

## NATURAL SUMMATION

# Why

We want a notation for expressing the sum of several natural numbers.

# **Definition**

Let  $s = (m_1, ..., m_n)$  be a sequence of natural numbers. The *sequence* sum of s is the result of first summing the first two numbers, then summing the result with the third number, and so on, until we have summed all the numbers

#### Notation

We denote the sum of a sequence using by using the  $\sum$  symbol.  $\sum$  is the capital greek letter "sigma" and is a mnemonic for "sum."

Let  $(m_1, \ldots, m_n)$  be a sequence of natural numbers. Let us denote by  $m_i$  an element of the sequence, where  $i = 1, \ldots, n$ .

We denote that the sum ranges over an (ordered) index set  $\{1, \ldots, n\}$  by writing  $\sum_{i=1}^{n}$ . We denote the sequence sum

$$\sum_{i=1}^{n} m_i.$$

## Summing over finite sets

Suppose A is a finite set and  $f:A\to \mathbf{N}$  is a function. Then we the notation

$$\sum_{a \in A} f(a)$$

is notation for  $\sum_{i=1}^{n} f(\sigma(i))$  where  $\sigma : \{1, \ldots, |A|\} \to A$  is any numbering of A. The numbering is inconsequential because addition is commutative.

