HSPICE® Quick Reference Guide

Version X-2005.09, September 2005

Copyright Notice and Proprietary Information

Copyright " 2005 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation

cense agreement with Synopsys permits licensee to make copies of the documentation for its internal use only. Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

"This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of and its employees. This is copy number

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FINESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, Cadabra, Calaveras Algorithm, CATS, CRITIC,
CSIm, Design Compiler, DesignPower, DesignWare, EPIC, Formality, HSIM, HSPICE, Hypermodel, iN-Phase,
in-Sync, Leda, MAST, Meta, Meta-Software, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical
Compiler, PowerMill, PrimeTime, RailMill, RapidScript, Saber, SIVL, SNUG, SolvNet, Superlog, System Compiler,
Testify, TetraMAX, TimeMill, TMA, VCS, Vera, and Virtual Stepper are registered trademarks of Synopsys, Inc.

Compiler, Powerhui, Printer Imer, Railmini, Rapiloschipt, Sader, S.N., S.N.Uor, Solviver, Superiog, Systemt Compiler, Testify, TerraMAX, TimeMill, TMA, VCS, Vera, and Virtual Stepper are registered trademarks of Synposys, Inc.

Trademarks (TM)

Active Parasitics, AFGen, Apollo, Apollo II, Apollo-DPII, Apollo-GA, ApolloGAII, Astro, Astro-Rail, Astro-Xtalk, Aurora, Avan Testchip, Avan/Waves, BCView, Behavioral Compiler, BOA, BRT, Cedar, ChipPlanner, Circuit Analysis, Columbia, Columbia-CE, Comet 3D, Cosmos, Scopes, CosmosSE, Coye, CosmosSE, Coye, CosmosSE, Coyellink, Davinci, DC Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design Vision, DesignerHbL, DesignTime, DFM-Workbench, Direct RTL, Direct Silicon Access, Discovery, DW8051, DWPCD, Dynamic-Macromodeling, Dynamic Model Switcher, ECL Compiler, ECO Compiler, EDAnavigator, Encore, Encore PQ, Evacess, ExpressModel, Floorplan Manager, Formal Model Checker, FoundryModel, FPGA Capiner, Interactive Capiner, Manager, Pormal Model Checker, FoundryModel, FPGA Capiner, Hercules-Likin, Heirarchical Optimization Technology, High Performance Option, HotPlace, HSIMbyla, FNFCE-Link, HN. Tandem, Integrator, Interactive Waveform Viewer, I-Virtual Stepper, Jupiter, Jupiter-DP, Jupiter/XT, Jupiter/XT-ASIC, JVXtreme, Liberty, Libra-Passport, Library Compiler, Libra-Visa, Magellan, Mars, Mars-Rail, Mars VHDL Compiler, VHDL System Simulator, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (sm)

MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license. ARM and AMBA are registered trademarks of ARM Limited. All other product or company names may be trademarks of their respective owners.

Document Order Number: 37919-000 ZA

HSPICE Quick Reference Guide, Version X-2005.09

HSPICE Quick Reference Guide

Table of Contents

Introduction	1
Input and Output Files	2
Behavior Macromodeling	5
Controlling Input	22
Analyzing Data	46
Optimizing Data	63
Output Format	66

Introduction

This Quick Reference Guide is a condensed version of the HSPICE Simulation and Analysis User Guide, HSPICE Applications Manual, and HSPICE Command Reference. For more specific details and examples refer to the relevant manual.

Syntax Notation

xxx, yyy, zzz Arbitrary alphanumeric strings

<...> Optional data fields are enclosed in angle

brackets < >. All other symbols and

punctuation are required.

UPPERCASE Keywords, parameter names, etc. are

represented in uppercase.

lowercase Variables; should be replaced with a numeric

or symbolic value.

... Any number of parameters of the form shown

can be entered.

Continuation of the preceding line.

The meaning of a parameter may depend on its location in the statement. Be sure that a complete set of parameters is entered in the correct sequence before running the simulation.

Common Abbreviations

Å Angstrom
amp ampere
cm centimeter

deg degree Centigrade (unless specified as Kelvin)

ev electron volt

 F
 farad

 H
 Henry

 m
 meter

 s
 second

 V
 volt

Input and Output Files

General Form	/usr/george/mydesign.sp
/usr/george/	The design path.
mydesign	The design name.
mydesign	The design root.
trO	The suffix.

File Name Suffix

X increments for each **.TEMP** or **.ALTER**. X can be one of the characters 0-9999.

Input:

input netlist .sp design .cfg

configuration

Output (X is alter number, usually 0)

(N is the statement number in one netlist, starting at

0).

graph data .trX (transient analysis)

.swX (dc sweep)
.acX (ac analysis)
.mtX (tran Measure)
.msX (dc Measure)
.maX (ac Measure)

.pwlN_trX (from .STIM <TRAN> PWL)
.datN_trX (from .STIM TRAN DATA)
.datN_acX (from .STIM AC DATA)
.datN_swX (from .STIM DC DATA)
.vecN_trX (from .STIM <TRAN> VEC)

hardcopy data .grX (from .GRAPH)

Input Netlist File

For a complete description of HSPICE installation, system configuration, setup and basic operation, please refer to the HSPICE Simulation and Analysis User Guide. HSPICE now accepts input line lengths of 1024 characters.

Sample Input Netlist File Structure

.TITLE Implicit first line; becomes input netlist file title.

* or \$ Comments to describe the circuit.

OPTION Set conditions for simulation analysis.

<.TRAN> <.AC> <.DC> <.OP>

.TEMPERATURE Sets the circuit temperatures for the entire circuit

simulation.

.PRINT/.PLOT/ Sets print, plot, graph, and probe variables.

.GRAPH/.PROBE

.IC or .NODESET Sets input state: can also be put in initial

conditions.

SOURCES Sets input stimulus.

NETLIST Circuit description.

.MACRO libraries .LIBRARY and .INC.

<.PROTECT> Suppresses the printout of the text from the list

file.

<. UNPROTECT> Restores output printback.

.ALTER Sequence for inline case analysis.

.PARAMETER Defines a parameter.

.END Terminates any ALTERs and the simulation.

Numeric Scale Factors

A number may be an integer, a floating point number, an integer or floating point number followed by an integer exponent, or an integer or floating point number followed by one of the scale factors listed below.

A =1e-18
F =1e-15
P =1e-12
N =1e-9

```
U =1e-6

M =1e-3

K =1e3

MEG (or X) =1e6

MI =25.4e6

G =1e9
```

Algebraic Expressions

In addition to simple arithmetic operations (+, -, *, /), the following quoted string functions may be used:

sin(x)	sinh(x)	abs(x)	cos(x)	cosh(x)
min(x,y)	tan(x)	tanh(x)	max(x,y)	atan(x)
sqrt(x)	exp(x)	db(x)	log(x)	log10(x)
pwr(x,y) or pwrx**y	pow(x,y) or powx**y			

Algebraic Expressions as Input

General Form	'algebraic expression'	

Either single (' ') or double (" ") quotes may be used.

Algebraic Expressions as Output

General Form	PAR ('algebraic expression')

The left and right parentheses are mandatory.

Equation Constants

ϵ_{o}	Vacuum permittivity=8.854e-12 F/m
г ох	3.453143e-11 F/m
Esi	1.0359e-10 <i>F/m</i> dielectric constant of silicon
f	Frequency
k	1.38062e-23 - Boltzmann's constant
q	1.60212e-19 - Electron charge
t	Temperature in degrees Kelvin
Δt	t - tnom

tnom Nominal temperature in degrees Kelvin (user-input

in degrees C). Tnom = 273.15 + TNOM

vt(t) $k \cdot t/q$ Thermal voltage

vt(tnom) k · tnom/q Thermal voltage

Behavior Macromodeling

HSPICE performs the following types of behavioral modeling.

Subcircuit/Macros

.SUBCKT or .MACRO Statement

General Form	.SUBCKT subnam n1 <n2 n3=""> + <parnam=val></parnam=val></n2>
Or	.MACRO subnam n1 <n2 n3=""> + <parnam=val></parnam=val></n2>
n1	Node numbers for external reference
parnam	A parameter name set to a value or another parameter
subnam	Reference name for the subcircuit model call

See ".SUBCKT" or ".MACRO" in the HSPICE Command Reference.

.ENDS or .EOM Statement

General Form	.ENDS <subnam></subnam>	
Or	.EOM <subnam></subnam>	

See ".ENDS" or ".EOM" in the HSPICE Command Reference.

Subcircuit Calls

General Form	Xyyy n1 <n2 n3=""> subnam + <parnam=val> <m=val></m=val></parnam=val></n2>
М	Multiplier
n1	Node names for external reference
parnam	A parameter name set to a value for use only in the subcircuit

subnam Subcircuit model reference name

Xyyy Subcircuit element name

See "Subcircuit Call Statement" in the HSPICE Simulation and Analysis User Guide.

Voltage and Current Controlled Elements

HSPICE supports the following voltage and current controlled elements. For detailed information, see "Voltage and Current Controlled Elements" in the HSPICE Simulation and Analysis User Guide.

E Elements

Voltage Controlled Voltage Source—VCVS

Linear

Exxx n+ n- <vcvs> in+ in- gain</vcvs>
+ <max=val> <min=val> <scale=val></scale=val></min=val></max=val>
+ <tc1=val> <tc2=val><abs=1></abs=1></tc2=val></tc1=val>
+ <ic=<i>val></ic=<i>

Polynomial

General Form	Exxx n+ n- <vcvs> POLY(NDIM) in1+</vcvs>
	+ in1 inndim+ inndim-
	+ <tc1=val> <tc2=val> <scale=val></scale=val></tc2=val></tc1=val>
	+ <max=val> <min=val> <abs=1></abs=1></min=val></max=val>
	+ p0 <p1> <ic=val></ic=val></p1>

Piecewise Linear

General Form	Exxx n+ n- <vcvs> PWL(1) in+ + in- <delta=val> <scale=val></scale=val></delta=val></vcvs>
	+ III- <delta=vai> <scale=vai></scale=vai></delta=vai>
	+ <tc1=<i>val> <tc2=<i>val> x1,y1</tc2=<i></tc1=<i>
	+ x2,y2 x100,y100
	+ <ic=<i>val></ic=<i>

Multi-Input Gates

General Form	Exxx n+ n- <vcvs> gatetype(k) + in1+ in1 inj+ inj- + <delta=val> <tc1=val> + <tc2=val> <scale=val> + x1,y1 x100,y100</scale=val></tc2=val></tc1=val></delta=val></vcvs>
	+ <ic=<i>val></ic=<i>

Delay Element

General Form	Exxx n+ n- <vcvs> DELAY in+</vcvs>
	+ in- TD=val <scale=val></scale=val>
	+ <tc1=val> <tc2=val></tc2=val></tc1=val>
	+ <npdelay=val></npdelay=val>

See "Voltage-Controlled Voltage Source (VCVS)" in the HSPICE Simulation and Analysis User Guide.

Behavioral Voltage Source

General Form	Exxx n+ n- VOL='equation'
	+ <max=val> <min=val></min=val></max=val>

See "Voltage and Current Controlled Elements" in the HSPICE Simulation and Analysis User Guide.

Ideal Op-Amp

General Form	Exxx n+ n- OPAMP in+ in-

See "Ideal Op-Amp" in the HSPICE Simulation and Analysis User Guide.

Ideal Transformer

General Form Exxx n+ n- TRANSFORMER in+ in- k

See "Ideal Transformer" in the HSPICE Simulation and Analysis User Guide.

E Element Parameters

Parameter	Description
ABS	Output is absolute value if ABS=1.
DELAY	Keyword for the delay element.
DELTA	Controls the curvature of the piecewise linear corners.

Parameter	Description
Exxx	Voltage-controlled element name.
gain	Voltage gain.
gatetype(k)	Can be AND, NAND, OR, or NOR.
IC	Initial condition.
in +/-	Positive or negative controlling nodes.
k	Ideal transformer turn ratio.
MAX	Maximum output voltage value.
MIN	Minimum output voltage value.
n+/-	Positive or negative node of a controlled element.
NDIM	Number of polynomial dimensions.
NPDELAY	Sets the number of data points to use in delay simulations.
OPAMP	Keyword for an ideal op-amp element.
P0, P1	Polynomial coefficients.
POLY	Polynomial keyword.
PWL	Piecewise linear function keyword.
SCALE	Element value multiplier.
TC1, TC2	First-order and second-order temperature coefficients.
TD	Time (propagation) delay keyword.
TRANSFORMER	Keyword for an ideal transformer.
VCVS	Keyword for a voltage-controlled voltage source.
x1,	Controlling voltage across the in+ and in- nodes.

See "E Element Parameters" in the HSPICE Simulation and Analysis User Guide.

Corresponding element values of x.

F Elements

Current Controlled Current Sources—CCCS

Linear

General Form	Fxxx n+ n- <cccs> vn1 gain</cccs>
	+ <max=val> <min=val></min=val></max=val>
	+ <scale=val> <tc1=val></tc1=val></scale=val>
	+ <tc2=<i>val> <m=<i>val> <abs=1></abs=1></m=<i></tc2=<i>
	+ <ic=<i>val></ic=<i>

Polynomial

General Form	Fxxx n+ n- <cccs> POLY(ndim) + vn1 < vnndim> <max=val> + <min=val> <tc1=val></tc1=val></min=val></max=val></cccs>
	+ <iviiin=val> < I G I=Val></iviiin=val>
	+ <tc2=val> <scale=val></scale=val></tc2=val>
	+ <m=<i>val> <abs=1> <i>p0</i> <<i>p1></i></abs=1></m=<i>
	+ <ic=<i>val></ic=<i>

Piecewise Linear

General Form	Fxxx n+ n- <cccs> PWL(1) vn1</cccs>
	+ <delta=val> <scale=val></scale=val></delta=val>
	+ <tc1=<i>val> <tc2=<i>val> <m=<i>val></m=<i></tc2=<i></tc1=<i>
	+ x1,y1 x100,y100
	+ <ic=<i>val></ic=<i>

Multi-Input Gates

General Form	Fxxx n+ n- <cccs> gatetype(k) + vn1, vnk <delta=val> + <scale=val> <tc1=val></tc1=val></scale=val></delta=val></cccs>
	+ <tc2=<i>val> <m=<i>val> <abs=1></abs=1></m=<i></tc2=<i>
	+ x1,y1 x100,y100
	+ <ic=<i>val></ic=<i>

Delay Element

General Form	Fxxx n+ n- <cccs> DELAY vn1</cccs>
	+ TD=val <scale=val></scale=val>
	+ <tc1=<i>val> <tc2=<i>val></tc2=<i></tc1=<i>
	+ NPDELAY=val

See "Current-Controlled Current Source (CCCS)" in the HSPICE Simulation and Analysis User Guide.

F Element Parameters

Parameter	Heading
ABS	Output is absolute value if ABS=1.
cccs	Keyword for current-controlled current source.
DELAY	Keyword for the delay element.
DELTA	Controls the curvature of piecewise linear corners.
Fxxx	Current-controlled current source element name.
gain	Current gain.
gatetype(k)	Can be AND, NAND, OR, or NOR.

Parameter	Heading
IC	Initial condition (estimate).
M	Number of element replications in parallel.
MAX	Maximum output current value.
MIN	Minimum output current value.
n+/-	Positive or negative controlled source connecting nodes.
NDIM	Number of polynomial dimensions. Must be a positive number. Default=one dimension.
NPDELAY	Number of data points to use in delay simulations.
P0, P1	Polynomial coefficients.
POLY	Polynomial keyword.
PWL	Piecewise linear function keyword.
SCALE	Element value multiplier.
TC1, TC2	First-order and second-order temperature coefficients.
TD	Time (propagation) delay keyword.
vn1	Names of voltage sources, through which the controlling current flows.

See "F Element Parameters" in the HSPICE Simulation and Analysis User Guide.

Controlling current, through the vn1 source. Corresponding output current values of x.

G Elements

Voltage Controlled Current Source—VCCS

Linear

x1,...

y1,...

General Form	Gxxx n+ n- <vccs> in+ in- + transconductance <max=val> + <min=val> <scale=val> + <m=val> <tc1=val> <tc2=val></tc2=val></tc1=val></m=val></scale=val></min=val></max=val></vccs>
	+ <abs=1> <ic=<i>val></ic=<i></abs=1>

Polynomial

General	Gxxx n+ n- <vccs> POLY(NDIM)</vccs>
Form	+ in1+ in1
	+ <inndim+ inndim-=""> MAX=val></inndim+>
	+ <min=val> <scale=val></scale=val></min=val>
	+ <m=<i>val> <tc1=<i>val> <tc2=<i>val></tc2=<i></tc1=<i></m=<i>
	+ <abs=1> P0<p1> <ic=vals></ic=vals></p1></abs=1>

Piecewise Linear

General Form	Gxxx n+ n- <vccs> PWL(1) in+ + in- <delta=val> <scale=val> + <m=val> <tc1=val> <tc2=val> + x1,y1 x2,y2 x100,y100 + <ic=val> <smooth=val></smooth=val></ic=val></tc2=val></tc1=val></m=val></scale=val></delta=val></vccs>
Or Or	Gxxx n+ n- <vccs> NPWL(1) in+ + in- <delta=val> <scale=val> + <m=val> <tc1=val> <tc2=val> + x1,y1 x2,y2 x100,y100 + <ic=val> <smooth=val></smooth=val></ic=val></tc2=val></tc1=val></m=val></scale=val></delta=val></vccs>
	Gxxx n+ n- <vccs> PPWL(1) in+ + in- <delta=val> <scale=val> + <m=val> <tc1=val> <tc2=val> + x1,y1 x2,y2 x100,y100 + <ic=val> <smooth=val></smooth=val></ic=val></tc2=val></tc1=val></m=val></scale=val></delta=val></vccs>

Multi-Input Gates

General	Gxxx n+ n- <vccs> gatetype(k)</vccs>
Form	+ in1+ in1 ink+ ink-
	+ <delta=val> <tc1=val></tc1=val></delta=val>
	+ <tc2=val> <scale=val></scale=val></tc2=val>
	+ <m=val> x1,y1</m=val>
	+ x100,y100 <ic=val></ic=val>
	-

Delay Element

General	Gxxx n+ n- <vccs> DELAY in+</vccs>
Form	+ in- TD=val <scale=val></scale=val>
	+ <tc1=<i>val> <tc2=<i>val></tc2=<i></tc1=<i>
	+ NPDELAY=val

See "Voltage-Controlled Current Source (VCCS)" in the HSPICE Simulation and Analysis User Guide.

Behavioral Current Source

General	Gxxx n+ n- CUR='equation'
Form	+ <max>=val> <min=val> <m=val></m=val></min=val></max>
	+ <scale=val></scale=val>

See "Behavioral Current Source" in the HSPICE Simulation and Analysis User Guide.

Voltage Controlled Resistor—VCR

Linear

General	Gxxx n+ n- VCR in+ in-
Form	+ transfactor <max=val></max=val>
	+ <min=val> <scale=val></scale=val></min=val>
	+ <m=val> <tc1=val> <tc2=val></tc2=val></tc1=val></m=val>
	+ <ic=<i>val></ic=<i>

Polynomial

General	Gxxx n+ n- VCR POLY(NDIM) in1+
Form	+ in1 <inndim+ inndim-=""></inndim+>
	+ <max=val> <min=val></min=val></max=val>
	+ <scale=val> <m=val></m=val></scale=val>
	+ <tc1=<i>val> <tc2=<i>val></tc2=<i></tc1=<i>
	+ P0 <p1> <ic=<i>vals></ic=<i></p1>

Piecewise Linear

General Form	Gxxx n+ n- VCR PWL(1) in+ in- + <delta=val> <scale=val> + <m=val> <tc1=val> <tc2=val> + x1,y1 x2,y2 x100,y100 + <ic=val> <smooth=val></smooth=val></ic=val></tc2=val></tc1=val></m=val></scale=val></delta=val>
Or	Gxxx n+ n- VCR NPWL(1) in+ in- + <delta=val> <scale=val> + <m=val> <tc1=val> <tc2=val> + x1,y1 x2,y2 x100,y100 + <ic=val> <smooth=val></smooth=val></ic=val></tc2=val></tc1=val></m=val></scale=val></delta=val>
Or	Gxxx n+ n- VCR PPWL(1) in+ in- + <delta=val> <scale=val> + <m=val> <tc1=val> <tc2=val> + x1,y1 x2,y2 x100,y100 + <ic=val> <smooth=val></smooth=val></ic=val></tc2=val></tc1=val></m=val></scale=val></delta=val>

Multi-Input Gates

Gxxx n+ n- VCR gatetype(k)
+ in1+ in1 ink+ ink-
+ <delta=val> <tc1=val></tc1=val></delta=val>
+ <tc2=val> <scale=val></scale=val></tc2=val>
+ <m=<i>val> x1,y1 <i>x100,y100</i></m=<i>
+ <ic=val></ic=val>

See "Voltage-Controlled Resistor (VCR)" in the HSPICE Simulation and Analysis User Guide.

Voltage Controlled Capacitors—VCCAP

General Form	Gxxx n+ n- VCCAP PWL(1) in+
	+ in- <delta=val></delta=val>
	+ <scale=val> <m=val></m=val></scale=val>
	+ <tc1=<i>val> <tc2=<i>val></tc2=<i></tc1=<i>
	+ x1,y1 x2,y2 x100,y100
	+ <ic=val> <smooth=val></smooth=val></ic=val>

See "Voltage-Controlled Capacitor (VCCAP)" in the HSPICE Simulation and Analysis Manual.

G Element Parameters

Parameter	Description
ABS	Output is absolute value, if ABS=1.
CUR= equation	Current output which flows from n+ to n
DELAY	Keyword for the delay element.
DELTA	Controls the curvature of the piecewise linear corners.
Gxxx	Voltage-controlled element name.
gatetype(k)	Can be AND, NAND, OR, or NOR.
IC	Initial condition.
in +/-	Positive or negative controlling nodes.
M	Number of element replications in parallel.
MAX	Maximum current or resistance value.
MIN	Minimum current or resistance value.
n+/-	Positive or negative node of the controlled element.
NDIM	Number of polynomial dimensions.
NPDELAY	Sets the number of data points to use in delay simulations.
NPWL	Models the symmetrical bidirectional switch or transfer gate, NMOS.

Parameter	Description
p0, p1	Polynomial coefficients.
POLY	Polynomial keyword.
PWL	Piecewise linear function keyword.
PPWL	Models the symmetrical bidirectional switch or transfer gate, PMOS.
SCALE	Element value multiplier.
SMOOTH	For piecewise-linear, dependent-source elements, SMOOTH selects curve smoothing.
TC1,TC2	First- and second-order temperature coefficients.
TD	Time (propagation) delay keyword.
transconduct -ance	Voltage-to-current conversion factor.
transfactor	Voltage-to-resistance conversion factor.
VCCAP	Keyword for voltage-controlled capacitance element.
VCCS	Keyword for voltage-controlled current source.
VCR	Keyword for the voltage controlled resistor element.
x1,	Controlling voltage, across the in+ and in- nodes.
y1,	Corresponding element values of x.

See "G Element Parameters" in the HSPICE Simulation and Analysis User Guide.

H Elements

Current Controlled Voltage Source—CCVS

Linear

General	Hxxx n+ n- <ccvs> vn1</ccvs>
Form	+ transresistance <max=val></max=val>
	+ <min=val> <scale=val></scale=val></min=val>
	+ <tc1=<i>val><tc2=<i>val> <abs=1></abs=1></tc2=<i></tc1=<i>
	+ <ic=<i>val></ic=<i>

Polynomial

General	Hxxx n+ n- <ccvs> POLY(NDIM)</ccvs>
	,
Form	+ vn1 < vnndim> <max=val></max=val>
	+ <min=<i>val> <tc1=<i>val></tc1=<i></min=<i>
	+ <tc2=val> <scale=val></scale=val></tc2=val>
	+ <abs=1> P0 <p1> <ic=val></ic=val></p1></abs=1>

Piecewise Linear

General	Hxxx n+ n- <ccvs> PWL(1) vn1</ccvs>
Form	+ <delta=val> <scale=val></scale=val></delta=val>
	+ <tc1=val> <tc2=val> x1,y1 + x100,y100 <ic=val></ic=val></tc2=val></tc1=val>

Multi-Input Gates

General Form	Hxxx n+ n- gatetype(k) + vn1, vnk <delta=val></delta=val>
	+ <scale=val> <tc1=val> + <tc2=val> x1,y1</tc2=val></tc1=val></scale=val>
	+ x100,y100 <ic=val></ic=val>

Delay Element

General	Hxxx n+ n- <ccvs> DELAY vn1</ccvs>
Form	+ TD=val <scale=val><tc1=val></tc1=val></scale=val>
	+ <tc2=<i>val> <npdelay=<i>val></npdelay=<i></tc2=<i>

See "Current-Controlled Voltage Source (CCVS)" in the HSPICE Simulation and Analysis User Guide.

H Element Parameters Parameter Description

. aramotor	2 dog: ipiidii
ABS	Output is absolute value if ABS=1.
CCVS	Keyword for current-controlled voltage source.
DELAY	Keyword for the delay element.
DELTA	Controls the curvature of piecewise linear corners.
gatetype(k)	Can be AND, NAND, OR, or NOR.
Hxxx	Current-controlled voltage source element name.
IC	Initial condition.
MAX	Maximum voltage value.
MIN	Minimum voltage value.
n+/-	Positive or negative controlled source connecting nodes.
NDIM	Number of polynomial dimensions.
NPDELAY	Number of data points to use in delay simulations.
P0, P1	Polynomial coefficients.
POLY	Polynomial dimension.
PWL	Piecewise linear function keyword.

Parameter	Description
SCALE	Element value multiplier.
TC1, TC2	First-order and second-order temperature coefficients.
TD	Time (propagation) delay keyword.
trans- resistance	Current-to-voltage conversion factor.
vn1	Names of voltage sources, through which the controlling current flows.
x1,	Controlling current, through the vn1 source.
y1,	Corresponding output voltage values of x.

See "H Element Parameters" in the HSPICE Simulation and Analysis User Guide.

Op-Amp Element Statement

COMP=0	xa1 in- in+ out vcc vee modelname AV=val
Or	
COMP=1	xa1 in- in+ out comp1 comp2 vcc vee modelname AV=val
in+	Noninverting input
in-	Inverting input
modelname	Subcircuit reference name
out	Output, single ended
vcc	Positive supply
vee	Negative supply

See "Op-Amp Element Statement Format" in the HSPICE Applications Manual.

Op-Amp .MODEL Statement

General Form	.MODEL mname AMP parameter=value
AMP	Identifies an amplifier model
mname	Model name. Elements reference the model by this name.
parameter	Any model parameter described below
value	Value assigned to a parameter

See "Op-Amp .MODEL Statement Format" in the HSPICE Applications Manual.

P Element

Ports

General	Pxxx p n port=portnumber
Form	+ \$ **** Voltage or Power Information *******
	+ <dc mag=""> <ac <mag="" <phase="">>></ac></dc>
	+ <hbac <mag="" <phase="">>> <hb <harm<="" <mag="" <phase="" td=""></hb></hbac>
	+ <tone <modharm="" <modtone="">>>>></tone>
	+ <transient_waveform> <tranforhb=[0 1]></tranforhb=[0 1]></transient_waveform>
	+ <dcopen=[0 1]></dcopen=[0 1]>
	+ \$ **** Source Impedance Information *******
	+ <z0=val> <rdc=val> <rac=val></rac=val></rdc=val></z0=val>
	+ <rhbac=val> <rhb=val> <rtran=val></rtran=val></rhb=val></rhbac=val>
	+ \$ **** Power Switch *******
	+ <power=[1 0]></power=[1 0]>

+ <power=[1 0]></power=[1 0]>			
P Element Parameters			
Parameter	Description		
port= <i>portnumber</i>	The port number. The ports are numbered sequentially beginning with 1 with no shared port numbers.		
<dc mag=""></dc>	DC voltage or power source value.		
<ac <mag<br=""><phase>>></phase></ac>	AC voltage or power source value.		
<hbac <mag<br=""><phase>>></phase></hbac>	(HSPICE RF) HBAC voltage or power source value.		
<hb <mag="" <phase<br=""><harm <tone<br=""><modharm <modtone>>>>></modtone></modharm </harm></hb>	(HSPICE RF) HB voltage, current, or power source value. Multiple HB specifications with different harm, tone, modharm, and modtone values are allowed.		
	phase is in degrees		
	harm and tone are indices corresponding to the tones specified in the .HB statement. Indexing starts at 1 (corresponding to the first harmonic of a tone).		
	modtone and modharm specify sources for multi-tone simulation. A source specifies a tone and a harmonic, and up to 1 offset tone and harmonic (modtone for tones and modharm for harmonics). The signal is then described as: V(or I) = mag*cos(2*pi* (harm*tone+modharm*modtone)*t + phase)		
<transient waveform></transient 	(Transient analysis) Voltage or power source waveform. Any one of waveforms: AM, EXP, PULSE, PWL, SFFM, or SIN. Multiple transient descriptions are not allowed.		

Parameter	Description
TRANFORHB=[0 1]	0 (default): The transient description is ignored if an HB value is given or a DC value is given. If no DC or HB value is given and TRANFORHB=0, then HB treats the source as a DC source, and the DC source value is the time=0 value.
	1: HB analysis uses the transient description if its value is VMRF, SIN, PULSE, PWL, or LFSR. If the type is a non-repeating PWL source, then the time=infinity value is used as a DC source value. To override the global TRANFORHB option, explicitly set TRANFORHB for a voltage or current source.
DCOPEN	Switch for open DC connection when DC $\it mag$ is not set.
	0 (default): P element behaves as an impedance termination.
	1: P element is considered an open circuit in DC operating point analysis. DCOPEN=1 is mainly used in .LIN analysis so the P element will not affect the self-biasing device under test by opening the termination at the operating point.
<z0=<i>val></z0=<i>	(LIN analysis) System impedance used when converting to a power source, inserted in series with the voltage source. Currently, this only supports real impedance.
	When power=0, z0 defaults to 0.
	When power=1, z0 defaults to 50 ohms.
DDCl	You can also enter zo=val.
<rdc=val></rdc=val>	(DC analysis) Series resistance (overrides z0).
<rac=<i>val></rac=<i>	(AC analysis) Series resistance (overrides z0).
<rhbac=<i>val></rhbac=<i>	(HSPICE RF HBAC analysis) Series resistance (overrides z0).
<rhb=<i>val></rhb=<i>	(HSPICE RF HB analysis) Series resistance (overrides z0).
<rtran=val></rtran=val>	(Transient analysis) Series resistance (overrides z0).

Parameter	Description
<pre><power=[0 1="" 2="" dbm]="" w="" =""></power=[0></pre>	(HSPICE RF) Power Switch
	When 0 (default), element treated as a voltage or current source.
	When 1 or W, element treated as a power source, realized as a voltage source with a series impedance. In this case, the source value is interpreted as RMS available power in units of Watts.
	When 2 or dbm, element treated as a power

are in dbms.

You can use this parameter for Transient analysis if the power source is either DC or SIN.

source in series with the port imedance. Values

S Element

Transmission Line

General	Sxxx nd1 nd2 ndN ndRef
Form	+ <mname=smodel_name></mname=smodel_name>
	+ <fqmodel=sp_model_name></fqmodel=sp_model_name>
	+ <type=[s y]="" =""> <zo=[value vector_value]="" =""></zo=[value></type=[s>
	+ <fbase =="" base_frequency=""></fbase>
	+ <fmax=maximum_frequency></fmax=maximum_frequency>
	+ <precfac=val></precfac=val>
	+ <delayhandle=[1 0="" off]="" on="" =""></delayhandle=[1>
	+ <delayfreq=val></delayfreq=val>
	+ <interpolation=step linear="" spline="" =""></interpolation=step>
	+ <intdattyp =[ri="" dba]="" ma="" =""></intdattyp>
	+ <highpass=val></highpass=val>
	+ <lowpass=val> <mixedmode=[0 1]="" =""></mixedmode=[0></lowpass=val>
	+ <datatype=data_string></datatype=data_string>
	+ <noise=[1 0]="" =""> <dtemp=val></dtemp=val></noise=[1>
-	

S Element Parameters

3 Lienient Faranieters		
Parameter	Description	
nd1 nd2 ndN	N terminal nodes.	
nd_ref	Reference node.	
MNAME	S model name, which is used to refer to an S model.	
FQMODEL	.MODEL statement of sp type, which defines the frequency behavior of the S or Y parameter.	

Parameter	Description
TYPE	Parameter type:
	S (scattering) (default)
	Y (admittance)
	Z (impedance)
Zo	Characteristic impedance value for the reference line (frequency-independent). For multiple terminals ($\mathbb{N}>1$), HSPICE or HSPICE RF assumes that the characteristic impedance matrix of the reference lines is diagonal, and that you set diagonal values to \mathbb{Z}_0 . To specify more general types of reference lines, use \mathbb{Z}_0 . The default is 50.
FBASE	The base frequency. This value becomes the base frequency point for the Inverse Fourier Transformation. If you do not set this value, the base frequency is a reciprocal value of the transient period.
FMAX	Maximum frequency use in transient analysis. HSPICE uses the value as the maximum frequency point for Inverse Fourier Transformation.
PRECFAC	A precondition factor keyword used for the precondition process of the S parameter. A precondition is used to avoid an infinite admittance matrix. The default is 0.75, which is good for most cases.
DELAYHANDLE	Delay handler for transmission-line type parameters. Set DELAYHANDLE to ON (or 1) to turn on the delay handle; set DELAYHANDLE to OFF (or 0) to turn off the delay handle (default).
DELAYFREQ	Delay frequency for transmission-line type parameters. The default is FMAX. If the DELAYHANDLE is set to OFF, but DELAYFREQ is nonzero, HSPICE still simulates the S element in delay mode.
INTERPOLATION	The interpolation method:
	STEP: piecewise step
	LINEAR: piecewise linear (default)
	SPLINE: b-spline curve fit

Parameter	Description
INTDATTYPE	Data type for the linear interpolation of the complex data.
	RI: real-imaginary based interpolation
	MA: magnitude-angle based interpolation (default)
	DBA: dB-angle based interpolation
HIGHPASS	Method to extrapolate higher frequency points.
	0: cut off
	1: use highest frequency point
	2: perform linear extrapolation using the highest 2 points
	3: apply the window function to gradually approach the cut-off level (default)
LOWPASS	Method to extrapolate lower frequency points.
	0: cut off
	1: use the magnitude of the lowest point
	2: perform linear extrapolation using the magnitude of the lowest two points
MIXEDMODE	Set to 1 if the parameters are represented in the mixed mode.
DATATYPE	A string used to determine the order of the indices of the mixed-signal incident or reflected vector. The string must be an array of a letter and a number (Xn) where:
	X = D to indicate a differential term= C to indicate a common term= S to indicate a single (grounded) term
	n = the port number
NOISE	Activates thermal noise.
	1: element generates thermal noise
	0 (default): element is considered noiseless
DTEMP	Temperature difference between the element and the circuit. Expressed in $^{\circ}$ C.
	The default is 0.0.

Controlling Input

For complete definitions, see the HSPICE Simulation and Analysis User Guide, "Specifying Simulation Input and Controls."

.OPTION Statement

General Form	.OPTION opt1 <opt2 opt3=""></opt2>	
opt1	Specifies any input control options.	

See ".OPTION" in the HSPICE Command Reference.

General	Control ((I/O)	Options
---------	-----------	-------	----------------

	\
Option	Description
ACCT	Reports job accounting and runtime statistics, at the end of the output listing.
ACOUT	AC output calculation method for the difference in values of magnitude, phase, and decibels for prints and plots.
ALT999, ALT9999	This option is no longer necessary and is ignored because HSPICE accepts any number of .ALTER statements without overwriting files beyond the 36th .ALTER statement.
ALTCC	Enables only reading the input netlist once for multiple .ALTER statements.
ALTCHK	Disables topology checking in elements redefined by the .ALTER statement.
BEEP	BEEP=1 sounds an audible tone when simulation returns a message, such as "info: HSPICE job completed."
	BEEP=0 turns off the audible tone.
BINPRINT	Outputs binning parameters of the CMI MOSFET model. Currently available only for Level 57.
BRIEF, NXX	Stops print back of data file until HSPICE or HSPICE RF finds an $. OPTION$ BRIEF = 0, or the $. END$ statement.
CO = x	Sets the number of columns for printout: x can be either 80 (for narrow printout) or 132 (for wide carriage printouts).

Option	Description
INGOLD = x	Specifies the printout data format.
LENNAM = x	Maximum length of names in the printout of operating point analysis results.
LIST	Produces an element summary of the input data to print.
MEASDGT = x	Formats the .MEASURE statement output in both the listing file and the .MEASURE output files (.ma0, .mt0, .ms0, and so on).
NODE	Prints a node cross reference table.
NOELCK	Bypasses element checking to reduce pre- processing time for very large files.
NOMOD	Suppresses printout of model parameters
NOPAGE	Suppresses page ejects for title headings
NOTOP	Suppresses topology checks to increase speed for pre-processing very large files
NUMDGT = x	Number of significant digits to print for output variable values.
NXX	Same as BRIEF. See BRIEF.
OPFILE = x	Outputs the operating point information to a new file.
OPTLST = x	Outputs additional optimization information:
OPTLST = x	Outputs additional optimization information: No information (default).
OPTLST = x	· ·
OPTLST = x	No information (default).Prints parameter, Broyden update, and
OPTLST = x	 No information (default). Prints parameter, Broyden update, and bisection results information. Prints gradient, error, Hessian, and iteration
OPTLST = x OPTS	 No information (default). Prints parameter, Broyden update, and bisection results information. Prints gradient, error, Hessian, and iteration information.
	 No information (default). Prints parameter, Broyden update, and bisection results information. Prints gradient, error, Hessian, and iteration information. Prints all of the above, and Jacobian. Prints the current settings for all control
OPTS	 No information (default). Prints parameter, Broyden update, and bisection results information. Prints gradient, error, Hessian, and iteration information. Prints all of the above, and Jacobian. Prints the current settings for all control options. Prints subcircuit path numbers, instead of path
OPTS PATHNUM	 No information (default). Prints parameter, Broyden update, and bisection results information. Prints gradient, error, Hessian, and iteration information. Prints all of the above, and Jacobian. Prints the current settings for all control options. Prints subcircuit path numbers, instead of path names Specifies plot size limits for current and

Description

Option

Option	Description
POST_VERSION = x	Sets the post-processing output version with values x=9601, 9007, or 2001.
STATFL	Controls if HSPICE creates a .st0 file.
	statfl=0 (default) outputs a .st0 file.
	statfl=1 suppresses the .st0 file.
SEARCH	Search path for libraries and included files.

See "General Control Options" in the HSPICE Command Reference.

CPU Options

Option	Description
CPTIME = x	Maximum CPU time in seconds, allotted for this simulation job.
EPSMIN = x	Smallest number that a computer can add or subtract, a constant value.
EXPMAX = x	Largest exponent that you can use for an exponential, before overflow occurs.
LIMTIM = x	Amount of CPU time reserved to generate prints and plots, if a CPU time limit (CPTIME = x) terminates simulation

See "CPU Options" in the HSPICE Simulation and Analysis User Guide.

Interface Options

Option	Description
ARTIST = x	ARTIST = 2 enables Cadence Analog Artist interface. Requires a specific license.
CDS, SDA	CDS = 2 produces a Cadence WSF (ASCII format) post-analysis file for Opus™. Requires a specific license.
CSDF	Selects Common Simulation Data Format (Viewlogic-compatible graph data file).
DLENCSDF	How many digits to use with Viewlogic-compatible graph data file format.
MEASOUT	Outputs .MEASURE statement values and sweep parameters into an ASCII file for post-analysis processing using AvanWaves or other analysis tools.

Option	Description
MENTOR = x	MENTOR = 2 enables the Mentor MSPICE-compatible (ASCII) interface. Requires a specific license.
MONTECON	Continues Monte Carlo analysis. Retrieves next random value, even if non-convergence occurs.
POST = x	Stores simulation results for analysis by using AvanWaves interface or other methods.
	POST = 1 saves results in binary.
	POST = 2 saves results in ASCII.
	POST = 3 saves results in New Wave binary format.
PROBE	Limits post-analysis output to only variables specified in .PROBE, .PRINT, .PLOT, and .GRAPH statements.
PSF = x	Specifies if HSPICE or HSPICE RF outputs binary or ASCII data from the Parameter Storage Format.
SDA	Same as CDS. See CDS.
ZUKEN = x	If x is 2, enables Zuken interactive interface.
	If x is 1 (default), disables this interface.

See "Interface Options" in the HSPICE Command Reference.

Analysis Options

Option	Description
ASPEC	Sets HSPICE or HSPICE RF to ASPECcompatibility mode.
FFTOUT	Prints 30 harmonic fundamentals, sorted by size, THD, SNR, and SFDR. You can use this option in HSPICE, but not in HSPICE RF.
LIMPTS = x	Number of points to print or plot in AC analysis.
NOISEMINFREQ = x	Specifies the minimum frequency of noise analysis. Default = 1e-5.
PARHIER	Selects parameter-passing rules that control evaluation order of subcircuit parameters.
SPICE	Makes HSPICE compatible with Berkeley SPICE.
SEED	Starting seed for a random-number generator for Monte Carlo analysis.

See "Analysis Options" in the HSPICE Command Reference.

Error Options

Option	Description
BADCHR	Generates a warning when it finds a non-printable character in an input file.
DIAGNOSTIC	Logs negative model conductances.
NOWARN	Suppresses all warning messages, except those generated from statements in .ALTER blocks.
WARNLIMIT = x	Limits how many times certain warnings appear in the output listing. This reduces the output listing file size.

See "Error Options" in the HSPICE Command Reference.

Version Options

Option	Description
H9007	Sets default values for general-control options to correspond to the values for HSPICE Release H9007D.

See "Version Options" in the HSPICE Command Reference.

Model Analysis Options

See "Model Analysis Options" in the HSPICE Command Reference.

General Options

Option	Description
DCAP	Selects equations to calculate depletion capacitance for LEVEL 1 or 3 diodes, BJTs.
HIER_SCALE	Defines how HSPICE or HSPICE RF interprets the S parameter as a user-defined parameter or an HSPICE scale parameter.
MODSRH	If MODSRH=1, HSPICE or HSPICE RF does not load or reference a model described in a .MODEL statement, if the netlist does not use that model. This option can shorten simulation run time. Default is MODSRH=0.
SCALE	Element scaling factor.
TNOM	Reference temperature for simulation.

MODMONTE If MODMONTE=1, then each device receives a

different random value for its Monte Carlo

parameters.

If MODMONTE=0 (default), then each device receives the same random value for its Monte Carlo parameters. HSPICE RF does not support Monte

Carlo analysis.

MOSFET Control Options

Option	Description
CVTOL	Changes the number of numerical integration steps when calculating gate capacitor charge for a $MOSFET$ by using $CAPOP = 3$.
DEFAD	Default value for MOSFET drain diode area.
DEFAS	Default value for MOSFET source diode area.
DEFL	Default value for MOSFET channel length.
DEFNRD	Default number of squares for drain resistor on a MOSFET.
DEFNRS	Default number of squares for source resistor on a MOSFET.
DEFPD	Default MOSFET drain diode perimeter.
DEFPS	Default MOSFET source diode perimeter.
DEFW	Default MOSFET channel width.
SCALM	Model scaling factor.
WL	Reverses specified order in the VSIZE MOS element. Default order is length-width; changes order to width-length.
WNFLAG=[0 1]	(BSIM4 models). Used to globally turn on the WNFLAG instance parameter. Local definition

See "MOSFET Control Options" in the *HSPICE* Command Reference.

takes precedence.

Inductor Options

You can use the following inductor options in HSPICE, but not in HSPICE RF:

Automatically computes second-order mutual GFNK inductance for several coupled inductors. KLIM Minimum mutual inductance, below which automatic second-order mutual inductance calculation no longer

BJT and Diode Options

proceeds.

Current-explosion model parameter. PN junction characteristics above explosion current are linear.

DC Solution Control Options

Description

Option

ABSH = x	Sets the absolute current change, through voltage- defined branches (voltage sources and inductors).
ABSI = x	Sets the absolute branch current error tolerance in diodes, BJTs, and JFETs during DC and transient analysis.
ABSMOS = x	Current error tolerance (for MOSFET devices) in DC or transient analysis.
ABSTOL = x	ABSTOL is an alias for ABSI. See ABSI.
ABSVDC = x	Sets the absolute minimum voltage for DC and transient analysis.
DI = x	Sets the maximum iteration-to-iteration current change, through voltage-defined branches (voltage sources and inductors).
GDCPATH	Adds conductance to nodes having no DC path to ground.
KCLTEST	Starts KCL (Kirchhoff's Current Law) test.
MAXAMP = x	Sets the maximum current, through voltage- defined branches (voltage sources and inductors).
RELH = x	Relative current tolerance, through voltage-defined branches (voltage sources and inductors).
RELI = x	Relative error/tolerance change, from iteration to iteration. Determines convergence for all currents in diode, BJT, and JFET devices.
RELMOS = x	Sets error tolerance (percent) for drain-to-source current, from iteration to iteration. Determines convergence for currents in MOSFET devices.

Option Description

RELV = x Relative error tolerance for voltages.

RELVDC = x Relative error tolerance for voltages.

See "DC Operating Point, DC Sweep, and Pole/Zero Options" in the *HSPICE Command Reference*.

Matrix Options

ITL1 = x Maximum DC iteration limit.

ITL2 = x Iteration limit for the DC transfer curve.

NOPIV Prevents HSPICE from automatically switching to

pivoting matrix factors.

PIVOT = x Selects a pivot algorithm.

PIVREF Pivot reference.

PIVREL = x Maximum/minimum row/matrix ratio.

PIVTOL = x Absolute minimum value for which HSPICE or

HSPICE RF accepts a matrix entry as a pivot.

SPARSE = x Same as PIVOT.

Pole/Zero I/O Options

CAPTAB Prints table of single-plate node capacitance for

diodes, BJTs, MOSFETs, JFETs, and passive

capacitors at each operating point.

DCCAP Generates C-V plots, and prints capacitance values of

a circuit (both model and element), during a DC

analysis.

OPFILE The OPFILE option outputs the operating point

information to a new file.

VFLOOR = x Minimum voltage to print in output listing.

DC Convergence Options

ABSTOL = ABSTOL is an alias for ABSI. See ABSI.

CAPTAB Prints table of single-plate node capacitance for

diodes, BJTs, MOSFETs, JFETs, and passive

capacitors at each operating point.

CONVERGE Invokes different methods to solve non-convergence

problems

CSHDC The same option as CSHUNT; use only with the

CONVERGE option.

DCCAP Generates C-V plots, and prints capacitance values of a circuit (both model and element), during a DC analysis.

DCFOR = xUse with DCHOLD and .NODESET to enhance DC convergence.

DCHOLD = xUse DCFOR and DCHOLD together to initialize a DC analysis.

DCIC = xDC sweep analysis loads the initial conditions for DC sweep points.

DCON = XIf a circuit cannot converge, HSPICE or HSPICE RF automatically sets DCON = 1.

DCSTEP = xConverts DC model and element capacitors to a conductance to enhance DC convergence properties.

DCTRAN is an alias for CONVERGE. See **DCTRAN** CONVERGE.

DV = xMaximum iteration-to-iteration voltage change for all circuit nodes in both DC and transient analysis.

GMAX = xConductance in parallel with a current source for .IC and .NODESET initialization circuitry.

GMINDC = xConductance in parallel to all pn junctions and all MOSFET nodes for DC analysis.

GRAMP = xHSPICE sets this value during autoconvergence.

GSHDC Adds conductance from each node to ground when calculating the DC operating point of the circuit (.OP). Default=0.

Adds conductance from each node to ground. **GSHUNT** Default=0.

ICSWEEP Saves current analysis result of parameter or temperature sweep as the starting point in the next analysis in the sweep.

ITI PTRAN Controls the iteration limit used in the final try of the pseudo-transient method in OP or DC analysis.

ITL1 = xMaximum DC iteration limit.

ITL2 = xIteration limit for the DC transfer curve. KCI TEST Starts KCL (Kirchhoff's Current Law) test.

MAXAMP = xSets the maximum current, through voltage-defined branches (voltage sources and inductors).

NEWTOL Calculates one more iterations past convergence for every calculated DC solution and timepoint circuit solution.

NOPIV

OFF For all active devices, initializes terminal voltages to zero, if you did not initialize them to other values.

NOPIV	Prevents HSPICE from automatically switching to pivoting matrix factors.
PIVREL = x	Maximum/minimum row/matrix ratio.
PIVTOL = x	Absolute minimum value for which HSPICE or HSPICE RF accepts a matrix entry as a pivot.
RESMIN = x	Minimum resistance for all resistors, including parasitic and inductive resistances.
SPARSE = x	Same as PIVOT.
SYMB = x	If you set the SYMB option to 1, HSPICE operates with a symbolic operating point algorithm to get initial guesses before calculating operating points.

Pole/Zero Control Options

Option	Description
CSCAL	Sets the capacitance scale. HSPICE multiplies capacitances by CSCAL.
FMAX	Sets the maximum frequency of angular velocity for poles and zeros.
FSCAL	Sets the frequency scale, by which HSPICE or HSPICE RF multiplies the frequency.
GSCAL	Sets the conductance scale.
LSCAL	Sets the inductance scale.
PZABS	Absolute tolerances for poles and zeros.
PZTOL	Relative error tolerance for poles or zeros.
RITOL	Minimum ratio for (real/imaginary) or (imaginary/real) parts of poles or zeros.
(X0R,X0I), (X1R,X1I), (X2R,X2I)	The three complex starting points in the Muller pole/zero analysis algorithm.

See "Pole/Zero Control Options" in the *HSPICE* Command Reference.

Transient and AC Control Options

Option	Description
ABSH = x	Sets the absolute current change, through voltage defined branches (voltage sources and inductors).
ABSV = x	Same as VNTOL. See VNTOL.
ACCURATE	Selects a time algorithm; uses LVLTIM=3 and DVDT = 2 for circuits such as high-gain comparators. Default is 0.

Option	Description
ACOUT	AC output calculation method for the difference in values of magnitude, phase, and decibels. Use this option for prints and plots. Default is 1.
CHGTOL = x	Sets a charge error tolerance if you set LVLTIM=2. Default=1e-15 (coulomb).
CSHUNT	Adds capacitance from each node to ground. Default=0.
DI = x	Maximum iteration-to-iteration current change, through voltage-defined branches (voltage sources and inductors). Default is 0.0.
GMIN = x	Minimum conductance added to all PN junctions for a time sweep in transient analysis. Default is 1e-12.
GSHUNT	Adds conductance added from each node to ground. Default=0.
MAXAMP = x	Maximum current, through voltage-defined branches (voltage sources and inductors). If current exceeds the MAXAMP value, HSPICE issues an error. Default=0.0.
RELH = x	Relative current tolerance, through voltage-defined branches (voltage sources and inductors). Default is 0.05.
RELI = x	Relative error/tolerance change, from iteration to iteration. Default is 0.01 for KCLTEST=0 or 1e-6 for KCLTEST=1.
RELQ = x	Used in timestep algorithm for local truncation error (LVLTIM=2). Default=0.01.
RELTOL, RELV	Relative error tolerance for voltages. Default is 1e-3.
RISETIME	Smallest risetime of a signal, .OPTION RISETIME = x.
TRTOL = x	Used in timestep algorithm for local truncation error (LVLTIM=2). Default=7.0.
VNTOL = x, ABSV	Absolute minimum voltage for DC and transient analysis. Default=50 (microvolts).

See "Transient and AC Small Signal Analysis Options" in the *HSPICE Command Reference*.

Speed Options

AUTOSTOP	Stops transient analysis, after calculating all TRIG-TARG, FIND-WHEN, and FROM-TO measure functions.
BKPSIZ = x	Size of breakpoint table. Default=5000.

BYPASS To speed-up simulation, does not update status of

latent devices. Default is 1.

BYTOL = xVoltage tolerance, at which a MOSFET, MESFET,

JFET, BJT, or diode becomes latent. Default is

MBYPASSxVNTOL.

To speed-up simulation, does not update status of **FAST**

latent devices. Default is 0.

ITLPZ Sets the iteration limit for pole/zero analysis.

Default is 100.

MBYPASS = xComputes default of BYTOL control option.

Default is 1 for DVDT = 0, 1, 2, or 3.

Default is 2 for DVDT = 4.

TRCON Controls automatic convergence, and the speed

of large non-linear circuits with large TSTOP/

TSTEP values. Default=1.

Timestep Options

ABSVAR = xAbsolute limit for the maximum voltage change,

from one time point to the next. Default is 0.5

(volts).

DELMAX = xMaximum Delta of the internal timestep. HSPICE

automatically sets the DELMAX value.

DVDT Adjusts the timestep, based on rates of change

for node voltage. Default=4.

0 - original algorithm

1 - fast

2 - accurate

3,4 - balance speed and accuracy

FS = xDecreases Delta (internal timestep) by the

specified fraction of a timestep (TSTEP) for the

first time point of a transient. Default=0.25.

FT = xDecreases Delta (the internal timestep), by a

> specified fraction of a timestep (TSTEP) for an iteration set that does not converge. Default is

0.25.

IMIN = x. ITL3 = x Minimum number of iterations. Required to obtain

convergence at a timepoint in transient analysis simulations. Determines internal timestep. Default

is 3.0.

Maximum number of iterations to obtain IMAX = x,

ITI 4 = xconvergence at a timepoint in transient analysis.

Determines internal timestep. Default is 8.0.

ITI 5 = xIteration limit for transient analysis output. Default

is 0.0.

RELVAR = xUsed with ABSVAR, and DVDT timestep option.

Sets relative voltage change for LVLTIM=1 or 3.

Default is 0.30 (30%).

RMAX = xTSTEP multiplier, controls maximum value

> (DELMAX) to use for internal timestep Delta. Default is 5 when dvdt=4, and lvltim=1. Otherwise, default=2. Maximum is 1e+9,

minimum is 1e-9. Recommend maximum=1e+5.

RMIN = xSets the minimum value of Delta (internal

timestep). Default=1.0e-9.

SLOPETOL = xMinimum value for breakpoint table entries in a

piecewise linear (PWL) analysis. Default is 0.5.

TIMERES = xMinimum separation between breakpoint values

for breakpoint table. Default=1 ps.

WACC = xTriggers the W element dynamic step control

> algorithm, x is a real number between 0.0 and 10.0. Larger values result in higher performance and lower accuracy, while smaller values result in lower performance and higher accuracy. If x=0.0,

a static step control algorithm is used.

Default=0.0.

Algorithm Options

DVTR Limits voltage in transient analysis. Default is

1000.

Maximum number of iterations to obtain IMAX = x.

ITL4 = xconvergence at a timepoint in transient analysis.

Determines internal timestep. Default is 8.0.

IMIN = x, ITL3 = xMinimum number of iterations. Required to obtain

> convergence at a timepoint in transient analysis simulations. Determines internal timestep. Default

is 3.0.

LVLTIM = xSelects the timestep algorithm for transient

analysis.

If LVLTIM = 1 (default), HSPICE uses the DVDT

timestep algorithm.

If LVLTIM = 2, HSPICE uses the local truncation

error (LTE) timestep control method.

If LVLTIM = 3, HSPICE uses the DVDT timestep

algorithm with timestep reversal.

MAXORD = xMaximum order of integration for the GEAR

method (see METHOD).

MFTHOD = name

Sets numerical integration method for a transient

analysis to GEAR or TRAP.

PURETP

Sets the integration method to use for the

reversal time point. Default = 0.

MU = x

Coefficient for trapezoidal integration. Range for

MU is 0.0 to 0.5. Default=0.5.

RUNLVL = x

Controls the speed and accuracy trade-off. It can be set to 0,1,2,3,4,5,6. Higher values of RUNLVL result in higher accuracy and longer simulation times, while lower values give lower accuracy and faster simulation runtimes.

RUNLVL=0 turns off this algorithm.

RUNLVL=1 is the lowest simulation runtime.

RUNLVL=3 is the default (similar to original

HSPICE default mode).

RUNLVL=5, 6 correspond to the HSPICE standard accurate mode. For most circuits, RUNI VI =5 is similar to the HSPICF standard

accurate mode.

TRCON

Controls the automatic convergence (autoconvergence) process.

TRCON=3: enable auto-speedup only. HSPICE invokes auto-speed up if:

- there are more than 1000 nodes, or
- there are more than 300 active devices, or
- Tstop/Tstep (as defined in .TRAN) > 1e8.

When auto-speedup is active. RMAX increases. and HSPICE can take larger timesteps.

TRCON=2: enables auto-convergence only. HSPICE invokes auto-convergence if you use the default integration method (trapezoidal), and if HPSICE fails to converge with an "internal timestep too small" error.

Auto-convergence sets method=gear, lvltim=2, and starts the transient simulation again from time=0.

TRCON=1: enables both auto-convergence and auto-speedup.

TRCON=0: disables both auto-convergence and auto-speedup (default).

TRCON=-1: same as TRCON=0.

Input and Output Options

INTERP Limits output for post-analysis tools, such as

Cadence or Zuken to only .TRAN timestep intervals.

ITRPRT Prints output variables, at their internal timepoints.

MCBRIEF = x Controls how HSPICE outputs Monte Carlo

parameters.

MEASFAIL If MEASFAIL=0, outputs 0 into the .mt#, .ms#,

or .ma# file, and prints failed to the listing file.

If MEASFAIL=1 (default), prints failed into

the .mt#, .ms#, or .ma# file, and into the listing file.

MEASFILE = x If MEASFILE=0, outputs measure information to

several files.

If MEASFILE=1 (default), outputs measure

information to a single file.

MEASSORT This option is no longer necessary and is ignored.

PUTMEAS Controls the output variables, listed in the .MEASURE statement. Default = 1.

UNWRAP Displays phase results from AC analysis in

unwrapped form (continuous phase plot).

AC Control Options

ABSH=x Sets the absolute current change, through voltage-

defined branches (voltage sources and inductors).

ACOUT AC output calculation method for the difference in

values of magnitude, phase, and decibels for prints

and plots.

DI=x Sets the maximum iteration-to-iteration current

change, through voltage-defined branches (voltage

sources and inductors).

MAXAMP = x Sets the maximum current, through voltage-defined

branches (voltage sources and inductors).

RELH = x Relative current tolerance, through voltage-defined

branches (voltage sources and inductors).

UNWRAP Displays phase results from AC analysis in

unwrapped form (continuous phase plot).

Common Model Interface Options

CMIFLAG Controls loading of the CMI library.

CUSTCMI=x Controls gate tunneling current modeling and

additional instance parameter support for Customer

CMI with topoid=0.

Verilog-A Options

SPMODEL In this option, the name is the cell name that uses a

SPICE definition.

VAMODEL This option specifies that the *name* is the cell name

that uses a Verilog-A definition rather than the

subcircuit definition when both exist.

Statements

HSPICE supports the following statements:

.ALTER Statement

General	.ALTER <title_string></title_string>	
Form		

See ".ALTER" in the HSPICE Command Reference.

Comments

General Form	* <comment a="" by="" itself="" line="" on=""></comment>
Or	<hspice statement=""> \$<comment following="" hspice="" input=""></comment></hspice>

.ALIAS Statement

You can alias one model name to another:

.alias pal parl

During simulation, this .ALIAS statement indicates to use the par1 model in place of a reference to a previously-deleted pa1 model. See ".ALIAS" in the HSPICE Command Reference.

.CONNECT Statement

Connects two nodes in your HSPICE netlist so that simulation evaluates the two nodes as only one node. Both nodes must be at the same level in the circuit design that you are simulating: you cannot connect nodes that belong to different subcircuits. You also cannot use this statement in HSPICE RF.

.CONNECT node1 node2

where:

node1 Name of the first of two nodes to connect to each other.

node2 Name of the second of two nodes to connect to each other. The first node replaces this node in the simulation.

.DATA Statement

See ".DATA" in the HSPICE Command Reference.

Inline .DATA Statement

General Form	.DATA datanm pnam1 < pnam2
	+ pnam3pnamxxx >
	+ pval1 <pval2 pval3<="" td=""></pval2>
	+ pvalxxx> pval1' <pval2'< td=""></pval2'<>
	+ pval3'pvalxxx'>
	.ENDDATA

External File .DATA Statement

General Form	.DATA datanm
	+ MER FILE = 'filename1'
	+ pname1=colnum
	+ <panme2=colnum></panme2=colnum>
	+ <file 'filename2'<="" =="" td=""></file>
	+ pname1 = colnum
	+ <pname2 =="" colnum="">></pname2>
	+ <out 'fileout'="" ==""></out>
	.ENDDATA

Column Laminated .DATA Statement

General Form	.DATA datanm + LAM FILE='filename1' + pname1=colnum + <panme2=colnum> + <file='filename2' +="" <pname2="colnum" pname1="colnum">></file='filename2'></panme2=colnum>
	+ <out 'fileout'="" ==""> .ENDDATA</out>
datanm	Specifies the data name referred to in the .TRAN, .DC, or .AC statement.
LAM	Specifies column-laminated (parallel merging) data files to use.
filenamei	Specifies the name of the data file to read.
MER	Specifies concatenated (series merging) data files to use.
pnami	Specifies the parameter names used for source value, element value, device size, model parameter value, and so on.
colnum	Specifies the column number in the data file for the parameter value.
fileout	Specifies the name of the data file to write with all of the data concatenated.
pvali	Specifies the parameter value.

See "Column Laminated .DATA Statement" in the HSPICE Simulation and Analysis User Guide.

.DEL LIB Statement

General Form	.DEL LIB ' <filepath>filename' + entryname .DEL LIB libnumber entryname</filepath>
entryname	Entry name, used in the library call statement to delete.
filename	Name of a file to delete from the data file.
filepath	Path name of a file, if the operating system supports tree-structured directories.
libnumber	Library number, used in the library call statement to delete.

See ".DEL LIB" in the HSPICE Command Reference.

Element Statements

Or Or	elname <node1 node2="" noden=""> + <mname> <pname 'expression'="" ==""> + <m =="" val=""> elname <node1 node2="" noden=""> + <mname> <val1 val2="" valn=""> B IBIS buffer C Capacitor D Diode E,F,G,H Dependent current and voltage sources I Current source J JFET or MESFET K Mutual inductor</val1></mname></node1></m></pname></mname></node1>
Or	+ <mname> <val1 val2="" valn=""> B IBIS buffer C Capacitor D Diode E,F,G,H Dependent current and voltage sources I Current source J JFET or MESFET</val1></mname>
	C Capacitor D Diode E,F,G,H Dependent current and voltage sources I Current source J JFET or MESFET
	L Inductor M MOSFET Q BJT R Resistor S S element T,U,W Transmission line V Voltage source X Subcircuit call
expression	Any mathematical expression containing values or parameters, i.e., param1 * val2.
elname	Element name that cannot exceed 1023 characters, and must begin with a specific letter for each element type.
M = val	Element multiplier.
mname	Model reference name is required for all elements except passive devices.
node1	Node names are identifiers of the nodes to which the element is connected.
pname1	Element parameter name used to identify the parameter value that follows this name.
val1	Value assigned to the parameter pname1 or to the corresponding model node.

See "Element and Source Statements" in the HSPICE Simulation and Analysis User Guide.

.END Statement

General Form	.END <comment></comment>
comment	Any comment, normally the name of the data file being terminated.

See ".END" in the HSPICE Command Reference.

.GLOBAL Statement

General Form	.GLOBAL node1 node2 node3

See ".GLOBAL" in the HSPICE Command Reference.

.IC/.DCVOLT Initial Condition Statement

General Form	.IC v(node1)=val 1 v(node2)= + val 2
Or	.DCVOLT V(node1)=val 1 + V(node2)=val 2

See ".IC" and ".DCVOLT" in the HSPICE Command Reference.

.IF-.ELSEIF-.ELSE-.ENDIF Statements

You can use this if-else structure to change the circuit topology, expand the circuit, set parameter values for each device instance, or select different model cards in each if-else block.

.IF (condition1)

< .ELSEIF (condition2)

... >

< .ELSE

... >

.ENDIF

.INCLUDE Statement

General Form	.INCLUDE ' <filepath> filename'</filepath>

.LIB Library Call Statement

General Form	.LIB ' <filepath> filename' entryname</filepath>
entryname	Entry name for the section of the library file to include.

Name of a file to include in the data file. filename

filepath Path to a file.

.LIN Statement

ent
.LIN <pre>.LIN <pre>clip </pre> <pre>.LIN <pre>clip <pre< td=""></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>
If 1, extract S parameters (default).
Model name listed in the .MODEL statement in the .sc# model output file.
Output file name (default=netlist name).
Output file format:
- selem is for S element .sc# format, which you can include in the netlist.
- citi is CITIfile format.
- touchstone is TOUCHSTONE file format.
If 1, extract noise parameters (perform 2-port noise analysis). Default=0.
If 1, extract group delay (perform group delay analysis). Default=0.
The mixedmode2port keyword describes the mixed-mode data map of output mixed mode S parameter matrix. The availability and default value for this keyword depends on the first two port (P element) configuration as follows:
case 1: p1=p2=single (standard mode P element) available: ss default: ss
case 2: p1=p2=balanced (mixed mode P element) available: dd, cd, dc, cc default: dd
case 3: p1=balanced p2=single available: ds, cs default: ds
case 4: p1=single p2=balanced available: sd, sc default: sd

LIB Library File Definition Statement

•	
General Form	.LIB entryname1
	. \$ ANY VALID SET OF HSPICE + STATEMENTS
	.ENDL entryname1 .LIB entryname2
	. \$ ANY VALID SET OF HSPICE + STATEMENTS
	.ENDL entryname2 .LIB entryname3
	. \$ ANY VALID SET OF HSPICE + STATEMENTS
	.ENDL entryname3

The text following a library file entry name must consist of valid HSPICE statements. See ".LIB Library File Definition Statement" in the HSPICE Simulation and Analysis User Guide.

.LIB Nested Library Calls

Library calls may be nested in other libraries provided they call different files. Library calls may be nested to any depth. See ".LIB Nested Library Calls" in the HSPICE Simulation and Analysis User Guide.

.MALIAS Statement

You can use the .MALIAS statement to assign an alias (another name) to a diode, BJT, JFET, or MOSFET model that you defined in a .MODEL statement. You can also use the .MALIAS statement to assign an alias to a subcircuit defined in a .SUBCKT statement. See .MALIAS Statement in the HSPICE Command Reference.

You cannot use the .MALIAS statement in HSPICE RF. The syntax of the .MALIAS statement is:

.MALIAS model name=alias name1 <alias name2 . . .>

MODEL St	atement
General Form	.MODEL mname type + <version =="" version_number=""> + <pname1 =="" pname2="val2" val1=""></pname1></version>
VERSION	HSPICE version number, used to allow portability of the BSIM (LEVEL=13), BSIM2 (LEVEL = 39) models between HSPICE releases. Version parameter also valid for LEVEL 49, 53, 54, 57, and 59.
mname	Model name reference.
pname1	Parameter name.
type	Selects the model type, which must be one of the following:
	For HSPICE:
	AMP operational amplifier model C capacitor model COREmagnetic core model D diode model L magnetic core mutual inductor NJF n-channel JFET model NMOSn-channel MOSFET model NPN npn BJT model OPT optimization model PJF p-channel JFET model PLOT plot model for .GRAPH statement PMOSp-channel MOSFET model PNP pnp BJT model R resistor model U lossy transmission line (lumped) W lossy transmission line model S model SP Frequency table model
	For HSPICE RF:
	C capacitor model D diode model R resistor model W lossy transmission line model

See ".MODEL" in the HSPICE Command Reference.

NODESET Statement

	Li otatomont
General	.NODESET V(node1) = val1
Form	+ <v(node2) =="" val2=""></v(node2)>
Or	.NODESET node1 val1 <node2 val2=""></node2>
node1	Node numbers or node names can include full path names or circuit numbers

val1 Specifies voltage.

See ".NODESET" in the HSPICE Command Reference.

.PARAM Statement

General .PARAM <ParamName>=<RealNumber>
Form

See ".PARAM" in the HSPICE Command Reference.

Algebraic Format

General Form .PARAM <ParamName>=<AlgebraicExpression> .PARAM<ParamName1>=<ParamName2>

Quotes around the algebraic expression are mandatory. See "Algebraic Parameter (Equation)" in the HSPICE Simulation and Analysis User Guide.

Optimization Format

General Form OPTIMIZE=opt pay fun

Conorai i cimi	or rivilez=opt_pav_rain
Or (element or model keyname)	.PARAM <paramname>=<optparamfunc> (<init>, <lolim>, <hi lim="">, <inc>)</inc></hi></lolim></init></optparamfunc></paramname>
paramname1	Parameter names are assigned to values
${\sf OptParmFunc}$	Optimization parameter function (string)
Init	Initial value of parameter (real)
LoLim	Lower limit for parameter (real)
HiLim	Upper limit for parameter (real)
Inc	Rounds to nearest <inc> value (real)</inc>

A parameter can be used in an expression only if it is defined.

.PROTECT Statement

General	.PROTECT	
Form		

The .PROTECT command suppresses the print back of text. See ".PROTECT" in the HSPICE Command Reference.

.TITLE Statement

General Form	Any string of up to 72 characters
Or	.TITLE "any string"
Title	The first line of the simulation is always the title.

See ".TITLE" in the HSPICE Command Reference.

.UNPROTECT Statement

General Form	.UNPROTECT	

The .UNPROTECT command restores normal output functions from a .PROTECT command. See ".UNPROTECT" in the HSPICE Command Reference.

.WIDTH Statement

General Form	.WIDTH OUT={80 132}
OUT	The output print width. Permissible values are 80 and 132.

See ".WIDTH" in the HSPICE Command Reference.

Analyzing Data

You can perform several types of analyses with HSPICE.

DC Analysis

HSPICE can perform the following types of DC analyses.

.DC Statement—DC Sweep

See ".DC" in the HSPICE Command Reference.

Sweep or Parameterized Sweep

-	
General Form	.DC var1 start1 stop1 incr1 + <sweep np<="" td="" type="" var2=""></sweep>
	Latarta atama
	+ start2 stop2>
Or	.DC var1 start1 stop1 incr1 + <var2 incr2="" start2="" stop2=""></var2>

Data-Driven Sweep

General Form	.DC var1 type np start1 stop1 + <sweep data="datanm"></sweep>
Or	.DC DATA = datanm + <sweep start2="" stop2<br="" var2="">+ incr2></sweep>
Or	.DC DATA = datanm

Monte Carlo

General Form	.DC var1 type np start1 stop1 + <sweep monte="val"> <firstrun =="" num1=""></firstrun></sweep>
Or	.DC var1 type np start1 stop1 + <sweep monte="list<("> <num1:num2> + <num3> <num5:num6> <num7> <)>></num7></num5:num6></num3></num1:num2></sweep>
Or	.DC MONTE = val <firstrun =="" num1=""></firstrun>
Or	.DC MONTE = list<(> <num1:num2> + <num3> <num5:num6> <num7> <)></num7></num5:num6></num3></num1:num2>

Optimization

General Form	.DC DATA = datanm OPTIMIZE =+ opt_par_fun RESULTS =+ measnames MODEL = optmod
Or	.DC var1 start1 stop1 SWEEP + OPTIMIZE = OPTxxx + RESULTS = measname + MODEL = optmod
DC analysis statement	.DC <data=filename> SWEEP + OPTIMIZE=OPTxxx + RESULTS=ierr1 ierrn + MODEL=optmod</data=filename>
DATA=datanm	Datanm is the reference name of a .DATA statement.
incr1	Voltage, current, element, model parameters, or temperature increment values.
MODEL	Optimization reference name, used in the .MODEL OPT statement.
MONTE=val	Produces a number (<i>val</i>) of randomly generated values, which select parameters from a distribution.
np	Number of points per decade (or depending on the preceding keyword).
OPTIMIZE	Specifies the parameter reference name used in the .PARAM statement.

RESULTS	Specifies the measure name used in the .MEASURE statement.
start1	Starting voltage, current, element, model parameters, or temperature values.
stop1	Final voltage, current, any element, model parameter, or temperature values.
SWEEP	Indicates that a second sweep has a different variation type (DEC, OCT, LIN, POI, DATA statement, or MONTE = val).
TEMP	Indicates a temperature sweep.
type	Can be any of the following keywords: DEC, OCT, LIN, POI.
var1	Name of an independent voltage or current source, any element or model parameter, or the

	source, any element or model parameter, or the TEMP keyword.
.DCMATCH Statement—DC Mismatch See ".DCMATCH" in the HSPICE Command Reference.	
General Form	.DCMATCH OUTVAR <threshold=t> + <file=string> <perturbation=p> + <interval=int< td=""></interval=int<></perturbation=p></file=string></threshold=t>
OUTVAR	Valid node voltages, the difference between node pairs or branch currents.
Threshold	Report devices with a relative contribution above Threshold in the summary table.
	T=0: reports results for all devices
	T<0: suppresses table output; however, individual results are still available through .PROBE or .MEASURE statements.
	The upper limit for \mathcal{T} is 1, but at least 10 devices are reported, or all if there are less than 10. Default value is 0.01.
File	Valid file name for the output tables. Default is basename.dm# where "#" is the usual sequence number for HSPICE output files.
Perturbation	Indicates that perturbations of ${\it P}$ standard deviation will be used in calculating the finite difference approximations to device derivatives. The valid range for ${\it P}$ is 0.01 to 6, with a default value of 2.

Interval Applies only if a DC sweep is specified. Int is a positive integer. A summary is printed at the first sweep point, then for each subsequent increment of Int, and then, if not already printed, at the final sweep point. Only single sweeps are supported.

See ".DCMATCH" in the HSPICE Command Reference.

DCmatch Definition Block

.Variation .Local Variation modelType modelName modelParam1='Expression1 for Sigma' + modelParam2='Expression2 for Sigma' .End_Local_Variation .End_Variation

modelType	Identifies a model type.
modelName	Model name reference.
modelParam1,2	Defines DCmatch variation for a model parameter of the device specified. The expression can be a constant, parameter, or a function containing allowed instance parameters. Add a space and % character after the expression to specify the variation as a percentage of the nominal value.

.OP Statement—Operating Point

	. •
General Form	.OP <format> <time> <format> <time> <interpolation></interpolation></time></format></time></format>
format	Any of the following keywords: ALL, BRIEF, CURRENT, DEBUG, NONE, VOLTAGE.
time	Parameter after ALL, VOLTAGE, CURRENT, or DEBUG to specify the time at which the report is printed.
interpolation	Selects an interpolation method for .OP time points to display during transient analysis.

See ".OP" in the HSPICE Command Reference.

.PZ Statement—Pole/Zero Analysis

General Form	.PZ ov srcnam
OV	Output variable: a node voltage $V(n)$ or branch current $I(element)$
srcnam	Input source: an independent voltage or current source name

See ".PZ" in the HSPICE Command Reference.

.SENS Statement—DC Sensitivity Analysis

General Form	.SENS ov1 <ov2></ov2>
ov1 ov2	Branch currents or nodal voltage for DC component sensitivity analysis.

See ".SENS" in the HSPICE Command Reference.

.TF Statement—DC Small-Signal Transfer **Function Analysis**

General Form	.TF ov srcnam
OV	Small-signal output variable
srcnam	Small-signal input source

See ".TF" in the HSPICE Command Reference.

AC Analysis

.AC Statement

Single/Double Sweep

•	•
General Form	.AC type np fstart fstop
Or	.AC type np fstart fstop + <sweep <start="" var="">start + <stop=>stop <step=>incr></step=></stop=></sweep>
Or	.AC type np fstart fstop <sweep np="" start<br="" type="" var="">stop></sweep>

See ".AC" in the HSPICE Command Reference.

Parameterized Sweep

General Form	.AC type np fstart fstop <sweep data="datanm"></sweep>
Or	.AC DATA = datanm
Or	.AC DATA = datanm <sweep var<br="">+ <start=>start <stop=>stop + <step=>incr></step=></stop=></start=></sweep>
Or	.AC DATA = datanm <sweep var<br="">+ type np start stop></sweep>
Or	.AC DATA = datanm <sweep var<br="">+ START="param_expr1" + STOP="param_expr2" + STEP="param_expr3"></sweep>
Or	.AC DATA = datanm <sweep var<br="">+ start_expr stop_expr + step_expr></sweep>

Optimization

General Form	.AC DATA = datanm + OPTIMIZE = opt_par_fun + RESULTS = measnames + MODEL = optmod
AC analysis statement	.AC <data=filename> SWEEP + OPTIMIZE=OPTxxx + RESULTS=ierr1 ierrn + MODEL=optmod</data=filename>

Random/Monte Carlo

General Form	.AC type np fstart fstop
	+ <sweep monte="val"> <firstrun =="" num1=""></firstrun></sweep>
	or
	.AC type np fstart fstop
	+ <sweep monte="list<("> <num1:num2></num1:num2></sweep>
	+ <num3> <num5:num6> <num7> <)> ></num7></num5:num6></num3>

DATA=datanm Data name referenced in the .AC statement.

fstart Starting frequency. If you use POI (list of points)

type variation, use a list of frequency values, not

fstart fstop.

fstop Final frequency.

incr Increment value of the voltage, current, element, or

model parameter. If you use type variation, specify

the np (number of points) instead of incr.

MONTE = val Produces a number (val) of randomly-generated

values (HSPICE only; not supported in HSPICE RF). HSPICE uses these values to select parameters from a distribution, either Gaussian,

Uniform, or Random Limit.

np Number of points, points per decade, or octave,

depending on which keyword precedes it.

start Starting voltage, current, or any parameter value

for an element or a model.

stop Final voltage, current, or any parameter value for

an element or a model.

SWEEP This keyword indicates that the .AC statement

specifies a second sweep.

TEMP This keyword indicates a temperature sweep

The val value specifies the number of Monte Carlo iterations to perform. The firstrun value specifies the desired number of iterations. HSPICE runs

from num1 to num1+val-1.

list The iterations at which HSPICE performs a Monte

Carlo analysis. You can write more than one number after *list*. The colon represents "from ... to ...". Specifying only one number makes HSPICE

run at only the specified point.

type Can be any of the following keywords:

DEC – decade variation.

OCT – octave variation.

LIN – linear variation.

POI – list of points.

var Name of an independent voltage or current source,

element or model parameter, or the TEMP

(temperature sweep) keyword.

firstrun

.DISTO Statement—AC Small-Signal Distortion **Analysis**

General Form	.DISTO Rload <inter <skw2<br="">+ <refpwr <spwf="">>>></refpwr></inter>
inter	Interval at which HSPICE prints a distortion- measure summary.
refpwr	Reference power level, used to compute the distortion products.
Rload	Element name of the output load resistor, into which the output power feeds.
skw2	Ratio of the second frequency (F2) to the nominal analysis frequency (F1).
spwf	Amplitude of the second frequency (F2).

See ".DISTO" in the HSPICE Command Reference.

.LIN Statement—AC Linear Parameter Extraction **Analysis**

General Form	.LIN sparcalc=1 + modelname=my_custom_model + filename=mydesign format=touchstone + noisecalc=1 gdcalc=1 + dataformat=[ri ma db]
sparcalc	Flag to do S parameter extraction. Default=1
modelname	The model name to store the S Parameters.
filename	The name of output data file.
format	Data file format: TOUCHSTONE, CITIfile, or .sc* file.
noisecalc	Flag to do two-port noise analysis. Default=0.
gdcalc	Flag to do group delay analysis. Default=0.
dataformat	Data format in the output data file: RI/MA/DB

See ".LIN" in the HSPICE Command Reference.

.NOISE Statement—AC Noise Analysis

General Form	.NOISE ovv srcnam inter
inter	Interval at which HSPICE or HSPICE RF prints a noise analysis summary; inter specifies how many frequency points to summarize in the AC sweep.
OVV	Nodal voltage output variable, defining the node at which HSPICE or HSPICE RF sums the noise.
srcnam	Name of the independent voltage or current source to use as the noise input reference.

See ".NOISE" in the HSPICE Command Reference.

.SAMPLE Statement—Noise Folding Analysis

General Form	.SAMPLE FS = freq <tol =="" val=""> + <numf =="" val=""> <maxfld =="" val=""> + <beta =="" val=""></beta></maxfld></numf></tol>
BETA	Integrator duty cycle; specifies an optional noise integrator at the sampling node.
FS = freq	Sample frequency in hertz.
MAXFLD	Maximum number of folding intervals.
NUMF	Maximum allowed number of frequencies that you can specify.
TOL	Sampling error tolerance.

See ".SAMPLE" in the HSPICE Command Reference.

Small-Signal Network Analysis

.NET Statement—AC Network Analysis

One-port network

General Form	.NET input <rin =="" val=""></rin>
Or	.NET input <val></val>

Two-port network

General Form	. NET output input + <rout =="" val=""> <rin =="" val=""></rin></rout>
input	Name of the voltage or current source for AC input.

output	Output port. It can be:
	An output voltage, V(n1,n2).
	An output current, I(source), or I(element).
RIN	Keyword for input or source resistance. The RIN value calculates output impedance, output admittance, and scattering parameters. The default RIN value is 1 ohm.
ROUT	Keyword for output or load resistance. The ROUT value calculates input impedance, admittance, and scattering parameters. The default ROUT value is 1 ohm.

See ".NET" in the HSPICE Command Reference.

AC Network Analysis—Output Specification

General Form	Xij(z), ZIN(z), ZOUT(z), YIN(z), YOUT(z)
ij	Identifies which matrix parameter to print.
Χ	Specifies Z for impedance, Y for admittance, H for hybrid, or S for scattering.
YIN	Input admittance.
YOUT	Output admittance.
z	Output type: R, I, M, P, DB, T.
ZIN	Input impedance.
ZOUT	Output impedance.

See "AC Network Analysis - Output Specification" in the HSPICE Simulation and Analysis User Guide.

Temperature Analysis

.TEMP Statement

General Form	.TEMP t1 <t2 <t3="">></t2>
t1 t2	Temperatures in °C, at which HSPICE or HSPICE RF simulates the circuit.

See ".TEMP" in the HSPICE Command Reference.

Transient Analysis

.TRAN Statement

See ".TRAN" in the HSPICE Command Reference.

Single-Point Analysis

.TRAN tincr1 tstop1 <tincr2 tstop2 ...tincrN tstopN> + <START = val> <UIC>

Double-Point Analysis

- .TRAN tincr1 tstop1 <tincr2 tstop2 ...tincrN tstopN>
- + <START = *val*> <UIC>
- + <SWEEP var type np pstart pstop>

or

- .TRAN tincr1 tstop1 <tincr2 tstop2 ...tincrN tstopN>
- + <START = val> <UIC> <SWEEP var
- + START="param_expr1" STOP="param_expr2"
- + STEP="param_expr3">

or

- .TRAN tincr1 tstop1 <tincr2 tstop2 ... tincrN tstopN>
- + <START =val> <UIC> <SWEEP var start_expr
- + stop_expr step_expr>

Data-Driven Sweep

General Form (data-driven sweep)	.TRAN DATA = datanm
Or	.TRAN tincr1 tstop1 <tincr2 tstop2tincrn<br="">+ tstopN> <start =="" val=""> <uic> + <sweep data="datanm"></sweep></uic></start></tincr2>
Or	.TRAN DATA = datanm <sweep var<br="">+ <start=>pstart <stop=>pstop + <step=>pincr></step=></stop=></start=></sweep>
Or	.TRAN DATA = datanm <sweep var<br="">+ type np pstart pstop></sweep>

Or .TRAN DATA = datanm <SWEEP var

+ START="param_expr1" + STOP="param_expr2" + STEP="param_expr3">

Or .TRAN DATA = datanm <SWEEP var

+ start_expr stop_expr step_expr>

Monte Carlo Analysis

General Form

.TRAN tincr1 tstop1 < tincr2 tstop2
+ ...tincrN tstopN> < START = val>
+ <UIC><SWEEP MONTE = val>
+ <firstrun = num1>

Or

.TRAN tincr1 tstop1 < tincr2 tstop2
+ ...tincrN tstopN> < START = val>
+ <UIC><SWEEP MONTE = list<(>>
+ <num1:num2> <num3>
+ <num5:num6> <num7> <)>>

TRAN DATA - datanm OPTIMIZE -

Optimization General Form

General Form	+ opt_par_fun RESULTS = measnames + MODEL = optmod
TRAN analysis statement	.TRAN <data=filename> SWEEP + OPTIMIZE=OPTxxx + RESULTS=ierr1 ierrn + MODEL=optmod</data=filename>
DATA = datanm	Data name referenced in the .TRAN statement.
MONTE = val	Produces a number <i>val</i> of randomly-generated values used to select parameters from a distribution.
np	Number of points per decade (or depending on the preceding keyword).
param_expr	User-specified expressions.
pincr	Voltage, current, element, or model parameter, or temperature increment value.
pstart	Starting voltage, current, temperature, any element, or model parameter value.
pstop	Final voltage, current, temperature, any element, or model parameter value.
START	Time at which printing/plotting begins.
SWEEP	Indicates a second sweep is specified on the .TRAN statement.

tincr1... Printing/plotting increment for printer output, and

the suggested computing increment for the

postprocessor.

tstop1... Time at which the transient analysis stops

incrementing by tincr1.

type Specifies any of the following keywords: DEC,

OCT. LIN. POI.

UIC Causes HSPICE to use the nodal voltages

specified in the .IC statement (or by the "IC = " parameters in the various element statements) to calculate the initial transient conditions, rather than solving for the quiescent operating point.

var Name of an independent voltage or current

source, any element or model parameter, or the

keyword TEMP.

.BIASCHK Statement

General As an expression monitor:

.BIASCHK 'expression' <limit = lim> <noise = ns>

+ < max = max > < min = min >

+ <simulation = op | dc | tr | all> <monitor = v | i | w | I >

+ <tstart = time1> <tstop = time2> <autostop>

As an element and model monitor:

.BIASCHK type < region = cutoff | linear | saturation >

+ terminal1=t1 <terminal2=t2> <limit=lim>

+ <noise=ns> <max=max> <min=min>

+ <simulation=op | dc | tr | all> <monitor=v | i | w | l>

+ <name=name1, name2, ...>

+ <mname=modname_1, modname_2, ...>

+ <tstart=time1> <tstop=time2> <autostop>

+ <except=name_1,name_2, ...>

type Element type to check.

terminal 1, Terminals, between which HSPICE checks (checks

terminal2 between terminal1 and terminal2)

limit Biaschk limit that you define.

noise Biaschk noise that you define. The default is 0.1v.

max Maximum value.
min Minimum value.

name Element or instance name to check.

mname Model or subcircuit name. For model name. HSPICE

checks elements for bias. For subcircuit name.

HSPICE checks instances for bias.

region Values can be cutoff, linear, or saturation. HSPICE

monitors when the MOS device, defined in the .BIASCHK command, enters and leaves the

specified region (such as cutoff).

simulation The simulation type you want to monitor. You can

specify op, dc, tr (transient), and all (op, dc, and tr).

The tr option is the default simulation type.

monitor The kind of value you want to monitor. You can specify

v (voltage), i (current), w, and I (device size) for the element type. This parameter is not used for an

expression-type monitor.

tstart The biaschk start time during transient analysis. The

default is 0.

tstop The biaschk end time during transient analysis. The

analysis ends on its own by default if you do not set

this parameter.

autostop If you set this keyword HSPICE supports autostop for

this biaschk card so that it can report error message

and stop the simulation immediately.

except Specifies the element or instance that this instatement

does not need to check. This parameter is not used for

an expression type monitor.

You can use a wild card to describe *name*, *mname*, or "except" parameter in the biaschk card.

- · ? stands for one character
- * stands for 0 or more characters.

If type is "subckt", then a bias check is done for subcircuit instances. In which case, the rules are:

- After one and only one mname has been defined, the terminal names for this statement are those pins defined by the subckt definition of mname.
- Multiple mname parameters are not allowed if bias checking for subcircuit pins; therefore, wild carding is not supported for mname for bia checking of subcircuits.
- When both mname and name are defined while multiple name are allowed, and if any specified name is also an instance of mname, then only those name definitions will be checked and the others will be ignored. If none of the name definitions are instances of mname, then this statement will be ignored.

- If mname has not been defined, then the subcircuit type is determined by the first specification of
- For a subcircuit bias check, at least one name or mname must be specified in this statement.

Options for the .BIASCHK Command

Output file defined option:

Warning message turn off (on) option:

Training moodage tain	o (o) op
General Form (on)	.OPTION biawarn=1
General Form (off, default)	.OPTION biawarn=0

Numerical Integration Algorithm Controls

See "Numerical Integration Algorithm Controls (HSPICE)" in the HSPICE Simulation and Analysis User Guide.

Gear Algorithm

	General Form	.OPTION METHOD=GEAR
--	--------------	---------------------

Backward-Euler

General Form .OPTION METHOD=GEAR MU :	= 0
---------------------------------------	-----

Trapezoidal Algorithm

General Form	.OPTION METHOD=TRAP	

FFT Analysis

.FFT Statement

General Form	.FFT output_var <start =="" value=""> + <stop =="" value=""> <np =="" value=""> + <format =="" keyword=""></format></np></stop></start>
	+ <window =="" keyword=""> + <alfa =="" value=""> <freq =="" value=""> + <fmin =="" value=""> <fmax =="" value=""></fmax></fmin></freq></alfa></window>

ALFA	Parameter used in GAUSS and KAISER windows to control the highest side-lobe LEVEL, bandwidth, and so on.
FMAX	Maximum frequency for which HSPICE prints FFT output into the listing file. THD calculations also use this frequency.
FMIN	Minimum frequency for which HSPICE prints FFT output into the listing file. THD calculations also use this frequency.
FORMAT	Output format.
	NORM= normalized magnitude
	UNORM=unnormalized magnitude
FREQ	Frequency to analyze.
FROM	An alias for START.
NP	Number of points to use in FFT analysis.
output_var	Any valid output variable, such as voltage, current, or power.
START	Beginning of the output variable waveform to analyze.
STOP	End of the output variable waveform to analyze.

See ".FFT" in the HSPICE Command Reference.

An alias for STOP.

Window type to use: RECT, BART, HANN,

HAMM, BLACK, HARRIS, GAUSS, KAISER.

Worst Case Analysis

See "Worst Case Analysis" in the Simulation and Analysis User Guide.

Sigma Deviations

TO

WINDOW

Type	Param	Slow	Fast
NMOS	XL	+	-
	RSH	+	-
	DELVTO	+	-
	TOX	+	-
	XW	-	+

Type	Param	Slow	Fast
PMOS	XL	+	-
! -	RSH	+	-
	DELVTO	-	+
	TOX	+	-
	XW	-	+

Monte Carlo Analysis

HSPICE statements needed to set up a Monte Carlo analysis are:

- .PARAM statement.
- .DC, .AC, or .TRAN analysis—enable MONTE.
- .MEASURE statement.

See "Monte Carlo Analysis" in the HSPICE Simulation and Analysis User Guide. For details about the syntax for these statements, see the HSPICE Command Reference.

Operating Point

General Form	.DC MONTE=val
DC Sweep	
General Form	.DC vin 1 5 .25 SWEEP MONTE=val
AC Sweep	
General Form	.AC dec 10 100 10meg SWEEP + MONTE=val

TRAN Sweep

General Form	.TRAN 1n 10n SWEEP MONTE=val
--------------	------------------------------

.PARAM Distribution Function Syntax

General Form	.PARAM xx=UNIF(nominal_val, + rel_variation <, multiplier>)
Or	<pre>.PARAM xx=AUNIF(nominal_val, + abs_variation <,multiplier>)</pre>

.PARAM xx=GAUSS(nominal_val, + rel_variation, sigma <,multiplier>)
<pre>.PARAM xx=AGAUSS(nominal_val, + abs_variation, sigma <,multiplier>)</pre>
<pre>.PARAM xx=LIMIT(nominal_val, + abs_variation)</pre>
AUNIF and AGAUSS vary the nominal_val by +/-abs_variation.
Gaussian distribution function by using absolute variation.
Uniform distribution function by using absolute variation.
Gaussian distribution function by using relative variation.
Random limit distribution function by using absolute variation.
If you do not specify a multiplier, the default is 1.
Nominal value for Monte Carlo analysis, and default value for all other analyses.
UNIF and GAUSS vary the nominal_val, by +/- (nominal_val · rel_variation).
Specifies abs_variation or rel_variation at the sigma level.
Uniform distribution function by using relative variation.
Distribution function calculates the value of this parameter.

Optimizing Data

This chapter briefly describes how to optimize your design data.

Analysis Statement (.DC, .TRAN, .AC) Syntax

General Form	.DC <data=filename> SWEEP + OPTIMIZE=OPTxxx + RESULTS=ierr1 + ierrn MODEL=optmod</data=filename>
DATA	In-line file of parameter data to use in the optimization.

MODEL	The optimization reference name (also specified in the .MODEL optimization statement).
OPTIMIZE	Indicates the analysis is for optimization.
Or	.AC <data=filename> SWEEP + OPTIMIZE=OPTxxx + RESULTS=ierr1 + ierrn MODEL=optmod</data=filename>
Or	.TRAN <data=filename> SWEEP + OPTIMIZE=OPTxxx + RESULTS=ierr1 + ierrn MODEL=optmod</data=filename>
RESULTS	The measurement reference name (also specified in the .MEASURE optimization statement).

See ".DC," ".TRAN," or ".AC" in the HSPICE Command Reference.

.PARAM Statement Syntax		
General Form	.PARAM parameter=OPTxxx + (initial_guess, low_limit, upper_limit)	
Or	.PARAM parameter=OPTxxx+ (initial_guess, low_limit, upper_limit,+ delta)	
delta	The final parameter value is the initial guess \pm (n -delta).	
OPTxxx	Optimization parameter reference name. The associated optimization analysis references this name.	
parameter	Parameter to be varied, the initial value estimate, the lower limit, and the upper limit allowed for the parameter.	

See ".PARAM" in the HSPICE Command Reference.

.MODEL Statement Syntax		
General Form	.MODEL mname OPT <pre></pre>	
CENDIF	Point at which more accurate derivatives are required.	
CLOSE	Initial estimate of how close parameter initial value estimates are to final solution.	

CUT	Modifies CLOSE, depending on how successful
-----	---

the iterations toward the solution become.

DIFSIZ Determines the increment change in a parameter

value for gradient calculations ($\Delta x = DIFSIZ$.

max(x, PARMIN)).

GRAD Possible convergence when gradient of

RESULTS function is less than GRAD.

ITROPT Sets the maximum number of iterations.

LEVEL Selects an optimizing algorithm.

MAX Sets the upper limit on CLOSE.

winds the apper limit on oboot

mname Model name.

PARMIN Allows better control of incremental parameter

changes during error calculations.

RELIN Relative input parameter variation for

convergence.

RELOUT Relative output RESULTS function variance for

convergence.

See ".MODEL" in the HSPICE Command Reference.

Filters and Systems

To optimize filters and systems, use Pole Zero analysis. See ".PZ Statement— Pole/Zero Analysis" in the *HSPICE Applications Manual*.

Laplace Transforms

See "Laplace Transform (LAPLACE) Function" and "Laplace Transform" in the *HSPICE Simulation and Analysis User Guide*.

Transconductance H(s)

General Form	$Gxxx n_+ n LAPLACE in_+ in k_0, k_1,, k_n$
	+ / d ₀ , d ₁ ,, d _m <scale=val> <tc1=val></tc1=val></scale=val>
	+ <tc2=val> <m=val></m=val></tc2=val>

Voltage Gain H(s)

General Form	Exxx n ₊ n ₋ LAPLACE in ₊ in ₋ k ₀ , k ₁ ,, k _n
	+ / d ₀ , d ₁ ,, d _m <scale=val> <tc1=val></tc1=val></scale=val>
	+ <tc2=val></tc2=val>

Output Format

For a detailed description of graphing with HSPLOT and GSI, see the HSPICE Simulation and Analysis User Guide "Graphing."

Graphing Results in AvanWaves

The .OPTION POST must be placed in the HSPICE netlist input file.

- POST or POST=1 (default) creates a binary file.
- POST=2 creates an ASCII file, portable to all supported machines.

Limiting the Size of the Graph Data File

The option PROBE limits the number of curves stored to those nodes specified in the HSPICE input file's .PRINT, .PLOT, .OPTION PROBE, and .GRAPH statements. The option INTERP (for transient analysis only) limits the number of points stored. The option INTÉRP preinterpolates the output to the interval specified on the TRAN statement.

Automatic Hardcopy During HSPICE Run

A .GRAPH statement automatically produces a hardcopy plot. A .TITLE statement placed before each .GRAPH statement sets the graph title. Otherwise, the simulation title is used. The POST option in conjunction with .GRAPH creates a graph data file.

Starting AvanWaves—Command line

AvanWaves' command line definition is:

awaves [[-i][plot][-d] <path><design-name>

+ [-c <config name>]

+ [laf(windows|openlook|motif)]

-i Immediately opens the Awaves Command User Interface windows when you open

AvanWaves.

-plot Changes the plot mode to Continuous when

you open AvanWaves. The default plot mode

is Monotonic.

The name of the design to be opened on -d

invoking AvanWaves

Specifies that a previously saved configuration -c

for the current design is to be used upon the

initialization of AvanWaves.

-laf [windows] Specifies the window manager style to be

openlook| motif] used. The default is Motif.

Setup Commands

Cmd	Default	Description
I		Name input file.
XMIN, XMAX, YMIN, YMAX	X=LIM Y=AUTO default 0.0	Set range defaults for all panels.
XSCAL	1.0	Scale for X axis.
YSCAL	1.0	Scale for Y axis.
XS, YS	LIN	Set x or y scale.
Р	1	Set number of panels.
F	NONE	Set the frequency of symbols.
Т	ON	Set/Toggle ticks.
M	NO	Monotonic. Set/Toggle for family of curves.
XG, YG	ON	Set/Toggle x or y grids.
D		Reinitialize all Setup menu values.

Accessible Menus From Setup

G	Bring up the Graph window.
N	Bring up the Node window.

Q Exit the program.

Node Menu Prompts

-Panel Each panel prompts for one x-axis parameter and any

number of y-axis curves.

-X-axis Any node may be chosen as the x-axis for a panel.

-Y-axis Any listed node name or function, or algebraic

expression can be entered at the y-axis prompt.

Node Menu Commands

\$P Remove all curves in present panel.

\$A Remove all curves from all panels.

\$Q Exit the program.

MORE Display next/previous page of nodes.

/BACK These commands appear only when the node list

spans more than one page.

\$S Bring up the Setup menu.

AC Analysis

*R Draw the Real component of the data.

*I Draw the Imaginary component of the data.

*M Calculate and draw the Magnitude.

*P Calculate and draw the Phase.

Graph Commands

A, D Add or Delete curves or expressions.

X, Y Change the view on some panels or all panels.

Q Exit the program.

Accessible Menus from Graph Menu

N Bring up the Node windowP Bring up the Print menuS Bring up the Setup menu

Print Menu

The Print menu lists printers and /or plotters at your site on which you may create a hardcopy plot.

Screensave Option

The SCREENSAVE function produces a file that can later be displayed on the terminal. The function is useful for making vídeo slides.

Print Commands

<cr></cr>	Print with the default printer.
1n-1	Print with one of printer options.
n	Save the screen into a preview file

.PRINT Statement

General Form	.PRINT antype ov1 <ov2 ov<i="">n></ov2>
	• •

See ".PRINT" in the HSPICE Command Reference.

.PLOT Statement

General Form	.PLOT antype ov1 <(plo1,phi1)>
	+ <ov<i>n> <(ploon,phin)></ov<i>

See ".PLOT" in the HSPICE Command Reference.

.PROBE Statement

General Form .PROBE antype ov1 <ov<i>n></ov<i>

See ".PROBE" in the HSPICE Command Reference.

.GRAPH Statement

General Form	.GRAPH antype <model =="" mname=""> + <unam1 ==""> ov1, <unam2 =="">ov2, + <unamn ==""> ovn (plo,phi)</unamn></unam2></unam1></model>
antype	Type of analysis for outputs: DC, AC, TRAN, NOISE, or DISTO. HSPICE RF does not support DISTO analysis.
mname	Plot model name referenced in .GRAPH.
ov1ov <i>n</i>	Output variables to print or plot.
plo, phi	Lower and upper plot limits.
unam1	User-defined output names.

See ".GRAPH" in the HSPICE Command Reference.

.MODEL Statement for .GRAPH

General Form	.MODEL mname PLOT (pnam1 = val1 + pnam2 = val2)
mname	Plot model name referenced in .GRAPH statement.
PLOT	Keyword for a .GRAPH statement model.
pnam1=val1	Each .GRAPH statement model includes several model parameters.

See ".MODEL" in the HSPICE Command Reference.

.MEASURE Statement: Rise, Fall, and Delay

General Form	.MEASURE <dc ac="" tran="" =""> result + TRIG TARG <goal=val> + <minval=val> <weight=val></weight=val></minval=val></goal=val></dc>
<dc ac tran></dc ac tran>	Analysis type of the measurement. If omitted, assumes the last analysis mode requested.
GOAL	Desired measure value in optimization.
MEASURE	Specifies measurements.
MINVAL	If the absolute value of GOAL is less than MINVAL, then MINVAL replaces the GOAL value in the denominator of the ERRfun expression.
TRIG, TARG	Identifies the beginning of trigger and target specifications, respectively.
WEIGHT	The calculated error is multiplied by the weight value.

See ".MEASURE" in the HSPICE Command Reference.

Trigger

General Form	TRIG trig_var VAL=trig_val + <td=time_delay> <cross=c> + <rise=r> <fall=f></fall=f></rise=r></cross=c></td=time_delay>
Or	TRIG AT=val
result	Name associated with the measured value in the HSPICE output.

Target

General Form	TARG targ_var VAL = targ_val + <td =="" time_delay=""> <cross =="" c="" last="" =""></cross></td>	<cross =="" c="" last="" =""></cross>
	+ <rise =="" last="" r="" =""> <fall =="" f="" last="" =""></fall></rise>	

AT = val	Trigger specification. Determines where measurement takes place.
CROSS = c RISE = r FALL = f	Numbers indicate which occurrence of a CROSS, FALL, or RISE event to measure.
LAST	HSPICE or HSPICE RF measures when the last CROSS, FALL, or RISE event occurs.
TARG	Beginning of the target signal specification.
targ_val	Value of the targ_var, which increments the counter for crossings, rises, or falls, by one.
targ_var	Name of the output variable, at which HSPICE or HSPICE RF determines the propagation delay with respect to the trig_var.
time_delay	Amount of simulation time that must elapse, before HSPICE or HSPICE RF enables the measurement
TRIG	Beginning of the trigger specification.
trig_val	Value of trig_var at which the counter for crossing rises, or falls increments by one.
trig_var	Name of the output variable, that determines the logical beginning of a measurement.

Average, RMS, MIN, MAX, and Peak to Peak

•	
General Form	.MEASURE <dc ac="" tran="" =""> + result func out_var + <from =="" val=""> <to =="" val=""> + <goal =="" val=""> + <minval =="" val=""> <weight =="" val=""></weight></minval></goal></to></from></dc>
Or	.MEASURE < TRAN > out_var + func var FROM = start + TO = end
Or	.MEASURE DC results <max> + <dcmatch_total +="" dcmatch(instancename)="" =""></dcmatch_total></max>
<dc ac tran></dc ac tran>	Analysis type of the measurement. If omitted, HSPICE assumes the last analysis mode requested.
FROM	Initial value for the "func" calculation.

func Type of the measure statement:

> AVG (average) MAX (maximum) MIN (minimum) PP (peak-to-peak)

RMS (root mean squared)

INTEG (integral)

GOAL Desired .MEASURE value.

MINVAL If the absolute value of GOAL is less than

> MINVAL, then MINVAL replaces the GOAL value in the denominator of the ERRfun

expression.

out var Name of any output variable whose function

the simulation measures.

result Name of the measured value in the HSPICE

output.

TO End of the "func" calculation.

WFIGHT Multiplies the calculated error, by the weight

value.

start Starting time of the measurement period. end Ending time of the measurement period. **DCMATCH** .DCMATCH contribution from InstanceName.

(InstanceName)

DCMATCH_TOTAL .DCMATCH total output variation.

Equation Evaluation

General Form	.MEASURE <dc ac="" tran="" =""> result + PARAM = 'equation' <goal =="" val=""> + <minval =="" val=""></minval></goal></dc>
Or	.MEASURE TRAN varname + PARAM = 'expression'

See ".MEASURE" in the HSPICE Command Reference.

ERROR Function

ERROR FUNCTION		
General Form	.MEASURE <dc ac="" tran="" =""> result + ERRfun meas_var calc_var + <minval =="" val=""> < IGNORE + YMIN = val> <ymax =="" val=""> + <weight =="" val=""> <from =="" val=""> + <to =="" val=""></to></from></weight></ymax></minval></dc>	
<dc ac tran></dc ac tran>	Analysis type of the measurement. If omitted, assumes the last analysis mode requested.	
calc_var	Name of the simulated output variable or parameter in the .MEASURE statement to compare with <i>meas_var</i> .	
ERRfun	ERRfun indicates which error function to use: ERR, ERR1, ERR2, or ERR3.	
FROM	Beginning of the ERRfun calculation.	
IGNOR YMIN	If the absolute value of meas_var is less than the IGNOR value, the ERRfun calculation does not consider this point.	
meas_var	Name of any output variable or parameter in the data statement.	
MINVAL	If the absolute value of <code>meas_var</code> is less than MINVAL, then MINVAL replaces the <code>meas_var</code> value in the denominator of the ERRfun expression.	
result	Name of measured result in the output.	
ТО	End of the ERRfun calculation.	
WEIGHT	Multiplies the calculated error by the weight value.	
YMAX	If the absolute value of <i>meas_var</i> is greater than the YMAX value, then the ERRfun calculation does not consider this point.	

Find and When Functions

General Form	.MEASURE <dc ac="" tran="" =""> result + WHEN out_var = val <td =="" val=""> + < RISE = r LAST > <fall +="" =="" f="" last="" =""> <cross =="" c="" last="" =""> + <goal =="" val=""> <minval =="" val=""> + <weight =="" val=""></weight></minval></goal></cross></fall></td></dc>		+ < RISE = r LAST > <fall +="" =="" f="" last="" =""> <cross =="" c="" last="" =""> + <goal =="" val=""> <minval =="" val=""> + <weight =="" val=""></weight></minval></goal></cross></fall>
Or	.MEASURE <dc ac="" tran="" =""> result + WHEN out_var1 = out_var2 + < TD = val > < RISE = r LAST > + <fall =="" f="" last="" =""> < CROSS = c + LAST > <goal =="" val=""> + <minval =="" val=""> <weight =="" val=""></weight></minval></goal></fall></dc>		
Or	.MEASURE <dc ac="" tran="" =""> result + FIND out_var1 WHEN out_var2 = val + < TD = val > < RISE = r LAST > + <fall =="" f="" last="" =""> < CROSS = c + LAST > <goal =="" val=""> + <minval =="" val=""> <weight =="" val=""></weight></minval></goal></fall></dc>		
Or	.MEASURE <dc ac="" tran="" =""> result + FIND out_var1 WHEN + out_var2 = out_var3 <td =="" val=""> + < RISE = r LAST > <fall +="" =="" f="" last="" =""> <cross =="" c="" last="" =""> + <goal =="" val=""> <minval =="" val=""> + <weight =="" val=""></weight></minval></goal></cross></fall></td></dc>	+ < RISE = r LAST > <fall +="" =="" f="" last="" =""> <cross =="" c="" last="" =""> + <goal =="" val=""> <minval =="" val=""> + <weight =="" val=""></weight></minval></goal></cross></fall>	
Or	.MEASURE <dc ac="" tran="" =""> result + FIND out_var1 AT = val + <goal =="" val=""> <minval =="" val=""> + <weight =="" val=""></weight></minval></goal></dc>		
Or	.MEASURE DC result + FIND <dcmatch_total +="" dcmatch(instancename)="" =""> AT = val</dcmatch_total>		
<dc ac="" tran="" =""></dc>	Analysis type for the measurement. If omitted, HSPICE or HSPICE RF assumes the last analysis type requested.		
CROSS = c RISE = r FALL = f	Numbers indicate which occurrence of a CROSS, FALL, or RISE event starts measuring.		
AT = val	Trigger specification. Determines where measurement takes place.		
FIND	Selects the FIND function.		
GOAL	Desired .MEASURE value.		
LAST	Starts measurement at the last CROSS, FALL, or RISE event.		

MINVAI If the absolute value of GOAL is less than

MINVAL, then MINVAL replaces GOAL value in

ERRfun expression denominator.

out_var(1,2,3) Establish conditions to start measuring.

Name associated with a measured value in result

HSPICE or HSPICE RF output.

Time at which measurement starts. TD

Multiplies calculated error by weight value. WEIGHT

WHEN Selects the WHEN function.

DCMATCH contribution from InstanceName. **DCMATCH**

(InstanceName)

DCMATCH_TOTAL .DCMATCH total output variation.

.DOUT Statement

.DOUT nd VTH (time state < time state >)

where:

- nd is the node name.
- VTH is the single voltage threshold.
- · time is an absolute time-point.
- state is one of the following expected conditions of the *nd* node at the specified *time*:
 - expect ZERO,LOW.
 - 1 expect ONE, HIGH.
 - else Don't care.

.DOUT nd VLO VHI (time state < time state >)

where:

- nd is the node name.
- VLO is the voltage of the logic low state.
- VHI is the voltage of the logic high state.
- time is an absolute time-point.

- state is one of the following expected conditions of the *nd* node at the specified *time*:
 - expect ZERO,LOW.
 - 1 expect ONE, HIGH.
 - else Don't care.

See ".DOUT" in the HSPICE Command Reference.

.STIM Statement

You can use the .STIM statement to reuse the results (output) of one simulation as input stimuli in a new simulation.

The **.STIM** statement specifies:

- Expected stimulus (PWL Source, DATA CARD, or VEC FILE).
- Signals to transform.
- Independent variables.

One .STIM statement produces one corresponding output file.

Syntax

Brackets [] enclose comments, which are optional.

.STIM <tran|ac|dc> PWL|DATA|VEC <filename=output filename> ...

DC and Transient Output

See "DC and Transient Output Variables" in the HSPICE Simulation and Analysis User Guide.

Nodal Voltage

General Form	V(n1<,n2>)
n1, n2	Defines nodes between which the voltage difference (n1-n2) is to be printed/plotted.

See "Nodal Voltage Syntax" in the HSPICE Simulation and Analysis User Guide.

Current: Voltage Sources

General Form	I(Vxxx)
Vxxx	Voltage source element name.

See "Current: Voltage Sources" in the HSPICE Simulation and Analysis User Guide.

Current: Element Branches

General Form	In(Wwww)	
or	Iall(Wwww)	
n	Node position number in the element statement.	
Wwww	Element name.	
Iall (Www)	An alias just for diode, BJT, JFET, and MOSFET devices.	

See "Current: Element Branches" in the HSPICE User Guide

Power Output

See "Power Output" in the HSPICE Simulation and Analysis User Guide.

Print/Plot Power

General Form	<pre>.PRINT <dc tran> P(element_or_subcircuit_name) POWER</dc tran></pre>
Or	<pre>.PLOT <dc tran> P(element_or_subcircuit_name) POWER</dc tran></pre>
antype	Type of analysis for the specified plots: DC, AC, TRAN, NOISE, or DISTO.
ov1	Output variables to plot.
plo1,phi1	Lower and upper plot limits.

Power calculation is associated only with transient and DC sweep analyses. The .MEASURE statement may be used to compute the average, rms, minimum, maximum, and peak to peak value of the power. POWER invokes the total power dissipation output. See ".PRINT" or ".PLOT" in the HSPICE Command Reference.

AC Analysis Output

See "AC Analysis Output Variables" in the HSPICE Simulation and Analysis User Guide.

Nodal Voltage

General Form	Vz(n1<,n2>)
z	Voltage output type.
DB	Decibel
1	Imaginary Part
M	Magnitude
Р	Phase
R	Real Part
Т	Group Delay
n1, n2	Node names. If you omit n2, HSPICE assumes ground (node 0).

See "Nodal Voltage" in the HSPICE Simulation and Analysis User Guide.

Current: Independent Voltage Sources

General Form	Iz(Vxxx)
Vxxx	Voltage source element name. If an independent power supply is within a subcircuit, then to access its current output, append a dot and the subcircuit name to the element name.
Z	Current output type. See Nodal Voltage in the HSPICE Simulation and Analysis User Guide for specific output types.

See "Current: Independent Voltage Sources" in the HSPICE Simulation and Analysis User Guide.

Current: Element Branches

General Form	Izn(Wwww)	
n	Node position number in element statement.	
Www	Element name. If the element is within a subcircuit, then to access its current output, append a dot and the subcircuit name to the element name.	
Z	Current output type. See Nodal Voltage of the HSPICE Simulation and Analysis User Guide for specific output types.	

See "Current: Element Branches" in the HSPICE Simulation and Analysis User Guide.

Group Time Delay t

General Form	VT(n1<,n2>) or IT(Vxxx) or ITn(Wwww)
n1, n2	Node names. If you omit n2, HSPICE assumes grough (node 0).
Vxxx	Independent voltage source element name.
n	Node position number in element statement.
Wwww	Element name

Since there is discontinuity in phase each 360 degrees, the same discontinuity occurs in the Td, even though Td is continuous.

See "Group Time Delay" in the HSPICE Simulation and Analysis User Guide.

Network Output

General Form	Xij (z), ZIN(z), ZOUT(z), YIN(z), YOUT(z)	
ij	i and j can be 1 or 2. They identify the matrix parameter to print.	
X	Specifies Z for impedance, Y for admittance, H for hybrid, or S for scattering parameters.	
YIN	Input admittance.	
YOUT	Output admittance.	
Z	Output type. If you omit z, HSPICE or HSPICE RF prints the magnitude of the output variable.	

ZIN Input impedance. For a one-port network, ZIN, Z11,

and H11 are the same.

ZOUT Output impedance.

See "Network" in the HSPICE Simulation and Analysis User Guide.

Noise and Distortion

General Form	ovar <(z)>	

See "Nodal Voltage" on page 80 for specific output types.

ovar Noise and distortion analysis parameter.

z Output type (only for distortion).

See "Noise and Distortion" in the HSPICE Simulation and Analysis User Guide.

Element Template Output

Use for DC, AC, or Transient Analysis.

General Form	Elname:Property
Elname	Name of the element.
Property	Property name of an element, such as a user- input parameter, state variable, stored charge, capacitance current, capacitance, or derivative of a variable.

See "Element Template Output" in the HSPICE Simulation and Analysis User Guide.

Element Template Listings

Resistor

Name	Alias	Description
G	LV1	Conductance at analysis temperature
R	LV2	Resistance at analysis temperature
TC1	LV3	First temperature coefficient
TC2	LV4	Second temperature coefficient

Capacitor

Name	Alias	Description
CEFF	LV1	Computed effective capacitance
IC	LV2	Initial condition
Q	LX0	Charge stored in capacitor
CURR	LX1	Current flowing through capacitor
VOLT	LX2	Voltage across capacitor
_	LX3	Capacitance (not used in HSPICE releases after 95.3)

Inductor

Name	Alias	Description
LEFF	LV1	Computed effective inductance
IC	LV2	Initial condition
FLUX	LX0	Flux in the inductor
VOLT	LX1	Voltage across inductor
CURR	LX2	Current flowing through inductor
-	LX4	Inductance (not used in HSPICE releases after 95.3)

Mutual Inductor

Name	Alias	Description
K	LV1	Mutual inductance

Voltage-Controlled Voltage Source (E Element)

Name	Alias	Description
VOLT	LX0	Source voltage
CURR	LX1	Current through source
CV	LX2	Controlling voltage
DV	LX3	Derivative of source voltage with respect to control current

Current-Controlled Current Source (F Element)

Name	Alias	Description
CURR	LX0	Current through source
CI	LX1	Controlling current
DI	LX2	Derivative of source current with respect to control current

Voltage-Controlled Current Source (G Element)

Name	Alias	Description
CURR	LX0	Current through the source, if VCCS
R	LX0	Resistance value, if VCR
С	LX0	Capacitance value, if VCCAP
CV	LX1	Controlling voltage
CQ	LX1	Capacitance charge, if VCCAP
DI	LX2	Derivative of source current with respect to control voltage
ICAP	LX2	Capacitance current, if VCCAP
VCAP	LX3	Voltage across capacitance, if VCCAP

Current-Controlled Voltage Source (H Element)

Name	Alias	Description
VOLT	LX0	Source voltage
CURR	LX1	Source current
CI	LX2	Controlling current
DV	LX3	Derivative of source voltage with respect to control current

Independent Voltage Source

Name	Alias	Description
VOLT	LV1	DC/transient voltage
VOLTM	LV2	AC voltage magnitude
VOLTP	LV3	AC voltage phase

Independent Current Source

Name	Alias	Description
CURR	LV1	DC/transient current
CURRM	LV2	AC current magnitude
CURRP	LV3	AC current phase

Diode

Name	Alias	Description
AREA	LV1	Diode area factor
AREAX	LV23	Area after scaling
IC	LV2	Initial voltage across diode
VD	LX0	Voltage across diode (VD), excluding RS (series resistance)
IDC	LX1	DC current through diode (ID), excluding RS. Total diode current is the sum of IDC and ICAP
GD	LX2	Equivalent conductance (GD)
QD	LX3	Charge of diode capacitor (QD)
ICAP	LX4	Current through diode capacitor.
		Total diode current is the sum of IDC and ICAP.
С	LX5	Total diode capacitance
PID	LX7	Photo current in diode

BJT

Name	Alias	Description
AREA	LV1	Area factor
ICVBE	LV2	Initial condition for base-emitter voltage (VBE)
ICVCE	LV3	Initial condition for collector-emitter voltage (VCE)
MULT	LV4	Number of multiple BJTs
FT	LV5	FT (Unity gain bandwidth)
ISUB	LV6	Substrate current
GSUB	LV7	Substrate conductance
LOGIC	LV8	LOG 10 (IC)
LOGIB	LV9	LOG 10 (IB)
BETA	LV10	BETA
LOGBETAI	LV11	LOG 10 (BETA) current

Name	Alias	Description
ICTOL	LV12	Collector current tolerance
IBTOL	LV13	Base current tolerance
RB	LV1 4	Base resistance
GRE	LV15	Emitter conductance, 1/RE
GRC	LV16	Collector conductance, 1/RC
PIBC	LV18	Photo current, base-collector
PIBE	LV19	Photo current, base-emitter
VBE	LX0	VBE
VBC	LX1	Base-collector voltage (VBC)
CCO	LX2	Collector current (CCO)
СВО	LX3	Base current (CBO)
GPI	LX4	$g_{\pi} = {}^{1}ib / {}^{1}vbe$, constant vbc
GU	LX5	$g\mu = {}^{1}ib / {}^{1}vbc$, constant vbe
GM	LX6	$g_m = {}^1ic / {}^1vbe + {}^1ic / {}^1vbe$, constant vce
G0	LX7	$g_0 = {}^{1}ic / {}^{1}vce$, constant vbe
QBE	LX8	Base-emitter charge (QBE)
CQBE	LX9	Base-emitter charge current (CQBE)
QBC	LX10	Base-collector charge (QBC)
CQBC	LX11	Base-collector charge current (CQBC)
QCS	LX12	Current-substrate charge (QCS)
CQCS	LX13	Current-substrate charge current (CQCS)
QBX	LX14	Base-internal base charge (QBX)
CQBX	LX15	Base-internal base charge current (CQBX)
GXO	LX16	1/Rbeff Internal conductance (GXO)
CEXBC	LX17	Base-collector equivalent current (CEXBC)
_	LX18	Base-collector conductance (GEQCBO) (not used in HSPICE releases after 95.3)
CAP_BE	LX19	cbe capacitance (C Π)
CAP_IBC	LX20	cbc internal base-collector capacitance (C $\!\mu\!$)

Name	Alias	Description
CAP_SCB	LX21	csc substrate-collector capacitance for vertical transistors
		csb substrate-base capacitance for lateral transistors
CAP_XBC	LX22	cbcx external base-collector capacitance
CMCMO	LX23	¹(TF*IBE) /¹vbc
VSUB	LX24	Substrate voltage

JFET

Name	Alias	Description
AREA	LV1	JFET area factor
VDS	LV2	Initial drain-source voltage
VGS	LV3	Initial gate-source voltage
PIGD	LV16	Photo current, gate-drain in JFET
PIGS	LV17	Photo current, gate-source in JFET
VGS	LX0	VGS
VGD	LX1	Gate-drain voltage (VGD)
CGSO	LX2	Gate-to-source (CGSO)
CDO	LX3	Drain current (CDO)
CGDO	LX4	Gate-to-drain current (CGDO)
GMO	LX5	Transconductance (GMO)
GDSO	LX6	Drain-source transconductance (GDSO)
GGSO	LX7	Gate-source transconductance (GGSO)
GGDO	LX8	Gate-drain transconductance (GGDO)
QGS	LX9	Gate-source charge (QGS)
CQGS	LX10	Gate-source charge current (CQGS)
QGD	LX11	Gate-drain charge (QGD)
CQGD	LX12	Gate-drain charge current (CQGD)
CAP_GS	LX13	Gate-source capacitance
CAP_GD	LX14	Gate-drain capacitance
-	LX15	Body-source voltage (not used in HSPICE releases after 95.3)
QDS	LX16	Drain-source charge (QDS)
CQDS	LX17	Drain-source charge current (CQDS)
GMBS	LX18	Drain-body (backgate) transconductance (GMBS)

MOSFET

Name	Alias	Description
L	LV1	Channel length (L)
W	LV2	Channel width (W)
AD	LV3	Area of the drain diode (AD)
AS	LV4	Area of the source diode (AS)
ICVDS	LV5	Initial condition for drain-source voltage (VDS)
ICVGS	LV6	Initial condition for gate-source voltage (VGS)
ICVBS	LV7	Initial condition for bulk-source voltage (VBS)
_	LV8	Device polarity: 1 = forward, - 1 = reverse (not used in HSPICE releases after 95.3)
VTH	LV9	Threshold voltage (bias dependent)
VDSAT	LV10	Saturation voltage (VDSAT)
PD	LV11	Drain diode periphery (PD)
PS	LV12	Source diode periphery (PS)
RDS	LV13	Drain resistance (squares) (RDS)
RSS	LV14	Source resistance (squares) (RSS)
XQC	LV15	Charge sharing coefficient (XQC)
GDEFF	LV16	Effective drain conductance (1/RDeff)
GSEFF	LV17	Effective source conductance (1/ RSeff)
IDBS	LV18	Drain-bulk saturation current at -1 volt bias
ISBS	LV19	Source-bulk saturation current at -1 volt bias
VDBEFF	LV20	Effective drain bulk voltage
BETAEFF	LV21	BETA effective
GAMMAEFF	LV22	GAMMA effective
DELTAL	LV23	ΔL (MOS6 amount of channel length modulation) (only valid for LEVELs 1, 2, 3 and 6)
UBEFF	LV24	UB effective (only valid for LEVELs 1, 2, 3 and 6)
VG	LV25	VG drive (only valid for LEVELs 1, 2, 3 and 6) $$
VFBEFF	LV26	VFB effective

Name	Alias	Description
-	LV31	Drain current tolerance (not used in HSPICE releases after 95.3)
IDSTOL	LV32	Source diode current tolerance
IDDTOL	LV33	Drain diode current tolerance
COVLGS	LV36	Gate-source overlap capacitance
COVLGD	LV37	Gate-drain overlap capacitance
COVLGB	LV38	Gate-bulk overlap capacitance
VBS	LX1	Bulk-source voltage (VBS)
VGS	LX2	Gate-source voltage (VGS)
VDS	LX3	Drain-source voltage (VDS)
CDO	LX4	DC drain current (CDO)
CBSO	LX5	DC source-bulk diode current (CBSO)
CBDO	LX6	DC drain-bulk diode current (CBDO)
GMO	LX7	DC gate transconductance (GMO)
GDSO	LX8	DC drain-source conductance (GDSO)
GMBSO	LX9	DC substrate transconductance (GMBSO)
GBDO	LX10	Conductance of the drain diode (GBDO)
GBSO	LX11	Conductance of the source diode (GBSO)
Meyer and Charge	Conserva	tion Model Parameters
QB	LX12	Bulk charge (QB)
CQB	LX13	Bulk charge current (CQB)
QG	LX14	Gate charge (QG)
CQG	LX15	Gate charge current (CQG)
QD	LX16	Channel charge (QD)
CQD	LX17	Channel charge current (CQD)
CGGBO	LX18	$CGGBO = \partial Qg/\partial Vgt = CGS + CGD + CGB$
CGDBO	LX19	$CGDBO = \partial Qg/\partial Vdt$, (for Meyer $CGD = -CGDBO$)
CGSBO	LX20	$CGSBO = \partial Qg/\partial Vst$, (for Meyer $CGS = -CGSBO$)
CBGBO	LX21	$CBGBO = \partial Qb/\partial Vgt,$ (for Meyer CGB = -CBGBO)

Name	Alias	Description
CBDBO	LX22	CBDBO = -dQb/dVd intrinsic floating body-to-drain capacitance
CBSBO	LX23	CBSBO = -dQb/dVs intrinsic floating body-to-source capacitance
QBD	LX24	Drain-bulk charge (QBD)
-	LX25	Drain-bulk charge current (CQBD) (not used in HSPICE releases after 95.3)
QBS	LX26	Source-bulk charge (QBS)
-	LX27	Source-bulk charge current (CQBS) (not used in HSPICE releases after 95.3)
CAP_BS	LX28	Bulk-source capacitance
CAP_BD	LX29	Bulk-drain capacitance
CQS	LX31	Channel charge current (CQS)
CDGBO	LX32	CDGBO = ∂Qd/∂Vgb
CDDBO	LX33	CDDBO = ∂Qd/∂Vdb
CDSBO	LX34	CDSBO = $\partial Qd/\partial Vsb$

Saturable Core Element

Name	Alias	Description
MU	LX0	Dynamic permeability (mu) Weber/(amp-turn-meter)
Н	LX1	Magnetizing force (H) Ampere-turns/meter
В	LX2	Magnetic flux density (B) Webers/meter ²

Saturable Core Winding

Name	Alias	Description
LEFF	LV1	Effective winding inductance (Henry)
IC	LV2	Initial condition
FLUX	LX0	Flux through winding (Weber-turn)
VOLT	LX1	Voltage across winding (Volt)