Equivalencia entre el método Ada-Boosting y Forward Stageway Additive Model

Andrés Nieto Guadarrama

Lema:

Encontrar la clasificación óptima mediante el método de $Ada\ Boosting$ equivale a implementar el modelo aditivo con la función de costo

$$L(y, f(x)) = e^{-yf(x)}.$$

Demostración

Observar que, para cada paso m, el método del modelo aditivo busca al clasificador G_m y al parámetro β_m tales que:

$$(eta_m, G_m) \ = \ \min_{eta, G} \left\{ \sum_{i=1}^N e^{-y_i (f_{m-1}(x_i) + eta G(x_i))}
ight\} \ = \ \min_{eta, G} \left\{ \sum_{i=1}^N e^{-y_i f_{m-1}(x_i)} e^{-y_i eta G(x_i)}
ight\} = \ \min_{eta, G} \left\{ \sum_{i=1}^N w_i^{(m)} e^{-y_i eta G(x_i)}
ight\}$$

con $w_i^{(m)}=e^{-y_if_{m-1}(x_i)}>0$ independiente de G y eta. Más aún, partiendo la suma anterior tenemos que

$$\sum_{i=1}^N w_i^{(m)} e^{-y_i eta G(x_i)} \ = \ \sum_{\{i: y_i = G(x_i)\}} w_i^{(m)} e^{-eta} + \sum_{\{i: y_i
eq G(x_i)\}} w_i^{(m)} e^{eta} \ = \ \sum_{i=1}^N w_i^{(m)} e^{-eta} - \sum_{\{i: y_i
eq G(x_i)\}} w_i^{(m)} e^{-eta} + \sum_{\{i: y_i
eq G(x_i)\}} w_i^{(m)} e^{-eta} \ + \sum_$$

con lo cual,

$$\sum_{i=1}^N w_i^{(m)} e^{-y_i \beta G(x_i)} \ = \ \sum_{i=1}^N w_i^{(m)} e^{-\beta} + (e^{\beta} - e^{-\beta}) \sum_{\{i: y_i \neq G(x_i)\}} w_i^{(m)} \ = \ \sum_{i=1}^N w_i^{(m)} e^{-\beta} + (e^{\beta} - e^{-\beta}) \sum_{i=1}^N w_i^{(m)} e^{-\beta} + ($$

Dado que el único elemento de la suma que se ve afectado por la función clasificadora es $\sum_{i=1}^N w_i^{(m)} 1_{\{y_i
eq G(x_i)\}}$, tenemos que para cada paso m

$$|G_m| = \min_G \left\{ \sum_{i=1}^N w_i^{(m)} 1_{\{y_i
eq G(x_i)\}}
ight\}.$$

Notemos que a partir de éstos cálculos ya se consiguió el clasificador G_m y los pesos $w_i^{(m)}$ requeridos como primer paso en el algoritmo $Ada\ Boosting\ M1$.

Por otro lado, sustituyendo a G por G_m en la función objetivo, podemos notar que las sumas $\sum_{i=1}^N w_i^{(m)}$ y $\sum_{i=1}^N w_i^{(m)} 1_{\{y_i
eq G(x_i)\}}$ no dependen de eta, por lo que eta_m se encuentra minimizando la función en $\mathbb R$:

$$g(eta) = Ae^{-eta} + B(e^eta - e^{-eta}), = (A-B)e^{-eta} + Be^eta$$
 con $A = \sum_{i=1}^N w_i^{(m)}$ y $B = \sum_{i=1}^N w_i^{(m)} 1_{\{y_i
eq G_m(x_i)\}}$

Por condiciones de primer orden, β_m debe cumplir que:

$$0 \, = \, g'(eta_m) \, = \, (B-A)e^{-eta_m} + Be^eta_m \, = \, rac{1}{e^{eta_m}}((B-A) + Be^{2eta_m}),$$

esto es,

$$eta_m \, = \, rac{1}{2} ln \left(rac{A-B}{B}
ight) = \, rac{1}{2} ln \left(rac{\sum_{i=1}^N w_i^{(m)} 1_{\{y_i = G_m(x_i)\}}}{\sum_{i=1}^N w_i^{(m)} 1_{\{y_i
eq G_m(x_i)\}}}
ight) \, = \, rac{1}{2} ln \left(rac{1-err_m}{err_m}
ight)$$

donde $err_m = rac{B}{A}$ es el error de predicción de la función clasificadora G_m .

Una vez encontradas eta_m y G_m , el siguiente paso del modelo aditivo nos lleva a actualizar las funciones f_m de manera que:

$$f_m = f_{m-1} + G_m \beta_m.$$

 $f_m=f_{m-1}+G_meta_m.$ Sin embargo, por la forma en que definimos los pesos w_i^m , tenemos que para el siguiente paso:

$$w_i^{m+1} \, = \, e^{-y_i f_m(x_i)} \, = \, e^{-y_i f_{m-1}(x_i)} e^{-y_i G_m(x_i) eta_m} \, = \, w_i^m e^{-y_i G_m(x_i) eta_m}$$

Más aún, dado que $-y_iG_m(x_i) = -1$ si $y_i = G_m(x_i)$ y $-y_iG_m(x_i) = 1$ si $y_i
eq G_m(x_i)$, podemos escribir a $-y_i G_m(x_i)$ como

$$-y_i G_m(x_i) \, = \, 21_{\{y_i
eq G_m(x_i)\}} - 1$$

Con lo cual,

$$w_i^{m+1} \, = \, w_i^m e^{2eta_m \mathbb{1}_{\{y_i
eq G_m(x_i)\}}} e^{-eta_m}$$

Finalmente, observar que el factor e^{-eta_m} afecta a todas las w_i^{m+1} para toda $i=1,\dots,N$, por lo que puede omitirse. Por lo tanto, se obtuvieron los mismos valores para $\overset{\cdot}{eta}$, G y w_i^m que si se hubiera seguido el algoritmo de AdaBoosting M1