Universidade Federal de Pernambuco (UFPE) Centro Acadêmico do Agreste Núcleo de Tecnologia Lista 1 de Calculo Diferencial e Integral 3 Prof. Fernando RL Contreras

Sejam os seguintes problemas

1. Determine
$$\lim_{n\to\infty} (\frac{1}{n})^{1/\ln n}$$
 Rpta. e^{-1}

2. Calcule
$$\lim_{n\to\infty} \frac{(-1)^n n^3}{n^3 + 2n^2 + 1}$$
 Rpta. Diverge

3. Determine
$$\lim_{n\to\infty} \frac{1}{\sqrt{n^2-1}-\sqrt{n^2+n}}$$
 Rpta. -2

4. Calcule
$$\lim_{n\to\infty} \frac{1.3.5...(2n-1)}{(2n)^n}$$
 Rpta. 0

5. Determinar
$$\limsup_{n \to \infty} \sinh(\ln(n))$$
 Rpta. Diverge

Nos seguintes problemas determine se a sequência converge ou não e encontre o limite se ele converge.

1.
$$a_n = \frac{1.2.3....(2n-1)}{n!}$$
 Rpta. Diverge

2.
$$a_n = 1 - (0.2)^n$$
 Rpta. Converge a 1

3.
$$a_n = \frac{3+5n^2}{n+n^2}$$
 Rpta. Converge a 0

4. Calcule o limite da sequência
$$\left(\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, ...\right)$$
 Rpta.2

5.
$$a_n = \frac{n^2}{2n-1}\sin(\frac{1}{n})$$
 Rpta. Converge a 1/2

6.
$$(\arctan(2n))$$
 Rpta. Converge a $\frac{\pi}{2}$

7.
$$\left(\frac{\ln(n)}{\ln(2n)}\right)$$
 Rpta. Converge a 1

8.
$$(n^2e^{-n})$$
 Rpta. Converge a 0

9.
$$a_n = \frac{(-3)^n}{n!}$$
 Rpta. Converge a 0

10.
$$a_n = \frac{(\ln n)^2}{n}$$
 Rpta. Converge a 0

11.
$$a_n = \sqrt{\frac{n+1}{9n+1}}$$
 Rpta. Converge a 1/3

12.
$$a_n = \frac{1}{n} \int_1^n \frac{1}{x} dx$$
 Rpta. Converge a 0

13.
$$a_n = \frac{(\ln n)^{200}}{n}$$
 Rpta. Converge a 0

14.
$$a_n = \frac{n!}{n^n}$$
 (Sugestão compare com $1/n$). Rpta. Converge a 0

15.
$$a_n = (\frac{x^n}{2n+1})^{1/n}$$
, se $x > 0$ Rpta. Converge a 0

16.
$$a_n = \frac{(-1)^{n+1}}{2n-1}$$
 Rpta. Converge a 0

17.
$$a_n = (3^n + 5^n)^{1/n}$$
 Rpta. Converge a 5

Assuma que cada sequência convirja e encontre o limite.

17.
$$a_1 = 2$$
, $a_{n+1} = \frac{72}{1+a_n}$ Rpta. 8

18.
$$a_1 = -1$$
, $a_{n+1} = \frac{a_n + 6}{a_n + 2}$ Rpta. 2

19.
$$a_1 = -4$$
, $a_{n+1} = \sqrt{8 + 2a_n}$ Rpta. 4

20.
$$a_1 = 0, a_{n+1} = \sqrt{8 + 2a_n}$$
 Rpta. 4

21.
$$a_1 = 5$$
, $a_{n+1} = \sqrt{5a_n}$ Rpta. 5

22.
$$a_1 = 3$$
, $a_{n+1} = 12 - \sqrt{a_n}$ Rpta. 9

23.
$$2, 2 + \frac{1}{2}, 2 + \frac{1}{2 + \frac{1}{2}}, 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}, \dots$$
 Rpta. $1 + \sqrt{2}$

24.
$$\sqrt{1}$$
, $\sqrt{1+\sqrt{1}}$, $\sqrt{1+\sqrt{1+\sqrt{1}}}$, $\sqrt{1+\sqrt{1+\sqrt{1}+\sqrt{1}}}$,... Rpta. $\frac{1+\sqrt{5}}{2}$

- 25. Método de Newton. As sequências vêm da formula recursiva para o método de Newton, $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$. A sequência converge? Em caso afirmativo, para qual valor? Identifique a função f que gera a sequência $x_0 = 1, x_{n+1} = x_n \frac{x_n^2 2}{2x_n} = \frac{x_n}{2} + \frac{1}{x_n}$ Rpta. $\sqrt{2}$
- 26. O primeiro termo de uma sequência é $x_1 = 1$. Cada um dos termos seguintes é a soma de todos os seus antecedentes: $x_{n+1} = x_1 + x_2 + ... + x_n$. Escreva os primeiros termos da sequência suficientes para deduzir uma fórmula geral para x, que seja verdadeira para $n \ge 2$
- 27. (a) Presumindo que $\lim_{n\to\infty} (\frac{1}{n^c}) = 0$ se c for qualquer constante positiva, mostre que $\lim_{n\to\infty} (\frac{\ln(n)}{n^c}) = 0$ se c for qualquer constante positiva.
 - (b) Prove que $\lim_{n\to\infty}(\frac{1}{n^c})=0$ se c for qualquer constante positiva. (Sugestão: se $\varepsilon=0.001$ e c=0.04, quão grande deve ser N para assegurar que $|1/n^c-0|<\varepsilon$ e n>N?)

Determine se a sequência é monotônica e se é limitada.

28.
$$a_n = \frac{3n+1}{n+1}$$

29.
$$a_n = \frac{(2n+3)!}{(n+1)!}$$

30.
$$a_n = \frac{2^n 3^n}{n!}$$

31.
$$a_n = 2 - \frac{2}{n} - \frac{1}{2^n}$$

32. Suponha que f(x) seja derivável para todo x em [0,1] e f(0)=0. Defina a sequência (a_n) pela regra $a_n=nf(1/n)$. Mostre que $\lim_{n\to\infty}a_n=f'(0)$. Utilize o resultado do problema (32) para encontrar os limites das sequências dadas em 33. e 34.

- 33. $a_n = n(e^{1/n} 1)$ Rpta. 1
- 34. $a_n = n \ln(1 + \frac{1}{n})$ Rpta. 2
- 35. Mostre que a sequência definida por $a_1 = 2$ e $a_{n+1} = \frac{1}{3-a_n}$ satisfaz $0 < a_n \le 2$ e é decrescente. Deduza que a sequência é convergente e encontre o seu limite.
- 36. Demostre que se $\lim_{n\to\infty} a_n = 0$ e (b_n) for limitada, então $\lim_{n\to\infty} a_n b_n = 0$.
- 37. Suponha que $\{a_n\}$ é uma sequência crescente não limitada. Mostre que $\lim_{n\to\infty} a_n = +\infty$.
- 38. Suponha que A>0. Dado x_1 arbitrário, defina a sequência $\{x_n\}$ de maneira recursiva como segue: $x_{n+1}=\frac{1}{2}(x_n+\frac{A}{x_n})$ se $n\geq 1$. Demostre que se $L=\lim_{n\to\infty}x_n$ existe, então $L=\pm\sqrt{A}$.
- 39. Considere a sequência {a_n} definida de maneira recursiva por a₁ = 2; a_{n+1} = ½(a_n + 4) para n ≥ 1 (a) Demostrar mediante indução sobre n que a_n < 4 para cada n e que (a_n) é uma sequência crescente. (b) Determine o limite desta sequência.
- 40. O tamanho da população de peixes pode ser modelado pela formula $p_{n+1} = \frac{bp_n}{a+p_n}$ onde p_n é o tamanho da população de peixes depois de p_n anos e p_n e p_n e p_n e p_n onde p_n e o tamanho da população de peixes depois de p_n anos e p_n e o constantes positivas que dependem da espécie e de seu habitat. Suponha que a população no ano 0 seja p_n o (a) Moesstre que se p_n e convergente, então os únicos valores possíveis para seu limite são 0 e p_n (b) mostre que p_n e p_n onde p_n e o p_n onde p_n e o p_n e o p_n onde p_n ond