18. Formální specifikace programu. Verifikace pomocí metod automatického dokazování a metody model-checking.(A4M33TV

1. Formální verifikace (resp. specifikace) programu

- ◆ Formální verifikace = technika založená na formálních metodách, stavějící na matematicky založených jazycích, která umožňujé specifikaci a verifikaci systémů, dále jen verifikace
 - > Specifikace = zapsání požadavků na systém v matematickém jazyce
 - Verifikace = formální důkaz toho, že systém splňuje požadavky

♦ Princip verifikace:

- > VSTUPY:
 - model systému (matematický); formální model M
 - specifikace požadavků kladených na systém; formule φ temporální logiky
- > PROCES VERIFIKACE:
 - ověření, že systém splňuje specifikaci; rozhodnutí, zda M je modelem formule φ, tj M |= φ

♦ Techniky verifikace:

- > Statická analýza = ověření chování programu, aniž by se musel spustit
 - Abstraktní statická analýza (např. analýza ukazatelů v modern. kompilátorech)
 - *Verifikace modelů* = úplné procházení dosažitel. stavů programu
 - Omezená verifikace modelů = viz. předchozí, ale jen do určité hloubky
- > *Dokazování vět* = nalezení důkazu vlastnosti, kdy systém i jeho vlastnosti jsou vyjádřeny jako formule v nějáké matematické logice

2. Verifikace modelů (model checking)

♦ Princip:

- 1. Budování konečného modelu systému
- 2. Kontrola, zda požadovaná vlastnost je modelem dodržena
- 3. Založeno na úplném prohledávání stavového prostoru

♦ Vlastnosti:

- 1. Manipulace s <u>obrovskými prohledávacími</u> prostory
- 2. <u>Odpověď je ANO či NE</u>, v záporném případě systém poskytuje příklad, kdy běh systému neodpovídá vlastnosti
- ◆ V praxi se používá pro ověření HW (obvody), protokolů, analýza specifikace sw systémů

♦ Přístupy:

- > Temporální verifikace modelů:
 - Použití temporální logiky (vyjádření času)
 - Systémy modelovány jako přechodové systémy s konečným počtem stavů
- > Automatový přístup:
 - Specifikace i model vyjádřen jako automaty
 - Oba automaty se porovnávají

♦ Výhody model checkingu:

Úplná automatizace

- Vysoká rychlost
- > Možnost verifikace i částečných specifikací
- Produkuje protipříklady (při nesplnění)

♦ Nevýhody:

> Exploze stavů (je možné zvládnout systémy s 10¹²⁰ stavy)

♦ Stavový prostor:

- > Formulován pomocí atomických výroků a Kripkeho struktury
- Atomický výrok = základní tvrzení popisující daný systém (výrazy, konstanty, predikátové symboly)
 - je algoritmicky rozhodnutelný na základě daného stavu (ohodnocení všech proměnných)
- > Kripkeho strukrura = typ nedeterministického konečného automatu
 - Mějme množinu atomických pozic AP
 - Kripkeho struktura je trojice (S, T, I), kde
 - S = konečná množ. stavů
 - $T \subseteq SxS$ je přechodová relace
 - $I: S \to 2^{AP}$ je interpretace AP
 - Rozšířená Kripkeho struktura je čtveřice (S, T, I, s_0), kde
 - (S, T, I) je Krip. Struktura
 - s_0 je počáteční stav
 - Kripkeho přechodový systém je pětice (S, T, I, s_0 , L), kde
 - (S, T, I, s_0) je Rozšiř. Krip. Struktura
 - $L: T \rightarrow Act$ je značkovací funkce
 - Mikrovlnka ze slidů přednášky 7:

- ◆ UPPAAL = nástroj integrující prostředí pro modelování, simulaci a verifikaci realných systémů
 - > **Model** = sada nedeterm. procesů s konečnou řídící strukturou a realnými hodinami, komunikace pomocí kanálů nebo sdílených proměnných
 - **Komponenty** systému UPPAAL:
 - Jazyk popisu: jazyk nedeterm. podmíněných příkazů, jednoduché datové typy, sítě automatů s hodinami a datovými proměnnými
 - Simulátor: vyšetřování možných dynamických běhů systému, detekce vad modelu
 - Verifikátor: prověření všech možností dynamického chování modelu, kontrola invariant, dosažitelnost stavů

> Dotazovací jazyk:

- Stavové formule popisující individuální stavy
 - výraz, který lze vyhodnotit pro daný stav
 - nadmnožinou guardů (stráží), povoluje disjunkce
 - deadlock = speciální stavová formule, která je splněna pro všechny zablokované stavy (nemající žádný akční přechod či zpožděného následníka)
- *Běhové formule* vyhodnocující se podél cest a stop modelu

Dosažitelnost

- požaduje, zda-li existuje možnost, že daná stavová formule φ je splněna v kadém dosažitelném stavu, tj. existuje cesta z počátečního stavu s_θ taková, že φ bude splněna podél této cesty (má příjemce šanci, že dostane zprávu od vysílače)
- v UPPAAL E[]φ

Bezpečnost

- něco špatného nikdy nenastane (teplata reaktoru ve Fukušimě bude stále pod určitým prahem)
- v UPPAAL se formuluje pozitivně A[]\phi
- φ by měla být pravdivá ve všech stavech

Živost

- něco jednoho dne určitě nastane (stisknu ON a PC se někdy zapne)
- v UPPAAL A≪φ
- φ bude vždy jednou splněna
- ◆ Vynecháno: CTL a LTL logika a detaily jazyka UPPAAL