

#### 8 BIT PIPO SHIFT REGISTER

- HIGH SPEED
- $t_{PD} = 13 \text{ ns} (TYP.) \text{ at } V_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION I<sub>CC</sub> = 4 μA (MAX.) at T<sub>A</sub> = 25 °C 6 V
- HIGH NOISE IMMUNITY

  VNIH = VNIL = 28 % VCC (MIN.)
- OUTPUT DRIVE CAPABILITY 10 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE | I<sub>OH</sub> | = I<sub>OL</sub> = 4 mA (MIN.)
- BALANCED PROPAGATION DELAYS tplh = tphl
- WIDE OPERATING VOLTAGE RANGE V<sub>CC</sub> (OPR) = 2 V to 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS195



#### **DESCRIPTION**

The M54/74HC195 is a high speed CMOS 4 BIT PIPO SHIFT REGISTER fabricated in silicon gate C<sup>2</sup>MOS technology. It has the same high speed performance of LSTTL combined with true CMOS low power consumption.

This shift register features parallel inputs, parallel outputs, J-K serial inputs, a SHIFT/LOAD control input, and a direct overriding CLEAR. This shift register can operate in two modes: Parallel Load; Shift from QA towards QD.

Parallel loading is accomplished by applying the four bits of data, and taking the SHIFT/LOAD control input low. The data is loaded into the associated flip flops and appears at the outputs after the positive transition of the clock input. During parallel loading, serial data flow is inhibited. Serial shifting occurs synchronously when the SHIFT/LOAD control input is high. Serial data for this mode is entered at the J-K inputs. These inputs allow the first stage to perform as a J-K or TOGGLE flip flop as shown in the truthtable.

All inputs are equipped with protection circuits against static discharge transient excess voltage.



October 1992 1/13

#### INPUT AND OUTPUT EQUIVALENT CIRCUIT



#### **PIN DESCRIPTION**

| PIN No         | SYMBOL          | NAME AND FUNCTION                             |
|----------------|-----------------|-----------------------------------------------|
| 1              | CLEAR           | Reset Input (Active LOW)                      |
| 2              | J               | First Stage J Input (Active LOW)              |
| 3              | K               | First Stage $\overline{K}$ Input (Active LOW) |
| 4, 5, 6, 7     | A to D          | Parallel Data Input                           |
| 9              | SHIFT/LOAD      | Control Input                                 |
| 10             | CLOCK           | Clock Input (LOW to<br>HIGH Edge-triggered)   |
| 11             | QD              | Inverted Output From The Last Stage           |
| 15, 14, 13, 12 | QA to QD        | Paralle Outputs                               |
| 8              | GND             | Ground (0V)                                   |
| 16             | V <sub>CC</sub> | Positive Supply Voltage                       |

#### **IEC LOGIC SYMBOL**



#### **TRUTH TABLE**

| INPUTS |        |       |     |      |   |      |      |   | OUTPUS |     |     |     |                 |
|--------|--------|-------|-----|------|---|------|------|---|--------|-----|-----|-----|-----------------|
| CLEAR  | SHIFT/ | СГОСК | SER | RIAL |   | PARA | LLEL |   | QA     | QB  | QC  | QD  | $\overline{Q}D$ |
|        | LOAD   | CLOCK | J   | K    | Α | В    | С    | D | Ψ.Λ    | Q D | QC  | QD. | עש              |
| L      | Х      | Х     | Χ   | Х    | Χ | Χ    | Χ    | Χ | L      | L   | L   | ┙   | Ш               |
| Н      | L      |       | X   | Х    | а | b    | С    | d | а      | b   | С   | d   | d               |
| Н      | Н      |       | Х   | Х    | Х | Χ    | Х    | Х | QA0    | QB0 | QC0 | QD0 | QD0             |
| Н      | Н      |       | L   | Н    | Χ | Χ    | Х    | Χ | QA0    | QA0 | QBn | QCn | QCn             |
| Н      | Н      |       | L   | L    | Х | Х    | Х    | Х | L      | QAn | QBn | QCn | QCn             |
| Н      | Н      |       | Н   | Н    | Χ | Χ    | Х    | Х | Н      | QAn | QBn | QCn | QCn             |
| Н      | Н      |       | Н   | L    | Х | Х    | Х    | Х | QAn    | QAn | QBn | QCn | QCn             |

X: Don't Care: The level of QA, QB, QC, respectively, before the mst recent positive transition of the clock.



#### **LOGIC DIAGRAM**



#### **TIMING CHART**



#### **ABSOLUTE MAXIMUM RATINGS**

| Symbol                  | Parameter                                    | Value                         | Unit |
|-------------------------|----------------------------------------------|-------------------------------|------|
| Vcc                     | Supply Voltage                               | -0.5 to +7                    | V    |
| VI                      | DC Input Voltage                             | -0.5 to V <sub>CC</sub> + 0.5 | V    |
| Vo                      | DC Output Voltage                            | -0.5 to V <sub>CC</sub> + 0.5 | V    |
| I <sub>IK</sub>         | DC Input Diode Current                       | ± 20                          | mA   |
| lok                     | DC Output Diode Current                      | ± 20                          | mA   |
| lo                      | DC Output Source Sink Current Per Output Pin | ± 25                          | mA   |
| Icc or I <sub>GND</sub> | DC V <sub>CC</sub> or Ground Current         | ± 50                          | mA   |
| P <sub>D</sub>          | Power Dissipation                            | 500 (*)                       | mW   |
| T <sub>stg</sub>        | Storage Temperature                          | -65 to +150                   | °C   |
| TL                      | Lead Temperature (10 sec)                    | 300                           | °C   |

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (\*) 500 mW:  $\cong$  65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

#### **RECOMMENDED OPERATING CONDITIONS**

| Symbol                          | Parameter                                                      |                          | Value                     | Unit |
|---------------------------------|----------------------------------------------------------------|--------------------------|---------------------------|------|
| $V_{CC}$                        | Supply Voltage                                                 |                          | 2 to 6                    | V    |
| $V_{I}$                         | Input Voltage                                                  |                          | 0 to V <sub>CC</sub>      | V    |
| Vo                              | Output Voltage                                                 |                          | 0 to V <sub>CC</sub>      | V    |
| $T_{op}$                        | Operating Temperature: <b>M54HC</b> Series <b>M74HC</b> Series |                          | -55 to +125<br>-40 to +85 | °C   |
| t <sub>r</sub> , t <sub>f</sub> | Input Rise and Fall Time                                       | $V_{CC} = 2 V$           | 0 to 1000                 | ns   |
|                                 |                                                                | $V_{CC} = 4.5 \text{ V}$ | 0 to 500                  |      |
|                                 |                                                                | $V_{CC} = 6 V$           | 0 to 400                  |      |

#### **DC SPECIFICATIONS**

|                 |                             | To   | est Co              | nditions                | Value                                   |      |      |                      |      |                       |      |      |  |
|-----------------|-----------------------------|------|---------------------|-------------------------|-----------------------------------------|------|------|----------------------|------|-----------------------|------|------|--|
| Symbol          | Parameter                   | Vcc  |                     |                         | T <sub>A</sub> = 25 °C<br>54HC and 74HC |      |      | -40 to 85 °C<br>74HC |      | -55 to 125 °C<br>54HC |      | Unit |  |
|                 |                             | (V)  |                     |                         | Min.                                    | Тур. | Max. | Min.                 | Max. | Min.                  | Max. |      |  |
| $V_{IH}$        | High Level Input            | 2.0  |                     |                         | 1.5                                     |      |      | 1.5                  |      | 1.5                   |      |      |  |
|                 | Voltage                     | 4.5  |                     |                         | 3.15                                    |      |      | 3.15                 |      | 3.15                  |      | V    |  |
|                 |                             | 6.0  |                     |                         | 4.2                                     |      |      | 4.2                  |      | 4.2                   |      |      |  |
| $V_{IL}$        | Low Level Input             | 2.0  |                     |                         |                                         |      | 0.5  |                      | 0.5  |                       | 0.5  |      |  |
|                 | Voltage                     | 4.5  |                     |                         |                                         |      | 1.35 |                      | 1.35 |                       | 1.35 | V    |  |
|                 |                             | 6.0  |                     |                         |                                         |      | 1.8  |                      | 1.8  |                       | 1.8  |      |  |
| $V_{OH}$        |                             | 2.0  | Vı =                |                         | 1.9                                     | 2.0  |      | 1.9                  |      | 1.9                   |      |      |  |
| Output Voltage  | 4.5                         | VI – | '   la=-'2()     /\ | 4.4                     | 4.5                                     |      | 4.4  |                      | 4.4  |                       |      |      |  |
|                 |                             | 6.0  | VIH                 |                         | 5.9                                     | 6.0  |      | 5.9                  |      | 5.9                   |      | V    |  |
|                 |                             | 4.5  | V <sub>IL</sub>     | I <sub>O</sub> =-4.0 mA | 4.18                                    | 4.31 |      | 4.13                 |      | 4.10                  |      |      |  |
|                 |                             | 6.0  |                     | I <sub>O</sub> =-5.2 mA | 5.68                                    | 5.8  |      | 5.63                 |      | 5.60                  |      |      |  |
| $V_{OL}$        | Low Level Output            | 2.0  | Vı =                |                         |                                         | 0.0  | 0.1  |                      | 0.1  |                       | 0.1  |      |  |
|                 | Voltage                     | 4.5  | V <sub>I</sub> –    | I <sub>O</sub> = 20 μA  |                                         | 0.0  | 0.1  |                      | 0.1  |                       | 0.1  |      |  |
|                 |                             | 6.0  | or                  |                         |                                         | 0.0  | 0.1  |                      | 0.1  |                       | 0.1  | V    |  |
|                 |                             | 4.5  | VIL                 | I <sub>O</sub> = 4.0 mA |                                         | 0.17 | 0.26 |                      | 0.33 |                       | 0.40 |      |  |
|                 |                             | 6.0  |                     | I <sub>O</sub> = 5.2 mA |                                         | 0.18 | 0.26 |                      | 0.33 |                       | 0.40 |      |  |
| lı              | Input Leakage<br>Current    | 6.0  | Vı = '              | Vcc or GND              |                                         |      | ±0.1 |                      | ±1   |                       | ±1   | μΑ   |  |
| I <sub>CC</sub> | Quiescent Supply<br>Current | 6.0  | V <sub>I</sub> = '  | V <sub>CC</sub> or GND  |                                         |      | 4    |                      | 40   |                       | 80   | μΑ   |  |

### AC ELECTRICAL CHARACTERISTICS ( $C_L = 50 \text{ pF}$ , Input $t_r = t_f = 6 \text{ ns}$ )

|                     |                                              | Test Conditions |      |                   |      | Value |             |      |              |      |
|---------------------|----------------------------------------------|-----------------|------|-------------------|------|-------|-------------|------|--------------|------|
| Symbol              | Parameter                                    | Vcc             |      | A = 25 C<br>C and |      | 1     | 85 °C<br>HC |      | 125 °C<br>HC | Unit |
|                     |                                              | (V)             | Min. | Тур.              | Max. | Min.  | Max.        | Min. | Max.         |      |
| t <sub>TLH</sub>    | Output Transition                            | 2.0             |      | 30                | 75   |       | 95          |      | 115          |      |
| $t_{THL}$           | Time                                         | 4.5             |      | 8                 | 15   |       | 19          |      | 23           | ns   |
|                     |                                              | 6.0             |      | 7                 | 13   |       | 16          |      | 20           |      |
| t <sub>PLH</sub>    | Propagation                                  | 2.0             |      | 48                | 125  |       | 155         |      | 190          |      |
| t <sub>PHL</sub>    | Delay Time                                   | 4.5             |      | 16                | 25   |       | 31          |      | 38           | ns   |
|                     | (CLOCK- Qn, $\overline{QD}$ )                | 6.0             |      | 14                | 21   |       | 26          |      | 32           |      |
| t <sub>PLH</sub>    | Propagation                                  | 2.0             |      | 45                | 120  |       | 150         |      | 180          |      |
| $t_{PHL}$           | Delay Time                                   | 4.5             |      | 15                | 24   |       | 30          |      | 36           | ns   |
|                     | $(\overline{CLEAR}\text{-}Qn,\overline{QD})$ | 6.0             |      | 13                | 20   |       | 26          |      | 31           |      |
| $f_{MAX}$           | Maximum Clock                                | 2.0             | 7.6  | 15                |      | 6     |             | 5    |              |      |
|                     | Frequency                                    | 4.5             | 38   | 60                |      | 30    |             | 25   |              | MHz  |
|                     |                                              | 6.0             | 45   | 71                |      | 35    |             | 30   |              |      |
| t <sub>W(H)</sub>   | t <sub>W(L)</sub> Width                      | 2.0             |      | 20                | 75   |       | 95          |      | 115          |      |
| $t_{W(L)}$          |                                              | 4.5             |      | 5                 | 15   |       | 19          |      | 23           | ns   |
| (CLOCK)             | 6.0                                          |                 | 4    | 13                |      | 16    |             | 20   |              |      |
| t <sub>W(L)</sub>   | Minimum Pulse                                | 2.0             |      | 20                | 75   |       | 95          |      | 115          |      |
|                     | Width                                        | 4.5             |      | 5                 | 15   |       | 19          |      | 23           | ns   |
|                     | (CLEAR)                                      | 6.0             |      | 4                 | 13   |       | 16          |      | 20           |      |
| ts                  | Minimum Set-up                               | 2.0             |      | 28                | 75   |       | 95          |      | 115          |      |
|                     | Time                                         | 4.5             |      | 7                 | 15   |       | 19          |      | 23           | ns   |
|                     | (PI)                                         | 6.0             |      | 6                 | 13   |       | 16          |      | 20           |      |
| ts                  | Minimum Set-up                               | 2.0             |      | 28                | 75   |       | 95          |      | 115          |      |
|                     | Time                                         | 4.5             |      | 7                 | 15   |       | 19          |      | 23           | ns   |
|                     | $(J, \overline{K}, S/\overline{L})$          | 6.0             |      | 6                 | 13   |       | 16          |      | 20           |      |
| th                  | Minimum Hold                                 | 2.0             |      |                   | 0    |       | 0           |      | 0            |      |
| Time                | 4.5                                          |                 |      | 0                 |      | 0     |             | 0    | ns           |      |
|                     |                                              | 6.0             |      |                   | 0    |       | 0           |      | 0            |      |
| $t_{REM}$           | Minimum                                      | 2.0             |      |                   | 5    |       | 5           |      | 5            |      |
|                     | Removal Time                                 | 4.5             |      |                   | 5    |       | 5           |      | 5            | ns   |
|                     |                                              | 6.0             |      |                   | 5    |       | 5           |      | 5            |      |
| $C_{IN}$            | Input Capacitance                            |                 |      | 5                 | 10   |       | 10          |      | 10           | pF   |
| C <sub>PD</sub> (*) | Power Dissipation Capacitance                |                 |      | 72                |      |       |             |      |              | pF   |

<sup>(\*)</sup>  $C_{PD}$  is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation.  $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}$ 



#### SWITCHING CHARACTERISTICS TEST WAVEFORM



#### TEST CIRCUIT ICC (Opr.)



# Plastic DIP16 (0.25) MECHANICAL DATA

| DIM.  |      | mm    |      |       | inch  |       |
|-------|------|-------|------|-------|-------|-------|
| Diwi. | MIN. | TYP.  | MAX. | MIN.  | TYP.  | MAX.  |
| a1    | 0.51 |       |      | 0.020 |       |       |
| В     | 0.77 |       | 1.65 | 0.030 |       | 0.065 |
| b     |      | 0.5   |      |       | 0.020 |       |
| b1    |      | 0.25  |      |       | 0.010 |       |
| D     |      |       | 20   |       |       | 0.787 |
| E     |      | 8.5   |      |       | 0.335 |       |
| е     |      | 2.54  |      |       | 0.100 |       |
| e3    |      | 17.78 |      |       | 0.700 |       |
| F     |      |       | 7.1  |       |       | 0.280 |
| ı     |      |       | 5.1  |       |       | 0.201 |
| L     |      | 3.3   |      |       | 0.130 |       |
| Z     |      |       | 1.27 |       |       | 0.050 |



## **Ceramic DIP16/1 MECHANICAL DATA**

| DIM.  |      | mm    |      | inch  |       |       |  |  |
|-------|------|-------|------|-------|-------|-------|--|--|
| Diwi. | MIN. | TYP.  | MAX. | MIN.  | TYP.  | MAX.  |  |  |
| А     |      |       | 20   |       |       | 0.787 |  |  |
| В     |      |       | 7    |       |       | 0.276 |  |  |
| D     |      | 3.3   |      |       | 0.130 |       |  |  |
| Е     | 0.38 |       |      | 0.015 |       |       |  |  |
| e3    |      | 17.78 |      |       | 0.700 |       |  |  |
| F     | 2.29 |       | 2.79 | 0.090 |       | 0.110 |  |  |
| G     | 0.4  |       | 0.55 | 0.016 |       | 0.022 |  |  |
| Н     | 1.17 |       | 1.52 | 0.046 |       | 0.060 |  |  |
| L     | 0.22 |       | 0.31 | 0.009 |       | 0.012 |  |  |
| М     | 0.51 |       | 1.27 | 0.020 |       | 0.050 |  |  |
| N     |      |       | 10.3 |       |       | 0.406 |  |  |
| Р     | 7.8  |       | 8.05 | 0.307 |       | 0.317 |  |  |
| Q     |      |       | 5.08 |       |       | 0.200 |  |  |



# SO16 (Narrow) MECHANICAL DATA

| DIM.   |      | mm   |       |        | inch  |       |
|--------|------|------|-------|--------|-------|-------|
| DIIVI. | MIN. | TYP. | MAX.  | MIN.   | TYP.  | MAX.  |
| Α      |      |      | 1.75  |        |       | 0.068 |
| a1     | 0.1  |      | 0.2   | 0.004  |       | 0.007 |
| a2     |      |      | 1.65  |        |       | 0.064 |
| b      | 0.35 |      | 0.46  | 0.013  |       | 0.018 |
| b1     | 0.19 |      | 0.25  | 0.007  |       | 0.010 |
| С      |      | 0.5  |       |        | 0.019 |       |
| c1     |      |      | 45°   | (typ.) |       |       |
| D      | 9.8  |      | 10    | 0.385  |       | 0.393 |
| Е      | 5.8  |      | 6.2   | 0.228  |       | 0.244 |
| е      |      | 1.27 |       |        | 0.050 |       |
| e3     |      | 8.89 |       |        | 0.350 |       |
| F      | 3.8  |      | 4.0   | 0.149  |       | 0.157 |
| G      | 4.6  |      | 5.3   | 0.181  |       | 0.208 |
| L      | 0.5  |      | 1.27  | 0.019  |       | 0.050 |
| М      |      |      | 0.62  |        |       | 0.024 |
| S      |      |      | 8° (ı | max.)  |       |       |



## **PLCC20 MECHANICAL DATA**

| DIM.   |      | mm   |       | inch  |       |       |  |  |
|--------|------|------|-------|-------|-------|-------|--|--|
| Diiii. | MIN. | TYP. | MAX.  | MIN.  | TYP.  | MAX.  |  |  |
| А      | 9.78 |      | 10.03 | 0.385 |       | 0.395 |  |  |
| В      | 8.89 |      | 9.04  | 0.350 |       | 0.356 |  |  |
| D      | 4.2  |      | 4.57  | 0.165 |       | 0.180 |  |  |
| d1     |      | 2.54 |       |       | 0.100 |       |  |  |
| d2     |      | 0.56 |       |       | 0.022 |       |  |  |
| E      | 7.37 |      | 8.38  | 0.290 |       | 0.330 |  |  |
| е      |      | 1.27 |       |       | 0.050 |       |  |  |
| e3     |      | 5.08 |       |       | 0.200 |       |  |  |
| F      |      | 0.38 |       |       | 0.015 |       |  |  |
| G      |      |      | 0.101 |       |       | 0.004 |  |  |
| М      |      | 1.27 |       |       | 0.050 |       |  |  |
| M1     |      | 1.14 |       |       | 0.045 |       |  |  |



Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

