Module 5. Bivariate analysis: qualitative - quantitative

Data Science & Al

Sabine De Vreese Stijn Lievens Lieven Smits Bert Van Vreckem 2021–2022

Contents

Data visualization

Two-sample t-test

Paired samples

Effect size

Learning goals

- Apply the t-test for two samples
- Calculate effect size using Cohen's d
- Visualization

Bivariate analysis: overview

Independent	Dependent	Test/Metric
Qualitative	Qualitative	χ ² -test Cramér's V
Qualitative	Quantitative	two-sample <i>t</i> -test Cohen's <i>d</i>
Quantitative	Quantitative	— Regression, correlation

Example research questions

- Are male penguins larger than females?
- Do men get a higher salary than women?
- Does a new vaccine protect against a disease?
- Does "retrieval practice" improve learning outcomes (i.e. student grades)?
- ..

In these examples, wat is the independent/dependent variable?

Data visualization

HO GENT

Data visualization

- Chart types for quantitative data
- Grouped by qualitative variable

Data visualization

- Chart types for quantitative data
- Grouped by qualitative variable

Suitable chart types:

- Grouped boxplot
- Grouped density plot
- Bar chart with error bars
- ...

Grouped boxplot

(source code: see demo-2sample-t.ipynb)

Grouped violin plot

Grouped density plot

Beware! Bar chart of group means

Beware! Bar chart of group means

Bar chart with error bars

- Always add error bars!
- Only makes sense for normally distributed data
- Example: 1 standard deviation:

Two-sample t-test

Comparing two samples

Is the sample mean of two samples significantly different?

- Independent samples
- Paired samples

In a clinical study, the aim is to determine whether a new drug has a delayed (i.e. higher) reaction speed as a side effect

- Control group: 6 participants receive placebo
- Intervention group: 6 participants receive medicine

In a clinical study, the aim is to determine whether a new drug has a delayed (i.e. higher) reaction speed as a side effect

- Control group: 6 participants receive placebo
- Intervention group: 6 participants receive medicine

Next, the reaction speed is measured:

- Control group: 91, 87, 99, 77, 88, 91 (\overline{x} = 88.83)
- Intervention group: 101, 110, 103, 93, 99, 104 (\overline{y} = 101.67)

Are there significant differences between the intervention and control group?

Testing procedure

- 1. Hypotheses:
 - $O H_0: \mu_1 \mu_2 = 0$
 - $O H_1: \mu_1 \mu_2 < 0$
- 2. Significance level: $\alpha = 0.05$
- 3. Test statistic:
 - $\bigcirc \ \overline{x} \overline{y} = -12.833$
 - O \bar{x} = estimation for μ_1 (control group)
 - O \overline{y} = estimation for μ_2 (intervention group)
- 4. Calculate p

Calculation in Python

Result:

```
Ttest_indResult(statistic=-3.445612673536487, pvalue=0.003391230079206901)
```


Testing procedure (continued)

5. $p \approx 0.00339 < \alpha = 0.05$. We reject the null hypothesis. In this sample, there is reason to assume that the drug does indeed have an impact on reaction speed.

A study examined whether cars that run on petrol with additives have a lower consumption.

For 10 cars, the consumption was measured (expressed in miles per gallon) for both fuel types:

										10
Regular petrol	16	20	21	22	23	22	27	25	27	28
With additives	19	22	24	24	25	25	25	26	28	32

Testing procedure

- 1. Hypotheses:
 - $OH_0: \overline{x-y} = 0$
 - $OH_1: \overline{x-y} > 0$
- 2. Significance level: $\alpha = 0.05$
- 3. Test statistic:
 - $\bigcirc \overline{x-y}$
 - O $x = \text{miles per gallon with additives } (\overline{x} = 25.1)$
 - O $y = miles per gallon regular petrol (<math>\overline{y} = 23.1$)
- 4. Calculate p

Calculation in Python

```
regular = np.array([16, 20, 21, 22, 23, 22, 27, 25, 27, 28])
additives = np.array([19, 22, 24, 24, 25, 25, 26, 26, 28, 32])
stats.ttest_rel(regular, additives, alternative='less')
```

Result:

```
Ttest_relResult(statistic=-4.47213595499958, pvalue=0.00077494295585091)
```


5. $p \approx 0.0007749 < \alpha = 0.05$. We reject the null hypothesis. In this sample, there is reason to assume that the fuel with additives leads to lower fuel consumption.

Effect size

Effect size

Effect size

The effect size is a metric which expresses how great the difference between two groups is

- Control group vs. intervention group
- Can be used in addition to hypothesis test
- Often used in educational sciences
- There are several definitions, here: Cohen's d

Cohen's d

$$d = \frac{\overline{X_1} - \overline{X_2}}{S}$$

with $\overline{x_1}$, $\overline{x_2}$ the sample means and s a standard deviation of both groups combined:

$$s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

with n_1 , n_2 the sample sizes, s_1 , s_2 the standard deviation of both groups

Interpretation Cohen's d

d	Effect Size	
0.01	Very small	
0.2	Small	
0.5	Average	
8.0	Large	
1.2	Very large	
2.0	Huge	

In educational sciences (John Hattie):

- 0,4 = tipping point for desired effects
- effect size d = 1: process material from ly in 6m!

E.g. https://visible-learning.org/backup-hattie-ranking-256-effects-2017/

Typical approach research in education

- Research question: Is X a good learning strategy, in other words, does this have a positive effect on final results?
- Control group uses "traditional" approach
- Intervention group uses X
- Followed by an evaluation moment
- Determine scores, calculate d

