Emory University MATH 347 Non Linear Optimization

Learning Notes

Jiuru Lyu

January 18, 2024

Contents

1	Math Preliminaries	2
	1.1 Introduction to Optimization	2
2	Unconstrained Optimization	5
3	Least Square	6
4	Constrained Optimization	7

1 Math Preliminaries

1.1 Introduction to Optimization

Definition 1.1 (Optimization Problem). The main optimization problem can be stated as follows

$$\min_{x \in S} f(x),\tag{1}$$

where

- *x* is the *optimization variable*,
- S is the feasible set, and
- *f* is the *objective function*.

Remark 1.1 $\max_{x \in S} f(x) = -\min_{x \in S} -f(x)$. Hence, we will only study minimization problems.

Theorem 1.2 Solving an Optimization Problem

- Theoretical Analysis: analytic solution
- Numerical solution/optimization

Definition 1.3 (Solution Methods depend on the type of x, S, and f).

• When x is continuous (e.g., \mathbb{R} , \mathbb{R}^n , $\mathbb{R}^{m \times n}$, ...), then the optimization problem stated in Eq. (1) is a *continuous optimization problem*. It will also be the focus of this class.

Opposite to continuous optimization problems, we have *discrete optimization problem* if x is discrete.

If x has both types of components, then we call the problem *mixed*.

- Depending on S, we can have
 - Unconstrained problems: where $S = \mathbb{R}^n$, $S = \mathbb{R}^{m \times n}$, ... (m, n are fixed).
 - Constrained problems: where $S \subsetneq \mathbb{R}^n$, $S \subsetneq \mathbb{R}^{m \times n}$,

Both types of problems will be studied.

- Depending on f, we have
 - Smooth optimization problems: f has first and/or second order derivatives.
 Only smooth optimization problems will be studied.
 - *Non-smooth optimization problems*: *f* is not differentiable.

Definition 1.4 (Linear Optimization/Program). If f is linear and S consists of linear constrains, then the optimization problem is called a *linear problem/program*.

Example 1.5 Classification of Optimization Problems

1. Consider the following problem

$$\min_{x_1, x_2, x_3} x_1^2 - 4x_1x_2 + 3x_2x_3 + \sin x_3$$

Solution 1.

- Optimization variable: $x = (x_1, x_2, x_3) \in \mathbb{R}^3$. \longrightarrow continuous.
- Feasible set: $S = \mathbb{R}^3$. \longrightarrow unconstrained.
- Objective function: $f(x_1, x_2, x_3) = x_1^2 4x_1x_2 + 3x_2x_3 + \sin x_3$. \longrightarrow smooth but non-linear.

2. Consider the following problem

$$\max_{\substack{4x_1+7x_2+3x_3\leq 1\\x_1,x_2,x_3\geq 0}} x_1+2x_2+3x_3$$

Solution 2.

- Optimization variable: $x = (x_1, x_2, x_3) \in \mathbb{R}^3$. \longrightarrow continuous.
- Feasible set: $S = \{(x_1, x_2, x_3) : x_1, x_2, x_3 \ge 0, 4x_1 + 7x_2 + 3x_3 \le 1\} \subseteq \mathbb{R}^3$. \longrightarrow constrained.
- Objective function: $f(x_1, x_2, x_3) = x_1 + 2x_2 + 3x_3$. \longrightarrow smooth and linear.

Remark 1.2 This problem can be considered as the budget constrained optimization problem in Economics.

3. Consider the following problem

$$\min_{x_1, x_2 \ge 0} 4x_1 - 3|x_2| + \sin(x_1^2 - 2x_2)$$

Solution 3.

- Optimization variable: $x = (x_1, x_2) \in \mathbb{R}^2$. \longrightarrow continuous.
- Feasible set: $S = \{(x_1, x_2) : x_1, x_2 \ge 0\} \subsetneq \mathbb{R}62. \longrightarrow \text{constrained}.$
- Objective function: $f(x_1, x_2) = 4x_1 3|x_2| + \sin(x_1^2 2x_2)$. \longrightarrow non-smooth and non-linear.

Remark 1.3 In this particular problem, $x_2 \ge 0$, and so $f(x_1, x_2) = 4x_1 - 3x_2 + \sin(x_1^2 - 2x_2)$ on the feasible set. Hence, this problem can be equivalently written as

$$\min_{x_1, x_2 \ge 0} 4x_1 - 3x_2 + \sin\left(x_1^2 - 2x_2\right),\,$$

which is a smooth optimization problem.

2 Unconstrained Optimization

3 Least Square

4 Constrained Optimization