FIZIKA - 1. PPZ

Fotometrija

- Dio optike koji se bavi mjerenjem svjetlosnih veličina, svjetlosni tok, jakost izvora svjetlosti i osvjetljenost površine.
- SVJETLOSNI TOK, Φ , [lm] \rightarrow lumen
 - o je svjetlosna energija koju izvor zrači u jedinici vremena.
- JAKOST SVJETLOSNOG IZVORA, I, [cd] → kandela
 - o Je svjetlostni tok koji izvor emitira u jedinični prostorni kut

$$I=rac{\Phi}{\Omega}$$
 Veličina prostornog kuta [sr] $ightarrow$ steradijan $\Omega=rac{A}{r^2}$

$$Ω = 4πsr \rightarrow puni prostorni kut$$

 $A = 4r^2\pi \rightarrow površina čitave kugle$

- Osvjetljenje/iluminacija, E [lx] → luks

$$E = \frac{\phi}{A}$$

$$E = \frac{I \cdot \cos \alpha}{r^2} \Rightarrow \text{Lambertov zakon}$$

ZAD 1. Žarulja svjetlosne jakosti 16 cd stvara na zastoru udaljenu 0,5 m jednaku osvijetlenost kao neka druga žarulja nepoznate svjetlosne jakosti koja je od zastora udaljena 2 m. Kolika je svjetlosna jakost druge žarulje ako svjetlost iz žarulja upada okomito na zastor?

$$I_1 = 16cd$$

$$l_1$$
= 0.5 m

$$l_2 = 2m$$

$$cos \alpha = 1$$

$$I_2 = ?$$

$$E_1 = E_2 = \frac{I_1 \cdot \cos \alpha}{r_1^2} = 64 \text{lx}$$

$$E_2 = \frac{I_2 \cdot \cos \alpha}{r_2^2} = = > I_2 = E * r_2^2 = 256$$
cd

ZAD 2. Dva izvora svjetlosti jakosti 10 cd i 40 cd daju na nekom zastoru jednaku osvijetljenost. Kako se odnose udaljenosti izvora od zastora?

$$I_1=10cd$$

$$I_2=40cd$$

$$E_1=E_2$$

$$E = \frac{(I * \cos \varphi)}{r^2}$$

$$\frac{I_1}{r_1^2} = \frac{I_2}{r_2^2}$$

$$\frac{10cd}{r_1^2} = \frac{40cd}{r_2^2}$$

$$10r_2^2 = 40r_1^2 / : 10$$

$$r_2^2 = 4r_1^2 / : r_1$$

$$\frac{\mathbf{r_1}}{\mathbf{r_2}} = \frac{1}{4} / \sqrt{}$$

$$\frac{\mathbf{r}_1}{\mathbf{r}_2} = \frac{1}{2}$$

ZAD 3. Koliki ukupni svjetlosni tok emitira izvor jakosti 200 cd? Kolika je osvijetljenost površine koja se nalazi na udaljenosti

od 5m od izvora? Uzmite da svjetlost upada okomito na površinu.

$$I = 200cd$$

$$r = 5m$$

$$E = ?$$

$$\phi$$
 = ?

$$E = \frac{I}{r^2} = 8 lx$$

$$\phi = I \cdot \Omega = 200^* 4\pi = 2513,2 \ lm$$

Geometrijska optika

- Ravno zrcalo je glatka neprozirna ploha koja odbija zrake svjetlosti
- Zakon odbijanja (refleksije)

- Difuzna (raspršena) svjetlost nepravilna refleksija svjetlosti
- Slika u ravnom zrcalu je simetrična, virtualna, uspravna, jednake veličine kao predmet i jednako udaljena od zrcala.

ZAD 1.

y => visina predmeta

y' => visina slike

x = udalj. predmeta od zrcala

x' = udalj. slike od zrcala

y=3cm

x' = 10cm

x = 2m = 200cm

y' = ?

 $\frac{y}{x} = \frac{y'}{x'}$

 $\frac{3}{200} = \frac{y'}{x'}$

200y' = 30 / : 200

y = 0.15cm

ZAD 3.

y' = 60m

y = 10m

α = 30°

Sferna zrcala

Žarište i žarišna daljina sfernih zrcala

F - žarište (fokus) zrcala

f - žarišna (fokalna) daljina

$$|AF| = |FS|$$

Za paraaksijalne zrake vrijedi:

$$|AF| \approx |TF|$$
 odnosno $|TF| \approx |FS|$

$$f = \frac{R}{2}$$

Konkavno sferno zrcalo

$$\frac{1}{f} = \frac{1}{x} + \frac{1}{x'}$$
- jednadžba zrcala

Linearno povećanje zrcala

$$m = \frac{y'}{y} = -\frac{x'}{x}$$

Vrste slika

1.

2.

Realna (x'>0)

Umanjena

Obrnuta (y'<0, m<0)

x>R, f< x' < R

Realna (x'>0)

uvećana

Obrnuta (y'<0, m<0)

F < x < R, x' > R

Realna (x'>0)

Veličinom jednaka predmetu

Obrnuta (y'<0, m<0)

$$X=R, x'=R$$

Virtualna (x'<0)

Uvećana

uspravna(y'>0, m>0)

$$X = f$$
, $x' --> \infty$

Konveksno sferno zrcalo

Slika je uvijek virtualna, x'<0, uspravna i umanjena

$$\frac{1}{f} = \frac{1}{x} + \frac{1}{x'}$$

Negativnu vrijednost uvrštavamo u jednadžbu za udaljenost virtualne slike (-x'), (-f)

ZAD 1. Predmet visok 4 cm nalazi se 10 cm ispred konkavnog sfernog zrcala polumjera zakrivljenosti 60 cm. Odredite računski i grafički položaj i veličinu slike. Je li slika realna ili virtualna, obrnuta ili uspravna?

$$y = 4cm$$

$$x = 10cm$$

$$R = 60cm$$

$$\frac{1}{f} = \frac{1}{x} + \frac{1}{x'}$$

$$F = \frac{R}{2} = 30cm$$

$$-\frac{1}{x'} = \frac{1}{x} - \frac{1}{F}$$

$$\frac{1}{x'} = -\frac{2}{30}$$

$$x' = 15cm$$

$$\frac{y'}{y} = \frac{x'}{x}$$

$$10y' = 60/:10$$

$$y' = 6cm$$

ZAD 2. U retrovizoru oblika konveksnog zrcala vidi se slika automobila koji je udaljen 100 m od tjemena zrcala. Koliko je linearno povećanje ako je polumjer zakrivljenosti zrcala 10 m²

$$R = 10m$$

$$F = -R/2$$

$$f = -5m$$

$$\frac{1}{f} = \frac{1}{x} + \frac{1}{x'}$$

$$\frac{1}{x'} = -\frac{21}{100}$$

$$x' = -4.76$$

$$m = -\frac{x'}{x} = 0.0476$$

ZAD 3. Na koju udaljenost od konveksnog sfernog zrcala treba postaviti predmet da njegova slika bude 1 m udaljena od zrcala? Polumjer zakrivljenosti zrcala iznosi 2,5 m.

$$x' = -1m$$

$$R = 2,5m$$

f = -1,25m

$$\chi = ?$$

$$\frac{1}{f} = \frac{1}{x} + \frac{1}{x'}$$

$$\frac{1}{x} = \frac{1}{-1,25} - \frac{1}{-1}$$

$$\frac{1}{x} = \frac{1}{5}$$

$$x = 5m$$

Lom (refrakcija) svjetlosti

Dioptar je granica dvaju optičkih sredstava

- Indeks loma, n

$$n = \frac{\sin \alpha}{\sin \beta}$$

$$n = \frac{c}{v}$$

C - > brzina svjetlosti u vakumu

Ako svjetlost ide iz optički rijeđeg u optički gušće sredstvo, lomi se prema okomici $\alpha>\beta$

$$n_{21} = \frac{\sin \alpha}{\sin \beta} = \frac{n_1}{n_2}$$

N₂₁ - >relativan indeks loma

Snelliusov zakon - omjer sinusa kutova

Povećamo li kut upadanja, poveća se i kut loma. Ako kuta upadanja povećamo, opažamo da svjetlost ne prelazi u drugo sredstvo, nego se u potpunosti odbija, to je potpuna refleksija.

Zakoni geometrijske optike:

- 1. Zakon pravocrtnog širenja svjetlosti
- 2. Zakon neovisnosti svjetlosnih snopova
- 3. Zakon odbijanja
- 4. Zakon loma

ZAD 1. Svjetlosna zraka upada iz vakuuma na staklo indeksa loma 1,52, pri čemu se djelomično lomi, a djelomično reflektira. Ako je kut upadanja 81°,

koliki je kut:

- a) loma
- b) između odbijene i lomljene zrake
- c) između upadne i lomljene zrake?

$$n = 1,52$$

$$\alpha$$
) β = ?

$$n = \frac{\sin \alpha}{\sin \beta}$$

$$\sin \beta = 40,5^{\circ}$$

b)
$$\gamma = 180^{\circ} - 81^{\circ} - 40,5^{\circ} = 58,5^{\circ}$$

c)
$$\delta = 180^{\circ} - 81^{\circ} + 40,5^{\circ} = 139,5^{\circ}$$

ZAD 2. Svjetlost iz vakuuma upada na ravnu staklenu ploču pod kutom upada od 32° i lomi se pod kutom od 21°. Izračunajte:

- a) brzinu svjetlosti u staklenoj ploči ako je njezin iznos u vakuumu $3 \times 10^8 \mathrm{m~s^{\text{-}1}}$
- b) granični kut totalne refleksije za staklenu ploču.

$$\alpha = 32^{\circ}$$

$$\beta = 21^{\circ}$$

$$c = 3 \times 10^{8} \text{ m/s}$$

$$n = \frac{\sin \alpha}{\sin \beta}$$

$$n = 1,47$$

$$v = \frac{c}{n} = 20297$$

$$b) \sin \alpha_g = \frac{1}{n} = 42^{\circ}51'54''$$