As regras do trabalho estão disponíveis na página do trabalho.

Trabalho: Problemas

Viajar sem estresse

Instância Uma cidade quer implementar uma rede de transporte dado por um grafo não direcionado e conexo G = (V, A). Só que ela não tem dinheiro suficiente para construir todas ruas (arestas) A. Logo eles decidem construir somente uma árvore geradora T.

Solução Uma árvore geradora $T \subseteq A$ do grafo.

Objetivo Construindo somente uma árvore geradora T, é possível que uma aresta $a = uv \in A$ no grafo G não existe em T. Seja d_a a distância entre u e v em T. Logo, viajando de u para v aumenta de 1 (em G) para d_a (em T), e logo vamos chamar d_a o "estresse" gerado pela aresta a. Nos queremos minimizar o estresse máximo da solução T, i.e. minimizar $\max_{a \in A} d_a$.

Informações adicionais Instâncias disponíveis em http://www.inf.ufrgs.br/~mrpritt/oc/vse.zip. O formato das instâncias é descrito no arquivo "Readme.md".

Melhores valores conhecidos

Instância	BKV	Instância	BKV
vse01	2	vse06	3
vse02	9999	vse07	101
vse03	2	vse08	100
vse04	2	vse09	24
vse05	7652	vse10	22

(BKV: melhor valor conhecido (ingl. best known value).)

Menor número de mentores

Instância Um grupo de estudantes quer definir alguns mentores para ajudar os demais na solução de problemas. É desejável que para cada pessoa tem pelo menos um mentor entre os amigos, e pelo menos um mentor que não é amigo. Amizades são modeladas por um grafo G=(E,A), onde E é o conjunto dos estudantes, e uma aresta $a=uv\in A$ indica que u e v são amigos.

Solução Um conjunto de mentores $M \subseteq E$, sujeito às condições estipuladas, i.e. para todos $e \in E$, temos $A(e) \cap M \neq \emptyset$ e $E \setminus A(e) \cap M \neq \emptyset$ onde $A(e) = \{f \mid ef \in A\}$ é o conjunto de amigos de e.

Objetivo Minimizar o número de mentores |M|.

Informações adicionais Instâncias disponíveis em http://www.inf.ufrgs.br/~mrpritt/oc/mnm.zip. O formato das instâncias é descrito no arquivo "Readme.md".

Melhores valores conhecidos

Instância	BKV	Instância	BKV
mnm01	16	mnm06	19
mnm02	20	mnm07	18
mnm03	19	mnm08	19
mnm04	19	mnm09	22
mnm05	19	mnm10	19

(BKV: melhor valor conhecido (ingl. best known value).)

Trabalho balanceado

Instância Um conjunto de n tarefas a serem executadas em ordem, e m operadores. Operador $j \in [m]$ precisa tempo p_{ij} para executar tarefa $i \in [n]$.

Solução Uma partição das n tarefas em m intervalos $[b_k, e_k], k \in [m]$ e uma permutação dos operadores π .

Objetivo Minimizar o tempo máximo T de um operador. O j-ésimo operador $j \in [m]$ precisa tempo $T_j = \sum_{t \in [b_j, e_j]} p_{t, \pi_j}$ e temos $T = \max_{j \in [m]} T_j$.

Exemplo Seja n = 5 e m = 2 com matriz de tempos $p = (p_{ij}), i \in [n], j \in [m]$.

$$\begin{pmatrix}
3 & 2 \\
1 & 7 \\
4 & 1 \\
1 & 8 \\
5 & 2
\end{pmatrix}$$

A solução ([1,3], [4,5]) (i.e. $b_1=1, e_1=3, b_2=4, e_2=5$) com $\pi=(1\,2)$ tem $T_1=8, T_2=10$ e logo T=10. A solução ([1,2], [3,5]) com $\pi=(2\,1)$ tem $T_1=10, T_2=9$ e logo T=10.

Informações adicionais Instâncias disponíveis em http://www.inf.ufrgs.br/~mrpritt/
 oc/tb.zip.

Melhores valores conhecidos

Instância	BKV	Instância	BKV
tba1	0.56	tba6	0.57
tba2	0.52	tba7	0.59
tba3	0.48	tba8	0.85
tba4	0.31	tba9	0.58
tba5	1.49	tba10	1.33

BKV: melhor valor conhecido (ingl. best known value).