Decion Tree Learning

Overview

Entropy

Information Gain

Inductive Bias

Occam's Razor

Decion Tree Learning Chapter 3

Recap from Chapter 2

Decion Tree Learning

Overview

Littopy

Gain

Inductive Bias in ID3

Occam's Razor

- Concept learning
- consistent hypothesis (h(x)=c(x)) and satisfying hypothesis (h(x)=1)
- Find-S algorithm
- Candidate Elimination algorithm
- Inductive Bias

Topics

Decion Tree Learning

Overview

Entropy

Informatio Gain

Inductive Bias in ID3

Occam's Razor

- Decision tree representation
- ID3 learning algorithm
- Entropy, Information gain
- Overfitting

Decision Tree Definition

Decion Tree Learning

Overview

Information

Inductive Bia in ID3

Occam's Razor Decision tree learning is a method for approximating discrete-valued target functions, in which the learned function is represented by a decision tree.

Decision trees classify instances by sorting them down the tree from theroot to some leaf node, which provides the classification of the instance.

Example:

 $F: \langle Outlook, Humidity, Wind, Temp \rangle \rightarrow PlayTennis?$

Decision Tree for PlayTennis

Decion Tree Learning

Overview

Overview

Information

Inductive Bias

Occam's Razor

This corresponds to

 $(Outlook = Sunny \land Humidity = Normal) \lor (Outlook = Overcast) \lor (Outlook = Rain \land Wind = Weak)$

Decision Trees

Decion Tree Learning

Overview

Decision tree representation:

- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

How would we represent:

- ∧, ∨, XOR
- $(A \wedge B) \vee (C \wedge \neg D \wedge E)$
- M of N

The algorithm to construct decision tree (IDB3) is greedy search top down approach.

4 D > 4 D > 4 D > 4 D > 3

Decision Tree Learning

Decion Tree Learning

Overview

Problem Setting:

- Set of possible instances X
 - each instance x in X is a feature vector.
 - $x = \langle x1, x2...xn \rangle$.
- Unknown target function $f: X \to Y$
 - Y is discrete valued
- Set of function hypotheses $H = h || h : X \to Y$
 - each hypothesis h is a decision tree

Input: Training examples $\langle x(i), y(i) \rangle$ of unknown target function f.

Output: Hypothesis $h \in H$ that best approximates target function f

Decision Tree

Decion Tree Learning

Suppose

$$X = \langle X1, \dots Xn \rangle$$

Overview

where Xi are boolean variables. How would you represent

$$Y = X2X5$$
?

$$Y = X2 \vee X5$$

When to Consider Decision Trees

Decion Tree Learning

Overview

Informatio Gain

Inductive Bias in ID3

Occam' Razor

- Instances describable by attribute-value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data

Examples:

- Equipment or medical diagnosis
- Credit risk analysis
- Modeling calendar scheduling preferences

Top-Down Induction of Decision Trees

Decion Tree Learning

Overview

Main loop:

- $A \leftarrow$ the "best" decision attribute for next node
- Assign A as decision attribute for node
- For each value of A, create new descendant of node
- Sort training examples to leaf nodes
- If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?

Entropy

Decion Tree Learning

Entropy

Informatio Gain

Inductive Bia

Occam's Razor Entropy(S) = expected number of bits needed to encode class $(\oplus \text{ or } \ominus)$ of randomly drawn member of S (under the optimal, shortest-length code)

Why?

Information theory: optimal length code assigns $-\log_2 p$ bits to message having probability p.

So, expected number of bits to encode \oplus or \ominus of random member of S:

$$p_{\oplus}(-\log_2 p_{\oplus}) + p_{\ominus}(-\log_2 p_{\ominus})$$

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Entropy

Decion Tree Learning

Overvie

Entropy

Informatio Gain

Inductive Bia

Occam's Razor

Suppose S is a collection of 14 examples of some boolean concept, including 9 positive and 5 negative examples (we adopt the notation [9+, 5-1 to summarize such a sample of data). Then the entropy of S relative to this boolean classification is

$$Entropy([9+,5-]) \equiv -(9/14)\log_2(9/14) - (5/14)\log_2(5/14)$$

$$\equiv 0.940$$

Note: Entropy is 0 if all members of S belong to the same class. entropy is 1 when the collection contains an equal number of positive and negative examples.

Entropy

Decion Tree Learning

Overvie

Entropy

Information Gain

Inductive Bias

Occam's Razor

- S is a sample of training examples
- ullet p_{\oplus} is the proportion of positive examples in S
- ullet p_{\ominus} is the proportion of negative examples in S
- Entropy measures the impurity of S

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus} \qquad \qquad \Box$$

Information Gain

Decion Tree Learning

to sorting on A

Information Gain

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Gain(S, A) = expected reduction in entropy due

Gain - Example

Decion Tree Learning

Overvie

Entropy

Information Gain

Inductive Bia in ID3

Occam's Razor

For example, suppose S is a collection of training-example days described by attributes including Wind, which can have the values Weak or Strong. As before, assume S is a collection containing 14 examples, [9+, 5-]. Of these 14 examples, suppose 6 of the positive and 2 of the negative examples have Wind = Weak, and the remainder have Wind = Strong. The information gain due to sorting the original 14 examples by the attribute Wind may then be calculated as

$$Values(Wind) = Weak, Strong$$

$$S = [9+,5-]$$

$$S_{Weak} \leftarrow [6+,2-]$$

$$S_{Strong} \leftarrow [3+,3-]$$

$$Gain(S, Wind) = Entropy(S) - \sum_{v \in \{Weak, Strong\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$= Entropy(S) - (8/14) Entropy(S_{Weak})$$

$$- (6/14) Entropy(S_{Strong})$$

$$= 0.940 - (8/14) 0.811 - (6/14) 1.00$$

$$= 0.048$$

Training Examples

CCIOII	
1	
Learn	mg

Information Gain

D10

D11

D12

D13

D14

Rain

Sunny

Overcast

Overcast

Rain

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes

Mild

Mild

Mild

Hot

Mild

Normal

Normal

High

Normal

High

Weak

Strong

Strong

Weak

Strong

Yes

Yes

Yes

Yes

 $N_{10/32}$

Selecting the Next Attribute

Decion Tree Learning

Which attribute is the best classifier?

Information Gain

Strong

[3+.3-1]

E = 1.00

Selecting the Next Attribute

Decion Tree Learning

Overvi

Entrop

Information Gain

Inductive Bia in ID3

Occam's Razor Which attribute is the best classifier?

Gain(S, Outlook) = 0.246

Gain(S, Humidity) = 0.151

Gain(S, Wind) = 0.048

Gain(S, Temperature) = 0.029

Note: Process of selecting new attribute continues for each new leaf node until either of two conditions is met:

- (1) every attribute has already been included along this path through the tree, or
- (2) the training examples associated with this leaf node all have the same target attribute value

Decion Tree Learning

Overvie

Entropy

Information Gain

Inductive Bias

Occam's Razor

Which attribute to be tested

Which attribute should be tested here?

$$S_{sumy} = \{D1,D2,D8,D9,D11\}$$

Gain
$$(S_{SURRY}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$$

Gain (
$$S_{SUMMY}$$
, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570

Gain (
$$S_{SUMV}$$
, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019

Decion Tree Learning

 $Hypothesis \; \mathsf{Space} \; \mathsf{Search} \; \, \mathsf{by} \; \mathsf{ID3}$

Entropy

Information Gain

Inductive Bi

Occam's Razor

Hypothesis Space Search by ID3

Decion Tree Learning

Overvie

Entropy

Information Gain

Inductive Bias in ID3

Occam's Razor

- Hypothesis space is complete!
 - Target function surely in there...
- Outputs a single hypothesis (which one?)
 - Can't play 20 questions...
- No back tracking
 - · Local minima...
- Statisically-based search choices
 - Robust to noisy data...
- Inductive bias: approx "prefer shortest tree"

Inductive Bias in ID3

Decion Tree Learning

Note H is the power set of instances X

 \rightarrow Unbiased?

Not really...

- Preference for short trees, and for those with high information gain attributes near the root
- Bias is a *preference* for some hypotheses, rather than a $\it restriction$ of hypothesis space $\it H$
- Occam's razor: prefer the shortest hypothesis that fits the data

0.0...

Entropy

Informatio Gain

Inductive Bias in ID3

Razor

Occam's Razor

Decion Tree Learning

Why prefer short hypotheses?

Argument in favor:

- Fewer short hyps. than long hyps.
- ightarrow a short hyp that fits data unlikely to be coincidence
- ightarrow a long hyp that fits data might be coincidence

Argument opposed:

- There are many ways to define small sets of hyps
- e.g., all trees with a prime number of nodes that use attributes beginning with "Z"
- What's so special about small sets based on size of hypothesis??

Razor

Occam's

Overfitting in Decision Tree Learning

Decion Tree Learning

-

Informatior Gain

Inductive Bias in ID3

Occam's Razor Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = No

What effect on earlier tree?

Avoiding Overfitting

Decion Tree Learning

Overvie

Entropy

Informatio Gain

Inductive Bias in ID3

Occam's Razor

How can we avoid overfitting?

- stop growing when data split not statistically significant
- grow full tree, then post-prune

How to select "best" tree:

- Measure performance over training data
- Measure performance over separate validation data set
- MDL: minimize size(tree) + size(misclassifications(tree))

Reduced-Error Pruning

Decion Tree Learning

Overvie

Entrop

Information Gain

Inductive Bia in ID3

Occam's Razor Split data into training and validation set

Do until further pruning is harmful:

- Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- Greedily remove the one that most improves validation set accuracy
- produces smallest version of most accurate subtree
- What if data is limited?

Rule Post-Pruning

Decion Tree Learning

Overvie

Entropy

Information Gain

Inductive Bia in ID3

Occam's Razor

- Convert tree to equivalent set of rules
- Prune each rule independently of others
- Sort final rules into desired sequence for use

Converting A Tree to Rules

Decion Tree Learning

Overviev

Information

Inductive Bia in ID3

Occam's Razor

IF
$$(Outlook = Sunny) \land (Humidity = High)$$

THEN
$$PlayTennis = No$$

$$\mathsf{IF} \qquad (Outlook = Sunny) \land (Humidity = Normal)$$

THEN PlayTennis = Yes

Continuous Valued Attributes

Decion Tree Learning

Overview Create a discrete attribute to test continuous

- Temperature = 82.5
- (Temperature > 72.3) = t, f

in ID3

Occam's Razor

Attributes with Many Values

Decion Tree Learning

Occam's

Razor

Problem:

• If a

ullet If attribute has many values, Gain will select it

• Imagine using $Date = Jun_3_1996$ as attribute

One approach: use GainRatio instead

$$GainRatio(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)}$$

$$SplitInformation(S, A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

where S_i is subset of S for which A has value v_i

Attributes with Costs

Decion Tree Learning

Occam's Razor

e m

Consider

ullet medical diagnosis, BloodTest has cost \$150

• robotics, $Width_from_1ft$ has cost 23 sec.

How to learn a consistent tree with low expected cost? One approach: replace gain by

Tan and Schlimmer (1990)

$$\frac{Gain^2(S,A)}{Cost(A)}.$$

• Nunez (1988)

$$\frac{2^{Gain(S,A)} - 1}{(Cost(A) + 1)^w}$$

where $w \in [0,1]$ determines importance of cost

Unknown Attribute Values

Decion Tree Learning

Overvie

Information Gain

Inductive Bias in ID3

Occam's Razor What if some examples missing values of A? Use training example anyway, sort through tree

- If node n tests A, assign most common value of A among other examples sorted to node n
- ullet assign most common value of A among other examples with same target value
- ullet assign probability p_i to each possible value v_i of A
 - ullet assign fraction p_i of example to each descendant in tree