ADDIS ABABA SCIENCE AND TECHNOLOGY UNIVERSITY DEPARTMENT OF SOFTWARE ENGINEERING

Worksheet 1

- 1. Decide which of the following statements is TRUE and which is FALSE. You must give a brief explanation of your answer.
 - a. If L1 is regular and L2 is non-regular, then L1 \cdot L2 is non-regular.
 - b. If L1 is regular and L2 is non-regular, then L1 \cap L2 is regular.
 - c. If L1 is regular and L2 is non-regular, then L1 \cup L2 is non-regular.
 - d. There exists a language L such that L is not regular but L* is regular.
- 2. Show that for any languages A and B,
 - a. $(Au B)^* = A^* (BA^*)^*$.
 - b. A*(A+B)* = (A+BA*)*.
 - c. $(BA)^+(A*B*+A*)=(BA)*BA^+B*$.
- 3. Construct an equivalent DFA for a given NDFA. (Use each and every steps of the algorithm you should follow.

A.

B.

- 4. Find a regular expression for the set of binary strings which have at least one occurrence of the substring 001.
- 5. Find a regular expression for the set of binary strings which have no substring 001.
- 6. Construct an equivalent DFA for regular expressions obtained from question 4 and 5 using Thompson's Construction.
- 7. Construct a Push Down Automata (PDA) accepting $\{a^nb^ma^n | m, n \ge 1\}$ by empty store. PDA = $(\{q_0, q_1\}, \{a, b\}, \{a, z_0\}, \delta, q_0, z_0, \emptyset)$ where δ is given by

(1)
$$\delta(q_0, a, z_0) = \{(q_0, a z_0)\}$$

(2)
$$\delta(q_0, a, a) = \{(q_0, aa)\}$$

(3)
$$\delta(q_0, b, a) = \{(q_1, a)\}$$

(4)
$$\delta(q_1, b, a) = \{(q_1, a)\}$$

(5)
$$\delta(q_1, a, a) = \{(q_1, \lambda)\}$$

(6)
$$\delta(q_1, \lambda, z_0) = \{(q_1, \lambda)\}$$

8.