ثانوية بهية حيدور . السنة الدراسية : 2025/2024

المستوى : 2 علوم تجريبية / 2 رياضي / 2 تقني رياضي .

الفرض الثاني للفصيل الثاني في العلوم الفيزيائية

التمرين الأوّل:

نضع قطعة جليد كتلتها m=100 ،درجة حرارتها الإبتدائية $heta_1$ داخل إناء موجود في غرفة درجة حرارتها $heta_2$. بعد ساعة واحدة أصبحت ماء سائل درجة حرارته $heta_2$.

hetaيمثل الشكل التالي تغيرات قيمة التحويل الحراري $ext{Q}$ الذي امتصته قطعة الجليد خلال تحولها بدلالة درجة الحرارة

1-صف التحولات المتتالية التي تطرأ على قطعة الجليد.

- . θ_1 أوجد درجة الحرارة الإبتدائية θ_1
- θ_2 أوجد درجة الحرارة النهائية -3
- $_{
 m L_{
 m f}}$ اوجد السعة الكتلية لإنصهار الجليد $_{
 m f}$.
- 5-أحسب استطاعة التحويل للتحويل الحراري الممتص من طرف قطعة الجليد خلال ساعة.

 $c_{
m e}$ = 4185 J / kg.°C:السعة الحرارية الكتلية للجليد: $c_{
m g}$ = 2090 J / kg.°C ،السعة الحرارية الكتلية للجليد:

التمرين الثاني:

ى الكناخذ قطعة معدن كتلتها \overline{m} و نحسب تحويلها الحراري \overline{Q} عندما تتغير درجة حرارتها من \overline{m} و نحسب تحويلها الحراري \overline{m} عندما البيان التالي الذي يعطي تغيرات \overline{m} بدلالة \overline{m} بدلالة \overline{m} ، نكرّر التجربة عدة مرات بتغيير الكتلة \overline{m} ثمّ نمثل البيان التالي الذي يعطي تغيرات \overline{m} بدلالة \overline{m}

1- أكتب العبارة النظرية للتحويل الحراري Q .

- 2- أوجد المعادلة البيانية .
- 3- استنتج c السعة الحرارية الكتلية لهذا المعدن .
 - 4- حدّد هذا المعدن من بين المعادن التالية :

المعدن	الحديد Fe	النحاس Cu	الرصاص Pb
c(J/(kg.°C))	460	380	130

موفقـــون

	ثانوية بهية حيدور تصحيح فرض 2 فصل2
التمرين الثاني : 1- العبارة النظرية لـQ : Q = mcΔθ : Q = a m 2- المعادلة الببانية : c = a m حساب معامل التوجيه :	الـــتمـريــن الأول: 1 - التحولات التي تطرأ على قطعة الجليد: $0^\circ c \longleftarrow \theta_1$ من $0^\circ c \longleftarrow \theta_1$ وتكون جليد .
$a=rac{\Delta Q}{\Delta m}=rac{4.2.10^3}{2,8.0,25}=11428,6 J/ kg$ $Q=11428,6 m$: c إذن c c d	عند $0^{\circ}c$ تكتسب تحويل Q_2 و تنصهر قطعة الجليد. $Q_2 \leftarrow 0^{\circ}c$ من $Q_2 \leftarrow 0^{\circ}c$ تكتسب تحويل $Q_3 \leftarrow 0^{\circ}c$ ماء سائل. $: \theta_1$: θ_1 ايجاد درجة الحرارة الإبتدائية $\theta_1 = 0$ $Q_1 = m_{\rm g}c_{\rm g}\Delta\theta = m_{\rm g}c_{\rm g}(0-\theta_1)$ $\theta_1 = 0 - \frac{Q_1}{m_{\rm g}c_{\rm g}} = 0 - \frac{4180}{0,1.2090}$
	$m_{\rm g}c_{\rm g}$ 0,1.2090 $\theta_{\rm l} = -20^{\circ}{\rm c}$: $\theta_{\rm l}$ ايجاد درجة الحرارة النهائية $\theta_{\rm l}$ -3 $Q_{\rm g} = m_{\rm g}c_{\rm e}\Delta\theta' = m_{\rm g}c_{\rm e}(\theta_{\rm l} - 0)$ $\theta_{\rm l} = \frac{Q_{\rm l}}{m_{\rm g}c_{\rm e}} = \frac{49735 - 37180}{0,1.4185}$ $\theta_{\rm l} = 30^{\circ}{\rm c}$
	: L_f حساب السعة الكتلية لإنصهار الجليد $Q_2 = m_g L_f \longrightarrow L_f = \frac{Q_2}{m_g}$ $L_f = \frac{37180 - 4180}{0,1} = 330000 \text{j/kg}$ $L_f = 330 \text{kj/kg}$ $L_f = 330 \text{kj/kg}$ $\frac{Q_2}{Q_1} = \frac{37180 - 4180}{0,1} = 330000 \text{j/kg}$ $L_f = \frac{330 \text{kj/kg}}{0,1} = \frac{49735}{60 \times 60} = 13,82 \text{W}$