Academic year 2022-2023 (ODD Sem)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Date	21st Nov 2023	Maximum Marks	50
Course Code	EE113AT	Duration	90 Mins
Sem	I Semester	CIE-I	
	Basics of Electrical I	Engineering	4,

.No	Part B – Test Questions	Marks	COs	ВТ
la.	State Kirchhoff's Laws and Ohm's law as applied to an electrical circuit.	04	1	1
1b.	In the circuit as shown in Fig.1. Find E1, E2 and I when the power dissipated in the 5Ω resistor is $125W$ A E_1 E_2 E_2 E_2 E_3 E_4 E_2 E_3 E_4 E_5	06	2	2
2a.	Use Thevenin's theorem to determine the current through and the voltage across the 25 Ω resistor given in Fig. 2. V _s $\frac{10 \Omega}{10 \Omega}$ $\frac{10 \Omega}{25 \Omega}$	05	2	3
2b.	Fig. 2 Show that a pure inductance does not consume any power. Draw the wave of voltage, current and power.	05	2	2
		05	1 1	2
3a 3b		05	1	2

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

Academic year 2022-2023 (ODD Sem)

	TIES .			
4a. Derive the	Over a control of the	100 m		
a sinusoida	expression for root mean square (RMS) and average valueal waveform.	- A	2	2
i) the	capacitor is connected across a 230 V, 50 Hz syst capacitive reactance ii) RMS value of current and for voltage and current		2	3
i) Alternat and v)	following terms: ting quantity ii) Frequency iii) Form factor iv) Peak facto Amplitude	05	2	2
i) The ma	ting current i is given by i = 141.4 sin 314t. Find ximum value ii) frequency iii) time period and iv) neous value when t is 3 milliseconds	the 05	2	3

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

								0, IVI IVIG				
Marks	Parti	culars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Distribution	Test	Max Marks	70. 114	36	ند		64	31	15	132	-	- d

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

		ate			29/12/2	023	A		Maximur	m Mark		$\overline{}$	50	<u> </u>
	Cours	e Code					-11>0				<u></u>	-	90 N	
	Se	em	, y,		I.	4D/EE	=115A1		Dura				90 IV	1111
		C	COURSE	NAMI			FIFCT	TDICA.	TRICI	CH CHEANN	E-2			
					7. 27.20.	Co OL	ELEC:	-KICAI	L ENGI	NEEK	NG			
Sl.			- V				<u> </u>							
No.				·								М	BT	CO
1.a		the circu red using	5 Offing LVV	o waiiiii	iciers.							6	L4	3
Ъ	The vo	oltage and (377t-70°	d current	t throug	gh a circ	cuit elements of t	nent are he circu	v=100s it.	sin(377t-	⊬20°)V	and	4	L2	2
2.a	A serie	es circuit ,50 Hz, A	with R=	=10 ohm	ns, L=50)mH. C=	=100 uF	is suppl	lied with power f	voltage actor of	e of the	6	L3	2
b .		he advant				4						4	L2	2
3.a	is 130 dissipa	ductive co AC supply V. Calco ated in the	ory. The voulate a) he coil. Al	oltage a the resi lso draw	across th istance a v the pha	he coil is and indu asor diag	s 180 V, uctance o gram.	, and acr	coil, b) t	recicton	000	6	L3	2
b	Derive	the expre	ession for	r resona	ant frequ	uency of	a series					4	L4	2
4.a	transfo									- 3	-	4	L2	2
b	phase.	inced 3 ¢ from a 11	100 V, 50	0 Hz, 3	ф ѕиррі	ly. Deter	rmine th	he consta	tants of t	the load	per	5	L3	2
5.a	The eff and full	KVA tra ficiency a l load cop	at half loa pper loss.	ad and (0.8 lagg	ging p.f i	is 97.75]	1%. Cal	and 0.8 l	lagging he iron	p.f. loss	6	L2	3
b	Derive	the EMF	equation	ı of a tra	ansform	er from	fundame	entals.				4	L4	3
BT-B	looms T	axonomy,	CO-Cour	rse Outco	omes, M	-Marks	1		65					
	arks		culars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	I	25	L6
	ibution	Test	Max Marks		16	34	_	1	19	17	14	-	-	-

Autonomous
Institution Affiliated
to Visvesvaraya
Technological
University, Belagavi

Approved by AICTE, New Delhi

Academic year 2023-2024 (ODD Sem)

DEPARTMENT OF

ELECTRICAL AND ELECTRONICS ENGINEERING

Date	23 rd Jan 2024	Maximum Marks	50
Course Code	EE113AT	Duration	90 Mins
Sem	I Semester	Improvement 7	Test
	Basics of Electrical		

Q.No	Part B – Test Questions	Marks	COs	BT
<u>la.</u>	Explain the concept of rotating magnetic field of an Induction motor	05	1	2
b.	A 1-phase, 20 kVA transformer has 1000 primary turns and 2500 secondary turns. The net cross sectional of the core is 100 cm ² . When the primary winding is connected to 500V, 50Hz supply. Calculate i)the maximum value of flux density in the core ii) the voltage induced in the secondary winding and iii) the primary and secondary full load currents.	05	2	3
2a.	Explain briefly the power losses in a transformer? How these losses can be minimized?	05	3	2
b.	A 600 kVA transformer has an efficiency of 92% at full-load, unity p.f and half-load, 0.9 p.f. Determine its efficiency at 75% of full-load and 0.9 p.f.	05	1	2
3a.	Describe the constructional details of squirrel cage Induction motor.	05	1	2
b.	Draw and explain the significance of torque – slip characteristics of 3 – phase induction motor.	05	2	4
4a.	What is the significance of a slip in a 3 phase induction motor? Calculate the slip of a 3-phase, 4-pole, 400V, 50Hz induction motors runs with a speed of 1440 rpm.	04	2	3
b.	What is the necessity of earthing? With a neat sketch explain any one type of earthing.	=	4	2
5a.	What is electric shock,? What are the safety precautions to avoid electric shock?	05	4	2
b.	In a residential house, the following loads are connected:	05	4	3
	(i) Six lamps of 40 W each, switched on for 5 hours a day.	, = 1		
	(ii) Two fans of 60 W each, switched on for 12 hours a day.			
	(iii) One 100 W heater working for 2 hours per day.			3 NJ
	(iv) One refrigerator of 250 W working for 10 hours per day.		1	
	If each unit of energy costs Rs. 1.90, what will be the total cost in the month of September?	:	3	2 NJ

CO1 CO₂ ·CO3 CO₄ **Particulars** L1 L2 L3 L4 L5 L₆ Marks 15 14 05 16 Max 31 14 05 Test Distribution Marks

Servori

EE113ATD	/22ES14D	/ 22ES24E
----------	----------	-----------

	-	-	-	and the same	and the second second	and the same	-	especial control of	P (Commission)	Constitution of the Consti
USN				47						
USIN					Carlamon arriva	TO STATE OF THE PARTY OF THE PA	-	a constitution.	-	ATTENUE

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

1 / H Semester B. E. Regular / Supplementary Examinations Feb-2024

Common to all programs

BASICS OF ELECTRICAL ENGINEERING

Time: 03 Hours

Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer SIX full questions from Part B. In Part B question numbers 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8 & 9 and 10.

PART-A

2	a	In the circuit shown in Fig. 2.a, find the potential difference across $x - y$ terminals and the power delivered by the 10hm resistor.	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	b	Fig. 2.a State and explain Thevenin's theorem, using this theorem find the power dissipated to a load resistance of 10 <i>Ohms</i> in the circuit shown	08
		in Fig. 2.b 50.7 50.7 100V 50.7 FR. 10.52	
		Fig. 2.b	08
3	a b c	 Show that the average power consumed in an AC circuit in VIcosφ. Show that the average power consumed by a pure inductor is zero. An alternating current is given by : i = 10 sin 942t A. Determine: i) frequency, ii) the time taken from t = 0 for the current to reach a value of 6A for the first and second time, iii) the energy dissipated when the current flows through a 	06 04
		20 Ohm resistor for 30 minutes.	06
4	a	Draw and explain the vector diagram of an $R-L-C$ series circuit excited by a supply of E volts when:	
	b	i) $X_L = X_C$, ii) $X_L > X_C$, iii) $X_L < X_C$. Find the value of R and C in the circuit shown in Fig. 4.b, so that $V_b = 3V_a$ and V_b are in quadrature. Also find the current I .	08
		652 0.0255H R C 	
		Fig. 4.b	08

5	a	Write the mathematical representation of three phase voltages with i) instantaneous values,								
		ii) RMS values, iii) vector diagrams.	08							
	ь	Show that two watt meters are sufficient to measure three phase power with a delta connected load. OR								
6	a b	Show that the $e.m.f.$ induced per turn is same for both primary and secondary windings of transformers. The primary and secondary windings of a $500kVA$ transformer have resistances of 0.42 and 0.0019 Ohm respectively. The primary and	08							
17.		secondary voltages are 11000 and 400V respectively and the core loss is $2.9kW$. Assuming the power factor of 0.8 calculate the efficiency at full load.	08							
7	a	Explain the principle of torque production in three phase induction motors.	05							
	b c	Draw the typical torque slip characteristics of wound rotor induction motor and mark all the salient points on it. A 6 - pole induction motor is supplied by a 3 - phase, 50Hz supply has	05							
		a rotor frequency of 2.3 Hz. Calculate: i) the percentage slip,								
		ii) speed of the rotor. What will be these values if the stator is wound for 4 poles? OR	06							
0										
8	a b	Explain why the starting torque is zero for a single phase induction motor, and how this will be produced. Draw the electrical schematics of various types of single phase	05							
	С	induction motors. Draw and explain the rotor construction of the two types of three								
F-70146-14-14-14-14-14-14-14-14-14-14-14-14-14-		phase induction motors.	06							
9	a b	Define the term 'Power System' and explain the same with the help of a block diagram showing all its components. Differentiate between 'Fuse' and 'MCB' and mention the advantages	06							
	С	and disadvantages. What are preventive measures of electrical shock, explain.	06 04							
		OR								
10	a	What is earthing, why it is necessary and explain with diagram 'plate earthing'? A domestic house uses the following appliances whose details are in	11							
	b	the table below:								
		Ruting 100s. (H18)	toral							
		1 LED bulbs 9W 10 4,								
		2 LED tube lights 20 W 3 6								
		3 Geysers 2 kW 2 1 4 Water pump 500 W 1 2								
		5 Ceiling fans 55 W 6 3	1							
		6 Mixer grinder 1200 W 1 1								
		7 Induction top 1500 W 2 6	08							

1 Story