ESAME DI MECCANICA RAZIONALE

CORSO DI LAUREA IN ARCHITETTURA – INGEGNERIA ALMA MATER – UNIVERSITÀ DI BOLOGNA

22 Marzo 2024

Appello straordinario per studenti fuori corso

ISTRUZIONI. Il tempo a disposizione per la risoluzione è di 120 minuti. È indicato il punteggio associato ad ogni domanda. Un punteggio superiore a 30 corrisponde alla lode.

Sia dato un piano verticale con riferimento cartesiano inerziale $O\hat{\imath}_1\hat{\imath}_2$ come in figura. Un anello omogeneo di massa m e raggio 2ℓ è vincolato a ruotare senza attrito attorno al suo centro, coincidente con O, senza uscire dal piano. Il vincolo è realizzato tramite un'asta, di massa trascurabile, coincidente con un diametro dell'anello, e incernierata nel suo centro sull'origine del riferimento. Su tale asta si trova inoltre, a distanza ℓ dal centro, una massa pari a 2m (in posizione C in figura). Infine, due punti A e B dell'anello, estremi del diametro ortogonale a \overrightarrow{OC} , sono collegati, tramite due molle ideali di costante elastica k e lunghezza a riposo trascurabile, all'asse x in due punti rispettivamente indicati con A' e B': le molle sono vincolate all'asse per mezzo di due carrelli, in modo tale che i segmenti $\overrightarrow{AA'}$ e $\overrightarrow{BB'}$ si mantengano sempre perfettamente verticali.

- A Ricavare le coordinate del centro di massa del sistema in funzione di ℓ e dell'angolo θ , indicato in figura, tra l'asse delle ordinate e \overrightarrow{OC} . Calcolare inoltre il momento d'inerzia I_z del sistema rispetto all'asse z ortogonale al piano e passante per O. [6 pt]
- **B** Determinare le configurazioni ordinarie di equilibrio in funzione di $\eta := \frac{k\ell}{gm}$. Supponendo che $\eta = 1$, dire se la configurazione corrispondente a $\theta = 0$ è di equilibrio e, in caso, se si tratta di una configurazione di equilibrio stabile o meno. [12 pt]
- C Determinare la reazione vincolare in O in condizioni statiche e dinamiche. [6 pt]
- **D** Assumendo $\theta = 0$ (ovvero nella configurazione rappresentata in basso), calcolare il momento d'inerzia del corpo rispetto all'asse x e rispetto all'asse y. [6 pt].

E Spiegare perché il tensore d'inerzia del sistema rispetto ad O è diagonale nella base ortonormale $\hat{\imath}\hat{\jmath}\hat{k}$, con $\hat{k} = \hat{\imath} \wedge \hat{\jmath}$, quando $\theta = 0$ [5 pt].

A Il centro di massa $G_{\mathcal{A}}$ dell'anello \mathcal{A} si trova nell'origine, $\overrightarrow{OG_{\mathcal{A}}} = \mathbf{0}$, per motivi di simmetria. Osservando che la posizione C è data da

$$\overrightarrow{OC} = -\ell \sin \theta \hat{\imath}_1 + \ell \cos \theta \hat{\imath}_2$$

con $\hat{\imath}_1$ e $\hat{\imath}_2$ versore dell'asse delle ascisse e delle ordinate rispettivamente, abbiamo che il centro di massa Gè individuato da

$$\overrightarrow{OG} = \frac{\overrightarrow{mOG_A} + 2\overrightarrow{mOC}}{3m} = \frac{2}{3}\overrightarrow{OC}.$$

Il momento d'inerzia si può calcolare sommando il momento d'inerzia dell'anello $I_A = m(2\ell)^2$ rispetto all'asse ortogonale al piano e passante per l'origine a quello della massa puntiforme rispetto allo stesso asse, come

$$I_z = 4m\ell^2 + 2m\ell^2 = 6m\ell^2.$$

 ${\bf B}$ Osservando che le posizioni dei punti Ae Bsi scrivono come

$$\overrightarrow{OA} = 2\ell \cos \theta \hat{\imath}_1 + 2\ell \sin \theta \hat{\imath}_2 = -\overrightarrow{OB}$$

abbiamo che, indicando $(x_{\bullet},y_{\bullet})^{\intercal}$ le coordinate dei vari punti, l'energia potenziale è

$$V = 3mgy_G + \frac{1}{2}ky_A^2 + \frac{1}{2}ky_B^2 = 2mg\ell\cos\theta + 4k\ell^2\sin^2\theta,$$

per cui i punti di equilibrio si trovano ponendo

$$\partial_{\theta}V = -2mg\ell\sin\theta + 8k\ell^{2}\cos\theta\sin\theta = -2mg\ell\sin\theta\left(1 - 4\eta\cos\theta\right) = 0,$$

che è risolto per $\sin \theta = 0 \Rightarrow \theta = n\pi$, $n \in \mathbb{Z}$, oppure per $1 - 4\eta \cos \theta = 0$, equazione che ammette soluzione se e solo se $\eta \geq \frac{1}{4}$: in tal caso

$$\theta = \pm \arccos \frac{1}{4\eta} + 2\pi n, \qquad n \in \mathbb{Z}, \qquad \text{se } \eta \ge \frac{1}{4}.$$

Calcolando la derivata seconda,

$$\partial_{\theta}^{2}V = 2mg\ell\left(-\cos\theta + 4\eta(\cos^{2}\theta - \sin^{2}\theta)\right) = 2mgl\left(4\eta\cos2\theta - \cos\theta\right).$$

Per $\theta=0$ questa quantità è uguale a $\partial_{\theta}^2 V|_{\theta=0}=2mg\ell(4\eta-1)$, per cui si ha stabilità solo se $\eta>\frac{1}{4}$: nelle condizioni richieste la configurazione è dunque stabile.

C Dalla prima equazione cardinale della statica, abbiamo che la reazione vincolare Φ_O in O deve essere opposta a tutte le forze attive, ovvero

$$\Phi_O = -3mg - k\overrightarrow{AA'} - k\overrightarrow{BB'} = 3mg\hat{\jmath}.$$

dove $g = -g\hat{j}$ è l'accelerazione di gravità e abbiamo usato il fatto che $\overrightarrow{AA'} = -\overrightarrow{BB'}$. Per calcolare la reazione vincolare in condizione dinamiche, scriviamo

$$\Phi_O + 3mg + k\overrightarrow{AA'} + k\overrightarrow{BB'} = \Phi_O - 3mg\hat{\jmath} = 3m\ddot{p}_G \Rightarrow$$

$$\Phi_O = 2m\ell(\dot{\theta}^2\sin\theta - \ddot{\theta}\cos\theta)\hat{\imath} + m(3g - 2\ell\ddot{\theta}\sin\theta - 2\ell\dot{\theta}^2\cos\theta)\hat{\jmath}.$$

D Il momento di un anello omogeneo di raggio R e massa m rispetto ad un asse baricentrale che giace nel piano dell'anello stesso è $\frac{1}{2}mR^2$, ovvero nel nostro caso $2m\ell^2$. Possiamo calcolare il momento d'inerzia del sistema rispetto all'asse x e all'asse y sommando a questa quantità il momento della massa puntiforme nei due casi,

$$I_x = 2m\ell^2 + 2m\ell^2 = 4m\ell^2, \qquad I_y = 2m\ell^2,$$

dato che nel primo caso la massa puntiforme dista ℓ dall'asse e nel secondo caso dista 0

- **E** La matrice d'inerzia rispetto all'origine I_O è diagonale nella base ortonormale data, poiché i prodotti d'inerzia I_{xy} , I_{yz} e I_{xz} sono tutti nulli. In particolare,
 - $-I_{yz} = I_{xz} = 0$, essendo il sistema nel piano, ovvero sia i punti del disco che le due masse puntiformi hanno coordinata nulla lungo z;

 $-\ I_{xy}=0$ essendo la coordinata x della massa puntiforme in Cnulla, mentre il contributo dovuto all'anello è nullo per ragioni di simmetria.