Introduction

Machine Learning

• Arthur Samuel (1959):

"Field of study that gives computers the ability to learn without being explicitly programmed".

• Tom Mitchell (1997):

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E".

Machine Learning

 How to construct programs that automatically improve with experience.

Example

Experience

Example	GRAY?	MAMMAL?	LARGE?	VEGETARIAN?	WILD?	Elephant
1	+	+	+	+	+	+
2	+	+	+	-	+	+
3	+	+	-	+	+	- (Mouse)
4	-	+	+	+	+	- (Giraffe)
5	+	-	+	-	+	- (Dinosaur)
6	+	+	+	+	•	+

Prediction

7	+	+	+	-	+	?
8	+	-	+	-	+	?
9	+	+	+	-	-	?

Machine Learning

What is learning?

Machine Learning

• Learning is an (endless) generalization or induction process.

Types of Machine Learning

- Supervised learning: the learner (learning algorithm)
 are trained on labelled examples, i.e., input where the
 desired output is known.
- Unsupervised learning: the learner operates on unlabelled examples, i.e., input where the desired output is unknown.

Types of Machine Learning

- Reinforcement learning: between supervised and unsupervised learning. It is told when an answer is wrong, but not how to correct it.
- Evolutionary learning: biological evolution can be seen as a learning process, to improve survival rates and chance of having offspring.

Types of Machine Learning

- The most common type: supervised learning.
 - Classification: to find the class of an instance given its selected features.
 - Regression: to find a function whose curve passes as close as possible to all of the given data points.

- K-fold cross validation:
 - Randomly partitioned k equal sized subsamples.
 - -k-1 for training and 1 for testing.
 - k times (folds) of validation and taking the average.

Statistical significance test: to reject the null-hypothesis
that the two compared systems are equivalently
efficient although their performance measures are
different.

Fisher's randomization:

- Q testing cases.
- $-\delta = |m(A) m(B)|$
- 2^{|Q|} permutations of performances of A and B on Q cases.
- N^+ = number of permutations whose A-B performance difference is greater than or equal to δ.
- N[−] = number of permutations whose A-B performance difference is smaller than or equal to $-\delta$.
- two-sided p-value = $(N^+ + N^-)/2^{|Q|}$
- $-p \le 0.05$ to reject the null-hypothesis

 Overfitting: h∈H is said to overfit the training data if there exists h'∈H, such that h has smaller error than h' over the training examples, but h' has a smaller error than h over the entire distribution of instances.

Overfitting:

- Overfitting:
 - There is noise in the data
 - The number of training examples is too small to produce a representative sample of the target concept

Performance Measures

number of correct system answers

• Precision (P) = -----number of system answers

number of correct system answers

• Recall (R) = -----number of correct problem answers

Performance Measures

Correct problem answers

$$Accuracy = (TP + TN)/(TP + TN + FP + FN)$$

System answers

Performance Measures

number of correct system answers

number of correct system answers

• F-measure (F) = 2.P.R/(P + R)

Inductive Bias

Example	Quality	Price	Buy
1	Good	Low	Yes
2	Bad	High	No

3	Good	High	?
4	Bad	Low	?

Inductive Bias

 A learner that makes no prior assumptions regarding the identity of the target concept cannot classify any unseen instances.