The SIRS Model for Viral Infection

Brianne Gill

May 16, 2008

Dividing and Describing a Population

When describing a population in relation to disease, you can divide all members of the population into three categories:

Susceptible Individuals

Dividing and Describing a Population

When describing a population in relation to disease, you can divide all members of the population into three categories:

- Susceptible Individuals
- Infected Individuals

Dividing and Describing a Population

When describing a population in relation to disease, you can divide all members of the population into three categories:

- Susceptible Individuals
- Infected Individuals
- Recovered Individuals

Population Rates of Change

The rate of change of the Susceptible Population is given by,

▶ Amount of Increase, or gain from Recovered Population= γR ,

Population Rates of Change

The rate of change of the Susceptible Population is given by,

- ▶ Amount of Increase, or gain from Recovered Population= γR ,
- ▶ Amount of Decrease, or loss from Infection= $-\beta IS$.

Population Rates of Change

The rate of change of the Susceptible Population is given by,

- ▶ Amount of Increase, or gain from Recovered Population= γR ,
- ▶ Amount of Decrease, or loss from Infection= $-\beta IS$.
- ▶ Thus, the differential equation for the change in the Susceptible Population is

$$\frac{dS}{dt} = -\beta IS + \gamma R,$$

The Infected Population

The rate of change of the Infected Population is given by,

Amount of Increase, or gain from Susceptible Population= βIS ,

The Infected Population

The rate of change of the Infected Population is given by,

- Amount of Increase, or gain from Susceptible Population= βIS ,
- ▶ Amount of Decrease, or loss from Recovery= $-\nu I$.

The Infected Population

The rate of change of the Infected Population is given by,

- Amount of Increase, or gain from Susceptible Population= βIS ,
- ▶ Amount of Decrease, or loss from Recovery= $-\nu I$.
- ► Therefore, the rate of change in the Infected Population is given by

$$\frac{dI}{dt} = \beta IS - \nu I.$$

The Recovered Population

▶ Amount of Increase, or gain from Infected Population= νI ,

The Recovered Population

- ▶ Amount of Increase, or gain from Infected Population= νI ,
- ▶ Amount of Decrease, or loss from immunity loss= $-\gamma R$.

The Recovered Population

- ▶ Amount of Increase, or gain from Infected Population= νI ,
- ▶ Amount of Decrease, or loss from immunity loss= $-\gamma R$.
- Consequently, the equation for the rate of change of the Recovered Population is

$$\frac{dR}{dt} = \nu I - \gamma R.$$

Summary of Our Equations

$$\begin{split} \frac{dS}{dt} &= -\beta IS + \gamma R, \\ \frac{dI}{dt} &= \beta IS - \nu I, \\ \frac{dR}{dt} &= \nu I - \gamma R. \end{split}$$

Figure: A diagram of the flow between the susceptible, infected, and recovered populations.

Three Related Populations

Reducing the SIRS System

$$\triangleright$$
 N=S+I+R

Reducing the SIRS System

$$\triangleright$$
 N=S+I+R

Reducing the SIRS System

$$\triangleright$$
 N=S+I+R

►
$$\frac{dS}{dt} = -\beta IS + \gamma (N - I - S),$$

► $\frac{dI}{dt} = \beta IS - \nu I,$

$$\frac{dI}{dt} = \beta IS - \nu I,$$

Finding the Nullclines

Finding the Nullclines

$$\beta IS + \gamma S = \gamma (N - I),$$

$$S = \frac{v}{B},$$

$$\triangleright S = \frac{V}{R}$$

Finding the Nullclines

$$\beta IS + \gamma S = \gamma (N - I),$$

$$S = \frac{v}{B},$$

$$S = \frac{V}{R}$$

$$I = 0.$$

The Nullclines of S' and I'

The Jacobian

$$J = \begin{pmatrix} -\beta I - \gamma & -\beta S - \gamma \\ \beta I & \beta S - \nu \end{pmatrix}.$$

$$I = \frac{\gamma(N-S)}{BS + \gamma}$$

$$I = \frac{\gamma(N-S)}{BS + \gamma}$$

$$I = \frac{\gamma(N-S)}{BS + \gamma}$$

- ► *I* = 12.9199
- $S = \frac{v}{B}$

$$I = \frac{\gamma(N-S)}{BS + \gamma}$$

- ► *I* = 12.9199
- $ightharpoonup S = \frac{v}{B}$
- S = 83.3333

A Phase Plane Graph of S and I

Figure: An Equilibrium point at $(\frac{\nu}{\beta}, \beta IS = \gamma(N_{\overline{\beta}} I - S))$.

$$I = 0$$

$$S = \frac{\gamma(N - I)}{BI + \gamma}$$

Figure: An Equilibrrum Point at (N, 0).

The Threshold Effect

$$I = \frac{\gamma(N-S)}{\beta S - \gamma},$$

The Threshold Effect

$$I = \frac{\gamma(N-S)}{\beta S - \gamma},$$

$$S = \frac{v}{B},$$

$$S = \frac{V}{R}$$

The Threshold Effect

$$I = \frac{\gamma(N-S)}{\beta S - \gamma},$$

$$S = \frac{v}{B},$$

$$N > \frac{v}{B}.$$

$$\triangleright S = \frac{v}{R}$$

$$ightharpoonup N > \frac{V}{R}$$

Figure: The plot of I versus S where $N < \frac{\nu}{\beta}$.

