Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	30,8400
-4	13,2272
-3	3,9112
-2	0,4244
-1	0,0172
0	0,0154
1	-0,0541
2	-5,6363
3	-18,0558
4	-40,5852
5	-73,2393

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	8,4459
-4	1,3625
-3	-0,5171
-2	-0,8889
-1	0,3471
0	-0,0676
1	-1,2736
2	-4,9244
3	-13,4399
4	-24,6222
5	-44,7782

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-42,4178
-4	-23,4401
-3	-11,1607
-2	-4,1288
-1	-0,7257
0	0,9429
1	-2,0697
2	-3,9085
3	-4,7050
4	-5,4389
5	-3,5781

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-1,6889
-4	-4,7689
-3	-3,8259
-2	-2,0068
-1	-0,6884
0	0,9391
1	-1,1556
2	-4,4293
3	-12,5746
4	-25,6768
5	-45,0598

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-5,4606
-4	-3,8804
-3	-1,9699
-2	-1,6666
-1	-0,0764
0	-0,3971
1	-1,0303
2	-4,5483
3	-11,5280
4	-21,6417
5	-34,4458

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-32,9591
-4	-20,7011
-3	-12,6986
-2	-5,1508
-1	-1,6893
0	0,1266
1	0,0743
2	-0,8709
3	-1,7371
4	-3,9952
5	-4,8987

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	23,4523
-4	11,9631
-3	4,4428
-2	1,1010
-1	-1,6826
0	-1,2630
1	-0,0357
2	-1,3156
3	-3,4584
4	-8,4294
5	-18,4654

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	2,0081
-4	-3,6689
-3	-4,9164
-2	-1,8700
-1	-0,0454
0	0,5504
1	-0,8392
2	-1,0113
3	2,6133
4	14,6156
5	39,6554

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-14,2376
-4	-7,7256
-3	-4,1949
-2	-2,4815
-1	-1,2683
0	-1,7885
1	-1,7269
2	-3,3830
3	-8,9977
4	-21,3130
5	-42,6544

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-20,5411
-4	-9,3720
-3	-3,7894
-2	-0,6924
-1	0,2672
0	0,0239
1	1,6401
2	1,2870
3	3,1747
4	1,3525
5	-3,8802

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-79,1639
-4	-40,7900
-3	-18,7814
-2	-6,3530
-1	-0,4392
0	0,8270
1	0,0585
2	-1,7477
3	-3,4384
4	-6,3580
5	-9,3875

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	63,6802
-4	33,2744
-3	16,1215
-2	4,7061
-1	0,2707
0	-0,1198
1	-0,0597
2	-0,0080
3	3,4085
4	12,0457
5	25,2401

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-42,4178
-4	-23,4401
-3	-11,1607
-2	-4,1288
-1	-0,7257
0	0,9429
1	-2,0697
2	-3,9085
3	-4,7050
4	-5,4389
5	-3,5781

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowaną funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy muszą być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-13,4991
-4	-10,1874
-3	-6,0757
-2	-3,9178
-1	-1,5653
0	-0,7691
1	-1,5150
2	-4,4274
3	-8,9044
4	-17,3618
5	-28,9795

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-35,7986
-4	-19,4300
-3	-9,7370
-2	-3,1635
-1	-0,6503
0	1,5879
1	1,5176
2	2,1830
3	5,1024
4	11,0910
5	22,0003

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-1,6889
-4	-4,7689
-3	-3,8259
-2	-2,0068
-1	-0,6884
0	0,9391
1	-1,1556
2	-4,4293
3	-12,5746
4	-25,6768
5	-45,0598

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą ${\bf R}$ wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-5,4606
-4	-3,8804
-3	-1,9699
-2	-1,6666
-1	-0,0764
0	-0,3971
1	-1,0303
2	-4,5483
3	-11,5280
4	-21,6417
5	-34,4458

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-32,9591
-4	-20,7011
-3	-12,6986
-2	-5,1508
-1	-1,6893
0	0,1266
1	0,0743
2	-0,8709
3	-1,7371
4	-3,9952
5	-4,8987

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	23,4523
-4	11,9631
-3	4,4428
-2	1,1010
-1	-1,6826
0	-1,2630
1	-0,0357
2	-1,3156
3	-3,4584
4	-8,4294
5	-18,4654

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	2,0081
-4	-3,6689
-3	-4,9164
-2	-1,8700
-1	-0,0454
0	0,5504
1	-0,8392
2	-1,0113
3	2,6133
4	14,6156
5	39,6554

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-14,2376
-4	-7,7256
-3	-4,1949
-2	-2,4815
-1	-1,2683
0	-1,7885
1	-1,7269
2	-3,3830
3	-8,9977
4	-21,3130
5	-42,6544

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-20,5411
-4	-9,3720
-3	-3,7894
-2	-0,6924
-1	0,2672
0	0,0239
1	1,6401
2	1,2870
3	3,1747
4	1,3525
5	-3,8802

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-79,1639
-4	-40,7900
-3	-18,7814
-2	-6,3530
-1	-0,4392
0	0,8270
1	0,0585
2	-1,7477
3	-3,4384
4	-6,3580
5	-9,3875

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	Уi
-5	63,6802
-4	33,2744
-3	16,1215
-2	4,7061
-1	0,2707
0	-0,1198
1	-0,0597
2	-0,0080
3	3,4085
4	12,0457
5	25,2401

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-42,4178
-4	-23,4401
-3	-11,1607
-2	-4,1288
-1	-0,7257
0	0,9429
1	-2,0697
2	-3,9085
3	-4,7050
4	-5,4389
5	-3,5781

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-1,6889
-4	-4,7689
-3	-3,8259
-2	-2,0068
-1	-0,6884
0	0,9391
1	-1,1556
2	-4,4293
3	-12,5746
4	-25,6768
5	-45,0598

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowaną funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy muszą być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-5,4606
-4	-3,8804
-3	-1,9699
-2	-1,6666
-1	-0,0764
0	-0,3971
1	-1,0303
2	-4,5483
3	-11,5280
4	-21,6417
5	-34,4458

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

χ_i	v_i
-5	-32,9591
-4	-20,7011
-3	-12,6986
-2	-5,1508
-1	-1,6893
0	0,1266
1	0,0743
2	-0,8709
3	-1,7371
4	-3,9952
5	-4,8987

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	23,4523
-4	11,9631
-3	4,4428
-2	1,1010
-1	-1,6826
0	-1,2630
1	-0,0357
2	-1,3156
3	-3,4584
4	-8,4294
5	-18,4654

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	2,0081
-4	-3,6689
-3	-4,9164
-2	-1,8700
-1	-0,0454
0	0,5504
1	-0,8392
2	-1,0113
3	2,6133
4	14,6156
5	39,6554

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowaną funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy muszą być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-14,2376
-4	-7,7256
-3	-4,1949
-2	-2,4815
-1	-1,2683
0	-1,7885
1	-1,7269
2	-3,3830
3	-8,9977
4	-21,3130
5	-42,6544

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowaną funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy muszą być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Dla następujących danych pomiarowych (próbek):

x_i	Уi
-5	-20,5411
-4	-9,3720
-3	-3,7894
-2	-0,6924
-1	0,2672
0	0,0239
1	1,6401
2	1,2870
3	3,1747
4	1,3525
5	-3,8802

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowaną funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).