Negotiating lexical uncertainty and expertise with disjunction

Roger Levy and Christopher Potts

COMMUNICATING IN LANGUAGE ABOUT LANGUAGE

- Languages are neither fixed across time nor identically reproduced in all speakers, but rather continually renegotiated during interactions.
- People accommodate to each other's usage patterns, form temporarily lexical pacts, and instruct each other about their linguistic views.
- Some of this communication in language about language is direct, as with explicit definitions, but much of it arrives via secondary pragmatic inferences.
- Disjunction supports what appear to be opposing inferences about language.
 - Hurfordian pressure: X or Y conveys that X and Y are disjoint
 - Definitional inference: X or Y conveys that X and Y are synonymous
- This pattern is cross-linguistically robust, so we seek a single pragmatic model that can derive both of these meanings from the semantics of disjunction given different contextual assumptions.

HURFORDIAN PERCEPTIONS AND INTENTIONS

Generalization: X or Y conveys that the speaker is using a lexicon where X and Y are disjoint, or addresses a speaker concern that the listener is using such a lexicon.

- (1) the nuptials will take place in either France or Paris
- (2) the canoe or boat will be held by the stream's current
- (3) In 1940, 37% of us had gone to a church or synagogue in the last week.

Our corpus

X or Y usage correlates with X implicating not Y

'general or specific' 'specific or general'

DISJUNCTIVE DEFINITION AND IDENTIFICATION

Generalization: X or Y can convey [X] = [Y] when the speaker is mutually, publicly known to be an expert or would like to establish expertise.

- (4) wine lover or oenophile
- A Geological History of Manhattan or New York Island
- (6) New Haven or "the Elm City"
- (7) woodchuck or "land beaver"

- Motivation: speaker is a known 'instructor'; listener is a known non-expert
- Motivation: speaker wishes to display expertise to another expert
- Motivation: speaker sees value in (temporarily or permanently) defining a term

Attested in Chinese, German, Hebrew, Ilokano, Japanese, Russian, and Tagalog. Seems to survive even where the language has a dedicated definitional disjunction morpheme (e.g., Finnish, Italian).

FURTHER INFORMATION

Paper, references, model code, corpus data: http://github.com/cgpotts/pypragmods/

MODELING COMMUNICATION WITH ANXIOUS EXPERTS

DEFINITIONAL CONTEXTS

Require low disjunction costs and high β : the speaker is invested in communicating about the lexicon and can tolerate the cost of a disjunction that is synonymous with one of its disjuncts.

L_2 hears $A or X$			$w_1 \ w_2 \ w_1$	$\bigvee w_2$
$\mathcal{L}^*[A:\{w_1\},B:\{w_2\},X:\{w_1,w_2\}]$			0 0	.08
$\mathcal{L}_1[A:\{w_1\},B:\{w_2\},X:\{w_2\}]$.07 0	.08
$\mathcal{L}_2[A:$	$\{oldsymbol{w_1}\}, B \colon \{oldsymbol{v}\}$	$\{w_2\}, X \colon \{w_1\}$.77 0	.06
		<u> </u>	= 7; C(or) =	= .01
		S_2 observes $\langle \mathcal{L}_2, w_1 \rangle$	_	
		$egin{array}{ccc} A & 0 \ X & 0 \ A \ or \ X & .05 \ \end{array}$		
		<u></u>	-	
	L_1 hears A	w_1 w_2 $w_1 \lor w_2$		
	\mathcal{L}_1 [A : { w_1 },	$B \colon \{w_2\}, X \colon \{w_1, w_2\} \]$ $B \colon \{w_2\}, X \colon \{w_2\} \]$ $B \colon \{w_2\}, X \colon \{w_1\} \]$	0 0 .23 0 0 .38 .38 0 0	
\mathcal{L}^*	w_1 w_2 $w_1 \lor w_2$	$\mathcal{L}_1 \qquad w_1 \ w_2 \ w_1 \lor w_2$	$\mathcal{L}_2 \qquad w_1 \; w_2 \; v$	$v_1 \vee w_2$
$l_1 A X A or X$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{ccccc} A & & 1 & 0 \ X & & 1 & 0 \ A \ or \ X & 1 & 0 \ \end{array}$	0 0 0
	+	+	+	
\mathcal{L}^*	A X A or X	\mathcal{L}_1 $A \times A \text{ or } X$	\mathcal{L}_2 AX	A or X
v_1 v_2 $v_1 \lor w$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0
		\	+	
- +				
\mathcal{L}^*	w_1 w_2 $w_1 \lor w_2$	$\mathcal{L}_1 \qquad w_1 \ w_2 \ w_1 \lor w_2$	$\mathcal{L}_2 \qquad w_1 \ w_2 \ v$	$v_1 \lor w_2$

HURFORDIAN CONTEXTS

With high disjunction costs, exclusivization maximizes the justification for the long form; the Hurfordian instinct is a rational response to a disjunction that is unduly prolix for many lexica.

$L_2 \text{ hears } A \text{ or } X$	w_1	w_2	$w_1 \lor w_2$
$\mathcal{L}^*[A:\{w_1\},B:\{w_2\},X:\{w_1,w_2\}]$.03	0	.14
$\mathcal{L}_1[A: \{w_1\}, B: \{w_2\}, X: \{w_2\}]$.04	0	.45
$\mathcal{L}_2[A:\{w_1\},B:\{w_2\},X:\{w_1\}]$.02	0	.32
$\alpha=2;$	$\beta =$	1; ($\overline{C(or)} = 1$

CHARACTERIZATION

Summarizes a search over many parameter settings using a large lexicon and large world space.