Proofs without words I

Exercises in METAPOST

Toby Thurston

March 2021 —

Contents

Geometry and Algebra

3

Geometry and Algebra

The Pythagorean theorem I		•								4
The Pythagorean theorem II										5
The Pythagorean theorem III										6
The Pythagorean theorem IV \ldots										7
The Pythagorean theorem $V \ \ldots \ \ldots$										8
The Pythagorean theorem VI \ldots										9
A Pythagorean theorem: $aa' = bb' + cc'$.										10
The rolling circle squares itself										11
On trisecting an angle										12
Trisection in an infinite number of steps										13
Trisection of a line segment										14

The Pythagorean theorem I

— adapted from the Chou pei san ching

The Pythagorean theorem II

Behold!

— Bhāskara (12th century)

The Pythagorean theorem III

— based on Euclid's proof

The Pythagorean theorem IV

— H. E. Dudeney (1917)

The Pythagorean theorem \boldsymbol{V}

— James A. Garfield (1876)

The Pythagorean theorem VI

— Michael Hardy

A Pythagorean theorem: aa' = bb' + cc'

$$\frac{x}{b'} = \frac{b}{a} \implies \frac{x}{b} = \frac{b'}{a} \implies ax = bb';$$

$$\frac{y}{c'} = \frac{c}{a} \implies \frac{y}{c} = \frac{c'}{a} \implies ay = cc';$$

$$\therefore aa' = a(x + y) = bb' + cc'.$$

— Enzo R. Gentile

The rolling circle squares itself

— Thomas Elsner

On trisecting an angle

— Rufus Isaacs

Trisection in an infinite number of steps

 $\frac{1}{3} = \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \cdots$

— Eric Kincanon

Trisection of a line segment

$$\overline{AF} = \frac{1}{3} \cdot \overline{AB}$$

— Scott Cobel