Machine learning 05

Byung Chang Chung

Gyeongsang National University

bcchung@gnu.ac.kr

Contents

Unsupervised learning

Unsupervised learning

- Supervised or not
 - unsupervised learning
 - no label on the training data
 - the system must learn without any help

그림 1-7 비지도 학습에서 레이블 없는 훈련 세트

Unsupervised learning

- Application examples
 - clustering
 - outlier detection
 - density estimation

Clustering

Definition

 the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters)

Clustering

Classification vs clustering

Clustering

- Applications
 - customer categorization
 - dimension reduction technique
 - outlier detection
 - semi-supervised learning
 - image segmentation

- Lloyd-Forgy algorithm
 - simple algorithm that quickly and efficiently generate clusters from unlabeled datasets in a few iterations

- Example in scikit-learn
 - Voronoi tessellation

```
from sklearn.cluster import KMeans

k = 5
kmeans = KMeans(n_clusters=k, random_state=42)
y_pred = kmeans.fit_predict(X)
```


Centroid

the arithmetic mean position of all the points in the figure

Procedure

- randomly choose k centroids
- calculate distance from k centroids
- update centroids
- calculate distance from k centroids

• Procedure – visualization

- Uniqueness
 - different results depending on the starting centroids

- How to measure optimality?
 - unsupervised has no labels
 - inertia
 - distance between centroid and samples

```
kmeans.inertia_
211.5985372581684
```

```
X_dist = kmeans.transform(X)
np.sum(X_dist[np.arange(len(X_dist)), kmeans.labels_]**2)
```


Make multiple clustering model

```
kmeans_rnd_init1.inertia_
219.43539442771402
```

```
kmeans_rnd_init2.inertia_
```


- Centroid initialization
 - k-means++ clustering
 - find centroid which is far from other centroids

```
good_init = np.array([[-3, 3], [-3, 2], [-3, 1], [-1, 2], [0, 2]])
kmeans = KMeans(n_clusters=5, init=good_init, n_init=1, random_state=42)
kmeans.fit(X)
kmeans.inertia_
```


- Improvement in time complexity
 - using triangle inequality

• Improvement in time complexity - implementation

```
%timeit -n 50 KMeans(algorithm="elkan", random_state=42).fit(X)

1.41 s ± 25.6 ms per loop (mean ± std. dev. of 7 runs, 50 loops each)

%timeit -n 50 KMeans(algorithm="full", random_state=42).fit(X)

1.46 s ± 23.1 ms per loop (mean ± std. dev. of 7 runs, 50 loops each)
```


- Minibatch k-means clustering
 - training through mini-batch, not all data

- Impact of k value
 - finding optimal k is important

- Inertia according to k
 - when k increases, average distance is getting smaller

 Inertia according to k 3.0 finding elbow point 2.5 x_2 2.0 1.5 1200 1.0 1000 -1 x₁ 800 Inertia Elbow 600 400 200 3 k

- Silhouette score
 - average distance inside the cluster

- Silhouette diagram
 - height
 - the number of samples
 - length
 - silhouette coefficient

- Trivia about k-means clustering
 - (+) fast
 - (+) scalable
 - (-) not unique (cannot find global optimum)
 - (-) vulnerable to data properties

Limitation of k-means clustering

Segmentation

- image segmentation
 - division of images into segments
- semantic segmentation
 - every object belonging to the same type are allocated to the same segment
- color segmentation
 - allocate pixels which have similar color to the same segment

Example of a color segmentation

- Preprocessing based on clustering
 - clustering before supervised learning
 - 8 x 8 mono-color 1,797 images
 - just apply logistic regression
 - pipeline using k-means clustering then logistic regression

- Preprocessing based on clustering
 - logistic regression

- Preprocessing based on clustering
 - k-means clustering → logistic regression

- Preprocessing based on clustering
 - apply grid search to pipeline process

```
param_grid = dict(kmeans__n_clusters=range(2, 100))
grid_clf = GridSearchCV(pipeline, param_grid, cv=3, verbose=2)
grid_clf.fit(X_train, y_train)
```

```
grid_clf.best_params_
{'kmeans__n_clusters': 88}
```

```
grid_clf.score(X_test, y_test)
```


- Semi-supervised learning
 - small size of labelled samples

```
n_labeled = 50

log_reg = LogisticRegression(multi_class="ovr", solver="lbfgs", random_state=42)
log_reg.fit(X_train[:n_labeled], y_train[:n_labeled])
log_reg.score(X_test, y_test)
```


- Semi-supervised learning
 - clustering can make representative image
 - make labels by programmer himself/herself

```
kmeans = KMeans(n_clusters=k, random_state=42)
X_digits_dist = kmeans.fit_transform(X_train)
representative_digit_idx = np.argmin(X_digits_dist, axis=0)
X_representative_digits = X_train[representative_digit_idx]
```


DBSCAN

- Find the points in the ε neighborhood of every point and identify the core points with more than minPts neighbors
- Find the connected components of core points on the neighbor graph, ignoring all non-core points
- Assign each non-core point to a nearby cluster if the cluster is an ε neighbor, otherwise assign it to noise

DBSCAN

• implementation

Applications of clustering

DBSCAN

classification using clustering

Applications of clustering

- Other clustering algorithms
 - agglomerative clustering
 - BIRCH
 - mean-shift
 - affinity propagation
 - spectral clustering

- Basic idea
 - assume that samples are generated from mixture of Gaussian distribution

Graph diagram for Gaussian mixture

Gaussian distribution

Gaussian distribution

- Central limit theorem
 - the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal distribution as the number of samples increases

Process

- Expectation-maximization
 - (expectation) allocate samples to a cluster
 - (maximization) update parameters of the cluster

- Limitation to cluster parameters
 - the number of clusters
 - the type of covariance

- Applications
 - anomaly detection
 - consider samples in low density areas as outliers

- Selecting the number of clusters
 - Bayesian information criterion (BIC)
 - Akaike information criterion (AIC)

$$BIC = \log(m)p - 2\log(\hat{L})$$

$$AIC = 2p - 2\log(\hat{L})$$

- *m*: the number of samples
- *p*: the number of parameters
- \hat{L} : maximum value of likelihood function

- Likelihood function
 - output x, parameter θ

Plotting BIC and AIC

- Bayesian Gaussian mixture
 - without manually finding the optimal number of clusters,
 count unnecessary cluster weight as zero

- Other algorithms for anomaly detection
 - PCA
 - using reconstruction error
 - fast minimum covariance determinant (Fast-MCD)
 - assume that samples are derived from single Gaussian distribution

- Other algorithms for anomaly detection
 - isolation forest
 - ensemble of random decision tree, outlier will be isolated
 - local outlier factor
 - comparison with the density of samples
 - one-class SVM
 - consider one-class kernel SVM classifier

Feel free to question

Through e-mail & LMS

본 자료의 연습문제는 수업의 본교재인 한빛미디어, Hands on Machine Learning(2판)에서 주로 발췌함