

Octal, 13-Bit Voltage-Output DAC with Parallel Interface

AD7838

FEATURES

Eight 13-Bit DACs in One Package
Full 13-Bit Performance without Adjustments
Buffered Voltage Outputs
Offset Adjust for Each DAC Pair
±5 V Supply Operation
Unipolar or Bipolar Output Swing to ±4.5 V
Output Settling to 1/2 LSB in 5 μs
Double Buffered Digital Inputs
Microprocessor and TTL/CMOS Compatible
Asynchronous Load Facility using LDAC Inputs
Clear Function to User-Defined Voltage
Power-On-Reset, Outputs Power Up at DUTGND
44-Lead PLCC Package
Pin Compatible with MAX547

APPLICATIONS

Process Control
Automatic Test Equipment
General Purpose Instrumentation
Digital Offset and Gain Adjustment
Arbitrary Function Generators
Avionics Equipment

GENERAL DESCRIPTION

The AD 7838 contains eight 13-bit, voltage-output digital-to-analog converters (DACs). The output voltages are provided through on-chip precision output amplifiers into which an external offset voltage can be inserted via the DUTGND pins. The AD 7838 operates from a $\pm 5~V~\pm~5\%$ supply. Bipolar output voltages with up to $\pm 4.5~V$ voltage swing can be achieved with no external components. The AD 7838 has four separate reference inputs; each is connected to two DACs, providing different scale output voltages for every DAC pair.

The AD7838 features double-buffered interface logic with a 13-bit parallel data bus. Each DAC has an input latch and a DAC latch. Data in the DAC latch sets the output voltage. The eight input latches are addressed with three address lines. Data is loaded to the input latch with a single write instruction. An asynchronous \overline{LDAC} input transfers data from the input latch to the DAC latch. The four \overline{LDAC} inputs each control two DACs, and all DAC latches can be updated simultaneously by asserting

FUNCTIONAL BLOCK DIAGRAM

all \overline{LDAC} pins. An asynchronous clear input resets the output of all eight DACs to the relevant DUTGND. Asserting \overline{CLR} resets both the DAC and the input latch to bipolar zero (1000 H ex). On power-up, reset circuitry performs the same function as \overline{CLR} . All logic inputs are TTL/CMOS compatible.

The AD 7838 is available in a 44-lead PLCC package.

AD7838- SPECIFICATIONS

(V_{DD} = +5 V; V_{SS} = -5 V; DUTGNDXX = GND = 0 V; R_L = 10 k Ω and C_L = 50 pF to GND, T_A¹ = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

Parameter	В	Units	Test Conditions/Comments T ypically ± 0.5 L SB G uaranteed M onotonic Over T emperatur T ypically ± 5 L SB T ypically ± 1 L SB ΔG ain/ ΔV DD ΔG ain/ ΔV SS $R_L = U$ nloaded to 10 k Ω	
ACCURACY Resolution Relative Accuracy Differential Nonlinearity Bipolar Zero-Code Error Gain Error V _{DD} Power Supply Rejection ² V _{SS} Power Supply Rejection ² Load Regulation	13 ±2 ±1 ±20 ±8 ±0.0025 ±0.0025	Bits L SB max L SB max L SB max L SB max %/% max %/% max L SB typ		
REFERENCE INPUTS ^{3, 4} Input Range Input Impedance	DUTGND V _{DD} 5	V min V max kΩ min		
OUTPUT CHARACTERISTICS M aximum Output Voltage M inimum Output Voltage	V _{DD} - 0.5 V _{SS} + 0.5	V max V min		
DYNAMIC PERFORMANCE Voltage Output Slew Rate 3 Output Settling Time 5 Digital F eedthrough 5 Digital C rosstalk 5		V/μs typ μs typ nV-s typ nV-s typ	Settling to 0.5 LSB of Full Scale ⁵	
DIGITAL INPUTS V _{INH} , Input High Voltage V _{INL} , Input Low Voltage I _{INH} , Input Current C _{IN} , Input C apacitance ⁶	2.4 0.8 ±1 10	V min V max μA max pF_max	V _{IN} = 0 V or V _{DD}	
POWER REQUIREMENTS V _{DD} V _{SS} I _{DD} 44 I _{SS} 40		V nom V nom mA max mA max	±5% for Specified Performance ±5% for Specified Performance Typically 14 mA Typically 11 mA	

NOTES

-2-REV. 0

¹T emperature Range for B Version: -40°C to +85°C.

 $^{^2}$ PSRR is tested by changing the respective supply voltage by $\pm 5\%$. 3 For best performance, REFxx should be greater than DUTGNDxx by 2 V and less than V $_{DD}$ – 0.6 V. The device operates with reference inputs outside this range, but performance may degrade.

4R eference input resistance is code dependent.

 $^{^5}$ T ypical settling time with 1000 pF capacitive load is 10 μ s.

⁶Guaranteed by design, not production tested.

Specifications subject to change without notice.

TIMING SPECIFICATIONS¹ ($V_{DD} = +5 \text{ V}$; $V_{SS} = -5 \text{ V}$; DUTGND = GND = 0 V, REFxx = 4.096 V)

Parameter	Limit at T _{MIN} , T _{MAX}	Units	Description Address Valid to WR Setup Time	
$\overline{t_1}$	10	ns min		
t_2	0	ns min	Address Valid to $\overline{ m WR}$ Hold Time	
t_3	50	ns min	CS Pulse Width	
t_4	50	ns min	WR Pulse Width	
t ₅	0	ns min	$\overline{ ext{CS}}$ to $\overline{ ext{WR}}$ Setup T ime	
t_6	0	ns min	CS to WR Hold Time	
t ₇	50	ns min	Data Valid to $\overline{ m WR}$ Setup Time	
t ₈	0	ns min	Data Valid to $\overline{ m WR}$ Hold Time	
t ₉	5	μs typ	Output Settling Time	
t ₁₀	100	ns min	CLR Pulse Width	
t ₁₁	50	ns min	LDAC Pulse Width	

NOTES

Specifications subject to change without notice.

REV. 0 -3-

¹All input signals are specified with tr = tf = 5 ns (10% to 90% of 5 V) and timed from a voltage level of 1.6 V. Timing applies for all grades of the part.

²Rise and fall times should be no longer than 50 ns.

AD7838

ABSOLUTE MAXIMUM RATINGS^{1, 2}

$(T_A = +25^{\circ}C \text{ unless otherwise noted})$
V_{DD} to GND0.3 V to +6 V
V_{SS} to GND
D igital Inputs to GND0.3 V to V_{DD} +0.3 V
REFxxDUTGND - 0.3 to V_{DD} + 0.3
DUTGNDxx
V_{OUT} V_{DD} to V_{SS}
M ax Current Into REF xx Pin $\dots \pm 10$ mA
M ax Current Into Any Other Signal Pin ±50 mA
O perating T emperature R ange
Industrial (B Version)40°C to +85°C

Storage T emperature R ange	65°C to +150°C
Junction Temperature	+150°C
PLCC Package, Power Dissipation	TBD mW
$\theta_{ A}$ Thermal Impedance	48°C/W
L [´] ead Temperature, Soldering	
Vapor Phase (60 sec)	+215°C
Infrared (15 sec)	+220°C

NOTES

¹Stresses above those listed under Absolute M aximum R atings may cause permanent damage to the device. T his is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING GUIDE

Model	Temperature Range	Relative Accuracy (LSBs)	DNL (LSBs)	Package Description	Package Option
AD 7838BP	-40°C to +85°C	±2	±1	Plastic Leaded Chip Carrier (PLCC)	P-44A

PIN CONFIGURATION

CAUTION.

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 7838 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

-4- REV. 0

²T ransient currents of up to 100 mA will not cause SCR latchup.