Efficient algorithms for the contextualization of molecular network models

- 1. Introduction: Network modeling / Systems Biology
- 2. Specific metabolic network models with fastcore / fastcormics
- 3. Specific signalling network models with optPBN / Falcon

Thomas Sauter

System Biology group
University of Luxembourg

"We are witnessing the emergence of the "data rich" era in biology..."

[S. Subramaniam, 2004, Jones, Research Trends, 2010 Su, sulab.org, 2013; Gilbert et al, Stand. Genomic Sci., 2012]

"The bottleneck ... has shifted from generating the data to interpreting results so as to derive insights into biological mechanisms."

"We cannot understand complex systems without modeling."

"The role of the model is to make something complex intelligible or understandable."

[O. Wolkenhauer, Front Physiol, 2014, "Why model?"]

"Why model?

The role of the model is to make something complex intelligible or understandable."

Testing for differences	Significance Analysis	Is there a difference between the two groups?
"before/after" "with/without"	95% CI= $\overline{X} \pm (t_{(n-1)}(5\%) \times \overline{SE})$	toward x y
Analysing covariaton	Correlation Analysis	Does a small/large value of x, coincide with a small/large value of y?
"coincides with"	$r_{x,y} = \frac{\sum_{i} x_i y_i}{\sqrt{\sum_{i} x_i^2 \sum_{i} y_i^2}}$	**************************************
Identifying groups	Cluster/Discriminant Analysis	Can the data be grouped on the basis of features x and y ?
"is similar to"	$D = \min_{i} \left\{ \min_{j} \left\{ \frac{d(i,j)}{\max_{k} d'(k)} \right\} \right\}$	y d d
Condensing data	Component/Factor Analysis	Explain the variability through a weighted linear combination of principal components.
"reduces to"	$X = U\Sigma W^T$	x ₂

"Why model?

The role of the model is to make something complex intelligible or understandable."

Fitting data	Regression Analysis	What is the predicted value of y , given x_1 and x_2 ?	
"relates to"	$y = f(x_1, \dots, x_n)$	x_2 f x_3	
Numerical predictions	Time Series Analysis	What is the predicted value of y, knowing past values of y?	
"follows"	y(t) = f(y(t-1), y(t-2),)	y Time	HOLL
Analyzing influences	Bayesian (network) Analysis	From the observed evidence, ${\rm H_2}$ is most probable.	an i
"Given E, the probability of H is"	$P(H_j E) = \frac{\Pr(E H_j)\Pr(H_j)}{\sum \Pr(E H_j)\Pr(H_j)}$	E H ₃	T expli
Investigating mechanisms	Dynamical Systems Theory	The response can be explained by a (bistable) switching mechanism.	0
"causally entails" "If Then"	$\frac{d}{dt}x_i = f_i(x_1(t), \dots, x_n(t), u(t))$	Stimulus	Power of explanation

"Systems biology is the science that studies how biological function emerges from the interactions between the components of living systems and how these emergent properties enable and constrain the behavior of those components."

Example Network Motif: Function?

[O. Wolkenhauer, Front Physiol, 2014, "Why model?"]

Systems approach / Function:

Output behavior as a function of input and time

Function:

Change detection / Adaptation

Systems approach:

Second example: Different wiring

Function: Filter — removes short inputs & act upon long inputs

Structure: Feedforward loops

Functions:

Change detection

Short input filter

Model based Data Integration and Analysis of Disease specific Networks

Data integration

Network analysis

Model based Data Integration and Analysis of Disease specific Networks

Network analysis

 Gene regulatory networks from epigenetic data

EPIC-DREM¹⁰

Data mining / machine learning

1 Nucleic Acids Research 2013, 1;42(3):1474-96 2 PLoS Comput Biol. 2014, Jan;10(1) 3 Cell Commun Signal. 2013, Jul 1;11:46 4 PLoS One. 2014 Jul 1;9(7):e98001 5 Bioinformatics 2017 1;33(21):3431-3436 6 Nature Protocols, accepted 7 Frontiers Physiol 2018, 9:550 8-11 in prep, subm, under rev

Metabolic models are

scaffolds for the integration of omics data

FASTCORE: Vlassis, Pires Pacheco & Sauter, 2014, Plos Comp Biol FASTCORMICS: Pires Pacheco et al, 2015, BMC genomics Benchmarking: Pires Pacheco et al, 2016, Front Physiol FASTCORMICS RNAseq: Pires Pacheco et al, in preparation

In COBRA toolbox: Nature Protocols, accepted

Fast Reconstruction of Compact Context-Specific Metabolic Network Models: Constraint Based Modelling

Metabolic network

Constraints

Bounds: vmax, v>0...

Balances: S*v =0

Mathematical representation: S-matrix

The FASTCORE family* principle

- Core reactions are known to be expressed (red) in the context of interest.
- 2) Core reactions are forced to carry a non-zero flux by the maximization of an approximation of the cardinality function
- 3) The inclusion of non-core (blue) reactions is minimized by a L1-regularization

FASTCORE: Vlassis, Pires Pacheco & Sauter, 2014, Plos Comp Biol FASTCORMICS: Pires Pacheco et al, 2015, BMC genomics Benchmarking: Pires Pacheco et al, 2016, Front Physiol FASTCORMICS RNAseq: Pires Pacheco et al, in preparation In COBRA toolbox: Nature Protocols, accepted

Benchmarking of the FASTCORE family

Criteria:

- computational demands
- accuracy
- Resolution power

(ability to capture metabolic variations between two context i.e. cell types)

Data used:

- Artificial data
- Real data

Strategies used:

- Comparison to independent references (Human Protein atlas, HepatoNet, etc.)
- Cross-validations
- Functionalities

Benchmarking Procedures for High-Throughput Context Specific Reconstruction Algorithms

¹Systems Biology Group, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg ²Department of Physics, Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, UK

Cancer cells have an altered metabolism that can be targeted

- Metabolic rewiring affects others hallmarks of cancer
- Specifically targeting cancer metabolism allows to reduce toxicity (on other cell types)

10005 models were built using the FASTCORMICS RNA-seq workflow

- TCGA dataset contains 10005 RNA-seq samples across 24 cancer types
- All 10005 models were built in less than 5 days

FASTCORMICS RNA-seq captures metabolic variation between different cancer types

KICH=Kidney Chromophobe
KIRC= Kidney renal clear cell carcinoma
KIRP=Kidney renal papillary cell carcinoma

Cancer-cells have a more compact metabolism

Cancer cells contain more essential genes= more potential drug targets

Application 2:

Identification of potential drug targets for drug repositioning

Gene essentiality analysis and datamining to find potential drug targets

in silico gene essentiality analysis

107 essential genes

Selection of potential non-cancer drugs to treat colorectal cancer

 17 drugs without anticancer reference

<u>Healthy (CCD18-CO – colonic fibroblast) vs. Cancer (T18 – primary) cells</u>

- 24 hour time interval because of missing time points for CCD18-CO cells
- Graphs show representative experiment in techn. triplicates +/- SD, experiments were repeated 3x (CCD18) and 10x (T18)

Outlook

 Refine the workflow to capture metabolic variation between patients sub-groups and to predict tailored

treatments

FASTCORE: Vlassis, Pires Pacheco & Sauter, 2014, Plos Comp Biol FASTCORMICS: Pires Pacheco et *al*, 2015, BMC genomics FASTCORMICS RNAseq: Pires Pacheco et *al*, in preparation In COBRA toolbox: Nature Protocols, accepted

Computational model based data integration and network analysis

Network analysis

- Metabolic networks
- Signaling networks
- SensitivityAnalysis / EarlywarningDyGloSA⁴

 Network curation using (probabilistic) Boolean modelling

optPBN^{3,5}
FALCON⁶

- 1 Nucleic Acids Research 2013, 1;42(3):1474-96
- 2 PLoS Comput Biol. 2014, Jan;10(1)
- 3 Cell Commun Signal. 2013, Jul 1;11:46
- 4 PLoS One. 2013, Dec 18;8(12):e82973
- 5 PLoS One. 2014 Jul 1;9(7):e98001
- 6 Bioinformatics 2017 1;33(21):3431-3436
- 7 Nature Protoc., accepted

Systems Biology

FALCON: A Toolbox for the Fast Contextualization of Logical Networks

Sebastien De Landtsheer ^{1,†}, Panuwat Trairatphisan ^{1,†}, Philippe Lucarelli ¹ and Thomas Sauter ^{1,*}

¹ Systems Biology Group, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg

Pipeline Structure: Optimization

DeLandtsheer et al. (2017) FALCON: A Toolbox for the Fast Contextualisation of Logical Networks. Bioinformatics. 2017 Jun 29. doi: 10.1093/bioinformatics/btx380.

Concept

Biological equivalent	Graphical form	Algebraic computation
Activation	$A \rightarrow Z(k)$	$Z_{t+1} = A_t * k$
Inhibition	A - Z (k)	$Z_{t+1} = 1 - (A_t * k)$
Complex formation	A AND B \rightarrow Z (k)	$Z_{t+1} = A_t * B_t * k$
Competitive interaction	A OR B \rightarrow Z (k)	$Z_{t+1} = 1 - [(1-A_t) * (1-B_t) * k]$
Non-competitive interaction	$A \rightarrow Z (k_1) B \rightarrow Z (k_2)$	$Z_{t+1} = A_t * k_1 + B_t * k_2$ (with $k_1 + k_2 = 1$)

$$X_{t}^{(i)} = \sum_{j_{+}=1}^{m} k_{j_{+}}^{(i)} Pa(X^{(i)})_{t-1}^{(j_{+})} * \left(1 - \sum_{j_{-}=1}^{l} k_{j_{-}}^{(i)} Pa(X^{(i)})_{t-1}^{j_{-}}\right)$$

Sums of activating signals

$$\sum_{i_{+}=1}^{m} k_{j_{+}}^{(i)} = 1$$

Sums of inhibiting signals

$$0 \le \sum_{i=1}^{l} k_{j_{-}}^{(i)} \le 1$$

DeLandtsheer et al. (2017) FALCON: A Toolbox for the Fast Contextualisation of Logical Networks. Bioinformatics. 2017 Jun 29. doi: 10.1093/bioinformatics/btx380.

FALCON: cancer specific PDGF signalling

With: P. Trairatphisan, M. Wiesinger, S. Haan, J. Pang, A. Mizera

FALCON: cancer specific PDGF signalling

With: P. Trairatphisan, M. Wiesinger, S. Haan, J. Pang, A. Mizera

^{*} PDGFRα mutants provided by Prof. Serge Haan

PDGF model in GIST context

FALCON: cancer specific PDGF signalling

With: P. Trairatphisan, M. Wiesinger, S. Haan, J. Pang, A. Mizera

Discussion & Conclusion FALCON

- Our modelling framework is capable of contextualizing logical networks with phosphoproteomics data
 - Lower fitting costs
 - Very fast
- The low computational costs allow for:
 - Larger networks and big data
 - Systems Analysis:
 - Parameter localization
 - Identifiability
 - KO simulations
 - Cell line comparison

Acknowledgements

UNIVERSITÉ DU

LUXEMBOURG

L. Sinkkonen, P. Nguyen, T. Pfau, M. Galhardo, Y. Gui, P. Lucarelli,

P. Trairatphisan, M. Pires Pacheco, D. Gerard, S. Nickels, P. Martins Conde,

S. De Landtsheer, M. Albrecht, M. Wiesinger, T. Bintener, J. Becker, M. Gavriil, J. Ohnmacht

U Luxembourg: E. Lettelier, S. Haan, J.-L. Bueb, A. Mizera, J. Pang, E. Reckinger-Schaffner

LIH Luxembourg: P. Nazarov, L. Vallar, F. He, F. Azuaje

LCSB Luxembourg: N. Vlassis, J. Schwamborn, J. Schneider, R. Halder, R. Fleming, A. del Sol

U Dresden: D. Kulms Institute Curie Paris: A. Zinovyev

MPI Saarbrücken: M. Schulz CNRS Paris: L. Pauleve

<u>U Kuopio</u>: M. Heinäniemi, M. Liivrand <u>King's College London</u>: M. Tavassoli

<u>U Lorraine</u>: T. Bastogne, S. Dobra <u>U Bordeaux</u>: G. Sciume

<u>U Stuttgart</u>: J. Witt, S. Barisic, R. Schlatter, S. Henkel, R. Feuer, M. Ederer, O. Sawodny

<u>U Heidelberg / Synlab Holding GmbH</u>: I. Gergei, W. März

Merrimack Pharmaceuticals: (B. Schöberl), A. Raue

Bayer Technology Services: T. Eissing, L. Küpfer

optimata Ltd: Y. Kogan, Z. Agur

ProtATonce: L. Alexopoulos

contact: thomas.sauter@uni.lu

