Question	Answer	Marks	Guidance
(a)	$x \neq 1 \text{ or } x < 1, x > 1 \text{ or } (-\infty, 1), (1, \infty)$ $\left[x \in \mathbb{R}\right]$	B1	Must be x not $f^{-1}(x)$ or y . Do not accept $1 < x < 1$.
		1	
(b)	$y = \frac{2x+1}{2x-1}$ leading to $(2x-1)y = 2x+1$ leading to $2xy-y = 2x+1$	*M1	Setting $y =$, removing fraction and expanding brackets.
	2xy - 2x = y + 1 leading to $2x(y-1) = y + 1$	DM1	Reorganising to get $x =$. Condone \pm sign errors only.
	leading to $x = \frac{y+1}{2(y-1)}$		
	$[f^{-1}(x)] = \frac{x+1}{2(x-1)}, \frac{x+1}{x-1} \times \frac{1}{2} \text{ or } \frac{1}{x-1} + \frac{1}{2}$	A1	OE. Must be in terms of x. Do not allow $\frac{x+1}{x-1} \div 2$.
		3	
(c)	(their $f^{-1}(3)$) leading to $(their f^{-1}(3))^2 + 4$ $[f^{-1}(3) = 1, 1 + 4 =]$	M1	Correct order of operations and substitution of $x = 3$ needed.
	5	A1	
		2	
(d)	Sight of 'not one to one' or 'many to one' or 'one to many'	B1	Any reason mentioning 2 values, or + and —, such as: square root gives 2 values or horizontal line test crosses curve twice or 2 values because of turning point or 2 values because it is a quadratic.
		1	

Question	Answer	Marks	Guidance
(e)	$f(x) = 1 + \frac{2}{2x - 1} = \frac{2x - 1}{2x - 1} + \frac{2}{2x - 1} = \frac{2x + 1}{2x - 1}$	B1	AG Do not condone equating expressions and verification.
	$f'(x) = -4(2x-1)^{-2}$ or $2(2x-1)^{-1} + \left\{ -(2x+1)2(2x-1)^{-2} \right\}$ or $\frac{(2x-1)2 - 2(2x+1)}{(2x-1)^2}$	*M1	For $k(2x-1)^{-2}$ and no other terms or correct use of the product or quotient rule then ISW.
	Gradient $m = -4$	A1	Differentiation must have clearly taken place.
	Equation of tangent is $y-3=-4(x-1)$ [$\Rightarrow y=-4x+7$]	DM1	Using (1, 3) in the equation of a line with <i>their</i> gradient.
	Crosses axes at $\left(\frac{7}{4},0\right)$ and $\left(0,7\right)$	A1 FT	SOI from <i>their</i> straight line or by integration from 0 to 'their 7/4'.
	$[Area =] \frac{49}{8}$	A1	OE e.g. 6.13 AWRT. If M0 A0 DM0, SC B2 available for correct answer.
		6	