Anàlisi descriptiva

Anna Salazar

2022 - 08 - 05

Índex

Descripció de la base de dades	1
Objectius del projecte	2
Lectura de les dades	3
Preprocessament	3
Missings	3
Outliers	5
Categoritzar	6
Variable resposta	7
Anàlisi descriptiva univariant	9
Variables numèriques	9
Variables vinculades als accidents	9
Variables vinculades a les persones	9
Variables categòriques	10
Variables vinculades als accidents	10
Variables vinculades a les persones	11
Anàlisi descriptiva bivariant	12
Variables vinculades als accidents	12
Variables vinculades a les persones	14

Descripció de la base de dades

Les bases de dades que seran utilitzades al llarg de l'estudi provenen de l'agència estatal de trànsit dels Estats Units i contenen tres taules, entre les quals s'hi troba un llistat d'accidents de tràfic ocorreguts al desembre de 2015 als Estats Units, juntament amb un recompte de totes les persones (conductors, passatgers o vianants) involucrades als accidents i, finalment, un inventari de tots els vehicles involucrats als accidents.

L'enllaç a la base esmentada és el següent:

https://www.transportation.gov/briefing-room/traffic-fatalities-sharply-2015

Més concretament, en cada taula es poden trobar les variables següents:

Accident és un llistat d'accidents de trànsit ocorreguts al desembre de 2015 als Estats Units.

Taula 1. Llistat de variables de la taula Accident

Variable	Tipus	Descripció
ST_CASE	Categòrica	Codi de l'accident
DAY	Categòrica	Dia de l'accident (de l'1 al 31)
HOUR	Numèrica	Hora de l'accident (99 = desconeguda)
MINUTE	Numèrica	Minut de l'accident (99 = desconegut)
RUR_URB	Categòrica	Informació sobre la localització (1 = Rural, 2 = Urbà, 6 = Via no classificada,
		8 = No registrat, 9 = Desconegut)
DAY_WEEK	Categòrica	Dia de la setmana $(1 = Diumenge, 2 = Dilluns,, 7 = Dissabte)$
FATALS	Numèrica	Nombre de ferits a l'accident
DRUNK_DR	Numèrica	Nombre de conductors beguts involucrats a l'accident

Person és un llistat de totes les persones (conductors, passatgers o vianants) involucrades als accidents.

Taula 2. Llistat de variables de la taula Person

Variable	Tipus	Descripció
ST_CASE PER_NO AGE SEX PER_TYP DOA	Categòrica Numèrica Categòrica Categòrica	
		= Desconegut)

Vehicle és un llistat de tots els vehicles involucrats als accidents.

Taula 3. Llistat de variables de la taula Vehicle

Variable	Tipus	Descripció
ST_CASE	Categòrica	Codi de l'accident al qual està involucrat el vehicle
NO_VEH	Numèrica	Nombre de vehicles implicats en l'accident
HIT_RUN	Categòrica	Identificador de vehicle fugit $(0 = No, 1 = Si, 9 = Desconegut)$
$TRAV_SP$	Numèrica	Velocitat estimada (mph) del vehicle quan va tenir l'accident (997,998 i 999 =
		Desconegut)

Variable	Tipus	Descripció
PREV_SP	Categòrica	Indicador d'existència de límit de velocitat permesa just abans de l'accident (997,998 i 999 = Desconegut)

Objectius del projecte

Estudiant aquesta base de dades sobre persones que s'han vist implicades, de forma directa o indirecta, en accidents de trànsit es preten:

- Descriure els tipus d'accidents que estan registrats
- Analitzar els diferents perfils de persones que pateixen accidents de trànsit
- Desenvolupar un model de predicció que ens permeti establir el tipus de víctima que serà cada persona depenent les característiques de l'accident i els vehicles.
- Estudiar les relacions de dependència entre variables

Lectura de les dades

A partir d'aquestes tres taules, s'extreuran dues bases de dades a partir de les quals es treballarà al llarg del projecte.

En primer lloc, es tindrà en compte la informació dels accidents. D'aquesta manera es podrà estudiar les característiques dels diferents accidents regitrats, així com es podran fer prediccions sobre els nous accidents en funció de les seves característiques. S'ha anomenat aquesta base accident, i està conformada per les variables següents: DAY, HOUR, MINUTE, RUR_URB, DAY_WEEK, FATALS, DRUNK_DR, NO_PER, MORTS, NO_VEHICLE, HIHAMORTS.

Les variables MORTS, NO_PER, NO_VEHICLE i HIHAMORTS han sigut creades a posteriori a partir de les taules de les que es disposava, i es defineixen a continuació:

Taula 4. Llistat de variables definides a posteriori per a la taula Accidents

Variable	Tipus	Descripció
MORTS	Numèrica	Nombre de morts en l'accident
NO_PER	Numèrica	Nombre de persones implicades en l'accident
NO_VEHICLE	Numèrica	Nombre de vehicles implicats en l'accident
HIHAMORTS	Categòrica	Variable identificadora dels accidents mortals (0: no hi ha morts en
		l'accident, 1: hi ha morts en l'accident)

D'altra banda, s'estudiarà la informació sobre les persones implicades en aquests accidents. D'aquesta manera es podrà perfilar el tipus de conductors en els casos en que hi hagi morts en l'accident, així com en els que no hi hagi. Aquesta informació també ens facilitarà l'elaboració de possibles models per predir el tipus de víctima que serà una persona involucrada en un accident de trànsit en base a les seves característiques. en aquest cas, s'ha anomenat aquesta base persones, i està conformada per les variables següents: DAY, HOUR, MINUTE, RUR_URB, DAY_WEEK, FATALS, DRUNK_DR, NO_PER, MORTS, NO_VEHICLE, NO_FUGITS, AGE, SEX, PERTYP i DOA.

Las variable **NO_FUGITS** ha sigut creada a posteriori a partir de les taules de les que es disposava, i es defineix a continuació:

Taula 5. Llistat de variables definides a posteriori per a la taula Persones

Variable	Tipus	Descripció
NO_FUGITS	Numèrica	Nombre de vehicles fugits implicats en l'accident

Preprocessament

La base de dades d'accidents està formada per 2781 casos (accidents) i 11 variables. En canvi, la base de dades de persones la conformen 7087 individus (files) i 15 variables (columnes).

Les variables que tenim són DAY, HOUR, MINUTE, RUR_URB, DAY_WEEK, FATALS, DRUNK_DR, NO_PER, MORTS, NO_VEHICLE, HIHAMORTS, NO_FUGITS, AGE, SEX, PERTYP i DOA.

Missings

Per a poder tractar les dades mancants de la base de dades, en primer lloc haurem de tranformar-les, ja que les variables que presenten dades mancants les tenen codificades.

			-	NA	Percentatge de NA
			DAY	0	0.00
	NA	Percentatge de NA	HOUR	55	0.78
DAY	0	0.00	MINUTE	58	0.82
HOUR	33	1.19	RUR_URB	0	0.00
MINUTE	34	1.22	DAY_WEEK	0	0.00
RUR_URB	0	0.00	FATALS	0	0.00
DAY_WEEK	0	0.00	DRUNK_DR	0	0.00
FATALS	0	0.00	NO_PER	0	0.00
DRUNK_DR	0	0.00	MORTS	0	0.00
NO_PER	0	0.00	NO_VEHICLE	0	0.00
MORTS	0	0.00	NO_FUGITS	0	0.00
NO_VEHICLE	0	0.00	AGE	222	3.13
HIHAMORTS	0	0.00	SEX	0	0.00
			PER_TYP	0	0.00
			DOA	0	0.00

Taula 6. Percentatge de missings per variable

En el cas de les variables numèriques amb *missings*, que són l'edat (AGE), l'hora (HOUR), el minut (MINUTE) i la velocitat estimada del vehicle quan va tenir l'accident (TRAV_SP), les codificacions per aquestes dades són 99, 997, 998 o 999, depenent de cada cas.

Un cop transformades aquestes dades, podem visualitzar a la taula següent els *missings* per cada variable numèrica, tant en terme absolut com relatiu. A la taula següent s'hi poden trobar les variables de les bases de dades d'accidents i de persones, respectivament, juntament amb el nombre de dades mancants que presenten, i el tant per cent que aquestes suposen al total de la informació de la variable.

Tal i com es pot observar, a la base de dades d'accidents s'hi troben *missings* per a les variables HOUR i MINUTES, mentre que per a la base de dades de persones, s'hi troben missings per a les variables HOUR, MINUTES i AGE. En ambdós casos, totes les variables són numèriques i, per aquest motiu es pot usar l'algoritme KNN per a la imputació de valors a les dades mancants.

K-nearest neighbors (KNN) és un tipus d'algoritme d'aprenentatge supervisat que s'utilitza tant per a la regressió com per a la classificació. La seva funció és intentar predir la classe correcta per a unes dades de prova (que, en el nostre cas, seran les variables que presenten dades mancants) en base a la seva similitut amb altres mostres de dades conegudes (en el nostre cas, les variables completes). Tot això es fa assumint que les dades amb trets similars es troben juntess, i utilitza mesures de distància en el seu nucli.

Un cop s'ha aplicat l'algoritme per a les variables corresponents, es pot veure, a continuació, com cap de les dues bases de dades presenta cap missing a les variables conflictives.

Recordem que la taula mostra les bases de dades d'accidents i de les persones implicades en els accidents, respectivament:

-	NA	Percentatge de NA		NA	Percentatge de NA
HOUD	1\A	1 ercentaige de NA	HOUR	0	0
HOUR	0	0	MINUTE	0	0
MINUIE	0	0	AGE	0	0

Taula 7. Percentatge de missings per variable després del KNN

Outliers

Pel que fa a les dades atípiques, en destaca el nombre de persones implicades a l'accident. Més específicament, hi ha un cas en que 53 persones estan involucrades en un accident. A priori, res ens fa pensar que aquesta dada, tot i ser atípica, sigui certa. Això no obstant, a l'hora de la segmentació les dades es podrien veure afectades per aquest valor, ja que alguns algoritmes són molt sensibles a les dades atípiques.

A la següent figura es representa la variable nombre de persones (NO_PER), on es poden identificar de forma clara aquests valors atípics:

Figura 1. Histograma de la variable Nombre de persones

N.Valid	Min	Q1	Median	Mean	Std.Dev	Q3	Max	IQR
7087	1	2	3	4.015098	4.938707	5	53	3

Taula 8. Resum numèric de la variable Nombre de persones

Per tal d'assegurar-nos que aquesta dada no afecta al nostre anàlisi, i tenint en compte que disposem d'una base de dades molt gran, treurem aquests casos d'ambdues bases de dades.

Figura 2. Histograma de la variable Nombre de persones després d'eliminar l'outlier

N.Valid	Min	Q1	Median	Mean	Std.Dev	Q3	Max	IQR
7034	1	2	3	3.646005	2.521077	4	19	2

Taula 9. Resum numèric de la variable Nombre de persones

Categoritzar

En el cas de les dades mancants que es troben en variables categòriques, el que es farà serà factoritzar-les i, seguidament, definir els nivells que presenta el factor. Així, per exemple, la variable **PER_TYP** presenta 8 nivells que s'han d'agrupar en 3 (*Conductor*, *Ocupant* i *Altres*).

A continuació es mostren els canvis realitzats a algunes de les variables categòriques de la base de dades:

PER_TYP: Tipus de persona (1 = conductor, 2 = ocupant, resta de codis = altres).

- Abans: 1, 2, 3, 4, 5, 6, 8, 9
- Després: Conductor, Ocupant, Altres

DAY_WEEK: Dia de la setmana (1 = Diumenge, 2 = Dilluns, ..., 7 = Dissabte).

- Abans: 1, 2, 3, 4, 5, 6, 7
- Després: Diumenge, Dilluns, Dimarts, Dimecres, Dijous, Divendres, Dissabte

SEX: Sexe de la persona (1 = home, 2 = dona, 8 = No registrat, 9 = Desconegut).

- Abans: 1, 2, 8, 9
- Després: Home, Dona, Desconegut

Per la variable variable SEX hi ha una categoria anomenada "Desconegut", que representa aquelles persones de les quals no tenim informació del seu sexe. Com aquesta categoria no ens aporta informació d'utilitat a l'hora de realitzar l'estudi ni per a relitzar models predictius, prescindirem dels individus que corresponguin aquesta categoria per a realitzar el nostre anàlisi.

 \mathbf{RUR} _URB: Informació sobre la localització (1 = Rural, 2 = Urbà, 6 = Via no classificada, 8 = No registrat, 9 = Desconegut).

- Abans: 1, 2, 6, 8, 9
- Després: Rural, Urbà, Desconegut

HI HA MORTS: Variable identificadora dels accidents mortals (0: no hi ha morts en l'accident, 1: hi ha morts en l'accident).

- Abans: 0, 1
- Després: No, Sí

DOA: Tipus de víctima (0 = sobreviu, 7 = mort a l'accident, 8 = mort al trasllat, 9 = Desconegut)

• Abans: 0, 7, 8, 9

• Després: Sobreviu, Mor, Desconegut

Per aquesta última variable, DOA, hi ha una categoria anomenada "Desconegut", que representa aquelles persones que no se sap si sobreviuen a l'accident o no. Ja que en aquest estudi el fet de sobreviure o no a l'accident és de gran interès, i aquesta categoria no ens aporta informació útil, prescindirem dels individus enmarcats en aquesta categoria per a realitzar el nostre anàlisi.

HOURS_agrupat

DIA_agrupat

Variable resposta

Per últim, definirem les variables resposta per a cada base de dades, és a dir, aquelles característiques que ens interessa poder predir tant en els futurs accidents com en les pròximes persones que es vegin involucrades en aquests.

Per una banda, és d'interès classificar els accidents segons si aquests han ocasionat morts o bé no ha sigut el cas. D'aquesta manera, es podria crear un model de predicció que permeti establir si un accident serà mortal o no en el futur en funció de les característiques que presenti.

Per tant, la variable d'interès és HIHAMORTS, que es mostra a la següent figura.

Variable	Stats / Values	Freqs (% of Valid)	Missing
Hi ha morts	1. No	1176 (42.3%)	0
[factor]	2. Sí	1604 (57.7%)	(0.0%)

Figura 3. Anàlisi descriptiu de la variable Hi ha morts

Seguint aquesta línia, serà també de gran importància el tipus de víctima que esdevindran cadascuna de les persones implicades en un accident. En aquest cas, la variable d'interès serà DOA, de la qual es pot trobar un breu anàlisi descriptiu a la figuara següent.

Variable	Stats / Values	Freqs (% of Valid)	Missing
Tipus de víctima	1. Sobreviu	5113 (74.1%)	0
[factor]	2. Mor	1791~(25.9%)	(0.0%)

Figura 4. Anàlisi descriptiu de la variable Tipus de víctima

Anàlisi descriptiva univariant

Variables numèriques

Variables vinculades als accidents

Taula 12. Variables numèriques vinculades als accidents

Variable	Tipus	Descripció
HOUR	Numèrica	Hora de l'accident (99 = desconeguda)
MINUTE	Numèrica	Minut de l'accident (99 = desconegut)
FATALS	Numèrica	Nombre de ferits a l'accident
$DRUNK_DR$	Numèrica	Nombre de conductors beguts involucrats a l'accident
MORTS	Numèrica	Nombre de morts en l'accident
NO_PER	Numèrica	Nombre de persones implicades en l'accident
NO_VEHICLE	Numèrica	Nombre de vehicles implicats en l'accident

Variable	N.Valid	Min	Q1	Median	Mean	Std.Dev	Q3	Max	IQR
HOUR	2780	0	7	15	13.0122302	6.7949345	18	23	11
MINUTE	2780	0	13	28	27.9708633	17.2669142	43	59	30
FATALS	2780	1	1	1	1.1000000	0.3832589	1	5	0
DRUNK_DR	2780	0	0	0	0.2456835	0.4429278	0	2	0
NO_PER	2780	0	0	1	0.6442446	0.6346020	1	5	1
MORTS	2780	1	1	2	2.5302158	1.6805367	3	19	2
NO_VEHICLE	2780	1	1	1	1.5079137	0.6997727	2	6	1

Taula 13. Resum de les variables numèriques vinculades als accidents

Variables vinculades a les persones

Taula 14. Variables numèriques vinculades a les persones

Variable	Tipus	Descripció
HOUR	Numèrica	Hora de l'accident (99 = desconeguda)
MINUTE	Numèrica	Minut de l'accident
FATALS	Numèrica	Nombre de ferits a l'accident
DRUNK_DR	Numèrica	Nombre de conductors beguts involucrats a l'accident
MORTS	Numèrica	Nombre de morts en l'accident
NO_PER	Numèrica	Nombre de persones implicades en l'accident
NO_VEHICLE	Numèrica	Nombre de vehicles implicats en l'accident
NO_FUGITS	Numèrica	Nombre de vehicles fugits implicats en l'accident
AGE	Numèrica	Edat de la persona

variable	N.Valid	Min	Q1	Median	Mean	Std.Dev	Q3	Max	IQR
HOUR	6904	0	8	15	13.4446698	6.5227942	18	23	10
MINUTE	6904	0	13	28	27.8906431	17.2482132	43	59	30
FATALS	6904	1	1	1	1.1704809	0.5296297	1	5	0
DRUNK_DR	6904	0	0	0	0.2219003	0.4346383	0	2	0
NO_PER	6904	0	0	1	0.6965527	0.7340242	1	5	1
MORTS	6904	1	2	3	3.6548378	2.5291142	4	19	2
NO_VEHICLE	6904	1	1	2	1.7783893	0.8766397	2	6	1
NO_FUGITS	6904	0	0	0	0.0528679	0.2477490	0	3	0
EDAT	6904	0	24	37	39.8951333	20.3893085	55	98	31

Taula 15. Resum de les variables numèriques vinculades a les persones

Variables categòriques

Variables vinculades als accidents

DAY: Dia de l'accident (de l'1 al 31). Tipus de variable: factor

Variable	Stats / Values	Freqs (% of Valid)	Valid	Missing
DAY	1. 1	72 (2.6%)	2780	0
[factor]	2. 2	84 (3.0%)	(100.0%)	(0.0%)
	3. 3	108 (3.9%)		
	4. 4	96 (3.5%)		
	5. 5	117 (4.2%)		
	6. 6	112 (4.0%)		
	7. 7	78 (2.8%)		
(8. 8	81 (2.9%)		
	9. 9	88 (3.2%)		
	10. 10	85 (3.1%)		
	[21 others]	1859~(66.9%)		

 ${\bf RUR_URB}$: Informació sobre la localització (1 = Rural, 2 = Urbà, 6 = Via no classificada, 8 = No registrat, 9 = Desconegut). Tipus de variable: factor

Variable	Stats / Values	Freqs (% of Valid)	Valid	Missing
RUR_URB [factor]	 Rural Urbà Desconegut 	1174 (42.2%) 1288 (46.3%) 318 (11.4%)	2780 (100.0%)	0 (0.0%)

 $\textbf{DAY_WEEK}:$ Dia de la setmana (1 = Diumenge, 2 = Dilluns, . . . , 7 = Dissabte). Tipus de variable: factor

Variable	Stats / Values	Freqs (% of Valid)	Valid	Missing
DAY_WEEK [factor]	 Diumenge Dilluns Dimarts Dimecres Dijous Divendres Dissabte 	356 (12.8%) 311 (11.2%) 410 (14.7%) 436 (15.7%) 460 (16.5%) 387 (13.9%) 420 (15.1%)	2780 (100.0%)	0 (0.0%)

HIHAMORTS:

Variable	Stats / Values	Freqs (% of Valid)	Valid	Missing
HIHAMORTS	1. No	1176 (42.3%)	2780	0
[factor]	2. Sí	1604 (57.7%)	(100.0%)	(0.0%)

Variables vinculades a les persones

 \mathbf{SEX} : Sexe de la persona (1 = home, 2 = dona, 8 = No registrat, 9 = Desconegut). Tipus de variable: factor

Variable	Stats / Values	Freqs (% of Valid)	Valid	Missing
SEX	1. Home	4569 (66.2%)	6904	0
[factor]	2. Dona	$2335 \ (33.8\%)$	(100.0%)	(0.0%)

 $\mathbf{PER_TYP}$: Tipus de persona (1 = conductor, 2 = ocupant, resta de codis = altres). Tipus de variable: factor

Variable	Stats / Values	Freqs (% of Valid)	Valid	Missing
PER_TYP [factor]	 Conductor Ocupant Altres 	4057 (58.8%) 2096 (30.4%) 751 (10.9%)	6904 (100.0%)	0 (0.0%)

 \mathbf{DOA} : Tipus de víctima (0 = sobreviu, 7 = mort a l'accident, 8 = mort al trasllat, 9 = Desconegut). Tipus de variable: factor

Variable	Stats / Values	Freqs (% of Valid)	Valid	Missing
DOA	 Sobreviu Mor 	5113 (74.1%)	6904	0
[factor]		1791 (25.9%)	(100.0%)	(0.0%)

Anàlisi descriptiva bivariant

Per acabar l'anàlisi descriptiva de les dades, s'estudiarà la relació que existeix entre diferents parells de variables. Aquest tipus d'anàlisi ajudarà a averiguar si existeix una associació entre les variables i, en cas afirmatiu, quina és la força d'aquesta.

Variables vinculades als accidents

Figura 5. Segons el dia de la setmana

Pel que fa al nombre de conductors beguts segons el dia de la setmana en el qual succeeix l'accident, s'observa de forma clara a la gràfica esquerra de la figura 5 com la majoria dels conductors beguts es concentren al cap de setmana. Sembla que podria ser un patró perquè hi ha diferències notables entre la quantitat de conductor beguts a finals de la setmana, en comparació als dilluns, dimarts i dimecres. D'altra banda, si ens fixem, en aquest cas, en el nombre de morts segons el dia de la setmana, el dilluns es troba altre vegada en l'última posició, ja que és el dia en que es donen menys morts en accidents de trànsit. Paralel·lament, els últims dies de la setmana presenten un major nombre d'accidents mortals. Aquesta és la informació presenta la gràfica dreta de la figura 5.

Si es té en compte la informació d'aquestes últimes gràfiques, es podria pensar que existeix una relació entre el nombre de conductors beguts i el nombre de ferits mortals als accidents de trànsit. S'haurà de tenir en compte aquesta hipòtesi per anàlisis posteriors de les dades.

Figura 6. Nombre de morts en funció del moment del dia

Si centrem l'atenció en les hores del dia, a la figura 6 es poden veure les freqüències absolutes en quant a la quantitat de morts en els diferents moments del dia. A l'esquerra, es divideix el dia en les seves hores, i s'observa com l'hora en que es produeixen més accidents és a les 6 de la tarda. Per a que la gràfica sigui més informativa, s'han agrupat les hores segons els moments del dia per crear la gràfica de la dreta.

Comunment, es considera que el dia està format per 5 intervals de temps segons la posició del sol: la matinada (de les 0 a les 5 h incloses), el matí (de les 6 a les 11 h incloses), el migdia (de les 12 a les 14 h incloses), la tarda (de les 15 a les 19 h incloses) i la nit (de les 20 a les 23 h incloses). S'han fet servir aquests intervals per definir les categores que es mostren a la dreta de la figura 6.

En definitiva, de les dues gràfiques s'extreu que la majoria de les morts es produeixen a la tarda i a la matinada, mentre que el moment del dia on hi ha menys morts és el migdia.

Figura 7. Nombre de morts segons el nombre de conductor beguts els diferents dies de la setmana

Com veiem a gràfics anteriors, i en favor de la hipòtesi plantejada sobre una possible relació entre el nombre de conductors beguts i el nombre de morts en l'accident, s'ha fet una gràfica de dispersió que sembla que mostra una relació positiva, això seria que a més conductors beguts, més morts es produeixen.

Variables vinculades a les persones

Figura 8. Nombre de morts segons el nombre de conductor beguts a les diferents edats

Pel que fa a la informació que tenim registrada sobre les persones involucrades en els accidents, i en la línea dels anàlisis anteriors, la figura 8 presenta una gràfica que mostra una clara relació éntre el nombre de conductors beguts i el nombre de morts en l'accident a les diferents edats de les persones implicades. Els punts més extrems d'aquesta gràfica (els que presenten major nombre de conductors beguts i, alhora, major nombre de morts) són les edats 22 i 23. Aquestes dades indueixen a pensar que hi ha més perill d'accidents mortals per a la gent jove a la carretera, si hi ha conductors beguts. Una altra manera d'interpretar aquesta gràfica podria ser que hi ha més conductors joves que agafen el cotxe beguts i, en conseqüència, el aquest grup d'edat pateix més accidents mortals.

Figura 9. Nombre de vehicles fugits

Figura 10. Quantitat de supervivents segons el sexe