Prototype of Russian Hash Function "Stribog"

Oleksandr Kazymyrov

Selmer Center, Department of Informatics, University of Bergen, Norway Oleksandr.Kazymyrov@uib.no

Spring 2013

Outline

- Introduction
- Description of Stribog
- lacksquare Representation over \mathbb{F}_{2^8}
- 4 Conclusions

- GOST 34.11-94 was theoretically broken in 2008.
 - The complexities $O(2^{192})/O(2^{69})$ for preimage and second preimage attacks.

- GOST 34.11-94 was theoretically broken in 2008.
 - The complexities $O(2^{192})/O(2^{69})$ for preimage and second preimage attacks.
- Increasing performance. Stribog is 20% faster than GOST 34.11-94.

- GOST 34.11-94 was theoretically broken in 2008.
 - The complexities $O(2^{192})/O(2^{69})$ for preimage and second preimage attacks.
- Increasing performance. Stribog is 20% faster than GOST 34.11-94.
- Opposite to SHA-3 (Keccak).

Basic Operations and Functions

Stribog is based on SP-network block cipher with block and key length equal 512 bits

- SubBytes (S): nonlinear bijective mapping.
- Transposition (P): byte permutation.
- MixColumns (L): linear transformation.
- AddRoundKey (X): addition with the round key using bitwise XOR.

Other basic functions

- \boxplus : addition modulo 2^{512} .
- $MSB_s(A)$: getting s most significant bits of vector A.
- A||B: concatenation of two vectors A and B.

State Representation

Grøstl

$$A = a_0||a_1||\dots||a_{63}$$

Stribog

$$B = b_{63}||b_{62}||\dots||b_0$$

State Representation

Grøstl

Stribog

$$A = a_0 ||a_1|| \dots ||a_{63}||$$

Outline

- Introduction
- Description of Stribog
- lacksquare Representation over \mathbb{F}_{2^8}
- 4 Conclusions

Merkle-Damgård Scheme

Modification of Merkle-Damgård Scheme

Hash Function Stribog

Hash Function Stribog. Stage 1

Hash Function Stribog. Stage 2

Hash Function Stribog. Stage 3

Compression Function Construction

Design of E

Compression function $g_N: \mathbb{F}_2^{512} \times \mathbb{F}_2^{512} \mapsto \mathbb{F}_2^{512}$, $N \in \mathbb{F}_2^{512}$ is defined as follows

$$g_N(h,m) = E(L \circ P \circ S(h \oplus N), m) \oplus h \oplus m, \ h, m \in \mathbb{F}_2^{512}$$

where

$$E(K, m) = X[K_{13}] \circ \prod_{i=1}^{12} L \circ P \circ S \circ X[K_i]$$

KeySchedule function

$$K_i = L \circ P \circ S(K_{i-1} \oplus C_{i-1}), K_1 = K, i \in \{2, \dots, 13\}.$$

Representation of E

Block Cipher of Stribog Message r = 12 K_{13}

Ciphertext

SubBytes Transformation

S-box of Stribog

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	FC	EE	DD	11	CF	6E	31	16	FB	C4	FA	DA	23	C5	04	4D
1	E9	77	F0	DB	93	2E	99	BA	17	36	F1	BB	14	CD	5F	C1
2	F9	18	65	5A	E2	5C	EF	21	81	1C	3C	42	8B	01	8E	4F
3	05	84	02	AE	E3	6A	8F	A0	06	0B	ED	98	7F	D4	D3	1F
4	EB	34	2C	51	EA	C8	48	AB	F2	2A	68	A2	FD	3A	CE	CC
5	B5	70	0E	56	08	0C	76	12	BF	72	13	47	9C	B7	5D	87
6	15	A1	96	29	10	7B	9A	C7	F3	91	78	6F	9D	9E	B2	B1
7	32	75	19	3D	FF	35	8A	7E	6D	54	C6	80	C3	BD	0D	57
8	DF	F5	24	A9	3E	A8	43	C9	D7	79	D6	F6	7C	22	B9	03
9	E0	0F	EC	DE	7A	94	B0	BC	DC	E8	28	50	4E	33	0A	4A
Α	A7	97	60	73	1E	00	62	44	1A	B8	38	82	64	9F	26	41
В	AD	45	46	92	27	5E	55	2F	8C	А3	A5	7D	69	D5	95	3B
С	07	58	B3	40	86	AC	1D	F7	30	37	6B	E4	88	D9	E7	89
D	E1	1B	83	49	4C	3F	F8	FE	8D	53	AA	90	CA	D8	85	61
Е	20	71	67	A4	2D	2B	09	5B	CB	9B	25	D0	BE	E5	6C	52
F	59	A6	74	D2	E6	F4	B4	C0	D1	66	AF	C2	39	4B	63	B6

S-box Characteristics

		. = -								
Properties	Stribog	AES								
Vectorial Boolean Function										
Balancedness	True	True								
Nonlinearity	100	112								
Absolute Indicator	96	32								
SSI	258688	133120								
PC	0	0								
CI	0	0								
Algebraic Degree	7	7								
Resiliency	0	0								
SAC	False	False								
Substitution										
Bijection	True	True								
MDT	8	4								
MLT	28	16								
Cycles	252.242 46.12	43:27, 242:87,								
Cycles	252:243, 46:13	99:59, 124:81, 143:2								
Algebraic Immunity	3(441)	2(39)								

Transposition

Transposition transformation has a form

MixColumns

MixColumns transformation has a form

Multiplying the vector by the constant 64×64 matrix M over \mathbb{F}_2

$$B = A \cdot M$$

Outline

- Introduction
- Description of Stribog
- lacksquare Representation over \mathbb{F}_{2^8}
- 4 Conclusions

Motivation

Motivation

State Representation

Alternative representation

- Reverse input bits
- AES-like transformations (state as in Grøstl/AES)
- Reverse output bits

Transposition and SubBytes Operations

- Transposition is invariant operation.
- Substitution has the form $F(x) = D \circ G \circ D(x)$ for linearized polynomial $D : \mathbb{F}_{2^n} \mapsto \mathbb{F}_{2^n}$.

Transposition and SubBytes Operations

- Transposition is invariant operation.
- Substitution has the form $F(x) = D \circ G \circ D(x)$ for linearized polynomial $D : \mathbb{F}_{2^n} \mapsto \mathbb{F}_{2^n}$.

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	3F	FB	D7	E0	9F	E5	A8	04	97	07	AD	87	A0	B5	4C	9A
1	DF	EB	4F	0C	81	58	CF	D3	E8	3B	FD	B1	60	31	B6	8B
2	F3	7C	57	61	47	78	08	B4	C9	5E	10	32	C7	E4	FF	67
3	C4	3E	BF	11	D1	26	B9	7D	28	72	39	53	FE	96	C3	9C
4	BB	24	34	CD	A6	06	69	E6	0F	37	70	C1	40	62	98	2E
5	5F	6B	16	D6	3C	1C	1E	A4	8F	14	C8	55	B7	A5	63	F5
6	8C	C2	12	B8	F7	46	59	90	99	0D	6E	1F	F1	AA	51	2D
7	20	9D	73	E7	71	64	4D	36	FA	50	BA	A1	CB	A9	B0	C6
8	77	AF	2C	1A	18	E9	85	8E	EE	F0	0E	D8	21	A2	AE	65
9	23	9E	54	EC	38	1D	89	D9	6C	17	4E	CA	D0	C5	2A	66
Α	76	15	13	35	3A	00	DE	D4	74	29	30	FC	56	7A	AC	2F
В	A3	44	5C	9B	80	F9	79	A7	B3	CC	ED	1B	2B	AB	BD	D2
С	88	95	8A	02	5A	CE	94	25	DB	7B	6A	92	75	49	BC	4B
D	5B	6F	45	27	42	41	F6	0B	DD	0A	E2	09	19	BE	01	43
E	68	93	D5	EF	84	22	E3	DA	5D	3D	48	7F	05	F4	7E	03
F	B2	C0	33	91	F2	82	8D	4A	83	52	E1	86	F8	DC	EA	6D

Table : The Substitution F for AES-like Description

The are exist at least three forms:

- **1** representation over \mathbb{F}_{2^n}
- $oldsymbol{2}$ representation over \mathbb{F}_2
 - matrix form
 - 2 system of equations

The are exist at least three forms:

- lacksquare representation over \mathbb{F}_{2^n}
- $oldsymbol{2}$ representation over \mathbb{F}_2
 - matrix form
 - system of equations

$$\begin{array}{ccc}
& & easy \\
& & & \\
\mathbb{F}_{2^n} & & & \\
\mathbb{F}_2 & & & \\
\end{array}$$

The are exist at least three forms:

- lacksquare representation over \mathbb{F}_{2^n}
- $oldsymbol{\circ}$ representation over \mathbb{F}_2
 - matrix form
 - system of equations

Any multiplication mapping $\mathbb{F}_{2^n} \mapsto \mathbb{F}_{2^n}$ is a linear transformation of a vector space over \mathbb{F}_2 for specified basis.

Multiplication by arbitrary $\delta \in \mathbb{F}_{2^8}$ can be represented as multiplication on a matrix

$$\delta x = \begin{pmatrix} k_{0,0} & \cdots & k_{0,7} \\ k_{1,0} & \cdots & k_{1,7} \\ \vdots & \ddots & \vdots \\ k_{7,0} & \cdots & k_{7,7} \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ x_1 \\ \cdots \\ x_7 \end{pmatrix}$$

with $x_i, k_{j,s} \in \mathbb{F}_2$.

Let $L: \mathbb{F}_2^n \mapsto \mathbb{F}_2^n$ be a linear function of the form

$$L(x) = \sum_{i=0}^{n-1} \delta_i x^{2^i}.$$

Let $L: \mathbb{F}_2^n \mapsto \mathbb{F}_2^n$ be a linear function of the form

$$L(x) = \sum_{i=0}^{n-1} \delta_i x^{2^i}.$$

Proposition [5]

Any linear function $L: \mathbb{F}_2^n \mapsto \mathbb{F}_2^m$ can be converted to a matrix with the complexity O(n).

Let $L: \mathbb{F}_2^n \mapsto \mathbb{F}_2^n$ be a linear function of the form

$$L(x) = \sum_{i=0}^{n-1} \delta_i x^{2^i}.$$

Proposition [5]

Any linear function $L: \mathbb{F}_2^n \mapsto \mathbb{F}_2^m$ can be converted to a matrix with the complexity O(n).

$$L(x) = \delta x$$
, $\delta_i = 0$, for $1 \le i \le n - 1$.

The main steps of algorithm for obtaining MDS matrix over \mathbb{F}_{2^8} from 64×64 matrix over \mathbb{F}_2

- for every irreducible polynomial (30)
 - lacktriangle convert each 8×8 submatrices to the element of the filed
 - check MDS property of the resulting matrix

The main steps of algorithm for obtaining MDS matrix over \mathbb{F}_{2^8} from 64×64 matrix over \mathbb{F}_2

- for every irreducible polynomial (30)
 - lacktriangle convert each 8×8 submatrices to the element of the filed
 - check MDS property of the resulting matrix

Hint

It is necessary to transpose matrix of Stribog before applying the algorithm.

MixColumns

71	05	09	B9	61	A2	27	0E	a_{40}	a_{48}	a_{56}
04	88	5B	B2	E4	36	5F	65	a_{41}	a_{49}	a_{57}
5F	СВ	ΑD	0F	ВА	2C	04	A5	-	a_{50}	a_{58}
E5	01	54	ВА	0F	11	2A	76	a_{43}	a_{51}	a_{59}
D4	81	1C	FA	39	5E	15	24	a_{45}	a_{52}	a_{60} a_{61}
05	71	5E	66	17	1C	D0	02	a_{46}		a_{62}
2D	F1	E7	28	55	A0	4C	9A	-	a_{54}	$\overline{}$
0E	02	F6	8A	15	9D	39	71		a_{55}	,
									7	
									~	

							,	1
	b_0	b_8	b_{16}	b_{24}	b_{32}	b_{40}	b_{48}	b_{56}
	b_1	b_9	b_{17}	b_{25}	b_{33}	b_{41}	b_{49}	b_{57}
	b_2	b_{10}	b_{18}	b_{26}	b_{34}	b_{42}		b_{58}
1	b_3	b_{11}	b_{19}	b_{27}	b_{35}	b_{43}	b_{51}	b_{59}
	b_4	b_{12}	b_{20}	b_{28}	b_{36}	b_{44}	h	b_{60}
	b_5	b_{13}	b_{21}	b_{29}	b_{37}	045	-	61
	b_6	b_{14}	b_{22}	b_{30}	b_{38}	b_{46}	b_{53}	b_{62}
	b_7	b_{15}	b_{23}	b_{31}	b_{39}		1	b_{63}
							b_{55}	

Multiplying the vector by the constant 8×8 matrix G over \mathbb{F}_{2^8} with the primitive polynomial $f(x)=x^8+x^6+x^5+x^4+1$

$$B = G \cdot A$$

Modified Compression Function

Modified Function

 Stribog is based on GOST 34.11-94 as well as on AES.

- Stribog is based on GOST 34.11-94 as well as on AES.
- It is planned to replace existing standard 34.11-94 in 2013.

- Stribog is based on GOST 34.11-94 as well as on AES.
- It is planned to replace existing standard 34.11-94 in 2013.
- Is Stribog 20% faster than GOST 34.11-94?

- Stribog is based on GOST 34.11-94 as well as on AES.
- It is planned to replace existing standard 34.11-94 in 2013.
- Is Stribog 20% faster than GOST 34.11-94?
 - No, it is slower.

- Stribog is based on GOST 34.11-94 as well as on AES.
- It is planned to replace existing standard 34.11-94 in 2013.
- Is Stribog 20% faster than GOST 34.11-94?
 No. it is slower.
- More details on github.

References

- F. Mendel, N. Pramstaller, C. Rechberger, M. Kontak, and J. Szmidt. Cryptanalysis of the GOST hash function. In D. Wagner, editor, Advances in Cryptology CRYPTO 2008, volume 5157 of *LNCS*, pages 162–178.
- Matuhin D.V., Shyshkin V.A., Rudskoy V.I.: Prospective hashing algorithm. RusCrypto'2010, 2010. (In Russian).
- GOST 34.11-20__, Information technology. Cryptographic data security. Hash function. Prototype (version 1). http://infotecs.ru/laws/gost/proj/gost3411.pdf.(In Russian).
- R. Oliynykov, I. Gorbenko, V. Dolgov, V. Ruzhentsev, Results of Ukrainian National Public Cryptographic Competition, Tatra Mt. Math. Publ. 47 2010, 99-113. http: //www.sav.sk/journals/uploads/0317154006ogdr.pdf.