Wydział Geodezji i Kartografii

Przedmiot: Wybrane zagadnienia geodezji wyższej

Prowadzący: mgr inż. Viktor Szabó Projekt: Astronomia geodezyjna

Kierunek: Geoinformatyka

Semestr 7

Student: Patrycja Tatar Numer indeksu: 291578

1. <u>Cel</u>

Głównym celem zadania było pokazanie ruchu wybranej gwiazdy na niebie w ciągu doby dla trzech różnych miejsc na Ziemi. Kolejnym zadaniem jest pokazanie zależności wysokości oraz azymutu od czasu. Przy tym ćwiczeniu przeliczono współrzędne z układu równikowego ekwinokcjalnego na układ horyzontalny związany z miejscem obserwacji.

2. Dane

Wybrano gwiazdę **Regulus** z gwiazdozbioru Lwa o rektascensji równej 10h 09min 31,23s oraz deklinacji równej 11° 51′ 41.8″. Dane obiektu pobrano z programu Stellarium dnia 24.11.2021r. Tą gwiazdę widać gołym okiem z Ziemi a jej położenie wskazuje serce lwa.

Wybrano następujące 3 miejsca na Ziemi:

- Warszawa (półkula północna, strefa czasowa UTC+01:00)

Φ _1 = 52.2297700

 λ 1 = 21.0117800

- Wyspy Świętego Tomasza i Książęca (okolice równika, strefa czasowa UTC±0)

 $\Phi_2 = 0.3365400$

 $\lambda_2 = 6.7273200$

- Buenos Aires (półkula południowa, strefa czasowa UTC-3:00)

 $\Phi_3 = -34.6131500;$

 $\lambda_3 = -58.3772300$

3. Trochę teorii

Rektascensja [α] – jedna ze współrzędnych równikowo ekwinokcjalnych; kąt między płaszczyzną zawierającą punkt Barana a płaszczyzną przechodzącą przez dany obiekt (w ćwiczeniu jest to gwiazda).

Deklinacja [δ] – jedna ze współrzędnych równikowo ekwinokcjalnych; odległość kątowa jaką tworzy promień wodzący od płaszczyzny równika niebieskiego do gwiazdy; przyjmuje wartości od -90° do +90°.

Układ równikowy ekwinokcjalny – określa położenie gwiazd za pomocą deklinacji i rektascensji; współrzędne w tym układzie są niezależne od miejsca obserwacji i zależne tylko od ruchów własnych.

Układ horyzontalny – chwilowy układ, którego główną osią jest oś zenit – nadir; współrzędnymi tego układu jest zenit i azymut, które są zależne od miejsca obserwacji i czasu.

4. Kolejne kroki ćwiczenia

I. Zmiana daty na liczbę dni juliańskich, w celu uniknięcia problemów związanych ze zmianą kalendarza w XVI wieku oraz braku roku zerowego. Pierwszy krok został wykonany dzięki poniższej funkcji umieszczonej w osobnym pliku "julday.m".

- **II.** Przeliczenie czasu słonecznego UT na czas gwiazdowy S oraz obliczenie kąta godzinnego dla pojedynczego miejsca.
 - średni czas gwiazdowy Greenwich
 g = GMST(jd) [stopnie] (GMST to funkcja umieszczona w osobnym pliku "GMST.m")
 - czas uniwersalny UT1
 UT1 = h*1.002737909350795 [godziny]
 h godziny obserwacji podane w macierzy
 - obliczenie czasu gwiazdowego
 S = UT1*15 + lambda + g [stopnie]
 - obliczenie kąta godzinnegot = S rekt [stopnie]
- III. Rozwiązanie trójkąta paralaktycznego.

Azymut (A) – kąt między kierunkiem północnym, a kierunkiem na gwiazdę zrzutowany na płaszczyznę.

Odległość zenitalna (Z) - kąt między kierunkiem na wybrany punkt na sferze niebieskiej, a kierunkiem zenitu.

- obliczenie odległości zenitalnej i azymutu
 Z = arccos(sin(Φ _1)*sin(deklinacja)+cos(Φ _1)*cos(deklinacja)*cos(t))
- obliczenie azymutu

 $Az = \arctan(-\cos(\text{deklinacja}) * \sin(t) / (\cos(\Phi)) * \sin(\text{deklinacja}) * \cos(\text{deklinacja}) * \cos(t)))$

IV. Obliczenie wysokości

Wysokość (H) – kąt między płaszczyzną horyzontu, a kierunkiem od obserwatora do ciała niebieskiego.

V. Wyznaczenie wykresu zależności wysokości od czasu.

Wyspy Świętego Tomasza i Książęca

Buenos Aires

Warszawa

Wyspy Świętego Tomasza i Książęca

Buenos Aires

VII. Transformacja współrzędnych oraz przedstawienie ruchu gwiazdy na sferze

r = 1 (odległość gwiazdy od obserwatora, przyjmujemy stałą wartość)

x = r*sin(Z)*cos(Az)

y = r*sin(Z)*sin(Az)

z = r*cos(Z)

Buenos Aires

VIII. Wyznaczenie momentu zachodu i wschodu gwiazdy

Odległość zenitalna przyjmuje wartości od 0° do 180°:

- dla wartości od 0° do 90° obiekt znajduje się na horyzoncie;
- dla wartości od 90° do 180° obiekt znajduje się pod horyzontem.

Kiedy wartość odległości zenitalnej spada poniżej 90° następuje wschód gwiazdy, a gdy wartość rośnie powyżej 90° gwiazda zachodzi.

Moment zachodu

Buenos Aires

Kolejność punktu	60	61	62	63	64
Zenit (Z)	84.17181	87.12075	90.10326	93.11446	96.14979

Zachód gwiazdy Regulus nastąpił pomiędzy 15h 15min a 15h 30min od początku obserwacji.

Wyspy Świętego Tomasza i Książęca

Kolejność punktu	45	46	47	48	49
Zenit (Z)	83.05559	86.73523	90.41518	94.09475	97.77327

Zachód gwiazdy Regulus nastąpił pomiędzy 11h 30min a 11h 45min od początku obserwacji.

Warszawa

Kolejność punktu	45	46	47	48	49
Zenit (Z)	85.02375	87.25391	89.45165	91.61084	93.72521

Zachód gwiazdy Regulus nastąpił pomiędzy 11h 45min a 12h 00min od początku obserwacji.

Moment wschodu

Buenos Aires

Kolejność punktu	16	17	18	19	20
Zenit (Z)	97.66122	94.61553	91.59182	88.59451	85.62830

Wschód gwiazdy Regulus nastąpił pomiędzy 04h 30min a 04h 45min od początku obserwacji.

Wyspy Świętego Tomasza i Książęca

Kolejność punktu	92	93	94	95	96
Zenit (Z)	100.00051	96.32298	92.64397	88.96417	85.28426

Wschód gwiazdy Regulus nastąpił pomiędzy 23h 30min a 23h 45min od początku obserwacji.

Warszawa

Kolejność punktu	84	85	86	87	88
Zenit (Z)	95.80480	93.74218	91.62820	89.46934	87.27190

Wschód gwiazdy Regulus nastąpił pomiędzy 21h 30min a 21h 45min od początku obserwacji.

5. Wnioski

Ruch pozorny gwiazdy na niebie zależy od:

- rektascensji i deklinacji gwiazdy;
- współrzędnych Φ, λ miejsca obserwacji na Ziemi;
- czasu obserwacji.

Wszystkie gwiazdy są nieruchome i posiadają stałe wartości (rektascensja i deklinacja). Ruch ciał niebieskich obserwowany z Ziemi jest pozorny. Efekt ruchu gwiazdy jest spowodowany ruchem Ziemi.