

Loopless stochastic methods

by Vsevolod Klyushev (v.klyushev@innopolis.university) & Dmitry Beresnev (d.beresnev@innopolis.university) github.com/dsomni/omml-project-f23 ·

01 +

Problem

Finite-sum minimization

$$\min_{x \in \mathbb{R}^d} f(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(x)$$

Assumption 1 (*L*-smoothness) Functions $f_i : \mathbb{R}^d \to \mathbb{R}$ are *L*-smooth for some L > 0:

$$f_i(y) \le f_i(x) + \langle \nabla f_i(x), y - x \rangle + \frac{L}{2} \|y - x\|^2, \quad \forall x, y \in \mathbb{R}^d.$$

Assumption 2 (μ -strong convexity) Function $f: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex for $\mu > 0$:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2, \quad \forall x, y \in \mathbb{R}^d.$$

Note

PAGE

PAGE is used for nonconvex finite-sum problems that satisfies average L-smoothness assumption:

A function $f:\mathbb{R}^d o \mathbb{R}$ is average L-smooth if $\exists L>0,$

$$\mathbb{E}[\|\nabla f_i(x) - \nabla f_i(y)\|] \le L^2 \|x - y\|^2, \forall x, y \in \mathbb{R}^d$$

SARAH, SVRG, L-SVRG

SARAH, SVRG and L-SVRG are used for convex finite-sum problems that satisfies L-smoothness and μ -strong convexity

02 SVRG vs L-SVRG

Don't Jump Through Hoops and Remove Those Loops: SVRG and Katyusha are Better Without the Outer Loop

SVRG Algorithm

Stochastic Variance-Reduced Gradient method

```
Input: learning rate \gamma>0, epoch length m, starting point x^0\in\mathbb{R}^d \phi=x^0 for s=0,1,2,\ldots do for k=0,1,2,\ldots,m-1 do Sample i\in\{1,\ldots,n\} uniformly at random g^k=\nabla f_i(x^k)-\nabla f_i(\phi)+\nabla f(\phi) x^{k+1}=\operatorname{prox}_{\gamma R}(x^k-\gamma g^k) end for \phi=x^0=\frac{1}{m}\sum_{k=1}^m x^k end for
```

$$O\left(n + \frac{n^{2/3}}{\epsilon^2}\right)$$

L-SVRG Algorithm

Loopless Stochastic Variance-Reduced Gradient method

```
Parameters: stepsize \eta > 0, probability p \in (0,1]
Initialization: x^0 = w^0 \in \mathbb{R}^d
for k = 0, 1, 2, \ldots do g^k = \nabla f_i(x^k) - \nabla f_i(w^k) + \nabla f(w^k) \qquad (i \in \{1, \ldots, n\} \text{ is sampled uniformly at random})
x^{k+1} = x^k - \eta g^k
w^{k+1} = \begin{cases} x^k & \text{with probability } p \\ w^k & \text{with probability } 1 - p \end{cases}
end for
```

$$O((\frac{L}{\mu})\log\frac{1}{\epsilon})$$

L-SVRG Convergence

Gradient learning quantity: $\mathcal{D} = \frac{4\eta^2}{pn} \sum_{i=1}^n \|\nabla f_i(w^k) - \nabla f_i(x^*)\|^2$

Lyapunov function: $\Phi^k = ||x^k - x^*||^2 + \mathcal{D}^k$

Lemma 1:

Upper bounds the expected squared distance of x^{k+1} from x^* in terms of the same distance but for x^k , function suboptimality, and second momentum of g^k .

$$E[\|x^{k+1} - x^*\|^2] \le (1 - \eta\mu)\|x^k - x^*\|^2 - 2\eta(f(x^k) - f(x^*)) + \eta^2 E[\|g^k\|^2]$$

Lemma 2:

Next, we further bound the second moment of g^k in terms of function suboptimality and \mathcal{D}^k

$$E[\|g^k\|^2] \le 4L(f(x^k) - f(x^*)) + \frac{p}{2\eta^2} \mathcal{D}^k$$

L-SVRG Convergence

Lemma 3:

We bound $E[\mathcal{D}^{k+1}]$ in terms of \mathcal{D}^k and function suboptimality.

$$E[\mathcal{D}^{k+1}] \le (1-p)\mathcal{D}^k + 8L\eta^2(f(x^k) - f(x^*))$$

Lemma 4:

Putting the above three lemmas together naturally leads to the following result involving Lyapunov function.

Let the step size $\eta \leq \frac{1}{6L}$. Then for all k≥0 the following inequality holds:

$$E[\Phi^{k+1}] \le (1 - \eta \mu) \|x^k - x^*\|^2 + (1 - \frac{p}{2}) \mathcal{D}^k$$

L-SVRG Convergence

Discussion of Lemma 4:

With $\eta \leq \frac{1}{6L}$ the $(1-\eta\mu)$ is at least $1-\frac{\eta}{6\mu}$, thus the complexity cannot be better than $\mathcal{O}(\frac{L}{\mu}\log\frac{1}{\epsilon})$

Also L-SVRG calls the stochastic gradient oracle in expectation $\mathcal{O}(1+pn)$ times in each iteration

Combining these facts we get total complexity $\mathcal{O}((\frac{1}{p} + n + \frac{L}{\mu} + \frac{Lpn}{\mu})\log\frac{1}{\epsilon})$

Note that any choice of $p \in [\min\{\frac{c}{n}, \frac{c\mu}{L}\}, \max\{\frac{c}{n}, \frac{c\mu}{L}\}]$, where $c = \Theta(1)$, leads to the

optimal complexity $\mathcal{O}((\frac{L}{\mu})\log\frac{1}{\epsilon})$

03 SARAH vs PAGE

PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization

SARAH Algorithm

StochAstic Recursive grAdient algoritHm

```
Parameters: the learning rate \eta > 0 and the inner loop
size m.
Initialize: \tilde{w}_0
Iterate:
for s = 1, 2, ... do
  w_0 = \tilde{w}_{s-1}
  v_0 = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w_0)
   w_1 = w_0 - \eta v_0
   Iterate:
   for t = 1, ..., m - 1 do
      Sample i_t uniformly at random from [n]
      v_t = \nabla f_{i_t}(w_t) - \nabla f_{i_t}(w_{t-1}) + v_{t-1}
      w_{t+1} = w_t - \eta v_t
   end for
   Set \tilde{w}_s = w_t with t chosen uniformly at random from
   \{0, 1, \ldots, m\}
end for
```

$$O\left(n + \frac{\sqrt{n}}{\epsilon^2}\right)$$

PAGE Algorithm

ProbAbilistic Gradient Estimator

Input: initial point x^0 , stepsize η , minibatch size b, b' < b, probability $\{p_t\} \in (0,1]$ 1: $g^0 = \frac{1}{h} \sum_{i \in I} \nabla f_i(x^0)$ // I denotes random minibatch samples with |I| = b

2: **for**
$$t = 0, 1, 2, \dots$$
 do

3:
$$x^{t+1} = x^t - \eta g^t$$

4:
$$g^{t+1} = \begin{cases} \frac{1}{b} \sum_{i \in I} \nabla f_i(x^{t+1}) & \text{with probability } p_t \\ g^t + \frac{1}{b'} \sum_{i \in I'} (\nabla f_i(x^{t+1}) - \nabla f_i(x^t)) & \text{with probability } 1 - p_t \end{cases}$$
5: **end for**

5: end for

Output: \widehat{x}_T chosen uniformly from $\{x^t\}_{t\in[T]}$

$$O\left(n + \frac{\sqrt{n}}{\epsilon^2}\right)$$

PAGE Convergence

Theorem

Suppose that average L-smoothness assumption holds. Choose the step size $\eta \leq \frac{1}{L(1+\sqrt{\frac{1-p}{pb'}})}$, minibatch size b=n, secondary minibatch size b'<\sqrt{b}, and probability p \in (0,1].

Then the number of iterations performed by PAGE sufficient to find ϵ -approximate solution of nonconvex finite-sum problem can be bound by

$$T = \frac{2\Delta_0 L}{\epsilon^2} \left(1 + \sqrt{\frac{1-p}{pb'}} \right), \text{ where } \Delta_0 = f(x^0) - f^*$$

Moreover according to the gradient estimator of PAGE, we know that it uses pb + (1-p)b' stochastic gradients for each iteration on expectation. Thus, the number of stochastic gradient computations is

$$\#grad = b + T(pb + (1-p)b') = b + \frac{2\Delta_0 L}{\epsilon^2} \left(1 + \sqrt{\frac{1-p}{pb'}} \right) (pb + (1-p)b')$$

PAGE Convergence

Corollary

Suppose that average L-smoothness assumption holds. Choose the step size $\eta \leq \frac{1}{L(1+\sqrt{b}/b')}$, minibatch size b=n, secondary minibatch size b'<\sqrt{b}, and probability p=b'/(b+b').

Then the number of iterations performed by PAGE sufficient to find ϵ -approximate solution of nonconvex finite-sum problem can be bound by

$$T = \frac{2\Delta_0 L}{\epsilon^2} \left(1 + \frac{\sqrt{b}}{b'} \right)$$

Moreover, the number of stochastic gradient computations is

$$\#grad \le n + \frac{8\Delta_0 L\sqrt{n}}{\epsilon^2} = O\left(n + \frac{\sqrt{n}}{\epsilon^2}\right)$$

04

Configuration

Datasets

- Mushrooms
 - 8124 data rows
 - o 112 features
 - o 80/20 -train-test ratio
- MNIST-binary try to predict whether picture is 0 or 1
 - 2000 data rows
 - o 784 features
 - o 90/10 train-test ratio
- MNIST
 - 42000 data rows
 - o 784 features
 - 90/10 train-test ratio

Models

- Binary Logistic Regression (BLR)
 - We always can estimate Lipschitz constant
 - Predicted class is determined by sign of output
 - Suitable only for 2 classes
 - Used in third assignment
- One layer FC
 - o torch & Cuda 11.8
 - Architecture softmax(relu(x@W+b))
 - Cross Entropy loss
 - Suitable for an arbitrary number of classes
- Simple CNN
 - o torch & Cuda 11.8
 - Has architecture softmax(relu(relu(conv(x, (1,1,3,3)))@W+b))
 - Cross Entropy loss
 - Suitable for an arbitrary number of classes

05 \(\phi \) Experiments \(\phi \)

SVRG: $\eta = 1/L$, n = m = 100

L-SVRG: η =1/L, p=1/n=1/100

SVRG: $\eta = 1/L$, n = m = 100

L-SVRG: η =1/L, p=1/n=1/100

SVRG: η =0.1, n=m=100

L-SVRG: η =0.1, p=1/n=1/100

SVRG: η =0.1, n=m=100

L-SVRG: η =0.1, p=1/n=1/100

SVRG: η =2, n=m=50

L-SVRG: η =2, p=1/n=1/50

SVRG: η =1, n=m=100

L-SVRG: η =0.1, p=1/n=1/100

SVRG: η =0.1, n=m=200

L-SVRG: η =0.1, p=1/n=1/200

SARAH: $\eta=1/(2L)$, b=10, m=data_size/b

PAGE: $\eta = 1/(2L)$, b = 100, b' = 10

SARAH: $\eta=1/(2L)$, b=10, m=data_size/b

PAGE: $\eta = 1/(2L)$, b = 100, b' = 10

SARAH: η =0.1, b=10, m=data_size/b

PAGE: η =0.1, b=100, b'=10

SARAH: η =0.1, b=10, m=data_size/b

PAGE: η =0.1, b=100, b'=10

SARAH: η=1, b=50, m=data_size/b

PAGE: η =0.1, b=200, b'=50

SARAH: η=0.001, b=9, m=data_size/b

PAGE: η =0.001, b=81, b'=9

SARAH: η =0.1, b=50, m=data_size/b

PAGE: η =0.5, b=400, b'=100

References

- Kovalev, D. (2020, January 28). Don't Jump Through Hoops and Remove Those Loops: SVRG and Katyusha are Better Without the Outer Loop. PMLR. https://proceedings.mlr.press/v117/kovalev20a.html
- Li, Z. (2021, July 1). PAGE: A simple and optimal probabilistic gradient estimator for nonconvex optimization. PMLR. https://proceedings.mlr.press/v139/li21a.html
- Gorbunov, E. (2019, May 27). A unified theory of SGD: variance reduction, sampling, quantization and coordinate descent. arXiv.org. https://arxiv.org/abs/1905.11261
- Nguyen, L. M. (2017, March 1). SARAH: A Novel Method for Machine Learning Problems using Stochastic Recursive Gradient. arXiv.org.
 https://arxiv.org/abs/1703.00102

Thanks for your attention!

Do not forget to visit our GitHub! github.com/dsomni/omml-project-f23

