Robust Implicit Networks via Non-Euclidean Contractions

Saber Jafarpour^{1,*}, Alexander Davydov^{1,*}, Anton V. Proskurnikov², and Francesco Bullo¹

¹ Center for Control, Dynamical Systems and Computation, University of California, Santa Barbara, 93106-5070, USA, {saber, davydov, bullo}@ucsb.edu.

Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy. anton.p.1982@ieee.org

Abstract

Implicit neural networks, a.k.a., deep equilibrium networks, are a class of implicitdepth learning models where function evaluation is performed by solving a fixed point equation. They generalize classic feedforward models and are equivalent to infinite-depth weight-tied feedforward networks. While implicit models show improved accuracy and significant reduction in memory consumption, they can suffer from ill-posedness and convergence instability.

This paper provides a new framework, which we call Non-Euclidean Monotone Operator Network (NEMON), to design well-posed and robust implicit neural networks based upon contraction theory for the non-Euclidean norm ℓ_{∞} . Our