Name:

$11~\mathrm{April}~2022$

10.6 Special right triangles

HSG.SRT.C.8

- 1. Isosceles right $\triangle ABC$ is shown with legs AC = BC = 10 as marked.
 - (a) Write down θ .
 - (b) Find the length of hypotenuse AB.

- (d) Find $\cos A =$
- (e) Find $\sin A =$

- 2. Given right triangle $\triangle ABC$ with base AC=1 and hypotenuse AB=2 as marked.
 - (a) Find the altitude BC = h.
 - (b) $\triangle ABC$ is reflected across \overline{BC} . Mark the lengths of the sides of its image $\triangle DBC$

- (c) Write down the angle measure of $\angle A$.
- (d) Write down the angle measure of $\angle ABC$.
- (e) Write down $\cos A$.
- (f) Write down $\sin A$.

3. In the diagram below, $\triangle ABC$ is inscribed in circle O. Show that $\overline{AB} \perp \overline{BC}$.

4. In the diagram below, $\triangle ABC$ has vertices with coordinates A(1,2), B(8,3) and C(4,6).

Find the length of each side of $\triangle ABC$, showing that it is isosceles and not equilateral.

$$\frac{AC =}{\sqrt{(x_C - x_A)^2 + (y_C - y_A)^2}} \left| \begin{array}{c} BC = \\ \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} \end{array} \right| \frac{AB =}{\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}}$$