REDES DE COMPUTADORES

Modelo OSI e protocolos de comunicação

ARQUITETURA DE REDES

Hierarquia de Protocolos

- A maioria das redes são organizadas como uma séria de camadas ou níveis, para reduzir sua complexidade de design.
- O objetivo de cada camada é oferecer certos serviços para as camadas mais altas, isolando essas camadas dos detalhes de como os serviços oferecidos estão atualmente implementados.

ARQUITETURA DE REDES

- Protocolo de Camada n : É o conjunto de regras e convenções usadas na comunicação entre a camada n de uma máquina com a camada n de outra máquina. (Fig. 5-1)
- ▶ é o limite entre cada nível adjacente.
 - Define quais operações primitivas e serviços a camada inferior oferece a sua camada adjacente superior.

Camadas, Protocolos e Interfaces

5.1 Hierarquia de Protocolos

- Arquitetura de Rede: Conjunto de camadas e protocolos.
- A especificação de arquitetura deve conter informação suficiente para permitir a um implementador escrever o programa ou construir o hardware para cada camada de tal forma que o programa obedeça o protocolo apropriado.

A Arquitetura Filósofo-Tradutor-Secretária

Exemplo de Fluxo de Informação Suportando Comunicação Virtual na Camada 5.

Questões de Projeto Relacionadas as Camadas

- Mecanismo de estabelecimento de conexões.
- Mecanismo de término de sessões.
- Regras para transferência de dados.
 - Comunicação Simplex
 - Comunicação Half-Duplex
 - Comunicação Full-Duplex
- Controle de fluxo
- Controle de sequenciamento de mensagens
- Manter o sincronismo entre transmissor e receptor (controle de fluxo)
- Quando multiplexar e demultiplexar
- Como rotear mensagens na rede

Organizações Internacionais de Padronização

- ► ISO: International Organization for Standardization
- ► IEC: International Electrotechnical Comission
- ► ITU: International Telecommunications Union (antigo CCITT: Comité Consultatif International Télégraphique et Téléphonique)
 - ► ITU-T: setor de telecomunicações
 - ► ITU-R: setor de radiocomunicações
 - ► ITU-D: setor de desenvolvimento

Organizações Internacionais de Padronização

- CCIR: Comité Consultatif International des Radiocommunications
- JTC 1: Joint Technical Committee 1. Responsável final por padronizações de LANs e MANs.
- ANSI : American National Standards Institue. Uma das mais atuantes na área de redes de computadores.
- IEEE: Institute of Electrical and Electronics Engineers.

Relação entre os diferentes órgãos de padronização.

11

Estrutura da ANSI

Organização do IEEE

Célia Duarte

Redes de Computadores

Modelos de Referência

- OSI/ISO
- ► IEEE 802
- ► TCP/IP

O Modelo de Referência OSI da ISO

O modelo de referência de Interconexão de Sistemas Abertos (OSI)
 Open Systems Interconnection) possui 7 camadas.

Arquitetura de rede baseada no modelo de referência OSI da ISO.

Camada Física

- Quantos microsegundos um bit "1" ou "0" deve durar.
- Se a transmissão pode proceder simultaneamente em ambas as direções.
- ► Como estabelecer e liberar conexões.
- ▶ Pinação de conectores e suas respectivas funções.
- Os problemas de projeto relacionam-se com os detalhes mecânicos, elétricos e procedimentos de interfaceamento com a sub rede.

Camada de Enlace de Dados (HOST-ROUTER)

- Quebra os dados de entrada em quadros (frames).
- Cria e reconhece as fronteiras dos quadros.
- Realiza a transmissão sequencial dos quadros.
- Processa confirmações de recebimento.
- Resolve problemas de quadros perdidos, duplicados ou destruídos.
- Recebe os dados da camada física e entrega-os sem erros de transmissão para a camada de rede.
- Trata da sincronização entre um transmissor (rápido) e um receptor (lento) em dados (flow control: HOST-ROUTER)

Camada de Rede (ROUTER-ROUTER)

- Determina como pacotes (a unidade de informação trocada na camada 3) são roteados dentro da sub rede.
- Aceita mensagens do "host" fonte, converte elas para pacotes e direciona estes pacotes para os seus destinos.
- ▶ O controle de congestionamento também pertence a camada 3 (ROUTER-ROUTER).

Camada de Transporte (HOST-HOST)

- Multiplexação.
- Identificação de mensagens e suas conexões (sessão)
- Controle de sequenciamento fim-a-fim em cada conexão.
- Detecção de erros fim-a-fim e monitoração da qualidade de serviço.
- ► Recuperação de erros fim-a-fim.
- Fragmentação das mensagens fim-a-fim se necessário.

Camada de Sessão

- Estabelece uma conexão com um processo noutra máquina (sessão).
- ▶ Gerencia o diálogo de uma forma ordenada para um determinado serviço solicitado (gerenciamento de token, não permitindo a mesma operação ao mesmo tempo por ambos os lados).
- Realiza sincronização de diálogos ("checkpoints").

Camada de Apresentação

- Utiliza linguagens abstratas para converter um determinado formato de informação usado dentro de um computador para uma representação padrão de rede ou vice versa.
- Compressão de mensagens
- Criptografia
- Conversão entre códigos de caracteres (ASCII para EBCDIC)
- Conversão para final de linha, scroll ou modo de página, etc.

Camada de Aplicação

- ► Interface do utilizador com o sistema.
- Provê todos os serviços OSI que podem ser usados pelos processos de aplicação para trocar informações entre si.
- ► FTAM File Transfer Access and Management;
- ► MHS Message Handling Systems,
- ► ROSE Remote Operations Service Element, entre outras.

Transmissão de Dados no Modelo OSI

Célia Duarte

Redes de Computadores

O Padrão IEEE 802

- Padrão utilizado em LANs e MANs
- As funções mínimas de comunicação estão implementadas nos níveis 1, 2
 - ► (1) Fornecer um ou mais SAPs para os utilizadores da rede.
 - ▶ (2) Na transmissão, montar os dados a serem transmitidos em quadros com campos de endereço e detecção de erros.
 - ▶ (3) Na recepção, desmontar os quadros, efetuando o reconhecimento de endereço e detecção de erros.
 - ▶ (4) Gerenciar a comunicação no enlace.

O Padrão IEEE 802

- Função (1) é de responsabilidade do Logical Link Control LLC
- Funções (2), (3) e (4) são de responsabilidade do Medium Access Control-MAC.
- ► IEEE 802.1: Descreve o relacionamento entre os diversos padrões IEEE 802 e o relacionamento deles com o RM-OSI.
- ► IEEE 802.2: Descreve a subcamada superior do nível de enlace a qual usa o protocolo LLC
- ▶ IEEE 802.3 ~ 802.6: Especificam diferentes opções de nível físico e protocolos da subcamada MAC (CSMA/CD, Token Bus, Token Ring, Distributed Queue Dual Bus (DQDB)).

Relação entre os padrões IEEE 802 e RM-OSI

5.5 O Modelo de Referência TCP/IP

- ▶ 1969 ARPANET 1ª rede de pacotes
- Anos 70 evolução para uma inter-rede, com interoperabilidade entre diferentes redes.
- ▶ 1982 MILNET: Rede militar, baseada em TCP/IP
- ► Hoje o TCP/IP é a arquitetura de Comunicação aberta que predomina, apesar do OSI.
 - ► TCP/IP: maduro, operacional, altamente funcional
 - OSI: funcionalidade maior, mais complexo, atrasos.

Ilustração do modelo de inter-red

Célia Duarte

Redes de Computadores

Arquitetura da Internet TCP/IP

- ► Há 4 camadas
- Camada de interface de rede: compatibiliza a tecnologia específica da rede com o protocolo IP.
- ▶ Camada de Inter-rede: responsável pela transferência de dados através da inter-rede (roteamento).
- Camada de transporte: descreve tecnologias fim-a-fim para permitir comunicação entre aplicações.
- Camada de aplicação: descreve a tecnologia usada para prover serviços ao utilizador final.

Arquitetura da Internet TCP/IP

- Enfase principal na interconexão de diferentes tecnologias de rede usando principalmente:
 - Um serviço de transporte orientado à conexão, provido pelo Transmission Control Protocol (TCP)
 - Serviço de inter-rede sem conexão, provido pelo Internet Protocol (IP)

Comparação das arquiteturas OSI vs. TCP/IP

Uma Visão da Internet

Célia Duarte

Redes de Computadores

Comunicação TCP/IP

Comunicação TCP/IP

Encapsulamento

Encapsulamento

Protocolos e redes no modelo TCP/IP

Arquitetura da Internet TCP/IP

- Há diversos protocolos de aplicação:
 - ► Simple Mail Transfer Protocol (SMTP) correio
 - ► File Transfer Protocol (FTP) transferência de arquivos
 - ▶ Telnet Terminal Virtual
 - Domain Name System (DNS) mapeamento entre nomes e endereços de rede
 - ► Simple Network Management Protocol (SNMP) gerenciamento.

Arquitetura da Internet TCP/IP

- ▶ O TCP/IP pode servir de interface de rede ethernet, token ring, FDDI, X.25, Frame relay, ...
- Como enviamos datagramas IP sobre um meio físico específico?
 - Datagramas IP usam endereços IP
 - Endereços IP são independentes do meio físico
 - ➤ O meio físico usa endereços alocados independentemente do IP.

Exemplo de Redes

Rede Novell

- Chegou a ser um dos sistemas de rede mais popular no mundo dos PCs.
- ▶ Baseado no modelo cliente-servidor (Fig. 5-15).
- ▶ IPX (Internetwork Protocol): sem conexão, similar ao IP.
- ▶ NCP (Network Core Protocol): Protocolo de transporte com serviço de conexão, usado na interação entre os clientes e o servidor.
- ▶ SPX e TCP: Outros protocolos que poderiam ser utilizados para o transporte.
- ► SAP (Service Advertising Protocol): A cada minuto cada servidor transmite um pacote de radiodifusão informando seu endereço e os serviços que ele oferece.

Modelo de Referência da rede Novell

Layer SAP Application File server . . . NCP SPX Transport IPX . Network ARCnet Token ring Ethernet Data link **ARCnet** Token ring Physical Ethernet

Rede Novell

Funcionamento:

- Agentes especiais em roteadores, recolhem estes pacotes e constroem uma tabela de servidores ativos e respectivos endereços.
- Quando a máquina de um cliente é ligada à rede ela envia um pacote de radiodifusão pedindo por um servidor mais próximo.
- Com a resposta do roteador local, o cliente agora pode estabelecer uma conexão NCP com o servidor.

- Os backbones na Internet operam a velocidades de Gbps.
- As redes em Gbps são principalmente direcionadas as transações que requerem muito bandwidth:
 - ► Telemedicina
 - ▶ Teleconferência
 - ▶ 1 imagem (4k x 4k pixels x 8 bits/pixel (preta e branco) ou x 24 bits/pixel (colorida) = 1,28x10⁸ ou 3,84x10⁸ bits; 100 imagens => 40x10⁹ bits

Redes

1. Aurora:

- Opera em fibra ótica a taxas de 622 Mbps ou maiores em cada direção.
- Tecnologia Bellcore e IBM.
- ▶ Usada para pesquisa em protocolos gigabits, roteamento, controle de rede e vídeo conferencia.
- http://www.aurora.com/

Redes

2. Blanca:

- Opera em 622 Mbps no backbone e outras regiões em taxa menores.
- Tecnologia AT&T Bell Labs.
- Usada para pesquisa em protocolos de controle de rede, interface de hosts, aplicações gigabits (telemedicina), modelamento meteorológico, astronomia.

Gigabit network test beds

Project	Network nodes, research sites	Participating carriers	Research topics, technologies	Applications Broadband network applications, business and scientific applications, virtual sebaratory	
Aurora	Bell Communications Research, Morristown, N.J.; 85M, Hawthorne, N.Y.; Massachusetts Institute of Technology, Cambridge, Mass.; University of Pennsylvania, Philadelphia	Bell Attartic Corp., MCI Communications Corp., Nymex Corp.	ATM, distributed virtual memory, high-speed protocols, retwork architectures, network operation and management, network resource control and allocation, packet-transfer mode switching, traffic modeling.		
Blanca	Astronautics, Madison, Wis.; AT&T their Laboratories, Murray Hill, N.J.; Gray Research, Inc., Minneapolis, Lawrence Berkeley Laboratories, Berkeley Laboratories, Berkeley Laboratories, Berkeley, Calif.; Netonal Center for Supercomputing Applications, Champaign-Lithana, R.; University of California- Berkeley, University of Binois, Champaign-Lithana; University of Wisconsin-Madison	AT&T, Norlight, RBHCs	Burst handing, tast call setup, high-speed channels, multiplexing strategies, network virtual memory, real-time communications, switch design, traffic models	Medical imaging multimedia digital libraries, multiple remote visualization and control of simulations, radio sacronomy imaging	
Casa	California Institute of Technology, Pasadena, Calif.; Jet Propulsion Laboratory, Plasadena: Los Alamos National Laboratory, Los Alamos, N.M.; San Diego Supercomputer Center, San Diego	MCI, Pacific Bell, US West, Inc.	HPPI, metacomputer, multiprocessing, parallel programming, SCNET	Chemical reaction dynamics, climate modeling, interactive data analysis and visualization of geologic models	
Nectar	Belcore: Carnege-Mellon University, Pittsburgh; Pittsburgh Supercomputing Center, Pittsburgh	Bell Attantic	High-speed protocols, operating systems, perallel programming environments	Large combinatorial optimizations, process tow-sheeting	
Vistanet	North Carolina Supercomputing Center, Fleesarch Triangle Park, N.C.; University of North Carolina- Chapel Hill	BetSouth Corp., GTE Telephone Operations	ATM, broadband circuit switching, high-speed protocols, HPPI, SONET, traffic models	Dispersed collaboration, racketion treatment therapy planning	

ATM — Asynchronous Transfer Mode HPPI — High Performance Parallel Interface SONET — Synchronous Optical Network

Outras: CASA, Nectar e VISTAnet.

- Aplicações de supercomputador
- Processos químicos
- Utilização de imagens em 3D para planejamento de terapias de radiação para pacientes de câncer.

Exemplo de Serviços de Comunicação de Dados

- Governo ou companhias privadas oferecem serviços de transmissão de dados para a comunidade.
- A sub-rede é possuída pelo operador da rede (governo ou companhia privada).
- ► Tal sistema é chamado rede pública.
- Ele é análogo e muitas vezes parte do sistema de telefonia pública.

SMDS - Switched Multimegabit Data Service

- Projetada para conectar múltiplas LANs.
- ► Tecnologia Bellcore que opera a taxa padrão de 45 Mbps ou taxas menores.
- Dera com linhas alugadas por curta duração para tratar tráfegos do tipo rajada.
- A máxima taxa de operação e tempo de operação da linha deve ser acertado com a concessionária.
- Pacotes são enviados a um roteador SMDS que se encarrega de direcioná-los (Fig. 5-16).

Formato de Pacote SMDS

SMDS - Switched Multimegabit Data Service

- Os endereços fonte e de destino consistem de um código de 4 bits seguido de um número de telefone de até 15 dígitos decimais.
- O payload pode conter qualquer qualquer sequência de bytes até 9188 bytes. Ele pode conter pacotes Ethernet, Token Ring, IP, etc.

Redes X.25

- ➤ X.25: Desenvolvido nos anos 70 pelo CCITT para forncer uma interface entre redes públicas de comutação de pacotes e seus utilizadores.
- ▶ Protocolo de camada física X-21: estabelece a interface física entre o host e a rede.
 - Poucas redes públicas atualmente suportam esta interface porque ela requer sinal digital ao invés de sinal analógico sobre as linhas telefônicas.
 - RS-232 é uma interface analógica criada para sanar este problema.
- A maioria das redes X.25 operam em velocidades até 64 kbps.
- Os protocolos das camadas 1, 2 e 3 são conhecidos coletivamente como X.25.
- ▶ O X.25 opera com serviço de conexão e permite circuitos virtuais permanente ou comutados.

Redes X.25

- ► X-3: é o protocolo que descreve as funções do PAD (Packet Assembler e Disassembler)
- ▶ PAD é usado para interfacear terminais não inteligentes com uma rede X.25.
- ► X.28 é o protocolo definido para interfacear o terminal não inteligente com o PAD.
- ► X.29 é o protocolo usado para interfacear o PAD e a rede.

Frame Relay

- Surgiu com a mudança na tecnologia nos últimos 20 anos:
 - Linhas telefônicas são rápidas, digitais e confiáveis.
 - Computadores são rápidos e baratos.
 - Utilização de protocolos simples
 - A maioria do trabalho é feito pelo computador do utilizador que pela rede.
- Não utiliza circuito virtual comutado e sim circuito virtual alugado.
- ▶ Utiliza circuito virtual alugada (é mais barata e diferente de circuito virtual permanente alugada)
- A conexão pode ser feita entre dois pontos ou entre um dado ponto e múltiplos outros transmitindo pacotes de tamanho de até 1600 bytes.
- Opera em velocidades básicas de 1,5 Mbps.

Frame Relay

Frame relay:

- Fornece um caminho para determinar o começo e fim de quadro.
- Detecção de transmissão de erros
- Se um quadro errado é recebido ele é descartado.
- É de responsabilidade do utilizador descobrir frames perdidos e recuperá-los.
- Não fornece reconhecimentos de quadros ou controle de fluxo.

- ► Uma rede que subistitue o sistema telefônico e todas as redes especializadas (DQDB, SMDS, Frame Relay, FDDI, X-25, CATV, etc.)
- Uma única rede integrada para qualqer tipo de transferência de informação.
- Uma taxa de transmissão bastante alta comparada com as existentes.
- Possibilidade de oferecer uma ampla variedade de novos serviços.
- Serviço de Longa Distância: Broadband Integrated Services Digital Network (B-ISDN)

Serviços:

- Vídeo sobre demanda
- ► Televisão ao vivo de várias fontes
- Correio eletrônico multimedia
- Música com qualidade de CD
- ▶ Interconexão de LANs
- ► Transferência de dados em alta velocidade, etc.

Tecnologia que torna B-ISDN possível:

- Asynchronous Transfer Mode (ATM)
- Utiliza pequenos pacotes chamados células de 53 bytes de tamanho.
- Utiliza comutação de células e não comutação de circuitos.
- Motivo
 - Comutação de células é altamente flexível
 - Pode tratar taxa de tráfego constante (audio e vídeo) e variável (dados)
 - Comutação digital de células em velocidade muito alta é mais fácil de ser realizada que técnicas de modulação tradicionais.
 - A comutação de células pode fornecer serviço de radiodifusão de televisão, comutação de circuitos não.

Tecnologia que torna B-ISDN possível:

- ▶ Redes ATM utilizam serviço orientado a conexão.
- ► Redes ATM utilizam linhas e roteadores assim como WANs tradicionais.
- Canais de 155 Mbps foram escolhidos porque é a taxa necessária para transmissão de televisão com alta resolução.
- Taxa de 622 Mbps foi escolhida para que 4 canais de televisão pudessem ser suportados.

O Modelo de Referência ATM

CS: Convergence sublayer

SAR: Segmentation and reassembly sublayer

TC: Transmission convergence

sublayer

PMD: Physical medium dependent sublayer

Circuito Virtual ATM

O modelo de Referência B-ISDN usando ATM

- Consiste basicamente de 3 camadas (Fig. 5-17)
- Plano do utilizador: Transferência de informações do utilizador e controle associado a essa transferência como controle de fluxo e erros.
- Plano de controle: Controle de chamada e funções de controle das conexões. Sinalização referente ao estabelecimento, supervisão e liberação de chamada e conexão.
- ► <u>Gerenciamento de Camadas:</u> trata dos fluxos de informação de operação e de manutenção de cada camada.
- ▶ <u>Plano de Gerenciamento</u>: Gerencia as camadas e coordena os planos (Fig. 5-18).

As camadas e subcamadas ATM e suas funções

OSI layer	ATM layer	ATM sublayer	Functionality
3/4	AAL	cs	Providing the standard interface (convergence)
		SAR	Segmentation and reassembly
2/3	АТМ		Flow control Cell header generation/extraction Virtual circuit/path management Cell multiplexing/demultiplexing
2	Physical	тс	Cell rate decoupling Header checksum generation and verification Cell generation Packing/unpacking cells from the enclosing envelope Frame generation
1		PMD	Bit timing Physical network access

O modelo de Referência B-ISDN usando ATM

Glossário:

- ▶ **PMD** Physical Medium Dependent sublayer
- ► TC Transmission Convergence sublayer
- ► **AAL** ATM Adaptation Layer
- ► **SAR** Segmentation and Reassembly sublayer
- ► **CS** Convergence sublayer

Comparação de Serviços

Issue	DQDB	SMDS	X.25	Frame Relay	ATM AAL
Connection oriented	Yes	No	Yes	Yes	Yes
Normal speed (Mbps)	45	45	.064	1.5	155
Switched	No	Yes	Yes	No	√Yes
Fixed-size payload	Yes	No	No	No	No
Max payload	44	9188	128	1600	Variable
Permanent VCs	No	No	Yes	Yes	Yes
Multicasting	No	Yes	No	No	Yes