<u>Justificar</u> cada respuesta. La evaluación se entrega <u>escrita en tinta</u>. Si se traban con un ejercicio sigan con el siguiente. May the force be with you.

Ejercicio	1	2	3	4	5	6	7	Nota	Hojas
Puntaje máximo	0,5	0,5	2	2	2	1,5	1,5	10	Entregadas
Puntaje obtenido									

1. Numeros Reales y conjuntos (0,5 puntos)

Graficar los conjuntos \mathbb{N} , \mathbb{R} , \mathbb{Q} , \mathbb{C} , \mathbb{I} , \mathbb{Z} , $\mathbb{I}m$ (imaginarios) como diagramas de Venn.

2. Radicacion (0,5 puntos)

a)
$$\frac{\sqrt{5}-2}{2+\sqrt{5}}$$

b)
$$\frac{10}{2\sqrt{5}+5\sqrt{2}}$$

3. Cuadraticas (2 puntos)

- a) Bicuadratica: $x^4 10x^2 + 9 = 0$
- b) Graficar la siguiente función y expresarla en sus tres formas (normal, canónica y factorizada). $y=2(x+1)^2-3$

4. Logaritmos y exponenciales (2 puntos)

a)
$$3.\log_2(x) - 2.\log_4(x^2) = 2$$

b) Encontar el valor de x para que
$$2^x + 2^{x+1} + \frac{5}{4}2^{x+2} = 256$$

5. Trigonometria (1,5 puntos)

Encontrar el lado restante y los ángulos internos.

6. Complejos (1,5 puntos)

a) Resolver la siguiente ecuación y graficar el resultado en el plano complejo.

$$-z(4+iz) + 1 = (4+2i)z + i^4$$

7. Funciones Racionales (2 puntos)

$5x^2$	x^2	5(x-2)(x+2)
(x-2)(x+2)	$\frac{1}{5(x-2)(x+2)}$	r^3
(x-2)(x+2)	$\frac{\partial(x-z)(x+z)}{\partial(x-z)}$	a

2. Encontrar todos los valores de x tal que: $\frac{3x-1}{x+1} < 3$

Hoja de formulas: .

Pitagoras: $(cat.op)^2 + (cat.ady)^2 = h^2$

Pitagoras:
$$(cat.op)^2 +$$

Cuadráticas:
 $y = ax^2 + bx + c$
 $y = a(x - x_v)^2 + y_v$
 $y = a(x - x_1)(x - x_2)$
 $x_v = \frac{-b}{2a}$

Cambio de base: $\log_a(b) = \frac{\log_c(b)}{\log_c(a)}$

Teorema del seno:

$$\frac{\overline{ab}}{\sin(\hat{c})} = \frac{\overline{ac}}{\sin(\hat{b})} = \frac{\overline{bc}}{\sin(\hat{a})}$$

Teorema del coseno:

$$\overline{ab}^2 = \overline{ac}^2 + \overline{bc}^2 - 2.\overline{bc}.\overline{ac}.\cos(\hat{c})$$

[&]quot;Eppur si muove" (y sin embargo se mueve..) -Galileo Galilei

Nombre:

Profesor: Alexis Gomel

<u>Justificar</u> cada respuesta. La evaluación se entrega <u>escrita en tinta</u>. Si se traban con un ejercicio sigan con el siguiente. May the force be with you.

Ejercicio	1	2	3	4	5	6	7	Nota	Hojas
Puntaje máximo	0,5	0,5	2	2	2	1,5	1,5	10	Entregadas
Puntaje obtenido									

1. Numeros Reales y conjuntos (0,5 puntos)

Graficar los conjuntos \mathbb{N} , \mathbb{R} , \mathbb{Q} , \mathbb{C} , \mathbb{I} , \mathbb{Z} , $\mathbb{I}m$ (imaginarios) como diagramas de Venn.

2. Radicacion (0,5 puntos)

1.
$$\frac{\sqrt{7}-3}{3+\sqrt{7}}$$

2.
$$\frac{21}{3\sqrt{7}+7\sqrt{3}}$$

3. Cuadraticas (2 puntos)

- 1. Bicuadratica: $x^4 13x^2 + 36 = 0$
- 2. Graficar la siguiente función y expresarla en sus tres formas (normal, canónica y factorizada). $y=2(x-3)^2-5$

4. Logaritmos y exponenciales (2 puntos)

1.
$$-\log_9(x^2) + 4.\log_3(x) = 27$$

2. Encontrar el valor de x para que
$$-5\cdot 2^x + 2^{x+1} + 3 = 0$$

5. Funciones Racionales (2 puntos)

2. Encontrar todos los valores de x tal que: $\frac{3x-1}{x+1} > 3$

Trigonometria (1,5 puntos) 6.

Encontrar el lado restante y los ángulos internos.

Complejos (1,5 puntos)

1. Resolver la siguiente ecuación, Graficar el resultado en el plano complejo.

$$(2x - 5)i - 4y + 1 = 3 - i$$

Hoja de formulas: .

Pitagoras: $(cat.op)^2 + (cat.ady)^2 = h^2$

Cuadráticas:

$$y = ax^{2} + bx + c$$

$$y = a(x - x_{v})^{2} + y_{v}$$

$$y = a(x - x_{1})(x - x_{2})$$

$$x_{v} = \frac{-b}{2a}$$

Cambio de base: $\log_a(b) = \frac{\log_c(b)}{\log_c(a)}$

Teorema del seno:

$$\frac{\overline{ab}}{\sin(\hat{c})} = \frac{\overline{ac}}{\sin(\hat{b})} = \frac{\overline{bc}}{\sin(\hat{a})}$$

Teorema del coseno:

$$\overline{ab}^2 = \overline{ac}^2 + \overline{bc}^2 - 2.\overline{bc}.\overline{ac}.\cos(\hat{c})$$

[&]quot;Eppur si muove" (y sin embargo se mueve..) -Galileo Galilei

Profesor: Alexis Gomel

<u>Justificar</u> cada respuesta. La evaluación se entrega <u>escrita en tinta</u>. Si se traban con un ejercicio sigan con el siguiente. May the force be with you.

Ejercicio	1	2	3	4	5	6	7	Nota	Hojas
Puntaje máximo	0,5	0,5	2	2	2	1,5	1,5	10	Entregadas
Puntaje obtenido									

8. Numeros Reales y conjuntos (0,5 puntos)

Graficar los conjuntos \mathbb{N} , \mathbb{R} , \mathbb{Q} , \mathbb{C} , \mathbb{I} , \mathbb{Z} , $\mathbb{I}m$ (imaginarios) como diagramas de Venn.

9. Radicación (0,5 puntos)

1.
$$\frac{\sqrt{7}-3}{3+\sqrt{7}}$$

2.
$$\frac{21}{3\sqrt{7}+7\sqrt{3}}$$

10. Cuadraticas (2 puntos)

- 1. Bicuadratica: $x^4 8x^2 + 16 = 0$
- 2. Graficar la siguiente función y expresarla en sus tres formas (normal, canónica y factorizada). $y = (x-1)^2 1$

11. Logaritmos y exponenciales (2 puntos)

- 1. $2.\log_3(x) = 4$
- 2. Encontrar el valor de x para que $2^{x+1}-16=0\,$

12. Funciones Racionales (2 puntos)

2. Encontrar todos los valores de x tal que: $\frac{3x-1}{r} > 3$

13. Trigonometria (1,5 puntos)

Encontrar el lado restante y los ángulos internos.

Complejos (1,5 puntos) 14.

1. Resolver el siguiente problema y graficar el resultado en el plano complejo.

$$(i^2) \cdot ((-2+i) + (i+4))$$

Hoja de formulas: .

Pitagoras: $(cat.op)^2 + (cat.ady)^2 = h^2$

Cuadráticas:

$$y = ax^{2} + bx + c$$

$$y = a(x - x_{v})^{2} + y_{v}$$

$$y = a(x - x_{1})(x - x_{2})$$

$$x_{v} = \frac{-b}{2a}$$

$$x_v = \frac{-b}{2a}$$

Cambio de base: $\log_a(b) = \frac{\log_c(b)}{\log_c(a)}$

Teorema del seno:

$$\frac{\overline{ab}}{\sin(\hat{c})} = \frac{\overline{ac}}{\sin(\hat{b})} = \frac{\overline{bc}}{\sin(\hat{a})}$$

Teorema del coseno:

$$\overline{ab}^2 = \overline{ac}^2 + \overline{bc}^2 - 2.\overline{bc}.\overline{ac}.\cos(\hat{c})$$

[&]quot;Eppur si muove" (y sin embargo se mueve..) -Galileo Galilei