

Page No. Date
Camulative Distribution Function: F(x) = 1 = 1 - e^{-xx} for x = 0
P(x < x < p) = 1 f(x)dx where F'(x) = f(x)
$\frac{f(x)}{f(x)} = \frac{1}{2} \int_{-\infty}^{\infty} f(x) dx$ $\frac{f(x)}{f(x)} = \frac{1}{2} \int_{-\infty}^{\infty} f(x) dx$
$\frac{\int_{0}^{\infty} e^{-x} \times dx = \int_{0}^{\infty} \int_{0}^{\infty} f(x) dx}{\int_{0}^{\infty} e^{-x} \times dx = \int_{0}^{\infty} \int_{0}^{\infty} f(x) dx}$
For any $a \ge 0$ $P(x \ge a) = P(x \ge a) = 1 - P(a) = e^{-\lambda a}$
$P(a \le x \le b) = P(a \le x < b) = P(a < x < b)$ $= P(a < x \le b)$ $= F(b) - F(a) = e^{-\lambda a} - e^{-\lambda b}$
Allegan I law to the second to
Sutrival Function: Gives probability that the system survives more than x units of time and is given by $P(x > x) = 1 - P(x) = S + if x < 0$ $e^{-\lambda x} \text{if } x \ge 0$
Let the mileage (in 1000 of miles) of a particular the be a
Let the mileage (in 1000 of miles) of a particular tire be a random variable x having the probability density ftx) f(x) = \(\frac{1}{20} \) \(\frac{1}{20} \) \(\frac{1}{10} \) \(\
Find the mobability that one of there tires will last at at most 10000 miles
b) anywhere from 16000 to 24000 miles
e) find the variance of the given probability density
great propositing density

```
6-00 2 T = 0
     Mean = 1/x
 a) P(x = 10) = 10 f(x) dx = 10 1 e-x/20 dx
= \frac{1}{20} \frac{e^{-x/20} (-20/1) \int_{0}^{10} = 1 - e^{-y/2} = 0.3934}{10}
= \frac{1}{20} \frac{1}{20
          d'r Mean= µ = | ~ x . f(x) dx = | ~ x . 1/20 e-x/20 dx
                                                                                        = -\int_{0}^{\infty} \times d(e^{-\pi/20}) = [-xe^{-\pi/20} - 2ve^{-\pi/20}]_{0}^{\infty}
= 0 - (-20) = 20 = 1/\lambda
         er variance = \sigma^2 = \int_{-\infty}^{\infty} (x-\mu)^2 f(x) dx = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2
                                   Convider J x + (x) dx = 1 x 1/20 e x 2/20 dx
                        = \frac{1}{1 - x^{2}} e^{-x^{2}} \int_{0}^{\infty} \frac{1}{1 - x^{2}} \int_{0}^{\infty} \frac{1}{1 - x^
         of a random variable in x has the exponential distribution with mean
                 Ju = 1/2 Calculate Nu probabilities that.
                 a) x will be blow 1 and 3 by x is greater than 0.5
                   c> x is at most 4.
                 Given > = 2
           b) P(x >0.5) = [ 2e-2 dx = -[e-2 ] = -(0-e-1) = 0.3678
```


Distrate Uniform Distribution Every on of a values has equal probability 1/n.

A x y is said to follow a uniform distribution if x takes all integral values 1,2,3,..., n with P(x=x;)=1/n $\forall x_i = 1, 2, \dots, \quad \text{4t is denoted by } V(1,n)$ $E(x) = \sum_{i=0}^{n} x_i y_i$ = 1x1/n +2x1/n + 3x1/n + ... + nx1/n = 1/h (1+2+3 -- +n) = h(n+1)/24 = (n+1)/2 $F(\chi^2) = \frac{1}{n} \left(\frac{1^2 + 2^2 + \dots + n^2}{12n + 1} \right) = \frac{1}{n} \frac{1$ Var (x) = E(x2) - (E(x))2 = (p2-1)/12 Ourstions 's Roll a six faced fair die . Suppose x devote the number appear on the top of a die. a) find the probability that an even number appear on the top is less than 3 c) compute mean and variance of x. Let x denote the number of appear on the top of a die. Then the x.v. X take the values × 51,2,3,4,5,6 and x follows U(1,6) distribution. The probability man hunction or \$X is P(X=x) = 1/6, x=1,2,3,4,5,6 a> P(x = even number) = P(x = 2) + P(x = 4) + P(x = 6) = 0.5 b> P(x < 3) = P(x = 1) + P(x = 2) + 1 = 1/3 cr Mean = (1th)/2 = 3.5 no of faces Variance = $(n^2-1)/12 = 35/12 = 2.9167$ A telephone us is scheded at random from a directory Suppose & denote the last digit of selected telephone number Find the probability that the last digit of the selected no is at 6 by less than 3 in greater than or equal to 8

Let x denote the last digit of randomly schooled phone no Then TV X take the values X = 0, 1,2, 9 All the numbers 0,1,2,..., 9 are equally likely. Thus
the random variable × follows a district uniform distribution U(0,9) P(X=x) = 10 X = 0,1,2,3,4,5,6,7,8,9 a) P(x=6) = 1/10 = 0.1 . b) p(x < 3) = p(x = 1) + p(x = 0) + 26 + 24 + 4 + p(x = 2) = 3 = 0.3 $() P(x \ge 8) = P(x = 8) + P(x = 9) = 2/10 = 0.2$ d> Meay = (n+1)/2 = (10+1)/2 = 5.5 Variouse = (n2-1)/12 = 99/12 = 8.25

Continuous Uniform Distribution

The continuous r.v X is said to be wiformly distributed, or having rectangular distribution on the interval 7a,6]

f(x) = } 1/(b-a) a < x < b otherwise

Q(x) 6 (acx<b)

Meight of rectargle = $\frac{1}{2}$ $\frac{$

 $\frac{E(x^{2}) = \int_{a}^{b} x^{2} f(x) dx = (b^{2} + ab + a^{2}) / 3}{\sqrt{ax(x) - E(x^{2})}} = \frac{\int_{a}^{b} x^{2} f(x) dx = (b^{2} + ab + a^{2}) / 3}{\sqrt{ax(x) - E(x^{2})}}$

 $Var(x) = E(x^2) - [E(x)]^2 = (b-a)^2/12$

· Questions 1 Suppose in a guiz Hure are 30 participants and a question is given to all of them and the time allowed to answer is 23 seconds Find the number of probable participants respond within 6 seconds Given interval of probability distribution = [0 seconds, 25 seconds]

Density of the probability $f(x) = \frac{1}{25-0} = \frac{1}{25}$ The probability P(x < 6) = 1 f(x)dx = 6/25 There are 30 participants, so the no of participants likely to answer it in 6 seconds = 6/25 × 30 ≈ 70 Suppose a light is about to land and the announcement says that The expected time to land is 30 minutes. Find the probability of getting fight blu 25 to 30 minutes given interval of probability distribution = To minutes, 30 minutes]

Density of the probability = f(x) = 1/(30-0) = 1/30 The probability P(25 < x < 30) = \int \(\frac{30}{10} \) f(x) dx = \(\frac{57}{30} = \frac{76}{10} \)
Hence probability most getting Hight land between 25 mins to Suppore au roudom number N is taken from 690 to 850 in uniform distribut" Find the probability number N is greater Man 790. given interval of probability distribution = [690, 850] Density of probability $f(x) = \frac{1}{850-690} = \frac{1}{160}$ $p(790 < x < 850) = \int_{790}^{850} f(x) dx = \frac{60}{160} = \frac{318}{790}$ P(N > \$ 796) = 0.375 Suppose a train is delayed by approx 60 minutes. What is the probability that train will reach by 57 minutes to 60 minutes? [0 mins, 60 mins] f(x) = 1/60-0 = 1/60 $P(57 < x < 60) = \int_{0.05}^{60} f(x) dx = \frac{3}{60} = 0.05$

