Entity Detection in the MIT Movie Corpus

Robert Mangan

July 1, 2020

 The MIT Movie Corpus is a semantically tagged training and test corpus in BIO format.

- The MIT Movie Corpus is a semantically tagged training and test corpus in BIO format.
- The BIO format is a format for 'chunks'.

- The MIT Movie Corpus is a semantically tagged training and test corpus in BIO format.
- The BIO format is a format for 'chunks'.
- B: beginning of a chunk, I: inside a chunk, O: outside a chunk.

- The MIT Movie Corpus is a semantically tagged training and test corpus in BIO format.
- The BIO format is a format for 'chunks'.
- B: beginning of a chunk, I: inside a chunk, O: outside a chunk.
- Each chunk refers to an entity such as 'plot', 'actor', etc.

```
O show
O me
O films
O with
B-ACTOR drew
I-ACTOR barrymore
O from
O the
B-YEAR 1980s
```

Dataset: eng corpus (simple queries), trivia10k13 corpus (210,000 complex queries)

- Dataset: eng corpus (simple queries), trivia10k13 corpus (210,000 complex queries)
- Task: build a model to predict entities in the BIO format.

- Dataset: eng corpus (simple queries), trivia10k13 corpus (210,000 complex queries)
- Task: build a model to predict entities in the BIO format.
- Approach: data preparation, feature engineering, model building and evaluation.

- Dataset: eng corpus (simple queries), trivia10k13 corpus (210,000 complex queries)
- Task: build a model to predict entities in the BIO format.
- Approach: data preparation, feature engineering, model building and evaluation.
- Tools: Python, Pandas, NLTK, scikit-learn.

Preparing the data and feature extraction

 Add <START> and <END> tags at beginning and end of sentences, respectively.

Preparing the data and feature extraction

- Add <START> and <END> tags at beginning and end of sentences, respectively.
- Create features for previous and following words.

Preparing the data and feature extraction

- Add <START> and <END> tags at beginning and end of sentences, respectively.
- Create features for previous and following words.

	label	word	prevword	postword	feature_set
0	<start></start>	<start></start>	<end></end>	steve	{'word': ' <start>', 'prevword': '<end>', 'post</end></start>
1	B-Actor	steve	<start></start>	mcqueen	{'word': 'steve', 'prevword': ' <start>', 'post</start>
2	I-Actor	mcqueen	steve	provided	{'word': 'mcqueen', 'prevword': 'steve', 'post
3	0	provided	mcqueen	a	{'word': 'provided', 'prevword': 'mcqueen', 'p
4	0	a	provided	thrilling	{'word': 'a', 'prevword': 'provided', 'postwor

Model I: Naive Bayes

• Train a Naive Bayes classifier.

Model I: Naive Bayes

- Train a Naive Bayes classifier.
- Accuracy on test set: 72% (current word), 78.5% (current and previous words), 80.5% (current, previous and following words)

Confusion Matrix

								I		
				<		I	В	-	В	
	I			S	В	-	-	0	-	В
	-		<	Т	-	Α	Α	r	G	-
	P		E	Α	Р	C	C	i	e	Y
	į l		N	R	l	t	t	g	n	e
	0		D	Т	0	0	0	i	r	a
	į t	0	>	>	t	r	r	n	e	r
I-Plot	<29.9%>	2.7%	0.0%	0.0%	0.7%	0.1%	0.1%	0.2%	0.1%	0.1%
0	4.3%	<27.2%>	0.0%	0.0%	0.6%	0.1%	0.1%	0.2%	0.2%	0.1%
<end></end>			<4.5%>							
<start></start>	i .			<4.5%>						
B-Plot	1.3%	1.0%	0.0%	0.0%	<1.3%>	0.0%	0.0%	0.0%	0.0%	0.0%
I-Actor	0.0%	0.1%	0.0%	0.0%	0.0%	<3.3%>	0.2%	0.0%		0.0%
B-Actor	0.0%	0.0%	0.0%		0.0%	0.0%	<2.9%>	0.0%		0.0%
I-Origin	0.3%	0.5%		0.0%	0.0%	0.1%	0.0%	<0.8%>	0.0%	0.0%
B-Genre	0.1%	0.1%			0.0%	0.0%		0.0%	<1.5%>	0.0%
B-Year	0.0%	0.0%			0.0%			0.0%	0.0%	<1.5%>

 Create new feature for "previous label" and train a Naive Bayes Classifier.

- Create new feature for "previous label" and train a Naive Bayes Classifier.
- For making predictions, use sequence approach. Assume we don't have access to the actual labels.

- Create new feature for "previous label" and train a Naive Bayes Classifier.
- For making predictions, use sequence approach. Assume we don't have access to the actual labels.
- Classify the first instance using our model. Then use that predicted label as a feature for the following instance. Then make a prediction for that instance, and repeat.

- Create new feature for "previous label" and train a Naive Bayes Classifier.
- For making predictions, use sequence approach. Assume we don't have access to the actual labels.
- Classify the first instance using our model. Then use that predicted label as a feature for the following instance. Then make a prediction for that instance, and repeat.
- Accuracy on test set: 81.2%.

 Train a word embedding algorithm (based on movie corpus) using Word2Vec.

- Train a word embedding algorithm (based on movie corpus) using Word2Vec.
- Convert each word to a vector and use these as input features. Also, use previous and following vectors as features.

- Train a word embedding algorithm (based on movie corpus) using Word2Vec.
- Convert each word to a vector and use these as input features. Also, use previous and following vectors as features.
- Train a Random Forest Classifier.

- Train a word embedding algorithm (based on movie corpus) using Word2Vec.
- Convert each word to a vector and use these as input features. Also, use previous and following vectors as features.
- Train a Random Forest Classifier.
- Accuracy on test set: 80%.

Potential improvements

• Recurrent Neural Network, LSTM

Potential improvements

- Recurrent Neural Network, LSTM
- Combine both datasets to have a larger training set.

Questions

Questions?