

TD n°3 : Algèbre I

SMP (S1) - Licence I - 2022/2023

Pr. Hamza El Mahjour

Nombres complexes et Polynômes

Exercice 1

- (i) Écrire sous la forme a+ib les nombres complexes suivants :
 - 1. Nombre de module 2 et d'argument $\pi/3$.
 - 2. Nombre de module 3 et d'argument $-\pi/8$.
- (ii) Mettre sous forme trigonométrique les nombres complexes suivants :
 - 1. $z_1 = 3 + 3i$
 - 2. $z_2 = -1 \sqrt{3}i$

Indication ▼ [01]

Exercice 2

Résoudre les équations suivantes et représenter graphiquement les solutions :

- 1. $z^3 = 1$
- 2. $z^5 = -1$

[02]

Exercice 3

Soit le polynôme $P(x) = x^4 + (1 - 2\sqrt{2})x^3 + (3 - 2\sqrt{2})x^2 + (2 - 2\sqrt{2})x + 2$. Montrer des deux façons suivantes que $r = \sqrt{2}$ est une racine double du polynôme P:

- 1. En utilisant les dérivées successives
- 2. En utilisant la division euclidienne

[03]

Exercice 4

Soit $A(X) = X^4 - 1$.

- 1. Est-ce que A est irréductible dans \mathbb{R} ? dans \mathbb{C} (Expliquez)
- 2. Décomposez A en produit de polynômes irréductibles dans $\mathbb C$ puis dans $\mathbb R$.

[04]

Exercice 5

Effectuer les divisions euclidiennes de *A* par *B* :

1.
$$A = 3X^5 + 4X^2 + 1$$
 et $B = X^2 + 2X + 3$

2.
$$A = 3X^5 + 2X^4 - X^2 + 1$$
 et $B = X^3 + X + 2$

3.
$$A = X^4 - X^3 + X - 2$$
 et $B = X^2 - 2X + 4$

[05]

Soit la fonction polynomiale $f(x) = x^4 - 2 * x + 1$. On considère $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et on note $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Calculer f(A).z

Indication pour l'exercice 1 ▲

 $\overline{\cos(2\theta) = 2\cos^2(\theta) - 1}$