CLAIM AMENDMENTS

650-566-7181

1 to 12. CANCELLED

05-10-2005 05:40pm

- 13. (Currently amended) A method for producing differentiated cells from primate pluripotent stem (pPS) cells, comprising:
 - a) obtaining a culture of pPS cells;
 - b) Initiating differentiation of the pPS cells; and simultaneously or subsequently
 - c) culturing the cells of step b) In a medium containing <u>an effective concentration of</u> a histone deacetylase inhibitor, until at least 60% at least about 40% of the cultured cells have at least three of the following characteristics:
 - antibody-detectable expression of α₁-antitrypsin (AAT);
 - antibody-detectable expression of albumin;
 - absence of antibody-detectable expression of α-fetoprotein;
 - RT-PCR detectable expression of asialoglycoprotein receptor (ASGR);
 - evidence of glycogen storage;
 - evidence of cytochrome p450 activity;
 - evidence of glucose-6-phosphatase activity; or
 - the morphological features of hepatocytes.
- (Currently amended) The method of claim 13 claim 16, wherein at least about 60% of the cells have at least five of said characteristics.
- 15. (Currently amended) The method of claim 13 claim 16, wherein at least about 80% of the cells have at least seven of said characteristics.
- (Previously presented) The method of claim 13, wherein the histone deacetylase inhibitor is n-butyrate.
- (Previously presented) The method of claim 13, wherein the histone deacetylase inhibitor is propionic acid, isovaleric acid, or isobutyric acid.
- 18. (Previously presented) The method of claim 13, wherein the histone deacetylase inhibitor is Trichostatin A.

05-10-2005

05:40pm

19. (Previously presented) The method of claim 13, wherein differentiation of the pPS cells is initiated by forming embryoid bodies.

650-566-7181

- 20. (Previously presented) The method of claim 13, wherein differentiation of the pPS cells is initiated by culturing in a medium containing dimethyl sulfoxide (DMSO), dimethylacetamide (DMA); hexmethylene bisacetamide, or another polymethylene bisacetamide.
- 21. (Previously presented) The method of claim 13, comprising further culturing the cells in a medium containing a cytokine or hormone selected from glucocorticoids, epidermal growth factor (EGF), insulin, TGF-α, TGF-β, fibroblast growth factor (FGF), hepatocyte growth factor (HGF), IL-1, IL-6, IGF-I, IGF-II, and HBGF-1.
- 22. (Previously presented) The method of claim 21, wherein the cells are cultured in a medium containing at least three of said cytokines or hormones.
- 23. (Previously presented) The method of claim 22, wherein the cells are cultured in a medium containing EGF, TGF-α, and HGF.
- 24. (Previously presented) The method of claim 13, further comprising maintaining the differentiated cells by culturing them in a medium containing a histone deacetylase inhibitor.
- 25. (Previously presented) The method of claim 13, further comprising maintaining the differentiated cells by culturing them in a medium containing n-butyrate.

05-10-2005

05:40pm

26. (Previously presented) The method of claim 27, wherein the pPS cells are human embryonic stem cells.

650-566-7181

- 27. (Currently amended) A method for maintaining hepatocyte lineage cells in culture, comprising:
 - a) obtaining a population of cells differentiated from an established culture of primate pluripotent stem (pPS) cells, wherein at least -60% at least about 40% of the differentiated cells have at least three of the following characteristics:
 - antibody-detectable expression of α_1 -antitrypsin (AAT);
 - antibody-detectable expression of albumin;
 - absence of antibody-detectable expression of α -fetoprotein;
 - RT-PCR detectable expression of asialoglycoprotein receptor (ASGR):
 - evidence of glycogen storage;
 - evidence of cytochrome p450 activity;
 - evidence of glucose-6-phosphatase activity; or
 - the morphological features of hepatocytes; and then
 - b) culturing the differentiated cells in a medium containing an effective concentration of a histone deacetylase inhibitor, so that at least-60% of the cultured cells maintain said characteristics.
- 28. (Currently amended) A method for producing differentiated cells from human embryonic stem. (hES) cells, comprising:
 - a) obtaining a culture of hES cells:
 - b) initiating differentiation of the hES cells; and simultaneously or subsequently
 - c) culturing the cells of step b) in a medium containing an effective concentration of a histone deacetylase inhibitor, until at least -60% at least about 40% of the cultured cells have at least three of the following characteristics:
 - antibody-detectable expression of α₁-antitrypsin (AAT);
 - antibody-detectable expression of albumin;
 - absence of antibody-detectable expression of α-fetoprotein;
 - RT-PCR detectable expression of asialoglycoprotein receptor (ASGR);
 - evidence of glycogen storage;
 - evidence of cytochrome p450 activity:
 - evidence of glucose-6-phosphatase activity; or
 - the morphological features of hepatocytes.
- 29. (Previously presented) The method of claim 13, wherein the pPS cells are cultured with the histone deacetylase inhibitor without previously initiating differentiation.

- 30. (Previously presented) The method of claim 13, wherein the pPS cells are cultured on an extracellular matrix without feeder cells before contact with the histone deacetylase inhibitor.
- 31. (Currently amended) The method of claim 28, wherein at least about 60% about 40% of the cells have at least five of said characteristics.
- 32. (Currently amended) The method of claim 28, wherein at least about 60% about 40% of the cells have at least seven of said characteristics.
- 33. (Previously presented) The method of claim 28, wherein the histone deacetylase inhibitor is n-butyrate or Trichostatin A.
- 34. (Previously presented) The method of claim 28, comprising pre-differentiating the cells by culturing in a medium containing dimethyl sulfoxide (DMSO), dimethylacetamide (DMA); nexmethylene bisacetamide, or another polymethylene bisacetamide.
- 35. (Previously presented) The method of claim 28, comprising further culturing the cells in a medium containing at least three cytokines or hormones selected from glucocorticoids, epidermal growth factor (EGF), insulin, TGF-α, TGF-β, fibroblast growth factor (FGF), hepatocyte growth factor (HGF), IL-1, IL-6, IGF-I, IGF-II, and HBGF-1.
- 36. (Previously presented) The method of claim 34, wherein the cells are cultured in a medium containing EGF, TGF-a, and HGF.

- 37. (Currently amended) The method of claim 27 claim 39, wherein at least about 60% of the cells have at least five of said characteristics.
- 38. (Currently amended) The method of claim 27 claim 39, wherein at least about 80% of the cells have at least seven of said characteristics.
- 39. (Previously presented) The method of claim 27, wherein the histone deacetylase inhibitor is n-butyrate.
- 40. (Previously presented) The method of claim 27, wherein the histone deacetylase inhibitor is Trichostatin A.

Upon allowance of the application, please renumber the claims as follows:

Claim	13	\rightarrow	· 1	Claim	28	\rightarrow	16
	14	\rightarrow	5		29	→	7
	15	\rightarrow	6	•	30	→	8
	16	\rightarrow	4		31	\rightarrow	17
	17	\rightarrow	3		32	\rightarrow	18
	18	\rightarrow	2		33	\rightarrow	19
	19	\rightarrow	9		34	\rightarrow	20
	20	\rightarrow	10		35	>	21
	21	\rightarrow	11		36	\rightarrow	22
	22	\rightarrow	12		37	→	26
	23	\rightarrow	13		38	\rightarrow	27
	24	→	14		39	\rightarrow	25
	25	\rightarrow	15		40	→	24
	26	\rightarrow	28				
	27	→	23				