MAP5747 Programação Não Linear: Exercícios

Ariel Serranoni

2º semestre de 2019

1 Lista 1

Exercício 1.1. Seja $f: \mathbb{R}^n \to \mathbb{R}$ e sejam $B \subseteq A \subseteq \mathbb{R}^n$. Se $\inf_{x \in \mathbb{R}^n} f(x) = \alpha \in \mathbb{R}$, então

- (i) $\inf_{x \in A} f(x) \le \inf_{x \in B} f(x)$;
- (ii) todo minimizador de f em A é um minimizador de f em B.

Solução.

(i)
$$\inf_{x \in A} f(x) = \min \{ \inf_{x \in B} f(x), \inf_{x \in A \setminus B} f(x) \} \le \inf_{x \in B} f(x).$$

(ii) Seja x tal que $f(x) \leq f(y)$ para cada $y \in A$. Como $B \subseteq A$ temos que $f(x) \leq f(y)$ para cada $y \in B$. Logo, x minimiza f em B.

Exercício 1.2. Exercício 2 - Lista 1

Solução. Considere a função $f : \mathbb{R} \to \mathbb{R}$ dada por $f(x) := \exp(x)$. Considere $\Omega = \mathbb{N}$. Então cada ponto $\bar{x} \in \Omega$ minimiza f localmente e, como f é injetora temos que $f(x) \neq f(y)$ sempre que $x \neq y$.

Exercício 1.3. Exercício 3 - Lista 1

Solução. Seja $\{x_k\}_{k\in\mathbb{N}}\subseteq\Omega$ uma sequência qualquer e considere a sequência $\{f(x_k)\}_{k\in\mathbb{N}}\subseteq\mathbb{R}$. Como Ω é compacto temos que $\{x_k\}_{k\in\mathbb{N}}$ admite uma subsequência convergindo para algum $x\in\Omega$. Neste caso, segue que $\{f(x_k)\}_{k\in\mathbb{N}}$ também admite uma subsequência convergindo para f(x). Como $x\in\Omega$ temos que $f(x)\in f(\Omega)$. Mostramos assim que cada sequencia em $f(\Omega)$ admite uma subsequência convergindo para um elemento do próprio $f(\Omega)$, ou seja, $f(\Omega)$ é compacto.

Finalmente, vamos mostrar que $\alpha \coloneqq \inf_{x \in \Omega} f(x) \in f(\Omega \setminus)$ e $\beta \coloneqq \sup_{x \in \Omega} f(x) \in \underline{f(\Omega)}$. Como $f(\Omega)$ é fechado temos que $f(\Omega) = \overline{f(\Omega)}$. Portanto é suficiente mostrar que $\alpha, \beta \in \overline{f(\Omega)}$. Seja $\varepsilon \in \mathbb{R}_{++}$ e note que se $\alpha + \varepsilon \mathbb{B} \cap f(\Omega) = \emptyset$ então $\inf_{x \in \Omega} f(x) = \inf_{x \in \Omega} f(x) \ge \alpha + \varepsilon$. Isso implica que inf $f(\Omega) > \alpha$. Contradição. [escrevemos analogamente pra β].

Exercício 1.4. Exercício 4 - Lista 1

Solução. Considere a função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ dada por $f(x) := \frac{1}{x}$. Se consideramos $\Omega = [-1,0)$, temos que f é contínua em Ω e que Ω é limitado, mas não fechado. Portanto não vale o Teorema de Bolzano-Weierstrass e f não possui minimizador, de fato f é ilimitada em Ω . Similarmente, se $\Omega = [-1,0]$ temos que Ω é compacto mas f não é contínua em Ω e tb n vale o teorema.

Exercício 1.5. Exercício 5 - Lista 1

Solução. Como f é contínua, temos que o conjunto de nível dado no enunciado é fechado. Além disso, temos por hipótese que o conjunto é limitado. Assim, o resultado segue aplicando o exercicio 3.

Exercício 1.6. Exercício 6 - Lista 1

Solução. Seja $x \in \mathbb{R}^n$ e considere o conjunto de nível

$$N := \{ y \in \mathbb{R}^n : f(y) \le f(x) \}.$$

Como f é contínua temos que N é fechado. Agora suponha que N não é limitado, então existe uma sequencia $\{y_n\}_{n\in\mathbb{N}}$ tal que $\|y_n\|\to\infty$ mas $f(y_n)\leq f(x)$ para todo $n\in\mathbb{N}$, o que contradiz a hipótese de que f é coerciva. Assim concluímos que N é compacto e o resultado segue do exercicio 3.

Exercício 1.7. Exercício 7 - Lista 1

Solução.

- 1. Considere $f(x) = \exp(x)$ e $\Omega = \{0\}$.
- 2. Considere $f(x) = -x^2 \in \Omega = \{0\}.$
- 3. Considere $f(x) = x^3 \in \Omega = \mathbb{R}$.
- 4. Considere $f(x) = x^3 \in \Omega = \mathbb{R}$.

2 Lista 1 - Old

Exercício 2.1. Exercício 2 - 2.1 do NOCEDAL

Solução. Iniciamos calculando uma forma polinomial para a função f. Daí, obtemos que

$$f(x_1, x_2) = 100x_1^4 + x_1^2 - 2x_1 + 100x_2^2 - 200x_1^2x_2 + 1.$$
 (1)

Além disso, vamos calcular o vetor gradiente e a matriz hessiana de f:

$$\nabla f(x_1, x_2) = \begin{pmatrix} 400x_1^3 + 2x_1 - 400x_1x_2 - 2\\ 200x_2 - 200x_1^2 \end{pmatrix} \in \nabla^2 f(x_1, x_2) = \begin{pmatrix} 1200x_1^2 + 2 - 400x_2 & -400x_1\\ -400x_1 & 200 \end{pmatrix}.$$

Resolvendo o sistema $\nabla f(x_1, x_2) = 0$ nos dá a solução única $x := (1, 1)^{\top}$. Feito isso verificamos que

$$\nabla^2 f(1,1) = \begin{pmatrix} 802 & -400 \\ -400 & 200 \end{pmatrix} \in \mathbb{S}_{++}^n.$$

Assim, concluímos que x é o único minimizador global de f.

Exercício 2.2. Exercício 3

Solução. Queremos resolver o seguinte problema não linear

maximize
$$xy(x-y)$$

subject to $x+y=8$,
 $x \ge 0$,
 $y \ge 0$. (3)

Utilizando a primeira restrição para obter que y=8-x e substituindo na função objetivo, obtemos o problema

maximize
$$x(8-x)(x-())$$

subject to $x+y=8$,
 $x \ge 0$,
 $y \ge 0$. (4)

Exercício 2.3. Exercício 7

Solução. Como A é positiva definida temos que f é convexa. Além disso sabemos que $\nabla f(x) = Ax - b$. Daí, segue que $\nabla f(x) = 0$ se, e somente se Ax = b. Dessa forma segue que o conjunto dos minimizadores de f é dado por

$$\{x \in \mathbb{R}^n : Ax = b\}.$$

Exercício 2.4. Exercício 14

Solução. Primeiro calculamos algumas coisas, obtendo

1.
$$\phi(\alpha) = f(\alpha d) = \frac{\alpha^4 d_2^2}{d}$$

Exercício 2.5. Exercício 15

 $Soluc\~ao$.

Exercício 2.6. Exercício 17 - 2.17 da ANA

Solução. Fazendo algumas continhas, obtemos facilmente que $f'(x) = 3x^2 + 2ax + b$ e ainda que f''(x) = 6x + 2a. Para que 0 seja maximizador de f, precisamos que f'(0) = 0 e que f''(0) < 0. Analogamente para que 1 seja minimizador de f precisamos que f'(1) = 0 e que f''(1) > 0. Resolvendo o sistema dado por estas equações obtemos a única solução b = 0 e $a = -\frac{3}{2}$.

Exercício 2.7. Exercício 18

Solução. Seja $\overline{X} := \{x \in X : f(x) = v^*\}$, sejam $x_1, x_2 \in \overline{X}$, e seja $\lambda \in [0, 1]$. Como f é convexa segue que

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) = v^*.$$

Mas como $v^* = \inf\{f(x) : x \in X\}$ também vale que

$$f(\lambda x_1 + (1 - \lambda)x_2) \ge v^*.$$

Assim concluímos que $f(\lambda x_1 + (1 - \lambda)x_2) = v^*$. Portanto, segue que $\lambda x_1 + (1 - \lambda)x_2 \in \overline{X}$ e logo \overline{X} é convexo.

Exercício 2.8. Exercício 19

Solução. Sabemos que f é convexa se, e só se $\nabla^2 f(x) \in \mathbb{S}^n_+$ para cada $x \in \mathbb{R}^n$. Observando que $\phi''(\alpha) = d^\top \nabla^2 f(x + \alpha d) d$, concluímos que $\phi''(\alpha) \geq 0$ para cada $\alpha \in \mathbb{R}$. Como este último fato acontece se e só se ϕ é convexa, o resultado segue.

Exercício 2.9. Exercício 20 [CORREÇÃO NO ENUNCIADO: PODEMOS ASSUMIR QUE A MATRIZ A É POSITIVA SEMIDEFINIDA]

Solução. Basta notar que $\nabla^2 f(x) = A$. Daí temos que f é convexa e o resultado segue. \square

3 Lista 2 - Old

Exercício 3.1. Exercício 1

Solução. Por definição, a direção d é dada por $d = -\nabla f(x)$. Segue

$$d^{\top} \nabla f(x) = -\nabla f(x)^{\top} M \nabla f(x).$$

Como M é positiva definida e $\nabla f(x) \neq 0$, obtemos que $d^{\top} \nabla f(x) < 0$ e portanto d é uma direção de descida para f a partir de x.

Exercício 3.2. Exercício 3

Solução. Primeiro, calculamos

$$\lim_{t} \frac{\alpha_{t+1}}{\alpha_t} = \lim_{t} \frac{t+1}{t} = 1.$$

Finalmente aplicamos o Exercício anterior (2 L2-OLD) para concluir que $\{\alpha_t\}_{t\in\mathbb{N}}$ converge sublinearmente para 0.

Exercício 3.3. Exercício 5

Solução. Neste exercício faremos uso das contas feitas no Exercício 2.1.

1. Primeiro, veja que $d = -\nabla f(0,0) = (2,0)^{\mathsf{T}}$. Neste caso segue que

$$\phi(\alpha) = f(0 + \alpha d) = f((2\alpha, 0)^{\top})$$

= 100((-2\alpha)^2)^2 + (1 - 2\alpha^2)
= 100(16\alpha^4) + 4\alpha^2 - 4\alpha + 1.

2. Primeiro, vamos calcular a direção de Newton. Por definição, segue

$$d = (-\nabla^2 f((0,0)^\top)^{-1} \nabla f((0,0)^\top) = \begin{pmatrix} -\frac{1}{2} & 0\\ 0 & -\frac{1}{200} \end{pmatrix} \begin{pmatrix} -2\\ 0 \end{pmatrix} = \begin{pmatrix} 1\\ 0 \end{pmatrix}.$$

Daí, segue que

$$f((\alpha,0)^{\top}) = 100((-\alpha)^2)^2 + (1-\alpha)^2 = 100\alpha^4 + \alpha^2 - 2\alpha + 1.$$

Exercício 3.4. Exercício 6

Solução. Primeiramente, notamos que $\nabla f(x) = Ax + b$ e $\nabla^2 f(x) = A$. Como $A \in \mathbb{S}^n_+$ temos que f é convexa e portanto pelo Exercício 2.8 temos que $\phi(\alpha) := f(x + \alpha d)$ é convexa para todo $x, d \in \mathbb{R}^n$. Assim, podemos calcular o minimizador de phi da seguinte maneira:

$$\phi'(\alpha) = 0$$

$$\iff \nabla f(x + \alpha d)^{\top} d = 0$$

$$\iff (A(x + \alpha d) + b)^{\top} d = 0$$

$$\iff ((Ax + b)^{\top} + \alpha (Ad)^{\top}) d = 0$$

$$\iff \nabla f(x)^{\top} + \alpha d^{\top} d = 0$$

$$\iff \alpha = -\frac{\nabla f(x)^{\top} d}{d^{\top} A d}.$$

Exercício 3.5. Exercício 8

Solução. Primeiro, calculamos $\phi(\alpha) := f(x + \alpha d)$, obtendo

$$\phi(\alpha) = (\frac{\alpha}{2} - (-1 + \alpha))^2 + \frac{(1 - \frac{\alpha}{2})^2}{2}.$$

Além disso, calculando $\nabla f(x)$ obtemos o resultado $(1-2)^{\top}$. Daí, vemos que para que α satisfaça a condição de Armijo é necessário que

$$\phi(\alpha) = f(x + \alpha d) \le f(x) + \frac{1}{8} \alpha \nabla f(x)^{\top} d = \frac{3}{2} - \frac{3\alpha}{16}$$

Finalmente vamos aplicar o algorítmo. Vamos verificar se $\alpha=1$ satisfaz a desigualdade acima. Calculando $\phi(1)$ obtemos o valor $\frac{19}{8}$. Por outro lado, temos que $\frac{3}{2}-\frac{3}{16}=\frac{21}{16}$ e como esse número é estritamente maior que $\phi(1)$ o algorítmo rejeita $\alpha=1$. Depois disso, testamos $\alpha=\frac{1}{2}$. Computamos $\phi(\frac{1}{2})$ para obter o valor $\frac{27}{32}$. Depois calculamos $\frac{3}{2}-\frac{3}{16}\frac{1}{2}=\frac{45}{32}$. Daí o algorítmo termina aceitando $\alpha=\frac{1}{2}$.

Exercício 3.6. Exercício 10

Solução. Primeiramente, note que $\nabla f(x) = Ax - b$ e que $x_{t+1} = x_t - \alpha \nabla f(x_t)$. Assim, calculando $\nabla f(x_{t+1})$ em termos de $\nabla f(x_t)$, obtemos que

$$\nabla f(x_{t+1}) = A(x_{t+1}) - b$$

$$= A(x_t - \alpha \nabla f(x_t)) - b$$

$$= Ax - \alpha A \nabla f(x_t) - b$$

$$= \nabla f(x_t) - \alpha A \nabla f(x_t).$$

Finalmente, segue que

$$\nabla f(x_{t+1})^{\top} \nabla f(x_t) = (\nabla f(x_t) - \alpha A \nabla f(x_t))^{\top} \nabla f(x_t)$$

$$= \nabla f(x_t)^{\top} \nabla f(x_t) - \alpha (A \nabla f(x_t))^{\top} \nabla f(x_t)$$

$$= \nabla f(x_t)^{\top} \nabla f(x_t) - \frac{\nabla f(x_t)^{\top} \nabla f(x_t) \nabla f(x_t)^{\top} A \nabla f(x_t)}{\nabla f(x_t)^{\top} A \nabla f(x_t)}$$

$$= \nabla f(x_t)^{\top} \nabla f(x_t) - \nabla f(x_t)^{\top} \nabla f(x_t)$$

$$= 0.$$

Exercício 3.7. Exercício 11

Solução. Como estamos usando busca linear **exata**, temos para cada $k \in \mathbb{N}$:

$$\phi'(\alpha_k) = \nabla f(x_k + \alpha_k d_k)^{\top} d_k = \nabla f(x_{k+1})^{\top} d_k = 0.$$

No contexto do método do gradiente, temos $d_k = -\nabla f(x_k)$. Logo

$$-\nabla f(x_{k+1})\nabla f(x_k) = 0.$$

Daí, o resultado segue.

Exercício 3.8. Exercício 16

Solução. Como estamos aplicando o método de Newton, teremos $d_1 = -\frac{f'(x_1)}{f''(x_1)}$. Como x_1 satisfaz $f'(x_1) = 0$ teremos $d_1 = 0$.

4 Outros Exercícios

4.1 Nocedal

Exercício 4.1. Exercício 2.6

Solução. Seja x um mínimo local isolado, então existe uma vizinhança V de x tal que x é o único mínimo local de f em V. Neste caso, temos que f(v) > f(x) para cada $x \neq v \in V$. Logo x é mínimo local estrito em V.

NOTE QUE NÂO VALE A VOLTA!!!!!

4.2 P1 do Ano Passado

Exercício 4.2. Exercício 4

Solução. Como $x_1 \in L_1$ e $x_2 \in L_2$, podemos escrever $L_1 = x_1 + \alpha d$ e $L_2 = x_2 + \alpha d$. Além disso vamos considerar $\phi_1(\alpha) := f(x_1 + \alpha d)$ e $\phi_2(\alpha) := f(x_2 + \alpha d)$. Como x_1 e x_2 são minimizadores, também temos que $\phi'_1(0) = \phi'_2(0) = 0$. Sabendo que $\phi'_i(\alpha) = \nabla f(x_i + \alpha d)^{\top} d$ para i = 1, 2 e que $\nabla f(x) = Ax + b$, segue

1.
$$(Ax_1 + b)^{\top} d = x_1^{\top} A d + b^{\top} d = 0;$$

2.
$$(Ax_2 + b)^{\mathsf{T}} d = x_2^{\mathsf{T}} A d + b^{\mathsf{T}} d = 0.$$

Subtraindo a primeira equação da segunda o resultado segue.