

Formal tasks: Playing board games, card games. Solving puzzles, mathematical and logic problems.

Expert tasks: Medical diagnosis, engineering, scheduling, computer hardware design.

Mundane tasks: Everyday speech, written language, perception, walking, object manipulation.

Human tasks: Awareness of self, emotion, imagination, morality, subjective experience, high-level-reasoning, consciousness.

Image Recognition:
If it looks like a duck

Audio Recognition: Quacks like a duck

Activity Recognition: Swims like a duck

Tom Mitchell @ 2018 GMIC

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP LEARNING

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

人工智能发展的四个阶段

- * 初期阶段
 - ◆ 通用问题求解、机器翻译、定理证明、博弈、游戏......
- * 知识时代
 - ◆ 专家系统、知识工程、知识表示、(不)确定性推理......
- * 特征时代
 - ◆ 统计机器学习方法、优化技术、特征映射(浅层)、特征工程......
- * 数据时代
 - ◆ 深度学习、表示学习、自动特征抽取、不同层次的抽象特征、特征 映射(深层)

Classic Machine Learning vs Deep Learning

Intuition about Deep Representation

Scale drives deep learning progress

Types of learning task

by Geoffrey Hinton

- Supervised Learning
 - Learn to predict an output when given an input vector
- Unsupervised Learning
 - Learn to discover a good internal representation of the input
- Reinforcement Learning
 - Learn to select an action to maximize payoff

Yann Lecun的"学习蛋糕"

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- · 10→10,000 bits per sample

Self-Supervised Learning (cake génoise)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample

Reinforcement Learning

Self-Supervised Learning

- Predict any part of the input from any other part.
- Predict the future from the past.
- Predict the future from the recent past.
- Predict the past from the present.
- Predict the top from the bottom.
- Predict the occluded from the visible.

Pretend there is a part of the input you don't know and predict that.

Self-Supervised Learning: Filling in the Blanks

input

Barnes et al. | 2009

Darabi et al. | 2012

Huang et al. | 2014

Pathak et al. | 2016

lizuka et al. | 2017

Examples of Supervised Learning

Input(x)	Output(y)	Application
Home features	Price	Real Estate
Ad,user info	Click on ad?(0/1)	Online Advertising
Image	Object(1,•••,1000)	Photo tagging
Audio	Text transcript	Speech recognition
English	Chinese	Machine translation
Image,Radar info	Position of other cars	Autonomous driving

Data-driven approach

Supervised Learning

- Collect a dataset and labels
- Design & Train a model
- Evaluate the model on a withheld set of test data

Structured Data vs. Unstructured Data

Supervised Learning

Structured Data

Size	#bedrooms	 Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
:	:	:
3000	4	540

User Age	Ad Id	 Click
41	93242	1
80	93287	0
18	87312	1
:		:
27	71244	1

Unstructured Data

Audio

Image

Four scores and seven years ago...

Text

Regression vs. Classification

Regression

Predict continuous valued output

Size	#bedrooms	 Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
:	:	:
3000	4	540

Classification

 Output a small number of discrete values

Regression

Standard Neural Network (NN)

Convolutional Neural Network (CNN)

Recurrent Neural Network (RNN)

Basic supervised learning framework

Basic supervised learning framework

- Training (or learning): given a training set of labeled examples {(x₁,y₁), ..., (x_N,y_N)}, instantiate a predictor f
- Testing (or inference): apply f to a new test example x and output the predicted value y = f(x)
- What is the connection between training and test data?

- Given: training data $\{(x_i, y_i), i = 1, ..., n\}$
- \star Find y = f(x)
- ❖ S.t. f works well on test data

- Given: training data $\{(x_i, y_i), i = 1, ..., n\}$
- ❖ Find $y = f(x) ∈ \mathcal{H}$ ❖ S.t. f works well on test data

Hypothesis class

- ❖ Given: training data $\{(x_i, y_i), i = 1, ..., n\}$ i.i.d. from distribution D
- \clubsuit Find $y = f(x) \in \mathcal{H}^{\vee}$
- ❖S.t. f works well on test data i.i.d. from distribution D

Have the same distribution

i.i.d.: independently identically distributed

- ❖ Given: training data $\{(x_i, y_i), i = 1, ..., n\}$ i.i.d. from distribution D
- \star Find $y = f(x) \in \mathcal{H}$
- ❖S.t. f works well on test data i.i.d. from distribution D

What kind of performance measure?

- ❖ Given: training data $\{(x_i, y_i), i = 1, ..., n\}$ i.i.d. from distribution D
- \Rightarrow Find $y = f(x) \in \mathcal{H}$
- S.t. the expected loss is small:

$$L(f) = \mathbb{E}_{(x,y) \sim D}[l(f,x,y)]$$

- ❖ Given: training data $\{(x_i, y_i), i = 1, ..., n\}$ i.i.d. from distribution D
- \star Find $y = f(x) \in \mathcal{H}$ that minimizes

$$\widehat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)$$

Empirical loss

An Image Classification Example

A core task in Computer Vision - Image Classification
Assigning a single label to an image from a fixed set of categories

What the computer sees

Images are represented as 3D arrays of numbers, with integers between [0, 255]

0 - black 255 - white

eg: $248 \times 400 \times 3 = 297,600$

(3 for 3 color channels RGB)

Linear Classifier

Example:

An image with 4 pixels, and 3 classes (cat/dog/ship)

Bias trick

Representing the two parameters W and b as one

														1	
0.2	-0.5	0.1	2.0		56		1.1		0.2	-0.5	0.1	2.0	1.1		56
1.5	1.3	2.1	0.0		231	+	3.2	←→	1.5	1.3	2.1	0.0	3.2		231
0	0.25	0.2	-0.3		24		-1.2		0	0.25	0.2	-0.3	-1.2		24
\overline{W}					2	<u>b</u>			\overline{W}				b		2
x_i new, single W															1

Linear Classifier: Three Viewpoints

Algebraic Viewpoint

$$f(x,W)=Wx+b$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

How to tell whether W is good/bad?

Quantifying what it means to have a "good" W

Loss function:

- Measure the quality of a particular set of parameters W
- Based on how well the induced scores agreed with the ground truth labels in the training data

Loss Function

- cost function / objective
- A loss function tells how good a model is
 - high: a poor job
 - low: doing well

Examples: Loss Function

- Two commonly seen loss functions
 - Hinge loss
 - Multiclass Support Vector Machine (SVM) Loss
 - Cross-entropy loss
 - Softmax classifier

Multiclass Support Vector Machine (SVM) Loss

Target: wants the correct class for each sample/data to a have a score higher than the incorrect classes by at least a margin of delta

- If any class has a score inside the red region (or higher), then there will be accumulated loss. Otherwise the loss will be zero.
- The objective will be to find the weights that will simultaneously satisfy this constraint for all the examples in the training data and give a total loss that is as low as possible.

Multiclass SVM Loss

$$\frac{L = \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)}{\left(\text{delta=1}\right)}$$

3.2 cat

car

5.1

-1.7 frog

29 Losses:

1.3

4.9

2.0 -3.1

12.9

2.2

2.5

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 2.2 - (-3.1) + 1)$

 $+\max(0, 2.5 - (-3.1) + 1)$

= max(0, 6.3) + max(0, 6.6)

= 6.3 + 6.6

= 12.9

Loss over full dataset is:

$$L = rac{1}{N} \sum_{i=1}^{N} L_i$$

L=(2.9+0+12.9)/3=5.27

Suppose that we found a W such that L = 0. Is this W unique?

❖ No! e.g. 2W is also has L = 0!

W:

```
= max(0, 1.3 - 4.9 + 1)
+max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0
```

With W twice as large:

```
= max(0, 2.6 - 9.8 + 1)
+max(0, 4.0 - 9.8 + 1)
= max(0, -6.2) + max(0, -4.8)
= 0 + 0
= 0
```

How do we choose between W and 2W?

Regularization!

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Data loss: Model predictions should match training data

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Data loss: Model predictions should match training data

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Data loss: Model predictions should match training data

Regularization

regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \frac{1}{N} \frac{1$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Regularize

- Express preferences over weights
- Make the model simple so it can work on test data
- Improve optimization by adding curvature

Regularization

Simple examples

- L2 regularization: $R(W) = \sum_k \sum_l W_{k,l}^2$
- L1 regularization: $R(W) = \sum_k \sum_l |W_{k,l}|$
- Elastic net (L1 + L2): $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$

More complex:

- Dropout
- Batch normalization
- Stochastic depth, fractional pooling, etc

$$egin{aligned} x &= [1,1,1,1] \ w_1 &= [1,0,0,0] \ \end{array} \qquad egin{aligned} w_1^T x &= w_2^T x = 1 \ w_2 &= [0.25,0.25,0.25,0.25] \end{aligned}$$

Use L2 Regularization $R(W) = \sum_{k} \sum_{l} W_{k,l}^2$ Which W will be chosen?

➤ L2 regularization prefers w2, because it likes to "spread out" the weights.

Softmax Classifier (Multinomial Logistic Regression)

Generalization of binary Logistic Regression classifier to multiple classes

Softmax Classifier (Multinomial Logistic Regression)

- Generalization of binary Logistic Regression classifier to multiple classes
- Interpret raw classifier scores as probabilities
- ightharpoonup score: $s=f(x_i;W)$
 - ho probability: $P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function
 - ullet loss: $ig|L_i = -\log P(Y=y_i|X=x_i)ig|$
- This can be viewed as the **cross-entropy** between the "empirical" distribution $\widehat{P}(c|x_i)$ and the "estimated" distribution

$$P_W(c|x_i)$$
: $-\sum_c \hat{P}(c|x_i) \log P_W(c|x_i)$

Example

Cat

Car

Frog

Probabilities must be >= 0

Probabilities must sum to 1

must be
$$>= 0$$
 must sum to 1
$$\underline{s = f(x_i; W)}$$

$$p_i = \exp(s_i)$$

$$5.1$$

$$-1.7$$

$$D_i = \exp(s_i)$$

$$D_i = \exp(s_i)$$

$$D_i = \exp(s_i)$$

$$D_i = -\log(\frac{e^{sy_i}}{\sum p_i})$$

$$D_i = -\log(0.13)$$

$$0.87$$

$$0.87$$

$$0.00$$

score

unnormalized probabilities

normalized probabilities

SVM vs. Softmax

Summarize

Machine Learning 1-2-3

- Collect a dataset (and labels: for supervised learning) and extract features
- Build a model:
 - $lue{}$ Choose hypothesis class ${\mathcal H}$ and loss function l
- Optimization:
 - Minimize the loss

Feature Extraction

- Handcraft the feature vectors (x, y)
 - Classic machine learning
 - Can use prior knowledge to design suitable features
- Learn the features directly from the raw data
 - Representation Learning
 - □ Deep Learning ⊆ Representation Learning
 - ⊆ Machine Learning

课程部分材料来自他人和网络, 仅限教学使用, 请勿传播, 谢谢!

