Laboratório de Sistemas de Controle - Relatório 1

Hugo Santos - 10080000701

June 3, 2013

Contents

1	Cálculo dos Coeficientes da Série de Fourier	2
	1.1 Funcionamento do Script	2

Chapter 1

Questão 2

1.1 Funcionamento do Script

O script é utilizado para fazer o cálculo numérico dos coeficientes da série de Fourier da função $\Delta(t/2)$, utilizando a fórmula da transformada inversa mostrada na equação $\ref{eq:constraint}$. O algoritmo do programa está definido abaixo.

$$t_p = \frac{\pi}{w_d}$$

$$\frac{C(s)}{R(s)} = \frac{kw_n^2}{s^2 + 2\xi w_n s + w_n^2}$$

$$\frac{C(s)}{R(s)} = \frac{K}{s^2 + (1 + KK_h)s + K}$$

$$w_d = w_n \sqrt{1 - \xi^2}$$

- Para w_n =2, k=8 e ξ =1 mostrado na Figura 1.1
 - $-T_s=2.893$
 - $-\ T_p$ não foi necessário porque o sistema se comportou como um sistema de ordem 1
- Para w_n =2, k=8 e ξ =0.7 mostrado na Figura 1.2
 - $-T_s=2.893$
 - $-V_p=8.367$
 - $-M_p=4.5875$
 - $-T_p=2.157$
 - $-T_p=2.199$ calculado
- Para $w_n=2$, k=8 e $\xi=0.2$ mostrado na Figura 1.3
 - $-T_s=9.535$
 - $-V_p=12.17$
 - $-M_p=52.12$

- $-T_p=1.535$
- $-T_p=1.603$ calculado
- \bullet Para $w_n{=}10,$ k=8 e $\xi{=}1$ mostrado na Figura 1.4
 - $-T_s=0.56$
 - T_p não foi necessário porque o sistema se comportou como um sistema de ordem 1
- \bullet Para $w_n{=}10,$ k=8 e $\xi{=}0.7$ mostrado na Figura 1.5
 - $-T_s=0.6$
 - $-V_p=8.367$
 - $-M_p=4.5875$
 - $-T_p=0.448$
 - $-T_p=0.439$ calculado
- $\bullet\,$ Para $w_n{=}10,$ k=8 e $\xi{=}0.2$ mostrado na Figura 1.6
 - $-T_s=1.856$
 - $-V_p=12.19$
 - $-M_p=52.37$
 - $-T_p=0.33$
 - $-\ T_p{=}0.32$ calculado

Os efeitos do ξ foram relacionados ao tempo de estabilização e à tensão de pico. Os efeitos do w_n tiveram grande influência sobre o tempo de resposta, pois com um valor maior, o T_p diminue.

Figure 1.1: Para $w_n=2$, k=8 e $\xi=1$

Figure 1.2: Para $w_n{=}2,\,\mathbf{k}=8$ e
 $\xi=0.7$

Figure 1.3: Para $w_n{=}2,$ k=8 e $\xi=0.2$

Figure 1.4: Para $w_n{=}10,\,\mathbf{k}=8$ e
 $\xi=1$

Figure 1.5: Para $w_n{=}10,$ k=8 e ξ = 0.7

Figure 1.6: Para $w_n{=}10,$ k=8 e ξ = 0.2