Tarea 1 Modelos Lineales

Pablo Borrego Ramos

Marzo 2024

1

1.1 Enunciado

Supongamos que \mathbf{Y} se ajusta a un modelo lineal básico de rango completo, es decir, $E[\mathbf{Y}] = \mathbf{X}\beta$ y $Cov[\mathbf{Y}] = \sigma^2 I_n$ siendo \mathbf{X} una matriz de orden $n \times p$ con p < n y $r(\mathbf{X}) = p$. Supongamos que escribimos $\mathbf{X}\beta = \mathbf{X}_1\delta_1 + \mathbf{X}_2\delta_2$ donde $\delta_1 \in \mathbb{R}^r$ y $\delta_2 \in \mathbb{R}^{p-r}$, \mathbf{X}_1 es una matriz $n \times r$ y \mathbf{X}_2 es una matriz $n \times (p-r)$. Probar que $\hat{\delta_1} = (\mathbf{X}_1^t\mathbf{X}_1)^{-1}\mathbf{X}_1^t\mathbf{X}$ y $\hat{\delta_2} = (\mathbf{X}_2^t\mathbf{X}_2)^{-1}\mathbf{X}_2^t\mathbf{X}$ son estimadores insesgados para δ_1 y δ_2 respectivamente si y solo si $\mathbf{X}_1^t\mathbf{X}_2 = 0$, en cuyo caso $Cov[\hat{\delta_1}, \hat{\delta_2}] = 0$

1.2 Respuesta

 \Rightarrow

Si $E[\hat{\delta_1}] = \delta_1$ entonces $(\mathbf{X}_1^t \mathbf{X}_1)^{-1} \mathbf{X}_1^t E[\mathbf{Y}] = \delta_1$ simplificando la parte izquierda de la igualdad llegamos a que $(\mathbf{X}_1^t \mathbf{X}_1)^{-1} \mathbf{X}_1^t \mathbf{X} \beta = (\mathbf{X}_1^t \mathbf{X}_1)^{-1} \mathbf{X}_1^t (\mathbf{X}_1 \delta_1 + \mathbf{X}_2 \delta_2) = (\mathbf{X}_1^t \mathbf{X}_1)^{-1} (\mathbf{X}_1^t \mathbf{X}_1) \delta_1 + (\mathbf{X}_1^t \mathbf{X}_1)^{-1} (\mathbf{X}_1^t \mathbf{X}_2) \delta_2 = \mathbf{I}_r \delta_1 + (\mathbf{X}_1^t \mathbf{X}_1)^{-1} (\mathbf{X}_1^t \mathbf{X}_2) \delta_2 = \delta_1$ realizando un procedimiento similar con la igualdad $E[\hat{\delta_2}] = \delta_2$ obtenemos $\mathbf{I}_{p-r} \delta_2 + (\mathbf{X}_2^t \mathbf{X}_2)^{-1} (\mathbf{X}_2^t \mathbf{X}_1) \delta_1 = \delta_2$ llegando a un sistema de ecuaciones de la forma:

$$(\mathbf{X}_1^t \mathbf{X}_1)^{-1} (\mathbf{X}_1^t \mathbf{X}_2) \delta_1 = 0$$

$$(\mathbf{X}_2^t \mathbf{X}_2)^{-1} (\mathbf{X}_2^t \mathbf{X}_1) \delta_2 = 0$$

Como $r(\mathbf{X}) = p$ entonces \mathbf{X}_1 o \mathbf{X}_2 debe de ser de rango máximo, y por lo tanto $(\mathbf{X}_1^t\mathbf{X}_1)^{-1}$ o $(\mathbf{X}_2^t\mathbf{X}_2)^{-1}$ es no nulo, por lo tanto para que se cumpla el sistema de ecuaciones debe de ocurrir que $(\mathbf{X}_1^t\mathbf{X}_2) = 0$ o $(\mathbf{X}_2^t\mathbf{X}_1) = 0$ en el primer caso ya habríamos terminado, en el segundo si $(\mathbf{X}_2^t\mathbf{X}_1) = 0$ entonces $(\mathbf{X}_2^t\mathbf{X}_1)^t = (\mathbf{X}_1^t\mathbf{X}_2) = 0$. Ahora veamos que $Cov[\hat{\delta}_1, \hat{\delta}_2] = 0$:

$$Cov[\hat{\delta_1}, \hat{\delta_2}] = Cov[(\mathbf{X}_1^t \mathbf{X}_1)^{-1} \mathbf{X}_1^t \mathbf{X}, (\mathbf{X}_2^t \mathbf{X}_2)^{-1} \mathbf{X}_2^t \mathbf{X}] = (\mathbf{X}_1^t \mathbf{X}_1)^{-1} \mathbf{X}_1^t Cov[\mathbf{X}, \mathbf{X}] \mathbf{X}_2 ((\mathbf{X}_2^t \mathbf{X}_2)^{-1})^t = (\mathbf{X}_1^t \mathbf{X}_1)^{-1} \mathbf{X}_2^t \mathbf{X}_2 + (\mathbf{X}_2^t \mathbf{X}_2)^{-1} \mathbf{X}_2^t \mathbf{X}_2 + (\mathbf{X}_2^t \mathbf$$

 $(\mathbf{X}_1^t\mathbf{X}_1)^{-1}\mathbf{X}_1^t\sigma^2\mathbf{I}_n\mathbf{X}_2((\mathbf{X}_2^t\mathbf{X}_2)^{-1})^t = \sigma^2(\mathbf{X}_1^t\mathbf{X}_1)^{-1}\mathbf{X}_1^t\mathbf{0}_n\mathbf{X}_2((\mathbf{X}_2^t\mathbf{X}_2)^{-1})^t = 0$ donde la penúltima igualdad se debe a que $(\mathbf{X}_1^t\mathbf{X}_2) = 0$

 \Leftarrow

Si $(\mathbf{X}_1^t \mathbf{X}_2) = 0$ veamos que $E[\hat{\delta_1}] = \delta_1$: $E[\hat{\delta_1}] = (\mathbf{X}_1^t \mathbf{X}_1)^{-1} \mathbf{X}_1^t \mathbf{X} E[\mathbf{Y}] = (\mathbf{X}_1^t \mathbf{X}_1)^{-1} \mathbf{X}_1^t \mathbf{X} \beta = (\mathbf{X}_1^t \mathbf{X}_1)^{-1} \mathbf{X}_1^t (\mathbf{X}_1 \delta_1 + \mathbf{X}_2 \delta_2) = (\mathbf{X}_1^t \mathbf{X}_1)^{-1} (\mathbf{X}_1^t \mathbf{X}_1) \delta_1 + (\mathbf{X}_1^t \mathbf{X}_1)^{-1} (\mathbf{X}_1^t \mathbf{X}_2) \delta_2 = \mathbf{I}_r \delta_1 + (\mathbf{X}_1^t \mathbf{X}_1)^{-1} (\mathbf{X}_1^t \mathbf{X}_2) \delta_2 = \mathbf{I}_r \delta_1 + 0_{p-r} \delta_2 = \delta_1$ donde la penúltima desigualdad se debe a que estamos suponiendo que $(\mathbf{X}_1^t \mathbf{X}_2) = 0$

 $\mathbf{2}$

2.1 Enunciado

Supongamos que \mathbf{Y} se ajusta a un modelo lineal básico de rango completo, es decir, $E[\mathbf{Y}] = \mathbf{X}\beta$ y $Cov[\mathbf{Y}] = \sigma^2 \mathbf{I}_n$ siendo \mathbf{X} una matriz de orden $n \times p$ con p < n y $r(\mathbf{X}) = p$. Denotaremos por $\hat{\beta} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{Y}$ al estimador de mínimos cuadrados de β . Si $\psi = \lambda^t \beta, \lambda \in \mathbb{R}$ es una función lineal de δ , consideramos el estimador $\hat{\psi} = \lambda^t \hat{\beta}$.

- a) Probar que $\hat{\psi}$ es un estimador insesgado para ψ y calcular su varianza
- b) Demostrar que $\hat{\psi}$ es el estimador insesgado de mínima varianza de ψ , en el sentido que si $T=c^t\mathbf{X}, c\in\mathbb{R}^n$ es otro estimador lineal insesgado de ψ , entonces $Var[\hat{\psi}] \leq Var[T]$ y se da la igualdad si y solo si $T=\hat{\psi}$

2.2 Respuesta

a)

1.
$$E[\hat{\psi}] = E[\lambda^t \hat{\beta}] = \lambda^t E[\hat{\beta}] = \lambda^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t E[\mathbf{Y}] = \lambda^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{X} \beta = \lambda^t \beta = \psi$$

2.
$$Var[\hat{\psi}] = \sum_{i=1}^{n} Var[\hat{\psi}_i] = tr(Cov[\hat{\psi}]) = tr(Cov[\lambda^t \hat{\beta}]) = tr(\lambda^t Cov[\hat{\beta}]\lambda) = tr(\lambda^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t Cov[\mathbf{Y}]((\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t)^t \lambda) = tr(\lambda^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \sigma^2 \mathbf{I}_n((\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t)^t \lambda) = tr(\lambda^t \sigma^2 (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{X}((\mathbf{X}^t \mathbf{X})^{-1})^t \lambda) = \sigma^2 tr(\lambda^t (\mathbf{X}^t \mathbf{X})^{-1} \lambda)$$

b)

Sea $T = c^t \mathbf{Y}$ podemos reescribir c de la forma $c = (\lambda^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t + b)^t$ entonces para que T sea insesgado debe de ocurrir que $\psi = E[T] = E[(\lambda^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t + b) \mathbf{Y}] = E[\lambda^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{Y}] + E[b\mathbf{Y}] = E[\hat{\psi}] + b\mathbf{X}\beta = \psi + b\mathbf{X}\beta$ por lo tanto para

que T sea insesgado debe de ocurrir que $b\mathbf{X}=0$. Teniendo esto en cuenta podemos calcular la matriz de Covarianzas del siguiente modo: $Cov[T]=c\cdot Cov[Y]\cdot c^t=\sigma^2\cdot c\cdot c^t=\sigma^2(\lambda^t(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t+b)(\lambda^t(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t+b)^t=\sigma^2(\lambda(\mathbf{X}^t\mathbf{X})^{-1}\lambda^t+\lambda^t(\mathbf{X}^t\mathbf{X})^{-1}(b\mathbf{X})^t+b\mathbf{X}\lambda^t(\mathbf{X}^t\mathbf{X})^{-1}+b\cdot b^t)=\sigma^2(\lambda^t(\mathbf{X}^t\mathbf{X})^{-1}+b\cdot b^t).$ De este modo si $b=(b_1,...b_n)$ tenemos que: $ECM(T)=tr(Cov[T])=\sigma^2tr(\lambda(\mathbf{X}^t\mathbf{X})^{-1}\lambda^t)+\sigma^2tr(b\cdot b^t)=ECM(\hat{\psi})+\sigma^2\sum_{i=1}^n b_i^2.$ Concluimos que $ECM(T)\geq ECM(\hat{\psi})$ ($ECM(\hat{\psi})=Var[\hat{\psi}]=\sigma^2tr(\lambda(\mathbf{X}^t\mathbf{X})^{-1}\lambda^t)$ se debe a que ψ es insesgado y a el apartado a) de este ejercicio) y se dará la igualdad si y solo si $\sum_{i=1}^n b_i^2=0$, es decir, b=0

3

3.1 Enunciado

Supongamos que $\mathbf{Y} \sim \mathcal{N}(\mathbf{X}\beta, \sigma^2 \mathbf{I}_n)$ donde \mathbf{X} es una matriz de orden $n \times p$ (p < n) y $r(\mathbf{X}) = p$, es decir, \mathbf{Y} se ajusta a un modelo lineal normal de rango completo. Denotaremos por $\hat{\beta} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{Y}$, al estimador de mínimos cuadrados y de máxima verosimilitud de β . Si $\psi = \lambda^t \beta$, $\lambda \in \mathbb{R}^p$ es una función lineal de β , consideramos el estimador $\hat{\psi} = \lambda^t \hat{\beta}$.

- a) Probar que $\hat{\psi} \sim \mathcal{N}(\psi, \sigma^2 \lambda^t (\mathbf{X}^t \mathbf{X})^{-1} \lambda)$
- b) Deducir un intervalo de confianza para ψ al nivel de confianza $1-\alpha$ (0 < $\alpha < 1).$

3.2 Respuesta

a) Primero estudiemos la distribución que sigue $\hat{\beta}$, como $\mathbf{Y} \sim \mathcal{N}(\mathbf{X}\beta, \sigma^2 \mathbf{I}_n)$ y $\hat{\beta}$ es una transformación lineal de \mathbf{Y} , la distribución resultante también será normal, como esta distribución queda determinada por la media y la varianza basta calcular:

$$E[\hat{\beta}] = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{X} \beta = \beta$$

$$Var[\hat{\beta}] = (\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t\sigma^2\mathbf{I}_n\mathbf{X}((\mathbf{X}^t\mathbf{X})^{-1})^t = \sigma^2(\mathbf{X}^t\mathbf{X})^{-1}$$

Por tanto $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(\mathbf{X}^t\mathbf{X})^{-1})$. Como $\hat{\psi} = \lambda^t \hat{\beta}$ aplicando el mismo razonamiento calculamos la media y la varianza de $\hat{\psi}$:

$$E[\hat{\psi}] = \lambda^t E[\hat{\beta}] = \lambda^t \beta = \psi$$

$$Var[\hat{\psi}] = \sigma^2 \lambda^t (\mathbf{X}^t \mathbf{X})^{-1} \lambda = \sigma^2 \lambda^t (\mathbf{X}^t \mathbf{X})^{-1} \lambda$$

Y por tanto conluimos que: $\hat{\psi} \sim \mathcal{N}(\psi, \sigma^2 \lambda^t (\mathbf{X}^t \mathbf{X})^{-1} \lambda)$.

b) Por el apartado anterior sabemos que $\hat{\psi} \sim \mathcal{N}(\psi, \sigma^2 \lambda^t (\mathbf{X}^t \mathbf{X})^{-1} \lambda)$. Tipificando obtenemos que

$$\frac{\hat{\psi} - \psi}{\sqrt{\sigma^2 \lambda^t (\mathbf{X}^t \mathbf{X})^{-1} \lambda)}} \sim \mathcal{N}(0, 1)$$

Por otro lado, por los apartados b) y c) de la Proposición 7 del Tema 2 sabemos que $\frac{(n-p)\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-p)$ y dicha variable es independiente de $\hat{\beta}$ y por lo tanto de cualquier combinación lineal suya, es decir $\hat{\psi}$. De todo ello se deduce que

$$\frac{\frac{\hat{\psi}-\psi}{\sqrt{\sigma^2 \lambda^t (\mathbf{X}^t \mathbf{X})^{-1} \lambda)}}}{\sqrt{\frac{(n-p)\hat{\sigma}^2}{(n-p)\sigma^2}}} = \frac{\hat{\psi}-\psi}{\sqrt{\hat{\sigma}^2 \lambda^t (\mathbf{X}^t \mathbf{X})^{-1} \lambda)}} \sim t(n-p)$$

En consecuencia, si $t_{n-p,\alpha/2}$ es el cuantil de orden $1-\alpha/2$ de la distribución t(n-p) se verifica que $P(-t_{n-p,\alpha/2} \leq \frac{\hat{\psi}-\psi}{\sqrt{\hat{\sigma}^2\lambda^t(\mathbf{X}^t\mathbf{X})^{-1}\lambda}} \leq t_{n-p,\alpha/2}) = 1-\alpha$. Despejando ψ obtenemos que $P(\hat{\psi}-\sqrt{\hat{\sigma}^2\lambda^t(\mathbf{X}^t\mathbf{X})^{-1}\lambda}t_{n-p,\alpha/2} \leq \psi \leq \hat{\psi} + \sqrt{\hat{\sigma}^2\lambda^t(\mathbf{X}^t\mathbf{X})^{-1}\lambda}t_{n-p,\alpha/2}) = 1-\alpha$ y el ejercicio está completo.

4

4.1 Enunciado

Para estimar dos parámetros θ y Φ se realizan observaciones de tres tipos:

- a) m observaciones $Y_{11},, Y_{1m}$ con media θ
- b) m observaciones $Y_{21},...,Y_{2m}$ con media $\theta + \Phi$
- c) n observaciones $Y_{31}, ..., Y_{3n}$ con media $\theta 2\Phi$

Todas las observaciones están sujetas a errores incorrelados de media 0 y tienen varianza σ^2 . Hallar los estimadores de mínimos cuadrados de θ y Φ . Probar que dichos estimadores son incorrelados si y sólo si m=2n.

4.2 Respuesta

Sabemos que $E[Y_{1i}] = \theta \ \forall i \in \{1,..m\}, E[Y_{1i}] = \theta + \Phi \ \forall i \in \{1,..m\} \ y \ E[Y_{3i}] = \theta - 2\Phi \ \forall i \in \{1,..n\}.$ Construimos el vector $\mathbf{Y} = (Y_{11},....,Y_{1m},Y_{21},....,Y_{2m},Y_{31},....,Y_{3n})$ que nos permite expresar las igualdades anteriores de forma matricial:

$$E[\mathbf{Y}] = \begin{pmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \\ 1 & -2 \\ \vdots & \vdots \\ 1 & -2 \end{pmatrix} \begin{pmatrix} \theta \\ \Phi \end{pmatrix} \tag{1}$$

Por otra parte sabemos que existen unos errores $\varepsilon = (\varepsilon_{11},, \varepsilon_{1m}, \varepsilon_{21},, \varepsilon_{2m}, \varepsilon_{31},, \varepsilon_{3n})$ que cumplen que $E[\varepsilon] = 0$ y $Cov[\varepsilon_{ij}, \varepsilon_{tk}] = \sigma^2 \delta_{ij,tk}$. Como $r(\mathbf{X}) = 2$ nos encontramos ante un modelo lineal de rango completo donde $E[\mathbf{Y}] = \mathbf{X}\beta + \varepsilon$

Para obtener el EMC de θ y Φ basta encontrar el EMC de β . Por la Proposición 1 del Tema 2 sabemos que el EMC de β es de la forma $\hat{\beta} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{Y}$. Tras realizar los cálculos (los he hecho en sucio) llegamos a que la matriz $\hat{\beta}$ es de la forma:

$$\begin{pmatrix} \hat{\theta} \\ \hat{\Phi} \end{pmatrix} = \frac{1}{m^2 + 13nm} \begin{pmatrix} (m+4n)\mathbf{Y}_1 + 6n\mathbf{Y}_2 + 3m\mathbf{Y}_3 \\ (-m+2n)\mathbf{Y}_1 + (m+3n)\mathbf{Y}_2 + -5m\mathbf{Y}_3 \end{pmatrix}$$
(2)

Donde $\mathbf{Y}_1 = \sum_{i=1}^m Y_{1i}, \ \mathbf{Y}_2 = \sum_{i=1}^m Y_{2i}, \ \mathbf{Y}_3 = \sum_{i=1}^n Y_{3i}.$

Además por el apartado a) de la Proposición 1 del Tema 2 sabemos que $(\hat{\beta}, \hat{\Phi})$ es un estimador insesgado. Veamos que su matriz de covarianzas es diagonal si y solo si m = 2n:

$$Cov[(\hat{\theta}, \hat{\Phi})] = \begin{pmatrix} Cov[\hat{\theta}] & Cov[\hat{\theta}, \hat{\Phi}] \\ Cov[\hat{\Phi}, \hat{\theta}] & Cov[\hat{\Phi}] \end{pmatrix}$$
(3)

Pero también sabemos que

$$Cov[(\hat{\theta}, \hat{\Phi})] = \sigma^2(\mathbf{X}^t \mathbf{X})^{-1} = \frac{1}{m^2 + 13nm} \begin{pmatrix} m + 4n & -m + 2n \\ -m + 2n & 2m + n \end{pmatrix}$$
 (4)

Entonces $Cov[(\hat{\theta}, \hat{\Phi})] = 0 \iff \frac{1}{m^2 + 13nm}(-m + 2n) = 0 \iff -m + 2n = 0$ $\iff m = 2n$ Por lo tanto los estimadores $\hat{\theta}, \hat{\Phi}$ son insesgados si y solo si m = 2n

5

5.1 Enunciado

Supongamos que \mathbf{Y} se ajusta a un modelo lineal básico de rango completo, es decir, $E[\mathbf{Y}] = \mathbf{X}\beta$ y $Cov[\mathbf{Y}] = \sigma^2 I_n$ siendo \mathbf{X} una matriz de orden $n \times p$

con p < n y $r(\mathbf{X}) = p$. Si definimos el vector valores ajustados como $\hat{\mathbf{Y}} = (\hat{Y}_1, ..., \hat{Y}_n)^t = \mathbf{X}\hat{\beta}$ y el vector de residuos como $\hat{e} = (e_1, ..., e_n)^t = \mathbf{Y} - \hat{\mathbf{Y}}$. Se pide:

- a) Calcular $E[\hat{\mathbf{Y}}]$, $Cov[\hat{\mathbf{Y}}]$, $E[\hat{e}]$ y $Cov[\hat{e}]$
- b) Probar que $\sum_{i=1}^{n} Var[\hat{\mathbf{Y}}_i] = \sigma^2 p$ y que $\sum_{i=1}^{n} \hat{\mathbf{Y}}_i e_i = 0$

5.2 Respuesta

a)

- 1. $E[\hat{\mathbf{Y}}] = E[\mathbf{X}\hat{\beta}] = \mathbf{X}E[\hat{\beta}] = \mathbf{X}\beta \text{ donde } \hat{\beta} = (\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t\mathbf{Y}$
- 2. $Cov[\hat{\mathbf{Y}}] = Cov[\mathbf{X}\hat{\beta}] = \mathbf{X}Cov[\hat{\beta}]\mathbf{X}^t = \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^tCov[\mathbf{Y}]\mathbf{X}^t((\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t)^t = \sigma^2\mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t$
- 3. $E[\hat{e}] = E[\mathbf{Y} \hat{\mathbf{Y}}] = E[\mathbf{Y}] E[\hat{\mathbf{Y}}] = 0$
- 4. $Cov[\hat{e}] = E[(\hat{e} E[\hat{e}])(\hat{e} E[\hat{e}])^t] = E[ee^t] = E[SEC]$ y por la Proposición 4 del Tema 2 sabemos que $E[SEC] = (n-p)\sigma^2$ por lo tanto $Cov[\hat{e}] = (n-p)\sigma^2$.
- b) $\sum_{i=1}^{n} Var[\hat{\mathbf{Y}}_i] = tr(Cov[\hat{\mathbf{Y}}]) = tr(\sigma^2 \mathbf{X}(\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t)$ pero por el Lema 3 del Tema 2 sabemos que $\mathbf{X}(\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t$ es idempotente:

$$(\mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t)(\mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t)^t = \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t$$

y ademas es simétrica, por lo tanto por la propiedad d) de las matrices itempotentes del Tema 1 tenemos que $r(\mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t) = tr(\mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t)$, por la propiedad b) del rango del Tema 1 sabemos que $r(\mathbf{X}) = r(\mathbf{X}^t\mathbf{X}) = r((\mathbf{X}^t\mathbf{X})^{-1})$ por otra parte \mathbf{X} es no singular y por tanto invertible, por la propiedad a) del mismo apartado sabemos que r(A) = r(BA) = r(AC) con B y C matrices no singulares, por lo tanto como $r(\mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t) = r(\mathbf{X}) = p$, concluimos que $tr(\sigma^2\mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t) = \sigma^2tr(\mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t) = \sigma^2t$

Para demostrar que $\sum_{i=1}^{n} \hat{\mathbf{Y}}_{i}e_{i} = 0$ debemos de tener en cuenta que $\hat{\mathbf{Y}} = H\mathbf{Y}$ y que $\hat{e} = \mathbf{Y} - \hat{\mathbf{Y}} = (\mathbf{I}_{n} - H)\hat{\mathbf{Y}}$ donde $H = \mathbf{X}(\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}$, como sabemos que H y $\mathbf{I}_{n} - H$ generan subespacios sobre \mathbb{R}^{n} ortogonales entre si concluimos que $(\mathbf{I}_{n} - H)\hat{\mathbf{Y}}$ y $H\mathbf{Y}$ son vectores ortogonales.

6

6.1 Enunciado

Sea $\mathbf{Y} \sim \mathcal{N}(\mu, \mathbf{V})$

- a) Si $\mathbf{Z} = \mathbf{AY} + b$ con \mathbf{A} matriz $k \times n$ de rango k $(k \le n)$ y $b \in \mathbb{R}^k$, entonces $\mathbf{Z} \sim \mathcal{N}(\mathbf{A}\mu + b, \mathbf{AVA}^t)$.
- b) Probar que un vector aleatorio $\mathbf{Y} = (Y_1, ..., Y_n)^t \sim \mu, \mathbf{V}$ si y solo si para todo $\lambda \in \mathbb{R}^n, \lambda^t \mathbf{Y} \sim \mathcal{N}(\lambda^t \mu, \lambda^t \mathbf{V} \lambda)$

6.2 Respuesta

(a partir de ahora la transpuesta será denotada con el símbolo T en vez de t)

a) Sabemos que una v.a sigue una distribución normal cuando su función de momentos es de la forma: $M_X(t) = exp(t^T\mu + \frac{1}{2}t^TVt)$ donde V es la matriz de covarianzas. Por otra parte la función de momentos de una v.a cualquiera es de la forma $M_R(t) = E[exp(t^Tx)]$, Veamos que \mathbf{Z} tiene una función de momentos de la primera forma:

$$M_Z(t) = E[exp(t^T(\mathbf{A}x+b))] = E[exp(t^T(\mathbf{A}x))exp(t^Tb)] = exp(t^Tb)E[exp(t^TAx)] = exp(t^Tb)M_Y(\mathbf{A}^Tt) = exp(t^T(\mathbf{A}\mu+b) + \frac{1}{2}t^T\mathbf{A}\mathbf{V}\mathbf{A}^Tt)$$

Concluimos que \mathbf{Z} sigue una distribución normal

b) ⇒

Una v.a también queda determinada por su función característica, en el caso de una v.a con distribución normal, esta es: $\phi_Y(t) = \exp(it\mu - \frac{1}{2}t^T\mathbf{V}t)$, por otra parte la función característica de $\lambda^T\mathbf{Y} = E[\exp(it(\lambda^T\mathbf{V}))] = E[\exp(i(\lambda t)^T\mu - \frac{1}{2}(\lambda t)^T)\mathbf{V}\lambda t) = \exp(it(\lambda^T\mu) - \frac{1}{2}t(\lambda^T\mathbf{V}\lambda)t)$ Por la unicidad de la función característica concluimos que $\lambda^t\mathbf{Y} \sim \mathcal{N}(\lambda^t\mu, \lambda^t\mathbf{V}\lambda^t)$ Otra forma más cómoda de verlo es reducirnos al caso a), tomando b = 0 y k = 1

 \Leftarrow

 $\phi_{Y}(\beta) = E[exp(i\beta^{T}\mathbf{Y})] \text{ tomando } \beta = \lambda t \text{ tenemos} = E[exp(i(t\lambda)^{T}\mathbf{Y})] = E[exp(it(\lambda^{T}\mathbf{Y}))] = exp(i(\lambda t)^{T}\mu - \frac{1}{2}(\lambda t)^{T}\mathbf{V}\lambda t) = exp(i(\beta)^{T}\mu - \frac{1}{2}(\beta)^{T}\mathbf{V}\beta) \text{ y por la unicidad de la función caracteristica concluimos que } \mathbf{Y} \sim \mathcal{N}(\mu, \mathbf{V}).$