Graphs

Initially prepared by Dr. İlyas Çiçekli; improved by various Bilkent CS202 instructors.

Graphs

- Graphs are one of the unifying themes of computer science.
- A graph G = (V, E) is defined by a set of *vertices* V, and a set of *edges* E consisting of ordered or unordered pairs of vertices from V.

Road Networks

• In modeling a road network, the vertices may represent the cities or junctions, certain pairs of which are connected by roads/edges.

Electronic Circuits

• In an electronic circuit, with junctions as vertices and components as edges.

Applications

- Social networks (facebook ...)
- Courses with prerequisites
- Computer networks
- Google maps
- Airline flight schedules
- Computer games
- WWW documents
- ... (so many to list!)

Graphs – Definitions

- A graph G = (V, E) consists of
 - a set of *vertices*, V, and
 - a set of *edges*, E, where each edge is a pair (v,w) s.t. $v,w \in V$
- Vertices are sometimes called **nodes**, edges are sometimes called **arcs**.
- If the edge pair is ordered then the graph is called a **directed graph** (also called *digraphs*).
- We also call a normal graph (which is not a directed graph) an undirected graph.
 - When we say graph we mean that it is an undirected graph.

Graphs – Definitions

- Two vertices of a graph are **adjacent** if they are joined by an edge.
- Vertex w is adjacent to v iff $(v,w) \in E$.
 - In an undirected graph with edge (v, w) and hence (w,v) w is adjacent to v and v is adjacent to w.
- A **path** between two vertices is a sequence of edges that begins at one vertex and ends at another vertex.
 - i.e. $w_1, w_2, ..., w_N$ is a path if $(w_i, w_{i+1}) \in E$ for $1 \le i \le N-1$
 - A simple path passes through a vertex only once.
- A cycle is a path that begins and ends at the same vertex.
 - A simple cycle is a cycle that does not pass through other vertices more than once.

Graphs – An Example

The graph G=(V,E) has 5 vertices and 6 edges:

$$V = \{1,2,3,4,5\}$$

$$E = \{ (1,2),(1,3),(1,4),(2,5),(3,4),(4,5), (2,1),(3,1),(4,1),(5,2),(4,3),(5,4) \}$$

- Adjacent:
 - 1 and 2 are adjacent -- 1 is adjacent to 2 and 2 is adjacent to 1
- *Path*:
 - 1,2,5 (a simple path), 1,3,4,1,2,5 (a path but not a simple path)
- *Cycle:* 1,3,4,1 (a simple cycle), 1,3,4,1,4,1 (cycle, but not simple cycle)

Graphs – Definitions

- A connected graph has a path between each pair of distinct vertices.
- A complete graph has an edge between each pair of distinct vertices.
 - A complete graph is also a connected graph. But a connected graph may not be a complete graph.

Directed Graphs

- If edge pair is ordered, then graph is called a **directed graph** (also called *digraphs*).
 - Each edge in a directed graph has a direction. Called a directed edge.
- Definitions given for undirected graphs apply also to directed graphs, with changes that account for direction.
- Vertex w is *adjacent to* v iff $(v,w) \in E$.
 - i.e. There is a direct edge from v to w
 - w is **successor** of v
 - v is **predecessor** of w
- A directed path between two vertices is a sequence of directed edges that begins at one vertex and ends at another vertex.
 - i.e. $w_1, w_2, ..., w_N$ is a path if $(w_i, w_{i+1}) \in E$ for $1 \le i \le N-1$

Directed Graphs

- A cycle in a directed graph is a path of length >= 1 such that $w_1 = w_N$.
 - This cycle is simple if the path is simple.
 - For undirected graphs, the edges must be distinct
- A directed acyclic graph (DAG) is a directed graph with no cycles.
- An undirected graph is **connected** if there is a path from every vertex to every other vertex.
 - A directed graph with this property is called strongly connected.
 - If a directed graph is not strongly connected, but the underlying graph (without direction to arcs) is connected then the graph is weakly connected.

total cycles --> traverse the graph with a node, if visit the same node, cycle + 1 continue with other nodes

Directed Graph – An Example

The graph G=(V,E) has 5 vertices and 6 edges:

$$V = \{1,2,3,4,5\}$$

E = \{ (1,2),(1,4),(2,5),(4,5),(3,1),(4,3) \}

- Adjacent:
 - 2 is adjacent to 1, but 1 is NOT adjacent to 2
- *Path*:
 - 1,2,5 (a directed path),
- Cycle:
 - 1,4,3,1 (a directed cycle),

Weighted Graph

• We can label the edges of a graph with numeric values, the graph is called a **weighted graph**.

Graph Implementations

• The two most common implementations of a graph are:

- Adjacency Matrix
 - A two dimensional array
- Adjacency List
 - For each vertex we keep a list of adjacent vertices

Adjacency Matrix

- An adjacency matrix for a graph with n vertices is an n by n array matrix such that
 - matrix[i][j] is 1 (true) if there is an edge from vertex i to vertex j
 - 0 (false) otherwise.
- When the graph is weighted:
 - matrix[i][j] is weight that labels edge from vertex i to vertex j instead of simply 1,
 - matrix[i][j] equals to ∞ instead of 0 when there is no edge from vertex i to j
- Adjacency matrix for an undirected graph is symmetrical.
 - i.e. matrix[i][j] is equal to matrix[j][i]
 shortest path etc. can be confusing if 0 is used
- Space requirement $O(|V|^2)$
 - Acceptable if the graph is dense.

Adjacency Matrix – Example 1

Ζ

Adjacency Matrix – Example 2

An Undirected Weighted Graph

Its Adjacency Matrix

Adjacency List

- An **adjacency list** for a graph with n vertices numbered 0,1,...,n-1 consists of n linked lists. The i^{th} linked list has a node for vertex j if and only if the graph contains an edge from vertex i to vertex j.
- Adjacency list is a better solution if the graph is sparse.
- Space requirement is O(|E| + |V|), which is linear in the size of the graph.
- In an undirected graph each edge (v, w) appears in two lists.
 - Space requirement is doubled.

Adjacency List – Example 1

Adjacency List – Example 2

An Undirected Weighted Graph

Its Adjacency List

Adjacency Matrix vs Adjacency List

- Two common graph operations:
 - 1. Determine whether there is an edge from vertex i to vertex j.
 - **2.** Find all vertices adjacent to a given vertex i.
- An adjacency matrix supports operation 1 more efficiently.
- An adjacency list supports operation 2 more efficiently.
- An adjacency list often requires less space than an adjacency matrix.
 - Adjacency Matrix: Space requirement is $O(|V|^2)$
 - Adjacency List: Space requirement is O(|E| + |V|), which is linear in the size of the graph.
 - Adjacency matrix is better if the graph is dense (too many edges)
 - Adjacency list is better if the graph is sparse (few edges)

Tradeoffs Between Adjacency Lists and Adjacency Matrices

- Faster to test if (x; y) exists?
- Faster to find vertex degree?
- Less memory on sparse graphs?
- Less memory on dense graphs?
- Edge insertion or deletion?
- Faster to traverse the graph?
- Better for most problems?

Tradeoffs Between Adjacency Lists and Adjacency Matrices

Faster to test if (x; y) exists?

• Faster to find vertex degree? **lists**

Less memory on sparse graphs? $lists - (m+n) vs. (n^2)$

• Less memory on dense graphs? matrices (small win)

• Edge insertion or deletion? matrices O(1)

• Faster to traverse the graph? $lists - (m + n) vs. (n^2)$

• Better for most problems? **lists**

list -> O(V+E) matrix -> O(V^2)

Graph Traversals

- A graph-traversal algorithm starts from a vertex v, visits all of the vertices that can be reachable from the vertex v.
 - A graph-traversal algorithm visits all vertices if and only if the graph is connected.
- A **connected component** is the subset of vertices visited during a traversal algorithm that begins at a given vertex.
- A graph-traversal algorithm must **mark each vertex** during a visit and must never visit a vertex more than once.
 - Thus, if a graph contains a cycle, the graph-traversal algorithm can avoid infinite loop.
- We look at two graph-traversal algorithms:
 - Depth-First Traversal
 - Breadth-First Traversal

Depth-First Traversal

- For a given vertex v, **depth-first traversal** algorithm proceeds along a path from v as deeply into the graph as possible before backing up.
- That is, after visiting a vertex v, the algorithm visits (if possible) an unvisited adjacent vertex to vertex v.
- The depth-first traversal algorithm does not completely specify the order in which it should visit the vertices adjacent to v.
 - We may visit the vertices adjacent to v in sorted order.

Depth-First Traversal – Example

- A depth-first traversal of the graph starting from vertex v.
- Visit a vertex, then visit a vertex adjacent to that vertex.
- If there is no unvisited vertex adjacent to visited vertex, back up to the previous step.

Recursive Depth-First Traversal Algorithm

```
dft(in v:Vertex) {
  // Traverses a graph beginning at vertex v
  // by using depth-first strategy
  // Recursive Version
    Mark v as visited;
    for (each unvisited vertex u adjacent to v)
        dft(u)
}
```

Iterative Depth-First Traversal Algorithm

```
dft(in v:Vertex) {
// Traverses a graph beginning at vertex v
// by using depth-first strategy: Iterative Version
   s.createStack();
   // push v into the stack and mark it
   s.push(v);
  Mark v as visited:
  while (!s.isEmpty()) {
      if (no unvisited vertices are adjacent to the vertex on
         the top of stack)
         s.pop(); // backtrack
      else {
         Select an unvisited vertex u adjacent to the vertex
            on the top of the stack;
         s.push(u);
        Mark u as visited;
```

Trace of Iterative DFT – starting from vertex a

Trace of Iterative DFT – starting from vertex a

Node visited	Stack (bottom to top)
а	a
b	a b
С	a b c
d	a b c d
g	a b c d g
е	a b c d g e
(backtrack)	a b c d g
f	a b c d g f
(backtrack)	a b c d g
(backtrack)	a b c d
h	a b c d h
(backtrack)	a b c d
(backtrack)	a b c
(backtrack)	a b
(backtrack)	а
i	a i
(backtrack)	a
(backtrack)	(empty)

Breadth-First Traversal

- After visiting a given vertex v, the **breadth-first traversal** algorithm visits every vertex adjacent to v that it can before visiting any other vertex.
- The breadth-first traversal algorithm does not completely specify the order in which it should visit the vertices adjacent to v.
 - We may visit the vertices adjacent to v in sorted order.

Breadth-First Traversal – Example

- A breadth-first traversal of the graph starting from vertex v.
- Visit a vertex, then visit all vertices adjacent to that vertex.

Iterative Breadth-First Traversal Algorithm

```
bft(in v:Vertex) {
// Traverses a graph beginning at vertex v
// by using breadth-first strategy: Iterative Version
   q.createQueue();
   // add v to the queue and mark it
  Mark v as visited:
   q.enqueue(v);
  while (!q.isEmpty()) {
      q.dequeue(W);
      for (each unvisited vertex u adjacent to w) {
         Mark u as visited;
         q.enqueue (u);
```

Trace of Iterative BFT – starting from vertex a

Trace of Iterative BFT – starting from vertex a

Node visited	Queue (front to back)
a	а
	(empty)
b	b
f	b f
i	bfi
	fi
С	fic
e	fice
	i c e
g	i c e g
	c e g
	e g
d	e g d
	g d
	d
	(empty)
h	h
	(empty)

Topological Sorting

- A directed graph without cycles has a natural order.
 - That is, vertex a precedes vertex b, which precedes c
 - For example, the prerequisite structure for the courses.
- In which order we should visit the vertices of a directed graph without cycles so that we can visit vertex v after we visit its predecessors.
 - This is a linear order, and it is known as **topological order**.
- For a given graph, there may be more than one topological order.
- Arranging the vertices into a topological order is called topological sorting.

Topological Order – Example

Some Topological Orders for this graph:

a, g,d, b, e, c, f

a, b, g, d, e, f, c

cannot visit d before visiting a and g etc.

Topological Order – Example (cont.)

The graph arranged according to the topological orders

- (a) a, g, d, b, e, c, f and
- (b) a, b, g, d, e, f, c

Applications of Topological Sorting

- Course prerequisites which courses should you take next semester?
- Project scheduling (PERT)
- Processors: Instruction scheduling
- Spreadsheets
- Makefiles

Simple Topological Sorting Algorithm1 – topSort1

```
topSort1(in theGraph:Graph, out aList:List) {
// Arranges the vertices in graph the Graph into a
// toplogical order and places them in list aList
  n = number of vertices in the Graph;
  for (step=1 through n) {
     select a vertex v that has no successors;
     aList.insert(1, v);
     Delete from the Graph vertex v and its edges;
```

starting from last vertex f

DFS Topological Sorting Algorithm – topSort2

```
topSort2(in theGraph:Graph, out aList:List) {
// Arranges the vertices in graph the Graph into a topological order and
// places them in list aList
   s.createStack();
   for (all vertices v in the graph)
      if (v has no predecessors) {
                                           push a and g (initial)
         s.push(v);
                                           for starting vertices
         Mark v as visited;
   while (!s.isEmpty()) {
      if (all vertices adjacent to the vertex on the top of stack
            have been visited) {
         s.pop(v);
         aList.insert(1, v);
      else {
          Select an unvisited vertex u adjacent to the vertex on
             the top of the stack;
          s.push(u);
          Mark u as visited;
```

Remember: Iterative Depth-First Traversal Algorithm

```
dft(in v:Vertex) {
// Traverses a graph beginning at vertex v
// by using depth-first strategy: Iterative Version
   s.createStack();
   // push v into the stack and mark it
   s.push(v);
  Mark v as visited;
  while (!s.isEmpty()) {
      if (no unvisited vertices are adjacent to the vertex on
          the top of stack)
         s.pop(); // backtrack
      else {
         Select an unvisited vertex u adjacent to the vertex
            on the top of the stack;
         s.push(u);
        Mark u as visited;
```

Trace of topSort2

Trace of topSort2

Action	Stack s (bottom to top)	List aList (be	ginning to end)
Push a Push g Push d Push e	a a top = g continue with unvisited v adjacent to g, then d, the c and f both adjacent to a g de	en e etc.	a b
Push c Pop c, add c to aList	a g d ec a g d e	С	d e f
Push f	a g de f	С	
Pop f, add f to aList Pop e, add e to aList	a g d e	f c e f c	
Pop d, add d to aList		defc	9
Pop g, add g to aList	a	g d e f c	top = a, only adjacent unvisited is b, push b
Push b	a b	g d e f c	
Pop b, add b to aList	а	b g d e f c	
Pop a, add a to aList	(empty)	abgdefc	

Spanning Trees

- A tree is a special kind of undirected graph.
- That is, a **tree** is a connected undirected graph without cycles.
- All trees are graphs, not all graphs are trees. Why?
- A **spanning tree** of a connected undirected graph G is a sub-graph of G that contains all of G's vertices and enough of its edges to form a tree.
- There may be several spanning trees for a given graph.
- If we have a connected undirected graph with cycles, and we remove edges until there are no cycles to obtain a spanning tree.

A Spanning Tree

Remove dashed lines to obtain a spanning tree

Cycles?

Observations about graphs:

reverse is not true

- 1. A connected undirected graph that has n vertices must have at least n-1 edges.
- 2. A connected undirected graph that has n vertices and exactly n-1 edges cannot contain a cycle. (tree)
- 3. A connected undirected graph that has n vertices and more than n-1 edges must contain a cycle.

cycle = minimum 2 edges

Connected graphs that each have four vertices and three edges

DFS Spanning Tree

```
dfsTree(in v:vertex) {
// Forms a spanning tree for a connected undirected graph
  beginning at vertex v by using depth-first search;
// Recursive Version
  Mark v as visited;
  for (each unvisited vertex u adjacent to v) {
     Mark the edge from u tu v;
     dfsTree(u);
```

Remember: Recursive Depth-First Traversal Algorithm

```
dft(in v:Vertex) {
  // Traverses a graph beginning at vertex v
  // by using depth-first strategy
  // Recursive Version
    Mark v as visited;
    for (each unvisited vertex u adjacent to v)
        dft(u)
}
```

DFS Spanning Tree – Example

The DFS spanning tree algorithm visits vertices in this order: a, b, c, d, g, e, f, h, i. Numbers indicate the order in which the algorithm marks edges.

The DFS spanning tree rooted at vertex a

BFS Spanning tree

```
bfsTree(in v:vertex) {
// Forms a spanning tree for a connected undirected graph
// beginning at vertex v by using breadth-first search;
// Iterative Version
  q.createQueue();
  q.enqueue(V);
  Mark v as visited;
  while (!q.isEmpty()) {
     q.dequeue(W);
     for (each unvisited vertex u adjacent to w) {
        Mark u as visited;
        Mark edge between w and u;
        q.enqueue (u);
```

Remember: Iterative Breadth-First Traversal Algorithm

```
bft(in v:Vertex) {
// Traverses a graph beginning at vertex v
// by using breadth-first strategy: Iterative Version
   q.createQueue();
   // add v to the queue and mark it
   q.enqueue(v);
  Mark v as visited;
  while (!q.isEmpty()) {
      q.dequeue(W);
      for (each unvisited vertex u adjacent to w) {
         Mark u as visited;
         q.enqueue (u);
```

BFS Spanning tree – Example

The BFS spanning tree algorithm visits vertices in this order: a, b, f, i, c, e, g, d, h. Numbers indicate the order in which the algorithm marks edges.

The BFS spanning tree rooted at vertex a

Minimum Spanning Tree

- If we have a weighted connected undirected graph, the edges of each of its spanning tree will also be associated with costs.
- The *cost of a spanning tree* is the sum of the costs of edges in the spanning tree.
- A minimum spanning tree of a connected undirected graph has a minimal edge-weight sum.
 - A minimum spanning tree of a connected undirected may not be unique.
 - Although there may be several minimum spanning trees for a particular graph, their costs are equal.

Prim's Algorithm

- **Prim's algorithm** finds a minimum spanning tree that begins any vertex.
- Initially, the tree contains only the starting vertex.
- At each stage, the algorithm selects a least-cost edge from among those that begin with a vertex in the tree and end with a vertex not in the tree.
- The selected vertex and least-cost edge are added to the tree.

Prim's Algorithm

```
primsAlgorithm(in v:Vertex) {
// Determines a minimum spanning tree for a weighted,
// connected, undirected graph whose weights are
// nonnegative, beginning with any vertex.
  Mark vertex v as visited and include it in
     the minimum spanning tree;
  while (there are unvisited vertices) {
     Find the least-cost edge (v,u) from a visited vertex v
        to some unvisited vertex u;
     Mark u as visited;
     Add the vertex u and the edge (v,u) to the minimum
        spanning tree;
```

Prim's Algorithm – Trace

A weighted, connected, undirected graph

(a) Mark a, consider edges from a

beginning at vertex a

(a) Mark a, consider edges from a

(b) Mark i, include edge (a, i)

beginning at vertex a

(e) Mark d, include edge (g, d)

(g) Mark c, include edge (d, c)

(h) Mark e, include edge (c, e)

Applications of Minimum Spanning Trees

- Building low-cost network
- Grouping objects into clusters, where each cluster is a set of similar objects.
- Minimum bottleneck

Shortest Paths

- The shortest path between two vertices in a weighted graph has the smallest edge-weight sum.
- **Dijkstra's shortest-path algorithm** finds the shortest paths between vertex 0 (a given vertex) and all other vertices.

Shortest Paths

A Weighted Directed Graph

Its Adjacency Matrix

Dijkstra's Shortest-Path Algorithm

```
shortestPath(in theGraph, in weight:WeightArray) {
// Finds the minimum-cost paths between an origin vertex (vertex 0)
// and all other vertices in a weighted directed graph the Graph;
// the Graph's weights are nonnegative
  Create a set vertexSet that contains only vertex 0;
  n = number of vertices in the Graph;
  // Step 1
  for (v=0 \text{ through } n-1)
     weight[v] = matrix[0][v];
  // Steps 2 through n
  for (v=2 through n) { //n-1 times v-->i
     Find the smallest weight[v] such that v is not in vertexSet;
     Add v to vertexSet:
     for (all vertices u adjacent to v but not in vertexSet)
         if (weight[u] > weight[v]+matrix[v][u])
            weigth[u] = weight[v]+matrix[v][u];
```

Dijkstra's Shortest-Path Algorithm – Trace

(b)

etc.

			2		
0	8 8 8 8	8	∞	9	4
1	∞	∞	1	∞	∞
2	∞	2	∞	3	∞
3	∞	∞	2	∞	7
4	∞	∞	1	∞	∞

Dijkstra's Shortest-Path Algorithm – Trace (cont.)

Step 2. The path 0-4-2 is shorter than 0-2

Step 3. The path 0-4-2-1 is shorter than 0-1

Dijkstra's Shortest-Path Algorithm – Trace (cont.)

Step 3 continued. The path 0-4-2-3 is shorter than 0-3

Step 4. The path 0-4-2-3 is shorter than 0-4-2-1-3