Started on Wednesday, 2 November 2016, 11:55 AM

State Finished

Completed on Wednesday, 2 November 2016, 12:55 PM

Time taken 1 hour

Grade 82.50 out of 100.00

Question 1

Partially correct

Mark 7.50 out of 15.00

Q1e

a) Find the voltage v₁.

b) Find the voltage across the 28A current source.

Numeric Answer

$$v_1 = 60V$$

$$v_{28A} = 86V$$

Partially correct

Marks for this submission: 7.50/15.00.

Correct

Mark 15.00 out of 15.00

Q2c

Given:

$$R_1 = 10 \Omega \text{ (Ohms)}$$

$$R_2 = 20 \Omega \text{ (Ohms)}$$

$$R_3 = 40 \Omega \text{ (Ohms)}$$

Find the currents i_a and i_b .

/ mA (milli Amp)

✓ mA (milli Amp)

Numeric Answer

 $i_a = 800 \text{ mA}$

 $i_b = 300 \text{ mA}$

Correct

Marks for this submission: 15.00/15.00.

Correct

Mark 10.00 out of 10.00

Q3a

Given:
$$V_s = 200 \text{ Volts}$$
 $R_1 = 10$

$$R_1 = 100 \Omega \text{ (Ohms)}$$

$$R_2 = 300 \Omega \text{ (Ohms)}$$

Perform a source transformation and find the current transform equivalent.

$$I_{transform} = \boxed{.5}$$

$$R_{transform} = \boxed{400} \checkmark \Omega \text{ (Ohm)}$$

Numeric Answer

$$I_{transform} = 0.50 \text{ A}$$

$$R_{transform}$$
= 400 Ω (Ohm)

Correct

Marks for this submission: 10.00/10.00.

${\tt Question}~4$

Correct

Mark 15.00 out of 15.00

Q4f

Given:

$$V_a = 20 \text{ Volts}$$
 $I_b = 6 \text{ Amps}$

$$\label{eq:R1} {\rm R}_1 = 20~\Omega~{\rm (Ohm)} \qquad {\rm R}_2 = 60~\Omega~{\rm (Ohm)} \qquad \qquad {\rm R}_3 = 10~\Omega~{\rm (Ohm)}$$

a) Find the Thévenin equivalent voltage
$$V_{Th}$$
. $V_{Th} = \begin{bmatrix} 105 & \checkmark \end{bmatrix}$ Volts

b) Find the Thévenin equivalent resistance R_{Th} . $R_{Th} = \begin{bmatrix} 25 & \sqrt{\Omega} \end{bmatrix}$ (Ohms)

Numeric Answer

a) $V_{Th} = 105.0 \text{ Volts}$

b) $R_{Th} = 25.0 \Omega$ (Ohms)

Correct

Marks for this submission: 15.00/15.00.

Correct

Mark 15.00 out of 15.00

Q5b

Find the Norton equivalent circuit with respect to terminals ab.

$$I_N = \boxed{6}$$

$$R_{Th} = \boxed{10}$$
 $\checkmark \Omega \text{ (Ohm)}$

Numeric Answer

$$R_{Th} = 10 \Omega \text{ (Ohm)}$$

Correct

Marks for this submission: 15.00/15.00.

${\tt Question}~6$

Correct

Mark 10.00 out of 10.00

Q6e

Given:

$$V_{_{\rm S}}$$
 = 30 Volts $R_{_{1}}$ = 140 Ω (Ohm) $R_{_{2}}$ = 140 Ω (Ohm)

a) Find the value of ${\rm R}_{\rm L}$ that results in maximum power being transferred to ${\rm R}_{\rm L}.$

$$R_{L,max power} = \boxed{70} \qquad \checkmark \Omega \text{ (Ohms)}$$

b) Find the maximum power that can be delivered to R_L .

Numeric Answer

a)
$$R_{L,max\ power} = 70.0\ \Omega$$
 (Ohms)

Correct

Marks for this submission: 10.00/10.00.

Not answered

Mark 0.00 out of 5.00

Q7k

Assume that the operational amplifier is ideal.

The opamp has two power inputs (not shown) of $+V_{cc} = +15V$ and $-V_{cc} = -15V$.

Given: V₁ = 5 Volts

V₂ = 8 Volts

 $R_1 = 2 k\Omega$ (kilo Ohm)

 $R_2 = 3 \text{ k}\Omega \text{ (kilo Ohm)}$ $R_3 = 1.5 \text{ k}\Omega \text{ (kilo Ohm)}$

Determine the voltage v_{out}.

Numeric Answer

$$v_{out} = -7.75 \text{ Volts}$$

Incorrect

Mark 0.00 out of 5.00

Q8c

Assume that the operational amplifier is ideal.

The opamp has two power inputs $+V_{cc} = +15V$ and $-V_{cc} = -15V$.

$$R_1 = 47 \text{ k}\Omega \text{ (kilo Ohm)}$$

$$R_2 = 270 \text{ k}\Omega \text{ (kilo Ohm)}$$

Determine the voltage $\mathbf{V}_{\mathrm{out}}.$

Numeric Answer

Incorrect

Marks for this submission: 0.00/5.00.

Question 9

Correct

Mark 5.00 out of 5.00

Q9d

Given:

$$C_1 = 20 \ \mu F \ (micro \ F)$$
 $C_2 = 6 \ \mu F \ (micro \ F)$ $C_3 = 14 \ \mu F \ (micro \ F)$

Find the equivalent capacitance C_{Eq} .

$$C_{Eq} = \begin{bmatrix} 10 \\ \checkmark \\ \mu F \text{ (micro F)} \end{bmatrix}$$

Numeric Answer

$$C_{Eq}$$
 = 10.0 μF (micro F)

Correct

Marks for this submission: 5.00/5.00.

Correct

Mark 5.00 out of 5.00

Q10d

Given:

$$L_1 = 3 \text{ mH (milli H)}$$
 $L_2 = 10 \text{ mH (milli H)}$ $L_3 = 6 \text{ mH (milli H)}$

Find the equivalent inductance $L_{\rm Eq}$.

Numeric Answer

 $L_{Eq} = 6.750 \text{ mH}$

Correct

Marks for this submission: 5.00/5.00.