Lista de exercícios: Análise de Variância - Estatística Computacional. Curso: Ciência da Computação.

1) Num laboratório são usados quatro voltímetros diferentes. Para verificar se os quatro voltímetros estão igualmente calibrados, mediu-se a mesma força constante de 100 volts cinco vezes com cada voltímetro. Teste todas as hipóteses de interesse e interprete os resultados (α =0,01).

(Voltagens) Voltímetro					
A	В	С	D		
117	115	118	125		
120	110	123	121		
114	116	119	123		
119	115	122	118		
115	114	118	118		

2) Um fabricante está interessado na resistência à tensão de uma fibra sintética. Suspeita-se que a resistência esteja relacionada à percentagem do algodão na fibra. Cinco níveis de percentagem de algodão são usados e cinco replicatas são corridas em uma ordem aleatória, resultando nos dados:

% de Algodão	Observações				
15	7	7	15	11	9
20	12	17	12	18	18
25	14	18	18	19	19
30	19	25	22	19	23
35	7	10	11	15	11

- a) A porcentagem de algodão afeta a resistência à ruptura do fio? Faça a análise de variância. $\alpha = 0.05$.
- b) Utilizando o Método de Tukey analise as médias dos tratamentos, caso a Hipótese H₀ seja rejeitada.
- 3) Um experimento em blocos casualizados foi feito para determinar o efeito de quatro produtos químicos diferentes sobre a resistência de um tecido, utilizando-se cinco amostras de tecido. Teste a hipótese de diferença entre os produtos químicos usando $\alpha=0.01$

Produto _	Amostra de tecido					
Químico	1	2	3	4	5	Totais
A	1,3	1,6	0,5	1,2	1,1	5,7
В	2,2	2,4	0,4	2,0	1,8	8,8
C	1,8	1,7	0,6	1,5	1,3	6,9
D	3,9	4,4	2,0	4,1	3,4	17,8
Totais	9,2	10,1	3,5	8,8	7,6	39,2

4) Um experimento fatorial foi conduzido para determinar se a temperatura de queima ou a posição da fornalha afetam a densidade de um ânodo de carbono. Os dados estão a seguir.

_				
Temperatura -	Posição			
- I emperatura	1	2	Totais	
800	570 565 583	528 547 521		
825	1063 1080 1043	988 1026 1004		
850	565 510 590	526 538 532		
Totais				

- a) Teste as hipóteses de interesse e tire as conclusões usando anava a 5%.
- b) Use o método da DMS de Fisher para identificar diferenças na densidade nos três níveis de temperatura.

Resp:

5) (Montgomery e Runger- 13.1) Em seu livro de 1997 (Design and Analysis of Experiments, 4.a edição, Iohn Wiley & Sons), D. C. Montgomery apresenta os resultados de um experimento envolvendo uma bateria usada no mecanismo de lançamento de um míssil. Três materiais diferentes podem ser usados para fazer as placas das baterias. O objetivo é projetar a bateria de modo a ser relativamente não afetada pela temperatura ambiente. A variável de resposta da bateria é a vida efetiva em horas. Três níveis de temperatura são selecionados e um experimento fatorial com quatro réplicas é realizado. Os dados são os da tabela ao lado.

	Temperatura (DF)					
Material		1		2		3
1	130	155	34	40	20	70
	74	180	80	75	82	58
2	150	188	136	122	25	70
	159	126	106	115	58	45
3	138	110	174	120	96	104
	168	160	150	139	82	60

- (a) Teste as hipóteses apropriadas e tire conclusões, usando a análise de variância com $\alpha = 0.05$.
- (b) Analise graficamente a interação.
- (c) Faça o desdobramento da interação, caso necessário.
- 6) Um artigo na revista Journal of Testing and Evaluation (V 01. 16, no. 6, 1988, pp. 508-515) investigou os efeitos da freqüência cíclica de carregamento e das condições ambientais no crescimento da fratura por fadiga, a uma tensão constante de 22 MPa para um material particular. Os dados do experimento são mostrados a seguir. A variável de resposta é a taxa de crescimento da fratura por fadiga.
- (a) Há qualquer indicação de que os fatores afetam a taxa de crescimento da fratura? Há qualquer indicação de interação? Use a=0.05.
- (b) Analise os resíduos desse experimento.
- (c) Repita a análise do item (a), usando ln(y) como a resposta. Analise os resíduos dessa nova variável de resposta e comente os seus resultados.

	Ambiente			
Freqüência	Ar	Ar H20		
10	2,29	2,06	1,90	
	2,47	2,05	1,93	
	2,48	2,23	1,75	
	2,12	2,03	2,06	
1	2,65	3,20	3,10	
	2,68	3,18	3,24	
	2,06	3,96	3,98	
	2,38	3,64	3,24	
0.1	2,24	11,00	9,96	
	2,71	11,00	10,01	
	2,81	9,06	9,36	
	2,08	11,30	10,40	