Unfoldings of 4D-Hypercube Unfoldings that tile R2 Presentation

Trun V. Ramteke¹

¹Student Private International English School

Japan Conference on Discrete and Computational Geometry, Graphs, and Games (JCDCG3), Septembber 2022

Section

Introduction

2 Results

Background (3D)

This 3D-cube has the following properties:

- Tiles R³
- 11 edge-unfoldings each of which tiles R²
- Therefore it is a Dimension-descending Tiler (DDT)

Result

DDT

A polytope that monohedrally tiles R^d is a DDT if all of its facet-unfoldings tile R^{d-1} , and every R^{d-1} polytope has a facet-unfolding that tiles R^{d-2} and so on till an edge-unfolding that tiles R^2 .

Background (4D)

This 4D-cube has the following properties:

- Tiles R⁴
- 261 face-unfoldings each of which tiles R³ [Tur84][DR15][Wh21]
- 2 (of 261) face-unfoldings have edge-unfoldings that tile R² [DR15][AS16]

Screenshot of Whuts.org [Wh21]

Background (4D)

This 4D-cube has the following properties:

- Tiles R⁴
- 261 face-unfoldings each of which tiles R³ [Tur84][DR15][Wh21]

Screenshot of Whuts.org [Wh21]

 X? (of 261) face-unfoldings have edge-unfoldings that tile R² [S. Langerman]

Question

Question posed by Stefan Langerman:

Question 1

Does every face-unfolding of the hypercube have an edge-unfolding that tiles space?

Linear Unfoldings

Question 1

Let T be a hamiltonian path on the dual graph of the polycube. The unfolding corresponding to T is linear if direction x is used and direction x is not.

- (a) Dali Cross
- (b) A hamiltonian path on the dual graph of the Dali Graph

Section

Introduction

2 Results

Result

Theorem 1

Every face-unfolding of the hypercube has an edge-unfolding that tiles R²

Tesseract is c-DDT

A polytope that monohedrally tiles R^d is a c-DDT if all of its facet-unfoldings tile $R^{d\text{-}1}$, and every $R^{d\text{-}1}$ polytope has a facet-unfolding that tiles $R^{d\text{-}2}$. The $R^{d\text{-}2}$ polytope must then have a facet-unfolding that tiles $R^{d\text{-}3}$ and so on till an edge-unfolding that tiles R^2 .

References

[Tur84] P. Turney. Unfolding the tesseract. Journal of Recreational Mathematics, Vol. 17(1), 1984-85

[DR15] G. Diaz and J. O' Rourke. Hypercube unfoldings that tile and . Technical report, arXiv, 2015. http://arxiv.org/abs/1512.02086.

[Wh21] Whuts: Which Hypercube Unfoldings Tile Space, 2021. https://whuts.org

[AS16] S. Langerman and A. Winslow. Polycube Unfoldings Satisfying Conway's Criterion, 2016.

https://andrewwinslow.com/papers/polyunfold-jcdcggg16.pdf