Félix Houphouët – Boigny SERVICE DES CONCOURS

Concours CAE session 2015

Composition : **Mathématiques 1** (algèbre, analyse)

Durée : 2 Heures

Dans ce sujet, il sera tenu compte de la présentation de la copie et de la clarté du raisonnement dans la notation. Les calculatrices ne sont pas autorisées. $\mathbb R$ est l'ensemble des réels, $\mathbb N$ est l'ensemble des entiers naturels. Les trois (3) exercices sont indépendants.

Exercice N°1:

Soient $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$. On considère le polynôme $P = (X \sin \theta + \cos \theta)^n$. Déterminer le reste de la division euclidienne de P par $X^2 + 1$.

Exercice N°2:

1) Soit la matrice
$$P = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & -1 & -1 \end{pmatrix}$$
. Calculer si possible P^{-1} .

2) La matrice
$$M = \begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$$
 est-elle diagonalisable?

3) On définit les trois suites numériques (u_n) , (v_n) et (w_n) par la donnée de termes initiaux u_0 , v_0 , w_0 et pour tout entier naturel n, par les relations de récurrence :

$$u_{n+1} = 2u_n - 2v_n + w_n$$
; $v_{n+1} = 2u_n - 3v_n + 2w_n$; $w_{n+1} = 2v_n - u_n$.

Déterminer u_n , v_n et w_n en fonction de u_0 , v_0 , w_0 et n.

Exercice N°3:

On note f la fonction définie sur \mathbb{R}_+ par :

$$\begin{cases} f(x) = \frac{-x \ln x}{1 + x^2} & \text{pour } x > 0, \\ f(0) = 0. \end{cases}$$

1)

- a) Vérifier que f est continue sur \mathbb{R}_+ .
- **b**) Etudier le signe de f(x).
- 2) Montrer que l'on définit bien une fonction F sur \mathbb{R}_+ en posant :

$$\forall x \in \mathbb{R}_+, \qquad F(x) = \int_0^x f(t)dt.$$

- 3) Pour tout x de \mathbb{R}_+ on pose g(x) = F(x) x.
 - a) Montrer que g est dérivable sur \mathbb{R}_+ et que, pour x > 0, on peut écrire g'(x) sous la forme :

$$g'(x) = \frac{-x h(x)}{1 + x^2}$$

b) Etudier les variations de h, puis en déduire son signe. On donne :

$$\ln\left(\frac{\sqrt{5}-1}{2}\right) \cong -0.48$$

- c) En déduire le signe de g(x).
- 4) On définit la suite (u_n) par la donnée de son premier terme $u_0 = 1$ et la relation de récurrence, valable pour tout n de \mathbb{N} : $u_{n+1} = F(u_n)$.
 - a) Etablir par récurrence que : $\forall n \in \mathbb{N}, \ 0 \le u_n \le 1$
 - **b**) Montrer que la suite (u_n) est décroissante.
 - c) En déduire que la suite (u_n) converge et préciser sa limite.