

Data 144

Austin Ho, Celina Liu, Garima Gupta, Katherine Gan, Momo Siu, Sailesh Kethepelli

TABLE OF CONTENTS							
01	BACKGROUND Our goals for this project and additional information	MODELING Our models used and performance of each	03				
02	PREPROCESSING Our data cleaning process and selection criteria	ANALYSIS Our interpretation of the model results and impact	04				

Teams

	Rk	Team	Overall	Home	Road	E Wins	E Loss	W Wins	W Loss	Conference	Year
0	1	Phoenix Suns	64-18	32-9	32-9	25	5	39	13	West	2021
1	2	Memphis Grizzlies	56-26	30-11	26-15	20	10	36	16	West	2021
2	3	Golden State Warriors	53-29	31-10	22-19	20	10	33	19	West	2021
3	4	Miami Heat	53-29	29-12	24-17	35	17	18	12	East	2021
4	5	Dallas Mavericks	52-30	29-12	23-18	16	14	36	16	West	2021
534	25	Atlanta Hawks	28-54	18-23	10-31	19	35	9	19	East	2004
535	26	Los Angeles Clippers	28-54	18-23	10-31	14	16	14	38	West	2004
536	27	Washington Wizards	25-57	17-24	8-33	16	38	9	19	East	2004
537	28	Chicago Bulls	23-59	14-27	9-32	19	35	4	24	East	2004
538	29	Orlando Magic	21-61	11-30	10-31	17	37	4	24	East	2004
539 ro	ws ×	11 columns									

Players

	š«ï	Player	Pos	Age	Tm	G	GS	MP	FG	FGA		ORR	DRR	TRB	AST	STL	BLK	TOV	PF	PTS	Year
		riayei	F05	nye		•	65	PAF		ron	•••	OKD	DKB	IND	NOI.	311	BLIK	100		F15	lear
0	Zylan Cheatham	Zylan Cheatham	SF	26	UTA	1	0	5.0	0.0	3.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2021
1	Zylan Cheatham	Zylan Cheatham	PF	24	NOP	4	0	12.8	1.5	2.3		0.8	1.5	2.3	0.8	0.3	0.3	1.0	2.5	3.0	2019
2	Zydrunas Ilgauskas	Zydrunas Ilgauskas	С	35	MIA	72	51	15.9	2.3	4.4		1.5	2.5	4.0	0.4	0.3	0.8	0.7	2.6	5.0	2010
3	Zydrunas Ilgauskas	Zydrunas Ilgauskas	С	34	CLE	64	6	20.9	3.0	6.8		1.8	3.6	5.4	0.8	0.2	0.8	1.0	2.9	7.4	2009
4	Zydrunas Ilgauskas	Zydrunas Ilgauskas	С	33	CLE	65	65	27.2	5.3	11.1		2.4	5.1	7.5	1.0	0.4	1.3	1.4	2.8	12.9	2008
11138	A.J. Price	A.J. Price	PG	26	WAS	57	22	22.4	2.8	7.2		0.4	1.6	2.0	3.6	0.6	0.1	1.1	1.3	7.7	2012
11139	A.J. Price	A.J. Price	PG	25	IND	44	1	12.9	1.3	4.0		0.3	1.1	1.4	2.0	0.5	0.0	0.7	0.7	3.9	2011
11140	A.J. Price	A.J. Price	PG	24	IND	50	0	15.9	2.3	6.4		0.3	1.1	1.4	2.2	0.6	0.0	1.1	1.2	6.5	2010
11141	A.J. Price	A.J. Price	PG	23	IND	56	2	15.4	2.6	6.3		0.2	1.4	1.6	1.9	0.6	0.1	1.1	0.9	7.3	2009
11142	A.J. Hammons	A.J. Hammons	С	24	DAL	22	0	7.4	0.8	1.9		0.4	1.3	1.6	0.2	0.0	0.6	0.5	1.0	2.2	2016
11143 rov	11143 rows × 31 columns																				

DPOY

									10.0											
	Rank	Player	Age	Tm	First	Pts Won	Pts Max	Share	G	MP	TRB	AST	STL	BLK	FG%	3P%	FT%	WS	WS/48	Year
1		Marcus Smart	27	BOS	37	257	500	0.514	71	32.3	3.8	5.9	1.7	0.3	0.418	0.331	0.793	5.6	0.116	2021
2	2	Mikal Bridges	25	РНО	22	202	500	0.404	82	34.8	4.2	2.3	1.2	0.4	0.534	0.369	0.834	8.9	0.15	2021
3	3	Rudy Gobert	29	UTA	12	136	500	0.272	66	32.1	14.7	1.1	0.7	2.1	0.713	0	0.69	11.7	0.264	2021
4	4	Bam Adebayo	24	MIA	13	128	500	0.256	56	32.6	10.1	3.4	1.4	0.8	0.557	0	0.753	7.2	0.188	2021
5	5	Jaren Jackson Jr.	22	МЕМ	10	99	500	0.198	78	27.3	5.8	1.1	0.9	2.3	0.415	0.319	0.823	5.4	0.121	2021
371	8T	Shaquille O'Neal	28	LAL	2	2	123	0.016	74	39.5	12.7	3.7	0.6	2.8	0.572	0	0.513	14.9	0.245	2000
372	11T	Kobe Bryant	22	LAL	1		123	0.008	68	40.9	5.9	5	1.7	0.6	0.464	0.305	0.853	11.3	0.196	2000
373	11T	Allen Iverson	25	PHI			123	0.008	71	42	3.8	4.6	2.5	0.3	0.42	0.32	0.814	11.8	0.19	2000
374	11T	Jason Kidd	27	РНО	1	1	123	0.008	77	39.8	6.4	9.8	2.2	0.3	0.411	0.297	0.814	9.6	0.15	2000
375	11T	Shawn Marion	22	РНО			123	0.008	79	36.2	10.7	2	1.7	1.4	0.48	0.256	0.81	11.7	0.196	2000
375 rc	ws × 21	l columns																		

WS (Win shares)

	Player	Year	Tm	ws	WS/48
0	A.J. Hammons	2016	DAL	0.0	-0.001
1	A.J. Price	2009	IND	1.2	0.065
2	A.J. Price	2010	IND	0.3	0.020
3	A.J. Price	2011	IND	0.7	0.063
4	A.J. Price	2012	WAS	2.2	0.084
11151	Zydrunas Ilgauskas	2007	CLE	6.1	0.131
11152	Zydrunas Ilgauskas	2009	CLE	2.5	0.088
11153	Zydrunas Ilgauskas	2010	MIA	2.9	0.122
11154	Zylan Cheatham	2019	NOP	0.0	0.034
11155	Zylan Cheatham	2021	UTA	-0.1	-0.610
11156 ro	ws × 5 columns				

Important Vocabulary

Win Share

How many wins a player contributes to

Block %

Proportion of 2 point field goal attempts blocked by a player

True Rebound %

Proportion of available rebounds made by a player

Steal %

Fraction of opponent possessions that end in a steal by a player

Plus Minus

Box score per 100 possessions against an average player

VORP

Measure of a player's contribution above a replacement level player

Dataframe Cleaning

PROJECT

DATAFRAMES

DPOY

Took out unnecessary notations (*), Marked who won the award

PLAYERS

Encoded using unicode-escape, renamed column title

TEAMS

Dropped useless columns, found cumulative wins and losses

Additional Preprocessing

Updated player's team acronyms based on year

Removed duplicate entries in player tables

Acronyms

Redundancies

WS Dataframe

Edge Cases

Found winshare data for players

Fixed edge cases for teams

Creating Final Tables

Players

Merged player dataframe with team performance and corresponding winshares

DPOY

Merged the DPOY with the previous player table to serve as predictions we wanted to meet

Filtering

 $\left(\mathbf{1}\right)$

2

3

4

Playoffs

Only players on playoff teams are recognized and considered for major awards such as DPOY

Decreased rows in dataframe from 15435 to 5163

Games Played

To be recognized for DPOY, a player must play in the majority of games in the season

Filtered another 2841 entries from the dataframe

Rebounds Per Game

Rebounds are a major defensive component of the game. We set a filter of 3 rebounds per game

Removed another 677 instances from the dataframe

Win Share

The DPOY should contribute positively to wins. We set a filter of 0.5 win shares.

Filtered out just 3 entries from the dataframe

LINEAR REGRESSION

INSIGHT & ANALYSIS

- Created a model
 with linear
 regression to predict
 the winner: 1 if
 winner, 0 if not
- Training and Testing Sets were created with Year and Winner as features

3.0955488291881096e-30

RSME:

1.7594171845210873e-15

LOGISTIC REGRESSION

KEY FEATURES & INSIGHTS

- For every year, the model was predicting a binary variable: winner
- Training and test datasets were scaled to standardize feature values

Average of all accuracy scores: **0.977**

ACCURACY SCORES

2004	0.923
2005	1.0
2006	1.0
2007	1.0
2008	1.0
2009	1.0
2010	1.0
2011	0.917
2012	0.941

2013	1.0
2013	1.0
2014	0.923
2015	1.0
2016	1.0
2017	1.0
2018	1.0
2019	1.0
2020	1.0
2021	0.875

NEURAL NETWORK

DESIGN

Number of features: 51

- Hidden layers: 5
- Solver: Ifbgs
- Max iterations: 100
- Learning rate: adaptive
- Initial learning rate = 0.001

MODEL **PERFORMANCE**

Mean accuracy = 0.932

2004	0.692	2013
2005	1.0	2014
2006	0.928	2015
2007	1.0	2016
2008	0.857	2017
2009	1.0	2018
2010	1.0	2019
2011	0.916	2020
2012	0.941	2021

2013	1.0					
2014	0.923					
2015	0.923					
2016	1.0					
2017	1.0					
2018	1.0					
2019	0.9					
2020	0.833					
2021	0.875					

Gradient Boost

Why

- Robust predictive analysis model
- Ensembling method

MSE: 5.39640592633166e-06

```
from sklearn.ensemble import GradientBoostingRegressor
# Train Test Split and MSE metrics already imported.
parameters = {|'n estimators': 500,
              "max depth": 4,
              "min_samples_split": 5,
              "learning rate": 0.01,
              "loss": "absolute_error",
regression = GradientBoostingRegressor(**parameters)
regression.fit(X_train, Y_train)
#metrics
mse = mean_squared_error(Y_test, regression.predict(X_test))
print(mse)
```

Gradient Boost

Visual

- Optimized within 500 iterations
- Minimized deviance

```
import matplotlib.pyplot as plt
test score = np.zeros((parameters["n estimators"],), dtype=np.float64)
for elem, y pred in enumerate(regression.staged predict(X test)):
 test score[elem] = mean squared error(Y test, y pred)
fig = plt.figure(figsize = (10, 10))
plt.subplot(1, 1, 1)
plt.title("Deviance")
plt.plot(np.arange(parameters["n estimators"]) + 1,
         regression.train score,
         label = "Training Set Deviance",
plt.plot(np.arange(parameters["n estimators"]) + 1, test score, "r-",
         label="Test Set Deviance")
plt.legend(loc = "upper right")
plt.xlabel("Gradient Boost Iterations")
plt.ylabel("Deviance")
plt.show()
```

Gradient Boost

Visual

- Optimized within 500 iterations
- Minimized deviance

Model Comparison

Logistic Regression

Avg accuracy = 0.977

Neural Network

Avg accuracy = 0.932

Gradient Boost

MSE of 5.396e-06

Linear Regression

MSE of 3.096e-30

Next Steps

Reduced Features

Further analysis on features or more domain knowledge could have allowed us to make more informed decisions on which features to remove

Additional Feature Engineering

With more analysis of statistical data and further research on conventions, we could have added more features to help improve our predictions

Future Applications

Feature Importance

Determine which features have the biggest impact on winning DPOY

Build New Models

Build models to identify the change in a player's defensive ranking when improving the identified features

Leverage Findings

Use our findings to help players improve their defensive game

THANK YOU!

