

Toward Fine-Grained Online Task Characteristics Estimation in Scientific Workflows

Rafael Ferreira da Silva^{1,2}, Gideon Juve², Ewa Deelman², Tristan Glatard^{1,3}, Frédéric Desprez⁴, Douglas Thain⁵, Benjamín Tovar⁵, Miron Livny⁶

¹University of Lyon, CNRS, INSERM, CREATIS, Villeurbanne, France

²University of Southern California, Information Sciences Institute, Marina Del Rey, CA, USA

³McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Canada

⁴INRIA, University of Lyon, LIP, ENS Lyon, Lyon, France

⁵University of Notre Dame, Notre Dame, IN, USA

⁶University of Wisconsin Madison, Madison, WI, USA

- Introduction
- Workflow Characterization
- Task Estimation Process
- Experiments and Evaluation
- Conclusions

- Introduction
- Workflow Characterization
- Task Estimation Process
- Experiments and Evaluation
- Conclusions

Context

Task Characteristics:
Runtime
Disk Space
Memory Consumption

Scheduling and Resource Provisioning Algorithms

- Methods assume that accurate estimations are available
 - It is hard to compute accurate estimations in production systems
- A successful workflow execution mainly depends on how tasks are planned and executed

 We propose a method to <u>online</u> estimate fine-grained task characteristics

Scientific Workflows

- Directed Acyclic Graph (DAG)
 - Nodes denote tasks
 - Edges denote task dependencies

Periodogram Workflow

Epigenomics Workflow

- Introduction
- Workflow Characterization
- Task Estimation Process
- Experiments and Evaluation
- Conclusions

Workflow Execution Profiling

- Workflows were executed using <u>Pegasus WMS</u>
 and profiled using <u>Kickstart</u> profiling tool
 - Monitors and records fine-grained data
 - E.g. process I/O, runtime, memory usage, CPU utilization
- 3 runs of each workflow with different datasets
 - 16-core cluster
 - 5 Dual core MP OpteronTM Processor 250 2.4GHz / 8GB RAM
 - 3 Dual core MD AMD Opteron™ Processor 275 2.2 GHz / 8GB RAM

Execution Profile: Montage Workflow

Task estimation could be based on mean values

			^			R	K				
Task	Count -	Runtime		I/O F		I/O	Write		Mexnory Peak		
	Count	Mean (s)	Std. Dev.	Mean (MB)	Std. Dev.	Mean (MB) \Std. Dev.	Mean (MB)	Std. Dev.		
mProjectPP	7965	2.59	0.69	4.24	0.19	16.20	0.80	9.96	0.40		
mDiffFit	23733	1.25	0.92	24.08	5.76	1.3	5 1.11	5.32	0.90		
mConcatFit	3	122.04	5.27	2.70	0.01	3.1	5 0.01	7.26	0.01		
mBgModel	3	2008.08	88.50	4.14	0.04	0.2	7 0.00	14.41	0.01		
mBackground	7965	2.14	1.68	13.67	6.78	13.0	5 6.44	11.75	5.78		
mImgtbl	51	4.65	2.04	22.64	4.61	0.23	5 0.05	6.37	0.13		
\mathbf{mAdd}	51	47.69	14.03	2191.76	560.39	1574.2	2 383.86	21.66	3.40		
mShrink	48	11.53	2.25	835.57	0.31	1.00	0.00	3.05	0.01		
mJPEG	3	1.03	0.07	46.18	0.02	0.78	8/ 0.00	2,86	0.01		
					/ 						

Task estimation based on average may lead to <u>significant estimation errors</u>

Automatic Workflow Characterization

- Characterize tasks based on their estimation capability
 - Runtime, I/O write, memory peak → estimated from I/O read
- Enforces correlation statistics to identify statistical relationships between parameters
 - <u>High correlation</u> values yield <u>accurate estimations</u>

Task	Runtime		I/O	Write	Memor	ry Peak	
Task	ρ	σ	ρ	σ	ρ	σ	Constant values
fastqSplit	0.98	9.00	1.00	297.15	0.00	0.01	7 Constant values
filterContams	-0.03	0.27	0.99	1.46	0.00	0.01	
sol2sanger	0.21	0.41	0.90	1.49	0.00	0.01	
fast2bfq	0.18	0.27	0.56	0.87	0.00	0.01	Correlated if
map	0.02	18.96	0.06	0.70	0.01	1.43	$\rho > 0.8$
mapMerge	0.98	13.33	0.99	189.81	-0.36	2.15	ρ σ.σ
pileup	0.99	4.73	0.17	249.78	0.87	25.70	

Epigenomics workflow

Density-Based Clustering

Identifies groups of high density areas where no correlation is found

Algorithm 1 DBSCAN algorithm.

```
inputs: D dataset, eps, minPts
cluster C = 0
for p \in D and p is unvisited do
  mark p as visited
  neighborPts = regionQuery(p, eps, D)
  if neighborPts.size < minPts then
    mark p as noise
  else
    C = \text{next cluster}
    expandCluster(p, neighborPts, C, eps, minPts)
  end if
end for
expandCluster(p, neighborPts, C, eps, minPts)
add p to C
for p' \in \text{neighborPts do}
  if p' is unvisited then
    mark p' as visited
    neighborPts' = regionQuery(p', eps, D)
    if neighborPts'.size > minPts then
       neighborPts = neighborPts ∪ neighborPts'
    end if
  end if
  if p' \notin any cluster then
    add p' to C
  end if
end for
regionQuery (p, eps, D)
   return D' \subseteq D, where distance(p,q) \le eps, q \in D'
```


Density-Based Clustering: Epigenomics workflow

Datasets with high correlation values are not clustered

		High	ner cori	rela	ition v	alues				
			1							
Task	Runtime			I/O Write		Memory Peak		Peak	-	
	\boldsymbol{c}	ρ	σ	\boldsymbol{c}	ρ	σ	\boldsymbol{c}	ρ	σ	Smaller standard deviation
fastqSplit	1	0.98/	9.00	1	1.00	297.15	1	0.00	0.01	values
filterContams	1	-0.03	0.27	1	0.99	1.46	1	0.00	0.01	values
	2	0.70	0.17							
sol2sanger	1	0.19	0.31	1	0.90	1.49	1	0.00	0.01	
	2	0.39	0.31							
	3	0.17	0.08							
fast2bfq	1	0.12	0.21	1	0.24	0.73	1	0.00	0.01	
	2	0.63	0.17	2	0.00	0.00				Constant values
map	1	-0.04	16.95	1	0.36	0.59	1	0.05	1.38	7
	2	0.41	14.10	2	0.37	0.55	2	0.54	0.89	
mapMerge	1	0.98	13.33	1	0.99	189.81	1	0.55	1.98	
							2	0.00	0.00	
							3	0.00	0.00	
pileup	1	0.99	4.73	1	0.17	249.78	1	0.87	25.70	<i>c</i> : clusters per task type

ρ: correlation value σ : standard deviation

- Introduction
- Workflow Characterization
- Task Estimation Process
- Experiments and Evaluation
- Conclusions

Task Estimation Process

- Based on Regression Trees
 - Built offline from historical data analyses

Tasks are classified by application, then task type

Estimation of runtime, I/O write, or memory peak

If strong correlated to the input data:

- Estimation based on the ratio parameter/input data size
- Otherwise, estimation based on the mean

Example of Estimation Rules

```
if workflow = 'Periodogram'
and taskType = 'periodogram_wrapper'
and parameter = 'write'
and input_size \le 45088768 then
return [7371489.28, mean] // mean value in bytes
end if

if workflow = 'Periodogram'
and taskType = 'periodogram_wrapper'
and parameter = 'write'
and input_size > 45088768 then
return [0.38, ratio] // ratio of output and input data
end if
```

Rules for I/O write estimation of the Periodogram workflow

Online Estimation Process

- Based on the MAPE-K loop
 - Task executions are <u>constantly monitored</u>
 - Estimated values are updated, and a new prediction is done

- Introduction
- Workflow Characterization
- Task Estimation Process
- Experiments and Evaluation
- Conclusions

Experiment Conditions

- Trace analysis of 3 workflow applications
 - Montage
 - Epigenomics
 - Periodogram
- Leave-one-out cross-validation
 - Evaluate the accuracy of our online estimation process
 - 3 different workflow execution traces for each workflow
- Simulator
 - Simple DAG analyzer
 - Replays workflow executions

Results: Average Estimation Errors - Montage

			. /	
		Runtime	I/O Write	Memory
Task	Estimation	Avg. Error	Avg.Error	Avg.Error
		(%)	(%)	(%)
mProjectPP	Offline	18.95	1.63	2.80
	Online	18.95	1.63	2.80
mDiffFit	Offline	191.02	159.46	91.07
	Online	46.52	69.14	73.72
mConcatFit	Offline	4.38	0.00	7.62
	Online	4.03	0.00	6.22
mBgModel	Offline	23.83	0.00	22.08
	Online	1.17	0.00	3.43
mBackground	Offline	65.13	102.80	104.62
	Online	44.90	1.23	1.84
mImgtbl	Offline	61.27	127.29	126.58
	Online	29.15	5.53	8.35
mAdd	Offline	9.67	113.14	110.20
	Online	9.31	3.43	9.06
mShrink	Offline	13.72	0.34	0.00
	Online	7.61	0.33	0.00
mJPEG	Offline	1.61	0.00	19.09
	Online	1.37	0.00	11.40

Online Process

Avg. Runtime Error: 18% Avg. I/O Write Error: 9% Avg. Memory Error: 13%

Offline Process

Avg. Runtime Error: 43% Avg. I/O Write Error: 56% Avg. Memory Error: 53%

Poor output data estimations leads to a chain of estimation errors in scientific workflows

Results: Average Estimation Errors - Epigenomics

		Runtime	I/O Write	Memory
Task	Estimation	Avg. Error	Avg.Error	Avg.Error
		(%)	(%)	(%)
fastqSplit	Offline	8.36	3.28	9.14
	Online	8.36	3.28	9.14
filterContams	Offline	59.31	109.81	102.83
	Online	29.13	5.35	8.15
sol2sanger	Offline	54.93	98.20	96.68
	Online	34.74	1.23	1.96
fast2bfq	Offline	27.13	128.18	99.98
	Online	17.09	15.11	10.65
map	Offline	23.62	0.00	21.07
	Online	1.39	0.00	3.33
mapMerge	Offline	53.74	93.34	1.01
	Online	10.22	9.39	1.00
pileup	Offline	6.00	4.17	49.42
	Online	5.11	3.87	19.31

Online Process

Avg. Runtime Error: 13% Avg. I/O Write Error: 5% Avg. Memory Error: 8%

Offline Process

Avg. Runtime Error: 29% Avg. I/O Write Error: 57% Avg. Memory Error: 48%

Poor output data estimations leads to a chain of estimation errors in scientific workflows

Results: Average Estimation Errors - Periodogram

Task	Estimation	Runtime Avg. Error (%)	I/O Write Avg.Error (%)	
periodogram_wrapper	Offline	45.13	16.72	1.02
	Online	45.13	16.72	1.02

BoT: the online approach produces the same result as the offline

Experiment Conclusions

- Online strategy counterbalances the propagation of estimation errors
- Estimation of first-level tasks have strong influence in subsequent estimations

- Introduction
- Workflow Characterization
- Task Estimation Process
- Experiments and Evaluation
- Conclusions

Conclusions

Summary of contributions

- Automated method that characterizes scientific workflow executions
- Fine-grained characterization of 3 real scientific workflows
- An online estimation process to predict fine-grained task needs

Future Work

- Analysis of the impact of re-planning a workflow when using an online estimation strategy
- Sensitivity analysis of the correlation value ρ
- Increase the number of workflow samples
- Compare the results with other monitoring tools

Toward Fine-Grained Online Task Characteristics Estimation in Scientific Workflows

Thank you.

Questions?

rafsilva@isi.edu

http://pegasus.isi.edu

