Севастопольский государственный университет Институт информационных технологий

Дополнительная профессиональная программа профессиональной переподготовки «Глубокие нейросети в компьютерном зрении»

Основы нейронных сетей

Модели нейронов и архитектура нейросетей

Бондарев Владимир Николаевич

Цели и задачи дисциплины

Целью дисциплины является формирование профессиональных компетенций в области проектирования базовых архитектур нейронных сетей и правил их обучения.

Задачи дисциплины:

- обучение студентов основным понятиям нейронных сетей;
- обучение основным теоретическим принципам и алгоритмам поиска оптимума целевых функций;
- формирование компетенций в области обучения базовых архитектур нейронных сетей: однослойного и многослойного персептрона, линейного адаптивного элемента, состязательных сетей, сетей на основе радиальных базисных функций;
- формирование практических умений по использованию инструментальных средств разработки нейронных сетей.

Содержание учебной дисциплины

- 1. Модели нейронов и архитектура нейросетей. Правило обучения персептрона.
- 2. Целевые функции нейросетей и условия оптимумов. Алгоритмы оптимизации нейросетей.
- 3. Линейный адаптивный элемент и правило обучения Уидроу-Хоффа.
- 4. Алгоритм обратного распространения ошибок (ВР).
- 5. Вариации ВР. Эвристические модификации ВР. Алгоритм сопряженных градиентов. Алгоритм Левенберга-Марквардта
- 6. Методы улучшения обобщающих способностей сетей. Регуляризация.
- 7. Обучение без учителя. Правило Хебба. Состязательные сети и правило Кохонена. SOM. Обучение на основе правила LVQ.
- 8. Радиальные базисные сети (RBF).

.

Литература

- 1. Бондарев В.Н. Искусственный интеллект: Учеб. пособие для студентов вузов / В. Н. Бондарев, Ф. Г. Аде. Севастополь: Изд-во СевНТУ, 2002. 613 с. https://www.researchgate.net/profile/Vladimir_Bondarev/publications
- 2. Hagan M.T., Demuth H.B., Beale M.H., Jesus O. Neural Network Design. 2-nd Edition.— Frisco, Texas, 2014 1012 p. http://hagan.okstate.edu/NNDesign.pdf
- 3. Beale M.H., Hagan M.T., Demuth H.B. Neural Network Toolbox. User's Guide. Natick: Math Works, Inc., 2014. 435 p.
- 4. Хайкин С. Нейронные сети: Полный курс. Пер. С англ. / С. Хайкин. М.: Изд. «Вильямс», 2006. 1104 с.
- 5. Галушкин А.И. Нейронные сети: история развития теории / А.И. Галушкин, Я.З. Цыпкин. М.: Изд-во «Альянс», 2015. 840 с.
- 6. Медведев, В.С. Нейронные сети. *МАТLAB* 6 / В.С. Медведев, В.Г. Потемкин; под общ. ред. В.Г. Потемкина. М.: ДИАЛОГ-МИФИ, 2002. 496 с.

Нервная система человека

Мозг человека содержит 10^{11} нейронов. Каждый нейрон имеет 10^{3} - 10^{5} соединений.

Биологический нейрон

Дендриты — ветвеобразные отростки, которые обеспечивают сбор сигналов от других нейронов или рецепторов.

Сома нейрона представляет тело клетки. В соме происходят сложные биохимические процессы, благодаря которым осуществляются нелинейные преобразования сигналов, поступающих через дендриты.

Аксон является отростком клетки, по которому ее выходной сигнал поступает на дендриты других нейронов. Аксон разветвляется на большое число волокон. Место соединения волокон с дендритами называется **синапсом**.

Формальный нейронный элемент (НЭ) Маккаллоха-Питтса

 $p_1,\,p_2,\,\dots,\,p_R$ — входные сигналы $w_{1l},\,w_{12},\,\dots,\,w_{1R}$ — веса синаптических связей

Сетевой выход п равен:

 $n = w_{1,1}p_1 + w_{1,2}p_2 + \dots + w_{1,R}p_R + b$. Или матричной форме

$$n = \mathbf{W}\mathbf{p} + b,$$

где W — матрица весов (в данном случае одна строка, размером 1xR), p — вектор входных сигналов, b — смещение (порог); R — количество входов HЭ.

Выход нейрона a (активность на выходе)

$$a = f(\mathbf{Wp} + b)$$
.

Функция преобразования f(n) для НЭ Маккалоха-Питтса математически соответствует функции Хевисайда H(n)

$$f(n) = H(n) = \begin{cases} 1, n \ge 0 \\ 0, n < 0 \end{cases}$$

Многовходовой нейрон – упрощенное графическое обозначение

Сетевые функции НЭ

Выражение
$$n = \mathbf{W}\mathbf{p} + b = \sum_{j=1}^{R} w_{1j} p_j + b = \sum_{j=1}^{R+1} w_{1j} p_j$$
 , (1)

где $w_{1,R+1}$ =b и p_R =1 определяет способ объединения входных признаков и называется *сетевой* функцией НЭ.

Формальные модели нейронов отличаются между собой видом *сетевой* ϕ *ункции* и видом ϕ *ункции преобразования* f(.).

Кроме линейной сетевой функции (1), в ИНС широко используются следующие сетевые функции:

а) квадратическая

$$n = \sum_{j=1}^{R} w_{1j} p_j^2 \tag{2}$$

б) радиальная (сферическая)

$$n = \sum_{j=1}^{R} (p_j - w_{1j})^2 \tag{3}$$

Часто используемые функции:

1) пороговая функция (единичная функция Хевисайда)

2) линейная функция : а=n

3) униполярная сигмовидная функция (лог-сигмовидная)

	1			I
Hard Limit	$a = 0 n < 0$ $a = 1 n \ge 0$		hardlim	SciLab NeuralNetworks 2.0 ann_hardlim_activ
Symmetrical Hard Limit	$a = -1 \qquad n < 0$ $a = +1 \qquad n \ge 0$	田	hardlims	
Linear	a = n		purelin	ann_purelin_activ
Saturating Linear	$a = 0 n < 0$ $a = n 0 \le n \le 1$ $a = 1 n > 1$	\angle	satlin	
Symmetric Saturating Linear	$a = -1 \qquad n < -1$ $a = n \qquad -1 \le n \le 1$ $a = 1 \qquad n > 1$	\neq	satlins	
Log-Sigmoid	$a = \frac{1}{1 + e^{-n}}$		logsig	ann_logsig_activ
Hyperbolic Tangent Sigmoid	$a = \frac{e^n - e^{-n}}{e^n + e^{-n}}$	£	tansig	ann_tansig_activ
Positive Linear	$a = 0 n < 0$ $a = n 0 \le n$	\square	poslin	
Competitive	a = 1 neuron with max $na = 0$ all other neurons	C	compet	ann_compet_activ В.Бондарев

```
function y = ann_tansig_activ(x)
// биполярная тангенциальная сигмовидная функция активации
              y = ann_logsig_activ(x)
   вызов:
   параметры
                                          y = (exp(n)-exp(-n))/(exp(n)+exp(-n)) =
    х : входной вектор
                                          = (exp(n)-exp(-n))/(exp(n)+exp(-n))*(exp(-n)/exp(-n))=
     у: выходной вектор
                                          = ... = 2/(1+exp(-2n)) -1
 y = 2 ./ (1 + \exp(-2.*x)) - 1;
 endfunction
                                               0.6
SciLab
    пример вызова
                                               -0.2 -
  x = [-10:0.05:10];
                                               -0.4
                                               -0.6
  y = ann_tansig_activ(x);
                                               -0.8
  plot(x,y,'.');
```

Архитектура нейронных сетей

ИНС состоит из большого числа взаимосвязанных НЭ. Выделяют следующие основные разновидности архитектур ИНС:

- однослойные ИНС с прямыми связями;

$$\mathbf{W} = \begin{bmatrix} w_{1,1} & w_{1,2} & \dots & w_{1,R} \\ w_{2,1} & w_{2,2} & \dots & w_{2,R} \\ \vdots & \vdots & & \vdots \\ w_{S,1} & w_{S,2} & \dots & w_{S,R} \end{bmatrix}$$

Слой из S нейронов – упрощенное обозначение

Архитектура нейронных сетей

- многослойные ИНС с прямыми связями

Трехслойная сеть – упрощенное обозначение

Архитектура нейронных сетей

- рекуррентные (сети с обратными связями)

Для организации обратной связи сети используют блок задержки

Реккурентные сети

Это сети с обратными связями, где некоторые из выходов соединяются со входами

Последующие значения выходов вычисляются через их предыдущие значения

$$\mathbf{a}(1) = \mathbf{satlins}(\mathbf{Wa}(0) + \mathbf{b}), \ \mathbf{a}(2) = \mathbf{satlins}(\mathbf{Wa}(1) + \mathbf{b}), \dots$$

Архитектура нейронных сетей

Обратные связи, действующие в пределах одного слоя НЭ, называют *патеральными* (от английского lateral – горизонтальный).

Часто используют ИНС с латеральным торможением.

Виды обучения ИНС

Различают следующие виды обучения ИНС:

a) - обучение с учителем (supervised learning)

Обучающие данные содержат обучающие примеры $\mathbf{p}(q)$ и метки $\mathbf{t}(q)$:

$$D = \{\mathbf{p}(q), \mathbf{t}(q)\}; q = 1..Q$$

Цель обучения: минимизировать «ошибку» $\mathbf{e}(q) = \mathbf{L}(\mathbf{t}(q) - \mathbf{a}(q))$

б) - обучение без учителя (unsupervised learning)

ნ)

Обучающие данные содержат только обучающие примеры $\mathbf{p}(q)$:

$$D = \{ \mathbf{p}(q) \}; q = 1..Q$$

Цель обучения: в общем случае восстановить многомерное распределение вероятностей входных данных

В.Бондарев

Виды обучения ИНС

в) - обучение с подкреплением (RL, reinforcement learning)

Имеется агент, взаимодействующий с окружающей средой, которая в ответ на действия агента, обеспечивает его вознаграждением.

Цель обучения: научиться действовать, так чтобы максимизировать вознаграждение

В среде RL вы не учите агента, что и как он должен делать, вместо этого вы даете агенту награду за каждое выполненное действие. Таким образом, обучение превращается в процесс проб и ошибок.

Самоконтролируемое обучение (SSL)

Общая идея: полагаем, что часть данных неизвестна, обучаем нейронную сеть, таким образом, чтобы она предсказывала «неизвестную» часть данных по известной части. После SSL обучения доучиваем сеть на требуемую задачу на небольшом объеме данных.

"Пирог" обучения

Сколько информации используется во время обучения нейросетей?

Последующие

Извлечение признаков

задачи

Обучение хорошим признакам с помощью SSL

- "Чистое" обучение с подкреплением (вишенка)
 - Сеть предсказывает скалярное вознаграждение
 - Несколько бит на выборку
- Обучение с учителем (глазурь)
 - Сеть предсказывает категорию или несколько чисел для каждого входа
 - Предсказание данных предоставленных человеком
 - > 10 → 10000 бит на выборку
- Самоконтролируемое обучение (бисквит)
 - Сеть предсказывает любую часть входных данных по любой наблюдаемой части
 - Предсказание будущих кадров на видео
 - Миллионы бит на выборку

Y. LeCun 2019 Keynote at ISSCC