

Muhammad Adam Fahmi Bin Mohd Taufiq A21EC

INTRODUCTION

Enterprise System Architecture, at the intersection of business and technology, simplifies information flow and organizational strategies. The Zachman Framework, developed by John Zachman, offers diverse viewpoints for understanding organizational structure. Initially introduced in 1984 and expanded in 1987, this framework transcends technological limitations to bridge corporate strategy with technological execution. It employs a two-dimensional matrix with fundamental questions ('What', 'How', 'When', 'Who', 'Where', 'Why') to represent organizational architecture visually. The framework is versatile, enabling the organization and analysis of design documents and models without specific procedural requirements, integrating viewpoints of stakeholders for a comprehensive enterprise architecture approach. This presentation aims to clarify the Zachman Framework's concepts for academics and practitioners, evaluating its usefulness in navigating complex Enterprise Architecture and Management activities.

DEFINITION ENTERPRISE ARCHITECTURE

Enterprise architecture (EA)
helps organizations respond to
changes and achieve their
business goals through effective
implementation.

EA defines organizational structure and procedures, forming the basis for technology development and operational strategies.

■Data

Business architecture aligns

with technology solutions.

company strategy and processes

It covers technical infrastructure, software applications, data structures, business processes, governance, and human resources.

Michael Platt categorizes EA into four components: business architecture, application architecture, data architecture, and technology architecture.

Data architecture manages and plans an organization's data resources and governance.

Application

Application architecture involves selecting and integrating software to improve business operations.

Technology

Technology architecture supports IT infrastructure, standards, and security.

and • EA d

for t

• It co

Mich arch tech

Busine tech

Apple to in

Data reso

• Tech secu

Thes with inno

DEFINITION: ZACHMAN FRAMEWORK

	DATA What	FUNCTION How	NETWORK Where	PEOPLE Who	TIME When	MOTIVATION Why
SCOPE (CONTEXTUAL)	List of Things Important to the Business	List of Processes the Business Performs	List of Locations in which the Business Operates	List of Organizations Important to the Business	List of Events Significant to the Business	List of Business Goals/Strat
(CONTEXTUAL)				Important to the business		
Planner	ENTITY = Class of Business Thing	Function = Class of Business Process	Node = Major Business Location	People = Major Organizations	Time = Major Business Event	Ends/Means=Major Bus. Goal/ Critical Success Factor
ENTERPRISE	e.g. Semantic Model	e.g. Business Process Model	e.g. Business Logistics System	e.g. Work Flow Model	e.g. Master Schedule	e.g. Business Plan
MODEL (CONCEPTUAL)		-				•••••
Owner	Ent = Business Entity ReIn = Business Relationship	Proc. = Business Process I/O = Business Resources	Node = Business Location Link = Business Linkage	People = Organization Unit Work = Work Product	Time = Business Event Cycle = Business Cycle	End = Business Objective Means = Business Strategy
SYSTEM	e.g. Logical Data Model	e.g. Application Architecture	e.g. Distributed System Architecture	e.g. Human Interface Architecture	e.g. Processing Structure	e.g., Business Rule Model
MODEL (LOGICAL)		—	Node = I/S Function			
Designer	Ent = Data Entity ReIn = Data Relationship	Proc .= Application Function I/O = User Views	(Processor Storage etc.) Link = Line Characteristics	People = Role Work = Deliverable	Time = System Event Cycle = Processing Cycle	End = Structural Assertion Means =Action Assertion
TECHNOLOGY	e.g. Physical Data Model	e.g. System Design	e.g. Technology Architecture	e.g. Presentation Architecture	e.g. Control Structure	e.g. Rule Design
MODEL (PHYSICAL)						•••••
Builder	Ent = Segment/Table/etc. Reln = Pointer/Key/etc.	Proc.= Computer Function I/O = Data Elements/Sets	Node = Hardware/System Software Link = Line Specifications	People = User Work = Screen Format	Time = Execute Cycle = Component Cycle	End = Condition Means = Action
DETAILED REPRESEN-	e.g. Data Definition	e.g. Program	e.g. Network Architecture	e.g. Security Architecture	e.g. Timing Definition	e.g. Rule Specification
TATIONS (OUT-OF- CONTEXT) Sub-		Date Language Street				End = Sub-condition
Contractor	Ent = Field Reln = Address	Proc.= Language Stmt I/O = Control Block	Node = Addresses Link = Protocols	People = Identity Work = Job	Time = Interrupt Cycle = Machine Cycle	Means = Step
FUNCTIONING ENTERPRISE	e.g. DATA	e.g. FUNCTION	e.g. NETWORK	e.g. ORGANIZATION	e.g. SCHEDULE	e.g. STRATEGY

The framework consists of two dimensions: the first dimension includes six interrogatives ('What', 'How', 'When', 'Who', 'Where', 'Why') that define stakeholder perspectives.

- 'What': Data, business concepts, facts, and semantics.
- 'How': Methods, functions, and technology implementation procedures.
- 'When': Timing, occurrences, and sequences of events.
- 'Who': Individuals, their responsibilities, and roles.
- 'Where': Specific network characteristics like location.
- 'Why': Motivation and reasons behind goals and objectives.

The second dimension connects to the first using concepts like data, function, network, people, time, and motivation.

COMPARATIVE ANALYSIS ...

Zachman Framework

TOGAF (The Open Group Architecture Framework)

Characteristics

- Descriptive
- Conceptual
- Matrix Structured

- Prescriptive
- Adaptable
- Open Standard

Pros

- Common Vocabulary
- Holistiv View
- Flexible

- Methodology
- Interoperability
- Scalability

Cons

- Lack of Implementation
 Guidance
- Complexity
- Limited Scalability

- Complexity
- Lack of Agility
- Dependency on Documentation

CRITICAL ANALYSIS ON THE CHALLENGES

Cultural Compatibility

Maintenance Demands

Integration Complexity Stakeholder Understanding

While the Zachman Framework offers a robust model for enterprise architecture, overcoming these challenges requires strategic planning, change management, and stakeholder engagement.

CONCLUSION The Zachman Framework is key in enterprise system architecture, offering a structured approach to manage complex information systems. Its six perspectives enable thorough analysis and collaboration, aligning technical invalues and the property of the second collaboration with business and provide abellance its adaptability and collaboration.

structured approach to manage complex information systems. Its six perspectives enable thorough analysis and collaboration, aligning technical implementation with business goals. Despite challenges, its adaptability and ongoing evolution demonstrate enduring relevance in navigating technology and business dynamics, helping organizations thrive in today's evolving landscape.