Labor Market Distortion and Price Deviation:

Static Analysis on China's Economy within a General Equilibrium Framework

Zhesheng Qiu School of Economics, Renmin University of China, Beijing 100872, China October 2008

Key Words

- Urban-Rural Disparity
- Labor Market Distortion
- Price Deviation
- General Equilibrium

Urban-rural Nominal Income Disparity

Six Main Periods

- 1. Reform in Agricultural Sectors
- 2. Market Reform
- 3. Reform in Urban Areas (Violent Inflation)
- 4. Inflation was Under Control
- 5. After the Asian Financial Crisis
- 6. Industry Conversely Nurturing Agriculture
- 1979~1983, Converging
- 1984~2003, Long-term Significant Exacerbation
- 2004~Now, Mitigation to Some Extent

Dual Economy

- According to the Lewis-Ranis-Fei model, dual economy is endogenous.
- Urban-rural inequality in developing countries is a familiar step in the process of industrialization, which is determined by the market power automatically.
- The China case is not so simple.

Institutional Factors

- Forging Ahead Strategy
- Heavy Industry Priority
- Capital Accumulation
- Surplus Extracted from Agriculture
- Price Scissors
- Hukou System
- Urban-rural Disparity

Post Centre Planning Times

- The endowment in 1978
- Involution in agriculture
- Density of farmers
- Population Growth Rate
- Transferring and Exacerbation

What to do?

- How many rural people are prevented from transferring to urban areas?
- When the incomes of all the sectors converge, what will happen to the relative price?
- What is the tendency of labor market distortion and price deviation?

What this paper does?

- CGE Model
- Model Simplification
- Tendency Observation

Model Simplification

- Homogeneous Households
- Capital Market Not Considered
- International Trade Excluded
- Small Government Assumption
- Full Employment Assumption
- Competitive Market
- No Transfer cost
- Fixed Short Term Structure

The Model as a whole

$$Q_{1} = A_{1}K_{1}^{\alpha_{1}}L_{1}^{1-\alpha_{1}}$$

$$Q_{2} = A_{2}K_{2}^{\alpha_{2}}L_{2}^{1-\alpha_{2}}$$

$$\alpha_1 P_1 A_1 \left(\frac{K_1}{L_1}\right)^{\alpha_1} = w_1$$

$$\alpha_2 P_2 A_2 \left(\frac{K_2}{L_2}\right)^{\alpha_2} = w_2$$

$$C_1 + G_1 = \lambda_1 Q_1$$

$$C_2 + G_2 = \lambda_2 Q_2$$

$$D(P_1, P_2, C_1, C_2) = 0$$

$$E = s \left(P_1 Q_1 + P_2 Q_2 \right)$$
$$P_1 C_1 + P_2 C_2 = E$$

$$P_{1}Q_{1} + P_{2}Q_{2} = P(Q_{1} + Q_{2})$$

$$\underline{L}_1 + \underline{L}_2 = L$$

$$w_1 = w_2$$

4

Exogenous Variables

$$G_1, G_2, \lambda_1, \lambda_2, P, L$$

- Government Consumption of S1
- Government Consumption of S2
- Real Consuming Rate of S1
- Real Consuming Rate of S2
- GDP Deflator
- Total Employment

Parameters to be Estimated

$A_1, A_2, K_1, K_2, \alpha_1, \alpha_2, D$

- Total Factor Productivity of S1
- Total Factor Productivity of S2
- Capital Formation of S1
- Capital Formation of S2
- Capital Input-Output Elasticity of S1
- Capital Input-Output Elasticity of S2
- Parameters of the demand curve

Endogenous Variables

$$Q_1, Q_2, C_1, C_2, L_1, L_2, P_1, P_2, E, w_1, w_2, s$$

- Real Products of S1&S2
- Real Consumption of S1&S2
- Real Labor Employed of S1&S2
- Price Index of S1&S2
- Real Household Consumption Expenditure
- Real Marginal Productivity of Labor of S1&S2
- Real Consumption Rate

Demand Function

$$D\left(P_1, P_2, C_1, C_2\right) = 0$$

- Engel's Law
- With increase in real income, people prefer to spend relatively less of the additional income on agricultural products.
- This phenomenon is much more significant in rapidly developing countries.

- Based on the diminishing marginal utility
- Based on constrained optimization
- Consistent with Theorem of Petty & Clarke
- Consistent with Engel's Law
- Not complex to do econometric analysis
- Easy to solve
- Stable solution

- CES function is rejected
- Constant substitute elasticity
- Linear extension line

$$\max_{\substack{C_1,C_2\\s.t.}} U = \left[\delta C_1^{\rho} + (1-\delta)C_2^{\rho}\right]^{1/\rho} \Rightarrow \frac{\delta}{1-\delta} \left\{\frac{C_1}{C_2}\right\}^{\rho} = \frac{P_1}{P_2}$$

 The relative consumption expenditure is constant with constant relative price.

How to revise it?

$$U = \delta C_1^{\rho_1} + (1 - \delta) C_2^{\rho_2}$$

$$\sigma = \frac{d \ln (C_1/C_2)}{d \ln (U_{C_2}/U_{C_1})} = \frac{d \ln (C_1/C_2)}{d \ln \{ \left[\rho_2 (1-\delta) C_2^{\rho_2-1} \right] / \left[\rho_1 \delta C_1^{\rho_1-1} \right] \}}$$

$$= \frac{1}{(1-\rho_1)} g \frac{d \ln C_1/d \ln C_2 - 1}{d \ln C_1/d \ln C_2 - (1-\rho_2)/(1-\rho_1)} \neq const.$$

When $\rho_1 = \rho_2 = \rho$

the function is regressed to CES.

Let $0 < \rho_1 < \rho_2 < 1$

- When the real consumption of the agricultural products and nonagricultural products increase at the equal rate, the elasticity of agricultural products is decreasing faster than that of non-agricultural products in ratio.
- Theorem of Petty & Clarke

$$\max_{\substack{C_1, C_2 \\ s.t. \ P_1C_1 + P_2C_2 = E}} U = \delta C_1^{\rho_1} + (1 - \delta) C_2^{\rho_2} \Rightarrow \frac{\delta}{1 - \delta} g \frac{\rho_1 C_1^{\rho_1 - 1}}{\rho_2 C_2^{\rho_2 - 1}} = \frac{P_1}{P_2}$$

$$\eta = P_1 C_1 / E
C_1 = \eta E / P_1
C_2 = (1 - \eta) E / P_2$$

$$\Rightarrow \frac{\delta}{1 - \delta} g \frac{\rho_1}{\rho_2} g \frac{P_2^{\rho_2}}{P_1^{\rho_1}} g \frac{\eta^{\rho_1 - 1}}{(1 - \eta)^{\rho_2 - 1}} g E^{\rho_1 - \rho_2} = 1$$

4

Utility Function

When the relative price is constant,

$$\frac{d \ln C_2}{d \ln C_1} = \frac{1 - \rho_1}{1 - \rho_2} > 1 \qquad \text{where} \quad 0 < \rho_1 < \rho_2 < 1$$

i.e. The changing rate of C2 is lager than that of C1, thus consistent with Engel's Law.

Necessary Indicators

Output

- 1. Nominal GDP
- 2. Nominal
 Agricultural
 GDP
- 3. Real GDP Index
- 4. Real
 Agricultural
 GDP Index

Input

- 5. Labor Employed
- 6. Labor in Agricultural Sectors
- 7. Social Capital Formation
- 8. Agricultural Reinput Rate

Consumption

- 9.Average
 Consumption Per
 Capita
- 10.Engel Coefficients
- 11.Consumption of Government
- 12. Expenditure of Administration

Raw Data

Year •		0	utput			Input	Consumption						
	Nominal GDP (¥100m)		Real GDP Index (1978=100)		Population	Employment (10k)		CF (V100m)	ARI	Households (¥100m)		Government (¥100m)	
	Total	A	Total	A	(10k)	Total	A	(¥100m)		CE	EC	TC	MC
1991	21781	5342	307.6	195.2	115823	65491	39098	7868	16.0%	932	55.8%	3361	343.6
1992	26923	5867	351.4	204.4	117171	66152	38699	10086	13.9%	1116	55.2%	4203	424.6
1993	35334	6964	400.4	214.0	118517	66808	37680	15718	14.9%	1393	53.7%	5488	535.8
1994	48198	9573	452.8	222.6	119850	67455	36628	20341	16.2%	1833	53.8%	7398	729.4
1995	60794	12136	502.3	233.7	121121	68065	35530	25470	17.2%	2355	53.6%	8378	872.7
1996	71177	14015	552.6	245.6	122389	68950	34820	28785	16.6%	2789	52.3%	9964	1040.8
1997	78973	14442	603.9	254.2	123626	69820	34840	29968	16.1%	3002	50.4%	11219	1137.2
1998	84402	14818	651.2	263.1	124761	70637	35177	31314	15.8%	3159	48.3%	12359	1326.8
1999	89677	14770	700.9	270.5	125786	71394	35768	32952	15.5%	3346	46.1%	13717	1525.7
2000	99215	14945	759.9	277.0	126743	72085	36043	34843	15.3%	3632	43.0%	15661	1787.6
2001	109655	15781	823.0	284.8	127627	73025	36513	39769	15.8%	3869	41.6%	17665	2197.5
2002	120333	16537	897.8	293.0	128453	73740	36870	45565	16.2%	4106	40.6%	19120	2979.4
2003	135823	17382	987.8	300.3	129227	74432	36546	55963	16.4%	4411	39.9%	20615	3437.7
2004	159878	21413	1087.4	319.3	129988	75200	35269	69168	16.5%	4925	40.6%	23199	4059.9
2005	183217	22420	1200.8	336.0	130756	75825	33970	80646	16.6%	5463	39.3%	26605	4835.4
2006	211923	24040	1340.7	352.8	131448	76400	32561	94402	16.4%	6138	37.9%	30118	5639.1
2007	249530	28095	1500.7	365.8	132129	76990	31444	110251	16.2%	7016	38.2%	35874	6434.7

Data Transformation

- Total & Agriculture Non-Agriculture
- Output & Real Index—— GDP Deflator
- National & Population Per Capita
- Output & Re-input Consumption Rate
- Food Consumption & Share of Expenditure Engel & Agricultural Consumption
- Administration Expenditure & Share for Regalement

- to Purchase Agricultural Products
- Agricultural Products Consumed by the Government

11-11-6

1.184

1.563

1.888

2.075

2.065

2.042

1.979

1.955

2.006

2.042

2.098

2.433

2.426

2.482

2.801

1.262

1.489

1.670

1.766

1.804

1.790

1.777

1.826

1.863

1.871

1.921

2.030

2.122

2.204

2.301

Engel*

40.8%

37.9%

35.2%

35.8%

34.6%

33.6%

32.0%

30.9%

28.9%

26.7%

26.0%

25.1%

24.3%

26.5%

24.8%

23.5%

23.9%

GDP

w2

Ε

		CX	oge	eno	us	VO	ric	וטג	es
Year _	Q1	Q2	L1	L2	P1	P2	C1	C2	w1
1991	5342	16439	39098	26393	1.000	1.000	4404	6391	622
1992	5594	19226	38699	27453	1.046	1.092	4724	7416	691

*The definition of "Engel Coefficient" is modified.

Parameter Estimation

$$\alpha_1 = 0.4556$$
, $(t = 12.912, p = 0.000)$
 $\alpha_2 = 0.1790$, $(t = 2.110, p = 0.028)$

Actually, a bit change in the elasticity does not have significant effects on the equilibrium according to the test of robustness by introduce random disturbance.

Parameter Estimation

$$\ln E = \beta_1 \ln \eta + \beta_2 \ln (1 - \eta) + \beta_3 + \varepsilon$$

$$\beta_1 = \frac{\rho_1 - 1}{\rho_2 - \rho_1}, \beta_2 = -\frac{\rho_2 - 1}{\rho_2 - \rho_1}, \beta_3 = \frac{1}{\rho_2 - \rho_1} \ln \left(\frac{\delta}{1 - \delta} g \frac{\rho_1}{\rho_2} g \frac{P_2^{\rho_2}}{P_1^{\rho_1}} \right)$$

$$\delta = \left\{ \left[e^{\beta_3 (\rho_2 - \rho_1)} g \frac{P_1^{\rho_1}}{P_2^{\rho_2}} g \frac{\rho_2}{\rho_1} \right]^{-1} + 1 \right\}^{-1}$$

$$\beta_1 = -2.5948 (t = -13.62, p = 0.000)$$

$$\beta_2 = 1.5948 (t = 8.37, p = 0.000)$$

$$\beta_3 = 7.9519 (t = 44.17, p = 0.000)$$

$$\Rightarrow \rho_1 = 0.5576, \ \rho_2 = 0.7281, \ \delta = 0.7404$$

Price Adjustment

When 1 unit of labor transfers

$$Q_{1}' = A_{1}K_{1}^{\alpha_{1}} (L_{1} - 1)^{1-\alpha_{1}} \qquad C_{1}' + G_{1} = \lambda_{1}Q_{1}'$$

$$Q_{2}' = A_{2}K_{2}^{\alpha_{2}} (L_{2} + 1)^{1-\alpha_{2}} \qquad C_{2}' + G_{2} = \lambda_{2}Q_{2}'$$

$$P_{1}' = \frac{\delta \rho_{1} C_{1}'^{\rho_{1}-1} P\left(Q_{1}' + Q_{2}'\right)}{\delta \rho_{1} C_{1}'^{\rho_{1}-1} Q_{1}' + (1-\delta) \rho_{2} C_{2}'^{\rho_{2}-1} Q_{2}'}$$

$$P_{2}' = \frac{(1-\delta) \rho_{2} C_{2}'^{\rho_{2}-1} P\left(Q_{1}' + Q_{2}'\right)}{\delta \rho_{1} C_{1}'^{\rho_{1}-1} Q_{1}' + (1-\delta) \rho_{2} C_{2}'^{\rho_{2}-1} Q_{2}'}$$

Algorithm of the Model

Simulation of Labor and Price

Year	w1=w2					w1=90%w2				w1=80%w2				w1=70%w2			
Y ear	L1	L2	P1	P2	L1	L2	P1	P2	L1	L2	P1	P2	L1	L2	P1	P2	
1991	24204	41287	1.267	0.954	26880	38611	1.216	0.958	30009	35482	1.162	0.964	33659	31832	1.102	0.974	
1992	21583	44569	1.389	1.038	24114	42038	1.333	1.042	27122	39030	1.274	1.048	30707	35445	1.209	1.056	
1993	19853	46955	1.600	1.202	22265	44543	1.537	1.206	25161	41647	1.468	1.211	28659	38149	1.394	1.219	
1994	19791	47664	1.996	1.445	22201	45254	1.916	1.449	25096	42359	1.830	1.455	28597	38858	1.736	1.463	
1995	20241	47824	2.302	1.639	22702	45363	2.210	1.643	25659	42406	2.110	1.649	29230	38835	2.002	1.659	
1996	20430	48520	2.467	1.743	22917	46033	2.368	1.748	25904	43046	2.261	1.754	29513	39437	2.144	1.764	
1997	19189	50630	2.534	1.775	21583	48236	2.433	1.779	24481	45338	2.323	1.785	28017	41802	2.204	1.793	
1998	18607	52030	2.565	1.759	20956	49681	2.462	1.763	23810	46827	2.351	1.767	27310	43327	2.229	1.775	
1999	17651	53743	2.608	1.738	19918	51476	2.503	1.741	22687	48707	2.390	1.745	26108	45286	2.267	1.751	
2000	16323	55762	2.720	1.778	18462	53623	2.611	1.780	21095	50990	2.493	1.784	24376	47709	2.364	1.789	
2001	15622	57403	2.862	1.816	17690	55335	2.747	1.817	20244	52781	2.622	1.820	23444	49581	2.487	1.824	
2002	14972	58768	2.998	1.826	16964	56776	2.876	1.827	19435	54305	2.745	1.829	22545	51195	2.602	1.833	
2003	14022	60410	3.147	1.876	15911	58521	3.019	1.878	18263	56169	2.881	1.879	21243	53189	2.731	1.882	
2004	14535	60665	3.340	2.005	16481	58719	3.204	2.006	18899	56301	3.058	2.008	21955	53245	2.898	2.011	
2005	13786	62039	3.376	2.089	15646	60179	3.239	2.091	17965	57860	3.091	2.093	20909	54916	2.931	2.097	
2006	13181	63219	3.456	2.169	14971	61429	3.316	2.171	17209	59191	3.166	2.173	20061	56339	3.002	2.177	
2007	13051	63939	3.741	2.280	14827	62163	3.589	2.281	17050	59940	3.426	2.284	19882	57108	3.248	2.287	

The Optimal Adjusting Rate of Labor

The Optimal Adjusting Rate of Price

$w1 \neq w2$

- The Labor productivity of nonagricultural sectors increases much fast than that of agricultural sectors.
- The relative price of agricultural is sticky.
- Subsidies for agriculture
- Intangible cost living in the crowed city
- w1=70%w2 is acceptable.

The Optimal Adjusting Rate of Labor

The Optimal Adjusting Rate of Price

Labor Transferring

- Labor productivity decreases as the labor employed increases.
- Growth of labor productivity consists of no-labor growth and labor transferring.
- Without the Labor transferring, the disparity would be even larger.

Contribution of labor employed on labor productivity Growth

Structure Growth

- Structure upgrading contributes to the aggregate growth as well as inner growth in each sector.
- In some years, the aggregate growth rate is even higher than that in each sector.

Labor Productivity Growth Decomposition

Conclusion

- Significant Distortion
- Labor Transferring
- Structure Upgrading
- Three Stages

Labor Market Distortion

- Involution in Agriculture
- 37% Labor Surplus
- Current Price of Agricultural Products Increasing by 16%
- Labor Surplus under Control
- Not much Better

Labor Transferring

- Moving off Agriculture
- Once Reversed
- Contribution to the Growth
- No significant Mending

Structural Upgrading

- Inner growth in each sector is the main cause of growth.
- Structure upgrading explains about one quarter of the growth rate.
- This contribution ratio fluctuates in the short run but stays on a relative stable level in the long run.

Three Stages

- Residual Influence of Institutional Reform in Agriculture.
- Puny Agriculture
- Conversely Nurturing
- Problems Still Remaining

What has been done?

- A simplified CGE model is Constructed.
- Parameters are estimated instead of arbitrarily set.
- Long run tendency was illustrated.
- The last 17 years has been divided into three stages.

Considering Lucas Critique

- It is naive to try to predict the effects of a change in economic policy entirely on the basis of relationships observed in historical data, especially highly aggregated historical data.
- Technology Progressing
- Preference Gradual Change

What is to be done?

- Big Government Assumption
- Heterogeneous Preference
- Open Economy
- Dynamic Analysis
- *Stochastic Shock
- Instruction for Fiscal Policy

Postscript (My Experience)

- Despite the fact that most economic theories can not explain some phenomena in China, many theories are still valid here after adapted to the reality.
- When a model is more precise than the best statistical data for the moment, it becomes encumbrance for empirical work.
- Linear reduction of information makes the cost of research increase exponentially.

English Literature

- Lewis, W.A. (1954), Economic Development with Unlimited Supplies of Labor, Manchester School, 28 (2)
- Ranis, G. and J.C. Fei (1961), A Theory of Economic Development, The American Economic Review, 51(4)
- Lucas, Robert (1976). "Econometric Policy Evaluation: A Critique." Carnegie-Rochester Conference Series on Public Policy 1: 19-46.
- Thomas Hertel and Fan Zhai, Labor Market Distortion, Rural-Urban Inequality and the Opening of China's Economy, World Bank Policy Research Working Paper 3455, November 2004
- B. Essama-Nssah, Building and Running General Equilibrium Models in EViews, World Bank Policy Research Working Paper 3197, January 2004
- B. Essama-Nssah, Building an Applied General Equilibrium Model, World Bank PPT, May 2006
- B. Essama-Nssah, The Logic of General Equilibrium Modeling, World Bank PPT, October 13, 2005
- B. Essama-Nssah, A Two Sector Model of an Open Economy, World Bank PPT, October 16, 2005
- Ian Sue Wing, Computable General Equilibrium Models and Their Use in Ecomomy-Wide Policy Analysis
- Shantayanan Devarajan, Delfin S. Go, Jeffrey D. Lewis, Sherman Robinson, and Pekka Sinko, Simple General Equilibrium Modeling
- Justin Lin (Yifu Lin) and (Miaojie Yu), The Economics of Price Scissors: An Empirical Investigation for China, China Center for Economic Research, Peking University, NO. 2008001, April 2008
- Zhang Qi, Tao Ran, Liu Mingxing, Yiu Por Chen, Vincent, Financial Development and Urban-Rural Income Disparity in China, For the Chinese Economist Society Conference 2003 at University of Michigan

Chinese Literature

- Fan Zhai, Shantong Li and Shan Feng, A CGE Model on China's Economy, The Journal of Quantitative & Technical Economic, 1997 (3)
- Gong Yi, Some Problems on the CGE Model, The Journal of Quantitative & Technical Economic, 1997 (8)
- Jun Pang, and Yuanchang Shi, Theory, Properties and applications of CGE Model, Theory Monthly, 2005 (3)
- Jianjun Zhou, Tao Wang, Some Frontier Issues about CGE Model, Modern Economic Science, Sept 2001 (5)
- Juan Sheng, The CGE Model of Chinese Economy and Policy Analysis, Master Paper of Renmin University of China, May 2005
- Yingqi Ma, Construct and Application of Beijing CGE, Master Paper of Jilin University of China, April 2007
- Zhuohua Zhou and Zongyi Zhang, A Computable General Equilibrium Model of Chinese Economy, Journal of Chongqing University (Natural Science Edition), July 2000 (4)
- Ying Gao and Shantong Li, The Infrastructure Construction and Poverty Reduction in Rural China: A Simulation Analysis within a CGE Model Framework, Journal of Quantitative & Technical Economic, 2006 (6)
- Hongbin Zhao, A Study on the Technological Change of Chinese Primary Industry since Reform in 1978, Journal of Finance and Economics, Dec 2004 (12)