Sistemas Inteligentes

Variable Elimination (Koller)

José Eduardo Ochoa Luna

Dr. Ciencias - Universidade de São Paulo

Maestría C.C. Universidad Católica San Pablo Sistemas Inteligentes

29 de noviembre 2018

Distributions

Joint Distribution

- Intelligence (I) ← 2
 i⁰ (low), i¹ (high),
- Difficulty (D) \(\subseteq 2 \)

 d⁰ (easy), d¹ (hard)
- Grade (G) ← 3
 g¹(A), g²(B), g³(C)

ďo	g ¹	0.126
ď°	g²	0.168
d⁰	g³	0.126
d¹	9 ¹	0.009
d¹	g²	0.045
d¹	9 ³	0.126
d ^o	g^1	0.252
ďº	g²	0.0224
d ^o	g ³	0.0056
d¹	g^1	0.06
d¹	g²	0.036
d¹	g ³	0.024
	d ⁰ d ¹ d ¹ d ⁰ d ⁰ d ¹ d ¹ d ¹	d° g² d° g³ d¹ g¹ d¹ g² d¹ g³ d¹ g³ d° g¹ d¹ g³ d° g¹ d° g² d° g² d° g²

Prob.

Joint Distribution

P(1,0,6)

- Intelligence (I) ← 2
 i⁰ (low), i¹ (high),
- Grade (G) ← 3
 - g¹ (A), g² (B), g³ (C)

independent parang

- 4 -

			(40,6)
I	D	G	Prob.
io	ď°	g¹	0.126
io	ď°	g ²	0.168
io	d⁰	g ³	0.126
io	d¹	g¹	0.009
io	d¹	g²	0.045
io	d¹	g ³	0.126
i1	d⁰	g^1	0.252
į1	d⁰	g²	0.0224
i¹	d⁰	9 ³	0.0056
i¹	d¹	g ¹	0.06
i¹	d¹	g²	0.036
· i1	d¹	9 ³	0.024
			1

Conditioning

condition on g1

	_		
I	D	G	Prob.
io	d⁰	g ¹	0.126
i ⁰	_d ⁰	9 ²	0.168
io	d°	g ³	0.126
i ⁰	d¹	g ¹	0.009
- i0	d¹	g ²	0.045
-i ⁰	d¹	g ³	0.126
i1	d°	g ¹	0.252
-j1	d⁰	g ²	0.0224
~il	ďº	93	0.0056
i ¹	d¹	g ¹	0.06
-il	- dı	- g ²	0.036
· — †1	d¹	g ³	0.024

Conditioning: Reduction

I	D	G	Prob. 0.126	
i ⁰	d ^o	g¹		
i ⁰	d¹	g ¹	0.009	
i ¹	q ₀	g ¹	0.252	
i ¹	d¹	g¹	0.06	
•				

Conditioning: Renormalization

I	D	G	Prob.
io	d⁰	9 ¹	0.126
i ⁰	d¹	9 ¹	0.009
į1	d⁰	g ¹	0.252
į1	d¹	9 ¹	0.06

P(I, D, g1) un normalized measure

Conditioning: Renormalization

I	D	G	Prob.		I	D	Prob.
i ⁰	d⁰	g ¹	0.126/ ₀	42	io	d°	0.282
i ⁰	d¹	9 ¹	0.009		i ₀	d¹	0.02
i ¹	d⁰	g ¹	0.252		i ¹	d°	0.564
i ¹	d¹	g^1	0.06	[i ¹	d¹	0.134
	P(I, D	, g1) lized med	0.447		F	P(I, D g ¹))

Marginalization

P(1, 0)

Marginalize I

I	D	Prob.
i ⁰	d⁰	0.282
i ⁰	d¹	0.02
i ¹	d⁰	0.564
i ¹	d¹	0.134

D	Prob.
d⁰	0.846
d^1	0.154

Factors

Factors

• A factor $\phi(X_1,...,X_k)$ $\phi: Val(X_1,...,X_k) \rightarrow R$

• Scope =
$$\{X_1,...,X_k\}$$

Joint Distribution

I	D	G	Prob.
i ⁰	d⁰	g ¹	0.126
i ⁰	d⁰	g²	0.168
i ⁰	d ^o	g ³	0.126
i ⁰	d¹	g ¹	0.009
i ⁰	d¹	g²	0.045
i ⁰	d¹	g³	0.126
i ¹	d⁰	g ¹	0.252
i ¹	d⁰	g²	0.0224
j ¹	d⁰	g ³	0.0056
j ¹	d¹	9 ¹	0.06
i ¹	d¹	g²	0.036
i ¹	d¹	g² g³	0.024

P(I,D,G)

FII →

Unnormalized measure $P(I,D,g^1)$

 $P(I,D,g^1)$

I	D	G	Prob.
i ⁰	d⁰	g ¹	0.126
i ⁰	d¹	g^1	0.009
j ¹	d⁰	g ¹	0.252
j ¹	d¹	g¹	0.06

Unnormalized measure $P(I,D,g^1)$

 $P(I,D,g^1)$

I	D	G	Prob.
i ⁰	d ^o	g¹	0.126
i ⁰	d ¹	g ¹	0.009
j ¹	d ⁰	g¹	0.252
i ¹	d¹	g¹	0.06

Conditional Probability Distribution (CPD)

Conditional Probability Distribution (CPD)

		g^1	g²	g^3
	i ⁰ ,d ⁰	0.3	0.4	0.3
$P(G \mid I,D)$	i ⁰ ,d ¹	0.05	0.25	0.7
	i1,d0	0.9	0.08	0.02
	$\rightarrow i^1,d^1$	0.5	0.3	0.2
		A	8	<

Conditional Probability Distribution (CPD)

		g^1	g²	g^3
	i ⁰ ,d ⁰	0.3	0.4	0.3
P(G I,D)	i ⁰ ,d ¹	0.05	0.25	0.7
	i1,d0	0.9	0.08	0.02
contovi	i1,d1	0.5	0.3	0.2
CONTON		A	8	<

B

General factors

Α	В	ф
a ^o	b⁰	30
a ⁰	b¹	5
a^1	b⁰	1
a^1	b¹	10

General factors

Α	В	ф
α ⁰	bo	30
a ^o	b ¹	5
a ¹	bo	1
a^1	b ¹	10

Scope = { A, B}

Factor Product

Factor Product a^1 b^1 0.5.0.5 = 0.25 b^1 c² 0.5.0.7 = 0.35 a^1 a^1 b2 c^1 0.8-0.1 = 0.08 Ø (A, B) b2 c2 $0.8 \cdot 0.2 = 0.16$ a^1 92 (B, c) 0.5 al Ы a^2 b^1 c^1 $0.1 \cdot 0.5 = 0.05$ b² 0.8 0.5 a^2 b^1 c2 0.1.0.7 = 0.07 c2 a^2 Ь1 0.1 0.7 b² c^1 0.0.1 = 0a2 0.1 a2 PS 0 a^2 c2 0.0.2 = 0c² 0.3 0.2 a^3 b1 a^3 b^1 c^1 0.3.0.5 = 0.15 0.9 a^3 **b**¹ c2 0.3.0.7 = 0.21 a^3 P_S c^1 0.9.0.1 = 0.09 a^3 b2 c2 0.9.0.2 = 0.18 ·

Factor Marginalization

			1 uci	OI.	/ v \ \ \ \	ч	,,,,,	2112
	Scope	Α,	S.C	_		J		
α¹	b1	c1	0.25					
a^1	b1	c ²	0.35					
a^1	b ²	c1	0.08			,	4,0	
a^1	b²	c²	0.16		17	a ¹	c1	0.33
a ²	b1	c1	0.05		7	a ¹	c ²	0.51
α²	b1	c²	0.07		>	a²	c1	0.05
a ²	b ²	c1	0]	>	a ²	c ²	0.07
α²	b²	c²	0			a ³	c ¹	0.24
a^3	Ь ¹	c1	0.15	_	/	a ³	c ²	0.39
a^3	Ь¹	c²	0.21	7				
a^3	b ²	c1	0.09	Y/				
a^3	b ²	c ²	0.18					

Factor Marginalization

1

Factor Reduction

a ¹	b ¹	c1	0.25
a ¹	b1	c ²	0.35
a¹	b ²	C ¹	0.08
a ¹	b²	c²	0.16
a ²	b¹	C ¹	0.05
α²	b1	c²	0.07
a ²	b ²	C1	0
a²	b₂	cs	0
a ³	b1	c1	0.15
a^3	b¹	c²	0.21
a ³	p _S	c ¹	0.09
a ³	b ²	c ²	0.18

Factor Reduction

a ¹	b ¹	c ¹	0.25
α^1	b1	c ²	0.35
a¹	b ²	C ¹	0.08
a¹	b²	c²	0.16
a ²	b1	c ¹	0.05
α²	b1	c ²	0.07
a ²	b ²	C ¹	0
a²	b ²	c²	0
a ³	b1	C ¹	0.15
a^3	b1	c²	0.21
a^3	b²	c¹.	0.09
a^3	b ²	c ²	0.18
u	U		0.10

a^1	b1	c1	0.25
a ¹	b ²	c¹	0.08
α²	b1	c1	0.05
α²	P _S	c1	0
a^3	b1	c1	0.15
a ³	b ²	c1	0.09

A, B

Why Factors

 Fundamental building block for defining distributions in high-dimensional spaces

Why Factors

- Fundamental building block for defining distributions in high-dimensional spaces
- Set of basic operations for manipulating these probability distributions

Chain Rule for Bayesian Networks

 $\underbrace{P(D,I,G,S,L)}_{\text{Distribution defined as a product of factors!} = P(D) P(I) P(G|I,D) P(S|I) P(L|G)$

• Given a joint probability distribution over $X = X_1, X_2, \dots, X_n$

- Given a joint probability distribution over $X = X_1, X_2, \dots, X_n$
- Inference is P(Y|Z), where $Y \subset X$ are query variables, $Z \subset X$ are evidence variables

- Given a joint probability distribution over $X = X_1, X_2, \dots, X_n$
- Inference is P(Y|Z), where $Y \subset X$ are query variables, $Z \subset X$ are evidence variables
- The other variables H are called hidden variables

- Given a joint probability distribution over $X = X_1, X_2, \dots, X_n$
- Inference is P(Y|Z), where $Y \subset X$ are query variables, $Z \subset X$ are evidence variables
- The other variables H are called hidden variables
- $X = Y \cup Z \cup H$

 Inference is performed by summing out hidden variables from joint probability distribution

- Inference is performed by summing out hidden variables from joint probability distribution
- $P(Y|Z) = \frac{P(Y,Z)}{P(Z)}$

- Inference is performed by summing out hidden variables from joint probability distribution
- $P(Y|Z) = \frac{P(Y,Z)}{P(Z)}$
- $P(Y,Z) = \sum_{H} P(Y,Z,H)$

- Inference is performed by summing out hidden variables from joint probability distribution
- $P(Y|Z) = \frac{P(Y,Z)}{P(Z)}$
- $P(Y,Z) = \sum_{H} P(Y,Z,H)$
- The full joint has 2^n entries

Inference in Bayesian Networks II

- Inference is performed by summing out hidden variables from joint probability distribution
- $P(Y|Z) = \frac{P(Y,Z)}{P(Z)}$
- $P(Y,Z) = \sum_{H} P(Y,Z,H)$
- The full joint has 2ⁿ entries
- For large networks it is unreasonable to compute these many values

• Given A and B, and we want to compute P(A|b), b denotes B = true.

- Given A and B, and we want to compute P(A|b), b denotes B = true.
- P(A|b) = P(A,b)/P(b), and $P(b) = P(a,b) + P(\neg a,b)$

- Given A and B, and we want to compute P(A|b), b denotes B = true.
- P(A|b) = P(A,b)/P(b), and $P(b) = P(a,b) + P(\neg a,b)$
- Normalizing: $P(A|b) = \alpha P(A,b)$,

- Given A and B, and we want to compute P(A|b), b denotes B = true.
- P(A|b) = P(A,b)/P(b), and $P(b) = P(a,b) + P(\neg a,b)$
- Normalizing: $P(A|b) = \alpha P(A,b)$,
- α normalizing constant that makes the values in table P(A|b) sum to 1.

Burglar Alarm Network

• Goal: $P(E|j,m) = \alpha P(E,j,m)$

- Goal: $P(E|j,m) = \alpha P(E,j,m)$
- Sum over hidden vars: $\alpha P(E, j, m) = \sum_{a} \sum_{b} P(E, j, m, b, a)$,

- Goal: $P(E|j,m) = \alpha P(E,j,m)$
- Sum over hidden vars: $\alpha P(E, j, m) = \sum_{a} \sum_{b} P(E, j, m, b, a)$,
- j, m means JonhCalls = true, MaryCalls = True

- Goal: $P(E|j,m) = \alpha P(E,j,m)$
- Sum over hidden vars: $\alpha P(E, j, m) = \sum_{a} \sum_{b} P(E, j, m, b, a)$,
- j, m means JonhCalls = true, MaryCalls = True
- $\sum_{a}\sum_{b}P(E,j,m,b,a) = \sum_{b}\sum_{a}P(b)P(E)P(a|b,E)P(j|a)P(m|a)$

Enumeration II

Save computations by pushing the \sum 's inward as much as possible:

$$\sum_b \sum_a P(b)P(E)P(a|b,E)P(j|a)P(m|a) = P(E)\sum_b P(b)\sum_a P(a|b,E)P(j|a)P(m|a)$$

We need to do this sum both for E=true and E=false. For the first case:

$$P(e)\left(\begin{array}{c} P(b)\left(P(a|b,e)P(j|a)P(m|a) + P(\neg a|b,e)P(j|\neg a)P(m|\neg a)\right) + \\ P(\neg b)\left(P(a|\neg b,e)P(j|a)P(m|a) + P(\neg a|\neg b,e)P(j\neg a)P(m|\neg a)\right) \end{array}\right)$$

we will have one factor for each CPT term in our expression:

				A	В	E	$f_A(A,B,E)$
				T	T	Т	.95
				T	T	F	.94
Е	$f_E(E)$	В	$f_B(B)$	T	F	Т	.29
Т	.002	T	.001	T	F	F	.001
F	.998	F	.999	F	T	T	.05
				F	T	F	.06
				F	F	Т	.71
				F	F	F	999

A	$f_J(A)$
Т	.9
F	.05

	A	$f_M(A)$
	T	.7
	F	.01

Consider the product $f_{JM}(A) = f_J(A)f_M(A)$:

A	$f_{JM}(A)$		A	$f_J(A)$	A	$f_M(A)$
Τ	.9 * .7	=	T	.9	T	.7
F	.05 * .01		F	.05	F	.01

Consider the product $f_{AJM}(A, B, E) = f_A(A, B, E) f_{JM}(A)$:

Α	В	Е	$f_{AJM}(A,B,E)$
T	T	T	.95 * .63
Т	Т	F	.94 * .63
Т	F	T	.29 * .63
T	F	F	.001 * .63
F	T	T	.05 * .0005
F	Т	F	.06 * .0005
F	F	T	.71 * .0005
F	F	F	.999 * .0005

Α	В	E	$f_{AJM}(A,B,E)$
T	T	Т	.95
T	Т	F	.94
T	F	T	.29
T	F	F	.001
F	Т	T	.05
F	Т	F	.06
F	F	T	.71
F	F	F	.999
in f	1111	A. E	(B, E) is the production

A	$f_{JM}(A)$
T	.63
F	.0005

The entry for A = T, B = T, E = T in $f_{AJM}(A, B, E)$ is the product of corresponding entries from $f_A(A, B, E)$ where A = T, B = T, E = T and from $f_JM(A)$ where A = T (since B, E do not appear in $f_JM(A)$. In general, we have

$$f(X_1, \ldots, X_j, Y_1, \ldots, Y_k, Z_1, \ldots, Z_l) = f_1(X_1, \ldots, X_j, Y_1, \ldots, Y_k) f_2(Y_1, \ldots, Y_k, Z_1, \ldots, Z_l)$$

Summing out A from $f_{AJM}(A, B, E)$, the resulting factor is:

В	E	$f_{ar{A}JM}(B,E)$
T	T	.95 * .63 + .05 * .0005 = .5985
T	F	.94 * .63 + .06 * .0005 = .5922
F	Т	.29 * .63 + .71 * .0005 = .1830
F	F	.001 * .63 + .999 * .0005 = .001129

To compute the answer to our query:

$$\begin{split} \alpha P(E) \sum_b P(b) \sum_a P(a|b,e) P(j|a) P(m|a) \\ &= & \alpha f_E(E) \sum_B f_B(B) \sum_a f_A(A,B,E) f_J(A) f_m(A) \\ &= & \alpha f_E(E) \sum_B f_B(B) \sum_a f_A(A,B,E) f_{JM}(A) \\ &= & \alpha f_E(E) \sum_B f_B(B) \sum_a f_{AJM}(A,B,E) \\ &= & \alpha f_E(E) \sum_B f_B(B) f_{\bar{A}JM}(B,E) \\ &= & \alpha f_E(E) \sum_B f_B \bar{A}_{JM}(B,E) \\ &= & \alpha f_E(E) f_{\bar{B}\bar{A}JM}(E) \\ &= & \alpha f_E(E) f_{\bar{B}\bar{A}JM}(E) \end{split}$$

Now we compute $f_{B\hat{A}JM}(B, E)$:

В	E	$f_{B\bar{A}JM}(B,E)$
Т	T	.5985 * .001
T	F	.5922 * .001
F	Т	.1830 * .999
F	F	.001129 * .999

В	$f_B(B)$
T	.001
F	.999
Г	.999

В	E	$f_{\bar{A}JM}(B,E)$
T	T	.5985
Т	F	.5922
F	Т	.1830
F	F	.001129

Next, we sum out B to produce $f_{\bar{B}\bar{A}JM}(E).$

E	$f_{ar{B}ar{A}JM}(E)$
T	.0005985 + .1828 = .1834
F	.0005922 * .001128= .001720

Now we compute $f_{E\bar{B}\bar{A}JM}(E)$:

E	$f_{\bar{B}\bar{A}JM}(E)$
T	.1834 * .002 = .0003699
F	.001720 * .998 = .001717

$$egin{array}{c|c} {\rm E} & f_E(E) \\ {\rm T} & .002 \\ {\rm F} & .998 \\ \hline \end{array}$$

Е	$f_{\bar{B}\bar{A}JM}(E)$
T	.1834
F	.001720

So we have:

$$\alpha f_{E\hat{B}\hat{A}JM}(E) = \alpha \langle .0003699, .001717 \rangle = \langle .1772, .8228 \rangle$$