Analysis with Programming Tools (ITP4869) Written Test (2017/18)

Time Allowed: 1.5 Hours

(Total Marks: 50)

Stuc	lent N	ame: Student ID:	Student ID:								
Ans	wer an	ny FIVE questions out of six. Each question contributes to 10 marks.									
Q1	(a)	One of the features of the Python language is <i>interpreted</i> . List THREE other features									
			(3 marks)								
	(b)	Write a single statement to swap the values of two variables.	(2 marks)								
	(c)	Define a function, named area, that takes a radius as its argument and return of the circle with this radius.	ns the area (5 marks)								
Q2	(a)	Write a program that reads an integer, n, and prints three consecutive square number list, starting from the nth one. For example, the input 5 will lead to the list of numbers, [25, 36, 49]									
	(b)	Consider the list, jargon, as below. Sort the list, reverse it and then print the jargon = ['python', 'spark', 'hadoop', 'rdd']	result. (5 marks)								
Q3		ine a Python class, Rectangle, with two attributes, length and width. Add a cotangle to initialize a Rectangle object and add the following two methods: area: returns the area of a rectangle; and	nstructor to (10 marks)								
	(b)	perimeter: returns the perimeter of a rectangle (i.e., total length of a rectangle).									
Q4	impo	assume the									
	(a)	Create a two dimensional 3×4 array named, narr, storing integers between 1	1 and 22. (3 marks)								
	(b)	Take the elements from the last column of narr to form an array called narr	2. (2 marks)								
	(c)	Extract those elements from narr that are divisible by 3 and store in narr3.	(2 marks)								
	(d)	Transpose the array narr2, compute the square of each element in it, and narr4.	store it in (3 marks)								

Q5 Suppose you are given a CSV file, named scores.csv, storing the students' scores of three modules.

SID	Java	Python	Hadoop
18001	88	82	79
18002	82	75	74
18003	64	72	51
18004	53	85	60
18005	74	94	87

You are also given the following import statements:

import numpy as np
import pandas as pd
from pandas import Series, DataFrame

- (a) Load the CSV file and store the content in DataFrame df with the SID column as its index column. (3 marks)
- (b) Extract the students' scores with SID 18002 and 18005. (2 marks)
- (c) Show students' records whose Python score > 80. (2 marks)
- (d) Add a column, called "Total", to df, for storing the total score of the three modules of each student. (3 marks)
- Q6 Consider the following three Series:

```
s1 = pd.Series([0, 1], index=['a', 'b'])
s2 = pd.Series([2, 3, 4], index=['c', 'd', 'e'])
s3 = pd.Series([5, 6], index=['f', 'g'])
```

You are also given the three import statements as in Question Q5.

- (a) Concatenate these three Series to form a DataFrame, df2, with three columns labelled as 'cat1', 'cat2', and 'cat3'. (3 marks)
- (b) Replace all the NaN values in df2 by letter 'X' and store the result in df3. (2 marks)
- (c) Extract the four rows with index 'c' to 'f' in df3 and store them in df4. (2 marks)
- (d) Update the column labels in df4 by capitalizing them. (3 marks)

<u>df2</u>					<u>df3</u>				<u>df4</u>						Updated df4			
	cat1	cat2	cat3	_		cat1	cat2	cat3			cat1	cat2	cat3		Cat1	Cat2	Cat3	
а	0.0	NaN	NaN		а	0	X	X		С	X	2	X	•	: X	2	Х	
b	1.0	NaN	NaN		b	1	X	X		d	X	3	X		ı x	3	X	
c	NaN	2.0	NaN		С	X	2	X		0	X	4	X	•	X	4	X	
d	NaN	3.0	NaN		d	X	3	X		f	X	X	5		X	X	5	
0	NaN	4.0	NaN		0	Χ	4	X										
f	NaN	NaN	5.0		f	X	X	5										
g	NaN	NaN	6.0		g	X	X	6										

***** END OF PAPER *****