Case Study Rubric – Stock Price Prediction with Linear Regression

Due: See Canvas

Submission format: upload pdf and GitHub repository link to Canvas

General Description: Submit to Canvas your pdf and link to repository

Preparatory Assignments: None

Why am I doing this? The goal of this assignment is to demonstrate how to translate quantitative finance concepts into a functioning data science pipeline using Python, basic regression, and financial data. This project mimics how quant teams in a professional environment build and evaluate models before pursuing more advanced techniques or involving money.

What am I going to do? You will use your data science skills and conceptual understanding to submit a deliverable to end an independent case study. This will include documentation of your methodology, any references, and a reproducible script that others can follow. Below, you will find what the content of your deliverable should be:

- A 1-page PDF summarizing results including reasoning behind model performance
- A GitHub repository containing the code leading to the prediction graphs and evaluation metrics,

How will I know that I have succeeded? When you meet the requirements in the rubric below

- Section 1: Software and Platform
- Section 2: Project Structure Map
- Section 3: Reproduction Instructions

Spec Categories	Details
Formatting	Your Repository Must Include; README.md LICENSE.md SCRIPTS/ Scripts should be ordered and documented DATA/ CSV files or instructions to download data if too large. OUTPUT/ Prediction plots, R ² scores, tables, etc.

README.md LICENSE.md	 Section 1: Software and Platform. Section 2: Project Structure Map. Section 3: Reproduction Instructions. Use MIT License template provided by GitHub
SCRIPTS/	 Organize scripts in execution order. Scripts include header comments. Inline comments when necessary.
DATA/	 Files used for the project, preferably csv files. If data is too large, including a .txt file with a data explanation.
OUTPUT/	 Include all graphs, figures, and summary tables used. Use descriptive filenames.
Written Document	 Explain results. If results are unexpected or not able to be modeled well, explain why. Look into how to improve the model.
References	Citation should be in IEEE format at the end of your PDF write up only if not given in the materials.