The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. It is very difficult to determine what are the most popular modern programming languages. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). Also, specific user environment and usage history can make it difficult to reproduce the problem. It is usually easier to code in "high-level" languages than in "low-level" ones. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Techniques like Code refactoring can enhance readability. It is very difficult to determine what are the most popular modern programming languages. Whatever the approach to development may be, the final program must satisfy some fundamental properties. Code-breaking algorithms have also existed for centuries. Normally the first step in debugging is to attempt to reproduce the problem. There exist a lot of different approaches for each of those tasks. Many applications use a mix of several languages in their construction and use. Also, specific user environment and usage history can make it difficult to reproduce the problem. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers.