

Anomaly Detection Practical – Challenge I

Hamza Tahir & Muhammad Hamza Usmani

Technische Universität München

Fakultät für Informatik

8 November 2016

Data

Data Preprocessing

Feature Mean: The missing value of a particular feature is replaced by average value of of the feature. This averaging technique is generic to replace missing values for all kinds of datasets.

Feature Maximum: The missing value of a particular feature is replaced by the max value of the feature.

<u>Nine-Neighborhood Mean</u>: Missing values were replaced by averages in a particular nine-neighborhood.

Immediate Neighborhood Mean: This approach is similar to the Nine-Neighborhood one but here image locality is leveraged to better replace missing values. The underlying assumption is that closely related pixels have similar values. Therefore, rather than using the entire 9 neighborhood, only 'immediate' neighbors are used for the average value. 'Immediate' neighbors are dened as the pixels that are to the left, right, top and bottom of the 9-neighborhood.

Data Preprocessing

Feature Weighting

Assumption: Not all features contribute equally to determine the class of a sample

- different features can have different weights that represent their relative importance to the classication model.
- In particular, we could not be certain that a certain spectral band was more or less important for the classication of cotton soil.
- It might be the fact that the green spectrum was more important, or maybe the infra-red spectrum.

Feature Weighting

Assumption: Not all features contribute equally to determine the class of a sample

- We used basic techniques based upon correlation to determine weights of the features.
- First, we extracted each feature out individually and trained our classifiers on each separately.
- The feature that had the lowest accuracy after 3-fold validation was then completely removed from the training of the model.
- However, this did NOT prove to be a good replacement model..

Techniques Used

- 1. Naive Bayes
- 2. Support Vector Classier (SVC)
- 3. K-Nearest Neighbors (KNN)
- 4. Decision Trees
- 5. Neural Network Multi Layer Perceptron
- 6. Random Forest

Used 3-fold cross validation for each to calculate the **training error**.

Results: Training Error with 3-Cross Validation

Table 2. Best Average Cross-Validation Accuracies (without feature weighing)

Training Accuracies						
Technique	Feature Mean	Feature Max	Nine- Neighbor	Immediate- Neighbor		
Decision Trees	97.519	98.528	96.550	97.723		
Multi-Layer Percep- tron	96.280	97.768	97.768	98.016		
Naive Bayes	98.422	96.979	98.535	98.512		
KNN	98.858	96.731	98.557	98.783		
SVC	97.813	94.295	97.858	98.377		
Random Forest	98.647	97.610	97.970	98.715		
Average	97.796	96.985	97.873	98.354		

Results: Training Error with 3-Cross Validation

Table 3. Best Average Cross-Validation Accuracies (with feature weighing)

Training Accuracies						
Technique	Feature Mean	Feature Max	Nine- Neighbor	Immediate- Neighbor		
Decision Trees	97.994	97.002	97.610	97.566		
Multi-Layer Percep-	97.250	95.942	97.565	97.632		
tron						
Naive Bayes	98.377	96.397	98.557	98.512		
KNN	97.881	96.619	98.693	98.85		
SVC	97.565	94.656	98.197	98.377		
Random Forest	98.625	98.197	98.715	98.625		
Average	97.948	96.468	98.222	98.260		

Training Error VS Test Error

Using different classifiers

Highcharts.com

Training Error VS Test Error

Using Random Forest

Highcharts.com

Thank you!

Tahir & Usmani - Challenge I