ODE Homework 2 (3%)

Chengyu Hsieh, B13201053

Let P_n be the Legendre polynomial of degree n. Prove that $|P'_n(x)| < n^2$ and $|P''_n(x)| < n^4$ for -1 < x < 1.

Proof

It has been proven that $|P_n(x)| \le 1$ for $x \in [-1, 1]$.

The Markov brothers' inequality states that, if P is a polynomial with degree $\leq n$, then for all nonnegative integers k we have

$$\max_{-1 \le x \le 1} |P^{(k)}(x)| \le \frac{n^2(n^2 - (1)^2)(n^2 - (2)^2)\dots(n^2 - (k-1)^2)}{1 \cdot 3 \cdot 5 \dots (2k-1)} \max_{-1 \le x \le 1} |P(x)|$$

Applying the markov brothers' inequality to $P'_n(x)$ and we obtain

$$|P'_n(x)| \le \frac{n^2}{1} \max_{-1 \le x \le 1} |P(x)| \le n^2$$

for $x \in [-1,1]$. We now prove that $|P'_n(x)|$ the equality cannot be achieved in (-1,1)

Applying the inequality to |P''(x)| and we obtain

$$|P_n''(x)| \leq \frac{n^2(n^2(n^2-1^2))}{1 \cdot 3} \max_{-1 \leq x \leq 1} |P(x)| < \frac{n^2(n^2-1)}{1 \cdot 1} < (n^2)(n^2) = n^4$$

for $x \in [-1, 1]$. Since $(-1, 1) \subset [-1, 1]$, the above inequality holds for $x \in (-1, 1)$ too.

Reference

G. Szegő, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Vol. 23, 1939.