

Improving Human Activity Recognition Models by Learnable Sparse Wavelet Layer

Haibin Zhao, Yexu Zhou[⊠], Till Riedel, Michael Hefenbrock, and Michael Beigl

TECO Research Group Chair of Pervasive Computing Systems Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany

Background

Human activity recognition (HAR)

- State-of-the-art HAR models
 - DeepConvLSTM: conv + Istm
 - SA-HAR: conv + attention

conv

• MCNN:

Problems

- Convolutional kernel
 - random initialization
 - training-data-oriented optimization
 - discouraged from exploring the search space
 - lost general properties for signal filtering
 - overfitting

Solution

- Wavelet
 - designed by expert knowledge
 - non-data driven
 - expressive
 - critical properties for filtering
 - bi-orthogonality
 - energy conservation
 - ...

- Convolutional kernel
 - random initialization
 - training-data-oriented optimization
 - discouraged from exploring the search space
 - lost general properties for signal filtering
 - overfitting

Hypothesis

By combining wavelets with HAR models, the performance can be improved.

Learnable Sparse Wavelet Layer

Pipline of the learnable sparse wavelet layer.

Learnable Sparse Wavelet Layer

- Prepare mother wavelets
 - select all 127 discrete wavelets provided by PyWavelet¹
 - re-sampling to the same length as sliding window in dataset
- Remove wavelets with high similarity (correlation)
 - e.g., Haar-wavelet = Daubechies 1 wavelet
- Temporal scaling factor
 - down sampling
 - zero padding
- Informativeness
 - filtered signal will be multiplied by the informative factor

[1] https://pywavelets.readthedocs.io/

Learnable Sparse Wavelet Layer

- Prepare mother wavelets
- Remove wavelets with high similarity (correlation)
- Temporal scaling factor
- Informativeness
- Filter pruning
 - ℓ_1 penalty on informativeness
 - remove filters with low informativeness
 - fine tuning

Experiment

- Benchmark datasets
 - Opportunity, Skoda, PAMAP2, DSADS, Daphnet, WISDM
- Baseline HAR models
 - DeepConvLSTM, SA-HAR, MCNN
- Model size scaling
 - 1, 0.75, 0.5, 0.25
- Setup
 - Baseline, Learnable Sparse Wavelet Layer (F=50), Learnable Wavelet Layer
- Metric
 - Macro F1 Score, Floating point operations

sparse wavelet

Models:

DeepConvLSTM

Haibin Zhao

Models:

DeepConvLSTM

MCNN

Linetypes:

sparse wavelet

SA-HAR

SICIT

Models:

DeepConvLSTM

Linetypes:

wavelet

FLOP:

Models:

DeepConvLSTM

MCNN

Linetypes:

wavelet

SA-HAR

FLOP:

sparse wavelet

wavelet

Discussion

- The learnable sparse wavelet layer
 - improves the overall performance of the HAR models
 - mitigates the overfitting of HAR models with large size
 - compensates the feature extraction of HAR models with small size
- The improvement is more significant when the model is smaller
 - suitable for portable and wearable devices

Thank you for your attention

