上海市高考用物理公式回忆

1.
$$V_{t}=V_{0}+at$$

2.
$$S=V_o t + \frac{1}{2} a t^2 = V_t t - \frac{1}{2} a t^2$$

3.
$$V_t^2 = V_o^2 + 2as$$

4.
$$v = \frac{s}{t} = \frac{v_0 + v_t}{2} = \frac{v_t}{2} = v_0 + \frac{at}{2} = v_t - \frac{at}{2}$$

5.
$$a = \frac{\Delta S}{T^2}$$

6.
$$S_1:S_2:S_3=1:3:5$$
 8. $S_1:S_{II}:S_{III}=1:4:9$

7.
$$V_t = gt$$
, $h = \frac{1}{2} gt^2$, $v^2 = 2gh$

$$t = \sqrt{\frac{2h}{g}}, v = \sqrt{2gh}.$$

9.
$$V_t = V_o - gt$$
, $h = V_o t - \frac{1}{2} gt^2$

10.
$$a = \omega^2 r = \frac{v^2}{r} = \frac{4\pi^2}{T^2} r$$

11. V=
$$\omega$$
 r, 12. T= $\frac{2\pi r}{v} = \frac{2\pi}{\omega}$

13.
$$\omega = 2\pi n$$
 , $v = 2\pi nr$

14. f =
$$\frac{1}{T}$$
 (一切周期运动)

15. ①F 的水平分力: Fcos α 、竖直分力:

Fsin α 、对水平面压力: G-Fsin α 、②重力的下滑分力: Gsin θ 、垂直于斜面的分力: Gcos θ 、③oA=G/cos θ ; ToB=Gtg θ

16. G = mg, F=
$$G \frac{m_1 m_2}{R^2}$$

$$mg \approx G \frac{Mm}{R^2}, \quad g_{\text{eq}} = \frac{GM}{R^2}$$

17.
$$f = \mu N$$
, 18. $f = -kx$

$$F = k \frac{qQ}{r^2} \quad E = \frac{F}{q} \quad E = \frac{U}{d},$$

$$E = k \frac{Q}{r^2} \quad w = qEs \cos \theta$$

$$\mathcal{E}_A = qU_A \quad U_{AB} = U_A - U_B$$

$$W_{AB} = q U_{AB}$$

$$W_{AB} = \varepsilon_A - \varepsilon_{B=-} \Delta \varepsilon$$

22.
$$E_k = \frac{1}{2} \text{ mv}^2$$
, 23. $E_p = \text{ mgh}$

24.
$$F_{\triangleq} = ma$$
, $\sum F_x = ma_x$, $\sum F_y = ma_y$

25.
$$G \frac{Mm}{R^2} = m \omega^2 R = m \frac{v^2}{R} = m \frac{4\pi^2}{T^2} R$$

26. W= FS
$$\cos \theta$$

27. P =
$$\frac{w}{t}$$
, P= FV, $a = \frac{\frac{p}{v} - f}{m}$

$$v_m = \frac{p}{f}, v_m = \frac{p}{f + ma}$$

$$W_{G} = -\Delta E_{PG}$$
 $W_{E} = -\Delta \varepsilon$

$$\begin{split} & \underset{\mathbb{W}_{\mathbb{A}}}{\mathbb{W}_{\mathbb{B}}} = \Delta E_k \quad , \quad W_{\overline{G}} = \Delta E \quad , \quad W_A = E \quad \\ & | W_{-A} | = E_{\text{M}} \rightarrow E_{\text{m}}, \quad , \end{split}$$

29.
$$mgh_1 + \frac{1}{2} mv_1^2 = mgh_2 + \frac{1}{2} mv_2^2$$

31.
$$T=2 \pi \sqrt{\frac{L}{g}}$$

33.
$$I_1 = I_2$$
, $U = U_1 + U_2$, $R = R_1 + R_2$

34.
$$U_1 = U_2$$
, $I = I_1 + I_2$, $R = \frac{R_1 R_2}{R_1 + R_2}$

35.
$$I = \frac{\varepsilon}{(R+r)}$$
, $I = \frac{u}{R}$, $*I = \frac{q}{t}$

36. U
$$_{\bowtie}$$
=Ir, U= ϵ -Ir=IR

37.
$$W=UIt=qU$$
, 43. $Q=I^2Rt$

特例:
$$UIt=I^2Rt=\frac{u^2}{R}t=qu$$

38.
$$P_{\alpha} = I \epsilon = I^{2}(R+r) = \frac{\epsilon^{2}}{R+r}$$

$$P_{M} = I^{2}R = UI = \frac{u^{2}}{R}, P_{M} = I^{2}r = IU_{M} = \frac{u^{2}}{r}$$

$$P_{\&} = P_{\mbox{\tiny M}} + P_{\mbox{\tiny M}}, \ \eta = \frac{有用量}{总量} \times 100/100$$

$$P_{OM} = \frac{\mathcal{E}^2}{4r}$$
。39. 当 $R = r$ 时,

41.
$$\varepsilon = BLV$$
, $\varepsilon = n \frac{\Delta \Phi}{t}$

$$F = \frac{B^2 L^2 v}{r + R} \quad q = \frac{\Delta \phi}{R + r}$$

42.
$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$
 (派生 3 个基本公式)

43.
$$T = t + 273$$
 , $\Delta T = \Delta t$

44. p=
$$p_0 \left(1 + \frac{t}{273}\right)$$
, v= $v_0 \left(1 + \frac{t}{273}\right)$

45. E= h v, 46. m=
$$m_0 2^{-t/\tau}$$