Informe 1

Ley de Ohm

Teorica

Voltaje [V]	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
Corriente [A]	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
Resistencia [Ω]	10	10	10	10	10	10	10	10	10	10

Real

Voltaje [V]	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
Corriente [A]	0.052	0.1	0.149	0.18	0.23	0.28	0.33	0.38	0.43	0.48
Resistencia [Ω]	9.62	10	10.07	11.11	10.87	10.71	10.61	10.53	10.47	10.42

Corriente [A] vs. Voltaje [V]

¿Como se comporta la resistencia Eléctrica?

R: Más o menos estable, pero presenta mínimas perturbaciones

¿Que representa la pendiente de la curva?

R: La pendiente de la curva es el crecimiento de la corriente con respecto al voltaje, el cual son proporcionales a razón de cambio de $\frac{1}{10}$.

¿Que es un material Óhmico?

R: Un material recibe la denominación de"óhmico" o lineal si el voltaje entre sus extremos es directamente proporcional a la intensidad de la corriente que circula por él, es decir, se cumple que I = V / R.

¿Es la resistencia que usamos un material Óhmico?

R: Pensamos que sí ya que cumple la ley de Ohm aunque el error cuadrático que presenta con respecto a la teoría del I = V / R es despreciable.

¿Que es un material no Óhmico?

R: Es un material no conductor que no cumple con la ley de Ohm, por ejemplo la madera.

Ley de corrientes de Kirchhoff

Valores calculados

I_f : 0.55[A]	V_f : 5 [V]
$I_1: 0.5[A]$	V ₁ : 5 [V]
I ₂ : 0.05 [A]	V ₂ : 5 [V]

Valores medidos

I_f : 0.54 [A]	V_f : 5 [V]
<i>I</i> ₁ : 0.48 [<i>A</i>]	V ₁ : 5.05 [V]
<i>I</i> ₂ : 0.05 [<i>A</i>]	V ₂ : 5.06 [V]

¿Se cumple la ley de corrientes de Kirchhoff? Compare I_1 con I_2 .

R: Sí, ya que la diferencia entre I_f con I_1+I_2 en los valores medidos es despreciable, por lo cual podemos decir que se cumple la afirmación de la ley de Kirchhoff.

¿Qué corriente es mayor?

R: La corriente I_1 es mayor ya que tiene una resistencia menor.

¿Cuál es la diferencia de potencial en R1 y en R2?

R: Voltaje en $R1 = V_1 = 5.05 [V]$ y $R2 = V_2 = 5.06 [V]$

¿Cómo son las caídas de potencial en las resistencias en comparación con la de la fuente? R: Despreciando (considerándolo como error instrumental) la diferencia de +0.05[V] podemos considerar que las caídas de potencial son la misma en tanto la fuente como en las resistencias.

Ley de voltajes de Kirchhoff

Valores calculados

I_f : 0.04545 [A]	V_f :5 [V]
<i>I</i> ₁ : 0.04545 [<i>A</i>]	<i>V</i> ₁ : 0.45 [<i>V</i>]
I ₂ : 0.04545 [A]	V ₂ :4.54[V]

Valores medidos

I_f : 0.04 [A]	V_f : 5[V]
I_1 : 0.044 [A]	<i>V</i> ₁ : 0.45 [<i>V</i>]
I_2 : 0.044 [A]	V ₂ :4.57[V]

¿Se cumple la ley de voltajes de Kirchhoff?

R:Sí, ya que la diferencia entre V_f con $V_1 + V_2$ en los valores medidos es despreciable, por lo cual podemos decir que se cumple la afirmación de la ley de Kirchhoff.

Compare V_1 con V_2 . ¿Qué voltaje es mayor?

R: Debido a la resistencia de 100 $[\Omega]$ vs la de 10 $[\Omega]$, el V_2 es considerablemente mayor.

¿Cuál es la corriente que circula a través de R_1 y de R_2 ?

R: La misma, ya que se encuentran en serie, por lo tanto $I_1 = I_2 = 0.044 \, [A]$

¿Cómo son las corrientes en las resistencias en comparación con la que pasa a través de la fuente?

R: No hay ninguna diferencia, ya que las diferencias se pueden considerar nulas.

¿Cómo son las caídas de potencial en las resistencias en comparación con la de la fuente?

R: Las caídas de potencial en las resistencias por separado son $0.45\ [V]$ y $4.57\ [V]$ respectivamente, en comparación con la de la fuente $5\ [V]$, por lo cual podemos ver que la suma de los voltajes que pasan por cada resistencia al sumarse dan aproximadamente el voltaje de la fuente.

Potencia y efecto Joule

Potencia en circuito con dos resistencias en paralelo con una fuente

Medidas en la fuente	Medidas en R_1	Medidas en R_2
-	R_1 :	R ₂ :
V_f :	<i>V</i> ₁ :	V ₂ :
I_f :	<i>I</i> ₁ :	<i>I</i> ₂ :
P_f :	P ₁ :	P ₂ :
-	T_1^0 :	T_2^0 :

Cálculos de potencia en resistencias en serie.