	1.	Ma Ein														$\frac{z-1}{1-1}$	$\frac{z_0}{\bar{z}_0 z}$	m	iit	φ	€	\mathbb{R}	un	id 	z_0	\in	\mathbb{E}	die	- A	uto	om	orj	phi	$\mathrm{sm}\epsilon$	 	der	
~)	W	i ur	ssen	o	us	· _Ø l	'em	2.	3	lv	iss	L	rif	И,	des	. [2ie	mo	N	rse	her	م	Αb	lil	blu	ng	ssa	pe	, ,	di	res						
	W	: E	- - ->	E :	Į	<u>.</u>	-)	<u></u> ₹. 7-	- L o.	<u></u>	eri	, A	who	mo	rp	hr.	; m	ns ·	'n	m	Л	,	w.¯	1:	E-) l	: •	7 <i>I</i>	→	(2+	₽°)	(1	έZ.	f)	1		
	Ar	sch	n	51	;	E-	う	E.	·J	. -	一)	そ	e ⁱ	l	is	1	er	ñl	h	eln	mg	r V	mo	1 e	in	Α	W	em	orp	his	m	ns					
		her																																_	-		
,)		n										N	Ne 1	144.6	12	m	Ę	. 1/1	~/	, ,	l (7.0) =	: ()) .	D	ē.	Ŧı	in	hr.	in						
	-	· = f																									_	0									
	S	ńl	P-	^{7}l	0)	> (2 ,	wa	ch	de	m	Se	lm	rar	rs	che	n	Lev	um	va u	lh	,	fr'	n a	E	5											
] u	1 =	18-	7(8(0	ת (א ^ם)	4	Q.	(a)	4	=	a1	, "	nls	's	1.	oj ((a)	 =	10	rt)	m	d	do	m	Ū	ı	M								
		enie																Ī																	-		
	7	ona	76	m	ng	1	4	и	1	\·)		7	J .	<i>N</i> 2		_	· · ·	7		r	-	-	7	0 9	" 1												
																																	_	_			
																																		-			
																																	_	_	_		
																																			1		
																																		-	-		
																																			_		
																																		_			
																																			1		

	2.	$\stackrel{ }{\mathrm{M}}$	$\operatorname*{an}$	ze	ig∈ ∣	e, c	das	SS	$\mathbb{C}ackslash$	 - 	$\cdot 1, ert$	$1]_{\parallel}$	zu	\mathbb{E}	\{() 	ko	nfo 	orn	n ä	iqu 	iva 	aler 	nt^{-1}	ist_{-}															
	•)	G :	=]-1	1, 1	['	υ ((C	Λĺ	R)	;						1	:	C	\[-1,	1)	→		ñ \	{o	}:	2	ト	, -	1								
																																		ıl	2 (€ [-	. 7, 1	7	4	
		w										ı																												
																															770(z		4	,,,,,	- /			
				7 ¢																						ew.	W	h	n/											
		1-7																																						
		Dar	ni!	_ 1	N	($\mathcal{I} \setminus$	\ [-	1,1	IJ	ho	nf	on	໗	åg	ni	ml	'en (, 7	u	G	\ 1	[0}							bo	mp	grm	, , , ,	iqi	uva	aler	1			
	•)	Σer		 	C	e	m	b	el.	. €	'n	su	h :	rus	dm	me	ml	พ้เ	nges	roles	r G	el	iel	10	lar	m	i	! 1	4	<u>≃</u> [Ε,	_	Sei	g:	H -)	E	ein	e	
		h																																•						
		lin																																						
		li1																																U						
																						,	//		1		,		~			./				,				
		Diez																																	urd	e				
		ges	uq	ι,	ola,	US.	da	Mp	Ó	m	d		<i>ሌ</i> \	40	j	>	٦	14	0}	, û	No		C۱	[-1	,1.	J≙	٠ (١	11	oζ	=	E	. \	(0}	•						
																																								_
																																								1
-	-	-	-	-	-	-	-	-	-		-	-						-		\vdash	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+

- 3. Man gebe jeweils eine biholomorphe Abbildung zwischen den angegebenen Gebieten an $(E_{\alpha} := \{re^{i\phi} : 0 < \phi < \alpha, 0 < r < 1\}$ bezeichne den Kreissektor zum Winkel α):
 - (a) Kreissektor $E_{\frac{\pi}{2}}$ und Kreisscheibe $\mathbb{E} := \{z \in \mathbb{C} : |z| < 1\},$
 - (b) erster Quadrant $Q := \{x + iy : x, y > 0\}$ und Viertelkreisscheibe $E_{\frac{\pi}{4}}$.

Hinweis: Sie dürfen verwenden, dass $z \mapsto \frac{z-i}{z+i}$ die obere Halbebene $\mathbb{H} := \{z \in \mathbb{C} : \text{Im } z > 0\}$ biholomorph auf die Kreisscheibe \mathbb{E} abbildet.

a)
$$\frac{2-i}{2+i} = \frac{(2-i)(\bar{z}-i)}{(2+i)(\bar{z}-i)} = \frac{2l^2-i(z+\bar{z})-1}{(2+\bar{z})+1} =$$

$$= (12l^2-2\ln(z)+1)^{-1}(12l^2-1-2i\ln(z))$$
Bereichnen wir $Q:H\to E:Z\mapsto \frac{2-i}{2+i}$ henrie

Fo exhermen win
$$\ln(Q(z))<0\Leftrightarrow \ln(z)>0\Leftrightarrow 2\in Q \quad \text{Definition wir also } f_1:E_{\overline{q}}\to E_{\overline{p}}:Z\mapsto 2^{\underline{p}}$$

$$f_2:E_{\overline{p}}\to E_{\overline{p}}:Z\mapsto 2e^{i\overline{p}}, \text{ bridler } \text{ brindemorphe Abbrildumpen}$$
Sei $w\in E$ hel. $w=\frac{2-i}{2+i}\Leftrightarrow x_2+x_3=z_2-i\Leftrightarrow 2(w-1)=-i(x+1)\Leftrightarrow z_2=-i\frac{x+1}{x-1}=i\frac{x+1}{x-1}$

$$\Rightarrow z=-i\frac{x+1}{x-1}=i\frac{x+1}{x-1}$$

$$\varphi(z)=\varphi(f_3(\widehat{\varphi}^{-1}(z^2e^{i\overline{p}})))=\varphi(f_3(z_1+z^2e^{i\overline{p}}))=Q(-(\frac{x+2^2e^{i\overline{p}}}{x-2^2e^{i\overline{p}}})^2)=\frac{(x+2^2e^{i\overline{p}})^2}{(x+2^2e^{i\overline{p}})^2}=\frac{(x+2^2e^{i\overline{p}})^2}{(x+2^2e^{i\overline{p}})^2}=\frac{(x+2^2e^{i\overline{p}})^2}{(x+2^2e^{i\overline{p}})^2}=\frac{(x+2^2e^{i\overline{p}})^2}{(x+2^2e^{i\overline{p}})^2}$$

b) Heir haben win our (01): $f_3: Q \to H$; $Q: H \to E$; $Y: E \to E^{\frac{\pi}{2}}$ and we transfer noch $f_4: E_{\frac{\pi}{2}} \to E_{\frac{\pi}{4}}: 2 \mapsto z^2$ $\forall : Q \to E_{\frac{\pi}{4}}: d = f_4 \circ Y^{-1} \circ Q \circ f_3 = f_4 \circ f_1^{-1} \circ f_1^{-1} \circ \widetilde{Q} \circ f_3^{-1} \circ Q \circ f_3 = f_4 \circ f_1^{-1} \circ f_1^{-1} \circ \widetilde{Q} \circ f_3^{-1} \circ Q \circ f_3 = f_4 \circ f_1^{-1} \circ f_1^{-1} \circ \widetilde{Q} \circ f_3^{-1} \circ Q \circ f_3 = f_4 \circ f_1^{-1} \circ f_1^{-1} \circ \widetilde{Q} \circ f_3^{-1} \circ Q \circ f_3 = f_4 \circ f_1^{-1} \circ f_1^{-1} \circ \widetilde{Q} \circ f_3^{-1} \circ Q \circ f_3 = f_4 \circ f_1^{-1} \circ f_1^{-1} \circ \widetilde{Q} \circ f_3^{-1} \circ Q \circ f_3 = f_4 \circ f_1^{-1} \circ f_1^{-1} \circ \widetilde{Q} \circ f_3^{-1} \circ Q \circ f_3 = f_4 \circ f_1^{-1} \circ f_1^{-1} \circ \widetilde{Q} \circ f_3^{-1} \circ Q \circ f_3 = f_4 \circ f_1^{-1} \circ f_1^{-1} \circ \widetilde{Q} \circ f_3^{-1} \circ Q \circ f_3 = f_4 \circ f_1^{-1} \circ f_1^{-1} \circ \widetilde{Q} \circ f_3^{-1} \circ Q \circ f_3 = f_4 \circ f_1^{-1} \circ f_1^{-1} \circ \widetilde{Q} \circ f_3^{-1} \circ Q \circ f$

wobei The die Unhebrobb. von q. EI > En: 2 +> 2" ist.

```
4. T = \{z \in \mathbb{C} : |z| = 1\} \times \{z \in \mathbb{C} : |z| = 1\}, h : \mathbb{C} \to T \text{ mit } h(z) = (e^{2\pi i x}, e^{2\pi i y}). \text{ Geben Sie mit } m
       Hilfe von h einen Atlas an, der T zu einer Riemann'schen Fläche macht!
•) Q1:= {x+iy ∈ C | x,y ∈ ] 0,1[], Q1:= {x+iy ∈ C | x,y ∈ ]-1, 1[]}
  T_1 := T \setminus \{(x,y) \mid x = 1 \lor y = 1\}; T_2 := T \setminus \{(x,y) \mid x = -1 \lor y = -1\}
 Un := h| a1 : Q1 - T1 , U2 := h|a2 : Q2 - T2
 4, 1. [, ) Q1: (enix, eniy) 1 x+iy, wobei x, y & ]0, 1[ mol
 42: Tr > Qz:(e'nix, e'niy) > x+iy, woler x, y & J-2, 2[ smol
  Q1, Y1, Y1-1, Y2-1 sind wohldel. und stelig, und wir exhalten den Allas A = { q2-1, y2-1}
  weil ToUT2=T
  Wir behachten nun
  4, 042: 4, 1 (TINTI) - 4, 1 (TINTI): xxiy H) xxiy, dho ohi hdenlikih und
  damis eine bihalomorphe Abb.
  Nun in wachgewiesen, dass A amolypisch ist, dw il (T, A) eine Remannische Floriche
```


6. Sei $\bar{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ die Zahlkugel aufgefasst als Riemann'sche Fläche. Zeigen Sie: (a) Ist $f: \overline{\mathbb{C}} \to \mathbb{C}$ analytisch, so ist f konstant. (b) Ist $f \in \mathcal{M}(\mathbb{C})$, so ist f eine rationale Funktion. (c) Ist $f: \bar{\mathbb{C}} \to \bar{\mathbb{C}}$ biholomorph, so ist $f(z) = \frac{az+b}{cz+d}$ mit geeigneten $a, b, c, d \in \mathbb{C}$. (p: C (soo) -> C: 2 +> 2 und (y: C (EO) -> C: 2 +> 2 lilden enien Allar auf T a) Doi of als amalytische Alt. definitionsgemän reni in gill es fin bel. E&12+ C ∈ R: U= { z ∈ C : |z|> C} so, ohoss ∀ 2 ∈ U: |f(z)-f(∞)| < € =) |f(z)| < f(∞)|+E also ist fo 4-1: (-) (begelvändel und da f malytisch ist, ist er eine ganse Funklish, nowh dem soh von Liouville also honstant, und da 4-1= id int f hondant, wegen der Steligheit ourth f b) Also $f: \mathbb{C} \to \mathbb{C}$ analytisch, down ist auch $f: \mathbb{C} \setminus f^{-1}(\infty) \to \mathbb{C} : z \mapsto f(z)$ analytisch, wobei f 1 (00) 1 903 = (01, ..., on) worth Definition emer meromorphen Funktion distrect ist, es boundedt sich bei 00 # a; Ef (a) also um eine isolière singularitat van f. Da f(ai) = 0 ist und f raprolagiech ich, gibl er seiher heine Umgelrung von ai in welcher & beschränfst ist. Daher kann & heine hebbare singularitat sein. Weiters gibt es pin bel. CERt eine Urngelrung U wom ai mis If (U) > C, also ist f (U) with dicht in C, wasts dem sale von Casorali - Weiershaps (vyl. Jänish Soh 18) ist a i demnach with beine wesentliche Singularisat. Doller of an em bol descen Ordnung m; sein soll. $g: C \to C: Z \mapsto \prod_{i=1}^{n} (z-a_i)^{n_i} f(\frac{z}{z})$ is p(z):=clarm eine ganse Funktion. Fall 1: 4 1-1(0) = 5" Darm gellen die Voranselhungen von (0) und fist honslant Tall 2:, f (d) = { 0} f ist in dem Tall analytisch und hat emin lot bei a in dem Tim, dass 7 (=) enien Pol bei 2 = 0 loot, das Argument dans uit pleich wie den bei den Stellen a; Aus Whong 4 Aufgabe 5 (ii) wissen win solven, does of em wich I honstandes Polynom ist, also with fruit f (00) = 00 Tall 3: 11 f (0) 1 C 7 0" g = 0 f hal darm, weel p wegen Worng & Angabe 5 (ii) evien lot bei o hot, evenfolls emin lot bei a, quit also ein lalynon und dater ist f = to eine rationale Funktion and daken auch & z) Sei also $f: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ hithodomorph, micher $\ell, \ell^{-1} \in \mathcal{M}(\overline{\mathbb{C}})$, nach Cunty (6) also f= & mil p, q Polynome, vollständig geleinst Fall 1: 1 f (00) = 00 darm ist g: C > C: 2 (2) game Funktion uno bijelehir nach (6) ein mit genus eines Nullstelle, also vom Grand 1

Fall 2: , $f(\infty) \neq \infty$ " $\exists ! \ u \in \mathbb{C}: f(u) = \infty$, as in die einzige Nullstelle van q , sho in qen Polynom vom Grad 1, old $f(\infty) \in \mathbb{C}$ ist since grad $p \in grad q = 1$.

	_		(a	_			nic en		kor	nsta	ant	e a	na	lyti	sch	ie A	Abb	ild	ung	g zi	usa	am	me	enh	iän	gei	nde	er I	Rie	ma	anr	ı'so	che	er F	Flä	chei	1	
			(b	/												ein					nh	än	.gei	nd	en	Ri	em	an	n's	che	en	Fl	äcł	ne,	we	elch	9	
9)	Ĺ	ei	(rhới					m	nço	ne	FC	ola	her	ጉ ^	n	1,	f :	X.	\rightarrow	4	Ü	ma	ly	isa	5
																nls																	,					
																																				(q	- 7	
				Ц . Э ⊆	L.		gi	M	es	en	, 4	î E	((LT	So	, d	ass	h	/:=	h	te	U	{ }	<u>-</u> -	40	a)	7	ΣJ	u	nd	4	(v	V)	<u>C</u>	U	m	nd		
							n	1 0	rill	ola	s a	w	4	lin		o ;	W	→	P	(w) :	2		→ (Y (f (y ·	·1(;	-]]))	Siv	her	gil	u '	49	(a)) €	y (h)	_
																																					und	
							١.									ni																						
																													ou	d	þ	úí	g C	W), c	lami	(
																ch I l										-		1	(1)	nd.	10							
																l f che																	pric	m	m	1		
											f (·		,																									
	1																									11												
														7) , é																								
	hZe	rle	v	is	e	1	(k	()	≤ k	: =	= d	ે સ્	= C	.:	1 5 1	€ {.	f(n	{ ار،	1 J	led e	2	Un	gel	lvs	y									ov	le1			
	hZe	rle	v	is	e	1	(k	()	≤ k	: =	= d	ે સ્	= C	.:	1 5 1		f(n	{ ار،	1 J	led e	2	Un	gel	lvs	y									or or	les			
	We U	rle n k	u , c	<i>is</i> (e Q	f	(X Sec	() , a	≤ k	(: =	: d	ε« 1 Λ	f C	(x)	 	≠	f (n) }	1 f	f (e (X,	Un) is	igel	lver	y									or or	les			
	We U	rle n k	u , c	<i>is</i> (e Q	f	(X Sec	() , a	≤ k	(: =	: d	ε« 1 Λ	f C	(x)	 	€ {.	f (n) }	1 f	f (e (X,	Un) is	igel	lver	y									o o	bes			
	We U	rle n k	u , c	<i>is</i> (e Q	f	(X Sec	() , a	≤ k	(: =	: d	ε« 1 Λ	f C	(x)	 	≠	f (n) }	1 f	f (e (X,	Un) is	igel	lver	y									0	les			
	We	rle n k	u , c	<i>is</i> (e Q	f	(X Sec	() , a	≤ k	(: =	: d	ε« 1 Λ	f C	(x)	 	≠	f (n) }	1 f	f (e (X,	Un) is	igel	lver	y										ber			
	We	rle n k	u , c	<i>is</i> (e Q	f	(X Sec	() , a	≤ k	(: =	: d	ε« 1 Λ	f C	(x)	 	≠	f (n) }	1 f	f (e (X,	Un) is	igel	lver	y									0	bes			
	We U	rle n k	u , c	<i>is</i> (e Q	f	(X Sec	() , a	≤ k	(: =	: d	ε« 1 Λ	f C	(x)	 	≠	f (n) }	1 f	f (e (X,	Un) is	igel	lver	y									0	bes			

7. Zeigen Sie, die beiden folgenden Aussagen

surjektiv. Da man Polynome als analytische Abbildungen der Zahlkugel in sich selbst auffassen kann, erhält man einen Beweis des Fundamentalsatzes der Algebra. ·) Ser f: X -> V with snyelphi, X, Y rusammerhängende Remannsche Flächen, X hompaket, I with transant Da of stelig ist gill, dass ((X) hompales in. Nach stulgabe 7 (a) ist g(X) ausserdem affen Als hommable Teilmenze eines Hausdorffraumes ist f(X) algeschlossen, also f(X) offen, da ober f(k) v f(k) = V & un V susammenträngend. $p:\overline{\mathbb{C}}\to\overline{\mathbb{C}}: \xi\mapsto \begin{cases} p(t), \text{ falls } t\in \mathbb{C} \\ \infty, \text{ falls } t=\infty \end{cases}$.) Sei p̃: C→ C em bolymon vom Grad ≥ 1 Wir wigen bereit aus der Awalysis, dass C kompralet ist, leicht erhermt man auch, dass sich C nicht Vereiniquing wie disjimber offene Mengen schraben bill also dass I meanmenhangend ist. y: (\soo) - C: 2 > 2 and y: (\so) - C: 2 \rightarrow \frac{2}{2} bilden evien Aller and C $f: \overbrace{\rho^{-1}(\overline{C} \setminus \{0\})} \cap \overline{C} \rightarrow C : \underbrace{\downarrow} \longrightarrow \overbrace{\rho(2)} \quad mo(\underbrace{g}: \Psi(\overbrace{\rho^{-1}(U)} \cap \overline{C} \setminus \{0\}) \rightarrow C : \underbrace{\downarrow} \longrightarrow p(\underbrace{\frac{1}{4}})$ $= \overbrace{\rho^{-1}(C \setminus \{0\})} \quad f_{\varphi,\psi} : \varphi(f^{-1}(U_{\psi}) \cap U_{\varphi}) \rightarrow V_{\psi}, \quad f_{\varphi,\psi}(z) = \psi f \varphi^{-1}(z).$ and analytisth, daher in ourch paralytisch, wach (a) also surjetelin, worans lolal, dass peine Millalelle brot.

8. Man zeige: Jede nicht konstante analytische Abbildung $f: X \to Y$ von einer zusammenhängenden kompakten Riemann'schen Fläche X in eine zusammenhängende Riemann'sche Fläche Y ist