CMC MSU Department of Algorithmic Languages Samsung Moscow Research Center

Neural Networks for Natural Language Processing

Нейронные сети в задачах автоматической обработки текстов

Lecture 2: BOW text representation & Naive Bayes classifier

Arefyev Nikolay

CMC MSU Department of Algorithmic Languages & Samsung Moscow Research Center

Naive Bayes classifier

- Classification / regression / clustering / ...
 - Outputs are from finite set (called classes or labels)
 unlike regression, where ???
 - Classes are known in advance unlike clustering, where ???
- Supervised / unsupervised / reinforcement / ...
 - Trains on a train set: a set of (x_i,y_i) pairs
 the difference with unsupervised / reinforcement learning?
 - The train set contains examples for all possible classes.
- Probabilistic / non-probabilistic
 - Estimates the probability distribution P(y|x): the probabilities that a given example belongs to each possible class y in $\{c_1,...,c_k\}$
 - They will sum to 1.
 - For binary classification (2 classes) we usually estimate only P(y=1|x). And P(y=0|x) = 1-P(y=1|x)

When do we need a classifier?

- Text classification
 - Spam detection (binary: spam, not spam)
 - Topic categorization (K classes: sport, art, politics, ...)
 - Sentiment analysis (positive, negative, ?neutral?)
- Text tagging: classify each token in a given text
 - Part of speech (POS) tagging
 - Named Entity Recognition (NER)

Figure 1: An example of NER application on an example text
From https://ru.bmstu.wiki/NER (Named-Entity Recognition)

- [Conditional] Text generation: generate word by word, sampling from predicted distribution over possible next tokens $P(w_i|w_{i-1},w_{i-2},...,w_1,[COND])$
 - Machine Translation (COND source text)
 - Chat bots (COND dialog history)
 - Image captioning (COND picture)

Relative frequencies

Given a train set of documents and their classes $D_{train} = \{(d_i, c_i)\}$

what is the simplest way to estimate P(c|d)?

$$P(c=pos|d='Total\ trash.') = ?$$

But we want to work on <u>new documents</u>, not those from the train set:

 $P(c=pos|d='This\ movie\ was\ not\ very\ good.\ Though\ a\ few\ funny\ moments\ made$ me laugh, I will not recommend it to anybody. ') = ?

Bayes classifier

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

$$\underset{k}{\operatorname{argmax}} P(c_k|d)$$

Generative model

We need a (probabilistic) model of document generation: what kind of documents can be generate for each given class?

P(d|c)

To simplify, we will treat a document as a bag of words (BOW)

- Bag (multiset) vs. set vs. list
 - 'I love cats. When I was born, I saw two cats.'
 {I:3, love:1, cats:2, when:1, ...}
- trivially extends to bag of ngrams (BON)
 - 'Food was not bad. I will return'
 - 'Food was bad. I will not return'

Bernoulli Naive Bayes

Document is multivariate random variable $V=(v_1,...,v_M)$

- $V_i \sim Bernoulli(p_{ik}) \leftarrow independent$, but not identically distributed
- A document can be represented as Mdimensional vector of 0 and 1
- Word counts are ignored.
 'I love cats very much' = 'I love cats very very much'

$$P(d|c) = ... \leftarrow DERIVE$$

Multinomial Naive Bayes

Class k

 W_1 W_2 W_3 W_4 W_4 W_N

Icosaèdre inscrit, en bronze. (Collection de S. M. le roi Fouad I«).

Document is generated by

- Sampling length N~P(n) from some distribution
- Throwing k-th dice N times
- A document can be represented as M-dimensional BOW or binary BOW vector.
 - Word order is ignored.
 - Word counts can be ignored or not.

$$P(d|c) = ... \leftarrow DERIVE$$

Alpha smoothing

What if some word was not in the training examples of c_i?

$$\widetilde{P}(w_i|c_j) = 0 \Rightarrow \widetilde{P}(c_j) \prod_{i=1...N} \widetilde{P}(w_i|c_j) = 0$$

Problem!

Hack: let's add "pseudo-counts"

$$\widetilde{P}(w_i|c_j) = \frac{\alpha + \sum_{d \in c_j} occurrences of w_i}{\alpha M + \sum_{d \in c_j} all \ words}$$

Log trick

 Multiplication of many small numbers leads to underflow!

$$\widetilde{P}(c_i) \prod_{j=1...N} \widetilde{P}(w_j | c_i)$$

Sum log probabilities instead.

$$\log \prod_{j=1...N} \widetilde{P}(w_j|c_i) = \sum \log \widetilde{P}(w_j|c_i)$$