

Algorithmique et alignement des chaînes Recherche exacte de motifs

Irena.Rusu@univ-nantes.fr LS2N, bât. 34, bureau 303 tél. 02.51.12.58.16

Déroulement du cours, partie Recherche de Motifs

- 8h de CM (4h I.Rusu + 4h G. Fertin)
- 8h de TD (4h I. Rusu + 4h G. Fertin)
- …le tout de manière à assurer la continuité du sujet
- ... mais pas des intervenants

ni autres tablettes etc.

Algorithmique du texte (ou des chaînes)

- Information représentée sous forme texte :
 - Journaux, livres, revues, Internet
 - Information stockée sous forme numérique
 - Génétique, biologie moléculaire etc.
- L'algorithmique du texte apparait dans :
 - Le traitement de l'information (éditeurs de texte, recherche dans des fichiers, sur le Web etc.)
 - La compression des données
 - La fouille des génomes, la comparaison de génomes/ARN/protéines

Recherche de motifs

Principales Références

- Crochemore, M., & Rytter, W. (2003). *Jewels of stringology: text algorithms*. World Scientific.
- M. Crochemore, C. Hancart, T. Lecroq Algorithms on Strings, Cambridge University Press 2001
- D. Gusfield Algorithms on Strings, Trees and Sequences, Cambridge University Press 1997

Plan du cours

- Recherche exacte de motifs
 - Par fenêtre glissante (I. Rusu)
 - Par indexation (G. Fertin)
- Recherche approchée de motifs (I. Rusu)
 - Distance de Hamming : Algorithme Kangourou
 - Distance de Levenshtein : Programmation dynamique

Recherche exacte de motifs Méthodes par fenêtre glissante

- Rappels sur l'efficacité des algorithmes
- Algorithme Z
- Algorithme de Knuth-Morris-Pratt
- Aperçu de l'algorithme de Boyer-Moore

Recherche exacte de motifs Méthodes par fenêtre glissante

- Rappels sur l'efficacité des algorithmes
- Algorithme Z
- Algorithme de Knuth-Morris-Pratt
- Aperçu de l'algorithme de Boyer-Moore

Quelques mots sur l'efficacité des algorithmes

- Deux points de vue:
 - Mémoire utilisée
 - Temps d'exécution (~ nombre d'opérations)
- Plusieurs paramètres qui fournissent l'unité de mesure:
 - La taille des données en entrée (principalement)
 - Des paramètres définissant la forme des données en entrée

Exemple. Trouver le minimum d'une séquence de n entiers donnée.

Meilleur algorithme : $c_1 \cdot n + c_2$ opérations en tout \rightarrow O(n) (c_1 et c_2 sont des constantes)

Très-très mauvais algorithme : c_3 ·n! opérations \rightarrow O(n!)

Croissance des fonctions utilisées (échelle logarithmique)

© B. Duval, U. Angers

Le plus souvent on écrit log n au lieu de log₂n

La position relative des courbes reste globalement la même lorsque n augmente, même si on multiplie par (ou on ajoute) des constantes

Conclusions sur le nombre d'opérations (≈ temps d'exécution)

Notation Theta

Une fonction du genre

$$f(n) = 2n \text{ ou } g(n) = 4n + 2$$

suivra le même genre de courbe que h(n)=n, et restera assez proche de la courbe de h(n).

- Et donc en général nous ne ferons aucune différence entre f, g ou h. Les ordres de grandeur de f, g, h sont similaires.
- On écrit : $f(n)=\theta(n)$, $g(n)=\theta(n)$, $h(n)=\theta(n)$ (lire « Theta »)

Conclusions sur le nombre d'opérations (≈ temps d'exécution)

Notation Grand « O »

Une fonction du genre

$$f(n) = 2n \text{ ou } g(n) = 4n + 2$$

aura une courbe globalement comme h(n)=n, qui elle-même est globalement en dessous de la courbe de (par exemple) r(n)=n log n, à partir d'une certaine valeur seuil (qui n'est pas importante).

On écrit : f(n)=O(n log n), g(n)=O(n log n), r(n)=O(n log n) (lire grand « O »)
pour dire que f, g, n sont « globalement » bornées supérieurement par
n log n.

• Evidenment $f(n)\neq\theta(n \log n)$, $g(n)\neq\theta(n \log n)$ mais $r(n)=\theta(n \log n)$

Exemples de temps d'exécution

Not.	O(1)	O(log n)	O(n ^{1/2})	O(n)	O (nlogn)	O(n²)	O(n ³)	O(n ^{log n})	O(e ⁿ)	O(n!)
N=5	10ns	10ns	22ns	50ns	40ns	250ns	1.25µs	30ns	320ns	1.2µs
N=50	10ns	20ns	71ns	500ns	850ns	25µs	1.25ms	7µs	130j	10 ⁴⁸ a ns
N=250	10ns	30ns	158ns	2.5µs	6µs	625µs	156ms	5ms	10 ⁵⁹ ans	
N=10 ³	10ns	30 ns	316ns	10µs	30µs	10ms	10s	10s		
N=10 ⁵	10ns	60ns	10µs	10ms	60ms	2.8h	316ans	10 ²⁰ ans		

Recherche exacte de motifs Méthodes par fenêtre glissante

- Rappels sur l'efficacité des algorithmes
- Algorithme Z
- Algorithme de Knuth-Morris-Pratt
- Aperçu de l'algorithme de Boyer-Moore

Recherche de motifs – Pourquoi ? Comment ?

- Enormément d'applications
 - Internet: moteurs de recherche
 - Bases de données
 - Editeurs de texte (chercher/remplacer)
 - Recherches de mots dans des fichiers (grep ...)
- Algorithmique qui se doit d'être efficace

Le problème

- T texte (séquence) de longueur |T|=n sur un alphabet Σ
- P motif de longueur |P|=m<<n
- P est supposé être une séquence aussi
- En général, peut être un ensemble de séquences

Problème

Entrée: Texte T, motif P

Sortie: Toutes les occurrences exactes de P dans T.

Notation

- S séquence sur l'alphabet A (sous-entendu contiguë)
- |S| taille de S
- S[i..j] la sous-séquence de S entre position i et position j
- Préfixe de S : S[1..i] avec i≤ |S|
- Suffixe de S : S[i..|S|] avec i≤|S|
- Sous-séquence/préfixe/suffixe propre de S : différente de S

Problème

Entrée: Texte T, motif P

Sortie: Toutes les positions i dans T t.q.

$$T[i..i+|P|-1]=P$$

Méthode naïve

• |P|=m, |T|=n

Algorithme Naïf
pour j de 1 à n-m+1 faire
si P=T[j..j+m-1] alors afficher j

- Complexité : O(nm)
- Pire des cas: P, T formés d'une seule lettre (la même)
- But : O(m+n)

Idée

- Décaler P de plus d'un caractère après un échec
- Sans risquer de rater des occurrences

Exemple

T=xabxyabxyabxz

P=abxyabxz

Observation : le pré-traitement de P peut nous indiquer

- que le 1^{er} a de P est en position 1
- que le 2^{ème} a de P est en position 5
- Etc.

Pré-traitement fondamental d'une séquence S (1)

- S séquence, i>1 position dans S
- Z_i(S) (ou Z_i si pas de confusion)
 la longueur de la plus longue sous-séquence de S qui commence en i et qui est identique à un préfixe de S
- Z-box de la position i>1 t.q. Z_i>0 : l'intervalle i..i+Z_i-1
- r_i(S) (ou r_i si pas de confusion)
 le point le plus à droite de toutes les Z-box commençant avant i ou en i
- I_i(S) (ou I_i si pas de confusion)
 l'extrémité gauche d'une des Z-box (au choix si plusieurs) dont l'extrémité droite est r_i

Pré-traitement fondamental d'une séquence S (2)

- S séquence, i>1 position dans S
- Z_i(S) (ou Z_i si pas de confusion)
 la longueur de la plus longue sous-séquence de S qui commence en i et qui est identique à un préfixe de S
- But: calculer Z_i, pour tous i>1, en O(|S|)
- Pourquoi ?
 Avec S=P\$T, les Z_i t.q. Z_i = m=|P| donnent les occurrences de P
- → le problème de recherche de motif est résolu.

Calcul des Z_i (1)

Algorithme CalculZ(S, k, r, I, Z[])

Entrée: S, k>1

r, I: pour le dernier i, $1 \le k-1$, t.q. $Z_i > 0$, $r = r_i$, $l = l_i$

Z_i, 1<i≤ k-1 (déjà calculés)

Sortie : valeur de Z_k , nouveaux r et l si $Z_k > 0$

Fin

Calcul des $Z_i(2)$

```
Algorithme CalculZ(S, k, r, I, Z[])
Début
si (k>r) alors q \leftarrow k
                   tant que (q \le |S|) et (S[q] = S[q-k+1]) faire q \leftarrow q+1 ftq
                   Z_k \leftarrow q - k
                   si Z_k > 0 alors I \leftarrow k; r \leftarrow k + Z_k - 1 fin si
sinon k' \leftarrow k - l + 1; b \leftarrow r - k + 1
         si Z_{k'}<br/>b alors Z_k \leftarrow Z_{k'}
                      sinon q← r+1
                                 tant que (q \le |S|) et (S[q] = S[q-r+b]) faire q \leftarrow q+1 ftq
                                  Z_{k} \leftarrow q-k; r \leftarrow q-1; l \leftarrow k
          fin si
                                                                                 Complexité : O(|S|)
Fin si
```

(globale)

Algo Z de recherche de P dans T

Algorithme AlgoZ

Entrée : P et T

Sortie: les positions des occurrences de P dans T

début

fin

```
S=P$T; r\leftarrow0; I\leftarrow0; Z initialisé à 0 partout pour k\leftarrow 2 à |S| faire CalculZ(S, k, r, I, Z[]) Si Z_k=m alors Afficher(k-(m+1)) fin si fin pour
```

Complexité:

$$O(|P|+|T|)$$

en temps et en espace

Pourquoi chercher d'autres algorithmes ?

- Knuth-Moris-Pratt : temps linéaire; importance historique; a été généralisé à un ensemble de motifs (toujours en temps linéaire)
- Boyer-Moore: le pire des cas est quadratique, mais en pratique il n'examine qu'une partie des caractères de T → sub-linéaire souvent.
 Une version linéaire dans le pire des cas existe aussi.
- Arbre des suffixes : pré-traitement de T, et recherche proportionnelle à |P|; des applications beaucoup plus complexes

Recherche exacte de motifs Méthodes par fenêtre glissante

- Rappels sur l'efficacité des algorithmes
- Algorithme Z
- Algorithme de Knuth-Morris-Pratt
- Aperçu de l'algorithme de Boyer-Moore

Algorithme de Knuth-Morris-Pratt (KMP)

- sp_i(P): longueur du plus long suffixe propre de P[1..i] qui s'aligne à un préfixe de P (sauf sp₁=0 par définition)
- sp'_i(P): longueur du plus long suffixe propre de P[1..i] qui s'aligne à un préfixe de P (sauf sp'₁=0 par définition) avec la condition supplémentaire que P[i+1]≠P[sp'_i+1]

$$\rightarrow sp'_i \leq sp_i$$

P[1..sp'_{i-1}] est aligné directement sur P[i-sp'_{i-1} .. i-1]

Avantages

- P se déplace de plus d'un caractère
- Les premiers sp'_i caractères sont déjà calculés

Complexité

- Tout caractère de T comparé avec égalité exactement 1 fois
- Au plus une comparaison avec différence par « shift »
- Total : O(|T|)

Correction

Théorème.

Pour tout alignement de P avec T, si les caractères 1 .. i-1 de P sont identiques avec les caractères alignés de T, mais P[i]≠T[k] (le caractère en face de P[i] sur T), alors P peut être déplacé à droite de i-1-sp'_{i-1} places sans perdre des occurrences de P dans T.

Preuve. Par l'absurde.

Algorithme KMP

Algorithme KMP

Entrée : P (taille m) et T (taille n)

Sortie: les positions des occurrences de P dans T

début

```
CalculerSPprim(P); i\leftarrow 1; k\leftarrow 1; //pré-traitement tant que k+(m-i) \le n faire tant que (i\le m) et (P[i]=T[k]) faire i\leftarrow i+1; k\leftarrow k+1 fin tq si i=m+1 alors Afficher(k-m) fin si si i=1 alors k\leftarrow k+1 fin si i\leftarrow sp'_{i-1}+1 (sans Calfin tq
```

Complexité recherche (sans CalculerSPprim) O(|T|) en temps et en espace

CalculerSPprim

Algorithme CalculerSPprim

Entrée : P (taille m)

Sortie: les valeurs sp', i=1, 2, ..., m

début

```
pour i← 1 à m faire sp'<sub>i</sub>←0 fin pour pour j← m à 2 (par pas de -1) faire si Z_j(P)>0 alors i← j+Z_j(P)-1; sp'<sub>i</sub>←Z_j(P) fin si fin pour fin
```

Complexité prétraitement

O(|P|)

en temps et en espace

Conclusions jusqu'ici

- Plusieurs algorithmes en O(m+n) existent
- En théorie, tant qu'on se limite au O(), ils sont tous aussi bons
- En pratique, les constantes (oubliées par O()) peuvent faire la différence
- Sur une recherche de P dans T, la différence sera négligeable
- Sur plusieurs (voire beaucoup) de recherches, la différence totale peut être importante
- → autres algorithmes par la suite

Recherche exacte de motifs Méthodes par fenêtre glissante

- Rappels sur l'efficacité des algorithmes
- Algorithme Z
- Algorithme de Knuth-Morris-Pratt
- Aperçu de l'algorithme de Boyer-Moore

Algorithme KMP (rappel)

VS.

Boyer-Moore (BM)

Parcourt le texte et le motif de gauche à droite

- Pré-traitement en O(|P|)
- Recherche en O(|T|)
- Remarque : aucune des phases ne dépend de la taille de l'alphabet

Généralisable à plusieurs motifs

- Parcourt le texte de gauche à droite et le motif de droite à gauche
- Peut-être sous-linéaire (ne parcourt pas tout T)
- Plus rapide quand |P| augmente
- Plus rapide lorsque |Σ| augmente par rapport à |P|
- Pas très rapide pour petits alphabets, et motifs courts

Algorithme BM - Idées

- Aligner P avec une sous-séquence de T
- Parcourir P de droite à gauche
- Règle du mauvais caractère : éviter d'avoir plusieurs tentatives échouées pour une même position dans T
- Règle du bon suffixe : sur une position de T alignée avec succès une fois, toujours aligner avec succès

La règle du mauvais caractère (pat=P, text=T)

- P[i+1..m]=T[i+j+1..j+m]=u
- P[i] ≠ T[i+j]

Si b n'apparaît nulle part dans P, alors P est déplacé après b
 → saut (« shift ») pouvant être important

La règle du mauvais caractère (pat=P, text=T)

- P[i+1..m]=T[i+j+1..j+m]=u
- P[i] ≠ T[i+j]

- Si b apparaît dans P à droite de i, alors P est déplacé à droite de 1
 - → pas (vraiment) de saut

La règle du mauvais caractère (pat=P, text=T)

- P[i+1..m]=T[i+j+1..j+m]=u
- P[i] ≠ T[i+j]

- Si b apparaît dans P seulement à gauche de i, alors P est déplacé de sorte à aligner son b le plus à droite sur le b de T
 - → saut pouvant être important

En résumé – règle du mauvais caractère

Pas de b dans P

Existe b à droite de i

Tous les b sont à gauche de i

La règle du bon suffixe (pat=P, text=T)

- P[i..m]=T[i+j..j+m]=u (même si u est le mot vide)
- P[i-1]≠T[i+j-1]

- Aligner u= T[i+j..j+m] avec l'occurrence de u dans P qui est la plus à droite avec les propriétés (si elle existe) :
 - Ce n'est pas un suffixe de P
 - Est précédée par un caractère différent de P[i-1]

La règle du bon suffixe (pat=P, text=T)

- P[i..m]=T[i+j..j+m]=u
- P[i-1]≠T[i+j-1]

• Si une telle occurrence n'existe pas, aligner un préfixe v de P avec le suffixe v de T[i+j..j+m] de sorte que v soit aussi long que possible (si un tel v existe).

La règle du bon suffixe (pat=P, text=T)

- P[i..m]=T[i+j..j+m]=u
- P[i-1]≠T[i+j-1]

 Si un tel v n'existe pas, càd que le plus long suffixe v de u qui est identique à un prefixe de P est le mot vide, alors on déplace P juste après T[j+m]

En résumé – règle du bon suffixe

 Existe occurrence de u dans P qui n'est pas un suffixe de u

 Il n'existe pas de telle occurrence, mais existe prefixe de P identique à un suffixe de u

 Aucune des deux conditions précédentes

Correction

Théorème

La règle du bon suffixe permet de déplacer P le long de T sans perdre des occurrences de P dans T.

Preuve. Par contradiction.

Algorithme BM

début

```
k←m; I2←longueur du plus long suffixe de P[2..m] qui est aussi un
   préfixe de P;//pré-traitement
  tant que k ≤n faire
     i←m: h←k:
     tant que (i>0) et (P[i]=T[h]) faire i\leftarrowi-1; h\leftarrowh-1 fin tq
     si i=0 alors Afficher (k-m+1); k← k+m-l<sub>2</sub>
     sinon déplacer P (augmenter k) par le maximum des
            valeurs déterminées respectivement par les règles
            du mauvais caractère et du bon suffixe*
     finsi
   fin tq
fin
```

Attention, dans la règle du bon suffixe on aura i à la place du i-1 présenté sur les exemples lorsqu'on arrivera à cette ligne

Complexité

En utilisant les deux règles (tel que l'algorithme est écrit) : O(|T|.|P|) si le motif se trouve dans le texte O(|T|+|P|) seulement si le motif ne s'y trouve pas

Sur des textes en langage naturel, c'est presque toujours sub-linéaire : bien inférieur à |T|

Une (relativement) petite modification réduit la complexité à O(|T|+|P|) même si le motif se trouve dans le texte

Conclusions

- La complexité théorique O() identifie les « grosses » différences de comportement entre algorithmes, et en plus « au pire »
- Mais pas les « petites » différences, qui accumulées en cas d'utilisations multiples – peuvent faire la différence
- Ceci explique les divers algorithmes, tous linéaires en théorie, mais avec des comportements différents en fonction du type des données