	41.26
25	MOTA	64	CB	MET	315	7.565	11.985	16.224	1.00	42.43
	MOTA	65	CG	MET	315	9.082	11.939	16.356	1.00	42.34
	MOTA	66	SD	MET	315	9.906	11.190	14.925	1.00	46.22
	MOTA	67	CE	MET	315	9.547	12.408	13.680	1.00	37.32
20	MOTA	68	С	MET	315	7.218	9.791	17.379	1.00	38.89
30	MOTA	69	0	MET	315	8.002	8.841	17.335	1.00	40.02
	MOTA	70	N	VAL	316	6.599	10.165	18.491	1.00	37.65
	MOTA	71	CA	VAL	316	6.819	9.476	19.756	1.00	39.56
	MOTA	72	CB	VAL	316	6.023	10.136	20.897	1.00	39.22
2.5	ATOM	73	CG1	VAL	316	6.245	9.373	22.192	1.00	44.43
35	MOTA	74	CG2	VAL	316	6.446	11.583	21.059	1.00	41.04
	MOTA	75	C	VAL	316	6.404	8.012	19.664	1.00	40.04
	ATOM	76	0	VAL	316	7.141	7.117	20.077	1.00	37.86
	ATOM	77	N	SER	317	5.215	7.767	19.127	1.00	41.90
40	MOTA	78	CA	SER	317	4.733	6.400	18.997	1.00	41.68
40	ATOM	79	CB	SER	317	3.311	6.402	18.415	1.00	43.85
	MOTA	80	OG	SER	317	3.225	5.631	17.230		
	ATOM	81	C	SER	317	5.696	5.601	18.114	1.00	39.72
	MOTA	82	0	SER	317	6.011	4.446	18.407		40.21
45	MOTA	83	N	ALA	318	6.182	6.220	17.043	1.00	38.35
43	ATOM	84	CA	ALA	318	7.114	5.540	16.153	1.00	36.96
	MOTA	85	CB	ALA	318	7.485	6.448	14.986	1.00	37.92
	MOTA	86	C	ALA	318	8.375	5.137	16.920	1.00	38.31
	ATOM	87	0	ALA	318	8.820	3.992	16.844	1.00	33.94
50	ATOM	88	N	LEU	319	8.938	6.089	17.664	1.00	36.92
50	ATOM	89	CA	LEU	319	10.161	5.854	18.438	1.00	38.56
	ATOM	90	CB	LEU	319	10.660	7.174	19.040	1.00	40.86
	ATOM	91	CG	LEU	319	11.136	8.264	18.071	1.00	41.25
	MOTA	92	CD1	LEU	319	11.714	9.440	18.857	1.00	44.30
55	ATOM	93	CD2	LEU	319	12.182	7.693	17.140	1.00	42.61
55	MOTA	94	C	LEU	319	9.965	4.826	19.549	1.00	38.33
	ATOM	95	0	LEU	319	10.779	3.916	19.729	1.00	33.91
	MOTA	96 07	N	LEU	320	8.879	4.982	20.297		37.39
	MOTA	97	CA	LEU	320	8.567	4.067	21.387	1.00	41.55
60	ATOM	98	CB	LEU	320	7.239	4.467	22.049		38.47
60	ATOM	99	CG	LEU	320	7.236		23.099		
	MOTA	100	CD1	LEU	320	5.876	5.634	23.802	1.00	44.96
						201				

5	א תיירות	150	CD	TYR	220	20 409	-11.520	20 042	1 00	33.38
5	MOTA MOTA	158 159	CB CG	TYR	328 328	20.409 19.194	-11.320	29.842 30.686	1.00	33.36
		160	CD1	TYR	328	19.154	-11.398	32.071	1.00	31.92
	MOTA			TYR	328			32.864	1.00	36.01
	MOTA	161	CE1	TYR	328	18.152 17.996	-11.114 -10.862	30.110	1.00	36.01
10	ATOM	162	CD2				-10.662	30.110	1.00	37.27
10	MOTA	163	CE2	TYR	328	16.880				
	ATOM	164	CZ	TYR	328	16.973	-10.702	32.274	1.00	37.66
	ATOM	165	ОН	TYR	328	15.896	-10.397	33.071 29.067	1.00	44.66 33.66
	ATOM	166	C	TYR	328	22.529	-10.520		1.00	
15	ATOM	167	0	TYR	328	22.884	-10.744	27.910	1.00	34.78
15	ATOM	168	N	SER	329	23.359	-10.496	30.103	1.00	33.97
	MOTA	169	CA	SER	329	24.767	-10.800	29.962	1.00	37.29
	ATOM	170	CB	SER	329	25.526	-10.342	31.204	1.00	36.51
	ATOM	171	OG	SER	329	26.787	-10.965	31.282	1.00	37.13
20	MOTA	172	C	SER	329	24.835	-12.317	29.832	1.00	40.43
20	ATOM	173	0	SER	329	23.980	-13.028	30.363	1.00	40.11
	ATOM	174	N	GLU	330	25.845	-12.811	29.128	1.00	41.40
	MOTA	175	CA	GLU	330	25.992	-14.242	28.928	1.00	47.43
	ATOM	176	CB	GLU	330	26.423	-14.524	27.484	1.00	48.64
25	ATOM	177	CG	GLU	330	25.278	-14.870	26.542	1.00	50.20
25	ATOM	178	CD	GLU	330	25.765	-15.405	25.198	1.00	53.25
	ATOM	179	OE1	GLU	330	25.909	-16.640	25.062	1.00	53.27
	MOTA	180	OE2	GLU	330	26.004	-14.590	24.280	1.00	51.80
	· ATOM	181	C	GLU	330	26.999	-14.852	29.893	1.00	49.67
20	ATOM	182	0	GLU	330	28.207	-14.741	29.696	1.00	50.11
30	ATOM	183	N	TYR	331	26.498	-15.493	30.942	1.00	53.62
	MOTA	184	CA	TYR	331	27.373	-16.130	31.921	1.00	58.16
	ATOM	185	CB	TYR	331	28.092	-15.078	32.774	1.00	59.55
	ATOM	186	CG CD1	TYR	331	27.239	-14.460	33.860	1.00	63.08 64.50
35	ATOM	187	CD1 CE1	TYR TYR	331	26.656 25.864	-13.205 -12.630	33.682 34.676	1.00 1.00	65.99
55	ATOM ATOM	188 189	CD2	TYR	331 331	27.010	~12.030	35.065	1.00	63.52
	MOTA	190	CE2	TYR	331	26.219	-14.563	36.066	1.00	65.60
	ATOM	191	CEZ	TYR	331	25.648	-13.314	35.864	1.00	67.20
	ATOM	192	OH	TYR	331	24.855	-12.753	36.839	1.00	67.40
40	ATOM	193	C	TYR	331	26.603	-17.080	32.823	1.00	59.05
,,	ATOM	194	0	TYR	331	25.393	-16.942	33.002	1.00	59.22
	ATOM	195	N	ASP	332	27.320	-18.045	33.387	1.00	61.62
	ATOM	196	CA	ASP	332	26.719		34.281	1.00	64.20
	ATOM	197	СВ	ASP	332	27.681	-20.194	34.500	1.00	65.99
45	MOTA	198	CG	ASP	332	26.961	-21.516	34.648	1.00	68.11
	ATOM	199	OD1	ASP	332	27.575	-22.564	34.351	1.00	69.54
	ATOM	200	OD2	ASP	332	25.781	-21.505	35.060	1.00	67.40
	ATOM	201	С	ASP	332	26.393	-18.371	35.619	1.00	63.33
	ATOM	202	Ō	ASP	332	27.292		36.406	1.00	63.90
50	ATOM	203	N	PRO	333	25.096		35.896	1.00	63.64
	MOTA	204	CD	PRO	333	23.945		35.053	1.00	64.35
	MOTA	205	CA	PRO	333		-17.521	37.154	1.00	63.52
	MOTA	206	CB	PRO	333	23.165		36.993	1.00	63.53
	ATOM	207	CG	PRO	333	22.866		35.556	1.00	64.15
55	ATOM	208	C	PRO	333	25.010	-18.419	38.332	1.00	63.29
	ATOM	209	Ō	PRO	333	25.129		39.468	1.00	63.28
	ATOM	210	N	THR	334	25.160		38.037	1.00	64.26
	ATOM	211	CA	THR	334	25.475		39.050	1.00	66.09
	ATOM	212	CB	THR	334		-22.080	38.645	1.00	66.90
60	ATOM	213	OG1	THR	334		-22.513	37.439	1.00	68.06
	ATOM	214	CG2	THR	334		-22.012	38.411	1.00	67.57

,									_	
5	MOTA	272	С	MET	342	34.124	-7.365	31.516	1.00	40.22
	MOTA	273	0	MET	342	33.063	-7.121	30.938	1.00	39.23
	MOTA	274	N	MET	343	35.307	-7.204	30.930	1.00	38.72
	MOTA	275	CA	MET	343	35.395	-6.708	29.558	1.00	38.50
	ATOM	276	CB	MET	343	36.838	-6.318	29.216	1.00	41.15
10	MOTA	277	CG	MET	343	37.022	-5.749	27.804	1.00	40.31
	ATOM	278	SD	MET	343	36.032	-4.260	27.427	1.00	45.23
	MOTA	279	CE	MET	343	36.113	-3.358	28.987	1.00	40.45
	MOTA	280	C	MET	343	34.880	-7.741	28.561	1.00	35.36
	MOTA	281	0	MET	343	34.368	-7.384	27.501	1.00	35.51
15	ATOM	282	N	GLY	344	35.017	-9.020	28.902	1.00	35.53
	MOTA	283	CA	GLY	344	34.533	-10.072	28.024	1.00	33.41
	MOTA	284	C	GLY	344	33.015	-10.063	28.047	1.00	31.74
	ATOM	285	0	GLY	344	32.359	-10.233	27.019	1.00	29.58
	ATOM	286	N	LEU	345	32.459	-9.860	29.238	1.00	32.89
20	ATOM	287	CA	LEU	345	31.011	-9.804	29.415	1.00	34.95
	ATOM	288	CB	LEU	345	30.665	-9.631	30.902	1.00	37.56
	ATOM	. 289	CG	LEU	345	30.942	-10.774	31.883	1.00	43.03
	ATOM	290	CD1	LEU	345	30.537	-10.357	33.297	1.00	41.57
	ATOM	291	CD2	LEU	345	30.164	-11.998	31.449	1.00	42.80
25	ATOM	292	C	LEU	345	30.430	-8.614	28.633	1.00	33.71
20	ATOM	293	0	LEU	345	29.479	-8.757	27.868	1.00	30.29
	MOTA	294	N	LEU	346	31.021	-7.443	28.843	1.00	30.20
	ATOM	295	CA	LEU	346	30.569	-6.217	28.193	1.00	32.00
	ATOM	296	CB	LEU	346	31.317	-5.016	28.771	1.00	28.16
30	ATOM	297	CG	LEU	346	31.091	-4.767	30.269	1.00	29.84
50	ATOM	298	CD1	LEU	346	31.815	-3.498	30.668	1.00	29.98
		299	CD1							
	ATOM	300		LEU	346	29.614	-4.644	30.581	1.00	33.97
	ATOM		C	LEU	346	30.732	-6.250	26.682	1.00	30.70
35	MOTA	301	0	LEU	346	29.869	-5.765	25.955	1.00	29.13
33	ATOM	302	N	THR	347	31.839	-6.816	26.212	1.00	30.47
	ATOM	303	CA	THR	347	32.086	-6.911	24.781	1.00	30.93
	ATOM	304	CB	THR	347	33.472	-7.501	24.497	1.00	29.97
	MOTA	305	OG1	THR	347	34.481	-6.604	24.982	1.00	35.40
40	MOTA	306	CG2	THR	347	33.666	-7.707	23.004	1.00	33.58
40	MOTA	307	C	THR	347	31.036	-7.804	24.122	1.00	31.97
	MOTA	308	0	THR	347	30.516	-7.486	23.049	1.00	30.75
	MOTA	309	N	ASN	348	30.737		24.768	1.00	29.31
	MOTA	310	CA	ASN	348	29.757	-9.868	24.242	1.00	32.63
15	ATOM	311	CB	ASN	348		-11.161	25.065	1.00	31.64
45	MOTA	312	CG	ASN	348	28.646	-12.117	24.662	1.00	39.14
	ATOM	313	OD1	ASN	348	27.549	-12.078	25.220	1.00	41.91
	MOTA	314	ND2	ASN	348	28.920	-12.970	23.683	1.00	42.05
	MOTA	315	С	ASN	348	28.361	-9.251	24.262	1.00	29.02
~ 0	ATOM	316	0	ASN	348	27.558	-9.477	23.353	1.00	32.76
50	MOTA	317	N	LEU	349	28.078	-8.467	25.298	1.00	28.74
	ATOM	318	CA	LEU	349	26.782	-7.811	25.421	1.00	28.58
	MOTA	319	CB	LEU	349	26.650	-7.148	26.795	1.00	26.56
	MOTA	320	CG	LEU	349	25.376	-6.328	27.050	1.00	33.67
	MOTA	321	CD1	LEU	349	24.140	-7.199	26.840	1.00	28.82
55	ATOM	322	CD2	LEU	349	25.392	-5.779	28.471	1.00	33.11
	MOTA	323	С	LEU	349	26.638	-6.762	24.319	1.00	28.07
	MOTA	324	0	LEU	349	25.616	-6.703	23.629	1.00	25.22
	ATOM	325	N	ALA	350	27.675	-5.941	24.157	1.00	28.50
	MOTA	326	CA	ALA	350	27.668	-4.886	23.148	1.00	28.46
60	ATOM	327	СВ	ALA	350	28.972	-4.094	23.209	1.00	28.12
	MOTA	328	C	ALA	350	27.468	-5.461	21.750	1.00	28.75
	-	_	-		-			- -		

5	ATOM	386	CG	MET	357	22.011	0.736	17.699	1.00	24.66
	ATOM	387	SD	MET	357	23.732	1.290	17.859	1.00	27.30
	MOTA	388	CE	MET	357	24.140	0.672	19.514	1.00	23.62
	ATOM	389	С	MET	357	20.256	-1.011	15.898	1.00	24.83
	ATOM	390	0	MET	357	19.619	-0.003	15.569	1.00	26.78
10	ATOM	391	N	ILE	358	20.757	-1.874	15.020	1.00	26.25
	MOTA	392	CA	ILE	358	20.553	-1.721	13.576	1.00	30.33
	ATOM	393	CB	ILE	358	21.204	-2.888	12.789	1.00	33.86
	ATOM	394	CG2	ILE	358	20.759	-2.860	11.334	1.00	33.68
	ATOM	395	CG1	ILE	358	22.728	-2.799	12.874	1.00	36.89
15	ATOM	396	CD1	ILE	358	23.299	-1.469	12.451	1.00	39.10
13		397	CDI	ILE	358	19.055	-1.721	13.310	1.00	32.20
	MOTA		0						1.00	32.20
	MOTA	398		ILE	358	18.519	-0.817	12.662		
	ATOM	399	N	ASN	359	18.379	-2.748	13.814	1.00	33.12
20	MOŢA	400	CA	ASN	359	16.945	-2.861	13.638	1.00	33.35
20	MOTA	401	CB	ASN	359	16.434	-4.101	14.363	1.00	37.59
	ATOM	402	CG	ASN	359	16.739	-5.374	13.627	1.00	44.38
	MOTA	403	OD1	ASN	359	17.045	-5.329	12.437	1.00	47.35
	MOTA	404	ND2	ASN	359	16.673	-6.508	14.320	1.00	42.48
~ -	ATOM	405	С	ASN	359	16.224	-1.634	14.149	1.00	32.74
25	ATOM	406	0	ASN	359	15.261	-1.163	13.530	1.00	31.39
	MOTA	407	N	TRP	360	16.706	-1.104	15.264	1.00	27.92
	MOTA	408	CA	TRP	360	16.102	0.087	15.842	1.00	29.47
	MOTA	409	CB	TRP	360	16.703	0.347	17.228	1.00	27.66
	MOTA	410	CG	TRP	360	16.522	1.747	17.707	1.00	30.40
30	MOTA	411	CD2	TRP	360	17.493	2.801	17.657	1.00	27.54
	MOTA	412	CE2	TRP	360	16.888	3.954	18.204	1.00	29.42
	ATOM	413	CE3	TRP	360	18.819	2.883	17.205	1.00	28.37
	ATOM	414	CD1	TRP	360	15.399	2.284	18.264	1.00	27.75
	MOTA	415	NE1	TRP	360	15.609	3.611	18.566	1.00	30.84
35	MOTA	416	CZ2	TRP	360	17.558	5.180	18.310	1.00	27.74
	MOTA	417	CZ3	TRP	360	19.488	4.106	17.309	1.00	24.49
	MOTA	418	CH2	TRP	360	18.853	5.232	17.858	1.00	25.09
	MOTA	419	C	TRP	360	16.312	1.296	14.926	1.00	27.90
4.0	MOTA	420	0	TRP	360	15.360	2.002	14.581	1.00	28.83
40	MOTA	421	N	ALA	361	17.559	1.520	14.523	1.00	28.25
	MOTA	422	CA	ALA	361	17.894	2.637	13.645	1.00	29.20
	MOTA	423	CB	ALA	361	19.346	2.539	13.220	1.00	28.89
	MOTA	424	C	ALA	361	17.006	2.685	12.403	1.00	31.08
4.5	MOTA	425	0	ALA	361	16.531	3.746	12.011	1.00	31.30
45	MOTA	426	N	LYS	362	16.795	1.526	11.783	1.00	30.93
	MOTA	427	CA	LYS	362	15.981	1.443	10.581	1.00	34.15
	MOTA	428	CB	LYS	362	16.012	0.016	10.023	1.00	33.67
	ATOM	429	CG	LYS	362	17.252	-0.281	9.198	1.00	39.40
	MOTA	430	CD	LYS	362	17.547	-1.774	9.136	1.00	43.60
50	MOTA	431	CE	LYS	362	18.852	-2.046	8.389	1.00	47.06
	MOTA	432	NZ	LYS	362	19.178	-3.507	8.288	1.00	50.34
	MOTA	433	C	LYS	362	14.545	1.872	10.815	1.00	35.81
	ATOM	434	0	LYS	362	13.821	2.168	9.859	1.00	37.95
	MOTA	435	N	ARG	363	14.134	1.921	12.079	1.00	34.23
55	MOTA	436	CA	ARG	363	12.770	2.313	12.409	1.00	36.04
	ATOM	437	CB	ARG	363	12.178	1.307	13.391	1.00	36.71
	ATOM	438	CG	ARG	363	12.169	-0.110	12.827	1.00	40.36
	MOTA	439	CD	ARG	363	11.468	-1.086	13.746	1.00	42.17
	MOTA	440	NE	ARG	363	10.161	-0.586	14.158	1.00	45.19
60	MOTA	441	CZ	ARG	363	9.314	-1.262	14.929	1.00	49.41
	MOTA	442	NH1	ARG	363	9.642	-2.467	15.374	1.00	48.02

5	MOTA	500	CB	THR	371	22.979	6.944	0.818	1.00	33.44
	MOTA	501	OG1	THR	371	23.880	7.523	1.766	1.00	34.59
	MOTA	502	CG2	THR	371	22.514	8.002	-0.178	1.00	32.63
	MOTA	503	C	THR	371	22.373	5.315	2.539	1.00	35.31
	ATOM	504	0	THR	371	22.536	5.591	3.733	1.00	31.27
10	MOTA	505	N	LEU	372	22.702	4.141	2.015	1.00	34.34
	MOTA	506	CA	LEU	372	23.273	3.073	2.822	1.00	35.46
	ATOM	507	CB	LEU	372	23.518	1.841	1.944	1.00	37.73
	MOTA	508	CG	LEU	372	24.362	0.704	2.515	1.00	42.43
	MOTA	509	CD1	LEU	372	23.690	0.145	3.757	1.00	45.60
15	MOTA	510	CD2	LEU	372	24.534	-0.383	1.455	1.00	44.29
	MOTA	511	С	LEU	372	24.587	3.548	3.444	1.00	36.95
	MOTA	512	0	LEU	372	24.813	3.374	4.643	1.00	35.57
	ATOM	513	N	HIS	373	25.442	4.159	2.627	1.00	35.68
	MOTA	514	CA	HIS	373	26.729	4.656	3.099	1.00	36.60
20	ATOM	515	CB,	HIS	373	27.506	5.282	1.935	1.00	44.01
	MOTA	516	CG	HIS	373	28.538	6.280	2.360	1.00	50.69
	MOTA	517	CD2	HIS	373	29.857	6.138	2.636	1.00	54.69
	MOTA	518	ND1	HIS	373	28.246	7.613	2.561	1.00	53.77
	ATOM	519	CE1	HIS	373	29.339	8.248	2.945	1.00	57.09
25	MOTA	520	NE2	HIS	373	30.331	7.376	2.999	1.00	57.23
	MOTA	521	C	HIS	373	26.575	5.669	4.244	1.00	36.22
	MOTA	522	0	HIS	373	27.350	5.650	5.201	1.00	33.05
	ATOM	523	N	ASP	374	25.580	6.549	4.148	1.00	32.03
	MOTA	524	CA	ASP	374	25.342	7.541	5.196	1.00	30.76
30	ATOM	525	CB	ASP	374	24.354	8.603	4.713	1.00	30.12
	ATOM	526	CG	ASP	374	25.018	9.672	3.860	1.00	35.83
	MOTA	527	OD1	ASP	374	26.264	9.744	3.842	1.00	34.39
	MOTA	528	OD2	ASP	374	24.291	10.440	3.199	1.00	35.39
	MOTA	529	C	ASP	374	24.805	6.876	6.472	1.00	30.33
35	MOTA	530	0	ASP	374	25.152	7.275	7.587	1.00	27.04
	MOTA	531	N	GLN	375	23.944	5.877	6.309	1.00	25.71
	MOTA	532	CA	GLN	375	23.403	5.157	7.454	1.00	26.68
	MOTA	533	CB	GLN	375	22.424	4.077	6.993	1.00	29.70
	MOTA	534	CG	GLN	375	21.101	4.616	6.484	1.00	29.16
40	MOTA	535	CD	GLN	375	20.219	3.514	5.940	1.00	35.87
	MOTA	536	OE1	GLN	375	20.155	2.426	6.510	1.00	30.97 34.51
	MOTA	537	NE2	GLN	•	19.541	3.785	4.827	1.00	
	MOTA	538	C	GLN	375	24.556	4.502	8.214 9.442	1.00	
4 ~	MOTA	539	0	GLN	375	24.585	4.513 3.938	7.475	1.00	
45	MOTA	540	N	VAL	376	25.504	3.281	8.071	1.00	
	ATOM	541	CA	VAL	376	26.659	2.597	7.003	1.00	29.66
	MOTA	542	CB	VAL	376	27.531		7.635	1.00	28.29
	ATOM	543	CG1	VAL	376	28.812	2.071	6.341	1.00	29.90
50	MOTA	544	CG2	VAL	376	26.745	1.469	8.821	1.00	30.87
50	MOTA	545	С	VAL	376	27.526	4.285	9.948	1.00	30.09
	MOTA	546	0	VAL	376	27.953	4.029 5.428	8.191	1.00	28.05
	MOTA	547	N	HIS	377	27.785		8.814	1.00	28.68
	ATOM	548	CA	HIS	377	28.602	6.457 7.639	7.864	1.00	30.26
~ ~	MOTA	549	CB	HIS	377	28.792		8.488	1.00	33.89
55	ATOM	550	CG	HIS	377	29.508	8.791		1.00	34.99
	MOTA	551	CD2	HIS	377	29.073	10.017 8.740	8.823	1.00	37.01
	ATOM	552	ND1	HIS	377	30.846	9.884	9.377	1.00	34.79
	MOTA	553	CE1	HIS	377	31.201	10.677		1.00	
60	MOTA	554	NE2	HIS	377	30.144	6.954			
60	ATOM	555	C	HIS	377	27.983 28.677			1.00	
	ATOM	556	0	HIS	377	20.0//	7.102		2.00	

5	ATOM	614	CA	LEU	384	28.864	3.713	21.640	1.00	22.41
	ATOM	615	CB	LEU	384	30.369	3.890	21.883	1.00	24.98
	MOTA	616	CG	LEU	384	30.824	3.645	23.336	1.00	27.33
	ATOM	617	CD1	LEU	384	30.273	2.305	23.853	1.00	29.71
	ATOM	618	CD2	LEU	384	32.336	3.648	23.398	1.00	26.07
10			CDZ				4.732	22.453	1.00	19.44
10	MOTA	619		LEU	384	28.075				
	MOTA	620	0	LEU	384	27.706	4.458	23.595	1.00	23.24
	MOTA	621	N	GLU	385	27.807	5.909	21.885	1.00	20.80
	MOTA	622	CA	GLU	385	27.011	6.895	22.612	1.00	21.32
	ATOM	623	CB	GLU	385	26.861	8.177	21.797	1.00	21.91
15	MOTA	624	CG	GLU	385	28.115	9.020	21.705	1.00	21.61
	MOTA	625	CD	${ t GLU}$	385	27.882	10.256	20.860	1.00	29.53
	MOTA	626	OE1	GLU	385	27.374	11.256	21.401	1.00	30.54
	MOTA	627	OE2	GLU	385	28.188	10.219	19.658	1.00	29.97
	MOTA	628	С	GLU	385	25.616	6.292	22.836	1.00	22.26
20	ATOM	629	0	GLU	385	25.022	6.438	23.902	1.00	22.26
	ATOM	630	N	ILE	386	25.101	5.617	21.812	1.00	22.03
	MOTA	631	CA	ILE	386	23.779	4.995	21.896	1.00	22.74
	MOTA	632	CB	ILE	386	23.328	4.455	20.498	1.00	22.88
	MOTA	633	CG2	ILE	386	22.009	3.647	20.438	1.00	23.85
25		634	CG1	ILE	386	23.085	5.651	19.561	1.00	25.05
2.3	ATOM									26.42
	ATOM	635	CD1	ILE	386	22.994	5.297	18.078	1.00	
	ATOM	636	C	ILE	386	23.766	3.897	22.961	1.00	22.50
	MOTA	637	0	ILE	386	22.823	3.818	23.746	1.00	24.75
2.0	MOTA	638	N	LEU	387	24.810	3.071	23.020	1.00	22.25
30	MOTA	639	CA	LEU	387	24.868	2.030	24.051	1.00	22.95
	MOTA	640	CB	LEU	387	26.096	1.132	23.864	1.00	24.61
	MOTA	641	CG	LEU	387	26.070	0.194	22.654	1.00	23.21
	ATOM	642	CD1	LEU	387	27.297	-0.709	22.705	1.00	25.36
	ATOM	643	CD2	LEU	387	24.791	-0.631	22.652	1.00	26.29
35	MOTA	644	C	LEU	387	24.944	2.660	25.438	1.00	26.22
	MOTA	645	0	\mathtt{LEU}	387	24.287	2.204	26.386	1.00	23.55
	MOTA	646	N	MET	388	25.751	3.713	25.554	1.00	23.92
	MOTA	647	CA	MET	388	25.924	4.385	26,835	1.00	24.26
	ATOM	648	CB	MET	388	27.088	5.378	26.761	1.00	23.87
40	ATOM	649	CG	MET	388	28.440	4.722	26.743	1.00	24.08
	ATOM	650	SD	MET	388	29.726	5.992	26.736	1.00	27.70
	MOTA	651	CE	MET	388	31.139	5.041	27.078	1.00	21.74
	ATOM	652	C	MET	388	24.660	5.094	27.321	1.00	23.33
	MOTA	653	Ö	MET	388	24.341	5.026	28.505	1.00	25.58
45	ATOM	654	N	ILE	389	23.935	5.775	26.436	1.00	24.62
7.5	ATOM	655	CA	ILE	389	22.729	6.440	26.905	1.00	24.03
	ATOM		CB		389				1.00	27.01
		656		ILE		22.132	7.439	25.852		
	ATOM	657	CG2	ILE	389	21.413	6.705	24.706	1.00	23.98
50	MOTA	658	CG1	ILE	389	21.185	8.402	26.584	1.00	25.49
50	MOTA	659	CD1	ILE	389	20.431	9.383	25.683	1.00	25.45
	MOTA	660	С	ILE	389	21.694	5.401	27.349	1.00	26.54
	ATOM	661	0	ILE	389	20.938	5.631	28.294	1.00	22.58
	MOTA	662	N	GLY	390	21.679	4.247	26.687	1.00	27.14
	MOTA	663	CA	\mathtt{GLY}	390	20.753	3.201	27.090	1.00	28.42
55	MOTA	664	С	GLY	390	21.133	2.719	28.482	1.00	29.67
	MOTA	665	0	GLY	390	20.275	2.521	29.348	1.00	29.21
	MOTA	666	N	LEU	391	22.433	2.547	28.699	1.00	26.06
	ATOM	667	CA	LEU	391	22.955	2.091	29.983	1.00	29.23
	ATOM	668	CB	LEU	391	24.476	1.937	29.899	1.00	28.37
60	ATOM	669	CG	LEU	391	25.206	1.656	31.210	1.00	30.81
	ATOM	670	CD1	LEU	391	24.717	0.332	31.793	1.00	25.73
		J , J				/-/				

5	MOTA	728	0	GLU	397	17.071	2.187	41.139	1.00	53.96
	MOTA	729	N	HIS	398	18.851	3.014	40.040	1.00	50.25
	ATOM	730	CA	HIS	398	19.813	2.220	40.792	1.00	49.34
	MOTA	731	CB	HIS	398	20.271	1.018	39.963	1.00	52.04
	ATOM	732	CG	HIS	398	19.187	0.017	39.721	1.00	53.95
10	ATOM	733	CD2	HIS	398	18.750	-1.022	40,472	1.00	53.92
	ATOM	734	ND1	HIS	398	18.374	0.054	38.608	1.00	55.91
	ATOM	735	CE1	HIS	398	17.482	-0.917	38.685	1.00	55.53
	MOTA	736	NE2	HIS	398	17.688	-1.585	39.806	1.00	55.81
	ATOM	737	C	HIS	398	20.999	3.084	41.196	1.00	47.44
15	ATOM	738	0	HIS	398	22.121	2.887	40.730	1.00	44.91
13	ATOM	739	И	PRO	399	20.755	4.049	42.096	1.00	46.45
									1.00	
	MOTA	740	CD	PRO	399	19.443	4.300	42.721		47.27
	MOTA	741	CA	PRO	399	21.785	4.968	42.586	1.00	45.35
20	ATOM	742	CB	PRO	399	21.127	5.631	43.793	1.00	47.40
20	ATOM	743	CG	PRO	399	19.660	5.561	43.504	1.00	47.72
	MOTA	744	C	PRO	399	23.086	4.270	42.958	1.00	44.70
	MOTA	745	0	PRO	399	23.078	3.233	43.627	1.00	46.46
	MOTA	746	N	GLY	400	24.202	4.840	42.509	1.00	41.57
~ ~	MOTA	747	CA	GLY	400	25.506	4.281	42.813	1.00	39.84
25	MOTA	748	C	GLY	400	25.907	3.047	42.022	1.00	37.85
	MOTA	749	0	GLY	400	27.027	2.560	42.176	1.00	40.48
	MOTA	750	N	LYS	401	25.012	2.537	41.180	1.00	36.39
	MOTA	751	CA	LYS	401	25.315	1.344	40.390	1.00	34.47
	MOTA	752	CB	LYS	401	24.562	0.130	40.947	1.00	36.12
30	MOTA	753	CG	LYS	401	24.633	-0.007	42.466	1.00	39.30
	ATOM	754	CD	LYS	401	24.288	-1.429	42.903	1.00	44.38
	MOTA	755	CE	LYS	401	24.459	-1.605	44.408	1.00	46.68
	MOTA	756	NZ	LYS	401	24.968	-2.969	44.747	1.00	53.37
	ATOM	757	C	LYS	401	24.969	1.485	38.911	1.00	32.34
35	MOTA	758	0	LYS	401	24.141	2.308	38.531	1.00	31.16
	· ATOM	759	N	LEU	402	25.612	0.663	38.086	1.00	28.52
	ATOM	760	CA	LEU	402	25.358	0.658	36.648	1.00	29.06
	ATOM	761	CB	LEU	402	26.661	0.847	35.867	1.00	29.26
	ATOM	762	CG	LEU	402	27.278	2.242	36.029	1.00	24.67
40	MOTA	763	CD1	LEU	402	28.623	2.310	35.310	1.00	27.47
	MOTA	764	CD2	LEU	402	26.312	3.277	35.482	1.00	24.93
	ATOM	765	С	LEU	402	24.755	-0.686	36.292	1.00	30.43
	MOTA	766	0	LEU	402	25.367	-1.727	36.535	1.00	31.36
	ATOM	767	N	LEU	403	23.552	-0.658	35.735	1.00	31.07
45	MOTA	768	CA	LEU	403	22.873	-1.880	35.335	1.00	32.96
	MOTA	769	CB	LEU	403	21.361	-1.693	35.434	1.00	33.86
	MOTA	770	CG	LEU	403	20.551	-2.991	35.415	1.00	39.29
	ATOM	771	CD1	LEU	403	20.584	-3.637	36,806	1.00	43.62
	ATOM	772	CD2	LEU	403	19.128	-2.689	34.998	1.00	41.32
50	ATOM	773	C	LEU	403	23.255	-2.218	33.899	1.00	30.06
	ATOM	774	Ö	LEU	403	22.543	-1.870	32.956	1.00	31.63
	ATOM	775	И	PHE	404	24.383	-2.893	33.733	1.00	29.19
	ATOM	776	CÀ	PHE	404	24.834	-3.256	32.403	1.00	28.93
	ATOM	777	CB	PHE	404	26.201	-3.929	32.493	1.00	30.05
55	ATOM	778	CG	PHE	404	27.305	-2.998	32.926	1.00	30.78
23	ATOM	779	CD1	PHE	404	27.794	-3.033	34.228	1.00	32.91
	ATOM	780	CD2	PHE	404	27.848	-2.078	32.030	1.00	32.75
	ATOM	781	CE1	PHE	404	28.816	-2.160	34.638	1.00	34.73
60	ATOM	782	CE2	PHE	404	28.864	-1.205	32.423	1.00	30.68
υυ	ATOM	783	CZ	PHE	404	29.350	-1.242	33.727	1.00	31.43
	MOTA	784	С	PHE	404	23.809	-4.181	31.756	1.00	30.80
						218				

5	ATOM	842	CD	ARG	412	31.644	5.580	43.219	1.00	54.61
	ATOM	843	NE	ARG	412	33.071	5.615	42.912	1.00	56.53
	ATOM	844	CZ	ARG	412	33.827	6.708	42.985	1.00	61.90
	ATOM	845	NH1	ARG	412	33.291	7.866	43.356	1.00	63.48
	ATOM	846	NH2	ARG	412	35.120	6.645	42.682	1.00	61.21
10	ATOM	847	С	ARG	412	32.771	1.026	42.429	1.00	50.29
	ATOM	848	0	ARG	412	33.628	0.866	41.561	1.00	51.02
	ATOM	849	N	ASN	413	32.844	0.469	43.633	1.00	51.94
	ATOM	850	CA	ASN	413	33.969	-0.375	44.021	1.00	53.15
	ATOM	851	CB	ASN	413	33.719	-0.980	45.403	1.00	55.88
15	ATOM	852	CG	ASN	413	33.654	0.073	46.496	1.00	57.99
	ATOM	853	OD1	ASN	413	33.697	1.276	46.223	1.00	58.27
	ATOM	854	ND2	ASN	413	33.551	-0.375	47.742	1.00	57.90
	ATOM	855	C	ASN	413	34.235	-1.480	43.013	1.00	53.95
	ATOM	856	Ō	ASN	413	35.386	-1.743	42.659	1.00	53.67
20	ATOM	857	N	GLN	414	33.173	-2.129	42.547	1.00	55.33
	ATOM	858	CA	GLN	414	33.326	-3.198	41.573	1.00	55.42
	ATOM	859	CB	GLN	414	31.991	-3.904	41.343	1.00	55.44
	ATOM	860	CG	GLN	414	31.645	-4.933	42.391	1.00	56.07
	ATOM	861	CD	GLN	414	30.203	-5.376	42.336	1.00	57.40
25	ATOM	862	OE1	GLN	4.14	29.296	-4.536	42.402	1.00	60.22
	ATOM	863	NE2	GLN	414	29.973	-6.664	42.199	1.00	57.27
	ATOM	864	C	GLN	414	33.850	-2.630	40.259	1.00	55.51
	ATOM	865	0	GLN	414	34.654	-3.265	39.578	1.00	56.16
	ATOM	866	N	GLY	415	33.398	-1.430	39.910	1.00	57.07
30	ATOM	867	CA	GLY	415	33.849	-0.806	38.680	1.00	58.51
50	ATOM	868	C	GLY	415	35.350	-0.582	38.689	1.00	61.10
	ATOM	869	ō	GLY	415	36.023	-0.748	37.671	1.00	59.47
	ATOM	870	N	LYS	416	35.877	-0.211	39:851	1.00	62.77
	ATOM	871	CA	LYS	416	37.305	0.041	40.011	1.00	65.49
35	ATOM	872	CB	LYS	416	37.634	0.262	41.491	1.00	66.04
55	MOTA	873	CG	LYS	416	38.121	1.663	41.823	1.00	68.71
	ATOM	874	CD	LYS	416	37.078	2.439	42.613	1.00	70.98
	ATOM	875	CE	LYS	416	37.404	2.448	44.100	1.00	71.84
	ATOM	876	NZ	LYS	416	36.225	2.079	44.933	1.00	71.95
40	ATOM	877	C	LYS	416	38.159	-1.105	39.472	1.00	66.41
. •	ATOM	878	0	LYS	416	39.361	-0.946	39.269	1.00	67.15
	ATOM	879	N	CYS	417	37.538	-2.257	39.238	1.00	67.33
	ATOM	880	CA	CYS	417	38.270	-3.414	38.741	1.00	68.16
	ATOM	881	CB	CYS	417	37.951	-4.642	39.602	1.00	70.88
45	ATOM	882	SG	CYS	417	38.592	-4.549	41.301	1.00	76.09
	ATOM	883	c	CYS	417	38.015	-3.736	37.270	1.00	67.54
	ATOM	884	Ö	CYS	417	38.632	-4.653	36.720	1.00	68.48
	ATOM	885	N	VAL	418	37.111	-2.994	36.631	1.00	64.67
	ATOM	886	CA	VAL	418	36.817	-3.226	35.218	1.00	59.97
50	MOTA	887	CB	VAL	418	35.326	-2.917	34.879	1.00	59.60
50	ATOM	888	CG1	VAL	418	34.971	-1.503	35.284	1.00	59.13
	ATOM	889	CG2	VAL	418	35.072	-3.121	33.391	1.00	54.85
	ATOM	890	C	VAL	418	37.739	-2.362	34.355	1.00	58.37
	MOTA	891	ō	VAL	418	37.799	-1.140	34.512	1.00	55.44
55	MOTA	892	Й	GLU	419	38.463	-3.012	33.450	1.00	56.02
J J	ATOM	893	CA	GLU	419	39.403	-2.328	32.570	1.00	54.28
	ATOM	894	CB	GLU	419	40.149	-2.326 -3.351	31.710	1.00	57.57
	ATOM	895	CG	GLU	419	39.385	-3.779	30.468	1.00	60.87
	ATOM	896	CD	GLU	419	40.179	-4.722	29.584	1.00	63.34
60	ATOM	897	OE1	GLU	419	40.432	-5.870	30.011	1.00	64.90
50	ATOM	898	OE1	GLU	419	40.432	-4.313	28.462	1.00	63.18
	ALOPI	090	UE2	CHO	417	40.740	4.010	20.402	1.00	03.10

5	ATOM	956	N	MET	427	31.585	8.797	35.572	1.00	30.69
	ATOM	957	CA	MET	427	30.919	9.736	34.675	1.00	28.63
	ATOM	958	CB	MET	427	31.744	9.912	33.407	1.00	26.83
	MOTA	959	CG	MET	427	33.032	10.680	33.608	1.00	31.41
	ATOM	960	SD	MET	427	33.962	10.783	32.077	1.00	34.87
10	ATOM	961	CE	MET	427	35.409	11.753	32.643	1.00	44.60
	ATOM	962	С	MET	427	29.526	9.202	34.324	1.00	28.70
	ATOM	963	0	MET	427	28.536	9.947	34.302	1.00	25.01
	ATOM	964	N	LEU	428	29.451	7.902	34.057	1.00	25.13
	ATOM	965	CA	LEU	428	28.173	7.292	33.730	1.00	27.60
15	ATOM	966	CB	LEU	428	28.379	5.824	33.332	1.00	28.00
	ATOM	967	CG	LEU	428	29.039	5.682	31.957	1.00	26.99
	ATOM	968	CD1	LEU	428	29.678	4.303	31.782	1.00	27.80
	ATOM	969	CD2	LEU	428	27.995	5.927	30.894	1.00	25.33
	ATOM	970	C	LEU	428	27.210	7.412	34.916	1.00	29.59
20	ATOM	971	0	LEU	428	26.041	7.743	34.743	1.00	27.07
	ATOM	972	N	LEU	429	27.701	7.147	36.126	1.00	30.40
	ATOM	973	CA	LEU	429	26.859	7.251	37.323	1.00	30.59
	ATOM	974	CB	LEU	429	27.675	6.884	38.571	1.00	31.76
	ATOM	975	CG	LEU	429	28.078	5.415	38.757	1.00	32.43
25	ATOM	976	CD1	LEU	429	28.961	5.264	39.995	1.00	31.60
	ATOM	977	CD2	LEU	429	26.825	4.573	38.903	1.00	34.66
	ATOM	978	C	LEU	429	26.319	8.681	37.466	1.00	30.46
	ATOM	979	o	LEU	429	25.143	8.901	37.769	1.00	28.40
	ATOM	980	N	ALA	430	27.193	9.656	37.237	1.00	31.34
30	ATOM	981	CA	ALA	430	26.806	11.059	37.332	1.00	29.83
20	ATOM	982	CB	ALA	430	28.017	11.951	37.078	1.00	31.29
	ATOM	983	C	ALA	430	25.696	11.387	36.344	1.00	31.04
	ATOM	984	0	ALA	430	24.753	12.107	36.674	1.00	30.79
	ATOM	985	N	THR	431	25.802	10.854	35.128	1.00	30.30
35	ATOM	986	CA	THR	431	24.786	11.105	34.112	1.00	28.81
	ATOM	987	CB	THR	431	25.207	10.533	32.737	1.00	30.55
	ATOM	988	OG1	THR	431	26.569	10.893	32.465	1.00	31.88
	ATOM	989	CG2	THR	431	24.321	11.087	31.634	1.00	25.63
	ATOM	990	C	THR	431	23.462	10.481	34.530	1.00	29.49
40	ATOM	991	0	THR	431	22.402	11.099	34.397	1.00	26.18
	MOTA	992	N	SER	432	23.520	9.253	35.037	1.00	28.11
	ATOM	993	CA	SER	432	22.308	8.573	35.480	1.00	29.78
	ATOM	994	CB	SER	432	22.639	7.177	36.008	1.00	33.11
	ATOM	995	OG	SER	432	21.454	6.412	36.136	1.00	36.92
45	MOTA	996	C	SER	432	21.651	9.399	36.589	1.00	31.49
	ATOM	997	Ō	SER	432	20.433	9.576	36.613	1.00	30.09
	ATOM	998	N	ASER	433	22.476	9.901	37.496	0.75	32.09
	ATOM	999	N	BSER	433	22.474	9.906	37.500	0.25	31.10
	ATOM	1000	CA	ASER	433	22.002	10.715	38.605	0.75	35.68
50	MOTA	1001	CA	BSER		21.985	10.717	38.608	0.25	32.21
50	ATOM	1002	СВ	ASER		23.185	11.097	39.502	0.75	37.18
	ATOM	1003	СВ	BSER		23.145	11.104	39.529	0.25	31.45
	ATOM	1004	OG	ASER		22.823	12.090	40.443	0.75	44.09
	ATOM	1005	OG	BSER		23.785	9.953	40.053	0.25	29.52
55	ATOM	1006	C	ASER	433	21.299	11.971	38.091	0.75	35.01
33	ATOM	1007	C	BSER	433	21.295	11.976	38.092	0.25	32.88
	ATOM	1007	0	ASER	433	20.257	12.373	38.612	0.75	35.34
	ATOM	1009	0	BSER	433	20.257	12.391	38.622	0.25	33.42
	ATOM	1010	N	ARG	434	21.867	12.579	37.054	1.00	33.38
60	ATOM	1011	CA	ARG	434	21.300	13.788	36.470	1.00	34.19
30	ATOM	1012	CB	ARG	434	22.239	14.354	35.400	1.00	33.89
	111 011	-0-2		, II.O	1.J I					

5	ATOM	1070	C	LEU	440	12.587	11.024		1:00	36.48
	MOTA	1071	0	LEU	440	12.518	9.967	32.826	1.00	37.36
	MOTA	1072	N	GLN	441	11.763	11.328	31.197	1.00	36.82
	MOTA	1073	CA	GLN	441	10.696	10.420	30.785	1.00	38.51
	ATOM	1074	CB	GLN	441	9.431	11.211	30.443	1.00	38.23
10	MOTA	1075	CG	GLN	441	8.912	12.063	31.592	1.00	42.46
	ATOM	1076	CD	GLN	441	8.362	11.227	32.729	1.00	44.91
	MOTA	1077	OE1	GLN	441	7.268	10.668	32.629	1.00	47.31
	ATOM	1078	NE2	GLN	441	9.119	11.132	33.818	1.00	44.06
	ATOM	1079	C	GLN	441	11.099	9.565	29.585	1.00	38.48
15	ATOM	1080	0	GLN	441	11.923	9.976	28.763	1.00	35.80
13	ATOM	1081	N	GLY	442	10.500	8.378	29.494	1.00	36.03
							7.468	28.401		
	ATOM	1082	CA	GLY	442	10.792			1.00	37.72
	ATOM	1083	C	GLY	442	10.599	8.112	27.043	1.00	36.88
20	ATOM	1084	0	GLY	442	11.381	7.877	26.123	1.00	33.72
20	ATOM	1085	N	GLU	443	9.556	8.925	26.918	1.00	36.59
	MOTA	1086	CA	GLU	443	9.269	9.603	25.661	1.00	37.13
	MOTA	1087	CB	GLU	443	7.956	10.379	25.764	1.00	41.57
	MOTA	1088	CG	GLU	443	6.723	9.488	25.879	1.00	47.76
	ATOM	1089	CD	GLU	443	6.483	9.008	27.302	1.00	53.96
25	ATOM	1090	OE1	${ t GLU}$	443	5.619	8.123	27.498	1.00	57.66
	MOTA	1091	OE2	\mathtt{GLU}	443	7.159	9.515	28.225	1.00	56.13
	MOTA	1092	C	GLU	443	10.408	10.551	25.311	1.00	35.27
	MOTA	1093	0	GLU	443	10.759	10.704	24.145	1.00	33.85
	ATOM	1094	N	GLU	444	10.984	11.179	26.331	1.00	32.09
30	MOTA	1095	CA	GLU	444	12.097	12.095	26.126	1.00	33.92
	MOTA	1096	CB	${ t GLU}$	444	12.332	12.924	27.388	1.00	34.97
	MOTA	1097	CG	GLU	444	11.169	13.845	27.732	1.00	38.28
	MOTA	1098	CD	GLU	444	11.383	14.610	29.023	1.00	38.11
	MOTA	1099	OE1	GLU	444	11.800	13.993	30.026	1.00	39.53
35	ATOM	1100	OE2	GLU	444	11.132	15.834	29.036	1.00	40.77
	ATOM	1101	С	GLU	444	13.356	11.305	25.770	1.00	33.59
	MOTA	1102	0	GLU	444	14.085	11.670	24.842	1.00	33.35
	ATOM	1103	N	PHE	445	13.590	10.215	26.501	1.00	30.68
	MOTA	1104	CA	PHE	445	14.753	9.357	26.276	1.00	32.49
40	ATOM	1105	CB	PHE	445	14.703	8.139	27.203	1.00	29.35
	MOTA	1106	CG	PHE	445	15.667	7,047	26.828	1.00	30.78
	ATOM	1107	CD1	PHE	445	17.036	7.201	27.030	1.00	28.25
	ATOM	1108	CD2	PHE	445	15.205	5.863	26.266	1.00	30.62
	ATOM	1109	CE1	PHE	445	17.933	6.195	26.675	1.00	28.67
45	MOTA	1110	CE2	PHE	445	16.095	4.848	25.908	1.00	31.37
	ATOM	1111	CZ	PHE	445	17.460	5.015	26.113	1.00	30.37
	MOTA	1112	C	PHE	445	14.850	8.885	24.829	1.00	31.11
	MOTA	1113	0	PHE	445	15.924	8.947	24.221	1.00	32.20
	ATOM	1114	N	VAL	446	13.739	8.415	24.266	1.00	28.63
50	MOTA	1115	CA	VAL	446	13.787	7.943	22.889	1.00	27.94
50	ATOM	1116	CB	VAL	446	12.478	7.193	22.478	1.00	28.48
	MOTA	1117	CG1	VAL	446	12.318	5.939	23.343	1.00	29.61
	ATOM	1118	CG2	VAL	446	11.265	8.092	22.607	1.00	27.23
	MOTA	1119	C	VAL	446	14.099	9.064	21.900	1.00	27.28
55	MOTA	1120	0	VAL	446	14.781	8.837	20.904	1.00	28.07
	ATOM	1121	N	CYS	447	13.619	10.275	22.166	1.00	28.97
	ATOM	1122	CA	CYS	447	13.919	11.394	21.272	1.00	29.14
	MOTA	1123	CB	CYS	447	13.156	12.653	21.693	1.00	28.90
.	MOTA	1124	SG	CYS	447	11.389	12.591	21.309	1.00	35.68
60	MOTA	1125	C	CYS	447	15.420	11.677	21.328	1.00	28.03
	MOTA	1126	0	CYS	447	16.063	11.885	20.302	1.00	29.34

5	ATOM	1184	CB	ASN	455	23.284	14.998	16.224	1.00	26.20
	ATOM	1185	CG	ASN	455	24.174	16.217	16.419	1.00	27.26
	ATOM	1186	OD1	ASN	455	24.171	17.134	15.602	1.00	30.83
	ATOM	1187	ND2	ASN	455	24.931	16.230	17.506	1.00	27.16
	ATOM	1188	C	ASN	455	25.062	13.782	14.954	1.00	30.63
10	ATOM	1189	0	ASN	455	25.965	14.517	14.525	1.00	27.69
	MOTA	1190	N	SER	456	25.268	12.569	15.461	1.00	.30.48
	ATOM	1191	CA	SER	456	26.572	11.928	15.579	1.00	35.26
	MOTA	1192	CB	SER	456	26.393	10.393	15.505	1.00	39.69
	MOTA	1193	OG	SER	456	25.871	9.953	14.243	1.00	30.73
15	MOTA	1194	С	SER	456	27.627	12.344	14.562	1.00	35.56
	MOTA	1195	0	SER	456	28.599	13.041	14.884	1.00	33.00
	MOTA	1196	N	GLY	457	27.437	11.886	13.334	1.00	33.88
	MOTA	1197	CA	GLY	457	28.393	12.189	12.292	1.00	36.77
	MOTA	1198	С	GLY	457	27.876	13.017	11.136	1.00	37.02
20	MOTA	1199	0	GLY	457	28.310	12.805	10.013	1.00	38.66
	MOTA	1200	N	VAL	458	26.967	13.956	11.392	1.00	39.12
	MOTA	1201	CA	VAL	458	26.438	14.802	10.317	1.00	43.81
	ATOM	1202	CB	VAL	458	25.231	15.648	10.755	1.00	44.25
	MOTA	1203	CG1	VAL	458	24.209	15.713	9.631	1.00	44.51
25	MOTA	1204	CG2	VAL	458	24.638	15.098	12.013	1.00	50.53
	MOTA	1205	C	VAL	458	27.472	15.801	9.817	1.00	46.72
	MOTA	1206	0	VAL	458	27.391	16.265	8.681	1.00	47.08
	MOTA	1207	N	TYR	459	28.432	16.144	10.670	1.00	50.74
	MOTA	1208	CA	TYR	459	29.456	17.114	10.301	1.00	55.43
30	MOTA	1209	CB	TYR	459	29.647	18.129	11.433	1.00	56.62
	ATOM	1210	CG	TYR	459	28.375	18.870	11.781	1.00	59.34
	ATOM	1211	CD1	TYR	459	28.094	19.229	13.095	1.00	60.73
	MOTA	1212	CEl	TYR	459	26.900	19.867	13.429	1.00	62.14
	ATOM	1213	CD2	TYR	459	27.430	19.175	10.795	1.00	62.16
35	MOTA	1214	CE2	TYR	459	26.234	19.812	11.118	1.00	63.83
	MOTA	1215	CZ	TYR	459	25.976	20.154	12.437	1.00	62.88
	MOTA	1216	OH	TYR	459	24.790	20.764	12.767	1.00	62.56
	MOTA	1217	C	TYR	459	30.791	16.489	9.928	1.00	57.21
	MOTA	1218	0	TYR	459	31.793	17.189	9.798	1.00	56.86
40	MOTA	1219	N	THR	460	30.800	15.173	9.750	1.00	59.22
	MOTA	1220	CA	THR	460	32.018	14.474	9.366	1.00	62.25
	MOTA	1221	CB	THR	460	32.502	13.531	10.499	1.00	63.07
	ATOM		OG1	THR	460	33.474	12.613	9.983	1.00	67.80
	MOTA	1223	CG2	THR	460	31.344	12.759	11.084	1.00	60.23
45	MOTA	1224	C	THR	460	31.759	13.678	8.086	1.00	63.54
	MOTA	1225	0	THR	460	32.457	12.708	7.782	1.00	63.91
	MOTA	1226	N	PHE	461	30.758	14.113	7.326	1.00	65.06
	MOTA	1227	CA	PHE	461	30.395	13.446	6.080	1.00	67.00
	MOTA	1228	CB	PHE	461	29.052	13.975	5.563	1.00	66.48
50	MOTA	1229	CG	PHE	461	27.867	13.147	5.991	1.00	66.30
	MOTA	1230	CD1	PHE	461	26.657	13.754	6.312	1.00	65.58
	MOTA	1231	CD2	PHE	461	27.963	11.760	6.085	1.00	66.41
	MOTA	1232	CE1	PHE	461	25.562	12.996	6.723	1.00	65.45
	MOTA	1233	CE2	PHE	461	26.872	10.994	6.494	1.00	66.83
55	MOTA	1234	CZ	PHE	461	25.670	11.616	6.814	1.00	65.12
	MOTA	1235	C	PHE	461	31.463	13.604	5.004	1.00	68.38
	MOTA	1236	0	PHE	461	32.181	14.606	4.962	1.00	68.98
	MOTA	1237	N	LEU	462	31.542	12.601	4.132	1.00	69.57
	ATOM	1238	CA	LEU	462	32.511	12.545	3.039	1.00	71.68
60	ATOM '	1239	CB	LEU	462	32.080	11.475	2.030	1.00	71.00
	ATOM	1240	C	LEU	462	32.810	13.856	2.304	1.00	72.40

5	ATOM	1298	0	GLU	470	19.321	16.035	2 157	1 00	22 60
5	ATOM	1299	N	GLU	471	21.274	15.046	2.157 1.606	1.00 1.00	32.60 34.66
	MOTA	1300	CA	GLU	471	21.309	14.162	2.766	1.00	35.68
	MOTA	1301	CB	GLU	471	22.515	13.222	2.671	1.00	34.57
	MOTA	1302	CG	GLU	471	22.376	12.122	1.614	1.00	37.98
10	MOTA	1302	CD	GLU	471	21.476	10.989	2.063	1.00	37.38
10	MOTA	1303	OE1	GLU	471					
		1304	OE2			20.268	11.027 10.061	1.743	1.00	41.12
	ATOM	1306	C C	GLU	471	21.974 21.393		2.737	1.00	32.11
	MOTA MOTA	1306	0	GLU	471		14.983	4.052	1.00	34.79
15				GLU	471	20.596	14.793	4.969	1.00	32.80
13	ATOM	1308	N	LYS	472	22.358	15.898	4.112	1.00	33.93
	MOTA	1309	CA	LYS	472	22.518	16.739	5.291	1.00	35.58
	MOTA	1310	CB	LYS	472	23.683	17.710	5.097	1.00	39.11
	ATOM	1311	CG	LYS	472	25.050	17.050	5.138	1.00	41.47
20	MOTA	1312	CD	LYS	472	26.080	17.957	5.794	1.00	46.97
20	ATOM	1313	CE	LYS	472	27.445	17.286	5.862	1.00	48.40
	ATOM	1314	NZ	LYS	472	27.850	16.702	4.547	1.00	51.55
	ATOM	1315	C	LYS	472	21.237	17.523	5.582	1.00	34.78
	MOTA	1316	0	LYS	472	20.795	17.607	6.724	1.00	33.95
25	ATOM	1317	N	ASP	473	20.643	18.097	4.545	1.00	33.47
23	ATOM	1318	CA	ASP	473	19.420	18.865	4.720	1.00	34.63
	ATOM	1319	CB	ASP	473	18.923	19.404	3.380	1.00	37.21
	ATOM	1320	CG	ASP	473	17.654	20.221	3.522	1.00	43.24
	MOTA	1321	OD1	ASP	473	16.559	19.687	3.230	1.00	45.20
30	MOTA	1322	OD2	ASP	473	17.750	21.396	3.932	1.00	45.59
30	MOTA	1323	C	ASP	473	18.339	17.998	5.338	1.00	32.93
	MOTA	1324 1325	N O	ASP	473	17.642	18.416	6.264	1.00	32.87
	ATOM			HIS	474	18.199	16.784	4.827	1.00	32.74
	MOTA	1326	CA	HIS	474	17.185	15.882	5.343	1.00	32.21
35	MOTA MOTA	1327 1328	CB CG	HIS	474 474	17.185 16.047	14.575	4.568	1.00	32.79
55	ATOM	1329	CD2	HIS HIS	474	14.711	13.675 13.813	4.924	1.00	36.22 38.33
	ATOM	1330	ND1	HIS	474	16.227	12.456	4.750 5.542	1.00	38.97
	ATOM	1331	CE1	HIS	474	15.053	11.883	5.732	1.00	37.99
	ATOM	1332	NE2	HIS	474	14.116	12.686	5.752	1.00	37.43
40	MOTA	1333	C	HIS	474	17.403	15.573	6.815	1.00	29.74
40	MOTA	1334	0	HIS	474	16.460	15.543	7.596	1.00	29.74
	ATOM	1335		ILE	475	18.653	15.326	7.185	1.00	27.80
	ATOM	1336	CA	ILE	475	18.971	15.014	8.571	1.00	25.61
	ATOM	1337	CB	ILE	475	20.478	14.708	8.720	1.00	25.59
45	ATOM	1338	CG2	ILE	475	20.877	14.713	10.193	1.00	27.17
12	ATOM	1339	CG1	ILE	475	20.787	13.341	8.092	1.00	26.17
	ATOM	1340	CD1	ILE	475	22.258	13.071	7.849	1.00	27.07
	ATOM	1341	C	ILE	475	18.576	16.201	9.460	1.00	27.91
	MOTA	1342	0	ILE	475	17.928	16.038	10.485	1.00	29.16
50	ATOM	1343	N	HIS	476	18.956	17.404	9.054	1.00	29.41
50	ATOM	1344	CA	HIS	476	18.621	18.575	9.846	1.00	29.73
	ATOM	1345	CB	HIS	476	19.342	19.796	9.281	1.00	32.27
	ATOM	1346	CG	HIS	476	20.777	19.750	9.699	1.00	39.44
	ATOM	1347	CD2	HIS	476	21.355	19.707	10.915		
55	ATOM	1348	ND1	HIS	476	21.809	20.067	8.808	1.00 1.00	39.81 39.79
33	ATOM	1349	CE1	HIS	476	22.959	20.007	9.456	1.00	
	ATOM	1350	NE2	HIS	476	22.712	19.809	10.735	1.00	39.98 40.26
	ATOM	1351	C	HIS	476	17.120	18.810	9.948	1.00	31.40
	ATOM	1351	0	HIS	476	16.636	19.336	10.951	1.00	29.79
60	MOTA	1353	N	ARG	477	16.374	18.396	8.929	1.00	31.82
30	MOTA	1354	CA	ARG	477	14.929	18.570	8.956	1.00	31.53
	111061	100	CA	ANG	2//	14.949	10.570	0.930	1.00	ر ر . بـ ر

5	MOTA	1412	OD2	ASP	484	9.106	20.952	14.445	1.00	42.49
	MOTA	1413	C	ASP	484	8.657	18.985	18.840	1.00	33.16
	MOTA	1414	0	ASP	484	7.830	19.339	19.676	1.00	34.86
	MOTA	1415	N	THR	485	8.996	17.715	18.646	1.00	33.91
	MOTA	1416	CA	THR	485	8.396	16.635	19.414	1.00	34.41
10	ATOM	1417	CB	THR	485	8.875	15.268	18.885	1.00	33.58
	MOTA	1418	OG1	THR	485	8.400	15.094	17.542	1.00	37.04
	ATOM	1419	CG2	THR	485	8.347	14.138	19.751	1.00	30.89
	ATOM	1420	C	THR	485	8.708	16.757	20.903	1.00	35.15
	MOTA	1421	0	THR	485	7.818	16.600	21.744	1.00	31.99
15	ATOM	1422	N	LEU	486	9.966	17.046	21.229	1.00	33.77
15	ATOM	1423	CA	LEU	486	10.368	17.192	22.621	1.00	34.31
	ATOM	1424	CB	LEU	486	11.879	17.192	22.721	1.00	32.00
	ATOM	1424	CG	LEU	486	12.776		22.721		
	ATOM		CD1	LEU			16.201		1.00	34.99
20		1426	CD1		486	14.233	16.613	22.521	1.00	32.65
20	ATOM	1427		LEU	486	12.635	15.481	24.105	1.00	29.90
	ATOM	1428	C	LEU	486	9.597	18.348	23.256	1.00	34.87
	ATOM	1429	0	LEU	486	9.078	18.225	24.362	1.00	35.85
	MOTA	1430	N	ILE	487	9.513	19.469	22.548	1.00	35.59
25	MOTA	1431	CA	ILE	487	8.787	20.625	23.064	1.00	36.79
25	MOTA	1432	CB	ILE	487	8.890	21.826	22.095	1.00	37.32
	MOTA	1433	CG2	ILE	487	7.833	22.884	22.443	1.00	40.19
	MOTA	1434	CG1	ILE	487	10.292	22.443	22.181	1.00	36.00
	MOTA	1435	CD1	ILE	487	10.635	23.041	23.544	1.00	33.58
20	MOTA	1436	С	ILE	487	7.315	20.257	23.276	1.00	38.56
30	MOTA	1437	0	ILE	487	6.708	20.628	24.282	1.00	38.52
	MOTA	1438	N	HIS	488	6.749	19.521	22.326	1.00	40.33
	ATOM	1439	CA	HIS	488	5.357	19.096	22.427	1.00	42.29
	MOTA	1440	CB	HIS	488	4.962	18.282	21.197	1.00	44.26
25	ATOM	1441	CG	HIS	488	3.612	17.647	21.305	1.00	47.75
35	MOTA	1442	CD2	HIS	488	2.369	18.175	21.214	1.00	47.46
	MOTA	1443	ND1	HIS	488	3.440	16.298	21.534	1.00	51.09
	MOTA	1444	CE1	HIS	488	2.148	16.023	21.577	1.00	51.15
	ATOM	1445	NE2	HIS	488	1.477	17.144	21.385	1.00	50.22
40	ATOM	1446	C	HIS	488	5.154	18.254	23.685	1.00	42.55
40	MOTA	1447	0	HIS	488	4.233	18.498	24.467	1.00	43.02
	ATOM	1448	N	LEU	489	6.022	17.266	23.879	1.00	39.91
	ATOM	1449	CA	LEU	489	5.936	16.399	25.048	1.00	39.93
	ATOM	1450	CB	LEU	489	7.087	15.396	25.048	1.00	38.83
15	ATOM	1451	CG	LEU	489	6.961	14.242	24.056	1.00	39.31
45	ATOM	1452	CD1	LEU	489	8.259	13.456	24.027	1.00	39.01
	ATOM	1453	CD2	LEU	489	5.799	13.345	24.459	1.00	41.98
	MOTA	1454	C	LEU	489	5.973	17.203	26.339	1.00	40.24
	ATOM	1455	0	LEU	489	5.267	16.888	27.298	1.00	38.72
~ 0	ATOM	1456	N	MET	490	6.798	18.246	26.353	1.00	39.94
50	MOTA	1457	CA	MET	490	6.939	19.102	27.522	1.00	41.50
	ATOM	1458	CB	MET	490	8.208	19.953	27.394	1.00	39.15
	MOTA	1459	CG	MET	490	9.495	19.169	27.608	1.00	41.69
	ATOM	1460	SD	MET	490	10.978	20.106	27.161	1.00	35.76
~ ~	MOTA	1461	CE	MET	490	12.178	18.775	27.056	1.00	39.22
55	MOTA	1462	С	MET	490	5.718	20.004	27.717	1.00	42.33
	ATOM	1463	0	MET	490	5.296	20.258	28.848	1.00	41.09
	ATOM	1464	N	ALA	491	5.162	20.498	26.616	1.00	43.15
	MOTA	1465	CA	ALA	491	3.983	21.351	26.693	1.00	43.79
<i>~</i>	MOTA	1466	CB	ALA	491	3.622	21.879	25.311	1.00	43.93
60	ATOM	1467	C ·	ALA	491	2.841	20.510	27.251	1.00	46.16
	MOTA	1468	0	ALA	491	2.073	20.967	28.095	1.00	44.69

5	ATOM	1526	C	GLN	499	10.655	24.773	30.285		35.03
	ATOM	1527	0	GLN	499	11.446	23.832	30.422	1.00	36.59
	ATOM	1528	N	GLN	500	9.980	24.994	29.162	1.00	34.14
	ATOM	1529	CA	GLN	500	10.136	24.138	27.990	1.00	34.65
10	ATOM	1530	CB	GLN	500	9.042	24.436	26.958	1.00	33.90
10	MOTA	1531	CG	GLN	500	7.672	23.872	27.315	1.00	36.62
	MOTA	1532	CD	GLN	500	6.558	24.419	26.435	1.00	40.17
	ATOM	1533	OE1	GLN	500	6.660	24.417	25.207	1.00	40.22
	MOTA	1534	NE2	GLN	500	5.482	24.886	27.064	1.00	41.82
1.5	MOTA	1535	C	GLN	500	11.511	24.350	27.358	1.00	34.96
15	ATOM	1536	0	GLN	500	12.256	23.387	27.124	1.00	30.79
	ATOM	1537	N	HIS	501	11.835	25.612	27.078	1.00	34.21
	MOTA	1538	CA	HIS	501	13.117	25.966	26.480	1.00	37.42
	ATOM	1539	CB	HIS	501	13.195	27.476	26.246	1.00	43.08
20	ATOM	1540	CG	HIS	501	12.043	28.027	25.468	1.00	51.13
20	ATOM	1541	CD2	HIS	501	11.534	27.678	24.263	1.00	53.05
	MOTA	1542	ND1	HIS	501	11.264	29.068	25.926	1.00	54.54
	ATOM	1543	CE1	HIS	501	10.325	29.337	25.037	1.00	54.36
	MOTA	1544	NE2	HIS	501	10.466	28.508	24.018	1.00	55.19
25	ATOM	1545	C	HIS	501	14.255	25.543	27.395	1.00	35.79
25	ATOM	1546	0	HIS	501	15.271	24.996	26.945	1.00	36.20
	ATOM	1547	N	GLN	502	14.086	25.799	28.685	1.00	33.90
	ATOM	1548	CA	GLN	502	15.110	25.438	29.650	1.00	32.18
	ATOM	1549	CB	GLN	502	14.740	25.977	31.033	1.00	35.84
20	MOTA	1550	CG	GLN	502	14.787	27.498	31.113	1.00	32.66
30	ATOM	1551	CD	GLN	502	14.420	28.028	32.486	1.00	36.62
	ATOM	1552	OE1	GLN	502	14.102	27.262	33.397	1.00	33.99
	ATOM	1553	NE2	GLN	502	14.462	29.348	32.640	1.00	36.22
	ATOM	1554	C	GLN	502	15.340	23.932	29.716	1.00	31.79
35	MOTA	1555	0	GLN	502	16.483	23.479	29.769	1.00	28.00
33	ATOM	1556	N	ARG	503	14.266	23.146	29.705	1.00	30.99
	ATOM	1557	CA	ARG	503	14.436	21.704	29.779	1.00	29.91
	ATOM	1558	CB	ARG	503	13.107	21.011	30.052	1.00	32.79
	ATOM	1559	CG	ARG	503	13.258	19.541	30.400	1.00	30.84
40	ATOM ATOM	1560	CD	ARG	503	11.930	18.935	30.798	1.00	30.61
70	ATOM	1561 1562	NE	ARG ARG	503 503	12.021 12.489	17.490 16.908	30.992	1.00	28.50
	ATOM	1563	CZ NH1	ARG	503			32.093	1.00	29.00
	MOTA	1564	NH2	ARG	503	12.917 12.512	17.640	33.114	1.00	29.85
	ATOM	1565	C	ARG	503	15.051	15.583 21.152	32.180 28.496	1.00 1.00	33.73 29.89
45	ATOM	1566	0	ARG	503	15.895	20.259	28.548	1.00	29.69
	ATOM	1567	N	LEU	504	14.624	21.675	27.351	1.00	28.99
	ATOM	1568	CA	LEU	504	15.164	21.223	26.075	1.00	28.90
	ATOM	1569	CB	LEU	504	14.566	22.023	24.916	1.00	27.72
	ATOM	1570	CG	LEU	504	15.327	21.901	23.593	1.00	30.47
50	ATOM	1571	CD1	LEU	504	15.252	20.453	23.117	1.00	31.74
	ATOM	1572	CD2	LEU	504	14.742	22.843	22.542	1.00	29.85
	ATOM	1573	C	LEU	504	16.681	21.419	26.089	1.00	29.69
	ATOM	1574	Ō	LEU	504	17.439	20.536	25.672	1.00	26.38
	ATOM	1575	N	ALA	505	17.114	22.585	26.564	1.00	28.51
55	ATOM	1576	CA	ALA	505	18.535	22.899	26.632	1.00	25.98
	ATOM	1577	CB	ALA	505	18.735	24.361	27.039	1.00	29.86
	ATOM	1578	C	ALA	505	19.261	24.361	27.604	1.00	26.67
	ATOM	1579	0	ALA	505	20.340	21.462	27.304	1.00	25.54
	ATOM	1580	N	GLN	506	18.677	21.771	28.784	1.00	23.59
60	ATOM	1581	CA	GLN	506	19.299	20.907	29.785	1.00	23.53
- •	ATOM	1582	CB	GLN	506	18.434	20.796	31.043	1.00	27.75
			_~				20.750	34.043	1.00	21.13

5	ATOM	1640	CB	BHIS	513	27.991	14.636	29.536	0.50	21.59
	MOTA	1641	CG	AHIS	513	28.145	16.109	30.179	0.50	27.34
	MOTA	1642	CG	BHIS	513	28.800	14.032	30.642	0.50	23.94
	ATOM	1643	CD2	AHIS	513	29.223	16.616	30.824	0.50	27.56
	ATOM	1644	CD2	BHIS	513	30.095	14.211	31.001	0.50	24.22
10	ATOM	1645	ND1	AHIS	513	27.204	17.117	30.160	0.50	30.62
	ATOM	1646	ND1	BHIS	513	28.285	13.105	31.523	0.50	27.00
	ATOM	1647	CE1	AHIS	513	27.693	18.185	30.763	0.50	26.32
	ATOM	1648	CE1	BHIS	513	29.225	12.740	32.376	0.50	24.40
	ATOM	1649	NE2	AHIS	513	28.916	17.908	31.176	0.50	28.30
15	ATOM	1650	NE2	BHIS	513	30.334	13.396	32.081	0.50	25.54
	ATOM	1651	С	AHIS	513	28.666	13.164	27.738	0.50	19.81
	ATOM	1652	C	BHIS	513	28.720	13.171	27.652	0.50	19.42
	MOTA	1653	0	AHIS	513	29.601	12.426	28.026	0.50	22.45
	ATOM	1654	0	BHIS	513	29.707	12.457	27.809	0.50	22.62
20	ATOM	1655	N	ILE	514	27.633	12.753	27.015	1.00	20.76
	ATOM	1656	CA	ILE	514	27.572	11.396	26.492	1.00	20.94
	ATOM	1657	CB	ILE	514	26.154	11.086	25.953	1.00	27.76
	ATOM	1658	CG2	ILE	514	26.169	9.800	25.123	1.00	28.26
	MOTA	1659	CG1	ILE	514	25.185	10.965	27.139	1.00	27.91
25	ATOM	1660	CD1	ILE	514	23.752	10.649	26.753	1.00	34.31
	ATOM	1661	C	ILE	514	28.641	11.256	25.398	1.00	20.66
	MOTA	1662	0	ILE	514	29.298	10.226	25.285	1.00	22.21
	ATOM	1663	N	ARG	515	28.825	12.294	24.589	1.00	20.48
	ATOM	1664	CA	ARG	515	29.861	12.243	23.554	1.00	21.98
30	ATOM	1665	CB	ARG	515	29.861	13.535	22.726	1.00	23.11
	ATOM	1666	CG	ARG	515	31.003	13.611	21.737	1.00	25.76
	MOTA	1667	CD	ARG	515	30.664	12.818	20.491	1.00	28.55
	ATOM	1668	NE	ARG	515	29.580	13.482	19.788	1.00	36.24
	ATOM	1669	CZ	ARG	515	29.615	13.827	18.508	1.00	38.91
35	MOTA	1670	NH1	ARG	515	30.689	13.566	17.776	1.00	35.37
	MOTA	1671	NH2	ARG	515	28.579	14.459	17.971	1.00	40.27
	ATOM	1672	С	ARG	515	31.221	12.087	24.225	1.00	21.29
	MOTA	1673	0	ARG	515	32.068	11.305	23.795	1.00	20.06
	ATOM	1674	N	HIS	516	31.420	12.844	25.293	1.00	23.23
40	ATOM	1675	CA	HIS	516	32.675	12.812	26.034	1.00	24.75
	ATOM	1676	СВ	HIS	516	32.566	13.794	27.206	1.00	24.03
	ATOM	1677	CG	HIS	516	33.826	13.948	27.990	1.00	31.42
	ATOM	1678	CD2	HIS	516	34.138	13.587	29.257	1.00	35.87
	MOTA	1679	ND1	HIS	516	34.938	14.586	27.489	1.00	33.59
45	ATOM	1680	CE1	HIS	516	35.882	14.613	28.411	1.00	35.70
	MOTA	1681	NE2	HIS	516	35.422	14.013	29.495	1.00	33.35
	MOTA	1682	С	HIS	516	32.965	11.390	26.537	1.00	24.02
	MOTA	1683	0	HIS	516	34.059	10.852	26.362	1.00	23.66
	ATOM	1684	N	MET	5 17	31.969	10.786	27.168	1.00	20.91
50	MOTA	1685	CA	MET	517	32.109	9.436	27.684	1.00	24.21
	MOTA	1686	CB	MET	517	30.837	9.038	28.424	1.00	23.88
	MOTA	1687	CG	MET	517	30.607	9.903	29.652	1.00	26.32
	ATOM	1688	SD	MET	517	29.435	9.222	30.790	1.00	26.67
	ATOM	1689	CE	MET	51 7	27.914	9.390	29.807	1.00	23.26
55	MOTA	1690	С	MET	517	32.399	8.448	26.564	1.00	23.26
	MOTA	1691	0	MET	517	33.213	7.547	26.728	1.00	26.08
	MOTA	1692	N	SER	518	31.736	8.612	25.423	1.00	21.93
	ATOM	1693	CA	SER	518	31.977	7.717	24.301	1.00	23.08
	ATOM	1694		SER	518	30.976	8.027	23.173	1.00	22.02
60	ATOM	1695		SER	518	31.283	7.336	21.978	1.00	24.01
•	MOTA	1696		SER	518	33.432	7.862	23.810	1.00	25.15

5	MOTA	1754	N	LEU	525	39.101	1.162	24.034	1.00	36.96
	MOTA	1755	CA	LEU	525	38.831	0.093	23.084	1.00	37.40
	ATOM	1756	CB	LEU	525	37.416	0.241	22.514	1.00	35.89
	ATOM	1757	CG	LEU	525	36.268	0.107	23.527	1.00	33.17
	ATOM	1758	CD1	LEU	525	34.936	0.246	22.811	1.00	31.77
10	ATOM	1759	CD2	LEU	525	36.343	-1.240	24.238	1.00	35.92
	ATOM	1760	С	LEU	525	39.859	0.057	21,954	1.00	41.32
	ATOM	1761	0	LEU	525	40.244	~1.015	21.487	1.00	40.76
	MOTA	1762	N	TYR	526	40.314	1.227	21.522	1.00	43.68
	ATOM	1763	CA	TYR	526	41.300	1.297	20.449	1.00	49.00
15	ATOM	1764	CB	TYR	526	41.376	2.722	19.890	1.00	51.86
13	ATOM	1765	CG	TYR	526	42.305	2.878	18.704	1.00	57.70
	ATOM	1766	CD1	TYR	526	41.835	2.718	17.400	1.00	58.93
	ATOM	1767	CE1	TYR	526	42.681	2.715	16.305	1.00	61.21
	ATOM	1768	CD2	TYR	526	43.653	3.200	18.883	1.00	58.58
20			CE2	TYR	526 526		3.359	17.790	1.00	61.15
20	ATOM	1769				44.510			1.00	61.13
	ATOM	1770	CZ	TYR	526	44.016	3.194	16.505	1.00	
	ATOM	1771	ОН	TYR	526	44.851	3.343	15.417		63.79
	ATOM	1772	C	TYR	526	42.671	0.871	20.964	1.00	50.14
25	ATOM	1773	0	TYR	526	43.471	0.303	20.223	1.00	50.73
25	ATOM	1774	N	SER	527	42.930	1.139	22.240	1.00	52.72
	ATOM	1775	CA	SER	527	44.205	0.790	22.857	1.00	55.88
	ATOM	1776	CB	SER	527	44.351	1.516	24.199	1.00	55.00
	ATOM	1777	OG	SER	527	43.752	0.788	25.257	1.00	52.46
20	ATOM	1778	C	SER	527	44.365	-0.718	23.054	1.00	60.39
30	ATOM	1779	0	SER	527	45.398	-1.185	23.534	1.00	60.43
-	ATOM	1780	N	MET	528	43.335	-1.472	22.678	1.00	63.86
	ATOM	1781	CA	MET	528	43.347	-2.929	22.788	1.00	67.95
	ATOM	1782	CB	MET	528	42.534	-3.381	24.008	1.00	67.85
35	ATOM	1783	CG	MET	528	41.237	-2.606	24.222	1.00	70.10
33	MOTA	1784	SD	MET	528	39.895	-3.569	24.983	1.00	71.70
	MOTA	1785	CE C	MET	528	39.231 42.726	-4.412 -3.502	23.554 21.513	1.00	72.57 70.33
	MOTA MOTA	1786		MET	528				1.00	70.33
		1787	O N	MET	528	42.170	-4.602	21.513		72.43
40	MOTA MOTA	1788 1789	N CA	LYS LYS	529 529	42.834 42.274	-2.739 -3.122	20.428 19.136	1.00 1.00	72.00
40	ATOM	1790	CB	LYS	529	42.508	-2.004	18.119	1.00	72.00
		1791	C	LYS	529	42.813	-4.439	18.587	1.00	72.47
	MOTA				529	43.990		18.751	1.00	70.37
	MOTA	1792 1793	O N	LYS CYS	530	41.932	-4.762 -5.191	17.930	1.00	74.48
45	ATOM ATOM	1794		CYS	530	42.279	-6.474	17.325	1.00	76.67
73	ATOM	1795	CB	CYS	530	41.004	-7.245	16.952	1.00	77.23
	ATOM	1796	SG	CYS	530	40.447	-8.491	18.146	1.00	79.38
	MOTA	1797	C	CYS	530	43.098	-6.220	16.065	1.00	78.08
		1798		CYS	530			15.623	1.00	78.81
50	ATOM		O N			43.241	-5.076		1.00	
50	MOTA	1799 1800	N	LYS LYS	531 531	43.637	-7.289 -7.187	15.487	1.00	78.22 78.15
	MOTA		CA CB			44.424		14.267	1.00	78.33
	MOTA	1801		LYS	531	45.600	-8.182	14.305		
	MOTA	1802	C	LYS	531	43.508	-7.467	13.067	1.00	77.93
55	ATOM	1803		LYS	531	42.549	-6.734	12.839	1.00	78.07
55	ATOM	1804		ASN	532	43.784	-8.539	12.328	1.00	77.80
	ATOM	1805		ASN	532	42.984	-8.902	11.152	1.00	77.30
	ATOM	1806		ASN	532		-10.166	10.521	1.00	77.55
	ATOM	1807		ASN	532	41.485	-9.082	11.423	1.00	77.34
60	MOTA	1808		ASN	532		-10.123	11.118	1.00	78.13
60	ATOM	1809		VAL	533	40.859	-8.055	11.988	1.00	76.13
	MOTA	1810	CA	VAL	533	39.436	-8.098	12.280	1.00	73.77

5	ATOM	1868	CD1	LEU	540	27.526	-1.299	12.645	1.00	38.55
•	ATOM	1869	CD2	LEU	540	29.114	0.506	11.985	1.00	41.04
	ATOM	1870	C	LEU	540	27.060	-2.415	8.510	1.00	35.50
	ATOM	1871	0	LEU	540	25.846	-2.585	8.371	1.00	33.21
	ATOM	1872	N	LEU	541	27.892	-2.289	7.483	1.00	37.01
10	ATOM	1873	CA	LEU	541	27.418	-2.340	6.101	1.00	38.51
10	ATOM	1874	CB	LEU	541	28.591	-2.152	5.145	1.00	39.67
	ATOM	1875	CG	LEU	541	28.301	-2.112	3.643	1.00	40.92
	ATOM	1876	CD1	LEU	541	27.184	-1.130	3.348	1.00	42.44
	ATOM	1877	CD1	LEU	541	29.572	-1.716	2.908	1.00	44.18
15			CD2			26.723	-3.676	5.833	1.00	39.75
13	ATOM	1878		LEU	541					
	ATOM	1879	0	LEU	541	25.616	-3.713	5.297	1.00	36.48
	ATOM	1880	N	GLU	542	27.366	-4.770	6.230	1.00	40.88
	ATOM	1881	CA	GLU	542	26.790	-6.097	6.037	1.00	41.89
20	ATOM	1882	CB	GLU	542	27.719	-7.170	6.620	1.00	44.11
20	MOTA	1883	CG	GLU	542	27.010	-8.457	7.052	1.00	50.60
	MOTA	1884	CD	GLU	542	26.434	-9.245	5.887	1.00	55.80
	MOTA	1885	OE1	GLU	542	25.570	-10.117	6.130	1.00	58.81
	MOTA	1886	OE2	GLU	542	26.842	-8.996	4.728	1.00	57.19
	ATOM	1887	C	GLU	542	25.414	-6.195	6.691	1.00	41.58
25	MOTA	1888	0	GLU	542	24.472	-6.720	6.102	1.00	42.82
	MOTA	1889	N	MET	543	25.298	-5.686	7.915	1.00	40.09
	ATOM	1890	CA	MET	543	24.036	-5.731	8.634	1.00	36.43
	MOTA	1891	CB	MET	543	24,270	-5.424	10.111	1.00	39.95
	ATOM	1892	CG ·	MET	543	25.13 7	-6.459	10.808	1.00	41.95
30	MOTA	1893	SD	MET	543	24.918	-6.445	12.604	1.00	47.17
	MOTA	1894	CE	MET	543	25.324	-4.749	12.964	1.00	40.88
	MOTA	1895	C	MET	543	23.001	-4.769	8.072	1.00	35.02
	MOTA	1896	0	MET	543	21.808	-5.073	8.048	1.00	35.31
	MOTA	1897	N	LEU	544	23.457	-3.605	7.629	1.00	32.90
35	MOTA	1898	CA	LEU	544	22.559	-2.603	7.074	1.00	36.88
	MOTA	1899	CB	LEU	544	23.225	-1.226	7.111	1.00	34.51
	ATOM	1900	CG	LEU	544	23.268	-0.562	8.490	1.00	31.94
	ATOM	1901	CD1	LEU	544	24.284	0.564	8.478	1.00	32.27
	ATOM	1902	CD2	LEU	544	21.897	-0.029	8.846	1.00	29.02
40	ATOM	1903	C	LEU	544	22.148	-2.941	5.640	1.00	38.94
	ATOM	1904	0	LEU	544	20.971	-2.842	5.294	1.00	39.52
	ATOM	1905	N	ASP	545	23.118	-3.338	4.817	1.00	41.05
	ATOM	1906		ASP	545	22.850	-3.685	3.418	1.00	40.78
	MOTA	1907	CB	ASP	545	24.159	-3.780	2.620	1.00	37.75
45	ATOM	1908	CG	ASP	545	23.922	-3.937	1.120	1.00	35.19
	ATOM	1909	OD1	ASP	545	24.881	-4.265	0.380	1.00	33.48
	MOTA	1910	OD2	ASP	545	22.768	-3.734	0.691	1.00	31.33
	ATOM	1911	C	ASP	545	22.116	-5.015	3.349	1.00	42.87
	MOTA	1912	0	ASP	545	22.681	-6.030	2.929	1.00	44.32
50	ATOM	1913	N	ALA	546	20.853	-5.009	3.755	1.00	43.49
30										
	ATOM	1914	CA	ALA	546	20.069	-6.229	3.746	1.00	46.96
	MOTA	1915	CB	ALA	546	19.213	-6.305	5.006	1.00	47.82
	ATOM	1916	C	ALA	546	19.193	-6.362	2.508	1.00	49.55
ے ہے	MOTA	1917	0	ALA	546	18.804	-5.368	1.883	1.00	48.75
55	MOTA	1918	N	HIS	547	18.895	-7.606	2.152	1.00	50.98
	MOTA	1919	CA	HIS	547	18.042	-7.884	1.006	1.00	53.77
	MOTA	1920	CB	HIS	547	18.431	-9.223	0.369	1.00	52.69
	ATOM	1921	CG	HIS	547		-10.382	1.317	1.00	55.05
	ATOM	1922	CD2	HIS	547		-10.752	2.242	1.00	53.94
60	ATOM	1923	ND1	HIS	547	19.395	-11.329	1.371	1.00	56.23
	ATOM	1924	CE1	HIS	547	19.095	-12.232	2.286	1.00	55.36

5	HETATM	1982	C19	OHT	600	33.166	-3.052	25.072	1.00	27.50
	HETATM	1983	C20	OHT	600	32.676	-2.794	23.786	1.00	27.50
	HETATM	1984	020	OHT	600	33.206	-3.566	22.795	1.00	31.35
	HETATM	1985	C23	OHT	600	33.009	-3.135	21.448	1.00	40.09
	HETATM	1986	C24	OHT	600	34.226	-3.490	20.575	1.00	44.80
10	HETATM	1987	N24	OHT	600	34.141	-4.901	20.203	1.00	49.00
10			C25	OHT	600	33.375	-5.040	18.933	1.00	51.64
	HETATM	1988						20.004	1.00	52.06
	HETATM	1989	C26	OHT	600	35.495	-5.459			
	HETATM	1990	C21	THO	600	31.540	-2.005	23.558	1.00	27.19
1.7	HETATM	1991	C22	OHT	600	30.892	-1.450	24.645	1.00	27.92
15	HETATM	1992	01	HOH	1	20.714	-12.010	23.057	1.00	27.20
	HETATM	1993	01	HOH	2	22.563	-0.070	25.819	1.00	25.77
	HETATM	1994	01	HOH	3	25.183	19.202	23.149	1.00	42.52
	HETATM	1995	01	HOH	4	35.158	5.823	37.390	1.00	33.92
-	\mathtt{HETATM}	1996	01	HOH	5	22.116	-9.922	18.914	1.00	30.18
20	HETATM	1997	01	HOH	6	29.812	6.536	19.652	1.00	26.11
	HETATM	1998	01	HOH	7	13.362	4.463	20.376	1.00	29.40
	HETATM	1999	01	HOH	8	19.799	-11.295	20.187	1.00	28.70
	HETATM	2000	01	HOH	9	21.205	1.466	23.794	1.00	22.47
	HETATM	2001	01	HOH	10	21.177	-4.961	29.066	1.00	33.00
25	HETATM	2002	01	HOH	11	18.591	1.863	20.518	1.00	32.59
	HETATM	2003	01	HOH	12	16.298	21.566	15.992	1.00	33.42
	HETATM	2004	01	HOH	13	18.611	1.976	24.494	1.00	29.70
	HETATM	2005	01	HOH	14	38.009	8.910	21.156	1.00	39.92
	HETATM	2006	01	HOH	15	26.549	11.664	18.080	1.00	30.25
30	HETATM	2007	01	HOH	16	20.282	-4.239	26.512	1.00	32.70
	HETATM	2008	01	HOH	17	32.858	8.754	20.237	1.00	29.88
	HETATM	2009	01	HOH	18	8.497	16.136	29.934	1.00	46.80
	HETATM	2010	01	HOH	19	21.940	19.301	31.632	1.00	35.72
	HETATM	2011	01	HOH	20	35.153	2.682	14.122	1.00	41.02
35	HETATM	2012	01	HOH	21	20.358	-2.268	21.013	1.00	29.43
	HETATM	2013	01	HOH	22	35.562	10.036	36.334	1.00	41.37
	HETATM	2014	01	HOH	23	17.248	18.187	17.571	1.00	33.96
	HETATM	2015	01	HOH	24	18.445	20.973	12.346	1.00	43.44
	HETATM	2016	01	HOH	25	12.152	23.054	33.132	1.00	36.04
40	HETATM	2017	01	HOH	26	13.181	22.222	9.699	1.00	37.03
	HETATM	2018	01	HOH	27	19.399	-6.090	12.808	1.00	44.86
	METATM	2019	01	HOH	28	37.895	13.599	31.395	1.00	47.26
	HETATM	2020	01	HOH	29	11.570	6.212	7.962	1.00	51.10
	HETATM	2021	01	HOH	30	20.172	-2.568	23.445	1.00	51.70
45	HETATM	2022	01	HOH	31	36.402	~5.369	23.729	1.00	58.20
	HETATM	2023	01	HOH	32	25.127	13.802	19.187	1.00	35.29
	HETATM	2024	01	HOH	33	23.181	4.937	38.538	1.00	33.77
	HETATM	2025	01	HOH	34	20.550	0.421	21.276	1.00	29.12
	HETATM	2026	01	HOH	35	39.599	13.954	27.312	1.00	44.08
50	HETATM	2027	01	HOH	36	26.445	13.863	21.285	1.00	34.97
	HETATM	2028	01	HOH	37	13.759	5.079	9.108	1.00	38.54
	HETATM	2029	01	HOH	38	14.150	24.731	34.529	1.00	49.72
	HETATM	2030	01	HOH	39	21.060	13.886	-6.319	1.00	59.79
	HETATM	2031	01	HOH	40	32.215	6.217	8.726	1.00	60.22
55	HETATM	2032	01	нон	41	35.105	15.704	9.069	1.00	45.15
	HETATM	2033	01	нон	42	11.427	19.451	9.903	1.00	38.56
	HETATM	2034	01	нон	43	19.662	23.472	10.333	1.00	47.71
	HETATM	2035	01	нон	44	9.231	3.690	12.337	1.00	45.98
	HETATM	2036	01	нон	45	15.313		17.192	1.00	39.07
60	HETATM	2037	01	нон	46		-3.266	17.907	1.00	37.67
	HETATM	2038		HOH	47		-16.713	25.163	1.00	55.44

WHAT IS CLAIMED IS:

1. A method of identifying a compound that modulates coactivator binding to a nuclear receptor, said method comprising:

modeling test compounds that fit spacially into a nuclear receptor coactivator binding site of interest using an atomic structural model of a nuclear receptor coactivator binding site or portion thereof,

screening said test compounds in an assay characterized by binding of a test compound to a nuclear receptor coactivator binding site, and

identifying a test compound that modulates coactivator binding to said nuclear receptor.

- 2. The method of claim 1, wherein said atomic structural model comprises atomic coordinates of amino acid residues corresponding to residues of human thyroid receptor selected from the group consisting of Val284, Phe293, Ile302, Leu305, and Leu454.
- 3. The method of claim 1, wherein said atomic structural model comprises atomic coordinates of amino acid residues corresponding to residues of human thyroid receptor selected from the group consisting of Val284, Lys288, Ile302, Lys306, Leu454 and Glu457.
- 4. The method of claim 1, wherein said atomic structural model comprises atomic coordinates of amino acid residues corresponding to residues of human thyroid receptor helix 3 residues Ile280, Thr281, Val283, Val284, Ala287, and Lys288, helix 4 residue Phe293, helix 5 residues Gln301, Ile302, Leu305, Lys306, helix 6 residue Cys309, and helix 12 residues Pro453, Leu454, Glu457, Val458 and Phe459.
 - 5. The method of claim 1, wherein said nuclear receptor coactivator binding site comprises amino acid residues corresponding to residues of human thyroid receptor selected from the group consisting of helix 3 residues Ile280, Thr281, Val283, Val284, Ala287, and Lys288, helix 4 residue Phe293, helix 5 residues Gln301, Ile302, Leu305, Lys306, helix 6 residue Cys309, and helix 12 residues Pro453, Leu454, Glu457, Val458 and Phe459.
 - 6. The method of claim 5, wherein said amino acid residues corresponding to residues of human thyroid receptor comprise Val284, Phe293, Ile302, Leu305, and Leu454.

20

5

30

35

modeling compounds which fit spacially into the nuclear receptor coactivator binding site; and

identifying in an assay for nuclear receptor activity a compound that increases or decreases the activity of said nuclear receptor by binding the coactivator binding site of said nuclear receptor, whereby an agonist or antagonist of coactivator binding is identified.

10

15

20

30

35

5

- 18. A machine-readable data storage medium, comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of a molecular complex of a compound bound to a nuclear receptor coactivator binding site comprising structure coordinates of amino acids corresponding to human thyroid receptor amino acids selected from the group consisting of helix 3 residues Ile280, Thr281, Val283, Val284, Ala287, and Lys288, helix 4 residue Phe293, helix 5 residues Gln301, Ile302, Leu305, Lys306, helix 6 residue Cys309, and helix 12 residues Pro453, Leu454, Glu457, Val458 and Phe459, or a homologue of said molecular complex, wherein said homologue comprises a coactivator binding site that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.
- 19. The machine readable storage medium of claim 18, wherein said nuclear receptor is a thyroid receptor.
- 25 20. The machine readable storage medium of claim 19, wherein said thyroid receptor is human.
 - 21. The machine readable storage medium of claim 20, wherein said molecule is peptide.
 - 22. The machine readable storage medium of claim 21, wherein said peptide comprises a NR-box amino acid sequence, or derivative thereof.
 - 23. The machine-readable data storage medium according to claim 18, wherein said molecular complex is defined by the set of structure coordinates depicted in Appendix 1, or a homologue of said molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

FIGURE 1

FIGURE 3

FIG. 5

FIGURE 7a

	NR-box1 residues 15-21 SEQ ID NO: 5	NR-box1 residues 15-21 SEQ ID NO: 6	NR box3 residues 15-21 SEQ ID NO: 7
NRb 1,2,3	KLLQLLT	ILHRLLQ	LLRYLLD
NRb 1,2	KLLQLLT	ILHRLLQ	AARAAAD
NRb 1,3	KLLQLLT	AAHRAAQ	LLRYLLD
NRb 1	KLLQLLT	AAHRAAQ	AARAAAD

FIGURE 8a

FIGURE 9a

△ NRb 1,2

O NRb 1,3

NR interaction domain (µM)

FIGURE 10a

NR-box 2

residues 11-23 ▲ residues 7-24

EKHK TSLKEKHK ILHRL ILHRL

QDS QDSS

of SEQ ID No: 6

FIGURE 10c

A Residues 8027 of SEQ ID No: 7

A Residues 11-27 of SEQ ID No: 6

SEQ ID No: 29

TSLKEKHK

LLRYLL

QDSS

TSLKEKHK

LLRYLL

QDSS

FIGURE 11b

SUBSTITUTE SHEET (RULE 26)

FIG. 14

FIG. 16

FIG 18

SUBSTITUTE SHEET (RULE 26)

```
5
     SEQUENCE LISTING
     <110> Baxter, John D.
           Darimont, Beatrice
           Feng, Weijun
10
           Fletterick, Robert J.
            Kushner, Peter J.
            Wagner, Richard L.
            West, Brian L.
            Yamamoto, Keith R.
15
     <120> METHODS AND COMPOUNDS FOR MODULATING NUCLEAR RECEPTOR
           COACTIVATOR BINDING
     <130> UCAL-253/01US
20
     <140>
     <141>
     <150> US 60/079,956
25 <151> 1998-03-30
     <160> 51
     <170> PatentIn Ver. 2.0
30
     <210> 1
     <211> 5
     <212> PRT
     <213> Homo sapiens
35
     <400> 1
     Leu Xaa Xaa Leu Leu
40
     <210> 2
     <211> 6
     <212> PRT
     <213> Homo sapiens
45
     <400> 2
     Ile Leu Xaa Xaa Leu Leu
50
     <210> 3
     <211> 5
     <212> PRT
     <213> Homo sapiens
55
     <400> 3
     Phe Xaa Xaa Leu Trp
60
     <210> 4
     <211> 5
     <212> PRT
     <213> Homo sapiens
65
     <400> 4
```

```
5
    <223> LeuLeu --> AlaAla
     <220>
     <221> MUTAGEN
     <222> (15)
10
    <223> Ile --> Phe
     <220>
     <221> MUTAGEN
     <222> (16)
15
    <223> leu --> Phe
    <220>
    <221> MUTAGEN
     <222> (19)
20
    <223> Leu --> Phe
    <220>
     <221> MUTAGEN
    <222> (20)
25
    <223> Leu --> Phe
     <400> 6
     Pro Gly Ser Thr His Gly Thr Ser Leu Lys Glu Lys His Lys Ile Leu
30
    His Arg Leu Leu Gln Asp Ser Ser Pro Val Asp Leu Ala Lys Leu
     Thr Ala
35
     <210> 7
     <211> 31
40
     <212> PRT
     <213> Homo sapiens
     Glu Pro Ala Ser Pro Lys Lys Glu Asn Ala Leu Leu Arg Tyr Leu
45
    Leu Asp Lys Asp Asp Thr Lys Asp Ile Gly Leu Pro Glu Ile Thr
                                      25
50
    <210> 8
    <211> 34
     <212> PRT
     <213> Homo sapiens
55
    Ala Asp Gly Gln Ser Arg Leu His Asp Ser Lys Gly Gln Thr Lys Leu
60
    Leu Gln Leu Leu Thr Thr Lys Ser Glu Gln Met Glu Pro Ser Pro Leu
                                      25
    Ala Ser
65
     <210> 9
```

3/15

5 <213> Homo sapiens <400> 13 Glu Pro Ala Ser Pro Lys Lys Lys Glu Asn Ala Leu Leu Arg Tyr Leu 10 10 Leu Asp Lys Asp Asp Thr Lys Asp Ile Gly Leu Pro Ser Ile Thr 25 15 <210> 14 <211> 34 <212> PRT <213> Homo sapiens 20 <400> 14 Ala Glu Asn Gln Arg Gly Pro Leu Glu Ser Lys Gly His Lys Lys Leu Leu Gln Leu Leu Thr Cys Ser Ser Glu Asp Arg Gly His Ser Ser Leu 25 25 Thr Asn 30 <210> 15 <211> 34 <212> PRT <213> Homo sapiens 35 <400> 15 Thr Ser Asn Met His Gly Ser Leu Leu Gln Glu Lys His Arg Ile Leu 40 His Lys Leu Leu Gln Asn Gly Asn Ser Pro Ala Glu Val Ala Lys Ile Thr Ala 45 <210> 16 <211> 32 <212> PRT 50 <213> Homo sapiens <400> 16 Glu Gln Leu Ser Pro Lys Lys Glu Asn Asn Ala Leu Leu Arg Tyr 55 Leu Leu Asp Arg Asp Asp Pro Ser Asp Val Leu Ala Lys Lys Leu Gln 20 25 60 <210> 17 <211> 34 65 <212> PRT <213> Homo sapiens

```
5
     Thr Ser Asn Val His Gly Ser Leu Leu Gln Glu Lys His Arg Ile Leu
10
     His Lys Leu Leu Gln Asn Gly Asn Ser Pro Ala Glu Val Ala Lys Ile
                                      25
     Thr Ala
15
     <210> 22
     <211> 32
     <212> PRT
20
     <213> Homo sapiens
     Glu Gln Leu Ser Pro Lys Lys Lys Glu Asn Asn Ala Leu Leu Arg Tyr
25
     Leu Leu Asp Arg Asp Asp Pro Ser Asp Ala Leu Ser Lys Glu Leu Gln
                  20
                                      25
30
     <210> 23
     <211> 32
35
    <212> PRT
     <213> Homo sapiens
     <400> 23
     Ser Glu Gly Asp Ser Lys Tyr Ser Gln Thr Ser His Lys Leu Val Gln
40
                                          10
     Leu Leu Thr Thr Ala Glu Gln Gln Leu Arg His Ala Asp Ile Asp
                  20
                                     25
45
    <210> 24
50
     <211> 33
     <212> PRT
     <213> Homo sapiens
     <400> 24
55
     Thr Cys Pro Ser Ser His Ser Ser Leu Thr Glu Arg His Lys Ile Leu
     His Arg Leu Leu Gln Glu Gly Ser Pro Ser Asp Ile Thr Thr Leu Ser
                                      25
60
     Val
65
    <210> 25
     <211> 34
     <212> PRT
```

```
5
      <220>
      <221> SITE
      <222> (28)
      <223> negatively charged amino acid
 10
      <220>
      <221> SITE
      <222> (29)
      <223> hydrophobic amino acid
 15
      <220>
      <221> SITE
      <222> (32)
     <223> hydrophobic amino acid
20
     <400> 27
     Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa Glu Xaa His Xaa Ile Leu
                        5
25
     His Xaa Leu Leu Gln Xaa Xaa Xaa Ser Pro Xaa Xaa Xaa Xaa Xaa
                                       25
     Xaa Xaa
30
     <210> 28
     <211> 34
     <212> PRT
35
     <213> Homo sapiens
     <220>
     <221> SITE
     <222> (22)
40
     <223> positively charged amino acid
     <220>
     <221> SITE
     <222> (24)
45
     <223> negatively charged amino acid
     <220>
     <221> SITE
     <222> (33)
50
     <223> hydrophobic amino acid
     <400> 28
     Glu Xaa Xaa Xaa Xaa Lys Lys Glu Xaa Xaa Xaa Xaa Leu Leu
                                           10
55
     Arg Tyr Leu Leu Asp Xaa Asp Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                  20
                                      25
     Xaa Xaa
60
     <210> 29
     <211> 18
65
     <212> PRT
     <213> Homo sapiens
```

```
5
     <220>
     <221> MUTAGEN
     <222> (5)
     <223> Leu --> Arg (L454R)
10
     <220>
     <221> MUTAGEN
     <222> (7)
     <223> Leu --> Arg (L456R)
15
     <220>
     <221> MUTAGEN
     <222> (8)
     <223> Glu --> Lys (E457K)
20
     <400> 31
     Leu Phe Pro Pro Leu Phe Leu Glu Val Phe Glu Asp
25
     <210> 32
     <211> 33
     <212> PRT
     <213> Homo sapiens
30
     <400> 32
     Thr Pro Ala Ile Thr Arg Val Val Asp Phe Ala Lys Lys Leu Pro Met
                                           10
35
     Phe Ser Glu Leu Pro Cys Glu Asp Gln Ile Ile Leu Leu Lys Gly Cys
     Cys
40
     <210> 33
     <211> 12
     <212> PRT
45
     <213> Homo sapiens
     <400> 33
     Leu Phe Pro Pro Leu Phe Leu Glu Val Phe Glu Asp
                       5
50
     <210> 34
     <211> 33
     <212> PRT
55
     <213> Homo sapiens
     <400> 34
     Thr Lys Cys Ile Ile Lys Ile Val Glu Phe Ala Lys Arg Leu Pro Gly
                                            10
60
     Phe Thr Gly Leu Ser Ile Ala Asp Gln Ile Thr Leu Leu Lys Ala Ala
                  20
                                        25
     Cys
65
```

```
5
     <211> 33
     <212> PRT
     <213> Homo sapiens
     <400> 40
10
     Ser Tyr Ser Ile Gln Lys Val Ile Gly Phe Ala Lys Met Ile Pro Gly
     Phe Arg Asp Leu Thr Ser Glu Asp Gln Ile Val Leu Leu Lys Ser Ser
                                       25
15
     Ala
20
     <210> 41
     <211> 12
     <212> PRT
     <213> Homo sapiens
25
     <400> 41
     Lys Leu Thr Pro Leu Val Leu Glu Val Phe Gly Asn
30
     <210> 42
     <211> 33
     <212> PRT
     <213> Homo sapiens
35
     <220>
     <221> MUTAGEN
     <222> (12)
     <223> Lys --> Ala (K362A)
40
     <220>
     <221> MUTAGEN
     <222> (26)
     <223> Val _ > Arg (V376R)
45
     Asp Arg Glu Leu Val His Met Ile Asn Trp Ala Lys Arg Val Pro Gly
     Phe Val Asp Leu Thr Leu His Asp Gln Val His Leu Leu Glu Cys Ala
50
                                       25
     Trp
55
     <210> 43
     <211> 12
     <212> PRT
     <213> Homo sapiens
60
     <220>
     <221> MUTAGEN
     <222> (8)
     <223> Glu --> Lys (E542K)
65
     <400> 43
     Pro Leu Tyr Asp Leu Leu Leu Glu Met Leu Asp Ala
                                         13/15
```

```
5
     Phe Lys Asn Leu Pro Leu Glu Asp Gln Ile Thr Leu Ile Gln Tyr Ser
     Trp
10
     <210> 49
     <211> 12
15
     <212> PRT
     <213> Homo sapiens
     <400> 49
     Glu Phe Pro Ala Met Leu Val Glu Ile Ile Ser Asp
20
                     5
      1
     <210> 50
     <211> 33
25
     <212> PRT
     <213> Homo sapiens
     <400> 50
     Glu Arg Gln Leu Val His Val Val Lys Trp Ala Lys Ala Leu Pro Gly
30
     Phe Arg Asn Leu His Val Asp Asp Gln Met Ala Val Ile Gln Tyr Ser
                                       25
35
     Trp
     <210> 51
40
     <211> 12
     <212> PRT
     <213> Homo sapiens
     <400> 51
45
     Asp Phe Pro Glu Met Met Ala Glu Ile Ile Ser Val
```

50