Approximate \mathbb{F}_2 -Sketching of Valuation Functions

GRIGORY YAROSLAVTSEV
SAMSON ZHOU

F₂-Sketching

Input $x \in \{0,1\}^n$

Parity = Linear function over GF_2 : $\bigoplus_{i \in S} x_i$

Deterministic linear sketch: set of k parities:

$$\ell(x) = \bigoplus_{i_1 \in S_1} x_{i_1}; \qquad \bigoplus_{i_2 \in S_2} x_{i_2}; \qquad \dots; \qquad \bigoplus_{i_k \in S_k} x_{i_k}$$

E.g. $x_4 \bigoplus x_2 \bigoplus x_{42}; \qquad x_{239} \bigoplus x_{30}; \qquad x_{566}; \dots$

Randomized linear sketch: distribution over k parities (random $S_1, S_2, ..., S_k$):

$$\ell(x) = \bigoplus_{i_1 \in S_1} x_{i_1}; \bigoplus_{i_2 \in S_2} x_{i_2}; \dots; \bigoplus_{i_k \in S_k} x_{i_k}$$

Linear sketching over \mathbb{F}_2

Given $f(x): \{0,1\}^n \to \{0,1\}$

Question:

Can one recover f(x) from a small ($k \ll n$) linear sketch over \mathbb{F}_2 ?

Allow randomized computation (99% success)

Probability over choice of random sets

Sets are known at recovery time

Recovery is deterministic (w.l.o.g)

Application: Distributed Computing

Distributed computation among M machines:

$$x = (x_1, x_2, ..., x_M)$$
 (more generally $x = \bigoplus_{i=1}^M x_i$)

M machines can compute sketches locally:

$$\ell(x_1), \dots, \ell(x_M)$$

Send them to the coordinator who computes:

$$\ell_i(x) = \ell_i(x_1) \oplus \cdots \oplus \ell_i(x_M)$$
 (coordinate-wise XORs)

Coordinator computes f(x) with kM communication

Application: Streaming

x generated through a sequence of updates Updates i_1, \dots, i_m : update i_t flips bit at position i_t

 $\ell(x)$ allows to recover f(x) with k bits of space

Puzzle: Open Problem 78 on Sublinear.info

Conjecture: (Almost) shortest message is a randomized \mathbb{F}_2 -sketch

https://sublinear.info/index.php?title=Open Problems:78

Deterministic vs. Randomized

Fact: f has a deterministic sketch if and only if

$$f = g(\bigoplus_{i_1 \in S_1} x_{i_1}; \bigoplus_{i_2 \in S_2} x_{i_2}; \dots; \bigoplus_{i_k \in S_k} x_{i_k})$$

Equivalent to "f has Fourier dimension k"

Randomization can help:

OR: $f(x) = x_1 \vee \cdots \vee x_n$

Has "Fourier dimension" = n

Pick $t = \log 1/\delta$ random sets S_1, \dots, S_t

If there is j such that $\bigoplus_{i \in S_i} x_i = 1$ output 1, otherwise output 0

Error probability δ

Approximate \mathbb{F}_2 -Sketching

Exact sketching complexity of many functions studied by [Kannan, Mossel, Sanyal, Yaroslavtsev'17].

Recursive majority functions, Fourier sparse functions, etc.

$$f(x_1, ..., x_n): \{0,1\}^n \to \mathbb{R}$$

Normalize: $||f||_2$

Question:

Can one compute $f' : \mathbb{E}[(f(x) - f'(x))^2 \le \epsilon]$ from a small $(k \ll n)$ linear sketch over \mathbb{F}_2 ?

Our Results

Additive $(\sum_{i=1}^{n} w_i x_i)$:

• $\Theta\left(\min\left(\frac{||w||_1^2}{\epsilon},n\right)\right)$ (optimal via Index/Gap Hamming)

Budget-additive (min(b, $\sum_{i=1}^{n} w_i x_i$)):

•
$$\Theta\left(\min\left(\frac{||w||_1^2}{\epsilon}, n\right)\right)$$

Coverage:

• Optimal $O\left(\frac{1}{\epsilon}\right)$ (via L_1 -Sampling)

Matroid rank (various results depending on rank r)

 α -Lipschitz submodular functions:

- $\Omega(n)$ communication lower bound for $\alpha = \Omega(1/n)$
- Uses a large family of matroids from [Balcan, Harvey'10]

Technical Theorems

Any $f: \{0,1\}^n \to \mathbb{R}$ has a randomized linear sketch of size $O\left(\frac{\|\hat{f}\|_1^2}{\epsilon}\right)$.

 (θ, m) -LTF have randomized linear sketches of size $O\left(\frac{\theta}{m}\log\frac{\theta}{m}\right)$.

 $\text{HAM}_{\leq d}(\bigvee_{i\in S_1}x_i,\bigvee_{i\in S_2}x_i,\dots)$ has a randomized linear sketch of size $O(d^2\log d)$.

Linear Threshold Functions

 $f: \{0,1\}^n \to \{0,1\}$ is a linear threshold function (LTF) if there exist constants $w_1, w_2, ..., w_n, \theta$ such that f(x) = 1 if $\sum_{i=1}^n w_i x_i \ge \theta$ and f(x) = 0 otherwise.

```
f: \{0,1\}^n \to \{0,1\} is a (\theta,m)-LTF if f is monotone and for all x, m \le |\sum_{i=1}^n w_i x_i - \theta|.
```

- Randomized linear sketches of size $O\left(\frac{\theta}{m}\log n\right)$ [Liu, Zhang'13].
- Question [Montanaro, Osborne'09]: Does there exist a protocol for $f(x \oplus y)$ with communication complexity $O\left(\frac{\theta}{m}\log\frac{\theta}{m}\right)$?

Sketching (θ, m) -LTFs

 $\sum_{i=1}^{n} w_i x_i ? \theta$ and $m \leq |\sum_{i=1}^{n} w_i x_i - \theta|$

Observation 1: Any $w_i \le \frac{m}{2}$ can be set to 0.

Observation 2: Support of $\{x \mid f(x) = 0\}$ is small $\sim n^{\frac{2\theta}{m}}$

Theorem [Montanaro, Osbourne'09, KMSY'18]: If $\Pr[f(x) = 0] \le \zeta$, then there exists a sketch of size $O(\log 2^{n+1} \zeta)$.

Already enough to get sketch of size $O\left(\frac{\theta}{m}\log n\right)$

Sketching (θ, m) -LTFs

Observation 3: Any w_i can be rounded down to $w_i' = \frac{m}{2}(1+\xi)^k$.

For f(x) = 0, $-m \ge \sum_{i=1}^n w_i x_i - \theta \ge \sum_{i=1}^n w_i' x_i - \theta$, so a margin of m remains.

For
$$f(x) = 1$$
, $m + \theta \le \sum_{i=1}^{n} w_i x_i \le \sum_{i=1}^{n} (1 + \xi) w_i' x_i$, so $\sum_{i=1}^{n} w_i' x_i \ge (1 - \xi)(m + \theta) \ge \theta + m - 2\xi\theta$,

since $\theta \ge m$ and a margin of $\frac{4}{5}m$ remains when setting $\xi = \frac{\theta}{10m}$.

Separation Sketch

There is a randomized linear sketch with size O(1) for the function g(x) = 1 if $||x||_0 \ge 2d$ and g(x) = 0 if $||x||_0 \le d$ where $x \in \{0,1\}^n$ and g can answer arbitrarily if one of the above cases doesn't hold. [HuangShiZhangZhu'06]

Recall: at most $\frac{2\theta}{m}$ nonzero coordinates when f(x) = 0.

Use above sketch to catch all instances with more than $\frac{2\theta}{m}$ nonzero coordinates.

Sparse recovery when fewer than $\frac{2\theta}{m}$ nonzero coordinates.

Sparse "Recovery"

Recall: all weights $\frac{m}{2}(1+\xi)^k$, $k=O\left(\frac{\theta}{m}\log\frac{\theta}{m}\right)$, interested in $\frac{2\theta}{m}$ nonzeros.

Use
$$O\left(\frac{\theta}{m}\log\frac{\theta}{m}\right)$$
 levels and $O\left(\left(\frac{\theta}{m}\right)^2\right)$ buckets to avoid hash collision.

Consider each entry as a separate variable, reduction to

$$O\left(\left(\frac{\theta}{m}\right)^3\log\frac{\theta}{m}\right)$$
 variables.

Sketching
$$(\theta, O(m))$$
-LTF on $O\left(\left(\frac{\theta}{m}\right)^3\log\frac{\theta}{m}\right)$ variables, using $O\left(\frac{\theta}{m}\log\frac{\theta}{m}\right)$ space.

Technical Theorems

Any $f: \{0,1\}^n \to \mathbb{R}$ has a randomized linear sketch of size $O\left(\frac{\|\hat{f}\|_1^2}{\epsilon}\right)$.

 (θ, m) -LTF have randomized linear sketches of size $O\left(\frac{\theta}{m}\log\frac{\theta}{m}\right)$.

 $\text{HAM}_{\leq d}(\bigvee_{i\in S_1}x_i,\bigvee_{i\in S_2}x_i,\dots)$ has a randomized linear sketch of size $O(d^2\log d)$.

Our Results

Class	Error	Distribution	Complexity	Result
Additive/Budget additive	ϵ	any	$\Theta\left(\frac{\ w\ _1^2}{\epsilon}\right)$	Theorem A.7, D.1
$\min(b, \sum_{i=1}^{n} w_i x_i)$				Corollary A.3, A.6
$\min(c\sqrt{n}, \frac{2c}{\sqrt{n}}\sum_{i=1}^n x_i)$	constant	uniform	$\Omega(n)$	Theorem D.1
Coverage	ϵ	any	$O\left(\frac{1}{\epsilon}\right)$	Corollary A.4
Matroid Rank 2	exact	any	$\Theta(1)$	Theorem 3.1
Graphic Matroids Rank r	exact	any	$O(r^2 \log r)$	Theorem 3.5
Matroid Rank r	exact	any	$\Omega(r)$	Corollary 3.24
Matroid Rank r	exact	uniform	$O((r\log r + c)^{r+1})$	Corollary E.6
Matroid Rank	$1/\sqrt{n}$	uniform	$\Theta(1)$	Corollary E.8
$\frac{c}{n}$ -Lipschitz Submodular	constant	any	$\Theta(n)$	Theorem 3.17

Table 1: Linear sketching complexity of classes of valuation functions

Frequently Asked Questions

- **Q:** Why \mathbb{F}_2 updates instead of ± 1 ? Often doesn't help if you know the sign
- Q: How to store random sets? Derandomize using Nisan's PRG – extra $O(\log n)$ factor in space
- Q: Specific applications? Essentially all dynamic graph streaming algorithms can be based on L_0 -sampling L_0 -sampling can be done optimally using \mathbb{F}_2 -sketching [Kapralov et al. FOCS'17]

Thanks!

