<u>Lliurament tasca 6A: Visualització gràfica</u> <u>Multiples variables : - Exercici 1</u>

\begin{align*}Cristiane\:de Souza \end{align*} \begin{align*}Date :
Febrer\hspace{2mm}2021\end{align*}

EXAMINING NUMERICAL DATA

We will be introduced to techniques for exploring and summarizing numerical variables, working with the dataset : '\$tips\$'.

```
In [32]: # importing libraries
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import warnings

warnings.filterwarnings('ignore')
```

EXPLORING BIVARIATE VARIABLES WITH SCATTERPLOTS

```
# Open the choosen file
In [33]:
           tips = pd.read csv('tips.csv')
           tips.head()
             total_bill
                        tip
                               sex smoker day
                                                  time size
Out[33]:
                16.99
                       1.01 Female
                                        No Sun Dinner
                                                          2
                                        No Sun Dinner
           1
                10.34
                      1.66
                                                          3
                              Male
          2
                 21.01 3.50
                              Male
                                        No Sun Dinner
                                                          3
          3
                23.68
                      3.31
                              Male
                                        No Sun Dinner
                24.59 3.61 Female
                                        No Sun Dinner
                                                          Δ
           tips.shape
In [34]:
```

```
In [34]: tips.shape
Out[34]: (244, 7)
In [35]: tips.columns
Out[35]: Index(['total_bill', 'tip', 'sex', 'smoker', 'day', 'time', 'size'], dtype= 'object')
```

about:srcdoc Página 1 de 17

```
In [36]:
          tips.sex.unique()
Out[36]: array(['Female', 'Male'], dtype=object)
          tips.sex.nunique()
In [37]:
Out[37]: 2
          tips.describe().round(3)
In [38]:
                total_bill
                              tip
                                     size
Out[38]:
          count
                 244.000 244.000 244.000
                  19.786
                           2.998
                                    2.570
          mean
                   8.902
                           1.384
            std
                                    0.951
           min
                   3.070
                           1.000
                                   1.000
           25%
                  13.348
                           2.000
                                   2.000
           50%
                  17.795
                           2.900
                                   2.000
           75%
                  24.127
                           3.562
                                    3.000
           max
                  50.810
                          10.000
                                   6.000
In [39]:
          # Create data
          x = tips.total_bill
          y = tips.tip
          colors = 'Blue'
          area = np.pi*5
          plt.axis([0, 60, 0, 15])
          # Plot
          plt.scatter(x, y, s=area, c=colors, alpha=0.4, edgecolors='black')
          plt.title('Total Bill vs Tip')
          plt.ylabel('Tip')
          plt.xlabel('Total Bill')
```

about:srcdoc Página 2 de 17

plt.show()


```
In [40]:
          # Checking dataset variables
          tips.dtypes
Out[40]:
         total_bill
                        float64
          tip
                        float64
                          object
          sex
                          object
          smoker
          day
                          object
          time
                          object
                           int64
          size
         dtype: object
          # Categorical Variables
In [41]:
          tips.day.unique()
```

Out[41]: array(['Sun', 'Sat', 'Thur', 'Fri'], dtype=object)

The relationship is evidently nonlinear.

MATRIX PLOTS

```
In [42]: # Matrix Plot
sns.pairplot(tips, diag_kind='hist', plot_kws={'alpha': 0.2})
```

about:srcdoc Página 3 de 17

HISTOGRAMS

```
In [43]: tips.hist(['tip'], bins=14)
    plt.title('Tips')
    plt.ylabel('Frequency')
    plt.xlabel('# tip ')
```

about:srcdoc Página 4 de 17

Out[43]: Text(0.5, 0, '# tip ')

<u>Long tails to identify skew</u> When data trail off in one direction, the distribution has a **long tail**. If a distribution has a long left tail, it is **Left Skewed**. If a distribution has a long right tail, it is **Right Skewed**.

Modal Distribution

In addition to looking at whether a distribution is Skewed or Symmetric, histograms can be used to identify **Modes**.

\$%\$

A mode is the value with the most occurrences.

\$%\$

However, It is common to have **no** observations with the same value in a dataset, which makes, **mode**, useless for many real datasets.

A **mode** is represented by a prominent peak in the distribution. There is only one prominent peak in the histogram of **num_char**.

Histogram that have one, two, or three prominent peaks are called <u>Unimodal,\$\:\\$</u>
<u>Bimodal,\$\:\\$ and \$\:\\$ Multimodal,</u> respectively.

Any distribution with more than 2 prominent peaks is called Multimodal.

Notice that there was **one prominent peak** in the Unimodal distribution with a **second less prominent peak** that was **not counted** since it only differs from its neighboring **bins** by a few observations.

about:srcdoc Página 5 de 17

<u>Looking for modes</u> Looking for **modes** isn't about finding a clear and correct answer about the number of **modes** in a **distribution**. The important part of this examination is to better understand your data and how it might be structured.

Statistical Foundations for Data Scientist

\begin{align*}Alex\:Kumenius\end{align*}

\begin{align*}Business\hspace{2mm}Intelligence\hspace{2mm}and\hspace{2mm}Data\hspace{2mm}Data\hspace{2mm}2020\end{align*}

SUMMARY STATISTICS

Mean - Average

In [44]:	t	ips.head()					
Out[44]:		total_bill	tip	sex	smoker	day	time	size
	0	16.99	1.01	Female	No	Sun	Dinner	2
	1	10.34	1.66	Male	No	Sun	Dinner	3
	2	21.01	3.50	Male	No	Sun	Dinner	3
	3	23.68	3.31	Male	No	Sun	Dinner	2
	4	24.59	3.61	Female	No	Sun	Dinner	4
In [45]:	t	ips.descr	ibe()				

about:srcdoc Página 6 de 17

```
total_bill
                                  tip
                                            size
Out[45]:
          count 244.000000 244.000000 244.000000
          mean
                 19.785943
                             2.998279
                                        2.569672
            std
                  8.902412
                             1.383638
                                         0.951100
           min
                  3.070000
                             1.000000
                                        1.000000
          25%
                 13.347500
                             2.000000
                                        2.000000
          50%
                             2.900000
                 17.795000
                                        2.000000
          75%
                 24.127500
                             3.562500
                                        3.000000
                 50.810000
                            10.000000
                                        6.000000
           max
          tips.info()
In [46]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 244 entries, 0 to 243
         Data columns (total 7 columns):
               Column
                           Non-Null Count Dtype
              total_bill 244 non-null
           0
                                            float64
           1
                           244 non-null
                                            float64
              tip
           2
                           244 non-null
                                            object
               sex
           3
              smoker
                           244 non-null
                                            object
           4
              day
                           244 non-null
                                            object
          5
                           244 non-null
                                            object
              time
          6
                           244 non-null
                                            int64
               size
         dtypes: float64(2), int64(1), object(4)
         memory usage: 13.5+ KB
          #dbe.num char.mean().round(3)
In [47]:
          #changed to:
          round(tips.tip.mean(),3)
```

Out[47]: 2.998

The mean of tip is \$2.99.

Mean The sample mean $\$ of a numerical variable is computed as the sum of all of the observations divided by the number of observations: $\$ \begin{align*}\bar{x}:=\:\frac{x_1\:+\:x_2\:+\:···\:+\:x_n}{n}\end{align*} \$\%\$ where $\$ x_1\$, \$x_2\$, ...,\$x_n\$ represent the \$n\$ observed values. \$%\$ It is useful to think of the mean as the balancing point of the distribution.

about:srcdoc Página 7 de 17

EXERCISE - 3.1

Compare both Equations above.

- What does \$x_1\$ correspond to ?,
- and \$x_2\$?
- Can you infer a general meaning to what \$x_i\$ might represent?
- What was \$n\$ in this sample?

SOLUTION - 3.1

- \$x_1\$ corresponds to the tip of the first total bill,
- \$x_2\$ corresponds to tip of the second total bill, , and
- \$x_i\$ corresponds to the tips in the \$i^{th}\$ total bills in the dataset.
- The sample size was n = 244.

<u>Population Mean</u> The <u>Population mean</u> has a special label: \$\mu\$. The symbol \$\mu\$ is the \$Greek\$ letter \$mu\$ and represents the average/mean of all observations in the **Population**. \$%\$ Sometimes a subscript, such as \$_x\$, is used to represent which variable the **population mean** refers to, e.g. \$\mu_x\$

EXERCISE - 3.2

The average number of tips (population) can be estimated using the sample data.

Based on the sample of **244** \$tips\$, what would be a reasonable estimate of **\$\mu_x\$**, the **mean** value of tips?

Variance and Standard Deviation

```
In [48]: tips.tip.mean()- tips.tip.std()
Out[48]: 1.6146404995234076
```

Variance

The **mean** was introduced as a method to describe the center of a data set, but the **variability in the data** is also **important**.

We introduce <u>two measures of variability</u>: the <u>Variance</u> and the <u>Standard Deviation</u>. Both are very useful in data analysis.

The **Standard Deviation** describes **how far away** the typical **observation** is from the mean.

about:srcdoc Página 8 de 17

We call the distance of an observation from its mean its **Deviation**.

Below are the **deviations** for the 1st, 2nd, 3rd, and 50th observations in the **num_char** variable. For computational convenience, the number of characters is listed in the thousands and rounded to the first decimal.

```
In [49]: tips.tip.iloc[[1], ]
Out[49]: 1   1.66
    Name: tip, dtype: float64
```

Sample Variance \$s^2\$ We divide by \$n\:-\:1\$, rather than dividing by \$n\$, when computing the Variance. \$%\$ squaring the deviations does two things: - First, it makes large values much larger, seen by comparing \$10.1^2\$, \$(-4.6)^2\$, \$(-11.0)^2\$, and \$4.2^2\$. - Second, it gets rid of any negative signs. \$%\$ The variance is roughly the average squared distance from the mean.

Standard Deviation

Standard Deviation Formulas and methods used to compute the **Variance** and **Standard Deviation** for a **Population** are similar to those used for a **sample** (*The only difference is that the Population Variance has a division by \$n\$ instead of \$n - 1\$). \$%\$ However, like the Mean, the Population values have special symbols: -\$\sigma^2\$ for the Variance and - \$\sigma\$ for the Standard Deviation. The symbol \$\sigma\$ is the \$Greek\$ letter \$\sigma\$.*

```
In [50]: round(tips.tip.std(),2)
Out[50]: 1.38
```

Standard Deviation describes Variability, so focus on the conceptual meaning of the Standard Deviation as a descriptor of Variability rather than the formulas.

Usually **70**% of the data will be within one standard deviation of the mean and about **95**% will be within two standard deviations two standard deviations. However, these percentages are not strict rules.

about:srcdoc Página 9 de 17

EXERCISE - 3.6

A good description of the shape of a distribution should include modality and whether the distribution is symmetric or skewed to one side.

Explore the figure as an example, explain why such a description is important:

SOLUTION - 3.6

Figure shows three distributions that look quite different, but all have the same **Mean**, **Variance**, and **Standard Deviation**.

Using **Modality**, we can distinguish between the first plot (**bimodal**) and the last two (**unimodal**).

Using **Skewness**, we can distinguish between the last plot (**right skewed**) and the first two.

While a picture, like a **histogram**, tells a more **complete** story, we can use **Modality** and shape (**Symmetry/Skew**) to characterize basic information about a **distribution**.

```
In [51]: tips.hist(['tip'], bins=15)
    plt.title('Tips')
    plt.ylabel('Frequency')
    plt.xlabel('# tips value')
```

about:srcdoc Página 10 de 17

Out[51]: Text(0.5, 0, '# tips value')


```
In [52]: round(tips.tip.std(),2)
```

Out[52]: 1.38

We will use the **Variance** and **Standard Deviation** to **assess how close** the Sample Mean (π) is to the Population Mean (π).

variable	description
name	County name
state	State where the county resides (also including the District of Columbia)
pop2000	Population in 2000
pop2010	Population in 2010
${\tt fed_spend}$	Federal spending per capita
poverty	Percent of the population in poverty
homeownership	Percent of the population that lives in their own home or lives with the owner
_	(e.g. children living with parents who own the home)
multiunit	Percent of living units that are in multi-unit structures (e.g. apartments)
income	Income per capita
$\mathtt{med_income}$	Median household income for the county, where a household's income equals
	the total income of its occupants who are 15 years or older
smoking_ban	Type of county-wide smoking ban in place at the end of 2011, which takes one
	of three values: none, partial, or comprehensive, where a comprehensive
	ban means smoking was not permitted in restaurants, bars, or workplaces, and
	partial means smoking was banned in at least one of those three locations

```
In [53]: fig = plt.figure(figsize=(10,8))

tips.hist(['total_bill'], bins=15)
plt.title('Total Bill')
plt.ylabel('Frequency')
plt.xlabel('Total Bill Value')
plt.show()
```

about:srcdoc Página 11 de 17

BOX PLOTS

A Box Plot summarizes a dataset using *five statistics* while also plotting unusual observations - **Anomalies or Outliers**.

Quartiles, and the Median

```
In [54]:
           (tips['tip']).describe()
                   244.000000
         count
Out[54]:
                     2.998279
          mean
          std
                     1.383638
         min
                     1.000000
          25%
                     2.000000
          50%
                     2.900000
          75%
                     3.562500
                    10.000000
         max
         Name: tip, dtype: float64
```

The median (6,890), splits the data into the bottom 50% and the top 50%, marked in the dot plot by horizontal dashes and open circles, respectively.

```
In [55]: round((tips['tip']).median(), 3)
Out[55]: 2.9
```

about:srcdoc Página 12 de 17

The first step in building a **box plot** is drawing a dark line denoting the **median**, which **splits** the data in half. **50**% of the data falling below the **median** and other **50**% falling above the **median**.

There are \$50\$ character counts in the **dataset** (an even number) so the data are perfectly split into two groups of \$25\$. We take the **median** in this case to be the **average** of the two observations closest to the 50th percentile:

```
(6,768+7,012)/2 = 6,890$.
```

When there are an odd number of observations, there will be exactly one observation that splits the data into two halves, and in such a case that observation is the **median** (no average needed).

```
In [56]: sns.set(style="whitegrid")
ax = sns.boxplot(x=tips["tip"], color='lightblue', fliersize=5, orient='v
```


<u>Median</u> If the data are **ordered from smallest to largest**, the **median** is the <u>observation</u> right in the **middle**. If there are an even number of observations, there will be two values in the middle, and the **median** is taken as their average.

The second step in building a box plot is drawing a rectangle to represent the middle \$50%\$ of the data. The total length of the box, is called the **interquartile range (IQR)**. It, like the **Standard Deviation**, is a measure of **Variability** in data. The more variable the data, the larger the **Standard Deviation** and **IQR**.

The **two boundaries** of the box are called the **first quartile** (the \$25^{th}\$ percentile), i.e. \$25%\$ of the data fall below this value and the **third quartile** (the \$75^{th}\$ percentile), and these are often labeled \$Q1\$ and \$Q3\$, respectively.

about:srcdoc Página 13 de 17

Interquartile range (IQR) The IQR is the length of the box in a box plot. It is computed as \$IQR = Q3 - Q1\$ where \$Q1\$ and \$Q3\$ are the $$25^{th}\$$ and $$75^{th}\$$ percentiles.

```
In [57]: sns.stripplot(x=tips["tip"], orient='v', color='darkblue')
```

Out[57]: <AxesSubplot:xlabel='tip'>

In [58]: ax = sns.boxplot(y="tip", data=tips, color='lightblue', fliersize=5, orie
ax = sns.stripplot(y=tips["tip"], orient='v', color='darkblue')


```
In [59]: tips.tip
```

about:srcdoc Página 14 de 17

```
1.01
Out[59]: 0
                  1.66
          1
          2
                  3.50
          3
                  3.31
                  3.61
          239
                  5.92
          240
                  2.00
                  2.00
          241
          242
                  1.75
          243
                  3.00
          Name: tip, Length: 244, dtype: float64
```

```
In [60]: sns.set(style="whitegrid")
ax = sns.boxplot(x=tips["tip"], color='lightblue', fliersize=5, orient='v
```


In [61]: sns.swarmplot(x=tips["tip"], orient='v', color='darkblue')

Out[61]: <AxesSubplot:xlabel='tip'>


```
In [62]: ax = sns.boxplot(y="tip", data=tips, color='lightblue', fliersize=5, orie
ax = sns.swarmplot(y="tip", data=tips, color="darkblue", orient="v", size=0
```

about:srcdoc Página 15 de 17

EXERCISE - 3.8

- 1. What percent of the data fall between Q1 and the median?
- 2. What percent is between the median and Q3?

SOLUTION - 3.8

- 1. Since \$Q1\$ and \$Q3\$ capture the middle **50%** of the data and the median splits the data in the middle.
- 2. **25**% of the data fall between \$Q1\$ and the median, and another **25**% falls between the median and \$Q3\$.

Extending out from the box, the whiskers attempt to capture the data outside of the box, however, their reach is never allowed to be more than

\$1.5\hspace{2mm}x\hspace{2mm}IQR\$

They capture everything within this reach. The <u>upper whisker</u> does not extend to the last three points, which is beyond

\$Q3\hspace{2mm}+\hspace{2mm}1.5\hspace{2mm}x\hspace{2mm}IQR\$, and so it extends only to the last point below this limit.

The <u>lower whisker</u> stops at the lowest value, **33**, since there is no additional data to reach; the <u>lower whisker's limit</u> is not shown in the figure because the plot does not extend down to \$Q1\hspace{2mm}-\hspace{2mm}1.5\hspace{2mm}x\hspace{2mm}lQR\$. In a sense, the box is like the body of the box plot and the whiskers are like its arms trying to reach the rest of the data.

EXERCISE - 3.9

estimate the following values for **tip** in the \$tips\$ dataset:

- a).- \$Q1\$,
- b).- \$Q3\$, and
- c).- \$IQR\$

about:srcdoc Página 16 de 17

SOLUTION - 3.9

These visual estimates will vary a little from one person to the next: Q1 = 2, Q3 = 2.9, IQR = Q3 - Q1 = 0.9.

In []:		
TII [].		

about:srcdoc Página 17 de 17