

Práctica 3: NP completitud

Compilado: 19 de abril de 2025

- 1. Determinar cuáles de las siguientes afirmaciones son verdaderas y cuáles falsas. Demostrar aquellas que son verdaderas y dar contraejemplos para aquellas que son falsas.
 - a) $P \subseteq NP y P \subseteq coNP$.
 - b) Si P = NP, entonces coNP = NP.
 - c) Si P = NP, entonces todos los lenguajes pertenecen a P.
 - d) Si coNP = NP, entonces SAT \in coNP.
 - e) Si coNP \subseteq NP, entonces NP = coNP.
- 2. ¿Es cierto que si dos lenguajes Π y Γ pertenecen a NPC entonces $\Pi \leq_p \Gamma$, y también $\Gamma \leq_p \Pi$? Justificar.
- 3. Sean Π y Γ dos lenguajes tales que $\Pi \leq_p \Gamma$. ¿Qué se puede inferir?
 - a) Si $\Pi \in P$ entonces $\Gamma \in P$.
 - b) Si $\Gamma \in \mathsf{P}$ entonces $\Pi \in \mathsf{P}$.
 - c) Si $\Gamma \in \mathsf{NPC}$ entonces $\Pi \in \mathsf{NPC}$.
 - d) Si $\Pi \in \mathsf{NPC}$ entonces $\Gamma \in \mathsf{NPC}$.
 - e) Si $\Gamma \in \mathsf{NPC}$ y $\Pi \in \mathsf{NP}$ entonces $\Pi \in \mathsf{NPC}$.
 - f) Si $\Pi \in \mathsf{NPC}$ y $\Gamma \in \mathsf{NP}$ entonces $\Gamma \in \mathsf{NPC}$.
 - g) Π y Γ no pueden pertenecer ambos a NPC.
- 4. Decir si las siguientes afirmaciones son verdaderas o falsas:
 - a) Si P = NP, entonces todo problema NP-completo es polinomial.
 - b) Si P = NP, entonces todo problema NP-hard es polinomial.
 - c) Si las clases NP-completo y coNP-completo son disjuntas entonces $P \neq NP$.
 - d) HALTING es NP-hard v coNP-hard.
- 5. Suponiendo que P = NP, diseñar un algoritmo polinomial que dada una fórmula booleana ϕ encuentre una asignación que la satizfaga, si es que ϕ es satisfacible.
- 6. Suponiendo que P = NP, diseñar un algoritmo polinomial que dado un grafo G retorne una clique de tamaño máximo de G.
- 7. Sabiendo que CLIQUE es NP-completo, demostrar que SUBGRAPH ISOMORPHISM es NP-completo.
- 8. Considerar los siguientes dos lenguajes:
 - SHORTEST PATH (SP) = $\{\langle G, s, t, k \rangle : G \text{ es un grafo pesado con dos nodos } s \text{ } t \text{ tales que hay un recorrido de } s \text{ } t \text{ de peso menor o igual a } k\}$

■ ELEMENTARY SP= $\{\langle G, s, t, k \rangle : G \text{ es un grafo pesado con dos nodos } s \text{ } t \text{ tales que hay un camino simple de } s \text{ } t \text{ de peso menor o igual a } k \}$

Demostrar que ELEMENTARY SHORTEST PATH es NP-completo y que SHORTEST PATH está en P. ¿Cuál de los dos problemas resuelven los algoritmos de camino mínimo vistos en TDA?

- 9. Probar que $\mathcal{L} = \emptyset$ y \mathcal{L}^c no son NP-completos.
- 10. Considerar los siguientes dos lenguajes:
 - SUBSET-SUM = $\{\langle v_1, \dots, v_n, k \rangle$: existe un subconjunto $V \subseteq \{v_1, \dots, v_n\}$ tal que $\sum_{v \in V} v = k\}$
 - UNARY-SUBSET-SUM = $\{\langle v_1, \dots, v_n, 1^k \rangle : \langle v_1, \dots, v_n, k \rangle \in \text{SUBSET-SUM}\}$
 - a) Probar que SUBSET-SUM \in NPC.
 - b) Probar que UNARY-SUBSET-SUM $\in P$.
 - c) Concluir que la codificación de los números afecta la complejidad de los problemas. En general, si un problema sigue siendo NP-completo cuando los números de la entrada se representan en unario entonces el problema se considera **fuertemente** NP-completo.
- 11. El problema DOUBLE-SAT consiste en deteminar si una formula proposicional ϕ tiene al menos dos valuaciones que la satisfacen. Demostrar que DOUBLE-SAT es NP-completo.
- 12. Probar que k-CLIQUE está en P para cualquier $k \in \mathbb{N}$. Concluir que dejar parámetros fijos puede cambiar la complejidad de los problemas.
- 13. El problema HALF-CLIQUE consiste en determinar si un grafo G de tamaño n tiene un completo de tamaño n/2. Sabiendo que CLIQUE es NP-completo, demostrar que HALF-CLIQUE es NP-completo. ¿Por qué este resultado no contradice el hecho de que k-CLIQUE es polinomial para todo k?
- 14. Demostrar que TAUTOLOGY es coNP-completo.
- 15. El objetivo de este ejercicio es demostrar de forma guiada que PRIME está en $NP \cap coNP^1$.
 - (a) Probar que UNARY PRIME = $\{1^n : n \in \mathbb{N} \text{ es primo}\}\$ está en P.
 - (b) Probar que PRIME = $\{n \in \mathbb{N} : n \text{ es primo}\}$ está en coNP. Para el siguiente ejercicio considerar el Teorema de Lucas: para todo número natural $n \geq 2$ vale que n es primo si y solamente si existe un a con $0 \leq a \leq n-1$ tal que $a^{n-1} \equiv 1 \mod n$ y $a^{(n-1)/q} \not\equiv 1 \mod n$ para todo divisor no trivial q de n-1.
 - (c) Probar que en el teorema de Lucas alcanza con pedir que $a^{(n-1)/q} \not\equiv 1$ para todo divisor q **primo** no trivial de n-1, en vez de para todo divisor no trivial.
 - (d) Probar que PRIME está en NP. Ayuda: Observar que en el certificado podemos pedir a y la factorización en primos de $n-1=\prod_{i=1}^k p_i^{m_i}$, pero... ¿Cómo certificamos que estos números $p_1, \ldots p_k$ son a su vez primos?

 $^{^1\}mathrm{Se}$ sabe que PRIME está en P
 desde 2002

 $^{^2 \}mbox{Observar}$ que la ida de este teorema es el peque
ño teorema de Fermat.