Universidade do Minho

Ano Letivo: 2023/24

Turno: PL9

Bases de Dados

PLO6 – Modelação Lógica (continuação)

Docente: Cristiana Neto

Email: cristiana.neto@algoritmi.uminho.pt

Horário de Atendimento:

6^a feira O9h-10h

Sumário

1 Regras de Derivação

Restrições de Integridade

2 Modelo Relacional

4 Normalização

Bibliografia:

- Connolly, T., Begg, C., Database Systems, A Practical Approach to Design, Implementation, and Management, Addison-Wesley, 4a Edição, 2004. (Chapter 17; Chapter 4/5; Chapter 14/15)
- Teorey, T., Database Modeling and Design: The Fundamental Principles, II Ediçao, Morgan Kaufmann, 1994.
- Belo, O., "Bases de Dados Relacionais: Implementação com MySQL", FCA Editora de Informática, 376p, Set 2021. ISBN: 978-972-722-921-5.

Modelo ER – Vista de Consultas

<u>Modelo ER – Combinação das vistas</u>

Modelo ER – Com relacionamento recursivo + relacionamento ternário

Dados | Universidade do Minho

<u>Q</u>

ases

 $\tilde{\Omega}$

Modelação Conceptual

Traduzir o modelo de dados conceptual num modelo de dados lógico e, em seguida, validar o modelo para verificar se este é estruturalmente correto e capaz de suportar as transações necessárias.

Ciclo de vida de um SBD: Modelação Lógica

Fase 2

Validar relações utilizando a normalização

Fase 4

Verificar restrições de integridade

Fase 6

Combinar modelos de dados lógicos no modelo global (opcional)

Fase 1

Derivar relações para o modelo de dados lógico

Fase 3

Validar relações em relação às transações do utilizador

Fase 5

Rever o modelo de dados lógico com o(s) utilizador(s)

Fase 7

Verificar se há crescimento futuro

Modelo Relacional

Modelo lógico para BDs relacionais, baseado no conceito de relação, também designado por tabela.

Modelação Física

tabelas físicas

O modelo relacional pode depois ser concretizado num SGBD usando a linguagem SQL.

Modelação Lógica entidades de dados

As entidades-tipo e relacionamentos do modelo ER são mapeados em relações/tabelas no modelo relacional.

Modelação Conceptual conceitos de negócio

Modelo Relacional

- É baseado no conceito de **relação**, onde uma relação é uma tabela de valores.
- Uma tabela de valores pode ser vista como um conjunto de linhas ou tuplos.
- Cada tuplo é identificado por um conjunto de colunas ou atributos.
- Uma base de dados é representada como um conjunto de relações.

- O relacionamento que uma entidade tem com outra entidade é representado pelo mecanismo de chave primária/chave estrangeira.
- Para decidir onde colocar o(s) atributo(s) de chave estrangeira, devemos primeiro identificar as entidades 'pai' e 'filho' envolvidas no relacionamento.
- A entidade **pai** refere-se à entidade que **envia uma cópia da sua chave primária** na relação que representa a entidade **filho**, para atuar como a **chave estrangeira**.

O processo de derivação passa por descrever como as relações são derivadas para as seguintes estruturas que podem ocorrer num modelo de dados concetual:

- Entidades Simples
- Atributos multivalor
- Entidades Fracas
- Relacionamentos binários de um-para-muitos (1:N)
- Relacionamentos binários de muitos-para-muitos (N:M)
- Entidade Relacionamento
- Relacionamentos binários de um-para-um (1:1)
- Relacionamentos binários recursivos de um-para-um (1:1)
- Relacionamentos complexos
- Relacionamentos superclasse/subclasse

Entidades Simples

Para cada entidade do modelo de dados, crie **uma relação/tabela** que inclua todos os **atributos simples** dessa entidade. Os <u>atributos derivados</u> devem ser analisados e no caso dos <u>atributos compostos</u>, são apenas incluídos os atributos simples constituintes.

Atleta (<u>id_atleta</u>, nome, dta_nascimento, rua, porta, codigo_postal, NIF, estado_civil)

Chave primária id_atleta

Chave candidata NIF

Derivado idade(dta_atual - dta_nascimento)

Atleta
<u>id_atleta</u>
dta_nascimento
rua
porta
codigo_postal
NIF
estado_civil

Atributos multivalor

Para cada atributo **multivalor**, crie uma <u>nova relação</u> para representar o atributo **multi-valor** com relacionamento de **1:N** com a sua tabela de referência e inclua a <u>chave primária</u> da entidade na nova relação, para atuar como **chave estrangeira**.

Atleta (<u>id_atleta</u>, nome, dta_nascimento, rua, porta, codigo_postal, NIF, estado_civil)

Chave primária id_atleta

Chave candidata NIF

Derivado idade(dta_atual - dta_nascimento)

Telefone (telefone, id_atleta)
Chave primária telefone, id_atleta
Chave estrangeira id_atleta referencia
Atleta(id_atleta)

Entidades Fracas

- Para cada entidade fraca do modelo de dados, crie uma relação que inclua todos os atributos simples dessa entidade.
- Se a entidade fraca não possuir atributos que possam constituir chaves candidatas, o conjunto de atributos que permitem identificar univocamente uma ocorrência da entidade fraca, é a **chave parcial** da entidade fraca;
- A chave primária de uma entidade fraca é sempre uma **chave composta** da <u>chave primária</u> da <u>entidade identificadora</u> e da sua chave parcial, portanto, a identificação da chave primária de uma entidade fraca não pode ser feita até que todos os relacionamentos com as entidades proprietárias tenham sido mapeados.

Derivar relações

Entidades Fracas

Livro (id_livro, título)
Chave primária id_livro

Capítulo (id_livro, codigo, título)
Chave primária id_livro, codigo
Chave estrangeira id_livro referencia Livro(id_livro)

- Relacionamentos binários de um-para-muitos (1:N)
- Para cada relacionamento binário 1:N, a entidade do lado **'um**' do relacionamento é designada como a **entidade pai** e a entidade do lado **'muitos**' é designada como a **entidade filho**.
- Para representar esse relacionamento, cria-se uma **cópia** do(s) atributo(s) de **chave primária** da **entidade pai** na relação que representa a **entidade filho**, para atuar como **chave estrangeira**.

→ <u>Derivar relações</u>

Relacionamentos binários de um-para-muitos (1:N)

Treino (nr_treino, tempo_util, data/hora_agend, data/hora_ini, data/hora_fim)

Chave primária nr_treino

Chave Estrangeira id_espaço referencia

Espaço(id_espaço)

Espaço (<u>id_espaço</u>, tipo, nome)
Chave primária id_espaço

- Relacionamentos binários de muitos-para-muitos (N:M)
- Crie <u>uma relação</u> para representar o <u>relacionamento</u> e inclua quaisquer atributos que façam parte do relacionamento.
- Crie uma **cópia** do(s) atributo(s) de **chave primária** das **entidades** que participam no relacionamento na nova relação, para atuar como **chaves estrangeiras**. A **chave primária** da nova relação é sempre uma chave composta pelas chaves estrangeiras, possivelmente em combinação com outros atributos do relacionamento.

Relacionamentos binários de muitos-para-muitos (N:M)

Exercício (<u>id_exercicio</u>, nome, descrição)
Chave primária id_ exercicio

Treino (nr_treino, tempo_util, data/hora_ini, data/hora_fim, data/hora agend)
Chave primária nr_ treino

Plano (<u>id_ exercicio, nr_treino</u>, descrição, descanso, intensidade, duração)
Chave primária id_ exercicio, nr_treino
Chave Estrangeira id_ exercicio referencia Exercício(id_ exercicio)
Chave Estrangeira nr_treino referencia Treino(nr_treino)

Entidade Relacionamento

- Crie <u>uma relação</u> para representar a <u>entidade-relacionamento</u> como se fosse uma entidade independente e inclua todos os atributos que façam parte da entidade-relacionamento.
- Crie uma **cópia** do(s) atributo(s) de **chave primária** das **entidades** que participam na entidaderelacionamento na nova relação, para atuar como **chaves estrangeiras**. Caso a entidaderelacionamento **não** possua chave primária, essas chaves estrangeiras formarão a **chave primária**.

Entidade Relacionamento

Paciente (nr_sequencial, nome, sexo, dta_nascimento, rua, localidade, cod_postal, NIF, nr_utente, estado_civil)

Chave primária nr_sequencial

Chave candidata NIF
Chave candidata nr_utente
Derivado idade(dta_atual –
dta_nascimento)

Funcionário (nr_mecanografico, nome, dta_ini_servico)

Chave primária nr_mecanografico

Consulta (nr_episodio, nr_sequencial, nr_mecanografico, hora_ini, hora_fim, preco) Chave primária nr_episodio

Chave Estrangeira nr_sequencial referencia Paciente(nr_sequencial)
Chave Estrangeira nr_mecanografico referencia Funcionário(nr_mecanografico)

Relacionamentos binários de um-para-um (1:1)

- Nestes casos, a criação de relações é mais <u>complexa</u>, porque a **cardinalidade** <u>não</u> pode ser usada para identificar as entidades pai e filho num relacionamento.
- Em vez disso, as restrições de **participação** são usadas para decidir se é preferível combinar as entidades <u>numa só relação</u> ou se é mais adequado criar <u>duas relações</u> e colocar uma cópia da chave primária de uma relação na outra:
 - (a) participação obrigatória em ambos os lados do relacionamento 1:1;
 - (b) participação obrigatória num lado do relacionamento 1:1;
 - (c) participação opcional em ambos os lados do relacionamento 1:1.

- Relacionamentos binários de um-para-um (1:1)
 - (a) participação obrigatória em ambos os lados do relacionamento 1:1;
- Combinar as entidades envolvidas **numa só relação** e escolher uma das chaves primárias das entidades originais para ser a chave primária da nova relação, enquanto outra (se existir) é usada como chave candidata.

Treino (<u>nr_treino</u>, tempo_util, data/hora_ini, data/hora_fim, data/hora_fim, id_plano, descrição, descanso, intensidade, duração)

Chave primária nr_treino

Chave candidata id_plano

- Relacionamentos binários de um-para-um (1:1)
- (b) participação obrigatória num lado do relacionamento 1:1;
- Cópia da chave primária da entidade pai colocada na relação que representa a entidade filho.

Treino (nr_treino, tempo_util, data/hora_ini, data/hora_fim, data/hora_fim)
Chave primária nr_treino

Plano (id_plano, descrição, descanso, intensidade, duração,nr_treino)
Chave primária id_plano
Chave estrangeira nr_treino referencia Treino (nr_treino)

- Relacionamentos binários de um-para-um (1:1)
- (c) participação opcional em ambos os lados do relacionamento 1:1.

Cópia da chave primária da entidade pai colocada na relação que representa a entidade filho. A designação das entidades pai e filho é arbitrária, a menos que se possa descobrir mais sobre o relacionamento.

Suponha que a maioria dos carros, mas não todos, sejam usados pelos funcionários e que apenas uma minoria dos funcionários use carros. A entidade Carro, embora opcional, está mais próxima de ser obrigatória do que a entidade Funcionário. Portanto, neste caso deveríamos designar o **Funcionário** como **entidade-pai** e o **Carro** como **entidade-filho**.

→ <u>Derivar relações</u>

- Relacionamentos binários de um-para-um (1:1)
- (c) participação opcional em ambos os lados do relacionamento 1:1.

Cópia da chave primária da entidade pai colocada na relação que representa a entidade filho. A designação das entidades pai e filho é arbitrária, a menos que se possa descobrir mais sobre o relacionamento.

EXEMPLO:

Funcionário (<u>num_mecanografico</u>, nome, funcao)
Chave primária num_mecanografico

Carro (id_carro, marca, modelo, matricula, cor, num_mecanografico)

Chave primária id_carro

Chave estrangeira num_mecanografico referencia Funcionário(num_mecanografico)

→ <u>Derivar relações</u>

Os relacionamentos recursivos de 1:N e N:M seguem as regras de participação de um relacionamento binário de 1:N e N:M, respectivamente.

Relacionamentos binários recursivos de um-para-um (1:1)

Os relacionamentos recursivos de 1:1 seguem as regras:

- participação obrigatória de ambos os lados: relação única com uma cópia da chave primária a agir como chave estrangeira que deve ser renomeada para facilitar a interpretação e não pode ser nula (semelhante ao relacionamento recursivo 1:N).
- participação opcional de ambos os lados: criar uma nova relação para representar o relacionamento recursivo que teria apenas dois atributos a funcionar com chave primária composta pelas duas chaves primárias que devem ser renomeadas para facilitar a interpretação e que agem também como chaves estrangeiras (semelhante ao relacionamento recursivo M:N).
- participação obrigatória em apenas um lado: opção de seguir qualquer uma das duas abordagens anteriores.

Relacionamentos binários recursivos de um-para-um (1:1)

Estudante (nr_aluno, nome, tutor)
Chave primária nr_aluno
Chave estrangeira tutor referencia
Estudante(nr_aluno)

ou

Estudante (<u>nr_aluno</u>, nome)
Chave primária nr_aluno

Tutor (nr_aluno, nr_aluno_tutor)
Chave primária nr_aluno,
nr_aluno_tutor
Chave estrangeira nr_aluno_tutor
referencia Estudante(nr_aluno)
Chave estrangeira nr_aluno
referencia Estudante(nr_aluno)

Relacionamentos complexos

- Para cada <u>relacionamento complexo</u>, criar **uma relação** para representar o **relacionamento** e incluir quaisquer atributos que façam parte do relacionamento.
- Colocamos uma **cópia** da(s) **chave(s) primária(s)** das entidades que participam no relacionamento complexo na nova relação, para atuar como **chaves estrangeiras**.
- A determinação da chave primária da nova relação depende da cardinalidade do relacionamento complexo. Ppassa a ser composta pelas **chaves primárias** das entidades que participam no relacionamento complexo e que têm cardinalidade superior a 1.

Relacionamentos complexos N:M:P

- A nova relação tem uma chave primária composta pelas **chaves primárias** das entidades que participam no relacionamento complexo.

Aluno (nr_aluno, ...) **Chave primária** nr_aluno

Professor (id_prof, ...)
Chave primária id_prof

Seminário (id_semi, ...)
Chave primária id_semi

Inscrição (id_semi, id_prof, nr_aluno)
Chave primária id_semi, id_prof, nr_aluno
Chave estrangeira id_semi referencia Seminário(id_seminário)
Chave estrangeira id_prof referencia Professor(id_prof)
Chave estrangeira nr_aluno referencia Aluno(nr_aluno)

→ <u>Derivar relações</u>

- Relacionamentos complexos 1:N:M
- A nova relação tem uma chave primária composta pelas chaves primárias das entidades que participam no relacionamento complexo com cardinalidade N.

Consulta (<u>nr_episodio</u>, hora_ini, ...)
Chave primária nr_episodio

Resultado (<u>id_relatorio</u>, relatório, ...)
Chave primária id_relatorio

Agendamento (nr_episodio, id_relatorio, cod_exame)
Chave primária nr_episodio, id_relatorio
Chave estrangeira nr_episodio referencia Consulta(nr_episodio)
Chave estrangeira id_relatorio referencia Resultado(id_relatorio)
Chave estrangeira cod_exame referencia Exame(cod_exame)

Relacionamentos complexos 1:1:N

- A nova relação tem uma chave primária composta pela chave primária da entidade que participa no relacionamento complexo com cardinalidade N e a chave primária de uma das outras duas entidades, definida de forma arbitrária. Para além disso, o outro par deve ser único.

Agendamento (nr_episodio, id_relatorio, cod_exame)

Chave primária nr_episodio, id_relatorio

Chave estrangeira nr_episodio referencia Consulta(nr_episodio)

Chave estrangeira id_relatorio referencia Resultado(id_relatorio)

Chave estrangeira cod_exame referencia Exame(cod_exame)

ou

Agendamento (<u>id_relatorio, cod_exame,</u> id_nr_episodio)
Chave primária nr_episodio, cod_exame

- Relacionamentos complexos 1:1:1
- A nova relação tem uma chave primária composta pelas chaves primárias de duas das entidades que participam no relacionamento complexo, definidas de forma arbitrária. Para além disso, o outro par deve ser único.

- Relacionamentos superclasse/subclasse
- Identifique a **superclasse** como **entidade pai** e a **subclasse** como **entidade filho**.
- A representação mais adequada de um relacionamento deste tipo depende do número de:
 - restrições de disjunção e participação no relacionamento superclasse/subclasse;
 - se as subclasses estão envolvidas em relacionamentos distintos;
 - número de participantes no relacionamento superclasse/subclasse.

→ <u>Derivar relações</u>

Restrições de Participação	Restrições de Disjunção	Relações Requeridas
Obrigatória	Não disjunto {And}	Relação única com um atributo para cada subclasse (flag)
Opcional	Não disjunto {And}	Duas relações: uma relação para a superclasse e uma relação para todas as subclasses com um atributo para cada subclasse (flag)
Obrigatória	Disjunto {Or}	Muitas relações (uma relação para cada combinação superclasse/subclasse)
Opcional	Disjunto {Or}	Muitas relações (uma relação para a superclasse e uma para cada subclasse)

→ <u>Derivar relações</u>

→ <u>Derivar relações</u>

Funcionário (<u>id_profissional</u>, nome, dta_ini_serviço ...)
Chave primária id_profissional

Profissional de Saúde (<u>id_profissional</u>, , estado_licença)
Chave primária <u>id_profissional</u>,
Chave estrangeira <u>id_profissional</u>, referencia Funcionário(<u>id_profissional</u>,)

Trreinador (id_profissional, , grau_academico)
Chave primária id_profissional,
Chave estrangeira id_profissional, referencia Funcionário(id_profissional,)

MySQL Workbench

1) Após a instalação, o GUI vai abrir com a configuração ao MySQL server já efetuada (assinalado na figura)

NOTA: se a conexão não aparecer, é provável que falte ou tenha falhado alguma etapa do guia de instalação

Ir ao menu inicial e clicar no separador "Models" para criar um novo esquema.

→ MySQL Workbench

O Workbench cria então um novo esquema com o nome 'mydb'. Para alterar o nome do esquema, basta clicar duas vezes em cima de 'mydb'

Depois de configurar o nome, clicar no botão 'Add Diagram'. Uma nova janela é criada chamada 'EER Diagram'.

Modelação Lógica - MySQL

Quando estamos a construir o modelo lógico de dados no MySQL, é importante ter em consideração os seguintes aspetos:

<u>Tipo de relacionamento</u>:

Relacionamentos identificadores (linha cheia) Quando a chave primária da entidade pai é incluída na chave primária da entidade filho.

- Chave estrangeira e chave primária.

identificadores Relacionamentos não (linha tracejada)

Quando a chave primária da entidade pai é incluída na entidade filho, mas não como parte da sua chave primária.

- Chave estrangeira NOT NULL participação obrigatória no modelo conceptual
- Chave estrangeira participação opcional no modelo conceptual
- Direcção do relacionamento: Os relacionamentos devem começar na relação/tabela que deve alocar a chave estrangeira.

Modelação Lógica - MySQL

• <u>Valores padrão/por defeito</u>: Devem ser usados caso se queira considerar um valor por *default*.

- PK (Primary Key), NN (Not Null), UQ (Unique Index), B (Binary), UN (Unsigned), ZF (Zero Fill), AI (auto increment), G (generated)
 - PK deve ser usado para atributos que são chave primária;
 - NN deve ser usado em todos os atributos de chave primária e todos os atributos que não possam ser NULL;
 - UQ deve ser aplicado sempre que há chaves candidatas, faz com que não hajam valores duplicados na tabela;
 - UN define que não podem ser inseridos valores negativos nessa coluna.
 - ZF preenche o valor definido para o campo com zeros até a largura de exibição especificada na definição da coluna.
 - Al deve ser usado para gerar automaticamente quando um novo registo é inserido numa tabela.
 - G deve ser usado para gerar atributos a partir de outros usando uma expressão.

Dados Alfanuméricos

https://dev.mysql.com/doc/refman/8.0 /en/data-types.html

VARCHAR (strings de tamanho variável) vs. CHAR (strings de tamanho fixo)

Valor	СНА	R(4)	VARC	HAR(4)
	' '	4 bytes	"	1 byte
'AB'	'AB'	4 bytes	'AB'	3 bytes
'ABC'	'ABC_'	4 bytes	'ABC'	4 bytes
'ABCD'	'ABCD'	4 bytes	'ABCD'	5 bytes

O VARCHAR usa 1 ou 2 bytes de memória adicionais para tamanho ou para marcar o fim dos dados.

Para armazenar textos mais longos:

- TEXT
- TINYTEXT
- MEDIUMTEXT
- LONGTEXT

Dados Alfanuméricos

https://dev.mysql.com/doc/refman/8.0 /en/data-types.html

- O tipo ENUM é um objeto de string cujo valor é seleccionado a partir de um conjunto de valores permitidos que são definidos explicitamente no momento de criação da coluna.

EXEMPLO:

prioridade ENUM('Não Urgente', 'Pouco Urgente', 'Urgente', 'Muito Urgente', 'Emergente') NOT NULL);

A coluna prioridade aceitará apenas a inserção de um dos cinco valores definidos. O MySQL mapeia cada membro de enumeração para um índice numérico. Neste caso, 'Não Urgente', 'Pouco Urgente', 'Urgente', 'Muito Urgente' e 'Emergente' são mapeados para 1, 2, 3, 4 e 5 respectivamente.

- O tipo **SET** é um objeto string que pode ter zero ou mais valores, cada um dos quais deve ser escolhido a partir de um conjunto de valores especificados quando a tabela é criada.

EXEMPLO:

tipo SET('A', 'B') NOT NULL);

A coluna tipo aceitará a inserção de ", 'A', 'B' ou 'A,B'. O MySQL armazena valores SET numericamente, com o bit de ordem inferior do valor armazenado correspondendo ao primeiro membro do conjunto.

Dados de Data/Hora

https://dev.mysql.com/doc/refman/8.0 /en/data-types.html

Tipo de Dados	Notação
<u>DATE</u>	YYYY-MM-DD
<u>TIME</u>	hh:mm:ss
DATETIME*	YYYY-MM-DD hh:mm:ss
TIMESTAMP**	YYYY-MM-DD hh:mm:ss
YEAR	YYYY

O intervalo suportado varia de '1000-01-01 00:00:00' a '9999-12-31 23:59:59'.

^{**} O intervalo suportado varia de '1970-01-01 00:00:01' a '2038-01-19 03:14:07'.

→ Dados de Data/Hora

https://dev.mysql.com/doc/refman/8.0 /en/data-types.html

Fixed-Point Types (Exact Value) - DECIMAL

Os tipos DECIMAL armazenam valores de dados numéricos exatos. Este tipo de dados é usado quando é importante preservar a precisão exata, por exemplo, com dados monetários.

DECIMAL(n,m)

n – precisão - representa o número de dígitos significativos que são armazenados. m – escala - representa o número de dígitos que podem ser armazenados após o ponto decimal.

Exemplo: 105,98€ -> DECIMAL (5,2)

Ficha de Excercícios PLO5:

Questão 2

Ficha de Excercícios PLO6:

Questão 1

Restrições de Integridade

	Paciente			
nr_sequencial	nome	sexo	dta_nascimento	•••
323431	Ana Luísa Dias Gomes	F	20/12/1990	
453347	José da Costa Silva	М	03/05/1975	
212423	Maria Leonor Ribeiro Barbosa	Fem	12/07/2000	
	•••			

X Integridade Referencial

X Integridade de Domínio

		Î		Consulta			
nr_episodio	id_pac	id_med	hora_ini	hora_fim	id_agenda	cod_proc	id_sec
12345678	212423	3456	2022-01-23 10:18:17	2022-01-23 10:38:27	123456789	P22	1212
14451643	453347	3224	2022-01-25 08:35:23	2022-01-25 09:00:12	223212434	P23	1598
14451643	212423	3371	2022-02-02 09:00:33	2022-02-02 09:15:20	345567811	NULL	1479
13415324	123456	3834	2022-02-04 12:34:11	2022-02-04 13:00:00	433212456	P22	1234
NULL	323431	NULL	2022-02-12 11:20:23	2022-02-12 11:52:33	387612392	P24	1176
							

Integridade de Entidade

Integridade de Entidade

A normalização de dados baseia-se na análise das **chaves primárias** e das **dependências funcionais** de todos os seus atributos.

É um processo **progressivo**, que assenta na execução de uma série de etapas, cada uma delas correspondendo a uma **forma normal** específica com critérios de validação cada vez mais fortes.

Através da sua aplicação, os atributos de um dado modelo de dados são organizados para assegurar a coesão dos tipos das entidades envolvidas, minimizando ou mesmo eliminando duplicação de dados, melhorando a eficiência de armazenamento, a integridade e a escalabilidade dos dados.

→ Formas Normais

O processo de normalização é **progressivo**, ou seja, cada um dos níveis superiores de normalização é um subconjunto do respetivo nível inferior.

Diz-se que uma relação está na 1FN se:

- 1. Possuir uma chave primária.
- 2. Todos os seus atributos forem <u>atómicos</u>. Não são permitidos atributos que implicitamente codificam subatributos (atributos compostos) ou atributos multivalor.
- 3. Não possuir grupos de dados repetitivos.

Na prática, podemos dizer que uma relação está na 1FN se as interseções entre colunas (atributos) e linhas (registos) possuírem um único valor – um valor atómico.

Primeira Forma Normal – 1FN

Aplicação da 1FN:

Passo 1: Uma das chaves candidatas é escolhida para chave primária.

<u>Passo 2:</u> Atributos multivalor são convertidos em novas relações com chave externa referindo a chave primária da tabela original.

Passo 3: Cada atributo composto é mapeado em vários sub-atributos atómicos.

Diz-se que uma relação está na segunda forma normal (2FN) se:

- 1. A relação estiver também na 1FN.
- 2. Todos os seus atributos <u>não-primos</u> forem **totalmente dependentes** da sua chave primária. Isto é, não podem existir **dependências parciais**. Diz-se que um atributo é <u>não-primo</u> quando este não faz parte de uma chave primária.

O que é uma dependência funcional?

As dependências funcionais determinam a forma como se pode interpretar e relacionar os dados e permitem especificar medidas formais sobre a correção dos esquemas relacionais.

Na prática, a dependência funcional **A1** → **A2** entre dois conjuntos de atributos de uma relação significa que:

- <u>para cada valor de A1</u>, existe <u>apenas um</u> valor possível para A2, por isso diz-se que A2 é funcionalmente de A1 ou que A1 determina funcionalmente A2;
- valores iguais para A1, determinam valores iguais para A2.

→ Segunda Forma Normal – 2FN

Aplicando a análise de dependências funcionais:

Alunos(id_aluno, nome_aluno, cod_curso, nome_curso)

Notas(id_aluno, cod_dis, nome_dis, nota, cod_prof, nome_prof, dep_prof)

Diagrama de Dependências

```
id_aluno → nome_aluno, cod_curso
cod_curso → nome_curso
{id_aluno, cod_dis} → nota
cod_disc → nome_dis, cod_prof
cod_prof → nome_prof, dep_prof
```

A tabela Alunos está na 2FN, mas a Notas não!

Diagrama de Dependências

{id_aluno, cod_dis} → nota

cod_disc → nome_dis, cod_prof

cod_prof → nome_prof, dep_prof

Notas(id_aluno, cod_dis, nome_dis, nota, cod_prof, nome_prof, dep_prof)

<u>id_aluno</u>	<u>cod_dis</u>	nome_dis	nota	cod_prof	nome_prof	dep_prof
001	D01	Bases de Dados	16	PO1	Maria do Carmo	Dep. Informática
001	DO2	Criptografia	12	PO2	Paulo Gomes	Dep. Informática
002	D01	Bases de Dados	17	PO1	Maria do Carmo	Dep. Informática
002	D03	Lógica Computacional	14	PO3	Tiago Pinho	Dep. Sistemas
			•••			

Dependência Parcial

→ Segunda Forma Normal – 2FN

Disciplinas(cod_dis, nome_dis, cod_prof, nome_prof, dep_prof)

Notas
<u>id_aluno</u>
cod_dis
nota

(OO1,'DO2', 12) (002,'D01', 17)

(001, 'D01', 16) (002,'D03', 14)

Disciplinas
cod_dis
nome_dis
cod_prof
nome_prof
dep_prof

→ Terceira Forma Normal – 3FN

Diz-se que uma relação está na 3FN se:

- 1. A relação estiver também na 1FN e na 2FN.
- 2. Todos os seus atributos que não sejam chaves primárias sejam mutuamente independentes, não havendo assim dependências funcionais transitivas. Por outras palavras, numa relação na 3FN, todos os atributos dependem única e exclusivamente da chave primária.

Na prática, isto significa que os atributos que não dependam da chave primária devem ser "eliminados" da relação, ou seja, devem ser transferidos para outra tabela.

Na prática, a dependência funcional **A1** → **A2**, **A3** e **A3** → **A4** entre os atributos de uma relação significa que:

• Existe uma <u>dependência funcional transitiva</u> entre A1 e A4. Ou seja os atributos que não são chave primária, não são mutuamente independentes entre si.

Aplicando a análise de dependências funcionais ao caso de estudo anterior:

Diagrama de Dependências

Alunos(id_aluno, nome_aluno, cod_curso, nome_curso)

Notas(id_aluno, cod_dis, nota)

Disciplinas(cod_dis, nome_dis, cod_prof, nome_prof, dep_prof)

id_aluno → nome_aluno, cod_curso
cod_curso → nome_curso
{id_aluno, cod_dis} → nota
cod_disc → nome_dis, cod_prof
cod_prof → nome_prof, dep_prof

A tabela Alunos e Disciplinas não estão na 3FN!

Alunos(id_aluno, nome_aluno, cod_curso, nome_curso)

<u>id_aluno</u>	<u>nome_aluno</u>	cod_curso	nome_curso
001	João Ferreira	CO1	MIEI
001	João Ferreira	CO1	MIEI
002	Rita Abreu	CO1	MIEI
002	Rita Abreu	C01	MIEI

Diagrama de Dependências

id_aluno → nome_aluno, cod_curso cod_curso → nome_curso

Terceira Forma Normal – 3FN

Diagrama de Dependências

cod_disc → nome_dis, cod_prof

cod_prof → nome_prof, dep_prof Disciplinas(cod_dis, nome_dis, cod_prof, nome_prof, dep_prof)

<u>cod_dis</u>	nome_dis	cod_prof	nome_prof	dep_prof
D01	Bases de Dados	PO1	Maria do Carmo	Dep. Informática
DO2	Criptografia	PO2	Paulo Gomes	Dep. Informática
D01	Bases de Dados	PO1	Maria do Carmo	Dep. Informática
DO3	Lógica Computacional	PO3	Tiago Pinho	Dep. Sistemas

Dependência Transitiva

Disciplinas

3FN

Professores

Alunos(id_aluno, nome_aluno, cod_curso)

Alunos
<u>id_aluno</u>
nome_aluno
cod_curso

Disciplinas(cod_dis, nome_dis, cod_prof)

Disciplinas
cod_dis
nome_dis
cod_prof

Cursos(cod_curso, nome_curso)

Cursos
cod_curso
nome_curso

Professores(cod_prof, nome_prof, dep_prof)

Professores
<u>cod_prof</u>
nome_prof
dep_prof

→ Terceira Forma Normal – 3FN

Alunos(id_aluno, nome_aluno, cod_curso)

Alunos
<u>id_aluno</u>
nome_aluno
cod_curso

Disciplinas
<u>cod_dis</u>
nome_dis
cod_prof

Cursos(cod_curso, nome_curso)

Cursos
cod_curso
nome_curso

id_aluno → nome_aluno, cod_curso cod_curso → nome_curso

Diagrama de Dependências

{id_aluno, cod_dis} → nota

cod_disc → nome_dis, cod_prof

cod_prof → nome_prof, dep_prof

Disciplinas
cod_prof
nome_prof
dep_prof

As relações encontram-se na 3FN!

Ficha de Excercícios PLO6:

Questão 2

Universidade do Minho

Ano Letivo: 2023/24

Turno: PL9

Bases de Dados

PLO6 – Modelação Lógica (continuação)

Docente: Cristiana Neto

Email: cristiana.neto@algoritmi.uminho.pt

Horário de Atendimento:

6° feira O9h-10h

