Yongqin Xian, Zeynep Akata, Gaurav Sharma, Quynh Nguyen, Matthias Hein, Bernt Schiele; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016

- Zero-shot Learning?
 - ■목표

- Zero-shot Learning?
 - ■개념적으로는..

- Zero-shot Learning?
 - ■ZSL 기본 모델의 가정(한계점?)
 - 1. 관련성이 높은 seen 과 unseen class는 이미지에 비슷한 feature를 포함

2. 그런 class들의 label은 semantic embedding space 내 비슷한 위치에 있을 것 (이건 현재로선 어쩔수 없음)

Latent Embeddings for Zero-shot Classification word2vec Image space feature Class Embedding label Model Nearest! (W) embedded vector 기본 모델 제안 모델 Er Eπ **Embedding** Model label (W₃) Nearest! <mark>타겟 class label과</mark> 거리가 가장 가깝게 매핑해주는 Wn을 선택적으로 학습!

Figure 1: LatEm learns multiple W_i 's that maximize the compatibility between the input embedding (image, text space) and the output embedding (label space) of all training examples. The different W_i 's may capture different visual characteristics of objects, i.e. color, beak shape etc. and allow distribution of the complexity among them, enabling the model to do better classification.

Figure 2: Top images ranked by the matrices using word2vec and glove on CUB dataset, each row corresponds to different matrix in the model. Qualitative examples support our intuition – each latent variable captures certain visual aspects of the bird. Note that, while the images may not belong to the same fine-grained class, they share common visual properties.

dom to treat different types of images differently. Let us consider a fixed class \hat{y} and two substantially visually different types of images x_1, x_2 , e.g. the same bird flying and swimming. In SJE [2] these images will be mapped to the class embedding space with a single mapping $W^{\top}x_1, W^{\top}x_2$. On the other hand, LatEm will have learned two different matrices for the mapping i.e. $W_1^{\top}x_1, W_2^{\top}x_2$. While in the former case a single W has to map two visually, and hence numerically, very different vectors (close) to the same point, in the latent case such two different map-

Objective

- ■Compatibility function F (수치값)
 - K: the number of W, W: embedding matrix
 - x : image feature vector, y : label vector

$$F(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le K} \mathbf{x}^\top W_i \mathbf{y}.$$

Loss function

$$L(\mathbf{x}_n, \mathbf{y}_n) = \sum_{\mathbf{y} \in \mathcal{Y}} \max\{0, \Delta(\mathbf{y}_n, \mathbf{y}) + F(\mathbf{x}_n, \mathbf{y}) - F(\mathbf{x}_n, \mathbf{y}_n)\}$$
(6)

where $\Delta(y, y_n) = 1$ if $y \neq y_n$ and 0 otherwise. This ranking-based loss function has been previously used in [12, 38] such that the model is trained to produce a higher compatibility between the image embedding and the class embedding of the correct label than between the image embedding and class embedding of other labels.

Optimization

Algorithm 1 SGD optimization for LatEm

```
\mathcal{T} = \{(\mathbf{x}, \mathbf{y}) | \mathbf{x} \in \mathbb{R}^{d_x}, \mathbf{y} \in \mathbb{R}^{d_y} \}
   1: for all t=1 to T do epochs
            for all n = 1 to |\mathcal{T}| do training set
                 Draw(\mathbf{x}_n, \mathbf{y}_n) \in \mathcal{T} and \mathbf{y} \in \mathcal{Y} \setminus \{\mathbf{y}_n\} 비교 대상(정답이 아닌) label 선택
                 if F(\mathbf{x}_n, \mathbf{y}) + 1 > F(\mathbf{x}_n, \mathbf{y}_n) then L(\mathbf{x}_n, \mathbf{y}_n) > 0
                     i^* \leftarrow \underset{1 \le k \le K}{\operatorname{arg}} \max_{n} \mathbf{x}_n^\top W_k \mathbf{y}
                                                                   현재 image feature가 각 class label에
                     j^* \leftarrow rg \max \mathbf{x}_n^{	op} W_k \mathbf{y}_n 가장 큰 영향을 주는 W를 선택
                                   1 \le k \le K
                      if i^* = j^* then
                          W_{i^*}^{t+1} \leftarrow W_{i^*}^t - \eta_t \mathbf{x}_n (\mathbf{y} - \mathbf{y}_n)^{\top} 그 W가 같으면 정답은 가까워지게 정답 아닌건 멀어지게 학습
                      end if
  9:
                      if i^* \neq j^* then
 10:
                          W_{i^*}^{t+1} \leftarrow W_{i^*}^t - \eta_t \mathbf{x}_n \mathbf{y}^{\top} W_{j^*}^{t+1} \leftarrow W_{j^*}^t + \eta_t \mathbf{x}_n \mathbf{y}_n^{\top} 그 W가 다르면 각각 학습
 11:
                      end if
 13:
                 end if
 14:
            end for
 15:
 16: end for
```

	Total		train	+val	test	
	imgs	cls	imgs	cls	imgs	cls
CUB	11786	200	8855	150	2931	50
AWA	30473	50	24293	40	6180	10
Dogs	19499	113	14681	85	4818	28

Table 1: The statistics of the three datasets used. CUB and Dog are fine-grained datasets whereas AWA is a more general concept dataset.

Epochs: 150

Learning rate: 0.1, 0.001, 0.01 (CUB, AWA, DOG, respectively)

	CUB		AWA		Dogs	
	SJE	LatEm	SJE	LatEm	SJE	LatEm
att	50.1	45.5	66.7	71.9	N/A	N/A
w2v	28.4	31.8	51.2	61.1	19.6	22.6
glo	24.2	32.5	58.8	62.9	17.8	20.9
hie	20.6	24.2	51.2	57.5	24.3	25.2

Table 2: Comparison of Latent Embeddings (LatEm) method with the state-of-the-art SJE [2] method. We report average per-class Top-1 accuracy on unseen classes. We use the same data partitioning, same image features and same class embeddings as SJE [2]. We cross-validate the K for LatEm.

Model Selection

- Cross-validation
 - data split을 다르게 해서 validation 단계에서 가장 좋은 성능을 나타내는 W의 개수(K) 선택
 - K = {2, 4, 6, 8, 10} 으로 각각 돌려봄

Pruning

- 성능을 유지하며 더 빠르게 학습시키게 하기 위한 선택 방법
- 학습 5번 돌 때 5프로 미만으로 선택된 W를 제거
- 16개로 시작해서 pruning 수행

	CUB		AV	VA	Dogs	
	PR	CV	PR	CV	PR	CV
att	3	4	7	2	N/A	N/A
w2v	8	10	8	4	6	8
glo	6	10	7	6	9	4
hie	8	2	7	2	11	10

	CUB		AV	VA	Dogs	
	PR	CV	PR	CV	PR	CV
att	43.8	45.6	63.2	72.5	N/A	N/A
w2v	33.9	33.1	48.9	52.3	25.0	24.5
glo	31.5	30.7	51.6	50.7	18.8	20.2
hie	23.8	23.7	45.5	46.2	25.2	25.6

Table 5: (Left) Number of matrices selected (on the original split) and (right) average per-class top-1 accuracy on unseen classes (averaged over five splits). PR: proposed model learnt with pruning, CV: with cross validation.

Figure 3: Effect of latent variable K, with unsupervised class embeddings (on CUB dataset with five splits).

Dataset: Caltech-UCSD Birds(CUB)

training set (seen) label – 100 classes images – 5894 images

test set (unseen) label – 50 classes images – 2931 images

epoch : 150

learning rate: 0.1

class embedding	average per-class Top-1 accuracy(%)
attributes	38.2
word2vec (wikipedia)	27.8
glove (wikipedia)	25.7
hierarchies (WordNet)	17.0

	CUB		Α	AWA		ogs
	SJE	LatEm	SJE	LatEm	SJE	LatEm
att	50.1	45.5	66.7	71.9	N/A	N/A
w2v	28.4	31.8	51.2	61.1	19.6	22.6
glo	24.2	32.5	58.8	62.9	17.8	20.9
hie	20.6	24.2	51.2	57.5	24.3	25.2

Table 2: Comparison of Latent Embeddings (LatEm) method with the state-of-the-art SJE [2] method. We report average per-class Top-1 accuracy on unseen classes. We use the same data partitioning, same image features and same class embeddings as SJE [2]. We cross-validate the K for LatEm.

