Jensen's Inequality

The following theorem will be very useful to derive basic properties of entropy.

Theorem: Jensen's inequality

Let $f:\mathcal{D} o\mathbb{R}$ be a convex function, and let $n\in\mathbb{N}$. Then for any $p_1,\dots,p_n\in\mathbb{R}_{\geq 0}$ such that $\sum_{i=1}^n p_i=1$ and for any $x_1,\dots,x_n\in\mathcal{D}$ it holds that

$$\sum_{i=1}^n p_i f(x_i) \geq f\left(\sum_{i=1}^n p_i x_i
ight).$$

If f is strictly convex and $p_1,\ldots,p_n>0$, then equality holds if and only if $x_1=\cdots=x_n$. In particular, if X is a real random variable whose image $\mathcal X$ is contained in $\mathcal D$, then

$$\mathbb{E}[f(X)] \ge f(\mathbb{E}[X]),$$

and if f is strictly convex, equality holds if and only if there is a $c \in \mathcal{X}$ such that X = c with probability 1.

Proof

The proof is by induction. The case n=1 is trivial, and the case n=2 is identical to the very definition of convexity. Suppose that we have already proved the claim up to $n-1\geq 2$. Assume, without loss of generality, that $p_n<1$. Then:

$$egin{aligned} \sum_{i=1}^n p_i f(x_i) &= p_n f(x_n) + \sum_{i=1}^{n-1} p_i f(x_i) \ &= p_n f(x_n) + (1-p_n) \sum_{i=1}^{n-1} rac{p_i}{1-p_n} f(x_i) \ &\geq p_n f(x_n) + (1-p_n) f\left(\sum_{i=1}^{n-1} rac{p_i}{1-p_n} x_i
ight) ext{ (induction hypothesis)} \ &\geq f\left(p_n x_n + (1-p_n) \sum_{i=1}^{n-1} rac{p_i}{1-p_n} x_i
ight) ext{ (definition of convexity)} \ &= f\left(p_n x_n + \sum_{i=1}^{n-1} p_i x_i
ight) \ &= f\left(\sum_{i=1}^n p_i x_i
ight). \end{aligned}$$

created: 2018-12-11

Information Theory | Jensen's Inequality

That proves the claim. As for the strictness claim, if x_1,\ldots,x_n are not all identical, then either x_1,\ldots,x_{n-1} are not all identical and the first inequality is strict by induction hypothesis, or $x_1=\cdots=x_{n-1}\neq x_n$ so that the second inequality is strict by the definition of convexity.

created: 2018-12-11