Теорема 1. (Критерий Коши для рядов):

$$\sum_{n=1}^{\infty}a_n$$
 - сходится $\Leftrightarrow \forall \varepsilon > 0, \exists \, N \colon \forall n,m > N, \, |S_n - S_m| = \left|\sum_{k=m+1}^n a_k\right| < \varepsilon.$

Без доказательства, так как сходимость S_n - есть сходимость ряда.

Следствие 1. Если ряд $\sum_{n=1}^{\infty} |a_n|$ сходится, то $\sum_{n=1}^{\infty} a_n$ сходится.

 \square Для $\sum_{n=1}^{\infty}|a_n|$ выполняется условие Коши $\Rightarrow \forall \varepsilon>0, \exists\, N\colon \forall n,m>N, \; \left|\sum_{k=m+1}^n|a_k|\right|<\varepsilon\Rightarrow$ по неравенству

треугольника
$$\left|\sum_{k=m+1}^n a_k\right| \leq \sum_{k=m+1}^n |a_k| = \left|\sum_{k=m+1}^n |a_k|\right| < \varepsilon \Rightarrow$$
 для $\sum_{k=1}^\infty a_k$ выполняется условие Коши.

Rm: 1. Обратное утверждение - не верно.

Пример: (Ряд Лейбница) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ - знакопеременный ряд. Он сходится, проверим сходимость с помощью критерия Коши, пусть $m \le n$:

$$\left| \frac{(-1)^{m+1}}{m+1} + \frac{(-1)^{m+2}}{m+2} + \dots + \frac{(-1)^n}{n} \right| \le \left| \frac{(-1)^{m+1}}{m+1} + \frac{(-1)^{m+2}}{m+2} \right| + \left| \frac{(-1)^{m+3}}{m+3} + \frac{(-1)^{m+4}}{m+4} \right| + \dots + \left(\frac{1}{n} \right) = \frac{1}{m+1} - \frac{1}{m+2} + \frac{1}{m+3} - \frac{1}{m+4} + \dots + \left(\pm \frac{1}{n} \right) \le \frac{1}{m+1}$$

Если нечетное число слагаемых, то $\frac{1}{n}$ идет со знаком +, если четное число слагаемых, то со знаком -. Группируем следующие слагаемые:

$$\frac{1}{m+1} \underbrace{-\frac{1}{m+2} + \frac{1}{m+3}}_{\leq 0} \underbrace{-\frac{1}{m+4} + \frac{1}{m+5}}_{\leq 0} + \dots \left(\pm \frac{1}{n}\right) \leq \frac{1}{m+1}$$

Если количество нечетное, то все разобьется по парам. Если количество четное, то будет $-\frac{1}{n} < 0$ и можно слагаемое не рассматривать.

$$\forall \varepsilon > 0, \exists N, (N > \frac{1}{\varepsilon}), \forall n, m > N, \left| \frac{(-1)^{m+1}}{m+1} + \ldots + \frac{(-1)^n}{n} \right| < \varepsilon$$

Rm: 2. $x_n = (x_n - x_{n-1}) + (x_{n-1} - x_{n-2}) + \ldots + (x_2 - x_1) + x_1 = a_n + a_{n-1} \ldots + a_2 + a_1$, тогда $\lim_{n \to \infty} x_n = \sum_{n=1}^{\infty} a_n$.

Таким образом, все что умеем для рядов - умеем делать и для последовательностей и наоборот.

Пример: $|x_n - x_{n-1}| \le \frac{1}{2^n} \Rightarrow \exists \lim_{n \to \infty} x_n$. Тогда, если $x_n = a_n + a_{n-1} \dots + a_2 + a_1$, то $|a_n| \le \frac{1}{2^n} \Rightarrow \sum_{n=1}^{\infty} |a_n|$ - сходится $\Rightarrow \sum_{n=1}^{\infty} a_n$ - сходится $\Rightarrow \exists \lim_{n \to \infty} x_n$.

Топология вещественной прямой $\mathbb R$

Опр: 1. Окрестность точки a - это произвольный интервал, содержащий a, пишут $\mathcal{U}(a)$.

Рис. 1: Окрестность точки a.

Опр: 2. Проколотая окрестность $\mathcal{U}'(a) = \mathcal{U}(a) \setminus \{a\}$.

Рис. 2: Проколотая окрестность точки a.

Будем использовать обозначение $\mathcal{U}_{\varepsilon}(a) = (a - \varepsilon, a + \varepsilon)$ и $\mathcal{U}'_{\varepsilon}(a) = \mathcal{U}_{\varepsilon}(a) \setminus \{a\}$.

В любом интервале, можно найти симметричный интервал.

Рис. 3: Симметричная окрестность точки a.

Опр: 3. Множество $V \subset \mathbb{R}$ называется <u>открытым,</u> если $\forall a \in V, \exists \mathcal{U}(a) \subset V.$

Примеры: интервал, <u>вещественная прямая, пустое множество</u> - открытые множества.

Рис. 4: Примеры открытых множеств: интервал, вещественная прямая, пустое множество.

Опр: 4. Множество $F \subset \mathbb{R}$ называется замкнутым, если $\mathbb{R} \setminus F$ - открытое.

Примеры: точка, <u>вещественная прямая</u>, <u>пустое множество</u>, отрезок - замкнутые множества.

Рис. 5: Примеры замкнутых множеств: точка, отрезок, вещественная прямая, пустое множество.

 \mathbb{R} - замкнутое, потому что оно дополнение к пустому множеству.

 \varnothing - замкнутое, так как оно дополняет числовую прямую.

Пример ни замкнутого, ни открытого множества - полуинтервал.

Рис. 6: Полуинтервал

Теорема 2.

- 1) Объединение всякого набора открытых множеств и пересечение конечного набора открытых множеств является открытым множеством.
- 2) Объединение конечного набора замкнутых множеств и пересечениие всякого набора замкнутых множеств является замкнутым множеством.
- 1) Пусть $\{V_{\alpha}\}_{\alpha\in A}$ открытые множества. Пусть $a\in\bigcup_{\alpha}V_{\alpha}\Rightarrow\exists\,\alpha\colon a\in V_{\alpha}$, но по условию V_{α} открытое множество $\Rightarrow\exists\,\mathcal{U}(a)\colon\mathcal{U}(a)\subset V_{\alpha}\Rightarrow\mathcal{U}(a)\subset\bigcup_{\alpha}V_{\alpha}\Rightarrow\bigcup_{\alpha}V_{\alpha}$ открытое множество по определению. V_1,\ldots,V_N открытые множества. Пусть $a\in\bigcap_{n=1}^NV_n\Rightarrow a\in V_n,\,\forall n=1,\ldots,N\Rightarrow$ $\Rightarrow\exists\,\mathcal{U}_{\varepsilon_1}(a)\subset V_1,\exists\,\mathcal{U}_{\varepsilon_2}(a)\subset V_2,\ldots,\exists\,\mathcal{U}_{\varepsilon_N}(a)\subset V_N.$ Пусть $\varepsilon=\min\{\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_N\}\Rightarrow\mathcal{U}_{\varepsilon}(a)\subset\mathcal{U}_{\varepsilon_n}(a),\,\forall n=1,\ldots,N.$ Тогда $\mathcal{U}_{\varepsilon}(a)\subset V_n,\,\forall n=1,\ldots,N\Rightarrow\mathcal{U}_{\varepsilon}(a)\subset\bigcap_{n=1}^NV_n.$ Пересечение конечного набора необходимо, чтобы можно было найти минимум из ε_n .
- 2) Выводится из 1) формулами Моргана: $\mathbb{R}\setminus (\bigcap_{\alpha} F_{\alpha}) = \bigcup_{\alpha} (\mathbb{R}\setminus F_{\alpha})$ открытое, как объединение открытых множеств $\Rightarrow \bigcap_{\alpha} F_{\alpha}$ замкнутое множество. Выводится из 1) формулами Моргана: $\mathbb{R}\setminus (\bigcup_{n=1}^N F_n) = \bigcap_{\alpha} (\mathbb{R}\setminus F_{\alpha})$ открытое, как конечное пересечение открытых множеств $\Rightarrow \bigcup_{n=1}^N F_n$ замкнутое множество.

Опр: 5. Если в некотором непустом множестве X выделен набор подмножеств τ :

- $(1) \ X,\varnothing \in \tau;$
- (2) $V_{\alpha} \in \tau \Rightarrow \bigcup_{\alpha} V_{\alpha} \in \tau;$
- (3) $V_1, \ldots, V_n \in \tau, \bigcap_{n=1}^N \in \tau;$

то говорят, что на X задана топология au. А элементы этого набора называют открытыми множествами.

Теорема 3. Непустое открытое множество в \mathbb{R} является объединением не более, чем счетного набора попарно непересекающихся интервалов (возможно с бесконечными концами).

Пусть V - открыто, $V \neq \emptyset$. Пусть $a \in V$, рассмотрим множество $E^+ = \{x > a \colon (a,x) \subset V\}$. $E^+ \neq \emptyset$, так как $\exists (\alpha,\beta) \subset V \colon a \in (\alpha,\beta), \beta \in E^+$. Тогда

- 1) E^+ не ограничено сверху \Rightarrow пусть $x_0 > a$, так как E^+ не ограничено сверху, то $\exists x \in E^+ \colon x > x_0 \Rightarrow (a,x) \subset V \Rightarrow x_0 \in V$. Таким образом, любая точка справа от a лежит в $V \Rightarrow (a,+\infty) \subset V$.
- E^+ ограничено сверху \Rightarrow по принципу полноты Вейрштрасса $B = \sup E^+ \Rightarrow (a,B) \subset V$ и $B \notin V$. $\forall \varepsilon > 0, B \varepsilon$ не является верхней гранью E^+ , то есть $\exists \, x \in E^+ \colon x > B \varepsilon \Rightarrow B \varepsilon \in (a,x) \subset V$, если $B \varepsilon > a$. Все такие $B \varepsilon > a$ элементы находятся в интервале (a,B). Если $B \in V$, то $\exists \, \varepsilon > 0 \colon (B \varepsilon, B + \varepsilon) \subset V \Rightarrow (a,B+\varepsilon) \subset V \Rightarrow B + \varepsilon \in E^+$ а это противоречит тому, что $B = \sup E^+$.

Получили $(a,B)\subset V,\,B=+\infty$ или $B\notin V.$ Аналогично строим $(C,a)\subset V,\,C=-\infty$ или $C\notin V.$

Таким образом, для всякой точки $a \in V$ построен интервал $a \in (C, B) \subset V$ и $C, B \notin V$ или $\pm \infty$.

Пусть (C_1, B_1) и (C_2, B_2) - два таких интервала. Предположим, что они не совпадают, но пересекаются: конец одного из них принедлежит другому. Пусть $C_1 \in (C_2, B_2)$, тогда (остальные случаи - аналогично) $C_1 \in V$, но по построению $C_1 \notin V \Rightarrow$ противоречие \Rightarrow интервалы либо не пересекаются, либо совпадают.

Покажем, что на \mathbb{R} можно расположить не более чем счетный набор попарно не пересекающихся интвервалов. Пусть есть такой набор интервалов $\{I_{\alpha}\}: I_{\alpha} \cap I_{\beta} = \emptyset$, где $\alpha \neq \beta$.

$$\forall \alpha, \exists r_{\alpha} \in \mathbb{Q} : r_{\alpha} \in I_{\alpha}$$

<u>Идея</u>: есть интервал (пусть лежит справа от нуля) длины l. По аксиоме Архимеда возьмем такое $n : \frac{1}{n} < l$ и начнем идти от 0 в сторону интервала с шагом $\frac{1}{n}$. По аксиоме Архимеда мы должны перепрыгнуть левую точку интервала: обязательно найдется такое m, что $\frac{m}{n} >$ левая точка интервала, но при этом $\frac{m}{n} <$ правой точки интервала, так как шаг с которым идем короче этого интервала. Получим r - искомое рациональное число. В каждом интервале есть рациональная точка.

Рис. 7: Существование рационального числа.

Заметим, что если $\alpha \neq \beta \Rightarrow r_{\alpha} \neq r_{\beta}$, т.к. $I_{\alpha} \cap I_{\beta} = \emptyset$. Таким образом, есть отображение $I_{\alpha} \mapsto r_{\alpha} \in \mathbb{Q}$ - инъекция \Rightarrow т.к. это инъекция в счетное множество, то $\{I_{\alpha}\}$ - не более, чем счетен.