

Integrative analysis of genetic and glycan data using O2PLS

Said el Bouhaddani, Hae-Won Uh, Geurt Jongbloed and Jeanine Houwing June 7, 2017

BMTL 2017, Napoli

Introduction

Multiple Omics

- Recent advances in technology provided many types of omics
- Different levels of biological variation measured
- \Rightarrow How much is the overlap between these data?
- ⇒ Which (types of) molecules are responsible for this overlap?

Zierer et al, 2015, Aging Cell

Multiple Omics

- Recent advances in technology provided many types of omics
- Different levels of biological variation measured
- \Rightarrow How much is the overlap between these data?
- ⇒ Which (types of) molecules are responsible for this overlap?

Zierer et al, 2015, Aging Cell

Introduction

- IgG glycans are highly correlated
- Not clear how this correlation is built up
 - Genetics
 - Environment
 - Measurement error
- How much is genetic part?
- Which genes are correlated with which glycans?
- ⇒ Study relationship between genes and glycans

Lauc et al. Biochimica et biophysica acta (2016)

Data:

Introduction

0000

- 20 measurements from CROATIA_Korcula (N = 885)
- Corrected for age and sex

- Data matrix: Y (885 × 20)
- High correlations

Genetic data

Data:

- 300.000 SNPs (N = 885)
- Structured correlation

- Data matrix: X (885 × 37.819)
- High dimensionality

Properties and aim

Properties:

Introduction

- High correlations among glycans
- High dimensional genetic data

Challenge:

• Relationships between genes and glycans

Approach:

- Latent variables to model high correlations (what combination of glycans cause which part of correlation?)
- Dimension reduction to reduce data dimensionality
- ⇒ Partial Least Squares approach to include both

Methods

Principal components analysis

Population model associated with PCA

$$X = TW^{\mathrm{T}} + E$$

Properties

- T latent scores or PC's
- W loadings
- Components maximize Var(XW)

Principal components analysis

Population model associated with PCA

$$X = TW^{\mathrm{T}} + E$$

Properties

- T latent scores or PC's
- W loadings
- Components maximize Var(XW)

Interpretation

- Scores: Which subjects contribute most to components
- Loadings: Which *variables* contribute most to components

Population model associated with PLS

$$X = TW^{T} + E$$

$$Y = UC^{T} + F$$

$$Data Joint Noise$$

Properties

- T and U joint scores
- W and C joint loadings
- Regression of *U* on *T*:

$$U = TB + H$$

 Joint Principal Components maximize Cov(XW, YC)

Partial Least Squares (PLS)

Population model associated with PLS

$$X = TW^{T} + E$$

$$Y = UC^{T} + F$$
Data Joint Noise

Properties

- T and U joint scores
- W and C joint loadings
- Regression of *U* on *T*:

$$U = TB + H$$

 Joint Principal Components maximize Cov(XW, YC)

Omic-specific variation

- Systematic differences between datasets
- One example: batch effects independently in both datasets
- We need extension of PLS to take this into account

Two-way Orthogonal PLS

Population model associated with O2PLS

- T_{\perp} and U_{\perp} omic-specific scores
- $P_{Y\perp}$ and $P_{X\perp}$ omic-specific loadings
- \Rightarrow T, U, W and C are corrected for omic-specific variation

Trygg & Wold, 2003, J. Chemometrics

- Three-step estimation
- Suppose we want r joint components, r_X X-specific components and r_Y Y-specific components.
- 1 Retain $r + \max(r_X, r_Y)$ components from PLS on X and Y
 - W and T contain both joint and specific part
- 2a Retain r_X components from PLS on E and T
- 2b Correct $X: X_c = X T_{\perp} P_{Y\perp}^{\mathrm{T}}$
- 3 PLS on X_c and Y_c yield corrected joint components

We implemented O2PLS in the OmicsPLS package on CRAN

Data analysis

Two key questions

- How much is overlap between genes and glycans?
- Which genes/glycans are in this overlap?

Summary of variation

Methods 0000 Data analysis ●○○○○

Summary of variation

PLS5 joint components

O2PLS

5 joint components
5 genetic-specific components

Top genes in component 1

Top genes in component 2

Top genes in component 3

Introduction

Comp.	Gene	Protein involved in	Pattern
1	DNAJC10	recognizing and degrading mis-	Average
		folded glycoproteins	
2	FUT8	the transfer of fucose	F vs non-F
2	LGALS8	detecting and restricting prolifera-	F vs non-F
		tion of pathogens	
3	AKAP9	maintaining integrity of the Golgi	G0 vs G2
		apparatus	

Do we understand these relationships?

Summary

- O2PLS yields interpretable components
 - Glycan patterns reflect enzymatic reactions and disease pathways
- Estimation of genetic contributions
 - How much overlap: 96% with R² of 0.76
 - Which genes: Established and new findings

Future work

Data results

- Validate on Vis cohort
- Try other "summarizing" approaches for SNPs

Probabilistic O2PLS model and extensions

- Epidemiological studies:
 - Missing data
 - Several studies available
- Multiple imputation of missing blocks/datasets
- Meta analysis of several datasets across multiple cohorts
- Extend to complex models involving covariates and outcome

Acknowledgments

MIMOmics and LUMC

Jeanine Houwing

Hae-Won Uh

Szymon Kielbasa

Karli Reiding

TU Delft

Geurt Jongbloed

Univ Edinburgh

Lucija Klaric

