Introduction to Artificial Intelligence

Daniel Deng

1 Search Problems

Definition 1.1 (Reflex Agent). A reflex agent chooses actions based on its current perception of the world.

Definition 1.2 (Planning Agent). A planning agent chooses actions based on hypothesized consequences of actions.

Definition 1.3 (Search Problem). A search problem consists of a state space, a successor function, a start state, and a goal test.

2 Search Algorithms

2.1 Heuristics

Definition 2.1 (Heuristic). A heuristic h(n) is a function that estimates the distance from state n to the goal state for a particular search problem. It is often solutions of relaxed problems.

Definition 2.2 (Admissibility). A heuristic is admissible, or optimistic, if $0 \le h(n) \le h^*(n)$ where h^* is the true cost to goal state.

Definition 2.3 (Consistency). A heuristic is consistent if $h(n) - h(n+1) \le c(n, n+1)$ where c is the cost between states n and n+1.

Remark. Consistency necessarily implies admissibility.

Fringe Optimal Complete Time Space $O(b^m)$ O(bm)Depth-First Search Stack iff no cycle No $O(b^s)^1$ $O(b^s)^1$ Breadth-First Search Queue Yes iff uniform cost $O(b^{c^*/\epsilon})^3 O(b^{c^*/\epsilon})^3$ Uniform Cost Search $PQ(g(n))^2$ iff positive cost Yes Greedy Search PQ(h(n))No A* Tree Search PQ(h(n) + g(n))iff h(n) admissible A* Graph Search⁴ PQ(h(n) + g(n))iff h(n) consistent

Table 1: Search algorithms.

Remark. Implementation of search algorithms differ only in fringe strategies.

3 Constrained Satisfaction Problems

Definition 3.1 (Constrained Satisfaction Problems). Constrained Satisfaction Problems (CSPs) are a type of **identification problem** defined by variable X_0, \ldots, X_n with values from a domain D that satisfies a set of constrains.

3.1 Backtracking Search

3.1.1 Filtering

Definition 3.2 (Arc Consistency).

Arc
$$X \to Y$$
 is consistent \Leftrightarrow $(\forall x \in D_x)(\exists y \in D_y)(y \text{ can be assigned to } Y \text{ without violating a constraint.})$

3.1.2 Ordering

Definition 3.3 (Minimum Remaining Values). The MRV policy chooses an unassigned variable that has the fewest valid remaining values in order to induce backtracking earlier and reduce potential node expansions.

Definition 3.4 (Least Constraining Value). The LCV policy chooses a value assignment that violates the least amount of constraints, which requires additional computation such as running arc consistency test on each value.

s = depth of solution

 $^{^{2}}$ g(n) = cumulative path cost.

 $^{^3}$ c^*/ϵ = effective solution depth (c^* = cost of the cheapest solution; ϵ = minimum cost of cost-contour arcs).

⁴ Compared to tree search, graph search keeps a closed set of expanded states to check against to prevent duplicate expansions.

3.1.3 Structure

Given a tree-structured CSP, represent it as a directed acyclic graph. Enforcing arc consistency in reverse topological order then assigning in topological order ensures a runtime of $O(nd^2)$ (as opposed to $O(d^n)$ in the general case).

TODO: nearly tree-like CSPs and tree decomposition.

4 Local Search

Improve a single option until no further improvements can be made.

Remark. Generally, local search is faster and more memory efficient at the expense of completeness and optimality.

4.1 Iterative Algorithm for CSP/Hill Climbing

Starting with a "complete" state, randomly select any conflicted variables and reassign values using min-conflicts heuristics.

Remark. Efficiency of the algorithm depends on $R = \frac{\text{number of constraints}}{\text{number of variables}}$; computation time is approximately constant time except when R approaches the *critical ratio*.

4.2 Simulated Annealing

5 Genetic Algorithms

Keep best N hypotheses at each step (selection) based on a fitness function and have pairwise crossover operations (and, optionally, mutation operations) to generate a new set of hypotheses.

6 General-Sum Game

Algorithm 1: Simulated annealing.

```
Input: A problem P and a schedule/mapping from time to "temperature" T.
   Output: A solution state.
   /* Escape local maxima by allowing downhill movement based on a
       "temperature"-dependent probabilistic function.
                                                                                              */
 1 current \leftarrow initial state of P
 2 for t \leftarrow 1 to \infty do
       temp \leftarrow T[t]
 3
       if temp = 0 then
 4
 5
           {\bf return}\ current
       else
 6
           next \leftarrow a randomly selected successor of current
 7
           \Delta \leftarrow \text{Value}[next] - \text{Value}[current]
 8
           if \Delta > 0 then
 9
              current \leftarrow next
10
           else
11
               currnet \leftarrow next with probability e^{\frac{\Delta}{temp}}
12
```