3D Gaussian Splatting for Real-Time Radiance Field Rendering

SIGGRAPH 2023 (Best Paper Award)

박지호 나의 야이아카데미아

Contents

I. 3D Representations

- a. Implicit vs Explicit
- b. Hybrid
- c. Point-based

II. 3D Gaussian Splatting

III. Upcoming Works

Accuracy vs Efficiency

NeRF

Task: 3D Reconstruction from 2D Images

Method: Optimize 3D(MLP) with Ground Truth 2D Images

3D Representation(MLP) \rightarrow 2D Render \rightarrow Loss(rendered_img, GT) \rightarrow optimize MLP

NeRF

Donut

Nov 23, 2023

Donut

Explicit

Mesh:

Points of triangles

Implicit

$$(R - \sqrt{x^2 + y^2})^2 + z^2 = r^2$$

Ground truth

b) Hybrid: Grid-based

Implicit

• NeRF(2020): MLP w/ hierarchical sampling, positional encoding

Train time: 12 hours ~ 1 day

Rendering Speed < 0.1fps

Hybrid

• Utilizing Explicit Representations well!

Train time: < 30 mins

Rendering Speed: 5~10 fps

b) Grid-based

Implicit

NeRF(2020) → MLP w/ hierarchical sampling, positional encoding

https://arxiv.org > cs

by B Mildenhall · 2020 · Cited by

NeRF: Representing Scenes as 1

NeRF: Representing Scenes as Neural Radiance Fields for ...

Grid-Based

- PlenOctree(2021) → Octree Voxel
- Plenoxel(2021) → Sparse Voxel
- InstantNGP(2022) → Multi-resolution Grid
- TensoRF(2022) → Matrix Decomposed Voxel Grid

aper: Download a PDF of the paper titled

ields for View Synthesis, by Ben Mildenhall ...

b) Grid-based

Implicit

NeRF(2020) → MLP w/ hierarchical sampling, positional encoding

Grid-Based

What's in 2023?

- PlenOctree(2021) → Octree Voxel
- Plenoxel(2021) → Sparse Voxel
- InstantNGP(2022) → Multi-resolution Grid
- TensoRF(2022) → Matrix Decomposed Voxel Grid

ields for View Synthesis, by Ben Mildenhall

c) Point-based

ICCV 2023 Oral

NeuRBF: A Neural Fields Representation with Adaptive Radial Basis Functions

SIGGRAPH 2023 Best Paper Awards

3D Gaussian Splatting for Real-Time Radiance Field Rendering

SIGGRAPH 2023

(ACM Transactions on Graphics)

Bernhard Kerbl* 1,2 Georgios Kopanas* 1,2 Thomas Leimkühler³ George Drettakis^{1,2}

* Denotes equal contribution

1Inria 2Université Côte d'Azur 3MPI Informatik

Train Data

- 1) 367 images extracted
- 2) COLMAP(SfM)
- 3) Trained for 17min (RTX 3090)

- 1) Representation: Gaussian Point Cloud (no neural net!)
- 2) Rendering: Rasterization
- 3) Results & 4) Discussion

1) Gaussian Point Cloud

- coordinate: x,y,z

- covariance

- rotation: r

- scale: s

- density(opacity)
- color:

Spherical Harmonics coefficient (view dependent)

2) Rendering: Ray vs Rasterization

Ray Rendering

- Ray Centric: for NeRF, Implicit

Rasterization

- Object Centric: for explicit(e.g. mesh)

2) Rendering: Ray vs Rasterization

Ray Rendering

NeRF

(3)

Rasterization

Gaussian Splatting

2) Rendering: Rasterization

1. Tile-based Frustrum Culling

2. Project & Sorting

Projected Cov:
$$\Sigma' = JW \Sigma W^T J^T$$
 W: world \Rightarrow cam
J: $3D \cot \Rightarrow 2D \cot jacobian$

3. Point-based Rendering (= Volumetric Rendering formula)

$$C = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i \quad \text{with} \quad T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right),$$

$$\frac{1}{(2\pi)^{d/2}}|\Sigma|^{-1/2}\exp\left\{-\frac{1}{2}(\underline{x}-\underline{\mu})\Sigma^{-1}(\underline{x}-\underline{\mu})^T\right\}$$

- 2) Rendering: Rasterization
- 1. Tile-based Frustrum Culling

16x16 tile-based frustum culling (Pulsar [Lassner and Zollhofer 2021])

→ Just calculate the gaussian in each tile

$$\frac{1}{(2\pi)^{d/2}}|\Sigma|^{-1/2}\exp\left\{-\frac{1}{2}(\underline{x}-\underline{\mu})\Sigma^{-1}(\underline{x}-\underline{\mu})^T\right\}$$

3) Result

Advantage

- Fast Rendering
- Fast Training
- High Quality (not best)

Limitation

- Large Memory
- Splotchy Artifacts

Dataset	Mip-NeRF360						Tanks&Temples					
Method Metric	SSIM [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem	SSIM [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem
Plenoxels	0.626	23.08	0.463	25m49s	6.79	2.1GB	0.719	21.08	0.379	25m5s	13.0	2.3GB
INGP-Base	0.671	25.30	0.371	5m37s	11.7	13MB	0.723	21.72	0.330	5m26s	17.1	13MB
INGP-Big	0.699	25.59	0.331	7m30s	9.43	48MB	0.745	21.92	0.305	6m59s	14.4	48MB
M-NeRF360	0.792^{\dagger}	27.69 [†]	0.237^{\dagger}	48h	0.06	8.6MB	0.759	22.22	0.257	48h	0.14	8.6MB
Ours-7K	0.770	25.60	0.279	6m25s	160	523MB	0.767	21.20	0.280	6m55s	197	270MB
Ours-30K	0.815	27.21	0.214	41m33s	134	734MB	0.841	23.14	0.183	26m54s	154	411MB

4) Discussion

View-Dependent Color Recon

Rasterization 으로도 High Quality
 Recon이 가능하다!
 (Ray 방식이 아니더라도)

Reflection

4) Discussion: Advantages of Explicit

High Compatibility(호환성)

→ Easy Unity, Unreal plugin

Easy Physics Implementation

- without mesh

3. Upcoming Works

Previous NeRF Tasks

Rendering Quality(Anti-aliasing)

- Mip-splatting (Zehao et al)

Few-shot

- Depth-Regularized Gaussian (Jaeyoung et al)

Mesh Extraction

- SuGaR (Antoine et al)

Nov 30, 2023 2

3. Upcoming Works

Dynamic Scene Recon:

- 4D Gaussian Splatting(Gaunjun et al)
- Deformable 3D Gaussian(Ziyi et al)
- Dynamic 3D Gaussians (Jonathon et al)

Text-to-3D:

- DreamGaussian (Jiaxiang et al)
- HumanGaussian (Xian et al)

Nov 30, 2023 2.