# Analysis of Gene Expression

Transcriptional signature of prion-induced neurotoxicity in a Drosophila model of transmissible mammalian prion disease.

Niek Scholten

2022-06-13



# Contents

| 1 | Setu | up                        | 2  |
|---|------|---------------------------|----|
| 2 | Init | ial analysis              | 3  |
|   | 2.1  | Summary                   | 3  |
|   | 2.2  | Boxplot                   | 6  |
|   | 2.3  | Density plot              | 7  |
|   | 2.4  | Heatmap                   | 8  |
|   | 2.5  | Multi dimensional scaling | 10 |
| 3 | Furt | ther processing           | 11 |
|   | 3.1  | Preprocessing             | 11 |
|   |      | Fold change value         |    |
|   | 3.3  | Discovering DEG's         | 13 |
|   | 3.4  | Volcano plot              | 16 |

#### 1 Setup

```
# Options for all chunks
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(cache = TRUE)
# Load the packages & register the amount of workers
packages <- c("affy", "scales",</pre>
               "DESeq2", "BiocParallel",
               "pheatmap", "PoiClaClu",
               "ggplot2", "edgeR",
               "knitr", "pander",
               "EnhancedVolcano", "crayon")
invisible(lapply(packages, library, character.only = TRUE))
register(MulticoreParam(12))
# Load the data into a data frame
data <- read.table("Data/GSE144028.txt")</pre>
# Define groups for the replicants
group <- c("X51D_5_NBH",</pre>
            "X51D_5_S",
            "X51D_30_NBH",
            "X51D_30_S",
            "PrPCyt 5 NBH",
            "PrPCyt_5_S",
            "PrPCyt_30_NBH",
            "PrPCyt_30_S",
            "PrPGPI 5 NBH",
            "PrPGPI_5_S",
            "PrPGPI_40_NBH",
            "PrPGPI_40_S")
groups <- factor(rep(1:12, each=3),</pre>
                  labels = group)
# Set color distributions for the graphs
colors12 <- hue_pal()(12)</pre>
colors36 <- rep(colors12, each=3)</pre>
```

This is the setup of the project. It loads all the necessary packages and sets values that are important for later.

## 2 Initial analysis

The initial analysis includes a summary of the data and a quick look at the visualisation of this data in a boxplot.

## 2.1 Summary

```
# Disable intertable text
panderOptions('table.continues', '')
# Pretty print the output of the data summary
pander(summary(data), split.tables = 64)
```

| X51D_30_NBH_1     | $X51D\_30\_NBH\_2$ | X51D_30_NBH_3    |
|-------------------|--------------------|------------------|
| Min.: 0           | Min.: 0            | Min. : 0         |
| 1st Qu.: 0        | 1st Qu.: 0         | 1st Qu.: 0       |
| Median: 7         | Median: 18         | Median: 19       |
| Mean: 377         | Mean: 972          | Mean: 1030       |
| 3rd Qu.: 75       | 3rd Qu.: 200       | 3rd Qu.: 209     |
| Max. :3445037     | Max. :8342368      | Max. :8875291    |
| X51D_30_S_1       | X51D 30 S 2        | X51D 30 S 3      |
| Min. : 0          | Min. : 0           | Min. : 0         |
| 1st Qu.: 0        | 1st Qu.: 0         | 1st Qu.: 0       |
| Median: 10        | Median: 10         | Median: 10       |
| Mean: 568         | Mean: 480          | Mean : 509       |
| 3rd Qu.: 113      | 3rd Qu.: 104       | 3rd Qu.: 107     |
| Max. :5560520     | Max. :4122340      | Max. :4386825    |
|                   |                    |                  |
| X51D_5_NBH_1      | X51D_5_NBH_2       | X51D_5_NBH_3     |
| Min. : 0          | Min. : $0.0$       | Min. : 0.0       |
| 1st Qu.: 0        | 1st Qu.: 0.0       | 1st Qu.: 0.0     |
| Median: 26        | Median: 21.0       | Median: 21.5     |
| Mean: 869         | Mean: 688.3        | Mean:718.8       |
| 3rd Qu.: 388      | 3rd Qu.: 325.0     | 3rd Qu.: 337.0   |
| Max. :3832490     | Max. :2415360.0    | Max. :2533918.0  |
|                   |                    |                  |
| X51D_5_S_1        | X51D_5_S_2         | X51D_5_S_3       |
| Min. : 0.0        | Min. : 0           | Min.:0           |
| 1st Qu.: 0.0      | 1st Qu.: 1         | 1st Qu.: 1       |
| Median: 31.0      | Median: 89         | Median: 92       |
| Mean: $722.4$     | Mean: 1999         | Mean: 2092       |
| 3rd Qu.: 320.0    | 3rd Qu.: 925       | 3rd Qu.: 961     |
| Max. $:3111359.0$ | Max. $:7272134$    | Max. : $7625567$ |

| PrPCyt_30_NBH_1 | PrPCyt_30_NBH_2 | PrPCyt_30_NBH_3   |  |  |
|-----------------|-----------------|-------------------|--|--|
| Min.: 0         | Min.: 0.0       | Min.: 0.0         |  |  |
| 1st Qu.: 0      | 1st Qu.: 0.0    | 1st Qu.: 0.0      |  |  |
| Median: 22      | Median: 4.0     | Median: 4.0       |  |  |
| Mean: 855       | Mean: 176.5     | Mean: 181.1       |  |  |
| 3rd Qu.: 254    | 3rd Qu.: 52.0   | 3rd Qu.: 53.0     |  |  |
| Max. :5261726   | Max. :1059586.0 | Max. :1096115.0   |  |  |
|                 | DaDCat 20 C 1   |                   |  |  |
| PrPCyt_30_S_1   | PrPCyt_30_S_2   | PrPCyt_30_S_3     |  |  |
| Min.:0          | Min. : 0        | Min.:0            |  |  |
| 1st Qu.: 0      | 1st Qu.: 0      | 1st Qu.: 0        |  |  |
| Median: 23      | Median: 27      | Median: 28        |  |  |
| Mean: 793       | Mean: 857       | Mean: 914         |  |  |
| 3rd Qu.: 299    | 3rd Qu.: 351    | 3rd Qu.: 374      |  |  |
| Max. :4058764   | Max. :3769299   | Max. :4079216     |  |  |
|                 |                 |                   |  |  |
| PrPCyt_5_NBH_1  | PrPCyt_5_NBH_2  | PrPCyt_5_NBH_3    |  |  |
| Min.:0          | Min. : $0.0$    | Min. : 0.0        |  |  |
| 1st Qu.: 0      | 1st Qu.: 0.0    | 1st Qu.: 0.0      |  |  |
| Median: 43      | Median: 29.0    | Median: 30.0      |  |  |
| Mean: 828       | Mean: 591.5     | Mean: $603.4$     |  |  |
| 3rd Qu.: 421    | 3rd Qu.: 286.0  | 3rd Qu.: 294.0    |  |  |
| Max. :3163765   | Max. :2692026.0 | Max. :2734069.0   |  |  |
|                 |                 |                   |  |  |
| PrPCyt_5_S_1    | PrPCyt_5_S_2    | $PrPCyt\_5\_S\_3$ |  |  |
| Min.:0          | Min.: 0.0       | Min. : $0.0$      |  |  |
| 1st Qu.: 0      | 1st Qu.: 0.0    | 1st Qu.: 0.0      |  |  |
| Median: 60      | Median: 31.0    | Median: 32.0      |  |  |
| Mean: 1537      | Mean: $764.7$   | Mean: 821.5       |  |  |
| 3rd Qu.: 838    | 3rd Qu.: 403.8  | 3rd Qu.: 435.0    |  |  |
| Max. :4603176   | Max. :2386987.0 | Max. :2556960.0   |  |  |
|                 |                 |                   |  |  |
| PrPGPI_40_NBH_1 | PrPGPI_40_NBH_2 | PrPGPI_40_NBH_3   |  |  |
| Min.: 0         | Min. : 0        | Min.:0            |  |  |
| 1st Qu.: 0      | 1st Qu.: 0      | 1st Qu.: 0        |  |  |
| Median: 14      | Median: 13      | Median: 10        |  |  |
| Mean: 1556      | Mean: 1521      | Mean: 1116        |  |  |
| 3rd Qu.: 160    | 3rd Qu.: 150    | 3rd Qu.: 115      |  |  |
| Max. :18885278  | Max. :18935887  | Max. :13407360    |  |  |
|                 |                 |                   |  |  |
| PrPGPI_40_S_1   | PrPGPI_40_S_2   | PrPGPI_40_S_3     |  |  |
| Min.:0          | Min. : 0        | Min.:0            |  |  |
| 1st Qu.: 0      | 1st Qu.: 0      | 1st Qu.: 0        |  |  |
| Median: 14      | Median: 17      | Median: 13        |  |  |
|                 |                 |                   |  |  |

| PrPGPI_40_S_1                                | $PrPGPI\_40\_S\_2$                          | $PrPGPI\_40\_S\_3$                   |
|----------------------------------------------|---------------------------------------------|--------------------------------------|
| Mean: 1235<br>3rd Qu.: 163<br>Max.: 14289546 | Mean: 1318<br>3rd Qu.: 191<br>Max::14709751 | Mean: 979 3rd Qu.: 148 Max.: 9635362 |

| PrPGPI_5_NBH_1 | $PrPGPI\_5\_NBH\_2$ | PrPGPI_5_NBH_3   |  |  |
|----------------|---------------------|------------------|--|--|
| Min.: 0        | Min. : 0            | Min.: 0          |  |  |
| 1st Qu.: 0     | 1st Qu.: 0          | 1st Qu.: 0       |  |  |
| Median: 9      | Median: 5           | Median: 7        |  |  |
| Mean: 1077     | Mean: 629           | Mean: 968        |  |  |
| 3rd Qu.: 101   | 3rd Qu.: 50         | 3rd Qu.: 79      |  |  |
| Max. :11252267 | Max. :6579166       | Max. $:10120453$ |  |  |

| PrPGPI_5_S_1  | $PrPGPI\_5\_S\_2$ | $PrPGPI\_5\_S\_3$ |
|---------------|-------------------|-------------------|
| Min. : 0      | Min.: 0           | Min. : 0          |
| 1st Qu.: 0    | 1st Qu.: 0        | 1st Qu.: 0        |
| Median: 11    | Median: 12        | Median: 15        |
| Mean: 793     | Mean: 782         | Mean: 1018        |
| 3rd Qu.: 113  | 3rd Qu.: 120      | 3rd Qu.: 152      |
| Max. :6111197 | Max. :6215874     | Max. :7851434     |
|               |                   |                   |

### 2.2 Boxplot

```
# Create a boxplot for initial analysis
boxplot(log2(data+0.1),
    outline = FALSE,
    col = colors36,
    horizontal = TRUE,
    las = 2,
    main = "Distrubution of count values",
    cex.axis= 0.6)
```

#### Distrubution of count values



### 2.3 Density plot

## **Expression Distribution**



#### 2.4 Heatmap

```
(ddsMat <- DESeqDataSetFromMatrix(countData = data,</pre>
                                   colData = data.frame(samples = names(data)),
                                   design = ~1))
## class: DESeqDataSet
## dim: 17742 36
## metadata(1): version
## assays(1): counts
## rownames(17742): FBgn0000003 FBgn0000008 ... __not_aligned
## __too_low_aQual
## rowData names(0):
## colnames(36): X51D_30_NBH_1 X51D_30_NBH_2 ... PrPGPI_5_S_2 PrPGPI_5_S_3
## colData names(1): samples
rld.dds <- vst(ddsMat)</pre>
rld <- assay(rld.dds)</pre>
sampledists <- dist( t( rld ))</pre>
sampleDistMatrix <- as.matrix(sampledists)</pre>
annotation <- data.frame(Type = factor(rep(rep(1:2, each = 3), each = 6),
                                            labels = c("Normal Brain Homogenate",
                                                       "Scrapie")))
rownames(annotation) <- names(counts)</pre>
pheatmap(sampleDistMatrix, show_colnames = FALSE,
         # annotation_col = annotation, # Gives an error
         clustering_distance_rows = sampledists,
         clustering distance cols = sampledists,
         main = "Euclidian Sample Distances")
```



#### 2.5 Multi dimensional scaling

```
dds <- assay(ddsMat)
poisd <- PoissonDistance( t(dds) )

samplePoisDistMatrix <- as.matrix(poisd$dd)

mdsPoisData <- data.frame( cmdscale(samplePoisDistMatrix) )

names(mdsPoisData) <- c('x_coord', 'y_coord')

coldata <- names(data)

ggplot(mdsPoisData, aes(x_coord, y_coord, color = groups, label = coldata)) +
    geom_text(size = 4) +
    ggtitle('Multi Dimensional Scaling') +
    labs(x = "Poisson Distance", y = "Poisson Distance") +
    theme_bw()</pre>
```

#### Multi Dimensional Scaling



Some samples clearly deviate from the other 2 in the group. This is especially clear with X51D\_5\_S, PrPCyt\_30\_NBH, X51D\_30\_NBH & PrPCyt\_5\_S. Strangely, these samples are all the first one in their respective group. This could indicate that the first tests were less accurate. Since 3 samples must remain in each group, no data will be removed from the set.

#### 3 Further processing

```
counts.fpm <- log2( fpm(ddsMat, robust = TRUE) + 1 )
dds <- DESeq(ddsMat, parallel = TRUE)

## Warning in DESeq(ddsMat, parallel = TRUE): the design is ~ 1 (just an
## intercept). is this intended?

## estimating size factors

## estimating dispersions

## gene-wise dispersion estimates: 12 workers

## mean-dispersion relationship

## final dispersion estimates, fitting model and testing: 12 workers

## -- replacing outliers and refitting for 147 genes

## -- DESeq argument 'minReplicatesForReplace' = 7

## -- original counts are preserved in counts(dds)

## estimating dispersions

## fitting model and testing

res <- results(dds)</pre>
```

#### 3.1 Preprocessing

| Counts before filtering | Counts after filtering | Difference in counts |
|-------------------------|------------------------|----------------------|
| 17742                   | 13618                  | 4124                 |

The dataset has been trimmed to filter out genes with count values lower than 10. This results in a smaller dataset because more than 4000 genes have been removed.

#### 3.2 Fold change value

```
X51D 30 NBH.means <- data.frame(X51D 30 NBH.means=rowMeans(afterCounts[,1:3]))
X51D 30 S.means <- data.frame(X51D 30 S.means=rowMeans(afterCounts[,4:6]))
X51D_5_NBH.means <- data.frame(X51D_5_NBH.means=rowMeans(afterCounts[,7:9]))
X51D 5 S.means <- data.frame(X51D 5 S.means=rowMeans(afterCounts[,10:12]))
PrPCyt_30_NBH.means <- data.frame(PrPCyt_30_NBH.means=rowMeans(afterCounts[,13:15]))
PrPCyt_30_S.means <- data.frame(PrPCyt_30_S.means=rowMeans(afterCounts[,16:18]))
PrPCyt_5_NBH.means <- data.frame(PrPCyt_5_NBH.means=rowMeans(afterCounts[,19:21]))
PrPCyt_5_S.means <- data.frame(PrPCyt_5_S.means=rowMeans(afterCounts[,22:24]))
PrPGPI_40_NBH.means <- data.frame(PrPGPI_40_NBH.means=rowMeans(afterCounts[,25:27]))
PrPGPI_40_S.means <- data.frame(PrPGPI_40_S.means=rowMeans(afterCounts[,28:30]))
PrPGPI_5_NBH.means <- data.frame(PrPGPI_5_NBH.means=rowMeans(afterCounts[,31:33]))
PrPGPI_5_S.means <- data.frame(PrPGPI_5_S.means=rowMeans(afterCounts[,34:36]))
X51D_30.diff <- na.omit(log2(X51D_30_NBH.means) - log2(X51D_30_S.means))
X51D_30.diff <- X51D_30.diff[is.finite(rowSums(X51D_30.diff)),]</pre>
X51D_30.diff <- as.numeric(X51D_30.diff)</pre>
hist(X51D_30.diff, breaks=60)
abline(v = 1, col = "red")
abline(v = -1, col = "red")
```

## Histogram of X51D\_30.diff



togram shows that there are some significant changes to the fold values, especially up-regulated. The data compared is that of the X51D fly after 30 days with a Scrapie pathogen and without.

#### 3.3 Discovering DEG's

```
species <- factor(rep(seq(1:3), each = 12), labels = c("X51D", "PrP_Cyt", "PrP_GPI"))</pre>
replicates \leftarrow \text{rep}(\text{seq}(1:3), 12)
 \text{type} \leftarrow \text{factor}(c(1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2)), \text{ labels} = c("..., absolution of the context of the co
design <- data.frame(species, row.names = colnames(data))</pre>
design <- cbind(design, replicates, time, type)</pre>
dds <- DESeqDataSetFromMatrix(countData = data, colData = design, design = ~ species)
dds <- DESeq(dds, parallel = TRUE)</pre>
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates: 12 workers
## mean-dispersion relationship
## final dispersion estimates, fitting model and testing: 12 workers
## -- replacing outliers and refitting for 82 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
res <- results(dds, alpha = 0.05)
group \leftarrow c(1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,5,6,6,6,7,7,7,8,8,8,8,9,9,9,10,10,10,11,11,11,12,12,12)
 \text{type} \leftarrow \text{factor}(c(1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,2)) 
model <- model.matrix(~ group + replicates + time + type)</pre>
d <- DGEList(counts=afterCounts, group = species)</pre>
d <- calcNormFactors(d)</pre>
output <- estimateDisp(d, design = model)</pre>
fit <- glmQLFit(output, design = model)</pre>
test <- glmQLFTest(fit, coef=5)</pre>
LRT <- glmLRT(fit)</pre>
kable(topTags(LRT))
```

This table shows the genes with the most significant differences.

|             | logFC     | $\log$ CPM | LR        | PValue | FDR | X  |       | X   |
|-------------|-----------|------------|-----------|--------|-----|----|-------|-----|
| FBgn0004240 | -2.591225 | 5.888021   | 218.80958 | 0      | 0   | BH | type2 | glm |
| FBgn0034407 | -2.297217 | 5.040921   | 196.72457 | 0      | 0   |    |       |     |
| FBgn0010388 | -2.168257 | 5.894200   | 173.42085 | 0      | 0   |    |       |     |
| FBgn0041579 | -1.947014 | 7.018217   | 141.99141 | 0      | 0   |    |       |     |
| FBgn0036600 | 1.860137  | 5.242363   | 113.00308 | 0      | 0   |    |       |     |
| FBgn0019661 | 1.846219  | 4.174026   | 107.82879 | 0      | 0   |    |       |     |
| FBgn0266405 | -2.267430 | 3.318964   | 105.49745 | 0      | 0   |    |       |     |
| FBgn0013279 | -1.485205 | 6.641321   | 91.35769  | 0      | 0   |    |       |     |
| FBgn0041581 | -1.397773 | 4.213615   | 83.73515  | 0      | 0   |    |       |     |
| FBgn0014865 | -1.395028 | 7.194669   | 79.72194  | 0      | 0   |    |       |     |

## plotMDS(calcNormFactors(output), col = colors36)



plotBCV(calcNormFactors(output))



plots contain information regarding the DEG's in the dataset.

Average logCPM

These

#### 3.4 Volcano plot

```
filtered <- res[!res$baseMean < 10,]</pre>
resultsNames(dds)
## [1] "Intercept"
                                  "species_PrP_Cyt_vs_X51D"
## [3] "species_PrP_GPI_vs_X51D"
shrunk <- lfcShrink(dds, coef = "species_PrP_GPI_vs_X51D", res = res,</pre>
                     type = "apeglm")
## using 'apeglm' for LFC shrinkage. If used in published research, please cite:
##
       Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior distributions for
       sequence count data: removing the noise and preserving large differences.
       Bioinformatics. https://doi.org/10.1093/bioinformatics/bty895
EnhancedVolcano(shrunk,
  lab = rownames(shrunk),
   x = 'log2FoldChange',
   y = 'pvalue',
  FCcutoff = 5)
```

## Volcano plot

#### **Enhanced Volcano**



total = 17742 variables