Cálculo e Geometria Analítica II

Lista 7 - Sequências e Séries Numéricas

Sequências

1. Quais das sequências $\{a_n\}$ convergem e quais divergem? Encontre o limite de cada sequência convergente.

(a)
$$a_n = 2^n$$

(f)
$$a_n = \frac{1-2n}{1+2n}$$

(k)
$$a_n = \frac{\ln n}{n}$$

$$(p) a_n = \frac{10^n}{n!}$$

(b)
$$a_n = (-2)^n$$

(g)
$$a_n = \frac{2n+1}{1-3\sqrt{n}}$$

(1)
$$a_n = \sqrt[n]{1000}$$

(q)
$$a_n = \cos(2n\pi)$$

(c)
$$a_n = (1/2)^n$$

(h)
$$a_m = 1 + (-1)^n$$

(m)
$$a_n = \sqrt[n]{n}$$

(r)
$$a_n = \cos(n\pi)$$

(d)
$$a_n = (-1/2)^n$$

(i)
$$a_n = \cos(1/n)$$

(n)
$$a_n = \sqrt[n]{2n}$$

(s)
$$a_n = \cos n$$

(a)
$$a_n = 2^n$$
 (f) $a_n = \frac{1-2n}{1+2n}$ (k) $a_n = \frac{\ln n}{n}$ (p) $a_n = \frac{10^n}{n!}$ (b) $a_n = (-2)^n$ (g) $a_n = \frac{2n+1}{1-3\sqrt{n}}$ (l) $a_n = \sqrt[n]{1000}$ (q) $a_n = \cos(2n\pi)$ (c) $a_n = (1/2)^n$ (h) $a_n = 1 + (-1)^n$ (m) $a_n = \sqrt[n]{n}$ (r) $a_n = \cos(n\pi)$ (d) $a_n = (-1/2)^n$ (i) $a_n = \cos(1/n)$ (n) $a_n = \sqrt[n]{2n}$ (s) $a_n = \cos n$ (e) $a_n = 2 + (0,1)^n$ (j) $a_n = \frac{n^8}{2^n}$ (o) $a_n = \sqrt[n]{n^2}$ (t) $a_n = \frac{1}{n}$

(j)
$$a_n = \frac{n^8}{2^n}$$

(o)
$$a_n = \sqrt[n]{n^2}$$

(t)
$$a_n = \frac{1}{n}$$

2. Determine se a sequência dada é crescente, decrescente ou não monótona. A sequência é limitada?

(a)
$$a_n = \cos n$$

(d)
$$\left\{\frac{n!}{2^n}\right\}_{n=1}^{\infty}$$

(g)
$$\left\{\frac{n}{4n+1}\right\}_{n=1}^{\infty}$$

(b)
$$a_n = \frac{1}{2n+3}$$

(e)
$$\left\{\frac{3^n}{1+3^n}\right\}_{n=1}^{\infty}$$

$$(h) \left\{ \frac{3^n}{n!} \right\}_{n=2}^{\infty}$$

(c)
$$a_n = n + \frac{1}{n}$$

(a)
$$a_n = \cos n$$

(b) $a_n = \frac{1}{2n+3}$
(c) $a_n = n + \frac{1}{n}$
(d) $\left\{\frac{n!}{2^n}\right\}_{n=1}^{\infty}$
(e) $\left\{\frac{3^n}{1+3^n}\right\}_{n=1}^{\infty}$
(f) $\left\{\frac{\ln(2n+4)}{n+2}\right\}_{n=1}^{\infty}$
(g) $\left\{\frac{n}{4n+1}\right\}_n^{\infty}$
(h) $\left\{\frac{3^n}{n!}\right\}_{n=2}^{\infty}$
(i) $\left\{ne^{-n}\right\}_{n=1}^{\infty}$

(i)
$$\{ne^{-n}\}_{n=1}^{\infty}$$

3. Se existir, dê exemplo de uma sequência $\{a_n\}$ tal que

- (a) $\{a_n\}$ tende a infinito mas $\{a_n\}$ não é monótona.
- (b) $\{a_n\}$ é estritamente crescente mas $\lim_{n\to\infty} a_n \neq +\infty$
- (c) $\{a_n\}$ é limitada mas não é convergente
- (d) $\{a_n\}$ é monótona mas não é convergente
- (e) $\{a_n\}$ é convergente mas não é monótona

Séries Numéricas

4. Considere a figura abaixo.

Escreva com notação de somatório a série das frações tosadas do porquinho, descrita na figura ao lado. Explique porque a série converge e apresente a sua soma.

 ${f 5.}$ A sequência representada na figura abaixo é formada por infinitos triângulos equiláteros. O lado do primeiro triângulo mede 1 e a medida do lado de cada um dos outros triângulos é 2/3 da medida do lado do triângulo imediatamente anterior.

- (a) Seja P_k o perímetro do k-ésimo triângulo da sequência, com $k \ge 1$. Obtenha, caso exista, a soma $\sum_{k=1}^{\infty} P_k$ dos perímetros dos triângulos.
- (b) Seja h_k é a altura do k-ésimo triângulo, com $k \ge 1$. Lembre que a altura de um triângulo equilátero de lado ℓ é dada por $\frac{\ell\sqrt{3}}{2}$. Obtenha, caso exista, a soma $\sum_{k=1}^{\infty} h_k$ das alturas dos triângulos.
- $\mathbf{6.}$ Em cada item marque com um \mathbf{X} a alternativa correta.
 - (a) A série geométrica $1 \frac{0,4}{3} + \frac{0,16}{9} \frac{0,064}{27} + \cdots$
 - () diverge
 - () converge para $\frac{15}{13}$
 - () converge para $\frac{5}{3}$
 - () converge para $\frac{15}{17}$
 - () converge para $\frac{5}{7}$
 - (b) Seja $b \in \mathbb{R}$. A série geométrica $\sum_{k=0}^{\infty} 7 \left(\frac{b}{3}\right)^{2k}$ converge se e somente se
 - (b) $b \in (0,3)$
 - $() b \in [0,3)$
 - $() b \in (-3,3)$
 - $() b \in [-3, 3]$
 - () 1 = (0.0
 - $() b \in (0,9)$
 - (c) A série $\sum_{k=1}^{\infty} \frac{(-1)^k 2^k + 2}{3^{k+2}}$
 - () diverge
 - () converge para $\frac{1}{9}$
 - () converge para $\frac{-1}{45}$
 - () converge para $\frac{1}{15}$
 - () converge para $\frac{7}{45}$

(d) A série
$$\sum_{n=0}^{\infty} \frac{(-1)^n 3^{2n}}{2^{-3n}}$$

- () diverge
- () converge para -2
- () converge para $\frac{-1}{71}$
- () converge para $\frac{2}{5}$
- () converge para $\frac{1}{73}$
- 7. Determine todos os valores de $x \in \mathbb{R}$ de modo que a série geométrica

$$\frac{3}{x} - \frac{12}{x^3} + \frac{48}{x^5} - \cdots$$

convirja para $\frac{3}{5}$.

- 8. Para quais valores de $c \in \mathbb{R}$ a série geométrica $\sum_{k=1}^{\infty} 2(1+c)^{-k}$ converge para 4?
- 9. Determine se cada série converge ou diverge. Justifique a sua resposta e apresente a soma de cada série convergente, se houver.

(a)
$$\sum_{k=1}^{\infty} \frac{(-1)^k + 2^{3k}}{3^{2k-2}}$$
 () diverge () converge para

(b)
$$\sum_{n=0}^{\infty} \frac{3^{2n}}{6^n}$$
 () diverge () converge para

(c)
$$-2 + \frac{5}{2} - \frac{25}{8} + \frac{125}{32} - \dots$$
 () diverge () converge para

- 10. Determine se a série $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ converge ou diverge.
- 11. Você já sabe que $\sum_{k=1}^{\infty} \frac{1}{k^4}$ converge. Encontre um valor de n que garanta que o erro na aproximação de $\sum_{k=1}^{\infty} \frac{1}{k^4}$ pela soma parcial $\sum_{k=1}^{n} \frac{1}{k^4}$ seja menor que 0,001.
- 12. Determine se cada série converge ou diverge.

(a)
$$\sum_{k=1}^{\infty} \frac{3^k}{2^k + 50}$$

(b)
$$\sum_{k=1}^{\infty} \frac{|\cos(k)| + 2}{k^2}$$

- (c) $\sum_{k=1}^{\infty} \frac{5^k}{k^4}$
- (d) $\sum_{k=1}^{\infty} \frac{(k+1)^2}{(k-1)!}$
- (e) $\sum_{k=1}^{\infty} \frac{4^k}{k^3 3^k}$
- (f) $\sum_{k=1}^{\infty} \frac{2k^3 + k^2 + 6k}{k^5 + 5k^2 2k + 4}$
- (g) $\sum_{k=1}^{\infty} \frac{1}{k2^k}$
- (h) $\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!}$
- 13. Em cada item marque com um X a alternativa correta.
- (a) A série $\sum_{n=1}^{\infty} \frac{\ln(k)}{k}$
- () diverge pelo Teste da Divergência
 - () diverge pelo Teste da Comparação Direta
 - () converge pelo Teste da Comparação Direta
 - () converge pelo Teste da Razão
- (b) A série $\sum_{k=1}^{\infty} \frac{\sin^2 k}{2k^3}$
 - () diverge pelo Teste da Divergência
 - () converge pelo Teste da Comparação Direta
 - () é uma série p divergente
 - () converge pelo Teste da Integral
 - () diverge pelo Teste da Razão
- (c) A série $\sum_{k=1}^{\infty} \frac{2k+1}{3k^2-1}$
 - () diverge pelo Teste da Divergência
 - () converge pelo teste da razão
 - () diverge pelo teste da razão
 - () diverge pelo teste da comparação no limite
- (d) Sabendo que $\int_1^\infty \frac{1}{x^3} dx = \frac{1}{2}$, podemos concluir que a série $\sum_{k=1}^\infty \frac{1}{k^3}$
 - () diverge
 - () converge para $\frac{1}{2}$

() converge mas não podemos afirmar qual é o valor da soma

14. Em cada item marque com um X a alternativa correta, em que V indica verdadeiro e F indica falso.

(a) Se a série $\sum_k a_k$ converge, então $\lim_{k\to\infty} a_k = 0$.

() V () F

(b) Seja a série $\sum_{k=1}^{\infty} a_k$ e seja $S_n = \sum_{k=1}^n a_k$, para $n \ge 1$. Se $\lim_{n \to \infty} S_n = 0$, então a série $\sum_{k=1}^{\infty} a_k$ converge.

() V () F

- (c) Se $\lim_{k\to+\infty} (k u_k) = 2$, então $\sum_{k=1}^{\infty} u_k$ diverge.
- (d) Como $\int_1^\infty \frac{1}{x^2} dx = 1$, a série $\sum_{k=1}^\infty \frac{1}{k^2}$ converge para 1.

15. Sabemos que a série harmônica

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots \quad \text{diverge.}$$

Considere agora uma modificação da série harmônica obtida omitindo-se todos os termos cujo denominador é um número ímpar. Essa série converge ou diverge?

16. (Desafio) Sabemos que a série harmônica

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots \quad \text{diverge.}$$

Considere agora uma modificação da série harmônica obtida omitindo-se todos os termos cujo denominador contenha o dígito 9. Essa série converge ou diverge?

5

Soluções

1. .

(a) Diverge. $2^n \to +\infty$;

(b) Diverge. $\lim_{n\to\infty} (-2)^n$ não existe

(c) Converge. $(1/2)^n \to 0$

(d) Converge. $(-1/2)^n \to 0$

(e) Converge $2 + (0,1)^n \rightarrow 2$

(f) Converge $\frac{1-2n}{1+2n} \to -1$

(g) Diverge, $\frac{2n+1}{1-3\sqrt{n}} \to -\infty$

(h) Diverge $\lim_{n\to\infty} (1+(-1)^n)$ não existe

(i) Converge. $\cos(1/n) \to 1$

(j) Converge. $\frac{n^8}{2^n} \to 0.$ Explicação neste link.

(k) Converge. $\frac{\ln n}{n} \to 0.$ Explicação aqui.

(1) Converge. $\sqrt[n]{1000} \rightarrow 1$

(m) Converge. $\sqrt[n]{n} \to 1$. Explicação aqui.

(n) Converge. $\sqrt[n]{2n} \to 1$

(o) Converge. $\sqrt[n]{n^2} \to 1$

(p) Converge. $\frac{10^n}{n!} \to 0.$ Explicação neste link.

(q) Converge. $\cos(2n\pi) \to 1$

(r) Diverge. $\cos(n\pi) = (-1)^n$, fica alternando entre -1 e 1.

(s) Diverge. Explicação neste link.

(t) Converge. $\frac{1}{n} \to 0$

2. .

(a) Não é monótona. É limitada.

(b) É decrescente. É limitada.

(c) É crescente. Não é limitada.

(d) É crescente. Não é limitada.

(e) É crescente. É limitada

(f) É decrescente. É limitada.

(g) É crescente. É limitada.

(h) É decrescente. É limitada.

(i) É decrescente. É limitada.

3. .

(a) $a_n = (-1)^n + n$, por exemplo.

(b) $a_n = \frac{n}{n+1}$, por exemplo.

(c) $a_n = (-1)^n$, por exemplo.

(d) $a_n = n$, por exemplo.

(e) $a_n = \frac{(-1)^n}{n}$, por exemplo.

4. A série das frações tosadas é $\sum_{n=1}^{+\infty} \frac{1}{2^n}$. Esta série é geométrica com razão r=1/2. Logo |r|<1 e, portanto, a série converge. A soma é 1, pois pela fórmula da soma de uma série geométrica, a soma é $\frac{1/2}{1-1/2}=1$.

5. .

(a) Série geométrica de razão 2/3 < 1 e primeiro termo 3: converge para 9.

(b) Série geométrica de razão 2/3 < 1 e primeiro termo $\sqrt{3}/2$: converge para $3\sqrt{3}/2$.

6. .

(a) Converge para $\frac{15}{17}$.

- (b) $b \in (-3,3)$
- (c) Converge para $\frac{1}{15}$.
- (d) Diverge.
- 7. x = 4
- 8. c = 1/2
- 9. (a) converge para $\frac{711}{10}$
 - (b) diverge
 - (c) diverge
- 10. A série converge pelo teste da integral. Veja neste link um exemplo bem parecido.
- 11. Considerar apenas 7 termos já é suficiente, conforme o argumento geométrico apresentado no vídeo deste link. Euler descobriu que o valor exato dessa série é

$$\sum_{k=1}^{\infty} \frac{1}{k^4} = \frac{\pi^4}{90}.$$

- **12.** (a) diverge
 - (b) converge
 - (c) diverge
 - (d) converge
 - (e) diverge
 - (f) converge
 - (g) converge
 - (h) diverge
- 13. (a) diverge pelo Teste da Comparação Direta
- (b) converge pelo Teste da Comparação Direta
- (c) diverge pelo teste da comparação no limite
- (d) converge mas não podemos afirmar qual é o valor da soma
- **14.** (a) V
 - (b) V
 - (c) V
- (d) F
- 15. A série proposta é

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots = \sum_{n=1}^{\infty} \frac{1}{2n}.$$

Essa série é divergente. De fato, se $\sum_{n=1}^{\infty} \frac{1}{2n}$ fosse convergente a igualdade $\sum_{n=1}^{\infty} \frac{1}{2n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$ implicaria que a séria harmônica também é convergente, o que seria um absurdo.

7

16. A série proposta é

$$S = 1 + \frac{1}{2} + \dots + \frac{1}{8} + \frac{1}{10} + \dots + \frac{1}{18} + \frac{1}{20} + \dots$$

Vamos mostrar que essa série converge e o seu valor é menor que 80.

Considere a série $\sum_{n=1}^{\infty} a_n$ onde a_n é a soma dos termos em S cujo denominador tem n algarismos.

$$a_1 = 1 + \frac{1}{2} + \dots + \frac{1}{8}$$
 $a_2 = \frac{1}{10} + \dots + \frac{1}{18} + \frac{1}{20} + \dots + \frac{1}{88}$
:

Temos então que $S = \sum_{n=1}^{\infty} a_n$.

(Essa última igualdade é válida porque todos os temos de S são positivos.)

Cada parcela que forma a_1 é ≤ 1 ; Cada parcela que forma a_2 é $\leq \frac{1}{10}$;

Em geral, cada parcela que forma a_n é $\leq \frac{1}{10^{n-1}}$.

Agora vamos contar o número de parcelas em cada a_n . A quantidade de números naturais com n algarismos todos diferentes de 9 é $8 \cdot 9^{n-1}$, pois o primeiro dígito pode ser qualquer de 1 a 8 e os demais dígitos podem ser quaisquer de 0 a 8. Portanto, o número de parcelas que forma a_n é $8 \cdot 9^{n-1}$.

Portanto temos que

$$S \le \sum_{n=1}^{\infty} \frac{8 \cdot 9^{n-1}}{10^{n-1}} = 8 \sum_{n=1}^{\infty} \left(\frac{9}{10}\right)^{n-1} = 80.$$

8