浙江大学附属中学 2022 年高一年级测试

考试范围: 必修一A; 考试时间: 120分钟; 命题人: 陈金康

问卷部分

注意事项:

- 1. 答题前填写好自己的姓名、班级、考号等信息
- 2. 请将答案正确填写在答题卡上

3. 考试时严禁抄袭作	三弊,不得使用计算器			
一、单选题				
1. 设正实数 <i>x,y,z</i> 满足		$\frac{xy}{z}$ \mathbb{I}	又得最大值时, $\frac{2}{x}$ +	$\frac{1}{y} - \frac{2}{z}$ 的最大值为()
A. 9	B. 1	C.	$\frac{9}{4}$	D. 3
2. 已知函数 $f(x)$ 是定义在 R 上奇函数,当 $x > 0$ 时, $f(x) = \pi^x + x$.若				
$f(3a^2+b^2)+f\Big[\lambda(a^2-ab)\Big]\ge 0$ 对任意的 $b>a>0$ 恒成立,则实数 λ 的取值范围是()				
A. $[6,+\infty)$	B. $\left(-\infty,4\right]$	C.	(0,6]	D. $\left(-\infty, 6\right]$
3. 关于 x 的不等式 $2\cos 2x > a - 4\sqrt{3}\sin x$ 在区间 (n,m) 上恒成立, $m-n$ 的最大值为 $\frac{5\pi}{3}$,				
则实数 4 的取值范围 ()				
A. $a \le -2\sqrt{3} + 1$	B. $a = -2\sqrt{3} + 1$	C.	$a \le -7$	D. $a = -7$
4. 已知 $a = e^{0.2} - 1, b = \ln 1.2, c = \tan 0.2$,其中 $e = 2.71828$ · · · 为自然对数的底数,则()				
A. $c > a > b$		В.	a > c > b	
C. b > a > c		D.	a > b > c	
5. 设集合 S , T , $S \subseteq \mathbb{N}^*$, $T \subseteq \mathbb{N}^*$, S , T 中至少有两个元素,且 S , T 满足:				
①对于任意 x , $y \in S$, 若 $x \neq y$, 都有 $xy \in T$				
②对于任意 x , $y \in T$, 若 $x < y$, 则 $\frac{y}{x} \in S$;				
TTIA E T 20 41 E /				

下列命题正确的是()

- A. 若S有4个元素,则SUT有7个元素
- B. 若S有4个元素,则SUT有6个元素
- C. 若S有3个元素,则SUT有5个元素
- D. 若S有3个元素,则SUT有4个元素

6. 已知函数
$$f(x) = \begin{cases} \left| \frac{2x+1}{x-1} \right|, x < 0 \\ x^2 - 4x + 3, x \ge 0 \end{cases}$$
,若方程 $f\left(x + \frac{1}{x} - 1\right) = a$ 恰有4个实根,则实数 a 的

取值范围是()

A.
$$(-1,2)$$

B.
$$\left(\frac{5}{4},2\right)$$

A.
$$(-1,2)$$
 B. $(\frac{5}{4},2)$ C. $(-1,0) \cup [\frac{5}{4},2)$

D.
$$(-1,0) \cup \left(\frac{5}{4},2\right)$$

- 7. 若关于x的不等式 $ax+6+\left|x^2-ax-6\right| \ge 4$ 恒成立,则实数a的取值范围是
- A. $\left(-\infty,1\right]$ B. $\left[-1,1\right]$ C. $\left[-1,+\infty\right)$

D.
$$(-\infty, -1] \cup [1, +\infty)$$

8. 已知函数 $f(x) = \begin{cases} \log_2(x+2), -2 < x \le 0 \\ x^2 - 2x + 1, x > 0 \end{cases}$,若函数 $g(x) = [f(f(x))]^2 - (a+1)f(f(x)) + a$

(a ∈ R)恰有 8 个不同零点,则实数 a 的取值范围是(

- A. (0, 1)
- B. [0,1) C. $(0,\frac{1}{4})$ D. (0,2)

二、多选题

- 9. 己知函数 $f(x) = \begin{cases} 1 |2x 3|, 1 \le x \le 2 \\ \frac{1}{2} f\left(\frac{x}{2}\right), x > 2 \end{cases}$,则下列说法正确的是()
- A. 若函数 y = f(x) kx 有 4 个零点,则实数 k 的取值范围为 $\left(\frac{1}{24}, \frac{1}{6}\right)$
- B. 关于 x 的方程 $f(x) \frac{1}{2^n} = 0 (n \in N^*)$ 有 2n + 4 个不同的解
- C. 对于实数 $x \in [1,+\infty)$,不等式 $2xf(x)-3 \le 0$ 恒成立
- D. 当 $x \in [2^{n-1}, 2^n]$ $(n \in N^*)$ 时,函数 f(x) 的图象与 x 轴围成的图形的面积为 1
- 10. 已知函数 f(x)满足 $\forall x \in \mathbb{R}$,有 f(x) = f(6-x),且 f(x+2) = f(x-2),当 $x \in [-1,1]$
- 时, $f(x) = \ln(\sqrt{1+x^2} x)$,则下列说法正确的是()
- A. f(x)是奇函数
- B. $x \in (2020, 2022)$ 时, f(x)单调递减
- C. f(x)关于点(2021,0)对称

- D. $x \in (-1,11)$ 时,方程 $f(x) = \sin\left(\frac{\pi}{2}x\right)$ 所有根的和为 30
- 11. 已知函数 f(x), g(x)的定义域均为 **R**,函数 f(2x+2)为奇函数, f(x-1)为偶函
- 数,g(x)为奇函数,g(x)的图象关于直线x=2对称,则下列说法正确的是()
- A. 函数 f(x)的一个周期为 6
- B. 函数 g(x)的一个周期为 8
- C. 若f(0)=2, 则f(18)+g(68)=-2
- D. 若当 $0 \le x \le 2$ 时, $g(x) = \ln(x+1)$,则当 $10 \le x \le 12$ 时, $g(x) = \ln(13-x)$
- 12. 已知函数 $f(x) = \sin|x| + |\cos x|$,以下结论正确的是()
- A. 它是偶函数
- B. 它是周期为2π的周期函数
- C. 它的值域为 $\left[-1,\sqrt{2}\right]$
- D. 它在 $(-\pi,2\pi)$ 这个区间有且只有 2 个零点

三、填空题

- 13. 已知关于x的不等式 $\frac{e^x}{x^3} x a \ln x \ge 1$ 对于任意 $x \in (1, +\infty)$ 恒成立,则实数a的取值范围为
- 14. 设函数 f(x) 的定义域为 **R**, f(x+1)-2 为奇函数, f(x+2) 为偶函数, 当 $x \in [1,2]$

时,
$$f(x) = ax^2 + b$$
.若 $f(-1) + f(0) = 1$,则 $f\left(\frac{2023}{2}\right) = \underline{\qquad}$

- 15. 己知函数 $f(x) = 2\ln x 1$, g(x) = a|x-m|, 若存在实数 a > 0 使 y = f(x) g(x) 在
- $\left(\frac{1}{e}, e\right)$ 上有 2 个零点,则 m 的取值范围为_____.
- 16. 已知集合 $A = \{1,2,3,4,5,6,7\}$,集合 $B = \{1,2,3,4\}$,函数 $f: A \to B$,且对于一切的 i = 1,2,3,4,5,6,都有 $|f(i+1) f(i)| \ge 2$,则满足条件的函数 f的个数为

四、解答题

17. 集合 $S = \{a \mid a = (a_1, a_2, ..., a_n), a_i \in \{0.5, -0.5\}, i = 1, 2, ..., n\}$,其中 n 为正整数.对 S 中的

任意元素
$$a = (a_1, a_2, ..., a_n)$$
 和 $b = (b_1, b_2, ..., b_n)$,定义

$$D(a,b) = ((a_1 + b_1)^3 - |a_1 - b_1|) + ((a_2 + b_2)^3 - |a_2 - b_2|) + \dots + ((a_n + b_n)^3 - |a_n - b_n|)$$

- (1)当n=3, a=(0.5,0.5,-0.5), b=(-0.5,0.5,-0.5)时,求D(a,a)和D(a,b)的值.
- (2)当n=4时,S的子集A满足:对A中任意元素 a 和 b ,D(a,a)不能被4整除,且当 a b时,D(a,b)能被4整除.求集合A中元素个数的最大值.
- (3)给定n>3, S的子集 A 满足: 对 A 中任意元素 a 和 b ,当 a 不等于 b 时, $D(a,b) \ge n-4$. 求集合 A 中元素个数的最大值.
- 18. 己知定义在**R** 的函数 f(x)满足: ①对 $\forall x$, $y \in \mathbf{R}$, f(x+y)=f(x)+f(y)-1; ② 当 x > 0 时,f(x) < 1; ③ f(1) = -2.
- (1)求f(0), 判断并证明f(x)的单调性;
- (2)若 $\exists x \in [-1,1]$,使得 $f(x) \le m^2 2am 5$,对 $\forall a \in [-1,1]$ 成立,求实数m的取值范围;
- (3)解关于x的不等式 $f(ax^2) < f((a+2)x) + 6$.
- 19. 已知函数 $f(x) = 2^x + 2^{-x}$.
- (1)求证:函数f(x)是偶函数;
- (2)设 $a \in R$,求关于x的函数 $y = 2^{2x} + 2^{-2x} 2af(x)$ 在 $x \in [0, +\infty)$ 时的最小值g(a)的表达式;
- (3)若关于x的不等式 $mf(x) \le 2^{-x} + m 1$ 在 $x \in (0, +\infty)$ 时恒成立,求实数m的取值范围.
- 20. 已知函数 $f(x) = \sqrt{3x-2} ax$, $a \in \mathbb{R}$.
- (1)若f(x)在区间 $[1,+\infty)$ 上单调递减,求a的最小值;
- (2)当 $x \ge 1$ 时, $5x^2 + x m^2 \ge m\sqrt{3x 2}$,求实数 m 的取值范围.
- 21. 对正整数 n ,记 $I_n=\left\{1,2,3,\cdots,n\right\}$, $P_n=\left\{\frac{m}{\sqrt{k}}\middle|m\in I_n,k\in I_n\right\}$.
- (1)用列举法表示集合 P3;
- (2)求集合 P_7 中元素的个数;
- (3)若集合A中任意两个元素之和都不是整数的平方,则称A为"稀疏集".已知集合 P_n 能

分成两个不相交的稀疏集的并集,求11的最大值.

22. 函数 $f(x)=x^2+2|x-a|+a(a\in R)$,在 $x\in \left[-2,2\right]$ 上的最大值为 $M\left(a\right)$,最小值为 $m\left(a\right)$.

(1)求
$$g(a)=M(a)-m(a)$$
;

(2)设 $b \in \mathbb{R}$,若 $[f(x)+b]^2$ 36对 $x \in [-2,2]$ 恒成立,求a+b的取值