1.

(a)

Since $i(\lambda a^{\dagger} - \lambda^* a)$ is Hermitian, $S_{\lambda} \equiv \exp(\lambda a^{\dagger} - \lambda^* a)$ is unitary and $|\lambda\rangle \equiv S_{\lambda}|0\rangle$ is normalized. Since $[a, a^{\dagger}] = 1$ commutes with both a and a^{\dagger}

$$\begin{split} |\lambda\rangle &= \exp\left(\lambda a^{\dagger} - \lambda^* a\right) |0\rangle \\ &= \exp\left(\lambda a^{\dagger}\right) \exp\left(-\lambda^* a\right) \exp\left(-\frac{1}{2} \left[\lambda a^{\dagger}, -\lambda^* a\right]\right) |0\rangle \\ &= \exp\left(\lambda a^{\dagger}\right) \exp\left(-\lambda^* a\right) \exp\left(-\frac{|\lambda|^2}{2}\right) |0\rangle \\ &= \exp\left(-\frac{|\lambda|^2}{2}\right) \exp\left(\lambda a^{\dagger}\right) |0\rangle \end{split}$$

$$\begin{aligned} a|\lambda\rangle &= \exp\left(-\frac{|\lambda|^2}{2}\right) a \exp\left(\lambda a^{\dagger}\right) |0\rangle \\ &= \exp\left(-\frac{|\lambda|^2}{2}\right) \left(\exp\left(\lambda a^{\dagger}\right) a + \left[a, \exp\left(\lambda a^{\dagger}\right)\right]\right) |0\rangle \\ &= \exp\left(-\frac{|\lambda|^2}{2}\right) \left[a, a^{\dagger}\right] \lambda \exp\left(\lambda a^{\dagger}\right) |0\rangle \\ &= \lambda |\lambda\rangle \end{aligned}$$

(b)

$$x = z_0(a + a^{\dagger}), p = i\frac{\hbar}{2z_0}(a^{\dagger} - a)$$

$$\langle x \rangle = z_0\langle a + a^{\dagger} \rangle$$

$$= z_0(\lambda + \lambda^*)$$

$$\langle x^2 \rangle = z_0^2 \langle (a + a^{\dagger})^2 \rangle$$

$$= z_0^2 \langle a^2 + a^{\dagger} + aa^{\dagger} + a^{\dagger} a \rangle$$

$$= z_0^2 \langle a^2 + a^{\dagger} + 2a^{\dagger} a + 1 \rangle$$

$$= z_0^2 \langle (\lambda + \lambda^*)^2 + 1 \rangle$$

$$\langle \Delta x^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2$$

$$= z_0^2 \langle a^2 + a^2 +$$

$$\langle p \rangle = i \frac{\hbar}{2z_0} \langle a^{\dagger} - a \rangle$$

$$= i \frac{\hbar}{2z_0} (\lambda^* - \lambda)$$

$$\langle p^2 \rangle = -\frac{\hbar^2}{4z_0^2} \langle (a^{\dagger} - a)^2 \rangle$$

$$= -\frac{\hbar^2}{4z_0^2} \langle a^2 + a^{\dagger^2} - aa^{\dagger} - a^{\dagger}a \rangle$$

$$= -\frac{\hbar^2}{4z_0^2} \langle a^2 + a^{\dagger^2} - 2a^{\dagger}a - 1 \rangle$$

$$= -\frac{\hbar^2}{4z_0^2} \langle (\lambda^* - \lambda)^2 - 1 \rangle$$

$$\langle \Delta p^2 \rangle = \langle p^2 \rangle - \langle p \rangle^2$$

$$= \frac{\hbar^2}{4z_0^2}$$

$$\langle \Delta p^2 \rangle \langle \Delta x^2 \rangle = \frac{\hbar^2}{4}$$

$$= \frac{1}{4} |\langle [x, p] \rangle|^2$$

(c)

$$|\lambda\rangle = \exp\left(-\frac{|\lambda|^2}{2}\right) \exp\left(\lambda a^{\dagger}\right)|0\rangle$$
$$= \exp\left(-\frac{|\lambda|^2}{2}\right) \sum_{n=0}^{\infty} \frac{\left(\lambda a^{\dagger}\right)^n}{n!}|0\rangle$$
$$= \exp\left(-\frac{|\lambda|^2}{2}\right) \sum_{n=0}^{\infty} \frac{\lambda^n}{\sqrt{n!}}|n\rangle$$

Therefore,

$$P(n) = \exp^{-|\lambda|^2} \frac{|\lambda|^{2n}}{n!}$$

$$[n]_{av} = \sum_{n=0}^{\infty} nP(n)$$

$$= \exp^{-|\lambda|^2} \sum_{n=0}^{\infty} \frac{|\lambda|^{2n}}{(n-1)!}$$

$$= |\lambda|^2 \exp^{-|\lambda|^2} \sum_{n=0}^{\infty} \frac{|\lambda|^{2n}}{n!}$$

$$= |\lambda|^2$$

$$[E_n]_{av} = \hbar\omega \left(|\lambda|^2 + \frac{1}{2}\right)$$

(d)

$$\langle n^2 \rangle = \sum_{n=0}^{\infty} n^2 P(n)$$

$$= \exp^{-|\lambda|^2} \sum_{n=0}^{\infty} n \frac{|\lambda|^{2n}}{(n-1)!}$$

$$= \exp^{-|\lambda|^2} \left(\sum_{n=0}^{\infty} \frac{|\lambda|^{2n}}{(n-2)!} + \sum_{n=0}^{\infty} \frac{|\lambda|^{2n}}{(n-1)!} \right)$$

$$= \exp^{-|\lambda|^2} \left(|\lambda|^4 \sum_{n=0}^{\infty} \frac{|\lambda|^{2n}}{n!} + |\lambda|^2 \sum_{n=0}^{\infty} \frac{|\lambda|^{2n}}{n!} \right)$$

$$= |\lambda|^4 + |\lambda|^2$$

$$\Delta n = |\lambda|$$

$$\Delta E = \hbar \omega |\lambda|$$

$$\Delta E = \hbar \omega |\lambda|$$

$$\frac{\Delta E}{E_n|_{av}} = \frac{1}{|\lambda|}$$

so the relative uncertainty goes to 0 at large n limit.

2.

In a homogeneous field B_0 the x magnetization is

$$M_x = M_0 \cos \omega_0 t$$

where $\omega_0 = \frac{2\mu_e B_0}{\hbar}$ is the Larmor frequency.

In a non-homogenous field, assuming the initial local magnetization is position independent

$$M_x = M_0 \int \cos\left(\frac{2\mu_e Bt}{\hbar}\right) p(B) dB$$

$$p(B) = \frac{1}{2a}$$

$$\begin{split} M_x &= \frac{M_0}{2a} \int_{B_0 - a}^{B_0 + a} \cos\left(\frac{2\mu_e Bt}{\hbar}\right) \mathrm{d}B \\ &= \frac{\hbar M_0}{4\mu_e at} \sin\left(\frac{2\mu_e Bt}{\hbar}\right) \Big|_{B_0 - a}^{B_0 + a} \\ &= \frac{\hbar M_0}{4\mu_e at} \left(\sin\left(\frac{2\mu_e t (B_0 + a)}{\hbar}\right) - \sin\left(\frac{2\mu_e t (B_0 - a)}{\hbar}\right)\right) \\ &= \frac{\hbar M_0}{2\mu_e at} \cos\left(\frac{2\mu_e t B_0}{\hbar}\right) \sin\left(\frac{2\mu_e t a}{\hbar}\right) \end{split}$$

$$p(B) = \frac{1}{\sqrt{\pi}a} e^{-(B-B_0)^2/a^2}$$

$$M_x = \frac{M_0}{\sqrt{\pi}a} \int \cos\left(\frac{2\mu_e Bt}{\hbar}\right) e^{-(B-B_0)^2/a^2} dB$$

$$= \frac{M_0}{\sqrt{\pi}a} \Re\left(\int \exp\left(-(B-B_0)^2/a^2 + i\frac{2\mu_e Bt}{\hbar}\right) dB\right)$$

$$= \frac{M_0}{\sqrt{\pi}} \Re\left(\int \exp\left(-x^2 + i\frac{2\mu_e at}{\hbar}x + i\frac{2\mu_e B_0 t}{\hbar}\right) dx\right)$$

$$= \frac{M_0}{\sqrt{\pi}} \Re\left(\int \exp\left(-x^2 + i\frac{2\mu_e at}{\hbar}x + \left(\frac{\mu_e at}{\hbar}\right)^2 - \left(\frac{\mu_e at}{\hbar}\right)^2 + i\frac{2\mu_e B_0 t}{\hbar}\right) dx\right)$$

$$= M_0 \Re\left(\exp\left(-\left(\frac{\mu_e at}{\hbar}\right)^2 + i\frac{2\mu_e B_0 t}{\hbar}\right)\right)$$

$$= M_0 \cos\left(\frac{2\mu_e B_0 t}{\hbar}\right) \exp\left(-\left(\frac{\mu_e at}{\hbar}\right)^2\right)$$

- (c)
- (d)
- 3.

The probability is

$$|\langle u|\chi\rangle|^2 = |c_1|^2$$

$$|\langle u|\chi\rangle|^2 = \langle u|\chi\rangle\langle\chi|u\rangle$$

$$= \langle u|\rho|u\rangle$$

$$= \operatorname{Tr}(\langle u|\rho|u\rangle)$$

$$= \operatorname{Tr}(\rho|u\rangle\langle u|)$$

- **4.**
- (a)
- (b)
- (c)
- (d)
- (e)
- **(f)**
- (g)
- **5.**
- (a)
- (b)