Recap

Families of ML algorithms

- Linear
- Tree-based
- kNN
- Neural Networks

Examples:

- Logistic Regression
- Support Vector Machines

Tree-based methods

Microsoft / LightGBM

Neural Networks

Tensorflow Playground, http://playground.tensorflow.org

Neural Networks

PYTORCH

Lasagne

No Free Lunch Theorem

"Here is no method which outperforms all others for all tasks"

No Free Lunch Theorem

"Here is no method which outperforms all others for all tasks"

or

"For every method we can construct a task for which this particular method will not be the best"

Decision surfaces

Classifier comparison, http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

• There is no "silver bullet" algorithm

- There is no "silver bullet" algorithm
- Linear models split space into 2 subspaces

- There is no "silver bullet" algorithm
- Linear models split space into 2 subspaces
- Tree-based methods splits space into boxes

- There is no "silver bullet" algorithm
- Linear models split space into 2 subspaces
- Tree-based methods splits space into boxes
- k-NN methods heavy rely on how to measure points "closeness"

- There is no "silver bullet" algorithm
- Linear models split space into 2 subspaces
- Tree-based methods splits space into boxes
- k-NN methods heavy rely on how to measure points "closeness"
- Feed-forward NNs produce smooth non-linear decision boundary

- There is no "silver bullet" algorithm
- Linear models split space into 2 subspaces
- Tree-based methods splits space into boxes
- k-NN methods heavy rely on how to measure points "closeness"
- Feed-forward NNs produce smooth non-linear decision boundary

The most powerful methods are **Gradient Boosted Decision Trees** and **Neural Networks**. But you shouldn't underestimate the others