

Problemas resueltos de Cálculo I Sergio Cruz Blázquez sergio.cruz@vam.es

Tema 1: Los números reales

5a) Demostror que 2 n > n 2 para todo n 35.

Lo hacemos por inducción. Etapa base: n=5 $2^{5}=32>5=25$

Paso inductivo: suponemos que $2^n > n^2$ $\forall n \ge 5$, y quecemos ver que $2^{n+1} > (n+1)^2$. Razonamos como sigue:

 $(n+1)^2 = n^2 + 2n + 1 < 2^n + 2n + 1 = 2^n \left(1 + \frac{2n}{2^n} + \frac{1}{2^n}\right) = (*)$

Puesto que $2^n > n^2$, entonces $\frac{1}{2^n} < \frac{1}{n^2}$, y de ahí se signe que

 $(*) = 2^{n} \left(1 + \frac{2n}{n^{2}} + \frac{1}{n^{2}} \right) = 2^{n} \left(1 + \frac{2}{n} + \frac{1}{n^{2}} \right).$

De igual forma, camo $n \ge 5$, intences $\frac{1}{n} \le \frac{1}{5}$, y nos queda:

 $n\left(1+\frac{2}{n}+\frac{1}{n^2}\right) \le 2^n\left(1+\frac{2}{5}+\frac{1}{25}\right) \le 2^n \cdot 2 = 2^{n+1}$

Hc) Probar que $\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n-1} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{2n-2} + \frac{1}{2n-1}$

Por comodidad, resumimos P(n) usando sumatorios:

 $\sum_{k=n}^{2n-1} \frac{1}{k} = \sum_{k=1}^{2n-1} \frac{(-1)^{k+1}}{k}$ Date oventa; hacemos inducción sobre n, no K!

$$\sum_{k=2}^{3} \frac{1}{k} = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}.$$

$$\sum_{k=1}^{3} \frac{(-1)^{k+1}}{k} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$

Paso inductivo: Suponemos que
$$\sum_{k=n}^{2n-1} \frac{1}{k} = \sum_{k=1}^{2n-1} \frac{(-1)^{k+1}}{k}$$
, y buscamos

llegor a que
$$\sum_{K=n+1}^{2n+1} \frac{1}{K} = \sum_{K=1}^{2n+1} \frac{(-1)^{K+1}}{K}$$

Vamos a portir de esta

$$\frac{\sum_{k=1}^{2n+1} \frac{(-1)^{k+1}}{K}}{\sum_{k=1}^{2n-1} \frac{(-1)^{k+1}}{K}} = \frac{1}{2n} + \frac{1}{2n+1} = \frac{\sum_{k=1}^{2n-1} \frac{1}{K}}{\frac{1}{2n}} + \frac{1}{2n+1} = \frac{\sum_{k=1}^{2n-1} \frac{1}{K}}{\frac{1}{2n}} + \frac{1}{2n+1} = \frac{1}{2n} + \frac{1}{2n} + \frac{1}{2n+1} = \frac{1}{2n} + \frac{1}{2n} + \frac{1}{2n+1} = \frac{1}{2n} + \frac{1}{2n} + \frac{1}{2n} + \frac{1}{2n} + \frac{1}{2n} = \frac{1}{2n} + \frac{1}{2$$

$$= \sum_{k=n}^{2n+1} \frac{1}{k} - \frac{1}{2n} - \frac{1}{2n} = \frac{1}{n} + \sum_{k=n+1}^{2n+1} \frac{1}{k} - \frac{1}{n} = \sum_{k=n+1}^{2n+1} \frac{1}{k}.$$

Sacamos el n-ésimo término del simatorio

2c) Encontror los valores de x que satisfacen: $|x^2-5x+6|<2$.

Como 270, podemos usar la propiedad IXIIa L=>-a EX Ea, y resolver:

 x^2-5x+8 no tiene vaíces reales, así que es siempre positivo, la 1^{a} ecuación se verifica para todo $x \in \mathbb{R}$.

$$x^2-5x+4=0 = 0 = x=1$$
, $x=4$. Entances, $x^2-5x+4 < 0 = x=1$. $x \in [1,4[$.

26) |XH| \(|X-1| \). No elevamos al cuadrado, es más fácil distinguir

Si
$$-1 \le x \le 1$$
, $x + 1 \le -x + 1$ $z = 2x \le 0$ $z = 2x \le 0$. Los purtos $x \in [-1,0]$ satisfacur la ecuación.

Si
$$X>1$$
, $X+1< X-1 => 1<-1$, no se verifica nunca.

Justando toda la información: $x \in]-\infty,0]$.

8d) Decidic si el conjunto $2(-i)^n - \frac{1}{n}$: $n \in IN$ (está acotado y calcular, si existen, su supremo y su ínjuno. (A)

Venos cómo son los puntos del conjunto $A: \{-2, \frac{1}{2}, \frac{-4}{3}, \frac{3}{4}, \dots \}$

Por un lado;
$$n \ge 1 = 1/n \le 1 = 1/n \ge -1$$
. Esto nos da $(-1)^n - \frac{1}{n} \ge -1 - 1 = -2$.

Como -2 e A y es ma cota inferior, teremos que -2 = mín A.

Veamos ahora que 1 = sup A. Empezamos viendo que 1 es ma cota superior:

Superior: $(-1)^n - 1/n \le 1 - 1/n \le 1$ Ahara, comprobamos que $\forall \varepsilon>0$, existe $n \in \mathbb{N}$ tal que

 $1-E \le (-1)-1/n \le 1$ Por la propiedad organizadana de IR, existe no EIN tal que $1/n_0 \le E$, lo que nos da $1-E \le (-1)^{n_0}-1/n_0$. Si tanamos $n_A \in IN$ cano un natural par $\ge n_0$, tenemos

 $1-E \leq (-1) - 1/N_A = 1 - 1/N_A \leq 1$, Como queríamos.

7a) $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots \right\} = \left\{\frac{n-1}{n} : n \ge 2\right\} = \left\{1 - \frac{1}{n} : n \ge 2\right\} = A$

 $\frac{Mayarado}{Mayarado}$: $1-\frac{1}{n} \le 1$ Vuc IN, entences A está mayorado.

Minorado. N>2=> 1/n < 1/2=> -1/n >-1/2=> 1-1/n > 1-1/2=1/2.

Como 1/2 es ma cota inferior y 1/2 e A = s min A = 1/2.

Veamos ahora que sup A = 1, pero no es un máximo (14A).

Dado E>O, queremos encontrar a EA (1-1/n can n7,2) tal que 1-E & 1-1/n & 1. (-E < -1/n => E > 1/n => 1/E &n)

Tomamos $n \ge m a \times 22, 1/\epsilon^7$, y venos que se tiene

$$n > 1/\epsilon = 1$$
 $1/n \le \epsilon = 1$ $1/n > -\epsilon = 1$ $1 - 1/n > 1 - \epsilon$

Tema 2: Sucesiones de números reales

Ejercicio 6 a)
$$\left\{\frac{1}{n!}\right\}$$
 Tenemos que $n! = n \cdot (n-i) - 2 \cdot 1 \ge n$, lo que nos da:

$$0 \le \frac{1}{n!} \le \frac{1}{n} \longrightarrow 0$$
, par la que $\left(\frac{1}{n!}\right) \to 0$.

$$0 \ge \frac{1}{N!} = \frac{1}{N}$$

$$\frac{2 \cos(3n) + 5 \sin(n^2)}{n+1}$$
 Tomanas valar absoluto:

$$5 \sin(n^2) \Big| 2 |\cos(3n)| + 5 |\sin(n^2)|$$

Sucesión decrecionte,

$$0 \le \frac{\left| 2 (s_{5}(s_{n}) + 5 sin (n^{2}) \right|}{n+1} \le \frac{2 \left| (s_{5}(s_{n}) \right| + 5 \left| sin (n^{2}) \right|}{n+1} \le \frac{7}{n+1} \to 0$$

Entonæs,
$$\left\{\frac{2(os(3n)+5Sin(n^2)}{n+1}\right\} \rightarrow 0$$
. Successón decrecionte, $\left\{\frac{2(os(3n)+5Sin(n^2))}{n+1}\right\}$

c)
$$\left\{ \frac{(-1)^{n+1} + 2^{-n} + \cos(n!)}{\sqrt{n}} \right\}$$
 Tomamos valor absoluto:

$$0 \le \left| \frac{(-1)^{n} + 2^{-n} + \cos(n!)}{\sqrt{n}} \right| \le \frac{2 + 2^{n}}{\sqrt{n}} = \frac{2 + (\frac{1}{2})^{n}}{\sqrt{n}} \le \frac{5/2}{\sqrt{n}}$$

$$0 \le \left| \frac{(-1)^n + 2^{-n} + \cos(n!)}{\sqrt{n}} \right| \le \frac{2 + 2^{-n}}{\sqrt{n}} = \frac{2 + \left(\frac{1}{2}\right)^n}{\sqrt{n}} \le \frac{5/2}{\sqrt{n}} \to 0.$$

Por tanto
$$\left\{ \frac{(-1)^{N+1} + 2^{-N} + \cos((n!))}{\sqrt{N}} \right\} \rightarrow 0$$
 $7c) \sqrt{N^2 + 1} - N = \frac{(\sqrt{N^2 + 1} - N)(\sqrt{N^2 + 1} + N)}{\sqrt{N^2 + 1} + N} = \frac{N^2 + 1 - N^2}{\sqrt{N^2 + 1} + N} = \frac{1}{\sqrt{N^2 + 1} + N}$

$$\sqrt{n^2+1} \longrightarrow +\infty \quad (\text{porcial de } \sqrt{n}) \quad y \quad n \longrightarrow +\infty \implies \frac{1}{\sqrt{n^2+1}+n} \longrightarrow 0.$$

$$7d) \quad n \sqrt{n^2+1} - n^2 = \frac{n^2(n^2+1) - n^4}{n\sqrt{n^2+1} + n^2} = \frac{n^2}{n\sqrt{n^2+1} + n^2} \implies \frac{1}{\sqrt{n^2+1} + n^2} \longrightarrow 0.$$
Raconalization $\sqrt{n^2+1} - n^2 = \frac{n^2(n^2+1) - n^4}{n\sqrt{n^2+1} + n^2} = \frac{n^2}{n\sqrt{n^2+1} + n^2} \implies \frac{1}{\sqrt{n^2+1} + n^2} \longrightarrow 0.$

$$= \frac{1}{\sqrt{1+\frac{1}{n}} + 1} \longrightarrow \frac{1}{2}$$

$$\sqrt{1 + \frac{1}{n}} + 1$$

$$A_{1} = \frac{6^{n}}{5^{n} + (-6)^{n}} = \frac{\frac{1}{6^{n}}}{\frac{1}{6^{n}}} \frac{1}{(\frac{5}{6})^{n} + (-1)^{n}}$$

$$A_{2n-1} = \frac{1}{(\frac{5}{6})^{n} - 1} \longrightarrow -1$$

La sucesión no converge, ya que trene dos subsucesiones que cunvergen a distintos límites.

8a) Lo hacemos de dos formas:

Por un lado,
$$\sqrt{2}n^3 = e^{1/n \log (2n^3)} = 1/n \log 2 + \frac{3}{n} \log n = \frac{\log 2}{2} + \frac{3}{\log n}$$

$$= e^{\frac{\log^2 n}{2}} e^{\frac{3\log n}{n}} \longrightarrow e^0 \cdot e^0 = 1.$$

$$= e^{n} \longrightarrow e^{n} = 1.$$
Alternativamente, si $2an = 2n^{3}$, Jemos que $\frac{a_{n+1}}{a_{n}} = \frac{2(n+1)^{3}}{2n^{3}} \longrightarrow 1$,
 $logo \sqrt{2n^{3}} \longrightarrow 1$ por el criterio de la vaíz.

Elamamos
$$a_n = \left(1 + \frac{2}{n} + \frac{1}{n^2}\right) (\rightarrow 1)$$
 y $b_n = n$

Estodiamos la sucesicá bn
$$(\alpha_{n-1}) = n\left(\frac{2}{n} + \frac{1}{n^2}\right) = 2 + \frac{1}{n} \rightarrow 2$$

cota superior de 2Cn9 => C \le A+B ((es la menor cota superior).

Pero entonces 2Cn7 también es creciente => 2Cn4 -> C

(Cn = antlon & anti +bnti = Cnti)

Par les propiedades y la unicidad del límite,

c) Falso, $2 a_n = (-1)^n$ sup $a_n = 1$ $2 b_n = (-1)^n$ sup $b_n = 1$ 2 ant bn / = 20/ sup cn = 0.

13.
$$a_0 = 1$$
, $a_1 = 2$, $a_1 = \frac{3}{2} a_{n-1} - \frac{1}{2} a_{n-2}$ para cada $n \ge 2$.

a) Demostremos por inducción que $2a_n \le a_n \le a_$

Etapa base: ao Lan (112 V)

Paso inductivo: Suponiendo que
$$a_{n-1} < a_n$$
 para algún n , probemos que $a_n < a_{n+1}$.

$$an+1 - an = \frac{3}{2} an - \frac{1}{2} an - an = \frac{1}{2} (an - an - 1) > 0$$

6) Comprobenos ahora que $a_n < 3$ para todo $n \in \mathbb{N}$. Hacemos ma inducción empezando en n = 2:

Etapa base:
$$a_0 = 1 < 3$$
, $a_1 = 2 < 3$, $a_2 = \frac{5}{2} < 3$.

Paso inductivo: Suponiundo que $a_1 < 3$ para algún $n \ge 2$, veamos que $a_{n+1} < 3$.

$$a_{n+1} = \frac{3}{2}a_n - \frac{1}{2}a_{n-1} < \frac{9}{2} - \frac{1}{2}a_{n-1}$$

(omo 2 ant es creciente, an-1 > a1 = 2 Vn72, por lo que -an & 2. Esto nos da:

any
$$\langle \frac{q}{2} - \frac{1}{2} \cdot 2 = \frac{7}{2} (=3.5)$$

No importa aanto aumentemos la etapa base, siempre nos da ma cota estríctamente mayor a 3...

Lo nacemos por inducción, teniendo en cuenta que

Etapa base:
$$\sqrt{t} \le \sqrt{4} = 2 = x_1 \le 2$$

 $\frac{\text{Paso} \quad \text{inductivo}:}{\text{y} \quad \text{comprobemos}} : \text{Supargamos} \quad \text{que} \quad \text{$\text{Vt} \in \text{Xn} \in \mathbb{Z}$} \quad \text{pora algún} \quad \text{$\text{n} \in \text{IN}$} \; ,$

y comprobenos que
$$\sqrt{t} \le x_{n+1} \le 2$$
.
Por un lado, $x_{n+1} = \frac{x_n}{2} + \frac{t}{2x_n} \le 1 + \frac{t}{2\sqrt{t}} = 1 + \frac{\sqrt{t}}{2} \le 2$.

Por etro lado,
$$X_{n+1} = \frac{X_n}{2} + \frac{t}{2X_n} \geqslant \frac{\sqrt{t}}{2} + \frac{t}{4} \geqslant \frac{\sqrt{t}}{2} + \frac{\sqrt{t}}{2} = \sqrt{t}$$
, donde hemos usado que $1 < t \Rightarrow t < t^2 \Rightarrow \sqrt{t} < t$.

Alternatuamente, podemos usar que $(a+b)^2 \geqslant 4ab$ para tener que

 $X_{NH}^2 = \frac{1}{4} \left(x_N + \frac{t}{x_N} \right)^2 \geqslant t \Rightarrow X_{NH} \geqslant \sqrt{t},$ y demostrar a continuación que $X_{NH} \leqslant 2$ usando esa información. Veamos ahora que $2 \times 10^{\circ}$ es decreciente ($\times 10^{\circ}$ xn $\times 10^{\circ}$). Para esto, basta tener en cuenta que $0 < \sqrt{t} < \times 10^{\circ}$.

$$X_{n+1} = \frac{1}{2} \left(X_n + \frac{\xi}{X_n} \right) \leq \frac{1}{2} \left(X_n + X_n \right) = X_n$$

Como 2 xn 4 está minorada y es decreciente, entences 2 xn 4 -> L.

Pasando al limite la identidad $X_{n+1} = \left(X_n + \frac{t}{X_n}\right)$ tenemos $2L = L + \frac{t}{L} \Rightarrow L^2 = t \Rightarrow L = \sqrt{t}$, o $L = -\sqrt{t}$.

Cano teníamos Xn > Tt VnGIN, ha de tenerse recesoriamente

Tema 3 Series de números reales

$$2\alpha$$
) $\sum_{n\geq 2} x_n$, $x_n = \log \frac{n}{n+1}$

$$Xn = \log \frac{n}{n+1} = \log n - \log(n+1) = -\log(n+1) - (-\log n)$$

Entences
$$\sum_{k=1}^{n} X_k = \sum_{k=1}^{n} \left(-\log(k+1) - (-\log k) \right) = -\log(n+1)$$
.

Per tanto, $\sum_{n>1} \log \frac{n}{n+1} \longrightarrow -\infty$.

2b)
$$\sum_{n\geqslant 1} x_n$$
, $x_n = \frac{1}{n(n+2)}$. $x_n = \frac{1/2}{n} + \frac{-1/2}{n+2} = \frac{-1}{2} \left(\frac{1}{n+2} - \frac{1}{n} \right)$

Enfonces,
$$\frac{n}{n}$$
 $\frac{1}{n}$ $\frac{n}{n+2}$ $\frac{n}{n+2}$ $\frac{n}{n}$ $\frac{n}{n+2}$ $\frac{n}{n+2}$ $\frac{n}{n}$

Entonces, $\sum_{k=1}^{n} x_k = \frac{-1}{2} \sum_{k=1}^{n} \left(\frac{1}{k+2} - \frac{1}{k} \right) = \frac{-1}{2} \sum_{k=1}^{n} \left(y_{k+2} - y_k \right),$

Verso que
$$\sum_{k=1}^{N} (y_{k+2} - y_{ik}) = y_8 - y_4 + y_4 - y_2 + y_5 - y_8 + \dots + y_{n+1} - y_{n-1} + y_{n+2} - y_n = y_{n+2} + y_{n+1} - y_4 - y_2$$

Entarces,

$$\sum_{n\geqslant 1} \frac{1}{n(n+2)} = \left\{ \frac{-1}{2} \left(\frac{1}{n+2} + \frac{1}{n+1} - 1 - \frac{1}{2} \right) \right\} \rightarrow \frac{3}{4}$$

5d)
$$\sum_{n\geqslant 1} \frac{\sqrt{n-1}}{3n^2+4}$$
 Observamos que el término general
 $a_n = \frac{\sqrt{n-1}}{3n^2+4} \approx \frac{1}{n^{3/2}}$,

limite con
$$b_n = \frac{1}{n^{3/2}}$$
.

$$\frac{a_n}{b_n} = \frac{(\sqrt{n-1}) n^{3/2}}{3n^2+4} = \frac{n^2-n^{3/2}}{3n^2-4} \longrightarrow \frac{1}{3}.$$

Por el criterio de comporación por paso al límite,
$$\sum_{n>1}$$
 xn converge $<=>\sum_{n>1} 1/n^{s/2}$ converge, que sí lo hace porque $3/2>1$.