# Constraint Programming

- Filtering : Part 1 -

Christophe Lecoutre lecoutre@cril.fr

CRIL-CNRS UMR 8188 Universite d'Artois Lens, France

January 2021

## Outline

1 Filtering Domains with Constraints

2 Principle of Constraint Propagation

## Outline

1 Filtering Domains with Constraints

2 Principle of Constraint Propagation

Each constraint represents a "sub-problem" from which some inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem)

Several levels/types of filtering can be defined. For the moment, we only cite:

- AC (Arc Consistency): all inconsistent values are identified and deleted
- BC (Bounds Consistency): inconsistent values corresponding to the bounds of the domains are identified and deleted

### Warning

Each constraint represents a "sub-problem" from which some inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only cite:

- AC (Arc Consistency): all inconsistent values are identified and deleted
- BC (Bounds Consistency): inconsistent values corresponding to the bounds of the domains are identified and deleted

### Warning

Each constraint represents a "sub-problem" from which some inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only cite:

- AC (Arc Consistency): all inconsistent values are identified and deleted
- BC (Bounds Consistency): inconsistent values corresponding to the bounds of the domains are identified and deleted

### Warning

Each constraint represents a "sub-problem" from which some *inconsistent* values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only cite:

- AC (Arc Consistency): all inconsistent values are identified and deleted
- BC (Bounds Consistency): inconsistent values corresponding to the bounds of the domains are identified and deleted

### Warning

Each constraint represents a "sub-problem" from which some *inconsistent* values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only cite:

- AC (Arc Consistency): all inconsistent values are identified and deleted
- BC (Bounds Consistency): inconsistent values corresponding to the bounds of the domains are identified and deleted

### Warning

Each constraint represents a "sub-problem" from which some inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only cite:

- AC (Arc Consistency): all inconsistent values are identified and deleted
- BC (Bounds Consistency): inconsistent values corresponding to the bounds of the domains are identified and deleted

## Warning.

For non-binary constraints, AC is often denoted by GAC (but not in this course).

#### Constraint x < y with

• 
$$dom(x) = 10..20$$

• 
$$dom(y) = 0..15$$

After AC filtering, we obtain

• 
$$dom(x) = 10..14$$

• 
$$dom(y) = 11..15$$

After BC filtering, we obtain

• 
$$dom(x) = 10..14$$

• 
$$dom(y) = 11..15$$

Constraint w + 3 = z with

• 
$$dom(w) = \{1, 3, 4, 5\}$$

• 
$$dom(z) = \{4, 5, 8\}$$

After AC filtering, we obtain:

• 
$$dom(w) = \{1, 5\}$$

• 
$$dom(z) = \{4, 8\}$$

• 
$$dom(w) = \{1, 3, 4, 5\}$$

• 
$$dom(z) = \{4, 5, 8\}$$

#### Constraint x < y with

- dom(x) = 10..20
- dom(y) = 0..15

#### After AC filtering, we obtain:

• 
$$dom(x) = 10..14$$

• 
$$dom(y) = 11..15$$

### After BC filtering, we obtain

• 
$$dom(x) = 10..14$$

• 
$$dom(y) = 11..15$$

Constraint 
$$w + 3 = z$$
 with

• 
$$dom(w) = \{1, 3, 4, 5\}$$

• 
$$dom(z) = \{4, 5, 8\}$$

#### After AC filtering, we obtain:

• 
$$dom(w) = \{1, 5\}$$

• 
$$dom(z) = \{4, 8\}$$

• 
$$dom(w) = \{1, 3, 4, 5\}$$

• 
$$dom(z) = \{4, 5, 8\}$$

#### Constraint x < y with

- dom(x) = 10..20
- dom(y) = 0..15

#### After AC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

### After BC filtering, we obtain

- dom(x) = 10..14
- dom(y) = 11..15

Constraint w + 3 = z with

• 
$$dom(w) = \{1, 3, 4, 5\}$$

• 
$$dom(z) = \{4, 5, 8\}$$

After AC filtering, we obtain:

• 
$$dom(w) = \{1, 5\}$$

• 
$$dom(z) = \{4, 8\}$$

• 
$$dom(w) = \{1, 3, 4, 5\}$$

• 
$$dom(z) = \{4, 5, 8\}$$

#### Constraint x < y with

- dom(x) = 10..20
- dom(y) = 0..15

#### After AC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

#### After BC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

Constraint w + 3 = z with

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

After AC filtering, we obtain

- $dom(w) = \{1, 5\}$
- $dom(z) = \{4, 8\}$

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

Constraint x < y with

- dom(x) = 10..20
- dom(y) = 0..15

After AC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

After BC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

Constraint w + 3 = z with

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

After AC filtering, we obtain:

- $dom(w) = \{1, 5\}$
- $dom(z) = \{4, 8\}$

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

Constraint x < y with

- dom(x) = 10..20
- dom(y) = 0..15

After AC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

After BC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

Constraint w + 3 = z with

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

After AC filtering, we obtain:

- $dom(w) = \{1, 5\}$
- $dom(z) = \{4, 8\}$

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

Constraint x < y with

- dom(x) = 10..20
- dom(y) = 0..15

After AC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

After BC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

Constraint w + 3 = z with

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

After AC filtering, we obtain:

- $dom(w) = \{1, 5\}$
- $dom(z) = \{4, 8\}$

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

Constraint x < y with

• 
$$dom(x) = 10..20$$

• 
$$dom(y) = 0..15$$

After AC filtering, we obtain:

• 
$$dom(x) = 10..14$$

• 
$$dom(y) = 11..15$$

After BC filtering, we obtain:

• 
$$dom(x) = 10..14$$

• 
$$dom(y) = 11..15$$

Constraint w + 3 = z with

• 
$$dom(w) = \{1, 3, 4, 5\}$$

• 
$$dom(z) = \{4, 5, 8\}$$

After AC filtering, we obtain:

• 
$$dom(w) = \{1, 5\}$$

• 
$$dom(z) = \{4, 8\}$$

• 
$$dom(w) = \{1, 3, 4, 5\}$$

• 
$$dom(z) = \{4, 5, 8\}$$

Constraint x < y with

- dom(x) = 10..20
- dom(y) = 0..15

After AC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

After BC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

Constraint w + 3 = z with

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

After AC filtering, we obtain:

- $dom(w) = \{1, 5\}$
- $dom(z) = \{4, 8\}$

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

Constraint x < y with

• 
$$dom(x) = 10..20$$

• 
$$dom(y) = 0..15$$

After AC filtering, we obtain:

• 
$$dom(x) = 10..14$$

• 
$$dom(y) = 11..15$$

After BC filtering, we obtain:

• 
$$dom(x) = 10..14$$

• 
$$dom(y) = 11..15$$

Constraint w + 3 = z with

• 
$$dom(w) = \{1, 3, 4, 5\}$$

• 
$$dom(z) = \{4, 5, 8\}$$

After AC filtering, we obtain:

• 
$$dom(w) = \{1, 5\}$$

• 
$$dom(z) = \{4, 8\}$$

After BC filtering, we obtain:

• 
$$dom(w) = \{1, 3, 4, 5\}$$

• 
$$dom(z) = \{4, 5, 8\}$$

#### For a constraint c

- ullet an allowed tuple, or tuple accepted by c, is an element of T=rel(c)
- a valid tuple is an element of  $V = \prod_{x \in scp(c)} dom(x)$
- a support (on c) is a tuple that is both allowed and valid, i.e., ar element of  $T \cap V$

#### Remark

A support on c is what we have previously informally called a solution of the "sub-problem" c.

#### For a constraint c

- an allowed tuple, or tuple accepted by c, is an element of T = rel(c)
- a valid tuple is an element of  $V = \prod_{x \in scp(c)} dom(x)$
- a support (on c) is a tuple that is both allowed and valid, i.e., ar element of  $T \cap V$

#### Remark

A support on c is what we have previously informally called a solution of the "sub-problem" c.

#### For a constraint c

- an allowed tuple, or tuple accepted by c, is an element of T = rel(c)
- a valid tuple is an element of  $V = \prod_{x \in scp(c)} dom(x)$
- a support (on c) is a tuple that is both allowed and valid, i.e., ar element of  $T \cap V$

#### Remark

A support on c is what we have previously informally called a solution of the "sub-problem" c.

#### For a constraint c

- an allowed tuple, or tuple accepted by c, is an element of T = rel(c)
- a valid tuple is an element of  $V = \prod_{x \in scp(c)} dom(x)$
- a support (on c) is a tuple that is both allowed and valid, i.e., an element of  $T \cap V$

#### Remark

A support on c is what we have previously informally called a solution of the "sub-problem" c.

#### For a constraint c

- an allowed tuple, or tuple accepted by c, is an element of T = rel(c)
- a valid tuple is an element of  $V = \prod_{x \in scp(c)} dom(x)$
- a support (on c) is a tuple that is both allowed and valid, i.e., an element of  $T \cap V$

#### Remark.

A support on c is what we have previously informally called a solution of the "sub-problem" c.

## Example.

Let  $c_{xyz}$  be a ternary constraint, and let us suppose that  $dom(x) = dom(y) = \{a, b\}$  and  $dom(z) = \{b, c\}$ . We have:

- $T = rel(c_{xyz})$
- $V = dom(x) \times dom(y) \times dom(z)$

| Т     |   | V     |
|-------|---|-------|
|       |   | aab   |
| aaa   | Λ | аас   |
| abb   |   | abb   |
| асс   |   | abc   |
| baa   |   | bab   |
| b b b |   | bab   |
| caa   |   |       |
| ссс   |   | b b b |
|       |   | b b c |

### Example.

Let  $c_{xyz}$  be a ternary constraint, and let us suppose that  $dom(x) = dom(y) = \{a, b\}$  and  $dom(z) = \{b, c\}$ . We have:

- $T = rel(c_{xyz})$
- $V = dom(x) \times dom(y) \times dom(z)$

| Т     |        |   |
|-------|--------|---|
| ааа   |        | 6 |
| a b b |        |   |
| асс   | _      | 6 |
| baa   | $\cap$ | 1 |
|       |        | ŀ |
| b b b |        | ı |
| саа   |        | ŀ |
| ссс   |        |   |
|       |        | ı |



Is there a support for (z, b)?

### Example.

Let  $c_{xyz}$  be a ternary constraint, and let us suppose that  $dom(x) = dom(y) = \{a, b\}$  and  $dom(z) = \{b, c\}$ . We have:

- $T = rel(c_{xyz})$
- $V = dom(x) \times dom(y) \times dom(z)$



(z,b) has a support  $\checkmark$ 

## Example.

Let  $c_{xyz}$  be a ternary constraint, and let us suppose that  $dom(x) = dom(y) = \{a, b\}$  and  $dom(z) = \{b, c\}$ . We have:

- $T = rel(c_{xyz})$
- $V = dom(x) \times dom(y) \times dom(z)$

| Т     |    |
|-------|----|
| ааа   |    |
| a b b |    |
| асс   |    |
| baa   | '' |
| b b b |    |
| саа   |    |
| ссс   |    |
|       |    |



Is there a support for (z, c)?

### Example.

Let  $c_{xyz}$  be a ternary constraint, and let us suppose that  $dom(x) = dom(y) = \{a, b\}$  and  $dom(z) = \{b, c\}$ . We have:

- $T = rel(c_{xyz})$
- $V = dom(x) \times dom(y) \times dom(z)$



.

#### Definition

A constraint c is arc-consistent (AC) iff  $\forall x \in scp(c)$ ,  $\forall a \in dom(x)$ , there exists a support of (x, a) on c, i.e., a support  $\tau$  on c such that  $\tau[x] = a$ .

## Example

Let x and y be two variables such that  $dom(x) = dom(y) = \{1, 2\}$ , and let x = y be a binary constraint.

- the tuple  $\tau=(1,2)$  //  $\tau[x]=1 \land \tau[y]=2$ 
  - is valid
  - but not accepted by x = y
- the tuple  $\tau = (3, 3)$ 
  - is not valid
  - but accepted by x = y
- the tuple au=(2,2)
  - is valid
  - and accepted by x = y

it represents a support of both (x, 2) and (y, 2) on x = y

#### Definition

A constraint c is arc-consistent (AC) iff  $\forall x \in scp(c)$ ,  $\forall a \in dom(x)$ , there exists a support of (x, a) on c, i.e., a support  $\tau$  on c such that  $\tau[x] = a$ .

## Example.

Let x and y be two variables such that  $dom(x) = dom(y) = \{1, 2\}$ , and let x = y be a binary constraint.

- the tuple  $\tau=(1,2)$  //  $\tau[x]=1 \land \tau[y]=2$ 
  - is valid
  - but not accepted by x = y
- the tuple  $\tau = (3, 3)$ 
  - is not valid
  - but accepted by x = y
- the tuple  $\tau = (2,2)$ 
  - is valid
  - and accepted by x = y
  - it represents a support of both (x, 2) and (y, 2) on x = y

#### Definition

A constraint c is arc-consistent (AC) iff  $\forall x \in scp(c)$ ,  $\forall a \in dom(x)$ , there exists a support of (x, a) on c, i.e., a support  $\tau$  on c such that  $\tau[x] = a$ .

## Example.

Let x and y be two variables such that  $dom(x) = dom(y) = \{1, 2\}$ , and let x = y be a binary constraint.

- the tuple  $\tau=(1,2)$  //  $\tau[x]=1 \land \tau[y]=2$ 
  - is valid
  - but not accepted by x = y
- the tuple  $\tau = (3, 3)$ 
  - is not valid
  - but accepted by x = y
- the tuple  $\tau = (2, 2)$ 
  - is valid
  - and accepted by x = y

it represents a support of both (x,2) and (y,2) on x=y

#### Definition

A constraint c is arc-consistent (AC) iff  $\forall x \in scp(c)$ ,  $\forall a \in dom(x)$ , there exists a support of (x, a) on c, i.e., a support  $\tau$  on c such that  $\tau[x] = a$ .

## Example.

Let x and y be two variables such that  $dom(x) = dom(y) = \{1, 2\}$ , and let x = y be a binary constraint.

- the tuple  $\tau=(1,2)$  //  $\tau[x]=1 \land \tau[y]=2$ 
  - is valid
  - but not accepted by x = y
- the tuple  $\tau = (3, 3)$ 
  - is not valid,
  - but accepted by x = y
- the tuple au=(2,2)
  - is valid
  - and accepted by x = y

it represents a support of both (x,2) and (y,2) on x=y

#### Definition

A constraint c is arc-consistent (AC) iff  $\forall x \in scp(c)$ ,  $\forall a \in dom(x)$ , there exists a support of (x, a) on c, i.e., a support  $\tau$  on c such that  $\tau[x] = a$ .

## Example.

Let x and y be two variables such that  $dom(x) = dom(y) = \{1, 2\}$ , and let x = y be a binary constraint.

- the tuple  $\tau = (1,2) \ \ // \ \tau[x] = 1 \land \tau[y] = 2$ 
  - is valid
  - but not accepted by x = y
- the tuple  $\tau = (3, 3)$ 
  - is not valid,
  - but accepted by x = y
- the tuple  $\tau = (2, 2)$ 
  - is valid
  - and accepted by x = y

it represents a support of both (x,2) and (y,2) on x=y

## Supports

In other words, the supports on a constraint c are those tuples that are present in the intersection of :

- the set of allowed tuples: rel(c)
- the set of valid tuples:  $val(c) = \prod_{x \in scp(c)} dom(x)$



⇒ We need to "identify" these supports for filtering

## Supports

In other words, the supports on a constraint c are those tuples that are present in the intersection of :

- the set of allowed tuples: rel(c)
- the set of valid tuples:  $val(c) = \prod_{x \in scp(c)} dom(x)$



⇒ We need to "identify" these supports for filtering

## Example



After AC filtering, we obtain

## Example



After AC filtering, we obtain?

## AC Algorithm

#### Definition

A value (x, a) is arc-inconsistent on a constraint c when there is no support of (x, a) on c.

#### Definition

An AC algorithm for a constraint c is an algorithm that removes all values that are arc-inconsistent on c; the algorithm is said to enforce/establish AC on c.

Here is an AC algorithm that can be used in theory with any constraint c

#### **Algorithm 1:** filterAC(c: Constraint)

```
for each variable x \in scp(c) do

for each value a \in dom(x) do

if \neg seekSupport(c, x, a) // function to be implemented

then

remove a from dom(x)
```

## AC Algorithm

#### Definition

A value (x, a) is arc-inconsistent on a constraint c when there is no support of (x, a) on c.

#### Definition

An AC algorithm for a constraint c is an algorithm that removes all values that are arc-inconsistent on c; the algorithm is said to enforce/establish AC on c.

Here is an AC algorithm that can be used in theory with any constraint c.

#### **Algorithm 2:** filterAC(c: Constraint)

```
for each variable x \in scp(c) do

for each value a \in dom(x) do

if \neg seekSupport(c, x, a) // function to be implemented

then

remove a from dom(x)
```

### AC Algorithm

#### Definition

A value (x, a) is arc-inconsistent on a constraint c when there is no support of (x, a) on c.

#### Definition

An AC algorithm for a constraint c is an algorithm that removes all values that are arc-inconsistent on c; the algorithm is said to enforce/establish AC on c.

Here is an AC algorithm that can be used in theory with any constraint c.

```
Algorithm 3: filterAC(c: Constraint)
```

```
for each variable x \in scp(c) do

for each value a \in dom(x) do

if \neg seekSupport(c, x, a) // function to be implemented then

remove a from dom(x)
```

### Proposition

A constraint allDifferent(X) is AC iff 
$$\forall X' \subseteq X$$
, 
$$|dom(X')| = |X'| \Rightarrow \forall x \in X \setminus X', dom(x) = dom(x) \setminus dom(X')$$
 where  $dom(X') = \bigcup_{x' \in X'} dom(x')$ 

#### Remark

A subset X' of variables such that |dom(X')| = |X'| is called a Hall set.

### Example

The set of variables  $\{x, y, z\}$  such that

- $\bullet \ dom(x) = \{a, b\}$
- $dom(y) = \{a, c\}$
- and  $dom(z) = \{b, c\}$

is a Hall set (of size 3)

### Proposition

```
A constraint allDifferent(X) is AC iff \forall X' \subseteq X, |dom(X')| = |X'| \Rightarrow \forall x \in X \setminus X', dom(x) = dom(x) \setminus dom(X') where dom(X') = \bigcup_{x' \in X'} dom(x')
```

#### Remark.

A subset X' of variables such that |dom(X')| = |X'| is called a Hall set.

### Example

The set of variables  $\{x, y, z\}$  such that:

- $\bullet \ dom(x) = \{a, b\}$
- $dom(y) = \{a, c\}$
- and  $dom(z) = \{b, c\}$

is a Hall set (of size 3)

### Proposition

A constraint allDifferent(X) is AC iff  $\forall X' \subseteq X$ ,  $|dom(X')| = |X'| \Rightarrow \forall x \in X \setminus X', dom(x) = dom(x) \setminus dom(X')$  where  $dom(X') = \bigcup_{x' \in X'} dom(x')$ 

#### Remark.

A subset X' of variables such that |dom(X')| = |X'| is called a Hall set.

### Example.

The set of variables  $\{x, y, z\}$  such that:

- $dom(x) = \{a, b\},\$
- $dom(y) = \{a, c\}$
- and  $dom(z) = \{b, c\}$

is a Hall set (of size 3).

#### Example.

For a Sudoku block, a constraint allDifferent(w, x, y, z):



Can we filter?

### Example.

For a Sudoku block, a constraint allDifferent(w, x, y, z):



Can we filter?

The same constraint as previously, but variables have different domains.

#### Example.

For a Sudoku block, a constraint allDifferent(w, x, y, z):



The same constraint as previously, but variables have different domains.

#### Example.

For a Sudoku block, a constraint allDifferent(w, x, y, z):



The same constraint as previously, but variables have different domains.

#### Example.

For a Sudoku block, a constraint allDifferent(w, x, y, z):



The same constraint as previously, but variables have different domains.

#### Example.

For a Sudoku block, a constraint allDifferent(w, x, y, z):



The same constraint as previously, but variables have different domains.

#### Example.

For a Sudoku block, a constraint allDifferent(w, x, y, z):



#### Definition

A constraint cardinality (X, V, L, U) forces the variables in X to take their values in V with the restriction that each value  $v_i$  in V is assigned at least  $L(v_i)$  times and at most  $U(v_i)$  times.

### Example

#### Three sets

- $Agents = \{Peter, Paul, Mary, John, Bob, Mike, Julia\}$
- Days = { Monday , Tuesday , ..., Sunday }
- Activities =  $\{M(orning), D(ay), N(ight), B(ackup), O(ff)\}$
- We want a roster that looks like:

#### Definition

A constraint cardinality (X, V, L, U) forces the variables in X to take their values in V with the restriction that each value  $v_i$  in V is assigned at least  $L(v_i)$  times and at most  $U(v_i)$  times.

### Example.

#### Three sets:

- $\bullet \ \textit{Agents} = \{\textit{Peter}, \textit{Paul}, \textit{Mary}, \textit{John}, \textit{Bob}, \textit{Mike}, \textit{Julia}\}$
- Days = {Monday, Tuesday, ..., Sunday}
- Activities =  $\{M(orning), D(ay), N(ight), B(ackup), O(ff)\}.$
- We want a roster that looks like:

|                       | Мо | Tu | We | Th | Fr | Sa | Su |
|-----------------------|----|----|----|----|----|----|----|
| Peter                 | D  | N  | N  | N  | 0  | 0  | 0  |
| Paul                  | 0  | Ο  | D  | D  | Μ  | Μ  | В  |
| Peter<br>Paul<br>Mary | М  | Μ  | D  | D  | Ο  | 0  | Ν  |
|                       |    |    |    |    |    |    |    |
|                       | '  |    |    |    |    |    |    |

### Example.

For simplicity, we only reason here on Monday. Our variables X represent the agents, and we have  $\forall x \in X, dom(x) = \{M, D, N, B, O\}.$ 

- The constraint cardinality(X,{M, D, N, B, O},L,U) is such that: •  $L = \{1, 1, 1, 0, 0\}$ 

  - $U = \{2, 2, 1, 2, 2\}.$



### Example.

For simplicity, we only reason here on Monday. Our variables X represent the agents, and we have  $\forall x \in X, dom(x) = \{M, D, N, B, O\}$ . The constraint cardinality( $X, \{M, D, N, B, O\}, L, U$ ) is such that:

- $L = \{1, 1, 1, 0, 0\}$
- $U = \{2, 2, 1, 2, 2\}.$



#### Example.

For simplicity, we only reason here on Monday. Our variables X represent the agents, and we have  $\forall x \in X, dom(x) = \{M, D, N, B, O\}$ . The constraint cardinality( $X, \{M, D, N, B, O\}, L, U$ ) is such that:

- $L = \{1, 1, 1, 0, 0\}$
- $U = \{2, 2, 1, 2, 2\}.$



### Example.

For simplicity, we only reason here on Monday. Our variables X represent the agents, and we have  $\forall x \in X, dom(x) = \{M, D, N, B, O\}$ .

- The constraint cardinality(X,{M, D, N, B, O},L,U) is such that:
    $L = \{1, 1, 1, 0, 0\}$ 
  - $U = \{2, 2, 1, 2, 2\}.$



### Example.

For simplicity, we only reason here on Monday. Our variables X represent the agents, and we have  $\forall x \in X, dom(x) = \{M, D, N, B, O\}$ .

The constraint cardinality  $(X, \{M, D, N, B, O\}, L, U)$  is such that:

- $L = \{1, 1, 1, 0, 0\}$
- $U = \{2, 2, 1, 2, 2\}.$



Domains of variables w, x, y and z

| dom |   |   |   |  |  |
|-----|---|---|---|--|--|
| W   | Χ | у | Z |  |  |
| 1   | 1 | 2 | 2 |  |  |
| 2   | 2 | 3 | 3 |  |  |
| 3   | 3 | 4 | 4 |  |  |

Constraint 
$$c_{wxyz}$$
:  $w + 2x + 4y + 5z \ge 42$ 

Domains of variables w, x, y et z after AC filtering of  $c_{wxyz}$ 

Domains of variables w, x, y and z

| dom |   |   |   |  |  |
|-----|---|---|---|--|--|
| W   | Χ | у | Z |  |  |
| 1   | 1 | 2 | 2 |  |  |
| 2   | 2 | 3 | 3 |  |  |
| 3   | 3 | 4 | 4 |  |  |

Constraint 
$$c_{wxyz}$$
:  $w + 2x + 4y + 5z \ge 42$ 

Domains of variables w, x, y et z after AC filtering of  $c_{wxyz}$ 

Domains of variables w, x, y and z

| dom |   |   |   |  |  |
|-----|---|---|---|--|--|
| W   | Χ | у | Z |  |  |
| 1   | 1 | 2 | 2 |  |  |
| 2   | 2 | 3 | 3 |  |  |
| 3   | 3 | 4 | 4 |  |  |

Constraint 
$$c_{wxyz}$$
:  $w + 2x + 4y + 5z \ge 42$ 

Domains of variables w, x, y et z after AC filtering of  $c_{wxyz}$ 

| dom |   |   |   |  |  |
|-----|---|---|---|--|--|
| W   | Χ | у | Z |  |  |
| 1   | 1 | 2 | 2 |  |  |
| 2   | 2 | 3 | 3 |  |  |
| 3   | 3 | 4 | 4 |  |  |

Domains of variables w, x, y and z

| dom |   |   |   |  |  |
|-----|---|---|---|--|--|
| W   | Χ | у | Z |  |  |
| 1   | 1 | 2 | 2 |  |  |
| 2   | 2 | 3 | 3 |  |  |
| 3   | 3 | 4 | 4 |  |  |

Constraint 
$$c_{wxyz}$$
:  $w + 2x + 4y + 5z \ge 42$ 

Domains of variables w, x, y et z after AC filtering of  $c_{wxyz}$ 

| dom |   |   |   |  |  |
|-----|---|---|---|--|--|
| W   | Χ | У | Z |  |  |
| 1   | 1 | 2 | 2 |  |  |
| 2   | 2 | 3 | 3 |  |  |
| 3   | 3 | 4 | 4 |  |  |

Domains of variables w, x, y and z

| dom |   |   |   |  |  |
|-----|---|---|---|--|--|
| W   | X | У | Z |  |  |
| 1   | 1 | 1 | 1 |  |  |
|     |   | 2 | 2 |  |  |

Constraint 
$$c_{wxyz}$$
:  $w + x + y + z \neq 5$ 

Domains of variables w, x, y and z

|   | do | m |   |
|---|----|---|---|
| W | X  | у | Z |
| 1 | 1  | 1 | 1 |
|   |    | 2 | 2 |

Constraint 
$$c_{wxyz}$$
:  $w + x + y + z \neq 5$ 

Domains of variables w, x, y and z

|   | do | m |   |
|---|----|---|---|
| W | X  | У | Z |
| 1 | 1  | 1 | 1 |
|   |    | 2 | 2 |

Constraint 
$$c_{wxyz}$$
:  $w + x + y + z \neq 5$ 

|   | doı | m |   |
|---|-----|---|---|
| W | Χ   | У | Z |
| 1 | 1   | 1 | 1 |
|   |     | 2 | 2 |

Domains of variables w, x, y and z

|   | do | m |   |
|---|----|---|---|
| W | X  | У | Z |
| 1 | 1  | 1 | 1 |
|   |    | 2 |   |

Constraint  $c_{wxyz}$ :  $w + x + y + z \neq 5$ 

Domains of variables w, x, y and z after AC filtering of  $c_{wxyz}$ 

Domains of variables w, x, y and z

|        | do         | m      |               |
|--------|------------|--------|---------------|
| w<br>1 | <i>x</i> 1 | у<br>1 | <i>z</i><br>1 |
|        |            | 2      |               |

Constraint 
$$c_{wxyz}$$
:  $w + x + y + z \neq 5$ 

Domains of variables w, x, y and z after AC filtering of  $c_{wxyz}$ 

Domains of variables w, x, y and z

|   | do | m |   |
|---|----|---|---|
| W | X  | У | Z |
| 1 | 1  | 1 | 1 |
|   |    | 2 |   |

Constraint 
$$c_{wxyz}$$
:  $w + x + y + z \neq 5$ 

Domains of variables w, x, y and z after AC filtering of  $c_{wxyz}$ 

|   | do | m |   |
|---|----|---|---|
| W | Χ  | У | Z |
| 1 | 1  | 1 | 1 |
|   |    | 2 |   |

Domains of variables w, x, y and z

|   | do | m |   |
|---|----|---|---|
| W | X  | У | Z |
| 1 | 1  | 1 | 1 |
|   |    | 2 |   |

Constraint 
$$c_{wxyz}$$
:  $w + x + y + z \neq 5$ 

Domains of variables w, x, y and z after AC filtering of  $c_{wxyz}$ 

| dom    |            |                        |               |  |  |
|--------|------------|------------------------|---------------|--|--|
| w<br>1 | <i>x</i> 1 | у<br>1<br><del>2</del> | <i>z</i><br>1 |  |  |

Domains of variables w, x, y and z

| dom |   |   |   |  |
|-----|---|---|---|--|
| W   | Χ | У | Z |  |
| 0   | 0 | 0 | 0 |  |
| 1   | 1 | 1 | 1 |  |
| 2   | 2 | 2 | 2 |  |
| 3   | 3 | 3 | 3 |  |

Constraint  $c_{wxyz} : 82 \ge 27w + 37x + 45y + 53z \ge 80$ 

Domains of variables w, x, y and z

| dom |   |   |   |  |
|-----|---|---|---|--|
| W   | Χ | У | Z |  |
| 0   | 0 | 0 | 0 |  |
| 1   | 1 | 1 | 1 |  |
| 2   | 2 | 2 | 2 |  |
| 3   | 3 | 3 | 3 |  |

Constraint 
$$c_{wxyz} : 82 \ge 27w + 37x + 45y + 53z \ge 80$$

Domains of variables w, x, y and z

| dom |   |   |   |  |
|-----|---|---|---|--|
| W   | Χ | У | Z |  |
| 0   | 0 | 0 | 0 |  |
| 1   | 1 | 1 | 1 |  |
| 2   | 2 | 2 | 2 |  |
| 3   | 3 | 3 | 3 |  |

Constraint 
$$c_{wxyz} : 82 \ge 27w + 37x + 45y + 53z \ge 80$$

| dom |   |   |   |  |
|-----|---|---|---|--|
| W   | Χ | у | Z |  |
| 0   | 0 | 0 | 0 |  |
| 1   | 1 | 1 | 1 |  |
| 2   | 2 | 2 | 2 |  |
| 3   | 3 | 3 | 3 |  |

# AC Filtering for sum : $U \ge \sum_{i=1}^{r} c_i x_i \ge L$

Possibility of using dynamic programming:

- construction of a graph (Knapsack)
- reduction of the graph
- use of a constraint mdd from the reduced graph

### Warning

Pseudo-polynomial Complexity  $O(rU^2)$ 

### Example.

Illustration of this approach with:

- the constraint  $12 \ge 2x_1 + 3x_2 + 4x_3 + 5x_4 \ge 10$
- where the domain of each variable is  $\{0,1\}$ .

# AC Filtering for sum : $U \ge \sum_{i=1}^{r} c_i x_i \ge L$

Possibility of using dynamic programming:

- construction of a graph (Knapsack)
- reduction of the graph
- use of a constraint mdd from the reduced graph

### Warning.

Pseudo-polynomial Complexity  $O(rU^2)$ 

### Example

Illustration of this approach with:

- the constraint  $12 \ge 2x_1 + 3x_2 + 4x_3 + 5x_4 \ge 10$
- where the domain of each variable is  $\{0,1\}$ .

# AC Filtering for sum : $U \ge \sum_{i=1}^{r} c_i x_i \ge L$

Possibility of using dynamic programming:

- construction of a graph (Knapsack)
- reduction of the graph
- use of a constraint mdd from the reduced graph

### Warning.

Pseudo-polynomial Complexity  $O(rU^2)$ 

### Example.

Illustration of this approach with:

- the constraint  $12 \ge 2x_1 + 3x_2 + 4x_3 + 5x_4 \ge 10$
- where the domain of each variable is  $\{0,1\}$ .

### Example



# AC Filtering for or (meta-constraint)

### Constructive Disjunction

Enforcing AC on a meta-constraint  $or(c_1,c_2)$  can be achieved by constructive disjunction: for each variable x, dom(x) is the union of the domains of x obtained after AC filtering on  $c_1$  and AC filtering on  $c_2$ .

### Example

Let x be a variable such that  $dom(x) = \{1, 2, 3\}$  and the meta-constraint or (x = 1, x = 2).

```
AC on x = 1 yields dom^{1}(x) = \{1\}
AC on x = 2 yields dom^{2}(x) = \{2\}
```

AC on or(x = 1, x = 2) reduces dom(x) to  $dom^{1}(x) \cup dom^{2}(x) = \{1, 2\}$ 

# AC Filtering for or (meta-constraint)

### Constructive Disjunction

Enforcing AC on a meta-constraint  $or(c_1,c_2)$  can be achieved by constructive disjunction: for each variable x, dom(x) is the union of the domains of x obtained after AC filtering on  $c_1$  and AC filtering on  $c_2$ .

### Example.

Let x be a variable such that  $dom(x) = \{1, 2, 3\}$  and the meta-constraint or (x = 1, x = 2).

AC on 
$$x = 1$$
 yields  $dom^1(x) = \{1\}$   
AC on  $x = 2$  yields  $dom^2(x) = \{2\}$ 

AC on or(x = 1, x = 2) reduces dom(x) to  $dom^{1}(x) \cup dom^{2}(x) = \{1, 2\}$ 

# AC Filtering for and (meta-constraint)

### Proposition

AC on the conjunction and  $(c_1,c_2)$  is with respect to AC enforced independently on  $c_1$  and  $c_2$ :

- generally stronger,
- equivalent when  $|scp(c_1) \cap scp(c_2)| \leq 1$

### Example

Let x and y two variables such that  $dom(x) = dom(y) = \{1, 2, 3\}$  and the meta-constraint and $(x \neq y, x \leq y)$ .

- AC on  $x \neq y$  as well as AC on  $x \leq y$  have no effect
- AC on and  $(x \neq y, x \leq y)$  permits to have
  - dom(x) reduced to {1,2}
  - dom(y) reduced to {2,3}

# AC Filtering for and (meta-constraint)

### Proposition

AC on the conjunction and  $(c_1,c_2)$  is with respect to AC enforced independently on  $c_1$  and  $c_2$ :

- generally stronger,
- equivalent when  $|scp(c_1) \cap scp(c_2)| \leq 1$

### Example

Let x and y two variables such that  $dom(x) = dom(y) = \{1, 2, 3\}$  and the meta-constraint and  $(x \neq y, x \leq y)$ .

- AC on  $x \neq y$  as well as AC on  $x \leq y$  have no effect
- AC on and $(x \neq y, x \leq y)$  permits to have:
  - dom(x) reduced to  $\{1,2\}$
  - dom(y) reduced to {2,3}

### Outline

1 Filtering Domains with Constraints

2 Principle of Constraint Propagation

#### Definition

A constraint network P is AC iff each constraint of P is AC.

#### Definition

Computing the AC-closure of a constraint network P is the fact of removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute the AC-closure?

NO because when some values are filtered out by a constraint, this can give new opportunities to other constraints to filter again.

#### Definition

A constraint network P is AC iff each constraint of P is AC.

### Definition

Computing the AC-closure of a constraint network P is the fact of removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute the AC-closure?

NO because when some values are filtered out by a constraint, this can give new opportunities to other constraints to filter again.

#### Definition

A constraint network P is AC iff each constraint of P is AC.

### Definition

Computing the AC-closure of a constraint network P is the fact of removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute the AC-closure?

NO because when some values are filtered out by a constraint, this can give new opportunities to other constraints to filter again.

#### Definition

A constraint network P is AC iff each constraint of P is AC.

### **Definition**

Computing the AC-closure of a constraint network P is the fact of removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute the AC-closure?

NO because when some values are filtered out by a constraint, this can give new opportunities to other constraints to filter again.

#### Definition

A constraint network P is AC iff each constraint of P is AC.

### Definition

Computing the AC-closure of a constraint network P is the fact of removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute the AC-closure?

NO because when some values are filtered out by a constraint, this can give new opportunities to other constraints to filter again.

## Constraint Propagation Algorithm

```
Algorithm 4: constraintPropagationOn(P: CN): Boolean Q \leftarrow ctrs(P) while Q \neq \emptyset do

| pick and delete c from Q
| X_{evt} \leftarrow c.filter() // X_{evt} denotes the set of variables with reduced domains (after filtering by means of c)
| if \exists x \in X_{evt} such that dom(x) = \emptyset then
| return false // global inconsistency detected | foreach c' \in ctrs(P) such that c' \neq c and X_{evt} \cap scp(c') \neq \emptyset do | add c' to Q
```

#### Remark

return true

If each call c.filter() enforces AC on c, then the algorithm computes the AC-closure of P.

## Constraint Propagation Algorithm

### **Algorithm 5:** constraintPropagationOn(*P*: CN): Boolean

#### return true

#### Remark.

If each call c.filter() enforces AC on c, then the algorithm computes the AC-closure of P.

### Domino Problem

The instance domino-6 is represented by the following CN P:

```
vars(P) = {
      x_0 with dom(x_0) = \{0, 1, 2, 3, 4, 5\},\
      x_1 with dom(x_1) = \{0, 1, 2, 3, 4, 5\},\
      x_2 with dom(x_2) = \{0, 1, 2, 3, 4, 5\}.
      x_3 with dom(x_3) = \{0, 1, 2, 3, 4, 5\}.
       x_4 with dom(x_4) = \{0, 1, 2, 3, 4, 5\},\
      x_5 with dom(x_5) = \{0, 1, 2, 3, 4, 5\}
ctrs(P) = {
      x_0 = x_1
      x_1 = x_2.
      x_2 = x_3.
      \chi_3 = \chi_4.
      x_4 = x_5.
      (x_0 = x_5 + 1 \land x_0 < 5) \lor (x_0 = x_5 \land x_0 = 5)
```

























### Constraint Propagation on queens-4

For the 4-queens instance, we have:

```
vars(P) = {
       x_a with dom(x_a) = \{1, 2, 3, 4\},\
       x_b with dom(x_b) = \{1, 2, 3, 4\},\
       x_c with dom(x_c) = \{1, 2, 3, 4\},\
       x_d with dom(x_d) = \{1, 2, 3, 4\}
• ctrs(P) = {
       x_a \neq x_b \wedge |x_a - x_b| \neq 1,
       x_a \neq x_c \wedge |x_a - x_c| \neq 2,
       x_a \neq x_d \wedge |x_a - x_d| \neq 3,
       x_b \neq x_c \wedge |x_b - x_c| \neq 1,
       x_b \neq x_d \wedge |x_b - x_d| \neq 2,
       x_c \neq x_d \wedge |x_c - x_d| \neq 1
```

#### Exercice

After taking the decision  $x_a = 1$ , what is the AC-closure of P?



### Constraint Propagation on queens-4

For the 4-queens instance, we have:

```
vars(P) = {
       x_a with dom(x_a) = \{1, 2, 3, 4\},\
       x_b with dom(x_b) = \{1, 2, 3, 4\},\
       x_c with dom(x_c) = \{1, 2, 3, 4\},\
       x_d with dom(x_d) = \{1, 2, 3, 4\}
• ctrs(P) = {
       x_a \neq x_b \wedge |x_a - x_b| \neq 1,
       x_a \neq x_c \wedge |x_a - x_c| \neq 2,
       x_a \neq x_d \wedge |x_a - x_d| \neq 3,
       x_b \neq x_c \wedge |x_b - x_c| \neq 1,
       x_b \neq x_d \wedge |x_b - x_d| \neq 2,
       x_c \neq x_d \wedge |x_c - x_d| \neq 1
```

#### Exercice

After taking the decision  $x_a = 1$ , the AC-closure of P is:



#### Exercice

Let *P* be the following CN:

```
• vars(P) = \{
	x_1 \text{ with } dom(x_1) = \{1, 2, 3\},
	x_2 \text{ with } dom(x_2) = \{1, 2, 3\},
	x_3 \text{ with } dom(x_3) = \{1, 2, 3\},
	x_4 \text{ with } dom(x_4) = \{1, 2, 3\},
}
• ctrs(P) = \{
	x_1 \neq x_2,
	x_2 + x_3 \leq x_1,
	x_2 + x_4 \geq 2 * x_1,
}
```

Simulate the process of constraint propagation on P (that is to say, compute the AC-closure of P).