$\lambda x.(\lambda y.xyx)x$ es lo mismo que

 $\mid \lambda \langle var \rangle$. $\langle exp \rangle$ abstracción o expresión lambda

0

Convención: La aplicación asocia a izquierda. En $\lambda v.e$, la primer ocurrencia de v es ligadora y su alcance es e. Por ejemplo,

El CL puro sólo contiene variables, aplicaciones y la notación lambda

$$\lambda x.(\lambda y.(xy)x)x$$

Variables libres:

(llamada abstracción).

 $FV(v) = \{v\}$ $FV(ee') = FV(e) \cup FV(e')$ $FV(\lambda v.e) = FV(e) - \{v\}$

Conjunto de sustituciones: $\Delta = \langle var \rangle \rightarrow \langle exp \rangle$

$$\begin{array}{rcl} v/\delta &=& \delta v \\ (ee')/\delta &=& (e/\delta)(e'/\delta) \\ (\lambda v.e)/\delta &=& \lambda v_{new}.\ e/[\delta|v:v_{new}] \\ && \text{donde}\ v_{new} \not\in \bigcup_{w \in FV(e)-\{v\}} FV(\delta|w) \end{array}$$

Renombre: Cambio en $\lambda v.e$ de la variable ligada v (y todas sus ocurrencias) por una variable v' que no ocurra libre en e: $\lambda v'.$ $e/v \mapsto v'$ donde $v' \notin FV(e)$.

lpha-conversión: Si e_1 se obtiene a partir de e_0 por 0 o más renombres de ocurrencias de subfrases. También se dice que e_0 lpha-convierte a e_1 .

Notación para expresiones α - convertibles: $e_0 \equiv e_1$

Redex: Es una expresión de la forma $(\lambda v.e)e'$

Contracción β : Reemplaza en e_0 una ocurrencia de un redex $(\lambda v.e)e'$ por su contracción $(e/v\mapsto e')$, y luego efectúa cero o más renombres de cualquier subexpresión.

$$e_0 \rightarrow e_1$$

Forma normal: expresión sin redices. Las formas normales representan configuraciones terminales. Por eso la semántica operacional del cálculo lambda consiste en efectuar contracciones β hasta obtener formas normales.

 $ightarrow^*$ denota la clausura transitiva y refexiva de ightarrow (o sea, aplicar ightarrow cero o más veces)

Formalmente:

 $e \to^* e'$ si y sólo si existen $e_0,...,e_n$ (con $n \ge 0$) tales que:

$$e = e_0 \rightarrow e_1 \rightarrow \dots \rightarrow e_n = e'$$

Notar que si n=0 entonces $e=e^\prime$

Teorema de Church-Rosser Si $e \to^* e_0$ y $e \to^* e_1$, entonces existe e' tall que $e_0 \to^* e'$ y $e_1 \to^* e'$.

Corolario 1. Salvo renombre, toda expresión tiene a lo sumo una forma normal.

Regla η : Un η -redex es una expresión de la forma $\lambda v.ev$, donde $v \notin FV$ e

$$\frac{1}{\lambda v.e \, v \to e} \operatorname{si} \, v \notin FV \, e \qquad (\eta)$$

La idea de ejecución (llamada evaluación) que se implementa habitualmente tiene las siguientes diferencias con la relación

- sólo se evalúan expresiones cerradas (es decir, sin variables libres)
- es determinística,
- no busca formas normales sino formas canónicas.

Evaluación (en orden) normal: lenguajes funcionales lazy (Haskell)

Evaluación eager o estricta: lenguajes estrictos (ML).

La noción de forma canónica depende de la definición de evaluación. Se define una noción de forma canónica para la evaluación normal, y otra para la evaluación eager. En el caso del cálculo lambda coinciden: **son las abstracciones**

Propiedad: Una aplicación cerrada no puede ser forma normal.

Corolario: Una expresión cerrada que es forma normal es también forma canónica.

Reglas para \Rightarrow_N

Regla para las formas canónicas $\overline{\lambda v.e} \Rightarrow_N \overline{\lambda v.e}$

Regla para la aplicación

$$\frac{e \Rightarrow_N \lambda v.e_0 \quad (e_0/v \mapsto e') \Rightarrow_N z}{ee' \Rightarrow_N z}$$

Reglas para \Rightarrow_E

Regla para las formas canónicas $\overline{\lambda v.e} \Rightarrow_E \overline{\lambda v.e}$

Regla para la aplicación

$$\frac{e \Rightarrow_E \lambda v.e_0 \qquad e' \Rightarrow_E z' \qquad (e_0/v \mapsto z') \Rightarrow_E z}{ee' \Rightarrow_E z}$$

Ambientes (Entornos): $\eta \in Env = \langle var \rangle \to D_{\infty}$ Función semántica: $\llbracket _ \rrbracket \in \langle exp \rangle \to Env \to D_{\infty}$

 $\phi \circ \psi = Id_{[D_{\infty} \to D_{\infty}]} \text{ y } \psi \circ \phi = Id_{D_{\infty}}$

Ecuaciones semánticas:

$$\llbracket v \rrbracket \eta = \eta v$$

 $\phi \in D_{\infty} \to [D_{\infty} \to D_{\infty}] \quad \psi \in [D_{\infty} \to D_{\infty}] \to D_{\infty}$

$$[\![e_0e_1]\!]\eta = \phi([\![e_0]\!]\eta) [\![e_1]\!]\eta$$

 $[\![\lambda v.e]\!]\eta = \psi(\lambda d \in D_{\infty}.[\![e]\!][\eta|v:d])$

Se puede probar que $[\![\Delta \Delta]\!] \eta = \bot$. **Teorema de Coincidencia:** Si $\eta w = \eta' w$ para todo $w \in FV$ e, entonces $[\![e]\!] \eta = [\![e]\!] \eta'$.

Asumimos la existencia de un dominio D_{∞} , junto con un isomorfismo:

0

Teorema de Renombre: Si $v_{new} \notin FV$ $e - \{v\}$, entonces $[\![\lambda v_{new}.(e/v \mapsto v_{new})]\!] = [\![\lambda v.e]\!].$

Sustituciones: $\Delta = \langle var \rangle \rightarrow \langle exp \rangle$

Teorema de Sustitución: Si $\llbracket \delta w \rrbracket \eta = \eta' w$ para todo $w \in FV$ e, entonces $[e/\delta]\eta = [e]\eta'$. **Propiedad 3.** (correctitud de la regla β): $[(\lambda v.e)e']\eta = [e/v \mapsto e']\eta$

Propiedad 4. (correctitud de la regla η): $[\![\lambda v.e \ v]\!]\eta = [\![e]\!]\eta$, si $v \notin FVe$ **Corolario**: Si $e \to^* e'$, entonces [e] = [e'].

Semántica Denotacional Normal

$D = V_{\perp}$, donde $V \approx [D \rightarrow D]$

$$\phi \in V \to [D \to D] \qquad \qquad \phi \circ \psi = Id_{D \to D}$$

$$\psi \in [D \to D] \to V \qquad \qquad \psi \circ \phi = Id_{V}$$

Dominio Semántico: $D = V_{\perp}$ $V \approx [D \rightarrow D]$ **Ambientes:** $Env = \langle var \rangle \rightarrow D$

Notación: $\iota_{\perp} \in V \to D$

Función semántica: $\llbracket _ \rrbracket \in \langle exp \rangle \to Env \to D$

$$Env \rightarrow D$$

$$[v] \eta = \eta v$$

$$[e_0 e_1] \eta = \phi_{\perp \perp} ([e_0] \eta) ([e_1] \eta)$$

$$[\lambda v. e] \eta = \iota_{\perp} \circ \psi \ (\lambda d \in D. [e] [\eta | v : d])$$

Vale la regla β , que utiliza la igualdad:

$$\phi_{\perp \mid \cdot} \circ (\iota_{\perp} \circ \psi) = Id_{D \to D}$$

Semántica Denotacional Eager

Dominio Semántico: $D = V_{\perp}$ $V \approx [V \rightarrow D]$

$$\phi \in V \to [V \to D] \qquad \qquad \phi \circ = Id_{V \to D}$$

$$\psi \in [V \to D] \to V \qquad \qquad \psi \circ \phi = Id_{V}$$

Notación: $\iota_{\perp} \in V \to D$ Ambientes: $Env = \langle var \rangle \to V$ Función semántica: $\llbracket _ \rrbracket \in \langle exp \rangle \to Env \to D$

$$\begin{split} & [\![v]\!] \eta = \iota_{\perp}(\eta v) \\ & [\![e_0 e_1]\!] \eta = (\phi_{\perp\!\!\perp}([\![e_0]\!] \eta))_{\perp\!\!\perp}([\![e_1]\!] \eta) \\ & [\![\lambda v.e]\!] \eta = \ \iota_{\perp} \circ \psi \ (\lambda z \in V.[\![e]\!] [\eta | v:z]) \end{split}$$

Ya no vale la regla β , (para contra-ejemplo alcanza un \bot):

$$[\![(\lambda x\,y.y)\,(\Delta\,\Delta)]\!]\eta=(\lambda z\in V.[\![e]\!][\eta|v:z])_{\perp\!\!\perp}\perp=\perp$$

pero

$$[\![(\lambda y.y)/x \mapsto (\Delta \Delta)]\!] \eta = [\![\lambda y.y]\!] \eta \neq \bot$$

Puesto que queremos modelar la evaluación eager, deberíamos esperar que $e\Rightarrow_E z$ implique $[\![e]\!]\eta=[\![z]\!]\eta.$

Lo podemos probar por inducción en la derivación $e \Rightarrow_E z$.