3.3 $I_B - I_C$ 特性 ($V_{CE} = 5V$ 一定):第 2 象限グラフ

 I_B-I_C 特性は、コレクタ-エミッタ間の電圧 V_{CE} を一定にした状態で、ベース電流 I_B を変化させた時に、コレクタ電流 I_C がどの様に変化するかを示すもの

この特性の傾き I_C/I_B は、直流電流増幅率 h_{FE} と呼ばれる

実験の手順は次の通り

- (1) $V_{CE}=5$ V となるように E_C を調整し、測定中はこの値を維持する
- (2) E_B (と必要に応じて可変抵抗器)を調整して、ベース電流 I_B を $0{\sim}80~\mu{\rm A}$ まで $10~\mu{\rm A}$ ずつ変化 させ、その都度コレクタ電流 I_C を測定して記録する

測定を終えたら、横軸にベース電流 I_B 、縦軸にコレクタ電流 I_C をとって、第 2 象限のグラフを作図し、直流電流増幅率を求める

図 1.4 $I_B - I_C$ 特性 ($V_{CE} = 5V$ 一定)

表 $I.3$ 2SC1815: $I_B - I_C$ 特性: $V_{CE} = 5$	Ⅴ 一定
---	------

$I_B[\mu \mathbf{A}]$	0	10	20	30	40	50	60	70	80
$I_C[\mathbf{m}\mathbf{A}]$									