

PHY101/201

USN 1 M S

M S RAMAIAH INSTITUTE OF TECHNOLOGY

(AUTONOMOUS INSTITUTE, AFFILIATED TO VTU)
BANGALORE ~ 560 054

SEMESTER END EXAMINATIONS - JUNE 2015

Course & Branch : B.E.-Common to All Branches

Semester : 1/11

Subject

Engineering Physics

Max. Marks: 100

Subject Code

PHY101/201

Duration : 3 Hrs

Instructions to the Candidates:

Answer one full question from each unit.

UNIT ~ I

- 1. a) Derive the equation for bulk modulus in terms $\alpha \& \beta$, and hence arrive at the (06) relation between Y, k and σ .
 - b) State and prove parallel axes theorem. Compare the moments of inertia of a (08) rectangular plate of length 20 cm, breadth 10 cm and mass 1 kg, about the axes passing through its center and perpendicular to its plane, and passing through the edge parallel to the breadth.
 - c) Distinguish between stress and pressure. Derive the equation for bending (06) moment of a beam.
- a) Sketch the different forces acting on a single cantilever loaded at its free end (08)
 and arrive at the equation for the depression at its free end.
 - b) Define radius of gyration. Derive the equation for the moment of inertia of a (06) circular plate about an axis passing through its center and perpendicular to its plane.
 - c) A cylindrical wire of radius 0.5 mm and length 25 cm is hung vertically. (06) Calculate the couple to be applied so that its free end is twisted through 1° . The Young's modulus of the material of the wire is $20 \times 10^{10} \text{ Nm}^{-2}$ and its Poisson's ratio is 0.43.

UNIT - II

- 3. a) Distinguish between spontaneous emission and stimulated emission. What (05) are the basic requisites of a laser system and conditions for laser action.
 - b) Discuss the principle behind the working of an optical fiber. Calculate the (05) power output from an optical fiber of length 4500 m, with an attenuation coefficient 0.23 dB km⁻¹, if the input power is 130 mW.
 - c) Describe the different modes of vibration of CO₂ molecule. Explain the (16 construction and working of a CO₂ laser with relevant figures.

Page 1 of ?

PHY101/201

A. I.	N	Define attenuation in an optical fiber and write the expression for attenuation	(08)
	**	coefficient. Discuss any three mechanisms leading to attenuation.	
	b) -	Determine the number modes supported by a step index multimode optical	(04)
ς.		fiber of core and clad refractive indices 1.54 and 1.50 respectively, for a	
•		carrier wave of wavelength 0.8 µm. The diameter of the core is 70 µm.	
	c)	Explain the principle and working of a semiconductor laser.	(06)
	d)	Calculate the ratio of populations of two energy levels separated by 2.6 eV at	(02)
		a temperature of 50°C.	
		UNIT - III	
5.	a)	Explain the de Broglie's hypothesis. Show that particle velocity is equal to	(06)
		group velocity.	
	b)	Apply Schrodinger wave equation to the case of a particle incident on a step	(80)
		potential of height V greater than the energy of the particle, E and show that	
		the particle eventually gets reflected. How is this different from a classical	
		physics.	
	c)	What are the characteristics of a wave function? Calculate the probability of	(06)
		finding a particle in the first quarter of the ground state of a 1-dimensional	
		potential well of infinite height and of finite width.	
6.	a)	Set up 1-dimensional time independent Schrodinger wave equation.	(06)
	b)	Derive the expression for reflection and transmission coefficients when	(80)
		particles of energy E are incident on the step potential with E>V.	
	c)	Explain the Heisenberg uncertainty principle and evaluate the intrinsic line	(06)
		width of 650 nm spectral line if the life time of the excited state is 5 ns.	
		4 (h) 1000 - 100 4	
_		UNIT ~ IV	(00)
7.	a)	Derive the expression for electron concentration in conduction band of	(08)
		semiconductor.	(a.=)
	b)	Define relaxation time. Derive the equation for the electrical conductivity in	(05)
		metals according to the classical free electron theory.	•
	c)	What is Hall effect? Derive the expression for Hall voltage. The Hall voltage	(07)
		was found to be 1 mV across the width when a magnetic field of 50 T was	
		applied to a material carrying a current of 600 A. Calculate the free charge	
		carrier concentration and the Hall coefficient.	•

PHY101/201

- 8. a) Define density of states in metals and derive the equation for the density of (08) states.
 - b) Define Fermi factor and discuss its variation with temperature and energy (05) with relevant graph.
 - c) Show that the intrinsic Fermi level is at the center of the energy gap of an (07) intrinsic semiconductor if $m_e^* = m_h^*$. The energy gap of Si is 1.1 eV. The effective density of states for electrons and holes are 5.15 x 10^{19} cm⁻³ and 1.9 x 10^{19} cm⁻³ respectively at 450K. Calculate the intrinsic carrier concentration.

UNIT ~ V

9. a) What are the different forces acting between the atoms in a molecule? The (05) energy of interaction between two particles in the field of each other is given by $U(r) = \frac{-a}{r} + \frac{b}{r^9}$ where a and b are constants. Show that the particle form

a stable compound for $r = r_0 = \left(\frac{9b}{a}\right)^{\frac{1}{8}}$.

- b) Distinguish between primitive cell and unit cell. Define a bravais lattice. (05) Identify the following systems: a) a=b=c and $a=\beta=\gamma$, b) $a\neq b\neq c$ and $a\neq \beta\neq \gamma$ and c) $a\approx b\neq c$ and $a=\beta\approx 90^\circ$ $\gamma=120^\circ$.
- c) Define atomic packing fraction and estimate its value in case of an FCC and (10) BCC systems. Estimate the radius of atoms crystallizing into a simple cubic lattice if Bragg planes {101} lead to first order diffraction of X-ray of wavelength 1.2 Å when the angle of incidence is 88°.
- 10. a) What is a crystal defect? Discuss any three types of crystal defects. (06)
 - b) Derive the expression for cohesive energy of a diatomic molecule. Sketch u(r) (08) with r.
 - c) Explain how Miller indices of a plane are obtained. Determine the Miller (06) indices of a plane making the intercepts on the major axes in a certain cubic crystal with lattice parameter 1 Å, in the ratio 1:3/2:2 and mark the same plane in a unit cell. Calculate the inter planar spacing.
