

Table of contents

- Introduction
- Shear Thickening Theories
- Factor Affecting Shear Thickening

- Experiment Conduction
- Observation
- Application
- Conclusion

INTRODUCTION

Shear Thickening Fluid (STF) is a unique suspension with a viscosity that sharply increases with higher shear rates or stress

Key Characteristics: Exhibits Shear Thickening (ST) behavior: viscosity rises with increasing shear rate. Similar to intelligent materials like Electrorheological Fluid (ERF), Magnetorheological Fluid (MRF), and Shape Memory Alloy (SMA).

INTRODUCTION

Viscosity V/S Shear Rate

Shear Stress V/S Shear Rate

Shear Thickening -Theories

FACTORS AFFECTING SHEAR THICKENING

- 1. Effects of dispersed particles on the
- The physical properties, shape, and size of the dispersed phase particles significantly affect the rheological properties of STF.
- The dispersed phase particles can be classified into natural mineral, natural deformable polymer, metal, and <u>synthetic polymer</u> particles according to the

- 2. Effects of dispersed particles on the
- STEThe polarity, molecular weight, viscosity, and steric hindrance of the dispersion media have certain effects on the rheological properties of STF.
- Conversely, the increase in the molecular chain of the dispersion media can increase the viscosity, weaken the Brownian action, and reduce the critical shear etrees.

FACTORS AFFECTING SHEAR THICKENING

- 3. Effects of additive on the STF
- In addition to the dispersing particle and medium, adding additives to the preconfigured STF is an important method for adjusting its ST performance.
- The reason for the change in ST performance differs from the aforementioned mechanism, and it is due to the addition of nanoparticles.
- equilibrium shear thinning shear thickening

 increasing shear rate

 shear thickening

 shear thickening

 contact thickening

 shear thickening

 contact thickening

 shear thickening

 contact thickening

 shear thickening

 contact thickening

- 4.Effects of external environment
- The rheological properties of STF are sensitive to the external environment. Hence, these can be controlled by external fields, such as temperature and electric and magnetic fields.

APPARATU

S

A rheometer is a precision instrument that contains the material of interest in a geometric configuration, controls the environment around it, and applies and measures wide ranges of stress, strain, and strain rate.

What is the principle of a rheometer?

The working principle of rheometer is based on rotational motion working principle, that is to attain the simple shearing flow, to control the strain rate, that is in the terms of applied control strain rate, which is rotation, and then measuring the resulting couple or torque.

APPARATU

S

This rheometer has three main components:

- (1) The main unit mounted on a cast metal stand that supports the geometry
- (2) An electronic control circuitry contained in a separated box (electronic box)
 - (3) The sample holder (Peltier plate)

PROCEDURE OF EXPERIMENT

Shear Thickening Fluid is put in the rheometer

Two types of shear-thickening fluid along with different weight percentages have been used to calculate the shear-thickening output:

- Silica with weight percentages of 25 and 30
- Corn starch with weight percentages 44, 42 and 40

Each STF is provided with a shear rate from 1/second to 400/ second and for each shear rate input is maintained for 5 second

The shear rate should be kept lesser(less than 600 per second) otherwise STF will spill out

Note: Shear rate means the number of times the plate rotates in 1 second

Observation for Corn Starch

44 wt% 42 wt%

Point No.	Shear Rate	Shear Stress	Viscosity
1	1	1.6804	1677.5
2	1.27	1.0481	824.79
3	1.61	0.95655	593.01
4	2.05	1.0043	491.05
5	2.59	1.1122	428.72
6	3.29	1.1664	354.55
7	4.17	1.2641	302.82
8	5.3	1.4439	272.56
9	6.72	1.5182	225.85
10	8.53	1.6784	196.75
11	10.8	3.1259	288.58
12	13.7	3.1829	231.88
13	17.4	7.6518	439.03
14	22.1	9.9471	450.51
15	28.1	20.763	739.9
16	35.6	23.431	657.59
17	45.2	41.107	910.17
18	57.4	68.116	1187.3
19	72.8	80.27	1102.6
20	92.4	1484	16063
21	117	189.67	1618.2
22	149	837.88	5634
23	189	1441	7638.4
24	240	1301	5431.7
25	304	1453.7	4784.4
26	386	1020.4	2645.1
27	490	1051.1	2147
28	621	584.58	941.39
29	788	802.48	1018.3
30	1.00E+03	985.83	985.86

Point No.	Shear Rate	Shear Stress	Viscosity
1	1	1.2321	1229.9
2	1.27	0.91015	716.17
3	1.61	1.0791	669.03
4	2.05	1.3355	652.59
5	2.6	1.1853	456.59
6	3.29	1.3374	406.53
7	4.15	13.557	3263.4
8	5.3	1.7795	335.93
9	6.72	2.0947	311.6
10	8.53	2.754	322.84
11	10.8	6.241	577.01
12	13.7	6.2787	457.09
13	17.4	13.211	757.91
14	22.1	24.358	1101.3
15	28.1	62.388	2220.5
16	35.6	81.235	2281.4
17	45.2	120.33	2662.1
18	57.4	2289.7	39909
19	72.8	4642.6	63763
20	92.4	5045.6	54620
21	117	2594.5	22145
22	149	2741.1	18429
23	189	1772.6	9392.9
24	239	1628.5	6802.1
25	304	778.47	2562.7
26	386	931.15	2414.7
27	489	867.69	1773.2
28	621	1584.8	2552.4
29	788	686.04	870.5
30	1.00E+03	640.54	640.5

40 wt%

Shear Stress	Viscosity
0.041245	411.11
0.05147	328.49
0.058958	240.29
0.073978	192.69
0.090338	150.28
0.11815	125.52
0.16371	111.1
0.22972	99.571
0.33378	92.465
0.48467	85.771
0.77385	87.47
1.3001	93.863
2.2528	103.88
4.1644	122.66
10.447	196.53
32.502	390.53
266.75	2047.2
1480.5	7256.5
398.57	1247.7
306.49	612.9
	0.041245 0.05147 0.058958 0.073978 0.090338 0.11815 0.16371 0.22972 0.33378 0.48467 0.77385 1.3001 2.2528 4.1644 10.447 32.502 266.75 1480.5 398.57

Shear Stress and Shear Rate Plot for Corn Starch for Different Weight Percentage

Shear Rate and Viscosity Plot for Corn Starch for Different Weight Percentage

Observation for Silica

25 wt%

Shear Rate	Shear Stress	Viscosity
1	17.168	17153
1.37	21.727	15828
1.88	27.301	14504
2.58	34.635	13423
3.53	44.241	12517
4.84	56.948	11763
6.63	74	11155
9.09	98.121	10792
12.5	132.2	10608
17.1	181.4	10619
23.4	256.39	10950
32.1	375.59	11702
44	578.05	13139
60.3	955.3	15840
82.7	1745.2	21112
113	3227	28478
155	4754.4	30608
213	6129.8	28790
292	7154.8	24516
400	6002.1	15004

30 wt%

Shear Rate	Shear Stress	Viscosity
1	7.7994	7774.6
1.37	10.265	7467.7
1.88	13.503	7171.2
2.58	17.689	6858.6
3.53	22.973	6504.7
4.84	29.742	6145.4
6.63	38.358	5783
9.09	49.357	5429.2
12.5	63.286	5078.5
17.1	81.201	4753.6
23.4	104.33	4455.7
32.1	134.87	4202.1
44	175.97	3999.8
60.3	235.17	3899.7
82.7	323.54	3914
113	464.52	4099.7
155	711.6	4581.7
213	1196.6	5620.6
292	3496.2	11980
400	14619	36542

Silica Plot for Different Weight Percentage

Comparison Plot for Silica

Conclusion

- Shear Thickening Commonality: Both cornstarch and silica mixtures exhibit increased shear stress with increased shear rates, indicative of shear thickening behavior.
- Concentration Dependency: The shear thickening effect is more pronounced at higher concentrations for both materials, as shown by steeper curves in the shear stress plots for higher weight percentages.
- Viscosity Variation with Shear Rate: The viscosity of both materials increases with shear rate, but the effect is more significant in mixtures with higher concentrations of the dispersed phase (cornstarch or silica).
- Critical Shear Rate: Each material mixture reaches a critical shear rate where viscosity peaks, with higher concentrations requiring higher shear rates to reach this peak, suggesting better stability under dynamic conditions.
- Implications for Application: The ability to tailor viscosity by adjusting the concentration of cornstarch or silica makes these
 materials versatile for applications requiring impact resistance and adaptive viscosity, such as in protective gear or smart
 materials.

Applications of STF

- Body Armor: Enhances protection in military and athletic gear by stiffening upon impact
- Automotive Safety: Improves shock absorption in seatbelts and airbags during accidents
- Sports Equipment: Used in helmets and pads for better protection against high-impact collisions
- Medical Devices: Applied in prosthetics and orthopedic supports for a balance of flexibility and support
- Vibration Damping: Utilized in industrial machinery and construction to reduce noise and vibrations

