POSSESSION OF MOBILES IN EXAM IS UFM PRACTICE

Name of student Enrolment No			
	BEN	NETT UNIVERSITY, GR	EATER NOIDA
	B.TECH/ TEST – En	d Term Examination: FA	LL SEMESTER A.Y. 2018-2019
		05L/EPHY103L	MAX. TIME: 2 hours
	RSE NAME : Electr e RSE CREDIT: 3	omagnetics	MAX . MARKS: 50
ALL	QUESTIONS ARE CO	OMPULSORY	
 1. Give brief answers with appropriate reasons to the following questions: (8x2=1). a) A positive charge of 1 μC is placed at the center of a cavity formed inside a spherical conducting shell having an inner radius 0.2 m and an outer radius 1 m. What is the chardensity on the inner surface of the sphere? b) A sphere of radius R carries a charge density given by ρ(r) = ρ₀(1 - r²/R²). What is the value of ∇. E at a point at a distance R/2 from the center? c) A dielectric sphere of radius R and dielectric constant K carries a polarization given by P = P₀r where P₀ is a constant. Obtain the bound surface and volume charge densitie d) Determine whether the vector function G = x²x̂ + 3xz²ŷ + 2xzx̂ can represent a magnetic field. e) A circular current loop having a radius R and carrying a current I is placed at the center a sphere of radius 2R. What is the net magnetic flux passing through the sphere? f) A cylinder of circular cross section of radius R and length L is uniformly magnetized w magnetization M = M₀2 parallel to the axis of the cylinder. Obtain the corresponding bound surface current densities on the cylindrical and plane end surfaces. g) Verify whether the following two vector potentials A₁ and A₂ = A₁ + (yx̂ + xŷ) correspond to the same magnetic field. h) An infinitely long straight solenoid with circular cross section of radius R has a cylindrical rod of radius R/2 placed coaxially with the solenoid. If the magnetic susceptibility of the rod is xm what is the ratio of H in the rod to H in the air gap? 			
			hich has free space in the region $0 < r <$ bility χ_e for $R_1 < r < R_2$ and free space

(4) (3)

(1)

a) Using Gauss's law find the electric field in all regions.b) Obtain all the bound surface and volume charge densities in the dielectric.

c) What is the value of ∇ . \overrightarrow{D} at a point r_0 with $R_1 < r_0 < R_2$?

- 3. A infinitely long straight cylindrical wire of radius R made of a material with magnetic susceptibility χ_m carries a current I which is uniformly distributed across its cross section.
 - a) Using Ampere's law, obtain the magnetic field \vec{B} in the regions r < R and r > R. (4)
 - b) Obtain the surface bound currents on the wire. (3)
 - c) What is the value of $\nabla \cdot \vec{B}$ at a distance R/2 from the axis of the cylinder? (1)
- 4. Consider an infinitely long hollow solenoid of radius R having n turns per unit length. The current in the solenoid is varied with time and given by $I(t) = I_0 \sin \omega t$. Assuming that the induced electric field is along $\widehat{\phi}$ direction,
 - a) Obtain the induced electric field \vec{E} both within and outside the solenoid. (3)
 - b) What will be the values of $\nabla \cdot \vec{E}$ and $\nabla \times \vec{E}$ inside and outside the solenoid? (3)
- 5. A parallel plate capacitor with circular plates with radius R and free space between the capacitor plates is being charged with a time dependent current given by I(t).
 - a) Obtain the displacement current density flowing between the plates of the capacitor. (3)
 - b) Show that the total displacement current is equal to the conduction current I(t). (2) Given that the displacement current density is $\vec{J}_D = \epsilon_0 \frac{\partial \vec{E}}{\partial t}$ where symbols have their usual meaning.
- 6. An electromagnetic wave propagating in free space (velocity of the wave is 3×10^8 m/s) is described by the following expression for the electric field (y is measured in meters):

$$\vec{E} = E_0 \hat{x} \cos[2\pi (10^6 y - \nu t)]$$

- a) What are the values of frequency and wavelength of the wave? (2)
- b) What is the direction of propagation of the wave? (2)
- c) Given that the corresponding magnetic field of the wave is $\vec{B} = \vec{B}_0 \cos[2\pi(10^6 y vt)]$, using Maxwell's equations obtain the magnitude and direction of \vec{B}_0 . (3)

Some useful formulas

• In Cartesian coordinates:

$$\nabla f = \frac{\partial f}{\partial x} \hat{\imath} + \frac{\partial f}{\partial y} \hat{\jmath} + \frac{\partial f}{\partial z} \hat{k}$$

$$\nabla \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

$$\nabla \times \vec{F} = \left[\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right] \hat{\imath} + \left[\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right] \hat{\jmath} + \left[\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right] \hat{k}$$

• In spherical polar coordinates:

$$\nabla f = \frac{\partial f}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{\phi}$$

$$\nabla \cdot \vec{F} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta F_\theta) + \frac{1}{r \sin \theta} \frac{\partial F_\phi}{\partial \phi}$$

$$\nabla \times \vec{F} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta F_\phi) - \frac{\partial F_\theta}{\partial \phi} \right] \hat{r} + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial F_r}{\partial \phi} - \frac{\partial}{\partial r} (r F_\phi) \right] \hat{\theta} + \frac{1}{r} \left[\frac{\partial}{\partial r} (r F_\theta) - \frac{\partial F_r}{\partial \theta} \right] \hat{\phi}$$

• In cylindrical coordinates:

$$\nabla f = \frac{\partial f}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial f}{\partial \phi} \hat{\phi} + \frac{\partial f}{\partial z} \hat{z}$$

$$\nabla \cdot \vec{F} = \frac{1}{r} \frac{\partial}{\partial r} (rF_r) + \frac{1}{r} \frac{\partial F_{\phi}}{\partial \phi} + \frac{\partial F_z}{\partial z}$$

$$\nabla \times \vec{F} = \left[\frac{1}{r} \frac{\partial F_z}{\partial \phi} - \frac{\partial F_{\phi}}{\partial z} \right] \hat{r} + \left[\frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r} \right] \hat{\phi} + \frac{1}{r} \left[\frac{\partial}{\partial r} (rF_{\phi}) - \frac{\partial F_r}{\partial \phi} \right] \hat{z}$$

- $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N-m}^2$
- Maxwell's equations:

$$\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$$

POSSESSION OF MOBILES IN EXAM IS UFM PRACTICE

Name of student	Enrolment No	
	BENNETT UNIVERSITY, GREAT	ER NOIDA
B.TECH/ TEST	T – End Term Examination: FALL S	EMESTER A.Y. 2018-2019
	PHY105L/EPHY103L Electromagnetics	MAX. TIME: 2 hours MAX . MARKS: 50
ALL QUESTIONS A	RE COMPULSORY	
 Give brief answers with appropriate reasons to the following questions: (8x2=16) A positive charge of 1 μC is placed at the center of a cavity formed inside a spherical conducting shell having an inner radius 0.2 m and an outer radius 1 m. What is the charge density on the inner surface of the sphere? A sphere of radius R carries a charge density given by ρ(r) = ρ₀(1 - r²/R²). What is the value of ∇. E at a point at a distance R/2 from the center? A dielectric sphere of radius R and dielectric constant K carries a polarization given by P = P₀r where P₀ is a constant. Obtain the bound surface and volume charge densities. Determine whether the vector function G = x²x + 3xz²y + 2xzz can represent a magnetic field. A circular current loop having a radius R and carrying a current I is placed at the center of a sphere of radius 2R. What is the net magnetic flux passing through the sphere? A cylinder of circular cross section of radius R and length L is uniformly magnetized with magnetization M = M₀ 2 parallel to the axis of the cylinder. Obtain the corresponding 		
g) Verify whether correspond to theh) An infinitely locylindrical rode	the following two vector potentials \vec{A}_1 he same magnetic field. In a straight solenoid with circular cross of radius $R/2$ placed coaxially with the fine rod is χ_m what is the ratio of \vec{H} in	and $\vec{A}_2 = \vec{A}_1 + (y\hat{x} + x\hat{y})$ section of radius R has a solenoid. If the magnetic
 R₁ and a linear, hor for r > R₂. a) Using Gauss's l b) Obtain all the b 	s placed at the center of a sphere which nogeneous dielectric with susceptibility aw find the electric field in all regions ound surface and volume charge densitue of ∇ . \overrightarrow{D} at a point r_0 with $R_1 < r_0 < R_2$	$y \chi_e$ for $R_1 < r < R_2$ and free space ties in the dielectric. (4)

- 3. A infinitely long straight cylindrical wire of radius R made of a material with magnetic susceptibility χ_m carries a current I which is uniformly distributed across its cross section.
 - a) Using Ampere's law, obtain the magnetic field \vec{B} in the regions r < R and r > R. (4)
 - b) Obtain the surface bound currents on the wire. (3)
 - c) What is the value of $\nabla \cdot \vec{B}$ at a distance R/2 from the axis of the cylinder? (1)
- 4. Consider an infinitely long hollow solenoid of radius R having n turns per unit length. The current in the solenoid is varied with time and given by $I(t) = I_0 \sin \omega t$. Assuming that the induced electric field is along $\hat{\phi}$ direction,
 - a) Obtain the induced electric field \vec{E} both within and outside the solenoid. (3)
 - b) What will be the values of $\nabla \cdot \vec{E}$ and $\nabla \times \vec{E}$ inside and outside the solenoid? (3)
- 5. A parallel plate capacitor with circular plates with radius R and free space between the capacitor plates is being charged with a time dependent current given by I(t).
 - a) Obtain the displacement current density flowing between the plates of the capacitor. (3)
 - b) Show that the total displacement current is equal to the conduction current I(t). (2) Given that the displacement current density is $\vec{J}_D = \epsilon_0 \frac{\partial \vec{E}}{\partial t}$ where symbols have their usual meaning.
- 6. An electromagnetic wave propagating in free space (velocity of the wave is 3×10^8 m/s) is described by the following expression for the electric field (y is measured in meters):

$$\vec{E} = E_0 \hat{x} \cos[2\pi (10^6 y - vt)]$$

- a) What are the values of frequency and wavelength of the wave? (2)
- b) What is the direction of propagation of the wave? (2)
- c) Given that the corresponding magnetic field of the wave is $\vec{B} = \vec{B}_0 \cos[2\pi(10^6 y vt)]$, using Maxwell's equations obtain the magnitude and direction of \vec{B}_0 . (3)

Some useful formulas

• In Cartesian coordinates:

$$\nabla f = \frac{\partial f}{\partial x} \hat{\imath} + \frac{\partial f}{\partial y} \hat{\jmath} + \frac{\partial f}{\partial z} \hat{k}$$

$$\nabla \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

$$\nabla \times \vec{F} = \left[\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right] \hat{\imath} + \left[\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right] \hat{\jmath} + \left[\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right] \hat{k}$$

• In spherical polar coordinates:

$$\nabla f = \frac{\partial f}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{\phi}$$

$$\nabla \cdot \vec{F} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta F_\theta) + \frac{1}{r \sin \theta} \frac{\partial F_\phi}{\partial \phi}$$

$$\nabla \times \vec{F} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta F_\phi) - \frac{\partial F_\theta}{\partial \phi} \right] \hat{r} + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial F_r}{\partial \phi} - \frac{\partial}{\partial r} (r F_\phi) \right] \hat{\theta} + \frac{1}{r} \left[\frac{\partial}{\partial r} (r F_\theta) - \frac{\partial}{\partial \theta} \right] \hat{\phi}$$

• In cylindrical coordinates:

$$\begin{split} \nabla f &= \frac{\partial f}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial f}{\partial \phi} \hat{\phi} + \frac{\partial f}{\partial z} \hat{z} \\ \nabla \cdot \vec{F} &= \frac{1}{r} \frac{\partial}{\partial r} (rF_r) + \frac{1}{r} \frac{\partial F_{\phi}}{\partial \phi} + \frac{\partial F_z}{\partial z} \\ \nabla \times \vec{F} &= \left[\frac{1}{r} \frac{\partial F_z}{\partial \phi} - \frac{\partial F_{\phi}}{\partial z} \right] \hat{r} + \left[\frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r} \right] \hat{\phi} + \frac{1}{r} \left[\frac{\partial}{\partial r} (rF_{\phi}) - \frac{\partial F_r}{\partial \phi} \right] \hat{z} \end{split}$$

- $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$
- Maxwell's equations:

$$\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$$