Stivt legemers dynamikk

16.04.2013

FYS-MEK 1110 16.04.2013 1

$translasjon \Leftrightarrow rotasjon$

	translasjon	rotasjon	
posisjon	x(t)	$\theta(t)$	vinkel
hastighet	$v(t) = \frac{dx}{dt}$	$\omega(t) = \frac{d\theta}{dt}$	vinkelhastighet
akselerasjon	$a(t) = \frac{dv}{dt} = \frac{d^2x}{dt^2}$	$\alpha(t) = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$	vinkelakselerasjon
translatorisk energi	$K_t = \frac{1}{2}mv^2$	$K_r = \frac{1}{2}I\omega^2$	rotasjonell energi
masse	m	I	treghetsmoment
kraft	$\vec{F} = m\vec{a}$	$\vec{\tau}_{\scriptscriptstyle O} = \vec{r} \times \vec{F}$	kraftmoment
bevegelsesmengde	$\vec{p} = m\vec{v}$	$\vec{l}_O = \vec{r} \times \vec{p}$	spinn

å spinne et hjul

hvordan får vi et hjul å rotere?

vi bruker en tangensial kraft F_T i et punkt med radius R

$$\vec{F} = F_T \hat{u}_T$$

kraften virker i en kort tidsperiode Δt langs en kort strekning Δs

arbeid-energi teorem:
$$W = \int_{t_0}^{t_1} \vec{F} \cdot \vec{v} dt = K_1 - K_0$$

kinetisk energi: $K = \frac{1}{2}I\omega^2$

over
$$\Delta t$$
 er kraften konstant: $\Delta W = F_T \Delta s = F_T R \Delta \theta = K(t + \Delta t) - K(t)$

$$F_T R \frac{\Delta \theta}{\Delta t} = \frac{K(t + \Delta t) - K(t)}{\Delta t} = \frac{\Delta K}{\Delta t}$$

$$F_T R \frac{d\theta}{dt} = F_T R \omega = \frac{d}{dt} \left(\frac{1}{2} I \omega^2 \right) = I \omega \frac{d\omega}{dt}$$

N2L for rotasjoner:
$$F_T R = I\alpha$$
 $F_T R = I\alpha$

N2L for translasjoner: F = ma

Kraftmoment

bare den tangensiale kraftkomponenten bidrar til å få hjulet å rotere

N2L for rotasjoner: $F_T R = I\alpha$

 $F_T R = \tau$ kraftmoment

kraftmomentet er årsak for vinkelakselerasjonen

avstand R fra rotasjonsaksen er viktig:

Treghetsmomentet er legemets motstand mot å få rotasjonshastigheten endret.

Det krever et kraftmoment: $\tau = I\alpha$

Kraftmoment

angrepspunkt for kraften: $\vec{r} = r\hat{u}_R$

bare den tangensiale kraftkomponenten bidrar.

rotasjon om z aksen: $\vec{\alpha} = \alpha \hat{k}$

kraftmoment:
$$\vec{\tau}_O = \vec{r} \times \vec{F} = r\hat{u}_R \times (F_R\hat{u}_R + F_T\hat{u}_T)$$

= $r\hat{u}_R \times F_T\hat{u}_T = rF_T\hat{k} = \tau_{O,z}\hat{k}$

N2L for rotasjoner: $\tau_{o,z} = I_z \alpha$

hvis flere krefter virker:

$$\sum_{i} au_{z,i} = I_{z} lpha$$
 (N2Lr) $ec{ au}_{i} = ec{r}_{i} imes ec{F}_{i}$

"kraftmoment om O"

kraftmomentet tilknyttet til en kraft avhenger av punktet O det refererer seg til

Ranger kraftmomentene

1.
$$\tau_e > \tau_a = \tau_d > \tau_b > \tau_c$$
 \Leftarrow

2.
$$\tau_d > \tau_e > \tau_a = \tau_b > \tau_c$$

3.
$$\tau_e > \tau_a > \tau_d > \tau_b > \tau_c$$

4.
$$\tau_d = \tau_e > \tau_a = \tau_b = \tau_c$$

5.
$$\tau_d = \tau_e > \tau_a = \tau_b > \tau_c$$

To hjul med fiksert nav har begge massen 1 kg. Anta at navet og eikene er masseløse. Hvor stor må F_2 være for at hjulene skal få samme vinkelakselerasjon?

- 1. 0.25 N
- 2. 0.5 N
- 3. 1 N
- 4. 2 N
- 5. 4 N

N2Lr:
$$\tau = RF = I\alpha$$

for å få samme vinkelakselerasjon:
$$\alpha$$

$$\alpha = \frac{R_1 F_1}{I_1} = \frac{R_2 F_2}{I_2}$$

$$F_2 = \frac{I_2}{I_1} \frac{R_1}{R_2} F_1 = 4 \frac{1}{2} F_1 = 2 \text{ N}$$

treghetsmomenter:
$$I_1 = mR_1^2 = 0.25 \text{ kgm}^2$$

$$I_2 = mR_2^2 = 1 \,\mathrm{kgm}^2$$

Arkimedes: "Gi meg et fast punkt, og jeg skal flytte jorden."

fast punkt: O

netto kraftmoment om O:

$$\vec{\tau}_{\text{net}} = \vec{r}_W \times \vec{W} + \vec{r}_F \times \vec{F} + \vec{r}_N \times \vec{N}$$

$$= -r_W \hat{i} \times (-W \hat{j}) + r_F \hat{i} \times (-F \hat{j}) + \vec{0} \times N \hat{j}$$

$$= r_W W (\hat{i} \times \hat{j}) - r_F F (\hat{i} \times \hat{j})$$

$$= (r_W W - r_F F) \hat{k}$$

for å få et negativt kraftmoment om z aksen (med klokken):

$$r_{W}W < r_{F}F$$

$$F > \frac{r_W}{r_F} W$$

Eksempel

En konstant kraft F virker tangensial på et hjul (homogen sylinder). Finn vinkel θ som funksjon av tiden.

krefter:

ightharpoonup gravitasjon: $\vec{G} = -Mg \hat{j}$

 \triangleright konstant kraft: $\vec{F} = -F\hat{i}$

 \succ normalkraft fra aksen på hjulet: \vec{N}

massesenteret beveger seg ikke

$$\sum F_{\text{ext}} = \vec{G} + \vec{F} + \vec{N} = \vec{0}$$

$$\vec{N} = -\vec{F} - \vec{G} = -F\hat{i} - Mg\hat{j}$$

kraftmomenter:

$$\vec{\tau}_{G} = \vec{r}_{G} \times \vec{G} = \vec{0} \times (-Mg\,\hat{j}) = \vec{0}$$

$$\vec{\tau}_{N} = \vec{r}_{N} \times \vec{N} = \vec{0} \times (-F\,\hat{i} - Mg\,\hat{j}) = \vec{0}$$

$$\vec{\tau}_{F} = \vec{r}_{F} \times \vec{F} = R\,\hat{j} \times (-F\,\hat{i}) = RF\,\hat{k}$$

N2Lr:
$$\tau_z = I_z \alpha$$

$$\alpha = \frac{\tau_z}{I_z} = \frac{RF}{\frac{1}{2}MR^2} = \frac{2F}{MR}$$

$$\omega(t) - \omega(0) = \int_{0}^{t} \alpha dt = \frac{2F}{MR}t$$

$$\theta(t) - \theta(0) = \int_{0}^{t} \omega(t)dt = \frac{2F}{MR} \int_{0}^{t} tdt$$

$$\theta(t) = \frac{F}{MR}t^2$$

Eksempel: jojo

gravitasjon: $\vec{G} = -Mg \hat{j}$

snordrag: $\vec{T} = T \hat{j}$

N2L:
$$\vec{T} + \vec{G} = M\vec{A}$$

$$T - Mg = MA_{y}$$

N2Lr:
$$\vec{0} \times \vec{G} + r\hat{i} \times T \hat{j} = \vec{\tau}_z = I_z \vec{\alpha}$$

$$rT\hat{k} = I_{\tau}\vec{\alpha}$$

$$rT = I_{\tau}\alpha$$

$$rT = -\frac{A_y}{r}I_z$$

$$T - Mg = -\frac{A_y}{r^2}I_z - Mg = MA_y$$

$$-g = A_{y} \left(1 + \frac{I_{z}}{Mr^{2}} \right)$$

rullebetingelse: $\vec{v}_T = \vec{V} + \vec{v}_{T,cm} = \vec{0}$

$$\vec{v}_{T,cm} = \vec{\omega} \times \vec{r}_{T,cm} = \omega \hat{k} \times r \hat{i} = \omega r \hat{j}$$

$$\vec{V} = -\vec{v}_{T.cm} = -\omega r \hat{j}$$

$$A_{y} = \frac{d}{dt}V_{y} = -r\frac{d\omega}{dt} = -r\alpha$$

treghetsmoment: $I_z \approx \frac{1}{2}MR^2$

f.eks.:
$$R = 2r \implies I_z \approx \frac{1}{2}M4r^2 = 2Mr^2$$

$$A_{y} = -\frac{1}{3}g$$

Eksempel

Et legeme av masse M, radius R, og treghetsmoment ruller ned et skråplan.

koordinatsystem med x aksen langs planet origo i massesenteret rotasjon langs z aksen $\Rightarrow \omega < 0$

normalkraft:
$$\vec{N} = N \hat{j}$$

$$\vec{\tau}_N = \vec{r}_N \times \vec{N} = -R \hat{j} \times N \hat{j} = \vec{0}$$

friksjon:
$$\vec{f} = -f\hat{i}$$

$$\vec{\tau}_f = \vec{r}_f \times \vec{f} = -R\hat{j} \times (-f\hat{i}) = -Rf\hat{k}$$

gravitasjon:

$$\vec{G} = Mg(\sin\phi)\hat{i} - Mg(\cos\phi)\hat{j}$$
$$\vec{\tau}_G = \vec{r}_G \times \vec{G} = \vec{0} \times \vec{G} = \vec{0}$$

N2L for translasjon:
$$\sum \vec{F}_{\rm ext} = \vec{N} + \vec{f} + \vec{G} = M\vec{A}$$

x retning:
$$Mg \sin \phi - f = MA_x$$

y retning:
$$N - Mg \cos \phi = MA_y = 0$$

 $N = Mg \cos \phi$

N2L for rotasjon:
$$\sum \tau_{z,cm} = -Rf = I_{z,cm}\alpha$$

2 ligninger

3 ukjente: A_x, α, f

$$Mg\sin\phi - f = MA_{x} \qquad (1)$$

$$-Rf = I_{z,cm}\alpha \tag{2}$$

vi antar at legemet ruller:

rullebetingelse:
$$V_x = -\omega R$$
 ($\omega < 0$)

$$\frac{d}{dt}V_x = A_x = -R\frac{d\omega}{dt} = -R\alpha$$

(2)
$$f = -\frac{I_{z,cm}}{R}\alpha = \frac{I_{z,cm}}{R^2}A_x$$

$$(1) Mg\sin\phi - \frac{I_{z,cm}}{R^2}A_x = MA_x$$

$$g\sin\phi = \left(1 + \frac{I_{z,cm}}{MR^2}\right)A_x$$

$$A_{x} = \frac{g \sin \phi}{1 + c}$$

friksjon:
$$f = \frac{I_{z,cm}}{R^2} \frac{g \sin \phi}{1+c} = Mg \sin \phi \frac{c}{1+c}$$

friksjon øker med stigning ϕ

betingelse for at legemet ikke sklir: $f < \mu_s N$

$$Mg\sin\phi\frac{c}{1+c} < \mu_s Mg\cos\phi$$

$$\tan \phi < \mu_s \frac{1+c}{c}$$

	$I_{z,cm}$	$ an \phi_{ ext{max}}$
kule	$\frac{2}{5}MR^2$	$\frac{7}{2}\mu_s$
sylinder	$\frac{1}{2}MR^2$	$3\mu_s$
sylinderskall	MR^2	$2\mu_s$

$$Mg\sin\phi - f = MA_{x} \qquad (1)$$

$$-Rf = I_{z,cm}\alpha \tag{2}$$

stor stigning: legemet sklir

i denne tilfelle kjenner vi friksjon: dynamisk friksjon:

$$f = \mu_d N = \mu_d Mg \cos \phi$$

(1)
$$Mg \sin \phi - \mu_d Mg \cos \phi = MA_x$$

 $A_x = g(\sin \phi - \mu_d \cos \phi)$

legemet vil fortsatt ruller:

(2)
$$\alpha = -\frac{Rf}{I_{z,cm}} = -\mu_d \frac{RMg \cos \phi}{I_{z,cm}}$$

jo større ϕ jo mindre α

