Matematyka: definicje, twierdzenia, dowody

Filip Fijałkowski

Spis treści

1	Teoria mnogości						
	1.1	Podstaowe własności zbiorów	1				
	1.2	Relacje, funkcje	3				
	1.3	Porządki	4				
	1.4	Liczby naturalne	5				
	1.5	Moc zbiorów	6				
	1.6	Operacje na zbiorach	7				
	1.7	Grupa permutacji	8				
	1.8	Pierścień wielomianów	8				
2	Algebra liniowa						
	2.1	Przestrzenie o skończonym wymiarze	12				
	2.2	Suma prosta przestrzeni	14				
	2.3	Przestrzeń ilorazowa	14				
	2.4	Przestrzeń dualna	16				
3	Algebra wieloliniowa i iloczyn tensorowy 19						
	3.1	Odwzorowania wieloliniowe	19				
	3.2	Iloczyn tensorowy przestrzeni	19				
	3.3	Iloczyn tensorowy przestrzeni o skończonym wymiarze	20				
	3.4	Przestrzenie wyższego rzędu	22				
	3.5	Iloczyn zewnętrzny	23				
	3.6	Wyznacznik endomorfizmu	25				
4	Przestrzenie metryczne 27						
	4.1	Odległość punktów	27				
	4.2	Topologia	27				
	4.3	Zbieżność ciągów	29				
	4.4	Funkcje ciągłe	30				
	4.5	Zbieżność funkcji	32				
	4.6	Zbiory zwarte	32				
	4.7	Przestrzenie zupełne	35				
	4.8	Zbiory spójne	36				

iv	SPIS TREŚCI

_	Przestrzenie unormowane				
5			37		
	5.1	Przestrzenie z normą	37		
	5.2	Norma homomorfizmu	38		
	5.3	Norma iloczynu przestrzeni	41		
6	Liczby rzeczywiste				
	6.1	Aksjomatyka liczb rzeczywistych	43		
	6.2	Ciągi rzeczywiste	44		
	6.3	Szeregi rzeczywiste	44		
7	Różniczka funkcji				
	7.1	Małe wyższego rzędu	45		
	7.2	Definicja i algebraiczne własności różniczki	45		
	7.3	Twierdzenie o wartości średniej	47		
	7.4	Pochodne cząstkowe	48		
	7.5	Twierdzenie u funkcji uwikłanej	51		
	7.6	Wyższe pochodne	53		
8	Teoria miary				
			55		
	8.2	Miara Lebesgue'a	59		

Rozdział 1

Teoria mnogości

1.1 Podstaowe własności zbiorów

Definicja 1.1. Wyrażeniem logicznym nazywamy zdania postaci:

- 1. $v_i = v_i$ oraz $v_k \in v_l$
- 2. *Jeśli* ϕ *oraz* ξ *są wyrażeniami logicznymi, to są nimi również* $\neg \phi$, $\xi \land \phi$, \exists_{v_i} (ϕ) .

Aksjomat 1.2 (*Aksjomat zbioru pustego*). $\forall_{x,y} \exists_z (x \in z \land y \in z)$.

Aksjomat 1.3 (*Aksjomat ekstensywności*). $\forall_{x,y} (\forall_z (z \in x \iff z \in y) \implies x = y)$.

Aksjomat 1.4 (Aksjomat podzbiorów). Niech f będzie pewną formułą nie zawierającą zmiennej y, wówczas $\exists_y \forall_x (x \in y \iff x \in z \land f)$. Od tej pory będziemy używać notacji: $y = \{x \in z : f\}$.

Twierdzenie 1.5. *Zbiór pusty jest unikalny* \emptyset .

Dowód. Istotnie, na mocy aksjomatu estensywności gdyby istniał inny zbior pusty \emptyset' , to zachodziłoby: $\emptyset' \subseteq \emptyset \land \emptyset \subseteq \emptyset' \implies \emptyset = \emptyset'$.

Aksjomat 1.6 (*Aksjomat pary*). $\forall_{x,y} \exists_z (x \in z \land y \in z)$

Uwaga 1.7. Aksjomaty [Aks.1.4] oraz [Aks.1.6] gwarantują istnienie zbioru $\{x,y\}$ posiadającego dokładnie dwa dane elementy.

Definicja 1.8. Aksjomaty pary [Aks.1.6] i podzbiorów [Aks1.4] pozwalają zdefiniować parę uporządkowaną jako:

$$(x,y) := \{\{x\}, \{x,y\}\}.$$

Poprzez rekurencję definiujemy **n-kę uporządkowaną**:

$$(x_1,...,x_n) := ((x_1,...,x_{n-1}),x_n).$$

Aksjomat 1.9 (Aksjomat sumy). $\forall_{\mathcal{F}} \exists_A \forall_{Y,x} (x \in Y \land Y \in \mathcal{F} \implies x \in A)$, stosujemy również oznaczenie $A = \bigcup \mathcal{F}$.

Aksjomat 1.10 (*Aksjomat zastępowania*). $\forall_{x \in A} \exists !_y f(x,y) \implies \exists_Y \forall_{x \in A} \exists_{y \in Y} f(x,y)$.

Twierdzenie 1.11. Istnieją następujące zbiory:

- 1. *Iloraz rodziny* $\cap \mathcal{F} := \{x : \forall_{y \in \mathcal{F}} x \in y\}$, *gdzie* $\mathcal{F} \neq \emptyset$
- 2. *Iloczyn kartezjański* $A \times B := \{(x,y) : x \in A \land y \in B\}$

Dow'od. (1): Jest przynajmniej jeden element $z \in \mathcal{F}$, zatem korzystając z [Aks1.4] możemy wykazać istnienie $\bigcap \mathcal{F} = \left\{ x : x \in z \land \forall_{y \in \mathcal{F}} \, (x \in y) \right\}$

(2): Zgodnie z [Def.1.8] i [Aks.1.3] $\forall_y \forall_y \exists !_z (z = (x,y))$. Zatem na mocy [Aks.1.4] istnieje zbiór $A \times y = \{z : \exists_{x \in A} z = (x,y)\}$, natomiast [Aks.1.10] zapewnia istnienie $A * B = \{A \times y : y \in B\}$.

Definiujemy
$$A \times B := \bigcup A * B$$
.

Definicja 1.12. *Różnicą* $x \setminus y$ *nazywamy zbiór zdefiniowany przez:*

$$z \in x \setminus y \iff (z \in x \land z \notin y)$$

Definicja 1.13. *Dopełnieniem* $x \subseteq y$ względem y nazywamy zbiór:

$$x^{\complement} := y \setminus x$$

Twierdzenie 1.14 ((*Prawa De Morgana*)). *Dla dowolnej rodziny zbiorów* \mathcal{F} *takiej, że* $\forall_{A \in \mathcal{F}} : A \subseteq X$ *oraz* A *oznacza dopełnienie* A *względem* X *zachodzą równości:*

$$\left(\bigcap \mathcal{F}\right) = \bigcup_{A \in \mathcal{F}} A, \qquad \left(\bigcup \mathcal{F}\right) = \bigcap_{A \in \mathcal{F}} A.$$

Dowód.

$$x \in \left(\bigcap \mathcal{F}\right) \iff \exists_{A \in \mathcal{F}} : x \notin A \iff x \in \bigcup_{A \in \mathcal{F}} A.$$

Teraz do tej równości podstawmy B = A otrzymując:

$$\left(\bigcap_{B=A} B\right) = \bigcup_{B=A} B_{i},$$

$$\left(\bigcap_{A \in \mathcal{F}} A\right) = \bigcup_{A \in \mathcal{F}} (A) = \bigcup_{A \in \mathcal{F}} A,$$

Aksjomat 1.15 (*Aksjomat zbioru potęgowego*). $\forall_x \exists_y \forall_z (z \subseteq x \implies z \in y)$.

1.2 Relacje, funkcje

Definicja 1.16. *Relacją* między X i Y nazywamy dowolny podzbiór $\mathcal{R} \subseteq X \times Y$.

Definicja 1.17. *Relacją równoważności* na zbiorze X nazywamy podzbiór $\sim \subseteq X \times X$ spełniający trzy warunki:

- 1. $\forall_{x \in X} : (x, x) \in \sim$,
- 2. $(x,y) \in \land \land (y,z) \in \mathcal{R} \implies (x,z) \in \land,$
- 3. $(x,y) \in \sim \implies (y,x) \in \sim$.

Klasą abstrakcji elementu $x \in X$ *względem relacji* ~ *nazywamy*:

$$[x]_{\sim} = \{y \in X : (x,y) \in \mathcal{R}\}.$$

Zbiór klas abstrakcji oznaczamy:

$$X_{\sim} = \{[x]_{\sim} : x \in X\}$$

Definicja 1.18. Funkcją $f: X \to Y$ nazywamy relację $f \subseteq X \times Y$ spełniającą warunek: $\forall_{x \in X} \exists !_{y \in Y} ((x,y) \in f)$. Fakt, $i\dot{z}(x,y) \in f$ zapisujemy f(x) = y.

Definicja 1.19. *Zbiór wszystkich funkcji ze zbioru* X w Y *oznaczamy* Y^X.

Definicja 1.20. *Niech* $f: X \rightarrow Y$ *będzie funkcją. Wówczas:*

- X nazywamy domeną f.
- Y nazywamy kodomeną f.
- $Im(f) := f(X) := \{y \in Y : \exists_{x \in X} : y = f(x)\}$ nazywamy obrazem f.
- graph(f) := $\{(x,y) \in X \times Y : x \in X, y = f(x)\}$ nazywamy grafem f.
- $f^{-1}(Z) := \{x \in X : f(x) \in Z\}$ nazywamy przeciwobrazem $Z \subseteq Y$.
- Jeśli $\forall_{y \in Y} \exists_{x \in X} : f(x) = y$ to funkcja jest suriekcją.
- Jeśli $f(x_1) = f(x_2) \implies x_1 = x_2$ to funkcję nazywamy **iniekcją**.
- Funkcję będącą zarazem iniekcją i suriekcją nazywamy bijekcją.

Twierdzenie 1.21. *Niech ~ będzie relacją równoważności na zbiorze X. Istnieje dobrze określona funkcja rzutu na przestrzeń klas:*

$$\pi:X\ni x\to [x]_{\sim}\in X/_{\sim}$$

Dowód. Należy wykazać jedynie, że element $[x]_{\sim}$ jest wyznaczony jednoznacznie - niezależnie od wyboru reprezentanta klasy. Będzie to równoważne wykazani, że każdemu elementowi domeny odpowiada tylko jeden element obrazu. Przypuśćmy, że $x \in [x]_{\sim}$ oraz $x \in [y]_{\sim}$ Wówczas:

$$z \in [y]_{\sim} \iff \begin{cases} z \in [x]_{\sim} \implies (x, z) \in \sim, \\ x \in [y]_{\sim} \implies (y, x) \in \sim, \end{cases}$$

skąd $[y]_{\sim} \subseteq [x]_{\sim}$ na mocy tranzytywności relacji równoważności. W lustrzany sposób możemy pokazać, iż $[x]_{\sim} \subseteq [y]_{\sim}$, zatem $[x]_{\sim} = [y]_{\sim}$.

Twierdzenie 1.22. Niech $f: X \to Y$ będzie funkcją, natomiast relacja równoważności na zbiorze X będzie zdefiniowana poprzed: $x_1 \sim x_2 \iff f(x_1) = f(x_2)$. Istnieje jednoznacznie wyznaczona funkcja $\tilde{f}: X/_{\sim} \to Y$, dla której poniższy diagram jest przemienny:

Dowód. Sprawdzenie, iż \sim jest faktycznie relacją równoważności pomijamy jako trywialne zadanie.

Definiujemy funkcję $\widetilde{f}:[x]\mapsto f(x)$, która spełnia warunki zadania. Oczywiście jest unikalna. \Box

1.3 Porządki

Definicja 1.23. *Porządkiem* na zbiorze X nazywamy relację $\subseteq X \times X$ spełniającą warunki:

- 1. $\forall_{x \in X} : (x, x) \in \leq$
- 2. $(x,y) \in A \land (y,z) \in A \implies (x,z) \in A$
- 3. $(x,y) \in A \land (y,x) \in A \implies x = y$

Fakt $(x,y) \in \leq$ zapisujemy inaczej poprzez $x \leq y$. Parę (X,\leq) nazywamy zbiorem uporządkowanym.

Definicja 1.24. *Porządek* (X, \leq) *nazywamy liniowym, jeśli:*

$$\forall_{x,y \in X} x \leq y \lor y \leq x$$
.

Definicja 1.25. *Ograniczeniem dolnym* podzbioru Y zbioru uporządkowanego (X, \leq) nazywamy element $x \in X$ taki, że:

$$\forall_{y \in Y} (x \leq y)$$
.

Definicja 1.26. *Element* y podzbioru $Y \subseteq X$ jest minimum Y jeśli $y \in Y$ oraz y jest ograniczeniem dolnym tego podzbioru. Piszemy $y = \min Y$.

Definicja 1.27. Porządek (X, \leq) jest **dobry** jeśli każdy niepusty podzbiór $Y \subseteq X$ posiada minimum.

Aksjomat 1.28 (Aksjomat wyboru). Dla dowolnej rodziny niepustych zbiorów rozłącznych istnieje zbiór zawierający dokładnie po jednym elemencie z każdego ze zbiorów rodziny.

Definicja 1.29. Niech (X, \leq) będzie zbiorem uporządkowanym. Wówczas zbiór $Y \subseteq X$ nazywamy łańcuchem jeśli zbiór $(Y, \leq|_Y)$ jeśli porządek określony na Y jest liniowy, gdzie:

$$\leq |_{\mathbf{Y}} := (\mathbf{Y} \times \mathbf{Y}) \cap \leq .$$

Twierdzenie 1.30. Następujące warunki są równoważne:

- 1. Zachodzi warunek podany w aksjomacie Wyboru [Aks.1.28].
- 2. Na każdym zbiorze da się wprowadzić dobry porządek.
- 3. Jeśli (X, \leq) jest zbiorem uporządkowanym oraz każdy łańcuch w X ma ograniczenie górne, to X ma maksimum.

1.4 Liczby naturalne

Aksjomat 1.31 (*Aksjomat nieskończoności*). $\exists_x (\emptyset \in x \land \forall_{y \in x} y \cup \{y\} \in x)$

Twierdzenie 1.32. *Istnieje dokładnie jeden zbiór* \mathbb{N} , *że dla dowolnego* I *spełniającego* [Aks.1.31] $\mathbb{N} \subseteq I$.

Dowód. Istnienie: Wprowadźmy oznaczenia:

$$\mathcal{F}:=\{X\in\mathcal{P}(I)|X \text{ spełnia [Aks.1.31]}\}$$
, $\mathbb{N}:=\bigcap\mathcal{F}.$

Ponieważ $I \in \mathcal{F}$, to wybrana rodzina jest niepusta, a $\mathbb N$ spełnia tezę twierdzenia.

Jednoznaczność: Przypuśćmy, że istnieje zbiór \mathbb{N}_2 inny niż \mathbb{N} , również spełniający warunek twierdzenia. Wówczas z definicji $\mathbb{N} \subseteq \mathbb{N}_2 \wedge \mathbb{N}_2 \subseteq \mathbb{N} \implies \mathbb{N} = \mathbb{N}_2$.

Definicja 1.33. Zbiór \mathbb{N} z [Tw.1.32] przyjmujemy jako definicję zbioru liczb naturalnych.

Definicja 1.34. *Porządkiem liczb naturalnych* (X, \leq) *nazywamy relację*:

$$x \leq y \iff x \subseteq y.$$

Twierdzenie 1.35. Porządek liczb naturalnych jest dobry.

Dowód. Rozumując przez zaprzeczenie przypuśćmy, że pewien niepusty podzbiór $S\subseteq \mathbb{N}$ nie ma elementu najmniejszego. Zbiór:

$$B = \{x \in \mathbb{N} : x \text{ jest ograniczeniem dolnym S}\}$$

Jest niepusty, gdyż na podstawie [Tw.1.32] $\emptyset \in B$.

Niech $n \in B$. Skoro S nie ma minimum, to $n \notin S$ oraz $\forall_{m \in S} (n < m)$. Stąd $n+1 \le m \implies n+1 \in B \implies B = \mathbb{N}$. Zatem $m \in S \implies m \in \mathbb{N} \implies m \in B \implies m$ jest elementem najmniejszym S, co przeczy założeniu.

Twierdzenie 1.36 (*Zasada indukcji*). *Niech* $S \subseteq \mathbb{N}$, *natomiast* $S \ni \mathfrak{p} \mapsto P(x) \in \{0,1\}$ *pewną funkcją*. *Wówczas jeśli:*

$$(\forall_{S\ni x< u} (P(x)=1)) \implies P(y)=1, \qquad P(s_0)=1,$$

 $gdzie s_0 := min S$, to zachodzi:

$$\forall_{y \in S} (P(y) = 1)$$
.

Dowód. Niech Z = {x ∈ S : P(x) = 0}, natomiast z_0 będzie elementem najmniejszym Z. Wówczas nie może zachodzić $\forall_{x \le z_0}$ (P(x) = 1) chyba, że $z_0 = s_0$ oraz $0 = P(z_0) = P(s_0) = 1$, co jest samo w sobie sprzecznością.

1.5 Moc zbiorów

Definicja 1.37. Zbiory A i B są **równoliczne** jeśli istnieje bijekcja $f: A \to B$. Jest to relacja równoważności oznaczana często przez $A \sim B$.

Definicja 1.38. Zbiór nazywamy **przeliczalnym** jeśli jest równoliczny z jakimś podzbiorem zbioru liczb naturalnych.

Twierdzenie 1.39. *Dla żadnego* X *nie istnieje suriekcja* $f: X \to \mathcal{P}(X)$.

Dowód. Weźmy funkcję $φ: X \to \mathcal{P}(X)$. Wykażemy, że φ nie jest suriekcją pokazując, że:

$$Y = \{x \in X : x \notin \phi(x)\} \tag{1.1}$$

nie należy do $Im(\phi)$.

Dążąc do sprzeczności przypuśćmy, że znaleźliśmy taki y dla którego $\varphi(y)=Y.$ Wówczas:

- 1. $y \in Y \implies y \notin \phi(y) = Y$, albo
- 2. $y \notin Y \implies y \in \phi(y) = Y$,

co doprowadza nas do sprzeczności - nie możemy wybrać takiego y, że jego obrazem jest (1.1). $\hfill\Box$

Twierdzenie 1.40 (*Cantor-Bernstein-Schröder*). *Jeśli A ma podzbiór równoliczny z* B, a B ma podzbiór równoliczny z A, to A \sim B.

Dowód. Zgodnie z założeniem możemy znaleźć bijekcje f, g takie, że:

$$f(A)=B_1\subseteq B, \qquad \qquad g(B)=A_1\subseteq A.$$

Ustalmy też dwa ciągi:

$$B_n = f(A_{n-1}),$$
 $A_n = g(B_{n-1})$

Możemy przedstawić:

$$A = \bigcap_{i=1}^{\infty} A_i \cup (A \setminus A_1) \cup (A_1 \setminus A_2) \cup (A_2 \setminus A_3) \cup \dots,$$

$$A_1 = \bigcap_{i=1}^{\infty} A_i \cup (A_1 \setminus A_2) \cup (A_2 \setminus A_3) \cup (A_3 \setminus A_4) \cup \dots,$$

lub jako:

$$A = \bigcap_{i=1}^{\infty} A_i \cup M \cup N, \qquad \qquad A_1 = \bigcap_{i=1}^{\infty} A_i \cup M \cup N_1,$$

gdzie:

$$M = (A_1 \setminus A_2) \cup (A_3 \setminus A_4) \cup (A_5 \setminus A_6) \cup \dots,$$

$$N = (A \setminus A_1) \cup (A_2 \setminus A_3) \cup (A_4 \setminus A_5) \cup \dots,$$

$$N_1 = (A_2 \setminus A_3) \cup (A_4 \setminus A_5) \cup (A_6 \setminus A_7) \cup \dots$$

Zauważmy, że $f \circ g$ jest bijekcją oraz: $f \circ g(A \setminus A_1) = A_2 \setminus A_3$, skąd wynika również $N \sim N_1$. Stąd $A_1 \sim A$ i rezultacie $A \sim B$, jako że równoliczność zbiorów jest relacją równoważności oraz $A_1 \sim B$.

1.6 Operacje na zbiorach

Definicja 1.41. Funkcję postaci $\odot: X \times X \to X$ nazywamy **działaniem na zbiorze** X. Jeśli ponadto:

- 1. $\forall_{x,y,z\in X}: x\odot(y\odot z)=(x\odot y)\odot z$ to działanie nazywamy łącznym.
- 2. $\forall_{x,u \in X} : x \odot y = y \odot x$ to działanie nazywamy przemiennym.
- 3. $\exists_{e \in X} \forall_{x \in X} : x \circledcirc e = e \circledcirc x = x \text{ to e nazywamy elementem neutralnym działania.}$

Twierdzenie 1.42. *Jeśli działanie ma element neutralny, to jest on wyznaczony jednoznacznie.*

Dowód. Niech e będzie elementem neutralnym działania ⊙: X × X → X. Przypuśćmy, że istnieje jeszcze inny element neutralny e'. Wówczas:

$$e' = e' \odot e = e \odot e' = e$$

1.7 Grupa permutacji

Definicja 1.43. *Grupa to trójka* $(G, \cdot, 1)$ *, gdzie:*

- 1. G jest zbiorem.
- 2. · jest działaniem łącznym.
- 3. 1 jest elementem neutralnym działania.

4.
$$\forall_{g \in G} \exists_{g^{-1} \in G} : g \cdot g^{-1} = g^{-1} \cdot g = 1$$

Jeśli ponadto działanie · jest przemienne to grupę nazywamy abelową.

Definicja 1.44. *Podgrupą* grupy $(G, \cdot, 1)$ nazywamy zbiór $H \subseteq G$ taki, że:

- 1. $H \cdot H \subseteq H$
- 2. $\forall_{h \in H} (h^{-1} \in H)$

Definicja 1.45. Niech $(G_1, \cdot_1, \mathbb{1})_1$) i $(G_2, \cdot_2, \mathbb{1}_2)$ będą grupami. **Homomorfizmem** grup nazywamy funkcję $\phi: G_1 \to G_2$ spełniającą warunek:

$$\phi(x \cdot_1 y) = \phi(x) \cdot_2 \phi(y)$$

Twierdzenie 1.46. *Jeśli* $\phi: G_1 \to G_2$ *jest homomorfizmem grup, to* $\phi(\mathbb{1}_1) = \mathbb{1}_2$. *Dowód.*

$$\varphi\left(\mathbb{1}_{1}\right) = \mathbb{1}_{2} \iff \left\{ \begin{array}{c} \varphi\left(x\right) = \varphi\left(\mathbb{1}_{1} \cdot_{1} x\right) = \varphi\left(\mathbb{1}_{1}\right) \cdot_{2} \varphi\left(x\right) \\ \varphi\left(x\right) = \varphi\left(x \cdot_{1} \mathbb{1}_{1}\right) = \varphi\left(x\right) \cdot_{2} \varphi\left(\mathbb{1}_{1}\right) \end{array} \right.$$

Definicja 1.47. *Permutacją* X nazywamy dowolna bijekcję $\sigma: X \to X$.

Twierdzenie 1.48. *Niech* S_X *oznacza grupę permutacji* X, $a \circ operację składania funkcji. Wówczas <math>(S_X, \circ, id())$ jest grupą.

Definicja 1.49. *Grupę permutacji na zbiorze* $\{1, 2, ..., n\}$ *oznaczamy* S_n .

1.8 Pierścień wielomianów

Definicja 1.50. *Pierścień* to czwórka $(R, +, \cdot, 0,)$, gdzie:

- 1. (R, +, 0) jest grupą abelową.
- 2. · jest działaniem łącznym.
- 3. Zachodzi rozdzielność dodawania względem mnożenia:

$$\forall_{a,b,c \in R} : (a+b) \cdot c = a \cdot c + b \cdot c.$$

Definicja 1.51. *Niech* $(R, +, \cdot, 0,)$ *będzie pierścieniem.*

- 9
- 1. $x \in R$ nazywamy dzielnikiem zera jeśli istnieje $y \neq 0$ dla którego xy = 0.
- 2. Mówimy, że $x \in R$ jest **nilpotentny** jeśli dla pewnego $n \in \mathbb{N}$ zachodzi $x^n = 0$.

Definicja 1.52. *Ideałem* w pierścieniu R nazywamy $I \subseteq R$ spełniający:

- 1. (I, +, 0) jest grupą.
- 2. $\forall_{\alpha \in I} \forall_{\alpha \in R} : \alpha \cdot \alpha \in I \land \alpha \cdot \alpha \in I$
- 3. 1 ∉ I

Definicja 1.53. *Ciało to piątka* (\mathbb{K} , +, ·, 0, $\mathbb{1}$), *gdzie*:

- 1. $(\mathbb{K}, +, \cdot, 0, \mathbb{1})$ jest pierścieniem.
- 2. $(\mathbb{K} \setminus \{0\}, \cdot, \mathbb{1})$ jest grupą abelową.
- 3. $1 \neq 0$

Twierdzenie 1.54. Niech $\mathbb{K}[x]$ oznacza pierścień wielomianów nad ciałem \mathbb{K} . Dla dowolnych niezerowych $p, q \in \mathbb{K}[x]$ istnieją jednoznacznie wyznaczone elementy $r, s \in \mathbb{K}[x]$ takie, że:

$$p = s \cdot q + r \wedge deg(r) < deg(q).$$

Dowód. (istnienie): Jeśli $\deg(p) < \deg(q)$, to wystarczy przyjąć s = 0 oraz r = p. Przypuśćmy zatem, że $\deg(q) \le \deg(p)$. Wielomiany mają reprezentację postaci:

$$p = \sum_{i=1}^{n} p_i x^i, \qquad q = \sum_{i=1}^{m} q_j x^j,$$

gdzie p_n , $q_m \neq 0$ i $m \leq n$. Ustalmy rekurencyjnie:

$$\begin{split} s_{(1)} &:= p_n q_m^{-1} x^{n-m} & p_{(1)} := p - s_{(1)} q, \\ s_{(x+1)} &:= s_{(x)} + p_{\deg(p_{(x)})} q_m^{-1} x^{\deg(p_{(x)}) - m} & p_{(x+1)} \coloneqq p - s_{(x+1)} q. \end{split}$$

Algorytm powtarzamy do czasu aż s := $s_{(x)}$ i r := $p_{(x)}$ spełniają warunki zadania. To tylko zazrys dowodu, ale szczegóły zajęłyby niepotrzebnie wiele miejsca.

(unikalność): Przypuśćmy, że p = sq + r = s'q + r' oraz $(s-s') \neq 0$, wówczas 0 = (s-s')q + (r-r'). Z założenia, że $\deg(r) < \deg(q)$ wynika sprzeczność, $\gcd(s-s')q + (r-r') = 0 \implies \deg(r) \geq \deg(r-r') = \deg((s-s')q) \geq \deg(q)$.

Twierdzenie 1.55. *Każdy ideał* $I \subseteq \mathbb{K}[x]$ *można, dla pewnego* $w \in \mathbb{K}[x]$, *przedstawić w postaci:*

$$I = \{w \cdot v : v \in \mathbb{K}[x]\}.$$

Dowód. Niech $w_1 \in I$ będzie niezerowym wielomianem minimalnego stopnia w ideale, oraz $w_2 \in I$. Na mocy [Tw.1.54] istnieją $r \in \mathbb{K}[x]$ stopnia mniejszego niż w_2 oraz $v \in \mathbb{K}[x]$, dla których:

$$w_2 = v \cdot w_1 + r$$

Z definicji ideału wiemy też, że:

$$w_1 \in I \implies v \cdot w_1 \in I$$

 $r = w_2 - v \cdot w_1 \in I$

Ponadto, ponieważ stopień w_1 był minimalny, to r=0. Innymi słowy każdy wielomian w I dzieli się przez w_1 .

Rozdział 2

Algebra liniowa

Definicja 2.1. *Przestrzenią wektorową* nad ciałem \mathbb{K} nazywamy piątkę $(V, \mathbb{K}, +, \cdot, 0)$, gdzie:

- 1. (V, +, 0) jest grupą abelową.
- 2. $\cdot : \mathbb{K} \times V \ni (\lambda, \nu) \mapsto \lambda \cdot \nu \in V$ zwana **mnożeniem przez skalar** jest funkcją spełniającą warunki rozdzielności:

$$(\lambda + \mu) \cdot \nu = \lambda \cdot \nu + \mu \cdot \nu,$$
 $\lambda \cdot (u + \nu) = \lambda u + \lambda \nu,$

łączności:

$$(\lambda \cdot_{\mathbb{K}} \mu) \nu = \lambda \cdot (\mu \cdot \nu),$$

gdzie "· \mathbb{K} " oznacza działanie mnożenia w ciele. Z elementem neutralnym $\mathbb{1} \in \mathbb{K}$

$$1 \cdot v = v$$
.

Definicja 2.2. *Podprzestrzenią* przestrzeni $(V, \mathbb{K}, +, \cdot, 0)$ nazywamy taki podzbiór $V \subseteq W$, że:

- 1. $V + V \subseteq V$
- 2. $\mathbb{K} \cdot \mathbb{V} \subset \mathbb{V}$

Definicja 2.3. Niech V, W będą przestrzeniami wektorowymi nad ciałem \mathbb{K} . *Operator liniowy* to homomorfizm przestrzeni liniowych, czyli funkcja $A:V\to W$ taka, że:

$$\forall_{\alpha,\beta\in\mathbb{K};x,y\in V}: A(\alpha x + \beta y) = \alpha Ax + \beta Ay.$$

Przestrzeń operatorów liniowych oznaczamy $\operatorname{Hom}(V,W)$ Jeśli V=W to homomorfizm nazywamy endomorfizmem i $\operatorname{Hom}(V,W)$ oznaczamy $\operatorname{End}(V)$. Jeśli A ma lewą odwrotność to jest epimorfizmem. Jeśli prawą - monomorfizmem. Gdy obie - izomorfizmem.

Definicja 2.4. Niech V będzie przestrzenią wektorową nad \mathbb{K} . Podzbiór $\mathbb{E} \subseteq V$ jest **liniowo niezależny** jeśli niezależnie od wyboru $\mathfrak{n} \in \mathbb{N}$ nie ma skończonych, niezerowych ciągów $\{\alpha_i\}_{i=1}^n \subseteq \mathbb{K}$ oraz $\{x_i\}_{i=1}^n \subseteq \mathbb{E}$ takich, że $\sum_{i=1}^n \alpha_i x_i = 0$.

Definicja 2.5. Niech V będzie przestrzenią wektorową. **Bazą** przestrzeni nazywamy dowolny maksymalny liniowo niezależny podzbiór V. (Niezawarty w żadnym innym)

Twierdzenie 2.6. Każda przestrzeń wektorowa ma bazę.

Dowód. Jest to prosty wniosek z [Tw.1.30.3]. Jeśli przyjmiemy relację zawierania jako porządek na wszystkich zbiorach liniowo niezależnych to istnieje taki zbiór maksymalny. □

Definicja 2.7. *Jeśli każdy element przestrzeni* V można zapisać jako liniową kombinację elementów zbioru A, to mówimy, że A rozpina przestrzeń V, co zapisujemy:

$$V = \operatorname{span}(A)$$

2.1 Przestrzenie o skończonym wymiarze

Definicja 2.8. Przestrzeń wektorowa ma wymiar $n \in \mathbb{N}$ jeśli istnieje jej baza posiadająca n elementów.

Twierdzenie 2.9. Niech zbiór $\{e_i\}_{i=1}^n$ stanowi bazę n-wymiarowej przestrzeni wektorowej V nad ciałem \mathbb{K} . Wówczas:

- 1. Każdy wektor $v \in V$ można przedstawić w postaci sumy $v = \alpha_1 e_1 + \ldots + \alpha_n e_n$, gdzie $\alpha_i \in \mathbb{K}$.
- 2. Współczynniki $\alpha_1, \ldots, \alpha_n$ są wyznaczone jednoznacznie.

Dowód. (1): Przyjmijmy, że $v \notin \{e_i\}_{i=1}^n$, gdyż wówczas teza jest oczywista. Rozważmy zbiór $\{e_i\}_{i=1}^n \cup \{v\}$. Nie może on być liniowo niezależny wprost z [Def.2.5], zatem istnieje zestaw skalarów, że:

$$\alpha_0 \nu + \alpha_1 e_1 + \ldots + \alpha_n e_n$$

gdzie $\alpha_0 \neq 0$. Wtedy:

$$v = -\left(\frac{\alpha_1}{\alpha_0}e_1 + \ldots + \frac{\alpha_n}{\alpha_0}e_n\right)$$

(2): Przypuśćmy, że:

$$\alpha_1 e_1 + \ldots + \alpha_n e_n = \nu = \beta_1 e_1 + \ldots + \beta_n e_n.$$

Równanie odejmujemy stronami:

$$(\alpha_1 - \beta_1)e_1 + \ldots + (\alpha_n - \beta_n)e_n = 0.$$

Zgodnie z [Def.2.4] wszystkie współczynniki w tej równości muszą być zerami.

Twierdzenie 2.10. Niech V będzie przestrzenią wektorową o wymiarze n. Wówczas każda baza tej przestrzeni ma n elementów.

Dowód. Przypuśćmy, że istnieją dwie różne bazy $E = \{e_1, \dots, e_k\}$ oraz $F = \{f_1, \dots, f_m\}$, gdzie k < m (co zakładamy bez straty ogólności). Rozważmy liniowo niezależny zbiór $B = \{e_1, \dots, e_s, f_p, \dots, f_q\}$ dla $s \in \{0, \dots, k\}$. Wykażemy, że możemy w nim zastąpić jeden z wektorów f_i przez e_{s+1} w ten sposób, by pozostał liniowo niezależny. Istotnie mamy dwie możliwości:

- (1): $B \cup \{e_{k+1}\}$ jest liniowo niezależny. Wówczas usuwamy z niego dowolny f_i .
 - (2): B \cup { e_{k+1} } jest liniowo zależny i możemy zapisać:

$$e_{k+1} = \alpha_1 e_1 + \ldots + \alpha_k e_n + \beta_1 f_p + \beta_{q-p+1} f_q,$$
 (2.1)

gdzie przynajmniej jedno $\beta_i \neq 0$. Gdyby było inaczej to E byłby układem liniowo zależnym. Zastępujemy f_i wektorem e_{k+1} , a otrzymany zbiór B' jest wciąż liniowo niezależny. (Gdyby było inaczej, to moglibyśmy wybrać $a_1e_1+\ldots+a_{k+1}e_{k+1}+a_{k+2}f_s+\ldots+a_mf_d=0$, pod e_{k+1} podstawić (2.1) i wykazać liniową zależność B).

To znaczy, że możemy stworzyć liniowo niezależny zbiór:

$$\{e_1, \ldots, e_k, f_t, \ldots, f_r\},\$$

posiadający m wektorów, zawierający bazę E. Jest to sprzeczne z definicją bazy jako maksymalnego zbioru liniowo niezależnego.

Uwaga 2.11. Każdy operator liniowy na przestrzeni o skończonym wymiarze jest jednoznacznie wyznaczony przez obrazy elementów bazy tej przestrzeni.

Lemat 2.12. Każdy zbiór liniowo niezależny można dopełnić do bazy.

 $\it Dow\'od.$ Można zastosować algorytm analogiczny do tego zastosowanego w dowodzie [Tw.2.10]. $\hfill\Box$

Lemat 2.13. Podprzestrzeń $W \subseteq V$ przestrzeni V o wymiarze n ma wymiar $m \le n$.

Dowód. Jeśli $W \neq \{0\}$, to możemy wybrać wektor $w_1 \in W$ taki, że span $\{w_1\} \subseteq W$, potem rekurencyjnie w_{k+1} dla którego $\{w_1, \ldots, w_{k+1}\}$ jest liniowo niezależny oraz span $\{w_1, \ldots, w_{k+1}\} \subseteq W$ itd...

Jeśli w którymś momencie nie jesteśmy w stanie wybrać k+1 wektora, to dim W=k. Jeśli natomiast dojdziemy do k=n, to W=V.

Twierdzenie 2.14. *Niech W będzie przestrzenią wektorową o skończonym wymiarze, natomiast* U, V *jej podprzestrzeniami takimi, że* $W = \{v + u : v \in V, u \in U\} = V + U$. *Wówczas* $\dim W = \dim U + \dim V - \dim U \cap V$.

Dowód. Oznaczmy bazę $V \cap U$ przez E zakładając przy tym dla wygody, że jeśli $V \cap U = \{0\}$, to $E = \emptyset$. Na mocy [Tw.2.12] można dopełnić ten zbiór do bazy E_1 podprzestrzeni V i osobno bazy E_2 podprzestrzeni W. Wówczas:

$$(E_1 \setminus E) \cup (E_2 \setminus E) \cup E$$
,

liczy $(\dim U + \dim V - \dim U \cap V)$ elementów oraz jest bazą W.

Definicja 2.15. Izomorfizm liniowy $T: V \to W$ nazwiemy **kanonicznym** jeśli możemy zdefiniować go niezależnie od wyboru baz przestrzeni V i W.

Definicja 2.16. Niech V, W będą przestrzeniami wektorowymi. Wówczas taki operator liniowy $P: V \to W$, że $\forall_{v \in V} : P(v) = P(P(v))$ nazywamy rzutem.

2.2 Suma prosta przestrzeni

Definicja 2.17. Niech W, V, U będą przestrzeniami wektorowymi nad ciałem \mathbb{K} . Mówimy, że W jest **suma prostą** V i U, co zapisujemy $W = V \oplus U$, jeśli każdy wektor $w \in W$ można jednoznacznie zapisać w postaci w = v + u, gdzie $v \in V$ oraz $u \in U$.

Twierdzenie 2.18. *Zbiór* $W = \{V + U : v \in V, u \in U\}$ *jest sumą prostą przestrzeni* V i U wtedy i tylko wtedy, gdy $V \cap U = \{0\}$.

Dowód. (\Longrightarrow): Jeśli W jest sumą prostą, ale $\exists_{\alpha \in V \cap U}$: $\alpha \neq 0$, to rozkład $0 = 0 + 0 = \alpha + (-\alpha)$ nie jest jednoznaczny.

$$(\Leftarrow=)$$
: Jeśli $w = v_1 + u_1 = v_2 + u_2$, to $v_1 - v_2 = u_2 - u_1 \in V \cap U = 0$. \square

Wniosek 2.19. Zbiór $W = \{V + U | v \in V, u \in U\}$ jest sumą prostą przestrzeni V i U wtedy i tylko wtedy, gdy dim $W = \dim V + \dim U$.

Wniosek 2.20. $W = V \oplus W \cong V \times W$.

Dowód. Wystarczy zauważyć istnienie naturalnego izomorfizmu W ∋ v+w \mapsto (v,w).

2.3 Przestrzeń ilorazowa

Twierdzenie 2.21. *Niech* V *będzie przestrzenią wektorową, natomiast* W *jej podprzestrzenią.* Wprowadźmy na V następującą relację:

$$\forall_{x,y \in V} : x \mathcal{R}y \iff x - y \in W.$$

Wówczas jest to relacja równoważności. Ponadto jeśli na tym zbiorze wprowadzimy działania:

$$[x] + [y] = [x + y],$$
 $\alpha[x] = [\alpha x],$

to zyska on strukturę przestrzeni wektorowej.

Dowód. (1): Pokażmy najpierw, że relacja jest relacją równoważności. Ponieważ W jest podprzestrzenią:

$$-x-x=0\in W$$

-
$$x - y \in W \land y - z \in W \implies (x - y) + (y - z) = x - z \in W$$

- $x - y \in W \implies -(x - y) = y - x \in W$

(2): Sprawdzimy, że działania są jednoznacznie zdefiniowane, to znaczy wykażmy:

$$x, x' \in [x]; y, y' \in [y] \implies [x + y] = [x' + y'] \wedge [\alpha x] = [\alpha x'],$$

ale to proste, bo $(x + y) - (x' + y') = (x - x') + (y - y') \in W$ oraz $[\alpha x - \alpha x'] \in W$.

Uwaga 2.22. Rzut $\pi: V \to V_W$ jest operatorem liniowym.

Lemat 2.23. Niech V, W, Q będą przestrzeniami wektorowymi, a $A: V \to W$ oraz $S: V \to Q$ operatorami liniowymi. Ponadto niech $H: Q \to W$ będzie operatorem liniowym dla którego $H \circ S = A$, czyli takim dla którego poniższy diagram jest przemienny. Wówczas H istnieje wtedy i tylko wtedy, gdy ker $S \subseteq \ker A$. Ponadto jest wyznaczone jednoznacznie na Im(S).

Dowód. (\iff): Jeśli H istnieje, to $S(v) = 0 \implies H \circ S = A = 0$.

 (\Longrightarrow) : Teraz załóżmy, że ker $S\subseteq\ker A$. Na podprzestrzeni $\operatorname{im}(S)$ możemy ustalić $\operatorname{H}(S(\nu))=\operatorname{H}(\mathfrak{u})=\operatorname{A}(\nu)$, gdzie $\mathfrak{u}=S(\nu)$. Natomiast na zbiorze $W\setminus\operatorname{im}(S)$ ustalmy H=0. Tak zdefiniowane H jest liniowe, gdyż:

$$\begin{split} &H\left(S(\nu+u)\right)=A(\nu+u)=A(\nu)+A(u)=H\left(S(\nu)\right)+H\left(S(u)\right),\\ &H\left(S(\alpha\nu)\right)=\alpha A(\nu)=\alpha H\left(S(\nu)\right). \end{split}$$

Operator H jest dobrze określony, ponieważ:

$$S(\nu_1) = S(\nu_2) \implies \nu_1 - \nu_2 \in \ker S \implies \implies \nu_1 - \nu_2 \in \ker A \implies A(\nu_1) = A(\nu_2)$$

Twierdzenie 2.24. Niech V, W będą przestrzeniami wektorowymi nad K. Ponadto niech $A:V\to W$ będzie operatorem liniowym. Wówczas istnieje jednoznacznie wyznaczony operator liniowy $\bar{A}:V_{\ker A}\to W$ spełniający $\bar{A}\circ\pi=A$, gdzie π jest rzutem na przestrzeń ilorazową.

Dowód. Skorzystajmy z [Lem.2.23] zastępując Q przez ker A. □

2.4 Przestrzeń dualna

Definicja 2.25. Niech V będzie przestrzenią wektorową nad \mathbb{K} . Kowektorem nazywamy dowolny operator liniowy $f: V \to \mathbb{K}$.

Twierdzenie 2.26. Niech V będzie przestrzenią wektorową. Zbiór funkcjonałów na V ma strukturę przestrzeni wektorowej.

Dowód. Dowód jest trywialny, dla kowektorów f, g:

$$(\alpha f + \beta g)(\delta x + \gamma y) = \delta(\alpha f + \beta g)(x) + \gamma(\alpha f + \beta g)(y).$$

Definicja 2.27. Niech V będzie przestrzenią wektorową. Przestrzeń kowektorów na V nazywamy przestrzenią dualną do V i oznaczamy V^* .

Twierdzenie 2.28. Niech f będzie niezerowym kowektorem w V*. Ustalmy element $x_0 \in V \setminus \ker f$. Dowolny wektor $v \in V$ może być jednoznacznie zapisany w postaci $v = \alpha x_0 + y$, gdzie $y \in \ker f$.

Dowód. Niech:

$$y = v - \frac{f(v)}{f(x_0)} x_0.$$

Wówczas f(y)=0, zatem $y\in\ker f$ oraz $\nu=\frac{f(\nu)}{f(x_0)}x_0+y$. [unikalność]: Jeśli $\nu=\alpha x_0+y_1=\beta x_0+y_2$, to $(\alpha-\beta)x_0=y_2-y_1=0$. \square

Definicja 2.29. Niech V będzie przestrzenią wektorową, a $W \subseteq V$ jej podprzestrzenią. Kowymiarem W nazywamy:

$$codim(W) = dim \frac{V}{W}$$

Twierdzenie 2.30. *Niech* $f \in V^*$ *będzie niezerowym kowektorem, wówczas* codim(ker f) = 1

Dowód. Mamy $\operatorname{codim}(\ker f) = \dim^V /_{\ker f}$. Korzystając z [Tw.2.28] wybieramy $x_0 \in V \setminus \ker f$. Taki element istnieje gdyż f jest niezerowy. każdy element $v \in V$ można zapisać jako sumę $v = \alpha x_0 + y$, gdzie $y \in \ker f$. Stąd jeśli $\pi : V \to V /_{\ker f}$ jest rzutem, to:

$$\pi(\nu) = \alpha[x_0] \implies [x_0] \text{ jest baza } V_{\text{ker f}}.$$

Twierdzenie 2.31. *Jeśli* $E = \{e_1, \dots, e_n\}$ *jest bazą przestrzeni* V, a funkcjonał e^i *jest zdefiniowany wzorem:*

$$e^{i}(\alpha e_{j}) = \alpha \delta_{j}^{i},$$

to zbiór $E^* = \{e^1, \dots, e^n\}$ jest bazą V^* .

Dowód. (eⁱ jest kowektorem): Niech ν,
$$w ∈ V$$
, wówczas $e^i(v+w) = e^i\left(\sum_{j=1}^n \alpha_j e_j + \sum_{j=1}^n \beta_j e_j\right) = \alpha_i + \beta_i = e^i(v) + e^i(w).$ (E* jest bazą): Jest to wniosek z [Tw.2.28].

Twierdzenie 2.32. Niech V będzie przestrzenią wektorową. Wówczas istnieje kanoniczny izomorfizm $(V^*)^* \simeq V$.

Dowód. Wybierzmy odwzorowanie:

$$\Phi: V \ni \nu \mapsto \nu^{**}, gdzie$$
$$\nu^{**}(f) = f(\nu)$$

To, że Φ jest liniowe oraz ν^{**} faktycznie należy do V^{**} jest proste do wykazania.

$$[\textit{monomorfizm}]{:} \ \nu_1^{**} = \nu_2^{**} \implies \forall_{f \in V^*} : f(\nu_1) = f(\nu_2)$$

[epimorfizm]: Skorzystajmy z [Tw.2.30]. Weźmy dowolny wektor $t \in V^{**}$. Musi istnieć dokładnie jeden element $t' \in V^*$, że t(t') = 1 oraz dokładnie jeden $t'' \in V$ dla którego t'(t'') = 1. Wówczas $(\Phi(t''))(t') = t'(t'') = t(t') = 1$. \square

Rozdział 3

Algebra wieloliniowa i iloczyn tensorowy

3.1 Odwzorowania wieloliniowe

3.2 Iloczyn tensorowy przestrzeni

Definicja 3.1. Rozważmy przestrzenie wektorowe V oraz W nad ciałem K. Ponadto niech:

1. M oznacza przestrzeń wektorową napisów postaci:

$$\left\{\sum_{i,j}^k \nu_i \otimes w_j | \nu_i \in V, w_j \in W\right\}.$$

- 2. $\mathcal{M}_0 \subseteq \mathcal{M}$ oznacza podprzestrzeń wszystkich napisów, których składniki są sumami postaci:
 - $\lambda(v \otimes w) (\lambda v) \otimes w$,
 - $\lambda(v \otimes w) v \otimes (\lambda w)$,
 - $(v_1 + v_2) \otimes w v_1 \otimes w v_2 \otimes w$,
 - $\nu \otimes (w_1 + w_2) \nu \otimes w_1 \nu \otimes w_2$

$$gdzie \lambda \in \mathbb{K}; \nu, \nu_1, \nu_2 \in V; w, w_1, w_2 \in W.$$

Wówczas przestrzeń wektorową $\mathcal{M}_{\mathcal{M}_0}$ oznaczamy przez $V \otimes W$ i nazywamy iloczynem tensorowym przestrzeni.

Twierdzenie 3.2. *Niech* V, W, Q *będą przestrzeniami wektorowymi nad ciałem* K. *Odwzorowanie:*

$$\pi: V \times W \ni (v, w) \mapsto v \otimes w \in V \otimes W$$

jest dwuliniowe. Ponadto dla dowolnego odwzorowania dwuliniowego $f: V \times W \to Q$ istnieje dokładnie jeden operator $\bar{f}: V \otimes W \to Q$ takie, że $f = \bar{f} \circ \pi$, a poniższy diagram jest przemienny:

$$V \times W \xrightarrow{f} Q$$

$$V \otimes W$$

Dowód. (1): Wykażmy najpierw, że π jest dwuliniowe:

$$(\alpha x + \beta y, w) = (\alpha x + \beta y) \otimes w =$$

$$= (\alpha x + \beta y) \otimes w - \alpha x \otimes w - \beta y \otimes w + \alpha x \otimes w + \beta y \otimes w =$$

$$= \alpha x \otimes w + \beta y \otimes w,$$

$$(v, \alpha x + \beta y) = v \otimes (\alpha x + \beta y) =$$

$$= v \otimes (\alpha x + \beta y) - \alpha v \otimes x - \beta v \otimes y + \alpha v \otimes x + \beta v \otimes y =$$

$$= \alpha v \otimes x + \beta v \otimes y.$$

(Korzystamy przy tym z własności przestrzeni ilorazowych).

(2): Teraz wykażemy istnienie i unikalność \bar{f} . Niech operator $g: V \otimes W \to Q$ będzie zadany wzorem:

$$g\left(\sum_{i,j=1}^k \alpha_{i,j}(\nu_i \otimes w_j)\right) = \sum_{i,j=1}^k \alpha_{i,j} f(\nu_i, w_j) = f(\sum_{i,j=1}^k \alpha_{i,j}(\nu_i, \nu_j))$$

Wprost z [Def.3.1] wynika, że $\mathcal{M}_0 \subseteq \ker g$ z powodu dwuliniowości f. Wówczas g generuje operator \bar{f} w sensie [Tw.1.22].

3.3 Iloczyn tensorowy przestrzeni o skończonym wymiarze

Lemat 3.3. *Niech* V, W *będą przestrzeniami wektorowymi nad ciałem* \mathbb{K} , *natomiast* $\{v_1, \ldots, v_n\}$ *i* $\{w_1, \ldots, w_m\}$ *bazami. Wówczas:*

- 1. Każdy tensor $t \in V \otimes W$ może być przedstawiony w postaci sumy $t = \sum_{i,j=1}^{n,m} \alpha_{ij} \nu_i \otimes w_i$.
- 2. Tensor t może być zapisany również w postaci $\sum_{i=1}^k a_i \otimes b_i$, gdzie $a_i \in V$, $b_i \in W$ oraz k = min(n, m).

Dowód. (1): Wystarczy skorzystać z dwuliniowości π wykazanej w [Stw.3.2] i rozłożyć każdy z wektorów iloczynu w bazie.

(2): Bez utraty ogólności przyjmijmy
$$n \le m$$
, wówczas $t = \sum_{i,j=1}^{n,m} \alpha_{ij} \nu_i \otimes w_j = \sum_{i=1}^{n} \nu_i \otimes b_i$, gdzie $b_i = \sum_{j=1}^{m} \alpha_{ij} w_j$.

3.3. ILOCZYN TENSOROWY PRZESTRZENI O SKOŃCZONYM WYMIARZE21

Lemat 3.4. Niech V, W będą przestrzeniami wektorowymi nad ciałem \mathbb{K} oraz $f^* \in V^*$. Wówczas funkcja f^* zdefiniowana jako:

$$f^*(\sum_{i=1}^k v_i \otimes w_i) = \sum_{i=1}^k f^*(v_i)w_i,$$

 $gdzie v_i \in V, w_i \in W$, jest operatorem liniowym.

Dowód. Liniowość jest trywialna do udowodnienia. Musimy jedynie wykazać, że nasz operator jest dobrze zdefiniowany, to jest:

$$a \otimes b = c \otimes d \implies f^*(a \otimes b) = f^*(c \otimes d)$$

Niech $m_0 \in \mathcal{M}_0$ gdzie \mathcal{M}_0 jest zdefiniowany w [Def.3.1]. Wówczas $a \otimes b = c \otimes d \iff \exists_{m_0} a \otimes b = c \otimes d + m_0$, a wówczas $f^*(a \otimes b) = f^*(c \otimes d + m_0) = f^*(c \otimes d) + f^*(m_0) = f^*(c \otimes d)$.

Lemat 3.5. Niech $\{v_1, \ldots, v_p\}$ oraz $\{w_1, \ldots, w_q\}$ będą układami liniowo niezależ-nymi. Wówczas układ

$$\{v_i \otimes w_j | i \in \{1, \dots, p\}, j \in \{1, \dots, q\}\}$$

jest również liniowo niezależny.

Dowód. Rozważmy sumę:

$$\sum_{i,j=1}^{p,q} \alpha_{ij} \nu_i \otimes w_j = 0.$$

Dla dowolnego $f^* \in V^*$ stosujemy operator zdefiniowany w [Lem.3.4] do naszej liniowej kombinacji, otrzymując:

$$\begin{split} f^*(\sum_{i,j=1}^{p,q} \alpha_{ij}\nu_i \otimes w_j) &= \sum_{i,j=1}^{p,q} \alpha_{ij} f^*(\nu_i) w_j = 0 \iff \\ \iff \forall_{i,j}\alpha_{ij} = 0. \end{split}$$

Twierdzenie 3.6. *Niech* V, W *będą przestrzeniami wektorowymi o skończonym wymiarze.* Wówczas:

$$\dim V \otimes W = \dim V \cdot \dim W$$

Dowód. Niech $\{v_1, \dots, v_p\}$ oraz $\{w_1, \dots, w_q\}$ będą bazami odpowiednich przestrzeni. Na podstawie [Lem.3.3] układ:

$$\{v_i \otimes w_i | i \in \{1, ..., p\}, j \in \{1, ..., q\}\}$$

rozpina przestrzeń $V \otimes W$. Z [Lem.3.5] wynika, że jest liniowo niezależny. \Box

3.4 Przestrzenie wyższego rzędu.

Twierdzenie 3.7. *Iloczyn tensorowy jest łączny i przemienny, to znaczy istnieją naturalne izomorfizmy:*

1.
$$U \otimes (V \otimes W) \simeq (U \otimes V) \otimes W$$

2.
$$V \otimes W \simeq W \otimes V$$

Dowód. (1): Ustalmy odwzorowanie:

$$\sum u \otimes (v \otimes w) \mapsto \sum (u \otimes v) \otimes w. \tag{3.1}$$

Jest ono liniowe, gdyż:

$$\begin{split} &\alpha \sum u \otimes (v \otimes w) = \\ &= \sum \alpha u \otimes (v \otimes w) \mapsto \sum \alpha (u \otimes v) \otimes w = \\ &= \alpha \sum (u \otimes v) \otimes w. \end{split}$$

[*iniekcja*]: Łatwo zauważyć, iż tensory zerowe odpowiadają tensorom zerowym. Przypuśćmy, że:

$$\sum u \otimes (v \otimes w) \mapsto \sum (u \otimes v) \otimes w,$$
$$\sum x \otimes (y \otimes z) \mapsto \sum (u \otimes v) \otimes w,$$

wówczas $\sum u \otimes (v \otimes w) - \sum x \otimes (y \otimes z) \mapsto (0 \otimes 0) \otimes 0$, zatem obie sumy są różnymi reprezentacjami tego samego tensora.

[suriekcja]: Każdy tensor w $(U \otimes V) \otimes W$ ma reprezentację $\sum (u \otimes v) \otimes w$ wprost z definicji odwzorowania (3.1).

Definicja 3.8. Zdefiniujmy dzałanie elementów przestrzeni $V^* \otimes W^*$ na $V \otimes W$ wzorem:

$$v^* \otimes w^* (a \otimes b) = v^* (a) \cdot w^* (b)$$

Twierdzenie 3.9. *Dla dowolnych przestrzzeni* V, W, T achodzą naturalne izomorfizmy:

1.
$$(V \otimes W)^* \simeq V^* \otimes W^*$$

2.
$$(V \oplus W) \otimes T \simeq (V \otimes T) \oplus (W \otimes T)$$

3.
$$\operatorname{Hom}(V \otimes W, T) \simeq \operatorname{Hom}(V, \operatorname{Hom}(W, T))$$

Dowód. Dowód jest trywialny. (Tylko (2) wymaga nieco uzasadnienia) □

Definicja 3.10. Niech V będzie przestrzenią wektorową. Tensory należące do przestrzeni:

$$V \otimes ... \otimes V \otimes V^* \otimes ... \otimes V^* = V^{\otimes p} \otimes (V^*)^{\otimes q}$$
.

nazywamy tensorami rzędu (p, q).

Uwaga 3.11. Można uogólnić własność uniwersalną iloczynu tensorowego [Tw3.2] do przypadku tensora rzędu (p, q).

 Uwaga 3.12. W przypadku przestrzeni V nad \mathbb{K} , skończonego wymiaru przestrzeń tensorów $V^{\otimes p} \otimes (V^*)^{\otimes q}$ jest izomorficzna z przestrzenią przestrzeni odwzorowań p+q liniowych postaci $(V^*)^p \times V^q \to \mathbb{K}$.

3.5 Iloczyn zewnętrzny

Twierdzenie 3.13. *Niech* V *będzie przestrzenią wektorową nad* \mathbb{K} . *Wówczas zbiór wszystkich liniowych kombinacji tensorów postaci* $\mathbf{v} \otimes \mathbf{w} - \mathbf{w} \otimes \mathbf{v}$, *gdzie* $\mathbf{v}, \mathbf{w} \in V$, *jest podprzestrzenią wektorową* $V \otimes V$.

Dowód. Zauważmy, że $\mathbf{0} = \mathbf{v} \otimes \mathbf{v} - \mathbf{v} \otimes \mathbf{v}$. W równie banalny sposób można wykazać, że każdy element zbioru ma w nim element przeciwny.

Definicja 3.14. Przestrzeń opisaną w [Tw.3.13] nazywamy iloczynem zewnętrznym i oznaczamy $V \wedge V$ lub $\bigwedge^2 V$ oraz $\mathbf{v} \wedge \mathbf{w} = \mathbf{v} \otimes \mathbf{w} - \mathbf{w} \otimes \mathbf{v}$.

Definicja 3.15. Iloczynem zewnętrznym k przestrzeni wektorowych V nazywamy przestrzeń $\bigwedge^k V$ wszystkich tensorów będącymi liniowymi kombinacjami elementów postaci:

$$v_1 \wedge \ldots \wedge v_k = \sum_{\sigma \in S_n} sgn(\sigma) v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(k)}$$

Elementy $\bigwedge^k V$ nazywamy k-wektorami. Ponadto przyjmiemy dla wygody oznaczenia $\bigwedge^0 V = \mathbb{K}$ oraz $\bigwedge^1 V = V$.

Twierdzenie 3.16. Niech V będzie przestrzenią wektorową. Wówczas k-wektor $v_1 \wedge \ldots \wedge v_k \in \bigwedge^k V$ spełnia następujące zależności:

- 1. $v_1 \wedge ... \wedge v_k = (-1)^k v_k \wedge v_1 \wedge ... \wedge v_{k-1}$
- 2. $(\lambda v_1) \wedge ... \wedge v_k = v_1 \wedge (\lambda v_2) \wedge ... \wedge v_k = ... = v_1 \wedge ... \wedge (\lambda v_k)$
- 3. $(v_1 + w) \wedge ... \wedge v_k = v_1 \wedge ... \wedge v_k + w \wedge ... \wedge v_k$

Dow'od. Dow\'od wynika z prostych własności permutacji lub iloczynu tensorowego. \Box

Twierdzenie 3.17. *Niech V będzie przestrzenią wektorową. Istnieje kanoniczny izomorfizm:*

$$\left(\bigwedge^{n} V\right)^{*} \simeq \bigwedge^{n} V^{*} \tag{3.2}$$

Dowód. Jest to trywialny izomorfizm.

Twierdzenie 3.18. Iloczyn wewnętrzny zdefiniowany poprzez:

$$i_{a^*}(\nu_1 \wedge ... \wedge \nu_n) := a^*(\nu_1) \cdot \nu_2 \wedge \nu_3 \wedge ... \wedge \nu_n - a^*(\nu_2) \cdot \nu_1 \wedge \nu_3 \wedge ... \wedge \nu_n + ... + (-1)^n a^*(\nu_n) \cdot \nu_1 \wedge \nu_2 \wedge ... \wedge \nu_{n-1},$$

gdzie $a^* \in V^*$, jest dobrze zdefiniowanym odwzorowaniem liniowym $\bigwedge^n V \to \bigwedge^{n-1} V$.

Dowód. Liniowość i_{α^*} jest jasna.

Należy wykazać, że funkcja jest dobrze zdefiniowana - to znaczy obraz nie zależy od reprezentacji tensora. Dowód nie jest trudny, napiszę innym razem. Wystarczy sprawdzić, że operacje które nie zmieniają tensora jak zamiana kolejności wyrazów wraz z odpowiednią zmianą znaku oraz dodanie wektora liniowo zależnego nie zmieniają wyniku $i_{\mathfrak{a}^*}$.

Twierdzenie 3.19. Niech V będzie przestrzenią wektorową. Układ $\{\mathbf{v_1}, \dots, \mathbf{v_n}\}$ jest liniowo niezależny wtedy i tylko wtedy, gry $\mathbf{v_1} \wedge \dots \wedge \mathbf{v_n} \neq 0$.

Dowód. (←): Jest to konsekwencja [Tw.3.16] i faktu, iż:

$$v_1 \wedge ... \wedge v_k \wedge v_k ... \wedge v_n = 0$$

Więc żeby tensor był niezerowy układ musi być koniecznie liniowo niezależny. (\Longrightarrow): Przypuśćmy teraz, że $\{v_1,\ldots,v_n\}$ jest układem liniowo niezależnym. Przeprowadzimy dowód przez indukcję ze względu na ilość wektorów. Jeśli układ $\{v_1\}$ jest liniowo niezależny to oczywiście odpowiadający mu 1-tensor jest niezerowy. Teraz zgodnie ze zwykłą procedurą indukcji przyjmijmy, iż twierdzenie jest prawdziwe dla układu k-1 wektorów liniowo niezależnych. Wykażemy, że obraz k-wektora odpowiadającego układowi względem $\mathfrak{i}_{\nu_1}^*$ jest niezerowy, co zakończy dowód gdyż tylko niezerowy wektor może mieć niezerowy obraz względem odwzorowania liniowego.

$$i_{\nu_1^*}(\nu_1 \wedge \ldots \wedge \nu_k) = \nu_2 \wedge \ldots \wedge \nu_k$$

który to k-1-wektor zgodnie założeniem indukcyjnym jest lniowo niezależny.

Lemat 3.20. Dla każdego n-wektora $\omega \in \bigwedge^n V$, gdzie n jest wymiarem V, istnieje taki układ wektorów $\{v_1, \ldots, v_n\}$, że $\omega = v_1 \wedge \ldots \wedge v_n$.

Dowód. Przyjmijmy, że:

$$\omega = x_{11} \wedge \ldots \wedge x_{1n} + \ldots + x_{k1} \wedge \ldots \wedge x_{kn}$$

Z [Tw.3.19] wiadomo, iż $\{x_{11},...,x_{1n}\}$ jest bazą V. Pozostałe wektory x_{pq} można rozłożyć w tej bazie, a potem przedstawić każdy składnik sumy jako $\lambda_{11} \wedge ... \wedge x_{1n}$.

Lemat 3.21. Niech $\{v_1, \ldots, v_n\} \subseteq V$ będzie układem liniowo niezależnym. Wówczas zbiór $\binom{\mathfrak{n}}{\mathfrak{m}}$ p-wektorów $\{v_{k_1} \wedge \ldots \wedge v_{k_m} : 1 \leq k_1 \leq \ldots \leq k_m \leq \mathfrak{n}\}$ jest liniowo niezależny.

Dowód. Najpierw udowodnijmy tezę dla przypadku n=2. Następnie uogólnimy go przy pomocy indukcji matematycznej. Przypuśćmy, że zbiór $\{v_i \wedge v_j : 1 \leq i \leq j \leq n\}$ jest liniowo zależny. Istnieje wówczas kombinacja:

$$\sum_{1 \le i \le j \le n} \lambda_{ij} \nu_i \wedge \nu_j = 0, \tag{3.3}$$

gdzie pewien współczynnik $\lambda_{p\,q} \neq 0$. Na kombinację zadziałamy iloczynem wewnętrznym:

$$i_{\nu_p^*}\left(\sum_{1\leq i\leq j\leq n}\lambda_{ij}\nu_i\wedge\nu_j\right)=\sum_{i=1}^{p-1}\lambda_{ip}\nu_i+\sum_{j=p}^n\lambda_{pj}\nu_j\neq 0,$$

co przeczy równaniu (3.3), bo obrazem zerowego wektora w odwzorowaniu liniowym jest wektor zerowy.

Przejdźmy do indukcyjnej części dowodu. Przypuśćmy, iż zestaw (n-1)-wektorów z tezy lematu jest liniowo niezależny. Wówczas dowód liniowej niezależności k-wektorów przeprowadzamy podobnie jak powyżej działając iloczynem wewnętrznym.

Twierdzenie 3.22. Wymiar przestrzeni $\bigwedge^m V$ jest równy $\binom{n}{m}$, gdzie $\dim V = n$

Dowód. Jest to prosta konsekwencja dwóch lematów [Lem.3.20] i [Lem.3.21].

3.6 Wyznacznik endomorfizmu

Definicja 3.23. *Niech* $A \in End(V)$. *Operator* $\wedge^n A^n : \bigwedge^n V \to \bigwedge^n V$ *definiujemy wzorem:*

$$\wedge^n A^n (v_1 \wedge ... \wedge v_n) = Av_1 \wedge ... \wedge Av_n$$

Definicja 3.24. *Wyznacznikiem endomorfizmu* $A \in End(V)$ *nazywamy taką liczbę* det A, $\dot{z}e$:

$$\wedge^{n}A^{n}\left(\nu_{1}\wedge\ldots\wedge\nu_{n}\right)=\det A\cdot\nu_{1}\wedge\ldots\wedge\nu_{n}$$

 $gdzie \dim V = n.$

Rozdział 4

Przestrzenie metryczne

4.1 Odległość punktów

Definicja 4.1. Niech $\mathcal S$ będzie dowolnym zbiorem, a $\rho: \mathcal S \times \mathcal S \to [0,\infty]$ funkcją spełniającym warunki:

- 1. $\rho(x,y) = 0 \iff x = y$,
- 2. $\rho(x,y) = \rho(y,x)$,
- 3. $\rho(x,y) \leq \rho(x,z) + \rho(z,y)$.

Wówczas funkcję ρ nazywamy **metryką** na zbiorze \mathcal{S} . Para (\mathcal{S},ρ) to **przestrzeń metryczna**.

Definicja 4.2. Niech S będzie przestrzenią metryczną. Średnicą podzbioru $A \subseteq S$ liczbę:

$$\sup \{\rho(x,y)|x,y \in A\}.$$

4.2 Topologia

Definicja 4.3. Niech S będzie przestrzenią metryczną. **Kulą otwartą** o środku $x_0 \in S$ i promieniu $\mathbb{R} \ni r > 0$ nazywamy zbiór:

$$\mathcal{B}(x_0, r) = \{x \in \mathcal{S} : \rho(x_0, x) < r\}.$$

Definicja 4.4. Niech S będzie przestrzenią metryczną. Mówimy, że $X \subseteq S$ jest podzbiorem otwartym przestrzeni metrycznej jeśli każdy punkt X jest środkiem pewnej kuli w nim zawartej. Równoważnie można napisać:

$$\forall_{x \in X} \exists_{r>0} : \mathcal{B}(x,r) \subseteq X.$$

Twierdzenie 4.5. Kula otwarta jest zbiorem otwartym.

П

Dowód. Rozważmy dowolną kulę $\mathcal{B}(x_0,R)$ oraz jakikolwiek punkt $x \in \mathcal{B}(x_0,R)$. Dla wygody wprowadźmy oznaczenie $\rho(x,x_0)=r$.

Wykażemy, że $\mathcal{B}(x,R-r)\subseteq\mathcal{B}(x_0,R)$. Istotnie, dla dowolnego $y\in\mathcal{B}(x,R-r)$ mamy:

$$\rho\left(x_{0},y\right)\leq\rho\left(x_{0},x\right)+\rho\left(x,y\right)=r+\left(R-r\right)=R.$$

Twierdzenie 4.6. Niech \mathcal{T} będzie rodziną wszystkich otwartych podzbiorów przestrzeni metrycznej \mathcal{S} . Spełnia trzy ona warunki:

- 1. Dla dowolnej podrodziny $P \subseteq T$, suma $\bigcup_{X \in P} X \in T$.
- 2. Dla dowolnej skończonej podrodziny $\mathcal{P} \subseteq \mathcal{T}$, przecięcie $\bigcap_{X \in \mathcal{P}} X \in \mathcal{T}$.
- 3. \emptyset , $S \in \mathcal{T}$.

Dowód. (1): Skoro każdy punkt każdego zbioru jest środkiem pewnej kuli w tym zbiorze, to tym bardziej jest również środkiem kuli w sumie zbiorów. (2): Ponieważ rodzina $\mathcal P$ jest skończona, to możemy ponumerować zbiory w niej zawarte w następujący sposób: $\mathcal P=\{X_1,X_2,\ldots,X_k\}$, gdzie $k\in\mathbb N$. Wówczas zachodzi:

$$\forall_{x\in\bigcap_{i=1}^{k}X_{i}}\forall_{i\in\{1,...k\}}\exists_{\epsilon_{k}>0}:\mathcal{B}\left(x,\epsilon_{k}\right)\subseteq X_{i}.$$

Jeśli wprowadzimy oznaczenie $ε = \min\{ε_1, ..., ε_k\}$ to $\mathcal{B}(x, ε) \subseteq \bigcap_{i=1}^k X_i$. (3): \mathcal{S} oraz \emptyset należą do \mathcal{T} wprost z definicji kuli [Def.4.4].

Definicja 4.7. Niech X będzie dowolnym zbiorem, a rodzina \mathcal{T} jego podzbiorów spełnia trzy warunki wymienione w [Tw.4.6]. Rodzinę \mathcal{T} nazywamy wówczas **topologią** X. Para (X, \mathcal{T}) to **przestrzeń topologiczna**. Każdy zbiór $X \in \mathcal{T}$ nazywamy **otwartym**.

Uwaga 4.8. Każda przestrzeń metryczna jest topologiczna.

Definicja 4.9. *Otoczeniem* punktu x w przestrzeni topologicznej (X, T) nazywamy dowolny zbiór $\mathcal{N}_x \subseteq X$ taki, że dla pewnego $U \in T$ zachodzi $x \in U \subseteq \mathcal{N}_x$.

Definicja 4.10. Podzbiór $A \subseteq X$ przestrzeni topologicznej X nazywamy **domkniętym** jeśli jego dopełnienie $A = X \setminus A$ jest otwarte.

Twierdzenie 4.11. Niech \mathcal{T} będzie rodziną wszystkich zamkniętych podzbiorów przestrzeni topologicznej \mathcal{S} . Spełnia ona warunki:

- 1. Dla dowolnej podrodziny $\mathcal{P} \subseteq \mathcal{T}$, przecięcie $\bigcap_{X \in \mathcal{P}} X \in \mathcal{T}$.
- 2. Dla dowolnej skończonej podrodziny $\mathcal{P} \subseteq \mathcal{T}$, suma $\bigcup_{X \in \mathcal{P}} X \in \mathcal{T}$.
- 3. \emptyset , $S \in \mathcal{T}$.

Dowód. Wystarczy zastosować [Tw.1.14] wraz z [Tw.4.6].

Definicja 4.12. Niech \mathcal{T} będzie przestrzenią topologiczną, a $X \subseteq \mathcal{T}$ jej podzbiorem. **Domknięciem** tego podzbioru nazywamy przecięcie \overline{X} wszystkich zbiorów zamkniętych zawierających X.

Wniosek 4.13. Zbiór X jest domknięty wtedy i tylko wtedy, gdy $X = \overline{X}$.

Wniosek 4.14. W szczególności z [Def.4.12] wynika $X \subseteq \overline{X}$.

Twierdzenie 4.15. Punkt x należy do domknięcia \overline{X} zbioru X w przestrzeni topologicznej wtedy i tylko wtedy, gdy dowolne otoczenie x przecina X.

Dowód. Dowód podzielimy na dwie części najpierw z lewej strony równoważności wyprowadzając prawą, a następnie z prawej wyprowadzając lewą.

 (\Longrightarrow) : Dażąc do absurdu przyjmijmy, że $x\in \overline{X}$, ale istnieje otoczenie otwarte \mathcal{U}_x tego punktu, które nie przecina X. Wówczas zbiór $Z=\overline{X}\cap (X\setminus \mathcal{U}_x)$ jest domknięty na mocy [Tw.4.11.1] oraz $X\subseteq Z\subseteq \overline{X}$ i $Z\neq \overline{X}$, co przeczy [Def.4.12].

 (\Leftarrow) : Jeśli dowolne otoczenie x przecina X, ale istnieje zbiór domknięty Z taki, że X \subseteq Z i $x \notin$ Z, to $x \in$ Z oraz Z jest otwarty. Jest to niemożliwe, gdyż nie istnieje kula $\mathcal{B}(x, \varepsilon) \subseteq$ Z.

Definicja 4.16. Niech $A \subseteq X$ będzie podzbiorem przestrzeni topologicznej. **Wnętrzem** zbioru A nazywamy $A^o \subseteq X$ będący sumą wszystkich zbiorów otwartych zawartych w A.

Definicja 4.17. *Brzegiem* podzbioru A przestrzeni topologicznej nazywamy $\partial A = \bar{A} \setminus A^{o}$.

Wniosek 4.18. Ponieważ dla dowolnych zbiorów $A \setminus B = A \cap B$, brzeg można zdefiniować równoważnie jako $\partial A = \overline{A} \cap \overline{A}$.

Definicja 4.19. Niech (X_i, \mathcal{T}_i) dla $i=1,\ldots,n$ będzie rodziną przestrzeni topologicznych. **Iloczynem przestrzeni topologicznych** nazywamy parę $(X_1 \times \ldots \times X_n, \mathcal{T}_1 \times \ldots \times \mathcal{T}_n)$.

Definicja 4.20. Niech $(X_i, \mathcal{T}_i)_{i \in \{1, ..., n\}}$ będzie rodziną przzestrzeni topologicznych. Iloczynem kartezjańskim przestrzeni topologicznych nazywamy zbiór $X = X_1 \times ... \times X_n$ wraz z topologią:

$$\mathcal{T} = \mathcal{T}_1 \times \ldots \times \mathcal{T}_n$$

4.3 Zbieżność ciągów

Definicja 4.21. *Ciągiem* elementów X nazywamy funkcję $f \in X^{\mathbb{N}}$.

Definicja 4.22. Niech $\mathcal S$ będzie przestrzenią topologiczną. Mówimy, że ciąg $\{x_n\}_{n\in\mathbb N}\subseteq\mathcal S$ zbiega do punktu $x\in\mathcal S$ jeśli dla dowolnego $\mathcal N_x\subseteq\mathcal S$ będącego otoczeniem x:

$$\exists_N \forall_{n>N} : x_n \in \mathcal{N}_x.$$

Innymi słowy do dowolnie małej kuli wokół x należą wszystkie elementy ciągu poza co najwyżej skończenie wieloma. Stosujemy notację:

$$\lim_{n\to\infty}x_n=x, \hspace{1cm} x_n\xrightarrow[n\to\infty]{}x.$$

Wniosek 4.23. Następujące warunki są równoważne:

- 1. Punkt x należy do domknięcia \overline{X} zbioru X.
- 2. istnieje ciąg $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ zbieżny do x.

Dowód. Trywialne z [Tw.4.15].

Definicja 4.24. Niech $\{x_n\}_{n\in\mathbb{N}}\subseteq\mathcal{S}$ będzie ciągiem w przestrzeni metrycznej. Mówimy, że jest on ciągiem Cauchy'ego jeśli:

$$\forall_{\varepsilon>0}\exists_{N_{\varepsilon}\in\mathbb{N}}\forall_{n,m>N_{\varepsilon}}:\rho(x_{n}-x_{m})<\varepsilon$$
,

albo równoważnie:

$$\rho(x_m, x_n) \xrightarrow[n, m \to \infty]{} 0 \tag{4.1}$$

Uwaga 4.25. Jeśli ciąg jest zbieżny w przestrzeni metrycznej to spełnia Warunek Cauchy'ego.

Dowód. Dla ciągu
$$\{x_n\}_{n\in\mathbb{N}}$$
 zbieżnego do x zachodzi $\exists_{N\in\mathbb{N}} \forall_{n>N}: d(x_n,x) < \frac{\varepsilon}{2}$, a wtedy $\forall_{m,n>N}: d(x_n,x_m) < \varepsilon$.

4.4 Funkcje ciągłe

Definicja 4.26. Funkcję $f: X \to Y$ między przestrzeniami topologicznymi (X, \mathcal{T}_X) i (Y, \mathcal{T}_Y) nazywamy **ciągłą** jeśli przeciwobraz każdego zbioru otwartego jest otwarty, to znaczy:

$$\forall_{\tau \in \mathcal{T}_Y} : f^{-1}(\tau) \in \mathcal{T}_X.$$

Twierdzenie 4.27. Niech $f: X \to Y$ będzie funkcją między przestrzeniami topologicznymi. Następujące warunki są równoważne:

- 1. f jest ciągła.
- 2. A jest domknięty w Y \implies f⁻¹(A) jest domknięty w X.
- 3. $\forall_{A \subset X} : f(\overline{A}) \subseteq \overline{f(A)}$.
- 4. Dla każdego $x \in X$ i otoczenia $\mathcal{N}_{f(x)}$ punktu f(x) istnieje otoczenie \mathcal{N}_x punktu x spełniające: $f(\mathcal{N}_x) \subseteq \mathcal{N}_{f(x)}$.

Dow'od. (1) \Longrightarrow (4): Dla dowolnego otoczenia $\mathcal{N}_{f(x)}$ punktu f(x) można wybrać zbiór otwarty $\mathcal{U}_{f(x)} \subseteq \mathcal{N}_{f(x)}$ oraz zbiór $\mathcal{N}_x = f^{-1}\left(\mathcal{U}_{f(x)}\right) = \left\{x : f(x) \in \mathcal{U}_{f(x)}\right\}$. \mathcal{N}_x jest otwartym otoczeniem x oraz $f(\mathcal{N}_x) \subseteq \mathcal{N}_{f(x)}$.

(4) \Longrightarrow (3): Weźmy dowolne $x \in \overline{A}$. i otoczenie $\mathcal{N}_{f(x)}$. Istnieje \mathcal{N}_x dla którego $f(\mathcal{N}_x) \subseteq \mathcal{N}_{f(x)}$. Z [Tw. 4.15]:

$$\mathcal{N}_{\mathbf{x}} \cap \mathbf{A} \neq \emptyset \implies \emptyset \neq \mathbf{f}(\mathcal{N}_{\mathbf{x}} \cap \mathbf{A}) \subseteq \mathcal{N}_{\mathbf{f}(\mathbf{x})} \cap \mathbf{f}(\mathbf{A})$$

Zatem dowolne otoczenie f(x) przecina f(A).

(3) \Longrightarrow (2): Niech F \subseteq Y będzie domkniętym zbiorem. Oznaczmy $A = f^{-1}(F)$. Wówczas $f(\bar{A}) \subseteq \bar{f}(A) \subseteq \bar{F} = F \implies \bar{A} \subseteq A \implies \bar{A} = A$

$$(2) \Longrightarrow (1)$$
: Trywialne z [Def.4.10].

Definicja 4.28. $f: X \to Y$ jest ciągła w punkcie x jeśli dla dowolnego otoczenia $\mathcal{N}_{f(x)}$ punktu f(x) można zaleźć takie otoczenie \mathcal{N}_x punktu x, że $f(\mathcal{N}_x) \subseteq \mathcal{N}_{f(x)}$.

Twierdzenie 4.29. Niech S, R będą przestrzeniami metrycznymi. Następujące warunki są równoważne:

- 1. Przekształcenie $f: S \to \mathcal{R}$ jest ciągłe w x.
- 2. Dla każdego ciągu $\{x_n\}_{n\in\mathbb{N}}\subseteq \mathcal{S}$:

$$x_n \xrightarrow[n \to \infty]{} x \implies f(x_n) \xrightarrow[n \to \infty]{} f(x).$$

Dow'od. (1) \Longrightarrow (2): Z [Def.4.28] wynika, iż dla dowolnej kuli $\mathcal{B}_{f(x)}$ wokół f(x) znajdziemy kulę \mathcal{B}_x wokół x spełniającą: $f(\mathcal{B}_x) \subseteq \mathcal{B}_{f(x)}$.

Zatem jeśli \mathcal{B}_x zawiera prawie wszystkie elementy $\{x_n\}_{n\in\mathbb{N}}$ to $\mathcal{B}_{f(x)}$ zawiera prawie wszystkie elementy $\{f(x_n)\}_{n\in\mathbb{N}}$.

(2) \Longrightarrow (1): Gdyby f nie było ciągłe w x to możemy wybrać takie otoczenie $\mathcal{N}_{f(x)}$, że żadne otoczenie punktu x nie spełnia warunku $f(\mathcal{N}_x)\subseteq\mathcal{N}_{f(x)}$. To znaczy możemy wybrać taki ciąg $\{x_n\}_{n\in\mathbb{N}}$, że:

$$x_n \in \mathcal{B}\left(x, \frac{1}{n}\right) \land x_n \notin \mathcal{N}_{f(x)}.$$

Co implikuje:

$$\{x_n\}_{n\in\mathbb{N}}: x_n \xrightarrow[n\to\infty]{} x \implies f(x_n) \xrightarrow[n\to\infty]{} f(x).$$

Definicja 4.30. Funkcja $f: X \to Y$ między przestrzeniami metrycznymi (X, ρ_X) oraz (Y, ρ_Y) jest **jednostajnie ciągła** jeśli:

$$\forall_{\varepsilon > 0} \exists_{\delta} : \rho_{X}(x, y) < \delta \implies \rho_{Y}(f(x), f(y)) < \varepsilon.$$

Definicja 4.31. Funkcja $f: X \to Y$ między przestrzeniami metrycznymi (X, ρ_X) i (Y, ρ_Y) spełnia warunek Lipchitza jeśli istnieje liczba $\mathbb{R} \ni L > 0$ taka, że:

$$\forall_{x_1,x_2 \in X} : \rho_Y(f(x_1), f(x_2)) \leq L \cdot \rho_X(x_1, x_2)$$

Twierdzenie 4.32. Funkcja f spełniająca warunek Lipchitza jest ciągła.

Dowód. f spełnia [Tw. 4.29.2], gdyż jeśli ciąg $\{x_n\}_{n\in\mathbb{N}}$ jest zbieżny, to:

$$\rho_X(x_n,x_m) \to 0 \implies 0 \le \rho_Y(f(x_n),f(x_m)) \le L \cdot \rho_X(x_n,x_m) \to 0$$

4.5 Zbieżność funkcji

Definicja 4.33. Niech $\{f_n\}_{n\in\mathbb{N}}$ będzie ciągiem funkcji $f_n:X\to Y$. Jeśli zbiega on do $f:X\to Y$ w metryce:

$$\rho_{sup}(f_n, f) = \sup_{x \in X} \rho(f_n(x), f(x)),$$

gdzie (Y, ρ) jest przestrzenią metryczną, to mówimy, że ciąg f_π **zbiega jednostajnie** do f.

Twierdzenie 4.34. Niech ciąg funkcji $\{f_n\}_{n\in\mathbb{N}}$ zbiega jednostajnie do $f: X \to Y$, gdzie X i Y są przestrzeniami metrycznymi.

Wtedy, jeśli prawie wszystkie funkcje f_n są ciągłe $w x \in X$, to f jest ciągła w x.

Dowód.

$$\begin{array}{l} x_n \xrightarrow[n \to \infty]{} x \implies d(f(x_n), f(x)) \leq \\ \leq d(f(x_n), f_k(x_n)) + d(f_k(x_n), f(f_k(x))) + d(f_k(x), f(x)) \xrightarrow[n k \to \infty]{} 0 \end{array}$$

4.6 Zbiory zwarte

Definicja 4.35. Rodzina \mathcal{F} podzbiorów przestrzeni topologicznej $(\mathcal{S}, \mathcal{T})$ nazywamy **pokryciem** zbioru $X \subseteq \mathcal{S}$ jeśli:

$$X \subseteq \bigcup \mathcal{F}$$

Jeśli $\forall_{X \in \mathcal{F}} X \in \mathcal{T}$, to pokrycie nazywamy **otwartym**.

Definicja 4.36. Przeliczalny ciąg $\{A_n\}_{n\in\mathbb{N}}$ podzbiorów przestrzeni topologicznej jest **zstępujący** jeśli każde skończone przecięcie zbiorów A_n jest niepuste:

$$\forall_{m \in \mathbb{N}} \bigcap_{n=1}^{m} A_n \neq \emptyset$$

Definicja 4.37. Zbiór X nazywamy **zwartym** jeśli z dowolnego jego pokrycia otwartego można wybrać pokrycie skończone.

Dowód. Dążąc do sprzeczności przypuśćmy, że taka liczba nie istnieje. Możemy zatem wybrać ciąg $\left\{x_{n}\right\}_{n\in\mathbb{N}}$ spełniający warunek:

$$\forall_{n \in \mathbb{N}} \exists_{x_n \in A} : \mathcal{B}\left(x_n, \frac{1}{n}\right)$$
 nie jest zawarta w żadnym z elementów \mathcal{F} . (4.2)

Z założenia możemy wybrać $a \in A$ oraz podciąg $\{x_{n_m}\}_{m \in \mathbb{N}}$, że:

$$\{x_n\}_{n\in\mathbb{N}}\supseteq\{x_{n_m}\}_{m\in\mathbb{N}}\xrightarrow[n\to\infty]{}a.$$

Musi istnieć zbiór U otwarty spełniający $a \in U \in \mathcal{F}$ oraz kula $\mathcal{B}(a, \varepsilon) \subseteq U$ zawierająca prawie wszystkie elementy podciągu. Dla dostatecznie dużego $\mathfrak{m} \in \mathbb{N}$ zachodzi:

1.
$$\frac{1}{m} < \frac{\varepsilon}{2}$$

1.
$$\frac{1}{m} < \frac{\varepsilon}{2}$$
2. $d(x_{n_m}, a) < \frac{\varepsilon}{2}$

Wówczas kula
$$\mathcal{B}\left(x_{n_m},\frac{1}{m}\right)\subseteq U$$
, co przeczy założeniu (2.2).

Twierdzenie 4.39. Niech $X \subseteq S$ będzie podzbiorem przestrzeni metrycznej. Następujące warunki są równoważne:

- 1. Zbiór X jest zwarty.
- 2. Każdy zstępujący ciąg $\{A_n\}_{n\in\mathbb{N}}$ niepustych zbiorów domkniętych w X ma niepuste przecięcie.
- 3. Z każdego ciągu $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ można wybrać podciąg zbieżny do pewnego $x \in X$.

Dowód. (1) \Longrightarrow (2): Załóżmy wbrew tezie, iż $\bigcap_{n\in\mathbb{N}} A_n = \emptyset$. Zdefiniujmy rodzine:

$$\mathcal{U} = \{X \setminus A_n : n \in \mathbb{N}\}.$$

 \mathcal{U} jest otwartym pokryciem X, gdyż:

$$\bigcup_{n\in\mathbb{N}}(X\setminus A_n)=X\setminus\bigcap_{n\in\mathbb{N}}A_n=X,$$

z drugiej strony z \mathcal{U} nie da się wybrać skończonego podpokrycia X na mocy [Def.4.36]. Zatem przestrzeń X nie jest zwarta.

(2) \Longrightarrow (3): Weźmy dowolny ciąg oraz rodzinę zbiorów domknietych $\{F_n\}_{n\in\mathbb{N}}$ określoną:

$$F_n = \overline{\{x_m : m > n\}}.$$

Zgodnie z (2) istnieje punkt a $\in \bigcap_{n\in\mathbb{N}} F_n$. Każde otoczenie a przecina dowolny ze zbiorów $\{x_n : n \ge m\}$. Zatem zgodnie z [Def.4.22] możemy wybrać podciąg $\{x_{n_m}\} \subseteq \{x_n\}_{n \in \mathbb{N}}$ taki, że:

$$x_{n_{\mathfrak{m}}} \in \left\{x_{n}\right\}_{n \in \mathbb{N}} \cap \mathcal{B}\left(\mathfrak{a}, \frac{1}{\mathfrak{m}}\right) \text{, wiec } x_{n_{\mathfrak{m}}} \xrightarrow[\mathfrak{m} \to \infty]{} \mathfrak{a}.$$

(3) \Longrightarrow (1): Niech $\mathcal U$ będzie otwartym pokryciem X, a δ liczbą Lesbegue'a tego pokrycia wybraną zgodnie z [Lem.4.38]. Dążąc do sprzeczności przypuśćmy, że zbioru X nie da się pokryć skończoną liczbą elementów $\mathcal U$.

Rodzina $\{\mathcal{B}(x,\delta): x\in X\}$ jest otwartym pokryciem, ale również nie można z niej wybrać pokrycia skończonego X. Gdyby się dało znaleźć takie $\{\mathcal{B}_1,\ldots,\mathcal{B}_m\}$, to $\{U_1,\ldots,U_m\}\subseteq\mathcal{U}$, gdzie $\mathcal{B}_i\subseteq U_i$ byłoby również skończonym pokryciem X.

Możemy wybrać taki ciąg $\{x_n\}_{n\in\mathbb{N}}$, że $x_m\notin\bigcup_{n< m}\mathcal{B}(x_n,\delta)$. Ale wtedy dla $n\neq m$ mamy d $(x_n,x_m)>\frac{\delta}{2}$. Tak wybrany ciąg nie może mieć podciągu zbieżnego. Założenie o niezwartości X prowadzi do sprzeczności.

Twierdzenie 4.40. *Niech* $f: X \to Y$ *będzie ciągłą funkcją między dwoma przestrzeniami metrycznymi. Jeśli* $A \subseteq X$ *jest zbiorem zwartym, to* f(X) *jest też zwarty.*

Dowód. Trywialny wniosek z [Tw.4.29] oraz [Tw.4.39.3]. Wybierzmy dowolny ciąg $\{y_n\}_{n\in\mathbb{N}}$ i odpowiadający mu ciąg $\{x_n\}_{n\in\mathbb{N}}$ taki, że $f(x_n)=y_n$. Ten drugi ma podciąg $x_n \xrightarrow[m\to\infty]{} x$, którego obraz zbiega do y=f(x).

Twierdzenie 4.41. Domknięty podzbiór K przestrzeni zwartej S jest zwarty.

Dowód. Niech \mathcal{U} będzie otwartym pokryciem K. $\mathcal{U} \cup (\mathcal{S} \setminus K)$ jest otwartym pokryciem \mathcal{S} z którego możemy wybrać pokrycie skończone.

Definicja 4.42. Niech S będzie przestrzenią metryczną. Podzbiór $X \subseteq S$ nazywamy **ograniczonym** jeśli jest zawarty w jakiejś kuli.

Twierdzenie 4.43. Iloczyn kartezjański przestrzeni zwartych jest zbiorem zwartym.

Dowód. Niech przestrzeń $(X \times Y, \mathcal{T} = \mathcal{T}_X \times \mathcal{T}_Y)$ będzie iloczynem kartezjańskim przestrzeni topologicznych zwartych, a \mathcal{U} jej dowolnym pokryciem otwartym. Oznaczmy rodzinę zbiorów:

 $\mathcal{V} := \{V \in \mathcal{T}_X : V \times Y \text{ można pokryć skończenie wieloma elementami } \mathcal{U}\}$

Ustalmy dowolny $x \in X$. Dla każdego $y \in Y$ istnieje $U(y) \in \mathcal{U}$ taki, że $(x,y) \in U(y)$ oraz zbiory otwarte $V(y) \in \mathcal{T}_X$ i $W(y) \in \mathcal{T}_Y$, że $V(y) \times W(y) \subseteq U(y)$. Ponieważ Y jest zwarta, możemy wybrać taką rodzinę $\{y_i\}_{i=1}^m$ dla której $Y \subseteq \bigcup_{i=1}^m W(y_i)$. Mamy więc $(x,y) \in \bigcap_{i=1}^m W(y_i) \times Y \subseteq \bigcup_{i=1}^m U(y_i)$, skąd wobec dowolności x wynika, iż $\bigcup \mathcal{V} = X$.

Ponieważ $\mathcal V$ jest otwartym pokryciem X, możemy z niego wybrać podpokrycie skończone, co kończy dowód. $\ \Box$

Definicja 4.44. Niech (X, \mathcal{T}) będzie przestrzenią topologiczną. Rodzina przekształceń ciągłych $\mathcal{F} \subseteq C(X, \mathbb{R}^n)$ w metryczna przestrzeń euklidesową (\mathbb{R}^n, d) jest **jednakowo ciągła**, jeśli dla dowolnego $x \in X$ oraz $\varepsilon > 0$ istnieje otoczenie otwarte $U_x \in \mathcal{T}$ punktu x takie, że:

$$\forall_{y,z \in U_x} \forall_{f \in \mathcal{F}} (d(y,z) \leq \varepsilon).$$

Definicja 4.45. Niech (X, \mathcal{T}) będzie przestrzenią topologiczną. Rodzina przekształceń ciągłych $\mathcal{F} \subseteq C(X, \mathbb{R}^n)$ w metryczna przestrzeń euklidesową (\mathbb{R}^n, d) jest **ograniczona** jeżeli:

$$\exists_{r>0}\forall_{f\in\mathcal{F}}\left(f\left(X\right)\subseteq\mathcal{B}\left(0,r\right)\right).$$

Twierdzenie 4.46 (Arzelà–Ascoli). Niech (X, \mathcal{T}) będzie przestrzenią zwartą, a rodzina przekształceń ciągłych $\mathcal{F} \subseteq C(X, \mathbb{R}^n)$ w metryczna przestrzeń euklidesową (\mathbb{R}^n, d) będzie jednakowo ciągła i ograniczona.

Wówczas domknięcie $\mathcal F$ w przestrzeni metrycznej $\left(C\left(X,\mathbb R^n\right),d_{sup}\right)$ jest zbiorem zwartym.

Dowód. □

4.7 Przestrzenie zupełne

Definicja 4.47. Przestrzeń metryczna S jest **zupełna** jeśli każdy ciąg Cauchy'ego w niej zawarty ma granicę należącą do S.

Definicja 4.48. Niech (S, ρ) będzie przestrzenią metryczną. Funkcję $f: X \to X$ nazywa się **kontrakcją** jeśli istnieje $\lambda \in]0,1[$ spełniająca:

$$\forall_{x,y \in X} : \rho(f(x), f(y)) \le \lambda \cdot \rho(x, y).$$

Uwaga 4.49. Każda kontrakcja jest funkcją ciągłą.

Definicja 4.50. *Punktem stałym* funkcji $f: X \to X$ nazywamy taki $x \in X$, że f(x) = x.

Twierdzenie 4.51 (Banacha o punkcie stałym). Jeśli (X, ρ) jest przestrzenią metryczną zupełną, a $f: X \to X$ kontrakcją, to f ma dokładnie jeden punkt stały.

Dowód. (1): Przypuśćmy, że istnieją dwa punkty stałe x i y:

$$\rho(x,y) = \rho(f(x),f(y)) = \lambda \cdot d(x,y) \implies x = y$$

(2): Z powyższego wynika unikalność punktu stałego. Pozostaje udowodnić jego istnienie. Wybierzmy dowolny $x_0 \in X$ i zdefiniujmy rekurencyjnie ciąg: $x_{n+1} = f(x_n)$. Przyjmując bez utraty ogólności m > n i korzystając z nierówności trójkąta wykażemy, że jest to ciąg Cauchy'ego:

$$\begin{split} d(x_m,x_n) & \leq d(x_m,x_{m-1}) + \ldots + d(x_{n+1},x_n) \leq \sum_{i=m}^n \lambda^i \cdot d(x_1,x_0) \leq \\ & \leq \lambda^m \cdot \frac{d(x_1,x_0)}{1-\lambda} \xrightarrow[m \to \infty]{} 0 \end{split}$$

Skoro przestrzeń X jest zupełna, to istnieje granica ciągu $\lim_{n\to\infty} (x_n)_{n\in\mathbb{N}}=x\in X$ oraz:

$$f(x) = f(\lim_{n \to \infty} (x_n)) = \lim_{n \to \infty} f(x_n) = x,$$

gdyż kontrakcja jako funkcja lipschizowska jest ciągła na mocy [Tw.4.32].

Twierdzenie 4.52. Następujące warunki są równoważne:

- 1. Przestrzeń metryczna M jest zupełna.
- 2. Każdy zstępujący ciąg niepustych zbiorów zamkniętych w M ma niepuste przecięcie.

Dowód. (1) \Longrightarrow (2): Dażąc do sprzeczności przypuśćmy, że zstępujący ciąg zbiorów domkniętych $\{F_n\}_{n\in\mathbb{N}}$ w przestrzeni metrycznej zupełnej ma puste przecięcie. Wówczas dowolny ciąg $x_n\in F_n$ spełnia warunek Cauchy'ego ([Def.4.2]), zatem $x_n\to x$ dla jakiegoś $x\in X$. W świetle [Tw.4.15] $\forall_n\in\mathbb{N}:x\in F_n$.

(2) \Longrightarrow (1): Przypuśćmy, że $\{x_n\}_{n\in\mathbb{N}}$ jest ciągiem Cauchy'ego. Rozważmy rodzinę zbiorów domkniętych:

$$\mathsf{F}_{\mathfrak{n}} = \overline{\{x_{\mathfrak{m}} | \mathfrak{m} \geq \mathfrak{n}\}} \qquad \qquad \exists_{x} : x \in \bigcap_{\mathfrak{n} \in \mathbb{N}} \mathsf{F}_{\mathfrak{n}}$$

Wówczas punkt x jest granicą ciągu, gdyż z [Tw.4.15] wynika, że każde otoczenie x przecina $\{x_n\}_{n\in\mathbb{N}}$.

Definicja 4.53. Niech (X, \mathcal{T}) będzie przestrzenią topologiczną. Zbiór $\Omega \subseteq X$ jest gęsty w $S \subseteq X$ jeśli $S \subseteq \overline{\Omega}$.

Definicja 4.54. Niech (X, \mathcal{T}) będzie przestrzenią topologiczną. Zbiór $\Omega \subseteq X$ jest nigdziegęsty jeśli nie jest gęsty w żadnym $\tau \in \mathcal{T}$.

Twierdzenie 4.55 (Baire). Zupełna przestrzeń metryczna S nie może być sumą przeliczalnie wielu zbiorów nigdziegestych.

Dowód. Dążąc do sprzeczności przyjmijmy, że $\mathcal{S} = \bigcup_{n \in \mathbb{N}} A_n$ gdzie $\forall_{n \in \mathbb{N}} A_n$ jest zbiorem nigdziegęstym w \mathcal{S} . Niech ponadto $\overline{B_1} \subseteq \mathcal{S}$ będzie dowolną zamknietą kulą o promieniu 1/2. Wówczas ponieważ A_1 jest nigdzie gęsty, istnieje punkt $x_1 \in \overline{B_1} \setminus \overline{A_1}$. Postępując w sposób rekurencyjny, możemy wybrać dowolną kulę $\underline{B_{n+1}} \subseteq \underline{B_n}$ o promieniu mniejszym niż $(1/2)^{n+1}$. Zawsze istnieje $x_{n+1} \in \overline{B_{n+1}} \setminus \overline{A_{n+1}}$. Z zupełności \mathcal{S} oraz [Tw.4.52] wynika, iż wybrany ciąg ma granicę $x \in \bigcap_{i=1}^{\infty} \left(\overline{B_i} \setminus \overline{A_i}\right)$, ponadto jest on ciągiem Cauchy'ego. Zatem musiałaby zachodzić zależność $x \notin \bigcup_{n \in \mathbb{N}} A_n = \mathcal{S}$ co przeczyłoby założeniu o zwartości \mathcal{S} .

4.8 Zbiory spójne

Definicja 4.56. Niech (X, T) będzie przestrzenią topologiczną. Zbiór $S \subseteq X$ jest **spójny** jeśli nie można rozłożyć go na sumę dwóch rozłącznych, niepustych i domkniętych podzbiorów X.

Rozdział 5

Przestrzenie unormowane

5.1 Przestrzenie z normą

Definicja 5.1. Niech V będzie przestrzenią wektorową nad \mathbb{R} albo \mathbb{C} wówczas odwzorowanie $\| \bullet \| : V \to [0, \infty]$ nazywamy **normą** jeśli spełnia warunki:

1.
$$\|\mathbf{x}\| = 0 \iff \mathbf{x} = \mathbf{0}$$

$$2. \|\alpha \mathbf{x}\| = |\alpha| \cdot \|\mathbf{x}\|$$

3.
$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$$

Definicja 5.2. Niech V będzie przestrzenią wektorową rzeczywistą albo zespoloną, natomiast $\| \bullet \|$ metryką. Wówczas parę $(\mathcal{V}, \| \bullet \|)$ nazywamy przestrzenią unormowaną.

Twierdzenie 5.3. Niech V będzie przestrzenią unormowana. Wówczas odwzorowanie zdefiniowane wzorem $\rho(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$ jest metryką.

Dowód.

$$\rho(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| = 0 \iff \mathbf{x} = \mathbf{y}
\rho(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| = |-1| \|\mathbf{y} - \mathbf{x}\| = \|\mathbf{y} - \mathbf{x}\| = \rho(\mathbf{y}, \mathbf{x})
\rho(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| \le \|\mathbf{x} - \mathbf{z}\| + \|\mathbf{z} - \mathbf{y}\| = \rho(\mathbf{x}, \mathbf{z}) + \rho(\mathbf{z}, \mathbf{y})$$

Definicja 5.4. Dwie normy $d_1 = \| \bullet \|_1$ i $d_2 = \| \bullet \|_2$ na przestrzeni V są równoważne jeśli istnieją liczby α , b>0 dla których $d_1 < \alpha \cdot d_2$ oraz $d_2 < b \cdot d_1$.

П

Twierdzenie 5.5. *Wszystkie normy na skończenie wymiarowej przestrzeni* V są równoważne.

Dowód. Możemy wybrać skończoną bazę V, równą:

$$\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$$

Więc dowolny element $\mathbf{x} \in \mathcal{V}$ ma postać:

$$\mathbf{x} = \sum_{i=1}^{n} x_i \mathbf{e}_i$$

(1): Zacznijmy od zdefiniowania relacji dla dowolnych norm niech $\| \bullet \|_{\alpha} \sim \| \bullet \|_{\beta}$ oznacza, że są równoważne.

$$\begin{split} \| \bullet \|_{\alpha} &\sim \| \bullet \|_{\delta} \wedge \| \bullet \|_{\beta} \sim \| \bullet \|_{\delta} \implies A_{1} \| \mathbf{x} \|_{\delta} \leq \| \mathbf{x} \|_{\alpha} \leq A_{2} \| \mathbf{x} \|_{\delta} \\ B_{1} \| \mathbf{x} \|_{\delta} &\leq \| \mathbf{x} \|_{\beta} \leq B_{2} \| \mathbf{x} \|_{\delta} \implies \\ &\implies \frac{B_{1}}{A_{2}} \| \mathbf{x} \|_{\alpha} \leq \| \mathbf{x} \|_{\beta} \leq \frac{B_{2}}{A_{1}} \| \mathbf{x} \|_{\alpha} \implies \| \bullet \|_{\alpha} \sim \| \bullet \|_{\beta} \end{split}$$

To znaczy relacja jest tranzytywna. Jej symetria i zwrotność wynikają wprost z [Def.5.4]. Jest to relacja równoważności.

(2): Biorąc konkretną normę $\|\mathbf{x}\|_{\infty} = \max_{i \in \overline{1,n}} |x_i|$ oraz dowolną inną $\|\mathbf{x}\|$ wykażemy, że $\|\bullet\| \sim \|\mathbf{x}\|_{\infty}$:

$$\begin{split} \|\mathbf{x}\| &= \|\sum_{i=1}^n x_i \mathbf{e}_i\| \leq \sum_{i=1}^n \|x_i \mathbf{e}_i\| = \sum_{i=1}^n |x_i| \|\mathbf{e}_i\| \leq \left(\sum_{i=1}^n \|\mathbf{e}_i\|\right) \cdot \|\mathbf{x}\|_{\infty} = C \cdot \|\mathbf{x}\|_{\infty} \\ \|\mathbf{x}\|_{\infty} &= \max_{i \in \overline{1,n}} |x_i| \leq \sum_{i=1}^n |x_i| \frac{\|\mathbf{e}_i\|}{\|\mathbf{e}_i\|} \leq \left(\sum_{i=1}^n \frac{1}{\|\mathbf{e}_i\|}\right) \cdot \|\mathbf{x}\| \leq D \cdot \|\mathbf{x}\| \end{split}$$

(3): Skoro dowolna norma jest równoważna z $\| \bullet \|_{\infty}$ to na podstawie (1) wszystkie normy są równoważne.

Twierdzenie 5.6. Jeśli dwie normy są równoważne to generują identyczne topologie.

Dowód. Na mocy [Def.5.4] każda kula w jednej normie zawiera kulę w drugiej normie i odwrotnie. □

Wniosek 5.7. Jeśli jakiś ciąg w skończenie-wymiarowej przestrzeni z normą zbiega do jakiegoś **x** to ma tę własność w każdej normie.

Definicja 5.8. Przestrzeń wektorowa zupełna, unormowana to **przestrzeń Banacha**.

5.2 Norma homomorfizmu

Twierdzenie 5.9. Niech $A: V \to W$ będzie odwzorowaniem liniowym między przestrzeniami wektorowymi unormowanymi. Następujące warunki są równoważne:

- 1. A jest ciągłe w pewnym $\mathbf{a} \in V$.
- 2. A jest ciągłe na V.
- 3. Istnieje C > 0, $\dot{z}e \|A\mathbf{x}\| \le C\|\mathbf{x}\|$

Dowód. (2) \Longrightarrow (3): W szczególności A jest ciągła w **0**. Dążąc do zaprzeczenia przypuśćmy, że C nie istnieje, wówczas:

$$\begin{split} \forall_{n \in \mathbb{N}} \exists_{x_n \in V} : \|Ax_n\| &> n \|x_n\| \implies \\ &\implies n \|x_n\| < \|Ax_n\| = \|x_n\| \cdot \|A\frac{x_n}{\|x_n\|}\| \implies 1 < \|A\frac{x_n}{n \|x_n\|}\| \implies \\ &\implies c_n = \frac{x_n}{n \|x_n\|} \xrightarrow[n \to \infty]{} 0 \land Ac_n \nrightarrow 0 \end{split}$$

Co przeczy ciągłości.

(3) \Longrightarrow (1): A musi być ciągła w **0** z trywialnych powodów.

(1) \Longrightarrow (2): Wybierzmy dowolny $b\in V$ oraz ciąg taki, że $\|x_n\|\xrightarrow[n\to\infty]{}0$, wtedy:

$$A(\mathbf{b} + \mathbf{x_n}) = A(\mathbf{b} - \mathbf{a}) + A(\mathbf{a} + \mathbf{x_n}) \xrightarrow[\mathbf{n} \to \infty]{} A(\mathbf{b} - \mathbf{a}) + A(\mathbf{a}) = A(\mathbf{b})$$

Definicja 5.10. Odwzorowanie liniowe ciągłe $A: V \to W$ między dwoma przestrzeniami unormowanymi nazywamy **homomorfizmem**.

Definicja 5.11. Homomorfizm który jest odwracalny nazywa się izomorfizmem.

Definicja 5.12. *Standardową normą operatora liniowego w nazywamy:*

$$||A|| = \inf\{C > 0 : \forall_{\mathbf{x}} ||A\mathbf{x}|| \le C||\mathbf{x}||\}$$

Definicja 5.13. Operator między przestrzeniami topologicznymi nazywamy **otwartym** jeśli obrazem każdego zbioru otwartego jest zbiór otwarty.

Lemat 5.14. *Niech przestrzenie* X, Y *będą unormowane, a* $T: X \rightarrow Y$ *będzie operatorem liniowym. Następujące warunki są równoważne:*

- 1. *Operator* T *jest otwarty*.
- 2. Obraz $\mathcal{B}(\mathbf{0}_{\mathbf{X}}, 1)$ zawiera pewną kulę $\mathcal{B}(\mathbf{0}_{\mathbf{Y}}, \mathbf{r})$.

Dowód. (1) \Longrightarrow (2): Obraz $\mathcal{B}(\mathbf{0}_X, 1)$ jest zbiorem otwartym oraz zawiera $\mathbf{0}_Y$. (2) \Longrightarrow (1): Wybierzmy dowolny zbiór otwarty \mathcal{O} w X.

$$\forall_{\mathbf{x}\in\mathcal{O}}\exists_{\varepsilon>0}:\mathcal{B}(\mathbf{x},\varepsilon)=\mathbf{x}+\varepsilon\cdot\mathcal{B}(\mathbf{0}_{\mathbf{X}},\mathbf{1})\subseteq\mathcal{O}$$

zatem:

$$\mathsf{T}(\mathcal{B}(\textbf{x},\epsilon)) = \mathsf{T}(\textbf{x}) + \epsilon \cdot \mathsf{T}(\mathcal{B}(\textbf{0}_{\textbf{X}},\textbf{1})) \supseteq \mathsf{T}(\textbf{x}) + \epsilon \cdot \mathsf{B}(\textbf{0}_{\textbf{Y}},\textbf{r})$$

Lemat 5.15. Niech $T: X \to Y$ będzie ograniczonym operatorem liniowym z przestrzeni Banacha w przestrzeń unormowaną. Jeśli domknięcie \overline{C} zbioru $C = T(\mathcal{B}(\mathbf{0}_X, 1))$ zawiera pewną kulę $\mathcal{B}(\mathbf{0}_Y, r)$ to operator T jest otwarty.

П

Dowód. Zgodnie z [Lem.5.14] wystarczy pokazać, że C zawiera kulę $\mathcal{B}(\mathbf{0_Y}, \frac{r}{3})$. Istnieje $\mathbf{y} \in \overline{C}$, że $\|\mathbf{y}\| \leq \frac{r}{3}$ oraz $\mathbf{y_1} \in C$ dla którego $\|3\mathbf{y} - \mathbf{y_1}\| \leq \frac{r}{3}$ Podobnie ponieważ $3\mathbf{y} - \mathbf{y_1} \in \overline{C}$ możemy wybrać $\mathbf{y_2} \in C$, że:

$$||3^2y - 3y_1 - y_2|| \le \frac{r}{3}$$

I tak dalej cały ciąg $\left\{ y_{n}\right\} _{n\in\mathbb{N}}$, gdzie:

$$||3^n y - 3^{n-1} y_1 - \ldots - 3^0 y_n|| \le \frac{r}{3}$$

Tak więc $\|y-\sum_{i=1}^n y_i\| \leq \frac{r}{3^{n+1}}$. Istnieje ciąg $\{x_n\}_{n\in\mathbb{N}}$ taki, że $\mathsf{T}x_n=y_n$ oraz $\sum_{i=1}^n \|3^{-i}x_i\| \leq \frac{1}{2}$, zatem szereg zbiega do $x\in\mathcal{B}(0_X,1)$ Ponadto:

$$\mathsf{T} \mathbf{x} = \sum_{i=1}^{\infty} 3^{-i} \mathsf{T} \mathbf{x}_{i} = \sum_{i=1}^{\infty} 3^{-i} \mathbf{y}_{i} = \mathbf{y} \in \mathsf{C}$$

Lemat 5.16. Niech $T: X \to Y$ będzie epimorfizmem z przestrzeni unormowanej w przestrzeń Banacha. Istnieją liczby r, s > 0 oraz $y_0 \in Y$, że domknięcie \overline{C} zbioru $C = \{Tx: x \in \mathcal{B}(\mathbf{0}_X, s)\}$ zawiera kulę $\mathcal{B}(y_0, r)$.

Dowód. Weźmy ciąg zbiorów:

$$C_n = \{Tx : x \in \mathcal{B}(\mathbf{0}_X, n)\}\$$

Ma mocy twierdzenia Baire'a
[Tw.4.55] któryś ze zbiorów C_n nie jest nigdziegesty.
 $\hfill\Box$

Twierdzenie 5.17. (O operatorze otwartym) Ograniczony epimorfizm między przestrzeniami Banacha $T: X \to Y$ jest otwarty.

Dowód. Wybierzmy liczby s, r oraz $y_0 \in Y$ jak w treści [Lem.5.16]. Z liniowości T wynika, że $\mathcal{B}(y_0, s^{-1}r) \subseteq \overline{\{Tx : x \in \mathcal{B}(0_X, 1)\}}$ Dla dowolnego $y \in \mathcal{B}(0_Y, s^{-1}r)$:

$$y = \frac{1}{2} \cdot [(y_0 + y) - (y_0 - y)] = \frac{1}{2} \cdot [T(x_0 + x) - T(x_0 - x)] \in \overline{\{Tx : x \in \mathcal{B}(0_X, 1)\}}$$

Co pozwala nam z [Lem.5.15] wywnioskować, że T jest otwarty.

Twierdzenie 5.18. (Banacha o operatorze odwrotnym) Każdy ciągły operator liniowy $A:V\to W$ między przestrzeniami Banacha, będący bijekcją ma ciągłą odwrotność A^{-1} .

Dowód. Przeciwobraz zbioru otwartego $\mathcal{U} \subseteq X$ pod działaniem T^{-1} jest równy $T\mathcal{U}$ zatem z [Tw.5.17] jest otwarty.

Twierdzenie 5.19. *Zbiór epimorfizmów między przestrzeniami Banacha* V i W jest otwarty w Hom(V, W).

Dowód. Niech $y \in W$, chcemy pokazać, że dla dowolnej surjekcji $T \in \text{Hom}(V,W)$ istnieje kula, że dla $S \in \mathcal{B}(T,\epsilon)$ mamy $x \in V: Sx = y$. Naturalnie jest taki x_0 , że $Tx_0 = y$, oznaczmy $y_0 = Sx_0$. Niech $y_1 = (T-S)x_0$, $\|y_1\| \le \epsilon \|x_0\|$, oraz $Tx_1 = y_1$ $y_2 = (T-S)x_1$, $\|y_2\| \le \epsilon \|x_1\| \le \epsilon^2 \|T\| \|x_0\|$, oraz $Tx_2 = y_2$ Indukcyjnie definiujemy dwa ciagi $\{x_n\}$ i $\{y_n\}$, że $\|y_n\| \le \epsilon^n \|T\|^{n-1} \|x_0\|$ $\|x_n\| \le \epsilon \|T\| \|x_0\|$ $S[\sum_{i=0}^\infty x_i] = Tx_0 - y_1 + Tx_1 - y_2 \ldots = Tx_0 - y_1 + y_1 - y_2 + y_2 - \ldots = Tx_0 = y$

5.3 Norma iloczynu przestrzeni

Definicja 5.20. Niech $\{(X_i, \|\bullet\|_i)\}_{i \in \overline{1,n}}$ będzie skończoną rodziną przestrzeni unormowanych. Wówczas każdą normę postaci:

$$||(x_1,\ldots,x_n)|| = ||(||x_1||_1,\ldots,||x_n||_n)||_{\mathbb{R}^n}$$

Gdzie $\|\bullet\|_{\mathbb{R}^n}$ jest dowolną normą na \mathbb{R}^n , nazywamy **normą iloczynu** przestrzeni.

Lemat 5.21. Powyższa konstrukcja spełnia definicję normy.

Dowód. Z tego, że $\| \bullet \|_{\mathbb{R}^n}$ jest normą wynika niezdegenerowanie:

$$\|(x_1,\ldots,x_n)\| = 0 \iff \|(\|x_1\|_1,\ldots,\|x_n\|_n)\|_{\mathbb{R}^n} = 0 \iff \forall_{i \in \overline{1,n}} = x_i = 0$$

Dodatnia jednorodność:

$$\|\alpha(\mathbf{x}_{1},...,\mathbf{x}_{n})\| = \|(\alpha \mathbf{x}_{1},...,\alpha \mathbf{x}_{n})\| = \|(\|\alpha \mathbf{x}_{1}\|_{1},...,\|\alpha \mathbf{x}_{n}\|_{n})\|_{\mathbb{R}^{n}} = |\alpha| \cdot \|(\|\mathbf{x}_{1}\|_{1},...,\|\mathbf{x}_{n}\|_{n})\|_{\mathbb{R}^{n}} = |\alpha| \cdot \|(\mathbf{x}_{1},...,\mathbf{x}_{n})\|$$

Nierówność trójkąta:

$$\begin{split} \|(x_1+y_1,\ldots,x_m+y_m)\| &= \|\|x_1+y_1\|_1,\ldots,\|x_n+y_n\|_n\|_{\mathbb{R}^n} \leq \\ &\leq \|\|x_1\|_1,\ldots,\|x_n\|_n\|_{\mathbb{R}^n} + \|\|y_1\|_1,\ldots,\|y_n\|_n\|_{\mathbb{R}^n} \leq \\ &\leq \|(x_1,\ldots,x_m)\| + \|(y_1,\ldots,y_m)\| \end{split}$$

Definicja 5.22. *Iloczynem* $\prod_{i=1}^{n} X_i$ *skończonej rodziny przestrzeni unormowanych będziemy nazywać jej iloczyn kartezjański wraz z normą klasy zdefiniowanej w* [Def.5.20].

Twierdzenie 5.23. *Iloczyn* $X = \prod_{i=1}^{n} X_i$ *przestrzeni Banacha jest przestrzenią Banacha.*

$$\|\pi_{\mathfrak{i}}(x_{\mathfrak{m}}-x_{\mathfrak{n}})\|_{\mathfrak{i}}\leq \|x_{\mathfrak{m}}-x_{\mathfrak{n}}\|_{\infty}.$$

Ponieważ składowe iloczynu są przestrzeniami zupełnymi, ciąg $\{\pi_i(x_n)\}_{n\in\mathbb{N}}$ ma granicę $y_i\in X_i$. Wobec tego, element $y=(y_1,\ldots,y_n)\in X$ jest granicą $\{x_n\}_{n\in\mathbb{N}}$.

Rozdział 6

Liczby rzeczywiste

6.1 Aksjomatyka liczb rzeczywistych

Aksjomat 6.1. *Liczby rzeczywiste są ciałem.*

Aksjomat 6.2. Przestrzeń metryczna liczb rzeczywistych (\mathbb{R}, ρ) , gdzie $\rho(x, y) = |x - y|$ jest zupełna.

Aksjomat 6.3. *Porządek* (\mathbb{R} , \leq) *liczb rzeczywistych jest liniowy.*

Lemat 6.4. *Przedział* $\mathbb{R} \supseteq [a, b] = \{x \in \mathbb{R} | a \le x \le b\}$ *jest domknięty.*

Dowód. Nie wchodząc w szczegóły: nietrudno pokazać iż:

$$\mathbb{R} \setminus [a, b] =]-\infty, a[\cup]b, \infty[$$

jest zbiorem otwartym.

Lemat 6.5. *Przedział domknięty* $[a, b] \subseteq \mathbb{R}$ *jest zbiorem zwartym.*

Dowód. Niech $\{x_n\}_{n\in\mathbb{N}}\subseteq[a,b]$ będzie ciągiem. Oznaczmy $[a,b]=[a_0,b_0]$ i wybierzmy ciąg odcinków $\{[a_n,b_n]\}$ taki, że:

- 1. $[a_n, b_n] \subseteq [a_{n-1}, b_{n-1}].$
- 2. $|b_n a_n| = (1/2)^n \cdot |b a|$.
- 3. $[a_n, b_n]$ zawiera nieskończenie wiele wyrazów wybranego ciągu.

Istnieje podciąg $\{x_{n_m}\}_{m\in\mathbb{N}}\subseteq \{x_n\}_{n\in\mathbb{N}}$ taki, że $x_{n_m}\in [a_m,b_m]$. Jest on ciągiem Cauchy'ego. Zgodnie z [Aks.6.2] ma granicę $x\in\mathbb{R}$. Ponieważ z [Lem.6.4] przedział jest domknięty, $x\in[a,b]$.

Lemat 6.6. *Kostka* $[a_1, b_1] \times ... \times [a_n, b_n] \subseteq \mathbb{R}^n$ *jest zbiorem zwartym.*

Dowód. Wybierzmy ciąg $\{x_n\}_{n\in\mathbb{N}}$ zawarty w kostce. Niech dla dowolnego $i\in\{1,\dots,n\}$ funkcja:

$$\pi_i: [a_1,b_1] \times \ldots \times [a_n,b_n] \ni (x_1,\ldots,x_n) \rightarrow x_i \in [a_i,b_i]$$

będzie rzutem. Zgodnie z [Lem.6.4] z ciągu można wybrać podciąg y_n taki, że $\pi_1(y_n)$ jest zbieżny. Z kolei dla podciągu y_n można wybrać kolejny z_n dla którego $\pi_2(z_n)$ jest zbieżny... Po wykonaniu tej operacji n razy dochodzimy do podciągu zbieżnego w kostce.

Lemat 6.7. Niech X będzie podzbiorem przestrzeni euklidesowej (\mathbb{R}^n , d_e). Następujące warunki są równoważne:

- 1. X jest zwarty.
- 2. X jest domknięty i ograniczony.

Dowód. (1) \Longrightarrow (2): Z [Tw.4.39.3] wynika, że zbiór musi być domknięty. Żeby wykazać ograniczoność wystarczy zauważyć, że rodzina kul $\{\mathcal{B}\,(\mathbf{0},\mathfrak{n}):\mathfrak{n}\in\mathbb{N}\}$ pokrywa X, więc można z niej wybrać podpokrycie skończone.

 $(2)\Longrightarrow (1)$: Każdy zbiór ograniczony A leży w pewnej domkniętej kostce $[\mathfrak{a}_1,\mathfrak{b}_1]\times\ldots\times[\mathfrak{a}_n,\mathfrak{b}_n]$ która jest zbiorem zwartym. Na mocy [Lem.6.4] z domkniętości A wynika zwartość.

Twierdzenie 6.8. (Bolzano-Weierstraß) Niech $f: X \to \mathbb{R}$ będzie funkcją ciągłą, okreśoną na zwartym podzbiorze przestrzeni metrycznej $X \subseteq \mathcal{M}$ Istnieją punkty $\alpha, b \in X$, że:

$$f(a) = \sup_{X} f$$
 $f(b) = \inf_{X} f$

Dowód. Zastosujmy [Tw.4.40] i zastanówmy się jak wygląda zwarty podzbiór \mathbb{R} . Zgodnie z [Lem.6.7] jest on domknięty i ograniczony co jest równoznaczne tezie.

6.2 Ciągi rzeczywiste

Twierdzenie 6.9. Niech $\{a_n\}_{n\in\mathbb{N}}$ i $\{b_n\}_{n\in\mathbb{N}}$ będą ciągami $w \ \mathbb{R}$ oraz $a_n \xrightarrow[n\to\infty]{} a$ oraz $b_n \xrightarrow[n\to\infty]{} b$, wówczas:

- 1. $\{a_n + b_n\}_{n \in \mathbb{N}} \xrightarrow[n \to \infty]{} a + b$.
- 2. $\{a_n \cdot b_n\}_{n \in \mathbb{N}} \xrightarrow[n \to \infty]{} ab$.
- 3. $\left\{a_n/b_n\right\}_{n\in\mathbb{N}}\xrightarrow[n\to\infty]{} a/b$ jeśli tylko $b_n,b\neq 0$.

Dowód. Trywialny.

6.3 Szeregi rzeczywiste

Rozdział 7

Różniczka funkcji

7.1 Małe wyższego rzędu

Lemat 7.1. Niech V, W będą unormowane, weźmy funkcję $f: V \supseteq dom(f) \rightarrow W$ zdefiniowaną na pewnym otoczeniu $\mathbf{0}_V$. Przez o(V,W) oznaczmy rodzinę takich funkcji, że:

$$\frac{f(\mathbf{h})}{\|\mathbf{h}\|} \xrightarrow{\|\mathbf{h}\| \to 0} 0$$

Na rodzinie o(V, W) wprowadźmy następującą relację równoważności:

$$u \sim g \iff \exists_{U_0 \in \mathcal{T}} \forall_{x \in U_0} : u(x) = g(x)$$

Zbiór klas tej równoważności jest przestrzenią wektorową którą tradycyjnie oznaczamy $o(\mathbf{h})$. Funkcję $h \in o(\mathbf{h})$ nazywamy **małą wyższego rzędu** niż f.

Dowód. (1): Pokażmy, że liniowa kombinacja $\alpha u + \beta g \in o(\mathbf{h})$:

$$\frac{\alpha u + \beta g}{\|\mathbf{h}\|} = \frac{\alpha u}{\|\mathbf{h}\|} + \frac{\beta h}{\|\mathbf{h}\|} \xrightarrow[\|\mathbf{h}\| \to 0]{} \alpha \cdot 0 + \beta \cdot 0 = 0$$

(2): Zerem będzie funkcja zerująca się na dowolnym otoczeniu $0_{
m V}$

(3): Funkcją odwrotną do h będzie funkcja odwrotna na pewnym otoczeniu \mathbb{O}_V .

7.2 Definicja i algebraiczne własności różniczki

Definicja 7.2. Niech V i W będą przestrzeniami metrycznymi. Funkcja $f: V \supseteq A \rightarrow W$ zdefiniowana na pewnym otoczeniu $x \in A$ jest w tym punkcie $r\acute{o}$ zniczkowalna jeśli istnieje odwzorowanie $L \in Hom(V, W)$ takie, że:

$$f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) - L\mathbf{h} \in o(\mathbf{h})$$

Takie L oznaczamy przez Df(x) i nazywamy **różniczką** f w punkcie x. Funkcja jest różniczkowalna jeśli posiada Df(x) w każdym punkcie dziedziny.

Uwaga 7.3. Różniczka jest najlepszym afinicznym przybliżeniem funkcji w danym punkcie.

Twierdzenie 7.4. *Powyższa definicja* Df(x) *określa różniczkę jednoznacznie.*

Dowód. Chcemy pokazać, że jeśli różniczka w punkcie istnieje to tylko jedno przekształcenie liniowe spełnia jej definicję. Przeprowadźmy dowód przez zaprzeczenie. Przypuśćmy, że istnieją dwa różne operatory liniowe L_1 i L_2 takie, że:

$$F_1 = f(x+h) - f(x) - L_1 h \in o(h)$$

$$F_2 = f(x+h) - f(x) - L_2 h \in o(h)$$

Jak wynika z Lem.7.1

$$F_1 - F_2 = (L_2 - L_1)\mathbf{h} \in o(\mathbf{h})$$

Co można zapisać w postaci granicy:

$$(L_2 - L_1) \frac{\mathbf{h}}{\|\mathbf{h}\|} \xrightarrow{\|\mathbf{h}\| \to 0} \mathbf{0}$$

Czyli
$$L_2 = L_1$$

Twierdzenie 7.5. Funkcja różniczkowalna w punkcie x jest w nim również ciągła.

Dowód. Wprost z definicji ciągłości:

$$f(x+h) - f(x) = Lh + (f(x+h) - f(x) - Lh) \xrightarrow{\|h\| \to 0} 0$$

Przypominamy, że L z definicji jest ciągła jako element Hom(V, W).

Twierdzenie 7.6. Niech V, W będą przestrzeniami unormowanymi, natomiast funkcje f, g : $V \supseteq \Omega \to W$ różniczkowalne w punkcie $\mathbf{x} \in \Omega$. Wówczas funkcja $\alpha f + \beta g$ jest różniczkowalna w tym punkcie, oraz:

$$D(\alpha f + \beta g)(x) = \alpha Df(x) + \beta Dg(x)$$

Dowód. Dowód przeprowadzimy po prostu wstawiając prawą część powyższej równości do definicji różniczki funkcji $\alpha f + \beta g$ w punkcie x i przekonamy się, że warunki Def.7.2 są spełnione.

$$\begin{split} &(\alpha f + \beta g)(\mathbf{x} + \mathbf{h}) - (\alpha f + \beta g)(\mathbf{x}) - \alpha \mathsf{D}f(\mathbf{x}) + \beta \mathsf{D}g(\mathbf{x}) = \\ &= (\alpha f(\mathbf{x} + \mathbf{h}) - \alpha f(\mathbf{x}) - \alpha \mathsf{D}f(\mathbf{x})) + (\beta g(\mathbf{x} + \mathbf{h}) - \beta g(\mathbf{x}) - \beta \mathsf{D}g(\mathbf{x})) \in o(\mathbf{h}) \end{split}$$

Twierdzenie 7.7. Niech przestrzenie V, W, Z będą unormowane, a funkcja $f: V \supseteq \Omega_1 \to W$ będzie różniczkowalna w x, natomiast funkcja $g: W \supseteq \Omega_2 \to Z$ w f(x). Zakładamy, że oba Ω_1 , Ω_2 są otwarte oraz $f(x) \in \Omega_2$. Wówczas złożenie $g \circ f$ jest funkcją różniczkowalną w x, a także:

$$D(g \circ f)(x) = Dg(f(x)) \circ Df(x)$$

Dowód. Podobnie jak w poprzednim dowodzie podstawimy naszą postulowaną formę różniczki $g \circ f$ do Def.7.2 i sprawdzimy się, że jest to odpowiadania forma.

$$\begin{split} F &= g \circ f(\mathbf{x} + \mathbf{h}) - g \circ f(\mathbf{x}) - Dg(f(\mathbf{x})) \circ Df(\mathbf{x})\mathbf{h} = \\ &= g \circ (f(\mathbf{x}) + f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x})) - g \circ f(\mathbf{x}) - Dg(f(\mathbf{x})) \circ Df(\mathbf{x})\mathbf{h} = \\ &= g \circ (f(\mathbf{x}) + f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x})) - g \circ f(\mathbf{x}) - Dg(f(\mathbf{x})) \circ (f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x})) + \\ &+ Dg(f(\mathbf{x})) \circ (f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) - Df(\mathbf{x})\mathbf{h}) \end{split}$$

Rozważmy oba składniki tej sumy i podzielmy przez ||h||:

$$\frac{g\circ (f(x)+f(x+h)-f(x))-g\circ f(x)-\mathsf{D}g(f(x))\circ (f(x+h)-f(x))}{\|h\|}\xrightarrow[\|h\|\to 0]{} \mathsf{D}g(f(x))\circ (f(x+h)-f(x)-\mathsf{D}f(x)h)} \xrightarrow{\|h\|\to 0} \mathsf{D}g(f(x))\cdot 0 = 0$$

Co pokazuje, że $F \in o(h)$.

7.3 Twierdzenie o wartości średniej

Twierdzenie 7.8. (O wartości średniej) Niech V i W będą przestrzeniami unormowanymi, a funkcja $f: V \supseteq \Omega \to W$ będzie różniczkowalna na wypukłym zbiorze otwartym Ω . Wybierzmy dwa dowolne punkty $\mathbf{a}, \mathbf{b} \in \Omega$, wówczas:

$$\|f(\textbf{b})-f(\textbf{a})\| \leq \sup_{\textbf{t} \in [0,1]} \mathsf{D}f(\textbf{a}+\textbf{t}(\textbf{b}-\textbf{a})) \cdot \|\textbf{b}-\textbf{a}\|$$

Dowód. Zdefiniujmy funkcję:

$$\gamma(t) = f(a + t(b - a))$$

Z otwartości i wypukłości Ω wynika, iż jest ona określona na przedziale [-r, 1+r] dla pewnego r>0. Skorzystajmy z faktu, że norma jest odwzorowaniem ciągłym oraz twierdzenia Bolzano-Weierstrassa i ustalimy:

$$C = \sup_{t \in [0,1]} Df(\alpha + t(b-\alpha))$$

Korzystając z twierdzenia Bolzano-Weierstrassa(żeby uzasadnić istnienie sup) możemy policzyć różniczkę:

$$\gamma'(t) = D\gamma(t) = Df(\mathbf{a} + t(\mathbf{b} - \mathbf{a})) ||\mathbf{b} - \mathbf{a}||$$

Z definicji różniczki:

$$\begin{split} \forall_{t \in [0,1]} \forall_{\varepsilon > 0} \exists_{\delta_t > 0} : \| \boldsymbol{z} \| < \delta_t \implies \\ \implies \| f(\boldsymbol{a} + t(\boldsymbol{b} - \boldsymbol{a}) + \boldsymbol{z}) - f(\boldsymbol{a} + t(\boldsymbol{b} - \boldsymbol{a})) - \mathsf{D} f(\boldsymbol{a} + t(\boldsymbol{b} - \boldsymbol{a})) \boldsymbol{z} \| < \frac{\varepsilon}{\| \boldsymbol{b} - \boldsymbol{a} \|} \| \boldsymbol{z} \| \end{split}$$

Wybierzmy jakiekolwiek $t_1, t_2 \in [0, 1]$:

$$\begin{split} \|\gamma(t_2) - \gamma(t_1)\| &\leq \|\gamma(t_2) - \gamma(t_1) - \gamma'(t)(t_2 - t_1)\| + \|\gamma'(t)(t_2 - t_1)\| \\ &\leq \frac{\epsilon}{\|\mathbf{b} - \mathbf{a}\|} \cdot |t_2 - t_1| + C \cdot \|\mathbf{b} - \mathbf{a}\| \cdot |t_2 - t_1| = \\ &= \left(\frac{\epsilon}{\|\mathbf{b} - \mathbf{a}\|} + C \cdot \|\mathbf{b} - \mathbf{a}\|\right) \cdot |t_2 - t_1| \end{split}$$

Gdzie biorąc odpowiednio mały przedział $|t_2-t_1|$ można uczynić składnik $\frac{\epsilon}{\|b-a\|}$ dowolnie małym.

Rodzina zbiorów otwartych:

$$\{|t - \delta_t, t + \delta_t| : t \in [0, 1]\}$$

Gdzie $\delta_t < r$, tworzy otwarte pokrycie zbioru zwartego [0,1] z którego możemy zgodnie z [Def.4.37] wybrać skończone pokrycie otwarte:

$$\{]t_i - \delta_{t_i}, t_i + \delta_{t_i} [\}_{i \in \overline{1,n}}$$

Zakładając bez straty ogólności, że $t_1 < t_2 < \ldots < t_{n-1} < t_n$. Wybierzmy punkty:

$$x_i \in]t_i - \delta_{t_i}, t_i + \delta_{t_i} [\cap] t_i, t_{i+1}[$$

W taki sposób by $x_0 = 0$ oraz $x_n = 1$. Nareszcie jesteśmy gotowi zakończyć dowód ostatnim ciągiem nierówności:

$$\begin{split} \|f(\mathbf{b}) - f(\mathbf{a})\| &= \|\gamma(1) - \gamma(0)\| \leq \sum_{i=1}^{n} \|\gamma(x_i) - \gamma(x_{i-1})\| \leq \\ &\leq \sum_{i=1}^{n} \|\gamma(x_i) - \gamma(t_i)\| + \sum_{i=1}^{n} \|\gamma(t_i) - \gamma(x_{i-1})\| \leq \\ &\leq \sum_{i=1}^{n} \left(\frac{\epsilon}{\|\mathbf{b} - \mathbf{a}\|} + C \cdot \|\mathbf{b} - \mathbf{a}\|\right) |x_i - t_i| + \\ &+ \sum_{i=1}^{n} \left(\frac{\epsilon}{\|\mathbf{b} - \mathbf{a}\|} + C \cdot \|\mathbf{b} - \mathbf{a}\|\right) |t_i - x_{i-1}| \leq \\ &\leq \left(\frac{\epsilon}{\|\mathbf{b} - \mathbf{a}\|} + C \cdot \|\mathbf{b} - \mathbf{a}\|\right) \leq C \cdot \|\mathbf{b} - \mathbf{a}\| = \\ &= \sup_{t \in [0, 1]} \mathrm{D} f(\mathbf{a} + t(\mathbf{b} - \mathbf{a})) \cdot \|\mathbf{b} - \mathbf{a}\| \end{split}$$

7.4 Pochodne cząstkowe

Definicja 7.9. Rozważmy iloczyn przestrzeni unormowanych $X = \prod_{i=1}^m X_i$ oraz przestrzeń z normą Y. Dla funkcji $f: X \supseteq \Omega \to Y$ zdefiniowanej w $\mathbf{a} = (\mathbf{a_1}, \dots, \mathbf{a_n}) \in$

 Ω^{o} zdefiniujmy pomocniczą funkcję:

$$f_i^{\alpha}(x) = f(a_1, \ldots, a_{j-1}, x, a_{j+1}, \ldots, a_n)$$

Jeśli różniczka $Df_j^{\alpha}(a_j)$ istnieje to oznaczamy ją dla wygody przez $D_jf(a)$ i nazywamy j-tą **pochodną cząstkową** f.

Twierdzenie 7.10. Niech $X=\prod_{i=1}^n X_i$ będzie iloczynem przestrzeni z normą. Wówczas jeśli $f:X\supseteq\Omega\to Y$ jest funkcją różniczkowalną w $a\in\Omega$ to istnieją wszystkie pochodne cząstkowe oraz dla dowolnego $h=(h_1,\ldots,h_n)\in X$ zachodzą równości:

$$D_{\mathbf{i}}f(\mathbf{a})\mathbf{h}_{\mathbf{i}} = Df(\mathbf{a}) \circ \theta_{\mathbf{i}} \circ \pi_{\mathbf{i}}\mathbf{h} \tag{7.1}$$

$$Df(\mathbf{a})\mathbf{h} = \sum_{j=1}^{n} D_{j}f(\mathbf{a})\mathbf{h}_{j}$$
 (7.2)

Dowód. Najpierw zauważmy, że $(7.1) \Longrightarrow (7.2)$:

$$\mathsf{Df}(\mathbf{a})\mathbf{h} = \mathsf{Df}(\mathbf{a})\mathbb{1}\mathbf{h} = \mathsf{Df}(\mathbf{a})\sum_{j=1}^n \left(\theta_j \circ \pi_j\right)\mathbf{h} = \sum_{j=1}^n \mathsf{D}_j\mathsf{f}(\mathbf{a})\mathbf{h}_j$$

A następnie udowodnimy równanie (7.1).

$$\begin{split} & F = f_{j}^{\alpha}(a_{j} + h_{j}) - f_{j}^{\alpha}(a_{j}) - Df(a) \circ \theta_{j} \circ \pi_{j}h = \\ & = f_{j}^{\alpha}(a_{j} + h_{j}) - f_{j}^{\alpha}(a_{j}) - Df(a)(0, \dots, h_{j}, \dots, 0) = \\ & = f(a_{1}, \dots, a_{j} + h_{j}, \dots, a_{n}) - f(a_{1}, \dots, a_{j}, \dots, a_{n}) - Df(a)(0, \dots, h_{j}, \dots, 0) \end{split}$$

Co pokazuje prawdziwość równania (7.1) wprost z definicji różniczki.

Twierdzenie 7.11. Niech X będzie przestrzenią z normą, natomiast $Y = \prod_{i=1}^{n} Y_i$ iloczynem przestrzeni unormowanych. Wówczas dla rodziny funkcji $\{f_i : X \to Y_i : i \in \overline{1,n}\}$ funkcja $f = (f_1, \ldots, f_n)$ jest różniczkowalna wtedy i tylko wtedy, gdy wszystkie funkcje f_i są różniczkowalne. Wówczas zachodzi:

$$Df(\mathbf{x}) = (Df_1(\mathbf{x}), \dots, Df_n(\mathbf{x}))$$

Dowód. Skorzystajmy z Tw.7.7 i zapiszmy naszą funkcję poprzez $f(x) = \sum_{i=1}^{n} (\theta_i \circ \pi_i) \circ f(x)$:

$$\begin{split} \mathsf{D}\mathsf{f}(\mathbf{x}) &= \mathsf{D}(\sum_{i=1}^n \theta_i \circ \pi_i \circ \mathsf{f})(\mathbf{x}) = \mathsf{D}(\sum_{i=1}^n \theta_i \circ \mathsf{f}_i)(\mathbf{x}) = \\ &= \sum_{i=1}^n \mathsf{D}(\theta_i \circ \mathsf{f}_i)(\mathbf{x}) = \sum_{i=1}^n \mathsf{D}(\theta_i)(\mathsf{f}_i(\mathbf{x})) \circ \mathsf{D}\mathsf{f}_i(\mathbf{x}) = \\ &= \sum_{i=1}^n \theta_i \circ \mathsf{D}\mathsf{f}_i(\mathbf{x}) = (\mathsf{D}\mathsf{f}_1(\mathbf{x}), \dots, \mathsf{D}\mathsf{f}_n(\mathbf{x})) \end{split}$$

Uwaga 7.12. Korzystam bez dowodu z faktu, że pochodna funkcji liniowej w każdym punkcie to ta funkcja. (dla θ_i)

Twierdzenie 7.13. Niech $X = \prod_{i=1}^{n} X_i$ będzie iloczynem przestrzeni z normą, a Y przestrzenią z normą. Weźmy funkcję $f: X \supseteq \Omega \to Y$ oraz ustalmy $\mathbf{a} \in \Omega$. Wówczas jeśli istnieją wszystkie pochodne cząstkowe f oraz każda z funkcji $\mathbf{x} \mapsto \mathsf{Df}_i(\mathbf{x})$ jest ciągła w sensie metryki zbieżności jednostajnej to f jest różniczkowalna w \mathbf{a} .

 $\mbox{\it Dow\'od}.$ Przyjmijmy notację: ${\bf a}=(a_1,\ldots,a_n),\, {\bf h}=(h_1,\ldots,h_n).$ Dow\'od jest nieco bardziej zawiły niż kilka poprzednich, jednak zaczniemy postępując podobnie jak zwykle. Dążymy do wykazania, że wskazana funkcja spełnia warunki stawiane różniczce:

$$\begin{split} & \|f(a+h)-f(a)-\sum_{i=1}^n D_i f(a)h_j\| \leq \\ & \leq \sum_{i=1}^n \|f(a_1+h_1,\ldots,a_i+h_i,\ldots,a_n)-f(a_1+h_1,\ldots,a_{i-1}+h_{i-1},\ldots,a_n)-D_i f(a)h_i\| = \\ & = \sum_{i=1}^n \|f(a_1+h_1,\ldots,a_i+h_i,\ldots,a_n)-f(a_1+h_1,\ldots,a_{i-1}+h_{i-1},\ldots,a_n)-\\ & - D_i f(a_1+h_1,\ldots,a_{i-1}+h_{i-1},\ldots,a_n)h_i+D_i f(a_1+h_1,\ldots,a_{i-1}+h_{i-1},\ldots,a_n)h_i-D_i f(a)h_i\| \leq \\ & \leq \sum_{i=1}^n \|f(a_1+h_1,\ldots,a_i+h_i,\ldots,a_n)-f(a_1+h_1,\ldots,a_{i-1}+h_{i-1},\ldots,a_n)-\\ & - D_i f(a_1+h_1,\ldots,a_{i-1}+h_{i-1},\ldots,a_n)h_i\| + \\ & + \sum_{i=1}^n \|D_i f(a_1+h_1,\ldots,a_{i-1}+h_{i-1},\ldots,a_n)h_i-D_i f(a)h_i\| \end{split}$$

Powyższa suma składa się z dwóch składników po n elementów. Połowa z nich jest postaci:

$$\begin{split} F_{\text{i}} = & \| f(a_1 + h_1, \dots, a_i + h_i, \dots, a_n) - f(a_1 + h_1, \dots, a_{i-1} + h_{i-1}, \dots, a_n) - \\ & - D_{\text{i}} f(a_1 + h_1, \dots, a_{i-1} + h_{i-1}, \dots, a_n) h_i \| \end{split}$$

Ale przecież wprost z definicji różniczki $F_i \in o(h)$. Aby oszacować kolejne n składników użyjemy wprost Def.5.20. Ponieważ wszystkie metryki na \mathbb{R}^n są równoważne możemy badając zbieżność użyć konkretnej metryki:

$$\|\bullet\|_{\infty}=max\left\{\|x_{i}\|_{i}:i\in\overline{1,n}\right\}$$

$$\begin{split} &\sum_{i=1}^n \| \mathsf{D}_i \mathsf{f}(a_1 + h_1, \dots, a_{i-1} + h_{i-1}, \dots, a_n) h_i - \mathsf{D}_i \mathsf{f}(a) h_i \| = \\ &= \sum_{i=1}^n \| h_i \|_i \| \mathsf{D}_i \mathsf{f}(a_1 + h_1, \dots, a_{i-1} + h_{i-1}, \dots, a_n) \frac{h_i}{\| h_i \|_i} - \mathsf{D}_i \mathsf{f}(a) \frac{h_i}{\| h_i \|_i} \| \leq \\ &\leq n \cdot \| h \|_\infty \cdot \max_{i \in \overline{1,n}} \{ \| \mathsf{D}_i \mathsf{f}(a_1 + h_1, \dots, a_{i-1} + h_{i-1}, \dots, a_n) - \mathsf{D}_i \mathsf{f}(a) \| \} \in o(h) \end{split}$$

Twierdzenie 7.14. *Niech* $B: X \times X \to Y$ *będzie ograniczonym funkcjonałem między dwoma przestrzeniami Banacha, wówczas:*

$$DB\left(\alpha,\beta\right)\left(x,y\right)=B\left(\alpha,y\right)+B\left(x,\beta\right)$$

Dowód. Jest to prosta konsekwencja [Tw.7.13].

7.5 Twierdzenie u funkcji uwikłanej

Definicja 7.15. Funkcjami klasy $C^k(X,Y)$, gdzie X oraz Y są przestrzeniami Banacha, nazywamy funkcje postaci $f:X\to Y$ posiadające ciągłe pochodne do stopnia k włącznie.

Funkcję klasy $C^{\infty}(X,Y)$ nazywamy **gładką**.

Twierdzenie 7.16. (O funkcji uwikłanej) Niech X, Y, Z będą przestrzeniami Banacha. Dla otwartego podzbioru $\Omega \subseteq X \times Y$ i funkcji $f \in C^1(\Omega, Z)$ niech dla pewnego $(\mathbf{x_0}, \mathbf{y_0}) \in \Omega$ zachodzi $f(\mathbf{x_0}, \mathbf{y_0}) = \mathbf{0}$ oraz $D_2 f(\mathbf{x_0}, \mathbf{y_0}) : Y \to Z$ będzie homeomorfizmem (ciągłą bijekcją).

Wówczas istnieje takie otoczenie $\mathcal{N}_{x_0}\subseteq X$ punktu x_0 oraz jednoznacznie określona funkcja $g\in C^1(\mathcal{N}_{x_0},Z)$ taka, że:

$$q(\mathbf{x_0}) = \mathbf{y_0} \qquad \qquad f(\mathbf{x}, q(\mathbf{x})) = \mathbf{0}$$

A jej pochodna jest dana równością:

$$Dq(x) = -(D_2f(x, q(x)))^{-1} \circ D_1f(x, q(x))$$

Dowód. (Istnienie): Dla wygody oznaczmy:

$$L := D_2 f(\mathbf{x_0}, \mathbf{y_0})$$
 $h(\mathbf{x}, \mathbf{y}) := \mathbf{y} - L^{-1}[f(\mathbf{x}, \mathbf{y})]$

Możemy wybrać liczbe $\delta > 0$ taką, że:

- 1. $\mathcal{B}((\mathbf{x_0}, \mathbf{y_0}), \delta) \subseteq \Omega$
- 2. Operator $D_2 f(x, y)$ jest odwracalny na $\mathcal{B}((x_0, y_0), \delta)$.

3.
$$\forall_{(\mathbf{x},\mathbf{y})\in\mathcal{B}((\mathbf{x_0},\mathbf{y_0}),\delta)}\|D_2f(\mathbf{x},\mathbf{y})-D_2f(\mathbf{x_0},\mathbf{y_0})\|\leq \frac{1}{2\|L^{-1}\|}$$

Dla punktów takich, że $(x, y_i) \in \mathcal{B}((x_0, y_0), \delta)$ zachodzi:

$$\begin{split} \|h(x,y_2) - h(x,y_1)\| &= \|y_2 - L^{-1}[f(x,y_2)] - y_1 + L^{-1}[f(x,y_1)]\| = \\ &= \|L^{-1}\left[L[y_2 - y_1] - (f(x,y_2) - f(x,y_1))]\| \le \\ &\le \|L^{-1}\| \cdot \|f(x,y_2) - f(x,y_1) - D_2f(x_0,y_0)[y_2 - y_1]\| \le \\ &\le \|L^{-1}\| \cdot \sup_{t \in [0,1]} \|D_2(x,y_1 + t(y_2 - y_1)) - D_2f(x_0,y_0)\|\|y_2 - y_1\| \le \\ &\le \frac{1}{2}\|y_2 - y_1\| \end{split}$$

Dla dowolnego $\mathbf{x} \in \pi_1 \circ \mathcal{B}((\mathbf{x_0}, \mathbf{y_0}), \delta) = \mathcal{N}_{\mathbf{x_0}}$ funkcja $\mathbf{h}(\mathbf{x}, \bullet) : \pi_2 \circ \mathcal{B}((\mathbf{x_0}, \mathbf{y_0}), \delta) \to \pi_2 \circ \mathcal{B}((\mathbf{x_0}, \mathbf{y_0}), \delta)$ ma zgodnie z twierdzeniem kontrakcji unikalny punkt stały, który oznaczymy $\mathbf{g}(\mathbf{x})$. Zachodzi:

$$g(\mathbf{x}) = g(\mathbf{x}) - L^{-1}[f(\mathbf{x}, g(\mathbf{x}))] \iff f(\mathbf{x}, g(\mathbf{x})) = \mathbf{0}$$

(Ciągłość): Weźmy $\mathbf{z_0} \in \mathsf{Z}$, oznaczmy $g_0(\mathbf{x}) = \mathbf{z_0}$ i zdefiniujmy rekurencyjnie ciąg funkcji $g_n(\mathbf{x}) = h(\mathbf{x}, g_{n-1}(\mathbf{x}))$. Ciąg ten zbiega do g jednostajnie, więc na mocy [Tw.4.34] g jest ciągłe.

(Różniczkowalność): Skorzystamy z [Tw.7.13] i tw. o różniczce złożenia funkcji:

$$f(x+h, g(x+h)) - f(x, g(x)) - Df_1(x, g(x))h - Df_2(x, g(x))[g(x+h) - g(x)] \in o(h, g(x+h) - g(x))$$

W pewnym otoczeniu w którym f(x+h,g(x+h))=f(x,g(x)), mamy(można je wybrać z ciągłości g):

$$Df_1(x, g(x))h + Df_2(x, g(x))[g(x+h) - g(x)] \in o(h, g(x+h) - g(x))$$

Można przyłożyć po obu stronach L^{-1}

$$g(\mathbf{x} + \mathbf{h}) - g(\mathbf{x}) - [-\mathrm{Df}_2(\mathbf{x}, g(\mathbf{x}))]^{-1} \circ \mathrm{Df}_1(\mathbf{x}, g(\mathbf{x}))\mathbf{h} \in \mathrm{o}(\mathbf{h}, g(\mathbf{x} + \mathbf{h}) - g(\mathbf{x}))$$
(7.3)

Teraz pokażmy, że o(\mathbf{h} , $g(\mathbf{x} + \mathbf{h}) - g(\mathbf{x})$) = o(\mathbf{h}) Z równania (4.3):

$$\|g(\mathbf{x}+\mathbf{h})-g(\mathbf{x})\| \le \epsilon (\|g(\mathbf{x}+\mathbf{h})-g(\mathbf{x})\|+\|\mathbf{h}\|) + \|[-\mathrm{Df}_2(\mathbf{x},g(\mathbf{x}))]^{-1} \circ \mathrm{Df}_1(\mathbf{x},g(\mathbf{x}))\mathbf{h}\|$$

Zatem istnieje stała C > 0:

$$\|g(\mathbf{x} + \mathbf{h}) - g(\mathbf{x})\| \le A\|\mathbf{h}\|$$

zatem:

$$\frac{\|g(\mathbf{x}+\mathbf{h}) - g(\mathbf{x}) - A\mathbf{h}\|}{\|g(\mathbf{x}+\mathbf{h}) - g(\mathbf{x})\| + \|\mathbf{h}\|} \xrightarrow{\mathbf{h} \to \mathbf{0}} \mathbf{0}$$

Uwaga 7.17. Dopisać w kolejnym rozdziale że dla k-krotnie różniczkowalnej f, funkcja g też jest k-krotnie różniczkowalna.

Twierdzenie 7.18. (O funkcji odwrotnej) Niech V, W będą przestrzeniami Banacha, natomiast $f \in C^1(\Omega, W)$ funkcją określoną na otwartym podzbiorze $\Omega \subseteq V$ taką, że dla pewnego $\mathbf{x} \in \Omega$ różniczka $Df(\mathbf{x})$ jest odwracalna.

Wówczas istnieje otoczenie $\mathcal{N}_{\mathbf{x}}$ na którym funkcja f jest odwracalna, oraz:

$$Df^{-1}(f(x)) = (Df(x))^{-1}.$$

Dowód. Jest to szczególny przypadek [Tw.7.16]. Ustalmy $g:W\times V\to W$ wzorem:

$$g(\mathbf{y}, \mathbf{x}) = \mathbf{y} - f(\mathbf{x}).$$

Wówczas h(y) jest unikalnym rozwiązaniem równania g(y, h(y)) = 0, a także:

$$\mathsf{Dh}\,(\mathsf{f}(\mathbf{x})) = -(\mathsf{D}_2 \mathsf{g}(\mathbf{y},\mathbf{x}))^{-1} \circ \mathsf{D}_1 \mathsf{g}(\mathbf{y},\mathbf{x}) = -(\mathsf{D}_2 \mathsf{g}(\mathbf{y},\mathbf{x}))^{-1} = (\mathsf{Df}(\mathbf{x}))^{-1} \,,$$
 na otoczeniu $\mathcal{N}_{\mathbf{x}}$.

7.6 Wyższe pochodne

Definicja 7.19. Funkcję $f: X \to Y$ nazywamy **k-krotnie różniczkowalną** jeśli jest k-1 krotnie różniczkowalna, oraz istnieje różniczka funkcji $D^{k-1}f: X^{k-1} \to Y$.

Twierdzenie 7.20 (Herman-Armandus-Schwarz). Niech X i Y będą przestrzeniami unormowanymi, a funkcja $f: X \supseteq \Omega \to Y$ będzie różniczkowalna w punkcie x. Wówczas druga pochodna jest operatorem symetrycznym, to znaczy:

$$D^{2}f(x)[t, s] = D^{2}f(x)[s, t]$$

Dowód. Rozpatrzmy funkcje pomocniczą:

$$\Phi(\alpha, \beta) := f(\mathbf{x} + \alpha \mathbf{s} + \beta \mathbf{t}) - f(\mathbf{x} + \alpha \mathbf{s}) - f(\mathbf{x} + \beta \mathbf{t}) + f(\mathbf{x}) - \alpha \beta \cdot D^2 f(\mathbf{x}) [\mathbf{s}, \mathbf{t}]$$

Z twierdzenia o wartości średniej [Tw.7.8] wynika:

$$\begin{split} &\|\Phi\left(\alpha,\beta\right)\| = \|\Phi\left(\alpha,\beta\right) - \Phi\left(0,\beta\right)\| \leq |\alpha| \sup_{\sigma \in [0,\alpha]} \|D\Phi_{1}\left(\sigma,\beta\right)\| = \\ &= |\alpha| \sup_{\sigma \in [0,\alpha]} \left(\left(Df\left(\textbf{x} + \sigma\textbf{s} + \beta\textbf{t}\right) - Df\left(\textbf{x} + \sigma\textbf{s}\right)\right) \cdot \textbf{s} - \beta \cdot D^{2}f\left(\textbf{x}\right)\left[\textbf{s},\textbf{t}\right] \right) \end{split}$$

Bezpośrednio z definicji różniczki:

$$Df(\mathbf{x} + \sigma \mathbf{s} + \beta \mathbf{t}) - Df(\mathbf{x}) + D^{2}f(\mathbf{x}) [\sigma \mathbf{s} + \beta \mathbf{t}] \in \sigma(\sigma \mathbf{s} + \beta \mathbf{t})$$
$$- Df(\mathbf{x} + \sigma \mathbf{s}) + Df(\mathbf{x}) - D^{2}f(\mathbf{x}) [\sigma \mathbf{s}] \in \sigma(\sigma \mathbf{s}) \subseteq \sigma(\sigma \mathbf{s} + \beta \mathbf{t})$$

Po dodaniu obu powyższych składników otrzymujemy:

$$\mathsf{Df}\left(x + \sigma s + \beta t\right) - \mathsf{Df}\left(x + \sigma s\right) + \beta \cdot \mathsf{D}^2 \mathsf{f}\left(x\right)[t] \in \mathsf{o}\left(\sigma s + \beta t\right)$$

Zatem:

$$\lim_{\delta \to 0} \frac{\Phi\left(\delta, \delta\right)}{\delta^2} = 0$$

Co znaczy tyle, że:

$$D^{2}f\left(x\right)\left[s,t\right]=\lim_{\delta\rightarrow0}\frac{f\left(x+\delta s+\delta t\right)-f\left(x+\delta s\right)-f\left(x+\delta t\right)+f\left(x\right)}{\delta^{2}}=D^{2}f\left(x\right)\left[t,s\right]\text{,}$$

ze względu na symetrię wzoru zbiegającego do granicy, co kończy dowód. $\ \square$

Rozdział 8

Teoria miary

8.1 Miara abstrakcyjna

Definicja 8.1. σ -algebrą na zbiorze X nazywamy rodzinę $A \subseteq 2^X$ spełniającą następujące warunki:

- 1. $X \in \mathcal{A}$
- 2. $A \in \mathcal{A} \implies A^{\complement} \in \mathcal{A}$
- 3. $\mathcal{F} \subseteq \mathcal{A} \implies \bigcup \mathcal{F} \in \mathcal{A}$

Twierdzenie 8.2. *Niech* $A \subseteq 2^X$ *będzie* σ -algebrą. *Wówczas:*

- 1. $\emptyset \in \mathcal{A}$
- $2. \ A \in \mathcal{A} \wedge B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$
- 3. $\mathcal{F} \subseteq \mathcal{A} \implies \bigcap \mathcal{F} \in \mathcal{A}$

Dowód. □

Twierdzenie 8.3. Dla dowolnej rodziny $\mathcal{F}\subseteq 2^X$ istnieje minimalna σ -algebra \mathcal{A} taka, że $\mathcal{F}\subseteq \mathcal{A}$

Dowód. □

Definicja 8.4. Niech (X, \mathcal{T}) będzie przestrzenią topologiczną. Minimalna σ -algebra taka, że $\mathcal{T} \subseteq \mathcal{A}$ nazywana jest σ -algebrą Borelowską, ozaczaną $\mathcal{B}(X)$.

Twierdzenie 8.5. σ -algebra Borelowska $\mathcal{B}(\mathbb{R}^n)$ jest generowana przez zbiór:

$$\mathcal{J}^{0}\left(n\right):=\left\{ \left(\alpha_{1},b_{1}\right)\times\ldots\times\left(\alpha_{n},b_{n}\right):\alpha_{i},b_{i}\in\mathbb{R}\right\} .$$

Dowód. □

Definicja 8.6. Funkcję $\mu^*: 2^X \to [0,\infty]$ nazywamy **miarą zewnętrzną** na X jeśli:

1.
$$\mu^*(\emptyset) = 0$$
.

- 2. $A \subseteq B \implies \mu^*(A) \le \mu^*(B)$.
- 3. $\mu^*\left(\bigcup_{i=1}^{\infty}A_i\right)\leq\sum_{i=1}^{\infty}\mu^*\left(A_i\right)$ dla dowolnej rodziny zbiorów $\left\{A_i\right\}_{i\in\mathcal{N}}.$

Definicja 8.7. Funkcję $\mu: 2^X \to [0, \infty]$ nazywamy **miarą** na X jeśli:

- 1. $\mu(\emptyset) = 0$.
- 2. $\mu(\bigcup_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}\mu(A_i)$ dla dowolnej rodziny zbiorów parami rozłącznych $\{A_i\}_{i\in\mathcal{N}}.$

Definicja 8.8. Niech μ^* będzie miarą zewnętrzną na X. Mówimy, że $A \subseteq X$ spełnia warunek Carathéodory'ego jeśli:

$$\forall_{Z \in 2^{X}} (\mu^{*}(Z) = \mu^{*}(Z \cap A) + \mu^{*}(Z \setminus A))$$

Twierdzenie 8.9 (Carathéodory). Niech μ^* będzie miarą zewnętrzną na X, a \mathcal{F} oznacza rodzinę wszystkich zbiorów spełniających warunek Carathéodory'ego. Wówczas:

- 1. F jest σ-algebrą.
- 2. Funkcja $\mu := \mu^*|_{\mathcal{F}}$ jest miarą.

Dowód. ($\emptyset \in \mathcal{F}$):

$$\begin{split} \mu^*\left(Z\right) &= \mu^*\left(Z\cap\varnothing\right) + \mu^*\left(Z\setminus\varnothing\right) = \mu^*\left(\varnothing\right) + \mu^*\left(Z\setminus\varnothing\right) \\ (S\in\mathcal{F} \implies X\setminus S\in\mathcal{F}): \\ \mu^*\left(Z\right) &= \mu^*\left(Z\cap A\right) + \mu^*\left(Z\setminus A\right) = \mu^*\left(Z\setminus (X\setminus A)\right) + \mu^*\left(Z\cap (X\setminus A)\right) \\ ((A\in\mathcal{F}\wedge B\in\mathcal{F}) \implies A\cup B\in\mathcal{F}): \\ Z\cap (A\cup B) &= (Z\cap A)\cup ((Z\setminus A)\cap B) \\ Z\setminus (A\cup B) &= (Z\setminus A)\setminus B \end{split}$$

Z powyższych równości skorzystamy poniżej wraz z podaddytywnością miary zewnętrznej:

$$\begin{split} \mu^*\left(Z\cap A\right) + \mu^*\left(Z\setminus (A\cup B)\right) \leq \\ &\leq \mu^*\left(Z\cap A\right) + \mu^*\left((Z\setminus A)\cap B\right) + \mu^*\left((Z\setminus A)\setminus B\right) \leq \\ &\leq \mu^*\left(Z\cap A\right) + \mu^*\left(Z\setminus A\right) = \mu^*\left(Z\right) \end{split}$$

Z drugiej strony:

$$\mu^{*}\left(Z\right) \leq \mu^{*}\left(Z \cap A\right) + \mu^{*}\left(Z \setminus (A \cup B)\right),$$

wprost z definicji podaddytywności. Obie nierówności dają w sumie:

$$\mu^{*}(Z) = \mu^{*}(Z \cap A) + \mu^{*}(Z \setminus (A \cup B))$$

 $(\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{F}\implies\bigcup_{i=1}^\infty A_i\in\mathcal{F})$: Bez utraty ogólności możemy przyjąć iż rodzina zbiorów $\{A_i\}$ jest parami rozłączna. Teza tego podpunktu jest,

co wynika z poprzedniego, prawdziwa dla dowolnych sum skończonych, a nierówności zachowują się w granicach, czyli:

$$\mu^{*}\left(Z\right) \geq \lim_{n \to \infty} \mu^{*}\left(Z \cap \bigcup_{i=1}^{n} A\right) + \mu^{*}\left(Z \setminus \bigcup_{i=1}^{n} A\right) =$$

$$= \mu^{*}\left(Z \cap \bigcup_{i=1}^{\infty} A\right) + \mu^{*}\left(Z \setminus \bigcup_{i=1}^{\infty} A\right),$$

Co wraz z poprzednimi punktami dowodzi, że \mathcal{F} jest σ -algebrą. (skończona addytywność μ^*): Dla dowolnych A, B $\in \mathcal{F}$ mamy:

$$\mu^{*}(A \cup B) = \mu^{*}(X \cap (A \cup B)) = \mu^{*}(X \cap (A \cup B) \cap A) + \mu^{*}(X \cap (A \cup B) \setminus A)$$
$$= \mu^{*}(X \cap A) + \mu^{*}(X \cap B) = \mu^{*}(A) + \mu^{*}(B)$$

Ale podobnie jak w poprzednim podpunkcie przechodząc do granicy uzyskujemy dowód na przeliczalną addytywność.

Twierdzenie 8.10. *Jeśli* μ^* *jest miarą zewnętrzną na* X *i* μ^* (A) = 0, to A spełnia warunek Carathéodory'ego.

Dowód.

$$\mu^{*}\left(Z\right) \leq \mu^{*}\left(Z \cap A\right) + \mu^{*}\left(Z \setminus A\right) = \mu^{*}\left(Z \setminus A\right) \leq \mu^{*}\left(Z\right)$$

Definicja 8.11. Niech μ^* będzie miarą zewnętrzną na przestrzeni metrycznej (X, ρ) . Zbiór $A \subseteq X$ spełniający warunek Carathéodory'ego nazywamy μ^* -mierzalnym. σ-algebrę zbiorów μ^* -mierzalnych oznaczamy $\mathcal{F}(\mu^*)$.

Definicja 8.12. Miarę zewnętrzną μ^* na X nazywamy **miarą zewnętrzną metryczną** jeśli dla wszystkich zbiorów A, B \subseteq X takich, że $\inf_{x \in A, y \in B} \rho(x, y) > 0$ zachodzi równość:

$$\mu^{*}\left(A\cup B\right)=\mu^{*}\left(A\right)+\mu^{*}\left(B\right)$$

Twierdzenie 8.13. Niech (X, ρ) będzie przestrzenią metryczną, a μ^* miarą zewnętrzną metryczną na X. Wówczas σ -algebra zbiorów Borelowskich \mathcal{B} jest zawarta w $\mathcal{F}(\mu^*)$.

Dowód. Wystarczy wykazać, że każdy zbiór otwarty $\Omega\subseteq X$ należy do $\mathcal{F}(\mu^*)$. Wybierzmy rodziny zbiorów:

$$\begin{split} &\Omega_{\mathfrak{m}} := \left\{ x \in \Omega : \rho \left(x, X \setminus \Omega \right) > \frac{1}{\mathfrak{m}} \right\} \\ &P_{\mathfrak{m}} := \left\{ x \in \Omega : \frac{1}{\mathfrak{m}} < \rho \left(x, X \setminus \Omega \right) < \frac{1}{\mathfrak{m} - 1} \right\} \end{split}$$

Wówczas:

$$\Omega \setminus \Omega_{\mathfrak{m}} = \bigcup_{i=m+1}^{\infty} P_{i},$$
 $\operatorname{dist}(P_{i}, P_{j}) \geq \frac{1}{j} - \frac{1}{i-1},$

przy czym druga nierówność wynika z nierówności trójkąta dla $x \in P_j$, $y \in P_i$, $z \in X \setminus \Omega$:

$$\begin{split} \rho\left(x,z\right) &\leq \rho\left(x,y\right) + \rho\left(z,y\right) \implies \\ &\implies \rho\left(x,y\right) \geq \rho\left(x,z\right) - \rho\left(z,y\right) \geq \frac{1}{i} - \frac{1}{i-1}. \end{split}$$

Następnie wykażemy, iż Ω spełnia warunek Carathéodory'ego:

$$\begin{split} &\mu^*\left(Z\cap\Omega\right) + \mu^*\left(Z\setminus\Omega\right) \leq \mu^*\left(Z\cap\Omega_m\right) + \mu^*\left(Z\cap\left(\Omega\setminus\Omega_m\right)\right) + \mu^*\left(Z\setminus\Omega\right) = \\ &= \mu^*\left(Z\cap\Omega_m\right) + \mu^*\left(Z\cap\bigcup_{i=m+1}^{\infty}P_i\right) + \mu^*\left(Z\setminus\Omega\right) \leq \\ &\leq \mu^*\left(Z\cap\Omega_m\right) + \sum_{i=m+1}^{\infty}\mu^*\left(Z\cap P_i\right) + \mu^*\left(Z\setminus\Omega\right) = \\ &= \mu^*\left(Z\cap\Omega_m\right) + \lim_{n\to\infty}\sum_{i=m+1}^{n}\mu^*\left(Z\cap P_i\right) + \mu^*\left(Z\setminus\Omega\right) \leq \\ &\leq \mu^*\left(Z\cap\Omega_m\right) + \lim_{n\to\infty}\sum_{i=m+1}^{n}\mu^*\left(Z\cap P_{2i}\right) + \lim_{n\to\infty}\sum_{i=m+1}^{n}\mu^*\left(Z\cap P_{2i-1}\right) + \mu^*\left(Z\setminus\Omega\right) = \end{split}$$

w tym momencie skorzystamy z definicji miary zewnętrznej metrycznej:

$$\begin{split} &=\mu^*\left(Z\cap\Omega_m\right)+\mu^*\left(Z\cap\bigcup_{i=m+1}^{\infty}P_{2\,i}\right)+\mu^*\left(Z\cap\bigcup_{i=m+1}^{\infty}P_{2\,i-1}\right)+\mu^*\left(Z\setminus\Omega\right)\leq\\ &\leq\lim_{m\to\infty}\left[\mu^*\left(Z\cap\Omega_m\right)+\mu^*\left(Z\cap\bigcup_{i=m+1}^{\infty}P_{2\,i}\right)+\mu^*\left(Z\cap\bigcup_{i=m+1}^{\infty}P_{2\,i-1}\right)+\mu^*\left(Z\setminus\Omega\right)\right]\leq\\ &=\mu^*\left(Z\cap\Omega_m\right)+0+0+\mu^*\left(Z\setminus\Omega\right)= \end{split}$$

znowu korzystamy z definicji miary zewnętrznej metrycznej:

$$=\mu^{*}\left(\left(\mathsf{Z}\cap\Omega_{\mathfrak{m}}\right)\cup\left(\mathsf{Z}\setminus\Omega\right)\right)\leq\mu^{*}\left(\mathsf{Z}\right)$$

Otrzymaliśmy więc nierówność:

$$\mu^{*}(Z \cap \Omega) + \mu^{*}(Z \setminus \Omega) \leq \mu^{*}(Z)$$
,

wobec trywialności(z definicji μ*) nierówności w drugą stronę:

$$\mu^{*}\left(Z\cap\Omega\right)+\mu^{*}\left(Z\setminus\Omega\right)=\mu^{*}\left(Z\right),$$

co kończy dowód.(idea jest jasna, ale nierówności powyżej trzeba poprawić, bo nie są do konca poprawne)

8.2 Miara Lebesgue'a

Definicja 8.14. *Objętością przedzialu n-wymiarowego* P = (x, y) *nazywamy liczbę*:

$$vol(P) := \prod_{i=1}^{n} (y_1 - x_i)$$

Twierdzenie 8.15. Funkcja λ_n^* zdefiniowana dla każdego $A \subseteq \mathbb{R}^n$ wzorem:

$$\lambda_{n}^{*}:=\inf\left\{\sum_{j}vol\left(P_{j}\right):\left\{ P_{j}\right\} \text{ jest przeliczalną rodziną przedziałów pokrywających }A\right\}$$

jest miarą zewnętrzną metryczną na \mathbb{R}^n

Dowód. (miara zewnętrzna): Przede wszystkim $\lambda_n^*(\emptyset) = 0$, gdyż zbiór pusty można pokryć przedziałem o objętości ϵ^n dla dowolnego $\epsilon > 0$. Po drugie $A \subseteq B \implies \lambda_n^*(A) \le \lambda_n^*(B)$, gdyż dowolne pokrycie B jest też pokryciem A. Pozostaje sprawdzić przeliczalną podaddytywność. Niech $\{A_i\}_{i\in\mathbb{N}} \subseteq \mathbb{R}^n$ i (bez zmniejszania ogólności) niech miary każdego ze zbiorów będa skończone. Istnieje rodzina przeddziałów $\left\{P_{i,j}\right\}_{i,j\in\mathbb{N}}$, że elementy $\left\{P_{i,j}\right\}_{j\in\mathbb{N}}$ są pokryciem A_i , oraz:

$$\sum_{i=1}^{\infty}\text{vol}\left(P_{i,j}\right)\leq\lambda_{n}^{*}\left(A_{i}\right)+\frac{\epsilon}{2^{i}}.$$

Sumujac po obu zmiennych otrzymujemy:

$$\sum_{i,j} vol(P_{i,j}) \leq \sum_{i=1}^{\infty} \lambda_n^*(A_i) + \epsilon.$$

Skoro rodzina przedziałów $\left\{P_{i,j}\right\}_{i,j\in\mathbb{N}}$ pokrywa $\left\{A_i\right\}_{i\in\mathbb{N}}\subseteq\mathbb{R}^n$, to mamy:

$$\lambda_{n}^{*}\left(\bigcup_{i=1}^{\infty}A_{i}\right)\leq\sum_{i,j}vol\left(P_{i,j}\right)\leq\sum_{i=1}^{\infty}\lambda_{n}^{*}\left(A_{i}\right)+\epsilon$$

dla dowolnie małego ε .

(miara zewnętrzna metryczna): Niech A, B \subseteq \mathbb{R}^n oraz inf $_{x\in A,y\in B}$ ρ (x,y)>2d>0. Musimy dowieść, że:

$$\lambda_{n}^{*}(A \cup B) \geq \lambda_{n}^{*}(A) + \lambda_{n}^{*}(B)$$

Wprost z definicji można wybrać taka rodzinę przedziałów \mathcal{P} , iż:

$$\sum_{P \in \mathcal{P}} vol(P) \le \lambda_{n}^{*}(A \cup B) + \varepsilon$$

Każdy przedział $P \in \mathcal{P}$ można podzielić na k^n identycznych kawałków dzieląc każdą krawędź na k części, możemy więc przyjąć, iż \mathcal{P} składa się z przedzialów o średnicy mniejszej niż d. Wobec tego założenia można wybrać z \mathcal{P} pokrycie \mathcal{P}_A zbioru A nie przecinające B i pokrycie \mathcal{P}_B zbioru B nie przecinające A. Wobec tego:

$$\lambda_{n}^{*}\left(A\right)+\lambda_{n}^{*}\left(B\right)\leq\sum_{P\in\mathcal{P}_{A}}vol\left(P\right)+\sum_{P\in\mathcal{P}_{B}}vol\left(P\right)\leq\sum_{P\in\mathcal{P}}vol\left(P\right)\leq\lambda_{n}^{*}\left(A\cup B\right)+\epsilon$$

A nierówność ta zachowana jest przy przejsciu do granicy $\varepsilon \to 0$.

Definicja 8.16. Miara zewnetrzna λ_n^* ograniczona do σ -algebry $\mathcal{L}(\mathbb{R}^n) := \mathcal{F}(\lambda_n^*)$ podzbiorów λ_n^* -mierzalnych w \mathbb{R}^n nazywa się **miarą Lebesgue'a**.

Definicja 8.17. Zbiór F nazywamy zbiorem klasy F_{σ} jeśli jest przeliczalnym przecięciem zbiorów otwartych. Zbiór G nazywamy zbiorem klasy G_{δ} jeśli jest przeliczalną sumą zbiorów domkniętych. Wprost z definicji są one zbiorammi Borelowskimi.

Twierdzenie 8.18. *Niech* $A \subseteq \mathbb{R}^n$. *Następujące warunki są równoważne:*

- 1. $A \in \mathcal{L}(\mathbb{R}^n)$
- 2. Dla każdego $\varepsilon > 0$ istnieje zbiór otwarty Ω taki, że $A \subseteq \Omega \wedge \lambda_n^* (\Omega \setminus A) < \varepsilon$.
- 3. Istnieje zbiór G typu G_{δ} taki, że $A \subseteq G \wedge \lambda_n^* (G \setminus A) = 0$.
- 4. Dla każdego $\varepsilon > 0$ istnieje zbiór domknięty F taki, że $F \subseteq A \wedge \lambda_n^* (A \setminus F) < \varepsilon$.
- 5. Istnieje zbiór F typu F_{σ} taki, że $F \subseteq A \wedge \lambda_n^* (A \setminus F) = 0$.

Dowód. Zauważmy najpierw, iż (2) \iff (4) oraz (3) \iff (5) bezpośrednia z [Tw:1.14].

 $(1) \Longrightarrow (2)$: Ustalmy podział A:

$$A_1 := A \cap B(0,1)$$
 $A_j := A \cap (B(0,j) \setminus B(0,j-1))$

tak, że mamy:

$$A = \bigcup_{i \in \mathbb{N}} A_i$$

Mierzalność A_i wynika z faktu iż kula otwarta jest zbiorem Borelowkim, a zatem mierzalnym. Dla wybranego $\varepsilon>0$ wybierzmy rodzinę przedziałów otwartych $\left\{P_{i,j}\right\}_{i\in\mathbb{N}}$ taką, że:

$$\sum_{j=1}^{\infty}\text{vol}\left(P_{i,j}\right)\leq\lambda_{n}^{*}\left(A_{i}\right)+\frac{\epsilon}{2^{i}}$$