→ Get understanding about Data Set

10.700 A
Data Set Characteristics:
Multivariate
Number of Instances:
167
Area:
Computer
Attribute Characteristics:
Categorical, Integer
Number of Attributes:
4
Date Donated
1993-05-01
Associated Tasks:
Regression
Missing Values?
No
Number of Web Hits:
123354
Source:
Creator:
Karl Ulrich (MIT)
Donor:

Ross Quinlan

Data Set Information:

Ross Quinlan:

This data was given to me by Karl Ulrich at MIT in 1986. I didn't record his description at the time, but here's his subsequent (1992) recollection:

"I seem to remember that the data was from a simulation of a servo system involving a servo amplifier, a motor, a lead screw/nut, and a sliding carriage of some sort. It may have been on of the translational axes of a robot on the 9th floor of the AI lab. In any case, the output value is almost certainly a rise time, or the time required for the system to respond to a step change in a position set point."

(Quinlan, ML'93)

"This is an interesting collection of data provided by Karl Ulrich. It covers an extremely non-linear phenomenon - predicting the rise time of a servomechanism in terms of two (continuous) gain settings and two (discrete) choices of mechanical linkages."

Attribute Information:

1. motor: A,B,C,D,E

2. screw: A,B,C,D,E

3. pgain: 3,4,5,6

4. vgain: 1,2,3,4,5

5. class: 0.13 to 7.10

Import Library

import pandas as pd

import numpy as np

Import CSV as DataFrame

df = pd.read_csv(r'https://github.com/YBI-Foundation/Dataset/raw/main/Servo%20Mechan

→ GET THE fIRST FIVE ROWS OF THE DATA FRAME

df.head()

	Motor	Screw	Pgain	Vgain	Class
0	Е	Е	5	4	4
1	В	D	6	5	11
2	D	D	4	3	6
3	В	Α	3	2	48
4	D	В	6	5	6

Get information about the data frame

```
df.info()
```

Get the Summary statistics

df.describe()

	Pgain	Vgain	Class
count	167.000000	167.000000	167.000000
mean	4.155689	2.538922	21.173653
std	1.017770	1.369850	13.908038
min	3.000000	1.000000	1.000000
25%	3.000000	1.000000	10.500000
50%	4.000000	2.000000	18.000000
75%	5.000000	4.000000	33.500000
max	6.000000	5.000000	51.000000

Get column names

Get the shape of the DataFrame

Get catagories and counts of catagorical Variables

Get Encoding of Catagorical Features

```
df.replace({'Motor':{'A':0,'B':1,'C':2,'D':3,'E':4}},inplace = True)

df.replace({'Screw':{'A':0,'B':1,'C':2,'D':3,'E':4}},inplace = True)
```

Define y (dependant or label or target variable) and X (independent ,feature and attribute Variable)

Get train_test_split

Get Model Train

```
#from sklearn.linear_model import LinearRegression
#from sklearn.neighbors import KNeighborsRegressor
#from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor

model = DecisionTreeRegressor()
```

Get Model train

```
model.fit(X_train,y_train)
```

DecisionTreeRegressor()

Get model prediction

Gel Model Evaluation

```
from sklearn.metrics import mean_absolute_error,mean_absolute_percentage_error,mean_
mean_squared_error(y_test,y_pred)
        28.058823529411764

mean_absolute_error(y_test,y_pred)
        3.823529411764706

r2_score(y_test,y_pred)
        0.8643390102720245

mean_square_error for
    1. LinearRegression = 66
    2. KNeighborsRegressor = 85
    3. SVR = 181
    4. DecisionTreeRegressor = 28
```

Double-click (or enter) to edit

Get visualisation of the actual vs predicted Results

```
import matplotlib.pyplot as plt
plt.scatter(y_test,y_pred)
```

```
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title('Actual vs Predicted')
plt.show()
```


→ Get Future Prediction

Lets select a random sample from existing dataset as new value

- 1. Extract a randomrow using sample function
- 2. Separate X and y
- 3. Standardize X
- 4. Predict

df_new

df_new.shape

(1, 5)

X_new

	Motor	Screw	Pgain	Vgain
142	0	4	3	1

```
X_new.shape
      (1, 4)

y_pred_new = model.predict(X_new)

y_pred_new
      array([41.])
```

*CONCLUSION *

• I tried all the regression model for the servo prediction among them **DecisionTreeRegressor** gives the higher accurecy of the Servo prediction.

×