

InvestmentsFinance 2 - BFIN

Dr. Omer CAYIRLI

Lecture 5

Outline

- Portfolio Theory and Practice I
 - > Efficient Diversification

Minimum-variance frontier shows the risk-return opportunities available to the investor.

Efficient frontier

- There is an efficient portfolio for each risk level.
- Portfolios on the efficient frontier represent trade-offs in terms of risk and return.

r_A	10.10%	r_{B}	9.40%	Cov(r _A , r _B)	-0.000414
$\sigma_{\!A}$	1.70%	$\sigma_{\!\scriptscriptstyle B}$	2.54%		
$\sigma_{A}^{}^2}$	0.000289	σ_{B}^{2}	0.00064516		

W _A	\mathbf{w}_{B}	w _B r _p		$\sigma_{ extsf{P}}$
100%	0%	10.100%	0.000289	1.70%
90%	10%	10.030%	0.000166	1.29%
80%	20%	9.960%	0.000078	0.88%
70%	30%	9.890%	0.000026	0.51%
60%	40%	9.820%	0.000009	0.29%
50%	50%	9.750%	0.000027	0.52%
40%	60%	9.680%	0.000080	0.89%
30%	70%	9.610%	0.000168	1.30%
20%	80%	9.540%	0.000292	1.71%
10%	90%	9.470%	0.000451	2.12%
0%	100%	9.400%	0.000645	2.54%

	Global MV	Portfolios
	No Short	With Short
AMD	0.00%	-5.53%
AMZN	9.39%	12.12%
FORD	0.00%	-4.49%
JPM	2.79%	7.59%
NVDA	0.00%	1.04%
PFE	38.25%	38.18%
TGT	18.82%	20.74%
XOM	30.75%	30.35%
E(r _p)	0.62%	0.68%
σ_{p}	4.41%	4.31%
r _f	0.41%	0.41%
Sharpe Ratio	0.0480	0.0641

 $\sigma^2(r_p) = w_{riskv}^2 * \sigma^2(r_{riskv})$

- Complete portfolio consists of the risky asset and the risk-free asset.
 - ➤ A portfolio risk closer to the desired level can be achieved by changing the weights of risk-free asset and risky assets in the complete portfolio.

$$\begin{aligned} w_{rf} + w_{risky} &= 1 \qquad w_{rf} = 1 - w_{risky} \\ E(r_P) &= \left(1 - w_{risky}\right) * r_f + w_{risky} * E(r_{risky}) \\ E(r_P) &= r_f + w_{risky} * \left[E(r_{risky}) - r_f\right] \\ \sigma^2(r_p) &= w_{rf}^2 * \sigma^2(r_f) + w_{risky}^2 * \sigma^2(r_{risky}) + 2 * w_{rf} w_{risky} Cov(r_f, r_{risky}) \\ \text{Since } \sigma^2(r_f) &= 0 \text{ and } Cov(r_f, r_{risky}) = 0, \end{aligned}$$

$$\underline{\mathsf{lf}}\,\sigma^2(r_p) = w_{risky}^2 * \sigma^2(r_{risky}) \,\underline{\mathsf{then}}\, \,\sigma(r_p) = w_{risky} * \sigma(r_{risky})$$

Thus,
$$w_{risky} = \frac{\sigma(r_p)}{\sigma(r_{risky})}$$

$$E(r_P) = r_f + w_{risky} * [E(r_{risky}) - r_f]$$

$$E(r_P) = r_f + \frac{\sigma(r_p)}{\sigma(r_{risky})} * [E(r_{risky}) - r_f]$$

$$E(r_P) = r_f + \left[\frac{E(r_{risky}) - r_f}{\sigma(r_{risky})} \right] * \sigma(r_p)$$

Capital Allocation Line

Suppose the risk-free interest rate is 5%, the expected return and the standard deviation of the risky portfolio are 12% and 15%, respectively. Then;

$$E(r_P) = r_f + \left[\frac{E(r_{risky}) - r_f}{\sigma(r_{risky})} \right] * \sigma(r_p)$$

$$E(r_P) = 0.05 + \left[\frac{0.12 - 0.05}{0.15} \right] * \sigma(r_p)$$

$$E(r_P) = 0.05 + 0.4667 * \sigma(r_p)$$

	Global MV	Portfolios	Optimal Risk Portfolios			
	No Short	With Short	No Short	With Short		
AMD	0.00%	-5.53%	0.00%	-34.75%		
AMZN	9.39%	12.12%	43.48%	70.83%		
FORD	0.00%	-4.49%	0.00%	-58.61%		
JPM	JPM 2.79%	7.59%	11.42%	80.15%		
NVDA	0.00%	1.04%	45.10%	76.25%		
PFE	38.25%	38.18%	0.00%	-71.24%		
TGT	18.82%	20.74%	0.00%	16.91%		
XOM	30.75%	30.35%	0.00%	20.46%		
E(r _p)	0.62%	0.68%	1.91%	3.36%		
σ_{p}	4.41%	4.31%	9.38%	14.09%		
r _f	0.41%	0.41%	0.41%	0.41%		
Sharpe Ratio	0.0480	0.0641	0.1600	0.2097		

		Global MV	Portfolios		Optimal Risk Portfolios					
	No Short With Short No S		No Short	With Short No Short		With Short	No Short	With Short		
SP500			29.84%	57.82%			0.00%	-84.30%		
NDQ100			0.00%	13.84%			0.00%	147.04%		
EEM			0.00%	-21.19%			0.00%	-81.67%		
XAU			41.40%	42.21%			36.33%	67.76%		
AMD	0.00%	-5.53%	0.00%	-5.36%	0.00%	-34.75%	0.00%	-14.61%		
AMZN	9.39%	12.12%	0.00%	-1.13%	43.48%	70.83%	26.28%	10.16%		
FORD	0.00%	-4.49%	0.00%	-5.19%	0.00%	-58.61%	0.00%	-18.66%		
JPM	2.79%	7.59%	0.00%	0.85%	11.42%	80.15%	8.75%	44.57%		
NVDA	0.00%	1.04%	0.00%	-1.72%	45.10%	76.25%	28.63%	21.85%		
PFE	38.25%	38.18%	13.72%	8.34%	0.00%	-71.24%	0.00%	-21.84%		
TGT	18.82%	20.74%	5.43%	3.88%	0.00%	16.91%	0.00%	4.36%		
XOM	30.75%	30.35%	9.60%	7.64%	0.00%	20.46%	0.00%	25.34%		
E(r _p)	0.62%	0.68%	0.65%	0.77%	1.91%	3.36%	1.45%	2.07%		
σ_{p}	4.41%	4.31%	3.25%	2.92%	9.38%	14.09%	6.22%	6.27%		
$r_{\rm f}$	0.41%	0.41%	0.41%	0.41%	0.41%	0.41%	0.41%	0.41%		
Sharpe Ratio	0.0480	0.0641	0.0733	0.1231	0.1600	0.2097	0.1669	0.2644		

- Each CAL is uniquely identified by its slope.
- The optimal risky portfolio is the tangency portfolio
 - > The unique portfolio with the highest Sharpe-Ratio.
- The optimal risky portfolio does not involve the degree of risk aversion of any individual investor.
- Every investor, regardless of her/his level of risk aversion, will agree on the best CAL, and allocate her/his wealth between risk-free asset and the optimal risky portfolio.
- ❖ The portion invested in the optimal risky portfolio, however, will depend on each investor's degree of risk.

The Opportunity Set with Different Borrowing and Lending Rates

$$r_f = 7\%$$
 $\sigma_{rf} = 0\%$
 $E(r_p) = 15\%$ $\sigma_p = 22\%$

Lend at $r_f = 7\%$ and borrow at $r_f = 9\%$

Lending range slope = 8/22 = 0.36Borrowing range slope = 6/22 = 0.27

- ❖ Top-down process with 3 steps:
 - ➤ Capital allocation: risky portfolio and risk-free asset
 - >Asset allocation: across broad asset classes
 - ➤ Security selection: individual assets within an asset class

The Opportunity Set of the Debt and Equity Funds

Portfolio A: 82% in bonds and 18% in stocks

$$E(r_A) = 8.9\%$$

 $\sigma_A = 11.45\%$

Portfolio B: 70% in bonds and 30% in stocks

$$E(r_B) = 9.5\%$$

 $\sigma_B = 11.70\%$

- Maximize the slope of the CAL for any possible portfolio, P
- > The objective function is the slope:

$$S_p = \frac{E(r_p) - r_f}{\sigma_p}$$

The Opportunity Set of the Debt and Equity Funds

PortfolioA

$$E(r_A) = 8.9\%$$
 $\sigma_A = 11.45\%$

$$S_A = \frac{E(r_A) - r_f}{\sigma_A} = \frac{8.9\% - 5\%}{11.45\%} = 0.34$$

PortfolioB

$$E(r_B) = 9.5\%$$
 $\sigma_B = 11.70\%$

$$S_B = \frac{E(r_B) - r_f}{\sigma_B} = \frac{9.5\% - 5\%}{11.70\%} = 0.38$$

The Opportunity Set of the Debt and Equity Funds

Optimal Risky Portfolio

$$E(r_P) = 11\%$$

 $\sigma_P = 14.2\%$

$$S_P = \frac{E(r_P) - r_f}{\sigma_P}$$
$$= \frac{11\% - 5\%}{14.2\%} = 0.42$$

Port Mean	11.00%			Bonds	Equity
Port Variance	0.0202		Mean	8.00%	13.00%
Port Std Dev	14.20%		StdDev	12.00%	20.00%
RF	5.00%				
Sharpe Ratio	0.4226				
			Weights	40.00%	60.00%
Correlation	0.3				
			Constraint	S	
			1	1	1
			Portfolio Va	ariance	
				Bonds	Equity
		40.00%	Bonds	0.002304	0.001728
		60.00%	Equity	0.001728	0.014400
			0.020160	0.004032	0.016128
			Covariance Matrix		
				Bonds	Equity
			Bonds	0.014400	0.007200
			Equity	0.007200	0.040000

$$E(r_p) = w_1 E(r_1) + w_2 E(r_2) + \dots + w_N E(r_N)$$

$$\sigma^2(r_p) = w_1^2 * \sigma^2(r_1) + w_2^2 * \sigma^2(r_2) + 2 * w_1 w_2 Cov(r_1, r_2)$$

$$\rho_{i,j} = \frac{cov(r_i, r_j)}{\sigma_i \sigma_j}$$

$$U = E(r) - \frac{1}{2}A\sigma^2$$

Expected return on the complete portfolio:

$$E(r_C) = r_f + y[E(r_P) - rf]$$

$$\sigma_C = y \times \sigma_P$$

$$\max_{y} U = E(r_C) - \frac{1}{2} A \sigma_C^2$$

$$\max_{y} U = r_f + y[E(r_P) - rf] - \frac{1}{2}Ay^2\sigma_p^2$$

$$y^* = \frac{E(r_P) - rf}{A\sigma_p^2}$$

Optimal Allocation to P: A=4

$$y^* = \frac{E(r_P) - r_f}{A\sigma_P^2} = \frac{11\% - 5\%}{4 \times (14.2\%)^2} = 0.7439$$

- Security selection
 - ➤ Determine the risk-return opportunities available
 - ➤ All portfolios that lie on the minimumvariance frontier from the global minimum-variance portfolio and upward provide the best risk-return combinations
- Search for the CAL with the highest reward-to-variability ratio
 - ➤ Everyone invests in P, regardless of their degree of risk aversion
 - ✓ More risk-averse investors put less in P
 - ✓ Less risk-averse investors put more in P

- Capital Allocation and the Separation Property
 - ➤ The portfolio choice problem may be separated into two independent tasks
 - ✓ Determination of the optimal risky portfolio is purely technical
 - ✓ Allocation of the complete portfolio to risk-free versus the risky portfolio depends on personal preference

Optimal Portfolios and Nonnormal Returns

- > Fat-tailed distributions can result in extreme values of VaR and ES.
- ➤If other portfolios provide sufficiently better VaR and ES values than the meanvariance efficient portfolio, we may prefer these when faced with fat-tailed distributions.

- Passive Strategies: The Capital Market Line
 - ➤ Determination of the assets to include in P may result from a passive or an active strategy.
 - ➤ A passive strategy describes a portfolio decision that avoids any direct or indirect security analysis.
 - ➤ A natural candidate for a passively held risky asset would be a well-diversified portfolio of common stocks.

	Average Ann	ual Returns	U.S. Equity Market					
Period	U.S. Equity Market	1-Month T-Bills	Excess Return	Standard Deviation	Sharpe Ratio			
1927–2018	11.72	3.38	8.34	20.36	0.41			
1927-1949	9.40	0.92	8.49	26.83	0.32			
1950-1972	14.00	3.14	10.86	17.46	0.62			
1973-1995	13.38	7.26	6.11	18.43	0.33			
1996–2018	10.10	2.21	7.89	18.39	0.43			

	Monthly	Annualized			AMD	AMZN	FORD	JPM	NVDA	PFE	TGT	XOM
Port Mean	1.88%	25.05%		Mean	0.95%	1.69%	0.15%	0.87%	2.34%	0.26%	0.73%	0.64%
Port Variance	0.0087	0.1044		StdDev	16.80%	10.45%	13.17%	7.79%	13.82%	5.98%	7.81%	6.57%
Port Std Dev	9.33%	32.30%										
RF	0.41%	5.00%										
Sharpe Ratio	0.1580			Weights	0.00%	43.44%	0.00%	12.05%	44.51%	0.00%	0.00%	0.00%
				Constraint	S							
				1		1	1	1	1	1	1	1
				Portfolio V	ariance							
					AMD	AMZN	FORD	JPM	NVDA	PFE	TGT	XOM
			0.00%	AMD	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
			43.44%	AMZN	0.000000	0.002060	0.000000	0.000086	0.001144	0.000000	0.000000	0.000000
			0.00%	FORD	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
			12.05%	JPM	0.000000	0.000086	0.000000	0.000088	0.000153	0.000000	0.000000	0.000000
			44.51%	NVDA	0.000000	0.001144	0.000000	0.000153	0.003782	0.000000	0.000000	0.000000
			0.00%	PFE	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
			0.00%	TGT	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
			0.00%	XOM	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
				0.008697	0.000000	0.003290	0.000000	0.000327	0.005079	0.000000	0.000000	0.000000
				Covarianc	e Matrix							
					AMD	AMZN	FORD	JPM	NVDA	PFE	TGT	XOM
				AMD	0.028238	0.007100	0.007415	0.004878	0.013188	0.002931	0.003786	0.001575
				AMZN	0.007100	0.010915	0.003685	0.001647	0.005915	0.000905	0.001703	0.000677
				FORD	0.007415	0.003685	0.017352	0.004850	0.005592	0.001378	0.003809	0.002817
				JPM	0.004878	0.001647	0.004850	0.006061	0.002857	0.001776	0.002069	0.001799
				NVDA	0.013188	0.005915	0.005592	0.002857	0.019092	0.001275	0.002959	0.001986
				PFE	0.002931	0.000905	0.001378	0.001776	0.001275	0.003571	0.000867	0.000917
				TGT	0.003786	0.001703	0.003809	0.002069	0.002959	0.000867	0.006099	0.000808
				XOM	0.001575	0.000677	0.002817	0.001799	0.001986	0.000917	0.000808	0.004322

What is next?

- Index Models and The Capital Asset Pricing Model
 - The Single-Index Model
 - ➤ The Capital Asset Pricing Model
 - > Reading(s): BKM Ch. 8 & 9
 - ➤ Assignment #1 (Due before Lecture 11)
 - Suggested Problems
 - ✓ **Ch. 7:** 4-10, 12, 22-27.
 - ✓ Ch. 7 CFA Problems: 1-4, 12.

InvestmentsFinance 2 - BFIN

Dr. Omer CAYIRLI

Lecture 5