

H52F-05H: Robust Adaptation to Multi-Scale Climate Variability

Toward Better Water Planning and Management in an Uncertain World I

James Doss-Gollin¹, David J. Farnham², Scott Steinschneider³, Upmanu Lall¹
14 December 2018

¹Columbia University Department of Earth and Environmental Engineering

²Carnegie Institution for Science

³Department of Biological and Environmental Engineering, Cornell University

Motivating Example

What to do after Sandy? [City of New York, 2013]

Hypotheses

Idea 1: Risk Estimates over Finite Future Periods

Typical Approach:

Cost-Benefit Analysis (CBA), probably with discounting, over a finite planning horizon of M years.

Idea 1: Risk Estimates over Finite Future Periods

Typical Approach:

Cost-Benefit Analysis (CBA), probably with discounting, over a finite planning horizon of M years.

Project should be evaluated on climate conditions over this finite planning period:

- For "mega-project", $M \ge 50$ years
- For small, flexible project, $M \le 5$ years

Idea 2: Hydroclimate Systems Vary on Many Scales

Inter-annual to multi-decadal cyclical variability key (for small M)

Figure 1: (a) 500 year reconstruction of summer rainfall over Arizona from LBDA [*Cook et al.*, 2010]. (b) A 100 year record of annual-maximum streamflows for the American River at Folsom. (c),(d): wavelet global (average) spectra.

Idea 3: Physical Drivers of Risk Depend on M

The physical drivers of hazard depend on the projection horizon (M),

Idea 3: Physical Drivers of Risk Depend on M

The physical drivers of hazard depend on the projection horizon (M),

but our ability to identify these mechanisms depends on information available (e.g., the length of an *N*-year observational record).

Stylized Experiments

Experiment Setup

Research Objective

How well can one identify & predict cyclical and secular climate signals over a finite planning period (M), given limited information?

Let $P^*(X > X^*)$. Note that the insurance premium (or risk factor) is:

$$R = \mathbb{E}[P^*] + \lambda \mathbb{V}[P^*]$$

Experiment Setup

Research Objective

How well can one identify & predict cyclical and secular climate signals over a finite planning period (M), given limited information?

Let $P^*(X > X^*)$. Note that the insurance premium (or risk factor) is:

$$R = \mathbb{E}[P^*] + \lambda \mathbb{V}[P^*]$$

Systematic, stylized experiments: what happens as we vary M, N, climate structure, estimating model?

Stationary Scenario (LFV Only)

With limited data, the uncertainties caused by extrapolating from complex models lead to poor performance.

Nonstationary Scenario I (Secular Change Only)

Long planning periods need trend estimation, but this demands lots of information. For short planning periods, simple models may be better.

Nonstationary Scenario II (Secular Change + LFV)

As the system becomes more complex, more data is needed to understand it.

Discussion

Assertions:

- Investment evaluation depends on climate condition over finite planning period
- Physical hydroclimate systems vary on many scales
- Physical drivers of risk depend on planning period

Assertions:

- Investment evaluation depends on climate condition over finite planning period
- Physical hydroclimate systems vary on many scales
- Physical drivers of risk depend on planning period

Implications:

Assertions:

- Investment evaluation depends on climate condition over finite planning period
- Physical hydroclimate systems vary on many scales
- Physical drivers of risk depend on planning period

Implications:

 Ability to identify and predict different climate signals depends on information available (e.g., N)

Assertions:

- Investment evaluation depends on climate condition over finite planning period
- Physical hydroclimate systems vary on many scales
- Physical drivers of risk depend on planning period

Implications:

- Ability to identify and predict different climate signals depends on information available (e.g., N)
- Importance of predicting different climate signals depends on extrapolation desired (i.e., planning period)

Assertions:

- Investment evaluation depends on climate condition over finite planning period
- Physical hydroclimate systems vary on many scales
- Physical drivers of risk depend on planning period

Implications:

- Ability to identify and predict different climate signals depends on information available (e.g., N)
- Importance of predicting different climate signals depends on extrapolation desired (i.e., planning period)
- In general, low risk tolerance and/or limited information favor investments with short planning periods.

References i

- Carpenter, B., et al., Stan: A Probabilistic Programming Language, Journal Of Statistical Software, 76(1), 1–29, doi:10.18637/jss.v076.i01, 2017.
- City of New York, A Stronger, More Resilient New York, Tech. rep., New York, 2013.
- Cook, E. R., R. Seager, R. R. Heim Jr, R. S. Vose, C. Herweijer, and C. Woodhouse, Megadroughts in North America: Placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context, *Journal of Quaternary Science*, 25(1), 48–61, doi:10.1002/jqs.1303, 2010.
- Doss-Gollin, J., D. J. Farnham, S. Steinschneider, and U. Lall, Robust adaptation to multi-scale climate variability.
- Rabiner, L., and B. Juang, An Introduction to Hidden Markov Models, *IEEE ASSP Magazine*, 3(1), 4–16, doi:10.1109/MASSP.1986.1165342, 1986.
- Ramesh, N., M. A. Cane, R. Seager, and D. E. Lee, Predictability and prediction of persistent cool states of the Tropical Pacific Ocean, *Climate Dynamics*, 49(7-8), 2291–2307, doi:10.1007/s00382-016-3446-3, 2016.
- Schreiber, J., Pomegranate: Fast and flexible probabilistic modeling in python, arXiv.org, 2017.
- Zebiak, S. E., and M. A. Cane, A Model El Niño-Southern Oscillation, *Monthly Weather Review*, 115(10), 2262–2278, doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2, 1987.

Thanks for your attention!

Interested in making these ideas more concrete? I'd love to collaborate!

- **У**,**○** @jdossgollin
 - ☑ james.doss-gollin@columbia.edu
 - www.jamesdossgollin.me

Supplemental Discussion

$\textbf{Idealized Experiments} \iff \textbf{Real World}$

The idealized models used here are analogs:

Analysis	Real World
<i>N</i> -year record	Total informational uncertainty of an estimate
Statistical models of increasing complexity and $\#$ parameters	Statistical and dynamical model chains of increasing complexity and # parameters
Linear trends	Secular changes of unknown form
low-frequency climate variability (LFV) from the El Niño-Southern Oscillation (ENSO)	LFV from many sources
LFV and trend additive	LFV and trend interact

Generating Synthetic Streamflow

Sequences

Example Sequences and Fits

Figure A1: Example of sequences generated with M=100 and N=50

Equations for Synthetic Streamflow Generation

First

$$\log Q(t) \sim \mathcal{N}(\mu(t), \sigma(t)).$$
 (A1)

Where $\sigma(t) = \xi \mu(t)$, with $\sigma(t) \geq \sigma_{\min} > 0$. Then,

$$\mu(t) = \mu_0 + \beta x(t) + \gamma(t - t_0), \tag{A2}$$

and where x(t) is NINO3.4 index from realistic ENSO model [Zebiak and Cane, 1987; Ramesh et al., 2016]

Spectrum of LFV Used

Figure A2: Wavelet spectrum of (sub-set of) ENSO model used to embed synthetic streamflow sequences with low-frequency variability. ENSO data from *Ramesh et al.* [2016].

Climate Risk Estimation

Stationary LN2 Model

Treat the N historical observations as independent and identically distributed (IID) draws from stationary distribution

where $\mathcal N$ denotes the normal distribution and $\mathcal N^+$ denotes a half-normal distribution. Fit in Bayesian framework using stan [Carpenter et al., 2017].

Trend LN2 Model

Treat the N historical observations as IID draws from log-normal distribution with linear trend

$$\mu = \mu_0 + \beta_\mu (t - t_0)$$
 $\log Q_{\text{hist}} \sim \mathcal{N}(\mu, \xi \mu)$
 $\mu_0 \sim \mathcal{N}(7, 1.5)$
 $\beta_\mu \sim \mathcal{N}(0, 0.1)$
 $\log \xi \sim \mathcal{N}(0.1, 0.1)$

where ξ is an estimated coefficient of variation. Also fit in stan.

Hidden Markov Model

Two-state hidden Markov model (HMM) [see *Rabiner and Juang*, 1986] implemented using pomegranate python package [*Schreiber*, 2017]. See package documentation for reference.