PRODUCT STRUCTURES

There are three natural products with homology & cohomology:

$$H^{k}(X) \times H_{k}(X) \longrightarrow \mathbb{Z}$$

Can use this to show cocustes, or cycles, ore nontrivial!

2 Cup product:

$$H^{p}(X) \times H^{q}(X) \longrightarrow H^{p+q}(X)$$

$$(\varphi, \psi) \longmapsto \varphi \cup \psi$$

 \longrightarrow H*(X) is a graded ring.

3 Cap product:

$$H^{p}(X) \times H_{n}(X) \longrightarrow H_{n-p}(X)$$

$$(\varphi, \alpha) \longmapsto \varphi \cap \alpha$$

Big Goal:

Poincaré Duality Theorem.

Let M = compact, connected, oriented n-manifold. Then

$$H^{p}(M) \rightarrow H_{n-p}(M)$$
 $\varphi \mapsto \varphi \cap [M]$

is an isomorphism.

We have already since examples of cocycles in manifolds of the form "intersect with this (n-p)-cycle". These are Poincaré duals.

Will see: under PD, cap product is intersection.

CUP PRODUCT

Want to define a product on $H_*(X)$.

There is a cross product $H_i(X) \times H_i(Y) \longrightarrow H_{i+j}(X \times Y)$ $(e_i, e_j) \longmapsto e_i \times e_j$ Taking $X = Y : H_i(X) \times H_i(X) \longrightarrow H_{i+j}(X \times X) \xrightarrow{?} H_{i+j}(X)$ Need a natural map $X \times X \to X$.

If X is a group, can multiply \sim Pontryagin product.

Otherwise only natural map is projection \sim stupid product.

For H^* , situation is better. Want $A^i(X) \xrightarrow{i} A^j(X) / A^{i + j}(X) \xrightarrow{?} H^{i + j}(X)$ $H^i(X) \times H^j(X) \longrightarrow H^{i + j}(X \times X) \xrightarrow{?} H^{i + j}(X)$

This requires a natural map $X \to X \times X \longrightarrow \text{diagonal}!$ This is the cup product.

We can also define cup product from scratch:

For $\varphi \in C^k(X,R)$, $\psi \in C^l(X,R)$ R = ring. the cup product $\varphi \cup \psi \in C^{k+l}(X,R)$ is given by: $(\varphi \cup \psi)(\sigma) = \varphi(\sigma|_{[V_0,...,V_k]}) \psi(\sigma|_{[V_k,...,V_{k+l}]})$ for a simplex $\sigma : \Delta^{k+l} \to X$. To show cup product induces a product on cohomology.

Lemma
$$\delta(\phi \cup \psi) = \delta \phi \cup \psi + (-1)^{k} \phi \cup \delta \psi$$

 PF Say $\phi \in C^{k}(X,R)$, $\psi \in C^{k}(X,R)$, $\pi : \Delta^{k+l+1} \longrightarrow X$.
 $(\delta \phi \cup \psi)(\sigma) = \sum_{i=0}^{k+l} (-1)^{i} \phi(\pi|_{\Sigma_{0},...,\hat{V}_{i},...,V_{k+l}}) \psi(\pi|_{\Sigma_{k+1},...,V_{k+l+1}})$
 $(-1)^{k} (\phi \cup \delta \psi)(\pi) = \sum_{i=k}^{k+l} (-1)^{i} \phi(\pi|_{\Sigma_{0},...,V_{k-1}}) \psi(\pi|_{\Sigma_{k+1},...,V_{k+l+1}})$

Last term of first sum cancels first sum of second.

Rest is $\delta(\varphi u \psi)(\tau) = (\varphi u \psi)(\partial \tau)$.

Since $\delta(\varphi u \psi) = \delta \varphi u \psi \pm \varphi u \delta \psi$ \longrightarrow product of cocycles is a cocycle.

Also, the product of a cocycle and a coboundary is a coboundary: $\psi = \delta\Theta$, $\delta\varphi = 0 \implies \delta(\varphi \cup \Theta) = \delta\varphi \cup \Theta \pm \varphi \cup \delta\Theta$ $= \pm \varphi \cup \psi.$

We thus have an induced cup product $H^k(X,R) \times H^l(X,R) \xrightarrow{\vee} H^{k+l}(X,R)$

It is associative and distributive, since it is on cochain level. If R has 1 then $H^*(X,R)$ has identity, namely: $1 \in H^o(X,R)$ taking value $1 \in R$ on each O-simplex.

Note: The canonical isomorphism between simplicial/singular H* preserves U, so can switch back & forth.

EXAMPLE: SURFACES

Will show $U: H^1(Mg, \mathbb{Z}) \times H^1(Mg, \mathbb{Z}) \longrightarrow H^2(Mg, \mathbb{Z}) = \mathbb{Z}$ is algebraic intersection.

ai, bi form a basis for H1(Mg, Z). UCT > H'(Mg) = Hom (H, (Mg), Z) Basis for Hy and dual basis for H1 $a_i \longrightarrow \text{Mi}_i q_i \text{ others} \longrightarrow 0.$

Can represent by simplicial cocycle and dotted arc. Xi, Bi. xi evaluates to 1 on an edge like -1 on an edgelike

Compute Q1 U VI from definition. Takes value 0 on all cells but SE, where it takes value 1.

fundamental We know H2(Mg) = Z = < [Mg]> class $UCT \implies H^2(M_g, \mathbb{Z}) \cong Hom(H_2(M_g), \mathbb{Z}).$ So which elt of H2(Mg, Z) is q, v /1? We check (q, u, y,) ([Mg]) = 1 This tells us both that (i) [Mg] generates H2(Mg)

(ii) GIUYI is dual to [Mg], hence a gen. for $H^2(Mg, \mathbb{Z})$.

In general, identifying $H^2(Mg, \mathbb{Z})$ with \mathbb{Z} :

U = î Calgebraic intersection.

Suffices to check on generators.

EXAMPLE: NONORIENTABLE SURFACES

Use $\mathbb{Z}/2\mathbb{Z}$ coefficients since $H_2(N_g) = 0$ $H_2(N_g; \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}$

Claim: H2 (Ng, 74/27) = 72/272.

Pf: Any single A gives a cocycle. ©
Any two adjacent triangles are cohomologous

→ any cocycle is kp.

Can also use UCT and $Ext(\mathbb{Z}/n\mathbb{Z}, G) \cong G/nG$.

Can check: $\alpha_i \cup \alpha_i = 1$ $\alpha_i \cup \alpha_j = 0$

This is again intersection number: if you push off di it intersects itself in one point.

The g=1 case is RP^2

NATURALITY

Prop: For
$$f: X \rightarrow Y$$
, the induced $f^*: H^n(Y, \mathbb{R}) \rightarrow H^n(X, \mathbb{R})$
Satisfies: $f^*(\alpha \cup \beta) = f^*(\alpha) \cup f^*(\beta)$

Pf: Already true on cochain level:
$$f^{*}(\varphi) \cup f^{*}(\psi) = f^{*}(\varphi \cup \psi)$$
.

$$(f^{*}(\varphi) \cup f^{*}(\psi))(\sigma) = f^{*}(\varphi(\sigma|_{Ev_0,...,v_{k}]}) f^{*}\psi(\sigma|_{Ev_{k,...,v_{k+2}}})$$

$$= \varphi(f\sigma|_{Ev_0,...,v_{k}}) \psi(f\sigma|_{Ev_{k,...,v_{k+2}}})$$

$$= (\varphi \cup \psi)(f\sigma) *$$

$$= f^{*}(\varphi \cup \psi)(\sigma).$$

RELATIVE VERSION

 $C^{k}(X,A;R)$ = cochains that Vanish on A (more natural than $C_{k}(X,A)$ since it is a subgroup, not a quotient).

Have cup products:
$$H^{k}(X;R) \times H^{l}(X,A;R)$$
 $H^{k}(X,A;R) \times H^{l}(X;R) \longrightarrow H^{k+l}(X,A^{*};R)$
 $H^{k}(X,A;R) \times H^{l}(X,A;R)$

And: $H^k(X,A;R) \times H^k(X,B;R) \longrightarrow H^{k+1}(X,AUB;R)$.

THE COHOMOLOGY RING

Define $H^*(X,R) = \bigoplus H^k(X,R)$ Elements are finite sums $\Sigma \alpha_i$ with $\alpha_i \in H^i(X,R)$. The product is $\Sigma \alpha_i \Sigma \beta_i = \Sigma \alpha_i \beta_i$ (writing xy for $x \cup y$). $\longrightarrow H^*(X,R)$ is a ring. It has 1 if R has 1.

We saw: $H^*(RP^2, 7/2Z) = \{a_0 + a_1 \propto + a_2 \propto^2 : a_1 \in 7/2Z\}$ = $Z/2Z[\alpha]/(\alpha^3)$ nice!

One can also show: $H^*(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}[\alpha]/(\alpha^{n+1})$. $|\alpha| = 1$ $H^*(\mathbb{R}P^\infty; \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}[\alpha]$ and $H^*(\mathbb{C}P^n, \mathbb{Z}) = \mathbb{Z}[\alpha]/(\alpha^{n+1})$ $|\alpha| = 2$ $H^*(\mathbb{C}P^\infty; \mathbb{Z}) = \mathbb{Z}[\alpha]$

H* is a graded ring, a ring \longrightarrow of form $\bigoplus A_k$ with $A_k = additive$ subgroup, $A_k \times A_l \subseteq A_{k+l}$. Write |x| for the degree (i.e. which A_k it lives in).

There are spaces with same H_k & H^k groups, but different H*: S'VS'VS², T²

There are distinct spaces with identical H^* : $H^*(S^3VS^5) = H^*(S(\mathbb{C}P^2)) \cong \mathbb{Z}_{(0)} \oplus \mathbb{Z}_{(3)} \oplus \mathbb{Z}_{(5)}$ degree.

Prop: XUB = (-1)K+R (BUX) if R commutative.

KUNNETH FORMULA

Cross Product (aka external cup product)
$$H^*(X, \mathbb{Z}) \times H^*(Y, \mathbb{Z}) \longrightarrow H^*(X \times Y, \mathbb{Z})$$

$$(a, b) \longmapsto p_i^*(a) \cup p_2^*(b)$$
bilinear.

Tensor Products

Bilinear maps are not linear/homomorphisms
e.g.
$$\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$

 $(e_1 : e_1) \mapsto 1$
 $\Rightarrow (-e_1, -e_1) \mapsto 1$
 \rightarrow replace \times with \otimes

The tensor product of abelian groups A,B is the abelian group $A \otimes B$ with generators $a \otimes b$ $a \in A, b \in B$ and relations $(a+a)\otimes b = a\otimes b + a\otimes b$ $a\otimes (b+b') = a\otimes b + a\otimes b'$

Identity: $0 \otimes 0 = 0 \otimes b = a \otimes 0$ Inverses: $-(a \otimes b) = -a \otimes b = a \otimes -b$. Universal Property

Basic Properties

- (i) A⊗B≅B⊗A
- (ii) (Ai) B = D (Ai B)
- (iii) (A⊗B) & C = A (B⊗C)
- (iv) Z&A & A
- (V) Z/nZ & A & A/nA
- (vi) $f: A \rightarrow A', g: B \rightarrow B' \longrightarrow f \otimes g: A \otimes B \rightarrow A' \otimes B'$
- (Vii) q: AxB -> C bilinear ~ f: A&B -> C

Back to Cross Product

Property (vii)
$$\longrightarrow$$
 homomorphism
$$H^*(X, \mathbb{Z}) \otimes H^*(Y, \mathbb{Z}) \longrightarrow H^*(X \times Y, \mathbb{Z})$$

$$a \otimes b \longmapsto a \times b$$

The left hand side has multiplication $(a \otimes b)(c \otimes d) = (-1)^{|b||c|} ac \otimes bd$

Check: The above map is a ring homomorphism.

THEOREM. (Kinneth) $H^*(X,\mathbb{Z}) \otimes H^*(Y,\mathbb{Z}) \xrightarrow{cross} H^*(X\times Y,\mathbb{Z})$ isomorphism if $I:I^*(X,\mathbb{Z})$ or \S $H^*(Y,\mathbb{Z})$ is fin. gen., free.

Exterior Algebras

 $M[\alpha_1, \alpha_2, ...] = \text{graded tensor product of } \text{the } M[\alpha_i], |\alpha_i| \text{ odd}$ As an abelian group, gen by $\alpha_i, ... \alpha_{ik}$ i, < ... < ik $Multiplication given by <math>\alpha_i \alpha_j = -\alpha_j \alpha_i$ $i \neq j$ $\Rightarrow \alpha_i^2 = 0$.

Cor: $H^*(T^n, \mathbb{Z}) \cong \Lambda[\alpha_1, ..., \alpha_n]$ |\(\text{kil} = 1.

oriented elts of H* are sums of: intersect with coordinate tori

More generally, if X is product of odd-dim spheres $H^*(X) \cong \Lambda[\alpha_1,...,\alpha_n]$ but $|\alpha_i|$ varies.

For even-dim spheres get $\mathbb{Z}[\alpha]/(\alpha^2)$ factors.

Idea of Proof: Induct on dimension.