Teoria da Computação Linguagens Regulares (Parte 1) AFND com transição em vazio

Prof. Jefferson Magalhães de Morais

AFND com transição em vazio

- São aqueles que admitem transições de um estado para o outro com ε
- Transições em vazio podem ser executadas sem consultar o símbolo corrente na fita de entrada
- Transições desse tipo não deslocam o cursor de leitura
- Se em um mesmo estado coexistir transições em vazio e outras transições
 - Deve-se realizar uma escolha arbitrária da transição a ser aplicada
 - Isso caracteriza a manifestação de um não-determinismo
- A função de transição é da forma

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$$

Exemplo

 Considere $M=(Q,\Sigma,\delta,q_0,F)$ um AF com transições em vazio

$$Q = \{q_0, q_1\}$$

$$\Sigma = \{a, b\}$$

$$\delta = \{(q_0, a) \to \{q_0\}, (q_0, \varepsilon) \to \{q_1\}, (q_1, b) \to \{q_1\}\}$$

$$F = \{q_1\}$$

• A linguagem aceita por esse autômato é a^*b^*

- A cadeia ab tem duas sequências de movimentação
 - **1** $(q_0, ab) \vdash (q_0, b) \vdash (q_1, b) \vdash (q_1, \varepsilon)$ (sucesso)
 - **2** $(q_0, ab) \vdash (q_1, ab)$ (impasse)

Uso de transições em vazio

- Alguns autômatos finitos com transições em vazio são mais simples de serem analisados do que as correspondentes versões isentas de transições em vazio
- Exemplo: o autômato a seguir reconhece a linguagem

Equivalente autômato com transições em vazio

Poder de reconhecimento e Equivalência

- A transição em vazio ao autômato não aumenta seu poder computacional
- Toda linguagem que seja aceita por um AF com transições em vazio pode também ser aceita por um autômato equivalente, sem transições em vazio
- A equivalência entre as classes requer uma conversão sistemática de AFs quaisquer em uma versão equivalente sem transições em vazio

Eliminação de transições em vazio

- Teorema (Eliminação de transições em vazio, v1):
 "Todo autômato com transições em vazio define uma linguagem que é aceita por algum autômato finito que não contém transições em vazio."
- Sejam $M=(Q,\Sigma,\delta,q_0,F)$ e $N=(Q,\Sigma,\delta',q_0,F')$ AFs, respectivamente, com e sem transições em vazio. A obtenção de N a partir de M por v1
 - Entrada: um AF M com transições em vazio
 - Saída: um AF N sem transições em vazio, tal que L(N) = L(M)
 - Método:
 - ① Eliminação das transições em vazio Havendo $\delta(q_i, \varepsilon) \to q_j$, deve-se eliminá-la e copiar a linha de q_j para a linha de q_i . Deve-se repetir este procedimento para todas elas. Se $\delta(q_i, \varepsilon) \in F$, então $F' \leftarrow F' \cup \{q_i\}$, sendo inicialmente $F' \leftarrow F$
 - ② Iteração Repetir o passo anterior $\forall q \in Q$. Caso $\delta(q_i, \varepsilon) \to q_j$ e $\delta(q_j, \varepsilon) \to q_k$, iterar várias vezes sobre a tabela para eliminar

Exemplo

ullet Considere o autômato M e a sua notação tabular

	δ	а	b	ε
\longrightarrow	q_0	q_0		q_1
←	q_1		q_1	

- Há uma transição em vazio de q_0 para q_1 . Portanto, deve-se copiar as transições de q_1 para q_0 (($\delta(q_1, b)$ neste caso)
- ullet E deve-se considerar q_0 como estado final, uma vez que q_1 é estado final

	δ'	а	b
\longleftrightarrow	q_0	q_0	q_1
←	q_1		q_1

Modelo de autômato finito

- Modelos considerado até o momento
 - **①** Determinístico sem transições em vazio, com $\delta: Q \times \Sigma \rightarrow Q$
 - 2 Não-determinístico sem transições em vazio, com $\delta: Q \times \Sigma \to 2^Q$
 - § Não-determinístico com transições em vazio, com $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$
 - ① Determinístico com transições em vazio, com, com $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to Q$
- Os modelos (2) e (3) são ditos não-determinísticos, mas em alguns casos suas operações podem ocorrer de forma determinística (ex. 1 seguinte)
- O modelo (4) é dito determinístico, mas pode exibir um comportamento não-determinístico durante sua operação (ex. 2 seguinte)
- O modelo (1) exibe sempre um comportamento determinístico

Exemplos

• Exemplo 1: Seja $M_1=(\{q_0,q_1,q_2\},\{a,b\},\delta,q_0,\{q_2\})$ um AFND cuja δ é

$$\delta(q_0, a) = \{q_0\}$$

$$\delta(q_0, b) = \{q_1\}$$

$$\delta(q_1, \varepsilon) = \{q_2\}$$

Existe sempre, no máximo, uma única transição de M_1 para qualquer configuração (q_i,α) . Logo, a operação de M_1 é sempre determinística

• Exemplo 2: Seja $M_2 = (\{q_0, q_1\}, \{a, b\}, \delta, q_0, \{q_1\})$ um AFD cuja δ é

$$\delta(q_0, a) = q_0$$

$$\delta(q_0, b) = q_0$$

$$\delta(q_0, \varepsilon) = q_1$$

Considere a cadeia a com duas sequências possíveis

•
$$(q_0, a) \vdash (q_0, \varepsilon)$$

•
$$(q_0, a) \vdash (q_1, a)$$

Logo, a operação de M_2 é, nesse caso, não-determinística

Não-determinismo e transições em vazio

- O determinismo ou não transcende o formato genérico da função de transição, dependendo de suas características específicas
- Um AFND do modelo (2) opera de forma determinística se
 - $\nexists q \in Q, \sigma \in \Sigma$, tal que $|\delta(q,\sigma)| \geq 2$
- Um AFND do modelo (3) opera de forma determinística se
 - $\nexists q \in Q, \sigma \in \Sigma$, tal que $|\delta(q,\sigma)| \ge 2$, e
 - $\nexists q \in Q$, tal que $|\delta(q,\varepsilon)| \geq 2$, e
 - $\nexists q \in Q, \sigma \in \Sigma$, tal que $|\delta(q,\sigma)| \ge 1$ e $|\delta(q,\varepsilon)| \ge 1$
- Um AFD do modelo (4) pode operar de forma não-determinística se
 - $\exists q \in Q, \sigma \in \Sigma$ tal que $\delta(q,\sigma)$ e $\delta(q,\varepsilon)$ são definidas
- A exceção são os AFDs do **modelo (1)**, cuja operação é sempre determinística, independentemente de como seja definida a δ