

- Data Mining Principles
- MSc in Analytics
- Dr. Anil D Chaturvedi
- Email: anilchaturvedi@uchicago.edu
- Phone: 301-299-2434

- Good Morning.
- Welcome to Data Mining Principles
- Session 3

All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from Dr. Anil D Chaturvedi, The University of Chicago.

Data Mining Principles Session 3: Topics

- 1. Clustering Categorical Data
- 2. K-modes clustering
- 3. Latent Class Analysis
- 4. Hybrid Data mixtures
- 5. Conclusion

Examples of Bilinear models: Row Reduction via Cluster Analysis

$$d_{ij} \approx \sum_{r=1}^{R} m_{ir} c_{jr}$$

$$\mathbf{D}_{IxJ} \approx \mathbf{M}_{IxR} \mathbf{C}_{RxJ}$$

- Only categorical Data D_{ii} are known
- Cluster memberships M are unknown
- Cluster centers C are unknown
- M is constrained to be binary: 1 or 0

Examples of Bilinear models: Row Reduction: K-Modes Clustering

$$d_{ij} \approx \sum_{r=1}^{R} m_{ir} c_{jr}$$

Minimize

$$\left| \mathbf{D}_{IxJ} - \mathbf{M}_{IxR} \mathbf{C}_{RxJ} \right|^{p,p \to 0}$$

- Only Categorical Data D_{ii} are known
- Cluster memberships M are unknown
- Cluster centers C are unknown
- M is constrained to be binary: 1 or 0
- Each Row of M sums to 1.

- 1. Randomly assign a number, from 1 to *K* (fixed at start), to each of the observations or records. Fix *M*. These serve as initial cluster assignments for the observations.
- 2. Iterate until the cluster assignments stop changing:
 - A. For each of the *K* clusters, compute the cluster mode. The kth cluster centroid is the vector of the p variable modes for the observations in the kth cluster. **Find C given M**
 - B. Assign each observation to the cluster whose centroids match the most categorical values of the observation. *Find M given C.*

Find **C** Given **M**

Find **M**Given **C**

Why Means in step 2A?

- Assume you have 6 data points in a variable:
 Male, Female, Male, Female, Female,
- What is the best summary statistic that describes such categorical data?
- Can you match your intuition with mathematical logic?

K-modes clustering

$$\text{Minimize} |3-x|^{0.0001} + |5-x|^{0.0001} + |3-x|^{0.0001} + |3-x|^{0.0001} + |5-x|^{0.0001} + |5-x|^{0.$$

K-modes clustering

$$\text{Minimize} |3-x|^{0.0001} + |5-x|^{0.0001} + |3-x|^{0.0001} + |3-x|^{0.0001} + |3-x|^{0.0001} + |5-x|^{0.0001} + |5-x|^{0.$$

 Minimization yields x to be the mode of the numbers (3,5,3,3,5) = 3. Why? Because

•
$$0^0 = 1$$

$$0^{0.0001} = 0$$

•
$$3^0 = 1$$

$$3^{0.0001} = 1$$

•
$$5^0 = 1$$

$$5^{0.0001} = 1$$

Minimize $\left| D_{IxJ} - M_{IxR} C_{RxJ} \right|^{p,p \to 0}$

$$\begin{bmatrix} 1 & 67 & 0 \\ 1 & 67 & 0 \\ 2 & 77 & 5 \\ 1 & 67 & 5 \\ 2 & 77 & 3 \end{bmatrix} \approx \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 67 & 0 \\ 1 & 67 & 0 \\ 2 & 77 & 5 \\ 1 & 67 & 5 \\ 2 & 77 & 3 \end{bmatrix} \approx \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{21} & c_{22} & c_{23} \\ c_{21} & c_{22} & c_{23} \end{bmatrix}$$

Minimize
$$\left| D_{IxJ} - M_{IxR} C_{RxJ} \right|^{p,p \to 0}$$

Find **C**
Given **M**

$$\begin{bmatrix} 1 & 67 & 0 \\ 1 & 67 & 0 \\ 2 & 77 & 5 \\ 1 & 67 & 5 \\ 2 & 77 & 3 \end{bmatrix} \approx \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{21} & c_{22} & c_{23} \\ c_{21} & c_{22} & c_{23} \end{bmatrix}$$

To estimate c₂₁

Minimize
$$|2-c_{21}|^{0.0001} + |1-c_{21}|^{0.0001} + |2-c_{21}|^{0.0001}$$

To get c_{21} = mode (2,1,2) = 2. Similarly solve for all c's

Minimize
$$\left| D_{IxJ} - M_{IxR} C_{RxJ} \right|^{p,p \to 0}$$

Find **M**
Given **C**

$$\begin{vmatrix}
1 & 67 & 0 \\
2 & 77 & 5 \\
1 & 67 & 5
\end{vmatrix} \approx \begin{vmatrix}
m_{21} & m_{22} \\
m_{31} & m_{32} \\
m_{41} & m_{42}
\end{vmatrix} \begin{bmatrix}
1 & 67 & 0 \\
2 & 77 & 5
\end{bmatrix}$$

First Row

$$\begin{bmatrix} 1 & 67 & 0 \end{bmatrix} \approx \begin{bmatrix} m_{11} & m_{12} \end{bmatrix} \begin{bmatrix} 1 & 67 & 0 \\ 2 & 77 & 5 \end{bmatrix}$$

Minimize
$$\left| D_{IxJ} - M_{IxR} C_{RxJ} \right|^{p,p \to 0}$$

First Row
$$\begin{bmatrix} 1 & 67 & 0 \end{bmatrix} \approx \begin{bmatrix} m_{11} & m_{12} \end{bmatrix} \begin{bmatrix} 1 & 67 & 0 \\ 2 & 77 & 5 \end{bmatrix}$$

$$|1-1m_{11}-2m_{12}|^{0.0001}+|67-67m_{11}-77m_{12}|^{0.0001}+|0-0m_{11}-5m_{12}|^{0.0001}$$

- Try both $(m_{11} = 0 \text{ and } m_{12} = 1) \text{ and } (m_{11} = 1)$ and $m_{12} = 0$.
- Whichever yields minimum, that is the membership assignment

Minimize
$$\left| D_{IxJ} - M_{IxR} C_{RxJ} \right|^{p,p \to 0}$$

Find **C**
Given **M**

$$\begin{bmatrix}
M & Young & High \\
M & Young & High \\
F & Old & Low \\
F & Young & Low \\
M & Old & High
\end{bmatrix}
\approx
\begin{bmatrix}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23}
\end{bmatrix}$$

Minimize
$$\left| D_{IxJ} - M_{IxR} C_{RxJ} \right|^{p,p \to 0}$$

To estimate c₂₁

Minimize
$$|F-c_{21}|^{0.0001} + |F-c_{21}|^{0.0001} + M-c_{21}|^{0.0001}$$

To get
$$c_{21} = mode(F,F,M) = F$$
.

Minimize
$$\left| D_{IxJ} - M_{IxR} C_{RxJ} \right|^{p,p \to 0}$$

d
$$M$$
 ren C

$$\begin{bmatrix}
M & Young & High \\
M & Young & High \\
F & Old & Low \\
F & Young & Low \\
M & Old & High
\end{bmatrix}
\approx
\begin{bmatrix}
m_{11} & m_{12} \\
m_{21} & m_{22} \\
m_{31} & m_{32} \\
m_{41} & m_{42} \\
m_{51} & m_{52}
\end{bmatrix}
\begin{bmatrix}
M & Young & High \\
F & Old & Low
\end{bmatrix}$$

First Row
$$[M \ Young \ High] \approx [m_{11} \ m_{12}] \begin{bmatrix} M \ Young \ High \end{bmatrix}$$

Minimize
$$\left| D_{IxJ} - M_{IxR} C_{RxJ} \right|^{p,p \to 0}$$

First Row
$$[M \ Young \ High] \approx [m_{11} \ m_{12}] \begin{bmatrix} M \ Young \ High \end{bmatrix}$$

- Try both $(m_{11} = 0 \text{ and } m_{12} = 1) \text{ and } (m_{11} = 1 \text{ and } m_{12} = 0)$.
- Whichever yields minimum, that is the membership assignment

ANY QUESTIONS?

K-Modes clustering: Election Data set

Package poLCA in R implements Latent Class Analysis Election Data.

- Education
 - (1) 8 grades or less
 - (2) 9-11 grades, no further schooling
 - (3) High school diploma or equivalency
 - (4) More than 12 years of schooling, no higher degree
 - (5) Junior or community college level degree
 - (6) BA level degrees, no advanced degree
 - (7) Advanced degree
- Gender
 - (1) Male
 - (2) Female
- Party
 - (1) Strong Democrat
 - (2) Weak Democrat
 - (3) Independent-Democrat
 - (4) Independent-Independent
 - (5) Independent-Republican
 - (6) Weak Republican
 - (7) Strong Republican

K-Modes clustering: Election Data set

#	EDUC	GENDER	PARTY
1	5	1	5
2	4	2	3
3	3	2	1
4	4	1	3
5	5	2	7
6	2	1	1
7	4	1	6
8	7	2	1
9	6	2	1
10	3	2	1
11	3	2	6
12	3	1	2
13	3	1	3
14	3	2	5
15	4	2	4
16	4	1	7
17	2	2	6
18	4	2	2
19	3	2	1
20	6	2	7

K-modes clustering: Election Data set

Number of Clusters	Matches Accounted For
1	34.64
2	49.32
3	52.83
4	59.30
5	60.04
6	60.49

MAF = Total Data values matched/Number of Data elements

K-Modes clustering: Election Data set Scree Plot 3 Variables: Gender, Education, and Party

Matches Accounted For Scree Plot

K-Modes clustering: Election Data set Cluster Modes

Cluster	Male	Female	Cluster Size
1	100%	0	786
2	0	100%	999

BUT NOW LET US USE THE MORE INTERESTING CASE: USE ALL CATEGORIAL VARIABLES

K-Modes clustering: Election Data

```
x=kmodes(data=election[,-c(13,14)],nclust=6, nloops=30,seed=123121)
MAF2=c(43.31,46.32,47.58,48.38,49.36,50.10)
plot(1:6,MAF2,main="Matches Accounted For Scree Plot", xlab = "Number of Clusters", ylab="MAF",col=4,type="l")
```


K-modes clustering: Election Data set Using all variables except Vote and Age

Number of Clusters	Matches Accounted For
1	43.31
2	46.32
3	47.58
4	48.38
5	49.36
6	50.10

MAF = Total Data values matched/Number of Data elements

K-Modes clustering: Election Data set (All Variables) Scree Plot for selecting number of clusters

Election Data all variables except vote and age Matches Accounted For Scree Plot

K-Modes clustering: Election Data set Cluster Modes

Cluster	1	2	3	4	5	6
Cluster Size	34.60%	17.90%	6.50%	12.20%	8.30%	14.60%
MORALG	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well
CARESG	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well
KNOWG	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well
LEADG	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well
DISHONG	4 Not well at all	3 Not too well	4 Not well at all	3 Not too well	3 Not too well	3 Not too well
INTELG	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well
MORALB	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well
CARESB	3 Not too well	2 Quite well	2 Quite well	2 Quite well	3 Not too well	2 Quite well
KNOWB	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well
LEADB	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well
DISHONB	3 Not too well	3 Not too well	3 Not too well	4 Not well at all	3 Not too well	3 Not too well
INTELB	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well	2 Quite well
EDUC	HS	HS	HS	HS	HS	HS
GENDER	Female	Female	Female	Female	Female	Male
PARTY	SD	WD	SD	SD	SD	IR

K-Means clustering Watch-outs and Properties

- 1. K-Modes shares all the strengths and weaknesses of K-means and K-medians.
- 2. Suffers from severe local optima problems. Never know if we got a global solution or not. (But this is a shared problem with almost every known clustering methodology)
- 3. Intractable with Big Data.

ANY QUESTIONS ON K-MODES?

Latent Class Analysis

- 1. Developed in 1950 by Lazarsfeld
- 2. Widely used currently in many domains
 - Business and marketing
 - Medicine
 - Healthcare
 - Services
 - •

Lazarsfeld's Latent Class: The Basics

Cluster	Read A	Did Not Read A	Total
Read B	260	140	400
Did Not Read B	240	360	600
Total	500	500	1000

chisq.test(matrix(c(260,240,140,360),2,2),correct=FALSE)

Pearson's Chi-squared test

data: matrix(c(260, 240, 140, 360), 2, 2)

X-squared = 60, df = 1, p-value = 9.486e-15

Cluster	Read A	Did Not Read A	Total
Read B	260	140	400
Did Not Read B	240	360	600
Total	500	500	1000

- Strong Dependence between readers of A and readers of B'
 - 52% of A's readers also read B
 - Only 28% of Non-readers of A read B

Cluster	Read A	Did Not Read A	Total
Read B	260	140	400
Did Not Read B	240	360	600
Total	500	500	1000

- How many groups do we see in the Data?
- We all can see 4. Right?
- Can they explain dependence?
- Why or why not?

Cluster	Read A	Did Not Read A	Total
Read B	260	140	400
Did Not Read B	240	360	600
Total	500	500	1000

- Lazarsfeld (1950, 1968) postulated
 - two latent or hidden groups within this data – related to a missing variable
 - Each group with its own 2x2 table
 - Each table where A and B are independent

Cluster	Read A	Did Not Read A	Total
Read B	260	140	400
Did Not Read B	240	360	600
Total	500	500	1000

	Read A	Did Not Read A	Total
Read B	240	60	300
Did Not Read B	160	40	200
Total	400	100	500

	Read A	Did Not Read A	Total
Read B	20	80	100
Did Not Read B	80	320	400
Total	100	400	500

Read A	Read A	Total
260	140	400
240	360	600
500	500	1000
	260 240	260 140 240 360

High Educ	Read A	Did Not Read A	Total
Read B	240	60	300
Did Not Read B	160	40	200
Total	400	100	500

Low Educ	Read A	Did Not Read A	Total
Read B	20	80	100
Did Not Read B	80	320	400
Total	100	400	500

High Educ	Read A	Did Not Read	Total
Read B	240	60	300
Did Not Read B	160	40	200
Total	400	100	500

Low Educ	Read A	Did Not Read A	Total
Read B	20	80	100
Did Not Read B	80	320	400
Total	100	400	500

High Educ	Read A	Did Not Read	Total
Read B			300
Did Not Read B			
Total	400		500

Low Educ	Read A	Did Not Read A	Total
Read B			100
Did Not Read B			
Total	100		

High Educ	Read A	Did Not Read	Total
Read B	240	60	300
Did Not Read B	160	40	200
Total	400	100	500

Low Educ	Read A	Did Not Read A	Total
Read B	20	80	100
Did Not Read B	80	320	400
Total	100	400	500

High Educ	Read A	Did Not Read	Total	Low Educ	Read
Read B			300	Read B	
Did Not Read B				Did Not Read B	
Total	400		500	Total	100

Low Educ	Read A	Did Not Read A	Total
Read B			100
Did Not Read B			
Total	100		

• LCA is about finding the 5 numbers

High Educ	Read A	Did Not Read	Total
Read B	240	60	300
Did Not Read B	160	40	200
Total	400	100	500

Low Educ	Read A	Did Not Read A	Total
Read B	20	80	100
Did Not Read B	80	320	400
Total	100	400	500

High Educ	Read A	Did Not Read	Total	Low Educ
Read B			300	Read B
Did Not Read B				Did Not Read B
Total	400		500	Total

Low Educ	Read A	Did Not Read A	Total
Read B			100
Did Not Read B			
Total	100		

LCA is about finding the 5 numbers (parameters)

Latent Class: The problem

Cluster	Read A	Did Not Read A	Total
Read B	260	140	400
Did Not Read B	240	360	600
Total	500	500	1000

Given the categorical data above,

(A) how do we find K latent or hidden groups (missing data) wherein the multi-level tables are statistically independent?

AND

(B) Put individual people into the K groups

High Educ	Read A	Did Not Read	Total
Read B	240	60	300
Did Not Read B	160	40	200
Total	400	100	500

Low Educ	Read A	Did Not Read A	Total
Read B	20	80	100
Did Not Read B	80	320	400
Total	100	400	500

High Educ	Read A	Did Not Read	Total
Read B			.6
Did Not Read B			.4
Total	.8	.2	.5

Low Educ	Read A	Did Not Read A	Total
Read B			.2
Did Not Read B			.8
Total	.2	.8	.5

LCA is about finding the 5 numbers (parameters)

Latent Class: Estimation via EM Algorithm

Latent Classes are estimated by the Classic, Nobel-winning caliber work: EM-Algorithm of Dempster, Laird, and Rubin (1977) – The Expectation-Maximization (EM) Algorithm.

- Based on Maximum Likelihood
- Applicable to Missing Data problems
- Treats latent classes as missing data
- Is a two step algorithm:
 - The Expectation Step
 - The Maximization Step

Latent Class Analysis: EM Algorithm

THE E-STEP (Assigns observations to classes)

- Assume that all parameters are known from M step or chosen at random. Then apply the following two steps:
 - Using the parameters and Bayes rule, compute the posterior probability of <u>each</u> observation being in <u>each</u> class.
 - Take the expectation (mean) of all the observation's posterior probabilities for a class. This gives the size (in proportions) of each class.

Latent Class Analysis: EM Algorithm

THE M-STEP (Finds the classes)

- Assume that all posterior probabilities for all observations are known (and hence, latent class sizes or proportions are known) from E step. Then apply the following step
 - Maximize the Likelihood function (or the Log-likelihood) function, to estimate parameters (marginal probabilities of all variables for all classes). Often - using non-linear optimization techniques such as
 - Newton search methods (Using Gradients of the likelihood functions) such as Newton Raphson
 - Conjugate Gradients
 - Steepest Descent (or Ascent)
 - Nelder Mead approaches, etc.

Latent Class: Estimation via EM Algorithm

Caveats on EM-Algorithm based estimation

- Prone to local optima problems
- Multiple random starts are recommended
- The eternal search for a global optimum continues even with this very general, creative, and widely used algorithm

LCA Analysis: Election Data set

Package poLCA in R implements Latent Class Analysis Election Data.

- Education
 - (1) 8 grades or less
 - (2) 9-11 grades, no further schooling
 - (3) High school diploma or equivalency
 - (4) More than 12 years of schooling, no higher degree
 - (5) Junior or community college level degree
 - (6) BA level degrees, no advanced degree
 - (7) Advanced degree
- Gender
 - (1) Male
 - (2) Female
- Party
 - (1) Strong Democrat
 - (2) Weak Democrat
 - (3) Independent-Democrat
 - (4) Independent-Independent
 - (5) Independent-Republican
 - (6) Weak Republican
 - (7) Strong Republican

LCA Analysis: Election Data set

```
#set.seed
library(poLCA)
f1=cbind(EDUC,GENDER,PARTY)~1
data(election)
names(election)
results.2=poLCA(f1,election,nclass=2,nrep=10,tol=.001,verbose=FALSE, graphs=TRUE)
results.3=poLCA(f1,election,nclass=2,nrep=10,tol=.001,verbose=FALSE, graphs=TRUE)
results.4=poLCA(f1,election,nclass=2,nrep=10,tol=.001,verbose=FALSE, graphs=TRUE)
results.5=poLCA(f1,election,nclass=2,nrep=10,tol=.001,verbose=FALSE, graphs=TRUE)
attributes(results)
results$npar
Table(results$predclass)
results$posterior
```


Number of Latent Classes	AIC	BIC
2	15311.77	15459.47
3	15311.62	15535.96
4	15313.66	15614.52

AIC: Akaike Information Criterion

-2LL + 2P = Deviance+2*#Parameters

BIC: Bayesian Information Criterion

-2LL + PLog(n) = Deviance + log(samplesize)*#parameters

Class 1: population share = 0.594

Class 2: population share = 0.406

Class 1: population share = 0.39

Class 2: population share = 0.482

Class 3: population share = 0.128

Basic Stats Primer for Latent Class

- 1. Assume two events A and B with probability of occurrence p(A) and (B)
- 2. Joint probability of A and B = p(A and B) = p(AB)
- 3. If B has occurred (B given), then the joint probability of A and B is p(AB)= p(A|B)p(B)
- 4. If A has occurred (A given) then joint probability of A and B is p(AB) = p(B|A)p(A)
- 5. If A and B independent then p(AB) = p(A)p(B)

Basic Stats for Latent Class Bayes Rule

If A and B are independent random variables then

$$p(AB) = p(A)p(B)$$

If A and B are NOT independent random variables then

$$p(AB) = p(A|B)p(B) = p(B|A)p(A)$$

From P(A|B)(B) = p(B|A)p(A) we can see that

$$P(B|A) = [p(A|B)p(B)]/p(A)$$

Basic Stats for Latent Class Bayes Rule

$$p(B) = p(B \text{ and } A) + p(B \text{ and } \overline{A})$$

$$p(B) = p(BA) + p(B\bar{A})$$

Basic Stats for Latent Class Bayes Rule

$$p(B | A) = \frac{p(AB)}{p(A)} = \frac{p(A | B)p(B)}{p(A)}$$

$$p(B \mid A) = \frac{p(A \mid B)p(B)}{p(AB) + p(A\overline{B})}$$

Latent Class Analysis: EM Algorithm

- Variables j, j = 1,...,J
- Levels of variable j is k, k = 1, ..., K_j
- Observations be denoted by i, i = 1,....l
- f be probability of data for observations i given class c
- d_{iik} is data for observation i, variable j, level k (1 or 0)
- π_{cjk} is marginal probability for class c, variable j, level k
- Put random values in all marginal probability parameters $\pi_{\rm cik}$

$$f(obs = i \mid class = c) = \prod_{j=1}^{J} \prod_{k=1}^{k_j} (\pi_{cjk})^{d_{ijk}}$$

Latent Class Analysis: EM Algorithm

- Variables j, j = 1,...,J
- Levels of variable j is k, k = 1, ..., K_i
- Observations be denoted by i, i = 1,....l
- f be probability of data for observations i given class c
- d_{iik} is data for observation i, variable j, level k
- π_{cik} is marginal probability for class c, variable j, level k
- S_c is size of class c (proportion). Put random values in all S_c
- C is number of latent classes

$$p(obs = i \mid C \text{ classes}) = \sum_{c=1}^{C} s_c f(obs = i \mid class = C)$$

$$p(obs = i \mid C classes) = \sum_{c=1}^{C} s_c \prod_{j=1}^{J} \prod_{k=1}^{k_j} (\pi_{cjk})^{d_{ijk}}$$

Latent Class Analysis: EM Algorithm E-Step: Equations for determining class membership via Posterior Probability computations

$$p(class = c \mid obs.i) = \frac{p(class = c \& obs = i)}{p(obs = i)}$$

$$p(class = c \mid obs. i) = \frac{p(class = c \& obs = i)}{p(obs = i \& c = 1) + ... + p(obs = i \& class = C)}$$

$$p(class = c \mid obs.i) = \frac{p(obs = i \mid class = c)p(class = c)}{p(obs = i \mid c = 1)p(class = 1) + ... + p(obs = i \mid class = C)p(class = C)}$$

$$p(class = c \mid obs. i) = \frac{f(i \mid class = c)s_c}{\sum_{q=1}^{C} f(i \mid class = q)s_q}$$

Latent Class Analysis: EM Algorithm E-Step: Equation for determining class sizes

$$s_{c} = \frac{1}{I} \sum_{i=1}^{I} p(class = c \mid obs.i)$$

Latent Class Analysis: EM Algorithm M-Step: Equations for maximizing Log likelihood to determine parameters (marginal probabilities for each class)

$$p(obs = i \mid C classes) = \sum_{c=1}^{C} s_c \prod_{j=1}^{J} \prod_{k=1}^{k_j} (\pi_{cjk})^{d_{ijk}}$$

$$L = \prod_{i=1}^{I} p(obs = i \mid C classes)$$

$$L = \prod_{i=1}^{I} \left(\sum_{c=1}^{C} s_{c} \prod_{j=1}^{J} \prod_{k=1}^{k_{j}} (\pi_{cjk})^{d_{ijk}} \right)$$

$$logL = \sum_{i=1}^{I} log \left(\sum_{c=1}^{C} s_{c} \prod_{j=1}^{J} \prod_{k=1}^{k_{j}} (\pi_{cjk})^{d_{ijk}} \right)$$

Latent Class Analysis: EM Algorithm M-Step: Equations for maximizing Log likelihood to determine parameters (marginal probabilities for each class)

Maximize logL =
$$\sum_{i=1}^{I} log \left(\sum_{c=1}^{C} s_c \prod_{j=1}^{J} \prod_{k=1}^{k_j} (\pi_{cjk})^{d_{ijk}} \right)$$

Solution of parameters is given by following expression

$$\pi_{cjk} = \frac{\sum_{i=1}^{I} d_{ijk} prob(class = c \mid obs = i)}{\sum_{i=1}^{I} p(class = c \mid obs = i)}$$