This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : H03L 7/08, 7/18, 7/095, 7/099	A1	(11) International Publication Number: WO 97/09786
		(43) International Publication Date: 13 March 1997 (13.03.97)
(21) International Application Number: PCT/US (22) International Filing Date: 21 August 1996 (patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT,
(30) Priority Data: 08/523,452 5 September 1995 (05.09.95	5) t	Published S With international search report.
(71) Applicant: MOTOROLA INC. [US/US]; 1303 East A Road, Schaumburg, IL 60196 (US).	Algonqu	n
(72) Inventors: MARTIN, Frederick, L.; 6151 S.W. 8 Plantation, FL 33317 (US). CARRALERO, Cesar West 69th Street, Hialeah, FL 33014 (US).		
(74) Agents: SCUTCH, Frank, M., III et al.; Motor Intellectual Property Dept., 8000 West Sunrise B Fort Lauderdale, FL 33322 (US).		

(54) Title: METHOD AND APPARATUS FOR CONTROLLING A VOLTAGE CONTROLLED OSCILLATOR TUNING RANGE IN A FREQUENCY SYNTHESIZER

(57) Abstract

A frequency synthesizer (100, 500) provides multiple selectable voltage controlled oscillator (VCO) frequency ranges. A VCO control circuit (114) controls the selectable VCO frequency ranges based on lock conditions of selected VCOs within a VCO array (112) or a single variable VCO circuit (502), to provide an extended tuning range to the frequency synthesizer (100, 500).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	ſΤ	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
СН	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	Lſ	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	ΤĴ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
Fī	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

METHOD AND APPARATUS FOR CONTROLLING A VOLTAGE CONTROLLED OSCILLATOR TUNING RANGE IN A FREQUENCY SYNTHESIZER

5 Technical Field

This invention relates in general to frequency synthesizers and more specifically to voltage controlled oscillator circuits used in frequency synthesizers.

10 Background

15

20

25

30

35

Recent radio technology trends have focused on producing highly integrated products that operate at lower voltages. The advantages associated with these trends include smaller packaging and lower current drain consumption. However, the use of low voltage high density integrated circuit technologies presents problems to the electrical designer including low breakdown thresholds and limited available supply range for the circuit design. Present day radio frequency (RF) synthesizer circuits requiring a wide tuning range are typically achieved using one to two manually selected VCO circuits, each employing a very high tuning voltage, typically around 12-15 volts. Careful characterization and/or trim operations of these VCOs are required in order to cover a fixed frequency range. The required tuning operations and characterizations currently performed are expensive and are not readily applicable in a monolithic environment.

Achieving a wide tuning loop bandwidth in an all-integrated synthesizer presents the issue of controlling an integrated VCO over a wide tuning range. With the advent of lower operating supply voltages and lower breakdown voltages in integrated circuit (IC) technologies, there is a need for an improved VCO circuit to adapt to this new environment.

Brief Description of the Drawings

FIG. 1 shows an electrical block diagram of a frequency synthesizer in accordance with a first embodiment of the present invention.

10

20

30

35

FIG. 2 shows an electronic circuit diagram of a voltage controlled oscillator (VCO) control circuit in accordance with the preferred embodiment of the present invention.

FIG. 3 shows an electronic circuit diagram of a lock detect circuit in accordance with the preferred embodiment of the present invention.

FIG. 4 shows a flowchart of an iterative process for controlling a voltage controlled oscillator (VCO) tuning range in accordance with the present invention.

FIG. 5 shows an electrical block diagram of an alternative embodiment of a frequency synthesizer in accordance with the present invention.

FIG. 6 shows an electronic circuit diagram of the VCO of FIG. 5 in accordance with the alternative embodiment of the present invention.

FIG. 7 shows a communication device utilizing the present invention.

Detailed Description of the Preferred Embodiment

FIG. 1 of the accompanying drawings shows a block diagram of a frequency synthesizer 100 in accordance with a first embodiment of the present invention. A reference frequency signal, fref, generated from a reference oscillator 102 is received at phase detector 104. Phase detector 104 phase compares the reference frequency signal, fref, to a divided output frequency, f_v, received from a loop divider 106. Phase detector 104 generates an error signal 108 which is transferred to loop filter 110. The loop filter 110 generates a control voltage signal, Vctrl, in response to the error signal 108. In accordance with the present invention, the control voltage signal, Vctrl, is used as an input to a plurality of voltage controlled oscillator (VCO) circuits 112 (VCO₁-VCO_n). In accordance with the present invention, a VCO control circuit 114 alternately enables each of the plurality of VCO circuits 112 through select ports (sel₁-sel_n) in order to alternately generate output frequencies with which the synthesizer 100 can attempt to lock on frequency. Thus, VCO control circuit 114 provides for the automatic selection of a VCO frequency from amongst a plurality of selectable VCO frequency ranges. The plurality of VCO circuits 112 will also be referred as a VCO array 112. The VCOs

3

within VCO array 112 preferably have overlapping frequency ranges to provide a wideband tuning range for synthesizer 100.

The VCO control circuit 114 begins an iteration of alternately enabling and disabling individual VCOs within VCO array 112 in response to a trigger signal 115 generated from a trigger source (not shown), such as a controller. The output frequency generated from a currently enabled VCO is fed through buffer 116 as output frequency, f_{out} , and then fed back to loop divider 106. Loop divider 106 receives inputs from a controller (not shown) which programs the loop divider to divide the output frequency, f_{out} , by a predetermined amount (/n). The divided output frequency, f_v , is then fed back to phase detector 104. By individually enabling the VCOs one at a time as described by the invention, the tuning range provided to synthesizer 100 extends across the overlapping frequency ranges of the plurality of VCOs 112.

The synthesizer 100 also includes a means of detecting locked and unlocked synthesizer conditions, preferably through a lock detect circuit 118 which uses the control voltage signal, Vctrl, to determine whether the synthesizer 100 has locked on frequency with a currently enabled VCO circuit. Lock detect circuit 118 generates a lock indicator signal 120 indicating either a locked or unlocked condition and feeds the lock indicator signal to the VCO control circuit 114. VCO control circuit 114 continues to alternately enable and disable each of the plurality of VCO circuits 112 until the lock indicator signal 120 indicates that the synthesizer has locked on frequency with one of the VCOs. Once the synthesizer 100 has locked on frequency, the currently selected VCO, loop divider 106, phase detector 104, and loop filter 110 generally form a locked phase lock loop (PLL). The phase lock loop maintains divided frequency output signal, f_v, in phase with the frequency signal, f_{ref}, by producing the error signal 108 at the phase detector output which manipulates the currently selected VCO to correct for differences between fy and fref.

In accordance with the present invention, VCO control circuit 114 can also track the number of the currently enabled VCO relative to the total number of VCOs within VCO array 112. Once each of the VCOs within VCO array 112 has been alternately enabled without a successful lock, an out of range indicator, range_x, enables an out of range condition that terminates the alternate enabling and disabling process. The out of

5

10

15

20

25

30

4

range indicator is also preferably coupled back to a controller (not shown) to inform the controller that no successful lock was achieved with any of the selected VCO circuits within VCO array 112. Hence, the VCO control circuit 114 as described by the invention can continue to make attempts to lock the synthesizer 100 on frequency until either a lock condition is met or an out of range condition is indicated. When the VCOs within VCO array 112 provide different yet overlapping tuning ranges, the synthesizer 100 can provide a wideband voltage controlled oscillator tuning range. The iterative process can be restarted with a new trigger signal 115 which resets the VCO control circuit 114.

The frequency synthesizer 100 is preferably fabricated using bipolar-complimentary metal oxide semiconductor (Bi-CMOS) technology as part of a single integrated circuit (IC). Other IC technologies, such as gallium arsenide (GaAs) or bipolar, also lend themselves well to providing the wide tuning range achieved by providing multiple selectable integrated VCO circuits. Using the array of VCO circuits described by the invention, eliminates the need for a single VCO with a large tuning voltage range, a practice common in synthesizers with a wide frequency range in present art. Hence, the integrated circuit design makes synthesizer 100 attractive for low voltage applications, particularly those using operating voltages below 3 volts. By using the VCO control circuit 114 described by the invention to automatically select and de-select VCO frequency ranges within synthesizer 100, the need for VCO characterization and trimming is minimized. The VCO control circuit 114 and lock detect circuit 118 may be implemented in a number of ways with the preferred embodiments to be described herein. While the first embodiment describes a series of VCOs having partially overlapping tuning ranges, one skilled in the art realizes that there may be applications where it is desirable to have gaps between some of the tuning ranges.

Referring now to FIG. 2, there is shown a preferred implementation of the VCO control circuit in accordance with the present invention. Common signal names have been maintained between FIGs. 1 and 2 where applicable. The VCO control circuit 200 preferably includes a counter 202, a binary decoder 204, a timer 206, first, second, and third flip-flops 208, 210, 212, shown as D flip-flops, an OR

5

10

15

20

25

30

10

15

20

25

30

35

gate 214, and an inverter 216. In operation, the number of the selected (active) VCO is stored in the contents of the counter 202 and provided as a binary output to the binary decoder 204. The binary decoder 204 receives the binary input and transmits a single bit output to pins sel₁-sel_n. The selection process is initiated by input signal trigger 115, preferably generated by a controller (not shown), which resets all counters and flipflops in the design. At initiation, the value stored in counter 202 is 0, resulting in a logic high setting for output sel₁. At the time of initiation, timer 206 begins counting clock cycles of the frequency reference signal. fref. The combination of the length of the clock cycle time and the period of the frequency reference signal are used to produce a time delay greater than the settling time of the synthesizer. When timer 206 completes its cycle, an overflow output is set to a logic high, clocking a first flip-flop 208. When clocked, first flip-flop 208 stores the lock indicator signal, lock_x, from the lock detector of FIG. 1 which is first inverted through inverter 216. If the phase lock loop locks with the currently selected VCO frequency (lockx set to a logic level low), the first flip-flop lock output signal is set to a logic level high, and the clock input, clk, of the timer 206 is disabled through logic gate 214, and the value at the select outputs, sel₁-sel_n, is latched and held. If the phase lock loop fails to lock with the currently selected VCO frequency (lock_x is set to a logic level high), the overflow output of timer 206 enables first and second delay producing flipflops 210 and 212 which in turn cause counter 202 to increment its binary output count. The incremented count of counter 202 allows the binary decoder 204 to increment to the next select output, in this case sel2. This process is repeated until a lock condition is reached or until counter 202 overflows. An overflow condition at counter 202 exists when its overflow output, rangex, is a logic level high which terminates the search process through logic gate 214. The range_x signal is also preferably fed back to a controller (not shown) to indicate that an out of range condition exists.

FIG. 3 shows an electrical circuit diagram of the preferred embodiment of the lock detect circuit in accordance with the present invention. Common signal names have been maintained between FIGs. 1 and 3 where applicable. The lock detect circuitry 300 preferably comprises first and second comparators 302, 304, a first voltage divider 306 coupled to the non-inverting input of the first comparator 302, and a

15

20

25

30

35

second voltage divider 308 coupled to the inverting input of the second comparator 304. A logic gate, NAND gate 310, is preferably coupled to the outputs of the first and second comparators 302, 304 to provide the lock detect signal, lock $_{x}$. The analog lock detect circuitry 300 samples the control voltage, Vctrl, generated at the output of the loop filter 110 of FIG. 1 and compares it to preset threshold limits of first and second comparators 302 and 304. The phase lock loop of FIG. 1 will cause the control voltage, Vctrl, to approach either supply or ground, when the PLL is unlocked. This feature reduces the variations in loop dynamics over frequency and temperature. First voltage divider 306 determines the upper limit threshold of first comparator 302 while second voltage divider 308 determines the lower limit threshold of second comparator 304. Comparator 302 generates a logic level high (supply) signal when the control voltage, Vctrl, is lower than the upper limit threshold. When the control voltage is higher than the upper limit threshold, the first comparator 302 generates a logic level low (ground). Second comparator 304 generates a logic level high when the control voltage, Vctrl, is higher than the lower limit threshold and a logic level low signal otherwise. The NAND gate 310 generates a logic level low only when both inputs are high, when the control voltage, Vctrl, is between the upper and lower limit thresholds. This is an indication that the synthesizer 100 is locked on frequency. When the NAND gate 310 output is a logic level high the synthesizer 100 is unlocked.

While the lock detector 300 has been described using an analog approach, an alternate digital implementation can also be realized by sampling the edges of the error signal 108 at the output of the phase detector 104. This digital sampling technique is described in a U.S. Pat. No. 4,764,737 by Kaatz entitled "Frequency Synthesizer Having Phase Detector with Optimal Steering and Level-Type Lock Indication" and is hereby incorporated by reference. In this implementation, the VCO frequency ranges are preferably increasing monotonically, and by sampling the edges of the error signal 108, positive and negative out of lock conditions can be determined. This allows the control circuit 114 to do a non-sequential search through the VCO array 112, skipping several VCO circuits at a time, when an unlocked condition occurs. Thus, it is not necessary for each VCO circuit to be enabled in order to determine

10

15

20

30

35

out of range conditions. Various other lock detect schemes available in the art can also be employed to determine lock and unlocked conditions of the frequency synthesizer.

It may also be desirable for a controller (not shown) to store information as to which VCO actually locks on frequency. Thus, when control circuit 114 is re-triggered it can respond by starting a non-sequential search with the last enabled VCO that locked on frequency. By restarting the search with the last enabled VCO, lock times can potentially be reduced.

Referring now to FIG. 4, there is shown a flowchart of an iterative process 400 for controlling a VCO tuning range in a frequency synthesizer in accordance with the present invention. Step 402 starts the iterative process 400 by resetting all the VCO control circuits, step 404 sets a counter to a predetermined value, in this case a value of zero (i=0), and step 406 increments the counter by a predetermined value, in this case by an increment of 1. Step 408 enables VCOi and then delays the clock for a predetermined amount of time, for example 100 microseconds at step 410. Step 412 determines if a lock condition is detected and if so, terminates the iterative process at step 414. If a lock condition is not detected at step 412, an out of range condition is then checked at step 416. Step 416 determines if an out of range condition is present by comparing the counter to a predetermined threshold. If an out of range condition is met, the currently enabled VCO is disabled at step 418 and the iterative process is stopped at step 420. If an out of range condition is not determined in step 416, the currently enabled VCO is disabled at step 422, and the iterative process is returned to step 406 where the counter is incremented to enable a new VCO at step 408. When the tuning ranges from one VCO to the next partially overlap, the result of the iterative process is a broadband VCO tuning range within which the frequency synthesizer can lock.

As previously described, it may also be desirable to sequence through the VCOs in a non-sequential manner, even skipping several VCOs at a time. The iterative process 400 can be adapted to respond to positive and negative unlocked conditions in order to provide the non-sequential search through the VCOs. Thus, the iterative process can be adapted to suit specific application needs.

10

15

20

25

30

35

While the preferred embodiment of the invention has been illustrated and described, it will be clear that the invention is not so limited. While the preferred embodiment of synthesizer circuit 100 shows separate VCO circuits coupled in a parallel like fashion off the VCO control circuit 114, an alternative approach could include a single VCO with multiple pin switches or switched varactor tuning ranges to provide a plurality of selectable VCO tuning frequencies. This alternative embodiment of the frequency synthesizer is shown in FIG. 5 of the accompanying drawings. Like reference designators have been used between FIGs. 1 and 5 where applicable. In accordance with this alternative embodiment, frequency synthesizer 500 includes VCO control circuit 114 and lock detect circuit 118 to control a phase lock loop formed of phase detector 104, loop filter 110, loop divider 106, and a variable voltage controlled oscillator (VCO) 502 preferably having an N-bit band selection. Variable VCO 502 is shown in more detail in the electronic circuit diagram of FIG. 6. Once again, in accordance with the present invention, the VCO control circuit 114 provides for the automatic selection of a VCO frequency from amongst a plurality of selectable VCO frequency ranges within synthesizer 500. By determining unlocked conditions and using these conditions to control a plurality of selectable VCO frequency ranges, a broad overall tuning range is provided to synthesizer 500.

Referring now to FIG. 6, variable VCO 502 generally includes capacitors 612, varactor 608, resonator 610, transistor 614, and current sink 616. Other biasing circuitry has been omitted for simplicity. In accordance with this alternative embodiment of the invention, variable VCO 502 further includes switches 604, preferably field effect transistors (FETs), which are enabled through select lines sel₁-sel_n from the VCO control circuit 114. FETs 604 selectively engage capacitors (C through C x 2ⁿ) 606 either singularly or in combinations thereof to provide various selectable tuning ranges to synthesizer 500. The VCO control circuit 114 of FIG. 1 can be implemented to provide the N-bit binary outputs to select ports (sel₁-sel_n) as opposed to the single bit binary output described in the embodiment of FIG. 2. Hence, the single variable VCO 502 provides fine tuning over a broad range of selectable tuning frequencies with which to lock synthesizer 500.

15

20

In FIG. 7, a communication device such as a two way radio 700 is shown. Radio 700 includes conventional transmitter, receiver, and controller circuits for transmitting and receiving information.

Preferably, radio 700 includes a frequency synthesizer having a selectable VCO tuning range as described by the invention. Thus, radio 700 provides the benefit of a broad range of tuning frequencies with which to obtain communication links. Other communication devices such as televisions and cellular telephones can also benefit from the improvements provided by the frequency synthesizer having selectable tuning ranges described by the present invention.

Accordingly, wideband frequency synthesizers can now be achieved by implementing and controlling multiple VCOs or a single variable VCO as described by the invention. By using a VCO array or a single variable VCO and determining out of lock conditions, the need for individual VCO characterization and trim operations is significantly reduced. The iterative process of controlling a VCO tuning range, as described by the invention, allows a single integrated synthesizer to cover a broader range of communication applications and hence has a greater appeal in the market place than present day synthesizers.

Numerous other modifications, changes, variations, substitutions, and equivalents will occur to those skilled in the art without departing from the spirit and scope of the present invention as defined by the appended claims.

25 What is claimed is:

Claims

- 1. A voltage controlled oscillator (VCO) tuning circuit for a frequency synthesizer, including:
- a VCO control circuit providing select signals; and a plurality of VCO circuits responsive to the select signals for alternately generating output frequencies until one of the plurality of VCO circuits locks on frequency.
- 2. A voltage controlled oscillator (VCO) tuning circuit as described in claim 1, wherein the plurality of VCO circuits provides a plurality of overlapping tuning ranges in response to the select signals.

- 3. A phase lock loop (PLL) for a frequency synthesizer, comprising:
 - a reference oscillator providing a first frequency input signal;
- a phase detector for comparing the phase of the first frequency input signal to a second frequency input signal and generating an error signal;
 - a loop filter coupled to said phase detector, said loop filter providing a control voltage in response to the error signal;
- a voltage controlled oscillator (VCO) circuit providing a plurality of selectable VCO frequency ranges in response to the control voltage; a lock detect circuit responsive to the error signal for generating a lock detect signal indicating a locked condition or an unlocked condition of the PLL;
 - a VCO control circuit responsive to the lock detect signal for selecting one of the plurality of selectable VCO frequency ranges;
 - the VCO circuit generating an output frequency in response to the one of the plurality of selectable VCO frequency ranges being selected; and
- a loop divider for dividing the output frequency by a predetermined 20 amount and feeding a divided output frequency back to the phase detector as the second frequency input signal.

- 4. A phase lock loop (PLL) for a frequency synthesizer, comprising:
 - a reference oscillator providing a first frequency input signal;
- a phase detector for comparing the phase of the first frequency input signal to a second frequency input signal and generating an error signal;
 - a loop filter coupled to said phase detector, said loop filter providing a control voltage in response to the error signal;
- a plurality of voltage controlled oscillator (VCO) circuits receiving the control voltage;
 - a VCO control circuit for individually enabling and disabling each of the plurality of VCO circuits, said plurality of VCO circuits each individually generating an output frequency in response to being enabled;
- a lock detect circuit for determining, based on the control voltage, if the frequency synthesizer has locked on frequency with one of the plurality of VCO circuits, said VCO control circuit ceasing to individually enable and disable each of the plurality of VCO circuits once the frequency synthesizer has locked on frequency; and
- a loop divider for dividing each generated output frequency by a predetermined amount and feeding a divided frequency back to the phase detector as the second frequency input signal.
- 5. A phase lock loop (PLL) for a frequency synthesizer as described in claim 4, wherein the VCO control circuit includes a delay means for determining the settling time of each individually enabled VCO circuit.

- 6. A voltage controlled oscillator (VCO) tuning circuit for a frequency synthesizer, including:
- a plurality of VCOs, each providing different and partially overlapping frequency ranges, said plurality of VCOs each generating an output frequency in response to being enabled; and
- a VCO control circuit alternately enabling and disabling each of said plurality of VCOs to provide a tuning range within which the frequency synthesizer can lock on frequency.
- 7. A VCO tuning circuit for a frequency synthesizer as described in claim 6, wherein the frequency synthesizer locks on frequency with one of the alternately enabled VCOs, and the VCO control circuit ceases alternately enabling and disabling the plurality of VCOs once the frequency synthesizer locks on frequency.
 - 8. A VCO tuning circuit for a frequency synthesizer as described in claim 6, further including:
- a lock detect circuit for determining whether the frequency synthesizer has locked on frequency with one of the plurality of VCOs, said lock detect circuit generating a lock indicator signal indicating either a locked or unlocked condition of the frequency synthesizer, said VCO control circuit alternately enabling and disabling each of the plurality of VCOs when an unlocked condition is indicated, and said VCO control circuit terminating the alternate enabling and disabling of the plurality of VCOs when a locked condition is indicated.

14

9. A method of tuning a frequency synthesizer to lock on to a frequency, comprising the steps of:

generating a control voltage;

providing the control voltage to a plurality of voltage controlled oscillator (VCO) circuits having different yet overlapping frequency ranges;

alternately enabling and disabling each of the plurality VCO circuits;

alternately generating an output frequency from each of the alternately enabled VCO circuits in response to the control voltage;

determining if the frequency synthesizer has locked on frequency with each alternately generated output frequency; and

ceasing the alternate enabling and disabling of the plurality of VCO circuits once the frequency synthesizer has locked on frequency.

15

5

10

10. A method of tuning a frequency synthesizer to lock on to a frequency as described in claim 9, wherein the step of determining includes the step of delaying the length of time each of the plurality of VCO circuits is alternately enabled.

15

11. A method of tuning a phase lock loop (PLL) in a frequency synthesizer, comprising the steps of:

providing a plurality of selectable voltage controlled oscillator (VCO) frequency ranges;

automatically selecting a VCO frequency from the plurality of selectable VCO frequency ranges;

attempting to lock the PLL on frequency with the selected VCO frequency;

checking whether the PLL has locked on frequency with the selected VCO frequency;

automatically de-selecting the selected VCO frequency after a predetermined time within which the PLL fails to lock on frequency; and

repeating the step of automatically selecting through the step of deselecting until one of the plurality of selectable VCO frequency ranges locks the PLL on the selected VCO frequency.

- 12. A method of tuning a PLL in a frequency synthesizer as described in claim 11, wherein the plurality of selectable VCO frequency ranges are partially overlapping.
- 13. A method of tuning a PLL in a frequency synthesizer as described in claim 11, wherein the step of repeating includes the step of repeating in a non-sequential manner the step of automatically selecting through the step of de-selecting.

5

10

15

10

- 14. A communication device, comprising:
- a receiver; and
- a frequency synthesizer having a phase lock loop (PLL), including:
- a variable voltage controlled oscillator (VCO) circuit providing a plurality of selectable VCO frequency ranges;
- a VCO control circuit for selecting one of the plurality of selectable VCO frequency ranges to provide a currently selected VCO frequency;
- a lock detect circuit for determining if the PLL locks on frequency with the currently selected VCO frequency and generating a lock detect indicator signal indicating whether the PLL has locked on frequency or has failed to lock on frequency; and said VCO control circuit responsive to the lock detect indicator signal for selecting another one of the plurality of
- indicator signal for selecting another one of the plurality of selectable VCO frequency ranges when the PLL has failed to lock on frequency.
- 15. A communication device as described in claim 14, wherein some of the plurality of selectable VCO frequency ranges are overlapping.

4/7

6/7

FIG. 6

WO 97/09786

PCT/US96/13731

7/7

INTERNATIONAL SEARCH REPORT

•

In .ational application No. PCT/US96/13731

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :HO3L 7/08, 7/18, 7/095, 7/099 US CL : 331/2, 14, 16, 25, 34, 49, 57							
	ording to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEARCHED							
Minimum documentation searched (classification system followed by classification symbols)							
U.S. : 331/2, 14, 16, 25, 34, 49, 57							
Documentation	n searched other than minimum documentation to the	extent that such documents are included	in the fields searched				
Electronic dat	a base consulted during the international search (name	me of data base and, where practicable	, search terms used)				
APS search terms: VCO, PLL, SYNTHESIZER, SELECT?, OVERLAP							
C. DOCU	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.				
	US, A, 5,389,898, (TAKETOSHI 1995, figure 1, col.2, last para., co 7, lines 3-12.	1-4,6-12 and 14-15					
A	US, A, 4,590,602 (WOLAVER) 20	1,4,6,9,11 AND 14					
Furthe	er documents are listed in the continuation of Box C	. See patent family annex.					
• Spec	cial categories of cited documents:	"T" later document published after the int					
'A' doct	nment defining the general state of the art which is not considered to of particular relevance	principle or theory underlying the in-					
1	ier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered.					
cited	ument which may throw doubts on priority claim(s) or which is d to establish the publication date of another citation or other	when the document is taken alone "Y" document of particular relevance; if	he claimed invention cannot be				
1	cial reason (as specified) nument referring to an oral disclosure, use, exhibition or other tas	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art					
	ument published prior to the international filing date but later than priority date claimed	*&* document member of the same patent family					
	actual completion of the international search	Date of mailing of the international se	earch report				
18 SEPTE	MBER 1996	0 2 OCT 1996					
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks		Authorized officer					
Box PCT		MARNOLD KINKEAD A TOTALLING U					
_	ı, D.C. 20231 o (703) 308-7726	Telephone No. (703) 305-3486					

Form PCT/ISA/210 (second sheet)(July 1992)*