Assignment 3 EECS 6412

Daniel Marchena Parreira - 216181497

2018/11/05

Question 1

```
C4.5 (weka.classifier.trees.J48)
```

Size of the tree: 34

```
J48 pruned tree
lym_nodes_dimin <= 1</pre>
    changes_in_node = no
        defect_in_node = no: normal (3.0/1.0)
        defect_in_node = lacunar: malign_lymph (2.0)
        defect_in_node = lac_margin: normal (0.0)
        defect_in_node = lac_central: normal (0.0)
    changes_in_node = lacunar
        exclusion_of_no = no: metastases (10.0/1.0)
        exclusion_of_no = yes
            special_forms = no: metastases (3.0/1.0)
            special_forms = chalices
                lym_nodes_enlar <= 2: malign_lymph (3.0)</pre>
                lym_nodes_enlar > 2: metastases (2.0)
            special_forms = vesicles: malign_lymph (19.0/1.0)
    changes_in_node = lac_margin
        block_of_affere = no
            extravasates = no
                lymphatics = normal: metastases (0.0)
                lymphatics = arched
                    early_uptake_in = no: metastases (5.0/1.0)
                    early_uptake_in = yes: malign_lymph (4.0/1.0)
                lymphatics = deformed: metastases (5.0)
                lymphatics = displaced: malign_lymph (1.0)
            extravasates = yes: malign_lymph (4.0)
        block_of_affere = yes: metastases (56.0/3.0)
    changes_in_node = lac_central
        no_of_nodes_in <= 1</pre>
            block_of_affere = no: malign_lymph (3.0)
            block_of_affere = yes: metastases (2.0)
        no_of_nodes_in > 1: malign_lymph (20.0)
lym_nodes_dimin > 1
    by_pass = no: metastases (2.0/1.0)
    by_pass = yes: fibrosis (4.0)
Number of Leaves : 21
```


RIPPER (weka.classifier.rules.JRip)

JRIP rules:

(lymphatics = normal) => class=normal (2.0/0.0)
(lym_nodes_dimin >= 2) and (by_pass = yes) => class=fibrosis (4.0/0.0)
(no_of_nodes_in >= 3) and (special_forms = vesicles) => class=malign_lymph (41.0/5.0)
(block_of_affere = no) and (extravasates = yes) => class=malign_lymph (8.0/0.0)
(changes_in_node = lac_central) => class=malign_lymph (8.0/2.0)
=> class=metastases (85.0/11.0)

Number of Rules : 6

Question 2

${ m C4.5}$ (weka.classifier.trees.J48)

=== Summary ===

Correctly Classified Instances	779	96.1728 %
Incorrectly Classified Instances	31	3.8272 %
Kappa statistic	0.9553	
Mean absolute error	0.0127	
Root mean squared error	0.1005	
Relative absolute error	5.1771 %	
Root relative squared error	28.6807 %	
Total Number of Instances	810	

=== Confusion Matrix ===

a	b	С	d	е	f	g		<	classified as
124	0	0	0	1	0	0	1	a	= brickface
0	110	0	0	0	0	0	1	b	= sky
1	0	119	0	2	0	0	1	С	= foliage
1	0	0	107	2	0	0	1	d	= cement
1	0	12	7	105	0	1	1	е	= window
0	0	0	0	0	94	0	1	f	= path
0	0	1	0	0	2	120		g	= grass

${\bf RIPPER} \ ({\bf weka.classifier.rules.JRip})$

=== Summary ===

Correctly Classified Instances	764	94.321	%
Incorrectly Classified Instances	46	5.679	%
Kappa statistic	0.9337		
Mean absolute error	0.0243		
Root mean squared error	0.1243		
Relative absolute error	9.9168 %		
Root relative squared error	35.4894 %		
Total Number of Instances	810		

=== Confusion Matrix ===

a	b	С	d	е	f	g		< classified as
122	0	0	0	3	0	0	1	a = brickface
0	110	0	0	0	0	0	1	b = sky
0	0	112	2	8	0	0	1	c = foliage
1	0	0	106	2	1	0	1	d = cement
1	0	17	7	101	0	0	1	e = window
0	0	0	1	0	93	0	1	f = path
1	0	2	0	0	0	120	1	g = grass

$\hbox{k-Nearest Neighbor (weka. classifiers. lazy.} IBk)$

=== Summary ===

Correctly Classified Instances	776	95.8025 %
Incorrectly Classified Instances	34	4.1975 %
Kappa statistic	0.951	
Mean absolute error	0.013	
Root mean squared error	0.1093	
Relative absolute error	5.318 %	
Root relative squared error	31.1994 %	
Total Number of Instances	810	

=== Confusion Matrix ===

a	b	С	d	е	f	g		< classified as
124	0	0	0	1	0	0		a = brickface
0	110	0	0	0	0	0	1	b = sky
0	0	116	0	6	0	0	1	c = foliage
1	0	1	103	5	0	0	1	d = cement
2	0	7	8	109	0	0		e = window
0	0	0	0	0	94	0		f = path
0	0	0	1	1	1	120		g = grass

Naive Bayesian Classification (weka.classifiers.bayes.NaiveBayes)

=== Summary ===

Correctly Classified Instances	624	77.037	%
Incorrectly Classified Instances	186	22.963	%
Kappa statistic	0.7316		
Mean absolute error	0.0659		
Root mean squared error	0.2464		
Relative absolute error	26.8912 %		
Root relative squared error	70.3431 %		
Total Number of Instances	810		

=== Confusion Matrix ===

a	b	С	d	е	f	g		< classified as
119	0	0	1	5	0	0	1	a = brickface
0	109	0	1	0	0	0	1	b = sky
3	0	17	1	101	0	0	1	c = foliage
9	0	1	97	0	3	0	1	d = cement
30	0	6	15	75	0	0	1	e = window
0	0	1	5	0	88	0	1	f = path
0	0	1	0	3	0	119	1	g = grass

${\bf Bayesian\ Network\ (weka. classifiers. bayes. BayesNet)}$

=== Summary ===

Correctly Classified Instances	753	92.963	%
Incorrectly Classified Instances	57	7.037	%
Kappa statistic	0.9178		
Mean absolute error	0.0234		
Root mean squared error	0.1288		
Relative absolute error	9.5474 %		
Root relative squared error	36.7584 %		
Total Number of Instances	810		

=== Confusion Matrix ===

a	b	С	d	е	f	g		< classified as
122	0	1	0	2	0	0	1	a = brickface
0	110	0	0	0	0	0	1	b = sky
3	0	109	4	6	0	0	1	c = foliage
4	0	0	100	2	4	0	1	d = cement
2	0	11	14	99	0	0		e = window
0	0	0	2	0	92	0		f = path
1	0	1	0	0	0	121		g = grass

$Neural\ Network\ (we ka. classifiers. functions. Multilayer Perceptron)$

=== Summary ===

Correctly Classified Instances	769	94.9383 %
Incorrectly Classified Instances	41	5.0617 %
Kappa statistic	0.9409	
Mean absolute error	0.0177	
Root mean squared error	0.1082	
Relative absolute error	7.2247 %	
Root relative squared error	30.8905 %	
Total Number of Instances	810	

=== Confusion Matrix ===

a	b	С	d	е	f	g		< classified as
123	0	0	2	0	0	0	-	a = brickface
0	110	0	0	0	0	0	-	b = sky
1	0	109	1	11	0	0	-	c = foliage
0	0	1	107	1	1	0	-	d = cement
3	0	8	9	106	0	0	-	e = window
0	0	0	0	0	94	0	-	f = path
0	0	1	0	0	2	120	-	g = grass

Support Vector Machine (weka.classifiers.functions.SMO)

=== Summary === Correctly Classified Instances 751 92.716 % 7.284 % Incorrectly Classified Instances 59 Kappa statistic 0.9149 Mean absolute error 0.2055 0.3032 Root mean squared error Relative absolute error 83.8368 % Root relative squared error 86.5505 % Total Number of Instances 810 === Confusion Matrix === b c d e f g <-- classified as a 122 0 1 0 2 0 0 | a = brickface $0 \ 110 \ 0 \ 0 \ 0 \ 0 \ b = sky$ 0 111 2 9 0 0 | c = foliage 0 0 104 5 1 0 | d = cement 0 0 20 15 90 0 0 | e = window 1 0 94 0 | 0 0 0 0 f = path

Question 3

C4.5 (weka.classifier.trees.J48)

0 0 1 0 0 2 120 |

```
Time taken to build model: 0.04 seconds
=== Evaluation on test split ===
Time taken to test model on test split: 0.01 seconds
=== Summary ===
Correctly Classified Instances
                                      230
                                                        83.3333 %
Incorrectly Classified Instances
                                                        16.6667 %
                                       0.665
Kappa statistic
Mean absolute error
                                       0.2141
Root mean squared error
                                       0.3822
Relative absolute error
                                   43.1117 %
76.0455 %
Root relative squared error
Total Number of Instances
                                      276
```

${\bf PRISM} \ ({\bf weka.classifiers.rules.Prism})$

Time taken to build model: 0.09 seconds

=== Evaluation on test split ===

Time taken to test model on test split: O seconds

=== Summary ===

Correctly Classified Instances	198	71.7391 %
5		· ·
Incorrectly Classified Instances	58	21.0145 %
Kappa statistic	0.5496	
Mean absolute error	0.2266	
Root mean squared error	0.476	
Relative absolute error	49.3868 %	
Root relative squared error	98.7455 %	
UnClassified Instances	20	7.2464 %
Total Number of Instances	276	

Naive Bayes Classifier (weka.classifiers.bayes.NaiveBayes)

Time taken to build model: 0.01 seconds

=== Evaluation on test split ===

Time taken to test model on test split: 0.01 seconds $\,$

=== Summary ===

Correctly Classified Instances	206	74.6377 %
Incorrectly Classified Instances	70	25.3623 %
Kappa statistic	0.4843	
Mean absolute error	0.2571	
Root mean squared error	0.4771	
Relative absolute error	51.7659 %	
Root relative squared error	94.9347 %	
Total Number of Instances	276	

Bayesian Network (weka.classifiers.bayes.BayesNet)

Time taken to build model: 0.02 seconds

=== Evaluation on test split ===

Time taken to test model on test split: 0.01 seconds

=== Summary ===

Correctly Classified Instances	232	84.058 %	,
Incorrectly Classified Instances	44	15.942 %	,
Kappa statistic	0.6783		
Mean absolute error	0.1783		

Root mean squared error	0.3626	
Relative absolute error	35.91	%
Root relative squared error	72.1546	%
Total Number of Instances	276	

$Neural\ Network\ (we ka. classifiers. functions. Multilayer Perceptron)$

Time taken to build model: 4.33 seconds

=== Evaluation on test split ===

Time taken to test model on test split: 0.01 seconds $\,$

=== Summary ===

Correctly Classified Instances	231	83.6957 %
Incorrectly Classified Instances	45	16.3043 %
Kappa statistic	0.6724	
Mean absolute error	0.1751	
Root mean squared error	0.3932	
Relative absolute error	35.2528 %	
Root relative squared error	78.2433 %	
Total Number of Instances	276	

${\bf Support\ Vector\ Machine\ (weka. classifiers. functions. SMO)}$

Time taken to build model: 0.35 seconds

=== Evaluation on test split ===

Time taken to test model on test split: O seconds

=== Summary ===

224	81.1594 %
52	18.8406 %
0.6213	
0.1884	
0.4341	
37.9349 %	
86.3682 %	
276	
	52 0.6213 0.1884 0.4341 37.9349 % 86.3682 %

Question 4

```
=== Chi-Squared statistic - Attribute Selection on all input data ===
Search Method:
Attribute ranking.
Attribute Evaluator (supervised, Class (nominal): 35 class):
Chi-squared Ranking Filter
Ranked attributes:
194.7609 6 a06
186.5519 5 a05
170.242 34 a34
169.6782 33 a33
169.2576 29 a29
=== Information gain - Attribute Selection on all input data ===
Search Method:
Attribute ranking.
Attribute Evaluator (supervised, Class (nominal): 35 class):
Information Gain Ranking Filter
Ranked attributes:
0.462 5 a05
0.44
        6 a06
0.401 33 a33
0.391 29 a29
0.384
       3 a03
C4.5 (weka.classifiers.trees.J48)
=== Summary ===
Correctly Classified Instances
                                      321
                                                        91.453 %
                                                         8.547 %
Incorrectly Classified Instances
                                       30
                                        0.8096
Kappa statistic
                                        0.0938
Mean absolute error
Root mean squared error
                                        0.2901
Relative absolute error
                                       20.36
                                       60.4599 %
Root relative squared error
Total Number of Instances
                                      351
=== Chi-Squared statistic - Summary ===
Correctly Classified Instances
                                                        90.8832 %
                                      319
Incorrectly Classified Instances
                                                         9.1168 %
                                       32
                                        0.7955
Kappa statistic
Mean absolute error
                                        0.1344
Root mean squared error
                                        0.2911
Relative absolute error
                                       29.1856 %
Root relative squared error
                                       60.6881 %
Total Number of Instances
                                      351
```

=== Information gain - Summary ===

Correctly Classified Instances	329	93.7322 %
Incorrectly Classified Instances	22	6.2678 %
Kappa statistic	0.8604	
Mean absolute error	0.1084	
Root mean squared error	0.2441	
Relative absolute error	23.5377 %	
Root relative squared error	50.8782 %	
Total Number of Instances	351	

${\bf RIPPER} \ ({\bf weka.classifier.rules.JRip})$

=== Summary ===

Correctly Classified Instances	315	89.7436 %
Incorrectly Classified Instances	36	10.2564 %
Kappa statistic	0.7779	
Mean absolute error	0.1447	
Root mean squared error	0.3041	
Relative absolute error	31.4132 %	
Root relative squared error	63.3836 %	
Total Number of Instances	351	

=== Chi-Squared statistic - Summary ===

Correctly Classified Instances	317	90.3134 %
Incorrectly Classified Instances	34	9.6866 %
Kappa statistic	0.7842	
Mean absolute error	0.1421	
Root mean squared error	0.3006	
Relative absolute error	30.8499 %	
Root relative squared error	62.6528 %	
Total Number of Instances	351	

=== Information gain - Summary ===

Correctly Classified Instances	319	90.8832 %
Incorrectly Classified Instances	32	9.1168 %
Kappa statistic	0.7991	
Mean absolute error	0.1327	
Root mean squared error	0.292	
Relative absolute error	28.8145 %	
Root relative squared error	60.8643 %	
Total Number of Instances	351	

$Naive\ Bayes ian\ Classification\ (we ka. classifiers. bayes. Naive Bayes)$

=== Summary ===

Correctly Classified Instances	290	82.6211 %
Incorrectly Classified Instances	61	17.3789 %
Kappa statistic	0.6394	
Mean absolute error	0.1736	
Root mean squared error	0.3935	
Relative absolute error	37.7001 %	
Root relative squared error	82.0203 %	
Total Number of Instances	351	

=== Chi-Squared statistic - Summary ===

Correctly Classified Instances	297	84.6154 %
Incorrectly Classified Instances	54	15.3846 %
Kappa statistic	0.6669	
Mean absolute error	0.1763	
Root mean squared error	0.3312	
Relative absolute error	38.2865 %	
Root relative squared error	69.0352 %	
Total Number of Instances	351	

=== Information gain - Summary ===

Correctly Classified Instances	310	88.3191 %
Incorrectly Classified Instances	41	11.6809 %
Kappa statistic	0.743	
Mean absolute error	0.1448	
Root mean squared error	0.3231	
Relative absolute error	31.4437 %	
Root relative squared error	67.3524 %	
Total Number of Instances	351	

$Bayesian\ Network\ (we ka. classifiers. bayes. BayesNet)$

=== Summary ===

Correctly Classified Instances	314	89.4587
Incorrectly Classified Instances	37	10.5413
Kappa statistic	0.7681	
Mean absolute error	0.1069	
Root mean squared error	0.3179	
Relative absolute error	23.2213 %	
Root relative squared error	66.2607 %	
Total Number of Instances	351	

% %

=== Chi-Squared statistic - Summary ===

-		
Correctly Classified Instances	317	90.3134 %
Incorrectly Classified Instances	34	9.6866 %
Kappa statistic	0.785	
Mean absolute error	0.1087	
Root mean squared error	0.2927	
Relative absolute error	23.5955 %	
Root relative squared error	61.0198 %	
Total Number of Instances	351	
=== Information gain - Summary ===		
Correctly Classified Instances	320	91.1681 %
Incorrectly Classified Instances	31	8.8319 %
Kappa statistic	0.8057	
Mean absolute error	0.0962	
Root mean squared error	0.274	
Relative absolute error	20.8864 %	
Root relative squared error	57.1108 %	
Total Number of Instances	351	
k-Nearest Neighbor (weka.classifiers.	lazy.IBk)	
=== Summary ===		
Correctly Classified Instances	303	86.3248 %
Incorrectly Classified Instances	48	13.6752 %
Kappa statistic	0.6841	
Mean absolute error	0.139	
Root mean squared error	0.3686	
Relative absolute error	30.1815 %	
Root relative squared error	76.8426 %	
Total Number of Instances	351	
=== Chi-Squared statistic - Summary	===	
Correctly Classified Instances	315	89.7436 %
Incorrectly Classified Instances	36	10.2564 %
Kappa statistic	0.7724	
Mean absolute error	0.1047	
Root mean squared error	0.3193	
Relative absolute error	22.7451 %	
Root relative squared error	66.552 %	
Total Number of Instances	351	
=== Information gain - Summary ===		
Correctly Classified Instances	314	89.4587 %
Incorrectly Classified Instances	37	10.5413 %
Kappa statistic	0.7681	
Mean absolute error	0.1137	
Root mean squared error	0.3265	
Relative absolute error	24.6828 %	
Root relative squared error	68.0565 %	
Total Number of Instances	351	

Neural networks (weka.classifiers.functions.MultilayerPerceptron)

=== Summary ===

Correctly Classified Instances	320	91.1681 %
Incorrectly Classified Instances	31	8.8319 %
Kappa statistic	0.7993	
Mean absolute error	0.0938	
Root mean squared error	0.2786	
Relative absolute error	20.3738 %	
Root relative squared error	58.0756 %	
Total Number of Instances	351	
=== Chi-Squared statistic - Summar	y ===	
-		
Correctly Classified Instances	320	91.1681 %
Incorrectly Classified Instances	31	8.8319 %
Kappa statistic	0.8022	
Mean absolute error	0.1289	
Root mean squared error	0.283	
Relative absolute error	27.9888 %	
Root relative squared error	58.9917 %	
m		
Total Number of Instances	351	

=== Information gain - Summary ===

Correctly Classified Instances	321	91.453 %
Incorrectly Classified Instances	30	8.547 %
Kappa statistic	0.811	
Mean absolute error	0.1163	
Root mean squared error	0.274	
Relative absolute error	25.255 %	
Root relative squared error	57.1107 %	
Total Number of Instances	351	

Brief discussion:

After running the algorithms using the top five attributes obtained by the attribute selection methods, we notice a slightly positive response in terms of correctly classified instances compared to using all attributes available.

The reason for that is because attribute selection methods are able to rank the most relevant attributes based on how "pure" they can partition a dataset. On that note, that will lead to simpler, faster and more accurate models.

Correctly classified improvement:

- \bullet C4.5: got 2% more efficient using Information Gain
- RIPPER: got 1% more efficient using Information Gain
- Naive Bayesian Classification: got 6% more efficient using Information Gain
- Bayesian Network: got 2% more efficient using Information Gain
- k-Nearest Neighbor: got 3% more efficient using Information Gain
- Neural networks: got 0.4% more efficient using Information Gain, but it had a tremendous gain in run time

Question 5

Balance-scale data set

• **C4.5**: 35.52% error rate

• RIPPER: 29.92% error rate

• Naive Bayesian Classification: 8.64% error rate

• Bayesian Network: 8.64% error rate

• k-Nearest Neighbor: 16.16% error rate

• Neural networks: 2.08% error rate

Ecoli data set

• **C4.5**: 15.77% error rate

• RIPPER: 19.34% error rate

• Naive Bayesian Classification: 14.58% error rate

• Bayesian Network: 18.75% error rate

• k-Nearest Neighbor: 19.64% error rate

• Neural networks: 13.98% error rate

Glass Identification data set

• **C4.5**: 34.11% error rate

• RIPPER: 30.37% error rate

• Naive Bayesian Classification: 50.46% error rate

• Bayesian Network: 25.23% error rate

• k-Nearest Neighbor: 29.43% error rate

• Neural networks: 30.84% error rate

Ionosphere data set

• **C4.5**: 8.54% error rate

• **RIPPER**: 10.25% error rate

• Naive Bayesian Classification: 17.37% error rate

• Bayesian Network: 10.54% error rate

• k-Nearest Neighbor: 13.67% error rate

• Neural networks: 8.83% error rate

Iris plant data set

• **C4.5**: 4% error rate

• **RIPPER**: 4.66% error rate

 \bullet Naive Bayesian Classification: 4% error rate

• Bayesian Network: 7.33% error rate

• k-Nearest Neighbor: 4.66% error rate

• Neural networks: 2.66% error rate

Wine data set

• **C4.5**: 6.17% error rate

• **RIPPER**: 7.86% error rate

• Naive Bayesian Classification: 3.37% error rate

Bayesian Network: 1.12% error rate
k-Nearest Neighbor: 5.05% error rate

• Neural networks: 2.80% error rate

Yeast data set

• **C4.5**: 44.07% error rate

• **RIPPER**: 41.91% error rate

• Naive Bayesian Classification: 42.38% error rate

 \bullet Bayesian Network: 43.26% error rate

• k-Nearest Neighbor: 47.70% error rate

• Neural networks: 40.56% error rate

Average classification error rate of each method over all the data sets

• **C4.5**: 21.16% error rate

• **RIPPER**: 20.61% error rate

• Naive Bayesian Classification: 20.11% error rate

• k-Nearest Neighbor: 19.47% error rate

 \bullet Bayesian Network: 16.41% error rate

 \bullet Neural networks: 14.53% error rate

Brief discussion:

The average error rates for the top two methods are not significantly different. Having said that, the Bayesian Network method and Neural networks method have a gap of 2% in terms of classification precision.

Neural Networks is based on a large collection of neural units loosely modeling the way a biological brain solves problems with large clusters of biological neurons connected by axons. Neural nets are highly structured networks bases, and have three kinds of layers - an input, an output, and so called hidden layers, which refer to any layers between the input and the output layers. Each node (also called a neuron) in the hidden and output layers has a classifier.

Bayesian networks, is a probabilistic directed acyclic graphical model, a probabilistic graphical model (a type of statistical model) that represents a set of random variables and their conditional dependencies via a directed acyclic graph.

A potential reason to pick artificial neural networks (ANN) over Bayesian networks is the correlations between input variables. Bayesian networks like Naive bayes assumes that all input variables are independent. If that assumption is not correct, then it can impact the accuracy of the Naive Bayes classifier. An ANN with appropriate network structure can handle the correlation/dependence between input variables.

The difference in average error rate between the top ranked method (ANN) and the lowest ranked method (C4.5) is 6.63%. On that note, this is a noticeable difference that shows how the C4.5 approach to create a decision tree is mostly non optimal.

While ANN works with multiple input layers and validate multiple classifiers, C4.5 generates a decision tree where each node splits the classes based on the gain of information. The attribute with the highest normalized information gain is used as the splitting criteria. However, information gain will not always find the most optimal attribute to make the most efficient classifier. Finally, that explains why ANN outputs a better classifier with better results.

Question 6

Done with Pedro Casas, and submitted by himself.