

Outline

• Chapter 3.1 Classical Lattice Vibrations (晶格振动的经典理论)

• Chapter 3.2 Phonons (声子)

• Chapter 3.3 Phonon Heat Capacity (声子热容)

• Chapter 3.4 Anharmonicity (非谐效应)

Objectives

> To learn the classical theory of heat capacity in solids.

> To learn the quantum theory of heat capacity in solids.

> To understand the **Einstein model** and **Debye model**.

Classical Theory of Heat Capacity in Solids (固体热容的经典理论)

➤ Heat Capacity (热容)

- \clubsuit Heat capacity is the amount of heat (Q) needed to raise the temperature of an object to a certain range. In unit of J/K.
 - Heat Capacity at Constant Volume (定容热容): $C_V = \left(rac{\partial m{Q}}{\partial m{T}}
 ight)_V$
 - Heat Capacity at Constant Pressure (定压热容): $C_P = \left(rac{\partial m{Q}}{\partial T}
 ight)_P$
 - Specific Heat Capacity (比热容): The heat capacity per unit mass of a material.
 - Molar Heat Capacity (摩尔热容): The heat capacity per unit amount of a pure material.

- ➤ Heat Capacity in Solids (固体热容)
 - ❖ The contributions to heat capacity in solids:

■ Lattice Vibrations (晶格振动)
Have a major contribution at normal (not too low) temperatures.

■ Electron Motions (电子运动)

Have little contribution except at extremely low temperature

(e.g., T < 3K).

- ➤ Heat Capacity in Solids (固体热容)
 - ❖ Temperature dependence of heat capacity in solids:

- ➤ Classical Theory of Heat Capacity in Solids (固体热容的经典理论)
 - ❖ Dulong-Petit Law (杜隆-珀蒂定律)

For a 3D lattice with **N** atoms, the heat capacity is:

$$C_V = 3Nk_{\rm B}$$

$$C_V = \left(\frac{\partial Q}{\partial T}\right)_V = \left(\frac{\partial \overline{E}}{\partial T}\right)_V$$

 $\overline{E} = 3Nk_BT$ denotes the average internal energy (平均内能) of the lattice.

- ➤ Classical Theory of Heat Capacity in Solids (固体热容的经典理论)
 - ❖ Dulong-Petit Law (杜隆-珀蒂定律)

Quantum Theory of Heat Capacity in Solids (固体热容的量子理论)

- ➤ Quantum Theory of Heat Capacity in Solids (固体热容的量子理论)
 - For a 3D lattice with N atoms, in the harmonic approximation, the lattice vibrations can be described in terms of 3N independent vibration modes (harmonic oscillators), of which the energies are quantized:

$$E_{n_j} = \left(n_j + \frac{1}{2}\right)\hbar\omega_j \qquad n_j = 0, 1, 2, 3, \cdots$$
 $j = 1, 2, 3, \cdots, 3N$

- ➤ Quantum Theory of Heat Capacity in Solids (固体热容的量子理论)
 - ❖ The average energy of the *j*th vibration mode:

$$\overline{E}_{j} = \frac{1}{2}\hbar\omega_{j} + \langle n_{j}\rangle\hbar\omega_{j} = \frac{1}{2}\hbar\omega_{j} + \frac{\hbar\omega_{j}}{e^{\beta\hbar\omega_{j}} - 1}$$

Here
$$\beta = \frac{1}{k_{\rm B}T}$$

The total average energy of the lattice vibrations:

$$\overline{E} = \sum_{j=1}^{3N} \overline{E}_j$$

- ➤ Quantum Theory of Heat Capacity in Solids (固体热容的量子理论)
 - ❖ The heat capacity as a result of lattice vibrations can be obtained as:

$$C_{V} = \left(\frac{\partial \overline{E}}{\partial T}\right)_{V} = \sum_{j=1}^{3N} \frac{d\overline{E}_{j}}{dT} = \int_{0}^{\omega_{\text{max}}} k_{\text{B}} (\beta \hbar \omega)^{2} \frac{e^{\beta \hbar \omega}}{(e^{\beta \hbar \omega} - 1)^{2}} g(\omega) d\omega$$

 $g(\omega)$ denotes the **density of states** (态密度) of the vibration modes and satisfies:

$$\int_0^{\omega_{\text{max}}} g(\omega) d\omega = 3N$$

- ➤ Quantum Theory of Heat Capacity in Solids (固体热容的量子理论)
 - \diamond The characteristics of C_V in **limiting cases (极限情况)**:
 - High-temperature limit ($\beta\hbar\omega\ll 1$):

$$C_V \approx \int_0^{\omega_{\text{max}}} k_{\text{B}} (\beta \hbar \omega)^2 \frac{1}{(1 + \beta \hbar \omega - 1)^2} g(\omega) d\omega = 3N k_B$$
 (Dulong-Petit Law)

• Low-temperature limit ($m{\beta}\hbarm{\omega}\gg \mathbf{1}$):

$$C_V pprox \int_0^{\omega_{\text{max}}} k_{\text{B}} \frac{(\beta \hbar \omega)^2}{\mathrm{e}^{\beta \hbar \omega}} g(\omega) \mathrm{d}\omega$$
 ——— $C_V \to \mathbf{0}$ when $T \to \mathbf{0}$ (or $\beta \to \infty$)

- ➤ Quantum Theory of Heat Capacity in Solids (固体热容的量子理论)
 - ightharpoonup To **quantitatively** calculate C_V , the key is to obtain $g(\omega)$ that is usually difficult to accurately evaluate in real materials.

Two important models proposed to simplify the calculations of $oldsymbol{C_V}$:

- The Einstein model (爱因斯坦模型)
- The Debye model (德拜模型)

The Einstein Model (爱因斯坦模型)

- ➤ The Einstein Model (爱因斯坦模型)
 - ❖ The Einstein model assumes that all the vibration modes of the lattice have the same frequency (**Einstein frequency** 爱因斯坦频率), i.e., $\hbar\omega_j=\hbar\omega_{\rm E}$.

In the Einstein model, each atom of the lattice represents an independent harmonic oscillator!

- ➤ The Einstein Model (爱因斯坦模型)
 - The **total average energy** of the lattice vibrations (omitting the zero-point energy):

$$\overline{E} = \sum_{j=1}^{3N} \overline{E}_j = 3N\overline{E}_j = 3N\frac{\hbar\omega_{\rm E}}{{\rm e}^{\beta\hbar\omega_{\rm E}} - 1}$$

- ➤ The Einstein Model (爱因斯坦模型)
 - The heat capacity can be obtained as:

$$C_V = \left(\frac{\partial \overline{E}}{\partial T}\right)_V = 3Nk_{\rm B}f_{\rm E}\left(\frac{\hbar\omega_{\rm E}}{k_{\rm B}T}\right)$$

where $f_{\rm E}\left(\frac{\hbar\omega_{\rm E}}{k_{\rm B}T}\right)$ denotes the **Einstein heat capacity function** (爱因斯坦热容函数):

$$f_{\rm E}\left(\frac{\hbar\omega_{\rm E}}{k_{\rm B}T}\right) = \left(\frac{\hbar\omega_{\rm E}}{k_{\rm B}T}\right)^2 \frac{{\rm e}^{\hbar\omega_{\rm E}/k_{\rm B}T}}{({\rm e}^{\hbar\omega_{\rm E}/k_{\rm B}T}-1)^2}$$

- ➤ The Einstein Model (爱因斯坦模型)
 - � By introducing the **Einstein temperature** (爱因斯坦温度) $T_E = \hbar \omega_{\rm E}/k_{\rm B}$, we obtain:

$$C_V = 3Nk_{\rm B} \left(\frac{T_{\rm E}}{T}\right)^2 \frac{{\rm e}^{T_{\rm E}/T}}{({\rm e}^{T_{\rm E}/T}-1)^2}$$

➤ The Einstein Model (爱因斯坦模型)

❖ The limiting cases:

■ High-temperature limit ($T_{\rm E}/T\ll 1$): $C_{V}\approx 3Nk_{\rm B}$

■ Low-temperature limit ($T_{\rm E}/T\gg 1$): $C_{V}\approx 3Nk_{\rm B}\left(\frac{T_{\rm E}}{T}\right)^2{\rm e}^{-T_{\rm E}/T}$

- ➤ The Einstein Model (爱因斯坦模型)
 - Problem with the Einstein model:

The Einstein model works very well except at very low temperature where it fails to predict $C_V \propto T^3$.

The Debye Model (德拜模型)

➤ The Debye Model (德拜模型)

❖ The Debye model overcomes the problem with the Einstein model by assuming a linear dispersion of the vibration frequency, i.e., elastic waves (弹性波).

$$\omega = cq$$

where c denotes the group velocity of the lattice waves.

❖ In a 3D lattice, there are 1 branch of longitudinal waves (纵波) and 2 branches of transverse waves (横波):

$$\omega = c_{\rm L} q$$
 (1 branch)

$$\omega = c_{\rm T} q$$
 (2 branches)

- ➤ The Debye Model (德拜模型)
 - ❖ The density of states can be obtained as:

$$g(\omega) = \frac{3V}{2\pi^2 \overline{c}^3} \omega^2$$

$$V$$
 denotes the total volume of the crystal and $\frac{1}{\overline{c}^3} = \frac{1}{3} \left(\frac{1}{c_{\rm L}^3} + \frac{2}{c_{\rm T}^3} \right)$

➤ The Debye Model (德拜模型)

� A maximum of the vibration frequency (**Debye frequency** 德拜频率), i.e., ω_D , has to be introduced such that the following equation is satisfied:

$$\int_0^{\omega_D} g(\omega) d\omega = \frac{3V}{2\pi^2 \overline{c}^3} \int_0^{\omega_D} \omega^2 d\omega = 3N$$

$$\omega_{\rm D} = \overline{c} \left[6\pi^2 \left(\frac{N}{V} \right) \right]^{1/3}$$

- ➤ The Debye Model (德拜模型)
 - The heat capacity can be obtained as:

$$C_V = 3Nk_{\rm B}f_{\rm D}\left(\frac{\hbar\omega_{\rm D}}{k_{\rm B}T}\right)$$

where $f_{\mathrm{D}}\left(\frac{\hbar\omega_{\mathrm{D}}}{k_{\mathrm{B}}T}\right)$ denotes the **Debye heat capacity function** (德拜热容函数):

$$f_{\rm D}\left(\frac{\hbar\omega_{\rm D}}{k_{\rm B}T}\right) = 3\left(\frac{k_{\rm B}T}{\hbar\omega_{\rm D}}\right)^3 \int_0^{\hbar\omega_{\rm D}/k_{\rm B}T} \frac{{\rm e}^x x^4}{({\rm e}^x - 1)^2} {\rm d}x$$

- ➤ The Debye Model (德拜模型)
 - � By introducing the **Debye temperature** (德拜温度) $T_{\rm D}=\hbar\omega_{\rm D}/k_{\rm B}$, we obtain:

$$C_V = 9Nk_{\rm B} \left(\frac{T}{T_{\rm D}}\right)^3 \int_0^{T_{\rm D}/T} \frac{\mathrm{e}^x x^4}{(\mathrm{e}^x - 1)^2} \,\mathrm{d}x$$

➤ The Debye Model (德拜模型)

❖ The limiting cases:

■ High-temperature limit ($T_{\rm D}/T\ll 1$): $C_{\rm V}\approx 3Nk_{\rm B}$

• Low-temperature limit ($T_{\rm D}/T\gg 1$): $C_V=\frac{12\pi^4}{5}Nk_{\rm B}\left(\frac{T}{T_{\rm D}}\right)^3$

STATIONG UNIVERSITY

- ➤ The Debye Model (德拜模型)
 - ❖ The **Debye** T³ law (德拜T³定律):

$$C_V \propto T^3$$
 when $T \rightarrow 0$

图 9 固态氩的低温比热容对 T^3 的依赖关系曲线。 在这个温度区间,实验结果与德拜的 T^3 律符合极佳。 这里取 θ =92.0K。引自 L. Finegold 和 N. E. Phillips。

➤ The Debye Model (德拜模型)

- ❖ The **Debye** T³ law (德拜T³定律):
 - At very low temperature T, only the long-wave phonons with energy $\hbar\omega < k_{\rm B}T$ can be excited and have significant contributions to the heat capacity.
 - The fraction of the excited long-wave phonons is proportional to the heat capacity:

$$C_V \propto \left(\frac{q_T}{q_D}\right)^3 = \left(\frac{\omega_T}{\omega_D}\right)^3 = \left(\frac{T}{T_D}\right)^3$$

➤ The Debye Model (德拜模型)

Problems with the Debye model:

- For a specific material, the Debye temperature $T_{
 m D}$ obtained at different temperatures is usually different, indicating that the Debye model is still not very accurate for the calculations of C_V .
- To accurately calculate C_V , detailed information of $g(\omega)$ is needed!

The Debye temperature of In (铟) as a function of temperature.

- ➤ The Debye Model (德拜模型)
 - ❖ The Debye temperature of some real materials:

Element	Au	Ag	Cu	Fe	Al	Са	Si	Hg	К	C Diamond	В	Ве
T _D (K)	165	225	343	470	428	230	645	71.9	91	2230	1250	1440

Most materials have a Debye temperature of $T_{\rm D}\approx 200\sim 400$ K, which corresponds to a Debye frequency of $\omega_{\rm D}\approx 10^{13}~{\rm s}^{-1}$.

The classical theory of lattice vibrations works when $T > T_D$!

- ➤ The Debye Model (德拜模型)
 - Comparison between the three models of heat capacity :

- ➤ The Debye Model (德拜模型)
 - Comparison between the three models of heat capacity :

Model	Debye	Einstein	Dulong-Petit		
Merit 优点	 Working at both low and high temperature; Working at very low temperature (T → 0). 	Working at both low and high temperature.	Working at high temperature $(T > T_{\rm D})$.		
Drawback 缺点	Not accurate enough for real materials.	 Not working at very low temperature (T → 0); Not very accurate for real materials. 	 Not working at low temperature $(T < T_D)$; Not accurate for real materials. 		

Density of States (态密度)

- ➤ Density of States (态密度)
 - ❖ In general, density of states (**DOS**) is defined as the **number of states per interval of energy** (单位能量间隔内的状态数).

lacktriangle In particular, the DOS for lattice vibrations is defined as the number of vibration modes Δn per interval of frequency $\Delta \omega$:

$$g(\omega) = \lim_{\Delta\omega \to 0} \frac{\Delta n}{\Delta\omega} = \frac{\mathrm{d}n}{\mathrm{d}\omega}$$

➤ Density of States (态密度)

❖ In the case of 3D:

$$\mathrm{d}n = \frac{V}{(2\pi)^3} \oiint \mathrm{d}S\mathrm{d}q$$

$$\mathrm{d}\omega = \mathrm{d}q \big| \nabla_{\!q} \omega_q \big|$$

$$g(\omega) = \frac{V}{(2\pi)^3} \iint \frac{\mathrm{d}S}{|\nabla_q \omega_q|}$$

V denotes the total volume of the crystal.

➤ Density of States (态密度)

Example: DOS of a 1D monoatomic chain

$$g(\omega) = \frac{dn}{d\omega} = \frac{dn}{dq} \frac{dq}{d\omega}$$
$$= 2 \times \frac{Na}{2\pi} \frac{1}{d\omega/dq}$$
$$= \frac{2N}{\pi} (\omega_{\text{max}}^2 - \omega^2)^{-\frac{1}{2}}$$

➤ Density of States (态密度)

Example: DOS of real materials

图 5.7 硅的声子态密度,其中 $\nu=\omega/2\pi$

- ➤ Density of States (态密度)
 - ❖ DOS of noncrystalline solids (非晶固体的态密度)

图 5.7 硅的声子态密度,其中 $\nu = \omega/2\pi$

Summary (总结)

➤ Summary (总结)

Classical theory of heat capacity in solids:

The Dulong-Petit model

Quantum theory of heat capacity in solids:

- 1) The Einstein model
- 2) The Debye model

Chapter 3.3: 课后作业

设晶体中每个振动模的零点振动能为 $\frac{1}{2}\hbar\omega$,使用德拜模型和爱因斯坦模型分别求晶体的零点振动能。

提交时间: 3月17日之前

提交方式: 手写 (写明姓名学号) 后拍照, 通过本班课代表统一提交电子版