A Relaxation Approach to Feature Selection for Mixed-Effects Models

Aleksei Sholokhov, James V. Burke, Peng Zheng, and Aleksandr Aravkin

Monday 4th July, 2022

Linear Mixed-Effect Models

Linear Mixed-Effect (LME) models are often used for analyzing combined data across a range of groups.

They use use covariates to separate the population variability (fixed-effects) from the group variability (random effects).

LMEs borrow strength across groups to estimate key statistics in cases when data within units are sparse or highly variable.

Linear Mixed-Effect Models

Dataset: m groups (X_i, Z_i, y_i) , i = 1, ... m, each has n_i observations

- ▶ $X_i \in \mathbb{R}^{n_i \times p}$ group i design matrix for fixed features
- $ightharpoonup Z_i \in \mathbb{R}^{n_i \times q}$ group i design matrix for random effects
- ▶ $y_i \in \mathbb{R}^{n_i}$ group i observations

Standard Linear Regression:

Mean prediction Group 1 Group 3 2 Group 3 X, feature

$$y = X\beta + \varepsilon$$
, $\varepsilon \sim \mathcal{N}(0, \Lambda)$

Linear Mixed-Effect Model:

$$y_i = X_i \beta + Z_i u_i + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, \Lambda_i)$$

 $u_i \sim \mathcal{N}(0, \Gamma 4)$

Notation

$$\begin{aligned} y_i &= X_i \beta + Z_i u_i + \varepsilon_i & i = 1 \dots m \\ \varepsilon_i &\sim \mathcal{N}(0, \Lambda_i) \\ u_i &\sim \mathcal{N}(0, \Gamma) \end{aligned} \tag{1}$$

- ▶ p number of fixed features, q number of random effects.
- $\beta \in \mathbb{R}^p$ fixed effects, or mean effects
- $u_i \in \mathbb{R}^q$ random effects
- $ightharpoonup \Gamma \in \mathbb{R}^{q \times q}$ covariance matrix of random effects, often $\Gamma = \mathsf{Diag}\left(\gamma\right)$
- $ightharpoonup arepsilon_i \in \mathbb{R}^{n_i}$ observation noise
- \land $\Lambda_i \in R^{n_i \times n_i}$ covariance matrix for noise

Unknowns: β , u_i , γ , sometimes Λ_i .

Likelihood for Mixed Models

Negative log-likelihood:

$$\mathcal{L}(\beta, \gamma) = \sum_{i=1}^{m} \frac{1}{2} (y_i - X_i \beta)^T (Z_i \Gamma Z_i^T + \Lambda_i)^{-1} (y_i - X_i \beta) +$$

$$+ \frac{1}{2} \log \det (Z_i \Gamma Z_i^T + \Lambda_i), \quad \Gamma = \text{Diag}(\gamma)$$
(2)

Maximum likelihood estimates for β and γ solve the problem:

$$\mathcal{LME} \quad \min_{\beta \in \mathbb{R}^{p}, \ \gamma \in \mathbb{R}^{q}_{+}} \mathcal{L}(\beta, \gamma) \tag{3}$$

To select covariates we add a sparsity-promoting regularizer $R(\beta, \gamma)$

$$\mathcal{FS} - \mathcal{LME} \quad \min_{\beta \in \mathbb{R}^{p}, \ \gamma \in \mathbb{R}^{q}_{+}} \mathcal{L}(\beta, \gamma) + R(\beta, \gamma) \tag{4}$$

- $ightharpoonup \mathcal{L}(eta,\gamma)$ is smooth on its domain, quadratic w.r.t. eta and $ar{\eta}$ -weakly-convex w.r.t. γ .
- $ightharpoonup R(\beta, \gamma)$ is closed, proper, convex, with easily computed prox operator

Regularization

 $ightharpoonup R(eta, \gamma)$ is closed, proper, convex, with easily computed *prox operator*

$$\operatorname{prox}_{\alpha R + \delta_{\mathcal{C}}}(\tilde{\beta}, \tilde{\gamma}) := \underset{(\beta, \gamma) \in \mathcal{C}}{\operatorname{argmin}} R(\beta, \gamma) + \frac{1}{2\alpha} \| (\beta, \gamma) - (\tilde{\beta}, \tilde{\gamma}) \|_{2}^{2},$$

$$\operatorname{where} \ \mathcal{C} := \mathbb{R}^{p} \times R_{+}^{q}$$

$$(5)$$

Examples:

- ▶ $R(x) = \lambda \sum_{j=1}^{p} w_j ||x_j||_1$ LASSO and Adaptive LASSO penalties [1, 5]
- $R(x) = \lambda ||x||_0 \ell_0$ penalty [6, 4]
- \triangleright R(x) SCAD penalty ([2, 3])

Figure: Three simple graphs

SR3-Relaxation for Mixed-Effect Models

Original problem $FS - \mathcal{LME}$:

$$\min_{\beta \in \mathbb{R}^p, \ \gamma \in \mathbb{R}^q_+} \mathcal{L}(\beta, \gamma) + R(\beta, \gamma) \tag{6}$$

Relaxed problem MSR3:

$$\min_{\beta,\tilde{\beta}\in\mathbb{R}^{p},\,\gamma,\tilde{\gamma}\in\mathbb{R}^{q}_{+}} \mathcal{L}(\beta,\gamma) + \phi_{\mu}(\gamma) + \kappa_{\eta}(\beta-\tilde{\beta},\gamma-\tilde{\gamma}) + R(\tilde{\beta},\tilde{\gamma})$$
(7)

where the relaxation κ_{η} decouples the likelihood and the regularizer

$$\kappa_{\eta}(\beta - \tilde{\beta}, \gamma - \tilde{\gamma}) := \frac{\eta}{2} \|\beta - \tilde{\beta}\|_{2}^{2} + \frac{\eta + \bar{\eta}}{2} \|\gamma - \tilde{\gamma}\|_{2}^{2}$$
(8)

and the projection function ϕ_{μ} replaces $\gamma \geq$ 0 with a log-barrier

$$\phi_{\mu}(\gamma) := \begin{cases} -\mu \sum_{i=1}^{q} \ln(\gamma_i/\mu), & \mu > 0\\ \delta_{\mathbb{R}^{q}_{+}}(\gamma), & \mu = 0\\ +\infty, & \mu < 0 \end{cases}$$
(9)

Value Function Reformulation

 $\mathcal{MSR}3$ -relaxation replaces the original likelihood $\mathcal L$ with a value function $u_{\eta,\mu}$:

$$u_{\eta,\mu}(\tilde{\beta},\tilde{\gamma}) := \min_{(\beta,\gamma)} \mathcal{L}_{\eta,\mu}((\beta,\gamma),(\tilde{\beta},\tilde{\gamma}))$$

$$:= \min_{(\beta,\gamma)} \mathcal{L}(\beta,\gamma) + \phi_{\mu}(\gamma) + \kappa_{\eta}(\beta - \tilde{\beta},\gamma - \tilde{\gamma})$$
(10)

so MSR3-formulation (7) becomes

$$\min_{(\tilde{\beta},\tilde{\gamma})\in\mathcal{C}} u_{\eta,\mu}(\tilde{\beta},\tilde{\gamma}) + R(\tilde{\beta},\tilde{\gamma}) \tag{11}$$

When $\bar{\eta}$ is larger than the weak-convexity constant

- $ightharpoonup u_{\eta,\mu}$ is well-defined and continuously differentiable.
- ▶ Solutions $(\tilde{\beta}^*, \tilde{\gamma}^*)$ for $\mathcal{MSR}3$ converge to solutions (β^*, γ^*) of $\mathcal{FS} \mathcal{LME}$ when $\mu \to 0$ and $\eta \to \infty$.

Key observation: in practice, we don't need accurate solutions for (10): a few Newton iterations keep the solution close to the central path.

Value Function Reformulation

Figure: Comparison of the level-sets for the original likelihood (left) and $\mathcal{MSR}3$ -likelihood (right), for fixed (top) and random (bottom) effects.

Designing an Algorithm

Gradient of a Lagrangian:

$$G_{\nu,\eta}((\beta,\gamma,\nu),(\tilde{\beta},\tilde{\gamma})) := \begin{bmatrix} \nabla_{\beta} \mathcal{L}(\beta,\gamma) + \eta(\beta - \tilde{\beta}) \\ \nabla_{\gamma} \mathcal{L}(\beta,\gamma) + (\bar{\eta} + \eta)(\gamma - \tilde{\gamma}) - \nu \\ \nu \odot \gamma - \mu \mathbf{1} \end{bmatrix}$$
(12)

Lemma: For every $(\mu, \eta) \in \mathbb{R}_+ \times \mathbb{R}_{++}$,

$$(\hat{\beta}, \hat{\gamma}) = \underset{(\beta, \gamma)}{\operatorname{argmin}} \mathcal{L}_{\eta, \mu}((\beta, \gamma), (\tilde{\beta}, \tilde{\gamma}))$$

$$\iff \qquad (13)$$

$$\exists \hat{v} \in \mathbb{R}^{q}_{+} \text{ s.t. } G_{\nu, \eta}((\beta, \gamma, \hat{v}), (\tilde{\beta}, \tilde{\gamma})) = 0$$

If $\mu>0$, then $\hat{\mathbf{v}}=-\nabla\phi_{\mu}(\hat{\gamma})$, and if $\mu=0$, then $\hat{\mathbf{v}}$ is the unique KKT multiplier associated with the constraint $0\leq\gamma$.

MSR3-fast Algorithm

```
1 progress \leftarrow True; iter = 0;
       2 \beta^+, \tilde{\beta}^+ \leftarrow \beta_0; \quad \gamma^+, \tilde{\gamma}^+ \leftarrow \gamma_0; \quad v^+ \leftarrow 1 \in \mathbb{R}^q; \quad \mu \leftarrow \frac{v^{+'}}{10\pi}
        3 while iter < max_iter and ||G_{\mu}(\beta^+, \gamma^+, \nu^+)|| > \text{tol} and progress
                                   do
       4 | \beta \leftarrow \beta^+; \quad \gamma \leftarrow \gamma^+; \quad \tilde{\beta} \leftarrow \tilde{\beta}^+; \quad \tilde{\gamma} \leftarrow \tilde{\gamma}^+
5 | [dv, d\beta, d\gamma] \leftarrow \nabla G_{\mu}((\beta, \gamma, v), (\tilde{\beta}, \tilde{\gamma}))^{-1} G_{\mu}((\beta, \gamma, v), (\tilde{\beta}, \tilde{\gamma}))
                                                            \alpha \leftarrow 0.99 \times \min \left(1, -\frac{\gamma_i}{d\gamma_i}, \forall i: d\gamma_i < 0\right)
       6 \beta^+ \leftarrow \beta + \alpha d\beta; \gamma^+ = \gamma + \alpha d\gamma; v^+ \leftarrow v + \alpha dv
                                      if \|\gamma^{+} \odot v^{+} - q^{-1}\gamma^{+} v^{+} 1\| > 0.5 q^{-1} v^{+} \gamma^{+} then continue;
        8
                                                 else
                                                             \tilde{\beta}^+ = \operatorname{prox}_{\alpha R}(\beta^+); \quad \tilde{\gamma}^+ = \operatorname{prox}_{\alpha R + \delta_{\mathbb{R}_+}}(\gamma^+); \quad \mu = \frac{1}{10} \frac{v^{+} \gamma^+}{\sigma^+}
                                                      end
 10
                                                        progress = (\|\beta^+ - \beta\| \ge \text{tol or } \|\gamma^+ - \gamma\| \ge \text{tol or } \|\tilde{\beta}^+ - \tilde{\beta}\| \ge \text{tol or } \|\tilde{\beta}^+ - \tilde{\beta}
 11
                                                               \|\tilde{\gamma}^+ - \tilde{\gamma}\| > \text{tol}
                                                        iter += 1
 12
13 end
14 return \tilde{\beta}^+, \tilde{\gamma}^+
```

Application to Synthetic Problems

The Experiment

- ▶ The number of fixed effects *p* and random effects *q* is 20.
- $\beta = \gamma = \frac{1}{2}[1, 2, 3, \dots, 10, 0 \dots, 0]$
- ▶ 9 groups with sizes [10, 15, 4, 8, 3, 5, 18, 9, 6]
- $ightharpoonup X_i \sim \mathcal{N}(0, I)^p, Z_i = X_i, \varepsilon_i \sim \mathcal{N}(0, 0.3^2 I)$
- ► Each experiment is repeated 100 times.
- ▶ Grid-search for $\eta \in [10^{-4}, 10^2]$, golden search for $\lambda \in [0, 10^5]$
- Final model is chosen to maximize BIC

Regularizer	Model Metric	PGD	MSR3	MSR3-fast
LO	Accuracy	0.89	0.92	0.92
	Time	41.68	88.54	0.13
L1	Accuracy	0.73	0.88	0.88
	Time	38.39	9.13	0.13
ALASSO	Accuracy	0.88	0.92	0.91
	Time	34.55	65.19	0.12
SCAD	Accuracy	0.71	0.93	0.92
	Time	77.62	84.67	0.17

Application to Synthetic Problems

Benefits:

- MSR3-relaxation has similar (and sometimes better!) feature selection performance than the original likelihood.
- \blacktriangleright $\mathcal{MSR}3\text{-fast}$ optimization accelerates the compute time by $\sim 10^2.$

Setbacks:

 $\triangleright \eta$ is a new hyperparameter to tune.

ℓ_0 -based Covariate Selection for Bullying Study from GBD

Figure: Fixed and random covariate selection for Bullying dataset from [?]. The model selected 9 covariates, 7 of which were historically significant, and did not select 4 covariates, 1 of which was historically significant.

Thank You!

The code is available on GitHub: https://github.com/aksholokhov/pysr3

- All estimators are fully compatible to sklearn library.
- ▶ Implements SR3 for linear, generalized-linear, and linear mixed-effect models.
- Has tutorials, tests, and documentation.

References:

- Howard D. Bondell, Arun Krishna, and Sujit K. Ghosh. Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models. <u>Biometrics</u>, 66(4):1069–1077, dec 2010.
- [2] Jianqing Fan and Runze Li. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. <u>Journal of the American Statistical Association</u>, 96(456):1348–1360, dec 2001.
- [3] Yingying Fan and Runze Li. Variable selection in linear mixed effects models. <u>The Annals of Statistics</u>, 40(4):2043–2068, aug 2012.
- [4] Richard H. Jones. Bayesian information criterion for longitudinal and clustered data. Statistics in Medicine, 30(25):3050–3056, nov 2011.
- [5] Bingqing Lin, Zhen Pang, and Jiming Jiang. Fixed and random effects selection by REML and pathwise coordinate optimization. <u>Journal of Computational and</u> Graphical Statistics, 22(2):341–355, 2013.
- [6] Florin Vaida and Suzette Blanchard. Conditional Akaike information for mixed-effects models. Biometrika, 92(2):351–370, jun 2005.

