Example 5.6. Consider the periodic function x with period T=2 as shown in Figure 5.4. Let \hat{x} denote the Fourier series representation of x (i.e., $\hat{x}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$, where $\omega_0 = \pi$). Determine the values $\hat{x}(0)$ and $\hat{x}(1)$.

Figure 5.4: Periodic function *x*.

theorem for function satisfying Dirichlet condition

Solution. We begin by observing that x satisfies the Dirichlet conditions. Consequently, Theorem 5.4 applies. Thus, we have that

$$\hat{x}(0) = \frac{1}{2} \left[x(0^-) + x(0^+) \right]$$
 average of left and right
$$= \frac{1}{2}(0+1)$$

$$= \frac{1}{2} \text{ and }$$

$$\hat{x}(1) = \frac{1}{2} \left[x(1^-) + x(1^+) \right]$$
 average of left and right
$$= \frac{1}{2}(1+0)$$
 which is the second of left and right in the second