MARKING GUIDE UMTA 425/1 2022

NO	SOLUTION	MKS	COMMENT
1	$y = \tan^{-1} \left(\frac{ax - b}{bx + a} \right)$		
	$\tan y = \frac{ax - b}{bx + a}$		
	$sec^{2}y\frac{dy}{dx} = \frac{(bx+a)\cdot a - (ax-b)\cdot b}{(bx+a)^{2}}$		
	$sec^2y\frac{dy}{dx} = \frac{a^2 + b^2}{(bx+a)^2}$		
	But $sec^2y = 1 + tan^2y$		
	$=1+\left(\frac{ax-b}{bx+a}\right)^2$		
	$=\frac{(bx+a)^2 + (ax-b)^2}{(bx+a)^2}$		
	$=\frac{b^2x^2+2abx+a^2+a^2x^2-2abx+b^2}{(bx+a)^2}$		
	$=\frac{b^2x^2+b^2+a^2+a^2x^2}{(bx+a)^2}$		
	$=\frac{b^2(1+x^2)+a^2(1+x^2)}{(bx+a)^2}$		
	$=\frac{(a^2+b^2)(1+x^2)}{(bx+a)^2}$		
	$\Rightarrow \frac{dy}{dx} = \frac{a^2 + b^2}{(bx + a)^2} \cdot \frac{(bx + a)^2}{(a^2 + b^2)(1 + x^2)} = \frac{1}{1 + x^2}$		
		05	
2	$\int_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx$		
	Let $u = \sqrt{2x+1}$		
	$u^2 = 2x + 1$		
	2udu = 2dx		
	dx = udu		
	$\Rightarrow x = \frac{u^2 - 1}{2}$		
	$x^2 = \frac{u^4 - 2u^2 + 1}{4}$		

			1
	$\Rightarrow \int_{\sqrt{3}}^{3} \left(\frac{u^4 - 2u^2 + 1}{4} + \frac{u^2 - 1}{2} \right) du$		
	$= \frac{1}{4} \int_{\sqrt{3}}^{3} (u^4 - 1) du$		
	$= \frac{1}{4} \left[\frac{u^5}{5} - u \right]_{\sqrt{3}}^3$		
	$= \frac{1}{4} \left[\left(\frac{3^5}{5} - 3 \right) - \left(\frac{\left(\sqrt{3}\right)^5}{5} - \sqrt{3} \right) \right]$		
	= 11.0535894		
	= 11.0536 (4 dps)		
		05	
3	L. H. S = $\frac{\sin x + \sin 3x + \sin 5x}{\cos x + \cos 5x}$		
	$= \frac{\sin 5x + \sin x + \sin 3x}{\cos 5x + \cos x + \cos 3x}$		
	$= \frac{2\sin 3x \cos 2x + \sin 3x}{2\cos 3x \cos 2x + \cos 3x}$		
	$=\frac{\sin 3x(2\cos 2x+1)}{\cos 3x(2\cos 2x+1)}$		
	$= \tan 3x$		
	=R. H. S		
		05	
4	Let θ be the required angle For $x - 3y + 5 = 0$		
	$y = \frac{1}{3}x + \frac{5}{3}, m_1 = \frac{1}{3}$		
	For x + 2y - 1 = 0		
	$y = -\frac{1}{2}x + \frac{1}{2}, m_2 = -\frac{1}{2}$		
	From $\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$		
	$=\frac{\frac{\frac{1}{3}+\frac{1}{2}}{\frac{1}{3}\times-\frac{1}{2}}}{1+\frac{1}{3}\times-\frac{1}{2}}$		
	$=\frac{\frac{5}{6}}{\frac{5}{6}}=1$		
	$\therefore \theta = \tan^{-1}(1) = 45^0$		
		05	
		00	1

	1		
5	$y = x - \frac{1}{x}$		
	Vertical asymptotes , y —undefined		
	x = 0		
	Slanting asymptote		
	y = x		
	Intercepts		
	x; y = 0		
	$0=x^2-1$		
	$x = \pm 1$; (-1,0) and (1,0)		
	$y = x$ $y = x - \frac{1}{x}$ $(-1,0) x = 2 x$		
	$A = \int_1^2 \left(x - \frac{1}{x} \right) dx$		
	$A = \int_{1}^{2} \left(x - \frac{1}{x} \right) dx$ $A = \left[\frac{x^{2}}{2} - \ln x \right]_{1}^{2}$		
	$A = (2 - \ln 2) - \left(\frac{1}{2} - \ln 1\right)$		
	A = 0.806852819		
	A = 0.8069 sq. units		
		05	
6	$\sqrt{(3x - x)} - \sqrt{(7 + x)} = \sqrt{(16 + 2x)}$		
	$\sqrt{2x} - \sqrt{(7+x)} = \sqrt{(16+2x)}$		
	Squaring both sides		
	$2x - 2\sqrt{14x + 4x^2} + 7 + x = 16 + 2x$		
	$3x + 7 - 2\sqrt{14x + 4x^2} = 16 + 2x$		

	$-2\sqrt{14x + 4x^2} = 9 - x$		
	Squaring both sides again		
	$4(14x + 4x^2) = 81 - 18x + x^2$		
	$56x + 16x^2 = 81 - 18x + x^2$		
	$15x^2 + 74x - 81 = 0$		
	$(\ \)(\ \)=0$		
		05	
7	No. of arrangement $=\frac{7!}{3!}=840$ arrangements		
	MXMM AIU		
	No. of arrangement = $\frac{4!}{3!} \times 4! = 96$ arrangements		
		05	
8	From distance = $\frac{ ax_0 + by_0 + cz_0 + d }{\sqrt{a^2 + b^2 + c^2}}$		
	$=\frac{ 4(6)+3(-1)+5(2)-14 }{\sqrt{6^2+(-1)^2+2^2}}$		
	$=\frac{17}{\sqrt{41}} \text{ units}$		
		05	
9	(a) N		
	(b) Let θ be the angle required		
	$\boldsymbol{n} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \boldsymbol{d} = \begin{pmatrix} 3 \\ 4 \\ 12 \end{pmatrix}$		
	$d \cdot n = d n \sin\theta$		
	$ \begin{pmatrix} 3 \\ 4 \\ 12 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \sqrt{9 + 16 + 144} \sqrt{1 + 4 + 1} \sin \theta $		
	$3 - 8 + 12 = \sqrt{169}\sqrt{6}\sin\theta$		
	$7 = 13\sqrt{6}\sin\theta$		
	$\theta = \sin^{-1}\left(\frac{7}{13\sqrt{6}}\right) = 12.7^{\circ}$		
		05	
10	(a)	UJ	

From similarities of figures

$$\frac{H}{h} = \frac{R}{r}$$

$$\frac{10}{h} = \frac{5}{r}$$

$$r = \frac{h}{2}$$

$$V = \frac{1}{3}\pi r^2 h$$

$$V = \frac{1}{3}\pi \left(\frac{h}{2}\right)^2 h = \frac{\pi h^3}{12}$$

$$\frac{dV}{dh} = \frac{\pi h^2}{4}$$

$$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$$

$$1 \cdot 5 = \frac{\pi h^2}{4} \cdot \frac{dh}{dt}$$

$$\frac{dh}{dt} = \frac{6}{\pi h^2}$$

When h = 4m; $\frac{dh}{dt} = \frac{6}{\pi \times 16} = \frac{3}{8\pi} mmin^{-1}$

(b) Intercepts

$$x; y = 0$$

$$0 = x(x-1)(x-2)$$

$$x = 0, x = 1, x = 2$$

$$\therefore$$
 (0,0), (1,0) and (2,0)

As
$$x \to +\infty$$
, $y \to +\infty$

As
$$x \to -\infty$$
, $y \to -\infty$

	$y = x^3 - 3x^2 + 2x$ $(0,0) \qquad (1, A_{II}) \qquad (2,0) \qquad x$		
	$A = A_I + A_{II}$		
	$A_1 = \int_0^1 (x^3 - 3x^2 + 2x) dx$		
	$A_I = \left[\frac{x^4}{4} - x^3 + x^2\right]_0^1$		
	$A_I = \left(\frac{1}{4} - 1 + 1\right) - 0 = \frac{1}{4}$ sq. units		
	$A_{II} = \int_0^1 (x^3 - 3x^2 + 2x) dx$		
	$A_{II} = \left[\frac{x^4}{4} - x^3 + x^2\right]_1^2$		
	$A_{II} = (4 - 8 + 4) - \left(\frac{1}{4} - 1 + 1\right) = -\frac{1}{4}$ sq. units		
	$A = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$ sq. units		
		12	
11	$f(x) = \frac{x^4 + x^3 - 6x^2 - 13x - 6}{x^3 - 7x - 6} = \frac{x^4 + x^3 - 6x^2 - 13x - 6}{(x+1)(x-3)(x+2)}$		
	Let $\frac{x^4 + x^3 - 6x^2 - 13x - 6}{(x+1)(x-3)(x+2)} \equiv Ax + B + \frac{C}{x+1} + \frac{D}{x-3} + \frac{E}{x+2}$		
	$x^4 + x^3 - 6x^2 - 13x - 6 \equiv (Ax + B)(x - 3)(x + 2)(x + 1) + C(x - 3)(x + 2) + D(x + 1)(x + 2) + E(x + 1)(x - 3)$		
	Put $x = 3$; $81 + 27 - 54 - 39 - 6 = 20D$		
	$9 = 20D$; :: $D = \frac{9}{20}$		
	Put $x = -2$; $16 - 8 - 24 + 26 - 6 = 5C$		
	$4=5E; :: E=\frac{4}{5}$		
	Put $x = -1$; $1 - 1 - 6 + 13 - 6 = -4C$		
	$1 = -4C; \therefore C = -\frac{1}{4}$		
	Compare coefficients of;		
	x^4 ; 1 = A		

dx	
5 =	
12	
	dx 5 = 12

	At $t = 0$, $\theta = 100^{\circ}$ C		
	$100 = 22 + Ae^0; A = 78$		
	$\theta = 22 + 78e^{-kt}$		
	At $t = 1 \min, \theta = 92.2$		
	$92.2 = 22 + 78e^{-k}$		
	$70.2 = 78e^{-k}$, $k = \ln(10/9) = 0.10536$		
	$\theta = 22 + 78e^{-0.10536t}$		
	At $t = 5 min$, $\theta = ?$		
	$\theta = 22 + 78e^{-0.10536 \times 5} = 63.45^{\circ}$ C		
		4.0	
13	(a) $2^{2x+8} - 32(2^x) + 1$	12	
13	$2^{2x} \cdot 2^8 - 32(2^x) + 1$		
	• •		
	$(2^x)^2 \cdot 256 - 32(2^x) + 1 = 0$		
	Let $2^x = m$		
	$256m^2 - 32m + 1 = 0$		
	$(16m - 1)^2 = 0$		
	$m = \frac{1}{16} = 2^{-4}$		
	But $m = 2^x$, $2^x = 2^{-4}$; $\therefore x = -4$		
	(b) $\log_a bc = x, \log_b ac = y, \log_c ab = z$		
	$bc = a^x$ (i)		
	$ac = b^y$ (ii)		
	$ab = c^z$ (iii)		
	From eqn (i), $c = \frac{a^x}{b}$		
	From (ii); $a \cdot \frac{a^x}{b} = b^y$		
	$a^{1+x} = b^{1+y}; a = b^{\left(\frac{1+y}{1+x}\right)}$		
	From (iii), $b^{\left(\frac{1+y}{1+x}\right)} \cdot b = \left(\frac{a^x}{b}\right)^z$		
	$b^{\frac{1+y}{1+x}+1} = \frac{a^{xz}}{b^z}$		

	M.	1	T
	$b^{\left(\frac{1+y+1+x}{1+x}\right)+z} = \left(b^{\left(\frac{1+y}{1+x}\right)}\right)^{xz}$		
	1 + y + 1 + x + z + xz = xz + xyz		
	2 + x + y + z = xyz		
	$\therefore x + y + z = xyz = 2$		
	(a)	12	
14	(a) $ (1-3x)^{1/3} = 1 + \frac{1}{3}(-3x) + \frac{\frac{1}{3}x - \frac{2}{3}x(-3x)^{2}}{2!} + \frac{\frac{1}{3}x - \frac{2}{3}x - \frac{5}{3}x(-3x)^{3}}{3!} + \frac{\frac{1}{3}x - \frac{2}{3}x - \frac{5}{3}x - \frac{8}{3}x(-3x)^{4}}{4!} + \dots $ $ (1-3x)^{\frac{1}{3}} = 1 - x - x^{2} - \frac{5}{3}x^{3} - \frac{10}{3}x^{4} + \dots $		
	Putting $x = \frac{1}{8}$, $\left(1 - \frac{3}{8}\right)^{1/3} \approx 1 - \frac{1}{8} - \left(\frac{1}{8}\right)^2 - \frac{5}{3}\left(\frac{1}{8}\right)^3 - \frac{10}{3}\left(\frac{1}{8}\right)^4$		
	$\left(\frac{5}{8}\right)^{1/3} \approx \frac{5255}{6144}$ $\sqrt[3]{5} \approx \frac{2 \times 5255}{6144} = 1.710611979 \approx 1.71 \text{ (2dps)}$		
	(b) $\frac{x-2}{x-1} \le \frac{x+2}{x+1}$		
	$\frac{x-2}{x-1} - \frac{x+2}{x+1} \le 0$		
	$\frac{(x-2)(x+1)-(x+2)(x-1)}{(x-1)(x+1)} \le 0$		
	$\frac{-2x}{(x-1)(x+1)} \le 0$		
	$\frac{x}{(x-1)(x+1)} \ge 0$		
	Critical values,		
	x = 0		
	Undefined values,		
	x = 1, x = -1		

	x	<i>x</i> < −1	-1 < x < 0	0 < x < 1	<i>x</i> > 1		
	х	_	_	+	+		
	(x-1)(x+1)	+	_	_	+		
	$\frac{x}{(x-1)(x+1)}$	_	+	_	+		
	(x-1)(x+1)						
	$\therefore -1 \le x \le 0,$	$x \ge 1$					
						12	
15	(a) $10sin^2x - 1$	+ 10 sin <i>:</i>	$x \sin x - co$	$s^2x=2$			
	$20sin^2x$ -	$-\cos^2 x$	= 2				
	10(1-cc	$(s^2x) - a$	$\cos^2 x = 2$				
	10 - 11cc	$os^2x = 2$	2				
	$cos^2x = \frac{1}{1}$	8					
	•						
	$\cos x = \pm$	$\frac{2\sqrt{2}}{\sqrt{11}}$					
	For cos x	$= \frac{2\sqrt{2}}{\sqrt{11}}$					
	x :	$= \cos^{-1}$	$\left(\frac{2\sqrt{2}}{\sqrt{11}}\right)$				
	=	= 31.5°,	328.5°				
	For cos x	$=-\frac{2\sqrt{2}}{\sqrt{11}}$					
	$x = \cos^2 x$	$-1\left(\frac{2\sqrt{2}}{\sqrt{11}}\right)$					
	x = 148	.5°, 211.	5^{0}				
	$\therefore x = \{31$	5°, 148.	.5°, 211.5°, 3	328.5^{0}			
	(b) Let cos ⁻¹	$\left(\frac{4}{5}\right) = A_1$	$\tan^{-1}\left(\frac{3}{5}\right) =$	= <i>B</i>			
	$\cos A = \frac{4}{5}$, tan <i>B</i> =	$=\frac{3}{5}$				
	3 5	A					

		ı	
	$\tan A = \frac{3}{4}$		
	$\tan\left(\tan^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{3}{5}\right)\right) = \tan(A+B)$		
	$=\frac{\tan A + \tan B}{1 - \tan A \tan B}$		
	$=\frac{\frac{3}{4} + \frac{3}{5}}{1 - \frac{3}{4} \times \frac{3}{5}}$		
	$=\frac{27}{11}$		
	$\therefore \cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{27}{11}\right)$		
		12	
16	(a) If $1 + i$ is a root, the $1 - i$ its conjugate is also a		
	root.		
	Sum of roots = $1 + i + 1 - i = 2$		
	Product of roots = $(1 + i)(1 - i) = 1^2 + 1^2 = 2$		
	$\Rightarrow z^2 - 2z + 2 = 0$		
	$z^2 - 4z + 13$		
	$z^{2} - 2z + 2 \underbrace{ z^{4} - 6z^{3} + 23z^{2} - 34z + 26}_{z^{4} - 2z^{3} + 2z^{2}}$		
	$z^4 - 2z^3 + 2z^2$		
	$-4z^3 + 21z^2 + 2z^2 - 43z + 26$		
	$-4z^3 + 8z^2 - 8z$		
	$$ $\Rightarrow z^2 - 4z + 13 = 0$		
	$z = \frac{4 \pm \sqrt{(-4)^2 - 4 \times 1 \times 13}}{2 \times 1}$		
	$z = \frac{4 \pm \sqrt{-36}}{2} = \frac{4 \pm 6i}{2} = 2 \pm 3i$		
	∴ The other roots are $1 - i$, $2 + 3i$ and $2 - 3i$		
	(b) Let $z = x + iy$		
	x + iy + 1 - 4i > x + iy - 2 - i		
	(x+1) + i(y-4) > (x-2) + i(y-1)		

