Overheads: - Outline

Recap Monday: Directing Effects of Substituents

Activating Groups:

- Atoms with lone pairs directly on benzene ring (OH, OR, NR₂)
- Alkyl or aryl groups
- ➤ All stabilize C⁺ :: speed up reaction and direct o/p

Weakly Deactivating Groups:

- Halogens
- Slow down reaction but still direct o/p

2) More strongly deactivating groups: withdraw e- more strongly

all bad, but this one is worst \implies 2 + next to each other!

Draw m & p, see that meta never has 2 adjacent +'s

: not as bad! ~ NO2 is strongly deactivating and meta-directing

Summary:

- All Activating o/p - Weakly deactivating (halogens) - Moderately deactivating meta Strongly deactivating
- \Rightarrow Table 19.1 (16.1 in 6th ed) \Rightarrow LEARN IT!

Notes on Reactivity

$$\begin{array}{c|c} & \xrightarrow{\text{CH}_3\text{-Cl}} & \xrightarrow{\text{CH}_3\text{-Cl}} & \text{H}_3\text{C} & \xrightarrow{\text{CH}_3+} & \xrightarrow{\text{CH}_3} & \xrightarrow{\text{methyls}} \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & &$$

*** unless otherwise indicated, assume only one E⁺ adds (monosubstitution)

- 2) Friedel Crafts Reactions are harder to do than other 3 E⁺
 - Friedel Crafts does not work with strongly or moderately deactivating (i.e. meta directors) ⇒ too slow!

$$\sim$$
 NO₂ \sim CH₃-CI NO REACTION

3) Ar-NH₂ is base:

- \rightarrow can't do HNO₃ / H₂SO₄ or SO₃ / H₂SO₄ can't do FC (AlCl₃ = Lewis Acid)
- ONLY Br₂ or Cl₂ work with Ar-NH₂

What if there is more than one group on the ring?

Rule: most strongly activating group "wins"

Strategy for Synthesis

⇒ consider directing effects when deciding which to add first

** also consider reactivity: e.g. can't do FC with meta-directors

Is there another way to add a CH₃ group?

HINT: it is 1°! \longrightarrow acylation - reduction

O

i) CI-C-H

AICI₃

ii) H₂O

O

FeBr₃

O

FeBr₃

O

C-H

N₂H₄/OH⁻/ \triangle or

Zn/Hg/HCI/ \triangle

meta, ∴ add Br now!

⇒ Good trick! Put in acyl, use as meta-director, THEN reduce to alkyl