ECE284 Fall 21 W3S2

Low-power VLSI Implementation for Machine Learning

Prof. Mingu Kang

UCSD Computer Engineering

Quantization in Inference

- Post-training quantization
 - Quantization once the training has been completed
 - Weight is not changed other than quantization

- Retraining with quantization
 - Training is performed including the quantization
 - Weight will be co-optimized by considering the quantization error
 - Much lower bit precision is available

Hyper parameter vs. (learnable / trainable) parameter

Hyper parameters:

- They are often used in processes to help estimate model parameters.
- They are often specified by the practitioner.
- They can often be set using heuristics.
- e.g., learning rate, batch size

Clipping in Weight Quantization

- Excluding outlier is a good strategy to minimize the mean square error (MSE)
- α can be 1 3*sigma in the distribution rather than maximum value

Local and Global Quantization

- Global quantization
 - same clipping parameter α used for all the layers
- Local quantization
 - optimal clipping parameters α_i are chosen for each layer
- Local + training based quantization
 - α_i for each layer is learnable parameters

Clipping in Activation Quantization Example: PACT (Parameterized Clipping Activation)

Activation function (ReLu)

Parameterized Clipping Activation (PACT)

$$x \rightarrow y = ReLU(x) \rightarrow y_q = quant(y)$$

$$y = PACT(x) = 0.5(|x| - |x - \alpha| + \alpha) = \begin{cases} 0, & x \in (-\infty, 0) \\ x, & x \in [0, \alpha) \\ \alpha, & x \in [\alpha, +\infty) \end{cases}$$

Gradation for α in PACT

$$y = PACT(x) = 0.5(|x| - |x - \alpha| + \alpha) = \begin{cases} 0, & x \in (-\infty, 0) \\ x, & x \in [0, \alpha) \\ \alpha, & x \in [\alpha, +\infty) \end{cases}$$

Resolution (Δ) = $\alpha/(2^k-1)$

$$y_q = round\left(\frac{y}{\Delta}\right) * \Delta = round\left(y\frac{(2^k - 1)}{\alpha}\right) * \frac{\alpha}{(2^k - 1)}$$

$$\frac{\partial y_q}{\partial \alpha} = \frac{\partial y_q}{\partial y} \frac{\partial y}{\partial \alpha} = \begin{cases} 0, & x \in (-\infty, \alpha) \\ 1, & x \in [\alpha, +\infty) \end{cases}$$

Here,
$$\frac{\partial y_q}{\partial y} = 1$$
 by Straight-Through Estimator (STE) (Bengio et al. (2013))

Parameterized Clipping Activation (PACT)

$$x \rightarrow y = ReLU(x) \rightarrow y_q = quant(y)$$

Quantization within Layer

$$\Delta_{x} = \frac{\alpha_{x}}{2^{B_{x}} - 1}, \qquad \Delta_{w} = \frac{\alpha_{w}}{2^{(B_{w} - 1)} - 1}$$

- Most power and latency hungry computation block is processed in integer domain
- In each layer, α_x and α_w are different
- Thus, input and psum recovery need to be performed within each layer

[CODE] Example1: Weight and Activation Quantization

- Check the quantized weight and activations are in integer domain
- Make sure that the computation is performed in integer domain
- Check the recovered psum has similar value to the un-quantized original psum

Unequally Distributed Quantization1: Logarithmic Number

binary	Value	
	Linear	Log
00	0	2 ⁰
01	1	2 ¹
10	2	2 ²
11	3	2 ³

- Logarithmic quantization (Shifter-based Implementation)
- Low-magnitude values are more frequent, so these numbers are represented better

Unequally Distributed Quantization1: Logarithmic Number

binary	Value	
	Linear	Log
00	0	20
01	1	2 ¹
10	2	2 ²
11	3	2 ³

• Multiplication is implemented by shifter e.g., $(x * 2^w)$ is bit-wise left shift of x by w

Unequally Distributed Quantization2: LUT-based Number

binary	Value	
	Linear	LUT
00	0	0
01	1	0.238
10	2	0.315
11	3	0.721

• In dictionary, most representative limited (e.g., 4 above example) numbers are stored, which represents the distribution of numbers the best

Bit Precision Reconfigurable Multiplier

Operation modes:

- 1. 16bit multiplier 1EA
- 2. 8bit multiplier 2EA
- 3. 4bit multiplier 4EA

8-b Floating-Point System for Training

Mixed precision in forward and backward processing (Sign, exponent, mantissa bit precision: 1, 5, 2)

$$=\underbrace{[(x_1+x_2+\cdots+x_{1000})]}_{\text{Very large number}} + \underbrace{(x_{1000})}_{\text{Vulnerable to swamping}}$$

$$= \left(\sum_{i=1}^{100} x_i\right) + \left(\sum_{i=101}^{200} x_i\right) \dots + \left(\sum_{i=901}^{1000} x_i\right)$$

Chunk-based accumulation

Back Propagation (Example)

Error:

$$\frac{\partial L}{\partial y_{Li}} = \sum_{j=1}^{N} \frac{\partial L}{\partial y_{(L+1),j}} w_{L,(i\to j)}$$

Gradient:

$$\frac{\partial L}{\partial w_{L,(i\to j)}} = y_{Li} \frac{\partial L}{\partial y_{(L+1),j}}$$

Update:

$$w'_{L,(i\to j)} = w_{L,(i\to j)} - \mu \frac{\partial L}{\partial w_{L,(i\to j)}}$$

Floating point computation required

μ: Learning rate updated per mini-batch

[HW3_prob2] VGG16 Post-training Quantization

 Apply quantization for all the conv's weights by applying the functions in HW3_prob1's VGG16 by using following for loop.

```
for layer in model.modules():
if isinstance(layer, torch.nn.Conv2d):
```

- Try 4 bit and 8 bit quantizations
- Report your observation

[HW3_prob3] MAC Design

- Weight: 4-bit signed
- Activation: 4-bit unsigned
- psum / output: 16-bit
- Please fill out the empty part in hw/w3/prob3/verilog to support above number representation
- Need to create another "dec2bin" function in testbench for unsigned number (w_bin and x_bin)
- Need to modify "mac_predicted" function accordingly for sign * unsign multiplication
- Now, a_data.txt includes only positive numbers.
- Include your *.v files and capture the final waveform to show output