

Learning and animal movement

Mark A. Lewis^{1*}, William F. Fagan², Marie Auger-Méthé³, Jacqueline Frair⁴, John M. Fryxell⁵, Claudius Gros⁶, Eliezer Gurarie², Susan D. Healy^{7*}, Jerod A. Merkle⁸

¹Department of Mathematical and Statistical Sciences and Department of Biological Sciences, University of Alberta, Canada, ²Department of Biology, University of Maryland, College Park, United States, ³Department of Statistics and Institute for the Oceans and Fisheries, University of British Columbia, Canada, ⁴Department of Environmental Studies, College of Environmental Science and Forestry, State University of New York, United States, ⁵Department of Integrative Biology, University of Guelph, Canada, ⁶Physics Department, Goethe University Frankfurt, Germany, ⁷School of Biology, University of St Andrews, United Kingdom, ⁸Department of Zoology and Physiology, University of Wyoming, United States

Submitted to Journal: Frontiers in Ecology and Evolution

Specialty Section:
Behavioral and Evolutionary Ecology

Article type: Review Article

Manuscript ID: 681704

Received on: 17 Mar 2021

Journal website link: www.frontiersin.org

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

Author contribution statement

ML and BF designed and organized the review, secured funding, and led writing of the paper ML and BF are joint first authors
MAM, JF, JMF, CG, EG, SDH and JAM contributed to the review and helped write the paper

Keywords

animal cognition, decision-making, Migration, reinforcement statistical learning, translocation

Abstract

Word count: 150

Integrating diverse concepts from animal behavior, movement ecology, and machine learning, we develop an overview of the ecology of learning and animal movement. Learning-based movement is clearly relevant to ecological problems, but the subject is rooted firmly in psychology, including a distinct terminology. We contrast this psychological origin of learning with the task-oriented perspective on learning that has emerged from the field of machine learning. We review conceptual frameworks that characterize the role of learning in movement, discuss emerging trends, and summarize recent developments in the analysis of movement data. We also discuss the relative advantages of different modeling approaches for exploring the learning-movement interface. We explore in depth how individual and social modalities of learning can matter to the ecology of animal movement, and highlight how diverse kinds of field studies, ranging from translocation efforts to manipulative experiments, can provide critical insight into the learning process in animal movement.

Contribution to the field

Learning-based decision-making is emerging as critical aspect of spatial ecology. Recent high-profile publications have accentuated the importance of learning for spatial processes, but the field is only now emerging and can benefit from a solid review that develops the foundations. Learning, which can involve information acquired in isolation or socially, means that movements are far more complex than traditional ecological models assume. Technological revolutions, coupled with advances in miniaturization and sensor design, provide biologists with increasingly detailed information on the location and timing of movements. Likewise, recent mathematical and computational advances provide intriguing paths for incorporating learning-based processes into ecological models. To synthesize major, recent progress in these areas, we have created an integrative review dealing with the relationships between animal movement and learning. We review the conceptual frameworks characterizing the role of learning in movement, discuss emerging trends in available datasets, and summarize recent developments in the analysis of movement data. We also discuss the relative advantages of diverse modeling approaches suitable for exploring the learning-movement interface, including techniques gleaned from the psychological and artificial intelligence fields. Last, we outline research challenges for the learning-movement community, both in terms of data needs and mathematical/computational challenges.

Funding statement

We acknowledge the following grants for supporting this research: NSERC Discovery (MAL, MAM), NSF DMS-1853465 (WFF, EG), Canada Research Chairs Program (MAL, MAM).

LEARNING AND ANIMAL MOVEMENT

Mark A. Lewis^{1,2,a}, William F. Fagan^{1,3,a}, Marie Auger-Méthé^{4,5,b}, Jacqueline Frair^{6,b},

John M. Fryxell^{7,b}, Claudius Gros^{8,b}, Eliezer Gurarie^{3,b}, Susan D. Healy^{9,b},

Jerod A. Merkle^{10,b}

¹Department of Mathematical and Statistical Sciences University of Alberta, Edmonton, AB T6G 2G1 Canada

²Department of Biological Sciences University of Alberta, Edmonton, AB T6G 2G1 Canada

> ³Department of Biology University of Maryland College Park, MD 20742 USA

⁴Department of Statistics University of British Columbia

⁵Institute for the Oceans and Fisheries University of British Columbia

⁶Department of Environmental and Forest Biology State University of New York

⁷Department of Integrative Biology
University of Guelph
50 Stone Road E.,
Guelph, ON, Canada, N1G 2W1

⁸Physics Department Goethe University

⁹School of Biology University of St. Andrews

¹⁰Department of Zoology and Physiology University of Wyoming

¹Joint first authors

²Corresponding Author: mark.lewis@ualberta.ca, Phone: 780 492-1097, FAX: 780.492.6826

³Contributing authors listed alphabetically

^a Designed and organized the review, secured funding, and led writing of the paper; mark.lewis@ualberta.ca, bfagan@umd.edu

^bContributed to the review; helped write the paper; <u>auger-methe@stat.ubc.ca</u>,

jacquifrair@gmail.com, jfryxell@uoguelph.ca, gros07@itp.uni-frankfurt.de, egurarie@umd.edu, sdh11@st-andrews.ac.uk, jmerkle@uwyo.edu

Data accessibility statement: no new data were used in this article

Running title: Learning and Animal Movement

Keywords: Animal cognition, decision-making, migration, reinforcement statistical learning,

translocation

Type of article: Review

Words: abstract (150), main text (7500), textbox 1 (768), textbox 2 (439), textbox 3 (349),

textbox 4 (426)

Number of references: 159

Number of figures, tables and text boxes: figures (3), tables (3), text boxes (4)

2

ABSTRACT

1

2 Integrating diverse concepts from animal behavior, movement ecology, and machine learning, 3 we develop an overview of the ecology of learning and animal movement. Learning-based 4 movement is clearly relevant to ecological problems, but the subject is rooted firmly in 5 psychology, including a distinct terminology. We contrast this psychological origin of learning 6 with the task-oriented perspective on learning that has emerged from the field of machine 7 learning. We review conceptual frameworks that characterize the role of learning in movement, discuss emerging trends, and summarize recent developments in the analysis of movement data. 8 9 We also discuss the relative advantages of different modeling approaches for exploring the 10 learning-movement interface. We explore in depth how individual and social modalities of learning can matter to the ecology of animal movement, and highlight how diverse kinds of field 11 12 studies, ranging from translocation efforts to manipulative experiments, can provide critical 13 insight into the learning process in animal movement. 14 15

16

INTRODUCTION

Animal movement, in the form of translocation from one locale to another, takes many forms and is critical to ecological processes. This understanding has given rise to the rapidly growing discipline called movement ecology (Nathan 2008). Concurrently, the subject of learning has been studied from the perspective of animal behavior, both in the context of ecological interactions and in the context of movement itself (Box 1). Animal behavior has a well-established and celebrated history of understanding learning and there has been recent growth in connecting learning and memory to animal movement behavior (e.g., Fagan *et al.* 2013). At the same time, a recent explosion of ideas about machine learning is now creating new perspectives on understanding animal movement based on algorithms.

Along with these recent developments, the ability of ecologists to track animal movements and behaviors remotely in the wild has been steadily increasing. The collection of massive amounts of data on animal movement, primarily via satellite tracking, is now possible at a scale and level of detail previously unimaginable and can be linked with similarly improving remotely sensed or modeled environmental data (e.g., vegetation, anthropogenic disturbance, terrain, NDVI, snow depth). Furthermore, more recent advances in bio-logging (e.g., accelerometers, proximity measures, audio- and video-recording devices) provide direct information on some of the physiological (e.g., jaw movement, heart rate, cortisol, stable isotopes, reproductive status), and social (e.g., interactions with conspecifics), contexts of movements. This coupling of movement patterns with the movement context has created opportunities to infer learning mechanisms and

meld ideas from animal behavior, movement ecology, and remote sensing in the context of ecology of learning and animal movement. We develop such a synthesis here.

We start with a focus on learning as a means for acquiring information and making decisions.

Employing two related definitions of learning, one from psychology and the other related to computer science, we evaluate the benefits, costs and limitations of learning in the context of animal movement. Next, we address the modality of learning in animal movement, ranging from individual to social. We then develop links to related disciplines: psychology, animal cognition, and machine learning. We close by reviewing approaches to studying the process of learning and animal movement, whether from experimental or observational studies, discussing the role that

INDIVIDUAL INFORMATION ACQUISITION AND DECISION MAKING

models can play in this endeavour, and suggesting areas for future developments.

Definition of learning

We start with a *psychology-based definition* of learning, which states that learning is a cognitive response to information acquisition that occurs via an individual's experience that results in a detectable and consistent change in neurophysiology and/or behavior (Box 1). Movement intersects with this definition of learning in several key ways. First, movement will give rise to learning if the movement facilitates information acquisition by introducing an animal to a new environment (e.g., information on forage availability) or state (e.g., information from increased vigilance). Second, the learned information can give rise to new movement decisions if the

information acquired is used to change movement patterns (e.g., switching to area-restricted search in regions of high forage availability). Lastly, learning can be about movement itself, for example, when an animal learns where and when to migrate by imitating conspecifics (e.g., crane migration). Figure 1 depicts these connections among movement, information processing, the environment, and the internal states of the animal.

Laboratory studies of learning seek out direct cellular evidence for neurophysiological changes arising from information acquisition and storage via functional magnetic resonance imaging (Marsh *et al.* 2010). However, these approaches are impractical in studies of wild animals, for which most ecologically relevant evidence for learning comes from observing changes in behavior as a result of experience. Thus, although the psychology-based definition of learning above does not strictly involve decision-making, the ecological implications of learning are often intimately tied to experience and the decision-making process. This emphasis on process means that movement-related learning is more similar to how machine learning is defined: improved performance for a specific task as a result of prior experience. This definition, which we refer to as the *task-based definition*, differs from the psychological definition because it is directly tied to experience-based improvements in performance for a specific task (Box 1).

The learning process

The process of learning includes all the steps needed for information acquisition based on experiences encountered. Broadly, these steps include attention to relevant information, perception of the information, acquisition of that information, and, finally, storage and retrieval

(memory) of that information. At this point, the information can be acted upon, for example, to make a movement decision (Figure 1).

Diverse factors may impede or enhance an animal's attention to information from its environment or from other individuals. For example, animals in unfamiliar environments may be more (or less) observant of environmental cues (Wolfe 1969) and certain types of social interaction may increase or decrease attentiveness, leading to social learning (Heyes 1994). Other factors, such as the internal state of an animal (Dorrance & Zentall 2001) or its risk sensitivity (Bacon *et al.* 2010) may also play a role in determining attentiveness (Figure 1).

The perception and acquisition of information depend on an animal's sensory capacities. For most animals, certain sensory cues will be easier to detect than others, which can lead to different hierarchies of inputs, which may be altered contextually. For example, many aural and olfactory cues may be more important than visual information at night (Zollner & Lima 1999). Once acquired, information must be committed to memory as part of the learning process. Spatially distributed information may be stored as a cognitive map, sometimes in a network-based non-Euclidean format (Noser & Byrne 2014). Storage and retrieval of learned information is essential for decision making, which can be based on recent events or information from long ago (Abrahms *et al.* 2019; Polansky *et al.*, 2015).

A test of successful learning is the ability to make a decision using information from past experiences that discriminates among alternative strategies. For example, in laboratory studies, exposure to spatially distributed food rewards in mazes can affect the movement choices of rats

(Leonard & McNaughton 1990). Similarly, for wolves, memory-related statistical metrics like 'time since last visit' to a location may form the basis for movement decision discrimination (Schlägel *et al.* 2017). Of course, this link between experiences and decision making is both complex and context-dependent, being modulated by layers of complexity regarding habitats, social status, and internal states (Figure 1). The so-called *diffusion theory* for learning posits that the brain does not solve decision-making problems exactly but uses algorithms that optimize the speed and accuracy of choices (Bogacz 2007).

Benefits and costs of learning

All mobile organisms face a wide variety of spatial challenges that influence individual fitness and present opportunities for decision making shaped by learning. Foraging opportunities and energetic constraints are patchy in space and time, in large part because the underlying physical and biotic processes are also patchy. Optimal foraging theory (Stephens & Krebs 1986; McNamara & Houston 1985; Mangel & Clark 1988) provides a framework for understanding how benefits accrue from foraging in patches that offer the highest returns of energy or nutrient intake per unit time relative to time or energetic costs. Lost opportunities for social interaction, breeding, reproductive care, or shelter, and the risks of mortality due to predation, parasitism, or disease can then be considered.

When the rate of environmental change varies across time and space, as is common along elevation or rainfall gradients, theory suggests an animal may be able to improve its fitness through appropriate patterns of nomadic or migratory movement (e.g., Fryxell & Sinclair 1988).

Field studies support this theory. For example, migratory ungulates can choose patches at a landscape scale that yield appreciable improvement in rates of energy gain, even when such gains are transitory and require continual nomadic repositioning (Fryxell *et al.* 2004; Holdo *et al.* 2009). Memory can also influence the choice of movement patterns. For example, when undergoing seasonal transitions between ranges, migratory ungulates can obtain fitness benefits by remembering previous trajectories (Bracis & Mueller 2017; Jesmer *et al.* 2018, Merkle *et al.* 2019).

Researchers have investigated how learning can influence and confer advantages to moving organisms. Agent-based models of foragers with spatial memory have shown how fitness accrues from moving to acquire reliable information, even when that movement samples sub-optimal patches (Bracis *et al.* 2015). This is particularly clear when naïve animals are presented with an unfamiliar environment and movement is exploratory. However, even experienced individuals can benefit by spatially sampling a dynamic environment, in particular when resources can be depleted (Boyer & Walsh 2010) or predation risk can change (Bracis *et al.* 2018). In this case, movement keeps current the information needed for appropriate decision making.

Given that foraging often results in resource depletion, fitness may also be improved through informed departure criteria based on marginal value leaving rules (Charnov 1976; Arditi & Dacorogna 1988; Brown 1988). The field of "sampling behavior" (Stephens 1987) extends ideas originally developed within the optimal foraging theory framework, which traditionally assumed that animals are omniscient (Krebs & Inman 1992; Stephens *et al.* 2007b). One sampling framework considers when animals should visit a patch to assess whether it has changed in value

(Green 1980), whereas another framework focuses on the benefit accrued by tracking a changing environment (Shettleworth *et al.* 1988). Foragers that sample patches or track changing conditions are learning about the current state of the environment (Stephens 1987). Informed decision making about which patches to feed in and how long to do so requires reliable expectations regarding resource availability, predation risk, and energetic costs across an individual's home range, as well as the capacity to estimate these same variables at a given spatial location. For example, primates foraging on fruit track the productivity of different trees and possibly fruit ripeness (Janson & Byrne 2007).

Learning can also help improve fitness even when spatial movement processes are not directly tied to foraging (e.g., territorial defense, migration, reproduction) (Box 2). For example, learning can provide advantages in dominance interactions (Kokko *et al.* 2006), efficiency of movement (Stamps 1995), effective escape from predators (Brown 2001) and large-scale dispersal decisions (Barry *et al.* 2020), all of which can translate into fitness benefits (Brown *et al.* 2008; Patrick & Weimerskirch 2017). For territorial species, learning can influence how conflicts drive pattern formation (Stamps & Krishnan 1999, 2001; Sih & Mateo 2001) and alter strategies for territorial defense (Potts & Lewis 2014; Schlägel & Lewis 2014; Schlägel *et al.* 2017). For migratory species, this includes determining least-cost migration corridors between seasonal ranges (Bischof *et al.* 2012; Poor *et al.* 2012).

While learning may have benefits, acquiring information based on experience does not come without costs. For example, information gathering can require substantial investment in time and/or energy, and may heighten risk (Eliassen *et al.* 2007) or come at the expense of lost

opportunities for foraging, social interaction, or search for suitable breeding sites (Dall *et al.* 2005). The machinery for learning also exacts an energetic cost (Isler & Van Schaik 2006; Niven 2016).

Limitations to measuring learning from animal movement patterns

Typical methods for recognizing learning in animal movement patterns do not measure the acquisition of information directly but rather rely on the *task-based definition* of learning, which requires improved performance for a specific task, based on acquired experience (Box 1). There are limitations to such methods, which pose challenges to learning from uncontrolled field-derived data. Unambiguously explaining a particular movement is a general challenge in the study of wildlife, where context, perception, internal states, and particular environmental cues all determine an animal's response, but are often unobserved. For example, the "time since last visit" behavior in wolves, mentioned above, may not require memory, but could be explained by information from decaying scent marks (Schlägel & Lewis 2014).

Obvious and obscure alternative explanations to learning and memory must be carefully considered in uncontrolled field studies. Table 1 categorizes a number of movement studies according to the level of evidence for learning – from strong to simply consistent with learning. For each we provide other, non-learning interpretations of the data that cannot be definitively excluded (Table 1).

PATHWAYS OF LEARNING FOR ANIMAL MOVEMENT

Individuals can experience or gain information about their environment via different pathways—individually (i.e., by direct interaction with the environment (Dall *et al.* 2005)) or socially (i.e., by observing others (Bandura & Walters 1963; Rendell *et al.* 2010)) —with *learning* demonstrated by a change in an individual's behavior due to its experience (Box 1).

Individual Learning

Much of an animal's individual learning is associative; that is, the individual learns by making an association between a stimulus and an outcome. Associative learning may arise either from classical (Pavlovian) conditioning, where an animal associates a biologically relevant stimulus (e.g., food) with a previously irrelevant stimulus (e.g., railway tracks), or from operant (instrumental) conditioning, where the behavior of the animal is controlled by the consequences of that behavior (e.g., feeding on grain on tracks leads to a food reward).

These learning processes can make a behavior more likely through positive reinforcement (via rewards) or negative reinforcement (via unpleasant stimuli), or less likely through punishment or inhibitory learning (again, via unpleasant stimuli). For example, a bear foraging on railway tracks (Murray *et al.* 2017) might be more likely to forage when it finds grain (positive reinforcement) but less likely to forage through negative interactions with moving trains (punishment or inhibitory learning). Additionally, it might increase its vigilance through negative interactions with moving trains (negative reinforcement).

One associative learning mode relevant to animal movement is discrimination learning, where an animal learns to respond differently to distinct stimuli. For example, because homing pigeons can discriminate between the presence and absence of anomalies in magnetic fields. magnetoreception could be used for navigation (Mora et al. 2004). Two nonassociative learning modes that are relevant to movement are habituation (decreased response to a stimulus after repeated exposure) and sensitization (increased response to a stimulus after repeated exposure). These modes depend on the strength of association between stimulus and outcome, rather than the association itself. For example, the sensory responsiveness of honey bees declines after bees receive low sucrose sugar solutions (habituation) and increases after offerings of high sugar solutions (sensitization) (Scheiner 2004). In turn, the sensory responsiveness of honey bees constrains individual foraging plasticity and skews the collective foraging decisions of colonies (Scheiner 2004). Another mode of learning, latent learning, is relevant to animal movement (Franks et al. 2007). Latent learning involves the gathering and storing of information, without immediate reward,

such as when animals learn their migration route away from breeding grounds after they are born

(e.g., in autumn) and must use that information to return in springtime. Box 1 provides further

241

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

Social learning

details on these modes of learning.

243

242

Social learning is an umbrella term for the learning pathway that includes transfer of skills, concepts, rules and strategies that occur in social contexts and can affect individual behavior. Types of social learning include (i) social facilitation (increased probability of performing a behavior in the presence of a conspecific), (ii) local enhancement (an individual's interest in an object or location mediates interest/movement by others), and (iii) imitation (novel copying of a model behavior through observation that results in a reliably similar outcome) (Visalberghi & Fragaszy 1990). Note that these are distinct from the transfer of declarative or procedural information via direct information exchange, such as in bee dancing, to relay information concerning resource locations (Leadbeater & Chittka 2007)

Each type of social learning is relevant to movement ecology. For example, social facilitation explains bison movement: individuals are more likely to travel to a given new location when in a group where another animal had knowledge of that location (Sigaud *et al.* 2017). Local enhancement also occurs in ants where leaders provide guidance to naïve individuals concerning the location of resources (Franks & Richardson 2006), and in elephants where matriarchs lead herds to waterholes not known to the rest of the group (Fishlock *et al.* 2016). Imitation can be seen in fish, where translocation experiments demonstrate how naïve individuals learn migration routes through association with experienced individuals (Helfman & Schultz 1984), as well as in replacement experiments where the long-term re-use of resting and mating sites can be socially learned rather than quality-based (Warner 1988).

Individual learning can interact with social learning. For example, independent exploration allows ants to improve upon the paths they have learned via social learning through tandem

running (Franklin & Franks 2012). Here, independent exploration is the basis for improvement of route navigation, which can then be distributed within a colony via 'information cascades.' More generally, individual learning may be modulated by associational acquisition, where options for individual learning are constrained by the individuals with which an animal associates (Fragaszy & Visalberghi 2004).

Social learning is emphasized though existing social bonds, such as parent-offspring relationships. For example, elephants will learn resource locations in complex landscapes through both vertical and horizontal transmission (Bowell *et al.* 1996) and maternal-offspring pairs of whales may complete entire migrations together (Hamilton & Cooper 2010), thus enhancing the potential for social learning.

However, social learning does not always confer a net benefit (Giraldeau et al. 2002), and may result in costly strategies of movement and resource use (Sigaud et al. 2017). For example, tested alone, adult female guppies that had shoaled with trained conspecifics as they swam to food used the same route used by their trained fellows, even if the route taken by the trained shoal was longer and more energetically costly than were alternative routes (Laland & Williams 1997, Giraldeau et al. 2002).

LEARNING AND SPACE USE: CONNECTIONS TO OTHER DISCIPLINES

We distinguish two fundamental constructs for learning in conjunction with animal movement: updating the world model and building a new world model. To understand the difference between these, it helps to assume that the animal has a cognitive model of the world (\hat{Q}) and a set

of "policy rules" (β) for mapping conditions—including the snapshot of that cognitive model and the state or priorities of the animal—into outcomes, in particular movement decisions. The policy rules can be thought of as the coefficients of a function governing outcomes in terms of conditions. Within this construct, updating the world model refers to the process of movement through a world, acquiring and storing information about the world, updating the world model \hat{Q} , and acting upon that knowledge according to the fixed set of policy rules β . The learning process itself is limited to updating the world model. Note that this kind of learning is only meaningful if the world itself is dynamic, with resources or threats moving, regenerating, or depleting in a way that makes it necessary to update expectations. When confronted with a new world, either via dispersal, translocation, or a significant perturbation to the existing world, the very structure of the world model and the policy rules both require adjustment by building a new world model. These two fundamental kinds of learning are schematized in Figure 2 where an elk's movement among three dynamic patches permits constant updating of information (updating the world *model*), a process with relies on moving between those patches. But when a patch is significantly perturbed, or becomes unusable in a novel way, the fundamental structure of the world needs to be altered (building a new world model), and novel policy rules to govern interaction with novel elements must be developed.

307

308

309

310

311

312

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

The main distinction between *updating the world model* and *building a new world model* appears in a slightly different form in the machine-learning literature, where the two kinds of learning are labelled as *base-level* and *meta-level*. Specifically, "The base-level learning problem is the problem of learning functions, just like regular supervised learning. The meta-level learning problem is the problem of learning properties of functions, i.e., learning entire function spaces"

(Thrun & Pratt 1998). The function spaces in our analogy comprise \hat{Q} , whereas the learning functions are the coefficients β . In the neurosciences, the terms model-based and model-free reinforcement learning are used in analogy with base-level and meta-level learning (Doll *et al.* 2012).

Cognitive ecologists typically have stringent experimental criteria for identifying learning. For example, experimentation plus control conditions sufficient to rule out alternate explanations are fundamental to confirming the existence of social learning (Reader & Biro 2010). In this framework, experimentation could involve manipulation of physical aspects of the environment, individual animals via translocations or similar means, or the routes governing social transmission of information. Rare cases where a wild population can be experimentally manipulated provide the strongest cases for demonstrating and parameterizing memory-based movements (Ranc et al. 2020).

It is also interesting to note that complex behaviors that appear to involve decision-making can arise from other mechanisms of self-organized behavior. Self-organization occurs when simple rules lead to complex behavior (Gros 2015). A prominent theoretical example is cellular automata whereby a specific rule set, such as "the game of life," gives rise to agent-like configurations that may travel, replicate, and combine. Self-organized robots (Box 3) can exhibit emergent behavior, such as autonomous direction reversal, which an external observer could mistakenly interpret as decision-making (Kubandt *et al.* 2019). Because self-organization is not purposeful, an agent solely based on self-organizational principles will not be able to improve, or

to "learn" its score in a given task. However, complex, emergent behavior that appears to be adaptable can confound efforts to recognize signals of learning in movement data.

Machine Learning Approaches

Machine learning tasks involve an explicit goal, such as parameter estimation or classification, and require a clear objective function, such as minimizing a cost function or correctly classifying data. To the extent that animals also have clear objective functions (e.g., ultimately: increasing individual fitness; proximally: eating, avoiding being eaten, reproducing), and that these objectives might be satisfied by performing a specific movement-related task (e.g., selecting appropriate places to forage), it is useful to draw a general analogy between a machine-learning algorithm and an animal that learns. As described above, we use the term *task-based learning* when referring to this type of process.

Types of machine learning

Machine learning has three main learning paradigms: supervised, statistical (unsupervised) learning and reinforcement (Box 1). Training data for supervised learning is labelled with the correct output (Jordan & Mitchell 2015). However, statistical and reinforcement machine learning do not require labelled training data and thus may be more directly applicable to animal learning. *Statistical learning* attempts to extract statistically relevant correlations from data (Hastie *et al.* 2009) whereas *reinforcement learning* attempts to maximize a cumulative reward

through a balance between exploitation of current knowledge and exploration of new strategies (Sutton & Barto 2017) (Box 1).

A wide range of machine learning approaches emphasizes the importance of improvement through experience (Jordan & Mitchell 2015), which is close to some definitions of animal learning. Good examples are artificial neural networks (ANN), a class of biologically inspired statistical learning algorithms. The input of an ANN, typically the sensory perception of the agent or animal, is propagated through a network of idealized neurons, which can be readjusted by experience-generated reward signals. The sophistication of the ANN can be increased via multiple layers (referred to as *deep learning*). The output of the ANN induces observable behaviour, although it may suffer from overfitting the model to the particular data set at hand. Another way to incorporate the effects of improvement through experience is via evolutionary computing. This method mimics the trial-and-error process of natural evolution, with inheritance, mutation, and crossing over providing the material upon which selection, via reward signals, acts.

The Bayesian probabilistic model for inference provides another perspective on learning. While Bayesian reasoning is most often applied for statistical tasks such as parameter estimation and complex model fitting, it is also a central, probabilistic model for human cognition and learning (Chater *et al.* 2006; Tenenbaum *et al.* 2006). In the context of animal movement, prior information represents existing knowledge or existing preference sets (e.g., spatial memory and selection coefficients). Bayesian perspectives readily permit prior knowledge to be updated with new data (experiences) gained by an animal's movement through the environment. For example,

Michelot *et al.* (2019) draw an explicit analogy between stochastic rule-based animal movement and a Gibbs sampler performing Markov chain Monte Carlo sampling. The resulting posterior distributions accurately reflect the animal's resource selection function (RSF).

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

380

381

382

As introduced above, reinforcement learning is a paradigm involving iterated remapping of situations to actions with the goal of maximizing a numerical reward (Sutton & Barto 2017). Learners are not provided with rules, but must instead employ repeated trials to discover relationships between actions and rewards. This framework has strong parallels to experiencebased frameworks for animal learning. Indeed, the temporal difference algorithm from machine learning calculates a reward-prediction error, reflecting how much better the world is than expected (Sutton & Barto 2017). This algorithm closely resembles the Rescorla-Wagner learning rule (Rescorla & Wagner 1972), a mainstay from animal learning theory, which posits the change in associative strength during learning is proportional to the difference between the reward received versus predicted. By way of example, a schematic of the reinforcement optimizer for a computer learning to play the game Go is broadly similar to schematics of animal behavior and learning (Table 2). In both frameworks, an agent takes actions (movements) in the environment, and the outcomes of those actions are processed by an interpreter (cognitive model), which either "rewards" or "punishes" the agent, thereby modifying its internal state and modifying its subsequent actions. Additional aspects of realism are that rewards can be short term or delayed, and that the appropriateness of actions is not provided initially but must be learned via exploration.

401

402

400

Criteria of machine learning applied to animal learning

The machine learning literature provides concrete criteria for identifying if an algorithm has learned (Thrun & Pratt 1998). Specifically, given (1) a *task*, (2) *training experience*, and (3) a *performance measure*, if performance at the task improves with experience, the algorithm is said to have learned. This is a useful framework for interpreting observational animal movement data. For example, for the sheep and moose in Jesmer *et al.* (2018) the *task* was maximizing energy intake and the *training experience* was several years of moving around the landscape. The *performance measure* was whether the animals adopted a migratory movement strategy to track variability in energy availability across space and time? Because of an increase in the proportion of migrants in the population over time (and, thereby, an increase in the proportion of individuals with increased energy intake), the animals likely had "learned".

A major challenge to applying machine learning criteria to moving animals involves identifying the *task* and *performance measure* in meaningful ways, given the animals' spatial context and scale of movement. Survival and reproduction are the ultimate tasks, but foraging, resting, finding a mate, and avoiding predation are all proximal tasks. Nonetheless, the framework helpfully and unambiguously associates movement in the environment with *training experience*. Table 2 cross-references a machine-learning example with field studies that provided experimental evidence of learning.

Machine learning may suggest new avenues for research in learning and animal movement. For example, feature extraction (derived values intended to be informative and non-redundant) and feature selection (choice of a subset of goal-relevant features) are active topics in machine learning. These subjects must also play a role in the information processing associated with

learning and animal movement; developing the connections may provide new insights.

A particularly interesting learning challenge involves *updating the world* (as described above) in a familiar rather than novel landscape. For example, in the foraging models of Bracis *et al.* (2015, 2018), the task is maximization of instantaneous energy intake, the training *experience* is the movement (together with the acquisition of information for updating the cognitive map), and the *performance measure* is the amount of forage obtained. This challenge can be connected to that of *online statistical machine learning* (Box 1), where data become available in a sequential order and are used to update the best predictor for future data at each step.

Could machine learning move beyond an analogy by providing specific hypotheses about the way animals learn to move? It has done so, but the cases are few. By way of example, foraging bumblebees were manipulated in a laboratory environment by presentation with artificial blue and yellow flowers dispensing sucrose solution according to probabilistic reward schedules, and their sampling strategy was compared to the results under the equivalent *two-armed bandit* reinforcement learning decision rules (Keasar *et al* 2002). These decision rules describe optimal behavior of gamblers choosing repeatedly between options that differ in reward probability, without any prior information.

LEARNING ABOUT LEARNING: METHODS AND APPROACHES

Experimental vs. observational frameworks for gathering evidence of learning in movement

Researchers have inferred connections between learning and animal movement via classical experiments, observational studies, and translocation/reintroduction efforts. These diverse data types provide distinct insights into how movement can be used to infer learning.

Experimental Studies

Informative experimental studies of learning and movement derive from both field and laboratory settings (Jacobs & Menzel 2014). For example, experimental resource manipulations demonstrate that hummingbirds can learn abstract concepts like spatial position (Henderson *et al.* 2006) and can encode spatial location on the basis of surrounding landmarks (Flores-Abreu *et al.* 2012). When applied to roe deer, experimental resource manipulation in a field environment demonstrates that memory, rather than perception, drives foraging decisions (Ranc *et al.* 2020). Elsewhere, Preisler *et al.* (2006) tracked elk movements in relation to experimental treatments involving all-terrain vehicles (ATV). They found that elk were more likely to respond to ATVs when on an ATV route, even if the ATV was far away. These data suggest that elk have learned to associate ATV presence with their routes.

In laboratory settings, radial mazes and water mazes (e.g., Leonard and McNaughton 1990) have been used to study how quickly rodents can learn movement routes and improve their efficiency. Elsewhere, laboratory arenas built for insects have demonstrated that pesticide exposure can impair spatial learning of resource locations by bumblebees (Stanley *et al.* 2015).

Sometimes field and laboratory experiments can be combined with great benefit, including comparisons among three classic model systems (homing pigeons, bees, and rats; Jacobs &

Menzel 2014). For example, experimental lesioning studies of young homing pigeons, followed by release in unfamiliar areas, demonstrate that immature birds are very good at learning movement routes and that there is a consolidation phase during which experiences (e.g., encounters with landmarks) are neurally encoded (Bingman *et al.* 2005).

Observational studies

To assess learning in observational studies, researchers must analyze how an animal behaves at a given time based on local conditions and past experiences. Observational studies typically record the location of animals and thus their experiences over relatively long time-frames (e.g., multiple years, or entire lifetimes). Remotely sensed geographic and climatological data then provide the local conditions the animal is experiencing during movement. Additional information on the behavioral and physiological states of the animal may also be relevant. Fortunately, the ongoing evolution in remote animal tracking and sensing technology means that researchers are increasingly able to measure physiological and behavioural states over long periods of time (Kays *et al.* 2015).

Data on repeated movement patterns can help differentiate learning hypotheses. For example, data on repeated migration routes have helped distinguish whether animals follow resource gradients, rely on memory to navigate, or learn from experience to shape their movement decisions (Mueller *et al.* 2013, Merkle *et al.* 2019). However, long-term tracking data may also be sufficient for analysis. For example, wolf movement data have identified how animals follow resource levels, but that they may also rely on the memory of time since last visit to a location (Schlägel *et al.* 2017). Augmenting tracking data with information that the animals might gather,

for example the location of kill sites (Gurarie *et al.* 2011) or profitable forage patches (Merkle *et al.* 2014), can further enhance our understanding of how animals monitor their environment (Gurarie *et al.* 2011).

Comparative studies can be useful for identifying instances of learning. For example, comparing the movement efficiency of juveniles and adults shows that seabirds start by exploring their landscape and then learn to identify the good foraging areas and cues as adults (de Grissac *et al.* 2017; Votier *et al.* 2017; Grecian *et al.* 2018; Wakefield *et al.* 2019). Effects of early-life experience can be identified by analyzing the site fidelity of animals to their breeding ground (Weinrich 1998) and by comparing the migration patterns of offspring to those of their mother's (Colbeck *et al.* 2013). Finally, comparing the movement of cultural groups, especially if sympatric, can help to assess the effect of culturally transmitted information on animals' space use (Kendal *et al.* 2018; Owen *et al.* 2019).

<u>Translocations and Reintroductions</u>

Some management actions involve human-aided displacements of animals, either from captivity (reintroductions) or from wild populations (translocations). Tracking the animals released in such manipulations can provide unique opportunities to understand how the animals adapt to their new environments (He *et al.* 2019). For example, recurring short displacements (such as when animals are repeatedly taken to the same sampling station for physiological samples), can be used to assess how quickly the animal learns the return route to its home range (Biro *et al.* 2007).

Translocations of animals into existing populations can aid understanding of learning when movement behaviors of individuals new to the environment can be compared to those of already-resident individuals. For example, quantifying the rate of convergence of movement metrics between new arrivals and residents could help estimate learning rates. In addition, if translocated animals, such as elk, are sourced from areas that differ in predation risk (or other factors) but released in a common space, comparison of the survival and movement patterns could be useful to understanding how previous experience shapes learning (Frair *et al.* 2007). Translocations of social animals may also create opportunities for newly arrived individuals to learn from resident conspecifics (Dolev *et al.* 2002).

Overall, comparing movements of animals in novel environments over years or even generations with historical populations can reveal learning and cultural transmission and identify the rate at which animals gain knowledge. For example, Jesmer *et al.* (2018) found that it took multiple decades for translocated bighorn sheep and moose to regain the capacity to identify and follow the optimal forage gradients that existed in their landscapes as they migrated. Likewise, tracking the movement of prey species before and after the introduction of predators into a landscape affords unique opportunities for investigating how animals learn to avoid predators (Ford *et al.* 2015).

Uncontrolled Experiments

Beyond intentional displacements, other management actions can serve as uncontrolled experiments for learning. For example, aversive conditioning, which is routinely used in wildlife conflict management, could provide guidance on the mode of learning (Bejder *et al.* 2009) and

may provide contrast the efficacy of different deterrence systems. For example, Ronconi & Cassady St. Clair (2006) showed that presence-activated deterrent systems were more useful than were randomly activated systems for limiting the landing of waterfowl on tailing ponds from oil extraction. Likewise, fences involving bee hives were more likely to turn away elephants than were bush fences (King *et al.* 2011) and problem elk repeatedly chased by humans and dogs stayed further from town (Kloppers *et al.* 2005).

Rapid changes in habitat can also serve as uncontrolled experiments. For example, because ungulates will select recently burned areas (Allred *et al.* 2011), monitoring animal movement in fire-prone systems could help understand how these animals learn about and navigate to novel habitats. Studying movement in the vicinity of new obstacles (e.g., pipelines and roads) and passageways (e.g., road-crossing structures) could help to understand how animals change their spatial patterns as they learn to circumvent barriers and make use of new structures (McDonald & Cassady St Clair 2004, Ford and Clevenger 2018).

Identifying and characterizing learning

Analytical and computational tools have a special role to play in the context of learning and animal movement. They can be used both to develop new theory, and in inference regarding actual movement behaviours.

Modeling frameworks for exploring how learning operates

Dynamical systems models are often used to investigate learning and animal movement in a purely theoretical context. The most common purpose is to investigate possible emergent

patterns, which arise from the inclusion of learning in movement models. Here spatial location and spatial memory are given by variables that change in time and space, and dynamical rules postulate how these variables could change through the interplay of movement and learning. The actual form of the dynamical systems ranges from difference equations used to analyze home ranges (Van Moorter *et al.* 2009), to partial differential equations used to analyse searching ability (Berbert & Lewis 2018) to stochastic processes used to investigate patrolling ability (Schlägel & Lewis 2014). Agent-based simulations have also been used to track the development of complex spatial movement behaviours via learning (Tang & Bennett 2010; Avgar *et al.* 2013). Theoretical studies can investigate relationships or feedbacks between movement and learning that generate patterns similar those seen in nature. They can also be used to explore the environments in which learning might confer benefits. Theoretical explorations are particularly useful for studying the *updating the world model* type of learning, where it is more difficult to make a clear distinction between precipitating events of experiences and movement outcomes.

Machine learning is emerging as a powerful paradigm for the analysis of many biological systems. In the context of learning and animal movement, these approaches can map environmental conditions to movement behaviour outcomes without necessarily investigating the learning process itself (see, for example, Mueller *et al.* (2011) and Wijeyakulasuriya *et al.* (2020)). Furthermore, as described earlier, machine learning can serve as prototype models for the process of animal learning itself.

Testing for change over time in key movement metrics

Across diverse data types, a key indicator of learning is a change quantified as a function of 'time in the environment' (Fig. 3). While not sufficient to say confidently that learning has occurred, a strong signal that an animal's movement behavior has changed with experience suggests that it is learning. For example, the range occupied by a group of newly translocated animals would be expected stay very close to their point of release as they focus on learning attributes of their new environment, but wander more widely as time since release increases as they start to exploit their new environment more widely (e.g., total daily displacement, He *et al.* 2019). It has been proposed that Lévy walks may arise from learning process wherein animals attempt to learn optimally from their environment (Namboodiri *et al.* 2016). In this situation the change from simple random (Brownian) motion to a Lévy walk pattern of movement could be interpreted as learning.

Decreases in the rate of range expansion over time indicates that translocated individuals may have learned to favor certain parts of the landscape. In this case, exploration shifts to an exploitation phase (Berger-Tal *et al.* 2014) as translocated animals exhibit a greater probability of revisiting previously visited areas in a goal-directed manner (Fig. 3a). Similarly, exposure to a hostile landscape element (e.g., human habitation) may condition wild animals to avoid such elements, altering their spatial distribution to favor locations far from habitation (Fig. 3b). This issue has been particularly well investigated with elephants (Hoare *et al.* 1999, Cheptou *et al.* 2017)

Animals that 'sample' different landscapes during exploratory movements may ultimately settle in landscapes featuring the kinds of elements they encountered and exploited during the

exploration phase. This can occur during dispersal, during which animals effectively sample and make decisions in an environment about which they are completely naïve. Wolves have been shown to show less avoidance of human elements, in particular relatively little-used forest roads, in new territories after a greater level of exposure and use during a dispersal phase, suggesting that they might have learned that that benefits of using those human elements outweigh the risks (Barry *et al.* 2020). Translocation, which can be considered an artificial and more abrupt dispersal, also requires decision making in novel environments. Changes in movement behavior (and improved survival) were recorded following translocation of naïve elk from a savannah landscape in Alberta to a forested landscape in eastern Canada (Fryxell *et al.* 2008).

Migration can also feature time-dependence in characteristics of movement (Fig. 3c). For example, both Mueller *et al.* (2013) and Jesmer *et al.* (2018) report changes in migration performance as a function of animals' time in a landscape (Table 2). On smaller scales, foraging journeys from a central place and other kinds of daily activity patterns can show the same kind of performance gains (e.g., reduced tortuosity) as a function of experience or age (Franklin & Franks 2012; de Grissac *et al.* 2017; Votier *et al.* 2017; Wakefield *et al.* 2019) (Table 1). Resulting spatial patterns of movement can be complex, exhibiting increased speed and goal-directedness (Noser & Byrne 2014) and even providing evidence of future-oriented cognitive mechanisms (Janmaat *et al.*, 2014).

Statistical inference to identify learning in movement processes

Analytical and computational tools may also be used to infer learning processes from data. For example, the step-selection function (SSF, (Fortin *et al.* 2005) is of particular utility when it is

connected to regular samples of location data and allows for inference of movement parameters that depend on different habitat types. Computationally efficient approaches such as integrated step selection analysis (iSSA) (Avgar *et al.* 2016), provide practitioners a straightforward way to evaluate movement decisions against actual observations. A generalized form of the SSF, termed the coupled SSF (Potts *et al.* 2014), allows for the inclusion of memory and past social interactions. Here memory and past interactions can be included into the model, as one or more spatio-temporal maps, sometimes referred to as cognitive maps. Although superficially similar to a changing habitat layer, the contents of the cognitive maps are particular to each individual as they are populated by information gleaned from the individual's past experiences (Fagan *et al.* 2013). With such an SSF, one can test how the individual's movement behavior is governed by cognitive maps whose contents arise from different types of memories or social interactions. Coupled SSFs have been used to test for evidence of memory (Schlägel *et al.* 2017) and learning (Merkle *et al.* 2014) in animal movement patterns.

Analysis via SSF assumes that animals' location data are known without error. If error is significant, as it can be for marine systems, a different class of model, known as state space models, are needed. State space models are hierarchical and feature separate models for the movement process and the measurement error process. These models can be modified to include a hidden Markov process, whose latent state is determined by physiological status (e.g., searching or travelling) or by learning (Avgar *et al.* 2016). Such models, while flexible, may suffer from parameter estimability issues (Auger-Méthé *et al.* 2016) and must be implemented with care.

CONCLUSIONS AND NEW HORIZONS

Traditionally, studies of animal learning and movement have taken place in controlled laboratory environments or small-scale field studies. Thanks to animal tracking technologies, increasingly detailed observations of how free-ranging animals move and interact are possible, leading to opportunities to formulate and test new ideas about learning and movement. We summarize a variety of outstanding new opportunities as grand challenges in Box 4. However, potential pitfalls accompany this exciting development. Alternative explanations to learning must be considered, and if these alternatives cannot be ruled out, then we can only infer that observations are consistent with learning (Table 2).

There are two possible approaches to solving this problem. First, field observations can be transformed into controlled experiments via manipulations, as in the hummingbird example in Table 2. While allowing for incisive analysis, this approach limits the scientific questions to those where such experiments can be set up. A second possible solution is to collect more direct data on the individual experiences over a life-time, including the environmental features of locations animals visit, physiological measurements, and sensory data as made possible by daylight sensors and collar cameras.

Exciting approaches to studying learning and animal movement arise from "uncontrolled" experiments, specifically translocations, reintroductions, aversive conditioning and rapid environmental change. Understanding learning in the context of relocations and environmental change may ultimately help with understanding how animals can adapt to an increasingly complex world, driven by elevated levels of anthropogenic impacts.

The emergence of machine learning as a dominant paradigm for solving human problems provides fertile ground for modeling and understanding learning from animal movement patterns. Here, processes such as reinforcement learning have close natural ties to animals learning to move to maximize fitness (e.g., optimal foraging). As machine learning algorithms are currently improving and evolving, we expect this field to shed light on further possible models for learning and animal movement.

Overall, the subject of learning and animal movement is at a crucial point in development and a host of new possibilities are on the horizon. Our goal in this review has been to set the context for these new possibilities and point out some future directions.

ACKNOWLEDGEMENTS

We thank Banff International Research Station (BIRS) for hosting a Focused Research Group on Learning and Animal Movement in the spring of 2019. BIRS is an inspiring environment for research, with foraging elk right outside the window, and is where the review paper was conceived and started. We acknowledge the following grants for supporting this research:

NSERC Discovery (MAL, MAM), NSF DMS-1853465 (WFF, EG), Canada Research Chairs

Program (MAL, MAM). O. Couriot, T. Hoffman, A. Swain, Y. Salmaniw, P. Thompson and H.

Wang provided helpful feedback on the paper. We thank K. Budinski for help with the references and citations.

710

711

712

713

714

715

716

722

723

724

725

726

727

728

729

730

731

732

References

- Abrahms, B., Hazen, E.L., Aikens, E.O., Savoca, M.S., Goldbogen, J.A., Bograd, S.J., Jacox,
 M.G., Irvine, L.M., Palacios, D.M. and Mate, B.R., 2019. Memory and resource tracking
 drive blue whale migrations. *Proceedings of the National Academy of Sciences*, 116(12),
 pp.5582-5587.
- Alerstam, T., Hedenstrom, A. & Akesson, S. (2003). Long-distance migration: evolution and determinants. *Oikos*, 103, 247–260.
- Allred, B.W., Fuhlendorf, S.D., Engle, D.M. & Elmore, R.D. (2011). Ungulate preference for burned patches reveals strength: Of fire-grazing interaction. *Ecol. Evol.*, 1, 132–144.
 - Arditi, R. & Dacorogna, B. (1988). Optimal foraging on arbitrary food distributions and the definition of habitat patches. *Am. Nat.*, 131, 837–846.
 - Auger-Méthé, M., Field, C., Albertsen, C.M., Derocher, A.E., Lewis, M.A., Jonsen, I.D., *et al.* (2016). State-space models' dirty little secrets: Even simple linear Gaussian models can have estimation problems. *Sci. Rep.*, 6, 1–10.
 - Avgar, T., Deardon, R. & Fryxell, J.M. (2013). An empirically parameterized individual based model of animal movement, perception, and memory. *Ecol. Modell.*, 251, 158–172.
- Avgar, T., Potts, J.R., Lewis, M.A. & Boyce, M.S. (2016). Integrated step selection analysis:

 Bridging the gap between resource selection and animal movement. *Methods Ecol. Evol.*, 7,
 619–630.
- Bacon, I.E., Hurly, T.A. and Healy, S., 2010. Both the past and the present affect risk-sensitive decisions of foraging rufous hummingbirds. *Behavioral Ecology*, 21(3), pp.626-632.
 - Bandura, A. & Walters, R.H. (1963). *Social learning and personality development*. International Thomson Publishing.
 - Barry, T., Gurarie, E., Cheraghi, F., Kojola, I. & Fagan, W.F. (2020) Does dispersal make the heart grow bolder? Avoidance of anthropogenic habitat elements across wolf life history. *Animal Behaviour*, 166, 219-231.
 - Bartlam-Brooks, H.L.A., Beck, P.S.A., Bohrer, G. & Harris, S. (2013). In search of greener pastures: Using satellite images to predict the effects of environmental change on zebra migration. *J. Geophys. Res. Biogeosciences*, 118, 1427–1437.
 - Bejder, L., Samuels, A., Whitehead, H., Finn, H. & Allen, S. (2009). Impact assessment research: Use and misuse of habituation, sensitisation and tolerance in describing wildlife responses to anthropogenic stimuli. *Mar. Ecol. Prog. Ser.*, 395, 177–185.
- Berbert, J.M. & Lewis, M.A. (2018). Superdiffusivity due to resource depletion in random searches. *Ecol. Complex.*, 33, 41–48.
- Berger-Tal, O., Nathan, J., Meron, E., & Saltz, D. (2014). The exploration-exploitation dilemma: a multidisciplinary framework. *PloS One*, 9(4).
- Berger-Tal, O. and Saltz, D., 2014. Using the movement patterns of reintroduced animals to improve reintroduction success. *Current Zoology*, 60(4), pp.515-526.
- Bingman, V.P., Gagliardo, A., Hough, G.E., Ioalé, P., Kahn, M.C. and Siegel, J.J., 2005. The avian hippocampus, homing in pigeons and the memory representation of large-scale space. Integrative and Comparative Biology, 45(3), pp.555-564.
- Biro, D., Freeman, R., Meade, J., Roberts, S. and Guilford, T., 2007. Pigeons combine compass
 and landmark guidance in familiar route navigation. *Proceedings of the National Academy* of Sciences, 104(18), pp.7471-7476.

- Bischof, R., Loe, L.E., Meisingset, E.L., Zimmermann, B., van Moorter, B. & Mysterud, A. (2012). A migratory northern ungulate in the pursuit of spring: Jumping or surfing the green wave? *Am. Nat.*, 180, 407–424.
- Bogacz, R. (2007). Optimal decision-making theories: linking neurobiology with behaviour.
 Trends in Cognitive Sciences, 11, 118-125.
- Bograd, S.J., Block, B.A., Costa, D.P. and Godley, B.J., 2010. Biologging technologies: new tools for conservation. Introduction. *Endangered Species Research*, *10*, pp.1-7.
- Bowell, R.J., Warren, A. & Redmond, I. (1996). Formation of cave salts and utilization by elephants in the Mount Elgon region, Kenya. *Geol. Soc. London, Spec. Publ.*, 113, 63–79.
 - Boyer, D., & Walsh, P. D. (2010). Modelling the mobility of living organisms in heterogeneous landscapes: does memory improve foraging success? *Philosophical Transactions of the Royal Society A*, 368(1933), 5645-5659.
- Bracis, C., Gurarie, E., Van Moorter, B. & Goodwin, R.A. (2015). Memory effects on movement behavior in animal foraging. *PLoS One*, 10, 1–21.
 - Bracis, C., Gurarie, E., Rutter, J.D. & Goodwin, R.A. (2018). Remembering the good and the bad: memory-based mediation of the food–safety trade-off in dynamic landscapes. *Theor. Ecol.*, 11, 305–319.
 - Bracis, C. & Mueller, T. (2017). Memory, not just perception, plays an important role in terrestrial mammalian migration. *Proc. R. Soc. B Biol. Sci.*, 284.
 - Brown, J.S. (1988). Patch use as an indicator of habitat preference, predation risk, and competition. *Behav. Ecol. Sociobiol.*, 22, 37–47.
- Brown, C., 2001. Familiarity with the test environment improves escape responses in the crimson spotted rainbowfish, *Melanotaenia duboulayi*. *Animal Cognition*, 4(2), pp.109-113.
 - Brown, C.R., Brown, M.B. and Brazeal, K.R., 2008. Familiarity with breeding habitat improves daily survival in colonial cliff swallows. *Animal Behaviour*, 76(4), pp.1201-1210.
- 770 Charnov, E.L. (1976). Optimal foraging, the marginal value theorem. *Theor. Popul. Biol.*, 9, 771 129–136.
- 772 Chater, N., Tenenbaum, J.B. & Yuille, A. (2006). Probabilistic models of cognition: Conceptual foundations. *Trends Cogn. Sci.*, 10, 287–291.
 - Cheptou, P. O., A. L. Hargreaves, D. Bonte, and H. Jacquemyn. 2017. "Adaptation to fragmentation: Evolutionary dynamics driven by human influences." *Philosophical Transactions of the Royal Society B: Biological Sciences* 372 (1712).
- Clarke, M.F., K.B. da Silva, H. Lair, R. Pocklington, D.L. Kramer and R.L. McLaughlin. (1993).
 Site familiarity affects escape behaviour of the eastern chipmunk, *Tamias striatus*. *Oikos*,
 66, 533–537.
- Colbeck, G.J., Duchesne, P., Postma, L.D., Lesage, V., Hammill, M.O. & Turgeon, J. (2013).
 Groups of related belugas (*Delphinapterus leucas*) travel together during their seasonal
 migrations in and around Hudson Bay. *Proc. R. Soc. B Biol. Sci.*, 280.
- Dall, S.R.X., Giraldeau, L.A., Olsson, O., McNamara, J.M. & Stephens, D.W. (2005).
 Information and its use by animals in evolutionary ecology. *Trends Ecol. Evol.*, 20, 187–193.
- Dolev, A., Saltz, D., Bar-David, S. & Yom-Tov, Y. (2002). Impact of repeated releases on spaceuse patterns of Persian fallow deer. *J. Wildl. Manage.*, 66, 737.
- Doll, B. B., Simon, D. A., & Daw, N. D. (2012). The ubiquity of model-based reinforcement learning. Current opinion in neurobiology, 22(6), 1075-1081.
- 790 Dorrance, B.R. & Zentall, T.R. (2001). Imitative learning in Japanese quail (*Coturnix japonica*)

755

756

759

760

761

762

763

764

765

768 769

774

775

- depends on the motivational state of the observer quail at the time of observation. *J. Comp. Psychol.*, 115, 62–67.
- Dunlap, A.S. and Stephens, D.W., 2009. Components of change in the evolution of learning and
 unlearned preference. *Proceedings of the Royal Society B: Biological Sciences*, 276(1670),
 pp.3201-3208.
- Dupuis-Desormeaux, M., Kaaria, T.N., Mwololo, M., Davidson, Z. & MacDonald, S.E. (2018).
 A ghost fence-gap: Surprising wildlife usage of an obsolete fence crossing. *PeerJ*, 2018, 1–18.
- Eliassen, S., Jørgensen, C., Mangel, M. & Giske, J. (2007). Exploration or exploitation: Life expectancy changes the value of learning in foraging strategies. *Oikos*, 116, 513–523.
 - Fagan, W.F., Lewis, M.A., Auger-Méthé, M., Avgar, T., Benhamou, S., Breed, G., LaDage, L., Schlägel, U.E., Tang, W.W., Papastamatiou, Y.P. and Forester, J., 2013. Spatial memory and animal movement. Ecology Letters 16: 1316-1329.
 - Fishlock, V., Caldwell, C. & Lee, P.C. (2016). Elephant resource-use traditions. *Anim. Cogn.*, 19, 429–433.
 - Flores-Abreu, I.N., Hurly, T.A. & Healy, S.D. (2012). One-trial spatial learning: Wild hummingbirds relocate a reward after a single visit. *Anim. Cogn.*, 15, 631–637.
- Ford, A.T., Goheen, J.R., Augustine, D.J., Kinnaird, M.F., O'Brien, T.G., Palmer, T.M., Pringle, R.M., Woodroffe, R., 2015. Recovery of African wild dogs suppresses prey but does not trigger a trophic cascade. Ecology 96, 2705–2714.
- Ford, A.T. and Clevenger, A.P., 2018. Factors affecting the permeability of road mitigation measures to the movement of small mammals. *Canadian Journal of Zoology*, 97(4), pp.379-384.
- Fortin, D., Beyer, H.L., Boyce, M.S., Smith, D.W., Duchesne, T. & Mao, J.S. (2005). Wolves influence elk movements: Behavior shapes a trophic cascade in Yellowstone National Park. *Ecology*, 86, 1320–1330.
- Fragaszy, D. & Visalberghi, E. (2004). Socially biased learning in monkeys. *Learn. Behav.*, 32, 24–35.
- Frair, J.L., Merrill, E.H., Allen, J.R. & Boyce, M.S. (2007). Know thy enemy: Experience affects elk translocation success in risky landscapes. *J. Wildl. Manage.*, 71, 541–554.
- Franklin, E.L. and Franks, N.R., 2012. Individual and social learning in tandem-running recruitment by ants. *Animal behaviour*, 84(2), pp.361-368.
- Franks, N.R., Hooper, J.W., Dornhaus, A., Aukett, P.J., Hayward, A.L. & Berghoff, S.M. (2007).
 Reconnaissance and latent learning in ants. *Proc. R. Soc. B Biol. Sci.*, 274, 1505–1509.
- Franks, N.R. & Richardson, T. (2006). Teaching in tandem-running ants. *Nature*, 439, 153–153.
- Fryxell, J.M. & Sinclair, A.R.E. (1988). Causes and consequences of migration by large herbivores. *Trends Ecol. Evol.*, 3, 237–241.
- Fryxell, J.M., Wilmshurst, J.F. & Sinclair, A.R.E. (2004). Predictive models of movement by serengeti grazers. *Ecology*, 85, 2429–2435.
- Fryxell, J.M., Hazell, M., Börger, L., Dalziel, B.D., Haydon, D.T., Morales, J.M., McIntosh, T.
- and Rosatte, R.C., 2008. Multiple movement modes by large herbivores at multiple spatiotemporal scales. *Proceedings of the National academy of Sciences*, *105*(49), pp.19114-19119.
- Giraldeau, L.A., Valone, T.J. and Templeton, J.J., 2002. Potential disadvantages of using socially acquired information. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences*, 357(1427), pp.1559-1566.

802

803

804 805

806

- Grecian, W.J., Lane, J. V., Michelot, T., Wade, H.M. & Hamer, K.C. (2018). Understanding the ontogeny of foraging behaviour: Insights from combining marine predator bio-logging with satellite-derived oceanography in hidden Markov models. *J. R. Soc. Interface*, 15.
- Green, R.F. (1980). Bayesian birds: A simple example of Oaten's stochastic model of optimal foraging. *Theor. Popul. Biol.*, 18, 244–256.
- de Grissac, S., Bartumeus, F., Cox, S.L. & Weimerskirch, H. (2017). Early-life foraging:
 Behavioral responses of newly fledged albatrosses to environmental conditions. *Ecol. Evol.*,
 7, 6766–6778.
- Gros, C. (2015). Complex and Adaptive Dynamical Systems. Springer.
- Gumbert, A. (2000). Color choices by bumble bees (*Bombus terrestris*): Innate preferences and generalization after learning. *Behav. Ecol. Sociobiol.*, 48, 36–43.
- Gurarie, E., Suutarinen, J., Kojola, I. & Ovaskainen, O. (2011). Summer movements, predation and habitat use of wolves in human modified boreal forests. *Oecologia*, 165, 891–903.
- Hamilton, P.K. & Cooper, L.A. (2010). Changes in North Atlantic right whale (*Eubalaena glacialis*) cow-calf association times and use of the calving ground: 1993-2005. *Mar. Mammal Sci.*, 26, 896–916.
- Hastie, T., Tibshirani, R. and Friedman, J., 2009. The elements of statistical learning: prediction, inference and data mining. *Springer-Verlag, New York*.
- He, K., Dai, Q., Foss-Grant, A., Gurarie, E., Fagan, W.F., Lewis, M.A., *et al.* (2019). Movement and activity of reintroduced giant pandas. *Ursus*, 29, 163.
- Healy, S.D. & Hurly, T.A. (1995). Spatial memory in rufous hummingbirds (*Selasphorus rufus*): A field test. *Anim. Learn. Behav.*, 23, 63–68.
- Helfman, G.S. & Schultz, E.T. (1984). Social transmission of behavioural traditions in a coral reef fish. *Anim. Behav.*, 32, 379–384.
- Henderson, J., Hurly, T.A. & Healy, S.D. (2006). Spatial relational learning in rufous hummingbirds (*Selasphorus rufus*). *Anim. Cogn.*, 9, 201–205.
- Heyes, C.M. (1994). Social learning in animals: Categories and mechanisms. *Biol. Rev. Camb. Philos. Soc.*, 69, 207–231.
 - Hoare, R. E., and J.T. Du Toit. 1999. Coexistence between people and elephants in African savannas." *Conservation Biology* 13 (3): 633–39
- Holdo, R.M., Holt, R.D. & Fryxell, J.M. (2009). Opposing rainfall and plant nutritional gradients best explain the wildebeest migration in the serengeti. *Am. Nat.*, 173, 431–445.
- Huber, R. and M. Knaden. (2018). Desert ants possess distinct memories for food and nest odors.
 Proc. Natl. Acad. Sci., 115, 10470–10474.
- Hurme, E., Gurarie, E., Greif, S., Flores-Martínez, J.J., Wilkinson, G.S. and Yovel, Y. (2019).
 Acoustic evaluation of behavioral states predicted from GPS tracking: a case study of a
 marine fishing bat. *Movement ecology*, 7(1), p.21.
- Ishii, Y. & Shimada, M. (2010). The effect of learning and search images on predator-prey interactions. *Popul. Ecol.*, 52, 27–35.
- Isler, K., & Van Schaik, C. P. (2006). Metabolic costs of brain size evolution. *Biology Letters*, 2(4), 557-560.
- Jacobs, L.F. & Menzel, R. (2014). Navigation outside of the box: What the lab can learn from the field and what the field can learn from the lab. *Mov. Ecol.*, 2, 1–22.
- Janmaat, K.R.L., Polansky, L. & Dagui Ban, S., Boesch, C. (2014). Wild chimpanzees plan their breakfast time, type and location. *PNAS*, 111(46) 16343-16348.
- Janson, C.H. & Byrne, R. (2007). What wild primates know about resources: Opening up the

- black box. Anim. Cogn., 10, 357–367.
- Jesmer, B.R., Merkle, J.A., Goheen, J.R., Aikens, E.O., Beck, J.L., Courtemanch, A.B., *et al.* (2018). Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. *Science* (80-.)., 361, 1023–1025.
- Jordan, M.I. & Mitchell, T.M. (2015). Machine learning: Trends, perspectives, and prospects. Science (80-.)., 349, 255–260.
- Kays, R., Crofoot, M.C., Jetz, W. and Wikelski, M. (2015). Terrestrial animal tracking as an eye on life and planet. *Science*, *348*(6240), p.aaa2478.
- Keasar, T., Rashkovich, E., Cohen, D. and Shmida, A. (2002). Bees in two-armed bandit situations: foraging choices and possible decision mechanisms. *Behavioral Ecology*, 13, 757-765.
- Kendal, R.L., Boogert, N.J., Rendell, L., Laland, K.N., Webster, M. & Jones, P.L. (2018). Social learning strategies: Bridge-building between fields. *Trends Cogn. Sci.*, 22, 651–665.
 - King, L.E., Douglas-Hamilton, I. & Vollrath, F. (2011). Beehive fences as effective deterrents for crop-raiding elephants: Field trials in northern Kenya. *Afr. J. Ecol.*, 49, 431–439.
- Kokko, H., López-Sepulcre, A. and Morrell, L.J., 2006. From hawks and doves to self-consistent
 games of territorial behavior. *The American Naturalist*, 167(6), pp.901-912.
 Kloppers, E.L., St. Clair, C.C. & Hurd, T.E. (2005). Predator-resembling aversive conditioning
 - Kloppers, E.L., St. Clair, C.C. & Hurd, T.E. (2005). Predator-resembling aversive conditioning for managing habituated wildlife. *Ecol. Soc.*, 10.
- Krebs, J.R. & Inman, A.J. (1992). Learning and foraging: Individuals, groups, and populations.
 Am. Nat., 140, S63–S84.
- Kubandt, F., Nowak, M., Koglin, T., Gros, C., & Sándor, B. (2019). Embodied robots driven by self-organized environmental feedback. Adaptive Behavior, 27, 285-294
- Laland, K.N. & Galef, B.G. (Eds.). (2009). The question of animal culture. Harvard UniversityPress.
- Laland, K.N. & Williams, K. (1997). Shoaling generates social learning of foraging information
 in guppies. *Anim. Behav.*, 53, 1161–1169.
- Leadbeater, E. & Chittka, L. (2007). Social learning in insects From miniature brains to
 consensus building. *Curr. Biol.*, 17, 703–713.
- Leadbeater, E. & Chittka, L. (2009). Bumble-bees learn the value of social cues through
 experience. *Biol. Lett.*, 5, 310–312.
- Lee, C., Henshall, J.M., Wark, T.J., Crossman, C.C., Reed, M.T., Brewer, H.G., *et al.* (2009).
 Associative learning by cattle to enable effective and ethical virtual fences. *Appl. Anim. Behav. Sci.*, 119, 15–22.
- Leonard, B. and McNaughton B. (1990). Spatial Representation in the rat: conceptual,
 behavioral, and neurophysiological perspectives. In: *Neurobiology of Comparative Cognition* (ed. Kesner, Raymond P. Olton, D.S.). Psychology Press, Hillsdale, NJ, p. 488.
- Lesort, T., Díaz-Rodríguez, N., Goudou, J.F. and Filliat, D., 2018. State representation learning
 for control: An overview. *Neural Networks*, 108, pp.379-392.
- Lihoreau, M., Raine, N.E., Reynolds, A.M., Stelzer, R.J., Lim, K.S., Smith, A.D., *et al.* (2012).
 Radar tracking and motion-sensitive cameras on flowers reveal the development of
 pollinator multi-destination routes over large spatial scales. *PLoS Biol.*, 10, 19–21.
- Mangel, M. and Clark, C.W., 1988. Dynamic modeling in behavioral ecology (Vol. 63).
 Princeton University Press.
- 927 Marsh, R., Hao, X., Xu, D., Wang, Z., Duan, Y., Liu, J., *et al.* (2010). A virtual reality-based 928 FMRI study of reward-based spatial learning. *Neuropsychologia*, 48, 2912–2921.

897

- McDonald, W.R., and Cassady St. Clair, C. (2004). The effects of artificial and natural barriers on the movement of small mammals in Banff National Park, Canada Oikos, 105, 397–407.
- 931 McNamara, J.M. & Houston, A.I. (1985). Optimal foraging and learning. *J. Theor. Biol.*, 117, 932 231–249.
- 933 Merkle, J.A., Fortin, D. & Morales, J.M. (2014). A memory-based foraging tactic reveals an adaptive mechanism for restricted space use. *Ecol. Lett.*, 17, 924–931.
- 935 Merkle, J.A., Cherry, S.G., Fortin, D. & Kotler, B.P. (2015). Bison distribution under conflicting 936 Foraging strategies: Site fidelity vs. Energy maximization. *Ecology*, 96, 1793–1801.
- 937 Merkle, J.A., Potts, J.R. & Fortin, D. (2017). Energy benefits and emergent space use patterns of an empirically parameterized model of memory-based patch selection. *Oikos*, 126, 185–195.
 - Merkle, J.A., Sawyer, H., Monteith, K.L., Dwinnell, S.P., Fralick, G.L. and Kauffman, M.J., 2019. Spatial memory shapes migration and its benefits: evidence from a large herbivore. *Ecology letters*, 22(11), pp.1797-1805.
 - Michelot, T., Blackwell, P.G. & Matthiopoulos, J. (2019). Linking resource selection and step selection models for habitat preferences in animals. *Ecology*, 100, 1–12.
- 944 Mitchell, M.S. & Powell, R.A. (2004). A mechanistic home range model for optimal use of spatially distributed resources. *Ecol. Modell.*, 177, 209–232.
- 946 Moll, R.J., Millspaugh, J.J., Beringer, J., Sartwell, J. and He, Z., 2007. A new 'view' of ecology and conservation through animal-borne video systems. *Trends in ecology & evolution*, 22(12), pp.660-668.
- van Moorter, B., Visscher, D., Benhamou, S., Börger, L., Boyce, M.S. & Gaillard, J.M. (2009).

 Memory keeps you at home: A mechanistic model for home range emergence. *Oikos*, 118, 641–652.
- 952 Mora, C. V., Davison, M., Martin Wild, J. & Walker, M.M. (2004). Magnetoreception and its trigeminal mediation in the homing pigeon. *Nature*, 432, 508–511.
- 954 Morellet, N., Bonenfant, C., Börger, L., Ossi, F., Cagnacci, F., Heurich, M., *et al.* (2013). 955 Seasonality, weather and climate affect home range size in roe deer across a wide latitudinal 956 gradient within Europe. *J. Anim. Ecol.*, 82, 1326–1339.
- 957 Mueller, T., Fagan, W.F. & Grimm, V. (2011). Integrating individual search and navigation behaviors in mechanistic movement models. *Theor. Ecol.*, 4, 341–355.
- Mueller, T., O'Hara, R.B., Converse, S.J., Urbanek, R.P. & Fagan, W.F. (2013). Social learning of migratory performance. *Science*, 341, 999–1002.
- Murray, M.H., Fassina, S., Hopkins, J.B., Whittington, J. & Clair, C.C.S. (2017). Seasonal and
 individual variation in the use of rail-associated food attractants by grizzly bears (*Ursus arctos*) in a national park. *PLoS One*, 12, 1–16.
- Namboodiri, V.M.K., Levy, J.M., Mihalas, S., Sims, D.W., Shuler, M.G.H. (2016) Rationalizing
 spatial patterns of wild animals and humans through a temporal discounting framework.
 PNAS 113(31): 8747-8752.
- Nathan, R. (2008). An emerging movement ecology paradigm. *Proceedings of the National Academy of Sciences*, 105(49), 19050-19051.
- Nilsson, J. Å., Brönmark, C., Hansson, L. A., & Chapman, B. B. (2014). Individuality in
 movement: the role of animal personality. *Animal movement across scales*. L.-A. Hansson
 and S. Åkesson, eds. pp, 90-109.
- Niven, J. E (2016) Neuronal energy consumption: biophysics, efficiency and evolution. Current
 Opinion in Neurobiology, 41: 129-135.
- Noonburg, E.G., Newman, L.A., Lewis, M., Crabtree, R.L. & Potapov, A.B. (2007). Sequential

940

941

- 975 decision-making in a variable environment: Modeling elk movement in Yellowstone 976 National Park as a dynamic game. *Theor. Popul. Biol.*, 71, 182–195.
- Noser, R. & Byrne, R.W. (2014). Change point analysis of travel routes reveals novel insights into foraging strategis and cognitive maps of wild baboons. *American Journal of Primatology*, 76: 399-409.
- Owen, C., Rendell, L., Constantine, R., Noad, M.J., Allen, J., Andrews, O., *et al.* (2019).
 Migratory convergence facilitates cultural transmission of humpback whale song. *R. Soc. Open Sci.*, 6.
 - Papastamatiou, Y.P., Cartamil, D.P., Lowe, C.G., Meyer, C.G., Wetherbee, B.M. & Holland, K.N. (2011). Scales of orientation, directed walks and movement path structure in sharks. *J. Anim. Ecol.*, 80, 864–874.
 - Patrick, S.C.& Weimerskirch, H., 2017. Reproductive success is driven by local site fidelity despite stronger specialisation by individuals for large-scale habitat preference. *Journal of Animal Ecology*, 86(3), pp.674-682.
 - Pelech, S.A., Smith, J.N.M. & Boutin, S. (2009). A predator's perspective of nest predation: predation by red squirrels is learned, not incidental. *Oikos*, 841–851.
 - Polansky, L., W. Kilian, and G. Wittemyer. (2015). Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state–space models. Proceedings of the Royal Society B: Biological Sciences 282: 20143042.
 - Poor, E. E., Loucks, C., Jakes, A., & Urban, D. L. (2012). Comparing habitat suitability and connectivity modeling methods for conserving pronghorn migrations. *PLoS One*, 7(11).
 - Potts, J.R. & Lewis, M.A. (2014). How do animal territories form and change? lessons from 20 years of mechanistic modelling. *Proc. R. Soc. B Biol. Sci.*, 281.
 - Potts, J.R., Mokross, K. & Lewis, M.A. (2014). A unifying framework for quantifying the nature of animal interactions. *J. R. Soc. Interface*, 11.
- Preisler, H.K., Ager, A.A. and Wisdom, M.J., 2006. Statistical methods for analysing responses of wildlife to human disturbance. *Journal of Applied Ecology*, 43(1), pp.164-172.
- Ranc, N., Moorcroft, P. R., Ossi, F., & Cagnacci, F. (2020). Experimental evidence of memory-based foraging decisions in a large wild mammal. *bioRxiv*.
 - Reader, S.M. & Biro, D. (2010). Experimental identification of social learning in wild animals. *Learn. Behav.*, 38, 265–283.
- 1006 Rendell, L., Boyd, R., Cownden, D., Enquist, M., Eriksson, K., Feldman, M.W., *et al.* (2010). 1007 Why Copy Others? *Science* (80-.)., 328, 208–213.
- Rescorla, R.A. & Wagner, A.R. (1972) A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W.F. Prokasy (Eds.), *Classical Conditioning II* (pp. 64-99). New York: Appleton-Century-Crofts.
- Ronconi, R.A. & Cassady St. Clair, C. (2006). Efficacy of a radar-activated on-demand system for deterring waterfowl from oil sands tailings ponds. *J. Appl. Ecol.*, 43, 111–119.
- Scheiner, R. (2004). Responsiveness to sucrose and habituation of the proboscis extension response in honey bees. *J. Comp. Physiol. A Neuroethol. Sensory, Neural, Behav. Physiol.*, 190, 727–733.
- Schlägel, U.E. & Lewis, M.A. (2014). Detecting effects of spatial memory and dynamic information on animal movement decisions. *Methods Ecol. Evol.*, 5, 1236–1246.
- Schlägel, U.E., Merrill, E.H. & Lewis, M.A. (2017). Territory surveillance and prey management: Wolves keep track of space and time. *Ecol. Evol.*, 7, 8388–8405.
- Scott, R., Marsh, R. & Hays, G.C. (2014). Ontogeny of long distance migration. Ecology, 95,

984

985 986

987

988

989

990

991

992

993

994

995

996

997

998

999

1004

- 1021 2851–5859.
- Shettleworth, S.J., Krebs, J.R., Stephens, D.W. and Gibbon, J., 1988. Tracking a fluctuating environment: a study of sampling. *Animal Behaviour*, *36*(1), pp.87-105.
- Sigaud, M., Merkle, J.A., Cherry, S.G., Fryxell, J.M., Berdahl, A. & Fortin, D. (2017). Collective decision-making promotes fitness loss in a fusion-fission society. *Ecol. Lett.*, 20, 33–40.
- Sih, A. & Mateo, J. (2001). Punishment and persistence pay: A new model of territory establishment and space use. *Trends Ecol. Evol.*, 16, 477–479.
- Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., *et al.* (2017). Mastering the game of Go without human knowledge. *Nature*, 550, 354–359.
- Stamps, J.A. (1995). Motor learning and the value of familiar space. Am. Nat., 146, 41–58.
- Stamps, J.A. & Krishnan, V. V. (1999). A Learning-Based Model of Territory Establishment. *Q. Rev. Biol.*, 74, 291–318.
- Stamps, J.A. & Krishnan, V. V. (2001). How territorial animals compete for divisible space: A learning-based model with unequal competitors. *Am. Nat.*, 157, 154–169.
- Stanley, D.A., Smith, K.E. & Raine, N.E. (2015). Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. *Sci. Rep.*, 5, 1–10.
- Stephens, D.W. (1987). On economically tracking a variable environment. *Theor. Popul. Biol.*, 32, 15–25.
- Stephens, D.W., Brown, J.S. & Ydenberg, R.C. (Eds.). (2007). *Foraging: behavior and ecology*. University of Chicago Press.
- Stephens, D.W. & Krebs, J.R. (1987). Foraging Theory. Princeton University Press.
- Sutton, R.S. & Barto, A.G. (Eds.). (2017). *Reinforcement Learning: An Introduction*. A Bradford Book.
- Tang, W. & Bennett, D.A. (2010). Agent-based modeling of animal movement: A review. *Geogr. Compass*, 4, 682–700.
- Teitelbaum, C.S., Fagan, W.F., Fleming, C.H., Dressler, G., Calabrese, J.M., Leimgruber, P., *et al.* (2015). How far to go? Determinants of migration distance in land mammals. *Ecol. Lett.*, 18, 545–552.
- Teitelbaum, C.S., Converse, S.J., Fagan, W.F., Böhning-Gaese, K., O'Hara, R.B., Lacy, A.E., *et al.* (2016). Experience drives innovation of new migration patterns of whooping cranes in response to global change. *Nat. Commun.*, 7.
- Tello-Ramos, M.C., Hurly, T.A., Higgott, C. & Healy, S.D. (2015). Time-place learning in wild, free-living hummingbirds. *Anim. Behav.*, 104, 123–129.
- Tenenbaum, J.B., Griffiths, T.L. & Kemp, C. (2006). Theory-based Bayesian models of inductive learning and reasoning. *Trends Cogn. Sci.*, 10, 309–318.
- Thompson, I.D., Bakhtiari, M., Rodgers, A.R., Baker, J.A., Fryxell, J.M. and Iwachewski, E., 2012. Application of a high-resolution animal-borne remote video camera with global positioning for wildlife study: Observations on the secret lives of woodland caribou. *Wildlife Society Bulletin*, 36(2), pp.365-370.
- Thrun, S. & Pratt, L. (Eds.). (1998). Learning to Learn. Springer US, Boston, MA.
- Viana, D.S., Granados, J.E., Fandos, P., Pérez, J.M., Cano-Manuel, F.J., Burón, D., *et al.* (2018). Linking seasonal home range size with habitat selection and movement in a mountain ungulate. *Mov. Ecol.*, 6, 1–11.
- 1064 Visalberghi, E. and Fragaszy, D.M., 1990. Do monkeys ape? Pp. 247-273 in S.T. Parker and 1065 K.R. Gibson. Language and intelligence in monkeys and apes: Comparative developmental perspectives. Cambridge University Press.

- Votier, S.C., Fayet, A.L., Bearhop, S., Bodey, T.W., Clark, B.L., Grecian, J., *et al.* (2017).

 Effects of age and reproductive status on individual foraging site fidelity in a long-lived marine predator. *Proc. R. Soc. B Biol. Sci.*, 284, 0–6.
- Wakefield, E.D., Furness, R.W., Lane, J. V., Jeglinski, J.W.E. & Pinder, S.J. (2019). Immature gannets follow adults in commuting flocks providing a potential mechanism for social learning. *J. Avian Biol.*, 1–13.
- Wang, Y. S., Blackwell, P. G., Merkle, J. A., & Potts, J. R. (2019). Continuous time resource selection analysis for moving animals. Methods in Ecology and Evolution, 10: 1664-1678.
- Warner, R.R. (1988). Traditionality of mating-site preferences in a coral reef fish. *Nature*, 335, 719–721.
- Weinrich, M. (1998). Early experience in habitat choice by humpback whales (*Megaptera novaeangliae*). *J. Mammal.*, 79, 163–170.
- Wijeyakulasuriya, D. A., Eisenhauer, E. W., Shaby, B. A., & Hanks, E. M. (2020). Machine learning for modeling animal movement. *Plos one*, 15(7), e0235750.
- Wolfe, J.L. (1969). Observations on Alertness and Exploratory Behavior in the Eastern Chipmunk. *Am. Midl. Nat.*, 81, 249.
- Yott, A., Rosatte, R., Schaefer, J.A., Hamr, J. & Fryxell, J. (2011). Movement and spread of a founding population of reintroduced elk (*Cervus elaphus*) in Ontario, Canada. *Restor. Ecol.*, 19, 70–77.
- Zollner, P.A. and Lima, S.L., 2005. Behavioral tradeoffs when dispersing across a patchy landscape. *Oikos*, 108(2), pp.219-230.

Box 1: Definitions of terms associated with learning

1090 This box defines terms central to a synthesis of concepts from animal behavior, ecology,

psychology, and certain quantitative methods.

Foundational Concepts

Learning:

<u>Psychology-based definition:</u> the cause-effect process leading to information acquisition that occurs as a result of an individual's experience.

<u>Task-based definition</u>: improved performance for a specific task, based on experience.

Memory: The outcome (encoding) of learning, i.e., the storage and retention of information over time.

Spatial memory: The memory for where objects/resources/places are in space. Representation of space. Encodes spatial relationships or configurations.

Supervised machine learning: The process by which the machine is trained to perform a task where some input data is already labelled with the correct output. It can be compared to learning in the presence of a supervisor or teacher.

Statistical learning theory: An unsupervised framework for machine learning that deals with the problem of extracting statistically relevant correlations from data.

Modes of Learning

Associative learning: When an animal makes an association between a stimulus and an outcome. Two forms are:

<u>Classical (Pavlovian) conditioning:</u> an animal associates a biologically relevant stimulus (e.g., food) with a previously irrelevant stimulus. For example, a dog presented the sound of a bell rung alongside the presentation of food, will come to salivate at the sound of the bell in the absence of food. Another example would be that a raccoon learns that garbage cans contain food.

Operant (instrumental) conditioning: the behavior of an animal is controlled by the consequences of that behavior. Typically, this behavior develops through sequential reinforcement (e.g., a raccoon learns how to open the garbage can to get food and is rewarded).

Positive reinforcement: Behavior is rewarded and then increases.

- Negative reinforcement: Behavior is increased through avoidance of an unpleasant stimulus. (Also known as instrumental conditioning.)
- Punishment or Inhibitory learning: Behavior is decreased through avoidance of an unpleasant stimulus. This contrasts with negative reinforcement, where the behavior increases.

Reinforcement learning: From machine learning: The learner is not told which actions to take, but instead must discover which actions yield the most reward by trying them. This is synonymous with trial and error learning. As in optimal foraging in ecology, the focus is on the balance between exploration (of unfamiliar objects/places) and exploitation (of current knowledge).

Online learning: From machine learning: A technique for implementing machine learning based on data becoming available in a sequential order and then being used to update the best predictor for future data at each step.

Habituation: after repeated exposure, an animal decreasingly responds to a stimulus. The stable end state is the animal's level of tolerance of a stimulus and the outcome is higher tolerance.

Sensitization: after repeated exposure, an animal increasingly responds to a stimulus. The stable end state is the animal's level of tolerance of a stimulus, and the outcome is decreased tolerance.

Latent learning: an animal learns by gathering and storing information, without immediate reward.

Pathways of Learning

Social learning: Also called 'transmission', this is an umbrella term that includes includes transfer of skills, concepts, rules and strategies that occur in social contexts and can affect individual behavior. These include:

<u>Social facilitation:</u> An animal has an increased probability of performing a behavior in the presence of a conspecific.

<u>Local enhancement</u>: An individual's interest in an object or location is mediated by the interest or movement of others.

<u>Imitation</u>: Novel copying of a model behavior through observation that results in a reliably similar outcome.

Cultural transmission: Social transmission leading to the development of traditions that are passed down from generation to generation.

Vertical versus horizontal learning: Sometimes referred to as parent versus peer learning, this dichotomy characterizes the generational source of social information.

Information center: Particular locations or events that provide opportunity for information exchange. For example, a community roost may enable individuals to follow well-fed peers to new foraging locations.

Direct information exchange: An animal is provided sender-based, actively communicated information by another individual. For example, honeybees tell their sisters the locations of rewarding flowers.

Optimization-related Terms

Genetic algorithm: A population of candidate solutions to an optimization problem that evolve towards better solutions.

Policy: In machine learning, the mapping of states to actions (e.g., a hungry animal begins to hunt).

Utility function: In machine learning, the assignment of weights or values to agent states. Actions are selected by comparing the values of the predicted states that derive from particular action. For example, a policy involving search versus sit-and-wait strategies will yield different outcomes for a hungry animal.

Adaptive movement: When animals modify their movement in response to a change. In models, adaptive implies movement behaviors that confer fitness/performance benefits.

Box 2: Learning and Movement Processes

Movement is the spatial consequence of a number of different behaviors by animals. For example, a predator searching for predictable but mobile prey must change its location in space to increase the chances it will encounter a prey item. In many situations (e.g., predictable environments or regularly available prey), learning can reduce uncertainty and increase success in such spatial behaviors. We outline a selection of these below:

Search and attack in predation – When prey live in a complex and heterogeneous environment, predators may benefit by adjusting their search and attack behavior over time (Stephens *et al.* 2007a). When predators detect their prey through visual, auditory, or olfactory cues, they can use associative learning to refine their 'search image' and improve their ability to detect and attack prey (Ishii & Shimada 2010). For instance, desert ants (*Cataglyphis fortis*) use associative learning to connect specific odors to food, and then use this food-odor memory to assist their next foraging journey (Huber and Knaden 2018).

Escape from a predator – Spending time in familiar space allows animals to learn motor programs that enhance efficient movement within that space (Stamps 1995). For instance, in response to a pursuing human, Eastern Chipmunks (*Tamias striatus*) within their home range (i.e., familiar space) take half as much time and travel half as far to reach a refuge compared to when outside their home range (Clarke et al. 1993)

Foraging bouts – An animal's rate of energy gain while foraging can increase by collecting information about the environment (Stephens & Krebs 1987), given the environment changes in a (at least somewhat) predictive way. In most of these cases, animals use associative learning to connect the reward of a food source with some aspect (e.g., color, nearby landmark) of that food source. For instance, Rufous Hummingbirds learned the location of flowers that they had emptied in a foraging trial, and in subsequent trials did not waste time visiting them again (Healy & Hurly 1995).

Navigation and migration – Migratory movements notably occur at spatial scales that greatly exceed perceptual abilities of animals (mammals: (Teitelbaum *et al.* 2015); birds: (Alerstam *et al.* 2003). Thus, it is expected that animal migration is based on memory of past experience, and thus learning is likely used to improve migratory performance. For instance, social learning of migration helps ungulates improve energy gain (Jesmer *et al.* 2018) and helps birds reduce costs (Mueller *et al.* 2013).

Home range or territory selection – The decision process of choosing the size and location of home range or territories can be thought of as a learning process of integrating new information about the distribution of resources of a landscape (Mitchell & Powell 2004). For instance, home range size is often smaller in areas with fewer resources available (e.g., (Morellet *et al.* 2013; Viana *et al.* 2018). Further, increased exploration events, presumably to sample new locations when others are unavailable, can result in larger home ranges (Merkle *et al.* 2015).

Box 3. Robotics: Learning by Mobile Autonomous Agents

Robots that move and act autonomously, learning as they go, are confronted with tasks that parallel, in some ways, the life needs faced by moving animals. As in living animals, future decisions by a mobile autonomous robot hinge on what the learning robot experiences and encounters. Consequently, it is interesting to investigate how animal decision making about movement (Fig. 1) may be understood using concepts commonly used in robotics and control theory (Jordan & Mitchell 2015).

The basic model of an autonomous learner includes the following ingredients:

- 1) The external environment.
- 2) An internal state representation (sometimes termed a world representation).
- 3) A set of possible *actions*.
- 4) A policy map that relates state representations to actions.
- 5) *Information acquisition*, which is a consequence of *actions* interacting with the *environment* and the *state representations*.
- 6) Value functions that quantify benefits and consequence of actions as represented by the internal states.

A robot's *state representation* simplifies all the information in the environment to a manageable (pruned and stylized) subset of relevant information that can eventually be linked to *actions*. Unsupervised *state representations* (Lesort *et al.* 2018) in which there are no performance measures, may be particularly relevant as constructs for how learning operates in animals. *State representations* allow the *policy map* to act on a dimensionally reduced decision space (the collection of states), which dramatically simplifies the task of learning individual policies.

A *policy map* structures the relationship of the robot's *state representation* to possible *actions*. A *policy map* may be complete, mapping all possible states to actions, or calculated on the run. Monte Carlo tree search, as used in the Go program AlphaGo from Google Deepmind (Silver *et al.* 2017), determines the next move via an extensive stochastic search. As an additional complication, a robot may possess several *policy maps* and then select among the alternatives in a rule-based fashion.

Specified in this way, the basic details of a mobile autonomous robot map quite closely onto a formal conceptualization of the learning process in the context of animal movement (Fig. 1).

Box 4. Grand Challenges in the Study of Animals Learning to Move

1) How animals learn to move in novel environments. As a key form of experimental manipulation on animals in the wild, translocations and reintroductions have provided unique insights into the role of social learning of migration and the time-lags required to re-establish migration routes (Mueller et al. 2013; Jesmer et al. 2018). By designing efforts to collect pre-translocation movement that could be compared with post-release data would allow insight into the ways animals learn to move in novel environments.

2) **Social learning.** Social learning is particularly hard to study in the context of animal movement because it requires simultaneous information on the location of multiple individuals (Fragaszy & Visalberghi 2004, Sigaud et al. 2017). One promising approach for studies in this area involves the deployment of animal tracking collars with proximity detectors that can be used to characterize and quantify how known individuals spend their time near or far from other known individuals.

3) Near-term prediction of movement. Successful prediction of movement, even over modest time horizons of one or a few days, requires a strong, probabilistic representation of animals' decision-making process. With such a representation in hand it would become possible to gauge how novel experiences shape subsequent movements.

4) Understanding fitness consequences of learning on population interactions. Learning about movement affects interactions with other individuals (conspecifics, predator, prey and so forth), as well as with the environment. While much has been done to connect individual learning to the environment via optimal foraging (Stephens & Krebs 1986) there is not yet a comprehensive theory for the influence of learning about movement on population level interactions and the subsequent impacts of these interactions on individual fitness. A natural place to start investigating these feedbacks would be social insects.

 5) Machine learning as a source for new testable hypotheses regarding animal learning and movement. This contrasts with simply providing an interesting analogy for the learning process. While the multi-armed bandit problem has been applied as a model for insect foraging (eg., Keasar *et al.* 2002), there are few other cases. However, ML algorithms (for example, K nearest neighbors, decision trees) provide intriguing hypotheses for how learning could proceed. A good place to start would be to build on connections between the theory of ML and the theory of learning, such as the similarity of the reward-prediction error rules in the *temporal difference* algorithm from machine learning calculates (Sutton & Barto 2017) and the Rescorla-Wagner learning rule in cognitive science (Rescorla & Wagner 1972).

1320 Table 1: Case Studies of Learning and Animal Movement

Reference	Species	Spatial Processes	Individual Learning	Learning in	Learning	Simple	Juvenile vs.
		Involved	vs. Social Learning	Novel or Familiar	Linked to	Elapsed	Adult
				Contexts?	Memory?	Time?	Comparison?
Barry et al. in review	Wolves	1. Natal dispersal	Individual	Novel	Y	Y	N
		2. Territory formation					
de Grissac et al. 2017	Wandering	Foraging	Individual	Novel	N	Y	Y
	Albatross						
Grecian et al. 2018	Gannets	1. Foraging	Elements of Both	Novel	Y	N	Y
		2. Exploration					
Leadbeater & Chittka 2009	Bumblebees	Foraging	Social	Novel	N	Y	N
Lihoreau et al. 2012	Bumblebees	Foraging	Individual	Familiar	Y	Y	N
Papastamatiou et al. 2011	Sharks	1. Orientation	Individual	Familiar	Y	N	Partly
		2. Patch use					
Scott et al. 2014	Sea turtles	1. Foraging	Individual	Novel	Y	Y	Partly
		2. Migration					
Sigaud et al. 2017	Bison	1. Foraging	Social	Novel	Y	Y	N
		2. Patch Use					
Teitelbaum et al. 2016	Whooping	1. Migration	Elements of Both	Familiar	Y	Y	Y
	Cranes	2. Shortstopping					
Votier et al. 2017	Gannets	1. Foraging	Elements of Both	Novel	Y	Y	Y
		2. Exploration					

Table 2. Mapping Empirical Examples of Learning to Machine Learning Concepts

	Machine Learning Example	Empirical Examples				
Step	AlphaGo Zero Silver et al. 2017	Hummingbird Traplining Tello-Ramos et al. 2015	Crane Migration Mueller et al. 2013	Experimental Elk Translocation (Frair et al. 2007	Sheep and Moose Migration Jesmer et al. 2018	
Task	Win	Forage efficiently	Migrate efficiently	Exploit environment optimally	Exploit environment optimally	
Experience	Repeated play against self	Movement within a controlled array of feeders	Repeated migration journeys across years	Movement away from initial capture/release location	Movement and population persistence over decades	
Performance measure	Victories	Path distance per bout	Deviations from straight-line migratory path	Settlement and survival rate	Proportion of green wave exploited Percent of population migrating	
Demonstrated improvement over time (or in comparison to benchmark)	Increased competitive ranking	Decreased length of movement path	Decreased length of migratory journey	Increased rate of residency	Increased migratory tracking and universal migration	
Plausible learning mechanisms	Reinforcement learning	Positive reinforcement	Spatial memory Social learning Positive reinforcement	Positive reinforcement (forage) Negative reinforcement (predation) Horizontal social transmission	Vertical transmission Positive reinforcement (individual moose foraging) Positive reinforcement (social sheep foraging) Cultural transmission	
Alternative explanations	Not necessary	Controlled experiment	Tested and rejected wind- mediated movement and ontogeny	Mortality-mediated natural selection	Mortality-mediated natural selection Population growth and expansion Kinesis	
Evidence of learning?	Yes	Yes	Yes	Consistent with learning but not direct evidence. Population-level rather than individual-level metrics impede direct evidence for learning.		

1324 Table 3: Models for Learning and Animal Movement

Step	Bracis et al. 2015	Merkle et al. 2017	Avgar et al. 2016	Schlägel et al. 2017
Task	 Maximize consumption Reduce predation 	Forage efficiently	Forage efficiently and survive	Patrol
Experience	Movement	Movement among patches	Movement	Movement
Model prediction	Consumption and predator encounter rate	Patch selection	Redistribution kernel	Entire movement path
Null model	Context-dependent behavioural switching	Connectivity, size, and quality of patch	Forage quality, predation risk, competitors, and snow	 Movement in response to prey density Distance to territory boundary
Information updated	Location and quality of forage and encounters	 Location and quality of patches Memory of past patch quality 	Location and quality of habitat	Time since last visit to territorial locations
Improvement via learning	Learning forager outperforms null model	Learning forager is more efficient	Yes	Yes
Plausible connections	1. Foraging efficiency	Past experience leads to foraging	Past experience leads to better	Territorial maintenance and
to fitness	2. Reducing encounters with predators	in higher quality patches	habitat use	defense
Plausible learning mechanism	Sampling and trial-and- error plus reinforcement	Positive reinforcement	Positive reinforcement	Positive reinforcement

Figure 1. A conceptualization of learning in the context of animal movement. The information gathering pathway appears inside the animal's brain. Note that an individuals' internal state and its environment can influence both the onset of information gathering and how well memory maps onto movement decisions.

 $\begin{array}{c} 1330 \\ 1331 \end{array}$

Figure 2: A schematic representation of a forager's movement rules in a heterogeneous landscape, how a stable set of rules might be applied, and how landscape disturbance could force an update to the movement rules via learning. In a pre-disturbance world (left three columns), the forager (denoted by the white elk symbol) occupies a landscape with three depletable and renewable resource patches and a water body. The 'real world' is represented in the top row, with all of its complexity. The second row represents the forager's model of that world, which distills the complexity to the most relevant information. Shapes indicate different landscape elements, while colors reflect a quantitative score: darker greens are regenerated, paler greens are depleted. The forager has two movement rules in this landscape (bottom row): 1) move from depleted resource patch to a regenerated resource patch and 2) avoid the water body. The pre-disturbance movements rely on a dynamically updated spatial memory, as the forager learns about a changing environment. Post-disturbance, the forager's world model changes after it gains information about the loss of a potential foraging area, e.g. a new oil well destroys one of the patches.

Accordingly, the forager's world model is refined to include a novel categorical element (orange triangle), with its own avoidance rule for movement (dynamic learning).

Figure 3: Exemplar movement patterns associated with learning. We represent clusters of movement activity as squiggles and range displacement events as periods of directed motion. In each of the three examples, the process of learning alters the pattern of movement in a statistically detectable manner. Exploration becomes exploitation through repeated visitation (top row). Conditioned responses to habitat elements may manifest as before / after displacement events (middle row). Information gathering during a juvenile (or otherwise naïve) phase may yield improved efficiency of travel. In all three examples, one or more key metrics will exhibit time-dependence (right column).

