

COM3503/4503/6503: 3D Computer Graphics

Lecture 13: Texture: part 3

Dr. Steve Maddock Room G011, Regent Court s.maddock@sheffield.ac.uk

http://commons.wikimedia.org/wiki/File:Liquorice_allsorts_2010.jpg By Ali K (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons

1. Introduction

 2D texture colour/diffuse mapping pastes a bitmap picture (texture) onto the surface of an object

 There are a range of approaches for pasting the 2D texture on the surface of a 3D object

2D mapping

1. Introduction

3D texture mapping places an object inside a 3D pattern

- The 3D pattern is NOT represented as an array of 2D textures
 - This would be memory inefficient
 - Many values would remain unused
- Instead, the pattern is usually represented as a procedure...

2. 3D texture mapping ('Solid texture') [Perlin,85; Peachey,85]

- For 3D texture mapping, all that is required to texture a point is a 3D coordinate
- A texture function f(x,y,z) is evaluated for each 3D coordinate (x_w,y_w,z_w)
- Example function:

```
if trunc(z) is even {
  colour of point is red
}
else {
  colour of point is white
}
```

- Example: z = 2.4 → red
- Example: $z = 1.9 \rightarrow$ white

Left teapot:

if trunc(z) is even then red; else white Middle teapot:

if trunc(x) is even then red; else white Right teapot:

if trunc(y) is even then red; else white

The SIGGRAPH 97 Education Slide set

2. 3D texture mapping

- Left teapot →
 - use x and y to compute radial distance from axis through teapot centre
 - If trunc(result) is even then red;
 else white

- More complex functions can be used:
 - Left: *mod(x,a)/a*.
 - Right: (sin(x)+1)/2

The SIGGRAPH 97 Education Slide set

2. 3D texture mapping

- Here a colour table is used
- Function:
- the fractional part of the x coordinate (0.0 .. 0.99) multiplied by number of elements in colour table (256)
- process repeats

The SIGGRAPH 97 Education Slide set

- We want to model the appearance of wood
- 2D texture mapping:
 - Take a photo of a wood surface and paste it on to a model
 - Limited to using the photograph (or photographs)
- 3D texture mapping (solid texture)
 - Create a function that produces the pattern of colour variation
 - A good function can produce endless patterns

Start by defining a function based on a cylinder

In u, v, w space,
 if trunc(r) is even then dark brown
 else light brown

- Map x,y,z of object to the u,v,w space the texture function is defined in
 - A scale function may be required if the x,y,z space is large in comparison to the u,v,w space

- We can remove the regularity of the function in a number of ways:
- Tilt (i.e. rotate) the (x, y, z) coordinate before using in the function
 - $(u, v, w) \leftarrow Tilt(x, y, z)$

 We can remove the regularity of the function in a number of ways:

Alter the calculation of r:

E.g. by adding a sine wave

 E.g. by adding a twist with respect to the u axis

- These are all combined to give the final result
- However, the result is still too regular in appearance

The SIGGRAPH 97 Education Slide set

- To remove the regular appearance, we can add randomness (i.e. noise) to the function
- But, needs to be controllable.
 Need to be able to:
 - Intuitively control the amount of noise to give different effects
 - Use same values every time the object is drawn

- The noise is generated once and stored in a low resolution grid (u, v, w)
- Lattice noise: random value at each point in a 3D grid
- Gradient noise: random unit vector for each lattice point

The SIGGRAPH 97 Education Slide set

- Given a floating point (x,y,z) object position, this is mapped to a floating point (u,v,w)
- The noise value n(u,v,w) is calculated using interpolation from surrounding grid points
- n(u,v,w) can be used to alter f(u,v,w) in the procedural texture function
 - The (u,v,w) spaces in each may need mapping between, e.g. scaling
- Each time an object is rendered, (x,y,z)
 will generate the same (u,v,w) and thus
 the same n(u,v,w)
- Thus for n(x,y,z):
 - map(x,y,z) to (u,v,w)
 - return n(u,v,w)

For more control, noise(x,y,z) can be rewritten as
 noise(f*x, f*y, f*z) * a
 where f controls the frequency and a controls the amplitude

2D slice of a noise grid, The SIGGRAPH 97 Education Slide set

2.3 Example: marble

- A colour spline (b) is mapped to shades of grey (a)
- When turbulence is added, we get (c). In 3D, we get (d)
- marble(x) = marble_colour(sin(x+turbulence(x)));

(d) Figure 8.21 Imitating marble – the classic example of three-dimensional procedural texture.

http://legakis.net/justin/MarbleApplet/

2.4 Noise and time

- A noise function (i.e. a noise grid) can also be used in conjunction with one or more 2D texture maps
- Example:Texture map of flame
 - or procedural model of flame's colours
- Use the noise function to add turbulence to the texture
 - u,v noise plane alters the texture
 - w axis acts as time
 - wary w over time will change the noise profile over time
- (Alternative: play animation of real flame on a billboard polygon)

2.4 Noise and time

Ken Perlin

2.5 3D texture mapping versus 2D texture mapping

2D texture mapping

- A 2D texture map can be compressed or stretched depending on the mapping, especially if the object is deforming
- 2D texture mapping is awkward for non-trivial topologies
- Advantage: easy to produce lots of 2D textures, e.g. photographs

3D texture mapping

- Based on a function f(x,y,z), so can be generated to any level of detail for any topology
- Extra work required if object is deforming
- Can be difficult to design complex colour patterns – lots of trial and error

Figure 8.21 Imitating marble – the classic example of three-dimensional procedural texture.

Watt, 00

3. Combining texture maps

- Texture maps can be combined to produce more complex effects
- Based on the idea of shade trees
 - (Cook, 84), shading language,
 RenderMan (Pixar)

Mask drops

Texture label
Assign specular coefficient
Assign phong exponent

Bump drops uv scale

4. Textures for 'dirt'

If you look closely, you can see yellowed printed material, little scratches, and paint worn off metal surfaces that tell you this collection is old but well-maintained.

Toy Story 2, Pixar, 99

5. Summary

- Most common texture mapping approach is to apply 2D texture maps to polygon mesh objects

 texture colour mapping
- Other approaches:
 - environment mapping
 - bump mapping
 - normal mapping
 - displacement mapping
 - 3D texture mapping
- Texture trees (based on shade trees): Organise combination of texturing effects

