Fairness in Token Delegation: Mitigating Voting Power

Concentration in DAOs

Johnnatan Messias* and Ayae Ide° *MPI-SWS, °Pennsylvania State University

Motivation

Fairness Gap in DAO Token Delegation

- A small group of 10 voters holds significant voting power (50.53% of all tokens).
- Proposals only required an avg. of 3--5 voters to obtain at least 50% of the votes.

Current Problem .

Popularity Bias in Delegation Platforms

Case Study: Tally - Platform Designed to Support DAOs

- Dashboards display accounts based on their popularity (e.g., voting power, received delegations).
- Token holders struggle to identify delegates truly aligned with their interests among numerous options.

27 Our Proactive Solution -

Interest-Aligned Delegation Matching

RQ: Among all accounts available to whom should users delegate their tokens to?

Goal: Support token holders' decision-making to delegate to voters who are better aligned with their interests.

Example: A Delegation Advisory system, similar to voting advisories in democratic elections.

On-chain data (Ethereum &

Text-based data: Off-chain

discussions (Forums, Discord).

Other relevant data platforms

(e.g., Nansen, Messari, Tally).

other archive nodes).

Voting Behavior Analysis

- Analyze how voters engage on proposal discussions. Extract topics of interested for each voter.
- Publish results in an academic paper.

Implement Delegation Matching Algorithm

Design and build a MVP of delegation matching system. Implement a simulation environment framework to test

Test and Evaluate

- Deploy the matching algorithm by partnering with delegation platforms / DAO projects.
- Evaluate the performance via A/B testing and/or simulations.

Data Acquistion ——

- On-chain Data: Gathered 6 DAOs' data from Ethereum and Arbitrum archive nodes. The dataset includes token transfer transactions, governance proposals, voting activities, and token delegation details.
- Off-chain Data: Scraped data from 14 DAOs' governance forums. The dataset includes proposal metadata, user metadata, and discussion posts.
- Off-chain On-chain Identifiers: Queried public profile data, including usernames/social handles associated with on-chain wallet addresses via Tally API.

<u>Username-to-Wallet Mapping</u>

Why?: To better capture delegates' voting interests by associating governance forums discussions with on-chain activities. How?: Link forum names with ENS names (extracted via Etherscan ABI) or usernames on Tally.

Table 1. Examples of Forum-to-Tally User Entity Matching

Label	Username (forum)	Optional name (forum)	e Mapped .eth name (Tally)	Username (Tally)	Twitter/X handle(Tally)	Matching reason
High- confidence	ayaeide.eth		ayaeide.eth	ayaeide	ayaeide	Exact ENS match
Middle- confidence	ayaeide123		<u>0xayae.eth</u>	0xayae.eth	ayaeide123	Username and ENS alignment
Low-confidence	jjjohn.eth	john	0xjohn.eth	john	johnme	Naive name-based match
Manually verified	blockchainedu		blockchainedu.eth	ben	blockchainedu	Profile info match

Voting Behavior/Interest Analysis

Extract Keywords from Governance Forums

Extracted keywords from each voter's discussions, including both proposal texts (root_text) and comment texts (post_text).

	Model	Top Keywords		
-	gpt-5	Contributor compensation, EP4 Foundational Working Groups, Liquidity incentives rejection, Incentive model clarification, Non-DeFi positioning		
	gpt-5-mini	contributor payment/funding, incentive program for projects, Foundational Working Groups proposal, opposition to liquidity incentives, ENS as login/account		
	gpt-5-nano	ENS incentive, working gorups, working group rules, contributor payments, ecosystem funding		
	KeyBERT	contribution ens ecosystem, payment contribution ens, liquidity ens tokens, contribution ens, liquidity incentive similar		

Table2. An example of keywords from different models

Voter Interest Discovery

WORMHOLE

Username-to-Wallet entity matching list Scraped data from 14 DAO

Filter

Traceable Forum Discussions with On-Chain Data

GPT prompt

Keyword extraction &

Sentiment analysis

Voter Interest

User A: Community engagement, ecosystem, security.

User B: DAO equity investment, eligibility of new builders, privacy

User C: Collective funding request, treasury token transfer, transparency.

Workflow of Voter Interest Extraction

Future Work - Implement, Test, and Evaluate Delgation Matching Algorithm

- Implement Delegation Matching Algorithm: Based on the findings from voting behavior/interest analysis, we connect nuanced voter preferences extracted from off-chain data with on-chain behaviors, informing our delegation matching algorithm. Our system will ensure that token holders delegate their voting power to delegates whose preferences and voting behaviors align with their own.
- Test and Evaluate: We refine the model based on the evaluation results. Looking for partners to test our algorithm in the wild! 🚀