PROBLEM:

Let
$$ar{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 and $A_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ $A_2 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ $A_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $A_4 = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ $A_5 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ $B_1 = \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$ $B_2 = \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$ $C_1 = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ $C_2 = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$

Find $A_i\bar{x},\ B_i\bar{x},\ C_i\bar{x}$. Provide illustrations and geometric explanations.

$$1. \,\, A_1ar{x} = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} x_1 \ -x_2 \end{bmatrix}$$

Reflection through the x_1 -axis

$$2. \ \ A_2\bar{x} = \left[\begin{array}{c} -1 \ 0 \\ 0 \ 1 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{c} -x_1 \\ x_2 \end{array} \right]$$

Reflection through the x_2 -axis

3.
$$A_3\bar{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

Reflection through the line $x_2 = x_1$

$$4. \ \ A_4\bar{x}=\left[\begin{array}{cc} 0 \ -1 \\ -1 \ \ 0 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} -x_2 \\ -x_1 \end{array}\right]$$

Reflection through the line $x_2 = -x_1$

5.
$$A_5ar{x}=\left[egin{array}{cc} -1 & 0 \ 0 & -1 \end{array}
ight]\left[egin{array}{c} x_1 \ x_2 \end{array}
ight]=\left[egin{array}{c} -x_1 \ -x_2 \end{array}
ight]$$

Reflection through the origin

$$6. \,\, B_1\bar{x} = \left[\begin{smallmatrix} k & 0 \\ 0 & 1 \end{smallmatrix} \right] \left[\begin{smallmatrix} x_1 \\ x_2 \end{smallmatrix} \right] = \left[\begin{smallmatrix} kx_1 \\ x_2 \end{smallmatrix} \right]$$

Horizontal expansion

7.
$$B_2 \bar{x} = \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ kx_2 \end{bmatrix}$$

Vertical expansion

8.
$$C_1 \bar{x} = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + kx_2 \\ x_2 \end{bmatrix}$$

$$\bar{x}(x_1, x_2) \, \bar{b}(x_1 + kx_2, x_2)$$

$$x_1$$
Horizontal shear

LINEAR TRANSFORMATIONS

DEFINITION:

A <u>transformation</u> (or <u>function</u>, or <u>mapping</u>) T from R^n to R^m is a rule that assigns to each vector \bar{x} from R^n a vector $T(\bar{x})$ in R^m . The set R^n is called the <u>domain</u>, and R^m is called the <u>codomain</u> of T.

EXAMPLE:

Let

$$A = \left[egin{array}{cc} 1 & -3 \ 3 & 5 \ -1 & 7 \end{array}
ight], \quad ar{u} = \left[egin{array}{c} 2 \ -1 \end{array}
ight],$$

 $T: R^2 \to R^3, \quad T(\bar{x}) = A\bar{x}.$

Find $T(\bar{u})$.

SOLUTION:

We have:

$$T(ar{u}) = \left[egin{array}{cc} 1 & -3 \ 3 & 5 \ -1 & 7 \end{array}
ight] \left[egin{array}{cc} 2 \ -1 \end{array}
ight] = \left[egin{array}{cc} 5 \ 1 \ -9 \end{array}
ight].$$

DEFINITION:

A transformation T is <u>linear</u> if:

- $\begin{array}{cc} (i) & T(\bar{u}+\bar{v}) = T(\bar{u}) + T(\bar{v}) \text{ for all } \bar{u}, \bar{v} \text{ in the} \\ & \text{domain of } T \end{array}$
- $T(c\bar{u}) = cT(\bar{u}) \qquad \text{ for all \bar{u} in the } \\ \text{ domain of } T \\ \text{ and all scalars } c$

THEOREM:

If T is a linear transformation, then

$$T(\bar{0}) = \bar{0}$$

and

$$T(c\bar{u} + d\bar{v}) = cT(\bar{u}) + dT(\bar{v})$$

for all vectors \bar{u}, \bar{v} in the domain of T and all scalars c, d.

PROBLEM:

Find a matrix A such that for any \bar{x} from R^2 we have

$$T(\bar{x}) = 3\bar{x}$$
.

SOLUTION:

Let

$$A = \left[egin{array}{c} a & b \ c & d \end{array}
ight].$$

Then

$$T(ar{x}) = \left[egin{array}{c} a & b \ c & d \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \end{array}
ight] = \left[egin{array}{c} ax_1 + bx_2 \ cx_1 + dx_2 \end{array}
ight]$$

and

$$3ar{x}=\left[rac{3x_1}{3x_2}
ight].$$

Therefore

$$\left[egin{array}{c} ax_1+bx_2 \ cx_1+dx_2 \end{array}
ight]=\left[egin{array}{c} 3x_1 \ 3x_2 \end{array}
ight].$$

Hence,

$$a = 3, b = 0, c = 0, d = 3,$$

 \mathbf{so}

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = \left[\begin{array}{cc} 3 & 0 \\ 0 & 3 \end{array} \right].$$