QCM (3 points)

Une seule bonne réponse par question. Vous marquerez sur la copie le numéro de la question et la réponse choisie.

- 1. L'équation diophantienne 12x+15y=4 admet :
 - A. une infinité de solutions.
 - B. une solution unique.
 - C. aucune solution.
 - D. une infinité de solutions mais pas une en particulier.
- 2. La décomposition en facteurs premiers de 12 est :
 - A. $1 \times 2^2 \times 3$
 - B. $3 imes 2^2$
 - C. $1+2+3^2$
 - D. $2^3 + 2^2$
- 3. $a \equiv b[n]$ signifie :
 - A. a est divisible par b.
 - B. a est divisible par n.
 - C. a-b est divisible par n.
 - D. a+b est divisible par n.
- 4. L'implication logique $P \wedge \bar{Q} \implies Q$ est le principe de :
 - A. la démonstration par récurrence.
 - B. la démonstration par contraposée.
 - C. la démonstration par l'absurde.
 - D. la démonstration par équivalence.
- 5. Le nombre 2^{26} peut s'écrire :
 - A. $2^{13} + 2^{13}$
 - B. $2^{2^4+2^3+2^1}$
 - C. $2^{2^4 \times 2^3 \times 2^1}$
 - D. $2^{3^8} imes 2^{15}$
- 6. Le PPCM des deux nombres $2^3 imes 3^2 imes 5^3$ et $2^2 imes 3^3 imes 5^2 imes 7$ est :
 - A. $2^3 imes 3^3 imes 5^2 imes 7$
 - B. $2^3 \times 3^2 \times 5^2$
 - C. $2^3 \times 3^3 \times 5^2 \times 7^2$
 - D. un autre nombre.

Exercice 1: Codage affine (14 points)

Afin de crypter un message, on utilise un chiffrement affine.

Chaque lettre de l'alphabet est associée à un nombre entier comme indiqué dans le tableau cidessous :

A chaque lettre de numéro x, on associe la lettre correspondant au nombre :

$$y \equiv 7x + 5[26]$$

- 1. Coder la lettre L.
- 2. Résolution de l'équation diophantienne (E): 7x-26k=1.
 - A. Justifier que E admet des solutions en énonçant précisément le théorème utilisé.
 - B. En utilisant l'algorithme d'Euclide, déterminer une solution particulière de (E). On admettra pour la suite que (-11,-3) est une solution particulière de E.
 - C. Montrer que 7(x + 11) = 26(k + 3).
 - D. En utilisant le théorème de Gauss et en justifiant ses hypothèses, résoudre E. On ne fera pas la vérification des solutions.
- 3. Résolution de (E'): $7x \equiv 1(26)$
 - A. Vérifier que 15 est une solution de (E').
 - B. Déduire de la question 2. toutes les solutions de (E').
- 4. En déduire que $y\equiv 7x+5(26)$ équivaut à $x\equiv 15y+3(26)$.
- 5. A l'aide de la question précédente, décoder la lettre E.

Exercice 2 (4 points)

On note ${\mathcal P}$ l'ensemble des nombres premiers.

Exprime les propositions suivantes à l'aide de quantificateurs.

- 1. Le carré de tout entier relatif est positif.
- 2. Pour tout entier naturel supérieur ou égal à 2, il existe un nombre premier qui le divise.

Exercice 3 (6 points)

1. Démontrer par récurrence que :

$$\forall n \in \mathbb{N}^*, \quad 4^n-1 \quad ext{est divisible par 3}$$

2. Reprendre cette démonstration avec les congruences.

Exercice 4 (3 points)

Résoudre dans \mathbb{R} l'équation :

$$x^2 + |x - 1| + x + 1 = 0$$

Exercice 5 (3 points)

Soit m et n des entiers relatifs.

Montrer par contraposée que :

Montrer que si $m \times n$ est impair, alors m et n sont impairs.

Exercice 6 (5 points)

1. Vérifier que :

$$\forall n \in \mathbb{N}, \quad n(2n+1) + 6(n+1) = (n+2)(2n+3)$$

2. Démontrer par récurrence que :

$$\sum_{k=1}^n k^2 = rac{n(n+1)(2n+1)}{6}$$

pour tout entier n supérieur ou égal à 1.

Exercice 7 (6 points)

Soit $f:\mathbb{R} o \mathbb{R}$ une fonction.

Écrire les négations des phrases quantifiées suivantes :

- 1. $\forall x \in I, f(x) \neq 0$
- 2. $\exists M \in \mathbb{R} \mid (\forall x \in \mathbb{R}, f(x) \leq M) \text{ ou } (\forall x \in \mathbb{R}, f(x) \geq M)$
- 3. $\forall x \in \mathbb{R}, f(x) \leq 0 \implies x \leq 0$

Exercice 8 (2 points)

Les propositions suivantes sont-elles vraies ou fausses?

Si oui, justifier, si non, donner un contre-exemple.

- 1. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \quad | \quad x+y^2=1$
- 2. $\forall y \in \mathbb{R}, \exists x \in \mathbb{R} \mid x + y^2 = 1$

Exercice 9 (3 points)

- 1. Décomposer en produit de facteurs premiers les nombres 504 et 540.
- 2. En déduire le PGCD de ces deux nombres.
- 3. En déduire le nombre de diviseurs de 504.