Il teorema di Cauchy-Kowalevski e le sue conseguenze

Candidato: Alessandro Pedone, Relatore: Prof. Maurizio Grasselli

Politecnico di Milano

24 settembre 2024

Indice

- 1 Introduzione
- 2 Strumenti fondamentali
- 3 Versione invariante
- 4 Esempi
- 5 Versioni alternative
- 6 Applicazioni

Applicazioni

Sofya Vasilyevna Kovalevskaya (1850-1891)

Diamo per nota la figura storica di Augustin-Louis Cauchy. Kowalevski è stata:

- una matematica russa allieva di Weierstrass
- la **prima donna** a conseguire un dottorato (3 tesi risalenti al 1875) e a ottenere una cattedra in Europa (in matematica)

- Una biografia accurata: Little Sparrow: A Portrait of Sophia Kovalevsky (1983), Don H. Kennedy
- Un racconto breve: Too Much Happiness (2009), Alice Munro

Domande guida

E' possibile che esista una soluzione analitica a un sistema di EDP con condizioni di Cauchy?

La risposta sarà affermativa, per questo ci chiediamo già:

- sotto quali ipotesi?
- la soluzione è unica?
- il problema è ben posto?
- quali conseguenze hanno risultati ottenuti?

Tipologie di equazioni (e operatori)

Equazioni di ordine k:

Lineare	$\sum_{ \alpha \le k} a_{\alpha} D^{\alpha} u = f$
Quasi-lineare	$\sum_{ \alpha =k} a_{\alpha}(x, D^{\beta}u) D^{\alpha}u + a_{0}(x, D^{\beta}u) = f,$
	$ \beta < k$
Non lineare	$F(x, D^{\alpha}u) = 0, \alpha \le k$
In forma normale	$D_t^k u = G(x, D_x^{\alpha} D_t^j u), \alpha + j \le k, \ j < k$

Strumenti

- Superfici caratteristiche
- Metodo delle caratteristiche
- Problemi di Cauchy
- Serie di potenze

Superfici caratteristiche per op. lineari

L operatore differenziale lineare.

Definizione 2.1

Forma caratteristica di L:

$$\chi_L(x,\xi) = \sum_{|\alpha|=k} a_{\alpha}(x) \, \xi^{\alpha} \quad \text{con} \quad x,\xi \in \mathbb{R}^n$$

Definizione 2.2

Varietà caratteristica di L in x:

$$char_x(L) = \{ \xi \neq 0 : \chi_L(x, \xi) = 0 \}$$

Definizione 2.3

 Γ superficie caratteristica per L in $x \iff \nu(x) \in \operatorname{char}_x(L)$

Osservazione

Caso di operatore del 1° ordine: $A = (a_1, \ldots, a_n)$ tangente a Γ . Utile per generalizzazioni successive.

Significato

$$\xi \in \operatorname{char}_x(L)$$

in x L non è "propriamente" di ordine k nella direzione ξ .

 Γ non caratteristica

date su Γ $D^i_{\nu}u$ (i < k) di una soluzione u è possibile calcolare tutte le sue derivate parziali su Γ .

Applicazioni

- \bullet $\gamma(s): \mathbb{R}^{n-1} \to \mathbb{R}^n$ parametrizzazione locale di Γ
- $\mathbf{u} = \phi \text{ su } \Gamma \text{ dato di Cauchy}$

Definizione 2.4

 Γ non caratteristica in $x_0 = g(s_0)$

$$\iff \det \underbrace{\begin{bmatrix} D_{s_1} \gamma_1 & \cdots & D_{s_{n-1}} \gamma_1 \\ \vdots & & \vdots \\ D_{s_1} \gamma_n & \cdots & D_{s_{n-1}} \gamma_n \end{bmatrix}}_{\text{span del piano tangente}} \underbrace{a_1(\gamma, \phi(\gamma))}_{a_1(\gamma, \phi(\gamma))} (s_0) \neq 0$$

Metodo delle caratteristiche

I problemi seguenti ¹ sono **equivalenti**.

EDP:
$$\begin{cases} \sum a_j(x, u) D_{x_j} u = b(x, u) \\ u = \phi \text{ su } \Gamma \end{cases}$$
 (1)

EDO:
$$\begin{cases} D_t x = A(x, y)^2 \\ D_t y = b(x, y) \\ x(0) = x_0, \\ y(0) = \phi(x_0), \quad \forall x_0 \in \Gamma \end{cases}$$
 (2)

Dove $y = u(x) \in A(x, y) = [a_1(x, y), \dots, a_n(x, y)].$

¹si può generalizzare al caso non lineare (1° ordine!)

 $^{^2}$ le soluzioni x vengono dette $\mathit{curve}\ \mathit{caratteristiche} \mapsto \langle \neg \rangle \mapsto \langle \neg \rangle \mapsto \langle \neg \rangle$

Problema (1) $a_i, b, \phi, \Gamma \in C^1$ Ipotesi Γ non caratteristica Tesi $\exists!$ soluzione C^1 in un intorno di Γ sfruttando il teorema di esistenza Dim e unicità locale per EDO

- Spesso utilizzato quando la superficie dei dati **non** è un bordo.
- Necessita anche le **derivate normali** $(D_{\nu}^{j}u)$ della soluzione sulla superficie per determinarla univocamente.
- Portano con sé il rischio di un problema sovradeterminato (buone per l'unicità e meno per l'esistenza della soluzione).

$$\begin{cases} F^*(x, D^{\alpha}u^*) = 0 & |\alpha| \le k, \ F^* \text{ almeno } C^1 \\ D^j_{\nu}u^* = \phi^*_j & \text{su } \Gamma^* \text{ per } j < k \end{cases}$$

Mappatura in t=0

Detta γ^* la parametrizz. locale di Γ^* , applichiamo la mappa:

$$\Phi(x) = \begin{bmatrix} x_1 & \cdots & x_{n-1} \mid x_n - \gamma^*(x_1, \dots, x_{n-1}) \end{bmatrix}$$

 ${\it L.~C.~Evans,~Partial~Differential~Equations}$

$$t \leftarrow x_n \\ x \leftarrow (x_1, \dots, x_{n-1})$$

- Chiamiamo $\Gamma = \{t = 0\}.$
- Indichiamo le derivate nel modo seguente: $D_r^{\alpha} D_t^{j} u$.
- Otteniamo il problema $(u^* = u(\Phi))$:

$$\begin{cases} F(x, t, D_x^{\alpha} D_t^j u) = 0 & |\alpha| + j \le k \\ D_t^j u(x, 0) = \phi_j(x) & \text{per } j < k \end{cases}$$

Superfici non caratteristiche in generale

Definizione 2.5

 Γ^* (o Γ) è non caratteristica \iff l'equazione su Γ può essere riscritta in forma normale rispetto a t.

Osservazione

Si dimostra che è coerente con le definizioni precedenti.

Osservazione

- \blacksquare Caso lineare \rightarrow condizione sui coefficienti.
- \blacksquare Caso non lineare \rightarrow validità ipotesi teorema del Dini su F.

0000000000000000000

Definizione 2.6

Funzione maggiorante:

$$\mathcal{M}_{Cr}(x) = \frac{Cr}{r - (x_1 + \dots + x_n)}$$

Osservazione

Per il teorema multinomiale se |x| < r/n si ha che

$$\frac{Cr}{r - (x_1 + \ldots + x_n)} = C \sum_{\alpha} \frac{|\alpha|!}{\alpha! \, r^{|\alpha|}} x^{\alpha}.$$

Teorema 2.2 (utilità del maggiorante)

$$\begin{cases} g_{\alpha} \geq |f_{\alpha}| \\ \sum g_{\alpha} x^{\alpha} \text{ ha raggio di conv. } R \end{cases} \implies \begin{cases} \sum f_{\alpha} x^{\alpha} \\ \text{ha raggio almeno } R \end{cases}$$

In questo caso si scrive: $\sum g_{\alpha}x^{\alpha} \gg \sum f_{\alpha}x^{\alpha}$.

Teorema 2.3 (costruzione del maggiorante)

 $\sum f_{\alpha} x^{\alpha}$ ha raggio $R \implies \exists r < R, C > 0$ tali che

$$|f_{\alpha}| \le C \frac{1}{r^{|\alpha|}} \le C \frac{|\alpha|!}{\alpha! \, r^{|\alpha|}}$$

Schema dell'approccio

Seguendo l'ordine cronologico di scoperta procediamo per generalizzazioni progressive:

- EDO
- EDP quasi-lineari
- 3 EDP in forma normale

EDO

Teorema 3.1

$$A \subseteq \mathbb{C}, B \subseteq \mathbb{C}^n \text{ aperti}$$

$$\mathcal{O} \subseteq A \text{ aperto connesso}$$

$$f: A \times B \to \mathbb{C}^n \text{ olomorfa}$$

$$Pb: \begin{cases} y' = f(x, y) & \forall x \in \Omega \\ y(x_0) = y_0 \end{cases}$$

Tesi

localmente esiste un'unica soluzione olomorfa

Stima del raggio

Teorema 3.2

Ipotesi | ipotesi del teorema precedente

$$\exists \overline{B_a(x_0)} \subseteq A, \ \overline{B_b(y_0)} \subseteq B$$

la soluzione converge almeno con raggio³ Tesi $\widetilde{r} = a \left[1 - \exp\left(-\frac{b}{aM(n+1)}\right) \right]$

$$^{3}M = \max_{B_{a}(x_{0}), B_{b}(y_{0})} |f|$$

Teorema 3.3

Ipotesi
$$\begin{cases} A_j, \ B \text{ analitici} \\ \text{Pb: } \begin{cases} D_t \ y = \sum\limits_{j=1}^{n-1} A_j(x,y) D_{x_j} y + B(x,y) \\ y = 0 \quad \text{su } \Gamma \end{cases}$$
Tesi
$$\begin{cases} \exists! \ y(x,t) : \mathbb{R}^n \to \mathbb{R}^m \text{ sol. analitica} \\ \text{in intorno dell'origine} \end{cases}$$

Dimostrazione

- I ipotizziamo $y_h = \sum c_h^{\alpha j} x^{\alpha} t^j$
- 2 inserendo le serie di y, A_i , B si ottiene che:

$$c_h^{\alpha j} = Q_h^{\alpha j}$$
 (coeff. delle serie di A_j, B)

Q polinomio a coefficienti non negativi

- $\widetilde{A}_i \gg A_i$, $\widetilde{B} \gg B \implies \widetilde{y} \gg y$ grazie a Q
- 4 si scelgono \widetilde{A}_i , \widetilde{B} in modo da poter calcolare esplicitamente \widetilde{y} analitica con il metodo delle caratteristiche

Sistema maggiorante

Come sappiamo già fare maggioriamo le serie con

$$\mathcal{M}_{Cr}(x,y) \gg A_j, B$$

e risolviamo il problema⁴:

$$\begin{cases} D_t \, \widetilde{y}_h = \mathcal{M}_{Cr} \left[\sum_{i,j} D_{x_j} \widetilde{y}_i + 1 \right] \\ \widetilde{y}_h = 0 \quad \text{su } \Gamma \end{cases}$$

 $^{^{4}}$ con h = 1, ..., m

Soluzione maggiorante

Il sistema precedente ha come soluzione:

$$\widetilde{y}_h(x,t) = u(x_1 + \dots + x_n, t)$$

con

$$u(s,t) = \frac{r - s - \sqrt{(r-s)^2 - 2tCrmn}}{mn},$$

di cui possiamo studiare il raggio di convergenza.

Stima del raggio di convergenza

Teorema 3.4

La soluzione del teorema 3.3 converge con raggio almeno

$$\widetilde{r} = \frac{1}{n-1} \frac{r}{8Cmn} \text{ con } C \ge \frac{1}{2}$$

Osserviamone l'andamento⁵ rispetto a r, sapendo che:

 $r < \min\{raggi\ di\ conv.\ dei\ coefficienti\ a_{ml}^{j},\ b_{m}\}$

$$C \ge \max \left\{ \frac{\max\limits_{j,m,l,\alpha} \left| a_{ml}^{j} \, r^{|\alpha|} \right|}{\max\limits_{m,\alpha} \left| b_{m} \, r^{|\alpha|} \right|} \right\}$$

⁵ trade-off Cr

EDP in forma normale

Teorema 3.5

I due problemi seguenti sono equivalenti

non lineare :
$$\begin{cases} D_t^k u = G(x, D_x^\alpha D_t^j u) & |\alpha| + j \leq k, \ j < k \\ D_t^j u = \phi_j & \text{su } \Gamma, \ j < k \end{cases}$$
 quasi-lineare :
$$\begin{cases} D_t \, y = \sum\limits_{j=1}^{n-1} A_j(x,y) D_{x_j} y + B(x,y) \\ y = 0 & \text{su } \Gamma \end{cases}$$

Dimostrazione

I Si costruisce il sistema in modo tale che $y_{\alpha j} = D_x^{\alpha} D_t^{j} u$

Le matrici A_i e B saranno quindi ricavabili dalle espressioni⁶:

$$\begin{split} D_{t}y_{\alpha j} = & y_{\alpha(j+1)} & |\alpha| + j < k \\ D_{t}y_{\alpha j} = & D_{x_{i}}y_{(\alpha-1_{i})(j+1)} & |\alpha| + j = k, \ j < k \\ D_{t}y_{0k} = & D_{t}G + \sum_{|\alpha|+j < k} D_{y_{\alpha j}}Gy_{\alpha(j+1)} & \\ & + \sum_{|\alpha|+j = k, \ j < k} D_{y_{\alpha j}}GD_{x_{i}}y_{(\alpha-1_{i})(j+1)} & \end{split}$$

I dati di Cauchy saranno invece:

$$y_{\alpha j}(x,0) = D_x^{\alpha} \phi_j(x) \qquad j < k$$

$$y_{0k}(x,0) = G(x,0,D_x^{\alpha} \phi_j(x)) \qquad |\alpha| + j \le k, \ j < k$$

 $^{^{6}}i(\alpha) = \min_{i} i : \alpha \neq 0$

- 2 rimozione $\phi: y(x,t) \leftarrow y(x,t) \phi(x)$
- rimozione t: si aggiunge la variabile $y^0 = t$ (con relativa equazione)

Come nel caso delle EDO tutto si estende in modo immediato al caso complesso assumendo i dati olomorfi.

Esempi

Rispondiamo ora alle domande con tre esempi:

- e. di Lewy: importanza dell'analiticità
- e. di Kowalevski: importanza della non-caratteristicità
- e. di Hadamard: il problema potrebbe non essere ben posto

Applicazioni

Esempio di Lewy

Definizione 4.1

$$\mathcal{L} = D_x + iD_y - 2i(x+iy)D_t$$

è detto operatore di Lewy.

Teorema 4.1

Ipotesi f funzione continua a valori reali che dipende solo da t $u \in C^1$: $\mathcal{L}u = f$ in un intorno dell'origine Tesi f analitica in un intorno di t = 0Dim f Principio di riflessione di Schwarz

Teorema 4.2

Ipotesi
$$A \subseteq \mathbb{R}^3$$
 aperto
$$\exists F \in C^{\infty}(\mathbb{R}^3, \mathbb{R}) : \nexists u \in C^1(A, \mathbb{R})$$
 tale che
$$\begin{cases} \mathcal{L}u = F \text{ in } A \\ u_x, u_y, u_t \text{ soddisfano la condizione di H\"older} \end{cases}$$

Dimostrazione

- 1 traslare il problema del teorema precedente in modo da ricondursi al caso di un generico punto (x_0, y_0, t_0) , usando come forzante la funzione $g(x, y, t) = f(t - 2xy_0 + 2x_0y)$;
- 2 costruire con una serie una funzione $S_a \in C^{\infty}$ per ogni $a \in l^{\infty}$:

Versione invariante

- 3 costruire degli insiemi $E_{i,n} \subseteq l^{\infty}$ chiusi e senza parte interna sfruttando S_a e il teorema di Ascoli-Arzelà;
- 4 concludere la dimostrazione del nuovo teorema utilizzando i lemmi appena citati per ricavare, con un ragionamento per assurdo, l'uguaglianza $l^{\infty} = \bigcup E_{i,n}$, grazie alla quale si può applicare l'argomento di Baire.

Esempio di Kowalevski

Questo problema non ammette soluzioni⁷ analitiche in un intorno dell'origine:

$$\begin{cases} u_t - u_{xx} = 0 \\ u(x,0) = \frac{1}{1+x^2} \quad \forall x \in \mathbb{R} \end{cases}$$

Osservazione

La superficie è caratteristica!

⁷dimostrazione per assurdo

Esempio di Hadamard

Il problema

$$\begin{cases} u_{xx} + u_{yy} = 0 \\ u(x,0) = 0 \\ u_y(x,0) = n\sin(nx)e^{-\sqrt{n}} \text{ con } n \in \mathbb{N} \end{cases}$$

ha come soluzione

$$u_n(x,y) = \sin(nx)\underbrace{\sinh(ny)e^{-\sqrt{n}}}_{n\to\infty}.$$

Versioni alternative

Versione astratta (classi di Ovsyannikov)

Versione classica (simile a esistenza e unicità locale per EDO)

Versione invariante (superfici non caratteristiche)

Versione classica

Teorema 5.1

$$\overline{\mathcal{O}}_0 \subseteq \mathcal{O}_1 \subseteq \mathbb{C}^n \text{ aperti connessi}$$

$$A_j, f, u_0 \text{ olomorfi in } z$$

$$A_j, f, u_0 \text{ continui in } t$$

$$\text{Pb:} \begin{cases} D_t y = \sum A_j(z, t) D_{z_j} y + A_0(z, t) y + f(z, t) \\ y(z, 0) = y_0(z) \end{cases}$$

$$\text{Tesi} \qquad \exists \delta \in (0, T) : \exists ! \ y \in C^1 \text{ sol. per } |t| < T$$

Le conseguenze di questo teorema si osservano in vari campi, tra cui i principali sono:

- teoria delle equazioni differenziali
- fisica matematica: emersione di numerose domande (cosa succede nella realtà se esiste una sol. analitica locale?)
- geometria differenziale
- teoria economica

- confutare la congettura di Weierstrass (ogni funzione è
- teorema di Holmgren
- Treves e Nirenberg per la ricerca di condizioni necessarie e/o sufficienti per l'esistenza di soluzioni locali
- Hörmander la teoria degli operatori differenziali lineari (con particolare attenzione alla condizioni necessarie)

Teorema di Holmgren

Risultato di **unicità** delle soluzioni, anche non analitiche, per EDP lineari.

$$\begin{array}{c|cccc} CK & \text{astratto} & \Longrightarrow & \text{classico} & \Longrightarrow & \text{invariante} \\ & & & & & & & \\ H & \text{astratto} & \Longrightarrow & \text{classico} & \Longrightarrow & \text{invariante} \\ \end{array}$$

Versione astratta

Teorema 6.1

Ipotesi
$$\begin{cases} y \text{ distribuzione su } \mathcal{O}_0 \cap \mathbb{R}^n \times (-T, T) : \\ -K \subseteq \mathcal{O}_0 \cap \mathbb{R}^n \text{ compatto: } y = 0 \text{ in } \mathcal{O}_0 \cap \mathbb{R}^n \setminus K \\ -\begin{cases} D_t y = \sum A_j(z, t) D_{z_j} y + A_0(z, t) y + f(z, t) \\ y = 0 \text{ per } t < 0 \end{cases}$$
Tesi
$$y = 0 \text{ in } \mathcal{O}_0 \cap \mathbb{R}^n$$

Teorema 6.2

$$\begin{array}{c|c} \Omega\subseteq\mathbb{R}^n \text{ aperto} \\ A_j, f \text{ analitici} \\ y\in C^1: \\ \begin{cases} D_ty=\sum A_j(x,t)D_{x_j}y+A_0(x,t)y+f(x,t) \\ y=0 \text{ per } t=0 \end{cases} \\ \text{Tesi} \qquad y=0 \text{ in un intorno di } \Omega\times\{0\} \end{array}$$

Versione invariante

E' un'applicazione della versione astratta alla funzione

$$\widetilde{y}(x,t) = H(t)\,y(x,t),$$

la quale soddisfa sempre un sistema della stessa tipologia.

Un teorema molto importante in geometria differenziale:

- sull'integrabilità di sistemi differenziali esterni (exterior $differential\ systems)$
- che si dimostra utilizzando il teorema di Cauchy-Kowalevski
- che ha un'applicazione al campo economico (I. Ekeland, P.A. Chiappori)

Citando Ekeland a riguardo del paper scritto nel 1999 insieme a Chiappori:

Questo articolo risolve un problema di base nella teoria economica, che era rimasto aperto per trent'anni, ovvero la caratterizzazione delle funzioni di domanda di mercato. Il metodo di dimostrazione consiste nel ridurre il problema a un sistema di equazioni differenziali alle derivate parziali non lineari, per il quale si cercano soluzioni convesse. Questo viene riscritto come un sistema differenziale esterno e viene risolto mediante il teorema di Cartan-Kähler, insieme ad alcune manipolazioni algebriche per ottenere la convessità.

Nonostante la ricerca condotta in quegli anni

- non fosse guidata da applicazioni immediate
- portò a risultati deludenti rispetto alle aspettative di Cauchy e Weierstrass

ha avuto un impatto gigantesco grazie alla comprensione delle soluzioni di sistemi di EDP che ci ha permesso di raggiungere.

Era una vita - gli costava dirlo, come ebbe ad ammettere, perché si era sempre quardato dagli eccessivi entusiasmi -, era una vita che aspettava di veder entrare nel suo studio un allievo del genere. Un allievo in grado di lanciargli una sfida assoluta, di non sequire soltanto il percorso spericolato della sua mente, ma se possibile di spiccare un volo più alto.

— Alice Munro, Too Much Happiness

