UNIVERSITY DEPARTMENT OF MATHEMATICS

Tilka Manjhi Bhagalpur University, Bhagalpur

Assignment – III

PAPER - VI Due Date: 10–08-19 Session: 2017–19

- 1. Problems on singularity of complex functions
 - (a) Find the singularity and it's type of the following functions

i.
$$f(z) = \frac{z^2}{1 - \cos z}$$
 ii. $f(z) = \frac{z^2}{\sin(z)}$ iii. $f(z) = \frac{1}{e^{\frac{1}{z}} - 1}$

ii.
$$f(z) = \frac{z^2}{\sin(z)}$$

iii.
$$f(z) = \frac{1}{e^{\frac{1}{z}} - 1}$$

iv.
$$f(z) = \frac{\sin z^2}{z^2(z-2)}$$

v.
$$f(z) = \sin\left(\frac{1}{z}\right)$$

iv.
$$f(z) = \frac{\sin z^2}{z^2(z-2)}$$
 v. $f(z) = \sin\left(\frac{1}{z}\right)$ vi. $f(z) = \frac{1}{1-\cos\left(\frac{1}{z}\right)}$

- (b) Show that the singularity of $\sin(1/z)$ and $e^{1/z}$ is non-isolated and essential.
- 2. Find the radius convergence of following power series

i.
$$\sum \frac{n!}{n^n} z^n$$

ii.
$$\sum n^n z^n$$

iii.
$$\sum \frac{(n!)^3}{3n!} z^n$$

iv.
$$\sum (\log n)^2 z^n$$

v.
$$\sum [2 + (-1)^n]^n z^n$$

vi.
$$\sum z^{n!}$$

- 3. Question on Taylor and Laurent series
 - (a) Find the Maclaurin series expansion of the function

i.
$$f(z) = \frac{z}{z^4 + 9}$$

ii.
$$f(z) = z^2 e^{3z}$$

iii.
$$f(z) = \sin z^2$$

- (b) Find the Taylor's series expansion of $\frac{1}{1-z}$ around the point i.
- (c) Find the Laurent series for the function $\frac{z}{(z+1)(z-2)}$ in each of the following domains.

i.
$$|z| < 1$$

ii.
$$1 < |z| < 2$$

iii.
$$|z| > 2$$

- (d) Find the Laurent series expansion of $\frac{(z+1)}{z(z-4)^3}$ in the domain 0 < |z-4| < 4.
- (e) Find the Laurent series for the function $z^2 \cos\left(\frac{1}{3z}\right)$ in the domain |z| > 0.
- 4. Find the zeros and poles of the following functions with their order

i.
$$f(z) = \tan z$$

ii.
$$f(z) = \frac{1}{z(e^z - 1)}$$

iii.
$$f(z) = \frac{z+3}{z^2(z^2+4)}$$

iv.
$$f(z) = \frac{z - 1 - i}{z^2 - (4 + 3i)z + (1 + 5i)}$$

- 5. Problem of Argument Principle
 - (a) Solve the integration $\oint_{|z|=1} \frac{f'}{f} dz$, where f is the following

i.
$$f(z) = z^2$$

ii.
$$f(z) = \frac{z^3 + 2}{z}$$

ii.
$$f(z) = \frac{z^3 + 2}{z}$$
 iii. $f(z) = \frac{(2z - 1)^7}{z^3}$

(b) Solve the integration $\oint_{|z|=10} \frac{f'}{f} dz$, where f is the following

i.
$$f(z) = \cot z$$

ii.
$$f(z) = \frac{e^z}{1 + e^z}$$

iii.
$$f(z) = \frac{z^4}{1 - \cos z}$$

6. Problems on Rouches Theorem

- (a) Determine the roots of $z^7 4z^3 + z 1 = 0$ inside the circle |z| = 1.
- (b) Determine the number of zeros, counting multiplicities, of the polynomial $z^4 2z^3 + 9z^2 + z 1 = 0$ inside the circle |z|=2.
- (c) Determine the number of zeros, counting multiplicities, of the polynomial $z^4 2z^3 + 9z^2 + z 1 = 0$ inside the circle |z|=2.
- (d) If a > e, then show that the equation $az^n = e^z$ has n roots inside |z| = 1.

7. Application of contour integral in improper integral

(a) Solve the integration of type $\int_{-\infty}^{\infty} f(x)dx$, where f is the following

i.
$$f(x) = \frac{1}{(x^2 + 1)^2}$$

ii.
$$f(x) = \frac{1}{x^4 + 1}$$

i.
$$f(x) = \frac{1}{(x^2 + 1)^2}$$
 ii. $f(x) = \frac{1}{x^4 + 1}$ iii. $f(x) = \frac{x}{(x^2 + 1)(x^2 + 2x + 2)}$

(b) Solve the following integration

i.
$$\int_{-\infty}^{\infty} \frac{\sin 3x}{(x^2+1)^2} \, dx$$

ii.
$$\int_{-\infty}^{\infty} \frac{x \sin x}{(x^2 + 1)(x^2 + 4)} dx$$

i.
$$\int_{-\infty}^{\infty} \frac{\sin 3x}{(x^2+1)^2} dx$$
 ii. $\int_{-\infty}^{\infty} \frac{x \sin x}{(x^2+1)(x^2+4)} dx$ iii. $\int_{-\infty}^{\infty} \frac{x \sin ax}{x^4+4} dx$ $(a>0)$