- 19. 某探究小组设计了一个报警装置,其原理如图所示。在竖直放置的圆柱形容器内用面积 $S=100\mathrm{cm}^2$ 、质量 $m=1\mathrm{kg}$ 的活塞密封一定质量的理想气体,活塞能无摩擦滑动。开始时气体处于温度 $T_\mathrm{A}=300\mathrm{K}$ 、活塞与容器底的距离 $h_0=30\mathrm{cm}$ 的状态 A。环境温度升高时容器内气体被加热,活塞缓慢上升 $d=3\mathrm{cm}$ 恰好到达容器内的卡口处,此时气体达到状态 B。活塞保持不动,气体被继续加热至温度 $T_c=363\mathrm{K}$ 的状态 C 时触动报警器。从状态 A 到状态 C 的过程中气体内能增加了 $\Delta U=158\mathrm{J}$ 。取大气压 $p_0=0.99\times10^5\mathrm{Pa}$,求气体。
 - (1) 在状态 B 的温度;
 - (2) 在状态 C的压强;
 - (3) 由状态 A 到状态 C 过程中从外界吸收热量 Q。

