Question5:

1. Exercise 1.12.2

b)

1	¬q	Hypothesis
2	$p \rightarrow (q \land r)$	Hypothesis
3	¬p	Modus, Tollens, 1,2

e)

1	pVq	Hypothesis
2	$\neg q$	Hypothesis
3	p	Disjunctive Syllogism, 1,2
4	¬pVr	Hypothesis
5	r	Disjunctive Syllogism, 3,4

2. Exercise 1.12.3

c)

1	$(pVq) \wedge (\neg p) \rightarrow q$	
2	$(\neg p) \land (pVq)$	Commutative Law, 1

3	$(\neg p \land p)V(\neg p \land q)$	Distributive Law, 2
4	$FV(\neg p \land q)$	Complement Law, 3
5	(¬p∧q)	Identity Law, 4
6	q	Simplification Rule, 5

3. Exercise 1.12.5

c)

p: I will buy a new car

q: I will buy a new house

r: I will get a job

$$(p \, {\textstyle \wedge} \, q) \, {\rightarrow} \, r$$

¬ r

Therefore, $\neg p$

We can set up a truth table:

р	q	r	$(((p \land q) \rightarrow r) \land \neg r \rightarrow \neg p)$
Т	Т	Т	Т
Т	Т	F	Т
Т	F	Т	Т
Т	F	F	F

F	Т	Т	Т
F	Т	F	Т
F	F	Т	Т
F	F	F	Т

The argument is not tautology, therefore the argument is invalid.

d)

p: I will buy a new car

q: I will buy a new house

r: I will get a job

$$(p \land q) \rightarrow r$$

٦ŗ

q

Therefore ¬p

1	$(p \land q) \rightarrow r$	Hypothesis
2	٦٢	Hypothesis

3	$ abla(p \land q)$	Modus Tollens, 1,2
4	¬p V ¬q	De Morgan's Law, 3
5	¬qV ¬p	Commutative Law, 5
6	q	Hypothesis
7	¬р	Disjunctive Syllogism, 5,6

Question6: (Proving algebraic statements with direct proofs.)

- 1. Exercise 2.4.1
- d) The product of two odd integers is an odd integer.

Let two odd integers be 2a+1 and 2b+1

Therefore, two odd integers can be

$$2a+1+2b+1$$

$$= 2ab+1+b$$

$$=(2ab+b)+1$$

Since both a and b are integers, therefore (2ab+b)+1 must be an odd number.

- 2. Exercise 2.4.3
- b) If x is a real number and $x \le 3$, then $12 7x + x^2 \ge 0$.

We get $x \le 3$

Subtract x from both sides:

$$0 \le 3-x$$

$$=(3-x) \ge 0$$

As $(3-x) \ge 0$, (4-x) can be 1 more than (3-x)

Therefore, 4-x is also greater or equal to 0

$$(3-x)*(4-x) \ge 0$$

$$= 12-7x+x^2 \ge 0$$

Therefore, the statement is true.

Question7:

- 1. Exercise 2.5.1 (Proof by contrapositive of statements about odd and even integers.)
- d) For every integer n, if n^2 -2n+7 is even, then n is odd.

Let's assume n is an even number. Therefore, let's use 2a to represent n.

$$n^2-2n+7 = (2a)^2-2(2a)+7$$

$$=4a^2-4a+6+1$$

$$=2(2a^2-2a+3)+1$$

Let $b = (2a^2-2a+3)$, and we can get:

$$2b+1$$

a and b are both integers, therefore 2b+1 is an odd number, then $n^2-2n+7 = odd$

Therefore, if n is even, n²-2n+7 is odd

Therefore, if n is odd, n^2 -2n+7 is even.

- 2. Exercise 2.5.4
- a) For every pair of real numbers x and y, if $x^3+xy^2 \le x^2y+y^3$, then $x \le y$.

$$x^3 + xy^2 \le x^2y + y^3$$

$$= x(x^2+y^2) \le y(x^2+y^2)$$

We cancel (x^2+y^2) on both sides

$$= x \leq y$$

Therefore, the statement is true.

b) For every pair of real numbers x and y, if x + y > 20, then x > 10 or y > 10.

We have both x > 10 and y > 10

Therefore:

x+y>10+10

x+y>20

Therefore, the statement is true.

3. Exercise 2.5.5

c) For every non-zero real number x, if x is irrational, then 1/x is also irrational.

Let's prove by contrapositive

Suppose 1/x is rational, and x does not equal zero. Through the definition of a rational number, if a number is rational, then it can be expressed as the ratio of two integers (a/b), and b is not equal to 0.

Therefore, 1/x = a/b (a and b are both integers, and b is not equal to 0)

x=b/a

Since a and b are both integers and b is not equal to 0.

Therefore, x is a rational number.

Therefore, for a non-zero real number x, if x is irrational, then 1/x is also irrational, is true.

Question8:

- 1. Exercise 2.6.6 (Proofs by contradiction)
- c) The average of three real numbers is greater than or equal to at least one of the numbers.

Let's set up three real numbers: a,b,c

The average of three real number: (a+b+c)/3

Case: $(a+b+c)/3 \ge a \ V \ (a+b+c)/3 \ge b \ V \ (a+b+c)/3 \ge c$

Contradiction: $(a+b+c)/3 < a \land (a+b+c)/3 < b \land (a+b+c)/3 < c$

Therefore:

$$(a+b+c)/3 + (a+b+c)/3 + (a+b+c)/3 < a+b+c$$

= (a+b+c) < a+b+c

However: a+b+c does not less than a+b+c

Therefore, the average of three real numbers is not greater than or equal to at least one of the numbers.

d) There is no smallest integer

Definition of integer: "An integer is a number that has no fractional part, and no digits after the decimal point. An integer can be positive, negative or zero. Zero is defined as neither negative nor positive."

Therefore, x can be positive, negative, and zero

Negative < zero < positive

If there is a smallest integer, then it must be a negative number

Contradiction: We should assume that there is a smallest number: x (x is also a negative integer) x/2 is always smaller than x

Therefore, there is no way to prove that "There is no smallest integer" is false.

Therefore, the argument "There is no smallest integer" is valid.

Question9:

1. 2.7.2

b)

There are two cases we need to prove: 1) when x and y are both even 2) when x and y are both odd

Case1: x and y are both even

How to prove an even number: $x \mod 2 = 0$

Therefore, we set two variables for the integers: a and b

$$x=2a$$
, $y=2b$

$$x+y=2(a+b)$$

Since (a+b) is multiplied by 2, therefore 2*(a+b) must be an even number. x+y is an even number.

Case 2: x and y are both odd

We set two variables for the integers: a and b

$$x=2a+1, y=2b+1$$

$$x+y=2(a+b+1)$$

Since (a+b+1) is multiplied by 2, therefore 2*(a+b+1) must be an even number. x+y is an even number.

Thus, when x+y is both even or both odd, the sum must be an even number.