

Knowledge Distillation

Definition: Knowledge Distillation (KD)

The transfer of knowledge from a large **teacher** network to a smaller **student** network.

Knowledge Distillation

Definition: Knowledge Distillation (KD)

The transfer of knowledge from a large teacher network to a smaller student network.

Temperature

• Recall the softmax operation that produces output probabilities y_i :

$$y_i = \operatorname{softmax}(\mathbf{z}) = \frac{e^{z_i}}{\sum_{k=1}^m e^{z_k}}$$

• The outputs of the NN z_i are called **logits**

Temperature

Recall the softmax operation that produces output probabilities y_i:

$$y_i = \operatorname{softmax}(\mathbf{z}) = \frac{e^{z_i}}{\sum_{k=1}^m e^{z_k}}$$

The outputs of the NN z_i are called logits

Definition: Softmax with temperature

$$y_i = \operatorname{softmax}(\mathbf{z}, T) = \frac{e^{\frac{c_i}{T}}}{\sum_{k=1}^m e^{\frac{c_k}{T}}},$$

where T is the temperature parameter.

 Increasing T makes the output distribution more uniform

 Increasing T makes the output distribution more uniform

 Increasing T makes the output distribution more uniform

- Increasing T makes the output distribution more uniform
- Soft labels add more constraints on the parameters of the student network

- Increasing T makes the output distribution more uniform
- Soft labels add more constraints on the parameters of the student network
- A form of regularization!

- Increasing T makes the output distribution more uniform
- Soft labels add more constraints on the parameters of the student network
- A form of regularization!
- "Distillation" is refinement at high temperature (e.g., alcohol)

Let's define:

- Teacher output with T > 1: \mathbf{y}_t
- Student output with T > 1: y_s
- Student output with T = 1: $\hat{\mathbf{y}}_s$
- Dataset label: y

Let's define:

- Teacher output with T > 1: \mathbf{y}_t
- Student output with T > 1: y_s
- Student output with T = 1: $\hat{\mathbf{y}}_s$
- Dataset label: y

1. Distillation loss:

• Kullback-Leibler divergence loss: $L_{\mathsf{KL}}(\mathbf{y}_t,\mathbf{y}_s) = \mathbf{y}_t^{\top}\log\left(\frac{\mathbf{y}_t}{\mathbf{y}_s}\right)$

G. Hinton, O. Vinyals, J. Dean, "Distilling the Knowledge in a Neural Network," 2015.

Let's define:

- Teacher output with T > 1: \mathbf{y}_t
- Student output with T > 1: y_s
- Student output with T = 1: $\hat{\mathbf{y}}_s$
- Dataset label: y

1. Distillation loss:

- Kullback-Leibler divergence loss: $L_{\mathsf{KL}}(\mathbf{y}_t,\mathbf{y}_s) = \mathbf{y}_t^{\top}\log\left(\frac{\mathbf{y}_t}{\mathbf{y}_s}\right)$
- Cross-entropy loss: $L_{\mathsf{CE}}(\mathbf{y}_t, \mathbf{y}_s) = -\mathbf{y}_t^{\top} \log{(\mathbf{y}_s)}$

G. Hinton, O. Vinyals, J. Dean, "Distilling the Knowledge in a Neural Network," 2015.

4 5LIL0 – Personal student use only.

Let's define:

- Teacher output with T > 1: \mathbf{y}_t
- Student output with T > 1: \mathbf{y}_s
- Student output with T = 1: $\hat{\mathbf{y}}_s$
- Dataset label: y

1. Distillation loss:

- Kullback-Leibler divergence loss: $L_{\mathsf{KL}}(\mathbf{y}_t,\mathbf{y}_s) = \mathbf{y}_t^{\top}\log\left(\frac{\mathbf{y}_t}{\mathbf{y}_s}\right)$
- Cross-entropy loss: $L_{\mathsf{CE}}(\mathbf{y}_t, \mathbf{y}_s) = -\mathbf{y}_t^{\top} \log{(\mathbf{y}_s)}$

2. Classification loss:

• Cross-entropy loss: $L_{\text{CE}}(\mathbf{y}, \hat{\mathbf{y}}_s) = -\mathbf{y}^{\top} \log(\hat{\mathbf{y}}_s)$

G. Hinton, O. Vinyals, J. Dean, "Distilling the Knowledge in a Neural Network," 2015.

4 5LIL0 – Personal student use only.

• General relationship between KL and CE:

$$L_{\mathsf{KL}}(\mathbf{y}, \hat{\mathbf{y}}) = \mathbf{y}^{\top} \log \left(\frac{\mathbf{y}}{\hat{\mathbf{y}}} \right)$$

General relationship between KL and CE:

$$L_{\mathsf{KL}}(\mathbf{y}, \hat{\mathbf{y}}) = \mathbf{y}^{ op} \log \left(rac{\mathbf{y}}{\hat{\mathbf{y}}}
ight) = \mathbf{y}^{ op} \log \mathbf{y} - \mathbf{y}^{ op} \log \hat{\mathbf{y}}$$

General relationship between KL and CE:

$$L_{\mathsf{KL}}(\mathbf{y}, \hat{\mathbf{y}}) = \mathbf{y}^{\top} \log \left(\frac{\mathbf{y}}{\hat{\mathbf{y}}} \right) = \mathbf{y}^{\top} \log \mathbf{y} - \mathbf{y}^{\top} \log \hat{\mathbf{y}} = L_{\mathsf{CE}}(\mathbf{y}, \hat{\mathbf{y}}) - H(\mathbf{y})$$

General relationship between KL and CE:

$$L_{\mathsf{KL}}(\mathbf{y}, \hat{\mathbf{y}}) = \mathbf{y}^{\top} \log \left(\frac{\mathbf{y}}{\hat{\mathbf{y}}} \right) = \mathbf{y}^{\top} \log \mathbf{y} - \mathbf{y}^{\top} \log \hat{\mathbf{y}} = L_{\mathsf{CE}}(\mathbf{y}, \hat{\mathbf{y}}) - H(\mathbf{y})$$

• When \mathbf{y} is one-hot encoded, $H(\mathbf{y}) = 0$, so $L_{\mathsf{KL}}(\mathbf{y}, \hat{\mathbf{y}}) = L_{\mathsf{CE}}(\mathbf{y}, \hat{\mathbf{y}})$

General relationship between KL and CE:

$$L_{\mathsf{KL}}(\mathbf{y}, \hat{\mathbf{y}}) = \mathbf{y}^{\top} \log \left(\frac{\mathbf{y}}{\hat{\mathbf{y}}} \right) = \mathbf{y}^{\top} \log \mathbf{y} - \mathbf{y}^{\top} \log \hat{\mathbf{y}} = L_{\mathsf{CE}}(\mathbf{y}, \hat{\mathbf{y}}) - H(\mathbf{y})$$

- When \mathbf{y} is one-hot encoded, $H(\mathbf{y}) = 0$, so $L_{\mathsf{KL}}(\mathbf{y}, \hat{\mathbf{y}}) = L_{\mathsf{CE}}(\mathbf{y}, \hat{\mathbf{y}})$
- \bullet In knowledge distillation, y are soft labels and $\textit{L}_{\mathsf{KL}}(y,\hat{y}) \neq \textit{L}_{\mathsf{CE}}(y,\hat{y})$

General relationship between KL and CE:

$$L_{\mathsf{KL}}(\mathbf{y}, \hat{\mathbf{y}}) = \mathbf{y}^{\top} \log \left(\frac{\mathbf{y}}{\hat{\mathbf{y}}} \right) = \mathbf{y}^{\top} \log \mathbf{y} - \mathbf{y}^{\top} \log \hat{\mathbf{y}} = L_{\mathsf{CE}}(\mathbf{y}, \hat{\mathbf{y}}) - H(\mathbf{y})$$

- When \mathbf{y} is one-hot encoded, $H(\mathbf{y}) = 0$, so $L_{\mathsf{KL}}(\mathbf{y},\hat{\mathbf{y}}) = L_{\mathsf{CE}}(\mathbf{y},\hat{\mathbf{y}})$
- In knowledge distillation, \mathbf{y} are soft labels and $L_{\mathsf{KL}}(\mathbf{y},\hat{\mathbf{y}}) \neq L_{\mathsf{CE}}(\mathbf{y},\hat{\mathbf{y}})$
- However: $\frac{\partial H(\mathbf{y})}{\partial \hat{\mathbf{y}}} = 0$, so $L_{CE}(\mathbf{y}, \hat{\mathbf{y}})$ and $L_{KL}(\mathbf{y}, \hat{\mathbf{y}})$ are interchangeable for training!

Knowledge distillation:

- 1. Pre-train teacher
- 2. Fix teacher weights
- 3. Train student

Knowledge distillation:

- 1. Pre-train teacher
- 2. Fix teacher weights
- 3. Train student

Student loss function:

$$L(\mathbf{y}, \hat{\mathbf{y}}_s, \mathbf{y}_s, \mathbf{y}_t) = \alpha L_{CE}(\mathbf{y}, \hat{\mathbf{y}}_s) + (1 - \alpha)T^2 L_{CE}(\mathbf{y}_t, \mathbf{y}_s), \quad \alpha \in [0, 1]$$

Knowledge distillation:

- 1. Pre-train teacher
- 2. Fix teacher weights
- 3. Train student

$$L(\mathbf{y}, \hat{\mathbf{y}}_s, \mathbf{y}_s, \mathbf{y}_t) = \alpha L_{CE}(\mathbf{y}, \hat{\mathbf{y}}_s) + (1 - \alpha) T^2 L_{CE}(\mathbf{y}_t, \mathbf{y}_s), \quad \alpha \in [0, 1]$$

• Due to the use of softmax(\mathbf{z} , T), $L_{CE}(\mathbf{y}_t, \mathbf{y}_s)$ is T^2 times smaller than $L_{CE}(\mathbf{y}, \hat{\mathbf{y}}_s)$

G. Hinton, O. Vinyals, J. Dean, "Distilling the Knowledge in a Neural Network," 2015.

A Surprising Result

• Experiment: Remove all instances of "3" from the training set of the student

[1] G. Hinton, O. Vinyals, J. Dean, "Distilling the Knowledge in a Neural Network," 2015.

A Surprising Result

- Experiment: Remove all instances of "3" from the training set of the student
- **Result:** 87% of threes in the test set are classified correctly [1]!

[1] G. Hinton, O. Vinyals, J. Dean, "Distilling the Knowledge in a Neural Network," 2015.

A Surprising Result

- Experiment: Remove all instances of "3" from the training set of the student
- Result: 87% of threes in the test set are classified correctly [1]!
- How can this be? The teacher's "dark knowledge" [2] becomes accessible!

^[1] G. Hinton, O. Vinyals, J. Dean, "Distilling the Knowledge in a Neural Network," 2015.
[2] G. Hinton, O. Vinyals, J. Dean, "Dark knowledge," TTIC Distinguished Lecture Series, 2014.

^[2] G. Fillion, G. Villyais, G. Bearl, Balk Mowledge, The Bistinguistica Educate Genes, 2014.

 Distillation loss: squared error/cross-entropy between teacher and student features

- Distillation loss: squared error/cross-entropy between teacher and student features
- Problem: feature sizes don't match!

- Distillation loss: squared error/cross-entropy between teacher and student features
- Problem: feature sizes don't match!
- Solution: multiply with a learnable projection matrix to align sizes [1]

[1] A. Romero, N. Ballas, S. Ebrahimi Kahou, A. Chassang, C. Gatta, Y. Bengio, "FitNets: Hints for Thin Deep Nets," ICLR 2015

 Distillation loss: squared error/cross-entropy between teacher and student features

- Problem: feature sizes don't match!
- Solution: multiply with a learnable projection matrix to align sizes [1]

It is also possible to match weights, gradients, sparsity patterns, and more [2]

[1] A. Romero, N. Ballas, S. Ebrahimi Kahou, A. Chassang, C. Gatta, Y. Bengio, "FitNets: Hints for Thin Deep Nets," ICLR 2015 [2] J. Gou, B. Yu, S. J. Maybank, D. Tao, "Knowledge Distillation: A Survey," IJCV 2021

- Typical KD needs pre-trained teacher:
 - 1. Large \rightarrow expensive
 - $\textcolor{red}{\textbf{2.}} \ \, \text{Fixed} \rightarrow \text{inflexible}$

- Typical KD needs pre-trained teacher:
 - 1. Large \rightarrow expensive
 - 2. Fixed \rightarrow inflexible
- Online distillation:
 - 1. Students teach each other!

- Typical KD needs pre-trained teacher:
 - 1. Large → expensive
 - 2. Fixed → inflexible
- Online distillation:
 - 1. Students teach each other!
 - 2. Networks can be arbitrary
 - 3. Both have class. & distillation loss

- Typical KD needs pre-trained teacher:
 - 1. Large → expensive
 - 2. Fixed \rightarrow inflexible
- Online distillation:
 - 1. Students teach each other!
 - 2. Networks can be arbitrary
 - 3. Both have class. & distillation loss

Dataset	Network Types		Independent	
	Net1	Net 2	Net 1	Net 2
CIFAR-100	WRN-28-10	ResNet-32	78.69	68.99
	MobilNet	ResNet-32	73.65	68.99

• Typical KD needs pre-trained teacher:

- 1. Large → expensive
- 2. Fixed \rightarrow inflexible

- 1. Students teach each other!
- 2. Networks can be arbitrary
- 3. Both have class. & distillation loss

Dataset	Network Types		Independent		1 distills 2
	Net1	Net 2	Net 1	Net 2	Net 2
CIFAR-100	WRN-28-10	ResNet-32	78.69	68.99	69.48
	MobilNet	ResNet-32	73.65	68.99	69.12

Online Distillation

• Typical KD needs pre-trained teacher:

- 1. Large → expensive
- 2. Fixed \rightarrow inflexible

Online distillation:

- 1. Students teach each other!
- 2. Networks can be arbitrary
- 3. Both have class. & distillation loss

Dataset	Network Types		Independent		1 distills 2	DML	
	Net1	Net 2	Net 1	Net 2	Net 2	Net 1	Net 2
CIFAR-100	WRN-28-10	ResNet-32	78.69	68.99	69.48	78.96	70.73
	MobilNet	ResNet-32	73.65	68.99	69.12	76.13	71.10

Online Distillation

- Typical KD needs pre-trained teacher:
 - 1. Large → expensive
 - 2. Fixed \rightarrow inflexible
- Online distillation:
 - 1. Students teach each other!
 - 2. Networks can be arbitrary
 - 3. Both have class. & distillation loss

Dataset	Network Types		Independent		1 distills 2	DML	
	Net1	Net 2	Net 1	Net 2	Net 2	Net 1	Net 2
CIFAR-100	WRN-28-10	ResNet-32	78.69	68.99	69.48	78.96	70.73
	MobilNet	ResNet-32	73.65	68.99	69.12	76.13	71.10

Online distillation leads to better performance for both networks!

Online Distillation

- Typical KD needs pre-trained teacher:
 - 1. Large → expensive
 - 2. Fixed \rightarrow inflexible
- Online distillation:
 - 1. Students teach each other!
 - 2. Networks can be arbitrary
 - 3. Both have class. & distillation loss

Dataset	Network Types		Independent		1 distills 2	DML	
	Net1	Net 2	Net 1	Net 2	Net 2	Net 1	Net 2
CIFAR-100	WRN-28-10	ResNet-32	78.69	68.99	69.48	78.96	70.73
	MobilNet	ResNet-32	73.65	68.99	69.12	76.13	71.10

- Online distillation leads to better performance for both networks!
- Intuition: Different prior knowledge (i.e., different initializations) → different soft labels

TU/e

- A single neural network [1]:
 - 1. Step 0: train only on dataset

Step 0

^[1] T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, A. Anandkumar, "Born Again Neural Networks," ICML 2018

- A single neural network [1]:
 - 1. Step 0: train only on dataset
 - 2. **Step k**: train on dataset and soft labels from network at step k-1

[1] T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, A. Anandkumar, "Born Again Neural Networks," ICML 2018

- A single neural network [1]:
 - 1. Step 0: train only on dataset
 - 2. **Step k**: train on dataset and soft labels from network at step k-1
- A form of self-regularization!

[1] T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, A. Anandkumar, "Born Again Neural Networks," ICML 2018

- A single neural network [1]:
 - 1. Step 0: train only on dataset
 - 2. **Step k**: train on dataset and soft labels from network at step k-1
- A form of self-regularization!

Alternative: Split network into parts, train early parts with output of later parts with KD

[1] T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, A. Anandkumar, "Born Again Neural Networks," ICML 2018

- A single neural network [1]:
 - 1. Step 0: train only on dataset
 - 2. Step k: train on dataset and soft labels from network at step k-1
- A form of self-regularization!

- Alternative: Split network into parts, train early parts with output of later parts with KD
- Advantage: Can use only subset of network for performance-complexity trade-offs [2]

^[1] T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, A. Anandkumar, "Born Again Neural Networks," ICML 2018

^[2] L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, K. Ma, "Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self Distillation," ICCV 2019

 So far, teacher and student were trained for the same task.

- So far, teacher and student were trained for the same task.
- But student specialization is also possible.

- So far, teacher and student were trained for the same task.
- But student specialization is also possible.
- Problem: different number of classes for teacher & student!

- So far, teacher and student were trained for the same task.
- But student specialization is also possible.
- Problem: different number of classes for teacher & student!

Train with subset of dataset and all outputs?

- So far, teacher and student were trained for the same task.
- But student specialization is also possible.
- Problem: different number of classes for teacher & student!

Train with subset of dataset and all outputs? Dark knowledge uses student capacity!

- So far, teacher and student were trained for the same task.
- But student specialization is also possible.
- Problem: different number of classes for teacher & student!

- Train with subset of dataset and all outputs? Dark knowledge uses student capacity!
- Better solution:
 - 1. Take a subset of teacher outputs z_T (denoted $\phi(z_T)$ in [1]) to align with z_S
 - 2. Renormalize $\phi(z_T)$ with temperature-based softmax and apply distillation loss

Conclusion

Summary:

- Knowledge distillation is transfer of knowledge from one network to another.
- Can be from teacher to student, or from student to itself.
- Also useful for task specialization.

Conclusion

Summary:

- Knowledge distillation is transfer of knowledge from one network to another.
- Can be from teacher to student, or from student to itself.
- Also useful for task specialization.

Next Time (After Carnival):

NXP guest lecture (dr Willem Sandberg): Neural architecture search

