NPK Alternate Pipeline

Y ♦ Final Hardware + Sensor Pipeline

X Hardware Components:

Component	Purpose	Placement	Estimated Cost (INR ₹)
RGB Sensor (or) NIR	Estimate Nitrogen (N) and Phosphorus (P) via light reflectance	Above soil (inside light-proof chamber with LED)	₹300–₹900
EC Sensor (DFRobot Gravity EC)	Estimate Potassium (K) and Total Nutrient Salts	Under soil (5–10 cm)	₹800–₹1200
DFRobot pH Sensor (SEN0161)	Detect soil acidity/alkalinity	Under soil	₹1,200–₹1,5 00
Capacitive Soil Moisture Sensor	Helps correct EC/pH readings; monitors soil water level	Under soil	₹150–₹250
White LED Array	Uniform lighting for multispectral sensor	Inside chamber above soil	₹50
ESP32 / Raspberry Pi Pico W	Microcontroller with WiFi/BLE for sensor control and ML inference	Inside waterproof housing	₹300–₹600
3.7V Li-ion Battery + Solar Charging Module (optional)	Power source	Enclosed	₹250–₹400
Waterproof Enclosure + Probe Housing (3D printed or PVC)	Housing & protection	One end above, other buried	₹200–₹300

▲ ■ Estimated Total Cost:

Description **Total Cost (INR Tier** ₹)

Basic Version All sensors + MCU + wired ₹2,500 – ₹3,200

power

Field-Ready (Waterproof + Battery + Full automated probe with solar ₹3,800 − ₹4,500

Enclosure) + W

Bulk production cost can reduce it by 30–40%.

🧠 🚀 Final Working Pipeline (End-to-End)

🔪 Step 1: Sensor Setup

- Insert the probe in the field.
- Top of the probe (above soil) has multispectral sensor in a covered box.
- Bottom (under soil) has **pH**, **EC**, **and moisture sensors** close together at 5–15 cm depth.

📊 Step 2: Data Collection

- 1. Multispectral sensor shines internal LED, scans light reflected from soil surface.
- 2. EC sensor measures conductivity (linked to K and TDS).
- 3. pH sensor measures acidity (affects P/N availability).
- 4. Moisture sensor helps correct EC readings.

Step 3: ML-Based NPK Prediction

- All sensor values fed to an ML model (random forest/regression) onboard or in the cloud.
- Model outputs approximate Nitrogen, Phosphorus, Potassium (NPK) values.

• It also classifies soil health status (e.g., N-Deficient, Ideal, K-Surplus).

★ Step 4: Fertilizer Recommendation

- Based on predicted NPK values and crop type (optional input), the system recommends:
 - What fertilizer to apply
 - How much to apply
 - When to apply it

Step 5: Output/Communication

- Send result via:
 - OLED display (optional)
 - o WiFi/Bluetooth to phone
 - Upload to cloud (Firebase, MQTT, ThingsBoard)

Summary: Features You're Building

Feature	Description	
💰 Low-Cost	~₹3.5K total for near-NPK accuracy	
📡 loT Enabled	WiFi or BLE output (ESP32)	
ML Smart	Accurate estimation without NPK sensor	
Field-Ready	Solar or battery powered	
X DIY Friendly	Can be scaled or customized	

Actionable Output Fertilizer + dosage + alert