Pratique!

Um controlador de carga liga-desliga tipo série, implementado com MOSFETs, é utilizado como interface entre um módulo fotovoltaico VE136PV e um banco de baterias, cuja tensão terminal vale $V_t = 12 \text{ V}$.

- a) Estime a energia perdida no gerador fotovoltaico caso o período noturno estenda-se por doze horas e nenhum diodo seja associado em antissérie com o MOSFET.
- b) Reanalise o item anterior considerando que um diodo Schotky com queda de tensão de V_D =0,3 V tenha sido instalado em antissérie com o MOSFET. Considere também que o módulo fotovoltaico opera no NOCT pelas doze horas restantes.

Resolução:

a) De acordo com a Tabela 2-1, sabe-se a resistência paralela do módulo VE136PV vale $R_p = 830 \,\Omega$. Assim, como $V_t = 12 \,\text{V}$, obtém-se:

$$I_{PV} pprox rac{V_t}{R_p} = rac{12}{830} pprox 14,5 ext{ mA,}$$
 $P_{perdas} = V_t I_{PV} = 12 \cdot 14,5 \cdot 10^{-3} pprox 174 ext{ mW,}$ $E_{perdas} = \int\limits_{0}^{12} P_{perdas} dt = \int\limits_{0}^{12} 174 \cdot 10^{-3} dt pprox 2,1 ext{ Wh.}$

b) Como a tensão do módulo VE136PV no ponto de máxima potência (NOCT) vale $V_{mp} = 16,67 \text{ V}$ e é superior à tensão do banco de baterias, é aceitável supor que a corrente fotogerada assume um valor próximo da corrente de curto-circuito que, para o módulo fotovoltaico VE136PV, no NOCT, vale $I_{sc} = 7,26 \text{ A}$. Portanto:

$$P_{perdas} = V_D I_{sc} = 0.3 \cdot 7.26 \approx 2.2 \text{ W},$$

$$E_{perdas} = \int_{0}^{12} P_{perdas} dt = \int_{0}^{12} 2,2dt \approx 26,4 \text{ Wh.}$$

Diante dos resultados, conclui-se que a perda no diodo instalado em antissérie com o MOSFET é mais de dez vezes superior à perda causada pela circulação de corrente reversa em período noturno.

4.5.2 Controladores PWM

Os controladores PWM são assim nomeados porque fazem uso de modulação por largura do pulso (do Inglês: *Pulse Width Modulation* - PWM) para regular a corrente de recarga, de tal forma que a tensão aplicada ao banco de baterias convirja para o valor que garanta o mais elevado estado de carga possível. Para que essa condição seja estabelecida, o processo de recarga é usualmente dividido nos três estágios ilustrados na Figura 4-15 e discutidos a seguir:

- Estágio de carregamento pesado (do inglês: *bulk charge stage*) ou estágio de corrente constante (do inglês: *constant current stage*): nesse estágio, o gerador fotovoltaico é diretamente conectado ao banco de baterias e, como nos controladores liga-desliga, a corrente de recarga é mantida constante e aproximadamente igual a *I_{sc}*. Esse estágio permanece ativo até que a tensão nos terminais do banco de baterias alcance o patamar designado por tensão de absorção (do inglês: *Absorption Voltage AV*), que corresponde a um estado de carga de cerca de 80%. A partir daí, a fim de evitar superaquecimento em razão do aumento acentuado da resistência interna⁴¹ do banco de baterias, o controlador altera sua lógica de operação, passando ao estágio seguinte.
- Estágio de absorção de carga (do inglês: *absorption stage*) ou estágio de sobretensão constante (do inglês: *constant overvoltage stage*): nesse estágio, reponsável por completar os 20% restantes da carga, a tensão do banco de baterias é mantida regulada no valor final do estágio anterior (*AV*), enquanto a corrente de recarga é gradualmente reduzida por meio da aplicação de modulação PWM aos interruptores do controlador de carga. O intervalo de duração do estágio de absorção (do inglês: *Absorption Time AT*) pode ser programado entre uma e três horas, ou perdurar até que a corrente de recarga decaia abaixo de um valor pré-definido⁴², designado por corrente limiar (do inglês: *Treshold current TC*).
- Estágio de flutuação (do Inglês: *float stage*) ou estágio de tensão constante (do inglês: *constant voltage stage*): nesse estágio, a tensão do banco de baterias é reduzida e mantida regulada em um patamar seguro de operação, denominado por tensão de flutuação (do inglês: *Float Voltage FV*), enquanto a corrente de recarga assume um valor residual (do inglês: *Residual Current RC*), que apenas compensa as perdas por autodescarga e garante que o banco de baterias permaneça com elevado estado de carga.

É interessante saber!

Alguns controladores PWM comerciais permitem habilitar um quarto estágio de recarga, denominado de estágio de equalização. O processo de equalização consiste na elevação da tensão de operação do banco de baterias até aproximadamente 15,6 V, durante intervalos entre uma e três horas e periodicidade mensal. Esse processo ocorre com corrente controlada, inferior a 0,5 A, e tem o objetivo de remover os cristais de sulfato que se formam ao longo da operação das baterias.

⁴¹A resistência interna de uma bateria não é constante, alterando-se em função do estado de carga. Tipicamente, a resistência interna assume valor máximo quando a bateria encontra-se totalmente descarregada, todavia, seu valor mínimo não ocorre em plena carga, mas em algum ponto entre 80% e 90% do SOC. Assim sendo, é recomendável que a corrente de recarga seja reduzida na medida em que o estado de carga se eleve além de 80%, para evitar que o aumento acentuado da resistência interna implique perdas e aquecimento excessivo.

 $^{^{42}}$ O sistema é mantido no estágio de absorção até que a corrente de recarga atinja o valor limiar (TC), por sua vez especificado em função da capacidade C_{20} do banco de baterias: tipicamente 5% de C_{20} . Por exemplo, para um banco de baterias com capacidade C_{20} = 40 Ah, o estágio de absorção perdura até que a corrente de recarga decresça ao patamar de 2 A. Caso esse patamar mínimo não seja alcançado em um intervalo de tempo préprogramado, geralmente entre uma e três horas, o estágio de absorção também é encerrado.

Figura 4-15 – Evolução da tensão e da corrente de recarga do banco de baterias durante os três estágios de um controlador PWM.

Os valores de tensão e de corrente a partir dos quais os controladores PWM atuam para mudar a lógica de operação também são chamados de pontos de ajuste. Esses pontos, identificados na Figura 4-15, devem ser programados tendo em vista o tipo de bateria, a temperatura de operação do banco de baterias, a potência demandada, a potência do gerador fotovoltaico, as condições climáticas do local da instalação e a autonomia desejada. No Quadro 4-6 são sugeridos os valores dos pontos de ajuste para controladores PWM que utilizam baterias de chumbo-ácido com tensão nominal de 12 V. É importante lembrar que as grandezas *LDV* e *LRV* dizem respeito aos patamares de tensão para desconexão e reconexão da carga, assim como foi discutido na seção anterior.

Quadro 4-6 – Valores recomendados para os pontos de ajuste relacionados ao processo de carga e descarga do banco de baterias de chumbo-ácido em sistemas que utilizam controladores PWM.

Ponto de ajuste	Símbolo	Valor recomendado
Tensão de absorção	AV	14,4 V
Tensão de flutuação	FV	13,5 V
Corrente mínima para permanência no estágio de absorção	TC	C ₂₀ /20
Tempo máximo de permanência no estágio de absorção	AT	Entre 1 e 3 horas
Tensão de desconexão da carga	LDV	11,5 V
Tensão de reconexão da carga	LRV	12,5 V

Além dos pontos de ajuste destacados na Figura 4-15, outro parâmetro importante ao funcionamento adequado dos controladores PWM diz respeito à frequência de comutação do interruptor S_1 , denominada de frequência de transferência (f_T). Embora o valor médio da corrente de recarga independa dessa frequência, é importante selecioná-la de maneira apropriada, pois a comutação de corrente está associada à

emissão de ruído eletromagnético e pode causar interferência em outros equipamentos conectados ao sistema. Os valores de frequência tipicamente utilizados em controladores PWM comerciais situam-se na faixa:

$$25 \,\mathrm{Hz} \le f_T \le 300 \,\mathrm{Hz}.$$
 (4.17)

A implementação da lógica de operação dos controladores PWM exige que a corrente terminal I_t do banco de baterias também seja mensurada, pois seu valor médio I_{med} é avaliado durante a tomada de decisão. Por se tratar apenas de uma alteração da lógica de acionamento, e não de *hardware* (exceto pela adição do sensor de corrente), controladores PWM também podem ser implementados com o interruptor em série ou em paralelo com o gerador fotovoltaico, e herdam as vantagens e desvantagens de cada uma dessas configurações.

4.5.2.1 Controladores PWM tipo série

A topologia do controlador de carga PWM tipo série é ilustrada na Figura 4-16.

Figura 4-16 - Controlador de carga PWM tipo série implementado com MOSFETs.

Durante o estágio de carregamento pesado a operação do controlador PWM estabelece-se de maneira exatamente igual a dos controladores liga-desliga: o interruptor S_1 é mantido permanentemente fechado, de tal forma que a corrente de recarga iguala-se à corrente de curto-circuito I_{sc} do gerador fotovoltaico. Essa condição é mantida até que a tensão do banco de baterias atinja o patamar da tensão de absorção. A partir daí, o controlador inicia a modulação PWM da corrente de recarga, reduzindo gradativamente seu valor médio por meio da atualização da razão cíclica de transferência aplicada ao interruptor S_1 . Matematicamente, a razão cíclica de transferência D_T é definida por:

$$D_T = \frac{t_T}{T_T},\tag{4.18}$$

sendo t_T o intervalo em que S_1 está em condução e há a efetiva transferência de energia do gerador fotovoltaico para o banco de baterias, e $T_T = 1/f_T$ o período de transferência. A título de exemplo, a Figura 4-17 ilustra o perfil da corrente de recarga e seu respectivo valor médio para $D_T = 0.25$, $D_T = 0.5$ e $D_T = 0.75$.

Figura 4-17 – Exemplo de modulação por largura de pulso aplicada à corrente de recarga do banco de baterias por um controlador PWM tipo série: (a) $D_T = 0.25$; (b) $D_T = 0.5$; (c) $D_T = 0.75$.

Por inspeção da Figura 4-17, o leitor pode verificar que enquanto o período T_T é fixo, o intervalo de transferência t_T é variável, todavia confinado entre $0 \le t_T \le T_T$. Essa verificação é importante porque permite concluir que a razão cíclica de transferência é limitada no intervalo $0 \le D_T \le 1$, sendo que $D_T = 0$ indica que o interruptor S_1 permanece indefinidamente aberto e $D_T = 1$ indica que permanece indefinidamente fechado. O Quadro 4-7 resume o princípio de operação dos controladores PWM tipo série, associando o status dos MOSFETs S_1 e S_2 ao processo de carga e descarga do banco de baterias.

Quadro 4-7 – Resumo das ações do controlador de carga PWM tipo série em função do *status* dos interruptores.

Status dos interruptores	Ação do controlador PWM com interruptor em série com o gerador fotovoltaico
S_1 em condução $(D_T = 1)$	Permite o fluxo de energia entre o gerador fotovoltaico e o banco de baterias.
S_1 bloqueado $(D_T = 0)$	Inibe o fluxo de energia entre o gerador fotovoltaico e o banco de baterias.
S_1 em modo PWM $0 < D_T < 1$	Permite o fluxo parcial de energia entre o gerador fotovoltaico e o banco de baterias, de tal forma que a tensão terminal convirja para AV no estágio de absorção ou para FV no estágio de flutuação.
S_2 em condução	Permite o fluxo de energia entre o banco de baterias e a carga.
S_2 bloqueado	Inibe o fluxo de energia entre o banco de baterias e a carga.

4.5.2.2 Controladores PWM tipo paralelo

O controlador de carga PWM tipo paralelo ilustrado na Figura 4-18 tem operação similar à versão com interruptor em série. Entretanto, como nesse caso o fluxo de energia do gerador fotovoltaico para o banco de baterias se estabelece quando o interruptor S_1 está bloqueado, a lógica torna-se invertida, ou seja, $D_T=0$ indica que o fluxo de energia é máximo, enquanto $D_T=1$ indica que o fluxo de energia é nulo. O Quadro 4-8 descreve o princípio de operação dos controladores PWM tipo paralelo, associando o status dos MOSFETs S_1 e S_2 ao processo de carga e descarga do banco de baterias.

Quadro 4-8 – Resumo das ações do controlador de carga PWM tipo paralelo em função do *status* dos interruptores.

Status dos interruptores	Ação do controlador PWM com interruptor em paralelo com o gerador fotovoltaico
S_1 bloqueado $(D_T = 0)$	Permite o fluxo de energia entre o gerador fotovoltaico e o banco de baterias.
S_1 em condução $(D_T = 1)$	Inibe o fluxo de energia entre o gerador fotovoltaico e o banco de baterias.
S_1 em modo PWM $0 < D_T < 1$	Permite o fluxo parcial de energia entre o gerador fotovoltaico e o banco de baterias, de tal forma que a tensão terminal convirja para AV no estágio de absorção ou para FV no estágio de flutuação.
S_2 em condução	Permite o fluxo de energia entre o banco de baterias e a carga.
S_2 bloqueado	Inibe o fluxo de energia entre o banco de baterias e a carga.

Figura 4-18 – Controlador de carga PWM tipo paralelo implementado com MOSFETs.

4.5.3 Controladores MPPT

O controlador de carga MPPT é assim denominado por fazer uso de um conversor cc-cc e de um algoritmo de rastreamento do ponto de máxima potência para maximizar a extração de energia do gerador fotovoltaico no estágio de carregamento pesado, sendo seu comportamento nos estágios de absorção e de flutuação idêntico ao previamente descrito para os controladores PWM.

De maneira geral, qualquer conversor cc-cc pode ser utilizado como controlador de carga MPPT, desde que seja garantida sua capacidade de rastrear o ponto de máxima potência sob as mais variadas condições de irradiância solar e de temperatura, assim como anteriormente analisado no Capítulo 3. A título de exemplo, a Figura 4-19 ilustra a aplicação de um conversor Buck com filtro de entrada como controlador de carga MPPT.