Московский Государственный Университет им. М. В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Практикум на ЭВМ

Отчёт № 4 Анализ параллельной программы на МРІ, реализующей квантовые гейты.

Работу выполнил **Малмыгин Г. А.**

Постановка задачи

Реализовать гейты $H/H^n/CNOT/ROT/CROT/NOT$ для каждого написать тесты на корректность. Оформить в виде библиотеки сделать цель check/test(проверка тестов) Тесты реализовать отдельно от библиотеки. Провести анализ ускорения и масштабируемости гейтов H^n и CNOT.

Полученные результаты

Результаты для Н^п для 25 кубитов

Таблица 1 Ускорение программы для Нп на 25 кубитах

Число вычислительных узлов	Время	Ускорение
32	1.198420	1
64	0.637195	1.880774
128	0.353148	3.393535
256	0.203416	5.891474

График 1 Ускорение для Нп на 25 кубитах

Результат выполнения для CNOT 1, 11:

Таблица 2 Ускорение для СПОТ на 25 кубитах

Число вычислительных узлов	Время	Ускорение
32	0.181472	1
64	0.098975	1.833512
128	0.057949	3.131565
256	0.041495	4.373336

График 2 Ускорение для СПОТ на 25 кубитах

Выводы

Ускорение программы с использованием технологии MPI показывает хорошие результаты, но с повышением числа процессов падает эффективность из-за роста количества пересылок. Программа является хорошо масштабируемой.