Les Petits Devoirs du Soir - DDS

Exercice 220 - Moteur à courant continu*

S SLCI

Question 1 Exprimer la fonction de transfert $H(p) = \frac{\Omega(p)}{U(p)}$. En passant les équations dans le domaine de Laplace, on a :

- ightharpoonup U(p) = E(p) + RI(p) + LpI(p);
- $ightharpoonup E(p) = K_m \Omega(p);$
- $ightharpoonup C(p) = K_m I(p);$
- $C(p) f\Omega(p) = Jp\Omega(p) \Leftrightarrow C(p) = \Omega(p) (Jp + f).$

Vous devez savoir qu'un moteur à courant continu est piloté en tension (U(p)) et qu'en sortie on observe le taux de rotation $(\Omega(p))$.

En ne conservant que
$$U(p)$$
 et $\Omega(p)$, on a donc $U(p) = E(p) + RI(p) + LpI(p) \Leftrightarrow U(p) = K_m \Omega(p) + (R + Lp) \frac{C(p)}{K_m} \Leftrightarrow U(p) = K_m \Omega(p) + (R + Lp) \frac{\Omega(p) (Jp + f)}{K_m} \Leftrightarrow U(p) = \left(K_m + (R + Lp) \frac{(Jp + f)}{K_m}\right) \Omega(p) \Leftrightarrow U(p) = \frac{K_m^2 + (R + Lp) (Jp + f)}{K_m} \Omega(p).$

On a donc
$$H(p) = \frac{\Omega(p)}{U(p)} = \frac{K}{K^2 + (R + Lp)(Jp + f)}$$
.

Question 2 Préciser l'ordre et la classe de H. H est d'ordre 2 et de classe 0 car on ne peut pas mettre de p en facteur. Le terme de plus haut degré du dénominateur est de degré 2.

Question 3 Mettre H(p) sous forme canonique. $H(p) = \frac{K_m}{K_m^2 + Rf + (RJ + Lf)p + LJp^2}$

$$\Leftrightarrow H(p) = \frac{\frac{K_m}{K_m^2 + Rf}}{1 + \frac{\left(RJ + Lf\right)}{K_m^2 + Rf}p + \frac{LJ}{K_m^2 + Rf}p^2}.$$

Question 4 Donner les caractéristiques de la fonction de transfert. En identifiant avec la forme canonique standard, $H(p) = \frac{K}{1 + \frac{2\xi}{\omega_0}p + \frac{p^2}{\omega_0^2}}$ soit $K = \frac{K_m}{K_m^2 + Rf}, \frac{2\xi}{\omega_0} = \frac{K_m}{1 + \frac{2\xi}{\omega_0}p + \frac{p^2}{\omega_0^2}}$

$$\frac{\left(RJ+Lf\right)}{K_{m}^{2}+Rf}\text{ et }\frac{1}{\omega_{0}^{2}}=\frac{LJ}{K_{m}^{2}+Rf}.$$

Au final,
$$K = \frac{K_m}{K_m^2 + Rf}$$
, $\omega_0 = \sqrt{\frac{K_m^2 + Rf}{LJ}}$, $\xi = \frac{RJ + Lf}{2\sqrt{LJ(K_m^2 + Rf)}}$.

Question 5 Vérifier l'homgénéité des différentes constantes.

Le gain doit être en rad $s^{-1}V^{-1}$.

D'une part, $[K_m] = N m A^{-1}$. D'autre part, $[K_m] = V rad^{-1} s$. On a donc $V rad^{-1} s = N m A^{-1}$. (On pourrait aussi le montrer par une analyse dimensionnelle...)

De plus
$$[R] = \Omega = \frac{V}{A}$$
 et $[f] = N \text{ m rad}^{-1}$ s.

On a donc
$$[K]$$
 = $\frac{N \text{ m A}^{-1}}{(N \text{ m A}^{-1})^2 + N \text{ m rad}^{-1} \text{ s} \times VA^{-1}} = \frac{1}{N \text{ m A}^{-1} + \text{rad}^{-1} \text{ s} V} = \frac{1}{\text{rad}^{-1} \text{ s} V}$
= rad s⁻¹ V⁻¹.

La pulsation propre doit être en s^{-1} ou rad s^{-1} .

On a vu que $[K_m^2] = [Rf]$. De plus $[L] = H = V s A^{-1}$ et $[J] = Nm rad^{-1}s^2$ (PFD).

$$[\omega_0] = \sqrt{\frac{N^2 \, \text{m}^2 \, \text{A}^{-2}}{V \, \text{s} \, \text{A}^{-1} \times \text{Nm} \, \text{rad}^{-1} \text{s}^2}} = \sqrt{\frac{N \, \text{m} \, \text{rad}}{V \, \text{s} \, \text{A} \, \text{s}^2}}. \, \text{Or, W} = N \, \text{m} \, \text{rad} \, \text{s}^{-1} = \text{VA}.$$

On a alors
$$[\omega_0] = \sqrt{\frac{N \, m \, rad \, s^{-1}}{V \, s^2 \, A}} = \sqrt{\frac{1}{s^2}} = s^{-1}.$$

Enfin, ξ est sans unité... à vérifier :)

Exercice 219 - Machine de rééducation SysReeduc *

Question 1 À partir des équations proposées, déterminer les fonctions de transfert K_1 , K_2 , $H_3(p)$, $H_4(p)$, K_5 , K_6 , K_7 , K_8 et K_9 . On a :

- $u_m(t) = e(t) + Ri(t) \Rightarrow U_m(p) = E(p) + RI(p) \text{ et } C_{M1}(p) = k_t I(p) \text{ donc } K_2 = \frac{k_t}{R};$
- \blacktriangleright $E(p) = k_e \Omega_m(p)$ et donc $K_7 = k_e$;
- $(M+m) r \rho_1 p \Omega_m(p) = \frac{C_{M1}(p)}{\rho_1 r} F_p(p) \Leftrightarrow (M+m) r^2 \rho_1^2 p \Omega_m(p) = C_{M1}(p) \rho_1 r F_p(p) \text{ et donc } K_9 = \rho_1 r \text{ et } H_3(p) = \frac{1}{(M+m) r^2 \rho_1^2 p};$
- ► $H_4(p)$ permet d'obtenir une position à partir d'une vitesse. Il s'agit donc d'un intégrateur et $H_4(p) = \frac{1}{n}$;
- ▶ un codeur incrémental avec 1 émetteur-récepteur permet de détecter les fentes et les « non fentes » donc ici 1000 informations par tour. Avec un second émetteur, on double la résolution soit 2000 informations pour un tour soit $K_8 = \frac{2000}{2\pi}$;
- en utilisant le réducteur et le poulie courroie, on a directement $K_5 = \rho_1$ et $K_6 = r$ (à convertir en mètres);
- ▶ enfin, K_1 convertit des mètres en incréments. X_c est la consigne que doit respectée X. Pour avoir un asservissement précis, il faut donc $\varepsilon = 0$ et $X = X_c$ soit $\varepsilon = 0 = K_1 X_C K_8 \theta_m = K_1 X_C K_8 \frac{X}{K_5 K_6}$. Au final, $K_1 = \frac{K_8}{K_5 K_6}$.

Question 2 Montrer que le schéma-blocs peut être mis sous la forme suivante. On exprimera A, B et D en fonction des paramètres du système r, ρ_1 , k_t , k_e , R, M, m et K_8 . D'une part,

$$X(p) = \left(\left(X_C(p) - X(p)\right)C(p) - F_P(p)D\right)\frac{A}{p\left(Bp+1\right)}$$

$$X(p) = \frac{A\left(X_C(p) - X(p)\right)C(p)}{p\left(Bp + 1\right)} - \frac{AF_P(p)D}{p\left(Bp + 1\right)}$$

$$\Leftrightarrow X(p) + \frac{AX(p)C(p)}{p(Bp+1)} = \frac{AX_C(p)C(p)}{p(Bp+1)} - \frac{AF_P(p)D}{p(Bp+1)} . \Leftrightarrow X(p) \left(\frac{p(Bp+1) + AC(p)}{p(Bp+1)}\right) = \frac{AX_C(p)C(p)}{p(Bp+1)} + \frac{AF_P(p)D}{p(Bp+1)}$$

$$\Leftrightarrow X(p) = \frac{AX_C(p)C(p)}{p\left(Bp+1\right) + AC(p)} - \frac{AF_P(p)D}{p\left(Bp+1\right) + AC(p)}.$$

D'autre part, $X(p) = \Omega_m(p)H_4(p)K_5K_6$, $U_m(p) = (X_c(p)K_1 - \theta_m(p)K_8)C(p)$, $\theta_m(p) = \Omega_m(p)H_4(p)$.

$$\Omega_m(p) = ((U_m(p) - \Omega_m(p)K_7) K_2 - F_P(p)K_9) H_3(p)$$

$$\Leftrightarrow \Omega_m(p) \left(1 + K_7 K_2 H_3(p) \right) = U_m(p) H_3(p) K_2 - F_P(p) H_3(p) K_9$$

$$X(p) = \left(U_m(p) H_3(p) K_2 - F_P(p) H_3(p) K_9 \right) \frac{H_4(p) K_5 K_6}{1 + K_7 K_2 H_3(p)}$$

$$\Leftrightarrow X(p) = \left(\left(X_c(p)K_1 - \theta_m(p)K_8 \right) C(p)H_3(p)K_2 - F_P(p)H_3(p)K_9 \right) \frac{H_4(p)K_5K_6}{1 + K_7K_2H_3(p)}$$

$$\Leftrightarrow X(p) = \left(\left(X_c(p) K_1 - X(p) \frac{K_8}{K_5 K_6} \right) C(p) H_3(p) K_2 - F_P(p) H_3(p) K_9 \right) \frac{H_4(p) K_5 K_6}{1 + K_7 K_2 H_3(p)}$$

$$\Leftrightarrow X(p) = ((X_c(p) - X(p)) C(p) H_3(p) K_1 K_2 - F_P(p) H_3(p) K_9) \frac{H_4(p) K_5 K_6}{1 + K_7 K_2 H_3(p)}$$

$$\Leftrightarrow X(p)\left(1+C(p)H_{3}(p)K_{1}K_{2}\frac{H_{4}(p)K_{5}K_{6}}{1+K_{7}K_{2}H_{3}(p)}\right)=\left(X_{c}(p)C(p)H_{3}(p)K_{1}K_{2}-F_{P}(p)H_{3}(p)K_{9}\right)\frac{H_{4}(p)K_{5}K_{6}}{1+K_{7}K_{2}H_{3}(p)}$$

$$\Leftrightarrow X(p) \left(1 + K_7 K_2 H_3(p) + C(p) H_3(p) K_1 K_2 H_4(p) K_5 K_6 \right) = \left(X_c(p) C(p) H_3(p) K_1 K_2 - F_P(p) H_3(p) K_9 \right) H_4(p) K_5 K_6$$

Par suite,

$$\Leftrightarrow X(p)\left(1+K_{7}K_{2}\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}+C(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}\frac{1}{p}K_{5}K_{6}\right)=\left(X_{c}(p)C(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2}\rho_{1}^{2}p}\frac{K_{8}}{K_{5}K_{6}}K_{2}-F_{P}(p)\frac{1}{(M+m)\,r^{2$$

$$\Leftrightarrow X(p)\left(1+\frac{\frac{k_ek_t}{R}}{(M+m)\,r^2\rho_1^2p}+C(p)\frac{K_8\frac{k_t}{R}}{(M+m)\,r^2\rho_1^2p^2}\right)=\left(X_c(p)C(p)\frac{K_8}{(M+m)\,r^2\rho_1^2p^2}\frac{k_t}{R}-F_P(p)\frac{K_9}{(M+m)\,r\rho_1p^2}\right).$$

$$\Leftrightarrow X(p) = X_{c}(p)C(p)\frac{\frac{K_{8}}{(M+m)\,r^{2}\rho_{1}^{2}p^{2}}\frac{k_{t}}{R}}{\left(1 + \frac{\frac{k_{e}k_{t}}{R}}{(M+m)\,r^{2}\rho_{1}^{2}p} + C(p)\frac{K_{8}\frac{k_{t}}{R}}{(M+m)\,r^{2}\rho_{1}^{2}p^{2}}\right)} - F_{P}(p)\frac{K_{9}\frac{k_{t}}{(M+m)\,r\rho_{1}p^{2}}}{\left(1 + \frac{\frac{k_{e}k_{t}}{R}}{(M+m)\,r^{2}\rho_{1}^{2}p} + C(p)\frac{K_{8}\frac{k_{t}}{R}}{(M+m)\,r^{2}\rho_{1}^{2}p^{2}}\right)}$$

$$\Leftrightarrow X(p) = X_{c}(p)C(p) \frac{\frac{K_{8}}{1} \frac{k_{t}}{R}}{\left((M+m) r^{2} \rho_{1}^{2} p^{2} + \frac{(M+m) r^{2} \rho_{1}^{2} p^{2} \frac{k_{e} k_{t}}{R}}{(M+m) r^{2} \rho_{1}^{2} p} + C(p) \frac{(M+m) r^{2} \rho_{1}^{2} p^{2} K_{8} \frac{k_{t}}{R}}{(M+m) r^{2} \rho_{1}^{2} p^{2}}\right)}$$

$$F_{P}(p) \frac{\overline{(M+m) r \rho_{1} p^{2}}}{\left(1 + \frac{\frac{k_{e} k_{t}}{R}}{(M+m) r^{2} \rho_{1}^{2} p} + C(p) \frac{K_{8} \frac{k_{t}}{R}}{(M+m) r^{2} \rho_{1}^{2} p^{2}}\right)}$$

$$\Leftrightarrow X(p) = X_c(p)C(p) \frac{\frac{K_8 k_t}{R}}{(M+m) r^2 \rho_1^2 p^2 + p \frac{k_e k_t}{R} + C(p) K_8 \frac{k_t}{R}}$$

$$-F_{P}(p) \frac{K_{9}}{\left((M+m)r\rho_{1}p^{2} + \frac{(M+m)r\rho_{1}p^{2}\frac{k_{e}k_{t}}{R}}{(M+m)r\rho_{1}p^{2}\frac{k_{e}k_{t}}{R}} + C(p) \frac{(M+m)r\rho_{1}p^{2}K_{8}\frac{k_{t}}{R}}{(M+m)r^{2}\rho_{1}^{2}p^{2}}\right)}$$

$$\Leftrightarrow X(p) = X_{c}(p)C(p) \frac{K_{8}k_{t}}{(M+m)r^{2}\rho_{1}^{2}p^{2} + p\frac{k_{e}k_{t}}{R} + C(p)K_{8}\frac{k_{t}}{R}} - F_{P}(p) \frac{K_{9}}{(M+m)r\rho_{1}p^{2} + \frac{pk_{e}k_{t}}{Rr\rho_{1}}} + C(p)K_{8}\frac{k_{t}}{R}}{R}$$

$$\Leftrightarrow X(p) = X_{c}(p)C(p) \frac{K_{8}k_{t}}{R} \left(\frac{R}{k_{e}k_{t}} (M+m)r^{2}\rho_{1}^{2}p + 1\right) + C(p)K_{8}\frac{k_{t}}{R}} - F_{P}(p) \frac{K_{9}}{p\frac{k_{e}k_{t}}{Rr\rho_{1}}} \left(\frac{(M+m)R_{t}}{Rr\rho_{1}} \left(\frac{(M+m)R_{t}}{Rr\rho_{1}} \left(\frac{(M+m)R_{t}}{Rr\rho_{1}} \left(\frac{(M+m)R_{t}}{Rr\rho_{1}} \left(\frac{(M+m)R_{t}}{Rr\rho_{1}} \right)\right)\right)\right)$$

$$\Leftrightarrow X(p) = X_{c}(p)C(p) \frac{K_{8}k_{t}}{R} (Bp+1) + C(p)K_{8}\frac{k_{t}}{R}} - F_{P}(p) \frac{K_{9}}{p\frac{k_{e}k_{t}}{Rr\rho_{1}}} (Bp+1) + C(p)\frac{K_{8}k_{t}}{Rr\rho_{1}}}$$

$$\Leftrightarrow X(p) = X_{c}(p)C(p) \frac{K_{8}k_{t}}{p(Bp+1) + C(p)K_{8}\frac{k_{t}}{R}} - F_{P}(p) \frac{K_{9}k_{t}}{p\frac{k_{e}k_{t}}{Rr\rho_{1}}} (Bp+1) + C(p)\frac{K_{8}k_{t}}{Rr\rho_{1}}}$$

$$\Leftrightarrow X(p) = X_{c}(p)C(p) \frac{K_{8}}{p(Bp+1) + C(p)K_{8}\frac{k_{t}}{R}} - F_{P}(p) \frac{K_{9}\frac{Rr\rho_{1}}{k_{e}k_{t}}}{p(Bp+1) + C(p)\frac{K_{8}k_{t}}{k_{e}k_{t}}}}$$

$$\Leftrightarrow X(p) = X_{c}(p)C(p) \frac{K_{8}}{p(Bp+1) + C(p)\frac{K_{8}}{k_{e}}} - F_{P}(p) \frac{K_{9}\frac{Rr\rho_{1}}{k_{e}k_{t}}}{p(Bp+1) + C(p)\frac{K_{8}}{k_{e}}}$$

$$\Leftrightarrow X(p) = X_{c}(p)C(p) \frac{K_{8}}{p(Bp+1) + C(p)\frac{K_{8}}{k_{e}}} - F_{P}(p) \frac{K_{9}\frac{Rr\rho_{1}}{k_{e}k_{t}}}{p(Bp+1) + C(p)\frac{K_{8}}{k_{e}}}}$$

$$\Leftrightarrow X(p) = X_{c}(p)C(p) \frac{K_{8}}{p(Bp+1) + C(p)\frac{K_{8}}{k_{e}}} - F_{P}(p) \frac{K_{9}\frac{Rr\rho_{1}}{k_{e}k_{t}}}{p(Bp+1) + C(p)\frac{K_{8}}{k_{e}}}$$

$$\Leftrightarrow X(p) = X_{c}(p)C(p) \frac{K_{8}}{p(Bp+1) + C(p)\frac{K_{8}}{k_{e}}} - F_{P}(p) \frac{K_{9}\frac{Rr\rho_{1}}{k_{e}k_{t}}}{p(Bp+1) + C(p)\frac{K_{8}}{k_{e}}}$$

$$\Leftrightarrow X(p) = X_{c}(p)C(p) \frac{K_{8}}{p(Bp+1) + C(p)\frac{K_{8}}{k_{e}}} - F_{P}(p) \frac{K_{9}\frac{Rr\rho_{1}}{k_{e}k_{t}}}{p(Bp+1) + C(p)\frac{K_{8}}{k_{e}}}$$

$$\Leftrightarrow X(p) = X_{c}(p)C(p) \frac{K_{8}}{p(Bp+1) + C(p)\frac{K_{8}}{k_{e}}} - F_{P}(p) \frac{K_{9}\frac{Rr\rho_{1}}{k_{e}k_{t}}}{p(Bp+1) + C(p)\frac{K_{8}}{k_{e}}}$$

$$\Leftrightarrow X(p) = X_{c}(p)C(p) \frac{K_{8}\frac{R}{k_{e}}} - F_{P}(p) \frac{K_{9}\frac{Rr\rho_{1}}{k_{e}k_{t}}}{p(Bp+$$

Exercice 218 – Train simple ★

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer $\frac{\omega_{3/0}}{\omega_{1/0}}$ en fonction du nombre de dents des roues dentées.

On a
$$\frac{\omega_{3/0}}{\omega_{1/0}} = -\frac{Z_1}{Z_3}$$
.

Question 3 Donner une relation géométrique entre Z_1 , Z_2 et Z_3 permettant de garantir le fonctionnement du train d'engrenages.

On a
$$Z_3 = 2Z_2 + Z_1$$
.

Exercice 217 – Quille pendulaire *

SLCI

Question 1 Donner les expressions des fonctions de transfert A_1 , A_2 , A_3 et A_4 en fonction de la variable complexe p et des constantes.

D'une part, on transforme les équations dans le domaine de Laplace : $Q(p) = SpX(p) + \frac{V}{2B}p\Sigma(p)$ et $Mp^2X(p) = S\Sigma(p) - kX(p) - \lambda pX(p) - F_R(p)$.

En utilisant le schéma-blocs, on a $\Sigma(p) = A_2 \left(A_1 Q(p) - X(p) \right) = A_1 A_2 Q(p) - A_2 X(p)$.

Par ailleurs
$$\Sigma(p) = \frac{Q(p) - SpX(p)}{\frac{V}{2B}p} = Q(p)\frac{2B}{Vp} - X(p)\frac{S2B}{V}$$
. On a donc $A_2 = \frac{S2B}{V}$, $A_1A_2 = \frac{2B}{Vp}$ soit $A_1 = \frac{2B}{Vp}\frac{V}{S2B} = \frac{1}{Sp}$.

On a aussi
$$X(p) = A_4 \left(-F_R(p) + A_3 \Sigma(p) \right) = -A_4 F_R(p) + A_3 A_4 \Sigma(p)$$
. Par ailleurs, $X(p) \left(Mp^2 + \lambda p + k \right) = S\Sigma(p) - F_R(p) \Leftrightarrow X(p) = \frac{S\Sigma(p)}{Mp^2 + \lambda p + k} - \frac{F_R(p)}{Mp^2 + \lambda p + k}$. On a donc : $A_4 = \frac{1}{Mp^2 + \lambda p + k}$ et $A_3 = S$.

Au final,
$$A_1 = \frac{1}{Sp}$$
, $A_2 = \frac{S2B}{V}$, $A_3 = S$ et $A_4 = \frac{1}{Mp^2 + \lambda p + k}$.

Question 2 Donner les expressions des fonctions de transfert H_1 et H_2 en fonction de A_1 , A_2 , A_3 et A_4 , puis de la variable p et des constantes.

Méthode 1: Utilisation des relations précédentes On a $X(p) = (H_1Q(p) - F_R(p))H_2(p)$.

Par ailleurs, on a vu que $X(p) = A_4 \left(-F_R(p) + A_3 \Sigma(p) \right)$ et $\Sigma(p) = A_2 \left(A_1 Q(p) - X(p) \right)$.

On a donc
$$X(p) = A_4 \left(-F_R(p) + A_3 A_2 \left(A_1 Q(p) - X(p) \right) \right) \Leftrightarrow X(p) \left(1 + A_2 A_3 A_4 \right) = A_4 \left(-F_R(p) + A_3 A_2 A_1 Q(p) \right)$$
. On a donc $H_1(p) = A_1 A_2 A_3$ et $H_2 = \frac{A_4}{1 + A_2 A_3 A_4}$.

Méthode 2 : Lecture directe du schéma-blocs Revient à utiliser la méthode précédente.

Méthode 3 : Algèbre de schéma-blocs Le schéma-blocs proposé est équivalent au schéma suivant.

On retrouve le même résultat que précédemment.

$$A_1 = \frac{1}{Sp}, A_2 = \frac{S2B}{V}, A_3 = S \text{ et } A_4 = \frac{1}{Mp^2 + \lambda p + k}.$$

En faisant le calcul on obtient :
$$H_1(p) = \frac{2BS}{pV}$$
 et $H_2 = \frac{\frac{1}{Mp^2 + \lambda p + k}}{1 + \frac{2BS^2}{V} \frac{1}{Mp^2 + \lambda p + k}}$

$$=\frac{1}{Mp^2+\lambda p+k+\frac{2BS^2}{V}}.$$

Question 3 Pour ce vérin non perturbé ($F_R = 0$), donner sa fonction de transfert X(p)/Q(p) en fonction de la variable p et des constantes.

Dans ce cas,
$$\frac{X(p)}{Q(p)} = H_1(p)H_2(p) = \frac{2BS}{p(MVp^2 + \lambda pV + kV + 2BS^2)}$$
.

Exercice 216 - Fonctions de transfert*

Question 1 Déterminer la fonction de transfert en boucle ouverte. Mettre l'expression sous forme canonique et exprimer les paramètres caractéristiques. On a FTBO(p) =

$$\frac{K^2}{\left(R+Lp\right)\left(f+Jp\right)} = \frac{K^2}{Rf+RJp+Lfp+LJp^2} = \frac{K^2}{Rf\left(1+p\frac{RJ+Lf}{Rf}+\frac{LJ}{Rf}p^2\right)}.$$

On a donc
$$K_{\rm BO} = \frac{K^2}{Rf}$$
, $\omega_{\rm BO} = \sqrt{\frac{Rf}{LJ}}$, $\frac{2\xi_{\rm BO}}{\omega_{\rm BO}} = \frac{RJ + Lf}{Rf} \Leftrightarrow \xi_{\rm BO} = \omega_{\rm BO} \frac{RJ + Lf}{2Rf} = \sqrt{\frac{Rf}{LJ}} \frac{RJ + Lf}{2Rf} = \frac{RJ + Lf}{2\sqrt{LJRf}}$.

Question 2 Déterminer la fonction de transfert en boucle fermée. Mettre l'expression sous forme canonique et exprimer les paramètres caractéristiques. On a FTBF(p) =

$$\frac{\frac{K}{(R+Lp)(f+Jp)}}{1+\frac{K^2}{(R+Lp)(f+Jp)}} = \frac{K}{(R+Lp)(f+Jp)+K^2} = \frac{\frac{K}{K^2+Rf}}{\frac{RJ+Lf}{Rf+K^2}p+\frac{LJ}{Rf+K^2}p^2+1}.$$

$$\begin{aligned} &\text{On a donc } K_{\text{BF}} = \frac{K}{K^2 + Rf}, \omega_{\text{BF}} = \sqrt{\frac{Rf + K^2}{LJ}}, \frac{2\xi_{\text{BF}}}{\omega_{\text{BF}}} = \frac{RJ + Lf}{Rf + K^2} \iff \xi_{\text{BO}} = \omega_{\text{BF}} \frac{RJ + Lf}{2\left(Rf + K^2\right)} = \\ &\sqrt{\frac{Rf + K^2}{LJ}} \frac{RJ + Lf}{2\left(Rf + K^2\right)} \; \xi_{\text{BF}} = \frac{RJ + Lf}{2\sqrt{LJ}\sqrt{Rf + K^2}}. \end{aligned}$$

Question 3 Déterminer la fonction de transfert en boucle ouverte. Mettre l'expression sous forme canonique et exprimer les paramétres caractéristiques. Si on note R(p) la seconde entrée du **premier comparateur** et $\varepsilon(p)$ la sortie du premier comparateur,

FTBO(p) =
$$\frac{\varepsilon(p)}{R(p)} = A \times \frac{\frac{1}{p}}{1 + \frac{B}{p}} \times C = \frac{AC}{B+p} = \frac{\frac{AC}{B}}{1 + \frac{p}{B}}$$
. On a donc $K_{BO} = \frac{AC}{B}$ et $\tau_{BO} = \frac{1}{B}$.

Question 4 Déterminer la fonction de transfert en boucle fermée. Mettre l'expression sous forme canonique et exprimer les paramétres caractéristiques. On a FTBF(p) =

$$\frac{\frac{A}{B+p}}{1+\frac{AC}{B+p}} = \frac{A}{B+p+AC} = \frac{\frac{A}{B+AC}}{1+\frac{p}{B+AC}}.$$

On a donc
$$K_{BF} = \frac{A}{B + AC}$$
 et $\tau_{BF} = \frac{1}{B + AC}$

Exercice 215 – Pompe à piston axial ★

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\lambda(t)$ en fonction de $\theta(t)$.

En écrivant la fermeture géométrique, on a $\overrightarrow{AB} + \overrightarrow{BI} + \overrightarrow{IC} + \overrightarrow{CA} = \overrightarrow{0}$.

On a donc, $e\overrightarrow{i_1} + R\overrightarrow{j_0} + \mu\overrightarrow{i_0} - \lambda(t)\overrightarrow{j_0} = \overrightarrow{0}$. En projetant l'expression sur $\overrightarrow{j_0}$ (dans ce cas, l'expression suivant $\overrightarrow{i_0}$ n'est pas utile) : $e\sin\theta + R - \lambda(t) = 0$.

On a donc, $\lambda(t) = e \sin \theta + R$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

En dérivant l'expression précédente, on a $\dot{\lambda}(t) = e \dot{\theta}(t) \cos \theta(t)$.

Question 4 On note *S* la section du piston **2**. Exprimer le débit instantané de la pompe.

En notant q(t) le débit instantané, $q(t) = eS\dot{\theta}(t)\cos\theta(t)$.

Question 5 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour $e=10\,\mathrm{mm}$ et $R=10\,\mathrm{mm}$ ainsi que pour $e=20\,\mathrm{mm}$ et $R=5\,\mathrm{mm}$. La fréquence de rotation est $\dot{\theta}(t)=100\,\mathrm{rad}\,\mathrm{s}^{-1}$, la section du piston est donnée par $S=1\,\mathrm{cm}^2$.

```
#!/usr/bin/env python
   # -*- coding: utf-8 -*-
3
   """11_PompePistonAxial.py"""
4
5
   _author__ = "Xavier Pessoles"
6
   __email__ = "xpessoles.ptsi@free.fr"
9
   import numpy as np
  import matplotlib.pyplot as plt
10
   import math as m
11
   from scipy.optimize import newton
13
   from scipy.optimize import fsolve
14
15
   R = 0.02 \# m
   e = 0.01 \# m
16
17
   def calc_lambda(theta):
       res= e*np.sin(theta)+R
19
20
21
       return res
22
   def calc_lambdap(theta,w):
23
24
25
       res = e*w*np.cos(theta)
       return res
26
27
  def plot_debit():
28
29
       plt.cla()
30
       w = 100 \# rad/s
31
       les_t = np.linspace(0,0.1,1000)
       les_theta = w*les_t
32
33
       global e
```



```
S = 1e-4
34
       e = 20e - 3
35
       les_q = e*S*w*np.cos(les_theta)
36
       plt.plot(les_t,les_q)
37
       plt.xlabel("Temps (s)")
38
       plt.ylabel("Débit (${m}^3s^{-1}$)")
39
       plt.grid()
40
       plt.savefig("11_02_c.png")
41
42
       plt.show()
43
44 plot_debit()
```


Pas de corrigé pour cet exercice.

Exercice 214 - Calcul de FTBO★

Question 1 Déterminer la FTBO dans la cas suivant.

FTBO(p) = BCDE.

Question 2 Déterminer la FTBO dans la cas suivant.

FTBO(p) = B(1 + A).

Question 3 Déterminer la FTBO dans la cas suivant.

 $FTBO(p) = A \frac{BCD}{1 + BCD}.$

Question 4 Déterminer la FTBO dans la cas suivant.

$$FTBO(p) = A \frac{\frac{B}{1+B}CD}{1 + \frac{B}{1+B}CD} = \frac{ABCD}{1+B+BCD}.$$

SLCI

SLCI

Exercice 213 – Calcul de FTBO★

Pas de corrigé pour cet exercice.

Question 1 Déterminer la FTBO dans la cas suivant. FTBO(p) = A(p)B(p)C(p).

Question 2 Déterminer la FTBO dans la cas suivant.

FTBO(p) = B(p)C(p).

Question 3 Déterminer la FTBO dans la cas suivant.

FTBO(p) = B(p)C(p).

Question 4 Déterminer la FTBO dans la cas suivant.

$$FTBO(p) = \frac{B(p)C(p)}{1 + B(p)C(p)E(p)} \times \frac{A(p)D(p)}{C(p)}$$

Exercice 212 – Mouvement T – ★

Pas de corrigé pour cet exercice.

Question 1 Réaliser le paramétrage du mécanisme.

Exercice 211 – Moteur à courant continu*

Question 1 Réaliser le schéma-blocs.

Question 2 Mettre le schéma-blocs sous la forme suivante.

En utilisant le schéma-blocs proposé, on a $\Omega(p) = (C_r(p)A(p) + U(p)B(p)) C(p)$.

D'autre part,
$$\Omega(p) = \left(C_r(p) + \frac{K}{R + Lp} \left(U(p) - K\Omega(p)\right)\right) \frac{1}{f + Jp}$$
.

On a donc
$$(f + Jp) \Omega(p) = C_r(p) + U(p) \frac{K}{R + Lp}$$

$$\Leftrightarrow \left(f+Jp\right)\Omega(p)+\frac{K^2}{R+Lp}\Omega(p)=C_r(p)+U(p)\frac{K}{R+Lp}$$

$$\Leftrightarrow \left(\left(f + Jp \right) + \frac{K^2}{R + Lp} \right) \Omega(p) = C_r(p) + U(p) \frac{K}{R + Lp}$$

$$\Leftrightarrow \frac{K^2 + \left(f + Jp\right)\left(R + Lp\right)}{R + Lp} \Omega(p) = C_r(p) + U(p) \frac{K}{R + Lp}$$

$$\Leftrightarrow \Omega(p) = \left(C_r(p) + U(p)\frac{K}{R + Lp}\right)\frac{R + Lp}{K^2 + \left(f + Jp\right)\left(R + Lp\right)}.$$

Dés lors plusieurs schéma-blocs peuvent répondre à la question. Par exemple, A(p) = 1,

$$B(p) = \frac{K}{R + Lp}, C(p) = \frac{R + Lp}{K^2 + (f + Jp)(R + Lp)}.$$

En poursuivant, on a aussi : $\Omega(p) = \left(C_r(p)(R+Lp) + U(p)K\right) \frac{1}{K^2 + \left(f + Jp\right)\left(R + Lp\right)}$

On a donc aussi,
$$A(p) = R + Lp$$
, $B(p) = K$, $C(p) = \frac{1}{K^2 + (f + Jp)(R + Lp)}$

Exercice 210 - Vérin★

Question 1 Réaliser le schéma-blocs.

On a:

- ► $U_c(p) = \frac{1}{K_a}I(p) + U_s(p)$ ► Q(p) = SpX(p)

- $U_S(p) = K_C \cdot X(p)$ $F(p) = \frac{Q(p)}{I(p)} = \frac{K_d}{1 + T_D}$

SLCI

Pas de corrigé pour cet exercice.

Exercice 209 – Prothèse active transtibiale*

Présentation

Comportement dynamique de la prothèse

Question 1 À partir des équations caractérisant le système, déterminer les expressions littérales des fonctions de transfert $H_1(p)$, $H_2(p)$, $H_3(p)$ et $H_6(p)$.

Correction

On a d'une part, $C_M(p) = H_1(p) (U_M(p) - \Omega_M(p))$.

D'autre part, en utilisant les deux équations du moteur électrique, on a $U_M(p) = RI(p) + E(p)$ et $E(p) = k_c \Omega_M(p)$ soit $U_M(p) = RI(p) + k_c \Omega_M(p)$. De plus $C_M(p) = k_c I(p)$; donc $U_M(p) = R \frac{C_M(p)}{k_c} + k_c \Omega_M(p)$. Par suite, $C_M(p) = \frac{k_c}{R} (U_M(p) - k_c \Omega_M(p))$.

$$U_M(p) = R \frac{C_M(p)}{k_c} + k_c \Omega_M(p)$$
. Par suite, $C_M(p) = \frac{k_c}{R} \left(U_M(p) - k_c \Omega_M(p) \right)$

En identifiant, on a donc $H_1(p) = \frac{k_c}{R}$ et $H_6(p) = k_c$.

D'après le schéma-blocs,

 $\Delta \alpha(p) = (C(p) - C_M(p)H_2(p)) H_3(p)H_4(p)$ soit

En utilisant l'équation différentielle caractéristique du comportement de la prothèse, on $a: J_M p^2 \Delta \alpha(p) + \mu_m p \Delta \alpha(p) = C_M(p) R_T - C(p) R_T^2 \Leftrightarrow \Delta \alpha(p) \left(J_M p^2 + \mu_m p \right) = C_M(p) R_T - C(p) R_T^2 + C(p) R_T^2 + C(p) R_T - C(p) R_T^2 + C(p)$

$$\Leftrightarrow \Delta \alpha(p) = \frac{R_T^2}{\int_M p^2 + \mu_m p} \left(\frac{C_M(p)}{R_T} - C(p) \right).$$

Or,
$$\Delta \alpha(p) = \frac{1}{p} \Delta \alpha'(p)$$
; donc $H_4(p) = \frac{1}{p}$.

Au final,
$$H_3(p) = \frac{R_T^2}{J_M p + \mu_m}$$
 et $H_2(p) = R_T$.

Question 2 Déterminer la fonction de transfert en boucle fermée FTBF(p) = $\frac{C(p)}{U_M(p)}$

Correction

On déplace le dernier point de prélèvement avant H_4 . On ajoute donc $H_4(p)H_7(p)$ dans la retour.

On a alors
$$F(p) = \frac{\Delta \alpha'(p)}{-} = \frac{H_3(p)}{1 + H_3(p)H_4(p)H_7(p)}$$
. FTBF $(p) = H_1(p)H_2(p)F(p)$

$$\frac{H_1(p)H_2(p)F(p)}{1+H_1(p)H_2(p)H_5(p)H_6(p)F(p)}H_4(p)H_7(p).$$

Soit FTBF(p) =
$$\frac{H_1(p)H_2(p)\frac{H_3(p)}{1+H_3(p)H_4(p)H_7(p)}}{1+H_1(p)H_2(p)H_5(p)H_6(p)\frac{H_3(p)}{1+H_3(p)H_4(p)H_7(p)}}H_4(p)H_7(p)$$

$$= \frac{H_1(p)H_2(p)H_3(p)}{1 + H_3(p)H_4(p)H_7(p) + H_1(p)H_2(p)H_5(p)H_6(p)H_3(p)} H_4(p)H_7(p)$$

$$\begin{split} & = \frac{1 + H_1(p)H_2(p)H_5(p)H_6(p)}{1 + H_3(p)H_4(p)H_7(p)} \\ & = \frac{H_1(p)H_2(p)H_3(p)}{1 + H_3(p)H_4(p)H_7(p) + H_1(p)H_2(p)H_5(p)H_6(p)H_3(p)} H_4(p)H_7(p) \\ & = \frac{\frac{k_c}{R}R_T \frac{R_T^2}{J_M p + \mu_m}}{1 + \frac{R_T^2}{J_M p + \mu_m} \frac{k_{RS}d_0^2}{p} + \frac{k_c}{R}R_T \frac{1}{R_T}k_c \frac{R_T^2}{J_M p + \mu_m}} \frac{k_{RS}d_0^2}{p} \\ & = \frac{\frac{k_c}{1}R_T^3}{J_M R p^2 + \mu_m R p + R_T R^2 k_{RS}d_0^2 + p k_c k_c R_T^2} k_{RS}d_0^2}{J_M R p^2 + p \left(\mu_m R + k_c k_c R_T^2\right) + R_T R^2 k_{RS}d_0^2} k_{RS}d_0^2. \end{split}$$

$$= \frac{\frac{R_0^2}{1}R_T^3}{I_{MR}n^2 + \mu_{mR}n + R_TR^2k_{RS}d_0^2 + nk_{c}k_{c}R_2^2}k_{RS}d_0^2$$

$$= \frac{k_c R_T^3}{J_M R p^2 + p \left(\mu_m R + k_c k_c R_T^2\right) + R_T R^2 k_{RS} d_0^2} k_{RS} d_0^2$$

Analyse des performances de l'asservissement en couple

Question 3 À l'aide des courbes, valider l'ensemble des critères du cahier des charges en justifiant clairement vos réponses.

Correction

- ▶ Le régime permanent semble atteint autour de 0,03 s; donc les critère de rapidité est
- En régime permanent, le couple atteint est de 46 Nm pour une consigne de 50 Nm. Un écart de 10 % correspondrait à un couple atteint de 45 Nm. Le critère de précision est respecté.

Exercice 208 – Conception de la commande d'un robot chirurgical*

SLCI

Question 1 Compléter le schéma-blocs.

Correction

En utilisant l'équation électrique du MCC, on a $U_1(p) = (Lp + R) I_1(p) + E_1(p)$. En utilisant le schéma-blocs : $I_1(p) = (U_1(p) - E(p)) D(p)$. On a donc $I_1(p) = \frac{U_1(p) - E(p)}{R + Lp}$ et $D(p) = \frac{U_1(p) - E(p)}{R + Lp}$

En utilisant la première relation de comportement du MCC, on a $E_1(p)$ en sortie du bloc k_e et $p\Delta_1(p)$ en entrée; donc $H(p) = \frac{1}{n}$.

En utilisant la seconde relation, on a $F(p) = k_t$.

En utilisant l'équation de mouvement de l'axe 1, on a : $\Delta C_1(p) = Jp^2 \Delta \theta_1(p) - k_1 \frac{r_9'}{r_0} h_2 \Delta F_X(p)$. D'après le schéma-blocs, on a $\Delta\theta_1(p) = (\Delta C_1(p) + \Delta F_x(p)E(p)) G(p)H(p)$.

En réageançant l'équation, on a $Jp^2\Delta\theta_1(p) = \Delta C_1(p) + k_1 \frac{r_0'}{r_0} h_2\Delta F_x(p) \Leftrightarrow \Delta\theta_1(p) =$ $\left(\Delta C_1(p) + k_1 \frac{r_9'}{r_0} h_2 \Delta F_x(p)\right) \frac{1}{In^2}.$

$$\left(\Delta C_1(p) + k_1 \frac{r_9}{r_0} h_2 \Delta F_x(p)\right) \frac{1}{Jp^2}$$

On a donc
$$E(p) = k_1 \frac{r_9}{r_0} h_2$$
.

De plus
$$G(p)H(p) = \frac{1}{Jp^2}$$
 et $H(p) = \frac{1}{p}$; donc $G(p) = \frac{1}{Jp}$

On a donc $E(p) = k_1 \frac{r_9'}{r_0} h_2$. De plus $G(p)H(p) = \frac{1}{Jp^2}$ et $H(p) = \frac{1}{p}$; donc $G(p) = \frac{1}{Jp}$. En utilisant l'équation électrique du MCC, on a $U_1(p) = (Lp + R) I_1(p) + E_1(p)$. En utilisant le schéma-blocs : $I_1(p) = (U_1(p) - E(p)) D(p)$. On a donc $I_1(p) = \frac{U_1(p) - E(p)}{R + Lp}$ et $D(p) = \frac{U_1(p) - E(p)}{R + Lp}$

$$\frac{1}{R+Lp}.$$

En utilisant l'équation du PID, on a $U_1(p) = \left(\Delta\theta_{c1}(p) - \Delta\theta_1(p)\right) \left(\sigma_1 + \frac{\sigma_2}{p}\right) - \sigma_3 p \Delta\theta_1(p) + \frac{\sigma_2}{p} \left(\sigma_1 + \frac{\sigma_2}{p}\right) - \frac{\sigma_3}{p} \Delta\theta_1(p) + \frac{\sigma$ $\sigma_4 \Delta \theta_{c1}(p) \operatorname{soit} U_1(p) = \left(\Delta \theta_{c1}(p) \left(\sigma_1 + \frac{\sigma_2}{p} \right) - \Delta \theta_1(p) \left(\sigma_1 + \frac{\sigma_2}{p} \right) \right) - \sigma_3 p \Delta \theta_1(p) + \sigma_4 \Delta \theta_{c1}(p).$ En utilisant le schéma-blocs, on a $U_1(p) = \Delta_{c1}(p)A(p) + (\Delta_{c1}(p) - \Delta\theta_1(p))B(p) - \Delta\theta_1(p)C(p)$

$$= \Delta_{c1}(p) \left(A(p) + B(p) \right) - \Delta \theta_1(p) \left(B(p) + C(p) \right).$$
Par suite, $U_1(p) = \Delta \theta_{c1}(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_4 \right) - \Delta \theta_1(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_3 p \right).$
On aura donc $B(p) = \sigma_1 + \frac{\sigma_2}{p}$, $C(p) = \sigma_3 p$ et $A(p) = \sigma_4$.

Question 2 À partir de ce schéma-blocs, en notant $H_{\text{processus}}(p) = \frac{\Delta \theta_1(p)}{U_1(p)} = \frac{K}{p(1+\tau p)}$ exprimer *K* et τ en fonction des données de l'énoncé.

Correction

On a
$$H_{\text{processus}}(p) = \frac{D(p)F(p)G(p)}{1 + D(p)F(p)G(p)k_e}H(p)$$
 soit $H_{\text{processus}}(p) = \frac{\frac{1}{R + Lp}k_t\frac{1}{Jp}}{1 + \frac{1}{R + Lp}k_t\frac{1}{Jp}k_e}\frac{1}{p}$.

Avec
$$L = 0$$
, $H_{\text{processus}}(p) = \frac{k_t}{RJp + k_t k_e} \frac{1}{p} = \frac{\frac{1}{k_e}}{\frac{RJ}{k_t k_e} p + 1} \frac{1}{p}$ soit $K = \frac{1}{k_e}$ et $\tau = \frac{RJ}{k_t k_e}$.

Question 3 Exprimer la fonction de transfert en boucle fermée, sous sa forme canonique, notée $B_F(p) = \frac{\Delta \theta_1(p)}{\Delta \theta_{c_1}(p)}$ en fonction de K, τ , σ_1 , σ_2 , σ_3 et σ_4 .

Correction

On a vu que
$$U_1(p) = \Delta\theta_{c1}(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_4\right) - \Delta\theta_1(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_3 p\right)$$
 et que $\frac{\Delta\theta_1(p)}{U_1(p)} = \frac{K}{p(1+\tau p)}$.

On a donc $\Delta\theta_1(p) \frac{p(1+\tau p)}{K} = \Delta\theta_{c1}(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_4\right) - \Delta\theta_1(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_3 p\right)$

On a donc
$$\Delta\theta_1(p)\frac{p(1+tp)}{K} = \Delta\theta_{c1}(p)\left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_4\right) - \Delta\theta_1(p)\left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_3\right)$$

 $\Leftrightarrow \Delta\theta_1(p)\left(\frac{p(1+\tau p)}{K} + \sigma_1 + \frac{\sigma_2}{p} + \sigma_3p\right) = \Delta\theta_{c1}(p)\left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_4\right)$ et

$$\Leftrightarrow \Delta\theta_{1}(p) \left(\frac{p(1+\tau p)}{K} + \sigma_{1} + \frac{\sigma_{2}}{p} + \sigma_{3}p \right) = \Delta\theta_{c1}(p) \left(\sigma_{1} + \frac{\sigma_{2}}{p} + \sigma_{4} \right) \text{ et}$$

$$B_{F}(p) = \frac{\sigma_{1} + \frac{\sigma_{2}}{p} + \sigma_{4}}{\frac{p(1+\tau p)}{K} + \sigma_{1} + \frac{\sigma_{2}}{p} + \sigma_{3}p} = \frac{\sigma_{1}p + \sigma_{2} + \sigma_{4}p}{\frac{p^{2}(1+\tau p)}{K} + \sigma_{1}p + \sigma_{2} + \sigma_{3}p^{2}} = K \frac{\sigma_{1}p + \sigma_{2} + \sigma_{4}p}{\frac{p^{2}(1+\tau p)}{K} + \sigma_{1}p + \sigma_{2} + \sigma_{3}p^{2}} = K \frac{\sigma_{1}p + \sigma_{2} + \sigma_{4}p}{\frac{p^{2}(1+\tau p)}{K} + \sigma_{1}p + \sigma_{2} + \sigma_{3}p^{2}}$$

$$K \frac{\sigma_1 p + \sigma_2 + \sigma_4 p}{p^2 (1 + \tau p) + \sigma_1 K p + \sigma_2 K + \sigma_3 K p^2} = K \frac{(\sigma_1 + \sigma_4) p + \sigma_2}{\tau p^3 + p^2 (1 + \sigma_3) + \sigma_1 K p + \sigma_2 K}.$$

Exercice 207 – Identification temporelle ★

SLCI

Question 1 Déterminer la fonction de transfert du système.

- ► regarder à quel temps a lieu l'intersection entre l'asympote en régime permanent et la tangente à l'origine;
- ▶ mesurer le temps de temps réponse à 63 %;
- ▶ mesurer le temps de temps réponse à 95 % et diviser cette valeur par 3.

On a donc
$$H(p) = \frac{3.5}{1 + 8p}$$
.

Question 2 Déterminer la fonction de transfert du système en réalisant les mesures nécessaires et en utilisant les formules appropriées.

La tangente à l'origine est nulle et il y a des dépassements. On modélise le système par un système d'ordre 2. $H(p) = \frac{K}{1 + \frac{2\xi}{\omega_0}p + \frac{p^2}{\omega^2}}$.

On a
$$K = \frac{1,25}{2,5} = 0,5$$
.

On mesure un dépassement de 1,
$$38 = e^{\frac{-\pi\xi}{\sqrt{1-\xi^2}}} \Leftrightarrow \ln 0$$
, $38 = \frac{-\pi\xi}{\sqrt{1-\xi^2}} \Leftrightarrow \sqrt{1-\xi^2} \ln 1$, $38 = -\pi\xi \Leftrightarrow (1-\xi^2)(\ln 1, 38)^2 = \pi^2\xi^2 \Leftrightarrow (\ln 1, 38)^2 - \xi^2(\ln 1, 38)^2 = \pi^2\xi^2 \Leftrightarrow (\ln 1, 38)^2 = \pi^2\xi^2 + \xi^2(\ln 1, 38)^2 \Leftrightarrow (\ln 1, 38)^2 = \xi^2\left(\pi^2 + (\ln 1, 38)^2\right) \Leftrightarrow \frac{(\ln 1, 38)^2}{\pi^2 + (\ln 1, 38)^2} = \xi^2 \Leftrightarrow \xi = \sqrt{\frac{(\ln 1, 38)^2}{\pi^2 + (\ln 1, 38)^2}} = 0$, 3 .

Par ailleurs,
$$\omega_0 = \frac{2\pi}{T_p \sqrt{1 - \xi^2}} = \frac{2\pi}{0,44\sqrt{1 - 0,3^2}} = 14.9 \, \text{rad s}^{-1}.$$

Au final,
$$H(p) = \frac{0.5}{1 + \frac{2 \times 0.3}{14.9}p + \frac{p^2}{14.9^2}}$$
.

Question 3 Déterminer la fonction de transfert du système en utilisant les abaques. Le dépassement est de 38 %. On a donc $\xi = 0, 3$.

De plus, on mesure $T_{5\%} \times \omega_0 = 8$ avec $T_{5\%} = 0.51\,\mathrm{s}$ on a $\omega_0 = 8/0.5 \simeq 16\,\mathrm{rad}\,\mathrm{s}^{-1}$.

Au final,
$$H(p) = \frac{0.5}{1 + \frac{2 \times 0.3}{16}p + \frac{p^2}{16^2}}$$
.

Exercice 206 – Identification ★

Question 1 Tracer le diagramme de Bode asymptotique.

Question 2 Identifier le type de la fonction de transfert et ses valeurs remarquables. La phase tend vers 0 lorsque ω tend vers 0 rad/s et vers -180° lorsque ω tend vers l'infini. On observe de plus une résonance. Par ailleurs le gain est nul quand ω tend vers 0 rad/s. Le système est donc d'ordre 2 avec un gain unitaire et un $\xi < \frac{\sqrt{2}}{2}$. On détermine ω_0 lorsque la phase vaut -90° .

À ce stade,
$$H(p) = \frac{1}{1 + \frac{2\xi}{4,5}p + \frac{p^2}{4,5^2}}$$
.

Enfin, on mesure un gain à la résonance de 7 dB. On a donc $20 \log A_{\rm max} = 7$ soit $A_{\text{max}} = 10^{7/20} = \frac{1}{2\xi\sqrt{1-\xi^2}}.$

Par suite,
$$\frac{1}{A_{\max}} = 2\xi\sqrt{1-\xi^2} \Leftrightarrow \frac{1}{A_{\max}} = 4\xi^2\left(1-\xi^2\right) \Leftrightarrow \frac{1}{A_{\max}^2} = 4\xi^2-4\xi^4 \Rightarrow 4\xi^4-4\xi^2+\frac{1}{A_{\max}^2} = 0 \Rightarrow 4X^2-4X+\frac{1}{A_{\max}^2} = 0$$

On a alors
$$\Delta = 16 - \frac{16}{A_{\text{max}}^2}$$
 et $X_{1,2} = \frac{4 \pm \sqrt{\Delta}}{16}$

En réalisant les applications numériques, on a $\xi = \sqrt{\frac{4 - \sqrt{\Delta}}{16}} = 0,23$.

Alors,
$$H(p) = \frac{1}{1 + \frac{2 \times 0, 23}{4, 5}p + \frac{p^2}{4, 5^2}}$$
.

Question 3 Déterminer les période et les pulsations de chacun des signaux.

- ► Signal rouge : T = 4.2 s et $\omega = \frac{2\pi}{T} = 1.5$ rad/s.
- ► Signal vert : T = 3, 6/3 = 1, 2 s et $\omega = \frac{2\pi}{T} = 5$, 2 rad/s. ► Signal bleu : T = 4, 2/6 = 0, 7 s et $\omega = \frac{2\pi}{T} = 9$ rad/s.

Question 4 En déduire le gain et le déphasage en régime permanent pour chacune des courbes temporelles de sortie correspondant aux 3 entrées.

- ▶ Pour $\omega = 5 \,\mathrm{rad/s}$, $G_{\mathrm{dB}} = 5 \Rightarrow K = 10^{5/20} = 1.8 \,\mathrm{et} \ \varphi = -2.1 \,\mathrm{rad}$. On a donc $s(t) = 1, 8\sin(\omega t - 2, 1).$
- ▶ Pour $\omega = 9 \, \mathrm{rad/s}$ $G_{\mathrm{dB}} = 5 \Rightarrow K = 10^{-10/20} = 0.3$ et $\varphi = -2.8 \, \mathrm{rad}$. On a donc $s(t) = 0, 3\sin(\omega t - 2, 8).$

Pas de corrigé pour cet exercice.

Exercice 205 – Identification ★

Question 1 Déterminer les période et les pulsations de chacun des signaux.

Question 2 En déduire le gain et le déphasage en régime permanent pour chacune des courbes temporelles de sortie correspondant aux 3 entrées.

Exercice 204 – Identification ★

Question 1 Déterminer la fonction de transfert du système.

Question 2 Déterminer la fonction de transfert du système.

Exercice 203 – Diagramme de Bode★

Question 1 Tracer le diagramme de Bode de la fonction de transfert suivante : $F_1(p) = \frac{15}{1+10p}$.

Tracer asymptotique

Positionnement du diagramme de gain Lorsque que ω tend vers 0, le gain tend vers $20 \log 15 = 23.5 \, \text{dB}$.

Question 2 Le système est sollicité par une entrée sinusoïdale de période 60 s et d'amplitude 10. Quel est le signal de sortie? Pour une période de 60 s, la pulsation est de $\frac{2\pi}{T}$ soit $\omega=0.1\,\mathrm{rad\,s^{-1}}$. Pour cette pulsation le gain est de 20 dB et le déphasage de $-\frac{\pi}{4}$.

On a donc $20\log(S/E)=20$ soit S=10E. Le signal d'entrée est donc $e(t)=10\sin(0,1t)$ et le signal de sortie $s(t)=100\sin\left(0,1t-\frac{\pi}{4}\right)$.

Pas de corrigé pour cet exercice.

Exercice 202 – Diagramme de Bode*

Question 1 Tracer le diagramme de Bode de la fonction de transfert suivante :

$$F_2(p) = \frac{10}{(1+10p)(10+p)}$$
. Tracer asymptotique

$$F_2(p) = \frac{1}{\left(1+10p\right)\left(1+\frac{p}{10}\right)}$$

	$\omega \to 0$ $\omega_1 = \frac{1}{1}$		$\frac{1}{0}$ rad/s $\omega_2 = 10$		0 rad/s	$\omega o \infty$
$H_1(p) = \frac{1}{1+10p}$	0 dB/décade		−20 dB/décade		−20 dB/décade	
	0°		−90°		−90°	
$H_2(p) = \frac{1}{1 + \frac{p}{10}}$	0 dB/décade		0 dB/décade		−20 dB/décade	
	0°		0°		−90°	
$F_2(p)$	0 dB/décade		−20 dB/décade		−40 dB/décade	
	0°		−90°		−180°	

Positionnement du diagramme de gain Lorsque que ω tend vers 0, le gain tend vers $20 \log 1 = 0$ dB.

Question 2 Le système est sollicité par une entrée sinusoïdale de période 60 s et d'amplitude 10. Quel est le signal de sortie? Pour une période de 60 s, la pulsation est de $\frac{2\pi}{T}$ soit $\omega = 0.1$ rad s⁻¹. Pour cette pulsation le gain est de -5 dB et le déphasage de $-\frac{\pi}{4}$.

On a donc $20\log(S/E) = -5$ soit $S = E \times 10^{-5/20} = 10 \times 0$, 56 = 5, 6. Le signal d'entrée est donc $e(t) = 10\sin(0,1t)$ et le signal de sortie s(t) = 5, $6\sin\left(0,1t - \frac{\pi}{4}\right)$.

