# Predição dos danos sofridos pelas construções do Nepal causados pelo terremoto de 2015

Ana Gabriela Faria da Silva Bruno de Assis Silva João Phellip de Mello da Rocha Rodrigo Matheus Rocha de Medeiros

> Universidade de São Paulo Instituto de Matemática e Estatística

27 de Novembro de 2020

# Introdução

#### Introdução

- Em 2015 ocorreu um terremoto com magnitude de 7,8 na escala Richter que atingiu o Nepal, Índia, Bangladesh, Paquistão e China. O Nepal foi o país mais atingido, sendo este o terremoto mais violento a atingir o país em 81 anos.
- Após o terremoto, o governo local realizou uma grande pesquisa domiciliar para avaliar os danos às construções nos distritos afetados pelo terremoto.
- Os dados coletados são formados principalmente por informações sobre a estrutura das construções da região atingida, e do grau de dano sofrido por elas.

- Cada linha representa uma construção específica na região que foi atingida.
- A base de dados possui 260.601 observações com 38 variáveis preditoras, em que as variáveis preditoras se dividem entre 5 quantitativas e 33 qualitativas.
- Optamos por utilizar cerca de 60% da base de dados fornecida para treinar os modelos, e os outros 40% como conjunto de validação.
- O conjunto de treinamento resultante possui 156361 observações.

A variável resposta representa o nível de dano à construção causado pelo terremoto. Existem 3 graus de dano:

- 1 representa grau baixo de dano;
- 2 representa grau médio de dano;
- 3 representa grau severo de dano.

#### Grau de dano



#### Variáveis geográficas

- geo\_level\_1\_id
- geo\_level\_2\_id
- geo\_level\_3\_id

Região geográfica em que existem construções, do maior agrupamento (nível 1) à sub-região mais específica (nível 3). Possíveis valores: nível 1: 0-30, nível 2: 0-1427, nível 3: 0-12567;



#### Características da construção

- land\_surface\_condition Condição da superfície do terreno,
- area\_percentage Área (normalizada),
- height\_percentage Altura (normalizada),
- age Idade,
- count\_floors\_pre\_eq Número de andares antes do terremoto,
- foundation\_type Tipo de fundação,
- ground\_floor\_type Tipo de andar térreo,
- other\_floor\_type Tipo de pisos,
- roof\_type Tipo de telhado,
- position Posição,
- plan\_configuration Configuração do plano de construção,
- legal\_ownership\_status Status legal,
- count\_families Número de famílias.



#### Superestrutura

- has\_superstructure\_adobe\_mud Feita de adobe/barro,
- has\_superstructure\_mud\_mortar\_stone barro e pedra,
- has\_superstructure\_stone\_flag Feita de pedra,
- has\_superstructure\_cement\_mortar\_stone Feita de cimento e pedra,
- has\_superstructure\_mud\_mortar\_brick Feita de barro e tijolo,
- has\_superstructure\_cement\_mortar\_brick Feita de cimento e tijolo,
- has\_superstructure\_timber Feita de madeira,
- has\_superstructure\_bamboo Feita de bamboo,
- has\_superstructure\_rc\_non\_engineered Feita de concreto armado sem engenharia,
- has\_superstructure\_rc\_engineered Feita de concreto armado projetado,
- has\_superstructure\_other Feita de outro material.



#### Uso secundário

- has\_secondary\_use\_agriculture Utilizada para fins agrícolas.
- has\_secondary\_use\_hotel Utilizada como um hotel.
- has\_secondary\_use\_rental Utilizada para aluguel.
- has\_secondary\_use\_institution Utilizada como uma instituição.
- has\_secondary\_use\_school Utilizada como uma escola.
- has\_secondary\_use\_industry Utilizada para fins industriais.
- has\_secondary\_use\_health\_post Utilizada como um posto de saúde.
- has\_secondary\_use\_gov\_office Utilizada como um escritório do governo.
- has\_secondary\_use\_use\_police Utilizada como uma delegacia de polícia.
- has\_secondary\_use\_other Utilizada secundariamente para outros fins.





#### Modelos

#### Modelos

- Regressão logística multinomial
- Regressão logística ordinal
- Classificação por árvores
- Máquinas de vetores de suporte (SVM)

Para a i-ésima construção do conjunto de treinamento, assuma que

$$\log \left\{ \frac{\Pr(G_i = k | x = x_i)}{\Pr(G_i = 1 | x = x_i)} \right\} = \beta_{k0} + \beta_k^{\top} x_i, \quad k = 2, 3,$$

em que  $G_i$  é o grau de dano sofrido pela i-ésima construção em sua codificação original,  $\beta_{20}, \beta_{30} \in \mathbb{R}$ , e  $\beta_1 = (\beta_{11}, \beta_{12}, \dots, \beta_{189})^{\top} \in \mathbb{R}^{89}$  e  $\beta_2 = (\beta_{21}, \beta_{22}, \dots, \beta_{289})^{\top} \in \mathbb{R}^{89}$  são os coeficientes associados as variáveis explicativas.

O modelo é especificado em termos das transformações *logit* em relação a classe 1, de menor dano. Com esta especificação as probabilidades a posteriori são dadas por

$$\Pr(G_i = k | x = x_i) = \frac{\exp\{\beta_{k0} + \beta_k^{\top} x_i\}}{1 + \sum_{l=2}^{3} \exp\{\beta_{l0} + \beta_l^{\top} x_i\}}, \quad k = 2, 3$$

е

$$\Pr(G_i = 1 | x = x_i) = \frac{1}{1 + \sum_{l=2}^{3} \exp\{\beta_{l0} + \beta_l^{\top} x_i\}}$$

Utilizamos a função multinom() do pacote do R nnet para ajustar o modelo aos dados do conjunto de treinamento.

```
fit <- multinom(damage_grade ~ ., data = damage)</pre>
```

A tabela a seguir mostra a matriz de confusão resultante da classificação no conjunto de validação.

|      |        |       | Predição | )      |
|------|--------|-------|----------|--------|
|      |        | Baixo | Médio    | Severo |
|      | Baixo  | 3637  | 6248     | 199    |
| Real | Médio  | 2376  | 47963    | 8943   |
|      | Severo | 173   | 16651    | 18050  |

Taxa de acertos: 66,82%.

A tabela a seguir mostra o percentual de erros por classe no conjunto de validação.

Table: Percentual de erros por classe (%)

| Baixo | Médio | Severo |
|-------|-------|--------|
| 63,93 | 19,09 | 48,24  |

Aplicamos o modelo ordinal quando o número de categorias da variável é maior que dois e elas são ordenadas. O modelo de logito cumulativo é definido como:

$$logito[P(Y_i \le j|x_i)] = log \frac{P(Y_i \le j|x_i)}{1 - P(Y_i \le j|x_i)}, \quad j = 1, ..., c - 1$$

Supondo que as variáveis explicativas tenha diferentes efeitos temos o modelo de logito cumulativo sem chances proporcionais:

$$logito[P(Y_i \leq j|x_i)] = \alpha_j + \beta'_j x_i$$

Utilizamos a função vglm() do pacote do R VGAM para ajustar o modelo aos dados do conjunto de treinamento.

```
fit <- vglm(damage_grade ~ ., data = damage)</pre>
```

Para o conjunto de validação foi obtida a seguinte matriz de confusão:

|      |        |       | Predição | )      |
|------|--------|-------|----------|--------|
|      |        | Baixo | Médio    | Severo |
|      | Baixo  | 5261  | 4693     | 130    |
| Real | Médio  | 4357  | 46771    | 8154   |
|      | Severo | 338   | 17501    | 17035  |

Taxa de acertos: 66,17%.

O percentual de erros por classe no conjunto de validação.

Table: Percentual de erros por classe (%)

| Baixo | Médio | Severo |
|-------|-------|--------|
| 47,82 | 21,10 | 51,15  |

# Classificação por árvores

#### Classificação por árvores

Modelos baseados em árvores têm como ideia central a segmentação do espaço de predição em regiões mais homogêneas, de acordo com a resposta.



#### Classificação por árvores

#### Vantagens:

- Podem ser aplicadas em problemas de regressão/classificação;
- Não precisam de variáveis dummy para lidar com preditores qualitativos;
- São fáceis de interpretar; entre outras.

#### Desvantagens:

 Árvores não são muito robustas, ou seja, uma pequena mudança nos dados pode causar uma grande mudança na estimativa final da árvore.

#### Possíveis soluções:

- Bagging
- Random Forests
- Boosting

#### Classificação por árvores - Random Forests

Utilizamos a função randomForest() do pacote do R RandomForest para ajustar o modelo aos dados.

```
fit.flor <- randomForest(damage_grade ~ .,
data = damage_RF, ntree = 200,
mtry = 8,importance = TRUE)</pre>
```

Para tratar o desbalanceamento dos dados: strata e sampsize.

#### Classificação por árvores - Random Forests

A tabela a seguir mostra a matriz de confusão resultante da classificação no conjunto de validação.

Table: Classificação predita versus valores reais.

|          |        | Valores reais |       |        |       |           |        |
|----------|--------|---------------|-------|--------|-------|-----------|--------|
|          |        | Desbalanceado |       |        | E     | Balancead | do     |
|          |        | Baixo         | Médio | Severo | Baixo | Médio     | Severo |
| Preditos | Baixo  | 4447          | 1740  | 157    | 7983  | 8122      | 1078   |
|          | Médio  | 5494          | 50792 | 13727  | 1921  | 38991     | 9103   |
|          | Severo | 143           | 6750  | 20990  | 180   | 12169     | 24693  |

**Taxa de acertos:** Desbalanceado = 73,13% e Balanceado = 68,75%.

### Classificação por árvores - Random Forests

A tabela a seguir mostra o percentual de erros por classe no conjunto de validação.

Table: Percentual de erros por classe (%)

|                   | Baixo | Médio | Severo |
|-------------------|-------|-------|--------|
| RF: Desbalanceado | 55,90 | 14,32 | 39,81  |
| RF: Balanceado    | 20,83 | 34,23 | 29,19  |

# Classificação por árvores - Boosting

Utilizamos a função xgboost() do pacote do R XGBoost para ajustar o modelo aos dados.

XGBoost, que significa Extreme Gradient Boosting, é uma implementação específica do método Gradient Boosting para encontrar o melhor modelo de árvore. Ele tem se mostrado eficiente na solução de diversos problemas e é muito utilizado em competições.

```
xgb.fit <- xgboost(data = features_train,
label = response_train,
eta=0.2, max_depth = 10, min_child_weight = 5, gamma = 1,
subsample = 0.8, colsample_bytree = 0.6,
nrounds = 149, objective = "multi:softmax",
num_class = 4, verbose = 0,)</pre>
```

Artigo dos autores originais: https://arxiv.org/abs/1603.02754

# Classificação por árvores - Boosting

A tabela a seguir mostra a matriz de confusão resultante da classificação no conjunto de validação.

Table: Classificação predita versus valores reais.

|      | Predição |       |       |        |
|------|----------|-------|-------|--------|
|      |          | Baixo | Médio | Severo |
| Real | Baixo    | 4563  | 5388  | 133    |
|      | Médio    | 1834  | 50309 | 7139   |
|      | Severo   | 153   | 13528 | 21193  |

Taxa de acertos:72,97%.

# Classificação por árvores - Boosting

A tabela a seguir mostra o percentual de erros por classe no conjunto de validação.

Table: Percentual de erros por classe (%)

| Baixo | Médio | Severo |
|-------|-------|--------|
| 54,75 | 15,14 | 39,23  |

Máquinas de vetores de suporte (SVM)

#### **SVM**

Utilizamos a implementação do pacote e1071 para treinar uma máquina de vetores de suporte sobre os dados.

Durante a etapa de pré processamento, as variáveis de entrada númericas foram normalizadas linearmente no intervalo [0,1] e as variáveis preditoras do tipo categoricas foram transformadas em dummy; para o treinamento, utilizamos um Kernel do tipo radial basis function e uma estratégia de multiclassificação por votos: treinamos simultaneamente 3 problemas de classificação binários e a classificação final foi feita para a classe com maior incidencia na resposta.

Em função da complexidade temporal do algoritmo, a primeira etapa de grid-search dos hiperparâmetros foi feita sobre um subconjunto de 10K; em seguida, uma busca refinada foi feita sobre um conjunto maior de 20K amostras. Utilizou-se um estratégia de validação cruzada de 5-fold para ambos.

#### **SVM**

A tabela a seguir mostra a matriz de confusão resultante da classificação no conjunto de validação.

|      |        |       | Predição | )      |
|------|--------|-------|----------|--------|
|      |        | Baixo | Médio    | Severo |
|      | Baixo  | 4024  | 5742     | 162    |
| Real | Médio  | 2295  | 48172    | 8922   |
|      | Severo | 184   | 15049    | 19690  |

Taxa de acertos: 68,96%.

Desempenho dos modelos na competição

#### Desempenho dos modelos na competição

A tabela a seguir mostra o desempenho de cada modelo na competição.

Table: Resultados por método aplicado.

| Modelos                         | Conjunto de Teste - Competição(%) |
|---------------------------------|-----------------------------------|
| Regressão Logística Multinomial | 66,90                             |
| Regressão Logística Ordinal     | 66,22                             |
| Random Forests: Desbalanceado   | 72,90                             |
| Random Forests: Balanceado      | 65,87                             |
| Gradient Boosting               | 72,26                             |
| SVM Kernel Radial               | 68,82                             |

- O melhor desempenho foi obtido, sem tratar o desbalanceamento dos dados, utilizando Random Forests.
- A competição conta com 3563 participantes, nós estamos na posição 456.
- O líder atual obteve uma acurácia de 75,58%.

Obrigado!