July - December 2022

Summer/Fall 2022

CONTACT INFORMATION

Mailing Address:

Space Sciences Bldg. *E-Mail:* coconnor@astro.cornell.edu
Cornell University *ORCID:* 0000-0003-3987-3776

Ithaca, NY 14853

EDUCATION

Cornell University

Ph.D. Candidate, Astronomy and Space Sciences Expected: August 2024

- Advisor: Prof. Dong Lai

M.S., Astronomy and Space Sciences

December 2020

University of California, Los Angeles

B.S., Astrophysics June 2018

Cum laude, Highest Honors in Physics and Astronomy

- Thesis: The Effect of Giant Planets on the In Situ Assembly of Compact Planetary Systems

Advisor: Prof. Brad Hansen

RESEARCH INTERESTS **Theoretical astrophysics:** Astrophysical dynamics. Stellar and planetary astrophysics: formation and dynamical evolution of planets; effects of stellar evolution; white-dwarf planets and origin of atmospheric pollution. Compact objects and gravitational wave sources.

RESEARCH EXPERIENCE

Kavli Insitute for Theoretical Physics, University of California, Santa Barbara

KITP Graduate Fellowship

Cornell University

Graduate Research 2019 – pres.

Advisor: Prof. Dong Lai

University of California, Los Angeles

Undergraduate Research and Honors Research 2016 – 2018

Advisors: Prof. Brad Hansen, Prof. Smadar Naoz

Galactic Center Group Research Internship 2016

Advisors: Dr. Shoko Sakai, Prof. Andrea Ghez

Honors & Awards

KITP Graduate Fellowship, UC Santa Barbara

Sadov Graduate Student Fellowship, Cornell 2022

NASA Space Grant Graduate Fellowship 2021

NSF GRFP Honorable Mention 2020

Cornell University First-Year Graduate Student Fellowship 2018

Charles Geoffrey Hilton Award, UCLA Physics and Astronomy 2018

Undergraduate Research Scholarship, UCLA 2017

REFEREED

As lead author:

PUBLICATIONS [

[1] **C. E. O'Connor**, J. Teyssandier, D. Lai. Secular chaos in white-dwarf planetary systems: origins of metal pollution and short-period planetary companions. 2022, MNRAS, in press. arXiv:2111.08716

[2] C. E. O'Connor, B. Liu, D. Lai. Enhanced Lidov–Kozai migration and the formation of the transiting giant planet WD 1856+534 b. 2021, MNRAS, 501, 507–514. doi:10.1093/mnras/staa3723

- [3] C. E. O'Connor, D. Lai. High-eccentricity migration of planetesimals around polluted white dwarfs. 2020, MNRAS, 498, 4005–4020. doi:10.1093/mnras/staa2645
- [4] C. E. O'Connor, B. M. S. Hansen. Constraining planetary migration and tidal dissipation with coeval hot Jupiters. 2018, MNRAS, 477, 175–189. doi:10.1093/mnras/sty645

As co-author:

[5] S. Xu, et al. (including C. E. O'Connor). Gemini/GMOS transmission spectroscopy of the grazing planet candidate WD 1856+534 b. 2021, AJ, 162, 296. doi:10.3847/1538-3881/ac2d26

TALKS, SEMINARS & POSTERS

- [1] C. E. O'Connor, J. Teyssandier, D. Lai. Secular chaos in white-dwarf planetary systems. 52nd Annual Meeting of Division on Dynamical Astronomy, May 2021. (virtual meeting; contributed talk)
- [2] C. E. O'Connor, B. Liu, D. Lai. Enhanced Lidov-Kozai migration and the formation of WD 1856 b.
 - TRiple EvolutioN and DYnamics 3 (TRENDY-3) workshop, Northwestern University, March 2021.
 (virtual meeting; contributed talk)
 - AAS Meeting 237, January 2021. (virtual meeting; contributed talk)
 - Emerging Researchers in Exoplanet Science (ERES) symposium, Princeton University. May 2021. (virtual meeting; contributed talk; plenary session)
- [3] C. E. O'Connor, D. Lai. High-e migration of planetesimals around polluted white dwarfs. 51st Annual Meeting of Division on Dynamical Astronomy, August 2020. (virtual meeting; contributed talk)
- [4] C. E. O'Connor, B. M. S. Hansen. The perturbed assembly of compact planetary systems.
 - AAS Meeting 233, Seattle, WA, January 2019. (contributed poster)
 - Undergraduate Research Poster Day, UCLA, May 2018. (contributed poster)
- [5] C. E. O'Connor, A. K. Gautam, S. Sakai, T. Do, A. M. Ghez, J. Lu, M. R. Morris, G. Witzel, B. Sitarski, S. Chappell. An enigmatic variable star in the backyard of Sgr A*. AAS Meeting 229, Grapevine, TX, January 2017. (contributed poster)

OBSERVING PROPOSALS

[1] Revealing the Atmospheric Composition of a White Dwarf Planet. JWST Cycle 1, 13 hr, GO 2358 (PI: R. J. MacDonald).

TEACHING EXPERIENCE

Cornell University

KPERIENCE Head Graduate Teaching Assistant

Astronomy 1101: From New Worlds to Black Holes – introductory lecture course

Fall 2021

Graduate Teaching Assistant

• Astronomy 1102: Our Solar System – introductory lecture course

Spring 2020

• Astronomy 4410: Experimental Astronomy – advanced laboratory course

Fall 2019