Иследование и оптимизация конструкции вакуумной пушки

Вопрос по выбору на экзамен по общей физике (термодинамика и молекулярная физика)

Захаров Алексей, Казиков Сергей, Луговцов Глеб

Содержание

1	Цел	ть исследования	3
2	Экс	периментальная установка	3
3 Теоретические подходы		ретические подходы	4
	3.1	Простейшая модель	
	3.2	Вклад других факторов	Ć
4	Экспериментальные данные		7
5	Соп	оставление результатов и выволы	-

1 Цель исследования

Целью исследования является нахождение теоретической зависимости скорости снаряда от его массы и длины пушки и сопоставление этой зависимости с экспериментальными данными.

2 Экспериментальная установка

Наша экспериментальная установка состоит из полипропиленовой трубы с начальной длиной 4м и внутренним радиусом 20.7мм, нескольких снарядов, массы которых равны 4.3, 5.7, 8.6грамм соответственно и вакуумного насоса. Схема экспериментальной установки изображена на рис. 1.

Рис. 1: Схема работы экспериментальной установки

Каждый раз при выстреле будем откачивать трубку до возможного минимума давления. Найдём рэкспериментальным путём, подключив манометр к трубе и зафиксируем $t_{\rm ycr}$:

$$p = 0.015p_0$$

где $t_{\rm уст} = 60$ с– время установления давления.

Порядок действий и поведение пушки при выстреле:

- 1. Герметично заклеиваем скотчем оба конца трубы;
- 2. Начинаем откачку воздуха вакуумным насосом;
- 3. После истечения времени установления $t_{\rm уст}$ производим резкую разгерметизацию того конца трубы, в котором находится снаряд;
- 4. В результате этого за счёт резкого перепада давления снаряд разгоняется входящим потоком воздуха до определённой скорости, зависимость которой от длины трубы мы и попытаемся найти далее.

3 Теоретические подходы

Для описания процессов, происходящих в пушке во время выстрела, мы будем использовать несколько теоретических подходов, которые отличаются приближённостью к реальных условиям. В результате мы сможем сравнить эти подходы с экспериментальными данными и найти оптимальный из них.

Рис. 2: Простейшая модель

3.1 Простейшая модель

Рассмотрим простейшую модель движения снаряда в пушке. Силы, действующие на снаряд изображены на рис. 2.

Для определения коэффициента трения между снарядом и трубой проведём ряд опытов и определим угол, при котором снаряд начинает скатываться по пушке. Тогда:

$$\mu = \tan \alpha = 0.238$$

Из Второго закона Ньютона и формул кинематики:

$$(p_0 - p_{\rm TP})S_{\rm CH} - \mu mg = ma$$

$$v = \sqrt{2la} = \sqrt{2l \cdot (\frac{p_0 - p_{\text{\tiny TP}}}{m} S_{\text{\tiny CH}} - \mu g)}$$

получили зависимость скорости от длины трубы.

3.2 Вклад других факторов

В реальности же эта модель очень слабо приближает нас к эксперименту, так как мы не учитываем давление, создаваемое воздухом, «забегающим» вперёд снаряда, которое оказывает действительно значительный вклад в изменение скорости снаряда и трение снаряда о воздух. Экспериментально удалось выяснить, что в какой-то момент после выстрела давление перед снарядом оказывается настолько большим, что разрывает скотч на противополжном конце трубы:

$$p_{\rm kp} = 1.8 \ {\rm atm}$$

- из эксперимента.

Рассмотрим вклад каждого из вышупомянутых параметров:

Давление забегающего вперёд воздуха

Для свободного перемещения снаряда по трубе, его диаметр немного отличается от внутреннего диаметра трубы. Из-за этого между снарядом и стенками трубы образуется небольшой зазор, площадь которого равна:

$$S_{\rm 3}=S_{\rm Tp}-S_{\rm ch}\approx 28.6~{\rm mm}^2$$

Из-за разности давлений между воздухом перед снарядом и после снаряда, часть воздуха будет «забегать» вперёд снаряда через эту площадь. Таким

образом по мере движения снаряда в трубе, давление перед снарядом будет возрастать от $p_{\rm тp}$ до $p_{\rm kp}>p_0$. Значит, ускорение снаряда будет уменьшатся по некоторому закону a=a(t), то есть реальная скорость будет меньше, чем мы получили в первой оценке.

Трение снаряда о воздух

Оценим трение снаряда о воздух, используя число Рейнольдса Re:

$$Re = \frac{\rho v l}{\eta} \approx 4 \cdot 10^5$$

очевидно, течение турбулентное. Отсюда следует, что силы вязкого трения пренебрежимо малы, значит, в дальнеших оценках мы не будем их учитывать.

4 Экспериментальные данные

5 Сопоставление результатов и выводы

Список литературы

[1] Сивухин