

正确答案: B 你选对了

单选 (5分)

得分/总分

- 4. 已知 $\sqrt{100} = 10$ ,  $\sqrt{121} = 11$ ,  $\sqrt{144} = 12$ , 则用线性 Lagrange 插值多项式获得的 $\sqrt{115}$  的近似值(保留五位有效数字)为
- **A.** 10.693
- **B.** 10.582
- **C.** 10.714

----

**✓**5 00/5 00

**✓**5.00/5.00

**D.** 10.723

正确答案: C 你选对了

**5** 单选 (5分) **得分/总分** 

5. 已知 $\sqrt{100}$  = 10,  $\sqrt{121}$  = 11,  $\sqrt{144}$  = 12, 则用线性 Lagrange 插值多项式获得的 $\sqrt{115}$  的近似值的截断误差界(保留小数点后四位)

- 为\_\_\_\_\_
- **A.** 0.0170
- **B.** 0.0017
- **C**. 0.0113
- **D.** 0.0112

正确答案: C 你选对了

6 单选 (5分) **得分/总分** 

6.设函数 f(x) = h(x) + g(x) ,则如下式子正确的是\_\_\_\_\_\_.

- A.  $f[x_1, x_2, \dots, x_n] = h[x_1, x_2, \dots, x_n] + g[x_1, x_2, \dots, x_n]$
- B.  $f[x_1, x_2, \dots, x_n] < h[x_1, x_2, \dots, x_n] + g[x_1, x_2, \dots, x_n]$
- c.  $f[x_1, x_2, \dots, x_n] > h[x_1, x_2, \dots, x_n] + g[x_1, x_2, \dots, x_n]$
- D.  $f[x_1, x_2, \dots, x_n] \neq h[x_1, x_2, \dots, x_n] + g[x_1, x_2, \dots, x_n]$

正确答案: A 你选对了

7 单选 (5分) 得分/总分

7. 设函数 f(x) = h(x)g(x),则如下式子正确的是\_\_\_\_\_\_.

A.  $f[x_0, x_1, \dots, x_n] \neq h[x_0, x_1, \dots, x_n] g[x_0, x_1, \dots, x_n]$ 

B.  $f[x_0, x_1, \dots, x_n] = \sum_{r=0}^{n} h[x_0, x_1, \dots, x_r] g[x_r, x_{r+1}, \dots, x_n]$ 

c.  $f[x_0, x_1, \dots, x_n] \neq \sum_{r=0}^n h[x_0, x_1, \dots, x_r] g[x_r, x_{r+1}, \dots, x_n]$ 

D.  $f[x_0, x_1, \dots, x_n] = h[x_0, x_1, \dots, x_n]g[x_0, x_1, \dots, x_n]$ 

正确答案: В 你选对了

8 单选 (5分) 得分/总分

8.关于 Newton 插值多项式,如下说法正确的是\_\_\_\_\_.

A.

相邻次数的 Newton 插值多项式之间没有任何关系;

- B. 在实际应用的具体计算中, Newton 插值多项式不如 Lagrange 插值 多项式使用方便;
- C. 每增加一个插值节点, Newton 插值多项式只是在原次数多项式基 础上增加一项.
- D. Newton 插值多项式的表达式与插值节点的排列顺序有关;

正确答案: C 你选对了

9 单选 (5分)

得分/总分

**✓**5.00/5.00

- 9. 已知 f(0) = 1, f(1) = 3, f'(0) = 0, f'(1) = 5, 满足如上插值条件的 三次 Hermite 插值多项式为 .
- A.  $H_2(x) = 1 + x^2 + x^3$

**✓**5.00/5.00

- B.  $H_3(x) = 1 + x + x^2 + x^3$
- C.  $H_3(x) = 1 + x x^2 + x^3$
- D.  $H_3(x) = 1 x^2 + x^3$

正确答案: A 你选对了

10 单选 (5分) 10. 如下说法正确的是

得分/总分

- A. 三次样条函数比分段三次 Hermite 插值多项式光滑程度要差;
- B. 由于三次样条函数计算复杂, 所以在实际应用中不会使用三次样 条函数作为未知函数 f(x) 的近似;
- c. 三次样条函数是充分光滑的多项式函数;
- D. 三次样条函数是分段三次插值多项式,且是二阶连续可导函数.

**✓**5.00/5.00

正确答案: D 你选对了

**11** <sup>单选 (5分)</sup> 11. 龙格现象表明\_\_\_\_\_\_.

得分/总分

- A. 当用高次代数插值函数作为未知函数近似时,往往在定义域区间 两侧近似效果更好:
- B. 对于代数插值来说,插值多项式的次数很高时,逼近效果往往很 ✓5.00/5.00 不理想:

- C. 当用高次代数插值函数作为未知函数近似时,往往在整个定义域 区间内都会发生激烈振荡.
- D. 对于代数插值来说,插值多项式的次数很高时,逼近效果往往更 加理想:

正确答案: B 你选对了

| 12 单选 (5分)                                                                   | 得分/总分              |
|------------------------------------------------------------------------------|--------------------|
| 12. 1946 年首次将样条曲线引入数学,且构造了 "样条函数"概念                                          |                    |
| 的是                                                                           |                    |
| A. Lagrange                                                                  |                    |
| B. Hermite                                                                   |                    |
| C. Newton                                                                    |                    |
| D. Schoenberg                                                                | <b>✓</b> 5.00/5.00 |
|                                                                              |                    |
| 正确答案: D 你选对了                                                                 |                    |
| 13 单选 (5分)<br>13. 用三转角方法获得三次样条插值函数时,最终得到的线性方程组                               | 得分/总分              |
| 的系数矩阵是                                                                       |                    |
| A. 对角占优矩阵                                                                    |                    |
| B. 严格对角占优矩阵                                                                  | <b>✓</b> 5.00/5.00 |
| C. 正交矩阵                                                                      | 2.20,0.00          |
| D. 对称正定矩阵                                                                    |                    |
| 5. AJULLACACHT                                                               |                    |
| 正确答案: B 你选对了                                                                 |                    |
| 14 单选 (5分)                                                                   | 得分/总分              |
| 14. 用最小二乘方法进行数据拟合时,获得的正则线性方程组的系数                                             |                    |
| 矩阵是 ( )。                                                                     |                    |
| <b>A</b> . 正交矩阵                                                              |                    |
| B. 严格对角占优矩阵                                                                  |                    |
| C. 对角占优矩阵                                                                    |                    |
| D. 对称正定矩阵                                                                    | <b>✓</b> 5.00/5.00 |
|                                                                              |                    |
| 正确答案: D 你选对了                                                                 |                    |
| 15 单选 (5分)                                                                   | 得分/总分              |
| 15. 设 $p_3(x)$ 是 $[a,b]$ 上权函数是 $\rho(x)$ 的三次正交多项式,则内积                        |                    |
| $[p_3(x), x^2 - 7x + 9] = \underline{\hspace{1cm}}.$                         |                    |
| A. 1                                                                         |                    |
| B. x <sup>2</sup>                                                            |                    |
|                                                                              |                    |
| <b>c.</b> 0                                                                  | <b>✓</b> 5.00/5.00 |
| <b>D.</b> 不确定                                                                |                    |
| 正确答案: С 你选对了                                                                 |                    |
| 16 My (5/\)                                                                  | 信八はハ               |
| 16 单选 (5分)                                                                   | 得分/总分              |
| 16. 对于线性方程组 $\begin{cases} 3x - 5y = 3, \\ x + 2y = 6, \end{cases}$ 如下说法正确的是 |                    |
| x + 2y = 6, $2x + y = 7$                                                     |                    |
| (207)-1                                                                      |                    |
| A. 可以用最小二乘法获得近似解为 $x=2.979, y=1.2259$ ;                                      | <b>✓</b> 5.00/5.00 |

- B. 可以用最小二乘法获得精确解为x = 2.979, y = 1.2259;
- c. 通过加减消元可以获得与原方程组同解的两个未知量两个方程构 成的线性方程组:
- D. 方程无法求解.

## 正确答案: A 你选对了

17 单选 (5分)

得分/总分

17. 利用最小二乘法并根据给定离散数据

| X | -1   | 0    | 1    |
|---|------|------|------|
| у | 3. 1 | 0. 9 | 2. 9 |

所确定的形如 $v=ax^2+b$ 的拟合曲线为

A. 
$$y = 0.9 - 2.1x^2$$
;

B. 
$$v = 2.1 + 0.9x^2$$
;

c. 
$$v = 2.1 - 0.9x^2$$
;

D. 
$$v = 0.9 + 2.1x^2$$
.

**✓**5.00/5.00

## 正确答案: D 你选对了

18 单选 (5分)

得公/总分

- 18. 设 $x_i(i=0,1,\dots,n)$ 是互异节点,  $l_i(x)(i=0,1,\dots,n)$ 是对应的n次 Lagrange 插值基函数,f(x)为一个不超过n次的多项式,则
- A. 结果不确定

B. 
$$f(x) < \sum_{i=0}^{n} f(x_i) l_i(x)$$

c. 
$$f(x) = \sum_{i=0}^{n} f(x_i) l_i(x)$$
D.  $f(x) > \sum_{i=0}^{n} f(x_i) l_i(x)$ 

**✓**5.00/5.00

D. 
$$f(x) > \sum_{i=1}^{n} f(x_i) l_i(x)$$

## 正确答案: С 你选对了

得分/总分

19. 设 
$$f(x) \in C^2[a,b]$$
,且  $f(a) = f(b) = 0$ ,则

A. 不确定

B. 
$$\max_{a \le x \le b} |f(x)| \le \frac{1}{8} (b-a)^2 \max_{a \le x \le b} |f''(x)|$$

**✓**5 00/5 00

c. 
$$\max_{a \le x \le b} |f(x)| = \frac{1}{8} (b - a)^2 \max_{a \le x \le b} |f''(x)|$$

$$\max_{a \le x \le b} |f(x)| < \frac{1}{8} (b-a)^2 \max_{a \le x \le b} |f''(x)|$$

正确答案: В 你选对了

20 单选 (5分) 20. 设  $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$  有 n 个不同的实零点

**A**. 0 **✓**5.00/5.00

得分/总分

- B.  $a_n^{-1}$
- c.  $a_0^{-1}$
- D. 1

正确答案: A 你选对了