Polynomial order (d)	Training MSE	Testing MSE
1	2.868854e+23	3.062569e+23
2	2.798735e+23	3.203375e+23
3	4.344710e+22	3.920112e+22
4	8.756376e+22	9.066979e+22
5	1.890361e+22	1.635627e+22
6	1.885520e+22	1.665282e+22
7	2.416234e+21	2.345898e+21
8	2.428463e+21	2.350603e+21
9	1.294889e+22	1.061315e+22
10	1.296568e+22	1.071135e+22

I will select d = 7 for my model, since when d= 7, my model has a minimum MSE for the training data.

MSE versus d

The figure, MSE versus d, shows that when d = 7, the model get minimum MSE for both training and testing data.

Scatterplot for data

The figure, Scatter plot for data, shows that when d=7, the regression model fit the data well.

Testing MSE versus lambda

Based on the plots, as lambda increasing, the MSE for training data increase while that for testing data decrease.

When lambda=595, the MSE for testing data is smallest.

1.

$$\sigma'(x) = e^{-x} * (1 + e^{-x})^{-2};$$

while
$$\sigma(1-\sigma) = \frac{1}{1+e^{-x}} * \frac{e^{-x}}{1+e^{-x}} = e^{-x} * (1+e^{-x})^{-2}$$
,

therefore proved the first derivative of function $\sigma(x) = \frac{1}{1+e^{-x}}$ is equal to $\sigma(1-\sigma)$.

$$2.\sigma(-x) = \frac{1}{1+e^x} = \frac{1*e^{-x}}{(1+e^x)*e^{-x}} = \frac{e^{-x}}{e^{-x}+1} = 1 - \frac{1}{1+e^{-x}} = \sigma(1-\sigma)$$

Let

$$y = \sigma(x) = \frac{1}{1 + e^{-x}}$$
$$\frac{1}{y} = 1 + e^{-x}$$
$$e^{-x} = \frac{1 - y}{y}$$
$$e^{x} = \frac{y}{1 - y}$$
$$x = \ln(\frac{y}{1 - y})$$

Therefore $\sigma^{-1}(y) = x = \ln(\frac{y}{1-y})$

3.

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$
$$\Rightarrow \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Therefore,

$$\frac{1+\tanh(x)}{1-\tanh(x)} = \frac{\frac{2e^x}{e^x+e^{-x}}}{\frac{2e^{-x}}{e^x+e^{-x}}} = \frac{2e^x}{2e^{-x}} = e^{2x}$$

Question 4

$$\nabla_{\theta} LL = \sum_{i=1}^{N} (\alpha_i - y_i) x_{ij}$$

Using Linear Algebra, we can get

$$= (\alpha - y)^T X$$
$$= X^T (\alpha - y)$$

:.

$$\theta_{t+1} = \theta_t - \eta * X^T(\alpha - y)$$

Table of parameter estimates

Stepsize	Tolerance	Iterations	Theta1	Theta2	Theta3
0.5	0.1	3182	44.13702	24.49384	-17.38490
0.5	0.01	26547	98.33215	51.14036	-37.13213
0.5	0.001	49975	195.66345	98.86386	-72.47661
0.1	0.1	2054	9.207652	7.117595	-4.079840
0.1	0.01	19768	49.76636	27.26594	-19.48302
0.1	0.001	42896	124.53653	63.98038	-46.63449

Decision Boundary(when stepsize=0.5,tolerance=0.01)

Rate of Convergence

Question 5

$$\frac{\partial}{\partial \theta} LL = \sum_{i=1}^{N} (\alpha_{i} - y_{i}) x_{ij}$$

$$\frac{\partial^{2}}{\partial \theta_{j} \partial \theta_{j}} LL = \sum_{i=1}^{N} x_{ij} (\frac{\partial}{\partial \theta} \alpha_{i}) = \sum_{i=1}^{N} x_{ij} x_{ik} \alpha_{i} (1 - \alpha_{i})$$

$$= \vec{z_{j}}^{T} S \vec{z_{k}} \quad \text{where } \vec{z_{j}} = (x_{ij}, \dots, x_{nj})^{T}$$

$$S = \begin{pmatrix} \alpha_{1} (1 - \alpha_{1}) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \alpha_{n} (1 - \alpha_{n}) \end{pmatrix} \quad X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{nd} \end{pmatrix}$$

$$\nabla^{2}_{\theta} LL = \frac{\partial^{2}}{\partial \theta_{j} \partial \theta_{j}} LL = X^{T} S X$$

$$H = \nabla^{2} LL = X^{T} S X \quad \nabla LL = X^{T} (\alpha - y)$$

$$\theta_{t+1} = \theta_{t} - H^{-1} g$$

$$= \theta_{t} - (X^{T} S X)^{-1} X^{T} (\alpha - y)$$

Table of parameter estimates

Stepsize	Tolerance	Iterations	Theta1	Theta2	Theta3
0.1	0.1	973	57.15769	29.70850	-21.69674
0.1	0.01	1866	133.80551	67.67338	-49.70085
0.1	0.001	2945	238.60526	119.29102	-87.88332
0.5	0.1	896	81.25300	42.20398	-30.83149
0.5	0.01	1503	176.67818	89.15783	-65.51135
0.5	0.001	2761	298.4268	149.0758	-109.8346

.

Rate of Convergence

Convergence rate for Newton's method is much higher than that for gradient descent.

```
#code
#SDGB7847
#Minxia Ji
#SDGB7847
#Minxia Ji
#Machine Learning Homework1
library(MASS)
library(onion)
###############
# Question 1 #
###############
data.q1 <- read.table('data1.txt',header = TRUE,sep = '\t')
plot(data.q1$X,data.q1$Y)
#split the data into training and testing data
temp <- sample(1:nrow(data.q1),ceiling(nrow(data.q1))/2)
training <- data.q1[temp,]</pre>
testing <- data.q1[-temp,]
#save training and testing as matrics
x.training <- as.matrix(training[,1])
y.training <- as.matrix(training[,2])</pre>
x.testing <- as.matrix(testing[,1])
y.testing <- as.matrix(testing[,2])
#write the function
f <- function(x.train,y.train,x.test,y.test,d){
  a<-matrix(rep(1,nrow(x.train)),nrow(x.train),1)
  b<-matrix(rep(1,nrow(x.test)),nrow(x.test),1)
  SSE.train<-rep(NA,d)
  MSE.train<-rep(NA,d)
  SSE.test<-rep(NA,d)
  MSE.test<-rep(NA,d)
  B.container<-list(NULL)
  for (i in 1:d) {
     a<-cbind(a,x.train^i)
     b<-cbind(b,x.test^i)
     B<-matrix(nrow = ncol(a),ncol = 1)
     B < -ginv(t(a)\%*\%a)\%*\%(t(a)\%*\%y.train)
     #MSE of training data
     SSE.train[i]<-t(y.train-a%*%B)%*%(y.train-a%*%B)
     MSE.train[i]<-SSE.train[i]/(nrow(a)-ncol(a))
     #MSE of testing data
     SSE.test[i]<-t(y.test-b%*%B)%*%(y.test-b%*%B)
     MSE.test[i]<-SSE.test[i]/(nrow(b)-ncol(b))
     #list of beta
```

```
B.container[[i]] <-B
  }
  return(list("MSE.training"=MSE.train,"MSE.testing"=MSE.test,
                 "Beta"=B.container))
}
#save result to save.1
save.1 <- f(x.training,y.training,x.testing,y.testing,1000)
which.min(save.1$MSE.training)
which.min(save.1$MSE.testing)
# build X varibales matrix
X <- matrix(rep(1,nrow(data.1)),nrow(data.1),1)
for (i in 1:7) {
  X <- cbind(X,as.matrix((data.1[,"X"])^i))
beta <- result.1$Beta[[7]]
Y.predict <- as.vector( X %*% beta )
r.predict <- data.frame(data.1$X,Y.predict)</pre>
#plot MSE
plot(y=result.1$MSE.training,x=1:10,las = TRUE,type = "I",
      main = "MSE versus d", xlab = "polynomial order (d)",ylab = "MSE",
      col="black",lwd =2,lty=2, cex.main = 2)
lines(result.1$MSE.testing,col = "royalblue",lwd =2)
legend("topright",legend = c("TRAINING MSE","TESTING MSE"),
        fill=c("black", "royalblue"), cex=1.4, bty="n")
#scatterplot
plot(y = data.q1\$Y, x = data.q1\$X, las = TRUE, cex.main = 2,
      main = "Scatterplot for data",xlab = "X",ylab = "Y")
lines(x=r.predict$data.q1.X,y=r.predict$Y.predict, col="royalblue",lwd=3)
legend("topright",legend = "Regression Line",
        fill="royalblue", cex=1.4, bty="n")
################
# Question 2 #
###############
data.q2 <- read.csv("q2.txt",header = TRUE,sep = "\t")
temp2 <- sample(1:nrow(data.q2),nrow(data.q2)/2)
training.2 <- data.q2[temp2,]
testing.2 <- data.q2[-temp2,]
x.training.2 <- as.matrix(training.2[,-1])
y.training.2 <- as.matrix(training.2[,1])
x.testing.2 <- as.matrix(testing.2[,-1])
```

```
y.testing.2 <- as.matrix(testing.2[,1])
f.2 <- function(x.train,y.train,x.test,y.test,lambda){
  a <- matrix(rep(1,nrow(x.train)),nrow(x.train),1)
  a <- cbind(a,x.train)
  b <- matrix(rep(1,nrow(x.test)),nrow(x.test),1)
  b <- cbind(b,x.test)
  I <- diag(rep(1,ncol(a)))</pre>
  B <- matrix(rep(NA,ncol(a)),ncol(a),1)
  SSE.train <- rep(NA,lambda)
  SSE.test <- rep(NA,lambda)
  MSE.train <- rep(NA,lambda)
  MSE.test <- rep(NA,lambda)
  for (i in 0:lambda) {
     B <- ginv((t(a)%*%a+i*I))%*%(t(a)%*%y.train)
    SSE.train[i]<-t(y.train-a%*%B)%*%(y.train-a%*%B)
    SSE.test[i]<-t(y.test-b%*%B)%*%(y.test-b%*%B)
    MSE.train[i] < -t(y.train-a%*%B)%*%(y.train-a%*%B)/(nrow(b)-ncol(b))
    MSE.test[i]<-t(y.test-b%*%B)%*%(y.test-b%*%B)/(nrow(b)-ncol(b))
  }
  return(list("errorfortraining"=MSE.train,"errorfortesting"=MSE.test))
}
#error plots
save.2 <- f.2(x.training.2,y.training.2,x.testing.2,y.testing.2,1000)
plot(save.2$errorfortraining,las = TRUE,cex.lab = 1.6 ,cex.main =2.2,type = "l", col = "royalblue",
      xlab = "lambda",ylab = "MSE",main = "Error for training")
plot(save.2$errorfortesting, type = "I",xlab = "Lambda",ylab = "MSE",main = "Testing MSE versus
lambda",
      cex.lab = 1.2, col = "royalblue")
abline(v=which.min(result.ridge$Testing.SSE),col = "black",lty = 2)
arrows(x0=788.1744, y0=306.201, x1=590.6369, y1=251.0786, length=0.1, lwd=1.8)
text(700, 330.201,cex = 1.1, labels="When lambda = 595, minimize MSE")
################
# Question 4 #
###############
data.q4 <- read.csv("q4.txt",header = TRUE,sep = "\t")
#spliting data
temp4 <- sample(1:nrow(data.q4),nrow(data.q4)/2)
training.4 <- data.q4[temp4,]
testing.4 <- data.q4[-temp4,]
x.training.4 <- as.matrix(training.4[,-4])
y.training.4 <- as.matrix(training.4[,4])
```

```
x.testing.4 <- as.matrix(testing.4[,-4])
y.testing.4 <- as.matrix(testing.4[,4])
f.4<-function(x.train,y.train,x.test,y.test,tolerance,stepsize){
  #initialize theta
  theta <- matrix(rep(1,ncol(x.training.4)),nrow=ncol(x.training.4),1)
  #initialize error and index
  error <- 10
  index <- 0
  while (error>tolerance) {
     temporary <- theta - stepsize*(t(x.train)%*%(1/(1+exp(-x.train%*%theta))-y.train))
     error <- as.numeric(sqrt(t(theta-temporary))%*%(theta-temporary)))
     theta <- temporary
     index <- index+1
  return(list("iterationtimes"=index,"theta"=theta))
}
plot(x=save.4,y=tolerance,main = "when steosize = 0.5")
plot(x=data.q4\$X1,y=data.q4\$X2,xlab = "x1",ylab = "x2")
lines(x=data.q4$X1,y=(37.13-98.33*data.q4$X1)/51.14,col="royalblue")
legend("bottomleft",legend = "decision boundary",fill = "royalblue",bty = "n")
#for loop
tolerance.4<-seq(0.1,0.01,by=-0.0001)
result.4<-rep(NA,length(tolerance.4))
theta.container<-list(NULL)
index.4<-1
for (i in tolerance.4) {
  result.4[index.4]<-save.4<-f.4(x.training.4,y.training.4,x.testing.4,
                                            y.testing.4,stepsize
                                                                              0.1,tolerance
0.01)$iterationtimes
  theta.container[index.4]<-f.4(x.training.4,y.training.4,x.testing.4,
                                         y.testing.4,stepsize = 0.1,tolerance = 0.01)$theta
  index.4 <- index.4 +1
}
plot(x=result.4,y=tolerance.4,las = TRUE,cex.lab = 1.6 ,cex.main =2.2,
      type = "I", col = "royalblue",xlab = "iterations", ylab = "tolerance",
      main = "Rate of Convergence")
```

```
###############
# Question 5 #
###############
data.q4 <- read.csv("q4.txt",header = TRUE,sep = "\t")
f.5<-function(x,y,stepsize,tolerance){
       theta <- matrix(rep(1,ncol(x)),nrow=ncol(x),1)
       g <- t(x)%*%(1/(1+exp(-x%*%theta))-y)
       theta2 <- -stepsize*g
       index <- 0
       while(Mod.onion(theta2)>tolerance){
              g <- t(x)%*%(1/(1+exp(-x%*%theta))-y)
              h \leftarrow ginv(t(x))^* diag(as.vector(1/(1+exp(-x)^* diag(as.vector(1/
              temp <- theta - stepsize*h%*%g
              theta2 <- -stepsize*g
              theta <- temp
              index <- index +1
       }
return(list("iterationtimes"=index,"theta"=theta))
#for loop
tolerance.nt<-seq(0.1,0.01,by=-0.0001)
result.nt<-rep(NA,length(tolerance.nt))
theta.container<-list(NULL)
index.nt<-1
for (i in tolerance.nt) {
       result.nt[index.nt]<-f.5(x.training.4,y.training.4,0.5,i)$interationtimes
       theta.container[index.nt]<-f.5(x.training.4,y.training.4,0.5,i)$theta
       index.nt <- index.nt +1
}
plot(x=result.nt,y=tolerance.nt,las = TRUE,cex.lab = 1.6,cex.main =2.2,
                 type = "I", col = "royalblue",xlab = "iterations", ylab = "tolerance",
                 main = "Rate of Convergence")
```