1a	2a	3a	3b	4a	5a	5b	6a	6b	8 <i>a</i>	8 <i>b</i>	10a	10b
1	1	1	1	1	1	1	1	1	1	1	1	1
4	-4	1	-2	0	-1	-1	-1	2	0	0	1	1
4	-4	-2	1	0	-1	-1	2	-1	0	0	1	1
5	5	-1	2	1	0	0	-1	2	-1	-1	0	0
5	5	2	-1	1	0	0	2	-1	-1	-1	0	0
8	8	-1	-1	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^{} 4$	-1	-1	0	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$
8	-8	-1	-1	0	$-E(5) - E(5)^{} 4$	$-E(5)^2 - E(5)^3$	1	1	0	0	$E(5) + E(5)^{} 4$	$E(5)^2 + E(5)^3$
8	-8	-1	-1	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^{} 4$	1	1	0	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^{} 4$
8	8	-1	-1	0	$-E(5) - E(5)^{} 4$	$-E(5)^2 - E(5)^3$	-1	-1	0	0	$-E(5) - E(5)^{} 4$	$-E(5)^2 - E(5)^3$
9	9	0	0	1	-1	-1	0	0	1	1	-1	-1
10	10	1	1	-2	0	0	1	1	0	0	0	0
10	-10	1	1	0	0	0	-1	-1	$-E(8) + E(8)^{} 3$	$E(8) - E(8)^{} 3$	0	0
10	-10	1	1	0	0	0	-1	-1	$E(8) - E(8)^{} 3$	$-E(8) + E(8)^3$	0	0

Trivial source character table of G \cong SL(2,9) at p = 3 Normalisers N_i

TVOT HULLISCI'S IV				1 v 1					1 1 2		1 V;	5				1 1 4			
$p-subgroups \ of \ G \ up \ to \ conjugacy \ in \ G$				P_1					P_2		P_3					P_4			
Representatives $n_j \in N_i$	1a $2a$ 4	a 5a	5b	8a	8b	10a	10b	1a $2a$	4a	4a $1a$	2a 4	a = 4a	1a $2a$	$\overline{4a}$	4a	8a	8b	8b	8a
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$			2	-1	-1	2	2	0 0	0	0 0	0 0	0	0 0	0	0	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$_{.3}$ 36 -36 ($0 2*E(5) + E(5)^2 + E(5)^3 + 2*E(5)^2$	$(4 E(5) + 2 * E(5)^2 + 2 * E(5)^3 + E(5)^4$	0	0	$-2*E(5) - E(5)^2 - E(5)^3 - 2*E(5)^4$	$4 - E(5) - 2 * E(5)^2 2 - 2 * E(5)^3 - E(5)^4$	0 0	0	0 0	0 0	0	0 0	0	0	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				0	0		$4 -2*E(5) - E(5)^2 - E(5)^3 - 2*E(5)^4$	0 0	0	0 0	0 0	0	0 0	0	0	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$_{.3}$ 18 18 $-$	-2 $-E(5)^2 - E(5)^3$	$-E(5) - E(5)^{} 4$	0	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^{} 4$	0 0	0	0 0	0 0	0	0 0	0	0	0	0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_1 \end{vmatrix} $	$_{.3}$ 18 18 $_{.}$	-2 $-E(5) - E(5)^{} 4$	$-E(5)^2 2 - E(5)^3$	0	0	$-E(5) - E(5)^{} 4$	$-E(5)^2 2 - E(5)^3$	0 0	0	0 0	0 0	0	0 0	0	0	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$_{.3}$ 36 36 0	0 1	1	-2	-2	1	1	0 0	0	0 0	0 0	0	0 0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_1$	$_{.3}$ 18 -18 ($-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	$-E(8) + E(8)^3$	$E(8) - E(8)^{} 3$	$E(5) + E(5)^{} 4$	$E(5)^2 + E(5)^3$	0 0	0	0 0	0 0	0	0 0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_1$	$_{.3}$ 18 -18 ($-E(5)^2 2 - E(5)^3$	$-E(5) - E(5)^{} 4$	$E(8) - E(8)^{} 3$	$-E(8) + E(8)^3$	$E(5)^{} 2 + E(5)^{} 3$	$E(5) + E(5)^{} 4$	0 0	0	0 0	0 0	0	0 0	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_1 + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{3}$ 9 9 1	$1 \qquad -1$	-1	1	1	-1	-1	0 0	0	0 0	0 0	0	0 0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_1$.3 6 6 2	2 1	1	0	0	1	1	3 3	1	1 0	0 0	0	0 0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_1$			0	-1	-1	0	0	3 3	-1	-1 0	0 0	0	0 0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13}$			-1	0	0	1	1	3 -3	E(4) -	$E(4) \mid 0$	0 0	0	0 0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_1$			-1	0	0	1	1	3 -3	-E(4)	E(4) = 0	0 0	0	0 0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_1$	3 6 6 2	2 1	1	0	0	1	1	0 0	0	0 3	3 1	1	0 0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_1$			0	-1	-1	0	0	0 0	0	0 3	3 –	1 -1	. 0 0	0	0	0	0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_1 \end{vmatrix} $			-1	0	0	1	1	0 0	0	0 3	-3 $-E$	(4) E(4)	₂) 0 0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_1$			-1	0	0	1	1	0 0	0	0 3	-3 $E($	(4) $-\dot{E}(4)$	4) 0 0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_1$		1 1	1	1	1	1	1	1 1	1	1 1	1 1	1	1 1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_1$		0	0	-2	-2	0	0	1 1	1	1 1	1 1	1	1 1	1	1	-1	-1	-1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_1$			0	0	0	0	0	1 1	-1	-1 1	1 -	1 - 1	. 1 1	-1	-1	E(4)	-E(4)	E(4)	-E(4)
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_1 \end{vmatrix} $			0	0	0	0	0	1 1	-1	-1 1	1 -	1 –1	. 1 1	-1	-1	$-\dot{E}(4)$	$E(4)^{'}$	$-\dot{E(4)}$	E(4)
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_1 \end{vmatrix} $			0	$-E(8) + E(8)^{} 3$	$E(8) - E(8)^3$	0	0	1 -1	E(4) -	$E(4) \mid 1$	-1 $E($	-E(4)	4) 1 -1	E(4)	-E(4)	-E(8)	-E(8) 3	(/	$E(8)^{}3$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_1$			0	() ()	$-E(8) + E(8)^3$	0	0		$-\stackrel{ ightharpoonup}{E}\stackrel{\prime}{(4)}$	\ /	,	/	. /	\ /	E(4)' -	$-E(8)^{2}$ 3	$-\dot{E}(8)$	$E(8)^{}3$	E(8)
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_1 \\ \end{vmatrix} $			0	$-E(8) + E(8)^3$		0	0	1	\ /	` /		` /	1) 1 -1	` '	` /	` /	` '	$-E(8)^{}3$	` '
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{11} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{11} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{11} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{12} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{$			0	` , ` , ,	$-E(8) + E(8)^3$	0	0		. ,			. ,	$(4) \ \ 1 \ \ -1$, ,		, ,	\ /	· /	$-E(8)^{} 3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0	·		(-) = (-) -	(=) (=) (=)				()	(/ -		, – ((-)	(-)	(")	(-)

- $P_2 = Group([(3,13,20)(6,24,11)(7,15,18)(8,10,14)(9,35,17)(12,36,16)(19,28,23)(21,27,22)(25,32,45)(26,40,57)(29,34,47)(30,38,55)(31,56,59)(33,58,61)(37,48,51)(39,46,49)(41,69,52)(42,71,53)(43,78,63)(44,77,62)(50,73,70)(54,75,72)(60,74,79)(64,76,80)]) \cong C3$
- $P_3 = Group([(3,51,23)(6,39,21)(7,61,16)(8,31,9)(10,56,35)(11,49,22)(12,15,33)(13,37,19)(14,59,17)(18,58,36)(20,48,28)(24,46,27)(25,77,72)(26,69,79)(29,78,70)(30,71,80)(32,62,54)(34,63,50)(38,53,64)(40,52,60)(41,74,57)(42,76,55)(43,73,47)(44,75,45)]) \cong C3$
- $P_4 = Group([(3,28,37)(6,22,46)(7,36,33)(8,17,56)(9,59,10)(11,27,39)(12,61,18)(13,23,48)(14,35,31)(15,16,58)(19,51,20)(21,49,24)(25,75,62)(26,74,52)(29,73,63)(30,76,53)(32,72,44)(34,70,43)(38,80,42)(40,79,41)(45,54,77)(47,50,78)(55,64,71)(57,60,69), (3,48,19)(6,49,27)(7,58,12)(8,59,35)(9,14,56)(19,51,20)(21,49,24)(25,75,62)(26,74,52)(29,73,63)(30,76,53)(32,72,44)(34,70,43)(38,80,42)(40,79,41)(45,54,77)(47,50,78)(55,64,71)(57,60,69), (3,48,19)(6,49,27)(7,58,12)(8,59,35)(19,51,20)(21,49,24)(25,75,62)(26,74,52)(29,73,63)(30,76,53)(32,72,44)(34,70,43)(38,80,42)(40,79,41)(45,54,77)(47,50,78)(55,64,71)(57,60,69), (3,48,19)(6,49,27)(7,58,12)(8,59,35)(19,51,20)(21,49,24)(25,75,62)(26,74,52)(29,73,63)(30,76,53)(32,72,44)(34,70,43)(38,80,42)(40,79,41)(45,54,77)(47,50,78)(57,60,69), (3,48,19)(6,49,27)(7,58,12)(29,73,63)(30,76,53)(32,72,44)(34,70,43)(38,80,42)(40,79,41)(45,54,77)(47,50,78)(57,60,69), (3,48,19)(6,49,27)(7,58,12)(29,73,63)(30,76,53)(32,72,44)(34,70,43)(38,80,42)(40,79,41)(45,54,77)(47,50,78)(47,5$
- $N_1 = Group([(1,3,10,13,4,11,18,6)(2,7,20,15,5,14,24,8)(9,25,19,30,12,29,21,26)(16,31,50,34,17,33,54,32)(22,37,60,40,23,39,64,38)(27,45,70,48,28,47,72,46)(35,55,79,58,36,57,80,56)(41,63,69,66,42,62,71,65)(43,53,78,68,44,52,77,67)(49,73,61,76,51,75,59,74),(1,2,4,5)(3,9,11,12)(6,16,13,17)(7,19,14,21)(8,22,15,23)(10,27,18,28)(20,35,24,36)(25,41,29,42)(26,43,30,44)(31,49,33,51)(32,52,34,53)(37,59,39,61)(38,62,40,63)(45,69,47,71)(46,58,48,56)(50,64,54,60)(55,77,57,78)(65,68,66,67)(70,76,72,74)(73,80,75,79)]) \\ \cong SL(2,9)$ $N_2 = Group([(3,13,20)(6,24,11)(7,15,18)(8,10,14)(19,18)$
- $N_3 = Group([(1,2,4,5)(3,74,11,7)(6,18,13,10)(8,24,15,20)(9,37,12,39)(16,46,17,48)(19,33,21,31)(22,56,23,58)(25,60,29,79)(26,72,30,70)(27,59,28,61)(32,76,34,74)(35,51,36,49)(38,73,40,75)(41,62,42,63)(43,52,44,53$
- $N_4 = Group([(1,66,2,67,4,65,5,68)(3,44,14,41,11,43,7,42)(6,34,70,43)(38,80,42)(40,79,41)(45,54,77)(47,50,78)(55,64,71)(57,60,69), (3,48,19)(6,49,27)(7,58,12)(8,59,35)(9,14,56)(19,51,20)(21,49,24)(25,75,62)(26,74,52)(29,73,63)(30,76,53)(32,72,44)(34,70,43)(38,80,42)(40,79,41)(45,54,77)(47,50,78)(55,64,71)(57,60,69), (3,48,19)(6,49,27)(7,58,12)(8,59,35)(9,14,56)(19,51,20)(21,49,24)(25,75,62)(26,74,52)(29,73,63)(30,76,53)(32,72,44)(34,70,43)(38,80,42)(40,79,41)(45,54,77)(47,50,78)(55,64,71)(57,60,69), (3,48,19)(6,49,27)(7,58,12)(8,59,35)(9,14,56)(19,51,20)(21,49,24)(25,75,62)(26,74,52)(29,73,63)(30,76,53)(32,72,44)(34,70,43)(38,80,42)(40,79,41)(45,54,77)(47,50,78)(55,64,71)(57,60,69), (3,48,19)(6,49,27)(7,58,12)(8,59,35)(9,14,56)(19,51,20)(11,27,39)(12,61,18)(13,23,48)(14,35,31)(15,16,58)(19,51,20)(11,27,39)(12,61,18)(13,23,48)(14,35,31)(15,16,58)(19,51,20)(11,27,39)(12,61,18)(13,23,48)(14,35,31)(15,16,58)(19,51,20)(11,27,39)(12,61,18)(13,23,48)(14,35,31)(15,16,58)(19,51,20)(11,27,39)(12,61,18)(13,23,48)(14,35,31)(15,16,58)(19,51,20)(11,27,39)(12,61,18)(13,23,48)(14,35,31)(15,16,58)(19,51,20)(12,61,18)(13,23,48)(14,35,31)(15,16,58)(19,51,20)(12,61,18)(13,23,48)(14,35,31)(15,16,58)(19,51,20)(12,61,18)(13,23,48)(14,35,31)(15,16,58)(19,51,20)(12,61,18)(13,23,48)(14,35,31)(15,16,58)(13,23,48)(14,35,31)(15,16,58)(13,23,48)(14,35,31)(15,16,58)(13,23,48)(14,35,31)(15,16,58)(13,23,48)(14,35,31)(15,16,58)(13,23,48)(14,35,31)(15,16,58)(13,23,48)(14,35,31)(15,16,58)(13,23,48)(14,35,31)(15,16,58)(13,23,48)(14,35,31)(15,16,58)(13,23,48)(14,35,31)(15,16,58)(13,23,48)(14,35,31)(15,16,58)(13,23,48)(14,35,31)(15,16,58)(15,16,$