Linear Shift Invariant (LSI) Systems

$$\delta(n_1, n_2) \longrightarrow T \longrightarrow h(n_1, n_2)$$

Shift invariance means

$$\delta(n_1 - k_1, n_2 - k_2) \longrightarrow T \longrightarrow h(n_1 - k_1, n_2 - k_2)$$

Decompose $x(n_1, n_2)$ as,

$$x(n_1, n_2) = \dots + x(-1, -1) \, \delta(n_1 + 1, n_2 + 1) + x(-1, 0) \, \delta(n_1 + 1, n_2) + x(0, 0) \, \delta(n_1, n_2) + \dots$$
$$= \sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \in \mathbb{Z}} x(k_1, k_2) \, \delta(n_1 - k_1, n_2 - k_2)$$

Thus,

$$T\{x\} = y(n_1, n_2) = \sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \in \mathbb{Z}} x(k_1, k_2) h(n_1 - k_1, n_2 - k_2)$$

Zero Phase Filters

A filter $h(n_1, n_2)$ is said to be *zero-phase* when its frequency response $H(\omega_1, \omega_2)$ is a real function, i.e. when

$$H(\omega_1, \omega_2) = H^*(\omega_1, \omega_2). \tag{1}$$

For real $h(n_1, n_2)$, (1) is equivalent to

$$h(n_1, n_2) = h(-n_1, -n_2).$$

In audio applications, the phase characteristics of filters are not very critical.

The situation for images is different. – Recall the 'Magnitude vs. Phase' experiment.

 $X(\omega_1,\omega_2)$

 $Y(\omega_1,\omega_2)$

 $|X| \exp(j \angle Y)$

Modifying the phase along the horizontal axis creates ghost images along the horizontal axis.

Modifying the phase along the vertical axis creates ghost images along the vertical direction.

For a more general phase modification, we get a combination of ghosts, which is still disturbing.

Zero-Phase Filters

Even though these examples are exaggerations, using zero-phase filters completely avoids this problem.

 \mathcal{X}

x * (zero-ph.) x * (nonzero-ph.)

Zero-Phase Filter Design

A function f(u,v) is said to have circular symmetry if its value at u, v depends only on u^2+v^2 .

The circularly symmetric frequency response of a lowpass filter.

Zero-Phase Filter Design

Circularly Symmetric $H(\omega_1, \omega_2) \implies \text{Circularly Symmetric } h(n_1, n_2)$

Ideal Circularly Symmetric Filters

What will be the filters in terms of $h_R(n_1, n_2)$?

Design Specifications

The Window Method

ullet Given : Desired frequency response $H_d(\omega_1,\omega_2)$

The window method consists of two steps:

- (1) Obtain $h_d(n_1, n_2)$ by inverse Fourier transforming.
- (2) Reduce $h_d(n_1, n_2)$ to an FIR filter by multiplying with a window:

$$h(n_1, n_2) = h_d(n_1, n_2) w(n_1, n_2)$$

The Window Method

By the convolution theorem,

$$H(\omega_1, \omega_2) = H_d(\omega_1, \omega_2) \circledast W(\omega_1, \omega_2).$$

The deviation from $H_d(\omega_1, \omega_2)$ is determined by $W(\omega_1, \omega_2)$.

As $w(n_1,n_2) \to 1$, we have $W(\omega_1,\omega_2) \to \delta(\omega_1,\omega_2)$ so that $H(\omega_1,\omega_2) \to H_d(\omega_1,\omega_2)$.

The Window Method – Rectangular Window

The Window Method – Rectangular Window

The Window Method – Rectangular Window

The Window Method – Circular Window

Desired H with Circular Window (Radius = 3)

The Window Method – Circular Window

Desired H with Circular Window (Radius = 5)

The Window Method – Circular Window

H with Circular Window (Radius = 9)

Desired

The Window Method – Hamming vs. Rectangular

FT of Separable Hamming Window

FT of Separable Rectangular Window

The Window Method – Hamming Window

The Window Method – Hamming Window

The Window Method – Hamming Window

The Frequency Sampling Method

ullet Given : Desired frequency response $H_d(\omega_1,\omega_2)$

The frequency sampling method consists of two steps :

- (1) Sample $H_d(\omega_1, \omega_2)$ to obtain $H(k_1, k_2) = H_d(k_1 \Delta_1, k_2 \Delta_2)$.
- (2) Obtain $h(n_1, n_2)$ by applying inverse FFT to $H(k_1, k_2)$.

The Frequency Sampling Method

 33×33 filter

Frequency response of 17×17 filter

- ullet Let $F(\omega)$ be the frequency response of a given 1D filter.
- Let $G(\omega_1, \omega_2)$ be a function that maps $[-\pi, \pi] \times [-\pi, \pi]$ to $[-\pi, \pi]$.
- Set

$$H(\omega_1, \omega_2) = F(\omega)|_{\omega = G(\omega_1, \omega_2)}$$

Two issues:

- (1) Can we ensure that the resulting filter will be zero-phase?
- (2) How do we choose $G(\omega_1, \omega_2)$?

Suppose f(n) is a zero-phase filter of length 2N + 1.

$$F(\omega) = \sum_{n=-N}^{N} h(n) e^{-j\omega n}$$
$$= \sum_{n=0}^{N} b(n) (\cos \omega)^{n}$$

Now obtain $H(\omega_1, \omega_2)$ through

$$H(\omega_1, \omega_2) = F(\omega)|_{\cos \omega = T(\omega_1, \omega_2)}$$
$$= \sum_{n=0}^{N} b(n) \left(T(\omega_1, \omega_2) \right)^n$$

If $t(n_1, n_2)$ is a zero-phase FIR sequence, this gives a zero-phase FIR filter.

The McClellan transformation,

$$\cos \omega = -\frac{1}{2} + \frac{1}{2} \cos \omega_1 + \frac{1}{2} \cos \omega_2 + \frac{1}{4} \cos(\omega_1 + \omega_2) + \frac{1}{4} \cos(\omega_1 - \omega_2)$$

is obtained by using the sequence,

$$t(n_1, n_2) = \begin{bmatrix} \frac{1}{8} & \frac{1}{4} & \frac{1}{8} \\ \frac{1}{4} & -\frac{1}{2} & \frac{1}{4} \\ \frac{1}{8} & \frac{1}{4} & \frac{1}{8} \end{bmatrix}$$

The contours obtained by the McClellan Transformation

Design Example Using The Frequency Transformation Method

Start from a 1D lowpass zero-phase filter with

- Passband : $\begin{bmatrix} 0 & 0.2\pi \end{bmatrix}$
- \bullet Transition Band : $\begin{bmatrix} 0.2\pi & 0.3\pi \end{bmatrix}$
- Stopband : $\begin{bmatrix} 0.3\pi & \pi \end{bmatrix}$

Design Example

The frequency response of the 1D filter used.

Design Example

Resulting frequency response of the 21×21 filter (after McClellan Transformation)

Lowpass filters and Downsampling

Downsampled by 4

Filtered with ${\cal H}$ before downsampling