In [1]: # import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

Out[2]:		date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
	0	2013- 11-01 01:00:00	NaN	0.6	NaN	NaN	135.0	74.0	NaN	NaN	NaN	7.0	NaN	NaN	2
	1	2013- 11-01 01:00:00	1.5	0.5	1.3	NaN	71.0	83.0	2.0	23.0	16.0	12.0	NaN	8.3	2
	2	2013- 11-01 01:00:00	3.9	NaN	2.8	NaN	49.0	70.0	NaN	NaN	NaN	NaN	NaN	9.0	2
	3	2013- 11-01 01:00:00	NaN	0.5	NaN	NaN	82.0	87.0	3.0	NaN	NaN	NaN	NaN	NaN	2
	4	2013- 11-01 01:00:00	NaN	NaN	NaN	NaN	242.0	111.0	2.0	NaN	NaN	12.0	NaN	NaN	2
	209875	2013- 03-01 00:00:00	NaN	0.4	NaN	NaN	8.0	39.0	52.0	NaN	NaN	NaN	NaN	NaN	2
	209876	2013- 03-01 00:00:00	NaN	0.4	NaN	NaN	1.0	11.0	NaN	6.0	NaN	2.0	NaN	NaN	2
	209877	2013- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	4.0	75.0	NaN	NaN	NaN	NaN	NaN	2
	209878	2013- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	11.0	52.0	NaN	NaN	NaN	NaN	NaN	2
	209879	2013- 03-01 00:00:00	NaN	NaN	NaN	NaN	1.0	10.0	75.0	3.0	NaN	NaN	NaN	NaN	2

209880 rows × 14 columns

In [3]: data.head(10)

Out[3]:		date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	stati
	0	2013- 11-01 01:00:00	NaN	0.6	NaN	NaN	135.0	74.0	NaN	NaN	NaN	7.0	NaN	NaN	280790
	1	2013- 11-01 01:00:00	1.5	0.5	1.3	NaN	71.0	83.0	2.0	23.0	16.0	12.0	NaN	8.3	280790
	2	2013- 11-01 01:00:00	3.9	NaN	2.8	NaN	49.0	70.0	NaN	NaN	NaN	NaN	NaN	9.0	280790
	3	2013- 11-01 01:00:00	NaN	0.5	NaN	NaN	82.0	87.0	3.0	NaN	NaN	NaN	NaN	NaN	280790
	4	2013- 11-01 01:00:00	NaN	NaN	NaN	NaN	242.0	111.0	2.0	NaN	NaN	12.0	NaN	NaN	280790
	5	2013- 11-01 01:00:00	1.0	0.6	0.8	NaN	70.0	70.0	2.0	24.0	NaN	6.0	NaN	5.2	280790
	6	2013- 11-01 01:00:00	NaN	0.4	NaN	0.29	51.0	80.0	5.0	23.0	14.0	4.0	1.44	NaN	280790
	7	2013- 11-01 01:00:00	NaN	NaN	NaN	0.23	29.0	60.0	4.0	NaN	NaN	NaN	1.51	NaN	280790
	8	2013- 11-01 01:00:00	NaN	1.0	NaN	NaN	165.0	107.0	2.0	NaN	NaN	11.0	NaN	NaN	280790
	9	2013- 11-01 01:00:00	NaN	0.6	NaN	NaN	63.0	93.0	NaN	11.0	NaN	8.0	NaN	NaN	280790
	4 1		_	_	_	_	_	_	_	_	_	_	_	_	

In [4]: data.tail(20)

Out[4]:		date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	s
	209860	2013- 03-01 00:00:00	NaN	NaN	NaN	NaN	1.0	13.0	69.0	NaN	NaN	3.0	NaN	NaN	280
	209861	2013- 03-01 00:00:00	0.3	0.4	1.0	NaN	1.0	18.0	64.0	7.0	NaN	2.0	NaN	0.3	280
	209862	2013- 03-01 00:00:00	1.0	0.3	0.4	NaN	1.0	9.0	75.0	8.0	7.0	1.0	NaN	0.5	280
	209863	2013- 03-01 00:00:00	NaN	NaN	NaN	0.13	2.0	11.0	73.0	NaN	NaN	NaN	1.26	NaN	280
	209864	2013- 03-01 00:00:00	NaN	0.5	NaN	NaN	9.0	34.0	51.0	NaN	NaN	3.0	NaN	NaN	280
	209865	2013- 03-01 00:00:00	NaN	0.3	NaN	NaN	1.0	6.0	NaN	4.0	NaN	25.0	NaN	NaN	280
	209866	2013- 03-01 00:00:00	1.0	NaN	0.4	NaN	9.0	36.0	NaN	9.0	9.0	4.0	NaN	1.9	280
	209867	2013- 03-01 00:00:00	NaN	0.3	NaN	NaN	1.0	16.0	70.0	NaN	NaN	NaN	NaN	NaN	280
	209868	2013- 03-01 00:00:00	NaN	NaN	NaN	NaN	1.0	12.0	NaN	4.0	NaN	1.0	NaN	NaN	280
	209869	2013- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	20.0	NaN	4.0	5.0	NaN	NaN	NaN	280
	209870	2013- 03-01 00:00:00	NaN	NaN	NaN	NaN	1.0	10.0	NaN	6.0	4.0	NaN	NaN	NaN	280
	209871	2013- 03-01 00:00:00	NaN	NaN	NaN	NaN	1.0	14.0	70.0	NaN	NaN	NaN	NaN	NaN	280
	209872	2013- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	16.0	NaN	8.0	7.0	NaN	NaN	NaN	280
	209873	2013- 03-01 00:00:00	NaN	NaN	NaN	NaN	5.0	9.0	68.0	NaN	NaN	NaN	NaN	NaN	280
	209874	2013- 03-01 00:00:00	0.5	NaN	1.0	0.14	3.0	18.0	NaN	2.0	NaN	NaN	1.49	0.2	280
	209875	2013- 03-01 00:00:00	NaN	0.4	NaN	NaN	8.0	39.0	52.0	NaN	NaN	NaN	NaN	NaN	280
	209876	2013- 03-01 00:00:00	NaN	0.4	NaN	NaN	1.0	11.0	NaN	6.0	NaN	2.0	NaN	NaN	280

In [5]: data.describe()

Out[5]:

	BEN	со	EBE	NMHC	NO	NO_2	
count	50462.000000	87018.000000	50463.000000	25935.000000	209108.000000	209108.000000	1:
mean	0.713075	0.328752	0.811775	0.192553	20.171921	34.710398	
std	0.841996	0.226891	0.591691	0.078111	44.385619	27.843018	
min	0.100000	0.100000	0.100000	0.040000	1.000000	1.000000	
25%	0.200000	0.200000	0.400000	0.130000	2.000000	14.000000	
50%	0.400000	0.300000	0.800000	0.180000	5.000000	27.000000	
75%	0.800000	0.400000	1.000000	0.240000	17.000000	48.000000	
max	12.100000	10.400000	11.800000	0.810000	1081.000000	388.000000	
4							•

In [6]: np.shape(data)

Out[6]: (209880, 14)

In [7]: np.size(data)

Out[7]: 2938320

In [8]: data.isna()

Out[8]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL
0	False	True	False	True	True	False	False	True	True	True	False	True	True
1	False	False	False	False	True	False	False	False	False	False	False	True	False
2	False	False	True	False	True	False	False	True	True	True	True	True	False
3	False	True	False	True	True	False	False	False	True	True	True	True	True
4	False	True	True	True	True	False	False	False	True	True	False	True	True
					•••		•••				•••		•••
209875	False	True	False	True	True	False	False	False	True	True	True	True	True
209876	False	True	False	True	True	False	False	True	False	True	False	True	True
209877	False	True	True	True	True	False	False	False	True	True	True	True	True
209878	False	True	True	True	True	False	False	False	True	True	True	True	True
209879	False	True	True	True	True	False	False	False	False	True	True	True	True

209880 rows × 14 columns

In [9]: data.dropna()

Out[9]:		date	BEN	со	EBE	NМНС	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	st
	17286	2013- 08-01 01:00:00	0.4	0.2	0.8	0.28	1.0	24.0	79.0	35.0	8.0	3.0	1.49	1.3	2807
	17310	2013- 08-01 02:00:00	0.5	0.2	0.9	0.28	1.0	16.0	93.0	60.0	18.0	3.0	1.61	4.0	2807
	17334	2013- 08-01 03:00:00	0.5	0.2	1.1	0.29	1.0	14.0	90.0	38.0	12.0	3.0	1.71	2.8	2807
	17358	2013- 08-01 04:00:00	0.6	0.2	1.2	0.26	1.0	12.0	84.0	30.0	8.0	3.0	1.44	2.8	2807
	17382	2013- 08-01 05:00:00	0.3	0.2	0.8	0.25	1.0	15.0	72.0	25.0	7.0	3.0	1.40	1.7	2807
	209622	2013- 02-28 14:00:00	1.1	0.3	0.3	0.27	3.0	17.0	64.0	5.0	5.0	2.0	1.41	0.9	2807
	209646	2013- 02-28 15:00:00	1.3	0.4	0.3	0.27	2.0	16.0	66.0	6.0	5.0	1.0	1.40	0.9	2807
	209670	2013- 02-28 16:00:00	1.1	0.3	0.3	0.27	1.0	17.0	65.0	5.0	4.0	1.0	1.40	0.7	2807
	209694	2013- 02-28 17:00:00	1.0	0.3	0.4	0.27	1.0	18.0	64.0	5.0	5.0	1.0	1.39	0.7	2807
	209718	2013- 02-28 18:00:00	1.0	0.3	0.4	0.27	1.0	22.0	62.0	6.0	6.0	1.0	1.39	0.7	2807
	7315 rov	ws × 14 co	olumns	S											

7315 rows × 14 columns

In [11]: sd=data[['BEN','CO', 'EBE', 'NMHC', 'NO_2']]

In [12]: dd=sd.head(20) dd

Out[12]:

	BEN	со	EBE	NMHC	NO_2
0	NaN	0.6	NaN	NaN	74.0
1	1.5	0.5	1.3	NaN	83.0
2	3.9	NaN	2.8	NaN	70.0
3	NaN	0.5	NaN	NaN	87.0
4	NaN	NaN	NaN	NaN	111.0
5	1.0	0.6	8.0	NaN	70.0
6	NaN	0.4	NaN	0.29	80.0
7	NaN	NaN	NaN	0.23	60.0
8	NaN	1.0	NaN	NaN	107.0
9	NaN	0.6	NaN	NaN	93.0
10	1.4	NaN	1.4	NaN	84.0
11	NaN	0.6	NaN	NaN	82.0
12	NaN	NaN	NaN	NaN	96.0
13	NaN	NaN	NaN	NaN	72.0
14	NaN	NaN	NaN	NaN	81.0
15	NaN	NaN	NaN	NaN	77.0
16	NaN	NaN	NaN	NaN	73.0
17	NaN	NaN	NaN	NaN	74.0
18	1.6	NaN	1.4	0.22	72.0
19	NaN	8.0	NaN	NaN	87.0

In [13]: dd.plot.bar()

Out[13]: <AxesSubplot:>


```
In [14]: dd.plot.bar(color='r')
```

Out[14]: <AxesSubplot:>


```
In [15]: dd.plot.scatter(x='CO',y='NO_2')
```

Out[15]: <AxesSubplot:xlabel='CO', ylabel='NO_2'>


```
In [16]: dd.plot.pie(y='NO_2')
```

Out[16]: <AxesSubplot:ylabel='NO_2'>

In [17]: | dd.plot.box()

Out[17]: <AxesSubplot:>


```
In [18]: dd.plot.hist()
```

Out[18]: <AxesSubplot:ylabel='Frequency'>

In [19]: | dd.plot.line()

Out[19]: <AxesSubplot:>


```
In [20]: dd.plot.area()
```

Out[20]: <AxesSubplot:>

In [21]: dd.plot.bar()

Out[21]: <AxesSubplot:>

In [22]: sns.pairplot(dd)

Out[22]: <seaborn.axisgrid.PairGrid at 0x1d32f983190>


```
In [23]: sns.distplot(dd['NO_2'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[23]: <AxesSubplot:xlabel='NO_2', ylabel='Density'>


```
In [24]: ds=data.fillna(20)
```

In [25]: ssd=ds.head(20)

```
In [26]: sd1=ssd[['BEN','CO', 'EBE', 'NMHC', 'NO_2']]
```

In [27]: sns.heatmap(ssd.corr())

Out[27]: <AxesSubplot:>


```
In [28]: x= ssd[['BEN','CO', 'EBE','NMHC', 'NO_2']]
         y=ssd['station']
In [29]: from sklearn .model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [30]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[30]: LinearRegression()
In [31]:
         print(lr.intercept_)
         28078950.831174836
         coeff= pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
In [32]:
         coeff
Out[32]:
                 Co-efficient
            BEN
                 127.453823
             CO
                   1.690588
            EBE -126.754534
          NMHC
                   0.317007
           NO_2
                   0.546350
         prediction = lr.predict(x_test)
In [33]:
         plt.scatter(y_test,prediction)
Out[33]: <matplotlib.collections.PathCollection at 0x1d332a6c070>
              +2.8079e7
          160
          140
          120
          100
```

30

50

+2.8079e7

10

```
In [34]: |print(lr.score(x_test,y_test))
         -16.943459842274965
In [35]: lr.score(x_test,y_test)
Out[35]: -16.943459842274965
In [36]: |lr.score(x_train,y_train)
Out[36]: 0.7632894632603324
In [37]: from sklearn.linear_model import Ridge,Lasso
In [38]: | dr=Ridge(alpha=10)
         dr.fit(x_train,y_train)
Out[38]: Ridge(alpha=10)
In [39]: |dr.score(x_test,y_test)
Out[39]: -1.7259686522788047
In [40]: |dr.score(x_train,y_train)
Out[40]: 0.6654810806033797
In [41]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[41]: Lasso(alpha=10)
In [42]: la.score(x_test,y_test)
Out[42]: -1.3303074679288511
In [43]: |la.score(x_train,y_train)
Out[43]: 0.6494607183239762
```

ElasticNet

```
In [45]: print(en.coef )
                       1.4141002 -0.08879058 0.00622733 0.41983051]
         [-0.
In [46]:
         print(en.intercept_)
         28078986.138676934
In [47]: prediction=en.predict(x_test)
In [48]: print(en.score(x_test,y_test))
         -1.7000130019693187
In [49]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [50]: | from sklearn.linear model import LogisticRegression
In [51]: feature_matrix = ssd[['BEN','CO', 'EBE','NMHC', 'NO_2']]
         target vector=ssd['station']
In [52]: | feature_matrix.shape
Out[52]: (20, 5)
In [53]: target_vector.shape
Out[53]: (20,)
In [54]: from sklearn.preprocessing import StandardScaler
In [55]: fs=StandardScaler().fit_transform(feature_matrix)
In [56]: logr= LogisticRegression()
         logr.fit(fs,target_vector)
Out[56]: LogisticRegression()
In [57]: observation =[[1.2,2.3,3.3,4.3,5.3]]
In [58]: | prediction=logr.predict(observation)
         print(prediction)
         [28079017]
```

```
In [59]: logr.classes
Out[59]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
                28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
                28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
                28079055, 28079056], dtype=int64)
In [60]: logr.predict_proba(observation)[0][0]
Out[60]: 5.741483976283094e-05
In [61]: | ged=data[['BEN','CO','EBE','NMHC','NO_2','O_3','PM10','SO_2','TCH','TOL','stati
In [62]: | d=ged.fillna(20)
In [63]: | dg=d.head(100)
In [64]: | x=dg[['BEN','CO','EBE','NMHC','NO 2','O 3','PM10','SO 2','TCH','TOL']]
         y=dg['station']
In [65]: from sklearn.model selection import train test split
         x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)
In [66]: from sklearn.ensemble import RandomForestClassifier
         rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[66]: RandomForestClassifier()
In [67]: paramets = {'max_depth':[1,2,3,4,5,6,7],
                        'min samples leaf':[5,10,15,20,25,30,35],
                        'n_estimators':[10,20,30,40,50,60,70]}
In [68]: from sklearn.model selection import GridSearchCV
         grid_search= GridSearchCV(estimator = rfc,param_grid=paramets,cv=2,scoring="ac
         grid_search.fit(x_train,y_train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_split.py:
         666: UserWarning: The least populated class in y has only 1 members, which is
         less than n splits=2.
           warnings.warn(("The least populated class in y has only %d"
Out[68]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5, 6, 7],
                                   'min_samples_leaf': [5, 10, 15, 20, 25, 30, 35],
                                   'n_estimators': [10, 20, 30, 40, 50, 60, 70]},
                      scoring='accuracy')
In [69]: |grid_search.best_score_
Out[69]: 0.5285714285714285
```

In [70]: rfc_best=grid_search.best_estimator_

In [71]: from sklearn.tree import plot_tree
plt.figure(figsize=(50,40))
plot_tree(rfc_best.estimators_[5],filled=True)

Out[71]: [Text(930.0, 1956.96, 'X[3] <= 10.15\ngini = 0.942\nsamples = 42\nvalue = [3,</pre> $4, 4, 4, 5, 1, 5, 2, 1, 0, 1, 3, 1, 3 \setminus 1, 7, 2, 2, 4, 1, 3, 7, 2, 4]'),$ Text(620.0, 1522.0800000000002, 'gini = 0.628\nsamples = 7\nvalue = [0, 0, 0, 0, 0, 0, 5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]'), $Text(1240.0, 1522.0800000000002, 'X[1] \le 0.65 \text{ lngini} = 0.931 \text{ lnsamples} = 35 \text{ lngini}$ 4]'), $Text(620.0, 1087.2, 'X[5] \le 4.5 = 0.815 = 12 = 12 = [3, 4,]$ 0, 4, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0\n0, 0, 0, 0, 0, 0, 3, 0, 0]'), $Text(310.0, 652.3200000000002, 'gini = 0.694 \nsamples = 7 \nvalue = [0, 4, 0, 6]$ 4, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'), Text(930.0, 652.3200000000002, 'gini = 0.612\nsamples = 5\nvalue = [3, 0, 0, $0, 0, 0, 0, 0, 0, 0, 1, 0, 0 \setminus 0, 0, 0, 0, 0, 0, 3, 0, 0, 0]'),$ $Text(1860.0, 1087.2, 'X[7] <= 16.0 \setminus gini = 0.892 \setminus gini = 23 \setminus gini = [0, 0.892]$ 0, 4, 0, 5, 0, 0, 0, 1, 0, 1, 0, 1, 3 n 1, 7, 2, 2, 0, 1, 0, 7, 2, 4]'),Text(1550.0, 652.320000000002, 'gini = 0.562\nsamples = 6\nvalue = [0, 0, 0, 0, 5, 0, 0, 0, 1, 0, 1, 0, 1, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0]'), Text(2170.0, 652.3200000000000, $'X[4] <= 44.5 \ngini = 0.86 \nsamples = 17 \nva$ 4]'), Text(1860.0, 217.44000000000005, 'gini = 0.46\nsamples = 5\nvalue = [0, 0, 0]0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 1, 0, 0, 0, 7, 2, 0]'), Text(2480.0, 217.44000000000005, 'gini = 0.817\nsamples = 12\nvalue = [0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3\n1, 7, 2, 1, 0, 1, 0, 0, 0, 4]')]

Conclusion: LinearRegression() 28078950.831174836 HIGH RANGE

In []:	