Junior Balkan MO 2010

 $\boxed{1}$ The real numbers a, b, c, d satisfy simultaneously the equations

$$abc - d = 1$$
, $bcd - a = 2$, $cda - b = 3$, $dab - c = -6$.

Prove that $a + b + c + d \neq 0$.

- $\boxed{2}$ Find all integers $n, n \geq 1$, such that $n \cdot 2^{n+1} + 1$ is a perfect square.
- 3 Let AL and BK be angle bisectors in the non-isosceles triangle ABC (L lies on the side BC, K lies on the side AC). The perpendicular bisector of BK intersects the line AL at point M. Point N lies on the line BK such that LN is parallel to MK. Prove that LN = NA.
- A 9×7 rectangle is tiled with tiles of the two types: L-shaped tiles composed by three unit squares (can be rotated repeatedly with 90°) and square tiles composed by four unit squares. Let $n \geq 0$ be the number of the 2×2 tiles which can be used in such a tiling. Find all the values of n.