Tel: 91 399 45 49

9: 615 29 80 22 www.mathsinformatica.com

academia@mathsinformatica.com

TEMA 2.1. SUCESIONES

DEFINICIÓN. Una sucesión de números reales es una aplicación

$$f: \mathbf{N} \to \mathbf{R}$$

$$n \to f(n) = x_n$$

NOTACIÓN

 $(x_n)_{n=1}^{\infty}$ es una sucesión de números reales.

$$(x_n)_{n=1}^{\infty} = \{x_1, x_2, x_3, \dots, x_n \dots \}$$

Ejemplo:

a)
$$\left(\frac{1}{n}\right)_{n=1}^{\infty} = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \frac{1}{n+1} \dots\right\}$$

b)
$$(\sqrt[n]{2})_{n=1}^{\infty} = \{\sqrt{2}, \sqrt[3]{2}, \dots, \sqrt[n]{2}, \dots\}$$

c)
$$x_0 = 2$$

$$x_n = \frac{x_{n-1} + 2}{2x_{n-1}}$$
 $n \ge 1$ Se trata de una sucesión recurrente

DEFINICIÓN: SUCESIONES CONVERGENTES. Una sucesión de números reales $(x_n)_{n=1}^{\infty}$ se dice convergente a $L \in \mathbb{R}$ y se escribe $\lim_{n \to \infty} x_n = L \in \mathbb{R}$ si $\forall \varepsilon > 0$, $\exists n_0 / \text{si } n \ge n_0$ entonces $|x_n - L| < \varepsilon$

$$x_n \xrightarrow[n \to \infty]{} L$$

templo:
$$\left(\frac{1}{n}\right)^{\infty} \to 0$$

Tenemos que probar que $\forall \varepsilon > 0$, $\exists n_0 / \text{ si } n \ge n_0$ entonces $|x_n - x| < \varepsilon$

$$\exists n_0 \in N / \frac{1}{n_0} < \varepsilon$$

$$\forall n \ge n_0 \Rightarrow \frac{1}{n} \le \frac{1}{n_0} < \varepsilon \Rightarrow |x_n - 0| = \frac{1}{n} < \varepsilon \qquad \forall n \ge n_0$$

partitle $n \ge n_0$, enterous $\frac{1}{n} \le \frac{1}{n_0} < \mathcal{E} \Rightarrow |X_0 - 0| = \frac{1}{n} < \mathcal{E}$

PROPOSICIÓN. Si una sucesión $(x_n)_{n=1}^{\infty} \subset R$, tiene límite, éste es único.

PROPIEDADES:

- 1) Una sucesión $(x_n)_{n=1}^{\infty} \subset R$ se dice creciente si $x_n \le x_{n+1}$
- 2) Una sucesión $(x_n)_{n=1}^{\infty} \subset R$ se dice decreciente si $x_{n+1} \le x_n \ \forall n \ge 1$

Ejemplo: $(2^n)_{n=1}^{\infty}$ es creciente $2 < 2^2 < 2^3 < ...$

$$\left(\frac{1}{2^n}\right)_{n=1}^{\infty}$$
 es decreciente $\frac{1}{2} > \frac{1}{4} > \frac{1}{8} > \dots$

PROPOSICIÓN:

1) Una sucesión $(x_n)_{n=1}^{\infty} \subset \mathbf{R}$ creciente y acotada superiormente tiene límite y el valor es:

$$\lim_{n\to\infty} x_n = \sup\{x_n : n \ge 1\}$$
acotado. Superior
$$\lim_{n\to\infty} x_n = \sup\{x_n : n \ge 1\}$$

2) Si $(x_n)_{n=1}^{\infty} \subset \mathbf{R}$ decreciente y acotada inferiormente tiene límite y el valor es:

$$\lim_{n\to\infty}x_n=\inf\{x_n\;;\;n\geq 1\}$$
 el l'inte de la marión en igual al infino!

OPERACIONES CON SUCESIONES

Si
$$(x_n)_{n=1}^{\infty} \to x$$
 y $(y_n)_{n=1}^{\infty} \to y$ con $x, y \in \mathbf{R}$

a)
$$(x_n + y_n)_{n=1}^{\infty} \to x + y$$

b) $(\lambda x_n)_{n=1}^{\infty} \to \lambda x$
c) $(x_n y_n)_{n=1}^{\infty} \to xy$

b)
$$(\lambda x_n)_{n=1}^{\infty} \to \lambda x$$

c)
$$(x_n y_n)_{n=1}^{\infty} \rightarrow xy$$

d) Si
$$y_n \to y \neq 0$$
 entonces $\left(\frac{1}{y_n}\right)_{n=1}^{\infty} \to \frac{1}{y}$

c) Si
$$y_n \to y \neq 0$$
 entonces $\left(\frac{x_n}{y_n}\right)_{n=1}^{\infty} \to \frac{x}{y}$

Ejemplos:

a)
$$\left(\frac{2n}{n+1}\right)_{n=1}^{\infty} = \left(\frac{2}{1+\frac{1}{n}}\right)_{n=1}^{\infty} \to \left(\frac{2}{1+0}\right)^{\infty} = 2^{\infty} = \infty$$

b)
$$x_0 = 2 \text{ y } x_n = \frac{(x_{n-1})^2 + 2}{2x}$$
 $n \ge 1$

Si $\exists \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n-1} = l$ Tomamos límites:

$$l = \frac{l^2 + 2}{2l} \rightarrow 2l^2 = l^2 + 2$$
; $l^2 = 2$; $l = \sqrt{2}$

PROPOSICIÓN

1) Sea $(x_n)_{n=1}^{\infty}$ una sucesión convergente, entonces está acotada: $(\exists M > 0 \mid |x_n| \leq M \ \forall n \in N)$

2) Si
$$x_n \xrightarrow[n \to \infty]{} x$$
 entonces $|x_n| \to |x|$

Tel: 91 399 45 49 615 29 80 22

www.mathsinformatica.com academia@mathsinformatica.com

3) Si $(x_n)_{n=1}^{\infty}$ y $(y_n)_{n=1}^{\infty}$ succesiones convergentes / $x_n \le y_n \ \forall n \in N$; $(x_n \xrightarrow[n \to \infty]{} x \text{ y } y_n \to y)$ se tiene que $x \le y \ \forall n \in N$

4) Si $(x_n)_{n=1}^{\infty}$, $(y_n)_{n=1}^{\infty}$ y $(z_n)_{n=1}^{\infty}$ son tres sucesiones que cumplen que:

$$x_n \le y_n \le z_n \quad \forall n \in N$$

Si
$$x_n \to a$$
 y $z_n \to a$, entonces $\exists \lim_{x \to \infty} y_n = a$

CÁLCULO DE LÍMITES

1.
$$\lim_{n \to \infty} \frac{3n^3 + n + 7}{2n^3 + n^2 + 1} = \lim_{n \to \infty} \frac{3n^3}{2n^3} = \frac{3}{2}$$

2.
$$\lim_{n \to \infty} \sqrt{n+1} - \sqrt{n} = \lim_{n \to \infty} \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{(\sqrt{n+1})^2 - (\sqrt{n})^2}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0$$

REGLA: $\lim_{n\to\infty} f(n) = \lim_{x\to\infty} f(x)$ siendo f continua. Se puede usar la regla de L'Hôpital.

CRITERIO DEL SANDWICH

Sean $(a_n)_{n=1}^{\infty}, (b_n)_{n=1}^{\infty}, (c_n)_{n=1}^{\infty}$ tres sucesiones que cumplen: $(a_n) \le (b_n) \le (c_n)$ y

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L \text{, entonces: } \lim_{n\to\infty} b_n = L$$

CRITERIO DE STOLZ

Sea el límite: $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\infty}{\infty}$

se cumple: $\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}}$

Se suele emplear cuando a_n y/o b_n viene dada como suma infinita de términos.

EJERCICIOS EXAMEN

1. Parcial MMI Febrero 2012. Calcula el siguiente límite: $\lim_{n\to\infty} \frac{2^{n+1}+3^{n+1}}{2^n+3^n}$

2. Final MMI Junio 2012. Calcular el siguiente límite:
$$\lim_{n\to\infty} \left(\frac{3n+1}{3n}\right)^{2n}$$

3. Examen Septiembre 2011. Cálculo (Sistemas). Siendo b un número real calcula el siguiente $(7n-b+1)^{2n}$

límite:
$$\lim_{n\to\infty} \left(\frac{7n-b+1}{7n+11}\right)^{2n}$$

4. Examen Febrero 2011. Cálculo (Sistemas). Sea A un número real cualquiera. Calcula el valor

$$\lim_{n\to\infty} \left(\frac{3n+A+3}{3n+3}\right)^{3n}$$

5. Parcial MMI Febrero 2017. Se define el número real e como $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$. Calcula el

límite de
$$\left(\left(1+\frac{1}{n+3}\right)^n\right)_{n=1}^{\infty}$$

6. Parcial MMI Febrero 2013. Se considera la sucesión (x_n) definida por:

$$x_1 = \sqrt{3}, x_{n+1} = \sqrt{3 + x_n}$$
 para $n \ge 1$.

- a) Demuestra que (x_n) es monótona creciente y acotada superiormente.
- b) Calcula $\lim x_n$.
- **7. Parcial MMI Febrero 2015.** Definimos $x_1 = \sqrt{2}$ y $x_{n+1} = \sqrt{2 + x_n}$ $\forall n \in \mathbb{N}$. Prueba que $(x_n)_{n=1}^{\infty}$ es creciente y acotada. Calcula su límite.
- 8. Final MMI Junio 2011, Junio 2013, Febrero 2014 y Cálculo Enero 2021. Calcula el límite

$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} \right)$$

9. MMI Septiembre 2016, Septiembre 2017, Parcial Enero 2019, Cálculo Enero 2022. Calcula el

límite:
$$\lim_{n \to \infty} \frac{n-1}{(n^2+1)} + \frac{n-1}{(n^2+2)} + \dots + \frac{n-1}{(n^2+n)}$$

10. Final MMI Junio 2015. Calcula el límite $\lim_{n\to\infty} \left(\frac{1}{2^2-1} + \frac{1}{3^2-1} + \dots + \frac{1}{n^2-1}\right)$

Tel: 91 399 45 49 S: 615 29 80 22

www.mathsinformatica.com academia@mathsinformatica.com

11. Cálculo Julio **2021.** Comprueba que la sucesión $(a_n)_{n=1}^{\infty}$ definida por recurrencia por

$$\begin{cases} a_1 = 0 \\ a_{n+1} = \frac{1}{4 - a_n} \end{cases}$$

es convergente. Calcula su límite

12. Parcial MMI Enero 2018, Febrero 2016 y Extraordinaria Junio 19. Determina si la sucesión

$$a_{n+1} = a_n \frac{n}{n+7} \text{ con } a_1 = 7$$

13. Cálculo Extraordinaria Junio 2022. Estudiar la convergencia de la sucesión recurrente

definida por
$$a_{n+1} = \frac{a_n}{a_n + 1}$$
, con $a_1 = 2$.

En caso de que sea convergente, calcular el valor límite.

14. Final MMI Junio 2018. Sea a_n el número de instrucciones de un determinado algoritmo para su ejecución sobre n datos de entrada. Se sabe que dicho algoritmo actúa de la siguiente manera:

- 1) Con sólo un dato de entrada resuelve el problema usando una instrucción.
- 2) Con n datos de entrada una 4n instrucciones para reducir el problema a n-1 datos y se ejecuta sobre ellos el mismo algoritmo.

Se pide:

- a) Definir la sucesión recurrente $(a_n)_{n=1}^{\infty}$
- b) Estudiar la monotonía y acotación de la misma.
- c) Probar por inducción que $|a_n 2n^2| < 2n$ para todo n.
- d) Deducir que $\lim_{n\to\infty} \frac{a_n}{2n^2} = 1$