

This work is licensed under a <u>Creative Commons</u> <u>Attribution-NonCommercial-NoDerivatives 4.0</u> <u>International License</u>

Your Intensity/Color Sensors

Rods

- ~115,000,000
- Concentrated on the periphery of the retina
- Sensitive to intensity
- Most sensitive at 500 nm (~green)

Cones

- ~7,000,000
- Concentrated near the center of the retina
- Sensitive to color
- Three types of cones: long(~red), medium (~green), and short (~blue) wavelengths

But, are you equally-sensitive to all wavelengths?

A person with 20/20 vision has a visual acuity of: 1 arc-minute = 1/60°

University Computer Graphics

Monitors: Additive Colors

Additive Color (RGB)

OpenGL: ______ glColor3f(r, g, b);

 $0. \le r, g, b \le 1.$

Yes, Our Vision System Really Does Mush Red and Green Together to Make Yellow!

Color Combinations

Here's a cool website that shows a lot of different color combinations:

https://www.tug.org/pracjourn/2007-4/walden/color.pdf

Plasma Displays and LED Displays Emit Color

- Gas cell
- Phosphor

· Grid of electrodes

LCD Displays "Gate" Color

Home Depot uses a form of HSV :-)

Notice that blue-green-red in HSV space corresponds to the visible portion of the electromagnetic spectrum

Blue: 380 nm Green: 520 nm Red: 780 nm

Turning a scalar value into a hue when using the Rainbow Color Scale

Hue-Saturation-Value: The *OSU ColorPicker* Program

ParaView Allows You to Pick Among Several Preset Color Ranges 18

Oregon State
University
Computer Graphics

OpenDX Allows you to Sculpt the Transfer Function in HSV

http://colorbrewer2.org

Subtractive Colors (CMYK)

R = Red

G = Green

B = Blue

W = White

C = Cyan

M = Magenta

Y = Yellow

K = Black

Subtractive Colors (CMYK)

- Uses subtractive colors
- Uses 3 (CMY) or 4 (CMYK) passes
- CMYK printers have a better-looking black
- There is a considerable variation in color *gamut* between products

How the Cube is setup:

CIE Chromaticity Diagram

CIE Chromaticity Diagram

D = the dominant wavelength

C ' = the complementary color

Color Gamut for a Workstation Monitor

Color Gamut for a Monitor and Color Slides

Oregon State
University
Computer Graphics

Color Gamut for a Monitor and Color Printer

Oregon State
University
Computer Graphics

The Perceptually Uniform L-a-b Color Space

Color Meters Are Able to Measure L-a-b Coordinates

What Makes a Good Contrast?

- Many people think simply adding color onto another color makes a good contrast
- In fact, a better measure is the Δ Luminance
- Using this also helps if someone makes a grayscale photocopy of your color hardcopy

Color Alone Doesn't Cut It!

I sure hope that my life does not depend on being able to read this quickly and accurately!

Luminance Contrast is Crucial!

I would prefer that my life depend on being able to read *this* quickly and accurately!

TUESDAY

MARCH 29
3-4 PM

RSVP to:
http://oregonstate.qualtrics.com/
http:

The Luminance Equation

Y = .30*Red + .59*Green + .11*Blue

Luminance Table

	R	G	В	Y
Black	0.0	0.0	0.0	0.00
White	1.0	1.0	1.0	1.00
Red	1.0	0.0	0.0	0.30
Green	0.0	1.0	0.0	0.59
Blue	0.0	0.0	1.0	0.11
Cyan	0.0	1.0	1.0	0.70
Magenta	1.0	0.0	1.0	0.41
Orange	1.0	0.5	0.0	0.60
Yellow	1.0	1.0	0.0	0.89

(I use a ΔL^* of about 0.40)

	Black	White	Red	Green	Blue	Cyan	Magenta	Orange	Yellow
Black	0.00	1.00	0.30	0.59	0.11	0.70	0.41	0.60	0.89
White	1.00	0.00	0.70	0.41	0.89	0.30	0.59	0.41	0.11
Red	0.30	0.70	0.00	0.29	0.19	0.40	0.11	0.30	0.59
Green	0.59	0.41	0.29	0.00	0.48	0.11	0.18	0.01	0.30
Blue	0.11	0.89	0.19	0.48	0.00	0.59	0.30	0.49	0.78
Cyan	0.70	0.30	0.40	0.11	0.59	0.00	0.29	0.11	0.19
Magenta	0.41	0.59	0.11	0.18	0.30	0.29	0.00	0.19	0.48
Orange	0.60	0.41	0.30	0.01	0.49	0.11	0.19	0.00	0.30
Yellow	0.89	0.11	0.59	0.30	0.78	0.19	0.48	0.30	0.00

White	Black	Black White						
Red	Red		Red	Red	Red	Red	Red	Red
Yellow	Yellow	Yellow		Yellow	Yellow	Yellow	Yellow	Yellow
Green	Green	Green	Green	Green		Green	Green	Green
Blue	Blue	Blue	Blue	Blue	Blue	Blue		Blue

Oregon State
University
Computer Graphics

Limit the Total Number of Colors if Viewers are to Discern Information Quickly

Instructions:

- 1. Press red to logoff normally
- 2. Press light red to delete all your files, change your password to something random, and logoff

You have 2 seconds •••

?

The Ability to Discriminate Colors Changes with Surrounding Color: "Simultaneous Contrast"

Oregon State University Computer Graphics

The Ability to Discriminate Colors Changes with Surrounding Color: "Simultaneous Contrast"

Oregon State University Computer Graphics

University Computer Graphics

So, What's Up with the "Blue Dress" Debate?

New York Times

It's all part of the *Color Constancy* effect

If you see this color, but you think that the dress is currently in a shadow, you "know" that it must *really* be this color.

If you see this color, but you think that the dress is currently in bright light, you "know" that it must *really* be this color.

Afterimages

Afterimages

Oregon State
University
Computer Graphics

Beware of Mach Banding

Beware of Mach Banding

Think of the Mach Banding problem as being similar to trying to round second base at a 90° angle.

Be Aware of Color Vision Deficiencies (CVD)

- In general, there is no such thing as total "color blindness"
- CVD affects ~10% of Caucasian men
- CVD affects ~4% of non-Caucasian men
- CVD affects ~0.5% of women
- The most common type of CVD is red-green
- Blue-yellow also exists

Resources for designing color schemes for people with color recognition deficiencies:

http://colorbrewer2.org

http://colororacle.org/usage.html

http://mkweb.bcgsc.ca/colorblind/

It's because the red-green CVD defect is carried on the X Chromosome

http://www.bio.miami.edu/~cmallery/150/mendel/c7.15.X.Y.jpg

An XX with the defective gene on one X chromosome probably has a dominant non-defective gene on the other. An XY with a defective gene on one X chromosome has no other gene to "fix" it.

Computer Graphics

Be Aware of CVD: Code Information Redundantly

Four score and seven years ago, our fathers brought forth upon this continent a new nation...

Four score and seven years ago, our fathers brought forth upon this continent a new nation...

Four score and seven years ago, our fathers brought forth upon this continent a new nation...

Be Aware of CVD: Code Information Redundantly: Color + ...

- Different fonts
- Symbols
- Fill pattern
- Outline pattern
- Outline thickness

This also helps if someone makes a grayscale photocopy of your color hardcopy

Use a Black or White Line as the Boundary Between Colored Regions

Do Not Display Fast-moving or High-detail Items in Color, Especially Blue

Watch the Use of Saturated Reds and Blues Together

Beware of Lots of Other Stuff

Computer Graphics

Good Color and Perception References

- Theresa-Marie Rhyne, *Applying Color Theory to Digital Media and Visualization*, CRC Press, 2017.
- Maureen Stone, A Field Guide to Digital Color, AK Peters, 2003.
- Roy Hall, Illumination and Color in Computer Generated Imagery, Springer-Verlag, 1989.
- R. Daniel Overheim and David Wagner, Light and Color, John Wiley & Sons, 1982.
- David Travis, Effective Color Displays, Academic Press, 1991.
- L.G. Thorell and W.J. Smith, *Using Computer Color Effectively*, Prentice Hall, 1990.
- Edward Tufte, *The Visual Display of Quantitative Information*, Graphics Press, 1983.
- Edward Tufte, *Envisioning Information*, Graphics Press, 1990.
- Edward Tufte, Visual Explanations, Graphics Press, 1997.
- Howard Resnikoff, *The Illusion of Reality*, Springer-Verlag, 1989.

