

Explainable AI Cheat Sheet

Approach Name	Model Centric	Subject Centric
Feature Ranking	plot_importance(clf,)	
Recursive Feature Engineering (RFE)	RFE(clf,)	
<u>Boruta</u>	BorutaPy(estimator=clf,)	
Logistic Regression	sm.Logit(y, X).fit()	
Shap	shap.summary_plot(shapValues,) shap.plots.scatter(shapValuess[:,"col1"],)	shap.force_plot() shap.plots.waterfall()
<u>Lime</u>		explainer.explain_instance()
iModels	HSTreeClassifierCV(max_leaf_nodes=6)	
Explainer Dashboard	ClassifierExplainer(clf, testData, testLabels)	ClassifierExplainer(clf, testData, testLabels)

Model Centric Approach 1: Feature Ranking

```
from xgboost import plot_importance
# plot feature importance
plot_importance(clf, importance_type = "weight")
```

<AxesSubplot:title={'center':'Feature importance'}, xlabel='F score', ylabel='Fe
atures'>

Model Centric Approach 2: RFE

	Feature	Selected	
4	Threat_Cost	True	

23	Exp_Fam_Dom	True
22	ToolPer_Trust_Det	True
21	ToolPer_Usefulness	True
20	ToolPer_Cost_Det_Error	True
0	Tool_Det_Accuracy	False

Model Centric Approach 3: Boruta

BorutaPy finished running.

Iteration: 9 / 10
Confirmed: 28
Tentative: 0
Rejected: 0

Model Centric Approach 4: Logistic Regression

import statsmodels.api as sm
X = sm.add_constant(trainData)
log_reg = sm.Logit(trainLabels, X).fit()
print(log_reg.summary())

Logit Regression Results										
Dep. Variable: Model: Method: Date: Time: converged: Covariance Type:	Tue, 13 Dec 20 02:08:	it Df Res LE Df Mod 22 Pseudd 30 Log-Li ue LL-Nul	R-squ.: ikelihood:		54384 54355 28 0.1199 -30935. -35149. 0.000					
0.975]	coef	std err	z	P> z	[0.025					
const -0.538 Tool_Det_Accuracy -0.064 Tool_Det_Time	-0.7194 -0.1067 -0.0793	0.092 0.022 0.020	-7.781 -4.891 -3.988	0.000 0.000 0.000	-0.901 -0.149 -0.118					

Model Centric Approach 5: SHAP

Model Centric Approach 6: iModels

```
from imodels import HSTreeClassifierCV # import any imodels model here
# fit the model
model = HSTreeClassifierCV(max_leaf_nodes=6) # initialize a tree model and speci
model.fit(trainData, trainLabels,
          feature_names=list(trainData.columns))
preds = model.predict(testData) # discrete predictions: shape is (n
                                                                    --- feature 21 <= 7.06
preds_proba = model.predict_proba(testData) # predicted probabilitie
                                                                        |--- feature 24 <= 1.25
print(model) # print the model
                                                                            |--- feature 8 <= 5.10
                                                                                |--- weights: [0.77, 0.23] class: 0.0
                                                                             --- feature_8 > 5.10
                                                                                |--- feature 27 <= 0.50
                                                                                    |--- weights: [0.33, 0.67] class: 1.0
                                                                                |--- feature_27 > 0.50
                                                                                    |--- weights: [0.54, 0.46] class: 0.0
                                                                        |---| feature 24 > 1.25
                                                                            |--- weights: [0.66, 0.34] class: 0.0
                                                                    --- feature 21 > 7.06
                                                                        |--- feature_27 <= 0.50</pre>
                                                                            |--- weights: [0.59, 0.41] class: 0.0
                                                                        --- feature_27 > 0.50
                                                                            |--- weights: [0.82, 0.18] class: 0.0
```


Model Centric Approach 7: Explainer Dashboard

from explainerdashboard import ClassifierExplainer, ExplainerDashboard
explainer = ClassifierExplainer(clf, testData, testLabels)
ExplainerDashboard(explainer, mode='inline').run(port=8051)

Subject Centric Approach 1: SHAP (1 of 2)

```
explainer = shap.Explainer(clf)
shap_values = explainer.shap_values(trainData)
index = 0 # Row index, 0
shap.force_plot(explainer.expected_value, shap_values[index,:],
                 trainData.iloc[index,:])
ntree_limit is deprecated, use `iteration_range` or model slicing instead.
              f(x)
                                      base value
                 -(-6.36 -4.786 -2.786 -0.7855 1.214
                                                       3.214
                                                              5.214
                                                                      7.214
                                                                             9.214
  -10.79
         -8.786
Exp_Web_Reliance = 9.667 | ToolPer_Effort_Req = 1 | Dem_Age = 36 | Tool_Warning = 1 | Threat_Order = 5 | Ex
```


Subject Centric Approach 1: SHAP (2 of 2)

```
explainer = shap.Explainer(clf)
shap_values = explainer(trainData)

# visualize the first prediction's explanation
shap.plots.waterfall(shap_values[0])
```


Subject Centric Approach 2: Lime

Subject Centric Approach 3: Explainer Dashboard

from explainerdashboard import ClassifierExplainer, ExplainerDashboard
explainer = ClassifierExplainer(clf, testData, testLabels)
ExplainerDashboard(explainer, mode='inline').run(port=8051)

