

generalized Darboux function

Canonical name GeneralizedDarbouxFunction

Date of creation 2013-03-22 19:18:36 Last modified on 2013-03-22 19:18:36

Owner joking (16130) Last modified by joking (16130)

Numerical id 5

Author joking (16130) Entry type Definition Classification msc 26A06 Recall that a function $f: I \to \mathbb{R}$, where $I \subseteq \mathbb{R}$ is an interval, is called a **Darboux function** if it satisfies the intermediate value theorem. This means, that if $a, b \in I$ and $f(a) \leq d \leq f(b)$ for some $d \in \mathbb{R}$, then there exists $c \in I$ such that $a \leq c \leq b$ and f(c) = d.

Darboux proved (see parent object) that if $f:[a,b] \to \mathbb{R}$ is differentiable then f' is a Darboux function. The class of Darboux functions is very wide. It can be shown that any function $f:\mathbb{R}\to\mathbb{R}$ can be written as a sum of two Darboux functions. We wish to give more general definition of Darboux function.

Definition. Let X, Y be topological spaces. Function $f: X \to Y$ is called a **(generalized) Darboux function** if and only if whenever $C \subseteq X$ is a connected subset, then so is $f(C) \subseteq Y$.

It can be easily proved that connected subsets of intervals (in \mathbb{R}) are exactly intervals. Thus this definition coincides with classical definition, when X is an interval and $Y = \mathbb{R}$.

Note that every continuous map is a Darboux function.

Also the composition of Darboux functions is again a Darboux function and thus the class of all topological spaces, together with Darboux functions forms a category. The category of topological spaces and continuous maps is its subcategory.