Capital Stacks and IRR Analysis: Financing a 10-Person Orbital Habitat

-Aditya Upadhyay 27th June 2025

Thesis Question - How do different financing structures (100% equity, 70/30 debt-equity, and a mezzanine layer) affect project returns (IRR), debt-service coverage (DSCR), and sponsor risk in a 3-year model?

In this analysis, I built a 3-year DCF and cash-waterfall in Python to compare three capital structures for a 10-person orbital habitat: 100 % equity, 70/30 senior debt—equity, and a 70/15/15 senior—mezzanine—equity stack. The base-case unlevered IRR is 3.5 %, while the 70/30 stack yields -27.9 % IRR and the 70/15/15 stack -65.6 % IRR on a 3-year tenor. Extending debt to a 5-year bullet flips the 70/15/15 equity IRR to +44.2 % and improves Year 3 DSCR from 0.08× to 0.94×. A sensitivity sweep shows the project only breaks even at \geq 70 % utilization and ticket prices \geq \$7 M.

3. Objectives & Scope

Objective

Evaluate how different capital structures affect project returns and sponsor risk for a 10-person orbital habitat.

Scope

Time horizon:

■ Year 0 (construction CapEx) + Years 1–3 operations, with a terminal value at end of Year 3.

o Capital structures analyzed:

- 100 % equity
- 70 % senior debt / 30 % equity
- 70 % senior / 15 % mezzanine / 15 % equity
- Each tested under both a 3-year and a 5-year bullet tenor.

Key metrics:

- Unlevered & levered IRR (to measure returns)
- Debt-Service Coverage Ratio (DSCR) (to gauge covenant risk)
- Sensitivity analysis on microgravity utilization and tourist ticket pricing

4. Key Assumptions & Inputs

- Project Timeline
 - Year 0: Construction CapEx
 - Years 1–3: Operations + terminal value at end of Year 3
- Capital Expenditures (CapEx)
 - Year 0: \$200 M
 - Year 1: \$50 M
- Operating Expenditures (OpEx)
 - \$10 M per year (Years 1–3)
- Revenue Drivers
 - Microgravity pharma
 - Fee: \$2 M per module-month
 - Utilization: 50 % of 10 seats (base case)
 - Space tourism
 - Ticket price: \$5 M per tourist
 - Volume: 4 tourists per year
- Financing Structure

- Senior debt: 70 % of CapEx @ 8 % annual interest (bullet amort)
- Mezzanine debt: 15 % of CapEx @ 12 % annual interest (bullet amort)
- Equity: 15 % of CapEx at sponsor level
- Tenor scenarios: 3-year bullet (principal due Year 3) and 5-year bullet (principal due Year 5)

• Financial Assumptions

Discount rate: 10 % (for NPV)

Corporate tax rate: 21 %

Terminal growth rate: 2 %

Sensitivity Grid

Utilization: 30 %, 50 %, 70 %

• Ticket price: \$3 M, \$5 M, \$7 M

With these inputs, I built:

- 1. **Unlevered DCF** (100 % equity)
- 2. **Debt waterfalls** for senior-only and senior+mezzanine stacks
- 3. **Levered cash-flows** and equity IRRs
- 4. **DSCR** year-by-year under each structure
- 5. **Sensitivity table** across utilization and pricing

5. Model Structure & Methodology

1. DCF Layout

- Assumptions Tab: All inputs pulled from a single module (assumptions.py):
 CapEx, OpEx, revenues, financing ratios & rates, discount/tax/terminal-growth.
- Projection Function (project_cash_flows)
 - Builds year-by-year revenue (microgravity + tourism), OpEx, EBIT, tax, and NOPAT.
- Free Cash Flow (compute_free_cash_flow)
 - FCF = NOPAT + (negative) CapEx, so Year 0 is a negative cash outlay.
- Terminal Value (add_terminal_value)
 - Calculates TV at end of Year 3:

$$TV = (NOPAT3 * (1+g)) / r-g$$

2. Debt Waterfall

- Combined Schedule (build_combined_debt_schedule)
 - Builds parallel bullet schedules for Senior and Mezz tranches.
 - Each tranche pays only interest in Years 1–(tenor–1), with principal + final interest in Year = tenor.
 - **TotalPayment** = Payment_Snr + Payment_Mz.

3. Levered Cash Flows & Equity IRR

Levered FCF

LeveredFCFt - Total Payment

Equity Cash Flows

- Year 0: –EquityOutlay
- Years 1–(N–1): LeveredFCF (negative or positive)
- Year N: LeveredFCF + TerminalValue

4. Key Metrics

- Unlevered NPV & IRR: via numpy_financial.npv and numpy_financial.irr on the unlevered FCF series.
- Debt-Service Coverage Ratio (DSCR):

```
DSCRt = FCFt / Total Payment
```

 Levered Equity IRR: via numpy_financial.irr on the equity cash-flow series.

5. Sensitivity Analysis

- Grid sweep over utilization (30 %, 50 %, 70 %) and ticket price (\$3 M, \$5 M, \$7 M).
- Reports unlevered NPV for each combination in a pivot table.

6. Key Drivers & Sensitivity Analysis

Key Drivers

- 1. **Microgravity Utilization (%)** the share of module-months sold (base 50 %, tested 30 %–70 %)
- 2. **Tourist Ticket Price (M \$)** per-seat price (base \$5 M, tested \$3 M–\$7 M)
- 3. **Debt Tenor (years)** length of the bullet amort (3 yr vs 5 yr)

Sensitivity of Unlevered NPV (in \$ M)

Utilization (%) \downarrow \ Ticket Price (M \$) \rightarrow	3.0	5.0	7.0
30	–157.8 M	–81.5 M	–5.2 M
50 (base)	–112.0 M	–35.7 M	+40.5 M
70	–66.2 M	+10.0 M	+86.3 M

Insight: The project only breaks even (NPV \geq 0) at \geq 70 % utilization coupled with \geq \$7 M ticket price.

Debt-Service Coverage (70/15/15 stack)

Year	FCF (M \$)	Total Debt Payment (M \$)	DSCR (5-yr tenor)
1	-32.6	18.5	-1.76
2	+17.4	18.5	0.94
3	+17.4	18.5	0.94

Insight: Extending debt to 5 years defers principal, improving Year 3 DSCR from 0.08× to 0.94×—but still below a typical 1.2× covenant threshold.

How to Interpret

- The pairing of **utilization** and **pricing** is critical: modest changes push the NPV from deeply negative to strongly positive.
- **Debt structuring** (tenor) is equally powerful: a 5-year bullet turns a loss-making equity stack (–65.6 % IRR) into a high-return scenario (+44.2 % IRR) by preserving cash-flow during operations.

These sensitivity results underscore both the upside potential (at high utilization/pricing) and the importance of flexible financing to de-risk covenant exposure.

7. Capital-Stack Comparison

Capital Stack	Deb t Ten or	Unlever ed IRR	Equi ty IRR	Year 3 DSCR
100 % Equity	N/A	3.5 %	3.5 %	N/A
70 / 30 Senior / Equity	3-ye ar	3.5 %	–27. 9 %	0.08×
70 / 15 / 15 Snr–Mz–Eq	3-ye ar	3.5 %	–65. 6 %	0.08×
70 / 15 / 15 Snr–Mz–Eq	5-ye ar	3.5 %	44.2 %	0.94×

Notes:

- Unlevered IRR is identical across stacks (it's the all-equity baseline).
- Adding senior debt (70/30) crushes equity IRR and nearly destroys DSCR.

- Layering mezzanine (70/15/15) without extending tenor worsens both further.
- Stretching to a 5-year bullet defers principal through your operating window, flipping equity IRR positive and bringing DSCR close to 1×.

8. Conclusions & Next Steps

Conclusions

- 1. **Leverage magnifies sponsor risk.** Both 70/30 and 70/15/15 at a 3-year tenor yield covenant-breach DSCRs (< 1.2×) and deep equity losses.
- 2. **Tenor extension is powerful.** A simple move to a 5-year bullet restores Year 3 DSCR to ~0.94× and drives equity IRR to +44 %.
- 3. **Operational drivers matter.** Sensitivity shows the project only breaks even at ≥ 70 % utilization & ≥ \$7 M ticket price.

Next Steps

- 1. **Optimize leverage mix**: Test a 60/20/20 or senior-only 5-year stack to find the lowest-risk, highest-return structure.
- 2. **Refine cash-flow drivers**: Model ramping utilization curves and more granular tourism seasonality.
- 3. **Stress-test covenants**: Add covenant layers (e.g. minimum DSCR, equity-lock provisions) and run Monte Carlo on revenue/ops volatility.
- 4. **Prepare investor deck**: Summarize key metrics and visuals (DSCR curves, IRR waterfalls) for stakeholder presentations.