Introducción a la Lógica y la Computación — Estructuras de orden Práctico 5: Complementos, distributiva y álgebras de Boole.

1. Considere ahora el reticulado L_1 .

- a) Dé todos los complementos, si es que hay, de los siguientes elementos: a, b, d, 0.
- b) ¿Es L_1 un reticulado complementado?
- c) ¿Es L_1 un reticulado distributivo?
- 2. Considere los siguientes diagramas.

- a) Decidir si L_9 ó L_{10} se incrustan en L_{11} .
- b) ¿De cuántas maneras distintas puede incrustarse L_5 en L_{10} ?
- c) ¿Se incrusta N_5 en L_8 ? ¿Se incrusta M_3 en L_{10} ?
- d) Determine cuáles son isomorfos a algún D_n .
- e) Determine cuáles se incrustan en $\mathcal{P}(X)$ para algún conjunto X.
- f) Determine cuáles son reticulados distributivos.
- g) Determine cuáles admiten estructura de álgebra de Boole.
- 3. Sean (L, \vee, \wedge) y (L', \vee', \wedge') reticulados y $f: L \to L'$ invectiva tal que

$$f(x \lor y) = f(x) \lor' f(y)$$
 y $f(x \land y) = f(x) \land' f(y)$.

Probar que f es una incrustación de L en L'.

- 4. Dar el diagrama de Hasse de un reticulado no distributivo donde todo elemento tenga a lo sumo un complemento.
- 5. Sea S un reticulado.
 - a) Demuestre que si $x \leq y$, entonces para todo z en S, $x \vee (z \wedge y) \leq (x \vee z) \wedge y$.
 - b) Compruebe que si S es distributivo vale la igualdad.
- 6. Demostrar que M_3 y N_5 no son distributivos usando la propiedad cancelativa. Concluir la dirección (\Rightarrow) del Teorema M_3 - N_5 .
- 7. Demostrar que si un reticulado satisface la propiedad cancelativa, entonces es distributivo. (Ayuda: usar el Teorema M_3 - N_5).
- 8. Determine los átomos de los posets L_3 , L_8 y L_{11} .
- 9. Demuestre las siguientes propiedades de las álgebras de Boole.
 - $a) \neg (\neg x) = x;$
 - b) $\neg (x \land y) = \neg x \lor \neg y$.