	Sistemi Operativi – SECONDO cola:	
Università degli Studi di Padova - Corse	o di Laurea in Informatica	
Regole dell'esam Il presente esame scritto deve essere svolto in forma individuale in un te Non è consentita la consultazione di libri o appunti in forma cartacea o e La correzione avverrà in data e ora comunicate dal docente; i risultati sa Il candidato riporti generalità e matricola negli spazi indicati in alto e in	empo massimo di 60 min dalla su elettronica, né l'uso di palmari e t ranno esposti sul sito del docente	elefoni cellulari.
Quesito 1:		- T. (D.)
DOMANDA In un sistema di memoria a paginazione, il <i>Translation Lookas</i>	side Buffer (TLB) velocizza la	Vero/Falso
traduzione di indirizzi fisici in indirizzi virtuali		
La gestione della memoria con segmentazione può ridurre il co	onsumo di memoria, in quanto	
consente a più processi di condividere blocchi di codice e di dati Nella gestione della memoria con paginazione, il fenomeno della	frammentazione interna è tanto	
meno rilevante quanto più la lunghezza media dei programmi è gran		
pagina	-	
Molti page fault su un processo non modificano le prestazioni degli a	altri processi	
Il nome e la dimensione sono due attributi di un file NTFS è il file system più utilizzato dai sistemi operativi GNU/Linux		<u> </u>
Con NTFS è possibile che il file system scriva il contenuto di file d direttamente nel record dell'MFT		
rmdir è un comando GNU/Linux per rinominare directory		
Quesito 2: Si consideri l'algoritmo AGING di <i>page replacement</i> con contatore (o si rispettivamente le pagine 1 2 3 e 4 di un certo processo. Si supponga ch all'istante <i>t0</i> i contatori siano inizializzati come segue: contatore pagina 1: 010 contatore pagina 2: 111 con	e subito dopo uno sweep (aggior	
All'istante $t1$ avviene uno $sweep$. Tra $t0$ e $t1$ è stata eseguita la seguente pagina 1, pagina 3, pagina 1, pagina 3.	sequenza di accessi a memoria, r	nell'ordine:
[2.A] Che valore avranno i contatori dopo lo <i>sweep</i> in t1?		
contatore pagina 1: contatore pagina 2: con	ntatore pagina 3: conta	tore pagina 4:

[2.B] Supponendo che immediatamente dopo t1 si verifichi un page fault, quale pagina sarebbe rimpiazzata? Perché?

[2.C] Supponendo invece che (al posto del caso precedente) tra t0 e t1 fossero stati eseguiti i seguenti accessi in memoria in sequenza:

pagina 1, pagina 3, pagina 4, pagina 3, pagina 2, pagina 3

In caso di *page fault* immediatamente dopo *t1*, quale pagina sarebbe rimpiazzata? (indicare anche come si arriva alla risposta)

	Sistemi Operativi – S	ECONDO COMPITINO – Ver. A
Cognome e nome:	Matricola:	Posto:

Quesito 3:

Sia data una partizione di disco ampia 128 GB organizzata in blocchi dati di ampiezza 1 KB. Si considerino degli indirizzi di dimensione minima (ma multipla di 8 bit) per indirizzare i blocchi di tale partizione. Si determini quindi l'ampiezza massima di file ottenibile per l'architettura di file system ext2fs nel caso pessimo di contiguità nulla, assumendo i-node ampi 512 B, i-node principale contenente 13 indici di blocco e 1 indice di I, II e III indirezione ciascuno. Si determini poi il rapporto inflattivo che ne risulta, ossia l'onere proporzionale dovuto alla memorizzazione delle strutture di rappresentazione rispetto a quella dei dati veri e propri.

Effettuati tali calcoli si discuta se e con quale rapporto inflattivo le architetture FAT e NTFS rispettivamente possano rappresentare file di tale ampiezza nella partizione data, sotto le medesime ipotesi di contiguità nulla. Per l'architettura NTFS si assumano record ampi 512 B, 208 B riservati all'attributo dati nel record principale e 400 B nei record di estensione.

Cognome e nome: ______ Matricola: ______ Posto: _____

Soluzione

Soluzione al Quesito 1

DOMANDA	Vero/Falso
In un sistema di memoria a paginazione, il Translation Lookaside Buffer (TLB) velocizza la	F
traduzione di indirizzi fisici in indirizzi virtuali	
La gestione della memoria con segmentazione può ridurre il consumo di memoria, in quanto consente a più processi di condividere blocchi di codice e di dati	V
Nella gestione della memoria con paginazione, il fenomeno della frammentazione interna è tanto meno rilevante quanto più la lunghezza media dei programmi è grande rispetto alla dimensione della pagina	V
Molti page fault su un processo non modificano le prestazioni degli altri processi	F
Il nome e la dimensione sono due attributi di un file	V
NTFS è il file system più utilizzato dai sistemi operativi GNU/Linux	F
Con NTFS è possibile che il file system scriva il contenuto di file di piccola dimensione (es. <1KB) direttamente nel record dell'MFT	V
rmdir è un comando GNU/Linux per rinominare directory	F

Soluzione al Quesito 2

[2.A] contatore pagina 1: _101_ contatore pagina 2: _011_ contatore pagina 3: _100_ contatore pagina 4: _010_

[2.B] Sostituirebbe la pagina 4 perché ha il valore di contatore più basso fra tutti.

[2.C] Sostituirebbe la pagina 3 perché ha il valore di contatore più basso fra tutti (101, 111, 100, 110)

Soluzione al Quesito 3

In questa soluzione useremo la notazione informatica tradizionale, con prefissi che denotano potenze di 2.

Essendo la memoria secondaria ampia 128 GB e i blocchi dati ampi 1 KB, è immediato calcolare

che sono necessari: $\left[\frac{128GB}{1KB}\right] = 128 \text{ M} = 2^7 \times 2^{20} = 2^{27} \text{ indici, la cui rappresentazione binaria banalmente richiede 27 bit.}$

Stante l'ovvio vincolo che la dimensione dell'indice debba essere un multiplo di un "ottetto" (8 bit), otteniamo la dimensione di 32 bit (4 B).

File system di tipo ext2fs:

Sotto queste ipotesi, il file di massima dimensione rappresentabile dall'architettura ext2fs fissata dal quesito sarà composto da:

- 13 blocchi, risultanti dall'utilizzo dei corrispondenti indici diretti presenti nell'i-node principale, al costo di 1 i-node, pari a 512 B
- $\left\lfloor \frac{512B}{4B} \right\rfloor$ = 128 blocchi, risultanti dall'utilizzo dell'intero i-node secondario denotato dall'indice di I indirezione

presente nell'i-node principale, al costo di 1 i-node, pari a 512 B

- $128^2 = 2^{14} = 16$ K blocchi, risultanti dall'utilizzo dell'indice di II indirezione, al costo di 1 + 128 = 129 i-node, pari a: $129 \times 512B = (4.096 + 128)B = (2^{16} + 512)B = 66.048$ B
- $128^3 = 2^{21} = 2$ M blocchi, risultanti dall'utilizzo dell'indice di III indirezione, al costo di $1 + 128 + 128^2 = 16.513$ inode, pari a: 16.513×512 B = 8.454.656 B

corrispondenti a 13 + 128 + 16.384 + 2.097.152 = 2.113.677 blocchi ampi 1 KB, al costo complessivo di 1 + 1 + 129 + 16.513 = 16.644 i-node

i-node ampi 128 B, per un rapporto inflattivo di: $\frac{16.644 \times 512 \, \text{B}}{2.113.677 \times 1 \, \text{KB}} = \frac{16.644}{2.113.677 \times 2} = 0,39\%.$

Vediamo ora di determinare se e in che modo le architetture di file system FAT e NTFS siano in grado di rappresentare file di tale ampiezza sotto le ipotesi fissate dal quesito.

File system di tipo FAT:

La struttura FAT, che rappresenta la vista dell'intera partizione in termini di blocchi dati, sarà composta da $\left\lceil \frac{128GB}{1KB} \right\rceil = 128 \text{ M}$

celle ampie 4 B, una per indice di blocco: di queste, il file che dobbiamo rappresentare ne occuperà 2.113.677, per un rapporto inflattivo — calcolato considerato che l'architettura FAT concettualmente usa l'intera struttura per ogni singolo file — pari a:

 $\frac{128\,\mathrm{M} \times 4\,\mathrm{B}}{2.113.677\,\mathrm{KB}} = \frac{512\,\mathrm{MB}}{2.113.677\,\mathrm{KB}} = \frac{524.288\,\mathrm{KB}}{2.113.677\,\mathrm{KB}} = 24,80\%$

Nota: anche il caso 28 bit (anziché 32 bit = 4B è stata considerata corretta per quanto discusso in aula sulla FAT-32).

File system di tipo NTFS:

Dei 208 B riservati all'attributo dati nel record principale, 2×4 B = 8 B saranno riservati alla coppia {base, indice}, mentre i rimanenti 208 - 8 = 200 B potranno essere utilizzati per denotare le sequenze contigue che, sotto le ipotesi di contiguità nulla fissate del quesito, sono tutte ampie 1 blocco. Poiché ciascuna sequenza di tipo {inizio, fine} richiede 8 B, il record principale potrà ospitare: $\left| \frac{200B}{8B} \right| = 25$, mentre un singolo *record* di estensione dispone di 400 B per la memorizzazione di $\left| \frac{400B}{8B} \right| = 50$

ulteriori sequenze. Ne segue che, per rappresentare un file dell'ampiezza data, l'architettura NTFS necessiterà, in prima approssimazione, di: $1 + \left\lceil \frac{2.113.677 - 25blocchi}{50blocchi/record} \right\rceil = 1 + \left\lceil \frac{2.113.652}{50} \right\rceil = 1 + 42.274 = 42.275 \ record.$

In conclusione, un rapporto inflattivo pari a: $\frac{42.275 \times 512B}{2.113.677 \text{ KB}} = 1 \%$.

Soluzione al Quesito 4

Vista la dimensione di pagina allora gli ultimi 6 bit sono l'offset all'interno della pagina mentre i precedenti indicano la pagina. Dunque potremmo riscrivere gli indirizzi logici separando le due parti

- **a)** 0000001 101001
- **b**) 0000010 010110
- c) 0000100 000101
- **d)** 0000010 000100

Usando i primi sette bit come selettori nella tabella delle pagine otteniamo che

- a) pagina 1, è out, quindi page fault.
- b) pagina 2 pagina valida, (sostituisco prima parte con quanto dentro la tabella delle pagine) diventa 00001010110
- c) pagina 4 pagina valida, (sostituisco prima parte con quanto dentro la tabella delle pagine) diventa 00011000101
- d) pagina 2 pagina valida, (sostituisco prima parte con quanto dentro la tabella delle pagine) diventa 00001000100

Soluzione al Quesito 5

Politica di rimpiazzo **FIFO**; totale *page fault*? **_14**_ (quelli in grassetto)

r1	r2	r3	r4	r2	r1	r5	r6	r2	r1	r2	r3	r7	r6	r3	r2	r1	r2	r3	r6
1	2	3	4	4	4	5	6	2	1	1	3	7	6	6	2	1	1	3	3
	1	2	3	3	3	4	5	6	2	2	1	3	7	7	6	2	2	1	1
		1	2	2	2	3	4	5	6	6	2	1	3	3	7	6	6	2	2
			1	1	1	2	3	4	5	5	6	2	1	1	3	7	7	6	6

Politica di rimpiazzo **LRU**; totale *page fault*? **_10**_ (quelli in grassetto)

					1 (, ,		_ \ 1	\overline{c}		/								
r1	r2	r3	r4	r2	r1	r5	r6	r2	r1	r2	r3	r 7	r6	r3	r2	r1	r2	r3	r6
1	2	3	4	2	1	5	6	2	1	2	3	7	6	3	2	1	2	3	6
	1	2	3	4	2	1	5	6	2	1	2	3	7	6	3	2	1	2	3
		1	2	3	4	2	1	5	6	6	1	2	3	7	6	3	3	1	2
			1	1	3	4	2	1	5	5	6	1	2	2	7	6	6	6	1

Politica di rimpiazzo **Optimal**; totale *page fault?* **_8**_ (quelli in grassetto)

r1	r2	r3	r4	r2	r1	r5	r6	r2	r1	r2	r3	r 7	r6	r3	r2	r1	r2	r3	r6
1	2	3	4	4	4	5	6	6	6	6	6	7	7	7	7	1	1	1	1
	1	2	3	3	3	3	3	3	3	3	3	6	6	6	6	6	6	6	6
		1	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3
			1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2