Huffman's Encoding Problem That Is Math

Dheer Avashia

University of the South

2nd March 2023

The Problem

Encode the message 'That is Math' using an optimal binary code without losing any information during decoding.

What we know

- Binary Encoding Requirement
- No information loss
- **3** Characters and Frequency: $\Gamma = \{A, T, H, I, S, M, \phi\}$

Character	Frequency
A	2
${ m T}$	3
H	2
I	1
S	1
${ m M}$	1
ϕ	2

Optimal Code:

$$B(C) = \sum (f(\Gamma_i) \cdot L(C(\Gamma_i)))$$

Randomly assign unique binary numbers to each character.

$$C_1 = \{A = 0, T = 01, H = 10, I = 001, S = 101, M = 100, \phi = 010\}$$

0110001010001101010100000110

Is this uniquely decipherable?

$$C_1 = \{A = 0, T = 01, H = 10, I = 001, S = 101, M = 100, \phi = 010\}$$

$$0110001010001101010100000110$$

Can be read as can be read as either 'THA' or 'TM'. There is loss of information.

Cost of C_1

Character	Frequency	Length
A	2	1
${ m T}$	3	2
${ m H}$	2	2
I	1	3
\mathbf{S}	1	3
${ m M}$	1	3
ϕ	2	3

$$B(C_1) = (2 \cdot 1) + (3 \cdot 2) + (2 \cdot 2) + (1 \cdot 3) + (1 \cdot 3) + (1 \cdot 3) + (2 \cdot 3)$$

= 2 + 6 + 4 + 3 + 3 + 3 + 6
= 27 Bits

Fixed-Length Code Approach

$$C_2 = \{A = 0100\ 0001, T = 0101\ 0100, H = 0100\ 1000, I = 0100\ 1001, S = 0101\ 0011, M = 0100\ 1101, \phi = 0000\ 1000\}$$

 $0101\ 0100\ 0100\ 1000\ 0100\ 0001\ 0101\ 0100\ 0000\ 1000\ 0100\ 1001\ 0101$ $0011\ 0000\ 1000\ 0100\ 1101\ 0100\ 0001\ 0101\ 0100\ 0100\ 1000$

This is uniquely decipherable.

Cost of C_2

Character	Frequency	Length
A	2	8
${ m T}$	3	8
${ m H}$	2	8
I	1	8
\mathbf{S}	1	8
${ m M}$	1	8
ϕ	2	8

$$B(C_2) = (2 \cdot 8) + (3 \cdot 8) + (2 \cdot 8) + (1 \cdot 8) + (1 \cdot 8) + (1 \cdot 8) + (2 \cdot 8)$$
$$= 16 + 24 + 16 + 8 + 8 + 8 + 16$$
$$= 96 \text{ Bits}$$

Problem Is Still A Problem

 C_1 uses lower bits, looses information.

 C_2 uniquely decipherable, possibly uses too many bits.

Huffman was given the same problem.

Step 1: Characters with the lowest frequency. Create sub-tree with these two characters as leaves. Label the root of the tree some arbitrary z.

Step 2: Set frequency of z as addition of frequencies. Create new set of alphabet with z replacing letters.

Step 3: Repeat merging of variables using the new alphabet until one character left.

Character	Frequency
A	2
${ m T}$	3
Н	2
I	1
S	1
M	1
ϕ	2

M and S, create a sub-tree with root MS. New alphabet $\Gamma_1 = \{A, T, H, I, MS, \phi\}$

Character	Frequency
A	2
${ m T}$	3
H	2
I	1
MS	2
ϕ	2

I and A, root IA. New alphabet $\Gamma_2 = \{IA, T, H, MS, \phi\}$

Character	Frequency
IA	3
${ m T}$	3
${ m H}$	2
MS	2
ϕ	2

 ϕ and H, root ϕ H. $\Gamma_3 = \{IA, T, MS, \phi H\}$

Character	Frequency
IA	3
${ m T}$	3
MS	2
$\phi { m H}$	4

MS and T, root MST. $\Gamma_4 = \{IA, MST, \phi H\}$

Character	Frequency
IA	3
MST	5
$\phi { m H}$	4

IA and ϕH , root $IA\phi H$ and $\Gamma_5 = \{IA\phi H, MST\}$

Character	Frequency
$IA\phi H$	7
MST	5

Last Merge: $IA\phi H$ and MST, root $IA\phi HMST$. $\Gamma_6 = \{IA\phi HMST\}$

Character	Frequency
$IA\phi HMST$	12

Corresponding Huffman encoding:

$$C_3 = \{ \mathrm{A} = 001, \, \mathrm{T} = 11, \, \mathrm{H} = 011, \, \mathrm{I} = 000, \, \mathrm{S} = 101, \, \mathrm{M} = 100, \, \phi = 010 \}$$

110110011101000010101010000111011

Cost of C_3

Character	Binary Code (C_3)	Frequency
A	001	2
${ m T}$	11	3
${ m H}$	011	2
I	000	1
${ m M}$	100	1
\mathbf{S}	101	1
ϕ	010	2

$$B(C_3) = (2 \cdot 3) + (3 \cdot 2) + (2 \cdot 3) + (1 \cdot 3) + (1 \cdot 3) + (1 \cdot 3) + (2 \cdot 3)$$

= 6 + 6 + 6 + 3 + 3 + 3 + 6
= **33 Bits**

Proof Of Optimally

Theorem

Huffman's algorithm produces an optimal prefix code tree

Lemma (1)

Every tree will yield a prefix-free code and conversely

Lemma (2)

The tree for any optimal prefix code must be full, every internal node has exactly two children.

Lemma (3)

Consider two letters, x and y with the smallest frequencies. Then there is a optimal code tree in which these two letters are siblings leaves in the tree in the lowest level.