Nash Equilibria in Concurrent Priced Games

Miroslav Klimoš¹, Kim G. Larsen², Filip Štefaňák¹, Jeppe Thaarup²

¹Masaryk University ²Aalborg University

LATA March 8, 2012

Battle of the Sexes

Battle of the Sexes

	\mathbf{F}	O
\mathbf{F}	(1,2)	(4,4)
O	(6,6)	(2,1)

Game Characterization

- games on finite graphs with reachability objectives
- turn-based vs. concurrent
 - players take turns vs. take actions simultaneously
 - turn-based can be modelled by concurrent games
- zero-sum vs. non-zero-sum
 - opposite vs. independent objectives
- qualitative vs. quantitative
 - binary objectives vs. payoffs or costs
- object of study
 - who has a winning strategy vs. (pure) Nash equilibria

Overview

Priced Concurrent Game Structures Nash Equilibria

Algorithm for finding Nash equilibria

3 Complexity results

Concurrent Game Structure

Concurrent Game Structure

- K players, set of moves \mathbb{M}
- transition function $\delta: Q \times \mathbb{M}^K \to Q$
- ullet δ total and deterministic for enabled moves
- a computation is a finite or infinite word over \mathbb{M}^K

Priced Concurrent Game Structure

Priced Concurrent Game Structure (PCGS)

- *K*-tuples of nonnegative *prices* on transitions
- goal states (independent for each player)

Preliminaries

Strategy

- $(\mathbb{M}^K)^* \to \mathbb{M}$
- history-dependent strategies, observing history of moves

Strategy profile

• a strategy profile is a K-tuple of strategies (one for each player)

Cost

- $(\mathbb{M}^K)^* \times \{1 \dots K\} \to \mathbb{N} \cup \infty$
- cumulative price of transitions until the first goal state of the player
- ullet if there is no goal state, the cost is ∞

Example

Strategy examples:

$$f_O(\Lambda) = \begin{cases} O & \text{if } \Lambda = \epsilon \\ - & \text{otherwise} \end{cases} \qquad g_P(\Lambda) = \begin{cases} P & \text{if } \Lambda = (F, -) \\ - & \text{otherwise} \end{cases}$$

$$f_F(\Lambda) = \begin{cases} F & \text{if } \Lambda = \epsilon \\ - & \text{otherwise} \end{cases} \qquad g_U(\Lambda) = \begin{cases} - & \text{always} \end{cases}$$

Example

Strategy examples:

$$f_O(\Lambda) = \begin{cases} O & \text{if } \Lambda = \epsilon \\ - & \text{otherwise} \end{cases} \qquad g_P(\Lambda) = \begin{cases} P & \text{if } \Lambda = (F, -) \\ - & \text{otherwise} \end{cases}$$

$$f_F(\Lambda) = \begin{cases} F & \text{if } \Lambda = \epsilon \\ - & \text{otherwise} \end{cases} \qquad g_U(\Lambda) = \begin{cases} - & \text{always} \end{cases}$$

the outcome of (f_O,g_P) is (O,-)(-,-) with costs (2,1)

Example

Strategy examples:

$$\begin{split} f_O(\Lambda) &= \begin{cases} O & \text{if } \Lambda = \epsilon \\ - & \text{otherwise} \end{cases} & g_P(\Lambda) = \begin{cases} P & \text{if } \Lambda = (F, -) \\ - & \text{otherwise} \end{cases} \\ f_F(\Lambda) &= \begin{cases} F & \text{if } \Lambda = \epsilon \\ - & \text{otherwise} \end{cases} & g_U(\Lambda) = \begin{cases} - & \text{always} \end{cases} \end{split}$$

the outcome of (f_O, g_P) is (O, -)(-, -) with costs **(2,1)** the outcome of (f_F, g_P) is (F, -)(-, P) with costs **(7,10)**

Nash Equilibrium

- a stable strategy profile: no player can lower her cost by changing her strategy
- not necessarily optimal
- may not exist, or there can be more

- bounds vector $\mathbb{B} \in (\mathbb{N} \cup \infty)^K$
- ullet the decision problem: is there a Nash equilibrium satisfying bounds $\mathbb B?$
- ullet main problem: find all Nash equilibria satisfying bounds ${\mathbb B}$

Strategy examples:

$$f_O(\Lambda) = \begin{cases} O & \text{if } \Lambda = \epsilon \\ - & \text{otherwise} \end{cases} \qquad g_P(\Lambda) = \begin{cases} P & \text{if } \Lambda = (F, -) \\ - & \text{otherwise} \end{cases}$$

$$f_F(\Lambda) = \begin{cases} F & \text{if } \Lambda = \epsilon \\ - & \text{otherwise} \end{cases} \qquad g_U(\Lambda) = \begin{cases} - & \text{always} \end{cases}$$

Profile (f_O, g_P) is a Nash equilibrium as no player can reduce their cost. If player 1 uses f_F he gets a lower cost on the first step, but suffers a penalty in the second.

Strategy examples:

$$\begin{split} f_O(\Lambda) &= \begin{cases} O & \text{if } \Lambda = \epsilon \\ - & \text{otherwise} \end{cases} & g_P(\Lambda) = \begin{cases} P & \text{if } \Lambda = (F, -) \\ - & \text{otherwise} \end{cases} \\ f_F(\Lambda) &= \begin{cases} F & \text{if } \Lambda = \epsilon \\ - & \text{otherwise} \end{cases} & g_U(\Lambda) = \begin{cases} - & \text{always} \end{cases} \end{split}$$

Profile (f_O, g_P) is a Nash equilibrium as no player can reduce their cost. If player 1 uses f_F he gets a lower cost on the first step, but suffers a penalty in the second.

Strategy examples:

$$\begin{split} f_O(\Lambda) &= \begin{cases} O & \text{if } \Lambda = \epsilon \\ - & \text{otherwise} \end{cases} & g_P(\Lambda) = \begin{cases} P & \text{if } \Lambda = (F, -) \\ - & \text{otherwise} \end{cases} \\ f_F(\Lambda) &= \begin{cases} F & \text{if } \Lambda = \epsilon \\ - & \text{otherwise} \end{cases} & g_U(\Lambda) = \begin{cases} - & \text{always} \end{cases} \end{split}$$

Profile (f_O, g_P) is a Nash equilibrium as no player can reduce their cost. If player 1 uses f_F he gets a lower cost on the first step, but suffers a penalty in the second.

Profile (f_O, g_U) is not a Nash equilibrium as player 1 can lower his cost by switching to f_F without penalty.

Strategy examples:

$$f_O(\Lambda) = \begin{cases} O & \text{if } \Lambda = \epsilon \\ - & \text{otherwise} \end{cases} \qquad g_P(\Lambda) = \begin{cases} P & \text{if } \Lambda = (F, -) \\ - & \text{otherwise} \end{cases}$$

$$f_F(\Lambda) = \begin{cases} F & \text{if } \Lambda = \epsilon \\ - & \text{otherwise} \end{cases} \qquad g_U(\Lambda) = \begin{cases} - & \text{always} \end{cases}$$

Profile (f_O, g_P) is a Nash equilibrium as no player can reduce their cost. If player 1 uses f_F he gets a lower cost on the first step, but suffers a penalty in the second.

Profile (f_O, g_U) is not a Nash equilibrium as player 1 can lower his cost by switching to f_F without penalty.

Algorithm Overview

How to represent equilibria?

- strategies are infinite how to represent and characterize them?
- outcomes of all equilibria form an ω -regular set
- we represent those outcomes by a Büchi automaton

Outcomes are as good as strategies!

for each equilibrium outcome, we can find a strategy profile

Construction outline

- 1 we calculate temptation and punishment values for the game
- 2 we construct a Büchi automaton accepting outcomes of Nash equilibria

Temptation and Punishment

Why an outcome is not an equilibrium?

• a player betrays if she can do better - temptation

How to help players resist the temptation?

- strategies of other players try to make this payoff worse punishment
- the punishment is announced in advance and its role is prevention
- strategies can start punishing one step after the defecting step

Punishment - $\pi: Q \times \{1 \dots K\} \to \mathbb{N} \cup \infty$

Given a state and a defecting player, punishment π is the worst cost the remaining players can enforce for her.

Temptation - $\tau: Q \times \mathbb{M}^K \times \{1 \dots K\} \to \mathbb{N} \cup \infty$

Given a move vector from a state and a player, $temptation \tau$ for that player is the best cost she can achieve if she defects and chooses another move.

Punishment - $\pi: Q \times \{1 \dots K\} \to \mathbb{N} \cup \infty$

Given a state and a defecting player, punishment π is the worst cost the remaining players can enforce for her.

the maximum of temptations from this state

Temptation -
$$\tau: Q \times \mathbb{M}^K \times \{1 \dots K\} \to \mathbb{N} \cup \infty$$

Given a move vector from a state and a player, $temptation \tau$ for that player is the best cost she can achieve if she defects and chooses another move.

Punishment - $\pi: Q \times \{1 \dots K\} \to \mathbb{N} \cup \infty$

Given a state and a defecting player, punishment π is the worst cost the remaining players can enforce for her.

the maximum of temptations from this state

Temptation -
$$\tau: Q \times \mathbb{M}^K \times \{1 \dots K\} \to \mathbb{N} \cup \infty$$

Given a move vector from a state and a player, $temptation \tau$ for that player is the best cost she can achieve if she defects and chooses another move.

Punishment - $\pi: Q \times \{1 \dots K\} \to \mathbb{N} \cup \infty$

Given a state and a defecting player, punishment π is the worst cost the remaining players can enforce for her.

the maximum of temptations from this state

Temptation -
$$\tau: Q \times \mathbb{M}^K \times \{1 \dots K\} \to \mathbb{N} \cup \infty$$

Given a move vector from a state and a player, $temptation \tau$ for that player is the best cost she can achieve if she defects and chooses another move.

Punishment - $\pi: Q \times \{1 \dots K\} \to \mathbb{N} \cup \infty$

Given a state and a defecting player, punishment π is the worst cost the remaining players can enforce for her.

the maximum of temptations from this state

Temptation -
$$\tau: Q \times \mathbb{M}^K \times \{1 \dots K\} \to \mathbb{N} \cup \infty$$

Given a move vector from a state and a player, $temptation \tau$ for that player is the best cost she can achieve if she defects and chooses another move.

Punishment -
$$\pi: Q \times \{1 \dots K\} \to \mathbb{N} \cup \infty$$

Given a state and a defecting player, punishment π is the worst cost the remaining players can enforce for her.

the maximum of temptations from this state

Temptation -
$$\tau: Q \times \mathbb{M}^K \times \{1 \dots K\} \to \mathbb{N} \cup \infty$$

Given a move vector from a state and a player, $temptation \tau$ for that player is the best cost she can achieve if she defects and chooses another move.

Equilibrium Automaton

Local bounds construction

- with each state, we remember the remaining possible costs
- transitions reduce these costs with their costs and temptations

Büchi automaton

- accepting all equilibria outcomes
- number of states might be exponential

From equilibrium outcomes to strategy profiles

- strategies follow the outcome until someone betrays
- · if that happens everybody starts only punishing

Equilibrium Automaton Example

Complexity of the Decision Variant

Recall the decision problem:

• Is there a Nash equilibrium satisfying bounds?

We prove that the decision problem is NP-complete

- in NP: Guessing an accepting lasso of polynomial length
- NP-hardness: Reduction from the subset sum problem

turn-based PCGS without bounds

a Nash equilibrium always exists

NP-hardness

- Reduction from the subset sum problem.
- For input instance $(\{m_1...m_n\}, m)$ of the Subset sum problem, construct *two-player turn-based* game:

Lemma

There is a Nash Equilibrium satisfying the bounds (m, M-m) if and only if there is a solution to the subset sum problem. $(M=\sum m_i)$

NP-hardness

- Reduction from the subset sum problem.
- For input instance $(\{m_1...m_n\}, m)$ of the Subset sum problem, construct *two-player turn-based* game:

Lemma

There is a Nash Equilibrium satisfying the bounds (m, M-m) if and only if there is a solution to the subset sum problem. $(M=\sum m_i)$

- Player 1 In q_i , choose \in if $m_i \in S'$, otherwise choose \notin .
- Player 2 In q_{n+1} , choose Y if the accumulated costs so far are (m, M m), otherwise choose N.

Omitting Bounds

- we reduce the decision problem with bounds to the problem with no bounds
- for two-player PCGS and bounds (b_1, b_2) , construct new PCGS

- equilibria satisfying the bounds are preserved
- equilibria not satisfying the bounds are suppressed by added edges
- ullet no new added edge from q_0' to g is a part of an equilibrium outcome

Complexity overview

Complexity results for the problem of deciding an existence of Nash equilibrium:

- ullet PCGS and with/without bounds \in NP
- \bullet Subset sum \leq Two-player turn-based games with bounds \leq PCGS with bounds
- ullet Two-player PCGS with bounds \leq PCGS without bounds

	full PCGS	turn-based
with bounds	NP-complete	NP-complete
without bounds	NP-complete	Trivial

Conclusion

- Priced CGS with individual reachability objectives
 - Non-negative integer prices on transitions for each player
 - Cost for a player is accumulated sum of prices before reaching their goal state
- 2 Characterization of Nash Equilibria in PCGS
 - ullet Set of Nash equilibrium outcomes is ω -regular language
 - We can extract strategies for these outcomes
- 3 Complexity of the decision variant of the problem
 - NP-complete problem
- 4 Ideas for future work
 - Mixed (probabilistic) strategies
 - Partial observability
 - Negative costs