Aprendizaje Automático

Naïve Bayes

Viviana Cotik

Naïve Bayes (NB)

- Para cualquier problema de clasificación
- Uno de ellos: clasificación de textos
 - o spam
 - en qué carpeta clasificar el e-mail
 - análisis de sentimientos
 - o atribución de autoría
 - o determinar tema de un artículo

Es un clasificador probabilístico

Tipos de clasificadores:

- "normales": devuelven clase más probable.
 - $\circ \quad \hat{y} = f(x)$
- probabilísticos: predicen distribución de probabilidades sobre un cjto. de clases
 - \circ P(Y|X)
 - las probabilidades suman 1
 - Para obtener una sola clase:
 - $\hat{y} = \operatorname{argmax}_y P(Y=y \mid X)$ (clase con mayor probabilidad)

Distribución de probabilidades

Función matemática que proporciona **probabilidad de ocurrencia** de **diferentes resultados posibles de un experimento**.

Clasificador. Aprendizaje supervisado. Supuestos:

- usa regla de Bayes con una suposición Naïve
- con textos: usa una representación particular del documento (bag of words o bolsa de palabras)

Naïve Bayes aplicado a clasificación de textos

Entrada:

- documento d
- cant. fija de clases C = {c1, c2,..., ck}
- datos de entrenamiento $(x_1, c(x_1)), ..., (x_n, c(x_m))$

Salida:

un clasificador f: d->C

Por ej: Spam-no spam

To: < omitted >

From: Get Rich Click

Subject: Getting better all the time!

Dear Get Rich Click player,

T(

Come play the biggest sweepstakes on the Web. With new ways to win every week, you can't afford to pass this one by! Just click here: http://www.getrichclick.com

= C

But First...

Get a free \$50 gift with a minimum purchase of \$50! The Golden Palace offers 28 online casino games. Play for FREE or try your luck for REAL \$\$\$. FREE Software * 24-HR Customer Service * Best Odds * Play to win up to \$200,000 INSTANTLY! Click: http://www.goldenpalace.com/indexyy.html

Ejemplo tomado de: http://web.mit.edu/network/spam/examples/getrich.html

Bag of words (bolsa de palabras)

Texto: "genial oportunidad. aproveche ya"

diccionario

a

aprovechar

asa

genial

gol

•••

ya

bolsa de palabras*

$$x = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ ... \\ 1 \end{bmatrix}$$

* podría ser la cant. de palabras en vez de si está o no la palabra

diccionario: diccionario o palabras más frecuentes en mi corpus

documento d, clase c

$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(c \mid d)$$
$$= \underset{c \in C}{\operatorname{argmax}} \frac{P(d \mid c)P(c)}{P(d)}$$

$$= \underset{c \in C}{\operatorname{argmax}} P(d \mid c) P(c)$$

MAP es "máximo a posteriori" = clase más probable

Regla de Bayes

Eliminamos el denominador

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(d \mid c) P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c) P(c)$$

Documento d representado como atributos x1..xn

Naïve Bayes - Suposiciones de independencia

$$P(x_1, x_2, ..., x_n | c)$$

- Bolsa de palabras: se asume que no importa la posición
- **Independencia condicional:** se asume que las probabilidades de los atributos (features) $P(x_i|c_i)$ son independientes dada la clase c

$$P(x_1, \dots, x_n \mid c) = P(x_1 \mid c) \bullet P(x_2 \mid c) \bullet P(x_3 \mid c) \bullet \dots \bullet P(x_n \mid c)$$

Naïve Bayes Multinomial

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c) P(c)$$

$$c_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c) \prod_{x \in X} P(x \mid c)$$

Aplicación de NB Multinomial a Clasificación de Textos

positions ← palabras en el documento

$$c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j) \prod_{i \in positions} P(x_i \mid c_j)$$

Corrección para atributos no vistos previamente

Estimadores usando frecuencia de datos

$$\hat{P}(c_{j}) = \frac{doccount(C = c_{j})}{N_{doc}}$$

$$\hat{P}(w_i | c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$$

Laplace add-1 smoothing

$$c_{MAP} = \operatorname{argmax}_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c)$$

$$\hat{P}(w_i | c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)} \qquad \hat{P}(w_i | c) = \frac{count(w_i, c) + 1}{\sum_{w \in V} count(w, c)} + |V|$$

Ejemplo en Clasificación de textos

Dan Jurafsky

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(w \mid c) = \frac{count(w, c) + 1}{count(c) + |V|}$$

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	?

Ejemplo tomado de curso NLP Stanford (Jurafsky, Manning)

Priors:

$$P(c) = \frac{3}{4} \frac{1}{4}$$

$$P(j) = \frac{3}{4} \frac{1}{4}$$

Choosing a class:

$$P(c|d5) \propto 3/4 * (3/7)^3 * 1/14 * 1/14$$

 ≈ 0.0003

Conditional Probabilities:

$$P(Chinese | c) = (5+1) / (8+6) = 6/14 = 3/7$$
 $P(Tokyo | c) = (0+1) / (8+6) = 1/14$
 $P(Japan | c) = (0+1) / (8+6) = 1/14$
 $P(Chinese | j) = (1+1) / (3+6) = 2/9$
 $P(Tokyo | j) = (1+1) / (3+6) = 2/9$
 $P(Japan | j) = (1+1) / (3+6) = 2/9$

$$P(j|d5) \propto 1/4 * (2/9)^3 * 2/9 * 2/9 \approx 0.0001$$

Multinomial NB: Aprendizaje

- From training corpus, extract Vocabulary
- Calculate P(c_i) terms
 - For each c_j in C do
 docs_j ← all docs with class =c_j
- Calculate $P(w_k \mid c_i)$ terms
 - Text_i ← single doc containing all docs_i
 - For each word w_k in Vocabulary
 n_k ← # of occurrences of w_k in Text_j

$$P(w_k | c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha |Vocabulary|}$$

Naïve Bayes con Atributos Categóricos

		Clase			
Instancia	Cielo	Temperatura	Humedad	Viento	Va a correr?
1	sol	calor	alta	débil	No
2	sol	calor	alta	fuerte	No
3	nublado	calor	alta	débil	Sí
4	lluvia	templado	alta	débil	Sí
5	lluvia	frío	normal	débil	Sí
6	lluvia	frío	normal	fuerte	No
7	nublado	frío	normal	fuerte	Sí
8	sol	templado	alta	débil	No
9	sol	frío	normal	débil	Sí
10	lluvia	templado	normal	débil	Sí
11	sol	templado	normal	fuerte	Sí
12	nublado	templado	alta	fuerte	Sí
13	nublado	calor	normal	débil	Sí
14	lluvia	templado	alta	fuerte	No

$$P(Si) = 9/14$$

 $P(No) = 5/14$

Naïve Bayes con Atributos Categóricos

		Clase			
Instancia	Cielo	Temperatura	Humedad	Viento	Va a correr?
1	sol	calor	alta	débil	No
2	sol	calor	alta	fuerte	No
3	nublado	calor	alta	débil	Sí
4	lluvia	templado	alta	débil	Sí
5	lluvia	frío	normal	débil	Sí
6	lluvia	frío	normal	fuerte	No
7	nublado	frío	normal	fuerte	Sí
8	sol	templado	alta	débil	No
9	sol	frío	normal	débil	Sí
10	lluvia	templado	normal	débil	Sí
11	sol	templado	normal	fuerte	Sí
12	nublado	templado	alta	fuerte	Sí
13	nublado	calor	normal	débil	Sí
14	lluvia	templado	alta	fuerte	No

P(Si) = 9/14

P(No) = 5/14

Cielo						
	Sí	No	P(Sí)	P(No)		
sol	2	3	2/9	3/5		
nublado	4	0	4/9	0/5		
lluvia	3	2	3/9	2/5		
total	9	5	100%	100%		

Ídem para:

Humedad Viento

Temperatura						
Sí No P(Sí) P(No)						
calor	2	2	2/9	2/5		
templado	4	2	4/9	2/5		
frío	3	1	3/9	1/5		
total	9	5	100%	100%		

Naïve Bayes con Atributos Categóricos

Cielo						
Sí No P(Sí) P(No)						
sol	2	3	2/9	3/5		
nublado	4	0	4/9	0/5		
lluvia	3	2	3/9	2/5		
total	9	5	100%	100%		

Temperatura						
Sí No P(Sí) P(No)						
calor	2	2	2/9	2/5		
templado	4	2	4/9	2/5		
frío	3	1	3/9	1/5		
total	9	5	100%	100%		

Resumen

- asume independencia de variables.
- muy usado en clasificación de textos (por ej. filtros de spam y en análisis de sentimientos). Sirve como baseline.
- muy rápido
- pocos requerimientos de almacenamiento

Bibliografía

Capítulos de libros:

Mitchell (6.2, 6.9, 6.10)

Paper:

https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf