Плотность. $\rho = \frac{m}{V}$. $[\rho] = \frac{\mathrm{KP}}{\mathrm{M}^3}$. Bec. P = mg. $[P] = \mathrm{H}$.

Давление. $p = \frac{F}{S}$. $[p] = \Pi a$.

Давление столба жидкости. $p = \rho g h$.

Сила Архимеда. $F_{\rm apx}=\rho gV$. Скорость. $V=\frac{S}{t}$. $[V]=\frac{\rm M}{\rm c}$. Ускорение. $a=\frac{\Delta V}{\Delta t}$. $[a]=\frac{\rm M}{\rm c^2}$.

Формулы с ускорением:

- $\bullet \ V_x = V_{0x} + a_x t.$
- $S_x = V_{0x}t \pm \frac{a_x t^2}{2}$
- $x = x_0 + V_{0x}t + \frac{a_x t^2}{2}$.

Сила трения. $F_{\text{тр}} = N\mu$.

Закон Гука. $F_{\text{упр}} = -k\Delta x$.

Параллельное соединение пружин. $k_{06}=k_1+k_2+\ldots$ Последовательное соединение пружин. $\frac{1}{k_{06}}=\frac{1}{k_1}+\frac{1}{k_2}+\ldots$ Коэффиицент полезного действия. $\eta=\frac{A_{\text{non}}}{A_{\text{sar}}}$.

Момент. Fl.

Кинетическая энергия. $E_{\kappa} = \frac{mV^2}{2}$.

Потенциальная энергия. $E_{\pi}=mgh$.

Потенциальная энергия пружины. $E_{\rm n}=-\frac{k\Delta x^2}{2}$

Внутренняя энергия. $\sum E_{\text{к. мол.}} + E_{\text{п. взаим.}}$

Количество теплоты через теплоемкость. $Q = C\Delta t$.

Количество теплоты через удельную теплоемкость. $Q=cm\Delta t$.

Закон Ньютона-Рихмана. $P=\alpha(t_{\text{тела}}-t_{\text{окр}}).$ Абсолютная влажность воздуха. $\rho_{\text{абс}}=\frac{m_{H_2O}}{V}.$ Относительная влажность воздуха. $\varphi=\frac{\rho_{\text{абс}}}{\rho_{\text{нп}(t)}}\cdot 100\%.$

Закон Фурье. $P = \frac{\alpha(t_1 - t_2)}{l}$.

Закон Кулона. $F = \frac{k \cdot |q_1 \cdot q_2|}{\varepsilon \cdot R^2}$. $k = 9 \cdot 10^9 \frac{\text{H·m}^2}{\text{K·n}^2}$, ε - диэлектрическая проницаемость(в вакууме 1). Напряженность. $E = \frac{F}{q} = \frac{k \cdot q}{r^2}$. $[E] = \frac{\text{B}}{\text{M}} = \frac{\text{H}}{\text{K·n}}$.

Потенциальная энергия в электрическом поле, действующий на точку. $W = q \varphi$. $[\varphi] = B$.

Напряжение. $U = \varphi_1 - \varphi_2 = I \cdot R = \frac{A}{a}$. [U] = B.

Сила тока. $I=\frac{q}{t}=\frac{U}{R}.~[I]=A=\frac{\mathrm{K}\pi}{\mathrm{c}}.$ Сопротивление. $R=\frac{U}{I}=\frac{\rho\cdot l}{S}.~[R]=\frac{\mathrm{B}}{\mathrm{A}}=\mathrm{Om}.$

Закон Ома. $I \sim U; I = \frac{U}{R}$.

Последовательное соединение резисторов. $I_{06}=I_1=I_2=\dots$; $U_{06}=U_1+U_2+\dots$; $R_{06}=R_1+R_2+\dots$. Параллельное соединение резисторов. $I_{06}=I_1+I_2+\dots$; $U_{06}=U_1=U_2=\dots$; $\frac{1}{R_{06}}=\frac{1}{R_1}+\frac{1}{R_2}+\dots$

Закон Джоуля-Ленца. $Q = I^2 R t = \frac{U^2 t}{R} = I U t$.

Мощность электрического тока. $P=I^2R=\frac{U^2}{R}=IU$.

ЭДС(Электро-движущая сила). $\varepsilon=\frac{A_{\rm cr}}{q}$. $[\varepsilon]={\rm B}$. Закон Ома для участка цепи с источником. $\Phi_A-\Phi_B+\varepsilon=I\cdot(R+r)$.

Законы Кирхгофа:

- 1. $\sum_{i} \pm I_{i} = 0$.
- 2. $\sum_{i} \pm \varepsilon_{i} = \sum_{i} \pm I_{i} \cdot R_{i} + \sum_{i} \pm I_{i} \cdot r_{i}$.

Шунты:

- Амперметр. $R = \frac{R_A}{n-1}$.
- Вольтметр. $R = (n-1) \cdot R_V$.

Емкость конденсатора. $c=\frac{q}{U}=\frac{\varepsilon_0\cdot\varepsilon\cdot S}{d}.$ $[c]=\frac{K\pi}{B}=\Phi;\ \varepsilon_0$ - электрическая постоянная; ε - диэлектрическая проницаемость, величина, которая показывает во сколько раз диэлектрик ослабевает электрическое поле. $\varepsilon_0=\frac{1}{4\cdot\pi\cdot k}=$ $8.85 \cdot 10^{-12} \frac{\Phi}{M}$

Сила Ампера. $F_A = B \cdot I \cdot l \cdot \sin \alpha$. α - угол между линиями индукции магнитного поля и направлением тока.

Сила Лоренца. $F_{\Pi} = B \cdot q \cdot v \cdot \sin \alpha$. α - угол между линиями индукции магнитного поля и направлением скорости

заряда.

Поток вектора магнитной индукции. $\Phi_{\scriptscriptstyle \rm B}=BS\cos\alpha.$ $[\Phi_{\scriptscriptstyle \rm B}]=$ Вб.

Индукция магнитного поля. $B = \frac{F_{max}}{I \cdot l}$. [B] = Тл.

Закон радиоактивного распада. $N = \frac{N_0}{2\frac{t}{T}}$. T - время полураспада, N_0 - изначальное число атомов, t - прошедшее время.

Дефект масс. $\Delta m = M_{\rm H} + M_{\rm H} - M_{\rm H}$.

Формула фокусного расстояния линз. $\pm \frac{1}{F} = \pm \frac{1}{d} \pm \frac{1}{f}$;

F — фокусное расстояние, d — расстояние от объекта до линзы, f — расстояние от изображения до линзы.

 \pm перед $\frac{1}{F}$ — собирающая/рассеивающая линза, \pm перед $\frac{1}{d}$ — действительный/мнимый предмет, \pm перед $\frac{1}{f}$ — действительное/ мнимое изображение.

Диоптрия. $D = \frac{1}{F}$. $[D] = Дптр. D_{06} = D_1 + D_2 + \dots$

Нормальное ускорение. $a_{\rm H}=\frac{V^2}{R}$. Углова скорость. $\omega=\lim_{\Delta t\to 0}\frac{\Delta \varphi}{\Delta t}$. $[\omega]=\frac{{\rm pag}}{{\rm c}}$.

Период. $T=\frac{2\pi R}{V}=\frac{2\pi}{\omega}.$ $[T]=\mathrm{c}.$ Формула связи линейной скорости с угловой. $V=\omega R.$

Частота. $\nu = \frac{1}{T}$. $[\nu] = \Gamma$ ц.

Преобразование Галилея. $\vec{V_{\mathrm{afc}}} = \vec{V_{\mathrm{othoc}}} + \vec{V_{\mathrm{nep}}}$

Закон Снелиуса. $n_1 \sin \alpha = n_2 \sin \beta$.

Второй закон Ньютона. $\sum \vec{F} = m\vec{a}$.

Механическое напряжение. $\sigma=\frac{F}{S}=\varepsilon\cdot\frac{kl_0}{S}=E\cdot|\varepsilon|.$ $[\sigma]=\frac{H}{^{\rm M}^2}=\Pi a.$

Модуль Юнга. $E = \frac{kl_0}{S}$. $[E] = \Pi a$.

Закон всемирного тяготения. $F_{\rm rpab}=\frac{GM_1M_2}{R^2}$. Ускорение свободного падения. $F=G\frac{Mm}{R^2}\to G\frac{M}{R^2}=g=9.8$. $G=6.67\cdot 10^{-11}\frac{{\rm H\cdot M}^2}{{\rm \kappa r}^2}$.

Сила инерции. $\vec{F}_{\text{u}} = -m \cdot \vec{a}_{\text{пер}}$.

Импульс. $p = m \cdot V; [p] = \frac{\kappa_{\Gamma \cdot M}}{c}$

Второй закон Ньютона в импульсной форме. $\vec{F}\Delta t = \Delta \vec{p} \rightarrow \vec{F} = \frac{\Delta \vec{p}}{\Delta t}$.

Закон изменения импульса системы. $\Delta p_{\mathrm{cuc}} = F_{\mathrm{внеш}} \cdot \Delta t$.

Уравнение Мещерского. $\vec{F_p} = -\mu \vec{u}$.

Механическая работа. $A = Fl \cdot \cos \alpha = \vec{F} \cdot \vec{l}$. α — угол между силой и вектором перемещения. [A] = Дж.

Мощность. $P = \frac{A}{t} = FV \cdot \cos \alpha = \vec{F} \cdot \vec{V}$. $[P] = B_T$.

Работа силы упругости. $A = -\Delta E_{\pi} = \frac{k(\Delta x)^2}{2}$.