Loss function for perceptron

- "Training": finds weights to minimise some loss. Which?
- Our task is binary classification. Encode one class as +1 and the other as -1. So each training example is now (x_i, y_i) , where y_i is either +1 or -1
- Recall that, in a perceptron, $s_i = \mathbf{w}' \mathbf{x}_i = \sum_{j=0}^m \mathbf{w}_j \mathbf{x}_{ij}$, and the sign of s_i determines the predicted class: +1 if $s_i > 0$, and -1 if $s_i < 0$
- Consider a single training example.
 - * If y_i and s_i have same sign then the example is classified correctly.
 - * If y_i and s_i have different signs, the example is misclassified

Loss function for perceptron

- The perceptron uses a loss function in which there is no penalty for correctly classified examples, while the penalty (loss) is equal to s_i for misclassified examples*
- Formally:
 - * $L_i(\mathbf{w}) = 0$ if both s_i , y_i have the same sign
 - * $L_i(\mathbf{w}) = |s_i|$ if both s_i , y_i have different signs
- This can be re-written as $L_i(\mathbf{w}) = \max(0, -\mathbf{s}_i y_i)$

^{*} This is similar, but not identical to the SVM's *hinge* loss

Stochastic gradient descent

• Randomly shuffle/split all training examples in B batches

- For *b* from 1 to *B*
- Do gradient descent update <u>using data from batch b</u>

 Advantage of such an approach: computational feasibility for large datasets

Choose initial guess $\mathbf{w}^{(0)}$, k=0

For t from 1 to T (epochs)

For i from 1 to N (training examples)

Consider example (x_i, y_i)

Update*:
$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta \nabla L_i(\mathbf{w}^{(k)})$$

 $k = k+1$

$$L_i(\mathbf{w}) = \max(0, -s_i y_i)$$

 $s_i = \mathbf{w}' x_i$
 η is learning rate

*There is no derivative when $s_i = 0$, but this case is handled explicitly in the algorithm, see next slides

Perceptron training rule

- We have $\nabla L_i(\mathbf{w}) = \mathbf{0}$ when $s_i y_i > 0$
 - * We don't need to do update when sample *i* is correctly classified
- What is $\nabla L_i(\mathbf{w})$ when $s_i y_i < 0$?
 - * We need to update when sample i is misclassified
 - * We have $\nabla L_i(\mathbf{w}) = \mathbf{x}_i$ when $y_i = -1$ and $s_i > 0$
 - * We have $\nabla L_i(\mathbf{w}) = -\mathbf{x}_i$ when $\mathbf{y}_i = 1$ and $\mathbf{s}_i < 0$
 - * Thus $\nabla L_i(\mathbf{w}) = -y_i x_i$

Choose initial guess $\mathbf{w}^{(0)}$, k=0

For t from 1 to T (epochs)

For i from 1 to N (training examples)

Compute
$$s_i = (w^{(k)})' x_i$$

If $s_i y_i \le 0$: (sample i misclassified)

$$w^{(k+1)} = w^{(k)} + \eta y_i x_i$$

$$k = k+1$$

 $(\eta > 0$ is called *learning rate*)

Choose initial guess $\mathbf{w}^{(0)}$, k=0

For t from 1 to T (epochs)

For i from 1 to N (training examples)

Compute
$$s_i = (w^{(k)})' x_i$$

If $s_i y_i \le 0$: (sample i misclassified)

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta y_i \mathbf{x}_i$$

$$k = k + 1$$

Strictly speaking it should be $s_i y_i < 0$ but \leq allows handling the case $\mathbf{w}^{(k)} = \mathbf{0}$

 $\mathbf{w}^{(k)}$ represents the value of \mathbf{w} after k updates (useful for theory). If you implement this, just write: $\mathbf{w} = \mathbf{w} + \eta y_i x_i$

Choose initial guess $\mathbf{w}^{(0)}$, k=0

For t from 1 to T (epochs)

For i from 1 to N (training examples)

Compute
$$s_i = (\mathbf{w}^{(k)})' x_i$$

If $s_i y_i \leq 0$: (sample i misclassified)
 $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta y_i x_i$
 $k = k+1$

<u>Convergence Theorem</u>: if the training data is linearly separable, the algorithm is guaranteed to converge to a solution. That is, there exist a finite k such that $L(\mathbf{w}^{(k)}) = 0$

Pros and cons of perceptron learning

- If the data is linearly separable, the perceptron training algorithm will converge to a correct solution
 - * There is a formal proof ← good!
 - It will converge to some solution (separating boundary), one of infinitely many possible ← bad!
- However, if the data is not linearly separable, the training will fail completely rather than give some approximate solution
 - Ugly

Basic setup

^{*} We drop the sample index i to have a simpler notation.

Start with random weights

^{*} We drop the sample index i to have a simpler notation.

Consider training example 1

class:

^{*} We drop the sample index i to have a simpler notation.

Update weights

o class -1

class 1

^{*} We drop the sample index i to have a simpler notation.

Consider training example 2

class 1

^{*} We drop the sample index i to have a simpler notation.

Update weights

^{*} We drop the sample index i to have a simpler notation.

Further examples

o class -1

class 1

$$y(0.3x_1 - 0.0x_2 - 0.1) = 0.35 > 0$$

3rd point: correctly classified

4th point: incorrect, update etc.

^{*} We drop the sample index i to have a simpler notation.

Further examples

Eventually, all the data will be correctly classified (provided it is linearly separable)

^{*} We drop the sample index i to have a simpler notation.

Kernel Perceptron

Another example of a kernelizable learning algorithm (like the SVM).

Perceptron training rule: Recap

Compute
$$s_i = (\mathbf{w}^{(k)})' x_i$$

If $s_i y_i \leq 0$: (sample i misclassified)
 $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta y_i x_i$
 $k = k+1$

Suppose weights are initially set to $\mathbf{w}^{(0)} = \mathbf{0}$ Suppose the algorithm misclassifies sample 1, 7, 29, and 1 again

```
First update: \mathbf{w^{(1)}} = \eta y_1 x_1

Second update: \mathbf{w^{(2)}} = \eta y_1 x_1 + \eta y_7 x_7

Third update: \mathbf{w^{(3)}} = \eta y_1 x_1 + \eta y_7 x_7 + \eta y_{29} x_{29}

Third update: \mathbf{w^{(4)}} = 2\eta y_1 x_1 + \eta y_7 x_7 + \eta y_{29} x_{29} etc.
```

Accumulating updates: Data enters via dot products

- Weights always take the form $\mathbf{w} = \sum_{j=1}^{N} \alpha_j y_j \mathbf{x}_j$, where $\boldsymbol{\alpha}$ some coefficients
- Perceptron weights always linear comb. of data!
- Recall that prediction for a new point ${m x}$ is based on sign of ${m w}'{m x}$
- Substituting \mathbf{w} we get $\mathbf{w}'\mathbf{x} = \sum_{j=1}^N \alpha_j y_j \mathbf{x}_j' \mathbf{x}$
- The dot product $x_i'x$ can be replaced with a kernel

Kernelised perceptron training rule

Set $\alpha = 0$

For t from 1 to T (epochs)

For i from 1 to N (training examples)

Compute
$$s_i = \sum_{j=1}^{N} \alpha_j y_j x_j' x_i$$

If $s_i y_i \le 0$: (sample i misclassified)

$$\alpha_i \leftarrow \alpha_i + \eta$$

 $(\eta > 0$ is called *learning rate*)

Kernelised perceptron training rule

Set $\alpha = 0$

For t from 1 to T (epochs)

For i from 1 to N (training examples)

Compute
$$s_i = \sum_{j=1}^{N} \alpha_j y_j K(x_j, x_i)$$

If $s_i y_i \leq 0$: (sample i misclassified)

$$\alpha_i \leftarrow \alpha_i + \eta$$