PROGRAMAÇÃO INTERMEDIÁRIA -LIÇÃO #6

Diferentes modos de mover o robô: Sincronização, Potência Regulada, Aceleração e Desaceleração

Por Droids Robotics

OBJETIVO

- O objetivo dessa aula é ensinar para você como usar blocos diferentes para mover o robô, e quando usar cada bloco.
- Pode ser confuso tentar adivinhar qual bloco usar para mover o motor.

MODOS DIFERENTES PARA MOVER O ROBÔ

- Como estes diferem um do outro nos termos seguintes?
 - Regulação de potência
 - Sincronização do motor
 - Aceleração/Desaceleração

POTÊNCIA REGULADA

- Potência regulada procura sempre mover o robô em uma velocidade pré-estabelecida
- Quando o robô tiver problemas ao se mover porque está pesado, subindo alguma rampa, a bateria está fraca ou está bloqueado, a a potência regulada dá mais potência ao motor para que este possa alcançar a meta de velocidade
- Isso é bom para assegurar que o robô está se movendo a uma velocidade previsível

MOTORES SINCRONIZADOS

- Motores sincronizados garantem que ambos os motores girem igualmente (ou com algum raio específico);
- Se uma roda ficar presa, não permite que a outra roda fique girando;
- Se você tiver motores girando igualmente, isso ajuda a assegurar que o robô se mova reto mesmo quando uma roda sofre friccção ou algo do tipo;
- Quando você tem motores sincronizados com um raio específico, os movimentos do robô se tornam previsíveis e suaves.

Vídeos no próximo slide

SINCRONIZADO VS. DESSINCRONIZADO

Clique para assistir aos vídeos

Motores sincronizados

Se um motor fica preso, o outro para também

Motores dessincronizados

O segundo motor irá continuar girando quando o outro estiver preso

ACELERAÇÃO / DESACELERAÇÃO

- Aceleração (Ramp Up) faz com que o robô aumente de velocidade gradualmente no início do movimento
- Desaceleração (Ramp Down) faz com que o robô pare gradualmente no final
- Sem aceleração/desaceleração, talvez você veja o robô sacolejando no início ou no final
 - O robô ainda irá ajustar seus motores depois da pausa para alcançar o valor determinado do sensor de rotações, mas isso pode ser menos preciso

DIFERENTES MANEIRAS DE MOVER O ROBÔ

	Potência Regulada	Motores sincronizados	Aceleração/ Desaceleração
1	√	√	√
2	√	√	√
3	√	X	X
4 B C C C C C C C C C C C C C C C C C C	X	X	X

MOVENDO EM GRAUS VS. SEGUNDOS

Mover em graus/rotações

- O bloco não se completa até os graus/rotações estabelecidos sejam atingidos
- E se o robô ficar preso em algum lugar do tapete?
 - Programação trava e nunca chega ao próximo bloco
 - Você terá que pegar o robô e levar uma penalidade de toque.

Mover por segundos

- Menos preciso para movimentos do robô
 - Distance traveled depends on speed, battery level, weight of robot
- Você tem que lembrar disso quando decidir se mover por segundos deve ser usado.
- No entando, pode evitar estagnação do robô
 - Ex.: pode ser útil se sua garra ficar presa

Vídeos no próximo slide

MOVENDO EM GRAUS VS. SEGUNDOS

Clique para assistir aos vídeos

Robô estagnado

Robô fica preso. Só termina quando liberado.

Robô não-estagnado

Robô fica preso mas ainda sim termina (você pode ouvir o som)

CRÉDITOS

- Esse tutorial foi criado por Sanjay Seshan e Arvind Seshan da equipe Droids Robotics.
- Mais lições disponíveis em at www.ev3lessons.com
- Email dos autores: team@droidsrobotics.org
- Traduzido para português por equipes GEETec e P.E.A.R.

Esse trabalho é licenciado sob <u>Creative Commons Attribution-</u> NonCommercial-ShareAlike 4.0 International License.