● Experiment – a

■ Try to plot a same figure for the deblurred results and a non-blurred image data/curiosity.png

註:上圖的水平白線處為我選的 scanline

■ How do you plot the figure? Do you apply any additional steps? Why? 首先將 Implementation 中所有 deblur method 產出的圖與 non-blurred image 都用 np array 儲存成三維陣列,並從圖中選定一條水平線當作 scanline,我選定的水平線位在 shape[0]為 350 的位置。並將剛剛上面 所有轉成 np array 的圖片之該水平線位置取一維 DFT,一維 DFT 步驟 如下:

- 1. 水平線位在 shape[0]為 350 的位置之 pixel value 值,先對其 3 個 channel 取平均
- 2. 取平均後的 array 即為一維陣列,每個 element 都除以 255,做 normalization,將 value 壓在 0 到 1 之間
- 3. 接著用 np.fft.fft()做 one-dimensional discrete Fourier Transform
- 4. 再將 np.fft.fft()之 output(也是一維陣列)的每個 element 取 log(以 10 為底),需特別注意的是,因為 log 的定義域為大於零的數,故須將 np.fft.fft()之 output 取絕對值再取 log。最後產出的一維陣列即為一維 DFT 的結果(DFT output)。

而作業說明中所附圖之 X 軸 frequency domain 是 0 到 pi,因為是一半的週期,所以這邊我們將一維的 DFT 結果取前半當作 Y 軸,X 軸則是 0 到 pi 的等差數列(總共有(len(DFT_output)/2)個數字),並以 plt.plot 作圖即可得到某一張圖的 1-D DFT scanline。以此類推總共有十張圖都重複上述步驟即可。

How this figure can help you to explain the result? 我們可以看出,沒有晃動的 true_image 其 Log Magnitude 最大,然後 TV_poisson 最小,且 deblur 效果越好的方法,其 Log Magnitude 越大,越逼近 true_image 的 Log Magnitude,並且可由該折線圖清楚發現 total varitation 的作法,不論是 norm-1 或 norm-2 或 poisson 其 deblur 效果都輸給 RL 或 BRL,因為 total varitation method 的 Log Magnitude 幾乎都是墊底,而 BRL 因為多了 spational & range penalty,預期 BRL 的 Log Magnitude 應該會比 RL 都高一個檔次,但從折線圖中發現也不盡然是如此。

Experiment – b

- blurred images with straight kernel (程式碼位置:/code/ Experiments_b_straight_kernel.py)
 - straight kernel (13*13)

my_deblur_straight.png

- blurred images with curl kernel(程式碼位置:/code/ Experiments_b_curl_kernel.py)
 - ◆ curl kernel(13*13)

■ how you choose your parameters Straight kernel 與 curl kernel 的 BRL 參數我都設為下表:

max_iter_BRL	25
rk	6
Sigma_r	50.0/255/255
lamb_da	0.03/255
to_linear	'False'
r_omega	0.5*rk

試過非常多組參數組合,幾乎都與上表所產出結果雷同。

some extra preprocess on your blur kernels

blur kernel 的作法如下:

- 1. 用小畫家剪出蛋黃哥左上角的方框
- 2. 用 opencv resize 成 downsample 成 13*13 的圖片,並以灰階儲存
- 3. 再對這 13*13 個 pixels 做一個 threshold 判斷,若沒有超過某個 threshold,都將其設為 0。
- 4. 因為 curl kernel 做 resize 後在邊界有些許雜訊,故 curl kernel 有額 外做一個判斷,讓 13*13 的邊界處的值都設成 0。

註:步驟 3 與步驟 4 的目的都是希望讓 kernel 的形狀很接近 straight 與 curl,並且使其清晰易見。

compare the the deblur effect for the two kernels

Deblur 效果沒有很好的原因,推估是因為我將照片拍得太晃了。不過還是可以看出 deblur 成效,像是圖下方的工作列有變比較清楚,且蛋黃哥圖片左上角的黑色方框區域內 kernel 線,可看出不論是 straight 或是 curl,雖然沒有變回一個點,但都從完整的一條線變成三個分段,可見其 deblur 成效。而不論是 straight kernel 或是 curl kernel,用 BRL 做完都有一點 ringing effect。

Free study – Problem 1.

■ Compare the RL and BRL results of Curiosity-small and Curiosity-medium

Assumption 1

因為沒有任何的 penalty 限制,更新時容易造成圖像物體邊緣處 (pixel value 差距較大的部分)能量傳遞擴散,故 RL 會有 ringing effect。且當 kernel size 越大,能量可以傳遞越遠,ringing effect 的波紋就會越大且越明顯。

◆ Assumption 2

BRL 加入了 spatial penalty(下式紅框處)與 range penalty(下式藍框處)。尤其是 range penalty,在圖像的物體邊緣 I(x)與 I(y)差距較大,此時 range penalty 變大,造成 $\nabla E_B(I^t)$ 變大,此時的更新就較不依賴當前的 I^t ,讓 ringing effect 較 RL 不明顯。

Assumption 3

$$I^{t+1} = \frac{I^t}{1 + \lambda \cdot \nabla E_B(I^t)} \circ (K^* \otimes \frac{B}{I^t \otimes K}), \tag{4}$$

$$\nabla E_B(I^t) = 2 \cdot \sum_{y \in \Omega} \exp\left(-\frac{|x - y|^2}{2\sigma_s}\right) \cdot \exp\left(-\frac{|I(x) - I(y)|^2}{2\sigma_r}\right) \cdot \frac{I(x) - I(y)}{\sigma_r}. \tag{6}$$

當 BRL 之 rk 值越大,sigma_s 值就會越大,此時 spatial penalty(上式紅框處)變小, $\nabla E_B(I^t)$ 會跟著變小,而再根據上面式(4), $\nabla E_B(I^t)$ 變小時,表示某次的更新較依賴當前的 I^t ,所以在消除晃動表現上,會較不明顯。

Justification

為了驗證我的假設,我做了如下的對照:(取自 Implementation)

RL, Curiosity-small, iter=25

BRL, Curiosity-small, iter=25, rk=6, sigma_r=50, lamb_da=0.03

RL, Curiosity-medium, iter=55

BRL, Curiosity-medium, iter=55, rk=12, sigma_r=25, lamb_da=0.001

可以發現 RL 都會存在 ringing effect,且 Curiosity-medium(kernel size=25*25)比 Curiosity-small (kernel size=13*13)的 ringing effect 更明顯,這邊就驗證了我上面的 Assumption 1(上表的左上圖跟左下圖比較)。而 BRL 因為加入 spatial penalty 與 range penalty,讓 ringing effect 較 RL 不明顯(上表的左圖跟右圖比較,驗證 Assumption 2),但是會有一層糊糊的油畫感,且 rk 值越高這種模糊感越明顯(上表的右上圖跟右下圖比較),這邊就驗證了我上面的 Assumption 3,因為 rk 值高造成每次的更新梯度低,解决方法之一是讓更新次數變得更多,就有機會消除模糊感。

■ Compare the BRL results of Curiosity-medium with different parameters.

- ◆ Compare lamb_da (其他參數都固定,iteration=25, sigma_r=50/255/255, rk=6)
 - Assumption

$$I^{t+1} = \frac{I^t}{1 + \lambda \cdot \nabla E_B(I^t)} \circ (K^* \otimes \frac{B}{I^t \otimes K}), \tag{4}$$

當 lamb_da 值越大,分母越大,使的 spatial penalty 與 range penalty 的權重提高,所以畫面更加 smooth。並可由上式發現更新時受 I^t 影響也會越小,且更新多半受上面 4 式後面黑框處所控制,所以能夠更有效消除 ringing effect。

Justification

lamb_da=0.3/255 (圖片位 置:/my_RL_BRL_result/Free_study_p1/ BRL s iter25 rk6 si50.00 lam0.300.png)

為了驗證我的 assumption,我將其他參數固定(iteration=25, sigma_r=50/255/255, rk=6),只改動 lamb_da 值,當 lamb_da 放大十倍的情况下,可以看到圖像更加 smooth,並且有一點油畫不真實 感。

- ◆ Compare sigma_r (其他參數都固定,lamb_da=0.03/255, iteration=25, rk=6)
 - Assumption

$$\nabla E_B(I^t) = 2 \cdot \sum_{y \in \Omega} \left(\exp\left(-\frac{|x - y|^2}{2\sigma_s}\right) \cdot \exp\left(-\frac{|I(x) - I(y)|^2}{2\sigma_r}\right) \cdot \frac{I(x) - I(y)}{\sigma_r} \right). \tag{6}$$

由上式可發現,當 sigma_r 越大,後面藍框處的 range penalty 就會越小,當圖像的物體邊緣 I(x)與 I(y)差距不變的情況下,因 sigma_r 在分母,造成 $\nabla E_B(I^t)$ 變小,此時的更新就較依賴當前的 I^t ,故推論 ringing effect 會較明顯。

Justification

sigma r = 50.0/255/255

sigma_r = 100.0/255/255 (圖片位 置:/my_RL_BRL_result/Free_study_p1/ BRL s iter25 rk6 si100.00 lam0.030.png)

為了證明我的推論,我將 sigma_r 放大兩倍變成 100.0/255/255,其他參數固定(lamb_da=0.03/255, iteration=25, rk=6),可發現在右圖好奇號的物體邊緣處,有些 微的 ringing effect 產生。由此可驗證我的假設。

• Free study - Problem 2. Compare the BRL results of Curiosity-medium with different boundary condition.

圖像邊角處的 ringing effect 應該會相當明顯。

■ Assumption Implementation 部分採用 sysmetric padding 的方式,而這邊我想嘗試採用 zero padding 來看看效果差異,因為 zero padding 是將突出原圖的部分 pixel value 都補 0,而這樣可能造成圖像邊角處的 pixel value 差距會很大,可能比圖片中物體的邊緣 pixel value 差距還大,所以推測在

Justification

Medium kernel, lamb_da=0.001/255, iter=55, sigma r=25/255/255, rk=12, sysmetric padding

Medium kernel, lamb_da=0.001/255, iter=55, sigma_r=25/255/255, rk=12, zero padding(圖片位置: my_RL_BRL_result/ Free_study_p2/BRL_s_iter55_rk12_si25.00_lam0.001zero_padding.png)

為了驗證我的假設,上表右圖我在其他參數不變的情況下,實作 zero padding,明顯可見圖像邊角處有很明顯的 ringing effect,甚至比圖像物體的邊緣處所產生的 ringing effect 還要明顯許多。而 sysmetric padding 的作法讓圖像邊角處的 pixel value 值很接近,使的 BRL 做完時,圖像邊角不太會有 ringing effect 情況產生。

- Free study Problem 3. Compare some different λ on TVL1 deconvolution.
 - Assumption

$$E(I) = ||I \otimes k - B|| + \lambda ||\nabla I||_{tv}$$

如上式所示, λ 在 TVL1 deconvolution 用來控制照片 total variation 的 gradient 之參數,當 λ 越大,相同的 gradient 下所造成的影響越大,在 同樣的 update iteration 次數下,其晃動振波感會比較少。

Justification

lamb da = 0.01, iter=1000

lamb_da = 0.1, iter=1000(圖片位置: my_RL_BRL_result/ Free study p3/deblur edgetaper norm1 lam0.1.png)

為了驗證我的推論,我用 TVL1.py 跑了兩種測試,上表右圖的 λ 是左圖的 λ 是左图的 λ 是在图的 λ

- Free study Problem 4. Compare the results of TVL1, TVL2 and TVpoisson.
 - Assumption

TVL2 因為採用 L2 norm,根據 gradient 的更新會比 TVL1 的 L1 norm 更加顯著,所以 TVL2 的效果類似將 TVL1 的 λ 值調很大,消除了振波感,但是畫面會有點失真。而 TVPoisson 是將 input blurred image 當作 Poisson noise 來做處理,而我們的 task 是 deblur 而不是 denoise,所以推估用 TVpoisson 做 deblur 的 task 效果不會太好。

■ Justification

TVL1 test_solver = 'pc' lam_da=0.01 eps=0.001 TVL2 test_solver = 'pc' lam_da=0.01 eps=0.001 **TVpoisson** test_solver = 'pc' lam_da=0.01 eps=0.001

可發現在其他參數都不變的情況下,TVL1 做出來效果最佳(圖像較細緻),而 TVL2 就如同我所說的類似於將 TVL1 的 λ 值調很大的效果(Free study – Problem 3),而 TVpoisson 的效果在這邊類似於 TVL2,都帶模糊感,並且也有做到 deblur 的效果,這邊跟我原先假設相違背,我原本以為 TVpoisson 主要是用來消除 poisson 雜訊的,所以覺得在 deblur 表現上不會太好。

- Free study Problem 5. Try to speed up BRL and report the execution time difference
 - Assumption 1 因為 BRL function 內有大量的矩陣相關運算,而且需要三個

channel(RGB)分開計算,在運算上會花費不少時間。而我是對式 6 做優化,式 6 的數學式如下:

$$\nabla E_B(I^t) = 2 \cdot \sum_{y \in \Omega} (\exp(-\frac{|x - y|^2}{2\sigma_s}) \cdot \exp(-\frac{|I(x) - I(y)|^2}{2\sigma_r}) \cdot \frac{I(x) - I(y)}{\sigma_r}). \tag{6}$$

我原本程式碼的實作方式是將三個 channel 分開並且依序加總,如下:

```
E_B_I_t[i-pdsize,j-pdsize,0] = np.sum(total_kernel[:,:,0]) # scalar
E_B_I_t[i-pdsize,j-pdsize,1] = np.sum(total_kernel[:,:,1]) # scalar
E_B_I_t[i-pdsize,j-pdsize,2] = np.sum(total_kernel[:,:,2]) # scalar
```

而我認為這會花費不少時間,可改成直接用一行 numpy 的 api 做平行 運算,如下:

E_B_I_t[i-pdsize,j-pdsize,:] = np.sum(total_kernel, axis=(0,1))

- 一樣都是分別對三個 channel 做加總,但是優化後的寫法可以同時對 三個 channel 分開加總,我想這樣會讓運行效率更好。
- Assumption 2

將式 6 的數學式子(如下圖)

$$\nabla E_B(I^t) = 2 \cdot \sum_{y \in \Omega} (\exp\left(-\frac{|x-y|^2}{2\sigma_s}\right) \cdot \exp\left(-\frac{|I(x)-I(y)|^2}{2\sigma_r}\right) \cdot \frac{I(x)-I(y)}{\sigma_r}). \tag{6}$$

根據 exp 性質,將紅框與藍框處先做加總再取 exp ,應該會比分別取 exp 再做相乘的效率還高,因為相加的效率比相乘還要快,並且優化後的寫法少做一次 exp。

■ Justification

為了驗證我上述的兩個 Assumption 有讓執行效率提升,且執行出來結果一樣,我在 code/Free_study_p5.py 做實驗,分別有

BRL_no_optimization()與 BRL_optimization()兩個 function,而程式執行順序是先做 BRL_no_optimization()再做 BRL_optimization(),兩個 function 傳入參數都一樣,rk=6, sigma_r=50.0/255/255,

lamb_da=0.03/255, max_iter_BRL=25, 並且都是對 curiosity_small.png 做 deblur。做完後都與 reference answer 算一次 psnr,確認兩個優化前後的輸出結果一致。結果如下:

```
[Running] python -u "c:\Users\f6405\Desktop\EE6620_
                                                             iter:2/25
iter:1/25
                                                             iter:3/25
iter:2/25
iter:3/25
iter:4/25
iter:5/25
iter:6/25
                                                             iter:8/25
iter:7/25
                                                             iter:9/25
iter:8/25
iter:9/25
iter:10/25
iter:11/25
                                                             iter:13/25
iter:12/25
                                                             iter:14/25
iter:13/25
                                                             iter:15/25
iter:14/25
                                                             iter:16/25
iter:15/25
iter:16/25
                                                             iter:18/25
iter:17/25
                                                             iter:19/25
iter:18/25
                                                             iter:20/25
iter:19/25
iter:20/25
iter:21/25
iter:22/25
                                                             iter:24/25
iter:23/25
                                                             iter:25/25
                                                             BRL process time(optimization) = 410.831470 sec
iter:24/25
iter:25/25
BRL process time(no optimization) = 557.455571 sec
                                                             [Done] exited with code=0 in 972.091 seconds
psnr = 102.080431
```

上面左圖是執行 BRL_no_optimization(),上面右圖是執行 BRL_optimization(),可發現與 reference answer 比較 psnr 都一樣的情况下,優化後的執行時間比優化前快了約 147 秒,可見差異之顯著。