Missing data, IPW, Imputation, Covariate shift

David S. Rosenberg

NYU: CDS

January 23, 2021

Contents

- Missing data setup
- 2 Inverse propensity score estimators
- Wariance of IPW
- Self-normalized IPW for MAR
- Regression imputation
- Covariate shift
- Importance-weighted regression imputation

Missing data setup

MCAR setup

- We want to estimate $\mathbb{E}Y$ for $Y \sim p(y)$.
- Full data: Y_1, \ldots, Y_n i.i.d. p(y).
- Response indicators: $R, R_1, ..., R_n \in \{0, 1\}$ are i.i.d.
 - with $\mathbb{P}(R=1)=\pi$.
- What we actually observe:

$$(R_1, R_1 Y_1), \ldots, (R_n, R_n Y_n).$$

- Complete cases are observations with $R_i = 1$.
- Incomplete cases are observations with $R_i = 0$.
- MCAR assumption: $R_i \perp \!\!\! \perp Y_i$ for each i

MAR setup

- Assume we have **covariate** X_i about each individual i.
- Also assume that X_i is **never missing**.
- Full data: $(X_1, Y_1), ..., (X_n, Y_n)$ i.i.d p(x, y).
- What we actually observe:

$$(X_1, R_1, R_1 Y_1), \ldots, (X_n, R_n, R_n Y_n).$$

- MAR assumption: $R_i \perp \!\!\! \perp Y_i \mid X_i$ for each i
 - i.e.p(r, y | x) = p(r | x)p(y | x)

The propensity score

• Key piece in the MAR setting is the model for missingness:

$$\mathbb{P}(R = 1 \mid X = x, Y = y) = \mathbb{P}(R = 1 \mid X = x) = \pi(x).$$

- $\pi(x)$ is called the **propensity score**.
- If the propensity score is 0, we have a blind spot in our input space
 - can't do anything about it (at least with our estimators)

Assumption

Unless otherwise noted, we will always assume that propensity scores are strictly positive: $\pi(x) > 0$.

Inverse propensity score estimators

Observed responses represent multiple unobserved responses

- Suppose $\mathfrak{X} = \{0, 1\}$ corresponding to two types of people.
- When $X_i = 1$, response probability $\pi(1) = \mathbb{P}(R_i = 1 \mid X_i = 1) = 0.2$
- When $X_i = 0$, response probability $\pi(0) = \mathbb{P}(R_i = 1 \mid X_i = 0) = 0.1$
- If we observe Y_i for an individual with $X_i = 1$,
 - That individual represents roughly 5 people from the full data.
- If we observe Y_i for an individual with $X_i = 0$,
 - That individual represents roughly 10 people from the full data.

Inverse propensity weighted (IPW) Mean

• When¹ $\pi(x) > 0 \ \forall x \in \mathcal{X}$, we can define the **IPW mean estimator** for $\mathbb{E}Y$:

$$\hat{\mu}_{ipw} = \frac{1}{n} \sum_{i:R_i=1} \frac{Y_i}{\pi(X_i)}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \frac{R_i Y_i}{\pi(X_i)}$$

- $\hat{\mu}_{ipw}$ is unbiased for $\mathbb{E} Y$ (i.e. $\mathbb{E} \hat{\mu}_{ipw} = \mathbb{E} Y$.)
- $\hat{\mu}_{\mathsf{ipw}}$ is consistent for $\mathbb{E} Y$ (i.e. $\hat{\mu}_{\mathsf{ipw}} \overset{P}{\to} \mathbb{E} Y$ as $n \to \infty$)

¹We assume here and everywhere below that $\pi(x) > 0 \ \forall x \in \mathcal{X}$.

The complete case mean estimator

• The complete case mean estimator is defined as

$$\hat{\mu}_{cc} = \frac{\sum_{i=1}^{n} R_i Y_i}{\sum_{i=1}^{n} R_i}.$$

• i.e. just take the average of the observed Y_i 's

MCAR example

- For i = 1, ..., n
 - Let R_i be independent of (X_i, Y_i) .
 - $\pi(x) = \mathbb{P}(R_i = 1 \mid X_i = x) \equiv 0.1.$
 - Let $Y_i \in \{0, 1\}$ with $\mathbb{P}(Y_i = 1) = 0.75$

IPW vs complete case mean for MCAR

DS-GA 3001: Tools and Techniques for ML Inverse propensity score estimators

☐IPW vs complete case mean for MCAR

- We've added in the orange line here, which represent the mean of the complete cases.
- Note that the orange line is constant between observations, and jumps whenever we get a new observation.

IPW vs complete case mean, 5000x

- We repeat the experiment² above 5000 times (n = 100 samples in each) and get the following.
- Recall that the true mean is $\mu = 0.75$.

estimator	mean	SD	SE	bias	RMSE
mean	0.751654	0.143943	0.002036	0.001654	0.143953
ipw_mean	0.752540	0.262224	0.003708	0.002540	0.262237

²In the very rare event that the sample in a particular repetition has 0 complete cases, we take $\hat{\mu}_{cc} = 0$.

Variance of IPW

Probability review: how many responses will we get?

- $R, R_1, ..., R_n \in \{0, 1\}$ are i.i.d. with $\mathbb{P}(R = 1) = 0.1$.
- Number of observations: $N = \sum_{i=1}^{n} R_i$.
- Expected number of responses is $\mathbb{E}N = 0.1n$ and $N \sim \text{Binom}(n, p = 0.1)$.
- Histogram of *N* from 1000 simulations of our setup with n = 100:

IPW mean vs number of observations

IPW mean for "too many" observations

IPW: Can we improve this estimator for MCAR?

• IPW for constant observation probability π :

$$\hat{\mu}_{ipw} = \frac{1}{n} \sum_{i=1}^{n} \frac{R_i Y_i}{\pi}$$

- Idea: Rather than dividing by n,
 - divide by actual number of observations $N = \sum_{i=1}^{n} R_i$.
- This exactly gives us back

$$\hat{\mu}_{cc} = \frac{\sum_{i=1}^{n} R_i Y_i}{\sum_{i=1}^{n} R_i}.$$

- Have we gone in a useless circle?
- Not at all! Let's try to apply this "correction" to the more general MAR case...

Self-normalized IPW for MAR

Weights

We can write

$$\hat{\mu}_{ipw} = \frac{1}{n} \sum_{i=1}^{n} \frac{R_i Y_i}{\pi(X_i)} = \frac{1}{n} \sum_{i=1}^{n} W_i R_i Y_i,$$

where

$$W_i := \frac{1}{\pi(X_i)} = \frac{1}{\rho(R_i = 1 \mid X_i)}.$$

- We'll refer to W_i as the **weight** for observation Y_i .
- It's like each observed response Y_i (with $R_i = 1$) represents W_i responses in the full data.
- Upweighting by W_i makes up for the zeros when $R_i = 0$.

IPW in MAR: very large or small number of observations?

- If each observed response Y_i represents W_i responses in the full data,
 - then our observed data represents $\sum_{i=1}^{n} W_i R_i$ people.
- The IPW estimate normalizes by n: $\hat{\mu}_{ipw} = \frac{1}{n} \sum_{i=1}^{n} W_i R_i Y_i$.
- But what if $\sum_{i=1}^{n} W_i R_i$ is much smaller or larger than n?
- Then it seems like we're normalizing by the wrong thing...

MAR: "SeaVan1" distribution illustrated

A sample of size 1000 from the full data distribution is shown below:

DS-GA 3001: Tools and Techniques for ML Self-normalized IPW for MAR

MAR: "SeaVan1" distribution illustrated

We've added jitter to the \boldsymbol{x} values so that it's easier to see the distribution.

MAR: "SeaVan1" distribution illustrated

 (X_i, Y_i) for which $R_i = 1$, i.e. the complete cases.

IPW vs total weight of observations

• The points below have correlation 0.885.

The self-normalized IPW estimator

• If we normalize by $\sum_{i=1}^{n} W_i R_i$ instead of n, we get

Definition (Self-normalized IPW mean)

For a dataset $(W_1, R_1, Y_1), \dots, (W_n, R_n, Y_n)$ as described above,

$$\hat{\mu}_{\mathsf{sn_ipw}} = \frac{\sum_{i=1}^{n} W_i R_i Y_i}{\sum_{i=1}^{n} W_i R_i}$$

• In the MCAR case with $\pi(x) \equiv p$, $\hat{\mu}_{\text{sn ipw}} = \hat{\mu}_{\text{cc}}$ and seems preferable to $\hat{\mu}_{\text{ipw}}$.

Self-normalized IPW estimator on SeaVan1

IPW vs self-normalized IPW: 5000x

- We repeat the experiment above 5000 times (1000 samples each) and get the following.
- Recall that the true mean is $\mu = 1.0$.

estimator	mean	SD	SE	bias	RMSE
mean $(\hat{\mu}_{cc})$ ipw_mean $(\hat{\mu}_{ipw})$				-0.643534 -0.005635	
$sn_ipw_mean~(\hat{\mu}_{sn_ipw})$	0.978119	0.197319	0.002791	-0.022659	0.198615

Regression imputation

Regression imputation: basic idea

Χ	R	Y
<i>x</i> ₁	1	<i>y</i> ₁
<i>x</i> ₂	0	?
<i>X</i> 3	0	?
<i>X</i> 4	1	<i>y</i> ₄
:	:	:
Xn	1	Уn

X	R	Y
<i>x</i> ₁	1	<i>y</i> ₁
<i>x</i> ₂	0	$\hat{f}(x_2)$
<i>x</i> ₃	0	$\hat{f}(x_3)$
<i>X</i> 4	1	<i>y</i> 4
:	:	:
Xn	1	Уn

- Fit $\hat{f}(x)$ on complete cases (R=1) to approximate $\mathbb{E}[Y \mid X=x]$.
- ullet Regression imputation estimator: Estimate $\mathbb{E} Y$ with

$$\frac{1}{n} \left(y_1 + \hat{f}(x_2) + \hat{f}(x_3) + y_4 + \dots + y_n \right).$$

Well-specified and misspecified models

- In statistics, a model is a set of distributions
 - (or conditional distributions).
- A model is **well specified** if it contains the data-generating distribution.
 - Also referred to as correctly specified.
- If a model is not well specified, we say it's misspecified or incorrectly specified.
- We'll see that regression imputation has the following performance characteristics:

	MCAR	MAR
well specified	Good	Good
misspecified	OK/Good	Bad

MAR: SeaVan1 distribution illustrated

 (X_i, Y_i) for which $R_i = 1$, i.e. the complete cases.

Performance on SeaVan1

- Fit $\hat{f}(x) = a + bx$ to the complete cases.
- Impute missing Y_i 's with $\hat{f}(X_i)$...

estimator	mean	SD	SE	bias	RMSE
mean $(\hat{\mu}_{cc})$	0.3572	0.0503	0.0007	-0.6435	0.6455
ipw_mean (µ̂ _{ipw})	0.9951	0.3086	0.0044	-0.0056	0.3087
$sn_ipw_mean\ (\hat{\mu}_{sn_ipw})$	0.9781	0.1973	0.0028	-0.0227	0.1986
impute_linear $(\hat{\mu}_{\hat{f}})^{-}$	0.9989	0.0777	0.0011	-0.0018	0.0777

MAR: "SeaVan2" distribution illustrated

• Full data for sample of size n = 1000; $\mathbb{E}[Y \mid X = x] = \mathbb{1}[x \ge 1]$.

MAR: "SeaVan2" distribution illustrated

• Complete cases in sample of size n = 1000

Performance on SeaVan2

• Fit $\hat{f}(x) = a + bx$ to the complete cases.

estimator	mean	SD	SE	bias	RMSE
mean $(\hat{\mu}_{cc})$	0.3453	0.0497	0.0007	-0.3221	0.3259
ipw_mean ($\hat{\mu}_{ipw}$)	0.6634	0.1977	0.0028	-0.0040	0.1978
$sn_{ipw}_mean(\hat{\mu}_{sn_{ipw}})$	0.6580	0.1462	0.0021	-0.0094	0.1465
impute_linear $(\hat{\mu}_{\hat{f}})^{-1}$	0.9382	0.0793	0.0011	0.2708	0.2821

SeaVan2 MCAR illustrated

• Complete cases in sample size n = 1000

Performance on SeaVan2 MCAR

• Fit $\hat{f}(x) = a + bx$ to the complete cases.

• True mean: 0.667

estimator	mean	SD	SE	bias	RMSE
mean $(\hat{\mu}_{cc})$	0.66724	0.05059	0.00226	0.00116	0.05061
ipw_mean ($\hat{\mu}_{ipw}$)	0.66712	0.05552	0.00248	0.00104	0.05553
$sn_ipw_mean \ (\hat{\mu}_{sn-ipw})$	0.66724	0.05059	0.00226	0.00116	0.05061
$impute_linear\left(\hat{\mu}_{\hat{f}} ight)^{-1}$	0.66763	0.04953	0.00222	0.00155	0.04955

MCAR normal nonlinear

Complete cases for $\mathbb{P}(R=1 \mid X) \equiv 0.5$ and n=1000:

Performance on MCAR normal nonlinear

• True mean: 1.50

estimator	mean	SD	SE	bias	RMSE
mean	1.5021	0.0593	0.0019	0.0009	0.0593
ipw_mean	1.5014	0.0759	0.0024	0.0002	0.0759
sn_ipw_mean	1.5021	0.0593	0.0019	0.0009	0.0593
$impute_{linear}$	1.5030	0.0592	0.0019	0.0018	0.0592

MAR normal nonlinear

Full data for n = 1000:

MAR normal nonlinear

Complete cases for n = 1000:

MAR_normal_nonlinear

Note that the linear fit is completely off from the fit to the full data (preceding slide) because of the sample bias.

Performance on MAR normal nonlinear

• True mean: 1.50

estimator	mean	SD	SE	bias	RMSE
mean	2.4075	0.0476	0.0015	0.9063	0.9075
ipw_mean	1.4985	0.0851	0.0027	-0.0027	0.0852
sn_ipw_mean	1.5070	0.1224	0.0039	0.0057	0.1225
$impute_{linear}$	2.4060	0.0583	0.0018	0.9048	0.9066

What's going on?

- The best linear fit to the complete cases is
 - COMPLETELY DIFFERENT from the best linear fit to full data.
- Essential issue: model is fit to the complete cases,
 - but applied on incomplete cases.
- Complete cases and incomplete cases have different distributions!

Covariate shift

Supervised learning framework

- \bullet \mathfrak{X} : input space
- y: outcome space
- ullet \mathcal{A} : action space
- Prediction function $f: \mathcal{X} \to \mathcal{A}$ (takes input $x \in \mathcal{X}$ and produces action $a \in \mathcal{A}$)
- Loss function $\ell: \mathcal{A} \times \mathcal{Y} \to \mathbb{R}$ (evaluates action a in the context of outcome y).

Risk minimization

- Let $(X, Y) \sim p(x, y)$.
- The **risk** of a prediction function $f: \mathcal{X} \to \mathcal{A}$ is $R(f) = \mathbb{E}\ell(f(X), Y)$.
 - the expected loss of f on a new example $(X, Y) \sim p(x, y)$
- Ideally we'd find the Bayes prediction function $f^* \in \operatorname{arg\,min}_f R(f)$.

Empirical risk minimization

- Training data: $\mathcal{D}_n = ((X_1, Y_1), \dots, (X_n, Y_n))$ • drawn i.i.d. from p(x, y).
- Let \mathcal{F} be a **hypothesis space** of functions mapping $\mathfrak{X} \to \mathcal{A}$
- ullet A function \hat{f} is an **empirical risk minimizer** over \mathcal{F} if

$$\hat{f} \in \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y_i).$$

- Uses sample \mathfrak{D}_n from p(x,y) to estimate expectation w.r.t. p(x,y).
- Most machine learning methods can be written in this form.
- What if we only have a sample from another distribution q(x, y)?

Covariate shift

• Goal: Find f minimizing risk $R(f) = \mathbb{E}\ell(f(X), Y)$ where

$$(X,Y) \sim p(x,y) = p(x)p(y \mid x).$$

• Standard: $\mathfrak{D}_n = ((X_1, Y_1), \dots, (X_n, Y_n))$ is i.i.d. from

$$p(x,y) = p(x)p(y \mid x).$$

• Covariate shift: $\mathfrak{D}_n = ((X_1, Y_1), \dots, (X_n, Y_n))$ is i.i.d. from

$$q(x, y) = q(x)p(y \mid x).$$

- The covariate distribution has changed, but
 - the conditional distribution p(y|x) is the same in both cases.

Covariate shift: the issue

Under covariate shift,

$$\mathbb{E}_{(X_i,Y_i)\sim q(x,y)}\left[\frac{1}{n}\sum_{i=1}^n\ell(f(X_i),Y_i)\right]\neq\mathbb{E}_{(X,Y)\sim p(x,y)}\ell(f(X),Y).$$

- i.e the empirical risk is a biased estimator for risk.
- Naive empirical risk minimization is optimizing the wrong thing.
- Can we get an unbiased estimate of risk with $\mathcal{D}_n \sim q(x,y)$?
- Importance weighting is one approach to this problem.

Importance weighting for covariate shift

• $\mathfrak{D}_n = ((X_1, Y_1), \dots, (X_n, Y_n))$ is i.i.d. from

$$q(x,y) = q(x)p(y \mid x).$$

• Then the importance-weighted empirical risk is

$$\hat{R}_{\text{IW}}(f) = \frac{1}{n} \sum_{i=1}^{n} \frac{p(x)p(y \mid x)}{q(x)p(y \mid x)} \ell(f(X_i), Y_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \frac{p(x)}{q(x)} \ell(f(X_i), Y_i).$$

- Note that $\mathbb{E}_{\mathcal{D}_{\sim \mathcal{D}}(X,Y)} \hat{R}_{\text{IW}}(f) = \mathbb{E}_{(X,Y) \sim p(X,Y)} \ell(f(X),Y)$.
- So the importance-weighted empirical risk is unbiased.

Potential variance issues

• Since the summands are independent, we have

$$\operatorname{Var}\left(\hat{R}_{\mathsf{iw}}(f)\right) = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}f(X_{i})\frac{p(X_{i})}{q(X_{i})}\right)$$
$$= \frac{1}{n}\operatorname{Var}\left(f(X)\frac{p(X)}{q(X)}\right)$$

- If q(x) is much smaller than p(x),
 - the importance weight can get very large,
 - variance can blow up.

Importance-weighted regression imputation

Importance weighted

- Our linear model is fit to data from the complete case distribution
 - we need it to be fit to the incomplete case distribution
 - or the full data distribution (also common)
- Two new estimators:
 - impute_IPW_linear: examples weighted by $\frac{1}{\pi(X_i)}$ so unbiased for full data
 - impute_IW_linear: examples weighted by $\frac{1-\pi(X_i)}{\pi(X_i)}$ so unbiased for incomplete data

Recap: MAR normal nonlinear

Complete cases for n = 1000:

Performance on MAR normal nonlinear

• True mean: 1.50

estimator	mean	SD	SE	bias	RMSE
mean	2.4075	0.0476	0.0015	0.9063	0.9075
ipw_mean	1.4985	0.0851	0.0027	-0.0027	0.0852
sn_ipw_mean	1.5070	0.1224	0.0039	0.0057	0.1225
impute_linear	2.4060	0.0583	0.0018	0.9048	0.9066
impute_ipw_linear	1.9895	0.0777	0.0025	0.4883	0.4944
_impute_iw_linear	1.5005	0.0466	0.0015	-0.0007	0.0466

Recap: SeaVan1 distribution illustrated

 (X_i, Y_i) for which $R_i = 1$, i.e. the complete cases.

Performance on SeaVan1

• Fit $\hat{f}(x) = a + bx$ to the complete cases.

estimator	mean	SD	SE	bias	RMSE
mean	0.3564	0.0515	0.0016	-0.6431	0.6452
ipw_mean	1.0127	0.2968	0.0094	0.0132	0.2971
sn_ipw_mean	0.9906	0.1890	0.0060	-0.0089	0.1892
impute_linear	1.0022	0.0781	0.0025	0.0027	0.0782
impute_ipw_linear	1.0039	0.1439	0.0046	0.0044	0.1440
impute_iw_linear	1.0047	0.1529	0.0048	0.0052	0.1530

MAR: "SeaVan2" distribution illustrated

• Complete cases in sample of size n = 1000

Performance on SeaVan2

• Fit $\hat{f}(x) = a + bx$ to the complete cases.

estimator	mean	SD	SE	bias	RMSE
mean	0.3425	0.0493	0.0007	-0.3244	0.3282
ipw_mean	0.6655	0.1939	0.0027	-0.0014	0.1939
sn_ipw_mean	0.6594	0.1446	0.0020	-0.0075	0.1448
impute_linear	0.9364	0.0792	0.0011	0.2695	0.2809
impute_ipw_linear	0.6750	0.1503	0.0021	0.0081	0.1505
impute_iw_linear	0.6677	0.1561	0.0022	0.0008	0.1561

Caveat on results

- The importance-weighted regression imputation estimators seem promising.
- The estimators rely on knowing the importance weights p(x)/q(x).
- Performance may be significantly worse when we use estimates $\hat{p}(x)/\hat{q}(x)$.
- This is something we can explore in homeworks and projects.

References

References I