<u>Help</u>

sandipan_dey >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>MO Index</u>

☆ Course / 13 Introduction to Optimization / 13.2 Multi-variable Optimization

MO2.12

Now let's consider a problem with two dimensions, in other words, $J\left(a_0,a_1\right)$ is a function of two states, a_0 and a_1 . We can use a Taylor series to approximate change in J for a change in $\underline{a}=(a_0,a_1)$. Let's define the change in \underline{a} as $\Delta\underline{a}=(\Delta a_0,\Delta a_1)$. The Taylor series for $J\left(a_0+\Delta a_0,a_1+\Delta a_1\right)$ about $J\left(a_0,a_1\right)$ is,

$$J(a_0 + \Delta a_0, a_1 + \Delta a_1) \approx J(a_0, a_1) + \Delta a_0 \frac{\partial J}{\partial a_0} \Big|_{(a_0, a_1)} + \Delta a_1 \frac{\partial J}{\partial a_1} \Big|_{(a_0, a_1)}$$

$$(13.14)$$

We can condense this Taylor series approximation using the gradient of ${m J}$ which is defined as,

$$abla J\left(a_{0},a_{1}
ight)=\left(rac{\partial J}{\partial a_{0}}\Big|_{\left(a_{0},a_{1}
ight)},rac{\partial J}{\partial a_{1}}\Big|_{\left(a_{0},a_{1}
ight)}
ight).$$

Thus, we can write Equation (13.14) as,

$$\Delta J \equiv J(a + \Delta a) - J(a) \approx \Delta a \cdot \nabla J(a)$$
(13.16)

The notation $\underline{u} \cdot \underline{v}$ is for the dot product of \underline{u} and \underline{v} .

This equation shows a few interesting facts about gradients:

- ullet When the gradient is zero, i.e., all the partial derivatives of ${m J}$ are zero, then the function values don't change to first order, so we are at an extremum.
- Also, note that when $(\Delta a_0)^2+(\Delta a_1)^2=1$ (the length squared of the $\Delta\underline{a}$ vector is one), then $\frac{\partial J}{\partial a_0}\Delta a_0+\frac{\partial J}{\partial a_1}\Delta a_1$ is the derivative of J in the direction of Δa .
- We can express the dot product as

$$\Delta \underline{a} \cdot \nabla J = \|\Delta \underline{a}\| \|\nabla J\| \cos \theta, \tag{13.17}$$

where heta is the angle between the two vectors, and $\|\underline{v}\| = \sqrt{v_0^2 + v_1^2}$ is the length (or norm) of a vector \underline{v} . To make the function increment ΔJ largest for a Δa of a fixed length, we should pick

Discussions

Posting in discussic

All posts sorted by recent activity

© All Rights Reserved

Next >

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

Idea Hub

Contact Us

Help Center

Security

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>

video on derivation of multi-dimensional gradient descent