

Sumario

1. Como e porque

Criar

Prototipar

Monitorar

Ensinar

2. Raspberry e Arduino

Raspberry pi

Arduino

Os fazer comunicar

E mais

3. Hardware não é tudo

Open Data

Umas ferramentas

Aplicaçao

Como e Porque

loT é barato

Muitos projetos Open-Source

• O único limite é a imaginação

Tem uma comunidade enorme

1. Criar

Criar

- Objeto + Raspberry pi => Objeto inteligente
- O único limite é a imaginação
- Espelho + Tela + Raspberry => Smart Mirror
- Várias ideias e projetos abertos

2. Prototipar

Prototipar

- Criar um protótipo antes de o produzir
- Acessibilidade de fazer e desfazer => custo baixo
- Componente muito baratos => custo baixo
- Confiança nos produtos => Apoio da comunidade (crowdfunding)

3. Monitorar

Monitorar

- Diagnosticar e monitorar um carro novo via ODB-II
- Muitos aplicativos disponíveis ou Open Source, ou gratuito no celular para monitorar

4. Ensinar

Ensinar

- Software acessíveis para crianças
- Comunidade
- Estimula a criatividade

Raspberry e Arduino

E mais...

1. Raspberry Pi

Raspberry Pi

- Microprocessador
- Tem um Sistema Operativo (Maioria com linux)
- Basicamente um computador
- GCC / Python / MEAN / Scratch / Bash ...
- 40 GPIO
- 1Gb de RAM
- Memoria SD
- USB / HDMI / Auxiliar / Ethernet (/ Bluetooth / WiFi no 3)
- CPU : 1.2GHz 64-bit quad-core ARMv8

Raspberry Pi : I/O

- Nao tem pins analogico
- É possível simular uma saída analogica com a PWM (GPIO_GENi)

Raspberry Pi 3 GPIO Header

Pin#	NAME		NAME	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1 , I ² C)	00	DC Power 5v	04
05	GPIO03 (SCL1 , I ² C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	00	Ground	20
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)	00	(SPI_CEO_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

2. Arduino

Arduino

- Microcontrolador
- Nao tem Sistema Operativo
- void setup() & void loop()
- CPU ATmega328P 16MHz
- Um monte de GPIO (E ANALOGS INPUTS !!!!)

3. Comunicação

Juntar as forças

- Tem vários jeitos de fazer comunicar um Arduino e um Raspberry
- Capacidade de processamento do Raspberry Pi
- Muitas I/O via Arduino
- Por exemplo um servidor web de gerenciamento de relay e sensores (Pi)
- + um Arduino em cada quarto para atuar com os captores
- Ja temos um Smart Home

1 Wire

- 1 fio
- Master to Slave unicamente (simplex)
- Endereço de 64 bits => na teoria o limite de devices é muito alto
- Fluxo ~ 1.5Kbyte/s
- Uso : temperature sensor, track ID ...
- Bit menos significativo primeiro

12C

- 2 fios : SDA (Data), SCL (Clock) default : 100KHz
- Half duplex
- 120 endereço +1 de broadcast
- Fluxo ~ 4.5Kbytes/s
- Uso : comunicação entre processos, tela LCD pequena
- Bit mais significativo primeiro

UART / Serial (RS232)

- 2 fios : Rx (Receiver), Tx (Transmitter)
- Half duplex
- Entre dois devices
- Uso:?
- Fluxo ~ 1Kbyte/s
- Bit menos significativo primeiro

SPI

- 4 Fios :
 - SCK (Serial Clock)
 - MISO (Master In, Slave Out)
 - MOSI (Master Out, Slave In)
 - SS (Slave Select)
- Full duplex
- Fluxo ~ 330Kbyte/s
- Clock a 4MHz
- Bit mais significativo primeiro
- Comunicação

SPI

E tambem

4. E mais

Novos produtos sempre

Hardware não é tudo

1. Open data

2. Umas ferramentas

Como aproveitar dos dados abertos

- Python que é uma linguagem de scripts muito simples e eficiente
- cURL em linha de comandos
- MEAN Stack muito mais simples :
 - MongoDB
 - Express.js
 - AngularJS
 - NodeJS

Aplicaçao Je veux un vélo

Referencias

- http://www.gammon.com.au/forum/?id=10918
 Nick Gammon
- Raspberry Pi Schematics
 James Adams
- Arduino Schematics
 Arduino
- http://www.instructables.com/

Perguntas?