

网络安全数学基础(二)

沈佳辰 jcshen@sei.ecnu.edu.cn

网络安全数学基础

第九章 椭圆曲线

§9.1 椭圆曲线

• 定义9.1.1 令F为一个域, $a,b \in F$,则方程 $y^2 = x^3 + ax + b$

称为域*F*上的椭圆曲线。上式称为维尔斯特拉斯(Weierstrass)方程。

• 例 实域上的椭圆曲线

• 定义9.1.2 令F为一个域, $a,b \in F$,令 $E = \{(x,y)|y^2 = x^3 + ax + b\} \cup \{\infty\}$, $\mathcal{C}_1, P_2 \in E$,令R为过 P_1, P_2 的直线与E的第三个交点关于X轴的对称点,并记 $P_1 + P_2 = R$ 。

- 定义9.1.2 令F为一个域, $a,b \in F$,令 $E = \{(x,y)|y^2 = x^3 + ax + b\} \cup \{\infty\}$, $\mathcal{C}_1, P_2 \in E$,令R为过 P_1, P_2 的直线与E的第三个交点关于X 轴的对称点,并记 $P_1 + P_2 = R$ 。
- 2P = P + P为过P的E的切线与E的另一个交点关于X轴的对称点。

• 椭圆曲线上的加法

(a) 相加:
$$P+Q=R$$
.

(b) 倍点: P+P=R.

• 定理9.1.1 若规定∞ + ∞ = ∞,则(E, +)构成一个阿贝尔群(交换群),其中∞为单位元,记作O, P = (x, y)的逆元为Q = (x, -y)。

• 例 设实域上椭圆曲线E: $y^2 = x^3 + 73$ 。 $\diamondsuit P = (2,9)$ 和Q = (3,10),求R = P + Q和2R。

• 例 设实域上椭圆曲线E: $y^2 = x^3 + 73$ 。令P = (2,9)和Q = (3,10),求R = P + Q和2R。

解:易知过P,Q的直线为y = x + 7,代入椭圆曲线方程得 $(x + 7)^2 = x^3 + 73$,可求得直线与椭圆曲线的第三个交点为 (-4,3),因此R = (-4,-3)。

• 例 设实域上椭圆曲线E: $y^2 = x^3 + 73$ 。 $\diamondsuit P = (2,9)$ 和Q = (3,10),求R = P + Q和2R。

解:易知过P,Q的直线为y = x + 7,代入椭圆曲线方程得 $(x + 7)^2 = x^3 + 73$,可求得直线与椭圆曲线的第三个交点为 (-4,3),因此R = (-4,-3)。

对椭圆曲线求微分可知 $2ydy = 3x^2dx$,因此E在R的斜率为 $\frac{dy}{dx}\Big|_{\substack{x=-4\\y=-3}} = -8$,因此过R的E的切线为y = -8(x+4) - 3,代入椭圆曲线并求解可得另一个交点为(72. -611),因此

代入椭圆曲线并求解可得另一个交点为(72,-611),因此 2R = (72,611)。

§9.2 椭圆曲线密码

- 以下三类公钥系统被认为是安全有效的
 - 基于大整数分解问题的RSA型公钥密码;
 - 基于有限域上离散对数问题的ElGamal 型公钥密码;
 - 基于椭圆曲线离散对数问题的椭圆曲线公钥密码。

- 椭圆曲线公钥密码优势:对于椭圆曲线离散对数问题,目前不存在亚指数时间算法,从而为达到相同安全性所需的密钥尺寸更小
 - RSA 密码体制: 2048比特;
 - 椭圆曲线密码体制: 224-255比特。
- 椭圆曲线密码体制适用于计算、存储、带宽受限,但又要求高速实现的应用领域,例如智能卡、无线通讯等。

• 有限域上椭圆曲线

• 有限域上椭圆曲线加法

• El'Gamal密码方案的椭圆曲线形式

- 设E为 F_q 上的椭圆曲线,一般记为 $E(F_q)$,设 $P = (x_p, y_p) \in E(F_q)$,且P的次数足够大,任取1 < s < ord(P),令 $Q = (x_q, y_q) = sP$,则 $E(F_q)$,P,Q为公钥,s为私钥。
- 消息m满足 $m \in F_q^*$,任取1 < r < ord(P),计算 $(x_1, y_1) = rP$, $(x_2, y_2) = rQ$, $c = m \cdot x_2$,则密文为 (x_1, y_1, c) 。
- 解密时, 计算 $(x',y') = s(x_1,y_1)$, 再计算 $m' = c \cdot x'^{-1}$, 解得明文。

• 方案的正确性

证明: 因为 $(x',y') = s(x_1,y_1) = srP = rsP = rQ = (x_2,y_2),$ 因此 $x' = x_2$,故 $m' = c \cdot x'^{-1} = c \cdot x_2^{-1} = m$,得证。 • 方案的正确性

证明: 因为
$$(x',y') = s(x_1,y_1) = srP = rsP = rQ = (x_2,y_2),$$

因此 $x' = x_2$,故 $m' = c \cdot x'^{-1} = c \cdot x_2^{-1} = m$,得证。

• 方案的安全性依赖于椭圆曲线上的离散对数问题。

实验5

- El'Gamal密码方案的椭圆曲线形式
 - 令 $E: y^2 = x^3 + x + 6$ 为 F_{11} 上的一条椭圆曲线,求E上的所有点。
 - $\diamondsuit P = (2,7)$,取s = 5,求公钥。
 - 设消息m = 3,取r = 7,求m的密文 (x_1, y_1, c) 。
 - 对 (x_1,y_1,c) 做解密运算,求(x',y'),并进一步求其明文m'。
- 要求: 输出中间结果和最终结果
- 语言: C/C++或Python
- 使用头歌平台搭建环境并提交作业