This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

•NIKN

L02 M13

87-295897/42

JP62207883 A

Laser treatment of cermet surface - includes coating laser absorbing agent e.g. graphite or silica on surface

NIPPON KOKAN KK 86.03.10 86JP-050439 (JP62207883 A 87.09.12 * (8742) 4p)

86JP-050439

ABSTRACT:

JP62207883 A The cermet surface is treated by laser by coating laser absorbing agent on the surface, irradiating laser beam for fusion of the surface. The cermet is of a carbide system, and the laserabsorbing agent is graphite, phosphate or SiO2.

USE - For cermet surface formed by plasma spraying. The surface treated cermet is used for jet engines, turbine blades, and component part of machines. A dense fused layer having no pores on the cermet surface is mfd. (0/3)

L02 M13

Other Fields:

CPI secondary

C87-125994

NUM

1 patent(s) 1 country(s)

Family

JP62207883 A 87.09.12 * (8742) 4p

IC2

C23C-004/18 C23C-026/00 C23F-003/00

9日本国特許庁(JP)

10 特許出額公開

砂公開特許公報(A)

昭62-207883

@Int_CI_4

紐別記号

庁内整理番号

母公開 昭和62年(1987)9月12日

C 23 C 26/00

3/00

E-7141-4K 6686-4K

6793-4K

審査請求 未請求 発明の数 1 (全4頁)

❷発明の名称

C 23 F

サーメット接面のレーザ表層処理方法

创特 图 昭61-50439

昭61(1986)3月10日 御出

小 67発明者 苍 荗 鉄 横浜市南区大岡4丁目14

伊発 眀 者 小 守 横浜市保土ケ谷区常盤台51 横浜市旭区南希望ケ丘133

の発 明 伊発 明 者 和

横浜市港南区港南台1-29-3

砂出 題 人 日本銀管株式会社 東京都千代田区丸の内1丁目1番2号

外2名 か代 理 弁理士 佐藤 正年

サーメット表面のレーザ長層処理方法

2. 券許請求の範囲

- ・サーメット長田にレーザ吸収祭を改布し、 その徒レーザビームを無針してナーメット表面を **商融処理するようにしたことを特徴とするサーメ** ット長面のレーザ長層処理方法。
- (2) ナーメットは炭化物系サーメットであると とを特徴とする特許請求の範囲第1項記載のサー メット表面のレーザ表層処理方法。
- レーザ吸収剤はグラフアイト、リン酸塩、 SIO: のいずれかであることを特殊とする特許請 水の範囲第1項記載のサーメット表面のレーザ表 着処理方法。

3. 発明の詳細な成明

(重要上の利用分野)

との発明はサーメット表面のレーデ表層処理方 法、更に詳しくはブラズマ書射等によつて形成さ れたサーメットの表面を想験処理するようにした ものに関する。

〔従来の技術〕

一般に金異材をジェットエンジン、メービンプ レード、機械部品等の構成部材として使用する場 合には耐食性、耐磨耗性、耐熱性が要求されると とから金属材の表面にサーメットをブラズマ器射 でコーティングしたり、予め形成されたサーメッ トを拡散接合等で複合したりして耐食性、耐単純 性、耐熱性が得られるようにしていた。

しかし、かかるサーメットには空孔が多いため 化耐食性、耐磨耗性化労るところから、レーブビ ームを利用した空孔の封孔処理が行われていた。 (発明が解決しようとする問題点)

しかしながら、従来のレーデビームを利用した 対孔処理にもつてはサーノフトを構成するセラ(ックス系成分性に現化物系のセラミックスはレー ず我収率が高く、一方金属素地はレーデの表収率 が低いためにセラミフクス系成分のみが加品され 産免してしまい、ナーメフトの長輩に大きを空孔 が長存し、しかもナーメットにクラフタが発生す

るという問題点があつた。これは予め形成された サーメットの単体自身にレーデビームを利用した 対孔処理を行つた場合にも同様の問題を生じる。

この発明はかかる問題点を解決するためになされたもので、サーメット表面における空孔の対孔 処理が充分に行われ、クラックの発生を防止して サーメットの耐食性、耐摩託性を向上させること ができるサーメット表面のレーザ表層処理方法を 得ることを目的とする。

[問題点を解決するための呼吸]

との祭明に係るサーメット表面のレーザ表層処理方法はサーメット表面にレーザ表収割を塗布し、その後レーザビームを限射してサーメット表面を 複数処理するように構成したものである。

(作用)

この発明にかいては、サーメット接近にレーザ 教収剤を載布した後にレーザビームを順射するか ら、サーメット表面全体でのレーザ吸収率が均一 化し、セラミックス系成分の選択的無発が消えら れ、金銭業地も溶散されることとなる。

次に、基材(1)の表面に形成されたサーメット語射層(2)の表面にレーザ吸収剤を均一に塗布する。 とのレーザ吸収剤としてはグラファイト、リン酸 亜鉛、リン酸マンガン等のリン酸塩、 810g があ

しかる後に、レーザ級収割が曲布されたサーメット掲射層(2)の表面に向けて CO₂ レーザのレーザビー A (4)を第1回に示す矢印 A の方向に移動させながら順射して悪敵処理を行う。

そりすると、サーメット部計層(2)の表面部分は、レーザ長収率が低い金属素地もセラミックス系成分と同程度にレーザピームを吸収することとなり、表面全体でのレーザ吸収率が均一化し、セラミックス系成分の選択的感発が抑えられ、金属素地も潜離されてその表面部分には空孔(2 m)のない故密を約50~300 mmの移動処理層(3)が形成され、サーメット部計層(2)全体はクラックがなく、硬度の低下もない被領となる。

との発明方法の説明として、第1回では薪材(I) に形成されたサーノット最計度(2)の表面に意動処

(突進例)

第1回はこの発明の一実施例で基材にコーテイングされたサーメフトを表層処理する状態を示す 説明図、第2回はこの発明の別の実施例でナーメフト単体を表層処理する状態を示す説明図である。

図にかいて、(1)は炎泉鍋の基材、(2)は基材(1)の 表面に例えばプラズマ器射によつて形成された炭 化物系のケーメフト器射層、(2。)はサーメフト 器射層(2)の空孔、(3)はサーメフト器射層(3)の表面 にレーザ級収別を塗石し、その後レーデビーム(4) の無射によつて溶散処理されたサーメフト器射層 (2)の溶散処理層である。(5)はレーデビーム(4)を集 先させる集先レンズである。

次に、この発明方法について説明する。

この発明方法はまず基材(1)の表面を非例気圧 20~760 ∵orrの下で、炭化物系セラミックス と金属份の適射用砂末材料をプラズマ番射する。 そうすると、基材(1)の表面には厚さが約100~ 2000 am のサーメット複射層(2)が第1回に示す ように形成される。

理用(3)を形成する例を示したが、第2回はナーメット単体はの表面に得触処理層(3)を形成する実施例を示す。との実施例ではサーメット単体はの表面に必要を動布し、その後レーデビーム(4)を展射してナーメット単体はの表面に搭触処理層(3)を形成する。

なか、いずれの実施例も、レーデビーム(4)の相対的移動は、サーメット部射用(3)又はサーメット単体(3)の表面全体が影散されるように行われるととは勿論である。

次にとの発明方法によりサーメット表面を移動 処理した具体例を説明する。

〔具体例1〕

この具体例に使用される基材(1)の材質は 88 41、 寸法は内形が 7 m、縦 1 0 0 m、横 2 0 0 m であ

その基材(1)の表面にプラメマ海射によつでナーメット部射層(2)を形成する。部射材料は60多TiC - Ni - Cr 合金粉末、形成されたテーメット
器射層(2)の厚さは160ヵmである。

特团昭62-207883(3)

そのナーメット部計局(3)の表面にグラファイトを均一に位むし、しかる技にレーデビーム(4)による部数処理を行う。このレーデビームによる路数処理条件は次の通りである。用いたレーデは COsレーデ、レーデ出力は 2 kW、レーデ移動速度 5 0 cm/min 集先レンズ+ 1 5" 焦点位置+ 100m、である。

上記条件の下で、サーメット再射層(2)の表面に
レーザビーム(4)を風射して溶散処理を行うと、サーメット再射層(2)の表面から内部に向けて約 100 Am の厚さで溶散された表面に貫通していない空孔(2。)のない数密な溶散処理層(3)が形成され、サーメット再射層(2)全体にクラックがなく、健度の低下もない被覆となつた。サーメット再射層(2)の健度を測定したところ、レーザ風射前 9 5 0 Hr、、レーザ風射後 9 4 5 Hr と便度の低下がみられないことがわかる。

また、第3図(4)はサーメット複射層にグラファイトを歯布しないでレーザビームを限射した場合のサーメット複射形の拡大所面図、第3回(4)はサ

さが 5 0 0 mm である点が具体例 1 と相違し、レーザビームによる溶融処理条件は具体例 1 と同様である。

グラファイトが歳布されたサーメット部射層(2)の表面にレーザビーム(4)を限射して溶散処理を行うと、約150 smの厚さで溶散された表面に貫通する空孔(2 a)のない最密な溶散処理層(3)が形成され、サーメット溶射層(2)全体口はクラックがなく、硬度の低下もない被覆となつた。表面検患を図5(4)(4)にデナー

〔具体例3〕

この具体例では複厚5m、縦寸法20m、機寸法40mのサーメット単体(75mWC-Co) 02の 長面にグラフアイトを塗布し、レーザ出力2.5kW のレーザビーム(4)を展射して薄膜処理を行い、それ以外の条件は具体例1と同様である。

グラフアイトが生布されたサーメット単体Q2の 長面にレーデビーム(4)を照射して悪酸処理を行う と、約200mの厚さで遊散された空孔(2m) のない最低な寒酸処理層(3)が形成され、サーメッ ーノフト部射層にグラフ・イトを金布したほにレーデビー人を選針した場合のサーノフト部射層の 拡大断面図である。図にかいて(1)は基材、(2)はテーノフト部射層、(3)は潜離処理層をそれぞれ示す 第3図(4)では通過の震発による空孔(2b)、存職 処理層(3)の表面の凹凸及び体徴の減少が観察されると共に移動処理層(3)の表面会体にクラブク(6)が ふと共に移動処理層(3)の表面会体にクラブク(6)が ふられる。これに対して第3図(4)では移動処理層 (3)の空孔及び表面の凹凸がなりなったことがわかる。また、表面下に存在する空孔(2。)はレーデ 服射により生じた残存空孔であり、表面には時孔 していないため、耐食性は向上する。更に、表面 にはクラックが発生していないことがわかる。

また、母敵処理層(3)及び未処理サーメット部射 層(2)へのグラフアイト中の炭化物の部敵或いは拡 散とみられる過剰炭化物は分析されず、炭化物の 悪影響はない。

[具体例2]

この具体例では超射材料が $509 Cr_3C_1 - NiCr$ 合金粉末で、形成されたサーメット通射層(2)の厚

ト単体のは全体にクラックがなく、硬度の低下も ないものとなつた。

[発明の効果]

この発明は以上説明したとかり、サーメット授 面にレーザ最収別を塗布した後にレーザビームを 無材してお願処理するようにしたので、サーメット 没河全体でのレーザ 吸収率が均一化し、セラミ ックス系成分の選択的感染が抑えられ、全異素地 もセラミックスと同種皮にお願されてサーメット 表面に空孔がない最合なお脱処理暦が形成される と共にサーメットにクラックがないという効果が ある。

4. 図面の簡単な説明

第1回はこの発明の一実施内で基材にコーティングされたサーメットを長層処理する状態を示す 説明図、第2回はこの発明の別の実施例でナーメット単体を表層処理する状態を示す説明図、第3 図(A)はサーメットが射層にグラファイトを含るしないでレーザビームを離射した場合のテーメット の対角の拡大新面図、第3回(A)はテーメットの射

特開昭62-207883(4)

層にダラフアイトを含むした後にレーデビー人を 風射した場合のテーメフト部射層の拡大断菌図で ある。

図にかいて、(1)は若材、(2)はテーメット部射層、 (3)は遊散処理層、(4)はレーザビームである。

な♪各図中、同一符号は同一又は相当部分を示す。 .

代理人 弁理士 佐 藤 正 年

1:14

2:サーメット増制を

3:这就规规制

4: レーザビーム

第2図

第 3 図

