Chapter 3: Processes

Outline

- Process Concept
- Process Scheduling
- Operations on Processes
- Interprocess Communication
- IPC in Shared-Memory Systems
- ♣ IPC in Message-Passing Systems
- Examples of IPC Systems
- Communication in Client-Server Systems

Objectives

- Identify the separate components of a process and illustrate how they are represented and scheduled in an operating system.
- Describe how processes are created and terminated in an operating system, including developing programs using the appropriate system calls that perform these operations.
- Describe and contrast interprocess communication using shared memory and message passing.
- Design programs that uses pipes and POSIX shared memory to perform interprocess communication.
- Describe client-server communication using sockets and remote procedure calls.
- Design kernel modules that interact with the Linux operating system.

Process Concept

- 4 An operating system executes a variety of programs that run as a process.
- ♣ Process a program in execution; process execution must progress in sequential fashion. No parallel execution of instructions of a single process
- Multiple parts
 - The program code, also called **text section**
 - Current activity including program counter, processor registers
 - Stack containing temporary data
 - Function parameters, return addresses, local variables
 - Data section containing global variables
 - Heap containing memory dynamically allocated during run time

Process Concept (Cont.)

- Program is passive entity stored on disk (executable file); process is active
 - Program becomes process when an executable file is loaded into memory
- Execution of program started via GUI mouse clicks, command line entry of its name, etc.
- One program can be several processes
 - Consider multiple users executing the same program

Process in Memory

Memory Layout of a C Program

Process State

- 4 As a process executes, it changes state
 - new: The process is being created
 - running: Instructions are being executed
 - waiting: The process is waiting for some event to occur
 - ready: The process is waiting to be assigned to a processor
 - terminated: The process has finished execution

Process Control Block (PCB)

Information associated with each process(also called **task control block**)

- Process state running, waiting, etc.
- Program counter location of instruction to next execute
- ♣ CPU registers contents of all process-centric registers
- CPU scheduling information- priorities, scheduling queue pointers
- Memory-management information memory allocated to the process
- Accounting information CPU used, clock time elapsed since start, time limits
- ♣ I/O status information I/O devices allocated to process, list of open files

process state

process number

program counter

registers

memory limits

list of open files

• • •

Threads

- So far, process has a single thread of execution
- Consider having multiple program counters per process
 - Multiple locations can execute at once
 - Multiple threads of control -> threads
- Must then have storage for thread details, multiple program counters in PCB
- Explore in detail in Chapter 4

Process Representation in Linux

Represented by the C structure task_struct

Process Scheduling

- Process scheduler selects among available processes for next execution on CPU core
- Goal -- Maximize CPU use, quickly switch processes onto CPU core
- Maintains scheduling queues of processes
 - Ready queue set of all processes residing in main memory, ready and waiting to execute
 - Wait queues set of processes waiting for an event (i.e., I/O)
 - Processes migrate among the various queues

Ready and Wait Queues

Representation of Process Scheduling

CPU Switch From Process to Process

A **context switch** occurs when the CPU switches from one process to another.

14/69

Context Switch

- ♣ When CPU switches to another process, the system must save the state of the old process and load the saved state for the new process via a context switch
- Context of a process represented in the PCB
- Context-switch time is pure overhead; the system does no useful work while switching
 - The more complex the OS and the PCB → the longer the context switch
- Time dependent on hardware support
 - Some hardware provides multiple sets of registers per CPU → multiple contexts loaded at once

Multitasking in Mobile Systems

- Some mobile systems (e.g., early version of iOS) allow only one process to run, others suspended
- ♣ Due to screen real estate, user interface limits iOS provides for a
 - Single foreground process- controlled via user interface
 - Multiple background processes— in memory, running, but not on the display, and with limits
 - Limits include single, short task, receiving notification of events, specific long-running tasks like audio playback
- 4 Android runs foreground and background, with fewer limits
 - Background process uses a service to perform tasks
 - Service can keep running even if background process is suspended

16-20 City to Co. 5 or 1 Lot to 2 32 16/69

Service has no user interface, small memory use

Operations on Processes

- System must provide mechanisms for:
 - Process creation
 - Process termination

Process Creation

- **Parent** process create **children** processes, which, in turn create other processes, forming a **tree** of processes
- Generally, process identified and managed via a process identifier (pid)
- Resource sharing options
 - Parent and children share all resources
 - Children share subset of parent's resources
 - Parent and child share no resources
- Execution options
 - Parent and children execute concurrently
 - Parent waits until children terminate

Process Creation (Cont.)

- Address space
 - Child duplicate of parent
 - Child has a program loaded into it
- UNIX examples
 - fork() system call creates new process
 - exec() system call used after a fork() to replace the process' memory space with a new program
 - Parent process calls wait() waiting for the child to terminate

A Tree of Processes in Linux

C Program Forking Separate Process

```
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int main()
pid_t pid;
   /* fork a child process */
   pid = fork();
   if (pid < 0) { /* error occurred */
      fprintf(stderr, "Fork Failed");
     return 1;
   else if (pid == 0) { /* child process */
      execlp("/bin/ls","ls",NULL);
   else { /* parent process */
      /* parent will wait for the child to complete */
      wait(NULL);
      printf("Child Complete");
   return 0;
```


Creating a Separate Process via Windows API

```
#include <stdio.h>
#include <windows.h>
int main(VOID)
STARTUPINFO si;
PROCESS_INFORMATION pi;
   /* allocate memory */
   ZeroMemory(&si, sizeof(si));
   si.cb = sizeof(si);
   ZeroMemory(&pi, sizeof(pi));
   /* create child process */
   if (!CreateProcess(NULL, /* use command line */
    "C:\\WINDOWS\\system32\\mspaint.exe", /* command */
    NULL, /* don't inherit process handle */
    NULL, /* don't inherit thread handle */
    FALSE, /* disable handle inheritance */
    0, /* no creation flags */
    NULL, /* use parent's environment block */
    NULL, /* use parent's existing directory */
    &si,
    &pi))
      fprintf(stderr, "Create Process Failed");
      return -1:
   /* parent will wait for the child to complete */
   WaitForSingleObject(pi.hProcess, INFINITE);
   printf("Child Complete");
   /* close handles */
   CloseHandle(pi.hProcess);
   CloseHandle(pi.hThread);
```


Process Termination

- Process executes last statement and then asks the operating system to delete it using the exit() system call.
 - Returns status data from child to parent (via wait())
 - Process' resources are deallocated by operating system
- ♣ Parent may terminate the execution of children processes using the abort() system call. Some reasons for doing so:
 - Child has exceeded allocated resources
 - Task assigned to child is no longer required
 - The parent is exiting, and the operating systems does not allow a child to continue if its parent terminates

Process Termination

- Some operating systems do not allow child to exists if its parent has terminated. If a process terminates, then all its children must also be terminated.
 - cascading termination. All children, grandchildren, etc., are terminated.
 - The termination is initiated by the operating system.
- The parent process may wait for termination of a child process by using the wait() system call. The call returns status information and the pid of the terminated process

```
pid = wait(&status);
```

- ♣ If no parent waiting (did not invoke wait()) process is a zombie
- 4 If parent terminated without invoking wait(), process is an orphan

Android Process Importance Hierarchy

- ♣ Mobile operating systems often have to terminate processes to reclaim system resources such as memory. From most to least important:
 - Foreground process
 - Visible process
 - Service process
 - Background process
 - Empty process
- ♣ Android will begin terminating processes that are least important.

Multiprocess Architecture – Chrome Browser

- Many web browsers ran as single process (some still do)
 - If one web site causes trouble, entire browser can hang or crash
- Google Chrome Browser is multiprocess with 3 different types of processes:
 - Browser process manages user interface, disk and network I/O
 - Renderer process renders web pages, deals with HTML, Javascript. A new renderer created for each website opened
 - Runs in sandbox restricting disk and network I/O, minimizing effect of security exploits
 - Plug-in process for each type of plug-in

Interprocess Communication

- Processes within a system may be independent or cooperating
- Cooperating process can affect or be affected by other processes, including sharing data
- Reasons for cooperating processes:
 - Information sharing
 - Computation speedup
 - Modularity
 - Convenience
- **4** Cooperating processes need interprocess communication (IPC)
- Two models of IPC
 - Shared memory
 - Message passing

Communications Models

(a) Shared memory. (b) Message passing. process A process A shared memory process B process B message queue m_n $m_0 | m_1 | m_2 | m_3 |$ kernel kernel (a) (b)

Producer-Consumer Problem

- Paradigm for cooperating processes:
 - producer process produces information that is consumed by a consumer process
- **4** Two variations:
 - unbounded-buffer places no practical limit on the size of the buffer:
 - Producer never waits
 - Consumer waits if there is no buffer to consume
 - bounded-buffer assumes that there is a fixed buffer size
 - Producer must wait if all buffers are full
 - Consumer waits if there is no buffer to consume

IPC - Shared Memory

- An area of memory shared among the processes that wish to communicate
- ♣ The communication is under the control of the users processes not the operating system.
- Major issues is to provide mechanism that will allow the user processes to synchronize their actions when they access shared memory.
- Synchronization is discussed in great details in Chapters 6 & 7.

Bounded-Buffer – Shared-Memory Solution

♣ Shared data

```
#define BUFFER_SIZE 10
typedef struct {
    . . .
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
```

Solution is correct, but can only use BUFFER_SIZE-1 elements

Producer Process – Shared Memory

```
item next produced;
while (true) {
 /* produce an item in next produced */
 while (((in + 1) % BUFFER SIZE) == out)
     ; /* do nothing */
 buffer[in] = next produced;
  in = (in + 1) % BUFFER SIZE;
```


Consumer Process – Shared Memory

```
item next consumed;
while (true) {
     while (in == out)
          ; /* do nothing */
     next consumed = buffer[out];
     out = (out + 1) % BUFFER SIZE;
     /* consume the item in next
consumed */
```


What about Filling all the Buffers?

- Suppose that we wanted to provide a solution to the consumer-producer problem that fills all the buffer
- We can do so by having an integer of the number of full buffers.
 Why bothers to fill all?
- ♣ Initially, counter is set to 0.
- The integer counter is incremented by produces a new buffer.
- The integer counter is and is decremented by the consumer after it consumes a buffer.

Producer

Consumer

Race Condition

tounter++ could be implemented as register1 = counter register1 = register1 + 1 counter = register1 **4** counter - could be implemented as register2 = counter register2 = register2 - 1 counter = register2 ♣ Consider this execution interleaving with "count = 5" initially: S0: producer execute register1 = counter ${register1 = 5}$ S1: producer execute register1 = register1 + 1 {register1 = 6} S2: consumer execute register2 = counter {register2 = 5} S3: consumer execute register2 = register2 - 1 {register2 = 4} S4: producer execute counter = register1 {counter = 6 } S5: consumer execute counter = register2 $\{counter = 4\}$

Race Condition (Cont.)

- ♣ Question why was there no race condition in the first solution (where at most N - 1) buffers can be filled?
- ♣ More in Chapter 6.

IPC – Message Passing

- Processes communicate with each other without resorting to shared variables
- ♣ IPC facility provides two operations:
 - send(message)
 - receive(message)
- The message size is either fixed or variable

Message Passing (Cont.)

- ♣ If processes P and Q wish to communicate, they need to:
 - Establish a communication link between them
 - Exchange messages via send/receive
- Implementation issues:
 - How are links established?
 - Can a link be associated with more than two processes?
 - How many links can there be between every pair of communicating processes?
 - What is the capacity of a link?
 - Is the size of a message that the link can accommodate fixed or variable?
 - Is a link unidirectional or bi-directional?

Implementation of Communication Link

- Physical:
 - Shared memory
 - Hardware bus
 - Network
- ♣ Logical:
 - Direct or indirect
 - Synchronous or asynchronous
 - Automatic or explicit buffering

Direct Communication

- Processes must name each other explicitly:
 - send (P, message) send a message to process P
 - receive(Q, message) receive a message from process Q
- Properties of communication link
 - Links are established automatically
 - A link is associated with exactly one pair of communicating processes
 - Between each pair there exists exactly one link
 - The link may be unidirectional, but is usually bi-directional

Indirect Communication

- Messages are directed and received from mailboxes (also referred to as ports)
 - Each mailbox has a unique id
 - Processes can communicate only if they share a mailbox
- Properties of communication link
 - Link established only if processes share a common mailbox
 - A link may be associated with many processes
 - Each pair of processes may share several communication links
 - Link may be unidirectional or bi-directional

Indirect Communication (Cont.)

- Operations
 - Create a new mailbox (port)
 - Send and receive messages through mailbox
 - Delete a mailbox
- Primitives are defined as:
 - send(A, message) send a message to mailbox A
 - receive(A, message) receive a message from mailbox A

Indirect Communication (Cont.)

Mailbox sharing

- \bullet P_1 , P_2 , and P_3 share mailbox A
- \bullet P_1 , sends; P_2 and P_3 receive
- Who gets the message?

Solutions

- Allow a link to be associated with at most two processes
- Allow only one process at a time to execute a receive operation
- Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.

Synchronization

Message passing may be either blocking or non-blocking

- **Blocking** is considered synchronous
 - Blocking send -- the sender is blocked until the message is received
 - Blocking receive -- the receiver is blocked until a message is available
- **Non-blocking** is considered asynchronous
 - Non-blocking send -- the sender sends the message and continue
 - Non-blocking receive -- the receiver receives:
 - A valid message, or
 - Null message
- Different combinations possible
 - If both send and receive are blocking, we have a rendezvous

Producer-Consumer: Message Passing

```
Producer
    message next produced;
     while (true) {
      /* produce an item in next produced */
      send(next produced);
Consumer
     message next consumed;
     while (true) {
       receive (next consumed)
      /* consume the item in next consumed */
```


Buffering

- Queue of messages attached to the link.
- Implemented in one of three ways
 - 1. Zero capacity no messages are queued on a link. Sender must wait for receiver (rendezvous)
 - 2. Bounded capacity finite length of *n* messages Sender must wait if link full
 - 3. Unbounded capacity infinite length Sender never waits

Examples of IPC Systems - POSIX

- POSIX Shared Memory
 - Process first creates shared memory segment
 shm_fd = shm_open(name, O CREAT | O RDWR, 0666);
 - Also used to open an existing segment
 - Set the size of the object

```
ftruncate(shm_fd, 4096);
```

- Use mmap() to memory-map a file pointer to the shared memory object
- Reading and writing to shared memory is done by using the pointer returned by mmap().

IPC POSIX Producer

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>
int main()
/* the size (in bytes) of shared memory object */
const int SIZE = 4096;
/* name of the shared memory object */
const char *name = "OS";
/* strings written to shared memory */
const char *message_0 = "Hello";
const char *message_1 = "World!";
/* shared memory file descriptor */
int shm_fd;
/* pointer to shared memory obect */
void *ptr;
   /* create the shared memory object */
   shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);
   /* configure the size of the shared memory object */
   ftruncate(shm_fd, SIZE);
   /* memory map the shared memory object */
   ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm_fd, 0);
   /* write to the shared memory object */
   sprintf(ptr,"%s",message_0);
   ptr += strlen(message_0);
   sprintf(ptr, "%s", message_1);
   ptr += strlen(message_1);
   return 0;
```


IPC POSIX Consumer

```
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>
int main()
/* the size (in bytes) of shared memory object */
const int SIZE = 4096;
/* name of the shared memory object */
const char *name = "OS";
/* shared memory file descriptor */
int shm_fd;
/* pointer to shared memory obect */
void *ptr;
   /* open the shared memory object */
   shm_fd = shm_open(name, O_RDONLY, 0666);
   /* memory map the shared memory object */
   ptr = mmap(0, SIZE, PROT_READ, MAP_SHARED, shm_fd, 0);
   /* read from the shared memory object */
   printf("%s",(char *)ptr);
   /* remove the shared memory object */
   shm_unlink(name);
   return 0;
```


Examples of IPC Systems - Mach

- Mach communication is message based
 - Even system calls are messages
 - Each task gets two ports at creation Kernel and Notify
 - Messages are sent and received using the mach_msg() function
 - Ports needed for communication, created via mach_port_allocate()
 - Send and receive are flexible; for example four options if mailbox full:
 - Wait indefinitely
 - Wait at most n milliseconds
 - Return immediately
 - Temporarily cache a message

Mach Messages

```
#include<mach/mach.h>

struct message {
         mach_msg_header_t header;
         int data;
};

mach port t client;
mach port t server;
```


Mach Message Passing - Client

```
/* Client Code */
struct message message;
// construct the header
message.header.msgh_size = sizeof(message);
message.header.msgh_remote_port = server;
message.header.msgh_local_port = client;
// send the message
mach_msg(&message.header, // message header
  MACH_SEND_MSG, // sending a message
  sizeof(message), // size of message sent
  0, // maximum size of received message - unnecessary
  MACH_PORT_NULL, // name of receive port - unnecessary
  MACH_MSG_TIMEOUT_NONE, // no time outs
  MACH_PORT_NULL // no notify port
);
```


Mach Message Passing - Server

```
/* Server Code */
struct message message;

// receive the message
mach_msg(&message.header, // message header
    MACH_RCV_MSG, // sending a message
    0, // size of message sent
    sizeof(message), // maximum size of received message
    server, // name of receive port
    MACH_MSG_TIMEOUT_NONE, // no time outs
    MACH_PORT_NULL // no notify port
);
```


Examples of IPC Systems – Windows

- - Only works between processes on the same system
 - Uses ports (like mailboxes) to establish and maintain communication channels
 - Communication works as follows:
 - The client opens a handle to the subsystem's connection port object.
 - The client sends a connection request.
 - The server creates two private communication ports and returns the handle to one of them to the client.
 - The client and server use the corresponding port handle to send messages or callbacks and to listen for replies.

Local Procedure Calls in Windows

Pipes

- Acts as a conduit allowing two processes to communicate
- Issues:
 - Is communication unidirectional or bidirectional?
 - In the case of two-way communication, is it half or full-duplex?
 - Must there exist a relationship (i.e., parent-child) between the communicating processes?
 - Can the pipes be used over a network?
- Ordinary pipes cannot be accessed from outside the process that created it. Typically, a parent process creates a pipe and uses it to communicate with a child process that it created.
- Named pipes can be accessed without a parent-child relationship.

Ordinary Pipes

- Ordinary Pipes allow communication in standard producer-consumer style
- ♣ Producer writes to one end (the write-end of the pipe)
- ♣ Consumer reads from the other end (the read-end of the pipe)
- Ordinary pipes are therefore unidirectional
- Require parent-child relationship between communicating processes

Windows calls these anonymous pipes

Named Pipes

- Named Pipes are more powerful than ordinary pipes
- Communication is bidirectional
- No parent-child relationship is necessary between the communicating processes
- Several processes can use the named pipe for communication
- Provided on both UNIX and Windows systems

Communications in Client-Server Systems

- Sockets
- **Remote Procedure Calls**

Sockets

- 4 A socket is defined as an endpoint for communication
- Concatenation of IP address and port a number included at start of message packet to differentiate network services on a host
- ♣ The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8
- Communication consists between a pair of sockets
- 4 All ports below 1024 are well known, used for standard services
- Special IP address 127.0.0.1 (loopback) to refer to system on which process is running

Socket Communication

Sockets in Java

- Three types of sockets
 - Connection-oriented (TCP)
 - Connectionless (UDP)
 - MulticastSocket class data can be sent to multiple recipients
- Consider this "Date" server in Java:

```
import java.net.*;
import java.io.*;
public class DateServer
  public static void main(String[] args) {
       ServerSocket sock = new ServerSocket(6013);
       /* now listen for connections */
       while (true) {
          Socket client = sock.accept();
          PrintWriter pout = new
           PrintWriter(client.getOutputStream(), true);
          /* write the Date to the socket */
          pout.println(new java.util.Date().toString());
          /* close the socket and resume */
          /* listening for connections */
          client.close();
     catch (IOException ioe) {
       System.err.println(ioe);
```


Sockets in Java

The equivalent Date client

```
import java.net.*;
import java.io.*;
public class DateClient
  public static void main(String[] args) {
     try {
       /* make connection to server socket */
       Socket sock = new Socket("127.0.0.1",6013);
       InputStream in = sock.getInputStream();
       BufferedReader bin = new
          BufferedReader(new InputStreamReader(in));
       /* read the date from the socket */
       String line;
       while ( (line = bin.readLine()) != null)
          System.out.println(line);
       /* close the socket connection*/
       sock.close();
     catch (IOException ioe) {
       System.err.println(ioe);
```


Remote Procedure Calls

- Remote procedure call (RPC) abstracts procedure calls between processes on networked systems
 - Again uses ports for service differentiation
- ♣ Stubs client-side proxy for the actual procedure on the server
- ♣ The client-side stub locates the server and marshalls the parameters
- The server-side stub receives this message, unpacks the marshalled parameters, and performs the procedure on the server
- ♣ On Windows, stub code compile from specification written in Microsoft Interface Definition Language (MIDL)

Remote Procedure Calls (Cont.)

- ♣ Data representation handled via External Data Representation (XDL) format to account for different architectures
 - Big-endian and little-endian
- Remote communication has more failure scenarios than local
 - Messages can be delivered exactly once rather than at most once
- OS typically provides a rendezvous (or matchmaker) service to connect client and server

Execution of RPC

End of Chapter 3

