Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной инженерии и компьютерной техники

03.05.2024

Биометрия и нейротехнологии ЛР3

Раевский Григорий, группа Р3321 Козак Борис, группа Р3321

Содержание

Задачи	2
Записанная фотоплетизмограмма	2
Контурный анализ пульсовой волны	2
Анализ ЧСС фотоплетизмограммы	4
Анализ вариабельности сердечного ритма	8
Печать результатов	13

Рис. 1: Фотоплетизмограмма с отключенным корректором

Задачи

- 1. Анализ заранее записанной фотоплетизмограммы
- 2. Анализ ЧСС на основе фотоплетизмограммы
- 3. Анализ вариабельности ЧСС

Записанная фотоплетизмограмма

График заранее записанной фотоплетизмограммы сделан с помощью использования инфракрасного светодиодного датчика-прищепки (цвет графика — фиолетовый). В каждую секунду времени записана ЧСС.

Контурный анализ пульсовой волны

Для начала необходимо задать данные о пациенте. Для вычисления жесткости необходим только рост в сантиметрах (для примера 180 см):

Рис. 2: Пациент с ростом 180 см

Для контурного анализа необходимо выбрать одну пульсовую волну. Для корректного анализа пульсовой кривой необходимо устанавливать границы анализируемого периода пульсовой волны, слегка захватывая предыдущий и следующий периоды.

Рис. 3: Выбранный фрагмент для волны с ЧСС 82

Далее необходимо открыть окно "Индексы ПВ"раздела "Анализ". После этого необходимо установить маркеры на кривой:

- 1. В1 начало сердечного цикла
- 2. В2 момент максимального расширения сосуда в фазу изгнания
- 3. ВЗ точка, которая соответствует протодиастолическому периоду
- 4. В4 начало диастолы
- 5. В5 завершение сердечного цикла

Рис. 4: Пульсовая волна с расставленными точками В1-В5

Результат работы — таблица значений контурного анализа волны:

Анализ ЧСС фотоплетизмограммы

Для начала необходимо выбрать начало и конец полной записи.

Показатель	Описание	Полученное	Норма
ИЖ, м/с	Индекс жесткости – параметр, который явно коррелирует со скоростью распространения пульсовой волны – маркером артериальной жесткости / ригидности.	9	$5-9~\mathrm{m/c}$
ИО, %	Индекс отражения – отражает преимущественно тонус артериол и мелких сосудов, косвенно указывает на наличие атеросклеротических отложений (увеличение отражений).	74	40 – 70 %
АПВ	Амплитуда пульсовой волны (амплитуда анакротической фазы).	0,604	
АДВ	Амплитуда дикротической волны.	0,499	0,5* АПВ
ВИ	Высота инцизуры.	0,476	(2/3)* AΠB
ИДВ	Индекс дикротической волны.	78	50-70%
ДАФ, с	Длительность анакротической фазы пульсовой волны.	0,332	
ДДФ, с	Длительность дикротической фазы пульсовой волны.	0,35	
ДФИ, с	Длительность фазы изгнания – параметр, отражающий диастолическую активность.	0,403	
ДПВ, с	Длительность пульсовой волны.	0,735	0,7 – 1,1 с
ИВВ, %	Индекс восходящей волны – параметр, отражающий фазу наполнения в систолический период сердечного цикла, соответствует отношению длительности восходящего сегмента анакротической волны к общей длительности пульсовой волны.	25	15 – 30 %
ВН, с	Время наполнения (соответствует промежутку от начала пульсовой волны до вершины анакротической волны).	0,189	0,06 – 0,2 с

Показатель	Описание	Полученное	Норма
		значение	
ДС, с	Продолжительность систолической фазы сердечного	0,385	0,35 - 0,55 с
	цикла.		
ДД, с	Продолжительность диастолической фазы сердечного	0,35	0,4 - 0,6 с
	цикла.		
ВОВ, с	Время отражения пульсовой волны (соответствует вре-	0,196	$0.2 - 0.4 \mathrm{\ c}$
	мени расслабления миокарда в протодиастолическую		
	фазу).		
ЧСС	Частота сердечных сокращений.	81,6	$55 - 85 \; { m уд/c}$
B1 (t; a)	Начало сердечного цикла.	0; 0,212	
B2 (t; a)	Момент максимального расширения сосуда в фазу из-	0,189; 0,815	
	гнания.		
B3 (t; a)	Точка, которая соответствует протодиастолическому пе-	0,332; 0,693	
	риоду.		
B4 (t; a)	Начало диастолы.	0,385; 0,665	
B5 (t; a)	Завершение сердечного цикла.	0,735; 0,216	

Рис. 5: Выбрана вся запись

После этого окно "ЧСС фрагмента"в разделе "Анализ"покажет изменение ЧСС на протяжении всей записи.

Рис. 6: Ритмограмма

Анализ вариабельности сердечного ритма

Для анализа вариабельности так же необходимо выбрать всю запись. Это необходимо, так как минимальная продолжительность фрагмента, который мы можем считать информативным, 5 минут.

Рис. 7: Выбрана вся запись

После этого откроем окно "ВСР фрагмента"в разделе "Анализ". В открывшемся окне отобразятся:

- 1. Ритмограмма зависимость длительности сердечного сокращения от времени
- 2. Скатерограмма корреляционная ритмограмма
- 3. Гистограмма вариационная пульсограмма

Рис. 8: ВСР фрагмента

Чтобы получить конкретные показатели ВСР, необходимо нажать кнопку "Далее". Здесь отобразится спектр ВСР (полученный с помощью FFT) и параметры ВСР.

Рис. 9: Спектр и показатели ВСР

Результат работы — таблица значений ВСР для 5 минутной записи:

Показатель	Описание	Полученное значение	Норма
ЧСС(HR), уд/мин	Средняя частота сердечных сокращений за минуту	83,05	55 - 85
Дисперсия (D), мс ²	Дисперсия – статистический показатель, указывающий на величину среднего значения отклонения, т.е. на разброс длительностей сердечных циклов.	1350	-
CKO (SDNN)	Среднеквадратичное отклонение – суммарный статистический показатель вариабельности величин интервалов между сердечными сокращениями за весь рассматриваемый период.	36	30 – 100
KB (CV), %	Коэффициент вариации, представляет собой нормированную оценку СКО.	5	3 - 9
RMSSD, MC	Среднеквадратичная разностная характеристика (квадратный корень из суммы квадратов разности величин последовательных нормальных интервалов, исключая экстрасистолы).	26	20 – 50
PNN50, %	Процент интервалов от общего числа последовательных пар интервалов, различающихся более, чем на 50 мс, полученный за весь период записи.	4	5 – 30
Amo	Амплитуда моды – показатель, получаемый из гистограмм и отражающий число интервалов, соответствующих значению моды в процентах.	0,506	0,3 - 0,4
Мо, мс	Мода – наиболее часто встречающееся в данном динами- ческом ряду значение длительности сердечного цикла.	722	700 – 1100
MxDMn, мс	Вариационный размах – показатель, отражающий степень вариативности значений интервалов в исследуемом динамическом ряду.	228	200 – 400

Показатель	Описание	Полученное	Норма
		значение	
MxRMn	Отношение максимального значения длительности сер-	1,364	1,3 - 1,7
	дечного цикла к минимальному.		
ИН (SI), o.e.	Индекс напряжения регуляторных систем (стресс-	152	50 – 150 o. e.
	индекс).		
m MBB = LF/HF	Индекс вагосимпатического взаимодействия.	0,479	
ИЦ =	Индекс централизации.	2,238	2 - 6
$({ m VLF}{+}{ m LF})/{ m HF}$			
ТР, мс ²	Total power – суммарная мощность спектра ВСР, полу-	2469	
	ченного с помощью БПФ (быстрого преобразования Фу-		
	рье) с использованием оконной функции Хеннинга.		
НF, мс²	Суммарная мощность в диапазоне высоких частот (0,4	738	
	- 0,15 Γu).		

Показатель	Описание	Полученное	Норма
		значение	
LF, Mc ²	Суммарная мощность в диапазоне низких частот (0,15	353	
	- 0,04 Гц).		
VLF, MC ²	Суммарная мощность в диапазоне очень низких частот	1299	
	$(0.04-0.015~\Gamma \mathrm{rg}).$		
ULF, MC ²	Суммарная мощность в диапазоне ультра низких частот	78	
	(меньше 0,015 Гц).		
HF, %	Мощность спектра в частотном диапазоне HF в процент-	29	
	ном соотношении ко всему диапазону.		
LF, %	Мощность спектра в частотном диапазоне LF в процент-	14	
	ном соотношении ко всему диапазону.		
VLF, %	Мощность спектра в частотном диапазоне VLF в про-	52	
	центном соотношении ко всему диапазону.		
ULF, %	Мощность спектра в частотном диапазоне ULF в про-	3	
	центном соотношении ко всему диапазону.		

Печать результатов

После проведения контурного анализа и анализа ВСР программа позволяет вывести данные.

Рис. 10: Результаты лабораторной работы