UNIVERSIDADE FEDERAL DE SANTA CATARINA - UFSC CENTRO TECNOLÓGICO - CTC DEPARTAMENTO DE ENGENHARIA ELÉTRICA E ELETRÔNICA CURSO DE ENGENHARIA ELETRÔNICA EEL 7319 - CIRCUITOS RF

PATRIK LOFF PERES 20103830

Relatório 6 - Parâmetros de espalhamento e Ábaco de Smith

Atividades

1)Abra um esquemático no software de simulação Quesstudio e desenhe o circuito da figura abaixo. Projete uma rede L que garanta a adaptação entre as impedâncias de carga e fonte na frequência de 2.4 GHz.

Usando a metodologia para fazer uma adaptação em rede L simples, obteve-se o seguinte resultado:

2) Verifique a adaptação utilizando simulação de parâmetros S.

Figura 1 - Circuito adaptação de impedâncias rede L

Figura 2 - Ábaco de Smith para a frequência nominal

Pelo ábaco de Smith é possível notar que o parâmetro S[1,1] que se refere ao coeficiente de reflexão da entrada do circuito, é zero, pois o ponto está bem no centro do ábaco, representando que na frequência de projeto a adaptação é perfeita.

3)Simule o circuito novamente considerando uma faixa de frequências mais ampla (pelo menos 2 oitavas acima e abaixo da frequência nominal). Plote o valor absoluto do parâmetro S11 em escala logarítimica e observe a largura de banda dentro da qual o circuito está bem adaptado (dB(|S11|) < -20 dB). Observe também o parâmetro S21.

Figura 3 - Coeficiente de reflexão pela frequência

0 -5 (S[2,1])< k, k, dB(dB(S[2,1]) frequency: 2.41GHz dB(S[2,1]): -0.00012 -10 if(dB(-15 1e9 2e9 3e9 4e9 5e9 6e9 7e9 8e9

Frequência

1e10

Figura 4 - Parâmetro S[2,1] pela frequência

Da figura 3 podemos notar que a faixa de operação do circuito é 0,7 GHz (0,35 GHz acima e abaixo da frequência de operação nominal), região onde o coeficiente de reflexão é menor que o definido em projeto como mínimo que foi -20dB.

S21 se refere ao ganho do circuito da porta 1 para a porta 2, neste caso, a rede L foi projetada com uma topologia passa altas, portanto o circuito tem um ganho negativo (atenuação) para frequências abaixo de gigahertz e tem ganho de aproximadamente 0 dB (o que entra igual ao que sai) a partir de gigahertz.

4). Refaça as questões 1, 2 e 3 considerando o circuito abaixo. Para projetar a nova rede de adaptação, leia a seção 6.6.6 do livro texto (Volume 3) [1].

Com o intuito de aumentar a faixa de banda que a adaptação de impedâncias opera, é aplicado um design de cascata de redes L, criando uma sequência de adaptações para resistores intermediários (virtuais). Nesse exemplo será feita uma cascata de 2 redes L. Para encontrar o valor ótimo de resistência virtual, consideramos que:

A partir da definição de Rv ótimo, aplica-se a mesma metodologia do item 1) duas vezes

Lab 6 C2

RV = RP - 1 = 0,644

RV = RP = 155,37.72

Lz = XPc = 10,3nH

$$X_{52} = Rv$$
. $Q_2 = 45,54.72$
 $C_2 = \frac{1}{4} = \frac{1}$

C2
C=2.059 pF
L2
L=7.28 nH
L=10.3 nH
P1
Num=1
Z=50 Ω

S-parameter simulation

P2
SP1
Num=2
Type=list
Z=100 Ω Points=2.4 GHz

Figura 5 - Circuito rede L cascata e ábaco de smith

Figura 6 - Coeficiente de reflexão pela frequência

Figura 7 - Ganho pela frequência

Figura 8 - Ábaco de Smith para uma faixa de frequências

5)Interprete o resultado.

Observando a figura 6 podemos notar que a faixa de frequência ao redor da frequência de projeto aumentou em 23%, de 0,705GHz para 0,868GHz considerando a mesma tolerância de -20dB. Além disso, é possível observar uma segunda faixa de banda que apareceu, isso pode ser explicado vendo o ábaco de Smith da figura 8, que passa duas vezes pelo centro, fazendo a adaptação de impedância em duas faixas de frequências distintas, em 2,4GHz e também em 1GHz.

Nota-se também que na figura 7 que não há mais a (pequena) atenuação que se tinha na rede L simples do item 1) que aumentava com a frequência, neste caso, com duas redes L em cascata o ganho do circuito se mantém de forma sólida em 0dB.

6)Faça uma análise crítica do trabalho completo

Os resultados mostram que uma adaptação de impedância podem ter suas condições de funcionamento, como largura de faixa (onde a adaptação opera adequadamente) e atenuação na faixa de operação, facilmente modificadas a depender da necessidade do projeto desde que haja recursos e espaço físico para colocar mais redes L em cascata

7)Descreva o que você aprendeu com este trabalho, deixando claro os pontos fortes e também aqueles que requerem aperfeiçoamento, além de refletir sobre qual estratégia você adotará para a necessidade de aperfeiçoamento detectada.

Consegui entender o que significam os parâmetros S (S[1,1] coeficiente de reflexão da entrada para entrada S[2,2] coeficiente de saída para saída, S[1,2] ganho reverso e S[2,1] ganho da entrada para a saída, o vídeo no moodle ajudou muito) e também como fica mais simples analisá-los em função da frequência uma vez que se tem o circuito pronto, para avaliar as faixas de operação e em que características e parâmetros o circuito opera dentro (e fora) da faixa de operação.

Também, a ideia de cascatear as redes L para garantir maior estabilidade na adaptação, e também de escolher um (ou mais) resistor(es) ótimo(s) para ter o maior aproveitamento possível em questão de largura de banda.

Na questão do ábaco de Smith, eu consigo olhar pra ele e entender as informações que ele me diz, como por exemplo no item 4) figura 8, observando com atenção dá pra ver que ele passa duas vezes pelo centro o que é curioso e pode dar a indicação do porquê no gráfico da figura 6 tem duas regiões distintas indicando que a adaptação de impedâncias está dentro do estipulado. E também a ideia de que se o resultado está nas bordas a impedância equivalente tem alta reatância, e se está perto da linha central tem alta resistência.