AI Overview && Representation

1. AI "Umbrella"

- a.
- b. AI is a massive field with many things

2. Agents

- a. An entity in AI which makes decisions on its own behalf is called an agent
- b. Agent function: how the agent works (internally)
 - i. Agents perform some functions
- c. An agent can make multiple decisions at once (and often simultaneously)
 - i. The agent controls the whole team during the chess game
- d. Agents exist in the "digital" realm
- e. Agents accept data in the "digital" realm and take actions in the "digital realm"
 - i. Need to set up machinery to connect the agents to the real world (robotics)

3. Environment/World

- a. Agents interact with the physical world through an environment (often called a "world")
- b. Agents must "sense" their world in order to receive data
 - i. Robots have sensors
 - ii. Digital worlds have representations

4. Rational Agents

- a. A Rational Agent is an agent that "does the right thing"
 - i. Evaluated by a performance metric
 - ii. Performance metric examines environment state
 - iii. Agent that produces desired environment states -> rational

- 1. For every sequence of environment states, a rational agent selects the action that will optimize the performance given only the states it has seen (so far) and its "internal knowledge."
- b. Rationality is different than omniscience! (Goal: do the best we can within the knowledge we have, trying to optimize the best solution, not being perfect)
 - i. Rationality optimizes expected performance, omniscience optimizes actual performance
- 5. Task Environment
 - a. Remember: rationality requires four things
 - i. Performance metric
 - ii. Environment (Description/software/interface, etc)
 - iii. Agent senses
 - iv. Agent actions
 - b. Task environment = these four attributes (as a quadruple)
- 6. Flavors of Task Environment
 - a. Fully observable
 - i. Agent has access to complete state of environment
 - b. Partially observable
 - i. Some information hidden from agent
 - c. Deterministic
 - i. Environment's next state completely dependent on action + previous states
 - d. Stochastic
 - i. Environment's next state is probabilistic
 - e. Single Agent
 - f. Multi-Agent
 - i. Competitive / cooperative
 - ii. Communication?
- 7. Flavors of Agents
 - a. Simple Reflex Agent
 - i. Only looks at current env state to decide action
 - b. Model-based Reflex Agent
 - i. Maintains internal state (agent state) + can use history of env states
 - c. Goal-base Agent
 - i. Goal function assists agent in making decisions (helps identify favorable states)
 - d. Utility-based Agent
 - i. Utility function = internal performance metric...used to assist agent
 - ii. Utility function does not need to match Task env performance metric
 - e. Learning Agent
 - i. learning element: component that makes adjustments to the Agent

- ii. action element: component that selects external actions
- iii. critic: feedback component (used by the learning element)
- iv. problem generator: component that suggests novel experience

Search I

1. Env state

- a. Agent senses: collect information about the env at a point in time
 - i. Let us assume we have the state of the world stat time t
- b. Given st, our agent must produce an action at (also at time t)
- c. World transitions to new state st+1
 - i. If static, world transitions to s_{t+1} after a_t is made
 - ii. If dynamic, world may have made transitions before at was made

2. Agents that Search

- a. For now, let us assume that the state of the world is unstructured
 - i. Book uses term atomic: meaning state contains no internal structure
- b. Let's consider goal agents
 - i. Agent equipped with goal function
 - ii. Remember: goal function $g(s_t) \rightarrow R$
- c. How can we use goal function to decide actions?
- 3. Worlds With Known Series
 - a. Let's consider world where all states are known beforehand
 - b. Construct graph of states $G_{env} = (V_{env}, E_{env})$
 - i. $V_{env} = set of all states in the world (all nodes are states of the world)$
 - ii. (u,v) in E_{env} (undirected) if there exists an action with transitions u to v (all edges \rightarrow if you can go from one state to another, there is an edge)
 - c. Example: maze solving in a grid world
 - i. State determined by pos of player (and position of obstacles)!
 - ii. Actions: {up, down, left, right}
- 4. Uninformed (Blind) Search Strategies
 - a. Breadth First Search (BFS)
 - b. Start at source vertex
 - i. Then visit all neighbors 1st neighborhood N₁ (src)
 - ii. Then visit all neighbor's neighbors 2nd neighborhood N₂ (src)
 - iii. Then visit all neighbor's neighbor's neighbors neighborhood N₃ (src)
 - iv. ...
 - v. Stop when you reach the goal vertex
 - c. Key: only explore simple paths
- 5. Problems with BFS

- a. Current form does not work with action costs (going down may cost less due to gravity compared to going up)
- b. Tons of memory O(|E|) or $O(|V|^2)$
 - i. Need to store all edges: $|E| \le |V|^2$
- c. BFS is blind