Multimeter PM2525/.3./...

Service Manual

4822 872 85006 930701 (all versions)

PHILIPS

IMPORTANT

In all correspondence concerning this instrument, please quote the type number and serial number as given on the type plate.

Note: The design of this instrument is subject to continuous development and improvement. Consequently, this instrument may incorporate minor changes in detail from the information contained in this manual.

This service manual can be used for the following versions:

1 SAFETY INSTRUCTIONS

Read this page carefully before installation and use of the instrument.

The following clauses contain information, cautions and warnings which must be followed to ensure safe operation and retain the instrument in a safe condition. Adjustment, maintenance and repair of the instrument shall be carried out only by qualified personnel.

1.1 GENERAL CLAUSES

- 1.1.1 WARNING: The opening of covers or removal of parts, except those to which access can be gained by hand, is likely to expose live parts and accessible terminals which can be dangerous to life.
- 1.1.2 The instrument shall be disconnected from all voltage sources before it is opened.
- 1.1.3 Bear in mind that capacitors inside the instrument can hold their charge even if the instrument has been separated from all voltage sources.
- 1.1.4 WARNING: Any interruption of the protective earth conductor inside or outside the instrument, or disconnection of protective earth terminal, is likely to make the instrument dangerous. Intentional interruption is prohibited.
- 1.1.5 Components that are important for safety of the instrument may only be renewed by oomponents obtained through your local Philips organisation.
- 1.1.6 After repair and maintenance in the primary circuit, safety inspection and tests, as mentioned in Section 7 must be performed.

					_
Conversion of the conversion o					

2 CHARACTERISTICS

GENERAL NOTES:

- 1. Specification points, marked with ** apply only for the PM2525/5.. and PM2525/6...
- 2. This characteristics describes the overlapping specification points from the versions PM2525/0../2../5../6../7...

SAFETY CHARACTERISTICS

This apparatus has been designed and tested in accordance with Safety Class 2 Requirements for Electronic Measuring Apparatus and CSA 556B, and has been supplied in a safe condition.

REMARK: PM2525/0../2.. Safety Class 2 PM2525/5../6../7.. Safety Class 1

This manual contains information and warnings which must be followed to ensure safe operation and retain the instrument in a safe condition.

This instrument:

- satisfies the requirements of EEC Council Directive No. 73/23 EEC in that it conforms with IEC Publication 348.
- is listed by the Canadian Standard Association as certified.
- is certified by the independent German Testing and Approvals Institute VDE (and has been tested according to VDE 0411, part 1).

PERFORMANCE CHARACTERISTICS

- Properties expressed in numerical values with stated tolerance are quatanteed by PHILIPS. Specified tolerance numerical values indicate those that could be nominally expected from the mean of a range indentical instruments. This specification is valid 1 hour after power on.

Specification for Digital Multimeter PM 2525/.2.

(Terms used in these specifications are based on definitions layed down in IEC 458).

General

Manufacturer : Philips HIG I&E

Type number : PM 2525/.2.
Designation : Digital Multimeter

Measured functions : Vdc, Vac, Vac+dc, Vpeak, Adc, Aac

Ohm 2W, Ohm 4W, , cont, F, °C,

Hz, s.

General notes:

1. Specification points, marked with * apply only on the /52. and /62. versions.

2. This specification describes the overlapping specification points of the versions /02., /22., /52., /62. and /72. .

Measurement performance DC voltage measurement

(VALID 1 HOUR AFTER POWER ON)

Ranges

Resolution

: 200 mV - 2000V (max.input voltage 1000V)

:*High speed mode: 100uV in 200mV

range

Normal mode: 10uV in 200mV range

High resolution mode: 1uV in

200mV range

Number of representations

units.

:*High speed mode:2100 Normal mode:21000

High resolution mode:210000

Accuracy at reference speed 1+2 conditions

speed 3

Temperature coëfficiënt

Input impedance

: +(0.02% of reading+0.01% of range)

: $\pm (0.15\% \text{ of reading} + 0.1\% \text{ of range})$

: ±0.002% of reading/°C : 200mV - 2V 20 MΩ // 50pF 20 V 11 MΩ // 80pF 200 V - 2000 V 10 MM // 90pF

: >80 dB for AC signals 50 Hz ±0.1% >60 dB for AC signals 50 Hz ±1.0%

: 2x range except 2000 V range

: >120 dB for DC signals

>120 dB for signals 50 Hz ±0.1%

: 250 V RMS 350 V peak

: 0.2 /0.8 /5 s (without ranging)

depending on speed.

: 1 /1.5 /6 s (with ranging)

depending on speed.

Offset current in input : < 20 pA SMRR

Maximum SM signal CMRR

Max. CM-voltage

Response time

Maximum input voltage : Hi and Lo 1000 V RMS Hi and earth 1000 V RMS Lo and earth 250 V RMS Max. V - Hz product of : 10⁷ input signal Zeroing : automatically Zero point drift $: 0 - 35^{\circ}C \quad 2uV/^{\circ}C$ 35°- 45°C 10uV/°C dB Measurement in DC ranges : -77...+62.2 dB (reference Range resistor 600Ω) Measured values less then 0.1 mV is displayed as - UL. Measured value > 1000V is displayed as OL. 0 dB reference : 1 mV in reference resistor or when selecting the zero function with push button "zero" on/off. Reference resistor : programmable between 0.0001 Ω and 9999 Ω Resolution : 0.1 dB for signals > 1 mV 1.0 dB for signals < 1 mV Number of representation : 999 for signals > 1 mVunits : 99 for signals < 1 mVAccuracy signals > 5 mV; (speed 1+2) : ± 0.1 dB signals > 0.5 mV; < 5mV (speed 1+2): ± 1.0 dB signals > 5 mV; (speed 3) $: \pm 0.4 dB$ Temperature coëfficiënt signals > 5 mV : \pm 0.02 dB/°C signals < 5 mV : \pm 0.2 dB/°C 20 M // 50 pF Input impedance for : 0 1.8 V 11 M // 80 pF 10 M // 90 pf signals between 1.8 V.. 18 V 18 V .. 600 V CMRR : > 120 dB for DC signals > 120 dB for AC signals 50 Hz ± 0.1% Response time : 1.5 s AC voltage measurement Possible measuring modes : AC voltages excl. DC component AC voltages incl. DC component Ranges : 200 mV - 2000 mV (max. input voltage 750 V RMS) Resolution :*High speed mode: 100uV on 200 mV range. Normal mode 10 uV on 200 mV range Measured value under < 1% of

range displayed as 0000

units

Number of representation :*High speed mode: 2100 Normal mode: 21000

Function Vac

Accuracy at reference conditions over 3% - 100% of range.

All ranges (2000V only 20 Hz ... 70Hz) 100 Hz - 20 kHz

Function Vac/dc

Accuracy at reference conditions

: same as Vac : Additional for DC component:

Input impedance

CMRR

Freq. range

DC voltage on Vac for no additional error Response time

AC detector Crest factor

Maximum input voltage : Hi and Lo 750 V RMS

Maximum V - Hz product : 10⁷

 \pm (0.2% of reading+0.1% of range)

Temperature coëfficiënt : ±(0.025% of reading+0.005% of range)/°C

: 200 mV - 2V 20 M // 50 pF 20 V 11 M // 80 pF

200 V - 2000 V 10 M // 90 pF

: >120 dB for DC signals

> 60 dB for AC signals 50 Hz

: 20 Hz ... 100 kHz, incl. or excl. DC component, switchable on

front.

: 25x range

: 1.5 s (without ranging) 3.0 s (with ranging)

: True RMS

: 2 at full scale, increasing down

scale

via 2 x full scale/ranging

Hi and earth 750 V RMS Lo_and earth 250 V RMS 750 V RMS

dB measurements in AC ranges

Possible measuring modes : AC voltage excl. DC component

AC voltage incl. DC component

(Vac/dc)

: - 51.7 + 59.7 dB (reference Range

resistor 600 Ω)

Measured value less than 2 mV is

displayed as UL.

: 1 mW in reference resistor or 0 dB reference

when selecting the zero function with pushbutton zero "on/off".

Reference resistor : Programmable between 0.0001 Ω and

9999 Ω

Resolution : 0.1 dB

Number of representation

: 999 units.

Function Vac

Accuracy at reference conditions for signals

 $-42.2 \text{ dB} \dots -32.6 \text{ dB}$: 20 Hz ... 20 kHz ± 0.8 dB

: 20 Hz ... 20 kHz ± 0.4 dB - 32.6 dB+ 48.2 dB : 20 kHz ... 100 kHz ± 1 - 32.6 dB+ 48.2 dB dΒ

Function Vac/dc

Accuracy at reference

conditions

: same as Vac additional for the DC component :

± 0.2 dB

: ± 0.02 dB/°C

Temperature coëfficient within specified range

Input impedance for

signals between

: 0 .. 1.8 V 20 M // 50 pF

11 M // 80 pF 1.8 V .. 18 V 10 M // 90 pF >18 V ..

CMRR : >120 dB for DC signals

> 60 dB for AC signals 50 Hz \pm 1%

: 20 Hz ... 100 kHz, incl. or excl. Freq. range

DC component, switchable on

front.

Response time : 3 s

AC detector : True RMS

Crest factor

Maximum input voltage : Hi and Lo 750 V RMS Hi and earth 750 V RMS

Lo and earth 250 V RMS

Maximum V - Hz product : 107

<u>Vpeak</u>

Possible measuring modes : V peak-peak; V peak pos;

Vpeak neg

Ranges : 2 V ... 2000 V

(max. input voltage 850 Vpeak)

: 1 mV on 2 V range Resolution Number of representation : 2100 for Vpeak neg/pos; 4200 for units Vpeak-peak Accuracy at reference conditions : ±(1% of reading+10 digits) notes dc+ 20 Hz ... 20 kHz 20 kHz ... 100 kHz : ±(5% of reading+10 digits) 1+2 : ± 0.15% of reading /°C Temperature coëfficiënt 20 M // 50 pF 11 M // 80 pF : 2 V Input impedance 20 V 200 V,2000V 10 M // 90 pf Measuring time : 500 msec DC voltage on Vpeak-peak for no additional error : 25 x range : 1 s (without ranging) Response time p+; p-2.5 s (with ranging) : 1.5 s (without ranging) p-p 5 s (with ranging) 600 V AC or DC : Hi and Lo Max.input voltage 850 Vpeak Hi and earth 600 V AC or DC Lo_and earth 250 V AC or DC : 10⁷ Max. V-Hz product : >120 dB for DC signals CMRR > 60 dB for AC signals 50 Hz Note 1 2000 V range : Freq. range DC + 20 Hz ... 60 Hz Note 2 V/us max dV/dt 2 V range : 2 : 20 V/us 20 V range 200 V range : 200 V/us : 0.5 V/us 2000 V range DC current measurement : 1 µA 10A Ranges :*High speed mode 1 nA on 1 uA Resolution range Normal mode 0.1 nA on 1 uA range Number of :*High speed mode: 1100 representation units Normal mode: 11000 Accuracy : $\pm (0.1\% \text{ of reading} + 0.05\% \text{ of}$ speed 2 range) $\pm (0.2\% \text{ of reading} + 0.2\% \text{ of}$ speed 3 range) $\pm (0.01\% \text{ of reading} + 0.005\% \text{ of}$ Temperature coëfficient range)/ºC Voltage drop at end of : ranges 1 μ A, 10 μ A < 2.5 mV range ranges 100 μ A, 10 mA, 1 A < 40 mV ranges 1 mA, 100 mA, 10 A < 400 mV

Response time : 0.8 s (without ranging) 2.5 s (with ranging) Protected up to : 250 V RMS ranges 1 uA - 100 mA Ranges 1 A ... 10 A not protected : 250 V RMS, 350 V peak : Hi and Lo 250 V RMS Max. CM - voltage Max. input - voltage Hi and earth 250 V RMS Lo and earth 250 V RMS AC current measurements Ranges : 1 uA....10 A Resolution :*High speed mode: 1 nA on 1 uA Normal mode: 0.1 nA on 1 uA range measured value under 2% of range is displayed as 0000 Number of representation units :*High speed mode: 1100 Normal mode: 11000 Accuracy (valid between 5% and 100% of range) Range 1 uA - 100 mA : ±(0.6% of reading+0.2% of range) : ±(0.4% of reading+0.15% of range) : ±(0.6% of reading+0.2% 20 Hz - 40 Hz 40 Hz - 200 Hz 200 Hz - 500 Hz : $\pm (0.6\% \text{ of reading} + 0.2\% \text{ of range})$ Range 1 A - 10 A 20 Hz - 40 Hz : ±(0.6% of reading+0.2% of range) 40 Hz - 200 Hz : ±(0.4% of reading+0.15% of range) 200 Hz - 500 Hz : ±(3.0% of reading+1.0% of range) : \pm (3.0% of reading+1.0% of range) Temperature coëfficient : ±(0.04% of reading+0.015% of range)/°C : 20 Hz ... 500 Hz : ranges 1 uA ... 1 mA < 2.5 mV Freq. range Voltage drop ranges 10 mA and 1 A < 40 mVranges 100 mA and 10 A < 400 mV : RMS convertor, AC coupled AC detector Crest factor : 4 at full scale Responce time : 1.5 s (without ranging) 3 s (with ranging) : 250 V RMS ranges 1 uA...100 mA Protected up to : 250 V RMS, 350 V peak Ranges 1 A... 10 A not protected Max. CM Voltage Max. CM Voltage
Max. input voltage : Hi and Lo 250 V RMS Hi and earth 250 V RMS Lo and earth 250 V RMS Resistance measurement

Possible measuring modes : two-wire configuration

via Ω - 0 terminals. four-wire configuration

with switch on front

via PROBE terminal selectable

Ranges two-wire : 200 Ω200 MΩ Ranges four-wire : 200 Ω 2 ΜΩ Maximum lead resistance on four wire configuration : 2 N Resolution :*High speed mode: 100 m Ω on 200 Ω Normal mode: 10 m Ω on 200 Ω range Number of representation units 200 Ω ... 20 $M\Omega$:*High speed mode: 2100 Normal mode: 21000 200 MΩ :*High speed mode: 210 Normal mode: 2100 Accuracy 200 Ω - 200 $k\Omega$; speed 2 : $\pm (0.1\% \text{ of reading} + 0.05\% \text{ of range})$: ±(0.15% of reading+0.15% of 200 Ω - 200 $k\Omega$; speed 3 range) $M\Omega$ - 20 $M\Omega$; speed 2 : $\pm (0.5\% \text{ of reading} + 0.05\% \text{ of range})$ $M\Omega$ - 20 $M\Omega$; speed 3 : $\pm (0.5\% \text{ of reading} + 0.15\% \text{ of range})$ 200 MΩ : ± (3% of reading+ 1% of range) Temperature coëfficient $200 \Omega - 200 k\Omega$: $\pm (0.01\% \text{ of reading} + 0.005\% \text{ of}$ range)/°C $2 M\Omega - 20 M\Omega$: $\pm (0.05\%)$ of reading+0.01% of range)/°C 200 MΩ : \pm (0.5% of reading+0.1% of range)/°C Measuring current : 1 mA, 1 mA, 100 uA, 10 uA, 1 uA, 100 nA, 10nA at the separate ranges : 4 V Maximum volt at open input Polarity of input socket at two-wire : - on Hi + on Lo Response time $200 \Omega - 200 k\Omega$: 0.8 s (without ranging) 2.5 s (with ranging) $2 M\Omega - 20 M\Omega$: 2 s (without ranging) 3.5 s (with ranging) 200 MΩ : 9 s (without ranging) 10 s (with ranging) : 250 V RMS Protected up to : Hi and Lo Maximum input voltage 250 V RMS Hi and earth 250 V RMS Lo and earth 250 V RMS Diode measurements Driving current : 1 mA : 2000.0 mV Range Resolution : 0.1 mV

: 20000

: - on Hi

+ on Lo

Number of representation

Polarity input sockets

units

: 0.8 s Response time : Hi and Lo 250 V RMS Maximum input voltage Hi and earth 250 V RMS Lo and earth 250 V RMS Continuity Driving current : 1 mA : Audible tone from 0 ... 10 Ω Short circuit : Resistance > 10 Ω , no tone Isolation : < 0.15 sec.Response time Capacity measurement : 20 nF ... 2000 uF Ranges :*High speed mode: 10 pF in 20 nF Resolution range Normal mode: 1 pF in 20 nF range Number of representation units :*High speed mode: 2100 Normal mode: 21000 (20 nF .. 200 uF range) 2100 (2000 uF range) Accuracy 20 nF .. 200 uF range : ±(1% of reading+0.1% of range) : ±(10% of reading+0.1% of range) 2000 uF range Temperature coëfficiënt: : $\pm (0.1\% \text{ of reading} + 0.01\% \text{ of}$ 20 nF .. 200 uF range range)/°C : ±(1 % of reading+0.1% of 2000 uF of range range)/°C : 100 nA, 1 uA, 10 uA, 100uA, 1mA Measuring current at the separate ranges Maximum voltage at input : 2.5 V : - on Hi Polarity input socket + on Lo : 1 s (without ranging) Responce time 1.5 s (with ranging) : 250 V RMS Protected up to 250 V RMS Maximum input voltage : Hi and Lo Hi and earth 250 V RMS Lo and earth 250 V RMS Temperature measurements For temperature measurements : Pt 100 probe additional needed : - 100°C ...+ 850°C Range Normal mode: 1 °C Resolution : * High resolution mode: 0.1°C Number of representation Normal mode: 850 : * units High resolution mode: 8500 : $\pm (0.3\% \text{ of reading} + 0.3^{\circ}\text{C})$ Accuracy(excl. probe) : $\pm (0.03\% \text{ of reading} + 0.03^{\circ}\text{C})/^{\circ}\text{C}$

Temperature coëfficiënt

Measuring current : 1 mA Response time : 0.5 s (excl. probe) Linearisation : probe characteristics is linearised within limits stated in DIN 43760 Max. voltage at probe tip : depending on probe Frequency measurements : 10 kHz ...20 MHz Ranges Resolution : Normal mode 1 Hz in 10 kHz range High resolution mode 0.1 Hz in 10 kHz range Number of representation units 10 kHz ... 10 MHz Normal mode: 10000 High resolution mode: 100000 Normal mode: 2000 20 MHz High resolution mode: 20000 : ±(0.01% of reading+2 digits Accuracy range) Temperature coëfficiënt : \pm 0.001% of reading /°C Response time range 100 kHz ... 20 MHz : Normal mode: 0.3 s (without ranging) 0.5 s (with ranging) High resolution: 2.5 s (without ranging) 3.0 s (with ranging) 1.5 s (without range 10 kHz : Normal mode: ranging) 2.0 s (with ranging) High resolution 13.0 s (with ranging) Impedance : 10 M // 50 pF Coupling : AC For voltage > 5 V max. : 10⁷ V-Hz product Maximum input voltage : Hi and Lo 250 V RMS Hi and earth 250 V RMS Lo and earth 250 V RMS Sensitivity : 10 Hz ... 100 Hz : 1 V peak 100 Hz ... 10 MHz : 250 mV peak 10 MHz ... 20 MHz : 500 mV peak Time measurements $: 1 \dots 10^5$ seconds Range Resolution : 10 us in 1 second range Number of representation units : 99999 Accuracy for timer measurements 0.01% of reading

Temperature coefficient : ± 0.001% of reading /°C

Hold of time		30 us
Start		By positive or negative slope
		passing the trigger level.
		Selectable by push button "s".
Stop	9	By positive and negative slope
		passing the trigger level.
		Selectable by push button "s".
Reset	0	By pushbutton on date hold probe
		if connected or stop pulse, if no
		data hold probe is connected.
Trigger level	8	< 1 V
Result representation	8	Old measurement are displayed at
		least 500 ms. Display is updated
		at the "stop-condition" moment.10
		seconds after a "start-condition"
		the display starts counting the
		time in seconds untill the " stop

condition". If measuring time > 10 seconds, the beeper will be activated by the "stop condition" for a moment. A moving baragraph

indicates a measurement in

progress.

External triggering (/52. and /62. version only)
Response time (single trigger, without ranging):

Function	HSM(speed 3)	NM(speed 2)	HRM(speed 1)									
Vdc	0.1	0.4	4									
Vac	0.25	0.55	_									
Vp+, Vp~	enzo	0.5	_									
Vpp	AISCO	1.0	_									
Adc	0.1	0.4	_									
Aac	0.25	0.55										
Ω	0.1	0.4										
Temp	NOTE:	0.5	4.5									
Freq		0.3	1.2 (100 kHz-20 MHz range)									
Freq	6 1019	1.5	11 (10 kHz range)									
Cont	0.1	_	****									
Diode	0.1	0.5	****									
Cap	0.2	0.5	***									

Calculate functions

- a. Relative reference setting via push button "zero". Measured value is default reference value (Can be altered manually)
- b. Min/max. Highest and lowest measured values are stored and can be displayed afterwards.
- c. dB Display = 20 log \underline{X} X = measured value R R = reference value is function Vdc, Vac, Vac + Vdc

Conversion characteristics

Kind of conversion
Operating principle
Basic mode of operating

Range setting

: lineair

Delta modulationrepetitive triggered

: Manual - with UP and DOWN

pushbutton Automatic - Upranging

at 100% of scale

2000/10.000/20.000/100.000/ 200.000 Down ranging at 9.5% of scale 190/900/1900/9000/19000

: Automatic setting on Vdc, Adc, Vpeak, °C, dB, relative

reference

Display Visual representation Number of digits

Polarity setting

: 5½, 4½, 4, 3½ depending of function and range

Number of representation units

2100 depending of 11000 function and 21000 range

210000

Means of representation of output value

: liquid crystal display

Reflective

Additional analog representation function by means of bargraph in

LCD

Means of polarity representation

: Automatic indication of + or - or blanked according to measuring

function

Means of measuring mode representation

: High speed mode SPEED 3 Normal mode SPEED 2 High resolution mode SPEED 1

Note: SPEED 3 available on Vdc and on versions /52. and /62. for Vdc, Vac, Ω , Cap, Adc, and Aac functions. SPEED 2 for temperature function available only on /52. and /62. versions.

Means of decimal point representation

: Automatic indication, depending on range

Means of functional representation

: selected function is indicated in LCD

Means of overload representation Means of representation of exceeding crest factor Data hold Range hold

: display indicates "OL"

: f in display

: By using data hold probe PM 9267 : possible via Auto/Man switch

Operating conditions (according to IEC 359)

a. Climatic conditions

: Group I with extension of the temperature limits

Temperature:

Reference temperature Rated range of use Adjustment temp. range Limit range of operation Limit range of storage and transport

: + 23 °C .. ± 5 °C 0 °C ...+40 °C : + 21 °C ...+25 °C (factory only)

: 0 °C ...+55 °C

: - 40 °C ...+70 °C

Humidity

Reference rel.hum. Limit range of storage and transport Max. dew point

: 20 ...80% excluding condensation

: 5 - 95% RH

: 26 °C

b. Mechanical conditions

: according UN-D 1639/03 class: portable equipment subclass I

c. EMC Emmision

: CISPR publ. 11 and 14 VDE 871-B, VDE 875-K according Vfg. 1046/84

Line supply conditions

Group Reference value Rated range of use : S2 : 230 V ± 1%

: 230 V + 12% - 15%

Note

: Instruments can be altered for nominal mains voltage of 115 V

Mains supply frequency

Reference value Rated range of use : 50 Hz ± 1% : 50 Hz ± 5%

Note 1

: Instruments can be altered for nominal frequency of 60 Hz

Note 2

: Mains frequency can influence Series Mode Rejection; see specification SMR to meet same spec. for 60 Hz as for 50 Hz signals, the settings of the PM 2525 must be altered in the check function.

Mains supply interruptions

Interruption < 30 ms : no influence

> 30 < 500 ms : instrument may either restart or

continue

> 500 ms : instrument will restart,

conditions equals situation after

switching on power.

Power consumption : 12 VA

Calibration

Recalibration interval : 1 year

Accessories

Supplied with instrument : Measuring leads PM9266

(incl.probes)
Main supply cable

Spare fuse

Operation manual

Optional available

Specific accessoires for

PM 2525 : 4 wire Ω cable 5322 321 20506

4 wire Ω cable PM 9264/01

Universal accessoires : High frequency probe PM 9210 Shunt PM 9244

PM 9244 Current transformer PM 9245 EHT probe PM 9246 Temp.probe (PT100) PM 9249/01 Data hold probe PM 9267/01 Current qun PM 9101 Current probe PM 9102 HF probe PM 9213 Measuring leads PM 9260 Measuring leads PM 9266 Thermo couplerlinearizer PM 9877/J Thermo couplerlinearizer PM 9877/K 19 inch rackmount PM 2193

<u>Miscellaneous</u>

Dimensions : (LxBxH) 287 x 210 x 86 (excl feet)

 $287 \times 210 \times 106(incl.feet)$

Weight : 2.5 kg

3.5 kg /22., /52., /62. and /72.

version

Cabinet : BAYBLEND KL1441

/52., /62. and /72. version: steel

plate

Safety

back

Class 2, according IEC 348

3. CIRCUIT DESCRIPTION

SHORT DESCRIPTION OF THE PM2525

1. General

The PM2525 a multimeter ment as successor for the PM2521. The specification has been extended on the following points:

- 1. Basic accuracy for DC from 0.03% to 0.02%
- 2. Resolution for DC from 10 uV to 1 uV.
- 3. AC voltage function DC coupled.
- 4. A peak-voltage function up to 2000 digits, lmV resolution.
- 5. Four-wire resistance measurements.
- 6. Highest resistance range from 20 Mohm to 200 Mohm.
- 7. In the diode function a bleeper signal; response time <100 ms.
- 8. Capacity measurements from 1 pF to 2000 uF.
- 9. Frequency measurements from 10 kHz to 20 MHz, AC coupled.
- 10.To be extended as system multimeter (IEEE-488, RS232C).
- 11. Fully programmable (also function).
- 12.Min/Max function.
- 13.dBm for VDC.

i...

- 14. Reference level programmable on front.
- 15. Operator friendly front with small pushbutton switches.

2. Mechanical construction

Housing of synthetic material contructed in the same way as the PM2521. Front composition in the same way as the PM2535.

Internal built-up: One mother board and a front-display board.

In the mother board a motor controlled function switch has been incorperated.

The power supply transformer is mounted on the motherboard.

In the topcover the interfaces can be mounted. On the front-display board the pushbutton-switches, the IC for reading the switches and LCD and LCD-driver are mounted.

Block diagram PM2525, functional

Block diagram PM2525, parts location

Block diagram PM2525, calibration

Block diagram PM2525, ranges

3. Electrical construction

The PM2525 can be subdivided in the following parts:

- a. Attenuator and voltage measurements
- b. Pre-amplifier
- c. Current measurement
- d. RMS convertor
- e. ADC
- f. Peak-voltage measurement
- g. Current source for resistance measurements, temperature measurements, capacity measurements, peak-voltage measurements
- h. Resistance measurments
- i. Temperature measurements
- j. Capacity measurements
- k. Frequency measurments
- 1. Time measurements
- m. Digital control and computing
- n. Power supply
- o. Function-switching
- p. Internal temperature measurement

3a. Attenuator

A combined frequency compensated atenuator for AC and DC is used. It is built-up of metalglass and metalfilm resistors. These resistors have the same temperature coefficient. To compensate the rest of temperature coefficient from the attenuator + pre-amplifier + ADC, an extra temperature compensation has been used.

For this reason the internal temperature of the PM2525 is measured. (transistor V1500). The temperature coefficient of the PM2525 has to be determined by a measurement at room temperature and an additional measurement at a higher temperature (over 40 deg C). The temperature coefficient determined, is used by the micro-processor to make calculations on the ADC data.

3B. Pre-amplifier

The characteristics of the PM2525 are mainly determined by the preamplifier. A resolution of 10 uV resp. 1 uV (high resolution mode) for DC and 100 kHz for AC, ask for an amplifier with Auto Zero Compensation (AZC) for DC and a bandwidth equal to or better than a LF356.

A secial IC (0Q0302) has been designed for this purpose. (Refer 3d. RMS conv.)

3c. Current measurements

The current measurements can be subdivided in three parts:

- l. The low currents l uA to l mA are measured via the compensation method in two regions viz. l uA 10 uA and 100 uA 1 mA with a voltage resolution of the pre-amplifier of 10 uV and 100 uV
- The medium currents 10 mA and 100 mA.
 Current to voltage conversion by means of a shunt of 2 ohm and fused. Voltage resolution of the pre-amplifier 2 uV resp. 20 uV.
- The high currents 1 A and 10 A.
 Current to voltage conversion with a 20 mohm shunt and not fused.
 Voltage resolution of the pre-amplifier 2 uV resp. 20 uV.

Circuit element principles:

I to V convertor - This is effectively a shunt feedback amplifier based around the operational amplifier N1301. The principle is as follows:

Basic I-V convertor

The amplifier has a gain of -A (180° phase-shift) and a high input impedance.

If we assume that $U_i=\frac{U2}{A}\stackrel{\sim}{\sim} 0$ (virtual earth point) and the input signal to be a current I_1 which is equal to 12, then the output signal will be a voltage

$$-U2 = I1 \times R2$$

In other words, the amplification is given by the resistor value of R2.

In the practical application, it means that the input currents from the shunts are converted into output voltages, the magnitude also being dependent on the values of the selected feedback resistors.

3d. PRODUCT DESCRIPTION 0Q0302 (A1201)

The OQO302 converts the RMS value of a signal into a DC value. The circuit is split-up into two parts: the input-buffer-amplifier and the RMS-DC convertor. The offset voltage of both parts is eliminated automatically by the auto-zero-circuit. The buffer amplifier consists of four source followers to which an external dual-opamp has to be connected.

PINNING

1	VNG (-8V)	negative supply
2	CR	crest-factor indication
3	SWD	switch disable input
4	CAV	averaging capacitor
5	OUTR	output RMS-convertor
6	NUL	analog zero
7	INR	RMS-convertor input
8	RCA	conversion resistor
9	CZl	auto-zero capacitor l
10	CZ2	auto-zero capacitor 2
11	RCB	conversion resistor
12	GND	zero
	IN4	input source follower l
14	IN1A	'' 2
15	IN3	11 3
16	IN1B	1
17	OUT3	output souce follower 3
18	OUT4	4
19	OUT1	1
20	IN2	input source folower 2
21	OUT2	output sorce follower 2
22	OVCP	zero volt pre-amplifier
23	OVCR	auto-zero input RMS-convertor
24	VPL (+8V)	positive supply

THE RMS-CONVERTOR

The convertor is built-up of a voltage-current convertor, followed by a rectifier and a RMS to DC circuit.

Input-offset voltage drift is minimized by the auto-zero circuit. The offset current-drift of the output-circuit, that is not included in the auto-zero, is of non importance.

The maximum input signal will have a RMS value of 1 Volt. A crest-factor of two may not be exceeded. The signal is allowed to have a AC as well as a DC component and is connected to inputs INR and NUL.

The conversion resistor should be about 10 kohm to get a optimum crest-factor indication.

During the auto-zero phase the input signal is switched-off and the input of the V/I-convertor is connected to zero. The SWD input must be low (GND). When the SWD input is high (open) the input signal is connected to the V-I convertor. The SWD input has an internal pull-down circuit. The offset-voltage of the pre-amplifier can be eliminated in this way if during the auto-zero phase the input of the pre-amplifier is connected to zero.

The auto-zero phase will last about 10 mili-seconds, dependent on the drift to be eliminated. During this phase the pre-amplifier has to consume of 10uA.

Every part of the symmetrical V-I convertor has a own auto-zero capacitor. The voltage over these capacitors will be nominally 0 Volt.

To realise a large frequency range, the rectifier is set to class ab. By this the rest-current in the output will cause a voltage drop of 3 mV over a 5 kohm resistor. Voltages lower than 5 mV must be displayed as zero.

The RMS value of AC and DC is determined in an analog way. In the output signal an error will occur in the shape of an average (or DC) value of a ripple. The DC error is dependent on the frequency of the signal and the value of the averaging capacitor CAV.

During the auto-zero phase the averaging capacitor CAV is discharged, but not internally disconnected. During the measuring phase this capacitor has to be charged again by the input signal. Therefore it is not possible to start a ADC-cycle immediatly after the auto-zero phase to determine the measured value. A wait-time of about 3-times the auto-zero time is needed. This wait-time can be avoided if in series with CAV a FET is switched. This FET can be controlled by signal OVCR, if the levels ly between GND and the negative supply. CAV is switched-off during the auto-zero phase.

The auto-zero input OVCR has an internal pull-down circuit by which the convertor is switched to the auto-zero position (logic 1, negative logic). If OVCR is connected to logic zero the convertor is switched in its measuring position. The input current of the auto-zero circuit is limited by an internal resistor. By the internal pull-down circuit a current of 25 uA wil flow. The switching point is at -2.5 V.

The crest-factor indication is set if the input signal is to large. The latch circuit is automatically reset by the OVCR signal. The crest-factor indication output is a open collector output to the negative supply.

The supply voltage is nominally +8 and -8 VOLT. The maximum switching is directly dependent to the negative supply voltage.

THE PRE-AMPLIFIER/BUFFER

The pre-amplifier consists of four source-followers with a high inputresistance and a low bais current. To the output of the sourcefollowers a dual op-amp has to be connected. Advised is to a NE5532.

In series with input 1 of follower 1, two series switches are
incorperated, of which input 1B is used as zero input. The offsetvoltage of the pre-amplifier is not adjusted, but stands in series
with input-offset voltage of the convertor, if input SWD is logic 1.If
not, the offset-voltage drift of the pre-amplifier has to be
compensated digitally. In this case a measurement has to be made with
input INB to zero.

The buffer amplifier built-up around the source followers 3 and 4 takes care of the AC-path. In this way the input-signal is not attenuated by the low-pass filter (R=590 kohm in series with the input and capacitor C=10 nF in parallel with the output of the AC path). This RC-filter at the input is necessary to realise a minimum of feedback on the input (kick-back).

Input IN4 has been suplied with a protection circuit. If the input voltage is higher than 5 Vpp the input resistance drops and the current carried-off via the ground connection.

The zero input of pre-amplifier OVCP function identically to the auto-zero input of the convertor part.

3e. Analog-to-digital converter ADC 0Q0067A A1203

The ADC converts the analog signal into a digital signal by the delta modulation principle. Basically, the delta modulation ADC counts the difference in the time taken to charge and to discharge a capacitor about a fixed level, over a fixed period of time.

The number of charge/discharge cycles within this fixed time depends on the charge/discharge current which is made proportional to the unknown input voltage to the ADC. Therefore, the number of pulses counted within a fixed measuring period is proportional to the unknown voltage Vx. The obtained data signal is fed to the ADC interface D1714 where it is counted.

To obtain automatic zero i.e. counteract drift and internal offset, one complete measurement consist of two fixed measuring periods (two AZC periods).

One complete measurement is used to update the bargraph or for automatic ranging. However, a display result consist of two complete measurements.

During the first period of a measurement the AZC input is low and the ADC interface counts up on each clock-edge the logical state of the data signal. The value is kept in a register. During the second period, the data signal is inverted by the ADC interface and on each clock-edge the logical state of the input signal, the register is counted down. Also the input of the ADC is inverted so that offset in the result is compensated.

The ADC has two input sensitivites 90 mV and 900 mV, selected by the signal OVCP. This signal selects either R1217 or R1216 as conversion resistor.

3f. Peak-voltage detector

Principle:

The unknown peak-voltage is compared by means of a comparator with a voltage in a capacitor. If Upeak > Uc then the capacitor is charged in steps.

The number of steps is counted and equals the voltage on the capacitor.

3g. Current source for resistance like measurements.

Principle:

The voltage over a resistor is made equal to a reference voltage by an operational amplifier. The current needed will be constant and is the same current as needed for the current source.

3h. Resistance measurements RTW RFW OC

The current from the current-source is supplied through Rx. The voltage drop is measured by the ADC.

3i. Temperature measurements (refer to 3h.)

Principle:

4-wire resistance measurements on a Pt100 element (e.g. PM9249)
The micro-processor compensates the zero degrees (100 ohm). The microprocessor also carries out the wanted accuracy and linearity
calculations.

3j. Capacity measurements

Principle:

Through the unknown capacitor a constant current is fed: $Cx = \frac{iT}{Ucx}$

The voltage over the capacitor is compared with a reference voltage. The time needed to charge the capacitor to the level of Uref., is measured by the micro-processor. It is related to the capacitance. The reference voltage is generated by the constant-current i, fed through a known resistor. The voltage over R is stored in the auto-zero capacitor of the preamplifier.

-VREF

DURING DISCHARGING OF CX AT THE END OF A MEASUREMENT V R1521 IS CHARGED IN CAPACITOR C1505

ST5453 880211

3k. Frequency measurements

Principle:

The incoming signal is amplified and set to a correct level with two invertors. It is supplied to a hardware circuit that attenuates 1, 100, 1000 dependent on the measuring range. The signal is processed by the internal counter of the micro-computer.

31. Time measurements

In the time measurements function the signal may be inverted or directly supplied to the internal timer of the micro-processor. The inversion of the signal enables starting on respectively stopping on a positive or negative level.

3m. Digital control and computing

The heart is a $8031\,\mathrm{micro}$ computer with a ROM and RAM Links to the analog section are made via an $000071\,\mathrm{and}$ two $8\mathrm{-stage}$ shift registers.

SWITCHING TABLE (1-2)

	DSHF00											D.S	HFC						00071									P4			
	SHIFT-RI								FOIS	TEL																					
	7 6 5 4 3 2 1 0							7 6 5 4 3 2 1 0								7 6 5 4 3 2 1 0									0	4					
								-		 									1				************			-					
	OVCR	DISP	TMPM	STOP	FILT	RNCC	RNGE	RNGD		FCAP	RNGB	VPEAK	RNCF	RNGA	RNCC	MDIR	KNGK		ACDC	OVCP	POSP	NEGP	RNGM	RNGL	CHCHR	RCUR		BEDGE	BCUR	CRST	
2V 20V 200V 200V 2000V	0 0 0	0* 0* 0*	0	1 1 1	0 0 0	0 1 0 0	0 0 0	0 0 1 0	10 14 11 12	0 0 0	1 1 1 1	1 1 1	1 1 1	1* 1* 1*	0	1 1 1	0 0 0	7A 7A 7A 7A	1 1 1	1 1 1	1* 1* 1*	1	1 1 1	0 0 0	0 0 0	0 0 0	(inv) 07 07 07 07	0000	1* 1*	0* 0* 0*	
2 V Y 2 V 2 O V 2 O O V 2 O O O V	0 0 0	0* 0* 0*	0	1 1 1	0 0	0 1 0 0	0 0 0	0 0 1 0	10 14 11 12	0 0 0	1 1 1	1 1 1	1 1 1			1 1 1	0 0 0	7A 7A 7A 7A	1 1 1	1 1 1	1 1 1 1	1* 1* 1*	1	0 0 0	0 0 0	0 0	07 07 07 07	0 0 0	1*	0* 0* 0*	
200mV 2V 20V 200V 200V 200V	0 0 0 0	And the back and and	1 1 1 1	1 1 1 1	1 1 1	0 0 1 0 0	0 0 0 0	0 0 0 1	78 78 7C 79 7A	00000	band bresh bresh passe passe	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	1 1 1 1	0 0 0 0	62 62 62 62 62	0 0 0 0	1 1	1 1 1 1	1 1 1	0 1 1 1	1 0 0 0	0 0 0 0	0 0 0 0	8B 87 87 87	11111	1 1 1 1	0 0 0 0	
V ~ 200mV 2V 20V 200V 200V	1* 1* 1* 1*	1	1 1 1 1	1 1 1 1	0 0 0 0	0 0 1 0 0	0 0 0 0	0 0 0 1	F0 F0 F4 F1 F2	0 0 0 0	1 1 1	1 1 1 1	0 0 0 0	1 * 1 *		1 1 1	0 0 0 0	6A 6A 6A 6A	1 1 1 1	1* 1* 1* 1*	1 1 1	1 1 1 1	0 1 1 1	1 0 0 0	0 0 0 0	0 0 0 0	0B 07 07 07 07	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	0 0 0 0	
V ≂ 200mV 2V 20V 200V 200V		1 1 1	1 1 1	1 1 1	0 0 0 0	0 0 1 0	0 0 0 0	0 0 0 1 0	F0 F0 F4 F1 F2	0 0 0 0	1 1 1 1	1 1 1 1	0 0 0	1 * 1 *	0 0 0		0 0 0 0	6A 6A 6A 6A 6A	how here host host burd	1 * 1 *	1 1 1 1	1	0) 0 0 0	0 0 0 0	0 0 0 0	0B 07 07 07	1 1 1 1	1	0 0 0 0	
200 n. 2kn. 20kn. 20kn. 200kn.		0 0 0 0	0 0 0	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	10 10 10 10	0000	1 1 1 1	0 0 0	1 1 0 0	0 0 0	0 0 0 1 1	0 0 0 0	0 0 1 0	50 50 51 44 45	00000	1 1 1 1	0 0 0 0	1 1 1 1	0 1 1 1	1 0 0 0	1 1 1 1	0 0 0	A9 A5 A5 A5	1 1 1 1	0 0 0	0 0 0 0	
1. 4W 2001. 2kn 20kn 20kn 20kn 20mn 20mn	0 0 0	0 0 0 0 0 0	000000	1 1 1 1 1 1	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	10 10 10 10 10 10	000000	1 1 1 1 1	000000	1 1 0 0 0	0 0 0 0 0	0 0 0 1 1 0	0 0 0 0 0	0 0 1 0 1	50 50 51 44 45 40 41	0000000	1 1 1 1 1	000000	1 1 1 1 1 1	0 1 1 1 1 1	1 0 0 0 0	1 1 1 1 1	0 0 0 0 0 0	A9 A5 A5 A5 A5 A5 A5	1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0	0 0 0 0 0	

SWITCHING TABLE (2-2)

			DS	HFC	00			•				DS	HFO	1							00	2071			***************************************			Ρl		
								SH	IFT-R	GIS	TER	S			******															
	7	6	5	4	3	2	1	0		7	6	5	4	3	2	1	0		7	6	5	4	3	2	1	0		ł	5	4
	OVCR	DISP	TMPM	STOP	FILT	RNGC	RNGE	RNCD		FCAP	RNGB	FPEAK	RNGF	RNCA	RNGG	MDIR	RNGK		ACDC	OVCP	POSP	NEGP	RNGM	RNGL	CHCHR	RCUR		BEDGE	BCUR	CRST
A 777 10A 10uA 100uA 1mA 10mA 100mA 1A 10A	0 0 0 0 0 0	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0 0	0 0 1 1 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	70 70 74 74 70 70 (70) (70)	0 0 0 0 0 0	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0	0 0 0 0 0 0	1 1 1 1 1 1	0 0 0 0 0 0 0 0	72 72 72 72 72 72 72 72 72	0000000	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	0 1 0 1 0 1	1 0 1 0 1 0	0 0 0 0 0	0 0 0 0 0 0	(inv) 8B 87 8B 87 8B 87 8B	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	0 0 0 0 0 0
A ~ 1uA 10uA 100uA 1mA 10mA 100mA 1A	1* 1* 1* 1* 1* 1* 1*	1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0 0	0 0 1 1 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	F0 F4 F4 F0 F0 (F0)	0000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1		0 0 0	1 1 1 1 1 1 1	0 0 0 0 0 0 0	7A 7A 7A 7A 7A 7A 7A	1 1 1 1 1 1 1	1.	1	1 1 1 1 1 1 1 1	0 1 0 1 0 1	1 0 1 0 1 0	0 0 0 0 0	0 0 0 0 0	0B 07 0B 07 0B 07 0B		1 1 1 1 1 1	0 0 0 0 0 0
S all	0	1	0	1	0	0	0	0	50	0			0 hig		0	0	01	09	1	1	0	1	1	0	0	0	27	0*	1	0
F 20nF 200nF 2uF 20uF 200uF/ 200uF/	0 0 0 0 Fc	0 0 0 0	0 0 0 0 0	l l l l		0 0 0 0 0 shi	1 1 1 1	l l l l one	13 13 13 13 13 range				0; 0;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t 0*	0 0	0* 1* 0* 1* 0*	C8 CD CC D9 D8 will		1:	* 1 * 1 * 1 * 2	0nF	l wi	1; 1; 1; 1;	* 0: * 0: * 0: * 0: bec:	* 0 * * 0 * * 0 *	93 93 93	00000	1* 1* 1* 1*	0 0 0
Hz 10kHz 100kHz 1MHz 10MHz 20MHz	0 0 0 0	1 1 1 1	1 1 1 1	1 1 1 1	0 0 0 0	1 1 1 1	0	0	74 74 74 74 74	0000	1 1 1 0	1 1 1	0 0 0 0	1 0 0 0	0 0 0 0	0 0 0 0	1 1 1 1	69 69 61 21 21	1 1 1 1 1 1	0 0	1 1 1 1	1 1 1 1	1 1 1 1		0 0 0 0	0 0 0 0	47 47 47 47 47	111111	1 1 1 1	0 0 0 0
°C 2kn-4w	0	0	0	1	0	0	0	0	10	0	1	0	1	0	0	0	0	50		1	0	1	1	0	1	0	A5	ı	0	0
-#-	0	0	0	1	0	0	0	0	10	0	1	0	1	0	0	0	0	50) 1	0	1	1	0	ļ	0	A5	1	0	0
[] 200a-2W	0	0	0	1	0	0	0	0	10	T	l ema osi	ins	in	0 the	_	_	0	50		1	0	1	O	: 1	1	0	A9	1	0	0
int.tmp	0		* 1	1	0	a	ıa	a	38	0	1	1	1	1	* 0	ì	0	7A		۱ 0	1	. 1	* a	a	0	0	4F	0	11	0*
null 20	a	a			. 0			×			а		a		а		a		1	0				. 0		. 0		a	_	a
	a	a	1	1	. 1			ema	ins ir tion e	s a			fun	_	-		a) 0]	. 1	1	. 0		0		a	a	a

a = don't care

^{* =} toggles during measurement

ADC interface OQ0071 D1714

The information transport to this device is by means of an ${\rm I}^2{\rm C}$ compatible interface.

This ADC interface is activated by a start condition so that it first reads an eight bit address. The four most-significant bits contain the group address, and the four least-significant bits contain a command to be executed by the device. This is in contradiction to the I²C specification where these bytes are reserved for the device address.

The main purpose of the ADC interface is to count the number of clock-pulses within a given time period (T2, the measuring time) in which the data input is opposite to the AZC signal has been inverted. The time periods are preceded by a waiting time T1 (setting time). The figure below explains this sequence.

At the end of this cycle the device generates a ready (READY) which interrupts the microcomputer.

It instructs the microcomputer to read the internal counter of the ADC interface.

The organisation should be such that when data continuously high and the number in T2 is N, that at the end of the count-time the contents of the counter are also N.

Flow-chart of the sequence:

Besides these functions, the ADC interface has eight output latches to control to analog section (input sensitivities) . One of the latches is used to give an a.c. signal which is used for the bleeper.

3n. Power supply

The PM2525 is suitable for mainssuply of 115 V and 230 V. The altering from 230 V to 115 V can be made on the pc-board.

30. Function-switching

The function switch consists of a motor driven printed switch. Dependent on the function selected on the keyboard, the motor forces the switch to the correct position. The position is detected by the micro-processor.

3p. Internal temperature (A Vpeak measurement)

With t internal is is determined with what figure the result has to be divided.

tc and tw are relative.

tc = temperature for cold calibration

tw = temperatur for warm calibration

When calibrating:

Cold: Once a year to meet specification

Warm : In case of new ADC, Vpeak circuit, defect RAM

DISPLAY/KEYBOARD

The PCF 8576 is a circuit designed to drive a Liquid Crystal Display with up to 160 segments. A 2-line $^{\rm I}$ C bus structure enables serial data transfer with the microcomputer.

A LCD is an AC device. Therefore, for multiplexing, the information of the segment line is important for each segment that will be driven by that line.

The reference voltage for the driver is obtained from transistor V2101 and zener diode V2101.

To change the viewing angle the reference voltage can be adjusted with potentiometer R2105.

On the same PCB the keyboard is situated. Pushing a switch will be read by the microcomputer via the ${\rm I}^2{\rm C}$ bus. This is done by scanning lines PO to P7 to obtain which switch is pressed.

COMPONENT DATA

OQ0067A BI-FET input ADC

Block diagram OQ0067A

DESCRIPTION

The OQ0067 is an ADC according to the Delta Modulator principle. It contains all the parts for a ADC. The output signal is an synchronus datasignal, which can be clocked in a microprocessor with a present clock. The display result is:

$$Disp = \frac{N \times Vin}{\frac{Iref \times Rconv}{2}}$$

N= the number of clockperiods during a measurement. The formule shows that the result will be more accurate with more clockperiods. This can be achieved with a longer measuring period or more clockpulses. To prevent offset voltages a AZC (auto zero compensation) input is available.

Every measuring period consists of two AZC periods. During the first AZC period the AZC input is logic low and the up counts the logic value of the datasignal on every edge of the clock. In the second AZC period the datasignal is inverted by the up. The up subtracts the logic value of the datasignal on every clock edge. At the same time the inputs of the ADC are interchanged. By this the input offsetvoltage is eliminated. Via the range input a selection can be made between the two conversion resistors (input sensitivity 0.1V/1V).

PINNING & PIN FUNCTIONS	PIN NUMBER	NAME	DESCRIPTION
	1	V -	Most negative supply & substrate
,	2	Cl	Clock input
<u> </u>	3	CO	ADC clock input
v- T U 24 v+	4	DO DO	ADC data output
C1 2 23 RP	5	BPI	Buffer & protection input
- Series	6	BO	Buffer output
CO 3 22 RS	8, 11	HI1,2	ADC HI inputs
DO 4 21 COM	9	LO	ADC LO input
8PI 5 20 Y	10	LBC	Low buffer capacitor
	7, 12	GND	Digital ground
B0 6 19 X	13	AZC	AZC input
GND 7 18 RB2	14	RANGE	Range input
HI1 8 17 RA2	15, 17	RAl,2	Range resistor A
	16, 18	RB1,2	Range resistor B
LO 9 16 RB1	19, 20	X, Y	Integrator capacitor
LBC 10 15 RA1	21	COM	Common point for current
HI2 11 14 RANGE			souce resistor
	22	RS	Series resistor Current source
GND 12 13 AZC	23	RP	Parallel resistor
ST4469	24	RP V	Most positive supply
840713		L	

NOTE: pin numbers 7 and 12 are not connected together internally

Pinning OQ0067A

8031AH single-component 8-bit microcomputer

- 8031AH Control-Oriented CPU with RAM and I/O
- 128K Accessible External Memory
- 218 User Bit-Addressable Locations
- 128 x 8 RAM
- 32 I/O Lines (Four 8-bBit Ports)
- Two 16-Bit Timer/Counters
- Programmable Full-Duplex Serial Channel

The 8031AH is Intel's HMOS version of the High performance 8-bit 8031 microcomputer. While the 8031AH features the same powerful architecture and instruction set as its HMOS predecessor, it offers the additional benefit of lower powerd supply current.

The 8031AH provides a cost-effective solution for those controller applications requiring up to 64 Kbytes of program and/or 64 Kbytes of data storage. Specifically, the 8031AH contains 128 bytes of read/write data memory; 21 I/O lines configured as four 8-bit parallel prots; two 16-bit timer/counters.

Block Diagram

Pin configuration

8031AH PIN DESCRIPTIONS

VSS Circuit ground potential.

VCC 5V power supply input for normal operation and program verification.

Port 0

Port 0 is an 8-bit open drain bidirectional I/O port. It is also the multiplexed low-order address and data bus when using external memory. It is used for data output during program verification. Port 0 can sink (and in bus operations can source) eight LS TTL loads.

Port 1

Port 1 is an 8-bit quasi-bidirectional I/O port. It also emits the high-order address byte when accessing external memory. It is used for the high-order address and the control signals during program verification. Port 2 can sink/source for LS TTL loads.

Port 3

Port 3 is and 8-bit bidirectional I/= port with internal pullups. It also serves the functions of various spaial features of the MCS-51 Family, as listed below:

Port Pin Alternate Function

- P3.0 RXD (serial input port)
- P3.1 TXD (serial output port)
- P3.2 INTO (external interrupt)
- P3.3 INT1 (external interrupt)
- P3.4 TO (Timer/counter 0 external input)
- P3.5 Tl (Timer/counter l external input)
- P3.6 WR (external Data Memory write strobe)
- P3.7 RD (external Data Memory read strobe)

The output latch corresponding to a seconary function must be programmed to a one (1) for that function to operate. Port 3 carsink/source four LS TTL loads.

RST

A high on this pin for two machine cycles while the oscillator is running resets the device. A small external pulldown resistor (8.2k) from RST to $V_{\rm SS}$ permits power on reset when a capacitor (10uF) is also connected from this pin to $V_{\rm CC}$.

ALE

Address Latch Enable output for latching the low byte of the address during accesses to external memory. ALE is activated at a constant rate of 1/6 the oscillator frequency except during an external data memory access at which time one ALE pulse is skipped. ALE can sink/source 8 LS TTL inputs.

PSEN

The Program Store Enable output is a control signal that enables the external Program Memory to the bus during external fetch operations. It is activated every six oscillator periods except during external data memory access. PSEN remains high during internal program execution.

EΑ

When held at a TTL high level, the 8051AH executes instructions from the internal ROM when the PC is less than 4096. When held at a TTL-low level, the 8031AH/8051AH fetches all instructions from external Program Memory. Do not float EA during normal operation.

XTAL 1

Input to the inverting amplifier that forms part of the oscillator. This pin should be ¿connected to ground when an external oscillator is used.

XTAL 2

Output o the inverting amplifier that forms part of the oscillator, and input to the oscillator signal when an external oscillator is used.

PCF8574 remote 8-bit I/O for I²C bus

DESCRIPTION

The PCF8574 is a single-chip silicon gate CMOS circuit. It provides remote I/O expansion for the MAB8400 and PCF8500 microcomputer families via the two-line serial bidirectional bus (I²C). The device consists of an 8-bit quasi-bidirectional port and an I²C interface. The PCF8574 has low current consumption and includes latched outpus with high current drive capability for directly driving LEDs.

Features

- Operating supply voltage 2,5 V to 6 V
- Biderectional expander
- Open drain interrupt output
- 8-bit remote I/O port for the I^2C bus
- Latched outputs with high current drive capability for directly driving LEDs
- Address by 3 hardware address pins for the use of up to 8 devices (up to 16 possible with mask option)

Block diagram

P2 6 11 P6 15 SDA serial data line positive supply V _{SS} 8 9 P4		9 to 12 8 13 14 15	PO to P3 P4 to P7 V _{SS} INT SCL SDA	address inputs 8-bit quasi-bidirectional I/O port negative supply interrupt output serial clock line serial data line positive supply
--	--	--------------------------------	--	---

Pinning diagram

8-STAGE SHIFT-AND-STORE BUS REGISTER

The HEF4094B is an 8-stage serial shift register having a storage latch associated with each stage for strobing data from the serial input to parallel buffered 3-state oupus 0_0 to 0_7 . The parallel outputs may be connected directly to common bus lines. Data is shifted on positive-going clock transitions. The data in each shift register stage is transferred to the storage register when the strobe (STR) input is HIGH. Data in the storage register appears at the outputs whenever the output enable (EO) signal is HIGH. Two serial outputs $(0_8$ and 0_8^{\prime}) are available for cascading a number of HEF4094B devices. Data is available at 0_8 on positive-going clock edges to allow high-speed operation in cascaded systems in which the clock rise time is fast. The same serial information is available at 0_8^{\prime} on the next negative-going clock edge and provides cascading HEF4094B devices when the clock rise time is slow.

Functional diagram

PINNING

D data input EO output enable input CP clock input O_s , O_s' serial outputs STR strobe input O_0 to O_7 parallel outputs

 $\begin{array}{c|c} {\sf FAMILY\ DATA} \\ {\sf I_{DD}\ LIMITS\ category\ MSI} \end{array} \quad \begin{array}{c} {\sf see\ Family\ Specifications} \\ \end{array}$

Logic diagram

One D-latch

FUNCTION TABLE

	gni	uts		parallel	outputs	serial		puts
СР	EO	STR	D	00	o _n	O_s	1	O's
, e	L	X	X	Z	z	06		nc
Ž	L	X	X	Z	Z	nc		07
j	Н	L	X	nc	nc ´	06		nc
5	Н	H	L	L	0 _{n-1} :	06		ne
1	Н	Н	H	Н	O _{n-1}	06		n¢
7	н	H	H	nc	nc	nc	1	07

= HIGH state (the more positive voltage)

= LOW state (the less positive voltage)

= state is immaterial

= positive-going transition

= negative-going transition Z

= high impedance off state

= no change

= the information in the seventh shift register stage

At the positive clock edge the information in the 7th register stage is transferred to the 8th register stage and the O_s output.

A.C. CHARACTERISTICS

 $V_{SS} = 0 \text{ V; } T_{amb} = 25 \text{ °C; input transition times} \le 20 \text{ ns}$

	VDD	typical formula for P (μW)	where f; = input freq. (MHz)
Dynamic power	5	2100 $f_1 + \Sigma (f_0 C_L) \times V_{DD}^2$	$f_O = \text{output freq. (MHz)}$ $C_L = \text{load capacitance (pF)}$ $\Sigma(f_OC_L) = \text{sum of outputs}$
dissipation per package (P)	10 15	9700 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$ + 26 000 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$	$V_{DD} = \text{supply voltage } (V)$

4. DISMANTLING THE INSTRUMENT

GENERAL INFORMATION

This section provides the dismantling procedures required for the removal of components during repair operations. All circuit boards removed from the instrument must be adquately protected against damage, and all normal precautions regarding the use fo tools must be observed. During dismantling a careful note must be made of all disconnected leads so that they can be reconnected to their correct terminals during re-assembly.

CAUTION: Damage may result if:

- the instrument is switched on when a circuit board has been removed.
- a circuit board is removed within one minute after switching-off the instrument.

Disconnect measuring terminals before opening.

4.1 REMOVING THE TOPCOVER

- Place the carrying handle in the bottom position.
- Loosen the four fixing screws (torx screws) that are situated in the four feet.

Remark: The fixing screws can be loosened with a TORX screwdriver, size T10.

- Lever the topcover and pull it upwards.

4.2 REMOVING THE TOP-SCREENING

- Remove the topcover.
- Remove the wiring from the backplate.

Remark: For version /02 there is only mains power wiring.

- Loosen the display cable from the display board.
- Turn the distance pieces (1).
- Lift the screening out-off the instrument.

Remarks: The display cable is connected to the mother board (4).

The galvanic separation is connected to the mother board (3).

When mounting the top screening first make the connections (3) (4) and make sure that the sprung contacts (2) are fitted well.

4.3 REMOVING THE BOTTOMCOVER

- Remove the topcover.
- Remove the top-screening.
- The mother board including the front assembly is fixed with one Phillips screw to the bottom cover. The screw is situated near the mains-transformer.
- Pull the bottom cover from the instrument.

4.4 REMOVING THE FRONT-ASSEMBLY

- Remove the topcover.
- Remove the top-screening.
- Remove the bottom cover.
- Bend-out the two hooks of the front-assembly.

 The two plastic clip-hooks can be reached at the component side of the mother board near the front.
- Pull the front from the mother board.

4.5 LX- DISPLAY, WINDOW AND INTERCONNECTION RUBBER

- Dismantle.
- Remove screening.
- Remove front assembly.
- Bend out the six hooks and lift the PCB out of the front assembly.
- Push the attach hooks out of the holes at the component side of the PCB and lift the LCD display from the PCB.

The assembly of the display consists of four main parts. All parts can be replaced seperately.

4.6 REPLACING THE FUNCTION SELECTOR

- Remove the topcover.
- Remove the top-screening

Replace of the function gearwheel

- Use a M5.5mm Box-spanner to press the gearwheel out of the function selector housing. A box-spanner is used to compress the retaining lugs of the gearwheel simultaneously.

The gearwheel is keyed so no erroneous mounting is possible.

Replace of function selector housing assembly. (Housing, motor, motor gearwheel)

- Remove function gearwheel.

- The function selector housing including motor assembly can be pressed out of the p.c. board from the bottom side on. (three lugs)
- The motor gearwheel can be pulled of the motor pinion.
- The motor can be pulled out of the housing with a screwdriver.

Replace of the function slide-rotor assembly

- Rèmove function gearwheel.

- Remove function selector housing assembly.

- The function selector assembly consists of a clipring, a p.c. board ring, slide rotor assembly (rotor + insulation)
- Push the rotor out of the clipring with a screwdriver or a DIN-plug at the conductor-side of the mother p.c. board.

4.7 REPLACING THE SMALL RESET PC BOARD

Replace of the small reset p.c. board onto the input sockets

- Solder the 0-wire from the 0-pin and remove the wire and the solder-spring.
- Pull ali the interconnection wires from the small p.c. board.
- Remove the ADDitional piece of wire between the A-socket and the testpin on the small p.c. board.
- Loosen the screw and remove the p.c. board.

CHECKING AND ADJUSTING THE PM2525 (all versions)

5.1 GENERAL INFORMATION

The following information provides the complete checking and adjusting procedures for the instrument. As various control functions are interdependent, a certain order of adjustment is necessary. The procedure is, therefore, presented in a sequence which is best suited to this order, cros-reference being made to any circuit which may affect a particular adjustment.

Before any check or adjustment, the instrument must attain its normal operating temperature.

- Where possible, instrument performance should be checked before any adjustment is made. (refer PERFORMANCE TEST 5.2)
- All limits and tolerances given in this section are calibration guides, and should be not interpreted as instrument specifications unless they are also published in section 2.
- Tolerances given are for the instrument under test and do not include test equipment error.
- All controls which are mentioned without item numbers are located on the outside of the instrument.

WHY CALIBRATING AT TWO TEMPERATURES

Calibration will be made to get exact values without tolerances. Measuring at various temperatures will give different measuring data. Hot calibration will take care of the compensation of the different measuring data which originate by temperature variations.

THE CALIBRATION CAN BE SUBDIVIDED INTO:

- 5.3 Preparations
 5.4 Manual course adjustment ,open instrument
 5.5 Manual fine adjustment ,open instrument
 5.6.1 Electronic calibration COLD ,closed instrument
- 5.6.1 Electronic calibration COLD ,closed instrument 5.6.3 Electronic calibration HOT ,closed instrument

The coarse/fine adjustment and the calibration hot have to be carried out only when components have been replaced.

IMPORTANT: IN CASE OF N.C. (NO CAL) ON THE DISPLAY IN ALL RANGES THERE IS ONLY ONE WAY TO CALIBRATE THE PM 2525 AND THAT IS FIRST THE COMPLETE COLD CALIBRATION AND THEN THE COMPLETE HOT CALIBRATION!

If the following components have been replaced, parts or the complete hot calibration has to be made.

Component	Hot calibration number
R1334 R1337	NO 42 100 mADC
R1532	NO 19 200 M Ω NO 40 20 M Ω
C1503 R1203, R1204 R1212, R1213 R1216, R1217 R1530, R1533 R1535, R1536 R1537, R1538 R1548.	ALL
N1202 N1501C N1502	
V1500, V1555	
D1201 00302 A1203 000067 D1711 RAM	

In case of hot calibration, the cold calibration has to be done first, in the sequence which is given in section 5.5.7.

After this the hot calibration can be made in the same sequence.

The cold calibration has to be made once a year to quaranty the specification.

YEARLY CALIBRATION

Performance test Calibration cold (complete or parts)

5.2 PERFORMANCE TEST

The meter should be calibrated and in operating condition when you receive it.

The following performance tests are provided to ensure that the meter is in a proper operating condition. If the instrument fails any of the performance tests, then calibration adjustments and / or repair is needed.

To perform these tests, you will need a:

- Fluke 5100B Multifunction Calibrator (or equivalents).
- Philips PM5390 Frequency Generator
- Resistor of 1 MΩ 0.1%.
- Capacitor of 20 nF 0.5%.
- Capacitor of 2 μF 0.5%.
- Philips PM9264/01 four-wire OHM cable.

Each of the measurements listed in the following steps assume the instrument is being tested after a one-hour warmup, in an environment with an ambient temperature of 18 to 28°C, and a relative humidity of less than 80%.

NOTE: All measurements listed in the performance tests tables are made in the initial measuring speeds. These speeds are automatically switched on when the functions are selected (unless otherwise stated).

The ranges of the meter must be selected in the manual ranging mode.

- 1 Power-up the meter and allow it to stabilize for one hour.
- 2. Connect a cable from the Output HI and LO connectors of the Fluke 5100B to the V-·Ω-mA and 0 connectors on the PM2525. Select the function and range on the PM2525 and the input level from the Fluke 5100B using the values listed in the tables. The display should read between the minimum and maximum values listed in the tables.
- 3. In some cases another calibrator source is needed. This is clearly mentioned in the tables.

Performance test 1

PM2525

DC volts

FUNCTION RANGE	RANGE	INPUT	FREQUENCY	DISPL	.AY
	(SPEED 2)	LEVEL		MIN	MAX
V	200 mV	short	*	- 000.02	+000.02
1	200 mV	+199.999 mV	-	+199.94	+200.06
	200 mV	- 199.999 mV	*	- 200.06	- 199.94
į	2 V	+1.99999 V	-	+1.9994	+2.0006
	2 V	- 1.99999 V	-	- 2.0006	+1.9994
	20 V	+10.0000 V		+ 09.996	+10.004
	20 V	+15.0000 V	-	+14.995	+ 15.005
	20 V	+19.9999 V	**	+19.994	+20.006
	20 V	- 10.0000 V		- 10.004	- 09.996
	20 V	- 15.0000 V	-	- 15.005	- 14.995
	20 V	- 19.9999 V	-	- 20.006	- 19.994
	200 V	+199.999 V	А4-	+199.94	+200.06
	200 V	- 199.999 V	**	- 200.06	- 199.94
	2000 V	+0990.00 V	**	+0989.6	+0990.4
	2000 V	- 0990.00 V	-	- 0990.4	- 0989.6

Performance test 2

PM2525

AC volts

FUNCTION	RANGE	INPUT	FREQUENCY	DISPL	AY
14 or 100		LEVEL		MIN	MAX
V ~	200 mV	short	*		<00 0 .16
:	200 mV	199.999 mV	60 Hz *	199.40	200.60
	200 mV	199.999 mV	300 Hz	198.00	202.00
	200 mV	199.999 mV	1 kHz	198.00	202.00
	200 mV	199.999 mV	20 kHz	194.00	206.00
	200 mV	199.999 mV	50 kHz	194.00	206.00
	2 V	1.99999 V	60 Hz *	1.9940	2.0060
	2 V	1.9 9 999 V	300 Hz	1.9800	2. 0 200
	2 V	0 .50000 V	1 kHz	0.4920	0.5080
	2 V	1.00000 V	1 kHz	0.9880	1.0120
TAPP CONTINUES OF THE PROPERTY	2 V	1.99999 V	1 kHz	1.9800	2.0200
Lesingway at the	2 V	1.99999 V	20 kHz	1.9800	2.0200
	2 V	1.99999 V	50 kHz	1.9400	2.0600
	20 V	07.0000 V	60 Hz *	06.966	07.034
	20 V	10.0000 V	60 Hz *	09.960	10.040
	20 V	19.9999 V	60 Hz *	19.940	20.060
	20 V	19.9999 V	300 Hz	19.980	20.200
	20 V	19.9999 V	1 kHz	19.980	20.200
	~ 20 V	19.9999 V	20 kHz	19.980	20.200
	20 V	19.9999 V	50 kHz	19.400	20.600
	200 V	1 9 9.999 √	60 Hz *	1 9 9.40	200.60
	200 V	199.999 V	300 Hz	198.00	202.00
	200 V	199.999 V	1 kHz	198.00	202.00
	200 V	199.999 V	20 kHz	198.00	202.00
	2000 V	0600.00 V	60 Hz *	0596.8	0603.2
v =	2 V	+1.99999 V	-	+1.9940	+2.0060
•	2 V	- 1.99 9 99 V	444	- 2.0060	- 1.9940
	2 V	1. 9 9999 V	60 Hz *	1.9940	2.006 0
	2 V	1.9 9 999 V	20 kHz	1.98 0 0	2.0200

^{*}If the PM2525 is used in a 60 Hz line power environment, use a 70 Hz input level signal.

Performance test 3

PM2525

Vpeak

FUNCTION	FUNCTION RANGE		FREQUENCY	DISPLAY		
		LEVEL		MIN	MAX	
VPU^	2 V 2 V	SHORT +1.99999 V	-	- 0.002 +1.970	+0.002 +2.030	
	20 V	+19.9999 V	**	+19.70	+20.30	
VPLv	2 V	-1.99999 V	•	- 2.030	- 1.970	
	20 V	-19.9999 V	•	- 20.30	- 19.70	
VPU^	2 V 2 V	+1.41400 V +1.41400 V	70 Hz 50 kHz	+1.970 +1.890	+2.030 +2.110	
VPLv	2 V 2 V	-1.41400 V -1.41400 V	70 Hz 50 kHz	- 2.030 - 2.110	- 1.970 - 1.890	
VPU^	200 V 2000 V	+199.999 V +0500.00 V	-	+ 197.0 + 0485	+203.0 +0515	

Performance test 4

PM2525

RTW (Resistance Two-Wire) and RFW (Resistance Four-Wire)

FUNCTION	RANGE	INPUT	FREQUENCY	DISPLAY		
		LEVEL		MIN	MAX	
Ω2W	200 Ω	100 Ω		099.80	100.20	
	2 kΩ	1 kΩ	-	0.9980	1.0020	
	20 kΩ	10 kΩ	-	09.980	10.020	
	$200~\mathrm{k}\Omega$	100 kΩ	**	099.80	100.20	
	2 MΩ	1 ΜΩ	-	0.9940	1.0060	
	20 ΜΩ	10 ΜΩ	-	09.940	10.060	
	200 ΜΩ	100 MΩ*	-	095.0	105.0	

*The Fluke 5100B cannot deliver 100M Ω . Use another external source.

FUNCTION RANGE	INPUT	FREQUENCY	DISPLAY		
	LEVEL		MIN	MAX	
Ω4W**	200 Ω	SHORT	-		<000.08
	200Ω	100 Ω	-	099.80	100.20
	2 kΩ	1 kΩ		0.9980	1.0020
	20 kΩ	10 kΩ	-	09.980	10.020
	200 k Ω	100 kΩ	-	099.80	100.20
	2 MΩ	1 ΜΩ	-	0.9940	1.0060

^{**}Use the four-wire OHM cable PM9264/01.

Connect the PM9264/01 to the PROBE connector of the PM2525 and the HI and LO connectors of the Fluke 5100B.

Remove the leads from the V- Ω -mA and 0 connector of the PM2525.

Performance test 5 PM2525

IDC (DC currents) and IAC (AC currents)

FUNCTION	RANGE	INPUT	FREQUENCY	DISPLA	lΥ
		LEVEL		MIN	MAX
				- 0.0005	+0.0005
A ::-	1 μΑ	open	•		i e
	1 μΑ	+1 μΑ*	•	+0.9985	+1.0015
	1 μΑ	-1 µA*	-	- 1.0015	- 0.9985
	10 μΑ	+10 μΑ*	-	+09.985	+10.015
	100 μΑ	open	_	- 000.04	+000.04
	100 μΑ	+100 μA	-	+099.85	+100.15
	100 μΑ	-100 μA	•	- 100.15	- 099.85
	1 mA	+1 mA	-	+0.9985	+1.0015
	10 mA	+10 mA	-	+09.985	+10.015
	100 mA	+100 mA	-	+099.85	+100.15
	1 A	+1 A	-	+0.9985	+1.0015
	10 A	+1.99999 A	-	+01.993	+02.007

^{*}The Fluke 5100B cannot deliver 1 μ A and 10 μ A accurate enough. To check the ranges connect a 1 M Ω resistor of 0.1 % in series with the HI output of the calibrator. For 1 μ A set the calibrator to +1 V.

For 10	μA set the	calibrator	to	+10	٧	
--------	------------	------------	----	-----	---	--

FUNCTION	RANGE	INPUT	FREQUENCY	DISPL	AY
		LEVEL		MIN	MAX
A ~	10 μΑ	10 μΑ	60 Hz *	09.945	10.055
	100 μΑ	100 μΑ	60 Hz*	099.45	100.55
	1 mA 1 mA	1 mA 1 mA	60 Hz* 200 Hz	0.9945 0.9945	1.0055 1.0055
	10 mA	10 mA	60 Hz*	09.945	10.055
	1 A	50 mA	60 Hz*	0.0483	0.0517

^{*}If a PM2525 is used in a 60Hz line power environment, use a 70 Hz input level signal.

Performance test 6

PM2525

CONT (Continuity), F (Capacitance), °C (Temperature) and Hz (Frequency).

FUNCTION	RANGE	INPUT LEVEL	FREQUENCY	DISPLA MIN	Y MAX								
Cont	CONT	short	,	close +audible	d								
	CONT	open	-	open									
FUNCTION	RANGE	INPUT	FREQUENCY	DISPLA MIN	Y MAX								
		LEVEL		MILA	INNEX								
F	20 nF 2 μF	20 nF * 2 μF *	-	19.780 20.220 1.9780 2.0220									

^{*}Connect external capacitors to the PM2525.

⁻² μF 0.5%

FUNCTION	RANGE	INPUT	FREQUENCY	DISPLAY	•
		LEVEL		MIN	XAM
°C	∘C	100 Ω**	~	-000.3	+000.3

^{**}Use the four-wire OHM cable PM9264/01.

Connect the P9264/01 to the PROBE connector of the PM2525 and the HI and LO connectors of the Fluke 5100B.

Remove the leads from the V- Ω -mA and 0 connector of the PM2525.

FUNCTION	RANGE	INPUT	FREQUENCY	DISPLAY	1
	(Speed2)	LEVEL		MIN	MAX
Hz	100 kHz 1 MHz 1 MHz	2 Vpp*** 2 Vpp*** 2 Vpp***	100 kHz 1 MHz 10 MHz	099.97 0.9997 00.997	100.03 1.0003 01.003

^{***}Use the PM5390 Frequency Generator as calibrator.

⁻²⁰ nF 0.5%

5.3 PREPARATIONS FOR CALIBRATION

5.3.1 Preparations for manual adjustment.

Hardware adjustments only must be made if components have been replaced.

For hardware adjusting No 1 to 9, the instrument must be opened (see chapter 4).

Before starting measuring and adjusting the diodes V1354,V1355,V1350 and V1351 must be covered because the light has influence on the measuring data.

For adjusting No 2 use a measuring lead with an build-in resistor of 14 kohm.

5.3.2 Preparations for electronic calibration.

In case of cold calibration the ambient temperature and the temperature of the instrument must be between +20 and $+26^{\circ}\text{C}$ +/ -1°C In case of hot calibration the ambient temperature and the temperature of the instrument must be between +33 and $+40^{\circ}\text{C}$ +/ -5°C Be sure the instrument is closed. In fig. 5.3 examples are shown to control the instrument.

5.3.3 Following instruments and accesories can be used for calibration.

Calibrator
Frequency generator
Interface IEC-625 <-> IIC
Four wire measuring lead
Calibrator for 100Mohm
Resistor 1 Mohm +/-0.1%
Oven for hot calibration

(eg. FLUKE 5100)

(eg. PM5390)

(eg. PM9181)

(eg. PM9264/01)

(eg. FLUKE 5700)

Manual control

Computer control with IEC-625 or RS232C/V24 interface.

Different ways of how to control the PM2525

5.4 COARSE ADJUSTMENTS (open instrument, only if components have been replaced)

Overview

Adj.number	Adjustment	***************************************
1 2 3 4 5 6 7	2 Vpp Iref. ADC 000067A I compensation 1 mA 1 uA 2 V ~ 20 V ~	R4 R1214 R3 R1316 R1311 C1105 C1108
8	200 V ~	CILLI

MEASURING POINT	HI = N1501/9 LO = X 27	V1706 V1705 V1705 V1706 P1500 V1706 P1500
MEASURING DATA	< 10 mV ± 0.1%	CIETY CIET
INPUT SIGNAL	Short circuited input.	V1503 1503 1503 1503 1503 1503 1503 1503
PREPARATIONS	Instrument set in position VPP. 2V. Use a PM2528.	01732 9 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ADJUSTING ELEMENT	R4 adjust resistor (MR25 1% E48 series)	1/9-X27 R4< 5 mV 3M6< 7 mV 2M4< 9 mV 1M8< 11 mV 1M5< 13 mV 1M2< 15 mV 1M< 17 mV 1090k< 21 mV 750k< 21 mV 681k< 25 mV 681k< 25 mV 619k< 25 mV 631k< 25 mV 619k< 25 mV 619k
ADJUSTMENT	VPP range 2V	
^o N	printed.	U N15(>= 3. >= 5. >= 7. >= 11 >= 13 >= 17 >= 17 >= 11 >= 12 >= 12 >= 21 >= 23 NOTE:

ST5463 900412

Adjusting the 000067A

No	ADJUSTMENT	ADJUSTMENT ADJUSTING ELEMENT	PREPARATIONS	INPUT SIGNAL	MEASURING DATA	MEASURING POINT
2	Reference current ADC 0Q 0067A	R1214 adjust resistor 5k62 < R > 28k7 (MR25 1% E48 series)	Instrument set in position V AUT Use PM2528 and a help resistor,	Open input	+143uA +/- 0.5uA	HI = X31 LO = D1203/12

NOTE: When measuring and adjusting in an open instrument the diodes V1354, V1355, V1350, V1351 must be covered, to eliminated the influence of light.

5.4.2

Input current compensation

MEASURING POINT	
MEASUR	Display Display
MEASURING DATA	Ushortcircuit input Uopen input
INPUT SIGNAL	- Shorteircuit input - Open input
MENT PREPARATION INPUT SIGNAL	Select Vdc Range 200 mV Speed 2 Shortcircuit input Press ZERO
No. ADJUSTMENT ADJUSTMENT ELEMENT	R3 adjust resistor (MR25 1% E48 series) 150kΩ < R < 1MΩ
ADJUSTMENT	l input
Š	ဇ

$$R3 = \frac{200}{U_{\text{sh. input}} - U_{\text{open input}}} \times 100 k\Omega$$

$$[U_{\text{shortcircuit input}}] = mV$$

$$[U_{\text{open input}}] = mV$$

If R3 > 1 M
$$\Omega$$
, no resistor should be installed

NOTE: When measuring and adjusting in an open instrument the diodes V1350, V1351, V1355, V1354, must be covered to eliminate the influence of light

FINE ADJUSTMENT (Open instrument, only if components have been replaced) 5.5

5.5.1 Fine adjustment DC current

No		ADJUSTMENT ADJUSTING ELEMENT	PREPARATIONS	INPUT SIGNAL	INPUT SIGNAL MEASURING DATA	MEASURING POINT
7	IDC range lmA	Potentiometer R1316	Instrument set in position A ::: lmA use a PM2528 see figure below	Open input	< 10 uV :-:	HI = D1201/13 LO = D1201/6 see figure below
7.7	IDC range luA	Potentiometer R1311	Instrument set in position A luA	Open input	< 20 uV:	HI = D1201/13 LO = D1201/6

5.5.2 Fine adjustment AC voltage

EMENT 5 pacitor 18 pacitor 1	PREPARATIONS Instrument set in position 2 V.	INPUT SIGNAL	MEASURING DATA	MEASUKING FOINT
Trimmer C1105 see table l see table 1 Trimmer C1108 Trimmer C1108 see table 2 Trimmer C1108 Trimmer C1108 See table 2	r in	1.7 V 60 Hz		
Trimmer C1108 Removable capacitor see table 2 Trimmer C1111		4/- 0.08%	XXXXX	See display
Trimmer C1108 Removable capacitor see table 2 Trimmer C1111 Removable capacitor		1.7 V 2 kHz +/- 0.08%	xxxxx + 40 dig.*	See display
rimmer Cllll Removable capacitor	Instrument set in position 20 V.	17 V 60 Hz +/- 0.2%	XXXXX	See display
Trimmer C1111 ge 200 V Removable capacitor		17 V 1 KHz +/- 0.2%	xxxxx + 40 dig.*	See display
	Instrument set in position 200 V.	170 V 60 Hz +/- 0.2%	XXXXX	See display
see table 3		170 V 1 kHz +/- 0.2%	XXXX	See display

NOTE: make the two values (xxxxx) the same with the adjusting elements

* = without the screening

		DEVIATION IN DIGITS	039	4076	77112	113153	1	į	232268	1	298326	327363	1	401443	į	- 1	1	563612	į	ļ	i	742785	į	ĺ	į	i	- 1	9731012	1	10531099	11001145	11461186	11871227	12281274
	1114	C1112		×		×		×		×	×	×		×		×		×		×		×		×	*********	×		×	•	×		×		×
TABLE 3	TRIMMER C 1	C1113			×	×			×	×	×		×	×			×	×			×	×			×	×			×	×			×	×
	TRIM	C1114					×	×	×	×	×	×			×	×	×	×					×	×	×	×					×	×	×	×
SATANCE CONTRACTOR AND STREET, CONTRACTOR STREET, C	Annahila i Mariana	Cd 119											×	×	×	×	×	×									×	×	×	×	×	×	×	×
		C1117																	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
	T			7										1	***************************************									ısı										

TABLE 1 (1.7V)	TRIMMER C 1105	DEVIATION IN COUNTS	0623 6241400
		C1106	×

Ä
8
H
11
×

TABLE 2 (17V)	TRIMMER C 1108	09 DEVIATION IN COUNTS	0420	421812	8131223	12241710
		S		×		×
		C1118 C1109			×	×

X = REMOVE

Note: Before using table 3 check C1223. It must be 1.5 nF. C1125 must be mounted.

NOTE: When measuring and adjusting in an open instrument the diodes V1354, V1355, V1350, V1351 must be covered, to eliminated the influence of light.

- 5.6 ELECTRONIC CALIBRATION COLD AND HOT.
- 5.6.1 How to switch on the cold calibration mode by manual control.

Cold calibration has to be made at a room temperature of +20 to +26^oC +/-1^oC. Before calibrating the instrument check if the instrument mains frequency is set correct.

How to select the calibration enable mode.

To make it possible to calibrate the instrument it has to be set in the calibration enable mode. This may be done by pressing the switch "CAL" and "RESET" (pencil-point operation) simultaneously and then release the "RESET" switch before releasing the "CAL" switch. Now the instrument is set in the calibration enable mode. In the display CAL appears. Press "SHIFT CHECK O ENTER".

Now the instrument is set in the mode "CAL O" which means calibration cold.

Select the range and function which need to be calibrated. When the display shows a value followed by "nA" this means, this range cannot be calibrated (not applicable).

After supplying the signal to the input terminals, start calibration by pressing the "ZERO" key. In a few seconds appears on the diplay the calibrated value followed by "r", this means, calibration ready. If "FAIL" is shown, the calibration has failed and has to be repeated. Pressing the "RESET" switch or POWER ON/OFF will return to normal measuring.

See also next page: Flowchart for electronic calibration by manual control.

Example of instruments and accessories for cold calibration by manual control.

Flow-chart for electronic calibration by manual control

5.6.2 How to switch on the cold calibration mode by computer control

> Cold calibration must be made at a temperature of +20 to +26°C $+/-1^{\circ}C.$

Selecting of range and function must be done by a controller with IEEE-488 interface (IBM compatible e.g. P3100)

When using an PM9181 as IEEE-488 interface for the PM2525, make a help set (see page 5-31) to connect the interface plug and the four wire ohm cable at the same time to the instrument.

Before calibrating the instrument check if the instrument mains frequency is set correct.

To make it possible to calibrate the instrument, it has to be set in the calibration enable mode.

This may be done by pressing the switch "CAL" and "RESET" (pencilpoint operation) simultaneouly and then release the "RESET" switch before releasing the "CAL" switch.

Now the instrument is set to the calibration enable mode. In the display "CAL" appears.

COMMANDS

5.6.3

CAL ON.O select calibration cold CAL OFF switch off the cal mode, back to cal enable * CAL OFF (second) switch off cal enable mode, back to normal measuring. gives the actual cal mode (eg CAL ON, 0 or CAL OFF)

After sending the command "CAL ON ,0" the instrument is set in the mode calibration cold.

Now select the range and function which need to be calibrated by sending the corresponding commands.

If the display shows a value followed by "nA" this means this range cannot be calibrated (not applicable).

After supplying the signal to the input terminals, send the command "TRG B,X". This command will start the calibration.

In a few seconds on the display appears the calibrated value followed by "r ", which means calibration ready.

If "FAIL" is shown the calibration has failed and has to be repeated. Sending the command "CAL OFF" once, will set the instrument in the calibration enable mode. Sending the command "CAL OFF" the second time, the instrument will disable the calibration enable mode and return to normal measuring.

Page 5-23 shows an example of an calibration set-up. See also page 5-22: Flow-chart calibration by computer control.

- * In the calibration enable mode the display shows processed zero point calibration values for test purposes. Refer to chapter 6.3 Trouble shooting.
- How to switch on the hot calibration by manual control Hot calibration have to be made at a temperature of +33 to +40°C +/-5°C. The best way is to do this in an oven. The warming-up time for hot calibration is one hour (instrument in the oven at the correct temperature, power on).

During calibration, keep the door of the oven closed as much as possible, otherwise there is a lot of temperature loss every time the oven will be opened.

Before calibrating the instrument check if the instrument mains frequency is set correct.

To make it possible to calibrate the instrument, it has to be set in the calibration enable mode.

This may be done by pressing the switch "CAL" and "RESET" (pencil-point operation) simultaneously and then release the "RESET" switch before releasing the "CAL" switch.

Now the instrument is set in the calibration enable mode. In the display "CAL" appears.

Press "SHIFT CHECK 1 ENTER" and the instrument is set in the mode "CAL 1" which means calibration hot.

Select range and function which need to calibrate, when the display will show a value followed by "nA "this means not applicable.

After supplying the signal to the input terminals press the ZERO key, and calibration is started.

In a few seconds on the display appears the calibrated value followed by "r ", which means calibration ready.

If "FAIL" is shown the calibration has failed and has to be repeated.

Select next function and range and calibrate as above described.

5.6.4 How to switch on the hot calibration by computer control

Hot calibration has to be made at a temperature of +33 to $+40^{\circ}$ C $+/-5^{\circ}$ C. The best way is to do this in an oven.

The warming-up time for hot calibration is one hour (instrument in the oven at the correct temperature, power on).

During calibration, keep the door of the oven closed as much as possible, otherwise there is a temperature loss every time the oven will be opened.

Selecting of range and function may by done by controller with a IEEE-488 interface (IBM compatible eg P3100).

When using an PM 9181as IEEE-488 interface for the PM2525, make a help set (see page 5-31) to connect the interfase plug and the 4 wire ohm cable at the same time to the instrument.

Before calibrating the instrument check if the instrument mains frequency is set correct.

To make it possible to calibrate the instrument, it has to be set in the calibration enable mode.

This may be done by pressing the switch "CAL" and "RESET" (pencil-point operation) simultaneouly and then release the "RESET" switch before releasing the "CAL" switch.

Now the instrument is set to the calibration enable mode. In the display "CAL" appears.

COMMANDS

CAL_ON, l select calibration hot
CAL_OFF switch off the cal mode, back to cal enable *
CAL_OFF (second) switch off cal enable mode, back to normal measuring.
CAL_? gives the actual cal mode (e.g. CAL_O or CAL_OFF)

After sending the command "CAL_ON,1" the instrument is set in the mode calibration hot.

Now select the range and function which need to calibrated by sending the corresponding commands.

If the display shows a value followed by "nA" this means this range cannot be calibrated (not applicable).

After supplying the signal to the input terminals, send the command "TRG B,X". This command will start calibration.

In a few seconds appears on the display the calibrated value followed by "r ", which means calibration is OK.

If "FAIL" is shown the calibration has failed and has to be done again.

Sending the command "CAL OFF" once, the instrument is set in the calibration enable mode. Sending the command "CAL OFF" the second time, the instrument will disable the calibration enable mode and returns to normal measuring.

See also page 5-22: Flow-chart calibration by computer control.

* In the calibration enable mode the display shows processed zero point calibration values for test purposes. Refer to chapter 6.3 Trouble shooting.

Flow-chart for electronic calibration by computer control

Example of instruments and accesories for cold calibration by computer control

5.6.5 Calibration of the 1 uA and 10 uA ranges

The DC current ranges 1 uA and 10 uA of the FLUKE 5100 B calibrator are not accurate enough to calibrate the PM2525 To calibrate these two uA ranges connect a resistor of 1 M between the HI output of the FLUKE 5100 B en the HI input of the PM2525. Connect the low output of the FLUKE 5100 B to the LO input of the PM2525.

Use undermentioned table for correct input signals.

No	PREPARATION	CALIBRATING RANGE	OUTPUT SIGNAL 5100 B	INPUT SIGNAL PM2525	DISPLAY AFTER CALIBRATION
11		1 uA		open input	0.000 ruA
20	1 ΜΩ	l uA	+ 1 V	l uA	1.0000 ruA
21	1 ΜΩ	10 uA	+10 V	10 uA	10.000 ruA

Calibration table for DC uA ranges.

5.6.6 Calibration overviews

5.6.6.1 Cold/Hot calibrations

Adj.No	Adj		Cold	Hot
10 11 12a 12b 13 14a 14b 14c 15	1 MHz 1 uA DC 100 uA DC 1 A DC 20 nF 200 ΩTW 2 kΩTW 200 ΩTW 2 kΩFW	f.s. zero (open) zero (open) zero (open) zero (open) zero zero zero l $k\Omega$	x x x x x x x	- x x x x x x x
16 17 18 19 20	20 kΩFW TDC TDC 200 MΩTW 1 uADC	10 kΩ 0Ω 100Ω 100 MΩ 1 uA	x x x x	x x x x x
21 22 23 24 25 26 27 28 29 30	10 uADC 1 ADC 200 m VDC 2 VDC 20 VDC 200 VDC 2 VPU 2 VPL 200 mVDC 2 VDC	10 uA 1 A zero zero zero zero zero zero 200 mV 2 V	x x x x x x x x	x x x x x x x x x x
31 32 33 34 35	20 VDC 20 VDC 2 VPU 2 VPL 200 mVAC	20 V -20 V 2 V -2 V 20C mV/60Hz	x x x x x	x - x x
36 37 38 39 40	2 VAC 20 VAC 200 kΩ 2 MΩ 20 MΩ	2 V /60Hz 20 V /60Hz 100 kΩ 1 MΩ 10 MΩ	x x x x x	x - x x x
41 42 43 44 45	1 mADC 100 mADC 1 mAAC 200 VAC 2000 VAC	1 mA 100 mA 1 mA /60Hz 200 V /60Hz 600 V /60Hz	x x x x x	x x x
46 47	200 VDC 2000 VDC	200 V 1000 V	x x	

5.6.6.2 Calibration cross-reference of related ranges

Nr.	Function	Range		old Full scale	I .	ot Full scale
23/29 24/30 25/31 32 26/46 47	VDC VDC VDC VDC VDC VDC	200 mV 2 V 20 V -20 V 200 V 2000 V	х х х х	x x x x x x	x x x	x x x
35 36 37 38 45	VAC VAC VAC VAC VAC	200 mV 2 V 20 V 200 V 2000 V	•	x x x x		x
28/34 2733	VPL VPU	2 V 2 V	x x	x x	x x	x x

[!] Input value is not full scale.

			C	old	Н	ot
Nr.	Function	Range	Zero sc a le	Full scale	Zero scale	Full scale
14c	RFW	200Ω	Х	•	х	•
15	RFW	$2 k\Omega$		$\mathbf{x}!$		x!
16	RFW	20 kΩ	•	x!	•	x!
14a	RTW	200Ω	x		x	
14b	RTW	2 kΩ	х		x	
38	RTW	200 kΩ		x!		x!
39	RTW	2 MΩ	•	$\mathbf{x}!$		x!
40	RTW	20 MΩ		$\mathbf{x}!$	•	x!
19	RTW	200 MΩ	•	x!		x!
17/18	TDC	-100.°C +850°C	×	x !	х	x
11/20	IDC	l uA	x	×	×	x
21	IDC	10 uA		×		×
12a	IDC	100 uA	×		×	
41	IDC	1 mA	•	×		×
42	IDC	100 mA		×		×
22/12b	IDC	1 A	x	×	×	x
43	IAC	l mA	•	×		x
13	CAP	20 nF	X	•	•	

[!] Input value is not full scale.

5.6.7 Calibrationtable

5.6./	Calibration	T	T		£	**************************************
Nr.	Function	Range	Input signal	Display before calibration	Display before calibration	Remarks
10*	Hz (only cold)	1 MHz	1 MHz 2 Vpp ±2 Hz	1.00000 CMHz	1.00000 rMHz	
11	IDC	1 μΑ	open input	1.0000 CμΑ	0.0000 rμA	
12a	IDC	100 μΑ	open input	100.00 CμΑ	000.00 rμΑ	
12b	IDC	1 A	open input	1.0000 CA	0.0000 rA	
13*	F (only cold)	20 nF	open input	20.000 CnF	00.000 rμF	
14a	RFW	200 Ω	0 Ω	200.00 CΩ	000.00 rΩ	Use 4 wire cable
14b	RTW	2 kΩ	0 Ω	1.0000 CkΩ	0.0000 rkΩ	
14c	RFW	200 Ω	0 Ω	200.00 cΩ	000.00 rΩ	
15	RFW	2 kΩ	1 kΩ ±0.04%	1.0000 CkΩ	1.0000 rkΩ	Use 4 wire cable
16	RFW	20 kΩ	10 kΩ	10.000 CkΩ	10.000 rkΩ	
			±0.04%			Use 4 wire cable
17	TDCΩ	- 246°C	0 Ω	000.0 C°C	-246.8 r°C	Use 4 wire cable
18	$TDC\Omega$	0 °C	100 Ω	000.0 C°C	000.0 r°C	
		AvvenmentAsterium in Avstaterium in	±0.1%			Use 4 wire cable
19	RTW	200 MΩ	100 M Ω ±1%	100.0 ΜΩ	100.0 rMΩ	
20	IDC	1 μΑ	1 μA ±0.03%	1.0000 CµA	1.0000 rμA	
21	IDC	10 μΑ	10 μA . ±0.03%	10.000 CμΑ	10.000 rμA	
22	IDC	1 A	1 A ±0.03%	1.0000 CA	1.0000 rA	
23 24	VDC VDC	200 mV 2 V	0	200.000 CmV	000.00 rmV	
25	VDC	20 V	0	2.00000 CV 20,00000 CV	0.00000 rV 00.0000 rV	
26	VDC	200 V	0	200.000 CV	00.000 rV	
27	VPU	2 V	lő	2.000 CVP~	0.000 rVP~	
28	VPL	2 V	0	2.000 CVP~	0.000 rVP~	
29	VDC	200 mV	200 mV ±0.006%	200.000 CmV	+200.000 rmV	
30	VDC	2 V	2 V ±0.006%	2.00000 CV	+2.00000 rV	
31	VDC	20 V	20 V	20. 0 000 CV	+20. 0 00 0 rV	
32*	VDC (only cold)	20 V	-20 V . ±0.006%	20.0000 CV	-20.00 00 rV	
33	VPU	2 V	2 V ±0.3%	2.000 CVP^	2.000 rVP^	
34	VPL.	2 V	±0.3% ±0.3%	2,000 CVPv	2.000 rVPv	
35*	VAC (only cold)	200 mV	200 mV 60 Hz ±0.08%	200.00 CmV~	200.00 rmV~	

connect $100M\Omega$ via an external source (Fluke 5700)

Nr.	Function	Range	Input signal	Display before calibration	Display after calibration	Remarks
36	VAC	2 V	2 V 60 Hz ± 0.08%	2.0000 CV ~	2.0000 rV ~	
37*	VAC (only cold)	20 V	20 V 60 Hz ± 0.08%	20.000 CV ~	20.000 rV ~	
38	RTW	200 kΩ	100 kΩ ± 0.04%	100.00 CkΩ	100.00 rkΩ	
39	RTW	2 ΜΩ	1 MΩ ± 0.14%	1.0000 CMΩ	1.0000 rMΩ	
40	RTW	20 ΜΩ	10 MΩ ± 0.14%	10.000 CMΩ	10.000 rMΩ	
41	IDC	1 mA	1 mA ± 0.03%	1.000 0 CmA	1.0000 rmA	
42	IDC	100 mA	100 mA ± 0.03%	100.00 CmA	100.00 rmA	
43	IAC	1 mA	1 mA 60 Hz ± 0.11%	1.0000 CmA	1.0000 rmA	
44	VAC	200 V	200 V 60 Hz ± 0.08%	200.00 CV	200.00 rV	
45*	VAC (only cold)	2000 V	600 V 60 Hz ± 0.1266%	0600.0 CV	0600.0 rV	
46*	VDC (only cold)	200 V	200 V ± 0.006%	200.000 CV	200.000 rV	
47*	VDĆ (only cold)	2000 V	1000 V ± 0.008%	1000.00 CV	1000.00 rV	

Example of calibration set up for Hz

Example of calibration set up for 1 ua DC and 10 ua DC $\,$

Example of calibration set up for 1 A DC $\,$

Example of calibration set up for RFW and TDC $\,$

Example of calibration set up for VDC, VP+, VP-, VAC, RTW, IAC and some ranges of IDC

5.6.8 Calibration accessories

Connections of the help set

pin 1 of X3 to pin 1 of X1 and X2 pin 2 of X3 to pin 2 of X1 and X2 pin 3 of X3 to pin 3 of X1 and X2 pin 4 of X3 to pin 4 of X1 and X2 pin 5 of X3 to pin 5 of X1 and X2 pin 6 of X3 to pin 6 of X1 and X2 pin 7 of X3 to pin 7 of X1 and X2 pin 8 of X3 to pin 8 of X1 and X2

Helpset

Measuring cable for RFW (Resistance Four Wire) and TDC (Temperature Degree Celcius).

5.7 ADJUSTING THE LIQUID CRYSTAL DISPLAY

The PCF 8576 is a circuit designed to drive a Liquid Crystal Display with up to 160 segments. A 2-line IIC bus structure enables serial data transfer with the microcomputer.

A LCD is a AC device. Therefore, for multiplexing, the information of the segment line is important for each segment that will be driven by that line.

The reference voltage for the driver is obtained from transistor V 2102 and zener diode V 2101.

To change the viewing angle the reference voltage can be adjusted with potentiometer R 2105.

6. CORRECTIVE MAINTENANCE

6.1 SPECIAL PARTS

In addition to the standard electronic components, some special components are used:

- Components, manufactured or selected by Philips to meet specific performance requirements.
- Components which are important for the safety of the instrument.

ATTENTION: Both type of components may only be replaced by components obtained through your local Philips organisation or representative. These components have been marked in the Parts List by a *.

6.2 TROUBLESHOOTING

BUILT IN TESTS

TEST 1 Direct measuring mode without processing of the measuring results.

Description:

In the normal measuring mode the measuring results are processed.

In the direct measuring mode the following process functions are left out.

- Calibration values are not processed.

Remark: The measuring result is not accurate.

- No auto zero of the analog to digital convertor. Signal AZC (Al203/13) on the ADC is not active.
- No offset control of the pre-amplifier/bufffer (signal OVCP A1201/22) and offset control of the RMS-convertor (signal A1201/23).
- No measuring of the internal temperature after xmeasurements.

The internal temperature is measured in the Vpeak configuration via transistor V1500.

How to switch: Press push button S1701 while measuring.
on the test The switch is situated on the mother board (little white knob).

When to use: Use the test when the PM2525 has a hang-up. the test
All the important conditional jumps are skipped.

TEST 2 Show deviation in processed zero point calibration values.

Description: At shortcicuited input the PM2525 will show the processed zero point calibration values. These values may have positive or negative polarity sign, also for not polarity related functions such as function OHM.

Example: Suppose the zero point of OHM is calibrated with +10 digits due to a bad connection, and this is accepted by the PM2525 (calibration passed) In the normal measuring mode this +10 digits is calculated in the measuring result and not shown. In TEST 2 the PM2525 does not calculate with the zero point calibration

At a correct zero point connection the display will show in this case -10 digits in the function OHM.

How to switch: The test is active in the CALibration enable mode. on the test With the two switches on the front (CAL and RESET) the CALibration enable mode is switched on.

WARNING: DONOT USE THE MEASURING RESULTS IN THE CALIBRATION ENABLE MODE AS NORMAL MEASURING RESULTS FOR E.G. A CALIBRATION LIST PRINT-OUT.

When to use: Alinearity errors may be caused by a incorrect zero the test. point calibration. Test 2 allows to trace this.

Alinearity may be caused in the following functions: OHM-2W, OHM-4W, Vp+, Vp-, Vpp, F, Vac, Vac+dc, Aac.

TEST 3 Testing the motor circuit

I CONTACTS ARE INPUT SWITCHES FOR THE ANALOG SECTION S CONTACTS ARE SWITCH POSITION CONTACTS

FUNCTION	switch co	NTACT	NAME	SWITCH CONTACT POSITION
Hz.Hz HLRES	13	-	FHRZ	538
V~, V _{pp}	15	U2	FVAC	S35
Vm.,Vm. HIRES	16	U2	EADC	534
$v = v_p + v_p - v_s$				
Ω2W, □, F, →	19,110	U4	FRTW	539
52 4 W , °C	18,111	U4	FREW	\$40
A~,A=	13,14	U1	FIHI	537
mA∼, mA.==	12	U1	FILO	\$36

The motor can run on two speeds:

SPEED 1 = FAR FROM THE SELECTED FUNCTION SPEED 2 = CLOSE TO THE DESIRED FUNCTION

If the motor is forced by hand to the left, it will try to run to the right.

If far from the selected function: (Measured on motor RED=HI, BLUE=LO)

,	
3	
1	
, market (1997)	

7. SAFETY IN SPECTION TESTS AFTER REPAIR AND MAINTENANCE IN THE PRIMARY CIRCUIT

7.1 GENERAL DIRECTIVES

- Take care that the creepage distance and clearances have not been reduced.
- Before soldering, the wires should be bent through the holes of solder tags, or wrapped around the tag in the form of an open U, or Wiring ridigity shall be maintained by cable clamps or cable lacing.

- Replace all insulating guards and plates.

7.2 SAFETY COMPONENTS

Components in the primary circuit may only be replaced by components selected by Philips.

7.3 CHECKING THE PROTECTIVE EARTH CONNECTION

The correct connection and condition is checked by visual control and by measuring the resistance between the protective lead connection at the plug and the cabinet/frame. The resistance shall not be more than 0,5 Ohm. During measurements the mains cable should be removed. Resistance varations indicate a defect.

7.4 ADAPTION TO THE LOCAL MAINS VOLTAGE (115/230V)

The PM2525 can be altered to another mains voltage. To alter proceed as follows:

- Remove the topcover and top screening (Refer to chapter 4)

PM2525/0.. PM2525/2.. /5.. /6.. /7.. ONE MAINS TRANSFORMER TWO MAINS TRANSFORMERS

Place jumpers and short-circuitwire in the correct position.

Remark: For both 115 V and 230 V the same mains fuse can be used. 630 mAT/250 V DIN 41571.

7.5 ADAPTION TO THE LOCAL MAINS FREQUENCY (50/60 Hz)

In the "CHECK" function the instrument can be adapted to the local mains frequency.

Proceed as follows:

50 Hz to 60 Hz

Press	SHIFT CHECK	1	ENTER
Display action	6 0 H0	60 HI	Measuring

60 Hz to 50 Hz

Press	SHIFT CHECK	0	ENTER
Display action	60 H1	60 HO	Measuring

8. PARTS LIST

Different type numbers PM2525.

8.1 MECHANICAL PARTS

D	description	Serv. Code	QTY.	FIG.	ITEM
8.1.1	POWER				
M F M T M M M	MAINS INPUT CONNECTOR 2P MAINS INPUT CONNECTOR 2P+EARTH MUSE 630MAF FOR MAINS MAINS TRANSFORMER (T301,T401, T1601) MERMAL FUSE MAINS CABLE 2P MAINS CABLE 2P+EARTH MAINS CABLE USA 2P MAINS CABLE USA 2P+E MAINS CABLE USA 2P+E MAINS CABLE CH 2P MAINS CABLE CH 2P MAINS CABLE CH 2P+E MAINS CABLE UK 2P+E MAINS CABLE UK 2P+E	5322 265 51192 5322 265 20372 4822 070 36301 5322 146 10241 5322 252 20117 5322 321 23296 5322 321 23297 5322 321 10643 5322 321 10644 5322 321 10682 5322 321 10679 5322 321 10681	T T T T T T T T T T T T T T T T T T T	0 0 0 0	24 24 4 23 5
8.1.2	MOTOR ASSEMBLY				
R S R P M G	COVER GEARWHEEL SOTOR INSULATION SLIDE ROTOR ASSEMBLY SOTOR CLIP RING TO BOARD RING MOTOR GEARWHEEL (small) SEAR WHEEL (big) MOTOR	5322 447 91791 5322 466 91519 5322 362 20226 5322 532 60932 5322 532 51932 5322 522 32384 5322 522 32463 5322 361 21338	1 1 1 1 1 1	0000000	14 15 17 16 18 19 20 21
8.1.3	FLAT CABLES				
IN D M O	GALVANIC SEPARATION TO NTERFACE PCB DISPLAY PCB TO MAIN PCB MAIN PCB TO GALVANIC SEP. DR BATTERY BOARD CONNECTOR CLAMP	5322 321 60666 5322 321 21307 5322 321 21585 5322 401 11156	1 1 4	D D D	25 7 31 26
8.1.4	DISPLAY				
L	VINDOW CD INTERCON.RUBBER CD	5322 450 60633 5322 267 50753 5322 130 90454	1 1 1	8 8 8	11 12 13
8.1.5	CABINET				
F	DISTANCE PIECE PLASTIC OOT-BOTTOM OOT-REAR BREY:	5322 535 92416 5322 462 41278 5322 462 41201	4 4 2	D A D	10 9 8
B	OPCOVER SOTTOM COVER FRONT ASSEMBLY	5322 447 91905 5322 447 91899 5322 447 91901	1 1	A A A	29 28 30

	HANDLE ASSI	EMBLY	5322 498 50323	1	Α	31
	PUSHBUTTON		5322 414 60738	5	В	26
	PUSHBUTTON		5322 414 20315	10	В	26
	PUSHBUTTON		5322 414 60741	1	В	26
		BATTERY VERSION	5322 447 92085			
	MUSHROOM:					
	TOPCOVER		5322 447 91527	1	Α	29
	BOTTOM COV	/FR	5322 447 91447	1	Α	28
	FRONT ASSE		5322 447 91446	VERV. 1	Α	30
	HANDLE ASSE		5322 498 54105	1	Α	31
	PUSHBUTTON		5322 414 20031	15	В	26
	PUSHBUTTON		5322 414 60146	1	В	26
	USA /02:	V Can tour				
	TOPCOVER		5322 447 91528	1	Α	29
	BOTTOM COV	ER	5322 447 91525	1	Α	28
	FRONT ASSE		53 22 447 91524	1	Α	30
	HANDLE ASSE		5322 498 50306	1	Α	31
	PUSHBUTTON		5322 414 20263	10	В	26
	PUSHBUTTON		5322 414 20244	5	В	26
	PUSHBUTTON		5322 414 20245	1	В	26
8.1.6	MISCELLA	NEOUS				
0.1.0	1813005555					
	IC SOCKET 24	I-P	5322 255 40248	1		
	IC SOCKET 28	3-P	5322 255 44047			
	IC SOCKET 40)-P	5322 2 5 5 44217	1		
	SCREWDRIVE	R TORX T10	5322 395 50381			
	SCREW BOTT	OM TORX	5322 502 50017	4		
8.2	ELECTRICA	L PARTS				
8.2.1	Motherbao	rd A1000				
		FUSE HOLDER A-FUNC	CTION	5 32	22 256 34	1102
		CAP FUSE HOLDER A-		532	22 462 44	1478
		FUSE 630MAT FOR A-F		482	22 070 16	301
	CAPACITORS					
	CAFACITORS					
	0.4455	0.4.5	OO/ CODE	500	0.400.00	വരമ

CAPACITOR	S		
C 1100	CAP.	2% 56PF	5322 122 32982
C 1101	CAP.FOIL	400V 10% 33NF	5322 121 44025
C 1102	CAP.	2% 56PF	5322 122 32982
C 1103	CAP.	2% 56PF	5322 122 32982
C 1104	CAP.CERAMIC	2% 33PF	4822 122 32193
C 1105	CAP.TRIMMER CAP.CERAMIC CAP.FOIL CAP.TRIMMER CAP.CERAMIC	160V 5PF	5322 125 50352
C 1106		0.25PF 3.9PF	5322 122 34107
C 1107		250V 1% 1NF	4822 121 50566
C 1108		300V 4/40PF	5322 125 50058
C 1109		2% 27PF	4822 122 30045
C 1110	CAP.FOIL CAP.TRIMMER CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	63 V 1% 10NF	5322 121 54154
C 1111		300 V 4/40PF	5322 125 50058
C 1112		2% 27PF	4822 122 30045
C 1113		2% 56PF	4822 122 32027
C 1114		2% 120PF	4822 122 31348

C 1115	CAP.FOIL CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	63V 10% 100NF	5322 121 42386
C 1116		-20+50% 10NF	4822 122 31414
C 1117		10% 470PF	5322 122 32311
C 1118		2% 56PF	4822 122 32027
C 1119		2% 220PF	5322 122 32346
C 1120	CAP.CERAMIC	10% 4.7NF	4822 122 31125
C 1121	CAP.	2% 56PF	5322 122 32982
C 1122	CAP.FOIL	63V 10% 220NF	4822 121 42408
C 1123	CAP.CERAMIC	10% 1.5NF	5322 122 31169
C 1124	CAP.	2% 56PF	5322 122 32982
C 1125	CAP. CAP.CERAMIC CAP.FOIL CAP.CERAMIC CAP.FOIL	2% 12PF	4822 122 31196
C 1200		2% 220PF	5322 122 32346
C 1201		100V 10% 33NF	5322 121 42489
C 1202		2% 100PF	4822 122 31316
C 1203		63V 10% 470NF	4822 121 51252
C 1204	CAP.FOIL CAP.CERAMIC CAP.CERAMIC CAP.FOIL CAP.CERAMIC	63V 10% 100NF	5322 121 42386
C 1205		2% 390PF	4822 122 32121
C 1206		2% 390PF	4822 122 32121
C 1207		100V 10% 47NF	4822 121 43526
C 1208		2% 47PF	4822 122 31072
C 1209	CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	2% 33PF	5322 122 32072
C 1210		2% 10PF	4822 122 32185
C 1211		2% 33PF	5322 122 32072
C 1212		-20+50% 10NF	4822 122 31414
C 1213		-20+50% 10NF	4822 122 31414
C 1214	CAP.CERAMIC CAP.FOIL CAP.FOIL CAP.CERAMIC CAP.CERAMIC	-20+50% 10NF	4822 122 31414
C 1215		63V 10% 470NF	4822 121 51252
C 1216		63V 10% 470NF	4822 121 51252
C 1217		-20+50% 10NF	4822 122 31414
C 1218		2% 100PF	4822 122 31316
C 1219	CAP.FOIL CAP.FOIL CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	63V 10% 680NF	5322 121 42498
C 1220		63V 10% 680NF	5322 121 42498
C 1221		10% 1NF	5322 122 32331
C 1223		10% 1NF	5322 122 32331
C 1224		10% 1NF	5322 122 32331
C 1225	CAP.TANTAL CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	20% 10µF	5322 124 10675
C 1226		20% 10µF	5322 124 10675
C 1227		10% 1NF	5322 122 32331
C 1228		10% 1NF	5322 122 32331
C 1229		-20+50% 10NF	4822 122 31414
C 1230	CAP. CAP.CERAMIC CAP.ELECTROLYT. CAP.FOIL CAP.CERAMIC	100V 10% 10NF	4822 121 41857
C 1300		10% 1NF	5322 122 32331
C 1302		20% 1µF	5322 124 41098
C 1303		63V 10% 100NF	5322 121 42386
C 1304		100V 2% 100PF	4822 122 31316
C 1305	CAP.CERAMIC	-20+50% 10NF	4822 122 31414
C 1306	CAP.FOIL	20% 100μF	5322 124 41383
C 1307	CAP.CERAMIC	10% 1NF	5322 122 32331
C 1401	CAP.CERAMIC	10% 1NF	5322 122 32127

C 1402	CAP.CERAMIC	-20+50% 10NF	4822 122 31414
C 1403	CAP.CERAMIC	2% 33PF	4822 122 31202
C 1404	CAP.FOIL	20% 33µF	5322 124 41378
C 1405	CAP.FOIL	20% 33µF	5322 124 41378
C 1407	CAP.FOIL	20% 100µF	5322 124 41383
C 1408	CAP.FOIL CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	20% 33µF	5322 124 41378
C 1409		-20+50% 10NF	4822 122 31414
C 1410		-20+50% 10NF	4822 122 31414
C 1411		-20+50% 10NF	4822 122 31414
C 1500		-20+50% 10NF	4822 122 31414
C 1501	CAP.CERAMIC	10% 1NF	5322 122 32127
C 1502	CAP.FOIL	250V 5% 4.7NF	4822 121 43856
C 1503	CAP.FOIL	100V 5% 4.7µF	4822 121 41975
C 1504	CAP.CERAMIC	10% 1NF	5322 122 32331
C 1505	CAP.	63V 10% 1µF	5322 121 42114
C 1506	CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	-20+50% 10NF	4822 122 31414
C 1507		-20+50% 10NF	4822 122 31414
C 1508		-20+50% 10NF	4822 122 31414
C 1509		-20+50% 10NF	4822 122 31414
C 1510		0.25PF 2.7PF	4822 122 31038
C 1511	CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	2% 220PF	5322 122 32346
C 1512		2% 33PF	5322 122 32072
C 1513		10% 1NF	5322 122 32331
C 1514		10% 1NF	5322 122 32331
C 1515		-20+50% 10NF	4822 122 31414
C 1516	CAP.CERAMIC CAP.CERAMIC CAP.ELECTROLYT. CAP.CERAMIC CAP.ELECTROLYT.	-20+50% 10NF	4822 122 31414
C 1517		2% 100PF	4822 122 31316
C 1602		-10+50% 220µF	4822 124 20717
C 1603		-20+50% 10NF	4822 122 31414
C 1604		20% 1µF	5322 124 41098
C 1605	CAP.ELECTROLYT. CAP.CERAMIC CAP.ELECTROLYT. CAP.ELECTROLYT. CAP.ELECTROLYT.	-10+50% 330µF	4822 124 20705
C 1606		-20+50% 10NF	4822 122 31414
C 1607		20% 1µF	5322 124 41098
C 1609		-20+20% 6800µF	4822 124 20783
C 1611		-10+50% 470µF	4822 124 20695
C 1612	CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	10% 1NF	5322 122 32331
C 1613		10% 1NF	5322 122 32331
C 1614		10% 1NF	5322 122 32331
C 1615		10% 1NF	5322 122 32331
C 1616		10% 1NF	5322 122 32331
C 1617	CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.TANTAL CAP.CERAMIC	10% 1NF	5322 122 32331
C 1618		10% 1NF	5322 122 32331
C 1619		10% 1NF	5322 122 32331
C 1701		20% 10µF	5322 124 11083
C 1702		10% 1NF	5322 122 32331
C 1704	CAP.CERAMIC	2% 33PF	5322 122 32072
C 1705	CAP.CERAMIC	2% 33PF	5322 122 32072
C 1706	CAP.ELECTROLYT.	20% 10µF	5322 124 21731
C 1707	CAP.CERAMIC	-20+50% 10NF	4822 122 31414

C 1708	CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.ELECTROLYT.	2% 100PF	4822 122 31316
C 1709		2% 100PF	4822 122 31316
C 1710		10% 1NF	5322 122 32331
C 1711		-20+50% 10NF	4822 122 31414
C 1712		20% 1µF	5322 124 41098
C 1713	CAP.ELECTROLYT. CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	20% 10µF	5322 124 21731
C 1714		-20+50% 10NF	4822 122 31414
C 1715		-20+50% 10NF	4822 122 31414
C 1716		10% 2.2NF	5322 122 32818
C 1717		-20+50% 10NF	4822 122 31414
C 1718	CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	-20+50% 10NF	4822 122 31414
C 1719		-20+50% 10NF	4822 122 31414
C 1720		-20+50% 10NF	4822 122 31414
C 1721		-20+50% 10NF	4822 122 31414
C 1722		-20+50% 10NF	4822 122 31414
C 1723	CAP.FOIL CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.FOIL	63V 10% 220NF	4822 121 42408
C 1724		-20+50% 10NF	4822 122 31414
C 1725		-20+50% 10NF	4822 122 31414
C 1726		-20+50% 10NF	4822 122 31414
C 1727		63V 10% 220NF	4822 121 42408
C 1728	CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.FOIL	2% 47PF	4822 122 31072
C 1729		-20+50% 10NF	4822 122 31414
C 1730		-20+50% 10NF	4822 122 31414
C 1731		10% 1NF	5322 122 32331
C 1732		63V 10% 100NF	5322 121 42386
C 1733	CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	-20+50% 10NF	4822 122 31414
C 1734		-20+50% 10NF	4822 122 31414
C 1735		-20+50% 10NF	4822 122 31414
C 1736		-20+50% 10NF	4822 122 31414
C 1737		-20+50% 10NF	4822 122 31414
C 1738	CAP.CERAMIC	-20+50% 10NF	4822 122 31414
C 1739	CAP.FOIL	63V 10% 220NF	4822 121 42408
C 1740	CAP.CERAMIC	100V -10% 560PF	5322 122 32336
C 1741	CAP.CERAMIC	40V -20+80% 22NF	4822 122 30103
C 1742	CAP.CERAMIC	40V -20+80% 22NF	4822 122 30103
C 1743	CAP.CERAMIC	40V -20+80% 22NF	4822 122 30103
DIGITAL INTE	GRATED CIRCUITS		
D 1203	INTEGR.CIRCUIT INTEGR.CIRCUIT INTEGR.CIRCUIT INTEGR.CIRCUIT INTEGR.CIRCUIT	OQ0067A	5322 209 81883
D 1701		PC74HC132P PEL	5322 209 11194
D 1702		PC74HC4518P PEL	5322 209 11736
D 1703		PC74HC132P PEL	5322 209 11194
D 1704		PC74HC86P PEL	5322 209 11473
D 1705	I.C. DIGITAL MICROPROCESSOR INTEGR.CIRCUIT INTEGR.CIRCUIT INTEGR.CIRCUIT INTEGR.CIRCUIT	PC74HC27P PEL	5322 209 11333
D 1706		P80C31BH INT	5322 209 73932
D 1707		PC74HC165P PEL	5322 209 11531
D 1709		PC74HC373P PEL	5322 209 11366
D 1710		EPROM /02, /03	5322 209 51849
D 1711		2KX8 SRAM HM6116LP-2	5322 209 12568

D 1712	INTEGR.CIRCUIT INTEGR.CIRCUIT INTEGR.CIRCUIT	PC74HC4094P PEL	5322 209 11532
D 1713		PC74HC4094P PEL	5322 209 11532
D 1714		OQ0071	5322 209 81901
MICELLANEC	ous		
G 1701 G 1702 G 1703 H 1701 L 0700	CRYSTAL CRYSTAL LITHEUM BATTERY BUZZER COIL	12000 KHZ 650 KHZ MUR 5322 138 10263 PS20-01-0 100MC 3B	5322 242 71226 5322 242 71888 5322 280 10148 5322 158 10052
L 0701 L 1301 L 1701	COIL COIL	100MC 3B 50MC 3B 27µH	5322 158 10052 5322 158 10052 4822 158 10551
ANALOG INTE	EGRATED CIRCUITS		
A 1201	INTEGR.CIRCUIT INTEGR.CIRCUIT INTEGR.CIRCUIT INTEGR.CIRCUIT INTEGR.CIRCUIT	OQ 0302A	5322 209 11657
N 1202		LT1057CN8 L.T	5322 209 73385
N 1301		OP-07CZ PMI	5322 209 83268
N 1501		AD713JN NSC	9322 006 83682
N 1502		LM311N NSC	5322 209 85503
N 1601	INTEGR.CIRCUIT	LM78L05ACZ N.S	5322 209 80903
N 1602	INTEGR.CIRCUIT	LM79L05ACZ NSC	5322 2 0 9 86434
N 1603	INTEGR.CIRCUIT	LM358N NSC	4822 209 70672
RESISTORS			
R 1100	RES.NETWERK RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.HI-TENSION	OM551	5322 209 72563
R 1101		MRS25 1% 1K	4822 050 21002
R 1102		MRS25 1% 24E9	4822 050 22499
R 1103		MRS25 1% 61K9	4822 050 26193
R 1200		VR25 5% 10M	4822 053 20106
R 1201	RES.METAL FILM	MRS25 1% 1K	4822 050 21002
R 1202	RES.METAL FILM	MRS25 1% 590K	4822 05 0 25904
R 1203	RES.METAL FILM	MRS25 1% 90K9	4822 050 29093
R 1204	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1205	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1206	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM	MRS25 1% 90K9	4822 050 29093
R 1207		MRS25 1% 100K	4822 050 21004
R 1208		MRS25 1% 178K	4822 050 21784
R 1209		MRS25 1% 36K5	4822 050 23653
R 1210		MRS25 1% 1M	4822 050 21005
R 1211	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.HI-TENSION RES.METAL FILM	MRS25 1% 1M	4822 050 21005
R 1212		1/4W 0.1% 8K76	5322 116 52117
R 1213		MRS25 1% 1K15	4822 050 21152
R 1214		VR25 5% 8M2	4822 053 20825
R 1215		MRS25 1% 30E1	4822 050 23019
R 1216	RES.METAL FILM	1/4W 0.1% 2K26	5322 116 80649
R 1217	RES.METAL FILM	1/4W 0.1% 16K9	5322 116 52116
R 1218	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1219	RES.METAL FILM	MRS25 1% 5K11	4822 050 25112
R 1220	RES.METAL FILM	MRS25 1% 1M	4822 050 21005

R 1221	RES.METAL FILM	MRS25 1% 100E	4822 050 21001
R 1222	RES.METAL FILM	MRS25 1% 4K87	4822 050 24872
R 1223	RES.METAL FILM	MRS25 1% 20E5	4822 050 22059
R 1224	RES.METAL FILM	MRS25 1% 20E5	482 2 050 22059
R 1225	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1226	RES.METAL FILM	MRS25 1% 100E	4822 050 21001
R 1227	RES.METAL FILM	MRS25 1% 332K	4822 050 23324
R 1228	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1300	RES.METAL FILM	MRS25 1% 100E	4822 050 21001
R 1301	RES.P.T.C.	245V 750E-1K5	5322 116 44006
R 1302	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1303	RES.METAL FILM	MRS25 1% 750E	4822 050 27501
R 1304	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1305	RES.METAL FILM	MRS25 1% 1K	4822 050 21002
R 1306	RES.METAL FILM	MRS25 1% 1K	4822 050 21002
R 1308	RES.P.T.C. RES.METAL FILM RES.METAL FILM POTM.CERMET RES.HI-TENSION	265V 20% 100E	4822 116 40006
R 1309		MRS25 1% 100K	4822 050 21004
R 1310		MRS25 1% 100K	4822 050 21004
R 1311		OMP10 20% 100K	5322 101 10508
R 1312		VR25 5% 10M	4822 053 20106
R 1313	RES.METAL FILM	MRS25 1% 1M	4822 050 21005
R 1314	RES.METAL FILM	MRS25 1% 12K1	4822 050 21213
R 1315	RES.METAL FILM	MRS25 1% 40K2	4822 050 24023
R 1316	POTM.CERMET	OMP10 20% 100K	5322 101 10508
R 1317	RES.HI-TENSION	VR25 5% 10M	4822 053 2 0106
R 1318	RES.METAL FILM	MRS25 1% 681E	4822 050 26811
R 1319	RES.METAL FILM	MRS25 1% 59K	4822 050 25903
R 1320	RES.METAL FILM	MRS25 1% 46K4	4822 050 24643
R 1321	RES.METAL FILM	MRS25 1% 464K	4822 050 24644
R 1322	RES.METAL FILM	MRS25 1% 46K4	4822 050 24643
R 1323	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1324	RES.METAL FILM	MRS25 1% 90K9	4822 0mx 29093
R 1329	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1330	RES.METAL FILM	MRS25 1% 1M	4822 050 21005
R 1331	RES.P.T.C.	S 2 33	5322 116 40192
R 1332	RES.METAL FILM	MRS25 1% 20K5	4822 050 22053
R 1333	RES.METAL FILM	MRS25 1% 20K5	4822 050 22053
R 1334	RES.METAL FILM	MRS25 1% 1M	4822 050 21005
R 1337	RES.	2R00 1% 1W	5322 116 82983
R 1401	RES.HI-TENSION	VR25 5% 10M	4822 053 20106
R 1402	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1403	RES.METAL FILM	MRS25 1% 1M	4822 050 21005
R 1404	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1405	RES.METAL FILM	MRS25 1% 2K26	4822 050 22262
R 1407	RES.METAL FILM	MRS25 1% 1K	4822 050 21002
R 1409	RES.METAL FILM	MRS25 1% 3K01	4822 050 23012
R 1410	RES.METAL FILM	MRS25 1% 7K5	48 22 050 27502
R 1411	RES.METAL FILM	MRS25 1% 15K4	4822 050 21543
R 1412	RES.METAL FILM	MRS25 1% 365E	4822 050 23651

R 1413	RES.METAL FILM	MRS25 1% 487E	4822 050 24871
R 1414	RES.METAL FILM	MRS25 1% 10E	4822 050 21009
R 1416	RES.METAL FILM	MRS25 1% 348E	4822 050 23481
R 1417	RES.METAL FILM	MRS25 1% 140E	4822 050 21401
R 1418	RES.METAL FILM	MRS25 1% 1K1	4822 050 21102
R 1419	RES.METAL FILM	MRS25 1% 2K61	4822 050 22612
R 1420	RES.METAL FILM	MRS25 1% 402E	4822 050 24021
R 1421	RES.METAL FILM	MRS25 1% 402E	4822 050 24021
R 1422	RES.METAL FILM	MRS25 1% 10E	4822 050 21009
R 1424	RES.METAL FILM	MRS25 1% 127E	4822 050 21271
R 1425	RES.METAL FILM	MRS25 1% 10E	4822 050 21009
R 1426	RES.METAL FILM	MRS25 1% 909E	4822 050 29091
R 1427	RES.METAL FILM	MRS25 1% 100E	4822 050 21001
R 1428	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1429	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1430	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1431	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1432	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1433	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1434	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1450	RES.METAL FILM	MRS25 1% 100E	4822 050 21001
R 1501	RES.P.T.C.	265V 20% 100E	4822 116 40006
R 1502	RES.METAL FILM	MRS25 1% 162K	4822 050 21624
R 1503	RES.METAL FILM	MRS25 1% 23K7	4822 050 22373
R 1504	RES.METAL FILM	MRS25 1% 1M	4822 050 21005
R 1505	RES.METAL FILM	MRS25 1% 46K4	4822 050 24643
R 1506	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1507	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1508	RES.METAL FILM	MRS25 1% 1K	4822 050 21002
R 1509	RES.METAL FILM	MRS25 1% 100E	4822 050 21001
R 1510	RES.METAL FILM	MRS25 1% 649K	4822 050 26494
R 1511	RES.METAL FILM	MRS25 1% 51K1	4822 050 25113
R 1512	RES.METAL FILM	MRS25 1% 1K	4822 050 21002
R 1513	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1514	RES.METAL FILM	MRS25 1% 10K	4822 0 50 21003
R 1515	RES.METAL FILM	MRS25 1% 1K	4822 050 21002
R 1516	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1518	RES.METAL FILM	MRS25 1% 1K	4822 050 21002
R 1519	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1520	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1521	RES.METAL FILM	1/4W 0.1% 511E	5322 116 80468
R 1524	RES.METAL FILM	MRS25 1% 205K	4822 050 22054
R 1525	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1526	RES.METAL FILM	MRS25 1% 1M	4822 050 21005
R 1527	RES.METAL FILM	MRS25 1% 1K78	4822 050 21782
R 1528	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1530	RES.METAL FILM	MRS25 1% 1K62	4822 050 21622
R 1531	RES.METAL FILM	MRS25 1% 162K	4822 050 21624
R 1532	RES.HI-TENSION	VR37 5% 16M	4822 053 21166

R 1533	RES.METAL FILM	MRS25 1% 249K	4822 050 22494
R 1534	RES.METAL FILM	MRS25 1% 19K6	4822 050 21963
R 1535	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1536	RES.METAL FILM	MRS25 1% 3K01	4822 050 23012
R 1537	RES.METAL FILM	MRS25 1% 169K	4822 050 21694
R 1538 R 1539 R 1540 R 1541 R 1542	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM	MRS25 1% 30K1 MRS25 1% 3K83 MRS25 1% 10K MRS25 1% 10K MRS25 1% 10K	4822 050 23013 4822 050 23832 4822 050 21003 4822 050 21003 4822 050 21003
R 1548 R 1549 R 1550 R 1551	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM	MRS25 1% 365K MRS25 1% 100K MPR24 0.1% 174K MPR24 0.1% 174K	4822 050 23654 4822 050 21004
R 1552	RES.METAL FILM	MRS25 1% 5K62	4822 050 25622
R 1553	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM	MRS25 1% 1K	4822 050 21002
R 1555		MRS25 1% 10K	4822 050 21003
R 1556		MRS25 1% 10K	4822 050 21003
R 1557		MRS25 1% 100K	4822 050 21004
R 1558		MRS25 1% 100K	4822 050 21004
R 1559	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1560	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1561	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1562	RES.METAL FILM	MRS25 1% 100E	4822 050 21001
R 1563	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1565	RES.METAL FILM	MRS25 1% 2K05	4822 050 22052
R 1566	RES.METAL FILM	MRS25 1% 383K	4822 050 23834
R 1601	RES.METAL FILM	MRS25 1% 90K9	4822 050 29093
R 1602	RES.METAL FILM	MRS25 1% 2K49	4822 050 22492
R 1603	RES.METAL FILM	MRS25 1% 17K8	4822 050 21783
R 1604	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM	MRS25 1% 1K62	4822 050 21622
R 1605		MRS25 1% 51E1	4822 050 25119
R 1606		MRS25 1% 3K65	4822 050 23652
R 1607		MRS25 1% 1K96	4822 050 21962
R 1608		MRS25 1% 3K48	4822 050 23482
R 1609	RES.METAL FILM	MRS25 1% 348E	4822 050 23481
R 1611	RES.METAL FILM	MRS25 1% 1K27	4822 050 21272
R 1614	RES.METAL FILM	MRS25 1% 464E	4822 050 24641
R 1615	RES.METAL FILM	MRS25 1% 1K	4822 050 21002
R 1700	RES.METAL FILM	MRS25 1% 2K05	4822 050 22052
R 1704	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1705	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1706	RES.METAL FILM	MRS25 1% 205K	4822 050 22054
R 1707	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1708	RES.METAL FILM	MRS25 1% 100E	4822 050 21001
R 1709	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1710	RES.METAL FILM	MRS25 1% 100E	4822 050 21001
R 1711	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1712	RES.METAL FILM	MRS25 1% 100E	4822 050 21001

R 1713	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1714	RES.METAL FILM	MRS25 1% 100E	4822 050 21001
R 1715	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1716	RES.METAL FILM	MRS25 1% 100E	4822 050 21001
R 1717	RES.METAL FILM	MRS25 1% 100E	4822 050 21001
R 1718	COMBINATION,RC	-105-103 10K	5322 111 90473
R 1719	COMBINATION,RC	-105-103 10K	5322 111 90473
R 1720	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1721	RES.METAL FILM	MRS25 1% 147K	4822 050 21474
R 1722	RES.METAL FILM	MRS25 1% 287E	4822 050 22871
R 1723	RES.METAL FILM	MRS25 1% 287E	4822 050 22871
R 1724	RES.METAL FILM	MRS25 1% 1M	4822 050 21005
R 1725	RES.METAL FILM	MRS25 1% 287E	4822 050 22871
R 1726	RES.METAL FILM	MRS25 1% 287E	4822 050 22871
R 1727	RES.METAL FILM	MRS25 1% 287E	4822 050 22871
R 1728	RES.METAL FILM	MRS25 1% 22E6	4822 050 22269
R 1729	RES.METAL FILM	MRS25 1% 287E	4822 050 22871
R 1730	RES.METAL FILM	MRS25 1% 3K32	4822 050 23322
R 1731	RES.METAL FILM	MRS25 1% 100E	4822 050 21001
R 1732	RES.METAL FILM	MRS25 1% 100E	4822 050 21001
R 1733	RES.METAL FILM	MRS25 1% 100E	4822 050 21001
R 1734	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1735	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1736	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1737	RES.METAL FILM	MRS25 1% 100E	4822 050 21001
R 1738	RES.METAL FILM	MRS25 1% 100E	4822 050 21001
R 1739	RES.METAL FILM	MRS25 1% 22K6	4822 050 22263
R 1740	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1741	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1742	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1743	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1744	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1745	RES.METAL FILM	MRS25 1% 46K4	4822 050 24643
R 1746	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1747	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1748	RES.METAL FILM	MRS25 1% 46K4	4822 050 24643
R 1749	RES.METAL FILM	MRS25 1% 5K11	4822 050 25112
R 1750	RES.METAL FILM	MRS25 1% 4K64	4822 050 24642
R 1751	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1752	RES.METAL FILM	MRS25 1% 10E	4822 050 21009
R 1753	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1754	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1755	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1756	RES.METAL FILM	MRS25 1% 332E	4822 050 23321
R 1757	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1758	RES.METAL FILM	MRS25 1% 1K54	4822 050 21542
R 1759	RES.METAL FILM	MRS25 1% 10K	4822 050 21003
R 1760	RES.METAL FILM	MRS25 1% 825K	4822 050 28254
R 1761	RES.METAL FILM	MRS25 1% 100K	4822 050 21004

R 1762	RES.METAL FILM	MRS25 1% 1K	4822 050 21002
R 1763	RES.METAL FILM	MRS25 1% 348K	4822 050 23484
R 1780	RES.METAL FILM	MRS25 1% 100K	4822 050 21004
R 1781	RES.METAL FILM	MRS25 1% 5K11	4822 050 25112
SEMI COND	DUCTORS		
V 1201	TRANSISTOR, FET	BF256A PEL	5322 130 44418
V 1202	TRANSISTOR, FET	BF256A PEL	5322 130 44418
V 1203	TRANSISTOR, FET	BF256A PEL	5322 130 44418
V 1 2 04	TRANSISTOR, FET	BF256A PEL	5322 130 44418
V 1 2 05	TRANSISTOR, FET	BF256A PEL	5322 130 44418
V 1206	TRANSISTOR,FET	BF256A PEL	5322 130 44418
V 1207	TRANSISTOR,FET	BSV80 PEL	5322 130 34044
V 1208	TRANSISTOR,FET	BSV80 PEL	5322 130 34044
V 1250	DIODE	BAW62 PEL	4822 130 30613
V 1303	TRANSISTOR	BC549C PEL	4822 130 44246
V 1304	TRANSISTOR TRANSISTOR TRANSISTOR,FET TRANSISTOR,FET TRANSISTOR	BC559B PEL	4822 130 44358
V 1305		BC559B PEL	4822 130 44358
V 1306		BF256B PEL	5322 130 44744
V 1307		BF256B PEL	5322 130 44744
V 1309		BC549C PEL	4822 130 44246
V 1310	TRANSISTOR TRANSISTOR,FET DIODE DIODE DIODE DIODE	BC549C PEL	4822 130 44246
V 1315		BF256A PEL	5322 130 44418
V 1354		BYW56 PEL	5322 130 34973
V 1355		BYW56 PEL	5322 130 34973
V 1356		BAT85 EL	4822 130 31983
V 1357	DIODE	BAT85 PEL	4822 130 31983
V 1370	TRANSISTOR,FET	BSV80 PEL	5322 130 34044
V 1401	TRANSISTOR,FET	BF256B PEL	5322 130 44744
V 1403	TRANSISTOR	BF199 PEL	4822 130 44154
V 1404	TRANSISTOR	BF199 PEL	4822 130 44154
V 1405	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	BF324 PEL	4822 130 41448
V 1406		BF324 PEL	4822 130 41448
V 1407		BF324 PEL	4822 130 41448
V 1408		BC547B PEL	4822 130 40959
V 1410		BSX20 PEL	4822 130 41705
V 1411	TRANSISTOR TRANSISTOR DIODE DIODE DIODE	BC549C PEL	4822 130 44246
V 1412		BC559B PEL	4822 130 44358
V 1450		BAT85 PEL	4822 130 31983
V 1451		BAW62 PEL	4822 130 30613
V 1452		BAW62 PEL	4822 130 30613
V 1453	DIODE	BAT85 PEL	4822 130 31983
V 1500	TRANSISTOR	BC549C PEL	4822 130 44246
V 1502	TRANSISTOR,FET	BF256A PEL	5322 130 44418
V 1503	TRANSISTOR,FET	BF245A PEL	5322 130 61605
V 1504	TRANSISTOR,FET	BSV80 PEL	5322 130 34044
V 1505	TRANSISTOR,FET	BF245A PEL	5322 130 61605
V 1507	TRANSISTOR,FET	BF245A PEL	5322 130 61605
V 1508	TRANSISTOR,FET	BF245A PEL	5322 130 61605

V 1509 V 1510 V 1511 V 1512 V 1513	TRANSISTOR,FET TRANSISTOR,FET TRANSISTOR TRANSISTOR TRANSISTOR		5322 130 61605 5322 130 61605 5322 130 42709 4822 130 40855 4822 130 44246
V 1514	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR,FET TRANSISTOR,FET	BC549C PEL	4822 130 44246
V 1515		BC549C PEL	4822 130 44246
V 1516		BC549C PEL	4822 130 44246
V 1517		BF256A PEL	5322 130 44418
V 1518		BF256A PEL	5322 130 44418
V 1519 V 1520 V 1521 V 1522 V 1523	TRANSISTOR,FET TRANSISTOR,FET TRANSISTOR,FET TRANSISTOR TRANSISTOR,FET	BF256A PEL BF245A PEL BC549C PEL	5322 130 44418 5322 130 44418 5322 130 61605 4822 130 44246 5322 130 61605
V 1524	TRANSISTOR,FET	BC549C PEL	5322 130 44418
V 1525	TRANSISTOR		4822 130 44246
V 1526	TRANSISTOR,FET		5322 130 44418
V 1527	TRANSISTOR		4822 130 44246
V 1550	DIODE		4822 130 34121
V 1551	DIODE	BAX18 PEL	4822 130 34121
V 1552	DIODE,REFERENCE	BZT03-C7V5 PEL	4822 130 31913
V 1555	DIODE,REFERENCE	1N821/HR PEL	5322 130 83423
V 1557	DIODE	BAW62 PEL	4822 130 30613
V 1558	DIODE	BAT85 PEL	4822 130 31983
V 1560	DIODE	BAW62 PEL	4822 130 30613
V 1570	DIODE	BAX18 PEL	4822 130 34121
V 1571	DIODE	BAX18 PEL	4822 130 34121
V 1601	TRANSISTOR	BC549C PEL	4822 130 44246
V 1602	TRANSISTOR	BD139 PEL	4822 130 40823
V 1650	DIODE	BYW56 PEL	5322 130 34973
V 1651	DIODE	BYW56 PEL	5322 130 34973
V 1652	DIODE	BYW56 PEL	5322 130 34973
V 1653	DIODE	BYW56 PEL	5322 130 34973
V 1654	DIODE	BYW56 PEL	5322 130 34973
V 1655	DIODE	BYW56 PEL	5322 130 34973
V 1656	DIODE	BYW56 PEL	5322 130 34973
V 1657	DIODE	BYW56 PEL	5322 130 34973
V 1658	DIODE,REFERENCE	BZX79-B3V3 PEL	5322 130 31504
V 1659	DIODE,REFERENCE	BZX79-B3V3 PEL	5322 130 31504
V 1660	DIODE,REFERENCE	BZX79-B3V3 PEL	5322 130 31504
V 1661	DIODE,REFERENCE	BZX79-B3V3 PEL	5322 130 31504
V 1662	DIODE	BAW62 PEL	4822 130 30613
V 1663	DIODE	BAT85 PEL	4822 130 31983
V 1664	DIODE	BAT85 PEL	4822 130 31983
V 1665	DIODE	BAX18 PEL	4822 130 34121
V 1666	DIODE,REFERENCE	BZX79-B3V3 PEL	5322 130 31504
V 1667	DIODE	BAW62 PEL	4822 130 30613
V 1703	TRANSISTOR	BC549C PEL	4822 130 44246

V 1704	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	BC327 PEL	4822 130 40854
V 1705		BC337 PEL	4822 130 40855
V 1706		BC327 PEL	4822 130 40854
V 1707		BC337 PEL	4822 130 40855
V 1708		BC327 PEL	4822 130 40854
V 1709	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	BC549C PEL	4822 130 44246
V 1710		BC549C PEL	4822 130 44246
V 1711		BC549C PEL	4822 130 44246
V 1712		BC549C PEL	4822 130 44246
V 1713		BC549C PEL	4822 130 44246
V 1714	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	BC549C PEL	4822 130 44246
V 1715		BC549C PEL	4822 130 44246
V 1716		BC559B PEL	4822 130 44358
V 1717		BC549C PEL	4822 130 44246
V 1718		BC549C PEL	4822 130 44246
V 1719	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	BC559B PEL	4822 130 44358
V 1720		BC327 PEL	4822 130 40854
V 1721		BC559B PEL	4822 130 44358
V 1722		BC549C PEL	4822 130 44246
V 1724		BC549C PEL	4822 130 44246
V 1725	TRANSISTOR THYRISTOR DIODE DIODE DIODE	BC559B PEL	4822 130 44358
V 1750		BRY39 PEL	5322 130 40482
V 1751		BAT85 PEL	4822 130 31983
V 1752		BAT85 PEL	4822 130 31983
V 1753		BAT85 PEL	4822 130 31983
V 1754	DIODE	BAT85 PEL	4822 130 31983
V 1757	DIODE	BAT85 PEL	4822 130 31983
V 1758	DIODE	BAT85 PEL	4822 130 31983
V 1759	DIODE	BAT85 PEL	4822 130 31983
V 1760	DIODE	BAW62 PEL	4822 130 30613
V 1761	DIODE	BAW62 PEL	4822 130 30613
V 1762	DIODE	BAW62 PEL	4822 130 30613
V 1763	DIODE	BAW62 PEL	4822 130 30613
V 1765	DIODE	BZV86-C1V4 PEL	4822 130 81423
V 1766	DIODE	BZV86-C2V0 PEL	4822 130 81424
V 1768	DIODE	BZV86-C1V4 PEL	4822 130 81423
V 1769	DIODE	BAT85 PEL	4822 130 31983
V 1770	DIODE	BAW62 PEL	4822 130 30613
V 1771	DIODE	BAW62 PEL	4822 130 30613
V 1772	DIODE,REFERENCE	BZX79-C3V9 PEL	4822 130 31981
V 1773	DIODE	BAT85 PEL	4822 130 31983
V 1780	TRANSISTOR	BC547B PEL	4822 130 40959
V 1781	TRANSISTOR	BC557B PEL	4822 130 44568
V 1782	DIODE	BAW62 PEL	4822 130 30613
V 1783	DIODE	BAW62 PEL	4822 130 30613
V 1784	TRANSISTOR	BC557B PEL	4822 130 44568
V 1785	DIODE	BAW62 PEL	4822 130 30613

8.2.2	DISPLAY B	OARD, A2000		
			DISPLAY PCB	5322 218 61097
	CAPACITORS			
	C 2101	CAP.CERAMIC	100V 10% 22NF	5322 122 10457
	INTEGRATED	CIRCUITS		
	D 2101 D 2201	INTEGR.CIRCµIT INTEGR.CIRCµIT	PCF8576T PEL PCF8574P PEL	5322 209 11129 5322 209 10883
	RESISTORS			
	R 2101 R 2102 R 2103 R 2104 R 2105 R 2201	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM POTM.TRIMMER RES.METAL FILM	MRS25 1% 196K MRS25 1% 3K48 MRS25 1% 3K32 MRS25 1% 590E OCP10 20% 220E MRS25 1% 10K	4822 050 21964 4822 050 23482 4822 050 23322 4822 050 25901 4822 100 10019 4822 050 21003
	SWITCHES			
	S 2201 S 2202 S 2203 S 2204 S 2205	SWITCH SWITCH SWITCH SWITCH	1-P 1-P 1-P 1-P 1-P	4822 276 11076 4822 276 11076 4822 276 11076 4822 276 11076 4822 276 11076
	S 2206 S 2207 S 2208 S 2209 S 2210	SWITCH SWITCH SWITCH SWITCH	1-P 1-P 1-P 1-P 1-P	4822 276 11076 4822 276 11076 4822 276 11076 4822 276 11076 4822 276 11076
	S 2211 S 2212 S 2213 S 2214 S 2215	SWITCH SWITCH SWITCH SWITCH	1-P 1-P 1-P 1-P 1-P	4822 276 11076 4822 276 11076 4822 276 11076 4822 276 11076 4822 276 11076
	S 2216 S 2217 S 2218	SWITCH SWITCH,PUSHBUT. SWITCH,PUSHBUT.	1-P 1-P 1-P	4822 276 11076 5322 276 11577 5322 276 11577
	SEMI CONDU	CTORS		
	V 2101 V 2102	DIODE TRANSISTOR	BZV86-C1V4 PEL BC547B PEL	4822 130 81423 4822 130 40959
8.2.3	BATTERY	BOARD		
	CAPACITORS			
	C 0403 C 0404 C 0405 C 0406	CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	-20+50% 10NF -20+50% 10NF -20+50% 10NF -20+50% 10NF	4822 122 31414 4822 122 31414 4822 122 31414 4822 122 31414

C 0407	CAP.ELECTROLYT. CAP. CAP.CERAMIC CAP.ELECTROLYT. CAP.ELECTROLYT.	16V 20% 4700UF	4822 124 40706			
C 0410		63V 10% 1UF	5322 121 42114			
C 0411		-20+50% 10NF	4822 122 31414			
C 0412		40V -10+50% 10UF	4822 124 20708			
C 0413		ELCAP 10V 330UF	5322 124 22095			
C 0414	CAP.ELECTROLYT. CAP. CAP.CERAMIC CAP.CERAMIC	ELCAP 10V 330UF	5322 124 22095			
C 0415		63V 10% 1UF	5322 121 42114			
C 0416		2% 100PF	4822 122 31316			
C 0419		-20+50% 10NF	4822 122 31414			
FUSES						
F 0401	FUSE	THERMAL FUSE	5322 252 20117			
F 0402		T 5X20 1A	4822 070 31002			
ANALOG INT	EGRATED CIRCUITS					
N 0401	INTEGR.CIRCUIT INTEGR.CIRCUIT	LM358N NSC	4822 209 70672			
N 0402		LM358N NSC	4822 209 70672			
RISISTORS						
R 0401	RES.METAL FILM	MRS25 1% 46K4	4822 050 24643			
R 0402	RES.METAL FILM	MRS25 1% 316E	4822 050 23161			
R 0403	RES.METAL FILM	MRS25 1% 1M	4822 050 21005			
R 0404	RES.METAL FILM	MRS25 1% 4E87	4822 050 24878			
R 0405	RES.METAL FILM	MRS25 1% 4E87	4822 050 24878			
R 0406	RES.METAL FILM	MRS25 1% 36K5	4822 050 23653			
R 0407	RES.METAL FILM	MRS25 1% 2K26	4822 050 22262			
R 0408	RES.METAL FILM	MRS25 1% 100E	4822 050 21001			
R 0409	RES.METAL FILM	MRS25 1% 100K	4822 050 21004			
R 0410	RES.METAL FILM	MRS25 1% 6K49	4822 050 26492			
R 0411	RES.METAL FILM	MRS25 1% 1K	4822 050 21002			
R 0412	RES.METAL FILM	MRS25 1% 6K49	4822 050 26492			
R 0413	RES.METAL FILM	MRS25 1% 4K87	4822 050 24872			
R 0414	POTM.TRIMMER	OMP10 20% 2K2	5322 101 14008			
R 0415	RES.METAL FILM	MRS25 1% 10K	4822 050 21003			
R 0416	RES.METAL FILM	MRS25 1% 10K	4822 050 21003			
R 0417	RES.METAL FILM	MRS25 1% 6K49	4822 050 26492			
R 0418	RES.METAL FILM	MRS25 1% 100K	4822 050 21004			
R 0419	RES.METAL FILM	MRS25 1% 22K6	4822 050 22263			
R 0420	RES.METAL FILM	MRS25 1% 1K	4822 050 21002			
R 0421	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM	MRS25 1% 4K42	4822 050 24422			
R 0422		MRS25 1% 100K	4822 050 21004			
R 0423		MRS25 1% 22K6	4822 050 22263			
R 0424		MRS25 1% 100K	4822 050 21004			
R 0425		MRS25 1% 1K	4822 050 21002			
R 0426		MRS25 1% 2E15	4822 050 22158			
TRANSFORMERS						
T 0401		MAINS TRANSFORMER	5322 146 10241			
T 0402		TRANSFORMER	5322 148 60267			

	SEMICONDU	CTOR			
	V 0401 V 0402 V 0403 V 0404 V 0405	DIODE DIODE DIODE DIODE DIODE	BYV10-40 PEL BYV10-40 PEL BYV10-40 PEL BYV10-40 PEL BAW62 PEL		4822 130 32245 4822 130 32245 4822 130 32245 4822 130 32245 4822 130 30613
	V 0406 V 0407 V 0408 V 0409 V 0410	DIODE,REFERENCE DIODE DIODE DIODE DIODE	BZX79-C12 PEL BAX18 PEL BAX18 PEL BAW62 PEL BAW62 PEL		4822 130 34197 4822 130 34121 4822 130 34121 4822 130 30613 4822 130 30613
	V 0411 V 0412 V 0413 V 0414 V 0415	DIODE DIODE DIODE DIODE DIODE	BAW62 PEL BAW62 PEL BAW62 PEL BAW62 PEL BAW62 PEL		4822 130 30613 4822 130 30613 4822 130 30613 4822 130 30613 4822 130 30613
	V 0416 V 0417 V 0418 V 0419 V 0420	DIODE DIODE DIODE TRANSISTOR TRANSISTOR	BAW62 PEL BAW62 PEL BAW62 PEL BC557B PEL BC368 PEL		4822 130 30613 4822 130 30613 4822 130 30613 4822 130 44568 5322 130 44647
	V 0421 V 0422 V 0423 V 0424 V 0425	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	BC557B PEL BD139 PEL BC547B PEL BC547B PEL BC547B PEL		4822 130 44568 4822 130 40823 4822 130 40959 4822 130 40959 4822 130 40959
	V 0426 V 0427 V 0428 V 0429 V 0430	TRANSISTOR TRANSISTOR DIODE DIODE DIODE	BD139 PEL BC557B PEL BYV10-40 PEL BYV10-40 PEL BAW62 PEL		4822 130 40823 4822 130 44568 4822 130 32245 4822 130 32245 4822 130 30613
	V 0431	DIODE	BAW62 PEL		4822 130 30613
8.2.4	GALVANIC	SEPARATION BOARD,	A300		
			GALVANIC SEPARATIC P.C.B.	N	5322 218 61098
	CAPACITORS				
	C 0301 C 0302 C 0303 C 0304 C 0305	CAP.ELECTROLYT. CAP.ELECTROLYT. CAP.CERAMIC CAP.CERAMIC CAP.ELECTROLYT.	20% 20% -20+50% -20+50% 20%	10UF 10UF 10NF 10NF 10UF	5322 124 21731 5322 124 21731 4822 122 31414 4822 122 31414 5322 124 21731
	C 0306 C 0307 C 0309 C 0311 C 0312	CAP.FOIL CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.ELECTROLYT.	10% 63V -20+50% -20+50% 10% 100V 20%	100NF 10NF 10NF 100NF 10UF	5322 121 42386 4822 122 31414 4822 122 31414 5322 122 10468 5322 124 21731

C 0313 C 0314 C 0320 C 0321 C 0322	CAP.ELECTROLYT. CAP.FOIL CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	20% 10% 63V 20% 400V 20% 400V -20+50%		4700UF 100NF 1NF 1NF 10NF	4822 124 40706 5322 121 42386 5322 122 40364 5322 122 40364 4822 122 31414
C 0323 C 0324 C 0325	CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	-20+50% -20+50% -20+50%		10NF 10NF 10NF	4822 122 31414 4822 122 31414 4822 122 31414
OPTO DEVICE	S				
H 0301 H 0302 H 0303 H 0304 H 0306	TRANSIST,PHOTO TRANSIST,PHOTO TRANSIST,PHOTO TRANSIST,PHOTO TRANSIST,PHOTO	CNX36U P CNX36U P CNX36U P CNX36U P CNX36U P			5322 130 91112 5322 130 91112 5322 130 91112 5322 130 91112 5322 130 91112
H 0307 H 0308 H 0309 H 0310	TRANSIST,PHOTO TRANSIST,PHOTO TRANSIST,PHOTO TRANSIST,PHOTO	CNX36U P CNX36U P CNX36U P CNX36U P	EL EL		5322 130 91112 5322 130 91112 5322 130 91112 5322 130 91112
ANALOG INTE	GRATED CIRCUITS				
N 0301 N 0302 N 0303 N 0304 N 0321	INTEGR.CIRCUIT INTEGR.CIRCUIT INTEGR.CIRCUIT DIODE INTEGR.CIRCUIT	LM393N N LM393N N LM393N N ICL7660CF LM7805CT	SC SC PA G.E		4822 209 80797 4822 209 80797 4822 209 80797 4822 130 32961 5322 209 86445
RESISTORS					
R 0301 R 0302 R 0303 R 0304 R 0305	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM	MRS25 MRS25 MRS25 MRS25 MRS25	1% 1% 1% 1% 1%	2K49 3K65 3K65 3K65 2K49	4822 050 22492 4822 050 23652 4822 050 23652 4822 050 23652 4822 050 22492
R 0306 R 0307 R 0308 R 0309 R 0310	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM	MRS25 MRS25 MRS25 MRS25 MRS25	1% 1% 1% 1% 1%	226E 8K25 287E 100E 287E	4822 050 22261 4822 050 28252 4822 050 22871 4822 050 21001 4822 050 22871
R 0311 R 0312 R 0313 R 0314 R 0315	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM	MRS25 MRS25 MRS25 MRS25 MRS25	1% 1% 1% 1% 1%	100E 8K25 3K65 2K49 3K65	4822 050 21001 4822 050 28252 4822 050 23652 4822 050 22492 4822 050 23652
R 0316 R 0317 R 0318 R 0319 R 0320	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM	MRS25 MRS25 MRS25 MRS25 MRS25	1% 1% 1% 1% 1%	3K65 2K49 3K65 2K49 3K65	4822 050 23652 4822 050 22492 4822 050 23652 4822 050 22492 4822 050 23652
R 0321 R 0322	RES.METAL FILM RES.METAL FILM	MRS25 MRS25	1% 1%	3K65 3K65	4822 050 23652 4822 050 23652

R 0323	RES.METAL FILM	MRS25	1%	2K49	4822 050 22492
R 0325	RES.METAL FILM	MRS25	1%	8K25	4822 050 28252
R 0326	RES.METAL FILM	MRS25	1%	287E	4822 050 22871
R 0327	RES.METAL FILM	MRS25	1%	100E	4822 050 21001
R 0329	RES.METAL FILM	MRS25	1%	8K25	4822 050 28252
R 0330	RES.METAL FILM	MRS25	1%	287E	4822 050 22871
R 0331	RES.METAL FILM	MRS25	1%	100E	4822 050 21001
R 0332	RES.METAL FILM	MRS25	1%	2K49	4822 050 22492
R 0333	RES.METAL FILM	MRS25	1%	3K65	4822 050 23652
R 0334	RES.METAL FILM	MRS25	1%	3K65	4822 050 23652
R 0335	RES.METAL FILM	MRS25	1%	2K49	4822 050 22492
R 0336	RES.METAL FILM	MRS25	1%	3K65	4822 050 23652
R 0343	RES.METAL FILM	MRS25	1%	14E7	4822 050 21479
R 0344	RES.METAL FILM	MRS25	1%	10K	4822 050 21003
R 0345	RES.METAL FILM	MRS25	1%	10K	4822 050 21003
R 0346	RES.METAL FILM	MRS25	1%	10K	4822 050 21003
R 0347	RES.METAL FILM	MRS25	1%	10 K	4822 050 21003
R 0348	RES.METAL FILM	MRS25	1%	8K25	4822 050 28252
R 0349	RES.METAL FILM	MRS25	1%	8K25	4822 050 28252
R 0350	RES.METAL FILM	MRS25	1%	8K25	4822 050 28252
R 0351	RES.METAL FILM	MRS25	1%	8K25	4822 050 28252
R 0352	RES.METAL FILM	MRS25	1%	287E	4822 050 22871
R 0353	RES.METAL FILM	MRS25	1%	100E	4822 050 21001
R 0354	RES.METAL FILM	MRS25	1%	2K87	4822 050 22872
R 0355	RES.METAL FILM	MRS25	1%	287E	4822 050 22871
R 0356	RES.METAL FILM	MRS25	1%	100E	4822 050 21001
R 0357	RES.METAL FILM	MRS25	1%	2K87	4822 050 22872
R 0358	RES.METAL FILM	MRS25	1%	287E	4822 050 22871
R 0359	RES.METAL FILM	MRS25	1%	100E	4822 050 21001
R 0360	RES.METAL FILM	MRS25	1%	2K87	4822 050 22872
R 0361	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM	MRS25	1%	287E	4822 050 22871
R 0362		MRS25	1%	100E	4822 050 21001
R 0363		MRS25	1%	2K87	4822 050 22872
R 0364		MRS25	1%	100E	4822 050 21001
R 0365		MRS25	1%	249E	4822 050 22491
R 0366		MRS25	1%	301K	4822 050 23014
SEMI CONDI	UCTORS				
V 0301 V 0302 V 0303 V 0304 V 0305	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	BC559B P BC547B P BC547B P BSX20 PE BC559B P	EL EL L		4822 130 44358 4822 130 40959 4822 130 40959 4822 130 41705 4822 130 44358
V 0306 V 0307 V 0308 V 0309 V 0310	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	BSX20 PE BC559B P BC559B P BC547B P BC547B P	EL EL		4822 130 41705 4822 130 44358 4822 130 44358 4822 130 40959 4822 130 40959
V 0311	TRANSISTOR	BC559B P	EL		4822 130 44358

V 0312	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	BC547B PEL	4822 130 40959
V 0313		BC547B PEL	4822 130 40959
V 0314		BSX20 PEL	4822 130 41705
V 0316		BSX20 PEL	4822 130 41705
V 0318		BC559B PEL	4822 130 44358
V 0319	TRANSISTOR TRANSISTOR DIODE DIODE DIODE	BC547B PEL	4822 130 40959
V 0320		BC547B PEL	4822 130 40959
V 0321		BAT85 PEL	4822 130 31983
V 0322		BYV27-150 PEL	4822 130 31628
V 0323		BYV27-150 PEL	4822 130 31628
V 0324	DIODE	BYV27-150 PEL	4822 130 31628
V 0325	DIODE	BYV27-150 PEL	4822 130 31628
V 0330	TRANSISTOR	BSX20 PEL	4822 130 41705
V 0331	TRANSISTOR	BSX20 PEL	4822 130 41705
V 0332	TRANSISTOR	BSX20 PEL	4822 130 41705
V 0333	TRANSISTOR	BSX20 PEL	4822 130 41705
V 0334	TRANSISTOR	BC547B PEL	4822 130 40959
8.2.5 RS232C/V	24 INTERFACE BOARD		
CAPACITORS	}		
C 1001	CAP.CERAMIC CAP.ELECTROLYTE. CAP.CERAMIC CAP.CERAMIC CAP.SOLID ALU	10NF -20+50% 100 V	4822 122 31414
C 1002		100NF 10% 63 V	5322 124 21959
C 1003		10PF 2% 100 V	4822 122 32185
C 1004		10PF 2% 100 V	4822 122 32185
C 1005		22UF 20% 6.3 V	4822 124 20943
C 1007	CAP.CERAMIC CAP.HI-TENSION CAP.HI-TENSION CAP.HI-TENSION CAP.HI-TENSION	10NF -20+50% 100 V	4822 122 31414
C 1008		15UF 20% 10 V	5322 124 10665
C 1009		15UF 20% 10 V	5322 124 10665
C 1010		15UF 20% 10 V	5322 124 10665
C 1011		15UF 20% 10 V	5322 124 10665
C 1012	CAP.HI-TENSION CAP.SOLID ALU CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	15UF 20% 10 V	5322 124 10665
C 1013		6.8UF 20% 16 V	5322 124 21763
C 1014		10NF -20+50% 100 V	4822 122 31414
C 1015		10NF -20+50% 100 V	4822 122 31414
C 1016		10NF -20+50% 100 V	4822 122 31414
INTEGRATED	CIRCUITS		
D 1001	μ-PROCESSOR	PCF84C41AP/089	5322 209 52236
D 1002	DUART	SCC2692AC1N28	5322 209 61496
D 1003	INTEGR.CIRCUIT	DS14C88J	5322 209 11659
D 1004	INTEGR.CIRCUIT	DS14C89AJ	5322 209 11661
RESISTORS			
R 1001	COMBINATION,RC	RES.NETW.10K	5322 111 90473
R 1002	RES.METAL FILM	100E 1%	4822 050 21001
R 1003	RES.METAL FILM	100E 1%	4822 050 21001
R 1004	RES.METAL FILM	100K 1%	4822 050 21004
R 1005	RES.METAL FILM	1M 1%	4822 050 21005
R 1006	RES.METAL FILM	5K9 1%	4822 050 25902
R 1007	RES.METAL FILM	215E 1%	4822 050 22151

R 1008	RES.METAL FILM	5K9 1%	4822 050 25902
R 1009	RES.METAL FILM	196E 1%	4822 050 21961
R 1010	RES.METAL FILM	1M 1%	4822 050 21005
SEMI COND	UCTORS		
V 1001	DIODE	BAW62	4822 130 30613
V 1002	DIODE	BAW62	4822 130 30613
V 1003	DIODE	BAW62	4822 130 30613
V 1004	DIODE	BAW62	4822 130 30613
V 1005	DIODE	BAW62	4822 130 30613
V 1006	DIODE	BAW62	4822 130 30613
V 1007	DIODE	BAW62	4822 130 30613
V 1009	DIODE	BAW62	4822 130 30613
V 1010	DIODE	BAW62	4822 130 30613
V 1011	DIODE	BAW62	4822 130 30613
V 1012	DIODE	BAW62	4822 130 30613
V 1013	DIODE	BAW62	4822 130 30613
V 1014	DIODE	BAW62	4822 130 30613
V 1015	TRANSISTOR	BC549C	4822 130 44246
V 1016	DIODE	BAW62	4822 130 30613
V 1019 V 1020 V 1021 V 1022 V 1023	DIODE,REFERENCE TRANSISTOR TRANSISTOR DIODE DIODE,REFERENCE	BC559B BC337 BAX12	4822 130 34167 4822 130 44358 4822 130 40855 5322 130 34605 4822 130 34488
V 1024	TRANSISTOR	BC549C	4822 130 44246
V 1025	TRANSISTOR	BC327	4822 130 40854
V 1026	DIODE	BAX12	5322 130 34605
MISCELLANI	EOUS		
G 1001 T 1001 T 1002 S 1001 X 1001 X 1002	CRYSTAL COIL COIL SWITCH.SLIDE CONNECTOR CONNECTOR SOCKET.IC	CRYSTAL 3686.4KHZ TRANSFORMER TRANSFORMER DIL SWITCH CONNECTOR 10P CONNECTOR 25P IC SOCKET 28P	5322 242 70764 5322 138 54250 5322 138 54250 5322 127 00208 5322 265 51188 5322 267 60192 5322 255 44047
8.2.6 IEEE INTE	ERFACE BOARD		
		IEEE INTERFACE P.C.B.	5322 218 61099
C 0601	CAP.SOLID ALU.	20% 22UF	4822 124 20989
C 0602	CAP.	10% 100NF 63V	5322 121 42386
C 0603	CAP.SOLID ALU.	20% 22UF	4822 124 20989
C 0604	CAP.CERAMIC	-20+50% 10NF	4822 122 31414
C 0605	CAP.CERAMIC	-20+50% 10NF	4822 122 31414
C 0606	CAP.CERAMIC	-20+50% 10NF	4822 122 31414
C 0607	CAP.SOLID ALU.	20% 22UF	4822 124 20989
C 0608	CAP.CERAMIC	0.25PF 5.6PF	5322 122 32163
C 0609	CAP.CERAMIC	0.25PF 5 .6PF	5322 122 32163

	IGITAL INTEG	RATED CIRCUITS				
	D 0601 D 0602 D 0603 D 0604 D 0605 D 0606	INTEGR.CIRCUIT INTEGR.CIRCUIT INTEGR.CIRCUIT INTEGR.CIRCUIT INTEGR.CIRCUIT INTEGR.CIRCUIT	DS7516 DS7516 HEF402 N74LS0			5322 209 52236 4822 209 63506 4822 209 63507 5322 209 10867 5322 209 81624 5322 209 84994
	CRYSTAL					
	G 0601	CRYSTAL	6.0MHZ	PEL		4822 242 70392
	RISISTORS					
	R 0601 R 0602 R 0603 R 0604 R 0605	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM	MRS25 MRS25 MRS25	1% 10K 1% 100E 1% 100E 1% 10K 1% 100K		4822 050 21003 4822 050 21001 4822 050 21001 4822 050 21003 4822 050 21004
	R 0607 R 0608 R 0609 R 0610 R 0612	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM	MRS25 MRS25 MRS25	1% 2K74 1% 4K64 1% 8K66 1% 10K 1% 10K		4822 050 22742 4822 050 24642 4822 050 28662 4822 050 21003 4822 050 21003
	SEMI CONDU	CTORS				
	V 0606	DIODE	BAT85	PEL		4822 130 31983
8.2.7	ANALOG (OUTPUT BOARD				
	CAPACITORS					
	C 1001 C 1002 C 1003 C 1004 C 1005	CAP.CERAMIC CAP.SOLID ALU. CAP.CERAMIC CAP.CERAMIC CAP.SOLID ALU.	100V 25V 100V 100V 6.3V	10NF 20% 2% 2% 20%	1µF 33PF 33PF 22µF	4822 122 31414 4822 124 20944 5322 122 32072 5322 122 32072 4822 124 20989
	C 1006 C 1007 C 1008 C 1009 C 1010	CAP.SOLID ALU. CAP.CERAMIC CAP.CERAMIC CAP.ELECTROLYTE CAP.SOLID ALU.	6.3V 100V 40V 25V 40V	20% 10NF 22NF 1PF 680NF	22µF	4822 124 20989 4822 122 31414 4822 122 30103 5322 124 21959 4822 124 21317
	C 1011 C 1012 C 1013 C 1014 C 1015	CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	100V 100V 40V 100V 40V	470PF 390PF 22NF 6.8NF 22NF		4822 122 30034 4822 122 32121 4822 122 30103 4822 122 31429 4822 122 30103
	C 1016 C 1017 C 1018 C 1019 C 1020 C 1021 C 1022	CAP.SOLID ALU. CAP.CERAMIC ELECTROLYTE CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC CAP.CERAMIC	16V 100V 25V 100V 100V 100V	6.8NF 10NF 10% 10NF 10NF 10NF 390PF	2.2µF	5322 124 21763 4822 122 31414 5322 124 22097 4822 122 31414 4822 122 31414 4822 122 31414 4822 122 32121

C 1023	CAP.CERAMIC	100V	390PF	4822 122 32121
INTEGRATED	CIRCUITS			
D 1001 D 1002 D 1003 D 1004	INTEGR.CIRCUIT INTEGR.CIRCUIT INTEGR.CIRCUIT INTEGR.CIRCUIT	HEF406	1B 8BIT MCU 6BP 4xDIL.SWITCH 9BP 4xINV.BUFFER OM	5322 209 11719 5322 209 10357 4822 209 10306 5322 310 10453
ANALOG INTE	GRATED CIRCUITS			
N 1001 N 1002	INTEGR.CIRCUIT INTEGR.CIRCUIT		2X OP.AMP. I AMPLIFIER	4822 209 70672 5322 209 84444
RESISTORS				
R 1001 R 1002 R 1003 R 1004 R 1005	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM	1% 1% 1% 1%	10K 100E 100E 10K 100K	4822 050 21003 4822 050 21001 4822 050 21001 4822 050 21003 4822 050 21004
R 1006 R 1007 R 1008 R 1009 R 1010	RES.METAL FILM RES.METAL FILM RES.METAL F8LM RES.METAL FILM RES.METAL FILM	1% 1% 1% 1%	1M 10K 10K 10K 10K	4822 050 21005 4822 050 21003 4822 050 21003 4822 050 21003 4822 050 21003
R 1011 R 1012 R 1013 R 1014 R 1015	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL F8LM RES.METAL FILM	1% 1% 1% 1% 1%	10K 121K 162K 162K 787K	4822 050 21003 4822 050 21214 4822 050 21624 4822 050 21624 4822 050 27874
R 1016 R 1017 R 1018 R 1019 R 1020	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.HI-TENSION RES.METAL FILM	1% 1% 1% 5% 1%	464E 100E 100E 10M 15K4	4822 050 24641 4822 050 21001 4822 050 21001 4822 053 20106 4822 050 21543
R 1021 R 1022 R 1023 R 1024 R 1025	RES.METAL FILM RES.METAL FILM RES.METAL FILM RES.METAL FILM	1% 1% 1% 1% 1%	100E 100E 787K 15K4 14E7	4822 050 21001 4822 050 21001 4822 050 27874 4822 050 21543 4822 050 21479
R 1026 R 1027 R 1028	RES.METAL FILM POTM.TRIMMER POTM.TRIMMER	1% POTM POTM	20% 47K	4822 050 24872 4822 100 10598 4822 100 10254
SEMI CONDUC	CTORS			
V 1002 V 1003 V 1004 V 1005 V 1006 V 1007	DIODE DIODE DIODE TRANSISTOR,FET DIODE,REFERENCE DIODE,REFERENCE			4822 130 30613 4822 130 30613 4822 130 30613 5322 130 44248 4822 130 34173 4822 130 34173

MISCELLANEOUS

G 1001	CRYSTAL	6.0MHZ X-TAL	4822 242 70392
S 1001	SWITCH,SLIDE	SWITCHES	5322 277 21196
X 1001	CONNECTOR	DIN PLUG MALE 10-P	5322 265 51188
X 1002	PLUG	INPUT SOCKET RED	5322 267 34057
X 1003	PLUG	INPUT SOCKET BLACK	5322 267 30527