

Introdução à Engenharia Química e Bioquímica

Aula 10
MIEQB
ano lectivo de 2020/2021

Balanços materiais a processos com reacção

- Estequiometria de uma reacção
- Reagente limitante e reagente em excesso; percentagem de excesso
- Conversão de uma reacção
- Rendimento e selectividade de uma reacção

SCIENCE & TECHNOLOGY

Sistema reactivo, Estado estacionário

$$[(Entrada) + (Produção)] - [(Saída) + (Consumo)] = 0$$
IN OUT

Número de equações independentes:

Número de equações = Número de substâncias presentes

Por causa da estequiometria da reacção

Reacção Química – a estequiometria da reacção impõe restrições nas quantidades relativas de reagentes e produtos nas correntes de entrada e saída.

Estequiometria: Teoria das proporções em que as espécies químicas se combinam umas com as outras.

Equação estequiométrica: Balanço do número relativo de moléculas ou moles de reagentes e produtos que participam na reacção.

Coeficientes estequiométricos: Números que precedem as fórmulas de cada espécie.

Exemplo...

4.1

A oxidação de etileno para produzir óxido de etileno dá-se segundo a reacção

$$2C_2H_4 + O_2 \rightarrow 2C_2H_4O$$

A alimentação ao reactor contém 100 kg de etileno (M = 28) e 100 kg de oxigénio (M = 32).

- a) Qual o reagente limitante?
- b) Qual a percentagem de reagente em excesso?
- c) Se a reacção for completa quanto restará do reagente em excesso e qual será a quantidade de produto formada?
- d) Se a reacção for de 30% qual a quantidade de reagentes e de produtos no final da reacção?
- e) Qual é a conversão da reacção quando no final restam 60 kg de oxigénio?

4.1

A oxidação de etileno para produzir óxido de etileno dá-se segundo a reacção

$$2C_2H_4 + O_2 \rightarrow 2C_2H_4O$$

A alimentação ao reactor contém 100 kg de etileno (M = 28) e 100 kg de oxigénio (M = 32).

- a) Qual o reagente limitante?
- b) Qual a percentagem de reagente em excesso?
- c) Se a reacção for completa quanto restará do reagente em excesso e qual será a quantidade de produto formada?
- d) Se a reacção for de 30% qual a quantidade de reagentes e de produtos no final da reacção?
- e) Qual é a conversão da reacção quando no final restam 60 kg de oxigénio?

Reagente limitante e Reagente em excesso

quando os reagentes não estão em proporção estequiométrica, o reagente que se consome totalmente (caso a conversão seja total) é o <u>reagente limitante</u>; os restantes reagentes são <u>reagentes em excesso</u>.

100 kg etileno = 3.57 kmol 100 kg (O_2) = 3.125 kmol

100 kg etileno = 3.57 kmc 100 kg (O_2) = 3.125 kmol

$$1mol\ O_2 \rightarrow 2\ mol\ C_2H_4$$
 $3.125\ kmol\ O_2 \rightarrow 2\ \times 3.125 = 6.25\ kmol\ C_2H_4$ Mas só temos $3.57\ kmol\ C_2H_4$! Logo C_2H_4 é o reagente limitante

100 kg etileno = 3.57 kmol 100 kg (O_2) = 3.125 kmol

$$1 mol \ O_2 \rightarrow 2 \ mol \ C_2 H_4$$

 $3.125 \ kmol \ O_2 \rightarrow 2 \ mol \times 3.125 = 6.25 \ kmol \ C_2 H_4$

Reagente limitante é o Etileno Reagente em excesso é o Oxigénio

Percentagem de excesso: define-se sempre em moles assumindo uma conversão total do reagente limitante, de acordo com a seguinte expressão:

$$\%Excesso = \left(\frac{N - N_S}{N_S}\right) \times 100$$

Onde:

N- designa o número de moles do reagente em excesso inicialmente presentes

 N_s - designa o número de moles do reagente em excesso estequiometricamente necessário para converter todo o reagente limitante.

a percentagem de excesso pode ser superior a 100%!

SCIENCE & TECHNOLOGY

4.1. b) Qual a percentagem de reagente em excesso?

$2C_2H_4 + O_2 \rightarrow 2C_2H_4O$

$$\% Excesso = \left(\frac{N - N_s}{N_s}\right) * 100$$

Moles do reagente em excesso inicialmente presentes

presentes
$$\% Excesso de O_2 = \frac{3.125 - \left(\frac{1}{2}\right) \times 3.57}{\left(\frac{1}{2}\right) \times 3.57} \times 100 = 75.1\%$$

Moles do reagente em excesso estequiometricamente necessários para converter todo o reagente limitante.

4.1

A oxidação de etileno para produzir óxido de etileno dá-se segundo a reacção

$$2C_2H_4 + O_2 \rightarrow 2C_2H_4O$$

A alimentação ao reactor contém 100 kg de etileno (M = 28) e 100 kg de oxigénio (M = 32).

- a) Qual o reagente limitante?
- b) Qual a percentagem de reagente em excesso?
- c) Se a reacção for completa quanto restará do reagente em excesso e qual será a quantidade de produto formada?
- d) Se a reacção for de 30% qual a quantidade de reagentes e de produtos no final da reacção?
- e) Qual é a conversão da reacção quando no final restam 60 kg de oxigénio?

Conversão: define-se sempre em relação ao <u>reagente limitante</u>, de acordo com a seguinte expressão:

% Conversão =
$$\left(\frac{N_0 - N_f}{N_0}\right) \times 100 = \frac{N_C}{N_0} \times 100$$

Onde:

 N_o - designa o número de moles do reagente limitante inicialmente presentes

 N_f - designa o número de moles final do reagente limitante

 N_c – designa o número de moles do reagente limitante convertidas

a percentagem de conversão varia entre 0-100%

4.1. c) Se a reacção for completa quanto restará do reagente em excesso e qual será a quantidade de produto formada?

Se X=100% (conversão da reacção for completa)

4.1. c) Se a reacção for completa quanto restará do reagente em excesso e qual será a quantidade de produto formada?

$$2C_2H_4 + O_2 \rightarrow 2C_2H_4O$$

Se X=100% (conversão da reacção for completa)

Formam-se: 3.57 $kmol\ C_2H_4O\ (1:1)$

$$nO_2 \ final = 3.125 - \left(\frac{1}{2}\right) \times 3.57 = 1.34 \ kmol$$

(Final = inicial - reagiu)

4.1. d) Se a reacção for de 30% qual a quantidade de reagentes e de produtos no final da reacção?

$$2C_2H_4 + O_2 \rightarrow 2C_2H_4O$$

Em relação ao reagente limitante Etileno

$$\% \ conv = \frac{3.57 - x}{3.57} = 0.3$$

$$x = 2.50 \ kmol \ C_2 H_{4 \ finais}$$

Ou seja reagem (convertem-se)= = $3.57-2.50 = 1.07 \text{ kmol } C_2H_4$

4.1. d) Se a reacção for de 30% qual a quantidade de reagentes e de produtos no final da reacção?

$$2C_2H_4 + O_2 \rightarrow 2C_2H_4O$$

Em relação ao reagente limitante Etileno

$$\% \ conv = \frac{3.57 - x}{3.57} = 0.3$$

$$x = 2.50 \ kmol \ C_2 H_{4 \ finais}$$

Em relação ao reagente em excesso O₂

$$nO_2 final = 3.125 - \left(\frac{1}{2}\right) \times 1.07$$

$$= 2.59 kmol$$

Ou seja reagem (convertem-se)=

$$=3.57-2.50 = 1.07 \text{ kmol } C_2H_4$$

Logo formam-se $1.07 \text{ kmol} C_2 H_4 O$

4.1. e) Qual é a conversão da reacção quando no final restam 60 kg de oxigénio?

$$2C_2H_4 + O_2 \rightarrow 2C_2H_4O$$

 $60 \ kg \ O_2 = 1.875 \ kmol$

Se restam 1.875 kmol O_2 quer dizer que reagiram 3.125 — 1.875 = 1.25 kmol

4.1. e) Qual é a conversão da reacção quando no final restam 60 kg de oxigénio?

$$2C_2H_4 + O_2 \rightarrow 2C_2H_4O$$

 $60 \ kg \ O_2 = 1.875 \ kmol$

Se restam 1.875 kmol O_2 quer dizer que reagiram 3.125 — 1.875 = 1.25 kmol

Por cada 1.25 kmol $O_2 \rightarrow reagem$ (convertidos) $2 \times 1.25 = 2.5$ kmol C_2H_4

$$\% \ conversão = \frac{2.5}{3.57} \times 100 = 70\%$$

Quando há várias reacções em jogo tem interesse definir o Rendimento de um dado produto da reacção

$$\begin{cases} aA \to cC & (desejado) \\ aA \to bB & (indesejado) \end{cases}$$

Há várias definições para o cálculo do rendimento de uma reacção!

Definição 1

$$\begin{cases} aA \to cC & (desejado) \\ aA \to bB & (indesejado) \end{cases}$$

$$\eta = \left(\frac{N_p}{N_{p,estequiom}}\right) \times 100$$

Onde:

 N_p - designa o número de moles de produto desejado formado $N_{p,estequim}$ - designa o número de moles de produto desejado formado se não houvesse reacções secundárias e <u>todo</u> o reagente limitante tivesse sido convertido (i.e., <u>100% conversão</u>)

Definição 2

$$\begin{cases} aA \to cC & (desejado) \\ aA \to bB & (indesejado) \end{cases}$$

$$\eta = \left(\frac{N_p * factor_estequiométrico}{N_c}\right) * 100$$

$$factor_estequiométrico = \frac{a}{c}$$

Onde:

 N_p - designa o número de moles de produto desejado formado N_c - designa o número de moles do reagente limitante convertidas

Selectividade

$$\begin{cases} aA \to cC & (desejado) \\ aA \to bB & (indesejado) \end{cases}$$

$$S = \left(\frac{N_p}{N_i}\right)$$

Onde:

 N_p - designa o número de moles de produto desejado formado N_i – designa o número de moles de produto indesejado formado

4.3

Num reactor contínuo em estado estacionário, produz-se etileno por desidrogenação de etano. Simultaneamente dá-se uma reacção indesejada com a formação de metano.

$$C_2H_6 \rightarrow C_2H_4 + H_2$$

 $C_2H_6 + H_2 \rightarrow 2CH_4$

A alimentação ao reactor contém 85% molar de etano e 15% de inertes. A corrente de produto contém 30.3% molar de etano, 10.7% de inertes, 28.6% de etileno, 26.8% de hidrogénio e 3.6% de metano. Calcule a conversão do etano e o rendimento em etileno.

4.3
$$C_2H_6 \rightarrow C_2H_4 + H_2$$

$$C_2H_6 + H_2 \rightarrow 2CH_4$$

Reactor 15% inertes

moles	1	2
Etano		
Inertes		
Etileno		
Hidrogénio		
Metano		
Total	100	

2

30.3% etano

10.7% inertes

28.6% etileno

26.8% hidrogénio

3.6% metano

Base de cálculo - 100 moles na corrente 1

4.3
$$C_2H_6 \rightarrow C_2H_4 + H_2$$

$$C_2H_6 + H_2 \rightarrow 2CH_4$$

1			2
85% etano 15% inertes		Reactor	30.3% etano 10.7% inertes
			28.6% etileno 26.8% hidrogénio
moles	1	2	3.6% metano

moles	1	2
Etano	85	
Inertes	15	
Etileno	0	
Hidrogénio	0	
Metano	0	
Total	100	

1º base de cálculo

2º Preenchemos corrente 1

3º Os inertes não são consumidos, logo ni1=ni2=15mol

Base de cálculo – 100 moles na corrente 1

4.3
$$C_2H_6 \rightarrow C_2H_4 + H_2$$

$$C_2H_6 + H_2 \rightarrow 2CH_4$$

| Reactor | 30.3% etano | 15% inertes | 28.6% etileno |

moles	1	2
Etano	85	42.48
Inertes	15 🛑	→ 15 \
Etileno	0	
Hidrogénio	0	
Metano	0	
Total	100	

28.6% etileno 26.8% hidrogénio

3.6% metano

1º base de cálculo

2º Preenchemos corrente 1

3º Os inertes não são consumidos logo ni1=ni2=15mol

Se 15 mol ---10.7% da corrente 2 n ----30.3% etano n= 42.48 mol etano

Base de cálculo – 100 moles na corrente 1

4.3
$$C_2H_6 \rightarrow C_2H_4 + H_2$$

 $C_2H_6 + H_2 \rightarrow 2CH_4$

Reactor

85% etano
15% inertes

2

30.3% etano
10.7% inertes
28.6% etileno
26.8% hidrogénio
3.6% metano

4º Fazer o mesmo para o etileno, metano, hidrogénio-apenas regra de 3 simples. 5º Soma-se o total da corrente 2

moles	1	2
Etano	85	42.48
Inertes	15	15
Etileno	0	40.09
Hidrogénio	0	37.57
Metano	0	5.05
Total	100	140.19

4.3
$$C_2H_6 \rightarrow C_2H_4 + H_2$$

 $C_2H_6 + H_2 \rightarrow 2CH_4$

15% inertes

85% etano

Reactor

30.3% etano

10.7% inertes

28.6% etileno

26.8% hidrogénio

3.6% metano

Conversão total do etano:

$$\% Conversão = \left(\frac{N_0 - N_f}{N_0}\right) * 100$$

$$X = \frac{85 - 42.48}{85} \times 100 = 50\%$$

moles	1	2
Etano	85	42.48
Inertes	15	15
Etileno	0	40.09
Hidrogénio	0	37.57
Metano	0	5.05
Total	100	140.19

4.3
$$C_2H_6 \rightarrow C_2H_4 + H_2$$

 $C_2H_6 + H_2 \rightarrow 2CH_4$

Rendimento em etileno:

$$\eta = \left(\frac{N_p}{N_{p,estequiom}}\right) \times 100$$

moles	1	2
Etano	85	42.48
Inertes	15	15
Etileno	0	40.09
Hidrogénio	0	37.57
Metano	0	5.05
Total	100	140.19

N_D - designa o número de moles de produto desejado formado

N_{p,estequim} – designa o número de moles de produto desejado formado se não houvesse reacções secundárias e <u>todo</u> o reagente limitante tivesse sido convertido (i.e., <u>100%</u> <u>conversão</u>)

$$\eta = \frac{40.09}{85} \times 100 = 47.2\%$$

4.3
$$C_2H_6 \rightarrow C_2H_4 + H_2$$

 $C_2H_6 + H_2 \rightarrow 2CH_4$

Rendimento em etileno:

$$\eta = \left(\frac{N_{p} * factor_estequiométrico}{N_{c}}\right) * 100$$

$$factor_estequiométrico = \frac{a}{c}$$

moles	1	2
Etano	85	42.48
Inertes	15	15
Etileno	0	40.09
Hidrogénio	0	37.57
Metano	0	5.05

 N_p - designa o número de moles de produto desejado formado N_c - designa o número de moles do reagente limitante convertidas

$$\eta = \frac{40.09 \times 1}{85 - 42.48} \times 100 = 94\%$$

4.2

Produz-se acrilonitrilo numa reacção entre propileno, amónia e oxigénio:

$$C_3H_6 + NH_3 + \frac{3}{2}O_2 \rightarrow C_3H_3N + 3H_2O$$

A alimentação ao reactor (100 mol) contém 10% molar de propileno, 12% molar de amónia, e 78% molar de oxigénio. Pretende-se uma conversão de 30% no reagente limitante. Determine qual o reagente limitante, a percentagem em excesso dos restantes reagentes, e as quantidades de reagentes e produtos no final da reacção.

4.2 $C_3H_6 + NH_3 + \frac{3}{2}O_2 \rightarrow C_3H_3N + 3H_2O_3$

i) Determinação do reagente limitante

A alimentação ao reactor contém:

$$(n_{C_3H_6})_0 = 10 mol$$
 $(n_{NH_3}/n_{C_3H_6})_0 = 12/10 = 1.2$ $NH_3 _is _in _excess$ $(n_{NH_3}/n_{C_3H_6})_{stoich} = 1$ $(n_{O_2})_0 = 78 mol$ $(n_{O_2}/n_{C_3H_6})_0 = 78/10 = 7.8$ $(n_{O_2}/n_{C_3H_6})_{stoich} = 1.5$ $O_2 _is _in _excess$

4.2
$$C_3H_6 + NH_3 + \frac{3}{2}O_2 \rightarrow C_3H_3N + 3H_2O_3$$

i) Determinação do reagente limitante

Como o propileno é alimentado numa quantidade inferior às razões estequiométricas relativamente aos outros reagentes, o propileno será o reagente limitante

$$(n_{C_3H_6})_0 = 10 mol$$
 $(n_{C_3H_6}/n_{NH_3})_0 = 10/12 = 0,83$
 $(n_{NH_3})_0 = 12 mol$
 $(n_{NH_3}/n_{C_3H_6})_{stoich} = 1$
 $(n_{C_3H_6}/n_{O_2})_0 = 10/78 = 0,12$
 $(n_{C_3H_6}/n_{O_2})_{stoich} = 0,67$

4.2
$$C_3$$

$$C_3H_6 + NH_3 + \frac{3}{2}O_2 \rightarrow C_3H_3N + 3H_2O$$
 %Excesso = $\left(\frac{n - n_s}{n_s}\right) * 100$

$$\%Excesso = \left(\frac{n - n_s}{n_s}\right) * 100$$

Reactor

ii) Determinação da percentagem em excesso dos reagentes

Para **10 moles** de propileno na corrente de entrada, são precisos pela estequiometria:

$$n_{NH3} = 10 \ mol \ (1:1)$$

$$n_{NH3} = 10 \ mol \ (1:1)$$
 $n_{O2} = 10 \times \frac{3}{2} = \frac{30}{2} = 15 \ mol \ (1:\frac{3}{2})$

$$(\%Excesso)_{NH_3} = \left(\frac{n-n_s}{n_s}\right) * 100 = \left(\frac{12-10}{10}\right) * 100 = 20\%$$

$$(\%Excesso)_{O_2} = \left(\frac{n-n_s}{n_s}\right) * 100 = \left(\frac{78-15}{15}\right) * 100 = 420\%$$

N- moles do reagente em excesso iniciais

N_s - moles do reagente em excesso estequiometricamente necessário para converter todo o reagente limitante.

4.2
$$C_3H_6 + NH_3 + \frac{3}{2}O_2 \rightarrow C_3H_3N + 3H_2O_3$$

iii) Quantidades finais para conversão de 30% do reagente limitante:

$$n_{C3H6(2)} = 0.7 \times n_{C3H6(1)} = 0.7 \times 10 = 7 \text{ mol}$$
 70% não reage e sai na corrente 2.

Como entram 10 moles de propileno, só 3 moles efectivamente reagem (a extensão da reacção são 3 moles)

$$n_{NH3(2)} = n_{NH3(1)} - n_{NH3(que\ reagiu)} = 12 - 3 = 9\ mol$$
 (1:1)

$$n_{02(2)} = n_{02(1)} - n_{02(que\ reagiu)} = 78 - \frac{3}{2}(3) = 73.5\ mol\ (1:\frac{3}{2})$$

$$n_{C3H3N(sai\ em\ 2=formado)} = n_{C3H6(que\ reagiu)} = 3\ mol\ (1:1)$$

$$n_{H2O(sai\ em\ 2=formado)} = 3 \times n_{C3H6(que\ reagiu)} = 3 \times 3 = 9\ mol\ (1:3)$$