2020 考研-数学-基础阶段 第四次测试卷解析(协议)

本试卷满分 100 分, 考试时间 30 分钟

姓名

- 一、解答题:请将正确答案及其解题过程写在题后的空白部分。
- 1、(本小题满分 20 分) 若 e^x 是 f(x) 的一个原函数, 求 $\int x^2 f(\ln x) dx$ 。

【答案】
$$\frac{x^4}{4} + C$$
。

【解析】由 e^x 是f(x)的一个原函数,则可知 $f(x)=(e^x)'=e^x$,故

$$\int x^{2} f(\ln x) dx = \int x^{3} dx = \frac{1}{4} x^{4} + C.$$

序号	错误原因	学习建议	备注
24010	不清楚原函数的概念	讲义第 51 页基本概念; 注意体会原	
1		函数的概念以及与不定积分的关	
		系。	
24010	不清楚基本积分公式	讲义第 52 页基本积分公式; 讲义	
2		52 页例 1 以及习题册第 55 页第 1	
		题;注意体会基本积分公式及其运	
		用方法。	
24010	计算型错误	建议1、2。	
3			
24010	其他;		
4			

2、(本小题满分 20 分) 计算不定积分
$$\int \frac{\sin\sqrt{x} + \cos\sqrt{x}}{\sqrt{x}\sin 2\sqrt{x}} dx$$
 。

【答案】
$$\ln \left| \sec \sqrt{x} + \tan \sqrt{x} \right| + \ln \left| \csc \sqrt{x} - \cot \sqrt{x} \right| + C$$
。

【解析】

$$\int \frac{\sin\sqrt{x} + \cos\sqrt{x}}{\sqrt{x}\sin 2\sqrt{x}} dx = \int \frac{1}{2\sqrt{x}\cos\sqrt{x}} dx + \int \frac{1}{2\sqrt{x}\sin\sqrt{x}} dx$$

$$= \int \sec \sqrt{x} d\sqrt{x} + \int \csc \sqrt{x} d\sqrt{x} = \ln \left| \sec \sqrt{x} + \tan \sqrt{x} \right| + \ln \left| \csc \sqrt{x} - \cot \sqrt{x} \right| + C$$

序号	错误原因	学习建议	备注
24020	不清楚常用的三角公式	讲义第 11 页三角公式; 讲义第 53	
1		页例 1 (7)、(8)、(9); 注意体会	
		三角公式在求积分中的相关应用。	
24020	不清楚凑微分的方法	讲义第 54 页第一类换元法; 讲义	
2		54 页例 2 至例 5 以及习题册第 55	
		页第2题;注意体会凑微分方法的	
		使用条件与步骤。	
24020	不清楚基本的积分公式	讲义第 52 页基本积分公式; 讲义	
3		54 页例 3、4、62 页例 13;注意体	
		会常用的求积公式。	
24020	计算型错误	建议 1、2、3。	
4			
24020	其他;		
5			

3、(本小题满分 20 分) 计算不定积分
$$\int \frac{1}{(x-2)^2(x^2-2x-3)} dx$$
。

【答案】
$$-\frac{2}{9}\ln|x-2| + \frac{1}{3(x-2)} - \frac{1}{36}\ln|x+1| + \frac{1}{4}\ln|x-3| + C$$
。

【解析】

$$\int \frac{1}{(x-2)^2 (x^2 - 2x - 3)} dx = \int \left(-\frac{2}{9} \cdot \frac{1}{x-2} - \frac{1}{3} \cdot \frac{1}{(x-2)^2} - \frac{1}{36} \cdot \frac{1}{x+1} + \frac{1}{4} \cdot \frac{1}{x-3} \right) dx$$
$$= -\frac{2}{9} \ln|x-2| + \frac{1}{3(x-2)} - \frac{1}{36} \ln|x+1| + \frac{1}{4} \ln|x-3| + C.$$

序号	错误原因	学习建议	备注
24030	不清楚有理函数积分中如何拆	讲义 60 页有理函数积分; 讲义 60	
1	分	页例 11 与例 12 以及习题册第 56 页	
		第 4 题;注意体会有理函数积分中	
		不同形式的被积函数的拆分过程。	

24030	不清楚基本的积分公式	讲义第 52 页基本积分公式; 讲义	
2		54 页例 3、4、62 页例 13;注意体	
		会常用的求积公式。	
24030	计算型错误	建议 1、2。	
3			
24030	其他;		
4			

4、(本小题满分 20 分) 计算不定积分 $\int \sqrt{1-x^2}$ $\arcsin x dx$ 。

【答案】
$$\frac{1}{4}\arcsin^2 x + \frac{1}{2}x\sqrt{1-x^2}\arcsin x - \frac{x^2}{4} + C$$
。

【解析】令 $x = \sin t$,则

$$\int \sqrt{1 - x^2} \arcsin x dx = \int t \cos^2 t dt = \int t \cdot \frac{1 + \cos 2t}{2} dt = \frac{t^2}{4} + \frac{1}{4} \int t d \sin 2t$$

$$= \frac{t^2}{4} + \frac{1}{4}t\sin 2t - \frac{1}{4}\int\sin 2t dt = \frac{t^2}{4} + \frac{1}{4}t\sin 2t + \frac{\cos 2t}{8} + C$$

$$= \frac{1}{4}\arcsin^2 x + \frac{1}{2}x\sqrt{1-x^2}\arcsin x - \frac{x^2}{4} + C.$$

序号	错误原因	学习建议	备注
24040	不清楚第二类换元法	讲义第 56 页第二类换元法; 讲义第	
1		57 页例 6、7 以及习题册第 55 页第	
		3、7题;注意体会第二类换元法的	
		使用条件及步骤。	
24040	不清楚分部积分法	讲义第 58 页分部积分法; 讲义 58	
2		页例 8、9、10 以及习题册第 57 页	
		第8、9题;注意体会分部积分的使	
		用范围及基本步骤。	
24040	不清楚利用换元法计算不定积	讲义第 56 页第二类换元法; 讲义	
3	分时最终结果要回代成关于x的	56 页例 6、例 7; 注意体会利用第	
	函数	二类换元法计算不定积分时要回	
		代。	
24040	计算型错误	建议1、2、3。	
4			
24040	其他;		

5

5、(本小题满分 20 分) 计算不定积分
$$\int \frac{1}{\sin x + \frac{1}{2}\sin 2x} dx$$
 。

【答案】 =
$$\frac{1}{4} \ln \left| \frac{1 - \cos x}{1 + \cos x} \right| + \frac{1}{2(1 + \cos x)} + C$$
。

【解析】

$$\int \frac{1}{\sin x + \frac{1}{2}\sin 2x} dx = \int \frac{1}{\sin x (1 + \cos x)} dx = \int \frac{\sin x}{\sin^2 x (1 + \cos x)} dx$$

$$= -\int \frac{d\cos x}{(1-\cos^2 x)(1+\cos x)} \underline{t = \cos x} - \int \frac{dt}{(1-t)(t+1)^2}$$

$$= -\int \frac{1}{4} \cdot \frac{1}{1-t} + \frac{1}{4} \cdot \frac{1}{1+t} + \frac{1}{2} \cdot \frac{1}{(1+t)^2} dt$$

$$= \frac{1}{4} \ln \left| \frac{1-t}{1+t} \right| + \frac{1}{2} \frac{1}{1+t} + C$$

$$= \frac{1}{4} \ln \left| \frac{1 - \cos x}{1 + \cos x} \right| + \frac{1}{2(1 + \cos x)} + C$$

序号	错误原因	学习建议	备注
24050	不清楚含三角有理式的不定积	讲义第 62 页三角有理式; 讲义第	
1	分的计算思路	62 页例 13 (6)、习题册第 56 页 5	
		题;注意体会三角有理式积分的常	
		用方法。	
24050	不清楚常用三角公式	讲义第 11 页三角公式; 讲义第 53	
2		页例 1 (7)、(8)、(9); 注意体会	
		三角公式在求积分中的相关应用。	
24050	不清楚有理函数积分中如何拆	讲义 60 页有理函数积分; 讲义 60	
3	分	页例 11 与例 12 以及习题册第 56 页	
		第 4 题;注意体会有理函数积分中	
		不同形式的被积函数的拆分过程。	
24050	不清楚利用换元法计算不定积	讲义第 56 页第二类换元法; 讲义	
4	分时最终结果要回代成关于x的	56 页例 6、例 7;注意体会利用第	
	函数	二类换元法计算不定积分时要回	

		代。	
24050	计算型错误	建议 1、2、3、4。	
5			
24050	其他;		
6			

