Linear Algebra Review

Matrices

An $m \times n$ matrix is a table of numbers with m rows, n columns:

► Example: 2 × 3 matrix:

$$\begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \end{pmatrix}$$

Example: 3 × 3 "square" matrix:

$$\begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$

Matrix Notation

► We use upper-case letters for matrices.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

- Sometimes use subscripts to denote particular elements: $A_{13} = 3$, $A_{21} = 4$
- \triangleright A^T denotes the transpose of A:

$$A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

Matrix Addition and Scalar Multiplication

We can add two matrices only if they are the same size.

Addition occurs elementwise:

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} + \begin{pmatrix} 7 & 8 & 9 \\ -1 & -2 & -3 \end{pmatrix} = \begin{pmatrix} 8 & 10 & 12 \\ 3 & 3 & 3 \end{pmatrix}$$

Scalar multiplication occurs elementwise, too:

$$2 \cdot \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{pmatrix}$$

Matrix-Matrix Multiplication

- We can multiply two matrices A and B only if # cols in A is equal to # rows in B
- If $A = m \times n$ and $B = n \times p$, the result is $m \times p$.
 - ► This is **very useful**. Remember it!
- ► The low-level definition. the *ij* entry of the product is:

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Matrix-Matrix Multiplication Example

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 6 \\ 1 & 3 \\ 4 & 8 \end{pmatrix}$$

- What is the size of AB?
- \blacktriangleright What is $(AB)_{12}$?

Matrix-Matrix Multiplication Properties

- ▶ Distributive: A(B + C) = AB + AC
- Associative: (AB)C = A(BC)
- Not commutative in general: AB ≠ BA

Identity Matrices

► The *n* × *n* identity matrix *I* has ones along the diagonal:

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

- If A is $n \times m$, then IA = A.
- ▶ If B is $m \times n$, then BI = B.

Vectors

- \triangleright An d-vector is an $d \times 1$ matrix.
- ightharpoonup Often use arrow, lower-case letters to denote: \vec{x} .
- ▶ Often write $\vec{x} \in \mathbb{R}^d$ to say \vec{x} is a d vector.
- Example. A 4-vector:

Geometric Meaning of Vectors

A vector $\vec{u} = (u_1, ..., u_d)^T$ is an arrow to the point $(u_1, ..., u_d)$:

► The length, or **norm**, of \vec{u} is $\|\vec{u}\| = \sqrt{u_1^2 + u_2^2 + ... + u_d^2}$.

Dot Products

► The **dot product** of two *d*-vectors \vec{u} and \vec{v} is:

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v}$$

Using low-level matrix multiplication definition:

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^{n} u_i v_i$$

$$= u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

Dot Product Example

$$\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad \vec{v} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \qquad \vec{u} \cdot \vec{v} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$$

Geometric Interpretation of Dot Product

 $\qquad \qquad \vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.$

Which of these is another expression for the norm of \vec{u} ?

$$/\vec{u}^2$$

Properties of the Dot Product

- ► Commutative: $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- ► Distributive: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$
- ► Linear: $\vec{u} \cdot (\alpha \vec{v} + \beta \vec{w}) = \alpha \vec{u} \cdot \vec{v} + \beta \vec{u} \cdot \vec{w}$

Matrix-Vector Multiplication

- Special case of matrix-matrix multiplication.
- Result is always a vector with same number of rows as the matrix.
- One view: a "mixture" of the columns.

$$\begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = a_1 \begin{pmatrix} 1 \\ 3 \end{pmatrix} + a_2 \begin{pmatrix} 2 \\ 4 \end{pmatrix} + a_3 \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$

Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 6 & 3 \\ 2 & 7 & 1 \end{pmatrix}$$
 and $Ax = \begin{pmatrix} 1 \\ 9 \\ 4 \end{pmatrix}$.

Which of theses is a possible
$$x$$
?

Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 2 \\ 2 & 7 & 1 \end{pmatrix}$$
.

For what
$$x$$
 would $xA = (1 \ 2 \ 1)$?

a)
$$(1 \ 0 \ 1)$$
 b) $(.5 \ .5 \ 1)$

Matrices and Functions

- Matrix-vector multiplication takes in a vector, outputs a vector.
- An $m \times n$ matrix is an encoding of a function mapping \mathbb{R}^n to \mathbb{R}^m .
- Matrix multiplication evaluates that function.

Suppose
$$f(x) = (x_3 x_2)$$
 where $x = (x_1 x_2 x_3) \in \mathbb{R}^3$. What could A such that $f(x) = Ax$ be?

$$x = (x_1 \ x_2 \ x_3) \in \mathbb{R}^3$$
. What could A such that $f(x) = Ax$ be?

a) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ b) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ /1 0\