II Infinite Series and Complex numbers

Classwork Examples

2.1 Tests of convergence of series viz., comparison test, ratio test, root test, Leibnitz test.

Test the convergence of the following series

1	$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \frac{1}{7\cdot 9} + \dots + \frac{1}{(2n-1)\cdot (2n+1)} + \dots \mathbf{C.W.}$
	Answer: convergent.
2	$1+2+3+\cdots+n+\cdots C.W.$
	Answer: divergent.
3	$1 + 4 + 9 + 16 + \cdots$ C.W.
	Answer: divergent.
4	$a = (a)^2 = (a)^3$
4	$1 + \frac{3}{4} + \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 + \cdots$ C.W.
	Answer: convergent.

1	Prove that the series $\sum_{n=1}^{\infty} n \cdot \sin \frac{1}{n}$ is divergent. C.W.

Test the convergence of the following series

1	$\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$. C.W.
	Answer: convergent.
2	$\sum_{n=0}^{\infty} \left(\frac{9}{8}\right)^n \cdot \mathbf{C.W.}$
	Answer: divergent.
3	$\sum_{n=1}^{\infty} \frac{5^{n}-1}{6^{n}}$. C.W.

	Answer: convergent.
4	The water treatment plant removes one m th of the impurity in the first stage. In each
	succeeding stage, the amount of impurity removed is one-mth of the removed in the
	preceding stage. Show that if $m = 2$, the water can be made as pure as you like, but
	if $m = 3$, at least one-half of the impurity will remain no matter how many stages are
	used. C.W.

Test the convergence of the following series:

1	$\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^3 \cdot \mathbf{C.W.}$
	Answer: convergent.
2	Σ^{∞} \sim C Σ^{α}
	$\sum_{n=1}^{\infty} \sqrt{n}$. C.W.
	Answer: divergent.

Test the convergence of the following series:

1	$\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \cdots$ C.W.
	Answer: convergent.
2	$\sum_{n=1}^{\infty} (\sqrt{n^3 + 1} - \sqrt{n^3})$. C.W.
	Answer: convergent.
3	$\frac{2}{1^p} + \frac{3}{2^p} + \frac{4}{3^p} + \cdots$ C.W.
	Answer: convergent if $p > 2$ and divergent if $p \le 2$.
4	$\frac{1}{2.4} + \frac{1}{4.6} + \frac{1}{6.8} + \cdots$ H.W.
	Answer: convergent.
	Answer. convergent.
5	2 3 4
	$\frac{2}{1} + \frac{3}{4} + \frac{4}{9} + \dots + \frac{n+1}{n^2} + \dots \cdot \mathbf{H.W.}$
	Answer: divergent.

Test the convergence of the following series:

1	$\sum_{n=1}^{\infty} \frac{n^2+1}{5^n}$. C.W.
	Answer: convergent.
2	$\sum_{n=1}^{\infty} \frac{3^n n!}{n^n} \cdot \mathbf{C.W.}$
	Answer: divergent.
3	$\frac{1}{10} + \frac{2!}{10^2} + \frac{3!}{10^3} + \cdots \cdot \mathbf{C.W.}$
	Answer: divergent.
4	$\sum_{n=1}^{\infty} \frac{n \cdot 2^n (n+1)!}{3^n n!} \cdot \mathbf{H.W.}$
	Answer: convergent.
5	$\sum_{n=1}^{\infty} \frac{n}{e^{-n}} \cdot \mathbf{H.W.}$
	Answer: divergent.

Test the convergence of the following series:

1	$\sum_{n=1}^{\infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n^2}} \cdot \mathbf{C.W.}$
	Answer: convergent.
2	$\sum_{n=1}^{\infty} \left(\frac{\log n}{1000}\right)^n \cdot \mathbf{C.W.}$
	Answer: divergent.
3	$\sum_{n=1}^{\infty} \frac{n^{10}}{10^n}$. H.W.
	Answer: convergent.
4	$\sum \left(\frac{n}{n+1}\right)^{n^2}$. H.W.
	Answer: convergent.
5	$\left(\frac{2^2}{1^2} - \frac{2}{1}\right)^{-1} + \left(\frac{3^3}{2^3} - \frac{3}{2}\right)^{-2} + \left(\frac{4^4}{3^4} - \frac{4}{3}\right)^{-3} + \cdots$ H.W.
	Answer: convergent.

Test the convergence of the following series:

1	Show that the series $\frac{1}{2^3} - (1+2)\frac{1}{3^3} + (1+2+3)\frac{1}{4^3} - \cdots$ is convergent. C.W.
	3° 4°

2
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\sqrt{n+1} - \sqrt{n} \right)$$
. C.W.

Answer: convergent.

$$3 \quad 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \dots \cdot H.W.$$

Answer: convergent.

2.2 Complex numbers and their geometric representation

1	Find the real and imaginary part of the complex numbers

(a)
$$2 + i$$
 (b) $i - 1$ (c) -3 . **C.W.**

Answer: (a)
$$Re(z) = 2$$
 and $Im(z) = 1$ (b) $Re(z) = -1$ and $Im(z) = 1$

(c)
$$Re(z) = -3$$
 and $Im(z) = 0$.

The total impedance Z of a circuit containing an inductor with inductance L and a resistor with resistance R in series is given by $Z = R + i \ 2\pi f L$, where f = frequency.

If $Z = (50 + 200i)\Omega$ and f = 50 Hz, find R and L. C.W.

Answer: $R = 50 \Omega$, $L = \frac{2}{\pi} H$ (henry).

3 Sketch the following complex numbers. **C.W.**

(a)
$$z_1 = 3 + 2i$$
 (b) $z_2 = 3 - 2i$ (c) $z_3 = -3 - 2i$ (d) $z_4 = -3 + 2i$

If $w_1 = -2 + 2i$, $w_2 = 1 - \frac{\sqrt{3}}{2}i$ and $w_3 = 4 - 6i$. Find (a) $w_1 - w_2$ (b) $w_1 + w_3$ **C.W.**

Answer: (a) $w_1 - w_2 = -3 + \left(\frac{4+\sqrt{3}}{2}\right)i$ (b) $w_1 + w_3 = 2 - 4i$.

5 Solve for *x* and *y* if 3x + 4i = (2y + x) + ix. **C.W.**

Answer: x = y = 4.

6 Given $w_1 = -2 + 2i$ and $w_2 = 4 - 6i$. Find (a) $w_1 \cdot w_2$ (b) $-3w_1$. **C.W.**

Answer: (a) $w_1 \cdot w_2 = 4 + 20i$ (b) $-3w_1 = 6 - 6i$.

Given that $z_1 = 1 - 2i$, $z_2 = -3 + 4i$. Find $\frac{z_1}{z_2}$, and express it in the form a + ib.

C.W.

Answer: $\frac{z_1}{z_2} = \frac{-11+2i}{25}$.

2.3 Complex numbers in polar and exponential forms

- 1 Represent following complex numbers in polar form, with the principal argument.
 - (a) -4 + 4i (b) -25i **C.W.**

Answer: (a) $4\sqrt{2} \left[cos\left(\frac{3\pi}{4}\right) + isin\left(\frac{3\pi}{4}\right) \right]$ (b) $25 \left[cos\left(\frac{\pi}{2}\right) - isin\left(\frac{\pi}{2}\right) \right]$.

- 2 Find the modulus and argument of the following complex numbers.
 - (a) $\frac{1+i}{2i-1}$ (b) -5i **C.W.**

Answer: (a) $\sqrt{\frac{2}{5}}$, $-tan^{-1} 3$ (b) 5, $-\frac{\pi}{2}$.

3 Express $z = -2 - \sqrt{3}i$ in polar form. C.W.

Answer: $\sqrt{7}[\cos{(-\pi+\alpha)} + i\sin{(-\pi+\alpha)}]$, where $\alpha = \tan^{-1}{(\frac{\sqrt{3}}{2})}$.

4 Find the Arg(z), arg(z) and convert into polar form, if

(a)
$$z = -1 - i$$
 (b) $z = 1 + i$ (c) $z = -2 - 2\sqrt{3}i$. C.W.

Answer:

(a)
$$Arg(z) = -\frac{3\pi}{4}$$
, $arg(z) = -\frac{3\pi}{4} \pm 2k\pi$, $k = 0,1,2,...,\sqrt{2}\left[\cos\left(\frac{3\pi}{4}\right) - i\sin\left(\frac{3\pi}{4}\right)\right]$

(b)
$$Arg(z) = \frac{\pi}{4}$$
, $arg(z) = \frac{\pi}{4} \pm 2k\pi$, $k = 0,1,2,\dots,\sqrt{2}\left[\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right]$

(c)
$$rg(z) = \frac{-2\pi}{3}$$
, $arg(z) = \frac{-2\pi}{3} \pm 2k\pi$, $k = 0,1,2,...,4 \left[cos\left(\frac{2\pi}{3}\right) - isin\left(\frac{2\pi}{3}\right) \right]$.

Find mod(z), Arg(z) and arg(z) for (a) $z = -\frac{2}{1+\sqrt{3}i}$ (b) z = -8i. C.W.

Answer: (a) mod(z) = 1, $Arg(z) = \frac{2\pi}{3}$, $arg(z) = \frac{2\pi}{3} \pm 2k\pi$, k = 0,1,2,...

- (b) mod(z) = 8, $Arg(z) = -\frac{\pi}{2}$, $arg(z) = -\frac{\pi}{2} \pm 2k\pi$, k = 0,1,2,...
- 6 Evaluate $(1+i)^{100} + (1-i)^{100}$

Answer:-2⁵¹

2.4 De Moivre's theorem and its applications

1	Prove that $(1 + \cos\theta + i\sin\theta)^n + (1 + \cos\theta - i\sin\theta)^n = 2^{n+1}\cos^n\left(\frac{\theta}{2}\right)\cos\left(\frac{n\theta}{2}\right)$,
	where n is an integer. C.W.
2	Evaluate $\left(\frac{1+\sin\alpha+i\cos\alpha}{1+\sin\alpha-i\cos\alpha}\right)^n$, where <i>n</i> is an integer. C.W.
	Answer: $\cos n\left(\frac{\pi}{2}-\alpha\right)+i\sin n\left(\frac{\pi}{2}-\alpha\right)$.
3	Let <i>n</i> be a positive integer. Then prove that $(1+i)^n + (1-i)^n = 2^{\frac{n+2}{2}} cos(\frac{n\pi}{4})$. C.W.
4	Simplify $\frac{(\cos 3\theta + i\sin 3\theta)^4(\cos 4\theta - i\sin 4\theta)^5}{(\cos 4\theta + i\sin 4\theta)^3(\cos 5\theta + i\sin 5\theta)^{-4}}$. C.W.
	Answer: 1.
5	Find all the values of $\left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^{\frac{3}{4}}$. C.W.
	Answer: $\cos\left(\frac{(2n+1)\pi}{4}\right) + i\sin\left(\frac{(2n+1)\pi}{4}\right), n = 0, 1, 2, 3.$
7	Solve $x^5 = 1 + i$ and find the continued product of the roots. C.W.
	Answer: $2^{\frac{1}{10}} \left[cos \frac{1}{5} \left(2n\pi + \frac{\pi}{4} \right) + isin \frac{1}{5} \left(2n\pi + \frac{\pi}{4} \right) \right]$, where $n = 0, 1, 2, 3, 4$, and $1+i$.
6	Find and graph all sixth roots of unity in the complex plane. C.W.
	Answer: 1, -1, w, w^2 , w^4 , w^5 , where $w = e^{\frac{i\pi}{3}}$
7	If ω is a cube root of unity, then prove that $(1 - \omega)^6 = -27$. H.W.
8	Solve $x^5 - 1 = 0$. H.W.
	Answer: $cos(\frac{2n\pi}{5}) + isin(\frac{2n\pi}{5}), n = 0, 1, 2, 3, 4.$
9	Find all the values of $(-1)^{\frac{1}{6}}$. H.W.
	Answer: $\pm i, \frac{1}{2}(\sqrt{3} \pm i), \frac{1}{2}(-\sqrt{3} \pm i).$

2.5 Exponential, Logarithmic, Trigonometric and Hyperbolic functions.

1	Find the value of $Log(1+i) + Log(1-i)$. C.W.
	Answer: $og2 + 4n\pi i$.
2	Find the values of $\log(6 + 8i)$. C.W.
	Answer: $\log(6+8i) = \log(10) + i \left[tan^{-1} \left(\frac{4}{3} \right) + 2n\pi \right], n \in \mathbb{Z}.$
3	Show that $i^i = e^{-\frac{(4n+1)\pi}{2}}$. C.W.
4	Evaluate $(1+i)^{(1+i)}$. C.W.
	Answer: $(1+i)^{(1+i)} = e^{A+iB} = e^A e^{iB} = e^A (\cos B + i \sin B),$
	where $A = \frac{1}{2}\log 2 - \left(2n\pi + \frac{\pi}{4}\right)$ and $B = \frac{1}{2}\log 2 + \left(2n\pi + \frac{\pi}{4}\right)$.
5	Prove that $ \cos z ^2 = \cos^2 x + \sinh^2 y$ and $ \sin z ^2 = \sin^2 x + \sinh^2 y$, where $z = x + iy$. C.W.
6	If $cosh(u+iv) = x + iy$, then prove that $\frac{x^2}{cosh^2u} + \frac{y^2}{sinh^2u} = 1$ and $\frac{x^2}{cos^2v} - \frac{y^2}{sin^2v} = 1$.
	C.W.
7	Prove that $(\cosh x - \sinh x)^n = \cosh nx - \sinh nx$. C.W.
8	Separate the real and imaginary parts of
	(a) $sinh(x + iy)$ C.W.
	Answer: (a) $sinh(x + iy) = sinh x cosy + i cosh x siny$
	(b) $\tan(x + iy) = \frac{\sin 2x}{\cos 2x + \cosh 2x} + i \frac{\sinh 2y}{\cos 2x + \cosh 2y}$.