Edge Computing

Lecture 06: Quantization and Pruning

Recap

- Neural network: terminology
 - Neuron, Synapse, Activation, Weight, etc.
- Common building block: layer
 - FC, Conv, Conv2D, Depthwise Conv
 - Receptive field, padding, strides
 - Pooling, Normalization
- Convolution neural network
 - Alexnet, VGG16, MobileNetv2
 - Tensorflow, Tensorflow Lite

Agenda

- Pruning
 - What and why?
 - How? Pruning criterion
 - Fine-tune/retrain acceleration

Quantization

- What and why?
- Linear quantization
- Quantization granularity
- Calibration and Clipping

What is Pruning?

Shrinking models by removing synapses and neurons.

Why pruning?

Why pruning? Model Footprint

Why pruning? Energy

Smaller network, will it work?

MAC, Multiply-ACCumulation operations ~ FLOPS

Neural Network		MACs		
	Before Pruning	After Pruning	Reduction	Reduction
AlexNet	61 M	6.7 M	9×	3×
VGG-16	138 M	10.3 M	12×	5×
GoogleNet	S. 1.17 (20) 5 (1) 4 (20)		3.5×	5×
ResNet50	26 M	7.47 M	3.4×	6.3 ×
SqueezeNet	1 M	0.38 M	3.2×	3.5 ×

Human brain prunes too!

Pruning Granularity

Fine-grained/Unstructured

- More flexible pruning index choice
- Hard to accelerate (irregular)

Coarse-grained/Structured

- Less flexible pruning index choice (a subset of the fine-grained case)
- Easy to accelerate (just a smaller matrix!)

Magnitude-based Pruning

Fine-grained

Coarse-grained / structured

Weight

Importance

Pruned Weight

How to prune CNN?

Scaling-based Pruning

Scaling-based Pruning

Scaling-based Pruning

Fine-tune/Retrain (e.g. AlexNet)

Q: How to accelerate irregular pruning?

Fine-grained/Unstructured

- More flexible pruning index choice
- Hard to accelerate (irregular)

M:N Sparsity

Two weights are nonzero out of four consecutive weights (2:4 sparsity).

M:N Sparsity

The indices are used to mask out the inputs. Only 2 multiplications will be done out of four.

Sparse Conv

Conventional Convolution

9 matrix multiplications

Sparse Convolution

2 matrix multiplications

TorchSparse: Efficient Point Cloud Inference Engine [Tanget al., MLSys 2022]

Sparse Conv

Agenda

- Pruning
 - O What and why?
 - How? Pruning criterion
 - Fine-tune/retrain acceleration

Quantization

- What and why?
- Linear quantization
- Quantization granularity
- Calibration and Clipping

What is quantization?

 Quantization is the process of constraining an input from a continuous or otherwise large set of values to a discrete set.

The difference between an input value and its quantized value is referred to as quantization error.

Original Image

16-Color Image

Why quantization? Small footprint & low energy

Linear Quantization

An affine mapping of integers to real numbers

$$\circ$$
 R = S(q-Z)

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

$$Z = \text{round}\left(q_{\text{min}} - \frac{r_{\text{min}}}{S}\right)$$

$$r_{\text{max}} = S\left(q_{\text{max}} - Z\right)$$

 $r_{\min} = S\left(q_{\min} - Z\right)$

Linear Quantization: Example

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Bit Width	Qmin	q _{max}	
2	-2	1	
3	-4	3	
4	-8	7	
N	-2N-1	2N-1-1	

$$r_{\max} = S\left(q_{\max} - Z\right)$$

$$r_{\min} = S\left(q_{\min} - Z\right)$$

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

$$Z = \text{round}\left(q_{\min} - \frac{r_{\min}}{S}\right)$$

Linear Quantization: Example

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$S = (2.12 - (-1.08)) / (1 - (-2))$$

= 1.07

$$Z = \text{round } (-2 - -1.08 / 1.07)$$

= -1

Bit Width	q _{min}	q _{max}
2	-2	1
3	-4	3
4	-8	7
N	-2N-1	2N-1-1

$$r_{\max} = S\left(q_{\max} - Z\right)$$

$$r_{\min} = S\left(q_{\min} - Z\right)$$

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

$$Z = \text{round}\left(q_{\min} - \frac{r_{\min}}{S}\right)$$

0

-1.07

1.07

0.09

0.04

0.42

Linear Quantization

Symmetric Linear Quantization

Quantization Granularity

- Per-tensor quantization
- Per-channel quantization
- Group quantization

Per-channel vs Per-tensor

	· in	ал					
1	0	1	0	2.09	0	2.09	0
o	0	-1	1	0	0	-2.12	2.12
0	1	0	-1	0	1.92	0	-1.92
1	0	1	1	1.87	0	1.87	1.87
7	Quar	ntized		Re	econs	struct	ed

Per-Tensor Quantization

$$|r|_{\text{max}} = 2.12$$

$$S = \frac{|r|_{\text{max}}}{q_{\text{max}}} = \frac{2.12}{2^{2-1} - 1} = 2.12$$

1	0	1	0	2.12	0	2.12	0
0	0	-1	1	0	0	-2.12	2.12
0	1	0	0	0	2.12	0	0
1	0	1	1	2.12	0	2.12	2.12

Quantized

Reconstructed

 $\|\mathbf{W} - S\mathbf{q_W}\|_F = 2.28$

 $\|\mathbf{W} - \mathbf{S} \odot \mathbf{q}_{\mathbf{W}}\|_F = 2.08$

Non-static Dynamic Range

- Weights has [r_min,r_max] fixed range
- Activation value has unknown range
 depends on input
- How to determine r_min and r_max?

 $y = \max(\alpha x, x)$

 $x \cdot (x+3)/6$, otherwise

Dynamic Range: Calibration & Clipping

- Run a batch of samples
- Get the statistical distribution of activations
- Get rid of outliers

Tutorial: TF Lite quantization

- Post-training dynamic range quantization | TensorFlow Lite
- Visualize quantized vs unquantized model in Netron.app

Summary

- Pruning
 - What and why?
 - How? Pruning criterion
 - Magnitude-based, Scaling-based
 - Fine-tune/retrain acceleration
 - M:N sparsity, SparseConv

Quantization

- Owner with the control of the con
- Linear quantization
 - Scale, zero point
- Quantization granularity
 - Per-tensor, per-channel
- Calibration and Clipping

Next Lectures

- Example paper presentation: ML-Exray
- Hardware architecture
- Special accelerators
- Quiz on Lecture 05-06