

Experimento 3 – Material Auxiliar ATRIBUIÇÕES CONDICIONAIS E ATRIBUIÇÕES SELETIVAS

Considere um circuito com três bits de entrada $(A, B \in C)$ e dois bits de saída $(X \in Y)$. Cada entrada e cada saída será representada por uma variável do tipo STD_LOGIC. A declaração da entidade é feita na Listagem 1.

Listagem 1 - Declaração da entidade.

1	LIBRARY IEEE;
2	USE IEEE.STD_LOGIC_1164.ALL;
3	
4	ENTITY MEUCIRCUITO IS
5	PORT (A, B, C: IN STD_LOGIC;
6	X, Y: OUT STD_LOGIC);
7	END MEUCIRCUITO;

Suponha que as relações entre as entradas e saídas são dadas por $X=\bar{A}\mathcal{C}+AB$ e $Y=\bar{A}+\bar{B}$. Há várias formas de descrever este circuito em VHDL. Um exemplo com **atribuições concorrentes** é mostrado na Listagem 2.

Listagem 2 - Exemplo de arquitetura com atribuições concorrentes.

1	ARCHITECTURE MEUCIRCUITO_ARCH1 OF MEUCIRCUITO IS
2	BEGIN
3	X <= (NOT(A) AND C) OR (A AND B);
4	Y <= NOT(A) OR NOT(B);
5	END MEUCIRCUITO_ARCH1;

Uma outra forma é usar **atribuições condicionais**, como na Listagem 3.

Listagem 3 - Exemplo de arquitetura com atribuições condicionais.

1	ARCHITECTURE MEUCIRCUITO_ARCH2 OF MEUCIRCUITO IS
2	BEGIN
3	X <= '1' WHEN (A = '0' AND C = '1') ELSE
4	'1' WHEN (A = '1' AND B = '1') ELSE
5	'0'; As linhas anteriores não têm ponto e vírgula
6	Y <= '1' WHEN (A = '0' OR B = '0') ELSE
7	`O';
8	END MEUCIRCUITO ARCH2;

Uma terceira possibilidade é recorrer à tabela-verdade do circuito (Tabela 1) e implementar a arquitetura usando **atribuições seletivas** como na Listagem 4.

Tabela 1 - Tabela-verdade do exemplo.

	Entradas	Saí	das	
A	В	С	X	Y
0	0	0	0	1
0	0	1	1	1
0	1	0	0	1
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	1	0

Listagem 4 - Exemplo de arquitetura com atribuições seletivas.

1	ARCHITECTURE MEUCIRCUITO_ARCH3 OF MEUCIRCUITO IS
2	SIGNAL ENTRADAS: STD_LOGIC_VECTOR (2 DOWNTO 0);
3	BEGIN
4	ENTRADAS <= A & B & C;
5	WITH ENTRADAS SELECT
6	X <= '1' WHEN "001" "011" "110" "111",
7	'0' WHEN OTHERS;
8	
9	WITH ENTRADAS SELECT
10	Y <= '0' WHEN "110" "111",
11	'1' WHEN OTHERS;
12	END MEUCIRCUITO_ARCH3;

Note que, na Listagem 4, concatenamos todos os bits de entrada para formar uma única variável ENTRADAS e usá-la para fazer a seleção dos valores das saídas. Podemos usar um "truque" similar para implementar uma arquitetura com uma única estrutura "with-select" como mostrado na Listagem 5.

De forma geral, a estrutura "with-select" permite atribuir uma expressão booleana entre várias possíveis a um dado sinal de forma que a expressão a ser atribuída é escolhida a partir do valor de outro sinal. É preciso exaurir todas as possibilidades de valor para o segundo sinal, ou então terminar com o caso OTHERS, que estabelece uma expressão booleana padrão para ser atribuída quando o valor do segundo sinal não cair em nenhum dos outros casos. Como o tipo STD_LOGIC tem outros valores possíveis além de 0 e 1 (como indeterminado), quase sempre é necessário utilizar o OTHERS quando se trabalha com variáveis deste tipo, pois o número de possibilidades a se cobrir é muito grande. A Listagem 6 apresenta a forma genérica do uso da estrutura "with-select".

Listagem 5 - Exemplo de arquitetura usando apenas uma estrutura "with-select".

1	ARCHITECTURE MEUCIRCUITO_ARCH4 OF MEUCIRCUITO IS
2	SIGNAL ENTRADAS: STD_LOGIC_VECTOR (2 DOWNTO 0);
3	SIGNAL SAIDAS: STD_LOGIC_VECTOR (1 DOWNTO 0);
4	BEGIN
5	ENTRADAS <= A & B & C;
6	WITH ENTRADAS SELECT
7	SAIDAS <= "01" WHEN "000" "010" "100" "101",
8	"11" WHEN "001" "011",
9	"10" WHEN OTHERS;
10	
11	X <= SAIDAS(1);
12	Y <= SAIDAS(0);
13	END MEUCIRCUITO_ARCH4;

Listagem 6 - Uso genérico da estrutura "with-select".

1	WITH SINAL2 SELECT
2	SINAL1 <= (EXPRESSÃO BOOLEANA 1) WHEN (VALOR 1),
3	(EXPRESSÃO BOOLEANA 2) WHEN (VALOR 2),
4	
5	(EXPRESSÃO BOOLEANA N) WHEN (VALOR N),
6	(EXPRESSÃO BOOLEANA N+1) WHEN OTHERS;