UNIVERSIDADE DO VALE DO ITAJAÍ ESCOLA DO MAR, CIÊNCIA E TECNOLOGIA CURSO DE ENGENHARIA DE COMPUTAÇÃO PROCESSAMENTO DIGITAL DE SINAIS

RELATÓRIO

por

Jéssica Cristina Tironi

UNIVERSIDADE DO VALE DO ITAJAÍ ESCOLA DO MAR, CIÊNCIA E TECNOLOGIA CURSO DE ENGENHARIA DE COMPUTAÇÃO PROCESSAMENTO DIGITAL DE SINAIS

RELATÓRIO

por

Jéssica Cristina Tironi

Relatório apresentado como requisito parcial da disciplina Processamento Digital de Sinais do Curso de Engenharia de Computação para análise e aprovação.

Professores Responsáveis: Walter Antonio Gontijo

1 AULA 6

1.1 MÉDIA MÓVEL

Foi realizado o desenvolvimento do programa média móvel utilizando a linguagem C. Para validação foi utilizado um sweep e um áudio de voz.

Utilizando um k = 4, temos 4 coeficientes com um valor de 1/4, quando aplicados a um sinal de sweep temos:

Utilizando um k = 8, temos 8 coeficientes com um valor de 1/8, quando aplicados a um sinal de sweep temos:

Utilizando um k = 16, temos 16 coeficientes com um valor de 1/16, quando aplicados a um sinal de sweep temos:

Utilizando um k = 32, temos 32 coeficientes com um valor de 1/32, quando aplicados a um sinal de sweep temos:

1.2 DELAY

De

1.3 ECO

Para o eco foi utilizado um filtro de áudio, a frequência de amostragem que foi utilizada foi de 8000 Hz, a0 = 0.5, a1 = 0.3 e a2 = 0.2. A seguir podemos visualizar o áudio antes de passar pelo filtro:

Após passar o áudio no eco, foi obtido o seguinte áudio, sendo possível visualizar a repetição.

2 AULA 7 - LISTA DE EXERCÍCIOS

1. Determine a transformada z inversa de:

$$X(z) = \frac{4z}{(z-1)*(z-3)} = \frac{K1}{z-1} + \frac{K2}{z-3}$$

$$\frac{4z*(z-1)*(z-3)}{(z-1)*(z-3)} = \frac{K1*(z-1)*(z-3)}{z-1} + \frac{K2*(z-1)*(z-3)}{z-3}$$

$$4z = K1*(z-3) + K2*(z-1)$$

$$4*1 = K1*(1-3) + K2*(1-1)$$

$$4 = K1 * (-2)$$

$$K1 = \frac{4}{-2} = -2$$

$$4 * 3 = K1 * (3 - 3) + K2 * (3 - 1)$$

$$12 = K2 * (2)$$

$$K2 = \frac{12}{2} = 6$$

$$\frac{-2}{z-1} + \frac{6}{z-3} = -2 * \left(\frac{z}{z-1}\right) + 6 * \left(\frac{z}{z-3}\right)$$
$$x[n] = 2 * u[n] + 3^n * u[n]$$

2. Determine a função de transferência dos sistemas discretos modelados pelas seguintes equações diferença;

a)

$$y(k) - \frac{1}{2}y(k - 1) = x(k) + \frac{1}{3}x(k - 1)$$

$$Y(z) - \frac{1}{2}z^{-1} * Y(z) = X(z) + \frac{1}{3} * z^{-1} * X(z)$$

$$Y(z) * (1 - \frac{1}{2}z^{-1}) = (1 + \frac{1}{3} * z^{-1}) * X(z)$$

$$Y(z) _{-} (1 + \frac{1}{3} * z^{-1})$$

$$\frac{Y(z)}{X(z)} = \frac{\left(1 + \frac{1}{3} * z^{-1}\right)}{1 - \frac{1}{2}z^{-1}}$$

$$H(z) = \frac{\left(z + \frac{1}{3}\right)}{z - \frac{1}{2}}$$

b)
$$y(k) - \frac{3}{4}y(k-1) + \frac{1}{8}y(k-2) = 2x(k)$$
$$Y(z) - \frac{3}{4} \cdot z^{-1} + \frac{1}{8} \cdot z^{-2} = 2 \cdot X(z)$$

$$Y(z) - \frac{3}{4} * z^{-1} * Y(z) + \frac{1}{8} * z^{-2} * Y(z) = 2 * X(z)$$

$$Y(z) * (1 - \frac{3}{4} * z^{-1} + \frac{1}{8} * z^{-2}) = 2 * X(z)$$

$$\frac{Y(z)}{X(z)} = \frac{2}{1 - \frac{3}{4} * z^{-1} + \frac{1}{9} * z^{-2}}$$

$$H(z) = \frac{2z^2}{z^2 - \frac{3}{4} * z + \frac{1}{8}}$$

- 3. Para cada umas das funções de transferência discretas, pede-se:
 - Determine os polos e zeros da função;

- Esboce os polos e zeros no plano z (desenhe também o circuito de raio unitário!);
 Obtenha a correspondente h[n]

$$H(z) = 3 * \frac{z - 1.2}{(z - 0.5) * (z - 0.9)}$$

$$H(z) = \frac{3 * z - 3.6}{z^2 - 1.4 * z + 0.45}$$

Zeros: 3.6

Polos:

$$x = \frac{1.4 \pm \sqrt{1.4^2 - 4 * 1 * 0.45}}{2}$$

$$X1 = 0.9$$

$$X2 = 0.5$$

$$H(z) = \frac{3z - 3.6}{(z - 0.5) * (z - 0.9)} = \frac{A}{(z - 0.5)} + \frac{B}{(z - 0.9)}$$

$$= \frac{(3z - 3.6) * (z - 0.5) * (z - 0.9)}{(z - 0.5) * (z - 0.9)}$$

$$= \frac{A * (z - 0.5) * (z - 0.9)}{(z - 0.5)} + \frac{B * (z - 0.5) * (z - 0.9)}{(z - 0.9)}$$

$$= (3z - 3.6) = A * (z - 0.9) + B * (z - 0.5)$$

$$(3 * 0.5 - 3.6) = A * (0.5 - 0.9) + B * (0.5 - 0.5)$$

$$(1.5 - 3.6) = A * (-0.4)$$

$$A = \frac{-2.1}{-0.4} = 5.25$$

$$(3 * 0.9 - 3.6) = A * (0.9 - 0.9) + B * (0.9 - 0.5)$$

$$2.7 - 3.6 = B * (0.4)$$

$$B = \frac{-0.9}{0.4} = -2.25$$

$$= \frac{5.25}{(z - 0.5)} + \frac{-2.25}{(z - 0.9)}$$

$$h(n) = 3\delta[n] * (-1.4^n) * u[n]$$

b)

$$H(z) = \frac{z}{(z - 0.9) * (z - 1.2)}$$

Zeros: 0

Polos: 1.2 e 0.9

$$H(z) = \frac{z}{(z-0.9)*(z-1.2)} = \frac{A}{(z-0.9)} + \frac{B}{(z-1.2)}$$

$$= \frac{z * (z - 0.9) * (z - 1.2)}{(z - 0.5) * (z - 0.9)}$$

$$= \frac{A * (z - 0.9) * (z - 1.2)}{(z - 0.9)} + \frac{B * (z - 0.9) * (z - 1.2)}{(z - 1.2)}$$

$$= z = A * (z - 1.2) + B * (z - 0.9)$$

$$z = A * (1.2 - 0.9) + B * (0.9 - 0.9)$$

$$z = A * (0.3)$$

$$K1 = \frac{0.9}{0.3} = 3$$

$$z = A * (0.9 - 0.9) + B * (0.9 - 1.2)$$

$$\mathbf{z} = \mathbf{B} * (-0.3)$$

$$B = \frac{1.2}{-0.3} = -4$$

$$=\frac{3}{(z-0.9)}+\frac{-4}{(z-1.2)}$$

$$h(n) = (-0.9^n - 1.2^n) * u[n]$$

$$h(n) = (-3.1^n) * u[n]$$

$$H(z) = \frac{z + 0.9}{z^2 + z + 0.41}$$

zeros = -0.9

Polos =

-0.5000 + 0.4000i

-0.5000 - 0.4000i

a)

b)

3 AULA 8

Transformada Z

 TAREFA: Obtenha a resposta em frequencia da sequencia finita dada por:

• $X[k] = \{0,1; 0,2; 0,4; 0,2; 0,1\}$

• .

Exemplo - Transformação "s" -> "z"

- TAREFAS: Obter a função de transferencia H[z] do filtro passa-baixas
- Plotar os pólos e zeros
- Implementar um programa para executar a equação diferença do filtro.
- Validar essa implementação com um sinal de entrada de sweep.

Cálculo:

$$H(z) = \frac{wc}{s + wc}$$

$$wc = \frac{1}{RC}$$

$$fc = \frac{1}{2\pi RC}$$

$$F = \frac{2}{T}$$

$$H(z) = \frac{wc}{F(1 - Z^{-1}) + wc(\frac{1 - Z^{-1}}{1 + Z^{-1}})}$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{wc + wc * z^{-1}}{(F + wc) + (wc - F) * z^{-1}}$$

$$Y(n) = (F + wc) + Y(z)(wc - F) * z^{-1}$$

$$Y(n) = wxX(z) + wcX(z) * z^{\wedge} - 1$$

$$Y[n] = \frac{wc}{(F + wc)} * X[n] + \frac{wc}{(F + wc)} * X[n - 1] - \frac{(wc - F)}{(F + wc)} * Y[n - 1]$$

$$Y[n] = \frac{6280}{(16000 + 6280)} X[n] + \frac{6280}{(16000 + 6280)} X[n - 1] - \frac{(6280 - 16000)}{(16000 + 6280)} Y[n - 1]$$

$$Y[n] = 0.282 * X[n] + 0.282 * X[n - 1] - (-0.436) * Y[n - 1]$$

Plotando os pólos e os zeros:

Resposta na frequência:

$$H(z) = \frac{Y(z)}{H(z)} = \frac{wc + wc * z^{-1}}{(F + wc) + (wc - F) * z^{-1}}$$
$$H(z) = \frac{6280 + 6280 * z^{-1}}{22280 - 9720 * z^{-1}}$$

Validando com um sweep:

Onde:

- Azul = Entrada.
- Rosa = Saída.

3.3 FILTRO IIR

Projeto e implementação do filtro IIR

TAREFAS:

Plotar os pólos e zeros

- Implementar um programa para executar a equação diferença do filtro.
- Validar essa implementação com um sinal de entrada de sweep.

Cálculos:

$$H(z) = \frac{s}{s + wc}$$

$$F = \frac{2}{T}$$

$$H(z) = \frac{\frac{2}{T} * (\frac{1 - z^{-1}}{1 + z^{-1}})}{\frac{2}{T} * (\frac{1 - z^{-1}}{1 + z^{-1}}) + wc}$$

$$H(z) = \frac{F * (\frac{1 - z^{-1}}{1 + z^{-1}})}{F * (\frac{1 - z^{-1}}{1 + z^{-1}}) + wc}$$

$$H(z) = \frac{F * (\frac{1 - z^{-1}}{1 + z^{-1}})}{F * (\frac{1 - z^{-1}}{1 + z^{-1}}) + wc * \frac{1 - z^{-1}}{1 + z^{-1}}}$$

$$H(z) = \frac{F * (1 - z^{-1})}{F * (1 - z^{-1}) + wc * (1 + z^{-1})}$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{F - F * z^{-1}}{(F + wc) + (wc - F) * z^{-1}}$$

$$Y(n) = (F + wc) + Y(z)(wc - F) * z^{-1}$$

$$Y(n) = FX(z) - FX(z) * z^{-1}$$

$$Y(n) = \frac{F}{(F + wc)} * X[n] - \frac{F}{(F + wc)} * X[n - 1] - \frac{(wc - F)}{(F + wc)} * Y[n - 1]$$

$$Y[n] = \frac{16000}{(16000 + 6280)} X[n] + \frac{16000}{(16000 + 6280)} X[n - 1] - \frac{(6280 - 16000)}{(16000 + 6280)} Y[n - 1]$$

$$Y[n] = 0.72 * X[n] + 0.72 * X[n - 1] - (-0.436) * Y[n - 1]$$

Resposta em frequência:

$$H(z) = \frac{16000 - 16000 * z^{-1}}{22280 - 9720 * z^{-1}}$$

Plotando os polos e os zeros:

Validando a implementação:

Onde:

- Azul = Entrada.
- Rosa = Saída.

4 AULA 9

4.1 FILTRO FIR

4.1.1 Capítulo 14 – Introduction to Digital Filters

1) Apresente as principais características que são desejáveis em um filtro digital.

R: As principais características para um filtro digital na frequência do tempo são: para separar frequências muito próximas, o filtro deve ter um roll-off rápido, para que as frequências da banda passante se movam inalteradas pelo filtro, não deve haver ondulação da banda passante e por fim para bloquear adequadamente as frequências de banda de parada, é necessário ter uma boa atenuação de banda de parada.

Já para um filtro no domínio do tempo são: Para distinguir eventos em um sinal, a duração da resposta ao degrau deve ser menor que o espaçamento dos eventos. Isso determina que a resposta ao degrau seja a mais rápida, overshoot em a resposta do degrau, geralmente deve ser eliminado porque muda a amplitude das amostras no sinal; esta é uma distorção básica de as informações contidas no domínio do temp. E por último, muitas vezes é desejável que a metade superior da resposta ao degrau seja simétrica com a

metade inferior. Essa simetria é necessária para fazer com que as bordas ascendentes pareçam iguais às bordas descendentes. Essa simetria é chamada de fase linear, porque a resposta em frequência tem uma fase que é uma linha reta.

2) Apresente os procedimentos para se obter a partir de um filtro PB o PA, PF e RF.

R: Os filtros PA, PF e RF, são projetados começando com um filtro passa-baixa e, em seguida, convertendo-o na resposta desejada. Existem duas maneiras para a conversão do passa-baixa para o passa-alta: inversão espectral e reversão espectral.

Para realizar a conversão do PB para o PA é necessário fazer duas coisas: primeiro, altere o sinal de cada amostra no kernel do filtro e em segundo lugar adicione um a amostra no centro da simetria. A inversão espectral inverte a resposta de frequência de cima para baixo, alterando as bandas de passagem em bandas de parada e as bandas de parada em bandas de passagem. Em outras palavras, ele altera um filtro de passa-baixa para passa-alta, passa-alta para passa-baixa, passa-faixa para rejeita-faixa ou rejeita-faixa para passa-faixa.

Por último, os núcleos de filtro passa-baixa e passa-alta podem ser combinados para formar filtros passa-faixa e rejeita-faixa. Em suma, adicionar os kernels do filtro produz um filtro de rejeição de banda, enquanto a convolução dos kernels do filtro produz um filtro passa-banda. Elas se baseiam na maneira como os sistemas em cascata e paralelos são combinados. A combinação múltipla dessas técnicas também pode ser usada.

4.1.1.1 Capítulo 16 - Windowed-Sinc Filters

1) Descreva em detalhes as etapas mostradas na Fig 16-1;

R: A Figura 16-1 ilustra a ideia por trás do filtro windowed-sinc. Em (a), a resposta em frequência do filtro passa-baixa ideal é mostrada. Todas as frequências abaixo da

frequência de corte, fc, são passadas com amplitude unitária, enquanto todas as frequências C mais altas são bloqueadas. A banda de passagem é perfeitamente plana, a atenuação na banda de parada é infinita e a transição entre as duas é infinitesimalmente pequena.

Tomando a Transformada Inversa de Fourier desta resposta de frequência ideal produz o kernel do filtro ideal (resposta ao impulso) mostrado em (b). Esse sinal é da forma geral: $\sin(x)/x$, chamada de função sinc, dada por:

$$h[i]' = \frac{\sin(2Bf_c e)}{iB}$$

A convolução de um sinal de entrada com este kernel de filtro fornece um filtro passabaixo perfeito. O problema é que a função sinc continua tanto no infinito negativo quanto no positivo sem cair para amplitude zero. Embora esse comprimento infinito não seja um problema para a matemática, é uma rolha para os computadores.

Para contornar este problema, foi feito duas modificações na função sinc em (b), resultando na forma de onda mostrada em (c). Primeiro, ele é truncado para M%1 pontos, escolhidos simetricamente ao redor do lóbulo principal, onde M é um número par. Todas as amostras fora desses pontos são definidas como zero ou simplesmente ignoradas. Em segundo lugar, toda a sequência é deslocada para a direita de modo que vá de 0 a M. Isso permite que o kernel do filtro seja representado usando apenas índices positivos. Embora muitas linguagens de programação permitam índices negativos.

Como o kernel do filtro modificado é apenas uma aproximação do kernel do filtro ideal, ele não terá uma resposta de frequência ideal. Para encontrar a resposta em frequência obtida, pode-se tomar a transformada de Fourier do sinal em (c), resultando na curva em (d). Há uma ondulação excessiva na banda de passagem e uma atenuação fraca na banda de. Esses problemas resultam da descontinuidade abrupta nas extremidades da função sinc truncada.

A Figura (e) mostra uma curva suavemente afilada chamada de janela Blackman. Multiplicando o sinc truncado, (c), pela janela Blackman, (e), resulta no kernel do filtro

sinc janelado mostrado em (f). A ideia é reduzir a brusquidão das extremidades truncadas e assim melhorar a resposta de frequência. A Figura (g) mostra essa melhora. A banda passante agora é plana e a atenuação da banda de parada é tão boa que não pode ser vista neste gráfico.