## JSS Mahavidyapeetha JSS Science And Technology University (Established Under JSS Science and Technology University Act No. 4) of 2013)



| Course Title: Design and Analysis of Algorithms Lab | Course Code: 20CS47L               |
|-----------------------------------------------------|------------------------------------|
| Credits (L: T:P): 0:0:1.5                           | Contact Hours (L: T: P): 0:0:39    |
| Type of Course: Practical                           | Category: Professional Core Course |
| CIE Marks: 50                                       | SEE Marks: 50                      |

**Pre-requisite:** Data Structures

**Course Outcomes:** After completing this course, students should be able to:

| CO-1 | Analyze the problem domain; Choose the appropriate data structures and design technique based on the problem domain. |
|------|----------------------------------------------------------------------------------------------------------------------|
| CO-2 | Implement algorithms and perform analysis with empirical method.                                                     |
| CO-3 | Evaluate the performance of different algorithms using different design techniques for solving the same problem.     |

## Note: While demonstrating the results, students are required to show the correctness of the algorithms followed by analysis.

| Unit<br>No. | List of Programs                                                                                                                                                                                                                |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1           | Implement Euclid's, Consecutive integer checking and Modified Euclid's algorithms to find GCD of two nonnegative integers and perform comparative analysis by generating best case and worst case data.                         |
| 2           | Implement the following searching algorithms and perform their analysis by generating best case and worst case data.  a) Sequential Search b) Binary Search( Recursive)                                                         |
| 3           | Implement the following elementary sorting algorithms and perform their analysis by generating best case and worst case data. (Note: Any two may be asked in the test/exam)  a) Selection Sort b) Bubble Sort c) Insertion Sort |

| 4 | Implement Brute force string matching algorithm to search for a pattern of length 'M' in a text of length 'N' (M<=N) and perform its analysis by generating best case and worst case data.                                                                                                                            |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Implement Merge Sort algorithm and perform its analysis by generating best case and worst case data.                                                                                                                                                                                                                  |
| 6 | Implement Quick Sort algorithm and perform its by generating best case and worst case data.                                                                                                                                                                                                                           |
| 7 | Implement DFS algorithm to check for connectivity and acyclicity of a graph. If not connected, display the connected components. Perform its analysis by generating best case and worst case data.  Note: while showing correctness, input should be given for both connected/disconnected and cyclic/acyclic graphs. |



| 8  | Implement BFS algorithm to check for connectivity and acyclicity of a graph. If not connected, display the connected components. Perform its analysis by generating best case and worst case data.  Note: while showing correctness, Input should be given for both connected/disconnected and cyclic/acyclic graphs.                                        |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9  | Implement DFS based algorithm to list the vertices of a directed graph in Topological ordering. Perform its analysis giving minimum 5 graphs with different number of vertices and edges. (starting with 4 vertices).  Note: while showing correctness, input should be given for with and without solution.                                                 |
| 10 | Implement source removal algorithm to list the vertices of a directed graph in Topological ordering. Perform its analysis giving minimum 5 graphs with different number of vertices and edges. (starting with 4 vertices).  Note: Use efficient method to identify the source vertex.  While showing correctness, Input should be given for with and without |
|    | solution.                                                                                                                                                                                                                                                                                                                                                    |
| 11 | Implement heap sort algorithm with bottom-up heap construction. Perform its analysis by generating best case and worst case data.                                                                                                                                                                                                                            |

| 12 | <ul> <li>a) Implement Warshall's Algorithm to find the transitive closure of a directed graph and perform its analysis giving minimum 5 graphs with different number of vertices and edges. (starting with 4 vertices).</li> <li>b) Implement Floyd's Algorithm to find All-pair shortest paths for a graph and perform its analysis giving minimum 5 graphs with different number of vertices and edges(starting with 4 vertices).</li> </ul> |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13 | <ul> <li>a) Implement bottom up Dynamic Programming algorithm to solve Knapsack problem and perform its analysis with different instances (different number of items and Capacity, starting with 4 items)</li> <li>b) Implement a Dynamic Programming algorithm with Memory function to solve Knapsack problem and perform its analysis with different instances (different number of items and Capacity, starting with 4 items).</li> </ul>   |
| 14 | Implement Prim's algorithm to find Minimum Spanning Tree of a graph and perform its analysis giving minimum 5 graphs with different number of vertices and edges (starting with 4 vertices).                                                                                                                                                                                                                                                   |
| 15 | Implement Dijkstra's algorithm to find the shortest path from a given source to all other vertices and perform its analysis giving minimum 5 graphs with different number of vertices and edges(starting with 4 vertices).                                                                                                                                                                                                                     |