Naïve Bayes Algo

```
#Importing the libraries
import numpy as nm
import matplotlib.pyplot as mtp
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('user_data.csv')
x = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.25, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.transform(x_test)
# Fitting Naive Bayes to the Training set
from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(x_train, y_train)
y_pred = classifier.predict(x_test)
```

```
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
# Visualising the Training set results
from matplotlib.colors import ListedColormap
x_set, y_set = x_train, y_train
X1, X2 = nm.meshgrid(nm.arange(start = x \text{ set}[:, 0].min() - 1, stop = x \text{ set}[:, 0].max() + 1, step = 0.01),
            nm.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01))
mtp.contourf(X1, X2, classifier.predict(nm.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
       alpha = 0.75, cmap = ListedColormap(('purple', 'green')))
mtp.xlim(X1.min(), X1.max())
mtp.ylim(X2.min(), X2.max())
for i, j in enumerate(nm.unique(y_set)):
  mtp.scatter(x_set[y_set == j, 0], x_set[y_set == j, 1],
         c = ListedColormap(('purple', 'green'))(i), label = j)
mtp.title('Naive Bayes (Training set)')
mtp.xlabel('Age')
mtp.ylabel('Estimated Salary')
mtp.legend()
mtp.show()
# Visualising the Test set results
from matplotlib.colors import ListedColormap
x_set, y_set = x_test, y_test
X1, X2 = nm.meshgrid(nm.arange(start = x_set[:, 0].min() - 1, stop = x_set[:, 0].max() + 1, step = 0.01),
            nm.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01))
```