

Runtime randomization and perturbation for virtual machines.

JAVIER CABRERA ARTEAGA

Licentiate Thesis in [Research Subject - as it is in your ISP]
School of Information and Communication Technology
KTH Royal Institute of Technology
Stockholm, Sweden [2022]

TRITA-ICT XXXX:XX ISBN XXX-XXX-XXXX-X KTH School of Information and Communication Technology SE-164 40 Kista SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av licentiatexamen i [ämne/subject] [veckodag/weekday] den [dag/day] [månad/month] [år/2022] klockan [tid/time] i [sal/hall], Electrum, Kungl Tekniska högskolan, Kistagången 16, Kista.

© Javier Cabrera Arteaga, [month] [2022]

Tryck: Universitetsservice US AB

Abstract

Write your abstract here... $\textbf{Keywords:} \ \, \textbf{Keyword1}, \, \textbf{keyword2}, \, \dots$

Sammanfattning

Write your Swedish summary (popular description) here... $\bf Keywords : Keyword1, \, keyword2, \, ...$

Acknowledgements

Write your professional acknowledgements here...

Acknowledgements are used to thank all persons who have helped in carrying out the research and to the research organizations/institutions and/or companies for funding the research.

 $Name\ Surname,$ Place, Date

Contents

C	Contents						
Li	st of	Figures	viii				
Li	st of	Tables	ix				
Li	st of	Acronyms	xi				
1	Intr	oduction	1				
	1.1	Motivation	1				
		1.1.1 Why variants?	1				
		1.1.2 Research questions	1				
	1.2	Contributions	1				
2	Bac	Background & State of the art					
	2.1	WebAssembly	3				
	2.2	Diversification and Superdiversification	5				
	2.3	Runtime diversification	7				
	2.4	Conclusions	9				
3	Methodology						
	3.1	RQ1. To what extent can we artifically generate program variants for WebAssembly?	12				
	3.2	RQ2. To what extent are the generated variants dynamically different? 1					
	3.3	RQ3. To what extent do the artificial variants exhibit different execution times on Edge-Cloud platforms?	18				
4	Res	ults	21				
	4.1	RQ1. To what extent can we artifically generate program variants					
		for WebAssembly?	21				
	4.2	RQ2. To what extent are the generated variants dynamically different?	24				
	4.3	RQ3. To what extent do the artificial variants exhibit different					
		execution times on Edge-Cloud platforms?	27				

CONTENTS	vii
Bibliography	31

List of Figures

3.1 3.2 3.3	The program variants generation for RQ1	16
4.1	Pairwise comparison of programs' population traces in logarithmic scale. Each vertical group of blue dots represents a programs' population. Each dot represents a comparison between two program execution traces	
	according to Metric 5	25
4.2	Execution time distributions for Hilber_curve program and its variants. Baseline execution time mean is highlighted with the magenta	
	horizontal line.	27
4.3	Execution time distributions. Each subplot represents the quantile- quantile plot of the two distributions, original and multivariant binary.	
		29

List of Tables

3.1	Corpora description. The table is composed by the name of the corpus,			
	the number of modules, the number of functions, the lines of code range	10		
	and the location of the corpus	13		
1 1				
4.1	r of			
	name of the corpus, the number of functions, the number of successfully			
	diversified functions, the cumulative number of generated variants and			
	the cumulative number of unique varients	22		

List of Acronyms

Wasm WebAssembly

DTW Dynamic Time Warping