HW week 11

w203: Statistics for Data Science

Da Qi Ren

Regression analysis of YouTube dataset

You want to explain how much the quality of a video affects the number of views it receives on social media. **This is a causal question.**

You will use a dataset created by Cheng, Dale and Liu at Simon Fraser University. It includes observations about 9618 videos shared on YouTube. Please see this link for details about how the data was collected.

You will use the following variables:

- views: the number of views by YouTube users.
- rate: the average rating given by users.
- length: the duration of the video in seconds.

You want to use the rate variable as a proxy for video quality. You also include length as a control variable. You estimate the following ols regression:

views =
$$789 + 2103 \text{ rate} + 3.00 \text{ length}$$

a. Name an omitted variable that you think could induce significant omitted variable bias. Argue whether the direction of bias is towards zero or away from zero.

```
dat<-read.csv('videos.csv', sep='')
summary(dat)</pre>
```

##	video_id			uploader			age			category		
##	0	:	592	0	:	888	Min.	:	0			:3239
##	1	:	409	1	:	422	1st Qu	.:	920	Music		:2676
##	2	:	288	2	:	273	Median	:1	115	Entertain	nmen	t:2240
##	3	:	207	3	:	187	Mean	:1	045	People		: 811
##	5	:	152	4	:	124	3rd Qu	.:1	226	Film		: 810
##	4	:	146	5	:	120	Max.	:1	258	Comedy		: 621
##	(Other):11054			(Other):10834			NA's	:3	239	(Other)		:2451
##	length			views			rate			ratings		
##		:3	239		:	3239	Min.	:	0.00	Min.	:	0
##	&	:3	230	Blogs	:	811	1st Qu	.:	4.38	1st Qı	1.:	3
##	30	:	44	Animat	ion:	810	Median	:	5.00	Media	n :	16
##	230	:	33	Style	:	426	Mean	:	83.46	Mean	:	2700
##	252	:	32	Politi	.cs :	364	3rd Qu	.:	70.00	3rd Qı	1.:	287

```
##
    180
          : 31
                   Animals
                            : 251
                                     Max.
                                            :4216.00
                                                       Max.
                                                               :531004
    (Other):6239
                   (Other)
                            :6947
                                     NA's
                                            :3239
                                                       NA's
##
                                                               :3239
##
       comments
##
           :
                0.00
   Min.
    1st Qu.:
##
                1.00
##
   Median :
                4.30
##
    Mean
          :
               15.61
    3rd Qu.:
                7.00
##
##
    Max.
           :13211.00
##
   NA's
           :3239
df<-dat %>%
  select('rate', 'views', 'length')
```

- b. Provide a story for why there might be a reverse causal pathway (from the number of views to the average rating). Argue whether the direction of bias is towards zero or away from zero.
- c. You are considering adding a new variable, rating, which represents the total number of ratings. Explain how this would affect your measurement goal.