Protocolos de demostración interactivos

IIC3810

Tenemos un protocolo interactivo para demostrar que $\varphi \in \mathsf{SAT}$

► El protocolo tiene dos participantes: un verificador **V** y un demostrador **D**

- ► El protocolo tiene dos participantes: un verificador **V** y un demostrador **D**
- ightharpoonup V trata de demostrar que $\varphi \in \mathsf{SAT}$ haciendo preguntas a $\mathbf D$

- ► El protocolo tiene dos participantes: un verificador **V** y un demostrador **D**
- **V** trata de demostrar que $\varphi \in \mathsf{SAT}$ haciendo preguntas a **D**
- D tiene poder de computación ilimitado

- ► El protocolo tiene dos participantes: un verificador **V** y un demostrador **D**
- ightharpoonup V trata de demostrar que $\varphi \in \mathsf{SAT}$ haciendo preguntas a $\mathbf D$
- D tiene poder de computación ilimitado
 - Puede tratar de engañar a ${\bf V}$ dando información que indica que $\varphi\in{\sf SAT}$ cuando φ es inconsistente

Con entrada φ , el protocolo funciona de la siguiente forma:

Con entrada φ , el protocolo funciona de la siguiente forma:

1. **V** pregunta a **D** por una valuación σ que satisfaga a φ

Con entrada φ , el protocolo funciona de la siguiente forma:

- 1. **V** pregunta a **D** por una valuación σ que satisfaga a φ
- 2. $\bf D$ responde con una valuación σ que satisfaga la condición anterior

Con entrada φ , el protocolo funciona de la siguiente forma:

- 1. ${f V}$ pregunta a ${f D}$ por una valuación σ que satisfaga a φ
- 2. **D** responde con una valuación σ que satisfaga la condición anterior
- 3. **V** chequea si $\sigma(\varphi) = 1$, y si es así acepta

Con entrada φ , el protocolo funciona de la siguiente forma:

- 1. ${f V}$ pregunta a ${f D}$ por una valuación σ que satisfaga a φ
- 2. **D** responde con una valuación σ que satisfaga la condición anterior
- 3. **V** chequea si $\sigma(\varphi) = 1$, y si es así acepta

¿Puede engañar $\bf D$ a $\bf V$ en este protocolo?

Con entrada φ , el protocolo funciona de la siguiente forma:

- 1. ${f V}$ pregunta a ${f D}$ por una valuación σ que satisfaga a φ
- 2. **D** responde con una valuación σ que satisfaga la condición anterior
- 3. **V** chequea si $\sigma(\varphi) = 1$, y si es así acepta

¿Puede engañar **D** a **V** en este protocolo?

No por la verificación realizada en el paso 3

El protocolo mostrado en las transparencias anteriores puede ser extendido a cualquier lenguaje $L \in \mathsf{NP}$

► ¿Cómo?

El protocolo mostrado en las transparencias anteriores puede ser extendido a cualquier lenguaje $L \in NP$

► ¿Cómo?

Es posible extender esta noción de protocolo en dos direcciones:

El protocolo mostrado en las transparencias anteriores puede ser extendido a cualquier lenguaje $L \in \mathsf{NP}$

¿Cómo?

Es posible extender esta noción de protocolo en dos direcciones:

Permitir varias rondas de pregunta y respuesta

El protocolo mostrado en las transparencias anteriores puede ser extendido a cualquier lenguaje $L \in \mathsf{NP}$

¿Cómo?

Es posible extender esta noción de protocolo en dos direcciones:

- Permitir varias rondas de pregunta y respuesta
- ightharpoonup Permitir que haya una probabilidad de error asociada a la respuesta final de f V

El protocolo mostrado en las transparencias anteriores puede ser extendido a cualquier lenguaje $L \in \mathsf{NP}$

¿Cómo?

Es posible extender esta noción de protocolo en dos direcciones:

- Permitir varias rondas de pregunta y respuesta
- Permitir que haya una probabilidad de error asociada a la respuesta final de V

Vamos a ver las clases de complejidad que definen esta condiciones

 ${f V}$ es una MT determinista que funciona en tiempo f(|w|), donde w es la entrada

En cada ronda V realiza a lo más f(|w|) pasos

 ${f V}$ es una MT determinista que funciona en tiempo f(|w|), donde w es la entrada

En cada ronda V realiza a lo más f(|w|) pasos

D es determinista y tiene poder de computación ilimitado

 ${f V}$ es una MT determinista que funciona en tiempo f(|w|), donde w es la entrada

En cada ronda V realiza a lo más f(|w|) pasos

D es determinista y tiene poder de computación ilimitado

D es simplemente una función

 ${f V}$ es una MT determinista que funciona en tiempo f(|w|), donde w es la entrada

En cada ronda V realiza a lo más f(|w|) pasos

D es determinista y tiene poder de computación ilimitado

- D es simplemente una función
- D puede incluso decidir un problema indecidible

- Una cinta de entrada donde se coloca el string w
 - Esta cinta es sólo de lectura

- Una cinta de entrada donde se coloca el string w
 - Esta cinta es sólo de lectura
- Una cinta de comunicación donde V puede colocar una consulta que es respondida por D

- Una cinta de entrada donde se coloca el string w
 - Esta cinta es sólo de lectura
- Una cinta de comunicación donde V puede colocar una consulta que es respondida por D
 - Colocar una pregunta o respuesta x en la cinta significa colocar $\vdash xBB \cdots$ en ella

- Una cinta de entrada donde se coloca el string w
 - Esta cinta es sólo de lectura
- Una cinta de comunicación donde V puede colocar una consulta que es respondida por D
 - Colocar una pregunta o respuesta x en la cinta significa colocar $\vdash xBB \cdots$ en ella
 - La respuesta de $\bf D$ a cada consulta de $\bf V$ debe tener tamaño acotado por f(|w|)

V además tiene una cinta a la cual D no tiene acceso

Una cinta de trabajo que es de lectura y escritura

V además tiene una cinta a la cual D no tiene acceso

Una cinta de trabajo que es de lectura y escritura

Inicialmente el protocolo entrega el control a ${f V}$

V además tiene una cinta a la cual D no tiene acceso

Una cinta de trabajo que es de lectura y escritura

Inicialmente el protocolo entrega el control a **V**

Este control permanece en el poder de **V**, hasta que **V** realiza una consulta a **D** y le pasa el control

V además tiene una cinta a la cual D no tiene acceso

Una cinta de trabajo que es de lectura y escritura

Inicialmente el protocolo entrega el control a **V**

- ightharpoonup Este control permanece en el poder de ightharpoonup, hasta que ightharpoonup realiza una consulta a ightharpoonup y le pasa el control
- Una vez que la consulta ha sido respondida D le devuelve el control a V

V además tiene una cinta a la cual D no tiene acceso

Una cinta de trabajo que es de lectura y escritura

Inicialmente el protocolo entrega el control a **V**

- Este control permanece en el poder de **V**, hasta que **V** realiza una consulta a **D** y le pasa el control
- Una vez que la consulta ha sido respondida D le devuelve el control a V
- ▶ **V** es quien decide si aceptar el string de entrada *w*

El número de rondas realizadas por el protocolo (\mathbf{V}, \mathbf{D}) con entrada w se define como el número de veces que el control cambia de dueño

El número de rondas realizadas por el protocolo (\mathbf{V}, \mathbf{D}) con entrada w se define como el número de veces que el control cambia de dueño

Por ejemplo, decimos que tenemos 2 rondas si el control pasa de V a D por una consulta, y luego de D a V por la respuesta a la consulta

El número de rondas realizadas por el protocolo (V, D) con entrada w se define como el número de veces que el control cambia de dueño

Por ejemplo, decimos que tenemos 2 rondas si el control pasa de V a D por una consulta, y luego de D a V por la respuesta a la consulta

V debe tener el control al momento de decidir si acepta el string de entrada

El número de rondas realizadas por el protocolo (\mathbf{V}, \mathbf{D}) con entrada w se define como el número de veces que el control cambia de dueño

Por ejemplo, decimos que tenemos 2 rondas si el control pasa de V a D por una consulta, y luego de D a V por la respuesta a la consulta

V debe tener el control al momento de decidir si acepta el string de entrada

 Como esta operación termina la ejecución del protocolo, el número de rondas debe ser par

Sea L un lenguaje sobre un alfabeto Σ

Sea L un lenguaje sobre un alfabeto Σ

L está en dIP[f(n)] si existe un verificador \mathbf{V} que funciona en tiempo polinomial tal que para cada $w \in \Sigma^*$:

Sea L un lenguaje sobre un alfabeto Σ

L está en dIP[f(n)] si existe un verificador V que funciona en tiempo polinomial tal que para cada $w \in \Sigma^*$:

Para cada demostrador **D**, el protocolo (**V**, **D**) con entrada w realiza un número de rondas acotado por f(|w|)

Sea L un lenguaje sobre un alfabeto Σ

L está en dIP[f(n)] si existe un verificador V que funciona en tiempo polinomial tal que para cada $w \in \Sigma^*$:

- Para cada demostrador **D**, el protocolo (**V**, **D**) con entrada w realiza un número de rondas acotado por f(|w|)
- ightharpoonup Si $w \in L$, entonces existe demostrador **D** tal que (**V**,**D**) acepta w

Sea L un lenguaje sobre un alfabeto Σ

L está en dIP[f(n)] si existe un verificador V que funciona en tiempo polinomial tal que para cada $w \in \Sigma^*$:

- Para cada demostrador **D**, el protocolo (**V**, **D**) con entrada w realiza un número de rondas acotado por f(|w|)
- ightharpoonup Si $w \in L$, entonces existe demostrador **D** tal que (V,D) acepta w
- Si $w \notin L$, entonces para todo demostrador **D'** se tiene que (**V**,**D'**) rechaza w

La clase dIP[k]

Ejercicio

- 1. Demuestre que SAT \in dIP[2] y GRAPH-ISO \in dIP[2]
- 2. ¿Es cierto que $\overline{\mathsf{SAT}} \in \mathsf{dIP}[p(n)]$ o $\overline{\mathsf{GRAPH-ISO}} \in \mathsf{dIP}[p(n)]$, para algún polinomio p(n)?

La clase dIP

Sea

$$\mathsf{dIP} = \bigcup_{k \in \mathbb{N}} \mathsf{dIP}[n^k]$$

La clase dIP

Sea

$$\mathsf{dIP} = \bigcup_{k \in \mathbb{N}} \mathsf{dIP}[n^k]$$

Proposición

dIP = NP

La clase dIP

Sea

$$\mathsf{dIP} = \bigcup_{k \in \mathbb{N}} \mathsf{dIP}[n^k]$$

Proposición

dIP = NP

Ejercicio

Demuestre la proposición

 ${f V}$ es una MT probabilística que funciona en tiempo f(|w|), donde w es la entrada

En cada ronda V realiza a lo más f(|w|) pasos

 ${f V}$ es una MT probabilística que funciona en tiempo f(|w|), donde w es la entrada

En cada ronda V realiza a lo más f(|w|) pasos

D es determinista y tiene poder de computación ilimitado

- Una cinta de entrada donde se coloca el string w
 - Esta cinta es sólo de lectura

- Una cinta de entrada donde se coloca el string w
 - Esta cinta es sólo de lectura
- Una cinta de comunicación donde V puede colocar una consulta que es respondida por D

- Una cinta de entrada donde se coloca el string w
 - Esta cinta es sólo de lectura
- Una cinta de comunicación donde V puede colocar una consulta que es respondida por D
 - Colocar una pregunta o respuesta x en la cinta significa colocar $\vdash xBB \cdots$ en ella

- Una cinta de entrada donde se coloca el string w
 - Esta cinta es sólo de lectura
- Una cinta de comunicación donde V puede colocar una consulta que es respondida por D
 - Colocar una pregunta o respuesta x en la cinta significa colocar $\vdash xBB \cdots$ en ella
 - La respuesta de $\bf D$ a cada consulta de $\bf V$ debe tener tamaño acotado por f(|w|)

V además tiene dos cintas a las cual D no tiene acceso

V además tiene dos cintas a las cual D no tiene acceso

▶ Una cinta de trabajo que es de lectura y escritura

V además tiene dos cintas a las cual D no tiene acceso

- Una cinta de trabajo que es de lectura y escritura
- Una cinta con bits aleatorios que es sólo de lectura y cuya cabeza sólo se mueve hacia la derecha

V además tiene dos cintas a las cual D no tiene acceso

- Una cinta de trabajo que es de lectura y escritura
- Una cinta con bits aleatorios que es sólo de lectura y cuya cabeza sólo se mueve hacia la derecha
 - Está cinta tiene suficientes bits para todas las rondas

V además tiene dos cintas a las cual D no tiene acceso

- Una cinta de trabajo que es de lectura y escritura
- Una cinta con bits aleatorios que es sólo de lectura y cuya cabeza sólo se mueve hacia la derecha
 - Está cinta tiene suficientes bits para todas las rondas

Inicialmente el protocolo entrega el control a **V**

V además tiene dos cintas a las cual D no tiene acceso

- Una cinta de trabajo que es de lectura y escritura
- Una cinta con bits aleatorios que es sólo de lectura y cuya cabeza sólo se mueve hacia la derecha
 - Está cinta tiene suficientes bits para todas las rondas

Inicialmente el protocolo entrega el control a **V**

Este control permanece en el poder de **V**, hasta que **V** realiza una consulta a **D** y le pasa el control

V además tiene dos cintas a las cual D no tiene acceso

- Una cinta de trabajo que es de lectura y escritura
- Una cinta con bits aleatorios que es sólo de lectura y cuya cabeza sólo se mueve hacia la derecha
 - Está cinta tiene suficientes bits para todas las rondas

Inicialmente el protocolo entrega el control a **V**

- Este control permanece en el poder de **V**, hasta que **V** realiza una consulta a **D** y le pasa el control
- Una vez que la consulta ha sido respondida D le devuelve el control a V

V además tiene dos cintas a las cual D no tiene acceso

- Una cinta de trabajo que es de lectura y escritura
- Una cinta con bits aleatorios que es sólo de lectura y cuya cabeza sólo se mueve hacia la derecha
 - Está cinta tiene suficientes bits para todas las rondas

Inicialmente el protocolo entrega el control a **V**

- Este control permanece en el poder de V, hasta que V realiza una consulta a D y le pasa el control
- Una vez que la consulta ha sido respondida D le devuelve el control a V
- ▶ **V** es quien decide si aceptar el string de entrada w

El número de rondas realizadas por el protocolo (V, D) con entrada w se define como el número de veces que el control cambia de dueño

El número de rondas realizadas por el protocolo (V, D) con entrada w se define como el número de veces que el control cambia de dueño

V debe tener el control al momento de decidir si acepta el string de entrada

Sea L un lenguaje sobre un alfabeto Σ

Sea L un lenguaje sobre un alfabeto Σ

L está en IP[f(n)] si existe un verificador V que funciona en tiempo polinomial (MT aleatorizada de tiempo polinomial) tal que para cada $w \in \Sigma^*$:

Sea L un lenguaje sobre un alfabeto Σ

L está en IP[f(n)] si existe un verificador V que funciona en tiempo polinomial (MT aleatorizada de tiempo polinomial) tal que para cada $w \in \Sigma^*$:

Para cada demostrador **D**, el protocolo (**V**, **D**) con entrada w realiza un número de rondas acotado por f(|w|)

Sea L un lenguaje sobre un alfabeto Σ

L está en IP[f(n)] si existe un verificador V que funciona en tiempo polinomial (MT aleatorizada de tiempo polinomial) tal que para cada $w \in \Sigma^*$:

- Para cada demostrador **D**, el protocolo (**V**, **D**) con entrada w realiza un número de rondas acotado por f(|w|)
- ightharpoonup Si $w \in L$, entonces existe demostrador **D** tal que

$$Pr((\mathbf{V}, \mathbf{D}) \text{ acepte } w) \geq \frac{3}{4}$$

Sea L un lenguaje sobre un alfabeto Σ

L está en IP[f(n)] si existe un verificador V que funciona en tiempo polinomial (MT aleatorizada de tiempo polinomial) tal que para cada $w \in \Sigma^*$:

- Para cada demostrador **D**, el protocolo (**V**, **D**) con entrada w realiza un número de rondas acotado por f(|w|)
- ightharpoonup Si $w \in L$, entonces existe demostrador **D** tal que

$$Pr((\mathbf{V}, \mathbf{D}) \text{ acepte } w) \geq \frac{3}{4}$$

▶ Si $w \notin L$, entonces para todo demostrador **D**' se tiene que

$$Pr((V, D') \text{ acepte } w) \leq \frac{1}{4}$$

La clase IP

Sea

$$\mathsf{IP} = \bigcup_{k \in \mathbb{N}} \mathsf{IP}[n^k]$$

La clase IP

Sea

$$\mathsf{IP} = \bigcup_{k \in \mathbb{N}} \mathsf{IP}[n^k]$$

Vamos a ver ejemplos de protocolos interactivos que nos permiten entender el poder de IP

La clase IP

Sea

$$\mathsf{IP} = \bigcup_{k \in \mathbb{N}} \mathsf{IP}[n^k]$$

Vamos a ver ejemplos de protocolos interactivos que nos permiten entender el poder de IP

Y vamos a caracterizar IP en términos de las clases de complejidad usuales

¿Por qué nos interesan IP[k] y IP?

No sabemos si $\overline{\mathsf{GRAPH}\text{-}\mathsf{ISO}} \in \mathsf{NP}$

¿Por qué nos interesan IP[k] y IP?

No sabemos si $\overline{\mathsf{GRAPH}\text{-}\mathsf{ISO}} \in \mathsf{NP}$

Pero sí podemos demostrar que existe un protocolo aleatorizado para aceptar grafos no isomorfos:

Proposición

 \overline{GRAPH} - $\overline{ISO} \in IP[4]$

Una demostración de que $\overline{\mathsf{GRAPH}\text{-}\mathsf{ISO}} \in \mathsf{IP[4]}$

Con entrada (G_1, G_2) el protocolo funciona de la siguiente forma:

1. \mathbf{V} primero revisa si G_1 y G_2 tienen distinto número de nodos. Si es así acepta, si no va al paso 2

- 1. **V** primero revisa si G_1 y G_2 tienen distinto número de nodos. Si es así acepta, si no va al paso 2
- 2. Sea m el número de nodos de G_1 y G_2

- 1. \mathbf{V} primero revisa si G_1 y G_2 tienen distinto número de nodos. Si es así acepta, si no va al paso 2
- 2. Sea m el número de nodos de G_1 y G_2
- 3. V repite 2 veces los pasos 3.1 3.5

- 1. \mathbf{V} primero revisa si G_1 y G_2 tienen distinto número de nodos. Si es así acepta, si no va al paso 2
- 2. Sea m el número de nodos de G_1 y G_2
- 3. V repite 2 veces los pasos 3.1 3.5
 - 3.1 **V** escoge con distribución uniforme un número $i \in \{1, 2\}$ y una permutación $f: \{1, \ldots, m\} \rightarrow \{1, \ldots, m\}$

- 1. \mathbf{V} primero revisa si G_1 y G_2 tienen distinto número de nodos. Si es así acepta, si no va al paso 2
- 2. Sea m el número de nodos de G_1 y G_2
- 3. V repite 2 veces los pasos 3.1 3.5
 - 3.1 **V** escoge con distribución uniforme un número $i \in \{1, 2\}$ y una permutación $f: \{1, \ldots, m\} \rightarrow \{1, \ldots, m\}$
 - 3.2 Sea $H = f(G_i)$

3.3 **V** pone H en la cinta de comunicación y pregunta a **D** si es isomorfo a G_1

Una demostración de que $\overline{\mathsf{GRAPH}\text{-}\mathsf{ISO}} \in \mathsf{IP[4]}$

- 3.3 **V** pone H en la cinta de comunicación y pregunta a **D** si es isomorfo a G_1
- 3.4 **D** responde $\mathbf{s}i$ si H y G_1 son isomorfos, y $\mathbf{n}\mathbf{o}$ en caso contrario

- 3.3 **V** pone H en la cinta de comunicación y pregunta a **D** si es isomorfo a G_1
- 3.4 **D** responde $\mathbf{s}i$ si H y G_1 son isomorfos, y $\mathbf{n}\mathbf{o}$ en caso contrario
- 3.5 Si i=1 y **D** respondió **no**, o si i=2 y **D** respondió **sí**, entonces **V** rechaza

- 3.3 **V** pone H en la cinta de comunicación y pregunta a **D** si es isomorfo a G_1
- 3.4 **D** responde $\mathbf{s}i$ si H y G_1 son isomorfos, y $\mathbf{n}\mathbf{o}$ en caso contrario
- 3.5 Si i=1 y **D** respondió **no**, o si i=2 y **D** respondió **sí**, entonces **V** rechaza
- 4. V acepta

Una demostración de que $\overline{\mathsf{GRAPH}\text{-}\mathsf{ISO}} \in \mathsf{IP[4]}$

El protocolo tiene 4 rondas

El protocolo tiene 4 rondas

Además, tenemos que:

ightharpoonup Si G_1 y G_2 no son isomorfos:

El protocolo tiene 4 rondas

Además, tenemos que:

ightharpoonup Si G_1 y G_2 no son isomorfos:

$$Pr((V, D) \text{ acepte } (G_1, G_2)) = 1$$

El protocolo tiene 4 rondas

Además, tenemos que:

ightharpoonup Si G_1 y G_2 no son isomorfos:

$$Pr((V, D) \text{ acepte } (G_1, G_2)) = 1$$

ightharpoonup Si G_1 y G_2 son isomorfos, entonces para todo \mathbf{D}' :

El protocolo tiene 4 rondas

Además, tenemos que:

ightharpoonup Si G_1 y G_2 no son isomorfos:

$$Pr((V, D) \text{ acepte } (G_1, G_2)) = 1$$

ightharpoonup Si G_1 y G_2 son isomorfos, entonces para todo \mathbf{D}' :

$$Pr((V, D') \text{ acepte } (G_1, G_2)) = \frac{1}{4}$$

Podemos disminuir el número de rondas para GRAPH-ISO

Corolario

 $\overline{\textit{GRAPH-ISO}} \in \textit{IP}[2]$

Podemos disminuir el número de rondas para GRAPH-ISO

Corolario

 \overline{GRAPH} - $\overline{ISO} \in IP[2]$

Ejercicio

Demuestre el corolario

IP contiene a co-NP

Teorema

 $\overline{\mathit{CNF-SAT}} \in \mathit{IP}[2n]$

IP contiene a co-NP

Teorema

 $\overline{\mathit{CNF-SAT}} \in \mathit{IP}[2n]$

Corolario

co- $NP \subseteq IP$

IP contiene a co-NP

Teorema

 $\overline{CNF\text{-}SAT} \in IP[2n]$

Corolario

co- $NP \subseteq IP$

Ejercicio

Demuestre el corolario

Un resultado más fuerte

Defina el siguiente lenguaje:

```
COUNT-CNF-SAT = \{(\varphi, k) \mid \varphi \text{ es una fórmula en CNF y}
el número de valuaciones que satisface a \varphi es k\}
```

Un resultado más fuerte

Defina el siguiente lenguaje:

COUNT-CNF-SAT =
$$\{(\varphi, k) \mid \varphi \text{ es una fórmula en CNF y}$$

el número de valuaciones que satisface a φ es $k\}$

Teorema

COUNT-CNF- $SAT \in IP[2n]$

Un resultado más fuerte

Defina el siguiente lenguaje:

COUNT-CNF-SAT =
$$\{(\varphi, k) \mid \varphi \text{ es una fórmula en CNF y}$$

el número de valuaciones que satisface a φ es $k\}$

Teorema

COUNT-CNF- $SAT \in IP[2n]$

Ejercicio

Demuestre usando el teorema que $\overline{\mathsf{CNF}\text{-}\mathsf{SAT}} \in \mathsf{IP}[2n]$

Sea $\varphi = C_1 \wedge \cdots \wedge C_m$ una fórmula en CNF cuyas variables son x_1, \ldots, x_n

Sea $\varphi = C_1 \wedge \cdots \wedge C_m$ una fórmula en CNF cuyas variables son x_1, \ldots, x_n

Suponemos que cada cláusula en φ no tiene literales complementarios ni repetidos

¿Por qué podemos suponer esto?

Sea $\varphi = C_1 \wedge \cdots \wedge C_m$ una fórmula en CNF cuyas variables son x_1, \ldots, x_n

Suponemos que cada cláusula en φ no tiene literales complementarios ni repetidos

¿Por qué podemos suponer esto?

Además, para la definición del protocolo interactivo suponemos que $n \ge 2$ y $m \ge 2$

Sea $\varphi = C_1 \wedge \cdots \wedge C_m$ una fórmula en CNF cuyas variables son x_1, \ldots, x_n

Suponemos que cada cláusula en φ no tiene literales complementarios ni repetidos

¿Por qué podemos suponer esto?

Además, para la definición del protocolo interactivo suponemos que $n \ge 2$ y $m \ge 2$

ightharpoonup ¿Cómo manejamos los casos en que n=1 o m=1?

Sea $\varphi = C_1 \wedge \cdots \wedge C_m$ una fórmula en CNF cuyas variables son x_1, \ldots, x_n

Suponemos que cada cláusula en φ no tiene literales complementarios ni repetidos

¿Por qué podemos suponer esto?

Además, para la definición del protocolo interactivo suponemos que $n \ge 2$ y $m \ge 2$

ightharpoonup ¿Cómo manejamos los casos en que n=1 o m=1?

Para cada literal ℓ , defina

$$\tau_{\ell} = \begin{cases} (1-x_i) & \ell = x_i \\ x_i & \ell = \neg x_i \end{cases}$$

Para cada literal ℓ , defina

$$au_{\ell} = egin{cases} (1-x_i) & \ell = x_i \ x_i & \ell = \neg x_i \end{cases}$$

Para cada cláusula $C = (\ell_1 \vee \cdots \vee \ell_k)$, defina

$$\tau_C = 1 - \prod_{i=1}^k \tau_{\ell_i}$$

Finalmente defina

$$g(x_1,\ldots,x_n) = \prod_{i=1}^m \tau_{C_i}$$

Finalmente defina

$$g(x_1,\ldots,x_n) = \prod_{i=1}^m \tau_{C_i}$$

Por ejemplo, si $\varphi = (x \vee y) \wedge (\neg x \vee z \vee w) \wedge (\neg y \vee \neg w)$, entonces

$$g(x, y, z, w) = (1 - (1 - x) \cdot (1 - y)) \cdot (1 - x \cdot (1 - z) \cdot (1 - w)) \cdot (1 - y \cdot w)$$

Para cada valuación $\sigma: \{x_1, \dots, x_n\} \to \{0, 1\}$, tenemos que:

- ▶ Si $\sigma(\varphi) = 1$, entonces $g(\sigma(x_1), \dots, \sigma(x_n)) = 1$
- ► Si $\sigma(\varphi) = 0$, entonces $g(\sigma(x_1), \dots, \sigma(x_n)) = 0$

Para cada valuación $\sigma: \{x_1, \ldots, x_n\} \to \{0, 1\}$, tenemos que:

- ▶ Si $\sigma(\varphi) = 1$, entonces $g(\sigma(x_1), \dots, \sigma(x_n)) = 1$
- ► Si $\sigma(\varphi) = 0$, entonces $g(\sigma(x_1), \dots, \sigma(x_n)) = 0$

Para demostrar que $(\varphi, k) \in COUNT-CNF-SAT$, **D** debe demostrar a **V** que:

$$\sum_{(a_1,\ldots,a_n)\in\{0,1\}^n}g(a_1,\ldots,a_n) = k$$

Para cada valuación $\sigma: \{x_1, \ldots, x_n\} \to \{0, 1\}$, tenemos que:

- ► Si $\sigma(\varphi) = 1$, entonces $g(\sigma(x_1), \dots, \sigma(x_n)) = 1$
- ightharpoonup Si $\sigma(\varphi)=0$, entonces $g(\sigma(x_1),\ldots,\sigma(x_n))=0$

Para demostrar que $(\varphi, k) \in COUNT$ -CNF-SAT, **D** debe demostrar a **V** que:

$$\sum_{(a_1,\ldots,a_n)\in\{0,1\}^n}g(a_1,\ldots,a_n) = k$$

A continuación vamos a ver un protocolo de demostración interactivo para COUNT-CNF-SAT que utiliza esta propiedad

Con entrada φ el protocolo funciona de la siguiente forma:

Con entrada φ el protocolo funciona de la siguiente forma:

1. V le indica a D que el protocolo ha comenzado

Con entrada φ el protocolo funciona de la siguiente forma:

- 1. V le indica a D que el protocolo ha comenzado
- 2. **D** le devuelve a **V** un polinomio $h_1(x_1)$ tal que

$$h_1(x_1) = \sum_{(a_2,...,a_n)\in\{0,1\}^{n-1}} g(x_1,a_2,...,a_n)$$

Con entrada φ el protocolo funciona de la siguiente forma:

- 1. V le indica a D que el protocolo ha comenzado
- 2. **D** le devuelve a **V** un polinomio $h_1(x_1)$ tal que

$$h_1(x_1) = \sum_{\substack{(a_2,\ldots,a_n)\in\{0,1\}^{n-1}}} g(x_1,a_2,\ldots,a_n)$$

3. Si el grado de $h_1(x_1)$ es mayor que m entonces V rechaza

Con entrada φ el protocolo funciona de la siguiente forma:

- 1. V le indica a D que el protocolo ha comenzado
- 2. **D** le devuelve a **V** un polinomio $h_1(x_1)$ tal que

$$h_1(x_1) = \sum_{(a_2,...,a_n)\in\{0,1\}^{n-1}} g(x_1,a_2,...,a_n)$$

- 3. Si el grado de $h_1(x_1)$ es mayor que m entonces V rechaza
- **4. V** verifica que $h_1(0) + h_1(1) = k$, y si no es así entonces rechaza

Con entrada φ el protocolo funciona de la siguiente forma:

- 1. V le indica a D que el protocolo ha comenzado
- 2. **D** le devuelve a **V** un polinomio $h_1(x_1)$ tal que

$$h_1(x_1) = \sum_{(a_2,...,a_n)\in\{0,1\}^{n-1}} g(x_1,a_2,...,a_n)$$

- 3. Si el grado de $h_1(x_1)$ es mayor que m entonces V rechaza
- **4. V** verifica que $h_1(0) + h_1(1) = k$, y si no es así entonces rechaza
- 5. **V** genera al azar con distribución uniforme un número entero $r_1 \in \{0, \dots, 2^{nm} 1\}$, y se lo envía a **D**

6. Los siguientes pasos se repiten para i = 2, ..., n

- 6. Los siguientes pasos se repiten para i = 2, ..., n
 - 6.1 **D** le devuelve a **V** un polinomio $h_i(x_i)$ tal que

$$h_i(x_i) = \sum_{(a_{i+1},...,a_n)\in\{0,1\}^{n-i}} g(r_1,...,r_{i-1},x_i,a_{i+1},...,a_n)$$

- 6. Los siguientes pasos se repiten para i = 2, ..., n
 - 6.1 **D** le devuelve a **V** un polinomio $h_i(x_i)$ tal que

$$h_i(x_i) = \sum_{\substack{(a_{i+1},\ldots,a_n)\in\{0,1\}^{n-i}}} g(r_1,\ldots,r_{i-1},x_i,a_{i+1},\ldots,a_n)$$

6.2 Si el grado de $h_i(x_i)$ es mayor que m entonces V rechaza

- 6. Los siguientes pasos se repiten para i = 2, ..., n
 - 6.1 **D** le devuelve a **V** un polinomio $h_i(x_i)$ tal que

$$h_i(x_i) = \sum_{\substack{(a_{i+1},\ldots,a_n)\in\{0,1\}^{n-i}}} g(r_1,\ldots,r_{i-1},x_i,a_{i+1},\ldots,a_n)$$

- 6.2 Si el grado de $h_i(x_i)$ es mayor que m entonces V rechaza
- 6.3 **V** verifica que $h_{i-1}(r_{i-1}) = h_i(0) + h_i(1)$, y si no es así entonces rechaza

- 6. Los siguientes pasos se repiten para i = 2, ..., n
 - 6.1 **D** le devuelve a **V** un polinomio $h_i(x_i)$ tal que

$$h_i(x_i) = \sum_{\substack{(a_{i+1},\ldots,a_n)\in\{0,1\}^{n-i}}} g(r_1,\ldots,r_{i-1},x_i,a_{i+1},\ldots,a_n)$$

- 6.2 Si el grado de $h_i(x_i)$ es mayor que m entonces V rechaza
- 6.3 **V** verifica que $h_{i-1}(r_{i-1}) = h_i(0) + h_i(1)$, y si no es así entonces rechaza
- 6.4 **V** genera al azar con distribución uniforme un número entero $r_i \in \{0, \dots, 2^{nm} 1\}$. Si i < n, entonces le envía r_i a **D**

- 6. Los siguientes pasos se repiten para i = 2, ..., n
 - 6.1 **D** le devuelve a **V** un polinomio $h_i(x_i)$ tal que

$$h_i(x_i) = \sum_{\substack{(a_{i+1},\ldots,a_n)\in\{0,1\}^{n-i}}} g(r_1,\ldots,r_{i-1},x_i,a_{i+1},\ldots,a_n)$$

- 6.2 Si el grado de $h_i(x_i)$ es mayor que m entonces V rechaza
- 6.3 **V** verifica que $h_{i-1}(r_{i-1}) = h_i(0) + h_i(1)$, y si no es así entonces rechaza
- 6.4 **V** genera al azar con distribución uniforme un número entero $r_i \in \{0, \dots, 2^{nm} 1\}$. Si i < n, entonces le envía r_i a **D**
- 7. **V** verifica si $h_n(r_n) = g(r_1, \ldots, r_n)$. Si es así entonces acepta, y en caso contrario rechaza

El protocolo tiene 2n rondas

El protocolo tiene 2n rondas

Si $(\varphi, k) \in \text{COUNT-CNF-SAT}$, entonces considerando un demostrador **D** que utiliza el polinomio $g(x_1, \dots, x_n)$ obtenemos que:

$$Pr((V, D) \text{ acepte } (\varphi, k)) = 1$$

El protocolo tiene 2n rondas

Si $(\varphi, k) \in \text{COUNT-CNF-SAT}$, entonces considerando un demostrador **D** que utiliza el polinomio $g(x_1, \dots, x_n)$ obtenemos que:

$$Pr((V, D) \text{ acepte } (\varphi, k)) = 1$$

Suponga que $(\varphi, k) \notin COUNT$ -CNF-SAT.

El protocolo tiene 2n rondas

Si $(\varphi, k) \in \text{COUNT-CNF-SAT}$, entonces considerando un demostrador **D** que utiliza el polinomio $g(x_1, \dots, x_n)$ obtenemos que:

$$Pr((V, D) \text{ acepte } (\varphi, k)) = 1$$

Suponga que $(\varphi, k) \notin COUNT$ -CNF-SAT. Nos falta demostrar que para cualquier demostrador **D**':

$$Pr((V, D') \text{ acepte } (\varphi, k)) \leq \frac{1}{4}$$

Suponga que **D'** está tratando de engañar a **V**

D' está tratando de que **V** acepte (φ, k) , aunque el número de valuaciones que satisfacen a φ no es k

Suponga que **D'** está tratando de engañar a **V**

D' está tratando de que **V** acepte (φ, k) , aunque el número de valuaciones que satisfacen a φ no es k

Sean $h'_i(x_i)$ los polinomios generados por **D'**

Suponga que **D'** está tratando de engañar a **V**

D' está tratando de que **V** acepte (φ, k) , aunque el número de valuaciones que satisfacen a φ no es k

Sean $h'_i(x_i)$ los polinomios generados por **D'**

Tenemos que $h'_1(x_1) \neq h_1(x_1)$

Puesto que $h_1(0) + h_1(1) \neq k$ y **D'** está tratando de engañar a **V**

Si $h'_1(r_1) = h_1(r_1)$, entonces \mathbf{D}' puede definir $h'_2(x_2) = h_2(x_2)$, y desde ahí puede engañar a \mathbf{V}

Puesto que $h_2'(0) + h_2'(1) = h_2(0) + h_2(1) = h_1(r_1) = h_1'(r_1)$

Si $h'_1(r_1) = h_1(r_1)$, entonces \mathbf{D}' puede definir $h'_2(x_2) = h_2(x_2)$, y desde ahí puede engañar a \mathbf{V}

Puesto que $h_2'(0) + h_2'(1) = h_2(0) + h_2(1) = h_1(r_1) = h_1'(r_1)$

Pero si $h_1'(r_1) \neq h_1(r_1)$, entonces se debe tener que $h_2'(x_2) \neq h_2(x_2)$

Puesto que $h_1'(r_1)$ debe ser igual a $h_2'(0) + h_2'(1)$ para que **D'** pueda engañar a **V**

Si continuamos con este razonamiento vemos que ${\bf D}'$ logra engañar a ${\bf V}$ si la siguiente condición es cierta:

$$\bigvee_{i=1}^n h_i'(r_i) = h_i(r_i)$$

Si continuamos con este razonamiento vemos que **D'** logra engañar a **V** si la siguiente condición es cierta:

$$\bigvee_{i=1}^n h_i'(r_i) = h_i(r_i)$$

En particular, la condición $h'_n(r_n) = h_n(r_n)$ es equivalente a pedir que $h'_n(r_n) = g(r_1, \ldots, r_n)$

Si continuamos con este razonamiento vemos que **D'** logra engañar a **V** si la siguiente condición es cierta:

$$\bigvee_{i=1}^n h_i'(r_i) = h_i(r_i)$$

En particular, la condición $h'_n(r_n) = h_n(r_n)$ es equivalente a pedir que $h'_n(r_n) = g(r_1, \ldots, r_n)$

Esta es la última condición que se necesita para que V acepte

Por definición del protocolo y dado que ninguna cláusula de φ tiene literales repetidos o complementarios, el grado de cada $h_i(x_i)$ y $h'_i(x'_i)$ es a lo más m

Por definición del protocolo y dado que ninguna cláusula de φ tiene literales repetidos o complementarios, el grado de cada $h_i(x_i)$ y $h'_i(x'_i)$ es a lo más m

Por definición del protocolo y dado que ninguna cláusula de φ tiene literales repetidos o complementarios, el grado de cada $h_i(x_i)$ y $h'_i(x'_i)$ es a lo más m

$$Pr((V, D') \text{ acepte } (\varphi, k)) =$$

Por definición del protocolo y dado que ninguna cláusula de φ tiene literales repetidos o complementarios, el grado de cada $h_i(x_i)$ y $h'_i(x'_i)$ es a lo más m

$$\Pr((V, D') \text{ acepte } (\varphi, k)) = \Pr(\bigvee_{i=1}^n h'_i(r_i) = h_i(r_i))$$

Por definición del protocolo y dado que ninguna cláusula de φ tiene literales repetidos o complementarios, el grado de cada $h_i(x_i)$ y $h'_i(x'_i)$ es a lo más m

$$\mathsf{Pr} \big((\mathsf{V}, \mathsf{D'}) \text{ acepte } (\varphi, k) \big) = \mathsf{Pr} \bigg(\bigvee_{i=1}^n h_i'(r_i) = h_i(r_i) \bigg)$$

$$= \mathsf{Pr} \bigg(\bigvee_{i=1}^n \bigg[h_i'(r_i) = h_i(r_i) \land \bigwedge_{j=1}^{i-1} h_j'(r_j) \neq h_j(r_j) \bigg] \bigg)$$

Por definición del protocolo y dado que ninguna cláusula de φ tiene literales repetidos o complementarios, el grado de cada $h_i(x_i)$ y $h'_i(x'_i)$ es a lo más m

$$\mathbf{Pr}((\mathbf{V}, \mathbf{D'}) \text{ acepte } (\varphi, k)) = \mathbf{Pr}\left(\bigvee_{i=1}^{n} h_i'(r_i) = h_i(r_i)\right)$$

$$= \mathbf{Pr}\left(\bigvee_{i=1}^{n} \left[h_i'(r_i) = h_i(r_i) \land \bigwedge_{j=1}^{i-1} h_j'(r_j) \neq h_j(r_j)\right]\right)$$

$$= \sum_{i=1}^{n} \mathbf{Pr}\left(h_i'(r_i) = h_i(r_i) \land \bigwedge_{j=1}^{i-1} h_j'(r_j) \neq h_j(r_j)\right)$$

Por definición del protocolo y dado que ninguna cláusula de φ tiene literales repetidos o complementarios, el grado de cada $h_i(x_i)$ y $h'_i(x'_i)$ es a lo más m

$$\begin{aligned} \mathbf{Pr} \big((\mathbf{V}, \mathbf{D'}) \text{ acepte } (\varphi, k) \big) &= & \mathbf{Pr} \bigg(\bigvee_{i=1}^n h_i'(r_i) = h_i(r_i) \bigg) \\ &= & \mathbf{Pr} \bigg(\bigvee_{i=1}^n \bigg[h_i'(r_i) = h_i(r_i) \land \bigwedge_{j=1}^{i-1} h_j'(r_j) \neq h_j(r_j) \bigg] \bigg) \\ &= & \sum_{i=1}^n \mathbf{Pr} \bigg(h_i'(r_i) = h_i(r_i) \land \bigwedge_{j=1}^{i-1} h_j'(r_j) \neq h_j(r_j) \bigg) \\ &\leq & \sum_{i=1}^n \mathbf{Pr} \bigg(h_i'(r_i) = h_i(r_i) \ \bigg| \ \bigwedge_{j=1}^{i-1} h_j'(r_j) \neq h_j(r_j) \bigg) \end{aligned}$$

Por definición del protocolo y dado que ninguna cláusula de φ tiene literales repetidos o complementarios, el grado de cada $h_i(x_i)$ y $h'_i(x'_i)$ es a lo más m

$$\mathbf{Pr}((\mathbf{V}, \mathbf{D'}) \text{ acepte } (\varphi, k)) = \mathbf{Pr}\left(\bigvee_{i=1}^{n} h'_{i}(r_{i}) = h_{i}(r_{i})\right) \\
= \mathbf{Pr}\left(\bigvee_{i=1}^{n} \left[h'_{i}(r_{i}) = h_{i}(r_{i}) \land \bigwedge_{j=1}^{i-1} h'_{j}(r_{j}) \neq h_{j}(r_{j})\right]\right) \\
= \sum_{i=1}^{n} \mathbf{Pr}\left(h'_{i}(r_{i}) = h_{i}(r_{i}) \land \bigwedge_{j=1}^{i-1} h'_{j}(r_{j}) \neq h_{j}(r_{j})\right) \\
\leq \sum_{i=1}^{n} \mathbf{Pr}\left(h'_{i}(r_{i}) = h_{i}(r_{i}) \middle| \bigwedge_{j=1}^{i-1} h'_{j}(r_{j}) \neq h_{j}(r_{j})\right) \\
\leq \sum_{i=1}^{n} \frac{m}{2^{nm}}$$

Por definición del protocolo y dado que ninguna cláusula de φ tiene literales repetidos o complementarios, el grado de cada $h_i(x_i)$ y $h'_i(x'_i)$ es a lo más m

$$\Pr((\mathbf{V}, \mathbf{D'}) \text{ acepte } (\varphi, k)) = \Pr\left(\bigvee_{i=1}^{n} h'_{i}(r_{i}) = h_{i}(r_{i})\right)$$

$$= \Pr\left(\bigvee_{i=1}^{n} \left[h'_{i}(r_{i}) = h_{i}(r_{i}) \land \bigwedge_{j=1}^{i-1} h'_{j}(r_{j}) \neq h_{j}(r_{j})\right]\right)$$

$$= \sum_{i=1}^{n} \Pr\left(h'_{i}(r_{i}) = h_{i}(r_{i}) \land \bigwedge_{j=1}^{i-1} h'_{j}(r_{j}) \neq h_{j}(r_{j})\right)$$

$$\leq \sum_{i=1}^{n} \Pr\left(h'_{i}(r_{i}) = h_{i}(r_{i}) \middle| \bigwedge_{j=1}^{i-1} h'_{j}(r_{j}) \neq h_{j}(r_{j})\right)$$

$$\leq \sum_{i=1}^{n} \frac{m}{2^{nm}} = \frac{nm}{2^{nm}}$$

Por definición del protocolo y dado que ninguna cláusula de φ tiene literales repetidos o complementarios, el grado de cada $h_i(x_i)$ y $h'_i(x'_i)$ es a lo más m

$$\Pr((\mathbf{V}, \mathbf{D'}) \text{ acepte } (\varphi, k)) = \Pr\left(\bigvee_{i=1}^{n} h'_{i}(r_{i}) = h_{i}(r_{i})\right)$$

$$= \Pr\left(\bigvee_{i=1}^{n} \left[h'_{i}(r_{i}) = h_{i}(r_{i}) \land \bigwedge_{j=1}^{i-1} h'_{j}(r_{j}) \neq h_{j}(r_{j})\right]\right)$$

$$= \sum_{i=1}^{n} \Pr\left(h'_{i}(r_{i}) = h_{i}(r_{i}) \land \bigwedge_{j=1}^{i-1} h'_{j}(r_{j}) \neq h_{j}(r_{j})\right)$$

$$\leq \sum_{i=1}^{n} \Pr\left(h'_{i}(r_{i}) = h_{i}(r_{i}) \middle| \bigwedge_{j=1}^{i-1} h'_{j}(r_{j}) \neq h_{j}(r_{j})\right)$$

$$\leq \sum_{i=1}^{n} \frac{m}{2^{nm}} = \frac{nm}{2^{nm}} \leq \frac{1}{4}$$