

人工智能2.0时代的 人才培养和通识教育课程

肖睿 2025年7月12日 青岛

- 北大青鸟人工智能研究院
- 北大计算机学院
- 北大教育学院学习科学实验室

人工智能2.0时代的人才培养和通识教育课程

01

人工智能2.0时代

- 1. 人工智能的前世今生
- 大模型的特点和局限
- 3. 大模型的发展观察

02

人才需求和通识教育课

- 1. 人才需求
- 2. 人工智能通识课

人工智能0.0: 古代 (1956-2006, 从规则到学》)。

人工智能: 让机器具备人类智能, 让机器具备非人类智能(超人类智能)

- ▶ 传统(知识+规则):专家系统(知识库+推理机)
- ▶ 现代(数据+学习): 机器学习(模型、目标、策略),数据模型(IID,用数学模型模拟世界)
 - 常规统计学习方法:逻辑回归,决策森林,支持向量机,马尔科夫链,
 - ✓ 小数据,人工特征,部分可解释,缺乏通用性和跨模态
 - 人工神经网络:与人脑最大的共同点是名字(原理、机制和架构并不一样),用神经网络表达数学模型
 - 1、传统神经网络:霍普菲尔德网络,玻尔兹曼机,.....
 - 2、深度神经网络:深度学习 (Hinton, 2006)
 - ✓ 大数据,特征表示,基本不可解释,具备通用性和跨模态

Multilayer Feedforward Networks are Universal Approximators

KURT HORNIK

Technische Universität Wien

人工智能1.0: 近代 (2006-2020, 深度学习) @ 非意大学

深度学习: 深度神经网络

- ➤ 2006:传统架构: DBN, CNN, RNN, ResNet, Inception, RWKV,
 - ImageNet (超过人眼)
 - · AlphaGO (超过人类棋手)
 - AlphaFold (超过人类科学家)
- ▶ 2017: Transformer架构: 注意力机制 (Attention)
- 预训练模型架构:
 - 编码器 (BERT): embedding, Ernie1.0,
 - 混合网络: T5、GLM(早期)
 - 解码器 (GPT): 生成式人工智能 (AIGC)
- 预训练模型架构:
 - 并行矩阵计算 (GPU)
 - 堆叠架构,容易扩展,大力出奇迹

人工智能2.0:现代(2020-,大模型)

大模型(预训练大模型): 大 (数据多、参数多、算力多) , 模型 (语言、视觉、多模态)

- ▶ GPT架构:解码器(GPT),生成式人工智能(AIGC),生成-理解-决策(RL)
 - Transformer: 大语言模型 (LLM, **大模型**) , 多模态模型 ChatGPT (4.1, 40, 01, 03, 04) Claude; Grok, Gemini; Llama, DeepSeek、Step、Qwen; Kimi、MiniMax; GLM、火山(豆包)、元宝、百度......
 - Transformer+Diffusion: 视觉模型

图像: Stable Diffusion、Mid-Journey、DALL.E等

视频: Sora、可灵、即梦、Vidu、海螺等

- ▶ 通用模型 vs 垂直模型 (行业模型)
 - 传媒、编码
 - 教育、医疗、金融等

01.人工智能的前世今生

人工智能2.0时代的人才培养和通识教育课程

01

人工智能2.0时代

- 1. 人工智能的前世今生
- 大模型的特点和局限
- 3. 大模型的发展观察

02

人才需求和通识教育课

- 1. 人才需求
- 2. 人工智能通识课

大模型的工作原理: NTP (Next Token Prediction)

LLM:Large Language Model

1. 收到提示词

示例: "今天天气不错,我决定"

2.将输入拆分为token

["今天" , "天" , "气" , "不" , "错" "," , "我" , "决定"]

3.采用Transformer架构处理token

- 理解token之间的关系
- 识别提示词的整体含义

4.基于上下文预测下一个token

- 为可能的单词分配概率分数
- 示例:{ "去":0.7. "停":0.2, "站":0.1}

5.根据概率分数选择标记

示例: "去"

准确地讲,这里不是"字",是"token",可以进行语义计算。

概率预测+文字接龙

自回归(AR): 重复步骤4和步骤5直到形成完整的句子

示例: 今天天气不错, 我决 定去公园

01.人工智能的前世今生

大模型的工作过程: 预训练-后训练-推理

监督微调

强化学习 (RLHF等等)

接收输入 (提示词) **处理输入** (上下文)

大模型工作过程

进行推理 (测试时计算)

生成输出

阶段1: 模型训练 (预训练+后训练)

阶段2: 推理

01.人工智能的前世今生 02.大模型的特点和局限 03.大模型的发展观察 04.大模型时代的人才需求 05.人工智能通识课 学习交流可加微信号(zhixingzhaizhuren)

大模型的最新发展(从原子弹到氢弹):

LLM Post-Training: A Deep Dive into Reasoning Large Language Models

Komal Kumar*, Tajamul Ashraf*, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal, Mubarak Shah, Ming-Hsuan Yang, Phillip H.S. Torr, Fahad Shahbaz Khan, Salman Khan

Abstract -- Large Language Madels (LLRs) have transferwed the natural language processing landscape and brought to life diverse applications. Pretraining on wast well-noise data has bid the foundation for those models, jet the research community is now increasingly shifting focus meand post-training techniques to achieve further insulthroughs. While pretraining provides a broad Impaints foundation, post-training methods anable LLRs to refine their knowledge, improve reasoning, enhance factual accuracy, and algo more effectively with user intents and ethical considerations. Fine-tuning, rainforcement learning, and test time scaling have amorgali as critical strategies for optimizing (...) the performance, ensuring relevatives, and improving adaptability across various real-world tasks. This survey provides a sostematic exploration of post training methodologies, analysing their role in refining LLMs beyond pretraining, addressing key challenges such as catastrophic forgetting, research tocking, and inforence time trade-offs. We tightight emerging directions in model alignment, scalable adaptation, and informore time measuring, and outline future research directions. We also provide a public repository to continually track developments in this fast-evolving field: https://grituit.com/mitesai-onys/Assessme LLM-Post-training.

Baltin Tarms-Reasoning Models, Large Language Models, Reinforcement Learning, Resent Modeling, Text-time Scaling

· ChatGPT发布,全球范围内迅速形 成大模型共识。

印 准备期

- GPT4发布,进一步掀起大模型研发 热潮。
- 国内快速跟进大模型研发,文心一言 1.0、通义千问、讯飞星火、360智 脑、ChatGLM等首批模型相继发布。

- Llama2开源,极大助力全球大模型开发者生态。
- GPT-4 Turbo、Gemini等海外大模型发布、继 续提升模型性能.
- Midjourney发布5.2
- Stable Diffusion XL发布
- 国内闭源大模型快速发展, 豆包、混元、商汤3.0、 盘古3.0、AndesGPT、BlueLM、星火3.0、Kimi Chat等陆续发布。
- 国内开源生态爆发, Baichuan、Qwen、 InternLM、ChatGLM3、Yi-34B等系列模型引领 开源热潮。

◎ 繁荣期

- OpenAI发布Sora, 极大拓展了AI在视频领 域的想象力。
- GPT-40、Claude3.5、Gemini1.5、 Llama3发布,海外进入"一超多强"的竞 争格局。
- 国内多模态领域进展迅速,在部分领域领先 海外,视频生成模型可灵AI、海螺视频、 Vidu、PixVerse等模型陆续发布,并在海 外取得较大应用进展。
- 国内通用模型持续提升, Qwen2.5、文心 4.0、GLM4、商汤5.5等通用模型陆续更新。

深化期

- · OpenAI 推出基于 GPT-4o 模型的图像生 成功能, 取代此前的 DALL·E 3成为 ChatGPT 和 Sora 平台的默认图像引擎
- OpenAl发布o3-mini、GPT-4.5, 前者推 动成本效益推理,后者展现出较高的情 感智能。
- Gemini 2.0 Flash Thinking, Claude-3.7-Sonnet、Grok3发布,海外推理模型 引发热潮,推理性能大幅度提升。
- 国内推理模型持续跟进。DeepSeek-R1、 QwQ-32B、Kimi1.5、GLM-Zero、 Skywork o1、讯飞星火X1等推理模型陆 续发布,继续突破推理能力的上限。
- 国内模型性能持续提升。DeepSeek-V3、 Qwen2.5、豆包-Pro、混元-Turbo与GLM-4-Plus等系列模型综合能力上持续提升。
- 国内开源生态持续引领模型普惠化。 DeepSeek-R1通过开源与性价比优势持续 推动行业技术普惠化进程。

2023.12 2025.03 2023.06 2024.06

第9页

ref: SuperCLUE团队中文大模型基准测评2025年3月报告

学习交流可加微信号 (zhixingzhaizhuren)

01.人工智能的前世今生

2022.12

02.大模型的特点和局限

03.大模型的发展观察

04.大模型时代的人才需求

05.人工智能通识课

大语言模型的能力边界

语言能力:理解和生成

知识能力

- 幻觉 (生成不符合事实的内容)
- 知识库限制 (公开、私有、即时)
- 上下文窗口限制 (记忆、成本)
- 推理能力

■生成

- 1. 严肃内容+垃圾信息的混合
- 2. 知识量大,但缺少内在关联能力

■幻觉

- 1. 来源:有损压缩, NTP的温度
- 2. 观点: 创意和创新

■记忆

1. 多轮对话: 产品设计, 计算成本

■ 解决方案

- 1. 提示词 (Prompt)
- 思维链 (CoT)
- 搜索增强 (RAG)
- 4. 知识图谱 (KGE)
- 模型微调 (Fine Tune)

生成模型 (GPT-4o、DeepSeek-V3等)

文本生成、创意写作、多轮对话等通用场景

推理模型 (o1、DeepSeek-R1等)

数学、逻辑分析、代码生成、复杂问题拆解

学习交流可加微信号 (zhixingzhaizhuren)

人工智能2.0时代的人才培养和通识教育课程

01

人工智能2.0时代

- 1. 人工智能的前世今生
- 大模型的特点和局限
- 3. 大模型的发展观察

02

人才需求和通识教育课

- 1. 人才需求
- 2. 人工智能通识课

现象: DeepSeek快速出圈,全民硬控

- 2024年12月26日, DeepSeek推出对标OpenAl GPT-4o的 语言模型DeepSeek V3, 随后在美国Al 行业内部引起轰动。
- 2025年1月20日, DeepSeek发布对标OpenAl o1 的DeepSeek R1大语言模型,并于1月24日引起美国投资界KOL关注。
- 2025年1月26日,关于DeepSeek颠覆了大模型的商业模式(堆算力、拼资本),引发英伟达股价大跌,DeepSeek首先在美国出圈,引发国际社会讨论。
- 2025年1月底(春节前后),DeepSeek在中国出圈 ,并上升到中美竞争高度,同时纷纷接入DeepSeek ,DeepSeek成为AI和大模型的代名词。
- DeepSeeki上AI跨越了鸿沟。

2025年1月20日下午,中共中央政治局常委、国务院总理李强主持召开专家、企业家和教科文卫体等领域代表座谈会、听取对《政府工作报告(征求意见稿)》的意见建议。DeepSeek公司创始人梁文峰作为企业家代表之一参加了此次座谈会。

DeepSeek 全球增速最快AI应用

到底谁是DeepSeek? 公司、模型、产品

公司、模型、产品

- 引起中美AI行业内部关注的是:模型
- 引起美国关注的是:模型和公司
- 春节前后在中国出圈的是:产品

产品优势 (用户可感受到)

- 思考过程展示
- 中文好有情商
- 容易获得,使用简单
- 联网和来源引用
- 速度快
- 免费

DeepSeek模型优势

能力突破 开源、低成本、国产自主

DeepSeek以"推理能力+第一梯队性 能"为核心基础,叠加:开源开放、 超低成本、国产自主研发三大优势, 不仅实现技术代际跨越,更推动AI技 术普惠化与国产化生态繁荣,成为全 球大模型赛道的重要领跑者。

混合专家	多头潜注意力	多Token预测
MOE	MLA	MTP
强化学习	测试时计算	混合精度训练
GRPO	TTC	FP8
通讯优化	并行训练框架	直接硬件编程
DualPipe	HAI	PTX

■ 基础能力: 进入推理模型阶段, 并跻身全球第一梯队

- 1. 推理能力跃升: DeepSeek大模型核心技术突破,实现复杂推理任务的精准处 理与高效执行,覆盖多模态场景应用。
- 2. 国际竞争力对标: 模型综合性能跃居全球第一梯队, 技术指标与国际顶尖水平 (如GPT系列、Claude等) 直接对标, 奠定国产大模型的行业标杆地位。

■ 核心加分项: 开源、低成本、国产自主

- 1. 开源: 技术共享, 生态共建
 - 全量开源训练代码、数据清洗工具及微调框架
 - 开发者可快速构建教育、金融、医疗等垂直领域应用,推动协同创新。

2. 低成本: 普惠企业级AI应用

- 针对H系列芯片做了大量的模型架构优化和系统工程优化。
- 最后一次训练成本仅\$557w: 显著低于行业同类模型, 打破高价壁垒。
- 推理成本降低83%: 千亿参数模型适配中小企业需求, 加速商业化落地。

3. 国产自主: 技术自主, 缩短差距

04.大模型时代的人才需求

- 将国产模型与美国的代际差距从1-2年缩短至3-5个月,突破"卡脖子" 技术瓶颈。
- 构建多行业专属模型矩阵,全面支持国内产业智能化升级。

01.人工智能的前世今生

DeepSeek V3/R1模型的创新

一、基础架构:

- 1. 混合专家模型 (MoE) : DeepSeek采用MoE架构,通过动态选择最适合输入数据的专家模块进行处理,提升推理能力和效率。
- 2. 无辅助损失的专家负载均衡策略 (EP) : 该策略使 DeepSeekMoE在不对优化目标产生干扰的前提下,实现各个专家的负载均衡,避免了某些专家可能会被过度使用,而其他专家则被闲置的现象。
- **3. 多头潜在注意力机制(MLA)**: MLA通过低秩压缩减少Key-Value缓存,显著提升推理效率。
- 4. 强化学习 (RL): DeepSeek-R1在训练中大规模应用强化学习(让模型自我探索和训练),将传统的PPO替换为GRPO训练算法,显著提升推理能力。
- **5. 多Token预测 (MTP)** : 通过多Token预测, Deepseek不仅提高了推理速度,还降低了训练成本。

二、训练及框架:

- 1. FP8混合精度训练 (FP8) : 在关键计算步骤使用高精度,其他模型层使用FP8低精度进一步降低训练成本。这一点,是DeepSeek团队非常有价值的创新和突破。
- 2. **长链推理技术** (TTC) :模型支持数万字的长链推理,可逐步分解复杂问题并进行多步骤逻辑推理。
- **3. 并行训练系统 (HAI)**: 16 路流水线并行(Pipeline Parallelism, PP)、 跨 8 个节点的 64 路专家并行(Expert Parallelism, EP),以及数据并行 (Data Parallelism, DP),大幅提升模型训练速度。
- 4. 通讯优化 (DualPipe) : 高效的跨节点通信内核,充分利用 IB 和 NVLink 带宽特点,减少通信开销,提高模型推理性能。
- 5. 混合机器编程 (PTX) : 部分代码直接使用PTX编程提高GPU运行效率。
- 6. **算子库优化 (GEMM等Op)** : 针对H800计算卡的特点,优化了一部分CUDA的算子库。

DeepSeek V3/R1模型的创新

三、社会价值:

- 1. 开源生态: 使用最为开放的MIT开源协议,吸引了大量研究人员和应用厂商,推动了AI技术的发展。
- 2. 模型蒸馏支持: DeepSeek-R1同时发布了多个模型蒸馏。
 - 虽然这些蒸馏模型的生产初衷是为了验证蒸馏效果,但客观上帮助用户有机会使用移植了 DeepSeek-R1满血版模型的能力的更小的模型,以满足不同应用场景需求。
 - 副作用是:给市场和用户造成了很多困扰。

3. AI产品和技术的普及:

- 对于大模型研发企业,更加重视infra工程的价值了。
- 对于大模型应用企业,有了更多高效低成本解决方案。
- 对于社会大众,认识到AI是一个趋势,不是昙花一现。
- 对于市场,用户开始主动引入AI,不再怀疑了。
- 对于国家,大幅缩小了中美的核心技术差距。
- 对于全人类,技术平权,造福一方。

DeepSeek R1模型的能力突破

US & China: Frontier Language Model Intelligence, Over Time¹

DeepSeek R1模型的能力突破

The Language Model Frontier: Country of Origin

Artificial Analysis Intelligence Index, Selected Leading Models (Early 2025), Non-exhaustive

DeepSeek R1模型的能力突破

DeepSeek R1 对大模型行业的重大影响

01

打破垄断

DeepSeek-R1以低成本和开源 特性打破以往头部企业巨头割 据局面

02

价格下调

DeepSeek-R1的API定价仅为 行业均价的1/10,推动了中小型 企业低成本接入AI,对行业产生 了积极影响

03

推动创新

DeepSeek-R1促使行业开始从 "唯规模论"转向更加注重 "性价比"和"高效能"方向

人工智能: 让机器具备人类智能, 让机器具备非人类智能 (超人类智能)

- 机器学习
 - 深度学习
 - 大模型

■ 大语言模型: DeepSeek

■ 视觉模型:可灵、即梦

■ 多模态模型: GPT-4o

现代人工智能的发展路径

通用人工智能

AGI, Artificial General Intelligence

通常是指具备与人类同等或超越人类智能水平的人工智能系统。

■ OpenAI: 在大多数经济价值创造任务中表现优于人类的高度自主系统。

■ AI肖睿团队:90%的智力任务上超过90%的人类,很可能在2030年之前到来。

第五级

• 组织者, 可以完成组织工作的人工智能

第四级

• 创新者, 可协助发明创新的人工智能

第三级

• 智能行动者, 可以自动采取行动的系统

第二级

• 推理者, 达到人类水平的解决问题水平

第一级

• 聊天机器人,具有对话功能的人工智能

https://developer.baidu.com/article/details/3321696

Level 5: Al that can perform the work of an entire organisation Level 4: Al that can aid in invention and discovery Level 3: Systems that can take actions on behalf of users Level 2: Al with human-level problem-solving abilities Level 1: Al with conversational language capabilities

Level 1.

AI学会使用人类语言, 在大多数自然语言任务上突破图灵测试

Level 2.

AI学会求解问题,涌 现世界知识和类人 的复杂逻辑推理能 力,在问题求解方面 突破图灵测试

Level 3.

A学会使用工具, 利用工具完成多数 人类物理世界问题, 在工具使用方面突 破图灵测试

Level 4.

AI通过自我学习, 具备自我批判、自 我改进以及自我反 思能力

Level 5.

AI能力全面超越 人类,具备探究 科学规律、世界 起源等终极问题 的能力

第22页

01.人工智能的前世今生 02.大模型的特点和局限 03.大模型的发展观察 04.大模型时代的人才需求 05.人工智能通识课 学习交流可加微信号(zhixingzhaizhuren)

Agent: 从human in loop到human on loop

Agent的核心特征是自主(请人类走开)

■Agent是传统应用(工具+流程)的AI改造

- ●工具:
- 1. 直接使用模型或AI产品
- 2. 增强模型能力(RAG、FT)
- 3. 直接调用外部工具
- ●流程:
- 1. WorkFlow (人工定义)
 - ■Coze、Dify、ComfyUI
- 2. Agentic AI (模型拆解:环境、工具、策略)
 - ■斯坦福小镇 (MetaGPT)
 - ■AutoGLM、 Manus、 Coze Space、 Aipy
- ■趋势: A2A和MCP将成为AI系统 (Agent) 的必备要素
 - 如果把Agent想象成一个笔记本电脑:
 - 1. 大模型就是CPU
 - 2. A2A就是网络接口
 - 3. MCP就是USB接口

第23页

对现代人工智能的正确认知: 本质、关键过程、关键要素

> 现代人工智能 (大模型) 的本质

- 1. 这一波人工智能本质上是数据智能,只要是有时间结构和空间结构的数据,都可以识别出数据分布模式,建立数据模型,从而产生智能。
- 2. 这一波人工智能的核心是语言智能,通过分析和 建模人类语言,获取人类的知识,并进一步获 取人类的思维模式。
- 3. 或许, AI只是一个我们和他人和祖先和整个人 类的意义世界的交互的接口的翻译器。与我们 对话的, 不是AI, 而是AI背后那个人类构造出 的意义世界。因此, AI可以成为我们的伙伴和 导师, 例如: DeepSeek对贪嗔痴的解释。

> 大模型技术的关键过程

- 1. 预训练:中小学,打基础
- 2. 后训练: RL、SFT。大学, 有专业
- 3. 微调、Prompt。入职实习,能干活

> 大模型技术的关键要素

- 1. Token: 万物皆token
- 2. Attention: 熵减即智能
- 3. GPT: 大力出奇迹
- 4. Data: 以古鉴今
- 5. RL: 自学成才 (决策,探索未知,生成数据)
- 6. 优化: 卷Infra和算法, 实事求是, 反抽象
- 7. FT: 后训练的艺术
- 8. TTC: 大力出奇迹 AGAIN
- 9. Prompt: 有话好好说
- 10. Agent: 最后的筐

05.人工智能通识课

对现代人工智能的正确认知:AI与IT的区别

■ IT: 确定性的任务 (简单和繁杂) , 以代码逻辑为核心

•1.0:记忆+计算(冯诺依曼;软件时代)

•2.0:记忆+计算+搜索(互联网时代)

■ AI: 不确定的任务 (复杂和混沌) , 以数据模型为核心

•0.0: 专家系统: 知识+规则

•1.0: 机器学习: 数据+学习, 白盒

•0.5:传统机器学习:人类定义特征,人类估算模型参数

•1.0: 人工神经网络: 人类定义特征, 模型自己学习模型参数

•2.0:深度学习:数据+学习,黑盒(不可控,有错误概率)

•1.5: 判别模型: 人类只提供数据, 端到端学习(模型自己抽取特征, 自己学习模型参数)

•2.0: 生成模型: 训练阶段+推理阶段; 压缩+生成 (幻觉)

•2.5: 推理模型: 训练阶段强化学习; 推理阶段慢思考

■ IT应用与AI应用的关键差异:

01.人工智能的前世今生

•在互联网时代,用户使用系统的成本很低,边际成本接近于零。

•在AI时代,用户使用系统的成本比较高,有大量的GPU算力需求,边际成本较高。

服务器繁忙,请稍后再试。

05.人工智能通识课

大模型技术的应用阶段

提示词

目标是快速验证AI是否能 解决某个特定 的业务痛点 (例如, 初步的文本分类、 简单的信息提取)。

知识库

目标是利用企业内部知识 库,提高AI在特定领域问 答或内容生成 的 准确性和 相关性。

目标是进一步优化模型在 特定任务上的性能, 使其 更符合企业的 具体需求和 数据特点。

行业模型

目标是利用行业领先的AI 能力, 解决更复杂、专业 的问题。

AI与提示词的关系-人类与大模型合作方式

知识渊博的专家 为你解决具体任务

给刚毕业的优秀大学 生安排任务

给外包员工安排任务

大模型的提示词技巧的总原则

地AI 坐人看

- 1. 把自己当老板,像对待你的员工一样,对待AI
- 2. 镜子理论: 提示词是人激发和控制AI能力的手段, 如同一个骑手的骑术一样

具体内容可以参考AI肖睿团队的《提示词工程和场景落地》 (https://ai.kgc.cn/ai-news/294.html)

AI与提示词的关系-人类与大模型合作方式

喂模式

AI不知道+我知道

给知识和场景 (Prompt+know how) 将掌握的信 息传递给AI。使用详细的描述、举例、甚至提供数 据等方式。

比如你了解某个地方的独特方言,而AI的训练数据 中没有包含,你需要用文字甚至录音等方式向AI描 述这种方言的特点,例如发音、词汇等。

人类知道

AI知道+我知道

简单说

简单表达 (明确指令: 使用清晰的动词和目标, 例如"比较"、"总结"、"分析"、"生成" 等。)

比如双方都知道"二战",你可以直接问"二 战爆发的原因是什么?",或者更进一步问"比 较一战和二战的异同"。

→ AI知道

开放聊

AI不知道+我不知道

共同进行研究和探索,可以利用AI的计算和分析能力, 结合人类的创造力和直觉, 共同寻找答案。

比如要研究某种尚未被发现的疾病的病因,可以向AI 提供已知的医学数据和研究文献,让AI分析潜在的关 联性,并提出新的研究方向。

提问题 AI知道+我不知道

多轮对话同频(使用开放式讨论,例如"什么 是"、"如何"、"有哪些"等。)

比如AI知道很多关于商业模式的知识,而你不太 了解, 你可以问"我在做美术教育, 有哪些好的 盈利模式?"。

大模型的提示词工程和上下文工程

■ 提示词的发展:多变、内在规律、分化

提示词的本质: 大模型不够聪明

提示词的目标:人机对齐(信息和意图)

提示词的价值流变:对话场景下,越来越成为人类自身的思维工具

■ 对人类的要求

➤ 定义AI问题:把现实中的问题转化为可以用AI解决的问题

➤ 布置AI任务: 在有限的上下文里,清晰的表达,告诉所需的背景信息

➢ 验收AI工作:对回复有预期,对模型回复的好坏可以辨别

■ 从"提示词工程"到"上下文工程"

- 扩展(系统设定、记忆、系统状态等),动态(每次执行会有变化)
- ▶ 教材 vs 教学场景;用户视角 vs 大模型视角

汉语新解

Prompt Engineer

提示工程师 tí shì gōng chéng shī プロンプトエンジニア

数字时代的通灵师,专门 研究如何与人工智能对话 的神秘学。他们用字符串 编织咒语, 试图驾驭比人 类更聪明的生物, 却常常 被自己召唤出的结果震惊。

<svstem>

AI2.0时代的思考

人是世界的尺度,活在意义之网中,人工智能让这张网更有价值 人类需要的是判断力和表达力,不再是记忆力和知识储备 人是目的, 不是手段, 不要去和人工智能比工具性

使用人工智能的人淘汰不使用人工智能的人 使用人工智能的组织淘汰不使用人工智能的组织 人工智能时代的策略:把握原理、躬身入局、

人工智能2.0时代的人才培养和通识教育课程

01

人工智能2.0时代

- 1. 人工智能的前世今生
- 大模型的特点和局限
- 3. 大模型的发展观察

02

人才需求和通识教育课

- 1. 人才需求
- 2. 人工智能通识课

AI2.0时代的技术观和人才观: 我们的判断

AI技术的突破和范式转换

- 如自然语言处理、计算机视觉、自动驾驶等
- 数据智能: AI1.0到AI2.0
- 智能门槛:判别-生成-推理

02

社会对AI人才的需求

- 应用能力:不要求专业深度,但也不是简单的工具使用,而是深度应用解决问题
- 思维能力:不是记忆和推理,而是问题定义、沟通表达、结果鉴别

AI成为学生的必备素养

- · 现在,懂AI技术,会AI应用,具备竞争优势
- 未来,懂AI技术,会AI应用,仅仅是不会竞争劣势(必备技能)

AI2.0时代的人才需求

一、应用人才(实际上包括所有人)

■ 思维要求:用AI技术和工具去解决实际问题,提高工作和生活的效率和质量,赋能行业

■ 能力增加:问题定义能力,独立思考能力和判断力,表达和沟通能力

■ 能力减少:记忆力和知识储备,计算推理能力,执行力(纪律和毅力),*创造力?*

■ 教育需求: AI通识教育

二、IT专业人才(产品经理、开发岗位)

■ 思维要求:数据思维,模型思维,以人为本,赋能行业,理解场景

■ 能力增加: 机器学习-深度学习-大模型原理, 数据工程能力

■ 能力减少: 代码能力, 逻辑能力? 文档能力, 软硬件工程能力 (IT项目管理和适配)

■ 教育需求:新IT教育

三、AI2.0专业人才(数据、算法和模型、算力和工程)

■ 思维要求: 数学思维, 好奇心和试错思维, 热爱人类

■ 能力增加1:数据工程能力,数据合成能力

■ 能力增加2: 底层软硬件工程能力(芯片、通讯、操作系统)

■ 能力增加3: 大模型范式能力 (Transformer、Diffusion、RL等)

■ 能力减少:数学能力,机器学习传统算法,深度学习传统模型

■ 教育需求: AI专业教育

大模型开发工程师 AI应用开发工程师 Agent开发工程师 AI产品经理

各行业AI赋能人才 日常的AI应用

人工智能2.0时代的人才培养和通识教育课程

01

人工智能2.0时代

- 1. 人工智能的前世今生
- 大模型的特点和局限
- 3. 大模型的发展观察

02

人才需求和通识教育课

- 1. 人才需求
- 2. 人工智能通识课

人工智能赋能教育的四层障碍

数字素养通识教育的变迁

计算机与互联网时代

1990s - 2000s

核心目标:

计算机应用和网络资源利用能力

主要技能:

Office办公软件应用 电子邮件与网页搜索 基本信息检索与管理

主要挑战:

降低数字鸿沟, 普及基础数字能力

大数据时代

2010s - 2020

核心目标:

数据思维与分析能力提升

主要技能:

数据收集与清洗处理 数据可视化表达

基础统计分析与解读

主要挑战:

培养数据思维, 理解数据价值

人工智能时代

2020s - 现在

核心目标:

人机协同能力与批判性思维

主要技能:

AI工具应用与提示词工程

AI输出结果评估与验证

解决复杂问题的人机协作

主要挑战:

平衡技术效率与独立思考能力

AI2.0时代的人工智能教育

一、面临的环境

■ 缺乏积累:内容体系、课件、师资、教学模式

■ 变化快速: 传统的内容建设、课件开发、教师的知识更新模式都会面临挑战

■ 认知落后:传统的编程思维、IT思维,会干扰AI2.0的课程内容建设和目标评测

二、面临的困难

■ 课程迭代

■ 师资队伍

■ 平台环境支持: 算力、数据、费用

三、人工智能教育的解决路径

■ 通识课:建立知识、思维、伦理方面的认知体系

■ 通育课: 学会在学习、生活、社会生存场景下的人机协同技能和习惯

■ 通用课:与专业领域结合的应用和创新技能

四、人工智能教育的长期问题:教育定位

■ 从: 专业核心,知识运用,规范性思维

■ 到:问题核心,人机协作,批判性思维

人工智能通识教育的陷阱

■ 传统AI技术教育的局限

- > AI1.0 (DOS)
- ▶ 简本专业课 (汽车制造和修理)
- > 缺乏动手场景

■ AI通识教育的学习需求

- > Al2.0 (Windows)
- ➤ 懂AI用AI (公交司机、出租司机) , 拒绝劝退
- > 与工作场景和生活场景关联

人工智能通识课:目标与设计理念

目标定位

1、全局观和现代AI技术的范式转换

智能的核心: 推理-知识-数据

数据智能:本质是数据建模,哲学基础 是经验论

2、内容定位: 生成式AI思维与应用

- 文本、图像合成、音视频生成技术
- 不考虑数据处理能力和编程能力
- 不建议计算机和互联网应用内容学习

3、教学目标:

■ 通过工具实操与项目制学习, 让学生在实 践中具备AI思维,掌握分辨AI技术边界的 能力和解决问题的AI技能

设计理念

1、培养理解高度与思考维度

- 纠正常见AI误解,建立正确认知
- 多维度视角理解AI的意义: 技术+社会+ 哲学多维视角

2、案例讲解与动手实操提升自信与成就感

- 案例分析四步法形成AI问题解决思维
- 降低门槛,理解边界,聚焦实用性
- 教学资源和实验平台助力教学自学实操

3、学科融合提升兴趣和解决问题能力

- 结合专业背景探索AI应用场景
- 通过跨学科融合激发创新能力
- 小组合作与创新任务

培养学生的

AI全局观 本质理解 应用能力

人工智能通识课: 内容

1第41页

学习药旛两以加AI肖睿团构微信用(ME图1/80)kingzhaizhuren)

人工智能通识课:课程和教学资源

第42页

PPT课件

微课视频

第1章作业题答案及解析

课后作业

01數学演示案例

示例1: 前馈神经网络 (多层感知机) -初实践

示例2: 反向传播算法 (BP) -初实践

示例3: 卷积神经网络-初实践

演示案例

02 实战任务参考答案

练习1素材: 机器学习原理体验

实战任务

学习变流列以加AI肖睿团构微信用(MG 21(80) kingzhaizhuren)

人工智能通识课: 学科融合

课前准备阶段

- 1. 专业化课程目标设定
- 2. 专业关联内容筛选
- 3. 学习难点预判与准备

导入与激活阶段

- 1. 专业情境导入
- 2. 专业知识激活

概念讲解阶段

- 1. 专业化概念呈现
- 2. 分层次概念讲解

DeepSeek+北大青鸟逆向课程设计

实践应用阶段

- 1. 专业化示范
- 2. 专业导向实践
- 3. 协作问题解决

巩固与拓展阶段

- 1. 知识整合与反思
- 2. 专业创新思考

评估与反馈阶段

- 1. 多元化专业评估
- 2. 个性化反馈与指导

人工智能通识课: 学科融合智能体

1第44页

人工智能通识课教学设计精灵

■ 用户9blvWk @用户9906847254161

作为人工智能通识课教学设计师,能依用户提供的专...

0 对话 • 0 使用 • 0 收藏

▼ DeepSeek-R1

分层学习目标设计 (ABCD表述法)

基础层: 认知理解目标

目标1

A教育学专业学生 B能准确描述 C在给定教育场景下 D至少3种DeepSeek大语言模型的核心教育应用

- 识别AI适用的教学环节(备课/授课/评价)
- 解释智能学情分析的实现原理(非技术细节)
- 说明AI辅助家校沟通的典型话术生成机制

目标2

A教育学专业学生 B能系统分析 C使用DeepSeek平台时 D教育数据隐私保护的3个关键要点

- 理解数据脱敏处理的基本要求
- 识别敏感信息过滤的典型场景
- 说明教育数据存储的安全规范

应用层: 实践操作目标

目标1

A教育学专业学生 B能独立完成 C在DeepSeek平台通过自然语言交互 D生成符合教学标准的以下资源:

- 单元教学设计方案(包含5个核心要素)
- 分层课后练习(满足3种难度梯度)
- 家长沟通话术模板(覆盖3类典型场景)

目标2

A教育学专业学生 B能有效运用 CDeepSeek分析工具 D实现以下教育数据处理任务:

- 自动生成班级学情分析报告(包含3个核心维度)
- 创建学生成长档案可视化看板

学习资源可以加AI肖睿团构微信用(ME型1/80)kingzhaizhuren)

人工智能赋能: 教学

人工智能赋能: 师资

产研交流与合作

双师双能型人才培养

基础与前沿

围绕"人工智能+学科"提升师资队伍 教学、实验、科研及创新能力

以"双师双能型"师资队伍培养 促进科学建设

协 同发

科

AI辅助文献查阅

区域X师资XAI

- AI辅助课题申报
- AI辅助论文写作

教学辅 导

- 学习科学原理和思维工具
- AI改变教育与学习

- AI助力PPT开发
- AI助力教学设计
- AI辅助教学资源生成
- AI辅助学生评估与反馈

大模 论

- 基础理论课程
- 大模型核心技术课程
- 前沿拓展课程

AI赋能科研

教学方法与课程设计

大模型实践技能

大模型理论基础

师 资能 力提 升

ナク文派リ外派内音四外派后与(ADZ2100)

01.人工智能的前世今生

02.大模型的特点和局限

03.大模型的发展观察

04.大模型时代的人才需求

05.人工智能通识课

学习交流可加微信号 (zhixingzhaizhuren)

第46页

人工智能赋能: 课程创作工具

专区+工具集 (可SaaS)

内容制作+任务分解(可本地)

国家级精品课程平台

省级/校级课程平台

项目经理分解 企业讲师陪课 专项师资培训

企业师资服务

数字教师 克隆/二维 无需真人出镜 内容快速输出 专用教学资源库

实验环境 跟练/实训 课程内容分解 学生小组生产 开放工程可调改

院校专区服务

■ 课程模板制采 批量元素可选 格式保护可控

适用特色

新文科开放内容

情景再现 文化历史 文学影视 哲学心理

无代码工程交付

持续开放 多端交互 无需编程 资源累积

专用教学资源库

可交互图形图像资源库

01.人工智能的前世今生 02.大模型的特点和局限 03.大模型的发展观察 04.大模型时代的人才需求 05.人工智能通识课 学习交流可加微信号(zhixingzhaizhuren)