Questions pour le test 4

Suites récurrentes, fonctions réciproques, primitives, intégrales A préparer pour la semaine du 2 décembre

Pour chaque affirmation suivante, indiquer si elle est vraie ou fausse et justifier la réponse par une démonstration ou un contre-exemple.

1.— Le terme général de la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0$ et, pour $n\in\mathbb{N},\ u_{n+1}=0$ $2u_n + 1$, est donné par :

$$\forall n \in \mathbb{N}, \ u_n = 2^n - 1.$$

2.— Le terme général de la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=3$ et, pour $n\in\mathbb{N},\,u_{n+1}=u_n^2,$ est donné par :

$$\forall n \in \mathbb{N}, \ u_n = 3^{2n}.$$

3.— La suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in\mathbb{R}$ et, pour $n\in\mathbb{N},\,u_{n+1}=u_n^2+1,\,$ n'a pas de limite dans $\mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$ lorsque $n \to +\infty$.

4.— La suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in\mathbb{R}$ et, pour $n\in\mathbb{N},\,u_{n+1}=1+\arctan(\frac{u_n}{2}),$ est convergente.

5.— La fonction $\phi: \mathbb{R}^* \to \mathbb{R}$ définie par $\phi(x) = x^{\sqrt{3}}$ si x > 0 et $\phi(x) = -(-x)^{\sqrt{3}}$ si x < 0 se prolonge en 0 en une fonction de classe C^1 sur \mathbb{R} , bijective de \mathbb{R} sur \mathbb{R} .

6.— Pour tout $x \in [0, \pi]$, on a l'égalité $\arcsin(\sin x) = x$.

7.— Si ϕ :] $-1,1[\rightarrow]-1,1[$ est une bijection de classe \mathcal{C}^1 , alors ϕ^{-1} est également de classe \mathcal{C}^1 .

8.— Pour tout $x \in \mathbb{R}$, on a l'égalité suivante :

$$2\arctan(\sqrt{1+x^2}-x)+\arctan x=\frac{\pi}{2}.$$

9. — Si f est une bijection impaire de [-1,1] sur [-2,2], alors $f^{-1}:[-2,2] \rightarrow [-1,1]$ est impaire.

10. On a la limite suivante :

$$\lim_{n \to +\infty} \frac{\pi}{n} \sum_{k=0}^{n-1} \sin \left(\frac{\pi k}{2n} \right) = 1 \, .$$

11.— On a la limite suivante :

$$\lim_{n\to+\infty}\sum_{k=1}^n\frac{k}{n^2+k^2}=\frac{\pi}{4}\,.$$

12. On a la limite suivante :

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{n}{n^2 + k^2} = \frac{\pi}{4}.$$

$$\int_0^1 (x-1)^2 e^x dx = 2e - 5.$$

14.— Si f est une fonction continue croissante sur $\mathbb R$, la fonction $g:\mathbb R\to\mathbb R$ définie par g(x)= $\int_{x^3}^{x^3+1} f(t)dt$ est également croissante sur \mathbb{R} .

