

"Um computador faz exatamente o que você manda ele fazer, mas isso pode ser muito diferente do que você gostaria que ele fizesse".

Máquinas de Mealy

Paulo Ricardo Lisboa de Almeida

Relembrando

Como é uma máquina de Moore?

Relembrando

Como é uma máquina de Moore?

Máquina de Estados Finita.

O próximo estado depende do estado atual e da entrada.

A saída depende do estado atual.

Máquina de Mealy

Uma máquina de Mealy é similar a uma máquina de Moore, mas a saída depende do estado atual e da entrada externa.

Máquina de Mealy

Em uma máquina de Mealy, a saída depende do estado atual e da entrada.

As **entradas externas e o clock** (ou similar) ditam qual será o **próximo estado.**

Diagrama de estados

Nos diagramas de estados para máquinas de Mealy.

As saídas são atreladas a troca de estados.

Exemplo

Modelo de uma catraca (mesmo da aula passada).

Modelando uma catraca

Modelo de uma catraca.

Saídas

Considere que a catraca possui uma trava e um LED.

Trava: travada ao enviar 1, aberta ao enviar 0.

LED: vermelho ao enviar 0, verde ao enviar 1.

Saídas

Considere que a catraca possui uma trava e um LED.

Trava: travada ao enviar 1, aberta ao enviar 0.

LED: vermelho ao enviar 0, verde ao enviar 1.

Transformando em um circuito

Entradas			Saídas	
E _t	Р	М	E _{t+1}	Saída
0	0	0	0	10
0	0	1	1	01
0	1	0	0	10
0	1	1	0	01
1	0	0	1	01
1	0	1	1	01
1	1	0	0	10
1	1	1	1	01

 $E_t e E_{t+1}$: Estado atual e próximo

P: Empurrando

M: Moeda

Saída: saídas no controle do braço da catraca e LED

Entradas			Saídas	
E _t	Р	М	E _{t+1}	Saída
0	0	0	0	10
0	0	1	1	01
0	1	0	0	10
0	1	1	0	01
1	0	0	1	01
1	0	1	1	01
1	1	0	0	10
1	1	1	1	01

Considerando Flip-Flops tipo D

$$E_{t+1} = \overline{P}M + E_{t}\overline{P} + E_{t}M$$

	PM	- PM	PM	PΜ
\overline{E}_t	0	1	0	0
E _t	1	1	1	0

Entradas			Saídas	
E _t	Р	М	E _{t+1}	Saída
0	0	0	0	10
0	0	1	1	01
0	1	0	0	10
0	1	1	0	01
1	0	0	1	01
1	0	1	1	01
1	1	0	0	10
1	1	1	1	01

Considerando Flip-Flops tipo D

$$T = \overline{E}_t \overline{M} + P \overline{M}$$

	PM	- PM	PM	PM
Ē _t	1	0	0	1
E _t	0	0	0	1

Entradas			Saídas	
E _t	Р	М	E _{t+1}	Saída
0	0	0	0	10
0	0	1	1	01
0	1	0	0	10
0	1	1	0	01
1	0	0	1	01
1	0	1	1	01
1	1	0	0	10
1	1	1	1	01

Considerando Flip-Flops tipo D

$$L = E_t \overline{P} + M$$

	PM	- PM	PM	PM
E _t	0	1	1	0
E _t	1	1	1	0

Comparando

Qual a principal diferença entre Mealy e Moore?

Como isso impacta nos circuitos?

Comparando

Em uma máquina de Moore a saída depende apenas do estado atual.

Em Mealy, a saída pode depender também das entradas.

Máquinas de Moore possuem saída síncrona.

Troca saída apenas quando troca de estado.

São mais lentas para responder a determinada entrada.

Máquinas de Mealy podem trocar a saída assim que receberem uma entrada.

Saída assíncrona.

Faça você mesmo

Faça o circuito para a seguinte máquina de estados.

Exercícios

- 1. Sincronize as entradas dos circuitos feitos na aula.
- 2. Implemente os circuitos feitos em aula utilizando flip-flops S-R.

Referências

Ronald J. Tocci, Gregory L. Moss, Neal S. Widmer. Sistemas digitais. 10a ed. 2017.

Thomas Floyd. Sistemas Digitais: Fundamentos e Aplicações. 2009.

Licença

Esta obra está licenciada com uma Licença <u>Creative Commons Atribuição 4.0 Internacional.</u>

