Imputación de datos

En lugar de eliminar los datos perdidos (o nulos) como vimos en el apartado anterior, que nos puede hacer perder gran parte de la información, podemos sustituirlos por valores que concuerden con el resto, facilitando así el aprendizaje posterior. A esta acción, en Ciencia de Datos, la llamamos imputar. Es un anglicismo de impute (https://www.bennetyee.org/http_webster.cgi?isindex=impute&method=exact) y, aunque el significado exacto que le queremo dar no se recoge en el diccionario de la RAE (https://dle.rae.es/imputar), éste sí es cercano en el sentido de atribuir. Vamos a atribuir valores adecuados a los huecos que tenemos en los datos.

Métodos básicos

Sustituir por la media

Vamos a ver como ejemplo un trozo del conjunto de datos usado en el apartado anterior con los valores anómalos marcados como nulos.

```
In [72]: import pandas as pd
         import numpy as np
         from sklearn import datasets
         dataset = datasets.fetch openml(name='plasma retinol', version=2, as frame=True)
         tabla = dataset.frame
         umbral_z_score = 4.0
         # Calcular z-score, marcando atípicos con np.nan
         desc = tabla.describe()
         for i, fila in tabla.iterrows():
             for caract in desc:
                 z_score = abs(tabla.loc[i][caract] - desc.loc['mean'][caract]) / desc.loc['std'][carac
         t1
                 if z_score > umbral_z_score:
                     tabla.loc[i,caract] = np.nan
         tabla = tabla.iloc[256:263].copy()
         tabla
```

Out[72]:

	AGE	SEX	SMOKSTAT	QUETELET	VITUSE	CALORIES	FAT	FIBER	ALCOHOL	CHOLESTEROL	BE1
256	40.0	Female	Never	31.24219	Yes_fairly_often	3014.9	165.7	14.4	0.0	NaN	102
257	29.0	Female	Never	37.93996	Yes_fairly_often	1631.0	55.6	13.8	0.5	189.5	343
258	71.0	Female	Former	24.98825	No	1399.5	66.5	9.6	8.0	260.0	152
259	45.0	Female	Never	23.43164	Yes_fairly_often	2319.0	122.1	13.4	0.1	305.7	204
260	63.0	Female	Never	18.92094	No	1655.9	70.8	15.1	0.1	177.3	289
261	46.0	Female	Former	24.26126	Yes_not_often	1422.8	58.3	7.8	7.1	206.3	198
262	75.0	Female	Never	21.67837	Yes_fairly_often	2511.5	92.3	NaN	0.6	228.3	427

In [73]: tabla.fillna(tabla.mean())

Out[73]:

	AGE	SEX	SMOKSTAT	QUETELET	VITUSE	CALORIES	FAT	FIBER	ALCOHOL	CHOLESTEROL	BE1
256	40.0	Female	Never	31.24219	Yes_fairly_often	3014.9	165.7	14.40	0.0	227.85	102
257	29.0	Female	Never	37.93996	Yes_fairly_often	1631.0	55.6	13.80	0.5	189.50	343
258	71.0	Female	Former	24.98825	No	1399.5	66.5	9.60	8.0	260.00	152
259	45.0	Female	Never	23.43164	Yes_fairly_often	2319.0	122.1	13.40	0.1	305.70	204
260	63.0	Female	Never	18.92094	No	1655.9	70.8	15.10	0.1	177.30	289
261	46.0	Female	Former	24.26126	Yes_not_often	1422.8	58.3	7.80	7.1	206.30	198
262	75.0	Female	Never	21.67837	Yes_fairly_often	2511.5	92.3	12.35	0.6	228.30	427

Interpolado

Cuando los datos son series temporales, es habitual que tengan cierta continuidad y reemplazar los valores perdidos por la media no es muy adecuado. En cambio, suele ser bastante más acertado realizar una interpolación con los valores anteriores y posteriores.

Vamos a usar como ejemplo un conjunto de datos que tiene una serie temporal de valores de análisis a lo largo del tiempo. Nos vamos a quedar sólo con los datos del primer gato para este ejemplo y le vamos a añadir unos valores perdidos para que veamos como de acertado es el interpolado en comparación con usar la media. Veamos la tabla original:

```
In [74]: dataset = datasets.fetch_openml(name='newton_hema', version=2, as_frame=True)
  tabla = dataset.frame
  tabla = tabla[0:16].copy()
  tabla
```

Out[74]:

	1			
	id	weeks	cells_percentage	binaryClass
0	40004	11.0	33.0	N
1	40004	13.0	49.0	Р
2	40004	19.0	46.0	Р
3	40004	25.0	42.0	Р
4	40004	28.0	68.0	Р
5	40004	31.0	55.0	Р
6	40004	33.0	38.0	Р
7	40004	36.0	23.0	N
8	40004	41.0	32.0	N
9	40004	45.0	41.0	N
10	40004	48.0	50.0	Р
11	40004	50.0	54.0	Р
12	40004	52.0	30.0	N
13	40004	54.0	30.0	Р
14	40004	56.0	32.0	N
15	40004	58.0	18.0	N

Y gráficamente: (El asignarla a la variable _ es para ignorar lo que devuelve y evitar que Jupyter lo imprima. Es habitual usar el simbolo _ para denotar una variable donde almacenamos algo que no vamos a usar.)

Supongamos que estos valores se han perdido (veamos como queda la tabla y gráficamente representadas las series):

```
In [76]: tabla.iloc[2:4,1] = np.nan
  tabla.iloc[5,2] = np.nan
  tabla.iloc[8,2] = np.nan
  tabla.iloc[13,2] = np.nan
  tabla.plot()
  tabla
```

Out[76]:

	id	weeks	cells_percentage	binaryClass
0	40004	11.0	33.0	N
1	40004	13.0	49.0	Р
2	40004	NaN	46.0	Р
3	40004	NaN	42.0	Р
4	40004	28.0	68.0	Р
5	40004	31.0	NaN	Р
6	40004	33.0	38.0	Р
7	40004	36.0	23.0	N
8	40004	41.0	NaN	N
9	40004	45.0	41.0	N
10	40004	48.0	50.0	Р
11	40004	50.0	54.0	Р
12	40004	52.0	30.0	N
13	40004	54.0	NaN	Р
14	40004	56.0	32.0	N
15	40004	58.0	18.0	N

Si lo rellenasemos con la media saldría esto:

```
In [77]: tabla_media = tabla.fillna(tabla.mean())
   tabla_media.plot()
   tabla_media
```

Out[77]:

	id	weeks	cells_percentage	binaryClass
0	40004	11.000000	33.000000	N
1	40004	13.000000	49.000000	Р
2	40004	39.714286	46.000000	Р
3	40004	39.714286	42.000000	Р
4	40004	28.000000	68.000000	Р
5	40004	31.000000	40.307692	Р
6	40004	33.000000	38.000000	Р
7	40004	36.000000	23.000000	N
8	40004	41.000000	40.307692	N
9	40004	45.000000	41.000000	N
10	40004	48.000000	50.000000	Р
11	40004	50.000000	54.000000	Р
12	40004	52.000000	30.000000	N
13	40004	54.000000	40.307692	Р
14	40004	56.000000	32.000000	N
15	40004	58.000000	18.000000	N

Si usamos el método <u>interpolate() (https://pandas.pydata.org/pandas-docs/stable/reference /api/pandas.DataFrame.interpolate.html#pandas.DataFrame.interpolate)</u>, podemos observar que el resultado es mucho más parecido al original.

Out[78]:

	id	weeks	cells_percentage	binaryClass
0	40004	11.0	33.0	N
1	40004	13.0	49.0	Р
2	40004	18.0	46.0	Р
3	40004	23.0	42.0	Р
4	40004	28.0	68.0	Р
5	40004	31.0	53.0	Р
6	40004	33.0	38.0	Р
7	40004	36.0	23.0	N
8	40004	41.0	32.0	N
9	40004	45.0	41.0	N
10	40004	48.0	50.0	Р
11	40004	50.0	54.0	Р
12	40004	52.0	30.0	N
13	40004	54.0	31.0	Р
14	40004	56.0	32.0	N
15	40004	58.0	18.0	N

Ejercicio: Encuentra un conjunto de datos que represente una serie temporal con datos perdidos y usa el método interpolate para sustituirlos.

En <u>Working with missing data (Pandas user guide) (https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html)</u> hay mucha más información de como trabajar con valores perdidos en Pandas. Debes revisarla para conocer todas las posibilidades y, si pruebas algunos ejemplos de las cosas que no hemos cubierto, enriquecerás tu aprendizaje.

Imputar valores perdidos con aprendizaje automático

Usar la media es una aproximación muy básica. Es mejor que dejar los valores perdidos a 0 u otros valores pero puede haber estrategias mejores. Hemos visto que, si los datos siguen una secuencia, la interpolación es más adecuada pero, cuando los datos no son series, la interpolación de los valores basandose en el anterior y posterior no tiene ningún sentido.

Una aproximación más avanzada, que puede resultar muy adecuada, es intentar predecir esos valores basandose en los valores de las demás características. Dado que las características suelen seguir unas relaciones entre ellas, podemos usar estas relaciones para rellenar los datos que faltan con un valor más apropiado que la media. Para ello, se puede utilizar cualquier algoritmo de aprendizaje de los que veréis en asignaturas posteriores. De momento, vamos a utilizar el KNN que viene preparado para esto en Scikit-learn (https://scikit-learn.org/stable /modules/impute.html#nearest-neighbors-imputation).

En imputación de datos, las librerías Pandas y Scikit-learn se solapan cubriendo la imputación de datos (ambas tienen funcionalidades repetidas como sustituir por la media). Para este apartado, vamos a usar Scikit-learn porque es más completa. Hay mucha información sobre imputación de valores con Scikit-learn en el apartado 6.4 de su manual de usuario (https://scikit-learn.org/stable/modules/impute.html#impute).

```
In [79]: from sklearn.impute import KNNImputer
```

dataset = datasets.fetch_openml(name='sleep', version=2, as_frame=True) tabla_sleep = dataset.frame tabla sleep

Out[79]:

_	T	ı	1	1	ı		T	
	body_weight	brain_weight	slow_wave	paradoxical	total_sleep	maximum_life_span	gestation_time	predation_ir
0	6654.000	5712.0	NaN	NaN	3.3	38.6	645.0	3.0
1	1.000	6.6	6.3	2.0	8.3	4.5	42.0	3.0
2	3.385	44.5	NaN	NaN	12.5	14.0	60.0	1.0
3	0.920	5.7	NaN	NaN	16.5	NaN	25.0	5.0
4	2547.000	4603.0	2.1	1.8	3.9	69.0	624.0	3.0
57	2.000	12.3	4.9	0.5	5.4	7.5	200.0	3.0
58	0.104	2.5	13.2	2.6	15.8	2.3	46.0	3.0
59	4.190	58.0	9.7	0.6	10.3	24.0	210.0	4.0
60	3.500	3.9	12.8	6.6	19.4	3.0	14.0	2.0
61	4.050	17.0	NaN	NaN	NaN	13.0	38.0	3.0

62 rows × 10 columns

Si lo rellenasemos con la media, saldría esto:

In [80]: tabla_sleep.fillna(tabla_sleep.mean())

Out[801:

	body_weight	brain_weight	slow_wave	paradoxical	total_sleep	maximum_life_span	gestation_time	predation_ir
0	6654.000	5712.0	8.672917	1.972	3.300000	38.600000	645.0	3.0
1	1.000	6.6	6.300000	2.000	8.300000	4.500000	42.0	3.0
2	3.385	44.5	8.672917	1.972	12.500000	14.000000	60.0	1.0
3	0.920	5.7	8.672917	1.972	16.500000	19.877586	25.0	5.0
4	2547.000	4603.0	2.100000	1.800	3.900000	69.000000	624.0	3.0
							•••	
57	2.000	12.3	4.900000	0.500	5.400000	7.500000	200.0	3.0
58	0.104	2.5	13.200000	2.600	15.800000	2.300000	46.0	3.0
59	4.190	58.0	9.700000	0.600	10.300000	24.000000	210.0	4.0
60	3.500	3.9	12.800000	6.600	19.400000	3.000000	14.0	2.0
61	4.050	17.0	8.672917	1.972	10.532759	13.000000	38.0	3.0

Para rellenarlo usando el algoritmo de aprendizaje KNN podemos usar:

```
In [81]: imputer = KNNImputer(n_neighbors=3, weights="uniform")
new_data = imputer.fit_transform(dataset.data)
```

Lo convertimos a Pandas para verlo bonito en tabla:

```
In [82]: tabla_knn = pd.DataFrame(data=new_data, columns=dataset.feature_names)
tabla_knn
```

Out[82]:

	body_weight	brain_weight	slow_wave	paradoxical	total_sleep	maximum_life_span	gestation_time	predation_ir
0	6654.000	5712.0	3.433333	1.500000	3.3	38.600000	645.0	3.0
1	1.000	6.6	6.300000	2.000000	8.3	4.500000	42.0	3.0
2	3.385	44.5	7.700000	2.433333	12.5	14.000000	60.0	1.0
3	0.920	5.7	10.600000	2.666667	16.5	5.233333	25.0	5.0
4	2547.000	4603.0	2.100000	1.800000	3.9	69.000000	624.0	3.0
57	2.000	12.3	4.900000	0.500000	5.4	7.500000	200.0	3.0
58	0.104	2.5	13.200000	2.600000	15.8	2.300000	46.0	3.0
59	4.190	58.0	9.700000	0.600000	10.3	24.000000	210.0	4.0
60	3.500	3.9	12.800000	6.600000	19.4	3.000000	14.0	2.0
61	4.050	17.0	7.400000	1.900000	9.3	13.000000	38.0	3.0

62 rows × 9 columns

Ejercicio: Compara los valores obtenidos por los dos métodos y piensa cuales serán más útiles en el aprendizaje posterior. Razona tu respuesta por escrito. (Esto te servirá de práctica para el estudio que deberás realizar la próxima semana)

Ejercicio: Aplica KNNImputer a algún otro conjunto de datos con valores perdidos. Prueba a cambiar los parámetros y ver cómo varían los ajustes.

Para saber más sobre este tema y su utilidad, es interesante que veas la siguiente consulta y las respuestas que le han dado (ejemplo de algoritmo que necesita imputación de datos): https://www.researchgate.net/post/ls-it-possible-to-train-a-neural-network-with-missing-data (https://www.researchgate.net/post/ls-it-possible-to-train-a-neural-network-with-missing-data)

Avanzado (opcional y quizá mejor guardar para leer cuando ya hayais visto algoritmos de aprendizaje en otra asignatura). El siguiente artículo muestra ejemplo de un algoritmo que no necesita imputación de datos previa: Random forest missing data algorithms (https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.11348?casa token=E7iT0ITW-

VIAAAAA%3AiFfdU3N8qjGqWZL4zLtkGnk40PF2Ud6qDKrEzAfS3i36vK-mZ_vwtSfSB_u7NQrygaFzxv9krpaA6S5ug)