## 0.1 Introduksjon

En todimensjonal vektor angir en forflytning i et koordinatsystem med en x-akse og en y-akse. En vektor tegner vi som et linjestykke mellom to punkt, i tillegg til at vi lar en pil vise til hva som er endepunktet. Det betyr at forflytningen starter i punktet uten pil, og ender i punktet med pil.



I figur (a) er vektoren  $\vec{v}$  vist med startpunkt (0,0) og endepunkt (3,1). Når en vektor har startpunkt (0,0), sier vi at den er vist i grunn-stillingen. I figur (b) er  $\vec{v}$  vist med startpunkt (1,-2) og endepunkt (3,1). Forflytningen  $\vec{v}$  viser til er å vandre 2 mot høgre langs x-aksen og 3 opp langs y-aksen. Dette skriver vi som  $\vec{u} = [2,3]$ , som kalles  $\vec{u}$  skrevet på komponentform.

# Eksempel 1 $\vec{b} = [0, -2]$ $\vec{a} = [1, 3]$ $\vec{d} = [5, 0]$ $\vec{c} = [-3, -4]$ $y \\ \uparrow$ $ec{b}$ 4 3 2 1 --2-1 2 3 -34 -1-2-34 $\vec{d}$ -5 -

#### Regel 0.1 Vektoren mellom to punkt

En vektor  $\vec{v}$  med startpunkt  $(x_1, y_1)$  og endepunkt  $(x_2, y_2)$  er gitt som

$$\vec{v} = [x_2 - x_1, y_2 - y_1] \tag{1}$$

### Eksempel 1

Skriv vektorene på komponentform.

- $\vec{a}$  har startpunkt (1,3) og endepunkt (7,5)
- $\vec{b}$  har startpunkt (0,9) og endepunkt (-3,2)
- $\vec{c}$  har startpunkt (-3,7) og endepunkt (2,-4)
- $\vec{d}$  har startpunkt (-7, -5) og endepunkt (3, 0)

$$\vec{a} = [7 - 1, 5 - 3] = [6, 2]$$

$$\vec{b} = [-3 - 0, 2 - 9] = [-3, -7]$$

$$\vec{c} = [2 - (-3), -4 - 7] = [5, -11]$$

$$\vec{d} = [3 - (-7), 0 - (-5)] = [10, 5]$$

## 0.2 Regneregler

#### Regel 0.2 Regneregler for vektorer

Gitt vektorene  $\vec{u} = [x_1, y_1]$  og  $\vec{v} = [x_2, y_2]$ , punktet  $A = (x_0, y_0)$  og en konstant t. Da er

$$A + \vec{u} = (x_0 + x_1, y_0 + y_1) \tag{2}$$

$$\vec{u} + \vec{v} = [x_1 + x_2, y_1 + y_2] \tag{3}$$

$$\vec{u} - \vec{v} = [x_1 - x_2, y_1 - y_2] \tag{4}$$

$$t\vec{u} = [tx_1, ty_1, tz_1] \tag{5}$$

$$t(\vec{u} + \vec{v}) = t\vec{u} + t\vec{v} \tag{6}$$

Summen eller differansen av  $\vec{u}$  og  $\vec{v}$  kan vi tegne slik:



For en vektor  $\vec{w}$  har vi videre at

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$
 (7)

$$\vec{u} - (\vec{v} + \vec{w}) = \vec{u} - \vec{v} - \vec{w} \tag{8}$$

#### Vinkelen mellom to vektorer

Vinkelen mellom to vektorer er (den minste) vinkelen som blir dannet når vektorene plasseres i samme startpunkt. For to vektorer  $\vec{u}$  og  $\vec{v}$  skriver vi denne vinkelen som  $\angle(\vec{u}, \vec{v})$ .



I vektorregning er det vanlig å oppgi vinkler i grader, altså på " intervallet  $[0^{\circ}, 180^{\circ}]$ .

## 0.3 Lengden til en vektor

Gitt en vektor  $\vec{v} = [x_1, y_1]$ . Lengden til  $\vec{v}$  er avstanden mellom startpunktet og endepunktet.



Av enhver vektor kan vi danne en rettvinklet trekant hvor  $|\vec{v}|$  er lengden til hypotenusen og  $|x_1|$  og  $|y_1|$  er de respektive lengdene til katetene. Dermed er  $|\vec{v}|$  gitt av Pytagoras' setning.

#### Regel 0.3 Lengden til en vektor

Gitt en vektor  $\vec{v} = [x_1, y_1]$ . Lengden  $|\vec{v}|$  er da

$$|\vec{v}| = \sqrt{x_1^2 + y_1^2} \tag{9}$$

## Eksempel 1

Finn lengden til vektorene  $\vec{a} = [7, 4]$  og  $\vec{b} = [-3, 2]$ .

$$|\vec{a}| = \sqrt{7^2 + 4^2} = \sqrt{65}$$

$$|\vec{b}| = \sqrt{(-3)^2 + 2^2} = \sqrt{13}$$

## 0.4 Skalarproduktet I

#### Regel 0.4 Skalarproduktet I

For to vektorer  $\vec{u} = [x_1, y_1]$  og  $\vec{v} = [x_2, y_2]$ , er skalarproduktet gitt som

$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 \tag{10}$$

### Språkboksen

Skalarproduktet kalles også prikkproduktet eller indreproduktet.

#### Eksempel 1

Gitt vektorene  $\vec{a}=[3,2],\, \vec{b}=[4,7]$  og  $\vec{c}=[1,-9].$  Regn ut  $\vec{a}\cdot\vec{b}$  og  $\vec{a}\cdot\vec{c}.$ 

Svar

$$\vec{a} \cdot \vec{b} = 3 \cdot 4 + 2 \cdot 7 = 26$$

$$\vec{a} \cdot \vec{c} = 3 \cdot 1 + 2(-9) = -15$$

### Regel 0.5 Regneregler for skalarproduktet

For vektorene  $\vec{u},\,\vec{v}$ og  $\vec{w}$ har vi at

$$\vec{u} \cdot \vec{u} = \vec{u}^2 \tag{11}$$

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} \tag{12}$$

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} \tag{13}$$

$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2 \tag{14}$$

## Eksempel

Forkort uttrykket

$$\vec{b} \cdot (\vec{a} + \vec{c}) + \vec{a} \cdot (\vec{a} + \vec{b}) + \vec{b}^2$$

når du vet at  $\vec{b} \cdot \vec{c} = 0$ .

$$\begin{split} \vec{b} \cdot (\vec{a} + \vec{c}) + \vec{a} \cdot (\vec{a} + \vec{b}) + \vec{b}^2 &= \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{c} + \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b}^2 \\ &= \vec{a}^2 + 2\vec{a} \cdot \vec{b} + \vec{b}^2 \\ &= \left( \vec{a} + \vec{b} \right)^2 \end{split}$$

## Skalar??

## 0.5 Skalarproduktet II

Gitt vektoren  $\vec{u} - \vec{v}$ , hvor  $\vec{u} = [x_1, y_1]$  og  $\vec{v} = [x_2, y_2]$ . Da er

$$\vec{u} - \vec{v} = [x_1 - x_2, y_1 - y_2]$$

Av (??) har vi at

$$|\vec{u} - \vec{v}| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$= \sqrt{x_1^2 - 2x_1x_2 + x_2^2 + y_1^2 - 2y_1y_2 + y_2^2}$$
(15)

Ved hjelp av (10) og (11) kan vi skrive (15) som

$$|\vec{u} - \vec{v}| = \sqrt{\vec{u}^2 - 2\vec{u} \cdot \vec{v} + \vec{v}^2} \tag{16}$$

Videre merker vi oss følgende figur:



. Av cosinussetningen  $^1$ og (16) er

$$|(\vec{v} - \vec{u})|^2 = |\vec{v}|^2 + |\vec{u}|^2 - 2\vec{u}||\vec{v}|\cos\angle(\vec{u}, \vec{v})$$
$$\vec{v}^2 - 2\vec{u} \cdot \vec{v} + \vec{u}^2 = \vec{v}^2 + \vec{u}^2 - 2|\vec{u}||\vec{v}|\cos\angle(\vec{u}, \vec{v})$$
$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\angle(\vec{u}, \vec{v})$$

## Regel 0.6 Skalarproduktet II

For to vektorer  $\vec{u}$  og  $\vec{v}$  er

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \angle (\vec{u}, \vec{v}) \tag{17}$$

<sup>&</sup>lt;sup>1</sup>Se ??

## 0.6 Vektorer vinkelrett på hverandre

Fra (17) kan vi gjøre en viktig observasjon; Hvis  $\angle(\vec{u}, \vec{v}) = 90^{\circ}$ , er  $\cos \angle(\vec{u}, \vec{v}) = 0$ , og da blir

$$\vec{u} \cdot \vec{v} = 0$$

#### Regel 0.7 Vinkelrette vektorer

For to vektorer  $\vec{u}$  og  $\vec{v}$  har vi at

$$\vec{u} \cdot \vec{v} = 0 \iff \vec{u} \perp \vec{v} \tag{18}$$

#### Språkboksen

Det er mange måter å uttrykke at  $\vec{u} \perp \vec{v}$  på. Blant annet kan vi si at

- $\vec{u}$  og  $\vec{v}$  står vinkelrett på hverandre.
- $\vec{u}$  og  $\vec{v}$  står normalt på hverandre.
- $\vec{u}$  er en normalvektor til  $\vec{v}$  (og omvendt).
- $\vec{u}$  og  $\vec{v}$  er ortogonale.

#### Eksempel 1

Sjekk om vektorene  $\vec{a}=[5,-3],$   $\vec{b}=[6,-10]$  og  $\vec{c}=[2,7]$  er ortogonale.

#### Svar

Vi har at

$$\vec{a} \cdot \vec{b} = 5 \cdot 6 + (-3)10$$
$$= 0$$

Altså er  $\vec{a} \perp \vec{b}$ . Videre er

$$\vec{a} \cdot \vec{c} = 5 \cdot 2 + (-3)7 \cdot$$
$$= 11$$

Altså er  $\vec{a}$  og  $\vec{c}$  ikke ortogonale. Da  $\vec{a} \perp \vec{b}$ , kan heller ikke  $\vec{b}$  og  $\vec{c}$  være ortogonale.

#### Nullvektoren

I forkant av regel 0.7 har vi bare argumentert for at  $\vec{u} \perp \vec{v} \Rightarrow \vec{u} \cdot \vec{v} = 0$ . For å rettferdiggjøre betingelsen som går begge veier i (18), må vi spørre: Kan vi få  $\vec{u} \cdot \vec{v} = 0$  om vinkelen mellom  $\vec{u}$  og  $\vec{v}$  ikke er 90°?

På intervallet  $[0^{\circ}, 180^{\circ}]$  er det bare vinkelverdien  $90^{\circ}$  som resulterer i cosinusverdi 0. Skal skalarproduktet bli 0 for andre vinkler, må derfor lengden av  $\vec{u}$  eller  $\vec{v}$  være 0. Den eneste vektoren med denne lengden er  $nullvektoren \ \vec{0} = [0, 0]$ , som rett og slett ikke har noen retning<sup>1</sup>. Det er likevel vanlig å definere at nullvektoren står vinkelrett på alle vektorer.

<sup>&</sup>lt;sup>1</sup>Eventuelt kan man hevde at den peker i alle retninger!

## 0.7 Parallelle vektorer

#### Definisjon 0.8 Parallelle vektorer

Hvis vinkelen mellom to vektorer er 0° eller 180°, er de parallelle.



Gitt to vektorer  $\vec{u} = [x_1, y_1]$  og  $\vec{v} = [x_2, y_2]$ . La  $\theta$  og  $\alpha$  være vinkelen mellom x-aksen og henholdsvis  $\vec{u}$  og  $\vec{v}$ , med x-aksen som høgre vinkelbein. Da er  $\tan \theta = \frac{y_1}{x_1}$  og  $\tan \alpha = \frac{y_2}{x_2}$ . Hvis  $\frac{y_1}{x_1} = \frac{y_2}{x_2}$ , er det to muligheter:

- (i)  $\theta = 0^{\circ}$  og  $\alpha = 180^{\circ}$ , eller omvendt.
- (ii)  $\theta = \alpha$

I begge tilfeller er  $\angle(\vec{u}, \vec{v})$  enten 0° eller 180°, og da er  $\vec{u}$  og  $\vec{v}$  parallelle. Det omvendte gjelder også: Hvis punkt (i) eller (ii) gjelder, er  $\frac{y_1}{x_1} = \frac{y_2}{x_2}$ . Det er ofte praktisk å omskrive denne sammehengen til forholdet mellom samsvarende komponenter<sup>1</sup>:

- $x_1 \text{ og } x_2$
- $y_1 \text{ og } y_2$

 $<sup>^1 \</sup>text{For vektorene} \; [x_1, y_1] \; \text{og} \; [x_2, y_2]$ er disse samsvarende komponenter:

## Regel 0.9 Parallelle vektorer

For to vektorer  $\vec{u} = [x_1, y_1]$  og  $\vec{v} = [x_2, y_2]$  har vi at

$$\frac{x_1}{x_2} = \frac{y_1}{y_2} \iff \vec{u} \parallel \vec{v} \tag{19}$$

Alternativt, for et tall t har vi at

$$\vec{u} = t\vec{v} \iff \vec{u} \parallel \vec{v} \tag{20}$$

#### Språkboksen

Når  $\vec{u} = t\vec{v}$ , sier vi at  $\vec{u}$  er et multiplum av  $\vec{v}$  (og omvendt). Vi sier også at  $\vec{u}$  og  $\vec{v}$  er lineært uavhengige.

#### Eksempel

Undersøk hvorvidt  $\vec{a}=[2,-3]$  og  $\vec{b}=[20,-45]$  er parallelle med  $\vec{c}=[10,-15].$ 

#### Svar

Vi har at

$$\vec{c} = 5[2, -4] = 5\vec{a}$$

Dermed er  $\vec{a} \parallel \vec{c}.$  Da $\frac{20}{10} \neq \frac{-45}{15},$  er  $\vec{b}$  og  $\vec{c}$  ikke parallelle.

## 0.8 Vektorfunksjoner; parameterisering

### Definisjon 0.10

Gitt to funksjoner f(t) og g(t). En vektor  $\vec{v}$  på formen

$$\vec{v}(t) = [f(t), g(t)]$$

er da en vektorfunksjon.

 $\vec{v}$  kan skrives på parameterisert form som

$$\vec{v}(t): \left\{ \begin{array}{l} x = f(t) \\ y = g(t) \end{array} \right. \tag{21}$$



#### Merk

Visuelt sett er den største forskjellen mellom en funskjon f(x) og en vektorfunksjon  $\vec{v}(t)$  at grafen til f bare kan skjære et bestemt punkt én gang, mens grafen til  $\vec{v}$  kan skjære et bestemt punkt uendelig mange ganger.

## 0.8.1 Vektorfunksjonen til ei linje

Gitt ei linje l, som vist i figuren under



Hvis en vektor  $\vec{r}$  er parallell med l, kalles den en retningsvektor for linja. Si at  $\vec{r} = [a,b]$  er en retningsvektor for l, og at  $A = (x_0,y_0)$  er et punkt på l. Om vi starter i A og vandrer parallellt med  $\vec{r}$ , kan vi være sikre på at vi fortsatt befinner oss på linja. Dette må bety at vi for en variabel t kan nå et vilkårlig punkt B = (x,y) på linja ved følgende utregning:

$$B = A + t\vec{r}$$

På koordinatform kan vi skrive dette som<sup>1</sup>

$$(x,y) = (x_0 + at, y_0 + bt)$$

Altså kan linja skrives som en vektorfunksjon:

#### Regel 0.11 Linje som vektorfunksjon

Ei linje  $\vec{l}(t)$  som går gjennom punktet  $A = (x_0, y_0)$  og har retningsvektor  $\vec{r} = [a, b]$  er gitt som

$$\vec{l} = [x_0 + at, y_0 + bt]$$

<sup>&</sup>lt;sup>1</sup>Se (2).

## 0.9 Sirkellikningen

Gitt en sirkel med sentrum  $S = (x_0, y_0)$  og et punkt A = (x, y), som ligger på buen til sirkelen.



Da er

$$\overrightarrow{SA} = [x - x_0, y - y_0]$$

Av (9) er da

$$\left| \overrightarrow{SA} \right|^2 = (x - x_0)^2 + (y - y_0)^2$$

Hvis vi lar r være radien til sirkelen, er  $\left| \overrightarrow{SA} \right| = r$ , og dermed kan vi uttrykke r ved koordinatene til S og A.

#### Regel 0.12 Sirkelligningen

Gitt en sirkel radius r og sentrum  $S = (x_0, y_0)$ . Hvis punktet A = (x, y) ligger på buen til sirkelen, er

$$(x-x_0)^2 + (y-y_0)^2 = r^2$$

## Eksempel

Finn sentrum og radien til sirkelen gitt av likningen

$$x^2 + y^2 - 4x + 10y - 20 = 0 (22)$$

#### Svar

Vi starter med å lage fullstendige kvadrat:

$$x^2 - 4x = (x - 2)^2 - 2^2$$

$$y^2 + 10y = (y+5)^2 - 5^2$$

Altså kan vi skrive (22) som

$$(x-2)^{2} + (y+5)^{2} - 2^{2} - 5^{2} - 20 = 0$$
$$(x-2)^{2} + (y+5)^{2} = 7^{2}$$

Altså har sirkelen sentrum (2, -5) og radius 7.

#### 0.10 Determinanter

## Regel 0.13 $2\times 2$ determinanter

Determinanten  $\det(\vec{u}, \vec{v})$  av to vektorer  $\vec{u} = [a, b]$  og  $\vec{v} = [b, c]$  er gitt som

$$\det(\vec{u}, \vec{v}) = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$
$$= ad - bc$$

#### Eksempel

Gitt vektorene  $\vec{u} = [-1, 3]$  og  $\vec{v} = [-2, 4]$ . Bestem  $\det(\vec{u}, \vec{v})$ .

$$\det(\vec{u}, \vec{v}) = \begin{vmatrix} -1 & 3 \\ -2 & 4 \end{vmatrix}$$
$$= (-1)4 - 3(-2)$$
$$= 2$$

## Regel 0.14 Arealformler med determinanter

Arealet Atil et parallellogram formet av to vektorer  $\vec{u}$  og  $\vec{v}$ er gitt ved

$$A = |\det(\vec{u}, \vec{v})| \tag{23}$$



Arealet Atil en trekant formet av to vektorer  $\vec{u}$  og  $\vec{v}$ er gitt ved

$$A = \frac{1}{2}|\det(\vec{u}, \vec{v})| \tag{24}$$



### Regel 0.15 Avstand mellom punkt og linje

Avstanden hmellom et punktBog en linje gitt av punktet Aog retningsvektoren  $\vec{r}$ er gitt som

$$h = \frac{\left| \overrightarrow{AB} \times \overrightarrow{r} \right|}{\left| \overrightarrow{r} \right|} \tag{25}$$



### (forklaring)

La en linje l i rommet være gitt av et punkt A og en retningsvektor  $\vec{r}$ . I tillegg ligger et punkt B utenfor linja, som vist i figuren under



Den korteste avstanden fra B til linja er høyden h i trekanten utspent av  $\vec{r}$  og  $\overrightarrow{AB}$ . Arealet til denne trekanten er gitt ved (24):

$$\frac{1}{2} \left| \det \left( \overrightarrow{AB}, \overrightarrow{r} \right) \right|$$

Av den klassiske arealformelen for en trekant har vi nå at

$$\frac{1}{2}|\vec{r}|h = \frac{1}{2}\left|\det\left(\overrightarrow{AB}, \vec{r}\right)\right|$$
$$h = \frac{\left|\det\left(\overrightarrow{AB}, \vec{r}\right)\right|}{|\vec{r}|}$$

#### 0.14 Arealformler med determinanter (forklaring)

Vi lar  $A_N$  betegne arealet til en geometrisk form N.



Gitt to vektorer  $\vec{u} = [a, b]$  og  $\vec{v} = [c, d]$ , hvor a, b, c, d > 0, som vist i figur (a). Plasserer vi vektorene i grunnstillingen er punktene vist i figur (b) gitt som

$$O = (0,0)$$
  $B = (a,b)$   $C = (a+b,c+d)$ 

$$D = (c, d)$$
  $E = (a + c, 0)$   $F = (0, b + d)$ 

Med OE som grunnlinje har  $\triangle OEB$  høgde b, altså er

$$2A_{\triangle OEB} = (a+c)b$$

Tilsvarende er

$$2A_{\triangle FDO} = (b+d)c$$

Da  $A_{\triangle OEB} = A_{\triangle CDF}$  og  $A_{\triangle FDO} = A_{\triangle EBC}$ , har vi at

$$A_{\Box ABCD} = A_{\Box OECF} - 2A_{\triangle OBE} - 2A_{\triangle FDO}$$
$$= (a+c)(b+d) - (a+c)b - (b+d)c$$
$$= (a+c)d - (b+d)c$$
$$= ad - bc$$

I figurene har vi antatt at (den minste) vinkelen mellom  $\vec{v}$  og x-aksen er mindre enn vinkelen mellom  $\vec{u}$  og x-aksen. I omvendt tilfelle ville vi fått at

$$A_{\square OECF} = bc - ad$$

Altså er

$$A_{\square OECF} = |ac - bd|$$

På lignende måte kan det vises at (23) gjelder for alle  $a, b, c, d \in \mathbb{R}$ , se oppgave ??.