Wykład 3. Własności grafów

Suma grafów

Niech będą dane grafy proste $G_1 = (V_1, E_1)$ oraz $G_2 = (V_2, E_2)$.

Wówczas

Definicja

Graf G=(V,E) nazywamy sumą grafów G_1 i G_2 i oznaczamy $G=G_1\cup G_2$, gdy $V=V_1\cup V_2$ oraz $E=E_1\cup E_2$

Suma grafów

Niech będą dane grafy proste $G_1=(V_1,E_1)$ oraz $G_2=(V_2,E_2)$. Wówczas

Definicja

Graf G=(V,E) nazywamy **sumą grafów** G_1 i G_2 i oznaczamy $G=G_1\cup G_2$, gdy $V=V_1\cup V_2$ oraz $E=E_1\cup E_2$

Suma grafów

Niech będą dane grafy proste $G_1=(V_1,E_1)$ oraz $G_2=(V_2,E_2)$. Wówczas

Definicja

Graf G=(V,E) nazywamy **sumą grafów** G_1 i G_2 i oznaczamy $G=G_1\cup G_2$, gdy $V=V_1\cup V_2$ oraz $E=E_1\cup E_2$

Zespolenie grafów

Definicja

Graf G = (V, E) nazywamy zespoleniem grafów G_1 i oznaczmy G_2

 $G=G_1+G_2$, gdy $V=V_1\cup V_2$ oraz

 $E = E_1 \cup E_2 \cup \{\{v_1, v_2\} : v_1 \in V_1, v_2 \in V_2\}$

Twierdzenie

Jeśli $G = G_1 + G_2$, to $|V| = |V_1| + |V_2|$ oraz $|E| = |E_1| + |E_2| + |V_1| * |V_2|$

Zespolenie grafów

Definicja

Graf G = (V, E) nazywamy zespoleniem grafów G_1 i oznaczmy G_2

 $G=G_1+G_2$, gdy $V=V_1\cup V_2$ oraz

 $E = E_1 \cup E_2 \cup \{\{v_1, v_2\} : v_1 \in V_1, v_2 \in V_2\}$

Twierdzenie

Jeśli $G = G_1 + G_2$, to $|V| = |V_1| + |V_2|$ oraz $|E| = |E_1| + |E_2| + |V_1| * |V_2|$

Zespolenie grafów

Definicja

Graf G = (V, E) nazywamy zespoleniem grafów G_1 i oznaczmy G_2 $G = G_1 + G_2$, gdy $V = V_1 \cup V_2$ oraz $E = E_1 \cup E_2 \cup \{\{v_1, v_2\} : v_1 \in V_1, v_2 \in V_2\}$

Twierdzenie

Jeśli $G = G_1 + G_2$, to $|V| = |V_1| + |V_2|$ oraz $|E| = |E_1| + |E_2| + |V_1| * |V_2|$.

Lemat o uściskach dłoni

W dowolnym grafie suma stopni wszystkich wierzchołków jest dwa razy większa od liczby krawędzi

$$\sum_{v \in V} \deg(v) = 2|E|$$

Dowód. Dowód jest oczywisty, ponieważ każda krawędź dodaje 2 do sumy stopni wierzchołków. ■

Twierdzenie

W dowolnym grafie liczba wierzchołków stopnia nieparzystego jest zawsze parzysta.

Dowód. Niech |V| = n. Wiemy, że $\sum_{i=1}^{n} \deg(v_i) = 2|E|$, więc $\sum_{i=1}^{n} \deg(v_i)$ jest liczbą parzystą.

Zauważmy, że

$$\sum_{i=1}^{n} \deg\left(v_{i}
ight) = \sum_{\deg\left(v_{j}
ight) \text{ - parz.}} \deg\left(v_{j}
ight) + \sum_{\deg\left(v_{k}
ight) \text{ - nieparz.}} \deg\left(v_{k}
ight),$$

stąc

$$\sum_{\mathsf{eg}(v_k) \text{ - nieparz.}} \mathsf{deg}\left(v_k\right) = \sum_{i=1}^n \mathsf{deg}\left(v_i\right) - \sum_{\mathsf{deg}\left(v_i\right) \text{ - parz.}} \mathsf{deg}\left(v_j\right)$$

Zatem $\sum_{\deg(v_k) \text{ - nieparz.}} \deg(v_k)$ jest liczbą parzystą jako różnica dwóch licz parzystych. Ponieważ każdy składnik $\deg(v_k)$ sumy $\sum_{\deg(v_k) \text{ - nieparz.}} \deg(v_k)$ wygaza wygaza wygaza nieparzystą, więc ilość jej składników musi być parzysta.

Twierdzenie

W dowolnym grafie liczba wierzchołków stopnia nieparzystego jest zawsze parzysta.

Dowód. Niech |V|=n. Wiemy, że $\sum_{i=1}^n \deg(v_i)=2|E|$, więc $\sum_{i=1}^n \deg(v_i)$ jest liczbą parzystą.

Zauważmy, że

$$\sum_{i=1}^{n} \deg\left(v_{i}\right) = \sum_{\deg\left(v_{j}\right) \text{ - parz.}} \deg\left(v_{j}\right) + \sum_{\deg\left(v_{k}\right) \text{ - nieparz.}} \deg\left(v_{k}\right),$$

stąd

$$\sum_{\mathsf{deg}\left(v_{k}\right) \text{ - nieparz.}} \mathsf{deg}\left(v_{k}\right) = \sum_{i=1}^{n} \mathsf{deg}\left(v_{i}\right) - \sum_{\mathsf{deg}\left(v_{j}\right) \text{ - parz.}} \mathsf{deg}\left(v_{j}\right)$$

Zatem $\sum_{\deg(v_k) \text{ - nieparz.}} \deg(v_k)$ jest liczbą parzystą jako różnica dwóch liczb parzystych. Ponieważ każdy składnik $\deg(v_k)$ sumy $\sum_{\deg(v_k) \text{ - nieparz.}} \deg(v_k)$ wiest $\ker \mathbb{Z}$ bą nieparzystą, więc ilość jej składników musi być parzysta.

Graf regularny

Definicja

Graf prosty, w którym wszystkie wierzchołki mają ten sam stopień nazywamy grafem regularnym.

Jeżeli każdy wierzchołek grafu ma stopień r, to graf ten nazywamy grafem regularnym stopnia r lub grafem r-regularnym. Graf regularny stopnia 3 nazywamy grafem kubicznym.

Własnośc

Graf r-regularny o n wierzchołkach posiada $\frac{nr}{2}$ krawędz

Graf regularny

Definicja

Graf prosty, w którym wszystkie wierzchołki mają ten sam stopień nazywamy grafem regularnym.

Jeżeli każdy wierzchołek grafu ma stopień r, to graf ten nazywamy grafem regularnym stopnia r lub grafem r-regularnym. Graf regularny stopnia 3 nazywamy grafem kubicznym.

Własnoś

Graf r-regularny o n wierzchołkach posiada $\frac{nr}{2}$ krawędz

Graf regularny

Definicja

Graf prosty, w którym wszystkie wierzchołki mają ten sam stopień nazywamy grafem regularnym.

Jeżeli każdy wierzchołek grafu ma stopień r, to graf ten nazywamy grafem regularnym stopnia r lub grafem r-regularnym. Graf regularny stopnia 3 nazywamy grafem kubicznym.

Własność

Graf r-regularny o n wierzchołkach posiada $\frac{nr}{2}$ krawędzi.

Definicja

Graf prosty, w którym każda para wierzchołków jest połączona krawędzią nazywamy **grafem pełnym** . Graf pełny o n wierzchołkach oznaczmy symbolem K_n .

Własność

Stopień każdego wierzchołka w grafie pełnym K_n wynosi n-1

Definicja

Graf prosty, w którym każda para wierzchołków jest połączona krawędzią nazywamy **grafem pełnym** . Graf pełny o n wierzchołkach oznaczmy symbolem K_n .

Własność

Stopień każdego wierzchołka w grafie pełnym K_n wynosi n-1.

Definicja

Graf prosty, w którym każda para wierzchołków jest połączona krawędzią nazywamy **grafem pełnym** . Graf pełny o n wierzchołkach oznaczmy symbolem K_n .

Własność

Stopień każdego wierzchołka w grafie pełnym K_n wynosi n-1.

Twierdzenie

Graf pełny K_n ma

$$|E_{K_n}| = \frac{n(n-1)}{2}$$

krawędzi.

Dowód. Ponieważ w grafie K_n mamy n wierzchołków oraz każdy z nich ma stopień n-1, więc

$$\sum_{i=1}^{n} \deg\left(v_{i}\right) = n\left(n-1\right)$$

Na mocy lematu o uściskach dłoni mamy

$$\sum_{i=1}^n \deg(v_i) = 2|E_{K_n}|$$

więc

Definicja

Grafem pustym nazywamy graf, którego zbiór krawędzi jest pusty (nie jest pusty zbiór wierzchołków, czyli |V| > 0 oraz |E| = 0). Graf pusty mający n wierzchołków oznaczamy symbolem N_n .

- Graf N_n składa się z n wierzchołków izolowanych.
- Graf N_n jest grafem regularnym stopnia 0.

Definicja

Grafem pustym nazywamy graf, którego zbiór krawędzi jest pusty (nie jest pusty zbiór wierzchołków, czyli |V| > 0 oraz |E| = 0). Graf pusty mający n wierzchołków oznaczamy symbolem N_n .

- Graf N_n składa się z n wierzchołków izolowanych.
- **©** Graf N_n jest grafem regularnym stopnia 0.

Definicja

Grafem pustym nazywamy graf, którego zbiór krawędzi jest pusty (nie jest pusty zbiór wierzchołków, czyli |V| > 0 oraz |E| = 0). Graf pusty mający n wierzchołków oznaczamy symbolem N_n .

- Graf N_n składa się z n wierzchołków izolowanych.
- ② Graf N_n jest grafem regularnym stopnia 0.

Definicja

Grafem pustym nazywamy graf, którego zbiór krawędzi jest pusty (nie jest pusty zbiór wierzchołków, czyli |V| > 0 oraz |E| = 0). Graf pusty mający n wierzchołków oznaczamy symbolem N_n .

- Graf N_n składa się z n wierzchołków izolowanych.
- **②** Graf N_n jest grafem regularnym stopnia 0.

Definicja

Graf spójny regularny stopnia 2 nazywamy grafem cyklicznym. Graf cykliczny mający n wierzchołków oznaczamy symbolem C_n .

- W grafie cyklicznym każde dwie sąsiednie krawędzie są połączone szeregowo.
- Graf cykliczny C_n posiada n krawedzi.

Definicja

Graf spójny regularny stopnia 2 nazywamy grafem cyklicznym. Graf cykliczny mający n wierzchołków oznaczamy symbolem C_n .

- W grafie cyklicznym każde dwie sąsiednie krawędzie są połączone szeregowo.
- Graf cykliczny C_n posiada n krawędzi.

Definicja

Graf spójny regularny stopnia 2 nazywamy grafem cyklicznym. Graf cykliczny mający n wierzchołków oznaczamy symbolem C_n .

- W grafie cyklicznym każde dwie sąsiednie krawędzie są połączone szeregowo.
- Graf cykliczny C_n posiada n krawedzi.

Definicja

Graf spójny regularny stopnia 2 nazywamy grafem cyklicznym. Graf cykliczny mający n wierzchołków oznaczamy symbolem C_n .

- W grafie cyklicznym każde dwie sąsiednie krawędzie są połączone szeregowo.
- Graf cykliczny C_n posiada n krawędzi.

Definicja

Jeżeli z grafu C_n usuniemy dokładnie jedną krawędź, to otrzymany graf nazywamy grafem liniowym o n wierzchołkach i oznaczamy symbolem P_n .

- Graf P_n nie jest grafem regularnym.
- Graf P_n posiada zawsze 2 wierzchołki stopnia pierwszego, a pozostałe n – 2 wierzchołki są stopnia drugiego.

Definicja

Jeżeli z grafu C_n usuniemy dokładnie jedną krawędź, to otrzymany graf nazywamy grafem liniowym o n wierzchołkach i oznaczamy symbolem P_n .

- Graf P_n nie jest grafem regularnym.
- Graf P_n posiada zawsze 2 wierzchołki stopnia pierwszego, a pozostałe n – 2 wierzchołki są stopnia drugiego.

Definicja

Jeżeli z grafu C_n usuniemy dokładnie jedną krawędź, to otrzymany graf nazywamy grafem liniowym o n wierzchołkach i oznaczamy symbolem P_n .

- Graf P_n nie jest grafem regularnym.
- Graf P_n posiada zawsze 2 wierzchołki stopnia pierwszego, a pozostałe n – 2 wierzchołki są stopnia drugiego.

Definicja

Jeżeli z grafu C_n usuniemy dokładnie jedną krawędź, to otrzymany graf nazywamy grafem liniowym o n wierzchołkach i oznaczamy symbolem P_n .

- Graf P_n nie jest grafem regularnym.
- Graf P_n posiada zawsze 2 wierzchołki stopnia pierwszego, a pozostałe n – 2 wierzchołki są stopnia drugiego.

Koło

Definicja

Kołem W_n nazywamy graf $W_n = C_{n-1} + N_1$.

$$W_6 = C_5 + N_1$$

Koło

Definicja

Kołem W_n nazywamy graf $W_n = C_{n-1} + N_1$.

$$W_6 = C_5 + N_1$$

Graf dwudzielny

Niech G = (V, E) będzie grafem prostym.

Definicja

Graf G jest **grafem dwudzielnym**, jeśli zbiór wierzchołków V jest sumą dwóch niepustych zbiorów rozłącznych V_1 i V_2 , takich, że każda krawędź tego grafu łączy wierzchołek ze zbioru V_1 z wierzchołkiem ze zbioru V_2 .

Graf dwudzielny

Niech G = (V, E) będzie grafem prostym.

Definicja

Graf G jest **grafem dwudzielnym**, jeśli zbiór wierzchołków V jest sumą dwóch niepustych zbiorów rozłącznych V_1 i V_2 , takich, że każda krawędź tego grafu łączy wierzchołek ze zbioru V_1 z wierzchołkiem ze zbioru V_2 .

Graf pełny dwudzielny

Definicja

Graf dwudzielny jest pełnym grafem dwudzielnym, jeśli każdy wierzchołek zbioru V_1 jest połączony z każdym wierzchołkiem zbioru V_2 dokładnie jedną krawędzią. Graf pełny dwudzielny, w którym $|V_1|=r$ i $|V_2|=s$ oznaczamy symbolem $K_{r,s}$.

- Każdy graf $K_{r,s}$ ma r + s wierzchołków.
- Każdy graf $K_{r,s}$ ma $r \cdot s$ krawędzi.

Graf pełny dwudzielny

Definicja

Graf dwudzielny jest **pełnym grafem dwudzielnym**, jeśli każdy wierzchołek zbioru V_1 jest połączony z każdym wierzchołkiem zbioru V_2 dokładnie jedną krawędzią. Graf pełny dwudzielny, w którym $|V_1|=r$ i $|V_2|=s$ oznaczamy symbolem $K_{r,s}$.

- Każdy graf K_{r,}, ma r + s wierzchołków.
- 3 Każdy graf $K_{r,s}$ ma $r \cdot s$ krawędzi.

Graf pełny dwudzielny

Definicja

Graf dwudzielny jest pełnym grafem dwudzielnym, jeśli każdy wierzchołek zbioru V_1 jest połączony z każdym wierzchołkiem zbioru V_2 dokładnie jedną krawędzią. Graf pełny dwudzielny, w którym $|V_1|=r$ i $|V_2|=s$ oznaczamy symbolem $K_{r,s}$.

- 2 Każdy graf $K_{r,s}$ ma r + s wierzchołków.
- Sazdy graf $K_{r,s}$ ma $r \cdot s$ krawędzi

Graf pełny dwudzielny

Definicja

Graf dwudzielny jest pełnym grafem dwudzielnym, jeśli każdy wierzchołek zbioru V_1 jest połączony z każdym wierzchołkiem zbioru V_2 dokładnie jedną krawędzią. Graf pełny dwudzielny, w którym $|V_1|=r$ i $|V_2|=s$ oznaczamy symbolem $K_{r,s}$.

- 2 Każdy graf $K_{r,s}$ ma r + s wierzchołków.
- S Każdy graf $K_{r,s}$ ma $r \cdot s$ krawedzi.

Graf krawędziowy

Definicja

Grafem krawędziowym L(G) **grafu** G, nazywamy graf, którego wierzchołki odpowiadają wzajemnie jednoznacznie krawędziom G oraz dowolne dwa wierzchołki w grafie L(G) są sąsiednie wtedy i tylko wtedy, gdy odpowiadające im krawędzie są sąsiednie w G.

Graf krawędziowy

Definicja

Grafem krawędziowym L(G) **grafu** G, nazywamy graf, którego wierzchołki odpowiadają wzajemnie jednoznacznie krawędziom G oraz dowolne dwa wierzchołki w grafie L(G) są sąsiednie wtedy i tylko wtedy, gdy odpowiadające im krawędzie są sąsiednie w G.

Dopełnienie grafu

Definicja

Dopełnieniem grafu G = (V, E) nazywamy graf \overline{G} , którego zbiór wierzchołków jest taki sam, jak grafu G oraz w którym dwa wierzchołki są sąsiednie wtedy i tylko wtedy, gdy nie są sąsiednie w grafie G.

Własność

Dopełnieniem grafu pełnego K_n jest graf pusty N_n.
Dopełnieniem grafu pełnego dwudzielnego K_{r,s} są dwa grafy pełne K_r.

Dopełnienie grafu

Definicja

Dopełnieniem grafu G=(V,E) nazywamy graf \overline{G} , którego zbiór wierzchołków jest taki sam, jak grafu G oraz w którym dwa wierzchołki są sąsiednie wtedy i tylko wtedy, gdy nie są sąsiednie w grafie G.

- Dopełnieniem grafu pełnego K_n jest graf pusty N_n .
- **9** Dopełnieniem grafu pełnego dwudzielnego $K_{r,s}$ są dwa grafy pełne K_r i K_r

Dopełnienie grafu

Definicja

Dopełnieniem grafu G=(V,E) nazywamy graf \overline{G} , którego zbiór wierzchołków jest taki sam, jak grafu G oraz w którym dwa wierzchołki są sąsiednie wtedy i tylko wtedy, gdy nie są sąsiednie w grafie G.

- Dopełnieniem grafu pełnego K_n jest graf pusty N_n .
- $oldsymbol{\Theta}$ Dopełnieniem grafu pełnego dwudzielnego $K_{r,s}$ są dwa grafy pełne K_r i K_s .

Podgraf grafu

Definicja

Graf $H = \langle V_H, E_H, \gamma_H \rangle$ jest **podgrafem grafu** $G = \langle V_G, E_G, \gamma_G \rangle$ wtedy i tylko wtedy, gdy spełnione są warunki:

- $V_H \subset V_G$
- $E_H \subset E_G$
- $\gamma_H = \gamma_G|_{E_H}$

- 4 Każdy graf jest swoim własnym podgrafem.
- Podgraf G" podgrafu G' grafu G jest podgrafem grafu G tzn

$$\left(G^{\prime}\subset G\wedge G^{\prime\prime}\subset G^{\prime}\right)\Rightarrow G^{\prime\prime}\subset G.$$

- Pojedynczy wierzchołek grafu G jest podgrafem grafu G.
- Pojedyncza krawędź grafu G łącznie z jej końcami jest podgrafem grafu G.
- Każdy graf prosty G o n-wierzchołkach jest podgrafem grafu pełnego K_n.
- Liczba wszystkich różnych grafów prostych zawierających n wierzchołków iest równa

- 4 Każdy graf jest swoim własnym podgrafem.
- $oldsymbol{\Theta}$ Podgraf G'' podgrafu G' grafu G jest podgrafem grafu G tzn

$$(G'\subset G\wedge G''\subset G')\Rightarrow G''\subset G.$$

- Opiedynczy wierzchołek grafu G jest podgrafem grafu G
- Pojedyncza krawędź grafu G łącznie z jej końcami jest podgrafem grafu
 G.
- Każdy graf prosty G o n-wierzchołkach jest podgrafem grafu pełnego Ka.
- Liczba wszystkich różnych grafów prostych zawierających n wierzchołków jest równa

- 4 Każdy graf jest swoim własnym podgrafem.
- $oldsymbol{\Theta}$ Podgraf G'' podgrafu G' grafu G jest podgrafem grafu G tzn

$$(G' \subset G \land G'' \subset G') \Rightarrow G'' \subset G.$$

- 3 Pojedynczy wierzchołek grafu G jest podgrafem grafu G.
- Pojedyncza krawędź grafu G łącznie z jej końcami jest podgrafem grafu
 G.
- Każdy graf prosty G o n-wierzchołkach jest podgrafem grafu pełnego Kn.
- Liczba wszystkich różnych grafów prostych zawierających n wierzchołków jest równa

- 4 Każdy graf jest swoim własnym podgrafem.
- $oldsymbol{0}$ Podgraf G'' podgrafu G' grafu G jest podgrafem grafu G tzn

$$(G'\subset G\wedge G''\subset G')\Rightarrow G''\subset G.$$

- Pojedynczy wierzchołek grafu G jest podgrafem grafu G.
- Pojedyncza krawędź grafu G łącznie z jej końcami jest podgrafem grafu G.
- Każdy graf prosty G o n-wierzchołkach jest podgrafem grafu pełnego Kn.
- Liczba wszystkich różnych grafów prostych zawierających n wierzchołków jest równa

$$2^{\frac{n(n-1)}{2}}$$

- 4 Każdy graf jest swoim własnym podgrafem.
- $oldsymbol{0}$ Podgraf G'' podgrafu G' grafu G jest podgrafem grafu G tzn

$$\left(G'\subset G\wedge G''\subset G'\right)\Rightarrow G''\subset G.$$

- 3 Pojedynczy wierzchołek grafu G jest podgrafem grafu G.
- Pojedyncza krawędź grafu G łącznie z jej końcami jest podgrafem grafu G.
- Każdy graf prosty G o n-wierzchołkach jest podgrafem grafu pełnego Kn.
- Liczba wszystkich różnych grafów prostych zawierających rwierzchołków jest równa

$$2^{\frac{n(n-1)}{2}}$$

- 4 Każdy graf jest swoim własnym podgrafem.
- \bigcirc Podgraf G'' podgrafu G' grafu G jest podgrafem grafu G tzn

$$(G'\subset G\wedge G''\subset G')\Rightarrow G''\subset G.$$

- Pojedynczy wierzchołek grafu G jest podgrafem grafu G.
- Pojedyncza krawędź grafu G łącznie z jej końcami jest podgrafem grafu G.
- Każdy graf prosty G o n-wierzchołkach jest podgrafem grafu pełnego Kn.
- Liczba wszystkich różnych grafów prostych zawierających n wierzchołków jest równa

$$2^{\frac{n(n-1)}{2}}$$

Podgrafy grafu

Niech dany będzie graf $G = \langle V, E, \gamma \rangle$ i krawędź $e \in E$.

G-e oznacza podgraf otrzymany z grafu G przez usunięcie krawędzi e.

Niech F będzie dowolnym podzbiorem zbioru krawędzi grafu G ($F \subset E$), wówczas G - F oznacza podgraf grafu G powstały przez usunięcie wszystkich krawędzi należących do zbioru F.

Podgrafy grafu

Niech dany będzie graf $G = \langle V, E, \gamma \rangle$ i niech wierzchołek $v \in V$.

G-v oznacza podgraf grafu G otrzymany z G przez usunięcie wierzchołka v i wszystkich krawędzi do niego incydentnych.

Jeżeli S jest dowolnym podzbiorem zbioru wierzchołków V grafu G ($S \subset V \land S \neq V$), to G - S oznacza graf, który otrzymamy z grafu G przez usunięcie wszystkich wierzchołków należących do zbioru S i wszystkich krawędzi incydentnych do dowolnego wierzchołka ze zbioru S.

Graf częściowy

Definicja

Graf H nazywamy grafem częściowym lub grafem spinającym grafu G jeżeli jest podgrafem G i $V_H=V_G$.

Składowe spójne grafu

Definicja

Każdy spójny podgraf G_1 grafu G ($G_1 \subset G$), który nie jest zawarty w większym (w sensie relacji zawierania zbioru wierzchołków oraz zawierania zbioru krawędzi) spójnym podgrafie grafu G nazywamy składową spójną grafu G.

Oczywiście każdy wierzchołek izolowany danego grafu jest jego spójna

Składowe spójne grafu

Definicja

Każdy spójny podgraf G_1 grafu G ($G_1 \subset G$), który nie jest zawarty w większym (w sensie relacji zawierania zbioru wierzchołków oraz zawierania zbioru krawędzi) spójnym podgrafie grafu G nazywamy składową spójną grafu G.

Oczywiście każdy wierzchołek izolowany danego grafu jest jego spójna

Składowe spójne grafu

Definicja

Każdy spójny podgraf G_1 grafu G ($G_1 \subset G$), który nie jest zawarty w większym (w sensie relacji zawierania zbioru wierzchołków oraz zawierania zbioru krawędzi) spójnym podgrafie grafu G nazywamy **składową spójną grafu** G.

Oczywiście każdy wierzchołek izolowany danego grafu jest jego spójna

Twierdzenie

Spójny graf o n wierzchołkach, posiada co najmniej n-1 krawędzi.

Twierdzenie

Ilość krawędzi *m* w grafie prostym i spójnym o *n* wierzchołkach, spełnia zależność

$$n-1\leq m\leq \frac{n(n-1)}{2}$$

Twierdzenie

Niech G będzie grafem prostym o n wierzchołkach. Jeżeli graf G ma k składowych, to liczba m jego krawędzi spełnia nierówność

$$n-k \le m \le \frac{1}{2} (n-k) (n-k+1)$$

Każdy graf prosty, który ma n wierzchołków i więcej niż $\frac{(n-1)(n-2)}{2}$ krawędz iest spójny.

Twierdzenie

Spójny graf o n wierzchołkach, posiada co najmniej n-1 krawędzi.

Twierdzenie

Ilość krawędzi m w grafie prostym i spójnym o n wierzchołkach, spełnia zależność

$$n-1\leq m\leq \frac{n(n-1)}{2}$$

Twierdzenie

Niech G będzie grafem prostym o n wierzchołkach. Jeżeli graf G ma k składowych, to liczba m jego krawędzi spełnia nierówność

$$n-k \le m \le \frac{1}{2} (n-k) (n-k+1)$$

Każdy graf prosty, który ma n wierzchołków i więcej niż $\frac{(n-1)(n-2)}{2}$ krawędziest spóiny.

Twierdzenie

Spójny graf o n wierzchołkach, posiada co najmniej n-1 krawędzi.

Twierdzenie

Ilość krawędzi m w grafie prostym i spójnym o n wierzchołkach, spełnia zależność

$$n-1\leq m\leq \frac{n(n-1)}{2}$$

Twierdzenie

Niech G będzie grafem prostym o n wierzchołkach. Jeżeli graf G ma k składowych, to liczba m jego krawędzi spełnia nierówność

$$n-k\leq m\leq \frac{1}{2}(n-k)(n-k+1)$$

Każdy graf prosty, który ma n wierzchołków i więcej niż $\frac{(n-1)(n-2)}{2}$ krawędzi jest spójny.

Lemat

Acykliczny graf o n wierzchołkach posiada co najwyżej n-1 krawędzi.

Twierdzenie

Niech G będzie grafem o n wierzchołkach. Wówczas dowolne dwa warunki implikuja trzeci.

- G jest spójny
- G jest acykliczny
- \bigcirc G posiada dokładnie n-1 krawędz

Lemat

Acykliczny graf o n wierzchołkach posiada co najwyżej n-1 krawędzi.

Twierdzenie

Niech G będzie grafem o n wierzchołkach. Wówczas dowolne dwa warunki implikują trzeci.

- G jest spójny
- G jest acykliczny
- $oldsymbol{9}$ G posiada dokładnie n-1 krawędzi

Dziękuję za uwagę!!!

