Maybe?

Landon Rabern

September 4, 2014

1 Introduction

2 The decomposition

Let \mathcal{D}_1 be the collection of graphs without induced d_1 -choosable subgraphs. Plainly, \mathcal{D}_1 is hereditary. For a graph G and $r \in \mathbb{N}$, let \mathcal{C}_r be the maximal cliques in G having at least r vertices.

Lemma 2.1. If B is a graph such that $K_4 * B$ is not d_1 -choosable, then at least one of the following holds:

- $|B| \le 4$ and B is $E_3 * K_{|B|-3}$,
- $\omega(B) \ge |B| 1$.

Lemma 2.2. If $G \in \mathcal{D}_1$ and $\frac{\Delta(G)+5}{2} \leq r \leq \Delta(G)-1$, then $\bigcup \mathcal{C}_r$ can be partitioned into sets F_1, \ldots, F_t such that for each $i \in [t]$ at least one of the following holds:

- $F_i \in \mathcal{C}_r$,
- $F_i = C_i \cup \{x_i\}$ where $C_i \in \mathcal{C}_r$ and $|N(x_i) \cap C_i| \ge r 1$.

When $F_i \in \mathcal{C}_r$, we put $K_i := C_i := F_i$ and when $F_i = C_i \cup \{x_i\}$, we put $K_i := N(x_i) \cap C_i$.

3 The recoloring technique

Lemma 3.1. Let H be a graph and $V_1 \cup \cdots \cup V_r$ a partition of V(H). Suppose that $|V_i| \geq 2\Delta(H)$ for each $i \in [r]$. If a graph G is formed by attaching a new vertex x to fewer than $2\Delta(H)$ vertices of H, then G has an independent set $\{x, v_1, \ldots, v_r\}$ where $v_i \in V_i$ for each $i \in [r]$.

Proof. Suppose not. Remove $\{x\} \cup N(x)$ from G to form H' with induced partition V'_1, V'_2, \ldots, V'_r . Then V'_1, V'_2, \ldots, V'_r has no independent transversal since we could combine one with x to get our desired independent set in G. Note that $|V'_i| \geq 1$. Create a graph Q by removing edges from H' until it is edge minimal without an independent transversal. Pick

 $yz \in E(Q)$ and apply Lemma ?? on yz with the induced partition to get the guaranteed $J \subseteq [r]$ and the totally dominating induced matching M with |M| = |J| - 1. Now $\left|\bigcup_{i \in J} V_i'\right| > 2\Delta(H) |J| - 2\Delta(H) = 2(|J| - 1)\Delta(H)$ and hence M cannot dominate, a contradiction.

Call $v \in V(G)$ big if it is contained in a $\frac{2}{3}\Delta(G) + 5$ clique in G. If a vertex is not big, it is small

Lemma 3.2. If $G \in \mathcal{D}_1$ with $\Delta(G) \geq 50$? and $\omega(G) < \Delta(G)$, then exactly one of the following holds:

- 1. $\chi(G) \leq \Delta(G) 2$,
- 2. $\chi(G) = \Delta(G) 1$ and G has a $(\Delta(G) 1)$ -coloring that uses only $\Delta(G) 2$ colors on the small vertices.

Proof. Suppose not and choose a counterexample G minimizing |G|. Put $\Delta := \Delta(G)$, $\chi := \chi(G) \ \omega := \omega(G)$. Plainly, $\chi \in \{\Delta - 1, \Delta\}$. If G has no big vertex, then Lemma 4.1 gives a contradiction since $\chi \geq \Delta - 1$.

Hence G contains a big vertices. First, suppose $\Delta(G-x) < \Delta$ for every big vertex x. Let H be the vertices with degree Δ in G and let B be the big vertices in G. Then B is joined to H in G. But then we must have $H \subseteq B$ since any vertex joined to all big vertices must be big. Thus it must be that the partition given by Lemma 2.2 for $r := \frac{2}{3}\Delta + 5$ has only one part F_1 and $H \subseteq K_1$. By Lemma 4.2, we have $(\Delta - 1)$ -coloring of G that uses only $(\Delta - 2)$ colors on the small vertices, contradicting (2).

Otherwise, we have a big vertex x such that, with Q := G - x, we have $\Delta(Q) = \Delta$. Applying minimality of |G| shows that either (1) or (2) holds for Q. It can't be (1), for then adding $\{x\}$ as a color class to a $(\Delta - 2)$ -coloring of Q gives a $(\Delta - 1)$ -coloring of G satisfying (2).

Hence, by symmetry, we have a $(\Delta - 1)$ -coloring π of Q and such that every vertex in $M := \pi^{-1}(1)$ is big. We may as well have taken such a coloring π so as to minimize |M|. By minimality of M, every vertex in M has a neighbor in $\pi(i)$ for each $i \in J := [\Delta - 1] - \{1\}$. For each $z \in M$, put $O_z := \{v \in N_Q(z) \mid \pi(z) \notin \pi(N_Q(z) - \{v\})\}$. Then $|O_z| \ge \Delta - 4$ for each $z \in M$. Since z is big, it is in some F_j . If $z = x_j$, then put $P_z := K_j \cap O_z$, otherwise put $P_z := C_j \cap O_z$. In either case, $|P_z| \ge \frac{2}{3}\Delta + 5 - 1 - 2 \ge \frac{2}{3}\Delta$.

Suppose there are different $y, z \in M$ such that $P_y \cap P_z \neq \emptyset$. By the definition of our partition of the big vertices, it must be that $P_y, P_z \subseteq F_j$ for some j. But y and z are not adjacent so one of them must be x_j and the other in $C_j - K_j$. In particular, $|P_y \cap P_z| \geq |K_j| - 4 \geq \frac{2}{3}\Delta$. Plainly, no P_z intersects two others P_y and P_w .

For the $w \in M$ such that P_w does not intersect some other P_z , put $S_w := P_w$. The other vertices in M come in pairs w, w', put $S_w := P_w \cap P_{w'}$. Consider the subgraph T of G induced on $\{x\} \cup \bigcup_{w \in M} S_w$ with each S_w made into an independent set. For $w \in M$ and $z \in S_w$, we have $d_T(z) \leq \Delta - 1 - (\frac{2}{3}\Delta - 1) \leq \frac{1}{3}\Delta$.

Theorem 3.3. Every graph satisfying $\chi \geq \Delta \geq 50$? contains a K_{Δ} .

Proof. Suppose not and choose a counterexample G minimizing |G|. Then G is vertex critical and hence $G \in \mathcal{D}_1$. By Lemma 3.2, G has a $(\Delta(G) - 1)$ -coloring, a contradiction. \square

4 Some more details

Lemma 4.1. Any graph satisfying $\chi \geq \Delta - 1 \geq 20$? contains a $K_{\frac{2}{3}\Delta}$.

Lemma 4.2. Let $G \in \mathcal{D}_1$ and put $r := \frac{2}{3}\Delta(G) + 5$. If the partition in Lemma 2.2 of \mathcal{C}_r has only one part F_1 and $\{v \in V(G) \mid d(v) = \Delta(G)\} \subseteq K_i$, then G has a $(\Delta(G) - 1)$ -coloring using only $\Delta(G) - 2$ colors on the small vertices.