Analytical Methods:

• System Hyperperiod :

This project contains 6 tasks as follows:

Task	Period/Deadline	Execution time	
Button_1_Monitor	50 m	12.6 us	
Button_2_Monitor	50 m	13.067 us	
Periodic_Transmitter	100 m	17.78 us	
Uart_Receiver	20 m	15.033 us	
Load_1_Simulation	10 m	5.034 ms	
Load_2_Simulation	100 m	11.99 ms	

<u>Note</u>: The execution time calculated from the actual implemented tasks using GPIOs and the logic analyzer.

From the table above and from the graph (which provided next in the pdf) we can find that :

• CPU Load:

CPU Load = (E1+E2+E3+E4+E5+E6)/hyperperiod

$$= \frac{E1}{P1} + \frac{E2}{P2} + \frac{E3}{P3} + \frac{E4}{P4} + \frac{E5}{P5} + \frac{E6}{P6}$$

$$= \frac{12.6u}{50m} + \frac{13.067u}{50} + \frac{17.78u}{100} + \frac{15.033u}{20m} + \frac{5.034m}{10} + \frac{11.99}{100m}$$

$$= \underline{62.4\%}$$

• System Schedulability:

using: Rate Monotonic Utilization Bound

Equation:

$$U = \sum_{i=1}^n \frac{C_i}{P_i} \leq n(2^{\frac{1}{n}} - 1) \qquad \begin{array}{l} \text{U = Total Utilization} \\ \text{C = Execution time} \\ \text{P = Periodicity} \\ \text{N = Number of tasks} \end{array}$$

If: U > Urm

System guaranteed not schedulable

$$U = \frac{C1}{P1} + \frac{C2}{P2} + \frac{C3}{P3} + \frac{C4}{P4} + \frac{C5}{P5} + \frac{C6}{P6}$$

$$= \frac{12.6u}{50m} + \frac{13.067u}{50m} + \frac{17.78u}{100} + \frac{15.033u}{20} + \frac{5.034m}{10m} + \frac{11.99}{10}$$

$$= \underline{62.4\%}$$

Urm =
$$n * (2^{\frac{1}{n}} - 1) = 6 * (2^{\frac{1}{6}} - 1) = 73.477 \%$$

∵ U < Urm (62.4% < 73.477%)</p>

∴ System is Schedulable.

using: Time Demand Analysis

Equation:

$$w_i(t) = e_i + \sum_{k=1}^{i-1} \left\lceil \frac{t}{p_k} \right\rceil e_k \quad \textit{for } 0 < t \leq p_i \quad \text{E = Execution time} \\ \mathsf{P} = \mathsf{Periodicity} \\ \mathsf{T} = \mathsf{Time} \; \mathsf{instance}$$

W = Worst response time

If:

$$w_i(t) \ll D$$

Task is Schedulable

Assuming the given set of tasks are scheduled using a fixed priority rate monotonic scheduler:

Task	Period/Deadline	Execution time	priority
Button_1_Monitor	50 m	12.6 us	1
Button_2_Monitor	50 m	13.067 us	1
Periodic_Transmitter	100 m	17.78 us	0
Uart_Receiver	20 m	15.033 us	2
Load_1_Simulation	10 m	5.034 ms	3
Load_2_Simulation	100 m	11.99 ms	0

Load 1 Simulation:

$$w(10) = 5.034 \text{ m} + 0 = 5.034 \text{ m} < D(10\text{m})$$
 \rightarrow T5 is schedulable

```
# Uart Receiver:
w(20) = 15.033 u + (20/10)*5.034 m = 10.083 m < D(20m)
                              →T4 is schedulable
# Button 1 Monitor:
w(50) = 12.6 \text{ u} + (50/10)^* 5.034 \text{ m} + (50/20)^* 15.033 \text{ u} = 25.227 \text{ m} < D(50\text{m})
                              →T1 is schedulable
# Button 2 Monitor:
w(50) = 13.067 u + (50/10)* 5.034 m + (50/20)*15.033 u + (50/50)*12.6 u
      = 25.24 < D(50m)
                              →T2 is schedulable
# Periodic_Transmitter:
w(100) = 17.96 \text{ u} + (100/10)^* 4.99 \text{ m} + (100/20)^* 15.8 \text{ u} + (100/50)^* 13.3 \text{ u} +
(100/50)*13.3 u = 50.05016m < D(100m)
                              →T3 is schedulable
# Load 2 Simulation:
w(100) = 11.99 \text{ m} + (100/10)^* 4.99 \text{ m} + (100/20)^* 15.8 \text{ u} + (100/50)^* 13.3 \text{ u} +
(100/50)*13.3 u + (100/100)*17.96 u = 62.04016 m < D(100m)
                              →T6 is schedulable

∴ All tasks are schedulable

                       ∴ System is Schedulable.
```

SIMSO Results:

Verifying the above results with SIMSO offline simulator .

#1/CPU load:

id	Name	Task type	Abort on miss	Act. Date (ms)	Period (ms)	List of Act. dates (ms)	Deadline (ms)	WCET (ms)
1	TASK T1	Periodic •	✓ Yes	0	50	-	50	0.0126
2	TASK T2	Periodic •	Yes	0	50	5	50	0.013067
3	TASK T3	Periodic •	✓ Yes	0	100	_	100	0.01778
4	TASK T4	Periodic ▼	✓ Yes	0	20	-	20	0.015033
5	TASK T5	Periodic •	✓ Yes	0	10	=	10	5.034
6	TASK T6	Periodic •	✓ Yes	0	100	5	100	11.99

CPU load = 62.4 % which matches the analytical method .

2/ simulation of the tasks:

Zoom out which indicate hyperperiod(100m) as it will be repeated after that .

showing that Task5 (load_1_simulation) will execute first with period 10 ms

task 6 (load_1_simulation) preempted by task 5 which has higher priority (Closest to the deadline)

the first four tasks (task1 -- > task4) have small execution time so didn't appear in this screenshot.

after zooming in we can see the fist four tasks so the Execution order will be (Task5 \rightarrow Task4 \rightarrow Task1 \rightarrow Task2 \rightarrow Task3 \rightarrow Task6) as expected.

after all we can say that SIMSO verified the analytical approach.

KEIL Results :

1/ screenshot of the tasks discussed above using timer1 and trace hooks to calculate CPU time besides GPIO pins to simulate the scheduling between tasks using logic analyzer:

Same as SIMSO (same Execution order : Task5 → Task4 → Task1 → Task2 → Task3 → Task6) .

Hyperperiod = 100 msec as expected.

CPU load = 62.24 % (almost saturated to that value) which approximately matches the previous approaches.

2/ screenshots of the execution time and periodicity:

Button_1_Monitor execution time (12.6 us)

Button_2_Monitor execution time (13.067 us)

Button_1_Monitor/ Button_1_Monitor periodicity (50 ms)

Periodic_Transmitter execution time (17.78 us)

Periodic_Transmitter periodicity (100 ms)

Uart_Receiver execution time (15.030 us)

Load_1_Simulation execution time (5.034 ms)

Load_1_Simulation periodicity (10 ms)

Load_2_Simulation execution time (11.99 ms)

As load_2_simulation preempted by load_1_simulation so the execution time of load_2_simulation = 22.06098 – 2*5.034 = 11.99 msec

Load_2_Simulation periodicity (100 ms)

