AMAZON SALE'S DATA INSIGHTS

Location: Myanmar (Mandalay, Yangon, Nay Pyi Taw)

OVERVIEW OF AMAZON DATA

THE DATA CONSISTS OF SALES RECORD OF THREE CITIES IN **MYANMAR**THE DATA CONSISTS OF 1000 ROWS AND 17 COLUMNS.

AFTER FEATURE ENGINEERING NUMBER OF ROWS WII BE 1000 AND NUMBER COLUMNS WILL BE 20.

OBJECTIVE OF PROJECT

THE AIM OF THE THIS PROJECT IS TO GAIN INSIGHTS INTO THE SALES DATA OF THE AMAZON TO UNDERSTAND THE DIFFERENT FACTORS THAT AFFECTS SALES OF THE DIFFERENT BRANCHES

DATA WRANGLING

- Create a database named amazon in MySQL.
- 2) Importing data in the form of a table in amazon database.

After completion of step one and step 2 we can start writing queries, in picture you can see that I have used a query (describe).

CHECKING NULL VALUES AND NULL VALUES DATATYPE.

DATA TYPE

ENGINEERING

In feature engineering we are creating some new columns to extract data from DATE and TIME column

This will help us to analyse the data in time format and day format more specifically

For example:1). time-of-day (Morning, Afternoon, Evening).

2). Day-of-week (Monday to Sunday)

18	price	Quantity	Tax_5	Total	Date	Time	Payment	cogs	gross_margin_percentage	gross_income	Rating	time_of_day	day_name	month_name
		7	26.1415	548.9715	2019-01-05 00:00:00	13:08:00	Enalet	522.83	4.761904762	26.1415	9.1	Afternoon	Saturday	January
		5	3.8200	80.2200	2019-03-08 00:00:00	10:29:00	Cash	76.40	4.761904762	3.8200	9.6	Morning	Friday	March
		7	16.2155	340.5255	2019-03-03 00:00:00	13:23:00	Credit card	324.31	4.761904762	16.2155	7.4	Afternoon	Sunday	March
		8	23.2880	489.0480	2019-01-27 00:00:00	20:33:00	Enalet	465.76	4.761904762	23.2880	8.4	Evening	Sunday	January
		7	30.2085	634.3785	2019-02-08 00:00:00	10:37:00	Enallet	604.17	4.761904762	30.2085	5.3	Morning	Friday	February
		7	29.8865	627.6165	2019-03-25 00:00:00	18:30:00	Exalet	597.73	4.761904762	29.8865	41	Evening	Monday	March
		ő	20.6520	433.6920	2019-02-25 00:00:00	14:36:00	Enalet	413.04	4.761904762	20.6520	5.8	Afternoon	Monday	February
		10	36.7800	772.3800	2019-02-24 00:00:00	11:38:00	Enalet	735.60	4.761904762	36.7800	8.0	Morning	Sunday	February

```
anazon Schera Anazon 50; Fire 5
               Q 0 % 0 0 0 Lind to 1000 rows - 16 of Q 1 3
        SET SQL_SAFE_UPDATES - 01
        alter table amazon
        and time of day varchor(15) not rull;
        update amazon set time of day -
            when hour(time) between 86 and 12 them 'Morning'
            when hour(time) between 12 and 17 them 'Afternoon'
            else 'frening'
 27
        alter table amazon
        add day name warchar(10) not null;
        update amazon set day name -
        (select daysmen(date));
        alter table assign
        add month name varchar(10) not mall;
```

EXPLORATORY

amazon - Schema Amazon SQL File 6" Limit to 1000 rows create table amazon sales (invoice id varchar(30) primary key not null, branch varchar(5) not null, city varchar(30) not null, 48 customer type varchar(30) not null, gender varchar(10) not null, product line varchar(100) not null, unit price decimal(10,2) not null, quantity int not null, 53 vat float not null, total decimal(10,2) not null, date date not null, 56 57 time time not null, payment method varchar(20) not null, 58 cogs decimal(10,2) not null, gross margin percentage float not null, gross income decimal(10,2) not null,

DATA ANALYSIS

DATA

Creating new table named amazon sales by adding correct column name, datatype, constraints while copying values from demo table amazon

Checking size of table, count of null values, unique values

UNIQUE VALUES

Checking the unique values in each categorical column. There are 10 categorical columns.

- 1.) invoice_id
- 2.)branch
- 3.)city
- 4.)customer_type
- 5.)gender
- 6.)product_line
- 7.)payment_method
- 8.)time_of_day
- 9.)day_name
- 10.)month_name

Some of the unique values

QUESTIONS RELATED TO DATASET

- 1.) What is the count of distinct cities in the dataset? select count(distinct(city)) from amazon_sales;
- 2.) For each branch, what is the corresponding city? select distinct city, branch from amazon_sales;
- 3.) What is the count of distinct product lines in the dataset? select count(distinct(product_line)) from amazon_sales;
- 4.) Which payment method occurs most frequently? select payment_method, count(*) as occurance from amazon_sales group by payment_method order by occurance desc;
- 5.) Which product line has the highest sales?

 select product_line, sum(quantity) as total_sales from amazon_sales
 group by product_line
 order by total_sales desc;
- 6.) How much revenues is generated each month?

 select month_name, sum(total) as monthly_revenue\$ from amazon_sales
 group by month_name
 order by monthly_revenue\$ desc;
- 7.) In which month did the cost of goods sold reach its peak? select month_name, sum(cogs) as cost_of_goods_sold from amazon_sales group by month_name order by cost_of_goods_sold desc;

8.) Which product line generated the highest revenue? select product_line, sum(total) as total_revenue\$ from amazon_sales group by product_line order by total revenue\$ desc;

9.) In which city was the highest revenue recorded?

select city, sum(total) as revenue\$ from amazon_sales
group by city
order by revenue\$ desc;

10.) Which product line incurred the highest value added tax? select product_line, max(vat) highest_vat from amazon_sales group by product_line order by highest_vat desc;

product_line	total_revenue\$
Food and beverages	56144.96
Sports and travel	55123.00
Electronic accessories	54337.64
Fashion accessories	54306.03
Home and lifestyle	53861.96
Health and beauty	49193.84

product_line	highest_vat
Fashion accessories	49.65
Food and beverages	49.26
Home and lifestyle	48.75
Sports and travel	47.72
Health and beauty	45.25
Electronic accessories	44.8785

product line

Health and beauty

Fashion accessories

gender

Male

Female

	city	revenue\$
۲	Naypyitaw	110568.86
	Yangon	106200.57
	Mandalay	106198.00

performance

Good

11.) For each product line, add a column indicating "Good" if its sales are above average, otherwise "Bad".

when sum(total) > (select sum(total)/count(distinct(product_line)) from amazon_sales) then 'Good' else 'Bad'

end performance from amazon sales

group by product_line;

12.) Identify the branch that exceeded the average number of products sold. select branch, sum(quantity) as product_sold from amazon_sales

group by branch
having product sold > (select sum(quantity)/count(distinct branch) as avg quantity from amazon sales);

naving product_sold > (select sum(quantity)/count(distinct branch) as avg_quantity from amazon_s

13.) Which product line is most frequently associated with each gender?

(select gender, product_line, count(*) as count from amazon_sales group by gender, product_line),

Max count as

(select max(count) from new group by gender)

select * from new

where count in (select * from max_count) limit 2;

14.) Calculate the average rating for each product line.

select product_line, avg(rating) as avg_rating from amazon_sales
group by product_line;

Δ	1859	Electronic accessories	24227.04	G000
branch	product_sold	Home and lifestyle Electronic accessories	53861.96 54337.64	Good
		Fashion accessories	54306.03	Good
		Sports and travel	55123.00	Good
		Health and beauty	49193.84	pad

count

product line

Food and beverages

product_line	avg_rating
Food and beverages	7.11322
Health and beauty	7.00329
Sports and travel	6.91627
Fashion accessories	7.02921
Home and lifestyle	6.83750
Electronic accessories	6.92471

15.) Count sales occurrences for each time of day on every weekday. select day name, time of day, count(*) sales from amazon sales group by day name, time of day order by field(day_name, 'Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'), field(time_of_day, 'Morning', 'Afternoon', 'Evening');

16.) Identify the customer type contributing the highest revenue. select customer type, sum(total) as revenue from amazon sales customer type

group by customer type order by revenue desc;

17.) Determine the city with the highest VAT percentage.

select city, max(vat) as vat_percentage from amazon_sales group by city order by vat_percentage desc;

18.) Identify the customer type with the highest VAT payments. select customer type, max(vat) as vat percentage from amazon sales

group by customer type order by vat percentage desc:

order by count desc:

19.) What is the count of the distinct customer types in the dataset? select count(distinct(customer type)) as count distinct customer type from amazon sales,

20.) What is the count of distinct payment methods in the dataset? select count(distinct(payment method)) as count distinct payment from amazon sales;

21.) Which customer type occurs most frequently? select customer type, count(*) as count from amazon sales group by customer_type

	customer_type	count	
١	Member	501	
	Normal	499	

time_of_day day name sales Sunday Morning 22 Sunday Afternoon 70 Sunday Evening 41 Monday Morning 21 Afternoon 75 Monday 29 Monday Evening Tuesday Morning 36 Tuesday Afternoon 71

city	vat_percentage
Naypyitaw	49.65
Yangon	49.49
Mandalay	48.69

customer_type vat_percentage Member 49.65 49,49 Normal

revenue

164223,81

158743.62

Member

Normal

count_distinct_customer_type

count distinct payment •

22.) Identify the customer type with the highest purchase frequency. select customer type, count(*) as count from amazon sales group by customer type order by count desc:

customer_type	purchase_frequency
Member	164223.81
Normal	158743.62

gender

Female

Male

count

501

499

23.) Determine the predominant gender with the highest purchase frequency select gender, count(*) as count from amazon_sales Group by gender

order by count desc:

24.) Examine the distribution of genders within each branch. select branch, gender, count(*) as count from amazon sales group by branch, gender order by branch, gender;

25.) Identify the time of day when customers provide the most ratings. select time of day, count(rating) as rating count from amazon sales group by time of day order by rating count desc;

Male time of day rating count Afternoon 528 Evenina 281 Morning 191

count

179

161

162

170

178

150

branch

gender

Female

Female

Female

Male

Male

26.) Determine the time of day with the highest customer rating for each branch

select branch, time of day, max(rating) highest rating from amazon sales group by branch, time of day having highest rating = (select max(x,max) from (select branch, time of day, max(rating) max from amazon sal group by branch, time of day) as x where x.branch= amazon sales.branch) order by branch

27.) Identify the day of the week with the highest average ratings

select day name, avg(rating) as avg rating from amazon sales Group by day name order by ava rating desc;

	branch	time_of_day	highest_rating
	A	Afternoon	10.0
es	В	Afternoon	10.0
	В	Evening	10.0
	8	Morning	10.0
	С	Afternoon	10.0

	branch	day_name	highest_avg_rat
٠	Α	Friday	7.31200
	В	Monday	7.33590
	С	Friday	7.27895

28.) Determine the day of the week with the highest average ratings for each branch. with avg_rating as

(select branch, day_name, avg(rating) avg_rat from amazon_sales group by branch, day_name),

max_rating as
(select max(avg_rat) from avg_rating group by branch)

branch	day_name	highest_avg_rat
A	Friday	7.31200
В	Monday	7.33590
С	Friday	7.27895

select branch, day_name, avg_rat as highest_avg_rat from avg_rating where avg_rat in (select * from max_rating);

INSIGHTS

CUSTOMER ANALYSIS

HIGHEST REVENUE GENDER: FEMALE[\$167883.26]

DISTRIBUTION OF MEMEBERS BASED ON GENDER: MALE(240) FEMALE(261)

HIGHEST REVENUE BY CUSTOMER TYPE: MEMBER [\$164223.81]

PRODUCT ANALYSIS

PRODUCT LINE WHICH HAS MADE HIGHEST SALE: ELECTRONIC ACCESSORIES (971)

PRODUCT LINE WHICH HAS MADE LOWEST SALE: HEALTH AND BEAUTY (854)

PRODUCT LINE WITH HIGHEST REVENUE: FOOD AND BEVERAGES [\$56144.96]

PRODUCT LINE WITH LOWEST REVENUE: HEALTH AND BEAUTY [\$49193.84]

SALES ANALYSIS

MONTH WITH HIGHEST REVENUE: JAN[\$116292.11]

MONTH WITH LOWEST REVENUE: FEB[\$97219.52]

CITY WITH HIGHEST REVENUE: NAY PYI TAW, BANCH CODE(C), [\$110568.86]

CITY WITH LOWEST REVENUE: MANDALAY, BRANCH CODE(B),[\$106198.00]