Dynamic College Admissions

Tomás Larroucau and Ignacio Rios

Arizona State University
University of Texas at Dallas, Naveen Jindal School of Management

August 18, 2022

Outline

Introduction

Empirical facts

Model

Counterfactuals

Conclusions

▶ Higher Education is both a valuable and scarce resource

- ▶ Higher Education is both a valuable and scarce resource
- Low retention and on-time graduation rates:

- Higher Education is both a valuable and scarce resource
- Low retention and on-time graduation rates:
 - On-time graduation rate for OECD is 40%

- Higher Education is both a valuable and scarce resource
- Low retention and on-time graduation rates:
 - On-time graduation rate for OECD is 40%
 - Many students switch their majors or colleges and many dropout

- Higher Education is both a valuable and scarce resource
- Low retention and on-time graduation rates:
 - On-time graduation rate for OECD is 40%
 - Many students switch their majors or colleges and many dropout
- Several countries organize their college admissions via centralized assignment mechanisms

Figure 1: Centralized Systems in College Admissions

Source: Neilson, 2022

Research Question

Can centralized assignment mechanisms affect students' outcomes, such as their decisions to dropout and switch majors or colleges?

Scarce evidence about their effects on outcomes

- Scarce evidence about their effects on outcomes
- Determinants of students' switching and dropout decisions:

- Scarce evidence about their effects on outcomes
- ▶ Determinants of students' switching and dropout decisions:
 - (i) Learning about match-qualities

- Scarce evidence about their effects on outcomes
- ▶ Determinants of students' switching and dropout decisions:
 - (i) Learning about match-qualities
 - New information could change their future labor market returns

- Scarce evidence about their effects on outcomes
- ▶ Determinants of students' switching and dropout decisions:
 - (i) Learning about match-qualities
 - ▶ New information could change their future labor market returns
 - (ii) Initial Mismatching

- Scarce evidence about their effects on outcomes
- Determinants of students' switching and dropout decisions:
 - (i) Learning about match-qualities
 - New information could change their future labor market returns
 - (ii) Initial Mismatching
 - Dynamic considerations + uncertainty

- Scarce evidence about their effects on outcomes
- Determinants of students' switching and dropout decisions:
 - (i) Learning about match-qualities
 - New information could change their future labor market returns
 - (ii) Initial Mismatching
 - Dynamic considerations + uncertainty
 - Students not assigned to their top choices can face incentives to enroll, re-take exams, re-apply, and switch to more preferred programs

- Scarce evidence about their effects on outcomes
- Determinants of students' switching and dropout decisions:
 - (i) Learning about match-qualities
 - New information could change their future labor market returns
 - (ii) Initial Mismatching
 - Dynamic considerations + uncertainty
 - Students not assigned to their top choices can face incentives to enroll, re-take exams, re-apply, and switch to more preferred programs
 - Excess demand + colleges care about retention → crowd-out externality

- Scarce evidence about their effects on outcomes
- Determinants of students' switching and dropout decisions:
 - (i) Learning about match-qualities
 - New information could change their future labor market returns
 - (ii) Initial Mismatching
 - Dynamic considerations + uncertainty
 - Students not assigned to their top choices can face incentives to enroll, re-take exams, re-apply, and switch to more preferred programs
 - Excess demand + colleges care about retention → crowd-out externality
 - Ex-ante inefficient to assign students to lower-ranked programs

- Dynamic structural model of students' college progression:
 - Apply, re-take tests, re-apply, switch, and dropout
 - Learn about their match-qualities through their college grades

- Dynamic structural model of students' college progression:
 - Apply, re-take tests, re-apply, switch, and dropout
 - Learn about their match-qualities through their college grades
- Disentangle behavioral channels

- Dynamic structural model of students' college progression:
 - Apply, re-take tests, re-apply, switch, and dropout
 - Learn about their match-qualities through their college grades
- Disentangle behavioral channels
- Reduce initial mismatches by eliciting preferences' intensity

- Dynamic structural model of students' college progression:
 - Apply, re-take tests, re-apply, switch, and dropout
 - Learn about their match-qualities through their college grades
- Disentangle behavioral channels
- Reduce initial mismatches by eliciting preferences' intensity
 - (i) Mechanism
 - Introducing trade offs in applications

- Dynamic structural model of students' college progression:
 - Apply, re-take tests, re-apply, switch, and dropout
 - Learn about their match-qualities through their college grades
- Disentangle behavioral channels
- Reduce initial mismatches by eliciting preferences' intensity
 - (i) Mechanism
 - Introducing trade offs in applications
 - (ii) Re-application rules
 - Reducing incentives to switch

- Dynamic structural model of students' college progression:
 - Apply, re-take tests, re-apply, switch, and dropout
 - Learn about their match-qualities through their college grades
- Disentangle behavioral channels
- Reduce initial mismatches by eliciting preferences' intensity
 - (i) Mechanism
- ↑ strategic incentives

- (ii) Re-application rules
 - Reducing incentives to switch

- Dynamic structural model of students' college progression:
 - Apply, re-take tests, re-apply, switch, and dropout
 - Learn about their match-qualities through their college grades
- Disentangle behavioral channels
- Reduce initial mismatches by eliciting preferences' intensity
 - (i) Mechanism
 - ► Introducing trade offs in applications ↑ strategic incentives
 - (ii) Re-application rules
 - ▶ Reducing incentives to switch ↑ ex-post mismatches

Learning Mismatching

Model

Data

Learning

Mismatching

Model

 Signals about match-quality through college grades

Data

Correlation between college grades and students' outcomes

Learning

Model

 Signals about match-quality through college grades

Data

 Correlation between college grades and students' outcomes

Mismatching

- Idiosyncratic preferences for majors/colleges are persistent
- Common prior
- Correlation patterns within initial preferences
- Causal effect of the preference of assignment on outcomes

Learning

Model

 Signals about match-quality through college grades

Data

 Correlation between college grades and students' outcomes

Mismatching

- Idiosyncratic preferences for majors/colleges are persistent
- Common prior
- Correlation patterns within initial preferences
- Causal effect of the preference of assignment on outcomes

Learning

Model

 Signals about match-quality through college grades

Data

 Correlation between college grades and students' outcomes

Mismatching

- Idiosyncratic preferences for majors/colleges are persistent
- Common prior
- Correlation patterns within initial preferences
- Causal effect of the preference of assignment on outcomes

- Results
 - Learning: 45% of switchings
 - Signaling mechanism: switchings ↓ 33%, retention rates ↑ 8%, and welfare ↑ equivalent of a 19% reduction in average tuition

Empirical analysis on centralized assignment mechanisms:
 Fack et al. (2015), Abdulkadiroğlu et al. (2017), He (2012), He (2012), Agarwal and Somaini (2018), Calsamglia et al. (2018), Kapor et al. (2017), Kapor et al. (2020), Larroucau and Ríos (2018), Luflade (2017), Ajayi and Sidibe (2017), Waldinger (2021), Agarwal et al. (2020), Narita (2018), Carvalho et al. (2019), Magnac and He (2019), among others.

Empirical analysis on centralized assignment mechanisms:
 Fack et al. (2015), Abdulkadiroğlu et al. (2017), He (2012), He (2012), Agarwal and Somaini (2018), Calsamglia et al. (2018), Kapor et al. (2017), Kapor et al. (2020), Larroucau and Ríos (2018), Luflade (2017), Ajayi and Sidibe (2017), Waldinger (2021), Agarwal et al. (2020), Narita (2018), Carvalho et al. (2019), Magnac and He (2019), among others.

Empirical analysis on centralized assignment mechanisms:
 Fack et al. (2015), Abdulkadiroğlu et al. (2017), He (2012), He (2012), Agarwal and Somaini (2018), Calsamglia et al. (2018), Kapor et al. (2017), Kapor et al. (2020), Larroucau and Ríos (2018), Luflade (2017), Ajayi and Sidibe (2017), Waldinger (2021), Agarwal et al. (2020), Narita (2018), Carvalho et al. (2019), Magnac and He (2019), among others.

Empirical analysis on college/major choices under learning:
 Altonji et al. (2012, 2016), Malamud (2011), Stinebrickner and Stinebrickner (2012, 2014a), Wiswall and Zafar (2015), Arcidiacono (2004), Arcidiacono (2005), Arcidiacono et al. (2016), and Bordon and Fu (2015), among others.

- Empirical analysis on centralized assignment mechanisms:
 Fack et al. (2015), Abdulkadiroğlu et al. (2017), He (2012), He (2012), Agarwal and Somaini (2018), Calsamglia et al. (2018), Kapor et al. (2017), Kapor et al. (2020), Larroucau and Ríos (2018), Luflade (2017), Ajayi and Sidibe (2017), Waldinger (2021), Agarwal et al. (2020), Narita (2018), Carvalho et al. (2019), Magnac and He (2019), among others.
 - This paper: dynamics + learning + outcomes
- Empirical analysis on college/major choices under learning:
 Altonji et al. (2012, 2016), Malamud (2011), Stinebrickner and Stinebrickner (2012, 2014a), Wiswall and Zafar (2015), Arcidiacono (2004), Arcidiacono (2005), Arcidiacono et al. (2016), and Bordon and Fu (2015), among others.

- Empirical analysis on centralized assignment mechanisms:
 Fack et al. (2015), Abdulkadiroğlu et al. (2017), He (2012), He (2012), Agarwal and Somaini (2018), Calsamglia et al. (2018), Kapor et al. (2017), Kapor et al. (2020), Larroucau and Ríos (2018), Luflade (2017), Ajayi and Sidibe (2017), Waldinger (2021), Agarwal et al. (2020), Narita (2018), Carvalho et al. (2019), Magnac and He (2019), among others.
 - This paper: dynamics + learning + outcomes
- Empirical analysis on college/major choices under learning:
 Altonji et al. (2012, 2016), Malamud (2011), Stinebrickner and Stinebrickner (2012, 2014a), Wiswall and Zafar (2015), Arcidiacono (2004), Arcidiacono (2005), Arcidiacono et al. (2016), and Bordon and Fu (2015), among others.
 - This paper: centralized system

Chilean System

Semi-centralized market:

- ► More than 1,400 programs (pair major-university)
- National exams (PSU)
- ► ROLs with no more than 10 programs

Chilean System

Semi-centralized market:

- More than 1,400 programs (pair major-university)
- National exams (PSU)
- ► ROLs with no more than 10 programs

Dynamics:

- Students can re-take PSU and re-apply every year
- ► Close to 30% switch and 30% dropout Dynamics

Chilean System

Semi-centralized market:

- More than 1,400 programs (pair major-university)
- National exams (PSU)
- ROLs with no more than 10 programs

Dynamics:

- Students can re-take PSU and re-apply every year
- Close to 30% switch and 30% dropout Dynamics

Mechanism:

- Variant of Deferred Acceptance
- Some students behave strategically (Larroucau and Rios (2018))

Chilean System

Semi-centralized market:

- More than 1,400 programs (pair major-university)
- National exams (PSU)
- ROLs with no more than 10 programs

Dynamics:

- Students can re-take PSU and re-apply every year
- Close to 30% switch and 30% dropout Dynamics

Mechanism:

- Variant of Deferred Acceptance
- Some students behave strategically (Larroucau and Rios (2018))

Data:

- Surveys: top-true preferences and subjective beliefs
- Admission process + Enrollment + College grades + Avg. wages

Outline

Introduction

Empirical facts

Mode

Counterfactuals

Conclusions

- Use discontinuities created by cutoffs to estimate causal effect of assignment to the top preference

Figure 3: Re-Applications

- Use discontinuities created by cutoffs to estimate causal effect of assignment to the top preference

- Close to 50% switch to more selective programs
- ▶ Between 25%-50% move up in their initial preferences

- Use discontinuities created by cutoffs to estimate causal effect of assignment to the top preference

- Close to 50% switch to more selective programs
- ▶ Between 25%-50% move up in their initial preferences
- Forward-looking behavior + match-effects: anticipate future switches

- Use discontinuities created by cutoffs to estimate causal effect of assignment to the top preference

- Close to 50% switch to more selective programs
- ▶ Between 25%-50% move up in their initial preferences
- Forward-looking behavior + match-effects: anticipate future switches

- Students assigned to lower-ranked programs face lower retention rates (Switching stats)
- Use discontinuities created by cutoffs to estimate causal effect of assignment to the top preference

Forward-looking

- Close to 50% switch to more selective programs
- ▶ Between 25%-50% move up in their initial preferences
- Forward-looking behavior + match-effects: anticipate future switches

Learning: grades and outcomes

- Surveys: 60% of re-applicants change top-true preference
- Correlation patterns between grades and outcomes:

- Switching up is uncorrelated with grades
- Switching out is negatively correlated with grades

Outline

Introduction

Empirical facts

Model

Counterfactuals

Conclusions

Indexing: student i, program j, major m_j , college-type k_j

Indexing: student i, program j, major m_j , college-type k_j

Stage 1: students receive their scores and preference shocks

- (i) Make application decisions (ROL)
- (ii) Receive assignment results and make enrollment decisions

Indexing: student i, program j, major m_j , college-type k_j

Stage 1: students receive their scores and preference shocks

- (i) Make application decisions (ROL)
- (ii) Receive assignment results and make enrollment decisions

Stage 2: during the academic year

- (i) Choose to re-take PSU or not
- (ii) Receive college grades
- (iii) Update beliefs about match-qualities → abilities (Stage 1 repeats)

Indexing: student i, program j, major m_j , college-type k_j

Stage 1: students receive their scores and preference shocks

- (i) Make application decisions (ROL)
- (ii) Receive assignment results and make enrollment decisions

Stage 2: during the academic year

- (i) Choose to re-take PSU or not
- (ii) Receive college grades
- (iii) Update beliefs about match-qualities → abilities (Stage 1 repeats)

Stage 3: after period two:

- (i) Face a sequence of dropout and graduation probabilities
- (ii) Students who graduate enter the labor force

Students are characterized by:

- ► Known major and college preferences α_{im_j} and α_{ik_j}
- ▶ Known subject-specific ability $A_i = (A_{is_m}, A_{is_v})$
- ▶ Unknown subject-specific ability , $A_i^u = (A_{is_m}^u, A_{is_v}^u)$, and major-specific ability $A_{im_j}^u$

Students are characterized by:

- lacktriangle Known major and college preferences $lpha_{im_j}$ and $lpha_{ik_j}$
- ▶ Known subject-specific ability $A_i = (A_{is_m}, A_{is_v})$
- ▶ Unknown subject-specific ability , $A_i^u = (A_{is_m}^u, A_{is_v}^u)$, and major-specific ability $A_{im_i}^u$

Ability in program *j* is given by:

$$A^u_{ij} = A^u_{im_j} + \sum_{l \in \{s_m, s_v\}} \underbrace{\omega_{jl}}_{ ext{admission weights}} A^u_{il}, \quad A_{ij} = \sum_{l \in \{s_m, s_v\}} \omega_{jl} A_i$$

Students are characterized by:

- ► Known major and college preferences α_{im_j} and α_{ik_j}
- ► Known subject-specific ability $A_i = (A_{is_m}, A_{is_v})$
- ▶ Unknown subject-specific ability , $A_i^u = (A_{is_m}^u, A_{is_v}^u)$, and major-specific ability $A_{im_j}^u$

Ability in program *j* is given by:

$$A^u_{ij} = A^u_{im_j} + \sum_{l \in \{s_m, s_v\}} \underbrace{\omega_{jl}}_{ ext{admission weights}} A^u_{il}, \quad A_{ij} = \sum_{l \in \{s_m, s_v\}} \omega_{jl} A_i$$

- Comparative and absolute advantages in abilities
- Correlated learning

Assumption (Bayesian Updating)

Students have rational expectations over the population distribution of unknown abilities for program *j*, and

$$A_{il}^u \sim N(0, \sigma_s^2) \quad \forall i, l \in \{s_m, s_v\}, \quad A_{im_j}^u \sim N(0, \sigma_m^2)$$

Assumption (Bayesian Updating)

Students have rational expectations over the population distribution of unknown abilities for program j, and

$$A_{ii}^u \sim N(0, \sigma_s^2) \quad \forall i, I \in \{s_m, s_v\}, \quad A_{im_j}^u \sim N(0, \sigma_m^2)$$

Learning

Students learn about A_i^u from their college GPA:

$$G_{ijt} = f\left(m_j, A_{ij}, Z_i^g, \alpha_{im_j}, \alpha_{ik_j}, A_{ij}^u, \varepsilon_{ij}^g\right),$$

where $\varepsilon_{\it ijt}^{\it g}$ is a white noise, distributed $\it N(0,\sigma_g^2)$

Flow utility

$$u_{\mathit{ijt}} = lpha_{\mathit{fe}_{\mathit{j}}} + \underbrace{lpha_{\mathit{im}_{\mathit{j}}} + lpha_{\mathit{ik}_{\mathit{j}}}}_{\mathit{unobserved heterogeneity}} + Z^{\mathit{u}}_{\mathit{ij}} lpha - C_{\mathit{ijt}} + arepsilon_{\mathit{ijt}},$$

with

$$Z_{ij}^{u} \alpha = \alpha_1 A_{ij} + \alpha_2 \underbrace{\bar{A}_j}_{\text{program quality}} + \alpha_3 D_{ij} + \alpha_4 \underbrace{\frac{(A_{ij} - A_j)}{\bar{\sigma}_j}}_{\text{Relative position}}$$

Flow utility

$$u_{ijt} = \alpha_{fe_j} + \underbrace{\alpha_{im_j} + \alpha_{ik_j}}_{ ext{unobserved heterogeneity}} + Z^u_{ij} \alpha - C_{ijt} + \varepsilon_{ijt},$$

with

$$Z_{ij}^{u} \alpha = \alpha_1 A_{ij} + \alpha_2 \underbrace{\bar{A}_j}_{\text{program quality}} + \alpha_3 D_{ij} + \alpha_4 \underbrace{\frac{(A_{ij} - A_j)}{\bar{\sigma}_j}}_{\text{Relative position}}$$

 $ightharpoonup C_{ijt}$ captures the financial cost of program with tuition c_{jt}

$$C_{ijt} = lpha_{c0} \underbrace{(c_{jt} - \tilde{c}_{ij})}_{ ext{out of pocket}}$$

Flow utility

$$u_{ijt} = lpha_{fe_j} + \underbrace{lpha_{im_j} + lpha_{ik_j}}_{ ext{unobserved heterogeneity}} + Z^u_{ij} lpha - C_{ijt} + arepsilon_{ijt},$$

with

$$Z_{ij}^{u} \alpha = \alpha_1 A_{ij} + \alpha_2$$
 $\overline{A_j}$
program quality
 $+\alpha_3 D_{ij} + \alpha_4$
 $\overline{\sigma_j}$
Relative position

 $ightharpoonup C_{ijt}$ captures the financial cost of program with tuition c_{jt}

$$C_{\mathit{ijt}} = lpha_{\mathit{c0}} \, \underbrace{\left(c_{\mathit{jt}} - ilde{c}_{\mathit{ij}}
ight)}_{ ext{out of pocket}}$$

 $ightharpoonup arepsilon_{ijt} \sim \mathsf{T1EV}(1) \text{ and } u_{i0t} = 0$

Mixture

- (i) Weak truth-tellers (ρ): report true preferences
- (ii) Strategic (1 ρ): $R_{it} \in \operatorname{argmax}_{R' \in \mathcal{R}, |R'| < K} U(R')$

Mixture

- (i) Weak truth-tellers (ρ): report true preferences
- (ii) Strategic (1 ρ): $R_{it} \in \operatorname{argmax}_{R' \in \mathcal{R}, |R'| < K} U(R')$

Mixture

- (i) Weak truth-tellers (ρ): report true preferences
- (ii) Strategic (1 ρ): $R_{it} \in \operatorname{argmax}_{R' \in \mathcal{R}, |R'| < K} U(R')$

Assumptions

- Rational Expectations over cutoffs' distributions + independence
- 2. Do not apply to programs unless it is strictly profitable to do so

$$U(R_{it}) = p_{iR(1)t} \cdot v_{iR(1)t} + (1 - p_{iR(1)t}) \cdot p_{iR(2)t} \cdot v_{iR(2)t} + \ldots + \prod_{l=1}^{k-1} (1 - p_{iR(l)t}) \cdot p_{iR(K)t} \cdot v_{iR(K)t}.$$

Mixture

- (i) Weak truth-tellers (ρ): report true preferences
- (ii) Strategic (1 ρ): $R_{it} \in \operatorname{argmax}_{R' \in \mathcal{R}, |R'| < K} U(R')$

Assumptions

- Rational Expectations over cutoffs' distributions + independence
- 2. Do not apply to programs unless it is strictly profitable to do so

$$U(R_{it}) = p_{iR(1)t} \cdot v_{iR(1)t} + (1 - p_{iR(1)t}) \cdot p_{iR(2)t} \cdot v_{iR(2)t} + \ldots + \prod_{l=1}^{K-1} (1 - p_{iR(l)t}) \cdot p_{iR(K)t} \cdot v_{iR(K)t}.$$

3. Enroll in their assigned program with an exogenous probability

$$v_{ikt} = P_{it}^e \cdot V_{ikt} + \left(1 - P_{it}^e\right) \cdot \max\{V_{i0t}, V_{ijt}\}$$

Utility in the workforce

Utility in the workforce

$$V_{ijt}^{\textit{w}} = \underbrace{V_{ij}^{\textit{np}}}_{\textit{non-pecuniary utility}} + \underbrace{\alpha_{\textit{w}} \log \left(E_{\textit{w}} \left[\sum_{\tau=0}^{T-t} \beta^{\tau} \underbrace{P_{\textit{m}_{j}}}_{\textit{employment probability}} W_{ij\tau} \right] \right)}_{\textit{pecuniary utility}}$$

where

$$\log(w_{ijt}|\tau) = f\left(m_j, \bar{A}_{k_j}, \underbrace{G_{ij}\left(A_{ij}, A^u_{ij}\right)}_{\text{grades}}, Z^w_i, \underbrace{\Lambda_{m_j\tau}, \epsilon^w_{ijt}}_{\text{tenure}}\right)$$

Utility in the workforce

$$V_{ijt}^{w} = \underbrace{V_{ij}^{np}}_{ ext{non-pecuniary utility}} + \underbrace{lpha_{w} \log \left(E_{w} \left[\sum_{ au=0}^{T-t} eta^{ au} \underbrace{P_{m_{j}}}_{ ext{employment probability}} w_{ij au}
ight]
ight)}_{ ext{pecuniary utility}}$$

where

$$\log(w_{ijt}|\tau) = f\left(m_j, \bar{A}_{k_j}, \underbrace{G_{ij}\left(A_{ij}, A^u_{ij}\right)}_{\text{grades}}, Z^w_i, \underbrace{\Lambda_{m_j\tau}, \epsilon^w_{ijt}}_{\text{tenure}}\right)$$

 $ightharpoonup V_{ij}^{np}$ captures the non-pecuniary utility, given by

$$V_{ij}^{np} = \alpha_1^{\textit{w}} \left(\alpha_{\textit{fe}_j} + \underline{\alpha_{\textit{im}_j}} + \underline{\alpha_{\textit{ik}_j}} \right) + \alpha_2^{\textit{w}} A_{ij} + \alpha_3^{\textit{w}} \bar{A}_{k_j} + \alpha_{4m_j}^{\textit{w}} X_i^{\textit{w}} + \alpha_5^{\textit{w}} \underbrace{A_{ij}^{\textit{u}}}_{\textit{unknown ability}}$$

Utility in the workforce

$$V_{ijt}^{\textit{w}} = \underbrace{V_{ij}^{\textit{np}}}_{\textit{non-pecuniary utility}} + \underbrace{\alpha_{\textit{w}} \log \left(E_{\textit{w}} \left[\sum_{\tau=0}^{T-t} \beta^{\tau} \underbrace{P_{\textit{m}_{j}}}_{\textit{employment probability}} \textit{w}_{ij\tau} \right] \right)}_{\textit{pecuniary utility}}$$

where

$$\log(w_{ijt}|\tau) = f\left(m_j, \bar{A}_{k_j}, \underbrace{G_{ij}\left(A_{ij}, A^u_{ij}\right)}_{\text{grades}}, Z^w_i, \underbrace{\Lambda_{m_j\tau}, \epsilon^w_{ijt}}_{\text{tenure}}\right)$$

 V_{ii}^{np} captures the non-pecuniary utility, given by

$$V_{ij}^{np} = \alpha_1^w \left(\alpha_{\textit{fe}_j} + \alpha_{\textit{im}_j} + \alpha_{\textit{ik}_j}\right) + \alpha_2^w A_{ij} + \alpha_3^w \bar{A}_{k_j} + \alpha_{4m_j}^w X_i^w + \alpha_5^w \underbrace{A_{ij}^u}_{\textit{unknown ability}}$$

 $ightharpoonup V_0(X_{i0},t)$ is the value function of dropping out

Estimation

Two-Step Procedure

Step 1: estimate beliefs on admission, future dropout, enrollment, graduation, and employment probabilities from the data.

Step 2: estimate the model parameters via Indirect Inference (II), taking students' beliefs as given.

Estimation

Two-Step Procedure

Step 1: estimate beliefs on admission, future dropout, enrollment, graduation, and employment probabilities from the data.

Step 2: estimate the model parameters via Indirect Inference (II), taking students' beliefs as given.

Table 4: Estimation Results - Parameters

Parameters	Values	Std
Share of strategic ROLs	0.74	[0.022]
Variance idiosyncratic preferences by major Major prior variance Subject prior variance Grade shock variance	15.69 0.34 0.48 0.08	[0.913] [0.032] [0.103] [0.04]

Estimation

Two-Step Procedure

Step 1: estimate beliefs on admission, future dropout, enrollment, graduation, and employment probabilities from the data.

Step 2: estimate the model parameters via Indirect Inference (II), taking students' beliefs as given.

Table 4: Estimation Results - Parameters

Parameters	Values	Std
Share of strategic ROLs	0.74	[0.022]
Variance idiosyncratic preferences by major Major prior variance Subject prior variance Grade shock variance	15.69 0.34 0.48 0.08	[0.913] [0.032] [0.103] [0.04]

► Learning: 45% of switchings

Outline

Introduction

Empirical facts

Model

Counterfactuals

Conclusions

Counterfactuals

Assignment mechanism

1. Constrained Deferred Acceptance with constraint K

Assignment mechanism

- 1. Constrained Deferred Acceptance with constraint K
 - Opportunity cost of including programs in the list

Assignment mechanism

- 1. Constrained Deferred Acceptance with constraint K
 - Opportunity cost of including programs in the list
- 2. Deferred Acceptance with signal and score bonus φ

Assignment mechanism

- 1. Constrained Deferred Acceptance with constraint K
 - Opportunity cost of including programs in the list
- 2. Deferred Acceptance with signal and score bonus φ
 - Opportunity cost of signaling a unique program in the list

Assignment mechanism

- 1. Constrained Deferred Acceptance with constraint *K*
 - Opportunity cost of including programs in the list
- 2. Deferred Acceptance with signal and score bonus φ
 - Opportunity cost of signaling a unique program in the list

Re-application rules

1. Switching score penalty ψ (Turkey)

Assignment mechanism

- Constrained Deferred Acceptance with constraint K
 - Opportunity cost of including programs in the list
- 2. Deferred Acceptance with signal and score bonus φ
 - Opportunity cost of signaling a unique program in the list

- 1. Switching score penalty ψ (Turkey)
 - Decreases the continuation value of switchings

Assignment mechanism

- Constrained Deferred Acceptance with constraint K
 - Opportunity cost of including programs in the list
- 2. Deferred Acceptance with signal and score bonus φ
 - Opportunity cost of signaling a unique program in the list

- 1. Switching score penalty ψ (Turkey)
 - Decreases the continuation value of switchings
- 2. First-time applicant score bonus ϕ (Finland)

Assignment mechanism

- Constrained Deferred Acceptance with constraint K
 - Opportunity cost of including programs in the list
- 2. Deferred Acceptance with signal and score bonus φ
 - Opportunity cost of signaling a unique program in the list

- 1. Switching score penalty ψ (Turkey)
 - Decreases the continuation value of switchings
- 2. First-time applicant score bonus ϕ (Finland)
 - Increases the continuation value of the outside option

Assignment mechanism

- Constrained Deferred Acceptance with constraint K
 - Opportunity cost of including programs in the list
- 2. Deferred Acceptance with signal and score bonus φ
 - Opportunity cost of signaling a unique program in the list

Re-application rules

- 1. Switching score penalty ψ (Turkey)
 - Decreases the continuation value of switchings
- 2. First-time applicant score bonus ϕ (Finland)
 - Increases the continuation value of the outside option

Challenges

- ► How would beliefs change? → equilibrium
- ► How will naive students behave? → bounds

Assignment mechanisms

Assignment mechanisms

		Co	nstrained	DA	CADA
Outcome	Baseline	K = 3	K = 2	K = 1	
Reapplicants [%]	34.27	0.35	1.62	10.01	
Program switchings [%]	6.48	-0.40	0.66	20.74	
Retakes PSU [%]	21.62	0.44	3.05	16.34	
Dropouts - first year [%]	3.70	-0.54	-1.48	-11.76	
Applicants in first period [%]	62.24	0.06	0.33	1.23	
Enrolls same program [%]	31.64	-0.13	-0.98	-12.14	
Assigned to top true preference [%]	10.46	0.76	2.38	-9.59	
Unassigned in first period [%]	44.17	0.33	1.09	9.69	
Difference in Ex Post Welfare Rela	tive to Bas	eline (in	millions	of Chilean	pesos)
Overall	-	0.01	-0.08	-1.95	

Assignment mechanisms

		Co	nstrained		CADA	
Dutcome	Baseline	K = 3	K = 2	K = 1		
leapplicants [%]	34.27	0.35	1.62	10.01		
rogram switchings [%]	6.48	-0.40	0.66	20.74		
Retakes PSU [%]	21.62	0.44	3.05	16.34		
Propouts - first year [%]	3.70	-0.54	-1.48	-11.76		
applicants in first period [%]	62.24	0.06	0.33	1.23		
nrolls same program [%]	31.64	-0.13	-0.98	-12.14		
ssigned to top true preference [%]	10.46	0.76	2.38	-9.59		
Inassigned in first period [%]	44.17	0.33	1.09	9.69		
Difference in Ex Post Welfare Rela	tive to Bas	eline (in	millions	of Chile	an pesos)	
Overall	-	0.01	-0.08	-1.95	,	

 \blacktriangleright Constrained DA: \sim top-true, \uparrow switchings, \uparrow unassigned, \downarrow welfare

Assignment mechanisms

		Co	nstrained	CADA	
Outcome	Baseline	K = 3	K = 2	K = 1	
Reapplicants [%]	34.27	0.35	1.62	10.01	
Program switchings [%]	6.48	-0.40	0.66	20.74	
Retakes PSU [%]	21.62	0.44	3.05	16.34	
Dropouts - first year [%]	3.70	-0.54	-1.48	-11.76	
Applicants in first period [%]	62.24	0.06	0.33	1.23	
Enrolls same program [%]	31.64	-0.13	-0.98	-12.14	
Assigned to top true preference [%]	10.46	0.76	2.38	-9.59	
Unassigned in first period [%]	44.17	0.33	1.09	9.69	
Difference in Ex Post Welfare Rela	tive to Bas	eline (in	millions	of Chilean	n pesos)
Overall	-	0.01	-0.08	-1.95	•

 \blacktriangleright Constrained DA: \sim top-true, \uparrow switchings, \uparrow unassigned, \downarrow welfare

Assignment mechanisms

		Co	nstrained	C	CADA	
Outcome	Baseline	K = 3	K = 2	K = 1		
Reapplicants [%]	34.27	0.35	1.62	10.01		
Program switchings [%]	6.48	-0.40	0.66	20.74		
Retakes PSU [%]	21.62	0.44	3.05	16.34		
Dropouts - first year [%]	3.70	-0.54	-1.48	-11.76		
Applicants in first period [%]	62.24	0.06	0.33	1.23		
Enrolls same program [%]	31.64	-0.13	-0.98	-12.14		
Assigned to top true preference [%]	10.46	0.76	2.38	-9.59		
Unassigned in first period [%]	44.17	0.33	1.09	9.69		
Difference in Ex Post Welfare Rela	tive to Bas	eline (in	millions	of Chilea	an pesos)	
Overall	-	0.01	-0.08	-1.95	,	

 \blacktriangleright Constrained DA: \sim top-true, \uparrow switchings, \uparrow unassigned, \downarrow welfare

Assignment mechanisms

		Co	nstrained	DA	CADA
Outcome	Baseline	K = 3	K = 2	K = 1	
Reapplicants [%]	34.27	0.35	1.62	10.01	
Program switchings [%]	6.48	-0.40	0.66	20.74	
Retakes PSU [%]	21.62	0.44	3.05	16.34	
Dropouts - first year [%]	3.70	-0.54	-1.48	-11.76	
Applicants in first period [%]	62.24	0.06	0.33	1.23	
Enrolls same program [%]	31.64	-0.13	-0.98	-12.14	
Assigned to top true preference [%]	10.46	0.76	2.38	-9.59	
Unassigned in first period [%]	44.17	0.33	1.09	9.69	
Difference in Ex Post Welfare Rela	tive to Bas	eline (in	millions	of Chilean p	esos)
Overall	-	0.01	-0.08	-1.95	,

 \blacktriangleright Constrained DA: \sim top-true, \uparrow switchings, \uparrow unassigned, \downarrow welfare

Assignment mechanisms

		Constrained DA		CADA	
Outcome	Baseline		$\varphi = 10\%$	$\varphi =$ 20%	$\varphi = 30\%$
Reapplicants [%]	34.27		-11.80	-20.92	-26.32
Program switchings [%]	6.48		-22.28	-32.84	-39.10
Retakes PSU [%]	21.62		-23.30	-34.70	-40.48
Dropouts - first year [%]	3.70		11.61	16.88	20.41
Applicants in first period [%]	62.24		1.04	1.73	2.24
Enrolls same program [%]	31.64		7.20	10.61	12.95
Assigned to top true preference [%]	10.46		16.20	22.60	23.84
Unassigned in first period [%]	44.17		-4.26	-6.30	-7.79
Difference in Ex Post Welfare Rela	tive to Basel	ine (in millions of Chile	ean pesos)		
Overall	-	•	0.62	0.77	0.78

- Constrained DA: ~ top-true, ↑ switchings, ↑ unassigned, ↓ welfare
- Signaling (CADA): ↑ top-true, ↓ switchings, ↑ retention, ↑ welfare

Assignment mechanisms

		Constrained DA		CADA	
Outcome	Baseline		$\varphi = 10\%$	$\varphi =$ 20%	$\varphi = 30\%$
Reapplicants [%]	34.27		-11.80	-20.92	-26.32
Program switchings [%]	6.48		-22.28	-32.84	-39.10
Retakes PSU [%]	21.62		-23.30	-34.70	-40.48
Dropouts - first year [%]	3.70		11.61	16.88	20.41
Applicants in first period [%]	62.24		1.04	1.73	2.24
Enrolls same program [%]	31.64		7.20	10.61	12.95
Assigned to top true preference [%]	10.46		16.20	22.60	23.84
Unassigned in first period [%]	44.17		-4.26	-6.30	-7.79
Difference in Ex Post Welfare Rela	tive to Basel	ine (in millions of Chil	ean pesos)		
Overall	-	•	0.62	0.77	0.78

- Constrained DA: ~ top-true, ↑ switchings, ↑ unassigned, ↓ welfare
- Signaling (CADA): ↑ top-true, ↓ switchings, ↑ retention, ↑ welfare

Assignment mechanisms

		Constrained DA		CADA	
Outcome	Baseline		$\varphi = 10\%$	$\varphi =$ 20%	$\varphi =$ 30%
Reapplicants [%]	34.27		-11.80	-20.92	-26.32
Program switchings [%]	6.48		-22.28	-32.84	-39.10
Retakes PSU [%]	21.62		-23.30	-34.70	-40.48
Dropouts - first year [%]	3.70		11.61	16.88	20.41
Applicants in first period [%]	62.24		1.04	1.73	2.24
Enrolls same program [%]	31.64		7.20	10.61	12.95
Assigned to top true preference [%]	10.46		16.20	22.60	23.84
Unassigned in first period [%]	44.17		-4.26	-6.30	-7.79
Difference in Ex Post Welfare Rela	tive to Basel	ine (in millions of Chi	lean pesos)		
Overall	-		0.62	0.77	0.78

- Constrained DA: ~ top-true, ↑ switchings, ↑ unassigned, ↓ welfare
- Signaling (CADA): ↑ top-true, ↓ switchings, ↑ retention, ↑ welfare

Assignment mechanisms

		Constrained DA		CADA	
Outcome	Baseline		$\varphi = 10\%$	$\varphi =$ 20%	$\varphi = 30\%$
Reapplicants [%]	34.27		-11.80	-20.92	-26.32
Program switchings [%]	6.48		-22.28	-32.84	-39.10
Retakes PSU [%]	21.62		-23.30	-34.70	-40.48
Dropouts - first year [%]	3.70		11.61	16.88	20.41
Applicants in first period [%]	62.24		1.04	1.73	2.24
Enrolls same program [%]	31.64		7.20	10.61	12.95
Assigned to top true preference [%]	10.46		16.20	22.60	23.84
Unassigned in first period [%]	44.17		-4.26	-6.30	-7.79
Difference in Ex Post Welfare Rela	tive to Basel	ine (in millions of Chil	ean pesos)		
Overall	-	•	0.62	0.77	0.78

- Constrained DA: ~ top-true, ↑ switchings, ↑ unassigned, ↓ welfare
- Signaling (CADA): ↑ top-true, ↓ switchings, ↑ retention, ↑ welfare

Assignment mechanisms

		Constrained DA		CADA	
Outcome	Baseline		$\varphi=$ 10%	$\varphi =$ 20%	$\varphi = 30\%$
Reapplicants [%]	34.27		-11.80	-20.92	-26.32
Program switchings [%]	6.48		-22.28	-32.84	-39.10
Retakes PSU [%]	21.62		-23.30	-34.70	-40.48
Dropouts - first year [%]	3.70		11.61	16.88	20.41
Applicants in first period [%]	62.24		1.04	1.73	2.24
Enrolls same program [%]	31.64		7.20	10.61	12.95
Assigned to top true preference [%]	10.46		16.20	22.60	23.84
Unassigned in first period [%]	44.17		-4.26	-6.30	-7.79
Difference in Ex Post Welfare Rela	tive to Basel	ine (in millions of Chile	an pesos)		
Overall	-		0.62	0.77	0.78

- Constrained DA: ~ top-true, ↑ switchings, ↑ unassigned, ↓ welfare
- Signaling (CADA): ↑ top-true, ↓ switchings, ↑ retention, ↑ welfare

		٦	Turkish Rules		Finnish Rules
Outcome	Baseline	$\psi=$ 10%	$\psi=$ 20%	$\psi = 30\%$	
Reapplicants [%]	34.27	-16.81	-29.63	-36.41	
Program switchings [%]	6.48	-33.16	-51.53	-63.34	
Retakes PSU [%]	21.62	-18.18	-27.79	-32.95	
Dropouts - first year [%]	3.70	4.22	5.70	6.92	
First enrollment in second period [%]	13.01	4.46	6.38	7.04	
Enrolls same program [%]	31.64	5.90	9.07	11.17	
Assigned to top true preference [%]	10.46	13.39	19.80	21.95	
Unassigned in first period [%]	44.17	0.27	0.59	0.72	
Difference in Ex-Post Welfare Relati	ive to Base	line (in mil	lions of Ch	ilean pesos)	
Overall	-	0.45	0.65	0.68	

Re-application rules

		٦	s	Finnish Rules	
Outcome	Baseline	$\psi=$ 10%	$\psi=$ 20%	$\psi = 30\%$	
Reapplicants [%]	34.27	-16.81	-29.63	-36.41	
Program switchings [%]	6.48	-33.16	-51.53	-63.34	
Retakes PSU [%]	21.62	-18.18	-27.79	-32.95	
Dropouts - first year [%]	3.70	4.22	5.70	6.92	
First enrollment in second period [%]	13.01	4.46	6.38	7.04	
Enrolls same program [%]	31.64	5.90	9.07	11.17	
Assigned to top true preference [%]	10.46	13.39	19.80	21.95	
Unassigned in first period [%]	44.17	0.27	0.59	0.72	
Difference in Ex-Post Welfare Relati	ive to Base	line (in mil	lions of Ch	ilean pesos)	
Overall	-	0.45	0.65	0.68	

Re-application rules

Baseline	$\psi=$ 10%	$\psi =$ 20%	$\psi = 30\%$	
34.27	-16.81	-29.63	-36.41	
6.48	-33.16	-51.53	-63.34	
21.62	-18.18	-27.79	-32.95	
3.70	4.22	5.70	6.92	
13.01	4.46	6.38	7.04	
31.64	5.90	9.07	11.17	
10.46	13.39	19.80	21.95	
44.17	0.27	0.59	0.72	
	6.48 21.62 3.70 13.01 31.64 10.46	6.48 -33.16 21.62 -18.18 3.70 4.22 13.01 4.46 31.64 5.90 10.46 13.39	6.48 -33.16 -51.53 21.62 -18.18 -27.79 3.70 4.22 5.70 13.01 4.46 6.38 31.64 5.90 9.07 10.46 13.39 19.80	6.48 -33.16 -51.53 -63.34 21.62 -18.18 -27.79 -32.95 3.70 4.22 5.70 6.92 13.01 4.46 6.38 7.04 31.64 5.90 9.07 11.17 10.46 13.39 19.80 21.95

Re-application rules

		Turkish Rules			Finnish Rules
Outcome	Baseline	$\psi=$ 10%	$\psi=$ 20%	$\psi = 30\%$	
Reapplicants [%]	34.27	-16.81	-29.63	-36.41	
Program switchings [%]	6.48	-33.16	-51.53	-63.34	
Retakes PSU [%]	21.62	-18.18	-27.79	-32.95	
Dropouts - first year [%]	3.70	4.22	5.70	6.92	
First enrollment in second period [%]	13.01	4.46	6.38	7.04	
Enrolls same program [%]	31.64	5.90	9.07	11.17	
Assigned to top true preference [%]	10.46	13.39	19.80	21.95	
Unassigned in first period [%]	44.17	0.27	0.59	0.72	
Difference in Ex-Post Welfare Relat	ive to Base	line (in mil	lions of Ch	ilean pesos)	
Overall	-	0.45	0.65	0.68	

Re-application rules

Baseline	1 400/			
Dascille	$\psi=$ 10%	$\psi=$ 20%	$\psi =$ 30%	
34.27	-16.81	-29.63	-36.41	
6.48	-33.16	-51.53	-63.34	
21.62	-18.18	-27.79	-32.95	
3.70	4.22	5.70	6.92	
13.01	4.46	6.38	7.04	
31.64	5.90	9.07	11.17	
10.46	13.39	19.80	21.95	
44.17	0.27	0.59	0.72	
	6.48 21.62 3.70 13.01 31.64 10.46	6.48 -33.16 21.62 -18.18 3.70 4.22 13.01 4.46 31.64 5.90 10.46 13.39	6.48 -33.16 -51.53 21.62 -18.18 -27.79 3.70 4.22 5.70 13.01 4.46 6.38 31.64 5.90 9.07 10.46 13.39 19.80	6.48 -33.16 -51.53 -63.34 21.62 -18.18 -27.79 -32.95 3.70 4.22 5.70 6.92 13.01 4.46 6.38 7.04 31.64 5.90 9.07 11.17 10.46 13.39 19.80 21.95

Outcome		Finnish Rules			
	Baseline		$\varphi = 10\%$	$\varphi =$ 20%	$\varphi = 30\%$
Reapplicants [%]	34.27		-23.84	-34.83	-40.10
Program switchings [%]	6.48		-28.67	-40.31	-46.56
Retakes PSU [%]	21.62		-17.23	-24.34	-25.04
Dropouts - first year [%]	3.70		0.82	-0.53	-2.29
First enrollment in second period [%]	13.01		5.57	8.84	12.18
Enrolls same program [%]	31.64		4.39	5.40	5.46
Assigned to top true preference [%]	10.46		19.51	28.26	29.62
Unassigned in first period [%]	44.17		1.26	2.86	4.27
Difference in Ex-Post Welfare Relati	ive to Baselin	e (in millions of Chilean pesos)		
Overall	-	,	0.37	0.43	0.29

- Switching penalty: ↑ top-true, ↓ switchings, ↑ dropouts, ↑ welfare
- ► First-time bonus: ↑ top-true, ↓ switchings, ↑ delayed applications, ↑ welfare

Outcome	Turkish Rules		F	Finnish Rules			
	Baseline	-	$\varphi = 10\%$	$\varphi =$ 20%	$\varphi = 30\%$		
Reapplicants [%]	34.27		-23.84	-34.83	-40.10		
Program switchings [%]	6.48		-28.67	-40.31	-46.56		
Retakes PSU [%]	21.62		-17.23	-24.34	-25.04		
Dropouts - first year [%]	3.70		0.82	-0.53	-2.29		
First enrollment in second period [%]	13.01		5.57	8.84	12.18		
Enrolls same program [%]	31.64		4.39	5.40	5.46		
Assigned to top true preference [%]	10.46		19.51	28.26	29.62		
Unassigned in first period [%]	44.17		1.26	2.86	4.27		
Difference in Ex-Post Welfare Relat	ive to Baseline	(in millions of Chilean pesos	s)				
Overall	-	•	0.37	0.43	0.29		

- Switching penalty: ↑ top-true, ↓ switchings, ↑ dropouts, ↑ welfare
- ► First-time bonus: ↑ top-true, ↓ switchings, ↑ delayed applications, ↑ welfare

	Turkish Rules		Finnish Rules			
Outcome	Baseline		$\varphi = 10\%$	$\varphi =$ 20%	$\varphi = 30\%$	
Reapplicants [%]	34.27		-23.84	-34.83	-40.10	
Program switchings [%]	6.48		-28.67	-40.31	-46.56	
Retakes PSU [%]	21.62		-17.23	-24.34	-25.04	
Dropouts - first year [%]	3.70		0.82	-0.53	-2.29	
First enrollment in second period [%]	13.01		5.57	8.84	12.18	
Enrolls same program [%]	31.64		4.39	5.40	5.46	
Assigned to top true preference [%]	10.46		19.51	28.26	29.62	
Unassigned in first period [%]	44.17		1.26	2.86	4.27	
Difference in Ex-Post Welfare Relat	ive to Baseline	(in millions of Chilean pesos)			
Overall	-	· (poooo	0.37	0.43	0.29	

- Switching penalty: ↑ top-true, ↓ switchings, ↑ dropouts, ↑ welfare
- First-time bonus: ↑ top-true, ↓ switchings, ↑ delayed applications, ↑ welfare

	Turkish Rules		Finnish Rules			
Outcome	Baseline		$\varphi = 10\%$	$\varphi =$ 20%	$\varphi = 30\%$	
Reapplicants [%]	34.27		-23.84	-34.83	-40.10	
Program switchings [%]	6.48		-28.67	-40.31	-46.56	
Retakes PSU [%]	21.62		-17.23	-24.34	-25.04	
Dropouts - first year [%]	3.70		0.82	-0.53	-2.29	
First enrollment in second period [%]	13.01		5.57	8.84	12.18	
Enrolls same program [%]	31.64		4.39	5.40	5.46	
Assigned to top true preference [%]	10.46		19.51	28.26	29.62	
Unassigned in first period [%]	44.17		1.26	2.86	4.27	
Difference in Ex-Post Welfare Relat	ive to Baseline	(in millions of Chilean pesos)			
Overall	-		0.37	0.43	0.29	

- Switching penalty: ↑ top-true, ↓ switchings, ↑ dropouts, ↑ welfare
- ► First-time bonus: ↑ top-true, ↓ switchings, ↑ delayed applications, ↑ welfare

All students behave strategically

26% of students behave as truth-tellers

Outline

Introduction

Empirical facts

Model

Counterfactuals

Conclusions

Take-Aways

(i) Analyzed the trade-offs of designing matching markets

Take-Aways

- (i) Analyzed the trade-offs of designing matching markets
 - Private information about their preferences

Take-Aways

- (i) Analyzed the trade-offs of designing matching markets
 - Private information about their preferences
 - Learn over time about their match-qualities

Take-Aways

- (i) Analyzed the trade-offs of designing matching markets
 - Private information about their preferences
 - Learn over time about their match-qualities
 - Face dynamic considerations

- (i) Analyzed the trade-offs of designing matching markets
 - Private information about their preferences
 - Learn over time about their match-qualities
 - Face dynamic considerations
 - Balancing learning and initial mismatches

- (i) Analyzed the trade-offs of designing matching markets
 - Private information about their preferences
 - Learn over time about their match-qualities
 - Face dynamic considerations
 - Balancing learning and initial mismatches
- (ii) Centralized systems can improve students' outcomes

- (i) Analyzed the trade-offs of designing matching markets
 - Private information about their preferences
 - Learn over time about their match-qualities
 - Face dynamic considerations
 - Balancing learning and initial mismatches
- (ii) Centralized systems can improve students' outcomes
 - Eliciting intensity on students' preferences

- (i) Analyzed the trade-offs of designing matching markets
 - Private information about their preferences
 - Learn over time about their match-qualities
 - Face dynamic considerations
 - Balancing learning and initial mismatches
- (ii) Centralized systems can improve students' outcomes
 - Eliciting intensity on students' preferences
 - Leveraging dynamic incentives or incorporating signals

- (i) Analyzed the trade-offs of designing matching markets
 - Private information about their preferences
 - Learn over time about their match-qualities
 - Face dynamic considerations
 - Balancing learning and initial mismatches
- (ii) Centralized systems can improve students' outcomes
 - Eliciting intensity on students' preferences
 - Leveraging dynamic incentives or incorporating signals
 - Lack of sophistication reduces efficiency and welfare gains

Take-Aways

- (i) Analyzed the trade-offs of designing matching markets
 - Private information about their preferences
 - Learn over time about their match-qualities
 - Face dynamic considerations
 - Balancing learning and initial mismatches
- (ii) Centralized systems can improve students' outcomes
 - Eliciting intensity on students' preferences
 - Leveraging dynamic incentives or incorporating signals
 - Lack of sophistication reduces efficiency and welfare gains

Ongoing Research

Information policies: helping students to submit optimal applications

Thank you!

reports: An application to a school choice mechanism. *Econometrica*, 86(2):391–444.

Ajayi, K. and Sidibe, M. (2017). An Empirical Analysis of School Choice under Uncertainty.

Arcidiacono, P. (2004). Ability sorting and the returns to college major. *Journal of Econometrics*, 121(1-2):343–375.

Arcidiacono, P. (2005). Affirmative action in higher education: How do admission and financial aid rules affect future earnings?

Arcidiacono, P., Aucejo, E., Maurel, A., and Ransom, T. (2016). College attrition and the dynamics of information revelation. Technical report, National Bureau of Economic Research.

Bordon, P. and Fu, C. (2015). College-major choice to

Econometrica, 73(5):1477-1524.

Abdulkadiroğlu, A., Agarwal, N., and Pathak, P. A. (2017). The Welfare Effects of Coordinated Assignment: The New York City High School Match. *American Economic Review*, 95(2):364–367. Agarwal, N. and Somaini, P. (2018). Demand analysis using strategic

college-then-major choice. *Review of Economic Studies*, 82(4):1247–1288.

Calsamglia, C., Fu, C., and Güell, M. (2018). Structural estimation of a model of school choices: The boston mechanism vs. its alternatives.

Working Papers, 35(295298):1–79. He, Y. (2012). Gaming the Boston School Choice Mechanism in Beijing. Manuscript, Toulouse School of Economics, 2012(May). Kapor, A., Neilson, C. A., and Zimmerman, S. (2017). Heterogeneous

Fack, G., Grenet, J., and He, Y. (2015). Beyond Truth-Telling: Preference Estimation with Centralized School Choice. PSE

- Beliefs and School Choice Mechanisms. Larroucau, T. and Ríos, I. (2018). Do "Short-List" Students Report Truthfully? Strategic Behavior in the Chilean College Admissions
- Problem. Luflade, M. (2017). The value of information in centralized school
- Narita, Y. (2018). Match or Mismatch? Learning and Inertia in School Choice. SSRN Electronic Journal.

choice systems.

Preference of assignment

Figure 10: Distribution of preference of assignment

Mismatching

Switchings stats

Mismatching

Switchings stats

 Students assigned to lower preferences face higher switching probabilities

Switchings

Figure 11: Switching statistics 25 20 Switching category Percentage 91 Dropout Stopout Major switching University switching Program switching Below 4 Preference of assignment

RDD

Figure 12: Timeline of the Centralized Process

Applications

Figure 13: Distribution of ROLs length

Chilean system

Misreporting preferences

Survey - Admission Process 2019

Figure 14: Percentage of truth-tellers

Uncertainty

Figure 15: Variation in cutoffs - from 2013 to 2014

Subjective beliefs

Evidence

Survey - Admission Process 2019

Figure 16: Share of truth-tellers by score range

Evidence

Survey - Admission Process 2019

Figure 17: Expected cutoffs most desired vs. first preference

Subjective beliefs

Figure 18: Subjective beliefs

Timeline

► Stages 1, 2: repeat from $t = 1, ..., \bar{t}$

Stage 3: At \bar{t} , students face an exogenuous graduation probability, P_{ijt}^g and receive their lifetime earnings.

RDD Results

	Enroll - System		Enroll - SUA		Enroll - Top		Re-Apply	
	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
Above cutoff	0.014 (0.013)	0.014 (0.013)	0.016 (0.012)	0.017 (0.012)	0.493*** (0.013)	0.494*** (0.013)	-0.081*** (0.015)	-0.076*** (0.017)
Program FE	No	Yes	No	Yes	No	Yes	No	Yes
Observations R ²	38,928 0.008	38,928 0.008	38,928 0.005	38,928 0.005	38,928 0.539	38,928 0.539	38,928 0.017	38,928 0.020
Note:						*p<	0.1; **p<0.05	: ***p<0.01

RDD

Sample selection problem

- Interested in other outcome variables: Dropout, Stopout, Switches → selection problem
 - Outcomes only observed for students who enroll

Mismatching

Survey: "What is the probability that you will remain enrolled in each of your preferences?"

Figure 20: Average "perceived" program-retention probability

Forward-looking behavior: anticipate future switches

Mismatching: match-effects

$$P_{ij} = \alpha_i + \alpha_j + X_{ij}\beta + \beta_R R_i(j) + \varepsilon_{ij}$$
 (1)

Table 8: Two-way Fixed Effects Regression Results

	Dependent variable: Prob. of Persistence
Preference 2	-9.891***
Preference 3	-16.844***
Preference 4	-21.355***
Preference 5	-24.831***
Preference 6	-27.148***
Preference 7	-29.164***
Preference 8	-30.329***
Preference 9	-31.995***
Preference 10	-34.757***
Constant	89.181***
Observations	159,894
R^2	0.095
Adjusted R ²	0.095

Note: Significance reported: * p < 0.1; *** p < 0.05; *** p < 0.01.

Learning

Figure 21: Percentage of re-applicants that change their top-true preference

Close to 60% of re-applicants change their top-true preference

Learning

Table 9: Effect of Grades on Outcomes

	Re-Take PSU	Re-Apply	Switch Program	GPA
GPA	-0.904***	-0.903***	-1.221***	-
	(0.018)	(0.018)	(0.019)	-
Preference 2	0.653***	0.651***	0.163***	-0.057***
	(0.040)	(0.040)	(0.038)	(0.011)
Preference 3	0.922***	0.923***	0.352***	-0.061***
	(0.050)	(0.050)	(0.050)	(0.015)
Preference 4	1.201***	1.202***	0.562***	-0.070***
	(0.070)	(0.070)	(0.071)	(0.022)
Preference 5	1.116***	1.116***	0.523***	-0.013
	(0.103)	(0.103)	(0.102)	(0.032)
Preference Below 5	1.098***	1.099***	0.454***	-0.113***
	(0.112)	(0.112)	(0.115)	(0.035)
Observations	39,275	39,275	39,275	39,275

Learning: grades and outcomes

Table 10: Effect of Grades on Outcomes

	Re-Take PSU	Re-Apply	Switch Program	GPA
GPA	-0.904***	-0.903***	-1.221***	_
	(0.018)	(0.018)	(0.019)	-
Preference 2	0.653***	0.651***	0.163***	-0.057***
	(0.040)	(0.040)	(0.038)	(0.011)
Preference 3	0.922***	0.923***	0.352***	-0.061***
	(0.050)	(0.050)	(0.050)	(0.015)
Preference 4	1.201***	1.202***	0.562***	-0.070***
	(0.070)	(0.070)	(0.071)	(0.022)
Preference 5	1.116***	1.116***	0.523***	-0.013
	(0.103)	(0.103)	(0.102)	(0.032)
Preference Below 5	1.098***	1.099***	0.454***	-0.113***
	(0.112)	(0.112)	(0.115)	(0.035)
Observations	39,275	39,275	39,275	39,275

Grades are negatively correlated with switching outcomes

Learning: grades and outcomes

Table 11: Effect of Grades on Outcomes

	Re-Take PSU	Re-Apply	Switch Program	GPA
GPA	-0.904***	-0.903***	-1.221***	-
	(0.018)	(0.018)	(0.019)	-
Preference 2	0.653***	0.651***	0.163***	-0.057***
	(0.040)	(0.040)	(0.038)	(0.011)
Preference 3	0.922***	0.923***	0.352***	-0.061***
	(0.050)	(0.050)	(0.050)	(0.015)
Preference 4	1.201***	1.202***	0.562***	-0.070***
	(0.070)	(0.070)	(0.071)	(0.022)
Preference 5	1.116***	1.116***	0.523***	-0.013
	(0.103)	(0.103)	(0.102)	(0.032)
Preference Below 5	1.098***	1.099***	0.454***	-0.113***
	(0.112)	(0.112)	(0.115)	(0.035)
Observations	39,275	39,275	39,275	39,275

▶ Preference of assignment has a small negative correlation with grades

Model solution

Period t = 3:

$$\begin{split} V_{ijt}(\mu_{ij2},\tau_{ijt}) &= E_t \left[\sum_{t'=\tau_{ijt}+1}^{T_f} P^g_{ijt'} \left(\mathbb{E}_{\varepsilon} \left[\sum_{t''=0}^{t'-(\tau_{ijt}+1)} \beta^{t''} u_{ij(t+t'')} \right] + \beta^{t'-\tau_{ijt}} \underbrace{V^w_{ij(t+t'-\tau_{ijt})}(\mu_{ij2})}_{\text{Value fcn Labor market}} \right) \right] \\ &+ E_t \left[\sum_{t'=\tau_{ijt}+1}^{T_f} P^d_{ijt'} \left(\mathbb{E}_{\varepsilon} \left[\sum_{t''=0}^{t'-(\tau_{ijt}+1)} \beta^{t''} u_{ij(t+t'')} \right] + \beta^{t'-\tau_{ijt}} \underbrace{V_{i0(t+t'-\tau_{ijt})}}_{\text{Value fcn Dropout}} \right) \right] \end{split}$$

Period t = 2:

Indirect utility of enrolling in *j*:

$$V_{ijt}(\mu_{ij2},\tau_{ijt}) = u_{ijt} - \mathbb{1}_{\{(j\neq 0)\cap(\tau_{ijt}=0)\}}C^e + \beta\mathbb{E}_{\varepsilon}\left[V_{ijt+1}(\mu_{ij2},\tau_{ijt+1})\right]$$

Model solution

Period t = 1:

$$\begin{aligned} V_{\mathit{ijt}}(\mu_{\mathit{ij1}},\tau_{\mathit{ijt}},\vec{s}_{\mathit{it}}) &= \max_{d_{\mathit{it}}^s} E_0 \Big[u_{\mathit{ijt}} - d_{\mathit{it}}^s C^{\mathit{psu}} - \mathbb{1}_{\{j \neq 0\}} C^e + \\ \beta \int_{a_{\mathit{ij1}}} \int_{\vec{s}_{\mathit{it+1}}} \underbrace{EmaxROL(\tau_{\mathit{ijt}} + 1, \vec{s}_{\mathit{it+1}}, \mu_{\mathit{i2}}(a_{\mathit{ij1}}))}_{\text{continuation value of reapplications}} \underbrace{d\pi(a_{\mathit{ij1}})}_{\text{signal}} \underbrace{dF(\vec{s}_{\mathit{it+1}} | \vec{s}_{\mathit{it}}, d_{\mathit{it}}^s)}_{\text{future scores}} \Big] \end{aligned}$$

Application

Counterfactuals Mechanisms

Counterfactuals Re-applications

Pairwise-stability

Proposition (Fack et al (2018))

In a large market, the allocation of Constrained DA satisfies pairwise-stability, i.e,

$$\mu(i|\varepsilon_i, \{P_j\}_{j \in \mathcal{J}}) = \operatorname*{argmax}_{j \in J_i(\{P_j\}_{j \in \mathcal{J}})} \bar{u}_{ij} + \varepsilon_{ij}$$

$$J_i(\{P_j\}_{j\in\mathcal{J}}):=\{j\in\mathcal{J}:s_{ij}\geq P_j\}\bigcup\{j=0\}$$

Proposition (EmaxROL)

$$\textit{EmaxROL} = \mathbb{E}_{\{P_j\}_{j \in \mathcal{J}}} \left[\log \left(\sum_{j \in J_i(\{P_j\}_{j \in \mathcal{J}})} \exp \left(\bar{u}_{ij}\right) \right) + \gamma \right]$$

Identification

Bootstrap

Agarwal and Somaini (2018) show that a consistent estimator of these beliefs can be obtained using the following bootstrap procedure:

- For each period t and each bootstrap simulation b = 1, ..., B,
 - Sample with replacement a set N_t^b of N_t students with their corresponding ROLs and scores.
 - ▶ Run the mechanism to obtain the allocation μ_t^b .
 - ▶ Obtain the set of cutoffs $\left\{ \bar{\mathbf{s}}_{jt}^{b}\right\} _{j\in J}$ from the allocation μ_{t}^{b} , i.e., for each $j\in J$,

$$\bar{\mathbf{s}}_{jt}^b = \min\left\{\mathbf{s}_{ijt}: i \in N_t^b, \ \mu_t^b(i) = j\right\}$$

▶ We can estimate the admission probability of student $i \in N_t$ in program $j \subset J$ as

$$\hat{
ho}_{ijt} = rac{1}{B} \sum_{b=1}^{B} \mathbb{1}_{\left\{s_{ijt} \geq \bar{s}_{jt}^{b}
ight\}}$$

We estimate these probabilities running B = 10,000 bootstrap simulations for every application process

Goodness of fit

Table 12: Correlation between grades and outcomes

	Model	Data
Dropout	-0.055	-0.086
Switching programs	-0.152	-0.148
Switching broad majors	-0.092	-0.075
Switching majors	-0.172	-0.107
Switching math type	-0.079	-0.044
Switching Up	-0.008	0.002
Switching Down	-0.029	-0.032
Switching Out feasible	-0.084	-0.089
Switching Out unfeasible	-0.032	-0.011

Table 13: Causal effect RDDs

	Model	Data
RDD switch program 1 (level)	0.205	0.1622
RDD switch program 1 (coeff.)	-0.07	-0.0478
RDD reapplications 1 (level)	0.488	0.2261
RDD reapplications 1 (coeff.)	-0.104	-0.0840

Indirect Inference Algorithm: Computing $Q(\theta)$

input: Value of the structural parameters θ , and first-stage estimates \hat{p} , \hat{P}^e , \hat{P}^d , \hat{P}^g , and \hat{P}^w . **output**: Value of the objective function $Q(\theta)$

```
foreach student i in the sample do
      foreach simulation m_{rc} \in \{1, ..., N_{rc}\} do
             Draw a vector of random coefficients \alpha_i^{m_{rc}};
             Solve the model by backward-induction:
             foreach simulation m_s \in \{1, ..., N_s\} do
                   foreach state do
                          Draw a vector of preference shocks \varepsilon_i^{m_S, m_{rc}}, enrollment shocks \varepsilon_i^{e, m_S, m_{rc}},
                            wage shocks \epsilon_i^{m_S,m_{rc}}, vector of random cutoff scores P^{m_S,m_{rc}} from the
                            empirical distribution of cutoffs, vector of PSU score shocks v_i^{m_S, m_{rc}},
                            vector of unknown abilities A_i^{u,m_S,m_{rc}}, and grade shocks \varepsilon_i^{g,m_S,m_{rc}};
                   end
                    Forward-simulate the model and obtain a set of outcomes y_i^{m_s, m_{rc}};
      end
end
foreach m_s \in \{1, ..., N_s\} and m_{rc} \in \{1, ..., N_{rc}\} do
      Estimate the auxiliary model parameters, \hat{\beta}^{m_s,m_{rc}}(\theta), on the simulated sample;
end
Compute \bar{\beta}(\theta) = \frac{1}{N_{rc} \times N_s} \sum_{m_{rc}} \sum_{m_s} \hat{\beta}^{m_s, m_{rc}}(\theta);
Return Q(\theta) := (\bar{\beta}(\theta) - \hat{\beta})^T W(\bar{\beta}(\theta) - \hat{\beta});
```

Table 14: Estimation moments

Moment description	Targeted parameters
Share of students who retake the PSU	Cpsu
Share of students who dropout by gender and income level	$\{\alpha_d\}_d$, α^w , C^e , σ_s^2
Grade auxiliary models' coefficients	γ, σ_q^2
Wage auxiliary models' coefficients	λ
Switchings and dropout auxiliary models' coefficients	γ, σ_g^2 λ $\sigma_g^2, \sigma_m^2, \sigma_s^2, \alpha_4^w$ $V_{\alpha^m}, V_{\alpha^k}, C^e$
RDD auxiliary models' coefficients	$V_{\alpha^m}, V_{\alpha^k}, C^e$
Share of students who reapply	
Share of students who switch programs	σ_m^2 , σ_s^2 , V_{α^m} , V_{α^k} , C^{θ}
Share of students who switch majors	σ_m^2, V_{α^m}
Share of students who switch majors within math-types	σ_m^2 , V_{α^m}
Share of students who switch math-types within majors	$\sigma_{\rm e}^2$
Share of students who switch college-types	$\sigma_{m}^{2}, \sigma_{n}^{2}, V_{\alpha^{m}}$ $\sigma_{m}^{2}, V_{\alpha^{m}}$ $\sigma_{m}^{2}, V_{\alpha^{m}}$ σ_{s}^{2} $V_{\alpha^{k}}$
Share of students who dropout at the end of the first year of college	α^{w}
Share of students who choose the outside option every year	$\alpha^{\mathbf{w}}$
Share of students who start college in the second year	
Share of students who remain in the same program after two years	
Share of top-reported preferences by program	$\{\alpha_{fe}\}_{j}$
Share of students whose top-reported preference is their top-true preference in R ₁	ρ
Share of students whose top-reported preference is their top-true preference in R ₂	ρ
Share of students whose top-reported preference has zero admission probability	ρ
Share of students with a positive risk of being unassigned given R ₁	ρ
Share of ROLs R ₁ with length 10	ρ
Share of ROLs R ₂ with length 10	ρ
Share of students assigned to their top-true preference in the first period	ρ
Share of students who apply in the first year	
Share of students who apply in the second year	
Share of reapplications that change in their top-true preference	σ_m^2 , σ_s^2 , V_{α^m} , V_{α^k}
Shares of majors within R ₁	V_{α^m}
Shares of college-types within R ₁	V_{α^k}
Shares of majors within R ₂	V_{α^m}
Shares of college-types within R ₂	V_{α^k}

Table 15: Estimation moments

Moment description	Targeted parameters
Norm of the difference between the vectors of college-type	V_{α^k}
shares for students who reapply	a
Norm of the difference between the vectors	σ_m^2 , V_{α^m}
of major shares for students who reapply	- m, • α
1 Norm of the difference between the vectors of ω shares for students who reapply	σ_s^2 , V_{α^m} , V_{α^k}
Correlation between first-year grades and the norm of the difference between the vectors	σ_m^2 , σ_a^2
of major shares for students who reapply	- m, - y
1 Correlation between first-year grades and the norm of	σ_s^2 , σ_q^2
the difference between the vectors of ω shares for students who reapply	
Share of applications by major and college-type, grouped by gender in R ₁	Δ^m , Δ^k
Share of applications by major and college-type, grouped by gender in R ₂	Δ^m , Δ^k
Share reapplications from top-reported preferences	
Share reapplications from top-true preferences	
Mean of tuition for top-reported preferences, grouped by students' scores and income groups	$\{\alpha_c\}_c$
Mean of observed ability for top-reported preferences	α_1
Mean of average observed ability at the college level for top-reported preferences	α_2
Mean of distance for top-reported preferences	α_3
Mean of relative observed ability position for topreported preferences	α_4
Mean and variance of $\log\left(\frac{s_{\ell+1}}{s_\ell}\right)$ for positive PSU scores	$\{\alpha_I\}_I$, σ_{psu}
Mean and variance of $\log \left(\frac{S_{k+1}}{S_t}\right)$ for PSU scores wit zero value in the first year	$\{\alpha_{0I}\}_I$, σ_{psu}

Table 16: Estimation Results - Parameters

Parameters	Values	Std
Application behavior and Dropout		
Share of strategic ROLs $(1 - \rho)$	0.74	[0.022]
Cost of retaking PSU (Cpsu)	4.46	[0.219]
Dropout flow-utility for females ($\alpha_{female}^{dropout}$)	19	[1.262]
Dropout flow-utility for males $(\alpha_{male}^{dropout})$	41.8	[1.756]
Dropout flow-utility for low-income ($\alpha_{low-income}^{dropout}$)	15.8	[0.83]
First-time enrollment cost (Ce)	32.16	[0.944]
Flow-utility and Priors		
Tuition (α_c)	-0.14	[0.049]
Relative position (α_4)	-0.28	[0.022]
Distance (α_3)	-1.09	[0.056]
Student observed ability (α_1)	12.92	[0.86]
Program observed ability (\alpha_2)	4.65	[0.26]
Gender effect by major (Δ^m)	(-4.93 -2.46 3.28 1.48)	([0.363][0.171][0.256][0.237]
Variance major random coefficient (σ_{α}^{2m})	15.69	[0.913]
Income effect by college (Δ^k)	(-0.11 -0.12 9.06)	([0.215],[0.218],[0.449])
Variance college random coefficient (σ_{α}^{2k})	0.43	[0.075]
Major prior variance (σ_m^2)	0.34	[0.032]
Subject prior variance (σ_s^2)	0.48	[0.103]

Notes: the order of majors is Social Sciences, Science, Education and Humanities, and Health.

The order of colleges is CRUCH-Public, CRUCH-Private, and Non-CRUCH.

Table 17: Estimation Results - Parameters

Parameters	Values	Std
Grade equations		
Constant by major (γ_{1m_i})	(3.91 4.32 3.81 3.43)	([0.105][0.229][0.14][0.208])
Student observed ability (γ_2)	0.52	[0.053]
Gender effect (γ_3)	0.36	[0.052]
Random coefficient effect on grades (major) (γ_4)	0.05	[0.015]
Grade shock variance (σ_g^2)	0.08	[0.04]
Evolution of scores		
Std. of ν (σ_{psu})	0.1	[0.007]
Mean prop. change $(\{\alpha_i\}_i)$	(1.06 1.07 1.05 1.02)	([0.004][0.007][0.006][0.001])
Mean prop. change from zero score ($\{\alpha_{0l}\}_l$)	(1.07 1.08)	([0.024][0.021])
Non-pecuniary work utility		
Major random coefficient (α_1^w)	8.72	[0.363]
Student observed ability (α_2^{W})	71.58	[2.688]
College observed ability (α_3^w)	-1.86	[0.592]
Non-pecuniary work value of unknown ability (α_4^w)	178.57	[6.852]
Pecuniary work utility parameter (α_5^w)	75.95	[5.247]
Wage parameters		
Constant by major (λ_{1m_i})	(1.78 1.17 1.07 1.63)	([0.073],[0.083],[0.1],[0.059])
College observed ability (λ_2)	0.03	[0.011]
Grades (λ_3)	0.13	[0.017]
Gender effects (λ_4)	-0.19	[0.094]
Wage shock variance (σ_w^2)	0.68	[80.0]
Wage growth		
Linear term by major (λ_{5m_i})	(0.11 0.18 0.14 0.24)	(-)
Quadratic term by major (λ_{6m_i})	(0 -0.01 -0.01 -0.02)	(-)

Notes: the order of majors is Social Sciences, Science, Education and Humanities, and Health.

The order of colleges is CRUCH-Public, CRUCH-Private, and Non-CRUCH.

Switching equations:

$$O_{ij} = \beta_{1m_j}^o + \beta_2^o A_{ij} + \beta_3^o Z_i^g + \underbrace{\beta_4^o \mathbbm{1}\{j = R_{1i}(1)\} + \beta_5^o s_{1im_j} + \beta_6^o s_{1ik_j}}_{\text{correlated with } \alpha_{im_j} \qquad \alpha_{ik_j}} + \underbrace{\beta_7^o G_{ij1}}_{\text{correlated with } A_{ij}^o} + \underbrace{\beta_7^o G_{ij1}}_{\text{correlated with } A_{ij}^o} + \underbrace{\beta_7^o G_{ij1}}_{\text{correlated with } A_{ij}^o}$$

Grade equations:

$$\begin{split} G_{ij1} &= \beta_{1m_j}^{\gamma} + \beta_2^{\gamma} A_{ij} + \beta_3^{\gamma} Z_i^{g} + \underbrace{\beta_4^{\gamma} \mathbb{1}\{j = R_{1i}(\mathbf{1})\} + \beta_5^{\gamma} \mathbf{s}_{1im_j} + \beta_6^{\gamma} \mathbf{s}_{1ik_j}}_{\text{correlated with } \alpha_{im_j} \quad \alpha_{ik_j}} + \varepsilon_{ij1}^{g}, \\ G_{ij2} &= \left(\beta_7^{\gamma} + \beta_8^{\gamma} S\right) G_{ij1} + \beta_9^{\gamma} + \gamma_{10} S + \varepsilon_{ij2}^{g}. \end{split}$$

Pecuniary:

$$\begin{split} \log(\bar{\textit{w}}_{\textit{J}(\tau=4)}) &= \beta_{1\textit{m}_{\textit{j}}}^{\lambda} + \beta_{2}^{\lambda} \bar{\textit{A}}_{\textit{k}_{\textit{j}}} + \beta_{3}^{\lambda} \bar{\textit{G}}_{\textit{j}} + \beta_{4}^{\lambda} \bar{\textit{Z}}^{\textit{w}} + \epsilon_{\textit{J}(\tau=4)}, \\ \log(\bar{\textit{w}}_{\textit{m}_{\textit{j}}\tau}) &= \beta_{5\textit{m}_{\textit{j}}}^{\lambda} + \beta_{6\textit{m}_{\textit{j}}}^{\lambda} \tau + \beta_{7\textit{m}_{\textit{j}}}^{\lambda} \tau^{2} + \epsilon_{\textit{m}_{\textit{j}}\tau}, \end{split}$$

Non-pecuniary:

$$y_{ij} = \beta_1^{w} \mathbf{S}_{1im_j} + \beta_2^{w} \mathbb{1}\{j = R_{1i}(1)\} + \beta_3^{w} A_{ij} + \beta_4^{w} \bar{A}_{k_j} + \beta_5^{w} Z_i^g + \varepsilon_{ij}^{w}$$