

Streamlines & Stream Lunction Stream lives provide best way to illustrate flow field, if applicable: Definition: Streamlines are the family of curves that are instantamousing > taugent to the velocity field. In a steady flow the stream lines are particle Poros media: q= & y q11 y How do we compute Streamlines? The definition of velocity provides a system of ODE's to compute streamlines: $Y = \begin{pmatrix} V_X \\ V_Y \end{pmatrix}$ 1) $\frac{dx}{dt} = v_x(x)$ $\frac{dy}{dx} = \frac{v_y}{v_x}$ 2) $\frac{dy}{dt} = v_y(x)$ $\frac{dy}{dx} = \frac{v_y}{v_x}$ We can eiters solve system or single ODE to get ou particular stream l'ug through x.

Matlab has function streamline un

to solve for streamline given initial point.

Note: need to Interpolate fluxes

11 to cell center to use

11 to cell center to use

11 junction

interpolation can introduce escercis

of thinking about streamlines Cumulative flux between A&B Different way $\frac{2y = \int q \cdot \hat{n} \, ds}{s = asc |eughh}$ $\hat{n} = right | hand variable$ In the absence of sources/sinhs 24 should not depend on path 1. => duose simplest path along [,: q. n, = (qx qx) (0) =-qx along [: 9 · n= (9x 9x) (1)=9x

Rewrite our integral:
$$\psi = \int_{-q_{y}(x,y_{A})dx}^{x_{B}} + \int_{q_{x}(x_{B},y)dy}^{y} dy$$

Consider two limits:

 $y_{A} = y_{B}$
 $y_{B} = \int_{-q_{y}dx}^{x_{B}} dx = \int_{-q_{y}}^{2u} dx = dx$

$$y_{A} = y_{B}$$

$$y = \int_{-q}^{R} - q_{y} dx = \int_{-2x}^{2y} = dx$$

$$\Rightarrow \frac{2\psi}{2x} = -q_{y}$$

$$x_{A} = x_{B}$$

$$x_{A} = x_{B}$$

$$y_{B}$$

$$y_{A} = y_{A}$$

The fore:
$$3x = -9$$
 $3\phi = 9x$

This is often given as the definition of the stream function 7. Physical Intopetation:

2 is consulation flux

· Change of cumulative flux in x-directions is proportionant to negative flux in x-direction.

o Change of cumulation flux in y-direction.
is proportional to flux ou x-direction.

All of this is true if the integral defining is path-independent.

Combine $\Gamma_1 + \Gamma_2 = \Gamma$ and define out side normal: $\hat{n} = \hat{n}$, $\hat{n} = -\hat{n}_z$

$$\int_{\Gamma_1} \mathbf{q} \cdot \hat{\mathbf{n}} \, ds + \int_{\Gamma_2} \mathbf{q} \cdot \hat{\mathbf{n}} \, ds = \int_{\Gamma_2} \mathbf{q} \cdot \hat{\mathbf{n}} \, ds = 0$$

Divergence	theorem:	fg.nds	s = \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V = 0
	= 1 4	P '	2	
Hence the	streamfuu	chiou is u	sell de fires	1, ie.,
single ralu				
· flow is	incompress	ible		
· no sou	122 70 2007	uks		
Ow equ:			- V · K \(\forall \)h =	fs

Relation between 4 and streamlines

1) The level sets (contours) of it are tangential to q => level sets of it are streamlines

$$= -9y9x + 9x9y = 0$$

$$\nabla v + 9x9y = 0$$

→ 2/ coutois are parallel to q > stream bins

- 2) The magnitude of the flux is equal the magnitude of $\nabla \psi$. $|\nabla \psi| = \sqrt{\frac{2}{2}} \sqrt{\frac{2}{2}} \sqrt{\frac{2}{2}} = \sqrt{(-q_y)^2 + (q_x)^2}$ $= \sqrt{\frac{2}{x}} + \sqrt{\frac{2}{y}} = |\psi|$