28/60/2024 LEZ 5

Al: PROBLEM SOLVING E RAGO, RIJOLUGIONE

RISDLUTURE DI PROBLEMI => DE STATI

FASI REJOUE

-> PORMULA BLONE DEBIETT. (STATO DEBIETTIVO).

-> PORMULA BLONE PROB. -> RAPP. STATI
-> ARCHI.
-> B. P. SOL. TRAMITE RICERCA (PATH OF GRAFO)

-> SIMULA NEL SUO MODELLO.

-> B. EXE SOL.

AMBIENTE DI LAVORO => AGENTI IN CAP 3

- · STATICO
- SILE EVABILE .
- · DISCRETO -> NUT. FINITO OI STATI
- DETERMINISTICO -> ESIR ABURE DECLE B Y INCRERO.

CAU WORK AT (AUELLO APERTO)

(PERCEPTION)

FORMULABIONE PROBLEMA

DEF. BY 5 COMPONENTI:

- (1) STATO INIBIALE 2' -> 1'ES = {STATI}
- (2) A ZIONI POSSIBILI IN STATO 2: AZIONI (2)

UALDRE

· COSTO CAMMINO OF A CTON/TRANSIZIONE -> c(4,0,2')

· A COSTO NEGATIVO

· COSTO POT = COSTO PSX + COST EXE SOX.

ALGORITHI DI RICERCA

: AC, SVGD CATINGOLA

EFFICEUSA ALGO

CARAMETRI:

- · P sow swore 7 7 AMOUSSIBIL ITS'
- · COSPO P SOLUZIONE -> CREATUONE ISTANTA II
- · EFFICENZES SOLUTIONE -> VREIFICE ISTANZA.

DA QUI VROIATO	ON 19010	OI ESE	401 DI
PROBLEMI STANDANSIZZATI	BASE "	"ASTMATI" (PROPRICE FOR	MTI COME <u>ALGO</u>
1° PROBLEHA			
FORWURSIONS PR	· · · · · · · · · · · · · · · · · · ·	SPAGO AS	GRAFO FINI RUNENA
- STATI = CITTA' - SO = CITTA' PAR - BZIONI= HOUR TO - TRANSI. = TT (IN (PI	CUTÀ COLLEG	OTE	3-RZST).
-COSTO = ELENGA 2° ESEMPLO	it of straig	DE.	
ASPIRA POL VERE			

FORM. PROBLEMA:

PRIEMESSA: AMB: 2 STANBE, CHER CAN BE CLEAN VDIRT.
VACUUR CAN GO IN AND ROOM

·STATI -> Y POSIBKE SCENARIO

$$2 \times 2 \times 2 = 2$$

$$0.51 \times 50.51$$

$$0.51 \times 0.51$$

$$0.51 \times 0.51$$

$$0.51 \times 0.51$$

$$0.51 \times 0.51$$

·STARO (NIZIALE -> CAN BE QUALSIASI STATO

·GOAL -> STOTO 1 E [2,8]
·ABLOUL -> STOTO 1 E [2,8]
·ABLOUL -> STOTO 1 E [2,8]
·ABLOUE
·TRANSI: TR

3° PROBLEMA

(LOSSTE DETT, OND

COSTA 1

· STATI -> Y POSSIBILE

CONFIGURAGEONE

ESEMPIO

- DISPOS TASJELLI

· STARU GOAL > 1 LOZO

·AZLONI -> MOVE SINGOLA CASELLA BIANCA.

$$(1, \rightarrow, \leftarrow, \downarrow)$$

· COSTO AZLONE = 1

· SPAZO STATI = GRAFO CON CICH CO

+ RIPEM A CAR /1 WACKUM

(COME IMPOSTAGE STROM & AZIONI, CAMBIA AUCHE SPARLO E MESTAGION)

Ne vroites	1	0	Ś	VR	ć		ſΗ	نو	اکار	-0	RF		LB	Pt	١ڋ	IE.	Ü	E	78	19	ના	18	LE
PRESTABLONI																							

4° PROBLEM

8 REGINE

- STATI = SIRIL PUBLIR & -> POSS. COMPIG. (POS. QUEEN)
- STAPO NIB = SCUOCCHIRRA VUOTA NUR QUEEN.

- GOAL = SCHACL U 8 REGINE, NOUR NESSUUL E

SRE # FORMUL. OF ACTION => ACTION GIUSP (WHY?)

FORMULATION 1

COST ACTION = 0

ACTION = BOD REGULA

NEFFICIAN ... (WHY?) -> hal 66x63x -- x57 2 1,8 60 4 ABLOW POSSIBILI DA COLLIDANCE! (TROPPI "NOOI")

ALTISSINO

FORFULLISCOUR 2 + BUSIN

C (ACTION) = 0

ACTION = ADD QUEEN IN COLDNA + DESTRA

WHY BETTER?

WHI 2047 HOSSE DA

COUSIDERARE

QUESTR JOL SOLO DETTE JOLUZIONI IN CREMENTALI

FORMULAZIONE 3 (STAN COMPLETO)

STATO (NUOW) = SCACCHI. COMPLETA CON 8 QUEEN (1 x COLOMA)

ACTION = KOVE QUEEN IN SUA COLOUNA AVOID

QUINDI DA 1 PROBLEMO, MOSSIAMO (ORMULARE).

QUI SOMO DRGLI ESEMPI, INURCE, DI PROBLEMI REALI (O APPLICATI)

- Pianificazione di viaggi aerei
- Problema del commesso viaggiatore (TSP)
- Configurazione VLSI
- · Navigazione di robot
- Progettazione di proteine
- Ranking delle risposte di un search engine
- Il riconoscimento delle categorie grammaticali delle parole in un testo
- · La classificazione tematica di tweet o documenti

PROBLEM OSUR NO JOL RE FORM PROBLEMA RE "SPECIFICO" ORL PROBLEMA STRISO (R+ COMPLESSE).

SLGO. RICERCA: TIPOLOGIE

COME DETTO PATA.

A160 P

INPUT

GRAFO SPARLO

OF STATI

OUTPUT

CATH TO GOAL

"MIGLIORE"

NEHA MATICA:

OUTPUT (A PURIUTE P)

CHR ESPANDO QUILLUTE

CRUTO WU ALBERD DI P

ر کے

quindi la ricerca di una soluzione è una ricerca su un grafo che genera un albero di ricerca contenente il path 'corretto'

COME DEGO CI SON COUL IMPORT COME

- MODO ~;

4 COMPS. -> M. STARD M. PALRR D. M. AZLOW

Lym. Cost -> Cost PER Mo 2>M

STRUTTURE DATE

- FRONTIERA 2> MODI

SA ESPLORARE

COME ALGO CAME

COME CODA, / IN: -> CONS SEMPLIE (FIFD)

COME CODA, / IN: -> PILA (LIFD)

ANCHE DUI, OBBIATIO LA COMPZ TITE E SPACE, MAX VOLUTARE ALGO, P WE NEED ALTRI Z FATTURY:

- · COMPLETERIES -> MIGO PRIESCR & NO A TROVARE
- OTTIMABILITA' (AMMISIBILITA'): ALGO P LOL U MIN. COST.

1.B.

* STRUMURA DATI

(U ALGO, (COSTI OF DI GO JUI GRAFI, I PROMINTALI ERAMO (V) e [E], AURUSO GIA- RESPLICITO L'INTRRO GNAPA MA IN MORITI PROBLEMA, ØSO) OF STATI RE IMPLICITO (DEF. BY FORM PROBLEMA, ØSO) USIATIO & PARAMETRI DA MISURA:

- · D = FATTURE DI RATCIFICATIONE (NUT. MOX OP SUCCESSORI OPLUSO)
- · ol = Profouditio (LUNGH. CAMTINO M. 2> My MINITIO)
 - · M = HAX LENGHT OF PATH GENERICO

ONALIZIANO CANTRUTICUE, WOICE E PRESTAZIONI

$$= b^1 + b^2 + b^3 \dots + b^d = O(b^d) \longrightarrow \text{TUR}$$

$$\downarrow \text{SPACR}$$

$$\downarrow \text{SPACR}$$

$$\downarrow \text{SPACR}$$

$$\downarrow \text{SUFFASI}$$

$$\downarrow \text{GENFASI}$$

Profondità	Nodi	Tempo	Memoria
2	110	0,11 ms	107 kilobyte
4	11.100	11 ms	10,6 megabyte
6	10 ⁶	1.1 sec	1 gigabyte
8	10 ⁸	2 min	103 gigabyte
10	10 ¹⁰	3 ore	10 terabyte
12	10 ¹²	13 giorni	1 petabyte
14	10 ¹⁴	3,5 anni	10 esabyte

2 ALGO 9 COSTO UNIFORME

CARATTERISTICHE

- · VIEUR VISITATO (SCHLTO) LOND CON COSTO (CATRINO MONSA)
 - + PICORD
- · USA TO S.D. COSA U PRIOR MA (PRIOR MA) = COSTO (APORLO)
- NAL PRATICO È IL BRIST-FIRST CON F = WISTOCATULLO

COJE

WEXT PAGE

function RICERCA-BEST-FIRST(problema, f) returns un nodo soluzione o fallimento $nodo \leftarrow Nodo(Stato=problema.StatoIniziale)$ $frontiera \leftarrow$ una coda con priorità ordinata n base a f, con nodo come elemento iniziale raggiunti ← una tabella di lookup, con un elemento con chiave problema.STATOINIZIALE e valore nodo while not VUOTA?(frontiera) do if problema.È-OBIETTIVO(nodo.STATO) then return nodo for each figlio in Espandi(problema, nodo) do $\textbf{if } s \text{ non \`e in } \textit{raggiunti} \textbf{ or } \textit{figlio.} \\ \textbf{COSTO-CAMMINO} < \textit{raggiunti}[s]. \\ \textbf{COSTO-CAMMINO} \textbf{ then} \\ \textbf{a} = (s) \\ \textbf{b} = (s) \\ \textbf{costo-CAMMINO} \textbf{ or } \textbf{costo-CAMMINO} \textbf{$ $raggiunti[s] \leftarrow figlio$ aggiungi figlio a frontiera function ESPANDI(problema, nodo) yields nodi for each azione in problema. AZIONI(s) do $s' \leftarrow problema.RISULTATO(s, azione)$ $costo \leftarrow nodo.$ COSTO-CAMMINO + problema.COSTO-AZIONE(s, azione, s')vield NODO(STATO=s', PADRE=nodo, AZIONE=azione, COSTO-CAMMINO=costo)

BEST-FIRST: VISIT 1000 in IN FRONTIFR U F(M) MIGLIORE # F= (05T-PATH (N): COSTO COMILIO NO ZOM

OPTIMO 7 SI A PRITO CHE Y NOOD ABISIO COSTO > E, e.c. e>> -> E LOWER BOUND. (POSSIATED SCRELIERE Edge U COSTU + BASED.

ATTUSSIBILE? YES EXAMOR & PATH

COSNO? SIA C = COSTO PATH OFFIND.

NBL WORST, C., PLXPORK FIND & CRUFSNOITA'

> LE] ~ DISTRIBUIS CO

COTE IN BFS:

1+ LE TIME = SPACE = O(b

3° ALGO P IN MOPONDITA' & DES

CARATTERISTICHE

· USA PILA = FRONTIRRA

1° DISPOUIBILE.

COSICE

CODICE BFS HA CON PILA COME FRONTIBRES, WITHOUT TAB. LOOT RAGGIUNTI.

PRESTAZIONI

(SPORD) NO, IN ALCUN, TIDIDI SPALI (SPORD INFINITO SI STAN), PWO MAN, P SOLUBIONA e PALL'00.

· CORRETTO? MOP, TAKE I SOW ZIOUR GIUSTA

(\$4 WAYS OPT).

COMPEXITY?

THE = $O(10^{m+1})$

POI PREMO 12 PRIMO, RICOMINO, RICOMINO.

UTILE IU DET. CASI (SPARIO FINITO E ACICILO), RE RISPARHIE ROLTA MEKORIA.

3.5 DES U BACKTRACKING

CARA ITERISTICHE

· DFS BUT U RICORSIOUR

· (NURCE DI EJORNOBRE TUTTI I 15 LUSSI, CHIATUSA RICORS. rupanor 1) R CA LA

· STATO LOOD JAURE W STACK, COSI DA TORNAKE" BACK

CODE

function Ricerca-DF-A (problema)

returns soluzione oppure fallimento

return Ricerca-DF-ricorsiva(CREANODO(problema. Stato-iniziale), problema)

function Ricerca-DF-ricorsiva(nodo, problema)

returns soluzione oppure fallimento

if problema.TESTOBIETTIVO(nodo.Stato) then return Soluzione(nodo)

KIPDDAS for each azione in problema. Azioni (nodo. Stato) do إعده ددا figlio = Nodo-Figlio(problema, nodo, azione)

risultato = Ricerca-DF-ricorsiva(figlio, problema)

if risultato ≠ fallimento then return risultato FINISH RETURN return fallimento

COR: = A OF

COMPLEX: TIME = O(5

SPACR = O(m)

PROFUNITÀ LIMITATA

CARUTERISTICHE

· DES MA VIRUR SERTATO UN LITLLE DI PROFONDITO C

COSE

OF of, RAGE & WN TIRUE COUTS

OLTRE

PRESTABLOWI

IF & OF SMED IS CR · COMPLETERSA: YRS

- OFFIHALE: NOP. SE SI SCHOLIR MOLE Q, DES & PSOZ

5 P DI APPROFONDIMENTO ITERATIVO

CARATTERISTICUEZ

- · UN MIX THE BES & DES-LITTATO.
- . OFS C, NA LIVELD C ++ GRADUAL MEETS.
- .INITO 6=0, 191 6=1 e COSI VIA
- · ESEMPLO

CODE

function RICERCA-APPROFONDIMENTO-ITERATIVO(problema) **returns** un nodo soluzione o fallimento **for** profondità = 0 **to** ∞ **do**

 $risultato \leftarrow RICERCA-PROFONDITÀ-LIMITATA(problema, profondità)$ if $risultato \neq soglia$ then return risultato

function RICERCA-PROFONDITÀ-LIMITATA(problema, ℓ) returns un nodo soluzione o fallimento o soglia frontiera ← una coda LIFO (stack) con NODO(problema.STATOINIZIALE) come elemento iniziale risultato ← fallimento

while not VUOTA?(frontiera) do

 $nodo \leftarrow Pop(frontiera)$

if problema.È-OBIETTIVO(nodo.STATO) then return nodo

if Profondità(nodo) > ℓ then

risultato ← soglia

else if not È-CICLO(nodo) do

 $\textbf{for each} \ \textit{figlio in} \ \texttt{ESPANDI}(problema, nodo) \ \textbf{do}$

aggiungi figlio a frontiera

return risultato

PRESTABLOWI:

- · COMPLET: YES -> IN & SP. STATI INFINITI COL CICLO CHRCK
- CORPUT: YRS IF Y AZWONE HA COST UGUALE
- ·COMPLEXITY: SPACE = O(b.d) IF 3 502.
 O(b.m) ELSE

TIME =
$$O(b^d)$$
 ~> ANCHE SR "RIVEITO"

LUOI AI LIVELLI SUP

 $N(RAI) = (d)b^1 + (d-1)b^2 + (d-2)b^3 + ... + (1)b^d$ ~> COULTE WATER WATER WATER AS COUSTED

6 P BIDINEZIONALE

CARAPTERISTICHE

- RICERCE IN 2 DIRECTION: MONS MAJOR COM STANDING
- · TROUBLE SOL. QUAND FRONTIRER OF COLLIDONO

TAB. ALGO & (SU TREE)

Critorio	BF	UC	DF	DL	ID	Bidir
Criterio	Breadth- first	Uniform Cost	Depth-first	Limited Depth	Iterative Depth	Bidirectional
Completa?	si	si(^)	no	si (+)	si	si
Tempo	O(b ^a)	$O(b^{1+\lfloor C^*/arepsilon floor}) \ O(b^{1+\lfloor C^*/arepsilon floor})$	$O(b^m)$	$O(b^{l})$	$O(b^d)$	O(b ^{d/2})
Spazio	O(b ^a)	$O(b^{1+\lfloor C^*/\varepsilon \rfloor})$	O(bm)	<i>O(b</i> I)	O(bd)	O(b ^{d/2})
Ottimale?	si(*)	si(^)	no	no	si(*)	si

- (^) per costi degli archi $\geq \epsilon > 0$
- (+) per problemi per cui si conosce un limite alla profondità della soluzione (se *I* >d)

WIGHT FOOD DINGER

DICERCHE CIL GODE