Step-1

From the relation $A = R^{T}R$, we can write down the following:

$$\det(A) = \det(R^{\mathsf{T}}R)$$

$$= \det(R^{\mathsf{T}})\det(R)$$

$$= \det(R)\det(R)$$

$$= (\det(R))^{2}$$

Step-2

Now $(\det(R))^2$ is equal to the square of the *R* parallelepiped.

Note that, a_{jj} is equal to the product of the j^{th} row of R^{T} and the j^{th} column of R. Therefore, a_{jj} is equal to the length squared of the j^{th} column of R. It is obvious that the volume of the R parallelepiped cannot be greater than the product of the length squared columns of R.

Step-3

Therefore, volume of the *R* parallelepiped is less than or equal to $a_{11}a_{22}\cdots a_{nn}$.

Therefore,
$$\det A \leq a_{11}a_{22}\cdots a_{nn}$$