Introduction to Data Science (IDS) course

Decision Tree

Lecture 3 Instruction

IDS-I-L3

		Target Feature		
Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

1. Calculate entropy of the target feature.

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

$$E = -\sum_{i=1}^{k} p_i \, \log_2(p_i)$$

Play Golf				
Yes No				
9	5			

$$Entropy (PlayGolf) = -(0.36log_20.36) - (0.64log_20.64) = 0.94$$

2. Entropy after splitting by "Outlook".

k	
$E = -\sum_{i} p_i \log_2(p_i)$)
i=1	

		Play Golf		
		Yes	No	
Outlook	Sunny	3	2	5
	Overcast	4	0	4
	Rainy	2	3	5
				14

$$E(3,2) = -(0.6log_20.6) - (0.4log_20.4) = 0.97$$

 $E(4,0) = -(1log_21) - (0log_20) = 0$
 $E(2,3) = E(3,2) = 0.97$

Entropy (PlayGolf)
=
$$P(Sunny) \times E(3,2) + P(Overcast) \times E(4,0) + P(Rainy) \times E(2,3)$$

= $\left(\frac{5}{14}\right) \times 0.97 + \left(\frac{4}{14}\right) \times 0 + \left(\frac{5}{14}\right) \times 0.97 = 0.69$

Information Gain = 0.94 - 0.69 = 0.25

3. Calculate information gain after splitting by each descriptive feature.

			Play Golf		
		Yes		No	
Outlook	Sunny		3		2
	Overcast		4		0
	Rainy		2		3
Gain			= 0.25		

		Play	Golf		
		Yes	No		
Temp.	Hot	2	2		
	Mild	4	2		
	Cool	3	1		
	Gain = 0.02				

		Play Golf		
		Yes	No	
Humidity	High	3	4	
	Normal	6	1	
Gain = 0.15				

		Play Golf			
		Yes	No		
Windy False		6	2		
	True	3	3		
	Gain = 0.04				

Outlook	Temp	Humidity	Windy	Play Golf
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Sunny	Mild	Normal	False	Yes
Sunny	Mild	High	True	No

Overcast	Hot	High	False	Yes
Overcast	Cool	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes

Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Rainy	Mild	Normal	True	Yes

4. Split data based on the feature which has the maximum gain, and repeat steps 1-3 for each part.

Outlook	Temp	Humidity	Windy	Play Golf
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Sunny	Mild	Normal	False	Yes
Sunny	Mild	High	True	No
Overcast	Hot	High	False	Yes
Overcast	Cool	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Rainy	Mild	Normal	True	Yes

Outlook	Temp	Humidity	Windy	Play Golf
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Sunny	Mild	Normal	False	Yes
Sunny	Mild	High	True	No
Overcast	Hot	High	False	Yes
Overcast	Cool	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Rainy	Mild	Normal	True	Yes

Q2. Your Turn

• Suppose that the following data is about accepting or rejecting job applications based on "Experience", "Degree", and type of the job ("Job") that applicants applied for it. What is the decision tree for the following data set based on entropy?

Experience	Degree	Job	Class
Exp >10	HS	Board	No
5< Exp <10	Uni	Board	Yes
Exp >10	HS	Board	No
5< Exp <10	HS	Hcare	Yes
Exp < 5	HS	Hcare	Yes
Exp < 5	HS	Board	No
Exp < 5	None	Edu	No
Exp >10	None	Hcare	No
Exp < 5	Uni	Edu	Yes
Exp >10	Uni	Board	Yes

Q3. Numerical Descriptive Features

• What are possible categories for "Experience" feature?

Experience	Degree	Job	Class
12	HS	Board	No
20	Uni	Board	Yes
15	HS	Board	No
10	HS	Hcare	Yes
3	HS	Hcare	No
7	HS	Board	Yes
5	None	Edu	No
2	None	Hcare	No
6	Uni	Edu	Yes
11	Uni	Board	Yes

Q4. Numerical Target Feature

• Suppose that we have the following leaves after splitting the data set. Which classification is better and why?

Target Features

Descriptive readures range readures			
Experience	Degree	Job	Salary (K)
*	*	*	20
*	*	*	40
*	*	*	50
*	*	*	65
*	*	*	70
*	*	*	25
*	*	*	95
*	*	*	100
*	*	*	110
*	*	*	45

Descriptive Features

Leaf 1	20	100 40	95
Leaf 2	50	65 70	110
Leaf 3	45	25	
Leaf 1	70	100 110	95
Leaf 2	40	45 65	50
Leaf 3	25	20	

$$var(a) = \frac{\sum_{i=1}^{n} (a_i - \overline{a})^2}{n-1}$$

Q5. Homework

- We would like to predict the sex of a person based on two binary attributes: leg-cover (pants or skirts) and facial-hair (some or none). We have a data set of 1000 individuals, half male and half female. 50% of females wear skirt, and no male wears skirt. 75% of males and 25% of females have facial hair.
- Which attribute should be used as the root of the decision tree based on Entropy?

