În cadrul acestui task, ne propunem să analizăm și să comparăm performanțele mai multor metode de rezolvare a sistemelor de ecuații liniare, utilizate în optimizarea numerică. Sunt evaluate atât metode directe, cât și metode iterative, prin prisma criteriilor de convergență, precizie, complexitate computațională și scalabilitate.

Algoritmii analizați

1. Eliminarea Gauss

Este o metodă directă ce transformă sistemul Ax=bAx = bAx=b într-un sistem triunghiular superior, urmat de substituție inversă. Este precisă, dar poate deveni ineficientă pentru sisteme mari sau matrici sparse.

2. Jacobi

Metodă iterativă potrivită pentru matrici diagonal dominante. Fiecare componentă a soluției este calculată independent, bazându-se doar pe valorile anterioare. Prezintă o convergență mai lentă decât Gauss-Seidel, dar este ușor de paralelizat.

3. Gauss-Seidel

O îmbunătățire a metodei Jacobi, care folosește imediat valorile actualizate. Are o convergență mai rapidă și este recomandată pentru probleme sparse, însă este sensibilă la ordinea ecuatiilor.

4. Least-Squares (LS)

Se aplică sistemelor supradeterminate și oferă o soluție care minimizează eroarea pătratică $\| Ax-b \| 2\|Ax - b\|^2 \| Ax-b \| 2$. Este utilă în regresii liniare sau în contexte cu date experimentale zgomotoase.

5. Algoritmul Kaczmarz

Metodă iterativă bazată pe proiecții succesive pe hiperplane, foarte eficientă în sisteme mari și sparse. Poate convergen rapid în practică, mai ales în implementări stocastice.

6. Descompunerea LU

Metodă directă ce implică factorizarea matricii A în produsul a două matrici triunghiulare L și U. Este eficientă pentru rezolvări multiple cu aceleași coeficiente A, dar vectori b diferiti.

Criterii de comparație

Metodă	Tip	Precizie	Converge nță	Cost Computațio nal	Scalabilit ate	Stabilitat e
Eliminare Gauss	Direct ă	Exactă	-	Ridicat (O(n³))	Redusă	Bună

Jacobi	Iterativ ă	Aproximati vă	Lentă	Redus (pe iter.)	Bună	Depinde de A
Gauss-Seid el	Iterativ ă	Aproximati vă	Mai rapidă	Redus (pe iter.)	Bună	Mai sensibilă
Least-Squar es	Direct ă	Minime pătrate	-	Mediu	Bună	Stabilă
Kaczmarz	Iterativ ă	Aproximati vă	Rapidă	Foarte redus	Excelentă	Bună
Descompun ere LU	Direct ă	Exactă	-	Ridicat (O(n³))	Redusă	Stabilă dacă A bine condiționa tă

Concluzii

- Pentru sisteme mici și dense, metodele directe (Gauss, LU) oferă soluții rapide și precise.
- Pentru **sisteme mari și sparse**, metodele iterative (Jacobi, Gauss-Seidel, Kaczmarz) sunt preferabile datorită eficienței computaționale.
- Algoritmul Kaczmarz se remarcă prin simplitate și performanță în practică.
- **Metoda Least-Squares** este indispensabilă în cazurile în care sistemul nu are soluție exactă, fiind esențială în modelarea datelor.