APPENDICES OF

CLASSIFYING INTEGRAL GROTHENDIECK RINGS UP TO RANK 5 AND BEYOND

MAX A. ALEKSEYEV, WINFRIED BRUNS, JINGCHENG DONG, AND SEBASTIEN PALCOUX

Appendix A. Integral Drinfeld Rings

- A.1. Up to rank 5. This section presents the comprehensive list of integral Drinfeld rings up to rank 5—including their global FPdim, type, duality, formal codegrees, and fusion data. Copy-pastable data can be found in the file GeneralUpToRank5DataOnly.txt, located in the Data/General directory of [7]. For each case, either an explicit categorification is provided, or a reference is given to a theoretical result ruling out its existence.
- A.1.1. Rank 1. Trivial case
- A.1.2. Rank 2.
 - (1) FPdim 2, type [1, 1], duality [0, 1], fusion data:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

- Formal codegrees: [2, 2],
- Property: simple,
- Categorification: $Rep(C_2)$.
- A.1.3. Rank 3.
 - (1) FPdim 3, type [1,1,1], duality [0,2,1], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

- Formal codegrees: [3, 3, 3],
- Property: simple,
- Categorification: $Rep(C_3)$.
- (2) FPdim 6, type [1,1,2], duality [0,1,2], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- Formal codegrees: [2,3,6],
- Categorification: $Rep(S_3)$.
- A.1.4. Rank 4.
 - (1) FPdim 4, type [1, 1, 1, 1], duality [0, 1, 2, 3], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

- Formal codegrees: [4, 4, 4, 4],
- Categorification: $\operatorname{Rep}(C_2^2)$.
- (2) FPdim 4, type [1, 1, 1, 1], duality [0, 1, 2, 3], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

- Formal codegrees: [4, 4, 4, 4],
- Categorification: $Rep(C_4)$.
- (3) FPdim 10, type [1, 1, 2, 2], duality [0, 1, 2, 3], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix},$$

1

- Formal codegrees: [2, 5, 5, 10],
- Categorification: $Rep(D_5)$.

(4) FPdim 12, type [1, 1, 1, 3], duality [0, 2, 1, 3], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

- Formal codegrees: [3, 3, 4, 12],
- Property: admits a braiding, by Lemma 4.6.
- Categorification: $Rep(A_4)$.
- (5) FPdim 42, type [1, 1, 2, 6], duality [0, 1, 2, 3], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 \\ 1 & 1 & 2 & 5 \end{bmatrix}$$

- Formal codegrees: [2, 3, 7, 42],
- Property: first excluded integral Drinfeld ring, see also §2.4,
- Categorification: excluded by Lemma 4.4.

A.1.5. Rank 5.

(1) FPdim 5, type [1, 1, 1, 1, 1], duality [0, 4, 3, 2, 1], fusion data:

- Formal codegrees: [5, 5, 5, 5, 5],
- Property: simple,
- Categorification: $Rep(C_5)$.
- (2) FPdim 8, type [1, 1, 1, 1, 2], duality [0, 1, 2, 3, 4], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \ \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \ \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

- Formal codegrees: [4, 4, 4, 8, 8]
- Property: near-group $C_2^2 + 0$,
- Categorification: $Rep(D_4)$, $Rep(Q_8)$.
- (3) FPdim 8, type [1, 1, 1, 1, 2], duality [0, 1, 3, 2, 4], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

- Formal codegrees: [4, 4, 4, 8, 8],
- Property: near-group $C_4 + 0$,
- Categorification: $TY(C_4)$.
- (4) FPdim 14, type [1, 1, 2, 2, 2], duality [0, 1, 2, 3, 4], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

- Formal codegrees: [2, 7, 7, 7, 14],
- Categorification: $Rep(D_7)$.
- (5) FPdim 20, type [1, 1, 1, 1, 4], duality [0, 1, 2, 3, 4], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- Formal codegrees: [4, 4, 4, 5, 20],
- Property: near-group $C_2^2 + 3$.
- Categorification: excluded by [3, Theorem 5.1], or alternatively, Lemma 4.7 with [1].
- (6) FPdim 20, type [1, 1, 1, 1, 4], duality [0, 1, 3, 2, 4], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \ \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \ \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \ \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 3 \end{bmatrix}$$

- Formal codegrees: [4, 4, 4, 5, 20],
- Property: near-group $C_4 + 3$,
- Categorification: $Rep(F_5)$.

(7) FPdim 21, type [1, 1, 1, 3, 3], duality [0, 2, 1, 4, 3], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0
```

- Formal codegrees: [3, 3, 7, 7, 21],
- Categorification: $Rep(C_7 \times C_3)$.
- (8) FPdim 24, type [1, 1, 2, 3, 3], duality [0, 1, 2, 3, 4], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0$$

- Formal codegrees: [3, 4, 4, 8, 24],
- Categorification: $Rep(S_4)$.
- (9) FPdim 24, type [1, 1, 2, 3, 3], duality [0, 1, 2, 4, 3], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0$$

- Formal codegrees: [3, 4, 4, 8, 24],
- Property: (non-zesting) isotype variation of $Rep(S_4)$,
- Categorification: done in [6, §4.4].
- (10) FPdim 48, type [1, 1, 1, 3, 6], duality [0, 2, 1, 3, 4], fusion data:

- Formal codegrees: [3, 3, 4, 16, 48],
- Categorification: excluded by Lemma 4.9.
- (11) FPdim 60, type [1, 3, 3, 4, 5], duality [0, 1, 2, 3, 4]:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

- Formal codegrees: [3, 4, 5, 5, 60],
- Property: simple,
- Categorification: $Rep(A_5)$.
- (12) FPdim 70, type [1, 1, 4, 4, 6], duality [0, 1, 3, 2, 4], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 2 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 0 & 2 & 1 & 2 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 1 & 2 & 2 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 1 & 2 & 2 & 3 \\ 0 & 0 & 2 & 1 & 2 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 1 & 2 & 2 & 3 \\ 0 & 2 & 1 & 2 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 1 & 2 & 2 & 3 \\ 0 & 1 & 2 & 2 & 3 \\ 0 & 1 & 2 & 2 & 3 \\ 0 & 2 & 1 & 2 & 2 \\ 0 & 2 & 1 & 2 &$$

- Formal codegrees: [2, 5, 7, 7, 70],
- Property: first non-1-Frobenius,
- Categorification: excluded by Lemma 4.2.
- (13) FPdim 78, type [1, 1, 2, 6, 6], duality [0, 1, 2, 3, 4], fusion data:

- Formal codegrees: [2, 3, 13, 13, 78],
- Categorification: excluded by Lemma 4.10.
- (14) FPdim 110, type [1, 1, 2, 2, 10], duality [0, 1, 2, 3, 4], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2$$

- Formal codegrees: [2, 5, 5, 11, 110],
- Categorification: excluded by Lemma 4.11.
- (15) FPdim 120, type [1, 1, 1, 6, 9], duality [0, 2, 1, 3, 4], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0$$

- Formal codegrees: [3, 3, 5, 8, 120],
- Property: non-1-Frobenius,
- Categorification: excluded by Lemma 4.2.
- (16) FPdim 140, type [1, 1, 5, 7, 8], duality [0, 1, 2, 3, 4], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 &
```

- Formal codegrees: [2, 4, 7, 10, 140],
- Property: non-1-Frobenius,
- Categorification: excluded by Lemma 4.2 or Corollary 4.13.
- (17) FPdim 156, type [1, 1, 1, 3, 12], duality [0, 2, 1, 3, 4], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 3 \\ 1 & 1 & 1 & 3 & 11 \end{bmatrix}
```

- Formal codegrees: [3, 3, 4, 13, 156],
- Categorification: excluded by Lemma 4.8.
- (18) FPdim 240, type [1, 1, 2, 3, 15], duality [0, 1, 2, 3, 4], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 & 0 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 3 \\ 1 & 1 & 2 & 3 & 14 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 1 & 1 & 2 & 3 & 14 \end{bmatrix}
```

- Formal codegrees: [2, 3, 10, 16, 240],
- Categorification: excluded by Lemma 4.2, or Corollary 4.13, or by the non-Drinfeld fusion subring of type [1, 1, 2, 3].
- (19) FPdim 312, type [1, 1, 2, 9, 15], duality [0, 1, 2, 3, 4], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 5 & 6 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 5 & 6 \\ 1 & 1 & 2 & 6 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 5 & 6 \\ 1 & 1 & 2 & 6 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 5 & 6 \\ 1 & 1 & 2 & 6 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 5 & 6 \\ 1 & 1 & 2 & 6 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 5 & 6 \\ 1 & 1 & 2 & 6 & 1 \end{bmatrix}$$

- Formal codegrees: [2, 3, 8, 26, 312],
- Property: non-1-Frobenius,
- Categorification: excluded by Lemma 4.2, or Corollary 4.13.
- (20) FPdim 1806, type [1, 1, 2, 6, 42], duality [0, 1, 2, 3, 4], fusion data:

- Formal codegrees: [2, 3, 7, 43, 1806],
- Categorification: excluded by the fusion subring of type [1, 1, 2, 6], see §A.1.4 (5).
- A.2. Rank 6. This subsection presents the full list of all 58 integral 1-Frobenius Drinfeld rings of rank 6 in §A.2.1, as well as the list of 32 integral non-1-Frobenius Drinfeld rings of rank 6 with FPdim ≤ 200000 in §A.2.2. Copy-pastable data can be found in the files 1FrobR6.txt and N1FrobR6d200000.txt, located in the Data/General directory of [7].
- A.2.1. 1-Frobenius case. Here is the comprehensive list of 58 integral 1-Frobenius Drinfeld rings of rank 6.
 - (1) FPdim 6, type [1,1,1,1,1,1], duality [0,1,2,3,5,4], fusion data: the group S_3 , see the rest in §C.1.
 - (2) FPdim 6, type [1, 1, 1, 1, 1, 1], duality [0, 1, 5, 4, 3, 2], fusion data:

- Formal codegrees: [6, 6, 6, 6, 6, 6],
- Categorification: $Rep(C_6)$.
- (3) FPdim 12, type [1, 1, 1, 1, 2, 2], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1
```

- Formal codegrees: [4, 4, 6, 6, 12, 12],
- Categorification: $Rep(D_6)$.

(4) FPdim 12, type [1, 1, 1, 1, 2, 2], duality [0, 1, 2, 3, 5, 4], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 1 & 1 & 1 & 1 & 0 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 1 & 1 & 1 & 1 & 0 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 1 & 1 & 1 & 1 & 0 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1
```

- Formal codegrees: [4, 4, 4, 12, 12, 12],
- Categorification: $C(A_4, 1, C_2, 1)$, apply FindGroupSubgroup, as for §5.4.
- (5) FPdim 12, type [1, 1, 1, 1, 2, 2], duality [0, 1, 3, 2, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0
```

- Formal codegrees: [4, 4, 6, 6, 12, 12],
- Categorification: Rep(Dic₃).
- (6) FPdim 12, type [1, 1, 1, 1, 2, 2], duality [0, 1, 3, 2, 5, 4], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}
```

- Formal codegrees: [4, 4, 4, 12, 12, 12]
- Categorification: [4, page 58]?
- (7) FPdim 18, type [1, 1, 2, 2, 2, 2], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0
```

- Formal codegrees: [2, 9, 9, 9, 9, 18],
- Categorification: $Rep(D_9)$.
- (8) FPdim 18, type [1, 1, 2, 2, 2, 2], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1
```

- Formal codegrees: [2, 9, 9, 9, 9, 18],
- Property: same type, duality, formal codegrees as $Rep(D_9)$, but different fusion ring,
- Categorification: Rep $(C_3 \times S_3)$.
- (9) FPdim 24, type [1, 1, 1, 1, 2, 4], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}
```

- Formal codegrees: [4, 4, 4, 8, 12, 24],
- Categorification:
- (10) FPdim 24, type [1, 1, 1, 1, 2, 4], duality [0, 1, 3, 2, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}
```

- Formal codegrees: [4, 4, 4, 8, 12, 24],
- Categorification:
- (11) FPdim 30, type [1, 1, 1, 1, 1, 5], duality [0, 4, 3, 2, 1, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0
```

- Formal codegrees: [5, 5, 5, 5, 6, 30],
- Property: near-group $C_5 + 4$,
- Categorification: excluded by [3, Theorem 5.1].

(12) FPdim 30, type [1, 1, 1, 3, 3, 3], duality [0, 2, 1, 3, 5, 4], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 1 & 1 & 1 & 0 & 1 \end{bmatrix}
```

- Formal codegrees: [3, 3, 6, 15, 15, 30]
- Property: non-3-positive, non-Isaacs,
- Categorification: open, non-braided, non-unitary.
- (13) FPdim 36, type [1, 1, 1, 1, 4, 4], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [4, 4, 4, 9, 9, 36],
- Categorification:
- (14) FPdim 36, type [1, 1, 1, 1, 4, 4], duality [0, 1, 3, 2, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 \\ 1 & 1 & 1 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 \\ 1 & 1 & 1 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 \\ 1 & 1 & 1 & 1 & 2 \end{bmatrix}
```

- Formal codegrees: [4, 4, 4, 9, 9, 36],
- Categorification: Rep $(C_3^2 \times C_4)$.
- (15) FPdim 60, type [1, 1, 2, 2, 5, 5], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [2, 5, 5, 20, 30, 60]
- Property: non-3-positive, non-Isaacs,
- Categorification: open, non-braided, non-unitary,
- (16) FPdim 60, type [1, 1, 2, 2, 5, 5], duality [0, 1, 2, 3, 4, 5], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 2 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0
```

- Formal codegrees: [4, 4, 5, 5, 12, 60],
- Categorification: $C(A_5, 1, D_5, 1)$, apply FindGroupSubgroup, as for §5.4.
- (17) FPdim 60, type [1, 1, 2, 2, 5, 5], duality [0, 1, 2, 3, 5, 4], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1
```

- Formal codegrees: [4, 4, 5, 5, 12, 60],
- Categorification:
- (18) FPdim 60, type [1, 1, 2, 3, 3, 6], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 2 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 & 2 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 & 2 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 1 & 1 & 2 & 2 & 2 & 3 \end{bmatrix}
```

- Formal codegrees: [3, 4, 4, 12, 15, 60],
- Property: first non-Isaacs integral fusion category, so non-braided,
- Categorification: $C(A_5, 1, S_3, 1)$, see §5.5.
- (19) FPdim 60, type [1, 1, 2, 3, 3, 6], duality [0, 1, 2, 4, 3, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0
```

- Formal codegrees: [3, 4, 4, 12, 15, 60].
- Property: non-Isaacs, so non-braided.
- Categorification:

(20) FPdim 72, type [1, 1, 1, 1, 2, 8], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [4, 4, 4, 8, 9, 72],
- Categorification: Rep(PSU(3, 2)).
- (21) FPdim 72, type [1, 1, 1, 1, 2, 8], duality [0, 1, 3, 2, 4, 5], fusion data:

- Formal codegrees: [4, 4, 4, 8, 9, 72],
- Categorification:

APPENDICES OF

(22) FPdim 84, type [1, 1, 1, 3, 6, 6], duality [0, 2, 1, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 1 & 1 & 1 & 3 & 3 \\ 1 & 1 & 3 & 3 & 1 \end{bmatrix}
```

- Formal codegrees: [3, 3, 4, 28, 28, 84]
- Property: non-Isaacs,
- Categorification: open, non-braided.
- (23) FPdim 84, type [1, 1, 1, 3, 6, 6], duality [0, 2, 1, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 & 3 & 2 \\ 1 & 1 & 1 & 2 & 3 \\ 0 & 0 & 0 & 2 & 3 & 2 \\ 1 & 1 & 1 & 1 & 2 & 3 \\ 0 & 0 & 0 & 2 & 3 & 2 \\ 0 & 0 & 0 & 2 & 3 & 2 \\ 0 & 0 & 0 & 2 & 3 & 2 \\ 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0
```

- Formal codegrees: [3, 3, 6, 12, 14, 84],
- Property: non-Isaacs,
- Categorification: open, non-braided.
- (24) FPdim 84, type [1, 1, 1, 3, 6, 6], duality [0, 2, 1, 3, 5, 4], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 2 & 4 \\ 1 & 1 & 1 & 3 & 2 & 2 \\ \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 1 & 1 & 1 & 3 & 2 & 2 \\ 0 & 0 & 0 & 0 & 4 & 2 \end{bmatrix}
```

- Formal codegrees: [3, 3, 4, 28, 28, 84],
- Categorification:
- (25) FPdim 114, type [1, 1, 2, 6, 6, 6], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 3 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0
```

- Formal codegrees: [2, 3, 19, 19, 19, 114],
- Categorification:
- (26) FPdim 120, type [1,1,1,1,4,10], duality [0,1,2,3,4,5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1
```

- Formal codegrees: [4, 4, 4, 5, 24, 120],
- Categorification:
- (27) FPdim 120, type [1, 1, 1, 1, 4, 10], duality [0, 1, 3, 2, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1
```

- Formal codegrees: [4, 4, 4, 5, 24, 120],
- Categorification:

(28) FPdim 168, type [1, 1, 2, 3, 3, 12], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 1 & 1 & 2 & 3 & 3 & 10 \end{bmatrix}
```

- Formal codegrees: [3, 4, 4, 8, 28, 168].
- Categorification:
- (29) FPdim 168, type [1, 1, 2, 3, 3, 12], duality [0, 1, 2, 4, 3, 5], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 1 & 1 & 2 & 3 & 3 & 10 \end{bmatrix}
```

- Formal codegrees: [3, 4, 4, 8, 28, 168],
- Categorification:
- (30) FPdim 168, type [1, 3, 3, 6, 7, 8], duality [0, 2, 1, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 2 & 2 & 3 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 2 & 2 \end{bmatrix}
```

- Formal codegrees: [3, 4, 7, 7, 8, 168]
- Property: simple,
- Categorification: Rep(PSL(2,7)).
- (31) FPdim 192, type [1, 1, 1, 3, 6, 12], duality [0, 2, 1, 3, 4, 5], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 1 & 1 & 3 & 6 & 8 \end{bmatrix}
```

- Formal codegrees: [3, 3, 4, 16, 64, 192],
- Categorification: excluded by fusion subring of type [1, 1, 1, 3, 6], see §A.1.5(10).
- (32) FPdim 210, type [1, 1, 2, 2, 2, 14], duality [0, 1, 2, 3, 4, 5], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 1 & 1 & 2 & 2 & 2 & 13 \end{bmatrix}
```

- Formal codegrees: [2, 7, 7, 7, 15, 210],
- Categorification:
- (33) FPdim 210, type [1, 1, 2, 2, 10, 10], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0
```

- Formal codegrees: [2, 5, 5, 15, 35, 210],
- Property: non-Isaacs,
- Categorification: open, non-braided.
- (34) FPdim 210, type [1, 1, 2, 2, 10, 10], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 5 & 5 \\ 1 & 1 & 2 & 2 & 5 & 4 \end{bmatrix}
```

- Formal codegrees: [2, 5, 5, 21, 21, 210],
- Categorification:
- (35) FPdim 300, type [1, 1, 1, 3, 12, 12], duality [0, 2, 1, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 6 & 6 \\ 1 & 1 & 1 & 3 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 1 & 1 & 1 & 3 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0
```

- Formal codegrees: [3, 3, 4, 25, 25, 300],
- Categorification:

(36) FPdim 420, type [1, 1, 1, 1, 4, 20], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [4, 4, 4, 5, 21, 420]
- Categorification:
- (37) FPdim 420, type [1, 1, 1, 1, 4, 20], duality [0, 1, 3, 2, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1
```

- Formal codegrees: [4, 4, 4, 5, 21, 420],
- Categorification:
- (38) FPdim 462, type [1, 1, 1, 3, 3, 21], duality [0, 2, 1, 4, 3, 5], fusion data:

- Formal codegrees: [3, 3, 7, 7, 22, 462],
- Categorification:
- (39) FPdim 600, type [1, 1, 2, 3, 3, 24], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [3, 4, 4, 8, 25, 600],
- Categorification:
- (40) FPdim 600, type [1, 1, 2, 3, 3, 24], duality [0, 1, 2, 4, 3, 5], fusion data:

- Formal codegrees: [3, 4, 4, 8, 25, 600],
- Categorification:
- (41) FPdim 624, type [1, 1, 1, 3, 6, 24], duality [0, 2, 1, 3, 4, 5], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 6 \\ 1 & 1 & 1 & 3 & 6 & 22 \\ \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 6 \\ 1 & 1 & 1 & 3 & 6 & 22 \\ \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 6 \\ 1 & 1 & 1 & 3 & 6 & 22 \\ \end{bmatrix}
```

- Formal codegrees: [3, 3, 4, 16, 52, 624],
- Categorification: excluded by fusion subring of type [1, 1, 1, 3, 6], see §A.1.5(10).
- (42) FPdim 924, type [1, 1, 2, 6, 21, 21], duality [0, 1, 2, 3, 4, 5], fusion data:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 3 & 10 & 10 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 3 & 10 & 10 \\ 0 & 1 & 1 & 3 & 10 & 10 \\ 0 & 1 & 1 & 3 & 10 & 10 \\ 0 & 1 & 1 & 3 & 10 & 10 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 3 & 10 & 10 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 3 & 10 & 10 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 3 & 10 & 10 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 3 & 10 & 10 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 3 & 10 & 10 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 3 & 10 & 10 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 3 & 10 & 10 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 3 & 10 & 10 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 3 & 10 & 10 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 3 & 10 & 10 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0$$

- Formal codegrees: [3, 4, 4, 7, 44, 924],
- Categorification: excluded by the fusion subring of type [1, 1, 2, 6], see §A.1.4 (5).
- (43) FPdim 924, type [1, 1, 2, 6, 21, 21], duality [0, 1, 2, 3, 5, 4], fusion data:

- Formal codegrees: [3, 4, 4, 7, 44, 924],
- Categorification: excluded by the fusion subring of type [1, 1, 2, 6], see §A.1.4 (5).

(44) FPdim 960, type [1, 3, 3, 4, 5, 30], duality [0, 1, 2, 3, 4, 5], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 & 5 \\ 1 & 3 & 3 & 4 & 5 & 28 \end{bmatrix}
```

- Formal codegrees: [3, 4, 5, 5, 64, 960],
- Property: first perfect non-simple,
- Categorification:
- (45) FPdim 1260, type [1, 1, 2, 2, 5, 35], duality [0, 1, 2, 3, 4, 5], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 1 & 1 & 2 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 & 5 & 1 \\ 1 & 1 & 2 & 2 & 5 & 34 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 5 \\ 1 & 1 & 2 & 2 & 5 & 34 \end{bmatrix}
```

- Formal codegrees: [2, 5, 5, 14, 36, 1260],
- Categorification: excluded by the non-Drinfeld fusion subring of type [1, 1, 2, 2, 5].
- (46) FPdim 2352, type [1, 1, 1, 3, 6, 48], duality [0, 2, 1, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 6 \\ 1 & 1 & 1 & 3 & 6 & 47 \end{bmatrix}
```

- Formal codegrees: [3, 3, 4, 16, 49, 2352],
- Categorification: excluded by fusion subring of type [1, 1, 1, 3, 6], see §A.1.5(10).
- (47) FPdim 3570, type [1, 1, 2, 6, 42, 42], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [2, 3, 7, 85, 85, 3570],
- Categorification: excluded by the fusion subring of type [1, 1, 2, 6], see §A.1.4 (5).
- (48) FPdim 3660, type [1, 3, 3, 4, 5, 60], duality [0, 1, 2, 3, 4, 5], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 \\ \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 & 5 \\ 1 & 3 & 3 & 4 & 5 & 59 \end{bmatrix}
```

- Formal codegrees: [3, 4, 5, 5, 61, 3660],
- Property: Perfect non-simple,
- Categorification:
- (49) FPdim 3840, type [1, 1, 2, 3, 15, 60], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 15 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 15 \\ 1 & 1 & 2 & 3 & 15 & 56 \end{bmatrix}
```

- Formal codegrees: [2, 3, 10, 16, 256, 3840],
- Categorification: excluded by the non-Drinfeld fusion subring of type [1, 1, 2, 3].
- (50) FPdim 5040, type [1, 1, 5, 7, 8, 70], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 2 & 0 \\ 0 & 0 & 2 & 2 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 8 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 & 8 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 & 8 \\ 1 & 1 & 5 & 7 & 8 & 68 \end{bmatrix}
```

- \bullet Formal codegrees: [2, 4, 7, 10, 144, 5040],
- Categorification: excluded by the fusion subring of type [1, 1, 5, 7, 8], see §A.1.5 (16).
- (51) FPdim 6162, type [1, 1, 2, 6, 6, 78], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [2, 3, 13, 13, 79, 6162],
- Categorification: excluded by fusion subring of type [1,1,2,6,6], see §A.1.5(13).

(52) FPdim 6240, type [1, 1, 1, 3, 12, 78], duality [0, 2, 1, 3, 4, 5], fusion data:

- Formal codegrees: [3, 3, 4, 13, 160, 6240],
- Categorification: excluded by fusion subring of type [1, 1, 1, 3, 12], see §A.1.5(17).
- (53) FPdim 12210, type [1, 1, 2, 2, 10, 110], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 2 & 2 & 10 & 109 \end{bmatrix}
```

- Formal codegrees: [2, 5, 5, 11, 111, 12210],
- Categorification: excluded by fusion subring of type [1, 1, 2, 2, 10], see §A.1.5(14).
- (54) FPdim 14640, type [1, 1, 2, 3, 15, 120], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 15 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 15 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 15 \\ 1 & 1 & 2 & 3 & 15 & 118 \\ \end{bmatrix}
```

- Formal codegrees: [2, 3, 10, 16, 244, 14640],
- Categorification: excluded by the non-Drinfeld fusion subring of type [1, 1, 2, 3].
- (55) FPdim 24492, type [1, 1, 1, 3, 12, 156], duality [0, 2, 1, 3, 4, 5], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 3 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 3 & 1 & 1 & 5 \\ 1 & 1 & 1 & 3 & 1 & 2 & 15 \\ 1 & 1 & 1 & 3 & 1 & 2 & 15 \\ \end{bmatrix}
```

- Formal codegrees: [3, 3, 4, 13, 157, 24492],
- Categorification: excluded by the non-Drinfeld fusion subring of type [1, 1, 2, 3].
- (56) FPdim 57840, type [1, 1, 2, 3, 15, 240], duality [0, 1, 2, 3, 4, 5], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 15 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 15 \\ 1 & 1 & 2 & 3 & 15 & 239 \end{bmatrix}
```

- Formal codegrees: [2, 3, 10, 16, 241, 57840],
- Categorification: excluded by fusion subring of type [1, 1, 2, 3, 15], see §A.1.5(18).
- (57) FPdim 233772, type [1, 1, 2, 6, 21, 483], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [2, 3, 7, 46, 484, 233772],
- Categorification: excluded by the fusion subring of type [1, 1, 2, 6], see §A.1.4 (5).
- (58) FPdim 3263442, type [1, 1, 2, 6, 42, 1806], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [2, 3, 7, 43, 1807, 3263442],
- Categorification: excluded by the fusion subring of type [1, 1, 2, 6], see §A.1.4 (5).

A.2.2. non-1-Frobenius case. Below is the complete list of the 32 integral, non-1-Frobenius Drinfeld fusion rings of rank 6 with Frobenius-Perron dimension up to 200000. Since the Isaacs property implies the 1-Frobenius property (see [2]), all fusion rings listed here are automatically non-Isaacs, so we omit this detail in what follows.

(1) FPdim 234, type [1, 1, 2, 8, 8, 10], duality [0, 1, 2, 4, 3, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0
```

- Formal codegrees: [2, 3, 9, 39, 39, 234],
- Property: non-1-Frobenius, non-3-positive, extension of $ch(S_3)$,

- Categorification: excluded by Lemma 4.2.
- (2) FPdim 330, type [1, 1, 2, 8, 8, 14], duality [0, 1, 2, 4, 3, 5], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 4 & 3 & 4 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0
```

- Formal codegrees: [2, 3, 15, 15, 33, 330],
- Property: non-1-Frobenius, extension of $ch(S_3)$,
- Categorification: excluded by Lemma 4.2.
- (3) FPdim 420, type [1, 1, 1, 10, 11, 14], duality [0, 2, 1, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 & 4 & 4 \\ 0 & 0 & 0 & 1 & 4 & 4 \\ 0 & 0 & 0 & 1 & 4 & 4 \\ 0 & 0 & 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 4 & 4 & 5 \\ 0 & 0 & 0 & 4 & 4 & 5 \\ 0 & 0 & 0 & 4 & 4 & 5 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 0 & 0 & 2 & 4 & 5 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1
```

- Formal codegrees: [3, 3, 5, 12, 21, 420],
- Property: non-1-Frobenius,
- Categorification: excluded by Lemma 4.2.
- (4) FPdim 462, type [1, 1, 8, 10, 10, 14], duality [0, 1, 2, 4, 3, 5], fusion data:

- Formal codegrees: [2, 6, 7, 7, 22, 462]
- Property: non-1-Frobenius,
- Categorification: excluded by Lemma 4.2.
- (5) FPdim 480, type [1, 1, 1, 3, 12, 18], duality [0, 2, 1, 3, 4, 5], fusion data:

- Formal codegrees: [3, 3, 4, 20, 32, 480],
- Property: first non-1-Frobenius with induction matrices (see Remark 4.1), extension of $ch(A_4)$,
- Categorification: open.
- (6) FPdim 672, type [1, 1, 2, 9, 12, 21], duality [0, 1, 2, 3, 4, 5], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 3 & 3 \\ 0 & 0 & 0 & 2 & 3 & 3 & 6 \\ 0 & 0 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 &
```

- Formal codegrees: [2, 3, 14, 16, 32, 672],
- Property: non-1-Frobenius, extension of $ch(S_3)$,
- Categorification:
- (7) FPdim 780, type [1, 1, 2, 3, 18, 21], duality [0, 1, 2, 3, 4, 5], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 1 & 1 & 2 & 3 & 9 & 7 \\ 0 & 0 & 0 & 0 & 7 & 12 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 1 & 1 & 2 & 3 & 1 & 2 & 10 \end{bmatrix}
```

- Formal codegrees: [2, 3, 10, 20, 65, 780],
- Property: non-1-Frobenius,
- Categorification: excluded by the non-Drinfeld fusion subring of type [1, 1, 2, 3].
- (8) FPdim 1320, type [1, 9, 10, 11, 21, 24], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix}, \ \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 3 \\ 0 & 2 & 2 & 4 & 3 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 2 & 2 \\ 0 & 1 & 2 & 2 & 3 \\ 0 & 1 & 2 & 2 & 3 & 4 \\ 0 & 2 & 2 & 2 & 4 & 3 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 & 2 & 2 \\ 1 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 2 & 2 & 4 & 4 \\ 0 & 2 & 2 & 2 & 4 & 5 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 3 & 4 \\ 0 & 1 & 2 & 2 & 3 & 4 \\ 0 & 2 & 2 & 2 & 4 & 4 \\ 0 & 2 & 2 & 2 & 4 & 5 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 3 & 4 \\ 0 & 1 & 2 & 2 & 3 & 4 \\ 0 & 2 & 2 & 2 & 4 & 4 \\ 0 & 2 & 2 & 2 & 4 & 5 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 3 & 4 \\ 0 & 1 & 2 & 2 & 3 & 4 \\ 0 & 2 & 2 & 2 & 4 & 4 \\ 0 & 2 & 2 & 2 & 4 & 5 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 3 & 4 \\ 0 & 1 & 2 & 2 & 3 & 4 \\ 0 & 2 & 2 & 2 & 4 & 4 \\ 0 & 2 & 2 & 2 & 4 & 5 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 3 & 4 \\ 0 & 1 & 2 & 2 & 3 & 4 \\ 0 & 2 & 2 & 2 & 4 & 4 \\ 0 & 2 & 2 & 2 & 4 & 5 \end{bmatrix}
```

- Formal codegrees: [3, 4, 5, 8, 11, 1320],
- Property: first simple and non-1-Frobenius,
- Categorification:

(9) FPdim 1320, type [1, 9, 10, 11, 21, 24], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 & 2 & 4 & 3 \\ 0 & 0 & 2 & 2 & 2 & 4 & 3 \\ 0 & 2 & 2 & 2 & 4 & 3 \\ 0 & 2 & 2 & 2 & 4 & 3 \\ 0 & 2 & 2 & 2 & 4 & 4 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 4 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4 & 5 \\ 0 & 2 & 2 & 2 & 4
```

- Formal codegrees: [3, 3, 5, 11, 24, 1320],
- Property: simple, non-1-Frobenius, non-3-positive
- Categorification:
- (10) FPdim 1860, type [1, 1, 2, 2, 25, 35], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 14 & 15 \\ 1 & 1 & 2 & 2 & 15 & 24 \end{bmatrix}
```

- Formal codegrees: [2, 5, 5, 12, 62, 1860],
- Property: non-1-Frobenius, extension of $ch(D_5)$,
- Categorification:
- (11) FPdim 2340, type [1, 1, 2, 17, 26, 37], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [2, 3, 9, 26, 60, 2340],
- Property: non-1-Frobenius, extension of $ch(S_3)$,
- Categorification:
- (12) FPdim 2436, type [1, 1, 2, 23, 26, 35], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [2, 3, 12, 14, 87, 2436],
- Property: non-1-Frobenius, extension of $ch(S_3)$,
- Categorification:
- (13) FPdim 3192, type [1, 1, 2, 24, 33, 39], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [2, 3, 8, 42, 57, 3192],
- Property: non-1-Frobenius, extension of $ch(S_3)$,
- Categorification:
- (14) FPdim 3612, type [1, 1, 1, 3, 36, 48], duality [0, 2, 1, 3, 4, 5], fusion data:

- Formal codegrees: [3, 3, 4, 14, 86, 3612],
- Property: non-1-Frobenius, extension of $ch(A_4)$,
- Categorification:
- (15) FPdim 3720, type [1, 1, 1, 6, 9, 60], duality [0, 2, 1, 3, 4, 5], fusion data:

- Formal codegrees: [3, 3, 5, 8, 124, 3720],
- Property: non-1-Frobenius,
- Categorification: excluded by the fusion subring of type [1, 1, 1, 6, 9], see §A.1.5 (15).

(16) FPdim 3740, type [1, 1, 20, 32, 33, 35], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [2, 4, 10, 11, 17, 3740],
- Property: non-1-Frobenius,
- Categorification:
- (17) FPdim 4920, type [1, 1, 2, 32, 41, 47], duality [0, 1, 2, 3, 4, 5], fusion data:

- \bullet Formal codegrees: [2, 3, 8, 30, 123, 4920],
- Property: non-1-Frobenius, non-3-positive, extension of $ch(S_3)$,
- Categorification:
- (18) FPdim 4920, type [1, 1, 2, 33, 39, 48], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 2 & 3 & 8 & 14 \\ 0 & 0 & 0 & 14 & 14 & 18 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 2 & 9 & 14 & 14 & 18 \\ 0 & 0 & 0 & 14 & 14 & 18 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 &
```

- Formal codegrees: [2, 3, 8, 30, 123, 4920],
- Property: non-1-Frobenius, non-3-positive, extension of $ch(S_3)$,
- Categorification:
- (19) FPdim 4970, type [1, 1, 4, 4, 6, 70], duality [0, 1, 3, 2, 4, 5], fusion data:

- Formal codegrees: [2, 5, 7, 7, 71, 4970]
- Property: non-1-Frobenius,
- Categorification: excluded by the fusion subring of type [1, 1, 4, 4, 6], see §A.1.5 (12).
- (20) FPdim 8364, type [1, 1, 1, 3, 36, 84], duality [0, 2, 1, 3, 4, 5], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 30 \\ 0 & 0 & 0 & 0 & 1 & 30 \\ 1 & 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 & 3 & 14 \\ 1 & 1 & 3 &
```

- Formal codegrees: [3, 3, 4, 17, 41, 8364],
- Property: non-1-Frobenius, extension of $ch(A_4)$,
- Categorification:
- (21) FPdim 9548, type [1, 1, 33, 35, 56, 64], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 6 & 6 & 12 & 12 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\
```

- Formal codegrees: [2, 4, 7, 11, 62, 9548],
- Property: non-1-Frobenius,
- Categorification:
- (22) FPdim 12210, type [1, 1, 2, 42, 66, 78], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 2 & 18 & 19 & 30 \\ 0 & 0 & 0 & 16 & 30 & 32 \\ 1 & 1 & 2 & 22 & 32 & 39 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 &
```

- Formal codegrees: [2, 3, 11, 15, 111, 12210],
- Property: non-1-Frobenius, extension of $ch(S_3)$,
- Categorification:

(23) FPdim 14520, type [1, 1, 1, 6, 9, 120], duality [0, 2, 1, 3, 4, 5], fusion data:

- \bullet Formal codegrees: [3, 3, 5, 8, 121, 14520],
- Property: non-1-Frobenius,
- Categorification: excluded by the fusion subring of type [1, 1, 1, 6, 9], see §A.1.5 (15).
- (24) FPdim 19740, type [1, 1, 5, 7, 8, 140], duality [0, 1, 2, 3, 4, 5], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 2 & 2 & 2 & 0 \\ 0 & 0 & 0 & 2 & 2 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 & 0 & 8 \\ 1 & 1 & 5 & 7 & 8 & 139 \\ \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 & 0 & 8 \\ 1 & 1 & 5 & 7 & 8 & 139 \\ \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 8 \\ 1 & 1 & 5 & 7 & 8 & 139 \\ \end{bmatrix}
```

- Formal codegrees: [2, 4, 7, 10, 141, 19740],
- Property: non-1-Frobenius,
- Categorification: excluded by the fusion subring of type [1, 1, 5, 7, 8], see §A.1.5 (16).
- (25) FPdim 24648, type [1, 1, 2, 9, 15, 156], duality [0, 1, 2, 3, 4, 5], fusion data:

- \bullet Formal codegrees: [2, 3, 8, 26, 316, 24648],
- Property: non-1-Frobenius, non-3-positive
- Categorification: excluded by the fusion subring of type [1, 1, 2, 9, 15], see §A.1.5 (19).
- (26) FPdim 28536, type [1, 1, 2, 81, 87, 120], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [2, 3, 8, 41, 58, 28536],
- Property: non-1-Frobenius, extension of $ch(S_3)$,
- Categorification:
- (27) FPdim 32640, type [1, 1, 2, 3, 120, 135], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [2, 3, 10, 17, 128, 32640],
- Property: non-1-Frobenius,
- Categorification: excluded by the non-Drinfeld fusion subring of type [1,1,2,3].
- (28) FPdim 47058, type [1, 1, 2, 66, 90, 186], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [2, 3, 11, 23, 31, 47058],
- Property: non-1-Frobenius,
- Categorification:
- (29) FPdim 53592, type [1, 1, 2, 9, 12, 231], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [2, 3, 11, 14, 232, 53592]
- Property: non-1-Frobenius,
- Categorification: excluded by the non-Drinfeld fusion subring of type [1, 1, 2, 9, 12].

(30) FPdim 75012, type [1, 1, 2, 6, 147, 231], duality [0, 1, 2, 3, 4, 5], fusion data:

- \bullet Formal codegrees: [2, 3, 7, 76, 94, 75012],
- Property: non-1-Frobenius,
- Categorification: excluded by the fusion subring of type [1, 1, 2, 6], see §A.1.4 (5).
- (31) FPdim 78540, type [1, 1, 2, 6, 63, 273], duality [0, 1, 2, 3, 4, 5], fusion data:

- Formal codegrees: [2, 3, 7, 68, 110, 78540],
- Property: non-1-Frobenius,
- Categorification: excluded by the fusion subring of type [1, 1, 2, 6], see §A.1.4 (5).
- (32) FPdim 97656, type [1, 1, 2, 9, 15, 312], duality [0, 1, 2, 3, 4, 5], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 5 & 6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 2 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 2 & 0 & 5 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 2 & 9 & 15 & 311 \end{bmatrix}
```

- Formal codegrees: [2, 3, 8, 26, 313, 97656],
- Property: non-1-Frobenius, non-3-positive
- Categorification: excluded by the fusion subring of type [1, 1, 2, 9, 15], see §A.1.5 (19).

A.3. Rank 7.

A.3.1. 1-Frobenius case. The file 1FrobR7d10^5.txt, located in the Data/General directory of [7], contains all 241 integral 1-Frobenius Drinfeld rings of rank 7 with FPdim $\leq 10^5$. Among them, exactly 5 are simple, and they are listed below:

(1) FPdim 7, type [1, 1, 1, 1, 1, 1, 1], duality [0, 6, 5, 4, 3, 2, 1], fusion data:

- Formal codegrees: [7, 7, 7, 7, 7, 7],
- Property: simple,
- Categorification: $Rep(C_7)$.
- (2) FPdim 210, type [1, 5, 5, 5, 6, 7, 7], duality [0, 1, 2, 3, 4, 5, 6], fusion data:

- Formal codegrees: [5, 5, 6, 7, 7, 7, 210],
- Property: first simple, 1-Frobenius and exotic,
- Categorification: excluded in [5].
- (3) FPdim 210, type [1, 5, 5, 5, 6, 7, 7], duality [0, 1, 2, 3, 4, 5, 6], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0
```

- Formal codegrees: [3, 6, 7, 7, 7, 15, 210],
- Property: simple, non-3-positive, non-Isaacs,
- Categorification: excluded in [5].

(4) FPdim 360, type [1, 5, 5, 8, 8, 9, 10], duality [0, 1, 2, 3, 4, 5, 6], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1
```

- Formal codegrees: [3, 4, 8, 9, 9, 15, 360],
- Property: simple, non-3-positive, non-Isaacs
- Categorification: open, non-unitary, non-braided.
- (5) FPdim 360, type [1, 5, 5, 8, 8, 9, 10], duality [0, 1, 2, 3, 4, 5, 6], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 2 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ 0 & 1 & 1 & 2 & 2 & 2 & 2 \\ 0 & 1 & 1 & 2 & 2 & 2 & 3 \\ 0 & 1 & 2 & 2 & 2 & 3 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 & 2 & 2 & 2 \\ 0 & 1 & 1 & 2 & 2 & 2 & 3 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 & 2 & 2 & 2 \\ 0 & 1 & 1 & 2 & 2 & 2 & 3 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 2 & 2 & 2 \\ 0 & 1 & 1 & 2 & 2 & 2 \end{bmatrix}
```

- Formal codegrees: [4, 5, 5, 8, 9, 9, 360],
- Property: simple,
- Categorification: $Rep(A_6)$.

A.3.2. non-1-Frobenius case. The file N1FrobR7d5000.txt, located in the Data/General directory of [7], contains all 113 integral non-1-Frobenius Drinfeld rings of rank 7 with FPdim ≤ 5000 . Among them, exactly 5 are simple, and they are listed below:

 $(1) \ \ {\rm FPdim} \ 560, \ {\rm type} \ [1,6,7,7,10,10,15], \ {\rm duality} \ [0,1,2,3,4,5,6], \ {\rm fusion} \ {\rm data} :$

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 3 \\ 0 & 2 & 2 & 2 & 3 & 4 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 3 \\ 0 & 2 & 2 & 2 & 3 & 4 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 2 & 2 & 2 & 3 & 2 & 4 \\ 0 & 2 & 2 & 2 & 3 & 3 & 4 & 4 \end{bmatrix}
```

- Formal codegrees: [4, 4, 5, 5, 16, 28, 560],
- Property: simple, non-3-positive, non-1-Frobenius,
- Categorification: open, non-unitary, non-braided.
- (2) FPdim 560, type [1, 6, 7, 7, 10, 10, 15], duality [0, 1, 2, 3, 5, 4, 6], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 & 2 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 2 & 3 \\ 0 & 2 & 2 & 2 & 3 & 4 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 2 & 3 \\ 0 & 2 & 2 & 2 & 3 & 4 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0
```

- Formal codegrees: [4, 5, 5, 7, 7, 16, 560],
- Property: simple, non-1-Frobenius,
- Categorification: open, non-braided.
- (3) FPdim 2860, type [1, 11, 12, 12, 15, 25, 40], duality [0, 1, 2, 3, 4, 5, 6], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2
```

- Formal codegrees: [4, 4, 5, 5, 13, 44, 2860],
- Property: simple, non-1-Frobenius,
- Categorification: open, non-braided.
- (4) FPdim 3192, type [1, 15, 16, 17, 18, 24, 39], duality [0, 1, 2, 3, 4, 5, 6], fusion data:

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 1 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 1 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 0 & 3 & 3 & 3 & 2 & 1 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1 & 2 & 2 & 4 \\ 0 & 0 & 1 & 1 & 1
```

- Formal codegrees: [3, 3, 6, 8, 42, 57, 3192],
- Property: simple, non-1-Frobenius, non-3-positive
- Categorification: open, non-braided, non-unitary

(5) FPdim 4284, type [1, 17, 17, 20, 28, 35, 36], duality [0, 2, 1, 3, 4, 5, 6], fusion data:

- Formal codegrees: [3, 4, 7, 7, 9, 51, 4284],
- Property: simple, non-1-Frobenius, non-3-positive
- Categorification: open, non-braided, non-unitary

These fusion rings also invite questions in the spirit of Question 1.13.

- A.4. Ranks 8 and 9. There are 792 integral 1-Frobenius Drinfeld rings of rank 8 with FPdim ≤ 25000 , and 1292 such rings of rank 9 with FPdim ≤ 2000 . Copy-pastable data can be found in the files 1FrobR8d25000.txt and 1FrobR9d2000.txt, located in the Data/General directory of [7].
- A.5. Addressing divisibility. The classification at rank r begins with the list of length r Egyptian fractions representing the possible

$$\sum_{V} \sum_{i=1}^{n_V^2} \frac{1}{n_V f_V} = 1,$$

where the (f_V) are the formal codegrees of the Drinfeld ring; see §2.2. Under the Drinfeld assumption, each formal codegree f_V divides f_1 . Moreover, the Drinfeld ring is commutative if and only if $n_V = 1$ for all V. In this case, we can restrict to Egyptian fractions of length r satisfying the divisibility condition $f_V \mid f_1$ for all V.

In the noncommutative setting, it may happen that $n_V f_V$ does not divide f_1 for some V. However, as verified in Appendix C, no such exceptions occur up to rank 8 (but they do appear at rank 9; see §2.2). Therefore, for ranks $r \leq 8$, it is safe to restrict to Egyptian fractions of length r that satisfy the divisibility condition.

At rank 9, Lemma 8.3 shows that the complexified noncommutative Drinfeld ring must be isomorphic to either $\mathbb{C} \oplus M_2(\mathbb{C})^2$ or $\mathbb{C}^5 \oplus M_2(\mathbb{C})$. The exception corresponds to Egyptian fractions of length 5 or 7 with one or two terms having $n_V = 2$, and at least one violating the divisibility condition $n_V f_V \mid f_1$.

We verified that for FPdim \leq 32000, the values arising from these exceptional cases are already covered by those for the Egyptian fractions of length 9 satisfying the divisibility condition. Details of this computation can be found in the file InvestNCRank9Except.txt of the Data/EgyptianFractionsDiv/Except folder of [7].

Appendix B. MNSD Drinfeld Rings

As established in §7, the Grothendieck ring of any odd-dimensional integral fusion category over \mathbb{C} is an MNSD integral Drinfeld ring (Definition 7.6). This section provides a complete classification of such rings up to rank 9.

- B.1. Up to rank 5. There are four MNSD integral Drinfeld rings up to rank 5, contained in §A.1, namely the Grothendieck rings of Rep(G), with $G = C_1$, C_3 , C_5 , $C_7 \rtimes C_3$.
- B.2. Rank 7. Here is the complete list of 4 MNSD integral Drinfeld ring of rank 7. Copy-pastable data can be found in the file MNSDRank7DataOnly.txt.txt, located in the Data/Odd directory of [7].
 - (1) FPdim 7, type [1, 1, 1, 1, 1, 1, 1], duality [0, 6, 5, 4, 3, 2, 1], fusion data: see $\S A.3.1$.
 - (2) FPdim 39, type [1, 1, 1, 3, 3, 3, 3], duality [0, 2, 1, 6, 5, 4, 3], fusion data:

- Formal codegrees: [3, 3, 13, 13, 13, 13, 39],
- Categorification: Rep $(C_{13} \times C_3)$.
- (3) FPdim 55, type [1, 1, 1, 1, 1, 5, 5], duality [0, 4, 3, 2, 1, 6, 5], fusion data:

- Formal codegrees: [5, 5, 5, 5, 11, 11, 55],
- Categorification: Rep $(C_{11} \rtimes C_5)$.

(4) FPdim 903, type [1, 1, 1, 3, 3, 21, 21], duality [0, 2, 1, 4, 3, 6, 5], fusion data:

- \bullet Formal codegrees: [3, 3, 7, 7, 43, 43, 903],
- Property: extension of $ch(C_7 \rtimes C_3)$,
- Categorification: excluded by §5.4.
- B.3. Rank 9. Among the MNSD Drinfeld rings of rank 9, there are 10 that are 1-Frobenius, and 2 that are neither perfect nor 1-Frobenius. Copy-pastable data can be found in the files MNSD1FrobRank9DataOnly.txt and N1FrobMNSDRank9.txt, located in the Data/odd directory of [7].
- B.3.1. 1-Frobenius case. Here is the complete list of 10 MNSD integral 1-Frobenius Drinfeld ring of rank 9:
 - (1) FPdim 9, type [1, 1, 1, 1, 1, 1, 1, 1], duality [0, 8, 7, 6, 5, 4, 3, 2, 1], fusion data:

- Formal codegrees: [9, 9, 9, 9, 9, 9, 9, 9, 9],
- Property: pointed
- Categorification: $Vec(C_3^2)$.
- $(2) \ \ \mathrm{FPdim} \ 9, \ \mathrm{type} \ [1,1,1,1,1,1,1,1], \ \mathrm{duality} \ [0,8,7,6,5,4,3,2,1], \ \mathrm{fusion} \ \mathrm{data} :$

- Formal codegrees: [9, 9, 9, 9, 9, 9, 9, 9, 9],
- Property: pointed,
- Categorification: $Vec(C_9)$.
- (3) FPdim 57, type [1, 1, 1, 3, 3, 3, 3, 3, 3, 3], duality [0, 2, 1, 8, 7, 6, 5, 4, 3], fusion data:

- Formal codegrees: [3, 3, 19, 19, 19, 19, 19, 19, 57],
- Categorification: Rep $(C_{19} \rtimes C_3)$.
- (4) FPdim 105, type [1, 1, 1, 1, 1, 1, 1, 7, 7], duality [0, 6, 5, 4, 3, 2, 1, 8, 7], fusion data:

- Formal codegrees: [7, 7, 7, 7, 7, 7, 15, 15, 105],
- Categorification:
- (5) FPdim 105, type [1, 1, 1, 1, 1, 5, 5, 5, 5], duality [0, 4, 3, 2, 1, 8, 7, 6, 5], fusion data:

- Formal codegrees: [5, 5, 5, 5, 15, 15, 35, 35, 105],
- Property:
- Categorification:
- (6) FPdim 1785, type [1, 1, 1, 3, 3, 21, 21, 21, 21], duality [0, 2, 1, 4, 3, 8, 7, 6, 5], fusion data:

• Formal codegrees: [3, 3, 7, 7, 85, 85, 85, 85, 1785],

- Property:
- Categorification:
- (7) FPdim 1785, type [1, 1, 1, 3, 3, 21, 21, 21, 21], duality [0, 2, 1, 4, 3, 8, 7, 6, 5], fusion data:

- Formal codegrees: [3, 3, 7, 7, 85, 85, 85, 85, 1785],
- Property:
- Categorification:
- (8) FPdim 3081, type [1, 1, 1, 3, 3, 3, 3, 39, 39], duality [0, 2, 1, 6, 5, 4, 3, 8, 7], fusion data:

- Formal codegrees: [3, 3, 13, 13, 13, 13, 79, 79, 3081],
- Property:
- Categorification:
- $(9) \ \ \mathrm{FPdim} \ 6105, \ \mathrm{type} \ [1,1,1,1,1,5,5,555,55], \ \mathrm{duality} \ [0,4,3,2,1,6,5,8,7], \ \mathrm{fusion} \ \mathrm{data} :$

- \bullet Formal codegrees: [5, 5, 5, 5, 11, 11, 111, 111, 6105],
- Property: extension of $ch(C_{11} \rtimes C_5)$,
- Categorification:
- (10) FPdim $16\overline{3}1721$, type [1, 1, 1, 3, 3, 21, 21, 903, 903], duality [0, 2, 1, 4, 3, 6, 5, 8, 7], fusion data:

- Formal codegrees: [3, 3, 7, 7, 43, 43, 1807, 1807, 1631721],
- Categorification: excluded by the fusion subring of type [1, 1, 1, 3, 3, 21, 21], see §B.2 (4).
- B.3.2. Non-1-Frobenius. The two non-perfect, non-1-Frobenius MNSD Drinfeld rings of rank 9 are as follows:
 - (1) FPdim 23529, type [1, 1, 1, 33, 33, 45, 45, 93, 93], duality [0, 2, 1, 4, 3, 6, 5, 8, 7], fusion data:

- Formal codegrees: [3, 3, 11, 11, 23, 23, 31, 31, 23529],
- Categorification:
- (2) FPdim 389865, type [1, 1, 1, 3, 3, 189, 189, 399, 399], duality [0, 2, 1, 4, 3, 6, 5, 8, 7], fusion data:

- Formal codegrees: [3, 3, 7, 7, 47, 47, 395, 395, 389865],
- Categorification:
- B.4. Rank 11. There are 24 integral 1-Frobenius, non-perfect MNSD Drinfeld rings of rank 11 with FPdim $\leq 10^9$. Copy-pastable data can be found in the file MNSD1FrobRank11DataOnly.txt, located in the Data/odd directory of [7].

Appendix C. Noncommutative integral Drinfeld Rings

Recall from Proposition 8.2 that 6 is the smallest possible rank for a noncommutative fusion ring. This section provides a complete list of all 1+3+25 noncommutative integral Drinfeld rings of rank at most 8. The corresponding data can be found in the files InvestNCRank6DataOnly.txt, InvestNCRank7DataOnly.txt, and InvestNCRank8DataOnly.txt, located in the Data/Noncommutative directory of [7].

Note that the notation m_n for a formal codegree indicates a value equal to m arising from an n-dimensional irreducible representation. For simplicity, m_1 is written as m.

C.1. Rank 6.

• FPdim 6, type [1, 1, 1, 1, 1, 1], duality [0, 1, 2, 3, 5, 4], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0
```

- Formal codegrees: $[3_2, 6, 6]$,
- Property: noncommutative,
- Categorification: $Vec(S_3)$.

C.2. Rank 7.

(1) FPdim 24, type [1, 1, 1, 2, 2, 2, 3], duality [0, 2, 1, 3, 4, 5, 6], fusion data:

```
 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0
```

- Formal codegrees: $[3_2, 4, 24, 24]$,
- Property: noncommutative, isotype of Rep(SL(2,3))
- Categorification: Rep(H) with H the Kac algebra in [4, Theorem 14.40 (VI)].
- (2) FPdim 42, type [1, 1, 1, 1, 1, 1, 6], duality [0, 1, 2, 3, 5, 4, 6], fusion data:

- Formal codegrees: $[3_2, 6, 7, 42]$,
- Property: noncommutative, near-group $S_3 + 5$
- Categorification: excluded by [3, Theorem 5.1].
- (3) FPdim 60, type [1, 1, 1, 3, 4, 4, 4], duality [0, 2, 1, 3, 4, 5, 6], fusion data:

- Formal codegrees: [3₂, 4, 15, 60],
- Property: noncommutative, single possible induction matrix
- Categorification: $C(A_5, 1, A_4, 1)$, group-theoretical, Morita equivalent to $Vec(A_5)$, see §5.2.
- C.3. Rank 8. This subsection provides the complete list of 25 noncommutative integral Drinfeld rings of rank 8, splitted into two parts: the non-1-Frobenius ones (5 items), and the 1-Frobenius ones (20 items).
- C.3.1. Non-1-Frobenius. Here are the 5 noncommutative non-1-Frobenius integral Drinfeld rings of rank 8:
 - (1) FPdim 312, type [1, 1, 1, 1, 1, 1, 9, 15], duality [0, 1, 2, 3, 5, 4, 6, 7], fusion data:

- Formal codegrees: $[3_2, 6, 8, 26, 312]$,
- Property: noncommutative, non-1-Frobenius, non-3-positive,
- Categorification: non-unitary (if any).

(2) FPdim 1320, type [1, 1, 1, 10, 10, 10, 21, 24], duality [0, 2, 1, 3, 4, 5, 6, 7], fusion data:

```
\begin{array}{c} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{array}
                                                                                                                                                                                                                         \begin{smallmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{smallmatrix}
                                                                                                                                                                                                                                                                                                                                                                                                                                                        \begin{smallmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{smallmatrix}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            \begin{array}{c} 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 2 \\ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 2 \\ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 2 \\ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 4 \\ 0 \ 0 \ 0 \ 2 \ 2 \ 2 \ 4 \ 4 \end{array}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        \begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 4 & 4 \\ 0 & 0 & 0 & 1 & 1 & 1 & 4 & 4 \\ 0 & 0 & 0 & 1 & 1 & 1 & 4 & 4 \\ 1 & 1 & 1 & 1 & 4 & 4 & 4 & 6 & 8 \\ 0 & 0 & 0 & 4 & 4 & 4 & 8 & 9 \end{smallmatrix}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      \begin{array}{c} 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 2 \\ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 2 \\ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 4 \\ 0 \ 0 \ 0 \ 2 \ 2 \ 2 \ 4 \ 4 \end{array}
```

- Formal codegrees: $[3_2, 5, 11, 24, 1320]$,
- Property: noncommutative, non-1-Frobenius,
- Categorification:
- (3) FPdim 1320, type [1, 1, 1, 6, 9, 20, 20, 20], duality [0, 2, 1, 3, 4, 5, 6, 7], fusion data:

```
\begin{smallmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 \\ \end{smallmatrix}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       \begin{smallmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 4 & 0 & 0 & 0 \\ 1 & 1 & 1 & 4 & 6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & 3 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & 3 & 3 & 3 \\ \end{smallmatrix}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 & 3 & 3 \\ 0 & 0 & 1 & 2 & 3 & 6 & 6 & 6 \\ 0 & 1 & 0 & 2 & 3 & 6 & 6 & 6 \\ 0 & 1 & 0 & 2 & 3 & 6 & 6 & 6 \\ \end{smallmatrix}
                                                                                                                                                                          \begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 3 & 3 & 3 \\ 1 & 0 & 0 & 2 & 3 & 6 & 6 & 6 \\ 0 & 1 & 0 & 2 & 3 & 6 & 6 & 6 \\ 0 & 0 & 1 & 2 & 3 & 6 & 6 & 6 \\ \end{smallmatrix}
                                                                                                                                                                                                                                                                                                                                                             \begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{smallmatrix}
                                                                                                                                                                          \begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{smallmatrix}
                                                                                                                                                                                                                                                                                                                                                         \begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ \end{smallmatrix}
```

- Formal codegrees: $[3_2, 5, 8, 132, 1320]$,
- Property: noncommutative, non-1-Frobenius,
- Categorification: excluded by the fusion subring of type [1, 1, 1, 6, 9], see §A.1.5 (15).
- (4) FPdim 2508, type [1, 1, 1, 3, 20, 20, 20, 36], duality [0, 2, 1, 3, 4, 5, 6, 7], fusion data:

```
\begin{array}{c} e_8 \\ 2508, \, \iota_{\nu} \\ \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ & & & & & & & & \\ 1 & 0 & 0 & 0 & & & & \\ & & & & & & & & \\ 1 & 0 & 0 & 0 & & & & \\ & & & & & & & & \\ 1 & 0 & 0 & 0 & & & & \\ & & & & & & & & \\ 1 & 0 & 0 & & & & & \\ & & & & & & & & \\ 1 & 0 & 0 & & & & & \\ & & & & & & & \\ 1 & 0 & 0 & & & & & \\ & & & & & & & \\ 1 & 0 & 0 & & & & \\ & & & & & & & \\ 1 & 0 & 0 & & & & \\ & & & & & & & \\ 1 & 0 & 0 & & & & \\ & & & & & & \\ 1 & 0 & 0 & & & \\ & & & & & & \\ 1 & 0 & 0 & & & \\ & & & & & \\ 1 & 0 & 0 & & & \\ \end{array}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 \begin{smallmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\ \end{smallmatrix}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             \begin{array}{c} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 3 & 3 \\ 1 & 3 & 3 \\ 1 & 3 & 3 \\ 0 & 6 & 6 \end{array}

\begin{array}{c}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1 \\
3 & 3 & 3 \\
3 & 3 & 3 \\
3 & 3 & 3
\end{array}
```

- Formal codegrees: $[3_2, 4, 19, 33, 2508]$,
- Property: noncommutative, non-1-Frobenius,
- Categorification:
- (5) FPdim 4920, type [1, 1, 1, 6, 9, 40, 40, 40], duality [0, 2, 1, 3, 4, 5, 6, 7], fusion data:

```
\begin{array}{c} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{array}
                                                                                                                       \begin{array}{c} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \end{array} ,
                                                                                                                                                                                                                                                                                                                                                                         \begin{array}{c} 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 0 \ 3 \ 3 \ 3 \\ 0 \ 0 \ 0 \ 0 \ 0 \ 3 \ 3 \ 3 \\ \end{array} 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0 \\ 0 \\ 2 \\ 3 \\ 13 \\ 13 \\ 13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0 \\ 1 \\ 2 \\ 3 \\ 13 \\ 13 \\ 13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0 \\ 1 \\ 2 \\ 3 \\ 13 \\ 13 \\ 13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0
0
2
3
13
13
13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           \begin{array}{c} 1 \\ 0 \\ 2 \\ 3 \\ 13 \\ 13 \\ 13 \end{array}
```

- Formal codegrees: $[3_2, 5, 8, 123, 4920]$,
- Property: noncommutative, non-1-Frobenius,
- Categorification: excluded by the fusion subring of type [1, 1, 1, 6, 9], see §A.1.5 (15).

C.3.2. 1-Frobenius. Here are the 20 noncommutative 1-Frobenius integral Drinfeld rings of rank 8:

(1) FPdim 8, type [1, 1, 1, 1, 1, 1, 1, 1], duality [0, 1, 2, 3, 4, 5, 7, 6], fusion data:

```
\begin{smallmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{smallmatrix}
```

- Formal codegrees: $[4_2, 8, 8, 8, 8]$,
- Property: noncommutative,
- Categorification: $Vec(D_4)$.
- (2) FPdim 8, type [1, 1, 1, 1, 1, 1, 1, 1], duality [0, 1, 7, 6, 5, 4, 3, 2], fusion data:

```
\begin{array}{c} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ \end{array}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           \begin{smallmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots
```

- Formal codegrees: $[4_2, 8, 8, 8, 8]$,
- Property: noncommutative,
- Categorification: $Vec(Q_8)$.

(3) FPdim 20, type [1, 1, 1, 1, 2, 2, 2, 2], duality [0, 1, 2, 3, 4, 5, 7, 6], fusion data:

- Formal codegrees: $[4, 4, 5_2, 20, 20]$,
- Property: noncommutative,
- Categorification: $C(F_5, 1, D_5, 1), C(F_5, 1, C_2, 1)$.
- (4) FPdim 20, type [1, 1, 1, 1, 2, 2, 2, 2], duality [0, 1, 3, 2, 4, 5, 7, 6], fusion data:

- Formal codegrees: $[4, 4, 5_2, 20, 20]$,
- Property: noncommutative,
- Categorification:
- (5) FPdim 24, type [1, 1, 1, 1, 1, 1, 3, 3], duality [0, 1, 2, 3, 5, 4, 6, 7], fusion data:

- Formal codegrees: $[3_2, 8, 12, 12, 24]$,
- Property: noncommutative,
- Categorification: excluded by Lemma 4.3.
- (6) FPdim 24, type [1, 1, 1, 1, 1, 1, 3, 3], duality [0, 1, 2, 3, 5, 4, 6, 7], fusion data:

- Formal codegrees: $[3_2, 8, 8, 24, 24]$,
- Property: noncommutative,
- Categorification: $C(S_4, 1, A_4, 1), C(S_4, 1, S_3, 1)$.
- (7) FPdim 24, type [1, 1, 1, 1, 1, 1, 3, 3], duality [0, 1, 2, 3, 5, 4, 7, 6], fusion data:

- Formal codegrees: $[3_2, 8, 12, 12, 24]$,
- Property: noncommutative,
- Categorification: excluded by Lemma 4.2.
- (8) FPdim 78, type [1, 1, 1, 1, 1, 1, 6, 6], duality [0, 1, 2, 3, 5, 4, 6, 7], fusion data:

- Formal codegrees: $[3_2, 6, 13, 13, 78]$,
- Property: noncommutative,
- Categorification: excluded by Lemma 4.2.
- (9) FPdim 96, type [1, 1, 1, 3, 4, 4, 4, 6], duality [0, 2, 1, 3, 4, 5, 6, 7], fusion data:

- Formal codegrees: $[3_2, 4, 16, 96, 96]$,
- Property: noncommutative,
- Categorification:
- (10) FPdim 168, type [1, 1, 1, 2, 2, 2, 3, 12], duality [0, 2, 1, 3, 4, 5, 6, 7], fusion data:

- Formal codegrees: $[3_2, 4, 24, 28, 168]$,
- Property: noncommutative,
- Categorification:
- (11) FPdim 168, type [1, 1, 1, 3, 3, 7, 7, 7], duality [0, 2, 1, 4, 3, 5, 6, 7], fusion data:

- Formal codegrees: $[3_2, 7, 7, 24, 168]$,
- Property: noncommutative,
- Categorification: $C(PSL(2,7), 1, C_7 \times C_3, 1)$.
- (12) FPdim 240, type [1, 1, 1, 1, 1, 1, 3, 15], duality [0, 1, 2, 3, 5, 4, 6, 7], fusion data:

- Formal codegrees: $[3_2, 6, 10, 16, 240]$,
- Property: noncommutative,
- Categorification:
- (13) FPdim 240, type [1, 1, 1, 3, 6, 8, 8, 8], duality [0, 2, 1, 3, 4, 5, 6, 7], fusion data:

- Formal codegrees: $[3_2, 4, 16, 60, 240]$,
- Property: noncommutative,
- Categorification:
- (14) FPdim 600, type [1, 1, 1, 2, 2, 2, 3, 24], duality [0, 2, 1, 3, 4, 5, 6, 7], fusion data:

- Formal codegrees: $[3_2, 4, 24, 25, 600]$,
- Property: noncommutative,
- Categorification:
- (15) FPdim 816, type [1, 1, 1, 3, 6, 16, 16, 16], duality [0, 2, 1, 3, 4, 5, 6, 7], fusion data:

- Formal codegrees: $[3_2, 4, 16, 51, 816]$,
- Property: noncommutative,
- Categorification:

(16) FPdim 960, type [1, 1, 1, 3, 4, 4, 4, 30], duality [0, 2, 1, 3, 4, 5, 6, 7], fusion data:

- Formal codegrees: $[3_2, 4, 15, 64, 960]$,
- Property: noncommutative,
- Categorification:
- (17) FPdim 1806, type [1, 1, 1, 1, 1, 1, 6, 42], duality [0, 1, 2, 3, 5, 4, 6, 7], fusion data:

- Formal codegrees: $[3_2, 6, 7, 43, 1806]$,
- Property: noncommutative,
- Categorification:
- (18) FPdim 2184, type [1, 1, 1, 3, 12, 26, 26, 26], duality [0, 2, 1, 3, 4, 5, 6, 7], fusion data:

- Formal codegrees: $[3_2, 4, 13, 168, 2184]$,
- Property: noncommutative,
- Categorification:
- (19) FPdim 3660, type [1, 1, 1, 3, 4, 4, 4, 60], duality [0, 2, 1, 3, 4, 5, 6, 7], fusion data:

- Formal codegrees: $[3_2, 4, 15, 61, 3660]$,
- Property: noncommutative,
- Categorification:
- (20) FPdim 8268, type [1, 1, 1, 3, 12, 52, 52, 52], duality [0, 2, 1, 3, 4, 5, 6, 7], fusion data:

- Formal codegrees: $[3_2, 4, 13, 159, 8268]$,
- Property: noncommutative,
- Categorification:

C.4. Rank 9. There are 83 integral 1-Frobenius, noncommutative Drinfeld rings of rank 9 with FPdim ≤ 10000. Copy-pastable data can be found in the file 1FrobR9NCd10000DataOnly.txt, located in the Data/Noncommutative directory of [7].

References

- [1] P. Bruillard, C.M. Ortiz-Marrero, Classification of rank 5 premodular categories. J. Math. Phys. 59 (2018), no. 1, 011702, 8 pp.
- [2] S. Burciu, S. Palcoux, Structure constants, Isaacs property and extended Haagerup fusion categories. Comm. Algebra 53 (2025), no. 4, 1438-1452.
- [3] M. IZUMI, A Cuntz algebra approach to the classification of near-group categories. Proceedings of the 2014 Maui and 2015 Qinhuangdao conferences in honour of Vaughan F. R. Jones' 60th birthday, 222–343, Proc. Centre Math. Appl. Austral. Nat. Univ., 46, Austral. Nat. Univ., Canberra, 2017.
- [4] M. IZUMI, H. KOSAKI, Kac algebras arising from composition of subfactors: general theory and classification. Mem. Amer. Math. Soc. 158 (2002), no. 750, 198 pp.
- [5] Z. Liu, S. Palcoux, Y. Ren, Triangular prism equations and categorification, arXiv:2203.06522 (2022).

- [6] Z. Liu, S. Palcoux, Y. Ren, Classification of Grothendieck rings of complex fusion categories of multiplicity one up to rank six. Lett. Math. Phys. 112 (2022), no. 3, Paper No. 54, 37 pp.
- [7] S. PALCOUX, Fusion Categories Repository, GitHub, https://github.com/sebastienpalcoux/Fusion-Categories/tree/main/IntegralPaper
 - M.A. Alekseyev, Department of Mathematics, George Washington University, Washington, DC, USA $Email\ address: maxal@gwu.edu$
 - W. Bruns, Institut für Mathematik, Universität Osnabrück, 49069 Osnabrück, Germany $Email\ address$: wbrunsQuos.de
- J. Dong, College of Mathematics and Statistics Nanjing University of Information Science and Technology Nanjing 210044, China

 $Email\ address: {\tt jcdong@nuist.edu.cn}$

S. PALCOUX, BEIJING INSTITUTE OF MATHEMATICAL SCIENCES AND APPLICATIONS, HUAIROU DISTRICT, BEIJING, CHINA $Email\ address$: sebastien.palcoux@gmail.com

 URL : https://sites.google.com/view/sebastienpalcoux