Report: Thai Numbers Recognition

1. Data collection

ทำการเก็บรวบรวมข้อมูลเป็นไฟล์รูปภาพที่เก็บตัวเลข ตั้งแต่เลข 0 ถึง 9 (เลขไทย)

- 2. Data cleansing
 - 2.1 Resize
 - ทำการหาขอบของรูปด้วยฟังก์ชัน count up, count down, count left และ count right

```
break
if check_up == True:
      count_up += 1
return count_up
  def Count_Down(img,img_check):
      count_down = 0
check_down = False
for i in range(27,0,-1):
           for j in range(28):
    if img[i,j] < max(img_check):
        check_down = True</pre>
           if check_down == True:
           count_down += 1
      return count_down
def Count_Left(img,img_check):
     count_left = 0
check_left = False
     for i in range(28):

for j in range(28):

if img[j,i] < max(img_check):

check_left = True
          if check_left == True:
          count_left += 1
     return count_left
if check_right == True:
 count_right += 1
return count_right
```

- ปรับรูปให้อยู่กึ่งกลางเฟรมด้วยฟังก์ชัน change_position

- ทำการ crop รูปออกมาเป็นไฟล์ใหม่ โดยไม่ว่าไฟล์ input จะอยู่ในรูปแบบไฟล์ .png , .jpeg หรือว่ามีขนาดเท่าใดก็ตาม จะถูกปรับให้เป็นไฟล์ .png ขนาด 28x28 pixels

```
for j in range(0,10):
    for i in range(1,41):
        count_array = []
        file = str(j) + "-" + str(j) + ".png"
        imje = cv2.inread[file,cv2.IMEAD_GRAYSCALE)
        aing_check = ing_flatten()
        ing_check = [0,240]
        crop_img = change_position(ing_,ing_check))
        count_array.append(count_bown(crop_img_,ing_check))
        count_array.append(count_elf(crop_img_,ing_check))
        count_array.append(count_elf(crop_img_,ing_check))
        crop_img = crop_img[min(count_array):rop_img_shape[0], :]
        crop_img = crop_img[s, ind(count_array):rop_img_shape[1]]
        crop_img = crop_img[;, ind(count_array):rop_img_shape[ind[]]
        crop_img = crop_img[;, ind(count_array):rop_img_shape
```

ตัวอย่างรูปก่อน (1) และหลัง (2) ทำการ Resize

2.2 Convert to csv

ทำการ convert ไฟล์รูปภาพที่ resize เรียบร้อยแล้วแปลงเป็น csv เพื่อทำการสร้าง model ในขั้นตอนต่อๆ ไป

```
# numpy กับ matplotlib เองก็ใช้ตลอดด้วย แนะนำให้ import ไปด้วยทุกครั้ง
import numpy as np
import matplotlib.pyplot as plt
import csv
import pandas as pd
lst = []
col = ['y']
for i in range(1,785):

name = 'pixel'+str(i)
    col.append(name)
newfile = "pixel_num_new.csv"
with open(newfile, 'a', newline='') as f:
        writer = csv.writer(f)
         writer.writerow(col)
for k in range(0,10):
   for i in range(1,41):
    file = "new_" + str(k) + "-" + str(i) + ".png"
    rup = cv2.imread(file,cv2.IMREAD_GRAYSCALE)
         rup = rup.flatten()
         lst = []
         lst.append(str(k))
         for j in rup:
| lst.append(j)
         writer = csv.writer(f)
writer.writerow(lst)
```

3. EDA

```
[1] import pandas as pd import matplotlib,pyplot as plt import numpy as np from scipy,sparse import csr_matrix
```

นำเข้าข้อมูลทั้งหมดจากไฟล์ pixel_num_new.csv และแสดงข้อมูล 5 แถวแรก และดูรายละเอียดของข้อมูล

```
train = pd.read_csv('/content/pixel_num_new.csv')
print(train.head())
print(train.info())
print("\n SHape of the dataset:", train.shape)
```

ดูข้อมูลทางสถิติของข้อมูลทั้งหมด

train.des	train.describe()																
	у	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9		pixel775	pixel776	pixel777	pixel778	pixel779	pix
count	400.000000	400.000000	400.0000	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000		400.000000	400.000000	400.000000	400.000000	400.000000	400.0
mean	4.500000	253.625000	250.7075	247.650000	245.027500	244.770000	247.130000	250.737500	252.940000	253.367500		234.425000	240.502500	244.842500	248.145000	248.325000	248.8
std	2.875878	13.682009	22.9640	29.830473	33.729229	36.270387	28.633333	17.595243	10.907053	9.695486		53.827296	45.077043	38.418128	30.783161	29.695352	26.8
min	0.000000	64.000000	53.0000	40.000000	48.000000	39.000000	51.000000	131.000000	147.000000	137.000000		0.000000	0.000000	0.000000	6.000000	11.000000	16.0
25%	2.000000	254.750000	254.0000	254.000000	254.000000	254.000000	254.000000	254.000000	254,000000	254.000000		253.000000	254.000000	254.000000	254.000000	254.000000	254.0
50%	4.500000	255.000000	255.0000	255.000000	255.000000	255.000000	255.000000	255.000000	255.000000	255.000000		255.000000	255.000000	255.000000	255.000000	255.000000	255.0
75%	7.000000	255.000000	255.0000	255.000000	255.000000	255.000000	255.000000	255.000000	255.000000	255.000000		255.000000	255.000000	255.000000	255.000000	255.000000	255.0
max	9.000000	255.000000	255.0000	255.000000	255.000000	255.000000	255.000000	255.000000	255.000000	255.000000		255.000000	255.000000	255.000000	255.000000	255.000000	255.0
8 rows ×	785 columns																

สร้างกราฟแท่งที่นับจำนวนตัวเลขแต่ละตัวจากข้อมูลทั้งหมด

4. Training model

เมื่อได้ csv ที่รวมรูปทั้งหมดแล้วอยู่ในไฟล์ชื่อ pixel num new.csv

```
5 rows x 785 columns

data_unseen.reset_index(inplace=True, drop=True)
print('Data for Modeling: ' + str(data_shape))
print('Unseen Data For Predictions: ' + str(data_unseen.shape))

Data for Modeling: (320, 785)
Unseen Data For Predictions: (80, 785)
```

และจะเริ่มสร้างโมเดล โดยใช้ Pycaret และต้อง install และ import ก่อนที่จะเริ่มใช้

[] !pip install pycaret
[] from pycaret.classification import *

และสร้างตัวแปรใหม่ที่ชื่อ numeric_feature ที่ใช้เก็บชื่อ feature ทั้งหมด

```
[ ] numeric_features = data.columns.tolist()
numeric_features.remove('y')
numeric_features[:5]
['pixel1', 'pixel2', 'pixel3', 'pixel4', 'pixel5']
```

การเริ่มการใช้งาน Pycaret ต้องเริ่มจาก Setup ข้อมูลหรือเตรียมข้อมูลโดยกำหนดข้อมูลที่ใช้กับชื่อ column ที่ต้องการจะ predict เพื่อนำไปสร้างโมเดลในขั้นต่อไป และจะแบ่ง training set และ testing set เป็นอัตราส่วน 70/30 อัตโนมัติและจะบอกรายละเอียดการตั้งค่าออกมาดังนี้

ต่อมาจะเป็นการสร้างโมเดลโดยจะใช้ compare_models() เพื่อดูว่าโมเดลอันไหนที่เหมาะสมกับข้อมูลชุดนี้มากที่สุด โดยดูจาก Model Evaluation ของแต่ละโมเดล

เมื่อได้โมเดลมาแล้วก็นำมาสร้าง ROC Curves และ Confusion matrix

False Positive Rate

O H N M Y LD G N M O Predicted Class

ต่อมานำโมเดลมา predict กับข้อมูล training set และ testing set จะได้ค่าที่ predict ออกมาและคะแนนการ predict ของแต่ละค่า

255	255	255	255	255	255	 255	255	255	255	255	255	255	9	9	0.59
255	255	255	255	255	255	 255	255	255	255	255	255	255	9	9	0.57

และจะสรุปโมเดลด้วย finalize_model() และจะได้ออกมาเป็น workflow หรือ pipeline ในการสร้างโมเดล

และ save โมเดลด้วย save_model() 'thainumber_rf.pkl')