

Предмет	Класс	Дата	Время начала	Время окончания
Информатика и ИКТ	9-11	01.12.2020	11-00	15-00

Задача 1. Гирлянда

Входные данные: стандартный ввод Выходные данные: стандартный вывод

Ограничение по памяти: 256 МБ

Ограничение по времени: 1 секунда на тест

Максимальная оценка за задачу: 100 баллов

Алиса решила отметить *N*-й день нахождения на карантине и вывесить на окно гирлянду из светящихся цифр. Она заказала нужные цифры. В привезенном заказе оказались цифры только одного вида, зато много. Алиса подумала-подумала и поняла, что может собрать из имеющихся экземпляров цифр нужное число как сумму других чисел. А плюсики просто нарисовать на окне. Но Алиса хочет нарисовать как можно меньше плюсиков.

Напишите программу, которая поможет Алисе посчитать минимальное количество плюсиков в вывешиваемой гирлянде.

Входные данные

В первой строке записано натуральное число D ($1 \le D \le 9$) — цифра из гирлянды. Во второй строке записано натуральное число N ($1 \le N \le 1000$).

Выходные данные

Требуется вывести одно целое число — минимальное количество плюсиков.

Пример

стандартный ввод	стандартный вывод
5 0	1
60	

Задача 2. Реклама

Входные данные: стандартный ввод стандартный вывод

Ограничение по памяти: 256 МБ

Ограничение по времени: 1 секунда на тест

Максимальная оценка за задачу: 100 баллов

На одном сайте собрана информация по N киноактерам. Среди прочей информации есть рейтинг зрительских симпатий по M странам — количество голосов, отданных за актера в каждой стране. Актеры, кроме съемок в фильмах, еще участвуют в рекламных кампаниях автомобилей. Каждый актер рекламирует свою марку, отличную от марок автомобилей других актеров.

Производитель новой марки автомобилей решил завоевать рынок и привлечь к рекламе одного из актеров. Для выбора лучшей кандидатуры была собрана информация о популярности марок автомобилей в этих странах. Маркетинговый отдел решил пригласить актера, которому доверяет не менее 30% стран. Критерий доверия актеру в одной стране был сформулирован так: «Актер и рекламируемый им автомобиль получили хотя бы по одному голосу. Рейтинги актера и рекламируемого им автомобиля являются максимальными в данной стране». Но если актера, подходящего под критерии нет, то решили приглашать лидера всеобщего актерского рейтинга. Такой рейтинг формируется суммированием голосов за актеров по всем странам. Рейтинг актера в стране – рейтинг среди всех актеров в этой стране. Всеобщий актерский рейтинг - суммарный рейтинг актеров по всем странам.

Напишите программу, которая позволит определить какого актера могут пригласить для рекламы нового автомобиля.

Предмет	Класс	Дата	Время начала	Время окончания
Информатика и ИКТ	9-11	01.12.2020	11-00	15-00

Входные данные

В первой строке записано два натуральных числа N и M ($1 \le N$, $M \le 100$).

Следующие N строк содержат по M целых чисел, записанных через пробел, — голоса за i-го актера в каждой из M стран.

Затем идут N строк с голосами за марку i-го автомобиля в каждой из M стран — по M целых чисел, записанных через пробел.

Все числа не превышают 1000. Актеры и автомобили нумеруются от 1 до N. Актер с номером i рекламирует автомобиль с номером i.

Выходные данные

Если актера с нужным уровнем доверия можно найти, то в первую строку выведите 'YES', а во вторую строку выведите одно целое число — номер приглашаемого актера. Если вариантов ответа несколько, выведите любой.

Если актера с нужным уровнем доверия нет, то в первую строку выведите 'NO', а во вторую строку выведите номер актера — лидера всеобщего актерского рейтинга. Если вариантов ответа несколько, выведите любой.

Пример

стандартный ввод	стандартный вывод
3 3 100 20 20 50 5 100 2 5 1 80 10 80 10 20 10 10 10 10	YES 1
3 3 100 20 20 50 5 100 2 5 1 10 10 80 80 20 10 10 10 10	NO 2

Задача 3. Большой теннис

Входные данные: стандартный ввод Выходные данные: стандартный вывод

Ограничение по памяти: 256 МБ

Ограничение по времени: 1 секунда на тест

Максимальная оценка за задачу: 100 баллов

Петя и Ваня играли в теннис. Каждый сет состоит из геймов, по результатам выигрышных геймов определяется победитель в сете. По правилам, игра ведется до шести очков, но после счёта 5:5 игра продолжается до семи очков. Ребята не всегда доигрывали нужное количество геймов, определяя победителя в сете по преимуществу очков. Результаты сета, например, у них могут быть такими: 6:3, 5:7, 5:2. Ребята заинтересовались, сколько есть последовательностей выигрышей геймов, приводящих к итоговому исходу. Среди исходов для 6:2 могут будут такие последовательности: 1111221, 11112211. Заметим, что последний гейм всегда остается за игроком, который побеждает в сете.

Предмет	Класс	Дата	Время начала	Время окончания
Информатика и ИКТ	9-11	01.12.2020	11-00	15-00

Напишите программу, которая по результатам трех сетов позволит определить общее количество последовательностей выигрышных геймов.

Входные данные

В трех входных строках содержатся результаты трех сетов. В каждой строке по два целых числа P и V ($0 \le P, V \le 7, P \ne V$), что означает результат сета P:V.

Выходные данные

Нужно вывести ответ, одно целое число – общее количество последовательностей выигрышных геймов.

Примеры

стандартный ввод	стандартный вывод
6 2	1575
1 5	
5 2	

Оценивание

Решения, корректно работающие в тех случаях, когда у игрока, проигравшего в сете, не более двух выигрышных геймов, будут оцениваться до 30 баллов.

Задача 4. Подготовка к олимпиаде

Входные данные: стандартный ввод Выходные данные: стандартный вывод

Ограничение по памяти: 256 МБ

Ограничение по времени: 1 секунда на тест

Максимальная оценка за задачу: 100 баллов

У Серёжи составлен список из N тем, рекомендованных к изучению для успешного участия в олимпиаде по информатике. Есть базовые темы, для их освоения не нужны предварительные знания по предмету. Для освоения небазовых тем нужно предварительно разобраться ε наборе других, связанных с ними, тем. Уровень сложности базовой темы — нулевой. Уровень сложности других тем на единицу больше уровня самой сложной из связанных тем. Гарантируется, что нет круговой взаимосвязанности тем.

Напишите программу, которая определит номера тем с заданным уровнем сложности.

Входные данные

В первой строке записаны два целых числа: N и M ($2 \le N$, $M \le 10^5$, $0 \le M \le 10^5$) — количество тем в списке и уровень сложности.

Следующие N строк содержат информацию о зависимости i-й темы. В каждой строке сначала записано целое число k_i — количество связанных тем, далее через пробел записаны k_i целых чисел — номера этих тем. Темы пронумерованы от 1 до N. Во входном файле суммарное количество связанных тем не превышает 10^7 .

Выходные данные

Требуется вывести номера тем, имеющих уровень сложности M, в порядке возрастания. Гарантируется, что ответ — непустое множество.

Пример

стандартный ввод	стандартный вывод
стандартный ввод	

Максимальное кол-во баллов: 500

Предмет	Класс	Дата	Время начала	Время окончания
Информатика и ИКТ	9-11	01.12.2020	11-00	15-00
5 1		3 4		
0				
1 3				
1 1				
1 1				
0				

Задача 5. Звезды

Входные данные: стандартный ввод выходные данные: стандартный вывод

Ограничение по памяти: 256 МБ

Ограничение по времени: 1 секунда на тест

Максимальная оценка за задачу: 100 баллов

На куске ткани нанесен рисунок из звездочек. Алиса хочет вырезать такую прямую ленточку, чтобы на ней было как можно больше звездочек. *Ширина ленточки* — в одну звездочку.

Напишите программу, которая вычисляет максимально возможное количество звездочек на ленточке.

Входные данные

В первой строке записано одно целое число N ($2 \le N \le 1500$) — количество звездочек на ткани.

В каждой из следующих N строк содержится по два целых числа — абсцисса и ордината очередной звездочки. Все координаты по модулю не превосходят 10^4 . В одной точке может находиться не более одной звездочки.

Выходные данные

Требуется вывести максимально возможное количество звездочек на ленточке.

Пример

стандартный ввод	стандартный вывод
4	3
2 0	
-2 3	
0 3	
4 3	
6	4
2 0	
-2 3	
0 3	
4 3	
0 -3	
6 6	

Оценивание

Решения, корректно работающие, когда правильный ответ — линия параллельная осям координат, будут оцениваться до 30 баллов.

Решения, корректно работающие для $N \le 900$, будут оцениваться до 70 баллов.