Hazard Analysis Chess Connect

Team #4,
Alexander Van Kralingen
Arshdeep Aujla
Jonathan Cels
Joshua Chapman
Rupinder Nagra

Table 1: Revision History

Date Developer(s)		Change		
10/09/2022	Alexander Van Kralingen	Updated Introduction, Scope, System Boundaries and Critical Assumptions		
10/09/2022	Alexander Van Kralingen	Fixed FMEA table placement		
Date2	Name(s)	Description of changes		

Contents

1	Introduction	1
2	Scope and Purpose of Hazard Analysis	1
3	System Boundaries and Components	1
4	Critical Assumptions	1
5	Failure Mode and Effect Analysis	1
6	Safety and Security Requirements	3
7	Roadmap	3

1 Introduction

Creating a product designed for consumer use requires a robust hazard identification and mitigation strategy before the product is released to the public. A hazard can be defined as any source of potential damage, harm or adverse health effects on something or someone for Occupational Health and Safety (2022). A hazard for the Chess Connect system is anything that could either harm the user or cause system failure.

2 Scope and Purpose of Hazard Analysis

In this document, the potential cause for hazards will be explored in detail, as well as methods for preemptive detection, and recommended actions to take should the hazard still present itself. Its purpose is to identify potential sources for harm or failure and address them before they are presented in the finished product.

3 System Boundaries and Components

The Chess Connect system is comprised of three main components:

- 1. The hardware including the chess pieces, board, microcontroller and all electronic components:
 - LEDs
 - Hall-Effect sensors
 - LCD screen
 - Connecting wires
 - Power adapter
- 2. The nearby server to recieve data through a Bluetooth connection.
- 3. The hosted Web Application used to connect to the game remotely.

The boundary of this system begins at the chess board and ends at the Web Application. The distance between the chess board and the server is spanned by a Bluetooth connection, and the server to the Web-App by Wi-Fi. The user will cross the system boundary by interacting with the hardware and the Web-App, however everything in between will be isolated within the system.

4 Critical Assumptions

The assumptions made in this document are meant to constrain the hazards to those present within typical operation. These assumptions are as follows:

- 1. The chess board is operated in a dry environment.
- 2. The server present will be capable of both Bluetooth and Wi-Fi connections.
- 3. The user is not intentionally trying to disconnect the electronics within the board.
- 4. The Web-App hosting platform will remain up and running without interruption.

5 Failure Mode and Effect Analysis

The following table (Table 2) is a breakdown of the failure modes and and effects analysis (FMEA) for the Chess Connect system.

Table 2: Failure Mode and Effects Analysis

Component	Failure	Causes	Detection	Recommended Action	Probability of Oc- curence	Ref.
Web Application	Loss of Internet connection	(a) Internet outage(b) Loss of power(c) Internet time- out	Ping the Internet and wait for the response	Alert the user to check Internet connection	0.3	TBD
Microcontroller	Bad inputs	 (a) If a player knocks down multiple pieces in their turn (b) Loss of power (c) Faulty components and/or connections 	Monitoring inputs	Prompt the user to return the system to previous state and redo the turn	0.4	TBD
Microcontroller	Loss of Bluetooth connection	 (a) Distance between microcontroller and host is too large (b) Physical barriers between microcontroller and host (c) Failed to initialise connection 	Continuously monitor Bluetooth connection	Prompt user to re-establish connection before continuing	0.2	TBD
Hall Sensor	Bad inputs	 (a) Sensitivity loss over a period of time (b) Interference from external magnetic objects (c) Distance between sensor and object too large 	Monitoring Hall sensor inputs	 (a) Prompt the user to clear area of obstacles from the board (b) The sensor should be replaced after the recommended use time 	0.1	TBD

6 Safety and Security Requirements

[Newly discovered requirements. These should also be added to the SRS. (A rationale design process how and why to fake it.) --SS

7 Roadmap

[Which safety requirements will be implemented as part of the capstone timeline? Which requirements will be implemented in the future? -SS

References

Canadian Centre for Occupational Health and Safety. Hazard and risk: Osh answers. https://www.ccohs.ca/oshanswers/hsprograms/hazard_risk.html, 2022. Accessed: 2022-10-05.