Total No	o. of Questions : 8]	SEAT No. :
PA-14		[Total No. of Pages : 3
	T.E. (Computer Engg.)	
	THEORY OF COMPUTAT	(ON
	(2019 Pattern) (Semester-I) (3	
	/2 Hours] ions to the candidates: Answer Q1 or Q2, Q3, or Q4, Q5 or Q6, and Q7 or Q Neat diagrams must be drawn wherever necessary.	[Max. Marks : 70
3)	Figure to the right indicate full marks.	
4)	Assume suiable data if necessary.	
Q1) a)	Convert the following grammar to Chomsky	Normal form (CNF) [9]
	$S \rightarrow a \mid aA \mid B$ $A \rightarrow aBB \mid \epsilon$ $B \rightarrow Aa \mid b$ Convert the following grammar to GNF. $S \rightarrow XB \mid AA$ $A \rightarrow a \mid SA$ $B \rightarrow b$ $X \rightarrow a$ OR	
	$B \rightarrow Aa \mid b$	
b)	Convert the following grammar to GNF.	[9]
	$S \rightarrow XB \mid AA$	
	$A \rightarrow a \mid SA$	
	$B \rightarrow b$	
	$X \rightarrow a$	^
	OR	
Q2) a)	Show that the following grammar is ambiguous	as. (6)

S-> iCtSes S-> a C-> b Convert the following grammar to chomsky normal form (CNF) $G=(\{S\}, \{a, b\}, P, S)$ $P=\{S\rightarrow aSa\mid bSb\mid a\mid b\mid aa\mid bb\}$ **[6]**

	c)	Consider the following grammar.	6]	
		$E \rightarrow E + E \mid E - E \mid id$		
		Derive the string id-id*id using		
		i) Leftmost derivation		
		ii) Rightmost derivation.		
Q3)	a)	Find the transition rules of PDA for accepting a language		
		L= $\{w \in \{a,b\}^n w \text{ is of the } a^nb^n \text{ with } n \ge 1\}$ through both empty stack and final state and demonstrates the stack operation for the string aaabbb.[9]		
	b)	Design a PDA for accepting a language $\{a^nb^{2n} \mid n \ge 1\}$	9]	
		Simulate this PDA for the input string "aaabbbbbb".		
		OR S		
Q4)	a)	Design a PDA for accepting a language $\{0^n1^m0^n \mid m, n \ge 1\}$.		
		Simulate this PDA for the input string "0011100".	9]	
	b)	Construct a PDA for L= $\{0^n1^m2^m3^n \mid m,n \ge 0\}$	6]	
	c)	Compare FA and PDA.	3]	
Q5)	a)	Write a short note on Halting problem of Turing machine.	4]	
	b)	Design a Turing Machine for the following language by Considering transition table and diagram.	1g 9]	

- Q5)
 - TM That erases all non blank symbols on the tape where the i) sequence of non blank symbols does not contain any blank symbol B in between.
 - TM that find 2's complement of a binary machine. ii)
 - Design a Turing Machine that reads a string representing a binary number c) and erases all leading 0's in the string. However, if the string comprises of only 0's it keeps one 0. [5]

OR

Write short notes on:	[4]	
i) Reducibility		
ii) Multi-tape Turing Machine		
Construct a Turing Machine for R=aba*b	[6]	
Design a TM that multiplies two unary numbers over $\Sigma = \{1\}$	}. Write	
simulation for the string 11*111.	[8]	
Justify "Halting problem of Turing machine is undecidable"	[8]	
Define and compare class P and class NP problem with suitable diagram		
	[8]	
OR		
Explain in brief the term "recursively enumerable".	[6]	
Explain examples of problems in NP.	[6]	
Differentiate between P Class and NP class.	[4]	
	^	
E. C.		
	ii) Multi-tape Turing Machine for R=aba*b Design a TM that multiplies two unary numbers over Σ ={1 simulation for the string 11*111. Justify "Halting problem of Turing machine is undecidable" Define and compare class P and class NP problem with suitable OR Explain in brief the term "recursively enumerable". Explain examples of problems in NP.	