

CHANGE-MAKING PROBLEMS

Why

Suppose a cashier needs to provide $c \in \mathbf{Z}_+$ cents in change, and wants to do so using the using the fewest (or most) number of coins, each worth a different number of cents. We can model this as a problem similar to the bounded knapsack problem, in which we have an equality constraint instead of an inequality one.

Definition

Given
$$w:\{1,\dots,n\}\to \mathbf{R}_+,\ b\in \mathbf{Z}_+^n,\ \mathrm{find}\ x\in \mathbf{Z}_+^n$$
 to minimize
$$\sum_i x_i$$
 subject to
$$\sum_{j=1}^n w_j x_j = c$$

$$0\leq x\leq b, x\in \mathbf{Z}_n^n$$

This problem is often called a *change-making problem*. Without the budget constraints, it is called an *unbounded change-making problem*.

