Computer Logic and Digital Circuit Design (PHYS306/COSC330): Unit 3

Jordan Hanson

March 24, 2020

Whittier College Department of Physics and Astronomy

Summary

Unit 3 Summary

Functions of Combinatorial Logic

Reading: 6-1 - 6-6 (Tuesday) **Reading:** 6-7 - 6-11 (Thursday)

- 1. Half-Adders and Full-Adders
 - Example from study guide
 - Propagation delays
- 2. Comparators
- 3. Decodors/Encoders

Half-Adders and Full-Adders,

Ripple-Carry

Figure 1: The desired inputs and outputs of the half-adder. There is no carry-input.

TABLE 6-1
Half-adder truth table.

\boldsymbol{A}	\boldsymbol{B}	Cout	Σ
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

 $\Sigma = sum$

 $C_{\text{out}} = \text{output carry}$

A and B = input variables (operands)

Figure 2: The truth table of the half-adder for 2-bits. What gate action does this match?

Figure 3: The logic function circuit diagram for the half-adder.

Figure 4: The desired inputs and outputs for the full-adder, with carry-input and carry-output.

TABLE 6-2 Full-adder truth table.						
A	B	C _{in}	$C_{ m out}$	Σ		
0	0	0	0	0		
0	0	1	0	1		
0	1	0	0	1		
0	1	1	1	0		
1	0	0	0	1		
1	0	1	1	0		
1	1	0	1	0		
1	1	1	1	1		

 $C_{\text{in}} = \text{input carry, sometimes designated as } CI$ $C_{\text{out}} = \text{output carry, sometimes designated as } CO$

 $\Sigma = \text{sum}$ A and B = input variables (operands)

Figure 5: The truth table for the full-adder is more complex due to the increased number of inputs.

Figure 6: Circuit diagrams for the half-adder (left) and full-adder (right).

Figure 7: Two half-adders to form a full-adder.

Figure 8: Four FA (full-adders) to add bits to the numbers being added.

Figure 9: Propagation delays add serially in a full-adder with ripple carry topology.

Conclusion

Unit 3 Summary

Functions of Combinatorial Logic

Reading: 6-1 - 6-6 (Tuesday) **Reading:** 6-7 - 6-11 (Thursday)

- 1. Half-Adders and Full-Adders
 - Example from study guide
 - Propagation delays
- 2. Comparators
- 3. Decodors/Encoders