Symbolic cognitive robotics - Design notes

Author: Jean-François Cloutier

Research project: Symbolic Cognitive Robotics, Active Inference Institute

Last updated: January 19 2024

Pre-implementation notes on the next iteration of a cognitive architecture for Lego robots.

Formative concepts

- Active Inference (an agent actively minimizes surprise to survive)
- Enactivism (an agent's perceptions and actions are constructively co-dependent)
- Apperception (sense-making as discovery of unified causal theories)
- Mortal Computing (meaning is grounded in the agent's drive to survive)
- Society of Mind (an agent is animated by a collective of cognition actors interacting with each other and the environment)
- Constraint Closure (the cognition actors constrain how the Society of Mind can change, and viceversa)
- Kantian Whole (the parts -cognition actors- exist for and by means of the whole -the Society of Mind-)

Society of Mind (SOM)

- An agent grows and evolves a Society of Mind from its experiences
- A SOM is a "connectome" of Cognition Agents (CAs)
- Each CA has an umwelt consisting of other CAs

Introspection vs extrospection

- Extrospection => Cognition of (more or less abstracted) sensations from the external world
 - The objects named "world" and "ground" are primordial
 - object ground is in world
- Introspection => Cognition of sensations from the computations by Cognition Actors (CAs)
 - The object named "self" (self is in world) is primordial
 - self is in world
- Detectors and effectors are exposed as extrospective primitive CAs
- Every other CA can be coopted into one or more umwelts as a source of introspective or extrospective sensations, and as an effector of actions

The umwelt of a Cognition Actor (CA)

- A set of other CAs are seen by others through what they expose (their API)
 - What a CA exposes to all other CAs
 - the vocabulary of their beliefs (what others can make predictions about)

- extant, latent and synthetic objects (typed with extant or latent object types),
- extant, latent and synthetic relations/properties
 - a latent or synthetic property is always boolean-valued
- all CAs have a common vocabulary of meta-cognition beliefs
- what they emit when prompted by predictions about their beliefs:
 - prediction errors from their beliefs
 - from perceiving other CAs
 - from their cognitive self-assessments/beliefs (from introspection)
 - with varying precision

A CA's perceptions

- A CA processes perceptions one discrete time slice after another
 - its duration is constant and proportional to the CA's abstraction level
 - i.e. the depth of its umwelt
- Perceiving is making predictions about about the beliefs of CAs in its umwelt
 - and getting prediction errors or not
- · Perceptions are
 - Uncontradicted predictions
 - Prediction errors can be emitted in response to predictions, with attached precision
 - If multiple CAs respond to a prediction with prediction errors
 - The prediction error with the highest precision is picked
 - Tie-breaking is random
- The precision of a prediction error (a float between 0 and 1) is a function of:
 - The confidence of the emitting CA in the contradicting belief, which is a function of:
 - The accuracy of the supporting causal model
 - The duration of the supporting trend modulated by
 - the average precision and variance of the perceptions aggregated by the trend

A CA's beliefs

- · What's imagined, analyzed, partitioned and categorized by the CA
 - from its perceptions
 - unrefuted predictions + prediction errors about the beliefs of CAs in its immediate umwelt
- Beliefs are available to other CA's as synthetic or latent and thus novel perceptions
- Beliefs are abduced predicates
 - needed to formulate a causal theory (latent)
 - needed to label significant perceptual trends (synthetic)
- Beliefs have associated normativity (pleasant vs unpleasant vs indifferent beliefs)
- "Thin now" vs. "thick now" beliefs

- Thin now beliefs
 - Unobserved but imagined/abduced properties/relations/objects to (causally) make sense of observations - the thin now -
- Thick now beliefs
- Synthetic. induced from, and thus supported by, perceptual trends the thick now -

Perceptual trends support synthetic beliefs

- Trends support the synthesis of beliefs in the thick now
- A trend is given a value
 - one of stable, unstable, up or down
- · Specific vs generic trend
 - Specific trend
 - trend(<predicate name>(<object name>, <object name> | <domain
 value>), <trend value>, <since>) a trend on an instance of a
 property/relation (stable, unstable)
 - Generic trend trend(predicate name>(<object name>), <trend value>,
 <since>) a trends on a type of property/relation for an object (stable, unstable, up, down)
 - for relations, up/down describes a count of related objects,
 - for properties, up/down describes the rise/fall in values (property value domains are ordered from lesser to greater)
- Memorizing trends
 - A compressed trend and associated normativity can be preserved as long-term memory
 - compressed(<trend>, <time interval>)
 - and associated with past beliefs (that the trends supported)
 - Uncompressed trends represent short-term memory (developing trends)

Inducing beliefs from trends

- By association
 - Synthetic properties/relations are supported by attention-worthy (strongly felt or surprising)
 trends
 - <synthetic property name>(<object_name>, true | false)
 - <synthetic relation name>(<object name>, <object name>)
- By partition
 - Parts-whole beliefs are induced by detecting boundaries in an observed object.
 - in(<new object name>, <object name>)
 - How are boundaries detected?
 - An object has differentiable, stable sub-trends that coincide in time
 - This might indicate that different parts of the object were being observed at different times
 - e.g. "patch of food" in the "ground" in the "world" ("self" is always in the "world")
 - A part is not of the same object type as the whole (assuming no fractal objects)
- By categorization
 - Beliefs about partition cause the abduction of new objects (the parts)
 - The "part" object ia assigned a new (abduced) object type
 - is_a(<object_name>, <new object_type>)

Trends, feelings and the normativity of beliefs

- Normativity (from association with current feelings) is always about trends
 - It exists in the "thick now"
- Normative valuation comes from associating trends with feelings (see below)
- A trend takes its (normative) value from the intensity of concurrent feelings
 - o trend_value(<trend>, good | bad | neutral)
- A belief supported by a trend takes the normative value of that trend
 - A belief associated with a bad feeling is unpleasant, else it's pleasant (good) or indifferent (neutral)
 - Since trends have lengths, the normative values of trends have duration
 - e.g. a long-lasting unpleasant belief are worse than a short-lasting one
 - A trend is **significant** (and worthy of belief synthesis) if
 - it breaks surprisingly from a previous trend
 - or if correlates with a change in feelings

CA actions

- Changes in properties/relations observed by a CA are either caused by latent processes or by actions.
 - In a static environment, they are caused entirely by actions!
 - No perception without action and no action without perception
- To make sense of/apperceive the consequences of actions, they must be observed together with the property/relation changes they (may) cause
- A CA exposes, by name, the actions it can execute
- A CA must always be capable of acting
 - i.e. it has at least one effector CA in its transitive umwelt
- The action repertoire of a CA consists of
 - the actions it synthesized
 - plus the distinct actions exposed by CAs in its umwelt
- The CA of an effector exposes atomic actions
 - For example, a wheel CA exposes the atomic actions "spin" and "reverse spin"
- A CA syntesizes actions from the actions exposed by CAs in its umwelt, names them and exposes them in turn
- A synthetic action is a named list of actions
 - e.g. action_2 = [action(ca_2, action_1), action(ca_2, action_1), action(ca_3, action_2)]
 - an action can be repeated
 - o a synthetic action is, via closure, a sequence of atomic actions

Why does a CA synthesize a new action?

- Because a sequence of actions is empirically associated with a significant belief change
- · Belief changes
 - Abduced object, property or relation from a causal model (thin now belief)
 - Correlation with a belief-supporting trend starting/ending/enduring (long now belief)
 - The sequence of actions that runs before/through the trend is extracted
 - Babbling
 - A CA synthesizes an action to see what would happen if executed
 - As a variation on an action already n the repertoire
 - Amplify sub-sequences via action duplication
 - Tone down sub-sequences by reducing duplication
 - Splice and recombine a synthetic action

Action intents

- An **intent** names an action that a CA wants executed.
 - A CA can intend any action in its repertoire
- What motivates action intents by a CA (from less to most motivated)
 - Babbling
 - to maybe cause a "random" belief
 - Evidencing
 - to impact confidence in a belief (thus the precsion of reported prediction errors)
 - Eliminating
 - to terminate an unpleasant belief
- A CA intends at most one action per time slice
 - It intends the most motivated action in its repertoire
 - favoring, but not always, actions of the most successful policies (seebleow)
 - If multiple actions are considered
 - A motivation tie is randomly broken

Action execution

- Execution of an intended action is inhibited if another CA concurrently intends an action that
 - covers it (is a super-sequence)
 - or is identical and has higher normative motivation
- All actions taken are observable by all CAs
 - The atomic actions from the closure of synthetic actions are observed
 - During time slice T of the CA
 - If a sub-sequence of the observed atomic actions recreates a synthetic action in the repertoire of the CA
 - then the longest synthetic action is what is observed, plus the second longest etc.

CA action policies

 A policy is an action associated by a CA with a belief, a goal (verification, elimination) and a success rating from its executions

Feelings

- Feelings are agent-wide signals about detected existential risks
- · Feeling types
 - Hunger
 - Depleted energy/resource stores
 - Pain
 - Damage loss of structural integrity
 - Fear
 - Lack of foresight Inability to predict
- feeling(<feeling type>, good | bad | neutral)
- Motivational ranking
 - Hunger > Pain > Fear
 - The agent dies when energy/resources are depleted
 - The agent is immobilized when pain is too high
- Feelings are centrally computed from
 - detector sensations
 - touch pain increases
 - color resources increase if color == food type
 - effector sensations
 - work done energy decreases
 - CA cognitive sensations
 - mental effort energy decreases
 - prediction success rate fear increases/decreases
 - relevance (rate of received predictions, intended composited actions)
 - The passing of time
 - healing pain decreases
 - base metabolism resources/energy decreases
- Any change in hunger/pain/fear intensity is signaled to all CAs
- For each CA, for each time slice, there's an average intensity of each feeling type

Constraints

- Umwelts (when closed) must be acyclic directed graphs but not necessarily trees
- Abstraction must be monotonic
 - A CA must not include a CA in its immediate umwelt if the latter is already in its transitiveumwelt.
- A CA must be either cognitive or meta-cognitive, never both
- · Only one synthetic action in a conflicting set can be executing at any given point in time
 - A synthetic action conflicts with another if their closed sequences have any simple action type
 * incommon.
 - Practically speaking, only one synthetic action is allowed to execute at any time
- A * CA must not remove an element from its API if it is used by another CA
 - to formulate a causal theory
 - to synthesize a belief or action
- If a CA must archive a belief (without normativity) or action and its (compressed abstracted)support when the support is gone but the belief or action is still used by other CAs
- A new belief must not be created if its support is subsumed by the compressed support of an archivedbelief

- The archive belief is ressucitated and given the current support
- An archived belief/action must be deleted if the belief/action is no longer used by another CA.

Initial state of the Society of Mind (SOM)

- Initial CAs
 - One primitive CA per effector (wheel_1, wheel_2)
 - One primitive CA per detector (color_sensor, touch_sensor, obstacle_sensor, beam_sensor)
 - One meta-cognition CA with as umwelt all the primitive CAs *Initial steady state variables (sources of feelings)
 - Integrity 100%
 - Energy 100%
 - Foresight 100%

Meta-cognition CAs (MCAs)

- Every CA of level N belongs to the umwelt of one MCA associated to that level
 - The level of a CA is the number of edges from the CA to primitive CAs
 - For a Society of Mind (SOM) with N levels, there must be one MCA per level 1..N, plus one MCA for level N+1 with an empty umwelt
 - Once a CA is added at level N + 1, an MCA is immediately created for the empty level N + 2etc.
- An MCA observes only cognitive sensations from its umwelt

Meta-cognitive actions

- An MCA is exploring the "connectome space" of CAs at one level of abstraction, looking for a beneficial organization
- An MCA at level N can
 - Create a CA at level N
 - And add level N-1 CAs to its umwelt at creation
 - Remove a CA

Cognitive sensations

- The cognitive sensations are
 - effort as
 - apperception engine usage
 - memory load
 - foresight as
 - prediction success rate
 - o stability as
 - rate of change in beliefs, actions, causal theories
 - relevance as
 - rate of received predictions,
 - percent of actions composited by other CAs