SVKM's NMIMS MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING / SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

Academic Year: 2021-22

Programme: B. Tech (Computer Science & Business Systems) Year: III Semester: VI

Subject: Artificial Intelligence

Date: 08 April 2022

Marks: 100

Time: 10.00 am to 1.00 pm

Final Examination

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

- 1) Question No. 1 is compulsory.
- 2) Out of remaining questions, attempt any 4 questions.
- 3) In all _5 questions to be attempted.
- 4) All questions carry equal marks.
- 5) Answer to each new question to be started on a fresh page.
- 6) Figures in brackets on the right hand side indicate full marks.
- 7) Assume Suitable data if necessary.

) Assu	me Sun	able data it necessary.	
Q1	Answ	er briefly:	
	(a)	Describe intelligent agents and enlist applications of it.	[4]
	(b)	Discuss various issues in search programs designing.	[4]
	_(e)	Explain different approaches to knowledge representation.	[4]
	(d)	Explain the need for Dempster-Shafer's theory.	[4]
	(e)	Explain an expert system with a block diagram and its characteristics.	[4]
Q2	(a)	Write and explain the algorithm of Simulated Annealing.	[5]
	(b)	What is local beam search? Explain with an example.	[5]
	((c))	Use predicate logic to convert a given knowledge base.	[10]
	\cup	1. Anyone who owns a rabbit hates anything that chases any rabbit	
		2. Anything which has a red nose is weird or is a clown.	
		3. Every Austinite who is not conservative loves some armadillo.	
		4. Every biker rides [something that is] either a Harley or a BMW.	

5. Everyone who loves Santa loves any reindeer.

Q3 (a) Write A* algorithm. Also consider a search problem given below and apply A* [7] algorithm to find the minimum cost path from node S to G.

- (b) What is depth limited search? Explain with an example. [3]
- (c) Use first order logic to generate knowledge base and Solve using resolution [10]
 - a. All hounds howl at night.
 - b. Anyone who has any cats will not have any mice.
 - c. Light sleepers do not have anything which howls at night.
 - d. John has either a cat or a hound.

Prove by resolution

If John is a light sleeper, then John does not have any mice.

- Q4 (a) Draw and explain the structure of a simple reflex agent and model based agent. [7]
 - (b) Enlist characteristics of intelligent agents. [3]
 - You are given two jugs, a 4-gallon one and a 3-gallon one. Neither has any measuring markers on it. There is a pump that can be used to fill the jugs with water. How can you get exactly 2 gallons of water into the 4-gallon jug? Design the necessary rules and use them to construct the solution.
 - (d) One of the problem characteristics is "Can solution steps be ignored or at least undone if they prove unwise?" Explain it with an example.
- Q5 (a) Solve the following using alpha-beta pruning algorithm. Also show which branches are pruned. [10]

What is the probability that it is raining, given the grass is wet?

Q6	(a)	Explain Components of Expert system.	[4]
	(b)	Explain the steps we need to build a system to solve a particular problem.	[4]
	(c)	Explain the constraint satisfaction problem with respect to the graph colouring	[6]
	6	problem.	
	(d)	What do you mean by planning in AI? Explain the Goal stack planning.	[6]

