Course: CSC258F

Professor: Steve Engels

Experimenter: Yuhao Yang

Student ID: 1005808057

Lab4 Pre-Lab Report

Part1:

1. Build the D latch and master slave flip-flop in Logisim in different modules.

D latch circuit

2. Show the circuit is correct by using Poke.

Showed on Logisim.

3. For the D latch and the flip flop, are there any input combinations of Clk and D that should NOT be the first you test?

From my perspective, all combinations for the D latch should not be the first test, because no matter Clk takes value of zero of one for the first test, one of the D latches will have zero as input of Clk since invertor. As we know, when Clk is zero, then the D latch will keep the previous state, but there is no previous state for both D latches when I first test, then it will raise an error. Same to flip flop, one of D latch

will have zero of Clk, but there is no previous state for that D latch, so the flip flop will raise an error for all combinations of Clk and D.

Part2:

1. Build the circuit in Logisim.

- 2.
- a) What would happen if we remove register in the circuit?

By observing the circuit, we know that if we remove the register, then the function 1 to function 7 will not have input signal B, and it will cause errors if we select function 1 to 7 in MUX.

b) How many bits we need to store the result if we multiple two n-bit binary number?

If we multiple two n-bit binary number, then we need 2n bits to store the result.

- 3. Answer the questions below.
- a) Let data to be zero than we set clk to be one, then set clk to be zero and change s to be 001 from 000 which means we changed to the next function and set clk to be one again, we just need to follow this process and we can get a correct and net sequence.

Data	Function	S	A	B	CIK	TEST
000	0	000	0001	X	6	0000 001
000	1	001	1000	0010	10	0 800 1/1/
600	2	0 0	0001	0100	1	00000100
000	3	011	0001	0100	0	010/0/0/
000	4	100	000	0101	0	0 000 000
6601	5	101	000	0001	0	00000000
0001	6	110	0001	0001	J O	0 000000
000	7	UL	000	2001	3	0 000000
	The .	order f	nom top	to bot	tom	

b) Use test vector to show new operations are correct.

Function5

Function6

Function7

Part3:

1. What is the behaviour of the 8-bit shift register shown in Figure 5 when Load n = 1 and ShiftRight = 0?

When Load n = 1 and ShiftRight = 0, the output will remain the previous state because load_val cannot pass the second MUX in ShiftBit.

2. Draw the schematic

4. Show the circuit in Logisim.

