LA DIGITAL TRANSFORMATION DELLE COMUNITÀ

Intelligent Management of Processes, Ethics and Technology for Urban Safety SICUREZZA FISICA E DIGITALE

Gestione intelligente dei processi, etica e tecnologia per la sicurezza urbana

Paolo Mignone

Progetto IMPETUS

- Il progetto IMPETUS ha come obiettivo quello di supportare le forze dell'ordine nello stabilire preventivamente eventuali minacce/anomalie anche con l'ausilio di sistemi automatici sofisticati
- Gli impatti e risultati attesi: la piattaforma IMPETUS consentirà di potenziare la sicurezza urbana di entrambe le città coinvolte (comuni di Padova e Oslo)
- Elementi di replicabilità: la piattaforma è replicabile per ogni smart city dipendentemente dalla rete di sensori messa a disposizione dal comune interessato
- Diversi tipi di sensori e applicazioni possibili

Telecamere per il traffico urbano

- Una telecamera per il traffico osserva il traffico veicolare su strada.
- Un centro di monitoraggio riceve video in diretta in tempo reale e funge da mediatore con le forze dell'ordine se si verifica un incidente o problema di sicurezza stradale.

Sensori meteorologici

- Un sensore meteorologico è un insieme di strumenti di misurazione delle condizioni atmosferiche.
- La maggior parte di questi sensori misura la
 - velocità del vento;
 - direzione del vento;
 - la temperatura;
 - umidità;
 - pressione barometrica;
 - precipitazioni;
 - radiazione UV o solare.

Sensori di inquinamento atmosferico

- I sensori di inquinamento atmosferico sono dispositivi che monitorano la presenza di inquinamento atmosferico nell'area circostante.
- La maggior parte di questi sensori si concentra su cinque componenti:
 - ozono;
 - particolato atmosferico (PM10, PM2.5 ...);
 - monossido di carbonio;
 - anidride solforosa;
 - protossido di azoto.

Sensori per il rilevamento dei livelli di polline

• Dispositivi per la rilevazione dei livelli di concentrazione nell'aria di diverse famiglie di pollini.

Esempio di metadati dei sensori

Timestamp yyyy-MM-dd*HH:mm:ss	X GPS coord	Y GPS coord	feat_1	feat_2	.***	feat_n
2017-07-04*13:23:55	11.908710	45.404300	189	3		77

Esempio di metadati dei sensori

Diversi sensori che forniscono anche dati temporali e spaziali

Esempio di metadati dei sensori

Diversi sensori che forniscono anche dati temporali e spaziali

Rilevamento di anomalie (Padova)

Rilevamento di anomalie nell'aria (Padova)

- I dati analizzati contengono informazioni meteorologiche giornaliere per la città di Padova: periodo di riferimento 2014 – 2019 esclusi i giorni in cui le misurazioni non sono presenti.
- Dati estratti dal sito ARPA Veneto, sezione Open Data.
 - https://www.arpa.veneto.it/dati-ambientali/open-data
- Le informazioni estratte includono le seguenti misurazioni:
 - data di misurazione (gg / mm / aaaa)
 - temperatura aria a 2 metri dal livello del mare (° C)
 - media, min, max
 - precipitazione (mm)
 - umidità a 2 metri (%)
 - min, max
 - concentrazioni di polline allergenico nell'aria (granuli / m³) per famiglia (26 famiglie)

Rilevamento di anomalie nell'aria (Padova)

- Setting sperimentale
- Il task è quello di prevedere in quali giorni le concentrazioni di polline saranno anomale per una data famiglia (ad esempio l'ambrosia).
- Suddivisione dei dati
 - set di addestramento iniziale (50%)
 - set di aggiornamento del modello addestrato (30%)
 - test set (20%).
- True normal (TN): casi "normali" classificati correttamente
- False anomalies (FA): casi "normali" classificati come "anomalie"
- False normal (FN): "anomalie" classificate come casi "normali"
- True anomalies (TA): "anomalie" identificate correttamente

Rilevamento di anomalie nell'aria (Padova)

tau 1	tau 2	epochs	thresh. factor	update state	# of layer	TN	FA	FN	TA
0.7	1.0	10	6.0	no	1	371	21	2	1
0.7	1.0	10	5.5	no	1	369	23	1	2
0.7	1.0	10	5.0	no	1	363	29	1	2
0.7	1.0	10	4.5	no	1	355	37	0	3
0.7	1.0	10	4.0	no	1	342	50	0	3
0.7	1.0	10	3.5	no	1	322	70	0	3
0.7	1.0	15	6.0	no	9	385	7	3	0
0.7	1.0	15	5.5	no	9	384	8	1	2
0.7	1.0	15	5.0	no	9	378	14	1	2
0.7	1.0	15	4.5	no	9	374	18	0	3
0.7	1.0	15	4.0	no	9	364	28	0	3
0.7	1.0	15	3.5	no	9	352	40	0	3
0.7	1.0	10	6.0	yes	1	380	12	3	0
0.7	1.0	10	5.5	yes	1	377	15	3	0
0.7	1.0	10	5.0	yes	1	374	18	3	0
0.7	1.0	10	4.5	yes	1	371	21	2	1
0.7	1.0	10	4.0	yes	1	364	28	1	2
0.7	1.0	10	3.5	yes	1	355	37	0	3
0.7	1.0	15	6.0	yes	9	389	3	3	0
0.7	1.0	15	5.5	yes	9	387	5	3	0
0.7	1.0	15	5.0	yes	9	387	5	3	0
0.7	1.0	15	4.5	yes	9	386	6	2	1
0.7	1.0	15	4.0	yes	9	383	9	1	2
0.7	1.0	15	3.5	yes	9	376	16	<u>0</u>	<u>3</u>

Conclusioni

- Il nostro metodo per il task di *anomaly detection*, oltre ad essere in grado di analizzare grandi moli di dati in modo distribuito, consente di identificare correttamente tutte le anomalie sebbene esse siano solitamente rare.
- Inoltre il metodo abbatte i *falsi casi normali* garantendo che ogni anomalia non sfugga al sistema
- La fase di aggiornamento del modello migliora le prestazioni complessive.

LA DIGITAL TRANSFORMATION DELLE COMUNITÀ

GRAZIE

Paolo Mignone

paolo.mignone@uniba.it

http://www.di.uniba.it/~mignone/

https://kdde.di.uniba.it/people/paolo-mignone/

