Матрица на Грам. Неравенство на Коши-Буняковски и неравенство на триъгълника. Ортогонално допълнение на подпространство.

Определение 1. Ако a_1, \ldots, a_n са вектори от крайномерно евклидово (унитарно) пространство V, то матрицата

$$G(a_1, \dots, a_n) = \begin{pmatrix} \langle a_1, a_1 \rangle & \dots & \langle a_1, a_j \rangle & \dots & \langle a_1, a_n \rangle \\ \dots & \dots & \dots & \dots & \dots \\ \langle a_i, a_1 \rangle & \dots & \langle a_i, a_j \rangle & \dots & \langle a_i, a_n \rangle \\ \dots & \dots & \dots & \dots & \dots \\ \langle a_n, a_1 \rangle & \dots & \langle a_n, a_j \rangle & \dots & \langle a_n, a_n \rangle \end{pmatrix},$$

съставена от скаларните произведения (a_i, a_j) , $1 \le i, j \le n$ се нарича матрица на Грам на a_1, \ldots, a_n .

Детерминантата на матрицата на Грам $G(a_1, ..., a_n)$ се нарияа детерминанта на Грам и се бележи с $\Gamma(a_1, ..., a_n) = \det G(a_1, ..., a_n)$.

Твърдение 2. Детерминантата на Грам $\Gamma(a_1,\ldots,a_n)$ на произволни вектори a_1,\ldots,a_n от крайномерно евклидово (унитарно) пространство V приема неотрицателни стойности $\Gamma(a_1,\ldots,a_n)\geq 0$ с равенство $\Gamma(a_1,\ldots,a_n)=0$ тогава и само тогава, когато a_1,\ldots,a_n са линейно зависими.

 \mathcal{A} оказателство. Нека $A=(a_{i,j})_{i=1}^m{}_{j=1}^n$ е матрицата, съставена по стълбове от координатите

$$\begin{pmatrix} a_{1,j} \\ \dots \\ a_{m,j} \end{pmatrix}$$

на a_i спрямо ортонормиран базис $e = (e_1, \dots, e_m)$ на V, т.е.

$$a_j = (e_1, \dots, e_m) \begin{pmatrix} a_{1,j} \\ \dots \\ a_{m,j} \end{pmatrix}.$$

Тогава

$$A^{t}\overline{A} = \begin{pmatrix} a_{1}^{t} \\ \dots \\ a_{n}^{t} \end{pmatrix} (\overline{a_{1}}, \dots, \overline{a_{n}}) = \begin{pmatrix} a_{1}^{t}\overline{a_{1}} & \dots & a_{1}^{t}, \overline{a_{j}} & \dots & a_{1}^{t}, \overline{a_{n}} \\ \dots & \dots & \dots & \dots & \dots \\ a_{i}^{t}\overline{a_{1}} & \dots & a_{i}^{t}\overline{a_{j}} & \dots & a_{i}^{t}\overline{a_{n}} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n}^{t}\overline{a_{1}} & \dots & a_{n}^{t}\overline{a_{j}} & \dots & a_{n}^{t}\overline{a_{n}} \end{pmatrix} =$$

$$= \begin{pmatrix} \langle a_{1}, a_{1} \rangle & \dots & \langle a_{1}, a_{j} \rangle & \dots & \langle a_{1}, a_{n} \rangle \\ \dots & \dots & \dots & \dots & \dots \\ \langle a_{i}, a_{1} \rangle & \dots & \langle a_{i}, a_{j} \rangle & \dots & \langle a_{i}, a_{n} \rangle \\ \dots & \dots & \dots & \dots & \dots \\ \langle a_{n}, a_{1} \rangle & \dots & \langle a_{n}, a_{i} \rangle & \dots & \langle a_{n}, a_{n} \rangle \end{pmatrix} = G(a_{1}, \dots, a_{n})$$

е матрицата на Грам, съгласно $a_i^t \overline{a_j} = \langle a_i, a_j \rangle$ за всички $1 \leq i, j \leq n$.

Нека b_1,\ldots,b_n се получават от a_1,\ldots,a_n чрез ортогонализация по метода на Грам-Шмид. Тогава съществува триъгълна матрица $T=(t_{i,j})_{i,j=1}^n$ с $t_{i,j}=0$ за $\forall i>j$ и $t_{i,i}=1$ за $\forall 1\leq i\leq n$, така че

$$(b_1, \dots, b_n) = (a_1, \dots, a_n) \begin{pmatrix} 1 & t_{1,2} & \dots & t_{1,n-1} & t_{1,n} \\ 0 & 1 & \dots & t_{2,n-1} & t_{2,n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} = AT.$$

Ако $B \in M_{m \times n}(F)$ е матрицата, образувана по стълбове от координатите на

$$b_j = (e_1, \dots, e_m) \begin{pmatrix} b_{1,j} \\ \dots \\ b_{m,j} \end{pmatrix}$$

спрямо ортонормирания базис $e=(e_1,\ldots,e_m)$ на V, то B=AT. Следователно матрицата на Грам на b_1,\ldots,b_n е

$$G(b_1, \dots, b_n) = B^t \overline{B} = (AT)^t \overline{(AT)} = T^t (A^t \overline{A}) \overline{T} = T^t G(a_1, \dots, a_n) \overline{T}.$$

За $\overline{(AT)}=\overline{AT}$ използваме правилото за умножение на матрици, както и $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2},\ \overline{z_1z_2}=\overline{z_1z_2}$ са произволни комплексни числа $z_1,z_2\in\mathbb{C}$. Детерминантите на Грам

$$\det G(b_1,\ldots,b_n) = \det(T^t)G(a_1,\ldots,a_n)\det(\overline{T}) = \det G(a_1,\ldots,a_n)$$

съвпадат, защото $\det(T^t) = \det(T) = \det(\overline{T}) = 1$. Пресмятаме в явен вид

$$G(b_1,\ldots,b_n) = \begin{pmatrix} ||b_1||^2 & 0 & \cdots & 0 & 0\\ 0 & ||b_2||^2 & \cdots & 0 & 0\\ \cdots & \cdots & \cdots & \cdots & \cdots\\ 0 & 0 & \cdots & ||b_{n-1}||^2 & 0\\ 0 & 0 & \cdots & 0 & ||b_n||^2 \end{pmatrix},$$

и забелязваме, че

$$\det G(b_1, \dots, b_n) = ||b_1||^2 ||b_2||^2 \dots ||b_{n-1}||^2 ||b_n||^2 \ge 0$$

с равенство $\det G(b_1,\ldots,b_n)=0$ точно когато $b_i=\overrightarrow{\mathcal{O}}_V$ за някое $1\leq i\leq n$. От свойствата на ортогонализацията по метода на Грам-Шмид знаем, че ако $i\in\mathbb{N}$ е минималното естествено, за което $b_i=\overrightarrow{\mathcal{O}}_V$, то a_1,\ldots,a_{i-1} са линейно независими и $a_i\in l(a_1,\ldots,a_{i-1})$. Затова $b_i=\overrightarrow{\mathcal{O}}_V$ за някое $1\leq i\leq n$ тогава и само тогава, когато векторите a_1,\ldots,a_n са линейно зависими.

Твърдение 3. (Неравенство на Коши-Буняковски:) Zа произволни вектори a и b от крайномерно евклидово или унитарно пространство V е в сила

$$|\langle a, b \rangle| < ||a|| ||b||$$

c равенство $|\langle a,b \rangle| = ||a|| \, ||b||$ точно когато a,b са линейно зависими.

2

Доказателство. Детерминантата на Грам

$$\det G(a,b) = \begin{vmatrix} \langle a,a \rangle & \langle a,b \rangle \\ \langle b,a \rangle & \langle b,b \rangle \end{vmatrix} = \begin{vmatrix} \frac{||a||^2}{\langle a,b \rangle} & \langle a,b \rangle \\ \frac{||a||^2}{\langle a,b \rangle} & \frac{||b||^2}{\langle a,b \rangle} = \frac{||a||^2}{||b||^2} - \frac{|\langle a,b \rangle|^2}{\langle a,b \rangle} \ge 0$$

е неотрицателна и $||a||^2||b||^2-|\langle a,b\rangle|^2=0$ тогава и само тогава, когато a,b са линейно зависими.

За произволни $X,Y\in\mathbb{R}^{\geq 0}$ условието $X^2\geq Y^2$ е еквивалентно на $X\geq Y$ с равенство $X^2=Y^2$ точно когато X=Y. За пелта е достатъчно да разложим

$$X^2 - Y^2 = (X + Y)(X - Y)$$

и да забележим, че $X+Y\geq 0$. Ако X+Y=0, то $Y=-X\in\mathbb{R}^{\geq 0}\cap\mathbb{R}^{\leq 0}=\{0\}$, така че от $X^2=Y^2$ следва X=Y.

В случая, $||a||^2||b||^2 \ge |\langle a,b\rangle|^2$ е еквивалентно на $||a||||b|| \ge |\langle a,b\rangle|$ с равенство $||a||||b|| = |\langle a,b\rangle|$ точно когато a,b са линейно зависими.

Ако $a,b\in V\setminus\{\overline{\mathcal{O}}\}$ са ненулеви вектори от евклидово пространство, то $||a||,||b||\in\mathbb{R}^{\geq 0}$ и

$$-1 \le \frac{\langle a, b \rangle}{||a||||b||} \le 1.$$

Следователно съществува еднозначно определен ъгъл $\varphi \in [0,\pi]$ с

$$\cos(\varphi) = \frac{\langle a, b \rangle}{||a|| ||b||},$$

който наричаме ъгъл между а и в. Това дава възможност да изразим

$$\langle a, b \rangle = ||a|| ||b|| \cos(\varphi).$$

Твърдение 4. (Неравенство на триъгълника:) Произволни вектори a, b от евклидово или унитарно пространство V изпълняват неравенството $||a+b|| \le ||a|| + ||b||$ с равенство ||a+b|| = ||a|| + ||b|| точно когато $a = \lambda b$ за $\lambda \in \mathbb{R}^{\geq 0}$ или $b = \overrightarrow{\mathcal{O}}_V$.

 \mathcal{A} оказателство. За произволно комплексно число $z=r+is\in\mathbb{C}$ с $r,s\in\mathbb{R}$ е в сила

$$r \leq |z| = \sqrt{r^2 + s^2}^{\geq 0}$$

с равенство $r=\sqrt{r^2+s^2}^{\geq 0}$ точно когато s=0 и $r\in\mathbb{R}^{\geq 0}$. Последното е еквивалентно на $z\in\mathbb{R}^{\geq 0}$. Затова

$$\begin{aligned} ||a+b||^2 &= \langle a+b,a+b\rangle = \langle a,a\rangle + \langle a,b\rangle + \langle b,a\rangle + \langle b,b\rangle = ||a||^2 + \langle a,b\rangle + \overline{\langle a,b\rangle} + ||b||^2 = \\ &= ||a||^2 + 2Re(\langle a,b\rangle) + ||b||^2 \leq ||a||^2 + 2|\langle a,b\rangle| + ||b||^2 \end{aligned}$$

с равенство $||a+b||^2=||a||^2+2|\langle a,b\rangle|+||b||^2$ тогава и само тогава, когато $\langle a,b\rangle\in\mathbb{R}^{\geq 0}$. Прилагайки неравенството на Коши-Буняковски $|\langle a,b\rangle|\leq ||a||||b||$ получаваме

$$||a+b||^2 \le ||a||^2 + 2||a||||b|| + ||b||^2 = (||a|| + ||b||)^2$$

с равенство $||a+b||^2=(||a|+||b||)^2$ точно когато a,b са линейно зависими и $\mu a+\nu b=\overrightarrow{\mathcal{O}}_V$ за $\mu,\nu\in\mathbb{R}, (\mu,\nu)\neq(0,0)$. Ако $\mu\neq0$, това е еквивалентно на $a=\lambda b$ за някое $\lambda\in\mathbb{R}$, а

от $\mu = 0$ следва $\nu \neq 0$ и $b = \overrightarrow{\mathcal{O}}_V$. При $b = \overrightarrow{\mathcal{O}}_V$ е в сила $2\langle a, b = 0$, откъдето $Re(\langle a, b \rangle) = |\langle a, b \rangle| = 0$. Ако $a = \lambda b$, то условието $\langle a, b \rangle = \langle \lambda b, b \rangle = \lambda ||b||^2 \in \mathbb{R}^{\geq 0}$ е изпълнено точно когато $\lambda \in \mathbb{R}^{\geq 0}$. За $X, Y \in \mathbb{R}^{\geq 0}$ условието $X^2 \geq Y^2$ е еквивалентно на $X \geq Y$ с равенство $X^2 = Y^2$ тогава и само тогава, когато X = Y. Затова $||a + b|| \leq ||a|| + ||b||$ с равенство ||a + b|| = ||a|| + ||b|| точно когато $a = \lambda b$ или $b = \overrightarrow{\mathcal{O}}_V$.

Прилагайки неравенството на триъгълника към векторите a-b и b от евклидово или унитарно пространство V получаваме

$$||a|| = ||(a - b) + b|| \le ||a - b|| + ||b||,$$

откъдето $||a-b|| \ge ||a|| - ||b||$. Равенството ||a-b|| = ||a|| - ||b|| е в сила точно когато $a-b=\lambda b$ за $\lambda \in \mathbb{R}^{\ge 0}$ или $b=\overrightarrow{\mathcal{O}}$. Това е изпълнено за $a=\mu b$ с $\mu \in \mathbb{R}^{\ge 1}$ или $b=\overrightarrow{\mathcal{O}}$.

Определение 5. Ортогоналното допълнение на подпространство U на евклидово или унитарно пространство V е множеството

$$U^{\perp} = \{ v \in V \mid \langle u, v \rangle = 0, \quad \forall u \in U \}$$

на векторите $v \in V$, които са ортогонални на произволен вектор $u \in U$.

Ортогоналното допълнение U^{\perp} на подпространство $U \subset V$ е подпространство на V. По-точно, за произволни $v_1, v_2 \in U^{\perp}, \ u \in U$ и $\lambda \in \mathbb{R}$ или $\lambda \in \mathbb{C}$ е в сила

$$\langle u, v_1 + v_2 \rangle = \langle u, v_1 \rangle + \langle u, v_2 \rangle = 0 + 0 = 0$$
 и
$$\langle u, \lambda v_1 \rangle = \overline{\lambda} \langle u, v_1 \rangle = \overline{\lambda} 0 = 0.$$

Следователно $v_1+v_2, \lambda v_1 \in U^{\perp}$ и U^{\perp} е подпространство на V.

Твърдение 6. Нека V е n-мерно евклидово (унитарно) пространство, U е nодпространство на V, а U^{\perp} е ортогоналното допълнение на U. Тогава

(i)
$$U \oplus U^{\perp} = V u$$

(ii) $(U^{\perp})^{\perp} = U$.

От (i) следва, че произволен вектор $v \in V$ има единствено представяне като сума $v = u_o + h$ на $u_o \in U$ и $h \in U^{\perp}$. Векторът u_o се нарича ортогонална проекция на v върху U, а h е перпендикулярът от v към U.

Доказателство. (i) Избираме ортонормиран базис e_1, \ldots, e_k на U и допълваме до ортонормиран базис $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ на V. Тогава

$$V = l(e_1, \dots, e_k) \oplus l(e_{k+1}, \dots, e_n) = U \oplus l(e_{k+1}, \dots, e_n).$$

Достатъчно е да докажем, че $l(e_{k+1},\dots,e_n)=U^\perp$, за да получим (i). За произволни $v=\sum\limits_{j=k+1}^n y_je_j$ и $u=\sum\limits_{i=1}^k x_ie_i\in U$ е в сила

$$\langle u, v \rangle = \langle \sum_{i=1}^{k} x_i e_i, \sum_{j=k+1}^{n} y_j e_j \rangle = \sum_{i=1}^{k} \sum_{j=k+1}^{n} x_i \overline{y_j} \langle e_i, e_j \rangle = 0,$$

така че $l(e_{k+1},\ldots,e_n)\subseteq U^\perp$. Обратно, ако $v=\sum_{j=1}^n y_j e_j\in U^\perp$, то за всяко $1\leq i\leq k$ векторът e_i принадлежи на U, откъдето

$$0 = \langle e_i, v \rangle = \langle e_i, \sum_{j=1}^n y_j e_j \rangle = \sum_{j=1}^n \overline{y_j} \langle e_i, e_j \rangle = \overline{y_i}.$$

Следователно $v=\sum\limits_{j=k+1}^ny_je_j\in l(e_{k+1},\ldots,e_n)$ и $U^\perp\subseteq l(e_{k+1},\ldots,e_n)$. Това доказва

$$U^{\perp} = l(e_{k+1}, \dots, e_n).$$

(ii) От една страна, $U\subseteq (U^\perp)^\perp$, защото за произволни вектори $u\in U$ и $v\in U^\perp$ е изпълнено

$$\langle v,u\rangle=\overline{\langle u,v\rangle}=\overline{0}=0.$$

Съгласно (i) имаме разлагания

$$U \oplus U^{\perp} = V = U^{\perp} \oplus (U^{\perp})^{\perp}.$$

Оттук, $\dim(U^{\perp})^{\perp} = \dim V - \dim(U^{\perp}) = \dim(U)$ и подпространството U съвпада с пространството $(U^{\perp})^{\perp}$.

Следствие 7. Нека V е крайномерно евклидово (унитарно) пространство, а U е подпространство на V. Перпендикулярът $h \in U^{\perp}$ от вектор $v \in V$ към U е единственият вектор c минимална дължина, за който съществува $u_o \in U$ c $v = h + u_o$.

Доказателство. Ако v=u+w за $u\in U,\,w\in V,$ то от $u+w=v=u_o+h$ следва

$$w = (u_o - u) + h$$
 c $u_o - u \in U$, $h \in U^{\perp}$.

Следователно

$$||w||^{2} = \langle w, w \rangle = \langle (u_{o} - u) + h, (u_{o} - u) + h \rangle =$$

$$= \langle u_{o} - u, u_{o} - u \rangle + \langle h, h \rangle = ||u_{o} - u||^{2} + ||h||^{2} \ge ||h||^{2},$$

съгласно $\langle u_o-u,h\rangle=0=\langle h,u_o-u\rangle.$ Равенството $||w||^2=||h||^2$ е в сила точно когато $||u_o-u||^2=0.$ Това е изпълнено само за $u_o=u$ и е еквивалентно на w=h.

Нека Ax = b е несъвместима система линейни уравнения, чиято матрица от коефициенти $A \in M_{m \times n}(\mathbb{R})$ е с ранг $\mathrm{rk}(A) = n$. Ако $a_1, \ldots, a_n \in M_{m \times 1}(\mathbb{R})$ са векторстълбовете на A, то

$$A^{t}A = \begin{pmatrix} a_{1}^{t} \\ \dots \\ a_{n}^{t} \end{pmatrix} (a_{1}, \dots, a_{n}) = \begin{pmatrix} a_{1}^{t}\overline{a_{1}} & \dots & a_{1}^{t}\overline{a_{j}} & \dots & a_{1}^{t}\overline{a_{n}} \\ \dots & \dots & \dots & \dots & \dots \\ a_{i}^{t}\overline{a_{1}} & \dots & a_{i}^{t}\overline{a_{j}} & \dots & a_{i}^{t}\overline{a_{n}} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n}^{t}\overline{a_{1}} & \dots & a_{n}^{t}\overline{a_{j}} & \dots & a_{n}^{t}\overline{a_{n}} \end{pmatrix} =$$

$$= \begin{pmatrix} \langle a_{1}, a_{1} \rangle & \dots & \langle a_{1}, a_{j} \rangle & \dots & \langle a_{1}, a_{n} \rangle \\ \dots & \dots & \dots & \dots & \dots \\ \langle a_{i}, a_{1} \rangle & \dots & \langle a_{i}, a_{j} \rangle & \dots & \langle a_{i}, a_{n} \rangle \\ \dots & \dots & \dots & \dots & \dots \\ \langle a_{n}, a_{1} \rangle & \dots & \langle a_{n}, a_{j} \rangle & \dots & \langle a_{n}, a_{n} \rangle \end{pmatrix} = G(a_{1}, \dots, a_{n})$$

е матрицата на Грам на a_1,\dots,a_n . Умножавайки отляво Ax=b с A^t получаваме системата линейни уравнения

$$G(a_1,\ldots,a_n)x = A^tAx = A^tb.$$

П

Съгласно $\mathrm{rk}(a_1,\ldots,a_n)=\mathrm{rk}(A)=n$, векторите a_1,\ldots,a_n са линейно независими и $\Gamma(a_1,\ldots,a_n)=\det G(a_1,\ldots,a_n)\in\mathbb{R}^{>0}$. Затова съществува единствено решение $s\in M_{n\times 1}(\mathbb{R})$ на $A^tAx=A^tb$, за което

$$\begin{pmatrix} a_1^t \\ \dots \\ a_n^t \end{pmatrix} (b - As) = \mathbb{O}_{n \times 1}.$$

Следователно векторът $b - As \in M_{m \times 1}(\mathbb{R})$ е ортогонален на $a_1, \ldots, a_n \in M_{m \times 1}(\mathbb{R})$ и принадлежи на ортогоналното допълнение

$$b - As \in l(a_1, \dots, a_n)^{\perp}$$

на $l(a_1,\ldots,a_n)$. От друга страна,

$$As = (a_1, \dots, a_n) \begin{pmatrix} s_1 \\ \dots \\ s_n \end{pmatrix} = \sum_{i=1}^n s_i a_i \in l(a_1, \dots, a_n)$$

принадлежи на линейната обвивка на a_1, \ldots, a_n . Затова

$$b = (b - As) + As \in l(a_1, \dots, a_n)^{\perp} \oplus l(a_1, \dots, a_n)$$

е разлагането на $b \in M_{m \times 1}(\mathbb{R})$ в сума на ортоналната си проекция As върху $l(a_1,\ldots,a_n)$ и перпендикуляра b-As от b към $l(a_1,\ldots,a_n)$. Следователно $b-As \in M_{m \times 1}(\mathbb{R})$ е единственият вектор с минимална дължина, за който $b-(b-As)=As \in l(a_1,\ldots,a_n)$. По този начин, щом не съществува $s \in M_{n \times 1}(\mathbb{R})$ с $b-As = \mathbb{O}_{m \times 1}$, то решението $s \in M_{n \times 1}(\mathbb{R})$, за което векторът $b-As \in M_{m \times 1}(\mathbb{R})$ е с минимална дължина се нарича приближено решение на несъвместимата система Ax = b с $\mathrm{rk}(A) = n$ по метода на най-малките квадрати.