Robotika in računalniško zaznavanje (RRZ)

Robotski senzorji

Danijel Skočaj Univerza v Ljubljani Fakulteta za računalništvo in informatiko

v7.0

Robotika in računalniško zaznavanje

Senzorji

Robotske platforme

http://ias.cs.tum.edu

Senzorji

- Tipala
- Ekvivalent človeškim čutilom
- Zbirajo informacije iz okolja
- Senzor je elektronska/mehanska/kemična naprava, ki preslika atribute okolja v kvantitativno meritev
- Robot lahko loči samo med tistimi stanji v okolju, ki jih lahko različno zazna

Senzorsko-robotski sistem

Cikel zaznavanje – akcija

Velika abstrakcija realnega sveta

Čutila

Človeška čutila:

- Pri robotskem zaznavanju je seznam čutil občutno daljši!
 - Preko človeških zaznavnih sposobnosti
 - Vid preko vidnega spektra (IR kamere, itn.)
 - Aktivni vid (radar, lasersko merjenje oddaljenosti)
 - Poslušanje izven obsega 20 Hz-20 kHz (ultrazvok)
 - Kemične analize boljše kot okušanje in vohanje
 - Merjenje temperature, vlage, svetlosti, radiacije, pritiska, glasnosti, pozicije, smeri, pospeška, hitrosti, itn.

Klasifikacija senzorjev

- Notranji in zunanji senzorji
 - Notranji (proprioceptive) merijo notranja stanja robota (stanje baterije, položaj kolesa, kot robotske roke)
 - Zunanji (exteroceptive) merijo stanje okolja (večina senzorjev)
- Pasivni in aktivni senzorji
 - Pasivni: samo sprejemajo energijo iz okolja (npr. kamera)
 - Aktivni: tudi sami emitirajo energijo v okolje med merjenjem (npr. radar, sonar)
- Brezkontaktni in kontaktni senzorji
 - Brezkontaktni (neinvazivni): s predmetom merjenja ni kontakta
 - Kontaktni (invazivni): merjenje se izvaja s kontaktom
- Vizualni in nevizualni

Klasifikacija senzorjev

General classification (typical use)	Sensor Sensor System	PC or EC	A or P
Tactile sensors	Contact switches, bumpers Optical barriers Noncontact proximity sensors	EC	P
(detection of physical contact or		EC	A
closeness; security switches)		EC	A
Wheel/motor sensors (wheel/motor speed and position)	Brush encoders Potentiometers Synchros, resolvers Optical encoders Magnetic encoders Inductive encoders Capacitive encoders	PC PC PC PC PC PC	P P A A A A A
Heading sensors	Compass Gyroscopes Inclinometers	EC	P
(orientation of the robot in relation to		PC	P
a fixed reference frame)		EC	A/P

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive.

Klasifikacija senzorjev

General classification (typical use)	Sensor Sensor System	PC or EC	A or P
Ground-based beacons (localization in a fixed reference frame)	GPS Active optical or RF beacons Active ultrasonic beacons Reflective beacons	EC EC EC EC	A A A
Active ranging (reflectivity, time-of-flight, and geometric triangulation)	Reflectivity sensors Ultrasonic sensor Laser rangefinder Optical triangulation (1D) Structured light (2D)	EC EC EC EC	A A A A
Motion/speed sensors (speed relative to fixed or moving objects)	Doppler radar Doppler sound	EC EC	A A
Vision-based sensors (visual ranging, whole-image analy- sis, segmentation, object recognition)	CCD/CMOS camera(s) Visual ranging packages Object tracking packages	EC	P

Senzorji v robotih

Piezo Bend Sensor

Pendulum Resistive Tilt Sensors

Metal Detector

UV Detector

Pyroelectric Detector

Gas Sensor

Gieger-Muller Radiation Sensor

Digital Infrared Ranging

CDS Cell Resistive Light Sensor

Resistive Bend Sensors

Pressure Switch

Miniature Polaroid Sensor

IR Sensor w/lens

Touch Switch

Gyro

Polaroid Sensor Board

IR Reflection Sensor

Lite-On IR

Remote Receiver

IR Amplifier Sensor

Limit Switch

Thyristor

Hall Effect Magnetic Field Sensors

Piezo Ultrasonic Transducers

Radio Shack

Remote Receiver

Receiver

Kamere

Vidna "svetloba"

Bližnjeval. infra rdeča "svetloba" (NIR)

Dolgoval. infra rdeča "svetloba" (FLIR)

Teraherčna "svetloba" (T-ray)

Zaznavanje EM valovanja

Senzorji z upori

- Resistive sensors
- Trak z upori (band sensor)
 - Ko se trak upogne, se spremeni upornost

- Potenciometer
 - Senzor pozicije pri drsnih ali rotirajočih se mehanizmih

- Fotocelica
 - Upornost je majhna, ko je osvetlitev velika
 - Detekcija svetlobe

Infrardeči senzorji

- Intenzitetni IR senzorji
 - Oddajajo in sprejemajo IR svetlobo
 - Fototranistor: več svetlobe kot zazna, večji tok steče

- Občutljivi na dnevno svetlobo, reflektivnost predmetov, oddaljenost
- Robustni, poceni
- Aplikacije: detekcija objektov, optični enkoder
- Modulirani IR senzorji
 - Modulacija in demodulacija
 - Detektira se utripe
 - Bolj robustno
 - IR daljinci, itn.

Infrardeči senzorji

- Senzorji oddaljenosti
- Merijo kot vpadle svetlobe -> triangulacija

Neobčutljivi na ambientalno svetlobo

Merilci rotacije

Inkrementalni optični merilci

- Absolutni optični merilci
 - Absolutna pozicija
 - Grayeva koda

Merilci oddaljenosti

- Stereo vid
- Oblika iz X
- Globinski senzor s kodirano svetlobo
- IR senzor oddaljenosti
- Merjenje časa leta (Time Of Flight sensors)
 - Pošlji signal, čakaj, da se vrne, izmeri časovno razliko
 - RADAR
 - SONAR
 - LIDAR

Sonar

- Oddaja ultrazvok
- Merjenje časa, ki ga porabi ultrazvok, da se vrne k sprejemniku
- Netopir, delfin
- Od nekaj cm do 30 m
- 30 stopinj nedoločenosti
- Precej počasen: 200ms za 30m

Sonar

Uporaba: za mapiranje prostora

Problem: šum, interferenca

Laserski merilci razdalje

- LIDAR (Light Detection And Ranging)
- Emitira laserske impulze
- Vrteče zrcalo poskrbi, da se pokrije več kotov (do 180 st.)
- Z gibanjem gor-dol lahko pokrije tudi celotno (pol)sfero
- Večja kotna ločljivost (0.25 stopinje)
- Hitrejše delovanje
- Za različne obsege, notranji, zunanji
- Robusten

Vztrajnostno senzorji

- Giroskop (gyroscopes)
 - Meri spremembo orientacije
 - izrablja načelo ohranitve vrtilne količine
- Pospeškometer (Accelerometer)
 - Meri pospešek, tudi orientacijo
 - Enoosni, triosni
 - Senzor tresljajev, analiza vibracij, zaznavanje orientacije
 - Nintendo Wii, pametni telefoni

Kompas

- Elektronski kompas
- Nam pove absolutno orientacijo robota
 - S, J, V, Z

GPS

- Global Positioning System
- Sistem globalnega določanja položaja
- 24 satelitov na višini 20200 km
- Atomska ura
- Sateliti oddajajo čas in podastke o tirnici
- Vidni morajo biti vsaj 4 sateliti
- Diferenčni GPS upošteva se tudi signale iz dodatnih virov (zemeljskih)

Senzorji dotika

- Tactile sensors
- Gumbi, tipke in stikala
- Odbijači –senzor trka (bumpers)
- Senzorji dotika na robotski roki
- Več vrst:
 - Piezoodporni
 - Piezoelektični
 - Kapacitivni
 - Elastoodporni
- Umetna koža

Akustični senzorji

- Zaznavanje zvoka
- Sonar

- Mikrofon
 - Več mikrofonov
 - Zaznavanje smeri zvoka

Ostali senzorji

- Zunanji senzorji za merjenje
 - Hitrosti vetra
 - Temperatura
 - Vlage
- Notranji senzorji za merjenje
 - Nivoja napolnjenosti baterije
 - Temperature procesorja, motorjev, senzorjev

Združevanje senzorjev

- En senzor ponavadi ne zadostuje
 - Šum
 - Omejena natančnost
 - Nezanesljivost
 - Omejen obseg zaznave
- =>Združi rezultate večih senzorjev
- Združevanje na nivoju signalov (sensor fusion)
 - Kombiniraj signale v enotno podatkovno strukturo na nižjem nivoju
- Združevanje na nivoju predstavitev (sensor integration)
 - Procesiraj vsak senzor posebej in združi pridobljeno informacijo na višjem nivoju
- Združevanje podatkov z različnih virov:
 - Meritev različnih senzorjev
 - Meritev iz različnih časov
 - Meritev z različnih lokacij

iRobot Roomba

Aktuatorji in senzorji

Motorji

- Spremenljiva hitrost motorjev za kolesa
 - pulse-width modulation (PWM)

On/off motorji za ščetke in sesalec

Kolesa

- Diferencialni krmilni sistem
 - Dve kolesi neodvisno krmiljeni
- Električni motor
 - velika hitrost
- 25:1 redukcija
 - velik navor

Senzorji

IR senzorji

Mikrostikala:

tipke spust koles

Kapacitivni senzor:

umazanija

Napajanje

- Meritve moči napajanja
 - kapacitivnost akumulatorja [mAh]
 - napetost [V]
 - tok [A]
 - temperatura

Indikatorji

- Led lučke
 - Status (zelena rdeča)
 - detekcija umazanije (modra)
- Zvočnik
 - piezoelectric beeper

status

umazanija

RGBD senzor Kinect

PrimeSense senzor

Sestavni deli

Shema

Projicirani vzorec

Projicirani vzorec

Patent

Patent No.: US 7,433,024 B2

RANGE MAPPING USING SPECKLE DECORRELATION

(57) ABSTRACT

A method for mapping includes projecting a primary speckle pattern from an illumination assembly into a target region. A plurality of reference images of the primary speckle pattern are captured at different, respective distances from the illumination assembly in the target region. A test image of the primary speckle pattern that is projected onto a surface of an object in the target region is captured and compared to the reference images so as to identify a reference image in which the primary speckle pattern most closely matches the primary speckle pattern in the test image. The location of the object is estimated based on a distance of the identified reference image from the illumination assembly.

Patent

RGBD informacija

Viri

- Dr. John (Jizhong) Xiao, City College of New York,
 Robot Sensing and Sensors
- Tod E. Kurt, Hacking Roomba: ExtremeTech, Wiley, 2006
- http://www.ifixit.com/Teardown/Microsoft-Kinect-Teardown/4066/3
- Futurepicture, http://www.futurepicture.org/?p=116
- United States Patent, Garcia et. al, Patent No. 7,433,024 B2
- ostalo