Vorlesung 23 | 29.1.2021 | 10:15-12:00 via Zoom

8 Anwendungen in der Statistik

(Kapitel 8 in Bovier Skript)

8.1 Einleitung

	W-theorie	Statistik
Gegeben	Modell (z.B. Ber(1/2))	Stichprobe (X_1, \ldots, X_n)
Gesucht	Voraussage über das Verhalten einer Stich-	Information über das zugrundeliegende
	probe $(X_1,, X_n), X_k \sim \text{Ber}(1/2)$	Modell

Mit Modell annahmen: (z.B. Gaussverteilung der $X_1, ..., X_n$ mit <u>unbekannte</u> Mittelwert μ und Varianz ν) \rightarrow Parametrische Statistik (z.B. $(\mu, \nu) \in \mathbb{R} \times \mathbb{R}_+$ ist das Parameterraum) (endlich dimensionelle Probleme) Ohne Annhame: Nicht parametrische Statistik unbekannte ist die ganze Verteilung $\mathbb{P}_X \in \Pi(\Omega)$ die Menge

von alle W-Maße auf (Ω, \mathcal{F}) . (unendlich dimensionelle Probleme)

Beispiel. Neu Medikament.

Geuscht: Wirkungsgrad $\theta \in [0,1] = \%$ der Leute, die von Medikament geheilt sind.

n Versuchpatienten $\xrightarrow{\text{Ergebnis}} (X_1, \dots, X_n)$ mit

$$X_k = \begin{cases} 1, & \text{falls Patienten } k \text{ geheilt ist,} \\ 0, & \text{falls Patienten } k \text{ nicht geheilt ist.} \end{cases}$$

Modellannahme: X_k iid Bernoulli mit unbekannte Parameter θ .

Fragen:

a) Wie schätz man θ aus (X_1, \dots, X_n) ? Ein Schätzer T_n ist eine Funktion der Stichprobe, d.h.

$$T_n = f(X_1, \ldots, X_n).$$

- b) Wie gross muss n sein, so dass der Messfehler $|T_n \theta|$ klein genug ist. (Kosten v.s. Sicherheit)
- c) Da θ <u>nicht</u> zufällig ist, aber T_n eine Z.V. ist. Gesucht werden sogennante <u>Konfidenzintervalle</u>. $C_{\theta} = [T_n \delta, T_n + \delta]$ s.d.

$$\mathbb{P}_{\theta}(\theta \in C_{\theta}) \geqslant 1 - \alpha$$

mit α Irrtumsniveau ($\alpha \ge \mathbb{P}(\theta \notin C_{\theta})$) Die Intervall ist unabhängig von θ ! Die Modell \mathbb{P}_{θ} abhäng von θ . Wie wahlen wir T_n , δ ?? (mit gegebenen Irrtumsniveau $\alpha \approx 0.1, 0.01, 0.05$)

d) Ein alte Medikament hat ein Wirkungsgrad von $\theta = 0.6$. Kann man aus (X_1, \dots, X_n) beschliessen ob den neuen Medikament besser/schlechter als den alten ist, oder reichen die Daten nicht aus? (Ja/Nein Antwort entscheiden).

8.2 Schätzer

Definition 1. Ein Schätzer T_n ist eine (messbare) Funktion von X_1, \ldots, X_n . D.h. $T_n = f_n(X_1, \ldots, X_n)$.

Dann, T_n ist einen Z.V.

Beispiel. Zwei Schäter für θ :

$$\begin{cases} T_n^{(1)} = \frac{1}{2} \\ T_n^{(2)} = \frac{1}{n} \sum_{k=1}^n X_k \\ T_n^{(3)} = X_1 \end{cases}$$

Alles sind Schätzer aber $T_n^{(1)}$ ist sinnlos, da nicht von den X_k abhängig ist!

Eine minimale Bedingung für ein "guten" Schätzer ist Konsistenz.

Definition 2. T_n ein Schätzer für θ heißt <u>konsistent</u>, falls

$$\lim_{n\to\infty} T_n(\omega) = \theta \qquad \mathbb{P}_{\theta} - f.s.$$

für alle θ .

Aus GGZ, wissen wir, dass $T_n^{(2)}$ ist konsistent aber $T_n^{(1)}$ und $T_n^{(3)}$ sind es nicht.

Schätzer der W-Verteilung

Annahme: $X_1, ..., X_n$ iid Z.V. mit unbekannte Verteilung ν (eine unbekannte W-Maß auf \mathbb{R}). (nicht parametrische Stat.)

Gemessen: Frequenz der Ausgänge $X_k \in A \in \mathcal{B}(\mathbb{R})$.

$$\nu_n(A) \coloneqq \frac{1}{n} \sum_{k=1}^n \mathbb{1}_A(X_k).$$
empirische Verteilung

 $\nu_n: \Omega \to (\mathcal{B}(\mathbb{R}) \to [0,1])$ ist ein Zufällige Maß.

Lemma 3. Für alle $A \in \mathcal{B}(\mathbb{R})$, $\nu_n(A)$ is ein konsistenten Schätzer von $\nu(A) = \mathbb{P}(X_1 \in A)$.

Beweis. $(\mathbb{1}_A(X_k))_{k\geqslant 1}$ sind i.i.d. Z.V. mit $\mathbb{E}[\mathbb{1}_A(X_k)] = \mathbb{P}_{\nu}(X_k \in A) = \nu(A)$. Die Lemma folgt aus die GGZ, weil

$$\nu_n(A) = \frac{1}{n} \sum_{k=1}^n \mathbb{1}_A(X_k) \xrightarrow[n \to \infty]{\mathbb{P}_{\nu} - f.s.} \mathbb{E} [\mathbb{1}_A(X_1)] = \nu(A).$$

Wie gut ist die Approximation $\nu_n(A)$ von $\nu(A)$?

Lemma 4. Seien $X_1, X_2, ...$ iid Z.V. mit Verteilung ν . Dann, für $A \in \mathcal{B}(\mathbb{R})$,

$$\mathbb{P}_{\nu}\left(\left|\frac{\nu_{n}(A) - \nu(A)}{\nu(A)}\right| \geqslant \varepsilon\right) \leqslant \frac{1}{n \,\varepsilon^{2} \nu(A)}.$$
relative Fehler

Bemerkung. $\nu(A)$ klein $\Rightarrow X_k \in A$ nicht so häufig ($\mathbb{E}(\#\{k \text{ s.d. } X_k \in A\}) = n\nu(A)$). braucht mehr Experimente um eine gute Approximation zu erreichen!

Beweis. $\nu(A) = \mathbb{P}_{\nu}(X_1 \in A)$

$$\nu_n(A) = \frac{1}{n} \sum_{k=1}^n \underbrace{\mathbb{1}_A(X_k)}_{\sim \operatorname{Ber}(\nu(A))}$$

$$\mathbb{E}[\nu_n(A)] = \nu(A)$$

Tchebichev

$$\mathbb{P}\big(|\nu_n(A) - \nu(A)| \geqslant t\big) \leqslant \frac{\operatorname{Var}(\nu_n(A))}{t^2} = \frac{\operatorname{Var}(\mathbb{I}_A(X_k))}{nt^2} = \frac{\nu(A)(1 - \nu(A))}{nt^2}$$

Nehmen $t = \varepsilon v(A)$.

Jetz:

$$\mathbb{P}_{\nu}(|\nu_n(A) - \nu(A)| \leqslant \varepsilon \nu(A)) = \mathbb{P}_{\nu}(\nu_n(A) - \varepsilon \nu(A) \leqslant \nu(A) \leqslant \nu_n(A) + \varepsilon \nu(A))$$
$$= \mathbb{P}_{\nu}(\nu(A) \in [\nu_n(A) - \varepsilon \nu(A), \nu_n(A) + \varepsilon \nu(A)])$$

aber $[\nu_n(A) - \varepsilon \nu(A), \nu_n(A) + \varepsilon \nu(A)]$ ist nicht ein Konfidenzintervall. Warum??? Weil das abhängt von $\nu(A)$ (unbekannt!!!)

Aber wir können nehmen ($\nu(A) \leq 1$) dann

$$\mathbb{P}_{\nu}(\nu(A) \in [\nu_n(A) - \varepsilon, \nu_n(A) + \varepsilon]) \geqslant \mathbb{P}_{\nu}(\nu(A) \in [\nu_n(A) - \varepsilon\nu(A), \nu_n(A) + \varepsilon\nu(A)]) \geqslant 1 - \frac{1}{n\varepsilon^2\nu(A)}.$$

Immer noch nicht gut... Wir können nicht n, ε wählen (unabhängig von $\nu(A)$) so dass

$$\mathbb{P}_{\nu}(\nu(A) \in [\nu_n(A) - \varepsilon, \nu_n(A) + \varepsilon]) \ge 1 - \alpha$$

mit gegebenen Irrtumniveau α .

9 Schätzung von Erwartungswert und Varianz

Seien X_1, X_2, \ldots iid Z.V. in \mathcal{L}^2 . Nach GGZ, konvergiert das empirische Mittelwert

$$m_n := \frac{1}{n} \sum_{k=1}^n X_k \xrightarrow[n \to \infty]{f.s.} \mu = \mathbb{E}[X_1].$$

So die empirische Mittelwert ist ein konsistent Schätzer von μ .

Dazu

$$\mathbb{E}[m_n] = \mu.$$

Definition 5. Ein Schätzer T_n von θ heißt Erwartungstreu (unbiased estimator) falls $\mathbb{E}(T_n) = \theta$.

Bemerkung. Erwartungstreu ist eine oft erwünschte Eigenschaft, aber nicht immer gefordert. Ist eine Schätzfunktion nicht erwartungstreu, spricht man davon, dass der Schätzer *verzerrt* ist. Das Ausmaß der Abweichung seines Erwartungswerts vom wahren Wert nennt man Verzerrung oder *Bias*. Die Verzerrung drückt den systematischen Fehler des Schätzers aus.

Wir "gut" ist m_n als Schätzer von μ ?

Lemma 6. Seien $X_1, X_2, ..., X_n$ iid Z.V. mit $\mu = \mathbb{E}[X_1]$ und $\sigma^2 = \text{Var}(X_1) < \infty$. Dann m_n ist ein erwartungstreuer Schätzer für μ und

$$\mathbb{P}(|m_n - \mu| \ge \varepsilon \,\mu) \le \frac{\sigma^2}{n \,\mu^2 \varepsilon^2} \tag{1}$$

Beweis. Folgt aus Tchebichev Ungleichung.

Ein Beispiel für Fragen in der Klausur:

Frage: Warum eine Z.V. in \mathcal{L}^2 ist auch in \mathcal{L}^1 ? Falls $\mathbb{E}[X^2] < \infty$, warum $\mathbb{E}[|X|] < \infty$?

Antwort 1: Jensen's ungleichung:

$$\mathbb{E}[|X|] = \mathbb{E}[(|X|^2)^{1/2}] \le (\mathbb{E}[|X|^2])^{1/2}$$

Antwort 2: Cauchy-Schwartz:

$$\mathbb{E}[|X|] = \mathbb{E}[|X|1] \le [\mathbb{E}[X^2]\mathbb{E}[1^2]]^{1/2} \le (\mathbb{E}[|X|^2])^{1/2}.$$
$$|\mathbb{E}[XY]|^2 \le \mathbb{E}[X^2]\mathbb{E}[Y^2]$$

Antwort 3:

$$\mathbb{1}_{|X| \ge 1} X^2 \ge \mathbb{1}_{|X| \ge 1} |X|, \qquad \mathbb{1}_{|X| < 1} |X| \le \mathbb{1}_{|X| < 1}$$

dann

$$\mathbb{E}[|X|] = \mathbb{E}[\mathbbm{1}_{|X| \geq 1}|X|] + \mathbb{E}[\mathbbm{1}_{|X| < 1}|X|] \leq \mathbb{E}[\mathbbm{1}_{|X| \geq 1}X^2] + \mathbb{E}[\mathbbm{1}_{|X| < 1}] \leq \mathbb{E}[|X|^2] + \mathbb{P}(|X| \leq 1) \leq \mathbb{E}[|X|^2] + 1 < \infty.$$

Antwort 4: $X \in \mathcal{L}^2$ dann die Char Fkt ist C^2 dann ist auch C^1 und dann $X \in \mathcal{L}^1$. (das ist richtig aber zu kompliziert...)