9. Appendices

Contents

Appendix A: List of Abbreviations	1
Appendix B: Simulation Code	2
Generating Data and Models	2
Testing Generation of Data and Models	8
Appendix C: Citation Search Strategy	15

Appendix A: List of Abbreviations

Appendix B: Simulation Code

Generating Data and Models

The data generating model used was from Appendix 3 of Bowden et al (ref); the relevant section describing their model is reproduced below:

"<u>...</u>

$$U_i = \sum_{j=1}^{J} \phi_j G_{ij} + \epsilon_i^U \tag{1}$$

$$X_i = \sum_{j=1}^J \gamma_j G_{ij} + U_i + \epsilon_i^X \tag{2}$$

$$Y_i = \sum_{j=1}^{J} \alpha_j G_{ij} + \beta X_i + U_i + \epsilon_i^Y$$
 (3)

for participants indexed by i = 1, ..., N, and genetic instruments indexed by j = 1, ..., J.

The error terms ϵ_i^U , ϵ_i^X and ϵ_i^Y were each drawn independently from standard normal distributions. The genetic effects on the exposure j are drawn from a uniform distribution between 0.03 and 0.1. Pleiotropic effects α_j and ϕ_j were set to zero if the genetic instrument was a valid instrumental variable. Otherwise (with probability 0.1, 0.2, or 0.3):

- 1. In Scenario 1 (balanced pleiotropy, InSIDE satisfied), the α_j parameter was drawn from a uniform distribution between -0.2 and 0.2.
- 2. In Scenario 2 (directional pleiotropy, InSIDE satisfied), the α_j parameter was drawn from a uniform distribution between 0 and 0.2.
- 3. In Scenario 3 (directional pleiotropy, InSIDE not satisfied), the ϕ_j parameter was drawn from a uniform distribution between -0.2 and 0.2.

The causal effect of the exposure on the outcome was either $\beta X=0$ (null causal effect) or $\beta X=0.1$ (positive causal effect). A total of 10 000 simulated datasets were generated for sample sizes of N=10 000 and 20 [sic] participants. Only the summary data, that is genetic associations with the exposure and with the outcome and their standard errors as estimated by univariate regression on the genetic instruments in turn, were used by the analysis methods. In the two-sample setting, data were generated on 2N participants, and genetic associations with the exposure were estimated in the first N participants, and genetic associations with the outcome in the second N participants."

To reproduce this model, code was written in R to generate the relevant participant level data. First, a function (simulate_MR_data) was written which included parameters specified by Bowden et al, and also to allow testing of data simulation:

```
rand_error = TRUE,
                                                     # remove random errors, for testing
                            two_sample = TRUE,
                                                     # 1- or 2-sample MR toggle, for testing
                            beta_val = 0.1,
                                                     # size of causal effect
                            allele_freq_min = 0.01, # frequency of effect allele
                            allele_freq_max = 0.99,
                            gamma_min = 0.03,
                                                     # size of pleiotropic effects on exposure
                            gamma_max = 0.1,
                            alpha_min = -0.2,
                                                   # size of pleiotropic effects on outcome
                            alpha_max = 0.2,
                                                    # size of additional pleiotropic effects
                            phi min = -0.2,
                           phi_max = 0.2){
                                                   # when InSIDE not satisfied
# Initialise blank lists to receive datasets for
# each of:
      U (vector: unmeasured confounding exposures per participant),
      X (vector: exposure:outcome associations estimated per participant)
     Y (vector: gene:outcome association estimated per participant),
      G (Matrices: Genotype data)
    gamma (vector: pleiotropic effects of each instrument on exposure)
     alpha (vector: pleiotropic effects of each instrument on outcome)
     phi (vector: additional pleiotropic effects of each instrument when InSIDE
      assumption not satisfied)
U list <- list()</pre>
X list <- list()</pre>
Y_list <- list()</pre>
G_X_list <- list()</pre>
G_Y_list <- list()</pre>
gamma_list <- list()</pre>
alpha_list <- list()</pre>
phi_list <- list()</pre>
beta_list <- list()</pre>
prop_invalid_list <- list()</pre>
# --- Assign features common to all datasets --- #
beta <- if_else(causal_effect == TRUE, # size of causal effect
                beta_val,
                0)
# create vector of participant indices for 1st n participants
# i.e. participants used for estimating gene:exposure coefficient
sample_1_ref <- 1:n_participants</pre>
# Default is to estimate gene:outcome coefficient from different sample
# to gene:exposure coefficient (i.e. simulating 2-sample MR)
# two_sample == FALSE toggles to single sample for testing simulation
```

```
ifelse(two_sample == FALSE,
       sample_2_ref <- sample_1_ref, # 1 sample MR</pre>
       sample_2_ref <- (n_participants+1):(2*n_participants)) # 2 sample MR</pre>
# --- Create separate datasets --- #
# Create N datasets by simulating genotype matrices with
# 1 row per participant, 1 column per genetic instrument
# Use these to estimate U, X + Y
for(n in 1:n_datasets){
  # Create error terms for U, X + Y per participant,
  # each drawn from standard normal distribution
  # unless random error turned off (for testing)
  ifelse(rand_error == TRUE,
         U_epsilon_vect <- rnorm(n = 2 * n_participants),</pre>
         U_epsilon_vect <- rep(0, 2 * n_participants))</pre>
  ifelse(rand_error == TRUE,
         X_epsilon_vect <- rnorm(n = n_participants),</pre>
         X_epsilon_vect <- rep(0, n_participants))</pre>
  ifelse(rand error == TRUE,
         Y_epsilon_vect <- rnorm(n = n_participants),</pre>
         Y_epsilon_vect <- rep(0, n_participants))</pre>
  # --- Create matrix of genotypes --- #
  # 0 = reference, i.e. zero effect alleles,
  # 1 = 1 effect allele, 2 = 2 effect alleles
  # Probability of effect allele set per dataset
  # for each instrument, default value set at
  # random between 0.01-0.99 (i.e. both effect +
  # reference are common alleles)
  allele_freq_vect <- runif(n = n_instruments,</pre>
                            min = allele_freq_min,
                             max = allele_freq_max)
  # Assign genotypes by sampling from binomial distribution
  # twice (as two alleles) per participant with probability
  # equal to frequency of effect allele
  # Create twice as many genotypes as participants in sample
  # to simulate 2 sample MR, i.e. first half used to estimate
  # Gene: Exposure, second half used to estimate Gene: Outcome
```

```
# Matrix where columns are instruments, rows are participants
# Values 0, 1 or 2
G_mat <- matrix(rbinom(n = 2 * n_participants * n_instruments,</pre>
                        size = 2,
                        prob = rep(allele_freq_vect, 2 * n_participants)),
                nrow = 2 * n_participants,
                ncol = n_instruments,
                byrow = TRUE)
# --- Set characteristics for each genetic instrument --- #
# Set which instruments invalid, O = valid, 1 = invalid
invalid_instrument_vect <- rbinom(n = n_instruments,</pre>
                                   size = 1,
                                   prob = prop_invalid)
# Set genetic effects of each instrument on the exposure,
# drawn from uniform distribution, min/max as per Bowden
# et al
gamma_vect <- runif(n = n_instruments,</pre>
                    min = gamma_min,
                    max = gamma_max)
# Set pleiotropic effects on outcome, Scenarios and
# min/max from Bowden et al
alpha_vect <- double() # Pleiotropic effects of instruments on outcome
phi_vect <- double() # Pleiotropic effects of confounders on outcome</pre>
for(j in 1:n_instruments){
  ifelse(invalid_instrument_vect[j] == 0, # alpha = 0 if valid
         alpha_vect[j] <- 0,</pre>
         ifelse(balanced_pleio == TRUE,
                alpha_vect[j] <- runif(n = n_instruments, # balanced</pre>
                                         min = alpha_min,
                                         max = alpha_max),
                alpha_vect[j] <- runif(n = n_instruments, # directional</pre>
                                         min = 0,
                                         max = alpha_max)
         )
  # Assign default phi = 0 unless directional pleiotropy &
  # InSIDE assumption not satisfied & genetic instrument invalid
  if(balanced_pleio == FALSE & InSIDE_satisfied == FALSE){
    ifelse(invalid_instrument_vect[j] == 0,
           phi_vect[j] <- 0,</pre>
           phi_vect[j] <- runif(n = 1,</pre>
                                 min = phi_min,
                                 max = phi_max)
    )
```

```
}
    else{
      phi_vect[j] <- 0</pre>
    }
  }
  # --- Combine Gene matrix/parameters to recreate model --- #
  \# Create vectors of estimates for U, X and Y per individual,
  # i.e. Ui, Xi and Yi. Uses matrix inner product operator " \%*\%"
  {\it \# https://stackoverflow.com/questions/22060515/the-r-operator}
  # http://matrixmultiplication.xyz/
  Ui_vect <- G_mat %*% phi_vect + U_epsilon_vect</pre>
  Xi_vect <- G_mat[sample_1_ref, ] %*% gamma_vect +</pre>
    Ui_vect[sample_1_ref, ] +
    X_epsilon_vect
  Yi_vect <- G_mat[sample_2_ref, ] %*% alpha_vect +
    beta * Xi vect +
    Ui_vect[sample_2_ref, ] +
    Y_epsilon_vect
  # Add vectors of estimates from this dataset to lists of
  # estimates from all datasets
  U_list[[n]] <- Ui_vect</pre>
  X_list[[n]] <- Xi_vect</pre>
  Y_list[[n]] <- Yi_vect</pre>
  G_X_list[[n]] <- G_mat[sample_1_ref, ]</pre>
  G_Y_list[[n]] <- G_mat[sample_2_ref, ]</pre>
  # Include actual parameters used in simulation for testing
  alpha_list[[n]] <- alpha_vect</pre>
  gamma_list[[n]] <- gamma_vect</pre>
  phi_list[[n]] <- phi_vect</pre>
  beta_list[[n]] <- beta</pre>
  prop_invalid_list[[n]] <- prop_invalid</pre>
}
```

```
U (vector: unmeasured confounding exposures per participant),
      X (vector: exposure:outcome associations estimated per participant)
      Y (vector: gene:outcome association estimated per participant)
# --- Combine all outputs to return --- #
combined list <- list(U = U list,</pre>
                                           # Estimates
                      X = X  list,
                      Y = Y_list,
                      G_X = G_X_{list}
                                           # Genotypes of 1st sample
                      G_Y = G_Y_{list}
                                         # Genotypes of 2nd sample
                      alpha = alpha_list, # Actual values for validating simulation
                      gamma = gamma_list,
                      phi = phi_list,
                      beta = beta_list,
                      prop_invalid = prop_invalid_list
)
return(combined_list)
```

This initial simulation function generated data in the following format:

```
## List of 10
##
   $ U
                  :List of 2
    ..$: num [1:2000, 1] 0 0 0 0 0 0 0 0 0 ...
##
    ..$: num [1:2000, 1] 0 0 0 0 0 0 0 0 0 ...
##
  $ X
                  :List of 2
##
    ..$: num [1:1000, 1] 1.12 1.59 1.76 1.49 1.56 ...
    ..$: num [1:1000, 1] 1.84 1.7 1.6 1.66 1.5 ...
##
  $ Y
                  :List of 2
    ..$ : num [1:1000, 1] -0.24 -0.311 -0.393 -0.227 -0.1 ...
##
     ..$: num [1:1000, 1] -0.872 -0.901 -0.772 -0.999 -0.477 ...
##
                  :List of 2
##
   $ G X
    ..$: int [1:1000, 1:25] 0 1 1 1 1 0 0 0 0 0 ...
##
     ..$: int [1:1000, 1:25] 1 2 1 2 2 2 2 2 2 2 ...
##
                  :List of 2
  $ G Y
    ..$: int [1:1000, 1:25] 0 1 1 0 1 0 0 0 0 0 ...
##
##
    ..$: int [1:1000, 1:25] 2 2 2 2 1 2 1 1 2 1 ...
##
   $ alpha
                  :List of 2
##
    ..$ : num [1:25] -0.106 0 -0.121 0 0 ...
##
    ..$: num [1:25] 0 0 -0.0786 0 0 ...
##
   $ gamma
                  :List of 2
    ..$ : num [1:25] 0.0902 0.0878 0.08 0.0832 0.084 ...
##
##
    ..$ : num [1:25] 0.0374 0.0721 0.0975 0.085 0.0322 ...
  $ phi
                  :List of 2
##
    ..$: num [1:25] 0 0 0 0 0 0 0 0 0 0 ...
    ..$: num [1:25] 0 0 0 0 0 0 0 0 0 ...
##
##
   $ beta
                  :List of 2
    ..$ : num 0.1
##
    ..$ : num 0.1
## $ prop_invalid:List of 2
```

```
## ..$ : num 0.3
## ..$ : num 0.3
```

A function (extract_models) was then written to create linear models from each dataset generated as per Bowden et al:

These models generated estimates of the coefficient of gene:exposure association (coeff_G_X), coefficient of gene:outcome association (coeff_G_Y), and the relevant standard errors of these estimates. The values of parameters inputted were also returned to aid in further testing of data/model generation, i.e. actual gene:exposure associations (gamma), pleiotropic effects of invalid instruments (alpha), additional pleiotropic effects when InSIDE assumption not satisfied (phi), causal effect of exposure on outcome (beta) and the proportion of invalid genetic instruments with pleiotropic effects on the outcome (prop_invalid).

```
##
                                 coeff_G_X
                                                    coeff_G_X_SE
       dataset
                   Instrument
##
    Min.
            :1
                 Min.
                         : 1
                               Min.
                                       :0.03006
                                                   Min.
                                                          :1.591e-16
##
    1st Qu.:1
                 1st Qu.: 7
                               1st Qu.:0.03791
                                                   1st Qu.:1.702e-16
##
    Median:1
                 Median:13
                               Median: 0.05578
                                                   Median :1.847e-16
##
    Mean
            :1
                 Mean
                         :13
                               Mean
                                       :0.06018
                                                   Mean
                                                          :2.346e-16
##
    3rd Qu.:1
                 3rd Qu.:19
                               3rd Qu.:0.07998
                                                   3rd Qu.:2.441e-16
                         :25
##
    Max.
            :1
                 Max.
                               Max.
                                       :0.09140
                                                   Max.
                                                          :7.259e-16
        gamma
##
                          coeff_G_Y
                                               coeff_G_Y_SE
                                                                         alpha
##
    Min.
            :0.03006
                       Min.
                               :-0.1188256
                                              Min.
                                                      :0.0009824
                                                                    Min.
                                                                            :-0.120669
                                                                    1st Qu.: 0.000000
##
    1st Qu.:0.03791
                       1st Qu.: 0.0006676
                                              1st Qu.:0.0010520
##
    Median :0.05578
                       Median : 0.0031161
                                              Median : 0.0011837
                                                                    Median: 0.000000
##
    Mean
            :0.06018
                       Mean
                               :-0.0047291
                                              Mean
                                                      :0.0014576
                                                                    Mean
                                                                            :-0.008692
##
    3rd Qu.:0.07998
                       3rd Qu.: 0.0068099
                                              3rd Qu.:0.0015114
                                                                    3rd Qu.: 0.000000
##
    Max.
            :0.09140
                               : 0.1356693
                                                      :0.0040567
                                                                            : 0.133513
                       Max.
                                              Max.
                                                                    Max.
##
         phi
                      beta
                                 prop_invalid
##
    Min.
            :0
                 Min.
                         :0.1
                                Min.
                                        :0.3
    1st Qu.:0
                 1st Qu.:0.1
                                1st Qu.:0.3
##
##
    Median:0
                 Median:0.1
                                Median:0.3
##
    Mean
            :0
                 Mean
                         :0.1
                                Mean
                                        :0.3
##
    3rd Qu.:0
                 3rd Qu.:0.1
                                3rd Qu.:0.3
    Max.
            :0
                 Max.
                         :0.1
                                Max.
                                        :0.3
```

Testing Generation of Data and Models

A series of test plots were used to verify that data were simulated as intended under the various conditions specified by input parameters. Test plots were not created for the parameters n_participants, n_instruments or n_datasets, as the functioning of these parameters could be readily inferred from the structure of the datasets outputted, as above.

The prop_invalid parameter specifies the proportion of invalid genetic instruments simulated, i.e. the proportion of genetic instruments affecting the outcome via direct/pleiotropic effects, and thus not solely via the exposure of interest. If simulated correctly, increasing the value of prop_invalid should increase the number of instruments with pleiotropic effects, i.e. instruments with alpha =/= 0. With random error terms set to 0 and no causal effect present (i.e. rand_error = FALSE and causal_effect = FALSE), the estimated gene:outcome coefficient estimated using any given instrument will equal the pleiotropic effects of that instrument (i.e. $coeff_G_Y = alpha$), and therefore will only be non-zero for invalid instruments with non-zero pleiotropic effects on the outcome . Plotting $coeff_G_Y$ against alpha for simulated data with no causal effect or random error should therefore yield a graph where

• For valid instruments: gene:outcome coefficient = alpha = 0

• For invalid instruments: gene:outcome coefficient = alpha = /= 0, with values spread uniformly between $alpha_min$ and $alpha_max$

Similarly, with random error terms set to 0 and no causal effect present, gene: exposure coefficients estimated for each instrument should exactly match the actual values simulated, i.e. $coeff_GX = gamma$ for all instruments:

Test: Actual and Estimated Gene: Exposure Coefficients Match

For the next phase of testing, a function $(plot_GY_GX)$ was written to plot the coefficients for gene:exposure versus gene:outcome as estimated using the previously created linear models:

InSIDE Violated

InSIDE Not Violated

Appendix C: Citation Search Strategy

1. Bowden J, Smith GD, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genetic Epidemiology [Internet]. 2016 Apr [cited 2024 Oct 22];40(4):304. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4849733/