Credit Risk Analysis

Objective:

To build a machine learning model that evaluates customer creditworthiness and flags high-risk individuals, thereby helping financial institutions reduce default rates.

1. Dataset Preprocessing Steps

• Dataset Used:

Give Me Some Credit dataset (publicly available on Kaggle), which includes features like RevolvingUtilizationOfUnsecuredLines, DebtRatio, MonthlyIncome, NumberOfOpenCreditLines, and others.

Handling Missing Values:

- MonthlyIncome had a significant number of missing values, which were imputed using median values.
- NumberOfDependents missing values were filled with 0 (assuming no dependents).

• Handling Class Imbalance:

- The dataset was highly imbalanced, with fewer defaults (label = 1).
- Applied SMOTE (Synthetic Minority Over-sampling Technique) to synthetically balance the minority class before training.

• Feature Scaling:

Used StandardScaler to normalize numerical features for model stability.

2. Feature Engineering

• New Features Created:

- DebtToIncomeRatio = DebtRatio / MonthlyIncome
- CreditLinesPerDependent = NumberOfOpenCreditLinesAndLoans / (NumberOfDependents + 1)
- UtilizationRate = RevolvingUtilizationOfUnsecuredLines

• Feature Selection:

 Correlation analysis was performed to remove redundant or highly correlated features.

3. Model Selection and Rationale

Models Trained:

- o Random Forest Classifier: For robust performance and interpretability.
- **Gradient Boosting:** For better accuracy on complex patterns.
- XGBoost: For speed and regularization in handling imbalanced classification.

Rationale:

- All selected models are tree-based, handle non-linear relationships well, and are less sensitive to scaling.
- XGBoost was particularly preferred due to its high performance on imbalanced datasets and built-in handling of missing data.

4. Challenges Faced and Solutions

- Challenge: Class imbalance led to poor recall in early models.
 Solution: Implemented SMOTE, tuned classification thresholds, and used recall/F1-score as primary metrics.
- Challenge: Some features had very skewed distributions.
 Solution: Applied log transformation to reduce skewness for features like RevolvingUtilizationOfUnsecuredLines.
- Challenge: Feature importance varied drastically across models.
 Solution: Used SHAP (SHapley Additive exPlanations) for model-agnostic interpretability.

5. Results with Visualizations and Interpretations

• Evaluation Metrics:

o XGBoost Classifier performed best:

■ Accuracy: 95%

■ Precision:95 %

■ Recall: 95%

■ F1-score: 95%

■ ROC-AUC: 0.98

• Confusion Matrix:

=== Random Forest ===				
	precision	recall	f1-score	support
0	0.91	0.94	0.93	5095
1	0.94	0.91	0.92	5095
accuracy			0.93	10190
macro avg	0.93	0.93		10190
weighted avg		0.93		10190
merginees eng	0.00	0.55	0.55	10170
AUC-ROC Score: 0.9784450494577511				
=== Gradient	Boosting ===			
	precision	recall	f1-score	support
9	0.88	0.93	0.90	5095
1	0.93	0.87	0.90	5095
_				
accuracy			0.90	10190
macro avg	0.90	0.90	0.90	10190
weighted avg	0.90	0.90	0.90	10190
AUC-ROC Score: 0.9602721982046707				
=== XGBoost ===				
	precision	recall	f1-score	support
e	0.92	0.98	0.95	5095
1	0.98	0.92	0.95	5095
accuracy	,		0.95	10190
macro avg	0.95	0.95	0.95	10190
weighted avg	0.95	0.95	0.95	10190

AUC-ROC Score: 0.9846596318621366

ROC Curve:

• Feature Importance (XGBoost):

 Most influential features: DebtRatio, MonthlyIncome, NumberOfTimes90DaysLate, RevolvingUtilizationOfUnsecuredLines.

Outcome

A credit risk classification system was successfully developed that flags high-risk customers with high accuracy. The model can assist financial institutions in reducing default rates, improving lending decisions, and enhancing credit policy strategies.