Notation Reference

Deterministic

Number of jobs: n

Number of machines: m

Job usually denoted by j

Machine usually denoted by i

Processing time for job j on machine i: p_{ij}

Release date: r_j Due date: d_j

Weight denoting importance of job: w_i .

Problem denoted by triple $\alpha |\beta| \gamma$ where α describes machine environment, β is processing charac-

teristics, γ is objective to be minimized

Single machine: 1

Identical machines in parallel: Pm

Machines in parallel with different speeds: Qm speed is denoted by v_i

Unrelated machines in parallel: Rm. Machine i can process j at speed v_{ij}

Flow shop: Fm, all jobs have to follow same route through machines.

Flexible flow shop: FFc there are parallel columns of machines in series

Job shop Jm each job follows its own predetermined route

Flexible job shop: FJc

Open shop: Om there are m machines and each job needs to be processed by all of them but can be done in any order

Preemptions: prmp It is not necessary to keep a job in a machine until completion

Precedence constraints: prec Jobs have precedence

Sequence dependent setup times: s_{jk}

Job families: fmls. Jobs in one family can be processed without any setup between but switching

families caused setup time Batch processing batch(b)

Breakdowns brkdwn

Machine eligibility restrictions: M_j only M_j machines can process job j

Permutation: prmu FIFO

Blocking: block

No-wait: (nwt) Jobs can't wait between two successive machines Recirculation: rcrc A job can visit a machine more than once

Completion time of job j on machine i: C_{ij}

Time when job j exits system: C_i

Lateness: $L_j = C_j - d_j$

Tardiness: $T_j = \max(C_j - d_j, 0) = \max(L_j, 0)$

Unit penalty:

$$U_j = \begin{cases} 1 & \text{if } C_j > d_j \\ 0 & \text{otherwise} \end{cases}$$

Makespan: $C_{\max} = \max(C_1, \dots, C_n)$ time of last job to leave system

Maximum lateness: $L_{\text{max}} = \max(L_1, \dots, L_n)$

Total weighted completion time: $\sum w_j C_j$

Discount total weighted completion time: $\sum w_i(10e^{-rC_i})$

Total weighted tardiness: $\sum w_j U_j$

Weighted number of tardy jobs $\sum w_j U_j$ Earliness: $E_j = \max(d_j - C_j, 0)$