Correction du DM de "Processus Stochastiques et Applications Financières"

2A IF ENSIMAG

6 décembre 2023

Exercice 1. 1) Comme vu en cours dans l'exemple 4.1.1 si $\mathbb{E}|\xi_1| < \infty$ et $\mathbb{E}(\xi_1) = 0$ on aura que le processus (S_n) défini dans l'énoncé est une martingale issue de x = 0, par rapport à la filtration (\mathcal{F}_n) définie par $\mathcal{F}_0 = \{\emptyset, \Omega\}$ et $\mathcal{F}_n = \sigma(\xi_i, 1 \le i \le n)$ pour $n \ge 1$.

définie par $\mathcal{F}_0 = \{\emptyset, \Omega\}$ et $\mathcal{F}_n = \sigma(\xi_i, 1 \le i \le n)$ pour $n \ge 1$. Or ici c'est bien le cas car $\mathbb{E}|\xi_1| = \frac{1}{2}(1+1) = 1$ et $\mathbb{E}(\xi_1) = \frac{1}{2}(1-1) = 0$ (situation vue dans l'exercice 5 de la fiche de TD 7 par exemple).

Remarquons par ailleurs que $\mathcal{F}_n = \sigma(S_k, 1 \le k \le n)$ pour tout $n \ge 1$, c'est à dire qu'en fait (\mathcal{F}_n) est la filtration naturelle de (S_n) .

- 2) On a vu dans le TD 7 exercice 5 question 2) que remarquer que $\mathbb{E}(|\xi_1|^2) = \frac{1}{2}(1+1) = 1$ suffit pour conclure que (S_n) est une martingale de carré intégrable. Par ailleurs on avait vu que $(S_n^2 n)$ est une (\mathcal{F}_n) -martingale (ce qui avait permis de montrer que $\langle S \rangle_n = n$).
- 3) Rappelons que, comme (S_n) est une martingale, pour tout $n \geq 0$ la v.a. S_n est intégrable et \mathcal{F}_n -mesurable.

Pour tout $n \geq 0$ la variable aléatoire $S_n^3 - 3nS_n$ est donc bien sûr \mathcal{F}_n -mesurable (par composition de S_n v.a. \mathcal{F}_n -mesurable et de $x \mapsto x^3 - 3nx$ continue donc borélienne).

Par ailleurs $\mathbb{E}(|\xi_1|^3) = \frac{1}{2}(1+1) = 1 < \infty$ donc on voit que ξ_i appartient à l'e.v. $L^3(\Omega, \mathcal{F}, \mathbb{P})$ pour tout $i \geq 1$. Ceci implique que $S_n \in L^3(\Omega, \mathcal{F}, \mathbb{P})$ et donc $S_n^3 \in L^1(\Omega, \mathcal{F}, \mathbb{P})$, i.e. S_n^3 est intégrable. A nouveau par l'argument espace vectoriel nous avons donc que $S_n^3 - 3nS_n$ est intégrable.

Vérifions la propriété de martingale. Fixons à nouveau $n \ge 0$. Nous avons

$$\mathbb{E}\left[S_{n+1}^{3} - 3(n+1)S_{n+1} \mid \mathcal{F}_{n}\right] = \mathbb{E}\left[\left(S_{n} + \xi_{n+1}\right)^{3} - 3(n+1)(S_{n} + \xi_{n+1}) \mid \mathcal{F}_{n}\right] \\
= \mathbb{E}\left[S_{n}^{3} + 3S_{n}^{2}\xi_{n+1} + 3S_{n}\xi_{n+1}^{2} + \xi_{n+1}^{3} - 3nS_{n} - 3S_{n} - 3(n+1)\xi_{n+1} \mid \mathcal{F}_{n}\right] \\
= S_{n}^{3} - 3nS_{n} + 3S_{n}^{2}\mathbb{E}(\xi_{n+1}|\mathcal{F}_{n}) + 3S_{n}\left(\mathbb{E}(\xi_{n+1}^{2}|\mathcal{F}_{n}) - 1\right) \\
-3(n+1)\mathbb{E}(\xi_{n+1}|\mathcal{F}_{n}) + \mathbb{E}(\xi_{n+1}^{3}|\mathcal{F}_{n}) \\
= S_{n}^{3} - 3nS_{n} + 3S_{n}^{2}\mathbb{E}(\xi_{n+1}) + 3S_{n}\left(\mathbb{E}(\xi_{n+1}^{2}) - 1\right) \\
-3(n+1)\mathbb{E}(\xi_{n+1}) + \mathbb{E}(\xi_{n+1}^{3}) \\
= S_{n}^{3} - 3nS_{n}.$$

A la troisième égalité nous avons utilisé le fait que S_n est \mathcal{F}_n -mesurable. A la quatrième égalité nous avons utilisé le fait que ξ_{n+1} est indépendante de \mathcal{F}_n . Enfin à la cinquième égalité nous avons utilisé $\mathbb{E}(\xi_{n+1}) = \mathbb{E}(\xi_1) = 0$, $\mathbb{E}(\xi_{n+1}^2) = \mathbb{E}(\xi_1^2) = 1$ et $\mathbb{E}(\xi_{n+1}^3) = \mathbb{E}(\xi_1^3) = \frac{1}{2}(1-1) = 0$.

4) Soit $n \geq 0$ considérons l'évènement $\{T \leq n\}$. On peut décrire cet évènement avec des mots par l'expression "le processus S a touché -a ou b en un instant inférieur ou égal à l'instant n", ou "jusqu'à l'instant n compris S a touché -a ou b (au moins une fois)".

On voit donc que cet évènement peut être décrit à partir des trajectoires de S jusqu'à l'instant n compris. Cela justifie que $\{T \leq n\} \in \mathcal{F}_n$ (on peut remarquer que comme (\mathcal{F}_n) est la filtration naturelle de S on peut raisonner comme dans l'exemple 4.3.1 du cours, sans plus de formalisation que ça puisque cela a été fait comme ça en cours; par ailleurs le fait que (\mathcal{F}_n) est la filtration naturelle

de S n'est pas primordial; en effet comme S est (\mathcal{F}_n) -adapté tout évènement qui se décrit à partir des trajectoires de S jusqu'à l'instant n compris est dans \mathcal{F}_n).

On conclut que T est un (\mathcal{F}_n) -temps d'arrêt.

5) Un entier $n \geq 0$ est donc fixé. Soit $k \geq 0$ montrons que $\{T \land n \leq k\} \in \mathcal{F}_k$.

On procède par dissociation des cas. Si $k \geq n$ on a $\{T \wedge n \leq k\} = \Omega \in \mathcal{F}_k$. Si k < n on a $\{T \wedge n \leq k\} = \{T \leq k\}$ or cet évènement est dans \mathcal{F}_k par la question précédente. Ceci montre que $T \wedge n$ est un temps d'arrêt. Il est en outre clairement borné par n.

6) Comme S est une martingale et $T \wedge n$ un t.a. borné on peut appliquer le théorème 4.3.2 du cours. On a donc $\mathbb{E}(S_{T \wedge n}) = \mathbb{E}(S_0) = \mathbb{E}(0) = 0$.

NB: une variante est de remarquer que $S^T = (S_{T \wedge n})_{n \geq 0}$ est une martingale par le théorème 4.3.1 du cours (qui ne nécessite pas que T soit borné). On a alors $\mathbb{E}(S_{T \wedge n}) = \mathbb{E}(S_n^T) = \mathbb{E}(S_0^T) = \mathbb{E}(S_0) = 0$.

7) Comme $T < \infty$ p.s. on a que $S_{T \wedge n} \to S_T$ p.s. quand $n \to \infty$ (si on veut détailler: pour presque tout ω on a $T(\omega) < \infty$ et $(S_{T \wedge n})(\omega) = S_{T(\omega) \wedge n}(\omega)$; à partir d'un certain rang, qui dépend de ω , on a $T(\omega) \wedge n = T(\omega)$ et donc $(S_{T \wedge n})(\omega) = S_{T(\omega)}(\omega) = S_{T(\omega)}(\omega)$.

Par ailleurs presque sûrement on a $|S_{T \wedge n}| \leq \max(a, b) \in L^1$.

Cela permet de faire une convergence dominée (théorème 1.5.1-3) du cours) qui amène

$$\lim_{n} \mathbb{E}(S_{T \wedge n}) = \mathbb{E}(S_T)$$

Or par qu. 6) on a $\lim_n \mathbb{E}(S_{T \wedge n}) = 0$ d'où $\mathbb{E}(S_T) = 0$.

8) Les deux valeurs possibles de S_T sont -a et b. On a donc

$$E(S_T) = -a\mathbb{P}(S_T = -a) + b\mathbb{P}(S_T = b).$$

En combinant avec la question 7) on a donc le système

$$\begin{cases} \mathbb{P}(S_T = -a) + \mathbb{P}(S_T = b) = 1\\ -a\mathbb{P}(S_T = -a) + b\mathbb{P}(S_T = b) = 0. \end{cases}$$

Ceci équivaut à

$$\left\{ \begin{array}{rcl} \mathbb{P}(S_T = -a) & = & 1 - \mathbb{P}(S_T = b) \\ -a + a\mathbb{P}(S_T = b) + b\mathbb{P}(S_T = b) & = & 0. \end{array} \right.$$

qui se résout en

$$\mathbb{P}(S_T = b) = \frac{a}{a+b}$$
 et $\mathbb{P}(S_T = -a) = \frac{b}{a+b}$.

9) Nous avons rappelé dans la question 2) que le processus $(S_n^2 - n)_{n \geq 0}$ est une martingale. Précisons en outre que cette martingale part de zéro. Pour tout $n \geq 0$ en considérant à nouveau le temps d'arrêt borné $T \wedge n$ nous avons donc en procédant comme à la qu. 6) que $\mathbb{E}[S_{T \wedge n}^2 - (T \wedge n)] = 0$.

temps d'arrêt borné $T \wedge n$ nous avons donc en procédant comme à la qu. 6) que $\mathbb{E}[S^2_{T \wedge n} - (T \wedge n)] = 0$. En utilisant $S^2_{T \wedge n} \to S^2_T$ p.s. quand $n \to \infty$ et $|S^2_{T \wedge n}| \le \max(a^2, b^2) < \infty$ on peut faire une convergence dominée comme à la question 7) pour conclure que $\lim_n \mathbb{E}(S^2_{T \wedge n}) = \mathbb{E}(S^2_T)$. Par ailleurs $T \wedge n$ tend en croissant vers T et donc par convergence monotone (thm 1.5.1-1) du cours) on a $\lim_n \mathbb{E}(T \wedge n) = \mathbb{E}(T)$.

On a donc que $\lim_n \mathbb{E}[S^2_{T \wedge n} - (T \wedge n)] = \mathbb{E}(S^2_T) - \mathbb{E}(T) = 0$ (noter au passage que ceci montre que $\mathbb{E}(T) < \infty$; T est p.s. fini, intégrable mais pas borné).

On a donc en utilisant la question 8)

$$\mathbb{E}(T) = a^2 \frac{b}{a+b} + b^2 \frac{a}{a+b} = \frac{ab(a+b)}{a+b} = ab.$$

10) Pour calculer les quantités demandées il nous faut accéder aux quantités

$$A := \mathbb{E}(T\mathbf{1}_{S_T=-a})$$
 et $B := \mathbb{E}(T\mathbf{1}_{S_T=b})$.

Nous avons immédiatement une première équation qui est donnée par

$$A + B = \mathbb{E}[T(\mathbf{1}_{S_T = -a} + \mathbf{1}_{S_T = b})] = \mathbb{E}(T) = ab. \tag{1}$$

Nous en cherchons une deuxième en nous aidant de la martingale $(S_n^3 - 3nS_n)$ de la question 3). Cette martingale étant à nouveau issue de zéro nous avons à nouveau en utilisant le t.a. borné $T \wedge n$ que $\mathbb{E}[S_{T \wedge n}^3 - 3(T \wedge n)S_{T \wedge n}] = 0$.

En utilisant la domination $|S^3_{T \wedge n}| \leq \max(a^3, b^3)$ nous avons $\lim_n \mathbb{E}(S^3_{T \wedge n}) = \mathbb{E}(S^3_T)$. Par ailleurs $(T \wedge n)S_{T \wedge n} \to TS_T$ p.s. quand $n \to \infty$ et nous pouvons trouver la domination suivante:

$$|(T \wedge n)S_{T \wedge n}| \leq T|S_{T \wedge n}| \leq T \max(a, b) \in L^1$$

(ici on utilise le fait qu'on a remarqué à la question 9) que T est intégrable). Par convergence dominée on a donc $\lim_n \mathbb{E}[(T \wedge n)S_{T \wedge n}] = \mathbb{E}[TS_T]$. Pour résumer nous avons

$$\lim_{n} \mathbb{E}[S_{T \wedge n}^3 - 3(T \wedge n)S_{T \wedge n}] = \mathbb{E}(S_T^3) - 3\mathbb{E}(TS_T) = 0.$$

Or

$$\mathbb{E}(TS_T) = \mathbb{E}(TS_T \mathbf{1}_{S_T = -a}) + \mathbb{E}(TS_T \mathbf{1}_{S_T = b}) = \mathbb{E}(-aT \mathbf{1}_{S_T = -a}) + \mathbb{E}(bT \mathbf{1}_{S_T = b}) = -aA + bB$$

et

$$\mathbb{E}(S_T^3) = -a^3 \frac{b}{a+b} + b^3 \frac{a}{a+b} = ab \frac{b^2 - a^2}{a+b} = ab(b-a).$$

Nous obtenons donc la deuxième équation

$$-3aA + 3bB = ab(b-a). (2)$$

En combinant (1) et (2) on obtient le système

$$\begin{cases} A+B &= ab \\ -3aA+3bB &= ab(b-a). \end{cases}$$

La première équation donne A = ab - B, ce qui injecté dans la première donne

$$-3a^2b + (3b + 3a)B = ab(b - a),$$

qui donne à son tour

$$B = \frac{1}{3}ab\frac{b-a}{b+a} + \frac{a^2b}{a+b}.$$

On peut alors calculer

$$\mathbb{E}(T|S_T = b) = B/\mathbb{P}(S_T = b)$$

$$= \frac{1}{3}ab\frac{b-a}{b+a}\frac{a+b}{a} + \frac{a^2b}{a+b}\frac{a+b}{a}$$

$$= \frac{1}{3}b^2 - \frac{1}{3}ab + ab$$

$$= \frac{1}{3}(b^2 + 2ab).$$

Pour conclure le calcul on utilise (1) pour établir que $A = \frac{ab}{a+b}(\frac{2}{3}b + \frac{a}{3})$ puis on évalue

$$\mathbb{E}(T|S_T = -a) = A/\mathbb{P}(S_T = -a) = a(\frac{2}{3}b + \frac{a}{3}) = \frac{1}{3}(a^2 + 2ab).$$

Exercice 2. 1) Supposons qu'il existe $0 \le t_0 \le T$ tel que $x_{t_0} > X_{t_0}$.

En t_0 : on vend 1 part de x (pas de notion de vente à découvert, il s'agit de la vente d'une option), on achète 1 part de X, on place $x_{t_0} - X_{t_0} > 0$ à la banque.

Bilan en t_0 : -1 part de x (position courte), 1 part de X (position longue) et $x_{t_0} - X_{t_0}$ en cash.

Entre t_0 et T (mais strictement avant T): on attend, on ne fait rien. On pourrait exercer l'option américaine, on ne le fait pas.

En T: on touche le payoff G_T provenant de notre position longue en X; on s'en sert pour honorer le payoff G_T qu'il va falloir payer au détenteur de x.

Bilan en T: 0 part de X, 0 part de x et un cash de $(x_{t_0} - X_{t_0})e^{r(T-t_0)} > 0$ (on suppose le taux sans risque constant et égal à r; on note les facteurs de capitalisation comme dans la section 5.2 du cours).

Il y a arbitrage: c'est absurde en AOA, c'est donc que $x_t \leq X_t$ pour tout $0 \leq t \leq T$.

2) Dans cette question on suppose que $x_t \ge G_t$, $0 \le t \le T$. Supposons qu'il existe $0 \le t' \le T$ tel que $X_{t'} > x_{t'}$ et relevons une possibilité d'arbitrage. Cela montrera $X_t \leq x_t, \forall 0 \leq t \leq T$.

En t': on vend 1 part de X, on achète 1 part de x, on place $X_{t'} - x_{t'} > 0$ à la banque.

Bilan en t': -1 part de X, 1 part de x, un cash de $X_{t'} - x_{t'}$ euros.

Entre t' et T: si le détenteur de X décide d'exercer en $t' \le t'' \le T$ il faut lui verser $G_{t''}$. Pour cela on peut vendre la part de x qui est en notre possession. Cela nous rapporte $x_{t''}$ euros, or $x_{t''} \geq G_{t''}$, donc cela permet bien de verser $G_{t''}$ et il reste même $x_{t''} - G_{t''}$ en cash.

Bilan en t'': 0 part de x et de X et $x_{t''} - G_{t''} + (X_{t'} - x_{t'})e^{r(t''-t')} > 0$ en cash.

Si le détenteur n'exerce pas jusqu'à l'instant T compris: en T on a $(X_{t'}-x_{t'})e^{r(T-t')}$ euros en cash et le produit x nous rapporte $x_T = G_T \ge 0$ (on suppose le pay-off positif pour raisonner, cela aurait dû être précisé dans l'énoncé).

Bilan en T: $(X_{t'} - x_{t'})e^{r(T-t'} + x_T > 0$ en cash, 0 part de X (il a vécu sa vie sans être exercé), 0 part de x (l'option a vécu sa vie et on a touché le pay-off).

Dans tous les cas il y a arbitrage, c'est absurde en AOA. On a donc $X_t \le x_t$, $\forall 0 \le t \le T$. Combiné avec la question 1) on a $X_t = x_t, \forall 0 \le t \le T$.

3) Il serait absurde de recevoir de l'argent pour bénéficier du droit garanti par une option Call européenne donc on admet immédiatement que $c_t \geq 0$. Si $S_t - K < 0$ le résultat est donc immédiat. Si $S_t - K \ge 0$ montrons que $c_t \ge S_t - K$. En fait nous allons montrer que $c_t \ge S_t - Ke^{-r(T-t)}$, ce qui amènera le résultat puisque $S_t - Ke^{-r(T-t)} \ge S_t - K$.

Supposons que $0 \le c_t < S_t - Ke^{-r(T-t)}$ et relevons une possibilité d'arbitrage.

En t: on achète 1 Call européen et on vend 1 actif à découvert.

Bilan en t: on est long sur Call, on a -1 actif (dette) et on a $S_t - c_t > 0$ en cash.

En T: si $S_T > K$ le Call s'exerce, on achète l'actif au prix K, qu'on restitue.

Bilan en T dans ce cas: 0 Call, 0 actif, et $(S_t - c_t)e^{r(T-t)} - K > 0$ euros.

Si $S_T \leq K$ le Call ne s'exerce pas. On achète l'actif au prix S_T qu'on restitue. Bilan en T dans ce cas: 0 Call, 0 actif, et $(S_t - c_t)e^{r(T-t)} - S_T \geq (S_t - c_t)e^{r(T-t)} - K > 0$ euros.

Dans les deux cas il y a arbitrage. C'est donc que $c_t \ge S_t - Ke^{-r(T-t)}$ et le résultat est démontré. Finalement on a bien $c_t \geq (S_t - K)_+$.

4) En appliquant la proposition 1 avec $G_t = (S_t - K)_+$ et la question 3) on voit que $c_t = C_t$ où on a noté C_t le prix d'un Call américain et c_t le prix d'un Call européen (comme dans la question 3); noter qu'on a bien $G_T = (S_T - K)_+$ qui est le pay-off d'un Call européen vanille).

Exercice 3. 1) Les processus H^0 et H^1 sont supposés prévisibles. On rappelle que l'autofinancement (défini par la formule (5.3.1) du cours) s'écrit

$$H_n^0 S_n^0 + H_n^1 S_n = H_{n+1}^0 S_n^0 + H_{n+1}^1 S_n \tag{3}$$

pour tout $0 \le n \le N-1$. La valeur du portefeuille correspondant à $H=(H^0,H^1)^T$ est

$$V_n(H) = H_n^0 S_n^0 + H_n^1 S_n \tag{4}$$

à tout instant $0 \le n \le N$.

2) On a

$$\begin{split} V_{n+1}(H) &= H_{n+1}^1 S_{n+1} + H_{n+1}^0 S_{n+1}^0 \\ &= H_{n+1}^1 S_{n+1} + (1+r) H_{n+1}^0 S_n^0 \\ &= H_{n+1}^1 S_{n+1} + (1+r) (H_n^0 S_n^0 + H_n^1 S_n - H_{n+1}^1 S_n) \\ &= H_{n+1}^1 S_{n+1} + (1+r) (V_n(H) - H_{n+1}^1 S_n). \end{split}$$

A la deuxième ligne on a utilisé $S_n^0 = (1+r)^n$, à la troisième ligne on a utilisé (3) et à la quatrième ligne on a utilisé (4).

- 3) La valeur à l'instant n+1 d'un portefeuille autofinancé est égale à la valeur de sa part risquée à l'instant n+1 (représentée par $H_{n+1}^1S_{n+1}$) plus la part sans risque juste après l'instant n (représentée par $V_n(H) H_{n+1}^1S_n$), qui a capitalisé au taux sans risque r entre les instants n et n+1.
 - 4) En utilisant simplement $S_{n+1} = T_{n+1}S_n$ dans l'équation (2) de l'énoncé il vient

$$\forall 0 \le n < N, \quad V_{n+1}(H) = H_{n+1}^1 T_{n+1} S_n + (1+r)(V_n(H) - H_{n+1}^1 S_n),$$

soit l'équation (3) de l'énoncé.

5) Supposons donc que $\mathbb{E}^*(T_{n+1}|\mathcal{F}_n) = 1 + r$ pour tout $0 \le n \le N - 1$, sous une certaine mesure de probabilités \mathbb{P}^* équivalente à \mathbb{P} . On a

$$\mathbb{E}^* [\tilde{V}_{n+1}(H) \mid \mathcal{F}_n] = \mathbb{E}^* \left[H_{n+1}^1 T_{n+1} \frac{S_n}{(1+r)^{n+1}} + \frac{1+r}{1+r} \frac{V_n(H) - H_{n+1}^1 S_n}{(1+r)^n} \mid \mathcal{F}_n \right]$$

$$= \mathbb{E}^* \left[H_{n+1}^1 \tilde{S}_n \frac{T_{n+1}}{1+r} + \tilde{V}_n(H) - H_{n+1}^1 \tilde{S}_n \mid \mathcal{F}_n \right]$$

$$= \tilde{V}_n(H) + H_{n+1}^1 \tilde{S}_n \left(\mathbb{E}^* \left[\frac{T_{n+1}}{1+r} \mid \mathcal{F}_n \right] - 1 \right)$$

$$= \tilde{V}_n(H).$$

A la première ligne on a utilisé le fait que H est autofinancé, au sens de l'équation (3) de l'énoncé. A la troisième ligne on a utilisé le fait que les v.a. $\tilde{V}_n(H)$, \tilde{S}_n et H^1_{n+1} sont \mathcal{F}_n -mesurables (les deux premières car $\tilde{V}(H)$ et \tilde{S} sont des processus adaptés et la troisième car H^1 est un processus prévisible).

- **6)** On a vu dans l'exercice 1 de la Fiche 9 que si $\mathbb{P}^* : \mathcal{P}(\Omega) \to [0,1]$ est définie par
- i) on lui demande d'être σ -additive
- ii) on a

$$\mathbb{P}^*(\omega) = \prod_{n=1}^N p(\omega_n), \quad \forall \omega \in \Omega$$

avec p(1+a) = (b-r)/(b-a) = 1 - p(1+b)

alors \mathbb{P}^* est équivalente à \mathbb{P} et les T_i 's sont i.i.d. sous \mathbb{P}^* avec $\mathbb{P}^*(T_1 = 1 + a) = p(1 + a) = 1 - \mathbb{P}^*(T_1 = 1 + b)$, ce qui entraı̂ne que l'équation (4) de l'énoncé est vérifiée. Ceci nous assure qu'un \mathbb{P}^* comme demandé dans l'énoncé existe.

Par ailleurs on a vu que si une mesure de probabilités \mathbb{P}^{**} vérifie l'équation (4) de l'énoncé alors elle est nécessairement égale au \mathbb{P}^* dont nous venons de rappeler la définition. Ceci nous assure l'unicité.

Notons que comme on admet que toute mesure de probabilités \mathbb{P}^{**} équivalente à \mathbb{P} sous laquelle $\tilde{V}(H)$ est une martingale vérifie l'éq. (4) de l'énoncé, cela entraı̂ne aussi l'unicité d'une telle mesure de probabilités.

7) Le prix à l'instant $0 \le n \le N$ d'un produit payant $f(S_N)$ à l'échéance N va être défini comme la valeur $V_n(H)$ à l'instant n d'un portefeuille autofinancé, au sens de l'équation (3) de l'énoncé, et admissible tel que $V_N(H) = f(S_N)$. En effet en investissant dans un tel portefeuille, on sera sûr d'avoir à l'échéance la richesse $f(S_N)$, sans apport d'argent extérieur.

Soit \mathbb{P}^* comme dans la question 6). D'après les questions 5) et 6) le processus $(\tilde{V}_n(H))_{0 \leq 0 \leq N}$ est une (\mathcal{F}_n) -martingale sous \mathbb{P}^* . On a donc

$$V_n(H) = S_n^0 \tilde{V}_n(H) = S_n^0 \mathbb{E}^* \left[\tilde{V}_N(H) \, | \, \mathcal{F}_n \right] = (1+r)^n \mathbb{E}^* \left[\frac{V_N(H)}{(1+r)^N} \, | \, \mathcal{F}_n \right] = (1+r)^{n-N} \mathbb{E}^* \left[f(S_N) \, | \, \mathcal{F}_n \right].$$