High field massless septa

A. Sanz Ull

Outline

- Lambertson limitations.
 - Injection proposal using Lambertson septa.
- Pacman as a massless septum solution.
 - Comparison with previously reported massless septa.
- Double Pacman.
- Stealth dipole proposal and massless variant.
- Truncated cosine theta septum.
- Other novel superconducting topologies.
- Conclusions.

LHC Lambertson septa limits

0.9 mm sheet of Mumetal around the vacuum chamber (7 mm thick in total)

The maximum field reachable is 1.39 T with a 25 mm apparent septum thickness while respecting the leak field requirements

Proposed injection for FCC: Lambertson septa

Parameter	Unit	FCCA	FCCB	FCCC		
Magnetic field integral	Tm	5.6	24	62.4		Thin septum
Nominal magnetic field	Т	0.7	1	1.2		
Number of magnets per extraction line	-	2	6	13		
Apparent septum thickness	mm	8	12	18		
Current	Α	1043	1043	1043		
Coil turns	-	12	17	21		
Orbiting beam gap (h/v)	mm	9/14	9/14	9/14		

Introducing the Pacman septum (massless)

Pacman concept

Optimized cross-section

- Geometry optimization, compensation coils and shimming
- Can be massless or close the yoke (shunt the magnetic circuit around both beams)

Optimised massless Pacman septum

- Apparent septum thickness ≈ 1.8 x h
 (h = gap height) i.e. 34 instead of
 required to 25 mm. Low sensitivity to
 field level.
- B < 2 T and Leak field ≈ 1e-3 T
- Closing the gap reduces the leak field level, not the transition region width.
- If a shield is used, it is not a massless septum.
- Can be built also normal conducting.

Optimised to achieve:

$$B_0 = 1.8 \text{ T}$$

$$B_{leak} = 10^{-3} T$$

Resulting septum width (1 – 99%): 34 mm

Previously reported massless septa

Iwashita (Simulations)

[1]

Yonemura (built)

[2]

	Unit	Pacman	Iwashita	Yonemura
Magnetic field	Т	1.8	0.8	0.1
Leak field	mT	8	~0.01	~0.01
Apparent septum thickness	mm	35	40	33
Gap height	mm	19	30	20
Apparent septum thickness/ Gap height	-	1.8	1.3	~1.6

Converge to Pacman geometry if pushed to high fields (2 T)

Double Pacman. Massless as a protection device

- Use a massless opposite fields septum to kick a mis-injected beam into a TDI.
- Option A→ Same function as a defocusing quadrupole but with a zero field region at the centre instead of a point. No impact on the optics of mis-steered beam.
- ~100 m length required. (Preliminary)
- Tolerances of zero field region and steep slope are challenging to combine

Double Pacman. Massless as a protection device

- Use a massless opposite fields septum to kick a mis-injected beam into a TDI.
- Option B→ Use gradient to increase deflected beam size at TDI.
- ~10 m length required (preliminary)
- Zero field region is challenging.

See talk by E. Renner. FCC-hh transfer line and injection

Stealth dipole proposal

Texas A&M (Peter McIntyre and Akhdiyor Sattarov)

- 4 T field
- 0.1 mT leak field if shielded
- 25 mm apparent septum thickness
- Compensation current ~ 2% of main current
- Designed for cable in conduit
- B vs. I not linear

| Component: B | 0.0 | 2.5 | 5.0 |

Massless variant of Stealth Dipole

2.5

- Only 10 mm opening shown
- 3.2 T field
- 0.25 T leak field
- Compensation current ~ 15% of main current

Component: B 0.0

5.0

Truncated Cosine Theta

Magnitude	Value
B [T]	4
B _{leak} bare geometry [mT]	20
B _{leak} with magnetic shielding [mT]	<0.1
Apparent septum thickness [mm]	30
Cable type [-]	Rutherford (NbTi)
Current [A]	6284
Number of turns/pole [-]	31
Magnetic length [m]	4

See [4,8] and Kei Sugita's talk: Status of truncated cosine-theta septum magnet study.

Super conducting geometry

Super ferric magnet obtained using analytic algorithm that determined location of conductors as a function of the required field profile. (Useful as a first iteration [5, 6])

Orbiting beam gap

Unipolar configuration

- Can it act as a massless septum?
- Close the coil outside the yoke (not shown)

Bipolar configuration

Same case as TCT.

3.0

Conclusions

- FCC injection to be done using three families of Lambertson septa.
- Beam dump septa system is feasible with various alternatives.
- Even if using a massless variant, beam impact on the septum, or absorber is still to be studied for the CDR.
- Use a staged approach: first SuShi, followed by Truncated Cosine-Theta (showers can quench both septa, even with absorbers).

Kei Sugita's talk: Status of truncated cosine-theta septum magnet study.

Daniel Barna's talk: Superconducting shield (SuShi): towards a full prototype

Figure: E. Renner

Thank you

References

- [1] I. Iwashita et al. Massless septum with hybrid magnet. EPAC 98, Luzern.
- [2] Y. Yonemura et al. Beam extraction of the pop ag with a massless septum. Proceedings of the PAC 2003.
- [3] A. Yamamoto et al. The superconducting inflector for the BNL g⁻² experiment. Nuclear Instruments and Methods in Physics Research A 491 (2002)
- [4] K. Sugita et al. Basic design aspects for superconducting high field septa. Submitted to PRAB special issue FCC Week 2016
- [5] S. Fartoukh. A semi-analytical method to generate an arbitrary 2D magnetic field and determine the associated current distribution. LHC project report 1012, 2007.
- [6] A. Sanz Ull. Note on the application of fartoukh's algorithm. TE-ABT Internal note, 2016
- [7] D. Barna. High field septum magnet using a superconducting shield for the Future Circular Collider. PRAB April 2017.

https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.041002

[8] A. Sanz Ull. et al. Comparison of superconducting septa topologies and parameter space exploration. IPAC proceedings 2018.

Backup. Leak field calculation

 $B\rho_{LHC} = 11e3$ and 1501 at extraction and injection (TDR)

$$B\rho_{FCC} = 166Tkm \cdot \frac{3.3TeV}{50TeV} = 11Tkm$$

From LHC Lambertson: Bleak= 2.1 mT (I take it as a homogeneus leak value. It's very conservative). 15 MSD, 4 m long each (magnetic)

$$\int B_{leakLHC} = 2.1 \ mT \cdot 15 magnets \cdot 4m/magnet = 126 mT \cdot m$$

Now we scale that leak field with the beam rigidities to obtain the TOTAL leak field allowed for FCC dump septa

$$\int B_{leakFCC} = 126mT \cdot m \cdot \frac{11e3\ T \cdot m}{1501\ T \cdot m} = 924\ mT \cdot m$$

And this leak field, since it's integrated, we do the inverse sequence as before. Divide it by N magnets, Y m long each (35 magnets, 4 m for FCC Lambertsons=6.6 mT)

Backup. Lambertson leak field map

Component: B 0.0 3.0E-03 6.0E-03

FCC Week 2018, Amsterdam

Backup. Pacman leak field map

Component: B 0.0 1.5 3.0

FCC gap and septum blade dimensions

Assuming injection at 3.3 TeV. Extraction septa dimensions.

Parameter	Unit	Value
Available length	m	120
Magnetic field integral	Tm	190
Total deflection	mrad	1.15
Blade thickness	mm	25
Good field region (hor/ver)	mm	19
Leak field integral	mTm	924
Total dump line length	km	2.8

Picture to scale

www.cern.ch