Лабораторная работа № 7

Синтез линейных фильтров методом регуляризации Тихонова

1. Постановка задачи:

$$U_{2\delta}(x) = \int_{-\infty}^{\infty} U_{1\varepsilon}(x-t)H(t)dt$$

В данном уравнении известны – неискаженный сигнал с погрешностью ε

$$U_{1\varepsilon}(x) = U_1(x) + \varepsilon$$

Искаженный наблюдаемый сигнал с погрешностью δ

$$U_{2\delta}(x) = U_2(x) + \delta$$

 χ

Погрешности ε и δ составляют от 5 до 10 процентов от максимума $U_1(x)$ и $U_2(x)$.

Определяется функция импульсного отклика H(T)

- 2. Описание метода
- 2.1. Определение коэффициента регуляризации α методом невязки путем решения следующего уравнения:

$$\beta(\alpha) - (\delta + \varepsilon \sqrt{\gamma(\alpha)})^2 = 0$$

$$\gamma(\alpha) = \frac{\Delta x}{N} \sum_{m=0}^{N-1} \frac{|V_1(m)|^2 (\Delta x)^2 |V_2(m)|^2 (1 + (\frac{2\pi m}{T})^2)}{(|V_2(m)|^2 (\Delta x)^2 + \alpha (1 + (\frac{2\pi m}{T})^2))^2}$$

$$\beta(\alpha) = \frac{\Delta x}{N} \sum_{m=0}^{N-1} \frac{\alpha^2 (1 + (\frac{2\pi m}{T})^2) |V_1(m)|^2}{(|V_2(m)|^2 (\Delta x)^2 + \alpha (1 + (\frac{2\pi m}{T})^2))^2}$$

2.2 Определение функции импульсного отклика H(T) по формуле:

$$H(k) = \frac{\Delta x}{N} \sum_{m=0}^{N-1} \frac{\exp\left(-\frac{2\pi i k m}{N}\right) V_2^*(m) V_1(m)}{|V_2(m)|^2 (\Delta x|^2 + \alpha (1 + \left(\frac{2\pi m}{T}\right)^2))}$$

T — размер сигнала, N — количество точек дискретизации, Δx — шаг дискретизации, $V_1(m), V_2(m)$ —Фурье образы сигналов $U_{1\varepsilon}(x)$ и $U_{2\delta}(x)$, соответственно, * - комплексное сопряжение.

2.3 Отобразить на одном графике $U_{1\varepsilon}(x)$, $U_{2\delta}(x)$ и $\mathrm{H}(\mathrm{x})$