

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Molybdenum(VI)

Equilibrium reactions	$\lg K$ at infinite dilution and $T = 298 \text{ K}$			
	Baes and Mesmer, 1976	Jolivet, 2000	NIST46	Crea et al., 2017
$MoO_4^{2-} + H^+ \rightleftharpoons HMoO_4^-$	3.89ª		4.24	4.47 ± 0.02
$MoO_4^{2-} + 2 H^+ \rightleftharpoons H_2MoO_4$	7.50ª			8.12 ± 0.03
$HMoO_4^- + H^+ \rightleftharpoons H_2MoO_4$			4.0	
$Mo_7O_{24}^{6-} + H^+ \rightleftharpoons HMo_7O_{24}^{5-}$		4.4		
$HMo_7O_{24}^{5-} + H^+ \rightleftharpoons H_2Mo_7O_{24}^{4-}$		3.5		
$H_2Mo_7O_{24}^{4-} + H^+ \rightleftharpoons H_3Mo_7O_{24}^{3-}$		2.5		
7 MoO_4^{2-} + 8 $H^+ \rightleftharpoons Mo_7O_{24}^{6-}$ + 4 H_2O	57.74ª		52.99 ^b	51.93 ± 0.04
7 MoO_4^{2-} + 9 $H^+ \rightleftharpoons Mo_7O_{23}(OH)^{5-}$ + 4 H_2O	62.14ª			58.90 ± 0.02
7 MoO_4^{2-} + 10 $H^+ \rightleftharpoons Mo_7O_{22}(OH)_2^{4-}$ + 4 H_2O	65.68ª			64.63 ± 0.05
7 MoO_4^{2-} + 11 $H^+ \rightleftharpoons Mo_7O_{21}(OH)_3^{3-}$ + 4 H_2O	68.21ª			68.68 ± 0.06
19 $MoO_4^{2^-}$ + 34 $H^+ \rightleftharpoons Mo_{19}O_{59}^{4^-}$ + 17 H_2O	196.3ª		196ª	
$MoO_3(s) + H_2O \rightleftharpoons MoO_4^{2-} + 2 H+$	-12.06ª			

a at I = 3 M NaClO₄

^b at I = 0.1 M Na⁺ medium, Data at I = 0 are not available

- C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 256.
- F. Crea, C. De Stefano, A. Irto, D. Milea, A. Pettignano and S. Sammartano, Modeling the acid-base properties of molybdate(VI) in different ionic media, ionic strengths and temperatures, by EDH, SIT and Pitzer equations. Journal of Molecular Liquids, 229, 15-26 (2017).
- J.-P. Jolivet, Metal Oxide Chemistry and Synthesis. From Solution to Solid State. Wiley, 2000.

NIST46, NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0. Available at: www.nist.gov/srd/nist46

Distribution diagrams

These diagrams have been computed at two Mo(VI) concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

