

Tutorium

Wahrscheinlichketstheorie und Frequentistische Inferenz

BSc Psychologie WiSe 2022/23

Belinda Fleischmann

(4) Zufallsvariablen

Selbstkontrollfragen

- 1. Definieren Sie den Begriff der Zufallsvariable.
- 2. Erläutern Sie die Gleichung $\mathbb{P}_{\xi}(\xi = x) = \mathbb{P}(\{\xi = x\}).$
- 3. Erläutern Sie die Bedeutung von $\mathbb{P}(\xi = x)$.
- 4. Definieren Sie den Begriff der Wahrscheinlichkeitsmassefunktion.
- 5. Definieren Sie die Begriffe der Wahrscheinlichkeitsdichtefunktion.
- 6. Definieren Sie den Begriff der kumulativen Verteilungsfunktion.
- 7. Schreiben sie die Intervallwahrscheinlichkeit einer Zufallsvariable mithilfer ihrer KVF.
- 8. Definieren Sie die WDF und KVF einer normalverteilten Zufallsvariable.
- 9. Schreiben Sie den Wert P(x) der KVF einer Zufallsvariable mithilfe ihrer WDF.
- 10. Schreiben Sie den Wert p(x) der WDF einer Zufallsvariable mithilfe ihrer KVF.
- 11. Definieren Sie den Begriff der inversen Verteilungsfunktion.

SKF 1. Zufallsvariable

1. Definieren Sie den Begriff der Zufallsvariable.

Definition (Zufallsvariable)

Es sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $(\mathcal{X}, \mathcal{S})$ ein *Messraum.* Dann ist eine *Zufallsvariable (ZV)* definiert als eine Abbildung $\xi: \Omega \to \mathcal{X}$ mit der *Messbarkeitseigenschaft*

$$\{\omega \in \Omega | \xi(\omega) \in S\} \in \mathcal{A} \text{ für alle } S \in \mathcal{S}. \tag{1}$$

SKF 2. Notation für Zufallsvariablen

2. Erläutern Sie die Gleichung $\mathbb{P}_{\xi}(\xi = x) = \mathbb{P}(\{\xi = x\}).$

- $\mathbb{P}_{\xi}(\xi=x)$ ist die Wahrscheinlichkeit (genauer gesagt das Wahrscheinlichkeitsmaß des Wahrscheinlichkeitsraums $(\mathcal{X},\mathcal{S},\mathbb{P}_{\xi}))$ dafür, dass die Zufallsvariable ξ den Wert x annimmt.
- Diese Wahrscheinlichkeit entspricht der Wahrscheinlichkeit $\mathbb{P}(\{\xi=x\})$ (genauer gesagt dem Wahrscheinlichktsmaß des Wahrscheinlichkeitsraums $(\Omega, \mathcal{A}, \mathbb{P})$).
- Dabei ist $\mathbb{P}(\{\xi=x\})$ die Wahrscheinlichkeit für die Menge $\{\xi=x\}$, welche definiert ist als

$$\{\xi=x\}:=\{\omega\in\Omega|\xi(\omega)=x\}, \text{ wobei } x\in\mathcal{X}.$$

Das ist die Menge der ω 's, die von ξ auf x abgebildet werden, also das Urbild von x.

SKF 2. Notation für Zufallsvariablen

2. Erläutern Sie die Gleichung $\mathbb{P}_{\xi}(\xi = x) = \mathbb{P}(\{\xi = x\}).$

Beispiel

Für das Werfen zweier Würfel ist ein sinnvolles Wahrscheinlichkeitsraum-Modell

- $\Omega := \{(r,b)|r \in \mathbb{N}_6, b \in \mathbb{N}_6\}$
- A := P(Ω).
- $\mathbb{P}: \mathcal{A} \to [0,1]$ mit $\mathbb{P}(\{(r,b)\}) = 1/36$ für alle $(r,b) \in \Omega$.

Die Augenzahl-Summenbildung wird dann sinnvoller Weise durch die Zufallsvariable

$$\xi: \Omega \to \mathcal{X}, (r, b) \mapsto \xi((r, b)) := r + b.$$

beschrieben, wobei $\mathcal{X} := \{2, 3, ..., 12\}.$

Die Wahrscheinlichkeit, dass die ZV den Wert 2 annimmnt, also $\mathbb{P}_{\xi}(\xi=2)$ im Wahrscheinlichkeitsraum $(\mathcal{X},\mathcal{S},\mathbb{P}_{\xi})$ wäre dann gleich der Wahrscheinlichkeit $\mathbb{P}(\{\xi=2\})$ im Wahrscheinlichkeitsraum $(\Omega,\mathcal{A},\mathbb{P})$, also der Wahrscheinlichkeit des Urbilds von x, nämlich $\mathbb{P}(\xi^{-1}(\{2\}))$. Formal

$$\mathbb{P}_{\xi}(\xi=2) = \mathbb{P}(\{\xi=2\}) = \mathbb{P}(\xi^{-1}(\{2\})) = \mathbb{P}(\{(1,1)\}) = \frac{1}{36}$$

$$\mathbb{P}\big(\xi^{-1}(S)\big) = \mathbb{P}\big(\{\omega \in \Omega | \xi(\omega) \in S\}\big) =: \mathbb{P}_{\xi}(S)$$

SKF 3. Notation für Zufallsvariablen

3. Erläutern Sie die Bedeutung von $\mathbb{P}(\xi = x)$.

Bei der Notation der Verteilung von Zufallsvariablen wird of auf das ZV Subskript verzichtet. $\mathbb{P}(\xi=x)$ steht dann für $\mathbb{P}_{\xi}(\xi=x)$, was die Wahrscheinlichkeit dafür, dass die ZV ξ den Wert x annimmt repräsentiert.

Weitere Beispiele sind

$$\begin{split} \mathbb{P}\left(\xi \in S\right) &= \mathbb{P}_{\xi}\left(\xi \in S\right), S \subset \mathcal{X}, \\ \mathbb{P}\left(\xi \leq x\right) &= \mathbb{P}_{\xi}\left(\xi \leq S\right), x \in \mathcal{X}. \end{split}$$

Realisierung einer ZV und Simulation von Zufallsvariablenrealisierungen

Definition (Realisierung einer Zufallsvariable)

 $(\Omega, \mathcal{A}, \mathbb{P})$ sei ein Wahrscheinlichkeitsraum $(\mathcal{X}, \mathcal{S})$ sei ein Messraum und $\xi : \Omega \to \mathcal{X}$ sei eine Zufallsvariable. Dann heißt $\xi(\omega) \in \mathcal{X}$ auch *Realisierung der Zufallvariable*.

- In der Datenanalyse werden Daten typischerweise als Realisierungen von Zufallsvariablen modelliert.
- Da die Auswahl eines $\omega \in \Omega$ in einem Zufallsvorgang zufällig ist, erscheint $\xi(\omega)$ zufällig.

Simulation von Zufallsvariablenrealisierungen (Summe zweier Würfel)

```
# Wahrscheinlichkeitsraummodell
Omega
         = list()
                                                   # Ergebnisrauminitialisierung
idx 
         = 1
                                                   # Ergebnisindexinitialisierung
for(r in 1:6){
                                                   # Ergebnisse roter Würfel
    for(b in 1:6){
                                                   # Ergebnisse blauer Würfel
        Omega[[idx]] = c(r.b)
                                                   # \omega \in \Omega
                     = idx + 1 }}
                                                   # Eraebnisindexupdate
         = length(Omega)
                                                   # Kardinalität von \Omega
         = rep(1/K, 1, K)
                                                   # Wahrscheinlichkeitsfunktion \pi
рi
# Zufallsvorgang
omega
         = Omega[[which(rmultinom(1,1,pi) == 1)]] # Auswahl von \omega anhand \mathbb{P}(f\omega)
# Auswertung der Zufallsvariable
xi_omega = sum(omega)
                                                   # \xi(\omega)
```

> omega : 4 2 > xi(omega) : 6

Jedes Augenzahlpaar kommt im Mittel gleich häufig vor.

Basierend auf der Physik sollte jedes Augenzahlpaar die gleiche Wahrscheinlichkeit haben.

Die Summe der Augenzahlen ist eine Zufallsvariable mit Verteilung \mathbb{P}_{ξ} .

4. Definieren Sie den Begriff der Wahrscheinlichkeitsmassefunktion.

Definition (Diskrete ZV, Wahrscheinlichkeitsmassefunktion)

Eine Zufallsvariable ξ heißt diskret, wenn ihr Ergebnisraum \mathcal{X} endlich oder abzählbar ist und eine Funktion der Form

$$p: \mathcal{X} \to \mathbb{R}_{\geq 0}, x \mapsto p(x)$$
 (2)

existiert, für die gilt

- (1) $\sum_{x \in \mathcal{X}} p(x) = 1 \text{ und}$
- (2) $\mathbb{P}_{\xi}(\xi = x) = p(x)$ für alle $x \in \mathcal{X}$.

Eine entsprechende Funktion p heißt Wahrscheinlichkeitsmassefunktion (WMF) von ξ .

Wahrscheinlichkeitsmassefunktion - Beispiel

Definition (Diskret-gleichverteilte Zufallsvariable)

Es sei ξ eine diskrete Zufallsvariable mit endlichem Ergebnisraum ${\mathcal X}$ und WMF

$$p: \mathcal{X} \to \mathbb{R}_{\geq 0}, x \mapsto p(x) := \frac{1}{|\mathcal{X}|}.$$
 (3)

Dann sagen wir, dass ξ einer diskreten Gleichverteilung unterliegt und nennen ξ eine diskret-gleichverteilte Zufallsvariable. Wir kürzen dies mit $\xi \sim U(|\mathcal{X}|)$ ab. Die WMF einer diskret-gleichverteilten Zufallsvariable bezeichnen wir mit

$$U(x; |\mathcal{X}|) := \frac{1}{|\mathcal{X}|}.$$
 (4)

Die ZV $\xi:\Omega\to\mathcal{X}$ beschreibe die Augenzahl eines Würfels, wobei $\mathcal{X}:=\{1,2,3,4,5,6\}$

5. Definieren Sie die Begriffe der Wahrscheinlichkeitsdichtefunktion.

Definition (Kontinuierliche ZV, Wahrscheinlichkeitsdichtefunktion)

Eine Zufallsvariable ξ heißt kontinuierlich, wenn eine Funktion der Form

$$p: \mathbb{R} \to \mathbb{R}_{\geq 0}, x \mapsto p(x) \tag{5}$$

existiert, für die gilt

- (1) $\int_{-\infty}^{\infty} p(x)dx = 1,$
- (2) $\mathbb{P}_{\xi}(\xi \in [a,b]) = \int_a^b p(x) \, dx$ für alle $a,b \in \mathbb{R}$ mit $a \leq b$.

Eine entsprechende Funktion p heißt Wahrscheinlichkeitsdichtefunktion (WDF) von ξ .

Bemerkungen

- WDFen können Werte größer als 1 annehmen.
- Es gilt $\mathbb{P}_{\xi}(\xi = a) = \int_{-a}^{a} p(x) dx = 0.$
- Wahrscheinlichkeiten werden aus WDFen durch Integration berechnet.
- (Wahrscheinlichkeits)Masse = (Wahrscheinlichkeits)Dichte × (Mengen)Volumen.

Definition (Normalverteilte und standardnormalverteilte Zufallsvariablen)

Es sei ξ eine Zufallsvariable mit Ergebnisraum $\mathbb R$ und WDF

$$p: \mathbb{R} \to \mathbb{R}_{>0}, x \mapsto p(x) := \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$
 (6)

Dann sagen wir, dass ξ einer Normalverteilung (oder Gauß-Verteilung) mit Parametern $\mu \in \mathbb{R}$ und $\sigma^2 > 0$ unterliegt und nennen ξ eine normalverteilte Zufallsvariable. Wir kürzen dies mit $\xi \sim N\left(\mu,\sigma^2\right)$ ab. Die WDF einer normalverteilten Zufallsvariable bezeichnen wir mit

$$N\left(x;\mu,\sigma^{2}\right) := \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{1}{2\sigma^{2}}(x-\mu)^{2}\right). \tag{7}$$

Eine normalverteilte Zufallsvariable mit $\mu=0$ und $\sigma^2=1$ heißt standardnormalverteilte Zufallsvariable und wird oft als Z-Zufallsvariable bezeichnet.

Bemerkungen

- Der Parameter μ entspricht dem Wert höchster Wahrscheinlichkeitsdichte.
- Der Parameter σ^2 spezifiziert die Breite der WDF.

SKF 6. Kumulativen Verteilungsfunktion

6. Definieren Sie den Begriff der kumulativen Verteilungsfunktion.

Definition (Kumulative Verteilungsfunktion)

Die kumulative Verteilungsfunktion (KVF) einer Zufallsvariable ξ ist definiert als

$$P: \mathbb{R} \to [0, 1], x \mapsto P(x) := \mathbb{P}(\xi \le x). \tag{8}$$

Kumulativen Verteilungsfunktion - Beispiele

Binomal-Zufallsvariablen

Kumulativen Verteilungsfunktion - Beispiele

Normalverteilte Zufallsvariablen

SKF 7. Intervallwahrscheinlichkeit einer ZV

7. Schreiben sie die Intervallwahrscheinlichkeit einer Zufallsvariable mithilfer ihrer KVF.

Theorem (Intervallwahrscheinlichkeiten)

Es sei ξ eine Zufallsvariable mit Ergebnisraum $\mathcal X$ und P ihre kumulative Verteilungsfunktion. Dann gilt für die Intervallwahrscheinlichkeit $\mathbb P(\xi\in[x_1,x_2])$, dass

$$\mathbb{P}(\xi \in]x_1, x_2]) = P(x_2) - P(x_1) \text{ für alle } x_1, x_2 \in \mathcal{X} \text{ mit } x_1 < x_2. \tag{9}$$

8. Definieren Sie die WDF und KVF einer normalverteilten Zufallsvariable.

Es sei $\xi \sim N(\mu, \sigma^2)$.

Die WDF von ξ ist

$$p: \mathbb{R} \to \mathbb{R}_{>0}, x \mapsto p(x) := \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$

Die KVF von ξ ist

$$P: \mathbb{R} \to]0, 1[, x \mapsto P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{x} \exp\left(-\frac{1}{2\sigma^2} (t - \mu)^2\right) dt.$$

SKF 9. Kumulative Verteilungsfunktionen von kontinuierlichen ZVen

9. Schreiben Sie den Wert P(x) der KVF einer Zufallsvariable mithilfe ihrer WDF.

$$P(x) = \int_{-\infty}^{x} p(t) dt$$

SKF 10. Kumulative Verteilungsfunktionen von kontinuierlichen ZVen

10. Schreiben Sie den Wert p(x) der WDF einer Zufallsvariable mithilfe ihrer KVF.

$$p(x) = \frac{d}{dx}P(x)$$

Anmerkung: Die KVF ist die Stammfunktion der WDF und die WDF ist die Ableitung der KFV.

11. Definieren Sie den Begriff der inversen Verteilungsfunktion.

Definition (Inverse Kumulative Verteilungsfunktion)

 ξ sei eine kontinuierliche Zufallsvariable mit KVF P. Dann heißt die Funktion

$$P^{-1}:]0,1[\to \mathbb{R}, q \mapsto P^{-1}(q) := \{ x \in \mathbb{R} | P(x) = q \}$$
 (10)

die inverse kumulative Verteilungsfunktion von ξ .

Bemerkungen

- P^{-1} ist die Inverse von P, d.h. $P^{-1}(P(x)) = x$. Bsp.: Wir suchen den Wert x (den eine ZV annehmen kann), für den die KVF den Wert 0.3 hat, also P(x) = 0.3. Die Inverse, also $P^{-1}(0.3)$ gibt uns diesen Wert.
- Für $q \in]0,1[$ ist also $P^{-1}(q)$ der Wert x von ξ , so dass $\mathbb{P}(\xi \leq x) = q$ gilt. In unserem Beispiel oben gibt uns $P^{-1}(0.3)$ den Wert x, den eine ZV ξ annehmen könnte, so dass gilt, dass die Wahrscheinlichkeit dafür, dass ξ kleiner oder gleich diesem Wert ist, bei 0.3 liegt
- Wenn $Z\sim N(0,1)$ mit KVF Φ ist, dann gilt zum Beispiel $\Phi^{-1}(0.975)=1.960$. Beantwortet die Frage Für welchen Wert x ist die Wahrscheinlichkeit dafür, dass die ZV kleiner oder gleich diesem Wert annimmt, 0.975?