Optimization Techniques Section 1

M. Fatih Amasyalı

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEPT

What is optimization?

(mathematical) optimization problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq b_i, \quad i = 1, \dots, m \end{array}$$

- $x = (x_1, \dots, x_n)$: optimization variables
- f₀: Rⁿ → R: objective function
- $f_i: \mathbb{R}^n \to \mathbb{R}, i = 1, \dots, m$: constraint functions

optimal solution x^* has smallest value of f_0 among all vectors that satisfy the constraints

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Note:

Optimization example (Constraint Optimization)

- Find the largest possible rectangular area you can enclose, assuming you have L meters of fencing.
- $f(x)=x^*((L/2)-x)$

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEPT

Optimization examples

portfolio optimization

- · variables: amounts invested in different assets
- · constraints: budget, max./min. investment per asset, minimum return
- · objective: overall risk or return variance

data fitting

- · variables: model parameters
- · constraints: prior information, parameter limits
- · objective: measure of misfit or prediction error

Portfolio Optimization

Mehmet Fatih AMASYALL Ontimization Techniques Lecture Notes

Optimization Techniques

- Derivative Techniques
 - Gradient descent
 - Newton Raphson
 - -LM
 - BFGS
- Non Derivative Techniques
 - Hill climbing
 - Genetic algorithms
 - Simulated annealing

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEP

Linear, nonlinear, convex functions

• f is a function Rⁿ→R

For every $x1,x2 \in R^n$ (x1, x2 are n dimensional points)

• f is linear if

```
f(x1+x2)=f(x1)+f(x2) and f(r*x1)=r*f(x1)
```

- f(x)=2*x is linear and affine.
- f(x)=2*x+3 is affine but not linear.
- A linear function fixes the origin, whereas an affine function need not do so. An affine function is the composition of a linear function with a translation.
- f(x)=3 is constant, but not linear.

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Linear, nonlinear, convex functions

• f is convex if

 $\lambda * f(x1) + \beta * f(x2) \ge f(\lambda * x1 + \beta * x2)$. where $\lambda + \beta = 1$, $\lambda \ge 0$, $\beta \ge 0$

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEF

Linear, nonlinear, convex functions

- f(x1)=3*x1+3
- f(x1,x2)=a*x1+b*x2+c
- f(x1,x2)=x2^2+x1^2+3*x1
- $f(x)=\sin(x)$ is convex when $x \in [?,?]$
- Concave?

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

YILDIZ TECHNICAL LINIVERSITY COMPLITER ENGINEET

How to find minimum point? Commonsense

- Use derivative
- Go to the negative direction of derivative
- But, step size?

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEPT

General Algorithm

- initial guess
- While (improvement is significant) and (maximum number of iterations is not exceeded)
 - improve the result

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Note

Gradient Descent

- Using only derivative sign
- · Using also magnitude of the derivative
- Effect of the step size
- Effect of the starting point
- Local minimum problem

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

```
% The gradient descent algorithm with
                                          i=1;
constant stepsize
                                           while abs(x_new - x_old) > precision &&
                                           max iter>=i
% f(x)=x^2, with derivative f'(x)=2x
                                             Xs(i)=x_new;
                                             Ys(i)=x_new^2;
clear all;
                                             hold on;
close all;
                                             plot(Xs(i),Ys(i),'r*');
                                             text(Xs(i),Ys(i),int2str(i));
% plot objective function
x=-5:0.01:5;
                                             x_old = x_new;
y=zeros(1,length(x));
                                             df = 2 * x_old;
                                             x_new = x_old - eps * sign(df); % gradient sign
for i=1:length(x)
 y(i)=x(i)^2;
                                             i=i+1;
end
                                           end
plot(x,y);
                                           figure;
                                           plot(Xs(1:i-1));
                                          xlabel('iteration');
x_old = 0;
x new = -4.9;
                                          ylabel('x values');
% The algorithm starts at x=-4.9
eps = 0.05; % step size
precision = 0.00001; % stopping condition1
max iter=200; % stopping condition2
                                                        gradient_desc_1.m
Xs=zeros(1,max iter);
Ys=zeros(1,max_iter);
```


Step size=0.01

- It reaches the maximum iteration number
- It does not reached to 0.
- It selects -2.91 as the minimum point.
- It will zig-zag.

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEPT.

Gradient Descent

- Using also the magnitude of the derivative
- x_new = x_old eps * df;
- instead of x_new = x_old eps * sign(df);
- Can we reduce the required number of iterations?

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

gradient_desc_2.m • Step size=0.05 • Max_iter=200 • The number of iteration is 120. • It does not zig-zag. • It selects 0±10⁻⁵ the point f is minimum.

gradient_desc_2.m

- Step size=0.01
- Max_iter=200
- It reaches the maximum iteration number.
- It does not zig-zag.
- It selects 0±10⁻² as the point f is minimum.
- It requires the more iteration.

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEP

gradient_desc_2.m

- Step size=0.7
- Max_iter=200
- The number of iteration is 16.
- It does not zig-zag.
- It selects 0±10⁻⁵ the point f is minimum.

gradient_desc_2.m • Step size=0.99 • Max_iter=200 • It reached the maximum iteration number. • It zig-zag, but zig-zag magnitude decreases. • It selects 0±10⁻¹ the point f is minimum. • It requires more iteration.

Starting point matters?

- $f(x)=f(x)=x^4-3x^3+2$ with derivative $f'(x)=4x^3-9x^2$
- It has two extreme points x=0, x=9/4
- gradient_desc_3.m

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

Gradient descent

- Static zig-zag (hopeless) vs. slow converge (with hope)
- Very Small step size → slow converge, plateau problem
- Very big step size → do not converge
- Big and small step sizes depend on the objective function.

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

YILDIZ TECHNICAL LINIVERSITY COMPLITER ENGINEET

References

- http://math.tutorvista.com/calculus/newton-raphson-method.html
- http://math.tutorvista.com/calculus/linear-approximation.html
- http://en.wikipedia.org/wiki/Newton's method
- http://en.wikipedia.org/wiki/Steepest_descent
- http://www.pitt.edu/~nak54/Unconstrained Optimization KN.pdf
- http://mathworld.wolfram.com/MatrixInverse.html
- $\underline{\text{http://lpsa.swarthmore.edu/BackGround/RevMat/MatrixReview.html}}$
- http://www.cut-the-knot.org/arithmetic/algebra/Determinant.shtml
- Matematik Dünyası, MD 2014-II, Determinantlar
- http://www.sharetechnote.com/html/EngMath Matrix Main.html
- Advanced Engineering Mathematics , Erwin Kreyszig, 10th Edition, John Wiley & Sons, 2011
- http://en.wikipedia.org/wiki/Finite difference http://ocw.usu.edu/Civil and Environmental Engineering/Numerical Methods in Civil Engineering/NonLinearEquationsMatlab.pdf
- http://www-math.mit.edu/~djk/calculus_beginners/chapter09/section02.html
- http://stanford.edu/class/ee364a/lectures/intro.pdf
- http://2020insight.com/chasing-returns-risk-getting-burned/
- http://jitkomut.lecturer.eng.chula.ac.th/matlab/eng_probs.html

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes