dohn & Kernick

DEC 2 0 2004

REPUBLIC OF SOUTH AFRICA PATENTS ACT, 1978 APPLICATION FOR A PATENT AND

ACKNOWLEDGEMENT OF RECEIPT Section 30(1) - Regulation 39

27. ž. 37 COMS

The arent of a Patent is hereby requested by the undermentioned

RAD	cant(s) on the present application	n filed in	duplicate	
الرق	Official application No.	22	Lodging date	J&K Reference
	878821		27th May, 1987	AP 26120/PJW
71	. organi	sed a	ENGESELLSCHAFT . A leand existing under thousand of Germany.	
	Address(es) of applicant(s) D-5090 Leverku	sen,	Germany.	
54	TOLER	ANCE	IDES FOR IMPROVING TH OF HERBICIDALLY ACTI ISO(THIO)UREA DERIVAT	VE
xx xx xx xx xx	This application is accompanied by: 1a A single copy of a provisional space of the copies of a complete specion of the copies of a complete specion of the copy of the copy of the copy of Figure of the copy of Figure of the copy of th	dition to in terms pecification cication of s ct (form in awings for inventor docur (1	Patent/Application No. s of S 37 and based on application no. on of pages f 175 pages P8 in duplicate) or the abstract rs) or other evidence of title ments) documents)	24 01 21 01
xx	9. A copy of the form P2 and the s 10. A declaration and power of attor 11. Request for ante-dating on form 12. Request for classification on form 13a Request for delay of acceptance 13b	ney on fo P4 P9	orm P3	21 01

74 Address for Service: JOHN & KERNICK, PRETORIA.

27th May, 1987

The duplicate will be returned to the applicant for service as proof of lodging but is not valid unless endorsed with official stamp.

REGISTRAR OF PATENTS, DESIGNS TRADE
MARKS AND CUPYRIGHT
Official date stamp

-05-1987

Restoration parette Patchte, Modelle, Handels weeke en outeur kee

COMPLETE SPECIFICATION

(Section 30(1) - Regulation 28)

21	01 Official application No.	22 Lodging date	J&K Reference
	87/3821	27th May, 1987	AP 26120/PJW
51	International classification		
	AOIN		
71	Full Name(s) of Applicant(s)		·
	BAYER AKTIENGES existing under Germany.	SELLSCHAFT . A legal body the laws of the Federal	y organised and Republic of
72	Full name(s) of Inventor(s)		
	Theodor PFISTER	R, Dieter FEUCHT, Robert	R. SCHMIDT
54	TOLERANCE C	DES FOR IMPROVING THE CROOF HERBICIDALLY ACTIVE SO(THIO)UREA DERIVATIVES	OP PLANT
٠	•		
			,

The invention relates to the use of known amides as antidotes for improving the crop plant tolerance of certain herbicidally active sulphonyliso(thio)urea derivatives.

The invention furthermore relates to new active compound combinations which consist of known amides and known herbicidally active sulphonyliso(thio)urea derivatives and have particularly good selectively herbicidal properties.

In the present connection, "antidotes" ("safeners") are to be understood as substances which are capable of specifically antagonizing the harmful effects of herbicides on crop plants, that is to say of protecting the crop plants, without thereby noticeably influencing the herbicidal action on the weeds to be combated.

It is known that numerous herbicidally activesulphonyliso(thio)urea derivatives cause damage to a greater or lesser degree on crop plants when used for combating weeds in maize and other crops.

It is furthermore known that numerous amides are suitable for reducing damage which can be caused to crop plants by herbicidal active compounds, in particular thiolcarbamates and acetanilides (compare, for example, DE-OS (German Published Specification) 2,218,097, DE-OS (German Published Specification) 2,828,265, U.S. Patent Specification 4,021,224, U.S. Patent Specification 4,137,070).

However, the applicability of these substances as antidotes depends to a large degree on the particular herbicidal active compound.

It has now been found that the known amides of the formula (1)

3

5

20

25

 $R - \frac{0}{C} - N < \frac{R^{1}}{R^{2}}$

in which

5

10

15

20

25

30

R represents hydrogen or halogen, or represents in each case optionally substituted alkyl, alkenyl, alkinyl, cycloalkyl, cycloalkenyl, bicycloalkyl, bicycloalkenyl, tricycloalkyl, aryl, heteroaryl, alkoxy, alkenyloxy, alkinyloxy, aryloxy, carbamoyl, alkoxycarbonyl or dithiolanyl and R¹ and R² independently of one another represent hydrogen, or represent formyl, or represent chlorosulphonyl, or represent in each case optionally substituted alkyl, alkenyl, alkadienyl, alkinyl, cycloalkyl, cycloalkenyl, alkoxy, alkylthio, alkylcarbonyl, alkoxycarbonyl, phenyl, phenoxy, phenylsulphonyl or heterocyclyl, or represent amino, or represent alkylideneimino, or represent optionally substituted alkylcarbonylamino or di-(alkylcarbonyl)amino, or R¹ and R², together with the nitrogen atom to which they are bonded, represent in each case optionally substituted alkylideneimino, pyrrolidinyl, piperidinyl, piperidonyl, perhydroazepinyl, perhydroazocinyl, dihydropyrazolyl, dihydro- or tetrahydropyridinyl, azabicyclononyl, morpholinyl, perhydro-1,3-oxazinyl, 1,3-oxazolidinyl, 1,4piperazinyl, perhydro-1,4-diazepinyl, dihydro-, tetrahydro- or perhydroquinolyl or -isoquinolyl, indolyl or dihydro- or perhydroindolyl, are outstandingly suitable as antidotes for improving the crop plant tolerance of herbicidally active sulphonyliso-

Le A 24 460

(thio)urea derivatives of the general formula (II)

in which

13.7

5

10

15

25

R³ represents an optionally substituted radical from the series comprising alkyl, aralkyl, aryl and heteroaryl,

R⁴ represents a six-membered aromatic heterocyclic radical which is optionally substituted and/or optionally fused and which contains at least one nitrogen atom,

R⁵ represents an optionally substituted aliphatic, araliphatic, aromatic or heteroaromatic radical, X represents oxygen or sulphur and

M represents hydrogen or one equivalent of a metal, and of adducts of compounds of the formula (II) and strong acids.

It has furthermore been found that the new active compound combinations consisting of

- an amide of the formula (I) and
- at least one herbicidal sulphonyliso(thio)urea derivative of the formula (II) 20 are outstandingly suitable for selectively combating weeds in crops of useful plants.

Surprisingly, the crop plant tolerance of herbicidal sulphonyliso(thio)urea derivatives of the formula (II) is decidedly improved by also using amides of the formula (I). It is furthermore unexpected that the active compound combinations according to the invention of an amide of the formula (I) and a herbicidal sulphonyliso-(thio)urea derivative of the formula (II) have better selective properties than the active compounds in question 30 by themselves.

Formula (I) provides a general definition of the

amides which can be used according to the invention. Preferred amides of the formula (I) are those in which

R represents hydrogen, fluorine, chlorine or bromine; or represents the radical - CO - N

wherein

5

10

15

20 -

25

30

R⁶ and R⁷ are identical or different and each represent hydrogen, or represent in each case straight-chain or branched alkyl, alkenyl, alkinyl or cyanoalkyl with in each case up to 8 carbon atoms; or furthermore

R represents straight-chain or branched alkyl which has 1 to 20 carbon atoms and is optionally monosubstituted or polysubstituted by identical or different substituents, possible substituents being: hydroxyl, halogen, in particular fluorine, chlorine, bromine or iodine, cyano, cyanato and thiocyanato; in each case straight-chain or branched alkoxy, alkylthio, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, halogenoalkoxy, halogeno-hydroxy-alkoxy, halogenoalkylcarbonyl, halogenoalkoxycarbonyl, halogenoalkylcarbonyloxy and halogenoalkenylcarbonyloxy with in each case up to 6 carbon atoms and if appropriate up to 9 identical or different halogen atoms, in particular fluorine, chlorine or bromine; and also phenyl, phenoxy, phenylthio and thienyl, in each case

comprising halogen, lower alkyl and/or lower alkoxy; and furthermore cycloalkyl with 3 to 7 $^{
m R}^6$ $^{
m R}^6$ carbon atoms and the radicals $^{
m N}$, $^{
m C-N}$

optionally monosubstituted or polysubstituted by identical or different substituents from the group

Le A 24 460

$$-0-CH_2-C-N$$
 R^6
and $-SO_2-N$
 R^7

wherein

5

10

15

20

25

30

 ${\tt R}^6$ and ${\tt R}^7$ in each case have the abovementioned meanings; or furthermore

R represents straight-chain or branched alkenyl which has 2 to 8 carbon atoms and is optionally monosubstituted or polysubstituted by identical or different substituents, possible substituents being: hydroxyl, halogen, in particular fluorine, chlorine or bromine, straight-chain or branched alkoxycarbonyl with up to 6 carbon atoms and phenyl and phenoxy, in each case optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising halogen, in particular fluorine, chlorine or bromine, lower alkyl and lower alkoxy; or furthermore R represents straight-chain or branched alkinyl with 2 to 8 carbon atoms; or furthermore R répresents cycloalkyl, cycloalkenyl, bicycloalkyl, bicycloalkenyl or tricycloalkyl with in each case up to 12 carbon atoms and in each case optionally monosubstituted or polysubstituted by identical or different substituents, possible substituents being: straight-chain or branched alkyl with 1 to 4 carbon atoms, phenyl and the radical

wherein

 ${\rm R}^6$ and ${\rm R}^7$ have the abovementioned meaning; or furthermore

R represents aryl which has 6 to 10 carbon atoms and is optionally monosubstituted or polysubstituted by identical or different substituents,

Le-A-24-460

possible substituents being: halogen, in particular fluorine, chlorine, bromine or iodine, nitro, carboxyl - also in the form of the carboxylate anion - in each case straight-chain or branched alkyl, alkoxy, halogenoalkyl, alkylcarbonyl, halogenoalkylcarbonyl and halogenoalkylcarbonylamino with in each case up to 4 carbon atoms and if appropriate up to 5 identical or different halogen atoms, in particular fluorine, chlorine or bromine,

and the radical $-CO-N = \frac{R^6}{R^7}$

wherein

5

10

15

20

25

30

 ${\tt R}^6$ and ${\tt R}^7$ have the abovementioned meaning, or furthermore

R represents furyl, thienyl, pyridyl or dithiolanyl, in each case optionally monosubstituted or polysubstituted by identical or different substituents, possible substituents being: halogen, in particular fluorine, chlorine or bromine, straight-chain or branched alkyl with up to 6

carbon atoms and the radical -CO-N

wherein

 ${\tt R}^6$ and ${\tt R}^7$ have the abovementioned meaning, or finally

R represents in each case straight-chain or branched alkoxy, alkenyloxy, alkinyloxy, alkoxy-carbonyl or phenoxy, in each case optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising phenyl and halogen, in particular fluorine, chlorine or bromine, and

R¹ and R², which are identical or different, independently of one another, represent hydrogen,

L- A 24 468

formyl or chlorosulphonyl, or represent phenyl, phenoxy or phenylsulphonyl, in each case optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising halogen, in particular fluorine, chlorine or bromine, and lower alkyl, or furthermore represent straight-chain or branched alkyl which has 1 to 12 carbon atoms and is optionally monosubstituted or polysubstituted by identical or different substituents, possible substituents being: hydroxyl, mercapto, cyano and halogen, in particular fluorine, chlorine, bromine or iodine; and in each case straight-chain or branched alkoxy, alkoximino, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkoxycarbonyloxy, alkylthiocarbonyloxy, halogenoalkylcarbonyloxy and alkylsulphonyloxy with in each case up to 6 carbon atoms and, where appropriate, up to 5 identical or different halogen atoms, in particular fluorine, chlorine or bromine; and furthermore alkylaminocarbonyloxy, dialkylaminocarbonyloxy, alkenylaminocarbonyloxy and dialkenylaminocarbonyloxy with in each case up to 6 carbon atoms in the individual straight-chain or branched alkyl or alkenyl parts; and furthermore cycloalkylaminocarbonyloxy with 3 to 7 carbon atoms in the cycloalkyl part, and phenylaminocarbonyloxy which is optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising halogen, in particular fluorine, chlorine or bromine, and lower alkyl, and furthermore cycloalkyl which has 3 to 7 carbon atoms and is optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising halogen, in particular fluorine, chlorine or bromine, and lower alkyl, phenyl which

La 4.24-468

Y.

5

10

15

20

25

30

is optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising nitro, halogen, in particular fluorine, chlorine or bromine, lower alkyl and dioxyalkylene, furyl, tetrahydrofuryl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, oxadiazolyl, pyridyl and pyrimidinyl, in each case optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising halogen, in particular fluorine, chlorine or bromine, and lower alkyl, and amino which is optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising in each case lower alkyl, halogenoalkylcarbonyl, halogenophenoxyalkylcarbonyl and halogenoalkylcarbonylaminoalkyl; or furthermore

R¹ and R² represent straight-chain or branched alkenyl, alkadienyl or alkinyl with in each case 3 to 8 carbon atoms and in each case optionally monosubstituted or polysubstituted by identical or different substituents, possible substituents being: halogen, in particular fluorine, chlorine or bromine, cyano and in each case straight-chain or branched alkoxy, alkylcarbonyl and alkoxy-carbonyl with in each case up to 6 carbon atoms; or furthermore

R¹ and R² represent cycloalkyl or cycloalkenyl with in each case 3 to 8 carbon atoms and in each case optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising halogen, in particular fluorine, chlorine or bromine, and lower alkyl; or furthermore represent piperidyl, pyridyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, thiadiazolyl, fluorenyl, phthalimidoyl or dioxanyl, in

10 1 24 460

5

10

15

20

25

30

each case optionally monosubstituted or polysubstituted by identical or different substituents and/or benzo-fused, possible substituents being: halogen, in particular fluorine, chlorine or bromine, cyano and in each case straight-chain or branched alkyl and alkanediyl with in each case 1 to 4 carbon atoms; or furthermore R¹ and R² represent in each case straight-chain or branched alkoxy, alkylthio, alkylcarbonyl, alkoxycarbonyl, halogenoalkylcarbonyl or halogeno-10 alkoxycarbonyl with in each case up to 6 carbon atoms and, where appropriate, up to 5 identical or different halogen atoms, in particular fluorine, chlorine or bromine; or furthermore R¹ and R² represent amino or alkylideneimino 15 which is optionally monosubstituted or polysubstituted by identical or different substituents, possible substituents being: in each case straightchain or branched alkyl, alkenyl, alkinyl, alkylcarbonyl and halogenoalkylcarbonyl with in each 20 case up to 8 carbon atoms and, where appropriate, up to 5 identical or different halogen atoms, in particular fluorine, chlorine or bromine; or R^{1} and R^{2} , together with the nitrogen atom to which they are bonded, represent alkylideneamino, 25 pyrrolidinyl, piperidinyl, piperidonyl, perhydroazepinyl, perhydroazocinyl, dihydropyrazolyl, dihydro- or tetrahydropyridyl, azabicyclononyl, morpholinyl, perhydro-1,3-oxazinyl, 1,3-oxazolidinyl, 1,4-piperazinyl, perhydro-1,4-diazepinyl, 30 dihydro-, tetrahydro- or perhydroquinolyl or -isoquinolyl, indolyl or dihydro- or perhydroindolyl, in each case optionally monosubstituted or polysubstituted by identical or different substituents, possible substituents being: hydroxyl, halogen 35 (in particular fluorine, chlorine or bromine),

1.

cyano and formyl; and in each case straight-chain or branched, where appropriate divalent alkyl, alkanediyl, alkoxy, dioxyalkylene, alkylcarbonyl, alkoxycarbonyl and halogenoalkylcarbonyl with in each case up to 8 carbon atoms, in each case straight-chain or branched alkylamino and dialkylamino with in each case up to 4 carbon atoms in the individual alkyl parts, phenyl, naphthyl, pyridyl and piperidinyl, in each case optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising halogen, in particular fluorine, chlorine or bromine, nitro and in each case lower alkyl, halogenoalkyl, alkoxy, alkylcarbonyl or alkoxycarbonyl, and straight-chain or branched cyclopropylatkyt, cyclohexylatkyt, piperidinylatkyt, phenylalkyl and phenylalkenyl with up to 4 carbon atoms in the particular alkyl or alkenyl parts and in each case optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising halogen, in particular fluorine, chlorine or bromine, lower alkyl and halogenoalkylcarbonyl.

Particularly preferred amides of the formula (I)

25 are those in which

ار کر

5

10

15

20

R represents hydrogen or chlorine; or furthermore

R represents the radical
$$-CO-N = \frac{R^6}{R^7}$$

wherein

R⁶ and R⁷ are identical or different and independently of one another each represent hydrogen, methyl, ethyl, allyl, propargyl, but-1-in-3-yl, 3-methylbut-1-in-3-yl or 2-cyanoprop-2-yl; or furthermore

Le-A-24-460

R represents straight-chain or branched alkyl with up to 15 carbon atoms; or furthermore R represents straight-chain or branched halogeno-alkyl with 1 to 6 carbon atoms and 1 to 9 identical or different halogen atoms, in particular fluorine, chlorine, bromine and iodine; or furthermore

R represents straight-chain or branched alkyl which has 1 to 6 carbon atoms and is mono-, di- or trisubstituted by identical or different substituents, possible substituents being: hydroxyl, fluorine, chlorine, bromine, cyano, cyanato, thiocyanato, methoxy, ethoxy, methylthio, ethylthio, acetyl, propionyl, acetoxy, propionyloxy, methoxycarbonyl, ethoxycarbonyl, 1,1,3,3-tetrachloro-2hydroxyprop-2-yloxy, 1,1,1,3,3-pentachloro-2hydroxyprop-2-yloxy, chloroacetyl, dichloroacetyl, chloroacetoxy, dichloroacetoxy, pentachlorobutadien-1-ylcarbonyloxy and phenyl, phenoxy, phenylthio and thienyl, in each case optionally mono-, di- or trisubstituted by identical or different substituents from the group comprising chlorine, methyl and methoxy; and furthermore cyclopropyl, cyclopentyl and cyclohexyl; and the radicals

$$R^{6}$$
 $-N$
 R^{7}
 $-CO-N$
 R^{7}
 $-SO_{2}-N$
 R^{6}
 R^{7}
 R^{6}
 R^{7}
 R^{7}

wherein

10

15

20

25

30

R⁶ and R⁷ are identical or different and in each case independently of one another represent hydrogen, methyl, ethyl, allyl, propargyl, but-1-in-3-yl, 3-methyl-but-1-in-3-yl or 2-cyanoprop-2-yl; or furthermore

La A 24 460

R represents straight-chain or branched alkenyl which has 2 to 5 carbon atoms and is mono-, dior trisubstituted by identical or different substituents, possible substituents being: hydroxyl, fluorine, chlorine, bromine, methoxycarbonyl, ethoxycarbonyl and phenyl and phenoxy, in each case optionally mono-, di- or trisubstituted by identical or different substituents from the group comprising fluorine, chlorine, methyl and methoxy; or furthermore

R represents straight-chain or branched alkinyl with 2 to 5 carbon atoms; or furthermore R represents cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclohexenyl, bicycloheptenyl, bi-cyclooctyl, bicyclononyl or tricyclodecyl, in each case optionally mono-, di-, tri-, tetra- or penta-substituted by identical or different substituents, possible substituents being: methyl, ethyl, phenyl

and the radical $-CO-N = \frac{R^6}{R^7}$

20 wherein

10

15

25

30

R⁶ and R⁷ are identical or different and in each case independently of one another represent hydrogen, methyl, ethyl, allyl, propargyl, but-1-in-3-yl, 3-methylbut-1-in-3-yl or 2-cyanoprop-2-yl, or furthermore
R represents phenyl which is optionally mono-, dior trisubstituted by identical or different substituents, possible substituents being: fluorine, chlorine, bromine, iodine, nitro, methyl, ethyl, methoxy, ethoxy, carboxyl - also in the form of the carboxylate anion -, trifluoromethyl, chloro-acetamido, dichloroacetamido and the radical

L-c-A-24-468-

wherein

5

10

15

20

25

30

R⁶ and R⁷ are identical or different and in each case independently of one another represent hydrogen, methyl, ethyl, allyl, propargyl, but-1-in-3-yl, 3-methylbut-1-in-3-yl or 2-cyanoprop-2-yl; or furthermore

R represents furyl, thienyl, pyridyl or dithiolanyl, in each case optionally mono-, di- or trisubstituted by identical or different substituents, possible substituents being: chlorine, methyl,

ethyl and the radical -CO-N R^6

wherein

R⁶ and R⁷ are identical or different and in each case independently of one another represent hydrogen, methyl, ethyl, allyl, propargyl, but-1-in-3-yl, 3-methylbut-1-in-3-yl or 2-cyanoprop-2-yl; or finally

R represents methoxy, ethoxy, allyloxy, propargyloxy, butinyloxy, methoxycarbonyl, ethoxycarbonyl or phenyl, in each case optionally mono-, di- or trisubstituted by identical or different substituents from the group comprising fluorine, chlorine, bromine and phenyl, and

R¹ and R², which are identical or different, independently of one another represent hydrogen, formyl or chlorosulphonyl, or represent phenyl, phenoxy or phenylsulphonyl, in each case optionally mono-, di- or trisubstituted by identical or different substituents from the group comprising fluorine, chlorine, bromine or methyl; or furthermore represent straight-chain or branched alkyl

Le A 24 460

which has 1 to 8 carbon atoms and is optionally mono-, di- or trisubstituted by identical or different substituents, possible substituents being: hydroxyl, mercapto, cyano, fluorine, chlorine, bromine, methoxy, ethoxy, propoxy, 5 butoxy, methoximino, ethoximino, acetyl, propionyl, acetoxy, propionyloxy, methoxycarbonyl, ethoxycarbonyl, methoxycarbonyloxy, ethoxycarbonyloxy, methylthiocarbonyloxy, ethylthiocarbonyloxy, chloroacetoxy, dichloroacetoxy, methylsulphonyloxy, 10 ethylsulphonyloxy, methylaminocarbonyloxy, dimethylaminocarbonyloxy, ethylaminocarbonyloxy, diethylaminocarbonyloxy, propylaminocarbonyloxy, butylaminocarbonyloxy, allylaminocarbonyloxy, diallylaminocarbonyloxy and cyclohexylaminocarbonyl-15 oxy, and phenylaminocarbonyloxy which is optionally mono-, di- or trisubstituted by identical or different substituents from the group comprising chlorine and methyl; and furthermore cyclopropyl, cyclopentyl, cyclohexyl and cycloheptyl, in each 20 case optionally mono-, di-, tri-, tetra- or pentasubstituted by identical or different substituents from the group comprising chlorine and methyl; and phenyl which is optionally mono-, di- or trisubstituted by identical or different substituents 25 from the group comprising nitro, fluorine, chlorine, bromine, methyl and dioxymethylene, and furyl, tetrahydrofuryl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, oxadiazolyl, pyridyl and pyrimidinyl, in each case optionally 30 mono- or disubstituted by identical or different substituents from the group comprising methyl, ethyl, propyl and chlorine; and amino which is optionally monosubstituted or disubstituted by identical or different substituents from the group 35 comprising methyl, ethyl, chloroacetyl, dichloro-

methyl and dichloroacetamidoethyl; or furthermore R^{1} and R^{2} represent straight-chain or branched alkenyl, alkadienyl or alkinyl with in each case 3 to 5 carbon atoms and in each case optionally monosubstituted or disubstituted by identical or different substituents from the group comprising chlorine, methoxy, ethoxy, acetyl, methoxycarbonyl, ethoxycarbonyl or cyano; or furthermore R¹ and R² represent cyclopropyl, cyclopentyl, 10 cyclohexyl, cyclohexenyl or cyclooctyl, in each case optionally mono-, di-, tri-, tetra- or pentasubstituted by identical or different substituents from the group comprising chlorine and methyl; or furthermore 15 R¹ and R² represent piperidyl, pyridyl, thienyl, oxazolyl, isoxazolyl, thiadiazolyl, fluorenyl, phthalimidoyl or dioxanyl, in each case optionally mono-, di- or trisubstituted by identical or different substituents from the group 20 comprising fluorine, chlorine, bromine, cyano, methyl, ethyl, propyl, propanediyl and butanediyl and/or benzo-fused; or furthermore R^{1} and R^{2} represent methoxy, ethoxy, propoxy, butoxy, methylthio, ethylthio, propylthio, butyl-25 thio, acetyl, chloroacetyl, dichloroacetyl, methoxycarbonyl, ethoxycarbonyl, chloroethoxycarbonyl or bromoethoxycarbonyl, and furthermore R¹ and R² represent amino or propylideneimino, optionally monosubstituted or disubstituted by 30 identical or different substituents from the group comprising methyl, ethyl, allyl, propargyl, acetyl, chloroacetyl and dichloroacetyl, or R^{1} and R^{2} , together with the nitrogen atom to which they are bonded, represent methylideneimino, 35 ethylideneimino, propylideneimino, pyrrolidinyl,

acetyl, chlorophenoxyacetyl, dichloroacetamido-

piperidinyl, piperidonyl, perhydroazepinyl, perhydroazocinyl, dihydropyrazolyl, dihydro- or tetrahydropyridyl, azabicyclononyl, morpholinyl, perhydro-1,3-oxazinyl, 1,3-oxazolidinyl, 1,4piperazinyl, perhydro-1,4-diazepinyl, dihydro-, tetrahydro- or perhydroquinolyl or -isoquinolyl, indolyl or dihydro- or perhydroindolyl, in each case optionally mono-, di-, tri-, tetra- or pentasubstituted by identical or different substituents, possible substituents being: hydroxyl, fluorine, chlorine, bromine, cyano, formyl, methyl, ethyl, propyl, butyl, ethanediyl, propanediyl, methoxy, ethoxy, propoxy, butoxy, dioxyethylene, dioxypropylene, dioxybutylene, acetyl, propionyl, chloroacetyl, dichloroacetyl, a-chloropropionyl, methoxycarbonyl, ethoxycarbonyl, methylamino, ethylamino, dimethylamino, diethylamino and phenyl, naphthyl or piperidinyl, in each case optionally mono-, di- or trisubstituted by identical or different substituents from the group comprising fluorine, chlorine, bromine, nitro, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, acetyl, propionyl, methoxycarbonyl and ethoxycarbonyl, and cyclopropylmethyl, cyclohexylmethyl, piperidinylethyl, piperidinylpropyl, benzyl, phenylethyl and phenylpropenyl, in each case optionally mono-, di- or trisubstituted by identical or different substituents from the group comprising chlorine, methyl, chloroacetyl and dichloroacetyl.

The terms "lower alkyl", "lower alkoxy" and the like in the context of this invention designate corresponding radicals with 1-4 C atoms. The following compounds of the general formula (I) may be mentioned specifically:

10

15

20

Table 1

		~ ⁸ 5	
Example N	io. R	R 1	R 2
I-1	Н	Н	C ₂ H ₅
1-2	Cι	-CH ₂ -CH=CH ₂	- CH ₂ - CH= CH ₂
1-3	CH3	н .	- €- C ≡ CH
1-4	CH ₃	н	С F 3 - С - ОН С F 3
1-5	C H 3	- CH2- CH= CH2	-CH ₂ -CH=CH ₂
1-6	СНЗ	- ⊘	-so ₂
1-7	n-C3H7	н	-ç-с≡ сн сн ₃
1-8	n-C ₃ H ₇	C H 3	- CH-C≡ CH
1-9	n-C3H7	- CH 2 - CH = CH 2	- CH ₂ - CH= CH ₂
I-10 I-11 I-12	i=C ₃ H ₇ n=C ₄ H ₉ (CH ₃) ₃ C=CH ₂ =	СН ₃ Н	CH3 - CH- C≡ CH - CH- C≡ CH - CH3 - C- CN
1-13	(CH ₃) ₃ C-CH ₂ -	С Н 3	CH3 -C-C≡CH CH3

(1)

Table 1 (Continuation)

Example	No. R	R 1	R 2
1-14	CH3-(CH2)	2-CH- H	-Ç+3 -Ç-C≡ CH CH3
1-15	CH3-(CH2)	CH3 2-CH- CH3	- CH-C ≡ CH
1-16	CH3-(CH2)	CH3 2-CHCH2-CH=CH2	- CH ₂ - CH= CH ₂
1-17	n-C ₆ H ₁₃	H	CH3 -C-C≡ CH CH3
1-18	n-C6H13	CH ₃	CH3 -CH-C≡ CH
1-19	n-06H13	- CH ₂ - CH= CH ₂	- C H 2 - C H = C H 2
I-20	CH3-(CH2) ₂ -CH ₃ -CH ₂ -CH=CH ₂	- C H 2 - C H = C H 2
1-21	(CH ₃) ₃ G-CH ₂	CH3-CH2- H	- C + 3 - C - C ≡ C + C + 3
1-22	n-C9H19	н	- C+3 - C+3 = CH C+3
1-23	n-C9H19	- C H 2 - C H = C H 2	- C H ₂ - C H = C H ₂
1-24	n-C ₁₁ H ₂₃	н	ÇH3 -Ç-C≅CH CH3
1-25	n-C ₁₁ H ₂₃	- CH2- CH= CH2	-CH2-CH=CH2
1-26	n-C ₁₃ H ₂₇	- C H 2 - C H = C H 2	- CH ₂ - CH= CH ₂
1-27		H H	-CH ₂ -CH(CH ₃) ₂ -C(CH ₃) ₃
1-50			

Table 1 (Continuation)

Example R	R 1	R 2
1-29 CL-CH ₂ -	· H	СН3 - С-С ₂ Н ₅ СН3
1-30 Cl-CH ₂ -	H .	CH3 -CH-CH2-CH(CH3)2
1-31 CL-CH ₂ -	н	-CH ₂ -C=CH ₂ CH ₃
1-32 CL-CH ₂ -	н	CH3 -C-C≡ CH CH3
1-33 Ct-CH ₂ -	н .	- C - C 2 H 5
1-34 CL-CH ₂ -	н	CN C 2H 5
1-35 CL-CH ₂ - 1-36 CL-CH ₂ -	H H	-CH ₂ CH ₂ -Br -CH ₂ CH ₂ -OCH ₃
1-37 CL-CH ₂ -	н	-CH ₂ -CH(OCH ₃) ₂
1-38 Cl-CH ₂ -	н	- CH ₂ 0
1-39 CL-CH ₂ -	н	- CH2-NH-CO-CH2O-C
1-40 Cl-CH ₂ -	H .	cl-Ch-NH-CO-CH2Cl
1-40 Cl-CH ₂ -	н	-CH3
1-42 Cl-CH ₂ -	н	CH3 - N C ₂ H ₅

Table 1 (Continuation)

Exampl	e R	R 1	R 2
	Cl-CH ₂ -	CH3 CH3	-сн(сн ₃) ₂ -(сн ₂) ₃ -сн ₃
1-45	C L - CH ₂ -	CH3	- CH-C ₂ H ₅ CH ₃
1-46	сі-сн ₂ -	СНЗ	- cн-сн(сн ₃) ₂ сн ₃
1-47	C1-CH2-	C H 3	- C H ₂ - C ≡ C H
1-48	C L - CH ₂ -	CH ₃	- CH- C ≡ CH CH3
1-49	C1-CH2-	CH3	-CH2CH2-CN
1-50	C1-CH2-	CH ₃	- CH2- C L
1-51	с (- СН 2 -	CH3	- CH2-CI
1-52	C L - CH ₂ -	C H 3	- c н ₂
1-53	cl-cH ₂	C 2 H 5	- CH- C2H5 CH3 Cl
1-54	c1-cH2-	C 2 H 5	- c H ₂ -
1-55	c l - CH ₂ -	C 2 H 5	-CH2-CH3
1-56	ct-cH2-	C 2 H 5	- CH 2 - CH 3
1-57	C1-CH2-	C 2 H 5	- CH ₂
1-58	Cl-CH ₂ -	C ₂ H ₅	- ◆
1-59	C1-CH2-	C 2H 5	- ()- c н ₃
			·

Table 1 (Continuation)

Exampl No.	e R	R ¹	R 2
1-60	CL-CH ₂ -	-CH2CH2CH3	-CH2-CH(CH3)2
	C1-CH2-	-cH2CH2CH3	-C(CH ₃) ₃
1-62	C1-CH2-	-CH2CH2CH3	-CH-(CH ₂) ₂ -CH ₃ CH ₃
1-63	C1-CH2-	-CH2CH2CH3	-CH2-CH2
1-64	C1-CH2-	-CH2CH2CH3	-CH2-
1-65	C1-CH2-	- CH2CH2CH3	-CH2-CI
1-66	C L - C H 2 -	- CH ₂ CH ₂ CH ₃	-CH2
1-67	C L - C H 2 -	-cH2CH2CH3	-CH2 0
1-68	C L - C H 2 -	, - c + 2 C + 2 C + 3	\Box
1-69	C L - C H 2 -	-CH2CH2CH3	\bigcirc
1-70	C1-CH2-	-ch(ch ₃) ₂	-CH2CH2CH2CH3
1-71	Cf-CH2-	-CH(CH ₃) ₂	СН3 -СН-С ₂ Н5
1-72	cl-cH ₂ -	-CH(CH ₃) ₂	-CH ₂ -CH(CH ₃) ₂
1-73	C1-CH2-	4 - CH(CH3)2	-(CH ₂) ₄ -CH ₃
1-74	ci-cH ₂ -	-CH(CH ₃) ₂	- CH2-
1-75	C1-CH2-	- CH2 CH2 CH2 CH3	-CH2CH2CH2CH3
	Cl-CH ₂ -	- CH ₂ CH ₂ CH ₂ CH ₃	-CH2-CH(CH3)2
	Cl-CH2-	- CH2CH2CH2CH3	- CH= CH2
	C1-CH2-	-CH-C2H5 CH3	-cH ₂ -cH(CH ₃) ₂
1-79	C1-CH2-	-(CH ₂) ₅ -CH ₃	-(CH ₂) ₅ -CH ₃
	CI-CH2-	-CH3-CH=CH ⁵	-CH2-CH=CH2

Table 1 (Continuation)

Examp No.	le R	R ¹	R^2 or $-N \stackrel{R^1}{\underset{R^2}{\sim}}$	
			CU CU OU	
I-81	CI-CH2-	-CH ₂ CH ₂ -OH	-CH ₂ CH ₂ -OH	
1-82	CI-CH2-	-CH2CH2OCH3	-CH ₂ CH ₂ OCH ₃	
1-83	CI-CH2-	-CH2CH2OC2H5	-CH ₂ CH ₂ OC ₂ H ₅ -CH ₂ CH ₂ O-CO-NH-CH ₃	
1-84 1-85	CI-CH ⁵ -	-CH ₂ EH ₂ O-CO-NH-CH ₃		
1-65	CI-CH2	CH=	CH2 CH=CH2	
1-86	с1-сн2-	-CH2CH2O-CO-NH	-CH2CH2O-CO-NH	
1-87	CL-CH ₂ -	- сн ₂ сн ₂ о-со- ү н с і	-CH2CH2O-CO-NH	
		· · ·		
1-88	CL-CH ₂ -		-ń	
			CH ₃	
1-89	CI-CH ₂ -		H ₃ C CH ₃	
			H ₅ C ₂	
1-90	CL-CH ₂		-N	
			C ₂ H ₅	
1-91	CI-CH2-	•	-ú_>	
		4	N(CH ₃) ₂	
1-92	C1-CH2-		-N=C N(CH3)2	
1-93	I-CH ₂ -	н	CH3 -C-C≡ CH CH3	
			ÇH ₃	
1-94	1-CH ² -	CH ₃	-ċH-C≡CH	
1-95	1-CH ₂ -	-CH2-CH=CH2	-CH2-CH=CH2	
L-O-A	24-4 60			

Table 1 (Continuation)

Exampl No.	e R	R ¹	R ² :
	Cl2CH-	н	-CH ₂ -CH(CH ₃) ₂
	CI2CH-	Н	-c(cH ₃) ₃
. I-98	Cl2CH-	н	СН3 -С-С2Н5 СН3
1-99	Cl2CH-	н	-CH2-CH=CH2
I-100	Cl ₂ CH-	н	CH ₂ -C=CH ₂ .
1-101	Cl ₂ CH-	н	ÇH3 -c-Ç≡CH CH3
1-102	Cl ₂ CH-	н	-CH ₂ CH ₂ Br
1-103	C12CH-	. н	-сн ₂ сн ₂ он
1-104	C15CH-	н	-сн ⁵ -сн-он сн ³
1-105	C12CH-	н	-CH2CH2CH2-OH
1-106	Cl2CH-	н	-CH2CH2-OC2H5
1-107	cl2cH-	н	-CH2CH2CH2-OCH(CH3)2
1-108	Cl ₂ CH-	н	-CH2-CH OC2H5
1-109	Cl2CH-	н	CH3 -C-CN C ₂ H ₅
1-110	Cl ₂ CH-	н	Ç2H5 −Ç−CN C2H5
I-111	Cl2CH-	н	-ch ₂ ch ₂ -n(ch ₃) ₂
I-112	Cl ₂ CH-	н	-CH2CH2-N(C2H5)2
1-113	CISCH-	H ,	-CH2CH2-NH-CO-CHCL5
1-114	Cl2CH-	н	-CH2CH2CH2-NH-CO-CHCL2

Le A 24 460

Table 1 (Continuation)

Example No.	R	R1	R2
I-115	Cl2CH-	н	C2H5 -CH2CH2-N-CO-CHCL2
I-116	C15CH-	H	-(CH ₂) ₃ -N-CO-CHCL ₂ (CH ₂) ₃ -NH-CO-CHCL ₂
I-117	CL2CH-	н	-CH ₂ -(H)
1-118	CL2CH-	н .	-CH ₂ 0
1-119	CL2CH-	н :	-cH ₂ -
1-120	Cl 2CH-	H	-cH ₂
I-121	сі2сн-	н	-CH2-0-CI
1-122	C12CH-	H !	-cH ₂ -0
I-123	CL2CH-	н	-cH-©
1-124	Cl ₂ CH-	Н	-CH2CH2-
I -1 25	CL2CH-	н	-CH-©
1-126	Cl ₂ CH-	н	NH-CO-CH2C1 -CH-€
1-127	CL2CH-	Н	NO2 NH-CO-CHCL2 -CH-O NH-CO-CHCL2
1-128	Cl2CH-	н	-fH-€
I - 129	Cl2CH-	H	NO ₂ -CH
1-130	C12CH-	H	-C=CH-CN

Table 1 (Continuation)

Example R.	R ¹	R ² :
1-131 CL ₂ CH-	н	CH3 -C=CH-COOC2H5
1-132 CL ₂ CH-	н	
1-133 CL ₂ CH-	н	*
1-134 Cl ₂ CH-	н	C ₂ H ₅ C ₂ H ₅ C ₂ H ₅
1-135 Cl ₂ CH-	Н	H_N_N_
1-136 Cl ₂ CH-	н	-co-o-c ₂ H ₅
I-137 CL ₂ CH-	н	-co-o-cH ₂ CH ₂ Cl
I-138 CL ₂ CH-	н	-NH-CO-CHCL ₂
1-139 Cl ₂ CH-	н	ÇH3 -N-CO-CHCℓ2
1-140 CL2CH-	н	CH2-CH=CH2 -N-CO-CHCl2
1-141 CL ₂ CH-	н	
I-142 CL 2CH-	H ,	(CH ₃) ₃ C ₇
I-143 Cl ₂ CH-	Н	-(0)
I-144 CL ₂ CH-	н	CH3 CH3
I-145 CL ₂ CH-	н	CH3 CH3
1-146 Ct ₂ CH-	н	-© сн ₃
1-147 CL2CH-	H	C 2H2
Lo A 24-460		

Table	1	(Continuation)
1000		

b

Exampl No.	e R	R ¹	R ²	
1-148	CL 2CH-	н	2 ^H 5	
I-149	CLSCH-	H	CH3) 2CH	
1-150	Cl ₂ CH-	н	C2H5Q	
I-151	CI SCH-	н	- O	
1-152	Cl ScH-	н	در′ در <u>ب</u>	
1-153	CL2CH-	н		
I-154	Cl2CH-	н	CF3 0-CC)-NH-C ₂ H ₅
1-155	CL2CH-	н	-⊘	•
1-156	CISCH-	Н		O-NH-CH ₂ -CH=CH ₂
1-157	C12CH-	H	\bigcirc	
I - 158	C12CH-	* H	\bigcirc	CO-CHCL ₂
1-159	CISCH-	Н		•
I-160	Cl ₂ CH-	Н	TÔ)	
1-161	Cl ₂ CH-	н	-On	
I-162	Cl ₂ CH-	H	(V)	H ₃

Example R	R ¹	₽Ş :
1-163 CL ₂ CH-	Н	N S
1-164 Cl ₂ CH-	н	N CH3
I-165 Cl ₂ CH-	н	N CH3
I-166 CL ₂ CH-	H	-[0]N
1-167 CL2CH-	н	-N _s
1-168 Cl ₂ CH-	н	N Br
I-169 Cl ₂ CH-	н	NC S
I-170 Cl ₂ CH-	H	OC.
1-171 CL2CH-	н	
I-172 Cl ₂ CH-	Н	NH
1-173 Cl ₂ CH-	CH3	-CH ₃
I-174 Cl ₂ CH-	СНЗ	-CH2CH2CH3
1-175 CL2CH-	СНЗ	-CH(CH3)2
1-176 CL2CH-	CH ₃	-CH2CH2CH2CH3
1-177 Cl ₂ CH-	СНЗ	-CH-CH ₂ CH ₃ CH ₃
Le 1 24 460	•	

Exampl . No.	e R	R ¹	R ²
	Cl2CH-	СНЗ	-CH-(CH ₂) ₂ -CH ₃ CH ₃
1-179	CL2CH-	CH ₃	-сн - сн-сн ₃
1-180	Cl2CH-	CH ₃	-CH=C=CH2
1-181	Cl2CH-	CH ₃	-CH ₂ -C ≡ CH
I-182	C12CH-	CH3	-CH-C≡ CH CH3
1-183	CL2CH-	СНЗ	-CH2CH2-OH
1-184	C12CH-	CH3	-CH2CH2-CN
I-185	Cl ₂ CH-	CH3	-(CH ₂) ₂ -N-(CH ₂) ₂ -N-CO-CHCl ₂ CH ₃ CH ₃
1-186	Cl2CH-	снз	-CH2-H
1-187	Cl ₂ CH-	CH3	- cн ₂ -Сн ₃
I - 188	Cl ₂ CH-	CH ₃	- CH2-C)
1-189	Cl ₂ CH-	4 СН3	-cH ₂ -CO
I-190	CI 2CH-	CH ₃	-cH ₂ -Cl
I-191	Cl ₂ CH-	СНЗ	-NH ₂
1-192	CISCH-	CH ₃	-N=C(CH ₃) ₂
1-193	C15CH-	CH ₃	-N CO-CHCL 2
Lo A 2	4-400	•	

Table 1 (Continuation)

Example R No.		R ¹	R ²	
	CI2CH-	CH3	H	
1-195	C15CH-	снз		
I-196	CL2CH-	CH3	-C 2H 5	
1-197	Cl ₂ CH-	СНЗ	(CH ₃) ₂ CH	
1-198	C13CH-	CH ₃	CH3 CH3	
1-199	Cl ₂ CH-	СНЗ	C ₂ H ₅	
1-200	Cl ₂ CH-	C2H5	C ₂ H ₅	
1-201	C12CH-	C2H5	-ch(ch3)2	
1-202	Cl ₂ CH-	C2H5	-CH2CH2CH2CH3	
1-203	Cl2CH-	C 2H5	-CH-C ₂ H ₅ CH ₃	
1-204	Cl2CH-	C ₂ H ₅	-CH2-CH(CH3)2	
1-205	Cl2CH-	C2H5	-c(cH ₃) ₃	
1-206	CL2CH-	C ₂ H ₅	-CH-CH ₂ CH ₂ CH ₃ I CH ₃	
1-207	CI3CH-	C ₂ H ₅	-(CH ₂) ₅ -CH ₃ C ₂ H ₅	
1-208	CL2CH-	C 2H 5	-C=CH-CH3	
1-2.09	Cl ₂ CH-	* C ₂ H ₅	-сн ₂ сн ₂ -о-со-снсі ₂ С2 ^Н 5	
1-210	CL2CH-	C2H5	-CH2CH2-N-CO-CHCL2	
1-211	CI3CH-	C 2H5	- CH ₂ -	
1-212	C15CH-	C2H5	- cн ₂ -О- сн ₃	•
1-213	C12CH-	C2H5	- CH2-O-CH3	

Example R	R ¹	R2 :	
1-214 Cl ₂ CH-	C 2H5	СH ₂ - СН ₂ - СН ₃	
I-215 Cl ₂ CH-	C 2H5	-CH2-0	
1-216 CL2CH-	C ₂ H ₅	CH3)	
1-217 CL2CH-	C ₂ H ₅	← H)	
1-218 CL2CH-	C2H5	- СН снз	
1-219 CL2CH-	C2H5	-(H)-CH3	
1-220 CL2CH-	C ₂ H ₅	-CH3 CH3	
I-221 CL ₂ CH-	C 2H 5		
1-222 C12CH-	C2H5	C ₂ H ₅	
1-223 Cl ₂ CH-	CH3CH2CH2-	-CH2CH2CH3	•
1-224 Cl ₂ CH-	CH3CH2CH2-	-CH2CH2CH2CH3	
1-225 CL2CH-	CH3CH2CH2-	-CH-C ₂ H ₅ 1 CH ₃	
1-226 Cl ₂ CH-	CH3CH2CH2-	-CH2-CH(CH3)2	
1-227 CL2CH-	CH3CH2CH2-	-c(cH ₃) ₃	
1-228 CL2CH-	CH3CH2CH2-	-(CH ₂) ₄ -CH ₃	·
1-229 Cl ₂ CH-	CH3CH2CH2-	-CH-(CH ₂) ₂ -CH ₃ CH ₃	
1-230 CL2CH-	CH3CH2CH2-	-CH-CH(CH ₃) ₂ CH ₃	
1-231 CL2CH-	CH3CH2CH2-	-(CH ₂) ₅ -CH ₃	
F-6- V - 57- 79-8			

Example	R ¹	R ²
No. 1-232 Cl ₂ CH-	CH3CH2CH2-	-CH2-CH=CH2
1-233 Cl ₂ CH-	сн ₃ сн ₂ сн ₂ -	-C=CH-C ₂ H5 1 CH3.
1-234 CL ₂ CH-	CH3CH2CH2-	-cH ₂ -CH ₃
1-235 CL2CH-	CH3CH2CH2-	-CH2-(C)
1-236 CL2CH-	сн ₃ сн ₂ сн ₂ -	-CH2-CH3
1-237 Cl ₂ CH-	CH3CH2CH2-	-CH2-O-CH3
. , I-238 Cl ₂ CH-	CH3CH2CH2-	CH3 -CH2-CC CH3
1-239 CL ₂ CH-	сн ₃ сн ₂ сн ₂ -	-сн ₂ -Ф
1-240 CL2CH-	- CH3CH2CH2+	- CH ₂
1-241 Cl ₂ CH	- сн ₃ сн ₂ сн ₂ -	-cH2 [0]
1-242 Cl ₂ CH	- CH3CH2CH2-	-CH2-C=CH2
I-243 Cl ₂ CH	4- * CH3CH2CH2-	
1-244 Cl ₂ CH	H- CH3CH2CH2-	
1-245 Cl ₂ Cl	H- CH3CH2CH2-	
1-246 Cl ₂ C	H- (CH3)2CH-	-CH(CH ₃) ₂
1-247 Cl2C	:H- (CH ₃) ₂ CH-	-CH2CH2CH2CH3
1-248 Cl ₂ C	_	-CH-C2H5 I CH3
1-237 Cl2CH- 1-238 Cl2CH- 1-239 Cl2CH- 1-240 Cl2CH- 1-241 Cl2CH- 1-242 Cl2CH 1-243 Cl2CH 1-244 Cl2CH 1-245 Cl2CH 1-246 Cl2CH 1-247 Cl2CH	CH3CH2CH2- CH3CH2CH2- CH3CH2CH2- CH3CH2CH2- CH3CH2CH2- CH3CH2CH2- CH3CH2CH2- H- CH3CH2CH2- H- (CH3)2CH- CH3)2CH- CH3CH2CH2-	-CH2-O-CH3 -CH2-O-CH3 -CH2-O-CL -CH2-C-CL -CH2-C-CL -CH2-C-CL -CH2-C-CH2 -CH2-C-CH2 -CH2-C-CH2 -CH2-C-CH2 -CH2-C-CH2 -CH2-CH2-CH3 -CH2-CH2-CH3 -CH-C2H5

Ei

Example R	R1	R ²	
1-249 Cl ₂ CH-	(CH ₃) ₂ CH-	-CH2-CH(CH3)2	
1-250 Cl2CH-	(CH3)2CH-	-(CH ₂) ₄ -CH ₃	
1-251 CL2CH-	(CH3)2CH-	-CH-(CH ₂) ₂ -CH ₃ CH ₃	
I-252 CL2CH-	(CH3)2CH-	-CH ₂ -CH=CH ₂	
1-253 Cl ₂ CH-	(CH ₃) ₂ CH-	-cH2-	
1-254 CL2CH-	(CH ₃) ₂ CH-	- ⊘	
1-255 Cl ₂ CH-	n-C4H9-	-сн-с ₂ н ₅ і сн ₃	
1-256 Cl ₂ CH-	n-C4H9-	-CH2-CH(CH3)2	
1-257 CL2CH-	n-C4H9	-c(cH ₃) ₃	
I-258 Cl ₂ CH-	n-C4H9	-CH2-CH=CH2	
1-259 Cl ₂ CH-	n-C4H9-	-CH=CH-C2H5	
1-260 C12CH-	- СН3	-cH ₂ -	
1-261 Cl2CH	- n-C4H9-	\leftarrow	
I-565 C15CH	- C ² H ² -CH-	-CH2-CH(CH3)2	
I-263 Cl ₂ CH	I—; С ₂ Н5-СН- СН3		
1-264 Cl2CH	4- (CH ₃) ₂ CH		
1-265 Cl ₂ Ci	H- (CH ₃) ₂ CH	-CH ₂ CO-H	
1-266 Cl2C	H- (CH ₃) ₂ CH	I-CH ₂ CO-CH ₃	
1-267 Cl ₂ C	H- (CH3)2CH	H-CH2CO-CHCL2	
1-268 Cl ₂ C	:H- (CH3)3C	- CH=CH-C2H5	
1-269 615	CH- (CH3)3C	CH2-CH2-OH	
L'E-A-24-460			

Table 1 (Continuation)

Exampl No.	e R	R ¹	R ₂
1-270	Cl2CH-	CH3-(CH2)5-	-(CH ₂) ₅ -CH ₃
1-271	C15CH-	CH2=CH-CH2-	-CH2-CH=CH2
1-272	CL2CH-	CH2=CH-CH2-	-CH2-C=CH2 I CH3
1-273	Cl ₂ CH-	CH2=CH-CH2-	-сн ₂ -сн=N-осн ₃
1-274	CL2CH-	CH2=CH-CH2-	-CH2
1-275	Cl ₂ CH-	CH2=CH-CH2-	-CH2 TI TI
1-276	Cl ₂ CH-	CH2=CH-CH2-	-CH2 0 N
1-277	Cl ₂ CH-	CH2=CH-CH2-	-CH2 TI II CH3
1-278	B Cl ₂ CH−	CH2=CH-CH2-	-CH2 11 N N_0 1.C2H5
1-27	9 CL2CH-	- CH2=CH-CH2-	-CH2 11 N (CH2) 2-CH3
1-28	0 CL2CH	- CH2=CH-CH2-	
1-28	31 CL ₂ CH	- CH2=CH-CH2	cH ₂ -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1-28	B2 Cl ₂ CH	- CH ₂ =CH-CH ₂	CH2-(N) CH3
1-2	83 Cl ₂ CI	H- CH ₂ =CH-CH ₂	
1-2	84 Cl ₂ C	H- CH ₂ =CH-CH;	2CH TT TH3

Table 1 (Continuation)

Examp No.	le R	R1	R ²	
I-285	Cl2CH-	CH2=CH-CH2-	-CH2-C=CH2	
1-286	CL2CH-	CH2=CH-CH2-	-(H)	
1-287	Cl2CH-	CH2=CH-CH2-		
1-288	C15CH-	CH2=CH-CH2-	N TT CH3	
1-289	CL2CH-	CH ₃ CH ₂ =C-	CH3	
1-290	Cl ₂ CH-	C ₂ H ₅ -CH=CH-	CH ₃ -C-C≡ CH CH ₃	
1-291	Cl ₂ CH-	H ₂ C=CH-CH ₂ -	-cH ₂ -cH(OCH ₃) ₂	
1-292	C12CH-	-CH ₂ -CN	-CH2-CN	
1-293	C12CH-	-cH2CH2-CN	-CH2CH2-CN	
1-294	Cl ₂ CH-	-сн ₂ сн ₂ -он	-сн2сн2-он	
1-295	Cl2CH-	-cH2CH2-Cl	-CH2CH2-CL	
1-296	CL2CH-	-сн ₂ сн ₂ осн ₃	-сн2сн2осн3	
1-297	Cl2CH-	-cH2CH2OC2H5	-CH2CH2OC2H5	
1-298	Cl ₂ CH-	ОН - СН ₂ -СН-СН ₃	он -сн ₂ -сн-сн ₃	
1-299	cl2cH-	-(CH ₂) ₂ 0COC ₂ H ₅	-(CH ₂) ₂ 0COC ₂ H ₅	
1-300	C15CH-	-(CH ₂) ₂ 0COCHCL ₂	-(CH ₂) ₂ OCOCHCl ₂	
1-301	Cl ₂ CH-	-(CH ₂) ₂ 0C00CH ₃	-(сн ₂) ₂ осоосн ₃	
1-302	C12CH-	-(CH ₂) ₂ 0COSC ₂ H ₅	-(cH ₂) ₂ ocosc ₂ H ₅	
1-303	Cl ₂ CH-	-(CH2) SOCONHCH3	-(cH ₂) ₂ oconhcH ₃	
	· Contraction in			

Example R	R 1 .	K5 :
No.		
1-304 Cl ₂ CH	(CH ₂) ₂ OCON(C	H ₃) ₂ -(CH ₂) ₂ OCON(CH ₃) ₂
1-305 CL2CH	-(CH ₂)20CONHC	-(CH ₂)20CONHC2H5
1-306 Cl2CH	(CH2)20CONH	CH(CH ₃) ₂ -(CH ₂) ₂ OCONHCH(CH ₃) ₂
1-307 Cl ₂ Cl	-(CH ₂) ₂ OCONH	(CH ₂) ₃ CH ₃ -(CH ₂) ₂ OCONH(CH ₂) ₃ CH ₃
1-308 Ct2C	H(CH ₂) ₂ OCONH	CH2CH=CH2 -(CH2)2OCONHCH2CH=CH2
1-309 Cl ₂ C	H(CH ₂)3050 ₂ C	
1-310 Cl ₂ C	H(CH ₂)3NHCOC	HCL2 -(CH2)3NHCOCHCL2
1-311 Cl ₂ C	нсн ₂ осн ₃	C ₂ H ₅
1-312 Cl ₂ (:HCH2CH2-SH	-CH2-
I-313 Cl ₂		5 -
I-314 Cl ₂	CH3 CHCH-CO-OCH3	СН3
1-315 Cl ₂	CH3 CHCH-CO-OCH3	CH ₃ C ₂ H ₅
1-316 Cl	CH3 1 2CHCH-CO-OCH	CH3
1-317 Cl	сн ₃ 2снсн-со-ос ₂	C ₂ H ₅
1-318 CI	2CHCH2-N-	C ₂ H ₅
I-319 C	12CHCH2-N-	C ₂ H ₅

Table	1	(Con	tinua	tion)

Table	1 (Cont	inuation)	
Examp No.	le R	R ¹	RZ or: -NCR2
1-320	CL ₂ CH-	-CH-CH2-OCH3	C ₂ H ₅
1-321	Cl ₂ CH-	CH ₃ -C=CH-COCH ₃	CH ₃
1-322	сі2сн-	сн ₃ -с=сн-сосн ₃	CH3 C ₂ H ₅
1-323	Cl ₂ CH-	сн ₃ -с=сн-сосн ₃	CH ₃
1-324	CL2CH-	сн ₃ -с=сн-сосн ₃	-CF3
1-325	Cl ₂ CH-	-c=cH-cocH ₃	
1-326	Cl ₂ CH-	CH3 -C=CHCOOC ₂ H ₅	CH ₃
1-327	CL ₂ CH-	о 	- ⊘ -cι
1-328	Cl2CH-	-,CO-CHC(2	
1-329	Cl ₂ CH-		-N=C N(CH ₃) ₂
1-330	Cl2CH-		-N
1-331	CISCH-		-N
1-332	CI2CH-		-N
Le-A-2	4-460		

Table	1	(Continuation)
1000	•	

,);-

Table 1 (Contin		. 2		R ¹
Example R No.	R ¹	R ²	or	- MR 2
1-333 CL ₂ CH-				-N CH ₃
1-334 Cl ₂ CH-				-NCH3
1-335 Cl ₂ CH-				-N-CH3
1-336 Cl ₂ CH-				CH ₃ CH ₃
1-337 Cl ₂ CH-				-N-CH3
1-338 Cl ₂ CH-				-N CH3
1-339 Cl ₂ CH-				CH ₃
1-340 Ct ₂ CH-	4	·		-N CH3
1-341 Cl ₂ CH-				-N CH3
1-342 Cl ₂ CH-				CH3 -N CH3
1-343 Cl ₂ CH- L o A-24-40 0	·			CH3 CH3 CH3 CH3

ble 1 (Continu		R2	6.5	
xample R	R ¹	ж-	or	-N _R 2
1-344 Cl ₂ CH-				- N
1-345 CL ₂ CH-				-N CH3
I-346 Cl ₂ CH-				-NC2H5
1-347 Cl ₂ CH-				-N C 2H5
1-348 Cl ₂ CH-				-N C2H5
1-349 Cl ₂ CH-				CH3(CH2)2
1-350 Cl ₂ CH-				-N-CH(CH3)2
1-351 Cl ₂ CH-				-N
1-352 CL ₂ CH-				-N
1-353 Cl ₂ CH-	4.	٠.		-N_=0
1-354 Cl ₂ CH-				-N 0CH3
1-355 Cl ₂ CH-				-N 0C2H5

T	ab	le	1	(Continuation))

Examp No.	le R	R ¹	^K 5	or	-N _{R2}
1-357	Ct ₂ CH-				-n\o^
1-358	Cl ₂ CH-				CH3 CH3 -N =0 CH3 CH3
1-359	Cl ₂ CH-			·	CH3 CH3 H CH3 CH3
1-360	Cl ₂ CH-		٠.,		-N Br
1-361	Cl ₂ CH-				-NCN
1-362	Cl 2CH-				-N
1-363	Cl ₂ CH-				-N—-N—
1-364	Cl ₂ CH-	4			-N-(CH ₂) ₃ -N-CO-CHCL ₂
1-365	C12CH-				-n_0
1-366	C12CH-				CH ₃ O CH ₃
1-367	Cl ₂ CH-				-NCH3

Table 1 (Continuation)

Examp No.	le R	R ¹	R ²	or	-N = R1
	C12CH-				-n_0
1-369	Cl2CH-				-N_O
					CH3 CH3 CH3 CH3
1-370	CISCH-				-N -CH3
I-371	C15CH-				-NN-CH3
1-372	CL2CH-	·			-N-(CH ₂) ₂ -CH ₃
1-373	C12CH-				-n_n-g-H
1-374	C15CH-				-N-C-CHCL2
1-375	C15CH-				-N-C-OC ₂ H ₅
1-376	Cl ² CH-		•		-n h-cH2-
1-377	CfScH-				-N-(CH ₂) ₂ -
1-378	C15CH-				-NN-CH-CH3
1 - 379	Cl2CH-	4			-N N-CH2-CH=CH-
1-380	Cf 5cH-				-N_N-(O)
I - 381	C15CH-			-	-n_n-
					CH3
1-382	Cl ² CH-	. •			-N_N-(O)
Lo A 24	460	•.			• • • • • • • • • • • • • • • • • • •

Table 1	(Continuat	tion)		
Example	R	R ¹	R2	or

Example R	R ¹	K _S	or	-NCR2
1-383 CL ₂ CH-				-N N-€ CH3
I-384 CL ₂ CH-				-NCH3
1-385 Cl ₂ CH-	·			-N-Q-CH3 CH3
1-386 Cl ₂ CH-				-v_v->
1-387 Cl ₂ CH-				-N N-O-F CL
1-388 CL2CH-				-NN-OCF3
1-389 Çl ₂ CH-			•	- n _ n - ⊘
1-390 CL2CH-				-n_n-
				0 ₂ N
1-391 CL ₂ CH-				-N_N-(O)-NO2
1-392 Cl ₂ CH-			·	-N N-O , OCH3
1-393 Cl ₂ CH- *				-N-W
1-394 Cl ₂ CH-			•	-N_N-O-OCH3
I-3 95 Cl ₂ CH-				-N_N-O
1-396 CL ₂ CH-				-N-O-CO-CH3

/R1

Le A 24 460

Table	1 (Conti	inuation)			_R1
Examp No.	le R	R ¹ .	R ²	or	-N_R2
1-397	Cl ₂ CH-				-N_N-OCH3
1-398	Cl ₂ CH-				-N N-CO-CHCL2
1-399	CL2CH-				-N N-CO-CHCL ₂ CH ₃ CH ₃
1-400	C15cH-				-N-CO-CHCL2
1-401	сі2сн-				-n_n-
1-402	Cl ₂ CH-				-n_n-\(\)
1-403	C12CH-		. •		-N-CH3
1-404	C12CH-				-N-CO-CHC12
1-405	C12CH-		· · · · · .		-ŃN CI
1-406	CL2CH-	•	:		-N
1-407	CI2CH-				-N CH ₃ CH ₃
1-408	Cl ₂ CH-	4 - 14. 1		· .	-N CH3
1-409	C12CH-				-10

Table 1 (Continuation)

Example R	R ¹	R2	or	-N = R1
1-410 CL ₂ CH-				CH3 CH3
1-411 Cl ₂ CH-				
I-412 Cl ₂ CH-				-N
1-413 Cl ₂ CH-				-N-CH3
I-414 Cl ₂ CH-				-N-CH3
1-415 Cl ₂ CH-			٠	-N CH3
I-416 Cl ₂ CH-				-N
1-417 CL ₂ CH-	4			
I-418 Cl ₂ CH-				CH3 CH3
I-419 CL ₂ CH-				
			*	

	4	(Continuation)
Table		- LLONL INGALIONA
100.	•	

)~~

Example No.	e R	R ¹	R _S	or	-N_R2	
	C12CH-	-			-N -CH3	
1-421	CL2CH-				CH3 CH3 - CH3	
1-422	cl3C-	н	-CH2-CH=	CH ₂		•
1-423	Cl3C-	H	-CH2CH2-	Br		
1-424	Cl 3C-	н	CH3 -C C2H5 CN			
1-425	Cl3C -	. н	-CH2-NHC	OCH2CL		
1-426	C13C-	СНЗ	CH ₃			
1-427	cl3c-	СНЗ	-CH-C≡C CH ₃	н		
1-428	cl3c-	C ₂ H ₅	-сн2сн20	H ₂ CH ₃		
1-429	Cl3C-	-cH2CH2CH3	-CH2CH20	:H ₃		
1-430	Cl3C-	-ch(ch ₃) ₂	-ch(ch ₃)	2	•	
1-431	cl3c-	-CH2CH(CH3)2	- CH2 CH(H ₃) ₂		
1-432	ci3C-	-CH2-CH=CH2	-CH2-CH=	CH2		
1-433	C13C-		*		-N	
					CH ₃	
1-434	C13C-		•		-N	
1-435	Br3C-	Н	CH3 -C-C≡ CH CH3	1	`CH3	
		. *				

Example R	R ¹	R2	or ·	-N = R1
1-436 Br ₃ C-	н	CH3 -C-CN I CH3		
I-437 Br ₃ C-	н	-CH ₂ -CH	H=CH ₂	-
1-438 Br3C-	CH ₃	-CH-C≡	E CH	
1-439 Br3C-	-CH ₂ -CH	=CH ₂ -CH ₂ -	CH=CH2	
	ICH3-CH	=CH ₂ -CH ₂ -	CH=CH2	
I-441 CL-CH	1 ₃ 4сн ₂ -сн	=CH ₂ -CH ₂ -	-co-cH ₃	
	4 ₃ 4сн ₂ -сн	I=CH ₂ -CH ₂ -	-CH=N-OCH3	
1-443 61-6	H ₃ HCH ₂ -CH			
I-444 CL-C	H3 HCH ₂ -CH	H=CH ₂ -CH ₂	N N N	
I-445 CL-C	H ₃ HCH ₂ -CI	H=CH ₂ -CH ₂	~	
1-446 CL-0	H ₃ HCH ₂ -C	H=CH ₂ -CH ₂	N= CH	3
1-447 CL-6	H ₃ CHCH ₂ -C	H=CH ₂		
	CH3 CH3 CH- — CH-C			
1-449 CL-	CH-			-N

Table 1 (Continuation)

Example R	R ¹	R ²	or	-N_R2
CH ₃ 1-450 Cl-CH-				CH3 -N CH3
CH ₃ 1-451 Cl-CH-				-NCH3
ςн ₃ 1-452 Cl-CH-	•			-N CH3
CH ₃ 1-453 Cl-CH-				-N -CH3
CH ₃ 1-454 CL-CH-				CH ₃ -N-CH ₃
СН _З 1-455 СС-СН-				- N =0
CH3 1-456 CL-CH-				-N OC2H5
CH: 1-457 CL-CH				-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
CH 1-45B CL-CH				-N_0^0_
CH 1-459 CL-CH			·	
CH 1-460 CL-CH				CH3 -N
Lt A 24 46U				

xample R	R ¹	R ²	or	-N _{R2}
CH3				-N-CH ₃
CH3 1-462 CL-CH-				-N-COOC 2H5
CH3 1-463 CL-CH-				-N_N-(CH ₂)2-
CH3		*	-	-N N-CH-
CH ₃ 1-465 CL-CH-				-N_N-
CH ₂ 1-466 CL-CH-				-N_N-\(\)
CH: 1-467 CL-CH				-N_N-CH3
CH 1-46 B C L-CH				-N-CH3
CH 1-469 CL-CH	=			-N-N-
CH 1-470 CL-CH				-N-N-CF3
C -C	13 1-			-n_n-(n)
I-472 CL-C	н ₃ н-			-N N-CO-CH-CL
1-473 CL-C	H ₃ H-			-N N-CO-CH-CL

No. 1

 $(\int_{\partial M}^{\partial M} dt)$

T	а	Ь	ι	e	1	(2	o n	t	i	n	u a	١t	i	on)

Example No.	: R	R ¹	R ² or -N _R	2
1-474	CH3		\	CH3 i -CH-CL
1-475	CH3 CL-CH-		/ \	CH3 I -CH-Cl
1-476	с (-сн ₂ сн ₂ -	H	CH3 -C-C≡CH CH3	
1-/77	 Cl-CH ₂ CH ₂ -	CH ₃	CH3 I -CH-C≡CH	
		-CH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂	
1-47 9	Ç١	-CH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂	
1-480	Br 1 CH3-CH-	H	CH3 -C-C≡ CH I CH3	
1-48 1	Вг СН ₃ -СН-	СН3	CH3 1 -CH-C≡ CH	
1-48 2	Br CH3-CH-	-CH2-CH=CH2	-CH ₂ -CH=CH ₂	
1-48 3	F ₃ C-C-C- \ F F	- CH2- CH= CH2	-CH ₂ -CH=CH ₂	
1-48 4	BrcH2CH2C	H ₂ - H	-so ₂ cı	
1-485	CH3 Br-C-	н	CH ₃ -C-C≡CH CH ₃	

LE A 24 460

R2

Example CH₃ -CH2-CH=CH2 -CH2-CH=CH2 1-486 Br-C--CH2-CH=CH2 1-487 Br-(CH₂)₅- -CH₂-CH=CH₂ C 2H 5 C2H5 1-488 HO-CH2--CH2-CH=CH2 -CH2-CH=CH2 1-489 NC-CH2--CH2-CH=CH2 1-490 NCO-CH2- -CH2-CH=CH2 -C-C = CH 1-491 CH₂-CH₃ 1-492 CH2--tH-C= CH CH₃ -CH2-CH=CH2 -CH2-CH=CH2 CH3 -CH-C≡ CH 1-495 CH2CH2- -CH2-CH=CH2 -CH2-CH=CH2 I-496 CH₂CH₂- CH₃ 1-497 CH2CH2- -CH2-CH=CH2 -CH2-CH=CH2 -C2H5

1-498 CH30CH2CH2- -C2H5

Example	R	R ¹	R ²
1-499 H	CHC1 2	-CH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂
I-500 H	CHCL ₂	-CH2-CH=CH2	-CH ₂ -CH=CH ₂
1-501 C	2H5S CH- 2H5S	-CH ₂ -CH=CH ₂	-CH2-CH=CH2
,	- CH2-	H	CH3 -C-C≡ CH CH3
1-503 (○ -CH ₂ -	СНЗ	CH3 -CH-C≡CH
1-504 (O- CH2-	-CH2-CH=CH2	-CH2-CH=CH2
1-505	C ₂ H ₅	H	CH3
1-506	О Сн-	CH ₃	CH-C ECH
1-507	с і с і — С Н 2	- н	CH=CH-CO-C(CH3)3
1-508	OCH3	-CH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂
1-509	CH-CH-	H	CH3 -C-C≡CH CH3
1-510	CH- CH- CI	СНЗ	CH3 -CH-C≡ CH
I-511	- 460	-CH2-CH=CH2	-CH ₂ -CH=CH ₂

Example R

R²

No.

CH3

1-533 (CH2=CHCH2)2N-C-(CH2)4- -CH2-CH=CH2 -CH2-CH=CH2

Table 1 (Continuation)

Exampl	. e	R	R ¹		R ²	
1-534	нс∓с	CH3 0 - C-NH-C- CH3	CH3 -CH2-C-CH2- CH3	н	CH3 -C-C≡ CH3	СН
1-535		CH3	-сн ₂ -о-сн ₂ -	-сн ₃	СН3 -СН-СТ	
				н2сн2-	CH=CH2 -CH2-0	CH=CH2
1-537	(CH	2=CHCH ²)	2N-5-CH2-	-сн2-сн	=CH ₂	CH=CH2
1-538	CH ₂ :	=CH-	н		CH3 -C-C = CH I CH3	
1-539	CH ₂	=CH-	CH3		CH-C = CH	
1-540	СНЗ	-CH=CH-	н		CH ₃ -Ç-C≡CH CH ₃	
1-541	СНЗ	-CH=CH-	-CH ₂ -C	H=CH ₂	-CH2-CH=CH	2
1-542	CH ₂	CH3 1 =C-	н		CH3 -C-C≡CH I CH3	
1-543	(CH		- н		CH3 -C-C≡CH I CH3	
1-544	(C+	13) ₂ C=CH	снз		-CH-C≡CH	
1-545	СНЗ	₃ -CH=CH-	CH=CH- H	•	CH3 -C-CECH CH3	

Example	R	 R ¹	R ² :
No.	-rH=CH-CH=CH	CH2-CH=CH2	-CH2-CH=CH2
1-546 CH3	ÇL ÇL	-	CH3
I-547 CL-	-CH=C-	-CH3	-čH-c≡cH·
1-548 HO	CH3 -C=C-	н	- ◎
1 340	COOCH3		Cl
	5		-c(CH ₃)3
1-549	CH=CH-	н	CH3
1-550)- CH=CH-	н	-C-CN
	9		CH ₃
	_		CH3 -CH-C≡CH
1-551	CH=CH-	CH ₃	- (11 62 50
1-552	E-CH=CH-	-CH2-CH=CH2	-CH2-CH=CH2
1	ċ		CH3
1-553	_сн=сн-	H	-C-CN . CH ₃
	· · · · · · · · · · · · · · · · · · ·	•	
1-554	CH=CH-	-CH2-CH=CH2	-CH2-CH=CH2
1-555	F	-CH2-CH=CH2	-CHZ-CH=CHZ
1-556	C CH=CH	CH ₂ -CH=CH ₂	-CH2-CH=CH2
			CH3 -C-C=CH
1-557	CH3-CH=	CH- H	CH3
1-558	СН3 СН	=CHCH ₂ -CH=CH ₂	-CH2-CH=CH2

Table 1 (Continuation)

Example R	R ¹	R2
CH30 1-559 CH30	н	CH3 -C-C = CH 1 CH3
1-560 CH=C-	н	CH3 -C-CN CH3
1-561 CL	н	CH ₃ -C-C≡CH 1 CH ₃
C C C C C C C C	-CH2-CH=CH2	-CH ₂ -CH=CH ₂
1-563 H	н	CH3 -C-C == CH 1 CH3
1-564 H	сн3	CH3 -CH-C≡ CH
1-565 H	-CH2-CH=CH2	-cH ₂ -cH=CH ₂
1-566 H	H .	CH3 -C-CN CH3
1-567 H	н	CH3 -C-C = CH CH3
1-568 H	СНЗ	CH3 I -CH-C≡ CH
1-569 H	-CH ₂ -CH=CH ₂	-CH2-CH=CH2

Table 1 (Continuation)

Example No.	R	R ¹	K5:
и-570		н .	CH3 I -C-C = CH CH3
H I-571		-CH ₂ -CH=CH ₂	-CH2-CH=CH2
1-572	ČH ₂ CH ₂	н	CH ₃ -C-C≡ CH CH ₃
1-573	CH ₂ CH ₂	Н	CH3 -C-CN CH3
1-574	CH2 E-	CH ₃ NHC-C≡CH CH ₃ H	CH3 -C-C≡CH CH3
1-575	CH2 C-N	- CH2-CH=CH2)	-сн ₂ -сн=сн ₂
1-576	\bigcirc	CH ₃	CH-C≡ CH
1-577	⊘ - *	-CH2-CH=CH2	-CH ₂ -CH=CH ₂
1-578	∅ ^t	H	CH ₃ -C-C≡ CH I CH ₃
1-579		СНЗ	CH3 -CH-C=CH
1-580		-CH ² -CH=CH ²	-CH ₂ -CH=CH ₂

example R	R ¹	K ₅
1-581 F-	Н	CH3 -C-CN I CH3
1-582 F	-CH2=CH=CH2	-CH2-CH=CH2
1-583 CL	СНЗ	CH3 -CH-C≡ CH
1-584	-CH2-CH=CH2	-CH2-CH=CH2
1-585 C(н	CH ₃ -C-C≡ CH CH ₃
1-586 CL-	СНЗ	CH3 1 -CH-C≡CH
1-587 CL-(-)-	-CH3-CH=CH5	-CH2-CH=CH2
1-588 Cl	H	-с(сн ₃) ₃
1-589	-CH3	-CH-C≡CH
1-590 D-	-CH ₂ -CH=CH ₂	CH2 CH= CH2
1-591	Н	CH3 -C-C≡ CH CH3
1-592	-cH ₃	CH3 -CH-C≡ CH CH3
1-593 CL-O-	н	-ċ-c≡ch i ch ₃

Table 1 (Continuation)

 $\sqrt{\int_{a}^{a}}$

Example R No.	R ¹	R ² :
1-594 CL-@-	-CH3	CH3 -CH-C≡ CH
cı 1-595 cı- ()- cı	н	- CH=CH-CO-C(CH ₃) ₃
1-596 CL-O-	-CH3	CH3 -CH-C≡ CH
C L CH3	H	CH3 -C-C≡CH 1 CH3
1-598 CH ₃	-cH ₃	CH3 -CH-C≡CH
1-599 CH ₃	-сн ₃	CH3 -CH-C ≡ CH
1-600 CH ₃	-CH ₂ -CH=CH ₂	-CH2-CH=CH2
1-601 CH3	н	CH ₃ -C-C≡CH CH ₃
1-602 CH3	СНЗ	CH3 -CH-C≡ CH
1-603 CH3-0-	-cH2-CH=CH2	-CH2-CH=CH2
1-604 OCH3	H	CH ₃ -C-C≡ CH CH ₃
1-605 OCH ₃	-CH ₃	CH3 -CH-C≡CH
1-606 CH30-	-сн ₃	CH-C=CH
400		

Example R	R ¹	R2:
1-607 CH30-	-CH2-CH=CH2	-CH2-CH=CH2
CH ₃ 0 - CH ₃ 0 - CH ₃ 0	-CH3	CH3 -CH-C≡CH
CH ₃ 0 1-609 CH ₃ 0- CH ₃ 0	-сн ₃	CH3 -CH-C≡CH
1-610 F ₃ C -	- CH ₃	CH3 -CH-C = CH
I-611 F ₃ C -	-CH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂
1-612 O ₂ N -	н	сн ₃ -с-с <u>=</u> сн сн ₃
1-613 O ₂ N	-CH ₂ -CH=CH ₂	-CH2-CH=CH2
1-614 0 ₂ N-	н	CH3 -C-C≡CH CH3
I-615 02N-0-	-сн ₃	-CH-C≡ CH
I-616 02N	-CH2-CH=CH2	-CH2-CH=CH2
I-617 COOH	н	CH ₃ -C-C≡CH -H ₃
соон I-618 တ	-CH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂

Example No.	R .	R1	R ² ;	·
1-619	COONS	н	6H3 -c-c≡ cH cH3	
1-620	CH3	н	CH ₃ -C-C≡CH CH ₃	
H ₃ t	P- c-c ≡ c cH ₃	н Н ₃		
1-621 〈	\mathcal{L}	-c≡ch ^H 3 H :H ₃	CH ₃ -C-C== CH CH ₃ CH ₃	
1-655	CO-N (CH-C≡CH -CH ₃	-CH-C≡CH	
1-623	CO-N CH	¹ 3 H-C≡CH -CH ₃	CH3 -CH-C≡ CH	
1-624 <		-CH2-CH=CH	н ₂ -сн ₂ -сн=сн ₂	
1-625	=C_N(CH ^S CH	-CH ₂ -CH=C		
1-626 (CLCH2-CO-N	н-{(()-	CH ₃ 1 -C-C∈ CH 1 CH ₃	

1.

R2 : Example R¹ No. -сн₂-сн=сн₂ -сн₂-сн=сн₂ 1-627 CH3 CH3 Н 1-628 CH₃ ĊH3 CH3 1-629 $-CH_2-CH=CH_2$ -CH2-CH=CH2 CH3 -C-C=CH 1-630 CH3 -CH-C = CH -CH3 -CH2-CH=CH2 1-632 -CH2-CH=CH2 1-633 [s] -C-C=CH н tH3 1-634 [s] -CH-C≡ CH -CH3 -CH2-CH=CH2 -CH2-CH=CH2

Le A 24 460

Table 1 (Continuation)

Exampl No.	e R	R ¹	R ² or	-N (R 2
1-636	CH3-C-CH3 HN-C 0) _H	CH3 -C-C≡CH I CH3	
1-637 (C	H ₂ =CHCH ₂) ₂ NC	-CH2-CH=CH2	-CH ₂ -CH=CH ₂	
1-638	C1-CH2CH20-	-CH2-CH=CH2	-CH ₂ -CH=CH ₂	
1-639	CI CHCH ₂ O-	-CH ₂ -CH=CH ₂	-CH2-CH=CH2	
1-640	CH3-CEC-CH20-	-CH ₂ -CH=CH ₂	-CH2-CH=CH2	
1-641	cı	-CH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂	
1-642	C ₂ H ₅ O-Ĉ-	-CH3	CH-C≡CH	
1-643	о с ₂ н ₅ 0-ё-	-CH2-CH=CH2	-CH2-CH=CH2	
1-644	FH3 0 HC≡ C-C-NH-C- CH3	н	CH3 -C-C==CH I CH3	
1-645	CH3 ĈH3 I I HC≡ C-CH—N-C- II O	-cH ₃	CH3 -CH-C≡CH	
I -646	(CH ₂ =CH-CH ₂)2 ^N	0 i-cсн ₂ сн=сн ₂	-CH2-CH=CH2	· .

Table 1 (Continuation)

R	R ¹	R^2 or $-N < \frac{R^1}{R^2}$
Cl ₂ CH-		-N O CH3
CL2CH-		H ₃ C CH ₃
Cl ₂ CH-	-CH ₂ -CH=CH ₂	-CH ₂ -CO-NH-CH ₂ -CH=CH ₂
Cl ₂ CH-		-N 0 H ₃ C C ₂ H ₅
	CL ₂ CH-	Cl ₂ CH- Cl ₂ CHCH ₂ -CH=CH ₂

The amides of the formula (I) which can be used according to the invention are known (compare, for example, DE-OS (German Published Specification) 2,828,265, DE-OS (German Published Specification) 3,228,007, DE-OS (German Published Specification) 2,218,097, DE-OS (German Published Specification) 2,350,547, DE-OS (German Published Specification) 3,426,541, DE-OS (German Published Specification) 2,905,560 and U.S. Patent Specification 4,531,970).

As already mentioned, the amides of the formula (I) which can be used according to the invention are suitable for improving the crop plant tolerance of herbicidally active sulphonyliso(thio)urea derivatives of the forula (II).

Formula (II) provides a general definition of the herbicidally active sulphonylurea derivatives which can be used according to the invention.

Herbicidal sulphonyliso(thio)urea derivatives of the formula (II) which can preferably be used are those in which

wherein

10

15

20

25

30

R⁸ and R⁹ are identical or different and represent hydrogen, halogen [such as, in particular, fluorine, chlorine, bromine and/or iodine], cyano, nitro or C₁-C₆-alkyl [which is optionally substituted by fluorine, chlorine, bromine, cyano, carboxyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkyl-amino-carbonyl, di-(C₁-C₄-alkyl)-amino-carbonyl, hydroxyl, C₁-C₄-alkoxy, formyloxy, C₁-C₄-alkyl-carbonyloxy, C₁-C₄-alkoxy-carbonyloxy, C₁-C₄-alkyl-alkylamino-carbonyloxy, C₁-C₄-alkylthio, C₁-C₄-alkyl-alkylamino-carbonyloxy, C₁-C₄-alkylthio, C₁-C₄-alkyl-alkylamino-carbonyloxy, C₁-C₄-alkylthio, C₁-C₄-alkyl-alkyl

De-A-24-468

alkylsulphinyl, C1-C4-alkylsulphonyl, di-(C1-C4-alkyl)-aminosulphonyl, C3-C6-cycloalkyl or phenyl], or represent C2-C6-alkenyl [which is optionally substituted by fluorine, chlorine, bromine, cyano, C1-C4-alkoxycarbonyl, carboxyl or phenyl], or represent C2-C6-alkinyl [which is optionally substituted by fluorine, chlorine, bromine, cyano, C₁-C₄-alkoxy-carbonyl, carboxyl or phenyl], or represent C1-C4-alkoxy [which is optionally substituted by fluorine, chlorine, bromine, cyano, carboxyl, C1-C4-alkoxyimino-...C1-C4-alkyl, C1-C4-alkoxy-carbonyl, C1-C4alkoxy, C1-C4-alkylthio, C1-C4-alkylsulphinyl or C1-C4-alkylsulphonyl], or represent C1-C4alkylthio [which is optionally substituted by fluorine, chlorine, bromine, cyano, carboxyl, C1-C4-alkoxycarbonyl, C1-C4-alkylthio, C1-C4-alkylsulphinyl or C1-C4-alkylsulphonyl], or represent C3-C6-alkenyloxy [which is optionally substituted by fluorine, chlorine, bromine, cyano or C1-C4-alkoxy-carbonyl], or represent C2-C6-alkenylthio [which is optionally substituted by fluorine, chlorine, bromine, cyano, nitro, C1-C3-alkylthio or C1-C4-alkoxycarbonyl], C3-C6-alkinyloxy or C3-C6-alkinylthio, or represent the radical $-S(0)_D - R^{10}$,

wherein

5

10

15

20

25

30

35

p represents the number 1 or 2 and R¹⁰ represents C1-C4-alkyl [which is optionally substituted by fluorine, chlorine, bromine, cyano or C1-C4-alkoxy-carbonyl], C3-C6-alkenyl, C3-C6-alkinyl, C1-C4-alkoxy, C1-C4-alkoxyamino, C1-C4-alkoxy-C1-C4-alkylamino, C1-C4-alkylamino or di(C1-C4-alkyl)-amino, or furthermore

 ${\sf R}^{\sf 8}$ and ${\sf R}^{\sf 9}$ represent phenyl or phenoxy, or represent

 $C_1-C_4-alkylcarbonylamino$, $C_1-C_4-alkoxycarbonyl-amino$, $C_1-C_4-alkylamino-carbonylamino$, di- $(C_1-C_4-alkyl)-amino-carbonylamino$, or represent the radical $-CO-R^{11}$,

5 wherein

(

10

15

20

25

30

35

R¹¹ represents C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-alkoxy imino-C₁-C₄-alkoxy, C₃-C₆-cycloalkoxy, C₃-C₆-alkenyloxy, C₁-C₄-alkyl-thio, C₁-C₄-alkylamino, C₁-C₄-alkoxyamino, C₁-C₄-alkoxy-C₁-C₄-alkyl-amino or di-(C₁-C₄-alkyl)amino [which are optionally substituted by fluorine and/or chlorine], or furthermore R⁸ and R⁹ represent C₁-C₄-alkylsulphonyl-C₁-C₄-alkylsulphonyloxy, di-(C₁-C₄-alkyl)-aminosulphonylamino or represent the radical -CH=N-R¹²,

wherein

R¹² represents C₁-C₆-alkyl which is optionally substituted by fluorine, chlorine, cyano, carboxyl, C1-C4-alkoxycarbonyl, C1-C4-alkylthio, C1-C4alkylsulphinyl or C1-C4-alkylsulphonyl, or represents benzyl which is optionally substituted by fluorine or chlorine, or represents C3-C6alkenyl or C3-C6-alkinyl which is optionally substituted by fluorine or chlorine, or represents phenyl which is optionally substituted by fluorine, chlorine, bromine, C1-C4-alkyl, C1-C4-alkoxy, trifluoromethyl, trifluoromethoxy or trifluoromethylthio, or represents C1-C6-alkoxy, C3-C6alkenoxy, C3-C6-alkinoxy or benzyloxy which is optionally substituted by fluorine and/or chlorine, or represents amino, C1-C4-alkylamino, di-(C1-C4-alkyl)amino, phenylamino, C1-C4-alkylcarbonyl-amino, C₁-C₄-alkoxy-carbonylamino, or C1-C4-alkyl-sulphonylamino, or represents phenylsulphonylamino which is optionally substitu-

Le A 24 460

ted by fluorine, chlorine, bromine or methyl; and wherein, furthermore,

$$R^3$$
 represents the radical -CH R13 R14

wherein

5

10

20

R¹³ represents hydrogen or C₁-C₄-alkyl and R¹⁴ and R¹⁵ are identical or different and represent hydrogen, fluorine, chlorine, bromine, nitro cyano, C₁-C₄-alkyl [which is optionally substituted by fluorine and/or chlorine], C₁-C₄-alkoxy [which is optionally substituted by fluorine and/or chlorine], carboxyl, C₁-C₄-alkoxy-carbonyl, C₁-C₄-alkylsulphonyl or di-(C₁-C₄-alkyl)-aminosulphonyl;

or wherein, furthermore,

15
$$R^3$$
 represents the radical R^{16} R^{17}

wherein

R¹⁶ and R¹⁷ are identical or different and represent hydrogen, fluorine, chlorine, bromine, nitro, cyano, C₁-C₄-alkyl [which is optionally substituted by fluorine and/or chlorine] or C₁-C₄-alkoxy [which is optionally substituted by fluorine and/or chlorine];

or wherein, furthermore,

$$\mathbb{R}^3$$
 represents the radical \mathbb{R}^{18}

25 wherein

 $\rm R^{18}$ and $\rm R^{19}$ are identical or different and represent hydrogen, fluorine, chlorine, bromine, nitro, cyano, $\rm C_1-\rm C_4-alkyl$ [which is optionally sub-

1 e A 24 460

stituted by fluorine and/or chlorine] or C1-C4-alkoxy [which is optionally substituted by fluorine and/or chlorine], or represent C1-C4-alkylthio, C1-C4-alkylsulphinyl or C1-C4-alkylsulphonyl [which are optionally substituted by fluorine and/or chlorine], or represent di-(C1-C4-alkyl)-amino-sulphonyl or C1-C4-alkoxy-carbonyl;

or wherein, furthermore,

$$R^3$$
 represents the radical R^{20}

10 wherein

5

15

20

25

30

R²⁰ and R²¹ are identical or different and represent hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl [which is optionally substituted by fluorine and/or bromine] or C₁-C₄-alkoxy [which is optionally substituted by fluorine and/or chlorine], or represent C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl or C₁-C₄-alkylsulphonyl [which are optionally substituted by fluorine and/or chlorine], or represent di-(C₁-C₄-alkyl)-aminosulphonyl;

or wherein, furthermore,

wherein

R²² and R²³ are identical or different and represent hydrogen, fluorine, chlorine, bromine, cyano, nitro, C₁-C₄-alkyl [which is optionally substituted by fluorine and/or chlorine], C₁-C₄-alkoxy [which is optionally substituted by fluorine and/or chlorine], C₁-C₄-alkylthio, C₁-C₄-alkyl-sulphinyl or C₁-C₄-alkylsulphonyl [which is option-

1-24-440

ally substituted by fluorine and/or chlorine], di-(C1-C4-alkyl)-amino-sulphonyl or C1-C4-alkoxy-carbonyl and

Z represents oxygen, sulphur or the grouping $N-Z^{1}$,

5 wherein

10

z¹ represents hydrogen, C₁-C₄-alkyl [which is optionally substituted by fluorine, chlorine, bromine or cyano], C₃-C₆-cycloalkyl, benzyl, phenyl [which is optionally substituted by fluorine, chlorine, bromine or nitro], C₁-C₄-alkyl-carbonyl, C₁-C₄-alkoxy-carbonyl or di-(C₁-C₄-alkyl)-amino-carbonyl;

or wherein, furthermore,

 ${\it R}^{3}$ represents the radical

15 wherein

 $\rm R^{24}$ represents hydrogen, C1-C5-alkyl or halogen, $\rm R^{25}$ represents hydrogen or C1-C5-alkyl and Y represents sulphur or the grouping N-R 26 ,

wherein

20 R^{26} represents hydrogen or C_1 - C_5 -alkyl; and wherein, furthermore,

$$R^4$$
 represents the radical R^{28}

wherein

25

30

 $\rm R^{27}$ and $\rm R^{29}$ are identical or different and represent hydrogen, fluorine, chlorine, bromine, C1-C4-alkyl [which is optionally substituted by fluorine and/or chlorine] or C1-C4-alkoxy [which is optionally substituted by fluorine and/or chlorine], with the proviso that at least one of the radicals $\rm R^{27}$ and $\rm R^{29}$ is other than hydrogen, and

Lo-A-24-460

R²⁸ represents hydrogen, fluorine, chlorine, bromine, cyano or C₁-C₄-alkyl [which is option-ally substituted by fluorine and/or chlorine]; or wherein, furthermore,

wherein

5

10

20

25

 R^{30} and R^{31} are identical or different and represent hydrogen, fluorine, chlorine, bromine, C_1 - C_4 -alkyl [which is optionally substituted by fluorine and/or chlorine], C_1 - C_4 -alkoxy [which is optionally substituted by fluorine and/or chlorine], C_1 - C_4 -alkylamino or di- $(C_1$ - C_4 -alkyl)-amino, with the proviso that at least one of the radicals R^{30} and R^{31} is other than hydrogen;

15 or wherein, furthermore,

$$R^4$$
 represents the radical R^{32}

wherein

R³² represents hydrogen, fluorine, chlorine, bromine, hydroxyl or C₁-C₄-alkyl [which is optionally substituted by fluorine and/or chlorine] or C₁-C₄-alkoxy [which is optionally substituted by fluorine and/or chlorine], R³³ represents hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl [which is optionally substituted by fluorine and/or chlorine], cyano, formyl, C₁-C₄-alkyl-carbonyl or C₁-C₄-alkoxy-carbonyl and R³⁴ represents hydrogen, fluorine, chlorine,

Le A 24 460

bromine, hydroxyl, C_1 - C_4 -alkyl [which is optionally substituted by fluorine and/or chlorine], C_1 - C_4 -alkoxy [which is optionally substituted by fluorine and/or chlorine], amino, C_1 - C_4 -alkyl-amino or di- $(C_1$ - C_4 -alkyl)-amino, or R^{33} and R^{34} together represent C_3 - C_4 -alkane-diyl;

or wherein, furthermore,

$$R^4$$
 represents the radical N

10 wherein

15

25

30

5

 R^{35} and R^{36} are identical or different and represent fluorine, chlorine, bromine, hydroxyl, C_1 - C_4 -alkyl [which is optionally substituted by fluorine and/or chlorine], C_3 - C_5 -cycloalkyl, C_1 - C_4 -alkoxy [which is optionally substituted by fluorine and/or chlorine] or C_1 - C_4 -alkylthio, or represent C_1 - C_4 -alkyl-amino or di- $(C_1$ - C_4 -alkyl)-amino;

and wherein, furthermore,

wherein

 ${\rm R}^{\overline{3}\overline{7}}$ and ${\rm R}^{\overline{3}\overline{8}}$ are identical or different and represent hydrogen, methyl or methoxy;

and wherein, furthermore,

R⁵ represents C₁-C₁₂-alkyl [which is optionally substituted by fluorine, chlorine, cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₁-C₄-alkyl-carbonyl, C₁-C₄-alkoxy-carbonyl, C₁-C₄-alkylaminocarbonyl or di-(C₁-C₄-alkyl)-aminocarbonyl], or repres-

La_A_24-460

ents C3-C6-alkenyl, C3-C6-alkinyl, C3-C6-cycloalkyl, C3-C6-cycloalkyl-C1-C2-alkyl or phenyl-C1-C2-alkyl [which is optionally substituted in the phenyl part by fluorine, chlorine, nitro, cyano, C1-C4-alkyl, C1-C4-alkoxy or C1-C4-alkoxy-carbonyl],

or wherein, furthermore,

()

5

10

15

20

25

30

35

R⁵ represents a phenyl radical which is optionally substituted by one or more radicals from the series comprising halogen [such as, in particular, fluorine, chlorine, bromine and iodine], cyano, nitro, hydroxy, carboxy, C₁-C₆-alkyl [which is optionally substituted by fluorine, chlorine, bromine, nitro, cyano, hydroxyl, carboxyl, C₁-C₄alkoxy-carbonyl, C1-C4-alkoxy, C1-C4-alkylthio or phenyl], C3-C6-cycloalkyl, C1-C4-alkoxy. [which is optionally substituted by fluorine, chlorine, bromine, cyano, carboxy, C1-C4-alkoxy, C1-C4-alkylthio or C1-C4-alkoxy-carbonyl], C1-C4-alkylthio [which is optionally substituted by fluorine, chlorine, bromine, cyano, carboxyl, or C1-C4-alkoxy-carbonyl], amino, C1-C4-alkylamino and di-(C1-C4-alkyl)-amino [which are optionally substituted by fluorine, chlorine, bromine, cyano, carboxyl, C1-C4-alkoxy or C1-C4alkoxy-carbonyl], C1-C4-alkyl-carbonylamino, C1-C4-alkoxy-carbonylamino, (di)-C1-C4-alkylamino-carbonyl-amino, formyl, C1-C4-alkylcarbonyl, benzoyl, C1-C4-alkoxy-carbonyl, phenoxy-carbonyl, benzyloxycarbonyl, phenyl [which is optionally substituted by fluorine, chlorine, bromine, cyano, nitro, hydroxyl or methyl], phenoxy, phenylthio, phenylsulphonyl, phenylamino and phenylazo [which are optionally substituted by fluorine, chlorine, bromine, cyano, nitro, methyl and/or trifluoromethyll, pyridoxy and pyrimidoxy

[which are optionally substituted by fluorine, chlorine, bromine, cyano, nitro, methyl and/or trifluoromethyl], C1-C4-alkyl-carbonyloxy, C1-C4-alkyl-amino-carbonyloxy and di-(C1-C4-alkyl)-amino-carbonyl-oxy, or which is optionally fused by an alkylene chain [which is optionally branched and/or interrupted by one or more oxygen atoms] or a benzo radical [which is optionally substituted by fluorine, chlorine, bromine, cyano, nitro, methyl and/or trifluoromethyl];

or wherein, furthermore,

1

5

10

15

25

30

R⁵ represents a five- or six-membered heteroaromatic ring which contains 1 to 3 nitrogen atoms and/or an oxygen or sulphur atom and which is optionally benzo-fused and/or substituted by fluorine, chlorine, bromine, cyano, nitro, C1-C3alkyl or C1-C3-alkoxy [the latter being optionally substituted by fluorine and/or chlorine];

20 and wherein, furthermore,

X represents oxygen or sulphur and M represents hydrogen or one equivalent of sodium, potassium, magnesium, calcium, aluminium, manganese, iron, cobalt or nickel.

The adducts of compounds of the formula (II) — as defined above — with hydrogen halide acids, such as hydrogen fluoride, hydrogen chloride, hydrogen bromide or hydrogen iodide, with sulphuric acid, with alkanesulphonic acids which have 1 to 4 carbon atoms and are optionally substituted by fluorine and/or chlorine or benzene— or naphthalenesulphonic acids which are optionally substituted by fluorine, chlorine, bromine or methyl can furthermore preferably be used.

Herbicidal sulphonyliso(thio)urea derivatives of the formula (II) which can be particularly preferably used are those

La A-24-460

in which

(A) R³ represents the radical

wherein

5

10

R⁸ represents fluorine, chlorine, bromine, methyl, trifluoromethyl, methoxy, difluoromethoxy, trifluoromethoxy, C₁-C₃-alkylthio, difluoromethyl-thio, trifluoromethylthio, C₁-C₃-alkylsulphinyl, C₁-C₃-alkylsulphonyl, dimethylaminosulphonyl, diethylaminosulphonyl, N-methoxy-N-methylaminosulphonyl, phenoxy, C₁-C₃-alkoxy-carbonyl or C₁-C₃-alkyl-aminocarbonyl and R⁹ represents hydrogen;

and wherein, furthermore,

$$R^4$$
 represents the radical $\stackrel{N}{\longrightarrow} R^{32}$

15 wherein

20

25

30

R³² represents hydrogen, fluorine, chlorine, bromine, hydroxyl, C₁-C₃-alkyl, C₁-C₃-alkoxy or difluoromethoxy,
R³³ represents hydrogen, chlorine, bromine or methyl and

R³⁴ represents C₁-C₃-alkyl, hydroxy, fluorine, chlorine, bromine or C₁-C₃-alkoxy;

and wherein, furthermore,

R⁵ represents C₁-C₈-alkyl [which is optionally substituted by fluorine, chlorine, cyano, C₁-C₂-alkoxy or C₁-C₂-alkoxy-carbonyl], or represents C₃-C₄-alkenyl, C₃-C₄-alkinyl or benzyl [which is optionally substituted in the phenyl part by fluorine, chlorine, nitro, cyano, methyl, methoxy or C₁-C₂-alkoxycarbonyl], or

60 A 24 460

R⁵ represents a phenyl radical, which is optionally substituted by one or two radicals from the series comprising fluorine, chlorine, bromine, iodine, cyano, nitro, hydroxyl, carboxyl, C1-C3-alkoxy-carbonyl, C1-C4-alkyl, trifluoromethyl, hydroxymethyl, methoxycarbonylmethyl, phenyl-C1-C3-alkyl, cyclohexyl, C1-C3-alkoxy, trifluoromethoxy, C1-C3-alkylthio, trifluoromethylthio, dimethylamino, amino, acetylamino, methylamino-carbonyl, formyl, acetyl, benzoyl, phenyl, hydroxyphenyl, phenoxy [which is optionally substituted by chlorine and/or trifluoromethyl], phenylamino, phenylazo and pyridoxy [which is optionally substituted by chlorine and/or trifluoromethyl], or which is optionally benzo-fused;

and wherein, furthermore,

X represents oxygen or sulphur and M represents hydrogen or one equivalent of sodium, potassium or calcium;

20 or wherein, furthermore,

(B) R^3 , R^5 , X and M have the meaning given above under (A) and

$$R^4$$
 represents the radical $N \longrightarrow N$

wherein

5

10

15

R³⁵ represents fluorine, chlorine, cyclopropyl, C₁-C₂-alkyl, C₁-C₂-alkoxy or C₁-C₂-alkyl-thio and R³⁶ represents fluorine, chlorine, cyclopropyl, C₁-C₂-alkyl, C₁-C₂-alkoxy, C₁-C₂-alkyl-amino or di-(C₁-C₂-alkyl)-amino.

Adducts of compounds of the formula (I) - as defined above - with hydrogen halide acids, such as

Le 4 24 460

hydrogen chloride, hydrogen bromide and hydrogen iodide, with sulphuric acid, with alkanesulphonic acids which have 1 to 4 carbon atoms and are optionally substituted by fluorine and/or chlorine or with benzene- or naphthalene-sulphonic acids which are optionally substituted by fluorine, chlorine, bromine or methyl can furthermore be particularly preferably used.

The following compounds of the general formula (II) may be mentioned specifically:

$$R^{3}-SO_{2}-N$$

$$C$$

$$N-R^{4}$$

$$X$$

$$R^{5}$$
(11)

R ⁴ X X	CH ₃	$CH_3 \qquad CH_3 \qquad CC_2H_5 \qquad 0 \qquad H$	$CH_3 \longrightarrow CH_2CF_3 \longrightarrow H$	$CH_3 \longrightarrow CH_2 CH_2 C1 \qquad O \qquad H$	CH ₃ -C ₃ H ₇ -i 0 H
Table 2		11-2 C00CH ₃	11-3 C00CH ₃	11-4 C00CH ₃	11-5

I 0 0 0 × $-cH_2cH_2c1$ R2 CO-NHOC8H17-n CO-NHOCH3 Table 2 - Continuation R³ Example No.

<u>/\</u>

able 2 - Continuation Example R ³	R4	R ⁵	*	E
	E CH3	-C ₃ H ₇ -i	0	×
	CH3 CH3	-CH2COOC2H5	0	.
<u></u>	CH3 CH3	сн ³ -сн-соос ₂ н ₅	. 0	#
OCHF ₂	CH C	-C ₂ H ₅	0	.
SO2-N(CH ₃) ₂	CH CH3	-cH ₃	• •	I

 I_{ζ}

Table 2 - Continuation

Σ	±	π	=	· **	±
×	0	0	0	0	0
RS	-CH ₃	-c2H5	-C2H5	-CH ₃	-C2H5
R4	CH ₃	CH ₃	CH ₃	CH3 CH3	CH3
R ³	\$02-N(C2H5)2	SO2-N(C2H5)2	SO ₂ NHOCH ₃	SO ₂ NHOCH ₃	SO2-NHOC2H5
Example No.	11-16	11-17	11-18	11-19	11-20

E-0 A-24-460

I I Σ 0 0 × R5 R4 SO2-NHOC3H7-n ,502-NHOC3H7-i Сооснз COOCH₃ Table 2 - Continuation R³ Rxample No. 11-23 11-24 11-25

J:

.

0 R2 CH₃

CH 50₂-иносн₂соосн₃ Table 2 - Continuation В3 Example No. 11-30 11-26

- A-24-400

زر

Table 2 - Continuation

 J_{i}

I	π	¥	x	: =	x
×	0	0	D	. 0	0
R ⁵	-C2H5	-C2H5	-CH3	-C2H5	-CH3
R4	N(CH ₃) ₂ N CH ₃	N(CH ₃) ₂	CH ₃	CH ₃	OCH ₃
R ³	SO ₂ -NHOC ₃ H ₇ -i	SO ₂ -NHOC ₃ H ₇ -i	B	CF3	SO2-N(CH ₃) ₂
Fxample	11-31	11-32	11-33	11-34	11-35

S02-CH3 C000CH₃ Соосн Table 2 - Continuation Example No. 96-11

I I 0 CH₃

CH EH3-208, SCH₃ Table 2 - Continuation Example R3 11-44 11-42 11-43

I හ S 0 -cH2CH2OCH3 -сн2соосн3 -сн²сн=сн² -сн₂сн₂он _{Енэооэ} EH2002 споснз Table 2 - Continuation R³ £xample No. 11-50

. چ**ڙ** پڙي.

Table 2 -	Continuation				
Fxample No.	R³	R ⁴	R ⁵	×	Σ
11-51	5	CH ₃	-сн ² соосн ³	ဟ	#
11-52	CI CI	CH3 CH3	-сн ² сн ² осн ³	0	æ
. ES-II	OCHF ₂	CH ₃	-CH ₂	ω	æ
11-54	OCHF ₂	EH3 HB3	-CH ₂	ဟ	x
11-55	OCF3	CH3 CH3	-CH ₃	w	*

L-c-A-24-460

)...

	Σ	=	 =	Ξ	æ	æ
	×	ဟ	ဟ	ဟ	ဟ	ဟ
	·					
	RS	-cH ₃	-cH ₃	-cH3	-CH ₃	cH3-
	R4	CH ₃	CH ₃	E Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	CH ₃	CH ₃
Table 2 - Continuation	Example _R 3		11-57	11-58	11-59	11-60 SO2-NHOCH3

L-0_A_24_468

I I ທ ທ တ × R5 R4 Table 2 - Continuation R³ ⊼xample No.

ेर्

	Σ	±	I	· x	; x	æ
	*	ဟ	ស	ω	ဟ	ώ
				_	_	
•	R ⁵	-CH ₃	-CH ₃	-CH ₃	-cH3	-CH3
	R4	HO N N N N N N N N N N N N N N N N N N N	CH ₃	OCH ₃	N OCH ₃	CH ₃
Table 2 - Continuation	Example R3	11-66	11-67 OCF3	11-68 OCF3	11-69	11-70

I I ຽ S ທ × R⁵ . Table 2 - Continuation R₃ Fxample No. 11-74 11-73

人

エ I I I Σ ຽ ဟ ຽ ဟ × ဟ -CH3 R₅ - Continuation R³ Example No. Table 2 11-79 11-80 11-77 11-78

ng ding.

L-0-A-24-460

Table 2 - Continuation

Σ	±	I	Ξ	: #	· #
×	ဟ	ဟ	ဟ	ω .	ம
R ⁵	-CH3	-CH ₃	-сн3	cH ₃	-CH3
RA	0C ₂ H ₅	CH ₃	SCH ₃	CH ₃	OC2H5 N N CH3
₈ 3	OCF3	SC ₃ H ₇ -i	OCF3	OCF3	CH ₃
Example	11-81	11-82	11-83	11-84	11-85

Table 2 - Continuation

Σ	#	π	x	<u>.</u>	.
×	ທ ຸ	w	ဟ	ဟ	ស
R5	-CH3	-cH3	-сн3	-CH3	-сн3
	осн ₃ , , , , , , ,	och ₃	осн ₃	осн ₃ / л	N(CH ₃) ₂
R4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CCH ₃ OCH ₃ OCH ₃			Z Z Z
				•	
				. ·	
	5	<u></u>		CH ₃	ū √
R3					
Example No.	98-11	11-87	11-88	11-89	11-90

Le A 24 460

I Ξ Σ S တ ຜ ഗ හ C₃H₅-cycl. R4 Table 2 - Continuation **5** Fxample No.

 λ_{i}

4/.30

Σ ຜ ល ທ R₅ Table 2 - Continuation Example No. 11-99 11-98 96-11

I

Σ	ж	I	#	æ	#
×	ဟ	ဟ	v	ဟ	ဟ
R ⁵	-cH ₃	-сн3	-C2H5.	-C ₂ H ₅	-CH ₃
	CH3 CH3	OCH ₃	CH ₃	CH ₃	CH3
en En	CH2	i i	5	ra C	ir.
Example	No. 11-101	11-102	11-103	11-104	11-105

-A-24-400

Table 2 - Continuation

ェ I \mathbf{x} ທ ທ S S × ဟ -ch2ch=ch2 R2 сн20сн3 ^Єн2002 Table 2 - Continuation ^Єноооо́ R³ Example No. 11-109 11-106

LE A 24 460

I I -cH₂CH₂OCH₃ -CH₂COOC₂H₅ R2 сиоосн3 Соосн сооснз ⁶ноооо′ Table 2 - Continuation R^3 Example No.

) t'* (

1.30

Table 2 - Contin	Continuation				
Example R3		R4	R5	×	Σ
	сноос) —	CH ₃		0	H ₂ SO ₄
11-117	сиоосн ₃	CH ₃		0	+ ex
11-118	сиосн3	CH3		0	*
11-119	сиоосн _з	CH ₃		0	1/2 Ca++
11-120	сиоосн3	CH3 CH3		O	æ

) \(\frac{1}{2}\).

2 CII3SO3H + BN Σ 0 0 × 0 N(CH₃)₂ R5 Енроор, ^Єноооо́ ^Єноооо [€]н2002 Table 2 - Continuation Енроор) п3 Example No. 11-123 11-124 11-122 11-121

EE A E4 400

agi.

K.J.

<u></u>	Table 2	- Continuation		·		
A 24	Example No.	R ³	R4	R ⁵	×	Σ
460	11-126	[€] H2002	CH ₃	₹ F	0	+ 8%
	11-127	Сооснз	CH CH3	No.	O	+ e ×
•	11-128	Сооснз	CH ₃	C4H9-t.	0_	×
	11-129	€нооосн³		C4H9-t.		* **
	11-130	сиоосн3			6	· x

	+ P N	I	=	: =	+ 82 Z
×	0	0	0	0	0
R ⁵		Br		CH ₃	CH ₃
R ⁴	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃
R ³	сноосн ₃	соосн ₃	сооснз	COOCH ₃	Сооснз
Example No.	11-131	11-132	11-133	11-134	11-135

.(P

	R ⁵ X M	OCH ₃ 0 K ⁺	H O EHDS	SCH ₃ O Na ⁺	H O ZON-	No c Son
	R4	CH ₃	CH ₃	CH ₃	H H H H	EH3 N
Table 2 - Continuation	Example R3	11-136	11-137 C00CH ₃	11-138 C00CH ₃	11-139 C00CH ₃	11-140 COOCH ₃

	Σ .	Ħ	+ e x	Ξ	* # Z	+ 8 X
	*		0			- C
		HO	Ho			5
	RS					
		CH ₃	CH ₃	CH ₃	CH ₃	CH ₃
	R ⁴					F 1
				·		
ion		еноооо	соосн ₃	соосн3	сиоосн ₃	сиосн ₃
Continuation	R ³	S d				
Table 2 -	Example No.	11-141	11-142	11-143	11-144	11-145
⊢I <u>Le A 24-469</u>						

, (²)-

•	ļ		·		,	
	Σ	* @ %	* œ	* 8 X	* B Z	× ×
	×	CF3 0	<u> </u>	0 но	0 542000	0
			# - G - G - G - G - G - G - G - G - G -)003	
	R5					Y
		CH ₃	EH3	CH ₃	EH3	CH3 CH3
	R4	Z Z	Ż	z r	*	-
	•					
ation		снооо	соосн3	соосн ₃	сиоосн3	соосн
Continuati	R ₃	8	g \	S C		
Table 2 -	Example No.	11-146	11-147	II-148	11-149	11-150
L-0-A-24-400						

0.

	Σ	=	π	+ 0 2	+ m Z	+ 8 %
	×	, 0	0	0	0	0 8
	R ⁵		CH ₃	CH3	CH ₃	N(CH ₃) ₂
	R ⁴	CH ₃				
Continuation	R ³	Ен2002	€нооосн3	Соосн	Сооснз	COOCH ₃
Table 2 -	Example No.	11-151	11-152	11-153	11-154	11-155

 $\int_{1}^{\infty} f_{n}$

соосн Сооснз соосн3 COOCH3 COOCH₃ able 2 - Continuation Example No. 11-157 11-159 11-160 951-11

I 0 Сооснз Сооснз EH2002 спооснз Table 2 - Continuation Example No. 11-162 11-161

	Σ	±	= .	#	±	z
	*	0	٠	.		0
	R ⁵		C4H9-t		C4H9-t	
	R4	CH ₃	CH ₃	CH ₃	E H	CH ₃
Table 2 - Continuation	Example R3 No.	C00C ₃ H ₇ -n	C00C ₃ H ₇ -i	C00C4H9-n	F 11-169	11-170 F
E E	A 24	460		H	⊢	

B.

 $\frac{\partial p}{\partial x} = \frac{1}{2} \frac{\partial p}{\partial x}$

					<u>.</u>	+_
	Σ	æ	I	* B Z	æ	æ Z
	*	0	0	: 0	0	0
	R ⁵					
	R4	CH ₃				
Continuation		5	2 	5	<u>5</u>	5
Table 2 - Con	Example R3	_	11-172) 621-11	11-174	11-175
L-G-	77 - 24	460	· .	<i>‡</i>		·

Car

- Continuation

* # Z	* ************************************	+ 85 X	** *** ***	e z
0	O	O ,		CF3 0
CH ₃	HO	EHDS-CH3		
CH ₃	E E E	CH ₃	CH3 CH3	E H
C1	, CI	C1	5 \	υ 📥
No.	11-177	11-178	11-179	11-180
	$\begin{array}{c} R_3 \\ C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_{13} \\ C_{13} \\ C_{13} \\ C_{13} \\ C_{13} \\ C_{13} \\ C_{14} \\ C_{15} \\ C_$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 $C_{\mathcal{F}}$

	E .	I	æ	+ m Z	: =	+ 8 Z
	*	0		0 2	<u> </u>	•
	R5	Ho Ho		N(CH ₃) ₂		
	R ⁴	CH ₃	CH ₃	CH3 CH3	CH3 CH3	CH ₃
Table 2 - Continuation	Example R3	C1 C1 11-181	11-182 Pr	Br 11-183	Br 11-184	11-185 Br

 $\mathcal{P}_{\mathcal{F}}$

Σ	=	*	+	=	×
×	. <u> </u>	<u> </u>	O	0	0
R5	C4H9-	C4H9-1		CCH ₃	
R4	CH ₃	CH ₃	CH ₃	GH3	GH3
E W	± 1	a d		OCF3	OCF3
Example No.	11-186	11-187	11-188	11-189	11-190

1-

, v

Table 2 -	Continuation				
Example No.	R3	R ⁴	RS	×	Σ.
161-11	OCF3	CH ₃	HO	0	I
11-192	OCF3	CH ₃	CH ₃	0	* B X
11-193	OCHF2	CH ₃		0	π
11-194	OCHF2	CH ₃	CH ₃	0	.: x
11-195	OCHF2	CH ₃		0	I

 $\hat{\mathbb{R}}_r$

Ξ I I Σ 0 0 N(CH₃)₂ R4 Table 2 - Continuation R3 Example No. 11-200 11-199 11-198 11-197 961-11

T).

in the

		•				
	Σ	Ħ	* e Z	æ	π	×
	×	<u> </u>	0	-	0	0 2
	R ⁵					N(CH ₃)2
	R4	CH ₃	CH3 CH3	CH ₃	CH ₃	CH3 CH3
Table 2 - Continuation	R ³	N(CH ₃) ₂	N(CH ₃) ₂	N(CH ₃) ₂	SO2N(C2H5)2	SO2N(C2H5)2
Table 2 -	Example No.	11-201	11-202	11-203	11-204	11-205
<u>Le</u>	A 24	-460 -				

 $T_{\mathbb{R}^2}$

ntinuation	3 R ⁴ R ⁵ X M	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Table 2 - Continuation	Example R ³	SO ₂ N(C ₂ H ₅)	22Hs)	22Hs)	$11-209$ $SO_2N(C_2H_5)_2$	$11-210 \qquad \begin{array}{c} \text{SO}_2\text{N}(\text{C}_2\text{H}_5)_2 \\ \end{array}$

P.

Ŧ		æ	=	æ	±
0	-	٠٠-	0	O	0
				-NO ₂	
CH ₃	CH ₃	CH2 CH3	CH3 CH3	CH ₃	CH ₃
No. R3	11-211	11-212	11-213 H ₃ C	11-214 H ₃ C	C00CH ₃
	R3 N CH3	CH ₃	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 $E_{\mathbf{M}}$

Σ × R₅ C000CH₃ €H20002 Соосна EHD000 CH2002 rable 2 - Continuation Example No. 11-218 11-219 11-220 11-217 11-221

0 6ноо 0 но²но CONH2 0 R⁵ C00C3H7-i , cooc3H7-i соосн3 Енроор C000CH₃ С000СН3 Table 2 - Continuation R³ sxample No. 11-223 11-225 11-224 11-226 11-227

į.

	Σ	π	I	=	=	x
	×	0	0	0	0	. .
	R5	C4H9-t.	CH ₃			
	R4	CH ₃	EH3	CH ₃	CH ₃	CH ₃
Table 2 - Continuation	Fxample R3	11-228 OCF3	11-229	11-230 C00CH ₃	11-231 COOCH ₃	11-232 F

Σ × R₅ Table 2 - Continuation Example R3 11-235 11-234

I I Σ × RS OCH3 OCH3 OCH3 OCH3 OCH3 OCH3 споснз rable 2 - Continuation R³ ≅xample No. 11-242 11-238

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OCHF2	OCH3		0 0	= =
N OCH_3 N OCH_3 N OCH_3 N OCH_3 N OCH_3 N $^$	Н3)	OCH ₃			
	Н3)	OCH3	C4H9-t		I

X 0 0 × R2 OCH3 OCH3 OCH3 OCH₃ SO2N(CH3)2 SO2N(CH3)2 SO2N(CH3)2 SO2N(CH3)2 SO2N(CH3)2 - Continuation R3 Example No. 11-252 11-250 11-251 11-249 11-248 Table 2

	Σ	#	±	æ	x	* & Z
	×	0	ဟ	ဟ	ဟ	
		J	o,	_m	_	_
	R ⁵				To the second se	
	R ⁴	N OCH ₃	CH3 CH3	CH3 CH3	CH ₃	CH ₃
					•	
- Continuation	R ³	H ₃ C	Сооснз	C000CH ₃	6ноооо	С000СН3
Table 2 -	Sxample No.	11-253	11-254	11-255	11-256	11-257

	Σ	π	æ	x	x	=
	×	ស	ග	ဟ	w	w
	R ⁵		Ho		H ₂ N ₂ H	CH ₃
	R4	CH ₃	CH ₃	CH ₃	E Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	CH ₃
Table 2 - Continuation	Example R ³	11-258	C00C ₃ H ₇ -i	11-260	11-261	11-262

	Σ	I	• =	π	x	≖ .
	×	ဟ	ω		ဟ	ဟ
	R ⁵		HO	- ОСОИНСИЗ		
	R4	CH ₃	HE WE HE	CH3 CH3	CH ₃	CH3 CH3
Continuation	R ³	5	2	2	BT	OCF3
Table 2 - Continua	Example	11-263	11-264	11-265		11-267
r_e	A 2	_		. •		

 $x\in r_{i}$

Σ I Ξ I × ဟ ဟ S R₅ **R**4 SO₂NHOCH₃ Table 2 - Continuation \mathbb{R}^3 Example No. 11-268 11-269 11-270 11-271

 \blacksquare €H2000 Соосн СООСН3 Table 2 - Continuation R3 11-276 11-275 Example 11-278

, y , 44

Σ I \equiv I I S S ຜ S Table 2 - Continuation [€]ноооэ́ \mathbb{R}^3 Example No. 11-281 11-282

LE N 24 400

ري.

 $\tilde{Q}_{j}(z)$

Example R3.

(-1

Σ	π	π	# .	: =	æ
×	ស	w	ω	w	ω
R ⁵				OCHF ₂	
R4	CH30 OCH3	CH30 OCH3	N OCH ₃	~	CH ₃
R ³ ·	CI CI	OCF3	OCHF ₂	OCHF ₂	нзс-
Example. No.	11-285	11-286	11-287	11-288	11-289

Table 2 -	Continuation				
Example No.	R ³	R4	R5	×	
11-290	£нроор	N CH ₃	HO	ν π	
11-291	Сооснз	CH3 CH3	OCCONHCH ₃	æ	
11-292		CH3	HO	κ	
11-293	2	GH3	-осоинсн3	æ	
11-294	OCF3	CH ₃	Hō OH	π v	

Ø.

Table 2 -	Table 2 - Continuation				
Fxample No.	п ³	R ⁴	R ⁵	×	X
11-300	CF3	och3	HO	ຶ່ນ	#
11-301	n n	S CCH 2 CCH 3	₽ To	ω	π
11-302	COOC ₂ H ₅	och3	HO	ဟ	æ
11-303	CF3	CH 2 CH 3	Ho	ဟ	ж
11-304	Br	E HOO X	Po Ho	ဟ	π

 $\sum_{i=1}^{N}$

	Σ	Ξ
	×	ဟ
	R ⁵	HO
	R4	CH ₃
Table 2 - Continuation	Example R3	-305

₹[s

The sulphonyliso(thio)urea derivatives of the formula (II) which can be used according to the invention are known and/or can be prepared by methods which are known per se (compare, for example, Swiss Patent Specification 646,957, European Patent A-5,986, European Patent A-24,215, European Patent A-173,311, European Patent A-173,316, European Patent A-173,321 and European Patent A-173,957).

The amides of the formula (I) which can be used according to the invention as antidotes are particularly suitable for improving the tolerance of herbicidally active sulphonyliso(thio)urea derivatives of the formula (II) in important crop plants, such as maize, soyabean, cotton, sugar beet, cereals, rice and sugar cane, in particular maize.

The active compound combinations according to the invention exhibit a very good action against broad-leaved weeds and gramineous weeds in numerous crops of useful plants. They can therefore be used for selectively combating weeds in numerous crops of useful plants. By weeds, in the broadest sense, there are to be understood all plants which grow in locations where they are undesired.

The active compound combinations according to the invention can be used, for example, in connection with the following plants:

Dicotyledon weeds of the genera: Sinapis, Lepidium,
Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium,
Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia,

Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver and Centaurea.

Dicotyledon cultures of the genera: Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum, Linum, Ipomoea,

5 Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis and Cucurbita.

Lo_A_24_460

10

15

20

25

Monocotyledon weeds of the genera: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus and Apera:

Monocotyledon cultures of the genera: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Saccharum, Ananas, Asparagus and Allium.

However, the use of the active compound combinations according to the invention is in no way restricted to these genera, but also extends in the same manner to other plants.

The active compound combinations according to the invention are particularly suitable for selectively combating weeds in maize.

The selective herbicidal activity of the active compound combinations according to the invention is particularly pronounced if the herbicidal active compound and antidote are present in certain ratios. However, the weight ratios of herbicidal active compound to antidote in the active compound combinations according to the invention can vary within relatively wide limits. In general, 0.01 to 100 parts by weight, preferably 0.1 to 20 parts by weight, of an antidote of the formula (I) are present per part by weight of herbicidal active compound of the formula (II).

The antidotes of the formula (I) which can be used according to the invention or the active compound combinations according to the invention of an antidote of the formula (I) and a herbicidal active compound of the formula (II) can be converted to the customary formulations, such as solutions, emulsions, wettable powders, suspensions, powders, dusting agents, pastes, soluble powders, granules, suspensionemulsion concentrates, natural and synthetic materials impregnated with active compound, and very fine capsules in polymeric materials.

be A 24 460

10

15

20

25

30

These formulations are produced in known manner, for example by mixing the active compounds with extenders, that is liquid solvents and/or solid carriers, optionally with the use of surface-active agents, that is emulsifying agents and/or dispersing agents and/or foam-forming agents.

In the case of the use of water as an extender, organic solvents can, for example, also be used as auxiliary solvents. As liquid solvents, there are suitable in the main: aromatics, such as xylene, toluene or alkyl naphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols, such as butanol or glycol as well as their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethylformamide and dimethylsulphoxide, as well 20 as water.

10

15

25

30

35

As solid carriers there are suitable: for example ammonium salts and ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as highly disperse silicic acid, alumina and silicates, as solid carriers for granules there are suitable: for example crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite, as well as synthetic granules of inorganic and organic meals, and granules of organic material such as sawdust, coconut shells, maize cobs and tobacco stalks; as emulsifying and/or foam-forming agents there are suitable: for example non-ionic and anionic emulsifiers, such as polyoxyethylene-fatty acid esters, polyoxyethylene-fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkylsulphonates, alkylsulphates, arylsulphonates as well Le A 24 460

as albumin hydrolysation products; as dispersing agents there are suitable: for example lignin-sulphite waste liquors and methylcellulose.

Adhesives such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, as well as natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids, can be used in the formulations. Further additives can be mineral and vegetable oils.

10

15

20

25

30

35

It is possible to use colorants such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic dyestuffs, such as alizarin dyestuffs, azo dyestuffs and metal phthalocyanine dyestuffs, and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.

The formulations in general contain between 0.1 and 95 per cent by weight of an antidote which can be used according to the invention or of an active compound combination according to the invention of antidote and herbicidal active compound, and they preferably contain between 0.5 and 90 per cent by weight.

The antidotes which can be used according to the invention or the active compound combinations according to the invention, as such or in their formulations, can also be used, for combating weeds, as a mixture with known herbicides, a finished formulation or tank mix being possible. Mixtures with known active compounds, such as fungicides, insecticides, acaricides, nematicides, bird repellants, growth factors, plant nutrients and agents for improving soil structure is also possible.

The antidotes which can be used according to the invention or the active compound combinations according to the invention can be used as such or in the form of their formulations or in the use forms prepared therefrom by further dilution, such as ready-to-use solutions, suspen-

sions, emulsions, powders and granules. They are used in the customary manner, for example by watering, spraying, atomizing, dusting, scattering, dry dressing, moist dressing, wet dressing, slurry dressing or encrusting.

The antidotes which can be used according to the invention can be applied by the methods customary for such antidotes. Thus, the antidotes which can be used according to the invention can be applied before or after the herbicide or applied together with the herbicide.

10 Furthermore, crop plants can be protected from damage by seed treatment with the antidote before sowing (dressing) if the herbicide is used before or after sowing. Another possible use comprises applying the antidote to the seed furrow during sowing. If the plants are seedlings, these 15 can be treated with the antidote before being transplanted.

The amount of antidote applied is in principle independent of the herbicide and the amount of herbicidal active compound applied. The amounts of antidote applied are in general between 0.02 and 20 kg/ha, preferably bet-20 ween 0.05 and 5 kg/ha, for surface treatment. In the case of seed treatment, the amounts of antidote applied for surface treatment are between 0.2 and 200 g per kilogram of seed, preferably between 0.5 and 50 g per kilogram of seed. The amounts of active compound combinations according to the invention applied can be varied within a certain range. They are in general between 0.001 and 25 kg/ha, preferably, between 0.01 and 5 kg/ha.

The amounts of herbicidal active compound applied in general vary between 0.001 and 20 kg/ha, preferably between 0.01 and 2 kg/ha.

Use Examples

25

30

Preparation of the active compound solutions required

In each case a stock solution was prepared from the amounts of herbicidal active compound or antidote required for the experiment. For this, technical grade active compounds were dissolved with a few millilitres Le A 24 400

(3 - 5) of the solvent mentioned, 1 drop of emulsifier "Tween 20" was added and the mixture was further diluted with water, and formulated active compounds were dispersed directly in water. The active compound solutions for treatment of the test plant seeds in the experiment vessels were then prepared from these stock solutions by further dilution with water and if appropriate by mixing, so that the particular solution contained the desired amount of herbicidal active compound or antidote. The volume of active compound solution applied per unit area in the experiments was kept constant.

Use of the antidote and herbicidal active compounds:

The active compound was applied to the seeds of the test plants by the tank mix method. For this, the 15 experiment vessels filled with soil in which the seeds of the test plants were sown were watered with the amount of antidote to be applied, mixed with the herbicide; vessels which had been treated only with water or herbicide served as control variants.

The experiment vessels were then kept in a green-house under controlled conditions (temperature, humidity). After two weeks, the experiments were evaluated in the form of visual rating, the damage to the test plants in comparison with the untreated control plants being evaluated according to a scale from O (no damage, like untreated control) to 100 (total damage).

The test compounds, the amounts thereof applied, the test plants and the test results can be seen from the following table:

Pre-emergence test / greenhouse

Test compounds / Table 1

The following active compounds were employed as test compounds in the experiments described in the following Tables 1 and 2, the formulations used also being shown:

Herbicides:

1

Herbicide (II-294)

10 Formulation: Technical grade active compound, solvent dimethylformamide

Herbicide (II-79)

Formulation: Technical grade active compound, solvent dimethylformamide

Antidotes:

15

Antidote (1-475)

Formulation: 350 EC, that is to say emulsion concentrate with 350 g of antidote per litre

Antidote (I-273)

Formulation: 500 EC, that is to say emulsion concentrate with 500 g of antidote per litre

5 Antidote (I-271)

Formulation: 750 EC, that is to say emulsion concentrate with 750 g of antidote per litre

Antidote (1-369)

10

1

Formulation: technical grade active compound, solvent acetone

g /ha 1000 g 0 0 0 0 250 g + /ha + 50 g 1 20 % 0 10 % 20 % 20 % 250 g / ha 30 % Testing on maize, use of the antidote by the tank mix method 1000 g | 1000 g | 500 g | 500 g | 250 g | 100 g | 100 g | 250 g | 250 g | 100 g | 250 0 10 % 0 0 20 X 20 % 20 % **30 %** Amount applied 500 g / ha 50 % Rating: Damage in X 0 10 % 0 10 X 40 % **30 %** 20 % 30 % * 1000 g / ha 70 % 20 % 10 % 20 % 10 % Herbicide (II-79) lerbicide (II-79) Antidote (a), (c) or (d) Test compounds (4) (P) (c) (1-271) (b) (1-475) (a) (1-273) Table A

{ }

 $(\sum_{i=1}^{k} i_i)_{i=1}^{k}$

Table A - Continuation Testing on maize, use of the antidote by the tank mix method

Amount applied Rating: Damage in X		0 g + /ha 1000 g	0			0
	125 g / ha 20 %	125 g + /ha 25 g	20 ×	20 ×	× 02	0
		125 g + /ha 125 g	10 %	10 ×	10 ×	0
	250 g / ha 40 x	250 g + /ha 50 g	20 ×	10 ×	30.00	0
		250 g + /ha 250 g	20 %	20 ×	× 00	0
	\$ 500 g / ha	500 g + /ha 100 g	30 ×	.× 20 ×	4 0 %	10 ×
		500 g + / /ha 500 g	×	30 ×	×	10 %
Test compounds	Herbicide(II-294)	Herbicide(II-294) Antidote (a), (b), (c) or (d)	(a) (I-273)	(b) (I-475)	(c) (1-271)	(d) (1-369)

PO A 24 460

Patent Claims

Use of amides of the formula (I):

$$R - \frac{0}{C} - N \frac{R^1}{R^2}$$

in which

0

R represents hydrogen or halogen, or represents in each case optionally substituted alkyl, alkenyl, alkinyl, cycloalkyl, cycloalkenyl, bicycloalkyl, bicycloalkenyl, tricycloalkyl, aryl, heteroaryl, alkoxy, alkenyloxy, alkinyloxy, aryloxy, carbamoyl, alkoxycarbonyl or dithiolanyl and ${\sf R}^{\,1}$ and ${\sf R}^{\,2}$ independently of one another in each case represent hydrogen, or represent formyl, or represent chlorosulphonyl, or represent in each case optionally substituted alkyl, alkenyl, alkadienyl, alkinyl, cycloalkyl, cycloalkenyl, alkoxy, alkylthio, alkylcarbonyl, alkoxycarbonyl, phenyl, phenoxy, phenylsulphonyl or heterocyclyl, or represent amino, or represent alkylideneimino, or represent optionally substituted alkylcarbonylamino or di-(alkylcarbonyl)amino, or ${\tt R}^{1}$ and ${\tt R}^{2}$, together with the nitrogen atom to which they are bonded, represent in each case optionally substituted alkylideneimino, pyrrolidinyl, piperidinyl, piperidonyl, perhydroazepinyl, perhydroazocinyl, dihydropyrazolyl, dihydro- or tetrahydropyridinyl, azabicyclononyl, morpholinyl, perhydro-1,3-oxazinyl, 1,3-oxazolidinyl, 1,4piperazinyl, perhydro-1,4-diazepinyl, dihydro-, tetrahydro- or perhydroquinolyl- or -isoquinolyl, indolyl or dihydro- or perhydroindolyl,

as an antidote for improving the crop plant tolerance of herbicidally active sulphonyliso(thio)urea derivatives of the formula (II)

CE A 24 460

in which

R³ represents an optionally substituted radical from the series comprising alkyl, aralkyl, aryl and heteroaryl,

R⁴ represents a six-membered aromatic heterocyclic radical which is optionally substituted and/or optionally fused and which contains at least one nitrogen atom,

R⁵ represents an optionally substituted aliphatic, araliphatic, aromatic or heteroaromatic radical, X represents oxygen or sulphur and

M represents hydrogen or one equivalent of a metal, and of adducts of compounds of the formula (II) and strong acids.

- 2. Method of improving the crop plant tolerance of herbicidally active sulphonyliso(thio)urea derivatives of the formula (II) according to Claim 1, characterized in that amides of the formula (I) according to Claim 1 are allowed to act on the crop plants and/or their environment together with the sulphonyliso(thio)urea derivatives of the formula (II):
- 3. Agents for selectively combating weeds in crops of useful plants, characterized in that they contain an active compound combination consisting of
- an amide of the formula (I) according to Claim 1 and
- at least one herbicidal sulphonyliso(thio)urea derivative of the formula (II) according to Claim 1.

4. Amides as claimed in claim 3 in which

R represents hydrogen, fluorine, chlorine or

bromine; or represents the radical $- co - N = \frac{R}{R^6}$

wherein

 $\langle \hat{j} \rangle$

R⁶ and R⁷ are identical or different and each represent hydrogen, or represent in each case straight-chain or branched alkyl, alkenyl, alkinyl or cyanoalkyl with in each case up to 8 carbon atoms; or furthermore

R represents straight-chain or branched alkyl which has 1 to 20 carbon atoms and is optionally monosubstituted or polysubstituted by identical or different substituents, possible substituents being: hydroxyl, halogen, in particular fluorine, chlorine, bromine or iodine, cyano, cyanato and thiocyanato; in each case straight-chain or branched alkoxy, alkylthio, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, halogenoalkoxy, halogeno-hydroxy-alkoxy, halogenoalkylcarbonyloxy and halogenoalkenylcarbonyloxy with in each case up to 6 carbon atoms and if appropriate up to 9 identical or different halogen atoms;

and also phenyl, phenoxy, phenylthio and thienyl, in each case optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising halogen, lower alkyl and/or lower alkoxy; and furthermore cycloalkyl with 3 to 7

carbon atoms and the radicals -N R^6 R^6 R^7 R^7

Le-A-24-460

$$1-0-CH_2-C-N$$
and $-SO_2-N$
 R^6
 R^7

wherein

5

10

15

20

25

30

 ${\sf R}^6$ and ${\sf R}^7$ in each case have the abovementioned meanings; or furthermore

R represents straight-chain or branched alkenyl which has 2 to 8 carbon atoms and is optionally monosubstituted or polysubstituted by identical or different substituents, possible substituents being: hydroxyl, halogen,

alkoxycarbonyl with up to 6 carbon atoms and phenyl and phenoxy, in each case optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising halogen,

lower alkyl and lower alkoxy; or furthermore R represents straight-chain or branched alkinyl with 2 to 8 carbon atoms; or furthermore R represents cycloalkyl, cycloalkenyl, bicycloalkyl, bicycloalkenyl or tricycloalkyl with in each case up to 12 carbon atoms and in each case optionally monosubstituted or polysubstituted by identical or different substituents, possible substituents being: straight-chain or branched alkyl with 1 to 4 carbon atoms, phenyl and the radical

-c-N R⁶

wherein

 ${\tt R}^6$ and ${\tt R}^7$ have the abovementioned meaning; or furthermore

R represents aryl which has 6 to 10 carbon atoms and is optionally monosubstituted or polysubstituted ted by identical or different substituents,

possible substituents being: halogen,

nitro,

carboxyl - also in the form of the carboxylate anion - in each case straight-chain or branched alkyl, alkoxy, halogenoalkyl, alkylcarbonyl, halogenoalkylcarbonyl and halogenoalkylcarbonylamino with in each case up to 4 carbon atoms and if appropriate up to 5 identical or different halogen atoms, in particular fluorine, chlorine or bromine,

and the radical -CO-N 77

wherein

10

15

20

 ${\tt R}^6$ and ${\tt R}^7$ have the abovementioned meaning, or furthermore

R represents furyl, thienyl, pyridyl or dithiolanyl, in each case optionally monosubstituted or polysubstituted by identical or different substituents, possible substituents being: halogen,

straight-chain or branched alkyl with up to 6 carbon atoms and the radical -CO-N

wherein

 ${\rm R}^6$ and ${\rm R}^7$ have the abovementioned meaning, or finally

R represents in each case straight-chain or branched alkoxy, alkenyloxy, alkinyloxy, alkoxy-carbonyl or phenoxy, in each case optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising phenyl and halogen,

R¹ and R², which are identical or different, independently of one another, represent hydrogen,

te A 24 460

- 152 -

. 30

formyl or chlorosulphonyl, or represent phenyl, phenoxy or phenylsulphonyl, in each case optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising halogen,

and lower alkyl, or furthermore represent straight-chain or branched alkyl
which has 1 to 12 carbon atoms and is optionally
monosubstituted or polysubstituted by identical
or different substituents, possible substituents
being: hydroxyl, mercapto, cyano and halogen,

and in each case straight-chain or branched alkoxy, alkoximino, alkylcarbonyl, alkylcarbonyl-oxy, alkoxycarbonyl, alkoxycarbonyloxy, alkylthio-carbonyloxy, halogenoalkylcarbonyloxy and alkyl-sulphonyloxy with in each case up to 6 carbon atoms and, where appropriate, up to 5 identical or different halogen atoms

carbonyloxy, dialkylaminocarbonyloxy, alkenylaminocarbonyloxy and dialkenylaminocarbonyloxy with in each case up to 6 carbon atoms in the individual straight-chain or branched alkyl or alkenyl parts; and furthermore cycloalkylaminocarbonyloxy with 3 to 7 carbon atoms in the cycloalkyl part, and phenylaminocarbonyloxy which is optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising halogen,

and lower alkyl, and furthermore cycloalkyl which has 3 to 7 carbon atoms and is optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising halogen,

and lower alkyl, phenyl which

Le_A_24..460

5

10

15

20

25

30

is optionally monosubstituted or polysubstituted by 'identical or different substituents from the group comprising nitro, halogen,

lower alkyl and dioxyalkylene, furyl, tetrahydrofuryl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, oxadiazolyl, pyridyl and pyrimidinyl, in each case optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising halogen,

and lower alkyl, and amino which is optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising in each case lower alkyl, halogenoalkylcarbonyl, halogenophenoxyalkylcarbonyl and halogenoalkylcarbonylaminoalkyl; or furthermore

R¹ and R² represent straight-chain or branched alkenyl, alkadienyl or alkinyl with in each case 3 to 8 carbon atoms and in each case optionally monosubstituted or polysubstituted by identical or different substituents, possible substituents being: halogen,

cyano and in each case straight-chain or branched alkoxy, alkylcarbonyl and alkoxy-carbonyl with in each case up to 6 carbon atoms; or furthermore

R¹ and R² represent cycloalkyl or cycloalkenyl with in each case 3 to 8 carbon atoms and in each case optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising halogen,

and lower alkyl; or furthermore represent piperidyl, pyridyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, thiadiazolyl, fluorenyl, phthalimidoyl or dioxanyl, in

Le A 24 460

10

15

20

25

30

each case optionally monosubstituted or polysubstituted by identical or different substituents and/or benzo-fused, possible substituents being: halogen,

cyano and in each case straight-chain or branched alkyl and alkanediyl with in each case 1 to 4 carbon atoms; or furthermore R¹ and R² represent in each case straight-chain or branched alkoxy, alkylthio, alkylcarbonyl, alkoxycarbonyl, halogenoalkylcarbonyl or halogenoalkoxycarbonyl with in each case up to 6 carbon atoms and, where appropriate, up to 5 identical or different halogen atoms;

or furthermore

R¹ and R² represent amino or alkylideneimino which is optionally monosubstituted or polysubstituted by identical or different substituents, possible substituents being: in each case straight-chain or branched alkyl, alkenyl, alkinyl, alkyl-carbonyl and halogenoalkylcarbonyl with in each case up to 8 carbon atoms and, where appropriate, up to 5 identical or different halogen atoms;

R¹ and R², together with the nitrogen atom to which they are bonded, represent alkylideneamino, pyrrolidinyl, piperidinyl, piperidonyl, perhydro-azepinyl, perhydroazocinyl, dihydropyrazolyl, dihydro- or tetrahydropyridyl, azabicyclononyl, morpholinyl, perhydro-1,3-oxazinyl, 1,3-oxazolidinyl, 1,4-piperazinyl, perhydro-1,4-diazepinyl, dihydro-, tetrahydro- or perhydroquinolyl or -isoquinolyl, indolyl or dihydro- or perhydroindolyl, in each case optionally monosubstituted or polysubstituted by identical or different substituents, possible substituents being: hydroxyl, halogen

cyano and formyl; and in each case straight-chain or branched, where appropriate divalent alkyl, alkanediyl, alkoxy, dioxyalkylene, alkylcarbonyl, alkoxycarbonyl and halogenoalkylcarbonyl with in each case up to 8 carbon atoms, in each case straight-chain or branched alkylamino and dialkylamino with in each case up to 4 carbon atoms in the individual alkyl parts, phenyl, naphthyl, pyridyl and piperidinyl, in each case optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising halogen,

nitro and in each case lower alkyl, halogenoalkyl, alkoxy, alkylcarbonyl or alkoxy-carbonyl, and straight-chain or branched cyclo-propylalkyl, cyclohexylalkyl, piperidinylalkyl, phenylalkyl and phenylalkenyl with up to 4 carbon atoms in the particular alkyl or alkenyl parts and in each case optionally monosubstituted or polysubstituted by identical or different substituents from the group comprising halogen,

. lower alkyl and

halogenoalkylcarbonyl.

5. Amides as claimed in claim 3 in which

R represents hydrogen or chlorine; or furthermore

R represents the radical -CO-N $\begin{array}{c} R \\ \\ \\ \\ R \end{array}$

wherein

10

15

20

R⁶ and R⁷ are identical or different and independently of one another each represent hydrogen, methyl, ethyl, allyl, propargyl, but-1-in-3-yl, 3-methylbut-1-in-3-yl or 2-cyanoprop-2-yl; or furthermore

R represents straight-chain or branched alkyl with up to 15 carbon atoms; or furthermore
R represents straight-chain or branched halogenoalkyl with 1 to 6 carbon atoms and 1 to 9 identical or different halogen atoms, or furthermore

R represents straight-chain or branched alkyl which has 1 to 6 carbon atoms and is mono-, di- or trisubstituted by identical or different substituents, possible substituents being: hydroxyl, fluorine, chlorine, bromine, cyano, cyanato, thiocyanato, methoxy, ethoxy, methylthio, ethylthio, acetyl, propionyl, acetoxy, propionyloxy, methoxycarbonyl, ethoxycarbonyl, 1,1,3,3-tetrachloro-2hydroxyprop-2-ylóxy, 1,1,1,3,3-pentachloro-2hydroxyprop-2-yloxy, chloroacetyl, dichloroacetyl, · chloroacetoxy, dichloroacetoxy, pentachlorobutadien-1-ylcarbonyloxy and phenyl, phenoxy, phenylthio and thienyl, in each case optionally mono-, di- or trisubstituted by identical or different substituents from the group comprising chlorine, methyl and methoxy; and furthermore cyclopropyl, cyclopentyl and cyclohexyl; and the radicals

$$-N = \frac{R^6}{R^7} - CO - \frac{R^6}{R^7} - O - CH_2 - CO - \frac{R^6}{R^7}$$
 and $-SO_2 - N = \frac{R^6}{R^7}$

wherein

10

15

20

25

30

e 377

R⁶ and R⁷ are identical or different and in each case independently of one another represent hydrogen, methyl, ethyl, allyl, propargyl, but-1-in-3-yl, 3-methyl-but-1-in-3-yl or 2-cyanoprop-2-yl; or furthermore

1e 4 24 460

R represents straight-chain or branched alkenyl which has 2 to 5 carbon atoms and is mono-, dior trisubstituted by identical or different substituents, possible substituents being: hydroxyl, fluorine, chlorine, bromine, methoxycarbonyl, ethoxycarbonyl and phenyl and phenoxy, in each case optionally mono-, di- or trisubstituted by identical or different substituents from the group comprising fluorine, chlorine, methyl and methoxy; or furthermore

10 · or fu

R represents straight-chain or branched alkinyl with 2 to 5 carbon atoms; or furthermore R represents cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclohexenyl, bicycloheptenyl, bicycloheptenyl, bicyclooctyl, bicyclononyl or tricyclodecyl, in each case optionally mono-, di-, tri-, tetra- or pentasubstituted by identical or different substituents, possible substituents being: methyl, ethyl, phenyl

and the radical -CO-N $\begin{array}{c}
R^6 \\
\hline
R^7
\end{array}$

20 wherein

15

R⁶ and R⁷ are identical or different and in each case independently of one another represent hydrogen, methyl, ethyl, allyl, propargyl, but-1-in-3-yl, 3-methylbut-1-in-3-yl or 2-cyanoprop-2-yl, or furthermore

yl, or f_aurthermore

R represents phenyl which is optionally mono-, dior trisubstituted by identical or different substituents, possible substituents being: fluorine,
chlorine, bromine, iodine, nitro, methyl, ethyl,
methoxy, ethoxy, carboxyl - also in the form of
the carboxylate anion -, trifluoromethyl, chloroacetamido, dichloroacetamido and the radical

30

25

wherein

5

10

15

20

25

30

R⁶ and R⁷ are identical or different and in each case independently of one another represent hydrogen, methyl, ethyl, allyl, propargyl, but-1-in-3-yl, 3-methylbut-1-in-3-yl or 2-cyanoprop-2-yl; or furthermore

R represents furyl, thienyl, pyridyl or dithiolanyl, in each case optionally mono-, di- or trisubstituted by identical or different substituents, possible substituents being: chlorine, methyl,

ethyl and the radical -CO-N $\begin{array}{c}
R^{6} \\
\hline
 R^{7}
\end{array}$

wherein

R⁶ and R⁷ are identical or different and in each case independently of one another represent hydrogen, methyl, ethyl, allyl, propargyl, but-1-in-3-yl, 3-methylbut-1-in-3-yl or 2-cyanoprop-2-yl; or finally

R represents methoxy, ethoxy, allyloxy, propargyloxy, butinyloxy, methoxycarbonyl, ethoxycarbonyl or phenyl, in each case optionally mono-, di- or trisubstituted by identical or different substituents from the group comprising fluorine, chlorine, bromine and phenyl, and

R¹ and R², which are identical or different, independently of one another represent hydrogen, formyl or chlorosulphonyl, or represent phenyl, phenoxy or phenylsulphonyl, in each case optionally mono-, di- or trisubstituted by identical or different substituents from the group comprising fluorine, chlorine, bromine or methyl; or furthermore represent straight-chain or branched alkyl

Le-A-24 460-

which has 1 to 8 carbon atoms and is optionally mono-, di- or trisubstituted by identical or different substituents, possible substituents being: hydroxyl, mercapto, cyano, fluorine, chlorine, bromine, methoxy, ethoxy, propoxy, butoxy, methoximino, ethoximino, acetyl, propionyl, acetoxy, propionyloxy, methoxycarbonyl, ethoxycarbonyl, methoxycarbonyloxy, ethoxycarbonyloxy, methylthiocarbonyloxy, ethylthiocarbonyloxy, chloroacetoxy, dichloroacetoxy, methylsulphonyloxy, ethylsulphonyloxy, methylaminocarbonyloxy, dimethylaminocarbonyloxy, ethylaminocarbonyloxy, diethylaminocarbonyloxy, propylaminocarbonyloxy, butylaminocarbonyloxy, allylaminocarbonyloxy, diallylaminocarbonyloxy and cyclohexylaminocarbonyloxy, and phenylaminocarbonyloxy which is optionally mono-, di- or trisubstituted by identical or different substituents from the group comprising chlorine and methyl; and furthermore cyclopropyl, cyclopentyl, cyclohexyl and cycloheptyl, in each case optionally mono-, di-, tri-, tetra- or pentasubstituted by identical or different substituents . from the group comprising chlorine and methyl; and phenyl which is optionally mono-, di- or trisubstituted by identical or different substituents from the group comprising nitro, fluorine, chlorine, bromine, methyl and dioxymethylene, and furyl, tetrahydrofuryl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, oxadiazolyl, pyridyl and pyrimidinyl, in each case optionally mono- or disubstituted by identical or different substituents from the group comprising methyl, ethyl, propyl and chlorine; and amino which is optionally monosubstituted or disubstituted by identical or different substituents from the group comprising methyl, ethyl, chloroacetyl, dichloro-

Le A 24 460

5

10

15

20

2.2

30

acetyl, chlorophenoxyacetyl, dichloroacetamidomethyl and dichloroacetamidoethyl; or furthermore R¹ and R² represent straight-chain or branched alkenyl, alkadienyl or alkinyl with in each case 3 to 5 carbon atoms and in each case optionally monosubstituted or disubstituted by identical or different substituents from the group comprising chlorine, methoxy, ethoxy, acetyl, methoxycarbonyl, ethoxycarbonyl or cyano; or furthermore R^1 and R^2 represent cyclopropyl, cyclopentyl, cyclohexyl, cyclohexenyl or cyclooctyl, in each case optionally mono-, di-, tri-, tetra- or pentasubstituted by identical or different substituents from the group comprising chlorine and methyl; or furthermore R¹ and R² represent piperidyl, pyridyl, thienyl, oxazolyl, isoxazolyl, thiadiazolyl, fluorenyl, phthalimidoyl or dioxanyl, in each case optionally mono-, di- or trisubstituted by identical or different substituents from the group comprising fluorine, chlorine, bromine, cyano, methyl, ethyl, propyl, propanediyl and butanediyl and/or benzo-fused; or furthermore R^{1} and R^{2} represent methoxy, ethoxy, propoxy, butoxy, methylthio, ethylthio, propylthio, butylthio, acetyl, chloroacetyl, dichloroacetyl, methoxycarbonyl, ethoxycarbonyl, chloroethoxycarbonyl or bromoethoxycarbonyl, and furthermore R¹ and R² represent amino or propylideneimino, optionally monosubstituted or disubstituted by identical or different substituents from the group comprising methyl, ethyl, allyl, propargyl, acetyl, chloroacetyl and dichloroacetyl; or R^{1} and R^{2} , together with the nitrogen atom to which they are bonded, represent methylideneimino, ethylideneimino, propylideneimino, pyrrolidinyl,

Le A 24 460

10

15

20

25

30

piperidinyl, piperidonyl, perhydroazepinyl, perhydroazocinyl, dihydropyrazolyl, dihydro- or tetrahydropyridyl, azabicyclononyl, morpholinyl, perhydro-1,3-oxazinyl, 1,3-oxazolidinyl, 1,4piperazinyl, perhydro-1,4-diazepinyl, dihydro-, tetrahydro- or perhydroquinolyl or -isoquinolyl, indolyl or dihydro- or perhydroindolyl, in each case optionally mono-, di-, tri-, tetra- or pentasubstituted by identical or different substituents, possible substituents being: hydroxyl, fluorine, chlorine, bromine, cyano, formyl, methyl, ethyl, propyl, butyl, ethanediyl, propanediyl, methoxy, ethoxy, propoxy, butoxy, dioxyethylene, dioxypropylene, dioxybutylene, acetyl, propionyl, chloroacetyl, dichloroacetyl, a-chloropropionyl, methoxycarbonyl, ethoxycarbonyl, methylamino, ethylamino, dimethylamino, diethylamino and phenyl, naphthyl or piperidinyl, in each case optionally mono-, di- or trisubstituted by identical or different substituents from the group comprising fluorine, chlorine, bromine, nitro, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, acetyl, propionyl, methoxycarbonyl and ethoxycarbonyl, and cyclopropylmethyl, cyclohexylmethyl, piperidinylethyl, piperidinylpropyl, benzyl, phenylethyl and phenylpropenyl, in each case optionally mono-, di- or trisubstituted by identical or different substituents from the group comprising chlorine, methyl,

5

10

15

20

25

. 13

- 162 -

chloroacetyl and dichloroacetyl.

- 6. Any new compound substantially as herein described and exemplified in any one of the examples in table 1.
- 7. Herbicidal sulphonyliso (thio) urea derivatives as claimed in claim 3 in which

wherein

 ${\rm R}^{\,8}$ and ${\rm R}^{\,9}$ are identical or different and represent hydrogen, halogen

25 cyano,

nitro or C₁-C₆-alkyl [which is optionally substituted by fluorine, chlorine, bromine, cyano, carboxyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkyl-amino-carbonyl, di-(C₁-C₄-alkyl)-amino-carbonyl, hydroxyl, C₁-C₄-alkoxy, formyloxy, C₁-C₄-alkyl-carbonyloxy, C₁-C₄-alkoxy-carbonyloxy, C₁-C₄-alkylamino-carbonyloxy, C₁-C₄-alkylthio, C₁-C₄-

30

 J_I

alkylsulphinyl, C1-C4-alkylsulphonyl, di-(C1-C4-alkyl)-aminosulphonyl, C3-C6-cycloalkyl or phenyl], or represent C2-C6-alkenyl [which is optionally substituted by fluorine, chlorine, bromine, cyano, C1-C4-alkoxycarbonyl, carboxyl or phenyl], or represent C2-C6-alkinyl [which is optionally substituted by fluorine, chlorine, bromine, cyano, C₁-C₄-alkoxy-carbonyl, carboxyl or phenyl], or represent C1-C4-alkoxy [which is optionally substituted by fluorine, chlorine, bromine, cyano, carboxyl, C1-C4-alkoxyimino-...C.1-C4-alkyl, C1-C4-alkoxy-carbonyl, C1-C4alkoxy, C1-C4-alkylthio, C1-C4-alkylsulphinyl or C1-C4-alkylsulphonyl], or represent C1-C4alkylthio [which is optionally substituted by fluorine, chlorine, bromine, cyano, carboxyl, C1-C4-alkoxycarbonyl, C1-C4-alkylthio, °C1-C4-alkylsulphinyl or C1-C4-alkylsulphonyl], or represent C3-C6-alkenyloxy [which is optionally substituted by fluorine, chlorine, bromine, cyano or C1-C4-alkoxy-carbonyl], or represent C2-C6-alkenylthio [which is optionally substituted by fluorine, chlorine, bromine, cyano, nitro, C1-C3-alkylthio or C1-C4-alkoxycarbonyl], C3-C6-alkinyloxy or C3-C6-alkinylthio, or represent the radical $-S(0)_{p}-R^{10}$

wherein

10

15

20

25

30

35

p represents the number 1 or 2 and R¹⁰ represents C₁-C₄-alkyl [which is optionally substituted by fluorine, chlorine, bromine, cyano or C₁-C₄-alkoxy-carbonyl], C₃-C₆-alkenyl, C₃-C₆-alkinyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy-amino, C₁-C₄-alkoxy-C₁-C₄-alkylamino, C₁-C₄-alkylamino or di(C₁-C₄-alkyl)-amino, or furthermore R⁸ and R⁹ represent phenyl or phenoxy, or represent

Le-A-24-460-

 $C_1-C_4-alkylcarbonylamino$, $C_1-C_4-alkoxycarbonyl-amino$, $C_1-C_4-alkylamino-carbonylamino$, di- $(C_1-C_4-alkyl)-amino-carbonylamino$, or represent the radical $-CO-R^{11}$,

wherein

10

15

20

25

30

35

R¹¹ represents C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-alkoxyimino-C₁-C₄-alkoxy, C₃-C₆-cycloalkoxy, C₃-C₆-alkenyloxy, C₁-C₄-alkyl-thio, C₁-C₄-alkylamino, C₁-C₄-alkoxyamino, C₁-C₄-alkoxy-C₁-C₄-alkyl-amino or di-(C₁-C₄-alkyl)amino [which are optionally substituted by fluorine and/or chlorine], or furthermore R⁸ and R⁹ represent C₁-C₄-alkylsulphonyl-C₁-C₄-alkylsulphonyloxy, di-(C₁-C₄-alkyl)-aminosulphonylamino or represent the radical -CH=N-R¹²,

wherein

represents C₁-C₆-alkyl which is optionally substituted by fluorine, chlorine, cyano, carboxyl, C1-C4-alkoxycarbonyl, C1-C4-alkylthio, C1-C4alkylsulphinyl or C1-C4-alkylsulphonyl, or represents benzyl which is optionally substituted by fluorine or chlorine, or represents Cz-C₆alkenyl or Cz-C6-alkinyl which is optionally substituted by fluorine or chlorine, or represents phenyl which is optionally substituted by fluorine, chlorine, bromine, C1-C4-alkyl, C1-C4-alkoxy, trifluoromethyl, trifluoromethoxy or trifluoromethylthio, or represents C1-C6-alkoxy, C3-C6alkenoxy, Cz-C6-alkinoxy or benzyloxy which is optionally substituted by fluorine and/or chlorine, or represents amino, C1-C4-alkylamino, di-(C1-C4-alkyl)amino, phenylamino, C1-C4-alkylcarbonyl-amino, C₁-C₄-alkoxy-carbonylamino, or C1-C4-alkyl-sulphonylamino, or represents phenylsulphonylamino which is optionally substitu-

ted by fluorine, chlorine, bromine or methyl; and wherein, furthermore,

$${\sf R}^{\bf 3}$$
 represents the radical

wherein

10

19:2

 R^{13} represents hydrogen or C_1 - C_4 -alkyl and R¹⁴ and R¹⁵ are identical or different and represent hydrogen, fluorine, chlorine, bromine, nitro cyano, C1-C2-alkyl [which is optionally substituted by fluorine and/or chlorine], C1-C4alkoxy [which is optionally substituted by fluorine and/or chlorine], carboxyl, C1-C4-alkoxycarbonyl, C1-C4-alkylsulphonyl or di-(C1-C4alkyl)-aminosulphonyl;

or wherein, furthermore,

15

20

$$^{\mathsf{R}^{\mathsf{3}}}$$
 represents the radical $^{\mathsf{R}^{\mathsf{16}}}$

wherein

R¹⁶ and R¹⁷ are identical or different and represent hydrogen, fluorine, chlorine, bromine, nitro, cyano, C1-C4-alkyl [which is optionally substituted by fluorine and/or chlorine] or C1-C4alkoxy [which is optionally substituted by fluorine and/or chlorine];

or wherein, furthermore,

. R^3 represents the radical

25 wherein

 ${\tt R}^{18}$ and ${\tt R}^{19}$ are identical or different and represent hydrogen, fluorine, chlorine, bromine, nitro, cyano, C1-C4-alkyl [which is optionally sub-

stituted by fluorine and/or chlorine] or C1-C4-alkoxy [which is optionally substituted by fluorine and/or chlorine], or represent C1-C4-alkylthio, C1-C4-alkylsulphinyl or C1-C4-alkylsulphonyl [which are optionally substituted by fluorine and/or chlorine], or represent di-(C1-C4-alkyl)-amino-sulphonyl or C1-C4-alkoxy-carbonyl;

or wherein, furthermore,

$$R^3$$
 represents the radical R^{20} R^{21}

10 wherein

15

20

25

30

R²⁰ and R²¹ are identical or different and represent hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl [which is optionally substituted by fluorine and/or bromine] or C₁-C₄-alkoxy [which is optionally substituted by fluorine and/or chlorine], or represent C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl or C₁-C₄-alkylsulphonyl [which are optionally substituted by fluorine and/or chlorine], or represent di-(C₁-C₄-alkyl)-aminosulphonyl;

or wherein, furthermore,

wherein

R²² and R²³ are identical or different and represent hydrogen, fluorine, chlorine, bromine, cyano, nitro, C₁-C₄-alkyl [which is optionally substituted by fluorine and/or chlorine], C₁-C₄-alkoxy [which is optionally substituted by fluorine and/or chlorine], C₁-C₄-alkylthio, C₁-C₄-alkyl-sulphinyl or C₁-C₄-alkylsulphonyl [which is option-

ally substituted by fluorine and/or chlorine], di- (C_1 - C_4 -alkyl)-amino-sulphonyl or C_1 - C_4 -alkoxy-carbonyl and

Z represents oxygen, sulphur or the grouping $N-Z^{1}$,

5 wherein

10

20

25

30

Z¹ represents hydrogen, C₁-C₄-alkyl [which is optionally substituted by fluorine, chlorine, bromine or cyano], C₃-C₆-cycloalkyl, benzyl, phenyl [which is optionally substituted by fluorine, chlorine, bromine or nitro], C₁-C₄-alkyl-carbonyl, C₁-C₄-alkoxy-carbonyl or di-(C₁-C₄-alkyl)-amino-carbonyl;

or wherein, furthermore,

R³ represents the radical

15 wherein

 $^{1}R^{24}$ represents hydrogen, $^{1}C_{5}$ -alkyl or halogen, 25 represents hydrogen or $^{1}C_{5}$ -alkyl and 26 , represents sulphur or the grouping $^{1}R^{26}$,

wherein

 $m R^{26}$ represents hydrogen or $\rm C_{1}\text{--}C_{5}\text{--}alkyl}$; and wherein, furthermore,

$$R^4$$
 represents the radical $\stackrel{\mathbb{R}^{27}}{\underset{\mathbb{R}^{29}}{}}$

wherein

 R^{27} and R^{29} are identical or different and represent hydrogen, fluorine, chlorine, bromine, C_1 – C_4 –alkyl [which is optionally substituted by fluorine and/or chlorine] or C_1 – C_4 –alkoxy [which is optionally substituted by fluorine and/or chlorine], with the proviso that at least one of the radicals R^{27} and R^{29} is other than hydrogen, and

Le-A 24-460-

R²⁸ represents hydrogen, fluorine, chlorine, bromine, cyano or C₁-C₄-alkyl [which is optionally substituted by fluorine and/or chlorine]; or wherein, furthermore,

wherein

10

20

25

R³⁰ and R³¹ are identical or different and represent hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl [which is optionally substituted by fluorine and/or chlorine], C₁-C₄-alkoxy [which is optionally substituted by fluorine and/or chlorine], C₁-C₄-alkylamino or di-(C₁-C₄-alkyl)-amino, with the proviso that at least one of the radicals R³⁰ and R³¹ is other than hydrogen;

15 or wherein, furthermore,

R⁴ represents the radical
$$\stackrel{\mathcal{N}}{\longrightarrow}$$
 $\stackrel{\mathbb{R}^{32}}{\longrightarrow}$ \mathbb{R}^{33}

wherein

R³² represents hydrogen, fluorine, chlorine, bromine, hydroxyl or C₁-C₄-alkyl [which is optionally substituted by fluorine and/or chlorine] or C₁-C₄-alkoxy [which is optionally substituted by fluorine and/or chlorine], R³³ represents hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl [which is optionally substituted by fluorine and/or chlorine], cyano, formyl, C₁-C₄-alkyl-carbonyl or C₁-C₄-alkoxy-carbonyl and R³⁴ represents hydrogen, fluorine, chlorine,

Le-A-24-460

bromine, hydroxyl, C_1-C_4 -alkyl [which is optionally substituted by fluorine and/or chlorine], C_1-C_4 -alkoxy [which is optionally substituted by fluorine and/or chlorine], amino, C_1-C_4 -alkyl-amino or di-(C_1-C_4 -alkyl)-amino, or R^{33} and R^{34} together represent C_3-C_4 -alkanediyl;

or wherein, furthermore,

$$R^4$$
 represents the radical $N \longrightarrow R^{35}$

10 wherein

15

25

30

 R^{35} and R^{36} are identical or different and represent fluorine, chlorine, bromine, hydroxyl, C_1 - C_4 -alkyl [which is optionally substituted by fluorine and/or chlorine], C_3 - C_5 -cycloalkyl, C_1 - C_4 -alkoxy [which is optionally substituted by fluorine and/or chlorine] or C_1 - C_4 -alkylthio, or represent C_1 - C_4 -alkyl-amino or di- $(C_1$ - C_4 -alkyl)-amino;

and wherein, furthermore,

20 R⁴ represents the radical $\stackrel{N-N}{\sim}_{R^{37}}$

wherein

 ${\rm R}^{37}$ and ${\rm R}^{38}$ are identical or different and represent hydrogen, methyl or methoxy;

and wherein, furthermore,

R⁵ represents C₁-C₁₂-alkyl [which is optionally substituted by fluorine, chlorine, cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₁-C₄-alkyl-carbonyl, C₁-C₄-alkoxy-carbonyl, C₁-C₄-alkylaminocarbonyl or di-(C₁-C₄-alkyl)-aminocarbonyl], or repres-

ents C3-C6-alkenyl, C3-C6-alkinyl, C3-C6-cycloalkyl, C3-C6-cycloalkyl-C1-C2-alkyl or phenyl-C1-C2-alkyl [which is optionally substituted in the phenyl part by fluorine, chlorine, nitro, cyano, C1-C4-alkyl, C1-C4-alkoxy or C1-C4-alkoxy-carbonyl],

or wherein, furthermore,

10

15

20

25

30

35

R⁾ represents a phenyl radical which is optionally substituted by one or more radicals from the series comprising halogen [such as, in particular, fluorine, chlorine, bromine and iodine], cyano, nitro, hydroxy, carboxy, C1-C6-alkyl [which is optionally substituted by fluorine, chlorine, bromine, nitro, cyano, hydroxyl, carboxyl, C₁-C₄alkoxy-carbonyl, C1-C4-alkoxy, C1-C4-alkylthio or phenyl], Cz-C6-cycloalkyl, C1-C4-alkoxy Ewhich is optionally substituted by fluorine, chlorine, bromine, cyano, carboxy, C1-C4-alkoxy, C1-C4-alkylthio or C1-C4-alkoxy-carbonyl], C1-C4-alkylthio [which is optionally substituted by fluorine, chlorine, bromine, cyano, carboxyl, or C1-C4-alkoxy-carbonyl], amino, C1-C4-alkylamino and di-(C1-C4-alkyl)-amino [which are optionally substituted by fluorine, chlorine, bromine, cyano, carboxyl, C1-C4-alkoxy or C1-C4alkoxy-carbonyl], C1-C4-alkyl-carbonylamino, C1-C4-alkoxy-carbonylamino, (di)-C1-C4-alkylamino-carbonyl-amino, formyl, C1-C4-alkylcarbonyl, benzoyl, C1-C4-alkoxy-carbonyl, phenoxy-carbonyl, benzyloxycarbonyl, phenyl [which is optionally substituted by fluorine, chlorine, bromine, cyano, nitro, hydroxyl or methyll, phenoxy, phenylthio, phenylsulphonyl, phenylamino and phenylazo [which are optionally substituted by fluorine, chlorine, bromine, cyano, nitro, methyl and/or trifluoromethyl], pyridoxy and pyrimidoxy

[which are optionally substituted by fluorine, chlorine, bromine, cyano, nitro, methyl and/or trifluoromethyl], C1-C4-alkyl-carbonyloxy, C1-C4-alkyl-amino-carbonyloxy and di-(C1-C4-alkyl)-amino-carbonyl-oxy, or which is optionally fused by an alkylene chain [which is optionally branched and/or interrupted by one or more oxygen atoms] or a benzo radical [which is optionally substituted by fluorine, chlorine, bromine, cyano, nitro, methyl and/or trifluoromethyl];

or wherein, furthermore,

5

10

15

R⁵ represents a five- or six-membered heteroaromatic ring which contains 1 to 3 nitrogen atoms and/or an oxygen or sulphur atom and which is optionally benzo-fused and/or substituted by fluorine, chlorine, bromine, cyano, nitro, C₁-C₃alkyl or C₁-C₃-alkoxy [the latter being optionally substituted by fluorine and/or chlorine];

20 and wherein, furthermore,

X represents oxygen or sulphur and M represents hydrogen or one equivalent of sodium, potassium, magnesium, calcium, aluminium, manganese, iron, cobalt or nickel.

8. Herbicidal sulphonyliso (thio) urea derivatives as claimed in claim 3 in which

$$R^3$$
 represents the radical R^8

whereir

5

10

 $\left(\frac{1}{2} \right)^{2} \times$

R⁸ represents fluorine, chlorine, bromine, methyl, trifluoromethyl, methoxy, difluoromethoxy, trifluoromethyl, methoxy, difluoromethoxy, trifluoromethyl, difluoromethyl, thio, trifluoromethylthio, C1-C3-alkylsulphinyl, C1-C3-alkylsulphonyl, dimethylaminosulphonyl, diethylaminosulphonyl, N-methoxy-N-methylaminosulphonyl, phenoxy, C1-C3-alkoxy-carbonyl or C1-C3-alkyl-aminocarbonyl and R⁹ represents hydrogen;

and wherein, furthermore,

$$R^4$$
 represents the radical R^{32}

15 wherein

20

25

30

R³² represents hydrogen, fluorine, chlorine, bromine, hydroxyl, C₁-C₃-alkyl, C₁-C₃-alkoxy or difluoromethoxy, R³³ represents hydrogen, chlorine, bromine or methyl and R³⁴ represents C₁-C₃-alkyl, hydroxy, fluorine, chlorine, bromine or C₁-C₃-alkoxy;

and wherein, furthermore,

R⁵ represents C₁-C₈-alkyl [which is optionally substituted by fluorine, chlorine, cyano, C₁-C₂-alkoxy or C₁-C₂-alkoxy-carbonyl], or represents C₃-C₄-alkenyl, C₃-C₄-alkinyl or benzyl [which is optionally substituted in the phenyl part by fluorine, chlorine, nitro, cyano, methyl, methoxy or C₁-C₂-alkoxycarbonyl], or

R⁵ represents a phenyl radical, which is optionally substituted by one or two radicals from the series comprising fluorine, chlorine, bromine, iodine, cyano, nitro, hydroxyl, carboxyl, C1-C3-alkoxy-carbonyl, C1-C4-alkyl, trifluoromethyl, hydroxymethyl, methoxycarbonylmethyl, phenyl-C1-C3-alkyl, cyclohexyl, C1-C3-alkoxy, trifluoromethoxy, C1-C3-alkylthio, trifluoromethylthio, dimethylamino, amino, acetylamino, methylamino-carbonyl, formyl, acetyl, benzoyl, phenyl, hydroxyphenyl, phenoxy [which is optionally substituted by chlorine and/or trifluoromethyl], phenylamino, phenylazo and pyridoxy [which is optionally substituted by chlorine and/or trifluoromethyl], or which is optionally benzo-fused;

and wherein, furthermore,

X represents oxygen or sulphur and M represents hydrogen or one equivalent of sodium, potassium or calcium;

20 or wherein, furthermore,

(B) R^3 , R^5 , X and M have the meaning given above under (A) and

wherein

10

15

R³⁵ represents fluorine, chlorine, cyclopropyl, C₁-C₂-alkyl, C₁-C₂-alkoxy or C₁-C₂-alkyl-thio and R³⁶ represents fluorine, chlorine, cyclopropyl, C₁-C₂-alkyl, C₁-C₂-alkoxy, C₁-C₂-alkyl-amino or di-(C₁-C₂-alkyl)-amino.

- 9. Any new compound substantially as herein described and exemplified in any one of the examples in table 2.
- 10. Method of selectively combating weeds in crops of useful plants, characterized in that an active compound combination according to any one of Claims 3 to 9 is allowed to act on the weeds or their environment.
- 11. Use of an active compound combination according to any one of Claims 3 to 9 for selectively combating weeds in crops of useful plants.
- 12. Process for the preparation of agents for selectively combating weeds in crops of useful plants, characterized in that active compound combinations according to any one of Claims 3 to 9 are mixed with extenders and/or surface-active agents.

JOHN & KERNICK for the Applicants

1987 -05- 27

THIS PAGE BLANK (USPTO)