

Data Driven Engineering I: Machine Learning for Dynamical Systems

Analysis of Static Datasets II: Dimensionality Reduction

Institute of Thermal Turbomachinery Prof. Dr.-Ing. Hans-Jörg Bauer

Today's Agenda

Basic Steps to Follow =

- o.) Understand the business/task-
- 1.) Understand the data.
- 2.) Explore to prepare the data.
- 3.) Shortlist candidate models.
- 4.) Training the model
- 5.) Evaluate the model predictions
- 6.) "Serve, the model of

Still

- 2 major type
- 3 evaluation tools

Dimensionality Reduction

- * When: Data has large number of features (dimensions)
 - O Computational: compress initial data as a preprocessing step
 - eg. k-Means $\propto (M \times N) \Rightarrow (M' \times N) M' \ll M$
 - 2) Feature Extraction: lower dim representation of the physics
 - . M'<M → more effective usage of features
 - · M'&M → Coordmate Transformation: [x,y, €, u,v,w] → PC,, PC, u',v', w']

Dimensionality Reduction

- * When: Data has large number of features (dimensions)
 - 3 Visualization: exploratory analysis of data (planning phase)
 - · M → 2/13 space

Two major branches:

- (i) Linear Projection methods eg. SVD, PCA, random no echion
- (ii) Non-linear projection (manifold learning)

 learn the curved distance

 - · isomap, MDS, LLE, t-SNE, ICA-dictionary learning, pondom trees embedding

#0 Understanding the task

- □ Problem: Manufacturing error in a production line
- Modified sensory input: 28 variables including sensory input
- □ 280,000 instances, where only a small fraction (~500) of products are defective.
- ☐ **Heuristic**: <0.5% is defective

A similar example for you:

"Bosch Production Line Performance Reduce manufacturing failures"

Dim. Reduction:

Computational —preprocessing — Feature Extraction

~ pattern recognition~

Visualization

Idea:

Institute of Thermal Turbomachinery (ITS)

•
$$product = \sum_{i=1}^{\infty} process_i$$

· Features m is correlated to K steps in the production line;

Idea:

Interpretting Patherns

- Physical system is composed of logical steps;
- Logical steps => "Regular product,
- * Failure at some > Defect "

"Outlier Detection, Something us wrong here.

APM > Learn enough to detect outliers;

#1 Understanding the data

- ☐ Check the data source: understand what the data refers to
- □ Objective: understand the characteristics of the data
- □ Look at the feature columns:
 - Any missing values?
 - Any features with NaN values?
 - Uniqueness of the dataset? ("cardinality")

23	S23	284807	non-null	float64			
24	S24	284807	non-null	float64			
25	S25	284807	non-null	float64			
26	S26	284807	non-null	float64			
27	S27	284807	non-null	float64			
28	S28	284807	non-nul	float64			
29	Class	284807	non-nul <mark>l</mark>	object			
dtypes: float64(29), object (1)							

memory usage: 65.2+ MB

time: 54.5 ms

¬->		Time	S1	S2	s3	S4	S5	86	
		TIME	51	52	83	54	85	50	
	count	284807.000000	2.848070e+05	2.848070e+05	2.848070e+05	2.848070e+05	2.848070e+05	2.848070e+05	÷
	mean	94813.859575	1.758743e-12	-8.252298e-13	-9.636929e-13	8.316157e-13	1.591952e-13	4.247354e-13	
	std	47488.145955	1.958696e+00	1.651309e+00	1.516255e+00	1.415869e+00	1.380247e+00	1.332271e+00	
	min	0.000000	-5.640751e+01	-7.271573e+01	-4.832559e+01	-5.683171e+00	-1.137433e+02	-2.616051e+01	-
	25%	54201.500000	-9.203734e-01	-5.985499e-01	-8.903648e-01	-8.486401e-01	-6.915971e-01	-7.682956e-01	
	50%	84692.000000	1.810880e-02	6.548556e-02	1.798463e-01	-1.984653e-02	-5.433583e-02	-2.741871e-01	
	75%	139320.500000	1.315642e+00	8.037239e-01	1.027196e+00	7.433413e-01	6.119264e-01	3.985649e-01	
	max	172792.000000	2.454930e+00	2.205773e+01	9.382558e+00	1.687534e+01	3.480167e+01	7.330163e+01	
	time:	447 ms							

#2 Exploring the data

- □ Objective: generate a data quality report
- ☐ Using standard statistical measures of central tendency and variation
 - □ tabular data and visual plots
 - ☐ mean, mode, and median
 - standard deviation and percentiles
 - □ bars, histograms, box and violin plots
- ✓ Missing values,
- ✓ Irregular cardinality problems,
 - 1 or comparably small
- ✓ Outliers
 - invalid outliers and valid outliers

#2 Exporing the data: Correlation Matrix

☐ Shows the correlation between each pair of features

$$Cov(a,b) = \frac{1}{n-1} \sum_{i=1}^{n} \left[(a_i - \overline{a}) \times (b_i - \overline{b}) \right]$$
Features

Features

mean

mean

□ Normalized form of "covariance"

□ Ranges between -1 and +1

time: 975 ms

#2 Preparing the Data

□ Clustering >> unsupervised >> training & test split not needed

☐ We will use it to **reduce the volume of the data** when needed:

#3 Candidate Models: PCA

- I Looks into the correlation between features
- W Combines highly correlated ones.
- New combined features = Principal Components,
- Features >> PC; } Reconstruction | [info. = Variance] Obj: minunum information

How PCA works?

Objective:

★ max. the variance of the • points

Û

* Minimize the sum-of-squares of projection errors $\sum l_i$

"maximum variance formulation,

> minimum error formulation,

Max Correlation: how does it work?

Key Property of PCA: Hierarchical coordinate system > 5 PC; ≈ 5 PC; ≈ FC; ≈ FC; ≈ FC; ≈ FC;

Solution Method: SVD

$$X = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}$$
 feature j

- 1 Evaluation of the mean X
- 2) Finding covariance matrix S for dataset X.
- (3) Finding M'eigen vectors of S corresponding to M'largest eigenvalues.

Solution Method: SVD

(1)
$$X$$
 must be scaled $\Rightarrow X_s = D$; $(-1, 1)$
"mean centered data,,. whitered
$$\overline{X} = \frac{1}{N} \sum_{n=1}^{N} X_n$$

- 1 Calculate the covariance making for dates: $S = \frac{1}{N} \sum_{x} (x_n - \overline{x})(x_n - \overline{x})^T$
- 3) Variance of the projected data on u $\frac{1}{N} \sum_{n=1}^{\infty} \left\{ u_n^{\mathsf{T}} \chi_n - u_n^{\mathsf{T}} \overline{\chi} \right\}^2 = u_1^{\mathsf{T}} S u_1$

- 4) Maximize the projected variance wrt uz: \(\text{\text{Take derivative wrt uz}} \); equal to zero. we need to prevent $\|u_i\| \to \infty$.

 Introduce a Lagrangian multiplier

Solution Method: SVD

8 Variance will be maximum when U_1 is equal to the eigenvector hamme the largest eigen value λ_1 .

"First principal component,

* eigen-decomposition of the covariance mostrix

> PCs are orthogonal = uncorrelated to each other

PCs have maximum correlation with measurements

#3 Candidate Models: kernel PCA

#5 Evaluating the Results: Reconstruction error

* loss =
$$\sum_{m=1}^{M} (\chi - \chi')^2 \Rightarrow N$$
elements

Normalization:

* loss' = $\frac{loss - min(loss)}{max(loss) - min(loss)} \Rightarrow [0, 1]$

Interpretation:

* loss' $\Rightarrow 0 \Rightarrow Regular Product$
 $loss' \Rightarrow 1 \Rightarrow Anomaly; defective$

#5 Evaluation of the predictions

Precision Recall Curve (for imbalanced data)

- Precision captures how often, when a model makes a positive prediction, this prediction turns out to be correct.
- Recall tells us how confident we can be that all the instances with the positive target level have been found by the model.

colab

#3 Candidate Models: Dictionary Learning

- * Obj: Sparse representation of original data
- * Inspired from how visual cortex operates 3
- □ "Dict. Matrix, Sparse Matrices "atom,
- □ aton = Binary rectors [001.01]
- ☐ Each Instance := Weighted sum of atoms

performs
well
for sparse systems

colab

#3 Candidate Models: ICA

- * Bell & Sejnowski (1995)
- * latent distribution is non-gaussian

- * Optical imaging
- * Face recognition
- * 6 me series predictions
- * gene expressions
- * industrial processes

colab

- 1) Multidimensional Scaling (MDS)
- Dbj: preserve the pairwise distance between datapoints as closely as possible.
- * Pairwise > Computationally expensive
- * eigenvectors of "distance matrix,
- * distance := Euclidean => Expensive PCA,

- 2) Locally Linear Embedding (LLE)
- * Obj: preserve the distance with local neighbours
- * Computes set of coeff- that best reconstruct

 the data from neighbourny points.
- Dimensions are reduced while preserving these coeff

- 3 Isometric Feature Mapping (isomap)
- * project data using MDS.

 * uses geodesic distances;
- arc length -> distance

- (i) First defines the neighbours for each data point.
- (ii) List all neighb ponts & distances (Euc.)
- (iii) Find geodesic distances (5, arc-length;)
 - (iv) MDS is applied.

(4) Stochastic Neighbour Embedding (t-SNE)

* Obj. Convert the affinites of datapoints
into joint probabilities.

Good for identifying local structures.

Others >> suitable for continuous manifolds.

Good for visualizm high dinersional data.

(-) typically ~ $10^3 - 10^4$ times slower than PCA.

(-) Stochastic => Different seeds will give different clusters.

(-) Global structure may not be preserved if initiated randomly.

you can intialize with PCA.

colab

Additional Notes

Content

- (+) Anomaly Score
 - (x) PR-Corre
 - (*) 2D & 3D Scatter plots.
- OPCA (1) PCA (1) LLE approach reduce the dimensions.

Dr. Cihan Ates- DDE Basics 2