(Должность руководителя	(Должность руководителя
организации-заказчика)	организации-исполнителя
/ (Ф.И.О.)	/ (Ф.И.О.)

СОГЛАСОВАННО

«__»____ 2025 г.

УТВЕРЖДАЮ

«__»____2025 г.

(Проект) ТЕХНИЧЕСКОЕ ЗАДАНИЕ НА СЧ ОКР создание Низкоорбитальной Системы Навигации и Синхронизации (НСНС)

- 1. ОБЩИЕ СВЕДЕНИЯ
- 11. Наименование системы

Полное наименование: Низкоорбитальная Система Навигации и Синхронизации.

Условное обозначение: НСНС. 12 Основание для разработки

- Разработка ведется на основании эскизного проекта «Низкоорбитальная Система Навигации и Синхронизации» (далее ЭП), утвержденного _____ г., и Отчета «Стандарты Частоты и Протоколы Времени для постарения Низкоорбитальных Спутниковых Группировок» компании ООО «ШИВА НЕТВОРК от 29.06.2025 г.
- Необходимость создания системы обусловлена растущими требованиями к точности, доступности, целостности и помехозащищенности сервисов определения местоположения, навигации и синхронизации (PNT) для критической инфраструктуры, автономного транспорта и систем национальной безопасности, а также уязвимостью существующих глобальных навигационных спутниковых систем (ГНСС).
 - 13. Участники разработки

Технический проект

Эскизный проект

ТΠ

ЭП

- Заказчик: [Наименование организации-заказчика]
- Разработчик: [Наименование организации-разработчика]
- 14. Перечень условных обозначений и сокращений

BOC	Binary Offset Carrier (двоичная манипуляция со смещением несущей)
CSAC	Chip-Scale Atomic Clock (атомные часы чипового масштаба)
ГНСС	Глобальная навигационная спутниковая система
KA	Космический аппарат
KC	Космический сегмент
LE0	Низкая околоземная орбита (Low Earth Orbit)
MEMS	Micro-Electro-Mechanical Systems (микроэлектромеханические системы)
MKA	Малый космический аппарат
НАП	Навигационная аппаратура потребителей
HC	Наземный сегмент
HCHC	Низкоорбитальная Система Навигации и Синхронизации
ПН	Полезная нагрузка
PNT	Position, Navigation, and Timing (Местоположение, Навигация,
	Синхронизация)
PTP	Precision Time Protocol (протокол точного времени)
ПС	Пользовательский сегмент
CAC	Срок активного существования
T3	Техническое задание

2. НАЗНАЧЕНИЕ И ЦЕЛИ СОЗДАНИЯ СИСТЕМЫ

21. Назначение системы

Система НСНС предназначена для предоставления суверенных, глобальных, высокоточных и помехозащищенных услуг по определению пространственных координат, вектора скорости и точного времени (PNT-сервисы) для неограниченного числа гражданских и специальных потребителей.

- 22 Система должна быть способна функционировать в двух режимах:
- Дополняющий режим: Функционирование совместно с существующими ГНСС (GPS, ГЛОНАСС) для повышения их точности, доступности и помехозащищенности.
- Автономный режим: Обеспечение полноценного PNT-обслуживания при недоступности или подавлении сигналов традиционных ГНСС.
 - 23. Цели создания системы
 - Ц-1: Обеспечение глобального и непрерывного навигационного покрытия.
- Ц-2: Достижение сантиметрового уровня точности определения координат в реальном времени для массового потребителя в автономном режиме.
- Ц-3: Обеспечение помехозащищенности навигационных сигналов, позволяющей устойчиво функционировать при отношении, помеха/сигнал (J/S) больше 0 дБ.
- Ц-4: Реализация криптографических механизмов аутентификации навигационных данных для защиты от атак подмены ("спуфинг").
- Ц-5: Сокращение времени сходимости высокоточных методов позиционирования (PPP, RTK) до единиц минут за счет быстрой смены геометрии орбитальной группировки.
- Ц-6: Обеспечение высокой доступности PNT-сервисов в сложных условиях приема, включая плотную городскую застройку ("городские каньоны").
- Ц-7: Создание открытой экосистемы для сторонних разработчиков пользовательской аппаратуры и сервисов на базе HCHC.

3. ТРЕБОВАНИЯ К СИСТЕМЕ

- 31. Требования к архитектуре и составу Система НСНС должна состоять из трех взаимосвязанных сегментов:
- <u>Космический сегмент (КС):</u> Орбитальная группировка космических аппаратов, формирующих и излучающих навигационные сигналы.
- <u>Наземный сегмент (НС):</u> Глобальная сеть наземных станций, обеспечивающая управление КС, мониторинг целостности системы, формирование и закладку на борт КА эфемеридно-временной информации.
- <u>Пользовательский сегмент (ПС):</u> Навигационная аппаратура потребителей (НАП), осуществляющая прием и обработку сигналов НСНС для решения

навигационной задачи.

32 Требования к характеристикам космического сегмента (КС)

Требование	Параметр		
Состав орбитальной	102+ малых космических аппарата (МКА).		
группировки	102 · Manbix Rockin Heckin alliapara (MRA).		
Параметры орбитальной	- Рабочая высота орбиты: ~1000 км (уточняется		
	•		
структуры	заказчиком на этапе ЭП)		
	- Гибридная структура: основная группировка из 90 KA		
	с наклонением 55° и дополнительная группировка из 12		
	КА на приполярных орбитах с наклонением 90°.		
Срок активного	Не менее 5-7 лет для каждого МКА.		
существования (САС)			
Состав основной	- Архитектура бортового стандарта частоты:		
полезной нагрузки (ПН)	Должна быть реализована гибридная архитектура,		
	включающая:		
	- Основной стандарт:		
	Радиационно-стойкие миниатюрные атомные часы		
	(CSAC). Стабильность (девиация Аллана) не хуже 5×10 ⁻¹²		
	при т=1с и не хуже 1×10 ⁻¹³ за 24 часа. Обеспечивает		
	долговременную автономность (режим holdover).		
	- Вспомогательный стандарт:		
	Высокостабильный MEMS-осциллятор. Используется в		
	качестве резервного источника и для обеспечения		
	устойчивости к высоким вибрационным нагрузкам на		
	этапе выведения и маневрирования.		
	- Навигационный передатчик: L- и S-диапазонов.		
	- Аппаратура межспутниковых линий связи (ISL)		
	(уточняется на этапе проектирования):		
	Оптические терминалы для высокоточной автономной		
	синхронизации группировки.		
Энергообеспечение МКА	Пиковое энергопотребление не должно превышать 195 Вт.		
	Солнечные и аккумуляторные батареи должны		
	обеспечивать непрерывную работу с учетом прохождения		
	теневых участков орбиты.		
Стратегия восполнения	Должен быть реализован "конвейерный" подход к		
группировки	производству и запуску МКА для восполнения и		
	модернизации группировки без прерывания		
	предоставления услуг.		
<u> </u>			

33. Требования к характеристикам наземного сегмента (НС)

Состав: Глобальная сеть, включающая не менее 10 станций мониторинга и управления, а также центральный вычислительный комплекс.

Эфемеридно-временное обеспечение: НС должен обеспечивать расчет и прогнозирование орбит всех КА с учетом всех значимых возмущающих факторов (нецентральность гравитационного поля Земли до гармоник высокого порядка, сопротивление атмосферы по модели NRLMSISE-00, давление солнечного излучения, приливные воздействия). Обеспечить формирование единой системной шкалы времени НСНС и ее синхронизацию с национальной шкалой времени UTC(SU) с погрешностью не более 0.5 нс от ГСВЧ.

Требования к производительности: Вычислительные мощности НС должны обеспечивать решение задач определения и прогнозирования орбит и параметров часов для всей группировки в квази-реальном времени (производительность не менее 10 TFLOPS).

34 Требования к навигационным сигналам и протоколам

Примечание: диапазоны уточняются заказчиком на этапе ЭП.

Энергетика сигнала: Отношение несущая/шум (C/N_0) принимаемого на поверхности Земли сигнала должно быть не менее 43.5 дБ-Гц в номинальных условиях приема.

Структура сигнала: Должна использоваться широкополосная модуляция типа BOC (Binary Offset Carrier). В качестве базовых должны рассматриваться сигналы BOC (10, 5) в L-диапазоне и BOC (15, 2.5) в S-диапазоне.

Аутентификация: должен быть реализован механизм криптографической аутентификации навигационного сообщения (например, на основе протокола типа TESLA или других) для гарантированной защиты от атак типа "спуфинг".

Целостность: Протоколы передачи данных должны содержать информацию о целостности сигнала, позволяющую потребителю оперативно (в течение нескольких секунд) получать оповещение о недостоверности измерений от конкретного КА.

35. Требования к надежности, эксплуатации и точности системы

Коэффициент готовности: Система должна обеспечивать коэффициент готовности сервиса на глобальном уровне не ниже 0.999.

Геометрический фактор (GDOP): Значение GDOP не должно превышать 2.0 в течение 99.9% времени для 99% зоны обслуживания.

Автономность: при полном отказе наземного сегмента управления система должна сохранять полную функциональность (предоставление услуг с заданными точностными характеристиками) в течение не менее 24 часов за счет использования межспутниковых линий связи и гибридного стандарта частоты (*целесообразность применение межспутниковой связи уточняется на ЭП*).

Эксплуатация: Система должна быть рассчитана на круглосуточную непрерывную эксплуатацию.

36. Требования к системе межспутниковой и потребительской синхронизации.

Для обеспечения автономности и высокой точности группировки должна быть реализована система межспутниковой синхронизации на базе адаптированного протокола времени.

Базовый протокол: Система должна базироваться на протоколе IEEE 1588 (Precision Time Protocol, PTP).

Профиль протокола: должен быть разработан и реализован специализированный профиль высокой точности для LEO-группировок, основанный на принципах профиля White Rabbit (IEEE 1588 High Accuracy Profile).

Компенсация асимметрии задержек: Протокол должен включать обязательный механизм двустороннего обмена временными метками между КА для непрерывного вычисления и компенсации динамической асимметрии задержек в оптических межспутниковых каналах и каналах связи с потребителем.

Компенсация доплеровских и релятивистских эффектов: В программное обеспечение протокола должен быть интегрирован модуль предиктивной компенсации. Данный модуль должен в реальном времени рассчитывать и вносить поправки на доплеровский сдвиг частоты и релятивистские эффекты (СТО и ОТО), используя эфемеридные данные КА.

Адаптация к топологии: Алгоритмы протокола должны обеспечивать быструю реконвергенцию (не более 1 минуты) при изменении топологии сети (переключении на новый Master-спутник) без существенной потери точности синхронизации.

Целевая точность: Погрешность взаимной синхронизации шкал времени любых двух КА, связанных прямой линией связи, не должна превышать 1.0 нс (СКО).

4. СОСТАВ И СОДЕРЖАНИЕ РАБОТ ПО СОЗДАНИЮ СИСТЕМЫ Работы по созданию системы должны быть выполнены в несколько этапов.

Этап	Содержание работ	Ожидаемый результат
Этап 1:	- Разработка полного комплекта РКД на	Комплект РКД и ПО,
Разработка РКД	составные части системы: МКА, полезную	утвержденный для
(Рабочей	нагрузку, компоненты наземного и	производства.
конструкторской	пользовательского сегментов.	
документации)	- Разработка ПО для всех сегментов	
	системы.	
Этап 2:	- Изготовление и сборка летных образцов	Готовые к
Производство и	MKA.	развертыванию
автономные	- Производство оборудования для	компоненты КС и НС.
испытания	наземного сегмента.	
	- Проведение автономных и комплексных	
	испытаний всех компонентов системы.	

Этап 3:	- Проведение запусков МКА и их	Сформированная
Развертывание	выведение на целевые орбиты.	орбитальная
системы	- Развертывание и пуско-наладка	группировка и
	станций наземного сегмента.	функциональный
		наземный сегмент.
Этап 4:	- Проведение комплексных летных	Акт о завершении
Летные	испытаний системы.	летных испытаний.
испытания и	- Проверка соответствия реальных	Подтвержденные
опытная	характеристик требованиям настоящего	характеристики
эксплуатация	Т3.	системы.
	- Предоставление услуг ограниченному	
	кругу потребителей в режиме опытной	
	эксплуатации.	
Этап 5:	- Завершение опытной эксплуатации.	Система, принятая в
Ввод в штатную	- Устранение выявленных замечаний.	штатную эксплуатацию.
эксплуатацию	- Подписание акта о приемке системы в	
	штатную эксплуатацию.	

5. ПОРЯДОК КОНТРОЛЯ И ПРИЕМКИ

5.1. Виды и этапы испытаний:

Для контроля качества и подтверждения соответствия требованиям настоящего ТЗ должны быть проведены следующие виды испытаний:

- <u>Автономные испытания составных частей:</u> проводятся разработчиками компонентов для подтверждения их характеристик на соответствие требованиям раздела 3 настоящего ТЗ.
- <u>Комплексные стендовые испытания:</u> Испытания МКА в сборе, полезной нагрузки и оборудования НС для проверки их совместного функционирования и протоколов взаимодействия.
- <u>Летные испытания:</u> проводятся после развертывания КС и НС для комплексной проверки системы в реальных условиях и подтверждения ключевых системных характеристик (точность, доступность, целостность, помехозащищенность).
- <u>Опытная эксплуатация:</u> Эксплуатация системы по назначению с целью определения фактических показателей качества, надежности и отработки эксплуатационной документации.
- <u>Приемочные испытания:</u> Финальные испытания для принятия решения о вводе системы в штатную эксплуатацию. Программа и методика приемочных испытаний должны обеспечивать проверку всех требований настоящего ТЗ.