

Eur päisches
Patentamt

Eur pean
Patent Office

Office eur péen
des brevets

PCT/EP 03/09126

F2

REC'D	06 NOV 2003
WIPO	PCT

Bescheinigung

Certificate

Attestation

PCT/EP03/09126

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patent anmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n° ..

02018158.2

Der Präsident des Europäischen Patentamts;
Im Auftrag

For the President of the European Patent Office
Le Président de l'Office européen des brevets
p.o.

R C van Dijk

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

Anmeldung Nr:
Application no.: 02018158.2
Demande no:

Anmelde tag:
Date of filing: 19.08.02
Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Bayer Aktiengesellschaft

51368 Leverkusen
ALLEMAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention:
(Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung.
If no title is shown please refer to the description.
Si aucun titre n'est indiqué se referer à la description.)

Single nucleotide polymorphisms sensitively predicting adverse drug reactions (ADR) and drug efficacy

In Anspruch genommene Priorität(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/
Classification internationale des brevets:

C12Q/

Am Anmelde tag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

Single Nucleotide Polymorphisms sensitively predicting Adverse Drug Reactions (ADR) and Drug Efficacy

Technical Field

5

This invention relates to genetic polymorphisms useful for assessing cardiovascular risks in humans, including, but not limited to, atherosclerosis, ischemia/reperfusion, hypertension, restenosis, arterial inflammation, myocardial infarction, and stroke. In addition it relates to genetic polymorphisms useful for assessing the response to lipid lowering drug therapy. Specifically, the present invention identifies and describes gene variations which are individually present in humans with cardiovascular disease states, relate to humans with normal, or non-cardiovascular disease states, and/or in response to medications relevant to cardiovascular disease. Further, the present invention provides methods for the identification and therapeutic use of compounds as treatments of cardiovascular disease. Moreover, the present invention provides methods for the diagnostic monitoring of patients undergoing clinical evaluation for the treatment of cardiovascular disease, and for monitoring the efficacy of compounds in clinical trials. Still further, the present invention provides methods to use gene variations to predict personal medication schemes omitting adverse drug reactions and allowing an adjustment of the drug dose to achieve maximum benefit for the patient. Additionally, the present invention describes methods for the diagnostic evaluation and prognosis of various cardiovascular diseases, and for the identification of subjects exhibiting a predisposition to such conditions.

10

15

20

25

Background of the Invention

Cardiovascular disease is a major health risk throughout the industrialized world.

30

Cardiovascular diseases include but are not limited by the following disorders of the heart and the vascular system: congestive heart failure, myocardial infarction, atherosclerosis, ischemic diseases of the heart, coronary heart disease, all kinds of

atrial and ventricular arrhythmias, hypertensive vascular diseases and peripheral vascular diseases.

- 5 Heart failure is defined as a pathophysiologic state in which an abnormality of cardiac function is responsible for the failure of the heart to pump blood at a rate commensurate with the requirement of the metabolizing tissue. It includes all forms of pumping failure such as high-output and low-output, acute and chronic, right-sided or left-sided, systolic or diastolic, independent of the underlying cause.
- 10 Myocardial infarction (MI) is generally caused by an abrupt decrease in coronary blood flow that follows a thrombotic occlusion of a coronary artery previously narrowed by arteriosclerosis. MI prophylaxis (primary and secondary prevention) is included as well as the acute treatment of MI and the prevention of complications.
- 15 Ischemic diseases are conditions in which the coronary flow is restricted resulting in an perfusion which is inadequate to meet the myocardial requirement for oxygen. This group of diseases include stable angina, unstable angina and asymptomatic ischemia.
- 20 Arrhythmias include all forms of atrial and ventricular tachyarrhythmias (atrial tachycardia, atrial flutter, atrial fibrillation, atrio-ventricular reentrant tachycardia, preexcitation syndrome, ventricular tachycardia, ventricular flutter, ventricular fibrillation) as well as bradycardic forms of arrhythmias.
- 25 Hypertensive vascular diseases include primary as well as all kinds of secondary arterial hypertension (renal, endocrine, neurogenic, others).
- 30 Peripheral vascular diseases are defined as vascular diseases in which arterial and/or venous flow is reduced resulting in an imbalance between blood supply and tissue oxygen demand. It includes chronic peripheral arterial occlusive disease (PAOD),

acute arterial thrombosis and embolism, inflammatory vascular disorders, Raynaud's phenomenon and venous disorders.

Atherosclerosis, the most prevalent of vascular diseases, is the principal cause of heart attack, stroke, and gangrene of the extremities, and thereby the principal cause of death. Atherosclerosis is a complex disease involving many cell types and molecular factors (for a detailed review, see Ross, 1993, Nature 362: 801-809 and Lusis, A. J., Nature 407, 233-241 (2000)). The process, in normal circumstances a protective response to insults to the endothelium and smooth muscle cells (SMCs) of the wall of the artery, consists of the formation of fibrofatty and fibrous lesions or plaques, preceded and accompanied by inflammation. The advanced lesions of atherosclerosis may occlude the artery concerned, and result from an excessive inflammatory-fibroproliferative response to numerous different forms of insult. For example, shear stresses are thought to be responsible for the frequent occurrence of atherosclerotic plaques in regions of the circulatory system where turbulent blood flow occurs, such as branch points and irregular structures.

The first observable event in the formation of an atherosclerotic plaque occurs when blood-borne monocytes adhere to the vascular endothelial layer and transmigrate through to the sub-endothelial space. Adjacent endothelial cells at the same time produce oxidized low density lipoprotein (LDL). These oxidized LDLs are then taken up in large amounts by the monocytes through scavenger receptors expressed on their surfaces. In contrast to the regulated pathway by which native LDL (nLDL) is taken up by nLDL specific receptors, the scavenger pathway of uptake is not regulated by the monocytes.

These lipid-filled monocytes are called foam cells, and are the major constituent of the fatty streak. Interactions between foam cells and the endothelial and SMCs which surround them lead to a state of chronic local inflammation which can eventually lead to smooth muscle cell proliferation and migration, and the formation of a fibrous

plaque. Such plaques occlude the blood vessel concerned and thus restrict the flow of blood, resulting in ischemia.

Ischemia is a condition characterized by a lack of oxygen supply in tissues of organs due to inadequate perfusion. Such inadequate perfusion can have number of natural causes, including atherosclerotic or restenotic lesions, anemia, or stroke, to name a few. Many medical interventions, such as the interruption of the flow of blood during bypass surgery, for example, also lead to ischemia. In addition to sometimes being caused by diseased cardiovascular tissue, ischemia may sometimes affect cardiovascular tissue, such as in ischemic heart disease. Ischemia may occur in any organ, however, that is suffering a lack of oxygen supply.

The most common cause of ischemia in the heart is atherosclerotic disease of epicardial coronary arteries. By reducing the lumen of these vessels, atherosclerosis causes an absolute decrease in myocardial perfusion in the basal state or limits appropriate increases in perfusion when the demand for flow is augmented. Coronary blood flow can also be limited by arterial thrombi, spasm, and, rarely, coronary emboli, as well as by ostial narrowing due to luetic aortitis. Congenital abnormalities, such as anomalous origin of the left anterior descending coronary artery from the pulmonary artery, may cause myocardial ischemia and infarction in infancy, but this cause is very rare in adults. Myocardial ischemia can also occur if myocardial oxygen demands are abnormally increased, as in severe ventricular hypertrophy due to hypertension or aortic stenosis. The latter can be present with angina that is indistinguishable from that caused by coronary atherosclerosis. A reduction in the oxygen-carrying capacity of the blood, as in extremely severe anemia or in the presence of carboxy-hemoglobin, is a rare cause of myocardial ischemia. Not infrequently, two or more causes of ischemia will coexist, such as an increase in oxygen demand due to left ventricular hypertrophy and a reduction in oxygen supply secondary to coronary atherosclerosis.

The foregoing studies are aimed at defining the role of particular gene variations presumed to be involved in the misleading of normal cellular function leading to cardiovascular disease. However, such approaches cannot identify the full panoply of gene variations that are involved in the disease process.

5

At present, the only available treatments for cardiovascular disorders are pharmaceutical based medications that are not targeted to an individual's actual defect; examples include angiotensin converting enzyme (ACE) inhibitors and diuretics for hypertension, insulin supplementation for non-insulin dependent

10

diabetes mellitus (NIDDM), cholesterol reduction strategies for dyslipidaemia, anti-coagulants, β blockers for cardiovascular disorders and weight reduction strategies for obesity. If targeted treatment strategies were available it might be possible to predict the response to a particular regime of therapy and could markedly increase the effectiveness of such treatment. Although targeted therapy requires accurate

15

diagnostic tests for disease susceptibility, once these tests are developed the opportunity to utilize targeted therapy will become widespread. Such diagnostic tests could initially serve to identify individuals at most risk of hypertension and could allow them to make changes in lifestyle or diet that would serve as preventative measures. The benefits associated by coupling the diagnostic tests with a system of

20

targeted therapy could include the reduction in dosage of administered drugs and thus the amount of unpleasant side effects suffered by an individual. In more severe cases a diagnostic test may suggest that earlier surgical intervention would be useful in preventing a further deterioration in condition.

25

It is an object of the invention to provide genetic diagnosis of predisposition or susceptibility for cardiovascular diseases. Another related object is to provide treatment to reduce or prevent or delay the onset of disease in those predisposed or susceptible to this disease. A further object is to provide means for carrying out this diagnosis.

30

Accordingly, a first aspect of the invention provides a method of diagnosis of disease in an individual, said method comprising determining one, various or all genotypes in said individual of the genes listed in the Examples.

- 5 In another aspect, the invention provides a method of identifying an individual predisposed or susceptible to a disease, said method comprising determining one, various or all genotypes in said individual of the genes listed in the Examples.

..... The invention is of advantage in that it enables diagnosis of a disease or of certain
10 disease states via genetic analysis which can yield useable results before onset of disease symptoms, or before onset of severe symptoms. The invention is further of advantage in that it enables diagnosis of predisposition or susceptibility to a disease or of certain disease states via genetic analysis.

- 15 The invention may also be of use in confirming or corroborating the results of other diagnostic methods. The diagnosis of the invention may thus suitably be used either as an isolated technique or in combination with other methods and apparatus for diagnosis, in which latter case the invention provides a further test on which a diagnosis may be assessed.

20 The present invention stems from using allelic association as a method for genotyping individuals; allowing the investigation of the molecular genetic basis for cardiovascular diseases. In a specific embodiment the invention tests for the polymorphisms in the sequences of the listed genes in the Examples. The invention demonstrates a link between this polymorphisms and predispositions to cardiovascular diseases by showing that allele frequencies significantly differ when individuals with "bad" serum lipids are compared to individuals with "good" serum levels. The meaning of "good and bad" serum lipid levels is defined in Table 1a.

25

- 30 Certain disease states would benefit, that is to say the suffering of the patient may be reduced or prevented or delayed, by administration of treatment or therapy in

advance of disease appearance; this can be more reliably carried out if advance diagnosis of predisposition or susceptibility to disease can be diagnosed.

Pharmacogenomics and adverse drug reactions

5

Adverse drug reactions (ADRs) remain a major clinical problem. A recent meta-analysis suggested that in the USA in 1994, ADRs were responsible for 100 000 deaths, making them between the fourth and sixth commonest cause of death (Lazarou 1998, J. Am. Med. Assoc. 279:1200). Although these figures have been heavily criticized, they emphasize the importance of ADRs. Indeed, there is good evidence that ADRs account for 5% of all hospital admissions and increase the length of stay in hospital by two days at an increased cost of ~\$2500 per patient. ADRs are also one of the commonest causes of drug withdrawal, which has enormous financial implications for the pharmaceutical industry. ADRs, perhaps fortunately, only affect a minority of those taking a particular drug. Although factors that determine susceptibility are unclear in most cases, there is increasing interest in the role of genetic factors. Indeed, the role of inheritable variations in predisposing patients to ADRs has been appreciated since the late 1950s and early 1960s through the discovery of deficiencies in enzymes such as pseudocholinesterase (butyrylcholinesterase) and glucose-6-phosphate dehydrogenase (G6PD). More recently, with the first draft of the human genome just completed, there has been renewed interest in this area with the introduction of terms such as pharmacogenomics and toxicogenomics. Essentially, the aim of pharmacogenomics is to produce personalized medicines, whereby administration of the drug class and dosage is tailored to an individual genotype. Thus, the term pharmacogenomics embraces both efficacy and toxicity.

30

The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors ("statins") specifically inhibit the enzyme HMG-CoA reductase which catalyzes the rate limiting step in cholesterol biosynthesis. These drugs are effective in reducing the primary and secondary risk of coronary artery disease and coronary events, such

as heart attack, in middle-aged and older men and women, in both diabetic and non-diabetic patients, and are often prescribed for patients with hyperlipidemia. Statins used in secondary prevention of coronary artery or heart disease significantly reduce the risk of stroke, total mortality and morbidity and attacks of myocardial ischemia; 5 the use of statins is also associated with improvements in endothelial and fibrinolytic functions and decreased platelet thrombus formation.

The tolerability of these drugs during long term administration is an important issue. Adverse reactions involving skeletal muscle are not uncommon, and sometimes 10 serious adverse reactions involving skeletal muscle such as myopathy and rhabdomyolysis may occur, requiring discontinuation of the drug. In addition an increase in serum creatine kinase (CK) may be a sign of a statin related adverse event. The extend of such adverse events can be read from the extend of the CK level increase (as compared to the upper limit of normal [ULN]).

15 Occasionally arthralgia, alone or in association with myalgia, has been reported. Also an elevation of liver transaminases has been associated with statin administration.

It was shown that the drug response to statin therapy is a class effects, i.e. all known 20 and presumably also all so far undiscovered statins share the same beneficial and harmful effects (Ucar, M. et al., Drug Safety 2000, 22:441). It follows that the discovery of diagnostic tools to predict the drug response to a single statin will also be of aid to guide therapy with other statins.

25 The present invention provides diagnostic tests to predict the patient's individual response to statin therapy. Such responses include, but are not limited by the extent of adverse drug reactions, the level of lipid lowering or the drug's influence on disease states. Those diagnostic tests may predict the response to statin therapy either alone or in combination with another diagnostic test or another drug regimen.

Detailed Description of the Invention

The present invention is based at least in part on the discovery that a specific allele of a polymorphic region of a so called "candidate gene" (as defined below) is associated
5 with CVD or drug response.

For the present invention the following candidate genes were analyzed:

-Genes found to be expressed in cardiac tissue (Hwang et al., Circulation 1997,
96:4146-4203).

10 -Genes from the following metabolic pathways and their regulatory elements:

Lipid metabolism

Numerous studies have shown a connection between serum lipid levels and
15 cardiovascular diseases. Candidate genes falling into this group include but are not limited by genes of the cholesterol pathway, apolipoproteins and their modifying factors.

Coagulation

20 Ischemic diseases of the heart and in particular myocardial infarction may be caused by a thrombotic occlusion. Genes falling into this group include all genes of the coagulation cascade and their regulatory elements.

25 Inflammation

Complications of atherosclerosis are the most common causes of death in Western societies. In broad outline atherosclerosis can be considered to be a form of chronic inflammation resulting from interaction modified lipoproteins, monocyte-derived
30 macrophages, T cells, and the normal cellular elements of the arterial wall. This inflammatory process can ultimately lead to the development of complex lesions, or

plaques, that protrude into the arterial lumen. Finally plaque rupture and thrombosis result in the acute clinical complications of myocardial infarction and stroke (Glass et al., Cell 2001, 104:503-516).

- 5 It follows that all genes related to inflammatory processes, including but not limited by cytokines, cytokine receptors and cell adhesion molecules are candidate genes for CVD.

Glucose and energy metabolism

- 10 As glucose and energy metabolism is interdependent with the metabolism of lipids (see above) also the former pathways contain candidate genes. Energy metabolism in general also relates to obesity, which is an independent risk factor for CVD (Melanson et al., Cardiol Rev 2001 9:202-207). In addition high blood glucose levels
15 are associated with many microvascular and macrovascular complications and may therefore affect an individuals disposition to CVD (Duckworth, Curr Atheroscler Rep 2001, 3:383-391).

Hypertension

- 20 As hypertension is an independent risk factor for CVD, also genes that are involved in the regulation of systolic and diastolic blood pressure affect an individuals risk for CVD (Safar, Curr Opin Cardiol 2000, 15:258-263). Interestingly hypertension and diabetes (see above) appear to be interdependent, since hypertension is approximately twice as frequent in patients with diabetes compared with patients without the disease. Conversely, recent data suggest that hypertensive persons are more predisposed to the development of diabetes than are normotensive persons
25 (Sowers et al., Hypertension 2001, 37:1053-1059).

Genes related to drug response

Those genes include metabolic pathways involved in the absorption, distribution, metabolism, excretion and toxicity (ADMET) of drugs. Prominent members of this group are the cytochrome P450 proteins which catalyze many reactions involved in drug metabolism.

Unclassified genes

As stated above, the mechanisms that lead to cardiovascular diseases or define the patient's individual response to drugs are not completely elucidated. Hence also candidate genes were analysed, which could not be assigned to the above listed categories. The present invention is based at least in part on the discovery of polymorphisms, that lie in genomic regions of unknown physiological function.

Results

After conducting an association study, we surprisingly found polymorphic sites in a number of candidate genes which show a strong correlation with the following phenotypes of the patients analysed: "Healthy" as used herein refers to individuals that neither suffer from existing CVD, nor exhibit an increased risk for CVD through their serum lipid level profile. "CVD prone" as used herein refers to individuals with existing CVD and/or a serum lipid profile that confers a high risk to get CVD (see Table 1a for definitions of healthy and CVD prone serum lipid levels). "High responder" as used herein refers to patients who benefit from relatively small amounts of a given drug. "Low responder" as used herein refers to patients who need relatively high doses in order to obtain benefit from the medication. "Tolerant patient" refers to individuals who can tolerate high doses of a medicament without exhibiting adverse drug reactions. "ADR patient" as used herein refers to individuals who suffer from ADR or show clinical symptoms (like creatine kinase elevation in

blood) even after receiving only minor doses of a medicament (see Table 1b for a detailed definition of drug response phenotypes).

5 Polymorphic sites in candidate genes that were found to be significantly associated with either of the above mentioned phenotypes will be referred to as "phenotype associated SNPs" (PA SNPs). The respective genomic loci that harbour PA SNPs will be referred to as "phenotype associated genes" (PA genes), irrespective of the actual function of this gene locus.

10 In particular we surprisingly found PA SNPs associated with CVD, drug efficacy, (EFF) or adverse drug reactions (ADR) in the following genes.

ABCB11: ATP-binding cassette, sub-family B (MDR/TAP), member 11

15 The membrane-associated protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the MDR/TAP subfamily. Members of

20 the MDR/TAP subfamily are involved in multidrug resistance. The protein encoded by this gene is the major canalicular bile salt export pump in man. Mutations in this gene cause a form of progressive familial intrahepatic cholestases which are a group of inherited disorders with severe cholestatic liver disease from early infancy.

ABCB4: ATP-binding cassette, sub-family B (MDR/TAP), member 4

The membrane-associated protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. ABC genes are

30 divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the MDR/TAP subfamily. Members of

the MDR/TAP subfamily are involved in multidrug resistance as well as antigen presentation. This gene encodes a full transporter and member of the p-glycoprotein family of membrane proteins with phosphatidylcholine as its substrate. The function of this protein has not yet been determined; however, it may involve transport of phospholipids from liver hepatocytes into bile. Alternative splicing of this gene results in several products of undetermined function.

ABCC1: ATP-binding cassette, sub-family C (CFTR/MRP), member 1

The protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This full transporter is a member of the MRP subfamily which is involved in multi-drug resistance. This protein functions as a multispecific organic anion transporter, with oxidized glutathione, cysteinyl leukotrienes, and activated aflatoxin B1 as substrates. This protein also transports glucuronides and sulfate conjugates of steroid hormones and bile salts. Alternative splicing by exon deletion results in several splice variants but maintains the original open reading frame in all forms.

20

ACTB mRNA for mutant beta-actin

Beta actin is one of six different actin isoforms which have been identified. ACTB is one of the two nonmuscle cytoskeletal actins. Actins are highly conserved proteins that are involved in cell motility, structure and integrity. Alpha actins are a major constituent of the contractile apparatus.

ACTIN, ALPHA SKELETAL MUSCLE (ALPHA-ACTIN 1).

Actin alpha 1 which is expressed in skeletal muscle is one of six different actin isoforms which have been identified. Actins are highly conserved proteins that are

involved in cell motility, structure and integrity. Alpha actins are a major constituent of the contractile apparatus.

ADCYAP1: adenylate cyclase activating polypeptide 1 (pituitary)

5

This gene encodes adenylate cyclase activating polypeptide 1. Mediated by adenylate cyclase activating polypeptide 1 receptors, this polypeptide stimulates adenylate cyclase and subsequently increases the cAMP level in target cells. Adenylate cyclase activating polypeptide 1 is not only a hypophysiotropic hormone, but also functions 10 as a neurotransmitter and neuromodulator. In addition, it plays a role in paracrine and autocrine regulation of certain types of cells. This gene is composed of five exons. Exons 1 and 2 encode the 5' UTR and signal peptide, respectively; exon 4 encodes an adenylate cyclase activating polypeptide 1-related peptide; and exon 5 encodes the mature peptide and 3' UTR. This gene encodes three different mature peptides, 15 including two isotypes: a shorter form and a longer form.

ADRB3: adrenergic, beta-3-, receptor

The ADRB3 gene product, beta-3-adrenergic receptor, is located mainly in adipose 20 tissue and is involved in the regulation of lipolysis and thermogenesis. Beta adrenergic receptors are involved in the epinephrine and norepinephrine-induced activation of adenylate cyclase through the action of G proteins.

AGL: amylo-1, 6-glucosidase, 4-alpha-glucanotransferase (glycogen debranching enzyme, glycogen storage disease type III)

Glycogen debranching enzyme is involved in glycogen degradation and has two independent catalytic activities: a 4-alpha-glucotransferase activity (EC 2.4.1.25) and a amylo-1,6-glucosidase activity (EC 3.4.1.33). Both activities occur at different sites 30 on the single polypeptide chain. Mutations in this gene cause glycogen storage disease. A wide range of clinical and enzymatic variability occurs in glycogen

debrancher deficiency, some of which may be due to tissue-specific alternative splicing. Six splice variants that differ in the 5' end have been identified in liver and muscle tissue. Variants 1, 5, and 6 are present in both liver and muscle, whereas variants 2, 3, and 4 occur in muscle. Variants 1 through 4 encode identical proteins (isoform 1) that include 27 N-terminal amino acids not found in splice variants 5 and 6. Variants 5 and 6 encode different amino-terminal ends of 10 and 11 amino acids in protein isoforms 2 and 3, respectively, with the remainder of the peptide identical to that of isoforms 1..

10 **AKAP1: A kinase (PRKA) anchor protein 1**

Anchors cAMP-dependent protein kinase near its physiological substrates, interacts with both the type I and type II regulatory subunits.

15 **Angiotensinogen gene**

The protein encoded by this gene, pre-angiotensinogen or angiotensinogen precursor, is expressed in the liver and is cleaved by the enzyme renin in response to lowered blood pressure. The resulting product, angiotensin I is then cleaved by angiotensin converting enzyme (ACE) to generate the physiologically active enzyme angiotensin II. The protein is involved in maintaining blood pressure and in the pathogenesis of essential hypertension and preeclampsia.

25 **ANXA6: annexin A6**

Annexin VI belongs to a family of calcium-dependent membrane and phospholipid binding proteins. Although their functions are still not clearly defined, several members of the annexin family have been implicated in membrane-related events along exocytotic and endocytotic pathways. The annexin VI gene is approximately 60 kbp long and contains 26 exons. It encodes a protein of about 68 kDa that consists of eight 68-amino acid repeats separated by linking sequences of variable lengths. It

is highly similar to human annexins I and II sequences, each of which contain four such repeats. Exon 21 of annexin VI is alternatively spliced, giving rise to two isoforms that differ by a 6-amino acid insertion at the start of the seventh repeat. Annexin VI has been implicated in mediating the endosome aggregation and vesicle fusion in secreting epithelia during exocytosis.

AP2B1: adaptor-related protein complex 2, beta 1 subunit

The beta adaptin subunit is part of the clathrin coat assembly complex which links clathrin to receptors in coated pits and vesicles. These vesicles are involved in endocytosis and Golgi processing. The beta 1 subunit is one of the assembly proteins which binds to clathrin and initiates coat formation.

APOA1: apolipoprotein A-I

APOA1 promotes cholesterol efflux from tissues to the liver for excretion. Apolipoprotein A-I is the major protein component of high density lipoprotein (HDL) in the plasma. Synthesized in the liver and small intestine, it consists of two identical chains of 77 amino acids; an 18-amino acid signal peptide is removed co-translationally and a 6-amino acid propeptide is cleaved post-translationally. Variation in the latter step, in addition to modifications leading to so-called isoforms, is responsible for some of the polymorphism observed. APOA1 is a cofactor for lecithin cholesterol acyltransferase (LCAT) which is responsible for the formation of most plasma cholesteryl esters. The APOA1, APOC3 and APOA4 genes are closely linked in both rat and human genomes. The A-I and A-IV genes are transcribed from the same strand, while the C-III gene is transcribed convergently in relation to A-I. Defects in the apolipoprotein A-1 gene are associated with HDL deficiency and Tangier disease.

APOA4: ap lip protein A-IV

Apolipoprotein (apo) A-IV gene contains 3 exons separated by two introns. A sequence polymorphism has been identified in the 3'UTR of the third exon. The primary translation product is a 396-residue preprotein which after proteolytic processing is secreted its primary site of synthesis, the intestine, in association with chylomicron particles. Although its precise function is not known, apo A-IV is a potent activator of lecithin-cholesterol acyltransferase in vitro.

10 APOB: apolipoprotein B

Apolipoprotein B (ApoB) is the main apolipoprotein of chylomicrons and low density lipoproteins (LDL). The protein occurs in the plasma in 2 main isoforms, apoB-48 and apoB-100. The first is synthesized exclusively by the gut, the second by the liver. The intestinal (B-48) and hepatic (B-100) forms of apoB are coded by a single gene and by a single mRNA transcript larger than 16 kb. The 2 proteins share a common amino terminal sequence. In the ApoB-100 isoform the precursor has 4,563 amino acids, and the mature apoB-100 has 4,536 amino acid residues. Mature, circulating B-48 is homologous over its entire length (estimated to be between 2,130 and 2,144 amino acid residues) with the amino-terminal portion of B-100 and contains no sequence from the carboxyl end of B-100. From structural studies, it is thought that apoB-48 represents the amino-terminal 47% of apoB-100 and that the carboxyl terminus of apoB-48 is in the vicinity of residue 2151 of apoB-100. Apolipoprotein B-48 may be the product of an intestinal mRNA with an in-frame UAA stop codon resulting from a C-to-U change in the codon CAA encoding Gln(2153) in apoB-100 mRNA. Since only the sequence that codes B-100 is present in genomic DNA, this presents the possibility of an organ-specific introduction of a stop codon to an mRNA and the change from CAA to UAA of codon 2153 of the message as a unique RNA editing process..

APOD: apolipoprotein D

Apolipoprotein D (Apo-D) is a component of high density lipoprotein that has no marked similarity to other apolipoprotein sequences. It has a high degree of homology to plasma retinol-binding protein and other members of the alpha 2 microglobulin protein superfamily of carrier proteins, also known as lipocalins. It is a glycoprotein of estimated molecular weight 33 KDa. Apo-D is closely associated with the enzyme lecithin:cholesterol acyltransferase - an enzyme involved in lipoprotein metabolism.

Apolipoprotein B

Apolipoprotein B (ApoB) is the main apolipoprotein of chylomicrons and low density lipoproteins (LDL). The protein occurs in the plasma in 2 main isoforms, apoB-48 and apoB-100. The first is synthesized exclusively by the gut, the second by the liver. The intestinal (B-48) and hepatic (B-100) forms of apoB are coded by a single gene and by a single mRNA transcript larger than 16 kb. The 2 proteins share a common amino terminal sequence. In the ApoB-100 isoform the precursor has 4,563 amino acids, and the mature apoB-100 has 4,536 amino acid residues. Mature, circulating B-48 is homologous over its entire length (estimated to be between 2,130 and 2,144 amino acid residues) with the amino-terminal portion of B-100 and contains no sequence from the carboxyl end of B-100. From structural studies, it is thought that apoB-48 represents the amino-terminal 47% of apoB-100 and that the carboxyl terminus of apoB-48 is in the vicinity of residue 2151 of apoB-100. Apolipoprotein B-48 may be the product of an intestinal mRNA with an in-frame UAA stop codon resulting from a C-to-U change in the codon CAA encoding Gln(2153) in apoB-100 mRNA. Since only the sequence that codes B-100 is present in genomic DNA, this presents the possibility of an organ-specific introduction of a stop codon to an mRNA and the change from CAA to UAA of codon 2153 of the message as a unique RNA editing process..

APXL: apical protein-like (Xenopus laevis)

The protein encoded by this gene shares significant similarities with the apical protein from *Xenopus laevis* which is implicated in amiloride-sensitive sodium channel activity. This gene is a strong candidate gene for ocular albinism type 1 syndrome.

ARF4: ADP-ribosylation factor 4

10 ADP-ribosylation factor 4 (ARF4) is a member of the human ARF gene family. These genes encode small guanine nucleotide-binding proteins that stimulate the ADP-ribosyltransferase activity of cholera toxin and play a role in vesicular trafficking and as activators of phospholipase D. The gene products include 6 ARF proteins and 11 ARF-like proteins and constitute 1 family of the RAS superfamily.

15 The ARF proteins are categorized as class I (ARF1, ARF2, and ARF3), class II (ARF4 and ARF5) and class III (ARF6). The members of each class share a common gene organization. The ARF4 gene spans approximately 12kb and contains six exons and five introns. The ARF4 is the most divergent member of the human ARFs. Conflicting Map positions at 3p14 or 3p21 have been reported for this gene.

20

ATP1A2: ATPase, Na⁺/K⁺ transporting, alpha 2 (+) polypeptide

Alpha 2 subunit of the sodium- and potassium-transporting ATPase; required for Na⁺ and K⁺ gradient maintenance across plasma membrane.

25

ATP1B1: ATPase, Na⁺/K⁺ transporting, beta 1 polypeptide

Beta 1 subunit of Na⁺/K⁺-ATPase.

ATP1B3: ATPase, Na⁺/K⁺ transporting, beta 3 polypeptide

30 Beta 3 subunit of the Na⁺/K⁺-ATPase.

ATP2A2: ATPase, Ca++ transporting, cardiac muscle, slow twitch 2

Slow twitch cardiac muscle Ca²⁺-ATPase; pumps calcium, may have a role in calcium signaling pathways.

- 5 **ATP5G1: ATP synthase, H⁺ transporting, mitochondrial F0 complex, subunit c (subunit 9), isoform 1**

Isoform 1 (P1) of subunit c, H⁺-translocating subunit of F0 ATP synthase; catalyzes the synthesis of ATP during oxidative phosphorylation.

- 10 **ATP6V1E: ATPase, H⁺ transporting, lysosomal 31kD, V1 subunit E**

This gene encodes a component of vacuolar ATPase (V-ATPase), a multisubunit enzyme that mediates acidification of eukaryotic intracellular organelles. V-ATPase dependent organelle acidification is necessary for such intracellular processes as protein sorting, zymogen activation, and receptor-mediated endocytosis. V-ATPase is comprised of a cytosolic V1 domain and a transmembrane V0 domain. The V1 domain consists of a hexamer of three A and three B subunits plus the C, D, and E subunits. It contains the ATP catalytic site. The encoded protein is known as the E subunit and is found ubiquitously. Pseudogenes for this gene have been found in the genome.

ATPase, Ca++ transporting, cardiac muscle, fast twitch 1

- 25 Fast-twitch skeletal muscle sarcoplasmic reticulum Ca²⁺-ATPase; pumps calcium.

AXIN1: axin

Strongly similar to murine Axin; may regulate embryonic axis formation.

BMPR1A: bone morphogenetic protein receptor, type IA

The bone morphogenetic protein (BMP) receptors are a family of transmembrane serine/threonine kinases that include the type I receptors BMPR1A and BMPR1B and the type II receptor BMPR2. These receptors are also closely related to the activin receptors, ACVR1 and ACVR2. The ligands of these receptors are members of the TGF-beta superfamily. TGF-betas and activins transduce their signals through the formation of heteromeric complexes with 2 different types of serine (threonine) kinase receptors: type I receptors of about 50-55 kD and type II receptors of about 70-80 kD. Type II receptors bind ligands in the absence of type I receptors, but they require their respective type I receptors for signaling, whereas type I receptors require their respective type II receptors for ligand binding.

BRD3: bromodomain containing 3

15

This gene was identified based on its homology to the gene encoding the RING3 protein, a serine/threonine kinase. The gene localizes to 9q34, a region which contains several major histocompatibility complex (MHC) genes. The function of the encoded protein is not known.

20

CACNA1C: calcium channel, voltage-dependent, L type, alpha 1C subunit

Alpha 1C subunit of the voltage-dependent calcium channel; channel is of the L type and is expressed in the heart.

25

CALB2: calbindin 2, (29kD, calretinin)

Calbindin 2 (calretinin), closely related to calbindin 1, is an intracellular calcium-binding protein belonging to the troponin C superfamily. Calbindin 1 is known to be involved in the vitamin-D-dependent calcium absorption through intestinal and renal epithelia, while the function of neuronal calbindin 1 and calbindin 2 is poorly

30

understood. The sequence of the calbindin 2 cDNA reveals an open reading frame of 271 codons coding for a protein of 31,520 Da, and shares 58% identical residues with human calbindin 1. Calbindin 2 contains five presumably active and one presumably inactive calcium-binding domains. Comparison with the partial sequences available for chick and guinea pig calbindin 2 reveals that the protein is highly conserved in evolution. The calbindin 2 message was detected in the brain, while absent from heart muscle, kidney, liver, lung, spleen, stomach and thyroid gland. There are two additional forms of alternatively spliced calbindin 2 mRNAs encoding C-terminally truncated proteins. Exon 7 can splice to exon 9, resulting in a frame shift and a translational stop at the second codon of exon 9, and encoding calretinin-20k. Exon 7 can also splice to exon 10, resulting in a frame shift and a translational stop at codon 15 of exon 10, and encoding calretinin-22k. The truncated proteins are able to bind calcium.

15 **CALCIUM-TRANSPORTING ATPASE PLASMA MEMBRANE, ISOFORMS
3A/3B (EC 3.6.1.38) (CALCIUM PUMP) (PMCA3).**

Plasma membrane Ca²⁺-ATPase 3; pumps calcium.

20 **CALM3: calmodulin 3 (phosphorylase kinase, delta)**

Calmodulin 3; binds calcium.

CAV1: caveolin 1, caveolae protein, 22kD

25 The scaffolding protein encoded by this gene is the main component of the caveolae plasma membranes found in most cell types. The protein links integrin subunits to the tyrosine kinase FYN, an initiating step in coupling integrins to the Ras-ERK pathway and promoting cell cycle progression. The gene is a tumor suppressor gene candidate and a negative regulator of the Ras-p42/44 MAP kinase cascade. CAV1 and CAV2 are located next to each other on chromosome 7 and express colocalizing

proteins that form a stable hetero-oligomeric complex. By using alternative initiation codons in the same reading frame, two isoforms (alpha and beta) are encoded by a single transcript from this gene.

5 **CAV3: caveolin 3**

This gene encodes a caveolin family member, which functions as a component of the caveolae plasma membranes found in most cell types. Caveolin proteins are proposed to be scaffolding proteins for organizing and concentrating certain caveolin-interacting molecules. Mutations identified in this gene lead to interference with protein oligomerization or intra-cellular routing, disrupting caveolae formation and resulting in Limb-Girdle muscular dystrophy type-1C (LGMD-1C), hyperCKemia or rippling muscle disease (RMD). Alternative splicing has been identified for this locus, with inclusion or exclusion of a differentially spliced intron. In addition, transcripts utilize multiple polyA sites and contain two potential translation initiation sites.

CCR2: chemokine (C-C motif) receptor 2

20 This gene encodes two isoforms of a receptor for monocyte chemoattractant protein-1, a chemokine which specifically mediates monocyte chemotaxis. Monocyte chemoattractant protein-1 is involved in monocyte infiltration in inflammatory diseases such as rheumatoid arthritis as well as in the inflammatory response against tumors. The receptors encoded by this gene mediate agonist-dependent calcium mobilization and inhibition of adenylyl cyclase. This gene is located in the chemokine receptor gene cluster region. Two alternatively spliced transcript variants are expressed by the gene.

CDH1: cadherin 1, type 1, E-cadherin (epithelial)

This gene is a classical cadherin from the cadherin superfamily. The encoded protein is a calcium dependent cell-cell adhesion glycoprotein comprised of five extracellular cadherin repeats, a transmembrane region and a highly conserved cytoplasmic tail.

5 Mutations in this gene are correlated with gastric, breast, colorectal, thyroid and ovarian cancer. Loss of function is thought to contribute to progression in cancer by increasing proliferation, invasion, and/or metastasis. The ectodomain of this protein mediates bacterial adhesion to mammalian cells and the cytoplasmic domain is required for internalization. Identified transcript variants arise from mutation at 10 consensus splice sites.

CDH11: cadherin 11, type 2, OB-cadherin (osteoblast)

15 This gene encodes a type II classical cadherin from the cadherin superfamily, integral membrane proteins that mediate calcium-dependent cell-cell adhesion. Mature cadherin proteins are composed of a large N-terminal extracellular domain, a single membrane-spanning domain, and a small, highly conserved C-terminal cytoplasmic domain. Type II (atypical) cadherins are defined based on their lack of a HAV cell adhesion recognition sequence specific to type I cadherins. Expression of this 20 particular cadherin in osteoblastic cell lines, and its upregulation during differentiation, suggests a specific function in bone development and maintenance. Two splice variants have been identified, one of which encodes an isoform with a truncated cytoplasmic domain.

CDH13: cadherin 13, H-cadherin (heart)

This gene is a member of the cadherin superfamily. The encoded protein is a calcium dependent cell-cell adhesion glycoprotein comprised of five extracellular cadherin repeats, a transmembrane region but, unlike the typical cadherin superfamily member, lacks the highly conserved cytoplasmic region. This particular cadherin is a

30

putative mediator of cell-cell interaction in the heart and may act as a negative regulator of neural cell growth. The gene locus is hypermethylated or deleted in breast, ovarian and lung cancers. Two major mRNA transcripts encoding identical proteins are found, products of alternative polyadenylation sites.

5

CENPC1: centromere protein C 1

Centromere protein C 1 is a centromere autoantigen and a component of the inner kinetochore plate. The protein is required for maintaining proper kinetochore size
10 and a timely transition to anaphase. A putative pseudogene exists on chromosome 12.

Cholesteryl ester transfer protein (CETP)

Cholesteryl ester transfer protein (CETP) transfers cholesteryl esters between
15 lipoproteins. CETP may effect susceptibility to atherosclerosis.

CLCN4: chloride channel 4

The CLCN family of voltage-dependent chloride channel genes comprises nine
20 members (CLCN1-7, Ka and Kb) which demonstrate quite diverse functional characteristics while sharing significant sequence homology. Chloride channel 4 has an evolutionary conserved CpG island and is conserved in both mouse and hamster. This gene is mapped in close proximity to APXL (Apical protein Xenopus laevis-like) and OA1 (Ocular albinism type I), which are both located on the human X
25 chromosome at band p22.3. The physiological role of chloride channel 4 remains unknown but may contribute to the pathogenesis of neuronal disorders.

CLCNKA: chloride channel Ka

30 Putative chloride channel; member of the CLC family of voltage-gated chloride channels.

COL6A3: collagen, type VI, alpha 3

This gene encodes the alpha 3 chain, one of the three alpha chains of type VI collagen, a beaded filament collagen found in most connective tissues. The alpha 3 chain of type VI collagen is much larger than the alpha 1 and 2 chains. This difference in size is largely due to an increase in the number of subdomains, similar to von Willebrand Factor type A domains, found in the amino terminal globular domain of all the alpha chains. These domains have been shown to bind extracellular matrix proteins, an interaction that explains the importance of this collagen in organizing matrix components. Mutations in the type VI collagen genes are associated with Bethlem myopathy. In addition to the full length transcript, four transcript variants have been identified that encode proteins with N-terminal globular domains of varying sizes.

COL7A1: collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)

This gene encodes the alpha chain of type VII collagen. The type VII collagen fibril, composed of three identical alpha collagen chains, is restricted to the basement zone beneath stratified squamous epithelia. It functions as an anchoring fibril between the external epithelia and the underlying stroma. Mutations in this gene are associated with all forms of dystrophic epidermolysis bullosa. In the absence of mutations, however, an acquired form of this disease can result from an autoimmune response made to type VII collagen.

COL9A3: collagen, type IX, alpha 3

This gene encodes one of the three alpha chains of type IX collagen, the major collagen component of hyaline cartilage. Type IX collagen, a heterotrimeric

molecule, is usually found in tissues containing type II collagen, a fibrillar collagen. Mutations in this gene are associated with multiple epiphyseal dysplasia.

COMT: catechol-O-methyltransferase

5

Catechol-O-methyltransferase catalyzes the transfer of a methyl group from S-adenosylmethionine to catecholamines, including the neurotransmitters dopamine, epinephrine, and norepinephrine. This O-methylation results in one of the major degradative pathways of the catecholamine transmitters. In addition to its role in the metabolism of endogenous substances, COMT is important in the metabolism of catechol drugs used in the treatment of hypertension, asthma, and Parkinson disease. COMT is found in two forms in tissues, a soluble form (S-COMT) and a membrane-bound form (MB-COMT). The differences between S-COMT and MB-COMT reside within the N-termini. The transcript variants are formed through the use of alternative translation initiation sites and promoters.

10

15

COX10: COX10 homolog, cytochrome c oxidase assembly protein, heme A:farnesyltransferase (yeast)

20

Cytochrome c oxidase (COX), the terminal component of the mitochondrial respiratory chain, catalyzes the electron transfer from reduced cytochrome c to oxygen. This component is a heteromeric complex consisting of 3 catalytic subunits encoded by mitochondrial genes and multiple structural subunits encoded by nuclear genes. The mitochondrially-encoded subunits function in electron transfer, and the nuclear-encoded subunits may function in the regulation and assembly of the complex. This nuclear gene encodes heme A:farnesyltransferase, which is not a structural subunit but required for the expression of functional COX and functions in the maturation of the heme A prosthetic group of COX. This protein is predicted to contain 7-9 transmembrane domains localized in the mitochondrial inner membrane. A gene mutation, which results in the substitution of a lysine for an asparagine (N204K), is identified to be responsible for cytochrome c oxidase deficiency. In

25

30

addition, this gene is disrupted in patients with CMT1A (Charcot-Marie-Tooth type 1A) duplication and with HNPP (hereditary neuropathy with liability to pressure palsies) deletion.

5 **CPB2: carboxypeptidase B2 (plasma, carboxypeptidase U)**

Carboxypeptidases are enzymes that hydrolyze C-terminal peptide bonds. The carboxypeptidase family includes metallo-, serine, and cysteine carboxypeptidases. According to their substrate specificity, these enzymes are referred to as carboxypeptidase A (cleaving aliphatic residues) or carboxypeptidase B (cleaving basic amino residues). The protein encoded by this gene is activated by trypsin and acts on carboxypeptidase B substrates. After thrombin activation, the mature protein downregulates fibrinolysis. Polymorphisms have been described for this gene and its promoter region. Available sequence data analyses indicate splice variants that encode different isoforms.

CPO: coproporphyrinogen oxidase (coproporphyrin, harderoporphyrin)

20 Coproporphyrinogen; catalyzes oxidative decarboxylation in sixth step of heme biosynthesis.

CRYAB: crystallin, alpha B

Crystallins are separated into two classes: taxon-specific, or enzyme, and ubiquitous. 25 The latter class constitutes the major proteins of vertebrate eye lens and maintains the transparency and refractive index of the lens. Since lens central fiber cells lose their nuclei during development, these crystallins are made and then retained throughout life, making them extremely stable proteins. Mammalian lens crystallins are divided into alpha, beta, and gamma families; beta and gamma crystallins are also considered as a superfamily. Alpha and beta families are further divided into acidic and basic groups. Seven protein regions exist in crystallins: four homologous motifs, a

connecting peptide, and N- and C-terminal extensions. Alpha crystallins are composed of two gene products: alpha-A and alpha-B, for acidic and basic, respectively. Alpha crystallins can be induced by heat shock and are members of the small heat shock protein (sHSP also known as the HSP20) family. They act as molecular chaperones although they do not renature proteins and release them in the fashion of a true chaperone; instead they hold them in large soluble aggregates. Post-translational modifications decrease the ability to chaperone. These heterogeneous aggregates consist of 30-40 subunits; the alpha-A and alpha-B subunits have a 3:1 ratio, respectively. Two additional functions of alpha crystallins are an autokinase activity and participation in the intracellular architecture. Alpha-A and alpha-B gene products are differentially expressed; alpha-A is preferentially restricted to the lens and alpha-B is expressed widely in many tissues and organs. Elevated expression of alpha-B crystallin occurs in many neurological diseases; a missense mutation cosegregated in a family with a desmin-related myopathy..

15

CSF2RB: colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage)

20 CSF2RB is a common beta chain of the high affinity receptor for IL-3, IL-5 and CSF. Defective CSF2RB has been reported to be associated with protein alveolar proteinosis.

CUBN: cubilin (intrinsic factor-cobalamin receptor)

25 Cubilin (CUBN) acts as a receptor for intrinsic factor-vitamin B12 complexes. The role of receptor is supported by the presence of 27 CUB domains. Cubilin is located within the epithelium of intestine and kidney. Mutations in CUBN may play a role in autosomal recessive megaloblastic anemia.

30 **CXorf6: chromosome X open reading frame 6**

CYP17: cytochrome P450, subfamily XVII (steroid 17-alpha-hydroxylase), adrenal hyperplasia

This gene encodes a member of the cytochrome P450 superfamily of enzymes. The

5 cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids.

This protein localizes to the endoplasmic reticulum. It has both 17alpha-hydroxylase and 17,20-lyase activities and is a key enzyme in the steroidogenic pathway that produces progestins, mineralocorticoids, glucocorticoids, androgens, and estrogens.

10 Mutations in this gene are associated with isolated steroid-17 alpha-hydroxylase deficiency, 17-alpha-hydroxylase/17,20-lyase deficiency, pseudohermaphroditism, and adrenal hyperplasia.

**CYP2C8: cytochrome P450, subfamily IIIC (mephenytoin 4-hydroxylase),
15 polypeptide 8**

This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids.

20 This protein localizes to the endoplasmic reticulum and its expression is induced by phenobarbital. The enzyme is known to metabolize many xenobiotics, including the anticonvulsive drug mephenytoin, benzo(a)pyrene, 7-ethoxycoumarin, and the anti-cancer drug taxol. Two transcript variants for this gene have been described; it is thought that the longer form does not encode an active cytochrome P450 since its protein product lacks the heme binding site. This gene is located within a cluster of 25 cytochrome P450 genes on chromosome 10q24.

CYP2E: cytochrome P450, subfamily IIIE (ethanol-inducible)

30 This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions

involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and is induced by ethanol, the diabetic state, and starvation. The enzyme metabolizes both endogenous substrates, such as ethanol, acetone, and acetal, as well as exogenous substrates including benzene, carbon tetrachloride, ethylene glycol, and nitrosamines which are premutagens found in cigarette smoke. Due to its many substrates, this enzyme may be involved in such varied processes as gluconeogenesis, hepatic cirrhosis, diabetes, and cancer.

10 **CYP3A4**

This gene, CYP3A4, encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and its expression is induced by glucocorticoids and some pharmacological agents. This enzyme is involved in the metabolism of approximately half the drugs which are used today, including acetaminophen, codeine, cyclosporin A, diazepam and erythromycin. The enzyme also metabolizes some steroids and carcinogens. This gene is part of a cluster of cytochrome P450 genes on chromosome 7q21.1. Previously another CYP3A gene, CYP3A3, was thought to exist; however, it is now thought that this sequence represents a transcript variant of CYP3A4.

25 **CYP4F8: cytochrome P450, subfamily IVF, polypeptide 8**

This gene, CYP4F8, encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and functions as a 19-hydroxylase of prostaglandins in seminal vesicles. This gene is part of a cluster of

cytochrome P450 genes on chromosome 19. Another member of this family, CYP4F3, is approximately 18 kb away.

5 CYP8B1: cytochrome P450, subfamily VIIIB (sterol 12-alpha-hydroxylase), polypeptide 1

This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids.

10 This endoplasmic reticulum membrane protein catalyzes the conversion of 7 alpha-hydroxy-4-cholesten-3-one into 7-alpha,12-alpha-dihydroxy-4-cholesten-3-one. The balance between these two steroids determines the relative amounts of cholic acid and chenodeoxycholic acid both of which are secreted in the bile and affect the solubility of cholesterol. This gene is unique among the cytochrome P450 genes in

15 that it is intronless.

DBI: diazepam binding inhibitor (GABA receptor modulator, acyl-Coenzyme A binding protein)

20 Diazepam binding inhibitor (acyl-CoA-binding protein); binds and induces medium-chain acyl-CoA ester synthesis.

DEF A6: defensin, alpha 6, Paneth cell-specific

25 Defensins are a family of microbicidal and cytotoxic peptides thought to be involved in host defense. They are abundant in the granules of neutrophils and also found in the epithelia of mucosal surfaces such as those of the intestine, respiratory tract, urinary tract, and vagina. Members of the defensin family are highly similar in protein sequence and distinguished by a conserved cysteine motif. Several alpha defensin genes appear to be clustered on chromosome 8. The protein encoded by this

30

gene, defensin, alpha 6, is highly expressed in the secretory granules of Paneth cells of the small intestine, and likely plays a role in host defense of human bowel.

DEK: DEK oncogene (DNA binding)

5

Site-specific DNA binding protein; involved in transcriptional regulation and signal transduction.

DFNA5: deafness, autosomal dominant 5

10

Hearing impairment is a heterogeneous condition with over 40 loci described. The protein encoded by this gene is expressed in fetal cochlea, however, its function is not known. Nonsyndromic hearing impairment is associated with a mutation in this gene.

15

DGKD: diacylglycerol kinase, delta (130kD)

Diacylglycerol kinase delta; phosphorylates the arachidonoyl type of diacylglycerol; contains a pleckstrin homology domain and an EPH domain.

20

DOCK1: dedicator of cyto-kinesis 1

25

Dedicator of cyto-kinesis 1 binds to the SH3 domain of CRK protein. It may regulate cell surface extension and may have a role in the cell surface extension of an engulfing cell around a dying cell during apoptosis.

ECE1: endothelin converting enzyme 1

30

Endothelin converting enzyme; metalloprotease that regulates a peptide involved in vasoconstriction.

E-Selectin (CD62E)

The endothelial leukocyte adhesion molecule-1 is expressed by cytokine-stimulated endothelial cells. It is thought to be responsible for the accumulation of blood leukocytes at sites of inflammation by mediating the adhesion of cells to the vascular lining. It exhibits structural features such as the presence of lectin- and EGF-like domains followed by short consensus repeat (SCR) domains that contain 6 conserved cysteine residues. These proteins are part of the selectin family of cell adhesion molecules. This gene is present in single copy in the human genome and contains 14 exons spanning about 13 kb of DNA. Adhesion molecules participate in the interaction between leukocytes and the endothelium and appear to be involved in the pathogenesis of atherosclerosis.

ESR1: estrogen receptor 1

15 Estrogen receptor; nuclear receptor transcription factor activated by ligand-binding, involved in hormone-mediated inhibition of gene expression.

ESR2: estrogen receptor 2 (ER beta)

20 Estrogen receptor beta 2; transcriptional activator involved in regulation of reproduction; exists in five isoforms.

F2: coagulation factor II (thrombin)

25 Coagulation factor II is proteolytically cleaved to form thrombin in the first step of the coagulation cascade which ultimately results in the stemming of blood loss. F2 also plays a role in maintaining vascular integrity during development and postnatal life. Mutations in F2 leads to various forms of thrombosis and dysprothrombinemia.

F3: coagulation factor III (thromboplastin, tissue factor)

This gene encodes coagulation factor III which is a cell surface glycoprotein. This factor enables cells to initiate the blood coagulation cascades, and it functions as the high-affinity receptor for the coagulation factor VII. The resulting complex provides a catalytic event that is responsible for initiation of the coagulation protease cascades by specific limited proteolysis. Unlike the other cofactors of these protease cascades, which circulate as nonfunctional precursors, this factor is a potent initiator that is fully functional when expressed on cell surfaces. There are 3 distinct domains of this factor: extracellular, transmembrane, and cytoplasmic. This protein is the only one in the coagulation pathway for which a congenital deficiency has not been described.

F5: coagulation factor V (proaccelerin, labile factor)

This gene encodes coagulation factor V which is an essential factor of the blood coagulation cascade. This factor circulates in plasma, and is converted to the active form by the release of the activation peptide by thrombin during coagulation. This generates a heavy chain and a light chain which are held together by calcium ions. The active factor V is a cofactor that participates with activated coagulation factor X to activate prothrombin to thrombin. Defects in this gene result in either an autosomal recessive hemorrhagic diathesis or an autosomal dominant form of thrombophilia, which is known as activated protein C resistance.

F7: coagulation factor VII (serum prothrombin conversion accelerator)

This gene encodes coagulation factor VII which is a vitamin K-dependent factor essential for hemostasis. This factor circulates in the blood in a zymogen form, and is converted to an active form by either factor IXa, factor Xa, factor XIIa, or thrombin by minor proteolysis. Upon activation of the factor VII, a heavy chain containing a catalytic domain and a light chain containing 2 EGF-like domains are generated, and two chains are held together by a disulfide bond. In the presence of factor III and

calcium ions, the activated factor then further activates the coagulation cascade by converting factor IX to factor IXa and/or factor X to factor Xa. Alternative splicing of this gene results in 2 transcripts. Defects in this gene can cause coagulopathy.

5 **F9: coagulation factor IX (plasma thromboplastic component, Christmas disease, hemophilia B)**

This gene encodes vitamin K-dependent coagulation factor IX that circulates in the blood as an inactive zymogen. This factor is converted to an active form by factor 10 XIa, which excises the activation peptide and thus generates a heavy chain and a light chain held together by one or more disulfide bonds. The role of this activated factor IX in the blood coagulation cascade is to activate factor X to its active form through interactions with Ca⁺² ions, membrane phospholipids, and factor VIII. Alterations of 15 this gene, including point mutations, insertions and deletions, cause factor IX deficiency, which is a recessive X-linked disorder, also called hemophilia B or Christmas disease.

20 **FABP3: fatty acid binding protein 3, muscle and heart (mammary-derived growth inhibitor)**

The intracellular fatty acid-binding proteins (FABPs) belongs to a multigene family. FABPs are divided into at least three distinct types, namely the hepatic-, intestinal- and cardiac-type. They form 14-15 kDa proteins and are thought to participate in the uptake; intracellular metabolism and/or transport of long-chain fatty acids. They may 25 also be responsible in the modulation of cell growth and proliferation. Fatty acid-binding protein 3 gene contains four exons and its function is to arrest growth of mammary epithelial cells. This gene is a candidate tumor suppressor gene for human breast cancer.

FACL3: fatty-acid-Coenzyme A ligase, long-chain 3

The protein encoded by this gene is an isozyme of the long-chain fatty-acid-coenzyme A ligase family. Although differing in substrate specificity, subcellular localization, and tissue distribution, all isozymes of this family convert free long-chain fatty acids into fatty acyl-CoA esters, and thereby play a key role in lipid biosynthesis and fatty acid degradation. This isozyme is highly expressed in brain, and preferentially utilizes myristate, arachidonate, and eicosapentaenoate as substrates. The amino acid sequence of this isozyme is 92% identical to that of rat homolog.

FACL4: fatty-acid-Coenzyme A ligase, long-chain 4

The protein encoded by this gene is an isozyme of the long-chain fatty-acid-coenzyme A ligase family. Although differing in substrate specificity, subcellular localization, and tissue distribution, all isozymes of this family convert free long-chain fatty acids into fatty acyl-CoA esters, and thereby play a key role in lipid biosynthesis and fatty acid degradation. This isozyme preferentially utilizes arachidonate as substrate. The absence of this enzyme may contribute to the mental retardation or Alport syndrome. Alternative splicing of this gene generates 2 transcript variants.

FMO1: flavin containing monooxygenase 1

Metabolic N-oxidation of the diet-derived amino-trimethylamine (TMA) is mediated by flavin-containing monooxygenase and is subject to an inherited FMO3 polymorphism in man resulting in a small subpopulation with reduced TMA N-oxidation capacity resulting in fish odor syndrome Trimethylaminuria. Three forms of the enzyme, FMO1 found in fetal liver, FMO2 found in adult liver, and FMO3 are encoded by genes clustered in the 1q23-q25 region. Flavin-containing

monooxygenases are NADPH-dependent flavoenzymes that catalyzes the oxidation of soft nucleophilic heteroatom centers in drugs, pesticides, and xenobiotics.

GAA: glucosidase, alpha; acid (Pompe disease, glycogen storage disease type II)

5

This gene encodes acid alpha-glucosidase, which is essential for the degradation of glycogen to glucose in lysosomes. Different forms of acid alpha-glucosidase are obtained by proteolytic processing. Defects in this gene are the cause of glycogen storage disease II, also known as Pompe's disease, which is an autosomal recessive disorder with a broad clinical spectrum.

10

GAPD: glyceraldehyde-3-phosphate dehydrogenase

15

Glyceraldehyde-3-phosphate dehydrogenase catalyzes an important energy-yielding step in carbohydrate metabolism, the reversible oxidative phosphorylation of glyceraldehyde-3-phosphate in the presence of inorganic phosphate and nicotinamide adenine dinucleotide (NAD). The enzyme exists as a tetramer of identical chains. A GAPD pseudogene has been mapped to Xp21-p11 and 15 GAPD-like loci have been identified.

20

GARS: glycyl-tRNA synthetase

25

Aminoacyl-tRNA synthetases are a class of enzymes that charge tRNAs with their cognate amino acids. Glycyl-tRNA synthetase is an (alpha)2 dimer which belongs to the class II family of tRNA synthetases. It has been shown to be a target of autoantibodies in the human autoimmune diseases, polymyositis or dermatomyositis.

GBE1: glucan (1,4-alpha-), branching enzyme 1 (glycogen branching enzyme, Andersen disease, glycogen storage disease type IV)

This monomeric enzyme functions in glycogen synthesis by catalyzing the formation of alpha 1,6- glucosidic linkages. It is most highly expressed in liver and muscle. Deficiency can result in glycogen storage disease IV (Andersen's disease).

GP6: glycoprotein VI (platelet)

10 Platelet glycoprotein VI; member of the paired Ig-like receptor family.

GPR-55

Member of the G protein-coupled receptor family.

15 **GPRC5C: G protein-coupled receptor, family C, group 5, member C**

The protein encoded by this gene is a member of the type 3 G protein-coupled receptor family. Members of this superfamily are characterized by a signature 7-transmembrane domain motif. The specific function of this protein is unknown; however, this protein may mediate the cellular effects of retinoic acid on the G protein signal transduction cascade. Alternative splicing in the 5' UTR of this gene results in two transcript variants.

25 **3-hydroxy-3-methylglutaryl coenzyme A synthase**

3-hydroxy-3-methylglutaryl-Coenzyme A synthase; functions in the first step in ketogenesis.

HK1: hexokinase 1

Hexokinases phosphorylate glucose to produce glucose-6-phosphate, thus committing glucose to the glycolytic pathway. This gene encodes a ubiquitous form of hexokinase which localizes to the outer membrane of mitochondria. Mutations in this gene have been associated with hemolytic anemia due to hexokinase deficiency. Alternative splicing of this gene results in five transcript variants which encode different isoforms, some of which are tissue-specific. Each isoform has a distinct N-terminus; the remainder of the protein is identical among all the isoforms. A sixth transcript variant has been described, but due to the presence of several stop codons, it is not thought to encode a protein.

HLA-B associated transcript 3 (BAT3)

A cluster of genes, BAT1-BAT5, has been localized in the vicinity of the genes for TNF alpha and TNF beta. These genes are all within the human major histocompatibility complex class III region. The protein encoded by this gene is a nuclear protein. It has been implicated in the control of apoptosis and regulating heat shock protein. There are three alternatively spliced transcript variants described for this gene.

HMGCL: 3-hydroxymethyl-3-methylglutaryl-Coenzyme A lyase (hydroxymethylglutaricaciduria)

3-Hydroxy-3-methylglutaryl coenzyme A lyase; cleaves 3-OH-3-methylglutaryl CoA to acetoacetic acid and acetyl CoA.

HNF4A: hepatocyte nuclear factor 4, alpha

Nuclear hormone receptor transcription factor; regulates liver specific gene expression.

Chromosome 12 BAC RP11-13J12

Cathepsin B

5

Cathepsin B; lysosomal cysteine (thiol) protease that cleaves APP.

Chromosome 5 clone CTD-2235C13

10 **Chromosome 7 clone RP11-351B12**

Cytochrome P450 3A locus

15 The CYP3A locus includes all the known members of the 3A subfamily of the cytochrome P450 superfamily of genes. These genes encode monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. The CYP3A cluster consists of four genes, CYP3A43, CYP3A4, CYP3A7 and CYP3A5. The region also contains two pseudogenes, CYP3A5P1 and CYP3A5P2, as well as several extra exons which may or may not be included in transcripts produced from this region. Previously another CYP3A member, CYP3A3, was thought to exist; however, it is now thought that this sequence represents a transcript variant of CYP3A4.

20 **ITGB3**

25 The ITGB3 protein product is the integrin beta chain beta 3. Integrins are integral cell-surface proteins composed of an alpha chain and a beta chain. A given chain may combine with multiple partners resulting in different integrins. Integrin beta 3 is found along with the alpha IIb chain in platelets. Integrins are known to participate in cell adhesion as well as cell-surface mediated signalling.

Methionine adenosyltransferase alpha subunit gene fragment.

5 MAT1A encodes methionine adenosyltransferase I (alpha isoform). MAT1A catalyzes the formation of S-adenosylmethionine from methionine and ATP. Both the beta and alpha isoforms may be encoded by MAT1A. Methionine adenosyltransferase deficiency is known to be caused by recessive as well as dominant mutations, the latter identified in autosomal dominant persistent hyper-methioninemia.

10

Homo sapiens PAC clone RP1-102K2 from 22q12.1-qter

Homo sapiens partial ZNF202 gene for zinc finger protein homolog, exon 4

15 Zinc-finger protein 202 may repress genes involved in lipid metabolism; contains zinc fingers.

Homo sapiens vHNF1-C mRNA

Hepatocyte Nuclear Factor 1.

20

Human 2.5 kb mRNA for cytoskeletal tropomyosin TM30(nm)

Human c-kit gene.

25 KIT encodes the human homolog of the proto-oncogene c-kit. 'C-kit' was first identified as the cellular homolog of the feline sarcoma viral oncogene v-kit. KIT is a type 3 transmembrane receptor for MGF (mast cell growth factor, also known as stem cell factor). Mutations in KIT are associated with gastrointestinal stromal tumors, mast cell disease, acute myelogenous leukemia, and piebaldism.

30

Human coagulation factor VII (F7) gene exon 1 and factor X (F10) gene, ex n 1.

This gene encodes coagulation factor VII which is a vitamin K-dependent factor essential for hemostasis. This factor circulates in the blood in a zymogen form, and is converted to an active form by either factor IXa, factor Xa, factor XIIa, or thrombin by minor proteolysis. Upon activation of the factor VII, a heavy chain containing a catalytic domain and a light chain containing 2 EGF-like domains are generated, and two chains are held together by a disulfide bond. In the presence of factor III and calcium ions, the activated factor then further activates the coagulation cascade by converting factor IX to factor IXa and/or factor X to factor Xa. Alternative splicing of this gene results in 2 transcripts. Defects in this gene can cause coagulopathy.

Human cytochrome P450 (CYP1A2) gene, exons 1 and 2.

This gene, CYP1A2, encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. The protein encoded by this gene localizes to the endoplasmic reticulum and its expression is induced by some polycyclic aromatic hydrocarbons (PAHs), some of which are found in cigarette smoke. The enzyme's endogenous substrate is unknown; however, it is able to metabolize some PAHs to carcinogenic intermediates. Other xenobiotic substrates for this enzyme include caffeine, aflatoxin B1, and acetaminophen. The transcript from this gene contains four Alu sequences flanked by direct repeats in the 3' untranslated region. A related family member, CYP1A1, is located approximately 25 kb away from CYP1A2 on chromosome .

Human multidrug resistance-associated protein mRNA

See ABCC1.

Human succinyl CoA:3-oxoacid CoA transferase precursor (OXCT) mRNA

The mitochondrial matrix enzyme 3-oxoacid CoA transferase is homodimeric. It is a key enzyme in the extrahepatic utilization of ketone bodies, catalyzing the reversible transfer of coenzyme A from succinyl-CoA to acetoacetate, a necessary step in 5 ketolytic energy production. Deficiencies can result in intermittent ketoacidosis.

Human T-lymphoma invasion and metastasis inducing TIAM1 protein (TIAM1) mRNA

10

Member of the GDP-GTP exchange factor family of proteins; modulates the activity of Rho-like proteins; has a Dbl homology and pleckstrin homology domains.

IL10: interleukin 10

15

Interleukin 10 (cytokine synthesis inhibitory factor); functions as a specific chemotactic factor for CD8+T cells.

IL17R: interleukin 17 receptor

20

Highly similar to murine Il17r; may play a role in T cell activation and induction of IL-2 (Il2).

IL3: interleukin 3 (colony-stimulating factor, multiple)

25

Interleukin-3 (colony-stimulating factor); plays a role in hematopoiesis; member of a family of growth factors.

IL6: interleukin 6 (interferon, beta 2)

Interleukin 6 (interferon-beta 2); induces the maturation of B cells into immunoglobulin-secreting cells.

5

IL8RA: interleukin 8 receptor, alpha

Interleukin 8 receptor alpha; G protein-coupled receptor that mediates neutrophil chemotaxis and binds interleukin 8 (IL8).

10

INHBC: inhibin, beta C

This gene encodes the beta C chain of inhibin, a member of the TGF-beta superfamily. This subunit forms heterodimers with beta A and beta B subunits.

15

Inhibins and activins, also members of the TGF-beta superfamily, are hormones with opposing actions and are involved in hypothalamic, pituitary, and gonadal hormone secretion, as well as growth and differentiation of various cell types.

20

ITGAL: integrin, alpha L (antigen CD11A (p180), lymphocyte function-associated antigen 1; alpha polypeptide)

25

ITGAL encodes the integrin alpha L chain. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a beta chain. This I-domain containing alpha integrin combines with the beta 2 chain (ITGB2) to form the integrin lymphocyte function-associated antigen-1 (LFA-1), which is expressed on all leukocytes. LFA-1 plays a central role in leukocyte intercellular adhesion through interactions with its ligands, ICAMs 1-3 (intercellular adhesion molecules 1 through 3), and also functions in lymphocyte costimulatory signaling.

ITGB2: integrin, beta 2 (antigen CD18 (p95), lymphocyte function-associated antigen 1; macrophage antigen 1 (mac-1) beta subunit)

5 The ITGB2 protein product is the integrin beta chain beta 2. Integrins are integral cell-surface proteins composed of an alpha chain and a beta chain. A given chain may combine with multiple partners resulting in different integrins. For example, beta 2 combines with the alpha L chain to form the integrin LFA-1, and combines with the alpha M chain to form the integrin Mac-1. Integrins are known to participate in cell adhesion as well as cell-surface mediated signalling.

10

KCNQ1: potassium voltage-gated channel, KQT-like subfamily, member 1

15 KCNQ1 encodes the K⁺ channel subunit responsible for the delayed-rectifier K⁺ current in cardiac myocytes. The delayed-rectifier channel is completed by the protein encoded by KCNE1. Mutations in KCNQ1 cause inherited long-QT syndrome.

LAMA3: laminin, alpha 3 (nicaerin (150kD), kalinin (165kD), BM600 (150kD), epilegrin)

20

25 Laminins are basement membrane components thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components. The protein encoded by this gene is the alpha-3 chain of laminin 5, which is a complex glycoprotein composed of three subunits (alpha, beta, and gamma). Laminin 5 is thought to be involved in cell adhesion, signal transduction and differentiation of keratinocytes. Mutations in this gene have been identified as the cause of Herlitz type junctional epidermolysis bullosa. Alternative splicing has been observed at this locus but the full-length nature of these variants has not been determined.

30

LAMR1: laminin receptor 1 (67kD, ribosomal protein SA)

Laminins, a family of extracellular matrix glycoproteins, are the major non-collagenous constituent of basement membranes. They have been implicated in a wide variety of biological processes including cell adhesion, differentiation, migration, signaling, neurite outgrowth and metastasis. Many of the effects of laminin are mediated through interactions with cell surface receptors. These receptors include members of the integrin family, as well as non-integrin laminin-binding proteins. This gene encodes a high-affinity, non-integrin family, laminin receptor 1.

This receptor has been variously called 67 kD laminin receptor, 37 kD laminin receptor precursor (37LRP) and p40 ribosome-associated protein. The amino acid sequence of laminin receptor 1 is highly conserved through evolution, suggesting a key biological function. It has been observed that the level of the laminin receptor transcript is higher in colon carcinoma tissue and lung cancer cell line than their normal counterparts. Also, there is a correlation between the upregulation of this polypeptide in cancer cells and their invasive and metastatic phenotype. Multiple copies of this gene exist, however, most of them are pseudogenes thought to have arisen from retropositional events..

LDLR: low density lipoprotein receptor (familial hypercholesterolemia)

The low density lipoprotein receptor (LDLR) gene family consists of cell surface proteins involved in receptor-mediated endocytosis of specific ligands. Low density lipoprotein (LDL) is normally bound at the cell membrane and taken into the cell ending up in lysosomes where the protein is degraded and the cholesterol is made available for repression of microsomal enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting step in cholesterol synthesis. At the same time, a reciprocal stimulation of cholesterol ester synthesis takes place. Mutations in the LDL receptor (LDLR) gene cause the autosomal dominant disorder, familial hypercholesterolemia.

LGALS7: lectin, galactoside-binding, soluble, 7 (galectin 7)

The galectins are a family of beta-galactoside-binding proteins implicated in modulating cell-cell and cell-matrix interactions. Differential and *in situ* hybridizations indicate that this lectin is specifically expressed in keratinocytes. It is expressed at all stages of epidermal differentiation (i.e., in basal and suprabasal layers). It is moderately repressed by retinoic acid. The protein was found mainly in stratified squamous epithelium. The antigen localized to basal keratinocytes, although it was also found, albeit at lower levels, in the suprabasal layers where it concentrated to areas of cell-to-cell contact. The cellular localization and its striking down-regulation in cultured keratinocytes imply a role in cell-cell and/or cell-matrix interactions necessary for normal growth control.

LIMK1: LIM domain kinase 1

15

There are approximately 40 known eukaryotic LIM proteins, so named for the LIM domains they contain. LIM domains are highly conserved cysteine-rich structures containing 2 zinc fingers. Although zinc fingers usually function by binding to DNA or RNA, the LIM motif probably mediates protein-protein interactions. LIM kinase-1 and LIM kinase-2 belong to a small subfamily with a unique combination of 2 N-terminal LIM motifs and a C-terminal protein kinase domain. LIMK1 is likely to be a component of an intracellular signaling pathway and may be involved in brain development. LIMK1 hemizygosity is implicated in the impaired visuospatial constructive cognition of Williams syndrome. Two splice variant have been identified.

LMNB2: lamin B2

Lamin B2; member of a family of structural nuclear envelope proteins.

30

LPL: lipoprotein lipase

LPL encodes lipoprotein lipase, which is expressed in heart, muscle, and adipose tissue. LPL functions as a homodimer, and has the dual functions of triglyceride hydrolase and ligand/bridging factor for receptor-mediated lipoprotein uptake. Severe mutations that cause LPL deficiency result in type I hyperlipoproteinemia, while less extreme mutations in LPL are linked to many disorders of lipoprotein metabolism.

LRP8: low density lipoprotein receptor-related protein 8, apolipoprotein e receptor

This gene encodes an apolipoprotein E receptor, a member of the low density lipoprotein receptor (LDLR) family. Apolipoprotein E is a small lipophilic plasma protein and a component of lipoproteins such as chylomicron remnants, very low density lipoprotein (VLDL), and high density lipoprotein (HDL). The apolipoprotein E receptor is involved in cellular recognition and internalization of these lipoproteins. Alternative splicing generates three transcript variants for this gene; additional variants have been described, but their full length nature has not been determined.

LSS: lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase)

Lanosterol synthase ((S)-2,3-epoxysqualene mutase); catalyzes the cyclization of (S)-2,3-oxidosqualene; forms lanosterol during sterol biosynthesis.

LTA: lymphotoxin alpha (TNF superfamily, member 1)

Lymphotoxin alpha, a member of the tumor necrosis factor family, is a cytokine produced by lymphocytes. LTA is highly inducible, secreted, and exists as homotrimeric molecule. LTA forms heterotrimers with lymphotoxin-beta which anchors lymphotoxin-alpha to the cell surface. LTA mediates a large variety of inflammatory, immunostimulatory, and antiviral responses. LTA is also involved in

the formation of secondary lymphoid organs during development and plays a role in apoptosis.

MAOA: monoamine oxidase A

5

MAOA encodes monoamine oxidase A, an enzyme that degrades amine neurotransmitters, such as dopamine, norepinephrine, and serotonin. Deficiency of this enzyme results in Brunner syndrome.

10

MARCKS: myristoylated alanine-rich protein kinase C substrate

The protein encoded by this gene is a substrate for protein kinase C. It is localized to the plasma membrane and is an actin filament crosslinking protein. Phosphorylation by protein kinase C or binding to calcium-calmodulin inhibits its association with actin and with the plasma membrane, leading to its presence in the cytoplasm. The protein is thought to be involved in cell motility, phagocytosis, membrane trafficking and mitogenesis.

MCL1: myeloid cell leukemia sequence 1 (BCL2-related)

20

Similar to BCL2.

MCP: membrane cofactor protein (CD46, trophoblast-lymphocyte cross-reactive antigen)

25

Membrane cofactor protein; acts as the receptor for the measles virus, may be involved in the regulation of complement activation; contains SCRs.

METTL1: methyltransferase-like 1

This gene is an ortholog of the *S. cerevisiae* YDL201w gene, which is predicted to encode a methyltransferase. The gene product contains a conserved S-adenosyl-methionine-binding motif, which is typical of a methyltransferase. Alternative splice variants encoding different protein isoforms and transcript variants utilizing alternative polyA sites have been described in the literature.

5 **MLLT3: myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog,
10 Drosophila);**

Serine and proline rich protein, has a nuclear targeting sequence.

15 **MTHFD1: methylenetetrahydrofolate dehydrogenase (NADP+ dependent),
methenyltetrahydrofolate cyclohydrolase, formyltetrahydrofolate synthetase**

20 This gene encodes a protein that possesses three distinct enzymatic activities, 5,10-methylenetetrahydrofolate dehydrogenase, 5,10-methenyltetrahydrofolate cyclohydrolase and 10-formyltetrahydrofolate synthetase. Each of these activities catalyzes one of three sequential reactions in the interconversion of 1-carbon derivatives of tetrahydrofolate, which are substrates for methionine, thymidylate, and de novo purine syntheses. The trifunctional enzymatic activities are conferred by two major domains, an aminoterminal portion containing the dehydrogenase and cyclohydrolase activities and a larger synthetase domain.

MTMR2 myotubularin related protein 2 (MTMR2)

This gene is a member of the myotubularin family and encodes a putative tyrosine phosphatase. Mutations in this gene are a cause of Charcot-Marie-Tooth disease type 5 4B, an autosomal recessive demyelinating neuropathy. This gene utilizes multiple polyA signals, only one of which has been determined.

Muscle specific serine kinase (MSSK1; serine/threonine kinase 23, STK23),

10 Highly similar to SRPK2; may be protein kinase for SR family of RNA splicing factors; contains a kinase domain.

MVD: mevalonate (diphospho) decarboxylase

15 The enzyme mevalonate pyrophosphate decarboxylase catalyzes the conversion of mevalonate pyrophosphate into isopentenyl pyrophosphate in one of the early steps in cholesterol biosynthesis. It decarboxylates and dehydrates its substrate while hydrolyzing ATP.

20 **MYH11: myosin, heavy polypeptide 11, smooth muscle**

The protein encoded by this gene is a smooth muscle myosin belonging to the myosin heavy chain family. The gene product is a subunit of a hexameric protein that consists of 2 heavy chain subunits and 2 pairs of non-identical light chain subunits. It 25 functions as a major contractile protein, converting chemical energy into mechanical energy through the hydrolysis of ATP. The gene encoding a human ortholog of rat NUDE1 is transcribed from the reverse strand of MYH11 gene, and its 3' end overlaps with that of the latter. The pericentric inversion of chromosome 16 [inv(16)(p13q22)] produces a chimeric transcript consisting of the first 165 residues 30 from the N terminus of core-binding factor beta in a fusion with the C-terminal portion of the smooth muscle myosin heavy chain. This chromosomal rearrangement

is associated with acute myeloid leukemia of the M4Eo subtype. Alternative splicing generates isoforms that are differentially expressed, with ratios changing during muscle cell maturation. Additional splice variants have been described but their full-length nature has not been determined..

5

MYH7: myosin, heavy polypeptide 7, cardiac muscle, beta

MYH7 encodes the cardiac muscle beta (or slow) isoform of myosin. Changes in the relative abundance of MYH7 and MYH6 (the alpha, or fast, isoform of cardiac myosin heavy chain) correlate with the contractile velocity of cardiac muscle. Mutations in MYH7 are associated with familial hypertrophic cardiomyopathy.

NADH dehydrogenase (ubiquinone) 1, alpha subcomplex, 4 (9kD, MLRQ), NDUFA4

15

Subunit of NADH-ubiquinone oxidoreductase (complex I); transports electrons from NADH to ubiquinone.

NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 5 (EC 1:6.5.3).

20

Subunit of NADH-ubiquinone oxidoreductase (complex I); transports electrons from NADH to ubiquinone.

NDUFA9: NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9 (39kD)

25

NGFB: nerve growth factor, beta polypeptide

Nerve growth factor beta; has roles in neuronal differentiation and survival.

NGFR: nerve growth factor receptor (TNFR superfamily, member 16)

Nerve growth factor receptor contains an extracellular domain containing four 40-amino acid repeats with 6 cysteine residues at conserved positions followed by a serine/threonine-rich region, a single transmembrane domain, and a 155-amino acid cytoplasmic domain. The cysteine-rich region contains the nerve growth factor binding domain.

NID2: nidogen 2

10

Nidogen-2; basement membrane protein.

HSU15552: acidic 82 kDa protein mRNA

15

Nonmuscle type myosin heavy chain 9 (MYH9)

Non-muscle myosin heavy chain 9; motor protein that provides force for muscle contraction, cytokinesis and phagocytosis; contains an ATPase head domain and a rod-like tail domain.

20

NPC1: Niemann-Pick disease, type C1

25

NPC1 was identified as the gene that when mutated, results in Niemann-Pick C disease. NPC1 encodes a putative integral membrane protein containing motifs consistent with a role in intracellular transport of cholesterol to post-lysosomal destinations.

Nth endonuclease III-like 1 (NTHL1)

30

Endonuclease; excises damaged pyrimidines.

NUCB2: nucleobindin 2

Nucleobindin 2; may bind DNA and calcium; has DNA-binding and EF-hand domains, and a leucine-zipper.

5

nuclear receptor subfamily 1, group I, member 2 (NR1I2)

The gene product belongs to the nuclear receptor superfamily, members of which are transcription factors characterized by a ligand-binding domain and a DNA-binding domain. The encoded protein is a transcriptional regulator of the cytochrome P450 gene CYP3A4, binding to the response element of the CYP3A4 promoter as a heterodimer with the 9-cis retinoic acid receptor RXR. It is activated by a range of compounds that induce CYP3A4, including dexamethasone and rifampicin. The gene product contains a zinc finger domain. Three alternatively spliced transcripts that encode different isoforms have been described, one of which encodes two products through the use of alternative translation initiation codons. Additional transcript variants derived from alternative promoter usage, alternative splicing, and/or alternative polyadenylation exist, but they have not been fully described.

20

OGDH: oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide)

Alpha-ketoglutarate or 2-oxoglutarate dehydrogenase; helps convert a-ketoglutarate to succinyl coenzyme A in Krebs cycle.

25

OXCT: 3-oxoacid CoA transferase

30

The mitochondrial matrix enzyme 3-oxoacid CoA transferase is homodimeric. It is a key enzyme in the extrahepatic utilization of ketone bodies, catalyzing the reversible transfer of coenzyme A from succinyl-CoA to acetoacetate, a necessary step in ketolytic energy production. Deficiencies can result in intermittent ketoacidosis.

P2RY1: purinergic receptor P2Y, G-protein coupled, 1

Purinergic receptor P2Y1, a G protein-coupled receptor; mediates responses to ATP and increases inositol phosphate levels.

5

PCCA: propionyl Coenzyme A carboxylase, alpha polypeptide

PCCA encodes the alpha subunit of the heterodimeric mitochondrial enzyme Propionyl-CoA carboxylase. PCCA encodes the biotin-binding region of this enzyme. Mutations in either PCCA or PCCB (encoding the beta subunit) lead to an enzyme deficiency result in propionic acidemia.

10

PDGFB: platelet-derived growth factor beta polypeptide (simian sarcoma viral (v-sis) oncogene homolog)

15

The protein encoded by this gene is a member of the platelet-derived growth factor family. The four members of this family are mitogenic factors for cells of mesenchymal origin and are characterized by a motif of eight cysteines. This gene product can exist either as a homodimer or as a heterodimer with the platelet-derived growth factor alpha polypeptide, where the dimers are connected by disulfide bonds. Mutations in this gene are associated with meningioma. Reciprocal translocations between chromosomes 22 and 7, at sites where this gene and that for COL1A1 are located, are associated with a particular type of skin tumor called dermatofibrosarcoma protuberans resulting from unregulated expression of growth factor. Two splice variants have been identified for this gene.

20

25

PERIOD CIRCADIAN PROTEIN 2 (KIAA0347)

30

This gene is a member of the Period family of genes and is expressed in a circadian pattern in the suprachiasmatic nucleus, the primary circadian pacemaker in the mammalian brain. Genes in this family encode components of the circadian rhythms

of locomotor activity, metabolism, and behavior. Circadian expression in the suprachiasmatic nucleus continues in constant darkness, and a shift in the light/dark cycle evokes a proportional shift of gene expression in the suprachiasmatic nucleus. The specific function of this gene is not yet known.

5

Peroxisome proliferative activated receptor, delta (PPARD)

Peroxisome proliferator-activated receptor delta is a member of the steroid hormone receptor superfamily.

10

PGM5: phosphoglucomutase 5

Phosphoglucomutase-related (aciculin) putative structural protein; interacts with the cytoskeletal proteins dystrophin and utrophin.

15

PLA2G3: phospholipase A2, group III

Group III secreted phospholipase A2; calcium-dependent, displays a preference for phosphatidylglycerol over phosphatidylcholine.

20

PLA2G4C: phospholipase A2, group IVC (cytosolic, calcium-independent)

Group IVC calcium-independent phospholipase a2; hydrolyzes the phospholipid sn-2 ester bond; member of the phospholipase family.

25

PLA2G6: phospholipase A2, group VI (cytosolic, calcium-independent)

Cytosolic calcium-independent phospholipase_a2; hydrolyzes the phospholipid sn-2 ester bond; member of the phospholipase family.

30

PMVK: phosphomevalonate kinase

Phosphomevalonate kinase; converts mevalonate-5-phosphate to mevalonate-5-diphosphate.

5

PNMT: phenylethanolamine N-methyltransferase

Phenylethanolamine N-methyltransferase; converts norepinephrine to epinephrine.

10 **PON1: paraoxonase 1**

PON2: paraoxonase 2

Paraoxonase/arylesterase 2; possibly functions in protecting low density lipoprotein against oxidative modification; member of a family that hydrolyzes toxic organophosphates.

PPARA: peroxisome proliferative activated receptor, alpha

20 Peroxisome proliferators are a diverse group of chemicals which include hypolipidemic drugs, herbicides, leukotriene antagonists, and plasticizers, and are so called because they induce an increase in the size and number of peroxisomes. Peroxisomes are subcellular organelles found in plants and animals, and contain enzymes for respiration, cholesterol and lipid metabolism. Infact, the fibrate class of
25 hypolipidemic drugs is used to reduce triglycerides and cholesterol in patients with hyperlipidemia, a major risk factor for coronary heart disease. The action of peroxisome proliferators is thought to be mediated via specific receptors belonging to the steroid hormone receptor superfamily, called PPARs. Thus far, four closely related subtypes, alpha, beta, gamma and delta, have been identified. The subtype
30 PPAR-alpha, encoded by PPARA, is a nuclear transcription factor. Upon activation

by peroxisome proliferators, it modulates the expression of target genes involved in lipid metabolism, suggesting a role for PPAR-alpha in lipid homeostasis.

PPARG: peroxisome proliferative activated receptor, gamma

5

The protein encoded by this gene is a member of the peroxisome proliferator-activated receptor (PPAR) subfamily of nuclear receptors. PPARs form heterodimers with retinoid X receptors (RXRs) and these heterodimers regulate transcription of various genes. Three subtypes of PPARs are known: PPAR-alpha, PPAR-delta, and PPAR-gamma. The protein encoded by this gene is PPAR-gamma and is a regulator of adipocyte differentiation. Additionally, PPAR-gamma has been implicated in the pathology of numerous diseases including obesity, diabetes, atherosclerosis and cancer. Multiple transcript variants that use alternate promoters and splicing have been identified for this gene. At least three of these variants encode the same isoform.

10

15

PPM1A: protein phosphatase 1A (formerly 2C), magnesium-dependent, alpha isoform

20

Magnesium- or manganese-dependent alpha protein phosphatase 1A; regulates cell stress responses.

PROBABLE G PROTEIN-COUPLED RECEPTOR APJ.

25

PTPRA: protein tyrosine phosphatase, receptor type, A

30

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an extracellular domain, a single transmembrane segment and two tandem intracytoplasmic catalytic domains, and thus represents a

receptor-type PTP. This PTP has been shown to dephosphorylate and activate Src family tyrosine kinases, and is implicated in the regulation of integrin signaling, cell adhesion and proliferation. Three alternatively spliced variants of this gene, which encode two distinct isoforms, have been reported.

5

PYGM: phosphorylase, glycogen; muscle (McArdle syndrome, glycogen storage disease type V)

Muscle glycogen phosphorylase

10

RTN1: reticulon 1

RXRA: retinoid X receptor, alpha

15 Retinoid X receptors (RXRs) and retinoic acid receptors (RARs), are nuclear receptors that mediate the biological effects of retinoids by their involvement in retinoic acid-mediated gene activation. These receptors exert their action by binding, as homodimers or heterodimers, to specific sequences in the promoters of target genes and regulating their transcription. The protein encoded by this gene is a
20 member of the steroid and thyroid hormone receptor superfamily of transcriptional regulators.

RXRB: retinoid X receptor, beta

25 Retinoid X receptor beta; binds to and serves as transcriptional coactivator for retinoic acid.

SCA1: spinocerebellar ataxia 1 (olivopontocerebellar ataxia 1, autosomal dominant, ataxin 1)

The autosomal dominant cerebellar ataxias (ADCA) are a heterogeneous group of neurodegenerative disorders characterized by progressive degeneration of the cerebellum, brain stem and spinal cord. Clinically, ADCA has been divided into three groups: ADCA types I-III. ADCAI is genetically heterogeneous, with five genetic loci, designated spinocerebellar ataxia (SCA) 1, 2, 3, 4 and 6, being assigned to five different chromosomes. ADCAI, which always presents with retinal degeneration (SCA7), and ADCAIII often referred to as the 'pure' cerebellar syndrome (SCA5), are most likely homogeneous disorders. Several SCA genes have been cloned and shown to contain CAG repeats in their coding regions. ADCA is caused by the expansion of the CAG repeats, producing an elongated polyglutamine tract in the corresponding protein. The expanded repeats are variable in size and unstable, usually increasing in size when transmitted to successive generations. The function of the ataxins is not known. The SCA1 locus has been mapped to chromosome 6, and it has been determined that the diseased allele contains 41-81 CAG repeats, compared to 6-39 in the normal allele. Several transcript variants of SCA1 in the 5' UTR have been described; however, their full-length nature is not known..

SDF1: stromal cell-derived factor 1

Stromal cell-derived factor 1; lymphocyte chemoattractant that signals through the receptor CXCR4.

SERPINA5: serine (or cysteine) proteinase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 5

Protein C inhibitor (plasminogen activator inhibitor III); may be a serine protease inhibitor; member of the serpin family of serine protease inhibitors.

SERPINH1: serine (or cysteine) proteinase inhibitor, clade H (heat shock protein 47), member 1, (collagen binding protein 1)

5 Colligin; collagen-binding protein; Similar to HSPs and to serpin family serine protease inhibitors.

SLC21A6: solute carrier family 21 (organic anion transporter), member 6

10 Organic anion transporter.

SLC27A1: solute carrier family 27 (fatty acid transporter), member 1

SULT1A2: sulfotransferase family, cytosolic, 1A, phenol-preferring, member 2

15 Phenol-metabolizing sulfotransferase 2; sulfonates simple planar phenols.

THBS3: Thrombospondin 3

Thrombospondin 3 binds heparin and calcium; similar to murine Thbs3

20 **TBP: TATA box binding protein**

TATA box binding protein, component of the TFIID complex; functions in the initiation of mRNA synthesis and basal transcription.

25 **TBXA2R: thromboxane A2 receptor**

Thromboxane A2 receptor (prostaglandin H2 receptor); G protein-coupled receptor, activates Ca²⁺-activated chloride channels; stimulates platelet aggregation and smooth muscle constriction.

TCF2: transcription factor 2, hepatic; LF-B3; variant hepatic nuclear factor

TCF2 encodes transcription factor 2, a liver-specific factor of the homeobox-containing basic helix-turn-helix family. The TCF2 protein is believed to form heterodimers with another liver-specific member of this transcription factor family, TCF1; depending on the TCF2 isoform, the result may be to activate or inhibit transcription of target genes. Mutation of TCF2 that disrupts normal function has been identified as the cause of MODY5 (Maturity-Onset of Diabetes, Type 5). A third human transcript variant is believed to exist based on such a variant in the rat; however, to date such an mRNA species has not been isolated.

TETRAN: tetracycline transporter-like protein

Similar to E. coli tetracycline resistance efflux protein.

15

TGFB1: transforming growth factor, beta 1 (Camurati-Engelmann disease)

Transforming growth factor-beta 1; regulates cell proliferation, differentiation, and apoptosis.

20

TGFB2: transforming growth factor, beta 2

Transforming growth factor-beta 2 (glioblastoma-derived T cell suppressor factor); suppresses IL2 - dependent growth of T cells; member of a family of cytokines that transmits signals through transmembrane serine/threonine kinases.

25

TGFB3: transforming growth factor, beta 3

Transforming growth factor-beta 3; transmits signals through transmembrane serine/threonine kinases, may be required for normal development of the lung and palate; member of family of cytokines, very strongly similar to murine Tgfb3.

30

THPO: thrombopoietin (myeloproliferative leukemia virus oncogene ligand, megakaryocyte growth and development factor)

- 5 Thrombopoietin; binds to c-Mpl receptor and regulates megakaryocyte development.

TNFAIP2: tumor necrosis factor, alpha-induced protein 2

- Secreted by vascular endothelium, expression is induced by tumor necrosis factor
10 alpha, interleukin-1 beta, and lipopolysaccharide.

TRAP1: heat shock protein 75

- Heat shock protein 75; binds and refolds denatured RB1 during M phase and after
15 heat shock; member of the HSP90 family of molecular chaperones.

TRIP10: thyroid hormone receptor interactor 10

- Similar to the non-kinase domains of FER and Fes/Fps tyrosine kinases; binds to
20 activated Cdc42 and may regulate actin cytoskeleton; contains an SH3 domain.

TXN: thioredoxin

Thioredoxin; has dithiol-disulfide oxidoreductase activity.

25

USP6: ubiquitin specific protease 6 (Tre-2 oncogene)

Ubiquitin specific protease 6 (Tre-2 oncogene); cleaves ubiquitin from proteins, has predicted nucleic acid-binding properties.

30

UTRN: utr phin (homologous to dystrophin)

This gene shares both structural and functional similarities with the dystrophin gene. It contains an actin-binding N-terminus, a triple coiled-coil repeat central region, and a C-terminus that consists of protein-protein interaction motifs which interact with dystroglycan protein components. The protein encoded by this gene is located at the neuromuscular synapse and myotendinous junctions, where it participates in post-synaptic membrane maintenance and acetylcholine receptor clustering. Mouse studies suggest that this gene may serve as a functional substitute for the dystrophin gene and therefore, may serve as a potential therapeutic alternative to muscular dystrophy which caused by mutations in the dystrophin gene. Alternative splicing of the utrophin gene has been described; however, the full-length nature of these variants has not yet been determined.

15 VEGF: vascular endothelial growth factor

Vascular endothelial growth factor; induces endothelial cell proliferation and vascular permeability.

20 VEGFB: vascular endothelial growth factor B

Vascular endothelial growth factor B; involved in angiogenesis and endothelial cell growth.

25 WISP1: WNT1 inducible signaling pathway protein 1

This gene encodes a member of the WNT1 inducible signaling pathway (WISP) protein subfamily, which belongs to the connective tissue growth factor (CTGF) family. WNT1 is a member of a family of cysteine-rich, glycosylated signaling proteins that mediate diverse developmental processes. The CTGF family members are characterized by four conserved cysteine-rich domains: insulin-like growth

factor-binding domain, von Willebrand factor type C module, thrombospondin domain and C-terminal cystine knot-like domain. This gene may be downstream in the WNT1 signaling pathway that is relevant to malignant transformation. It is expressed at a high level in fibroblast cells, and overexpressed in colon tumors. The
5 encoded protein binds to decorin and biglycan, two members of a family of small leucine-rich proteoglycans present in the extracellular matrix of connective tissue, and possibly prevents the inhibitory activity of decorin and biglycan in tumor cell proliferation. It also attenuates p53-mediated apoptosis in response to DNA damage through activation of the Akt kinase. It is 83% identical to the mouse protein at the
10 amino acid level. Alternative splicing of this gene generates 2 transcript variants..

XDH: xanthene dehydrogenase

Xanthine dehydrogenase belongs to the group of molybdenum-containing hydroxylases involved in the oxidative metabolism of purines. The enzyme is a homodimer. Xanthine dehydrogenase can be converted to xanthine oxidase by reversible sulphydryl oxidation or by irreversible proteolytic modification. Defects in xanthine dehydrogenase cause xanthinuria, may contribute to adult respiratory distress syndrome, and may potentiate influenza infection through an oxygen metabolite-dependent mechanism.
15
20

YAP1: Yes-associated protein 1, 65 kD

Yes-associated protein; binds to the proto-oncoprotein Yes; has a WW domain.

PROCR: protein C receptor, endothelial (EPCR)

Endothelial Protein C receptor; binds protein C in a calcium-dependent manner; member of the CD1/major histocompatibility complex superfamily.

STX1A: syntaxin 1A (brain)

30 Syntaxin 1A (brain); involved in intracellular transport and neurotransmitter release.

As SNPs are linked to other SNPs in neighboring genes on a chromosome (Linkage Disequilibrium) those SNPs could also be used as marker SNPs. In a recent publication it was shown that SNPs are linked over 100 kb in some cases more than 150 kb (Reich D.E. et al. Nature 411, 199-204, 2001). Hence SNPs lying in regions neighbouring PA SNPs could be linked to the latter and by this being a diagnostic marker. These associations could be performed as described for the gene polymorphism in methods.

Definitions

10

For convenience, the meaning of certain terms and phrases employed in the specification, examples, and appended claims are provided below. Moreover, the definitions by itself are intended to explain a further background of the invention.

15

The term "allele", which is used interchangeably herein with "allelic variant" refers to alternative forms of a gene or portions thereof. Alleles occupy the same locus or position on homologous chromosomes. When a subject has two identical alleles of a gene, the subject is said to be homozygous for the gene or allele. When a subject has two different alleles of a gene, the subject is said to be heterozygous for the gene. 20 Alleles of a specific gene can differ from each other in a single nucleotide, or several nucleotides, and can include substitutions, deletions, and insertions of nucleotides. An allele of a gene can also be a form of a gene containing a mutation.

25

The term "allelic variant of a polymorphic region of a gene" refers to a region of a gene having one of several nucleotide sequences found in that region of the gene in other individuals.

30

"Homology" or "identity" or "similarity" refers to sequence similarity between two peptides or between two nucleic acid molecules. Homology can be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base

or amino acid, then the molecules are homologous at that position. A degree of homology between sequences is a function of the number of matching or homologous positions shared by the sequences. An "unrelated" or "non-homologous" sequence shares less than 40% identity, though preferably less than 25% identity,
5 with one of the sequences of the present invention.

The term "a homologue of a nucleic acid" refers to a nucleic acid having a nucleotide sequence having a certain degree of homology with the nucleotide sequence of the nucleic acid or complement thereof. A homologue of a double stranded-nucleic acid
10 having SEQ ID NO. X is intended to include nucleic acids having a nucleotide sequence which has a certain degree of homology with SEQ ID NO. X or with the complement thereof. Preferred homologous of nucleic acids are capable of hybridizing to the nucleic acid or complement thereof.

15 The term "interact" as used herein is meant to include detectable interactions between molecules, such as can be detected using, for example, a hybridization assay.

The term interact is also meant to include "binding" interactions between molecules.
Interactions may be, for example, protein-protein, protein-nucleic acid, protein-small
20 molecule or small molecule-nucleic acid in nature.

The term "intronic sequence" or "intronic nucleotide sequence" refers to the nucleotide sequence of an intron or portion thereof.

25 The term "isolated" as used herein with respect to nucleic acids, such as DNA or RNA, refers to molecules separated from other DNAs or RNAs, respectively, that are present in the natural source of the macromolecule. The term isolated as used herein also refers to a nucleic acid or peptide that is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques,
30 or chemical precursors or other chemicals when chemically synthesized.

Moreover, an "isolated nucleic acid" is meant to include nucleic acid fragments which are not naturally occurring as fragments and would not be found in the natural state. The term "isolated" is also used herein to refer to polypeptides which are isolated from other cellular proteins and is meant to encompass both purified and recombinant polypeptides.

The term "lipid" shall refer to a fat or fat-like substance that is insoluble in polar solvents such as water. The term "lipid" is intended to include true fats (e.g. esters of fatty acids and glycerol); lipids (phospholipids, cerebrosides, waxes); sterols (cholesterol, ergosterol) and lipoproteins (e.g. HDL, LDL and VLDL).

The term "locus" refers to a specific position in a chromosome. For example, a locus of a gene refers to the chromosomal position of the gene.

The term "modulation" as used herein refers to both up-regulation, (i.e., activation or stimulation), for example by agonizing, and down-regulation (i.e. inhibition or suppression), for example by antagonizing of a bioactivity (e.g. expression of a gene).

The term "molecular structure" of a gene or a portion thereof refers to the structure as defined by the nucleotide content (including deletions, substitutions, additions of one or more nucleotides), the nucleotide sequence, the state of methylation, and/or any other modification of the gene or portion thereof.

The term "mutated gene" refers to an allelic form of a gene, which is capable of altering the phenotype of a subject having the mutated gene relative to a subject which does not have the mutated gene. If a subject must be homozygous for this mutation to have an altered phenotype, the mutation is said to be recessive. If one copy of the mutated gene is sufficient to alter the genotype of the subject, the mutation is said to be dominant. If a subject has one copy of the mutated gene and

has a phenotype that is intermediate between that of a homozygous and that of a heterozygous (for that gene) subject, the mutation is said to be co-dominant.

As used herein, the term "nucleic acid" refers to polynucleotides such as deoxyribonucleic acid (DNA), and, where appropriate, ribonucleic acid (RNA). The term should also be understood to include, as equivalents, derivatives, variants and analogs of either RNA or DNA made from nucleotide analogs, including peptide nucleic acids (PNA), morpholino oligonucleotides (J. Summerton and D. Weller, Antisense and Nucleic Acid Drug Development 7:187 (1997)) and, as applicable to the embodiment being described, single (sense or antisense) and double-stranded polynucleotides. Deoxyribonucleotides include deoxyadenosine, deoxycytidine, deoxyguanosine, and deoxythymidine. For purposes of clarity, when referring herein to a nucleotide of a nucleic acid, which can be DNA or an RNA, the term "adenosine", "cytidine", "guanosine", and "thymidine" are used. It is understood that if the nucleic acid is RNA, a nucleotide having a uracil base is uridine.

The term "nucleotide sequence complementary to the nucleotide sequence set forth in SEQ ID NO. x" refers to the nucleotide sequence of the complementary strand of a nucleic acid strand having SEQ ID NO. x. The term "complementary strand" is used herein interchangeably with the term "complement". The complement of a nucleic acid strand can be the complement of a coding strand or the complement of a non-coding strand. When referring to double stranded nucleic acids, the complement of a nucleic acid having SEQ ID NO. x refers to the complementary strand of the strand having SEQ ID NO. x or to any nucleic acid having the nucleotide sequence of the complementary strand of SEQ ID NO. x. When referring to a single stranded nucleic acid having the nucleotide sequence SEQ ID NO. x, the complement of this nucleic acid is a nucleic acid having a nucleotide sequence which is complementary to that of SEQ ID NO. x. The nucleotide sequences and complementary sequences thereof are always given in the 5' to 3' direction. The term "complement" and "reverse complement" are used interchangeably herein.

The term "operably linked" is intended to mean that the promoter is associated with the nucleic acid in such a manner as to facilitate transcription of the nucleic acid.

5 The term "polymorphism" refers to the coexistence of more than one form of a gene or portion thereof. A portion of a gene of which there are at least two different forms, i.e., two different nucleotide sequences, is referred to as a "polymorphic region of a gene". A polymorphic region can be a single nucleotide, the identity of which differs in different alleles. A polymorphic region can also be several nucleotides long.

10 A "polymorphic gene" refers to a gene having at least one polymorphic region.

To describe a "polymorphic site" in a nucleotide sequence often there is used an "ambiguity code" that stands for the possible variations of nucleotides in one site.

The list of ambiguity codes is summarized in the following table:

15

Ambiguity (IUPAC Nomenclature)	Codes
B	c/g/t
D	a/g/t
H	a/c/t
K	g/t
M	a/c
N	a/c/g/t
R	a/g
S	c/g
V	a/c/g
W	a/t
Y	c/t

So, for example, a "R" in a nucleotide sequence means that either an "a" or a "g" could be at that position.

The terms "protein", "polypeptide" and "peptide" are used interchangeably herein when referring to a gene product.

- 5 A "regulatory element", also termed herein "regulatory sequence is intended to include elements which are capable of modulating transcription from a basic promoter and include elements such as enhancers and silencers. The term "enhancer", also referred to herein as "enhancer element", is intended to include regulatory elements capable of increasing, stimulating, or enhancing transcription from a basic 10 promoter. The term "silencer", also referred to herein as "silencer element" is intended to include regulatory elements capable of decreasing, inhibiting, or repressing transcription from a basic promoter. Regulatory elements are typically present in 5' flanking regions of genes. However, regulatory elements have also been shown to be present in other regions of a gene, in particular in introns. Thus, it is 15 possible that genes have regulatory elements located in introns, exons, coding regions, and 3' flanking sequences. Such regulatory elements are also intended to be encompassed by the present invention and can be identified by any of the assays that can be used to identify regulatory elements in 5' flanking regions of genes.
- 20 The term "regulatory element" further encompasses "tissue specific" regulatory elements, i.e., regulatory elements which effect expression of the selected DNA sequence preferentially in specific cells (e.g., cells of a specific tissue). gene expression occurs preferentially in a specific cell if expression in this cell type is significantly higher than expression in other cell types. The term "regulatory 25 element", also encompasses non-tissue specific regulatory elements, i.e., regulatory elements which are active in most cell types. Furthermore, a regulatory element can be a constitutive regulatory element, i.e., a regulatory element which constitutively regulates transcription, as opposed to a regulatory element which is inducible, i.e., a regulatory element which is active primarily in response to a stimulus. A stimulus can be, e.g., a molecule, such as a hormone, cytokine, heavy metal, phorbol ester, 30 cyclic AMP (cAMP), or retinoic acid.

Regulatory elements are typically bound by proteins, e.g., transcription factors. The term "transcription factor" is intended to include proteins or modified forms thereof, which interact preferentially with specific nucleic acid sequences, i.e., regulatory elements, and which in appropriate conditions stimulate or repress transcription.

5 Some transcription factors are active when they are in the form of a monomer. Alternatively, other transcription factors are active in the form of a dimer consisting of two identical proteins or different proteins (heterodimer). Modified forms of transcription factors are intended to refer to transcription factors having a post-translational modification, such as the attachment of a phosphate group. The activity of a transcription factor is frequently modulated by a post-translational modification. For example, certain transcription factors are active only if they are phosphorylated on specific residues. Alternatively, transcription factors can be active in the absence of phosphorylated residues and become inactivated by phosphorylation. A list of known transcription factors and their DNA binding site can be found, e.g., in public databases, e.g., TFMATRIX Transcription Factor Binding Site Profile database.

As used herein, the term "specifically hybridizes" or "specifically detects" refers to the ability of a nucleic acid molecule of the invention to hybridize to at least approximately 6, 12, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130 or 140 consecutive nucleotides of either strand of a gene.

The term "wild-type allele" refers to an allele of a gene which, when present in two copies in a subject results in a wild-type phenotype. There can be several different wild-type alleles of a specific gene, since certain nucleotide changes in a gene may not affect the phenotype of a subject having two copies of the gene with the nucleotide changes.

"Adverse drug reaction" (ADR) as used herein refers to an appreciably harmful or unpleasant reaction, resulting from an intervention related to the use of a medicinal product, which predicts hazard from future administration and warrants prevention or

specific treatment, or alteration of the dosage regimen, or withdrawal of the product. In it's most severe form an ADR might lead to the death of an individual.

The term "Drug Response" is intended to mean any response that a patient exhibits upon drug administration. Specifically drug response includes beneficial, i.e. desired drug effects, ADR or no detectable reaction at all. More specifically the term drug response could also have a qualitative meaning, i.e. it embraces low or high beneficial effects, respectively and mild or severe ADR, respectively. The term "Statin Response" as used herein refers to drug response after statin administration.

An individual drug response includes also a good or bad metabolizing of the drug, meaning that "bad metabolizers" accumulate the drug in the body and by this could show side effects of the drug due to accumulative overdoses.

"Candidate gene" as used herein includes genes that can be assigned to either normal cardiovascular function or to metabolic pathways that are related to onset and/or progression of cardiovascular diseases.

With regard to drug response the term "candidate gene" includes genes that can be assigned to distinct phenotypes regarding the patient's response to drug administration. Those phenotypes may include patients who benefit from relatively small amounts of a given drug (high responders) or patients who need relatively high doses in order to obtain the same benefit (low responders). In addition those phenotypes may include patients who can tolerate high doses of a medicament without exhibiting ADR, or patients who suffer from ADR even after receiving only low doses of a medicament.

As neither the development of cardiovascular diseases nor the patient's response to drug administration is completely understood, the term "candidate gene" may also comprise genes with presently unknown function.

"PA SNP" (phenotype associated SNP) refers to a polymorphic site which shows a significant association with a patients phenotype (healthy, diseased, low or high responder, drug tolerant, ADR prone, etc.)

- 5 "PA gene" (phenotype associated gene) refers to a genomic locus harbouring a PA SNP, irrespective of the actual function of this gene locus.

PA gene polypeptide refers to a polypeptide encoded at least in part by a PA gene.

- 10 The term "Haplotype" as used herein refers to a group of two or more SNPs that are functionally and/or spatially linked. I.e. haplotypes define groups of SNPs that lie inside genes belonging to identical (or related metabolic) pathways and/or lie on the same chromosome. Haplotypes are expected to give better predictive/diagnostic information than a single SNP

- 15 The term "statin" is intended to embrace all inhibitors of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Statins specifically inhibit the enzyme HMG-CoA reductase which catalyzes the rate limiting step in cholesterol biosynthesis. Known statins are Atorvastatin, Cerivastatin, Fluvastatin, Lovastatin, 20 Pravastatin and Simvastatin.

Methods for Assessing Cardiovascular Status

- The present invention provides diagnostic methods for assessing cardiovascular status in a human individual. Cardiovascular status as used herein refers to the physiological status of an individual's cardiovascular system as reflected in one or more markers or indicators. Status markers include without limitation clinical measurements such as, e.g., blood pressure, electrocardiographic profile, and differentiated blood flow analysis as well as measurements of LDL- and HDL-Cholesterol levels, other lipids and other well established clinical parameters that are standard in the art. Status markers according to the invention include diagnoses of 25 30

one or more cardiovascular syndromes, such as, e.g., hypertension, acute myocardial infarction, silent myocardial infarction, stroke, and atherosclerosis. It will be understood that a diagnosis of a cardiovascular syndrome made by a medical practitioner encompasses clinical measurements and medical judgement. Status markers according to the invention are assessed using conventional methods well known in the art. Also included in the evaluation of cardiovascular status are quantitative or qualitative changes in status markers with time, such as would be used, e.g., in the determination of an individual's response to a particular therapeutic regimen.

10

The methods are carried out by the steps of:

(i) determining the sequence of one or more polymorphic positions within one, several or all of the genes listed in Examples or other genes mentioned in this file in the individual to establish a polymorphic pattern for the individual; and

(ii) comparing the polymorphic pattern established in (i) with the polymorphic patterns of humans exhibiting different markers of cardiovascular status. The polymorphic pattern of the individual is, preferably, highly similar and, most preferably, identical to the polymorphic pattern of individuals who exhibit particular status markers, cardiovascular syndromes, and/or particular patterns of response to therapeutic interventions. Polymorphic patterns may also include polymorphic positions in other genes which are shown, in combination with one or more polymorphic positions in the genes listed in the Examples, to correlate with the presence of particular status markers. In one embodiment, the method involves comparing an individual's polymorphic pattern with polymorphic patterns of individuals who have been shown to respond positively or negatively to a particular therapeutic regimen. Therapeutic regimen as used herein refers to treatments aimed at the elimination or amelioration of symptoms and events associated cardiovascular disease. Such treatments include without limitation one or more of alteration in diet, lifestyle, and exercise regimen; invasive and noninvasive surgical techniques such as

30

atherectomy, angioplasty, and coronary bypass surgery; and pharmaceutical interventions, such as administration of ACE inhibitors, angiotensin II receptor antagonists, diuretics, alpha-adrenoreceptor antagonists, cardiac glycosides, phosphodiesterase inhibitors, beta-adrenoreceptor antagonists, calcium channel blockers, HMG-CoA reductase inhibitors, imidazoline receptor blockers, endothelin receptor blockers, organic nitrates, and modulators of protein function of genes listed in the Examples. Interventions with pharmaceutical agents not yet known whose activity correlates with particular polymorphic patterns associated with cardiovascular disease are also encompassed. It is contemplated, for example, that patients who are candidates for a particular therapeutic regimen will be screened for polymorphic patterns that correlate with responsivity to that particular regimen.

In a preferred embodiment, the method involves comparing an individual's polymorphic pattern with polymorphic patterns of individuals who exhibit or have exhibited one or more markers of cardiovascular disease, such as, e.g., elevated LDL-Cholesterol levels, high blood pressure, abnormal electrocardiographic profile, myocardial infarction, stroke, or atherosclerosis.

In another embodiment, the method involves comparing an individual's polymorphic pattern with polymorphic patterns of individuals who exhibit or have exhibited one or more drug related phenotypes, such as, e.g., low or high drug response, or adverse drug reactions.

In practicing the methods of the invention, an individual's polymorphic pattern can be established by obtaining DNA from the individual and determining the sequence at predetermined polymorphic positions in the genes such as those described in this file.

The DNA may be obtained from any cell source. Non-limiting examples of cell sources available in clinical practice include blood cells, buccal cells, cervicovaginal cells, epithelial cells from urine, fetal cells, or any cells present in tissue obtained by

biopsy. Cells may also be obtained from body fluids, including without limitation blood, saliva, sweat, urine, cerebrospinal fluid, feces, and tissue exudates at the site of infection or inflammation. DNA is extracted from the cell source or body fluid using any of the numerous methods that are standard in the art. It will be understood
5 that the particular method used to extract DNA will depend on the nature of the source.

Diagnostic and Prognostic Assays

10 The present invention provides methods for determining the molecular structure of at least one polymorphic region of a gene, specific allelic variants of said polymorphic region being associated with cardiovascular disease. In one embodiment, determining the molecular structure of a polymorphic region of a gene comprises determining the identity of the allelic variant. A polymorphic region of a gene, of which specific
15 alleles are associated with cardiovascular disease can be located in an exon, an intron, at an intron/exon border, or in the promoter of the gene.

The invention provides methods for determining whether a subject has, or is at risk, of developing a cardiovascular disease. Such disorders can be associated with an
20 aberrant gene activity, e.g., abnormal binding to a form of a lipid, or an aberrant gene protein level. An aberrant gene protein level can result from an aberrant transcription or post-transcriptional regulation. Thus, allelic differences in specific regions of a gene can result in differences of gene protein due to differences in regulation of expression. In particular, some of the identified polymorphisms in the human gene
25 may be associated with differences in the level of transcription; RNA maturation; splicing, or translation of the gene or transcription product.

In preferred embodiments, the methods of the invention can be characterized as comprising detecting, in a sample of cells from the subject, the presence or absence
30 of a specific allelic variant of one or more polymorphic regions of a gene. The allelic differences can be: (i) a difference in the identity of at least one nucleotide or (ii) a

difference in the number of nucleotides, which difference can be a single nucleotide or several nucleotides.

A preferred detection method is allele specific hybridization using probes overlapping the polymorphic site and having about 5, 10, 20, 25, or 30 nucleotides around the polymorphic region. Examples of probes for detecting specific allelic variants of the polymorphic region located in intron X are probes comprising a nucleotide sequence set forth in any of SEQ ID NO. X. In a preferred embodiment of the invention, several probes capable of hybridizing specifically to allelic variants are attached to a solid phase support, e.g., a "chip". Oligonucleotides can be bound to a solid support by a variety of processes, including lithography. For example a chip can hold up to 250,000 oligonucleotides (GeneChip, Affymetrix). Mutation detection analysis using these chips comprising oligonucleotides, also termed "DNA probe arrays" is described e.g., in Cronin et al. (1996) Human Mutation 7:244 and in Kozal et al. (1996) Nature Medicine 2:753. In one embodiment, a chip comprises all the allelic variants of at least one polymorphic region of a gene. The solid phase support is then contacted with a test nucleic acid and hybridization to the specific probes is detected. Accordingly, the identity of numerous allelic variants of one or more genes can be identified in a simple hybridization experiment. For example, the identity of the allelic variant of the nucleotide polymorphism of nucleotide A or G at position 33 of Seq ID 1 (baySNP179) and that of other possible polymorphic regions can be determined in a single hybridization experiment.

In other detection methods, it is necessary to first amplify at least a portion of a gene prior to identifying the allelic variant. Amplification can be performed, e.g., by PCR and/or LCR, according to methods known in the art. In one embodiment, genomic DNA of a cell is exposed to two PCR primers and amplification for a number of cycles sufficient to produce the required amount of amplified DNA. In preferred embodiments, the primers are located between 40 and 350 base pairs apart. Preferred primers for amplifying gene fragments of genes of this file are listed in Table 2 in the Examples.

Alternative amplification methods include: self sustained sequence replication (Guatelli, J. C. et al., 1990, Proc. Natl. Acad. Sci. U.S.A. 87:1874-1878), transcriptional amplification system (Kwoh, D. Y. et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:1173-1177), Q-Beta Replicase (Lizardi, P. M. et al., 1988, Bio/Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

10

In one embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence at least a portion of a gene and detect allelic variants, e.g., mutations, by comparing the sequence of the sample sequence with the corresponding wild-type (control) sequence. Exemplary sequencing reactions include those based on techniques developed by Maxam and Gilbert (Proc. Natl Acad Sci USA (1977) 74:560) or Sanger (Sanger et al (1977) Proc. Nat. Acad. Sci 74:5463). It is also contemplated that any of a variety of automated sequencing procedures may be utilized when performing the subject assays (Biotechniques (1995) 19:448), including sequencing by mass spectrometry (see, for example, U.S. Pat. No. 5,547,835 and international patent application Publication Number WO 94/16101, entitled DNA Sequencing by Mass Spectrometry by H. Koster; U.S. Pat. No. 5,547,835 and international patent application Publication Number WO 94/21822 entitled "DNA Sequencing by Mass Spectrometry Via Exonuclease Degradation" by H. Koster), and U.S. Pat. No. 5,605,798 and International Patent Application No. PCT/US96/03651 entitled DNA Diagnostics Based on Mass Spectrometry by H. Koster; Cohen et al. (1996) Adv Chromatogr 36:127-162; and Griffin et al. (1993) Appl Biochem Biotechnol 38:147-159). It will be evident to one skilled in the art that, for certain embodiments, the occurrence of only one, two or three of the nucleic acid bases need be determined in the sequencing reaction. For instance, A-track or the like, e.g., where only one nucleotide is detected, can be carried out.

30

Yet other sequencing methods are disclosed, e.g., in U.S. Pat. No. 5,580,732 entitled "Method of DNA sequencing employing a mixed DNA-polymer chain probe" and U.S. Pat. No. 5,571,676 entitled "Method for mismatch-directed in vitro DNA sequencing".

5

In some cases, the presence of a specific allele of a gene in DNA from a subject can be shown by restriction enzyme analysis. For example, a specific nucleotide polymorphism can result in a nucleotide sequence comprising a restriction site which is absent from the nucleotide sequence of another allelic variant.

10

In other embodiments, alterations in electrophoretic mobility is used to identify the type of gene allelic variant. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989) Proc Natl. Acad. Sci USA 86:2766, see also Cotton (1993) Mutat Res 285:125-144; and Hayashi (1992) Genet Anal Tech Appl 9:73-79). Single-stranded DNA fragments of sample and control nucleic acids are denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In another preferred embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet 7:5).

In yet another embodiment, the identity of an allelic variant of a polymorphic region is obtained by analyzing the movement of a nucleic acid comprising the polymorphic region in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al (1985) Nature 313:495). When DGGE is used as the method of analysis, DNA will be modified to

insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing agent gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and
5 Reissner (1987) Biophys Chem 265:1275).

Examples of techniques for detecting differences of at least one nucleotide between 2 nucleic acids include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide probes may be prepared in which the known polymorphic nucleotide is placed centrally (allele-specific probes) and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324:163); Saiki et al (1989) Proc. Natl Acad. Sci USA 86:6230; and Wallace et al. (1979) Nucl. Acids Res. 6:3543). Such allele specific oligonucleotide hybridization techniques may be used for the simultaneous detection of several nucleotide changes in different polymorphic regions of gene. For example, oligonucleotides having nucleotide sequences of specific allelic variants are attached to a hybridizing membrane and this membrane is then hybridized with labeled sample nucleic acid. Analysis of the hybridization signal will then reveal the identity of the nucleotides of
10 the sample nucleic acid.
15
20

Alternatively, allele specific amplification technology which depends on selective PCR amplification may be used. Oligonucleotides used as primers for specific amplification may carry the allelic variant of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al (1989) Nucleic Acids Res. 17:2437-2448) or at the extreme 3' end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner (1993) Tibtech 11:238; Newton et al. (1989) Nucl. Acids Res. 17:2503). This technique is also termed "PROBE" for Probe Oligo Base Extension. In addition
25 it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection (Gasparini et al (1992) Mol. Cell Probes 6:1).
30

In another embodiment, identification of the allelic variant is carried out using an oligonucleotide ligation assay (OLA), as described, e.g., in U.S. Pat. No. 4,998,617 and in Landegren, U. et al., Science 241:1077-1080 (1988). The OLA protocol uses two oligonucleotides which are designed to be capable of hybridizing to abutting sequences of a single strand of a target. One of the oligonucleotides is linked to a separation marker, e.g., biotinylated, and the other is detectably labeled. If the precise complementary sequence is found in a target molecule, the oligonucleotides will hybridize such that their termini abut, and create a ligation substrate. Ligation then permits the labeled oligonucleotide to be recovered using avidin, or another biotin ligand. Nickerson, D. A. et al. have described a nucleic acid detection assay that combines attributes of PCR and OLA (Nickerson, D. A. et al., Proc. Natl. Acad. Sci. (U.S.A.) 87:8923-8927 (1990). In this method, PCR is used to achieve the exponential amplification of target DNA, which is then detected using OLA.

Several techniques based on this OLA method have been developed and can be used to detect specific allelic variants of a polymorphic region of a gene. For example, U.S. Pat. No. 5,593,826 discloses an OLA using an oligonucleotide having 3'-amino group and a 5'-phosphorylated oligonucleotide to form a conjugate having a phosphoramidate linkage. In another variation of OLA described in Tobe et al. ((1996)Nucleic Acids Res 24: 3728), OLA combined with PCR permits typing of two alleles in a single microtiter well. By marking each of the allele-specific primers with a unique hapten, i.e. digoxigenin and fluorescein, each LA reaction can be detected by using hapten specific antibodies that are labeled with different enzyme reporters, alkaline phosphatase or horseradish peroxidase. This system permits the detection of the two alleles using a high throughput format that leads to the production of two different colors.

The invention further provides methods for detecting single nucleotide polymorphisms in a gene. Because single nucleotide polymorphisms constitute sites of variation flanked by regions of invariant sequence, their analysis requires no more

than the determination of the identity of the single nucleotide present at the site of variation and it is unnecessary to determine a complete gene sequence for each patient. Several methods have been developed to facilitate the analysis of such single nucleotide polymorphisms.

5

In one embodiment, the single base polymorphism can be detected by using a specialized exonuclease-resistant nucleotide, as disclosed, e.g., in Mundy, C. R. (U.S. Pat. No. 4,656,127). According to the method, a primer complementary to the allelic sequence immediately 3^t to the polymorphic site is permitted to hybridize to a target 10 molecule obtained from a particular animal or human. If the polymorphic site on the target molecule contains a nucleotide that is complementary to the particular exonuclease-resistant nucleotide derivative present, then that derivative will be incorporated onto the end of the hybridized primer. Such incorporation renders the primer resistant to exonuclease, and thereby permits its detection. Since the identity 15 of the exonuclease-resistant derivative of the sample is known, a finding that the primer has become resistant to exonucleases reveals that the nucleotide present in the polymorphic site of the target molecule was complementary to that of the nucleotide derivative used in the reaction. This method has the advantage that it does not require the determination of large amounts of extraneous sequence data.

20

In another embodiment of the invention, a solution-based method is used for determining the identity of the nucleotide of a polymorphic site. Cohen, D. et al. (French Patent 2,650,840; PCT Appln. No. WO91/02087). As in the Mundy method of U.S. Pat. No. 4,656,127, a primer is employed that is complementary to allelic 25 sequences immediately 3^t to a polymorphic site. The method determines the identity of the nucleotide of that site using labeled dideoxynucleotide derivatives, which, if complementary to the nucleotide of the polymorphic site will become incorporated onto the terminus of the primer.

30

An alternative method, known as Genetic Bit Analysis or GBA TM is described by Goelet, P. et al. (PCT Appln. No. 92/15712). The method of Goelet, P. et al. uses

mixtures of labeled terminators and a primer that is complementary to the sequence 3' to a polymorphic site. The labeled terminator that is incorporated is thus determined by, and complementary to, the nucleotide present in the polymorphic site of the target molecule being evaluated. In contrast to the method of Cohen et al. 5 (French Patent 2,650,840; PCT Appln. No. WO91/02087) the method of Goelet, P. et al. is preferably a heterogeneous phase assay, in which the primer or the target molecule is immobilized to a solid phase.

Recently, several primer-guided nucleotide incorporation procedures for assaying 10 polymorphic sites in DNA have been described (Komher, J. S. et al., Nucl. Acids Res. 17:7779-7784 (1989); Sokolov, B. P., Nucl. Acids Res. 18:3671 (1990); Syvanen, A.-C., et al., Genomics 8:684-692 (1990), Kuppuswamy, M. N. et al., Proc. Natl. Acad. Sci. (U.S.A.) 88:1143-1147 (1991); Prezant, T. R. et al., Hum. Mutat. 1:159-164 (1992); Uguzzoli, L. et al., GATA 9:107-112 (1992); Nyren, P. et 15 al., Anal. Biochem. 208:171-175 (1993)). These methods differ from GBA TM in that they all rely on the incorporation of labeled deoxynucleotides to discriminate between bases at a polymorphic site. In such a format, since the signal is proportional to the number of deoxynucleotides incorporated, polymorphisms that occur in runs of the same nucleotide can result in signals that are proportional to the length of the run. 20 (Syvanen, A.-C., et al., Amer. J. Hum. Genet. 52:46-59 (1993)).

For determining the identity of the allelic variant of a polymorphic region located in 25 the coding region of a gene, yet other methods than those described above can be used. For example, identification of an allelic variant which encodes a mutated gene protein can be performed by using an antibody specifically recognizing the mutant protein in, e.g., immunohistochemistry or immunoprecipitation. Antibodies to wild-type gene protein are described, e.g., in Acton et al. (1999) Science 271:518 (anti-mouse gene antibody cross-reactive with human gene). Other antibodies to wild-type gene or mutated forms of gene proteins can be prepared according to methods known 30 in the art. Alternatively, one can also measure an activity of a gene protein, such as binding to a lipid or lipoprotein. Binding assays are known in the art and involve,

e.g., obtaining cells from a subject, and performing binding experiments with a labeled lipid, to determine whether binding to the mutated form of the receptor differs from binding to the wild-type of the receptor.

5 If a polymorphic region is located in an exon, either in a coding or non-coding region of the gene, the identity of the allelic variant can be determined by determining the molecular structure of the mRNA, pre-mRNA, or cDNA. The molecular structure can be determined using any of the above described methods for determining the molecular structure of the genomic DNA, e.g., sequencing and SSCP.

10

The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits, such as those described above, comprising at least one probe or primer nucleic acid described herein, which may be conveniently used, e.g., to determine whether a subject has or is at risk of developing a disease associated with a specific gene allelic variant.

15

Sample nucleic acid for using in the above-described diagnostic and prognostic methods can be obtained from any cell type or tissue of a subject. For example, a subject's bodily fluid (e.g. blood) can be obtained by known techniques (e.g. venipuncture) or from human tissues like heart (biopsies, transplanted organs). Alternatively, nucleic acid tests can be performed on dry samples (e.g. hair or skin). Fetal nucleic acid samples for prenatal diagnostics can be obtained from maternal blood as described in International Patent Application No. WO91/07660 to Bianchi. Alternatively, amniocytes or chorionic villi may be obtained for performing prenatal testing.

25

Diagnostic procedures may also be performed *in situ* directly upon tissue sections (fixed and/or frozen) of patient tissue obtained from biopsies or resections, such that no nucleic acid purification is necessary. Nucleic acid reagents may be used as probes and/or primers for such *in situ* procedures (see, for example, Nuovo, G. J.,

30

1992, PCR in situ hybridization: protocols and applications, Raven Press, New York).

In addition to methods which focus primarily on the detection of one nucleic acid
5 sequence, profiles may also be assessed in such detection schemes. Fingerprint profiles may be generated, for example, by utilizing a differential display procedure, Northern analysis and/or RT-PCR.

In practicing the present invention, the distribution of polymorphic patterns in a large
10 number of individuals exhibiting particular markers of cardiovascular status or drug response is determined by any of the methods described above, and compared with the distribution of polymorphic patterns in patients that have been matched for age, ethnic origin, and/or any other statistically or medically relevant parameters, who exhibit quantitatively or qualitatively different status markers. Correlations are
15 achieved using any method known in the art, including nominal logistic regression, chi square tests or standard least squares regression analysis. In this manner, it is possible to establish statistically significant correlations between particular polymorphic patterns and particular cardiovascular statuses (given in p values). It is further possible to establish statistically significant correlations between particular
20 polymorphic patterns and changes in cardiovascular status or drug response such as, would result, e.g., from particular treatment regimens. In this manner, it is possible to correlate polymorphic patterns with responsivity to particular treatments.

In another embodiment of the present invention two or more polymorphic regions are
25 combined to define so called 'haplotypes'. Haplotypes are groups of two or more SNPs that are functionally and/or spatially linked. It is possible to combine SNPs that are disclosed in the present invention either with each other or with additional polymorphic regions to form a haplotype. Haplotypes are expected to give better predictive/diagnostic information than a single SNP.

30 In a preferred embodiment of the present invention a panel of SNPs/haplotypes is defined that predicts the risk for CVD or drug response. This predictive panel is then

used for genotyping of patients on a platform that can genotype multiple SNPs at the same time (Multiplexing). Preferred platforms are e.g. gene chips (Affymetrix) or the Luminex LabMAP reader. The subsequent identification and evaluation of a patient's haplotype can then help to guide specific and individualized therapy.

5

For example the present invention can identify patients exhibiting genetic polymorphisms or haplotypes which indicate an increased risk for adverse drug reactions. In that case the drug dose should be lowered in a way that the risk for ADR is diminished. Also if the patient's response to drug administration is particularly high (or the patient is badly metabolizing the drug), the drug dose should be lowered to avoid the risk of ADR.

In turn if the patient's response to drug administration is low (or the patient is a particularly high metabolizer of the drug), and there is no evident risk of ADR, the drug dose should be raised to an efficacious level.

15 It is self evident that the ability to predict a patient's individual drug response should affect the formulation of a drug, i.e. drug formulations should be tailored in a way that they suit the different patient classes (low/high responder, poor/good metabolizer, ADR prone patients). Those different drug formulations may encompass different doses of the drug, i.e. the medicinal products contains low or high amounts 20 of the active substance. In another embodiment of the invention the drug formulation may contain additional substances that facilitate the beneficial effects and/or diminish the risk for ADR (Folkers et al. 1991, US Pat. 5,316,765).

Isolated Polymorphic Nucleic Acids, Probes, and Vectors

25

The present invention provides isolated nucleic acids comprising the polymorphic positions described herein for human genes; vectors comprising the nucleic acids; and transformed host cells comprising the vectors. The invention also provides probes which are useful for detecting these polymorphisms.

30

In practicing the present invention, many conventional techniques in molecular biology, microbiology, and recombinant DNA, are used. Such techniques are well known and are explained fully in, for example, Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory 5 Press, Cold Spring Harbor, New York; DNA Cloning: A Practical Approach, Volumes I and II, 1985 (D. N. Glover ed.); Oligonucleotide Synthesis, 1984, (M. L. Gait ed.); Nucleic Acid Hybridization, 1985, (Hames and Higgins); Ausubel et al., Current Protocols in Molecular Biology, 1997, (John Wiley and Sons); and Methods 10 in Enzymology Vol. 154 and Vol. 155 (Wu and Grossman, and Wu, eds., respectively).

Insertion of nucleic acids (typically DNAs) comprising the sequences in a functional surrounding like full length cDNA of the present invention into a vector is easily accomplished when the termini of both the DNAs and the vector comprise compatible restriction sites. If this cannot be done, it may be necessary to modify the 15 termini of the DNAs and/or vector by digesting back single-stranded DNA overhangs generated by restriction endonuclease cleavage to produce blunt ends, or to achieve the same result by filling in the single-stranded termini with an appropriate DNA polymerase.

Alternatively, any site desired may be produced, e.g., by ligating nucleotide 20 sequences (linkers) onto the termini. Such linkers may comprise specific oligonucleotide sequences that define desired restriction sites. Restriction sites can also be generated by the use of the polymerase chain reaction (PCR). See, e.g., Saiki et al., 1988, Science 239:48. The cleaved vector and the DNA fragments may also be 25 modified if required by homopolymeric tailing.

The nucleic acids may be isolated directly from cells or may be chemically 30 synthesized using known methods. Alternatively, the polymerase chain reaction (PCR) method can be used to produce the nucleic acids of the invention, using either chemically synthesized strands or genomic material as templates. Primers used for

PCR can be synthesized using the sequence information provided herein and can further be designed to introduce appropriate new restriction sites, if desirable, to facilitate incorporation into a given vector for recombinant expression.

- 5 The nucleic acids of the present invention may be flanked by native gene sequences, or may be associated with heterologous sequences, including promoters, enhancers, response elements, signal sequences, polyadenylation sequences, introns, 5'- and 3'- noncoding regions, and the like. The nucleic acids may also be modified by many means known in the art. Non-limiting examples of such modifications include
- 10 methylation, "caps", substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as, for example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, morpholines etc.) and with charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.). Nucleic acids may contain one or
- 15 more additional covalently linked moieties, such as, for example, proteins (e.g., nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), intercalators (e.g., acridine, psoralen, etc.), chelators (e.g., metals, radioactive metals, iron, oxidative metals, etc.), and alkylators. PNAs are also included. The nucleic acid may be derivatized by formation of a methyl or ethyl phosphotriester or an alkyl phosphoramidate linkage. Furthermore, the nucleic acid sequences of the present
- 20 invention may also be modified with a label capable of providing a detectable signal, either directly or indirectly. Exemplary labels include radioisotopes, fluorescent molecules, biotin; and the like.
- 25 The invention also provides nucleic acid vectors comprising the gene sequences or derivatives or fragments thereof of genes described in the Examples. A large number of vectors, including plasmid and fungal vectors, have been described for replication and/or expression in a variety of eukaryotic and prokaryotic hosts, and may be used for gene therapy as well as for simple cloning or protein expression. Non-limiting examples of suitable vectors include without limitation pUC plasmids, pET plasmids (Novagen, Inc., Madison, Wis.), or pRSET or pREP (Invitrogen, San Diego, Calif.),

and many appropriate host cells, using methods disclosed or cited herein or otherwise known to those skilled in the relevant art. The particular choice of vector/host is not critical to the practice of the invention.

5 Suitable host cells may be transformed/transfected/infected as appropriate by any suitable method including electroporation, CaCl_2 mediated DNA uptake, fungal or viral infection, microinjection, microprojectile, or other established methods. Appropriate host cells included bacteria, archebacteria, fungi, especially yeast, and plant and animal cells, especially mammalian cells. A large number of transcription
10 initiation and termination regulatory regions have been isolated and shown to be effective in the transcription and translation of heterologous proteins in the various hosts. Examples of these regions, methods of isolation, manner of manipulation, etc. are known in the art. Under appropriate expression conditions, host cells can be used as a source of recombinantly produced peptides and polypeptides encoded by genes
15 of the Examples. Nucleic acids encoding peptides or polypeptides from gene sequences of the Examples may also be introduced into cells by recombination events. For example, such a sequence can be introduced into a cell and thereby effect homologous recombination at the site of an endogenous gene or a sequence with substantial identity to the gene. Other recombination-based methods such as non-homologous recombinations or deletion of endogenous genes by homologous
20 recombination may also be used.

In case of proteins that form heterodimers or other multimers, both or all subunits have to be expressed in one system or cell.

25 The nucleic acids of the present invention find use as probes for the detection of genetic polymorphisms and as templates for the recombinant production of normal or variant peptides or polypeptides encoded by genes listed in the Examples.

30 Probes in accordance with the present invention comprise without limitation isolated nucleic acids of about 10-100 bp, preferably 15-75 bp and most preferably 17-25 bp

in length, which hybridize at high stringency to one or more of the polymorphic sequences disclosed herein or to a sequence immediately adjacent to a polymorphic position. Furthermore, in some embodiments a full-length gene sequence may be used as a probe. In one series of embodiments, the probes span the polymorphic positions in genes disclosed herein. In another series of embodiments, the probes correspond to sequences immediately adjacent to the polymorphic positions.

Polymorphic Polypeptides and Polymorphism-Specific Antibodies

10 The present invention encompasses isolated peptides and polypeptides encoded by genes listed in the Examples comprising polymorphic positions disclosed herein. In one preferred embodiment, the peptides and polypeptides are useful screening targets to identify cardiovascular drugs. In another preferred embodiments, the peptides and polypeptides are capable of eliciting antibodies in a suitable host animal that react specifically with a polypeptide comprising the polymorphic position and distinguish it from other polypeptides having a different sequence at that position.

20 Polypeptides according to the invention are preferably at least five or more residues in length, preferably at least fifteen residues. Methods for obtaining these polypeptides are described below. Many conventional techniques in protein biochemistry and immunology are used. Such techniques are well known and are explained in Immunochemical Methods in Cell and Molecular Biology, 1987 (Mayer and Waler, eds; Academic Press, London); Scopes, 1987, Protein Purification: Principles and Practice, Second Edition (Springer-Verlag, N.Y.) and Handbook of Experimental Immunology, 1986, Volumes I-IV (Weir and Blackwell eds.).

25 Nucleic acids comprising protein-coding sequences can be used to direct the ITT recombinant expression of polypeptides encoded by genes disclosed herein in intact cells or in cell-free translation systems. The known genetic code, tailored if desired for more efficient expression in a given host organism, can be used to synthesize oligonucleotides encoding the desired amino acid sequences. The polypeptides may

be isolated from human cells, or from heterologous organisms or cells (including, but not limited to, bacteria, fungi, insect, plant, and mammalian cells) into which an appropriate protein-coding sequence has been introduced and expressed. Furthermore, the polypeptides may be part of recombinant fusion proteins.

5

Peptides and polypeptides may be chemically synthesized by commercially available automated procedures, including, without limitation, exclusive solid phase synthesis, partial solid phase methods, fragment condensation or classical solution synthesis. The polypeptides are preferably prepared by solid phase peptide synthesis as described by Merrifield, 1963, J. Am. Chem. Soc. 85:2149.

10

Methods for polypeptide purification are well-known in the art, including, without limitation, preparative disc-gel electrophoresis, isoelectric focusing, HPLC, reversed-phase HPLC, gel filtration, ion exchange and partition chromatography, and countercurrent distribution. For some purposes, it is preferable to produce the polypeptide in a recombinant system in which the protein contains an additional sequence tag that facilitates purification, such as, but not limited to, a polyhistidine sequence. The polypeptide can then be purified from a crude lysate of the host cell by chromatography on an appropriate solid-phase matrix. Alternatively, antibodies produced against peptides encoded by genes disclosed herein, can be used as purification reagents. Other purification methods are possible.

15

The present invention also encompasses derivatives and homologues of the polypeptides. For some purposes, nucleic acid sequences encoding the peptides may be altered by substitutions, additions, or deletions that provide for functionally equivalent molecules, i.e., function-conservative variants. For example, one or more amino acid residues within the sequence can be substituted by another amino acid of similar properties, such as, for example, positively charged amino acids (arginine, lysine, and histidine); negatively charged amino acids (aspartate and glutamate); polar neutral amino acids; and non-polar amino acids.

20

25

30

The isolated polypeptides may be modified by, for example, phosphorylation, sulfation, acylation, or other protein modifications. They may also be modified with a label capable of providing a detectable signal, either directly or indirectly, including, but not limited to, radioisotopes and fluorescent compounds.

5

The present invention also encompasses antibodies that specifically recognize the polymorphic positions of the invention and distinguish a peptide or polypeptide containing a particular polymorphism from one that contains a different sequence at that position. Such polymorphic position-specific antibodies according to the present invention include polyclonal and monoclonal antibodies. The antibodies may be elicited in an animal host by immunization with peptides encoded by genes disclosed herein or may be formed by in vitro immunization of immune cells. The immuno-
10 genic components used to elicit the antibodies may be isolated from human cells or produced in recombinant systems. The antibodies may also be produced in
15 recombinant systems programmed with appropriate antibody-encoding DNA. Alternatively, the antibodies may be constructed by biochemical reconstitution of purified heavy and light chains. The antibodies include hybrid antibodies (i.e., containing two sets of heavy chain/light chain combinations, each of which recognizes a different antigen), chimeric antibodies (i.e., in which either the heavy
20 chains, light chains, or both, are fusion proteins), and univalent antibodies (i.e., comprised of a heavy chain/light chain complex bound to the constant region of a second heavy chain). Also included are Fab fragments, including Fab' and F(ab)₂ fragments of antibodies. Methods for the production of all of the above types of antibodies and derivatives are well-known in the art and are discussed in
25 more detail below. For example, techniques for producing and processing polyclonal antisera are disclosed in Mayer and Walker, 1987, Immunochemical Methods in Cell and Molecular Biology, (Academic Press, London). The general methodology for making monoclonal antibodies by hybridomas is well known. Immortal antibody-producing cell lines can be created by cell fusion, and also by other techniques such
30 as direct transformation of B lymphocytes with oncogenic DNA, or transfection with Epstein-Barr virus. See, e.g., Schreier et al., 1980, Hybridoma Techniques; U.S. Pat.

Nos. 4,341,761; 4,399,121; 4,427,783; 4,444,887; 4,466,917; 4,472,500; 4,491,632; and 4,493,890. Panels of monoclonal antibodies produced against peptides encoded by genes disclosed herein can be screened for various properties; i.e. for isotype, epitope affinity, etc.

5

The antibodies of this invention can be purified by standard methods, including but not limited to preparative disc-gel electrophoresis, isoelectric focusing, HPLC, reversed-phase HPLC, gel filtration, ion exchange and partition chromatography, and countercurrent distribution. Purification methods for antibodies are disclosed, e.g., in

10

The Art of Antibody Purification, 1989, Amicon Division, W. R. Grace & Co. General protein purification methods are described in Protein Purification: Principles and Practice, R. K. Scopes, Ed., 1987, Springer-Verlag, New York, N.Y.

15

Methods for determining the immunogenic capability of the disclosed sequences and the characteristics of the resulting sequence-specific antibodies and immune cells are well-known in the art. For example, antibodies elicited in response to a peptide comprising a particular polymorphic sequence can be tested for their ability to specifically recognize that polymorphic sequence, i.e., to bind differentially to a peptide or polypeptide comprising the polymorphic sequence and thus distinguish it from a similar peptide or polypeptide containing a different sequence at the same position.

20

Kits

As set forth herein, the invention provides diagnostic methods, e.g., for determining the identity of the allelic variants of polymorphic regions present in the gene loci of genes disclosed herein, wherein specific allelic variants of the polymorphic region are associated with cardiovascular diseases. In a preferred embodiment, the diagnostic kit can be used to determine whether a subject is at risk of developing a cardiovascular disease. This information could then be used, e.g., to optimize treatment of such individuals.

10:

In preferred embodiments, the kit comprises a probe or primer which is capable of hybridizing to a gene and thereby identifying whether the gene contains an allelic variant of a polymorphic region which is associated with a risk for cardiovascular disease. The kit preferably further comprises instructions for use in diagnosing a subject as having, or having a predisposition, towards developing a cardiovascular disease. The probe or primers of the kit can be any of the probes or primers described in this file.

Preferred kits for amplifying a region of a gene comprising a polymorphic region of interest comprise one, two or more primers.

Antibody-based diagnostic methods and kits:

The invention also provides antibody-based methods for detecting polymorphic patterns in a biological sample. The methods comprise the steps of: (i) contacting a sample with one or more antibody preparations, wherein each of the antibody preparations is specific for a particular polymorphic form of the proteins encoded by genes disclosed herein, under conditions in which a stable antigen-antibody complex can form between the antibody and antigenic components in the sample; and (ii) detecting any antigen-antibody complex formed in step (i) using any suitable means

known in the art, wherein the detection of a complex indicates the presence of the particular polymorphic form in the sample.

Typically, immunoassays use either a labelled antibody or a labelled antigenic component (e.g., that competes with the antigen in the sample for binding to the antibody). Suitable labels include without limitation enzyme-based, fluorescent, chemiluminescent, radioactive, or dye molecules. Assays that amplify the signals from the probe are also known, such as, for example, those that utilize biotin and avidin, and enzyme-labelled immunoassays, such as ELISA assays.

10

The present invention also provides kits suitable for antibody-based diagnostic applications. Diagnostic kits typically include one or more of the following components:

15

(i) Polymorphism-specific antibodies. The antibodies may be pre-labelled; alternatively, the antibody may be unlabelled and the ingredients for labelling may be included in the kit in separate containers, or a secondary, labelled antibody is provided; and

20

(ii) Reaction components: The kit may also contain other suitably packaged reagents and materials needed for the particular immunoassay protocol, including solid-phase matrices, if applicable, and standards.

25

The kits referred to above may include instructions for conducting the test. Furthermore, in preferred embodiments, the diagnostic kits are adaptable to high-throughput and/or automated operation.

Drug Targets and Screening Methods

30

According to the present invention, nucleotide sequences derived from genes disclosed herein and peptide sequences encoded by genes disclosed herein, particularly

those that contain one or more polymorphic sequences, comprise useful targets to identify cardiovascular drugs, i.e., compounds that are effective in treating one or more clinical symptoms of cardiovascular disease. Furthermore, especially when a protein is a multimeric protein that are build of two or more subunits, is a combination of different polymorphic subunits very useful.

10 Drug targets include without limitation (i) isolated nucleic acids derived from the genes disclosed herein, and (ii) isolated peptides and polypeptides encoded by genes disclosed herein, each of which comprises one or more polymorphic positions.

15

In vitro screening methods:

20

In one series of embodiments, an isolated nucleic acid comprising one or more polymorphic positions is tested in vitro for its ability to bind test compounds in a sequence-specific manner. The methods comprise:

(i) providing a first nucleic acid containing a particular sequence at a polymorphic position and a second nucleic acid whose sequence is identical to that of the first nucleic acid except for a different sequence at the same polymorphic position;

(ii) contacting the nucleic acids with a multiplicity of test compounds under conditions appropriate for binding; and

(iii) identifying those compounds that bind selectively to either the first or second nucleic acid sequence.

25 Selective binding as used herein refers to any measurable difference in any parameter of binding, such as, e.g., binding affinity, binding capacity, etc.

In another series of embodiments, an isolated peptide or polypeptide comprising one or more polymorphic positions is tested in vitro for its ability to bind test compounds in a sequence-specific manner. The screening methods involve:

- 5 (i) providing a first peptide or polypeptide containing a particular sequence at a polymorphic position and a second peptide or polypeptide whose sequence is identical to the first peptide or polypeptide except for a different sequence at the same polymorphic position;
- 10 (ii) contacting the polypeptides with a multiplicity of test compounds under conditions appropriate for binding; and
- 15 (iii) identifying those compounds that bind selectively to one of the nucleic acid sequences.

- 15 In preferred embodiments, high-throughput screening protocols are used to survey a large number of test compounds for their ability to bind the genes or peptides disclosed above in a sequence-specific manner.
- 20 Test compounds are screened from large libraries of synthetic or natural compounds. Numerous means are currently used for random and directed synthesis of saccharide, peptide, and nucleic acid based compounds. Synthetic compound libraries are commercially available from Maybridge Chemical Co. (Trevillet, Cornwall, UK), Comgenex (Princeton, N.J.), Brandon Associates (Merrimack, N.H.), and Microsource (New Milford, Conn.). A rare chemical library is available from Aldrich (Milwaukee, Wis.). Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available from e.g. Pan Laboratories (Bothell, Wash.) or MycoSearch (N.C.), or are readily producible. Additionally, natural and synthetically produced libraries and compounds are readily modified through conventional chemical, physical, and biochemical means.
- 30

In vivo screening methods:

Intact cells or whole animals expressing polymorphic variants of genes disclosed herein can be used in screening methods to identify candidate cardiovascular drugs.

5

In one series of embodiments, a permanent cell line is established from an individual exhibiting a particular polymorphic pattern. Alternatively, cells (including without limitation mammalian, insect, yeast, or bacterial cells) are programmed to express a gene comprising one or more polymorphic sequences by introduction of appropriate

10 DNA. Identification of candidate compounds can be achieved using any suitable assay, including without limitation (i) assays that measure selective binding of test compounds to particular polymorphic variants of proteins encoded by genes disclosed herein; (ii) assays that measure the ability of a test compound to modify (i.e., inhibit or enhance) a measurable activity or function of proteins encoded by
15 genes disclosed herein; and (iii) assays that measure the ability of a compound to modify (i.e., inhibit or enhance) the transcriptional activity of sequences derived from the promoter (i.e., regulatory) regions of genes disclosed herein.

20 In another series of embodiments, transgenic animals are created in which (i) one or more human genes disclosed herein, having different sequences at particular polymorphic positions are stably inserted into the genome of the transgenic animal; and/or (ii) the endogenous genes disclosed herein are inactivated and replaced with human genes disclosed herein, having different sequences at particular polymorphic positions. See, e.g., Coffman, Semin. Nephrol. 17:404, 1997; Esther et al., Lab.
25 Invest. 74:953, 1996; Murakami et al., Blood Press. Suppl. 2:36, 1996. Such animals can be treated with candidate compounds and monitored for one or more clinical markers of cardiovascular status.

The following are intended as non-limiting examples of the invention.

Material and Methods

Genotyping of patient DNA with the PyrosequencingTM Method as described in the patent application WO 9813523:

5

First a PCR is set up to amplify the flanking regions around a SNP. Therefor 2 ng of genomic DNA (patient sample) are mixed with a primerset (20 – 40 pmol) producing a 75 to 320 bp PCR fragment with 0,3 to 1 U Qiagens Hot Star Taq PolymeraseTM in a total volume of 20 µL. One primer is biotinylated depending on the direction of the sequencing primer. To force the biotinylated primer to be incorporated it is used 0,8 fold.

10

15

For primer design, programmes like Oligo 6TM (Molecular Biology Insights) or Primer SelectTM (DNAStar) are used. PCR setup is performed by a BioRobot 3000TM from Qiagen. PCR takes place in T1 or Tgradient ThermocyclersTM from Biometra. The whole PCR reaction is transferred into a PSQ plateTM (Pyrosequencing) and prepared using the Sample Prep ToolTM and SNP Reagent KitTM from Pyrosequencing according to their instructions.

20

Preparation of template for PyrosequencingTM:

Sample preparation using PSQ 96 Sample Prep Tool:

1. Mount the PSQ 96 Sample Prep Tool Cover onto the PSQ 96 Sample Prep

25

Tool as follows: Place the cover on the desk, retract the 4 attachment rods by separating the handle from the magnetic rod holder, fit the magnetic rods into the holes of the cover plate, push the handle downward until a click is heard.

The PSQ 96 Sample Prep Tool is now ready for use.

2. To transfer beads from one plate to another, place the covered tool into the

30

PSQ 96 Plate containing the samples and lower the magnetic rods by separating the handle from the magnetic rod holder. Move the tool up and

down a few times then wait for 30-60 seconds. Transfer the beads into a new PSQ 96 plate containing the solution of choice.

3. Release the beads by lifting the magnetic rod holder, bringing it together with the handle. Move the tool up and down a few times to make sure that the beads are released.

5 All steps are performed at room temperature unless otherwise stated.

10 **Immobilization of PCR product:**

Biotinylated PCR products are immobilized on streptavidin-coated DynabeadsTM M-280 Streptavidin. Parallel immobilization of several samples are performed in the PSQ 96 Plate.

- 15 1. Mix PCR product, 20 µl of a well optimized PCR, with 25 µl 2X BW-buffer II. Add 60-150 µg Dynabeads: It is also possible to add a mix of Dynabeads and 2X BW-buffer II to the PCR product yielding a final BW-buffer II concentration of approximately 1x.

2. Incubate at 65°C for 15 min agitation constantly to keep the beads dispersed. 20 For optimal immobilization of fragments longer than 300 bp use 30 min incubation time.

Strand separation:

- 25 4. For strand separation, use the PSQ 96 Sample Prep Tool to transfer the beads with the immobilized sample to a PSQ 96 Plate containing 50 µl 0.50 M NaOH per well. Release the beads.

5. After approximately 1 min, transfer the beads with the immobilized strand to a PSQ 96 Plate containing 99 µl 1x Annealing buffer per well and mix thoroughly.

- 30 6. Transfer the beads to a PSQ 96 Plate containing 45 µl of a mix of 1x Annealing buffer and 3-15 pmoles sequencing primer per well.

7. Heat at 80°C for 2 minutes in the PSQ 96 Sample Prep Thermoplate and move to room temperature.
8. After reaching room temperature, continue with the sequencing reaction.

5

Sequencing reaction:

1. Choose the method to be used ("SNP Method") and enter relevant information in the PSQ 96 Instrument Control software.
2. Place the cartridge and PSQ 96 Plate in the PSQ 96 Instrument.
- 10 3. Start the run.

Genotyping using the ABI 7700/7900 instrument (TaqMan)

15 SNP genotyping using the TaqMan (Applied Biosystems/Perkin Elmer) was performed according to the manufacturer's instructions. The TaqMan assay is discussed by Lee et al., Nucleic Acids Research 1993, 21: 3761-3766.

20 **Genotyping with a service contractor:**

Qiagen Genomics, formerly Rapigene, is a service contractor for genotyping SNPs in patient samples. Their method is based on a primer extension method where two complementary primers are designed for each genotype that are labeled with different tags. Depending on the genotype only one primer will be elongated together with a certain tag. This tag can be detected with mass spectrometry and is a measure for the respective genotype. The method is described in the following patent: "Detection and identification of nucleic acid molecules - using tags which may be detected by non-fluorescent spectrometry or potentiometry" (WO 9727325).

Examples

To exemplify the present invention and its utility baySNP 28 will be used in the following:

5.

baySNP 28 is a C to T polymorphism and presumably resides in the gene of the human acidic 82 kDa protein (information taken from table 3). baySNP 28 was genotyped in various patient cohorts using the primers from table 2. As a result the following number of patients carrying different genotypes were found (information combined from tables 3 and 5a):

10.

baySNP	Cohort	Total	Genotype 11 "CC"	Genotype 12 "CT"	Genotype 22 "TT"
28	HELD_FEM_HIRESP	12	1	2	9
28	HELD_FEM_LORESP	22	3	12	7

When comparing the number of female patients exhibiting a high response to statin therapy (HELD_FEM_HIRESP) with the control cohort (HELD_FEM_LORESP) it appears that the number of low responders carrying the CT genotype is increased. This points to a lower statin response among female individuals with the CT genotype. Applying statistical tests on those findings the following p-values were obtained (data taken from table 5b):

15

20

BAYSNP	COMPARISON	GTYPE CPVAL	GTYPE XPVAL	GTYPE LRPVAL
28	HELD_FEM_EFF	0,0506	0,0508	0,0442

25

As at least one of the GTYPE p values is below 0,05 the association of genotype and statin response phenotype is regarded as statistically significant. I.e. the analysis of a patient's genotype can predict the response to statin therapy. In more detail one can calculate the relative risk to exhibit a certain statin response phenotype when carrying a certain genotype (data taken from table 6a):

BAYSNP	COMPARISON	GTYPE1	GTYPE2	GTYPE3	RR1	RR2	RR3
28	HELD_FEM_EFF	CC	CT	TT	0,68	0,29	3,38

In case of baySNP 28 the risk to exhibit a high responder phenotype is 3,38 times higher when carrying the TT genotype. This indicates that a TT polymorphism in baySNP 28 is an independent risk factor for high statin response in females. On the other hand carriers of a CT or CC genotype have a reduced risk of being a high responder.

In addition statistical associations can be calculated on the basis on alleles. This calculation would identify risk alleles instead of risk genotypes.

In case of baySNP 28 the following allele counts were obtained (data combined from tables 3 and 5a):

baySNP	Cohort	Total	Allele 1 "C"	Allele 2 "T"
28	HELD_FEM_HIRESP	12	4	20
28	HELD_FEM_LORESP	22	18	26

15

When comparing the number of female patients with high statin response (HELD_FEM_HIRESP) with the control cohort (HELD_FEM_LORESP) it appears that the number of high responders carrying the T allele is increased, whereas the number of high responders carrying the C allele is diminished. This points to a higher statin response among female individuals with the T allele. Applying statistical tests on those findings the following p-values were obtained (data taken from table 5b):

BAYSNP	COMPARISON	ALLELE CPVAL	ALLELE XPVAL	ALLELE LRPVAL
28	HELD_FEM_EFF	0,0411	0,0579	0,0349

As at least one of the ALLELE p values is below 0,05 the association of allele and statin response phenotype is regarded as statistically significant (in this example significant p values were obtained from two statistical tests). I.e. also the analysis of a patient's alleles from baySNP 28 can predict the extend of statin response. In more detail one can calculate the relative risk to exhibit a certain statin response phenotype when carrying a certain allele (data taken from table 6b):

baySNP	Allele 1	Allele 2	COMPARISON	RR1	RR2
28	C	T	HELD_FEM_EFF	0,42	2,39

- 10 In case of baySNP 28 the risk to exhibit a high responder phenotype is 2,39 times higher when carrying the T allele. This indicates that the T allele of baySNP28 is an independent risk factor for a high statin response in females. In other words those patients should receive lower doses of statins in order to avoid ADR. However due to their 'high responder' phenotype they will still benefit from the drug. In turn carriers of the C allele should receive higher drug doses in order to experience a benefical therapeutic effect.
- 15

- 20 Another example is baySNP 29, which is taken to exemplify polymorphisms relevant for adverse drug reactions. baySNP 29 was found significant when comparing male patients with severe ADR to the respective controls (as defined in table 1b).

The relative risk ratios for the genotypes AA, AG and GG were as follows (data taken from table 6a):

BAYSNP	COMPARISON	GTYPE1	GTYPE2	GTYPE3	RR1	RR2	RR3
29	HELD_MAL_ADR5ULN	AA	AG	GG	3,15	0,66	0,32

In this case male patients carrying the AA genotype have a 3,15 times higher risk to suffer from ADR. In other words those patients should either receive lower doses of statins or switch to an alternative therapy in order to avoid ADR. On the other hand male patients with AG or GG genotypes appear to be more resistant to ADR and hence better tolerate statin therapy.

5

As can be seen from the following tables some of the associations that are disclosed in the present invention are indicative for more than one phenotype. baySNP 1837 is for example linked to ADR, but also to the risk to suffer from CVD (table 6).

10

Table 1a Definition of "good" and "bad" serum lipid levels

	"Good"	"Bad"
LDL-Cholesterol [mg/dL]	125 -150	170 - 200
Cholesterol [mg/dL]	190 - 240	265 - 315
HDL-Cholesterol [mg/dL]	60 -105	30 - 55
Triglycerides [mg/dL]	45 - 115	170 – 450

Table 1b Definition of drug response phenotypes

Low responder	Decrease of serum LDL of at least 10% and at most 50% upon administration of 0.8 mg Cerivastatin (female patients)
High responder	Decrease of serum LDL of at least 50% upon administration of 0.4 mg Cerivastatin (female patients)
Very low responder	Decrease of serum LDL of at least 10% and at most 35% upon administration of 0.8 mg Cerivastatin (female patients)
Very high responder	Decrease of serum LDL of at least 55% upon administration of 0.4 mg Cerivastatin (female patients)

Ultra low responder	Decrease of serum LDL of at least 10% and at most 25% upon administration of 0.8 mg Cerivastatin (female patients)
Ultra high responder	Decrease of serum LDL of at least 60% upon administration of 0.4 mg Cerivastatin (female patients)
Tolerant patient	No diagnosis of muscle cramps, muscle pain, muscle weakness, myalgia or myopathy AND serum CK levels below 70 mg/dl in women and below 80 mg/dl in men.
ADR patient (CK increase at least 2×ULN)	Diagnosis of muscle cramps, muscle pain, muscle weakness, myalgia or myopathy OR serum CK levels higher than 140 mg/dl in women and 160 mg/dl in men.
Advanced ADR patient [ADR3] (advanced CK increase, at least 3×ULN)*	Serum CK levels higher than 210 mg/dl in women and 240 mg/dl in men
Severe ADR patient [ADR5] (severe CK increase, at least 5×ULN)*	Serum CK levels higher than 350 mg/dl in women and 400 mg/dl in men

*: When assembling the cohorts for advanced and severe ADR we focused on the CK serum levels as those provide a more independent measure of statin related ADR.

Table 1c Definition of "high" and "low" serum HDL cholesterol levels

	Male individuals	Female individuals
High* HDL-Cholesterol [mg/dL]	>=80	>=104
Low* HDL-Cholesterol [mg/dL]	<=35	<=37

5 An informed consent was signed by the patients and control people. Blood was taken by a physician according to medical standard procedures.

Samples were collected anonymous and labeled with a patient number.

DNA was extracted using kits from Qiagen.

Table 2a Oligonucleotide primers used for genotyping using mass spectrometry

10 The baySNP number refers to an internal numbering of the PA SNPs. Primer sequences are listed for preamplification of the genomic fragments (primers EF and ER) and for subsequent allele specific PCR of the SNP.

baySNP	SNP	Name	Sequence
28	C137T	CF	gggacggtcggtagatTCTAGAATTGTGCTTCCC
28	C137T	EF	TGTCCAGTGTTAGGAAAAA
28	C137T	ER	GACGATGCCTTCAGCACAGATGTGGCTTCTGTATGAG
28	C137T	TF	gctggctcggtcaagaTCTAGAATTGTGCTTCCT
29	A464G	AF	gggacggtcggtagatCATCGGTCA GTGTCCCCA
29	A464G	EF	GATGTC TGTCTCCTTGATGT
29	A464G	ER	GACGATGCCTTCAGCACAAATGTGGGGTTTATTT
29	A464G	GF	gctggctcggtcaagaCATCGGTCA GTGTCCCCG
52	C397G	CR	gggacggtcggtagatTATTTATAATGCAAAG
52	C397G	EF	GACGATGCCTTCAGCACAGTGAATTGCCAGATTAGTG
52	C397G	ER	TCTAAAGTGCTGGATTG
52	C397G	GR	gctggctcggtcaagaTATTTATAATGCAAAC
56	A429G	AF	gggacggtcggtagatAAGGTCTTGTACGTGTA

baySNP	SNP	Name	Sequence
56	A429G	EF	CCAGGTACTGCCTTACAAA
56	A429G	ER	GACGATGCCTTCAGCACAGCTCCAAAATAATCACTC
56	A429G	GF	gctggctcggtcaagaAAGGTCTTGTACGTGTG
89	A159G	AR	gggacggtcggtagatTGGAGTCGGGGAGTCAT
89	A159G	EF	GACGATGCCTTCAGCACATAGTTCAAGGGTAAAGGA
89	A159G	ER	GAGGACGAGATGTAAGAG
89	A159G	GR	gctggctcggtcaagaTGGAGTCGGGGAGTCAC
90	C154T	CF	gggacggtcggtagatCAGCGCATCCTGAACCAC
90	C154T	EF	GCTGGAACGAGTTCATCCT
90	C154T	ER	GACGATGCCTTCAGCACAGGACCCCACCTTCTTGT
90	C154T	TF	gctggctcggtcaagaCAGCGCATCCTGAACCAC
99	C58T	CR	gggacggtcggtagatTCCTGCTCTTCTCTAG
99	C58T	EF	GACGATGCCTTCAGCACACACTGACTGCTTACTCTACC
99	C58T	ER	TACTGTGTCTCAGCTCCA
99	C58T	TR	gctggctcggtcaagaTCCTGCTCTTCTCTAA
140	C468T	CR	gggacggtcggtagatGTGAATCCCAATACGAAG
140	C468T	EF	GACGATGCCTTCAGCACATAAAAATAACCAGGTACTCCA
140	C468T	ER	GATGAGTCCTCACCAAACATACA
140	C468T	TR	gctggctcggtcaagaGTGAATCCCAATACGAAA
152	A587G	AF	gggacggtcggtagatGGTGGGAGGTTCCAGCCA
152	A587G	EF	GCAGGAAGAAAGCTAGAA
152	A587G	ER	GACGATGCCTTCAGCACAAAGGCAGGATAATGACAAC
152	A587G	GF	gctggctcggtcaagaGGTGGGAGGTTCCAGCCG
214	A209G	AF	gggacggtcggtagatCATTCCACCTCACCAAA
214	A209G	EF	AGGTATTCCCGGCGTTTC
214	A209G	ER	GACGATGCCTTCAGCACATGTTGTGCGTCTGCTTCC
214	A209G	GF	gctggctcggtcaagaCATTCCACCTCACCAAG
221	C339G	CF	gggacggtcggtagatTGTGAAGAACTGTTGCTC
221	C339G	EF	CTGAAGCTCATCTGCCTTCT
221	C339G	ER	GACGATGCCTTCAGCACATCCCCCTCCTTACCT
221	C339G	GF	gctggctcggtcaagaTGTGAAGAACTGTTGCTG

baySNP	SNP	Name	Sequence
224	C189T	CR	gggacggtcggtagatGCCCGCTTTCTTCATCG
224	C189T	EF	GACGATGCCTTCAGCACACTGTCTCAAGGGCTTACAC
224	C189T	ER	TCCAACCTCAGGCAAAAC
224	C189T	TR	gctggctcggtcaagaGCCCGCTTTCTTCATCA
294	C465T	CR	gggacggtcggtagatCCCAAGGCCAACAGGGAG
294	C465T	EF	GACGATGCCTTCAGCACAGCATTCTATGCCAGTGTTC
294	C465T	ER	ATCCATCCCATCCTGTGT
294	C465T	TR	gctggctcggtcaagaCCCAAGGCCAACAGGGAA
307	C215T	CR	gggacggtcggtagatGAGTGGGTGCTGTTCCCG
307	C215T	EF	GACGATGCCTTCAGCACAGTTACTGCCTCTCTGACC
307	C215T	ER	AGTGTGACCTGCTCTCTT
307	C215T	TR	gctggctcggtcaagaGAGTGGGTGCTGTTCCCA
411	A369T	ER	gacgatgccttcagcacaAACACATTCCCCCTCTAC
411	A369T	EF	GTCTCTATTCCAAGCCAAG
411	A369T	AF	gggacggtcggtagatCCCGCTCCAGCTCCTCA
411	A369T	TF	gctggctcggtcaagaCCCGCTCCAGCTCCTCT
449	C323G	CR	gggacggtcggtagatCCGCTCTGCTTCTGCTG
449	C323G	EF	GACGATGCCTTCAGCACACAAGGAGAAGAGGGAGGAGA
449	C323G	ER	GGAGCACGTAAGGAGAAA
449	C323G	GR	gctggctcggtcaagaCCGCTCTGCTTCTGCTC
466	C123T	CF	gggacggtcggtagatGGCCAGGGGCTGGAGGGC
466	C123T	EF	TCTTCAGTTCTCTCAGCTTC
466	C123T	ER	GACGATGCCTTCAGCACATCACTAGGGCTCTTACCC
466	C123T	TF	gctggctcggtcaagaGGCCAGGGGCTGGAGGGT
472	A497G	AR	gggacggtcggtagatTCCTCCCGCTGCTTCAGT
472	A497G	EF	GACGATGCCTTCAGCACATCACTTACCCATCATACTCTT TTC
472	A497G	ER	AATCCTGCCTCCACCTT
472	A497G	GR	gctggctcggtcaagaTCCTCCCGCTGCTTCAGC
542	A402G	AR	gggacggtcggtagatAGAAATTCCCTCCCAACT
542	A402G	EF	GACGATGCCTTCAGCACATGATTGAGCCAGTTGTT

baysNP	SNP	Name	Sequence
542	A402G	ER	GGGGTGTATTTGAGAGTG
542	A402G	GR	gctggctcggtcaagaAGAAATTCCCTCCCAACC
739	C87G	CR	gggacggtcggtagatGCTGGTTGACTGGACGG
739	C87G	EF	GACGATGCCTTCAGCACACCTGGTATAATCCTTCC
739	C87G	ER	AGGCAACCTAATCCACTT
739	C87G	GR	gctggctcggtcaagaGCTGGTTGACTGGACGC
821	A140C	AF	gggacggtcggtagatAGTGCTGTGATACTGGA
821	A140C	CF	gctggctcggtcaagaAGTGCTGTGATACTGGC
821	A140C	EF	ACACCCACAAAACAAGAA
821	A140C	ER	GACGATGCCTTCAGCACAGGAACAAGGACATAAAAGAG
1005	A257G	AR	gggacggtcggtagatAGGAAATGTTAGCCCTGT
1005	A257G	EF	GACGATGCCTTCAGCACACTCCACTTCTCTATGCCTC
1005	A257G	ER	GTCCCCAGCTATGTATTGT
1005	A257G	GR	gctggctcggtcaagaAGGAAATGTTAGCCCTGC
1055	A287T	AF	gggacggtcggtagatCTCAGGGAGGGAGAGAGA
1055	A287T	EF	GGGACAGACAGACAGACA
1055	A287T	ER	GACGATGCCTTCAGCACACAACTCCTCTTCAGCAC
1055	A287T	TF	gctggctcggtcaagaCTCAGGGAGGGAGAGAGT
1056	A354G	AR	gggacggtcggtagatGCGGCTGCCCGTCCTGT
1056	A354G	EF	GACGATGCCTTCAGCACAGTGTCTATGTGTCTGTGT
1056	A354G	ER	CGGACTTCTCCTCTTGT
1056	A354G	GR	gctggctcggtcaagaGCGGCTGCCCGTCCTGC
1085	A251G	EF	TAGGGTAAGCAGCAAGAG
1085	A251G	ER	CACAAGGCAAGAGATAACA
1085	A251G	AF	gggacggtcggtagatCAGGCAAGATAGACAGCA
1085	A251G	GF	gctggctcggtcaagaCAGGCAAGATAGACAGCG
1086	A104G	EF	GTGCCCATACGAACAGAATAG
1086	A104G	ER	TGCCAAGTACCCCAAGAG
1086	A104G	AR	gggacggtcggtagatCCATTCCCTCCCCAGACAT
1086	A104G	GR	gctggctcggtcaagaCCATTCCCTCCCCAGACAC
1092	C1687	CF	gggacggtcggtagatCGTGCGAGCAGCGAAAGC

baySNP	SNP	Name	Sequence
	G		
1092	C1687	EF	CCAGAGAGAAGTCGAGGAAGAGA
	G		
1092	C1687	ER	GACGATGCCTTCAGCACAGTCACCCCCAAAAGCAGG
	G		
1092	C1687	GF	gctggctcggtcaagaCGTGCAGCAGCGAAAGG
	G		
1096	G454T	EF	GACGATGCCTTCAGCACACTTTCCCTAGCCCAC
1096	G454T	ER	AAGTGATGTAACCCTCCTCTC
1096	G454T	GR	gggacggtcggtagatTCAGCTATAAAATAGGGCC
1096	G454T	TR	gctggctcggtcaagaTCAGCTATAAAATAGGGCA
1101	C249T	CR	gggacggtcggtagatTGATGGGGGTGCCAAGG
1101	C249T	EF	GACGATGCCTTCAGCACAGCTTTGCTTCC
1101	C249T	ER	CACTGGGGTCCTCTTAC
1101	C249T	TR	gctggctcggtcaagaTGATGGGGGTGCCAAGA
1204	A307G	AR	gggacggtcggtagatCAAGGGCACTCACATTAT
1204	A307G	EF	GACGATGCCTTCAGCACAGCTTGCCTGTTCC
1204	A307G	ER	TTTCCCTCTGCCCCCT
1204	A307G	GR	gctggctcggtcaagaCAAGGGCACTCACATTAC
1504	C180T	CF	gggacggtcggtagatGTGACTTTGGTTCCCAC
1504	C180T	EF	AACTCGGGTCACTGGTCT
1504	C180T	ER	GACGATGCCTTCAGCACACAGCGGGTATGGAGGATG
1504	C180T	TF	gctggctcggtcaagaGTGACTTTGGTTCCCAT
1511	G153T	EF	ACACCAGTTCTCCCTCCT
1511	G153T	ER	GACGATGCCTTCAGCACACCCACCTTCCTAATCCT
1511	G153T	GF	gggacggtcggtagatTTGGGACTCTGCGTCAAG
1511	G153T	TF	gctggctcggtcaagaTTGGGACTCTGCGTCAAT
1524	A284C	AF	gggacggtcggtagatCTCTCAAAGCCCACACAA
1524	A284C	CF	gctggctcggtcaagaCTCTCAAAGCCCACACAC
1524	A284C	EF	AGAAAAAGAAAAGGAAAAAGA
1524	A284C	ER	GACGATGCCTTCAGCACAGGAAAGTTACAAGGCTATGA

baySNP	SNP	Name	Sequence
1556	C367G	CR	gggacggtcggtagatACCTGCCTCTAAGGTCTG
1556	C367G	EF	GACGATGCCTTCAGCACAAAGGAGAACAGTTCAAGG
1556	C367G	ER	ACAGTTGCCAGAGAAAAG
1556	C367G	GR	gctggctcggtcaagaACCTGCCTCTAAGGTCTC
1561	A251C	EF	TCACTTGCCTCTACTCCA
1561	A251C	ER	ATACCAGAAAGACTAAAGCTCC
1561	A251C	AF	gggacggtcggtagatGGGTGAGCTCTGTGGGCA
1561	A251C	CF	gctggctcggtcaagaGGGTGAGCTCTGTGGGCC
1582	C389T	CR	gggacggtcggtagatCCAAGGGTTATGGCAGGG
1582	C389T	EF	GACGATGCCTTCAGCACACCTGACTATTGGGTTGTG
1582	C389T	ER	ATCGCTCTCTGCTTCTGCT
1582	C389T	TR	gctggctcggtcaagaCCAAGGGTTATGGCAGGA
1638	A443G	AR	gggacggtcggtagatCCAAAACCCCAGCGCTGT
1638	A443G	EF	GACGATGCCTTCAGCACACTCTTATCCTGCTTATGGT
1638	A443G	ER	CCAAGCTCACTCTGTAGG
1638	A443G	GR	gctggctcggtcaagaCCAAAACCCCAGCGCTGC
1662	C251T	EF	AATAACAATGGAAGCCAAG
1662	C251T	ER	CCTAACATCGAACAGAAAGG
1662	C251T	CF	gggacggtcggtagatCCAGTCTCCATCCACTTC
1662	C251T	TF	gctggctcggtcaagaCCAGTCTCCATCCACTTT
1714	A376G	AF	gggacggtcggtagatTGAACGGCATGACGGGGA
1714	A376G	EF	AAGTGTTCCTGCTGTGCCT
1714	A376G	ER	GACGATGCCTTCAGCACACAAGTCCTGGTTTCCATC
1714	A376G	GF	gctggctcggtcaagaTGAACGGCATGACGGGG
1722	C89T	CF	gggacggtcggtagatACCCCAGGATGCCACAC
1722	C89T	EF	GTTTATCCTCCTCATGTCC
1722	C89T	ER	GACGATGCCTTCAGCACAGTTACCTTCCACCTCTC
1722	C89T	TF	gctggctcggtcaagaACCCCAGGATGCCACAT
1757	A210G	AF	gggacggtcggtagatGGAAACAAACCAAAATGA
1757	A210G	EF	CCAGCACCCAAAATAAGA
1757	A210G	ER	GACGATGCCTTCAGCACATAAGTTGAAGCCCTCCC

baySNP	SNP	Name	Sequence
1757	A210G	GF	gctggctcggtcaagaGGAAACAAACCAAAATGG
1765	A240G	AF	gggacggtcggtagatGGCTTCACGGAGGAAGAA
1765	A240G	EF	TAGGAGCTGTGAGGTATG
1765	A240G	ER	GACGATGCCTTCAGCACATAAGATGGAGCAGGGTAG
1765	A240G	GF	gctggctcggtcaagaGGCTTCACGGAGGAAGAG
1776	A200G	AF	gggacggtcggtagatAAAGGGCTCCAACACCA
1776	A200G	EF	TGAGCACAAAGATCAGAGAGG
1776	A200G	ER	GACGATGCCTTCAGCACAAAGACAGAGACGCCAGGAATG
1776	A200G	GF	gctggctcggtcaagaAAAGGGCTCCAACACCG
1799	C370T	CF	gggacggtcggtagatAGGGACAACCAAAGTGAC
1799	C370T	EF	ATCATCAGAACAGCCCTAC
1799	C370T	ER	GACGATGCCTTCAGCACACAAGCCCACCTACTTACTC
1799	C370T	TF	gctggctcggtcaagaAGGGACAACCAAAGTGAT
1806	A201G	AF	gggacggtcggtagatTGGCGTCCCTGGTGGGCA
1806	A201G	EF	TCTTCGGGCTAACTCTTT
1806	A201G	ER	GACGATGCCTTCAGCACACTGTCACTCCAAACCTTCT
1806	A201G	GF	gctggctcggtcaagaTGGCGTCCCTGGTGGCG
1837	C413T	CF	gggacggtcggtagatCTCAGCTTCATGCAGGGC
1837	C413T	EF	CCCACTCAGCCCTGCTCTT
1837	C413T	ER	GACGATGCCTTCAGCACAGCATCCTGGCGGTCTTG
1837	C413T	TF	gctggctcggtcaagaCTCAGCTTCATGCAGGGT
1870	C323T	CF	gggacggtcggtagatCTCCTCATTGCCTCCTTC
1870	C323T	EF	CACCTCTTTCTCCTTCTCTT
1870	C323T	ER	GACGATGCCTTCAGCACACCCACCCCTCTATCTAC
1870	C323T	TF	gctggctcggtcaagaCTCCTCATTGCCTCCTTT
1882	C115T	CR	gggacggtcggtagatGTCCCCACAGTCCTCG
1882	C115T	EF	GACGATGCCTTCAGCACAGACCTGTACCCCTTACCC
1882	C115T	ER	TGTTCCCTGTCTGTTTC
1882	C115T	TR	gctggctcggtcaagaGTCCCCACAGTCCTCA
1988	C214T	CF	gggacggtcggtagatGTGACTCGGTCCATTACCC
1988	C214T	EF	GTGGGCTGTGATTGTGTT

baySNP	SNP	Name	Sequence
1988	C214T	ER	GACGATGCCTTCAGCACATCTCGTCGTAGTAGTTGT
1988	C214T	TF	gctggctcggtcaagaGTGACTCGGTCCCTATACT
2000	C349T	CR	gggacggtcggtagatAGTATGGTAATTAGGAAG
2000	C349T	EF	GACGATGCCTTCAGCACACTGACACTGAGCCACAAC
2000	C349T	ER	AACTGATGAGCAAGAAGGA
2000	C349T	TR	gctggctcggtcaagaAGTATGGTAATTAGGAAA
2071	A338G	AR	gggacggtcggtagatAAAATTGTTCCCTGTGAT
2071	A338G	EF	GACGATGCCTTCAGCACACATTGCTATTCTCAGGCTATA
2071	A338G	ER	CCCATTCTCTGCTTGACAGT
2071	A338G	GR	gctggctcggtcaagaAAAATTGTTCCCTGTGAC
2078	G876T	EF	CCAGAGAGGGATAAAAGA
2078	G876T	ER	GACGATGCCTTCAGCACAGAGTGTCAAGAGGAACAGG
2078	G876T	GF	gggacggtcggtagatTGGCTGCTGAGGTCTGAG
2078	G876T	TF	gctggctcggtcaagaTGGCTGCTGAGGTCTGAT
2085	G415T	EF	GCTTTTCTTTCATACATC
2085	G415T	ER	GACGATGCCTTCAGCACACCTTTAGAACAGAGACA
2085	G415T	GF	gggacggtcggtagatGGTAGTGTACCAGAAAG
2085	G415T	TF	gctggctcggtcaagaGGTAGTGTACCAGAAAT
2095	A406G	AR	gggacggtcggtagatTGTGCACCGGGATATTT
2095	A406G	EF	GACGATGCCTTCAGCACAAATGTGTGCTGGTTCTT
2095	A406G	ER	GGTGTTCCTCCCTCTCT
2095	A406G	GR	gctggctcggtcaagaTGTGCACCGGGATATTTC
2119	A67G	AR	gggacggtcggtagatGTGGGCACCAAACGCTAT
2119	A67G	EF	GACGATGCCTTCAGCACAGATGTAGGGCTGGAAGTG
2119	A67G	ER	TCAAGAAAATGGGAGTTG
2119	A67G	GR	gctggctcggtcaagaGTGGGCACCAAACGCTAC
2141	A176G	EF	TGTAGCATCGGTAGGTTC
2141	A176G	ER	CAACATCAGACTTTCTTTTC
2141	A176G	AR	gggacggtcggtagatTGGTACAGGGCTAGTTTT
2141	A176G	GR	gctggctcggtcaagaTGGTACAGGGCTAGTTTC
2182	A318G	AF	gggacggtcggtagatAGGCGGGCCAAGGGTGAA

baySNP	SNP	Name	Sequence
2182	A318G	EF	TTCTCTCCTCCCTTCTGT
2182	A318G	ER	GACGATGCCTTCAGCACATAAATGTTCACTCTTCTTGCT
2182	A318G	GF	gctggctcggtcaagaAGGCGGGCCAAGGGTGAG
2234	G296T	EF	GGGTTGTTCCAGGGCGCTATT
2234	G296T	ER	GACGATGCCTTCAGCACATGTGGAGAGGCCGGTGC
2234	G296T	GF	gggacggtcggtagatGAACCAGCCCCCTGGAAG
2234	G296T	TF	gctggctcggtcaagaGAACCAGCCCCCTGGAAT
2281	A227C	AR	gggacggtcggtagatCAGGCTTGGAGACCTGGT
2281	A227C	CR	gctggctcggtcaagaCAGGCTTGGAGACCTGGG
2281	A227C	EF	GACGATGCCTTCAGCACAGGGTATTCAAGTTGGAAGG
2281	A227C	ER	AAGGCAAGGTTCTTAGTTG
2298	A77C	AR	gggacggtcggtagatTCTAAAAGCACTTGAAAT
2298	A77C	CR	gctggctcggtcaagaTCTAAAAGCACTTGAAAG
2298	A77C	EF	GACGATGCCTTCAGCACACCTGCTAGTGTGTTCTGG
2298	A77C	ER	TGTAAC TGATAGGTGGTGG
2341	C286T	CR	gggacggtcggtagatTGAAGATTCTGCTCAGCG
2341	C286T	EF	GACGATGCCTTCAGCACAAAGGCCGGACTCAT
2341	C286T	ER	TTTGGGGTCCTGCGGATG
2341	C286T	TR	gctggctcggtcaagaTGAAGATTCTGCTCAGCA
2357	A165G	AF	gggacggtcggtagatCAAAGAACGAAATGA
2357	A165G	EF	CTCAAGTTGTTACTGATTCTC
2357	A165G	ER	GACGATGCCTTCAGCACAGGGTACGTCTGCTCTTC
2357	A165G	GF	gctggctcggtcaagaCAAAGAACGAAATGG
2366	G50T	EF	GACGATGCCTTCAGCACACTGCTCCGAAACACGGTC
2366	G50T	ER	GCATCTTCAGCCCTTCTTACTCT
2366	G50T	GR	gggacggtcggtagatCTCCTGGGCACCACGGGC
2366	G50T	TR	gctggctcggtcaagaCTCCTGGGCACCACGGGA
2995	A299C	ER	gacgatgccttcagcacaTGGGATTAGACACGAGAG
2995	A299C	EF	AAAGAACTGGAAGAACGAA
2995	A299C	AF	gggacggtcggtagatGTCACCTCCTTCCACTA
2995	A299C	CF	gctggctcggtcaagaGTCACCTCCTTCCACTC

baySNP	SNP	Name	Sequence
3360	G777T	ER	gacgatgccttcagcacaAGAAAAATGAGAGGGAAAAC
3360	G777T	EF	GATGAAGGGAAATGGAAC
3360	G777T	GF	gggacggtcggttagatCCAACCTATATAGGAGCCG
3360	G777T	TF	gctggctcggtcaagaCCAACCTATATAGGAGCCT
3464	A110G	EF	CTGAACCGAGGAGATTTT
3464	A110G	ER	TGATGCTTACAGAACTGGG
3464	A110G	AF	gggacggtcggttagatGTGTAGTGGGCAGGGTTA
3464	A110G	GF	gctggctcggtcaagaGTGTAGTGGGCAGGGTTG
3975	A65C	EF	gacgatgccttcagcacaAAAAGAACCTGGTGAAG
3975	A65C	ER	CCCTGATAAAAGAGATGGA
3975	A65C	AR	gggacggtcggttagatCGCATGGGAGTCAGGGAT
3975	A65C	CR	gctggctcggtcaagaCGCATGGGAGTCAGGGAG
3976	A239G	EF	gacgatgccttcagcacaATGAGGGAGCAAGACAAG
3976	A239G	ER	TGATAAAAGAGATGGAAGGGAG
3976	A239G	AR	gggacggtcggttagatGTCACTGTTGTCACTGT
3976	A239G	GR	gctggctcggtcaagaGTCACTGTTGTCACTGC
4206	A304T	EF	gacgatgccttcagcacaCTTTTAGCCAAGTGGAG
4206	A304T	ER	GGATCTGAGGAATCTGTG
4206	A304T	AR	gggacggtcggttagatACCAGGCAGAGAGAAAAAT
4206	A304T	TR	gctggctcggtcaagaACCAGGCAGAGAGAAAAAA
4912	A74G	EF	CTTCACTGAGCGTCCGCAGAG
4912	A74G	ER	CCGTCGGCCCGATTCA
4912	A74G	AR	CAGGCGAGCCTCAGCCCT
4912	A74G	GR	CAGGCGAGCCTCAGCCCC
4925	A251C	EF	TCATTTCCAATTACCTCC
4925	A251C	ER	CCTCTTCCCATCTCCCT
4925	A251C	AF	gggacggtcggttagatAGCCAGGAGCCTGCGTCA
4925	A251C	CF	gctggctcggtcaagaAGCCAGGAGCCTGCGTCC
4966	A251G	EF	CATTGCTCTCCTCTGT
4966	A251G	ER	GTGTCATCATTCCCTTCTTG
4966	A251G	AR	gggacggtcggttagatTCAGAGACATGAGTCCAT

baySNP	SNP	Name	Sequence
4966	A251G	GR	gctggctcggtcaagaTCAGAGACATGAGTCCAC
5014	A2057	ER	gacgatgccttcagcacaCACCTGTCCCACCCCTATTG
5014	A2057	EF	GTCCTGAACCCCCATTCT
5014	A2057	AF	gggacggtcggtagatGCCTGCACTGCGTTCTA
5014	A2057	GF	gctggctcggtcaagaGCCTGCACTGCGTTCTG
5296	A251G	EF	GCTCCTCTGCCTTCTGCTT
5296	A251G	ER	ATTTGCCCACTGCCCTTC
5296	A251G	AF	gggacggtcggtagatTGGCTGCAGGTGCGTCCA
5296	A251G	GF	gctggctcggtcaagaTGGCTGCAGGTGCGTCCG
5298	C172T	EF	GCCACACACACCTTAACA
5298	C172T	ER	AAAGTTCTCTGCCTCCAA
5298	C172T	CF	gggacggtcggtagatAGCTCTCAGCTGGGGTGC
5298	C172T	TF	gctggctcggtcaagaAGCTCTCAGCTGGGGTGT
5457	A134G	EF	AGCAGAACGGCAATAGA
5457	A134G	ER	AGAGATGTGGCAGAGAA
5457	A134G	AF	gggacggtcggtagatGGAAAGCCTACTTTCTTA
5457	A134G	GF	gctggctcggtcaagaGGAAAGCCTACTTTCTTG
5704	C61T	EF	ACAGCCATAACAGGAGTG
5704	C61T	ER	GGGTTACTCAACCTAACAGAGA
5704	C61T	CR	gggacggtcggtagatGTTCTCTTGGAAAACG
5704	C61T	TR	gctggctcggtcaagaGTTCTCTTGGAAAACA
5717	A1960	EF	gacgatgccttcagcacaAACAGAAACCACAGAACCG
5717	A1960	ER	GTCCCACCCCTATTTGAG
5717	A1960	AR	gggacggtcggtagatCACTGGCCCACCTCCCTT
5717	A1960	GR	gctggctcggtcaagaCACTGGCCCACCTCCCTC

baySNP	SNP	Name	Sequence
	G		
5959	A71G	EF	gacgatgccttcagcacaACCATGCCTGACTTAACC
5959	A71G	ER	TTGTTTCCTGTCCTCTTTC
5959	A71G	AR	gggacggtcggtagatGTTAAGAGGCTGGCAGT
5959	A71G	GR	gctggctcggtcaagaGTTAAGAGGCTGGCAGC
6162	C340G	EF	gacgatgccttcagcacaAGTGTGTTAGGAGCAAAG
6162	C340G	ER	CTTAGGAAACTGAGGTGG
6162	C340G	CR	gggacggtcggtagatCTGCAGCCTGGCAACAG
6162	C340G	GR	gctggctcggtcaagaCTGCAGCCTGGCAACAC
6236	C906T	ER	gacgatgccttcagcacaTGGACACATTGAGCTT
6236	C906T	EF	CTTCCCCAGAGATGACTAC
6236	C906T	CF	gggacggtcggtagatCCCCATCCTACTCAGCAC
6236	C906T	TF	gctggctcggtcaagaCCCCATCCTACTCAGCAT
6744	C348T	ER	gacgatgccttcagcacaGGTTACAGTGAGCCAAGA
6744	C348T	EF	AGGTGAAGAAAGCAAAATAC
6744	C348T	CF	gggacggtcggtagatGGGTGTGTGTTTGTTC
6744	C348T	TF	gctggctcggtcaagaGGGTGTGTGTTTGTTT
7133	C63G	EF	TTGAGACCCTACAGAGCCA
7133	C63G	ER	GGCAAGCTGAGGTGAAAG
7133	C63G	CR	gggacggtcggtagatATAAGGTAAGAAATGAG
7133	C63G	GR	gctggctcggtcaagaATAAGGTAAGAAATGAC
8210	A251G	EF	TAATTCTAATGGCCTTCC
8210	A251G	ER	TCACTTACTCCCTGATGTCT
8210	A251G	AR	gggacggtcggtagatCATTGGGTTTCCTCAT
8210	A251G	GR	gctggctcggtcaagaCATTGGGTTTCCTCAC
8592	C46T	ER	gacgatgccttcagcacaACATTAGTGCCAACATCAC
8592	C46T	EF	CTCTTCCTGAGACACCA
8592	C46T	CF	gggacggtcggtagatGAAGGTGAAGGCCAGAGC
8592	C46T	TF	gctggctcggtcaagaGAAGGTGAAGGCCAGAGT
8943	A251C	EF	GAGGCTGAGACAGAAGAA
8943	A251C	ER	GTTCGACATTAAAGAAAATGAG

baySNP	SNP	Name	Sequence
8943	A251C	AR	gggacggtcggtagatGGCTGGAGTGCAGTGATT
8943	A251C	CR	gctggctcggtcaagaGGCTGGAGTGCAGTGATG
9193	C88G	EF	CACGCTGTTGAGTGGG
9193	C88G	ER	CGCAGGTCTACGGTCA
9193	C88G	CR	gggacggtcggtagatCCCGGGTCTGAGGCTGCG
9193	C88G	GR	gctggctcggtcaagaCCCGGGTCTGAGGCTGCC
9516	A187G	EF	CACACACACACACACACAC
9516	A187G	ER	GGTCCCTTACTTCCTCTT
9516	A187G	AR	gggacggtcggtagatCCTATCCCTACTTCCCC
9516	A187G	GR	gctggctcggtcaagaCCTATCCCTACTTCCCC
9698	A251G	EF	GTGACCCCCAAAAGAGAGA
9698	A251G	ER	CTAGCTTGTACTGCCTCC
9698	A251G	AF	gggacggtcggtagatGGCACGACCCGCCCG
9698	A251G	GF	gctggctcggtcaagaGGCACGACCCGCCCG
9883	A249G	EF	TCCACAAACCTCAAACCAC
9883	A249G	ER	CACAGTCCTGCAAGCTCA
9883	A249G	AR	gggacggtcggtagatCCGTGGCCGTGGCTCACT
9883	A249G	GR	gctggctcggtcaagaCCGTGGCCGTGGCTCACC
10481	A107T	ER	gacgatgccttcagcacAGTCGGGGCTCCACTT
10481	A107T	EF	TAGCGGGACAGCGCTG
10481	A107T	AF	gggacggtcggtagatCCCGGCGCGCCTCGGAGA
10481	A107T	TF	gctggctcggtcaagaCCCGGCGCGCCTCGGAGT
10542	C367T	EF	gacgatgccttcagcacAAATACACTGGGTCTGCT
10542	C367T	ER	ATACTGCTGGCCTTCCTC
10542	C367T	CR	gggacggtcggtagatGGTCAGGGGAGCCCAGAG
10542	C367T	TR	gctggctcggtcaagaGGTCAGGGGAGCCCAGAA
10600	A251G	EF	CCTGGCAACTAACCTCTT
10600	A251G	ER	AGGCAGTCTCTGTCTACTC
10600	A251G	AR	gggacggtcggtagatATTGGCCCTGCTCAGGAT
10600	A251G	GR	gctggctcggtcaagaATTGGCCCTGCTCAGGAC
10621	C402T	EF	CCAGCCCTAAACCTAAA

baySNP	SNP	Name	Sequence
10621	C402T	ER	AACCTCTCAAGATCAGACAC
10621	C402T	CF	gggacggtcggtagatTTAGCACTTAATAAGTAC
10621	C402T	TF	gctggctcggtcaagattAGCACTTAATAAGTAT
10745	A251G	EF	CCCCACAACAAAGAAAGA
10745	A251G	ER	GAAGCCAACCTCTCCAACA
10745	A251G	AF	gggacggtcggtagatCAAGGATTCAAAAACCA
10745	A251G	GF	gctggctcggtcaagaCAAGGATTCAAAAACCG
10771	C64G	EF	gacgatgccttcagcacaCCAGGGAAAGAGCAGAAC
10771	C64G	ER	TGTACGGGAAGAGGCAGA
10771	C64G	CR	gggacggtcggtagatAGGGTGACACAGGCCACG
10771	C64G	GR	gctggctcggtcaagaAGGGTGACACAGGCCACC
10870	A251G	EF	ATCCCATCCCAACACACA
10870	A251G	ER	CCGAGACCAAACTCATTAC
10870	A251G	AR	gggacggtcggtagatGGCAGAGCCTGAGTCACT
10870	A251G	GR	gctggctcggtcaagaGGCAGAGCCTGAGTCACC
10877	A251C	EF	CCTGTTCTCAACCTTCTC
10877	A251C	ER	ATGGTCTATGGAACCTAATCT
10877	A251C	AF	gggacggtcggtagatGCACTGATTCTGCTTCCA
10877	A251C	CF	gctggctcggtcaagaGCACTGATTCTGCTTCCC
10948	G140T	EF	AAGGACAGGGTCAGGAAAG
10948	G140T	ER	CAGAGGGAGGAAGGAGGT
10948	G140T	GF	gggacggtcggtagatATGGAGGAGGGTGTCTGG
10948	G140T	TF	gctggctcggtcaagaATGGAGGAGGGTGTCTGT
11001	C286T	EF	gacgatgccttcagcacaTTCCCAAAGACCCACA
11001	C286T	ER	CCTCCACCGCTATCAC
11001	C286T	CR	gggacggtcggtagatTGGCTGCAGGACGTCCAG
11001	C286T	TR	gctggctcggtcaagaTGGCTGCAGGACGTCCAA
11001	C286T	EF	TTCCCAAAGACCCACA
11001	C286T	ER	CCTCCACCGCTATCAC
11001	C286T	CR	gggacggtcggtagatTGGCTGCAGGACGTCCAG
11001	C286T	TR	gctggctcggtcaagaTGGCTGCAGGACGTCCAA

baySNP	SNP	Name	S quence
11073	C215G	EF	CCCAACCACCCGGTCC
11073	C215G	ER	GCGCGGGAGCTAGAGA
11073	C215G	CF	gggacggtcggtagatGAAGCTGCAGGCCGGAC
11073	C215G	GF	gctggctcggtcaagaGAAGCTGCAGGCCGGACG
11153	C116T	EF	CGAGTGGGAAGAAAAGTAGA
11153	C116T	ER	ATGACTGCCTGCCTAGAA
11153	C116T	CR	gggacggtcggtagatAAGATAGGGTAGAGGCCG
11153	C116T	TR	gctggctcggtcaagaAAGATAGGGTAGAGGCCA
11210	C194T	EF	GAGGAGTGAGGGAAAGTAAG
11210	C194T	ER	AAATGGAGAGAGATGGGA
11210	C194T	CF	gggacggtcggtagatCCAGGAAATGACATGATC
11210	C194T	TF	gctggctcggtcaagaCCAGGAAATGACATGATT
11248	C225T	EF	TGAGTTAACAGCACTTGG
11248	C225T	ER	AGGGTAAGGGAGGGAAAA
11248	C225T	CR	gggacggtcggtagatTGATTCTTCGCTTGGCG
11248	C225T	TR	gctggctcggtcaagaTGATTCTTCGCTTGGCA
11372	A251G	EF	TAGAAAAGAAGAAAAATCAA
11372	A251G	ER	ACACACACACACACACAC
11372	A251G	AR	gggacggtcggtagatCATCACCTTTAGTTCT
11372	A251G	GR	gctggctcggtcaagaCATCACCTTTAGTTCC
11449	C251G	EF	ACAGAAGAACAAACAACAAAC
11449	C251G	ER	TGCGTATGAGGTAAAGAGA
11449	C251G	CF	gggacggtcggtagatATGAGTGAAGCCTGTCTC
11449	C251G	GF	gctggctcggtcaagaATGAGTGAAGCCTGTCTG
11450	A251T	EF	ACAGAAGAACAAACAACAAAC
11450	A251T	ER	TGCGTATGAGGTAAAGAGA
11450	A251T	AR	gggacggtcggtagatGGACCATAATCTGAAGT
11450	A251T	TR	gctggctcggtcaagaGGACCATAATCTGAAGA
11470	C251T	EF	GCTTGTCTGTCTGATAGGTG
11470	C251T	ER	CAACGTGAGAATTCCAAAAT
11470	C251T	CR	gggacggtcggtagatTGAGAATTCCAAAATAG

baySNP	SNP	Name	Sequence
11470	C251T	TR	gctggctcggtcaagaTGAGAATTCCAAAATAA
11472	A251T	EF	TACATTCAAGGCAAGAAAA
11472	A251T	ER	TGATTAGTTACAATTACCTCTAGTATC
11472	A251T	AF	gggacggtcggtagatAGTTGTCACTAAATGTA
11472	A251T	TF	gctggctcggtcaagaAGTTGTCACTAAATGTT
11487	A485T	EF	gacgatgccttcagcacaAGAGAGCAGCTAGACTGAGA
11487	A485T	ER	TTCCTGCAAACAGTTGAG
11487	A485T	AR	gggacggtcggtagatAGTTGAGGGCTCAGGATT
11487	A485T	TR	gctggctcggtcaagaAGTTGAGGGCTCAGGATA
11488	C533G	EF	gacgatgccttcagcacaAGAGAGCAGCTAGACTGAGA
11488	C533G	ER	GTAAATAAAATGGGATGGT
11488	C533G	CR	gggacggtcggtagatGCCAGCAAGCTGCATG
11488	C533G	GR	gctggctcggtcaagaGCCAGCAAGCTGCATC
11493	A171G	EF	CCTTTGTGTTTGT
11493	A171G	ER	CTTCTCCACCTTCCATTC
11493	A171G	AF	gggacggtcggtagatGGGAACCTCTAAATCAAA
11493	A171G	GF	gctggctcggtcaagaGGGAACCTCTAAATCAAG
11502	C455T	EF	gacgatgccttcagcacaACGATGGGTCAGAGTCA
11502	C455T	ER	CCTACATTCACACACGAACA
11502	C455T	CR	gggacggtcggtagatACACACTCCTCTCAAG
11502	C455T	TR	gctggctcggtcaagaACACACTCCTCTCAAA
11534	G258T	EF	GCCATCGTCTTCCCT
11534	G258T	ER	TCCTCCCTCCTCTCTCT
11534	G258T	GR	gggacggtcggtagatCCTCCACCCACCAGGGCC
11534	G258T	TR	gctggctcggtcaagaCCTCCACCCACCAGGGCA
11537	A251G	EF	CCTTTCTCCTCTTC
11537	A251G	ER	CTCTTCCCTGTCTTCTCCTCT
11537	A251G	AF	gggacggtcggtagatAGATGGACCTCTACAGGA
11537	A251G	GF	gctggctcggtcaagaAGATGGACCTCTACAGGG
11560	A185G	EF	CTCCTCCAACTCCTTAC
11560	A185G	ER	ATACTTCTCACTGCATCCT

baySNP	SNP	Name	Sequence
11560	A185G	AR	gggacggtcggtagatCCTGTCCCCTCCCTAGTT
11560	A185G	GR	gctggctcggtcaagaCCTGTCCCCTCCCTAGTC
11594	C251T	EF	CACCTTCCTGAACTCACTC
11594	C251T	ER	TGATGTCTGTGCTGTCT
11594	C251T	CR	gggacggtcggtagatTCTGGTCCACTCAAGGAG
11594	C251T	TR	gctggctcggtcaagaTCTGGTCCACTCAAGGAA
11624	C251T	EF	TCGGGAGGTGTAAGTAAG
11624	C251T	ER	CCACAGTCAGAAGAGACAA
11624	C251T	CR	gggacggtcggtagatAGAGACCCTGGTCCAAG
11624	C251T	TR	gctggctcggtcaagaAGAGACCCTGGTCCAAA
11627	C251T	EF	TTTATCACTACACCCCCCTACTC
11627	C251T	ER	GACAGACCGACCAATCAC
11627	C251T	CR	gggacggtcggtagatCCCTGGGAAGGTTGAGAG
11627	C251T	TR	gctggctcggtcaagaCCCTGGGAAGGTTGAGAA
11650	A146G	EF	CTGTCTGTTGGTCTTC
11650	A146G	ER	CGTTGTTCTCTGTCCACT
11650	A146G	AR	gggacggtcggtagatGCCAAATGTCTAAAAGT
11650	A146G	GR	gctggctcggtcaagaGCCAAATGTCTAAAAGC
11654	A251G	EF	CGTATCTTGCCTTCTT
11654	A251G	ER	CTTCTTTATGCCTTCCC
11654	A251G	AF	gggacggtcggtagatTTACTTGAAAGGACACCA
11654	A251G	GF	gctggctcggtcaagaTTACTTGAAAGGACACCG
11655	A251C	EF	CGTATCTTGCCTTCTT
11655	A251C	ER	CTTCTTTATGCCTTCCC
11655	A251C	AF	gggacggtcggtagatTTCTGCACTAAAGCTGTA
11655	A251C	CF	gctggctcggtcaagaTTCTGCACTAAAGCTGTC
11656	C251T	EF	TGGGAAGAAAAAGAGAAG
11656	C251T	ER	GTTGAAACACTGCACAAG
11656	C251T	CR	gggacggtcggtagatCAGGGCTGTTGGGTGAAG
11656	C251T	TR	gctggctcggtcaagaCAGGGCTGTTGGGTGAAA
11825	A277G	ER	gacgatgcctcagcacatGAATAGACAGGGACGAA

baySNP	SNP	Name	Sequence
11825	A277G	EF	GACCTTGGAAATAATGGAG
11825	A277G	AF	gggacggtcggtagatCAACCCAGCAAAAATGGA
11825	A277G	GF	gctggctcggtcaagaCAACCCAGCAAAAATGGG
11914	A246T	EF	gacgatgccttcagcacaTTGGAAGTGAGATAAGATAGGT
11914	A246T	ER	ACGGTGAGAATGAGAGGT
11914	A246T	AR	gggacggtcggtagatAAAACAGACATCAGAGGT
11914	A246T	TR	gctggctcggtcaagaAAAACAGACATCAGAGGA
12097	A411G	ER	gacgatgccttcagcacaGATGAAACCCTGTCTACT
12097	A411G	EF	TTATCACACCTTAGTCTCCCT
12097	A411G	AF	gggacggtcggtagatACCTGCCACACACCAA
12097	A411G	GF	gctggctcggtcaagaACCTGCCACACACCCAG
12366	A412G	ER	gacgatgccttcagcacaGCTGATGTGGTTGTGAG
12366	A412G	EF	GTTCCCTGTAGCTCGTGTAG
12366	A412G	AF	gggacggtcggtagatCTCCCCGCCCTGCAGCAA
12366	A412G	GF	gctggctcggtcaagaCTCCCCGCCCTGCAGCAG
12619	A25G	ER	gacgatgccttcagcacaTGGCTGGACTTGACTGATA
12619	A25G	EF	TCTTGTGTCACAGTGC
12619	A25G	AF	gggacggtcggtagatTGTGTCACAGTGCTCTGA
12619	A25G	GF	gctggctcggtcaagaTGTGTCACAGTGCTCTGG
13025	A585C	EF	gacgatgccttcagcacaTTAACGTAACATGACAAACTC
13025	A585C	ER	ATCTGATAACTGAGCAGG
13025	A585C	AR	gggacggtcggtagatCTATTAAAGTAACACTGGTGT
13025	A585C	CR	gctggctcggtcaagaCTATTAAAGTAACACTGGTGG
13191	A504G	ER	gacgatgccttcagcacaATTCTCCATTCTCCTGT
13191	A504G	EF	TGCCTCTTCTCCTCATTC
13191	A504G	AF	gggacggtcggtagatCCCTAATGTCTTCCTCTGA
13191	A504G	GF	gctggctcggtcaagaCCCTAATGTCTTCCTCTGG
900045	C116T	EF	ATCTCCTGATCCAAGTCC
900045	C116T	ER	CACACTGTGCCCATCTAC
900045	C116T	CR	gggacggtcggtagatCTGACTGATTACCTCATG
900045	C116T	TR	gctggctcggtcaagaCTGACTGATTACCTCATA

baySNP	SNP	Name	Sequence
900078	A251G	EF	CATAGGTAAAGATCTGTAGGTG
900078	A251G	ER	CCACCTTGGAAAGTTGGCAAA
900078	A251G	AR	gggacggtcggtagatattaaatgcctctctcT
900078	A251G	GR	gctggctcggtcaagaattaaatgcctctctcC
900107	C426T	ER	gacgatgccttcagcacaAGGGCTTTTCAGGTAGA
900107	C426T	EF	GACCTTCCTGGGTAGAA
900107	C426T	CF	gggacggtcggtagatACTCTGAACCTGGGGAC
900107	C426T	TF	gctggctcggtcaagaACTCTGAACCTGGGGAT
10000002	A103G	AF	gggacggtcggtagatGATCAACACAATCTCAA
10000002	A103G	EF	CAGCTGAAAGAGATGAAATTACT
10000002	A103G	ER	GACGATGCCTTCAGCACAAACTTATGAAGATTAAAGGCATAG G
10000002	A103G	GF	gctggctcggtcaagaGATCAACACAATCTCAG
10000006	G107A	AF	gctggctcggtcaagaGGGCTGGGCTGCTAGGGAA
10000006	G107A	EF	AGACGAGTTCAAGGTGAGTG
10000006	G107A	ER	GACGATGCCTTCAGCACACCAAGTTCCGAGTTCC
10000006	G107A	GF	gggacggtcggtagatGGGCTGGGCTGCTAGGGG
10000014	A153C	AF	gggacggtcggtagatGTACCAATACATCCTGCA
10000014	A153C	CF	gctggctcggtcaagaGTACCAATACATCCTGCC
10000014	A153C	EF	CTGCTGATGTCTCTGTTG
10000014	A153C	ER	GACGATGCCTTCAGCACAGACTTACTTGCTCACACTT
10000025	C291T	CF	gggacggtcggtagatCCTCACTCCTAACGCC
10000025	C291T	EF	CCTCTCTGCTGGTTATCTTG
10000025	C291T	ER	GACGATGCCTTCAGCACAAAGTGTGCCTCCTGGTTAG
10000025	C291T	TF	gctggctcggtcaagaCCTCACTCCTAACGCT

Table 2b Oligonucleotide primers used for genotyping using Pyrosequencing

The baySNP number refers to an internal numbering of the PA SNPs. Primer sequences are listed for preamplification of the genomic fragments and for sequencing of the SNP using the pyrosequencing method. Bio: Biotinylated Oligonucleotide.

BaySNP	Name	Sequence
2995	Primer F	GCCAAGACTAGGAAGTAAGTGT
2995	Primer R	Bio- CCCAGAACACAAAGCTAGTAA
2995	Seq.	TGCCCTGGTCACCTCCTTCC
3689	Primer F	BIO-CTGACCCTGACCTTCATACTCAA
3689	Primer R	AGAAGAAAGAACGCCTCTACAGTT
3689	Seq.	AACAGATCAGGTTGGTG
4838	Primer F	Bio-CAAAGATGACCTTATGGCTCTGA
4838	Primer R	GTCTCGGAACATGACCTTTAGT
4838	Seq.	TGACTAAGAATGTAATGGGGAAGA
6498	Primer F	CTTGTGGATCTTCTGCGGTGT
6498	Primer R	Bio-CCATGTTGAGGAGCCCAGAGTGA
6498	Seq.	ATTACAGTTGTGAGATTGTGC
8021	Primer F	GGCCTCTATGTACTAGGCG
8021	Primer R	Bio-CTCTTCTGGAGGCATCAATC
8021	Seq.	CACAGGGAGACCCC
8060	Primer F	Bio-GCCTTATTTCCACTCCACCT
8060	Primer R	TACCTTCCCCATCCAACTG
8060	Seq.	TCAGCATATGTTGGATT
8846	Primer F	ATTTGAGAGAAGGTAGGGT
8846	Primer R	BIO-TTTGTTACTCTGTAGCCA
8846	Seq.	AAATATTCACTTGT
9849	Primer F	AAG CAG CAA TCG AAT CCC TT
9849	Primer R	TGT TGT TGT TTG GCT AGC TCC
9849	Seq.	CCT GCC TTA CTG AGA GCC AAA

BaySNP	Name	Sequence
10079	Primer F	Bio-CACGCCAATTCCCCACCATCCT
10079	Primer R	GTCCGTCGAGGGGGAAATGTGTTT
10079	Seq.	AATGTGTTCTTGGGGGT
10747	Primer F	CTAACCATCTTCAAATGCTTAATC
10747	Primer R	BIO-TCCTTGAGTCTGAGTTCCC
10747	Seq.	CACAAGAAACCCTGAAA
11578	Primer F	CTC GGC GTG CTT GGT AAT AA
11578	Primer R	CGG AGC CGA ACT CTG GAG GAA TCT
11578	Seq.	GGC TGG CAA GTT GTT CCA TCC CAC
11644	Primer F	TGA GCA GCG CAT CCT
11644	Primer R	TGC AGC CCA CTG ACT CAA
11644	Seq.	GCT GTT ACT CAG TAT GAT
12008	Primer F	CCGAAGACCAAGACGC
12008	Primer R	Bio-TCTTCCATAAAAACAAGGCTC
12008	Seq.	AAACAAGAAATTCTGTTA
13937	Primer F	TGA CAG CTC CCA TTG GAA
13937	Primer R	AAT TAA TGC GAT CCC TC
13937	Seq.	GAC AGC TCC CAT TGG AAG
900002	Primer F	ATTGGGCAGGGATAAGAGAAAAG
900002	Primer R	Bio-GATGAATCACAGAATGCGGTAT
900002	Seq.	CACACAGCAGTTCACGCA
900013	Primer F	GCCAAGACTAGGAAGTAAGTGT
900013	Primer R	Bio- CCCAGAACACAAAGCTAGTAA
900013	Seq.	TGCCCTGGTCACCTCCTTCC
900025	Primer F	Bio-AGTGGCTCACCTGCTAACG
900025	Primer R	CTGGGGAAGAAAATAATGAA
900025	Seq.	CTTGCTCTTAGGATACACGT
900032	Primer F	AGCGTCTCACCATCTGCT
900032	Primer R	Bio-GGGAAGGAGGAAGCCAAACA
900032	Seq.	ACATGTCTGATGATACCTGG
900045	Primer F	BIO-GCCATGCACGATTCGG

BaySNP	Name	Sequence
900045	Primer R	CACTGTGCCCATCTACGAG
900045	Seq.	GGACCTGACTGATTACCT
900065	Primer F	GAGTAGCTAGGATCACAGGTGCGT
900065	Primer R	BIO-TGTCGAGATTAAAGAAAGTTGGC
900065	Seq.	CAGGTGCGTGCCACCATGCC
900082	Primer F	CAC ACA ATT TTC CAC TTA
900082	Primer R	GAC TCC AGT TTT CTA TCA
900082	Seq.	ATG TTG ATG TAA TCT ACT
900096	Primer F	TGGGGCAAGAACAGTGGT
900096	Primer R	Bio-TAGGCAGGGCAAGGGATTAGG
900096	Seq.	TTTAAATTCTCTGACAGAGAC
900107	Primer F	BIO-GCCACCAGCCCACACTCTGAACCTG
900107	Primer R	CCATCAGCCTTCACCCACGTGCCA
900107	Seq.	GCCTCAGCTTGACCT
900115	Primer F	Bio-GGTAAGTGCCTGCCTGGGAGATGC
900115	Primer R	CGGGGTGGGGAGGGACAGAGC
900115	Seq.	GAGGACAGAGCAAAAGGAT
900121	Primer F	Bio-TGCCTTACAATATAACATGG
900121	Primer R	CAATGGGTAAGGAGTAAAGTT
900121	Seq.	TTCCAGCTGCTTTA

Table 2c Oligonucleotide primers used for genotyping using Restriction Fragment Length Polymorphism (RFLP)

- 5 The baySNP number refers to an internal numbering of the PA SNPs. Primer sequences are listed for preamplification of the genomic fragments. The restriction enzyme used for RFLP is indicated.

baySNP	Name	Sequence	Enzyme
900173	Primer F	GAACAAACCTCCGAGATGCTAC	Hind III
900173	Primer R	GTCTTATGTTACTGGGCTTCACC	Hind III

Table 2d Oligonucleotide primers used for genotyping using TaqMan

The baySNP number refers to an internal numbering of the PA SNPs. Primer sequences are listed for amplification of the genomic fragments. In addition the respective fluorescent hybridisation probes are listed. If not otherwise stated, all fluorescent probes have a 'minor groove binder' (MGB) attached (Kutyavin et al., Nucleic Acids Research 2000, 28:655-661).

- 132 -

baysNP	F-Sequence	R-Sequence	VIC-MGB	FAM-MGB
52	CACCCCTCTGAAATTCACTTAAATTCAA	GGCCCTTGAAAGAAGTTTATTTGAGAA	CTATGCCATACTTTTGC	AATGCTATAGTTTTCGATTAT
C				
542	TTCGCTCCATCAACCAAGTC	GATGGGTGATCAGCGGAATC	CAATTGGGAATTGGGAGGG	AATTGGGGTTGGGAGGG
821	GCCCAGTTATACCTCACTGTGTAAAC	AGGTCACTACAGAGGGTATCATGAGA	TGTGATACTCTGAAACAG	CTGTGATAACCTGGCACACA
1056	TGTATGGCACCTCGTGTATCTG	CGCTCTCGGCACTCTTG	CCAARACAaCAGGACGG	AAACAGCAGGACGGG
1204	CTGTAAGCTATCTGGATTGTCAATGA	GGCTCACTGCTTGTATCTTAAAG	CACTCACATTAAATTAG	ACTCACACATTAAATTAGT
1722	GGACCCCTAAGAACCCAGGAT	ATGGCTTAACACAGGAGATGATG	TGGCCTGGGGATGT	TGGCCTGGGGATGT
1757	ACAGGGCTGGCGCAC	AGCCTCTGCCCTCTCCA	AACCAAAATGAGGAGAG	ACCAAAATGAGGAGAG
1765	GGAGGCTTGAGCTAAGGGCTT	TGTCAGATGCACTGAAGGTG	ACGGAGGAAGGAGGT	ACGGAGGAAGGAAT
1799	TTCGGGGGGTTGTCATGACA	TGGZCATATGGGGGACTCT	AGTGTGATCATCCTACTTT	CAGTGTGATCCTGTCACT
1837	CACTCAGCCCTGCTTTC	CATCCTTGGGGCTTGGT	TGAGGGCTACATGA	TCATGGGGGTACAT
1870	CTGGCTCTGACCCCTGCT	GGAGGATGCCATCTCGAACAA	TGCTCTCCTTCTCACAC	CCTCTTTCACACCGA
1988	CCGTGGCTTGCTGGTGACT	CTACCTGTCGGTGCATCATC	TCCTATACCTGGGTGT	CTATACGTGGGTGTAT
2000	TTCTCACTCTGATATAAAACTCAGAC	CGATGAAACAGTTGGATAAGGTGT	TACTCATCTCTCTAAATTAC	CAAATATCTACTCATTTTC
CC				
2085	TCATTAACATCAGCTTATTCGACTGTA	TCAAGACACTGAAACTTAAGAATTC	TGTACCGAAAGAAA	TGTACCGAAAGAAA
AA				
2281	GCTGCATTTGGAGGAGACTGATC	CGGTAACTTAAAGAACGGATTC	CATACCACAAAAACCA	ACCAACAAACCCAGGTC
2298	TGCTTAGGGTTTCTGCTGATATT	GGC2ACCGTGTAGACTTGATCTAA	TCTATGGGCATTTC	TATCATGGCCCTTTCA
2357	GCGAAGTGTGCGAACCCAA	GGTTACGTTCTGCTCTTGATCCT	AAGACGAAAATGaaATC	AAGACGAAAATGgATC
4838	AAGATGACCTTATGGCTGAGATG	TCTCGAACATGACCTTGTAGCTGT	AAGGAATTGCCCTGCCT	AAGAAACTGCCCTGCC
5320	GGGGATATAGTACMAAACAGCCTG	CAACTTAATCACTACTCATGAAAGCA	AAGGAAAGCTGGATATG	AGGAAAGCTGGGTATGT

baySNP	F-Sequence	R-Sequence	VIC-MGB	FAM-MGB
TCT				
5717	GGCCCGTCTGGCT	AACCCACACCTTCAGTCTAGAAA	VIC-CCACCTCCCTtCTAGCCCTCAATTGC-TAMRA	Fam-CCCACCTCCCTtCTAGCCCTCAATTGC-Tamra
5959	ACCGAAACAATGCCAACCA	CAGTGAAACCAAGGGATGTC	VIC-CGAATGTGgCTGCCAGCC-TAMRA	Fam-TGGAATGTGgCTGCCAGCC-TAMRA
6482	CATAGTTAGGATAAACAAAGGATT	TGTCTATGAAACGCCAACAAC	AACGAACTGGTCTACCT	AGATCTGGTCTGCTC
8060	GCTATTGAATGGATTCAGCTTATT	TGCATGGATTCAGCATATGTT	CCC2ACCTGGAGAAT	TCCCACCTGGGGAA
8816	CAGCCCCCTCTGCTCCAG	TCCCCCTCTGCTCCAGGC	TGAGAAAAAAAGgtTCGG	CTGAGAAAAAAAGGTC
10600	GGTGAAGTTTGGCAATCTC	AAGTTAAATCAGCCCTTCAATTGG	TGCTTGGAAEAGCC	TGCTTGGAGACAGGC
10771	CTGGGCCACCGAGTTCAC	GATCTCTGAGTCAGTGGCTCT	AGGAAGGCTGGCCT	CAAGGAAGGTTGGC
10948	ACATCCCCCTTCCACGCTT	GCAGGGCAGAGGAGGA	CGCCCCAGTAATAACAGA	CCCAAGTAATCCAGACAC
11001	GGCATCCCTGTTGAACGTGAA	ACATGACCAGGGCCACTT	TCTTTCCACTGGACGT	TTCCATTGGACGTCT
11073	GAGCAACAGCCCTGAG	GCGGGAGCTAGAGGAGGTG	TCTGGCGCTGTC	TCTCGGGCTGTC
111248	GAAAGCTAACTCCCCTGACG	TGAAGGGTAAGGGAGGGAAA	CTTGGCGTCTGCGTC	TTGGCATCGCGTCAG
11654	AGTTTGTTCCTATAGGGTTCCA	CTCTTATGCCCTCCCCACCA	TTGAAAAGGACACCATATT	ACACCGTATTTTAC
11655	CATATTCAAGAAAGGATTATCTCCAACT	TGGAACACCTCTAAATAGGAAACAACT	CACTAAAGCTGTAAATATTA	CTAAAGCTGTATATTAC
CTT				
13191	GAAGTTGGCATAAAACCTAA	CCTGCCCCACCTTCTCTCT	TCTTCCCTCTGgtTACA	TCCCTCTGAGTAAACAC

Table 3 PA SNPs, SNP classes and putative PA genes

The baySNP number refers to an internal numbering of the PA SNPs. Listed are the different polymorphisms found in our association study. Also from the association study we defined SNP classes; with ADR being adverse drug reaction related, with EFF being drug efficacy related and CVD being cardiovascular disease related. ADR3 and ADR5 relate to advanced and severe ADR, whereas VEFF and UEFF relate to very high/low and ultra high/low drug efficacy (see table 1b). Also accession numbers and descriptions of those gene loci are given that are most homologous to the PA genes as listed in the sequences section (see below). Homologous genes and their accession numbers could be found by those skilled in the art in the Genbank database. Null: not defined.

BAYSNP	SNP class	GTYPE1	GTYPE1	GTYPE2	NCBI	DESCRIPTION
		1	2	2		
28	EFF	CC	CT	TT	U15552	Human acidic 82 kDa protein mRNA, complete cds.
29	CVD	AA	AG	GG	HS162961	Human T-lymphoma invasion and metastasis inducing TIAM1 protein (TIAM1) mRNA, complete cds.
29	ADR3	AA	AG	GG	HS162961	Human T-lymphoma invasion and metastasis inducing TIAM1 protein (TIAM1) mRNA, complete cds.
29	ADR5	AA	AG	GG	HS162961	Human T-lymphoma invasion and metastasis inducing TIAM1 protein (TIAM1) mRNA, complete cds.
52	EFF	CC	CG	GG	X69907	H.sapiens gene for mitochondrial ATP synthase c subunit (P1 form)

BAYSNP	SNP class	GTTYPE1	GTTYPE1	GTTYPE2	NCBI	DESCRIPTION
56	EFF	AA	AG	GG	M92357	Homo sapiens B94 protein mRNA, complete cds.
89	CVD	AA	AG	null	L23982	Homo sapiens (clones: CW52-2, CW27-6, CW15-2, CW26-5, 11-67) collagen type VII intergenic region and (COL7A1) gene, complete cds.
90	CVD	CC	CT	TT	M65212	Homo sapiens catechol-O-methyltransferase (COMT) mRNA, complete cds.
99	CVD	CC	CT	TT	X96698	H.sapiens mRNA for D1075-like gene
140	EFF	CC	CT	TT	M14335	Human coagulation factor V mRNA, complete cds.
152	EFF	AA	AG	GG	M32670	Homo sapiens ITGB3 gene, intron 2, fragment C, partial sequence.
214	CVD	AA	AG	GG	X66957	H. sapiens hexokinase I (MK-16)
221	CVD	CC	CG	GG	X76732	H.sapiens mRNA for NBRA protein
224	CVD	CC	CT	TT	M14764	Human nerve growth factor receptor mRNA, complete cds.
294	CVD	CC	CT	TT	P02568	ACTIN, ALPHA SKELETAL MUSCLE (ALPHA-ACTIN 1).
307	CVD	CC	CT	TT	X63346	H.sapiens mRNA for tre oncogene (clone 210)
411	CVD	AA	AT	TT	HS34804	Human thermostable phenol sulfotransferase (STP2) gene, partial cds.
449	CVD	CC	CG	GG	M36341	Human ADP-ribosylation factor 4 (ARF4) mRNA, complete cds.

BAY SNP	SNP class	GTYPE1 1	GTYPE1 2	GTYPE2 1	GTYPE2 2	NCBI	DESCRIPTION
466	CVD	CC	CT	TT	TT	AF129756	Homo sapiens MSH55 gene, partial cds; and CLIC1, DDAH, G6b, G6c, G5b, G6d, G6e, G6f, BAT5, G5b, CSK2B, BAT4, G4, Apo M, BAT3, BAT2, AIF-1, 1C7, LST-1, LTB, TNF, and LTA genes, complete cds.
472	EFF	AA	AG	GG	GG	M57965	Homo sapiens (clones lambda gMHC 1,2,3 and 4) beta-myosin heavy chain (MYH7) gene, complete cds.
542	CVD	AA	AG	GG	GG	M64082	Human flavin-containing monooxygenase (FMO1) mRNA, complete cds.
542	ADR	AA	AG	GG	GG	M64082	Human flavin-containing monooxygenase (FMO1) mRNA, complete cds.
739	CVD	CC	CG	GG	GG	I43509	Homo sapiens methionine adenosyltransferase alpha subunit gene fragment.
821	CVD	AA	AC	CC	CC	X80507	H.sapiens YAP65 mRNA
821	VEFF	AA	AC	CC	CC	X80507	H.sapiens YAP65 mRNA
1005	CVD	AA	AG	GG	GG	M81357	Human coagulation factor VII (F7) gene exon 1 and factor X (F10) gene, exon 1.
1055	CVD	AA	AT	TT	TT	J02758	Human apolipoprotein A-IV gene, complete cds.
1056	EFF	AA	AG	GG	GG	Q16720	CALCIUM-TRANSPORTING ATPASE PLASMA MEMBRANE, ISOFORMS 3A/3B (EC 3.6.1.38) (CALCIUM

BAYSNP	SNP class	GTTYPE1	GTTYPE1	GTTYPE2	GTTYPE2	NCBI	DESCRIPTION
		1	2	2	2		PUMP) (PMCA3).
1085	CVD	AA	AG	GG	GG	M14564	Human cytochrome P450c17 (steroid 17-alpha-hydroxylase/17,20 lyase) mRNA, complete cds.
1086	CVD	AA	AG	GG	GG	M14564	Human cytochrome P450c17 (steroid 17-alpha-hydroxylase/17,20 lyase) mRNA, complete cds.
1092	CVD	CC	CG	GG	GG	AF022375	Homo sapiens vascular endothelial growth factor mRNA, complete cds.
1096	CVD	GG	GT	TT	TT	X15323	H.sapiens angiotensinogen gene 5' region and exon 1
1101	EFF	CC	CT	TT	TT	AL031005	Homo sapiens DNA sequence from PAC 329E20 on chromosome 1p34.4-36.13. Contains endothelin-converting enzyme 1 (ECE-1), EST, STS, CA repeat
1204	CVD	AA	AG	GG	GG	AC004264	Homo sapiens PAC clone RP1-102K2 from 22q12.1-qter, complete sequence.
1504	CVD	CC	CT	TT	TT	AC005175	Homo sapiens chromosome 19, cosmid R31449, complete sequence.
1511	EFF	GG	GT	TT	TT	AF009674	Homo sapiens axin (AXIN) mRNA, partial cds.
1524	ADR3	AA	AC	CC	CC	AF223404	Homo sapiens WNT1 inducible signaling pathway protein 1 (WISP1) gene, promoter and partial cds.
1556	EFF	CC	CG	GG	GG	L34058	Homo sapiens cadherin-13 mRNA, complete cds.

BAYSNP	SNP class	GTTYPE1	GTTYPE2	NCBI	DESCRIPTION
1561	CVD	AA	AC	CC	M31664 Human cytochrome P450 (CYP1A2) gene, exons 1 and 2.
1582	CVD	CC	CT	TT	AF050163 Homo sapiens lipoprotein lipase precursor, gene, partial cds.
1638	CVD	AA	AG	GG	AF090318 Homo sapiens sterol 12-alpha hydroxylase CYP8B1 (Cyp8b1) mRNA, partial cds.
1653	CVD	GG	GT	TT	J02846 Human tissue factor gene, complete cds.
1662	CVD	CC	CT	TT	K02402 Human coagulation factor IX gene, complete cds.
1714	CVD	AA	AG	GG	D50857 Human DOCK180 protein mRNA, complete cds.
1722	ADR5	CC	CT	TT	D73409 Homo sapiens mRNA for diacylglycerol kinase delta, complete cds.
1757	EFF	AA	AG	GG	J04046 Human calmodulin mRNA, complete cds.
1765	ADR3	AA	AG	GG	J05096 Human Na,K-ATPase subunit alpha 2 (ATP1A2) gene, complete cds.
1765	ADR5	AA	AG	GG	J05096 Human Na,K-ATPase subunit alpha 2 (ATP1A2) gene, complete cds.
1776	CVD	AA	AG	GG	L22569 Homo sapiens cathepsin B mRNA, 3' UTR with a stem-loop structure providing mRNA stability.
1799	CVD	CC	CT	TT	D21255 Human mRNA for OB-cadherin-2, complete cds.
1806	EFF	AA	AG	GG	AF106202 Homo sapiens endothelial cell protein C receptor precursor

BAYSNP	SNP class	GTTYPE1	GTTYPE1	GTTYPE2	GTTYPE2	NCBI	DESCRIPTION
		1	2	1	2		(EPCR) gene, complete cds.
1837	CVD	CC	CT	TT	J00098		Human apolipoprotein A-I and C-III genes, complete cds.
1837	ADRS	CC	CT	TT	X00566		Human mRNA for lipoprotein apoAI Human apolipoprotein A-I and C-III genes, complete cds.
1837	ADR	CC	CT	TT	J00098		Human apolipoprotein A-I and C-III genes, complete cds.
1870	CVD	CC	CT	TT	M84820		Human retinoid X receptor beta (RXR-beta) mRNA, complete cds.
1882	CVD	CC	CT	TT	U06643		Human keratinocyte lectin 14 (HKL-14) mRNA, complete cds.
1988	CVD	CC	CT	TT	X61598		H.sapiens mRNA for collagen (a collagen-binding protein)
2000	CVD	CC	TT	null	P03915		NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 5 (EC 1.6.5.3).
2000	ADR	CC	TT	null	P03915		NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 5 (EC 1.6.5.3).
2071	CVD	AA	AG	GG	L04143		Human c-kit gene.
2078	CVD	GG	GT	TT	X77584		H.sapiens mRNA for ATL-derived factor/thioredoxin.
2085	VEFF	GG	GT	TT	X82540		H.sapiens mRNA for activin beta-C chain
2095	CVD	AG	GG	null	L34155		Homo sapiens laminin-related protein (LamA3) mRNA, complete cds.

BAYSNP	SNP class	GTYPE1	GTYPE1	GTYPE2	NCBI	DESCRIPTION
2119	CVD	AA	AG	null	Z22535	H.sapiens ALK-3 mRNA.
2119	EFF	AA	AG	null	Z22535	H.sapiens ALK-3 mRNA.
2141	EFF	AA	AG	GG	AB035073	Homo sapiens mRNA for platelet glycoprotein VI, complete cds.
2141	CVD	AA	AG	GG	AB035073	Homo sapiens mRNA for platelet glycoprotein VI, complete cds.
2182	EFF	AA	AG	GG	D32046	Human gene for thrombopoietin, exon1-exon6, complete cds.
2234	CVD	GG	GT	TT	AC004264	Homo sapiens PAC clone RP1-102K2 from 22q12.1-qter, complete sequence.
2281	VEFF	AA	AC	CC	X87872	H.sapiens mRNA for hepatocyte nuclear factor 4c
2298	CVD	AA	AC	CC	V01511	H.sapiens gene for beta-nerve growth factor (beta-NGF)
2341	CVD	CC	CT	TT	J03280	Human phenylethanolamine N-methyltransferase gene, complete cds.
2357	CVD	AA	AG	GG	O15055	PERIOD CIRCADIAN PROTEIN 2 (KIAA0347).
2366	CVD	GG	GT	TT	P35414	PROBABLE G PROTEIN-COUPLED RECEPTOR API.
2423	CVD	AA	AG	GG	AF000571	Homo sapiens kidney and cardiac voltage dependent K+ channel (KvLQT1) mRNA, complete cds.
2708	CVD	CC	CT	TT	AL031005	Homo sapiens DNA sequence from PAC 329E20 on chromosome 1p34.4-36.13. Contains endothelin-converting-enzyme 1 (ECE-1), EST, STS, CA repeat

BAYSNP	SNP class	GTYPE1	GTYPE2	NCBI	DESCRIPTION
2995	ADR5	AA	AC	CC	ABCC1: ATP-binding cassette, sub-family C (CFTR/MRP), member 1
2995	UEFF	AA	AC	CC	ABCC1: ATP-binding cassette, sub-family C (CFTR/MRP), member 1
3360	ADR5	GG	GT	TT	ABCB4: ATP-binding cassette, sub-family B (MDR/TAP), member 4
3464	CVD	AA	AG	GG	Human protein tyrosine phosphatase (PTPase-alpha) mRNA.
3689	EFF	CC	CG	GG	M34668 H.sapiens centromere autoantigen C (CENPC) mRNA, complete cds.
3975	UEFF	AA	AC	CC	U43368 Human VEGF related factor isoform VRF186 precursor (VRF) mRNA, complete cds.
3976	UEFF	AA	AG	GG	U43368 Human VEGF related factor isoform VRF186 precursor (VRF) mRNA, complete cds.
4206	ADR3	AA	AT	TT	BC000006 Homo sapiens, ATPase, Na+/K+ transporting, beta 1 polypeptide
4838	VEFF	AA	AG	GG	L08246 Human myeloid cell differentiation protein (MCL1) mRNA.
4912	EFF	AA	AG	GG	AF022375 Homo sapiens vascular endothelial growth factor mRNA, complete cds.
4925	CVD	AA	AC	CC	AF036365 Homo sapiens caveolin-3 (CAV3) mRNA, complete cds.

BAYSNP	SNP class	GTYPE1 1	GTYPE1 2	GTYPE2 1	GTYPE2 2	NCBI accession	DESCRIPTION
4966	ADR3	AA	AG	GG	GG	AF133298	Homo sapiens cytochrome P450 (CYP4F8) mRNA, complete cds.
5014	ADRS5	AA	AG	GG	GG	AL008637	Human DNA sequence from clone CTA-833B7 on chromosome 22q12.3-13.2. Contains the NCF4 gene for cytosolic neutrophil factor 4 (40kD), the 5' part of the CSF2RB gene for granulocyte-macrophage low-affinity colony stimulating factor 2 receptor beta, ESTs, STS
5296	CVD	AA	AG	GG	GG	J02933	Human blood coagulation factor VII gene, complete cds.
5296	EFF	AA	AG	GG	GG	J02933	Human blood coagulation factor VII gene, complete cds.
5298	EFF	CC	CT	TT	TT	J02933	Human blood coagulation factor VII gene, complete cds.
5298	CVD	CC	CT	TT	TT	J02933	Human blood coagulation factor VII gene, complete cds.
5320	EFF	AA	AG	GG	GG	J03799	Human colin carcinoma laminin-binding protein mRNA, complete cds.
5361	CVD	AA	AC	CC	CC	L02932	Human peroxisome proliferator activated receptor mRNA, complete cds.
5457	EFF	AA	AG	GG	GG	L29529	Homo sapiens (clone HHT-1 variant harboring HH-05) cardiac L-type voltage dependent calcium channel alpha 1 subunit (CACNL1A1) mRNA, complete cds.
5704	CVD	CC	CT	TT	TT	M58050	Human membrane cofactor protein (MCP) mRNA, complete cds.

BAYSNP	SNP class	GTTYPE1	GTTYPE1	GTTYPE2	GTTYPE2	NCHI	DESCRIPTION
		1	2	1	2		
5717	ADR3	AA	AG	GG	AL008637		Human DNA sequence from clone CTA-833B7 on chromosome 22q12.3-13.2 Contains the NCF4 gene for cytosolic neutrophil factor 4 (40kD), the 5' part of the CSF2RB gene for granulocyte-macrophage low-affinity colony stimulating factor 2 receptor beta, ESTs, STS
5959	CVD	AA	AG	GG	S	HSHMGCOA	H.sapiens mRNA for 3-hydroxy-3-methylglutaryl coenzyme A synthase
5959	ADR5	AA	AG	GG	S	HSHMGCOA	H.sapiens mRNA for 3-hydroxy-3-methylglutaryl coenzyme A synthase
5959	ADR	AA	AG	GG	S	HSHMGCOA	H.sapiens mRNA for 3-hydroxy-3-methylglutaryl coenzyme A synthase
6162	ADR3	CC	CG	GG	AF005896		Homo sapiens Na K-ATPase beta-3 subunit (atp1b3) gene, exon 7 and complete cds.
6162	ADR	CC	CG	GG	AF005896		Homo sapiens Na K-ATPase beta-3 subunit (atp1b3) gene, exon 7 and complete cds.
6162	ADR5	CC	CG	GG	AF005896		Homo sapiens Na K-ATPase beta-3 subunit (atp1b3) gene, exon 7 and complete cds.
6236	ADR5	CC	CT	TT	HSU62961		Human succinyl CoA:3-oxoacid CoA transferase precursor (OXCT) mRNA, complete cds.

BAYSNP	SNP class	GTYPE1	GTYPE2	NCBI	DESCRIPTION
6236	ADR3	CC	CT	TT	HSU62961 Human succinyl CoA:3-oxoacid transferase precursor (OXCT) mRNA, complete cds.
6482	CVD	AA	AG	GG	X69086 H.sapiens mRNA for utrophin
6498	CVD	AA	AG	GG	X71348 Homo sapiens vHNF1-C mRNA
6744	ADR5	CC	CT	TT	AC002310 Human Chromosome 16 BAC clone C1987SK-A-635H12, complete sequence.
7133	CVD	CC	CG	GG	K02402 Human coagulation factor IX gene, complete cds.
8021	CVD	AA	AG	GG	Z13009 H.sapiens mRNA for E-cadherin
8060	CVD	AA	AG	GG	Z99572 Human DNA sequence from PAC 86F14 on chromosome 1q23-1q24. Contains coagulation factor V, ESTs and STS.
8210	EFF	AA	AG	GG	ABCB11: ATP-binding cassette, sub-family B (MDR/TAP), member 11
8592	VEFF	CC	CT	TT	J04038 Human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene, complete cds.
8816	EFF	CC	CG	GG	L36033 Human pre-B cell stimulating factor homologue (SDF1b) mRNA, complete cds.
8846	CVD	AA	AG	GG	L41162 Homo sapiens collagen alpha 3 type IX (COL9A3) mRNA, complete cds.

BAYSNP	SNP class	GTYPE1	GTYPE1	GTYPE2	NCBI	DESCRIPTION
8943	CVD	AA	AC	CC	AF050163	Homo sapiens lipoprotein lipase precursor, gene, partial cds.
9193	CVD	CC	CG	GG	M12674	Human estrogen receptor mRNA, complete cds.
9443	CVD	CC	CT	TT	U09587	Human glycyl-tRNA synthetase mRNA, complete cds.
9516	CVD	AA	AG	GG	U16720	Human interleukin 10 (IL10) gene, complete cds.
9698	ADR	AA	AG	GG	HS5211110	Homo sapiens X28 region near ALD locus containing dual specificity phosphatase 9 (DUSP9), ribosomal protein L18a (RPL18a), Ca2+/Calmodulin-dependent protein kinase I (CAMK1), creatine transporter (CRTR), CDM protein (CDM), adrenoleukodystrophy protein (AL)
9698	ADR3	AA	AG	GG	HS5211110	Homo sapiens X28 region near ALD locus containing dual specificity phosphatase 9 (DUSP9), ribosomal protein L18a (RPL18a), Ca2+/Calmodulin-dependent protein kinase I (CAMK1), creatine transporter (CRTR), CDM protein (CDM), adrenoleukodystrophy protein (AL)
9698	EFF	AA	AG	GG	HS5211110	Homo sapiens X28 region near ALD locus containing dual specificity phosphatase 9 (DUSP9), ribosomal protein L18a (RPL18a), Ca2+/Calmodulin-dependent protein kinase I (CAMK1), creatine transporter (CRTR), CDM protein (CDM), adrenoleukodystrophy protein (AL)

BAYSNP	SNP class	GTTYPE1	GTTYPE1	GTTYPE2	GTTYPE2	NCBI	DESCRIPTION
9698	ADRS	AA	AG	GG	GG	HS5211110	Homo sapiens X28 region near ALD locus containing dual specificity phosphatase 9 (DUSP9), ribosomal protein L18a (RPL18a), Ca2+/Calmodulin-dependent protein kinase I (CAMK1), creatine transporter (CRTTR), CDM protein (CDM), adrenoleukodystrophy protein (AL)
9698	CVD	AA	AG	GG	GG	HS5211110	Homo sapiens X28 region near ALD locus containing dual specificity phosphatase 9 (DUSP9), ribosomal protein L18a (RPL18a), Ca2+/Calmodulin-dependent protein kinase I (CAMK1), creatine transporter (CRTTR), CDM protein (CDM), adrenoleukodystrophy protein (AL)
9849	CVD	CC	CT	null	X04588		Human 2.5 kb mRNA for cytoskeletal tropomyosin TIV30(nm)
9883	CVD	AA	AG	GG	BC000140	PCCA: propionyl Coenzyme A carboxylase, alpha polypeptide	
10079	CVD	AA	AG	GG	X77197	H.sapiens mRNA for chloride channel	
10481	ADRS	AA	AT	TT	AF023268	Homo sapiens clk2 kinase (CLK2), propin1, cotel, glucocerebrosidase (GBA), and metaxin genes, complete cds; metaxin pseudogene and glucocerebrosidase pseudogene; and thrombospondin3 (THBS3) gene, partial cds.	
10542	UEFF	CC	CT	TT	AF066859	Homo sapiens muscle glycogen phosphorylase (PYGM) mRNA, complete cds.	

BAYSNP	SNP class	GTYPE1	GTYPE1	GTYPE2	NCBI	DESCRIPTION
		1	2	2		
10542	ADRS	CC	CT	TT	AF066859	Homo sapiens muscle glycogen phosphorylase (PYGM) mRNA, complete cds.
10600	EFF	AA	AG	GG	AF129756	Homo sapiens MSH55 gene, partial cds; and CLIC1, DDAH, G6b, G6c, G5b, G6d, G6e, G6f, BAT5, G5b, CSK2B, BAT4, G4, Apo M, BAT3, BAT2, AIF-1, IC7, LST-1, LTB, TNF, and LTA genes, complete cds.
10621	CVD	CC	CT	TT	AF220490	Homo sapiens group III secreted phospholipase A2 mRNA, complete cds.
10745	ADRS	AA	AG	GG	D11456	Human mRNA for Xanthine dehydrogenase, complete cds.
10745	VEFF	AA	AG	GG	D11456	Human mRNA for Xanthine dehydrogenase, complete cds.
10747	ADR	CC	CT	TT	D11456	Human mRNA for Xanthine dehydrogenase, complete cds.
10747	CVD	CC	CT	TT	D11456	Human mRNA for Xanthine dehydrogenase, complete cds.
10747	ADR3	CC	CT	TT	D11456	Human mRNA for Xanthine dehydrogenase, complete cds.
10771	ADRS	CC	CG	GG	D37932	Human mRNA for HPC-1, partial cds.
10771	EFF	CC	CG	GG	D37932	Human mRNA for HPC-1, partial cds.
10870	CVD	AA	AG	GG	AH002776	LDLR: low density lipoprotein receptor (familial hypercholesterolemia)
10877	CVD	AA	AC	CC	AC005832	Homo sapiens 12p13.3 BAC RPCI11-500M8 (Roswell Park

BAY SNP	SNP class	GTTYPE1	GTTYPE2	NCBI	DESCRIPTION
		1	2		
					Cancer Institute Human BAC Library) complete sequence.
10948	CVD	GG	GT	TT	M10065 Human apolipoprotein E (epsilon-4 allele) gene, complete cds.
11001	ADR5	CC	CT	TT	M34424 Human acid alpha-glucosidase (GAA) mRNA, complete cds.
11073	ADR5	CC	CG	GG	AF070670 Homo sapiens protein phosphatase 2C alpha 2 mRNA, complete cds.
11153	CVD	CC	CT	TT	U57623 Human fatty acid binding protein FABP gene, complete cds.
11210	CVD	CC	CT	TT	AB014460 Homo sapiens TSC2, NTHL1/NTH1 and SLC9A3R2/E3KARP genes, partial and complete cds.
11210	ADR3	CC	CT	TT	AB014460 Homo sapiens TSC2, NTHL1/NTH1 and SLC9A3R2/E3KARP genes, partial and complete cds.
11210	ADR	CC	CT	TT	AB014460 Homo sapiens TSC2, NTHL1/NTH1 and SLC9A3R2/E3KARP genes, partial and complete cds.
11248	ADR	CC	CT	TT	X60435 H.sapiens gene PACAP for pituitary adenylate cyclase activating polypeptide
11248	CVD	CC	CT	TT	X60435 H.sapiens gene PACAP for pituitary adenylate cyclase activating polypeptide
11372	CVD	AA	AG	GG	Z82215 Human DNA sequence from clone RP1-68O2 on chromosome 22 Contains the 5' end of the APOL2 gene for apolipoprotein L2, the APOL gene for apolipoprotein L, the MYH9 gene for

BAYSNP	SNP class	GTTYPE1 1	GTTYPE1 2	GTTYPE2 1	GTTYPE2 2	NCBI	DESCRIPTION
11449	CVD	CC	CG	GG	GG	AF050163	Homo sapiens lipoprotein lipase precursor, gene, partial cds.
11450	EFF	AA	AT	TT	TT	AF050163	Homo sapiens lipoprotein lipase precursor, gene, partial cds.
11470	CVD	CC	CT	null	AJ006945	Human P2Y1 gene	
11472	CVD	AA	AT	null	AJ006945	Human P2Y1 gene	
11487	ADRS	AT	TT	null	M75106	Human prepro-plasma carboxypeptidase B mRNA, complete cds.	
11487	ADR3	AT	TT	null	M75106	Human prepro-plasma carboxypeptidase B mRNA, complete cds.	
11488	ADRS	CC	CG	GG	M75106	Human prepro-plasma carboxypeptidase B mRNA, complete cds.	
11488	UEFF	CC	CG	GG	M75106	Human prepro-plasma carboxypeptidase B mRNA, complete cds.	
11488	ADR3	CC	CG	GG	M75106	Human prepro-plasma carboxypeptidase B mRNA, complete cds.	
11493	CVD	AA	AG	GG	U03882	Human monocyte chemoattractant protein 1 receptor (MCP-1RA) alternatively spliced mRNA, complete cds.	
11502	ADR3	CC	CT	TT	U58917	Homo sapiens IL-17 receptor mRNA, complete cds.	
11502	ADR5	CC	CT	TT	U58917	Homo sapiens IL-17 receptor mRNA, complete cds.	
11534	CVD	GG	GT	null	AJ276102	Homo sapiens mRNA for GPRC5C protein	

BAYSNP	SNP class	GTTYPE1	GTTYPE1	GTTYPE2	GTTYPE2	NCBI	DESCRIPTION
11537	CVD	AA	AG	GG	GG	AL022721	Human DNA sequence from clone 109F14 on chromosome 6p21.2-21.3. Contains the alternatively spliced gene for Transcriptional Enhancer Factor TEF-5, the 60S Ribosomal Protein RPL10A gene, a PUTATIVE ZNF127 LIKE gene, and the PPARD for Peroxisome Proliferator
11537	EFF	AA	AG	GG	GG	AL022721	Human DNA sequence from clone 109F14 on chromosome 6p21.2-21.3. Contains the alternatively spliced gene for Transcriptional Enhancer Factor TEF-5, the 60S Ribosomal Protein RPL10A gene, a PUTATIVE ZNF127 LIKE gene, and the PPARD for Peroxisome Proliferator
11560	EFF	AA	AG	GG	GG	AC006312	Homo sapiens chromosome 9, clone hRPK.401_G_18, complete sequence.
11578	CVD	CC	CT	CT	null	AC073593	Homo sapiens 12 BAC RP11-13J12 (Roswell Park Cancer Institute Human BAC Library) complete sequence.
11594	ADR3	CC	CT	TT	TT	AF026069	Homo sapiens phosphomevalonate kinase (HUMPMK1) gene, partial cds.
11594	ADR5	CC	CT	TT	TT	AF026069	Homo sapiens phosphomevalonate kinase (HUMPMK1) gene, partial cds.
11594	CVD	CC	CT	TT	TT	AF026069	Homo sapiens phosphomevalonate kinase (HUMPMK1) gene,

BAY SNP	SNP class	GTTYPE1	GTTYPE1	GTTYPE2	GTTYPE2	NCBI	DESCRIPTION
		1	2	1	2		
11594	ADR	CC	CT	TT	AF026069	Homo sapiens phosphomevalonate kinase (HUMPMK1) gene, partial cds.	partial cds.
11624	CVD	CC	CT	TT	AL022721	Human DNA sequence from clone 109F14 on chromosome 6p21.2-21.3. Contains the alternatively spliced gene for Transcriptional Enhancer Factor TEF-5, the 60S Ribosomal Protein RPL10A gene, a PUTATIVE ZNF127 LIKE gene, and the PPARD for Peroxisome Proliferato	Human DNA sequence from clone 109F14 on chromosome 6p21.2-21.3. Contains the alternatively spliced gene for Transcriptional Enhancer Factor TEF-5, the 60S Ribosomal Protein RPL10A gene, a PUTATIVE ZNF127 LIKE gene, and the PPARD for Peroxisome Proliferato
11624	EFF	CC	CT	TT	AL022721	Human DNA sequence from clone 109F14 on chromosome 6p21.2-21.3. Contains the alternatively spliced gene for Transcriptional Enhancer Factor TEF-5, the 60S Ribosomal Protein RPL10A gene, a PUTATIVE ZNF127 LIKE gene, and the PPARD for Peroxisome Proliferato	Human DNA sequence from clone 109F14 on chromosome 6p21.2-21.3. Contains the alternatively spliced gene for Transcriptional Enhancer Factor TEF-5, the 60S Ribosomal Protein RPL10A gene, a PUTATIVE ZNF127 LIKE gene, and the PPARD for Peroxisome Proliferato
11627	CVD	CC	CT	TT	AL022721	Human DNA sequence from clone 109F14 on chromosome 6p21.2-21.3. Contains the alternatively spliced gene for Transcriptional Enhancer Factor TEF-5, the 60S Ribosomal Protein RPL10A gene, a PUTATIVE ZNF127 LIKE gene, and the PPARD for Peroxisome Proliferato	Human DNA sequence from clone 109F14 on chromosome 6p21.2-21.3. Contains the alternatively spliced gene for Transcriptional Enhancer Factor TEF-5, the 60S Ribosomal Protein RPL10A gene, a PUTATIVE ZNF127 LIKE gene, and the PPARD for Peroxisome Proliferato
11627	EFF	CC	CT	TT	AL022721	Human DNA sequence from clone 109F14 on chromosome 6p21.2-21.3. Contains the alternatively spliced gene for Transcriptional Enhancer Factor TEF-5, the 60S Ribosomal Protein RPL10A gene, a PUTATIVE ZNF127 LIKE gene, and the PPARD for Peroxisome Proliferato	Human DNA sequence from clone 109F14 on chromosome 6p21.2-21.3. Contains the alternatively spliced gene for Transcriptional Enhancer Factor TEF-5, the 60S Ribosomal Protein RPL10A gene, a PUTATIVE ZNF127 LIKE gene, and the PPARD for Peroxisome Proliferato

BAYSNP	SNP class	GTYPE1 1	GTYPE1 2	GTYPE2 1	GTYPE2 2	NCBI	DESCRIPTION
							6p21.2-21.3. Contains the alternatively spliced gene for Transcriptional Enhancer Factor TEF-5, the 60S Ribosomal Protein RPL10A gene, a PUTATIVE ZNF127 LIKE gene, and the PPARD for Peroxisome Proliferator
11644	ADRS	AA	AG	GG	GG	D84371	Homo sapiens mRNA for serum arylalkylphosphatase, complete cds.
11650	EFF	AA	AG	GG	GG	X56668	Human DNA for calretinin exon 1
11654	ADRS	AA	AG	GG	GG	AJ276180	Homo sapiens partial ZNF202 gene for zinc finger protein homolog, exon 4
11654	ADR3	AA	AG	GG	GG	AJ276180	Homo sapiens partial ZNF202 gene for zinc finger protein homolog, exon 4
11655	ADRS	AA	AC	CC	CC	AJ276180	Homo sapiens partial ZNF202 gene for zinc finger protein homolog, exon 4
11655	ADR3	AA	AC	CC	CC	AJ276180	Homo sapiens partial ZNF202 gene for zinc finger protein homolog, exon 4
11656	CVD	CC	CT	TT	TT	NM_001081	CUBN: cubilin (intrinsic factor-cobalamin receptor)
11656	EFF	CC	CT	TT	TT	NM_001081	CUBN: cubilin (intrinsic factor-cobalamin receptor)
11825	ADRS	AA	AG	null	null	AC008897	Homo sapiens chromosome 5 clone CTD-2235C13, WORKING DRAFT SEQUENCE, 6 ordered pieces.

BAYSNP	SNP class	GTTYPE1	GTTYPE1	GTTYPE2	GTTYPE2	NCBI	DESCRIPTION
		1	2	1	2		
11914	ADRS	AA	AT	TT		AF030555	Homo sapiens acyl-CoA synthetase 4 (ACS4) mRNA, complete cds.
12008	EFF	CC	CT	null		AF107885	Homo sapiens transforming growth factor-beta 3 (TGF-beta 3) gene, complete cds; and unknown genes.
12008	ADRS	CC	CT	null		AF107885	Homo sapiens transforming growth factor-beta 3 (TGF-beta 3) gene, complete cds; and unknown genes.
12097	ADRS	AG	GG	null		AF280107	Homo sapiens cytochrome P450 polypeptide 43 (CYP3A43) gene, partial cds; cytochrome P450 polypeptide 4 (CYP3A4) and cytochrome P450 polypeptide 7 (CYP3A7) genes, complete cds; and cytochrome P450 polypeptide 5 (CYP3A5) gene, partial cds.
12097	ADRS	AG	GG	null		AF280107	Homo sapiens cytochrome P450 polypeptide 43 (CYP3A43) gene, partial cds; cytochrome P450 polypeptide 4 (CYP3A4) and cytochrome P450 polypeptide 7 (CYP3A7) genes, complete cds; and cytochrome P450 polypeptide 5 (CYP3A5) gene, partial cds.
12366	UEFF	AA	AG	GG		D63807	Human mRNA for lanosterol synthase, complete cds.
12366	ADRS	AA	AG	GG		D63807	Human mRNA for lanosterol synthase, complete cds.
12619	ADRS	AG	GG	null		L13744	Human AF-9 mRNA, complete cds.

Table 4 Cohorts

Given are names (as used in table 5) and formations of the various cohorts that were used for genotyping

COHORT	Definition
HELD_ALL_GOOD/BAD	Healthy elderly individuals of both genders with good or bad serum lipid profiles (as defined in table 1a)
HELD_FEM_GOOD/BAD	Healthy elderly individuals (female) with good or bad serum lipid profiles (as defined in table 1a)
HELD_MAL_GOOD/BAD	Healthy elderly individuals (male) with good or bad serum lipid profiles (as defined in table 1a)
CVD_ALL_CASE/CTRL	Individuals with diagnosis of cardiovascular disease and healthy controls (both genders)
CVD_FEM_CASE/CTRL	Individuals with diagnosis of cardiovascular disease and healthy controls (female)
CVD_MAL_CASE/CTRL	Individuals with diagnosis of cardiovascular disease and healthy controls (male)
HELD_FEM_ADRCTRL	Female individuals that tolerate administration of cerivastatin without exhibiting signs of ADR (as defined in table 1b)
HELD_FEM_ADRCASE	Female individuals that exhibited ADR (as defined in table 1b) upon administration of cerivastatin
HELD_MAL_ADRCTRL	Male individuals that tolerate administration of cerivastatin without exhibiting signs of ADR (as defined in table 1b)
HELD_MAL_ADRCASE	Male individuals that exhibited ADR (as defined in table 1b) upon administration of cerivastatin
HELD_ALL_ADRCTRL	Individuals of both genders that tolerate administration of cerivastatin without exhibiting signs

COHORT	Definition
HELD_ALL_ADRCASE	of ADR (as defined in table 1b)
HELD_FEM_LORESP	Individuals of both genders that exhibited ADR (as defined in table 1b) upon administration of cerivastatin
HELD_FEM_HIRESP	Female individuals with a minor response to cerivastatin administration (as defined in table 1b)
HELD_FEM_HIHDL/LOHDL	Female individuals with a high response to cerivastatin administration (as defined in table 1b)
HELD_MAL_HIHDL/LOHDL	Healthy elderly individuals (female) with high or low serum HDL cholesterol levels (as defined in table 1c)
HELD_ALL_HIHDL/LOHDL	Healthy elderly individuals (male) with high or low serum HDL cholesterol levels (as defined in table 1c)
HELD_FEM_ADR3CASE	Female individuals of both genders with high or low serum HDL cholesterol levels (as defined in table 1c)
HELD_MAL_ADR3CASE	Female individuals that exhibited advanced ADR (as defined in table 1b) upon administration of cerivastatin
HELD_ALL_ADR3CASE	Male individuals that exhibited advanced ADR (as defined in table 1b) upon administration of cerivastatin
HELD_FEM_VLORESP	Individuals of both genders that exhibited advanced ADR (as defined in table 1b) upon administration of cerivastatin
	Female individuals with a very low response to cerivastatin administration (as defined in table 1b)

COHORT	Definition
HELD_FEM_VHIRESP	Female individuals with a very high response to cerivastatin administration (as defined in table 1b)
HELD_FEM_ADDR5CASE	Female individuals that exhibited severe ADR (as defined in table 1b) upon administration of cerivastatin
HELD_MAL_ADDR5CASE	Male individuals that exhibited severe ADR (as defined in table 1b) upon administration of cerivastatin
HELD_ALL_ADDR5CASE	Individuals of both genders that exhibited severe ADR (as defined in table 1b) upon administration of cerivastatin
HELD_FEM_ULORESP	Female individuals with a ultra low response to cerivastatin administration (as defined in table 1b)
HELD_FEM_UHRESP	Female individuals with a ultra high response to cerivastatin administration (as defined in table 1b)

Table 5a and 5b Cohort sizes and p-values of PA SNPs

The baySNP number refers to an internal numbering of the PA SNPs. Cpvval denotes the classical Pearson chi-squared test, Xpval denotes the likelihood-ratio chi-squared test, Cpvvalue, Xpvalue, and LRpvalue are calculated exact version of Pearson's chi-squared test, LRpval denotes the likelihood-ratio chi-squared test., Cpvval, Xpvalue, and LRpvalue are calculated as described in (SAS/STAT User's Guide of the SAS OnlineDoc, Version 8), (L. D. Fisher and G. van Belle, Biostatistics, Wiley Interscience 1993), and (A. Agresti, Statistical Science 7, 131 (1992)). The GTYPE and Allele p values were obtained through the respective chi square tests when comparing COHORTs A and B. For GTYPE p value the number of patients in cohort A carrying genotypes 11, 12 or 22 (FQ11 A, FQ12 A, FQ22 A; genotypes as defined in table 3) were compared with the respective patients in cohort B (FQ11 B, FQ12 B, FQ22 B; genotypes as defined in table 3) resulting in the respective chi square test with a 3x2 matrix. For Allele p values we compared the allele count of alleles 1 and 2 (A1 and A2) in cohorts A and B, respectively (chi square test with a 2x2 matrix). SIZE A and B: Number of patients in cohorts A and B, respectively. See table 4 for definition of COHORTs A and B.

Table 5a Cohort sizes and frequency of alleles and genotypes

baySNP		COHORT A	SIZE A	COHORT B		SIZE B	FQ1 B	FQ2 B	FQ1	FQ2	FQ12	FQ22
				A1	A2							
28	C T	HELD_FEM_HRESP	12	4	20	1	2	9	HELD_FEM_LORESP	22	18	26
29	A G	HELD_ALL_LHDL	10	12	8	4	4	2	HELD_ALL_HHDL	15	7	23
29	A G	HELD_MAL_ADRCTRL	26	33	19	13	7	6	HELD_MAL_ADRCTRL	72	68	76
29	A G	ULN							HELD_MAL_ADRCTRL	72	68	76
52	C G	HELD_MAL_ADRCASE5	9	13	5	5	3	1	HELD_MAL_ADRCTRL	72	68	76
		ULN							HELD_FEM_LORESP	31	27	35
		HELD_FEM_HRESP	18	24	12	7	10	1	HELD_FEM_LORESP	31	27	35
										5	17	9

baySNP	A1	A2	COHORT A		SIZE	FQ1 A		FQ2 A		FQ12		COHORT B		SIZE	FQ1 B		FQ2 B		FQ11		FQ12		FQ22	
			A	A		A	A	A	A	A	A	B	B		B	B	B	B	B	B	B	B	B	
56	A	G	HELD_FEM_HIRESP	12	5	19	0	5	7	HELD_FEM_LORESP	22	2	42	0	2	20								
89	A	G	HELD_ALL_CASE	45	90	0	45	0	0	HELD_ALL_CTRL	40	77	3	37	3	0								
90	C	T	HELD_FEM_CASE	31	29	33	8	13	10	HELD_FEM_CTRL	22	27	17	6	15	1								
99	C	T	HELD_FEM_BAD	82	54	110	13	28	41	HELD_FEM_GOOD	80	51	109	5	41	34								
140	C	T	HELD_FEM_HIRESP	12	24	0	0	0	12	HELD_FEM_LORESP	21	4	38	1	2	18								
152	A	G	HELD_FEM_HIRESP	12	12	12	3	6	3	HELD_FEM_LORESP	22	33	11	12	9	1								
214	A	G	HELD_ALL_BAD	97	156	38	59	38	0	HELD_ALL_GOOD	113	182	44	73	36	4								
214	A	G	HELD_FEM_BAD	81	131	31	50	31	0	HELD_FEM_GOOD	78	122	34	48	26	4								
221	C	G	HELD_ALL_CASE	45	26	64	7	12	26	HELD_ALL_CTRL	39	27	51	3	21	15								
221	C	G	HELD_FEM_CASE	31	17	45	4	9	18	HELD_FEM_CTRL	22	18	26	2	14	6								
224	C	T	HELD_FEM_BAD	79	110	48	51	8	20	HELD_FEM_GOOD	79	125	33	60	5	14								
224	C	T	HELD_MAL_BAD	20	35	5	17	1	2	HELD_MAL_GOOD	37	51	23	25	1	11								
294	C	T	HELD_ALL_CASE	45	56	34	16	24	5	HELD_ALL_CTRL	40	58	22	18	22	0								
307	C	T	CVD_FEM_CASE	36	19	53	2	15	19	CVD_FEM_CTRL	38	38	38	9	20	9								
307	C	T	HELD_ALL_BAD	102	70	134	0	70	32	HELD_ALL_GOOD	117	63	171	0	63	54								
411	A	T	HELD_ALL_LHDL	10	17	3	7	3	0	HELD_ALL_HHDL	15	18	12	5	8	2								
449	C	G	HELD_MAL_BAD	20	3	37	0	3	17	HELD_MAL_GOOD	37	16	58	1	14	22								
466	C	T	CVD_FEM_CASE	35	27	43	6	15	14	CVD_FEM_CTRL	40	44	36	12	20	8								
472	A	G	HELD_FEM_HIRESP	11	22	0	0	0	11	HELD_FEM_LORESP	22	12	32	3	6	13								
542	A	G	HELD_MAL_CASE	14	12	16	2	8	4	HELD_MAL_CTRL	19	2	36	0	2	17								
542	A	G	HELD_MAL_LHDL	21	14	28	3	8	10	HELD_MAL_HHDL	27	3	51	0	3	24								
542	A	G	HELD_ALL_ADRCASE	159	53	265	0	53	106	HELD_ALL_ADRCTRL	154	37	271	2	33	119								

- 159 -

baySNP	A1	A2	COHORT_A	SIZE	FQ1_A	FQ2_A	FQ11	FQ12	FQ22	COHORT_B	SIZE	FQ1_B	FQ2_B	FQ11	FQ12	FQ22
542	A	G	HELD_FEM_LHDL	23	2	44	0	2	21	HELD_FEM_HHDL	32	10	54	1	8	23
739	C	G	HELD_ALL_CASE	45	39	51	9	21	15	HELD_ALL_CTRL	40	48	32	14	20	6
821	A	C	HELD_MAL_BAD2	309	180	438	32	116	161	HELD_MAL_GOOD2	349	174	524	18	138	193
821	A	C	HELD_FEM_VHRESP	10	4	16	0	4	6	HELD_FEM_VLORESP	14	14	14	4	6	4
1005	A	G	HELD_MAL_CASE	14	26	2	12	2	0	HELD_MAL_CTRL	18	27	9	11	5	2
1055	A	T	HELD_MAL_CASE	9	3	15	0	3	6	HELD_MAL_CTRL	12	8	16	4	0	8
1056	A	G	HELD_FEM_HIRESP	24	30	18	12	6	6	HELD_FEM_LORESP	33	41	25	10	21	2
1085	A	G	HELD_MAL_BAD	20	17	23	3	11	6	HELD_MAL_GOOD	36	46	26	15	16	5
1085	A	G	CVD_FEM_CASE	34	51	17	20	11	3	CVD_FEM_CTRL	40	47	33	16	15	9
1086	A	G	HELD_MAL_BAD	20	24	16	7	10	3	HELD_MAL_GOOD	36	28	44	5	18	13
1092	C	G	HELD_MAL_BAD	20	9	31	2	5	13	HELD_MAL_GOOD	37	29	45	4	21	12
1096	G	T	HELD_MAL_CASE	14	7	21	0	7	7	HELD_MAL_CTRL	18	3	33	0	3	15
1096	G	T	CVD_MAL_CASE	69	21	117	4	13	52	CVD_MAL_CTRL	33	12	54	0	12	21
1101	C	T	HELD_FEM_HIRESP	12	24	0	12	0	0	HELD_FEM_LORESP	22	40	4	18	4	0
1204	A	G	HELD_MAL_BAD	19	12	26	2	8	9	HELD_MAL_GOOD	35	9	61	0	9	26
1204	A	G	HELD_ALL_BAD	99	62	136	12	38	49	HELD_ALL_GOOD	115	52	178	8	36	71
1504	C	T	HELD_ALL_CASE	44	37	51	5	27	12	HELD_ALL_CTRL	39	36	42	12	12	15
1504	C	T	HELD_MAL_BAD	19	12	26	0	12	7	HELD_MAL_GOOD	37	33	41	8	17	12
1504	C	T	HELD_MAL_CASE	14	13	15	2	9	3	HELD_MAL_CTRL	18	12	24	4	4	10
1511	G	T	HELD_FEM_HIRESP	12	15	9	3	9	0	HELD_FEM_LORESP	22	35	9	14	7	1
1524	A	C	HELD_FEM_ADRCASE3	38	16	60	0	16	22	HELD_FEM_ADRCTRL	82	39	125	8	23	51

hapSNP	A1	A2	COHORT A	SIZE	FQ1 A	FQ2 A	FQ11	FQ12	FQ22	COHORT B	SIZE	FQ1 B	FQ2 B	FQ11	FQ12	FQ22
				A	A	A	A	A	A	B	B	B	B	B	B	B
			ULN													
1556	C	G	HLD_FEM_HIRESP	12	7	17	0	7	5	HELD_FEM_LORESP	22	3	41	0	3	19
1561	A	C	CVD_FEM_CASE	36	58	14	23	12	1	CVD_FEM_CTRL	40	53	27	17	19	4
1582	C	T	HLD_MAL_BAD	20	5	35	0	5	15	HELD_MAL_GOOD	37	22	52	5	12	20
1638	A	G	HLD_FEM_CASE	31	10	52	1	8	22	HELD_FEM_CTRL	22	15	29	2	11	9
1653	G	T	CVD_MAL_CASE	69	70	68	15	40	14	CVD_MAL_CTRL	33	30	36	10	10	13
1662	C	T	HLD_MAL_CASE	14	8	20	4	0	10	HELD_MAL_CTRL	18	36	0	0	0	18
1714	A	G	CVD_MAL_CASE	66	32	100	3	26	37	CVD_MAL_CTRL	34	26	42	6	14	14
1722	C	T	HLD_FEM_ADRCASES	18	21	15	8	5	5	HELD_FEM_ADRCTRL	81	71	91	14	43	24
			ULN													
1757	A	G	HLD_FEM_HIRESP	20	15	25	4	7	9	HELD_FEM_LORESP	32	16	48	0	16	16
1765	A	G	HLD_ALL_ADRCASE3	63	9	117	1	7	55	HELD_ALL_ADRCTRL	149	56	242	4	48	97
			ULN													
1765	A	G	HLD_ALL_ADRCASE3	63	9	117	1	7	55	HELD_ALL_ADRCTRL	149	56	242	4	48	97
1765	A	G	HLD_ALL_ADRCASES	27	3	51	0	3	24	HELD_ALL_ADRCTRL	149	56	242	4	48	97
1765	A	G	HLD_ALL_ADRCASES	27	3	51	0	3	24	HELD_ALL_ADRCTRL	149	56	242	4	48	97
1765	A	G	HLD_MAL_ADRCASE3	26	2	50	0	2	24	HELD_MAL_ADRCTRL	70	25	115	2	21	47
1765	A	G	HLD_MAL_ADRCASE3	26	2	50	0	2	24	HELD_MAL_ADRCTRL	70	25	115	2	21	47

baySNP	A1	A2	COHORT_A	SIZE	FQ1_A	FQ2_A	FQ11	FQ12	FQ22	COHORT_B	SIZE	FQ1_B	FQ2_B	FQ11	FQ12	FQ22
			A	A	A	A	A	A	A	B	B	B	B	B	B	B
			ULN													
1765	A	G	HELD_MAL_ADRCASE5	10	20	0	0	0	10	HELD_MAL_ADRCTRL	70	25	115	2	21	47
1765	A	G	HELD_MAL_ADRCASE5	10	20	0	0	0	10	HELD_MAL_ADRCTRL	70	25	115	2	21	47
1765	A	G	HELD_FEM_ADRCASE3	37	7	67	1	5	31	HELD_FEM_ADRCTRL	79	31	127	2	27	50
1765	A	G	HELD_FEM_ADRCASE3	37	7	67	1	5	31	HELD_FEM_ADRCTRL	79	31	127	2	27	50
1776	A	G	HELD_ALL_CASE	45	90	0	45	0	0	HELD_ALL_CTRL	40	74	6	37	0	3
1776	A	G	HELD_FEM_CASE	31	62	0	31	0	0	HELD_FEM_CTRL	22	40	4	20	0	2
1799	C	T	HELD_FEM_BAD2	291	365	217	123	119	49	HELD_FEM_GOOD2	356	468	244	145	178	33
1799	C	T	HELD_MAL_CASE	14	15	13	4	7	3	HELD_MAL_CTRL	18	28	8	11	6	1
1806	A	G	HELD_FEM_HRESP	12	23	1	11	1	0	HELD_FEM_LORESP	22	34	10	14	6	2
1837	C	T	HELD_FEM_BAD2	304	436	172	164	108	32	HELD_FEM_GOOD2	355	499	211	166	167	22
1837	C	T	HELD_ALL_BAD2	607	891	323	334	223	50	HELD_ALL_GOOD2	682	952	412	322	308	52
1837	C	T	HELD_ALL_ADRCASE5	28	46	10	20	6	2	HELD_ALL_ADRCTRL	155	208	102	66	76	13
1837	C	T	HELD_MAL_ADRCASE	77	107	47	37	33	7	HELD_MAL_ADRCTRL	72	86	58	21	44	7
1837	C	T	HELD_MAL_BAD2	303	455	151	170	115	18	HELD_MAL_GOOD2	327	453	201	156	141	30
1870	C	T	HELD_ALL_CASE	45	29	61	2	25	18	HELD_ALL_CTRL	39	16	62	3	10	26
1870	C	T	HELD_FEM_CASE	31	22	40	1	20	10	HELD_FEM_CTRL	22	9	35	1	7	14

baySNP	A1	A2	COHORT_A	SIZE	FQ1_A	FQ2_A	FQ11_A	FQ12_A	FQ22	COHORT_B	SIZE	FQ1_B	FQ2_B	FQ11_B	FQ12_B	FQ22_B
1882	C	T	CVD_MAL_CASE	69	79	59	21	37	11	CVD_MAL_CTRL	34	43	25	9	25	0
1988	C	T	HELD_ALL_BAD	100	143	57	52	39	9	HELD_ALL_GOOD	116	144	88	48	48	20
2000	C	T	CVD_MAL_CASE	70	136	4	68	2	0	CVD_MAL_CTRL	34	58	10	29	5	0
2000	C	T	CVD_ALL_CASE	105	202	8	101	4	0	CVD_ALL_CTRL	74	130	18	65	9	0
2000	C	T	HELD_FEM_CASE2	46	90	2	45	1	0	HELD_FEM_CTRL2	42	74	10	37	5	0
2000	C	T	HELD_MAL_LOHDL	20	40	0	20	0	0	HELD_MAL_HHDL	22	40	4	20	2	0
2000	C	T	HELD_FEM_ADRCASE	79	154	4	77	2	0	HELD_FEM_ADRCTRL	82	152	12	76	6	0
2000	C	T	HELD_MAL_CASE	14	22	6	11	3	0	HELD_MAL_CTRL	19	36	2	18	1	0
2071	A	G	CVD_ALL_CASE	102	80	124	14	52	36	CVD_ALL_CTRL	74	42	106	4	34	36
2078	G	T	HELD_MAL_BAD	18	13	23	1	11	6	HELD_MAL_GOOD	35	13	57	0	13	22
2085	G	T	HELD_FEM_VHRESP	10	16	4	6	4	0	HELD_FEM_VLORESP	14	13	15	3	7	4
2095	A	G	CVD_ALL_CASE	105	4	206	4	101	0	CVD_ALL_CTRL	73	146	0	0	73	0
2119	A	G	HELD_MAL_BAD	20	23	17	3	17	0	HELD_MAL_GOOD	37	53	21	16	21	0
2119	A	G	HELD_ALL_BAD	102	131	73	29	73	0	HELD_ALL_GOOD	117	166	68	49	68	0
2119	A	G	HELD_FEM_HIRESP	12	15	9	3	9	0	HELD_FEM_LORESP	22	35	9	13	9	0
2141	A	G	HELD_FEM_VHRESP	12	6	18	0	6	6	HELD_FEM_LORESP	22	6	38	2	2	18
2141	A	G	HELD_ALL_CASE	45	17	73	0	17	28	HELD_ALL_CTRL	39	15	63	3	9	27
2182	A	G	HELD_FEM_HIRESP	12	18	6	6	6	0	HELD_FEM_LORESP	21	16	26	1	14	6
2234	G	T	HELD_MAL_BAD	20	10	30	0	10	10	HELD_MAL_GOOD	35	32	38	7	18	10
2281	A	C	HELD_FEM_VHRESP	9	5	13	0	5	4	HELD_FEM_VLORESP	13	15	11	4	7	2
2298	A	C	CVD_FEM_CASE	35	18	52	4	10	21	CVD_FEM_CTRL	38	20	56	0	20	18
2298	A	C	HELD_MAL_CASE2	29	8	50	0	8	21	HELD_MAL_CTRL2	28	16	40	2	12	14

- 163 -

baySNP	A1	A2	COHORTA	SIZE	FQ1_A	FQ2_A	FQ11	FQ12	FQ22	COHORT_B	SIZE	FQ1_B	FQ2_B	FQ11	FQ12	FQ22
	A	A	A	A	A	A	A	A	A	B	B	B	B	B	B	B
2341	C	T	HELD_FEM_CASE	31	6	56	0	6	25	HELD_FEM_CTRL	22	44	0	0	0	22
2357	A	G	HELD_ALL_CASE2	74	28	120	5	18	51	HELD_ALL_CTRL2	71	25	117	0	25	46
2357	A	G	HELD_ALL_CASE	45	16	74	4	8	33	HELD_ALL_CTRL	40	14	66	0	14	26
2357	A	G	HELD_MAL_BAD	20	4	36	0	4	16	HELD_MAL_GOOD	36	17	55	0	17	19
2357	A	G	HELD_FEM_CASE	31	12	50	4	4	23	HELD_FEM_CTRL	22	7	37	0	7	15
2366	G	T	CVD_FEM_CASE	33	38	28	12	14	7	CVD_FEM_CTRL	40	31	49	8	15	17
2423	A	G	CVD_FEM_CASE	33	45	21	16	13	4	CVD_FEM_CTRL	39	38	40	12	14	13
2708	C	T	CVD_FEM_CASE	29	57	1	28	1	0	CVD_FEM_CTRL	40	73	7	33	7	0
2995	A	C	HELD_FEM_AdRCASE5	18	16	20	3	10	5	HELD_FEM_AdRCRTL	82	45	119	4	37	41
			ULN													
2995	A	C	HELD_FEM_UHIRESP	54	24	84	2	20	32	HELD_FEM_ULORESP	75	50	100	5	40	30
3360	G	T	HELD_MAL_AdRCASE5	10	20	0	10	0	0	HELD_MAL_AdRCRTL	73	122	24	50	22	1
			ULN													
3464	A	G	HELD_ALL_CASE	45	21	69	3	15	27	HELD_ALL_CTRL	40	35	45	9	17	14
3464	A	G	HELD_FEM_CASE	31	13	49	3	7	21	HELD_FEM_CTRL	22	19	25	5	9	8
3689	C	G	HELD_FEM_HIRESP	6	9	3	3	0	0	HELD_FEM_LORESP	14	10	18	1	8	5
3975	A	C	HELD_FEM_UHIRESP	56	28	84	2	24	30	HELD_FEM_ULORESP	75	58	92	10	38	27
3976	A	G	HELD_FEM_UHIRESP	56	28	84	2	24	30	HELD_FEM_ULORESP	75	57	93	11	35	29
4206	A	T	HELD_FEM_AdRCASE3	37	36	38	8	20	9	HELD_FEM_AdRCRTL	83	103	63	31	41	11
			ULN													
4838	A	G	HELD_FEM_VHIRESP	10	16	4	7	2	1	HELD_FEM_VLORESP	14	14	14	3	8	3
4838	A	G	HELD_FEM_VHIRESP	10	16	4	7	2	1	HELD_FEM_VLORESP	14	14	14	3	8	3

- 164 -

KeySNP	A1	A2	COHORTA	SIZE	FQ1A	FQ2A	FQ11	FQ12	FQ22	COHORTB	SIZE	FQ1B	FQ2B	FQ11	FQ12	FQ22
5717	A	G	HELD_ALL_ADRCASE3	65	74	56	21	32	12	HELD_ALL_ADRCTRL	156	144	168	34	76	46
5959	A	G	HELD_ALL_CASE	43	52	34	16	20	7	HELD_ALL_CTRL	38	29	47	4	21	13
5959	A	G	CVD_FEM_CASE	9	12	6	4	4	1	CVD_FEM_CTRL	13	7	19	0	7	6
5959	A	G	HELD_MAL_CASE	14	15	13	4	7	3	HELD_MAL_CTRL	17	10	24	0	10	7
5959	A	G	HELD_MAL_ADRCASE5	9	6	12	2	2	5	HELD_MAL_ADRCTRL	67	67	13	41	13	
5959	A	G	HELD_FEM_ADRCASE	72	71	73	15	41	16	HELD_FEM_ADRCTRL	68	51	85	11	29	28
6162	C	G	HELD_ALL_ADRCASE3	64	37	91	1	35	28	HELD_ALL_ADRCTRL	151	90	212	19	52	80
6162	C	G	HELD_ALL_ADRCASE	156	88	224	6	76	74	HELD_ALL_ADRCTRL	151	90	212	19	52	80
6162	C	G	HELD_ALL_ADRCASE5	27	16	38	0	16	11	HELD_ALL_ADRCTRL	151	90	212	19	52	80
6162	C	G	HELD_MAL_ADRCASE3	26	13	39	0	13	13	HELD_MAL_ADRCTRL	71	43	99	11	21	39
6162	C	G	HELD_FEM_ADRCASE5	18	13	23	0	13	5	HELD_FEM_ADRCTRL	80	47	113	8	31	41
6162	C	G	HELD_MAL_ADRCASE	74	40	108	3	34	37	HELD_MAL_ADRCTRL	71	43	99	11	21	39
6236	C	T	HELD_ALL_ADRCASE5	27	24	30	6	12	9	HELD_ALL_ADRCTRL	152	84	220	13	58	81
6236	C	T	HELD_MAL_ADRCASE3	27	23	31	4	15	8	HELD_MAL_ADRCTRL	72	38	106	5	28	39

baySNP	A1	A2	COHORT_A	SIZE	FQ1_A	FQ2_A	FQ11	FQ12	FQ22	COHORT_B	SIZE	FQ1_B	FQ2_B	FQ11	FQ12	FQ22
	A	A	A	A	A	A	A	A	A	B	B	B	B	B	B	B
6236	C	T	HELD_MAL_ADRCASE3	10	10	10	2	6	2	HELD_MAL_ADRCTRL	72	38	106	5	28	39
			ULN													
6236	C	T	HELD_ALL_ADRCASE3	63	47	79	10	27	26	HELD_ALL_ADRCTRL	152	84	220	13	58	81
			ULN													
6482	A	G	HELD_MAL_LOHDL	17	18	16	5	8	4	HELD_MAL_HHDL	21	34	8	15	4	2
6482	A	G	HELD_ALL_BAD2	619	918	320	238	41	41	HELD_ALL_GOOD2	709	1098	320	436	226	47
6482	A	G	HELD_MAL_CASE2	27	43	11	18	7	2	HELD_MAL_CTRL2	28	32	24	10	12	6
6482	A	G	HELD_MAL_BAD2	309	461	157	173	21	21	HELD_MAL_GOOD2	339	539	139	220	99	20
6498	A	G	CVD_FEM_CASE	32	60	4	28	4	0	CVD_FEM_CTRL	35	57	13	25	7	3
6744	C	T	HELD_ALL_ADRCASE	26	21	31	4	13	9	HELD_ALL_ADRCTRL	149	74	224	9	56	84
			ULN													
7133	C	G	HELD_MAL_CASE	14	20	8	10	0	4	HELD_MAL_CTRL	18	36	0	18	0	0
8021	A	G	CVD_FEM_CASE	28	35	21	8	19	1	CVD_FEM_CTRL	36	44	28	15	14	7
8060	A	G	CVD_FEM_CASE	35	65	5	31	3	1	CVD_FEM_CTRL	40	68	12	28	12	0
8060	A	G	HELD_FEM_LOHDL	18	29	7	11	7	0	HELD_FEM_HHDL	23	43	3	20	3	0
8210	A	G	HELD_FEM_HIRESP	12	9	15	1	7	4	HELD_FEM_LORESP	22	22	22	9	4	9
8592	C	T	HELD_FEM_VHIRESP	150	122	178	15	92	43	HELD_FEM_VLORESP	143	118	168	25	68	50
8816	C	G	HELD_FEM_HIRESP	13	15	11	4	7	2	HELD_FEM_LORESP	11	5	17	0	5	6
8846	A	G	HELD_ALL_BAD	107	161	53	57	47	3	HELD_ALL_GOOD	116	166	66	62	42	12
8943	A	C	HELD_FEM_BAD	20	35	5	15	5	0	HELD_MAL_GOOD	37	52	22	20	12	5
9193	C	G	CVD_FEM_CASE	83	155	11	72	11	0	HELD_FEM_GOOD	80	140	20	60	20	0
9193	C	G	CVD_FEM_CTRL	36	63	9	28	7	1	CVD_FEM_CTRL	40	77	3	37	3	0

- 167 -

DaySNP	A1	A2	COHORT A	SIZE	FQ1A	FQ2A	FQ11	FQ12	FQ22	COHORT B	SIZE	FQ1B	FQ2B	FQ11	FQ12	FQ22
	A	A	A	A	A	A	A	A	A	B	B	B	B	B	B	B
9443	C	T	CVD_MAL_CASE	69	43	95	9	25	35	CVD_MAL_CTRL	33	12	54	0	12	21
9516	A	G	HELD_MAL_CASE	14	17	11	7	3	4	HELD_MAL_CTRL	18	12	24	2	8	8
9698	A	G	HELD_MAL_ADRCASE	74	8	140	4	0	70	HELD_MAL_ADRCTRL	72	30	114	14	2	56
9698	A	G	HELD_MAL_ADRCASE3	27	54	0	0	0	27	HELD_MAL_ADRCTRL	72	30	114	14	2	56
			ULN													
9698	A	G	HELD_FEM_HIRESP	294	105	483	5	95	194	HELD_FEM_LORESP	298	123	473	16	91	191
9698	A	G	HELD_MAL_ADRCASE5	10	20	0	0	0	10	HELD_MAL_ADRCTRL	72	30	114	14	2	56
			ULN													
9698	A	G	CVD_ALL_CASE	102	46	158	17	12	73	CVD_ALL_CTRL	72	19	125	6	7	59
9849	C	T	HELD_FEM_CASE	31	62	0	31	0	0	HELD_FEM_CTRL	21	39	3	18	3	0
9849	C	T	HELD_MAL_BAD	20	35	5	15	5	0	HELD_MAL_GOOD	37	72	2	35	2	0
9883	A	G	HELD_FEM_CASE	31	23	39	7	9	15	HELD_FEM_CTRL	22	18	26	1	16	5
9883	A	G	HELD_ALL_CASE	45	33	57	9	15	21	HELD_ALL_CTRL	39	32	46	4	24	11
10079	A	G	CVD_ALL_CASE	103	8	198	4	0	99	CVD_ALL_CTRL	73	1	145	0	1	72
10079	A	G	CVD_MAL_CASE	68	8	128	4	0	64	CVD_MAL_CTRL	34	68	0	0	0	34
10481	A	T	HELD_FEM_ADRCASE5	17	12	22	3	6	8	HELD_FEM_ADRCTRL	83	97	69	32	33	18
			ULN													
10542	C	T	HELD_FEM_UHIRESP	54	8	100	1	6	47	HELD_FEM_ULORESP	75	21	129	0	21	54
10542	C	T	HELD_MAL_ADRCASE5	10	20	0	0	0	10	HELD_MAL_ADRCTRL	69	14	124	0	14	55
			ULN													
10600	A	G	HELD_FEM_HIRESP	21	42	0	0	0	21	HELD_FEM_LORESP	33	4	62	0	4	29
10621	C	T	HELD_FEM_CASE	30	52	8	24	4	2	HELD_FEM_CTRL	20	32	8	12	8	0

baySNP	A1	A2	COHORT A	SIZE	FQ1A	FQ2A	FQ11	FQ12	COHORT B	SIZE	FQ1B	FQ2B	FQ11	FQ12	EQ22	
	A	A	A	A	A	A	A	A	B	B	B	B	B	B	B	
10745	A	G	HELD_ALL_ADRCASE5	27	20	34	5	10	12	HELD_ALL_ADRCTRL	148	75	221	7	61	80
			ULN													
10745	A	G	HELD_FEM_VHRESP	153	90	216	11	68	74	HELD_FEM_VLORESP	150	77	223	16	45	89
10747	C	T	HELD_MAL_ADRCASE	76	74	78	14	46	16	HELD_MAL_ADRCTRL	70	64	76	3	58	9
10747	C	T	CVD_ALL_CASE	62	54	70	15	24	23	CVD_ALL_CTRL	74	51	97	6	39	29
10747	C	T	HELD_MAL_ADRCASE3	27	24	30	4	16	7	HELD_MAL_ADRCTRL	70	64	76	3	58	9
			ULN													
10771	C	G	HELD_MAL_ADRCASE5	10	12	8	4	4	2	HELD_MAL_ADRCTRL	70	48	92	6	36	28
			ULN													
10771	C	G	HELD_FEM_HIRESP	284	222	346	52	118	114	HELD_FEM_LORESP	276	185	367	40	105	131
10870	A	G	HELD_MAL_BAD	20	11	29	0	11	9	HELD_MAL_GOOD	37	19	55	5	9	23
10870	A	G	HELD_FEM_BAD	82	32	132	7	18	57	HELD_FEM_GOOD	77	46	108	8	30	39
10870	A	G	HELD_MAL_CASE	14	3	25	0	3	11	HELD_MAL_CTRL	18	12	24	2	8	8
10870	A	G	HELD_ALL_CASE	45	17	73	2	13	30	HELD_ALL_CTRL	40	27	53	6	15	19
10877	A	C	HELD_ALL_LOHDL	9	18	0	0	0	9	HELD_ALL_HIHDL	15	7	23	1	5	9
10948	G	T	HELD_FEM_BAD	84	83	85	16	51	17	HELD_FEM_GOOD	79	95	63	31	33	15
10948	G	T	HELD_ALL_BAD	104	104	104	22	60	22	HELD_ALL_GOOD	115	138	92	44	50	21
10948	G	T	HELD_FEM_CASE2	44	46	42	9	28	7	HELD_FEM_CTRL2	42	50	34	17	16	9
10948	G	T	CVD_MAL_CASE	69	63	75	12	39	18	CVD_MAL_CTRL	34	41	27	12	17	5
11001	C	T	HELD_MAL_ADRCASE5	10	9	11	2	5	3	HELD_MAL_ADRCTRL	75	41	109	2	37	36
			ULN													
11073	C	G	HELD_MAL_ADRCASE5	9	10	8	3	4	2	HELD_MAL_ADRCTRL	68	43	93	9	25	34

- 169 -

hapSNP	A1	A2	COHORT_A	SIZE	FQ1_A	FQ2_A	FQ11	FQ12	FQ22	COHORT_B	SIZE	FQ1_B	FQ2_B	FQ11	FQ12	FQ22
			A	A	A	A	A	A	A	B	B	B	B	B	B	B
			ULN													
11153	C	T	HELD_FEM_CASE	31	55	7	24	7	0	HELD_FEM_CTRL	22	33	11	11	11	0
11210	C	T	HELD_MAL_CASE	14	23	5	9	5	0	HELD_MAL_CTRL	19	37	1	18	1	0
11210	C	T	HELD_ALL_ADRCASE3	63	110	16	47	16	0	HELD_ALL_ADRCTRL	144	267	21	125	17	2
			ULN													
11210	C	T	HELD_ALL_ADRCASE	153	275	31	122	31	0	HELD_ALL_ADRCTRL	144	267	21	125	17	2
11248	C	T	HELD_FEM_ADRCASE	81	131	31	56	19	6	HELD_FEM_ADRCTRL	79	112	46	38	36	5
11248	C	T	HELD_MAL_BAD	18	33	3	15	3	0	HELD_MAL_GOOD	34	53	15	19	15	0
11248	C	T	HELD_ALL_CASE	41	68	14	27	14	0	HELD_ALL_CTRL	31	44	18	13	18	0
11372	A	G	HELD_MAL_BAD	20	25	15	10	5	5	HELD_MAL_GOOD	36	31	41	10	11	15
11449	C	G	HELD_FEM_CASE	31	6	56	1	4	26	HELD_FEM_CTRL	22	10	34	0	10	12
11450	A	T	HELD_FEM_HRESP	289	170	408	28	114	147	HELD_FEM_LORESP	290	139	441	16	107	167
11470	C	T	HELD_MAL_BAD	20	40	0	20	0	0	HELD_MAL_GOOD	36	67	5	31	5	0
11472	A	T	HELD_MAL_BAD	20	40	0	20	0	0	HELD_MAL_GOOD	35	65	5	30	5	0
11472	A	T	HELD_FEM_BAD	83	158	8	75	8	0	HELD_FEM_GOOD	80	158	2	78	2	0
11487	A	T	HELD_MAL_ADRCASE5	10	20	0	0	10	0	HELD_MAL_CTRL	69	34	104	34	35	0
			ULN													
11487	A	T	HELD_MAL_ADRCASE3	27	6	48	6	21	0	HELD_MAL_CTRL	69	34	104	34	35	0
			ULN													
11488	C	G	HELD_MAL_ADRCASE5	10	20	0	10	0	0	HELD_MAL_CTRL	70	102	38	35	32	3
			ULN													
11488	C	G	HELD_FEM_UHRESP	54	78	30	29	20	5	HELD_FEM_ULORESP	77	126	28	49	28	0

baySNP	A1	A2	COHORT_A	SIZE	FQ1_A	FQ2_A	FQ11	FQ12	FQ22	COHORT_B	SIZE	FQ1_B	FQ2_B	FQ11	FQ12	FQ22
	A	A	A	A	A	A	A	A	A	B	B	B	B	B	B	B
11488	C	G	HELD_MAL_ADRCASE3	26	44	8	20	4	2	HELD_MAL_ADRCTRL	70	102	38	35	32	3
11493	A	G	HELD_MAL_CASE	14	6	22	0	6	8	HELD_MAL_CTRL	18	6	30	2	2	14
11502	C	T	HELD_MAL_ADRCASE3	27	8	46	0	8	19	HELD_MAL_ADRCTRL	73	44	102	7	30	36
11502	C	T	HELD_MAL_ADRCASE5	10	2	18	0	2	8	HELD_MAL_ADRCTRL	73	44	102	7	30	36
11534	G	T	HELD_ALL_BAD	102	204	0	102	0	0	HELD_ALL_GOOD	117	231	3	114	3	0
11537	A	G	CVD_FEM_CASE	36	52	20	20	12	4	CVD_FEM_CTRL	39	68	10	30	8	1
11537	A	G	HELD_FEM_HIRESP	12	22	2	10	2	0	HELD_FEM_LORESP	22	31	13	12	7	3
11560	A	G	HELD_FEM_HIRESP	12	2	22	1	0	11	HELD_FEM_LORESP	22	44	0	0	0	22
11578	C	T	HELD_FEM_BAD	61	121	1	60	1	0	HELD_FEM_GOOD	65	122	8	57	8	0
11578	C	T	CVD_FEM_CASE	30	57	3	27	3	0	CVD_FEM_CTRL	39	78	0	39	0	0
11594	C	T	HELD_FEM_ADRCASE3	37	74	0	0	0	37	HELD_FEM_ADRCTRL	80	10	150	2	6	72
11594	C	T	HELD_ALL_ADRCASE5	27	54	0	0	0	27	HELD_ALL_ADRCTRL	151	20	282	2	16	133
11594	C	T	HELD_ALL_CASE	45	10	80	0	10	35	HELD_ALL_CTRL	41	3	79	0	3	38
11594	C	T	HELD_ALL_ADRCASE	155	9	301	1	7	147	HELD_ALL_ADRCTRL	151	20	282	2	16	133
11594	C	T	HELD_FEM_ADRCASE5	18	36	0	0	0	18	HELD_FEM_ADRCTRL	80	10	150	2	6	72
11624	C	T	HELD_ALL_CASE	42	57	27	21	15	6	HELD_ALL_CTRL	40	60	20	20	20	0

baySNP	A1	A2	COHORT A	SIZE	FQ1 A		FQ2 A		FQ11 A		FQ12 A		COHORT B		FQ1 B		FQ2 B		FQ11 B		FQ12 B	
					A	A	A	A	A	A	A	A	B	B	B	B	B	B	B	B	B	
11656	C	T	HELD_MAL_BAD	20	20	6	8	6	6	HELD_MAL_GOOD	36	53	19	19	15	15	2	2	2	2	2	
11656	C	T	HELD_FEM_HIRESP	12	19	5	7	5	0	HELD_FEM_LORESP	22	24	20	5	14	14	3	3	3	3	3	
11656	C	T	HELD_ALL_BAD	102	119	85	35	49	18	HELD_ALL_GOOD	114	156	72	51	54	54	9	9	9	9	9	
11825	A	G	HELD_MAL_DRCCASE5	9	15	3	6	3	0	HELD_MAL_DRCTRL	63	121	5	58	5	58	0	0	0	0	0	
11914	A	T	HELD_MAL_DRCCASE5	9	2	16	1	0	8	HELD_MAL_DRCTRL	69	83	55	41	1	41	1	27	27	27	27	
11914	A	T	HELD_ALL_DRCCASE5	27	24	30	6	12	9	HELD_ALL_DRCTRL	151	178	124	63	52	52	36	36	36	36	36	
12008	C	T	HELD_FEM_HIRESP	278	529	27	251	27	0	HELD_FEM_LORESP	277	541	13	264	13	264	0	0	0	0	0	
12008	C	T	HELD_ALL_DRCCASE5	24	48	0	24	0	0	HELD_ALL_DRCTRL	134	256	12	122	12	122	0	0	0	0	0	
12097	A	G	HELD_ALL_DRCCASE5	28	6	50	6	22	0	HELD_ALL_DRCTRL	155	11	299	11	144	11	144	0	0	0	0	
12097	A	G	HELD_FEM_DRCCASE3	38	7	69	7	31	0	HELD_FEM_DRCTRL	83	5	161	5	78	5	78	0	0	0	0	
12097	A	G	HELD_MAL_DRCCASE5	10	3	17	3	7	0	HELD_MAL_DRCTRL	72	6	138	6	66	6	66	0	0	0	0	
12097	A	G	HELD_ALL_DRCCASE3	63	10	116	10	53	0	HELD_ALL_DRCTRL	155	11	299	11	144	11	144	0	0	0	0	
12366	A	G	HELD_FEM_UHRESP	50	82	18	32	18	0	HELD_FEM_ULORESP	74	104	44	39	26	39	26	9	9	9	9	
12366	A	G	HELD_ALL_DRCCASE5	25	40	10	18	4	3	HELD_ALL_DRCTRL	151	229	73	85	59	85	59	7	7	7	7	

- 173 -

BaySNP	A1	A2	COHORT A	SIZE	FQ1_A	FQ2_A	FQ11	FQ12	FQ22	COHORT B	SIZE	FQ1_B	FQ2_B	FQ11	FQ12	FQ22
	A	A	ULN		A	A	A	A				B	B	B	B	B
12619	A	G	HELD_MAL_ADRCASE5	10	19	1	9	0		HELD_MAL_ADRCTRL	71	142	0	0	71	0
12619	A	G	HELD_ALL_ADRCASE5	27	52	2	25	0		HELD_ALL_ADRCTRL	151	1	301	1	150	0
13025	A	C	HELD_ALL_ADRCASE5	28	34	22	13	8	7	HELD_ALL_ADRCTRL	151	201	101	65	71	15
13191	A	G	HELD_FEM_BAD	83	42	124	6	30	47	HELD_FEM_GOOD	79	62	96	10	42	27
13191	A	G	HELD_MAL_CASE	14	11	17	2	7	5	HELD_MAL_CTRL	18	5	31	0	5	13
13191	A	G	HELD_ALL_BAD	101	51	151	6	39	56	HELD_ALL_GOOD	114	81	147	13	55	46
13937	A	C	HELD_FEM_ADRCASE5	17	19	15	4	11	2	HELD_FEM_ADRCTRL	83	122	44	42	38	3
			ULN													
900002	G	T	CVD_FEM_CASE	34	23	45	5	13	16	CVD_FEM_CTRL	40	15	65	2	11	27
900013	C	G	CVD_FEM_CASE	35	49	21	20	9	6	CVD_FEM_CTRL	40	49	31	13	23	4
900013	C	G	CVD_ALL_CASE	104	150	58	58	34	12	CVD_ALL_CTRL	74	97	51	29	39	6
900025	G	T	CVD_MAL_CASE	66	41	91	7	27	32	CVD_MAL_CTRL	34	31	37	7	17	10
900032	C	T	CVD_FEM_CASE	25	47	3	23	1	1	CVD_FEM_CTRL	37	65	9	28	9	0
900045	C	T	HELD_FEM_HIRESP	12	4	20	1	2	9	HELD_FEM_LORESP	22	18	26	5	8	9
900065	A	C	CVD_FEM_CASE	32	54	10	22	10	0	CVD_FEM_CTRL	39	50	28	16	18	5
900065	A	C	CVD_MAL_CASE	59	80	38	25	30	4	CVD_MAL_CTRL	29	36	22	7	22	0
900065	A	C	CVD_ALL_CASE	91	134	48	47	40	4	CVD_ALL_CTRL	68	86	50	23	40	5
900078	A	G	HELD_ALL_ADRCASE3	64	116	12	52	12	0	HELD_ALL_ADRCTRL	155	297	13	142	13	0

- 174 -

laysNP	A1	A2	COHORT A	SIZE A	FQ1A	FQ2A	FQ12	FQ22	COHORT B	SIZE B	FQ1B	FQ2B	FQ11	FQ21	FQ12	FQ22
			ULN													
900078	A	G	HELD_ALL_ADRCASES	27	48	6	21	6	0	HELD_ALL_ADRCTRL	155	297	13	142	13	0
900078	A	G	HELD_FEM_ADRCASE3	38	69	7	31	7	0	HELD_FEM_ADRCTRL	83	161	5	78	5	0
900082	A	G	HELD_FEM_ADRCASE3	35	25	45	8	9	18	HELD_FEM_ADRCTRL	74	70	78	17	36	21
900082	A	G	HELD_FEM_ADRCASE5	17	10	24	3	4	10	HELD_FEM_ADRCTRL	74	70	78	17	36	21
900096	A	G	CVD_ALL_CASE	101	157	45	60	37	4	CVD_ALL_CTRL	72	125	19	55	15	2
900107	C	T	HELD_MAL_ADRCASE5	10	2	18	0	2	8	HELD_MAL_ADRCTRL	73	43	103	9	25	39
900115	A	G	HELD_MAL_ADRCASE5	9	6	12	1	4	4	HELD_MAL_ADRCTRL	72	91	53	27	37	8
900115	A	G	HELD_FEM_HIRESP	40	58	22	22	14	4	HELD_FEM_LORESP	46	62	30	17	28	1
900121	G	T	HELD_MAL_ADRCASE	66	47	85	5	37	24	HELD_MAL_ADRCTRL	67	56	78	15	26	26
900173	G	T	CVD_ALL_CASE	23	17	29	5	7	11	CVD_ALL_CTRL	22	26	18	11	4	7
10000002	A	G	HELD_FEM_HIRESP	12	21	3	9	3	0	HELD_FEM_LORESP	22	25	19	9	7	6
10000006	A	G	HELD_FEM_CASE	31	58	4	28	2	1	HELD_FEM_CTRL	22	31	13	11	9	2

baysNP	A1	A2	COHORTA	SIZE	FQ1A	FQ2A	FQ11	FQ12	FQ22	COHORTB	SIZE	FQ1B	FQ2B	FQ11	FQ12	FQ22
	A	A		A	A	A	A	A	A		B	B	B	B	B	B
1000006	A	G	HELD_ALL_CASE	44	82	6	39	4	1	HELD_ALL_CTRL	38	58	18	23	12	3
1000014	A	C	HELD_ALL_CASE	45	83	7	40	3	2	HELD_ALL_CTRL	39	64	14	26	12	1
1000014	A	C	HELD_FEM_CASE	31	58	4	28	2	1	HELD_FEM_CTRL	22	37	7	15	7	0
1000025	C	T	HELD_MAL_BAD	20	29	11	9	11	0	HELD_MAL_GOOD	36	43	29	14	15	7

Table 5b p-values of PA SNPs. A SNP is considered as associated to cardiovascular disease, adverse statin response or to efficacy of statin treatment, respectively, when one of the p values is equal or below 0.05.

BAYSNP	COMPARISON	GTYPE CPVAL	GTYPE LRPVAL	GTYPE XPVAL	ALLELE CPVAL	ALLELE XPVAL	ALLELE LRPVAL
28	HELD_FEM_EFF	0,0506	0,0508	0,0442	0,0411	0,0579	0,0349
29	HELD_ALL_HDL	0,021	0,0227	0,0099	0,0089	0,0164	0,0087
29	HELD_MAL_ADDR3ULN	0,0602	0,0582	0,0664	0,0446	0,0526	0,0435
29	HELD_MAL_ADDR5ULN	0,1406	0,1835	0,1554	0,0455	0,0778	0,0422
52	HELD_FEM_EFF	0,0644	0,0861	0,0488	0,0272	0,0362	0,0261
56	HELD_FEM_EFF	0,0248	0,0379	0,0273	0,0347	0,0479	0,0393
89	HELD_ALL_CC	0,0614	0,1	0,0311	0,0638	0,1021	0,0323
90	HELD_FEM_CC	0,0398	0,0424	0,0242	0,1382	0,1687	0,137
99	HELD_FEM_LP	0,0363	0,0366	0,0338	0,8397	0,9056	0,8397
140	HELD_FEM_EFF	0,3895	0,6921	0,2368	0,1188	0,288	0,0524
152	HELD_FEM_EFF	0,1084	0,1216	0,1082	0,0373	0,0595	0,0389
214	HELD_ALL_LP	0,1139	0,1152	0,0532	0,9756	1	0,9756

BAYSNP	COMPARISON	GTYPE CPVAL	GTYPE XPVAL	GTYPE LRPVAL	ALLELE CPVAL	ALLELE XPVAL	ALLELE LRPVAL
214	HELD_FEM_LIP	0,1095	0,1196	0,0506	0,5567	0,5803	0,5567
221	HELD_ALL_CC	0,0367	0,0359	0,0353	0,4257	0,506	0,426
221	HELD_FEM_CC	0,0406	0,0424	0,0384	0,1456	0,2083	0,1469
224	HELD_FEM_LIP	0,2893	0,3016	0,2874	0,0533	0,0709	0,0527
224	HELD_MAL_LIP	0,2292	0,2815	0,1975	0,0278	0,0392	0,0221
294	HELD_ALL_CC	0,0851	0,1041	0,0327	0,1547	0,1913	0,1534
307	CVD_FEM	0,013	0,0118	0,0104	0,0032	0,004	0,003
307	HELD_ALL_LIP	0,0255	0,0273	0,0249	0,0934	0,0968	0,0936
411	HELD_ALL_HDL	0,1529	0,2195	0,1076	0,0588	0,1136	0,0513
449	HELD_MAL_LIP	0,1321	0,0942	0,1001	0,0535	0,0667	0,0416
466	CVD_FEM	0,133	0,1439	0,1301	0,0444	0,0505	0,0438
472	HELD_FEM_EFF	0,0453	0,0626	0,0116	0,0068	0,0146	0,0009
542	HELD_MAL_CC	0,0014	0,0009	0,0007	0,0002	0,0003	0,0002
542	HELD_MAL_HDL	0,0054	0,0028	0,0029	0,0004	0,0005	0,0003
542	HELD_ALL_ADR	0,0257	0,0152	0,0171	0,0971	0,1108	0,0962
542	HELD_FEM_HDL	0,1914	0,1661	0,1457	0,0613	0,0709	0,0487
739	HELD_ALL_CC	0,0958	0,0983	0,0902	0,03	0,0327	0,0296
821	HELD_MAL_LIP2	0,0426	0,0436	0,0419	0,0865	0,0927	0,0867
821	HELD_FEM_VEFF	0,1193	0,1222	0,0584	0,0343	0,0681	0,0306
1005	HELD_MAL_CC	0,2376	0,3423	0,1618	0,0603	0,0946	0,0502
1055	HELD_MAL_CC	0,0302	0,0328	0,0084	0,2241	0,2988	0,216

BAYSNP	COMPARISON	GTYPE CPVAL	GTYPE XPVAL	GTYPE LRPVAL	ALLELE CPVAL	ALLELE XPVAL	ALLELE LRPVAL
1056	HELD_FEM_EFF	0,0094	0,0085	0,0079	0,9671	1	0,9671
1085	HELD_MAL_LIP	0,0889	0,0964	0,0773	0,0288	0,0462	0,0288
1085	CVD_FEM	0,1655	0,1833	0,156	0,0373	0,0546	0,0359
1086	HELD_MAL_LIP	0,0963	0,1125	0,0928	0,0318	0,0475	0,0315
1092	HELD_MAL_LIP	0,0493	0,0492	0,046	0,0712	0,0958	0,0663
1096	HELD_MAL_CC	0,0436	0,0623	0,0423	0,0685	0,0895	0,0679
1096	CVD_MAL	0,0766	0,0645	0,0452	0,5906	0,6848	0,5926
1101	HELD_FEM_EFF	0,1158	0,2728	0,0522	0,1279	0,2891	0,0572
1204	HELD_MAL_LIP	0,0471	0,0447	0,0362	0,0189	0,0238	0,0214
1204	HELD_ALL_LIP	0,1563	0,1592	0,1558	0,0422	0,0485	0,0424
1504	HELD_ALL_CC	0,0128	0,0133	0,0115	0,5946	0,64	0,5946
1504	HELD_MAL_LIP	0,0864	0,087	0,0247	0,1834	0,2241	0,1799
1504	HELD_MAL_CC	0,051	0,0757	0,0467	0,2868	0,3134	0,2871
1504	HELD_FEM_CC	0,0535	0,0663	0,0532	0,0878	0,1084	0,0873
1511	HELD_FEM_EFF	0,0513	0,0299	0,0413	0,1279	0,1563	0,1329
1524	HELD_FEM_DR3ULN	0,0684	0,0673	0,0215	0,64	0,7419	0,6382
1556	HELD_FEM_EFF	0,0063	0,0151	0,0066	0,0129	0,0269	0,015
1561	CVD_FEM	0,1299	0,1484	0,1216	0,0472	0,0666	0,0456
1582	HELD_MAL_LIP	0,1444	0,1408	0,0649	0,0389	0,0633	0,0319
1638	HELD_FEM_CC	0,0876	0,0903	0,0861	0,0318	0,0385	0,0328
1653	CVD_MAL	0,0269	0,0234	0,0255	0,4812	0,5499	0,4809

BAYSNP	COMPARISON	GTYPE CPVAL	GTYPE XPVAL	GTYPE LRPVAL	ALLELE CPVAL	ALLELE XPVAL	ALLELE LRPVAL
1662	HELD_MAL_CC	0,0153	0,0278	0,0067	0,0006	0,0007	0,0001
1714	CVD_MAL	0,0716	0,0776	0,0817	0,0388	0,0484	0,041
1722	HELD_FEM_ADR5ULN	0,0325	0,0304	0,0429	0,1144	0,1401	0,1146
1757	HELD_FEM_EFF	0,0289	0,0296	0,0153	0,1752	0,1926	0,1779
1765	HELD_ALL_ADR3ULN	0,0044	0,0049	0,0024	0,0023	0,0029	0,0012
1765	HELD_ALL_ADR3ULN	0,0044	0,0049	0,0024	0,0023	0,0029	0,0012
1765	HELD_ALL_ADR5ULN	0,0469	0,0457	0,0235	0,0166	0,0163	0,0077
1765	HELD_ALL_ADR5ULN	0,0469	0,0457	0,0235	0,0166	0,0163	0,0077
1765	HELD_MAL_ADR3ULN	0,0428	0,0505	0,0211	0,0131	0,0174	0,0058
1765	HELD_MAL_ADR3ULN	0,0428	0,0505	0,0211	0,0131	0,0174	0,0058
1765	HELD_MAL_ADR5ULN	0,0997	0,0786	0,0255	0,0396	0,0451	0,0069
1765	HELD_MAL_ADR5ULN	0,0997	0,0786	0,0255	0,0396	0,0451	0,0069
1765	HELD_FEM_ADR3ULN	0,0666	0,0733	0,0522	0,0513	0,0579	0,0423
1765	HELD_FEM_ADR3ULN	0,0666	0,0733	0,0522	0,0513	0,0579	0,0423
1776	HELD_ALL_CC	0,0614	0,1	0,0311	0,0082	0,0098	0,0023
1776	HELD_FEM_CC	0,087	0,1676	0,0568	0,0155	0,0273	0,0071
1799	HELD_FEM_LIP2	0,006	0,0058	0,0061	0,2598	0,268	0,2601
1799	HELD_MAL_CC	0,1419	0,1545	0,134	0,0408	0,0604	0,0406
1806	HELD_FEM_EFF	0,1946	0,236	0,128	0,047	0,0817	0,0299
1837	HELD_FEM_LIP2	0,0049	0,0047	0,0048	0,569	0,5843	0,5688
1837	HELD_ALL_LIP2	0,0085	0,0084	0,0433	0,0445	0,0431	

BAYSNP	COMPARISON	GTYPE CPVAL	GTYPE XPVAL	ALLELE CPVAL	ALLELE XPVAL	ALLELE LRPVAL
1837	HELD_ALL_ADDRSULN	0,0159	0,015	0,0135	0,0245	0,0271
1837	HELD_MAL_ADR	0,0544	0,0558	0,0529	0,078	0,0897
1837	HELD_MAL_LIP2	0,0694	0,0696	0,0684	0,0215	0,0237
1870	HELD_ALL_CC	0,0213	0,018	0,0195	0,0874	0,1157
1870	HELD_FEM_CC	0,0621	0,0435	0,059	0,0937	0,1293
1882	CVD_MAL	0,0296	0,028	0,0055	0,4108	0,4529
1988	HELD_ALL_LIP	0,1287	0,1307	0,1234	0,0385	0,0414
2000	CVD_MAL	0,0237	0,0363	0,0295	0,0014	0,0025
2000	CVD_ALL	0,034	0,0425	0,035	0,0027	0,0035
2000	HELD_FBM_CC2	0,0705	0,0992	0,061	0,0105	0,0145
2000	HELD_MAL_HDL	0,1671	0,489	0,1018	0,0507	0,1177
2000	HELD_FEM_ADR	0,1624	0,2773	0,1528	0,0482	0,0704
2000	HELD_MAL_CC	0,1597	0,2882	0,1581	0,0467	0,063
2071	CVD_ALL	0,0823	0,09	0,0741	0,0349	0,0411
2078	HELD_MAL_LIP	0,0667	0,0395	0,0572	0,0468	0,0583
2085	HELD_FEM_VEFF	0,0707	0,0839	0,0347	0,019	0,0349
2095	CVD_ALL	0,0917	0,1451	0,0384	0,0935	0,1473
2119	HELD_MAL_LIP	0,0309	0,0409	0,0248	0,1269	0,148
2119	HELD_ALL_LIP	0,0382	0,0476	0,0373	0,133	0,1514
2119	HELD_FEM_EFF	0,057	0,0796	0,0527	0,1279	0,1563
2141	HELD_FEM_EFF	0,021	0,0256	0,0169	0,2401	0,3207

BAYSNP	COMPARISON	GTYPE CPVAL	GTYPE XPVAL	GTYPE LRPVAL	ALLELE CPVAL	ALLELE XPVAL	ALLELE LRPVAL
2141	HELD_ALL_CC	0,079	0,0695	0,0439	0,9551	1	0,9551
2182	HELD_FEM_EFF	0,0038	0,0027	0,0014	0,0039	0,0051	0,0033
2234	HELD_MAL_LIP	0,0604	0,0581	0,0195	0,0315	0,0414	0,0289
2281	HELD_FEM_VEFF	0,1098	0,1234	0,0542	0,0501	0,0685	0,0472
2298	CVD_FEM	0,0241	0,0171	0,0108	0,9341	1	0,934
2298	HELD_MAL_CC2	0,1235	0,1076	0,0833	0,053	0,0671	0,0514
2341	HELD_FEM_CC	0,0284	0,0709	0,0083	0,0336	0,0796	0,0097
2357	HELD_ALL_CC2	0,042	0,0374	0,016	0,7724	0,8793	0,7723
2357	HELD_ALL_CC	0,0452	0,0325	0,0209	0,9622	1	0,9622
2357	HELD_MAL_LIP	0,0438	0,0824	0,0385	0,077	0,1278	0,0657
2357	HELD_FEM_CC	0,0772	0,0829	0,0381	0,6486	0,7985	0,6469
2366	CVD_FEM	0,1125	0,1171	0,1073	0,0234	0,0304	0,023
2423	CVD_FEM	0,086	0,0888	0,077	0,0185	0,0274	0,0179
2708	CVD_FEM	0,0719	0,1262	0,054	0,0813	0,1384	0,0609
2995	HELD_FEM_ADDSULN	0,0882	0,0827	0,1088	0,0448	0,0488	0,0503
2995	HELD_FEM_UEFF	0,0943	0,0942	0,0928	0,0516	0,0693	0,0495
3360	HELD_MAL_ADDSULN	0,1131	0,1691	0,0302	0,0499	0,0819	0,0097
3464	HELD_ALL_CC	0,0305	0,0331	0,0278	0,0047	0,0056	0,0046
3464	HELD_FEM_CC	0,0743	0,0777	0,0721	0,0141	0,0184	0,0144
3689	HELD_FEM_EFF	0,0488	0,0584	0,0295	0,0226	0,0378	0,0206
3975	HELD_FEM_UEFF	0,0492	0,0474	0,0407	0,0198	0,0237	0,0188

BAYSNP	COMPARISON	GTYPE CPVAL	GTYPE XPVAL	GTYPE LRPVAL	ALLELE CPVAL	ALLELE XPVAL	ALLELE LRPVAL
3976	HELD_FEM_UEFF	0,059	0,0605	0,0456	0,0262	0,0327	0,025
4206	HELD_FEM_ADR3ULN	0,1395	0,1496	0,1372	0,0522	0,0655	0,0529
4838	HELD_FEM_VEFF	0,0581	0,0772	0,0529	0,0343	0,0681	0,0306
4838	HELD_FEM_VEFF	0,0581	0,0772	0,0529	0,0343	0,0681	0,0306
4838	HELD_FEM_VEFF	0,0581	0,0772	0,0529	0,0343	0,0681	0,0306
4912	HELD_FEM_EFF	0,1257	0,1748	0,0921	0,0255	0,0361	0,0255
4925	HELD_FEM_CC	0,0436	0,0623	0,0423	0,0685	0,0895	0,0679
4966	HELD_MAL_ADR3ULN	0,0269	0,0282	0,0298	0,1675	0,1966	0,1669
5014	HELD_ALL_ADR5ULN	0,007	0,0104	0,0022	0,0738	0,0869	0,0611
5014	HELD_FEM_ADR5ULN	0,0574	0,0604	0,0276	0,2347	0,2691	0,2164
5296	CVD_FEM	0,0459	0,0738	0,0438	0,0585	0,0899	0,0558
5296	HELD_FEM_EFF	0,0703	0,0489	0,0461	0,4109	0,5177	0,4006
5296	CVD_ALL	0,145	0,1027	0,1148	0,0579	0,0771	0,0523
5298	HELD_FEM_EFF	0,0813	0,0465	0,0567	0,4984	0,7366	0,49
5298	CVD_ALL	0,107	0,1065	0,0603	0,0348	0,0376	0,0306
5298	CVD_FEM	0,1629	0,1593	0,1332	0,0511	0,0885	0,049
5320	HELD_FEM_EFF	0,037	0,0397	0,029	0,016	0,0243	0,0151
5361	CVD_MAL	0,0947	0,1065	0,0447	0,0519	0,0654	0,0518
5457	HELD_FEM_EFF	0,1213	0,134	0,0452	0,2429	0,3056	0,2246
5704	HELD_MAL_LIP	0,0385	0,0334	0,0406	0,054	0,0678	0,0503
5704	CVD_MAL	0,0701	0,0755	0,07	0,0246	0,0281	0,0259

BAYSNP	COMPARISON	GTYPE CPVAL	GTYPE XPVAL	GTYPE LRPVAL	ALLELE CPVAL	ALLELE XPVAL	ALLELE LRPVAL
5717	HELD_FEM_ADR3ULN	0,0736	0,0775	0,0739	0,0219	0,026	0,021
5717	HELD_ALL_ADR3ULN	0,1246	0,1264	0,1214	0,0391	0,0471	0,0389
5959	HELD_ALL_CC	0,0126	0,0122	0,0098	0,0046	0,0073	0,0044
5959	CVD_FEM	0,019	0,0225	0,0082	0,0089	0,0137	0,0083
5959	HELD_MAL_CC	0,0525	0,0589	0,0243	0,0536	0,0708	0,053
5959	HELD_MAL_ADRSULN	0,038	0,0364	0,0482	0,1839	0,2158	0,1795
5959	HELD_FEM_ADR	0,054	0,0574	0,0527	0,0465	0,0539	0,0461
6162	HELD_ALL_ADR3ULN	0,0037	0,0034	0,0015	0,8524	0,9082	0,8522
6162	HELD_ALL_ADR	0,0033	0,003	0,0028	0,663	0,722	0,663
6162	HELD_ALL_ADRSULN	0,0206	0,0248	0,006	0,9797	1	0,9797
6162	HELD_MAL_ADR3ULN	0,0412	0,0352	0,0108	0,4721	0,4836	0,468
6162	HELD_FEM_ADRSULN	0,0274	0,0257	0,0147	0,4282	0,5487	0,4335
6162	HELD_MAL_ADR	0,0219	0,0217	0,0188	0,5399	0,6036	0,5399
6236	HELD_ALL_ADRSULN	0,0477	0,0396	0,0641	0,0131	0,016	0,0158
6236	HELD_MAL_ADR3ULN	0,0787	0,0734	0,0762	0,0279	0,0376	0,0305
6236	HELD_MAL_ADRSULN	0,0932	0,0861	0,0924	0,0297	0,0375	0,0368
6236	HELD_ALL_ADR3ULN	0,1516	0,1516	0,1604	0,0474	0,051	0,0497
6482	HELD_MAL_HDL	0,0359	0,0402	0,0326	0,009	0,013	0,0087
6482	HELD_ALL_LIP2	0,0383	0,0381	0,0383	0,0486	0,0506	0,0487
6482	HELD_MAL_CC2	0,0613	0,0667	0,0572	0,0114	0,0142	0,0106
6482	HELD_MAL_LIP2	0,0651	0,0662	0,065	0,0357	0,04	0,0358

BAYSNP	COMPARISON	GTYPE CPVAL	GTYPE XPVAL	ALLELE CPVAL	ALLELE XPVAL	ALLELE LRPVAL
6498	CVD_FEM	0,145	0,1987	0,0811	0,0323	0,0389
6744	HELD_ALL_ADDRESS	0,0659	0,07	0,0775	0,02	0,0273
7133	HELD_MAL_CC	0,0153	0,0278	0,0067	0,0006	0,0007
8021	CVD_FEM	0,039	0,0422	0,0304	0,8726	1
8060	CVD_FEM	0,044	0,0304	0,0304	0,1299	0,1961
8060	HELD_FEM_HDL	0,0558	0,0753	0,0549	0,0759	0,0965
8210	HELD_FEM_EFF	0,0336	0,0396	0,0276	0,3226	0,4454
8592	HELD_FEM_VEFF	0,0395	0,0432	0,0388	0,8842	0,9331
8816	HELD_FEM_EFF	0,0448	0,0448	0,0202	0,0144	0,0199
8846	HELD_ALL_LIP	0,0628	0,0654	0,0521	0,3798	0,3932
8943	HELD_MAL_LIP	0,1444	0,1408	0,0649	0,0389	0,0633
9193	HELD_FEM_LIP	0,0561	0,0723	0,0548	0,0707	0,0889
9193	CVD_FEM	0,1616	0,1289	0,1306	0,0458	0,0687
9443	CVD_MAL	0,0828	0,0869	0,0213	0,0507	0,0634
9516	HELD_MAL_CC	0,0504	0,0583	0,046	0,029	0,043
9698	HELD_MAL_ADDR	0,0106	0,0048	0,0061	0,0001	0,0001
9698	HELD_MAL_ADDRESS	0,0279	0,0274	0,0035	0,0003	0,0002
9698	HELD_FEM_EFF	0,0538	0,0557	0,0464	0,2251	0,2386
9698	HELD_MAL_ADDRESS	0,2515	0,3809	0,097	0,0239	0,0263
9698	CVD_ALL	0,2256	0,2237	0,2119	0,0274	0,0357

BAYSNP	COMPARISON	GTYPE CPVAL	GTYPE XPVAL	GTYPE LRPVAL	ALLELE CPVAL	ALLELE XPVAL	ALLELE LRPVAL
9849	HELD_FEM_CC	0,0302	0,0602	0,0168	0,0327	0,063	0,0182
9849	HELD_MAL_LIP	0,0315	0,0448	0,0358	0,0376	0,0505	0,043
9883	HELD_FEM_CC	0,006	0,0053	0,0046	0,6913	0,8398	0,6915
9883	HELD_ALL_CC	0,0345	0,035	0,0331	0,5629	0,6344	0,563
10079	CVD_ALL	0,118	0,0767	0,048	0,0611	0,0864	0,0418
10079	CVD_MAL	0,1491	0,2983	0,0682	0,0413	0,054	0,0099
10481	HELD_FEM_ADDR5ULN	0,0697	0,0667	0,0774	0,0136	0,0149	0,0135
10542	HELD_FEM_UEFF	0,0374	0,0214	0,0265	0,0981	0,1126	0,0911
10542	HELD_MAL_ADDR5ULN	0,1163	0,1946	0,0404	0,1357	0,2186	0,046
10600	HELD_FEM_EFF	0,0973	0,1483	0,0418	0,104	0,1554	0,0445
10621	HELD_FEM_CC	0,0622	0,0649	0,0451	0,373	0,4126	0,3769
10745	HELD_ALL_ADDR5ULN	0,0329	0,0356	0,0723	0,0754	0,0953	0,0832
10745	HELD_FEM_VEFF	0,0308	0,0308	0,0302	0,3022	0,3181	0,302
10747	HELD_MAL_ADR	0,006	0,0053	0,0044	0,6116	0,64	0,6115
10747	CVD_ALL	0,0285	0,0292	0,027	0,1252	0,1349	0,1253
10747	HELD_MAL_ADDR3ULN	0,0401	0,0412	0,0505	0,8735	1	0,8734
10771	HELD_MAL_ADDR5ULN	0,0176	0,0191	0,0469	0,0263	0,0458	0,0291
10771	HELD_FEM_EFF	0,1837	0,1844	0,1832	0,0527	0,0543	0,0525
10870	HELD_MAL_LIP	0,0323	0,0272	0,0156	0,8328	1	0,8332
10870	HELD_FEM_LIP	0,0431	0,0412	0,0421	0,0319	0,037	0,0317
10870	HELD_MAL_CC	0,1157	0,0954	0,0779	0,0341	0,0413	0,0285

BAYSNP	COMPARISON	GTYPE CPVAL	GTYPE XPVAL	GTYPE LRPVAL	ALLELE CPVAL	ALLELE XPVAL	ALLELE LRPVAL
10870	HELD_ALL_CC	0,1146	0,1205	0,109	0,0272	0,0351	0,027
10877	HELD_ALL_HDL	0,0907	0,1181	0,0333	0,0266	0,0356	0,007
10948	HELD_FEM_LIP	0,0134	0,0136	0,0127	0,052	0,0588	0,0517
10948	HELD_ALL_LIP	0,0209	0,0207	0,0197	0,0356	0,0432	0,0355
10948	HELD_FEM_CC2	0,0513	0,0521	0,0493	0,3385	0,3602	0,3382
10948	CVD_MAL	0,0986	0,0986	0,103	0,0481	0,0548	0,0475
11001	HELD_MAL_ADDSULN	0,0438	0,0618	0,1215	0,1034	0,1201	0,1152
11073	HELD_MAL_ADDSULN	0,1741	0,1866	0,1892	0,0446	0,0632	0,0503
11153	HELD_FEM_CC	0,0378	0,0459	0,038	0,064	0,0726	0,0658
11210	HELD_MAL_CC	0,025	0,0616	0,0225	0,0335	0,0756	0,0304
11210	HELD_ALL_ADD3ULN	0,0344	0,027	0,0311	0,076	0,0917	0,0844
11210	HELD_ALL_ADR	0,0536	0,038	0,0354	0,2211	0,2468	0,2195
11248	HELD_FEM_ADR	0,0125	0,0119	0,0118	0,0368	0,0494	0,0364
11248	HELD_MAL_LIP	0,0478	0,0677	0,0404	0,0784	0,1038	0,0644
11248	HELD_ALL_CC	0,0431	0,0567	0,0425	0,0874	0,1066	0,0887
11372	HELD_MAL_LIP	0,2326	0,2665	0,2343	0,0486	0,0753	0,0477
11449	HELD_FEM_CC	0,0245	0,0119	0,0204	0,0644	0,0971	0,0663
11450	HELD_FEM_EFF	0,0922	0,0949	0,0903	0,0362	0,0394	0,036
11470	HELD_MAL_LIP	0,0807	0,1484	0,0304	0,0882	0,1582	0,033
11472	HELD_MAL_LIP	0,0763	0,1465	0,0284	0,0836	0,1565	0,031
11472	HELD_FEM_LIP	0,0576	0,0991	0,0495	0,0617	0,1046	0,053

BAYSNP	COMPARISON	GTYPE CPVAL	GTYPE XPVAL	GTYPE LRPVAL	GTYPE CPVAL	ALLELE XPVAL	ALLELE LRPVAL
11487	HELD_MAL_ADR5ULN	0,0033	0,0039	0,0004	0,0122	0,0159	0,0012
11487	HELD_MAL_ADR3ULN	0,0156	0,021	0,0131	0,038	0,0474	0,0295
11488	HELD_MAL_ADR5ULN	0,0117	0,0227	0,0018	0,0076	0,0087	0,0006
11488	HELD_FEM_UEFF	0,0217	0,021	0,0091	0,0655	0,0713	0,0672
11488	HELD_MAL_ADR3ULN	0,0239	0,0311	0,0166	0,0898	0,127	0,0797
11493	HELD_MAL_CC	0,0736	0,0542	0,0493	0,6283	0,7502	0,6293
11502	HELD_MAL_ADR3ULN	0,0881	0,0865	0,0363	0,0283	0,0301	0,0225
11502	HELD_MAL_ADR5ULN	0,1706	0,154	0,1118	0,0592	0,0659	0,0396
11534	HELD_ALL_LIP	0,1034	0,2501	0,0513	0,1046	0,2518	0,0519
11537	CVD_FEM	0,1061	0,1119	0,0989	0,0221	0,0256	0,0214
11537	HELD_FEM_EFF	0,1916	0,2436	0,1166	0,0438	0,0655	0,0324
11560	HELD_FEM_EFF	0,1693	0,3529	0,1436	0,0519	0,1212	0,0386
11578	HELD_FEM_LIP	0,0201	0,0333	0,0132	0,0226	0,0366	0,0147
11578	CVD_FEM	0,0435	0,0775	0,0229	0,0459	0,0799	0,0241
11594	HELD_FEM_ADR3ULN	0,1373	0,2125	0,0418	0,0279	0,0331	0,0052
11594	HELD_ALL_ADR5ULN	0,1669	0,1552	0,0434	0,0516	0,0536	0,0092
11594	HELD_ALL_CC	0,0539	0,0724	0,0479	0,0648	0,0846	0,0574
11594	HELD_ALL_ADR	0,1052	0,0878	0,1	0,0304	0,036	0,0286
11594	HELD_FEM_ADR5ULN	0,3753	0,4458	0,1824	0,1236	0,213	0,0409
11624	HELD_ALL_CC	0,0352	0,0383	0,0111	0,3119	0,388	0,3111
11624	HELD_MAL_CC	0,032	0,0313	0,0164	0,6153	0,7739	0,6163

BAYSNP	COMPARISON	GTYPE CPVAL	GTYPE XPVAL	GTYPE LRPVAL	ALLELE CPVAL	ALLELE XPVAL	ALLELE LRPVAL
11624	HELD_FEM_EFF	0,2292	0,244	0,1389	0,053	0,0656	0,0407
11627	HELD_ALL_CC	0,0337	0,0316	0,0088	0,0936	0,1309	0,0921
11627	HELD_MAL_CC	0,0931	0,0933	0,0528	0,352	0,4146	0,3531
11627	HELD_FEM_EFF	0,1916	0,2436	0,1166	0,0438	0,0655	0,0324
11644	HELD_MAL_DR5ULN	0,2097	0,2525	0,1344	0,0676	0,1027	0,0467
11650	HELD_FEM_EFF	0,0366	0,0361	0,0363	0,1123	0,1212	0,1122
11654	HELD_ALL_DR5ULN	0,0052	0,0046	0,0042	0,6623	0,7404	0,6642
11654	HELD_FEM_DR5ULN	0,0104	0,0096	0,006	0,7072	0,832	0,7087
11654	HELD_FEM_ADDR3ULN	0,0546	0,0592	0,0524	0,6906	0,7512	0,6913
11654	HELD_ALL_ADDR3ULN	0,052	0,0518	0,0601	0,2706	0,2742	0,2735
11655	HELD_ALL_DR5ULN	0,0085	0,0074	0,0058	0,8555	0,8723	0,8558
11655	HELD_FEM_DR5ULN	0,0136	0,0138	0,0053	0,7681	0,8443	0,7672
11655	HELD_FEM_ADDR3ULN	0,0489	0,048	0,0432	0,9169	1	0,9169
11656	HELD_MAL_LIP	0,0321	0,0317	0,0346	0,012	0,0141	0,0126
11656	HELD_FEM_EFF	0,0782	0,0909	0,0511	0,0442	0,0652	0,0393
11656	HELD_ALL_LIP	0,0617	0,0646	0,06	0,0295	0,0353	0,0295
11825	HELD_MAL_DR5ULN	0,0233	0,056	0,0499	0,0278	0,0619	0,0612
11914	HELD_MAL_DR5ULN	0,0186	0,0915	0,0128	0,0001	0,0001	0
11914	HELD_ALL_DR5ULN	0,1572	0,1781	0,1391	0,0477	0,0533	0,0487
12008	HELD_FEM_EFF	0,0222	0,0317	0,0209	0,0249	0,0351	0,0234
12008	HELD_ALL_DR5ULN	0,1272	0,2155	0,0422	0,135	0,225	0,0445

BAYSNP	COMPARISON	GTYPE CPVAL	GTYPE LRPVAL	ALLELE CPVAL	ALLELE LRPVAL
12097	HELD_ALL_ADDR5ULN	0,0162	0,0277	0,0308	0,019
12097	HELD_FEM_ADDR3ULN	0,0342	0,0487	0,042	0,0392
12097	HELD_MAL_ADDR5ULN	0,04	0,0749	0,0726	0,0462
12097	HELD_ALL_ADDR3ULN	0,0465	0,073	0,056	0,0524
12366	HELD_FEM_UEFF	0,0342	0,0313	0,0069	0,0364
12366	HELD_ALL_ADDR5ULN	0,0464	0,0391	0,0411	0,5197
12619	HELD_MAL_ADDR5ULN	0,0073	0,1235	0,0387	0,0075
12619	HELD_ALL_ADDR5ULN	0,0121	0,0605	0,0414	0,0125
13025	HELD_ALL_ADDR5ULN	0,04	0,0399	0,0593	0,3978
13191	HELD_FEM_LIP	0,0157	0,0149	0,015	0,0072
13191	HELD_ALL_ADDR5ULN	0,0648	0,0601	0,0431	0,0199
13191	HELD_ALL_LIP	0,0634	0,0669	0,0616	0,0211
13937	HELD_FEM_ADDR5ULN	0,076	0,0835	0,0789	0,0402
900002	CVD_FEM	0,1492	0,1674	0,1456	0,0364
900013	CVD_FEM	0,0212	0,022	0,0192	0,2613
900013	CVD_ALL	0,0279	0,0289	0,0279	0,1847
900025	CVD_MAL	0,1379	0,1533	0,1361	0,0426
900032	CVD_FEM	0,0555	0,036	0,0317	0,2549
900045	HELD_FEM_EFF	0,162	0,2388	0,151	0,0411
900065	CVD_FEM	0,0222	0,0175	0,0086	0,0066
900065	CVD_MAL	0,0549	0,0421	0,0289	0,4512

BAYSNP	COMPARISON	GTYPE CPVAL	GTYPE XPVAL	GTYPE LRPVAL	ALLELE CPVAL	ALLELE XPVAL	ALLELE LRPVAL
900065	CVD_ALL	0,0773	0,0753	0,0754	0,0471	0,0505	0,0477
900078	HELD_ALL_ADR3ULN	0,0283	0,036	0,0348	0,0335	0,0417	0,0415
900078	HELD_ALL_ADR5ULN	0,03	0,0417	0,0487	0,0349	0,0466	0,0574
900078	HELD_FEM_ADR3ULN	0,0342	0,0487	0,042	0,0392	0,0543	0,0484
900082	HELD_FEM_ADR3ULN	0,0377	0,0378	0,0364	0,01073	0,111	0,1055
900082	HELD_FEM_ADR5ULN	0,0517	0,0587	0,0566	0,0581	0,0837	0,0542
900096	CVD_ALL	0,0644	0,0622	0,0602	0,032	0,0354	0,0294
900107	HELD_MAL_ADR5ULN	0,2371	0,2767	0,1405	0,0665	0,1045	0,0455
900115	HELD_MAL_ADR5ULN	0,0214	0,02	0,0409	0,0148	0,0208	0,0158
900115	HELD_FEM_EFF	0,0347	0,0338	0,0316	0,4668	0,5083	0,4661
900121	HELD_MAL_ADR	0,0303	0,0297	0,0268	0,3005	0,3162	0,3003
900173	CVD_ALL	0,1397	0,146	0,1347	0,0356	0,0569	0,0349
1000002	HELD_FEM_EFF	0,0781	0,0766	0,0305	0,0098	0,0139	0,0067
1000006	HELD_FEM_CC	0,0041	0,0018	0,0035	0,0014	0,0024	0,0014
1000006	HELD_ALL_CC	0,0127	0,0087	0,0113	0,0023	0,0034	0,002
1000014	HELD_ALL_CC	0,0156	0,0099	0,013	0,0468	0,0612	0,046
1000014	HELD_FEM_CC	0,0415	0,0248	0,0336	0,1157	0,1943	0,1184
1000025	HELD_MAL_LIP	0,1055	0,1309	0,0337	0,1763	0,2188	0,1719

Table 6a Correlation of genotypes of PA SNPs to relative risk

For diagnostic conclusions to be drawn from genotyping a particular patient we calculated the relative risk RR1, RR2, RR3 for the three possible genotypes of each SNP. Given the genotype frequencies as

	gtype1	gtype2	gtype3
case	N11	N12	N13
control	N21	N22	N23

we calculate

Here, the *case* and *control* populations represent any case-control-group pair, or bad(case)-good(control)-group pair, respectively (due to their increased response to statins, 'high responders' are treated as a case cohort, whereas 'low responders' are treated as the respective control cohort). A value $RR1>1$, $RR2>1$, and $RR3>1$ indicates an increased risk for individuals carrying genotype 1, genotype 2, and genotype 3, respectively. For example, $RR1=3$ indicates a 3-fold risk of an individual carrying genotype 1 as compared to individuals carrying genotype 2 or 3 (a detailed description of relative risk calculation and statistics can be found in (Biostatistics, L. D. Fisher and G. van Belle, Wiley Interscience 1993)). The baySNP number refers to an internal numbering of the PA SNPs and can be found in the sequence listing. null: not defined.

In cases where a relative risk is not given in the table (three times zero or null) the informative genotype can be drawn from the right part of the table where the frequencies of genotypes are given in the cases and control cohorts. For example BaySNP 3360 gave the following results:

BAYSNP	COMPARISON	GTYPE1	GTYPE2	GTYPE3	RR1	RR2	RR3
	HELD_MAL_ADDRSULN	GG	GT	TT	null	0	0
3360							

FQ1_A	FQ2_A	FQ3_A	FQ1_B	FQ2_B	FQ3_B
10	0	0	50	22	1

It can be concluded that a GT or TT genotype is only present in the control cohort; these genotypes are somehow protective against ADR. An analogous proceeding can be used to determine protective alleles if no relative risk is given (table 6b).

BAYSNP	COMPARISON	GTYPE1	GTYPE2	GTYPE3	RRI	RR2	RR3	FQ1_A	FQ2_A	FQ3_A	FQ1_B	FQ2_B	FQ3_B
28	HELD_FEM_EFF	CC	CT	TT	0,68	0,29	3,38	1	2	9	3	12	7
29	HELD_ALL_HDL	AA	AG	GG	0	0,90	0,58	4	4	2	0	7	8
29	HELD_MALADR3ULN	AA	AG	GG	2,16	0,56	0,75	13	7	6	18	32	22
29	HELD_MALADR5ULN	AA	AG	GG	3,15	0,66	0,32	5	3	1	18	32	22
52	HELD_FEM_EFF	CC	CG	GG	1,96	1,02	0,23	7	10	1	5	17	9
56	HELD_FEM_BFF	AA	AG	GG	null	2,76	0,36	0	5	7	0	2	20
89	HELD_ALL_CC	AA	AG	null	null	0	null	45	0	0	37	3	0
90	HELD_FEM_CC	CC	CT	TT	0,97	0,64	1,82	8	13	10	6	15	1
99	HELD_FEM_LIP	CC	CT	TT	1,51	0,7	1,16	13	28	41	5	41	34
140	HELD_FEM_EFF	CC	CT	TT	0	0	null	0	0	12	1	2	18
152	HELD_FEM_EFF	AA	AG	GG	0,42	1,27	2,5	3	6	3	12	9	1
214	HELD_ALL_LIP	AA	AG	GG	0,92	1,18	0	59	38	0	73	36	4
214	HELD_FEM_LIP	AA	AG	GG	1	1,11	0	50	31	0	48	26	4
221	HELD_ALL_CC	CC	CG	GG	1,36	0,56	1,44	7	12	26	3	21	15
221	HELD_FEM_CC	CC	CG	GG	1,16	0,53	1,67	4	9	18	2	14	6
224	HELD_FEM_LIP	CC	CT	TT	0,77	1,26	1,24	51	8	20	60	5	14
224	HELD_MAL_LIP	CC	CT	TT	2,02	1,45	0,38	17	1	2	25	1	11
294	HELD_ALL_CC	CC	CT	TT	0,83	0,97	2	16	24	5	18	22	0
307	CVD_FEM	CC	CT	TT	0,34	0,8	1,84	2	15	19	9	20	9
307	HELD_ALL_LIP	CC	CT	TT	null	1,41	0,71	0	70	32	0	63	54
411	HELD_ALL_HDL	AA	AT	TT	1,85	0,69	0,56	7	3	0	5	8	2

BAYSNP	COMPARISON	GTYPE1	GTYPE2	GTYPE3	RR1	RR2	RR3	FQ1_A	FQ2_A	FQ3_A	FQ1_B	FQ2_B	FQ3_B
449	HELD_MAL_LIP	CC	CG	GG	0	0,42	2,62	0	3	17	1	14	22
466	CVD_FEM	CC	CT	TT	0,66	0,86	1,61	6	15	14	12	20	8
472	HELD_FEM_EFF	AA	AG	GG	0	0	null	0	0	11	3	6	13
542	HELD_MAL_CC	AA	AG	GG	2,58	3,07	0,23	2	8	4	0	2	17
542	HELD_MAL_HDL	AA	AG	GG	0	2,38	0,30	3	8	10	0	3	24
542	HELD_ALL_ADR	AA	AG	GG	0	1,32	0,78	0	53	106	2	33	119
542	HELD_FEM_HDL	AA	AG	GG	0,57	0,67	1,56	0	2	21	1	8	23
739	HELD_ALL_CC	CC	CG	GG	0,67	0,94	1,52	9	21	15	14	20	6
821	HELD_MAL_LIP2	AA	AC	CC	1,4	0,96	0,93	32	116	161	18	138	193
821	HELD_FEM_VEFF	AA	AC	CC	0	0,93	2,1	0	4	6	4	6	4
1005	HELD_MAL_CC	AA	AG	GG	2,35	0,6	0	12	2	0	11	5	2
1055	HELD_MAL_CC	AA	AT	TT	0	3	1	0	3	6	4	0	8
1056	HELD_FEM_EFF	AA	AG	GG	1,59	0,37	2,04	12	6	6	10	21	2
1085	HELD_MAL_LIP	AA	AG	GG	0,37	1,31	1,75	3	11	6	15	16	5
1085	CVD_FEM	AA	AG	GG	1,51	0,88	0,5	20	11	3	16	15	9
1086	HELD_MAL_LIP	AA	AG	GG	1,97	1	0,44	7	10	3	5	18	13
1092	HELD_MAL_LIP	CC	CG	GG	0,94	0,4	2,38	2	5	13	4	21	12
1096	HELD_MAL_CC	GG	GT	TT	null	2,2	0,45	0	7	7	0	3	15
1096	CVD_MAL	GG	GT	TT	1,51	0,72	1,22	4	13	52	0	12	21
1101	HELD_FEM_EFF	CC	CT	TT	null	0	null	12	0	0	18	4	0
1204	HELD_MAL_LIP	AA	AG	GG	3,06	1,58	0,49	2	8	9	0	9	26
1204	HELD_ALL_LIP	AA	AG	GG	1,34	1,18	0,77	12	38	49	8	36	71

BAYSNP	COMPARISON	GTYPE1	GTYPE2	GTYPE3	RRI	RR2	RR3	FQ1_A	FQ2_A	FQ3_A	FQ1_B	FQ2_B	FQ3_B
1504	HELD_ALL_CC	CC	CT	TT	0,5	1,79	0,78	5	27	12	12	12	15
1504	HELD_MAL_LIP	CC	CT	TT	0	1,6	1,14	0	12	7	8	17	12
1504	HELD_MAL_CC	CC	CT	TT	0,72	2,63	0,4	2	9	3	4	4	10
1504	HELD_FEM_CC	CC	CT	TT	0,4	1,44	1,13	3	18	9	8	8	5
1511	HELD_FEM_EFF	GG	GT	TT	0,33	3,38	0	3	9	0	14	7	1
1524	HELD_FEM_ADDR3ULN	AA	AC	CC	0	1,51	0,89	0	16	22	8	23	51
1556	HELD_FEM_EFF	CC	CG	GG	null	3,36	0,3	0	7	5	0	3	19
1561	CVD_FEM	AA	AC	CC	1,59	0,73	0,41	23	12	1	17	19	4
1582	HELD_MAL_LIP	CC	CT	TT	0	0,78	1,89	0	5	15	5	12	20
1638	HELD_FEM_CC	AA	AG	GG	0,56	0,62	1,73	1	8	22	2	11	9
1653	CVD_MAL	GG	GT	TT	0,86	1,43	0,71	15	40	14	10	10	13
1662	HELD_MAL_CC	CC	CT	TT	2,8	null	0,36	4	0	10	0	0	18
1714	CVD_MAL	AA	AG	GG	0,48	0,98	1,23	3	26	37	6	14	14
1722	HELD_FEM_ADDR5ULN	CC	CT	TT	2,8	0,41	0,93	8	5	5	14	43	24
1757	HELD_FEM_EFF	AA	AG	GG	3	0,68	0,88	4	7	9	0	16	16
1765	HELD_ALL_ADDR3ULN	AA	AG	GG	0,67	0,36	2,71	1	7	55	4	48	97
1765	HELD_ALL_ADDR3ULN	AA	AG	GG	0,67	0,36	2,71	1	7	55	4	48	97
1765	HELD_ALL_ADDRSULN	AA	AG	GG	null	0,31	3,64	0	3	24	4	48	97
1765	HELD_MAL_ADDR3ULN	AA	AG	GG	0	0,26	4,23	0	2	24	2	21	47
1765	HELD_MAL_ADDR3ULN	AA	AG	GG	0	0,26	4,23	0	2	24	2	21	47
1765	HELD_MAL_ADDRSULN	AA	AG	GG	0	0	null	0	0	10	-	2	21

BAYSNP	COMPARISON	GTYPE1	GTYPE2	GTYPE3	RRI	RR2	RR3	FQ1_A	FQ2_A	FQ3_A	FQ1_B	FQ2_B	FQ3_B
1765	HELD_MAL_ADRSULN	AA	AG	GG	0	0	null	0	0	10	2	21	47
1765	HELD_FEM_ADR3ULN	AA	AG	GG	1,05	0,41	2,23	1	5	31	2	27	50
1765	HELD_FEM_ADR3ULN	AA	AG	GG	1,05	0,41	2,23	1	5	31	2	27	50
1776	HELD_ALL_CC	AA	AG	GG	null	null	0	45	0	0	37	0	3
1776	HELD_FEM_CC	AA	AG	GG	null	null	0	31	0	0	20	0	2
1799	HELD_FEM_LIP2	CC	CT	TT	1,04	0,82	1,4	123	119	49	145	178	33
1799	HELD_MAL_CC	CC	CT	TT	0,45	1,46	1,91	4	7	3	11	6	1
1806	HELD_FEM_BFF	AA	AG	GG	3,96	0,35	0	11	1	0	14	6	2
1837	HELD_FEM_LIP2	CC	CT	TT	1,17	0,77	1,32	164	108	32	166	167	22
1837	HELD_ALL_LIP2	CC	CT	TT	1,18	0,83	1,04	334	223	50	322	308	52
1837	HELD_ALL_ADR5ULN	CC	CT	TT	2,82	0,34	0,86	20	6	2	66	76	13
1837	HELD_MAL_ADR	CC	CT	TT	1,45	0,7	0,96	37	33	7	21	44	7
1837	HELD_MAL_LIP2	CC	CT	TT	1,19	0,89	0,77	170	115	18	156	141	30
1870	HELD_ALL_CC	CC	CT	TT	0,73	1,75	0,61	2	25	18	3	10	26
1870	HELD_FEM_CC	CC	CT	TT	0,85	1,75	0,58	1	20	10	1	7	14
1882	CVD_MAL	CC	CT	TT	1,06	0,76	1,59	21	37	11	9	25	0
1988	HELD_ALL_LIP	CC	CT	TT	1,26	0,95	0,64	52	39	9	48	48	20
2000	CVD_MAL	CC	TT	null	2,45	0,41	null	68	2	0	29	5	0
2000	CVD_ALL	CC	TT	null	1,98	0,51	null	101	4	0	65	9	0
2000	HELD_FEM_CC2	CC	TT	null	3,29	0,3	null	45	1	0	37	5	0
2000	HELD_MAL_HDL	CC	TT	null	2,00	0,50	0	20	0	0	20	2	0
2000	HELD_FEM_ADR	CC	TT	null	2,01	0,5	null	77	2	0	76	6	0

BAYSNP	COMPARISON	GTYPE1	GTYPE2	GTYPE3	RRI	RR2	RR3	FQ1_A	FQ2_A	FQ3_A	FQ1_B	FQ2_B	FQ3_B
2000	HELD_MAL_CC	CC	TT	null	0,51	1,98	null	11	3	0	18	1	0
2071	CVD_ALL	AA	AG	GG	1,4	1,09	0,79	14	52	36	4	34	36
2078	HELD_MAL_LIP	GG	GT	TT	3,06	1,9	0,45	1	11	6	0	13	22
2085	HELD_FEM_VEFF	GG	GT	TT	2,5	0,79	0	6	4	0	3	7	4
2095	CVD_ALL	AG	GG	null	1,72	0,58	null	4	101	0	0	73	0
2119	HELD_MAL_LIP	AA	AG	null	0,35	2,83	null	3	17	0	16	21	0
2119	HELD_ALL_LIP	AA	AG	null	0,72	1,39	null	29	73	0	49	68	0
2119	HELD_FEM_EFF	AA	AG	null	0,38	2,67	null	3	9	0	13	9	0
2141	HELD_FEM_EFF	AA	AG	GG	0	3,25	0,42	0	6	6	2	2	18
2141	HELD_ALL_CC	AA	AG	GG	0	1,35	0,87	0	17	28	3	9	27
2182	HELD_FEM_EFF	AA	AG	GG	3,71	0,65	0	6	6	0	1	14	6
2234	HELD_MAL_LIP	GG	GT	TT	0	0,96	1,75	0	10	10	7	18	10
2281	HELD_FEM_VEFF	AA	AC	CC	0	1,04	2,13	0	5	4	4	7	2
2298	CVD_FEM	AA	AC	CC	2,23	0,57	1,31	4	10	21	0	20	18
2298	HELD_MAL_CC2	AA	AC	CC	0	0,7	1,65	0	8	21	2	12	14
2341	HELD_FEM_CC	CC	CT	TT	null	1,88	0,53	0	6	25	0	0	22
2357	HELD_ALL_CC2	AA	AG	GG	2,03	0,76	1,1	5	18	51	0	25	46
2357	HELD_ALL_CC	AA	AG	GG	1,98	0,62	1,21	4	8	33	0	14	26
2357	HELD_MAL_LIP	AA	AG	GG	0,42	2,4	0	4	4	16	0	17	19
2357	HELD_FEM_CC	AA	AG	GG	1,81	0,57	1,13	4	4	23	0	7	15
2366	CVD_FEM	GG	GT	TT	1,51	1,12	0,55	12	14	7	8	15	17
2423	CVD_FEM	AA	AG	GG	1,48	1,08	0,45	16	13	4	12	14	13

BAYSNP	COMPARISON	GTYPE1	GTYPE2	GTYPE3	RR1	RR2	RR3	FQ1_A	FQ2_A	FQ3_A	FQ1_B	FQ2_B	FQ3_B
2708	CVD_FEM	CC	CT	TT	3,67	0,27	null	28	1	0	33	7	0
2995	HELD_FEM_ADRSULN	AA	AC	CC	2,66	1,41	0,45	3	10	5	4	37	41
2995	HELD_FEM_VEFF	AA	AC	CC	0,67	0,68	1,57	2	20	32	5	40	30
3360	HELD_MAL_ADRSULN	GG	GT	TT	null	0	0	10	0	0	50	22	1
3464	HELD_ALL_CC	AA	AG	GG	0,43	0,83	1,61	3	15	27	9	17	14
3464	HELD_FEM_CC	AA	AG	GG	0,6	0,67	1,74	3	7	21	5	9	8
3689	HELD_FEM_EFF	CC	CG	GG	4	0,82	0	3	3	0	1	8	5
3975	HELD_FEM_VEFF	AA	AC	CC	0,37	0,83	1,5	2	24	30	10	38	27
3976	HELD_FEM_VEFF	AA	AG	GG	0,34	0,92	1,41	2	24	30	11	35	29
4206	HELD_FEM_ADR3ULN	AA	AT	TT	0,57	1,14	1,61	8	20	9	31	41	11
4838	HELD_FEM_VEFF	AA	AG	GG	3,27	0,35	0,56	7	2	1	3	8	3
4838	HELD_FEM_VEFF	AA	AG	GG	3,27	0,35	0,56	7	2	1	3	8	3
4838	HELD_FEM_VEFF	AA	AG	GG	3,27	0,35	0,56	7	2	1	3	8	3
4912	HELD_FEM_EFF	AA	AG	GG	2,33	0	0,56	7	0	5	5	2	13
4925	HELD_MAL_CC	AA	AC	CC	0,45	2,2	null	7	7	0	15	3	0
4966	HELD_MAL_ADR3ULN	AA	AG	GG	1,08	0,44	2,26	7	8	11	18	41	13
5014	HELD_ALL_ADRSULN	AA	AG	GG	1,54	0,16	3,07	3	2	23	10	57	85
5014	HELD_FEM_ADRSULN	AA	AG	GG	1,64	0,15	2,73	2	1	15	5	27	49
5296	CVD_FEM	AA	AG	GG	null	1,7	0,59	0	10	26	0	4	36
5296	HELD_FEM_EFF	AA	AG	GG	3	0,22	2,39	1	1	10	0	9	13
5296	CVD_ALL	AA	AG	GG	1,72	1,29	0,76	1	25	78	0	10	64
5298	HELD_FEM_EFF	CC	CT	TT	3,2	0,23	2,25	1	1	9	0	9	13

BAYSNP	COMPARISON	GTYPE1	GTYPE2	GTYPE3	RR1	RR2	RR3	FQ1_A	FQ2_A	FQ3_A	FQ1_B	FQ2_B	FQ3_B
5298	CVD_ALL	CC	CT	TT	1,76	1,24	0,76	3	22	76	0	10	64
5298	CVD_FEM	CC	CT	TT	2,18	1,56	0,61	1	8	26	0	4	36
5320	HELD_FEM_EFF	AA	AG	GG	0,23	0,88	2,18	1	10	8	9	19	5
5361	CVD_MAL	AA	AC	CC	0,77	1,54	1,16	24	5	35	18	0	14
5457	HELD_FEM_EFF	AA	AG	GG	1,41	0	3,52	1	0	11	1	6	14
5704	HELD_MAL_LIP	CC	CT	TT	0,7	0,45	2,44	1	8	11	3	26	8
5704	CVD_MAL	CC	CT	TT	0,65	0,87	1,32	5	30	33	6	18	9
5717	HELD_FEM_ADDR3ULN	AA	AG	GG	1,77	0,82	0,55	17	16	5	21	41	21
5717	HELD_ALL_ADDR3ULN	AA	AG	GG	1,44	1,01	0,64	21	32	12	34	76	46
5959	HELD_ALL_CC	AA	AG	GG	1,81	0,85	0,59	16	20	7	4	21	13
5959	CVD_FEM	AA	AG	GG	3,6	0,8	0,27	4	4	1	0	7	6
5959	HELD_MAL_CC	AA	AG	GG	2,7	0,82	0,57	4	7	3	0	10	7
5959	HELD_ALL_ADDR5ULN	AA	AG	GG	1,16	0,22	4,03	2	2	5	13	41	13
5959	HELD_FEM_ADR	AA	AG	GG	1,15	1,32	0,62	15	41	16	11	29	28
6162	HELD_ALL_ADDR3ULN	CC	CG	GG	0,15	1,78	0,77	1	35	28	19	52	80
6162	HELD_ALL_ADR	CC	CG	GG	0,45	1,33	0,9	6	76	74	19	52	80
6162	HELD_ALL_ADDR5ULN	CC	CG	GG	0	2,35	0,66	0	16	11	19	52	80
6162	HELD_MAL_ADDR3ULN	CC	CG	GG	0	1,85	0,87	0	13	13	11	21	39
6162	HELD_FEM_ADDR5ULN	CC	CG	GG	0	3,19	0,43	0	13	5	8	31	41
6162	HELD_MAL_ADR	CC	CG	GG	0,4	1,39	0,91	3	34	37	11	21	39
6236	HELD_ALL_ADDR5ULN	CC	CT	TT	2,41	1,25	0,49	6	12	9	13	58	81
6236	HELD_MAL_ADDR3ULN	CC	CT	TT	1,74	1,63	0,47	4	15	8	5	28	39

BAYSNP	COMPARISON	GTYPE1	GTYPE2	GTYPE3	RRI	RR2	RR3	FQ1_A	FQ2_A	FQ3_A	FQ1_B	FQ2_B	FQ3_B
6236	HELD_MAL_ADD5ULN	CC	CT	TT	2,68	2,12	0,25	2	6	2	5	28	39
6236	HELD_ALL_ADD3ULN	CC	CT	TT	1,58	1,15	0,71	10	27	26	13	58	81
6482	HELD_MAL_HDL	AA	AG	GG	0,44	1,96	1,79	5	8	4	15	4	2
6482	HELD_ALL_LIP2	AA	AG	GG	0,87	1,16	1	340	238	41	436	226	47
6482	HELD_MAL_CC2	AA	AG	GG	1,93	0,66	0,47	18	7	2	10	12	6
6482	HELD_MAL_LIP2	AA	AG	GG	0,83	1,2	1,08	173	115	21	220	99	20
6498	CVD_FEM	AA	AG	GG	1,85	0,73	0	28	4	0	25	7	3
6744	HELD_ALL_ADD5ULN	CC	CT	TT	2,27	1,54	0,47	4	13	9	9	56	84
7133	HELD_MAL_CC	CC	CG	GG	0,36	null	2,8	10	0	4	18	0	0
8021	CVD_FEM	AA	AG	GG	0,71	1,98	0,26	8	19	1	15	14	7
8060	CVD_FEM	AA	AG	GG	2,1	0,38	2,18	31	3	1	28	12	0
8060	HELD_FEM_HDL	AA	AG	GG	0,47	2,13	0	11	7	0	20	3	0
8210	HELD_FEM_EFF	AA	AG	GG	0,22	2,93	0,81	1	7	4	9	4	9
8592	HELD_FEM_VEFF	CC	CT	TT	0,7	1,32	0,86	15	92	43	25	68	50
8816	HELD_FEM_EFF	CC	CG	GG	2,22	1,17	0,36	4	7	2	0	5	6
8846	HELD_ALL_LIP	AA	AG	GG	1	1,18	0,4	57	47	3	62	42	12
8943	HELD_MAL_LIP	AA	AC	CC	1,89	0,78	0	15	5	0	20	12	5
9193	HELD_FEM_LIP	CC	CG	GG	1,54	0,65	null	72	11	0	60	20	0
9193	CVD_FEM	CC	CG	GG	0,59	1,59	2,14	28	7	1	37	3	0
9443	CVD_MAL	CC	CT	TT	1,55	1	0,85	9	25	35	0	12	21
9516	HELD_MAL_CC	AA	AG	GG	2,56	0,52	0,67	7	3	4	2	8	8
9698	HELD_MAL_ADDR	AA	AG	GG	0,41	0	2,78	4	0	70	14	2	56

BAYSNP	COMPARISON	GTYPE1	GTYPE2	GTYPE3	RRI	RR2	RR3	FQL_A	FQ2_A	FQ3_A	FQ1_B	FQ2_B	FQ3_B
9698	HELD_MAL_ADDR3ULN	AA	AG	GG	0	0	0	0	27	14	2	56	
9698	HELD_FEM_BFF	AA	AG	GG	0,47	1,04	1,04	5	95	194	16	91	191
9698	HELD_MAL_ADDR5ULN	AA	AG	GG	0	0	null	0	0	10	14	2	56
9698	CVD_ALL	AA	AG	GG	1,31	1,09	0,8	17	12	73	6	7	59
9849	HELD_FEM_CC	CC	CT	null	0	null	31	0	0	18	3	0	
9849	HELD_MAL_LIP	CC	CT	null	0,42	2,38	null	15	5	0	35	2	0
9883	HELD_FEM_CC	AA	AG	GG	1,64	0,46	1,55	7	9	15	1	16	5
9883	HELD_ALL_CC	AA	AG	GG	1,37	0,58	1,42	9	15	21	4	24	11
10079	CVD_ALL	AA	AG	GG	1,74	0	0,72	4	0	99	0	1	72
10079	CVD_MAL	AA	AG	GG	1,53	null	0,65	4	0	64	0	0	34
10481	HELD_FEM_ADDR5ULN	AA	AT	TT	0,4	0,85	2,53	3	6	...	8	32	33
10542	HELD_FEM_UEFF	CC	CT	TT	2,42	0,47	1,86	1	6	47	0	21	54
10542	HELD_MAL_ADDR5ULN	CC	CT	TT	null	0	null	0	0	10	0	14	55
10600	HELD_FEM_EFF	AA	AG	GG	null	0	0	0	0	21	0	4	29
10621	HELD_FEM_CC	CC	CT	TT	1,56	0,49	1,71	24	4	2	12	8	0
10745	HELD_ALL_ADDRSULN	AA	AG	GG	3,09	0,86	0,72	5	10	12	7	61	80
10745	HELD_FEM_VEFF	AA	AG	GG	0,79	1,35	0,8	11	68	74	16	45	89
10747	HELD_MAL_ADDR	CC	CT	TT	1,71	0,62	1,29	14	46	16	3	58	9
10747	CVD_ALL	CC	CT	TT	1,75	0,73	0,95	15	24	23	6	39	29
10747	HELD_MAL_ADDR3ULN	CC	CT	TT	2,24	0,45	1,77	4	16	7	3	58	9
10771	HELD_MAL_ADDRSULN	CC	CG	GG	4,67	0,67	0,42	4	4	2	6	36	28
10771	HELD_FEM_BFF	CC	CG	GG	1,14	1,07	0,86	52	118	114	40	105	131

BAYSNP	COMPARISON	GTYPE1	GTYPE2	GTYPE3	RRI	RR2	RR3	FQ1_A	FQ2_A	FQ3_A	FQ1_B	FQ2_B	FQ3_B
10870	HELD_MAL_LIP	AA	AG	GG	0	2,26	0,64	0	11	9	5	9	23
10870	HELD_FEM_LIP	AA	AG	GG	0,9	0,65	1,5	7	18	57	8	30	39
10870	HELD_MAL_CC	AA	AG	GG	0	0,52	2,51	0	3	11	2	8	8
10870	HELD_ALL_CC	AA	AG	GG	0,45	0,83	1,47	2	13	30	6	15	19
10877	HELD_ALL_HDL	AA	AC	CC	0,61	0,53	2,00	0	0	9	1	5	9
10948	HELD_FEM_LIP	GG	GT	TT	0,58	1,45	1,04	16	51	17	31	33	15
10948	HELD_ALL_LIP	GG	GT	TT	0,62	1,35	1,1	22	60	22	44	50	21
10948	HELD_FEM_CC2	GG	GT	TT	0,59	1,67	0,83	9	28	7	17	16	9
10948	CVD_MAL	GG	GT	TT	0,69	1,09	1,23	12	39	18	12	17	5
11001	HELD_MAL_DR5ULN	CC	CT	TT	5,06	1,02	0,51	2	5	3	2	37	36
11073	HELD_MAL_DR5ULN	CC	CG	GG	2,71	1,32	0,33	3	4	2	9	25	34
11153	HELD_FEM_CC	CC	CT	TT	1,76	0,57	null	24	7	0	11	11	0
11210	HELD_MAL_CC	CC	CT	TT	0,4	2,5	null	9	5	0	18	1	0
11210	HELD_ALL_DR3ULN	CC	CT	TT	0,6	1,79	0	47	16	0	125	17	2
11210	HELD_ALL_DR	CC	CT	TT	0,8	1,32	0	122	31	0	125	17	2
11248	HELD_FEM_DR	CC	CT	TT	1,57	0,59	1,08	56	19	6	38	36	5
11248	HELD_MAL_LIP	CC	CT	TT	2,65	0,38	null	15	3	0	19	15	0
11248	HELD_ALL_CC	CC	CT	TT	1,54	0,65	null	27	14	0	13	18	0
11372	HELD_MAL_LIP	AA	AG	GG	1,8	0,83	0,6	10	5	5	10	11	15
11449	HELD_FEM_CC	CC	CG	GG	1,73	0,41	2,05	1	4	26	0	10	12
11450	HELD_FEM_EFF	AA	AT	TT	1,3	1,06	0,87	28	114	147	16	107	167
11470	HELD_MAL_LIP	CC	CT	null	null	0	0	20	0	0	31	5	0

BAYSNP	COMPARISON	GTYPE1	GTYPE2	GTYPE3	RR1	RR2	RR3	FQ1_A	FQ2_A	FQ3_A	FQ1_B	FQ2_B	FQ3_B
11472	HELD_MAL_LIP	AA	AT	null	0	null	20	0	0	0	30	5	0
11472	HELD_FEM_LIP	AA	AT	null	0,61	1,63	null	75	8	0	78	2	0
11487	HELD_MAL_ADDRSULN	AT	TT	null	0	null	0	10	0	0	34	35	0
11487	HELD_MAL_ADDR3ULN	AT	TT	null	0,4	2,5	null	6	21	0	34	35	0
11488	HELD_MAL_ADDRSULN	CC	CG	null	0	0	10	0	0	0	35	32	3
11488	HELD_FEM_UEFF	CC	CG	GG	0,79	1,02	2,57	29	20	5	49	28	0
11488	HELD_MAL_ADDR3ULN	CC	CG	GG	2,48	0,3	1,52	20	4	2	35	32	3
11493	HELD_MAL_CC	AA	AG	GG	0	2,25	0,61	0	6	8	2	2	14
11502	HELD_MAL_ADDR3ULN	CC	CT	TT	0	0,69	1,94	0	8	19	7	30	36
11502	HELD_MAL_ADDRSULN	CC	CT	TT	0	0,4	3,55	0	2	8	7	30	36
11534	HELD_ALL_LIP	GG	GT	null	0	null	102	0	0	0	114	3	0
11537	CVD_FEM	AA	AG	GG	0,63	1,38	1,75	20	12	4	30	8	1
11537	HELD_FEM_EFF	AA	AG	GG	2,73	0,56	0	10	2	0	12	7	3
11560	HELD_FEM_EFF	AA	AG	GG	3	0,33	1	0	11	0	0	0	22
11578	HELD_FEM_LIP	CC	CT	null	4,62	0,22	null	60	1	0	57	8	0
11578	CVD_FEM	CC	CT	null	0,41	2,44	null	27	3	0	39	0	0
11594	HELD_FEM_ADDRSULN	CC	CT	TT	0	0	null	0	0	37	2	6	72
11594	HELD_ALL_ADDRSULN	CC	CT	TT	0	0	null	0	0	27	2	16	133
11594	HELD_ALL_CC	CC	CT	TT	null	1,6	0,62	0	10	35	0	3	38
11594	HELD_ALL adr	CC	CT	TT	0,66	0,58	1,71	1	7	147	2	16	133
11594	HELD_FEM_ADDRSULN	CC	CT	TT	0	0	null	0	0	18	2	6	72
11624	HELD_ALL_CC	CC	CT	TT	1	0,75	2,11	21	15	6	20	20	0

BAYSNP	COMPARISON	GTYPE1	GTYPE2	GTYPE3	RR1	RR2	RR3	FQ1_A	FQ2_A	FQ3_A	FQ1_B	FQ2_B	FQ3_B
11624	HELD_MAL_CC	CC	CT	TT	1,32	0,33	2,8	8	2	3	9	9	0
11624	HELD_FEM_EFF	CC	CT	TT	2,5	0,63	0	10	2	0	12	6	3
11627	HELD_ALL_CC	CC	CT	TT	0,86	0,86	2,05	20	18	7	21	19	0
11627	HELD_MAL_CC	CC	CT	TT	1	0,58	2,64	7	4	3	9	9	0
11627	HELD_FEM_EFF	CC	CT	TT	2,73	0,56	0	10	2	0	12	7	3
11644	HELD_MAL_ADDRSULN	AA	AG	GG	0	0,45	3,26	0	2	8	7	26	35
11650	HELD_FEM_EFF	AA	AG	GG	1,07	0,8	1,21	26	105	160	23	135	132
11654	HELD_ALL_ADDRSULN	AA	AG	GG	2,59	0,24	1,48	7	3	15	14	56	66
11654	HELD_FEM_ADDRSULN	AA	AG	GG	2,81	0,12	1,65	5	1	9	8	31	32
11654	HELD_FEM_ADDR3ULN	AA	AG	GG	1,81	0,48	1,25	8	7	17	8	31	32
11654	HELD_ALL_ADDR3ULN	AA	AG	GG	1,83	0,66	1,02	12	15	26	14	56	66
11655	HELD_ALL_ADDRSULN	AA	AC	CC	1,56	0,24	2,3	16	3	7	72	59	17
11655	HELD_FEM_ADDRSULN	AA	AC	CC	2,03	0,11	2,11	11	1	5	35	34	11
11655	HELD_FEM_ADDR3ULN	AA	AC	CC	1,34	0,45	1,64	19	7	9	35	34	11
11656	HELD_MAL_LIP	CC	CT	TT	0,53	0,96	2,57	6	8	6	19	15	2
11656	HELD_FEM_EFF	CC	CT	TT	2,57	0,56	0	7	5	0	5	14	3
11656	HELD_ALL_LIP	CC	CT	TT	0,79	1,01	1,5	35	49	18	51	54	9
11825	HELD_MAL_ADDRSULN	AA	AG	null	0,25	4	null	6	3	0	58	5	0
11914	HELD_MAL_ADDRSULN	AA	AT	TT	0,11	0	9,83	1	0	8	41	1	27
11914	HELD_ALL_ADDRSULN	AA	AT	TT	0,45	1,43	1,48	6	12	9	63	52	36
12008	HELD_FEM_EFF	CC	CT	null	0,72	1,38	null	251	27	0	264	13	0
12008	HELD_ALL_ADDRSULN	CC	CT	null	null	0	null	24	0	0	122	12	0

BAYSNP	COMPARISON	GTYPE1	GTYPE2	GTYPE3	RRJ	RR2	RR3	FQ1_A	FQ2_A	FQ3_A	FQ1_B	FQ2_B	FQ3_B
12097	HELD_ALL_ADRSULN	AG	GG	null	2,66	0,38	null	6	22	0	11	144	0
12097	HELD_FEM_ADR3ULN	AG	GG	null	2,05	0,49	null	7	31	0	5	78	0
12097	HELD_MAL_ADR5ULN	AG	GG	null	3,48	0,29	null	3	7	0	6	66	0
12097	HELD_ALL_ADR3ULN	AG	GG	null	1,77	0,56	null	10	53	0	11	144	0
12366	HELD_FEM_UEFF	AA	AG	GG	1,33	1,02	0	32	18	0	39	26	9
12366	HELD_ALL_ADRSULN	AA	AG	GG	1,82	0,34	2,26	18	4	3	85	59	7
12619	HELD_MAL_ADR5ULN	AG	GG	null	8,89	0,11	null	1	9	0	0	71	0
12619	HELD_ALL_ADRSULN	AG	GG	null	4,67	0,21	null	2	25	0	1	150	0
13025	HELD_ALL_ADR5ULN	AA	AC	CC	1,12	0,51	2,38	13	8	7	65	71	15
13191	HELD_FEM_LPP	AA	AG	GG	0,71	0,71	1,55	6	30	47	10	42	27
13191	HELD_MAL_CC	AA	AG	GG	2,5	1,67	0,43	2	7	5	0	5	13
13191	HELD_ALL_LPP	AA	AG	GG	0,65	0,81	1,38	6	39	56	13	55	46
13937	HELD_FEM_ADRSULN	AA	AC	CC	0,36	1,91	2,53	4	11	2	42	38	3
900002	CVD_FEM	GG	GT	TT	1,65	1,29	0,64	5	13	16	2	11	27
900013	CVD_FEM	CC	CG	GG	1,7	0,47	1,34	20	9	6	13	23	4
900013	CVD_ALL	CC	CG	GG	1,32	0,7	1,16	58	34	12	29	39	6
900025	CVD_MAL	GG	GT	TT	0,73	0,88	1,3	7	27	32	7	17	10
900032	CVD_FEM	CC	CT	TT	2,48	0,22	2,54	23	1	1	28	9	0
900045	HELD_FEM_BFF	CC	CT	TT	0,42	0,48	2,67	1	2	9	5	8	9
900065	CVD_FEM	AA	AC	CC	1,91	0,7	0	22	10	0	16	18	5
900065	CVD_MAL	AA	AC	CC	1,29	0,72	1,53	25	30	4	7	22	0
900065	CVD_ALL	AA	AC	CC	1,36	0,77	0,77	47	40	4	23	40	5

BAYSNP	COMPARISON	GTYPE1	GTYPE2	GTYPE3	RR1	RR2	RR3	FQ1_A	FQ2_A	FQ3_A	FQ1_B	FQ2_B	FQ3_B
900078	HELD_ALL_ADR3ULN	AA	AG	GG	0,56	1,79	null	52	12	0	142	13	0
900078	HELD_ALL_ADR5ULN	AA	AG	GG	0,41	2,45	null	21	6	0	142	13	0
900078	HELD_FEM_ADR3ULN	AA	AG	GG	0,49	2,05	null	31	7	0	78	5	0
900082	HELD_FEM_ADR3ULN	AA	AG	GG	1	0,49	1,9	8	9	18	17	36	21
900082	HELD_FEM_ADR5ULN	AA	AG	GG	0,76	0,39	2,76	3	4	10	17	36	21
900096	CVD_ALL	AA	AG	GG	0,74	1,35	1,15	60	37	4	55	15	2
900107	HELD_MAL_ADR5ULN	CC	CT	TT	0	0,52	3,06	0	2	8	9	25	39
900115	HELD_MAL_ADR5ULN	AA	AG	GG	0,24	0,78	4,6	1	4	4	27	37	8
900115	HELD_FEM_EFF	AA	AG	GG	1,47	0,56	1,8	22	14	4	17	28	1
900121	HELD_MAL_ADR	GG	GT	TT	0,46	1,42	0,95	5	37	24	15	26	26
900173	CVD_ALL	GG	GT	TT	0,5	1,35	1,38	5	7	11	11	4	7
10000002	HELD_FEM_EFF	AA	AG	GG	2,67	0,8	0	9	3	0	9	7	6
10000006	HELD_FEM_CC	AA	AG	GG	3,35	0,26	0,56	28	2	1	11	9	2
10000006	HELD_ALL_CC	AA	AG	GG	2,52	0,41	0,45	39	4	1	23	12	3
10000014	HELD_ALL_CC	AA	AC	CC	2,18	0,33	1,26	40	3	2	26	12	1
10000014	HELD_FEM_CC	AA	AC	CC	2,17	0,34	1,73	28	2	1	15	7	0
10000025	HELD_MAL_LP	CC	CT	TT	1,17	1,41	0	9	11	0	14	15	7

Table 6b: Correlation of PA SNP alleles to relative risk

For diagnostic conclusions to be drawn from genotyping a particular patient we calculated the relative risks RR1, and RR2 for the two possible alleles of each SNP. Given the allele frequencies as

	allele1	allele2
case	N11	N12
control	N21	N22

we calculate

Here, the *case* and *control* populations represent any case-control-group pair, or bad(case)-good(control)-group pair, respectively (due to their increased response to statins, 'high responders' are treated as a case cohort, whereas 'low responders' are treated as the respective control cohort). A value $RR1 > 1$, and $RR2 > 1$ indicates an increased risk for individuals carrying allele 1, and allele2, respectively. For example, $RR1=3$ indicates a 3-fold risk of an individual carrying allele 1 as compared to individuals not carrying allele 1 (a detailed description of relative risk calculation and statistics can be found in (Biostatistics, L. D. Fisher and G. van Belle, Wiley Interscience 1993)). The baySNP number refers to an internal numbering of the PA SNPs and can be found in the sequence listing. null: not defined.

BAYSNP	ALLELE1	ALLELE2	COMPARISON	RR1	RR2	SIZE A	FREQ1 A	FREQ2 A	SIZE B	FREQ1 B	FREQ2 B
28	C	T	HELD_FEM_EFF	0,42	2,39	12	4	20	22	18	26
29	A	G	HELD_ALL_HDL	2,01	0,5	10	12	8	15	7	23
29	A	G	HELD_MAL_ADR3ULN	1,63	0,61	26	33	19	72	68	76
29	A	G	HELD_MAL_ADR5ULN	2,6	0,38	9	13	5	72	68	76
52	C	G	HELD_FEM_EFF	1,84	0,54	18	24	12	31	27	35
56	A	G	HELD_FEM_EFF	2,29	0,44	12	5	19	22	2	42
89	A	G	HELD_ALL_CC	null	0	45	90	0	40	77	3
90	C	T	HELD_FEM_CC	0,78	1,27	31	29	33	22	27	17
99	C	T	HELD_FEM_LIP	1,02	0,98	82	54	110	80	51	109
140	C	T	HELD_FEM_EFF	null	0	12	24	0	21	4	38
152	A	G	HELD_FEM_EFF	0,51	1,96	12	12	12	22	33	11
214	A	G	HELD_ALL_LIP	1	1	97	156	38	113	182	44
214	A	G	HELD_FEM_LIP	1,09	0,92	81	131	31	78	122	34
221	C	G	HELD_ALL_CC	0,88	1,13	45	26	64	39	27	51
221	C	G	HELD_FEM_CC	0,77	1,3	31	17	45	22	18	26
224	C	T	HELD_FEM_LIP	0,79	1,27	79	110	48	79	125	33
224	C	T	HELD_MAL_LIP	2,28	0,44	20	35	5	37	51	23
294	C	T	HELD_ALL_CC	0,81	1,24	45	56	34	40	58	22
307	C	T	CVD_FEM	0,57	1,75	36	19	53	38	38	38
307	C	T	HELD_ALL_LIP	1,2	0,83	102	70	134	117	63	171
411	A	T	HELD_ALL_HDL	1,56	0,64	10	17	3	15	18	12
449	C	G	HELD_MAL_LIP	0,41	2,47	20	3	37	37	16	58
466	C	T	CVD_FEM	0,7	1,43	35	27	43	40	44	36

BAYSNP	ALLELE1	ALLELE2	COMPARISON	RR1	RR2	SIZE A	FREQ1 A	FREQ2 A	SIZE B	FREQ1 B	FREQ2 B
472	A	G	HELD_FEM_EFF	null	0	11	22	0	22	12	32
542	A	G	HELD_MAL_CC	2,79	0,36	14	12	16	19	2	36
542	A	G	HELD_MAL_HDL	3,66	0,27	21	14	28	27	3	51
542	A	G	HELD_ALL_ADR	1,19	0,84	159	53	265	154	37	271
542	A	G	HELD_FEM_HDL	0,66	1,51	23	2	44	32	10	54
739	C	G	HELD_ALL_CC	0,73	1,37	45	39	51	40	48	32
821	A	C	HELD_MAL_LIP2	1,12	0,9	309	180	438	349	174	524
821	A	C	HELD_FEM_VEFF	0,42	2,4	10	4	16	14	14	14
1005	A	G	HELD_MAL_CC	2,7	0,37	14	26	2	18	27	9
1055	A	T	HELD_MAL_CC	0,56	1,77	9	3	15	12	8	16
1056	A	G	HELD_FEM_EFF	1,01	0,99	24	30	18	33	41	25
1085	A	G	HELD_MAL_LIP	0,57	1,74	20	17	23	36	46	26
1085	A	G	CVD_FEM	1,53	0,65	34	51	17	40	47	33
1086	A	G	HELD_MAL_LIP	1,73	0,58	20	24	16	36	28	44
1092	C	G	HELD_MAL_LIP	0,58	1,72	20	9	31	37	29	45
1096	G	T	HELD_MAL_CC	1,8	0,56	14	7	21	18	3	33
1096	G	T	CVD_MAL	0,93	1,08	69	21	117	33	12	54
1101	C	T	HELD_FEM_EFF	null	0	12	24	0	22	40	4
1204	A	G	HELD_MAL_LIP	1,91	0,52	19	12	26	35	9	61
1204	A	G	HELD_ALL_LIP	1,26	0,8	99	62	136	115	52	178
1504	C	T	HELD_ALL_CC	0,92	1,08	44	37	51	39	36	42
1504	C	T	HELD_MAL_LIP	0,69	1,46	19	12	26	37	33	41
1504	C	T	HELD_MAL_CC	1,35	0,74	14	13	15	18	12	24

BAYSNP	ALLELE1	ALLELE2	COMPARISON	RR1	RR2	SIZE A	FREQ1 A	FREQ2 A	SIZE B	FREQ1 B	FREQ2 B
1504	C	T	HELD_FEM_CC	0,75	1,33	30	24	36	21	24	18
1511	G	T	HELD_FEM_EFF	0,6	1,67	12	15	9	22	35	9
1524	A	C	HELD_FEM_DR3ULN	0,9	1,11	38	16	60	82	39	125
1556	C	G	HELD_FEM_EFF	2,39	0,42	12	7	17	22	3	41
1561	A	C	CVD_FEM	1,53	0,65	36	58	14	40	53	27
1582	C	T	HELD_MAL_LIP	0,46	2,17	20	5	35	37	22	52
1638	A	G	HELD_FEM_CC	0,62	1,6	31	10	52	22	15	29
1653	G	T	CVD_MAL	1,07	0,93	69	70	68	33	30	36
1662	C	T	HELD_MAL_CC	0,18	5,5	14	8	20	18	36	0
1714	A	G	CVD_MAL	0,78	1,28	66	32	100	34	26	42
1722	C	T	HELD_FEM_DR5ULN	1,61	0,62	18	21	15	81	71	91
1757	A	G	HELD_FEM_EFF	1,41	0,71	20	15	25	32	16	48
1765	A	G	HELD_ALL_DR3ULN	0,42	2,35	63	9	117	149	56	242
1765	A	G	HELD_ALL_DR3ULN	0,42	2,35	63	9	117	149	56	242
1765	A	G	HELD_ALL_DR5ULN	0,29	3,42	27	3	51	149	56	242
1765	A	G	HELD_ALL_DR5ULN	0,29	3,42	27	3	51	149	56	242
1765	A	G	HELD_MAL_DR3ULN	0,24	4,09	26	2	50	70	25	115
1765	A	G	HELD_MAL_DR3ULN	0,24	4,09	26	2	50	70	25	115
1765	A	G	HELD_MAL_DR5ULN	null	0	10	20	0	70	25	115
1765	A	G	HELD_MAL_DR5ULN	null	0	10	20	0	70	25	115
1765	A	G	HELD_FEM_DR3ULN	0,53	1,87	37	7	67	79	31	127
1765	A	G	HELD_FEM_DR3ULN	0,53	1,87	37	7	67	79	31	127
1776	A	G	HELD_ALL_CC	null	0	45	90	0	40	74	6

BAYSNP	ALLELE1	ALLELE2	COMPARISON	RRI	SIZE A	FREQ1 A	FREQ2 A	SIZE B	FREQ1 B	FREQ2 B
1776	A	G	HELD_FEM_CC	null	0	31	62	0	22	40
1799	C	T	HELD_FEM_LIP2	0,93	1,07	291	365	217	356	468
1799	C	T	HELD_MAL_CC	0,56	1,77	14	15	13	18	28
1806	A	G	HELD_FEM_EFF	4,44	0,23	12	23	1	22	34
1837	C	T	HELD_FEM_LIP2	1,04	0,96	304	436	172	355	499
1837	C	T	HELD_ALL_LIP2	1,1	0,91	607	891	323	682	952
1837	C	T	HELD_ALL_ADDSULN	2,03	0,49	28	46	10	155	208
1837	C	T	HELD_MAL_ADR	1,24	0,81	77	107	47	72	86
1837	C	T	HELD_MAL_LIP2	1,17	0,86	303	455	151	327	453
1870	C	T	HELD_ALL_CC	1,3	0,77	45	29	61	39	16
1870	C	T	HELD_FEM_CC	1,33	0,75	31	22	40	22	9
1882	C	T	CVD_MAL	0,92	1,08	69	79	59	34	43
1988	C	T	HELD_ALL_LIP	1,27	0,79	100	143	57	116	144
2000	C	T	CVD_MAL	2,45	0,41	70	136	4	34	58
2000	C	T	CVD_ALL	1,98	0,51	105	202	8	74	130
2000	C	T	HELD_FEM_CC2	3,29	0,3	46	90	2	42	74
2000	C	T	HELD_MAL_HDL	2	0,5	20	40	0	22	40
2000	C	T	HELD_FEM_ADR	2,01	0,5	79	154	4	82	152
2000	C	T	HELD_MAL_CC	0,51	1,98	14	22	6	19	36
2071	A	G	CVD_ALL	1,22	0,82	102	80	124	74	42
2078	G	T	HELD_MAL_LIP	1,74	0,58	18	13	23	35	13
2085	G	T	HELD_FEM_VEFF	2,62	0,38	10	16	4	14	13
2095	A	G	CVD_ALL	0,03	37,5	105	4	206	73	146

BAYSNP	ALLELE1	ALLELE2	COMPARISON	RR1	RR2	SIZE A	FREQ1 A	FREQ2 A	SIZE B	FREQ1 B	FREQ2 B
2119	A	G	HELD_MAL_LIP	0,68	1,48	20	23	17	37	53	21
2119	A	G	HELD_ALL_LIP	0,85	1,17	102	131	73	117	166	68
2119	A	G	HELD_FEM_EFF	0,6	1,67	12	15	9	22	35	9
2141	A	G	HELD_FEM_EFF	1,56	0,64	12	6	18	22	6	38
2141	A	G	HELD_ALL_CC	0,99	1,01	45	17	73	39	15	63
2182	A	G	HELD_FEM_EFF	2,82	0,35	12	18	6	21	16	26
2234	G	T	HELD_MAL_LIP	0,54	1,85	20	10	30	35	32	38
2281	A	C	HELD_FEM_VEFF	0,46	2,17	9	5	13	13	15	11
2298	A	C	CVD_FEM	0,98	1,02	35	18	52	38	20	56
2298	A	C	HELD_MAL_CC2	0,6	1,67	29	8	50	28	16	40
2341	C	T	HELD_FEM_CC	0,12	8,33	31	6	56	22	44	0
2357	A	G	HELD_ALL_CC2	1,04	0,96	74	28	120	71	25	117
2357	A	G	HELD_ALL_CC	1,01	0,99	45	16	74	40	14	66
2357	A	G	HELD_MAL_LIP	0,48	2,08	20	4	36	36	17	55
2357	A	G	HELD_FEM_CC	1,1	0,91	31	12	50	22	7	37
2366	G	T	CVD_FEM	1,51	0,66	33	38	28	40	31	49
2423	A	G	CVD_FEM	1,57	0,63	33	45	21	39	38	40
2708	C	T	CVD_FEM	3,51	0,29	29	57	1	40	73	7
2995	A	C	HELD_FEM_ADDRESSLN	1,82	0,55	18	16	20	82	45	119
2995	A	C	HELD_FEM_UEFF	0,71	1,41	54	24	84	75	50	100
3360	G	T	HELD_MAL_ADDRESSLN	null	0	10	20	0	73	122	24
3464	A	G	HELD_ALL_CC	0,62	1,61	45	21	69	40	35	45
3464	A	G	HELD_FEM_CC	0,61	1,63	31	13	49	22	19	25

BAYSNP	ALLELE1	ALLELE2	COMPARISON	RRI	RR2	SIZEA	FREQ1A	FREQ2A	SIZEB	FREQ1B	FREQ2B
3689	C	G	HELD_FEM_EFF	3,32	0,3	6	9	3	14	10	18
3975	A	C	HELD_FEM_UEFF	0,68	1,47	56	28	84	75	58	92
3976	A	G	HELD_FEM_UEFF	0,69	1,44	56	28	84	75	57	93
4206	A	T	HELD_FEM_ADDR3ULN	0,69	1,45	37	36	38	83	103	63
4838	A	G	HELD_FEM_VEFF	2,4	0,42	10	16	4	14	14	14
4838	A	G	HELD_FEM_VEFF	2,4	0,42	10	16	4	14	14	14
4912	A	G	HELD_FEM_VEFF	2,05	0,49	12	14	10	20	12	28
4925	A	C	HELD_MAL_CC	0,56	1,8	14	21	7	18	33	3
4966	A	G	HELD_MAL_ADDR3ULN	0,72	1,39	26	22	30	72	77	67
5014	A	G	HELD_ALL_ADDR5ULN	0,54	1,85	28	8	48	152	77	227
5014	A	G	HELD_FEM_ADDR5ULN	0,6	1,67	18	5	31	81	37...	125
5296	A	G	CVD_FEM	1,59	0,63	36	10	62	40	4	76
5296	A	G	HELD_FEM_EFF	0,67	1,5	12	3	21	22	9	35
5296	A	G	CVD_ALL	1,29	0,78	104	27	181	74	10	138
5298	C	T	HELD_FEM_EFF	0,71	1,41	11	3	19	22	9	35
5298	C	T	CVD_ALL	1,32	0,76	101	28	174	74	10	138
5298	C	T	CVD_FEM	1,62	0,62	35	10	60	40	4	76
5320	A	G	HELD_FEM_EFF	0,52	1,93	19	12	26	33	37	29
5361	A	C	CVD_MAL	0,82	1,22	64	53	75	32	36	28
5457	A	G	HELD_FEM_EFF	0,51	1,96	12	2	22	21	8	34
5704	C	T	HELD_MAL_LIP	0,57	1,75	20	10	30	37	32	42
5704	C	T	CVD_MAL	0,79	1,27	68	40	96	33	30	36

BAYSNP	ALLELE1	ALLELE2	COMPARISON	RR1	RR2	SIZE A	FREQ1 A	FREQ2 A	SIZE B	FREQ1 B	FREQ2 B
5717	A	G	HELD_FEM_ADR3ULN	1,58	0,63	38	50	26	83	83	83
5717	A	G	HELD_ALL_ADR3ULN	1,36	0,74	65	74	56	156	144	168
5959	A	G	HELD_ALL_CC	1,53	0,65	43	52	34	38	29	47
5959	A	G	CVD_FEM	2,63	0,38	9	12	6	13	7	19
5959	A	G	HELD_MAL_CC	1,71	0,59	14	15	13	17	10	24
5959	A	G	HELD_MAL_ADR5ULN	0,54	1,85	9	6	12	67	67	67
5959	A	G	HELD_FEM_ADR	1,26	0,79	72	71	73	68	51	85
6162	C	G	HELD_ALL_ADR3ULN	0,97	1,03	64	37	91	151	90	212
6162	C	G	HELD_ALL_ADR	0,96	1,04	156	88	224	151	90	212
6162	C	G	HELD_ALL_ADR5ULN	0,99	1,01	27	16	38	151	90	212
6162	C	G	HELD_MAL_ADR3ULN	0,82	1,22	26	13	39	71	43	99
6162	C	G	HELD_FEM_ADR5ULN	1,28	0,78	18	13	23	80	47	113
6162	C	G	HELD_MAL_ADR	0,92	1,08	74	40	108	71	43	99
6236	C	T	HELD_ALL_ADR5ULN	1,85	0,54	27	24	30	152	84	220
6236	C	T	HELD_MAL_ADR3ULN	1,67	0,6	27	23	31	72	38	106
6236	C	T	HELD_MAL_ADR5ULN	2,42	0,41	10	10	72	38	106	
6236	C	T	HELD_ALL_ADR3ULN	1,36	0,74	63	47	79	152	84	220
6482	A	G	HELD_MAL_HDL	0,51	1,96	17	18	16	21	34	8
6482	A	G	HELD_ALL_LIP2	0,91	1,1	619	918	320	709	1098	320
6482	A	G	HELD_MAL_CC2	1,82	0,55	27	43	11	28	32	24
6482	A	G	HELD_MAL_LIP2	0,87	1,15	309	461	157	339	539	139
6498	A	G	CVD_FEM	2,18	0,46	32	60	4	35	57	13
6744	C	T	HELD_ALL_ADR5ULN	1,82	0,55	26	21	31	149	74	224

BAYSNP'	ALLELE1	ALLELE2	COMPARISON	RRI	RR2	SIZE A	FREQ1A	SIZE B	FREQ1B	FREQ2A	FREQ2B
7133	C	G	HELD_MAL_CC	0,36	2,8	14	20	8	18	36	0
8021	A	G	CVD_FEM	1,03	0,97	28	35	21	36	44	28
8060	A	G	CVD_FEM	1,66	0,6	35	65	5	40	68	12
8060	A	G	HELD_FEM_HDL	0,5	1,99	18	29	7	23	43	3
8210	A	G	HELD_FEM_EFF	0,72	1,4	12	9	15	22	22	22
8592	C	T	HELD_FEM_VEFF	0,99	1,01	150	122	178	143	118	168
8816	C	G	HELD_FEM_EFF	1,91	0,52	13	15	11	11	5	17
8846	A	G	HELD_ALL_LIP	1,11	0,9	107	161	53	116	166	66
8943	A	C	HELD_MAL_LIP	2,17	0,46	20	35	5	37	52	22
9193	C	G	HELD_FEM_LIP	1,48	0,68	83	155	11	80	140	20
9193	C	G	CVD_FEM	0,6	1,67	36	63	9	40	77	3
9443	C	T	CVD_MAL	1,23	0,82	69	43	95	33	12	54
9516	A	G	HELD_MAL_CC	1,87	0,54	14	17	11	18	12	24
9698	A	G	HELD_MAL_ADR	0,38	2,62	74	8	140	72	30	114
9698	A	G	HELD_MAL_ADDR3ULN	null	0	27	54	0	72	30	114
9698	A	G	HELD_FEM_EFF	0,91	1,1	294	105	483	298	123	473
9698	A	G	HELD_MAL_ADDR5ULN	0	10	20	0	72	30	114	
9698	A	G	CVD_ALL	1,27	0,79	102	46	158	72	19	125
9849	C	T	HELD_FEM_CC	null	0	31	62	0	21	39	3
9849	C	T	HELD_MAL_LIP	0,46	2,18	20	35	5	37	72	2
9883	A	G	HELD_FEM_CC	0,93	1,07	31	23	39	22	18	26
9883	A	G	HELD_ALL_CC	0,92	1,09	45	33	57	39	32	46
10079	A	G	CVD_ALL	1,54	0,65	103	8	198	73	1	145

BAYSNP	ALLELE1	ALLELE2	COMPARISON	RR1	RR2	SIZE A	FREQ1 A	FREQ2 A	SIZE B	FREQ1 B	FREQ2 B
10079	A	G	CVD_MAL	0,11	9,5	68	8	128	34	68	0
10481	A	T	HELD_FEM_ADDRESSLN	0,46	2,2	17	12	22	83	97	69
10542	C	T	HELD_FEM_UEFF	0,63	1,58	54	8	100	75	21	129
10542	C	T	HELD_MAL_ADDRESSLN	null	0	10	20	0	69	14	124
10600	A	G	HELD_FEM_EFF	null	0	21	42	0	33	4	62
10621	C	T	HELD_FEM_CC	1,24	0,81	30	52	8	20	32	8
10745	A	G	HELD_ALL_ADDRESSLN	1,58	0,63	27	20	34	148	75	221
10745	A	G	HELD_FEM_VEFF	1,1	0,91	153	90	216	150	77	223
10747	C	T	HELD_MAL adr	1,06	0,94	76	74	78	70	64	76
10747	C	T	CVD_ALL	1,23	0,82	62	54	70	74	51	97
10747	C	T	HELD_MAL_ADDRESSLN	0,96	1,04	27	24	30	70	64	76
10771	C	G	HELD_MAL_ADDRESSLN	2,5	0,4	10	12	8	70	48	92
10771	C	G	HELD_FEM_EFF	1,12	0,89	284	222	346	276	185	367
10870	A	G	HELD_MAL_LIP	1,06	0,94	20	11	29	37	19	55
10870	A	G	HELD_FEM_LIP	0,75	1,34	82	32	132	77	46	108
10870	A	G	HELD_MAL_CC	0,39	2,55	14	3	25	18	12	24
10870	A	G	HELD_ALL_CC	0,67	1,5	45	17	73	40	27	53
10877	A	C	HELD_ALL_HDL	3,57	0,28	9	18	0	15	7	23
10948	G	T	HELD_FEM_LIP	0,81	1,23	84	83	85	79	95	63
10948	G	T	HELD_ALL_LIP	0,81	1,23	104	104	104	115	138	92
10948	G	T	CVD_FEM_CC2	0,87	1,15	44	46	42	42	50	34
10948	G	T	CVD_MAL	0,82	1,21	69	63	75	34	41	27
11001	C	T	HELD_MAL_ADDRESSLN	1,96	0,51	10	9	11	75	41	109

BAYSNP	ALLELE1	ALLELE2	COMPARISON	RR1	RR2	SIZEA	FREQ1A	FREQ2A	SIZEB	FREQ1B	FREQ2B
11073	C	G	HELD_MAL_ADR5ULN	2,38	0,42	9	10	8	68	43	93
11153	C	T	HELD_FEM_CC	1,61	0,62	31	55	7	22	33	11
11210	C	T	HELD_MAL_CC	0,46	2,17	14	23	5	19	37	1
11210	C	T	HELD_ALL_ADR3ULN	0,67	1,48	63	110	16	144	267	21
11210	C	T	HELD_ALL_ADR	0,85	1,17	153	275	31	144	267	21
11248	C	T	HELD_FEM_ADR	1,34	0,75	81	131	31	79	112	46
11248	C	T	HELD_MAL_LIP	2,3	0,43	18	33	3	34	53	15
11248	C	T	HELD_ALL_CC	1,39	0,72	41	68	14	31	44	18
11372	A	G	HELD_MAL_LIP	1,67	0,6	20	25	15	36	31	41
11449	C	G	HELD_FEM_CC	0,6	1,66	31	6	56	22	10	34
11450	A	T	HELD_FEM_EFF	1,14	0,87	289	170	408	290	139	441
11470	C	T	HELD_MAL_LIP	null	0	20	40	0	36	67	5
11472	A	T	HELD_MAL_LIP	null	0	20	40	0	35	65	5
11472	A	T	HELD_FEM_LIP	0,63	1,6	83	158	8	80	158	2
11487	A	T	HELD_MAL_ADR5ULN	null	0	10	20	0	69	34	104
11487	A	T	HELD_MAL_ADR3ULN	0,48	2,11	27	6	48	69	34	104
11488	C	G	HELD_MAL_ADR5ULN	null	0	10	20	0	70	102	38
11488	C	G	HELD_FEM_UEFF	0,74	1,35	54	78	30	77	126	28
11488	C	G	HELD_MAL_ADR3ULN	1,73	0,58	26	44	8	70	102	38
11493	A	G	HELD_MAL_CC	1,18	0,85	14	6	22	18	6	30
11502	C	T	HELD_MAL_ADR3ULN	0,49	2,02	27	8	46	73	44	102
11502	C	T	HELD_MAL_ADR5ULN	0,29	3,45	10	2	18	73	44	102
11534	G	T	HELD_ALL_LIP	null	0	102	204	0	117	231	3

BAYSNP	ALLELE1	ALLELE2	COMPARISON	RR1	RR2	SIZE_A	FREQ1_A	FREQ2_A	SIZE_B	FREQ1_B	FREQ2_B
11537	A	G	CVD_FEM	0,65	1,54	36	52	20	39	68	10
11537	A	G	HELD_FEM_EFF	3,11	0,32	12	22	2	22	31	13
11560	A	G	HELD_FEM_EFF	0,04	23	12	2	22	22	44	0
11578	C	T	HELD_FEM_LIP	4,48	0,22	61	121	1	65	122	8
11578	C	T	CVD_FEM	0,42	2,37	30	57	3	39	78	0
11594	C	T	HELD_FEM_ADDR3ULN	null	0	37	74	0	80	10	150
11594	C	T	HELD_ALL_ADDRSULN	null	0	27	54	0	151	20	282
11594	C	T	HELD_ALL_CC	1,53	0,65	45	10	80	41	3	79
11594	C	T	HELD_ALL adr	0,6	1,66	155	9	301	151	20	282
11594	C	T	HELD_FEM_ADDRSULN	null	0	18	36	0	80	10	150
11624	C	T	HELD_ALL_CC	0,85	1,18	42	57	27	40	60	20
11624	C	T	HELD_MAL_CC	0,85	1,18	13	18	8	18	27	9
11624	C	T	HELD_FEM_EFF	2,96	0,34	12	22	2	21	30	12
11627	C	T	HELD_ALL_CC	0,78	1,29	45	58	32	40	61	19
11627	C	T	HELD_MAL_CC	0,76	1,32	14	18	10	18	27	9
11627	C	T	HELD_FEM_EFF	3,11	0,32	12	22	2	22	31	13
11644	A	G	HELD_MAL_ADDRSULN	0,3	3,32	10	2	18	68	40	96
11650	A	G	HELD_FEM_EFF	0,9	1,11	291	157	425	290	181	399
11654	A	G	HELD_ALL_ADDRSULN	1,13	0,89	25	17	33	136	84	188
11654	A	G	HELD_FEM_ADDRSULN	1,14	0,88	15	11	19	71	47	95
11654	A	G	HELD_FEM_ADDR3ULN	1,09	0,92	32	23	41	71	47	95
11654	A	G	HELD_ALL_ADDR3ULN	1,21	0,83	53	39	67	136	84	188
11655	A	C	HELD_ALL_ADDRSULN	0,95	1,05	26	35	17	148	203	93

BAYSNP	ALLELE1	ALLELE2	COMPARISON	RR1	RR2	SIZE A	FREQ1 A	FREQ2 A	SIZE B	FREQ1 B	FREQ2 B
11655	A	C	HELD_FEM_ADR5ULN	1,1	0,91	17	23	11	80	104	56
11655	A	C	HELD_FEM_ADR3ULN	0,98	1,02	35	45	25	80	104	56
11656	C	T	HELD_MAL_LIP	0,53	1,87	20	20	20	36	53	19
11656	C	T	HELD_FEM_EFF	2,21	0,45	12	19	5	22	24	20
11656	C	T	HELD_ALI_LIP	0,8	1,25	102	119	85	114	156	72
11825	A	G	HELD_MAL_ADR5ULN	0,29	3,4	9	15	3	63	121	5
11914	A	T	HELD_MAL_ADR5ULN	0,1	9,58	9	2	16	69	83	55
11914	A	T	HELD_ALL_ADR5ULN	0,61	1,64	27	24	30	151	178	124
12008	C	T	HELD_FEM_EFF	0,73	1,37	278	529	27	277	541	13
12008	C	T	HELD_ALL_ADR5ULN	null	0	24	48	0	134	256	12
12097	A	G	HELD_ALL_ADR5ULN	2,46	0,41	28	6	50	155	11	299
12097	A	G	HELD_FEM_ADR3ULN	1,94	0,51	38	7	69	83	5	161
12097	A	G	HELD_MAL_ADR5ULN	3,04	0,33	10	3	17	72	6	138
12097	A	G	HELD_ALL_ADR3ULN	1,7	0,59	63	10	116	155	11	299
12366	A	G	HELD_FEM_UEFF	1,52	0,66	50	82	18	74	104	44
12366	A	G	HELD_ALL_ADR5ULN	1,23	0,81	25	40	10	151	229	73
12619	A	G	HELD_MAL_ADR5ULN	0,01	143	10	1	19	71	142	0
12619	A	G	HELD_ALL_ADR5ULN	4,53	0,22	27	2	52	151	1	301
13025	A	C	HELD_ALL_ADR5ULN	0,81	1,24	28	34	22	151	201	101
13191	A	G	HELD_FEM_LIP	0,72	1,4	83	42	124	79	62	96
13191	A	G	HELD_MAL_CC	1,94	0,52	14	11	17	18	5	31
13191	A	G	HELD_ALL_LIP	0,76	1,31	101	51	151	114	81	147
13937	A	C	HELD_FEM_ADR5ULN	0,53	1,89	17	19	15	83	122	44

BAYSNP	ALLELE1	ALLELE2	COMPARISON		RR1	RR2	SIZE A	FREQ1 A	FREQ2 A	SIZE B	FREQ1 B	FREQ2 B
			CVD_FEM	CVD_MAL								
900002	G	T	CVD_FEM	1,48	0,68	34	23	45	40	15	65	
900013	C	G	CVD_FEM	1,24	0,81	35	49	21	40	49	31	
900013	C	G	CVD_ALL	1,14	0,88	104	150	58	74	97	51	
900025	G	T	CVD_MAL	0,8	1,25	66	41	91	34	31	37	
900032	C	T	CVD_FEM	1,68	0,6	25	47	3	37	65	9	
900045	C	T	HELD_FEM_EFF	0,42	2,39	12	4	20	22	18	26	
900065	A	C	CVD_FEM	1,97	0,51	32	54	10	39	50	28	
900065	A	C	CVD_MAL	1,09	0,92	59	80	38	29	36	22	
900065	A	C	CVD_ALL	1,24	0,8	91	134	48	68	86	50	
900078	A	G	HELD_ALL_ADR3ULN	0,59	1,71	64	116	12	155	297	13	
900078	A	G	HELD_ALL_ADR5ULN	0,44	2,27	27	48	6	155	297	13	
900078	A	G	HELD_FEM_ADR3ULN	0,51	1,94	38	69	7	83	161	5	
900082	A	G	HELD_FEM_ADR3ULN	0,72	1,39	35	25	45	74	70	78	
900082	A	G	HELD_FEM_ADR5ULN	0,53	1,88	17	10	24	74	70	78	
900096	A	G	CVD_ALL	0,79	1,26	101	157	45	72	125	19	
900107	C	T	HELD_MAL_ADR5ULN	0,3	3,35	10	2	18	73	43	103	
900115	A	G	HELD_MAL_ADR5ULN	0,34	2,98	9	6	12	72	91	53	
900115	A	G	HELD_FEM_EFF	1,14	0,88	40	58	22	46	62	30	
900121	G	T	HELD_MAL_ADR	0,88	1,14	66	47	85	67	56	78	
900173	G	T	CVD_ALL	0,64	1,56	23	17	29	22	26	18	
1000002	A	G	HELD_FEM_EFF	3,35	0,3	12	21	3	22	25	19	
1000006	A	G	HELD_FEM_CC	2,77	0,36	31	58	4	22	31	13	
1000006	A	G	HELD_ALL_CC	2,34	0,43	44	82	6	38	58	18	

DAYSNP	ALLELE1	ALLELE2	COMPARISON	RR1	RR2	SIZE A	FREQ1 A	FREQ2 A	SIZE B	FREQ1 B	FREQ2 B
10000014	A	C	HELD_ALL_CC	1,69	0,59	45	83	7	39	64	14
10000014	A	C	HELD_FEM_CC	1,68	0,6	31	58	4	22	37	7
10000025	C	T	HELD_MAL_LIP	1,46	0,68	20	29	11	36	43	29

Claims

1. An isolated polynucleotide encoded by a phenotype associated (PA) gene; the polynucleotide is selected from the group comprising

5 SEQ ID 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
10 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118,
119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133,
134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163,
15 164, 165, 166, 167, 168 with allelic variation as indicated in the sequences
section contained in a functional surrounding like full length cDNA for PA
gene polypeptide and with or without the PA gene promoter sequence.

2. An expression vector containing one or more of the polynucleotides of claim
1.

20

3. A host cell containing the expression vector of claim 2.

4. A substantially purified PA gene polypeptide encoded by a polynucleotide of
claim 1.

25

5. A method for producing a PA gene polypeptide, wherein the method
comprises the following steps:

30

- a) culturing the host cell of claim 3 under conditions suitable for the
expression of the PA gene polypeptide; and
- b) recovering the PA gene polypeptide from the host cell culture.

6. A method for the detection of a polynucleotide of claim 1 or a PA gene polypeptide of claim 4 comprising the steps of:

contacting a biological sample with a reagent which specifically interacts with the polynucleotide or the PA gene polypeptide.

5

7. A method of screening for agents which regulate the activity of a PA gene comprising the steps of:

contacting a test compound with a PA gene polypeptide encoded by any polynucleotide of claim 1; and detecting PA gene activity of the polypeptide, wherein a test compound which increases the PA gene polypeptide activity is identified as a potential therapeutic agent for increasing the activity of the PA gene polypeptide and wherein a test compound which decreases the PA activity of the polypeptide is identified as a potential therapeutic agent for decreasing the activity of the PA gene polypeptide.

10

8. A reagent that modulates the activity of a PA polypeptide or a polynucleotide wherein said reagent is identified by the method of the claim 7.

15

9. A pharmaceutical composition, comprising:

20

the expression vector of claim 2 or the reagent of claim 8 and a pharmaceutically acceptable carrier.

10. Use of the reagent according to claim 8 for the preparation of a medicament.

25

11. A method for determining whether a human subject has, or is at risk of developing a cardiovascular disease, comprising determining the identity of nucleotide variations as indicated in the sequences section of SEQ ID 1-168 of the PA gene locus of the subject and where the SNP class of the SNP is "CVD" as can be seen from table 3; whereas a "risk" genotype has a risk ratio of greater than 1 as can be seen from table 6.

30

12. A method for determining a patient's individual response to statin therapy, including drug efficacy and adverse drug reactions, comprising determining the identity of nucleotide variations as indicated in the sequences section of SEQ ID 1-168 of the PA gene locus of the subject and where the SNP class of the SNP is "ADR", "EFF" or both as can be seen from table 3; whereas the probability for such response can be seen from table 6.

5

13. Use of the method according to claim 12 for the preparation of a medicament tailored to suit a patient's individual response to statin therapy.

10

14. A kit for assessing cardiovascular status or statin response, said kit comprising
a) sequence determination primers and
b) sequence determination reagents

15

wherein said primers are selected from the group comprising primers that hybridize to polymorphic positions in human PA genes according to claim 1; and primers that hybridize immediately adjacent to polymorphic positions in human PA genes according to claim 1.

20

15. A kit as defined in claims 12 detecting a combination of two or more, up to all, polymorphic sites selected from the groups of sequences as defined in claim 1.

25

16. A kit for assessing cardiovascular status or statin response, said kit comprising one or more antibodies specific for a polymorphic position defined in claim 1 within the human PA gene polypeptides and combinations of any of the foregoing.

30

Single Nucle tide Polymorphisms sensitively predicting Advsverse Drug Reactions (ADR) and Drug Efficacy

Abstract

EPO - Munich
67
19. Aug. 2002

The invention provides diagnostic methods and kits including oligo and/or polynucleotides or derivatives, including as well antibodies determining whether a human subject is at risk of getting adverse drug reaction after statin therapy or whether the human subject is a high or low responder or a good a or bad metabolizer of statins. The invention provides further diagnostic methods and kits including antibodies determining whether a human subject is at risk for a cardiovascular disease. Still further the invention provides polymorphic sequences and other genes.

The present invention further relates to isolated polynucleotides encoding a phenotype associated (PA) gene polypeptide useful in methods to identify therapeutic agents and useful for preparation of a medicament to treat cardiovascular disease or influence drug response, the polynucleotide is selected from the group comprising:

SEQ ID 1-168 with allelic variation as indicated in the sequences section contained in a functional surrounding like full length cDNA for PA gene polypeptide and with or without the PA gene promoter sequence.

EPO - Munich
67
19. Aug. 2002

Sequences:

SEQUENCE LISTING

<110> Bayer AG

<120> Single Nucleotide Polymorphisms sensitively predicting ADR and Drug Efficacy

<130> LeA

<160> 168

<170> PatentIn version 3.1

<210> 1

<211> 414

<212> DNA

<213> Homo Sapiens

<220>

- 2 -

<221> variation

<222> (137) .. (137)

<223> baySNP28_C137T

<220>

<221> misc_feature

<222> (229) .. (229)

<223> Unsure

<220>

<221> misc_feature

<222> (233) .. (233)

<223> Unsure

<400> 1

ggatcttaat tgcatgctcc ccagtgtcca gtgttaggaa aaagccgaaa gtaactccaa 60

caaaggagtc ttacactgaa gaaatagtgt ctgaagcaga atctcatgtt tcaggtattt 120

ctagaattgt gttccyaca gaaaaacta caggagccag aagaagtaag gctaaatctc 180

tgacagatcc aagccaagaa tctcatacag aagccacatc tgatgctng acntaaagct 240

cagacatttc attctctgga attgcaacta gaagaaccag gagtatgcag agggaaattaa 300

aggcacaaac tgaaaagaaa gatagtaaga ttgtaccagg aaatgagaaa cagatcgtgg 360

gtacacctgt gattcagagg attcagaaac cagacaaaact tccccattac aagc 414

<210> 2

<211> 641

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (464) .. (464)

<223> baySNP29_A464G

<400> 2

caaaaaccgtg tgtgcaagag cgcgacctaa ggggacattc ttgtcgacgg tacaggaggg 60

tgggcagagt tagggcagga agtatctaca cacattctct acggggcagg tgacgcagtc 120

agatctcagt gttcagtttc ctggaggggg caaagtcttc acgcctaacc caaatgactt 180

cctcgcttgc gctctccagg cctccattga tccccgacag ggcagcttgc ttcttgagct 240

gtgccatgctg ggacgcgtga ctatccaggg tttccggcc tctttccgc tgactgatgg 300

aggtgtggctg aagccgctcc tgcaggtctc tgtccactga ggcacccttc acggactcac 360

agaactcatac atcgtcactg aggatgtctg tctccttgat gtcatcttgc tcctcataact 420

gagcaagatc aaactgctcc tctacccatc ggtcagtgtc cccrccacccg gggggctgct 480

gggactctt ctccgggtg cttgcggaga cggcatcaga atcaatggta aacctgttcc 540

gagccagccg ccgcctcctc ctcccaagag acttgcttgg ggcagacact gcacacacac 600

acaaaaaat at aaaaataaaaa cccccacatg ctttacgtga g 641

<210> 3

<211> 606

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (397) .. (397)

<223> baySNP_C397G

<220>

<221> misc_feature

<222> (513) .. (513)

<223> Unsure

<400> 3

ttgaggccag gagtttgaga ccagcctgga caacatagca agatcccacc tgttagtccta 60

gataacttggg agagtgagga gggagggtta cttgagccca ggagattaag gctataatag 120

tgagggatga ttgcaccact gcactccagc ctggcaaca gagtgagacc ctgtctctaa . 180
 aaaaaaaaaa aaattattaa aaaaaaaaaa gtttcttaa gagtccagac ttgtgaattg . 240
 ccagattagt gtaattttta aaatatgttt ctattataaa ttacccatac tcataaaaat . 300
 ataaatcaat ttattacacc ctctagaatt cactattaat tttcaacatt ttttcattc . 360
 ttttccatg catattttt cacaattcta tgcatasttt tgcattataa aatatttctc . 420
 aatataaaat cttcttcaag gccaggcgca gtggctcatg cctgcaatcc cagcactta . 480
 gaaggccaag gcgagcagat cacttgaggt cangaattca agaccagcct gaccaacatg . 540
 gtgaaacccc ttctctacta aaaatacaa aattagccgg gcatggtgt ggcgcctgt . 600
 aatccc . 606

<210> 4

<211> 746

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (429) .. (429)

<223> baySNP56_A429G

<400> 4

tgattagcca ccttagttcc atctgcaact ttagttccca ctggctgtgt aacctaacat . 60

agtcacaggc tctggggact gtcacgtgga catctttggg aggccgttat tctgcccacc	120
gcacccctccg ttcatccccct gccctgccgg gcacccctcgct ctaccccaagg aaaaatgtgag	180
ctcgaaaaatcc tcgtcgccat gtgtcccccc taaggctctg ctccctccctg ggccctgaaag	240
ttcccttctca gcctgagagg gggcccttcg atctcaggca tgactcagcc cggctgatgc	300
ctctgcagtgc tgagtcagg atttggggcc ggctctcttg ggtctgtccc ctttccccag	360
gtactgcctt acaaagctgt ggccaggaag tggccggat aaaggatgcc caaggtcttt	420
gtacgtgtrt aggagttagc gtgtttgata ttggtaatat aataataatt attttttaga	480
gtactgcttt tgtatgtatg ttgaacagga tccaggtttt tatagcttga tataaaacag	540
aattcaaagt ggctgtggag tgatttattt tgggagctgc acaatgatgg gggcccccagc	600
caggcagcct tagcagcttt ctgagcctct aggggtaccg gcaaacctac ctaaggtctt	660
tgtatcccccc agactgtcca agcccagagc acctcatgtg gttcagcagg agattgcccc	720
catcctcaact ggagcagagc ttttga	746

<210> 5

<211> 1936

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (159) .. (159)

<223> baySNP89_A159G

<400> 5

tagtcaagg	gtaaaggatc	agaaaaccaca	gtgggaagga	gtctcacccgg	aggaccctcg	60
tcacccttct	ctccaacttc	accctgtgaa	acatgagagt	cagccctgggt	tccaaagaacc	120
ccccatgatgc	tggcaacagc	cctactccct	tacccgcrt	gactcccccg	actccagcct	180
cttacatctc	gtcctcgggg	gccaacaggt	cctggggggc	caggccgccc	agggtctccc	240
ttctctccag	gaggccctga	gtcaccctgt	ggaggaggca	agagggaggt	gatgcaggac	300
gctcgaagca	agcagttctc	aaggggaggg	gaccccagaa	gccttgaggt	tgcccaggg	360
aacgggtact	cactgggggt	cctgctctgc	cagtaaggcc	aatgggaccc	tgaagggca	420
cagaaggggg	gcaggactta	gtcagggtcc	caccaccta	tctccctctg	tcacactccc	480
cattccaca	ttgattcacc	cggtctccag	ggtctccctt	ggggccaggg	tctccagggaa	540
gaaccaagcc	gggtgggccc	tgtggatgga	aggataagaa	gtcaggaaga	caacccctcac	600
caactgcccc	ctaaagagtc	tgcttcactt	acccgttccc	cttggactcc	ggtagctcct	660
ctggggccag	cgggccccac	atctccctgg	aggtgacaaa	gaccatcagt	gctagccca	720
ggctccagtt	aacccctgg	cccagcaagt	ctgtagcccc	ccaagcccat	agataggcct	780
atgaccatag	cctcaaccct	gtagaaacct	cccctgcccc	ataccaggct	tacccccc	840
cctttgggtc	cagcaacagc	aggccctga	aaacaaacag	ggacagatac	agcttggagc	900
tgccttgggt	gtatggatca	aagtcttctt	ggaatggagg	tcacatggaa	ttggaagtca	960
tacagctcag	tcccccacca	gaagtcacag	agtcaccgct	gacagcaggg	aaggggttat	1020

acaaaaatgga ctgacacaaa gagctcatga cctgcatggc ggtcttgggg tcacaggatc 1080
 atagccaaga gtctggggc aggttctagc agaaggagag gccagagctc ccgacctgct 1140
 cacgggccca gcactgtgga atcacagccc agatagtgtt ctataggagg gtcactgctc 1200
 aagggctgtg ctgtgctcag agcgccatcc tcccgtaact caccaccact gcagggtccc 1260
 cagggcgacc aggctccccc tgtggagaga ggataggagc agggacaggt cagggagtca 1320
 cctaggagcc caaaatccca gtgtcccatc tgccacatcc ctatgtaccag acagtgcac 1380
 ccccaagccga ggacccacct tcttccttg gcccgcagtg ggtcctggtg gcccctgaat 1440
 gtagagaaag tgtgagccca ggaggggaag ggaaagggga gggacacaca aaagtcccac 1500
 tcctggtccc accacagtca cagactcaact tcaggaccct tggctccagg acgtccagca 1560
 acccctggca gcccctggag gagaggaagg gaagagctgt gcaggtgggt ggggacgggg 1620
 gatatggaca gacagggcta gaggctgggg tggggctgg agaggggtca gggaaagattg 1680
 ggattttaggt tggcaggggt aagacttggc aggagaacag agaccaggtc agtaaaaatc 1740
 aaggtcagtt cagcagggtc agaggtcaa agccagggtcc ctggggctga gggtagagc 1800
 ctgtatcagc agggataagt ggtcattgag gaggggtgag gagcagggtt agcagggtc 1860
 aaggcagaaga agtcagaacc agaaagggca cagccagggtc agctggtatg agcattgcag 1920
 ccagtgggtt tacccg 1936

<210> 6

<211> 578

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (154)..(154)

<223> baySNP90_C154T

<400> 6

tgtgttgc tgctgggtggt gctgctgctg cttctgagggc actggggctg. 60

gggcctgtgc cttatcggtt ggaacgagtt catcctgcag cccatccaca acctgctcat. 120

gggtgacacc aaggagcagc gcattcctgaa ccaygtgctg cagcatgcgg agagccccggg. 180

aacgcacaaa gcgtgctgga ggccatttgc acctactgcg agcagaagga gtggggccatg. 240

aacgtggcg acaagaaaagg tggggtccgg gccagcaggt gtcagctct gggacaggga. 300

cccaggacca ggcattcaaag cccttacagg agaagctgtt atcacccctt ttcagggggg. 360

ctgggaaccc tgggatatgc ccagataggg ctggggggct cctctggagt cccagggtgc. 420

cagggtcctt gatgaccctt gcaggccctg ctgcctgctg ccccaagaca acaggcccc. 480

acactcacag ggtctgacgg tggtgcaagg ccccttgaac tctgttctgg gcaccatgga. 540

acctgcttgg ggaccagtca gacaggttctt cctgggcc. 578

<210> 7

<211> 224

<212> DNA

- 10 -

<213> Homo Sapiens

<220>

<221> variation

<222> (58) .. (58)

<223> baySNP99_C58T

<400> 7

agcctgcctg gtcactgact gccttactctta ccttagctgg acctcgatctc ccagggayta 60

gagaaaagag caggagtccct gggctttccc agttgagact gctggagctg agacacagta 120

ctctcttaaa gaaggtgggg agctgcccag ggcagaaccc actggtgttc atgactaccc 180

ctggctcctc tcacacctgtc cctccactgc caacagaaaa caaa 224

<210> 8

<211> 630

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (468) .. (468)

<223> baySNP140_C468T

<400> 8
ggatcttcac atcaggataa atggtgcttt cttttttagt atgatgtaaa ctccaccctg 60
acatatttcc ttttttacac tgactgccat aaagcttagg acaaaaatttgc aagacagcct 120
tacagggtca catggtatct acttatctgt ggctttatccc tctttgtccc catattctat 180
cccaattaca tagactcctt gtttatgcc tttataactt gagaaactgt ctcagatcct 240
ttgtattact gagtaagctg taaataaaata caaataactaa ataaaaaacta aaagttgcat 300
ttgaatttaa aattatatga gcacatctttt cttttaaaat taaaaaaataa ccaggtactc 360
cataatattt tactatgtaa tttctcccat gattctgtat ttgtgttact tactttgagt 420
gtgtctctga cctgggcctt gataatagga cccaaaatcc catcttcyyt catattggga 480
ttcactgtat gtttggtgaa ggactcatct tcgtactgtg tgtacataac tttcttataa 540
tgtttccaa tttgggttga gaaattatcc aaatgctgag acctgtatcc tcttaaagtgc 600
aagtaaaaaaa aaattaaacc actttctcaa 630

<210> 9

<211> 968

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (587) .. (587)

<223> baySNP152_A587G

<400> 9

tttccaggac	ccaagacaga	tgctgaagaa	gacagcaggg	accggagccc	agcaaactgg	60
atgagagcag	caaggccttc	atgcatttttc	aggctccatc	agcagaggga	gagaatgcat	120
tagacgggag	tttcctgact	cctatTTCT	aatgtggcag	tcctaatttag	aagagggttt	180
gaagcgctaa	gatgtgctga	cagtccataat	ggTTTGTAT	gagTTTCCCTT	agaaaaaatta	240
aacactgaaa	aacaaaactg	cctccctccc	tccctttgtg	gttgctgaca	tcagaggta	300
ggaatataac	aggcctgctc	gtcagccaag	ctctccacga	gagccctctg	ttccagaaga	360
gcaccaaggc	agtgacctca	acataacttgg	gcaacattcc	ctttcttggt	aacccaggct	420
gagaaggtag	aaagaatgtc	tccaggTTT	gcaggaagaa	agctagaagg	gggagggggtg	480
gatattaaag	tttcagttcc	cagggaaacc	ggatgttaca	caaaaaggc	aaaaatagcc	540
aagacccagg	ggaagggcct	gagcacagag	gtgggaggTT	ccagccrgcg	ccctgcgagc	600
tggctgaatt	acctccctct	cctgggaggg	tgacacacgc	tcttggtacc	attctccatt	660
aatcccattt	tggaaattgg	gaaagtacaa	catgaatagt	tgtcattatc	ctgcctattt	720
cacagggttg	gtcaggaagt	aaaagaagac	tgtgaatgtg	aaatgcttcc	aaaatataaa	780
aatctcaaca	taagttaact	atactgaaat	ccattaggac	agaggttccc	aaccttttag	840
gcaccaggga	ctggtttcag	ggaagacaat	ttttccatgg	acagggaggt	ggggatggtt	900
tcagaatgaa	actgttccac	cccagatcat	caggcattag	tttgatcctc	ataaggagtg	960
aacaacct						968

<210> 10

<211> 709

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (209)..(209)

<223> baySNP214_A209G

<400> 10

tgttgtggaa tgtccccctt gccccataa ggtattcccg gcgtttccac aagactctaa 60

ggcgcttggt gccagactcc gatgtgcgct tcctctctc ggagagtggc agcggcaagg 120

gggctgccat ggtgacggcg gtggcctacc gcttggccga gcagcacccgg cagatagagg 180

agacctggc tcatttccac ctcaccaarg acatgctgct ggaggtgaag aagaggatgc 240

gggcccagat ggagctgggg ctgaggaagc agacgcacaa caatgccgtg gttaagatgc 300

tgccttcctt cgtccggaga actcccgacg ggaccggtga gggcctgctg ggggctgaca 360

tgcctgtcct gctcctgcca ggaactgagc cgcagtgggg gaggttggat tcgcccagtgg 420

atgccttcac actggtgatg cacgatttg ccagagctag aaactccctc acatctctgt 480

tttccatttt tattaactga tttgtcatgt gtgtgactca gggcagtttta atttcctgg 540

tcagacctcc caagcaagtg ctatctctaa aaccacagcc ctgctcagaa cagtgcctt 600

agctggcaa ggtgacacac gcctgtcatc cagctactta aaaggctgag gtgggaggac 660

tgctttagcc caagagttca agaacagtctt gggcacatag caagaccct 709

<210> 11

<211> 674

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (339)..(339)

<223> baySNP221_C339G

<400> 11

aaaataaaat ttagattaat attccacaaa acagttttaa agtattaaaa tttaaaatac 60

tatagtatag ctatagcagt gtactatata gtacaatgaa atatgttaca aaaacacagg 120

ctttaacaa agcacctaaa atcttttaa tgccataatc ttttgacaaa atgccacctg 180

atgatattcc agcttctgag cctccagttg atcatgctga cgttgttagct ctttttttg 240

tttctgaagc tcatctgcct tcttcataag ttcattttct tgtaaagcaa taatattttc 300

atattctttt agttcttcct ctgtgaagaa ctgttgctsa tctaattgtct aaaagaaaaa 360

aaatgaggaa agaataatct caaaactaca acaataaagt ctgatttgc tttaaaattc 420

- 15 -

tatggtagc aaagtataaa agagtatcta taggattacg cctttggagg taagaaggaa .. 480
ggggaaaataa gtaatatata tttatgtact catttgaaca aaaggaaaaa caggaagaaa 540
aactcaagag attctcttct gggattgaca actaaaggca aagagtgaga actgggtaga .. 600
agaggcaaag agaacgtggg aagagaaaata aaatttgtca ttccccccaa ccctcactga .. 660
aacatgaaat ttta .. 674

<210> 12

<211> 811

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (189)..(189)

<223> baySNP224_C189T

<400> 12

ctgccagaga agcatcgag ggaattgagg tctgtcggc cgtcttcact cgccccccggg .. 60
tttggcgggc caaggactgc cgaccgaggc tggagctggc gtctgtcttc aagggcttac .. 120
acgtggagga atgctcccc atcctcccct tccctgcaaa catggggttg gctggccca .. 180
gaagggttgyg atgaagaaaa gcgggcccagt gtggaatgc ggcaagaagg aattgacttc .. 240
gactgtgacc tgtggggatt tctcccagct ctagacaacc ctgcaaagga ctgtttttc .. 300

ctgagcttgg ccagaagggg gccatgaggg ctcagtggac tttccacccc ctccctggcc	360
tgttctgttt tgccctgaagt tggaatgagt gtggctcccc tctatTTAGC atgacaagcc	420
ccaggcagggc tgtgcgctga caaccaccgc tccccagccc agggttcccc cagccctgtg	480
gaagggacta ggagcaactgt agtaaatggc aattcttga cctcaacctg tgatgagggg	540
aggaaaactca cctgctggcc cctcacctgg gcacctgggg agtgggacag agtctgggtg	600
tatttatttt cctccccaca ggtggggagg gggTTTgggg ggcttgcaag tatgttttag	660
catgtgtttg gttctggggc cccttttac tcccccttgag ctgaaaggaa cccctttgg	720
cccccgagct gggggccatg agctcagacc cccacaaccc tcctataacc tccccctcctt	780
gccttctgtg taatcatttc ttggggccctc c	811

<210> 13

<211> 776

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (465)..(465)

<223> baySNP294_C465T

<400> 13

tccatttgcat cttctgagc aggaggctct gccagacccc agctttccc tacctcccc	60
gaagtcaaaaa aaggaatggaa ttacaggatt actcacctgt cgtgcggcca gaggcataga	120
gggagagcac agcttgaatg gcgcacgtaca tggcaggac attgaagggtt tcaaacatga	180
tcttaaagga caatgaagaa taaaagatta tttggcaaaa atcacagcac ttcttggcct	240
gtagaatggt ttgtaatctc attaaggca ggaactatgc cagtttgata gttcattatt	300
ccacacccac tcccccaggg cctggcatgg accacagaca tagcaggtcc tcagagagtt	360
ctgttgcact gatgtttgaa ggggagaaag tatctggcca agcatccatg ttgcatttt	420
atgccagtgt tcaagtcttc ctggcttctt acctgggtca tcttytcctt gttggccttg	480
ggatttaggg gagcctctgt gagcagggtg gggtgcttt caggtgctac acgcagctca	540
ttgttagaagg agtggtgcca gatctagtgg agacaaaaagc catatgagcc tggcagactc	600
ccaatggctg gaaaattctc attgacattc ccatgctggg agagtgtggc accatgttac	660
acaggatggg atggatctgg agaggagaat ggtcagccct ggaaatttctt gattgacatt	720
taaagggtat actccttctc acagggcccc agtaggactc agactggaac agtatt	776

<210> 14

<211> 1920

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (215) .. (215)

<223> baySNP307_C215T

<400> 14	
atcccagtgt ctctgccagg gccaggctct gccccattgg gatcgaaat ctgggcagat	60
ttgggatcta gagcagggaa gtctcagggt tgaggcctga agtcttagcat ggcacacagc	120
agggctgaga gcaaaaaccca gggtcttgtc tggattccca ggccagttac tgccctcttg	180
accccagacg gctcacctgt cgaatggta cattyggaa cagcacccac tctacgaagc	240
caccatgaag acgaaagaga aaatcgctca catggcagt gtagaacggg cgccccgtga	300
tggttcaggg atgaccctcc tctgttagctg cccagaggcc aacaccgccc ataccatagc	360
cactgtcccc aagtcagcct ggagggaaaga gagcaggtca cactcacctg attctgtatga	420
atcagctggc ctgggttatg cctctcaggg agaaaacctt tgagtccaca aaaccgccttg	480
tgaataccac tgcgtgtgtg taactgccgt agaacacaga cgcagtctgg agagcggata	540
ggtgctaagc accagtgaca ttctgaggtc atggcacgca tcacaatggg gccttgcctcg	600
ggtcagcagg gcccagagtc agggtcctcc gctgcctgag gcgtcaacat gcctgcctgc	660
aatgtgtttg tgcacatgctg tgcacatgtg tatgtggata aacatgtctg tgcacgtgtg	720
tgttgcttct ctggccaggc ccggctgccc cactcatgtg tgcacccagt tcctcatcac	780
tgtcacccccc ggagcccagg accagcttca gacctccctg acctcagccc tccccgcccc	840
gggtggtcct gggatacaca taggagtggg gggaaagtgc tgctgctgtt gaatctcaga	900
atacaaaaagc taatactatt acttaatggt attttttagta tctctaatcg tcttttttagt	960
gtctctaattg gtatcacattt ttcatattctg atatttaac tgggtatttc tctccatgac	1020

ccttggatat tctagctaga ggatcatgtg cgaaatgcc aggcacacag taggggccca	1080
ctctagacat gtttatctaaa cctggctcag ctgtcccacc cagggcctag gggatgccaa	1140
attccagggt ccagaagagc ttgggataaa atgaacatcc aaggggaggg ctttgacctg	1200
ggtagtctg cctgtgccat ccaaacggag tctcaagtcc tgagacaggg cgtccagatg	1260
cccagtgcag ggtccccctg atcaacaccc gctccctgt actcattagc aacctcaccc	1320
accctactct caaagcactt ggcctcgta tctggagct ctgcaactgt ggattcagcc	1380
aacagcagat ggaaaatatt cagaaaacaa atcggatggt tgtctctact gaacatgtgc	1440
agacgttgtt cttgtcatca ttccctaaat acagtatcac aaccatttat atagcatctg	1500
cattgttatta cacataatga ataatctaga gatggtctaa tgtatacggg agaatgtgca	1560
tagcttataat gtaaaatacta ggtcatgtta tgtcagcgac ttgagcatcc atggattttg	1620
gcatccccgg ggaccctaga actaattcctc catggatacc aagggatgac tatataaact	1680
cactcaggaa ggcttctcac tggaggaagg gcccagttca ggacacacag ggacatctcc	1740
ctggactgct gtccattcat ccatccattc atccattgtc tcccccgact ccccatctca	1800
gactgtccca atgacagccc tagcaagaag agacaagaaa caagacaagt tcacgttgtc	1860
cagtttgag gtcttggaaag aagttgcacc agtatgagaa tagtgggtca gtttctcca	1920

<210> 15

<211> 587

<212> DNA

<213> Homo Sapiens

- 20 -

<220>

<221> variation

<222> (369)..(369)

<223> baySNP411_A397T

<400> 15

tggagcctcc ccataggcac tcggggcctc ccctggatg agactccagc tttgctccct 60

gccttcctcc cccaggcatg gctggggact ggaagaccac cttcaccgtg gcgcagaatg 120

agcgcttcga tgcggactat gcggagaaga tggcaggctg cagcctcagc ttccgctctg 180

agctgtgaga ggggttcctg gagtcactgc agagggagtg tgcgaatcaa gcctgaccaa 240

gaggctccag aataaaagtat gatttgtt caatgcagag tctctattcc aagccaagag 300

aaacctcgag ctgaaagagt gatcgccac tggggccaaa tacggccacc tccccgctcc 360

agctcctcwa cttgccctgt ttggagaggg gagagggctt ggagaagtaa aaccaggag 420

acgagtagag gggaatgtg tttaatccca gcacgtcctc tgctgtcctg ccctgtgtcg 480

ttggggatg gcgagtctgc caggcggcat cacttttct tgggttcctt acaagccacc 540

acgtatctct gagccacatt gaggggaggg gaatagccat ctgcata 587

<210> 16

<211> 478

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (323)..(323)

<223> baySNP449_C323G

<400> 16

gaattttcc acgatcattt cttatctacca caaaaataag accctggta ttcttggaaagt 60
aatgcttcca gagaggccta attctgtctt gaccaccaac atcccgtact gtgaaacaag 120
tgttcttata ctctactgtt tccacgttaa aaccagtggt aggaatggtg gtgactatct 180
ccccctaactt cagtttatac agaatggtca tcttgcacgc agcatccaaat ccaaatacgca 240
aaatgtgcat ttacttcttg ccaaagaagc aggagaagag ggaggagatg gtgaggccca 300
tggtggtagt gccacttgca atsagcagaa gcagaagcgg tttggggcag cccctgttt 360
tctccttacg tgctccaggc aaactgaaca agagagaaga gaaagagcgg aggaagaaag 420
agggaggcag gaacatctca ctggccgctg tgctaatgaa gctccaggac acgaattc 478

<210> 17

<211> 844

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (123)..(123)

<223> baySNP466_C123T

<400> 17	
ctggccccgc tcctgggggg cctgcccagc ctccacccac ccctcaaccc tccatggctg	60
atcttcagtt ctctcagctt ctggggaaacc tgcttagggcc tgcagggcca ggggctggag	120
ggyctggtgt ggcttctccc accatcaactg tggcgatgcc tggtgtccct gcctttctcc	180
aaggcatgac tgacttcttg caggtgagtg gctggcttgc cattcacctc atcttcctgt	240
cccccgcccc agccaggcag tggtaccttc ttgccattac ataaccactg ggtaagagcc	300
ccttagtgaca tgtagggga agggggccctg ggaattcatt gactctgaac ctttcatttt	360
aaagatgaag aaaatgaggt ttagaaaaag aaagtatagt aattagtgtc actgctttct	420
gacaacctgt tcagaggaag aggttaggtaa gttgtgctgc ctgactctgt taaataccta	480
ccatacttct gctttaagca gtgaagatca gaatgtact ccccatcttc ccagacccgt	540
tggtttgc ccttttgatg ccgttattt tccgtgtgtc ttcattctca cctcaacttcc	600
tgttcttgc tctttcttta tttgccaggc accaaaaaca ggcccttca ccaaccccaa	660
ccttttccac ccccacccacc tgccccaga gcagcagaac catgccccca ccaggctccc	720
ctttttggtg ggcgcaggggaa gtcctggagg cctgggtctt gaaaacctgt caccggagtt	780
ttttacttca gtggtgcaag ggtggcctca acttcctgtc gggctccctg gggccccggg	840
ctgg	844

<210> 18

<211> 561

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (497)..(497)

<223> baySNP472_A497G

<400> 18

ccaagaaaaca agcatcacccg agggagcagg acgaggaggg aaggccatgc agacggcatg 60

gggctggagg ggctgttagg tgaacagatg cagacaggta tggaaggcca ggcaggaagc 120

aagtgttaggg ccaggaagca taagtgggta actcagaaaaa gctgtggcca ctgacactgg 180

ggctgcggcc aactgacgtc tgctctgctc ttgcatacttta catcctttgt tttggagttc 240

cctgcatactt acatcctttg ttttgagct ccccactggg tatgggagtc tcagaaccca 300

cagggattaa ggagacaagt tttctctcca acttacaagg gatctcaattt acccatcata 360

cttcttttcc tggggtccgc caatatgggg cctccctaca gaacgctttt gatgtgctgg 420

gcttcacttc agaggagaaaa aactccatgt ataagctgac aggccatc atgcactttg 480

gaaacatgaa gttcaarctg aagcagcggg aggagcaggc ggagccagac ggcactgaag 540

gtgggaggca ggattcttgg g 561

<210> 19

<211> 832

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (402)..(402)

<223> baysNP542_A402G

<400> 19

tgaggatcaa gtaactgcc aaggtcacag agttcactta ctactcagtg agcttgggta 60

aatggctgaa ttttgctgtt tcagttctc cataataaaa ggattattat aataatacgt 120

aaagtgttgc tgacaaggtg aaatacataa tttcactttc tgagtactta agaacagtta 180

gctgttatta tcaagcaaat ttgttatcaag tggccaca cattcagcca tggctgtg 240

gtactgcctg gttgtatag gctgctggac aggcagaggc tccttcttcc taaaagccct 300

tggcagtcac attatattta cctgtttctt ggtattaagc cgtaatttgc atgattgagc 360

cagttgttta tctttcgctc catcaaccaa gtcacaattg grgttgggag ggaatttctc 420

aacatgttct gaaagcgtgt catgaacacc atgtcccatg ggttagccgaa gtcaaagatt 480

cggctgatca cccatcccccc tccgggtggtg ctgaggaaca cctggaagca atcaaagaca 540

- 25 -

tcccttcatt tgacactgtg aacacggctg gctggttctg ccagagattc aagaagtgtc 600
atgaatggaa aggcaactgaa aagtctgcac tctcaaaata caccctgac aagatagtct 660
tggttcttct aacttctatt ttaaagttaa tccttttag attaggattc agagcatcta 720
gagtattaaa atgccttaag acatattatt gatacttatt atctgccagc cttagtaaa 780
ccatagggac cttaagtctta cgtaagaaac aatgaacagt gattgctact tg 832

<210> 20

<211> 988

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (87)..(87)

<223> baySNP739_C87G

<400> 20
ctgacggctcg accttggtat aatcctttcc tgaaaggcac ctcctccatg agcacccccaa 60
ccgccataag tgtccacaat gatttscgt ccagtcaaac cagcatcacc ctgaaattac 120
aggattnaaag ttactttacg cctagtgctt tccaagtgga ttaggttgcc tattctgaat 180
tcattcagca aatatcctcc gatgattcac atgttaggttt cagaaagcct gaaaaaaatg 240
tagtagccaa aattttaaagt aaccatcaaa aatccagaaa aatgcaacaa aatgacatta 300

cctgaggccc accaataaca aaatctgcc	360
ttggctgt a ggtggtagat tgtatcctca	
tcaaggatt tcgcaggcac aactgctttg atgactttct cctttagggc atccctcatt	420
tcatcaagac aaacctcttc atcatgctga acagatataa caattgtgt gactctgatg	480
ggaagcacag cacctcgatc ctgcataaac tgcacagtaa ccttgaaggc aacacaggc	540
atcagaacat cacaccaaac aataactttg tatttgtttc tctacctgaa gttacaatat	600
aggaaaaaca atgctatTTT ttccagttag ctattatcaa aattatggat cttctgtgct	660
gatgtataaa atgagacaac cagcttatg atcatcactt acttgagtt tagaatcagg	720
gcgtacccaa ggcaaagtgc attacggcgt aattctgcc a gtttggcatt tagcttgt	780
gccaaagacat ggtaaaagca tacactcctc agttcatcag tggcatagcc caacattaag	840
cctaagaaag aagtcaccat gtgatcaagc tcgatttatg ttgagagatt aaacagctt	900
acacaagaac tgcttcagac catgtctctt atttgtcag atgaccctgg gcaattttgt	960
gatgtggtcc aggtaccacg tacagctg	988

<210> 21

<211> 851

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (140)..(140)

<223> baySNP821_A140C

<400> 21

tgtttctaga	atttcaatca	tttaagtaca	cccacaaaac	aagaatatgg	agatcttctt	60
ttccctccaa	tcttcctttc	ccctcgactt	taatttgccc	agttataacct	cagtgttgta	120
acagtgcgt	gatacctggm	acagtgcgtt	aatctcatga	taccctctgt	actgacacctga	180
aggagaccta	agagtccttt	ctcttttga	gtttgaatca	tagccttgat	gtggctctc	240
tttatgtcc	ttgttcctaa	tgtgaaagtg	cttaactgct	tcttccttgt	attaggttagc	300
actgggataa	gattttaact	gggttattctt	gaattacttt	tacaataaaac	caagtctata	360
atattaaaaa	taaaaaagaa	agaaaacaaa	gccttattgc	tggtatggag	aaagtttaag	420
tggctggac	agaagaccag	gcccaaccaca	acattccctt	aagccaaagc	ctaattccgt	480
gcaaagccct	aattctcttc	aattttatga	aggccgagag	agataaggaa	gctacagaag	540
aaaagtctga	agtttagcata	ggttggttca	tgaggtttaa	gaaagaagac	atctctatga	600
tataatagca	caagatgaag	ctgcaagttc	tcatgttagaa	gcttcagcaa	gttatccaga	660
aaatctggct	tagatcattt	atgaaagtgg	ctatgctgaa	caatggactg	tcaatgtagg	720
tgaaacagcc	ttctatttggaa	aaaagatgcc	atctggactt	tggatagaga	ggataagtca	780
tgcctggctt	aaagctcaaa	ggagggcagta	cagtggctca	tgcctgttat	ccacactttg	840
aagatgaagc	t					851

<210> 22

<211> 880

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (257)..(257)

<223> baySNP1005_A257G

<400> 22

tgaatggagc tgactccatc cttgaaatgt gtgagcctct cccctcccccc actctaccag	60
cccttgcctc ttcttgccct gggcagcttt tgggtcttgg gagccaacca gaactcaggc	120
taggtgctaa ttaaaagcta cctacccctt ttctgcagag gctgagcccc tccatttgca	180
cacagccctt gtctaccatt gctagcctca ggcaaattgac tccacttctc tatgcctcag	240
tttcttcattc tgtaaarcag ggctaaccatt tcctgtcttgc cctcccttctt ggggtgtcac	300
aaggtttaaa ggacacatgc tgggtatatg tagggctgca gacatgagga gtcctggacg	360
atgggcaata gctgccctcc tcagaggctg tggggcacta tcctggatg ggtagaagtt	420
gacaatacat agctggggac agttggatg gatggggca gaacgaggag aggaatgggg	480
ggagcatgtg ggcccaagtgc tctgtttgc tgattgctcc ttttgcattt aaggagatta	540
aactatttt agtctgcgct actgctggtg agacgcccga ggaagccctt ccatcgctga	600
gatcttctgg aagctgccaa gtgtggtctt cagctcgatt ctgggagcct cccagagcag	660

gcgggagggg tgcaccatc tggggctgt gggacaggc tggtgtgtgc ttgctccctg	720
aggtccttt gtgcgtggc ctccctgagc cgtgtggccc tggcctgcag agaacagaat	780
ctgatcaccc gatgttggac gctgtgttaa aaaaagaatt atttctaata ttcccttgctg	840
cataccggca tcgcaagtgt cgctattaat attatctctc	880

<210> 23

<211> 550

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (287)..(287)

<223> baySNP1055_A287T

<400> 23

tgcaaggagg attcatccgg caaccagttg aggcttagatt ctcagcagct ttattgaata	60
ttgagaggtg gtctcacctc ccactggaca tgtgtcctca agttcataacc agaacttctt	120
tggacagac agacagacag gtggcagggc agggcaggtg tccacgaggg tggggccagt	180
gcaccagggg cagctcagct ctccaaaggg gccagcatct gcacctgctc ctgctgctgc	240
tcctgctgct gttcctgctg ttgctccagc tcagggaggg agagagwtt gtctggctc	300
tcttctcct tgaaggtgct gaagaaggag ttgaccttgt ccctcaggtc cttctccagg	360

- 30 -

aagctcaagt ggcccttccac gtccccggca tggggggcca gtttctgcct gagctgttcc 420
atctgctgca ccagggcctt gttgaagttt tccccgttagg gctccacccg gcgtcgaaac 480
tcctccacct gctggtccag gtgcccaccc agctctgcca gtgacttctg cagccccctcg 540
gtgttgcccc 550

<210> 24

<211> 668

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (354)..(354)

<223> baySNP1056_A354G

<400> 24

agcctgtctg tcttgtctga atgtggaaa ggacaaggga ccacctaggg taggactcac 60
aggcttgttc aggccgagag gggatccag ggtaacagca tcagtcctg ctgtgtccca 120
gattccaggt ctgaggcagc gagtaccact gggatccata gctccggctg gaagaggcag 180
gcccccatca caggacttct gcaccagcca tgcggggctc agtccaggca gtcagcacct 240
accctggca ggcaggggtg ggtgccagcg tctccaccct gtgggctgac ctgcattgtgt 300

- 31 -

gtctatgtgt ctgtgttat gcacgtgcgt gatctgcccc ctgcagccaa acarcaggac	360
ggggcagccg ccatggagat gcagcccctc aagagtgccg agggcggcga cgctgacgac	420
aggaagaagg ccagcatgca caagaaggag aagtccgtgc tgcagggcaa gctcaccaag	480
ctggctgtgc agatcggaa ggcgggtgag tgcagcatgt gggaggcagg ggacaggcgt	540
cacaggggga ccccaggcag agccctgccc catgctcggc ctcagttacc tcatacgaa	600
agtggggggc ttgaatgagt gcctgaagcc cacaaaaa taccacagca cccagtctga	660
gtcctgtg	668

<210> 25

<211> 789

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (257)..(257)

<223> baySNP1085_A257G

<400> 25

ctgggtggtgg ccgacaatca ctgttagtctt ggtgccata cgaacagaat agatggggcc	60
atatttttc tgcaggcttg aagaagttgt tatgcataatg gccatgtctg gggaggaatg	120
gcaggctgcc caccaggggc agggacagga ggctcttggg gtacttggca ccagggcacc	180

ttctcttggg ccaaaacaaa taagcttaggg taagcagcaa gagagccacg agctcccaca	240
tggtgtggctgg gtgccggcag gcaagataga cagcrgtgga gtagaagagc tgtggcaact	300
ctagggcaca aggaggcctt ttaaaggcgt accctgatct tcaccttgac tttgtgttat	360
ctcttcgcctt gtggaaagat ttccttgag cccagccagg cctgagctca tatccagaag	420
ggagagagggc ggtgggagtg aagggctcct caagggctgg ctcaactcca gggcaaacct	480
ccggaggagg agcttaggtaa gggaggtcag ttgatcaccc tctgaggagc tccccatgct	540
tgaatgactc cagagtgcga atggtatctg ggctcaagag tcaaggcttg gaactttcca	600
tgctgcaaaa tcaaaatcac tggacagatg acagattcag gagggtcaca agtagcaggg	660
actgttaaag gacttttatg cttttttttt tttttttcag agtctgctcc atcaccaggc	720
ttgtgtgcag tggtgtgact gtccatgcag ccctgaccct ccagcccatt gtggtttgc	780
agcgataag	789

<210> 26

<211> 789

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (104)..(104)

<223> baySNP1086_A104G

<400> 26

ctggtgttgg ccgacaatca ctgtagtc tt ggtgccata cgaacagaat agatgggccc 60
 atatttttc tgcaggcttg aagaagttgt tatgcata tg gccrtgtctg gggaggaatg 120
 gcaggctgcc caccagggc agggacagga ggctcttggg gtacttggca ccagggcacc 180
 ttctcttggg caaaaacaaa taagcttaggg taagcagcaa gagagccacg agctcccaca 240
 tggtggctgg gtgccggcag gcaagataga cagcagtgg a tagaagagc tgtggcaact 300
 ctagggcaca aggaggcctt ttaaaggcct accctgatct tcaccttgc ac tttgtgttat 360
 ctcttcctt gtggaaagat tctcctggag cccagccagg cctgagctca tatccagaag 420
 ggagagagggc ggtgggagtg aaggcctcct caaggctgg ctcaactcca gggcaaacct 480
 ccggaggagg agcttaggtaa gggaggtcag ttgatcaccc tctgaggagc tccccatgct 540
 tgaatgactc cagagtgcga atggtatctg ggctcaagag tcaaggcttgc gaactttcca 600
 tgctgcaaaa tcaaaatcac tggacagatg acagattcag gagggtcaca agtagcaggg 660
 actgttaaag gactttatg cttttttttt tttttttcag agtctgctcc atcaccaggc 720
 ttgtgtgcag tggtgtgact gtccatgcag ccctgaccct ccagcccatt gtggtttgc 780
 agcgataag 789

<210> 27

<211> 1756

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (1687)..(1687)

<223> baySNP1092_C1687G

<400> 27

tgagggaaatg ggggagctga gacgaaaccc ccatttctat tcagaagatg agctatgagt	60
ctgggcttgg gctgatagaa gccttggccc ctggcctgggt gggagctctg ggtagctggc	120
ctacagacgt tccttagtgc tggcggttag gtttgaatca tcacgcaggc cctggcctcc	180
acccggcccc accagcccccc tggcctcagt tccctggcaa catctggggt tggggggca	240
gcaggaacaa gggcctctgt ctgcccagct gcctccccct ttggggttttgc ccagactcca	300
cagtgcatac gtgggctcca acaggtcctc ttccctccca gtcactgact aaccccgaa	360
ccacacagct tcccgttctc agtccaccaa acttggtgcc aaattcttct cccctggaa	420
gcattccctgg acacttccca aaggacccca gtcactccag cctgttggct gccgctcact	480
ttgatgtctg caggccagat gagggctcca gatggcacat tgtcagaggg acacactgtg	540
gccctgtgc ccagccctgg gctctgtta catgaagcaa ctccagtccc aaatatgtag	600
ctgtttggga ggtcagaaat agggggtcca ggagcaaact ccccccaccc cctttccaaa	660
gcccattccc tcttagcca gagccggggt gtgcagacgg cagtcactag gggcgctcg	720
gccaccacag ggaagctggg tgaatggagc gagcagcgtc ttggagatg aggacgtgt	780
tgtctgtgtg ggtgagtgag tgtgtgcgtg tgggggttggag ggtgttggag cggggagaag	840

gccaggggtc actccaggat tccaacagat ctgtgtgtcc ctctccccac ccgtccctgt	900
ccggctctcc gccttcccct gcccccttca atattcctag caaagagggaa acggctctca	960
ggccctgtcc gcacgtaacc tcactttcct gtccttcct cgccaatgcc ccgcgggcgc	1020
gtgtctctgg acagagttc cggggcgga tggtaattt tcaggctgtg aaccttggtg	1080
ggggtcgagc ttccccttca ttgcggcgaa ctgcgggcca ggcttcactg ggctccgca	1140
gagcccgggc ccgagcccg cg tggaggggg ctgaggctcg cctgtccccg ccccccgggg	1200
cggggccgggg gcggggtccc ggcggggcg agccatgcgc cccccctttt tttttttaaa	1260
agtccggctgg tagcggggag gatcgccggag gcttggggca gccgggttagc tcggaggtcg	1320
tggcgctggg ggctagcacc agcgctctgt cgggaggcg agcggttagg tggaccggtc	1380
agcggaactca ccggccaggg cgctcggtgc tggaaatttga tattcatgat tccgggtttt	1440
atccctcttc tttttctta aacatttttt tttaaaactg tattgtttct cgtttttaatt	1500
tatTTTGTG tgccattccc cacttgaatc gggccgacgg cttggggaga ttgtctact	1560
tccccaaatc actgtggatt ttggaaacca gcagaaagag gaaagaggta gcaagagctc	1620
cagagagaag tcgaggaaga gagagacggg gtcagagaga ggcgcgggc gtgcgagcag	1680
cgaaagsgac aggggcaaag tgagtgacct gctttgggg gtgaccgccc gagcgccggcg	1740
tgagccctcc cccttg	1756

<210> 28

<211> 565

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (454) .. (454)

<223> baySNP1096_G454T

<400> 28

cagctggaga ctgaccgagc ccggcccttc cctccagccc caattcctgc acaagccctg	60
ctattcctcc tcatggcaag aggaccgggt ggactcttgg ccatgatgac tctgtttctg	120
taccagtctg ctccgttcct gaggacccta actttctca gcggaagcag gaagacctga	180
ccatcttgta ctattgctga ggaggagcag ctcccttgt aagaccccg gtgggcaccc	240
agtggggaa agcccgctc cggatgactg gtcttatgag aggggagagg ttttcagtc	300
atcacccgtgc ctccctccgg cctttcctc ctagcccaca gtcagttac atctgagaga	360
gacaaggccg agaaggagct gagggggccc ccggcttacc ttctgctgta gtacccagaa	420
caacggcagc ttcttcccccc ggccgggtca cgakgcccta tttatagctg aggggtgggg	480
atggagctgt tcccaggctg cctgtgcaca ggctggagag gagggttaca tcacttggcc	540
agaccacagg ctggccagaa ggaca	565

<210> 29

<211> 842

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (249) .. (249)

<223> baySNP1101_C249T

<400> 29

ctgctgcattc ttctcattgc atccatcattc catttcaggt taaaatgggg tggtggactc	60
cttagaattc tacctacaggc atctctgaca aaagcccgcc aggctccgct tgactctctg	120
ccccgtgcgc tgtcagatgg cgccaagccc aagcttttc ctttgcttcc tgtagaagcc	180
cgtccatagag ccctgggctg tgaggaggag cagccccaca gggtcacact gtcctttcc	240
cttgcagayc ttggcacccg ccatcaactg gttgcctttt ctcaacacca tcttctaccc	300
cgtggagatc aatgaatccg agcctattgt ggtctatgac aaggaatacc ttgagcagat	360
ctccactctc atcaacacca ccgacagatg gtaagaggac ccccaagtggc ctggggcacg	420
cctctcacag acagccctct tcttggcag gtgggcaggg gtggggatga cagtctgact	480
caggagagtg ggacctgggc gggctttac gagaggcagc aggacatcct gttacaggg	540
acaggttaa atcccagcct ctttcaaact accagcttg tagccttggg caaatttcgt	600
aaccttctt aagttcattc tcctcattca taaaatggtg atacaaatat cacctgtggc	660
cgggcatgaa cgccccgtaat gcgggacttt tgggagacag aggcaaggagg atcccttgag	720
tccccctgcgt ttgagaccca gcctgggcaa catggcgaga cgtgtctcta caaaaaataa	780

aaaatagcca gacatggtgt cgcgtgcctg tcaccaggct cttgagagag gaagctgaag 840

tg 842

<210> 30

<211> 656

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (307) .. (307)

<223> baySNP1204_A307G

<400> 30

gtgccaaggta acacgactat gcggtagc tccaccaggct tggccttctc cgtgccgttg 60

gcgttggaaagg gcgggaagtc cgtcacgttg gggccacata gcttgcgtccag gttgttgggg 120

aacggctccc cctgggtgt gtactgaggg gcagaaggga ggtgacgtgg gagtcagggg 180

tcaagtgtccc agccctgccc ccaacccttt gggcaagctc ttgcgtctgt ttccccatct 240

agcgcatgag gacccaactc cttgcccgtt aagcatctgg aattgtcatg agagccaaaa 300

ctaattrtaa tgtgagtgcc cttgctaaag atcaaagact gagccatgca cgcaagtcatc 360

attatcatca tcatcatcat caccacccta agggacaga agggaaaact cggtgtctag 420

ccctagctgg ggcaccacac acaagtactt ccatccctgc actcacaatg ttccgggacg 480

ccccctccatg cccagcaccc acagcccact gcctctcaac cgcatctccc tggtgccctca 540
cgccccatttc ccctccatcc ctgcgtccct gcagcaggac aatcacaaga taagaagtgc 600
caggtccccca cctttgact cagttctccc cttgctaact gggcaccctg gggaaag 656

<210> 31

<211> 615

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (180)..(180)

<223> baySNP1504_C180T

<400> 31

atggcaaaa ctcgggtca ctggtctcat gctccaaggc cccgtgagca ggccagggtgg 60
ggggatccct ggggaaagcc cctcaccctt ctccaacccc cagccttcgg ggagccctg 120
ccctccaggc cctgtgctca gaggtggggg gaggacggct cagtgacttt tggttccay 180
gaccttgaca gagacaggga cctcgacgca tcctccatac ccgctgcggg gaaatggacc 240
ccaccagcca gcacgggtg agttggggc cagtcctgc agagtgtggg tgtccacaga 300
gggtctcttc tgcagtggcg gatcgggcgc cagcagggtc ccggcctcag tgctgcctgt 360

- 40 -

gcgggcgagg gtggcctgtg ggcagggctg gagctgcccc acagccgcgg gctctgcctc	420
acgcccagtg ggtgccccgt gatgtggcag ggctggcctt gagtttcctg cttctcacga	480
gcctggcacc gccaaagccca ggccccctctg .gcccatctcc acaacaccct gtgtggccgc	540
cacttggggc aggccctgtg ggccccaccc agcctggctg aggggcggtg gagagtgtcc	600
gcctggacgg tgagg	615

<210> 32

<211> 527

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (153) .. (153)

<223> baySNP1511_G153T

<400> 32	
cagaaactgt agctggcggg cctcgggtct gtggacacca gttctccctc ctcaccaggc	60
actgggggtc ggggagcatac ttccggtgaaa cttgctccga ggtccaaggg gaaaccctgc	120
tcttggatat tcattttggg actctgcgtc aakgaacaat gagcgctgca ccctaataaca	180
tcagtagtta cagctccaaa gtgaatcaat ctgtcctgtt gaaaccattha agaggacaag	240
gattagggaaa ggtgggtcca tgaaacacga ccagaggttt tctcaagaca agactcacga	300

tgacgcctc ccgctcaaac tcaaagcaag aaactcagtt taaatgttca atcaagatat 360
attttggcca caagcatagt tctactttaa agcaatttct ggaaactttt acaactacag 420
gaatgcctct catgctaaga agggatgccc aggacatggg aatgccactc cccacaagtc 480
tcactgcaca aacatcacgg aggctggcag cttgagcacc tcccacc 527

<210> 33

<211> 663

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (284)..(284)

<223> baySNP1524_A284C

<400> 33
ggtgtggtgg cacatgcctg taatctcagc tattcaggag gctgaggcag gagaattgct 60
tgagcctggg agacagaggt tgcagtgagc agagatcgcg ccactgcact ccagcctggc 120
cgacagagcg agactctgtc tcaaaaaaaaaaaaaaaa aaaaaaaaaaaa agaaaaagaaaa 180
agaaaaagaa aaagaaaaagg aaaaagaaaa ccagaagtag gagcagcctg aagaaatgac 240
agggagttga tttcccactg ggagccctct caaagcccac acamccgcot gcctgggta 300

acagtatctc ctcggacatc ctgcaccctc ccacgctccc ccctccctac agtagtgaaa	360
gacctaggca ggatgacccc agctcctctg tgagaatttc acaccctagt gtgaagtcat	420
agccttgtaa ctttcccttt aagaactgtc agagctgggg aggctggcca agtcaggct	480
ggaggtgggg acagagggaa gaaagaaaaa aaaaaaagag agagagggcag gaaaagttt	540
ttcagaggaa aatgcagggt ttgtccttca ccctgacgtc agatcttgct ttataaaaac	600
ccccaaaggct gcggagaagc atatctggtg ctactgatgg gcggccagtc tgggcccagc	660
tcc	663

<210> 34

<211> 609

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (367)..(367)

<223> baySNP1556_C367G

<400> 34

cttttagatca gagtattcag aagggttata actccgtcag tcatttacat gtttagtagta	60
taaatttatct gagcttcctg ttctaacttt tagctttct agcataaact cttctgtgca	120
attttagctgc accgagggaaa cgggagttt tctggaaggg acttttgc tcttttagact	180

gagggAACGT CCTTGGGAG TAGAGGGCA GGGAGCATAc GCAAGGGATT CCAGGTGCAG . 240
gtaaaAGGTG GCACTAGTTC AAGGTTTGC TGACTCAGTC TGGTAGTCAG AGTCTGCAGG . 300
agaAGACAGT TCAAGGCAGG GCCTGGAGGA TTGGATCAGT TTAGGGACAG GTCAAAGGCT . 360
ggcttasaga CCTTAGAGGC AGGTTGCTTG GGTCGTTGAA TGCTAGTCAG GTGCTGAGAG . 420
ccctttctc tggcaactgt ggactcagag ctaaccaatt ttagttggca gtgggggtga 480
agggtgatcc agaggcctga gctgcagagg gcacaagaga gaaaagatgt cttagaaaga 540
gcttgagaa catgccttgg ctgctggcag ggaccttggaa tggggtagtc tacacccgga . 600
agtgcctgc . 609

<210> 35

<211> 740

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (699)..(699)

<223> baySNP1561_A699C

<400> 35
tcaagcacct gcctctacag gtacctttct tgggaccaat ttacaatctc tgggatcccc . 60

aactatagaa cctggaagct agtggggaca gaaagacggg gagcctggc taggtttagg	120
ggtcctgagt tccgggcttt gctaccaggc tcttgacttc tgtttcccgta ttttaatga	180
gcagtttggc ctaagccatt tttaaggaga gcgatgggg aggcttcccc cttagcacaa	240
gggcagccct ggccctggct gaagcccaac cccaacctcc aagactgtga gaggatgggg	300
actcatccct ggaggaggtg cccctcctgg tattgataaa gaatgccctg gggagggggc	360
atcacaggct atttgaacca gccctggac cttggccacc tcagtgtcac tggtaggggg	420
gaactcctgg tcccttgggt atatggaaagg tattcagcaga aagccagcac tggcagggac	480
tcttggtac aatacccagc atgcattgttg tgccagggc tgacaagggt gctgtccttg	540
gcttccccat ttggaggtgg tcacttgcct ctactccagc cccagaagtg gaaactgaga	600
tgatgtgtgg aggagagagc cagcggtcat gttggaaatc ttgaggctcc tttccagctc	660
tcagattctg tgatgctcaa agggtgagct ctgtgggcme aggacgcattt gtagatggag	720
catttgtttt ctggtatcca	740

<210> 36

<211> 1181

<212> DNA

<213> Homo. Sapiens

<220>

<221> variation

<222> (389) .. (389)

<223> baySNP1582_C389T

<400> 36

ataaccacac	ttttctgaaa	gggagtagaa	ttcaaggct	gcattttcta	ggtatgaaca	60
ctgtgcatga	tgaagtcttt	ccaagccaca	ccagtggttc	catgtgtgt	cacttccgg	120
ttgagtgcta	gtgagatact	tctgtggttc	tgaattgcct	gactattgg	ggttgtgata	180
tttcataaaa	gattgatcaa	catgttcgaa	tttcctcccc	aacagtcttc	cattaccaag	240
taaagattca	ttttctggg	actgagagtg	aaaccatac	caatcaggcc	tttgagattt	300
ctctgtatgg	caccgtggcc	gagagtgaga	acatcccatt	cactctgtga	gtagcacagg	360
ggggcggtca	tcatggcacc	agtccctcyc	ctgccataac	cottggtctg	agcagcagaa	420
gcagagagcg	atgcctagaa	aacaagtctt	tagttaaaaa	aatcagaatt	tcaaaattga	480
ggtctttcct	ctatttgata	ttgagaaaaa	aatgcttcaa	attggccatt	ttattttcac	540
ttacttagtta	tatTTTTta	tttatcatct	tatatctgtt	tatttctttt	ataaagctgc	600
tgttaaacaa	tataattaaa	ctatctaaa	aggtttgaca	ttaaagaaaa	tgagcaatgg	660
taacaggaaa	ccactctata	gatgtacata	taatatgtac	agaaaatata	agttagtaaga	720
agtccatgac	aaagtgttag	ctctttttt	ttttttttt	ttttttttt	ttgagatgga	780
gtctctctcc	tattgccag	gctggagtgc	agtgattcga	tctcagctca	ctgcaacctc	840
tacctcccga	gttcaaacaa	ttcttctgtc	tcagcctccc	gagtagctgg	ggctgcaggt	900
gcccaccacc	atgcccagct	aatTTTTgt	tttttagtag	cgacagggtc	tcaccatgtt	960
ggccaagctg	gtcttgaatt	cctgatctca	ggtgatccac	ccgcctcggc	ctcccaaagt	1020
gctgggatta	caggtgtgag	ccaccatgcc	cagcctaccc	tttactacta	atcaaagaaa	1080

- 46 -

taaaaagtaag gcaacttgc acctttacaa ttacttagatg aacaaatctt taaaaatagc 1140

cagtgcagac aagggtggtga agcagaacat gcgaacctac c 1181

<210> 37

<211> 531

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (443) .. (443)

<223> baySNP1638_A443G

<400> 37

aactcggtgc cctgcaacac accccagttc tagacagcgt ggtggaggag acgctgcggc 60

tgagggctgc acccacccctc ctcaggttgg ttcatgaaga ctataccctg aagatgtcca 120

gtgggcagga gatatgttc cgccatggag acatcctggc cctctttccc tacctctcag 180

tgcacatgga ccctgacatc caccctgagc ccaccgtctt caagtacgat cgcttcctca 240

accctaattgg cagccggaaa gtggacttct tcaagacagg caagaagatc caccactaca 300

ccatgccctg gggttcgggc gtttccatct gccctggag gttctttgca ctcagtgagg 360

tgaagctctt tatcctgctt atggtcacac actttgactt agagttggtg gaccctgaca 420

caccactacc ccatgttgac ccrcagcgct ggggtttgg caccatgcag cccagccacg 480

atgtgcgctt ccgctaccgc ctgcacccca cagagtgagc ttggccaagc c 531

<210> 38

<211> 711

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (648)..(648)

<223> baySNP1653_G648T

<400> 38

ttcagatttc accaatttag aatttagtaag taatttctct gatacaggcc tgaagttac 60

ccttagtaaac actttacttc catatggtaa aaatttagatt ttgggaggaa tgcttacctc 120

ctaaatatata tcaatcta atttgaggac acatggaa atatttatga ttcatctgct 180

ttttaaacat aagccttgt taactgtaag ttcttgaact ttataaggct gctgttattt 240

aaatgagcac agctcctgat ctgcaaacag cagagcgcag ggctacagct tggggatgc 300

cagccgactc agggtgttcc tgtggactga acaatctctt gctgctgtac tggagggcct 360

gggagctttt ccatcagcct cggcctgagg tgtgcactct tctcctgccc accccaggaa 420

taaatgagat tcctggtaa aaaggaccag agcagtcatt ttacagttga ggaaactgtt 480

gctctgagaa gtgaggatt tattcatgac tacactgatg gtgagtgccc atgtcaggc	540
tggAACCAAA gtcTACCCAG tatCCACACA ccACCATCCC tcAGGTTGGCT ctGCCACAGT	600
ctgATGGGAG gtcCCAAAGC gggAGGAAGA aggAAAGTCT tgCCACKGC atTCCTCAG	660
ttggcTTCC tctctgcCTG tttccCTCC ctACAGTTAG catCTTAAGC a	711

<210> 39

<211> 2438

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (398)..(398)

<223> baySNP1662_C398T

<400> 39	
catGCCCATG accCTGCCAG ctGACAATTc taAGCATGCG cAAACTGCC cAAAAAATTc	60
ctCCCaCATT tCCGAAGAAC tATTTGGCCC ttTATGTGAA gtACCTGGTT ttTCCATTtT	120
ctgtttacc ataggcctca gttcggtgtg tggcgtattt attctacatt taacaatttg	180
aagatcatTC tattAGATTA aaaaaaaAGA atacaatgga agccaAGTGA ttaAGCTTC	240
cTTATGCTTA tattaAGTTG tagCATATGc attTACCGAT agttaACCgt attAACCTAC	300
agaaaATGTC caggAAATG gtctATTCT tattCTATTt ttGACCTAAA gaaaATCTT	360

aaaatgtctt agcattttcc ccagtctcca tccacttycc tcagcttgg cctgaaagcta	420
tcttaaagg taccctgtac agctcttgcc ctgtacagct agctacagag attcaatcct	480
ttctgttcga ttaggacaca tctcagtggc agataaacatg caaagttatt atatgtatga	540
accagaacct gttttcctt aggggccagg atgttacact aaggtcttaa gactatagta	600
atatcttcac ttgaaaaaagc cctctattat tcctatctca gatgataaaa attcaattaa	660
gagaaataag aacgtgacat gtgtaatcgc acctggctct acaaagctag tctggacaga	720
cattaaaca attatccctct aagattattt gatgaaatgc atttcaatga ctagttaacc	780
attaaaaacc aaagtgagca tcccacatgt tcccagtcaa atgacctaga gcaaaggact	840
aggcaaacca catctgtggg catagcaagc tgtacatcac aaacaaatga atttgctttg	900
tatatgagtg agagcaaaca ctctttattt tacaacttgg gtgggtaagt agggagaata	960
atggttttac tgaaatcgca ggtaacggtt acgttggagt taaaggtagt gaagaaaacc	1020
aaaggtaag agctgttgtt ctgggctggc attgtcaatg aagagcataa attcagatgt	1080
gaatgtatat tttgtagaag catgtgtgtt gttgggttt gtgtatgtgt gagtctgaaa	1140
gagggaaaac aggctcccat tagactatga ctaacaaaaa tgtttgacag attataactc	1200
agatgtctta ctcagagcat atgccttccc atttccccca ttattccccca acatgtatgtc	1260
tttaagaact tgtccttgac cgagcagaca tctcataccca caaatagcta atattttgat	1320
agctatgatc ctgaacggcc aaacattcca aaaccaagta gtttgtataa tctttaaatg	1380
caaatatatt ttggcctt tccttggcaa ggatgtttgg tcaggggttg gcaaaaataa	1440
tgctcttcag actaaaaaga acacaaccat atttcttagc catccaccag aaagtagtag	1500
aacgctccag gaagcaagtc tttgtcagga gtcagactag ctacatcata atctctgtc	1560

- 50 -

ccaggggctg tggatgtcat ccatcctggc ctaactagcc tactgagctg agagatgtcc	1620
aatttccccca caatacacta accagaggag aaggaccgtg atatcattgc atgtgaattc	1680
ttaattccaa ttgcttaaac aaatatgttc agttgttaact atcaatacca gtatataaca	1740
gtgttggcca agttttattt atgctgacaa tcaattggag ttacagccag acacatggtc	1800
ttatgaccgg cgtacttacg cagggctttg cactgagaca ggtcgtgcac ctgaggttta	1860
ctgcttgca tttttgtttt gtaactgaag tctgatgaga cagccagagc atgtgctacc	1920
tagggacttg aatccctgca gccccatttc acttctcacc accttccggg gtggtttctc	1980
gacctcccac tccccctacca cctggtgccct tagccagccc tggctctccc tccaaacacc	2040
tgcccaatga gcactgccac cccatggtgc ccagacatgc tctccctcct catccctacc	2100
tagctaccat tgccactccc ctcccccagc ggggacatgg gcataaggagc agggagagtt	2160
aagggttgtc aggtgcacgt gcccstatgct atcttggaaag ggggcttggc catgtggcat	2220
ctctggacca agaatgcgcc acagcacatt tggagggtga atgggtggggg cacacccctt	2280
gtccacctct atttcaggca tggAACACAT cctggcatga aagttgcagt cccttggaa	2340
tcacctctcc accttgatttgc acacagttagg ccagtgacaa gggaaagatttgc acacatcatc	2400
ccctgctggg gcccagtgtc ctgtggctgg caggcagg	2438

<210> 40

<211> 794

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (376)..(376)

<223> baySNP1714_A376G

<400> 40

tcggtacccc	tgttaactt	ccaccgaggc	agggggcccg	agcagggaca	gaagaggccg	60
gggtgaacat	cacccttct	acagtggctc	gatgccttgc	ttcacactcc	agtttaatg	120
ttcgtgtat	acttgctatt	ctctttctag	aacattgccg	tttaggagagg	gtcccaccct	180
ttgtgttcgc	tccctccctg	ccctcatctg	ctctgttgac	aaacgtttc	tgccagatga	240
agtgtttctg	ctgtgcctgc	ctctctggga	ggaaacgtgg	agcagctccc	tgagcattca	300
ggctccgtgg	ggaagtccga	ctgattttaa	atagatccc	gtttccagg	cttggagctg	360
aacggcatga	cggggrcgg	cgtggccgat	gtcccacccc	ctctgcctct	caaagcagcg	420
tggcagatta	cgggaattt	atggaaaacc	aggacttgct	gggctcgcca	acaccttcac	480
ctccccctcc	acaccagagg	gtaagtcggc	aatctgaaac	acaggcttc	attgcttcgc	540
ctccacaaag	taggacgagt	ccotcattcc	agataactagc	aggttactt	cggctagtg	600
agcacatgag	aaaaaccatg	tatgatggc	cccggtttg	atttgcaaa	aagatatcga	660
agcagtaagg	actccagtgg	gtaagatctg	tggctctgcg	tcattatcaa	taactgcac	720
aaaaaagcaca	ttttgatatc	atgcctcaga	acgaggaaga	ggatagacat	ttccaggttg	780
tcatcggtta	tcat					794

<210> 41

<211> 813

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (89)..(89)

<223> baySNP1722_C89T

<400> 41	
tgttatcct cctcatgtcc cctccccacc caagttccag cttgcctggg gcttgttctg	60
ggaccttaag aaccccagga tgcccacayc gccaggccag cagggccaat ggtcatgcag	120
ggactgcggg acaggttccc atcatctcct gtgttagccc attccacctg ggaaaccaag	180
cgactgccgt ggctggctta tttctccctc tgccaaacccc catctacaat gttctggga	240
aaacaatgag aggtggaaaa ggtAACatac aaccacattc cacccacatc acttccagt	300
aggcagctaa gtccaccaac agagcgtggg agagtcttc atccaaaaat cccaacacgt	360
cgcacatgcagc gacaggaggc tgtgctgggg aaacccaagg cctggctcag cctccatact	420
ctaaggccct cgggcccagaa cgaccacgag aggggagcac ccaaaggcac gcagaggggc	480
ccacacctgggt gcactgcaga ggggacagag gggctgtgag tgggaggtgg gccagtgctg	540
ttcactgccg cctgctcagg accagggct gctgcagacc cagcccggtc tatgcccacc	600

cccgagggtg cagcccagct tctgcacatc agatggagtg acgctgacta aaggacctgg 660
acagcgccgg cagatactcc caacactgtc cttctctttg ggagccaaag agaagccacg 720
cagatactcc caacactgtc ctttttttg ggagccaaaa gaaaaccccg gccaggcagc 780
cagggagcc atttctccta caccaggcag ggg 813

<210> 42

<211> 524

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (210)..(210)

<223> baySNP1757_A210G

<400> 42
ttcttgaatg cctctcttgg cacccctgcc ccaacaggct gctggatct gcacgtggaa 60:
tcacagggtcttggatgc aacggcaaag ggcatgtct tctgcctggg ggagggcctc 120
ttgtccctcc cagcagggtcc cgggacaggg ctggcagcca ccccagcacc caaaataaga 180
tgacaaacaa gaggaaacaa accaaaatgr aggagagcca tccgggctgg aggagggcag 240
aggctccccca aggggatctg gggagggctt caacttatga atgcatcagg ctttggaaaga 300
cgtggatgga agaggcgagg gcaaaaggaa gagatgaggg gcatggagag agactcaggg 360

aagaaggaga aagagcaatc atgcagcttg ggacaaatct tttgttgctt tatcagattc 420

tcagtcaatc aattgggtgtt tgctagaacc ggggtacgca ggggagtgtt qaaqagagaa 480

tgcgcgagaga gatcaaqaqacqccatcg ccgg

<210> 43

<211> 1279

<212> DNA

<213> Homo Sapiens

52202

<221> variation

<222> (240) .. (240)

<223> baySNP1765 A240G

<400> 43

gtatctgtgt gtctgtgtct gtgtgtgtgt gagtgtgtgt cttgaccac gtgttctcca 60

taggcgggga gtcctgcagt tactcatgga tgagtacctq tqtttatgtc tcaggcagcca 120

[View Details](#) | [Edit](#) | [Delete](#)

300

aaaggatcg ataagccctc catttcccc atccaagtga agagagaagg aggggaggt	420
gccccctacc ctgctccatc ttagagcaag gtagacccag ctcaggaggt cttgcttggg	480
aagtgtatcg accttgactt ttccagtctg tcttttccc ctagcacccc caaactccccc	540
ttaatcacca tcctaagttg ctgtgggtga tgcaatagca agatgaggag cagatctggg	600
ctgtttaaac taagaggctg ggtgaggtgg gggtatTTAG ggcctggagc ttagagttca	660
acctaccaac gaccctgaa gagggaaaggc atctgacacc cacaacctgt tctagggatg	720
atTTTCCCTC caatcccttc tcccctgcat ctccactgca gaggcaggct tcactgtccc	780
cccattaccc agtggctgtg aagggcagcg tggaggtgg gggaaaggac gacactggtg	840
ggagggagcc cagcctgctc cagctaccac ggagaggctg agatgggggg agcgTTGGCG	900
gattcccagc tgccccact ctgtcccagc ctctggcttt ctcaaaaagg actctctgtt	960
ctccttcagc attcaagacc cagagagggg gacttgtggt tggggaggg aggagtggag	1020
ggaggttggg ggggtcattg ctccctctct ttctttcttgc cctggcagc cgctggccccc	1080
aaatctctgc aggctcctgg ctgcagagcc tgagatcttt gccaggacag gaggaggggg	1140
aaggggcagt gtgtctcaag ctctaagcct gctggagagc agggcgggag cttggaaaa	1200
ggaggcactg cgtggagctg cttagctcag ccacaatcca gcatgccaaa gtgcattggac	1260
cagcaagttt taaaaaagc	1279

<210> 44

<211> 359

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (200)..(200)

<223> baySNP1776_A200G

<400> 44

taaggaggca atctgtaaaa ctagcacagg tctcccgctg ttccactggc tcacccacat 60

gattagcaga gtgcacgaaa aaataaaaact tctattaaag aatcatgctg agcacaagat 120

cagagaggtt gtgacattgc aaactcgata gatgcagggg gcctgggaga ctggcggtct 180

ccaaagggtt cccaacaccr tctctcctct gatttctgtg acaaatgtgg aaagctactt 240

gcttgagggt actgggggaa ctgatggggg aactttcatc ctgttaggaa ctccgcttcc 300

cattcctgcg tctctgtctt gctccctgga gatggatgga tcacggaggg ggccacagt 359

<210> 45

<211> 437

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (127) .. (127)

<223> baySNP1799_A127G

<400> 45

taaagcagga ataggtaga ggagggagag agctggctgt gtcaccatgg aaaagtgaaa 60

gccaaagtcca cctacttact ctgcggaaac tttggtggttgtcattgac atcggtcagt 120

gtgatcrtca ctttgggtgt ccctgagagt ccgccccat gtccacccat gtccttggcc 180

tggatcacca cgtggtactc ctccttggcc tccctgtcca tgttggtag ggctgttctg 240

atgataacctg gacaggttaag caggcaacat cacagatatt cgtttataac attatgacaa 300

caagaaaagtt ctgagcactg aggaagcaat gctgaataaa atatcccatg ccctcagcaa 360

gaatcatttc aacatggtaa ttacaaccaa aggccat actgaagcat cattatgtct 420

tttcaagcaa atcataa 437

<210> 46

<211> 752

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (201) .. (201)

<223> baySNP1806_A201G

<400> 46

ctgggggttt gggacagaac acacgcagct tcagtcagtt ggtaaacggg tcccttcctt 60
ctggggcaga aacgctttgg ggtttgactc aaatcatgga ctccttgggg gcctattctt 120
cgggctaact ctttgcatagt tctgcaggga gccaaacaag ccgctcctac acttcgctgg 180
tcctggcggt cctgggtggc rgtttcatca ttgctggtgt ggctgttaggc atcttcctgt 240
gcacaggtgg acggcgatgt taattactct ccagccccgt cagaaggggc tggattgatg 300
gaggctggca agggaaagtt tcagctcact gtgaagccag actccccaac tgaaacacca 360
gaaggtttgg agtgacagct ccttcttct cccacatctg cccactgaag atttgaggga 420
ggggagatgg agaggagagg tggacaaaagt acttggtttg ctaagaacct aagaacgtgt 480
atgccttgct gaattagtct gataagtgaa tgtttatcta tctttgtgga aaacagataa 540
tggagttggg gcaggaagcc tatggcccat cctccaaaga cagacagaat cacctgagcg 600
ttcaaaaagat ataaccaaataa aacaaggtaa tccacaatca aaatacaaca ttcaataactt 660
ccaggtgtgt cagacttggg atgggacgct gatataatag ggttagaaagg agtaacacga 720
agaagtggtg gaatgtaaaa tccagtcata tg 752

<210> 47

<211> 527

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (413)..(413)

<223> baySNP1837_C413T

<400> 47

ctcaccagtc ccccttctga gagcccgat gaggcaggag ccggccccata ctccttctgg 60

cagacccagc taaggttcta ccttaggggc cacgcccaccc ccccaggag gggtccacag 120

gcatggggac ctggggtgcc cctcacagga cacttccttg caggaacaga ggtgccatgc 180

agccccgggt actccttgtt gttgcctcct tggcgctcct ggccctctgcc cgtaagcact 240

tggtgggact gggctggggg cagggtggag gcaacttggg gatcccagtc ccaatgggtg 300

gtcaagcagg agcccagggc tcgtccagag gccgatccac cccactcagc cctgctcttt 360

cctcaggagc ttccagaggcc gaggatgcct cccttctcag cttcatgcag ggytacatga 420

agcacgcccac caagaccgccc aaggatgcac tgagcagcgt gcaggagtc caggtggccc 480

agcaggccag gtacacccgc tggcctccct ccccatcccc cctgcca 527

<210> 48

<211> 600

<212> DNA

<213> Homo Sapiens

- 60 -

<220>

<221> variation

<222> (323) .. (323)

<223> baySNP1870_C323T

<400> 48

aacagctatt cacgcttgtt gagtgccgcga agaggatccc acactttcc tccttgcc 60

tggatgatca ggtcatattg ctgcgggcag gtcagtgacc ttggatccct ttgacttctt 120

gacatttgac ccctcttga cttcccgatc ttttagtgacc ccagtggcct taccttgcgt 180

acccagggag ccaaacttgc tgacctcgcc acctctttc tccttcttcc ccactgatgt 240

gctttgaatc ctttggcctg atttctggct cctgaccctt gctgccccac ccaggctgga 300

atgaactcct cattgcotcc ttytcacacc gatccattga tgttcgagat ggcatcc 360

ttgccacagg tcttcacgtg caccgcaact cagcccatc agcaggagta ggagccatct 420

ttgatcggtc agtggccctc ggctaggctg gcatgttagat agagggggtg gggctataagg 480

ctggtccgtg tccaaggctg gctgagctgt gacctttgag tgacctgcag gtccctctcc 540

agggtgctga cagagctagt gtccaaaatg cgtgacatga ggatggacaa gacagagctt 600

<210> 49

<211> 725

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (115)..(115)

<223> baySNP1882_C115T

<400> 49	
tgatcctgag acctgtaccc tttaccctta gggcctgggg cctcacctgc tggcattggg	60
aggaaccaag ccgcgaattc tcagcacccgt gccaggaggagg atgcctcg . gcagygagga	120
c ttgtggggg acgttctgca agagtgggggt gcaggggcca ctgtgagccg gtgagaccga	180
aggagggagg cagaagggtgg gtcacccctc agaggagccg accaggctg agactgacag	240
aaatcagtgg aagagggaaag ggtggcggag aggcaaggaaa gagaccagaa acagacaggg	300
aaacagatgg ggagagcaac aaagacaaac agaaagatcc tcaaagaggg ccccagagga	360
agccacaaag aggttagaggg gacagtcggg atgggggtta cccggaggcc acagcccagg	420
ccagtccgtg gcacactcac tgcccacttg ctcccttgaa agaggagccc ccagccccct	480
ccctgcttgg ccccgccccg ggccccctgga gcactcacgg acatggctgg gaccgggttg	540
ggcagccgtg gtggtggggc ctgctggggc ccttaaaata aaagcagggc ggggctggcc	600
ctgatgactt accccacccct ttccacccac cacccaaacc tggcacgacc ctggccctgg	660
ggcaaggctg gcaaaacggg agtgggactt ttttggggc ctgatcccc atcacccagg	720
cccg	725

<210> 50

<211> 493

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (214)..(214)

<223> baySNP1988_C214T

<400> 50

tgctctatacg ctggggccctg aagaatggag caaagacctg tggcaaggat aaatcaaggt 60

ctgcagccgg gggtgtggctgt gggctgtgat tgtgtttggg ggccggccatg tgtctctgac 120

cctgtgtttt gccccaaacta cagcacactg ggatgagaaa ttccaccaca agatggtgga 180

caaccgtggc ttcatggtga ctcggtccta tacygtgggt gtcatgatga tgccacggac 240

agtaggtgc tgtgaggagc agggtgtcaa ggtgggtggg ggtccaagg tagttggtct 300

gaccCACCC tgcacacagg gtgcccaagtg tccttccgc tcctctccca ggccctctaca 360

actactacga cgacgagaag gaaaagctgc aaatcgatgg aatgcccctg gcccacaagc 420

tctccagcct catcatcctc atgccccatc acgtggagcc tctcgagcgc cttgaaaagc 480

tgctaaccaa aga 493

<210> 51

<211> 1161

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (349) .. (349)

<223> baySNP2000_C349T

<400> 51

aaccaccccta accctgactt ccctaattcc ccccatcctt accaccctcg ttaaccctaa 60

caaaaaaaaaac tcatacccccc attatgtaaa atccattgtc gcatccacct ttattatcag 120

tctttcccc acaacaatat tcatgtgcct agaccaagaa gttattatct cgaactgaca 180

ctgagccaca acccaaacaa cccagctctc cctaagcttc aaactagact acttctccat 240

aatattcattc cctgttagcat tggcggttac atggtccatc atagaattct cactgtgata 300

tataaactca gacccaaaca ttaatcagtt cttaaatat ctactcatyt tcctaattac 360

cataactaattc ttagttaccg ctaacaacct attccaactg ttcatcggt gagagggcgt 420

aggaattata tccttcttgc tcatcagttt atgatacgcc cgagcagatg ccaacacacgc 480

agccattcaa gcaatcctat acaaccgtat cggcgatatc ggtttcatcc tcgccttagc 540

atgatttattc ctacactcca actcatgaga cccacaacaa atagcccttc taaacgctaa 600

tccaaaggcctc acccccactac taggcctcct cctagcagca gcaggcaaatt cagcccaatt	660
aggctctccac ccctgactcc cctcagccat agaaggcccc accccagtct cagccctact	720
ccactcaagc actatagttg tagcaggaat cttcttactc atccgcttcc acccccttagc	780
agaaaaatagc ccactaatcc aaactctaacc actatgctta ggcgctatca ccactctgtt	840
cgcagcagtc tgcccccctta cacaaaatga catcaaaaaa atcgtggct tctccacttc	900
aagtcaacta ggactcataa tagttacaat cggcatcaac caaccacacc tagcattcct	960
gcacatctgt acccacgcct tcttcaaagc catactatattt atgtgctccg ggtccatcat	1020
ccacaacctt aacaatgaac aagatattcg aaaaatagga ggactactca aaaccatacc	1080
tctcaacttca acctccctca ccattggcag cctagcatta gcaggaatac cttcctcac	1140
aggtttctac tccaaagacc a	1161

<210> .52.

<211> .2915

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (338) .. (338)

<223> baySNP2071_A338G

<400> 52
aacattctat atggctaact ctgaatatga tcttagattt taatatttt cacacggcat 60
gccaatcccc ccaaaatttc tcctgctgtg accttcaatg acctacattt gttacacttg 120
agcaaaatca agttcattgc tattctcagg ctataatgaa aattaaggct atttctgttt 180
ccttcacatg ccccaaattt acacaattag aattaggact tctattattt aatgttagtt 240
gtagtaatgt tcagcatacc atgcaaattt tgctgaagta tacttaattt gactgctaaa 300
atgtgtgata tccctagaca ggatttacat tatgaaartc acagggaaaca attttatcg 360
aaagttgaaa ctaaaaatcc tttgcaggac tgtcaagcag agaatggta ctcacgtttc 420
ctttaaccac ataattagaa tcattcttga tgtctctggc tagacaaaaa tcacaaaatct 480
ttgtgatccg accatgagta aggaggatat ttctggctgc caagtctctg tgaatacact 540
attaggttgg aggagaaaaag aaaaccattt aaattcattt taacttgtaa agagtgaaaa 600
ctaacttttt aatactatacg tggtgcttat attataaaaa atccaatact tttgtttaa 660
agtattcagt acacaaaaaa taaaaatcaa aagtacgcct tgaatgatgt tcacataatc 720
aagagtctaa ttattataat ctctttaaa agcaattcta ataaatgctg tttcttctc 780
aggactgctt tcattcatag ggaaatacat aagaatagt catatcatat tgttttaact 840
ggaaattcat tttgcattca tctcttgaa tgcccttca cagagttcct aatatgcctt 900
tgcaaattca atctgacatc tcccaaggac acacggaaga aggtctttat ttccagccatc 960
ttatatcctt tcttagtttg gtaattgttg ggaaatgtca cccatgacat ttaaggtag 1020
gactggtaac tcattctgtt cggttaatct tacttcctaa ggaactcctt tcacccttcc 1080
acagaccatg ctccttggttt tggttccatc attcttcca ttccctaacct tctcccaagt 1140
gttttattact ccctctgacc ccttatttcc tgacacttca taagccacac atataatatt 1200

tggatctaac ttcaataaaa ctcaagtcta tgcttcaccc caagccttgt aactatgagg	1260
tgccctctgc ttttactgat aaaatgattc tgttctctag gaacatatcc tataatcctaa	1320
aagccaaaag ttttaaaaga atttcactgc atataaaaaga atattcatag aaaaactcat	1380
ttagacaggc ttgtacttta cagcttataa attagaacag gaattccaaa gagacagcag	1440
ttggaacatg aagaaactaa atttcctctg cttttggta ccacacttca aaatgacatt	1500
ctgcatttta actatggctc taaaatgctc tgttctcaa aaaaaaaaaa aaaaaaaaaa	1560
aaatcaaaaa aacaaaacac aaaactctt agagaatcac tcccacttac attcttggag	1620
gcgaggaaag ccatgccctt tgccacctgg taagaaaagc tcagcaagtc ttctaagtct	1680
agggccaact cgtcatcctc catgatggcg ggagtcacat ctcttctat gtatgagcct	1740
gtgaggaaga gaggattttt ctagcaatt acaaccataa aggtcaggaa aggaaaagac	1800
agtggcaatg acataccaaa ggctggtaat gaatgaacta atgtgaacct gcaggcagat	1860
cactccctg gtgtccagga aaggttagatg ctgaatcaca aagttaatat ttaacaatcc	1920
taggctgggt tacaaaatcc atagaggaga gggatggcga attaaagcaa agatcccata	1980
tctatagaaa gataactcagg cacaaaaaca tatgctctga ccccaaacac ccacttgcaa	2040
ccctaactgc cattgaccat tggcactgct accataaagc agaactggc tgcatcattg	2100
ctactggaa tgatgttata ttccacatta gcatgatata catactctct gtaaagttac	2160
tcttggttgc ttgataaggta ggtactcacc tatttcaca gatctccctt tgtcggcctt	2220
ggttggaca acataagaaa ctccaggaaa catgtccatg tactcattag tactatcgct	2280
gctgggagag atgaaacaag tcatgactga atcaagtggg acatgttagaa gggcactcat	2340
gggtcatgct ctaccccttc atcccccttg ctacataata gactggacca atttgaggaa	2400
agtcatgtaa agtttgaata aagagtttga aaatcctgtt ctgtaagaaa tgagttttta	2460

ataatcgata ttggggtcca tgcccagaaa ctaggtgtcc ttttgtgta taatcatata 2520
gaggactcag gttagaaatt tcccgctct tgacacaatg aatttaatgg gagacagaga 2580
gccaaatatg gtatcccgta ttacctcaaa ctctctaaat gagccccagg agacaagatg 2640
aaagaaagac aaagaagagc ttccaagacg tgttatgcag gaggcagaga tcgttaacat 2700
atagtgactg atggaggaag gttaaaaaaa aaatcaagtt gtttcagata aacaccaata 2760
atttggatga ttttctgaac catctggacc tcttcaatct gcaacatttg gctggagact 2820
cttcaagatt tctagtactt cctgcttctg attagcatag aaacaccatg acaacaatct 2880
ccttcagagt gtgctggtgg ttccaatccc atatg 2915

<210> 53

<211> 1557

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (876) .. (876)

<223> baySNP2078_G876T

<400> 53

tacctccccca caaaggcttg tacacaaaatg cttataatgc ctatattcat tatagtaaac 60

aattggaaac catccagtct acatccatgg gtgaatcgat acattgtggt acatagatac	120
aataaacact acttagcaat gaaaagaaaa aacggatgca cgcaatgaca tggatgcttc	180
tcaaagtctt catgctaagt gaaagaagcc agatatgaac aagtacatct ggtatgattc	240
catttacaat atataagtcc tcaaaaacatg atttcttagg taaacagcaa catataggga	300
tcaaaaatcag atgagtggtt gtcaaggagc agaggtgagg ggtggagcaa aggggtacta	360
ggaaaatgct tggtttgtgg aaatggtctt tgtcttttt taaagtgtta gaaataatgt	420
tttattgtca cccagatggt atttgagttt atagtcctca tgctttatat tttttgtaa	480
attaaaaaaaa ttacaagttt taaatagcca atggctggtt atgtttcag aaaacacgat	540
tagactaatt catgaatggt ggcttcaagc tttccttat gggctccaga aaattcaccc	600
accttttgc ccttcttaaa acactggaat gttggcatgc attcggcttc acactctgaa	660
gcaacatcct gacagtcatc cacatctact tcaaggaata ccacgctgga atactttcca	720
gagagggat aaagaaaaggc ttgatcattt tgcaaggccc acaccacgtg gccgagaagt	780
caactattac aagtttatcg cctgtggcat ccaaggcttc ctaaaaagca agtttgctct	840
cgatctcctt caccatcttg gctgctgagg tctgakgagc ggctttttt ttttaatag	900
ggaactgacc gtattcattt gtgcctgtt accccataat tctttaggat gttcaaagct	960
ggagtgacca tatgccgtc cctgttcctc ttgacactca gtgagaggca gccatctgag	1020
taagtggaaag tgtgatattc gctccgggca ttatgtcatg agccttaaat ccagaataca	1080
ctggatttag ctttcagcc caatagtttgc cgcgcgttgc cagatttggg agcatccgag	1140
gagagacctc aaatcataat ggggtggtgc agggctcccc catactcaaa aaactttccg	1200
tgtgtttcc aggcaagtgt ctgttcctc gaataacaaca atcttggta caactgacag	1260
tagtgcaata gatcggtcag tacactgatc caggaacatc ttgatggat agcatgttgt	1320

cattcgcact ctaccagcca ctagtctaac ctggtcgagt agcttttcc aggactcaa 1380
attctccatt atcaaagcac agacaagtgg tccgaccac ggtctcgaaat taaaaccagtt 1440
agtcaccaggc cctgcgttgt cattgagtga caggttggca ccattccctgt gtgttggtcg 1500
ttggagagac accatcaggg tcttgaatca ttttgagcc tagagactat tagcatg 1557

<210> 54

<211> 503

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (415)..(415)

<223> baySNP2085_G415T

<400> 54
ggcagtcgg tatgggttg gttatggatc tgggtggtaa agtgggtggat atggtagcag 60
aagggtctaa aaacagcaga agagggtcac agttcttaag aggggagaga gcaagaagtt 120
gttaggaaag ctgcaggta ctttgagaca gtcgtccaa atgcattaga ggaattgtaa 180
aaatctgccaa cagaaggaac gatgatcgct agtcataaaa gttactgcag cttaaacggg 240
aaacccttct tgttcaggat tgccatagcc acagttgca aaaagtgcag ctattgatta 300

- 70 -

atgcaatgtatataatcaatta gatgtacatt tctgaggctt tttatctgtt gtagcttttt	360
cctttcattt catcaggtat attgcactgt aaattgtggt agtgttacca gaaakaaaaaa	420
ataaaagaat tttaacttt tcaaaaaaaaaaaa gaaaagaaaat aagatttctt taagttcttc	480
agtgtctctg attctaaaag agg	503

<210> 55

<211> 553

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (183) .. (183)

<223> baySNP2095_C183T

<400> 55	
ggtaaatacc tctgtattga gaaatattca ttcttcgaga tctatgtcgg tcttccaccc	60
attgggttac aatatcccaa acagagagct agagatttaggaaaattgggtt gagataaacg	120
atagagttatt tgggtgtttc tcctcctctc tatatttgtt gtaggtgtgc accgggatat	180
ttyggaaatc cccagaaatt cggaggtagc tgccaaaccat gcagttgtaa cagcaatggc	240
cagctggca gctgtcatcc cctgactgga ggtaaggccg acccacaccc ctgctaactt	300
gcatttataa agctggtata acttaacagc ctaagaaccc aagcacacat cttcaggatg	360

cataatacac aattccagcc agcaagctgt ccccaggatg cataatacac aattccagcc 420
agcaagctgt ccccttgcgg tgacaaacct ggaaatgctt agatagtatt ttcagctttg 480
gtgaataacc tgtttcaatg cactttttt tttaaaaag tgaattgttt ttgaaaactta 540
cctaattata acc 553

<210> 56

<211> 275

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (67)..(67)

<223> baySNP2119_A67G

<400> 56
gtcagccatg atgttagggct ggaagtgggtt tttgttcagg ctttcgtcca gcacttctgg 60
agccatrttag cgtttgggtgc ccaccctgggt attcaagggc acatcaactt catttgtgtc 120
actgttgaat ttaacagcaa ggcccagggtc agcaatgcag caactcccat ttttcttgat 180
gaggatgttt ttgctcttta ggtctcgatg agcaattgcg ggcttcctt gggtgccata 240
aatttctgtg tgcaggtggc acagaccaca ggcag 275

<210> 57

<211> 393

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (176)..(176)

<223> baySNP2141_A176G

<400> 57

gaatggccat caggacctat aaaggctgag gaagaaaaggt ttggtctgca ctacccctac 60

ctgtgaccac aagctccagg gggtcgctgg gggctgacca caggtatggg tccctgctgg 120

agaagctgta gcatcggtag gttccgctgt gggcggcggt caccgtatgt atgggraaac 180

tagccctgta ccatctctcg ggattcttgtt agggcgcagg gtcccccttcc ttgtacagag 240

caaattggtc aaagccatac cgagtctgac actgttagggt tacgtcccct cctgacgaca 300

ccgcggggcc gggctgggct gagagcgagg gtttggcaaa aactcctggg agaaaaaagaa 360

agtctgatgt tgaaggcagg agccagcatac tca 393

<210> 58

<211> 423

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (318) .. (318)

<223> baySNP2182_A318G

<400> 58

gaattccat tcaggaccca gacctgaaac ccagggaaatc cacccttcag accccttatt . 60

tttgggagaa tgggttcccc cagttcctg cccctgcag cgtgtctcct ttctctctcc . 120

ccttctgtca tgttccata tggcccttagc ccctcaggtg tgttctcacc agtcagctcc . 180

attctggccg gggtgtctgg ctggcggtggc tccctgtttg gggcctctcc cctgaatcct . 240

tcctgggcc atggaggcgg cttaggctct tgcacttctg ggcagagtag ggtggggcaa . 300

aggcgggcca agggtgarga atctatcctg aaagtagcaa gaagagtgaa catttaacca . 360

agtttctagg aagagactgc ctggcagggt gaacagatgc tggggagggc ttcatatgc . 420

gac . 423

<210> 59

<211> 542

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (296) .. (296)

<223> baySNP2234_G296T

<400> 59
cccccagtct accccacctt cctggggtct ggcccagcca ggcccccgc accgtctatg 60
ggtgtccggg ccacaggagg agttccctg ctgtgtcgga gcatgctggg tgcagggca 120
gggttgttcc agggcgctat ttcagaggca gcatggggac acagaaaaca ggacagggtg 180
ggccacaagg actgtcttgc ccactgctcc agggggcaca atatctgccaa ggaacagtgc 240
gcctcacaac acaatgtgg ggcccccaga aacagtgtga accagcccc tggaaakcaag 300
acagaaaaggc accccggctc tccacaaatt ggcccagccc ctgcagcctg .gaccctgaca 360
ccctaaagca agtcacagta ggggatgggg ggggggtggag caaggcccc cactcccact 420
caggcctccc cattctctca gatccgaccc ttctctgagc ttcacccgta aggcttattc 480
cacttgtaac attgtcgact tccagaccag gccctgctaa gccctggccc tggcgcttgt 540
gt 542

<210> 60

<211> 859

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (227) .. (227)

<223> baySNP2281_A227C

<400> 60

aatctgtgag gctcaccagt cagggcacacc aactcaagac tgaacaacaa aatttagtgct 60

gcaaagaagc agagcgtctc cctggctgag ccgtggagcc acagtgccca gtgctggta 120

ttcagttgga aggtgccagt cacagggct gcagtgtcaa acaggtgttc agagcactga 180

cctcaggctg cattggagag gactgatcct gttgcatac cacaaamcca ggtctccaag 240

cctgctcagc aatgcatgag tcacctggaa ttctttgaat atcctttca atatccattc 300

tttgaacatc cgtttctta taagtttacc ggagctggtt tatgttacct gcaactaaga 360

accttgcctt atatagaagt tggtgtcagg agtggttaca ggcagtggat gttggaggaa 420

gctcggagaa gctggaattg gttatctgga ctgcttgggg ctgaagtcag taaaaattca 480

gcacatcata agggctcaga tctggaagcc atggcatgca ggggaagcag aatgtcagat 540

ttgccacctg gagtcaccgg gaagggaaagag cccgttgaaa acaaagcttc attgagaatt 600

cattgcctta gaaaagaatg aaaggaatga ggaatttagac tgaatgggct ctacagcact 660

gcactgttaa agatgcagaa gcccgctcc taaattccta aattcttggc tcagacccag 720

atcaaaaact gagacttctg ggcaggtgc agtacacctat gcctgtaatc ccggtaacttt 780
gcgaggccga gcaggaggat cactttgct cagagtccga gaccacctgg gcacatatga 840
gaccatct ttacttagta 859

<210> 61

<211> 371

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (77)..(77)

<223> baySNP2298_A77C

<400> 61
gccctccgag agcccagtga cccccacaggc gctggtacct gctagtgttt tctggttgca 60
tatattctatc atgggcmttt caagtgcctt tagatcaagt ctacacggtg cccagaaacc 120
taacaaagca gatatgaaaa caattcaata tctaaatatt ccctaataatc tggattttatg 180
gcatcaggaa ggtaaaactt acaatctgtt gaatggaatt ttcatttcga tggatgggaa 240
tgagtatact caccccacca cctatcagtt acagtgtgca tacggcttca ggccctcttc 300
ctctaaaaga tagcaaagct gagctcaagt caggtgttca cggactggcc ctgccactca 360
ctggctgcaa a 371

<210> 62

<211> 825

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (286) .. (286)

<223> baySNP2341_C286T

<400> 62

tgttgtggtg actcatgtcc caacctagct gcctctccca ggagactttc ccctggggac 60

aagggggagg gaatggcatg gaggaggccc acatcaagcg gggccaggaa cccacgggtgg 120

caggagctgg gctggtgacc tacccagggc agaaggccc gggactcate cagaggggaa 180

ggaaggggtc ttccaggaaga ccacggagat gccacaggca gaattggctt cccatctggg 240

agataggtgg ggagaccctg gcattttgac agccagaacc tgggggygctg agcagaatct 300

tcatgcctgg cctggccgct cttcgaggag gaagctggag ggtgggctgc gagaggagt 360

gggtcagagc ccctacatcc gcaggacccc aaatcggctg ggccccaaagg cccggactgc 420

gctccccgggt ggccccggcg gcctccgctg aatgcgtctt gccccctcccc tgcccaagcc 480

ctctgccctc acccggtcc ggcgcggccc ccgaagtggc gggaaacaacc cgaacccgaa 540

ccttctgtcc tcgggagccc ccagataagc ggctgggaaa cccgcggggc ccgcaggggga 600
ggcccgctgt tccgcccgt aagtgcatta gcacagctca ctttccttat cgccgcgtgcc 660
atcggacggg cagtgccgct ccctgctttt gggccccgg agcgaccaca gcggagccgg 720
aacggactgt cttttgggg cggggaaaggg aggggggtgtc cttggagggc ccggtgtggcat 780
agcaacgacc aaaaagcatt cagagggcgg gagggggaat ttttt 825

<210> 63

<211> 565

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (165)..(165)

<223> baySNP2357_A165G

<400> 63
aacaactcag atctcaagtt tgtaactgat ttctctttt ttttctttta aggaatgtgt 60 ...
ttactgtgaa aacaaggaaa aaggtaatat ttgcatacca tatgaggaag atattccttc 120
tctgggactc agcgaagtgt cggacaccaa agaagacgaa aatgratccc cttgaatca 180
caggatcgaa gagcagacgt aacccctgccc ccacccctcagc ccggcagcca gcgaggtaca 240
ccaggtggtg cttggaagag atgaaagatc ttcatggctg tttccactga aatggacaca 300

tatgctcatg ttgtttttt tgttttagaa aaaaaaaacaa catagtttc tgaagggcgc	360
acttaaaaact gtggagagtg gggagagttc ggaaagaaaat atgttttat atataaaaata	420
tataatgtgga gttttgtggg atggggaga gatttttagtt gttatttaac ttgagaaaga	480
ctaagcgccct cttagtgtca gggaaagttgc ctcagtgctc ccagaagtcc tgtgactgtg	540
acgagacctc tgtctgctgc accag	565

<210> 64

<211> 549

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (50)..(50)

<223> baySNP2366_G50T

<400> 64	
gcctcttctc ccggctgctc cgaaacacgg tccagagcac cagaccgttk cccgtggtgc	60
ccaggaggaa gaccaacatg tagatggcag ggatgagggc ccccgaggat ttccagtctg	120
tgtactcaca ctcagactgg ttgtctgcc catagtagtt gtcaaaatca ccaccttcct	180
ccatgctggg gagtggagag aagacgggca gagggtccca gggacaccag ctccgtggct	240

- 80 -

ctgtcaccca ctctgcaagc agcctgaatt tctggcttga gcctcagaga gtaagaaggg 300
ctgaagatgc ccagagtcct tcaggact caggaggagc tgccctctggg ttctccagac 360
cctggaggaa gcctgtctcc tgcagaattt cctccaccct ctcttgccct acccccgtct 420
cagttaagac acttccttgc accctcctgc gtccctgtct ctccttgac tcgtcaactcc 480
ctcctccac ctccagacca gccctctctcttgtgactaa aatcttttagt gacagccac 540
ttttttttt 549

<210> 65

<211> 609

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (170) .. (170)

<223> baySNP2423_A170G

<400> 65
cagtaaggaa gagcccaaca ctgctggaaag tgagcatgcc ccatttcatg agaaccaaca 60
gcttcgccga ggacctggac ctggaagggg agactctgct gacacccatc acccacatct 120
cacagtgagt gcctacatgt gcgtgaaggg ctgggctgga ggggactggr gctcaaggag 180
tcagacttgg tgctgggaa gccttgcctc ctggccagag tgctatctac tcgccttagtg 240

cccaccaactt gccgtctgcc tggccccaac acggaggcac caggcaagag aggagagcaa	300
gggcacttcc cactgagcct gggAACATGA tcctcttGTT ttGACTTATG gaaaaccaga	360
ctgatcattt tccacttGTT ttcatgcttt gagagtctga gattgtttt ctctccccca	420
gccccctccc ctgcccccca aaaaAGAGAC gactttGTT tttAGCATTt cccCATGGAA	480
ccctggccaa agccatgggg cagatGCCGG gtgcagtctg ccagttgctg ctgctgtcct	540
caggggctcc ttcaggtgga ggaaatggct gatTTCCAC gcTTCCAGT tggcTTccc	600
ctgaggcac	609

<210> 66

<211> 636

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> {140}..{140}

<223> baySNP2708_C140T

<400> 66

caccattttt aaggaggaa gaatgaactt aagaaaggtt acgaaatttg cccaggcta	60
---	----

caaagctgg AGTTGAAAG aggctggat ttaaacctgt gcctgtacc aggtatgtcct	120
--	-----

gctgcctctc gtaaaagccy gcccagggtcc cactctcctg agtcagactg tcatccccac 180
 ccctgcccac ctgccccaga agagggctgt ctgtgagagg cgtgcccagg ccactgggg 240
 tcctcttacc atctgtcggt ggtgttgatg agagtggaga tctgctcaag gtattccttg 300
 tcatagacca caataggctc ggattcattg atctccacgg ggtagaagat ggtgttgaga 360
 aaaggcaacc agttgatggc gggtgccaag gtctgcaagg gaaaaggaca gtgtgaccct 420
 gtggggctgc tcctcctcac agcccaggc tctaggacgg gcttctacag gaagcaaagg 480
 aaagagcttggcgc catctgacag cgccacggc agagagtcaa gcggagcctg 540
 gcgggctttt gtcagagatg ctgttaggtag aattctaagg agtccaacac caaaatttaa 600
 cctgaaatgg aatgaggatg caatgagaag atgcag 636

<210> 67

<211> 620

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (299) .. (299)

<223> baySNP2995_A299C

<400> 67

ctgtgctgca gaggggagca gcatcagcag gcgtgtggag tgagtgagcc ccgtcctccc 60

cctcctcctg tcattgactc tcattgccta acccccttgt gtcttggccc caggttgatt 120
gtccggggct accgccagcc cctggagggc agtacccctct ggtccttaaa caaggaggac 180
acgtcggaac aagtgcgtgcc tttttggta aagaactgga agaaggaatg cgccaagact 240
aggaagtaag tgtgagtttc cttgtcctcc agatgcctt ggtcacctcc ttccactmc 300
tgtggcctca atccaggatg gggccctggc agtgctgcct gttacttagct ttgtggttct 360
gggcaagatg ctcacttct ctcctggcc tcagttgct tttctgccaa atggggtagg 420
atctcacatg tcattaaagc aactggcag agaaaagaag aaagaagctg ggtgcggtagg 480
ctctcggtgc taatcccagc actttggag gccaaggcag gcggatcaact tggtcgggag 540
ttttagacca gcctggccaa catggtaaa ccctgtctct actaaaaata caaaattagc 600
taggcattgt ggcaggcgcc 620

<210> 68

<211> 934

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (777) .. (777)

<223> baySNP3360_G777T

<400> 68

ttgaattatg attcaaagat atgatagtaa tagaatgagc aaaactcagg aagagataaa	60
agttgaacac aatgatacta atataatagt aagagaaaatg atcaggcttg ctaactatga	120
accagctact gtactacttt ctacaattat ctaccaacct cacaattatc ttgcaaatta	180
ggcattatta aatccatttt tcatatatga aactaaagtc tggaaaaatt gaataagaac	240
tcatattcca taagtagtga ctaccttata acctgtatct agcttgacag atgaaggta	300
gcctgatttt taaaaaagtc aaagagagaa gcctatgttt atgtacaaca acatgtaaaa	360
tttcatccc tcacccagtg gacaatagag ggacgatttt ctttctcca gagaagagac	420
attgaccaga gttaagaatc taactgttta tgagttccag tgacattac aatcaattct	480
ggtttggctt ggtttctctc attccctctt aaccctgact tgtgatattg ccgtgaaggt	540
gatggagaag ctcttccata tcccagggtg agccctcaat tctggaataa ccacaggaat	600
gttggttggc ttggaatgga tgaagggaaa tggAACCGGG ccagtaaaga gaaggcttgg	660
atctgttcta ggccctggctg atcctgaatt agttcaattc ccaaagatct gggtctcacc	720
atgggttcat taccttgact gactttgtta cttaaacctc caactatata ggagcckagt	780
gtgactcgga ctatggattg ttattcttaa ttataatgtt ttccctctca tttttctgg	840
aggtatcaga aacatttaga aaatgccaaa gagattggaa ttaaaaaaagc tatttcagca	900
aacatttcca tgggtattgc cttcctgtta atat	934

<210> 69

<211> 372

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (110)..(110)

<223> baySNP3464_A110G

<400> 69

gttgctgcac ctgaagaacg agctgaaccg aggagat~~ttt~~ ttc~~at~~gaccc tt~~cgg~~aatca 60

gccccatggcc ctcagttgt accgacaggt gtgttagtg ggcagggt~~t~~ tggttagcc 120

ttctgagcac ttgagttggc cttgctgact gattgc~~t~~gc ctgtggcccc agttctgtaa 180

gcatcaggag ctagagacgc tgaaggac~~t~~ ttacaat~~c~~g gatgacaat~~c~~ accaggaatt 240

gggcagcttc cacatccgag ccagctat~~g~~c tgcagaagaa gtctgagat~~c~~ catggggcgt 300

gtggggcgt~~g~~ tg~~gggg~~catgt gggctggggc t~~tt~~gg~~tt~~ccg gttcctcagg aatctaggcc 360

ttctgttg~~gg~~ tg 372

<210> 70

<211> 652

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (298) .. (298)

<223> baySNP3689_C298G

<400> 70
cttatTTaa acctttatTT ttggTcaatg gatttacact aatattcatc tcgaaaaata 60
aaaagaaaaga aaactttaaa aagttagtagc atgtatcact gactaaagga aatggagaag 120
aagagagaaa aagagcactg accatggagt tgtaaggaaa tcaaaaacaa attcatccat 180
ttcacaaattc acaattctgt gtaggctgac cctgaccTTc atactcaaag caacacatgc 240
accatttagcg ttctcattt tttaaatata tccaagcaaa taatgccat ggagatgsca 300
ccaacctgat ctgtttgtgg cttcacttgg ttctacaaca aactgttagag aggcttcttt 360
cttcTTTgaa gaaaCTggaa ctgactttgg atgtgatttc tggcactgag cacagaagaa 420
atacaacatt agaactatTT tattaactta ccaattcaat gaaatatatt tgTTTTTaa 480
atggggggaa aaacaagtat tctaaaacaa caaaccagct gttaagagtt ttatactact 540
ttttatTTa ttctaaagt aatagctact ttggaaaaca atctggcatt attcagtaaa 600
gctgaaatTT catacaacct atcacagaaa caatattact ctaaacagca ac 652

<210> 71

<211> 442

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (65)..(65)

<223> baysNP3975_A65C

<400> 71

gtctccttct agaaaagaac cctggtaag agcaggaggg caggcagtct gtattgactg 60

ggctmtccct gactcccattg cgtggcaata acttgaaagt gatgaataca taattctggc 120

cctgcctggg atctgctgtg gggccttagt cctcatttcc tccatctgca caatgaggg 180

gcaagacaag ctctggattt agtgatgcag acattcatgc ccaaaccagc cagcctggc 240

agtgacaaac agtgacacag gcagggacag ctccttccat ctctttatc agggttgggg 300

gtcacagttc ttgtaccaa gccccaaatcc cattatgcag aggtttgggt cttcttagtg 360

aggggaggaa gagccagttg taagatgctt acttgcacag agtggttaga aactgagaca 420

gtactccatt ctcccctgag ct 442

<210> 72

<211> 442

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (239) .. (239)

<223> baySNP3976_A239G

<400> 72

gtctccttct agaaaagaac cctggtaag agcaggaggg caggcagtct gtattgactg 60

ggctctccct gactcccatt cgtggcaata acttgaaagt gatgaataaca taattctggc 120

cctgcctggg atctgctgtg gggccttagt ctcatttcc tccatctgca caatgaggga 180

gcaagacaag ctctggattt agtgatgcag acattcatgc ccaaaccagc cagcctggrc 240

agtgacaaac agtgacacacag gcagggacag ctcattccat ctctttatc agggttgggg 300

gtcacagtcc ttgtacccaa gcccaaatcc cattatgcag aggtttgggt cttcttagtg 360

aggggaggaa gagccagttg taagatgctt acttgcacag agtggtaga aactgagaca 420

gtactccatt ctccccctgag ct 442

<210> 73

<211> 486

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (304) .. (304)

<223> baySNP4206_A304T

<400> 73

aattctggtt ctaccacttt ctgtgcagcc ttggcccagg tagtaatct ttcagtgcaa 60

gcagtgttgt cattcataaaa atggaggtga tgcctaccat gaagtgttgc tatggaaatt 120

aactgatctg tgatattaaa gcatagtcac tggtacttgg ggttacctaa tctaaatgcc 180

agaggagtga tttaacaagg gaggcaagac cctttctttt tagccaagtg gagttagcaa 240

agtatgtttt gtatgtggaa agtctacttt tgaattgtct tcgtttctgc cttcctacta 300

atgwttttct ctctgcctgg tctaggatta acacagattc ctcagatcca gaagactgaa 360

atttcctttc gtcctaatga tcccaagagc tatgaggcat atgtactgaa catagttagg 420

tccctggaaa agtacaaaga ttcagccccag agggatgaca tgatTTTGA agattgtggc 480

ggtaag 486

<210> 74

<211> 801

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (583)..(583)

<223> baySNP4838_A583G

<400> 74

tttaaccaga accaagtgtt caccccccac agaatgtaca tgaaacacta gaggactgca	60
tgtttttccc tgagagaagc gtaagacaaa cagaagtcaa aaagttagtca ctgggagcgc	120
catccttcta agcaaatcct ccctttccct tttggaggat ttgcccgaac tacgttagcca	180
gtcagcaccc agaccacctg cctcctcctc cccctataaa cccaccactc ccctcctcct	240
ttcccaaacc acttgggtg tcctaagccc tcactgcccc aagcccaaaa tatcaactaa	300
gatccttgtc tgtatttcca cagtcataacc taatgaattt ggaagtgggg cccctaaaaa	360
ccaattcaca tctatgcact tgtttccact ggatttggca gacaggctt ttttagttacc	420
gtaaccagat cttaagatta attaaaaact acataaagtg ctttttaggtc ctttagagata	480
catgatataa ataagcggtt tatgtcaag aacgataaat acataggtaa aaatagctct	540
agcaaagatg accttatggc tctgagatgg gcagggcaggg carttcttcc ccattacatt	600
cttagtcatc ttattcatac ctattttaa atggagtcca cagactaaag gtcatgttcc	660
gagactgaag ctttcaaattt acccttagttc caatatacgac actttcttca gtttatcgt	720
agcttttaaa ctctgagggtt aacacagctc actctttctg taattttagtg agcataactcc	780
tataacaaggg aaacttagag a	801

<210> 75

<211> 921

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (74)..(74)

<223> baySNP4912_A74G

<400> 75

cccttcattg cggcgggctg cgggccaggc ttcaactgagc gtccgcagag cccggggcccg 60

agccgcgtgt ggargggctg aggctcgccc gtccccgccc cccggggcgg gcccggggcgg 120

gggtcccggc ggggcggagc catgcgcccc cccctttttt ttttaaaagt cggctggtag 180

cggggaggat cgccggaggct tggggcagcc gggtagctcg gaggtcgtaggg cgctggggc 240

tagcaccagc gctctgtcgg gaggcgcagc ggttaggtgg accggtcagc ggactcacccg 300

gccagggcgc tcgggtgtgg aatttgatata tcattgatcc gggttttatc cctttttttt 360

tttcttaaac atttttttt aaaaactgtat tgtttctcg ttttaatttat ttttgcttgc 420

cattccccac ttgaatcggg ccgacggctt gggagatgg ctctacttcc ccaaataact 480

gtggattttg gaaaccagca gaaagaggaa agaggttagca agagctccag agagaagtcg 540

aggaagagag agacggggtc agagagagcg cgccggcgtg cgagcagcga aagcgacagg 600

ggcaaagtga gtgacctgct tttgggggtg accgcccggag cgcggcgtga gccctcccc	660
ttgggatccc gcagctgacc agtcgcgctg acggacagac agacagacac cgcccccagc	720
cccaagctacc acctcctccc cggccggcgg cggacagtgg acgcggcggc gagccgcggg	780
caggggcccgg agcccgcgcc cggaggcggg gtggaggggg tcggggctcg cggcgtcgca	840
ctgaaacttt tcgtccaact tctggctgt tctcgattcg gaggagccgt ggtccgcgcg	900
gggaaagccg agccgagcgg a	921

<210> 76

<211> 2679

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (2613) .. (2613)

<223> baySNP4925_A2613C

<400> 76	
ccccagctct gcgtatgttgg cagaagagca cacagatctc gaggcccaga tcgtcaagga	60
tatccactgc aaggagattg acctggtgaa ccgagacccc aagaacattna acgaggacat	120
agtcaaggta ggctctgcag gcctgcctcg gcggggcggag agtgtcaggt ttgcgagacg	180

tggcgcttg gcaggggagg gatatgtctg cagacacagt ttccctgaaa agagacttgt	240
tgctctgttg tctctgtatc acccccccaa ccccacccca cccccaaaaa aaggcttcta	300
aatcacccaa ggatcttttag caaaatcaag agcaaaaaat tagcctcatc tccatgacct	360
aagtgcataat cagggcagga ggagcgagtc acaaagaaaa tccctcctta ctactgtgac	420
gctcctgcca ctcactcctg gctctcaccc tgggaggaac aggaacgggc ggccaagttg	480
ggctcctttc tgtgccaaagg ggcatttctg cggtctctcc agtgggtgca gggtaatcc	540
ccagagggca gcttccagca gggccggcag cccctcgagg tacactcact ccccccagagc	600
actgccccat atctgtcccc aaggccgagg gccatgcccc gcccctccct agctacccccc	660
tcaccccaagg tctagtggcc aggacagggc agacggcacc cgggaccctc gaagagaaaag	720
ctcggggttg tctageccctc agggagtctc tcagcgtctg aagttgggcc tcttcctcgt	780
cctcctggtg acactagcgg ccctgctgcc tccagggcca caccttaat ccaacttcca	840
gccagtaccc agagggatct ttctttttc ttttgagac agtctctctc tgtccccaaag	900
gctggagtgc agtcgcacac tcacgcctca ctgcagcctc aacctcccag gctcaagtga	960
ttctccctcc tccacccctt gattagctgg gaccacagggc gagtgccacc atgcccagct	1020
aattttgttta ttttagtag agactgggtt tcattatgtt gaccaagctg gatatcaaact	1080
cttgggctca agtgatcctc ctgcctccca aagtgctggg attacaggtg caagactcca	1140
caactggctc agaggtacct ttctaaagca gaattcctcc aagaagggtc cccagccacc	1200
agcatctgag tcactggagg ggctgttaag aggccagtgt ctgaggcctc tcagatccta	1260
ctgaaagcat tggaatctca ggccagtgc gtccaatagg gatactgtta ccacaaggaa	1320
tttaaaattt tctagcagcc acatttaaa atgcgaaagc aaacaggtga aatataatgtt	1380
cctgatattt cttacttaac cctatatatc taaaatagta ttattcaac atgtaagcaa	1440

tataaaacaa ttatcaatga	gctattgtac agtcttcaag	tttcaaatcc agtgtgcttc	1500
ctatacccac agtatatttc	agttcagacc ccacatttc	atccgaaatg cttgttctgc	1560
attagattt cataaaatgt	acatgtgaaa atcgattcgc	atgcctgtac tgtttcaaac	1620
attctgcaaa aattttcaa	taatgaaatc ggggtttaca	tttaattaa agttaaacaa	1680
aatctagaat tcttcagttt	cactagccac atttcaagcg	ctcaaagctc ctggccactg	1740
gatcagacag gcctgtatttgc	cggtctttca gtggggcacc	tcccatgctg gagaaggcta	1800
gcctctccac gtggctgtcc	aaacccaaca caatctggcc	ccaacctgct tcttctgcct	1860
ggttggctcc cacctgccag	cccacccacc agagtacatt	cctgtgccat tgccagaagt	1920
gcctgtccctc tcttctccag	gtggtaatgc ctcactcag	ccttcaaggc ccaactcaaa	1980
tgcaacctcc tccagaaagc	cttccctgac tcctccaggc	aattagtgc tccacttct	2040
gtccccctgc ttcaactcagg	gcattcctcc accacagctc	ttcttatact ggatattata	2100
tttctataca tcgttagtga	tggagataga gtatacagta	tagcacagtg tgaaagctga	2160
aatgaggaaa attaggaaac	aaatttcaca aactgtaaag	cactatatac atgtaaataa	2220
aattgtacct gtaaaatatt	attagttatg gttccatca	gtgtcatcta gcaggaatag	2280
tcctggactt gactttaata	gacttgattt caaatccagt	ccatTTTacc taaaaatgat	2340
aacactggac aaaccaacta	ggtttctga gactcagttt	cccctgtaaa gtggaaataa	2400
tatcatttcc caatttacct	ccaccaggta aacgaatctc	aaagcagcac tgtgcgttag	2460
aaatatagca tgaggattga	atgagatgaa gggttgaaa	gtgtctatca cagtcctgg	2520
cacccagcaa ggatgagaca	gtgtgagtca aagaagggtc	tcaaagagct tgcagtctag	2580
aggcagagag agctaagcca	ggagcctgctgc	tcmtgcccag gtagccatct ggtacaccca	2640

ggtgggctgc agggagatgg gaaagaggcc ccccccccc 2679

<210> 77

<211> 1025

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (807)..(807)

<223> baySNP4966_A807G

<400> 77
aggcttcacc taatatcatc agaattctgt cttaactct tattctgtaa atgtgttttg. 60
tagagtgttg acttatgttt ggggtgtgca gaacatgttg gaccatgttag gagccatgtc. 120
aagacatgct ggggtgtgctg taccatgtca ggggtgtatca ttgctctata gtgttgttgc 180
agccttagtcc ggtcccccttt atgcccccca ccctcccttc ttcttctgcc catggcctcc. 240
ttcctgctat gctgggcttg gagaaaaagac gtccaaacctt ctggctggga gccaccctcc 300
atacccaaag tccctccctct attcctctcc atggaccctg atggtcctca ttcatgtcag 360
atgccattac agacaaggac atagtcttct acaagaccct gaagccctgg ctgggtaagt 420
aactgttaggt ggacgggacg gggaccaact tttgtggcca gggaaagatt ctgcccttgc 480
ccacagcctt tggctgccgt actagggat gggctttgt taagtgttgg tgacaagtgg. 540

agacaccacc gtcgcttgtg acgcctgcct tccatttcaa catcctgaag ccctatataa 600
agattttcag caagagtgc aacatcatgc atgtgagtgc cttgaactca gcatcccagc 660
tgcagccttg gggtgtggaggg atcacataca attgggtctg gaatgttggc tctcctgggt 720
gggtttgggg ccattgctct tcctctctgt gccttgattt ccccatgagg ctaataatcc 780
tcactaaaag gtggtaggag catgtartgg actcatgtct ctgacactta gtaggtggtc 840
agaaggagtc aatttccaca ttttctcac agaagccctg taaactcaag aaaggaatga 900
tgacacgtgc atagtagtca ttgctgagta cagatcactt caaaactaat tggttagag 960
caataagggt ttatatttgc taacaaatct gtgggactgt tggccagccc ttctgcatgt 1020
ggata 1025

<210> 78

<211> 2246

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (2057) .. (2057)

<223> baySNP5014_A2057G

<400> 78

tcactggaaa aaggaattct gattgttcaa aagcacagga tatattaagg gcctcatata	60
atgcctggca cataagagac ctcagcaa at tacggcatt catattatgt ttatacagtg	120
aaggcatcaa gggtataagc attcttttt ttctttggg tagactgaag ctcagagagg	180
tttagtggct tacttaaagc tgcacagcta ttagtaggca gatcaagatt agagttcaga	240
acttctcact ccctgcccag tttctgcttt cttaaccctt tgccctttc aagttgtggg	300
tctgccggcc aggtgggagg tgctgtctgc aaaggccttc cttttctctt tggccactat	360
ctggctgggg agaggcctca cctagatgtt gttgaaggcc tgttacagcc gctttattgg	420
ggattttctg gcgatgagaa cgtgtaatg tcctggcctt tagtcaactc cctacacctc	480
tgagagtgtc agacaagaga gcccatcaca ctgggtggat tgcaatctt gcctctacca	540
ctgcttagct gccttcctt agggcaagtt acttaatggt tctgtgactc agttccctg	600
tttgtaaaaa gtgaaggta atagtaccca ccatataggg ctgttagaat ggagtggaaat	660
aattcatgt aataaggat gtataacagt ggctaaaaca tagtcaggct gggcgcggtg	720
gctcacgcct gtaatcccag cactttgggaa ggccaaggca tgtggatcac gtgaggtcag	780
gagctcaaga ccagcctggc caacatggtg aaaccccgtc tccactgaaa atacaaaaat	840
tagctggct tggtggcggtt tgcctgtat cccagctact cgggaggctg aggcaggaga	900
atcacttgaa cccaggaggc agagggttgca gttagccaag atcacaccac tgcactccag	960
cctggcaac agagtggagac tccgtctcaa aaaaaaaaaa aaaaaaaaaata gccaaggcc	1020
tagaatagaa ccaactaaca gtggtttat ttttactgca aaaaataaaa ataaaaatag	1080
gagtagtgca agcactggc cacatcacta caaaacaagt gtatctcagc atctccacg	1140
agaataccac tcaggtcaaa acatgatata gtgaagtggg gatgaaaagg atccaaccat	1200
gggcagaacc tgggtctgg tgccagtgg aacagccccca gtgtctagca tgagacacgg	1260

ggaatgttcc gttggagggt gggtatgatg actctcctga aagcttcctt ccctccagtc 1320
 cagatggccc ctccatccct caacgtgacc aaggatggag acagctacag cctgcgctgg 1380
 gaaacaatga aaatgcgata cgaacacata gaccacacat ttgagatcca gtacaggaaa 1440
 gacacggcca cgtggaaggt gagggccttt gcccaggag gggagaaaca ctggggaggg 1500
 cgggagaagg gaaagcaacc agaggcattc cacctgcaag gcgtcgggcc cttggcaggt 1560
 gaccagttag aggttagccac tgggacgtgg tgatcactag gctgtgtggc cagcaggtca 1620
 ctgtcctgtc tcttggtgaa gtaactgagg tttggaaaag tggcgtggct tggccaacgt 1680
 gaacagctga ccctgagtc ccaggcaaca gaagaccctc tgggcagggaa ggggttgaaa 1740
 ggccactggg aagaaggttt tcaaaagtca tgaaagtttgc gggttatttc ctcagaggaa 1800
 tctcatctgg acacacatgg aggctcagac agagctgctt ctaatgagtc ggggtgcgc 1860
 ccagggcagg gctcggtccc ctgcctccac agagcccaga acagaaacca cagaaccaac 1920
 cccacacctt cagtctagaa atggggcaac tgaggctagg agggaggtgg gccagtggtg 1980
 gagccaggag cgggcccctgg ggtcctgaac ccccattctc agggtccaga gtccagtcgg 2040
 cctgcactgc gttcctraaa aggccacaat atgggtgcaa gctgccccag aagggtggg 2100
 agctgagaag gctcaaaata gggtgggaca ggtggcttca gggttctggg cctcagtgtt 2160
 gtcaatgtca ggggctgcac tgacaggtgg agtccccggt gccatccgaa gtgctgtccg 2220
 tgggtggcc ctcagggagg atccac 2246

<210> 79

<211> 486

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (366) .. (366)

<223> baySNP5296_A366G

<400> 79

tgttgtgcc acacacacct taacacctgc acgctggcaa caaaaccgtc cgctctgcag 60

cacagctggg gtcacactgac ctttctcctg tccccccac ttgagctcag tggctggca 120

gcagggatg catggccact ggcggccag gtgcagctct cagctgggt gctcagagga 180

cgcctgtgtc ctccccccc ccatccctct gtcaccccttg gaggcagaga actttgccc 240

tcagtcccat gggaatgtc aacaggcagg ggcagcactg cagagattc atcatggtct 300

cccgaggccct caggctccctc tgccctctgc ttgggcttca gggctgcctg gctgcagg 360

cgtccrggga ggttttctcc ataaacttgg tggaaggca gtgggcaaat ccaggagcca 420

gccccggctt cccaaacccc gcccttgctc cggacacccc catccaccag gagggtttc 480

tggcgg 486

<210> 80

<211> 486

- 100 -

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (172)..(172)

<223> baySNP5298_C172T

<400> 80

tgttgtgcc acacacacct taacacctgc acgctggcaa caaaaccgtc cgctctgcag 60

cacagctgg gtcacctgac ctttctcctg tccccccac ttgagctcag tggctggca 120

gcagggatg catggccact ggccggccag gtgcagctct cagctgggt gytcagagga 180

cgcctgtgtc ctccccctccc ccatccctct gtcaccccttg gaggcagaga actttgccc 240

tcagtcccat gggaatgtc aacaggcagg ggcagcactg cagagatttc atcatggtct 300

cccaggccct caggctcctc tgccttctgc ttgggcttca gggctgcctg gctgcaggtg 360

cgtccaggga ggttttctcc ataaaacttg tggaaaggca gtggcataat ccaggagcca 420

gcccggtt cccaaacccc gcccttgctc cggacacccc catccaccag gagggtttc 480

tggcgg 486

<210> 81

<211> 458

- 101 -

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (101)..(101)

<223> baySNP5320_A101G

<400> 81

tgttgctagg tgctcgggat atatagtaga aaaacaagcc tgtctttttt aatgttatgca 60

ggaaatctct ggagaagtaa gagaggttaa ggaaagctgg rstatgtgcct gctttacatg 120

gagtagtagt gattaagttg gccagtgccc agaagtgcctt actgggtgcc aggattgttg 180

ctgttgaata tcgagtacca ctaactttta aattcttcaa agagggctgt gctgaagttt 240

gctgctgcca ctggagccac tccaaattgct ggccgcttca ctctggAAC cttcactaac 300

cagatccagg cagccttccg ggagccacgg cttcttgtgg ttactgaccc agggctgacc 360

accagcctct cacggaggca tcttatgtta acctacctac cattgcgctg tgtaaacacag 420

attcttcctct gcgctatgtg gacattgcca tccccatgc 458

<210> 82

<211> 1975

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (1604)..(1604)

<223> baySNP5361_A1604C

<400> 82

catgaagccg	actagtccca	gaggacaaac	agaatcttg	ccctcctgtc	tgcttagtcca	60
gtctttccc	tgctggatca	ttgtgtgcct	gtgccatgag	gtttctgccca	tctaacaaac	120
agtgccagcc	aagcaaagcg	ggcatgcagg	cctgcaagtg	gttctcatgg	aagctgttcc	180
tccccacagt	ttgggacact	gaccaacagt	cctttagcag	gaggtcgct	tagtccattt	240
ggtctgctat	aacaaactac	catagactgg	gtggctcata	aaaacaggac	tttatttctc	300
acagttctgg	aggctggaa	gtccaagatc	aagggtccag	cagattcagt	gtctggtag	360
ggcccttgcc	ttggtttata	gagggAACCT	tctcaactgt	tgctgatatg	gtgtaaggag	420
caagggaatg	ctctgggtc	tcttcataaa	ggaaattaat	cccactctt	agtgc	480
cctcatgccc	taatcacctc	caaatacctt	cacattgggg	attaggtt	ccacatgaa	540
tttggagaa	ggcacagaca	cagtca	cagt	atagcagagg	tcatctttt	600
aaaatgttgt	tgagtcccac	acaaaggaag	ttcttatttt	ttttatttt	ttttatttt	660
ttttatttt	ttttatttt	ttttatttt	tttctggaga	tagggtatct	ctatgttgc	720
caggcagg	tcaaaactcct	ggcttcaagc	aatccttcca	cctcaac	ccaaagtgtt	780

gggattactg gcgtgagcca ccacactggg cctatttca atatctgtta tttaaaaca	840
tttttaatag tcaacagcca ctagaaaacg taatgacact taaaaagatt gttattttac	900
ttaaccaata acatctgcat gcaagtgagc gatgaacata cacaatggga aatggattaa	960
gaggttctca gataaggaaa gctagtttag accaaatgag atcaggaggt tctagaacac	1020
aagggaggaa agcagcatct gtccacccca agccaagtta ctgccaaccc aaggcaatgc	1080
ttagtgata aataaaaaac tgaacaaaat gcagttacttc atgtgagagg tggttctgt	1140
ggacttggat tcttaccgta ttccctctaa tatctgttca ttacaagcac catgtaaacc	1200
tgttgcctta aaaactcttg aaaagggtgtc ctttggggga atgtgcttgg gggaaagcaac	1260
ccttaagcat ggctgtctgc tgcccagccc cactcccaca ccttgctcag aagttcctcc	1320
accatcaaca gcaccactga gcttgtgtcc agaaggccct caggaggtcg aggttaagagg	1380
atgccttgcata tcagtggggg cagggatggg agaggtaata agagccggga tgggggcccag	1440
gggagtgact gggttctggc ggcatacag aagctttgct gttattcagg aaggaatgca	1500
ggttttgcag aaagcacatt gggcatttca tcacgtagaa agctactgaa actgacacta	1560
cacgccttca gccagggagt cccgctaagg gattatgaaa ggcmggctga ttccaaaact	1620
acaaatccca ggctcccccg gggatggac acttgtgaga ggaagtgggt tagccagtca	1680
aacctccagg gtttcagcca gttgagaaag gatagggagg gaagtttaa aaggaatgtg	1740
ggcccaacaag cctggatct gtctctctct ctcagtcgtga tgccgcctcc tgtctaattg	1800
tttcagtctg tccgagctgg taaatcccta agcacatagt caatttacac tcagcttaaa	1860
agctctagag ggagacagga aaaatttcca gtgagaccac tcactcacct acaactgcta	1920
gattaacctt ctgcatttta actgagttaa ctcatatgtt ttcttagtgg gagga	1975

<210> 83

<211> 527

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (134)..(134)

<223> baySNP5457_A134G

<400> 83

tgaggctgac atgttgcagc agaatggca atagaaatca attactaaga ttaaaataca 60

gcttttacaa cagtgagtgg aaaggactga ctttctaaat taacagcagc ctaaatggaa 120

agcctacttt cttrtgttgc ttaattcaca tctggggacc tgatttaaac atgtcttgcg 180

ctgttgttgc catggttgct ttgcccatcc catcaacctc atcctgtcac ttttctctct 240

gacttcttc tctgcccaca tctctccctc cctgctgctc ccgtctcctg tcttcttc 300

gccattttag agttccagc agaagatgac cttccccctt gtgcgctgga aacggggcac 360

gggcggcagt gccagaacgg cacggtgtgc aagccggct gggatggtcc caagcacggc 420

atcaccaact ttgacaactt tgccttcgac atgctcacgg tttccagtg catcaccatg 480

gagggctgga cggacgtgct gtactggta cgtacatga gtgggca 527

<210> 84

<211> 562

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (61)..(61)

<223> baySNP5704_C61T

<400> 84

actctgacag ccataacagg agtgccactt catggtgcgaa agtgaacact gtagtcttgt 60

ygttttccca aagagaactc cgtatgttct ctttaggttga gtaacccact ctgaattctg 120

gttacatgtg tttttctctc ctccttaaaa taaagagagg ggttaaacat gccctctaaa 180

agtaggtggc tttgaagaga ataaattcat cagataacct caagtcacat gagaatctta 240

gtccatattac attgccttgg ctagtaaaag ccatttatgt atatgtctta cctcatctcc 300

taaaaggcag agtacaaagt aagccatgtt tctcaggaag gtaacttcat tttgtctatt 360

tgctgttcat tgtaccaagg gatggaagaa gtaaatatag ctcaggtgc actttatact 420

caggcagatc tcagccctct actgagtccc ttgcacaaagc agtttcttgc aaagaagcca 480

gcaggcggaaa agcaggact gcccactgtcat ttcatatcac actgttaaaa gttgtgtttt 540

gaaattttat gtttagttgc ac 562

<210> 85

<211> 2246

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (1960) .. (1960)

<223> baySNP5717_A1960G

<400> 85

tcactggaaa aaggaattct gattgttcaa aagcacagga tatattaagg gcctcatata 60

atgcctggca cataagagac ctcagcaa at tacggcatt catattatgt ttatacagtg 120

aaggcatcaa ggttataagc attctctttt ttcttttggg tagactgaag ctcagagagg 180

ttgagtggt tacttaaagc tgcacagcta ttagtaggca gatcaagatt agagttcaga 240

acttctca ctccctccccag tttctgctttt ctttaccctt tgcctcttc aagttgtggg 300

tctgccggcc aggtgggagg tgctgtctgc aaagggtttc cttttctttt tggccactat 360

ctggctgggg agaggcctca cctagatgtt gttgaaggcc tggcacagcc gctttattgg 420

ggattttctg gcgatgagaa cgtgtgaatg tcctggcctt tagtcaactc cctacacctc 480

tgagagtgtc agacaagaga gcccatcaca ctgggtggat tgcaatctt gcctctacca 540

ctgcttagct gcctttcctt agggcaagtt acttaatggt tctgtgactc agttccctg 600

tttgtgaaaa gtgaaggta atagtaccca ccataatagg ctgttagaat ggagtggaat 660
 aattcatgta gaataagtat gtataacagt ggctaaaaca tagtcaggct gggcgcggtg 720
 gctcacgcct gtaatcccag cactttggga ggccaaggca tgtggatcac gtgaggtcag 780
 gagctcaaga ccagcctggc caacatggtg aaacccggtc tccactgaaa atacaaaaat 840
 tagctggct tggtggcggt tgcctgtaat cccagctact cgggaggctg aggcaggaga 900
 atcacttgaa cccaggaggc agaggttgca gttagccaag atcacaccac tgcactccag 960
 cctgggcaac agagtgagac tccgtctcaa aaaaaaaaaa aaaaaaaaaata gccagttgcc 1020
 tagaatagaa ccaactaaca gtggtttat ttttactgca aaaaataaaaa ataaaaatag 1080
 gagtagtgca agcaactggc cacatacta caaaacaagt gtatctcagc atctcccacg 1140
 agaataccac tcaggtcaaa acatgatata gtgaagtggg gatgaaaagg atccaaccat 1200
 gggcagaacc tggggtctgg tgccagtgg aacagccccca gtgtctagca tgagacacgg 1260
 ggaatgttcc gttggagggt ggttatgtg actctcctga aagcttccct ccctccagtc 1320
 cagatggccc ctccatccct caacgtgacc aaggatggag acagctacag cctgcgctgg 1380
 gaaacaatga aaatgcgata cgaacacata gaccacacat ttgagatcca gtacaggaaa 1440
 gacacggcca cgtggaaggt gagggcctt gcccaggag gggagaaaca ctggggaggg 1500
 cgggagaagg gaaagcaacc agaggcattc cacctgcaag gcgtcgcc cttggcaggt 1560
 gaccagttag aggttagccac tggacgtgg tgatcactag gctgtgtggt cagcaggtca 1620
 ctgcctgtc tcttggtgaa gtaactgagg tttggaaaag tggcgtggct tggccaacgt 1680
 gaacagctga ccctgagtc ccaggcaaca gaagaccctc tggcagggaa ggggttgaaa 1740
 ggccactggg aagaaggttt tcaaaaagtca tgaaagtttgg gggttatttc ctcagaggaa 1800

tctcatctgg acacacatgg aggctcagac agagctgctt ctaatgagtc ggggggtgcgc 1860
ccaggccagg gctcggtccc ctgcctccac agagcccaga acagaaaacca cagaaccaac 1920
ccccacacctt cagtcttagaa atggggcaac tgaggctagr agggaggtgg gccagtggtg 1980
gagccaggag cgggcccctgg ggtcctgaac ccccattctc agggtccaga gtccagtcgg 2040
cctgcactgc gttcctaaaa aggccacaat atgggtgcaa gctgccccag aagggctggg 2100
agctgagaag gctcaaaata gggtgggaca ggtggcttca gggttctggg cctcagtgtt 2160
gtcaatgtca ggggctgcac tgacaggtgg agtccccgt gccatccgaa gtgctgtccg 2220
tgggtgggcc ctcagggagg atccac 2246

<210> 86

<211> 564

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (71)..(71)

<223> baysNP5959_A71G

<400> 86

taaaccacaa accaagagcc aaaccatgcc tgacttaacc agaaaacaaat gccaaaccact 60
gtcgaatgtg rctgcccagc ctcttaacac catcttctca ggtggctgac atcccttggt 120

- 109 -

ttcacactgg gggccttgcc ctggattatt tactttcttt tattttagctc aagttagaag . 180
caattttaca cctgaagttg aatgacttcc aaatggattt tagcatagac ccagggaaaga . 240
gtgtaagaaa gaggacagga aacaattctc ttgacattat tttcaaggca ggagagaaaa 300
gaccatctca tggccttgg gtacaaaccc ttggcctatg taaatagac ccccaacttc . 360
tgccctctga atctcataacc ttgcttccac tgattctgga ttttttacg gtatgatgtg 420
taacatcgat ccaaggcccc caagtagcac tggatggaaa gttcccatc cactattggg 480
tactccgagg ccaaatttgg tttgtagaag tcatacacat tctccatatg gttcccctc 540
agccctggaa aggcacacaa agtg . 564

<210> 87

<211> 494

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (340)..(340)

<223> baySNP6162-C340G

<400> 87

gaaggtccag ctgttacaaa atgaagacag acaacacaac atttactctg tggagatatc 60

- 110 -

ctactcatac tatgcacgtg ctgtgatttt gaacataact cgtcccaaaa acttgtcacg	120
atcatcctga ctttttaggt tggctgatcc atcaatcttg cactcaactg ttacttcttt	180
ccccagtgtt gtaggagca aagctgacct gaacagcaac caatggctgt agatacccaa	240
cctggcaata aaaggaaaat atattaattc aaactctatg gaaacttaat acttctctct	300
accaggaatt ggcttattct gtaaaatttc ttttgagas tggtgccag gctgcagtgc	360
agtggcaca ttatggctca ttgaaggcctc aaccaatcct cccacccctcag tttcctaagt	420
agctggact ataggcacat gccgcccacag cccactaatt tttaaatttt tttgttagaga	480
cagggtctcc ctgc	494

<210> 88

<211> 1898

<212> DNA

<213> Homo Sapiens

<220>

<221> variation.

<222> (906) .. (906)

<223> baySNP6236_C906T

<400> 88

gagccctcag aaataacacc gcatatctac aactatctga tcttcggcaa catctgccgc	60
acacacaagg caaattggtg cgaaatggat ttccctatta taactaaatg gtgctggaga	120

aacactggtc tagaccacta tgtacgcaaa gctgaaaactg gatccttcct tacacctata	180
caaaaatcaa ttcaagatgg attaaagact taaacgttag acctaaaacc ataaaaaccc	240
tagaagaaaa cctaggcatt accattcagg acataggcat gggcaaggac ttcatgtata	300
aaacacccaaa agcaatggca acaaaagcca aaattgacaa atgggtcta attaaactaa	360
agagttctg cacggcaaaa gaaactacca tcagagtcaa caggcaacct acaaaatggg	420
agaaaatttt cgcaacctac tcttcggaca aaggctaat atccagaatc taaaaaacac	480
attaataaaa gcttgaatc cacatagatc actctcaaca gaaagatgtc tccagatgga	540
agatgcagct ggagatcaac agtgaacatc aaaggacata ttcagtgacc tccaaatctc	600
cctctgatcg ttccctaggaa tgggaggggc acagccagca tccccatatg cagaaaagtg	660
ataagagatc ccctgattta ctacgttac ttccccagag atgactacag catttctgca	720
acctgtgtta actttcttcg gccatttgga cagaaaaatg gaaagatact aaaaaatacc	780
gtaatgaaat actggccagt gtaatttttg aaattttctc caacctgagc atctcaaata	840
ccttatctg aaattctact cttctataat atgccttagga tagatgtacc ccattctact	900
cagcayttta aatagaagta ggttattcca tcaaaagctc aaatgtgtcc aagataacaaa	960
ataaaatagt accatatgaa ctctctattc tatcataaca gttccttca aggtttcaga	1020
caaacatatt atttccttgt ttttcttcc tacagtcact ttaggaaggg cctgagcata	1080
aagagttgc tagcatgcat accacaacta ctttattttc catataagca taatcagcaa	1140
gtataactgt ttctcaattt gttaaagcct accataaaat cagttcaagt aactaacctt	1200
gactagtaca ccatatgtgg attacaccat ttttccttc tttttattgt agtttctcta	1260
cgtgatttta aatgcttagtgcgtccaga ttttagctaga aatttcacccat atttatgaaa	1320

atgaatgagt gcttttctc acatagaggt gattttatac ttatggccc aatgatccac	1380
ccaaaatccc acgtggaaag agggatcctg gtataatctg gttaagagtg tttcttacct	1440
ctcttggctt actggcaatg gcaacactgc catcttgtt gtatggatg ggcatcctc	1500
cttcttgtac cagggtccca taccctgttg gggtgtaaaa tgcaggaact ccagccccgc	1560
ctgcacggat cctctctgca agtgtgccct gcaagtgagc aaccaacacc ccataagttc	1620
actaagcaca cttctctatg tggacacaaa cattagacg tggttcctac tatctagagg	1680
cttataattc taaaaagtag ctgcattgt acattagcat acttcactaa tattgtatgc	1740
tagaagatca attttaagaa gttactgccc ctctagaacc attctaaatc cacattcaaa	1800
atgtaaccgc ttatggtat agtcatgcat tgagcttcca tacctctcaa tgatctttg	1860
acacattnaa atgtgtctat ttttgcattt ctaagtca	1898

<210> 89

<211> 1351

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (151)..(151)

<223> baySNP6482_A151G

<400> 89
aaacctgatc atatcacaac agtataaaatg caagaaaaagc tctatgctt gtagttagcc 60
ctgaatggtt gtttgacaga tacagaattt tttaaacctc attctctcat agtttaggt 120
aaacaaaagg gattcaaaca gatctggtct rcctctgggt tgtggcgttt ccatgacaag 180
cttttacact atgcacctac tttcattcgg gaaacggtct tattgatctc ttctacatcc 240
ccaacagtga caatgttggc cttcagcatc tggtcgatta ataccagcca gtcggctagt 300
tctgttatacg ttttatcaag atcagcagga attgaaattt ccgaagtacg atgagactga 360
acaggaatat ctgacgcaga tgatactagc accacccttt ggacattagg atgagctgaa 420
atgaaaaatg tagcaaaaga gaaattaatc aacaggatgt tttaattatg gtgggtcat 480
ggtgacacgt gtatgtgtat tttaataaaaa tttagttaa gtaaaaaaaaaa ttctaagagg 540
ttatttttc atactgaaat ggctatggta ttacctgtaa tatccatatg tctttggtag 600
ctatcaagcc aacaaaacag ttttgcaca ttctataaca taatcagcac tgacactgag 660
aaaaattaaa agtacaatg tgggagaact ggaagtatta ttttattttg gcaagatgt 720
tttaattata aagccaaactt attcataatt ttttattttt ttcatttaac tttataatgt 780
gagcatattt tattcttagt aaacacaatt atgaataacct atgtaataac ctatacccat 840
attcaatttt atttaaccct tggatattta gattgctcct gaaattttat tttaattttt 900
taaaaaactt gcaaagaata tctttcatg tagagtattt tgcacatttc tgatctctat 960
cttagcatag atttcccaag tagaattact gagtcagaaa atacaaaaaaa aagtatgtat 1020
ttaatattca ttgccaaatt gattggttt gatacaataa gtagttgaat tagtaattaa 1080
aactatctgt aacctacttc aggtatgata tattagatga ggcttaataa atttctaaa 1140
atgtatagcc aatctgtaaa ttcagcacaa tcctaataaa aatcccaaca ggcttgaatg 1200

- 114 -

taacaaaatc attaattcaa atttctgggt ataaaattaa tattgaagag aaaaggacaa 1260
aaaacagtca aattatttt tgatagagga atatgccctc ccagatatta agttatatta 1320
tttagctaat aattattaac tcagtatatt a 1351

<210> 90

<211> 851

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (289) .. (289)

<223> baySNP6498_A289G

<400> 90
tgcatatgga ggttttgttt gggggctttt tggatcttcc tgcggtgtaa tagatcctat 60
tactgtttct ggagcaacag ttatggaca ctgaatatta tcagtggctg cctttcttct 120
gtcttttttt tttttttttt tttttgagag acagggtcta cctctgtcac ccgagctaga. 180
gtgcagtggc gcagtcttgg ctcactacag cctcgaaactc ctggctctaa gcagtcctcc 240
tgtcttagcc tccccaaagtg ctgggattac agttgtgaga ttgtgcccrng cccttctgct 300
ttaattttca ctctgggctc ctcaacatgg tccttgcctcc aagcccaggg actggcttct 360
ctttctctga gtgttagttat gatatctgggt tctaaaccagt aaggttataa ctgtggctaa 420

ttcacataac ttctctgagt ctgaatttcc tgcctacaaa atggagaaat aggaccttcc	480
acacagggtg catgtgagga tgaaaggagt gaatgtataa agacacctt cccgataacc	540
catactaccc tcattatgac tcttaacatt agagagggct aaacaaggc agtgagaaga	600
ctggcaggca gcagaaatca ttttctttt gatctcacac accagggcat tccccctaag	660
aggcagttagt gag atgttagcctg gccctggaac tagaaacaga ggtggctgct gtgctagtgc	720
ctgagatgca cgatgctggg gtcaaagact tgtgtccccca ctttcagctg ccagatgcgt	780
gtgtgccgtg acagggctcc cgatcatgcc tcaggcgaca gcaggctgac ccacattcag	840
gggtggcttc t	851

<210> 91

<211> 2958

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (348) .. (348)

<223> baySNP6744_C384T

<400> 91

cacacaccttag acatgggcct cggggagcag gcactcggtt ctccggggat acagagtccc	60
---	----

tcctaggcgc ttggccacac cagacagtcc ccactcaccc caggccccaa acactgagta	120
ctgggttgtt gcatgagagg cacacagcca atggagaagt tggagactgg tgaggaggga	180
ggcatccagg tggcttgggg gagacagggc catcctctct tagaaacaca gagatgcctc	240
aggatatata tccaggtgaa gaaagcaaaa tactgaactc ggtctcagat gctacttttt	300
gcataagaaa gggagaatga aatatatatt tggtgtgtgt tttgtttytt tttttgtttt	360
ttggttttt gtttttgtt tgagacagag tctcactcta tcgtccaggc tggagtgcag	420
tagcgtgatc ttggctcaact gtaacctccg cctcccggt tcaaggcattt ctgtgcctc	480
agcttcctga gtagctgaga ctacaggtgt gcaccacca gcccagctaa tttatgtatt	540
ttagtagag atggggtttt gccatgttgg ccaggctgg tttgaactcc tgacctcaag	600
tgatctgccc acttcagttt ggattacagg tgtgagcctc cacgcccagc tcaaataatgt	660
attagtaaaa cagaagtatt agaactgtaa gaacaccatg acagtgcattt gacatctcca	720
ttgcctcatg gaatctcatt ctgagcttcc ttggttacaa gtgagaattt ttcacatggg	780
tattgctgta ggtatgtatg tttagttaaat gacacaggc tcactgtgtc ccccaggctg	840
aagtgatctt cccacccatc cctcccgatg gctgagacca caggtgcaca cccacacacc	900
cagctagtga gagatgggt ctcaactgtgt tgcccaagct ggtcttgaac ttctgggttt	960
aagtgatccc ctgagctgtg attgtgcgac tgcactccag cctggcattc agagtaaggc	1020
cctgtataaa aaaaaaaaaa aaccgagggc tggggcaggc acgggtggcta acgctgtat	1080
cccagcactt tgagtggctg aggtggcag atcaacttgag gtcagcagtt cgagaccagg	1140
ctgtccaaaca tggggaaacc ccgtctctac taaaaaaaaat taaaaactcg actggttgca	1200
gtgactcatg cctgtaagcc cagcattttg ggaggctgag gtggggcggag cacgaagtca	1260
ggagatcgag accatccctcg ctaaacacggt gaaacccat ctctactaaa aatacaaaaa	1320

attagctggg catggaggct ggcacctgta gtcccagcta ctcgggagac tgaggcagga 1380
 gaattgcttg aacctgggag gtggagggtg cagtgagccg aaatcgacc actctactcc 1440
 ggcttggcaa cagagcaaga ctccctctca aaaaaaaagc actaacaaca actacaacag 1500
 aatcagctgg gcatggtggg agatgcctgt aatcccagct acctgggagg ctgaggcagg 1560
 agactcgctt gaacccggga ggcagagatt gcagtgagcc caggtggtgc cactgcactc 1620
 cagcctgggc ggcagagcaa gactgtctca caacaaacga accaaaaaac gaaggaccaa 1680
 tgctcaggcc atccagttcg gaatgcacta aattcagttt tatgaaattc aaagtaactt 1740
 tttccttcat cccttatttt gtatggatta cattatatg ttataattc tgtttcaga 1800
 ttttgtacag cagcaatttc ttactctctc tgcaagttt cttcccagtc acgagatact 1860
 ttgtcagct gcttatctcc aggccttattt aaaaaggtag gttcactctt ttccattttt 1920
 tccattctgc catacgtttc aggtttacgc agctttcggg ccggaaaggcc gaggtctgct 1980
 gccgcttgc gccccatctca ggggcagctc ctgggtcagg ctggctgtca tggggcagct 2040
 cctgagtcag gctggctgtc atggccacct ctgctgtctg cttaggcagc ctgactgctg 2100
 agtgcgtgcct ttccattttgt tctctgagtg taaagtgaag ttgtatgaag acaactacaa 2160
 gtctgtattt gtaatgaaat agatgttggc atttatagga tagatgaatt aaaagatcag 2220
 tattcataat aagtatcttt ccctggaaag aagaattctt attcctctca tctagtaat 2280
 gttcattaca ttgttcagac aaaggaattt tttttttttt ttgagatgga gtcttgctct 2340
 gtcgcccagg ctggagtgca gtgggtgcgtat ctcggcccac tgcaacctcc acctcccggg 2400
 ttcaaggcagt tctcctgcct tagcttccca agttgctggg attacaggca cgtgccacca 2460
 tacccggcta attgttttgtt atgtttttta gtagagatag ggtttccacca tggggccag 2520

gctgtttcg aactcctgac ctcaagtat ccacccgcct tggcctccca aagtgctggg	2580
attacaggcg tgagccgctg gtgcccggcc cagacaaagg aatttaaaga tgagcattgg	2640
aaaccctgaa tgtcaaaagt aaaggtgaaa tggcactgca aaccagtgtt gtccttttat	2700
aggattttaa tgaacgtctc gtgtataaaa tagtggtttt caggctgggc gtggtggctc	2760
atgcctgtaa tcccaacact ttgggaggcc gagggggca gatcatgagg tcaagagatc	2820
gagaccagcc tggccaacat ggtgaaacct ggtctctact aaaaataca aatttagcca	2880
ggcgtggtgg cgcacgcctg taatcccagc tacttggag gctgaggcag gagaatcgct	2940
tgaaccaggg aggcaaag	2958

<210> 92

<211> 689

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (63)..(63)

<223> baysNP7133_C63G

<400> 92

tgtccagctt tgagacccta cagagccatg ttcacccatgc acgtatcccc tctgcggtca	60
cgstcatttc ttaccttatt ccagggcttt cacctcagct tgccaggctg gagccaagg	120

ccaaacgcagc cgccgccttgt tcgcgatggt agcttcccag gagcccccta tggttccgga	180
acgcgcgtgcc ggccccatcc tgtttgctac ctcctaaagc caaaggcact ggccggccgg	240
gccagcttct aaagtgcgc aaggtagaa ggttccggac aggaacggcg tgaggccaat	300
ggaaggaggt acttcagttt ccctccagat gcccagcgat gggctcagag ctcccttgaga	360
actcgggaaa ggaagcaggg tctctgaaga aataacttcag gagtagaaaag aggaagctag	420
agggtaaat gcactacaca ggaacagaaa tgagttttc ttagagttag tatatgtcta	480
gaggtgtagt aaactaaaac aagtcttgaa ttgcataccg ccacgttaggg aagaaatgaa	540
aacctttgaa tattagtgaa aaaagggaaa ctgcaacgcc tgtattacta gatagtttc	600
atcaacagct caaaaaccgac agatttaaag aagcaacacc gcattttggc tttctaaagc	660
ttaatttgg tttggatccc atgccccatg	689

<210> 93

<211> 2184

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (1603)..(1603)

<223> baySNP8021_A1603G

<400> 93	
atttctgagg ccccacaggg agagcttct ctggAACAAA gagAGGAAAGA ccttgggctg	60
tccctgcagc cactactgtg gcttagggga catcaCTAGG ggCCTGAGAG ggCCttAGAC	120
tctAGCCTGC atggGAcAGC aggGTCAAAT tcAGACTGCG gggTCTGTCT tggCTCCATG	180
ggCTGGGTGA CCTCTGACTC CTGGGTTCAA GTGATTCTCC TGCCTCAGCC TCCTGAGTAG	240
CTGGGATTAC AGGCGCCCAGC CATCATGCC GGCATAATTTC TGTATTTCA GTAGAGATGG	300
GGTTTCACTA TGTTGGCCAG GCTGGTCTCA AACTCCTGAC CTCAAGTGAT CTGCCACCT	360
CGGTCTCCCA AAGTAGTGGG ATTACAGGCG TGAGCCACCG CACCCGGCCT GGAACAGGCC	420
TTCTTGGCAG GTGAGGGTGC CTGTGCCAGG TCAGGTTGC CATGGATGGT CACCTGGACG	480
TGGTTTCTC CCAAGCTGGG CAGTGGACC TTCAGAGGGC CAGTTCCCTG GCCTGAGAGG	540
AGCATCAGCA CTGTCCAATT GGCTGTTTG CTGTGAAGGT TGTTAGAGG AAGGGCCACA	600
AACTGGCAGC CTGTGGCTG GATGGGGCCT TAAATTGTT GTGTGGACCA TGAGGTGTT	660
CAGTGAGAAG TGAACAAGTA GGGCCGGGCT CACGGCTGTA ATCCCAGCAC TTTGGGAGGC	720
TGAGGTGGGT GGATCACCTG AAGGTCAGGA GTTCAGAGACC ATTCTGACCA ACATGGAGAA	780
ACCCCTGTCTC TACTAAAAAT AAAAATTAG CTGGGCAATGG TGGGGCGAG CCTGTGATCC	840
CAGCTACTAG GGAGGCTGAG GCAGGAGAACT CGCTTCAACC CGGGAGGCAG AGGTTGCGGT	900
GAGCTGAGAT CGCACCACTG CACTTCAGCC TGGGCAACAA GAGCGAAACC CATCTCAAGA	960
AAAAACAAGT AGGGCTGGGT GTGGTGGCTC ACCTCTATAA TCCCAGAACT TTGGGAGGCC	1020
AAGGCAGGCA GATTGCTTGA GCTCAAGAGT TCAAGACCAG CTTGGGCAAC CTAGTGAGAC	1080
CCTGTCTCTA CAAAAAATAA GATGTCAAAA AATCAAAAAA TTAGCCATGT GGAGGGCGAG	1140

gcgcctgcag ccctagctac tcgggaggct gaggcaagag attggcttga acctgggagg	1200
cgagggttgc agtaggccca gattgtgccca ttacactcca gtctaggtga cagaccaagg	1260
ccccatctca aaaaaagaaaa aaagaaaaaac agaaaactga gcaagttggc agtgtttctt	1320
ctgtctgtga agcagttgtt tggtcgttga ttcaaggaag ggtgatttag ggccttctat	1380
gtactaggcg ctggaaagcc ggcagggcga gatgctcatc aaagaaagca ataaagaaac	1440
acacaccaaa aagtctgata gggctgaggt gctgcagaaa gagttgaatt tggccgggchg	1500
tggtggtta cacctgtaat cccagcacta tggaagaccg aggcagcagg atcacttgag	1560
accaggagtt tgagaccagc ctggcaaca cagggagacc ccrgctctaa aaaaatacaa	1620
aaatttagcta ggtgtggcgc cgtgctactc ccagctactc cagaggctga ggtggatga	1680
tcgcttgagt cggggagggc caggctgcag tgagtcgaga ccacaccact gcactccagc	1740
ccgggtgaca gaatgagacc ctgcctgaaa aaattaaaat aaatattaaa aaagattgat	1800
gcctccagaa agagcgaaaa ctgcaggtct ttagaggaca tggagacact cctggacttg	1860
ggcaaaccta gaagggtgtc cgggggttgg acacagtccg ggcaaaggaa gagtgatggg	1920
caagtaggga atcagtttg ggctgggttt gcagatgccc ccaaaggggc agaagggtggg	1980
ctgggagtct gctggtagat gacacctttt caagtgggg gagaggtggg tgggtacatg	2040
gggagttgt ggggaccctt gcaaacacag gaaaccgagg ctcagaaagt atcacgcagt	2100
gggcaagtgg cgggtttagg atttgaatcc tggactgact ggcctacagc cccggccctg	2160
gcctctctgt gcatggccaa aatg	2184

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (118)..(118)

<223> baySNP8060_A118G

<400> 94

ctactcaact tátggttcc atgctcagaa cctcatgaga tacattgcac gttactgtag	60
tacctgaatc cttcattgct attgaatgga tgtgccttat ttccactcc cacctggrrga	120
atccaaacat atgctgatgc catgcaaact catgcaaagc gtttgagtg gaatagattt	180
tccacagttg ggatggggaa aggtacaatt aaagaaggga agctgacatt gctgtaatgt	240
aaaaaaaaat tttatatgga aathtagcat ctcagacttt ggcttcagaa cataaggaac	300
aagatttacc cttttctca acaactagac aggcaagacaa aacatataaa acagaagttt	360
tcagacatcg aatgacagac aactcaagac agtaaaaagaa gagtaacaaa ccagatgtgc	420
cctatgagca cctaaactta ctgcttgaag agtgtttcca gggAACAGCA caAGCAGGGA	480
gaacccagac agagtctcta tgggttgagg aaatagagtt tggacttcgg agaagctcaa	540
atggctagaa tttgtgattt tagggcagag tcctgcagag gacagtataa tcacagagaa	600
agagctt	607

<210> 95

<211> 1151

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (255) .. (255)

<223> bySNP8210_A255G

<400> 95

tggatccccc atcagttgac ccaatgcaag aatctcagac acacatgacg caccagtac 60

aggggttgtt tttaaagaaa aaaacaatcc cagcaggagg gattgctggg attgttttt 120

ctttaaagaa gaatgttaat attttacttt tacagtcatt ttcctacatc ggaatccaag 180

ctaatttcta atggccttcc ataataattc tgcttagat gtgtatacag aaaatgaaag 240

aaactagggt ccatrtgagg gaaaacccaa tgtcaagtgg cagctcagcc accactcagt 300

gcttctctgt gcaggagcca gtcctgatta atatgtggg attagtgaga catcagggag 360

taagtgacac tttgaactcc tcaaggacag agaactgtct ttcatttttg aaccctcggt 420

gtacacagag gcgggtctgt aacaggcaat caacaaacgt ttcttgagct agaccaaggt 480

cagatttcaa aagaacagaa ggactgaaga ccagctgtgt ttcttaacta aatttgcctt 540

tcaagtgaaa ccagcttcct tcatctctaa ggctaaggat agggaaaggg tggatgtct 600

caggctgagg gaggcagaaa gggaaagtat tagcatgagc tttccagtttta gggctgttga	660
tttatgcctt aacttcagag tgagtgttagg ggtggtgatg ctaccattac tgtgaggacc	720
taccagtgtg gctggaggcag ggactctctc ccaggccttt tactcctcag cacctccctg	780
cataactgatt gttgtttta gtttctgtga aattatattc atgaaatgaa aatagcgcat	840
tttactttgc ttagtttca taaggttta tacaaaaaaag caagtaaata tggcagaaaa	900
gcactcattt gcccctgctc cctcaaaaca ccacagaatg acatagaact aaaggcggca	960
ggaatctaca agaatgaaga aaacacagtg atgctacctg caaaatcttggagccagaa	1020
agcaaatgga caattgataa tagagttaca agatgagaga aaacaaaaat gtaacctgtt	1080
agttggggga gcctagaaac atcctgtttt gtaccacaga cccctagaaa gtttcaagat	1140
gtaaaaacac t	1151

<210> 96

<211> 518

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (46) .. (46)

<223> baySNP8592_C46T

- 125 -

<400> 96
accagcctct tccctgagac accatggtga aggtgaaggc cagagycaac ggattggact 60
atattgggca cccggtcact agggctgctt ttaattctgg taaagtggat attgtcacca 120
tcaatgaccc ctgcattgac ctcaacaaca tagtctacat gatcttagtat gattccaccc 180
atggcaaatt ccatggtaca gtcaaggctg agaatggaaa gctcgcttc aatggaaatc 240
ccatcatcat cttccaggac caagatccta ccaaaatcca atggggtgat gttggcacta 300
aatgtgttgt ggagtccgccc agtgtcttca ccgcctatggaa gaaggctggg gtcatttgc 360
agggggagcc aaaaaggta tcatactctgc cgccctctagt gatgaccccg tgtttgtgat 420
gggcgtgaac tatgagaagt atgacaacag cctcaagatt gtcagcaata cctcctgcac 480
caccaactgc ttagcacccc tggccaaggt catccatg 518

<210> 97

<211> 538

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (181)..(181)

<223> baysNP8816_C181G

<400> 97

gaaaagggtg tagcacctgg gaaaggcgat caactcccag tcagggagcc cacggtgata	60
acaccagtca gacgatcaca ccatggaagg gtccaatgag atccaatgga aagacttaga	120
acatctaagg ttgggggagg tgcaaccttc tgctattcag cccctctgct ccaagcggaa	180
sctttttct caggaggtaa tctctaataa caagcagagt gccctctgga gcctcctcgc	240
tggtatctca gtgcctggac agagggggac acaccacagc acaaacacgt ggcacagact	300
caatcccaac acacagccag tcaacgagcc tctggccct tcctctgggt cctgatacag	360
agctggcagc gagggcctct gaagaggtt cagggagccc aaggaggtgt caggtagagg	420
cagcaccagg tcccggaggg acagatgagg gatccctagt aaacagctcg tggacgcact	480
tgactagcag ttcgaaagca aaaagagatt cggattacaa gagactttc cttgcaa	538

<210> 98

<211> 524

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (196) .. (196)

<223> baySNP8846_A196G

<400> 98

tggctgcccc tcggccgccc actggacgcg cgggccttgc cagcgagcac cctcatcgaa

60

ctgtcgccctg acagcataacc tcaaaaaggcc ctagctaata aacctgtaag cccagcattt	120
gagagaaggt agggtgtgtat tatataaaag gttgtgtaca actccacgag gtgaaaaata	180
ttcagtaact tgtttrcata gcatttgtgt aaagactatg atctcatccc aataaaatga	240
tatattaaac cttcagatta atgactggct acagagtaac aaaaaataaa gaatttaatg	300
tacagtaaat tctctcccat acaaaggctc agtctgtatgt tttgtgtaca aactcacatc	360
tccaaattaac agtattttatt gagggtgact ttgtattgca ctaacgtcta ttgctattac	420
ctgttgtat tgataagtaa agccactcat tgaaaaaccc aattccaaac accacagttt	480
gtgacacatg aagtaatgaa tgactcttgg tatgaaaacg tggc	524

<210> 99

<211> 1150

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (351)..(351)

<223> baySNP8943_A351C

<400> 99

ttctgcttca ccaccttgc tgcaactggct attttaaag atttgttcat ctagtaattg	60
--	----

taaaagtatc aagttgcctt acttttattt ctttgattag tagtaaaggg taggctggc	120
atggtggctc acacctgtaa tcccagcact ttgggaggcc gaggcaggtg gatcacctga	180
gatcaggaat tcaagaccag ctggccaac atggtgagac cctgtcgcta ctaaaaatac	240
aaaaattagc tgggcatggt ggtgggcacc tgcagcccc gctactcggg aggctgagac	300
agaagaattg cttgaactcg ggaggttagag gttgcagtga gctgagatcg matcactgca	360
ctccagcctg ggcaatagag agagactcca tctaaaaaaaaaaaaaaaaaaaaaaaa	420
gagctaacag tttgtcatgg acttcttact acttatattt tctgtacata ttatatgtac	480
atctatagag tggtttcctg ttaccattgc tcattttctt taatgtcaaa ccttttggaga	540
tagtttaatt atattgtta acagcagctt tataaaagaa ataaacagat ataagatgat	600
aaataaaaaa atataactag taagtgaaaa taaaatggcc aatttgaagc attttttct	660
caatatcaaa tagagggaaag acctcaattt tgaaattctg attttttaa ctaaagactt	720
gttttctagg catcgctctc tgcttctgct gctcagacca agggttatgg caggggaggg	780
actggtgcca tgatgaccgc cccccctgtgc tactcacaga gtgaatggga tggctact	840
ctcggccacg gtgccataca gagaaatctc aaaggcctga ttggatggg tttcactctc	900
agtcccagaa aaatgaatct ttacttggtt atggaagact gttggggagg aaattcgaac	960
atgttcatca atctttatga aaatatcaca accccaaata gtcaggcaat tcagaaccac	1020
agaagtatct cactagcact caaacccgaa gtgcacacac atgaaaccac tgggtggct	1080
tggaaagact tcatcatgca cagtgttcat acctagaaaa tgcagacctt gaattctact	1140
ccctttcaga	1150

<211> 783

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (88)..(88)

<223> baySNP9193_C88G

<400> 100

ctgcggcggc gggtgtcagta gcatacggcgg gctcgaggac acgtgttga gtggggggaa 60.

accaccccaagg ccgttggagc cgaacgcsgc agcctcagac ccggggccgt aggggaggcc 120

ggtcgtgaccg tagacctgcg cgttggcgcc ggccgcggcg ttgaactcgt aggccggcgcc 180

ctcgaaaaatgg ttgtacacgg cgggtttgtc gctgtccagg tacacctcgc ccagggcccg 240

ctccagggggg atcttgagct gcccacgggtt caggggctcc agctcggtcc cttggatctg 300

atgcagttagg gccatcccag atgcatttgtt gtggagggtc atggtcatgg tccgtggccg 360

cgggcagggt gcagaccgtg tccccgcagg gcagaaggct cagaaaccgg cgggccacct 420

ggaaaaagag cacagcccgaa ggttagaggc gacgcacgcgc atgtccgcgc gacacgcgag 480

ctctggccccc ggccctgcccc cgggagcctg cgggtccgggt gaagccgggc gacccgacgg 540

gagcaagtgc agtcccagga cgaacgcctt ccgtcagctc ctgggctccc gggcctccaa 600

ctttaagtac tggtctcccg agtcatatg cattacaaag gtgctggagg acggccaggg 660

- 130 -

actgttgcct tgccctgaca ttggcttaaa catcactcca agcacaactc gatttggagc	720
gatcccaaag agcagcttc ctgaacctta ctttacttgt ctttccctgc tggatagagg	780
ctg	783

<210> 101

<211> 611

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (329) .. (329)

<223> baySNP9443_C329T

<220>

<221> misc_feature

<222> (391) .. (391)

<223> Unsure

<400> 101	
tctagaacaa tcctcctgcc acaacttca ccctaccccc acccgacccc acccttttat	60
acacatcacc attgccagta ttgccttggt ttagccaatc aagatattac catcctcaaa	120

atatacgatg aacaaggaaa aaggtaattt tggagcaggt gagactctta agacagtctc	180
caccctccctt ctttcctt caagttcaact tttgtcactc aaaactgcct gtcatcctgg	240
agaatacatt tagagattcc aaatgtaaaa catgcatttt tggagaaaaac aaaaataaaat	300
tcataatcag gattatgaag cagaattgyt tcaaaacagc aagctttcat tttcaatgca	360
atgccaaggt cattcaactaa tttgttaagag ntaacctgag cagtacctga ctctgatcag	420
tccagatcga ggggagatct catttctaaa agaatttcca atctggcag cagcaaaagg	480
caactttcct tggttgaact ccaaaagtgc tttgaaattc aagaaaatcc cctgtgcagt	540
ttctggtctc aagtacctat aaatttaagt aagtcaigtct gttacaaaga aagaaaattat	600
gttttccaac a	611

<210> 102

<211> 589

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (187)..(187)

<223> baySNP9516_A187G

<400> 102

ccagagactt tccagatatac tgaagaagtc ctgatgtcac tgccccggtc cttccccagg	60
tagagcaaca ctcctcgccg caacccaact ggctcccctt accttctaca cacacacaca	120
cacacacaca cacacacaca cacacacaca caaatccaag acaacactac taaggcttct	180
ttgggarggg gaagttaggga taggtaagag gaaagtaagg gacctcctat ccagcctcca	240
tggaatcctg acttcttttc cttgttattt caacttcttc caccccatct tttaaacttt	300
agactccagc cacagaagct tacaactaaa agaaactcta aggccaattt aatccaaggt	360
ttcattctat gtgctggaga tggtgtacag tagggtgagg aaaccaaatt ctcagttggc	420
actggtgtac cttgtacag gtgatgtaat atctctgtgc ctcagttgc tcactataaa	480
atagagacgg taggggtcat ggtgagcact acctgactag catataagaa gcttcagca	540
agtgcagact actcttaccc acttccccca agcacagttt gggtggggg	589

<210> 103

<211> 1584

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (1546) .. (1546)

<223> baySNP9698_A1546G

<400> 103

gccccagttgc ccctggtccc caagcagcag cccccctctgc ctccagggtg ggctggagc	60
aggagggggg cctctgcccg ggggcccgggc tctctggggc cgccgtcgcg ccgccccctc	120
cccgccaccgc atacottgcc cacagccgag cagctggag gctattata aaggcgggtg	180
agatcagcgg ccggccaagg ctataaattc gcaggccgag gccgggcccc acaggagcag	240
ccgccccgggg caccggagct gcgggctgag tggccggat gagcgccagc acgggcggtg	300
gtggggacag cggcggcagc ggcggcagta gcagcaggta gggctcggtc gggcacccg	360
gagccccctgg cgtctctcat gcccaactgcc actcacccca cccgcagctc acaggcctcc	420
tgcgggccccg agtcctcggg ctccgaacta gccctggca caccggtgcc tcagatgctg	480
cagggccttc tgggctccga cgacgaggaa caggaagacc ccaaagacta ctgcaagggt	540
gagacttggc cttggggaca tgcggcctca cggccactgc agggacccag ggcagtccctg	600
ggcccacatg ggccagatgg tcaatggggc cgaggtgttc gggggccag gggagtgaga	660
accccttcca ccccaatcta catctccct gggcaggcgg ctaccacct gtgaagatcg	720
gcgacgtgtt caatggcgg taccacgtgg tgcgcaaact gggctgggc cacttctcca	780
ccgtctggct ctgctggac atccagttag tgcccttcc gcctccgggg cccagcactg	840
gctggatcc tgtccctggg ctgcttggg gccaccctga tccccgcgt gggcctgccc	900
agggccacag cctacaaggg tctcggtatt gcaggcgaa gcgctttgtg gccctcaaag	960
tggtaagag tgcgggcat tacacggaga cagctgtgg tgagatcaag ctccctgaaat	1020
gtgtgaggca cctccctacc ccactcccag ctccctggc gctgcctggg gcctggcaat	1080
gcgggtgcaa ggcctgccgg ggctctgtgg ggcaggcgg ggctccctga gggcagcct	1140
ccagctggct gtgccccagg gggaggatct ggaggaacag gcgaggacac ggaggggttg	1200

gcggccttc ttccagcagg gcccagctgg agcaggagaa gggtacactg aagggagctg 1260
tgggcttcag ggcagggtgg aaccatctgt ggccccttgg ctttgctcc aggtccggga 1320
cagcgacccc agtgacccc aaagagagac cattgtccag ctcattgatg acttcaggat 1380
ctcaggagtc aatggagtcc gtatccttg caggaagagc aaagcagtgt ggcagccaag 1440
ggccggcaaa tgggggggcc ctcgctgcta gagcctgtct gcagacccgc acaatggct 1500
tgcatccctc ccagtaacgg gagcctctgg cacgaccccg cccccrgtta actgtgttta 1560
cgtggaggca gtaacaagct agcg 1584

<210> 104

<211> 744

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (277) .. (277)

<223> baysNP9849_C277T

<400> 104

ggcttagagg ctgagcacct ttggaaacaa catttaaggg aatgtgagca caatgcataa 60
tgtcttaaaa aagcatgttg tgatgtacac attttgttat tacctttttt gttgtttgt 120
agcaaccatt tgtaaaacat tccaaataat tccacagccc tgaagcagca atcgaatccc 180

tttctcaactt ttggaagggtg acttttcacc ttaatgcata ttcccctctc catagaggag	240
aggaaaaggt ataggcctgc cttactgaga gccaaayaga gcccaggaga ctccactatg	300
ggaaacctca ttgctctgta caaagtacta gctaaaccag aaaggtgatt ccaggaggag	360
ctagccaaac aacaacaaaa acaagaaatg ttctgttcaa gttttcagct ttaagatatc	420
tttgataat gttatTTcta ttttttattt ttttcattag aagtgaccaa attaagatgg	480
taagacctct gagaccaaaaa ttttgtccca tctctacccc ctcccacctg cttacagaat	540
ggatcatgtc ccccttatgt tgaggtgacc acttaattgc tttcctgcct cttgaaaga	600
aacaaagatc gtgttttgc cactgattt gccatgtgaa actcatctca ttacccttt	660
ctgggtttga agctgctgtc tctagaagtg ccatctcatt gtgctttgta tcagtcagtg	720
ctggagaaat cttgaatagc ttat	744

<210> 105

<211> 560

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (249) .. (249)

<223> baySNP9883_A249G

<220>

<221> misc_feature

<222> (506) .. (506)

<223> Unsure

<400> 105

gatctgactg tcgtgtgttt tggccctttt ttcttttac actaagtatt ccattaattc	60
tcagagaaca tttccacaac ctcaaaacca cagagaggga ggctagggt tagaaactcac	120
ctggcagtga agagcctgcc tagacctgag ggtgccagag cgccaggccac agcgcaaatg	180
ctccggagag tagccctcag ccagccactg tgagggtgcc caggacagag gagacggaa	240
aggggaggrg tgagccacgg ccacggccac catggcgccct ccctgttcac cagggccct	300
tgcgtggct cggtggttg gggtggttg tccctgtgct gctgagctg caggactgtg	360
cctttttta aaggattagg agcctgccgc cccttggttc tggttactaa ttcttactct	420
ccccctcccccc tgccttttc aaaattcaag gtgaaatctg tgcactgtca agctggagac	480
acagttggag aaggggatct gtcgnggag ctggaatgaa ggatttataa cctttcagtc	540
atcacccaat ttaattagcc	560

<210> 106

<211> 555

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (249) .. (249)

<223> baySNP10079_A249G

<400> 106

gtaccgaggc aggccgcagc tcccaccatt gcgtacagcc ctggcgtgac acagtctgca 60

ccgggtctgc accagttctt gaagatgate cagtcattgtt gatggtaggc cagctgtcc 120

acgccaattc ccaccatcct gcccgctatac gcccacacag ccatgctggg gatgaagagg 180

cccgacggga tcttgaggag acacagagaa aagcaacatg agggaaaaag accaagtccc 240

cgcttcacra cccccaaagaa acacattccc cctcgacggg cttgcattta gcttcagtct 300

tcagaggagg tgcaaactctg caaaaataggc cagctgggaa aaggtgggac aaataatttg 360

acctgcctag tcagtcatac ctactgcaac ttagagagga cgcaatttttta tactttgatt 420

ccctctcctt caaaaagctgg ctgggtttgc ctgctgtggaa ttaaaagaatg ataagccccca 480

ctgcaaataa cattcaaagt gagcatctgt cagttgagac accactttct ctcgccccctt 540

gccatgtcat tcaga 555

<210> 107

<211> 609

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (107)..(107)

<223> baySNP10481_A107T

<400> 107

gaactgcggg ggactgggcc	gccccctcg gggagggcg	gcccggcc catccagagg	60
tggcccacgt agcgggacag	cgtgtcgcc cggcgcc	tcggagwgtc acggcgcc	120
gtccaagtgg agccccgaac	ccctgaaggc gcggcaggct	ctggagagcg ggtcttgtg	180
cgcctggcc aggtctgggg	gctcttgcca aactgcacgt	ggcctgtact gctccaggc	240
cccttgggc tcgtccccga	gccccactg cggggggtc	ccccgagcag catgtttcc	300
acagcgcgtt atgtttggag	cggccctgc cccgcctgtc	gccatggaaa caaaacaggg	360
gcggtgtggcgg cggccggagc	ggaggccgggg ctggggcttg	ggtggggag gggaaagagag	420
gctcgcaggc tgtcgcttag	gtgacggaa ctcaggcgcc	cctctgcttc atccgggtca	480
cggcccggtcc gctagtaccc	acagtgttcc acagtctgg	ccttggctcc tggcctgtac	540
ccctgggtctt ctgcgcctgt	ccctgggtgtc ctttctct	ttttggttt cttcactctg	600
acctcactg			609

<210> 108

<211> 2388

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (367)..(367)

<223> baySNP10542_C367T

<400> 108

ctctaacttg ctgtgtgatg agtgaattcc tttcggaaagg ctccagttt ctcctgtcca 60

cctttctggg ctgctgtgt cgagatgttc agggcagact caagtcgccca agatggtcct 120

ttgataaaatc tcatggtgtg gagtggagcc aggtcatggg gagacactgg gggagcaggg 180

cagcctctct ccccttccag actctgcact taggctggct cccctgtgtc cctgtctcca 240

gtctctctcg gtttcagctg tgtgactttt agtaagtac ttaacctctc tgagcctcag 300

catcctcagg taaaatac actgggtccct gttccctctc tgggcttcct tctttccct 360

cccccttytct gggctccct gaccccccagc ttcatctca cctgtgtgtc cacccacttg 420

gcaccctggc tggtgtgtc cacatggccg tagaagtgc aaggttagcgt gaactcgggc 480

cgggcctctt cccaggggtt gccgtagcga agccagtcat cggcctctc catctgcacc 540

caaggcaggt cagggagaaa ggccagcagt atcagtacag gcactcacag tgcacgggtgg 600

ggcagggtgg gggctgtggg ccggtgtacc ctacaccaag tataagttag gagctctgag	660
gtggccctt ggtctgtgg gctatcgagt gggacacgga ccacctgttt caggggcacc	720
agctggcttt gggtcgaaaa gtggggagca gcaaggatgc ttccacaga gcttcgggg	780
ctgtttcgga ctttccaga gatgataaac aagtgggggt cttccccatc ctgactagac	840
cccacaagtt agagccaagg ctgctcacct gccagccccc ggagatcttc tggttaaaaa	900
tcccaaactc atagcgaatc ccgtagccat aggccggccag gcccagtgtt gccatggagt	960
caagaaagca ggctgggggt gtgcagggag gtggctgtca gggacccagc aaggaggacc	1020
ccatcgccccc actccacccct cacggccctg tcttcttacc tgccagccgg cccaggccccc	1080
cgttgcggccag ccccgcatcc tcctcaattt cctccagctc ctccatgtcc aggcccagct	1140
ggaggagtga gggtgacagt ggtcagggtc aagtgtcagc agtggaatcc cccagtcddd	1200
acggcttgcc ccacccaca cacacctggt aggtggcctc gtcacaggca ttctctaagg	1260
ccaggttcac catgggtttc ttagcgtcc gtcccatata gaactctaaa gacaggtagt	1320
agatcctctg cccagagaga cgatggca gggatgggg tcagggccac acaccaacac	1380
tcagccaggc ccagccacgc ctggacctct ggcccgctg ccctgctcag cagtcacccatc	1440
cctgtcccca atttgtttct ccctgtctca ggctttgggg cccagcggtt aaggttctgg	1500
tcccagcatt cctctgactt tggacaaatc actctctttg gcctcagtct cctcatctgg	1560
gaaatagcgc tggccataacc cacttcaggg actgaggtac tcgggagaat gggcacccct	1620
tccccctgca cacacccccc cgacacagccc agcaggatgc caggacatgt ggaagcgcct	1680
ccaagagctc cccaggaggg caaggccaag gcccagagaa aaaagtctt tgctcaaggt	1740
cacacagtgg ctagagactg ggctagagac tgcacactcc catccttgcg ctgtccagtt	1800
ccccctggcc ctcaagcctc aatcccaagg agacccagag gcaccagaaa ctaggatgct	1860

gccagtgcct ggtctccag tttcctgggt cccctcgtagg gccgtctgcc cgccccctccc 1920
ccactccccca ccgaggcgtag tcaggttgct gacatttacc agtgacccca ccggacactt 1980
gatctctgcc gccccagctg ccccaaaaaaa gcctgctgca caggcacacc ggcatacat 2040
gcagcaactg atgtgtcctt ccacctgggc ccagccaggc cacaggcgcc gtcctgccc 2100
ccagcacccca ctccaacattt ctccgagtgg gcactgaccc tttgcagcca gcccacactgc 2160
tctgagctcc ctgaccccca ctccctgcccc aggtttctcc ctcagattgt cccagcaccc 2220
cttgtgcctg gcacccctgg attctccacc cccaaagaacc tagagtgacg aggggcagcc 2280
acttaagtca agatcgccag ctccctggca gcgccttcag cccataaccc caccccaaggc 2340
tccccagcag caccttgggg tccttctcat agtagtgctg ctgcgtgc 2388

<210> 109

<211> 597

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (510)..(510)

<223> baySNP10600_A510G

<400> 109

- 142 -

gggaaggaa aggacctgcc agtgggcagg gtccttaagg aggccatctg ttttggcagg	60
atacgtacta tcagccccgt gccctggaga aacatgctga cagcatcctg gcactggtat	120
gtctaccctg gcatctggaa ctctgcacatct ttcagaccca cctgtcctct tgaacttagc	180
cctccctaac ttgggagcaa cagtgcctg gggttggggg atgcccctggg ctctgcagca	240
gacctctcca acacagacac acaggcacac tctaaatgtg cataacttggc actccccctt	300
ggtatgttagc actgctttct ctgggggcaa cctgagccgt aaggaaaaaca tgtttactct	360
tgggaccatc tgcagggtgct aagtccctgca gttccccagt gacctgtcct ccctggcaac	420
taacctcttt ggctgcaggg acagctgttc tttctggcac agttcctgtg gtgacgtttg	480
cgcatctctt ggggaccagg ccagggctr tcctgagcag ggccaattga aaaggcttga	540
ttaacttgag tagacagaga gactgcctt aaatgtgaga gaattatgtc tggagat	597

<210> 110

<211> 569

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (402)..(402)

<223> baySNP10621_C402T

<400> 110
acatgtatgt ccgtgttgca aaaataatac atgcctcaaa aacctgccta ggggagccct 60
agtgcctggg tgctgtggcc tgaggttagca ggtgggaagt tagggatgtc aaaaaatgt 120
ctgtgtctga atccaggatt ggggtgggtg ttggagaggg ctttcagctc ccctcctccc 180
agggggcct cttttttaa cggtgtccgt gcccttcctg gcccagccct aaacctaaat 240
tcaaatactcc tccatgcctt tgcgcaaagg acctccctct tgcactctaa gccttagttt 300
cctcctctaa aaaaaggggg tctctaaaca ggagctaccc catagggttg ttgaggatta 360
agtgaaccaa tacatataca gtgcttagca cttaataagt aytcffffct gcgacaccta 420
gctgaactat ggtttgggtt ctgatcttga gaggttgatg taacctttta aaggcctcag 480
ttcgctcacc tgtgaaatgg gtctaaagaat agcactgatc tcacagggtt gtgatgcaga 540
ttaaaggaga tggcatgtgt aatgtatac 569

<210> 111

<211> 631

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (431) .. (431)

<223> baysNP10745_A431G

<400> 111

aggcatctac ctgggtcttc atggtgttct gtgttagacac aaagagctcc atctccctg 60
cctcgccctt tggAACAGCA atggtgcaGT gagtctccAG gtagaagtgc tcttggccAC 120
cgatgtatat ctcccCTGGG gaAGCAGTGA gATCCCTCAC agtgAGCCCA atgCTGCAGA 180
agggGCCAGC ttgcctaAGG agAGAGTATA ctctGCCAAG tggTCTGGC AGGAAGCAAT 240
ggctacctga gggtaACCT caaggTTCC cactTGGGT ggAAAAGGAT CCCAAAGTCT 300
tagctatctg ggagctgAGT gCTCCAGCCT catccccACC CCCACAACAA agaaAGAACG 360
acactgaaat gcATCCAGTC caaAGTTCTC ttctcACTGC agCTTATGGA aatcaaggat 420
ttcaaaaacc rtcattgtAA aattttggAA aaagtaaAGC aggGATTAAT agatgtgatt 480
gaaacactga aaaccAGCGC atgtTCCCga acctaAGCTA ccaggCCTGG tggagAGTCG 540
gcttcataACC aggCTTGTG gagAGTTGGC ttcatAGTGA ctTtGCAAAG cacaACAGCC 600
aatgtaaaaa acagttccaa aagaggtAGT C 631

<210> 112

<211> 2956

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (2831) .. (2831)

<223> baySNP10747_C2831T

<400> 112
taatacatgc acatccaggg acggggagct cactcctcta cacaggcagc ccattctcag 60
ttacctcaat tgtgataatg gctggtagtt ctcataggt gatttcacc ccttgggcag 120
ctctctgtgt gtgtccggg gtgtcagcaa ccacagcacc aatgatatgc ccaacacaag 180
taacctagta gcagagacag actgttaaag aacgcaacca ggctcatggt gaaacaaaatt 240
attttggat tgttcaaaaa gccaaaagaa gtccctgccc tcacaatcaa agcacacttt 300
aggaatgccc tagggcctct taatttcctt atcctactga ttgaggatca ctaggatcaa 360
gatggcaaac acatttcatc tcaaggccca attctgagta tttagtactg gcagactatt 420
gagaagctga accagataga atgtggcaat tgattccttg tttgccatga gcagaaaagg 480
ggatatggca ccaggaagtg catttgtcaa ttcggattca ctccaacacc attggcttcc 540
ctatggagac tcagaaggca aggccacatt tggctagttt ctattgacag atcatgacta 600
accttaggcc ctgaccccc gttttatccc ctttcaccc taccactctc ttttatgttc 660
tatttccag atttatacc aaagcttctc aaaggctgta aaggctgtaa gcatcaataat 720
aaggcctgta agacacgtac ttacaagaca tgatactta agtacatgt cttatacttc 780
aactaataacc caaaaggagt agctctcaaa tactggttct tagacttgat gacccataaa 840
aatatttta aaaatttata tgataatgat tggtttta ttttgtttaa taattcagtt 900
tcataaaaagc ttaatggatc tccttcagag ataattgtca tccaaacatcc cgaaaaagg 960
aaacaacaaa aaatttttgt acaacacatc actttagaag atgaagttc tgacaatagg 1020

aaccaacaat tagtatgcat gtctctgata attatctctt atggcccaaa taagctattg	1080
actcagttgg ttagtgcaat ggtggtaaaa tctggctgtt ggttattgca atggtggtta	1140
aatctggctg actttcacta gccataatgc tagcactgct ctgagaagct cttaaagtat	1200
gtaaagcaat ttgttcttct atgaaatgct ctccatgg agtctttgtt ctcataattt	1260
tagtttttg ttatctcctt cactttaca tcaataataa gatgaattca ctcttcagaa	1320
gtacccactc atgtctaatt tgcaacattt gatgtctatt ggaattacaa aatgactgtc	1380
gagaactatc ctatgagtaa aatataagga cttttgttagc agctgtctta aacatttgaa	1440
aaattttgtt tgggttgaa gaattccaca tagttgaaat caatagataa actttcatgt	1500
aagtgaatta ccaatttcacg tagtgggtggt attgtgattt ctagtttagt tactaaatgt	1560
attcttattt tatttaatt aaagagctt ctgttgcctt ttaagaaccg aattgttagt	1620
tcaaatgcaa tcaccagtgt tggttactg ccactttggc atagagacat cctgccatgt	1680
acaaacagca gccatcaatt aaataaacaa gtaacatatt ctatctttt ggattgtcct	1740
gaatatgggc caactggatg atggccataa tccatgcaaa tgtataacct ttccagatca	1800
ggagtttggg gcaatgtaca caaattaaaa cttcaatact tattcaattt acttcatata	1860
aaaaaatcca agacttaccc tatccttcgc aaagactgtc tcatttacaa aattccagt	1920
tatgttactc ccaggaacat catcagcgga aatgaaacaa acaaaccctg gaaccttctt	1980
agcttctgat gtatctatgg acctgcaaga atgagtggtg tgagggccca ggtcagcaag	2040
ctggagcagg ggacccatca cctgggttggg caaccctgtt cttatggta ttggcttggc	2100
tccatcctaa ttcctcgatt ctctgcttct tttcttattt attctaattc aattatatcc	2160
tattctgcaa atgttgatta aatcctcacc atgttcaggc cactatgctg aatgttgctg	2220
gggatataaa gtgaataagc cagccaggca cagtggctca tgcctataat cccagcacct	2280

tggcaggtca aggtgggagg atcactttag cccaggagtt taagaccagc ctgggcaaca 2340
tagcaagatc ctgtctccat ttaaaaataa ataaagtgaa gaaggcaggc caggcctctt 2400
tggatgttac gtgatgctct gtctggtctc caagtacaag caagccatat cagaacgaac 2460
agcacttact ctggagcgct ctggctcatg cacacatcac acctaactcc ctcccaaaat 2520
cagcacatgg agcccggttg tgccactgat ccaatggccc tgaacagctt cataaagctg 2580
gatttgtctc cccacattca ttgtgctatc ccagcatgac agggcatcct accataatta 2640
ggcaacacga accgcaaagg gagaatgccc gactatatga tcaaggataa cagtctcaac 2700
tatgtactca tcacactggc acatgcccc atggggaaat agggcaacac atttcaggga 2760
aaggtagtga aactgccttg aagttctaac catcttccaa atgcttaatc ctcacaagaa 2820
accctgaaag yacttatecct aattccatt ttatgtttgg ggaaactcag actcaaggaa 2880
gttaggtagt ttttccaaag tcactaagcc agaaagcagt gtgactggaa ttattggAAC 2940
tgaggttaag ttagga 2956

<210> 113

<211> 557

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (64) .. (64)

<223> baySNP10771_C64G

<400> 113

ggaggttagg gtccccaggg aagagcagaa cctggccca ccgagttact gaaggcaagg 60

aagsgtggcc tgcgtcaccc tggcgccct gcctgggtct gtcctcgct gtgcacactg 120

catcacgccc cgctggctgc ctccctctgc ctcttccgt acagacgcac actcacagag 180

atcatgcaca cgacacgggg cggggacgga gggccatgg cagagaaggg agcatggggg 240

ccgggaggga gggtgctctg agccagaggc ggggttggg agggcagccc agccaggtgg 300

cagcagccag ggccctccttg gagtgccca cctggagtgg agtggcagtt tgggtggctt 360

ctaggcgaag atgccccaa cagtggaggc gatgacgatg cccaggatca cacagcagat 420

gatgatcatg attctttct gcatggaaag cggcaagag aggccata cagtgttggc 480

ggcacgtggg gtgggactat tgcaaaggct gatgactgga cagtcggagg ggatccaagc 540

aagggaaggt gactgcc 557

<210> 114

<211> 544

<212> DNA

<213> Homo Sapiens

<220>

- 149 -

<221> variation

<222> (339) .. (339)

<223> baySNP10870_A339G

<400> 114

ggcagttctc gatattcacg atcacggctt tgaagtcccg gtcaacctgc ccctcttgt 60
ccccggcatt cattgacacg ggctttccct ggcttggat cccatcccaa cacacacgac 120
agaaaaacagt gcaaaataat aacacaaaatg ccaaatgtac acagtgtaca actctgaact 180
gagaaagtgc aaggagacca cgggaatgga agtgggtagg ggtcgggagg atgggcacca 240
ggctggtgtc ctgacagcca cacctgggtg caggccacgt gtcctcacgg ccaaggtAAC 300
cgggtgtctc aggcaactaa taaatattaa gggtgaccrg tgactcaggc tctgcctctg 360
ggaagtggca tcatttggtg aatgagtttgcgtctcggtgc caccacggat tcagccagat 420
catttccgac gccatgaatc cctttcctgg cttaaggaag gtacaaaccc acctcgaaag 480
acactgggtg ggtcatgatt cgggggtgac agggcaaagg ctaacctggc tgtcttagcaa 540
ggct 544

<210> 115

<211> 1357

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (1290)..(1290)

<223> baySNP10877_A1290C

<400> 115

ggtaagaatc aatacatata acacagggga ttttaggata gagaaactat tccatgtgat	60
attcgaatat ttgccaaagg cacagagtta gctggccaa gacttaaact caagtctctg	120
actcccaagt tcattgtctt tccattaatc taagttgcctt cttttgatata ggaatataac	180
aaagactaca ttgactatga aaatataaaac ttagggagg aaaaggcaac tggaaagaa	240
aaaatataatc ctttgtctgt caatcagaga aaaatgttag cttgagcagc ttcaacttgg	300
ttaatcagta tccctctctt ctaccattaa gaaagaatac gtacttgcaa aagaatataag	360
gaatctatcc tctcttccaa agatgtccga cggcttacg ataatggctt ccggaaatgc	420
atctctcaact actttctctc caacagccta aacaataacc aaacaaaacct gttttgagtt	480
tagagacaag tgaataaaagc atccattctt tccactatta agacatgact tgtatccaa	540
aggcgatatt ttccctccaga taaaggtaat catgtatcc ataaaactca gttcacacaga	600
actttaaaaa aatataatcc acaaaaaatgt cctgcacctt acagattggg ttgggtctct	660
tccaattttt ttatccatgg ggaagcttac attgaagaag gagaaaaatc aaagttagaat	720
ttcttcagcc tccatttttc cttctatcc cagattctct ggtttgcgtc aaccatctag	780
cagcctgtta gaaaaaggac agtatggtgg cagcaggctg caataatggc agtgcacca	840
gtacccatcat atccaaagga gggtgggat agagtcacta atccctctaa tctcaattgc	900

tgtaccatcc ttacttggta tcatactacta gcctcctagg caagtcttct tggatcgatga	960
agatatcagc acctaattca gtcttccttt ctacttccac caccactgga ggtgacatga	1020
tgtccaagtg ggcttggact tctcaggttc ttgagctgct caactccaaac gacccctct	1080
tccttccacc tctaccactc ttaacttggt tacaccacct actgtatcaa catctggaat	1140
tgctcttctt ctgaggtatt aaatgaagac atcctgctct tggatgtcca tttcctacaa	1200
tttccagcct gcttggctt tggtcatctg ctccctggat acctgttct caacccctc	1260
aagaactcta gtgcactgat tctgcttccm ctgtatcaac tcttccgact gttcctgtcc	1320
ttccctctga attccagatt aggttccata gaccatc	1357

<210> 116

<211> 623

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (140)..(140)

<223> baySNP10948_G140T

<400> 116

gagtcaggat cccccagcccc ctctccaggat tacattcatc caggcacagg aaaggacagg	60
gtcaggaaag gaggactctg ggccggcagcc tccacattcc cttccacgc ttggccccc	120

gaatggagga gggtgtctgk attactgggc gaggtgtcct cccttcctgg ggactgtggg	180
gggtggtcaa aagacctcta tgccccacct cttccctccc tctgccctgc tgtgcctggg	240
gcagggggag aacagcccac ctcgtgactg ggggctggcc cagcccgccc tatccctggg	300
ggagggggcg ggacaggggg agccctataa ttggacaagt ctggatcct tgagtcc tac	360
tcagccccag cggaggtgaa ggacgtcctt ccccaggagc cggtgagaag cgcagtcggg	420
ggcacgggga tgagctcagg ggcctctaga aagagctggg accctggaa ccctggcct	480
ccaggttagtc tcaggagagc tactcggggt cgggcttggg gagaggagga gcgggggtga	540
ggcaagcagc aggggactgg acctggaaag ggctggcag cagagacgac ccgaccgct	600
agaaggtggg gtggggagag cag	623

<210> 117

<211> 555

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (286) .. (286)

<223> baySNP11001_C286T

<400> 117

gggc当地 cctcg当地 ggc当地 ccg当地 gaac当地 ccaca当地 ccc当地 tggc当地 tatggc当地 gagc当地	60 120 180 240 300 360 420 480 540 555
---	---

<210> 118

<211> 1051

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (215)..(215)

<223> baySNP11073_C215G

<400> 118
 gctgcgtccg ggccccggc tgtcgccgcc ctgcggctc agatcatccg ggcgttggag 60
 agggaggcag agagcgggtc ccggagaagg aggaggaaga gccgaggact catcgcttc
 gcgcctcagc tgtcttagt ccccccaccc cccctcccc aaccacccgt tccggagcaa 180
 cagccgcctg aggacccgaa gctgcgggcc ggacsagcgc cgagaccact gctctctagc
 tcccgccgcg 300
 cccgcgcgctc ctagcgcgcg caccgcccgc gccgcccct ctagcgcggc
 cccgcgcagg cgcgctcactg accgcgtcgc cccctccca cccctccgt cgccccggccc 360
 cgctggctcc gccgccccta cagctgcggc gcggcgccgca gctacagaga cccggatgtc
 gtggggcagg aactgcggtg agggctggcg ggcgggggag gggccgcccac agatgacgtc 480
 actgccttac ccagcttctt tctctgcgc tgctgctgcc gccgccttg cttacggcc 540
 tggagcacca ggccgaagcc gaagggagcg tccggatccc ggatagcagc caggacccgg
 gccttcacgt tccggcgcca gggactggac agaatgtgcg gctattaggt gcccagtaga 660
 tcgacagccc ctccgtgccc gcccttggcc aagttagggac tcggaagcta cccctacggc
 gtccgcgcggc ggagccctgg ctcttctacc tgcctgcaga tacaaacccc actccctgcg 780
 aagatggtgt acacgcagcc ccgagcacag acccgaagct gtccaccctt cttggcgccc
 gtcgggtct ggccgctgcc ctgcgaaccc atggtgggtc ccaggcagct gccagacccc 840
 cctacccag agtcccactc ctccagagcc ttctctccc agtgacccca ggaagcccaa
 gcaggtgcca cggccacaca ctcgcgacc caaagggcag agacacaagc acgctaccac 960
 cgccccaccaa tgtcgagtg caactgattc a 1020
 1051

<211> 478

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (116)..(116)

<223> baySNP11153_C116T

<400> 119

ccactaccct acaggccctg cgagtggaa gaaaagtaga aactgcttag ctaatgattg 60

acctcagccc ttcttctact gctttggct tagatggaga ggtcaaagct ctcaayggcc 120

tctaccctat cttggcgct atgcccagta attctaggca ggcagtcatt cttagaggag 180

cagccccccag cccccacgaa cacagcccgag cagctattgg gaagttggaa tgcccgatt 240

tagttcctcc ttcccaaagct gggccagagc tgagtcttga attgagctgc aacaacttta 300

ccattcttgt tcccttatttc tgccccgagt tgggtcagcg ggctggtctc cctgaagtcc 360

tgttatcttt cagcagctt a gttaaggca gccagcattc tcatacgtagg aatggaaagc 420

ctgggaaaat accctcctca gctctcagta agtagtgctg gcttcatttc taagtaga 478

<210> 120

<211> 1197

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (194)..(194)

<223> baysNP11210_C194T

<400> 120

ttaaccagaa ggcagtacgg agaggaaaaaa gtgtaaaggc tctctcagta gcagaagaga 60

atgaaaaagg gagaaagttt ggaacagagg agtgaggaa agtaaggctt aagacgaggc 120

aggagaaaagg agcaggagtc ttggccaaaa taaagatttgg gttttgttc cctaagccag 180

gaaatgacat gatyagattt gcttttaagg atccttccaa actgctaaag acatgttagat 240

caagtattca ttggctgggc gcggtagccc acgcctgtaa tcccaccact ttgggaggct 300

gaggcgggaa gatcccttga ggccaatagt tctagaccag cctggcaac acagttagat 360

cccatctctc tccatttttatt tattttaaaaa agagactcag gccgagcgcg gtggctcacg 420

ccagtaatcc cagcactttg ggaggctcac gaggtgagga gttcgagacc agcctgacca 480

acatggtaaa actgcagtct ctactaaaaaa tacaaaaatt agccagtcgt ggtggcgcgc 540

gcctgtaatc tcagctacgc aggaggccga ggcaggaaaa tcggttgaac ccgggaggcg 600

gagggtgcag tgagccaaaga tcgcgccact gcactccagc ctgggcgaca gccaagact 660

ccgtctcaaa taaacatata aaaagaaagt caaggttatt cattgcctcc cttggagact 720

gtactccccc ccaccatgtc aatcaacaaa tatctgaaca cctattttt tttttttttt . 780
 tttttttttt gagacggagt ctcgctctgt cgcccaggcc ggactgcgga ctgcagtggc . 840
 gcaatctcg gtcactgcaa gctccgcttc ccgggttcac gccattctcc tgccctcagcc . 900
 tccccagtag ctgggactac aggcccccgc caccgcgcgc ggctaatttt ttgtatTTTT . 960
 agtagagacg gggtttacc ttgttagcca ggatggtctc gatctcctga cctcatgtc . 1020
 caccgcctc ggcctccaa agtgctgggta ttacaggcgt gagccaccgc gcccggcctc . 1080
 tgaacaccta ttacatacgg ggatacagct aagaactttt cacagagacc cccgcccccta . 1140
 acaaaaacttt acctaaaaagg gttgggagca tgtcctactc tagtttcatt ccccgTTT . 1197

<210> 121

<211> 500

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (225)..(225)

<223> baySNP11248_C225T

<400> 121
 acgccccctgg cctccccaccc tccaaacccca aaaagctctg gaagccgggg gagggacgga . 60
 gcgaagcccc ggctccctga gttgaacagc acttggcgac agccgggtgcg cgcctgccta . 120

cttcttgctt gctatagttt gaaaaaaata tatatatatg catctacccg gcgcccaata 180
actagccaga cccggctgaa ggaaagctaa ctcccctgac gcgaygc当地 gcgaaagaat 240
cagcagtcga gtgagccggt cgctttggta agattttccc tcccttaccc ttcaactcct 300
cccgctgcca ggagagctgc caggtaggac ggccccaaa gcgcttcttc aagttcctgc 360
gctggagtca ccacccgaga ggcatcgccg tctggcggtt gtgtctgagc agaagccgca 420
ggaaccagcg ggagcagcag gaggagctgc gggactcggtt tgccgaggct cgtgttctgc 480
tcaaaagttt ttagacgcgc 500

<210> 122

<211> 2955

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (1110)..(1110)

<223> baySNP11372_A1110G

<400> 122

tcccaccctg ccctctaaag tgctggatta caaacatgag ccacgacacc cggcctgaat 60
aaatgctgat ctttatatacg aggaaagttc ttcacattct gtcctgatt atcttaccct 120

gggaggttag	ggaaaatagc	aatgttaat	catattaatc	atctttaggc	actgtttaa	180
gaagacagaa	gagcatttat	caacctcccc	tcctgagatc	aaactacagc	catagtcaag	240
gcacttacag	gtataatggc	acttaatgtt	aatgtggca	aacattggtg	gattttgcac	300
cactaattgc	tctaagatgt	tataaatagt	aactcacaga	actcttccaa	gaacctagga	360
agtgtgtacc	attggtattt	ccattttcag	gtaagaaaac	tgaaacagat	gttcagtgac	420
ttgccaagc	tcagaatcta	ctacgtggta	aagactgggt	tcccacccag	acagacggac	480
tcaagaactc	acgcactgcc	tctgcaccct	ctgctgccaa	tgaaaattta	aatgagggca	540
acaggagatc	agagatgcc	agagatgtt	gaaaacagaa	ctggctgaag	aatgacaac	600
tgaataaaaga	ggggtaagg	gagctgtgaa	ccacagcaat	gccaaaggagg	catccagcca	660
ggcagagtgg	tctactaggc	agagcctcag	agaggggagg	agttcaccag	gcccacgtgc	720
catatggat	tcatgccagc	cttgagtcta	caccagtgaa	aaaaatcaga	gagttcatga	780
ctgaagcaat	atgccccaga	aataatatct	ttgtattctg	acacttcagt	gggttcccat	840
tcaatcaccc	tacagggaa	actgccagta	gacctgcccc	ccaccccg	tt caatatgaat	900
agatctagga	tcagaaattt	gagaaaggtg	aaagtgggaa	aacagaccaa	gatgaccaaa	960
tacaaaagga	gtccagaaca	aacaagtaat	tttttaaattc	tcaaaccat	gtcctcaggg	1020
agattaaaaaa	atattttatt	cataaactta	aaacaagata	tatagaaaag	aagaaaaatc	1080
aatgaaacaa	acaaaaaaag	agattttctr	gaaactaaaa	ggtgtatgatc	aaataaacaa	1140
gtctagagag	accatgtgaa	agaaagtcac	ggaaatcctc	cagaaaataa	accaaaaaga	1200
tgacagagga	aaaggagcta	tatgggaaat	agaaaagtta	ccaggcacag	ggtcacaggg	1260
tgttctaaga	aagctacttg	agaatgagcc	accgggagga	agaaagggtg	ggtgggtggg	1320
tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	tatgtgttgt	gcatccatgg	agggcaggtg	1380

gggataacca agaaaagaaaa agacatggga tccagaaaac aggaaaatca acccagagag 1440
 aaggaaatct gaggatcaca gtggacatg cagtaggcct acaaaacgac cagtccagga 1500
 tggaataaaa aggaaatggt tctgtggaa aaaggactc aatagaatac ctcaaaggat 1560
 tcacagttt agagaaactg aggaaatgaa gaaggcaagc agtacaaggg aggaaaaaaaa 1620
 acaaaggcaa ttagaaacat cagaaaaaag taaagctgtg ccacaaaaca tgtgcaaaca 1680
 tggtgtacaa ctcagctcca cagtaaatag tatttaaac atcacaaaat gtaaacactc 1740
 ttgattgatt tttaactttg agaacagaac agagcatata aatatgagaa ctaaatatac 1800
 ttgttaccga ttagtacaaa cttaaagcac aaaggttagca gttggatgt gaagcactga 1860
 acgaaggaga aggaggatta atattgtcat cttttaaga ggggagtcaa gaaatactag 1920
 gtaaaaactga gagtataaga aagaaagttg taagtaaatt gtttacagct acaaagttgc 1980
 taatggagga cataaaactg gtgataacaat attaggaaaa ggtggagagg agagatagag 2040
 ggagtgtaca aacaagatga aaatgactaa taatgacact ataagtaata atgataatac 2100
 cgattcaggc ccatcccagt tagggcggc tccaaaatca ccattgttct tttctcacct 2160
 tgtgtctctg cgcactcccc ggcacaccca cttccagcag ctggtcttg tttgcagact 2220
 ttattnaac agtcagtgg ttccggca tcctccagct cttataaaaa agccccctcc 2280
 tcaaaagcca ctcgcctccc tcttccact tcccacctct gtttcagggt cgaggcatcc 2340
 agatatctgt cttctgggc ccctacgcag caagactaaa agggggaccc agtcctggc 2400
 agcagttcac caggggagta tgcagagggg catctggaca cttcttgctg taagggacgg 2460
 ggtgacggga gggggcttc cttcccccctt cttcctgctt tgttcactct gtgacaccct 2520
 aggccagggg agctgtctca acgccatctc atgagccatg agaaccagga ggaccaggag 2580

- 161 -

ggagaagagg agcaggaggg cagacagagc tggggcctcg gacctgccca atacttgtga 2640
ggagctgcat ccaggatccc atcctcttgg gtcattgttg gcctggctcc cacctttgtc 2700
tggaggctct gctgggggtt gaggctggat actgcccctc aggcttgact aggacacagt 2760
gtgtactcca tgggtgagcc tgcaggctgg tcaattccgg tgtccaactg agcgacctgg 2820
aagaggagcc ctccctccca ctcagctct gagccaagct ctccagatgc agaggacagg 2880
gactctcagc aaagcatctc ctcagatgc gttgtgggc atcctcccttg ggcagggaaa 2940
gaggagtcga aatga 2955

<210> 123

<211> 1004

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (486)..(486)

<223> baySNP11449_C486G

<400> 123

ttaataaaata aaataattct tgaaatgttt ttctttctat atccccactat ccttggtcag 60
atttttttct tatttgtgtt actgtctatt aatgtattt tctcttaagc tgagacacag 120
atctcttaag actgtatggtt tagaatatacg cagaccatat ttttatgtcg ctttagactc 180

ttgtccaggt gaaaaaaat ttataataatg ttgtgaactt ctgataacaa tctctat	240
gttagatac atctctttt ataattaaaa agtagtcaga tactaagcaa aaacagaaga	300
acaacaacaa aaccccacag ctactaaaag atgaagagac attgaattga gaattaagca	360
aaacccttgc aggcagcagg acaggccaga gctgaagaag ctgggagtgg tgaggtgcc	420
ctagggaca ctgacagagc cttgaaccca ctggtgcagg aggcaggat gagtgaagcc	480
tgtctstgtc ttcaagatta tggtcccaca gtcctcttt tacctcatac gcattgcctg	540
attttgaaga gttaaggttt cttgaagca caggtgcctc aacctctata ccacgaaaga	600
cacctctaca gattctaaga atcaccttac acatgggtgc catatgttt acctggggcc	660
actgttcttt aatatcatcc cttccctcag gttccatct ggattccaca aaagccaccc	720
ttcctgaagt tggtccctct caccggattt atccgaagac ctccctcttc atttccgac	780
cattcctta ggtctgcctc taaacaagag gccaaagcttg aaattcaagt gtgaaacaaa	840
ctccctggaa aatggcagta tcttagaagg tgtgagatat tcttgccttc caggaatagt	900
tgcatttaaa aagacagatg aggccaagga gggcagatca cctgaggtca gcagttcgag	960
accagcctgg tcaacacggt gaaacccct ctctactaaa aata	1004

<210> 124

<211> 1004

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (489)..(489)

<223> baySNP11450_A489T

<400> 124

taaataaaata aaataattct tggaatgttt ttcttcttat atcccactat ccttggtcag	60
atttttttct tatttgtgtt actgtctatt aaatgtattt tctcttaagc tgagacacag	120
atctcttaag actgatggtt tagaatatacg cagaccatat ttttatgctg cttagactc	180
ttgtccaggt gaaaaaaattt ttaataaaatg ttgtgaactt ctgataacaa tctctatTTT	240
gtttagatac atctctttt ataattaaaa agtagtcaga tactaaggcaaa aaacagaaga	300
acaacaacaa aaccccacag ctactaaaag atgaagagac attgaattga gaattaagca	360
aaacccttgc aggccaggcagg acaggccaga gctgaagaag ctgggagtg tgaggtgcc	420
ctagggaca ctgacagagc cttgaaccca ctggcaggcagg aggcaggat gagtgaagcc	480
tgtctctgwc ttcaagatta tggcccaca gtcctcttt tacctcatac gcattgcctg	540
atTTTGAAGA GTTAAGGTTT CCTTGAAGCA CAGGTGCCTC AACCTCTATA CCACGAAAGA	600
cacctctaca gattctaaga atcaccttac acatgggtgc catatgttt acctggggcc	660
actgttcttt aatatcatcc ctccctcag gttccatct ggattccaca aaagccaccc	720
ttcctgaagt tggccctct caccggattt atccgaagac ctccctcttc atttccgac	780
cattccttta ggtctgcctc taaacaagag gccaaagcttgg aaattcaagt gtgaaacaaa	840
ctcctggcaa aatggcagta tcttagaagg tgtgagatat tcttgcccttc caggaatagt	900

- 164 -

tgcatttaaa aagacagatg aggccaagga gggcagatca cctgagggtca gcagttcgag 960

accagcctgg tcaacacggt gaaacccct ctctactaaa aata 1004

<210> 125

<211> 540

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (511)..(511)

<223> baySNP11470_C511T

<400> 125

ccatttttgt gcgggtccat ttatatatgt tcctgaacag ctaatatttc atttagttc 60

caattnaact tgctcaaata cattttgaa gtgcattgct taaaatttac attcaaggca 120

agaaaaacgag tttgtcagta aatgttagtaa ttaaggaagt cccaaagtctg tatttttaag 180

atactagagg taattgtAAC taatcacttt aacttaaaga aatagaattg gaaatacccc 240

cctccccccg ccaccccta ccaaaaccat accttagtca ctttggatt ataaccgtct 300

tttacgtcta tcaatataaa tgtattgcat ttggcattca aattactttc aaaggataa 360

atttcgaatt ttttttttc attgttagctt ctgatctta aatgtactga acaggaggat 420

ttggggagct tgtcttgct gataggtgtt aagtatctat gacgacaaat ttgagctgaa 480

gcaatgtgca atatggacta gtaatatctt yacaagacta ttttgaaat tctcacgtt 540

<210> 126

<211> 641

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (556)..(556)

<223> baySNP11472_A556T

<400> 126

aaacacaaaa agtaagactt ttcaagacaa ctcattcac actgtttact tgaattattt 60

actcttgaaa tattattaat ttttatgctg ttcaattgac tacaattcaa aacccagtgt 120

attcatacca tgtgctaaga tatgctcctt cctatatgtg ttcctctaaa gaaccatctg 180

gatcttgtgg gggatatttt cctttgtggt atcaaagcca ggagctcggt gttttccttt 240

attttttaag ggaacactat catgttagcat ctgggaccag aaagaaatct tgatgttata 300

tatTTTACAG ATATTTCTT TTTGGATTT TTTCTCTA AGAGAAAAGC TTTGTAAAT 360

GTGTCATGTA AAAATACATT AACTAGTAAC TTGTCAAGAA GTGCTAGATT CCATTCTGT 420

GCGGGTCCAT TTATATATGT TCCTGAACAG CTAATATTC ATTAGTTTC CAATTAAACT 480

- 166 -

tgc tcaaata cat tttt gaa gtgc attgct taaaat ttac attcaaggca agaaaaacgag 540

tttgtcagtaaatgtwgtaatataaggaagtccccaaagtctgtatTTTTTAAAGataactagagg 600

taattgttaac taatcacttt aactttaaaga aatagaattg g 641

<210> 127

<211> 1547

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (485) .. (485)

<223> baySNP11487 A485T

52202

<221> misc feature

<222> (848) . . (947)

<223> N region

<400> 127

gccaggcact gtgcaaagca ctttqtatqa actaqctcat ttaattctca ttcaatcaga 60

atttaatgtta taatttttca attttgcaga taacqaaatt qaqatacacaq a tagatttttta 120

aaaatttacc caaagccata tagctaataa atggtagtca agatttagaa tcaagtaatt	180
gggtgcttaa caatatgctg tatagcctct tattctgaag agtggttacc accaagaata	240
tccagattgc atctcctaaa atgacagtat ttacttcata gggctggtgt aagaattaca	300
tgagatgtgg caaaaatctt agcagagttc ctgacgtaca gcatgtgctc cacaggtgtc	360
agctggtagt attactatTT ttactgtctg ttcaagagag cagctagact gagactagac	420
tcttagtatt gatttcaagt tatcttgaa gggattcaga ttggcaagca caagagtcag	480
acccwatcct gagccctcaa ctgtttgcag gaaggaataa tctcttgtgt cagatgcago	540
ttgctgggc ttcaccttgcat gaattaggaa cagggggaga agtgttgaa ggcagcctac	600
catctcaagt gatgcaaatt ataatctatc aaaggaatga atgaacgttg gtctggcaac	660
aaatatcacc atcccatttt atttactaaa cttactaaac cactttagca agttaaaagt	720
agcactgaag gcagatttac atattctgag ctctgaagtg aggctttct tttatggct	780
atattgatgg tagcttaaa actacaaata tcagaaaaac taaatttaca gtggattaag	840
gaaagtgnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn	900
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnncta acccgcttta	960
gcaagtttag agtagccctg aaggcagata cactattgtg agctctgaag gagggcttt	1020
cttttatggg ctatatgatg gtagcttta aaactacaaa tatcagaaaa aactaaattc	1080
ccagtggatt aaggaaagtg gggtttattt tttctccat aaccataagt ctggagacag	1140
ggctggcattc tatgaggatc tcttagccac tttctcaagg ttgcaaggaa gacaggtgct	1200
gggaatgact gttagaaggt cagctatgtg agcagataag tatttgactt caaaagaaac	1260
ataacactta gtggaactat gtttttgca gagccctacc taatccattc atctaaaagt	1320

- 168 -

gttgcacat agtaggaga atacgttgc tggaaacca caaattacag tactatgtgc 1380
atccccctcat aatttcacct taacaatttc gttacagagg aaggtgcattc cagttcctca 1440
tgctcgaaa cctactgtgg actttatcct gagtcagaac cagaagtgaa ggcagtggct 1500
agtttcttga gaagaaatat caaccagatt aaagcataca tcagcat 1547

<210> 128

<211> 1547

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (533)..(533)

<223> baySNP11488_C533G

<220>

<221> misc_feature

<222> (848)..(947)

<223> Unsure

<400> 128

gccaggcaact gtgcaaagca ctttgtatga actagctcat ttaattctca ttcaatcago 60

attnaatgtta taattttca attttgcaga taagggaaatt gagatacaga tagattttta	120
aaaatttacc caaagccata tagctaataa atggtagtca agatttagaa tcaagtaatt	180
gggtgcttaa caatatgctg tatagcctct tattctgaag agtggttacc accaagaata	240
tccagattgc atctcctaaa atgacagtat ttacttcata gggctggtgt aagaattaca	300
tgagatgtgg caaaaatctt agcagagttc ctgacgtaca gcatgtgctc cacaggtgtc	360
agctggtagt attactatTT ttactgtctg ttcaagagag cagctagact gagactagac	420
tcttagtatt gatttcaagt tatctttgaa gggattcaga ttggcaagca caagagtcag	480
acccaatcct gagccctcaa ctgtttgcag gaaggaataa tctcttggt casatgcage	540
ttgctggggc ttcaccttgc gaatttaggga cagggggaga agtgttgaa ggcagcctac	600
catctcaagt gatgcaaatt ataatctatc aaaggaatga atgaacgttg gtctggcaac	660
aaatatcacc atccccatTTT atttactaaa cttactaaac cacttttagca agttaaaaagt	720
agcactgaag gcagatttac atattctgag ctctgaagtg aggctttct tttatggct	780
atattgatgg tagcttaaa actacaata tcagaaaaac taaattaca gtggattaag	840
gaaagtgnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn	900
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnncta acccgctta	960
gcaagtttag agtagccctg aaggcagata cactattgtg agctctgaag gagggcttt	1020
cttttatggg ctatatgatg ggttagctta aaactacaaa tatcagaaaa aactaaattc	1080
ccagtggatt aaggaaagtg gggtttattt tttctccat aaccataagt ctggagacag	1140
ggctggcata tatgaggatc tcttagccac tttctcaagg ttgcaaggaa gacaggtgt	1200
ggaaatgact gttagaaggt cagctatgtg agcagataag tatttgactt caaaagaaac	1260

- 170 -

ataaacactta gtggaactat gttcttgca gagccctacc taatccattc atctaaaagt	1320
gttgcacat aggtaggaga atacgttgc tgaaaacca caaattacag tactatgtgc	1380
atcccctcat aatttcacct taacaatttc gttacagagg aaggtgcattc cagttcctca	1440
tgctcgaaaa cctactgtgg actttatcct gagtcagaac cagaagtcaa ggcagtggct	1500
agtttcttga gaagaaatat caaccagatt aaagcataca tcagcat	1547

<210> 129

<211> 799

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (171)..(171)

<223> baySNP11493_A171G

<400> 129

agcacccccc gggactccat tctctcagct tgctgccaaa agcctttgt gttttgtttt	60
gtatcattat gaagtcatgc gttaatcac attcgagtgt ttcagtgc ttccagatgtc	120
cttgatgctc atattgtcc ctatggcc agtggaaact cctaaatcaa rttggcttct	180
aatcaaagct tttaaacccct attggtaaag aatggaaagg ggagaagctc cctgaagtaa	240
gcaaaagactt tcctcttagt cgagccaagt taagaatgtt cttatgtgc ccagtgttt	300

tctgatctga tgcaagcaag aaacactggg cttctagaac caggcaactt gggaaactaga	360
ctcccaagct ggactatggc tctactttca ggccacatgg ctaaagaagg tttcagaaag	420
aagtggggac agagcagaac tttcaccttc atatatttgt atgatcctaa tgaatgcata	480
aatgttaag ttgatggtga tgaaatgtaa atactgttt taacaactat gatttgaaa	540
ataaatcaat gctataacta tggtgataaa agattaaaa acaactggct gtttttttac	600
actgtggtgt ggaagattgt gttggttcac aactttcac ttcttccct gtgtgattac	660
acacacctgc cccttgggt gtgacttgca gtgcgcccta cagggcacac accccatgcc	720
ctccaccact ggctctgctg ctggaatgtg agcagaaggg acatctgcct tattcaagca	780
aagcctttgc ttagccccca	799

<210> 130

<211> 535

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (455) .. (455)

<223> baySNP11502_C455T

<400> 130

- 172 -

ccttggcagc agcacccca tggcgctcctc tgacctcctt ccagaggacg tgagggagca	60
cctcgaaggc ttgatgctct cgctttcga gcagagtctg agctgccagg cccagggggg	120
ctgcagtaga cccgccatgg tcctcacaga cccacacacg ccctacgagg aggagcagcg	180
gcagtcagtg cagtctgacc agggctacat ctccaggagc tccccgcagc ccccgaggg	240
actcacggaa atggaggaag aggaggaaga ggagcaggac ccagggaaagc cggccctgcc	300
actctctccc gaggacctgg agagccttag gagcctccag cggcagctgc tttccgcca	360
gctgcagaag aactcgggct gggacacgat ggggtcagag tcagaggggc ccagtgcatt	420
agggcggctc cccagggacc gcccagatcc cagcytttag agaggagtgt gtgtcacgt	480
attcatctgt gtgtacatgt ctgcatgtgt atatgttcgt gtgtgaaatg taggc	535

<210> 131

<211> 630

<212> DNA

<213> Homo Sapiens

<220> ..

<221> variation

<222> (258) .. (258)

<223> baySNP11534_G258T

<400> 131

tgggacctaa ccagggactg ggagagacccg ataggagtgg aggcaggaag gctgtcagtc 60

gggcacatcg	cttccctat	aggctcttga	gtgtgtggg	tgggaggaag	gcaagtgctc	120
tgtggtatcc	ctggggaaac	ctccctgaag	agtgcctgg	tcacagcacc	cttgaagaca	180
gccattggcc	atgggtcagt	gttgagttt	gttggccctg	tgacacgctg	gagctcttt	240
tccagtgcgg	tatccttkgc	cctgggtgggt	ggagggggtc	tcaggcttgt	gtgtggatga	300
tgctggagcg	aggaagggag	tttgctctg	gagaagttag	aaggcctggc	tgtctccccg	360
gttgctggat	gaagccactt	gttgctgggg	gaaaccagtc	aggcgtgctt	ggccctctgg	420
gcctctgagc	ctctgagccc	accaggcctc	tgcgccttct	ggagagagaa	ggagggagga	480
gggaggttca	gcaactggac	tgcactgact	cacaggagag	ctggggcag	ggtggcttag	540
cctggggaaa	ggccgatttc	ggaggcgatt	aaaaatattt	gtacaactga	ttccagggaa	600
gtgaagcaaa	aggccctttt	gtccagaaaa				630

<210> 132

<211> 1854

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (274)..(274)

<223> baySNP11537_A274G

<400> 132

ccactgcact	gggctgtgcc	tcctctgccc	cgtgtcccc	gccagtcctc	tcctcacctg	60
tgttagctgct	ggaaggaagt	gcatgctgtg	gtccccatt	gagctctggg	gctccttctg	120
cctctgccac	ttcctcttcc	tcctcctctt	ccggacctc	aggggcttcc	tcctgtggct	180
gctccatggc	tgtatctcccc	tcggcgccac	acctgcaggc	ccagtcata	ctctggcato	240
gtctgggtct	gaacgcagat	ggacctctac	aggrtggttc	ccatcagcct	gggcagagga	300
gaagacagga	agaggtcagg	ggaggcagtg	acaaggaaga	ggatggtgcg	agtggggcac	360
gcttgggggc	tgtgtcatg	gagggggttc	ttctgctct	gctccttccc	tagttcctgc	420
agtgcatac	catggtctct	gctccttcta	tcacaagtca	cctgccttat	cacccttccc	480
acctggctct	tgttagtgggt	ttgtgggtt	cggagcaggc	tccataaaact	agagaggtga	540
cacatcactg	tgccaccctt	ccctgcctcc	tctgctgcct	tctgttctga	gtctccagga	600
agcacattgg	aatgacttga	ggggcttttc	ccaactctcc	agcccacctg	gagatccaga	660
tatgcatac	gcctccatc	cccgaccctg	tccctatcag	cactcaggcc	caagaatcac	720
ggctctgctg	tgctactgtt	cctgaagggg	tgagtccat	cctttcagtg	gttgggtgtg	780
aaaaaaagac	ataaaaggact	gtgttttttgc	gtcatgttg	acagcagatc	tgcaaccatg	840
gcctcaatag	cagagacatc	agaaaaagga	agatgtgctc	cattctggag	tcttccaag	900
gtgacaactt	actgggtggt	gatgccacgt	ccacatcacc	caggaggaga	cagttccaac	960
ccttagcaag	taaaacatta	tccacaaatg	ccacagtcag	agatgataag	atcatgaggt	1020
actgtggaga	gtctcccagc	ggggaaatgt	ctgcaccaga	cattgtggaa	ggatcaggag	1080
aagaaaaagat	ctgctttaag	atgttaagca	tctgtggac	cccaactctc	agatatttta	1140

ccgacagctc aaactcaatc tatccaaaca gaaccatca tttcccaa acccattcg 1200
 cctctagtaa tctttacttt agcaacccac ctgcctgtct acccactcat cagaaccaga 1260
 acctggagtg atcagagact ccttctgctc tctctccctg ctctagacct gccaactcgg 1320
 ctgtacactg tagtcactgg ggagtttta aaaagacaga tgcctggtcc catccccaga 1380
 gattctcctt tgattggttt ggggagcagc ttggacattg ggtttcttat ttttaattg 1440
 tcctggtgat tgtaatgtac agccaagttt gtacaaaaca tgttaaggct acacattcat 1500
 ttccaccagg cttcccttg ctggactta acaataacct cggggcctac ttgagggtgg 1560
 aggctggag gaggagagga gcagaaaaaa taactatcgg gtactagtct tagtacctgg 1620
 gtgatgaaat aatctgtata ataaacgcct gtgacacaag ttcacccaca taacaaacct 1680
 gcatctgtac cctgaaccta aaataaaaca ccaccacaaa actcttagct gtttctgat 1740
 gggtttttt gttgttgtt ttattgtttt ttgagacagt ctcactctgt cgccctaggct 1800
 ggagtgcagt ggcgcaatca tggctcactg cagccttat ctcccgtgct caag 1854

<210> 133

<211> 588

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (185)..(185)

<223> baySNP11560_A185G

<400> 133

tgtgggcctc agttcccta tctgtagtaa gaaggctaaa ctataaggcc aaaagcacga	60
ggctctgatc ttgcaggttag aagagttca atgaggatga tgacagtggt gatggtggtg	120
ctgccaagcc cccctccctcc aactccttta cccctagggc cttctttctt gaggccagaa	180
cccgractag ggaggggaca gggAACAGG gacaatccca tggctaagta agacaaccca	240
gaagggtgact tggctgtggc tgggtggat ctcagggtct gggAACGACC CCTCAGGATG	300
cagtgagaag tatttgcac ttggccctgt gcacttcaga ggtgccaggg acttgtgctca	360
ctaagccctt tcagaccccttc ataccctttt atcatgtaaa cttttcaga ctcacaaagc	420
agatgtataa ttagctccac tttacacttg ataagctaag gctcagagaa gttcagtcat	480
ttgtccagcg ccacacagcc tggagggtgt ggagccaata ctcaaggcgg agccgcttcc	540
ttcctgaaat tataactccag tggaaaggag agaggaacaa cgaggcag	588

<210> 134

<211> 620

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (353) .. (353)

<223> baySNP11578_C353T

<400> 134

cacctatgtc tgtgtttctg tggcatgtta tctaaagagt aaaggtacca tgcctttgcc . 60

tttctgggcc ttgaaatctg ttgtactcaag acaactccct catctcaaac ctcccctgttg . 120

cgtgagggca tccgacttgc ctcacagagc caactaatta tcatcggtgg caatcctggg . 180

caatttatgtc tggcttagata tgccataaaag ctacaaatta attaccactt acagctggga . 240

agatctctct cggcgtgctt ggtataaca ttggaaagaaa cacgtgcgtg ggtccatgca . 300

ggctcggcct ctgaagcaag ggccccggct ggcaagttgt tccatcccac ctyggctc . 360

acctggggct gtgggcaggc cagggcttgtt ttgagattcc tccagagttc ggctccgtgg . 420

ctgcctcctc cacggaggag gcacgagagg cagcgtttc cagattgtgg aggacactgt . 480

ccctgcgggt gcttggatg gcttcagaag gtccaggag gtgagagtga gcttctgggt . 540

ccatgctctt ttccctccttg ccatcacctg caggagaagg tctcttggtg ttgagaggac . 600

ttgaagagcc ttccacactc . 620

<210> 135

<211> 501

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (328) .. (328)

<223> baySNP11594_C328T

<400> 135

tgagtgagag ggtggtgtga ggaggcacag gcaggtcctt actaatcaca cagcatcaga 60

gctgccaaact cgagtgtcga cagcctttcc tgggcacacc ttccctgaact cactctgaag 120

ggagggaggc tattagggaaa gaaatataag ctgaaaatgc ccccgaaagg tccactcaca 180

gaaaaccaag agctggccac caccctgcca gcagtggtga cgggaatcat gccagtgact 240

cagggcagcag ccacagctcc aaagtccctgg agccggcccc gcccaacaca ccggatgcca 300

caaagcacca cctacctgag catactgytc cttgagtggc ccagagagcc ggaggacagc 360

acagacatca gctccaagtc tgccaggacag ggagatcaga atccagtttag cctagaattt 420

ccaggagctt ccatgtccca gaaagggagt caagaggcct gtgttgaagt cccatttcta 480

ctactggtat tatgttaactt t 501

<210> 136

<211> 1395

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (912)..(912)

<223> baySNP11624_C912T

<400> 136

atgctggtgt gctgcaccca ttaactcgtc attagcatt aggtgccatt atccaaataa	60
caagtaccag aaacactgat tctttatgct ccaccagatt gaaaggctgg agatggagga	120
ggtaggggag ggtgagaagg ggccacggga ggacctagaa gggatgagtc ccaagagaag	180
gagcagcacg ggtgacaagg gtcagatggt gggaccccg agagccacag cgcaagtggcg	240
gcagagccca gggtgagtgg gatgaggcaa tgagaacaca ctctgtttt ggacccatgt	300
ggcgtgggtg tcagtggaca cggggcaatg cacaccagc tgtggtgatg agagccagga	360
agaggaggac gtgaagatgt ggggtccccg cttagcaggc agtaacagag gaggaaaagc	420
tacaatactg cctggtatat atacttgaca acacagcatc tgagcctctg gtgaccctgg	480
ggaagacctg atggagctcc ctgtcaggac caaatcctgg agggagggga gggagctgac	540
tgagctccca ctagcgtca cgctcccact caagcctcgc cagccccat taaggcotta	600
taggcccccc ttgcagatga caaaagtgac aggcctgagg atcccaacag ggcacatctcag	660
aacatgctag aggacgaagc agaaaacggc agagcttcgg acacagcagg actcgagccg	720
ggccaggccc tgacagctgt gtgcactggg ccgtgttact cagcagagcc tcagctccca	780
ctccccacata tgagctggta gtgggtttt ttcaccagaa ccggtaaaac tgttctcagt	840
ttcgggaggt gtaagtaagt gggtgcctct tagactcaga tgcagttctg gactctggct	900

- 180 -

agagttctga ayttgggacc agggtctcta gttcccacgc tgacatctct ccctagcctg	960
gaattgtctc ttctgactgt ggccctctcaa ggacaccagt gaagaggaag gggagctgta	1020
gcctggctgt tctaaaacct acccacgtcc cttgggctgc tcctatttag attgaactgc	1080
tgtgctgcag cccatccctg cattttgccaa gaagcctgcc attttcataat ggccctccttg	1140
ctccatctac agctgaggta tgtcatctac cctgagccaa ggttgctccc tgttctcagc	1200
ttgcccagcc aggagcaacc ttgaccctta ggctctctcc cctgaccac tggacctagg	1260
cccaactgtct agattttctc agtagctgc caccccaccc accacaattc ctgcaatgaa	1320
ccctattctc ctcttccttt cttaagccct ggcactaaag atagcacagg ctgggctggg	1380
catggctcat gcctg	1395

<210> 137

<211> 572

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (277) .. (277)

<223> baySNP11627_C277T

<400> 137

tcacacatca cttaatcgac ccagtgagat gagtgaaggc agggctatcc catttatcac	60
---	----

tacacccctt actctgaggg aaggctctgac tggctttgc tcgcctgtga atgctctagg 120
tgaggggacg aaggctggtg gtaaggagaa gggcagccac tgagtgggtg gccagcagggc 180
cccatgagag gcaatgaaac tctgactggc ccaggagaaa tgggacgtgc aattgcagcg 240
gggagggcagg aatagggatc tgcagggcag agagacytct caaccttccc agggagagag 300
gagacatgga aaaatcccac agttaagctg tgattggtcg gtctgtccag gagaacccag 360
ggatctcaag ttcaagtctc acctaaaagc gttcacgttc tttgacccta tacttcccc 420
tataggaaaa cactgagctg ttcaactgcaa tgttatTTT aataacaaaa aatcagaaat 480
ggcccaatgc ccaataatag aggaatggtt aaatatatta gggcacaccc agacaactga 540
gtattaccta gtcattaaac tcatgttttc at 572

<210> 138

<211> 558

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (419) .. (419)

<223> baySNP11644_A419G

<400> 138

tgtactgcct tgcaacactg tgccatttc tgcataaacc tgtgtcactt taggttcttc	60
tgttagaatg ttctggattc gaagcacctg tggaagaaat aacattgggt taatatffff	120
gttaagtcac ttaaaaacaac cttatgcata atagggtcat cctccataag aagccatata	180
atcttataca atgagataaa tcctattttgc ttccaaaattt acacttaaca cacctgtttc	240
ttcatttggg aacaggtggg tactgatctc aagtgatctt tagcagaggt ggagagtatc	300
tagacctaca gggatgaggc aggaaatgca aatgagcagc gcattctggg tggggacat	360
tagggaggcag tggggatttc agtaaatgtg gagggaggaa gctgttactc agtatgatrg	420
ttaatactga gagtcaactt gattggatttgc aaggatgcaa agtattgatc ctgggtgtct	480
gtgagcgtgt tgccaaagga gattaacatt tgagtcagtg ggctgcaaaa ggcagaccca	540
cccttaatct gggggc	558

<210> 139

<211> 597

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (146)..(146)

<223> baySNP11650_A146G

<400> 139

agcagtgc_{cc} cgggaggatt ccgatggaag tggtgtgggg tgggggtggg gggcttccac 60
tgtctgtttg ggtcttcgta tatccgtccc ctccggagcct ccctccaccc ctggtaacctg 120
cctcacgctg gccatgctct ggggrcttt tagacatttg gccaggggt ggcagaacta 180
gatcaacccg taccaggctct taaccacg_{cc} cacctagg_{ga} catcg_{tg}gg_{ga} atgtgc_{ct}gc 240
tccagtggac agagaacaac gtccaactct gtcttgggg_a tg_ttctgagc tgg_ttctcaga 300
gaaaatagac gcagctactg agccacatc ctgagggc_{ag} cagacaggac tccccagc_{ag} 360
ggagctggc cctctcccca ttctctcctg cggtctgagc ccttaggggt ctgtcctggc 420
ctt_tgtgg_tgt ggt_taaggtaa gacac_cttac ccacagagt_g acagcatcat ccctcctt_c 480
tcccctctcc tgctacggag tgactgagac atgaattggc gatcttaac atgtgcta_{at} 540
gagtgttagc tgaaccac_{ct} tccaagagga gagtgaaagg caaggaggta agtgaga 597

<210> 140

<211> 501

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (402) .. (402)

<223> baySNP11654_A402G

<400> 140
ggggattgga aatgctgctc aagagagggaa aaataggata tcacgattgg ctcaacaatt 60
ccctgtgtta agagcggtcc ttttctattt ggttaggttgt ggggcaaata catagctagc 120
tcaggtgatg aaatcttca tctcttttagt ttgtgtactt ttaaccaagg actgcgtatc 180
tcttgccccc cttgtggttt tcacctgcaa ctttataatt ataccattgt acacccatc 240
ctctttccc atattcaaga aagattatct ccaactctta ctgtttaaa actcatgtgc 300
ttacttcaaa tatttctgca ctaaagctgt aatattacaa gtttgttttc ctattagagg 360
tttccatttc catccattta tcttttactt gaaaggacac crtattttc acctaattccc 420
tcaattttat tggtggggaa ggcataagag aagttcactg catacaatct aaggtctaaag 480
atcccccaaa atttccagca g 501

<210> 141

<211> 501

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (331) .. (331)

<223> baySNP11655_A331C

<400> 141

ggggattgga aatgctgctc aagagagggaa aataggata tcacgattgg ctcaacaatt	60
ccctgtgtta agagcggtcc tttctattt gtaggttgtt gggcaaata catagctagc	120
tcaggtgatg aaatcttca tctctttagt ttgtgtactt ttaaccaagg actgcgtatc	180
tcttgccccc cttgtggttt tcacctgcaa cttaataatt ataccattgt acaccttatac	240
ctctttcccc atattcaaga aagattatct ccaactctta ctgtttaaa actcatgtgc	300
ttacttcaaa tatttctgca ctaaagctgt matattacaa gtttgttttc ctattagagg	360
tttccatttc catccattta tctttactt gaaaggacac cgtattttc acctaattccc	420
tcaattttat tggtggggaa ggcataagag aagttcactg catacaatct aaggtctaaag	480
atcccccaaa atttccagca g	501

<210> 142

<211> 1224

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (897) .. (897)

<223> baySNP11656_C897T

<400> 142

tgatctcgaa	ctcctgacct	caggtgatcc	acccgcctca	gccccgcaaa	gcgctgcgat	60
tacaggcatg	agccaccgtg	cccgccgaa	atgggaccat	ttttattatac	ccgtcatgac	120
tctctctgag	ataagacctt	ctcttggcct	tgtaagtttt	attttaacag	tgacaaaaca	180
caggaatata	aaaggaccag	tcttgttggc	aacatgtggt	ttcaaggagt	ctgacttttc	240
ccggcctggg	tctctggaac	tgctgcagac	tctaagagcc	cactccccag	aacgaccctc	300
catgccctgc	gtcctgatga	ctttgactcc	tgaccctcaa	ggttgtccag	tcttggctgg	360
cttggctctt	catgagaact	tcaattcttt	attttagtt	gtatTTTTC	tacccatgtg	420
atggaaaata	attcccggtcc	aatgatgggg	atggaagggt	tgaggaggtg	ggtaggagga	480
agaactttcc	aaagaaaaac	aaacggaatt	gatTTccaa	ggtctgtgcc	tacatgggtg	540
ttttccctc	taaaaacata	gcaggctgag	ttgattgact	ttaattatat	tgacttacag	600
ttcttgattg	ttgttactct	ttccctggca	tctttggag	aaattatagc	ttgttttac	660
tctgaaataa	agatgttcc	cttttgcatt	ggtctggct	aaatgcttaa	tcatatggga	720
agaaaaagag	aagccagtgg	attggcctta	tggaaatgaa	cgttagagga	taaacagtta	780
ggggcttcat	gaaatgttca	aaggcttttc	ttgctgattt	tcatgattgt	cttattcac	840
gctgttgtca	tcctgccagc	ccaagtacag	ctgcgtctgt	gatgctgggt	ggatgttytc	900
acccaacagc	cctgcctgca	cgtggacag	agacgagtgc	agttccagc	ccggcccttg	960
ctccacactt	gtcagtggtt	tcaacactca	aggcttttc	tactgtgggg	cctgtccaaac	1020
aggtaacattc	tcagggccac	aagccaggct	ctgcatgcc	ggttggcgag	gtgccagaac	1080
caatTTTCTT	tcactattga	tgagtaagaa	gacaattctt	aggaggtgtt	caaatccagt	1140

- 187 -

tttgtgtctt ggttctgctc gacgatctca ctgctatcac aattccacgt caaaaggggg 1200

aggcttgcgg aaaactgtgc taga 1224

<210> 143

<211> 608

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (277) .. (277)

<223> baySNP11825_A277G

<400> 143

tgtgtgttctt catgtattga gatcattact acggctatca ggaagggttt ttgttagtttc 60

atattttgtt tgagaaaatac taagataaaag cctaaaaatgt ttatgtcata tatgtcataaa 120

atataaacacc aattgtggaa tgcaccacaa tgtcagcatt gtcctctgac ttgacatgaa 180

cattaaacttg taatgtgacc ttggaaataa tggaggtcaa tatataaaata ttcttacaaa 240

tcattaagga aaatgctaac aacccagcaa aaatggrrcaa aagatataaa taaaaagttc 300

acaagaaaaga aaatgcaaat ggttcttaat gtcttaaaac aatctcaata tcactcagag 360

tacaaataca aattaaaact actataagat acaattttca cttatcaggc tggcaaaggc 420

aattttcgtc cctgtctatt caaagtaaca ccattttctt tattagttcc agtgggcaag 480

taagagcaag gagtccacat agcggtggcc aaccaaagtg atgaaaggaa ggcacat 540
taaaaattca tagatccaaa tccacgaaaa aaattctcag tgtatttaggc catagaat 600
ataaaaaa 608

<210> 144

<211> 574

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (246) .. (246)

<223> baySNP11914_A246T

<400> 144
agaaaaacta aaatagactt ttgaatcaag acacttgagc ttaaaaatg tcatttctaa 60
ctaaaaaaag tgacctccat tgcatgaagg tttctgattt attgtattca taaaatagt 120
tagtaagtat atgaatataa cttattttaa atgtgatgct gaggagtggg gatggggaa 180
catttttat tggaagttagg ataagatagg tgattaaatg ttccaaagat aattaaaatt 240
tttttwcctc tgatgtctgt tttctttcat ttacttgtgt cagcatagtt tcccgatgct 300
acacattatc ttcttcatt tttaaagagt tttttctggc atttttacaa ggcgttacta 360

- 189 -

gttggccct tgtaaccc tcatttcac cgtgattctg acattgagat gttcaaccag 420
ttgaggaatc ttcccagag ctataaatt agtgtgtgc caagaataat gtatgcgtac 480
attaaaatca ttatcctcc ctttattaag gttactgttt aaaaaggtaa aggccctgt 540
gggagggaaat gtccgcatga tgctgtctgg aggg 574

<210> 145

<211> 569

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (449) .. (449)

<223> baySNP12008_C449T

<400> 145

ttgtccctc caaccaaaga agtttacca caggtccccg accaaggccct cacgccccat 60
gccagtactt ccagcctctg ccttttagta tgctgctttg ccctgagatt cagaggggg 120
actgaagact tggacatgga ggaaatacct agttgttgtt aaagtatcta ttggtgttag 180
aattattact taaggaacta atttggaaag cagaagctct gcccaggaag cagcatagat 240
ataagcacat tacatcatcc tgcggtaacgg tgtctttcat accggtgatc attgtggtcg 300
ggcgaaaaag aatcatctta actgagaatt ataaagaacc gaagaccaag acgcaggact 360

- 190 -

ttttaaagca gagcatcctc cacacagtgc tctcccccagg agaagtctgc tgtaaaacat 420
cagtcataaa caagaaattc tgtttatayc atagagcttt attttccata aaaaaatttc 480
cagatattcc attttcattt taaaattcaga gccttggttt tatggaagac attttcactg 540
caattttggta tataatgtct gtatgacaa 569

<210> 146

<211> 1619

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (411) .. (411)

<223> baySNP12097_A411G

<400> 146
tgcatgggag ccttggaaaga tatgatactc aaagaatggc ctgatgattg aagcttaaat 60
agcattctga gctataaaaa tgttagtatct tctgatgggg agtgggtgac acaagacatg 120
agagagttag ggaagaaaaa gcatgataaa caaaagtcat cttattataa tgtctgtcag 180
gcatcagtgc tccaaagaac aagtattatc aaccttagtc tccctttctg tgagctaata 240
ttatTTTTT cttttttttt tcttttagac taagtttgc tcttgggttt caggctagag 300

tgcaatggcg caatcttggc tcactgcaac ctctgcctcc agggttcagg cgattctcct	360
gcctcagcct cccgagttagc tgggattgca ggcacctgcc accacaccca rctaattttt	420
gtatatttag tagagacagg gtttcatcat gttgaccagg ctggtcttga acttctgacc	480
tcacgtgatc cacccacctc ggcttccaa agtgctggaa ttacaggtat gagccaccat	540
gcctggccct gctaagattc ttttcatga gattataggg agggggctca agaccattgc	600
tttttttag gaggatctc cttaggtat gagaacttca gagaaagccc ctccatatat	660
tttgggagaa atagcagggt tgggagacag gagaacataa gagttagtt gttctgaag	720
actttctgag acctttcaat ttccttttgt tcaaagtctt caacatgctt aagtgcata	780
ttttggggtt tcattttgg agccccaaact ttccctgtc ataaaacttcc ctagaaaaatg	840
tacataactaa agctgagttg atgcttgtgg agaggacaat tgaattggta gctgagtcgc	900
aaggaatcac attaaaccag tataaaccag tctcacattc ctagcaatgt caatccagtt	960
aaacagctgt gcctcatttc aggaggtat gttgcaggc tgctgtcatg aaagataggt	1020
ctgtatatgg tgcagttaaa caggtactta ataagaggc attctaccaa agcaaaagga	1080
gacaaaaagt taatcattta gcagactagt ttctgagttc acagggcagc cagacaaaaaa	1140
gatttctaca tgggggtttt gaaacagctc cagttggagt agaggttaggc aatggtgatc	1200
tgacagattt ttttctctc ctatagctcc tttagggccag atctgaaaga cttaagtttgc	1260
ttgcaatttc tctggagtct gctctatcac aaagaattct gcaaaaatca catttcctgc	1320
ctttgtggac caaaccaatg tatttcttaa atgtatttga tatctcatgc ctccctaaaa	1380
gaataaaacc aagctgcacc ctgaccaccc tgggtacatg ttcttaagac ctccctgaagg	1440
ctgtgtcatg ggccatggtc actcatattt ggcccagaat aaatctcttc aagtatttgc	1500
cagagtttgg ctcttttgt tggcagcatg tattaactca ttctcttatta caattccct	1560

gtcttgatga atgggctctg ttgaggcagg gggcaaggtg aatctcttgg gtggttaca 1619

<210> 147

<211> 482

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (412) .. (412)

<223> baySNP12366_A412G

<400> 147

ctccccaacc cggccaggac cccttggcct cactggaacg cacagacggc acccagcagg 60

taggcattt ctcaggggtg gccagcaagg gctctcttag ggtacagctg ggagaagcgg 120

ccgagggccc agatgggaa gatgttcctg tagctcgtagt aggagatggc acaggacttg 180

ttgaagaccc cagcaatgtt ttcctaaaag aacacagaga aataaacaca aaggcttcac 240

cagttagtgc agggctagtc cctgaactgg agccctggct gttggcttgg ctggcttgg 300

ggtagttagtgc cctggaaagg gctaattaag caagagcata ggaaagcaag tagtccatcc 360

cgcatttgc atggcaccat cagccccagct cagactcccc gccctgcagc araccctaag 420

ccagggtcac cagccccctca caaccacatc agcttccacc aactcagcct catcccagg 480

ga 482

<210> 148

<211> 624

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (25)..(25)

<223> baySNP12619_A25G

<400> 148
tcttgtttgt gtcacagtgc tctgrggca gaagagactc ctggggactg aatacagatg 60
gcttctgaat ttgtttacat tttcttatcag aactgacatt tacttcttgtt cacacgatgt 120
ttttcttcta tcacctttac cctctttgt gttcttttt ctgtctttta tcctttatca 180
gtcaaagtcc agccagaaaa acagaaacca tgctaaatat ttcaaacaca gggggactac 240
tagatagaac atgttacaaa agcactggga gggctgagag agccacaacg aggagagggg 300
aggaagatga gctaccacag agattggaaa ttccaggaag ctgtgatttt ccctaggact 360
gaaggaacca aacaaggggg ttctagagcc cagtagcaca gtggtggtcg accctgctgg 420
aggctgcagc tgctattcaa agaaatcact gctgcactgt agatagcaac aagaggccat 480
tggaagctgc agctacacctgc tgctgctgct gctgctgctg ctgctgctgc tgctgctgct 540

gctgctgctg ctgctgctgg gtcttagagcc atctctgggc cctgttaggta ttggccactt 600

ctggccatca cccacagcag ccac 624

<210> 149

<211> 648

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (585) .. (585)

<223> baySNP13025_A585C

<400> 149

gtggaaaaat taaaaaagga atggaatgtt atttgtatta ctgatgttgt ctacaatcat 60

actggtatga gtttcattga ctgccttcat taattttgat gagaatttat gcacacacac 120.

atatacacac aaataagaga aaggaagaaa gaaagagaaa ggaaaggggc taacataaat 180

ttaaaaaaca caaatgatga ttaggtgtcc ttctgtttaa aaaattaata ttttccttt 240

caaagaaaaac attcttaatt gaggattaag tcaatatata agtatcttgc atctgttgct 300

tataaataca ggagagtat catagaagga acataatgat cacatatttc aacttacagt 360

acagtagtcc ccccttatttc gcagtttgc tttctgaggt ttcagttacc tgcagtcaat 420

- 195 -

cacatttcaa aaatattgaa tattccagaa atcagcaatt cataagttt aattttcatg	480
ctgttttaag taacatgaca aactctcatg ccattctgct ctatcccacc tggaatgtga	540
ctcatccttt tgtccagtgc atccatgctg taaatactac ctgtmcacca gttacttaat	600
agcctgctca gttatcagat aaaaaaacac aaaatatcaa aatatata	648

<210> 150

<211> 625

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (504)..(504)

<223> baySNP13191_A504G

<400> 150

aagctggaa ttacgtctca aagtaggaac tattggcaaa aggtatggat gaagatttca	60
--	----

atggaggaag gctatgtta ctgttaggaaa atgttgtact cttataataa aagtcttaat	120
---	-----

agacttttat taaggcctta agtgcttagat tcaagatggc tgcccccttt gttctgtggg	180
--	-----

tccagtgttc tatttggtgg actaagggtg accttgcagc cccttacagc ccagccaaga	240
---	-----

gagcttcact gtgaagggc agacatcttc attactattt tctttccaa aaactcatat	300
---	-----

aacttttgt gagtactgcc tcttctcctc attccacagt gaatttctcc ccacctggtg	360
--	-----

acacaaaacag ccttttccca ggtacttgtt acctggagcg agtggacgag cagcatgcc 420
gaaagtatgc ccggcgtccc gtctaaaggt ggtgagttag agtttgcaga gttggtggca 480
taaaacccta atgtcttcct ctgrgtaaca acacagagag agaagggtggg gacaggtgca 540
gggagaagaa agtttaatgg aagaggattt gggtgacagg agaaatggga gaatttatctg 600
tggaaattttt aaaaggaaaa gcaag 625

<210> 151

<211> 581

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (47)..(47)

<223> baySNP13937_A47C

<400> 151
cctccttgcatacatcatg cacttaatga cagctccat tggaaagmcgc tgaattaact 60
ggtttctctc tgctggaaagc tctggtctga agtgaatctt ggcagtcaag gtcggaggga 120
tcgcattaat tacgtatgg cactaaaaca cacacaagca aaatattacc tcaaattgtga 180
gctgcagtct ttgtggcagg cgtaaaaat catctttatc acttctaaac aacattgagc 240

agtaaaaaca tacaaaatga gaaaatgagg caactgtgag gcaacaaaac agatcaagg	300
aggcaacca aggctggtaa tttggaagac tgaggcggaa acatgtcagc attaattatg	360
ctactgcttg aattataatct ggttagaaac tgcaaaagac acaaggccota tttactatat	420
gctcctttg actaaaactga gttacctcat aatgttcatg gttcagcgtc tctatgtga	480
tgttgcact tgactggtca acgtgagtga caggatggtt cagttcact tggctccga	540
ggaggtccat tatccgttcg ctcaacttgc cagatccacc t	581

<210> 152

<211> 751

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (371)..(371)

<223> baySNP900002_G371T

<400> 152

tctcaggagc tgaggcagga gaattgctcg aacctggag tcagaggctg tagtgagcaa

60.

agattgcacc actgcactcc agcctgggtg acagagtat aaaaaccaga ttccctagatc

120

cctctttgaa tattgcctt aagtttctct aggcgaagc ctggaatccg tagcagttt

180

accagcaacc cttggaaatt tttatagaaa taggaaccac tgccttagaa cattggcag

240

ggataagaga aaagtgtgga gatTTtagac catttcctt ttttaacatc tgacttttgt	300
acaacccaca cccatgttca ttacccacccg acactgctaa gctgcttca cacagcagtt	360
cacgcagacc kgcagaacat accgcattct gtgattcatc agggtgacac aactgctctg	420
taaggcaggtc ttgtgcagtt aagtaaaaat gatgtatTTT atccttgata ttttaaaatg	480
actgaaaaat gggagacaac caaaaggagt atctccgat gataagaccc ctaagtcctt	540
aaccccactg gacaaacagg ggtatcagta ggttaggtgaa cagtgtatgaa gtgatccctt	600
caatcatact tattggcaaa cttaagctga ttaaaaattgg gaagggaaaa aaataagccc	660
tggagggaaaa gttccacatg tatttttgag atatatttaa agggggagggg gactgtatTTT	720
agggggattt taacttttg aaaggactt g	751

<210> 153

<211> 511

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (322) .. (322)

<223> baySNP900025_G322T

<400> 153

- 199 -

ggacttgctt gtaaaatatgt taatatttga tcttaataag ctctgtcata ctaacactgt	60
ttatttaaact ttgtggtaga attactaccc ataactaaag aatgaaatgc atatatttgc	120
aaattgttaa aaatttataa atcgatagaa aagttgaatg aatagtgaac acccttgtgt	180
ctttcactaa ctcagtggct cacttgctaa cgttgcctc atttgcttcc tctgtttata	240
aagacatata tactttttt attcccctga gccatggaa agtaagctgc aaacatcttgc	300
acatttaact tctaaacatt tkagcacgtg tatcctaaga gcaagggtgt cttcctgaag	360
agttacatta tcatacttaa gagatatagt attaatacaa tattatctaa catgtgatcc	420
ctattnaaat ttcattttt ttcttccccca gaacagttct ttatagatgt tttaattttt	480
gatccagaaa ccaagggaaa aaatatatct a	511

<210> 154

<211> 598

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (261)..(261)

<223> baySNP900032_C261T

<400> 154

tccctgtgca ccctggtaga gtgcctttac ttctgtcagca tgtacggaaag cgtttcacc	60
--	----

- 200 -

atctgcttca tcagcatgga ccggttcttg gccatccgtt acccgctact ggtgagccac	120
ctccggtccc ccaggaagat ctttgggatc tgctgcacca tctgggtcct ggtgtggacc	180
ggaaggcatcc ctatctacag tttccatggg aaagtggaaa aatacatgtg cttccacaac	240
atgtctgatg atacctggag ygccaaggtc ttctccccgc tggaggtgtt tggcttcctc	300
cttcccatgg gcatcatggg cttctgctgc tccaggagca tccacatcct gctggccgc	360
c gagaccaca cccaggactg ggtgcagcag aaagcctgca tctacagcat cgccagccagc	420
ctggctgtct tcgtggtctc cttcccccga gtccacctgg ggtttttcct gcagttcctg	480
tgagaaaaaca gctttatcgt agagtgcaga gccaaaggaga gcatcagctt cttttgcaaa	540
ttgtccatgt gtttctccaa cgtcaactgc tgcctggatg ttttctgcta ctactttg	598

<210> 155

<211> 1086

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (116) .. (116)

<223> baySNP900045_C116T

<220>

<221> misc_feature

<222> (986)..(1085)

<223> N_region

<220>

<221> misc_feature

<222> (986)..(1085)

<223> Unsure

<400> 155

tggccatctc ctgatccaag tccagggtga cgtacacag ctttccttg atgccatgca 60

cgatttccca ctgggcggtg gtggtaagc tgttagccgcg ctccacgagg atcttyatga 120

ggtaatcagt caggtcctgg tcagccaggt ccagaaacag ggtggcctgg aggagggcct 180

acccttcgta gatgggcaca gtgtgggtga ccctgtcgct ggagtccatc acgatgtggc 240

cagaacgcta cagggacagc atggcctgga tggccatgta catggctggg gtgttgaagg 300

tctcaaacat gatatggtc atcttcgt gattggcctt ggagttcagg ggggcctcag 360

tcggcactac gggtgctcct tggagccaca cgccggctcggt tgtagaagtt gtggtgccag 420

atcttctcca tgtcatccca gttggtgatg atgctgtgct ctatgggtta cttcagggtc 480

aggataacctc tcttgctctg ggccatccatca ccctcgtagg agtccttttgc acccatgccc 540

accatcacac agatgtggaa gggcagcgga gctctgtgct cgccgggtgg acgcggctt 600

agcagtcgt tctacattct taaccctttt ttttatgga cctctggct ttctggtaga 660
gtctgggacc ccctttcaa agtaatgctt ctatgtgcat aaaacaata catggatta 720
caaggcaaac caactatatt gaaatacagt tgccctccttg gatcctatgg aggtccaagt 780
actcaagtga aaaatttcca taagagctgg gtgcgttggc tcacacctgt aatcctagca 840
ttttgggagg ccaaggcagg cgtactgcct gagttcagga gtctgagaac agtcaggca 900
acacagtgaa accctgtctc tactaaaata caaaaaatta gcttggcatg gcagcatgcg 960
cctgtagtct cagctacttg ggaggnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 1020
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 1080
nnnnnc 1086

<210> 156

<211> 1864

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (877) .. (877)

<223> baysNP900065 A877C

<400> 156

tagatgacgg gttgataagg tgcagcaaacc accatggcac atgtataacct atgtaaacaaa 60

cctacgcatt ctacacacat atcccaaaac ttataagtaa aacagaaaaa aaaagaatta	120
gttttataaa aatcaataaa ttatactcag tgggtttttt ttttttttt tgagacggag	180
tctcgctctg tcgcccaggc tggagtgcag tggcgggatc tcggctcact gcaagctccg	240
cctccccgggt tcacgccatt ctcctgcctc agcctccaa gtagctggg a tacaggcgc	300
ccgcccactac gcccggtcaa tttttgtat ttttagtaga gacggggttt caccgtttta	360
gccgggatgg tctcgatctc ctgacctcgt gatccggcccg cctcggcctc ccaaagtgt	420
gggattacag gcgtgagcca ccgcgcggg ccctcagtgg gtttaataa aatattttag	480
ggcctttta gcttatttat taaaatttc aagatcatat agtcttgaag tgaacccaaa	540
aaatcagaaa gagttaccca ctttacctat ggtatgtgag gcaagctttg aatgagtaaa	600
taaggagtga atctgtgtaa tcgtcagctt ccattttgggt ataattctgc ttcttattcc	660
caatctgggt ttacgtttta tcttgcaat tatattcatt ctttatttat ttttatttat	720
ttttttgag atggcatctc acctctgtca cttaagctgg agtgcagtgg tgcaatctca	780
gttcactgca acctccaccc cccgggttca agcgattctc ctgcctcagc ctcctgagta	840
gctaggatca caggtgcgtg ccaccatgcc cagctamttt ttgttattttt agtagagatg	900
gggttgcgc atgttggcca ggctggtctc aaactccgga cctcaggta tccacccgct	960
tcagcctccc aaagtgctgg gactacaggt gtgagccacc gtgccaggcc aactttctta	1020
aatctcgaac aaagcattta cttactagtt agtggaaaca agattcacat tgcacatcatag	1080
gtattccaga tactttcagt gatgtggaaa tcagaaaccc ataaaattaa gtatgccaga	1140
aagcagttt gtacacatct aagtaaattc tctcttaaac aagagaaagg aataaataga	1200
taccaataaa catgcacatctt tatctcaata atatttaat gattatttca atgatattta	1260

aaaaatcatc atgacttgat acaattgtt g tacacaaaa tgacgccact atggtcttca 1320
tggaaagtgt gacccatta acgactgaac aatctgacag attcattcaa atatgtctaa 1380
cagaccctgg gtgagtcgg aagcttggc agtggaaacca gaaggactca gcctgtgagg 1440
gaaggtttgtt ttgtctccaa ctcgaactgg gaaataacctt ctaataagat gacactgttc 1500
ttgggaattc cagaatcatg aaaaggcagt ggaaatcact gggtagga atcagcagct 1560
gtgggcttct ggaaataacg tcctggcact tacacgacct tttccaatt cagatggtaag 1620
gctgctctac actgtgtgca ttcgtgtccg taaagaaagt agcaaaataa aaatcatgac 1680
tggttccat tttaggcctc actctttgca gttttttcttc tcattccaa atcttccatg 1740
ttggaaaat taaggttaca agaaaatctc ctctgttctt tttccactaa atccaaaatc 1800
atgacacaga actctgttga aatacatcat aaaggttagaa ttttaaaaaca aaaggctgaa 1860
taaa 1864

<210> 157

<211> 535

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (375)..(375)

<223> baySNP900082_A375G

<400> 157
gcaaacatgt tccaccagat catcagtcag aggatctgaa cttgatcccc cttttttgtat 60

tttactggag ctggaggtag tagagcagca ctgtatctct tgtgtctggc attgttcaat 120

ccagatgtta gttgggacag aaagaataac ccagagccct ggaacaaaact gggtcccaat 180

gatctataaca agttctactc agtgaatgtg gattacagcc aactgaagaa agaaggtcca 240

gatttctaaa tgaaatgttt cactataaag ctgcctttaga atgaaggctt tccagaagca 300

atccacacaa ttttccactt aaccaggaaa tatttctctt ctaaatgcat gaaatcatgt 360

tgatgtaatc tactrggag attacactga ttaataaaata actgaaactt gaaaaaaaaa 420

. gttatttatcc aacttgatag aaaactggag tctggaaatc tgaaatatca ctttcctttt 480

ttcatgcggc tcttcttcct gcttgtcaat ggaattcaact ttccgtggta ccatg 535

<210> 158

<211> 708

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (136) .. (136)

<223> baySNP900096_A136G

<400> 158

agtggccctg tgctcgac aggtggtgt cctctgtct cctccctca ctccctgggc 60
aagcaacagt ggtgttccat gtgtgagctg gacctaccac tagtgttggc ttgtttaaat 120
tctctgacag agacaractg tccccgggggg cggggaaaggc agtgtggagc tcacccctg 180
agggagcagc attgtctctg tgggctttgg ctgggaatgt ttctgaagac gccctaattcc 240
cttgccctgc cttagcctcaa agtctctatc actcagagga gtactggag ggctcagtgt 300
gagccatcag aaccttccag ggtatcttcc cttgcttggc ctcttgcgc agtccacttg 360
gtttgctaaa ctccctgtct tecatcaaga cccaaactcaa ggccaggcac ggtggctcac 420
gcctgtaatc ccagcactct gggaggcaga ggtggccga tcacttgagg tcaggagttc 480
gagaccagcc tgggcaacat ggtgaaacac catctctact aaaaacacaa aaatttagcca 540
ggtgtggtgg caggcacctg cagtcccagc tactccggag ctgaggcagg agaattgctc 600
gaacctggga ggcagggtt gcagtgagcc gacatggcgc cactgdactc cagtctgggc 660
gacagagtga gaccctatct caaaaaaaaaaaaaaaa aaaagacc 708

<210> 159

<211> 790

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (426) .. (426)

<223> baySNP900107_C426T

<400> 159

cccacatgtg gctcccgaga tggagactgc tccttcata ccctgtgccccc tccggagggt 60
gcacctggag tgcttcctca cacatggcctt tctccctcc cgcgccttcc cctcccttcg 120
gtctgtttct ctccccatgg tctaaggcatt tattttatgc cattctttat gtaacaacca 180
ccccagaagg cgatgtgaa cacttgatt tgggattttc aaattccta tctttcaactg 240
agtcattttc cattttattc aagagcacat ggagaaacca agggatatct taatggaagg 300
agacctttcc tgggtagaac aggaagactg aagatgaagg attcctctgg gatataaatg 360
gctcccttga gactaattac aaggcctttg ggtggccac cagcccacac tctgaacctg 420
ggggayaggt caagctgagg ccctgagacg ttaccctg ggtcagtggt ggcacgtggg 480
tgaaggctga tgggttaactc tacctgaaaa agcccttgca tccttcacat gtcacat 540
tgaagtgata gccagtggcc ttgtccccac atacacggca gatttgggga cctccgactt 600
cctcatctgc gttgacactg ggctttccag gaacagactc tgcgtcctca cagtgtacaa 660
agtcagcatg gttccagctt tctttggtc tcacccctcag gtttgccttctt gggccctttg 720
gactagaaat gagaaaacca cagagaatga aaagactgga cagggatgtg tagaggcctc 780
agaggaaaca 790

<210> 160

<211> 558

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (263) .. (263)

<223> baySNP900121_G263T

<220>

<221> variation

<222> (263) .. (263)

<223>

<400> 160

atctttacct atttttcctg cctacagaat ctccctaaaa ggactgtgtc actgtggtct 60

tacataaaaca gccagctgga agacttcact aatccctctct atgggagcta ttccaatcat 120

gtcctttatc cagtagccag catgcgccac ctagagctct gggtgggata ttacataagg 180

tggaatccac ggatgaaacc acaggtatgt gccttacaat atacaatggg agttttcatt 240

catgcagtgc aactttgtct ccktaaaagc agctggaaag attatctgtg catattnaaa 300

actttactcc ttacccattg atagttaca attgtatagt agaaaaatac tacactgggg 360

- 209 -

cagggttaatc agtataacctg gttcttagga ctgcttgtat gacattggac aaatcaactgc	420
tctctttct tgcacatcttcc ctccctctgtc tggataacct ctagggggtc ttgttttaat	480
aagctgaaga aagtagcttt aggaaagtta aaagctgaac aaaattctgg tctactgtga	540
atatgtttat ggaatatt	558

<210> 161

<211> 101

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (51)..(51)

<223> baySNP900115_A51G

<400> 161	
tccatctctg agcccggtgtc acagatccag aagatgaaag aaggaagtga rcatcctttt	60
gctctgtcct cccccaccccg atagtgacac atcttcaggc a	101

<210> 162

<211> 1345

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (816)..(816)

<223> baySNP900078_A816G

<400> 162

ctgcagtgac cactgcccca tcattgctgg ctgaggtgg tgggtccat ctggctatct	60
ggcagctgt tctttctct cctttctctc ctgttccag acatgcagta ttccagaga	120
gaaggggcca ctcttgca aagaacctgt ctaacttgct atctatggca ggacctttga	180
agggttcaca ggaagcagca caaattgata ctattccacc aagccatcag ctccatctca	240
tccatgccct gtctctcctt taggggtccc cttgccaaca gaatcacaga ggaccagcct	300
gaaagtgcag agacagcagc tgaggcacag ccaagagctc tggctgtatt aatgacctaa	360
gaagtccacca gaaagtccaga aggatgcata gcagaggccc agcaatctca gctaagtcaa	420
ctccaccagc ctttcttagtt gccactgtg tgtacagcac cctggtaggg accagagcca	480
tgacagggaa taagactaga ctatgccctt gaggagctca cctctgttca gggaaacagg	540
cgtggaaaca caatggtggt aaagaggaaa gaggacaata ggattgcatg aagggatgg	600
aaagtgccca ggggaggaaa tggttacatc tgtgtgagga gtttggtgag gaaagactct	660
aagagaaggc tctgtctgtc tgggtttgga aggatgtgtaa ggagtcttctt agggggcaca	720
ggcacactcc aggcataaggta aaagatctgt aggtgtggct tggggatg aatttcaagt	780

attttggaat gaggacagcc atagagacaa gggcargaga gagggcgattt aatagatttt	840
atgc caatgg ctccacttga gtttctgata agaacc caga acccttggac tccccagtaa.	90.0
cattgattga gttgttatg atacctcata gaatatgaac tcaaaggagg tcagttagtg	960
gtgtgtgtgt gattcttgc caacttccaa ggtggagaag cctcttccaa ctgcaggcag	1020
agcacaggtg gccctgctac tggctgcagc tccagccctg cctccttctc tagcatataa	1080
acaatccaac agcctcaactg aatcaactgct gtgcaggcga ggaaagctcc atgcacatag	1140
cccagcaaag agcaacacag agctgaaagg aagactcaga ggagagagat aagtaaggaa	1200
agtagtgatg gctctcatcc cagacttggc catggaaacc tggcttctcc tggctgtcag	1260
cctggtgctc ctctatctgt gagtaactgt tcaggctcct cttctctgtt tcttggactt	1320
ggggtcgtaa tcaggcctct ctttt	1345

<210> 163

<211> 204

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (103)..(103)

<223> baySNP10000002_A103G

<400> 163

aattcatttt ccaactaata gaagataaca ttaaacagct gaaagagatg aaatttactt 60

atcttattaa ttatatccaa gatgagatca acacaatctt cartgattat atcccatatg 120

tttttaaatt gttgaaagaa aacctatgcc ttaatcttca taagttcaat gaatttattc 180

aaaacgagct tcaggaagct tctc 204

<210> 164

<211> 210

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (107) .. (107)

<223> baySNP10000006_G107A

<400> 164

cgagtcttcc actcgctggc caaggttagct ttccaggatg gcccgcctcat gctcagcctg 60

atgggagacg agttcaaggt gagtggtgg ggctgggctg ctagggratc cagatggcat 120

gtggtatgtg tgtgtgtca cacgcatggg gaggagggag gaaaactcgga aaccttggtgg 180

tgggcaaaag aactaagctg gagcaatagc 210

<210> 165

<211> 399

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (153)..(153)

<223> baySNP10000014_A153C

<400> 165

ttcagttaaa gtctatggca ctctgttagga ctgctgatgt ctctgttgca cactgttgat 60

tctaaaatca aaggcactca gtataagcac agtaatagtc ctcctcatca tgctttgtat 120

tttccgttagc tgcctgtacc aatacatcct gcmgtggcca cggtgaatgt gtagagacca 180

tcaataatta cacttgcaag tgtgaccctg gcttcagtgg actcaagtgt gagcaaagta 240

agtctggttc ttgcctcttt cttcacttga gatggtagca ccatctcacg tcctagctgg 300

cattagagtc aggtctgcat gccttccctt ccctggtgca gatggtgtca tatggtgatc 360

gtgagctgag actatgaagt cagaccctgc tgggtttga 399

<210> 166

<211> 587

<212> DNA

<213> Homo Sapiens

<220>

<221> variation

<222> (291)..(291)

<223> baySNP10000025_C291T

<400> 166

tcttccttct tttggtctct cctgtcagaa tcagcggctc ctgcctcacc ccttctctgg	60
cgcagagctt gtccctcatc acagggcctg gggctttta cagaatggag gaaggatcc	120
tctctgtctg gttatcttgt catgccacg ggggtgcct gcagaccaca gctctgtgca	180
gacctccggc ctggcaggac ctgccaatat actgtccttg tctgatgtcc cttccctgcc	240
cctcttcttag gtgccccctt gtttctctcc catcctcaact tcctcaacgc ygaccgggtt	300
ctggcagaag cggtgactgg cctgcacccct aaccaggagg cacactcctt gttcctggac	360
atccacccgg tgagccctg ccattctctg tgggggggtgg gtgattcctg gttggagcac	420
acctggctgc ctccctcttc cccaggcaga gagctgctgt gggctgggtt ggtggaaagc	480
" ctggcttcta gaatctcgag ccaccaaagt tccttacttc accccgactc catagttcaa	540
ggttagttcaa gggtttatg atccctgtac tggtttctat aaatggg	587

<210> 167

<211> 3877

<212> DNA

<213> Homo sapiens

<220>

<221> variation

<222> (2503) .. (2503)

<223> baySNP900173_G2503T

<400> 167

gaattcaagg tctgcatttt ctaggtatga acactgtgca tgatgaagtc tttccaagcc 60

acaccagtgg ttccatgtgt gtgcacttcc ggtttgagtg ctatgtgagat acttctgtgg 120

ttctgaattt cctgactatt tggggttgtg atattttcat aaagattgtat caacatgttc 180

gaatttcctc cccaacagtc ttccattacc aagtaaagat tcattttct gggactgaga 240

gtgaaaccca taccaatcag gcctttgaga tttctctgtt tggcacccgtg gccgagagtg 300

agaacatccc attcactctg tgagtagcac agggggggcggt tcatacatggc accagtcct 360

ctcctgccat aacccttgggt ctgagcagca gaagcagaga gcgatgccta gaaaacaagt 420

ctttagttaa aaaaatcaga atttcaaaat tgaggtcttt cctctatgg atattgagaa 480

aaaaatgctt caaattggcc attttatttt cacttactag ttatatttt ttatattatca 540

tcttatatct gtttattttct ttataaaagc tgctgttaaa caatataatt aaactatctc 600

aaaagggttg acattaaaga aaatgagcaa tggtaacagg aaaccactct atagatgtac 660

atataatatg tacagaaaat ataagttagta agaagtccat gacaaagtgt tagctttttt	720
tttttttttt tttttttttt ttttgagat ggagtctctc tctattgccc aggctggagt	780
gcagtgattc gatctcagct cactgcaacc tctacccccc gagttcaaac aattcttctg	840
tctcaggcctc ccgagtagct ggggctgcag gtgccccacca ccatgccag ctaattttt	900
tatTTTtagt agcgacaggg tctcaccatg ttggccaagc tggcttgaa ttccctgatct	960
caggtgatcc acccgccctcg gcctcccaa gtgctggat tacaggtgtg agccaccatg	1020
cccaagcctac cctttactac taatcaaaga aataaaagta aggcaacttg atactttac	1080
aattactaga tgaacaaatc tttaaaaata gccagtgca gacaagggtt gaagcagaac	1140
atgcgaacct accatgcattc attcacggct agaaccctcc aggtgcggaa ggtgttat	1200
taataactt ccatacgctac aaaatattat tacatagaag ggagtgtttt tttctata	1260
tttacctaa agaaatagtc aacaaacatt tttaaaaaca tcaattacag tcgtacctat	1320
actagcataa attagaaacc cagtatccaa cattgaggca gtgggtaaat gaatcgttgt	1380
ttatcaagtc attaaaatca atctagcatt taaaaactat aattgttagga aacccaggaa	1440
aacatagtaa aaaatggaat ataaaatctg aagagaataa agaatagaga atcgtatgt	1500
tgctatgatt gtagctaaat aatgttcaag tatcaacaca aattgaaaag gaatacatga	1560
aaatgaaaat tatatttctg aatgattgac ttcaggattt tcttttagaa ttgtattaa	1620
tagttcatgt cattaggata aatgctggaa tgtggatata attaaaata tactaaatgc	1680
catcgacctt catTTTgagt tctttgtgg acattttgt gcattttaa aatatcccct	1740
aaataataaa gctatttata tttggagagg agaaaaaaaaa gtggggggca gggagagctg	1800
atctctataa ctaaccaaata ttattgcttt tttgttttagg cctgaagttt ccacaaataa	1860
gacctactcc ttcctaattt acacagaggt agatattgga gaaactactca tggtgaagct	1920

caaatggaag agtgattcat acttagctg gtcagactgg tggagcagtc ccggcttcgc	1980
cattcagaag atcagagtaa aagcaggaga gactcagaaa aagtaattaa atgtatTTT	2040
cttccttcac tttagacccc cacctgatgt caggacctag gggctgtatt tcaggggcct	2100
tcacaattca gggagagctt taggaaacct tgtatttatt actgtatgtat gtatTTTC	2160
tttaggagtc ttctttatt ttcttatttt tggggggcgg ggggggaagt gacagtatTT	2220
ttgtatTTca tgtaaggaaa acataagccc tgaatcgctc acagttattc agtgagagct	2280
gggatttagaa gtcaggaatc tcagttctc atttggact gtttcttcta agtacaaaat	2340
agtttagggaa caaacctccg agatgctacc tggataatca aagattcaaa ccaacctctt	2400
ccagaagggt gagattccaa gataatctca acctgtctcc gcagccccac ccatgtgtac	2460
ccataaaaatg aattacacag agatcgctat aggatttaaa gcktttatac taaatgtgct	2520
gggatTTgc aaactatagt gtgctgttat tgTTaattta aaaaaactct aagttaggat	2580
tgacaaatta tttctttta gtcatttgct tgcataccca aagaagcaaa caaacaaaca	2640
aaaaaaaaaaa gaaaaagatc ttggggatgg aaatgttata aagaatctt tttacactag	2700
caatgtctag ctgaaggcag atgccctaattt tccttaatgc agatgctaag agatggcaga	2760
gttgatcttt tatcatctct tggtaaago ccagtaacat aagactgctc taggctgtct	2820
gcatgcctgt ctatctaaat taactagctt ggTTgctgaa caccaggta ggctctcaaa	2880
ttaccctctg attctgatgt ggctgagtg tgacagttaa ttattggaa tatcaaaca	2940
attacccagc atgatcatgt attatTTAA cagtcctgac agaactgtac ctttgtgaac	3000
agtgcTTTG attgttctac atggcatatt cacatccatt ttcttccaca gggtgatCTT	3060
ctgttctagg gagaaagtgt ctcatttgca gaaaggaaag gcacctgcgg tatttgtaa	3120

atgccatgac aagtctctga ataagaagtc aggctggta gcattctggg ctaaagctga 3180
 ctgggcattcc tgagcttgca ccctaaggaa ggcagcttca tgcattcctc ttcacccat 3240
 caccaggcagc ttgcctgtac tcatagtgatc aaagcattca atcagttttt ctttagtcctt 3300
 ctgcataatgt atcaaatggg tctgttgctt tatgcaatac ttctctttt tttctttctc 3360
 ctcttggtttc tcccagccccg gaccttcaac ccaggcacac atttttaggtt ttatttact 3420
 ccttgaacta cccctgaatc ttcaatttctc cttttttctc tactgcgtct ctgcgtgactt 3480
 tgcaagatgcc atctgcagag catgtAACAC aagtttagta gttgccgttc tggctgtggg 3540
 tgcaagctttt cccaggatgt attcaggaa gtaaaaagat ctcactgcac cacctgcagc 3600
 cacatagttc ttgattctcc aagtgccagc atactccggg acacacagcc aacagggctg 3660
 ccccaaggcac ccattctcaa aaccctcaaa gctgccaaagc aaacagaatg agagttata 3720
 gaaactgttc tctcttctat ctccaaacaa ctctgtgcct ctttccttacc tgacctttag 3780
 ggctaattcca tgtggcagct gttagctgca tcttccaga gcgtcagttac tgagaggaca 3840
 ctaagcatgt gaccttcaact actcctgttc tgaattc 3877

<210> 168

<211> 620

<212> DNA

<213> Homo sapiens

<220>

<221> variation

<222> (309) .. (309)

<223> baySNP900013_C309G

<400> 168

ctgtgtgca gaggggagca gcatcagcag gcgtgtggag tgagtgagcc ccgtcctccc	60
cctcctcctg tcattgactc tcattgccta accccccttgt gtcttggccc caggttgatt	120
gtccggggct accgccagcc cctggagggc agtacccctct ggtccttaaa caaggaggac	180
acgtcggaac aagtcgtgcc tgaaaaatggta aagaactgga agaaggaatg cgccaaagact	240
aggaagtaag tgtgagtttc cttgtcctcc aggtatgcctt ggtcacccctcc tttccactmc	300
tgtggcctsaa atccaggatg gggccctggc agtacccctct gttacttagct ttgtggttct	360
gggcaagatg cctcacttct cctcctggcc tcagtttgct tttctgcctaa atggggtagg	420
atctcacatg tcattaaagc aactgggcag agaaaagaag aaagaagctg ggtgcgggtgg	480
ctctcgtgtc taatcccagc actttggag gccaaaggcag gcggatcact tggtcgggag	540
ttttagacca gcctggccaa catggtgaaa ccctgtctct actaaaaata caaaaattagc	600
taggcattgtt ggcaggcgcc	620

PCT Application

EP0309126

