Instrucciones Código Versión 2018

Archivo main:

Importante indicarle la versión del programa (V0, V01, ...). El solo lee

Archivos de lectura:

Importante, si se escribe // seguido de espacio se omite la línea a leer La primera línea no lo lee.

• problem.txt

```
INIT_FILE
    (Nombre del archivo.mat) Reiniciar desde un archivo
    (0) Iniciar desde 0
PLOT_INI
    (1) Dibuja algunas mallas al inicio del cálculo
    (0) No dibuja

FILE
    Nombre del archivo donde están los elementos, con extensión *.msh,
de GID
PATH_GEOM
    Carpeta (si la hubiera) donde está el archivo de la geometría
GRID
```

Nombre del archivo donde está la malla con extensión *.msh, de GID. Se usa para MPM. Si no lo hubiera, la malla es la misma que la que está en FILE.

ELEMENT

Tipo de elemento, donde salen los puntos materiales.

- L1
- T3
- T3-Inverse
- T3-Diamond
- Q4
- Q4-4 (4 puntos de integración)

```
GRID TYPE
```

Tipo de grid, dependiendo del numero de nodos:

- L1
- T3
- **-** T6
- 04

PROBLEM

OTM (0), MPM (1) o FEM (2)

Puede añadir el sufijo LME si usa funciones de forma LME. Si no, usa funciones de forma de FEM.

CONFIGURATION

PLAIN STRAIN

AXISYMMETRIC

THICKNESS Valor numérico del espesor

FORMULATION

U 1 set de grados de libertad (2 en 2D) UW=0

U-W 2 sets de grados de libertad (4 en 2D) UW=1

U-Pw 2 set de grados de libertad, agua y pw (3 en 2D) UW=2

U-W-Pw 3 set de grados de libertad, agua y pw (5 en 2D) UW=3

DIMENSION (1) Flag para 1D (2) 2D (3) 3D

SCALE Factor de amplificación de la malla original

REMAPPING

Flag para realizar re-cálculo de función de forma (1) o no (0)

LINEARIZATION

- (1) Se añaden términos de la linearización u-w (0) No INITIAL GRAVITY
- (1) Estado inicial de gravedad (0) No INITIAL PRESSURE

Valor numérico de la presión inicial

INITIAL PORE PRESSURE

Valor numérico de la presión inicial

INITIAL DISPLACEMENT

(YES) El que se calcule en el paso 1 cuenta para la simulación o (NO) solo se tiene en cuenta estado tensional.

GRAVITY

Valor numérico de la gravedad, con su signo WATER_DENSITY

```
B BAR
        Nada
   (0)
   (1)
         B-Bar
F BAR
     Valor numérico entre 0 (no F Bar) y 1 (Cuánto actúa el F-bar)
F BAR W
     Valor numérico entre 0 (no F Bar) y 1 (Cuánto actúa el F-bar
     del agua)
TIME FINAL
                  Tiempo final de simulación
TIME STEP
                  Paso de tiempo
TIME FACTOR
      Valor numérico para amplificar el time step en cada paso. Si
      usamos 1 no se amplifica.
SOLVER
     IMPLICIT
     EXPLICIT (Por probar)
SCHEME
     // NEWMARK1
     // NEWMARK2
     // GENERALIZED ALPHA
     // HHT
     // WILSON
     // WBZ
     // COLLOCATION
     // NEWMARK_EXPLICIT
DELTA 0.6
                 (O gamma)
ALPHA 0.3025
                 (O beta)
ALPHA M
ALPHA F
       Relacionado con alpha_m y alpha_f
RHO
       Relacionado con Wilson y collocation
THETA
NEWTON_RAPHSON_LOOP
     Cada cuanto construye la matriz de rigidez global en el Newton-
     Raphson
```

NR TOLERANCE RELATIVE Tolerancia relativa del Newton-Raphson

NR_TOLERANCE_ABSOLUTE Tolerancia absoluta del Newton-Raphson
ITERATIONS Máximo de iteraciones del Newton-Raphson

SAVE FREQUENCY

Especifica cada cuantos pasos de tiempo se van a exportar los datos para visualizar

FILE_FREQUENCY

Especifica cada cuantos pasos <u>de visualización</u> se va a grabar el fichero de salida (Importante si la simulación falla antes del final, de poder tener archivos de salida)

mat.txt

VISCOSITY_EXPONENT

```
MATERIALS Número de materiales
Comunes:
MAT Número
             Tipo
     MODIFIED CAM CLAY
     MODIFIED_CAM_CLAY_VISCO (en pruebas)
     LINEAR ELASTIC
     NEO HOOKEAN,
                      NEO_HOOKEAN_WRIGGERS, NEO_HOOKEAN_BONET,
     NEO HOOKEAN EHLERS
     VON MISES
     DRUCKER PRAGER O
                            Outer cone
     DRUCKER_PRAGER_I
                           Inner cone
     DRUCKER PRAGER PS Plain strain cone
X RANGE x inicial x final
     Rango en x donde se sitúa el material nombrado anteriormente
Y RANGE y inicial y final
     Rango en y donde se sitúa el material nombrado anteriormente
     (FULL para nombrar el máximo e INI para el mínimo o números)
DENSITY
Elásticas:
  YOUNG
  POISSON
  SHEAR MODULUS
  BULK_MODULUS
  LAME CONSTANT
  CONSTRAINED MODULUS
  WAVE_SPEED
Plásticas:
  YIELD STRESS
  COHESION
  HARDENING
  HARDENING EXPONENT
  EPSILON0
  FRICTION ANGLE
  VISCOSITY
```

```
Agua:
  PERMEABILITY
  POROSITY
  WATER_BULK_MODULUS
  KS
  KW
Cam Clay:
  CRITICAL_STATE_LINE
  ALPHA_PARAMETER
  {\tt SHEAR\_MODULUS}
  PRECONSOLIDATION (Presiones negativas)
  KAPPA
  LAMBDA
  INITIAL_VOLUMETRIC_STRAIN
  OCR
  K0
Cam Clay visco:
  REFERENCE_PRECONSOLIDATION
  CREEP INDEX
```

• boundary.txt

BOUNDARIES Número de condiciones

BOUNDARY Número Tipo:

DISPLACEMENT

WATER DISPLACEMENT

VELOCITY

X RANGE x inicial x final

Rango en x donde se sitúa la condición nombrada anteriormente Y RANGE y inicial y final

Rango en y donde se sitúa la condición nombrada anteriormente (FULL para nombrar el máximo e INI para el mínimo o números)

VECTOR X Y Z (Direcciones, ejemplo vertical: 0 1 0)

VALUE Valor numérico o funciones, las que entiende Matlab, siendo t reconocido como tiempo:

- sin(30*t)
- min(30,t*5)
- heaviside(...)
- cos()
- ...

INTERVAL Inicio Fin

(Interval entiende FULL para nombrar el máximo e INI para el inicial)

load.txt

```
LOADS Número de condiciones
LOAD Número Tipo:
     VOLUME ACCELERATION
          (en value poner g para gravedad u otro número si queremos
          que sea diferente)
     LINE LOAD
     POINT LOAD
     WATER_LINE_LOAD
     WATER POINT LOAD
X RANGE x inicial x final
     Rango en x donde se sitúa la condición nombrada anteriormente
Y RANGE y inicial y final
     Rango en y donde se sitúa la condición nombrada anteriormente
      (FULL para nombrar el máximo e INI para el mínimo o números)
VECTOR X Y Z (Direcciones, ejemplo vertical: 0 1 0 )
VALUE
        Valor numérico (importante, se mete fuerza, no presión, la
        presión la calcula el programa automáticamente dependiendo
         si es PLANE STRAIN o AXISYMETRIC) o funciones, las que
         entiende Matlab, siendo t reconocido como tiempo:
          sin(30*t)
          min(30,t*5)
          heaviside(...)
          cos()
          abs()
            . . .
INTERVAL Inicio Fin
(Interval entiende FULL para nombrar el máximo)
```

output.txt

OUTPUT NAME Nombre del archivo de salida *.mat

OUTPUTS Número de outputs

OUTPUT Número Tipo:

LOAD Asociada a una carga, saca la carga total con el tiempo BOUNDARY Asociado a una condición Dirichlet, saca su reacción REACTION Reacción en un contorno dado

X_RANGE x_inicial x_final

Con REACTION, rango en x donde se sitúa la reacción Y RANGE y inicial y final

Con REACTION, rango en y donde se sitúa la reacción (FULL para nombrar el máximo e INI para el mínimo o números)

VECTOR X Y Z (Direcciones de la reacción, ejemplo vertical: 0 1 0)

ASSOCIATED Con LOAD y BOUNDARY, se asocia a LOAD o BOUNDARY de sus archivos correspondientes

LME.txt

OUTPUT NAME Nombre del archivo de salida *.mat

GAMMA LME Valor inicial de gamma

GAMMA TOP Valor mínimo admisible de gamma

TARGET ZERO Valor mínimo de P para pertenecer a la vecindad

TOL LAG Tolerancia en la búsqueda del lambda óptimo

WRAPPER Tipo de algoritmo de búsqueda:

NELDER O NELDER MEAD

NEWTON RAPHSON O NR

TOL SEARCH Tolerancia para el remapping, óptimo entre 0.4 y 0.7

PROPORTION Tasa de reducción del valor de gamma

NEIGHBORHOOD_GRADE 1 o 2, busca eficientemente los nuevos vecinos a partir de los elementos cercanos al elemento donde se encuentra en grado 1 o 2