Taller 3

Organización del Computador 1

Primer cuatrimestre 2025

1 Ejercicio 1

PC	SP	IR (hexa)	Instrucción y ejecución	PC sig.
0x0		0x00700293	addi x5, zero, 7 $ x5 \leftarrow 7 $	0x04
0x4		0x00100313	addi x6, zero, 1 $x6 \leftarrow 1$	0x08
0x8		0x0062f333	and x6, x5, x6 Se preserva la parte baja entre x6 y x5	0x0c
0x0c		0x00030463	beq x6, x0, 8 No salta, porque $x6 \neq 0$	0x10
0x10		0xfff28293	addi x5, x5, -1 $x5 \leftarrow x5 - 1$	0x14
0x14		0x4012d293	srai x5, x5, 1 Desplaza aritméticamente x5 una posición	0x18

2 Ejercicio 2

2.1

• Etiqueta fin: 0x14

• Etiqueta **resta**: 0x18

• Etiqueta sigo: 0x20

2.2

PC	Llamado	Desplazamiento	Siguiente PC
0x10	Resta	$PC + 0000\ 0100$	0x18
0x20	Resta	PC + 1111 1000	0x18
0x1c	Fin	$PC + 0000\ 0100$	0x14
0x14	Fin	PC + 1111 1000	0x14

2.3

li es una pseudoinstrucción que, si el valor inmediato entra en 12 bits, es lo mismo que hacer addi. Entonces, li se comporta como:

```
addi x5, x0, 42
```

Rango de li cuando usa solamente addi: 12 bits en complemento a 2, por lo tanto el rango en decimal es [-2048, 2047].

Si el valor inmediato no entra en 12 bits, li se traduce en lui y luego addi. Entonces li se comporta como:

```
lui x5, 0x1
addi x5, x5, 132
```

Rango de li cuando se usa lui+addi: Se puede cargar cualquier valor entero de 32 bits con signo, ya que lui carga los 20bits más altos y addi los 12 bits bajos con un valor con signo. Por lo tanto, el rango en decimal es [-2³¹, 2³¹-1].

2.4

Los imm de 12 bits se manejan con li, que cuando imm > 12 bits combina lui y addi para cargar el valor. lui carga los 20 bits altos y addi los 12 bits bajos con un valor con signo. Ejemplo:

```
li a0, 4228:

lui a0, 1 -> a0 = 0x1000 = 4096

addi a0, a0, 132 -> a0 = 4096 + 132 = 4228
```

2.5

El valor final de a1 es 2114 ya que el mismo nunca se modifica a lo largo del ciclo.

2.6

El valor final de PC es 0x14 ya que a partir de ahí comienza el bucle de fin. El ciclo se ejecuta hasta que a0 = 0, al ser a0 = 4228 y a1 = 2114 la resta se ejecuta dos veces y termina cuando se salta a fin.

2.7

PC	Instrucción	Desplazamiento	Siguiente PC
0x00	li1	No hay salto en PC (+8)	0x08
0x08	li2	No hay salto en PC (+8)	0x10
0x10	jump	$PC + 0000 \ 0100$	0x18
0x18	resta	No hay salto en PC (+4)	0x1c
0x1c	beq	No cumple condición (+4)	0x20
0x20	jump (sigo)	PC + 1111 1000	0x18
0x18	resta	No hay salto en PC (+4)	0x1c
0x1c	beq	$PC + 0000 \ 0100$	0x14
0x14	beq (fin)	PC + 1111 1000	0x14

2.8

Instrucción modificada:

srai a1, a0, 1

srai realiza un shift a la derecha aritmético, es decir que divide por 2 si a0 es positivo

3 Ejercicio 3