Package 'figs'

November 21, 2022

Author Haoxue Wang, Yan Shuo Tan, Chandan Singh, Keyan Nasseri, Abhineet Agarwal, Bin Yu

Type Package

Version 0.8

Title Fast Interpretable Greedy-Tree Sums

Maintainer Haoxue Wang <hw613@cam.ac.uk></hw613@cam.ac.uk>
Past Interpretable Greedy-Tree Sums (FIGS) is an algorithm for fitting concise rule-based models Specifically, FIGS generalizes CART to simultaneously grow a flexible number of trees in a summation. The total number of splits across all the trees can be restricted by a prespecified threshold, keeping the model interpretable. Experiments across real-world datasets show that FIGS achieves state-of-theart prediction performance when restricted to just a few splits (e.g. less than 20). 'FIGS' is first defined in Tan et al. (2022) https://arxiv.org/abs/2201.11931
Imports rpart, fastshap
License MIT + file LICENSE
<pre>URL https://github.com/wanghaoxue0/figs</pre>
BugReports https://github.com/wanghaoxue0/figs/issues
Encoding UTF-8
Depends R (>= 3.5.0)
Date 2022-11-01
RoxygenNote 7.2.2
R topics documented:
classifier_split 2 figs.classifier 3 figs.regressor 4 figscv 5 plot 5 regressor_split 5 simulation 6 Index 7

2 classifier_split

classifier_split

split the node for classification

Description

make the split based on figs classification rule

Usage

```
classifier_split(
   X,
   y,
   idxs,
   tree_num = 0,
   sample_weight = NULL,
   max_features = NULL
)
```

Arguments

X the design matrix y the response vector

idxs the index of samples used for the split(array of bool values. If TRUE, it is used

for the split)

tree_num initial tree_num (default=0)

sample_weight allocate weight for each individual sampe, array-like of shape n (default=None).

If None, then samples are equally weighted.

max_features the number of features to consider when looking for the best split

Value

call: the input setting

node_split: the design matrix for beta after variable splitting node_split\$idxs: the index of samples in the original node node_split\$value: the value for the split node node_split\$impurity: the impurity in the original node node_split\$tree_num: the tree number

node_left: the design matrix for gamma after variable splitting node_split\$idxs: the index of samples in the left node node_split\$value: the value for the left node after the split node_split\$impurity: the impurity in the left node node_split\$tree_num: the tree number which the node belongs to

node_right: the response vector after variable splitting. node_split\$idxs: the index of samples in the right node node_split\$value: the value for the right node after the split node_split\$impurity: the impurity in the right node node_split\$tree_num: the tree number which the node belongs to

n: the number of samples in the original node

feature: the feature selected to do the split threshold: the threshold to make the split

impurity_reduction: the impurity decreased by the split if the decrease exists

figs.classifier 3

figs.classifier figs fit for classification

Description

fitting function for fast interpretable greedy-tree sums on classification

Usage

```
figs.classifier(
   X,
   y,
   max_rules = 12,
   feature_names = NULL,
   sample_weight = NULL,
   min_impurity_decrease = 0,
   verbose = TRUE,
   max_features = NULL
)
```

Arguments

X the design matrix
y the response vector

max_rules max total number of rules across all trees

feature_names the name of features in the data

sample_weight allocate weight for each individual sampe, array-like of shape n (default=None).

If None, then samples are equally weighted.

min_impurity_decrease

A node will be split if this split induces a decrease of the impurity greater than

or equal to this value.

verbose bool value, if TRUE print the split feature and threshold

max_features the number of features to consider when looking for the best split

Value

call: the input setting

node_split: the design matrix for beta after variable splitting node_split\$idxs: the index of samples in the original node node_split\$value: the value for the split node node_split\$impurity: the impurity in the original node node_split\$tree_num: the tree number

node_left: the design matrix for gamma after variable splitting node_split\$idxs: the index of samples in the left node node_split\$value: the value for the left node after the split node_split\$impurity: the impurity in the left node node_split\$tree_num: the tree number which the node belongs to

node_right: the response vector after variable splitting. node_split\$idxs: the index of samples in the right node node_split\$value: the value for the right node after the split node_split\$impurity: the impurity in the right node node_split\$tree_num: the tree number which the node belongs to

trees: tree struction based on the result

4 figs.regressor

n: the number of samples in the original node

feature: the feature selected to do the split threshold: the threshold to make the split

impurity_reduction: the impurity decreased by the split if the decrease exists

figs.regressor

figs fit for regression

Description

fitting function for fast interpretable greedy-tree sums on regression

Usage

```
figs.regressor(
   X,
   y,
   max_rules = 12,
   feature_names = NULL,
   verbose = TRUE,
   sample_weight = NULL,
   min_impurity_decrease = 0,
   max_features = NULL
)
```

Arguments

X the design matrix y the response vector

max_rules max total number of rules across all trees

feature_names the name of features in the data

verbose bool value, if TRUE print the split feature and threshold

sample_weight allocate weight for each individual sampe, array-like of shape n (default=None).

If None, then samples are equally weighted.

min_impurity_decrease

A node will be split if this split induces a decrease of the impurity greater than

or equal to this value.

max_features the number of features to consider when looking for the best split

Value

call: the input setting

node_split: the design matrix for beta after variable splitting node_split\$idxs: the index of samples in the original node node_split\$value: the value for the split node node_split\$impurity: the impurity in the original node node_split\$tree_num: the tree number

node_left: the design matrix for gamma after variable splitting node_split\$idxs: the index of samples in the left node node_split\$value: the value for the left node after the split node_split\$impurity: the impurity in the left node node_split\$tree_num: the tree number which the node belongs to

figscv 5

node_right: the response vector after variable splitting. node_split\$idxs: the index of samples in the right node node_split\$value: the value for the right node after the split node_split\$impurity: the impurity in the right node node_split\$tree_num: the tree number which the node belongs to

trees: tree struction based on the result

n: the number of samples in the original node

feature: the feature selected to do the split threshold: the threshold to make the split

impurity_reduction: the impurity decreased by the split if the decrease exists

figscv

cross validation for FIGS algoritms

Description

choose the parameter by cross validation

Usage

```
figscv(X = X, Y = Y)
```

plot

plot the FIGS tree result

Description

plot the tree based on the tree struction

Usage

```
plot(X, y)
```

regressor_split

split the node for regression

Description

make the split based on figs regression rule

Usage

```
regressor_split(
   X,
   y,
   idxs,
   tree_num = 0,
   sample_weight = NULL,
   max_features = NULL
)
```

6 simulation

Arguments

X the design matrix y the response vector

idxs the index of samples used for the split(array of bool values. If TRUE, it is used

for the split)

tree_num initial tree_num (default=0)

sample_weight allocate weight for each individual sampe, array-like of shape n (default=None).

If None, then samples are equally weighted.

max_features the number of features to consider when looking for the best split

Value

call: the input setting

node_split: the design matrix for beta after variable splitting node_split\$idxs: the index of samples in the original node node_split\$value: the value for the split node node_split\$impurity: the impurity in the original node node_split\$tree_num: the tree number

node_left: the design matrix for gamma after variable splitting node_split\$idxs: the index of samples in the left node node_split\$value: the value for the left node after the split node_split\$impurity: the impurity in the left node node_split\$tree_num: the tree number which the node belongs to

node_right: the response vector after variable splitting. node_split\$idxs: the index of samples in the right node node_split\$value: the value for the right node after the split node_split\$impurity: the impurity in the right node node_split\$tree_num: the tree number which the node belongs to

n: the number of samples in the original node

feature: the feature selected to do the split threshold: the threshold to make the split

impurity_reduction: the impurity decreased by the split if the decrease exists

simulation

simulation for FIGS algoritms

Description

simulation for R function in FIGS packages

Usage

simulation(X = NULL)

Index

```
classifier_split, 2
figs.classifier, 3
figs.regressor, 4
figscv, 5
plot, 5
regressor_split, 5
simulation, 6
```