Poincaré operators for elasticity

Snorre H. Christiansen (Oslo), Kaibo Hu, Espen Sande (Rome)

University of Minnesota

ICIAM, Valencia, July 15-19, 2019

Acknowledgement: SIAM travel support from the U.S. National Science Foundation (NSF).

De Rham complex

de Rham complex

$$0 \longrightarrow C^{\infty} \Lambda^0 \xrightarrow{d^0} C^{\infty} \Lambda^1 \xrightarrow{d^1} \cdots \xrightarrow{d^{n-1}} C^{\infty} \Lambda^n \longrightarrow 0.$$

- complex: $d^{i+1}d^i = 0$,
- local exactness (Poincaré lemma): $d^i v = 0 \Rightarrow v = d^{i-1}\beta$.
- finite element de Rham complex (Whitney, lowest order, 3D)

$$0 \longrightarrow \mathcal{P}_1 \stackrel{\mathsf{grad}}{\longrightarrow} \mathcal{P}_0 + \underset{}{\cancel{\mathcal{P}}_0} \times x \stackrel{\mathsf{curl}}{\longrightarrow} \mathcal{P}_0 + \underset{}{\cancel{\mathcal{P}}_0} \otimes x \stackrel{\mathsf{div}}{\longrightarrow} \mathcal{P}_0 \longrightarrow 0.$$

exact sequence

how to prove the Poincaré lemma? why these spaces?

Canonical construction of exact sequences

- ullet Poincaré operators (D.G. book; Hiptmair 1999) $\mathfrak{p}^k:C^\infty\Lambda^k\mapsto C^\infty\Lambda^{k-1}$, satisfying
 - null-homotopy property (star-shaped domain):

$$d^{k-1}\mathfrak{p}^k+\mathfrak{p}^{k+1}d^k=\mathrm{id}_{\mathcal{C}^\infty\Lambda^k},$$

complex property:

$$\mathfrak{p}^{k-1}\circ\mathfrak{p}^k=0,$$

polynomial preserving property:

$$u \in \mathcal{P}_r \Lambda^k \implies \mathfrak{p}^k u \in \mathcal{P}_{r+1} \Lambda^{k-1},$$

- Koszul operator (Arnold, Falk, Winther 2006): Poincaré operator acting on homogeneous polynomials, similar properties.
- why leads to exact sequence?
 Algebraic result: if V* is a complex with both d* and p*, then both (V*, d*) and (V*, p*) are exact.

$$du = 0 \Rightarrow u = d(\mathfrak{p}u), \quad \mathfrak{p}u = 0 \Rightarrow u = \mathfrak{p}(du)$$

$$\cdots \longrightarrow V^{i-1} \xrightarrow{\mathfrak{p}^i} V^i \xrightarrow{\mathfrak{p}^{i+1}} V^{i+1} \longrightarrow \cdots$$

• construction of \mathfrak{p}^k : given a base point W and choose a path $\gamma(t) = W + t(x - W)$,

$$(\mathfrak{p}_W u)_x(\xi_2 \ldots, \xi_k) = \int_0^1 t^{k-1} u_{W+t(x-W)}(x-W, \xi_2, \ldots, \xi_k) dt.$$

integration of the contraction operator, relation to Cartan's magic formula

• 3D vector proxy (with W = 0):

$$\mathfrak{p}_1 u = \int_0^1 u_{tx} \cdot x dt, \quad \mathfrak{p}_2 v = \int_0^1 t v_{tx} \wedge x dt, \quad \mathfrak{p}_3 w = \int_0^1 t^2 w_{tx} x dt.$$

Example of polynomial de Rham complexes

- construction of $\mathcal{P}_r^- \Lambda^k$ complexes:
 - input: complexes with d* but not with p*

$$\cdots \longrightarrow \mathcal{P}_r \Lambda^{i-1} \xrightarrow{d^{i-1}} \mathcal{P}_r \Lambda^i \xrightarrow{d^i} \mathcal{P}_r \Lambda^{i+1} \longrightarrow \cdots$$

• output: exact sequence:

$$\cdots \longrightarrow \mathcal{P}_r \Lambda^{i-1} + \mathfrak{p} \mathcal{P}_r \Lambda^i \xrightarrow{d^{i-1}} \mathcal{P}_r \Lambda^i + \mathfrak{p} \mathcal{P}_r \Lambda^{i+1} \xrightarrow{d^i} \mathcal{P}_r \Lambda^{i+1} + \mathfrak{p} \mathcal{P}_r \Lambda^{i+2} \longrightarrow \cdot$$

- construction of $\mathcal{P}_r\Lambda^k$ complexes:
 - ullet input: complex already closed with both d^ullet and \mathfrak{p}^ullet

$$\cdots \longrightarrow \mathcal{P}_r \Lambda^{i-1} \xrightarrow{d^{i-1}} \mathcal{P}_{r-1} \Lambda^i \xrightarrow{d^i} \mathcal{P}_{r-2} \Lambda^{i+1} \longrightarrow \cdots$$

$$\cdots \longleftarrow \mathcal{P}_r \Lambda^{i-1} \stackrel{\mathfrak{p}'}{\longleftarrow} \mathcal{P}_{r-1} \Lambda^i \stackrel{\mathfrak{p}'^{i-1}}{\longleftarrow} \mathcal{P}_{r-2} \Lambda^{i+1} \longleftarrow \cdots$$

output: invariant

Question

 $\mathbb{V} \colon \mathsf{vectors} \quad \mathbb{S} \colon \mathsf{symmetric} \ \mathsf{matrices} \quad \mathsf{def} = \mathsf{sym} \, \mathsf{grad}, \quad \mathsf{inc} := \mathsf{curl} \circ T \circ \mathsf{curl}$

Question: Poincaré type operators \mathscr{P}^{\bullet} for the elasticity complex?

- homotopy identity $\mathscr{DP} + \mathscr{PD} = \mathrm{id}$, $(\mathscr{D}^{\bullet} = \mathsf{def}, \mathsf{inc}, \mathsf{div})$,
- complex property $\mathcal{P}^2 = 0$,
- polynomial preserving property.

Bernstein-Gelfand-Gelfand type construction: intuitive ideas

Explicit way of doing homological algebra is needed.

Explicit projections

$$\begin{pmatrix} C^{\infty} \otimes \mathbb{V} \\ C^{\infty} \otimes \mathbb{V} \end{pmatrix} \xrightarrow{\begin{pmatrix} d \\ d \end{pmatrix}} \begin{pmatrix} C^{\infty} \otimes \mathbb{M} \\ C^{\infty} \otimes \mathbb{M} \end{pmatrix} \xrightarrow{\begin{pmatrix} d \\ C^{\infty} \otimes \mathbb{M} \end{pmatrix}} \begin{pmatrix} C^{\infty} \otimes \mathbb{M} \\ C^{\infty} \otimes \mathbb{M} \end{pmatrix} \xrightarrow{\begin{pmatrix} d \\ C^{\infty} \otimes \mathbb{V} \end{pmatrix}} \begin{pmatrix} C^{\infty} \otimes \mathbb{V} \\ C^{\infty} \otimes \mathbb{V} \end{pmatrix}$$

$$\begin{pmatrix} C^{\infty} \otimes \mathbb{V} \\ C^{\infty} \otimes \mathbb{V} \end{pmatrix} \xrightarrow{\begin{pmatrix} d \\ C^{\infty} \otimes \mathbb{M} \end{pmatrix}} \begin{pmatrix} C^{\infty} \otimes \mathbb{M} \\ C^{\infty} \otimes \mathbb{M} \end{pmatrix} \xrightarrow{\begin{pmatrix} d \\ C^{\infty} \otimes \mathbb{M} \end{pmatrix}} \begin{pmatrix} C^{\infty} \otimes \mathbb{M} \\ C^{\infty} \otimes \mathbb{M} \end{pmatrix} \xrightarrow{\begin{pmatrix} d \\ C^{\infty} \otimes \mathbb{V} \end{pmatrix}} \begin{pmatrix} C^{\infty} \otimes \mathbb{V} \\ C^{\infty} \otimes \mathbb{V} \end{pmatrix}$$

$$\Pi^{0} \qquad \Pi^{1} \qquad \Pi^{2} \qquad \Pi^{3} \qquad \Pi^{3} \qquad \Pi^{3} \qquad \Pi^{3} \qquad \Pi^{3} \qquad \Pi^{2} \qquad \Pi^{3} \qquad \Pi^{3}$$

Arnold, Winther: private communication

Homotopy operators on diagram

Projections and lifting

Let $(W^{\bullet}, d^{\bullet})$ be a subcomplex of $(V^{\bullet}, d^{\bullet})$ and Π^{\bullet} be cochain projections $((\Pi)^2 = \Pi, d\Pi = \Pi d)$.

Lemma

If right inverse Π_{\dagger} ($\Pi\Pi_{\dagger}=\mathrm{id}$) commutes with d, then

$$\tilde{\mathfrak{p}}^i := \Pi^{i-1} \mathfrak{p}^i \Pi^i_{\dagger}$$

defines $\tilde{\mathfrak{p}}^i:W^i\mapsto W^{i-1}$ for the subcomplex (W^{ullet},d^{ullet}) satisfying

$$d^{i-1}\tilde{\mathfrak{p}}^i + \tilde{\mathfrak{p}}^{i+1}d^i = \mathrm{id}.$$

Result

Theorem

$$\begin{split} \mathscr{P}_1(\omega) := \int_0^1 \omega_{t\mathsf{x}} \cdot \mathsf{x} dt + \int_0^1 (1-t) \mathsf{x} \wedge (\nabla \times \omega_{t\mathsf{x}}) \cdot \mathsf{x} dt, \\ \mathscr{P}_2 : \mu \mapsto \mathsf{x} \wedge \left(\int_0^1 t (1-t) \mu_{t\mathsf{x}} dt \right) \wedge \mathsf{x}, \\ \mathscr{P}_3 : \mu \mapsto \operatorname{sym} \left(\int_0^1 t^2 \mathsf{x} \otimes \mu dt - \left(\int_0^1 t^2 (1-t) \mathsf{x} \otimes \mu \wedge \mathsf{x} dt \right) \times \nabla \right). \end{split}$$

Then we have

$$\begin{split} \mathscr{P}_{1}(\mathsf{def}u) &= u + \mathrm{RM}, \quad \forall u \in C^{\infty} \otimes \mathbb{V}, \\ \mathscr{P}_{2}\mathsf{inc}\mu &+ \mathsf{def}\mathscr{P}_{1}\mu = \mu, \quad \forall \mu \in C^{\infty} \otimes \mathbb{S}, \\ \mathscr{P}_{3}\mathsf{div}\omega &+ \mathsf{inc}\mathscr{P}_{2}\omega = \omega, \quad \forall \omega \in C^{\infty} \otimes \mathbb{S}, \\ \mathsf{div}\mathscr{P}_{3}v &= v, \quad \forall v \in C^{\infty} \otimes \mathbb{V}. \end{split}$$

- for $\mu \in C^{\infty} \otimes \mathbb{S}$ satisfying inc $\mu = 0$, the Cesàro-Volterra path integral (1906, 1907) $\mu = \operatorname{def}(\mathscr{P}_1 \mu)$.
- complex property, polynomial-preserving property hold.

Koszul type operators

Define $\mathscr{K}_1^r: C^\infty \otimes \mathbb{S} \mapsto C^\infty \otimes \mathbb{V}$ by

$$\mathscr{K}_1^r : \omega \mapsto x \cdot \omega + \frac{1}{r+2} x \wedge (\nabla \times \omega) \cdot x, \quad \forall \omega \in C^{\infty} \otimes \mathbb{S},$$

and $\mathscr{K}_2^r: C^{\infty} \otimes \mathbb{S} \mapsto C^{\infty} \otimes \mathbb{S}$:

$$\mathscr{K}_{2}^{r}: u \mapsto x \wedge u \wedge x, \quad \forall u \in C^{\infty} \otimes \mathbb{S},$$

and define $\mathscr{K}_3^r:C^\infty\otimes\mathbb{V}\mapsto C^\infty\otimes\mathbb{S}$ by:

$$\mathscr{K}_3^r: v \mapsto \operatorname{\mathsf{sym}}(x \otimes v) - \frac{1}{r+4} \operatorname{\mathsf{sym}}\left((x \otimes v \wedge x) \times \nabla\right), \quad \forall v \in C^\infty \otimes \mathbb{V}.$$

- null-homotopy, polynomial preserving, Koszul type complex.
- duality:

$$\mathcal{K}_{2}^{r}u:v=u:\mathcal{K}_{2}^{r}v,$$

$$\int \mathcal{K}_{1}^{r+2}u:v=\int u:\mathcal{K}_{3}^{r}v.$$

Stokes complex (de Rham version)

Low order Stokes complexes.

Christiansen, H.. Generalized finite element systems for smooth differential forms and Stokes' problem. Numerische Mathematik, May 2018.

Elasticity complex (2D, stress part)

$$0 \longrightarrow H^2 \xrightarrow{\operatorname{curlcurl}} H(\operatorname{div}; \mathbb{S}) \xrightarrow{\operatorname{div}} L^2 \otimes \mathbb{V} \longrightarrow 0.$$

$$\mathcal{P}_{r+2}(\mathcal{T}_{\mathrm{CT}}) \xrightarrow{\text{curlcurl}} \text{curlcurl}\left(\mathcal{P}_{r+2}(\mathcal{T}_{\mathrm{CT}})\right) + \cancel{\mathscr{P}_r^2}(\mathcal{P}_r(\mathcal{T}) \otimes \mathbb{V}) \xrightarrow{\text{div}} \mathcal{P}_r(\mathcal{T}) \otimes \mathbb{V}.$$

$$\mathscr{P}_1(V) = \int_0^1 (1-t)x^{\perp} \cdot V_{tx} \cdot x^{\perp} dt,$$

$$\mathscr{P}_2(u) = \operatorname{sym}\left(\int_0^1 t u_{\mathsf{tx}} \otimes x \, dt + \left(\int_0^1 t (t-1)(x^\perp \cdot u_{\mathsf{tx}}) x \, dt\right) \times \nabla\right).$$

Arnold-Douglas-Gupta (Figure: r = 1.)

Christiansen, H.. Finite Element System for vector bundles: elasticity and curvature. arxiv.

Elasticity complex (2D, stress part)

$$0 \longrightarrow H^2 \xrightarrow{\text{curlcurl}} H(\text{div}; \mathbb{S}) \xrightarrow{\text{div}} L^2 \otimes \mathbb{V} \longrightarrow 0.$$

$$0 \longrightarrow \mathcal{P}_{r+3}(T_h) \xrightarrow{\text{curlcurl}} \mathcal{P}_{r+1} \otimes \mathbb{S}(T_h) \xrightarrow{\text{div}} \mathcal{P}_r \otimes \mathbb{V}(T_h) \longrightarrow 0.$$

(Figure: r = 0.)

Christiansen, H.. Finite Element System for vector bundles: elasticity and curvature. arxiv.

More examples: 2D elasticity, strain part, curvature operator. Talk by Christiansen.

Discussions

References

- Poincaré path integrals for elasticity; Christiansen, H., Sande, Journal de Mathématiques Pures et Appliquées, 2019
- Generalized finite element systems for smooth differential forms and Stokes' problem; Christiansen, H., Numerische Mathematik, 2018
- Finite element systems for vector bundles: elasticity and curvature;
 Christiansen, H., arXiv:1906.09128
- elasticity (hess, divdiv...) Poincaré/Koszul: discrete complexes in higher dimensions? (ongoing for 3D)
- why complex property holds?
- a deeper understanding of BGG and Lie theory?
- BGG, defects, dislocations (Cosserat elasticity, microstructures, coupled stress, Riemannian and Cartan geometry, ..)?
- averaged integral operators and estimates as pseudo-differential operators?
- construction on manifolds (shells)? Cesàro-Volterra integral on surfaces (Ciarlet et al.)