

Méthodes numériques et simulation de condensats de Bose-Einstein

Guillaume Vergez

Directeur:

Co-directeur:

Ionut Danaila

Laboratoire de Mathématiques Raphaël Salem, Rouen Frédéric Hecht

Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie

• Théorie : 1925, Einstein.

 \Longrightarrow Gaz de particules refroidi (quelques nanokelvins), condensation d'une partie macroscopique du gaz, êtat de plus faible énergie, oscillation selon la même fonction d'onde ψ .

- Théorie : 1925, Einstein.
 - \implies Gaz de particules refroidi (quelques nanokelvins), condensation d'une partie macroscopique du gaz, êtat de plus faible énergie, oscillation selon la même fonction d'onde ψ .
- Expériences :
 - 1995, E. A. Cornell, W. Ketterle et Carl E. Wieman.
 - \implies Prix Nobel de 2001.

- Théorie : 1925, Einstein.
 - \implies Gaz de particules refroidi (quelques nanokelvins), condensation d'une partie macroscopique du gaz, êtat de plus faible énergie, oscillation selon la même fonction d'onde ψ .
- Expériences :
 - 1995, E. A. Cornell, W. Ketterle et Carl E. Wieman. ⇒ Prix Nobel de 2001.
 - 2 1999, C. Raman et ses collaborateurs. ⇒ existence de courants permanents dans le condensat.

- Théorie : 1925, Einstein.
 - \Longrightarrow Gaz de particules refroidi (quelques nanokelvins), condensation d'une partie macroscopique du gaz, êtat de plus faible énergie, oscillation selon la même fonction d'onde ψ .
- Expériences :
 - 1995, E. A. Cornell, W. Ketterle et Carl E. Wieman.
 ⇒ Prix Nobel de 2001.
 - 2 1999, C. Raman et ses collaborateurs.
 ⇒ existence de courants permanents dans le condensat.
 - 3 2000, K. W. Madison et 2001, J. R. Abo-Shaeer. ⇒ apparition de vortex quantiques dans le condensat en rotation.

- Théorie: 1925, Einstein.
 - \implies Gaz de particules refroidi (quelques nanokelvins), condensation d'une partie macroscopique du gaz, êtat de plus faible énergie, oscillation selon la même fonction d'onde ψ .
- Expériences :
 - 1995, E. A. Cornell, W. Ketterle et Carl E. Wieman. ⇒ Prix Nobel de 2001.
 - 2 1999, C. Raman et ses collaborateurs.
 ⇒ existence de courants permanents dans le condensat.
 - 3 2000, K. W. Madison et 2001, J. R. Abo-Shaeer. ⇒ apparition de vortex quantiques dans le condensat en rotation.
 - 4 En cours, Groupe Atoms Froids du laboratoire Kastler-Brossel (LKB) de l'Ecole Normale Supérieure.

- Théorie: 1925. Einstein.
 - ⇒ Gaz de particules refroidi (quelques nanokelvins), condensation d'une partie macroscopique du gaz, êtat de plus faible énergie, oscillation selon la même fonction d'onde ψ .
- Expériences :
 - 1995, E. A. Cornell, W. Ketterle et Carl E. Wieman. \implies Prix Nobel de 2001.
 - 1999. C. Raman et ses collaborateurs. \implies existence de courants permanents dans le condensat.
 - 2000, K. W. Madison et 2001, J. R. Abo-Shaeer. ⇒ apparition de vortex quantiques dans le condensat en rotation.
 - En cours, Groupe Atoms Froids du laboratoire Kastler-Brossel (LKB) de l'Ecole Normale Supérieure.
- Modélisation numérique : Projet BECASIM. Mise en rotation selon l'axe des z du condensat de Bose-Einstein (BEC).

Plan

- 1 Energie de Gross-Pitaevskii (GP) et equation de GP stationnaire
- Différentes méthodes
 - La méthode de gradient de Sobolev (GS)
 - Adaptation de maillage
 - Utilisation de Ipopt
- Cas tests de comparaison
- Construction d'approximations de départ
 - Ipopt axisymétrique sans vortex ($\Omega = 0$)
 - Ipopt axisymétrique avec vortex $(\Omega \neq 0)$
- Quelques résultats en 3D

Outline

- Energie de Gross-Pitaevskii (GP) et equation de GP stationnaire
- Différentes méthodes
 - La méthode de gradient de Sobolev (GS)
 - Adaptation de maillage
 - Utilisation de Ipopt
- Cas tests de comparaison
- 4 Construction d'approximations de départ
 - Ipopt axisymétrique sans vortex ($\Omega = 0$)
 - Ipopt axisymétrique avec vortex $(\Omega \neq 0)$
- Quelques résultats en 3D

Soit $\mathcal{D} \subset \mathbb{R}^3$ un domaine ouvert, borné.

La fonction d'onde du BEC est le minimiseur u dans $H^1(\mathcal{D},\mathbb{C})$ de l'énergie de Gross-Pitaevskii :

$$E(u) = \int_{\mathcal{D}} \left[\frac{1}{2} |\nabla u|^2 + V_{trap} |u|^2 + \frac{1}{2} C_g |u|^4 \right] - C_{\Omega} L_z, \tag{1}$$

où C_{Ω} et C_g sont des constantes qui dépendent du nombre de particules, de la longueur de diffusion et de la vitesse de rotation,

$$V_{trap}=rac{1}{2}(a_xx^2+a_yy^2+a_zz^2)$$
 (potentiel de piégeage harmonique) ou $V_{trap}=rac{1}{2}(a_xx^2+a_yy^2+a_zz^2+a_4r^4)$ (potentiel quartique/quadratique)

et

$$L_{z} = -\int_{\mathcal{D}} \mathcal{I}m \left[\overline{u} \left(y \frac{\partial u}{\partial x} - x \frac{\partial u}{\partial y} \right) \right] = \int_{\mathcal{D}} \mathcal{R}e \left[i \overline{u} \left(y \frac{\partial u}{\partial x} - x \frac{\partial u}{\partial y} \right) \right]. \quad (2)$$

5 / 40

La fonction d'onde u est normalisée et la conservation du nombre d'atomes s'écrit :

$$\int_{\mathcal{D}} |u|^2 = 1. \tag{3}$$

Ceci revient à résoudre l'équation de GP stationnaire

$$-\frac{1}{2}\Delta u + V_{trap}u + C_g|u|^2 u - iC_{\Omega}(A^T \nabla)u = \mu u, \tag{4}$$

οù

$$A = \begin{pmatrix} y \\ -x \\ 0 \end{pmatrix} \tag{5}$$

et μ est le potentiel chimique (un multiplicateur de Lagrange). (6)

Outline

- 🕕 Energie de Gross-Pitaevskii (GP) et equation de GP stationnaire
- Différentes méthodes
 - La méthode de gradient de Sobolev (GS)
 - Adaptation de maillage
 - Utilisation de Ipopt
- Cas tests de comparaison
- 4 Construction d'approximations de départ
 - Ipopt axisymétrique sans vortex ($\Omega = 0$)
 - Ipopt axisymétrique avec vortex $(\Omega \neq 0)$
- Quelques résultats en 3D

- Méthodes existantes sous FreeFem++
 - Méthode de Gradient de Sobolev en éléments finies.

- Méthodes existantes sous FreeFem++
 - Méthode de Gradient de Sobolev en éléments finies.
 - Adaptation du maillage.

- Méthodes existantes sous FreeFem++
 - Méthode de Gradient de Sobolev en éléments finies.
 - Adaptation du maillage.
 - Utilisation de Ipopt.

- Méthodes existantes sous FreeFem++
 - Méthode de Gradient de Sobolev en éléments finies.
 - Adaptation du maillage.
 - Utilisation de Ipopt.
 - Méthode de propagation en temps imaginaire, schéma hibride Runge-Kutta/ Crank-Nicolson.

- Méthodes existantes sous FreeFem++
 - Méthode de Gradient de Sobolev en éléments finies.
 - Adaptation du maillage.
 - Utilisation de Ipopt.
 - Méthode de propagation en temps imaginaire, schéma hibride Runge-Kutta/ Crank-Nicolson.

- Méthodes existantes sous FreeFem++
 - Méthode de Gradient de Sobolev en éléments finies.
 - Adaptation du maillage.
 - Utilisation de Ipopt.
 - Méthode de propagation en temps imaginaire, schéma hibride Runge-Kutta/ Crank-Nicolson.
- Méthodes en cours de developpement sous FreeFem++
 - Méthode de Gradient de Sobolev avec discrétisation spéctrale en espace.

- Méthodes existantes sous FreeFem++
 - Méthode de Gradient de Sobolev en éléments finies.
 - Adaptation du maillage.
 - Utilisation de Ipopt.
 - Méthode de propagation en temps imaginaire, schéma hibride Runge-Kutta/ Crank-Nicolson.
- Méthodes en cours de developpement sous FreeFem++
 - Méthode de Gradient de Sobolev avec discrétisation spéctrale en espace.
 - Méthode de Newton pénalisée.

• Méthode de minimisation directe de l'énergie :

$$u_{n+1} = u_n + \rho \, \mathcal{G}_n, \tag{7}$$

 \mathcal{G}_n : Direction de descente $(D_{u_n}E.\mathcal{G}_n<0)$

 ρ : Pas de descente.

• Méthode de minimisation directe de l'énergie :

$$u_{n+1} = u_n + \rho \, \mathcal{G}_n, \tag{7}$$

 \mathcal{G}_n : Direction de descente $(D_{u_n}E.\mathcal{G}_n<0)$

- ρ : Pas de descente.
- Méthode de gradient de Sobolev $\Longrightarrow \mathcal{G}_n = -\nabla E(u_n)$.

• Méthode de minimisation directe de l'énergie :

$$u_{n+1} = u_n + \rho \, \mathcal{G}_n, \tag{7}$$

 \mathcal{G}_n : Direction de descente $(D_{u_n}E.\mathcal{G}_n<0)$

 ρ : Pas de descente.

- Méthode de gradient de Sobolev $\Longrightarrow \mathcal{G}_n = -\nabla E(u_n)$.
- Plusieurs manières de définir ce gradient, selon l'espace de Hilbert dans lequel on travaille et le produit scalaire que l'on considère.

• Méthode de minimisation directe de l'énergie :

$$u_{n+1} = u_n + \rho \, \mathcal{G}_n, \tag{7}$$

 \mathcal{G}_n : Direction de descente $(D_{u_n}E.\mathcal{G}_n<0)$

 ρ : Pas de descente.

- Méthode de gradient de Sobolev $\Longrightarrow \mathcal{G}_n = -\nabla E(u_n)$.
- Plusieurs manières de définir ce gradient, selon l'espace de Hilbert dans lequel on travaille et le produit scalaire que l'on considère.
- ullet I. Danaila et P.Kazemi \Longrightarrow nouveau produit scalaire sur $H^1(\mathcal{D},\mathbb{C})$:

$$\langle u, v \rangle_{H_A} = \int_{\mathcal{D}} uv + \underbrace{(\nabla u + i\Omega A^T u)}_{\nabla_{H_A} u} \cdot (\nabla v + i\Omega A^T v).$$

• Méthode de minimisation directe de l'énergie :

$$u_{n+1} = u_n + \rho \, \mathcal{G}_n, \tag{7}$$

 \mathcal{G}_n : Direction de descente $(D_{u_n}E.\mathcal{G}_n<0)$

 ρ : Pas de descente.

- Méthode de gradient de Sobolev $\Longrightarrow \mathcal{G}_n = -\nabla E(u_n)$.
- Plusieurs manières de définir ce gradient, selon l'espace de Hilbert dans lequel on travaille et le produit scalaire que l'on considère.
- I. Danaila et P.Kazemi \Longrightarrow nouveau produit scalaire sur $H^1(\mathcal{D}, \mathbb{C})$:

$$\langle u, v \rangle_{H_A} = \int_{\mathcal{D}} uv + \underbrace{(\nabla u + i\Omega A^T u)}_{\nabla_{H_A} u} \cdot (\nabla v + i\Omega A^T v).$$

Possibilité d'adaptation du pas de temps ρ.

• Méthode de minimisation directe de l'énergie :

$$u_{n+1} = u_n + \rho \, \mathcal{G}_n, \tag{7}$$

 \mathcal{G}_n : Direction de descente $(D_{u_n}E.\mathcal{G}_n<0)$

 ρ : Pas de descente.

- Méthode de gradient de Sobolev $\Longrightarrow \mathcal{G}_n = -\nabla E(u_n)$.
- Plusieurs manières de définir ce gradient, selon l'espace de Hilbert dans lequel on travaille et le produit scalaire que l'on considère.
- ullet I. Danaila et P.Kazemi \Longrightarrow nouveau produit scalaire sur $H^1(\mathcal{D},\mathbb{C})$:

$$\langle u, v \rangle_{H_A} = \int_{\mathcal{D}} uv + \underbrace{(\nabla u + i\Omega A^T u)}_{\nabla_{H_A} u} \cdot (\nabla v + i\Omega A^T v).$$

- Possibilité d'adaptation du pas de temps ρ .
- Autre produit scalaire possible :

$$\langle u, v \rangle_{H_{\lambda}} = \langle u, v \rangle_{L^2} + \lambda \langle u, v \rangle_{H^1}.$$

Adaptation de maillage

Figure: Solution renvoyée par gradient de Sobolev (à gauche), Maillage adapté (à droite)

Utilisation de Ipopt

- Optimiseur développé par Andreas Wächter at Carl Laird.
- Utilisation d'une méthode de points milieux (article de J. Nocedal et Waltz (2008) et thèse de Wächter (January 2002)).
- Sous FreeFem++, disponible dans la bibliothèque ff-Ipopt.

Utilisation de Ipopt

- Optimiseur développé par Andreas Wächter at Carl Laird.
- Utilisation d'une méthode de points milieux (article de J. Nocedal et Waltz (2008) et thèse de Wächter (January 2002)).
- Sous FreeFem++, disponible dans la bibliothèque ff-lpopt.

Il a été conçu pour résoudre des problèmes de minimisation sous contrainte de la forme :

trouver
$$x_0 = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}}(f(x))$$
 (8)

tel que
$$\begin{cases} \forall i \leq n, \ x_i^{lb} \leq x_i \leq x_i^{ub} \text{ (bornes simples)} \\ \forall i \leq m, \ c_i^{lb} \leq c(x_i) \leq c_i^{ub} \text{ (fonctions de contraintes)} \end{cases}$$
(9)

- Arguments d'entrée :
 - La fonctionnelle à minimiser, son gradient et sa matrice hessienne.
 - La fonctionnelle définissant la contrainte, sa matrice Jacobienne et les bornes supérieures et inférieures.
 - Une tolérance d'erreur pour approcher la solution.
- F.Hecht a écrit un programme sous FreeFem++ qui utilise Ipopt. On approche de plus en plus précisément la solution en diminuant progressivement la tolérance demandée, et on raffine le maillage à chaque fois qu'on atteint un nouveau seuil de tolérance.

Outline

- Energie de Gross-Pitaevskii (GP) et equation de GP stationnaire
- 2 Différentes méthodes
 - La méthode de gradient de Sobolev (GS)
 - Adaptation de maillage
 - Utilisation de Ipopt
- Cas tests de comparaison
- 4 Construction d'approximations de départ
 - Ipopt axisymétrique sans vortex ($\Omega = 0$)
 - Ipopt axisymétrique avec vortex $(\Omega \neq 0)$
- Quelques résultats en 3D

Potentiel harmonique avec $a_x=a_y=1$, $C_\Omega=0.4$ et $C_q=500$.

Figure: Profil de densité de la solution initiale à gauche et finale à droite.

Comparaison pour un potentiel harmonique

Méthode	Tol	Err	CPU	E	$E_{Ip} - E_{G_A}$
Grad de Sob	1e-9	0.1	122.08s	8.36886	
Ipopt	0.001	0.1	74.51s	8.36249	-0.00548127
	1e-09	0.02	127.04s	8.36134	-0.00663453
	1e-13	0.005	180.29s	8.36092	-0.00705049

Potentiel quartique avec avec $a_x=a_y=1$ et $a_4=0.5$, $C_\Omega=2$ et $C_q=500$.

Figure: Approximation initiale (à gauche), Solution renvoyée par gradient de Sobolev (au centre), Solution renvoyée par Ipopt (à droite)

Comparaison pour un potentiel quartique+quadratique

Méthode	Tol	Err	CPU	E	$E_{Ip} - E_{G_A}$
Grad de Sob	1e-6	0.1	30.52s	11.8767	
Ipopt	0.001	0.1	14.11s	11.9505	0.0737989
	1e-05	0.1	76.71s	11.5873	-0.289404
	1e-12	0.01	2499.95s	11.0525	-0.824204

Outline

- Energie de Gross-Pitaevskii (GP) et equation de GP stationnaire
- Différentes méthodes
 - La méthode de gradient de Sobolev (GS)
 - Adaptation de maillage
 - Utilisation de Ipopt
- Cas tests de comparaison
- Construction d'approximations de départ
 - Ipopt axisymétrique sans vortex ($\Omega = 0$)
 - Ipopt axisymétrique avec vortex $(\Omega \neq 0)$
- Gont Quelques résultats en 3D

Ipopt axisymétrique sans vortex ($\Omega = 0$)

Plutôt que de faire une approximation de Thomas-Fermi pour la solution approchée initiale, une idée est de trouver une solution axisymétrique du problème avec Ipopt ($\frac{\partial u}{\partial \theta} = 0$). La fonctionelle devient :

$$E(u) = \int_0^{R_{max}} 2\pi \left[\frac{1}{2} \left| \frac{\partial u}{\partial r} \right|^2 + C_{trap} |u|^2 + \frac{1}{2} C_g |u|^4 \right] r dr,$$
 (10)

La contrainte devient :

$$C(u) = \int_0^{R_{max}} 2\pi |u|^2 r dr = 1.$$
 (11)

Condition initiale \ Potentiel	Harmonique	Quartique
Thomas-Fermi	E = 8.58168	E = 18.129
Ipopt axisymétrique	E = 8.53115	E = 17.9123

Figure: Comparaison de Thomas-Fermi ▲ et de Ipopt ■ pour un potentiel harmonique (à gauche) et quartique+quadratique (à droite).

Ipopt axisymétrique avec vortex $(\Omega \neq 0)$

- Cas test avec un potentiel harmonique et $a_x=a_y=1$, $C_\Omega=0.4$ et $C_g=500$.
- m^{ieme} mode de Fourier de la solution selon la variable polaire θ .

$$u(r,\theta) = u(r)e^{im\theta}, \tag{12}$$

où m est un entier (m = 1 pour un vortex simple).

• On obtient alors en posant :

$$C_{eff} = C_{trap} + (\frac{m}{2r})^2 - \Omega m, \tag{13}$$

$$E(u) = \int_0^{R_{max}} 2\pi \left[\frac{1}{2} \left| \frac{\partial u}{\partial r} \right|^2 + C_{eff} |u|^2 + \frac{1}{2} C_g |u|^4 \right] r dr, \qquad (14)$$

	Thomas-Fermi	Ipopt m = 1	Ipopt m = 2
Energie	8.47195	8.31533	8.32811

Figure: Comparaison de Thomas-Fermi \blacktriangle et de lpopt avec m=1 \blacksquare (à gauche), et de lpopt avec m=2 \bullet (à droite) pour une solution axisymétrique avec vortex central.

• Utilisation possible pour une décomposition en modes de Fourier de la solution selon la variable θ

Outline

- Energie de Gross-Pitaevskii (GP) et equation de GP stationnaire
- 2 Différentes méthodes
 - La méthode de gradient de Sobolev (GS)
 - Adaptation de maillage
 - Utilisation de Ipopt
- Cas tests de comparaison
- 4 Construction d'approximations de départ
 - Ipopt axisymétrique sans vortex ($\Omega = 0$)
 - Ipopt axisymétrique avec vortex $(\Omega \neq 0)$
- Quelques résultats en 3D

Méthode de Gradient de Sobolev en 3D.

Test avec un potentiel harmonique $a_x=a_y=a_z=1$, $C_g=2500$, et $\Omega=0.5$.

Figure: Condition initiale.

On converge en 1078 itérations et 36714.4s avec une erreur relative finale de 1e-7 et 41080 segments dans le maillage.

Figure: Solution finale.

25 / 40

lpopt en 3D.

Test avec un potentiel quartique-quadratique avec $a_x=a_y=-0.2,\ a_z=0.0204082,\ a_4=3.75,\ C_g=1250,\ {\rm et}\ \Omega=0.5.$ On converge en 42169.8 s pour une tolérance finale de 1e-9 et 131975 segments dans le maillage.

Figure: Condition initiale à gauche et solution finale à droite.

Merci pour votre attention.