Unsupervised Learning Lab Sheet

1.

(a) The dataset in the table below contains 10 examples, each described by 4 numeric features. These 10 examples have been randomly assigned to two clusters, *C1* and *C2*, in order to initialise the *k*-Means algorithm. The assignments are as follows:

Item	f1	f2	f3	f4
x1	5.1	3.8	1.6	0.2
x2	4.6	3.2	1.4	0.2
x 3	5.3	3.7	1.5	0.2
x4	5	3.3	1.4	0.2
x5	7	3.2	4.7	1.4
x6	6.4	3.2	4.5	1.5
x7	6.9	3.1	4.9	1.5
x8	5.5	2.3	4	1.3
x9	6.5	2.8	4.6	1.5
x10	5.7	2.8	4.5	1.3

$$C1 = \{ x1, x3, x7, x8 \}$$
 $C2 = \{ x2, x4, x5, x6, x9, x10 \}$

Based on the table above and the cluster assignments, calculate the centroid vector for each cluster.

(b) Based on the centroids calculated in part (a), which clusters will the examples *x1* and *x10* next be assigned to? Calculate distances using the Euclidean distance measure.

2. In the notebook 11 Clustering *k*-Means clustering is applied with Euclidean distance to the *Penguins unlabelled* dataset with the n_init parameter set to 1.

Report the *intra-cluster distance* for clusterings with different numbers of clusters: k=2, k=3 and k=4.

Repeat the above process again, but change the random seed parameter for k-Means. Are the intra-cluster scores identical?

Repeat again with n_init set to 50. Does this make a difference?