Applied Natural Language Processing

Statistical Properties of Words

Ramaseshan Ramachandran

Ability to process and harness information from a large corpus of text with a very little human intervention

IS IT HARD?

- What is added with 15 to get 45?
- ▶ Juvenile court to try shooting defendant
- Safety experts say school bus passengers should be belted
- The king saw a rabbit with his glasses
- Local high school dropouts cut in half

WHY IS IT HARD?

- Multiple ways of representation of the same scenario
- Includes common sense and contextual representation
- Complex representation information (simple to hard vocabulary)
- Mixing of visual cues
- ► Ambiguous in nature Ramaseshan
- Idioms, metaphors, sarcasm (Yeah! right), double negatives, etc. make it difficult for automatic processing
- Human language interpretation depends on real world, common sense, and contextual knowledge

IDEAL PROPERTIES OF A LANGUAGE CORPUS

- Collection of a written text in a digital form
- Useful to verify a hypothesis about a language
 - To determine how the usage of a particular sound, word, or syntactic construction varies in different contexts
 - The boys play cricket on the river bank. The boys play cricket by the side of a national bank
- Contains most of the words of a language
- Changes as a function of time regular increase of corpus size with addition of new text samples
- Corpus is huge Several billions of words [1]
- Even distribution of texts from all domains of language use
- Represents all areas of coverage of texts of a language
- Access of language data in an easy and simplified manner

DISAMBIGUATION OF BANK

Synset('bank.n.01') sloping land (especially the slope beside a body of water) Synset('depository-financial-institution.n.01') a financial institution that accepts deposits and channels the money into lending activities Synset('bank.n.03') a long ridge or pile Synset('savings-bank.n.02') a container (usually with a slot in the top) for keeping money at home Synset('bank.n.10') a flight maneuver; aircraft tips laterally about its longitudinal axis (especially in turning) Synset('bank.v.01') tip laterally Synset('bank.v.02') enclose with a bank Synset('bank.v.03') do business with a bank or keep an account at a bank Synset('bank.v.04') act as the banker in a game or in gambling Synset('bank.v.05') be in the banking business Synset('deposit.v.02') put into a bank account Synset('trust.v.01') have confidence or faith in

TYPICAL NLP TASKS

Information Retrieval	Find documents based on keywords	
Information Extraction	Identify and extract personal name, date, company	
	name, city	
Language generation	Description based on a photograph	
	Title for a photograph	
Text clustering	Automatic grouping of documents	
Text classification	Assigning predefined categorization to documents.	
	Identify Spam emails and move them to a Spam	
	folder	
Machine Translation	Translate any language Text to another	
Grammar checkers	Check the grammar for any language	

Looks good to me

Look Looking Looks

APPLICATIONS OF NLP

- Sentiment Analysis
- Search Engines
- Content or News curation
- ► Automatic Machine Translation
- Spam filtering
- Transcription of Text from Audio/Video
- Chatbots

LEXICAL RESOURCES

- A corpus is a collection of machine readable text collected according certain criteria
- Representative collection of text
- Used for statistical analysis and hypothesis testing
- Used for validating linguistic rules within a specific language

- Brown Corpus contains a collection of written American English
- Sussane is a subset of Brown, but is freely available
- A bi-lingual parallel corpus, Canadian Hansards, contains French and English transcripts of the parliament
- Penn-Treebank contains annotated text from the Wall Street journal
- Most NLP software platforms such as *NLTK*, Spacy include several corpus for learning purposes

OPERATIONS ON A TEXT CORPUS

- Identify paragraphs, sentences
- Extract tokens
- Count the number of tokens/words in the corpus
- Find the vocabulary count
- Find patterns of words
- Find co-occurrence of words

The basic operation on text is *tokenization*. This is the process of dividing input text into tokens/words by identifying word boundary

INCIDENCE MATRIX

Let G be a graph with n vertices (v_1, v_2, \dots, v_n) and m edges (e_1, e_2, \dots, e_m) . Then incidence matrix defined of size $n \times m$ is defined as

$$x_{ij} = \begin{cases} 1 & \text{if there is an edge connecting } i \text{ and } j \\ 0 & \text{otherwise} \end{cases}$$
 (1)

It is also called vertex-edge incidence matrix and is denoted by X(G)

The incidence matrix corresponding to the left is given below

$$x_{ij} = \begin{cases} 1 & \text{if the edge } i \text{ connects the vertice } j \\ 0 & \text{otherwise} \end{cases}$$

TERM-DOCUMENT BINARY INCIDENCE MATRIX

To build a term-Document binary incidence matrix, let us consider Shakespeare's plays as our corpus. The terms are the vertices and the names of the plays are considered as edges. This incidence matrix does not represent any information related word order or its frequency[Manning:1999:FSN:311445]

	Antony and Cled	patra Julius Caesar	The Tempest	Hamlet	Othello
antony	1	1	0	0	0
brutus	1	Ramasesha	an o	1	0
caesar	1	1	0	1	1
calpurnia	0	1	0	0	0
cleopatra	1	0	0	0	0

$$x_{td} = \begin{cases} 1, & \text{if the word } t \in d \\ 0, & \text{if } t \notin d \end{cases}$$
 (2)

IR USING BINARY INCIDENCE MATRIX

	Antony and Cleopa	tra Julius Caesar	The Tempest	Hamlet	Othello
antony	1	1	0	0	0
brutus	1	1	0	1	0
caesar	1	1	0	1	1
calpurnia	0	1 ,	0	0	0
cleopatra	1	Kamasesha	1) 0	0	0

To answer the query $Brutus\ AND\ Caesar\ AND\ NOT\ Calpurnia$, we take the vectors for Brutus, Caesar and Calpurnia, complement the last, and then do a bitwise AND: 11010 AND 11011 AND 10111 = 10010. The answer for this query is found in the plays Antony and Cleopatra and Hamlet

WORDS AND TERMS

The basic alphabet for the purpose of NLP is a **word**The next logical step after the binary representation of words or terms t, is to assign weights to words

- ▶ The atomic unit for constructing a word in a language is its alphabet
- ▶ We use *Term* (co-located/co-occuring words) and *word* as atomic.
- ▶ It is necessary to consider the numerical representation of the word for computation purposes
- Vocabulary of size N=1...n is defined as $V=w_1,w_2,w_3,...,w_n$ is the vocabulary containing unique words of a language
- Some words found in V appear in documents $(D = D_1, D_2D_3, \dots, D_m)$, once or several times or may not appear at all.

TERM FREQUENCY

Term Frequency

For the given document, **term frequency** is defined as the number of occurrences of a term, t_i , in a document d_i belonging to a corpus $(d_1, d_2, d_3, \ldots, d_m)$. This is denoted by $t f_{t,d}$

TERM FREQUENCY - DEMO

```
import nltk
  from nltk.probability import FreqDist
  from nltk.corpus import stopwords
  import pandas as pd
  stop_words = set(stopwords.words('english'))
  #read the corpus
  words = nltk.Text(nltk.corpus.gutenberg.words('bryant-stories.txt'))
9 #convert to small letters
  words=[word.lower() for word in words if word.isalpha()]
11 words=[word.lower() for word in words if word not in stop_words ]
  #Get the frequency distribution of words
13 fDist = FreqDist(words)
  #Heading for the results table
heading = ['Word', 'Frequency'];tf_list = []
  for x,v in fDist.most common(10): tf list.append((x,v))
print(pd.DataFrame(tf_list,columns=heading))
  #Weighted term freequency
19 heading = ['Word', 'Weighted Frequency']; tf_list = []
  for x,v in fDist.most_common(10): tf_list.append((x,v/len(fDist)))
21 print(pd.DataFrame(tf_list,columns=heading))
```

Raw count of words

said 453	
came 191	
one 183	
could 158	
king 141	
went 122	
would 112	
great 110	
day 107	

Term freuquency adjusted to document length

little	0.1618763557483731
said	0.12283080260303687
came	0.05178958785249458
one	0.04962039045553145
could	0.042841648590021694
king	0.038232104121475055
went	0.03308026030368764
would	0.03036876355748373
great	0.02982646420824295
day	0.02901301518438178

MULTIPLE WEIGHTING FACTORS TF

$$RawCount - tf_{i,d} \tag{4}$$
 Adjusted to document length $+\frac{tf_{i,d}}{M}$ (5)
$$Log weighting - \begin{cases} f_{t,d} - 1 + \log tf_{i,d} & \text{if } tf_{i,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$
 (6)

Boolean - 0.1

(3)

DISADVANTAGES OF RAW FREQUENCY

- ► All terms are given equal importance
- ► The Common term *the* has no relevance to the document, but gets high relevancy score
- May not be suitable for classification when common words appear in documents

BAG OF WORDS

The collection $[tf_1, tf_2, tf_5, tf_{15}, \dots, tf_n]$ is known as bag of words

- The ordering of the terms is not important
- Two documents with similar bag of words are similar in content
- It refers to the quantitative representation of the document

TYPE-TOKEN RATIO

The lexical variety of the text is defined the *Type Token Ratio (TTR)* It can be used to measure the vocabulary variation or *lexical density* of the written text and speech. The *type* is the unique vocabulary in the text which is devoid of any repetitions

$$Ramaseshan$$

$$TTR = \frac{V}{T_n},$$
(7)

where V is the vocabulary and T_n is the number of tokens in the speech or written text

PYTHON CODE FOR TTR

This demo uses NLTK platform[2]

```
import nltk
  from nltk.corpus import stopwords
 #get the stop words for English
  stop words = set(stopwords.words('english'))
  words_bryant = nltk.Text(nltk.corpus.gutenberg.words('bryant-stories.txt'))
  words_emma = nltk.Text(nltk.corpus.gutenberg.words('austen-emma.txt'))
7 #convert to small letters
  words bryant = [word.lower() for word in words bryant if word.isalpha()]
  words_emma = [word.lower() for word in words_emma if word.isalpha()]
  #remove stop words
up words_bryant = [word.lower() for word in words_bryant if word not in
      stop_words][:15000]
  words_emma = [word.lower() for word in words_emma if word not in stop_words
      ][:15000]
13 TTR_bryant = len(set(words_bryant))/len(words_bryant)
  TTR_emma = len(set(words_emma))/len(words_emma)
print('Number of tokens, Vocabulary, Type-token ratio (Bryant stories) = ',
      len(words_bryant), len(set(words_bryant)), TTR_bryant)
  print('Number of tokens, Vocabulary, Type-token ratio (Jane Austen Emma) = '.
      len(words_emma), len(set(words_emma)), TTR_emma)
```

TTR DEMO - RESULTS

It is not reasonable to compare two unequal sized documents. A standardized TTR is used for fair comparison where the token size is restricted to the first 15000 tokens

	Number of tokens	Vocabulary	Type-token ratio
Bryant stories	15000	2796	0.19
Jane Austen (Emma)	15000	3274	0.22

APPLICATIONS OF TTR

- Monitor the vocabulary usage
- Monitor child vocabulary development
- Estimate the vocabulary variation in the text

INVERSE DOCUMENT FREQUENCY

In order to attenuate the effect of frequently occurring terms, it is important to scale it down and at the same time it is necessary to increase the weight of terms that occur rarely.

Inverse document frequency (IDF) is defined as

$$IDF_t = \log\left(\frac{N}{D_{f_t}}\right) \tag{8}$$

where N is the total number of documents in a collection, and D_{f_i} is the count of documents containing the term t

- Rare documents gets a significantly higher value
- Commonly occurring terms are attenuated
- It is a measure of informativeness
- ▶ Reduce the tf weight of a term by a factor that grows with its collection frequency.
- ▶ If a term appears in all the documents, then IDF is zero. This implies that the term is not important

TF-IDF

Composition of TF and IDF produces a composite scaling for each term in the document

$$tf - idf_{t,d} = tf_{t,d} \times idf_{t,d} \tag{9}$$

- ▶ The value is high when t occurs many times within a few documents
- ▶ The value is very low when a term appears in all documents

INVERSE DOCUMENT FREQUENCY-IDF

IDF is the inverse frequency of the word 't' appearing in the corpus. It is computed as

$$IDF$$
 of a term $t = \log_{10} \left(\frac{\mathsf{Total} \ \mathsf{number} \ \mathsf{of} \ \mathsf{documents} \ \mathsf{in} \ \mathsf{a} \ \mathsf{corpus}}{\mathsf{Count} \ \mathsf{of} \ \mathsf{documents} \ \mathsf{with} \ \mathsf{term} \ t} \right)$

IDF is the measure of *informativeness*

Example:

Consider a corpus with 100K documents. The word *moon* occurs in some documents (say, 100) with the following frequency: $TF_{d_1} = \frac{20}{427}, TF_{d_2} = \frac{30}{250}, TF_{d_3} = \frac{20}{250}, TF_{d_9} = \frac{5}{125}$ and $TF_{d_{1000}} = \frac{20}{1000}$

The total number of words in the corpus = 100000

$$\therefore IDF_{d_1} = \log_{10} \left(\frac{100000}{100} \right)$$
$$TF_{d_1} * IDF = 0.141$$

If the word **Andromeda** appears only once d_1 , then $TF_{d_1}*IDF=0.0117$. If the word the appeared in every document and 45 times in d1, then TF * IDF = 0.210

DOCUMENT RANKING USING TF-IDF

Using the TF-IDF, the rank order for the documents can be determined for the documents for the term *moon*.

Document Name	tf	tf-idf	Rank
$d1_{Poins}$	0.047	0.14	3
d2	0.12	0.36	1
d3	0.08	0.24	2
d9	0.04	0.12	4
d1000	0.02	0.06	5

ZIPF'S LAW

Zipf's law states that for a given some corpus, the frequency of any word is inversely proportional to its rank in the term frequency table[Manning:1999:FSN:311445]

$$f(r) \propto \frac{1}{r^{\alpha}} \tag{10}$$

where $\alpha \approx 1$, r is the frequency rank of a word and f(r) is the frequency in the corpus. The most frequent word will have the value 1, the word ranked second in the frequency will have $\frac{1}{2^{\alpha}}$, the word ranked third in the frequency will have $\frac{1}{3^{\alpha}}$, etc

Distribution of terms/words

This empirical law models the frequency distribution of words in languages. This distribution is observed across several languages with a large corpus. It may not be good enough to fit the frequency linearly, but enough to approximately model word frequencies

PYTHON CODE FOR ZIPF'S EMPIRICAL LAW

This demo uses NLTK platform

```
import re
  from operator import itemgetter
  import nltk
  import pandas as pd
  frequency = {}
  words emma = nltk.Text(nltk.corpus.gutenberg.words('austen-emma.txt'))
  for word in words_emma:
      count = frequency.get(word, 0)
      frequency [word] = count + 1
  rank = 1
  column_header = ['Rank', 'Frequency', 'Frequency*Rank']
  df = pd.DataFrame(columns=column header)
  for word, freq in reversed(sorted(frequency.items(), key=itemgetter(1))):
      df.loc[word] = [rank, freq, rank * freq]
      rank = rank + 1
20 print(df)
```

ZIPF'S LAW - DEMO

Word	Frequency	Rank	Frequency*Rank
to	5183	3	15549
the	4844	4	19376
and	4672	5	23360
of	4279	6	25674
1	3178	7	22246
as	1387	21	29127
_	1382	2225	30404
he	1365	23	31395
for	1321	24	31704
have	1301	25	32525
is	1220	26	31720
with	1187	27	32049
Mr	1153	28	32284
very	1151	29	33379
but	1148	30	34440

MANDELBROT APPROXIMATION

Mandelbrot derived a more generalized law to closely fit the frequency distribution in language by adding an offset to the rank

$$f(r) \propto \frac{1}{(r+\beta)^{\alpha}}$$
 (11)
Ramaseshan

where $\alpha \approx 1$ and $\beta \approx 2.7$

It is still a wonder how such intricate language generation fits into a simple mathematical relationship. It seems so unreal and perhaps unreasonable ©

HEAPS' LAW

This is used to estimate the number of unique terms M in a corpus given the total number of tokens

$$M \propto T^b$$

$$= kT^b \tag{12}$$

where $30 \le k \le 100$ and $b \approx 0.49$

According to this empirical law, the dictionary or the vocabulary size increases linearly with the total number of tokens/words in the corpus. It emphasizes the importance of the compression of the dictionary.

Stemming and Lemmatization

good, better,best \Rightarrow good computer, computers, computers, computers \Rightarrow computer

EXERCISES

- Write a program to find out whether Mandelbrot's approximation really provides a better fit than Zipf's empirical law. Use the same corpus for Zipf and Mandelbrot approximation.
- ▶ Write a program for Heap's law and find out the prediction of vocabulary in any corpus. Also, find out whether it is closer to the actual the size of the vocabulary of the same corpus.