Devoir à la maison n° 13

À rendre le 13 février

Soit $a, b \in \mathbb{R}$ tels que a < b et $f : [a, b] \to \mathbb{R}$ une fonction non affine de classe \mathscr{C}^2 . On suppose que

$$f(a) < 0$$
 et $f(b) > 0$

ainsi que

$$\forall x \in [a, b], \ f'(x) > 0 \ \text{et} \ f''(x) \geqslant 0.$$

- 1) On rappelle que la corde à la courbe de f entre les points d'abscisses x et y est le segment reliant les points de coordonnées (x, f(x)) et (y, f(y)).
 - a) Illustrer la situation en traçant schématiquement une telle fonction, ainsi qu'une tangente et une corde en position générale.
 - b) Montrer que le graphe de f se situe au-dessus de toutes ses tangentes.
 - c) Montrer que, pour tout $c \in [a, b]$, la fonction $\tau_f(c, \cdot) : x \mapsto \frac{f(x) f(c)}{x c}$ est croissante sur $[a, b] \setminus \{c\}$.
 - d) En déduire que le graphe de f est en dessous de toutes ses cordes.

On dit qu'une telle fonction est convexe.

- 2) Montrer qu'il existe un unique $c \in]a, b[$ tel que f(c) = 0.
- 3) Soit $u \in [c, b]$.
 - a) Montrer que la tangente Δ à la courbe Γ de f au point (u, f(u)) coupe l'axe des abscisses en un point (v, 0), en précisant l'expression de v en fonction de u, f(u) et f'(u).
 - **b)** Montrer que $v \leq u$.
 - c) Montrer que $c \leq v$, et illustrer graphiquement la situation.
- 4) à l'aide des résultats précédemment établis, justifier l'existence de la suite $(x_n)_{n\in\mathbb{N}}$ définie par

$$x_0 = b$$
 et $\forall n \in \mathbb{N}, \ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$

- b) Montrer que cette suite est convergente, et donner sa limite.
- 5) Justifier l'existence des réels $m_1 = \min_{[a,b]} f'$ et $M_2 = \max_{[a,b]} f''$.
- **6)** On fixe dans cette question un entier $n \ge 0$ et on pose, pour tout $x \in [a, b]$,

$$g(x) = (x - c)f'(x) - f(x).$$

- a) Justifier que g est dérivable, et montrer que pour tout $t \in [c, x_n], |g'(t)| \leq M_2(x_n c).$
- **b)** En déduire que $|g(x_n)| \leq M_2(x_n c)^2$.
- c) Déduire de ce qui précède que

$$0 \leqslant x_{n+1} - c \leqslant K(x_n - c)^2,$$

où
$$K = \frac{M_2}{m_1}$$
.

- **d)** Montrer que pour tout $n \in \mathbb{N}$, $0 \leqslant x_n c \leqslant K^{2^n 1}(b a)^{2^n}$.
- 7) Que se passe-t-il si nous appliquons la méthode de Newton-Raphson à une fonction affine?
- 8) Une application numérique : nous allons appliquer la méthode précédente à $f: x \mapsto x^3 3, a = \frac{5}{4}$ et $b = \frac{3}{2}$.
 - a) Montrer que les hypothèses de la méthode sont bien vérifiées. Que valent c? m_1 ? M_2 ? K?
 - **b)** Établir que dans le cas de cet exemple numérique, pour tout $n \in \mathbb{N}$, $0 \le x_n c \le \left(\frac{1}{2}\right)^{2^n}$.
 - c) En remarquant que $1024 = 2^{10}$, pour quelle valeur de N sommes-nous assurés que x_N est une valeur approchée de c à 10^{-9} près?

