

First Movements. Application of Artificial Intelligence in Structural Design

Bill Mathers, PE

Learning Objectives

- Brief introduction to the current branches of Al
- Basic understanding of what an AI model is
- Spawn interest and provide a starting point
- Review current and potential applications

DALL-E2 "Structural Engineering Artificial Intelligence"

Artificial Intelligence

Artificial Intelligence

The theory and development of computer systems able to perform tasks that normally require human intelligence

Machine Learning

A branch of artificial intelligence and computer science which focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving its accuracy

Deep Learning

A class of machine learning algorithms that uses a neural net of three or more layers to progressively extract higher-level features from the raw input

Machine Learning vs. Deep Learning

Dense Neural Network (DNN)

Convolutional Neural Network (CNN)

Generative Adversarial Networks

U-NET

Recurrent Neural Network (RNN)

Long Short Term Memory (LSTM)

Transformer Networks

Perceptron: Fundamental Unit of a Neural Network

Feed Forward Network Basics

Generative Adversarial Networks (GANS)

Where do I begin?

Computer needs

Google Colaboratory

Where to learn?

I forgot most of your math skills.....

Platforms

Free models to use

Practical Application

Goal:

To develop an AI model that can do some basic framing layouts.

Development of Framebot – Version 0.0

"Going in the wrong direction but making really good time"

Reinforcement Learning

Bellman equations: Immediate reward plus discounted future values

ACTION-REWARD FEEDBACK LOOP

AGENT

STATE

ENVIRONMENT

Deep Learning Challenges

- Large amounts of training data required
- No data is available

Synthetic Data

Framebot V1.0 – Dense Neural Network (DNN)

Custom Data

STRUCTURAL CDGAN DATA MODEL V2

Rendered Training Data

- Random shapes and heights
- Braced frame or concrete with shear walls
- 200,000 data pairs +/-

DNN Model

- Huge model
- Input with 1050 nodes
- 3 hidden layers with 2048 nodes each
- Output has 1620 nodes
- 13,872,724 parameters
- Accuracy 98%

Framebot V1.0 Demo

Framebot V2.0 UNET

