MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

III B.Tech. II Sem (MR21) II -Mid Question Bank-2023-24 (Subjective)

Subject: Compiler Design (B0532)

Branch: Department of Computer Science and Engineering

Name of the Faculty: Mr. P.V. Ramana Murthy, Ms. M. Srujana, Mr. D. Syam Kumar, Mr. B. D. Pavan Kumar

Instructions:

- 1. All the questions carry equal marks
- 2. Solve all the questions

Q. No.	Question	Marks	BT Level	co			
Module III							
1	Elaborate the three forms of intermediate code representations? Construct three codes for $a + a * (b - c) + (b - c) * d$	5	L3	3			
OR							
2	Construct Intermediate code for the following code segment along with the Syntax Directed Translation Scheme. if (a > b) x = a + b; else x = a - b; Where 'a' and 'x' are of real and 'b' of int type data.	5	L3	3			
3	Summarize the short note on: a. Types and Declarations b. Backpatching c. Type checking.	5	L2	3			
OR							
4	Construct a Quadruple, Triple and Indirect triple for the statement $x:=A[y,z]$	5	L3	3			
Module IV							
1	Explain various storage allocation strategies with an example	5	L2	4			
OR							
2	Demonstrate in detail the principles sources of optimization. Give proper examples for each	5	L3	4			
3	Outline the following with an example a) Constant Propagation b) Partial Redundancy Elimination.	5	L4	4			
OR							
4	Describe Flow-Graph? Explain how the given program can be converted into Flow-Graph?	5	L2	4			
5	Explain the foundations and basic notations used in data-flow analysis for optimizations with examples.	5	L2	4			
OR							
6	Construct the basic block and compute DAG for the code fragment?	5	L3	4			

	Explain with the following code fragment.							
	procedure fun(x,y,z)							
	begin							
	y=z+1;							
	Z=Z+X;							
	end fun							
	begin main()							
	a=2;							
	b=3;							
	fun(A+B,A,B);							
	print(A); end main							
	Elaborate what is an activation record? Describe various components in							
7	<u> </u>	5	L2	4				
' an activation record considering a sample c program. OR								
	Describe reference counting. What is the role of reference counting in							
8	garbage collection?	5	L2	4				
	Module V							
1.	List and analyze the common issues to be considered while designing a good code generator.	5	L4	5				
OR								
2	Describe the code generation algorithm and explain briefly.	5	L2	5				
3	Explain different methods for register allocation and assignment.	5	L2	5				
OR								
4	Summarize peephole optimization with an illustrative example.	5	L2	5				
5	Identify the detail about address descriptors and register descriptors for	5	L4	5				
	the expression $X = (a+b) * (c-d) + ((e/f) * (a+b))$	3	L+	3				
	OR			1				
6	Outline with example, various machine dependent code optimization techniques.	5	L4	5				
7	Classify various forms of object code in code generation techniques with example	5	L3	5				
	OR							
8	Interpret various strategies used for register allocation and register assignment with example.	5	L5	5				

Signature of the Faculty

Signature of the HoD