

INTRODUCTION

This project aims to explore the Walmart Sales data to understand top performing branches and products, sales trend of different products, customer behaviour. The aims are to study how sales strategies can be improved and optimized.

PURPOSE OF THE PROJECT

The major aim of the project is to gain insight into the sales data of Walmart to understand the different factors that affect sales of the different branches.

1. ABOUT DATA

This dataset contains sales transactions from three different branches of Walmart, respectively located in Mandalay, Yangon and Naypyitaw. The data contains 17 columns and 1000 rows.

Column	Description	Data Type
invoice_id	Invoice of the sales made	VARCHAR(30)
branch	Branch at which sales were made	VARCHAR(5)
city	The location of the branch	VARCHAR(30)
customer_type	The type of the customer	VARCHAR(30)
gender	Gender of the customer making purchase	VARCHAR(10)
product_line	Product line of the product solf	VARCHAR(100)
unit_price	The price of each product	DECIMAL(10, 2
quantity	The amount of the product sold	INT
VAT	The amount of tax on the purchase	FLOAT(6, 4)
total	The total cost of the purchase	DECIMAL(10, 2
date	The date on which the purchase was made	DATE
time	The time at which the purchase was made	TIMESTAMP
payment_method	The total amount paid	DECIMAL(10, 2
cogs	Cost Of Goods sold	DECIMAL(10, 2
gross_margin_percentage	Gross margin percentage	FLOAT(11, 9)
gross_income	Gross Income	DECIMAL(10, 2
rating	Rating	FLOAT(2, 1)

2. ANALYSIS

1. Product Analysis

Conduct analysis on the data to understand the different product lines, the products lines performing best and the product lines that need to be improved.

2. Sales Analysis

This analysis aims to answer the question of the sales trends of product. The result of this can help use measure the effectiveness of each sales strategy the business applies and what modifications are needed to gain more sales.

3. Customer Analysis

This analysis aims to uncover the different customers segments, purchase trends and the profitability of each customer segment.

3. APPROACH USED

1. Data Wrangling:

This is the first step where inspection of data is done to make sure

NULL values and missing values are detected and data replacement
methods are used to replace, missing or **NULL** values.

- Build a database
- Create table and insert the data.
- Select columns with null values in them. There are no null values in our database as in creating the tables, we set **NOT NULL** for each field, hence null values are filtered out.

2. Feature Engineering:

This will help use generate some new columns from existing ones.

- Add a new column named "time_of_day" to give insight of sales in the Morning, Afternoon and Evening. This will help answer the question on which part of the day most sales are made.
- Add a new column named "day_name" that contains the extracted days of the week on which the given transaction took place (Mon, Tue, Wed, Thur, Fri). This will help answer the question on which week of the day each branch is busiest.
- Add a new column named "month_name" that contains the extracted months of the year on which the given transaction took place (Jan, Feb, Mar). Help determine which month of the year has the most sales and profit.
- 3. Exploratory Data Analysis (EDA):

Exploratory data analysis is done to answer the listed questions and aims of this project.

Generic Questions

- 1. How many unique cities does the data have?
- 2. In which city is each branch?

Product Analysis

- 1. How many unique product lines does the data have?
- 2. What is the most common payment method?
- 3. What is the most selling product line?
- 4. What is the total revenue by month?
- 5. What month had the largest COGS?
- 6. What product line had the largest revenue?
- 7. What is the city with the largest revenue?
- 8. What product line had the largest VAT?

- 9. Fetch each product line and add a column to those product line showing "Good", "Bad". Good if its greater than average sales
- 10. Which branch sold more products than average product sold?
- 11. What is the most common product line by gender?
- 12. What is the average rating of each product line?

Customer Analysis

- 1. How many unique customer types does the data have?
- 2. How many unique payment methods does the data have?
- 3. Which customer type buys the most?
- 4. What is the gender of most of the customers?
- 5. What is the gender distribution per branch?
- 6. Which time of the day do customers give most ratings?
- 7. Which time of the day do customers give most ratings per branch?
- 8. Which day fo the week has the best avg ratings?
- 9. Which day of the week has the best average ratings per branch?

Sales Analysis

- 1. Number of sales made in each time of the day per weekday
- 2. Which of the customer types brings the most revenue?
- 3. Which city has the largest tax percent/ VAT (**Value Added Tax**)?
- 4. Which customer type pays the most in VAT?

BUILD DATABASE

```
CREATE DATABASE IF NOT EXISTS WalmartSales;

USE walmartsales;

Load data from a CSV file into the Sales table

LOAD DATA INFILE 'E:\\WalmartSalesData.csv'

INTO TABLE Sales FIELDS TERMINATED BY ','

ENCLOSED BY ''''

LINES TERMINATED BY '\n'

IGNORE 1 ROWS;

Select all records from the Sales table to verify the data load
```

FEATURE ENGINEERING

select * from Sales;

- 1. Add a new column named "time_of_day" to give insight of sales in the Morning, Afternoon and Evening. This will help answer the question on which part of the day most sales are made.
- -- For this to work turn off safe mode for update
- -- Edit > Preferences > SQL Edito > scroll down and toggle safe mode
- -- Reconnect to MySQL: Query > Reconnect to server

```
UPDATE sales

SET Time_of_day = (CASE

WHEN time BETWEEN "00:00:00" AND "12:00:00" THEN "Morning"

WHEN time BETWEEN "12:01:00" AND "16:00:00" THEN "Afternoon"

ELSE "Evening"

END);
```

2. Add a new column named "day_name" that contains the extracted days of the week on which the given transaction took place (Mon, Tue, Wed, Thur, Fri). This will help answer the question on which week of the day each branch is busiest.

```
SELECT

date,

DAYNAME(date)

from sales;

SELECT * FROM Sales;

ALTER TABLE Sales ADD COLUMN day_name varchar(12);

UPDATE Sales

SET day name = DAYNAME(date);
```

3. Add a new column named "month_name" that contains the extracted months of the year on which the given transaction took place (Jan, Feb, Mar). Help determine which month of the year has the most sales and profit.

```
SELECT

date,

MONTHNAME(date)

from sales;

ALTER TABLE Sales ADD COLUMN month_name varchar(12);

UPDATE Sales

SET month_name = MONTHNAME(date);

SELECT * FROM Sales;
```

Generic Questions

1. How many unique cities does the data have?

SELECT

DISTINCT city

from sales;

2. In which city is each branch?

Product Analysis

1. How many unique product lines does the data have?

SELECT

COUNT(DISTINCT Product_line)

FROM sales;

2. What is the most selling product line?

SELECT
SUM(quantity) AS qty,
product_line

GROUP BY product_line

ORDER BY qty DESC;

FROM Sales

3. What is the total revenue by month? select sum(total) as totalRevenue, monthname(date) as month from sales group by month

Order BY totalRevenue DESC;

4. What month had the largest COGS? select Sum(cogs) as largestCogs, month name

from sales

group by month_name

Order BY largestCogs DESC;

5. What product line had the largest revenue?

SELECT

product_line,

SUM(total) as total_revenue

FROM sales

GROUP BY product_line

ORDER BY total revenue DESC;

	product_line	total_revenue
•	Food and beverages	56144.844000000005
	Sports and travel	55122.826499999996
	Electronic accessories	54337.531500000005
	Fashion accessories	54305.895
	Home and lifestyle	53861.91300000001
	Health and beauty	49193.739000000016

6. What is the city with the largest revenue?

SELECT

branch,

city,

SUM(total) AS total_revenue

FROM sales

GROUP BY city, branch

ORDER BY total revenue;

7. What product line had the largest VAT?

SELECT product line,

AVG(Tax) as avg tax

FROM sales

GROUP BY product line

ORDER BY avg tax DESC;

	product_line	avg_tax	
•	Home and lifestyle	16.03033125000001	
	Sports and travel	15.812629518072285	
	Health and beauty	15.411572368421048	
	Food and beverages	nd beverages 15.365310344827583	
	Electronic accessories	15.22059705882354	
	Fashion accessories	14.528061797752809	

8. Fetch each product line and add a column to those product line showing "Good", "Bad". Good if its greater than average sales

SELECT

```
product_line,
  case
    when AVG(quantity) > (SELECT AVG(quantity) FROM Sales) then
"Good"
```

else "Bad"

end as remark

from Sales

group by product_line;

9. Which branch sold more products than average product sold?

select branch,

sum(quantity) as Qty

from sales

group by branch

having sum(quantity) > (SELECT AVG(quantity) FROM Sales);

10. What is the most common product line by gender?

SELECT

gender,

product_line,

COUNT(gender) AS total_cnt

FROM sales

GROUP BY gender, product_line

ORDER BY total cnt DESC;

11. What is the average rating of each product line?

SELECT

product_line,

ROUND(AVG(rating), 2) as avg_rating

FROM sales

GROUP BY product_line

ORDER BY avg rating DESC;

Customer Analysis

1. How many unique customer types does the data have?

SELECT

DISTINCT customer_type Type

FROM sales;

2. How many unique payment methods does the data have?

SELECT

DISTINCT payment

FROM Sales;

3. Which customer type buys the most?

SELECT

customer_type,

COUNT(*)

FROM sales

GROUP BY customer_type;

4. What is the gender of most of the customers?

SELECT

gender,

COUNT(*) as gender_cnt

FROM sales

GROUP BY gender

ORDER BY gender_cnt DESC;

5. What is the gender distribution per branch?

SELECT

branch, gender,

COUNT(gender) as gender cnt

FROM sales

GROUP BY branch, gender

ORDER BY gender_cnt DESC;

6. Which time of the day do customers give most ratings?

SELECT time_of_day,

AVG(rating) AS avg_rating

FROM sales

GROUP BY time_of_day

ORDER BY avg_rating DESC;

7. Which time of the day do customers give most ratings per branch?

SELECT

time_of_day,

branch,

AVG(rating) AS avg_rating

FROM sales

WHERE branch IN (select branch from sales)

GROUP BY time of day, branch

ORDER BY avg_rating DESC;

	time_of_day	branch	avg_rating
•	Afternoon	Α	7.18888888888891
	Evening	C	7.118881118881118
	Afternoon	C	7.06666666666664
	Morning	Α	7.005479452054794
	Morning	C	6.974576271186442
	Evening	Α	6.893617021276596
	Morning	В	6.891525423728813
	Afternoon	В	6.836799999999998
	Evening	В	6.7729729729729735

8. Which day for the week has the best AVG ratings?

SELECT

day_name,

AVG(rating) AS avg_rating

FROM sales

GROUP BY day_name

ORDER BY avg_rating DESC;

	. —	
	day_name	avg_rating
•	Monday	7.153599999999999
	Friday	7.076258992805756
	Sunday	7.011278195488723
	Tuesday	7.003164556962025
	Saturday	6.901829268292688
	Thursday	6.88985507246377
	Wednesday	6.805594405594405

9. Which day of the week has the best average ratings per branch?

SELECT

day_name,

branch,

Avg(rating) as ARB

FROM sales

WHERE branch in (select branch from sales)

GROUP BY day_name, branch

ORDER BY ARB DESC;

	day_name	branch	ARB
•	Monday	В	7.335897435897434
	Friday	Α	7.3119999999999985
	Friday	С	7.278947368421051
	Saturday	С	7.229629629629631
	Monday	Α	7.097916666666666
	Sunday	Α	7.078846153846157
	Wednesday	С	7.064000000000004
	Tuesday	Α	7.0588235294117645
	Monday	С	7.036842105263159

Sales Analysis

1. Number of sales made in each time of the day per weekday

SELECT

time_of_day, day_name,
count(invoice) AS total_sales

FROM sales

WHERE day_name Not In ("Saturday", "Sunday")

GROUP BY time_of_day, day_name

ORDER BY total_sales DESC;

	time_of_day	day_name	total_sales
•	Evening	Tuesday	69
	Afternoon	Wednesday	61
	Evening	Wednesday	60
	Afternoon	Friday	58
	Evening	Monday	56
	Evening	Thursday	56
	Afternoon	Tuesday	53
	Evening	Friday	52
	Afternoon	Thursday	49

2. Which of the customer types brings the most revenue?

SELECT

customer type,

SUM(total) AS total revenue

FROM sales

GROUP BY customer_type

ORDER BY total revenue;

3. Which city has the largest tax percent/ VAT (**Value Added Tax**)?

SELECT

city,

ROUND(AVG(tax), 2) AS avg_tax_pct

FROM sales

GROUP BY city

ORDER BY avg_tax_pct DESC;

4. Which customer type pays the most in VAT?

SELECT

customer_type,

AVG(tax) AS total_tax

FROM sales

GROUP BY customer_type

ORDER BY total_tax;

