1. (5 pts each, 30 pts total) Mark the following reasoning patterns as S (= sound, carries true premises to true conclusions) or U (= unsound, may carry true premises to false conclusions). Premises are shown above the line, conclusions below the line. Here, " \Rightarrow " means "implies" and " \neg " means "not." The first one is done for you as an example.

$\begin{array}{c} P \Rightarrow Q \\ \hline P \\ Q \end{array}$

b. <u>U</u>	$P \Rightarrow Q$ Q D
	Р

$$c. \underline{U} \qquad \boxed{P \Rightarrow Q}$$

$$\boxed{P \text{ or } \neg Q}$$

$$d. \underline{S} \qquad \boxed{\begin{array}{c} P \Rightarrow \neg Q \\ \underline{Q} \\ \neg P \end{array}}$$

e. S
$$P \Rightarrow Q$$

$$\frac{\neg Q}{\neg P}$$

$$f. S \qquad P \Rightarrow Q \\ \hline \neg P \text{ or } Q$$

$$g. \underline{U} \qquad \boxed{ \begin{array}{c} \neg P \Rightarrow Q \\ \frac{P}{\neg Q} \end{array}}$$

2. (5 pts each, 40 pts total) In each of the following, <i>KB</i> is a set of sentences, <i>{}</i> is the empty set of sentences, and <i>S</i> is a single sentence. Recall = means "entails" and - means "derives," where -i means "inference procedure i derives." Use these keys:
Snd = Sound. Unsnd = Unsound. C = Complete. I = Incomplete. V = Valid. Sat = Satisfiable. Unsat = Unsatisfiable. N = None of the above.
For each blank below, write in the key above that best corresponds to the correct term.
(a) Suppose some inference procedure i has the property, that for some KB and some S , $KB = S$ but not $KB = I$.
(b) Let S be given in advance. Suppose that for some KB_1 , $KB_1 \mid = S$; but that for some other KB_2 , $KB_2 \mid = \neg S$. Then S is \underline{Sat} .
(c) Suppose some inference procedure i has the property, that for any KB and any S , whenever $KB \models S$ then $KB \models i$ S . Then the inference procedure i is \underline{C} .
(d) Suppose inference procedure i has the property, that for some KB and some S , $KB \mid -i \mid S$ but not $KB \mid = S$. Then the inference procedure i is <u>Unsnd</u> .
(e) Let S be given in advance. Suppose that $\{\}$ = S. Then S is \underline{V} .
(f) Suppose some inference procedure i has the property, that for any KB and any S , whenever $KB \mid -i \mid S$ then $KB \mid = S$. Then the inference procedure i is \underline{Snd} .
(g) Suppose that $KB \models S$, then the sentence $(KB \Rightarrow S)$ is
(h) Suppose that $KB \models S$, then the sentence (KB and $\neg S$) is <u>Unsat</u> .

3. Consider the KB sh	own below.		
` 1	/	ng KB into Conjunctive No ly in Conjunctive Normal F	
A. <i>P V R</i> .	$P \vee R$		
$\mathbf{B.}\ Q \Rightarrow \ S.$	$\neg Q \lor S$		
$\mathbf{C}.P \Rightarrow \mathbf{Q}.$	$\neg P \lor Q$		
$\mathbf{D}.R \Rightarrow S.$	$\neg R \lor S$		
Write a complete reso of the symbol -, and the	lution proof that <i>KB</i> = S he resulting clause after -	negative. The order may van . Show the two clauses that . You may not require all o l. The first one is done for y	you resolve in front of the lines provided.
$\mathbf{E}_{\bullet} = S$			

Other proofs are fine if correct. For example, at step (d) above you could have resolved with $\neg S$:

(a) $\neg S$, $\neg QVS$, $|- \neg Q$

(b) $\neg Q$, $\neg P \lor Q$, $|\neg P|$.

(c) $\neg P$, $P \lor R$, |-R

(d) R , $\neg R \lor S$, |-S

(e) \underline{S} , $\underline{\neg S}$, $|\underline{\neg S}$

(d) $\neg S$, $\neg R \lor S$, $|- \neg R$

(e) $\neg R$, R , |- \Box