Import Libraries

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor

Import Dataset

data = pd.read_csv('C:/Users/Viswa/Downloads/abalone.csv') data

Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
•••									
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

$4177 \text{ rows} \times 9 \text{ columns}$

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4177 entries, 0 to 4176 Data columns (total 9 columns):

Column Non-Null Count Dtype -----0 Sex 4177 non-null object 4177 non-null float64 1 Length 4177 non-null float64 2 Diameter 4177 non-null float64 3 Height 4 Whole weight 4177 non-null float64 5 Shucked weight 4177 non-null float64 6 Viscera weight 4177 non-null float64 7 Shell weight 4177 non-null float64 8 Rings 4177 non-null int64 dtypes: float64(7), int64(1), object(1) memory usage: 293.8+ KB

Univariate Analysis

plt.hist(data['Sex']);
plt.xlabel('Sex');

plt.hist(data['Rings']);
plt.xlabel('Rings');

sns.boxplot(x=data['Length'])
plt.xlabel('Length');

plt.hist(data['Diameter']);
plt.xlabel('Diameter');

plt.hist(data['Height']);
plt.xlabel('Height');

plt.xlabel('Whole weight');

sns.boxplot(x=data['Shucked weight'])
plt.xlabel('Shucked weight');

plt.hist(data['Viscera weight']);
plt.xlabel('Viscera weight');

plt.hist(data['Shell weight']);
plt.xlabel('Shell weight');

Bivariate Analysis

```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Height"], y=data["Whole weight"]);
plt.xlabel('Height');
plt.ylabel('Whole weight');
```


plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Length"], y=data["Height"]);
plt.xlabel('Length');
plt.ylabel('Height');

plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Diameter"], y=data["Height"]);
plt.xlabel('Diameter');
plt.ylabel('Height');

plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Length"], y=data["Diameter"]);
plt.xlabel('Length');
plt.ylabel('Diameter');

plt.figure(figsize=(10, 6))
plt.scatter(x=data["Shucked weight"], y=data["Whole weight"]);
plt.ylabel('Shucked weight');
plt.ylabel('Whole weight');

plt.figure(figsize=(10, 6))
plt.scatter(x=data["Viscera weight"], y=data["Whole weight"]);
plt.xlabel('Viscera weight');
plt.ylabel('Whole weight');

Multi-variate Analysis

sns.pairplot(data, hue='Sex');

In [19]:

Length -	1	0.99	0.83	0.93	0.9	0.9	0.9	0.56
Diameter -	0.99	1	0.83	0.93	0.89	0.9	0.91	0.57
Height -	0.83	0.83	1	0.82	0.77	0.8	0.82	0.56
Whole weight -	0.93	0.93	0.82	1	0.97	0.97	0.96	0.54
Shucked weight -	0.9	0.89	0.77	0.97	1	0.93	0.88	0.42
Viscera weight -	0.9	0.9	0.8	0.97	0.93	1	0.91	0.5
Shell weight -	0.9	0.91	0.82	0.96	0.88	0.91	1	0.63
Rings -	0.56	0.57	0.56	0.54	0.42	0.5	0.63	1
'	Length -	Diameter -	Height -	Whole weight -	Shucked weight -	Viscera weight -	Shell weight -	Rings -

Descriptive Statistics

data.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
coun	4177.0000	4177.0000	4177.0000	4177.0000	4177.0000	4177.0000	4177.0000	4177.0000

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
t	00	00	00	00	00	00	00	00
mea n	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

Handling Missing Values

data.isna().sum()

Sex 0
Length 0
Diameter 0
Height 0
Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight 0
Rings 0
dtype: int64

Outlier Handling

numeric_cols = ['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight', 'Viscera weight', 'Shell weight', 'Rings']

```
def boxplots(cols):
    fig, axes = plt.subplots(4, 2, figsize=(15, 20))
    t=0
    for i in range(4):
        for j in range(2):
```

```
sns.boxplot(ax=axes[i][j], data=data, x=cols[t])
       t+=1
  plt.show()
def Flooring_outlier(col):
  Q1 = data[col].quantile(0.25)
  Q3 = data[col].quantile(0.75)
  IQR = Q3 - Q1
  whisker\_width = 1.5
  lower_whisker = Q1 - (whisker_width*IQR)
  upper_whisker = Q3 + (whisker_width*IQR)
data[col]=np.where(data[col]>upper_whisker,upper_whisker,np.where(data[col]<lower_whisker,lower_whisker
,data[col]))
print('Before Outliers Handling')
print('='*100)
boxplots(numeric_cols)
for col in numeric_cols:
  Flooring_outlier(col)
print(\nn After Outliers Handling')
print('='*100)
boxplots(numeric_cols)
Before Outliers Handling
```


After Outliers Handling

Encode Categorical Columns

data = pd.get_dummies(data, columns = ['Sex']) data

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Sex_F	Sex_I	Sex_M
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15.0	0	0	1
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7.0	0	0	1
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9.0	1	0	0
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10.0	0	0	1
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7.0	0	1	0
4172	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11.0	1	0	0
4173	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10.0	0	0	1
4174	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9.0	0	0	1
4175	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10.0	1	0	0
4176	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12.0	0	0	1

 $4177 \; rows \times 11 \; columns$

Split Data into Dependent & Independent Columns

Y = data[['Rings']]

X = data.drop(['Rings'], axis=1)

Scale the independent Variables

```
scaler = StandardScaler()
X = scaler.fit_transform(X)
X
array([[-0.58311728, -0.44088378, -1.15809314, ..., -0.67483383, -0.68801788, 1.31667716],
[-1.46569411, -1.45976205, -1.28875125, ..., -0.67483383, -0.68801788, 1.31667716],
[ 0.04729474, 0.11949927, -0.1128283, ..., 1.48184628, -0.68801788, -0.75948762],
...,
[ 0.63567929, 0.67988232, 1.71638519, ..., -0.67483383, -0.68801788, 1.31667716],
[ 0.84581663, 0.78177015, 0.27914602, ..., 1.48184628, -0.68801788, -0.75948762],
[ 1.56028358, 1.49498494, 1.45506898, ..., -0.67483383, -0.68801788, 1.31667716]])
```

Train Test Split

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42) X_train.shape, X_test.shape, Y_train.shape, Y_test.shape ((3341, 10), (836, 10), (3341, 1), (836, 1))
```

Model Training & Testing

```
model = LinearRegression()
model.fit(X_train, Y_train)
model.score(X_train, Y_train), model.score(X_test, Y_test)
(0.5743537797259437, 0.574066914479568)
model = DecisionTreeRegressor(max_depth=15, max_leaf_nodes=40)
model.fit(X_train, Y_train)
model.score(X_train, Y_train), model.score(X_test, Y_test)
(0.6299341126842184, 0.5533377990647702)
```