

Smart Pet Monitoring System

Can Karademir Şebnem Baydere Department of Computer Engineering, Yeditepe University

Abstract

Smart Pet Monitoring System is a real-time, Al-powered solution designed to assist pet owners with behavior-based training and remote monitoring. The system consists of a Raspberry Pi-based smart bowl, a Flutter mobile app, and a FastAPI server.

By using object detection and keypoint-based posture analysis, the system detects pooping behavior of pets. If the behavior is detected within the predefined training pad area, the system automatically dispenses a reward. Users can also manually control feeding, monitor live video, and capture snapshots via the mobile application.

This project enhances pet toilet training efficiency and provides a practical, low-cost solution for remote pet care.

Al Models Overview

lightweight three YOLOv11 Nano-based models. each specialized for a different task:

Model 1: General Object Detection

Detects cats and dogs in the frame and checks if the pet is stationary. Acts as the trigger for other models.

F1 Score ≈ 0.73 (Precision: 0.768, Recall: 0.695)

Model 2: Pooping Detection

Classifies pet behavior into four categories: Normal, Pooping, Scratching, Sitting

F1 Score ≈ 0.955 (Precision: 0.951, Recall: 0.958) Trained on 2,331 images with data augmentation

Model 3: Keypoint Detection

Detects 24 anatomical landmarks of the pet (e.g., paws, knees, tail, nose).

Used to evaluate pet posture and calculate a pooping score.

F1 Score ≈ 0.934 (Precision: 0.927, Recall: 0.941) Trained on Ultralytics Dog Pose dataset

Capture camera image Run Model 1 Run Model 3 Run Model 2 Calculete Pooping Score Yes No Change Logs Activity Diagram Referances Contact

System Architecture

The Smart Pet Monitoring System is built with a modular architecture consisting of three main components:

- Flutter Mobile Application: Allows users to watch the live stream, feed pets, and activate detection.
- FastAPI Server: Handles user/device registration and communication via HTTP and WebSocket protocols.
- Raspberry Pi Smart Bowl: Equipped with a camera and servo motor, it runs AI models for behavior detection and dispenses food based on system decisions.

Smart Bowl

The smart bowl is powered by a Raspberry Pi 5 equipped with:

- Tamera Module for real-time streaming and behavior detection
- **Servo Motor** for reward food dispensing
- The state of the s real-time)
- Fully autonomous and synchronized via WebSocket communication

It processes video locally, detects pooping behavior using onboard Al, and dispenses reward food if the behavior occurs on the training pad.

Decision Mechanism (Trigger → **Analysis** → **Reward)**

1. Trigger Stage

Model 1 continuously monitors the environment. If the pet (dog/cat) is detected and remains stationary for several frames,

👉 it triggers Model 2 and Model 3.

Parallel Analysis Stage

- Model 2 (Object Detection): Classifies the pet's posture (Pooping / Normal / Sitting / Scratching).

-Model 3 (Keypoint Detection): Detects 24 body landmarks and calculates a custom pooping score.

Score Evaluation Stage

If Model 2 detects "Pooping" with confidence > 50% and the following condition is met:

Pooping Score = (Keypoint Position Score × Keypoint Accuracy) + Model 2 Score

→ if score > 100 threshold considered valid.

Reward Stage

If the pet is on the user-defined training pad,

→ The servo motor activates to release reward food. A video recording is also started automatically.

Future Work

- Add support for cat-specific models to expand to multi-pet environments.
- Implement real-time mobile notifications for pooping events.
- Integrate infrared/night vision support for low-light detection.
- Visualize keypoints and posture analysis in the mobile app for better user insight.

System Components

Mobile Application

The mobile application—built with **Flutter**—serves as the primary user interface for interacting with the Smart Pet Monitoring System. It offers the following key functionalities:

- Live Streaming: Real-time view of the pet's environment via Raspberry Pi camera.
- Snapshot & Video Recording: Users can capture and store media on demand.
- Manual Feeding: Dispense regular or reward food through dedicated buttons.
- **Description Pooping Detection Activation**: Starts real-time behavior detection and reward mechanism.
- **Media Gallery**: Access to saved photos and videos.
- Manual Pad Marking: If the system fails to auto-detect the training pad, users can manually mark coordinates through the interface.

Results

The system was evaluated under controlled test scenarios using video and image datasets.

Key performance outcomes include:

- ✓ High Accuracy: Achieved an overall F1 Score of 0.987 using the hybrid decision mechanism.
- Fast Response Time: Average servo activation delay was measured at 1.1 seconds, including model inference.
- **X** Reduced False Positives: Compared to standalone detection, false positives were reduced by 46% using the score-based approach.

📌 Figure: Bar chart showing F1 Score comparison between Model 2 alone and the hybrid score-based method.

sbaydere@cse.yeditepe.edu.tr

can.karademir@std.yeditepe.edu.tr

[5] OpenCV Library. Bradski, G., 2000.

[2] Roboflow. Pooping Detection Dataset. [3] Ultralytics. Dog Pose Keypoint Dataset.

[1] Ultralytics. YOLOv5 and YOLOv11 models.

cankarademir74@gmail.com [4] Raspberry Pi Foundation. Raspberry Pi 5

Technical Specs.