Quiz, 10 questions

X Try again once you are ready.

Required to pass: 80% or higher

You can retake this quiz up to 3 times every 8 hours.

Back to Week 1

Retake

1/1 point

1.

What does the analogy "AI is the new electricity" refer to?

Similar to electricity starting about 100 years ago, Al is transforming multiple industries.

Correct

Yes. Al is transforming many fields from the car industry to agriculture to supply-chain...

- Through the "smart grid", AI is delivering a new wave of electricity.
- Al is powering personal devices in our homes and offices, similar to electricity.
- Al runs on computers and is thus powered by electricity, but it is letting computers do things not possible before.

1/1 point

2.

Which of these are reasons for Deep Learning recently taking off? (Check the three options that apply.)

We have access to a lot more data.

Correct

Yes! The digitalization of our society has played a huge role in this.

We have access to a lot more computational power. Introduction to deep learning

Yes! The development of hardware, perhaps especially GPU computing, has significantly improved deep learning algorithms' performance.

Neural Networks are a brand new field.

Un-selected is correct

Deep learning has resulted in significant improvements in important applications such as online advertising, speech recognition, and image recognition.

Correct

These were all examples discussed in lecture 3.

1/1 point

3.

Recall this diagram of iterating over different ML ideas. Which of the statements below are true? (Check all that $Iatroduction\ to\ deep\ learning$

Quiz, 10 questions

Correct

Yes, as discussed in Lecture 4.

Faster computation can help speed up how long a team takes to iterate to a good idea.

Correct

Yes, as discussed in Lecture 4.

It is faster to train on a big dataset than a small dataset.

Un-selected is correct

Recent progress in deep learning algorithms has allowed us to train good models faster (even without changing the CPU/GPU hardware).

 $Int \begin{tabular}{l} \textbf{Int \begin{tabular}{l} \textbf{Yes. For example, we discussed how switching from sigmoid to ReLU activation functions allows faster $$^{\text{Quiz}}$, that the properties of t$ 0/1 point When an experienced deep learning engineer works on a new problem, they can usually use insight from previous problems to train a good model on the first try, without needing to iterate multiple times through different models. True/False? True This should not be selected No. Finding the characteristics of a model is key to have good performance. Although experience can help, it requires multiple iterations to build a good model. **False**

1/1

point

5.

Which one of these plots represents a ReLU activation function?

Figure 1:

Figure 2:

Figure 3:

Correct

Correct! This is the ReLU activation function, the most used in neural networks.

0/1 point

Ouiz.	10 c	uestions

This should not be selected

No. Images for cat recognition is an example of "unstructured" data.

False

0/1 point

7.

A demographic dataset with statistics on different cities' population, GDP per capita, economic growth is an example of "unstructured" data because it contains data coming from different sources. True/False?

True

This should not be selected

A demographic dataset with statistics on different cities' population, GDP per capita, economic growth is an example of "structured" data by opposition to image, audio or text datasets.

False

1/1 point

8

Why is an RNN (Recurrent Neural Network) used for machine translation, say translating English to French? (Check all that apply.)

It can be trained as a supervised learning problem.

Correct

Yes. We can train it on many pairs of sentences x (English) and y (French).

It is strictly more powerful than a Convolutional Neural Network (CNN).

Un-selected is correct

Quiz, 10 questions

Correct

Yes. An RNN can map from a sequence of english words to a sequence of french words.

RNNs represent the recurrent process of Idea->Code->Experiment->Idea->....

Un-selected is correct

1/1 point

9.

In this diagram which we hand-drew in lecture, what do the horizontal axis (x-axis) and vertical axis (y-axis) represent?

- x-axis is the input to the algorithm
 - y-axis is outputs.
- x-axis is the performance of the algorithm
 - y-axis (vertical axis) is the amount of data.

 x-axis is the amount of data Introduction to deep learning y-axis (vertical axis) is the performance of the algorithm. Quiz, 10 questions 		
Correct		
 x-axis is the amount of data y-axis is the size of the model you train. 		
1/1 point		
10. Assuming the trends described in the previous question's figure are accurate (and hoping you got the axis labels right), which of the following are true? (Check all that apply.)		
Decreasing the training set size generally does not hurt an algorithm's performance, and it may help significantly.		
Un-selected is correct		
Decreasing the size of a neural network generally does not hurt an algorithm's performance, and it may help significantly.		
Un-selected is correct		
Increasing the training set size generally does not hurt an algorithm's performance, and it may help significantly.		
Correct Yes. Bringing more data to a model is almost always beneficial.		
Increasing the size of a neural network generally does not hurt an algorithm's performance, and it may help significantly.		
Correct Yes. According to the trends in the figure above, big networks usually perform better than small networks.		

Quiz, 10 questions

