Высшая математика

Лисид Лаконский

October 2022

Содержание

1	Выс	шая математика - 12.09.2022
	1.1	Непрерывность функции
		1.1.1 Свойства непрерывных функций
		1.1.2 Пример
	1.2	Гочки разрыва функции
		1.2.1 Типы точек разрыва
		1.2.2 Первый пример
		1.2.3 Второй пример
		1.2.4 Третий пример

1 Высшая математика - 12.09.2022

1.1 Непрерывность функции

Опр. 1. Функция y = f(x) называется непрерывной в точке x_0 , если f(x) определена в некоторой окрестности точки x_0 и существует предел этой функции при x, стремящемся к x_0 , равный $f(x_0)$.

1.1.1 Свойства непрерывных функций

Пусть f(x) и g(x) - непрерывные в точке x_0 функции, тогда:

- 1. Функция, полученная в результате сложения и вычитания двух непрерывных в данной точке функций также будет непрерывна в рассматриваемой точке x_0
- 2. Функция, которая стала результатом произведения двух непрерывных функций, тоже будет непрерывна в точке x_0
- 3. Функция $\frac{f(x)}{g(x)}$ будет непрерывна в точке x_0 , если $g(x) \neq 0$
- 4. Для того, чтобы g=f(x) была непрерывна в точке x_0 , необходимо и достаточно, чтобы $\lim_{\Delta x\to 0}\Delta y=0, \Delta y=f(x_0-\Delta x)-f(x_0)$
- 5. Основные элементарные функции: $a^x, x^a, \log_a x, \sin x, \cos x, \tan x, \cot x, \arctan x, \arctan x, \dots$ непрерывны на всей области определения
- 6. Пусть y = f(x) непрерывна на [a;b], и на концах этого отрезка принимает значения разных знаков, тогда между точками a и b находится хотя бы одна т. x = c, при которой f(c) = 0, a < c < b

1.1.2 Пример

$$x^3+x^2+x-1=0, x_0=c, (a,b)=(rac{1}{2};1)$$
 $f(rac{1}{2})=-rac{1}{8}, f(1)=2,$ следовательно $\exists x_0=c, f(c)=0, rac{1}{2}< c<1$

1.2 Точки разрыва функции

Опр. 2. Точка $x_0 \in R$ называется точкой разрыва функции f(x), определенной в некоторой окрестности точки x_0 , кроме, может быть, самого x_0 , если равенство $\lim_{x\to x_0} f(x) \neq f(x_0)$

То есть, либо $x_0 \notin D_f$ и значение $f(x_0)$ не определено, либо $\lim_{x\to x_0} f(x)$ не существует, либо обе части равенства определены, но не равны между собой.

Типы точек разрыва

1. x_0 - точка разрыва 1-го рода, если существуют конечные односторонние

пределы $f(x_0-0)=\lim_{x\to x_0-0}f(x), f(x_0+0)=\lim_{x\to x_0+0}f(x)$ Если $\lim_{x\to x_0+0}f(x)=\lim_{x\to x_0-0}$, то x_0 - устранимая точка разрыва первого рода

2. x_0 - точка разрыва второго рода, если выполнено хотя бы одно из условий: $\lim_{x\to x_0}f(x)=\pm\inf, \lim_{x\to x_0+0}=\pm\inf, \lim_{x\to x_0-0}f(x)=\pm\inf$

1.2.2 Первый пример

 $f(x) = \frac{x}{\sin x}$, так как результат частного двух простых функций, то она непрерывна при $\sin x \neq 0$, то есть точками разрыва являются нули функции $\sin x$: $x = \pi k, k \in Z$

При x=0: $\lim_{x\to 0} \frac{x}{\sin x}=1$, f(0) не существует, следовательно функция сама по себе в этой точке не непрерывна.

Рассмотрим два конечных односторонних предела, $\lim_{x\to 0+0} \frac{x}{\sin x} = 1$, $\lim_{x\to 0-0} \frac{x}{\sin x} = 1$ 1

Односторонние разрывы равны между собой, следовательно, x=0 устранимая точка разрыва первого рода.

При $x=\pi$: $\lim_{x\to\pi}\frac{x}{\sin x}=\frac{\pi}{0}=\inf$, $f(\pi)$ не существует

1.2.3 Второй пример

$$\begin{cases} x^2 + 1, x \le 0 \\ x + 1, 0 < x \le 1 \\ 2x - 1, x > 1 \end{cases}$$
 (1)

Рассмотрим первый случай, x = 0: $\lim_{x \to 0-0} (x^2 + 1) = 1$, $\lim_{x \to 0+0} (x + 1) = 1$ 1, y(0) = 1, таким образом точка x = 0 - точка непрерывности нашей функции, разрыва нет.

Рассмотрим второй случай, x=1: $\lim_{x\to 1-0}(2x-1)=1, \lim_{x\to 1+0}(x+1)=2,$ таким образом точка x=1 - неустранимая точка разрыва первого рода.

1.2.4 Третий пример

Исследовать точки x = 3, x = 1 функции $y = 4^{\frac{1}{x-1}}$

- 1) $x=3, \lim_{x\to 3} 4^{\frac{1}{x-1}}=2=y(3),$ следовательно данная точка точка непрерывности данной функции
- **2)** $x=1, \lim_{x\to 1} 4^{\frac{1}{x-1}}=\inf$, следовательно данная точка точка разрыва второго рода.

$$\lim_{x \to 1-0} 4^{\frac{1}{x-1}} = 4^{-\inf} = \frac{1}{4^{\inf}} = 0, \lim_{x \to 1+0} 4^{\frac{1}{x-1}} = +\inf$$