2/2

0/2

2/2

2/2

0/2

0/2

2/2

2/2

2/2

0/2

THLR Contrôle (35 questions), Septembre 2016

Nom	et prénom, lisibles :	Identifiant (de haut en bas):			
5	TEPHAN				
1	ē0-				
		1 □2 □3 □4 □5 □6 □7 □8 □9			
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0.					
Q.2 La distance d'édition (avec les opérations lettre à lettre insertion et suppression) entre les mots danse et dense est de :					
	□ 5 □ 3	□ 0			
Q.3	Le langage $\{ \stackrel{\mathbf{w}}{=}^n \stackrel{\mathbf{v}}{=}^n \forall n \text{ premier, codable } e$	en binaire sur 64 bits} est			
		I fini □ infini			
~ .		, mu _ namu			
Q.4	Que vaut $\{\varepsilon, a, b\} \cdot \{a, b\}$?				
	\square {aa, ab, ba, bb} \square {aa, ab, bb} \square				
Q.5	Que vaut $Suff(\{ab,c\})$:				
	$\square \{b, \varepsilon\} \qquad \square \{a, b, c\} \qquad \boxtimes$	$\{ab,b,c,\varepsilon\}$ \square \emptyset \square $\{b,c,\varepsilon\}$			
Q.6	Que vaut $Suff(\{a\}\{b\}^*)$				
	$\Box \{a\}\{b\}^*\{a\} \qquad \Box \{b\}\{a\}^* \cup \{b\}^*$	$\boxtimes \{a\}\{b\}^* \cup \{b\}^* \qquad \Box \{a,b\}^*\{b\}\{a,b\}^*$:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
Q.7	Pour toutes expressions rationnelles e, f, g , or	n a $e(f+g) \equiv ef + eg$ et $(e+f)g \equiv eg + fg$.			
	vrai	☐ faux			
0.0	Pour toutes expressions rationnelles e , f , on a				
Q.8	rour toutes expressions ranormenes e, j, on a				
	■ vrai	☐ faux			
 Q.9 Un langage quelconque □ est toujours récursivement énumérable □ peut n'être inclus dans aucun langage dénoté par une expression rationnelle □ est toujours inclus (⊆) dans un langage rationnel □ est toujours récursif Q.10 Soit Σ un alphabet. Pour tout a ∈ Σ, L₁, L₂ ⊆ Σ*, on a L₁* = L₂* ⇒ L₁ = L₂. 					
	⊠ faux	t □ vrai			
Q.11	L'expression Perl '[-+]?[0-9A-F]+([-+/*]	[-+]?[0-9A-F]+)*' n'engendre pas :			
~					

correcte.

2/2 ☐ '42+42' '42+(42*42)' ☐ '-42-42' '-42' L'algorithme de Thompson permet ☐ d'éliminer les transitions spontanées d'un automate 🔣 de construire un ε -NFA à partir d'une expression rationnelle 2/2 ☐ de vérifier si un langage est rationnel ☐ de vérifier si deux automates reconnaissent le même langage Q.13 & L'état 3 est 1 ☐ fini co-accessible 2/2 accessible ☐ Aucune de ces réponses n'est correcte. Quel automate ne reconnaît pas le langage décrit par l'expression $(a^*b^*)^*$. Q.14 2/2 Quel est le résultat d'une élimination arrière des transi-Q.15 tions spontanées? 2/2 a,b,cParmi les 3 automates suivants, lesquels sont équivalents? 0/2 ☐ Aucune de ces réponses n'est

Q.17 Le langage $\{\bigcup_{i=1}^{2n} | \forall n \in \mathbb{N}\}$ est

2/2 ■ rationnel □ non reconnaissable par automate fini □ fini □ vide

Q.18 A propos du lemme de pompage

0/2	 Si un langage le vérifie, alors il est rationnel Si un langage ne le vérifie pas, alors il n'est pas rationnel Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel Q.19 Si L₁ ⊆ L ⊆ L₂, alors L est rationnel si : 				
2/2	L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ \square L_1 est rationnel \square L_2 est rationnel \square L_1, L_2 sont rationnels				
	Q.20 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a + b + c + d)^*a(a + b + c + d)^{n-1}$):				
0/2	\square Il n'existe pas. \square $\frac{n(n+1)(n+2)(n+3)}{4}$ \square \square \square \square \square \square \square				
	Q.21 Déterminiser cet automate.				
2/2	$\Box \xrightarrow{a} \overset{a}{\bigcirc} \overset{b}{\bigcirc} \overset{b}{\bigcirc}$				
	Q.22 Quelle(s) opération(s) préserve(nt) la rationnalité?				
0/2	⊠ Pref ⊠ Suff ⊠ Sous – mot ⊠ Fact ⊠ Transpose □ Aucune de ces réponses n'est correcte.				
	Q.23 De Quelle(s) opération(s) préserve(nt) la rationnalité?				
0.8/2	 Intersection Différence Différence symétrique Complémentaire Aucune de ces réponses n'est correcte. 				
	Q.24 Soit <i>Rec</i> l'ensemble des langages reconnaissables par DFA, et <i>Rat</i> l'ensemble des langages définissables par expressions rationnelles.				
0/2	$igtherpoonup Rec = Rat$ $igcap Rec \supseteq Rat$ $igcap Rec \supseteq Rat$ $igcap Rec \supseteq Rat$				
	Q.25 En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il				
2/2	☐ accepte un langage infini ☐ a des transitions spontanées ☐ accepte le mot vide ☐ est déterministe				
	Q.26 Si L_1, L_2 sont rationnels, alors:				
0/2					

O 27	On mout tooken si	automato dátominista m	acammaît um lancaca non viida	
Q.27	On beut tester si un	automate deterministe re	econnaît un langage non vide.	

2/2

×	Oui	□ Non		Cette question n'a pas de sens
	age n'est pas rationnel			

Q.28 Combien d'états a l'automate minimal qui accepte le langage $\{a, b, c, \dots, y, z\}^+$?

-1/2

 \square 52 **(a)** 1 \square Il en existe plusieurs! \square 26 \square 2

Q.29 Quel mot reconnait le produit de ces automates?

Q.30 Combien d'états a l'automate minimal qui accepte le langage $\{a, b\}^+$?

-1/2

- Q.31 & Quels états peuvent être fusionnés sans changer le langage reconnu.

- 1 avec 2
- ☐ 1 avec 3
- ☐ 2 avec 4
- 3 avec 40 avec 1 et avec 2
- ☐ Aucune de ces réponses n'est correcte.

Q.32

Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

2/2

- ☐ (abc)*
- a*b*c*
- \Box $a^* + b^* + c^*$
- \Box $(a+b+c)^*$

2/2

Q.33 Considérons \mathcal{P} l'ensemble des *palindromes* (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

0/2

- $\hfill \square$ Il existe un $\varepsilon\textsc{-NFA}$ qui reconnaisse $\hfill \mathcal{P}$
- \square Il existe un DFA qui reconnaisse \mathcal{P}

Q.34 Sur {a, b}, quel automate reconnaît le complémentaire du langage de

0/2

Q.35

Quel est le résultat de l'application de BMC en éliminant

Sur $\{a,b\}$, quel est le complémentaire de Q.36

Fin de l'épreuve.

244

+273/6/7+