Método de la Secante

El método de la secante es un algoritmo para buscar las raíces o zeros de una función de forma iterativa. El método se basa en el uso de la secante, una línea que corta una curva en un mínimo de dos puntos distintos. A partir de dos estimaciones iniciales de la raíz de la función que buscamos, se calcula la secante que une a dichos dos puntos y la intersección de dicha recta secante con el eje de las x. Dicha intersección se toma como aproximación de la raíz buscada. Si la aproximación no es suficientemente buena, se repite el proceso de calcular la secante utilizando uno de los puntos anteriores y la aproximación recién calculada.

El método de la secante se puede considerar como una variación del método de Newton-Raphson donde en vez de calcular la derivada de la función en el punto de estudio, se aproxima dicha derivada (i.e., la pendiente a la recta) mediante la secante. Hay que aclarar que el método de la secante es anterior al método de Newton en más de 3000 años.

El principal inconveniente del método de Newton es que requiere conocer el valor de la primera derivada de la función en el punto. Sin embargo, la forma funcional de f(x) dificulta en ocasiones el cálculo de la derivada. En estos casos es más útil emplear el método de la secante. Este método es de especial interés cuando el coste computacional de derivar la función de estudio y evaluarla es demasiado elevado, por lo que el método de Newton no resulta atractivo.

Comenzando con los valores iniciales x_0 y x_1 , construimos una línea a través de los puntos $(x_0, f(x_0))$ y $(x_1, f(x_1))$, como se muestra en la imagen siguiente.

En forma de pendiente-intersección, la ecuación de esta recta es

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_1) + f(x_1).$$

La raíz de esta función lineal es el valor de x para el cual y = 0 está dado por:

$$x = x_1 - f(x_1) \frac{x_1 - x_0}{f(x_1) - f(x_0)}.$$

El método se define mediante la siguiente fórmula recurrente:

$$x_n = x_{n-1} - f(x_{n-1}) \frac{x_{n-1} - x_{n-2}}{f(x_{n-1}) - f(x_{n-2})}$$

Los elementos x_n de la sucesión obtenida mediante el método convergen a una raíz de f si los valores iniciales x_0 y x_1 están suficientemente cerca de la raíz.

El orden de convergencia es φ , donde

$$\varphi = \frac{1 + \sqrt{5}}{2} \approx 1.618$$

es el número áureo. En particular, la convergencia es súper lineal, pero no llega a ser cuadrática como en el caso del método de Newton-Raphson.

En análisis numérico, el orden de convergencia mide la velocidad con la cual una sucesión converge a su límite. Desde el punto de vista práctico, este concepto es muy importante para trabajar con métodos iterativos.

Se dice que una sucesión (x_n) que converge a x^* tiene orden de convergencia $q \ge 1$ y tasa de convergencia μ si

$$\lim_{n \to \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|^q} = \mu.$$

La tasa de convergencia μ también se denomina constante de error asintótico. Esta terminología no está estandarizada, por lo que el uso de uno u otro término depende del autor. Mientras mayor sea el orden de convergencia, se necesitarán menos iteraciones para obtener una aproximación útil.

Para que el método converja se requiere que la función sea dos veces continuamente diferenciable y la raíz sea simple (i.e., con multiplicidad 1).

Si los valores iniciales no están lo suficientemente cerca de la raíz, entonces no hay garantía de que el método converja. No existe una definición general de "lo suficientemente cerca", pero el criterio tiene que ver con cuán "ondulada" es la función en el intervalo $[x_0, x_1]$. Por ejemplo, si f es diferenciable en ese intervalo y hay un punto donde f' = 0 en el intervalo, entonces el algoritmo puede no converger.

In [1]:

```
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import math
from math import cos, sin
```

In [2]:

```
def f(x):
    return cos(x) - x**3

x_low = -5
x_high = 5

def graf0():
    x = np.linspace(x_low, x_high, num = 100)
    f_x = [f(x[i]) for i in range(len(x))]

    plt.plot(x, f_x)
    plt.grid()
    plt.axvline(x_low, color = 'r')
    plt.axvline(x_high, color = 'r')
    plt.axhline(color = 'k')

graf0()
plt.show()
```


In [3]:

```
x0 = 0.1
x1 = 0.2
n = 10
eps = 0.000000001
print('f(x0)=', f(x0))
print('f(x1)=', f(x1))
def secante():
    global x0, x1
    print('Iteración\tAproximación\tFunción')
    for i in range(n):
        print('\t', i, '\t', x1, '\t', f(x1))
        plt.plot(x1, f(x1), 'mo')
        if abs(f(x1)-f(x0)) < eps:
            print('Cociente muy pequeño')
            return x1
        x2 = x1 - f(x1)*((x1-x0) / (f(x1)-f(x0)))
        x0 = x1
        x1 = x2
    return x1
graf0()
secante()
plt.show()
```

f(x0) = 0.9940041652780258f(x1) = 0.9720665778412416

1(X1)- 0.9720003778412410					
Iteración	Aproximación	Función			
0	0.2 0.972	0665778412	416		
1	4.63105505854	9025	-99.4019582946752		
2	0.24291230258	486252	0.9563082173835941		
3	0.28472666549	11468	0.9366558827696188		
4	2.27765370290	1914	-12.465245979545383		
5	0.42401188431	299075	0.8352142750412466		
6	0.54041297706	20177	0.6996707331620458		
7	1.14127109819	00474	-1.0700660808136147		
8	0.77796402918	23584	0.24149828262766693		
9	0.84485974217	78238	0.06078545266527258		

In [4]:

```
x0 = 0.1
x1 = 0.2
n = 20
eps = 1.0e-20
graf0()
secante()
plt.show()
```

Iteración	Aproximación	Función	
0	0.2 0.9720	6657784124	116
1	4.631055058549	025	-99.4019582946752
2	0.242912302584	86252	0.9563082173835941
3	0.284726665491	1468	0.9366558827696188
4	2.277653702901	914	-12.465245979545383
5	0.424011884312	99075	0.8352142750412466
6	0.540412977062	0177	0.6996707331620458
7	1.141271098190	0474	-1.0700660808136147
8	0.777964029182	3584	0.24149828262766693
9	0.844859742177	8238	0.06078545266527258
10	0.867361111873	8309	-0.005687755434518826
11	0.865435790508	5607	0.00011505004461076496
12	0.865473963132	0892	2.105060002977055e-07
13	0.865474033104	212	-7.814859870336477e-12
14	0.865474033101	6144	1.1102230246251565e-16
15	0.865474033101	6144	1.1102230246251565e-16

Cociente muy pequeño

Bibliografía

- Método de la secante (https://es.wikipedia.org/wiki/M%C3%A9todo_de_la_secante)
- 4.4 Método de la secante (https://www.uv.es/~diaz/mn/node21.html#eqn:sec-2)
- Secant line (https://en.wikipedia.org/wiki/Secant_line)
- Número áureo (https://es.wikipedia.org/wiki/N%C3%BAmero %C3%A1ureo)
- Rate of convergence (https://en.wikipedia.org/wiki/Rate_of_convergence)