Link Budget Calculation

Training materials for wireless trainers

Goals

- To be able to calculate how far we can go with the equipment we have
- To understand why we need high masts for long links
- To learn about software that helps to automate the process of planning radio links

Free space loss

 Signal power is diminished by geometric spreading of the wavefront, commonly known as *Free Space Loss*.

The power of the signal is spread over a wave front, the area of which increases as the distance from the transmitter increases. Therefore, the power density

diminishes. Figure from http://en.wikipedia.org/wiki/Inverse square

Free Space Loss (@2.45 GHz)

Using decibels to express the loss and using 2.4 GHz as the signal frequency, the equation for the Free Space Loss is:

$$L_{fs} = 100 + 20*log(D)$$

• ...where *L_{fs}* is expressed in dB and *D* is in kilometers.

Free Space Loss (any frequency)

Using decibels to express the loss and using a generic frequency f, the equation for the Free Space Loss is:

$$L_{fs} = 32,45 + 20*log(D) + 20*log(f)$$

...where L_{fs} is expressed in dB, D is in kilometers and f is in MHz.

Power in a wireless system

Link budget

- The performance of any communication link depends on the quality of the equipment being used.
- Link budget is a way of quantifying the link performance.
- The received power in an 802.11 link is determined by three factors: transmit power, transmitting antenna gain, and receiving antenna gain.
- If that power, minus the *free space loss* of the link path, is greater than the *minimum received signal level* of the receiving radio, then a link is possible.
- The difference between the minimum received signal level and the actual received power is called the *link margin*.
- The link margin must be positive, and should be maximized (should be at least 10dB or more for reliable links).

Zero Variable Outdoor Wireless Deployment

SYSTEM INFORMATION						
Processor Specs	Atheros MIPS 4KC, 180MHz					
Memory Information	16MB SDRAM, 4MB Flash					
Networking Interface	1 X 10/100 BASE-TX (Cat. 5, RJ-45) Ethernet Interface					

REGULATORY / COMPLIANCE INFORMATION					
Wireless Approvals	FCC Part 15.247, IC RS210, CE				
RoHS Compliance	YES				

			IDIO OPERATING	ENCY 2412-2462 MH			
TX SPECIFICATIONS				RX SPECIFICATIONS			
	DataRate	TX Power	Tolerance	Data	aRate	Sensitivity	Tolerance
2.11b	1Mbps	20 dBm	+/-1dB	ıMb بع	ops	-95 dBm	+/-1dB
	2Mbps	20 dBm	+/-1dB	3 2Mb	ops	-94 dBm	+/-1dB
	5.5Mbps	20 dBm	+/-1dB	5.51	Mbps	-93 dBm	+/-1dB
802	11Mbps	20 dBm	+/-1dB	8 5.51	1bps	-90 dBm	+/-1dB
1-22-%		Account surprisery.			***************************************	1,403,400,000,000,000	71 × 71 × 71 × 71 × 71 × 71 × 71 × 71 ×
802.11g OFDM	6Mbps	20 dBm	+/-1dB	_ 6Mb	ps	-92 dBm	+/-1dB
	9Mbps	20 dBm	+/-1dB	∑ 9Mb	ps	-91 dBm	+/-1dB
	12Mbps	20 dBm	+/-1dB		1bps	-89 dBm	+/-1dB
	18Mbps	20 dBm	+/-1dB	18M	1bps	-88 dBm	+/-1dB
	24Mbps	20 dBm	+/-1dB		1bps	-84 dBm	+/-1dB
	36Mbps	18 dBm	+/-1dB	1 136M	1bps	-81 dBm	+/-1dB
	48Mbps	16 dBm	+/-1dB	708 48M	1bps	-75 dBm	+/-1dB
	54Mbps	15 dBm	+/-1dB	54M	1bps	-72 dBm	+/-1dB

Example link budget calculation

Let's estimate the feasibility of a **5 km** link, with one access point and one client radio.

The access point is connected to an antenna with **10 dBi** gain, with a transmitting power of **20 dBm** and a receive sensitivity of **-89 dBm**.

The client is connected to an antenna with **14 dBi** gain, with a transmitting power of **15 dBm** and a receive sensitivity of **-82 dBm**.

The cables in both systems are short, with a loss of **2dB** at each side at the 2.4 GHz frequency of operation.

AP to Client link

Link budget: AP to Client link

```
20 dBm (TX Power AP)
+ 10 dBi (Antenna Gain AP)
- 2 dB (Cable Losses AP)
+ 14 dBi (Antenna Gain Client)
- 2 dB (Cable Losses Client)
 40 dB Total Gain
-114 dB (free space loss @5 km)
-73 dBm (expected received signal level)
--82 dBm (sensitivity of Client)
 8 dB (link margin)
```

Opposite direction: Client to AP

Link budget: Client to AP link

```
15 dBm (TX Power Client)
+ 14 dBi (Antenna Gain Client)
- 2 dB (Cable Losses Client)
+ 10 dBi (Antenna Gain AP)
- 2 dB (Cable Losses AP)
 35 dB Total Gain
-114 dB (free space loss @5 km)
-78 dBm (expected received signal level)
--89 dBm (sensitivity of AP)
 10 dB (link margin)
```

Fresnel Zone

- The First Fresnel Zone is an ellipsoid-shaped volume around the Line-of-Sight path between transmitter and receiver.
- The Fresnel Zone is important to the integrity of the RF link because it defines a volume around the LOS that must be clear of any obstacle for the the maximum power to reach the receiving antenna.
- Objects in the Fresnel Zone as trees, hilltops and buildings can considerably attenuate the received signal, even when there is an unobstructed line between the TX and RX.

Line of Sight and Fresnel Zones

a free line-of-sight IS NOT EQUAL TO a free Fresnel Zone

Fresnel Zone

The radius of the first Fresnel Zone at a given point between the transmitter and the receiver can be calculated as:

```
r = 17.31 * sqrt((d1*d2)/(f*d))
```

- ...where **r** is the radius of the zone in meters, **d1** and **d2** are distances from the obstacle to the link end points in meters, **d** is the total link distance in meters, and **f** is the frequency in MHz.
- Note that this gives you the radius of the zone, not the height above ground. To calculate the height above ground, you need to subtract the result from a line drawn directly between the tops of the two towers.

Line of Sight and Fresnel Zones

r = 17.31 * sqrt((d1 * d2) / (f * d))

Clearance of the Fresnel Zone and earth curvature

This table shows the minimum height above flat ground required to clear 70% of the first Fresnel zone for various link distances at 2.4 GHz.

Notice that earth curvature plays a small role at short distances, but becomes more important as the distance increases.

Distance (km)	1st zone (m)	70% (m)	Earth curvature (m)	Required height (m)
1	5.5	3.9	0.0	3.9
5	12.4	8.7	0.4	9.1
10	17.5	12.2	1.5	13.7
15	21.4	15.0	3.3	18.3
20	24.7	17.3	5.9	23.2
25	27.7	19.4	9.2	28.6
30	30.3	21.2 1	⁹ 13.3	34.5

Fresnel Zone

- Considering the importance of the Fresnel Zone, it is important to quantify the degree to which it can be blocked.
- Typically, 20% 40% Fresnel Zone blockage introduces little to no interference into the link.
- It is better to err to the conservative side allowing no more than 20% blockage of the Fresnel Zone.

Radio Mobile

- Radio Mobile is a free tool to aid in the design and simulation of wireless systems.
- It can automatically calculate the power budget of a radio link, calculating the Fresnel zone clearance. It can use digital maps, GIS (Geographical Information Systems), or any other digital map, including maps provided by yourself.
- Runs on Windows 95, 98, ME, NT, 2000 and XP.

http://www.cplus.org/rmw/english1.html

Radio Mobile

- Uses Digital terrain Elevation Model for the calculation of coverage, indicating received signal strength at various point along the path.
- Radio Mobile automatically builds a profile between two points in the digital map showing the coverage area and 1st Fresnel zone.
- Different antenna heights can be tried to achieve optimum performance.

Radio Mobile

Win vs Web Radio Mobile

Web version

- Pros: runs on any machine (Linux, Mac, Tablet); does not require big downloads; saves sessions; user friendly
- Cons: requires connectivity; only certain frequencies

Windows version

- Pros: runs offline; can use the GPS
- Cons: runs on Windows only; requires big downloads; hard to learn

Visit

http://www.cplus.org/rmw/rmonline.html

and create a new account!

Chuuk link

TR's office: 7.452582 151.844061

Udot School: 7.384819 151.718185

Chuuk link

Questions to answer:

- 1) How high should the masts be?
- 2) How much output power should the radio give?
- 3) What antennas should we use?

Please use the equipment in the lab to answer.

Thank you for your attention

For more details about the topics presented in this lecture, please see the book *Wireless Networking in the Developing World*, available as free download in many languages at:

http://wndw.net/

