

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros $\%R\&R_{VT}$ e $\%R\&R_{TOL}$ desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza, 2^a edição, página 409).

	Peças									
Operadores		1	2	3	4	5	6	7	8	9
	Medição 1	80.23	80.36	80.09	80.21	79.91	80.13	79.81	80.12	80.29
A	Medição 2	79.82	79.83	79.8	80.11	79.88	80.03	79.88	80	80.12
	Medição 3	79.88	79.71	80.42	80	80.18	79.77	79.99	79.71	79.91
	Medição 1	79.94	79.98	79.96	80.13	80.23	80.25	79.73	80.04	80.05
В	Medição 2	80.13	79.88	79.74	79.88	80.16	79.91	80.1	80.29	80.17
	Medição 3	80.12	80.37	79.73	79.89	79.86	80.04	79.86	80.29	80.07
	Medição 1	79.89	79.85	80.1	79.52	80.17	80.11	79.91	79.99	79.57
С	Medição 2	79.67	79.99	79.88	79.92	79.71	79.91	79.82	80	80.09
	Medição 3	79.86	79.85	79.94	80.26	79.85	79.81	79.85	80.43	79.95

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força $mg = k(l-l_0)$ é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta, $l = l_0 + (g/k)m$. Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para l_0 e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor, 2^a edição, página 200).

Peso m (gramas)	200	300	400	500	600	700	800	900
Comprimento l (cm)	4.58	5.72	8.21	8.58	9.24	9.33	10.54	10.91

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre $20^{\circ}C$ e $26^{\circ}C$. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

ſ	N	1	2	3	4	5	6	7	8
	$V_a(V)$	11.74	10.62	11.95	10.41	11.04	8.33	11.65	10.05
	$I_a (mA)$	117.084	107.125	120.139	104.579	109.801	83.073	117.149	99.57

Tabela 2: Medições simultâneas de voltagem e corrente

Faixa	Precisão
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$
1000V	$\pm (1.0\% + 5D)$

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Faixa	Incerteza
20mA	$\pm (0.8\% + 3D)$
200mA	$\pm (1.2\% + 4D)$
20A	$\pm (2.0\% + 5D)$

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.