A Generative Model of Words and Relationships from Multiple Sources

- Word embeddings: useful semantic representations for downstream natural language processing tasks:
 - · distance in embedding space ~ semantic distance
 - · learn using co-occurrence statistics
- · Notion of **similarity** is context-specific: each type of relationship defines new **similarity measure**
- · Generalise co-occurrence to include structured data

Experiments

• Triplet classification: predict if (S, R, T) is true/false: unstructured data helps when structured data is scarce, as does unlabelled unstructured data

Edge prediction: predict R given S and T, etc.: report total probability of all correct responses

we can predict
relationships
between entities
appearing only in
the unstructured

(EHR) data

Knowledge transfer:

Stephanie L. Hyland^{1,2}, Theofanis Karaletsos¹, Gunnar Rätsch¹ ¹Computational Biology, Memorial Sloan Kettering Cancer Centre, New York ²Weill Cornell Graduate School of Medical Sciences, New York

Model

- · Joint distribution over (S, R, T) triples, directed relationship R between source entity S and target entity T
- · Words (S and T) represented by vectors, relationships R by affine transformations to allow relationship-specific similarity measure
- Energy function (cosine similarity): $\mathcal{E}(S,R,T|\Theta) = -\frac{\mathbf{v}_T \cdot G_R \mathbf{c}_S}{\|\mathbf{v}_T\| \|G_R \mathbf{c}_S\|}$
- · Boltzmann distribution: $P(S,R,T|\Theta) = \frac{1}{Z(\Theta)}e^{-\mathcal{E}(S,R,T|\Theta)}$
- Missing labels can be summed over,
 e.g. to infer latent relationships
- Relationship is general: can combine
 unstructured (sentence co-occurrence)
 and structured (proximity in graph) sources

tamoxifen CAN_TREAT breast_cancer

dog APPEARS_IN_SENTENCE_WITH fox

brain IS_LOCATION_OF glioma

fox IS_HYPONYM_OF carnivore

· Training: stochastic maximum likelihood (PCD) with Gibbs sampling

Data

- · Generic English: Wikipedia (unstructured), WordNet (structured)
 - 12 relationships (including APPEARS_IN_SENTENCE)
 - · 112,581 WordNet training examples
- Medical English: electronic health records (EHR) from MSKCC (unstructured), SEMMEDDB (structured)
 - took top 20 relationships from SEMMEDDB
 - identified UMLS concepts in EHR

Conclusion

- · Our model learns embeddings using both **distributional statistics** and **structured knowledge**
- · Relationships between words are affine transformations of the space
- · Combining data sources can improve the quality of embeddings
- · We can predict relationships for previously unobserved entities

Kilicoglu *et al.* 2012. SemMedDB: a PubMed-scale repository of biomedical semantic predications. (*Bioinformatics*) Mikolov *et al.* 2013. Distributed representations of words and phrases and their compositionality. (*NIPS*) Tieleman, T. 2008. Training restricted Boltzmann machines using approximations to the likelihood gradient. (*ICML*). Socher *et al.* 2013. Reasoning with neural tensor networks for knowledge base completion. (*NIPS*)

