Agrégation de modèles - Partie 3

Mathieu Pigeon

UQAM

Retour sur l'algorithme AdaBoost

Boosting par descente de gradient fonctionnelle

Application

Retour sur la problématique

- On cherche à « expliquer » une variable $Y \in \mathcal{Y}$ par p variables explicatives $\mathbf{X} \in \mathbb{R}^p$.
- $\mathcal{Y} = \mathbb{R}$ pour de la régression, $\mathcal{Y} = \{0,1\}$ ou $\{-1,1\}$ (ou autre si plus de deux catégories) pour de la classification.
- Règle de prédiction : une fonction mesurable $r : \mathbb{R}^p \to \mathcal{Y}$ obtenue en optimisant une mesure de la performance (fonction objectif).

Retour sur la problématique

Pour une problématique de régression, on peut mesurer la performance d'une règle de prédiction par son erreur quadratique moyenne (MSE)

$$\widehat{r}(\mathbf{X}) = \operatorname{arg\ min}_{r:\mathbb{R}^p \to \mathbb{R}} \mathbb{E}\left[(Y - r(\mathbf{X})^2] \right]$$

$$= \mathbb{E}\left[Y | \mathbf{X} = \mathbf{x} \right].$$

Pour une problématique de classification, on peut mesurer la performance d'une règle de prédiction par sa probabilité d'erreur

$$\begin{split} \widehat{r}(\mathbf{X}) &= \mathsf{arg} \ \mathsf{min}_{r:\mathbb{R}^p \to \{-1,1\}} \mathsf{Pr}\left(r(\mathbf{X}) \neq Y\right) \\ &= \begin{cases} 1, & \mathsf{Pr}\left(Y = 1 | \mathbf{X} = \mathbf{x}\right) \geq 0.5 \\ -1, & \mathsf{sinon}. \end{cases} \end{split}$$

De façon générale, on cherche une règle \hat{r} en résolvant un problème d'optimisation empirique

$$\widehat{r} = \operatorname{arg\ min}_{r \in \mathcal{R}} \frac{1}{n} \sum_{i=1}^{n} L(Y_i, r(\boldsymbol{X}_i)),$$

- où L() est une fonction objectif (ou fonction de perte) quelconque.
- Si l'optimisation est faite sur l'ensemble des fonctions r possibles et imaginables, le problème est trop complexe pour être résolu (même numériquement!).

Retour sur l'algorithme AdaBoost

Par contre, si on limite la classe \mathcal{R} aux fonctions linéaires, par exemple

$$\widehat{r}(\mathbf{X}_i) = \beta_0 + \beta_1 X_{i1} + \ldots + \beta_p X_{ip},$$

et si on choisit une fonction objectif quadratique, alors on obtient un modèle de régression linéaire classique.

- Une solution possible est de « convexifier » la fonction objectif afin de rendre le problème plus simple d'un point de vue numérique.
- L'algorithme AdaBoost présenté au cours précédent répond à ce principe de minimisation pour un risque « convexifié » donné par

$$L(Y_i, r(\boldsymbol{X}_i)) = \exp(-Y_i r(\boldsymbol{X}_i)).$$

 On va également réaliser l'optimisation de façon séquentielle plutôt que globale (greedy).

On peut démontrer que la règle de classification à l'étape t de l'agorithme AdaBoost peut s'écrire comme étant ¹

$$r_t(\mathbf{X_i}) = r_{t-1}(\mathbf{X_i}) + \alpha_t R_t(\mathbf{X_i}),$$

οù

$$(\alpha_t, R_t) = \arg\min_{(\alpha, r) \in \mathbb{R} \times \mathcal{R}} \sum_{i=1}^n e^{-Y_i(r_{t-1}(\mathbf{X}_i) + \alpha r(\mathbf{X}_i))}$$

et où \mathcal{R} est l'espace des choix possibles pour la règle r.

^{1.} On suppose que la règle de classification r_t s'obtient en minimisant le taux de mauvaise classification sur la base de données complète.

Généralisation

- On a vu que l'algorithme AdaBoost peut être vu comme une méthode récursive optimisant, à chaque étape, une fonction objectif empirique sur une classe de fonctions donnée.
- On peut généraliser en cherchant la règle r qui minimise $\mathbb{E}\left[L(Y, r(\mathbf{X}))\right]$ pour une fonction objectif convexe $L: \mathbb{R}^2 \to \mathbb{R}$.
- Pour y parvenir, on va utiliser une approche de descente de gradient fonctionnelle : le « paramètre » que l'on cherche à minimiser est une fonction (r).

Méthode de Newton-Raphson

- On considère une fonction strictement convexe $J: \mathbb{R} \to \mathbb{R}$ et un problème de minimisation dont la solution est \tilde{x} .
- On cherche une suite x_0, x_1, x_2, \ldots qui converge vers la solution \tilde{x} .
- À partir d'un point de départ arbitraire x_0 , on cherche $x_1 = x_0 + h$ tel que $J'(x_1) \approx 0$.

Méthode de Newton-Raphson

Par un développement limité, on a

$$J'(x_0 + h) \approx J'(x_0) + hJ''(x_0).$$

• Puisque $J'(x_1) = J'(x_0 + h) \approx 0$, on a

$$h\approx\frac{-J'(x_0)}{J''(x_0)}.$$

• Avec $\alpha = (J''(x_0))^{-1} > 0$, on obtient la formule récursive

$$x_k = x_{k-1} - \alpha J'(x_{k-1}).$$

Version vectorielle

En utilisant la même idée mais dans un cadre vectoriel, on obtient la formule récursive

$$r_t(\mathbf{X}_i) = r_{t-1}(\mathbf{X}_i) - \alpha \left[\frac{\partial L(Y_i, r(\mathbf{X}_i))}{\partial r(\mathbf{X}_i)} \right] |_{\{r(\mathbf{X}_i) = r_{t-1}(\mathbf{X}_i)\}}.$$

On obtient ainsi une suite de règles $r_0(\mathbf{X}_i), r_1(\mathbf{X}_i), r_2(\mathbf{X}_i), \ldots$ que l'on peut évaluer pour les valeurs présentes dans la base de données $\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_n$.

Version vectorielle

Pour pouvoir évaluer cette suite de règles en tout points $\mathbf{X} \in \mathbb{R}^p$, on effectue, à chaque étape, une régression avec

$$U_i = -\left[\frac{\partial L(Y_i, r(\mathbf{X}_i))}{\partial r(\mathbf{X}_i)}\right]|_{\{r(\mathbf{X}_i) = r_{t-1}(\mathbf{X}_i)\}}, \qquad i = 1, \dots, n$$

comme variable réponse (minimisation de la fonction de perte quadratique).

Boosting par descente de gradient fonctionnelle

Initialiser

$$r_0(\mathbf{X}_i) = \operatorname{arg\ min}_{c \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n L(Y_i, c).$$

- 2. Pour les étapes t = 1, ..., T,
 - 2a. Calculer

$$U_i = -\left[\frac{\partial L(Y_i, r(\mathbf{X}_i))}{\partial r(\mathbf{X}_i)}\right]|_{\{r(\mathbf{X}_i) = r_{t-1}(\mathbf{X}_i)\}}, \qquad i = 1, \ldots, n.$$

- 2b. Ajuster le *weak learner* sélectionné sur l'échantillon composé des éléments $(\mathbf{X}_1, U_1), (\mathbf{X}_2, U_2), \dots, (\mathbf{X}_n, U_n)$ afin d'obtenir la pseudo-règle $h_t(\mathbf{X}_i)$.
- 2c. Effectuer la mise à jour $r_t(\mathbf{X}_i) = r_{t-1}(\mathbf{X}_i) + \alpha h_t(\mathbf{X}_i)$.
- 3. La prédiction finale est donnée par $r_T(\mathbf{X}_i)$.

Remarques

- Le choix du paramètre α (taux d'apprentissage) est peu important. On recommande généralement de prendre une petite valeur (0.01 ou 0.001).
- Si on pose $\alpha = 1$ et $L(y, r) = \exp(-yr)$, on retrouve presque l'algorithme AdaBoost.

Exemple 1 : Boston

```
round(head(Boston), 2)
crim zn indus chas nox rm age dis rad tax
0.01 18 2.31 0 0.54 6.58 65.2 4.09 1 296
0.03 0 7.07 0 0.47 6.42 78.9 4.97 2 242
0.03 0 7.07 0 0.47 7.18 61.1 4.97 2 242
ptratio black lstat medv
  15.3 396.90 4.98 24.0
  17.8 396.90 9.14 21.6
  17.8 392.83 4.03 34.7
set.seed(1001)
train <- sample(1:506, size = 420, replace = FALSE)
```

Exemple 1a : Forêts aléatoires

Exemple 1a : Forêts aléatoires

```
### MSE Out-of-bag
oob_pred <- predict(modele1)</pre>
oob <- mean(as.numeric((oob_pred - Boston[train,]$medv)^2))</pre>
oob
9.490969
### vMSE
y_pred_rf <- predict(modele1 , Boston[-train,])</pre>
test_mse <- mean(((y_pred_rf - Boston[-train,]$medv)^2))</pre>
test_mse
13.73492
```

```
watchlist <- list(train = dtrain, test = dtest)</pre>
bst <- xgb.train(data = dtrain,</pre>
                 \max.depth = 8,
                 eta = 0.3,
                 nthread = 2,
                 nround = 1000,
                 watchlist = watchlist,
                 objective = "reg:linear",
                 early_stopping_rounds = 50,
                 print_every_n = 500)
```

```
[1] train-rmse:17.178850 test-rmse:16.753817

Multiple eval metrics are present.

Will use test_rmse for early stopping.

Will train until test_rmse hasn't improved in 50 rounds.

Stopping. Best iteration:
[49] train-rmse:0.042135 test-rmse:3.520537
3.520537^2
12.39418
```

```
bst_slow <- xgb.train(data = dtrain,
                     max.depth=5,
                     eta = 0.01,
                     nthread = 2,
                     nround = 10000,
                     watchlist = watchlist,
                     objective = "reg:linear",
                     early_stopping_rounds = 50,
                     print_every_n = 500)
rf benchmark <- 13.73492
bst_slow$best_score^2 / rf_benchmark
0.717572
```

```
sample <- sample.int(n = nrow(Boston[train,]),</pre>
            size = floor(.8*nrow(Boston[train,])),
            replace = FALSE)
train_t <- (Boston[train,])[sample, ]</pre>
valid <- (Boston[train,])[-sample, ]</pre>
train_y <- train_t$medv
train_x <- train_t[. -14]</pre>
valid_y = valid$medv
valid x = valid[. -14]
```

```
gb_train <- xgb.DMatrix(data = as.matrix(train_x),</pre>
                          label = train_y )
gb_valid <- xgb.DMatrix(data = as.matrix(valid_x),</pre>
                          label = valid_v )
watchlist <- list(train = gb_train, valid = gb_valid)</pre>
bst_slow <- xgb.train(data= gb_train,</pre>
                       \max.depth = 5,
                       eta = 0.01.
                       nthread = 2,
                       nround = 10000,
                       watchlist = watchlist,
                       objective = "reg:linear",
                       early_stopping_rounds = 50,
                       print_every_n = 500)
```

```
[1] train-rmse:23.909586 valid-rmse:23.097574
```

[500] train-rmse:1.173579 valid-rmse:2.276383

```
y_hat_valid <- predict(bst_slow, dtest)

test_mse <- mean(((y_hat_valid - Boston[-train,]$medv)^2))
test_rmse = test_mse
test_rmse
10.59443

test_rmse/rf_benchmark
0.77135</pre>
```

```
max.depths <- c(3, 5, 7, 9, 11)
etas <- c(0.1, 0.01, 0.001)

best_params = 0
best_score = 0</pre>
```

```
count = 1
for( depth in max.depths ){
  for( num in etas){
    bst_grid = xgb.train(data = gb_train,
                         max.depth = depth,
                          eta=num,
                          nthread = 2.
                          nround = 10000.
                          watchlist = watchlist,
                          objective = "reg:linear",
                          early_stopping_rounds = 50,
                          verbose=0)
```

```
if(count == 1){
 best_params = bst_grid$params
  best_score = bst_grid$best_score
  count = count + 1
else if( bst_grid$best_score < best_score){</pre>
  best_params = bst_grid$params
  best_score = bst_grid$best_score
```

```
best_params
$max_depth
[1] 3
$eta
[1] 0.1
$nthread
[1] 2
best_score
valid-rmse
```

2.132227

```
bst_tuned <- xgb.train( data = gb_train,</pre>
                        \max.depth = 3,
                        eta = 0.1.
                        nthread = 2,
                        nround = 10000,
                        watchlist = watchlist.
                        objective = "reg:linear",
                        early_stopping_rounds = 50,
                        print_every_n = 500)
Stopping. Best iteration:
[126] train-rmse:1.210756 valid-rmse:2.132227
```

```
y_hat_xgb_grid <- predict(bst_tuned, dtest)
test_mse <- mean(((y_hat_xgb_grid - Boston[-train,]$medv)^2))
test_rmse <- test_mse
test_rmse
[1] 10.22936
test_rmse/rf_benchmark</pre>
```

[1] 0.7447702

Exemple 1 : Résultats

Modèle		vMSE
Forêts aléatoires Boosting	générique (sans cv) slow (sans cv) slow (cv) tuned (cv)	13.7349 12.3942 9.8558 10.5944 10.2294