Summary of Scope 1 and 2 Emissions from EAF Steel Plants, 2021

Ruth Enriquez, Erica Bishop, Michael Zargari, and Amrit Sandhu

This document summarizes the key trends and findings from the Annual 2021 emissions calculated for each Electric Arc Furnace Steel Plant.

The following object is masked from 'package:ggplot2':

last_plot

The following object is masked from 'package:stats':

filter

The following object is masked from 'package:graphics':

layout

Rows: 57 Columns: 25

-- Column specification ------

Delimiter: ","

chr (11): plant_id, plant_name, owner, state, municipality, address, categor... dbl (14): ghgrp_id, lat, lon, plant_age_years, co2e_tonnes_per_mwh, estimate...

- i Use `spec()` to retrieve the full column specification for this data.
- i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Summary by Plant: The Top 5 Highest Emitting Plants

Selecting by total_co2e_2021

Top 5 Highest Emitting EAF Steel Plants, 2021 Based on Scope 1 and Scope 2 Emissions from EAF Plants (metric tons CO2e)

Plant Name	Total CO2E Emissions
Nucor Steel Berkeley plant	1,757,626
Nucor Steel Decatur plant	1,593,875
Nucor-Yamato Steel Blytheville plant	1,741,089
Steel Dynamics Butler plant	2,075,603
Steel Dynamics Columbus plant	2,218,475

Summary by Company: Top emitters by emissions and emissions intensity

Top 5 Highest Emitting Steel Companies, 2021 Based on Scope 1 and Scope 2 Emissions from EAF Plants (metric tons)

Owner	Total Emissions	% of Total Emissiosn from Scope 2	Avg Total Emiss
Nucor Corp	7,921,002	65.4	
Steel Dynamics Inc	6,310,323	66.1	
Commercial Metals Co	2,467,058	69.5	
Gerdau Long Steel North America	1,869,985	73.1	
Nucor Yamato Steel Co	1,741,089	73.1	

Top 5 Most Emissions Intense Steel Companies, 2021 Based on Scope 1 and Scope 2 Emissions from EAF Plants (metric tons CO2e/metric tons steel)

Owner	Avg Emissions Intensity	Avg Total Emissions Across Plants
North American Stainless Inc	0.8730	857, 537.6
SSAB Americas Holding AB	0.8635	793,409.9
Charter Manufacturing Company Inc	0.8585	373,798.4
Evraz North America PLC	0.8570	799,602.1
Liberty Steel	0.8410	374, 337.8

Regional Analysis: Average and Total Emissions from Each AISI Region

Regional Emissions from EAF Steel Production Based on 2021 Scope 1 and Scope 2 Emissions (metric tons CO2e)

Region	Annual Emissions (mt CO2e)	Avg Total Emissions (mt CO2e)
Southern	20, 152, 460	806,098.4
Great Lakes	8,322,820	756,620.0
Midwest	4,624,211	578,026.3
North East	3,554,147	444,268.4
Western	2,475,415	495,083.0

A tibble: 5 x 3

	region	<pre>avg_emissions_intensity_per_region_co2e</pre>	avg_emissions_per_region
	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	Midwest	0.831	578026.
2	Great Lakes	0.778	756620.
3	Western	0.696	495083.
4	North East	0.619	444268.

5 Southern 0.588 806098.

State-Level Analysis: Average and total state level emissions

```
total_state_emissions <- scope_1_and_2_emissions_2021 %>%
   group_by(state) %>%
   summarise(total_emissions_co2e = sum(total_co2e_tonnes_2021)) %>%
   arrange(desc(total_emissions_co2e))

total_state_emissions %>%
   head(10)
```

A tibble: 10×2

	state	total_emissions_co2e
	<chr></chr>	<dbl></dbl>
1	Indiana	5332332.
2	Arkansas	4837545.
3	Alabama	4711069.
4	Ohio	4157446.
5	South Carolina	2645329.
6	Texas	2296777.

```
7 Mississippi
                               2218475.
8 Illinois
                               1986211.
9 Kentucky
                               1535095.
10 Pennsylvania
                               1011274.
  average_state_emissions <- scope_1_and_2_emissions_2021 %>%
    group_by(state) %>%
    summarise(avg_emissions_per_plant_co2e = mean(total_co2e_tonnes_2021)) %>%
    arrange(desc(avg_emissions_per_plant_co2e))
  average_state_emissions %>%
    head(10)
# A tibble: 10 x 2
                  avg_emissions_per_plant_co2e
   state
   <chr>
                                          <dbl>
1 Mississippi
                                       2218475.
2 Arkansas
                                       1209386.
3 Indiana
                                       1066466.
4 South Carolina
                                        881776.
5 Iowa
                                        830836.
6 Colorado
                                        799602.
7 Alabama
                                        785178.
8 North Carolina
                                        784986.
9 Kentucky
                                        767548.
10 Nebraska
                                        642458.
```

Benchmarking Calculations with Corporate Sustainability Reports

Although no plant-level scope 2 emissions data sets were publicly available prior to this project, most steel companies in the US self-report emissions information at the company level, including emission intensity and scope 2 emissions. However, there's no standard for these self-reported numbers, so it's challenging to do a comparison without know exactly what definitions and what start and end points these companies are using to define their scope 2 emissions.

We compared the self-reported emissions intensities from some of the top-emitting companies. The self-reported figures were all Scope 1 and 2 combined emissions intensities in metric tons of CO2 per metric ton of steel produced in 2021. These were the most similar metrics we could find, but its not an exact comparison. Below we explore how these reported numbers compare to our calculations.

Nucor reported an intensity of 0.43 in 2021. You can view the report at https://nucor.com/esg (p. 32).

Cleveland-Cliffs reported an intensity of 1.01 in 2021. You can view their report here (p. 62).

Commercial Metals Co reported an intensity of 0.451 in 2021. You can view their report here (p. 28).

Steel Dynamics reported an intensity of 0.42 in 2021. You can view their reports at https://stld.steeldynamics.com/sustainability-reporting/ (p. 41 of the 2021 report).

While many of our calculations are in the same ball park, its important to stress that without comparing emissions from the same manufacturing techniques and product outputs, and using the same standard definitions, its hard to use self-reported data like this for meaningful comparison. For example, Steel Dynamics reports their emissions intensity for cast steel, while Cleveland-Cliffs reports it for crude steel.

It was reassuring to the project team that our methods lead to results similar to industry reported numbers, but there is still a ways to go for full data transparency in the industry.

Calculated v. Self–Repored Emissiosn Intensity Values
Scope 1+2 Emissiosn Intensities in metric tons CO2 / metric tons steel, 2021

Emissions Intensity (metric tons CO2e / metric tons steel)