Control de Transmisión de Datos.

Grupo 50.

5 de diciembre de 2003.

Notas:

- 1. Los resultados no justificados no serán tenidos en cuenta.
- 2. Los problemas se entregarán por separado, numerando las hojas y poniendo nombre y apellidos en cada hoja.
- 3. Un error conceptual grave puede anular todo el problema.

Problema 1 (5 puntos).

Responda a las siguientes cuestiones sobre codificación de fuente.

- a) Qué propiedad deben cumplir los símbolos que genera una fuente para que la codificación de *Huffman* que se aplique resulte beneficiosa (aporte algún beneficio).
- b) Sea F_1 una fuente que ha emitido la secuencia de caracteres AAAABBCD.
 - b.1) Genere el código Huffman binario asociado (utilice $\stackrel{1}{\smile}$).
 - b.2) Calcule el número de bits necesarios para transmitir la secuencia anterior.
 - b.3) Calcule la longitud media del código *Huffman* diseñado.
 - b.4) Calcule la eficiencia del código *Huffman* diseñado.
 - b.5) Determine cuál es el ahorro en recursos al utilizar el código *Huffman* diseñado respecto de utilizar un código ASCII de 7 bits por carácter.
- c) Determine si existe algún código instantáneo en estos dos casos:
 - c.1) Fuente que emite 10 símbolos diferentes y utiliza un código con alfabeto de 4 símbolos. Las longitudes de las palabras código son {1, 1, 1, 2, 2, 2, 2, 3, 3, 3}.
 - c.2) Fuente que emite 5 símbolos diferentes y utiliza un código con alfabeto de 3 símbolos. Las longitudes de las palabras código son {1, 1, 2, 2, 3}.
- d) Sea una fuente **F**₂ que emite 10 símbolos diferentes {A, B, C, D, E, F, G, H, I, J} con probabilidades {0.05, 0.05, 0.05, 0.05, 0.1, 0.1, 0.1, 0.1, 0.2, 0.2} respectivamente y unas longitudes de las palabras código {1, 2, 2, 2, 3, 3, 3, 3, 3, 3} respectivamente. El alfabeto del código tiene 4 símbolos {a, b, c, d}. Determine si es posible hallar un código fuente más eficiente que el utilizado.
- e) En caso afirmativo, proponga uno y calcule la eficiencia del código propuesto. En caso negativo, justifique el porqué.
- f) Considere otra fuente F_3 que utiliza el mismo alfabeto código que F_2 (apartado d). Esta fuente F_3 emite dos símbolos A y B. La fuente F_3 emite sus símbolos según estas reglas:
 - Cuando $\mathbf{F_2}$ emite un símbolo del conjunto $\{A, B, C, D, E\}$ la fuente $\mathbf{F_3}$ emite A.
 - Cuando $\mathbf{F_2}$ emite un símbolo del conjunto $\{F, G, H, I, J\}$ la fuente $\mathbf{F_3}$ emite A con probabilidad 0.2 y B con probabilidad 0.8.

Obtenga la entropía conjunta de ambas fuentes.

Problema 2 (5 puntos).

Sea un sistema de clave pública RSA. Considere dos usuarios A y B y una entidad CA que expende certificados para autenticar el origen de los mensajes. Los usuarios del sistema utilizan criptografía asimétrica RSA para intercambiar una clave de sesión, utilizada a su vez para codificar mensajes mediante cifrado en flujo síncrono. Las secuencias binarias se consideran con más peso a la izquierda (MPI).

El algoritmo de cifrado en flujo trabaja sobre bloques de 2 bits, donde el mensaje de entrada se coloca como estado inicial de un LFSR con polinomio de conexiones $c(D)=D^2+D+1$. El criptograma se obtiene como el estado del LFSR al cabo del número de iteraciones que indique la clave de sesión.

Parámetros RSA de los usuarios y la entidad certificadora, e identificadores de cada usuario:

Usuario A	$p_A=3, q_A=11, e_A=3$	$ID_A = 0001$
Usuario B	$p_B=7, q_B=17, d_B=35$	$ID_{B}=0010$
Entidad certificadora CA	$p_{CA}=7, q_{CA}=11, d_{CA}=13$	

La función de *Hash* H(M) de un mensaje M, que se emplea en el sistema es la siguiente:

- Las secuencias binarias se consideran con más peso a la izquierda (MPI).
- Se añaden a la izquierda del mensaje tantos unos como sea necesario para que la longitud sea múltiplo de 4.
- Se divide el mensaje resultante desde la izquierda en n bloques de 4 bits, $m_i 0 = i = n-1$.
- $-h_{i+1}=E(h_iAm_i), 0=i=n-1, \text{ siendo } h_0=4.$
- La función $E(\cdot)$ es un cifrador bloque que convierte un bloque $entra_i$ de 4 bits en otro bloque $sale_i$ de acuerdo con la expresión: $sale_i = E(entra_i) = (5*entra_i + 2)mod16$.
- $H(M)=h_n$
- H(M) debe ocupar 4 bits y expresarse en hexadecimal.

La autoridad certificadora CA sigue el siguiente esquema para expender los certificados: Un usuario i entrega a la CA el certificado en claro correspondiente a la concatenación ($|\cdot|$) de su identificador ID_i y de su clave pública K_{Pi} . La CA firma digitalmente dicho certificado en claro y añade la firma detrás: Certificado firmado = certificado en claro || firma digital.

- a) Genere las claves pública y privada de los usuarios A y B.
- b) Obtenga los certificados que la entidad CA genera a los usuarios A y B. Exprese los certificado en claro y los certificados firmados en hexadecimal.
- c) A y B desean intercambiar una clave de sesión para cada sentido de la comunicación: $K_{A->B}=10$ y $K_{B->A}=5$. Enumere los pasos del protocolo a seguir para lograr dicho intercambio, de forma que cada usuario autentique al otro.
- d) Codifique las claves de sesión que se intercambian A y B.
- e) A envía el mensaje M_{AB}=0010011011 a B. B responde con el mensaje M_{BA}=111001 a A. Cifre dichos mensajes con el algoritmo de cifrado en flujo para codificar mensajes descrito en el enunciado.