LiDAR Data Preprocessing

- Quality Control
 - Data Evaluation
- Data Management
 - Data Statistics
 - Data Classification
 - Data Rasterization
- LiDAR Data Tools
 - ArcGIS 10 Tools
 - LAS Tools

- LiDAR Data Gaps
 - Represents the <u>lack of data</u> that should be there
 - Results in missing data within the coverage area
 - Causes of data gaps:
 - Non-overlapping LiDAR swath
 - Shadowing Effect
 - Large vertical obstructions
 - e.g. Buildings, Ridges, etc...
 - Highly reflective surfaces
 - Absorption by water surfaces
 - Verify with aerial or satellite imagery data
 ww.LiDARusa.com/shadowing.html

- LiDAR Data Gaps
 - Download imagery data for the site and compare
 - Does the LiDAR dataset cover the area of interest?
 - Are there any gaps in the dataset?
 - Ex: 2007 USACE LiDAR Hawaiian Islands

Gaps and noisy data of inland

Advanced Remote Sensing using

http://vterrain.org/Hawaii/Elevation/

LiDAR Data Gaps

- LiDAR Data Artifacts
 - Represents data noise that should not be there
 - Results in unwanted data that could affect analysis
 - Causes of data artifacts:
 - Atmospheric aerosols (dust, moisture, etc.)
 - Birds and other moving objects (AKA Bird Hits)
 - Need to be filtered out of LiDAR datasets
 - Manual section and removal
 - Automatic classification
 - Do <u>not</u> delete! Use LAS Class Code = 7 (Noise)

Advanced Remote Sensing using

https://geonet.esri.com/blogs/larry-zhang/2014/10/29/noise-removal-and-manual-classification-in-las-cloud-points

• LiDAR Data Artifacts

LiDAR Points

Data Management

- Some simple tools and methods we can use to get the most of out our LiDAR datasets
 - 1. Data Statistics (This Lecture)
 - Ways that LiDAR data can be summarized
 - 2. Data Classification (Lecture 6)
 - Makes further analysis easier if done accurately
 - Manual (This Lecture) vs. Automated (Lecture 6)
 - 3. Data Rasterization (Lecture 3)
 - Creating digital elevation models from point clouds

Data Statistics

- Basic LiDAR Statistics in ArcGIS
 - Found in the LAS Dataset Properties
 - Return Numbers
 - Classifications
 - Elevation Range
 - Intensity Range
 - Scan Angle Range
 - ArcGIS Tools
 - LAS Dataset Statistics
 - LAS Point Statistics As Ra
 - LAStools LASinfo

Advanced Remote Sensing using

http://desktop.arcgis.com/en/arcmap/latest/tools/data-management-toolbox/las-dataset-statistics.htm

- Overview
 - Stored per point as the LAS Classification Code
 - LiDAR vendor will perform some basic classification
 - Usually results in ground and "unclassified"
 - Up to the user to further classify the data
 - Reclassify data (ground vs. non-ground)

- ✓ Las Dataset,lasd
 - Data percentage: 100 Classification
 - 0 Never Classified
 - 1 Unassigned
 - 2 Ground
 - 3 Low Vegetation
 - 4 Medium Vegetation
 - 5 High Vegetation
 - 6 Building
 - 7 Noise
 - 8 Model Key/Reserved
 - 9 Water
 - 10 Rail

Advanced Remote Sensing using

- 11 Road Surface
- 12 Overlap/Reserved
- 13 Wire Guard
- 14 Wire Conductor
- 15 Transmission Tower
- 16 Wire Connector
- 17 Bridge Deck

http://desktop.arcgis.com/en/arcmap/latest/manage-data/las-dataset/LiDAR-point-classification1htm Nois

Discrete LiDAR Systems

- Remember, each LiDAR pulse will have numerous returns / photons

- However, discrete LiDAR records only a few of these returns
 - Typically this is 1 to 5 Returns
- A LiDAR designed for five returns will not always record five
 - Depends on the topography which influences the amplitude of returns

Discrete LiDAR Systems

http://LiDAR.cr.usgs.gov/downloadfile2.php?file=Nayegandhi LiDAR Technology Overview.

- Return Classes
 - Provide more info than the Return Number
 - Can be determined by simple algorithms
 - Example Classes:
 - Single Return → Possible ground or solid surface point
 - First Return of Many → Possible tree top point
 - Why bother?
 - Aids with filtering LiDAR data
 - Aids with creating surface models

- Filtering LiDAR Data in ArcGIS
 - Right click the dataset in the Table of Contents
 - Filtering effects both display and analysis

- Converting 3-D data to 2.5-D data
 - -3-D = Multiple z values for any x,y coordinate
 - -2.5-D = Single z value for each x,y coordinate
 - Binning
 - Selecting a Cell Size and putting LiDAR data in each cell
 - Filtering
 - Removing points of particular class, height, etc...
 - Interpolation
 - Implementing a method for filling in "No Data" gaps
 - More on this next Lecture...

- Elevation Raster → Digital Elevation Model
 - More next Lecture...
- Intensity Raster → Intensity Map / Image
 - LAS Dataset to Raster tool
 - The average return strength of the pulse at each point
 - ESRI recommends filtering by first returns

Advanced Remote Sensing using

http://desktop.arcgis.com/en/arcmap/latest/manage-data/las-dataset/LiDAR-solutions-creating-intensity-images-from-

- Example Baltimore, MD
 - Intensity returns can be highly inconsistent!
 - Dependent on the reflectivity of the object hit Intensity
 - Dependent on return number, scan angle, etc.. Inconsistency

- Classification Raster → Feature Class Map
 - LAS Point Statistics As Raster tool
 - Convert LiDAR to a land use land class raster
- Example Harper's Ferry, WV

http://desktop.arcgis.com/en/arcmap/latest/tools/data-management-toolbox/las-point-statistics-as-raster.htm

- LiDAR Classification
 - Manual classification of LiDAR data
 - Change LAS Class Codes tool
 - Reclassify one set of classification codes into another
 - Works globally on the entire LAS file
 - Useful for updating the classification of LAS files generated prior to LAS 1.1 specification
 - Set LAS Class Codes Using Features tool
 - Uses a reference feature class (line, polygon)
 - Ex: Classifying water using a polygon breakline

http://desktop.arcgis.com/en/arcmap/latest/tools/3d-analyst-toolbox/change-las-class-codes.htm

- LiDAR Classification
 - Manual classification of LiDAR data
 - Using the LAS Dataset Profile View tool
 - Select points manually and then change code

- Automated classification methods in Lecture 6...

Advanced Remote Sensing using

http://desktop.arcgis.com/en/arcmap/latest/manage-data/las-dataset/editing-las-dataset-points.htm

- LiDAR Rasterization
 - LAS Dataset to Raster tool
 - Need to filter before running tool
 - For Intensity (This Lecture)
 - Use Average Value, First Returns
 - For Elevation (Lecture 3)
 - DTM = Min Value, Ground Points
 - DSM = Max Value, Non-ground
 - ESRI recommends a Cell Size4 times the "Point Spacing"

Advanced Remote Sensing using

http://desktop.arcgis.com/en/arcmap/latest/tools/conversion-toolbox/las-dataset

- Noise Detection
 - Locate Outliers tool
 - Identifies possible erroneous LiDAR points
 - Tool Parameters:
 - Hard Limit
 - Finds outliers based on max and min Z values
 - Comparison Filter
 - Finds outliers based on height difference relative to neighbors

Advanced Remote Sensing using

- Calculates local changes in elevation and slope
- Outlier Cap
 - Maximum number of outliers to be identified

http://desktop.arcgis.com/en/arcmap/latest/tools/3d-analyst-toolbox/locate-outliers.htm

- Locate Outliers
 - Example Extracting Roof Forms from LiDAR
 - Goal is to create realistic 3-D Building Models
 - Locate Outliers tool is used to limit the maximum and minimum point elevations in the dataset

https://learn.arcgis.com/en/projects/extract-roof-forms-for-municipal-development/lessons/create-elevation-layers.htm

Noise Minimization

Problem – LiDAR data can make messy slope

maps

- One Possible Solution
 - Convert LiDAR to terrain dataset
 - Use pyramiding to thin the data
 - Use a window size equal to the

Advanced Remote Sensing using

http://desktop.arcgis.com/en/arcmap/latest/manage-data/las-dataset/LiDAR-solutions-minimizing-noise-from-LiDAR-solution-minimizing-noise-from-LiDAR-solution-minimizing-noise-from-LiDAR

LAStools

- <u>http://rapidlasso.com/lastools/</u>
- Suite of LiDAR processing tools
- Free for personal use
- License required for personal use
- rapidlasso
- Run as executable or through ArcGIS or QGIS
- Includes blogs, workshops, and tutorials
- Low memory overhead and can run on multicores
- Before using any tool, see the README file
- We'll expand on these tools throughout the course

- LASview A simple LiDAR data viewer
 - A bit bare bones, but very fast
 - Allows multiple classification schemes

Description	Color	Class
Ground	Brown	2
Building	Yellow	6
High Vegetation	Green	5
Unclassified	Grey	1

Advanced Remote Sensing using

http://rapidlasso.com/lasview/

LASinfo – Calculates Simple Data Statistics

http://rapidlasso.com/2014/03/20/density-and-spacing-of-LiDAR/

- LASground Bare Earth Extraction
 - Classifies LiDAR data points as either ground
 (class = 2) or non-ground (class = 1)

Before, Raw Data

After, Ground Points

- LASheight Calculates height above ground
 - Assumes ground classified as (class = 2)
 - First run LASground
 - Creates a temporary bare earth model TIN
 - Stores height in the "user data" field of LAS file
 - Allows the user to overwrite the Z values with height values (if they desire)
 - A possible method to develop canopy height models; we'll go more into this next Lecture
 - Can also use to filter out outliers and artifacts

http://rapidlasso.com/lastools/lasheight/

- LASclassify Automated classification script
 - Classifies buildings (class = 6), vegetation (class = 5)
 - Requires that ground points are already classified
 AND that height above ground is calculated
 - First run LASground and LASheight

- LASboundary Create boundary polygons
 - Heavily parameterized, pay attention to the lab
 - Validate results in Google Earth or with imagery

- Other Useful LAStools
 - LAS2txt
 - Converts from binary LAS/LAZ to an ASCII text format
 - LASoverlap
 - Computes and displays the area of flight line overlap
 - LASoverage
 - Removes overlap that is not in the flight line "sweet spot"
 - LASclip
 - Removes points outside of a polygon feature shapefile
 - LASnoise
 - Removes isolated noise points from a LiDAR dataset

Advanced Remote Sensing using

- Too many to list!