## Introduction to Machine Learning for NLP I

Benjamin Roth, Nina Poerner, Anne Bayer

CIS LMU München

## Outline

- 1 This Course
- Overview
- Machine Learning Definition
  - Data (Experience)
  - Tasks
  - Performance Measures
- 4 Linear Regression: Overview and Cost Function
- Summary

#### Course Overview

- Foundations of machine learning
  - loss functions
  - linear regression
  - logistic regression
  - gradient-based optimization
  - neural networks and backpropagation
- Deep learning tools in Python
  - Numpy
  - Pytorch
  - Keras
  - (some) Tensorflow?
- Applications
  - Word Embeddings
  - Senitment Analysis
  - Relation extraction
  - (some) Machine Translation?
  - Practical projects (NLP related, to be agreed on during the course)



## Lecture Times, Tutorials

- Course homepage: dl-nlp.github.io
- 9-11 is supposed to be the lecture slot, and 11-12 the tutorial slot ...
- ... but we will not stick to that allocation
- We will sometimes have longer Q&A-style/interactive "tutorial" sessions, sometimes more lectures (see next slide)
- Tutor: Anne Bayer
  - Will discuss exercise sheets in the tutorials
  - Will help you with the projects

## Plan

|       | 9-11 slot                  |                   | 11-12 slot | E:       | x. sheet               |  |
|-------|----------------------------|-------------------|------------|----------|------------------------|--|
| 10/17 | Overview / ML Intro I      |                   | ML Intro I | Li       | Linear algebra chapter |  |
| 10/24 | Linear algebra Q&A / ML II |                   | ML II      | Р        | Probability chapter    |  |
| 10/31 | Probability Q&A / ML III   |                   | Numpy      | Numpy    |                        |  |
| 11/7  | Pytorch Intro              |                   | Pytorch    | Pytorch  |                        |  |
| 11/14 | Word2Vec                   |                   | Numpy Q&A  | Word2Vec |                        |  |
| ·     | 9-11 slot                  | 11-12 slot        |            |          | Ex. sheet              |  |
| 11/21 | RNNs, Pytorch Q&A          | Word2Vec Q&A      |            |          | Read LSTM/RNN          |  |
| 11/28 | LSTM discussion            | Keras             |            |          | Keras/Tagging          |  |
| 12/5  | Keras II                   | Keras II          |            |          | Keras/CNNs             |  |
| 12/12 | Project announcements      | Keras/Tagging Q&A |            | _        |                        |  |
| 12/19 | Project assignments        | Keras/CNNs Q&A    |            | _        |                        |  |

|      | 9-11 slot             | 11-12 slot         | Ex. sheet |
|------|-----------------------|--------------------|-----------|
| 1/9  | Hyper-parameters?     | Help with projects | _         |
| 1/16 | Regularization?       | Help with projects | _         |
| 1/23 | Projects Q&A          | Projects Q&A       | _         |
| 1/30 | Project presentations | presentations      | _         |
| 2/6  | Project presentations | presentations      | _         |

#### **Formalities**

- This class is graded by a project
- The grade of the project is determined taking the average of:
  - Grade of the code written for the project.
  - Grade of project documentation / mini-report.
  - Grade of presentation about your project.
  - ightharpoonup You have to pass all three elements in order to pass the course.

#### **Bonus Points**

- If you got more than 50% of the points in the exercise sheets before new year, your grade can be improved by up to 0.5 absolute grades.
- Formula:

$$g_{\text{project}} = \frac{g_{\text{project-code}} + g_{\text{project-report}} + g_{\text{project-presentation}}}{3}$$

$$g_{\text{final}} = \text{round}(g_{\text{project}} - 0.5 \cdot x)$$

- where:
- x is the fraction of points above 50% of reachable points in the exercises (between 0 and 1)
- round selects the *closest* value of 1; 1.3; 1.7; 2; · · · 3.7; 4



## Exercise sheets, Projects, Presentations

- 6 ECTS, 14 weeks
  - $\Rightarrow$  avg work load  $\sim$  13hrs / week (3 in class, 10 at home)
    - in the first weeks, spend enough time to read and prepare so that you are not lost later
    - from mid-November to mid-December: programming assignments coding takes time, and can be frustating (but rewarding)!
- Exercise sheets
  - Work on non-programming exercise sheets individually
  - ► For exercise sheets that contain programming parts, submit in teams of 2 or 3
- Projects
  - ▶ A list of topics will be proposed by me: ~ Implement a deep learning technique applied to information extaction (or other NLP task)
  - Own ideas also possible, need to be discussed with me
  - Work in groups of two or three
  - ▶ Project report: 3 pages / team member



## Good project code ...

- ... shows that you master the techniques taught in the lectures and exercises.
- ... shows that you can make "own decisions": e.g. adapt model / task / training data etc if necessary.
- ... is well-structured and easy to understand (telling variable names, meaningful modularization – avoid: code duplication, dead code)
- ... is correct (especially: train/dev/test splits, evaluation)
- ... is within the scope of this lecture (time-wise should not exceed  $5\times 10 h)$

## A good project presentation ...

- ... is short (10 min. p.P. + 15 min. Q&A per team)
- ... similar to the report, contains the problem statement, motivation, model, and results
- ... is targeted to your fellow students, who do not know details beforehand
- ... contains interesting stuff: unexpected observations? conclusions
   / recommendations? did you deviate from some common practice?
- ... demonstrates that all team members worked together on the project
- Possible outline
  - Background / Motivation
  - Formal characterization of techniques used
  - Technical Approach and Difficulties
  - Experiments, Results and Interpretation

## A good project report ...

- ... is concise (3 pages / person) and clear
- ... motivates and describes the model that you have implemented and the results that you have obtained
- ... shows that you can correctly describe the concepts taught in this class
- ... contains interesting stuff: unexpected observations? conclusions / recommendations? did you deviate from some common practice?

## Outline

- 1 This Course
- Overview
- Machine Learning Definition
  - Data (Experience)
  - Tasks
  - Performance Measures
- 4 Linear Regression: Overview and Cost Function
- Summary

## Machine Learning

- Machine learning for natural language processing
  - ► Why?
  - Advantages and disadvantages to alternatives?
  - Accuracy; Coverage; resources required (data, expertise, human labour); Reliability/Robustness; Explainability



## Deep Learning

- Learn complex functions, that are (recursively) composed of simpler functions.
- Many parameters have to be estimated.



## Deep Learning

- Main Advantage: Feature learning
  - Models learn to capture most essential properties of data (according to some performance measure) as intermediate representations.
  - No need to hand-craft feature extraction algorithms



#### **Neural Networks**

- First training methods for deep nonlinear NNs appeared in the 1960s (Ivakhnenko and others).
- Increasing interest in NN technology (again) since around 5 years ago ("Neural Network Renaissance"):
   Orders of magnitude more data and faster computers now.
- Many successes:
  - Image recognition and captioning
  - Speech regonition
  - NLP and Machine translation (demo of Bahdanau / Cho / Bengio system)
  - Game playing (AlphaGO)
  - **.**..

## Machine Learning

• Deep Learning builds on general Machine Learning concepts

$$\operatorname{argmin}_{\boldsymbol{\theta} \in \mathcal{H}} \sum_{i=1}^{m} \mathcal{L}(f(\boldsymbol{x}_i; \boldsymbol{\theta}), y_i)$$

• Fitting data vs. generalizing from data



## Outline

- 1 This Course
- Overview
- Machine Learning Definition
  - Data (Experience)
  - Tasks
  - Performance Measures
- 4 Linear Regression: Overview and Cost Function
- 5 Summary

#### A Definition

"A computer program is said to learn from **experience** E with respect to some class of **tasks** T and **performance measure** P, if its performance at tasks in T, as measured by P, improves with experience E." (Mitchell 1997)

#### A Definition

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." (Mitchell 1997)

- Learning: Attaining the ability to perform a task.
- A set of examples ( "experience") represents a more general task.
- Examples are described by *features*: sets of numerical properties that can be represented as vectors  $\mathbf{x} \in \mathbb{R}^n$ .

#### Outline

- 1 This Course
- Overview
- Machine Learning Definition
  - Data (Experience)
  - Tasks
  - Performance Measures
- 4 Linear Regression: Overview and Cost Function
- Summary

#### Data

"A computer program is said to learn from experience E [...], if its performance [...] improves with experience E."

- Dataset: collection of examples
- Design matrix

$$\boldsymbol{X} \in \mathbb{R}^{n \times m}$$

- n: number of examples
- m: number of features
- **Example:**  $X_{i,j}$  count of feature j (e.g. a stem form) in document i.
- Unsupervised learning:
  - Model X, or find interesting properties of X.
  - Training data: only X.
- Supervised learning:
  - Predict specific additional properties from X.
  - ▶ Training data: Label vector  $\mathbf{y} \in \mathbb{R}^n$  together with  $\mathbf{X}$



#### Data

- Low training error does not mean good generalization.
- Algorithm may overfit.



## Data Splits

- Best Practice: Split data into training, cross-validation and test set.
   ("Cross-validation set" = "development set").
  - ▶ Optimize low-level parameters (feature weights ...) on training set.
  - Select models and hyper-parameters on cross-validation set. (type of machine learning model, number of features, regularization, priors).
  - It is possible to overfit both in the training as well as in the model selection stage!
  - ► ⇒ Report final score on test set **only after** model has been selected!
- Don't report the error on training or cross-validation set as your model performance!

#### Outline

- This Course
- Overview
- Machine Learning Definition
  - Data (Experience)
  - Tasks
  - Performance Measures
- 4 Linear Regression: Overview and Cost Function
- Summary

## Machine Learning Tasks

"A computer program is said to learn [...] with respect to some class of **tasks T** [...] if its performance at **tasks in T** [...] improves [...]" Types of Tasks:

- Classification
- Regression
- Structured Prediction
- Anomaly Detection
- synthesis and sampling
- Imputation of missing values
- Denoising
- Clustering
- Reinforcement learning
- . . .

# Machine Learning Tasks: Typical Examples & Examples from Recent NLP Reserch

What are the most important conferences relevant to the intersection of MI and NI P?

#### Task: Classification

• Which of k classes does an example belong to?

$$f: \mathbb{R}^n \to \{1 \dots k\}$$

- Typical example: Categorize image patches
  - ► Feature vector: color intensities for each pixel; derived features.
  - Output categories: Predefined set of labels



- Typical example: Spam Classification
  - Feature vector: High-dimensional, sparse vector.
     Each dimension indicates occurrence of a particular word, or other email-specific information.
  - ▶ Output categories: "spam" vs. 'ham"

#### Task: Classification

## Identifying civilians killed by police with distantly supervised entity-event extraction

#### Katherine A. Keith, Abram Handler, Michael Pinkham, Cara Magliozzi, Joshua McDuffie, and Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

 EMNLP 2017: Given a person name in a sentence that contains keywords related to police ("officer", "police" ...) and to killing ("killed", "shot"), was the person a civilian killed by police?

| Text                                                                          | Person killed by police? |
|-------------------------------------------------------------------------------|--------------------------|
| Alton Sterling was killed by police.                                          | True                     |
| Officers shot and killed Philando Castile.                                    | True                     |
| Officer Andrew Hanson was shot.                                               | False                    |
| Police report <b>Megan Short</b> was fatally shot in apparent murder-suicide. | False                    |

## Task: Regression

• Predict a numerical value given some input.

$$f: \mathbb{R}^n \to \mathbb{R}$$



- Typical examples:
  - ▶ Predict the risk of an insurance customer.
  - ▶ Predict the value of a stock.

## Task: Regression

#### Towards an Automatic Turing Test: Learning to Evaluate Dialogue Responses

Ryan Lowe $^{\heartsuit^*}$  Michael Noseworthy $^{\heartsuit^*}$  Iulian V. Serban $^{\diamondsuit}$  Nicolas A.-Gontier $^{\heartsuit}$  Yoshua Bengio $^{\diamondsuit\ddagger}$  Joelle Pineau $^{\heartsuit\ddagger}$ 

 ACL 2017: Given a response in a multi-turn dialogue, predict the value (on a scale from 1 to 5) how natural a response is.

| Context                                                                      | Reference response       | ence response Model responses                                |       | ADEM  |
|------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------|-------|-------|
|                                                                              |                          |                                                              | score | score |
| photo to see my television debut go to -                                     | yeah it was me . haha i  | i'm not sure. i just don't know what to do with it.          | 3     | 1.602 |
| some. some on $\langle url \rangle$ - hehe $\langle url \rangle \rightarrow$ | 'd kinda forgotten about | 2) you heard the horsepower productions remix of lee scratch | 1     | 1.513 |
| it really was you? i thought ppl were rec-                                   | it it was filmed a while | perry's 'exercising' off his 'mighty upsetter' album?        |       |       |
| ognizing someone who looked like you!                                        | ago                      | you wont chug a fuzzy peach navel                            | 1     | 1.744 |
| were the oysters worth the wait?                                             |                          | 4) they were!                                                | 5     | 3.274 |
| just beat call of duty!! → want a cookie?                                    | im in kenmore at the     | 1) i'm gonna get a new phone some moro                       | 1     | 1.848 |
| $\rightarrow$ yes!! $\rightarrow$ come get it                                | moment                   | 2) no way man.                                               | 5     | 4.265 |
| •                                                                            |                          | 3) wow i just got a free pizza coupon! get yours             | 1     | 0.921 |
|                                                                              |                          | before theres no more! <url></url>                           |       |       |
|                                                                              |                          | 4) i'm going to go to the mall.                              | 1     | 2.634 |
| am i out of twitter jail yet? testing →                                      | any news on meeting      | i'm not sure if i'm going to be able to get it.              | 3     | 1.912 |
| yeah. i posted bail → thanks. i am a                                         | our user? i go to the    | 2) good to see another mac user in the leadership ranks      | 4     | 1.417 |
| right chatter tweetbox on sundays. same                                      | us on friday and i don   | 3) awww poor baby hope u get to feeling better soon. maybe   |       |       |
| happened last sunday lol                                                     | 't want to miss anything | some many work days at piedmont                              | 2     | 1.123 |
|                                                                              | arranged                 | 4) did you tweet too much?                                   | 5     | 2.539 |
|                                                                              |                          |                                                              |       |       |

#### Task: Structured Prediction

- Predict a multi-valued output with special inter-dependencies and constraints.
- Typical examples:
  - Part-of-speech tagging



Syntactic parsing



Protein-folding



• Often involves search and problem-specific algorithms.

#### Task: Structured Prediction

#### Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme

Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing Hao, Peng Zhou, Bo Xu Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, P.R. China

 ACL 2017: jointly find all relations relations of interest in a sentence by tagging arguments and combining them.



## Task: Reinforcement Learning

- In reinforcement learning, the model (also called agent) needs to select a serious of actions, but only observes the outcome (reward) at the end.
- The goal is to predict actions that will maximize the outcome.

  Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Mike Lewis<sup>1</sup>, Denis Yarats<sup>1</sup>, Yann N. Dauphin<sup>1</sup>, Devi Parikh<sup>2,1</sup> and Dhruv Batra<sup>2,1</sup>

<sup>1</sup>Facebook AI Research

<sup>2</sup>Georgia Institute of Technology

• EMNLP 2017: The computer negotiates with humans in natural language in order to maximize its points in a game.





## Task: Anomaly Detection

- Detect atypical items or events.
- Common approach: Estimate density and identify items that have low probability.



- Examples:
  - Quality assurance
  - Detection of criminal activity
- Often items categorized as outliers are sent to humans for further scrutiny.

Task: Anomaly Detection

#### Using Automated Metaphor Identification to Aid in Detection and Prediction of First-Episode Schizophrenia

E. Darío Gutiérrez<sup>1</sup> Philip R. Corlett<sup>2</sup> Cheryl M. Corcoran<sup>3</sup> Guillermo A. Cecchi<sup>1</sup>

 ACL 2017: Schizophrenia patients can be detected by their non-standard use of mataphors, and more extreme sentiment expressions.

# Supervised and Unsupervised Learning

- Unsupervised learning: Learn interesting properties, such as probability distribution p(x)
- Supervised learning: learn mapping from x to y, typically by estimating p(y|x)
- Supervised learning in an unsupervised way:

$$p(y|\mathbf{x}) = \frac{p(\mathbf{x}, y)}{\sum_{y'} p(\mathbf{x}, y')}$$

### Outline

- This Course
- Overview
- Machine Learning Definition
  - Data (Experience)
  - Tasks
  - Performance Measures
- 4 Linear Regression: Overview and Cost Function
- Summary

### Performance Measures

"A computer program is said to learn [...] with respect to some [...] **performance measure** *P*, if its performance [...] **as measured by** *P*, improves [...]"

- Quantitative measure of algorithm performance.
- Task-specific.

Can be used to measure classification performance.

- Can be used to measure classification performance.
- Not applicable to measure density estimation or regression performance.

- Can be used to measure classification performance.
- Not applicable to measure density estimation or regression performance.
- Accuracy
  - Proportion of examples for which model produces correct output.
  - ▶ 0-1 loss = error rate = 1 accuracy.

- Can be used to measure classification performance.
- Not applicable to measure density estimation or regression performance.
- Accuracy
  - Proportion of examples for which model produces correct output.
  - ▶ 0-1 loss = error rate = 1 accuracy.
- Accuracy may be inappropriate for skewed label distributions, where relevant category is rare

$$\mathsf{F1}\text{-}\mathsf{score} = \frac{2 \cdot \mathsf{Prec} \cdot \mathsf{Rec}}{\mathsf{Prec} + \mathsf{Rec}}$$





#### Discrete vs. Continuous Loss Functions

- **Discrete** loss functions cannot indicate **how wrong** a wrong decision for one example is.
- Continuous loss functions . . .
  - ...are more widely applicable.
  - ...are often easier to optimize (differentiable).
  - ...can also be applied to discrete tasks (classification).
- Sometimes algorithms are optimized using one loss (e.g. Hinge loss) and evaluated using another loss (e.g. F1-Score).

## **Examples for Continuous Loss Functions**

- Density estimation: log probability of example
- Regression: squared error
- Classification: Loss  $L(y_i \cdot f(x_i))$  is function of label×prediction
  - ▶ label  $\in \{-1,1\}$ , prediction  $\in \mathbb{R}$
  - Correct prediction:
    - $y_i \cdot f(\mathbf{x}_i) > 0$
  - Wrong prediction:  $y_i \cdot f(\mathbf{x}_i) <= 0$
  - zero-one loss, Hinge-loss, logistic loss ...



• Loss on data set is sum of per-example losses.



### Outline

- This Course
- Overview
- Machine Learning Definition
  - Data (Experience)
  - Tasks
  - Performance Measures
- 4 Linear Regression: Overview and Cost Function
- 5 Summary

# Linear Regression



- For one instance:
  - ▶ Input: vector  $\mathbf{x} \in \mathbb{R}^n$
  - ▶ Output: scalar  $y \in \mathbb{R}$

(actual output: y; predicted output:  $\hat{y}$ )

► Linear function

$$\hat{y} = \boldsymbol{w}^T \boldsymbol{x} = \sum_{i=1}^n w_i x_i$$

4□▶ 4團▶ 4 ≣ ▶ 4 ≣ ▶ ■ 900

# Linear Regression



Linear function:

$$\hat{y} = \boldsymbol{w}^T \boldsymbol{x} = \sum_{j=1}^n w_j x_j$$

• Parameter vector  $\mathbf{w} \in \mathbb{R}^n$ Weight  $w_i$  decides if value of feature  $x_i$  increases or decreases prediction  $\hat{y}$ .

## Linear Regression

- For the whole data set:
  - ▶ Use matrix **X** and vector **y** to stack instances on top of each other.
  - ▶ Typically first column contains all 1 for the intercept (bias, shift) term.

$$\mathbf{X} = \begin{bmatrix} 1 & x_{12} & x_{13} & \dots & x_{1n} \\ 1 & x_{22} & x_{23} & \dots & x_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{m2} & x_{m3} & \dots & x_{mn} \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

For entire data set, predictions are stacked on top of each other:

$$\hat{\mathbf{y}} = \mathbf{X} \mathbf{w}$$

- Estimate parameters using  $\mathbf{X}^{(train)}$  and  $\mathbf{y}^{(train)}$ .
- ullet Make high-level decisions (which features...) using  $oldsymbol{X}^{(dev)}$  and  $oldsymbol{y}^{(dev)}$ .
- Evaluate resulting model using  $\mathbf{X}^{(test)}$  and  $\mathbf{y}^{(test)}$ .



# Simple Example: Housing Prices

Predict Munich property prices (in 1K Euros) from just one feature:
 Square meters of property.

$$\mathbf{X} = \begin{bmatrix} 1 & 450 \\ 1 & 900 \\ 1 & 1350 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 730 \\ 1300 \\ 1700 \end{bmatrix}$$

• Prediction is:

$$\hat{\mathbf{y}} = \begin{bmatrix} w_1 + 450w_2 \\ w_1 + 900w_2 \\ w_1 + 1350w_2 \end{bmatrix} = \begin{bmatrix} 1 & 450 \\ 1 & 900 \\ 1 & 1350 \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \mathbf{X} \mathbf{w}$$

- $oldsymbol{w}_1$  will contain costs incurred in any property acquisition
- **w**<sub>2</sub> will contain remaining average price per square meter.
- Optimal parameters are for the above case:

$$\mathbf{w} = \begin{bmatrix} 273.3 \\ 1.08 \end{bmatrix} \quad \hat{\mathbf{y}} = \begin{bmatrix} 759.1 \\ 1245.1 \\ 1731.1 \end{bmatrix}$$

## Linear Regression: Mean Squared Error

• Mean squared error of training (or test) data set is the sum of squared differences between the predictions and labels of all *m* instances.

$$MSE^{(train)} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_{i}^{(train)} - y_{i}^{(train)})^{2}$$

• In matrix notation:

$$MSE^{(train)} = \frac{1}{m}||\hat{\boldsymbol{y}}^{(train)} - \boldsymbol{y}^{(train)})||_2^2$$
  
=  $\frac{1}{m}||\boldsymbol{X}^{(train)}\boldsymbol{w} - \boldsymbol{y}^{(train)})||_2^2$ 

### Outline

- This Course
- Overview
- Machine Learning Definition
  - Data (Experience)
  - Tasks
  - Performance Measures
- 4 Linear Regression: Overview and Cost Function
- Summary

## Summary

- Deep Learning
  - many successes in recent years
  - feature learning instead of feature engineering
  - builds on general machine learning concepts
- Machine learning definition
  - Data
  - Task
  - Cost function
- Machine tasks
  - Classification
  - Regression
  - **...**
- Linear regression
  - Output depends linearly on input
  - Cost function: Mean squared error
- Next up: estimating the parameters