

12. Standardni sekvencijski moduli

- sekvencijski moduli
- > registri
- posmačni registri
- asinkrona brojila
- > sinkrona brojila
- generatori sekvencije
- memorije

Sekvencijski moduli

- sekvencijski moduli:
 - ~ cjeline koje sadrže kombinacijski sklop / memoriju (niz/skup bistabila ili registara)
- naročito zanimljivi standardni moduli:
 - n-bitni moduli~ n bistabila
 - pohranjivanje podataka~ registri
 - brojanje~ brojila

- registri
 - ~ pamćenje *višebitnih* podataka (="registriranje"):
 - obično jedna riječ/znak
 ~ standardna jedinica podataka za digitalni sustav
 - mogućnost upisa i ispisa/čitanja:
 - registri u užem smislu
 paralelni upis i ispis
 - posmačni registri
 ~ serijski upis i ispis
 - kombinacije upisa/ispisa
 druge primjene
 - izvedbe:
 - svi tipovi bistabila (osim T)
 - MSI i LSI moduli

- osnovna struktura *registra u užem smislu*:
 - ~ uređeni skup nepovezanih bistabila
 - paralelni upis podatka
 - paralelno čitanje pohranjenog podatka
- način upisa:
 - sinkroni
 - ~ uobičajeni, bolji(→ upravljani!)
 - "asinkroni"
 - ~ registri (upravljanih) osnovnih bistabila: problem transparentnosti

- prikaz (tipično)
 ~ blok-simbol za cijeli registar:
 - (svi) bistabili
 - grupe bistabila
 rormat pohranjene riječi

- značajni elementi arhitekture i organizacije sustava:
 - protok podataka:
 - ~ registri i *staze* (engl. registers & data paths) *između* procesnih elemenata
 - viša razina razmatranja/opisivanja sustava
 ~ RTL (engl. Register Transfer Level)

Primjer: "8-bit bistable latch" 74100

 dvostruki 4-bitni registar (upravljanih osnovnih) D bistabila

_	ULAZI		IZLAZI		
	D	G	Q	\overline{Q}	
•	L	Н	L	Н	
	Н	Н	Н	L	
	Χ	L	Q^{n-1}	\overline{Q}^{n-1}	

- primjena 74100:
 - privremeno pohranjivanje podataka na UI sustava ("međuspremnik", engl. buffer)
 - ostvarivanje složenijih struktura;
 npr. 4-bitni registar dvostrukih bistabila

UL	AZI	IZLAZI		
D	G	Q	\overline{Q}	
L	Н	L	Н	
Н	Н	Н	L	
Χ	L	Q^{n-1}	$\overline{Q}^{^{n-1}}$	

- posmačni registar (engl. shift register):
 - funkcijski pogled:
 - registar sa serijskim upisom i ispisom
 - ~ svojstveni mehanizam pomicanja (bitova) podatka od ulaza prema izlazu
 - analogija s tokarskim strojem
 - ~ "posmak" (engl. shift)
 - karakteristična struktura
 - ~ izlaz prethodnog bistabila na ulaz slijedećeg po redu

- posmak podataka:
 - *istovremeni* upis:

$$B_{i-1} \to B_i$$

$$B_i \to B_{i+1}$$

- ispravnost upisa
 - ~ osigurati kašnjenje između bistabila

- izvedbe kašnjenja između bistabila:
 - dvostruki bistabil
 - dva bistabila po bitu ~ "simulacija" dvostrukog bistabila
 - bridom okidani bistabil

CP

S

 B_0

В

 B_2

(mogući) paralelni izlazi

- zapažanje:
 serijski upisani bitovi "putuju" kroz posmačni registar
 ~ paralelni ispis n-bitnog serijskog podatka:
 serijsko-paralelna pretvorba (konverzija)
- kombinacije ~ tip pretvorbe:
 - serijski ulaz-paralelni izlaz ~ serijsko-paralelna
 - paralelni ulaz-serijski izlaz ~ paralelno-serijska

serijski i paralelni ulaz i izlaz
 univerzalni posmačni registar

Primjer: posmačni registar 7491

- 8-bitni MSI modul
- dvostruki SR bistabili
- serijski ulaz-serijski izlaz

- "smjer" posmaka:
 - uobičajeno "nadesno" (prema "normalnom" izlazu)

moguće i "nalijevo", prema "normalnom" ulazu

- kombiniranje smjera posmaka
 - ~ dvosmjerni (engl. bidirectional) posmačni registar

- značajne primjene:
 - efikasno obavljanje aritmetičkih operacija;
 npr. množenje/dijeljenje s 2ⁿ posmakom za n bitova
 - sklop za posmak (engl. shifter) na izlazu ALU

Primjer: MSI dvosmjerni univerzalni posmačni registar s asinkronim brisanjem (4-bitni: 74194, 8-bitni: 74198)

S_1	S_0	FUNKCIJA
0	0	ZABRANA CP
0	1	\rightarrow
1	0	←
1	1	PARALELNI UPIS

- primjene (1):
 - memoriranje podataka za serijsko izvršavanje (aritmetičkih) operacija
 - pretvorba oblika podataka:
 - serijsko-paralelna (∃ paralelni izlazi)
 - paralelno-serijska (∃ paralelni ulazi)
 - ostvarivanje (aritmetičkih) operacija:
 - množenje s 2: posmak nalijevo
 - dijeljenje s 2: posmak nadesno
 - brojanje (→ posmačni registar u funkciji brojila)

- primjene (2):
 - sinkronizacija brzina prijenosa
 ~ "glađenje" prometa (f₁≠ f₂)
 - upis podataka s f₁
 - upis podataka s f₂
 - generiranje "pseudo-slučajnog" slijeda
 generatori sekvencije:
 linijski kodovi, kriptiranje
 - izvedbe cirkulirajućih memorija
 ~ npr. generatori znakova

- brojilo:
 - ~ pod utjecajem ulaznih impulsa (obično CP) prolazi kroz *utvrđeni niz* stanja i *vraća u početno* stanje
 - sklop "broji" ulazne impulse
 - impulsi ne moraju biti periodički (f ≠ const.)
 - "autonomni" sekvencijski sklop
 ~ samo jedan ulaz, i to obično za CP
 - definicije:
 - ciklus brojanja
 niz stanja kroz koja brojilo prolazi
 - baza brojanja
 - ~ baza brojevnog sustava u kojem brojilo broji: broj stanja u ciklusu brojanja

Brojila

- baza brojanja
 - ~ brojanje u "modulu":
 - stanje brojila = ostatak cjelobrojnog dijeljenja bazom (modulom)
 - brojilo modulo m (m = B)

```
l impulsa \rightarrow l = k \cdot m + j, j: sadržaj brojila \sim stanje n bistabila \rightarrow N = 2^n: max broj stanja W = 2^n - 1: max broj (binarni kod!) 2^{n-1} = N/2 < m \le 2^n
```


- osnovna funkcijska podjela:
 - brojila u užem smislu (engl. counters)
 - ~ važan je *redoslijed* izmjene stanja u ciklusu
 i *mogućnost ispravnog* očitanja (→ dekodiranja!)
 svakog stanja
 - djelitelji frekvencije (engl. scalers)
 - važan samo broj stanja,ne i redoslijed njihove izmjene

- brojila u užem smislu:
 - prikladno projektiranje brojila
 rednostavniji dekoder
 - važna primjena
 - ~ generator upravljačkih impulsa digitalnog sustava

Brojila

- djelitelji frekvencije:
 - sklop samo broji ulazne impulse
 - očitati samo ono stanje koje definira željeni izlazni impuls
 nakon svakih n impulsa, od nekog početnog
 - pojednostavljivanje dekodera
 ~ nepotpuno dekodiranje
 - ubrzanje rada: f_{max}
 npr. naročito za asinkrona brojila

- vremenski odnosi prilikom promjene stanja:
 - sinkrona brojila:
 - (svi) bistabili mijenjaju stanja sinkrono s nailaskom ulaznih impulsa (takta)
 - složenija, skuplja, brža
 - asinkrona (engl. ripple) brojila:
 - promjena stanja prvog bistabila uzrokuje serijsku promjenu stanja slijedećih u nizu
 - prostiranje promjene stanja
 ~ izlaz prethodnog pobuđuje slijedeći bistabil (engl. ripple: mreškanje, talasanje)
 - jednostavnija, jeftinija, sporija

Brojila

- bistabil u brojilima:
 - ~ konceptualno T, ali izveden od JK ili RS
 - T = 1 → promjena stanja
 dijeli frekvenciju ulaznih impulsa s 2

- direktna implementacija asinkronih brojila
 - niz bistabila od kojih svaki prethodni pobuđuje naredni u nizu
- brojanje u *binarnom* brojevnom sustavu
 - ~ 2ⁿ stanja za n bistabila: binarno brojilo (bistabili ~ 2ⁱ : težine potencije od 2)

- asinkrona brojila
 - ~ bistabili *ne* mijenjaju stanje u *sinkronizmu* sa zajedničkom pobudom: sporiji rad!

- *binarno* brojilo:
 - brojilo broji u binarnom brojevnom sustavu
 - 2^n stanja za n bistabila; npr. $n = 3 \rightarrow m = 2^n = 8$

	BROJ ULAZNIH IMPULSA	B_2	B ₁	B ₀
A	0	0	0	0
	1	0	0	1
(2)	2	0	1	0
	3	0	1	1
CIKLUS	4	1	0	0
	5	1	0	1
	6	1	1	0
\	7	1	1	1
	8	0	0	0

- očitanje (dekodiranje) stanja
 tipični problem:

- serijsko okidanje bistabila:
 - ~ tranzijentna pogreška dekodiranja (→ hazard)
- dekodiranje svih 2ⁿ stanja
 ~ potpuno dekodiranje;
 npr. dekodiranje D₀

$$D_0 = \overline{B}_2 \overline{B}_1 \overline{B}_0$$

$$D_1 = \overline{B}_2 \overline{B}_1 B_0$$

$$\vdots$$

$$D_7 = B_2 B_1 B_0$$

- tranzijentna pogreška dekodiranja:
 - → pojava hazarda
 - moguće rješenje
 - ~ *zakasniti* očitanje tako da prijelazna pojava ne djeluje
 - praktična implementacija
 - ~ *kombinirati* očitanje s ulaznim impulsima

- vremenski odnosi:
 - *vrijeme kašnjenja* (cijelog) brojila \sim najduže vrijeme odziva: promjena stanja *svih* n bistabila $T_d = n \cdot t_{db}$
 - vrijeme razlučivanja (rezolucije) ulaznih impulsa \sim svojstvo prvog bistabila $T_{\min} = t_{db}$
 - maksimalna frekvencija
 ~ različita za brojila u užem smislu i za djelitelja

- maksimalna frekvencija brojila u užem smislu:
 - očitanje (= dekodiranje) svih stanja!
 - najlošiji slučaj
 - \sim B₀ *ne smije* promijeniti stanje sve dok B_{n-1} ne dođe u stanje uzrokovano *prethodnim* impulsom

$$f_{\text{max}} = \frac{1}{n \cdot t_{db} + t_{o\check{c}}}$$

- maksimalna frekvencija djelitelja:
 - odabrati "prikladno" stanje koje će se očitati
 ~ min broj bistabila mijenja stanje
 - f_{max} slijedi iz analize prijelaza u to stanje

- reverzno (binarno) brojilobrojilo unatrag:
 - "smanjivanje" sadržaja brojila
 odbijanje impulsa
 - pobuda s \overline{Q}_{i-1} prethodnog bistabila $\sim Q_i \colon 0 \to 1$

ULAZ	\mathbf{B}_2	\mathbf{B}_1	B_0
0	0	0	0
1	1	1	1
2	1	1	
3	1	0	
4	1	0	
5	0	1	1
6	0	1	
7	0	0	
8	0	0	0

brojilo naprijed-natrag (engl. up-down counter)

~ kombiniranje brojanja naprijed i natrag:

veća fleksibilnost

 konceptualna implementacija:

- primjena:
 - digitalno upravljanje
 - $SMJER = \begin{cases} 0: brojanje & natrag \\ 1: brojanje & naprijed \end{cases}$ obavljanje jednostavnih aritmetičkih operacija nad impulsima

- brojilo modulo m, m ≠ 2ⁿ
 ~ prekid ciklusa binarnog brojanja korištenjem asinkronih ulaza bistabila
 - prekid aktiviran zadnjim stanjem u ciklusu, m-1
 S_d prebacuje brojilo u stanje 2ⁿ-1 = Wⁿ: slijedeći ga impuls prebacuje u 0 mod 2ⁿ

prekid aktiviran prvim stanjem izvan ciklusa, m
 C_d prebacuje brojilo u stanje 0:

Primjer: dekadsko brojilo

- detektirati karakterističnu pojavu B₃B₁ = 1
 (→ brojilo broji *naprijed*: jednostavno dekodiranje)
- problem kod brisanja bistabila
 ~ rasipanje t_{db}:
 nestanak impulsa brisanja prije brisanja svih bistabila!

CP	B_3	B ₂	B_1	B_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
1 2 3 4 5 6 7 8	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10≡0	1	(0)	1	(0)
	0	0	0	0

rješenje problema brisanja:
~ osnovni bistabil u "petlju povratne veze"

 sigurno generiranje impulsa brisanja
 traje do slijedećeg CP = 1

- računanje f_{max} za očitanje stanja 0
- uzeti min(f_{max})

$$f_{\text{max}} = \begin{cases} \frac{1}{4 \cdot t_{db} + t_{o\check{c}}} \\ \frac{1}{2 \cdot t_{db} + t_{db} + t_{dNI} \cdot (+2 \cdot t_{dNI}) + t_{o\check{c}}} \end{cases}$$

- binarno sinkrono brojilo:
 - ~ struktura brojila iz *rekurzivne* definicije mehanizma promjene stanja
 - prvi bistabil B_0 mijenja stanje uvijek: $T_0 = 1$
 - i-ti bistabil B_i mijenja stanje kad su svi prethodni bistabili u 1: T_i = B₀·B₁·...·B_{i-1}

СР	B ₂	B ₁	B ₀
0	0	0	0
1	0	0,	
2	0	1	0
3	0,	(1) ,	
4	1	0	0
5	1	0,	
6	1	1	0
7	1	Q	

izvođenje strukture
 n-bitnog binarnog sinkronog brojila:

 struktura *n*-bitnog binarnog sinkronog brojila:

 $T_{n-1} = B_{n-2} \cdot ... \cdot B_0 =$

 $B_{n\text{-}2} \cdot T_{n\text{-}2}$

- binarno sinkrono brojilo s paralelnim prijenosom:
 - posebni I-sklop za svaki T_i
 - brže rješenje~ samo jedan I-sklop:

$$f_{\text{max}} = \frac{1}{t_{setup} + t_{db} + t_{dI}}$$

za n
 ¬ izvedba je kontraproduktivna
 ~ teškoće pri ostvarivanju I-sklopa, C_{rasipno} ¬, itd.

• binarno sinkrono brojilo sa serijskim prijenosom:

- kaskadiranje I-sklopova
- jeftinije rješenje
 ~ istovrsni sklopovi
 s ograničenim brojem ulaza
 (i to samo 2!)
- sporije rješenje:

$$f_{\text{max}} = \frac{1}{t_{setup} + t_{db} + (n-2) \cdot t_{dI}}$$

- brojilo naprijed-natrag:
 - mreža za izbor "smjera brojanja"
 ~ MUX za prenošenje Q_i ili Q_i
 - tipična izvedba: EX-ILI (uzeti u obzir kod računanja f_{max})

4

- brojilo modulo m, m ≠ 2ⁿ:
 - projektiranje kao proizvoljni sekvencijski sklop ~ mogućnost izbora koda:
 - jednostavniji dekoder
 - ugradnja "sigurnog starta"
 - posebno za sekvencijske module
 rintegrirana brojila:
 broje u binarnom sustavu
 - prethodno postavljanje (engl. presetting):
 - početno stanje: 2-komplement baze m
 - m-ti impuls: $(2^n 1) \rightarrow \overline{m}^2$
 - detekcija maksimalnog broja: W = m -1
 - m-ti impuls: $(m-1) \rightarrow 0$

- integrirana brojila:
 - uglavnom 4-bitni MSI moduli: npr. serija 74
 - asinkrono: 7493
 - sinkrono binarno: 74163
 - sinkrono naprijed-natrag: 74191
 - proširivanje broja bitova
 - veći broj bitova:kaskadiranje

- brojila na osnovi posmačnog registra:
 - struktura:
 - ~ povratna veza s izlaza posmačnog registra na njegov ulaz
 - dvije mogućnosti:
 - prstenasto brojilo
 - ~ povratna veza ($D_0 = Q_{n-1}$)
 - + početno samo jedna 1 u posmačnom registru
 - Johnsonovo brojilo:

$$D_0 = \overline{Q}_{n-1}$$

- prstenasto brojilo (engl. ring counter)
 - brojanje impulsa na "ulazu" CP posmakom 1: brojilo modulo broj bistabila

СP	B_0	B_1	B_2
0	1	0	0
1	0	1	0
2	0	0	1
3	1	0	0

- brojilo u užem smislu
 u posmačnom registru cirkulira samo jedna 1
- djelitelj frekvencije:
 - ~ početno upisati uzorak *različit* od "sve 0" = 0, i "sve 1" = (2^n-1)

- prstenasto brojilo:
 - baza (modul) = broj bistabila
 neefikasno, ali brže od
 - binarnog brojila!

osigurati sigurni start!

- popularne izvedbe *upravljačkih jedinica* računala:
 - prstenasto brojilo
 - proizvoljni valni oblik
 kombiniranje (funkcija ILI) izlaza pojedinih bistabila

Primjer:

$$S_0 = B_0 + B_1 + B_3 + ...$$
 $S_1 = B_1 + B_2 + B_3 + ...$
 S_0
 S_1
 S_0
 S_1
 S_0
 S_1
 S_1
 S_1
 S_2
 S_3
 S_1
 S_2
 S_3
 S_1
 S_2
 S_3
 S_1
 S_1
 S_2
 S_3
 S_1
 S_2
 S_1
 S_2
 S_2
 S_3
 S_1
 S_2
 S_1
 S_2
 S_2
 S_3
 S_1
 S_2
 S_1
 S_2
 S_1
 S_2
 S_3
 S_1
 S_2
 S_1
 S_2
 S_1
 S_2
 S_1
 S_2
 S_1
 S_2
 S_2
 S_1
 S_2
 S_2
 S_3
 S_1
 S_2
 S_2
 S_3
 S_1
 S_2
 S_2
 S_3
 S_1
 S_2
 S_1
 S_2
 S_2
 S_3
 S_3
 S_3
 S_1
 S_2
 S_3
 S_3
 S_1
 S_2
 S_3
 S_3

- Johnsonovo brojilo, brojilo s ukrštenim prstenom (engl. twisted ring counter):
 - povećanje broja stanja za dani broj bistabila: 2·n
 - ukrstiti povratnu vezubistabili SR i JK
 - na ulaz dovesti Q_{n-1}
 bistabil D
 - broje u kodu s $d_{min} = 1$
 - i dalje brže od binarnog brojila!

СР	B_0	B_1	B_2
0	0	0	0
1	1	0	0
2	1	1	0
3	1	1	1
4	0	1	1
5	0	0	1
6	0	0	0

- dekodiranje stanja Johnsonovog brojila:
 - nije tako povoljno kao kod prstenastog brojila
 - ipak relativno jednostavno
 ~ konjunkcija dva susjedna izlaza B_i i B_i

CP	$B_0 B_1$	B_2
0	0	0
1	(1 0)	0
2	1 (1	0
3	1) 1	1
4	0 1	1
5	0 0	1
6	0 0	0

$0:B_2B_0$
$1: \overline{B}_1 B_0$
$2:\overline{B}_2B_1$
$3: B_2B_0$
$4:B_1\overline{B}_0$
$5:B_2\overline{B}_1$

- generator sekvencije (engl. sequence generator):
 - generiranje propisane sekvenc(ij)e bitova
 - ~ ponavlja se!
 - duljina sekvencije
 - broj uzastopnih bitova koji se ponavljaju
 - sekvencija
 - ~ izlaz posmačnog registra

Primjer:

...011100101110010111...

- izvedba generatora sekvencije:
 - poopćenje povratne veze posmačnog registra:

$$D_0 = f(B_{n-1}, ..., B_1, B_0)$$

- specijalni slučaj:
 - prstenasto brojilo: $D_0 = B_{n-1}$
 - Johnsonovo brojilo: $D_0 = \overline{B}_{n-1}$

 naročito jednostavna izvedba povratne veze ~ linearna funkcija:

$$f(x_{n-1},...,x_1,x_0) = c_{n-1}x_{n-1} \oplus ... \oplus c_1x_1 \oplus c_0x_0, c_0 \in \{0,1\}$$

- posmačni registar s linearnom povratnom vezom (engl. Linear Feedback Shift Register, LFSR):
 - jednostavna struktura sklopa
 ~ samo sklopovi EX-ILI
 - najveća moguća duljina sekvencije (za n bistabila)
 ~ 2ⁿ-1
 - zabranjeno stanje 00..00
 izbjeći to stanje:
 sklop za sigurni start

Primjer:
$$D_0 = f(B_2, B_1, B_0) = B_2 \oplus B_0$$

- primjena generatora sekvencije:
 - generiranje *pseudoslučajne* sekvencije bitova
 - ~ "vrlo duga" sekvencija (ali se ponavlja!), generator pseudoslučajne sekvencije (engl. Pseudo-Random Sequence Generator):
 - "randomizacija" bitovnih nizova (engl. scrambling)
 - zaštitni bitovi prilikom prijenosa
 - tajni ključevi za kriptiranje
 - ispitni vektori za ispitivanje digitalnih sklopova
 - očitanje stanja posmačnog registra
 - ~ generator pseudoslučajnih brojeva (engl. Pseudo-Random Number Generator, PRNG)

- memorija
 - ~ digitalni (pod)sustav za pamćenje većeg broja podataka:
 - nadogradnja koncepta pamćenja ~ osnovna interpretacija: skup registara
 - bistabil~ 1 bit
 - registar~ 1 podatak ("riječ")
 - memorija~ više riječi
 - osnovna jedinica informacije
 ~ memorijska riječ

- funkcija pamćenja
 primitivne (pod)funkcije:
 - pamćenje grupa bitova
 - pristup podacima
 - *čitanje* iz memorije, *pisanje* u memoriju
- organizacija memorije:
 - memorijsko polje
 skup memorijskih ćelija
 - sklopovi za pristup podacima
 - sklopovi za čitanje i pisanje

- svojstva memorijskih ćelija:
 - razlučiva i lako prepoznatljiva stanja
 - održavanje stabilnog stanja:
 - postojane ćelije/memorije
 - ~ bez utroška energije proizvoljno dugo ostaju u *stabilnom* stanju; npr. magnetske memorije
 - nepostojane ćelije/memorije
 - ~ troše energiju za pamćenje, gube informaciju kod prestanka napajanja; npr. poluvodičke memorije

- paralelni pristup podacima
 paralelno svakoj riječi
 - vrijeme pristupa jednako za sve riječi
 ~ paralelne memorije
 - nasumični pristup:
 ~ pristup pojedinoj
 riječi ne ovisi o
 prethodnim pristupima
 (engl. Random Access Memory, RAM)
 - adresa:
 ~ "redni broj" riječi unutar memorije
 W = 2ⁿ → a_{n-1}...a₁a₀

- serijski pristup podacima
 ~ serijski po riječima (i bitovima):
 - pristup adresiranoj riječi
 od prve ili od prethodno adresirane riječi:
 serijske (sekvencijalne) memorije;
 npr. mg. trake, mg. diskovi, "veliki posmačni registri"
 - bitno različito vrijeme pristupa pojedinim riječima

- *čitanje i pisanje*:
 - "upisno-ispisne memorije"
 - memorije promjenjivog sadržaja,
 "memorije" u užem smislu;
 (paralelne upisno-ispisne memorije: RAM)
 - ispisne memorije = permanentne memorije (ROM)
 u odnosu na čitanje, zanemarivo mali broj pisanja

- funkcijska podjela
 ~ smještaj u odnosu na digitalni sustav/procesor:
 - unutarnje (interne), "operativne"
 paralelne, velikih brzina (~ brzina CPU)
 - vanjske (eksterne)
 ~ CPU ne komunicira s njima neposredno:
 - metoda pristupa podacima
 putem glavne memorije
 - znatno veći kapacitet,
 znatno manja brzina (t_a ~ 10 ms)
 - uređaji~ diskovi, trake

- unutarnje, "operativne" memorije:
 - glavna memorija:
 - ~ glavni spremnik za programe, podatke, operacijski sustav, itd.
 - veličina (kapacitet) nije tako brza kao CPU
 - priručna memorija (engl. cache)
 - ~ pohranjivanje manje količine upravo korištenih instrukcija (odsječak programa) i podataka
 - manja memorija, brzina ~ CPU, skupa!
 - primarna p. m. (engl. L1 cache):
 ~ u sklopu CPU
 - sekundarna p. m. (engl. L2 cache):
 ~ na M/B

- karakteristični *parametri memorija*:
 - kapacitet memorije: C = W·b
 ukupna količina bitova, okteta/riječi (bajtova)
 - vrijeme pristupa, t_a:
 - vrijeme potrebno za dohvat podatka, od zahtjeva za čitanje do pojave podatka na izlazu, uz prethodno postavljenu adresu
 - npr. 50 ns < $t_{a \text{ tipično}}$ < 500 ns
 - prosječno vrijeme pristupa, t_a:
 - ~ za *sekvencijalne* memorije

$$\overline{t_a} = (t_a)_{\text{max}}/2$$

- karakteristični parametri memorija:
 - vrijeme ciklusa, t_c:
 ~ minimalno moguće vrijeme između dva čitanja ili pisanja;
 za paralelne memorije
 općenito t_c > t_a
 - maksimalna frekvencija memorije: f_M: = t_C⁻¹
 ~ maksimalni broj čitanja/pisanja
 u jedinici vremena [sec];
 širina (frekvencijskog) *pojasa* memorije,
 u analogiji s elektroničkim pojačalima,
 jer f_{min} = 0 (kad se *ne* čita/piše)

Statičke memorije

- statičke memorije
 ~ memorijska ćelija bistabil
 - nepostojana memorija
 - elektronskim cijevima već u prvim digitalnim računalima (ENIAC, 1945)
 - danas poluvodička tehnologija
 posebno pojednostavljeni sklopovi:
 - što manja površina na čipu
 ~ veća gustoća pakiranja,
 manja vjerojatnost defekata
 - što manja disipacija

Statičke memorije

- princip izvedbe memorijskog bistabila:
 - bipolarna izvedba
 - manje elemenata, mali hod u_{izl} (pobuda logičkih sklopova?)

izvedba s MOSFETom:~ NMOS

	bipolarne	MOSFET
kapacitet	manji	veći
brzina	veća	manja
cijena	veća	manja

- organizacija memorijskih modula
 karakteristični funkcijski blokovi:
 - dekoder adrese
 - memorijsko polje
 - međusklop:
 - pojačala za čitanje/pisanje: konverzija električkih razina, dvolinijskih reprezentacija

- organizacija memorijskog polja:
 - 2 D "dvodimenzijska"
 ~ linearno adresiranje
 - 3 D "trodimenzijska"
 ~ koincidentno adresiranje
 - 2 1/2 D
 ~ implementacijsko poboljšanje 2 D

- 2 D "dvodimenzijska" organizacija:
 - b ćelija jedne riječi
 - ~ samo jedna adresna linija: linijsko adresiranje
 - 1 linija retka
 - ~ 1 izlaz dekodera

- 3 D "trodimenzijska" organizacija:
 - smanjiti veličinu dekodera za W >> :
 - preveliki i presloženi dekoder
 - preveliki broj izlaza iz dekodera
 - *koincidentno* adresiranje:
 - ~ memorijska se ćelija adresira koincidiranjem dvije adresne linije (retka i stupca)
 - koordinatni razmještaj ćelija
 - ćelije s 2 adresne linije
 - 2 dekodera koji su *upola manji*!

- *koincidentno* adresiranje
 - ~ memorijska polja *jednobitnih* riječi

- koincidentno adresiranje
 - memorijska polja *višebitne* riječi:
 više ravnina (~ memorijska polja)
 koja se "slažu" u "trećoj dimenziji"

- koincidentno adresiranje
 - ~ *dekodiranje* s dva dekodera:
 - broj riječi W = broj presjecišta: $n/2 \rightarrow 2^{n/2} \cdot 2^{n/2} = 2^n = W$
 - broj izlaza iz dekodera: $2^{n/2} + 2^{n/2} = 2 \cdot 2^{n/2} = 2\sqrt{2} = 2\sqrt{W}$

- 2 1/2 D organizacija:
 - ~ poboljšanje ponašanja 2 D organizacije: duljina (fizičke) linije bita = W x "duljina bita":
 - C_{par}
 ⇒ veća kašnjenja
 - ponašanje prijenosne linije
 - rješenje:
 - ~ podjela memorije na
 podpolja s manjim brojem riječi povećanog broja bitova:
 r podpolja → 1 *fizička* riječ od r *logičkih* riječi

- 2 1/2 D organizacija
 - ~ podjela memorije na podpolja s *manjim brojem riječi povećanog broja bitova*:
 - ullet r podpolja ightarrow 1 *fizička* riječ od r *logičkih* riječi
 - *dva* dekodera:
 - za fizičku riječ
 - "pristupni" MUX/DEMUX

- 2 1/2 D organizacija
 - ~ posebno jednostavna izvedba pristupnog MUX/DEMUX za b = 1: 1-bitni memorijski moduli

Vremenski odnosi statičkih memorija

• ciklus *čitanja*:

parametar	značenje
<i>t</i> _{RC}	trajanje ciklusa čitanja (između dvije promjene adrese)
$t_{ m a}$	vrijeme pristupa (pojava podataka na izlazu uz CE = 0)
$t_{ m CO}$	kašnjenje u odnosu na CE (pojava podataka): podaci su na izlazu nakon max(t_a , t_1+t_{CO})
t _{OD}	kašnjenje u odnosu na CE = 1 (uklanjanje podataka na izlazu)

Vremenski odnosi statičkih memorija

• ciklus *pisanja*:

parametar	značenje
$t_{ m WC}$	trajanje ciklusa pisanja (između dvije promjene adrese)
t _{AS}	vrijeme postavlja <u>nj</u> a <u>adr</u> ese: min kašnjenje R/W i CE u odnosu na početak ciklusa
$t_{ m W}$	vrijeme pisanja; min trajanje R/W i CE
t_{WR}	vrijeme otpuštanja (pri pisanju) ~ min vrijeme oporavka
t _{DS}	vrijeme postavljanja podatka
t DH	vrijeme održavanja podatka

Projektiranje statičkih memorija

- "projektiranje" memorije
 ~ izgradnja memorije većeg kapaciteta
 od modula manjeg kapaciteta
 - memorija W'xb'
 - memorijski moduli W×b
 - vrijedi $W' = 2^n > W = 2^m, b' > b$

Projektiranje statičkih memorija

- struktura memorije:
 - dekoder za viših (n-m) bitova adrese
 - ulazi bitova podatka b_i spajaju se skupa
 - izlazi bitova podatka b_i spajaju se skupa;
 izvedbe izlaza:
 - sklopovi s tri stanja
 - sklopovi sa slobodnim kolektorom
 - kombinacija ulaz-izlaz)
 - niži adresni bitovi: paralelno na sve module
 - signali CE i R/W: također paralelno *na sve* module

Projektiranje statičkih memorija

Primjer: memorija W'×b', moduli W×b, W' = $2^n > W = 2^m$, b' > b

- povećanje kapaciteta poluvodičke memorije
 ~ smanjenje veličinu memorijske ćelije:
 - pohranjivanje bita podatka:
 ~ naboj na C
 - dovoljan jedan tranzistor
 - $C = C_{par}$: međuelektrodni kapacitet
 - pamćenje informacije
 ~ C_{par} se izbija zbog površinske vodljivosti

 rješenje problema gubitka naboja dinamičke memorijske ćelije:

- periodičko čitanje sadržaja memorijske ćelije i ponovno upisivanje (~ 2 ms): ~ osvježavanje (engl. refreshing)
- memorije s dinamičkim memorijskim ćelijama:
 ~ dinamičke memorije, DRAM (engl. Dynamic RAM)

- čitanje informacije
 ~ adresirati ćeliju:
 - očitanje napona na C:
 ~ dobro pojačalo za čitanje (engl. sense amplifier)

$$U_b \propto \frac{C}{C_b + C} \approx \frac{C}{C_b}$$

- zbog C_b >> C (duga linija bita!) čitanje je *destruktivno*!
 nakon čitanja *ponovni* upis podataka
- pisanje informacije
 adresirati ćeliju i upisati podatak s linije bita

- suvremeni DRAM:
 - ~ jednotranzistorske ćelije: kapaciteti ~ više 100 Mbit/modul
 - drastično smanjena površina memorijske ćelije: npr. 64 K: 250 $\mu m^2 \to 4$ M: 8,9 μm^2 (CMOS) ~ C također smanjen!
 - povećana osjetljivost na "meke" pogreške
 qubitak informacije zbog α-zraka
 (kozmičke zrake, Sr u materijalu kućišta IC)
 - rješenje problema:
 - posebne izvedbe C
 - dodatni sklopovi za zaštitu podatka (ECC)

- organizacija DRAM:
 - ~ jedna adresna linija: 2 D ili 2 1/2 D (povoljnije)
 - gustoća pakiranja bitova
 - → veličina chipa >
 - → kućište ¥
 - → broj izvoda (broj adresnih linija
 7)?
 - *smanjiti* broj izvoda za adrese *multipleksiranjem*:
 - veličina IC 🐿
 - → broj IC na PCB
 - → kapacitet memorije
 - posebno sklopovlje za multipleksiranje
 - usporavanje rada memorije

Primjer: DRAM modul 4116/2118 (16 K x 1)

kućište: DIP sa 16 izvoda

7 adresa za 16 K = 2^{14} :

$$A_{13} ... A_0 \sim MUX(A_6 ... A_0, A_1, ... A_7)$$

- 2 UI podatka
- 1 čitaj/piši
- 2 impulsa upisa adrese
- 4/2 napajanja

organizacija: 2 1/2 D

vremenski dijagram čitanja/pisanja za 4116/2118:

RAS (engl. Row Address Strobe)

~ impuls upisa adrese retka

CAS (engl. Column Address Strobe)

~ upis adrese stupca

- osvježavanje
 adresiranje samo retka ili stupca:
 osvježavaju se sve ćelije retka/stupca
- vrste osvježavanja:
 - distribuirano:
 - ~ ∀ 2 ms/broj_redaka (stupaca) ubaciti ciklus osvježavanja u sustavske cikluse
 - usnopljeno (engl. burst refreshing)
 - ~ ∀ 2 ms osvježiti sve retke (stupce): ubaciti odgovarajući broj ciklusa osvježavanja

```
npr. DRAM 16 K x 1 (4116/2118)
16 K = 128 x 128
\rightarrow 2 ms/128 = 15,63 \mus \rightarrow 7 15 ms
```


- izvedba osvježavanja:
 - posebna sklopovska podrška (MSI)
 - ~ MUX za adresu, s ugrađenim brojilom osvježavanja: male memorije
 - sklopovska podrška ugrađena u μP
 - ~ generiranje adrese osvježavanja za vrijeme dekodiranja instrukcije: npr. 8-bitni μP (npr. Zilog Z.80)
 - pseudostatičke memorije
 - ~ ugrađeno sklopovlje za osvježavanje: transparentno za sustav!

Primjer: memorija izvedena DRAM modulima 16 K x 1 (4116/2118)

• ubaciti sklop za osvježavanje

