Информационная безопасность

1. Модели безопасности ОС. Дискреционные и мандатные модели доступа.

Модели безопасности ОС

Модель безопасности операционной системы – это формальное описание политики безопасности, определяющее правила и ограничения доступа субъектов (пользователей, процессов) к объектам (файлам, устройствам, процессам).

Основные компоненты моделей безопасности:

- Субъекты активные сущности, осуществляющие доступ к информации
- Объекты пассивные сущности, к которым осуществляется доступ
- Операции действия, выполняемые субъектами над объектами (чтение, запись, выполнение)
- Правила условия, определяющие возможность выполнения операций

Дискреционные модели доступа (DAC - Discretionary Access Control)

Дискреционная модель основана на принципе назначения прав доступа к объектам по усмотрению их владельцев.

Характеристики дискреционных моделей:

- Владелец объекта определяет права доступа к нему для других субъектов
- Информация о правах доступа хранится в матрице доступа
- Проверка доступа осуществляется при каждом обращении к объекту
- Права доступа могут передаваться (делегироваться) другим субъектам

Матрица доступа представляет собой таблицу, где строки соответствуют субъектам, столбцы – объектам, а на пересечении указаны разрешенные операции (r – чтение, w – запись, x – выполнение).

На практике матрица доступа реализуется в виде:

- Списков контроля доступа (ACL) для каждого объекта хранится список субъектов с их правами
- Списков возможностей для каждого субъекта хранится список объектов с правами на них

Модели типа Харисона-Рузо-Ульмана

Модель Харисона-Рузо-Ульмана (HRU) формализует изменение состояний системы с дискреционным управлением доступом.

Основные особенности:

- Представляет систему как набор состояний, определяемых матрицей доступа
- Определяет примитивные операции для изменения матрицы доступа
- Позволяет анализировать безопасность системы при изменении прав доступа
- Доказывает, что проблема безопасности в общем случае алгоритмически неразрешима

Мандатные модели доступа (MAC - Mandatory Access Control)

Мандатная модель основана на централизованном контроле доступа, осуществляемом системой, а не пользователями.

Характеристики мандатных моделей:

- Информации и субъектам присваиваются метки безопасности (уровни доступа)
- Доступ определяется на основе сравнения меток
- Пользователи не могут изменять метки безопасности и политику доступа
- Обеспечивается строгий иерархический контроль информационных потоков

Модели типа Белла-Лападулы

Модель Белла–Лападулы (BLP) – классическая модель мандатного контроля доступа, направленная на обеспечение конфиденциальности.

Основные принципы:

- Простое свойство безопасности (No Read Up): субъект может читать только объекты с уровнем доступа не выше своего
- Свойство * (No Write Down): субъект может записывать данные только в объекты с уровнем доступа не ниже своего

Эти принципы предотвращают утечку информации от высокоуровневых субъектов к низкоуровневым.

Ролевая модель (RBAC - Role-Based Access Control)

Ролевая модель основана на доступе к ресурсам через роли, а не напрямую.

Характеристики ролевой модели:

- Пользователям назначаются роли
- Ролям назначаются права доступа к объектам
- Пользователи получают доступ к объектам через роли
- Упрощается администрирование доступа в больших системах

SELinux

SELinux (Security-Enhanced Linux) – реализация мандатного контроля доступа для Linux, разработанная АНБ США.

Основные особенности:

- Обеспечивает принцип наименьших привилегий
- Использует контексты безопасности для субъектов и объектов
- Разделяет политику безопасности и механизм её реализации
- Поддерживает различные модели безопасности
- Реализует контроль на уровне типов (Type Enforcement)

SELinux имеет три режима работы:

- Enforcing политика безопасности принудительно применяется
- Permissive нарушения регистрируются, но не блокируются
- Disabled SELinux отключен

2. Критерии безопасности информационных систем. Стандарты безопасности информационных систем.

Критерии безопасности информационных систем

Критерии безопасности – это набор требований, используемых для оценки уровня защищенности информационных систем (ИС). Они определяют необходимые механизмы защиты и методы их верификации.

Основные критерии безопасности ИС:

- 1. Конфиденциальность защита от несанкционированного доступа к информации
 - Разграничение доступа
 - Шифрование
 - Контроль информационных потоков
- 2. Целостность защита от несанкционированной модификации информации
 - Контроль целостности данных
 - Электронная подпись
 - Журналирование изменений
- 3. **Доступность** обеспечение доступа к информации и системам для авторизованных пользователей
 - Отказоустойчивость
 - Резервное копирование
 - Предотвращение DoS-атак
- 4. **Неотказуемость** невозможность отрицания факта отправки или получения информации
 - Цифровая подпись
 - Аудит действий
- 5. Подотчетность однозначное прослеживание действий пользователя в системе

- Идентификация и аутентификация
- Регистрация событий

Стандарты безопасности информационных систем

Стандарты безопасности – это формализованные наборы требований и рекомендаций, применяемые для обеспечения защиты информационных систем.

Международные стандарты:

- 1. **ISO/IEC 27000** семейство стандартов по управлению информационной безопасностью
 - ISO/IEC 27001 требования к системам управления информационной безопасностью (СУИБ)
 - ISO/IEC 27002 свод практик для управления информационной безопасностью
 - ISO/IEC 27005 управление рисками информационной безопасности
- 2. **Common Criteria (ISO/IEC 15408)** стандарт оценки безопасности информационных технологий
 - Определяет 7 уровней доверия (EAL1-EAL7)
 - Устанавливает требования к функциональности и гарантиям безопасности
 - Обеспечивает механизм для признания сертификации разными странами
- 3. **PCI DSS** (Payment Card Industry Data Security Standard) стандарт безопасности данных индустрии платежных карт
 - Определяет требования к безопасности при обработке, передаче и хранении данных о банковских картах
 - Включает 12 обязательных требований

Российские стандарты:

- 1. ГОСТ Р ИСО/МЭК 15408 российский аналог Common Criteria
- 2. Руководящие документы ФСТЭК России
 - Руководящий документ "Защита от несанкционированного доступа к информации. Термины и определения"
 - Руководящий документ "Автоматизированные системы. Защита от несанкционированного доступа к информации. Классификация автоматизированных систем и требования по защите информации"
 - Руководящий документ "Средства вычислительной техники. Защита от несанкционированного доступа к информации. Показатели защищенности от несанкционированного доступа к информации"

3. Приказы ФСТЭК России

 Приказ №21 "Об утверждении Состава и содержания организационных и технических мер по обеспечению безопасности персональных данных при их обработке в информационных системах персональных данных"

 Приказ №17 "Об утверждении Требований о защите информации, не составляющей государственную тайну, содержащейся в государственных информационных системах"

Эволюция стандартов безопасности:

- 1. **Оранжевая книга** (TCSEC) первый значимый стандарт безопасности компьютерных систем, разработанный Министерством обороны США
 - Классы безопасности: D, C1, C2, B1, B2, B3, A1
 - Фокус на конфиденциальность и мандатное управление доступом
- 2. Европейские критерии (ITSEC) европейский подход к оценке безопасности ИТ
 - Разделение функциональности (F) и уровней гарантии (E)
 - Более гибкий и широкий подход, чем TCSEC
- 3. Common Criteria объединение и развитие TCSEC и ITSEC
 - Профили защиты (РР) требования безопасности для категории продуктов
 - Задания по безопасности (ST) требования безопасности для конкретного продукта
 - Цели безопасности (ТОЕ) предмет оценки

3. Применение межсетевых экранов для защиты корпоративных сетей

Межсетевые экраны для защиты корпоративных сетей

Межсетевой экран (МЭ, файрвол, firewall) – это система или комбинация систем, обеспечивающая защитный барьер между различными сетевыми средами и реализующая политику разграничения доступа между ними.

Функции межсетевых экранов:

- Фильтрация сетевого трафика
- Разграничение доступа между сетями
- Сокрытие внутренней структуры сети (NAT)
- Мониторинг и регистрация событий
- Кэширование данных (для прокси-серверов)
- Аутентификация доступа к ресурсам

Виды межсетевых экранов:

1. Пакетные фильтры

- Фильтрация на сетевом и транспортном уровнях
- Анализ IP-адресов, портов, флагов протоколов
- Быстрая работа, низкое потребление ресурсов
- Ограниченные возможности анализа

2. Шлюзы сеансового уровня (Stateful Inspection)

- Отслеживание состояния сеансов связи
- Создание динамических таблиц соединений
- Более высокий уровень защиты, чем у пакетных фильтров
- Большее потребление ресурсов

3. Шлюзы прикладного уровня (прокси-серверы)

- Анализ трафика на прикладном уровне
- Понимание специфики протоколов (HTTP, FTP, SMTP)
- Наиболее полная защита
- Высокое потребление ресурсов, снижение производительности

4. Инспекторы состояния

- Комбинирование возможностей пакетных фильтров и прикладных шлюзов
- Высокая производительность
- Хорошая степень защиты

Пакетный фильтр на базе OC Linux

B Linux встроена подсистема фильтрации пакетов **iptables** (для IPv4) и **ip6tables** (для IPv6), заменённые в новых версиях на **nftables**. B Ubuntu 20.04 и новее, а также в RHEL8, используется **firewalld** как интерфейс к nftables/iptables.

Основные компоненты iptables:

- Таблицы (tables) группы цепочек с определенным назначением (filter, nat, mangle, raw)
- Цепочки (chains) последовательности правил, применяемых к пакетам (INPUT, OUTPUT, FORWARD)
- Правила (rules) условия и действия для обработки пакетов (ACCEPT, DROP, REJECT, LOG)

Пример базовой настройки iptables:

```
# Очистка текущих правил
iptables -F
# Установка политик по умолчанию
iptables -P INPUT DROP
iptables -P FORWARD DROP
iptables -P OUTPUT ACCEPT
# Разрешение локальных соединений
iptables -A INPUT -i lo -j ACCEPT
# Разрешение установленных соединений
iptables -A INPUT -m state --state ESTABLISHED, RELATED -j ACCEPT
# Разрешение SSH
iptables -A INPUT -p tcp --dport 22 -j ACCEPT
# Разрешение веб-сервера
iptables -A INPUT -p tcp --dport 80 -j ACCEPT
iptables -A INPUT -p tcp --dport 443 -j ACCEPT
# Сохранение правил
iptables-save > /etc/iptables/rules.v4
```

Фильтрация пакетов: параметры и правила фильтрации

При настройке правил фильтрации используются следующие параметры:

1. Сетевые адреса

- Источник (source) и получатель (destination)
- Могут задаваться как отдельные адреса, диапазоны или подсети

2. Порты

- Порт источника (source port) и порт назначения (destination port)
- Могут задаваться как отдельные порты, диапазоны или списки

3. Протоколы

- TCP, UDP, ICMP и другие
- Для каждого протокола могут быть свои специфические параметры

4. Флаги ТСР

- o SYN, ACK, FIN, RST, PSH, URG
- Важны для определения состояния соединения

5. Интерфейсы

- Входящий (in) и исходящий (out)
- Позволяют фильтровать пакеты по интерфейсу

Правила фильтрации:

- 1. Правила должны быть однозначными и не противоречить друг другу
- 2. Правила обрабатываются по порядку до первого срабатывания
- 3. Порядок правил критически важен:
 - Более специфичные правила должны предшествовать более общим
 - Наиболее часто используемые правила лучше размещать в начале для повышения производительности

4. Типичные правила:

- Блокирование известных вредоносных ІР-адресов
- Разрешение доступа только к определенным сервисам
- Блокирование непроверенных входящих соединений
- Ограничение скорости соединений (защита от DoS)

Шлюзы прикладного уровня

Шлюзы прикладного уровня (Application-level gateways, ALG) – межсетевые экраны, которые работают на прикладном уровне модели OSI.

Характеристики:

- Полностью разрывают соединение между клиентом и сервером
- Анализируют содержимое пакетов с учетом специфики протоколов
- Обеспечивают аутентификацию пользователей
- Предоставляют кэширование и оптимизацию трафика

Примеры шлюзов прикладного уровня:

- Squid прокси-сервер HTTP, HTTPS, FTP
- NGINX может использоваться как обратный прокси
- Microsoft ISA/TMG корпоративный прокси-сервер
- НАРгоху специализированный прокси для балансировки нагрузки

Противодействие сетевым атакам при помощи межсетевых экранов

1. Защита от сканирования портов

- Блокирование большого количества неудачных попыток соединения
- Ограничение скорости новых соединений
- Скрытие внутренней структуры сети с помощью NAT

2. Защита от DoS/DDoS-атак

- Ограничение числа одновременных соединений с одного IP
- Ограничение скорости соединений
- Блокирование известных паттернов атак
- Фильтрация неправильно сформированных пакетов

3. Защита от атак уровня приложений

- Глубокий анализ трафика (Deep Packet Inspection)
- Обнаружение и фильтрация атак типа SQL-инъекций, XSS
- Проверка корректности форматов данных

4. Защита от инсайдерских угроз

- Ограничение исходящего трафика по протоколам и портам
- Мониторинг и регистрация подозрительной активности
- Применение VPN для удаленного доступа

5. Построение комплексной защиты

- Многоуровневая защита (defense-in-depth)
- Комбинирование различных типов межсетевых экранов
- Интеграция с системами обнаружения/предотвращения вторжений (IDS/IPS)
- Регулярное обновление правил фильтрации

4. Электронные цифровые подписи. Система PGP. Система S/MIME.

Электронные цифровые подписи

Электронная цифровая подпись (ЭЦП) – реквизит электронного документа, обеспечивающий проверку его целостности и подтверждающий подлинность. ЭЦП получается в результате криптографического преобразования информации с использованием закрытого ключа.

Принципы работы ЭЦП:

1. Формирование подписи:

- Вычисление хеш-функции от исходного документа
- Шифрование полученного хеша закрытым ключом отправителя

2. Проверка подписи:

- Расшифровка подписи с использованием открытого ключа отправителя
- Вычисление хеш-функции от полученного документа
- Сравнение расшифрованного и вычисленного хешей

Свойства ЭЦП:

- Аутентичность подтверждение авторства документа
- Целостность обнаружение изменений в документе
- Неотказуемость невозможность отрицания авторства
- Невозможность подделки защита от создания поддельной подписи

Используемые типы криптографических примитивов

1. Алгоритмы хеширования:

- MD5 128-битный хеш (устарел, не рекомендуется)
- SHA-1 160-битный хеш (устарел, не рекомендуется)
- SHA-2 (SHA-256, SHA-384, SHA-512) современные алгоритмы
- **SHA-3** новейшее семейство хеш-функций

2. Алгоритмы асимметричного шифрования:

- RSA алгоритм, основанный на сложности факторизации больших чисел
- DSA (Digital Signature Algorithm) стандарт подписи США
- ECDSA (Elliptic Curve DSA) эллиптическая криптография
- ГОСТ Р 34.10 российский стандарт ЭЦП

Система PGP (Pretty Good Privacy)

PGP – система шифрования и подписи электронной почты и файлов, разработанная Филом Циммерманном.

Особенности PGP:

- **Гибридная криптосистема** использует симметричное шифрование для данных и асимметричное для ключей
- Web of Trust модель доверия, основанная на сети взаимных подтверждений подлинности ключей
- Открытый стандарт спецификация OpenPGP (RFC 4880)
- Многоплатформенность реализации для различных ОС

Процесс подписи в PGP:

- 1. Вычисление хеша сообщения (SHA-1, SHA-2)
- 2. Шифрование хеша закрытым ключом отправителя (RSA, DSA, ECDSA)
- 3. Добавление подписи к сообщению (открытое или вложенное)

Процесс шифрования в PGP:

- 1. Генерация случайного сеансового ключа для симметричного шифрования
- 2. Шифрование сообщения сеансовым ключом (AES, CAST, 3DES)
- 3. Шифрование сеансового ключа открытым ключом получателя
- 4. Объединение зашифрованного сообщения и зашифрованного сеансового ключа

Система S/MIME (Secure/Multipurpose Internet Mail Extensions)

S/MIME – стандарт для шифрования и подписи MIME-данных (в основном электронной почты), основанный на инфраструктуре открытых ключей (PKI).

Особенности S/MIME:

• Иерархическая модель доверия – основана на сертификатах X.509

- **Интеграция с почтовыми клиентами** поддерживается большинством популярных почтовых программ
- Международный стандарт IETF RFC 5751
- **Использование СА** сертификационные центры удостоверяют подлинность ключей

Используемые алгоритмы:

1. Для хеширования:

- SHA-1 (устаревший)
- o SHA-256, SHA-384, SHA-512

2. Для цифровой подписи:

- o RSA
- DSA
- ECDSA

3. Для шифрования:

- RSA (асимметричное)
- AES, 3DES (симметричное)

Процесс работы S/MIME:

1. Подписание:

- Создание хеша содержимого
- Шифрование хеша закрытым ключом отправителя
- Формирование МІМЕ-пакета с подписью

2. Шифрование:

- Генерация случайного ключа для симметричного шифрования
- Шифрование содержимого симметричным ключом
- Шифрование симметричного ключа открытым ключом получателя
- Формирование МІМЕ-пакета с зашифрованными данными

3. Подтверждение подлинности:

- Проверка сертификата отправителя через центр сертификации
- Расшифровка подписи с помощью открытого ключа отправителя
- Сравнение хешей

Сравнение PGP и S/MIME

Характеристика	PGP	S/MIME
Модель доверия	Web of Trust (децентрализованная)	РКІ (централизованная)
Сертификаты	Самостоятельно подписанные	Х.509 от СА

Характеристика	PGP	S/MIME
Интеграция	Часто требует дополнительных плагинов	Встроена в большинство почтовых клиентов
Стандартизация	OpenPGP (RFC 4880)	RFC 5751
Гибкость	Высокая	Средняя
Удобство для пользователя	Может быть сложным	Относительно простое
Распространенность	Среднее	Высокое в корпоративной среде

5. Инфраструктура открытых ключей. Техники управления ключами. Основные концепции.

Инфраструктура открытых ключей (PKI)

Инфраструктура открытых ключей (Public Key Infrastructure, PKI) – комплекс технических средств, организационных мер и нормативно-методического обеспечения для создания и управления сертификатами открытых ключей.

Компоненты PKI:

1. Удостоверяющий центр (Certificate Authority, CA)

- Выпускает и подписывает сертификаты
- Ведет списки отозванных сертификатов (CRL)
- Является доверенной стороной для всех участников

2. Центр регистрации (Registration Authority, RA)

- Проверяет личность заявителей
- Формирует запросы на сертификаты для СА
- Выполняет первичную валидацию данных

3. Хранилище сертификатов (Certificate Repository)

- Обеспечивает публичный доступ к сертификатам
- Обычно реализуется через LDAP или HTTP

4. Центр валидации (Validation Authority, VA)

- Проверяет действительность сертификатов
- Поддерживает протоколы OCSP и CRL

5. Конечные пользователи (End Entities)

- Запрашивают и используют сертификаты
- Выполняют криптографические операции

Сертификаты открытых ключей Х.509:

Сертификат X.509 – стандартизированная структура данных, которая связывает открытый ключ с идентификационной информацией о его владельце.

Основные поля сертификата:

- Версия версия формата сертификата
- Серийный номер уникальный идентификатор
- Алгоритм подписи идентификатор алгоритма подписи
- Издатель информация об удостоверяющем центре
- Срок действия период валидности (с/по)
- Субъект информация о владельце ключа
- Информация об открытом ключе алгоритм и значение ключа
- Расширения дополнительные поля и ограничения
- Цифровая подпись подпись издателя (СА)

Техники управления ключами

Управление ключами – набор процессов и технологий для создания, хранения, распределения, использования, архивирования и уничтожения криптографических ключей.

1. Генерация ключей

Методы генерации ключей:

- Аппаратные генераторы случайных чисел (HRNG)
- Программные генераторы псевдослучайных чисел (PRNG)
- Комбинированные методы

Требования к процессу:

- Достаточная случайность/энтропия
- Соответствие требованиям алгоритма
- Безопасная среда генерации

2. Распределение ключей

Методы распределения ключей:

- Физическое распределение передача ключей на физическом носителе
- Распределение с помощью центра доверенная третья сторона
- Прямой обмен протоколы согласования ключей (Диффи-Хеллмана)
- Распределение через РКІ использование сертификатов

3. Хранение ключей

Способы хранения:

- Аппаратные модули безопасности (HSM)
- Смарт-карты и USB-токены

- Защищенные хранилища ключей
- Разделение секрета (схема Шамира)

4. Обновление ключей

Процедуры обновления:

- Периодическое обновление регулярная замена ключей
- Обновление по требованию замена при подозрении компрометации
- Изменение длины ключа увеличение при росте вычислительных мощностей

5. Отзыв ключей

Механизмы отзыва:

- Списки отозванных сертификатов (CRL) периодически публикуемые списки
- Онлайн-протокол проверки статуса (ОСЅР) проверка в реальном времени
- Сертификаты с коротким сроком действия самоотзыв по истечении срока

6. Архивирование и восстановление ключей

Методы архивирования:

- Резервное копирование в защищенном хранилище
- Эскроу ключей хранение копий у доверенной третьей стороны
- Шифрование архивов ключей

Основные концепции РКІ

1. Иерархическая модель доверия

Организация РКІ в виде дерева, где:

- Корневой СА верхний уровень доверия
- Промежуточные СА подчиненные центры сертификации
- Конечные сертификаты листья дерева

Преимущества:

- Четкая структура управления
- Масштабируемость
- Локализация компрометации

2. Сетевая модель доверия (Web of Trust)

Децентрализованная модель, используемая в PGP:

- Пользователи сами подтверждают подлинность ключей друг друга
- Формируется сеть взаимных доверительных отношений
- Нет единой точки отказа

3. Кросс-сертификация

Установление доверительных отношений между различными PKI:

- Взаимная сертификация корневых СА
- Создание мостовых СА
- Построение федеративной инфраструктуры

4. Политики сертификатов

Набор правил, определяющих:

- Процедуры идентификации субъектов
- Требования к генерации и хранению ключей
- Процедуры выпуска и отзыва сертификатов
- Сроки действия сертификатов
- Области применения ключей

5. Жизненный цикл сертификата

Этапы:

- Регистрация проверка личности и данных
- Выпуск создание и подписание сертификата
- Распространение публикация в хранилище
- Использование криптографические операции
- Обновление продление срока действия
- Отзыв досрочное прекращение действия
- Архивирование хранение истекших сертификатов

6. Протоколы РКІ

Основные протоколы:

- РКСS#10 формат запроса на сертификат
- PKCS#7/CMS формат подписанных/зашифрованных данных
- PKCS#12 формат для хранения и обмена личными ключами
- X.509 формат сертификатов
- CRL списки отозванных сертификатов
- OCSP онлайн-проверка статуса сертификатов

6. Характеристика и механизмы удаленных атак на распределённые вычислительные системы.

Характеристика удаленных атак на распределённые вычислительные системы

Удаленные атаки на распределенные вычислительные системы – это атаки, осуществляемые злоумышленником из удаленной точки сети на целевую систему без

физического доступа к ней.

Особенности удаленных атак на распределенные системы:

- 1. **Масштабный охват** атаки могут быть направлены на несколько компонентов системы одновременно
- 2. Многовекторность комбинирование различных уязвимостей и точек входа
- 3. Распределенный характер атака может исходить из разных источников
- 4. **Сложность обнаружения** из-за распределенности системы сложнее заметить аномалии
- 5. **Каскадный эффект** компрометация одного компонента может привести к компрометации других

Классификация удаленных атак:

1. По цели атаки:

- Нарушение конфиденциальности данных
- Нарушение целостности данных
- Нарушение доступности (Denial of Service)
- Повышение привилегий

2. По используемым уязвимостям:

- Уязвимости протоколов
- Уязвимости программного обеспечения
- Уязвимости конфигурации
- Уязвимости в механизмах аутентификации

3. По уровню взаимодействия:

- Пассивные (только сбор информации)
- Активные (изменение данных или процессов)

Механизмы удаленных атак

1. Атаки отказа в обслуживании (DoS/DDoS)

Механизмы:

- Флуд-атаки перегрузка системы множеством запросов
 - SYN-флуд эксплуатация трехстороннего рукопожатия ТСР
 - UDP-флуд отправка множества UDP-пакетов
 - ІСМР-флуд перегрузка системы ІСМР-запросами
- Амплификационные атаки использование протоколов с усилением
 - DNS-амплификация
 - NTP-амплификация
 - SSDP-амплификация
- Распределенные атаки (DDoS) атака из множества источников
 - Ботнеты

• Атаки с использованием отражателей

2. Атаки на уровне приложений

Механизмы:

- Инъекции внедрение вредоносного кода
 - SQL-инъекции
 - XML-инъекции
 - Command-инъекции
- Межсайтовый скриптинг (XSS) внедрение JavaScript-кода
 - Отраженный XSS
 - Хранимый XSS
 - DOM-based XSS
- Межсайтовая подделка запросов (CSRF)
- Атаки на API эксплуатация недостатков проектирования API
- Атаки на уровне сессий перехват и подделка сессионных токенов

3. Атаки "человек посередине" (МІТМ)

Механизмы:

- ARP-спуфинг подмена ARP-таблиц
- **DNS-спуфинг** подмена DNS-ответов
- SSL/TLS-атаки
 - SSL-stripping понижение протокола HTTPS до HTTP
 - POODLE, BEAST, CRIME атаки на протокол SSL/TLS
- Перехват Wi-Fi создание поддельных точек доступа

4. Атаки на компоненты инфраструктуры

Механизмы:

- Атаки на протоколы маршрутизации
 - BGP hijacking перехват и перенаправление трафика
 - Атаки на OSPF
- Атаки на DNS
 - Cache poisoning отравление кеша DNS
 - Zone transfers несанкционированное копирование зоны
- Атаки на NTP манипуляции с временной синхронизацией

5. Эксплуатация уязвимостей ПО

Механизмы:

- Использование известных уязвимостей
 - Zero-day уязвимости

- Атаки на непропатченное ПО
- Переполнение буфера выход за границы выделенной памяти
- Использование уязвимостей десериализации
- Атаки на бизнес-логику приложений

Характеристика и механизмы удаленных атак на хосты Internet

Хосты Internet – это компьютеры или устройства, подключенные к сети Internet и предоставляющие или использующие сетевые сервисы.

Характеристики атак на хосты Internet:

- 1. Постоянная подверженность устройство доступно из Интернета 24/7
- 2. Широкая поверхность атаки множество сервисов и портов
- 3. Автоматизация атак использование ботов для сканирования и атак
- 4. Множественность источников атаки приходят из разных стран и сетей

Механизмы атак на хосты Internet:

1. Сканирование портов и сервисов

- Последовательное сканирование
- SYN-сканирование
- UDP-сканирование
- Определение версий служб и ОС (fingerprinting)

2. Атаки на уязвимые сервисы

- Эксплуатация уязвимостей веб-серверов
- Атаки на FTP, SSH, SMTP и другие сервисы
- Эксплуатация уязвимостей CMS (WordPress, Joomla и др.)

3. Атаки на аутентификацию

- Брутфорс паролей
- Словарные атаки
- Credential stuffing использование украденных учетных данных
- Атаки на механизмы восстановления паролей

4. Заражение вредоносным ПО

- Внедрение через уязвимости
- Фишинг и социальная инженерия
- Атаки типа "водопой" (watering hole)
- Загрузка вредоносного ПО через скомпрометированные сайты

Системы обнаружения атак

Системы обнаружения атак (IDS - Intrusion Detection System) и системы предотвращения атак (IPS - Intrusion Prevention System) – это программно-аппаратные средства, предназначенные для обнаружения и предотвращения сетевых атак.

Типы систем обнаружения атак:

1. По месту размещения:

- Сетевые (NIDS) анализируют сетевой трафик
- Хостовые (HIDS) анализируют активность на конкретном компьютере
- Гибридные комбинируют оба подхода

2. По методу анализа:

- Сигнатурные ищут известные шаблоны атак
- Аномальные выявляют отклонения от нормального поведения
- Гибридные комбинация сигнатурного и аномального подходов

Основные функции систем обнаружения атак:

1. Мониторинг:

- Сбор и анализ сетевого трафика
- Мониторинг активности хостов
- Проверка целостности файлов

2. Обнаружение:

- Выявление известных атак по сигнатурам
- Обнаружение аномалий
- Поведенческий анализ

3. Реагирование:

- Оповещение администраторов
- Блокирование атак (для IPS)
- Сбор доказательств
- Автоматическое изменение конфигурации защиты

Примеры систем обнаружения атак:

1. Open Source решения:

- Snort сигнатурная NIDS/NIPS
- Suricata высокопроизводительная NIDS/NIPS
- OSSEC HIDS с функциями мониторинга целостности
- Wazuh расширенная версия OSSEC

2. Коммерческие решения:

- Cisco Secure IDS/IPS
- o Palo Alto Networks NGFW
- McAfee Network Security Platform
- **o Trend Micro Deep Security**

3. Облачные и управляемые решения:

- AWS GuardDuty
- Azure Security Center

Google Cloud Armor

7. Идентификация и аутентификация, управление доступом.

Идентификация и аутентификация

Идентификация – процесс предъявления идентификатора (имени, номера, токена), который однозначно определяет пользователя или систему.

Аутентификация – процесс проверки подлинности предъявленного идентификатора, то есть подтверждение того, что субъект действительно является тем, за кого себя выдает.

Типы аутентификации:

1. По знанию (what you know)

- Пароли
- PIN-коды
- Кодовые фразы
- Ответы на секретные вопросы

2. По владению (what you have)

- Смарт-карты
- USB-токены
- Физические ключи
- Мобильные устройства (для получения ОТР)

3. По биометрии (what you are)

- Отпечатки пальцев
- Распознавание лица
- Сканирование сетчатки глаза
- Голосовая аутентификация
- Поведенческая биометрия (динамика нажатия клавиш, подпись)

4. По местоположению (where you are)

- GPS-координаты
- Принадлежность к сети
- ІР-адрес

Механизмы аутентификации:

1. Парольная аутентификация

- Хранение паролей в хешированном виде
- Солирование паролей
- Политики сложности паролей
- Защита от подбора (throttling, CAPTCHA)

2. Многофакторная аутентификация (МFA)

- Комбинация двух или более факторов
- Повышение безопасности по сравнению с однофакторной
- Примеры: пароль + SMS, пароль + приложение-аутентификатор

3. Одноразовые пароли (ОТР)

- Временные (ТОТР) генерируются на основе времени
- Событийные (НОТР) генерируются на основе счетчика
- Механизм доставки: SMS, email, приложения

4. Сертификаты Х.509

- Аутентификация на основе РКІ
- Взаимная аутентификация клиента и сервера
- Использование в TLS/SSL

5. Протоколы аутентификации

- Kerberos аутентификация на основе билетов
- OAuth 2.0 делегирование доступа
- SAML обмен аутентификационными данными между доменами
- OpenID Connect надстройка над OAuth 2.0 для аутентификации

Управление доступом

Управление доступом – процесс регулирования и контроля доступа субъектов (пользователей, процессов) к объектам (файлам, устройствам, сервисам) в соответствии с политикой безопасности.

Модели управления доступом:

1. Дискреционное управление доступом (DAC)

- Владелец объекта определяет права доступа
- Доступ определяется на основе идентификатора пользователя
- Примеры: файловые права в UNIX, ACL в Windows

2. Мандатное управление доступом (МАС)

- Доступ определяется на основе меток безопасности
- Централизованный контроль со стороны системы
- Примеры: SELinux, AppArmor

3. Ролевое управление доступом (RBAC)

- Доступ определяется на основе ролей пользователей
- Роли связаны с набором разрешений
- Пользователи назначаются на роли
- Упрощает администрирование в крупных системах

4. Атрибутное управление доступом (АВАС)

- Доступ определяется на основе атрибутов
- Учитываются атрибуты субъекта, объекта, действия и среды

- Более гибкий подход по сравнению с RBAC
- Примеры: XACML

Механизмы управления доступом:

1. Списки контроля доступа (ACL)

- Для каждого объекта хранится список субъектов и их прав
- Гибкий, но сложный в управлении при большом количестве объектов

2. Матрицы доступа

- Таблица, строки которой соответствуют субъектам, столбцы объектам
- На пересечении разрешенные операции

3. Возможности (Capabilities)

- Для каждого субъекта хранится список объектов и прав доступа к ним
- Эффективнее при проверке прав для конкретного субъекта

4. Многоуровневая защита

- Комбинирование различных механизмов
- Реализация принципа "глубокой защиты"

Принципы управления доступом:

1. Принцип наименьших привилегий

• Субъект должен иметь только необходимый минимум прав

2. Разделение обязанностей

• Критические операции требуют участия нескольких субъектов

3. Обязательная аутентификация

• Доступ предоставляется только после аутентификации

4. Подотчетность действий

• Каждое действие субъекта должно быть зарегистрировано

Протоколирование и аудит, шифрование, контроль целостности

Протоколирование и аудит

Протоколирование (логирование) – процесс записи информации о событиях, происходящих в системе.

Аудит – процесс анализа записей о событиях для обнаружения нарушений безопасности.

Типы событий для протоколирования:

1. События безопасности

- Успешные и неуспешные попытки аутентификации
- Изменения в политиках безопасности
- Изменения привилегий пользователей

2. Системные события

- Загрузка и остановка системы
- Установка и удаление ПО
- Системные ошибки

3. События приложений

- Действия пользователей в приложениях
- Ошибки приложений
- Транзакции и изменения данных

Механизмы протоколирования:

- Локальное протоколирование запись в локальные файлы
- Централизованное протоколирование отправка логов на выделенный сервер
- **Защищенное протоколирование** обеспечение целостности и конфиденциальности логов

Инструменты аудита:

- SIEM-системы (Security Information and Event Management)
- Анализаторы логов
- Системы обнаружения вторжений
- Средства аналитики безопасности

Шифрование

Шифрование – процесс преобразования данных в форму, недоступную для чтения без знания ключа.

Типы шифрования:

1. Симметричное шифрование

- Один ключ для шифрования и дешифрования
- Высокая скорость, но проблема распространения ключей
- Алгоритмы: AES, 3DES, ChaCha20

2. Асимметричное шифрование

- Пара ключей: открытый и закрытый
- Медленнее симметричного, но решает проблему распространения ключей
- Алгоритмы: RSA, ECC, DSA

3. Гибридное шифрование

- Комбинация симметричного и асимметричного шифрования
- Используется в большинстве современных систем (TLS, PGP)

Применение шифрования:

- Шифрование данных в покое защита хранимых данных
- Шифрование данных в передаче защита передаваемых данных
- Шифрование на уровне файловой системы LUKS, BitLocker, FileVault
- **Шифрование на уровне приложений** PGP, S/MIME
- Шифрование на транспортном уровне TLS/SSL

Контроль целостности

Контроль целостности – проверка неизменности данных, обнаружение несанкционированных модификаций.

Механизмы контроля целостности:

1. Хеш-функции

- Создание "отпечатка" данных фиксированной длины
- Определение изменений: любое изменение данных изменяет хеш
- Алгоритмы: SHA-256, SHA-3, BLAKE2

2. Коды аутентификации сообщений (МАС)

- Хеш-функция с ключом
- Обеспечивает аутентификацию источника и целостность
- Алгоритмы: НМАС, СМАС

3. Цифровые подписи

- Использование асимметричной криптографии
- Обеспечивает целостность, аутентификацию и неотказуемость
- Алгоритмы: RSA-PSS, ECDSA, EdDSA

4. Системы обнаружения изменений файлов

- Мониторинг изменений файлов в системе
- Периодическая проверка хешей критичных файлов
- Примеры: AIDE, Tripwire, OSSEC

Применение контроля целостности:

- Проверка целостности ПО верификация установленных программ
- Защита конфигурационных файлов обнаружение неавторизованных изменений
- Обеспечение целостности передаваемых данных обнаружение изменений при передаче
- Верификация цифровых артефактов проверка подлинности скачанных файлов
- Контроль целостности в блокчейне обеспечение неизменности цепочки блоков