

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00 psf
g _{мім}	=	1.75 psf

2.2 Snow Loads

Ground Snow Load, P _g =	30.00 psf	
Sloped Roof Snow Load, $P_s =$	18.56 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.82	
C _e =	0.90	
$C_t =$	1.20	

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 19.00 psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ TOP	=	1.1	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.1 1.7 (Pressure)	testing done by Ruscheweyh Consult. Coefficients are
Cf- _{TOP}	=	-2.2 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
S ₁ =	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.00	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	<u>Location</u>	Rear Struts	<u>Location</u>	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	<u>Location</u>	Bracing	<u>9</u>		
M4	Outer	M15	5		
M8	Inner	M16A	A		
M12	Outer				
M8	Inner		-		

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type =	<u>1.5x0.25</u>	
Aluminum Type =	6061-T6	
$F_{ty} =$	35	ksi
Φ =	0.90	
$S_y =$	0.02	in ³
E =	10100	ksi
I _y =	33.25	in ⁴
A =	0.38	in ²
g =	0.45	lbs/ft
$M_y =$	0.006	k-ft
P _n =	0.041	k
M _{y allowable} =	0.046	k-ft
P _{n allowable} =	11.813	k
Utilization =	<u>14%</u>	

A cross brace kit is required every 14 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	146.29	<u>1701.36</u>	k
Compressive Load =	<u>1787.40</u>	1472.92	k
Lateral Load =	<u>5.33</u>	<u>915.99</u>	k
Moment (Weak Axis) =	0.01	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 24238.0 in-lbs Resisting Force Required = 807.93 lbs A minimum 60in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1346.55 lbs to resist overturning. Minimum Width = <u>21 in</u> in Weight Provided = 1903.13 lbs Sliding 211.20 lbs Force = Use a 60in long x 21in wide x 18in tall Friction = 0.4 Weight Required = 527.99 lbs ballast foundation to resist sliding. Resisting Weight = 1903.13 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 211.20 lbs Cohesion = 130 psf Use a 60in long x 21in wide x 18in tall 8.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 951.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c =

Bearing Pressure

Length =

8 in

 $\frac{\text{Ballast Width}}{21 \text{ in}} = \frac{22 \text{ in}}{23 \text{ in}} = \frac{24 \text{ in}}{2175 \text{ lbs}}$ $P_{\text{ftg}} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.75 \text{ ft}) = \frac{1903 \text{ lbs}}{2193 \text{ lbs}} = \frac{2084 \text{ lbs}}{2175 \text{ lbs}}$

ASD LC	1.0D + 1.0S				1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in
FA	696 lbs	696 lbs	696 lbs	696 lbs	482 lbs	482 lbs	482 lbs	482 lbs	827 lbs	827 lbs	827 lbs	827 lbs	-63 lbs	-63 lbs	-63 lbs	-63 lbs
FB	502 lbs	502 lbs	502 lbs	502 lbs	519 lbs	519 lbs	519 lbs	519 lbs	724 lbs	724 lbs	724 lbs	724 lbs	-782 lbs	-782 lbs	-782 lbs	-782 lbs
F _V	74 lbs	74 lbs	74 lbs	74 lbs	385 lbs	385 lbs	385 lbs	385 lbs	339 lbs	339 lbs	339 lbs	339 lbs	-422 lbs	-422 lbs	-422 lbs	-422 lbs
P _{total}	3101 lbs	3192 lbs	3283 lbs	3373 lbs	2904 lbs	2995 lbs	3085 lbs	3176 lbs	3454 lbs	3544 lbs	3635 lbs	3726 lbs	296 lbs	351 lbs	405 lbs	460 lbs
M	490 lbs-ft	490 lbs-ft	490 lbs-ft	490 lbs-ft	532 lbs-ft	532 lbs-ft	532 lbs-ft	532 lbs-ft	729 lbs-ft	729 lbs-ft	729 lbs-ft	729 lbs-ft	659 lbs-ft	659 lbs-ft	659 lbs-ft	659 lbs-ft
е	0.16 ft	0.15 ft	0.15 ft	0.15 ft	0.18 ft	0.18 ft	0.17 ft	0.17 ft	0.21 ft	0.21 ft	0.20 ft	0.20 ft	2.22 ft	1.88 ft	1.63 ft	1.43 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	287.3 psf	284.1 psf	281.2 psf	278.5 psf	259.0 psf	257.1 psf	255.4 psf	253.8 psf	294.7 psf	291.2 psf	288.0 psf	285.0 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	421.6 psf	412.3 psf	403.9 psf	396.1 psf	404.8 psf	396.3 psf	388.6 psf	381.4 psf	494.8 psf	482.2 psf	470.6 psf	460.1 psf	407.1 psf	205.1 psf	161.2 psf	143.6 psf

Maximum Bearing Pressure = 495 psf Allowable Bearing Pressure = 1500 psf Use a 60in long \times 21in wide \times 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_0 = 282.8 \text{ ft-lbs}$

Resisting Force Required = 323.16 lbs S.F. = 1.67 Weight Required = 538.60 lbs

Minimum Width = 21 in in Weight Provided = 1903.13 lbs

A minimum 60in long x 21in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E			
Width	21 in				21 in		21 in			
Support	Outer	Inner	Outer	Outer	Outer Inner		Outer	Inner	Outer	
F _Y	91 lbs	244 lbs	86 lbs	332 lbs	983 lbs	327 lbs	27 lbs	71 lbs	25 lbs	
F _V	5 lbs	5 lbs	0 lbs	23 lbs	22 lbs	1 lbs	2 lbs	1 lbs	0 lbs	
P _{total}	2447 lbs	2600 lbs	2442 lbs	2575 lbs	3226 lbs	2570 lbs	716 lbs	760 lbs	714 lbs	
М	8 lbs-ft	7 lbs-ft	0 lbs-ft	39 lbs-ft	33 lbs-ft	4 lbs-ft	2 lbs-ft	2 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.02 ft	0.01 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.29 ft	1.74 ft	1.75 ft	1.72 ft	1.73 ft	1.75 ft	1.74 ft	1.74 ft	1.75 ft	
f _{min}	276.6 sqft	294.3 sqft	278.9 sqft	278.9 sqft	355.9 sqft	292.3 sqft	80.9 sqft	86.1 sqft	81.6 sqft	
f _{max}	282.7 psf	300.1 psf	279.3 psf	309.7 psf	381.5 psf	295.2 psf	82.7 psf	87.7 psf	81.7 psf	

Maximum Bearing Pressure = 381 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	1.375 k	Maximum Axial Load =	1.174 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>24%</u>	Utilization =	<u>21%</u>
<u>Diagonal Strut</u>		<u>Bracing</u>	
Maximum Axial Load =	0.467 k	Maximum Axial Load =	0.041 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	8%	Utilization =	<u>1%</u>
	<u>870</u>	 	

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 30.83 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ \text{0.617 in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.063 \text{ in} \\ \hline & N\!\!\!\!/\!\!\!/\!\!\!\!A} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = ProfiPlus XT

Strong Axis:

3.4.14

$$L_b = 96.00 \text{ in}$$

$$J = 0.427$$

$$200.222$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

S1 = 0.51461

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
S2 = 1701.56

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \sqrt{(\text{LbSc})/(\text{Cb*} \sqrt{(\text{lyJ})/2)})}]$$

$$\phi F_L = 28.8 \text{ ksi}$$

3.4.16

b/t = 6.6

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

Weak Axis:

3.4.14

4.14
$$L_{b} = 96.00 \text{ in}$$

$$J = 0.427$$

$$217.57$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{I} = 28.6$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_{1}Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_{L} = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_{L} = 22.7 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 37.95$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 38.1$$

$$m = 0.63$$

$$C_0 = 40.784$$

$$Cc = 39.216$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$mDbr$$

 $S2 = 79.7$
 $\phi F_L = 1.3\phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L St = 28.8 \text{ ksi}$
 $\phi F_L St = 498305 \text{ mm}^4$
 $\phi F_L St = 498305 \text{ mm}^4$
 $\phi F_L St = 498305 \text{ mm}^4$
 $\phi F_L St = 498305 \text{ mm}^4$

0.746 in³

1.787 k-ft

21.4 ksi

3.4.18

$$h/t = 6.6$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20.5$$

$$Cc = 20.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 22.7 \text{ ksi}$$

$$ly = 148662 \text{ mm}^4$$

$$0.357 \text{ in}^4$$

$$x = 20.5 \text{ mm}$$

$$Sy = 0.443 \text{ in}^3$$

$$M_{max}Wk = 0.838 \text{ k-ft}$$

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t = 6.6
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 37.95
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi c k 2^* \sqrt{(BpE)})/(1.6b/t)$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.42 \text{ ksi}$$

$$A = 620.02 \text{ mm}^2$$

$$0.96 \text{ in}^2$$

$$P_{\text{max}} = 20.59 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.32 \\ & 21.4323 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2*ry^*\sqrt(Cb))]$$

 $\phi F_I = 29.8 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.32 \\ & 24.5845 \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 = & 1.37733 \\ S2 = & 1.2C_c \\ S2 = & 79.2 \\ \phi F_L = & \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt(Cb))] \\ \phi F_L = & 29.8 \text{ ksi} \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16

N/A for Weak Direction

3.4.16

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.6Dt$$

 $S1 = 1.1$
 $S2 = C_t$
 $S2 = 141.0$
 $\varphi F_L = 1.17 \varphi \varphi F_C \varphi$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1 N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

3.4.16.2
$$b/t = 24.46$$

$$t = 2.6$$

$$ds = 6.05$$

$$rs = 3.49$$

$$S = 21.70$$

$$\rho st = 0.22$$

$$F_{UT} = 9.37$$

$$F_{ST} = 28.24$$

$$\phi F_L = Fut + (Fst - Fut)\rho st < Fst$$

$$\phi F_L = 13.5 \text{ ksi}$$

3.4.18

h/t = 24.46

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L St = & 29.8 \text{ ksi} \\ Ix = & 364470 \text{ mm}^4 \\ & & 0.876 \text{ in}^4 \\ y = & 37.77 \text{ mm} \\ Sx = & 0.589 \text{ in}^3 \\ M_{max} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7
$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.90326$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 30.1251 \text{ ksi}$$

3.4.18

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{split} \phi F_L W k &= 13.5 \text{ ksi} \\ ly &= 217168 \text{ mm}^4 \\ 0.522 \text{ in}^4 \\ x &= 29 \text{ mm} \\ Sy &= 0.457 \text{ in}^3 \\ M_{max} W k &= 0.513 \text{ k-ft} \end{split}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^* \sqrt{(BpE))/(5.1b/t)} \\ \phi F_1 = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi F C V$$

 $\varphi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70
 $\varphi F_L = \varphi C [Bp-1.6Dp*b/t]$

3.4.9.1

 $\phi F_L =$

$$b/t = 24.46$$

$$t = 2.6$$

$$ds = 6.05$$

$$rs = 3.49$$

$$S = 21.70$$

$$\rho st = 0.22$$

$$F_{UT} = 10.43$$

$$F_{ST} = 28.24$$

$$\phi F_L = Fut + (Fst - Fut)\rho st < Fst$$

$$\phi F_L = 14.3 \text{ ksi}$$

0.0

28.2 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{1}{\theta_b} Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{\text{max}} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$\left(Bc - \frac{\theta_y}{\theta_b} Fcy\right)^2$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$
$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

$$\varphi F_L = 31.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$\phi F_1 = 33.3 \text{ ksi}$

Not Used 0.0 3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_1 = 1.17 \phi y F c y$$

$$\omega F_L = 1.17 \psi y F C y$$
 $\omega F_L = 38.9 \text{ ksi}$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

h/t =

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

 $Cc = 15$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$

 $1x = 39958.2 \text{ mm}^4$

$$y = 15 \text{ mm}$$

Sx = 0.163 in³

$$M_{max}St = 0.423 \text{ k-ft}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

 $\phi F_L = 31.2$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$1 = \frac{\theta_b}{mDbr}$$

S1 = 36.9

$$m = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L W k = 31.2 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

0.096 in⁴

$$x = 15 \text{ mm}$$

Sy = 0.163 in³

$$M_{max}Wk = 0.423 k-ft$$

SCHLETTER

Compression

3.4.7

$$\begin{array}{ll} \lambda = & 0.77182 \\ r = & 0.437 \text{ in} \\ S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.83792 \\ \phi F_L = \phi cc(Bc-Dc^*\lambda) \end{array}$$

 ϕF_L = 24.5226 ksi

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi F_C y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F_C y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{1}{\phi_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$
 121.663

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.5146^{\circ}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

b/t = 7.75
$$Bp - \frac{\theta_y}{\theta_b} Fcy$$

$$S1 = \frac{1.6Dp}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

S2 = 46.7

$$\varphi F_L = \varphi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{O_b}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = mDbr$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$
 $1x = 39958.2 \text{ mm}^4$

$$0.096 \text{ in}^4$$

y = 15 mm
Sx = 0.163 in³

$$M_{max}St = 0.404 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$

 $J = 0.16$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.8$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{1}{\theta_b} \cdot 1.3Fc}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$M_{max}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.98863 \\ r = & 0.437 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.85841 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 7.59722 \text{ ksi} \end{array}$$

3.4.9

b/t = 7.75
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 7.75
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t =

$$S1 = \left(\frac{\theta_b}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

0.0

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis: 3.4.14

$$L_b = 36.18 \text{ in}$$
 $J = 0.16$
 94.9139

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

 $\phi F_L = 30.2 \text{ ksi}$

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 30.2 \text{ ksi}$$

$$\varphi F_L St = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

15 mm

0.163 in³

Weak Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 36.18 \text{ in} \\ \mathsf{J} = & 0.16 \\ & 94.9139 \\ \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\varphi}\mathsf{F_L} = & \mathsf{\varphi}\mathsf{b}[\mathsf{Bc-1.6Dc}^*\sqrt{(\mathsf{LbSc})/(\mathsf{Cb}^*\sqrt{(\mathsf{lyJ})/2}))}] \\ \mathsf{\varphi}\mathsf{F_L} = & 30.2 \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18 h/t = 7.75

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L Wk = 33.3 \text{ ksi}$$

$$y = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$x = 15 \text{ mm}$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max} Wk = 0.450 \text{ k-ft}$$

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

0.65

S1 =

m =

 $C_0 =$ Cc =

y =

 $M_{max}St = 0.410 \text{ k-ft}$

Sx =

SCHLETTER

Compression

3.4.7
$$\lambda = 1.5514$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.7972$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 11.5927 \text{ ksi}$$
3.4.9
$$b/t = 7.75$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\varphi F_L = \varphi y Fcy$$

33.3 ksi

33.3 ksi

7.75

12.21

32.70

3.4.10

 $\phi F_1 =$

b/t =

S1 =

S2 =

 $\varphi F_L = \varphi y F c y$ $\varphi F_L = 33$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 11.59 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 5.82 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-51.748	-51.748	0	0
2	M16	Υ	-51.748	-51.748	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-58.278	-58.278	0	0
2	M16	V	-90.067	-90.067	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	116.557	116.557	0	0
2	M16	V	52.98	52.98	0	0

Load Combinations

	Description	S	P	S B	F	a l	B	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W							1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1 1	.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E .	.Yes	Υ		1 1	.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1 .!	56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1 1	.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1 .!	56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	. Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1 1	.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1 1	.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1 .3	362					6	.875												

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	168.178	2	305.32	1	002	15	0	2	0	1	0	1
2		min	-220.776	3	-399.182	3	203	1	0	3	0	1	0	1
3	N7	max	0	15	504.68	1	078	15	0	15	0	1	0	1
4		min	186	1	-24.351	3	-1.856	1	003	1	0	1	0	1
5	N15	max	0	15	1374.92	1	.673	1	.001	1	0	1	0	1
6		min	-1.921	1	-112.534	3	311	3	0	3	0	1	0	1
7	N16	max	668.265	2	1133.016	1	269	10	0	1	0	1	0	1
8		min	-704.607	3	-1308.738	3	-37.124	3	0	3	0	1	0	1
9	N23	max	0	15	504.355	1	4.101	1	.007	1	0	1	0	1
10		min	186	1	-23.859	3	.163	15	0	15	0	1	0	1
11	N24	max	168.744	2	311.076	1	37.357	3	.002	1	0	1	0	1
12		min	-220.852	3	-396.336	3	.04	10	0	3	0	1	0	1
13	Totals:	max	1003.093	2	4133.367	1	0	10						
14		min	-1146.391	3	-2265	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	. LC
1	M2	1	max	348.926	1	.641	4	.715	1	0	15	0	3	0	1
2			min	-360.122	3	.151	15	03	3	001	1	0	1	0	1
3		2	max	349.042	1	.595	4	.715	1	0	15	0	15	0	15
4			min	-360.035	3	.141	15	03	3	001	1	0	1	0	4
5		3	max	349.159	1	.55	4	.715	1	0	15	0	1	0	15
6			min	-359.947	3	.13	15	03	3	001	1	0	3	0	4
7		4	max	349.275	1	.504	4	.715	1	0	15	0	1	0	15
8			min	-359.86	3	.119	15	03	3	001	1	0	3	0	4
9		5	max	349.391	1	.458	4	.715	1	0	15	0	1	0	15
10			min	-359.773	3	.108	15	03	3	001	1	0	3	0	4
11		6	max	349.508	1	.413	4	.715	1	0	15	0	1	0	15
12			min	-359.685	3	.098	15	03	3	001	1	0	3	0	4
13		7	max	349.624	1	.367	4	.715	1	0	15	0	1	0	15
14			min	-359.598	3	.087	15	03	3	001	1	0	3	0	4
15		8	max	349.741	1	.321	4	.715	1	0	15	0	1	0	15
16			min	-359.511	3	.076	15	03	3	001	1	0	3	0	4
17		9	max	349.857	1	.276	4	.715	1	0	15	0	1	0	15
18			min	-359.423	3	.065	15	03	3	001	1	0	3	0	4
19		10	max	349.974	1	.23	4	.715	1	0	15	0	1	0	15
20			min	-359.336	3	.055	15	03	3	001	1	0	3	0	4
21		11	max	350.09	1	.184	4	.715	1	0	15	0	1	0	15
22			min	-359.249	3	.044	15	03	3	001	1	0	3	0	4
23		12	max	350.206	1	.139	4	.715	1	0	15	.001	1	0	15
24			min	-359.162	3	.033	15	03	3	001	1	0	3	0	4
25		13	max	350.323	1	.098	2	.715	1	0	15	.001	1	0	15
26			min	-359.074	3	.018	12	03	3	001	1	0	3	0	4
27		14	max	350.439	1	.063	2	.715	1	0	15	.001	1	0	15
28			min	-358.987	3	002	3	03	3	001	1	0	3	0	4
29		15	max	350.556	1	.027	2	.715	1	0	15	.001	1	0	15
30			min	-358.9	3	029	3	03	3	001	1	0	3	0	4
31		16	max	350.672	1	008	2	.715	1	0	15	.002	1	0	15
32			min	-358.812	3	056	3	03	3	001	1	0	3	0	4
33		17	max	350.788	1	02	15	.715	1	0	15	.002	1	0	15
34			min	-358.725	3	09	4	03	3	001	1	0	3	0	4
35	<u> </u>	18	max	350.905	1	031	15	.715	1	0	15	.002	1	0	15
36			min	-358.638	3	135	4	03	3	001	1	0	3	0	4
37		19	max	351.021	1	042	15	.715	1	0	15	.002	1	0	15

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	<u>. LC</u>
38			min	-358.55	3	181	4	03	3	001	1	0	3	0	4
39	M3	1	max	102.182	2	1.776	4	028	15	00	15	.002	1	0	4
40				-128.742	3	.418	15	747	1	0	1	0	15	0	15
41		2		102.114	2	1.599	4	028	15	0	15	.002	1	0	4
42			min	-128.794	3	.376	15	747	1	0	1	0	15	0	12
43		3		102.045	2	1.422	4	028	15	0	15	.002	1	0	2
44		1		-128.845	3	.335	15	747	1	0	1	0	15	0	3
45		4		101.976	2	1.245	4	028	15	0	15	.002	1	0	15
46		_		-128.897	3	.293	15	747	1	0	1	0	15	0	4
47		5	max	101.908 -128.948	2	1.067	15	028	15 1	<u> </u>	15	.002	15	0	15
48		6			3	.251		747	15	0	15	.002		0	4
49		6		101.839 -129	3	.89 .21	15	028 747	1	0	1	0	15	<u> </u>	1 <u>5</u>
50 51		7	min	101.771	2	.713	4	747 028	15	<u> </u>	15	.001	1	<u> </u>	15
52		-		-129.051	3	.168	15	026 747	1	0	1	0	15	0	4
53		8		101.702	2	.536	4	028	15	0	15	.001	1	0	15
54		-		-129.103	3	.126	15	747	1	0	1	0	15	001	4
55		9		101.633	2	.359	4	028	15	0	15	.001	1	0	15
56		<u> </u>		-129.154	3	.085	15	747	1	0	1	0	15	001	4
57		10		101.565	2	.181	4	028	15	0	15	0	1	0	15
58		10		-129.205	3	.043	15	747	1	0	1	0	15	001	4
59		11		101.496	2	.024	2	028	15	0	15	0	1	0	15
60				-129.257	3	021	3	747	1	0	1	0	15	001	4
61		12		101.428	2	04	15	028	15	0	15	0	1	0	15
62			min	-129.308	3	173	4	747	1	0	1	0	15	001	4
63		13	max	101.359	2	082	15	028	15	0	15	0	1	0	15
64			min	-129.36	3	35	4	747	1	0	1	0	15	001	4
65		14	max	101.29	2	123	15	028	15	0	15	0	1	0	15
66			min	-129.411	3	527	4	747	1	0	1	0	12	001	4
67		15	max	101.222	2	165	15	028	15	0	15	0	1	0	15
68				-129.463	3	705	4	747	1	0	1	0	12	0	4
69		16		101.153	2	207	15	028	15	0	15	0	15	0	15
70				-129.514	3	882	4	747	1	0	1	0	1	0	4
71		17		101.085	2	248	15	028	15	0	15	0	15	0	15
72		10		-129.566	3	-1.059	4	747	1	0	1	0	1	0	4
73		18		101.016	2	29	15	028	15	0	15	0	15	0	15
74		40		-129.617	3	-1.236	4	<u>747</u>	1	0	1	0	1	0	4
75		19		100.947	2	332	15	028	15	0	15	0	15	0	1
76	N 4 4	4		-129.669	3	-1.413	4	747	1	0	1	0	1	0	1
77 78	<u>M4</u>	1	max		<u>1</u> 3	0	1	078	15	0	1	0	3	0	1
		2		-25.225				-2.026 078							1
79 80			max	503.58 -25.176	<u>1</u> 3	0	1	-2.026	15	0	1	0	15	<u>0</u> 	1
81		3		503.644	<u> </u>	0	1	-2.026 078	15	0	1	0	15	0	1
82		3	min	-25.128	3	0	1	-2.026	1	0	1	0	1	0	1
83		4		503.709	_ <u>3_</u> 1	0	1	078	15	0	1	0	15	0	1
84		-		-25.079	3	0	1	-2.026	1	0	1	0	1	0	1
85		5		503.774	1	0	1	078	15	0	1	0	15	0	1
86				-25.031	3	0	1	-2.026	1	0	1	0	1	0	1
87		6	max		1	0	1	078	15	0	1	0	15	0	1
88				-24.982	3	0	1	-2.026	1	0	1	0	1	0	1
89		7		503.903	1	0	1	078	15	0	1	0	15	0	1
90				-24.934	3	0	1	-2.026	1	0	1	001	1	0	1
91		8		503.968	1	0	1	078	15	0	1	0	15	0	1
92			min	-24.885	3	0	1	-2.026	1	0	1	001	1	0	1
93		9		504.033	1	0	1	078	15	0	1	0	15	0	1
94				-24.837	3	0	1	-2.026	1	0	1	001	1	0	1
					_										

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	. LC
95		10	max	504.097	_1_	0	1	078	15	0	1	0	15	0	1
96			min	-24.788	3	0	1	-2.026	1	0	1	002	1	0	1
97		11	max		_1_	0	1	078	15	0	1	00	15	0	1
98			min	-24.74	3	0	1	-2.026	1	0	1	002	1	0	1
99		12	max	504.227	1_	0	1	078	15	0	1	0	15	0	1
100		10	min	-24.691	3	0	1	-2.026	1	0	1	002	1	0	1
101		13	max		1_	0	1	078	15	0	1	0	15	0	1
102		4.	min	-24.643	3	0	1	-2.026	1	0	1	002	1	0	1
103		14	max		1_	0	1	078	15	0	1	0	15	0	1
104		4.5	min	-24.594	3	0	1	-2.026	1	0	1	002	1	0	1
105		15	max		1	0	1	078	15	0	1	0	15	0	1
106		40	min	-24.545	3	0	1	-2.026	1	0	1	003	1	0	1
107		16	max		1_	0	1	078	15	0	1	0	15	0	1
108		47	min	-24.497	3	0	1	-2.026	1	0	1	003	1	0	1
109		17	max	504.55	1_	0	1	078	15	0	1	0	15	0	1
110		40	min	-24.448	3	0	1	-2.026	1	0	1	003	1	0	1
111		18	max		1	0	1	078	15	0	1	0	15	0	1
112		40	min	-24.4	3	0	1	-2.026	1	0	1	003	1	0	1
113		19	max		1	0	1	078	15	0	1	0	15	0	1
114	MC	1	min	-24.351	3	0	1	-2.026	1	0	1	003	1	0	1
115	<u>M6</u>	1		1141.044	1	.641	4	.219	1	0	1	0	3	0	1
116			min	-1174.157	3	.151	15	12	3	0	15	0	11	0	1
117		2		1141.161	1_	.595	4	.219	1	0	1	0	3	0	15
118			min	-1174.069	3	.14	15	12	3	0	15	0	15	0	4
119		3		1141.277 -1173.982	1	.55	4	.219	1	0	1	0	1	0	15
120		4	min		3	.13	15	12	3	0	15	0	15	0	4
121		4		1141.393	1_	.504	4	.219	1	0	1	0	1	0	15
122		_	min	-1173.895	3	.119	15	12	3	0	15	0	15	0	4
123		5		1141.51 -1173.807	1	.458	4	.219	1	0	1	0	1	0	15
124 125		6	min	1141.626	<u>3</u> 1	.108 .413	1 <u>5</u>	12 .219	3	<u> </u>	15 1	<u> </u>	12	<u> </u>	15
126		0		-1173.72	3	.098	15	12	3	0	15	0	3	0	4
127		7	min	1141.743	<u> </u>	.377	2	.219	1		1	0	1	0	15
128			min		3	.086	12	12	3	<u> </u>	15	0	3	0	4
129		8		1141.859	<u> </u>	.341	2	.219	1	0	1	0	1	0	15
130		0	min	-1173.546	3	.068	12	12	3	0	15	0	3	0	4
131		9		1141.975	<u> </u>	.306	2	.219	1	0	1	0	1	0	15
132		9	min	-1173.458	3	.05	12	12	3	0	15	0	3	0	4
133		10		1142.092	_ <u></u>	.27	2	.219	1	0	1	0	1	0	15
134		10	min	-1173.371	3	.032	12	12	3	0	15	0	3	0	4
135		11		1142.208		.234	2	.219	1	0	1	0	1	0	15
136			min		3	.012	3	12	3	0	15	0	3	0	4
137		12		1142.325	1	.199	2	.219	1	0	1	0	1	0	15
138		12		-1173.196	3	015	3	12	3	0	15	0	3	0	2
139		13		1142.441	1	.163	2	.219	1	0	1	0	1	0	12
140		10	min		3	042	3	12	3	0	15	0	3	0	2
141		14		1142.557	1	.128	2	.219	1	0	1	0	1	0	12
142		17	min		3	068	3	12	3	0	15	0	3	0	2
143		15		1142.674	1	.092	2	.219	1	0	1	0	1	0	12
144		10	min	-1172.934	3	095	3	12	3	0	15	0	3	0	2
145		16		1142.79	1	.057	2	.219	1	0	1	0	1	0	12
146				-1172.847	3	122	3	12	3	0	15	0	3	0	2
147		17		1142.907	1	.021	2	.219	1	0	1	0	1	0	12
148				-1172.76		148	3	12	3	0	15	0	3	0	2
149		18		1143.023		015	2	.219	1	0	1	0	1	0	12
150			min		3	175	3	12	3	0	15	0	3	0	2
151		19		1143.139	1	042	15	.219	1	0	1	0	1	0	12
			mux			.072		10					1	_	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]		y-y Mome	LC	z-z Mome	
152			min	-1172.585	3	202	3	12	3	0	15	0	3	0	2
153	M7	1		466.953	2	1.779	4	.017	1	0	2	0	2	0	2
154			min	-397.893	3	.418	15	003	10	0	3	0	3	0	12
155		2	max	466.885	2	1.602	4	.017	1	0	2	0	2	0	2
156			min	-397.945	3	.377	15	003	10	0	3	0	3	0	3
157		3	max	466.816	2	1.425	4	.017	1	0	2	0	2	0	2
158			min	-397.996	3	.335	15	003	10	0	3	0	3	0	3
159		4	max	466.747	2	1.247	4	.017	1	0	2	0	2	0	2
160			min	-398.048	3	.294	15	003	10	0	3	0	3	0	3
161		5	max	466.679	2	1.07	4	.017	1	0	2	0	2	0	15
162			min	-398.099	3	.252	15	003	10	0	3	0	3	0	3
163		6	max	466.61	2	.893	4	.017	1	0	2	0	2	0	15
164			min	-398.15	3	.21	15	003	10	0	3	0	3	0	4
165		7	max		2	.716	4	.017	1	0	2	0	2	0	15
166				-398.202	3	.169	15	003	10	0	3	0	3	0	4
167		8		466.473	2	.539	4	.017	1	0	2	0	2	0	15
168				-398.253	3	.127	15	003	10	0	3	0	3	001	4
169		9	max		2	.361	2	.017	1	0	2	0	2	0	15
170			min	-398.305	3	.085	15	003	10	0	3	0	3	001	4
171		10	max		2	.223	2	.017	1	0	2	0	2	0	15
172		10		-398.356	3	.02	12	003	10	0	3	0	3	001	4
173		11	max		2	.085	2	.017	1	0	2	0	2	0	15
174				-398.408	3	083	3	003	10	0	3	0	3	001	4
175		12	max	466.199	2	04	15	.017	1	0	2	0	2	0	15
176		12		-398.459	3	186	3	003	10	0	3	0	3	001	4
177		13	max		2	081	15	.017	1	0	2	0	2	0	15
		13		-398.511	3	347	4	003	10	0	3	T T	3	001	
178		1.1										0	_		4
179		14	max		2	123	15	.017	1	0	2	0	2	0	15
180		4.5		-398.562	3	525	4	003	10	0	3	0	3	001	4
181		15		465.993	2	165	15	.017	1	0	3	0	2	0	15
182		4.0		-398.614	3	702	4	003	10	0		0	3	0	4
183		16		465.924	2	206	15	.017	1	0	2	0	2	0	15
184		4-7		-398.665	3	879	4	003	10	0	3	0	3	0	4
185		17	max		2	248	15	.017	1	0	2	0	2	0	15
186		10		-398.716	3	-1.056	4	003	10	0	3	0	3	0	4
187		18		465.787	2	29	15	.017	1	0	2	0	2	0	15
188				-398.768	3	-1.233	4	003	10	0	3	0	3	0	4
189		19	max		2	331	15	.017	1	0	2	0	2	0	1
190			min	-398.819	3	-1.411	4	003	10	0	3	0	3	0	1
191	<u>M8</u>	1		1373.755	_1_	0	1	.868	1	0	_1_	0	15	0	1
192				-113.407	3	0	1	305	3	0	1	0	1	0	1
193		2	_	1373.82	_1_	0	1	.868	1	0	_1_	0	1_	0	1
194				-113.359	3	0	1	305	3	0	1_	0	3	0	1
195		3		1373.884	_1_	0	1	.868	1	0	1_	0	1_	0	1
196				-113.31	3	0	1	305	3	0	1	0	3	0	1
197		4	max	1373.949	1	0	1	.868	1	0	1	0	1	0	1
198			min	-113.262	3	0	1	305	3	0	1_	0	3	0	1
199		5	max	1374.014	1	0	1	.868	1	0	1	0	1	0	1
200				-113.213	3	0	1	305	3	0	1	0	3	0	1
201		6		1374.079	1	0	1	.868	1	0	1	0	1	0	1
202				-113.164	3	0	1	305	3	0	1	0	3	0	1
203		7		1374.143	1	0	1	.868	1	0	1	0	1	0	1
204			_	-113.116	3	0	1	305	3	0	1	0	3	0	1
205		8		1374.208	1	0	1	.868	1	0	1	0	1	0	1
206				-113.067	3	0	1	305	3	0	1	0	3	0	1
207		9		1374.273	1	0	1	.868	1	0	1	0	1	0	1
208				-113.019	3	0	1	305	3	0	1	0	3	0	1
200			1111111	110.013	J	V		.000	J	U		U	U	V	

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
209		10	max	1374.337	1	0	1	.868	1	0	1	0	1	0	1
210			min	-112.97	3	0	1	305	3	0	1	0	3	0	1
211		11		1374.402	_1_	0	1	.868	1	0	1	0	1	0	1
212				-112.922	3	0	1	305	3	0	1	0	3	0	1
213		12		1374.467	_1_	0	_1_	.868	1	0	1	0	1_	0	1
214				-112.873	3	0	1	305	3	0	1	0	3	0	1
215		13		1374.531	_1_	0	1	.868	1	0	1_	0	1	0	1
216				-112.825	3	0	1	305	3	0	1	0	3	0	1
217		14		1374.596	1_	0	1	.868	1	0	1	.001	1	0	1
218		15		-112.776 1374.661	3	0	1	305	3	0	<u>1</u> 1	.001	3	0	1
219		15		-112.728	<u>1</u> 3	0	1	.868 305	3	0	1	0	3	0	1
221		16		1374.726	<u> </u>	0	1	.868	1	0	1	.001	1	0	1
222		10		-112.679	3	0	1	305	3	0	1	0	3	0	1
223		17				0	1	.868	1	0	1	.001	1	0	1
224		- 17		-112.631	3	0	1	305	3	0	1	0	3	0	1
225		18		1374.855	1	0	1	.868	1	0	1	.001	1	0	1
226				-112.582	3	0	1	305	3	0	1	0	3	0	1
227		19	max		1	0	1	.868	1	0	1	.001	1	0	1
228				-112.534	3	0	1	305	3	0	1	0	3	0	1
229	M10	1	max		1	.633	4	008	15	.001	1	0	1	0	1
230			min	-344.492	3	.15	15	207	1	0	3	0	3	0	1
231		2	max		_1_	.588	4	008	15	.001	1	0	1_	0	15
232			min	-344.404	3	.139	15	207	1	0	3	0	3	0	4
233		3	max		_1_	.542	4	008	15	.001	1	0	1	0	15
234			min	-344.317	3	.129	15	207	1	0	3	0	3	0	4
235		4	max		_1_	.496	4	008	15	.001	_1_	0	1_	0	15
236		_	min	-344.23	3	.118	15	207	1_	0	3	0	3	0	4
237		5	max	364.471	_1_	.451	4	008	15	.001	1_	0	1	0	15
238		_		-344.142	3	.107	15	207	1_	0	3	0	3	0	4
239		6	max		1	.405	4	008	15	.001	1	0	1	0	15
240		7		-344.055	3_	.096	<u>15</u> 4	207	<u>1</u> 15	.001	<u>3</u>	0	1	0	15
241			max	364.704 -343.968	<u>1</u> 3	.359 .086	15	008 207	1	.001	3	0	3	0	4
243		8	max		_ <u>3_</u> 1	.314	4	008	15	.001	1	0	2	0	15
244		0	min	-343.88	3	.075	15	207	1	0	3	0	3	0	4
245		9	max	364.937	1	.268	4	008	15	.001	1	0	2	0	15
246			min	-343.793	3	.064	15	207	1	0	3	0	3	0	4
247		10	max		1	.222	4	008	15	.001	1	0	15	0	15
248				-343.706	3	.054	15	207	1	0	3	0	3	0	4
249		11	max		1	.177	4	008	15	.001	1	0	15	0	15
250				-343.619	3	.043	15	207	1	0	3	0	3	0	4
251		12	max		1	.134	2	008	15	.001	1	0	15	0	15
252				-343.531	3	.032	15	207	1	0	3	0	1	0	4
253		13		365.403	_1_	.098	2	008	15	.001	1	0	15	0	15
254				-343.444	3	.021	15	207	1	0	3	0	1	0	4
255		14		365.519	1_	.063	2	008	15	.001	1	0	15	0	15
256				-343.357	3	004	1	207	1_	0	3	0	1	0	4
257		15		365.635	1_	.027	2	008	15	.001	1	0	15	0	15
258		4.0		-343.269	3	04	1	207	1_	0	3	0	1_	0	4
259		16	max		1	008	2	008	15	.001	1	0	15	0	15
260		47		-343.182	3_	076	1_	207	1_	0	3	0	1_	0	4
261		17		365.868	1	022	15	008	15	.001	1	0	15	0	15
262		40		-343.095	3	111	1	207	1_	0	<u>3</u>	0	15	0	15
263 264		18		365.985 -343.007	<u>1</u> 3	032 147	<u>15</u> 1	008 207	<u>15</u> 1	.001	3	0	1 <u>5</u>	0	15
265		19		366.101	<u>ა</u> 1	043	15	207	15	.001	<u>3</u> 1	0	15	0	15
200		LIA	шах	300.101	<u> </u>	043	LIO	000	ΙÜ	.001		<u> </u>	LIO	U	ເວ

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft		/-y Mome	LC	z-z Mome	. LC
266			min	-342.92	3	189	4	207	1	0	3	0	1	0	4
267	M11	1	max		2	1.781	4	.852	1	.001	1	0	3	0	4
268			min	-129.374	3	.419	15	.016	12	0	15	002	1	0	15
269		2	max	101.872	2	1.604	4	.852	1	.001	1	0	3	0	4
270			min	-129.426	3	.377	15	.016	12	0	15	002	1	0	12
271		3	max	101.804	2	1.427	4	.852	1	.001	1	0	3	0	2
272			min	-129.477	3	.335	15	.016	12	0	15	002	1	0	3
273		4	max	101.735	2	1.249	4	.852	1	.001	1	0	3	0	15
274			min	-129.529	3	.294	15	.016	12	0	15	002	1	0	3
275		5	max	101.667	2	1.072	4	.852	1	.001	1	0	3	0	15
276			min	-129.58	3	.252	15	.016	12	0	15	002	1	0	4
277		6	max	101.598	2	.895	4	.852	1	.001	1	0	3	0	15
278			min	-129.631	3	.21	15	.016	12	0	15	001	1	0	4
279		7	max	101.529	2	.718	4	.852	1	.001	1	0	3	0	15
280			min	-129.683	3	.169	15	.016	12	0	15	001	1	0	4
281		8	max	101.461	2	.541	4	.852	1	.001	1	0	3	0	15
282			min	-129.734	3	.127	15	.016	12	0	15	001	1	001	4
283		9	max	101.392	2	.363	4	.852	1	.001	1	0	3	0	15
284			min	-129.786	3	.086	15	.016	12	0	15	0	1	001	4
285		10	max	101.324	2	.186	4	.852	1	.001	1	0	3	0	15
286			min	-129.837	3	.044	15	.016	12	0	15	0	1	001	4
287		11	max	101.255	2	.024	2	.852	1	.001	1	0	3	0	15
288			min	-129.889	3	039	3	.016	12	0	15	0	1	001	4
289		12	max	101.186	2	039	15	.852	1	.001	1	0	3	0	15
290		1-	min	-129.94	3	168	4	.016	12	0	15	0	1	001	4
291		13	max	101.118	2	081	15	.852	1	.001	1	0	3	0	15
292		10	min	-129.992	3	345	4	.016	12	0	15	0	1	001	4
293		14	max	101.049	2	123	15	.852	1	.001	1	0	3	0	15
294		17	min	-130.043	3	523	4	.016	12	0	15	0	2	001	4
295		15	max	100.981	2	164	15	.852	1	.001	1	0	1	0	15
296		10	min	-130.095	3	7	4	.016	12	0	15	0	10	0	4
297		16	max	100.912	2	206	15	.852	1	.001	1	0	1	0	15
298		10	min	-130.146	3	877	4	.016	12	0	15	0	15	0	4
299		17	max	100.843	2	248	15	.852	1	.001	1	0	1	0	15
300		17	min	-130.197	3	-1.054	4	.016	12	0	15	0	15	0	4
301		18	max	100.775	2	289	15	.852	1	.001	1	0	1	0	15
302		10	min	-130.249	3	-1.231	4	.016	12	0	15	0	15	0	4
303		19	max	100.706	2	331	15	.852	1	.001	1	0	1	0	1
304		13	min	-130.3	3	-1.409	4	.016	12	0	15	0	15	0	1
305	M12	1	max	503.191	_ <u></u>	0	1	4.471	1	0	1	0	1	0	1
306	IVIIZ			-24.732		0	1	.163	15	0	1	0	3	0	1
307		2		503.255	1	0	1	4.471	1	0	1	0	1	0	1
308			min	-24.684	3	0	1	.163	15	0	1	0	15	0	1
309		3	max		_ <u></u>	0	1	4.471	1	0	1	0	1	0	1
310		3	min	-24.635	3	0	1	.163	15	0	1	0	15	0	1
311		4	max		<u> </u>	0	1	4.471	1	0	1	.001	1	0	1
312		4		-24.587	3	0	1	.163	15	0	1	0	15	0	1
		E	min												-
313		5	max		1	0	1	4.471	1	0	1	.002	1	0	1
314		_	min	-24.538	3	0		.163	15	0	1 1	0	15	0	1
315		6	max	503.514	1	0	1	4.471	1	0	1	.002	1	0	1
316		7	min	-24.489	3	0		.163	15	0		0	15	0	•
317		7		503.579	1_	0	1	4.471	1	0	1	.002	1	0	1
318			min	-24.441	3_	0	1	.163	15	0	1 1	0	15	0	1
319		8	max		1_	0	1	4.471	1	0	1	.003	1	0	1
320			min	-24.392	3	0	1	.163	15	0	1 1	0	15	0	1
321		9	max		1_	0	1	4.471	1	0	1	.003	1	0	1
322			min	-24.344	3	0	1	.163	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
323		10	max	503.773	1	0	1	4.471	1	0	1	.004	1	0	1
324			min	-24.295	3	0	1	.163	15	0	1	0	15	0	1
325		11	max	503.838	1	0	1	4.471	1	0	1	.004	1	0	1
326			min	-24.247	3	0	1	.163	15	0	1	0	15	0	1
327		12	max	503.902	1	0	1	4.471	1	0	1	.004	1	0	1
328			min	-24.198	3	0	1	.163	15	0	1	0	15	0	1
329		13	max	503.967	1	0	1	4.471	1	0	1	.005	1	0	1
330			min	-24.15	3	0	1	.163	15	0	1	0	15	0	1
331		14	max	504.032	1	0	1	4.471	1	0	1	.005	1	0	1
332		17	min	-24.101	3	0	1	.163	15	0	1	0	15	0	1
333		15	max	504.096	1	0	1	4.471	1	0	1	.006	1 1	0	1
334		13	min	-24.053	3	0	1	.163	15	0	1	0	15	0	1
335		16			1		1	4.471			1	.006			_
		16	max	504.161	_	0	1		1	0	1		1_	0	1
336		47	min	-24.004	3	0	•	.163	15	0		0	15	0	
337		17	max	504.226	1	0	1	4.471	1	0	1	.006	1_	0	1
338			min	-23.956	3	0	1_	.163	15	0	1	0	15	0	1
339		18	max	504.291	1_	0	1_	4.471	1	0	1	.007	_1_	0	1
340			min	-23.907	3	0	1	.163	15	0	1	0	15	0	1
341		19	max	504.355	1	0	1	4.471	1	0	1	.007	_1_	0	1
342			min	-23.859	3	0	1	.163	15	0	1	0	15	0	1
343	M1	1	max	151.936	1	338.064	3	-3.234	15	0	1	.172	1	.013	1
344			min	5.572	15	-346.647	1	-87.301	1	0	3	.006	15	01	3
345		2	max	152.054	1	337.874	3	-3.234	15	0	1	.154	1	.088	1
346			min	5.608	15	-346.9	1	-87.301	1	0	3	.006	15	084	3
347		3	max	104.033	1	7.482	တ	-3.209	15	0	12	.133	1	.162	1
348			min	-1.355	10	-18.915	3	-87.143	1	0	1	.005	15	156	3
349		4	max	104.151	1	7.271	9	-3.209	15	0	12	.114	1	.162	1
350			min	-1.257	10	-19.105	3	-87.143	1	0	1	.004	15	151	3
351		5	max	104.269	1	7.06	9	-3.209	15	0	12	.095	1	.162	1
352			min	-1.158	10	-19.295	3	-87.143	1	0	1	.004	15	147	3
353		6	max	104.387	1	6.849	9	-3.209	15	0	12	.077	1	.163	1
354			min	-1.06	10	-19.484	3	-87.143	1	0	1	.003	15	143	3
355		7		104.505	1	6.638	9	-3.209	15		12	.058	1	.163	1
			max		_				1	0	1				
356			min	962	10	-19.674	3	-87.143		0		.002	<u>15</u>	139	3
357		8	max	104.623	1	6.428	9	-3.209	15	0	12	.039	1_	.163	1
358			min	863	10	-19.864	3	-87.143	1_	0	1	.001	<u>15</u>	135	3
359		9	max	104.741	1	6.217	9	-3.209	15	0	12	.02	1_	.164	1
360		1.0	min	765	10	-20.054	3	-87.143	1_	0	1	0	15	13	3
361		10	max	104.859	1	6.006	9	-3.209	15	0	12	0	_1_	.164	1
362			min	667	10	-20.244	3	-87.143	1	0	1	0	10	126	3
363		11	max		1	5.795	9	-3.209	15	0	12	0	12	.165	1
364			min	568	10	-20.433	3	-87.143	1	0	1	018	1_	121	3
365		12	max	105.095	1	5.584	9	-3.209	15	0	12	001	12	.169	2
366			min	47	10	-20.682	2	-87.143	1	0	1	037	1	117	3
367		13	max	105.213	1	5.373	9	-3.209	15	0	12	002	12	.174	2
368			min	371	10	-20.935	2	-87.143	1	0	1	056	1	112	3
369		14	max	105.331	1	5.162	9	-3.209	15	0	12	003	15	.178	2
370			min	273	10	-21.188	2	-87.143	1	0	1	075	1	108	3
371		15	max		1	4.951	9	-3.209	15	0	12	003	15	.183	2
372			min	175	10	-21.441	2	-87.143	1	0	1	094	1	103	3
373		16	max		2	56.918	2	-3.236	15	0	1	004	15	.187	2
374		<u>.</u>	min	-19.325	3	-123.229	3	-87.778	1	0	12	113	1	098	3
375		17	max	89.003	2	56.665	2	-3.236	15	0	1	005	15	.183	1
376		17	min	-19.236	3	-123.419	3	-87.778	1	0	12	132	1	071	3
377		18		-19.230 -5.581	15	393.599	1	-3.315	15	0	3	006	15	.099	1
378		10	min			-146.501	3	-89.99	1	0	1	152	1	039	3
		10									_				
379		19	max	-5.545	15	393.346	_1_	-3.315	15	0	3	006	15	.014	1

Model Name

Schletter, Inc.HCV

:

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
380			min	-151.298	1	-146.691	3	-89.99	1	0	1	171	1	008	3
381	M5	1	max	333.963	1	1115.91	3	101	10	0	1	.005	1	.021	3
382			min	10.784	12	-1145.125	1	-33.356	3	0	3	0	10	025	1
383		2	max	334.081	1	1115.72	3	101	10	0	1	0	2	.223	1
384			min	10.843	12	-1145.378	1	-33.356	3	0	3	003	3	221	3
385		3	max	181.892	3	7.938	9	3.795	3	0	3	0	2	.467	1
386			min	-19.562	10	-68.599	2	503	2	0	1	01	3	458	3
387		4	max	181.98	3	7.727	9	3.795	3	0	3	0	2	.472	1
388		 	min	-19.464	10	-68.852	2	503	2	0	1	009	3	445	3
389		5	max	182.069	3	7.516	9	3.795	3	0	3	<u>.009</u>	2	.478	1
390		5	min	-19.365	10	-69.105	2	503	2	0	1	009	3	431	3
391		6	max	182.157	3	7.305	9	3.795	3	0	3	0	2	.483	1
392		<u> </u>	min	-19.267	10	-69.358	2	503	2	0	1	008	3	417	3
393		7	max	182.246	3	7.094	9	3.795	3	0	3	0	2	.489	1
394			min	-19.169	10	-69.611	2	503	2	0	1	007	3	403	3
395		8	max		3	6.883	9	3.795	3	0	3	0	2	.495	1
396			min	-19.07	10	-69.864	2	503	2	0	1	006	3	389	3
397		9	max	182.423	3	6.673	9	3.795	3	0	3	0	2	.5	1
398			min	-18.972	10	-70.117	2	503	2	0	1	005	3	376	3
399		10	max	182.511	3	6.462	9	3.795	3	0	3	0	10	.506	1
400			min	-18.874	10	-70.37	2	503	2	0	1	005	3	362	3
401		11	max	182.6	3	6.251	9	3.795	3	0	3	0	10	.512	1
402			min	-18.775	10	-70.623	2	503	2	0	1	004	3	348	3
403		12	max	182.689	3	6.04	9	3.795	3	0	3	0	10	.518	1
404		12	min	-18.677	10	-70.876	2	503	2	0	1	003	1	334	3
405		13	max	182.777	3	5.829	9	3.795	3	0	3	- <u>003</u> 0	10	.525	2
406		13		-18.579					2						3
		4.4	min		10	-71.129	2	503		0	1	003	1	32	
407		14	max		3	5.618	9	3.795	3	0	3	0	10	.54	2
408		4.5	min	-18.48	10	-71.382	2	503	2	0	1	002	1	306	3
409		15	max	182.954	3	5.407	9	3.795	3	0	3	0	15	.555	2
410			min	-18.382	10	-71.635	2	503	2	0	1	002	1	292	3
411		16	max	307.512	2	295.411	2	3.771	3	0	1	0	3	.568	2
412			min	-65.101	3	-377.203	3	523	2	0	15	001	1	275	3
413		17	max	307.63	2	295.158	2	3.771	3	0	1	0	3	.529	1
414			min	-65.013	3	-377.392	3	523	2	0	15	001	1	193	3
415		18	max	-11.47	12	1294.087	1	3.468	3	0	3	.002	3	.253	1
416			min	-334.943	1	-480.77	3	124	2	0	1	0	2	089	3
417		19	max	-11.411	12	1293.834	1	3.468	3	0	3	.002	3	.015	3
418			min	-334.825	1	-480.96	3	124	2	0	1	0	2	028	1
419	M9	1	max	151.215	1	338.046	3	116.397	1	0	3	006	15	.013	1
420	1110			5.544		-346.627		4.486	15		1	172	1	01	3
421		2		151.333	1	337.857	3	116.397	1	0	3	004	12	.088	1
422			min	5.579	15	-346.88	1	4.486	15	0	1	147	1	084	3
423		3	max	103.948	1	7.453	9	82.142	1	0	1	.002	3	.162	1
424		-	min	833	10		3	1.603	12	0	15	12	1	156	3
		4				-18.856					1				
425		4	max		1	7.242	9	82.142	1	0	-	.003	3	.162	1
426		-	min	735	10	-19.046	3	1.603	12	0	15	102	1	1 <u>51</u>	3
427		5	max		1	7.031	9	82.142	1	0	1	.003	3	.162	1
428			min	636	10	-19.236	3	1.603	12	0	15	085	1	147	3
429		6	max		1	6.821	9	82.142	1	0	1	.004	3	.163	1
430			min	538	10	-19.425	3	1.603	12	0	15	067	1	143	3
431		7	max	104.42	1	6.61	9	82.142	1	0	1	.004	3	.163	1
432			min	439	10	-19.615	3	1.603	12	0	15	049	1	139	3
433		8	max	104.538	1	6.399	9	82.142	1	0	1	.005	3	.163	1
434			min	341	10	-19.805	3	1.603	12	0	15	031	1	135	3
435		9	max		1	6.188	9	82.142	1	0	1	.005	3	.164	1
436		Ť	min	243	10	-19.995	3	1.603	12	0	15	013	1	13	3
TUU			111111	.270	IU	10.000		1.000	14	U	IU	.010		.10	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
437		10	max	104.774	1	5.977	9	82.142	1	0	1	.006	3	.164	1
438			min	144	10	-20.189	2	1.603	12	0	15	0	2	126	3
439		11	max	104.892	1	5.766	9	82.142	1	0	1	.022	_1_	.165	1
440			min	046	10	-20.442	2	1.603	12	0	15	0	15	121	3
441		12	max	105.01	1	5.555	9	82.142	1	0	1	.04	1_	.169	2
442			min	.052	10	-20.695	2	1.603	12	0	15	.002	15	117	3
443		13	max	105.128	1	5.344	9	82.142	1	0	1	.058	1_	.174	2
444			min	.151	10	-20.948	2	1.603	12	0	15	.002	15	113	3
445		14	max	105.246	1	5.133	9	82.142	1	0	1	.076	1	.178	2
446			min	.249	10	-21.201	2	1.603	12	0	15	.003	15	108	3
447		15	max	105.364	1	4.922	9	82.142	1	0	1	.094	1	.183	2
448			min	.347	10	-21.454	2	1.603	12	0	15	.003	15	103	3
449		16	max	89.189	2	56.717	2	82.894	1	0	15	.113	1	.187	2
450			min	-19.378	3	-123.675	3	1.621	12	0	1	.004	15	098	3
451		17	max	89.307	2	56.464	2	82.894	1	0	15	.131	1	.183	1
452			min	-19.29	3	-123.864	3	1.621	12	0	1	.005	15	071	3
453		18	max	-5.57	15	393.599	1	87.412	1	0	1	.15	1	.099	1
454			min	-151.109	1	-146.499	3	1.897	12	0	3	.006	15	039	3
455		19	max	-5.535	15	393.346	1	87.412	1	0	1	.169	1	.014	1
456			min	-150.991	1	-146.689	3	1.897	12	0	3	.006	15	008	3
457	M13	1	max	116.684	1	346.012	1	-5.544	15	.013	1	.172	1	0	1
458			min	4.487	15	-338.031	3	-151.196	1	01	3	.006	15	0	3
459		2	max	116.684	1	244.205	1	-4.249	15	.013	1	.053	1	.256	3
460			min	4.487	15	-238.488	3	-115.801	1	01	3	.002	15	262	1
461		3	max	116.684	1	142.398	1	-2.954	15	.013	1	.002	3	.424	3
462			min	4.487	15	-138.946	3	-80.406	1	01	3	034	1	434	1
463		4	max	116.684	1	40.591	1	-1.66	15	.013	1	001	12	.503	3
464			min	4.487	15	-39.403	3	-45.01	1	01	3	09	1	515	1
465		5	max	116.684	1	60.14	3	365	15	.013	1	003	12	.494	3
466			min	4.487	15	-61.215	1	-9.615	1	01	3	114	1	506	1
467		6	max	116.684	1	159.683	3	25.78	1	.013	1	003	12	.396	3
468			min	4.487	15	-163.022	1	.402	12	01	3	107	1	407	1
469		7	max	116.684	1	259.225	3	61.176	1	.013	1	002	12	.21	3
470			min	4.487	15	-264.829	1	1.665	12	01	3	068	1	216	1
471		8	max	116.684	1	358.768	3	96.571	1	.013	1	.002	1	.064	1
472			min	4.487	15	-366.636	1	2.929	12	01	3	0	3	065	3
473		9	max	116.684	1	458.311	3	131.966	1	.013	1	.104	1	.435	1
474			min	4.487	15	-468.443	1	4.192	12	01	3	.003	12	428	3
475		10	max	116.684	1	557.853	3	167.362	1	.011	2	.237	1	.897	1
476		'	min	4.487	15	-570.249	1	5.455	12	013	1	.007	12	879	3
477		11	max		1	468.442	1	-4.063	12	.01	3	.099	1	.435	1
478			min	3.234	15	-458.311	3	-131.241	1	013	1	0	12	428	3
479		12	max	87.623	1	366.636	1	-2.8	12	.013	3	.001	2	.064	1
480		1,2	min	3.234	15	-358.768		-95.845	1	013	1	004	3	065	3
481		13			1	264.829	1	-1.537	12	.013	3	003	15	.21	3
482		13	min	3.234	15	-259.225	3	-60.45	1	013	1	071	1	216	1
483		14	max		1	163.022	1	274	12	.01	3	004	15	.396	3
484		17	min	3.234	15	-159.683	3	-25.055	1	013	1	109	1	407	1
485		15	max		1	61.215	1	10.341	1	.013	3	004	15	.494	3
486		13	min	3.234	15	-60.14	3	.393	15	013	1	116	1	506	1
487		16	max		1	39.403	3	45.736	1	.013	3	003	12	.503	3
488		10	min	3.234	15	-40.592	1	1.688	15	013	1	003	1	515	1
489		17	max	87.623	1	138.946	3	81.131	1	.013	3	0	12	.424	3
490		17	min	3.234		-142.398	1	2.983	15	013	1	035	1	434	1
490		18			1 <u>5</u>	238.488	3	116.526	1	.013	3	.053	1	.256	3
491		10		3.234	15	-244.205	1	4.278	15		1	.002	15		1
		10	min							013	_				_
493		19	max	87.623	_ 1	338.031	3	151.922	1	.01	3	.172	<u>1</u>	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC				LC			z-z Mome	LC
494			min	3.234	15	-346.012	1	5.572	15	013	1	.006	15	0	3
495	M16	1	max	-1.896	12	394.005	1	-5.535	15	.008	3	.169	<u>1</u>	0	1
496			min	-87.062	1	-146.714	3	-151.006	1	014	1	.006	15	0	3
497		2	max	-1.896	12	278.069	1	-4.24	15	.008	3	.05	1	.111	3
498			min	-87.062	1	-103.684	3	-115.611	1	014	1	.002	15	299	1
499		3	max	-1.896	12	162.134	1	-2.945	15	.008	3	001	12	.184	3
500			min	-87.062	1	-60.654	3	-80.216	1	014	1	037	1	494	1
501		4	max	-1.896	12	46.199	1	-1.651	15	.008	3	003	15	.219	3
502			min	-87.062	1	-17.625	3	-44.82	1	014	1	092	1	587	1
503		5	max	-1.896	12	25.405	3	356	15	.008	3	004	15	.216	3
504			min	-87.062	1	-69.736	1	-9.425	1	014	1	116	1	576	1
505		6	max	-1.896	12	68.435	3	25.97	1	.008	3	004	15	.174	3
506			min	-87.062	1	-185.671	1	.575	12	014	1	109	1	463	1
507		7	max	-1.896	12	111.465	3	61.366	1	.008	3	003	15	.094	3
508			min	-87.062	1	-301.607	1	1.838	12	014	1	07	1	246	1
509		8	max	-1.896	12	154.495	3	96.761	1	.008	3	.002	2	.073	1
510		Ŭ	min	-87.062	1	-417.542	1	3.101	12	014	1	002	3	024	3
511		9	max	-1.896	12	197.524	3	132.156	1	.008	3	.102	1	.496	1
512			min	-87.062	1	-533.477	1	4.364	12	014	1	.002	12	181	3
513		10	max	-3.315	15	-15.554	15	167.551	1	0	15		1	1.022	1
514		10	min	-89.682	1	-649.412	1	-8.647	3	014	1	.008	12	375	3
515		11	max	-3.315	15	533.477	1	-4.52	12	.014	1	.102	1	.496	1
516		11	min	-89.682	1	-197.524	3	-131.849	1	008	3	.003	12	181	3
517		12	max	-3.315	15	417.542	1	-3.257	12	.014	1	.003	2	.073	1
518		12	min	-89.682	1	-154.495	3	-96.454	1	008	3	.001	3	024	3
519		13	max	-3.315	15	301.606	1	-1.994	12	.014	1	003	12	.094	3
520		13		-89.682	1	-111.465	3	-61.059	1	008	3	069	1	246	1
521		14	min	-3.315		185.671	1	73	12	.014	1	009	12	.174	3
522		14	max	-89.682	15		3	-25.664	1		3	108	1		1
		15	min		1_	-68.435			1	008	1		•	463	
523 524		13	max min	-3.315 -89.682	1 <u>5</u>	69.736 -25.405	3	9.732 .366	15	.014 008	3	004 115	<u>12</u> 1	.216 576	3
525		16	max	-3.315	15	17.625	3	45.127	1	.014	1	003	12	.219	3
526		10		-89.682	1	-46.199	1	1.661	15	008	3	003	1	587	1
527		17	min	-3.315	15	60.654	3	80.522	1	.014	1	091	12	.184	3
528		17	max	-89.682	1	-162.134	1	2.956	15	008	3	035	1	494	1
529		18	min	-3.315	15	103.684	3	115.918	1	.014	1	.053	1	.111	3
530		10	max	-89.682	1	-278.07	1	4.25	15	008	3	.002	15	299	1
531		19	min	-3.315	15	146.714	3	151.313	1	.014	1	.171	1		1
532		19	max		1		1		15		3		15	0	3
	NAE	1	min	-89.682	2	-394.005	4	5.545 .028	3	008	1	.006		0	1
533	<u>M15</u>		max	20.251		2.789 0	_		1	0		0	1	0	1
534		2	min	_	3		2	03	2	0	3	0	3	0	
535 536		2	max	-39.416	3	2.479	2	.028 03	3	0	3	0	<u>1</u> 3	001	4
		3	min		2				3		1	_	<u>ာ</u> 1	001 0	2
537		3	max			2.169	2	.028	1	0	3	0	3	_	
538		1	min		3	1 950		03	_	0		0		002	4
539		4	max		2	1.859	4	.028	3	0	3	0	<u>1</u> 3	0	2
540		5	min	-39.547	3	1 5 4 0	2	03	1	0	1	0		003 0	4
541 542		5	max		2	1.549 0	2	.028	3	0	3	0	<u>1</u> 3	_	2
		G	min	-39.612	2		4	03 .028	3					004 0	4
543		6	max			1.24	2		1	0	3	0	<u>1</u> 3	_	2
544		7	min	-39.677	3	0		03		0		0		005	4
545		/	max		2	.93	4	.028	3	0	1	0	3	0	2
546		0	min	-39.742	3	0	2	03	1	0	3	0	1_	005	4
547		8	max		2	.62	4	.028	3	0	1	0	3	0	2
548		0	min	-39.807	3	0	2	03	1	0	3	0	1	006	4
549		9	max		2	.31	4	.028	3	0	1	0	3	0	2
550			min	-39.873	3	0	2	03	1	0	3	0	_1_	006	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

S51	LC
553	2
S54	4
12	2
S56	4
S57	2
S58	4
14 max	2
560 min -40.198 3 -1.24 4 03 1 0 3 0 1 005 561 15 max 0 2 0 2 .028 3 0 1 0 3 0 562 min -40.264 3 -1.549 4 03 1 0 3 0 1 004 563 16 max 0 2 0 2 .028 3 0 1 0 3 0 564 min -40.329 3 -1.859 4 03 1 0 3 0 1 003 0 1 003 0 1 003 0 1 003 0 1 003 0 1 002 5 566 min -40.459 3 -2.479 4 03 1 0 3 0 1 001	4
561 15 max 0 2 0 2 .028 3 0 1 0 3 0 562 min -40.264 3 -1.549 4 03 1 0 3 0 1 004 563 16 max 0 2 0 2 .028 3 0 1 0 3 0 564 min -40.329 3 -1.859 4 03 1 0 3 0 1 003 0 1 003 0 1 003 0 1 003 0 1 003 0 1 002 5 566 min -40.394 3 -2.169 4 03 1 0 3 0 1 002 567 18 max 0 2 0 2 .028 3 0 1 0 3 0 1	2
562 min -40.264 3 -1.549 4 03 1 0 3 0 1 004 563 16 max 0 2 0 2 .028 3 0 1 0 3 0 1 0 3 0 1 003 0 1 003 0 1 003 0 1 003 0 1 003 0 1 003 0 1 003 0 1 003 0 1 003 0 1 003 0 1 0 3 0 1 003 0 1 0 3 0 1 002 5 666 min -40.4594 3 -2.1699 4 03 1 0 3 0 1 002 5 0 2 0.028 3 0 1 0 1 0 3 0 <t< td=""><td>4</td></t<>	4
563 16 max 0 2 0 2 .028 3 0 1 0 3 0 564 min -40.329 3 -1.859 4 03 1 0 3 0 1 003 565 17 max 0 2 0 2 .028 3 0 1 0 3 0 566 min -40.394 3 -2.169 4 03 1 0 3 0 1 002 567 18 max 0 2 0 2 .028 3 0 1 0 3 0 568 min -40.459 3 -2.479 4 03 1 0 3 0 1 001 569 19 max 0 2 0 2 .028 3 0 1 0 3 0 1 001 0 1	2
564 min -40.329 3 -1.859 4 03 1 0 3 0 1 003 565 17 max 0 2 0 2 .028 3 0 1 0 3 0 566 min -40.394 3 -2.169 4 03 1 0 3 0 1 002 567 18 max 0 2 0 2 .028 3 0 1 0 3 0 1 002 5 568 min -40.459 3 -2.479 4 03 1 0 3 0 1 001 5 0 1 0 3 0 1 001 3 0 1 001 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 1	2
565 17 max 0 2 0 2 .028 3 0 1 0 3 0 566 min -40.394 3 -2.169 4 03 1 0 3 0 1 002 567 18 max 0 2 0 2 .028 3 0 1 0 3 0 568 min -40.459 3 -2.479 4 03 1 0 3 0 1 001 569 19 max 0 2 0 2 .028 3 0 1 0 3 0 570 min -40.524 3 -2.789 4 03 1 0 3 0 1 0 571 M16A 1 max 947 10 2.789 4 .021 1 0 3 0 3 0 572	4
566 min -40.394 3 -2.169 4 03 1 0 3 0 1 002 567 18 max 0 2 0 2 .028 3 0 1 0 3 0 568 min -40.459 3 -2.479 4 03 1 0 3 0 1 001 569 19 max 0 2 0 2 .028 3 0 1 0 3 0 570 min -40.524 3 -2.789 4 03 1 0 3 0 1 0 571 M16A 1 max 947 10 2.789 4 .021 1 0 3 0 3 0 572 min -40.05 3 .656 15 012 3 0 1 0 1 0	2
567 18 max 0 2 0 2 .028 3 0 1 0 3 0 568 min -40.459 3 -2.479 4 03 1 0 3 0 1 001 569 19 max 0 2 0 2 .028 3 0 1 0 3 0 570 min -40.524 3 -2.789 4 03 1 0 3 0 1 0 571 M16A 1 max 947 10 2.789 4 .021 1 0 3 0 1 0 572 min -40.05 3 .656 15 012 3 0 1 0 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 1 0 1	4
568 min -40.459 3 -2.479 4 03 1 0 3 0 1 001 569 19 max 0 2 0 2 .028 3 0 1 0 3 0 570 min -40.524 3 -2.789 4 03 1 0 3 0 1 0 571 M16A 1 max 947 10 2.789 4 .021 1 0 3 0 1 0 572 min -40.05 3 .656 15 012 3 0 1 0 3 0 573 2 max 875 10 2.479 4 .021 1 0 3 0 3 0 574 min -39.985 3 .583 15 012 3 0 1 0 1 001	2
569 19 max 0 2 0 2 .028 3 0 1 0 3 0 570 min -40.524 3 -2.789 4 03 1 0 3 0 1 0 571 M16A 1 max 947 10 2.789 4 .021 1 0 3 0 3 0 572 min -40.05 3 .656 15 012 3 0 1 0 1 0 3 0 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 1 0 1 001 1 001 3 0 3 0	4
570 min -40.524 3 -2.789 4 03 1 0 3 0 1 0 571 M16A 1 max 947 10 2.789 4 .021 1 0 3 0 3 0 572 min -40.05 3 .656 15 012 3 0 1 0 1 0 573 2 max 875 10 2.479 4 .021 1 0 3 0 3 0 574 min -39.985 3 .583 15 012 3 0 1 0 1 001 575 3 max 802 10 2.169 4 .021 1 0 3 0 3 0 576 min -39.92 3 .51 15 012 3 0 1 0 1 <td< td=""><td>1</td></td<>	1
571 M16A 1 max 947 10 2.789 4 .021 1 0 3 0 3 0 572 min -40.05 3 .656 15 012 3 0 1 0 1 0 1 0 1 0 1 0 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 1 0 1 001 1 001 1 001 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 1 002 3	1
572 min -40.05 3 .656 15 012 3 0 1 0 1 0 573 2 max 875 10 2.479 4 .021 1 0 3 0 3 0 574 min -39.985 3 .583 15 012 3 0 1 0 1 001 575 3 max 802 10 2.169 4 .021 1 0 3 0 3 0 576 min -39.92 3 .51 15 012 3 0 1 0 1 002 577 4 max 73 10 1.859 4 .021 1 0 3 0 3 0 578 min -39.855 3 .437 15 012 3 0 1 0 1 003 <td>1</td>	1
573 2 max 875 10 2.479 4 .021 1 0 3 0 3 0 574 min -39.985 3 .583 15 012 3 0 1 0 1 001 575 3 max 802 10 2.169 4 .021 1 0 3 0 3 0 576 min -39.92 3 .51 15 012 3 0 1 0 1 002 577 4 max 73 10 1.859 4 .021 1 0 3 0 3 0 578 min -39.855 3 .437 15 012 3 0 1 0 1 003 579 5 max 657 10 1.549 4 .021 1 0 3 0 3	1
574 min -39.985 3 .583 15 012 3 0 1 0 1 001 575 3 max 802 10 2.169 4 .021 1 0 3 0 3 0 576 min -39.92 3 .51 15 012 3 0 1 0 1 002 577 4 max 73 10 1.859 4 .021 1 0 3 0 3 0 578 min -39.855 3 .437 15 012 3 0 1 0 1 003 579 5 max 657 10 1.549 4 .021 1 0 3 0 3 0 580 min -39.789 3 .364 15 012 3 0 1 0 1 004	15
575 3 max 802 10 2.169 4 .021 1 0 3 0 3 0 576 min -39.92 3 .51 15 012 3 0 1 0 1 002 577 4 max 73 10 1.859 4 .021 1 0 3 0 3 0 578 min -39.855 3 .437 15 012 3 0 1 0 1 003 579 5 max 657 10 1.549 4 .021 1 0 3 0 3 0 580 min -39.789 3 .364 15 012 3 0 1 0 1 004	4
576 min -39.92 3 .51 15 012 3 0 1 0 1 002 577 4 max 73 10 1.859 4 .021 1 0 3 0 3 0 578 min -39.855 3 .437 15 012 3 0 1 0 1 003 579 5 max 657 10 1.549 4 .021 1 0 3 0 3 0 580 min -39.789 3 .364 15 012 3 0 1 0 1 004	15
577 4 max 73 10 1.859 4 .021 1 0 3 0 3 0 578 min -39.855 3 .437 15 012 3 0 1 0 1 003 579 5 max 657 10 1.549 4 .021 1 0 3 0 3 0 580 min -39.789 3 .364 15 012 3 0 1 0 1 004	4
579 5 max 657 10 1.549 4 .021 1 0 3 0 3 0 580 min -39.789 3 .364 15 012 3 0 1 0 1 004	15
580 min -39.789 3 .364 15012 3 0 1 0 1004	4
	15
	4
	15
582 min -39.724 3 .291 15012 3 0 1 0 1005	4
583 7 max512 10 .93 4 .021 1 0 3 0 3001	15
584 min -39.659 3 .219 15012 3 0 1 0 1005	4
585 8 max44 10 .62 4 .021 1 0 3 0 3001	15
586 min -39.594 3 .146 15012 3 0 1 0 1006	4
587 9 max368 10 .31 4 .021 1 0 3 0 3001	15
588 min -39.529 3 .073 15012 3 0 1 0 1006	4
589	15
	<u>4</u> 15
591	4
593	15
594 min -39.333 362 4012 3 0 1 0 1006	4
595	15
596 min -39.268 393 4012 3 0 1 0 4005	4
597	15
598 min -39.203 3 -1.24 4012 3 0 1 0 3005	4
599	15
600 min -39.138 3 -1.549 4012 3 0 1 0 3004	4
601	15
602 min -39.072 3 -1.859 4012 3 0 1 0 3003	4
603 17 max .212 1051 15 .021 1 0 3 0 1 0	15
604 min -39.007 3 -2.169 4012 3 0 1 0 3002	4
605 18 max .284 10583 15 .021 1 0 3 0 1 0	15
606 min -38.942 3 -2.479 4012 3 0 1 0 3001	4
607	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-38.877	3	-2.789	4	012	3	0	1	0	3	0	1

Envelope Member Section Deflections

	siope ivicini		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	on Dene		10									
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.003	1	.009	2	.016	1	-5.068e-5	15	NC	3	NC	3
2			min	003	3	008	3	0	3	-1.374e-3	1	4215.442	2	2219.344	1
3		2	max	.003	1	.008	2	.015	1	-4.852e-5	15	NC	3	NC	3
4			min	003	3	008	3	0	3	-1.316e-3	1	4581.023	2	2396.303	
5		3	max	.003	1	.007	2	.014	1	-4.637e-5	15	NC	3	NC	3
6			min	003	3	007	3	.014	3	-1.258e-3	1	5012.318	2	2604.93	1
7		4	max	.003	1	.007	2	.013	1		15	NC	3	NC	3
8		-		003	3	007	3	0	3	-1.2e-3	1	5524.52	2	2852.847	1
		-	min	.002			2	.012	1			NC		NC	3
9		5	max		1	.006			_	-4.205e-5	<u>15</u>		1_		<u>3</u>
10			min	003	3	007	3	0	3	-1.142e-3	1_	6137.688	2	3150.224	
11		6	max	.002	1	.005	2	.01	1	-3.989e-5	<u>15</u>	NC	1_	NC 0540,070	3
12			min	002	3	006	3	0	3	-1.084e-3	1_	6878.728	2	3510.879	
13		7	max	.002	1	.005	2	.009	1		15	NC	1_	NC	3
14			min	002	3	006	3	0	3	-1.026e-3	1_	7784.406	2	3953.968	1
15		8	max	.002	1	.004	2	.008	1	-3.558e-5	15	NC	_1_	NC	2
16			min	002	3	006	3	0	3	-9.677e-4	1	8906.063	2	4506.702	1
17		9	max	.002	1	.004	2	.007	1	-3.342e-5	15	NC	1	NC	2
18			min	002	3	005	3	0	3	-9.096e-4	1	NC	1	5208.814	1
19		10	max	.002	1	.003	2	.006	1	-3.126e-5	15	NC	1	NC	2
20			min	002	3	005	3	0	3	-8.516e-4	1	NC	1	6120.262	1
21		11	max	.001	1	.003	2	.005	1	-2.911e-5	15	NC	1	NC	2
22			min	001	3	004	3	0	3	-7.935e-4	1	NC	1	7335.17	1
23		12	max	.001	1	.002	2	.004	1		15	NC	1	NC	2
24		12	min	001	3	004	3	0	3	-7.354e-4	1	NC	1	9008.584	
25		13	max	.001	1	.002	2	.003	1	-2.479e-5	15	NC	1	NC	1
26		13	min	001	3	003	3	.003	3	-6.773e-4	1	NC	1	NC	1
27		14		<u>001</u> 0	1	.003	2	.002	1	-2.263e-5	15	NC	1	NC	1
		14	max	0	3				3			NC		NC	1
28		4.5	min			003	3	0		-6.192e-4	1_		1_		
29		15	max	0	1	0	2	.002	1	-2.048e-5	<u>15</u>	NC	1	NC NC	1
30			min	0	3	002	3	0	3	-5.611e-4	_1_	NC	1_	NC	1
31		16	max	0	1	0	2	.001	1	-1.832e-5	<u>15</u>	NC	_1_	NC	1
32			min	0	3	002	3	0	3	-5.031e-4	1_	NC	1_	NC	1
33		17	max	0	1	00	2	0	1	-1.616e-5	15	NC	_1_	NC	1
34			min	0	3	001	3	0	12	-4.45e-4	1_	NC	1_	NC	1
35		18	max	0	1	0	2	0	1	-1.4e-5	<u>15</u>	NC	_1_	NC	1_
36			min	0	3	0	3	0	12	-3.869e-4	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	-1.047e-5	12	NC	1	NC	1
38			min	0	1	0	1	0	1	-3.288e-4	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	1.531e-4	1	NC	1	NC	1
40			min	0	1	0	1	0	1		12	NC	1	NC	1
41		2	max	0	3	0	2	0	12	1.906e-4	1	NC	1	NC	1
42			min	0	2	0	3	0	1	6.911e-6	15	NC	1	NC	1
43		3	max	0	3	0	2	0	12	2.281e-4	1	NC	1	NC	1
44			min	0	2	002	3	001	1	8.307e-6	15	NC	1	NC	1
45		4	max	0	3	<u>002</u> 0	2	0	12	2.656e-4	1	NC	1	NC	1
46		+		0	2		3	-	1	9.702e-6	15	NC NC	1	NC NC	1
		F	min			002		001			<u>15</u>				-
47		5	max	0	3	0	2	0	12	3.031e-4	1_	NC NC	1	NC NC	1
48		_	min	0	2	003	3	001	1	1.11e-5	15	NC NC	1_	NC NC	1
49		6	max	0	3	0	2	0	3	3.406e-4	1_	NC	1	NC NC	1
50			min	0	2	004	3	001	1	1.249e-5	<u>15</u>	NC	1_	NC	1
51		7	max	0	3	0	2	0	3	3.781e-4	1_	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

50	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
52		0	min	0	3	005	2	<u>001</u>	1	1.389e-5	<u>15</u>	NC NC	1_1	NC NC	1
53 54		8	max	0	2	.001 005	3	0	3	4.156e-4 1.528e-5	1_	NC NC	<u>1</u> 1	NC NC	1
55		9	min	0	3	005 .002	2	<u> </u>	3	4.53e-4	<u>15</u>	NC NC	1	NC NC	1
		9	max		2				2	4.53e-4 1.668e-5		NC NC	1		1
56 57		10	min	0	3	006 .002	2	<u> </u>	1		<u>15</u>	NC NC	1	NC NC	1
58		10	max	0	2	002 006	3	0	15	4.905e-4 1.807e-5	<u>1</u> 15	NC NC	1	NC NC	1
		11	min		3		2	.001		5.28e-4		NC NC	1	NC NC	1
59 60			max	0	2	.003 007	3	001 0	1 15	1.947e-5	<u>1</u> 15	NC NC	1	NC NC	1
61		12		0	3	.003	2	.002	1			NC NC	1	NC NC	1
62		12	max min	0	2	007	3	<u>.002</u>	15	5.655e-4	<u>1</u> 15	NC NC	1	NC NC	1
63		13		0	3	.004	2	.003	1	2.087e-5 6.03e-4	1	NC NC	1	NC NC	1
64		13	max	0	2	008	3	<u>.003</u>		2.226e-5	15	NC NC	1	NC NC	1
		14	min		3		2		1		1 <u>15</u>	NC NC	1	NC NC	1
65		14	max	.001	2	.005		.004	_	6.405e-4			2		1
66 67		15	min	.001	3	008 .006	2	<u> </u>	15	2.366e-5		9735.987 NC	1	NC NC	2
		15	max		2		3			6.78e-4	1_	8202.804		9397.54	4
68		16	min	.001	3	008 .007	2	<u> </u>	15	2.505e-5		NC	3	NC	2
69		16	max		2	007 008	3		1	7.155e-4	1_		2	7858.004	
70		17	min	0				0	15	2.645e-5		7011.889			1
71 72		17	max min	.001 001	3	.008 008	3	.007 0	15	7.53e-4 2.784e-5	<u>1</u> 15	NC 6077.292	2	NC 6756.784	2
		10			3		2	.008				NC	3	NC	2
73 74		18	max	.001 001	2	.009	3	<u>.008</u>	15	7.905e-4 2.924e-5	1_	5337.32	2	5942.427	1
		10	min	.001		008 .01	2	.009			<u>15</u>	NC	3	NC	2
75		19	max		2				1	8.28e-4 3.063e-5	1_		2		4
76	M4	1	min	001	1	008	3	0	15	-3.992e-5		4747.366		5326.132	3
77	IVI4		max	.002	3	.01	3	0 006			<u>15</u>	NC NC	<u>1</u> 1	NC	1
78		2	min	0	1	008				-1.095e-3	1_	NC NC	1	2978.705	3
79		2	max	.002	3	.009	3	0			<u>15</u>	NC NC	1	NC	
80		2	min	0		008		006		-1.095e-3	1_		1	3248.916	1
81 82		3	max min	.002	3	.009 007	3	0 005		-3.992e-5 -1.095e-3	<u>15</u> 1	NC NC	1	NC 3570.538	3
83		4		.002	1	.007	2	005 0			15	NC NC	1	NC	2
84		4	max	0	3	007	3	005		-3.992e-5 -1.095e-3	1	NC NC	1	3957.126	
85		5	min	.002	1	.007	2	<u>005</u> 0		-1.095e-5 -3.992e-5	15	NC NC	1	NC	2
		1 5	max	0	3	006	3	004		-3.992e-3 -1.095e-3	1	NC NC	1	4427.146	1
86 87		6	min	.002	1	.007	2	004 0		-1.095e-5	15	NC NC	1	NC	2
88		10	max min	0	3	006	3	004		-1.095e-3	1	NC NC	1	5006.282	1
89		7		.002	1	.007	2	- <u>004</u> 0		-3.992e-5	15	NC	1	NC	2
90		+ ′	max min	.002	3	00 <i>7</i>	3	003		-1.095e-3	1	NC NC	1	5731.121	1
91		8	max	.001	1	.006	2	<u>003</u> 0		-3.992e-5	•	NC	1	NC	2
92		-0	min	•	3	005	3	003		-1.095e-3	1	NC	1	6655.238	1
93		9	max	.001	1	.006	2	<u>003</u> 0		-3.992e-5	15	NC	1	NC	2
94		3	min	0	3	004	3	002		-1.095e-3	1	NC	1	7859.678	
95		10	max	.001	1	.005	2	<u>002</u> 0		-3.992e-5	•	NC	1	NC	2
96		10	min	0	3	004	3	002		-1.095e-3	1	NC	1	9471.858	
97		11	max	.001	1	.004	2	0		-3.992e-5	15	NC	1	NC	1
98		+ ' '	min	0	3	004	3	002		-1.095e-3	1	NC	1	NC	1
99		12	max	0	1	.004	2	0		-3.992e-5		NC	1	NC	1
100		14	min	0	3	003	3	001		-1.095e-3	1	NC NC	1	NC	1
101		13	max	0	1	.003	2	<u>001</u> 0		-3.992e-5		NC	1	NC	1
102		13	min	0	3	003	3	0		-1.095e-3	1	NC	1	NC	1
103		14	max	0	1	.003	2	0				NC	1	NC	1
104		14	min	0	3	003	3	0		-3.992e-3 -1.095e-3	1	NC NC	1	NC	1
105		15	max	0	1	.002	2	0		-1.095e-5 -3.992e-5		NC NC	1	NC NC	1
106		10	min	0	3	002	3	0		-3.992e-3 -1.095e-3	1	NC NC	1	NC NC	1
107		16		0	1	.002	2	0		-1.095e-3 -3.992e-5		NC NC	1	NC NC	1
108		10	max min	0	3	001	3	0		-3.992e-3 -1.095e-3	1	NC NC	1	NC	1
100			1111111	U	J	001	J	U		-1.0906-3		INC		INC	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

400	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		
109		17	max	0	1	.001	2	0	15		<u>15</u>	NC	1	NC NC	1
110		10	min	0	3	0	3	0	1_	-1.095e-3	1_	NC	1_	NC	1
111		18	max	0	1	0	2	0	15	-3.992e-5	<u>15</u>	NC	1_	NC	1
112		1.0	min	0	3	0	3	0	1	-1.095e-3	1_	NC	1_	NC	1
113		19	max	0	1	0	1	0	1	-3.992e-5	<u>15</u>	NC	1	NC	1
114	140	-	min	0	1	0	1	0	1	-1.095e-3	1_	NC	1	NC	1
115	M6	1_	max	01	1	.028	2	.005	1	2.393e-4	1_	NC	3	NC	2
116			min	011	3	023	3	003	3	2.789e-6	10	1288.602	2	7521.228	
117		2	max	.01	1	.026	2	.004	1	2.262e-4	3	NC	3	NC	2
118			min	01	3	022	3	003	3	1.92e-6	10	1377.135	2	8170.568	1
119		3	max	.009	1	.025	2	.004	1	2.192e-4	3	NC	3	NC	2
120			min	009	3	021	3	002	3	1.051e-6	10	1478.366	2	8940.039	1
121		4	max	.009	1	.023	2	.004	1	2.122e-4	3	NC	3	NC	2
122			min	009	3	019	3	002	3	1.825e-7		1594.836	2	9860.127	1
123		5	max	.008	1	.021	2	.003	1	2.051e-4	3_	NC	3_	NC	1
124			min	008	3	018	3	002	3	-6.862e-7	10	1729.817	2	NC	1
125		6	max	.007	1	.019	2	.003	1	1.981e-4	3	NC	3	NC	1
126			min	008	3	017	3	002	3	-4.091e-6	2	1887.591	2	NC	1
127		7	max	.007	1	.018	2	.003	1	1.911e-4	3	NC	3	NC	1
128			min	007	3	016	3	002	3	-8.006e-6	2	2073.876	2	NC	1
129		8	max	.006	1	.016	2	.002	1	1.84e-4	3	NC	3	NC	1
130			min	006	3	01 <u>5</u>	3	002	3	-1.192e-5	2	2296.469	2	NC	1
131		9	max	.006	1	.014	2	.002	1	1.77e-4	3	NC	3	NC	1
132			min	006	3	013	3	001	3	-1.584e-5	2	2566.29	2	NC	1
133		10	max	.005	1	.013	2	.002	1	1.7e-4	3	NC	3	NC	1
134			min	005	3	012	3	001	3	-1.975e-5	2	2899.113	2	NC	1
135		11	max	.005	1	.011	2	.001	1	1.629e-4	3	NC	3	NC	1
136			min	005	3	011	3	0	3	-2.367e-5	2	3318.6	2	NC	1
137		12	max	.004	1	.009	2	.001	1	1.559e-4	3	NC	3	NC	1
138			min	004	3	009	3	0	3	-2.758e-5	2	3861.931	2	NC	1
139		13	max	.003	1	.008	2	0	1	1.489e-4	3	NC	3	NC	1
140			min	004	3	008	3	0	3	-3.15e-5	2	4591.063	2	NC	1
141		14	max	.003	1	.006	2	0	1	1.418e-4	3	NC	3	NC	1
142			min	003	3	007	3	0	3	-3.541e-5	2	5617.508	2	NC	1
143		15	max	.002	1	.005	2	0	1	1.348e-4	3	NC	3	NC	1
144			min	002	3	005	3	0	3	-3.933e-5	2	7164.267	2	NC	1
145		16	max	.002	1	.004	2	0	1	1.278e-4	3	NC	1	NC	1
146			min	002	3	004	3	0	3	-4.324e-5	2	9751.632	2	NC	1
147		17	max	.001	1	.002	2	0	1	1.208e-4	3	NC	1	NC	1
148			min	001	3	003	3	0	3	-4.716e-5	2	NC	1	NC	1
149		18		0	1	.001	2	0	1	1.137e-4	3	NC	1	NC	1
150			min	0	3	001	3	0	3	-5.107e-5	2	NC	1	NC	1
151		19	max	0	1	0	1	0	1	1.067e-4	3	NC	1	NC	1
152			min	0	1	0	1	0	1	-5.499e-5	2	NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	2.532e-5	2	NC	1	NC	1
154			min	0	1	0	1	0	1	-4.942e-5	3	NC	1	NC	1
155		2	max	0	3	.001	2	0	3	2.108e-5	2	NC	1	NC	1
156			min	0	2	002	3	0	2	-3.667e-5	3	NC	1	NC	1
157		3	max	0	3	.003	2	0	3	1.916e-5	1	NC	1	NC	1
158			min	0	2	004	3	0	2	-2.392e-5	3	NC	1	NC	1
159		4	max	0	3	.004	2	0	3	1.941e-5	1	NC	1	NC	1
160			min	0	2	005	3	0	2	-1.118e-5	3	NC	1	NC	1
161		5	max	.001	3	.006	2	0	3	1.966e-5	1	NC	1	NC	1
162		Ť	min	001	2	007	3	0	2	5.793e-7		8359.494	2	NC	1
163		6	max	.001	3	.007	2	.001	3	1.99e-5	1	NC	3	NC	1
164			min	001	2	009	3	0	2	6.665e-7		6704.645	2	NC	1
165		7	max	.002	3	.008	2	.001	3	2.706e-5	3	NC	3	NC	1
. 50			max	.002	_					555 5					

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
166			min	002	2	01	3	0	1	-1.655e-7	2	5573.652	2	NC	1
167		8	max	.002	3	.01	2	.001	3	3.981e-5	3	NC	3	NC	1
168			min	002	2	012	3	0	1	-4.414e-6	2	4744.905	2	NC	1
169		9	max	.002	3	.011	2	.001	3	5.255e-5	3_	NC	3	NC	1
170		4.0	min	002	2	<u>013</u>	3	0	1	-8.662e-6	2	4107.992	2	NC	1
171		10	max	.002	3	.013	2	.001	3	6.53e-5	3	NC	3	NC NC	1
172		44	min	003	2	014	3	001	1	-1.291e-5	2	3601.727	2	NC NC	1
173		11	max	.003	3	.014	2	.002	3	7.805e-5	3	NC	3	NC NC	1
174		40	min	003	2	016	3	001	1	-1.716e-5	2	3189.387	2	NC NC	1
175		12	max	.003	3	.016 017	3	.002	3	9.079e-5	2	NC	2	NC NC	1
176 177		13	min	003 .003	3		2	001 .002	3	-2.141e-5	3	2847.493 NC	3	NC NC	1
178		13	max	004	2	.018 018	3	002	1	1.035e-4 -2.566e-5	2	2560.222	2	NC NC	1
179		14	max	.003	3	016 .02	2	.002	3	1.163e-4	3	NC	3	NC NC	1
180		14	min	004	2	019	3	002	1	-2.99e-5	2	2316.437	2	NC	1
181		15	max	.004	3	.022	2	.002	3	1.29e-4	3	NC	3	NC	1
182		10	min	004	2	02	3	002	1	-3.415e-5	2	2108.001	2	NC	1
183		16	max	.004	3	.024	2	.002	3	1.418e-4	3	NC	3	NC	1
184		10	min	004	2	021	3	002	1	-3.84e-5	2	1928.786	2	NC	1
185		17	max	.004	3	.026	2	.002	3	1.545e-4	3	NC	3	NC	1
186		<u> </u>	min	005	2	021	3	002	1	-4.265e-5	2	1774.061	2	NC	1
187		18	max	.004	3	.028	2	.001	3	1.673e-4	3	NC	3	NC	1
188			min	005	2	022	3	002	1	-4.69e-5	2	1640.099	2	NC	1
189		19	max	.005	3	.03	2	.001	3	1.8e-4	3	NC	3	NC	1
190			min	005	2	023	3	003	1	-5.115e-5	2	1523.922	2	NC	1
191	M8	1	max	.007	1	.032	2	.003	1	-3.91e-6	10	NC	1	NC	2
192			min	0	3	023	3	0	3	-1.714e-4	1	NC	1	7056.444	1
193		2	max	.006	1	.03	2	.003	1	-3.91e-6	10	NC	1	NC	2
194			min	0	3	022	3	0	3	-1.714e-4	1	NC	1	7693.42	1
195		3	max	.006	1	.029	2	.002	1	-3.91e-6	10	NC	1_	NC	2
196			min	0	3	021	3	0	3	-1.714e-4	1_	NC	1	8451.741	1
197		4	max	.005	1	.027	2	.002	1	-3.91e-6	10	NC	_1_	NC	2
198			min	0	3	019	3	0	3	-1.714e-4	1_	NC	1_	9363.373	1
199		5	max	.005	1	.025	2	.002	1	-3.91e-6	10	NC	_1_	NC	1
200			min	0	3	018	3	0	3	-1.714e-4	_1_	NC	_1_	NC	1
201		6	max	.005	1	.023	2	.002	1	-3.91e-6	<u>10</u>	NC	_1_	NC	1
202		<u> </u>	min	0	3	<u>017</u>	3	0	3	-1.714e-4	1_	NC	1_	NC	1
203		7	max	.004	1	.021	2	.001	1	-3.91e-6	<u>10</u>	NC	1_	NC NC	1
204			min	0	3	015	3	0	3	-1.714e-4	1_	NC	_1_	NC NC	1
205		8	max	.004	1	.02	2	.001	1	-3.91e-6	10	NC NC	1_	NC NC	1
206			min		3	014	3	0		-1.714e-4		NC NC	1	NC NC	1
207		9	max	.004	1	.018	2	.001	1	-3.91e-6	<u>10</u>	NC NC	1	NC NC	1
208		10	min	0	3	013	2	0	3	-1.714e-4	1	NC NC	<u>1</u> 1	NC NC	1
209		10	max	.003	3	.016	3	<u> </u>	3	-3.91e-6 -1.714e-4	<u>10</u>	NC NC	1	NC NC	1
210		11	min max	.003	1	012 .014	2	0	1	-1.714e-4 -3.91e-6	<u>1</u> 10	NC NC	1	NC NC	1
212			min	0	3	014	3	0	3	-1.714e-4	1	NC	1	NC	1
213		12	max	.003	1	.012	2	0	1	-3.91e-6	10	NC	1	NC	1
214		12	min	0	3	009	3	0	3	-1.714e-4	1	NC	1	NC	1
215		13	max	.002	1	.011	2	0	1	-3.91e-6	10	NC NC	1	NC NC	1
216		13	min	.002	3	008	3	0	3	-3.91e-6	1	NC NC	1	NC NC	1
217		14	max	.002	1	.009	2	0	1	-3.91e-6	10	NC	1	NC	1
218			min	0	3	006	3	0	3	-1.714e-4	1	NC	1	NC	1
219		15	max	.001	1	.007	2	0	1	-3.91e-6	10	NC	1	NC	1
220		10	min	0	3	005	3	0	3	-1.714e-4	1	NC	1	NC	1
221		16	max	.001	1	.005	2	0	1	-3.91e-6	10	NC	1	NC	1
222			min	0	3	004	3	0	3	-1.714e-4	1	NC	1	NC	1
			1111111		_					т т т т т	_				

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC		o LC
223		17	max	0	1	.004	2	0	1	-3.91e-6	10	NC	_1_	NC	1
224			min	0	3	003	3	0	3	-1.714e-4	1_	NC	1_	NC	1
225		18	max	00	1	.002	2	0	1	-3.91e-6	10	NC	_1_	NC	1
226			min	0	3	001	3	0	3	-1.714e-4	1_	NC	1_	NC	1
227		19	max	0	1	0	1	0	1	-3.91e-6	10	NC	1_	NC	1
228	N440	-	min	0	1	0	1	0	1	-1.714e-4	1_	NC NC	1_	NC	1
229	M10	1_	max	.003	1	.009	2	0	3	1.136e-3	1_	NC 1010.005	3	NC NC	1
230			min	003	3	008	3	002	1	-2.201e-4		4218.605	2	NC NC	1
231		2	max	.003	1	.008	2	0	3	1.077e-3	1	NC 4504 554	3	NC NC	1
232		3	min	003	3	008	2	002	3	-2.137e-4	3	4584.551 NC	3	NC NC	1
233		3	max	.003	3	.007	3	0 002	1	1.017e-3 -2.072e-4	1	5016.293			1
235		4	min	003 .003	1	007 .007	2	<u>002</u> 0	3	9.578e-4	<u>3</u> 1	NC	3	NC NC	1
236		4	max	003	3	007	3	002	1	-2.008e-4	3	5529.046	2	NC NC	1
237		5	max	.003	1	.006	2	<u>002</u> 0	3	8.983e-4	<u> </u>	NC	3	NC	1
238		1	min	002	3	007	3	002	1	-1.943e-4	3	6142.901	2	NC	1
239		6	max	.002	1	.005	2	0	3	8.389e-4	1	NC	1	NC	1
240			min	002	3	006	3	002	1	-1.879e-4	3	6884.807	2	NC	1
241		7	max	.002	1	.005	2	0	3	7.795e-4	1	NC	1	NC	1
242		<u> </u>	min	002	3	006	3	001	1	-1.814e-4	3	7791.591	2	NC	1
243		8	max	.002	1	.004	2	0	3	7.2e-4	1	NC	1	NC	1
244			min	002	3	006	3	001	1	-1.75e-4	3	8914.682	2	NC	1
245		9	max	.002	1	.004	2	0	3	6.606e-4	1	NC	1	NC	1
246			min	002	3	005	3	001	1	-1.685e-4	3	NC	1	NC	1
247		10	max	.002	1	.003	2	0	3	6.012e-4	1	NC	1	NC	1
248			min	002	3	005	3	001	1	-1.62e-4	3	NC	1	NC	1
249		11	max	.001	1	.003	2	0	3	5.417e-4	1	NC	1	NC	1
250			min	001	3	004	3	0	1	-1.556e-4	3	NC	1	NC	1
251		12	max	.001	1	.002	2	0	3	4.823e-4	1	NC	1	NC	1
252			min	001	3	004	3	0	1	-1.491e-4	3	NC	1	NC	1
253		13	max	.001	1	.002	2	0	3	4.229e-4	1	NC	1_	NC	1
254			min	001	3	003	3	0	1	-1.427e-4	3	NC	1_	NC	1
255		14	max	0	1	.001	2	0	3	3.634e-4	_1_	NC	1_	NC	1
256			min	0	3	003	3	0	1	-1.362e-4	3	NC	1_	NC	1
257		15	max	0	1	0	2	0	3	3.04e-4	_1_	NC	1	NC NC	1
258		40	min	0	3	002	3	0	1	-1.298e-4	3_	NC	1_	NC	1
259		16	max	0	1	0	2	0	3	2.446e-4	1	NC	1	NC	1
260		47	min	0	3	002	3	0	1	-1.233e-4	3	NC	1_	NC NC	1
261		17	max	0	1	0	2	0	3	1.851e-4	1_	NC	1_	NC	1
262		10	min	0	3	001	2	0	3	-1.169e-4 1.257e-4	<u>3</u> 1	NC NC	<u>1</u> 1	NC NC	1
263		10	max	0	3	0	3	0	1			NC NC	1	NC NC	1
264		19	min	0	1	<u> </u>		0	1	-1.104e-4 6.625e-5	3	NC NC	1	NC NC	1
265 266		19	max min	0	1	0	1	0	1	-1.039e-4	<u>1</u> 3	NC NC	1	NC NC	1
267	M11	1	max	0	1	0	1	0	1	4.837e-5	3	NC	1	NC	1
268	IVI I I		min	0	1	0	1	0	1	-3.23e-5	1	NC	1	NC	1
269		2	max	0	3	0	2	0	2	3.334e-5	3	NC	1	NC	1
270		_	min	0	2	0	3	0	3	-1.014e-4		NC	1	NC	1
271		3	max	0	3	0	2	0	10	1.831e-5	3	NC	1	NC	1
272			min	0	2	002	3	0	3	-1.706e-4	1	NC	1	NC	1
273		4	max	0	3	<u>.002</u>	2	0	10	3.283e-6	3	NC	1	NC	1
274			min	0	2	003	3	0	3	-2.397e-4	1	NC	1	NC	1
275		5	max	0	3	0	2	0	10	-8.182e-6	•	NC	1	NC	1
276		Ť	min	0	2	003	3	001	1	-3.088e-4	1	NC	1	NC	1
277		6	max	0	3	0	2	0	15	-1.388e-5	15	NC	1	NC	1
278		Ĭ	min	0	2	004	3	002	1	-3.78e-4	1	NC	1	NC	1
279		7	max	0	3	0	2	0	15	-1.649e-5	15	NC	1	NC	1
										, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			_		

Model Name

Schletter, Inc.

HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
280			min	0	2	005	3	003	1	-4.471e-4	<u>1</u>	NC	_1_	NC	1
281		8	max	0	3	.001	2	0	15	-1.91e-5	<u>15</u>	NC	_1_	NC	1
282			min	0	2	005	3	004	1	-5.163e-4	<u>1</u>	NC	1_	NC	1
283		9	max	0	3	.002	2	0	15	-2.171e-5	15	NC	_1_	NC	2
284			min	0	2	006	3	005	1	-5.854e-4	1_	NC	1_	9825.861	1
285		10	max	0	3	.002	2	0	15	-2.432e-5	<u>15</u>	NC	_1_	NC	2
286			min	0	2	007	3	006	1	-6.545e-4	1_	NC	1_	7865.929	1
287		11	max	0	3	.003	2	0	15	-2.693e-5	<u>15</u>	NC	_1_	NC	2
288			min	0	2	007	3	007	1	-7.237e-4	1_	NC	1	6495.133	
289		12	max	0	3	.003	2	0	15	-2.954e-5	<u>15</u>	NC	_1_	NC	2
290			min	0	2	007	3	008	1	-7.928e-4	1_	NC	1	5498.609	1
291		13	max	0	3	.004	2	0	15	-3.215e-5	<u>15</u>	NC	_1_	NC	2
292			min	0	2	008	3	01	1	-8.619e-4	1_	NC	1_	4751.991	1
293		14	max	.001	3	.005	2	0	15	-3.476e-5	15	NC	_1_	NC	2
294			min	0	2	008	3	011	1	-9.311e-4	1_	9748.057	2	4179.159	1
295		15	max	.001	3	.006	2	0	15	-3.737e-5	<u>15</u>	NC	_1_	NC	2
296			min	0	2	008	3	012	1	-1.e-3	1	8212.027	2	3731.387	1
297		16	max	.001	3	.007	2	0	15	-3.999e-5	15	NC	3	NC	3
298			min	0	2	008	3	014	1	-1.069e-3	1	7019.108	2	3376.323	1
299		17	max	.001	3	.008	2	0	15	-4.26e-5	15	NC	3	NC	3
300			min	001	2	008	3	015	1	-1.138e-3	1	6083.074	2	3091.839	1
301		18	max	.001	3	.009	2	0	15	-4.521e-5	15	NC	3	NC	3
302			min	001	2	008	3	016	1	-1.208e-3	1	5342.057	2	2862.445	1
303		19	max	.001	3	.01	2	0	15	-4.782e-5	15	NC	3	NC	3
304			min	001	2	008	3	017	1	-1.277e-3	1	4751.334	2	2677.101	1
305	M12	1	max	.002	1	.01	2	.014	1	1.147e-3	1	NC	1	NC	3
306			min	0	3	008	3	0	15	4.36e-5	15	NC	1	1360.072	1
307		2	max	.002	1	.009	2	.013	1	1.147e-3	1	NC	1	NC	3
308			min	0	3	008	3	0	15	4.36e-5	15	NC	1	1483.135	1
309		3	max	.002	1	.009	2	.012	1	1.147e-3	1	NC	1	NC	3
310			min	0	3	007	3	0	15	4.36e-5	15	NC	1	1629.628	1
311		4	max	.002	1	.008	2	.011	1	1.147e-3	1	NC	1	NC	3
312			min	0	3	007	3	0	15	4.36e-5	15	NC	1	1805.725	1
313		5	max	.002	1	.008	2	.01	1	1.147e-3	1	NC	1	NC	3
314			min	0	3	006	3	0	15	4.36e-5	15	NC	1	2019.837	1
315		6	max	.002	1	.007	2	.008	1	1.147e-3	1	NC	1	NC	3
316			min	0	3	006	3	0	15	4.36e-5	15	NC	1	2283.664	1
317		7	max	.002	1	.007	2	.007	1	1.147e-3	1	NC	1	NC	3
318			min	0	3	005	3	0	15	4.36e-5	15	NC	1	2613.872	1
319		8	max	.001	1	.006	2	.006	1	1.147e-3	1	NC	1	NC	3
320			min	0	3	005	3	0	15		15	NC	1	3034.864	
321		9	max	.001	1	.006	2	.005	1	1.147e-3	1	NC	1	NC	3
322			min	0	3	004	3	0	15	4.36e-5	15	NC	1	3583.555	
323		10	max	.001	1	.005	2	.004	1	1.147e-3	1	NC	1	NC	2
324			min	0	3	004	3	0	15	4.36e-5	15	NC	1	4317.98	1
325		11	max	.001	1	.004	2	.004	1	1.147e-3	1	NC	1	NC	2
326			min	0	3	004	3	0	15	4.36e-5	15	NC	1	5333.733	
327		12	max	0	1	.004	2	.003	1	1.147e-3	1	NC	1	NC	2
328			min	0	3	003	3	0	15		15	NC	1	6797.576	
329		13	max	0	1	.003	2	.002	1	1.147e-3	1	NC	1	NC	2
330			min	0	3	003	3	0	15	4.36e-5	15	NC	1	9022.346	
331		14	max	0	1	.003	2	.002	1	1.147e-3	1	NC	1	NC	1
332			min	0	3	002	3	0	15	4.36e-5	15	NC	1	NC	1
333		15	max	0	1	.002	2	.001	1	1.147e-3	1	NC	1	NC	1
334		'	min	0	3	002	3	0	15	4.36e-5	15	NC	1	NC	1
335		16	max	0	1	.002	2	0	1	1.147e-3	1	NC	1	NC	1
336			min	0	3	001	3	0	15	4.36e-5	15	NC	1	NC	1
-															

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	.001	2	0	1	1.147e-3	1_	NC	1	NC	1
338			min	0	3	0	3	0	15	4.36e-5	15	NC	1	NC	1
339		18	max	0	1	0	2	0	1	1.147e-3	1	NC	1	NC	1
340			min	0	3	0	3	0	15	4.36e-5	15	NC	1	NC	1
341		19	max	0	1	0	1	0	1	1.147e-3	1	NC	1	NC	1
342			min	0	1	0	1	0	1	4.36e-5	15	NC	1	NC	1
343	M1	1	max	.007	3	.024	3	.002	3	1.543e-2	1	NC	1	NC	1
344			min	008	2	027	1	005	1	-1.498e-2	3	NC	1	NC	1
345		2	max	.007	3	.014	3	<u>.000</u>	3	7.249e-3	1	NC	4	NC	2
346			min	008	2	015	1	012	1	-7.419e-3	3	3817.981	1	6935.363	
347		3		.007	3	.004	3	<u>012</u> 0	3	5.802e-7	3	NC	4	NC	2
		-	max										4		4
348		-	min	008	2	004	1	<u>016</u>	1	-7.789e-4	1_	1974.477		4205.02	1
349		4	max	.007	3	.006	1	0	3	5.632e-6	3	NC	5	NC	3
350		_	min	008	2	004	3	019	1	-6.584e-4	1_	1396.441	1_	3478.956	
351		5	max	.007	3	.014	1	0	3	1.068e-5	3	NC	<u>5</u>	NC	3
352			min	008	2	011	3	019	1	-5.379e-4	<u>1</u>	1118.59	1_	3339.694	
353		6	max	.007	3	.021	1	0	3	1.574e-5	3	NC	5_	NC	3
354			min	008	2	016	3	018	1	-4.175e-4	1	961.541	1	3571.968	1
355		7	max	.007	3	.026	1	0	3	2.079e-5	3	NC	5	NC	2
356			min	008	2	02	3	016	1	-2.97e-4	1	866.456	1	4249.925	1
357		8	max	.007	3	.03	1	0	3	2.584e-5	3	NC	5	NC	2
358			min	008	2	023	3	013	1	-1.765e-4	1	808.869	1	5825.151	1
359		9	max	.007	3	.032	1	0	3	3.089e-5	3	NC	5	NC	1
360		Ť	min	008	2	024	3	009	1	-5.606e-5	1	777.355	1	NC	1
361		10	max	.007	3	.033	1	0	3	6.441e-5	1	NC	5	NC	1
362		10	min	008	2	025	3	005	1	2.717e-6	15	766.645	1	NC	1
		11			3				3			NC	•		
363		11	max	.007		.032	1	0		1.849e-4	1_		5_	NC NC	1
364		40	min	008	2	024	3	001	1	7.136e-6	15	775.132	1_	NC NC	1
365		12	max	.007	3	.03	1	.002	1	3.054e-4	1_	NC	5	NC 0740 500	2
366		10	min	008	2	022	3	0	15	1.156e-5	15	804.217	_1_	6749.568	
367		13	max	.007	3	.026	1	.006	1	4.258e-4	1_	NC	5	NC	2
368			min	008	2	<u>019</u>	3	0	15	1.598e-5	15		1_	4687.209	
369		14	max	.007	3	.02	1	.008	1	5.463e-4	<u>1</u>	NC	5	NC	3
370			min	008	2	015	3	0	15	2.039e-5	15	950.139	1	3843.344	1
371		15	max	.007	3	.013	1	.009	1	6.668e-4	1	NC	5	NC	3
372			min	008	2	01	3	0	15	2.481e-5	15	1101.474	1	3540.21	1
373		16	max	.007	3	.005	1	.009	1	7.523e-4	1	NC	5	NC	3
374			min	008	2	004	3	0	15	2.797e-5	15	1367.83	2	3649.078	
375		17	max	.007	3	.003	3	.007	1	2.974e-5	3	NC	4	NC	2
376			min	008	2	006	2	0	15	-9.698e-6	2	1922.243	1	4378.576	
377		18	max	.007	3	.011	3	.002		8.695e-3	1	NC	4	NC	2
378		10	min	008	2	018	2	0	15		3	3704.984	1	7184.965	
379		19	max	.007	3	.019	3	0	3	1.756e-2	1	NC	1	NC	1
		19			2		2		1			NC	1	NC	1
380	N 4 C	1	min	008		03		004		-6.7e-3	3		•		
381	<u>M5</u>	1	max	.021	3	.072	3	.001	3	8.386e-7	3	NC	1_	NC NC	1
382			min	027	2	083	1	006	1	5.387e-8	15	NC	<u>1</u>	NC	1
383		2	max	.021	3	.041	3	.002	3	6.079e-5	3	NC	5	NC	1
384			min	027	2	047	1	006	1	-7.769e-5	1_	1278.241	_1_	NC	1
385		3	max	.021	3	.013	3	.003	3	1.196e-4	3	NC	5_	NC	1
386			min	027	2	013	1	005	1	-1.545e-4	1_	657.698	1_	NC	1
387		4	max	.021	3	.017	1	.003	3	1.169e-4	3	NC	5	NC	1
388			min	027	2	01	3	004	1	-1.454e-4	1	463.683	1	NC	1
389	<u> </u>	5	max	.021	3	.042	1	.004	3	1.141e-4	3	NC	15	NC	1
390			min	027	2	03	3	004	1	-1.363e-4	1	370.34	1	NC	1
391		6	max	.021	3	.062	1	.004	3	1.114e-4	3	NC	15	NC	1
392			min	027	2	045	3	003	1	-1.271e-4	1	317.462	1	NC	1
393		7	max	.021	3	.078	1	.004	3	1.087e-4	3	NC	15	NC	1
UJU			παλ	.021	_ J	.070		.004		1.0076-4	<u> </u>	INC	IJ	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
394			min	027	2	057	3	003	1	-1.18e-4	1_	285.309	1_	NC	1
395		8	max	.021	3	.09	1	.004	3	1.06e-4	3	NC	15	NC	1
396			min	027	2	065	3	003	1	-1.089e-4	<u>1</u>	265.671	<u>1</u>	NC	1
397		9	max	.021	3	.097	1	.004	3	1.032e-4	3	NC	15	NC	1
398		4.0	min	027	2	069	3	002	1	-9.975e-5	1_	254.703	1_	NC	1
399		10	max	.021	3	.099	1	.004	3	1.005e-4	3	NC 050.00	<u>15</u>	NC	1
400		4.4	min	027	2	07	3	002	1	-9.062e-5	1_	250.62	1_	NC NC	1
401		11	max	.021	3	.097	1	.003	3	9.778e-5	3_	NC OFFO OFF	<u>15</u>	NC	1
402		12	min	027	2	068	3	002	1	-8.149e-5	1	252.857	1_	NC NC	1
403		12	max	.021 027	3	.09 062	3	.003 002	1	9.505e-5 -7.235e-5	<u>3</u>	NC 261.843	<u>15</u> 1	NC NC	1
405		13	min max	.021	3	062 .079	1	.002	3	9.233e-5	3	NC	15	NC NC	1
406		13	min	027	2	053	3	002	1	-6.322e-5	1	279.189	1	NC	1
407		14	max	.021	3	.062	1	.002	3	8.96e-5	3	NC	15	NC	1
408		14	min	027	2	042	3	002	1	-5.409e-5	1	308.473	1	NC	1
409		15	max	.021	3	.041	1	.002	3	8.687e-5	3	NC	5	NC	1
410		10	min	027	2	027	3	002	1	-4.796e-5	2	357.42	1	NC	1
411		16	max	.021	3	.015	1	.001	3	8.133e-5	3	NC	5	NC	1
412			min	027	2	01	3	003	1	-4.565e-5	2	444.653	1	NC	1
413		17	max	.021	3	.01	3	0	3	8.712e-6	3	NC	5	NC	1
414			min	027	2	017	2	003	1	-2.592e-4	1	627.804	1	NC	1
415		18	max	.021	3	.031	3	0	3	3.635e-6	3	NC	5	NC	1
416			min	027	2	054	2	003	1	-1.329e-4	1	1217.403	1	NC	1
417		19	max	.021	3	.054	3	0	3	0	15	NC	1	NC	1
418			min	027	2	092	1	003	1	-1.686e-7	3	NC	1	NC	1
419	M9	1	max	.007	3	.024	3	.001	3	1.498e-2	3	NC	1	NC	1
420			min	008	2	027	1	007	1	-1.543e-2	1	NC	1	NC	1
421		2	max	.007	3	.014	3	0	3	7.417e-3	3	NC	4	NC	2
422			min	008	2	015	1	001	1	-7.538e-3	1	3818.8	1	8134.498	
423		3	max	.007	3	.004	3	.002	1	2.051e-4	1_	NC	4_	NC	2
424			min	008	2	004	1	0	3	-6.528e-6	3	1974.909	1_	5062.324	
425		4	max	.007	3	.006	1	.004	1	1.027e-4	_1_	NC	5	NC	2
426		_	min	008	2	004	3	0	3	-1.531e-5	3	1396.737	<u>1</u>	4299.519	
427		5	max	.007	3	.014	1	.005	1	1.163e-5	2	NC	5	NC	2
428			min	008	2	011	3	001	3	-2.41e-5	3	1118.808	1_	4274.951	1
429		6	max	.007	3	.021	1	.004	1	-8.244e-7	10	NC	5_	NC	2
430		-	min	008	2	016	3	002	3	-1.02e-4	1_	961.708	1_	4821.988	
431		7	max	.007	3	.026	1	.002	1	-7.471e-6	15	NC OCC FOC	5	NC COOA 424	2
432		0	min	008	2	02	3	002	3	-2.044e-4	1 =	866.586	1_	6294.134	
433 434		8	max min	.007 008	3	.03 023	3	0 002	2	-1.125e-5 -3.068e-4	<u>15</u>	NC	<u>5</u>	NC NC	1
435		9	max	.007	3	.032	1	<u>002</u> 0		-3.000e-4 -1.503e-5			5	NC	1
436		9	min	008	2	024	3	004	1	-4.092e-4	1	777.434	1	NC	1
437		10	max	.007	3	.033	1	004	_	-4.092e-4 -1.881e-5		NC	5	NC	1
438		10	min	008	2	025	3	008	1	-5.116e-4	1	766.703	1	NC	1
439		11	max	.007	3	.032	1	<u>.000</u>	15		15	NC	5	NC	2
440			min	008	2	024	3	011	1	-6.14e-4	1	775.172	1	7268.751	1
441		12	max	.007	3	.03	1	0	15			NC	5	NC	2
442			min	008	2	022	3	014	1	-7.163e-4	1	804.238	1	4808.032	
443		13	max	.007	3	.026	1	0	15	-3.014e-5	15	NC	5	NC	3
444			min	008	2	019	3	016	1	-8.187e-4	1	858.899	1	3770.887	1
445		14	max	.007	3	.02	1	0	15			NC	5	NC	3
446			min	008	2	015	3	018	1	-9.211e-4	1	950.121	1	3296.785	
447		15	max	.007	3	.013	1	0	15	-3.77e-5	15	NC	5	NC	3
448			min	008	2	01	3	018	1	-1.023e-3	1	1101.431	1	3159.242	
449		16	max	.007	3	.005	1	0	15	-4.043e-5	15	NC	5	NC	3
450			min	008	2	004	3	017	1	-1.098e-3		1368.235	2	3344.243	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
451		17	max	.007	3	.003	3	0	15	-1.1e-6	3	NC	4_	NC	2
452			min	008	2	006	2	014	1	-5.183e-4	1	1922.151	1	4089.911	1
453		18	max	.007	3	.011	3	0	15	3.319e-3	3	NC	4	NC	2
454			min	008	2	018	2	009	1	-8.955e-3	1	3704.807	1	6806.725	1
455		19	max	.007	3	.019	3	0	3	6.7e-3	3	NC	_1_	NC	1_
456			min	008	2	03	2	002	1	-1.756e-2	1_	NC	1_	NC	1
457	M13	1	max	.007	1	.024	3	.007	3	3.97e-3	3	NC	_1_	NC	1
458			min	001	3	027	1	008	2	-4.628e-3	1_	NC	1_	NC	1
459		2	max	.007	1	.178	3	.05	1	4.796e-3	3	NC	5	NC	3
460			min	001	3	186	1	0	10	-5.629e-3	1	1208.187	1	3498.089	1
461		3	max	.007	1	.305	3	.126	1	5.623e-3	3	NC	5	NC	3
462			min	001	3	316	1	.005	15	-6.631e-3	1	664.054	1	1466.074	1
463		4	max	.007	1	.384	3	.19	1	6.449e-3	3	NC	5	NC	3
464			min	001	3	399	1	.007	15	-7.632e-3	1	517.108	1	983.584	1
465		5	max	.007	1	.407	3	.222	1	7.275e-3	3	NC	5	NC	3
466			min	001	3	423	1	.008	15	-8.634e-3	1	484.552	1	847.653	1
467		6	max	.007	1	.376	3	.211	1	8.101e-3	3	NC	5	NC	3
468			min	001	3	392	1	.008	15	-9.635e-3	1	526.02	1	890.211	1
469		7	max	.007	1	.301	3	.16	1	8.928e-3	3	NC	5	NC	3
470			min	001	3	316	1	.006	10	-1.064e-2	1	664.794	1	1160.548	1
471		8	max	.007	1	.203	3	.085	1	9.754e-3	3	NC	5	NC	3
472			min	001	3	216	1	003	10	-1.164e-2	1	1015.434	1	2123.393	1
473		9	max	.006	1	.113	3	.02	3	1.058e-2	3	NC	4	NC	1
474			min	001	3	125	1	012	2	-1.264e-2	1	1970.598	1	NC	1
475		10	max	.006	1	.072	3	.021	3	1.141e-2	3	NC	4	NC	1
476			min	001	3	083	1	027	2	-1.364e-2	1	3448.69	1	NC	1
477		11	max	.006	1	.113	3	.025	3	1.058e-2	3	NC	4	NC	2
478			min	001	3	125	1	012	2	-1.264e-2	1	1970.6	1	8710.905	
479		12	max	.006	1	.203	3	.093	1	9.755e-3	3	NC	5	NC	5
480			min	001	3	216	1	003	10	-1.164e-2	1	1015.435	1	1951.823	1
481		13	max	.006	1	.301	3	.17	1	8.929e-3	3	NC	5	NC	5
482			min	001	3	316	1	.006	10	-1.064e-2	1	664.795	1	1097.61	1
483		14	max	.006	1	.376	3	.22	1	8.103e-3	3	NC	5	NC	5
484			min	001	3	392	1	.008	15	-9.634e-3	1	526.02	1	851.798	1
485		15	max	.006	1	.407	3	.23	1	7.278e-3	3	NC	5	NC	5
486		1.0	min	002	3	423	1	.009	15	-8.632e-3	1	484.552	1	815.563	1
487		16	max	.006	1	.384	3	.198	1	6.452e-3	3	NC	5	NC	3
488		1.0	min	002	3	398	1	.007	15	-7.63e-3	1	517.108	1	948.182	1
489		17	max	.006	1	.305	3	.131	1	5.626e-3	3	NC	5	NC	3
490			min	002	3	316	1	.005	15	-6.629e-3	1	664.055	1	1411.133	
491		18	max	.006	1	.178	3	.053	1	4.8e-3	3	NC	5	NC	3
492			min	002	3	186	1	0	10	-5.627e-3	1	1208.189	1	3340.577	1
493		19	max	.005	1	.024	3	.007	3	3.974e-3	3	NC	1	NC	1
494		10	min	002	3	027	1	008	2	-4.625e-3	1	NC	1	NC	1
495	M16	1	max	.002	1	.019	3	.007	3	4.92e-3	2	NC	1	NC	1
496	IVIIO	<u>'</u>	min	0	3	03	2	008	2	-3.061e-3	3	NC	1	NC	1
497		2	max	.002	1	.088	3	.053	1	5.979e-3	2	NC	5	NC	3
498			min	0	3	21	1	0	10		3	1061.55	1	3266.476	
499		3	max	.002	1	.145	3	.132	1	7.057e-3	1	NC	5	NC	3
500		J	min	0	3	359	1	.005	15	-4.272e-3	3	583.486	1	1395.203	
501		4	max	.003	1	.181	3	.198	1	8.152e-3	1	NC	5	NC	3
502		_	min	0	3	452	1	.008	15	-4.878e-3	3	454.409	1	943.257	1
503		5	max	.003	1	.194	3	.23	1	9.247e-3	1	NC	5	NC	5
504			min	<u>.003</u>	3	48	1	.009		-5.484e-3	3	425.863	1	815.138	1
505		6	max	.003	1	.182	3	.219	1	1.034e-2	<u>3</u> 1	NC	5	NC	5
506		0	min	<u>.003</u>	3	445	1	.008	15	-6.09e-3	3	462.428	1	855.369	1
507		7		.003	1	.151	3	.008 .168	1	1.144e-2	<u>3</u>	NC	5	NC	5
507			max	.003		101.	J	.100	11	1.1446-2		INC	ິບ	INC	<u> </u>

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio	LC		
508			min	0	3	358	1	.006	10	-6.695e-3	3	584.711	1_	1109.195	
509		8	max	.003	1	.11	3	.091	1	1.253e-2	_1_	NC	5_	NC	5
510			min	0	3	244	1	003	10	-7.301e-3	3	894.069	1	1997.015	1
511		9	max	.003	1	.071	3	.023	3	1.363e-2	1_	NC	4	NC	2
512			min	0	3	14	1	013	2	-7.907e-3	3	1739.935	1	9499.886	1
513		10	max	.003	1	.054	3	.021	3	1.472e-2	_1_	NC	4	NC	1
514			min	0	3	092	1	027	2	-8.513e-3	3	3058.117	1	NC	1
515		11	max	.003	1	.071	3	.021	3	1.363e-2	_1_	NC	4	NC	1
516			min	0	3	14	1	012	2	-7.906e-3	3	1739.935	1	NC	1
517		12	max	.003	1	.11	3	.088	1	1.253e-2	1_	NC	5_	NC	3
518			min	0	3	244	1	003	10	-7.3e-3	3	894.07	1	2058.454	1
519		13	max	.003	1	.151	3	.164	1	1.144e-2	1_	NC	5	NC	3
520			min	0	3	358	1	.006	10	-6.694e-3	3	584.711	1	1135.426	1
521		14	max	.003	1	.182	3	.214	1	1.034e-2	1	NC	5	NC	3
522			min	0	3	445	1	.008	15	-6.088e-3	3	462.428	1	874.011	1
523		15	max	.004	1	.194	3	.225	1	9.249e-3	1	NC	5	NC	3
524			min	0	3	48	1	.009	15	-5.481e-3	3	425.864	1	833.292	1
525		16	max	.004	1	.181	3	.193	1	8.154e-3	1	NC	5	NC	3
526			min	0	3	452	1	.007	15	-4.875e-3	3	454.409	1	966.66	1
527		17	max	.004	1	.145	3	.128	1	7.06e-3	1	NC	5	NC	3
528			min	0	3	359	1	.005	15	-4.269e-3	3	583.487	1	1437.764	1
529		18	max	.004	1	.088	3	.051	1	5.981e-3	2	NC	5	NC	3
530			min	0	3	211	1	0	10	-3.662e-3	3	1061.55	1_	3409.482	1
531		19	max	.004	1	.019	3	.007	3	4.922e-3	2	NC	1	NC	1
532			min	0	3	03	2	008	2	-3.056e-3	3	NC	1	NC	1
533	M15	1	max	0	1	0	1	0	1	3.442e-4	3	NC	1	NC	1
534			min	0	1	0	1	0	1	-8.388e-5	2	NC	1	NC	1
535		2	max	0	3	006	15	.001	1	8.336e-4	3	NC	5	NC	1
536			min	0	10	025	4	0	3	-6.801e-4	1	4200.778	4	NC	1
537		3	max	0	3	011	15	.004	1	1.323e-3	3	9093.797	15	NC	1
538			min	0	10	048	4	003	3	-1.311e-3	1	2137.633	4	NC	1
539		4	max	0	3	016	15	.008	1	1.812e-3	3	6238.876	15	NC	4
540			min	0	10	07	4	006	3	-1.941e-3	1	1466.541	4	8358.265	1
541		5	max	0	3	021	15	.013	1	2.302e-3	3	4868.258	15	NC	4
542			min	0	10	09	4	011	3	-2.571e-3	1	1144.357	4	5515.557	1
543		6	max	0	3	025	15	.019	1	2.791e-3	3	4097.154	15	NC	4
544			min	0	10	107	4	015	3	-3.202e-3	1	963.097	4	4031.102	1
545		7	max	0	3	028	15	.024	1	3.28e-3	3	3633.436	15	NC	4
546			min	0	10	121	4	02	3	-3.832e-3	1	854.093	4	3159.896	1
547		8	max	0	3	031	15	.03	1	3.77e-3	3	3355.136	15	NC	4
548			min	0	10	131	4	025	3	-4.463e-3	1	788.675	4	2610.851	1
549		9	max	0	3	032	15	.034	1	4.259e-3	3	3205.338	15	NC	4
550			min	0	10	137	4	029	3	-5.093e-3	1	753.463	4	2250.983	1
551		10	max	0	3	033	15	.038	1	4.748e-3	3	3157.949	15	NC	4
552			min	0	10	139	4	033	3	-5.724e-3	1	742.323	4	2013.316	1
553		11	max	0	3	032	15	.041	1	5.238e-3	3	3205.338	15	NC	5
554			min	0	10	137	4	035	3	-6.354e-3	1	753.463	4	1862.643	1
555		12	max	0	3	031	15	.042	1	5.727e-3	3	3355.136	15	NC	5
556			min	0	10	131	4	036	3	-6.984e-3	1	788.675	4	1781.537	1
557		13	max	0	3	028	15	.041	1	6.217e-3	3	3633.436	15	NC	5
558			min	0	10	121	4	035	3	-7.615e-3	1	854.093	4	1765.089	
559		14	max	0	3	025	15	.038	1	6.706e-3	3	4097.154	15	NC	5
560			min	0	10	108	4	032	3	-8.245e-3	1	963.097	4	1821.194	
561		15	max	0	3	021	15	.032	1	7.195e-3	3	4868.258	15	NC	4
562			min	0	10	091	4	027	3	-8.876e-3	1	1144.357	4	1978.318	
563		16	max	0	3	017	15	.024	1	7.685e-3	3	6238.876	15	NC	4
564			min	0	10	071	4	019	3	-9.506e-3	1	1466.541		2313.535	

Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
565		17	max	0	3	011	15	.011	1	8.174e-3	3	9093.797	15	NC	4
566			min	0	10	049	4	008	3	-1.014e-2	1	2137.633	4	3068.48	1
567		18	max	.001	3	006	15	.007	3	8.663e-3	3	NC	5	NC	4
568			min	0	10	026	4	011	2	-1.077e-2	1	4200.778	4	5465.307	1
569		19	max	.001	3	.003	3	.025	3	9.153e-3	3	NC	1	NC	1
570			min	0	10	004	1	029	2	-1.14e-2	1	NC	1	NC	1
571	M16A	1	max	0	10	0	10	.008	3	3.091e-3	3	NC	1	NC	1
572			min	001	3	002	1	009	2	-3.355e-3	1_	NC	1_	NC	1
573		2	max	0	10	006	15	.006	1	2.958e-3	3	NC	5	NC	2
574			min	001	3	025	4	001	10	-3.193e-3	1	4200.778	4	8729.279	1
575		3	max	0	10	011	15	.015	1	2.824e-3	3	9093.797	15	NC	4
576			min	0	3	049	4	004	3	-3.031e-3	1_	2137.633	4	4934.32	1
577		4	max	0	10	017	15	.022	1	2.69e-3	3	6238.876	15	NC	4
578			min	0	3	071	4	008	3	-2.87e-3	1	1466.541	4	3748.853	1
579		5	max	0	10	021	15	.027	1	2.556e-3	3	4868.258	15	NC	4
580			min	0	3	09	4	01	3	-2.708e-3	1	1144.357	4	3233.651	1
581		6	max	0	10	025	15	.029	1	2.422e-3	3	4097.154	15	NC	4
582			min	0	3	107	4	012	3	-2.546e-3	1	963.097	4	3006.668	1
583		7	max	0	10	028	15	.031	1	2.289e-3	3	3633.436	15	NC	4
584			min	0	3	121	4	013	3	-2.384e-3	1	854.093	4	2947.946	1
585		8	max	0	10	031	15	.03	1	2.155e-3	3	3355.136	15	NC	4
586			min	0	3	131	4	013	3	-2.222e-3	1	788.675	4	3016.081	1
587		9	max	0	10	032	15	.028	1	2.021e-3	3	3205.338	15	NC	4
588			min	0	3	137	4	012	3	-2.06e-3	1	753.463	4	3204.742	1
589		10	max	0	10	033	15	.026	1	1.887e-3	3	3157.949	15	NC	4
590			min	0	3	139	4	011	3	-1.898e-3	1	742.323	4	3532.367	1
591		11	max	0	10	032	15	.022	1	1.753e-3	3	3205.338	15	NC	4
592			min	0	3	137	4	01	3	-1.748e-3	2	753.463	4	4045.881	1
593		12	max	0	10	031	15	.019	1	1.62e-3	3	3355.136	15	NC	4
594			min	0	3	13	4	008	3	-1.599e-3	2	788.675	4	4838.484	1
595		13	max	0	10	028	15	.015	1	1.486e-3	3	3633.436	15	NC	3
596			min	0	3	12	4	006	3	-1.45e-3	2	854.093	4	6095.216	
597		14	max	0	10	025	15	.011	1	1.352e-3	3	4097.154	<u>15</u>	NC	2
598			min	0	3	107	4	004	3	-1.302e-3	2	963.097		8213.012	1
599		15	max	0	10	021	15	.007	1	1.218e-3	3	4868.258	<u>15</u>	NC	1
600			min	0	3	09	4	002	3	-1.153e-3	2	1144.357	4	NC	1
601		16	max	0	10	016	15	.004	1	1.084e-3	3	6238.876	<u>15</u>	NC	1
602			min	0	3	07	4	001	3	-1.004e-3	2	1466.541	4	NC	1
603		17	max	0	10	011	15	.001	1	9.505e-4	3	9093.797	15	NC	1
604			min	0	3	048	4	0	3	-8.557e-4	2	2137.633	4	NC	1
605		18	max	0	10	006	15	0	4	8.167e-4	3	NC	5	NC	1
606			min	0	3	024	4	0	2	-7.071e-4	2	4200.778	4	NC	1
607		19	max	0	1	0	1	0	1	6.828e-4	3	NC	1_	NC	1
608			min	0	1	0	1	0	1	-5.584e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 405 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253 92	256.00	0 995	1.00	1 000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

Ksat

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035				
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)						
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)				
1035	0.50	6.000	9755				
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,l}	NaNa0 (Sec. D.4	I.1 & Eq. D-16a)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)	
109.66	109.66	1.000	1.000	9755	0.55	5365	

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{grout}\phi V_{sa}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_e)$	$a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.2}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cby} = \phi (A_V$	$(c/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\varPsi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cby} (lb)
238.44	288.00	0.897	1.000	1.000	8488	0.70	4411

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_s)$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_V$	$(c/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d_e)$	a) ^{0.2} √ d aλ√ f 'c C a1 ^{1.5}	5 (Eq. D-24)					
I _e (in)	d _a (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)(2)$	Avc/Avco) Yed, V	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\varPsi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

$V_{bx} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.5}$	⁵ (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	_

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

IV. OUTICI	ote i iyout ou	cingui di Anc	iloi ili olicai	(OCC. D.0.0)				
$\phi V_{cp} = \phi \text{mi}$	$\phi V_{cp} = \phi \min k_{cp} N_a; k_{cp} N_{cb} = \phi \min k_{cp} (A_{Na} / A_{Na0}) \Psi_{ed,Na} \Psi_{p,Na} N_{a0}; k_{cp} (A_{Nc} / A_{Nco}) \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{b} \text{ (Eq. D-30a)}$							
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{p,Na}$	N _{a0} (lb)	Na (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	/φN _n V _{ua} /φV _n	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No Base Material

Location:

Project description:

Fastening description:

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	732.5	499.5	0.0	499.5
2	732.5	499.5	0.0	499.5
Sum	1465.0	999.0	0.0	999.0

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465

Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e^{iy}_y (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e^{iy}_y (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

256.00

k c	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	5.333	10469				
$\phi N_{cbg} = \phi (A$	Nc / A Nco $)$ Ψ ec,N Ψ ec	$_{l,N} arPsi_{c,N} arPsi_{cp,N} \mathcal{N}_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)

1.00

1.000

10469

0.65

7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

1.000

0.865

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

314.72

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	$_a$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle I,Na}arPhi_{ extstyle ec,Na}arPhi_{ extstyle p,Na} \Lambda$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	la) ^{0.2} √daλ√f'c C a1 ^{1.}	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	V $\Psi_{\text{ed,V}} \Psi_{\text{c,V}} \Psi_{\text{h,V}}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \mathrm{m}$	in <i>kcpNag</i> ; <i>kcpN</i>	$I_{cbg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arPsi_{ec,Na}$	$\Psi_{p,Na}N_{a0}$; $K_{cp}(A_{c})$	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$Y_{ed,N} Y_{cp,N} Y_{cp,N} N_{b}$	(Eq. D-30b)
K cp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N_{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/g	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3	0.20	0.25	45.0 %	1.2	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.