

Spring – 2025

Internet of Things (IoT) Systems

Week 12

Raspberry Pi Programming

Ikram Syed, Ph.D.
Associate Professor
Department of Information and Communication
Engineering
Hankuk University of Foreign Studies (HUFS)

Remote Control Using PHP

Program to control LED

```
Part Meaning
-rwsr-sr-x File permissions and type

1 Number of hard links to the file
root Owner (user) of the file
pi Group that owns the file
```

```
pi@raspberrypi:~ $ gcc -o PHP_LEDON PHP_LEDON.c -lwiringPi
pi@raspberrypi:~ $ sudo chown root PHP_LEDON
pi@raspberrypi:~ $ sudo chmod +s PHP_LEDON

[Figure 6-6] Compiling File & Providing PHP Execution Permission
```

-rwsr-sr-x 1 root pi

[Figure 6-7] Changed Permissions & Owner

Remote Control Using PHP

Program to control LED

```
pi@raspberrypi:~ $ gcc -o PHP_LEDOFF PHP_LEDOFF.c -lwiringPi
pi@raspberrypi:~ $ sudo chown root PHP_LEDOFF
pi@raspberrypi:~ $ sudo chmod +s PHP_LEDOFF
```

[Figure 6-9] Compiling File & Providing PHP Execution Permission

-rwsr-sr-x 1 root pi

[Figure 6-10] Changed Permissions & Owner

Create PHP file

remote_con.php

Make Sure:

- The file is executable (chmod +x)
- The path is correct and accessible to PHP
- Ownership and permissions are properly set

Check result

Remote Control Using PHP

isset function returns true if the variable exists and is not NULL, otherwise it returns false

\$_GET can be used to collect data sent in the URL
shell_exec function is used to execute the commands via shell
and return the complete output as a string

Program for human detection sensor

```
pi@raspberrypi:~ $ gcc -o PHP_PIR PHP_PIR.c -lwiringPi
pi@raspberrypi:~ $ sudo chown root PHP_PIR
pi@raspberrypi:~ $ sudo chmod +s PHP_PIR
```

[Figure 6-15] Compiling File & Providing PHP Execution Permission

-rwsr-sr-x 1 root pi

[Figure 6-16] Changed Permissions & Owner

```
pi@raspberrypi:~ $ cd /var/www/html
pi@raspberrypi:/var/www/html $ sudo nano remote_con.php
```

[Figure 6-17] Modifying PHP File

Check result

Program for sound sensor

```
=#include <stdio.h>
       #include <wiringPi.h>
       #define SPI CH 0
 4
 5
       #define ADC CH 2
       #define ADC CS 29
        #define SPI SPEED 500000
 8
 9
      □int main(void){
           int value=0, i;
10
          unsigned char buf[3];
11
           if(wiringPiSetup() == -1) return 1;
12
           if(wiringPiSPISetup() == -1) return -1;
13
14
          pinMode(ADC CS,OUTPUT);
           buf[0] = 0x06 \mid ((ADC CH \& 0x04)>>2);
15
           buf[1] = ((ADC CH \& 0x03) << 6);
16
17
          buf[2] = 0x00;
           digitalWrite(ADC CS,0);
18
          wiringPiSPIDataRW(SPI CH, buf, 3);
19
20
           buf[1]=0x0F & buf[1];
          value = (buf[1] << 8) \mid buf[2];
21
          digitalWrite(ADC CS,1);
22
23
          printf("%d", value);
24
```

```
pi@raspberrypi:~ $ gcc -o PHP_SOUND PHP_SOUND.c -lwiring
pi@raspberrypi:~ $ sudo chown root PHP_SOUND
pi@raspberrypi:~ $ sudo chmod +s PHP_SOUND
[Figure 6-20] Compiling File & Providing PHP Execution Permission
```

-rwsr-sr-x 1 root pi

[Figure 6-21] Changed Permissions & Owner

[Figure 6-23] Requesting the Sensor Value

Program for DC Motor

```
pi@raspberrypi:~ $ gcc -o PHP_DCMON PHP_DCMON.c -lwiringPi
pi@raspberrypi:~ $ sudo chown root PHP_DCMON
pi@raspberrypi:~ $ sudo chmod +s PHP_DCMON

[Figure 6-34] Compiling File & Providing PHP Execution Permission
-rwsr-sr-x 1 root pi
```

[Figure 6-35] Changed Permissions &

Owner

Program for DC Motor

```
pi@raspberrypi:~ $ gcc -o PHP_DCMOFF PHP_DCMOFF.c -lwiringPi
pi@raspberrypi:~ $ sudo chown root PHP_DCMOFF
pi@raspberrypi:~ $ sudo chmod +s PHP_DCMOFF

[Figure 6-37] Compiling File & Providing PHP Execution Permission

-rwsr-sr-x 1 root pi

[Figure 6-38] Changed Permissions &
Owner
```


Program for Step Motor

```
=#include <wiringPi.h>
       #include <stdio.h>
 3
 4
       #define PIN_1A 27
 5
       #define PIN 1B 0
       #define PIN_2A 1
 6
       #define PIN_2B 24
 8
 9
     10
11
               int i;
12
               if(wiringPiSetup() == -1) return 1;
13
14
               pinMode(PIN_1A,OUTPUT);
15
16
              pinMode(PIN_1B,OUTPUT);
              pinMode(PIN 2A,OUTPUT);
17
               pinMode(PIN 2B,OUTPUT);
18
```

Program for Step Motor

```
for(i=0; i<500; i++){
20
                        digitalWrite(PIN_1A, HIGH);
21
                        digitalWrite(PIN_1B,LOW);
22
                        digitalWrite(PIN_2A,LOW);
23
                        digitalWrite(PIN_2B,LOW);
24
                        usleep(8000);
25
                        digitalWrite(PIN 1A,LOW);
26
27
                        digitalWrite(PIN 1B, HIGH);
                        digitalWrite(PIN 2A,LOW);
28
                        digitalWrite(PIN_2B,LOW);
29
                        usleep(8000);
30
                        digitalWrite(PIN 1A,LOW);
31
                        digitalWrite(PIN_1B,LOW);
32
                        digitalWrite(PIN 2A, HIGH);
33
                        digitalWrite(PIN_2B,LOW);
34
                        usleep(8000);
35
                        digitalWrite(PIN 1A,LOW);
36
                        digitalWrite(PIN 1B,LOW);
37
                        digitalWrite(PIN_2A,LOW);
38
                        digitalWrite(PIN_2B,HIGH);
39
                        usleep(8000);
40
41
42
                printf("1");
43
44
```

```
pi@raspberrypi:~ $ gcc -o PHP_STMON PHP_STMON.c -lwiringPi
pi@raspberrypi:~ $ sudo chown root PHP_STMON
pi@raspberrypi:~ $ sudo chmod +s PHP_STMON
```

[Figure 6-43] Compiling File & Providing PHP Execution Permission

-rwsr-sr-x 1 root pi

[Figure 6-44] Changed Permissions & Owner

JavaScript

Why Client-Side Script Is Needed?

Without JavaScript: Every time a user clicks a button to turn on an LED, the browser has to **reload the whole page** and send a form to the server.

Feature	Why Client-Side Script (e.g., JavaScript) Is Needed?	
Interactivity	Buttons/sliders send GPIO commands instantly	
Live Updates	Auto-refresh sensor data without page reload	
Form Validation	Catch invalid values before sending them to Pi	
AJAX / Fetch	Send/receive data in the background	
User Feedback	Show status, loading, or results instantly	

AJAX: Asynchronous JavaScript and XML, technique that allows web pages to communicate with a server without refreshing the page.

Web Client

- JavaScript is a lightweight, interpreted programming language
- It is lightweight and most commonly used as a part of web pages

document.write function writes a string into HTML document

Web Client

- XMLHttpRequest (XHR) is an API in the form of an object whose methods transfer data between a web browser and a web server.
- The object is provided by the browser's JavaScript environment
- To send an HTTP request, create an XMLHttpRequest object, open a URL,
 and send the request
- After the transaction completes, the object will contain useful information such as the response body and the HTTP status of the result

Term	Туре	Description
AJAX	Technique	Asynchronous communication between client & server
XMLHttpRequest	Object	JavaScript object that enables AJAX
Fetch()	Function	Newer way to do AJAX calls in JavaScript

Configuring environment

[Figure 7-9] The Screen of http://Raspberry PiIP/

Web Client

Open index.html

```
pi@raspberrypi:~ $ cd /var/www/html
pi@raspberrypi:/var/www/html $ vi index.html
```

[Figure 7-10] Opening Files in Raspberry Pi

Web Client

Open iot.js

```
pi@raspberrypi:/var/www/html $ vi iot.js
```

[Figure 7-13] Opening File in Raspberry Pi (vi editor)

[Figure 7-16] Installing IoT Smart Server

Run IoT Smart Server App

[Figure 7-17] The Screen of IoT Smart Server

IOT SMART SERVER LED DC Motor Step Motor ON OFF Active ON OFF UltraSonic Temperature PIR 192cm Humidity **Noise Sensor Light Sensor**

[Figure 7-18] The Screen of IoT Smart Server

⟨Table 7-1⟩ The Connection Information of 20 Kinds of Main Module

Module	Module Pin Number	Wiring Pi Pin Number	Raspberry Pi Pin Number
LED	LED	7	4
PIR	PIR 2		27
Sound Sensor	SND	ADC2	
Buzzer	BUZZER	15	14

56.14	15.1.6	2.5	12	
DC Motor	INA	26	12	
Step Motor	1A	27	16	
	1B	0	17	
	2A	1	18	
	2B	24	19	
Switch Module	SW	3	22	
Light Sensor	CdS	ADC0		
Ultrasonic	TRIG	28	20	
	OUT	29	21	
DHT11	DHT11	25	26	
Variable Resistance	VR	ADC1		
Touch Sensor	TOUCH	6 25		
Optocoupler	IR	4 23		
Bump Sensor	SHOCK	5 24		
PSD Sensor	PSD	ADC3		
Laser	LASER	22	22 6	
Mercury Sensor	MERCURY	11 7		
Tilt Sensor	TILT	10 8		
Flame Sensor	FLAME	16 15		
Reed Sensor	REED	9 3		

LED Control Interface

```
24 function LEDON(){
                                                                     iot.js
25
           XHR_write('LEDON');
26
27
           document.LED.src='img/led_on.png';
28 }
29
30 function LEDOFF(){
31
           XHR_write('LEDOFF');
32
           document.LED.src='img/led_off.png';
33
34 }
```

DC Motor Control Interface

Any Questions!