Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

PATIENT	
Name: 邱渝琇	Patient ID: 27479056
Date of Birth: Jan 05, 1956	Gender: Female
Diagnosis: Pancreatic cancer	
ORDERING PHYSICIAN	
Name: 姜乃榕醫師	Tel: 886-228712121
Facility: 臺北榮總	
Address: 臺北市北投區石牌路二段 201 號	
SPECIMEN	
Specimen ID: S11171298A Collection site: Pancreas head	Type: FFPE tissue
Date received: Sep 19, 2022 Lab ID: AA-22-05575	D/ID: NA

ABOUT ACTORCO®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS

VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in Patient's Cancer Type		Probable Sensitive in Other
Alterations/Biomarkers	Sensitive	Resistant	Cancer Types
CHEK2 H371Y	-	-	Olaparib

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
CHEK2 H371Y	Rucaparib	-
KRAS G12D	-	Afatinib, Cetuximab, Dacomitinib, Erlotinib, Gefitinib, Osimertinib, Panitumumab

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 1 of 24

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
CHEK2	H371Y	49.2%
KRAS	G12D	14.9%
TP53	V157F	15.0%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
Chr9	CDKN2A	Heterozygous deletion	1
Chr17	CD79B	Amplification	7

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	1.3 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Variant(s) enlisted in the SNV table may currently exhibit no relevance to treatment response prediction. Please refer to INTERPRETATION for more biological information and/or potential clinical impacts of the variants.
- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 30% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **2** of **24**

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies Effect	
Level 3A		
CHEK2 H371Y	Olaparib	sensitive
KRAS G12D	Afatinib, Cetuximab, Dacomitinib, Erlotinib, Gefitinib, Osimertinib, Panitumumab	resistant
Level 3B		
CHEK2 H371Y	Rucaparib	sensitive

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
ЗА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **3** of **24**

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
No	ot detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

Genomic Alterations	Therapies	Effect	Level of Evidence	Cancer Type
CHEK2 H371Y	Anthracycline and taxane- based regimens	Sensitive	Clinical	Breast cancer

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 4 of 24

Project ID: C22-M001-02867 Report No.: AA-22-05575 ONC

Date Reported: Sep 30, 2022

ACTOnco® + Report

VARIANT INTERPRETATION

CHEK2 H371Y

Biological Impact

The checkpoint kinase 2 (CHEK2 or CHK2) gene encodes a serine/threonine protein kinase involved in transducing DNA damage signals that are required for both the intra-S phase and G2/M checkpoints[1]. CHEK2 heterozygosity has been shown to cause haploinsufficient phenotypes that can contribute to tumorigenesis through inappropriate S phase entry, accumulation of DNA damage during replication, and failure to restrain mitotic entry^{[2][3]}. CHEK2 aberrations are associated with glioblastoma, breast, ovarian, prostate, colorectal, gastric, thyroid, and lung cancers^{[4][5][6][7][8]}.

CHEK2 H371Y was identified as a loss-of-function mutation that results in decreased kinase activity of CHEK2 and is associated with increased breast cancer risk in Chinese women[9].

Therapeutic and prognostic relevance

In May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate (NCT02987543)[10].

In a phase II trial (TBCRC 048; NCT03344965), 7 metastatic breast cancer patients harboring only germline mutations in CHEK2 were not responded to olaparib treatment (SD: n=3, PD: n=4)[11]. Furthermore, in another phase II trial (TRITON2; NCT02952534), 12 mCRPC patients harboring CHEK2 alteration had limited response to rucaparib treatment. One patient with co-occurring ATM alteration had a radiographic partial response (n=1/9 evaluable patients). The prostate-specific antigen response rate was 16.7% (n=2/12), and the 6-month clinical benefit rate was 37.5% $(n=3/8)^{[12]}$.

In addition, CHEK2 has been determined as an inclusion criterion for the trials evaluating olaparib efficacy in advanced solid tumors (NCT03297606; CAPTUR trial), rucaparib efficacy in ovarian cancer (NCT01968213)[13], and prostate cancer (NCT02952534, NCT03533946)[12], niraparib efficacy in metastatic esophageal/gastroesophageal junction (GEJ)/proximal gastric adenocarcinoma (NCT03840967), melanoma (NCT03925350), pancreatic cancer (NCT03553004, NCT03601923), prostate cancer (NCT02854436), and any malignancy, except prostate (NCT03207347), and talazoparib efficacy in HER2-negative solid tumors (NCT02401347), prostate cancer (NCT03148795), and lung cancer (NCT03377556), respectively.

After adjuvant chemotherapy (anthracycline-based regimen, anthracycline-taxane containing regimen and taxanebased regimen without anthracyclines), the pCR rate (pathologic complete response rate) of CHEK2 H371Y mutation carriers is significantly higher than non-carriers in breast cancer^[14].

KRAS G12D

Biological Impact

The V-Ki-Ras2 Kirsten Rat Sarcoma 2 Viral Oncogene Homolog (KRAS) gene encodes a small GTPase protein, a member of the RAS family of small GTPases, which catalyze the hydrolysis of GTP to GDP. RAS proteins cycle between an active (GTP-bound) and an inactive (GDP-bound) state, to activate the downstream oncogenic pathways, including the PI3K/AKT/mTOR and MAPK pathways^[15]. KRAS mutations occur primarily in three hotspots G12, G13 and Q61, and less frequently in codon A146^{[15][16]}. These are activating mutations that lead to constitutive activation and persistent stimulation of the downstream signaling pathways[17][18]. Mutations in KRAS have been reported in a diverse spectrum of human malignancies, including pancreatic carcinomas (>80%)[15][19], colon carcinomas (40-50%)[20][21], and lung carcinomas (30-50%)[22][23], but are also present in biliary tract malignancies, endometrial cancer, cervical cancer, bladder cancer, liver cancer, myeloid leukemia and breast cancer[16].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 5 of 24

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

G12D is a hotspot mutation located in the GTP binding region of the KRAS protein (UniProtKB). This mutation results in decreased KRAS GTPase activity, increased activation of downstream signaling, and promotes tumor formation in preclinical studies^{[24][25][26]}.

Therapeutic and prognostic relevance

Except for KRAS G12C, other KRAS mutants are not currently targetable, but the downstream MEK serves as a potential target^[27]. MEK inhibitors trametinib, cobimetinib, and binimetinib were approved by the U.S. FDA for patients with advanced metastatic melanoma whose tumors harbor BRAF V600 mutations^{[28][29][30][31]}.

There are case reports indicated that patients harboring a KRAS mutation may benefit from MEK inhibitor treatment. A patient with small cell neuroendocrine carcinoma (SCNEC) of the cervix harboring a KRAS G12D mutation showed significant response with trametinib^[32]. Another low-grade serous carcinoma case with KRAS G12D also has sustained response to trametinib (Am J Clin Exp Obstet Gynecol 2015;2(3):140-143). In addition, a low-grade serous ovarian cancer patient harboring KRAS G12V mutation showed stable disease after 8 weeks of binimetinib treatment, and demonstrated a partial response after another 26 weeks of treatment^[33]. However, trametinib did not demonstrate superiority to docetaxel in KRAS-mutant non-small cell lung cancer (NSCLC) patients, based on results from a randomized Phase II study^[34].

Both clinical and preclinical studies demonstrated a limited response to monotherapy using MEK inhibitors^[35]. Moreover, several clinical trials are in progress to evaluate the combination of MEK and mTOR inhibition as a new potential therapeutic strategy in CRC^[36], and in patient-derived xenografts of RAS-mutant CRC, inhibition of MEK and mTOR suppressed tumor growth, but not tumor regression^[37]. A study using the CRC patient-derived xenograft (PDX) model showed that the combination of trametinib, a MEK inhibitor, and palbociclib, a CDK4/6 inhibitor, was well tolerated and resulted in objective responses in all KRAS mutant models^[38].

KRAS mutation has been determined as an inclusion criterion for the trials evaluating MEK inhibitors efficacies in various types of solid tumors (NCT03704688, NCT02399943, NCT02285439, NCT03637491, NCT04214418).

Cetuximab and panitumumab are two EGFR-specific antibodies approved by the U.S. FDA for patients with KRAS wild-type metastatic colorectal cancer (NCT00154102, NCT00079066, NCT01412957, NCT00364013). Results from the PRIME and FIRE-3 trials indicated that panitumumab and cetuximab did not benefit patients with KRAS or NRAS mutations and may even have a detrimental effect in these patients^[39]. Taken together, the National Comprehensive Cancer Network (NCCN) recommended that, cetuximab and panitumumab should only be used if both KRAS and NRAS genes are normal (NCCN guidelines)^{[40][41]}. Numerous studies have demonstrated the presence of KRAS or NRAS mutations at exon 2, 3 or 4 as a predictor of resistance to anti-EGFR therapies^{[42][43][44][45][46][47][48]}.

Sorafenib, a multi-kinase inhibitor, has been shown to be beneficial in KRAS-mutant CRC^[49], KRAS-mutant NSCLC^[50], and KRAS-amplified melanoma^[51].

There has been conflicting data on the effect of KRAS mutation on the efficacy of bevacizumab in metastatic CRC patients(J Clin Oncol 34, 2016 (suppl; abstr 3525))^{[52][53]}.

In NCCN guidelines for NSCLC, KRAS mutations have been suggested as an emerging biomarker for EGFR TKIs in NSCLC patients. KRAS mutations are associated with a lack of efficacy of EGFR TKIs, including erlotinib, gefitinib, afatinib, and osimertinib, in NSCLC patients^{[54][55][56]}.

Studies have shown that KRAS mutation, especially those occurs in exon 2 (codon 12 or 13) and codon 61 indicated a poor prognosis for patients with CRC^[57].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **6** of **24**

Project ID: C22-M001-02867 Report No.: AA-22-05575 ONC Date Reported: Sep 30, 2022

In low-grade serous carcinoma of the ovary or peritoneum, patients with KRAS or BRAF mutations (n=21) had a significantly better OS than those with wild-type KRAS or BRAF (n=58) (106.7 months vs 66.8 months), respectively[58]. In ovarian serous borderline tumor with recurrent low-grade serous carcinoma, patient harboring KRAS G12V mutation appeared to have shorter survival time^[59].

TP53 V157F

Biological Impact

TP53 encodes the p53 protein, a crucial tumor suppressor that orchestrates essential cellular processes including cell cycle arrest, senescence and apoptosis[60]. TP53 is a proto-typical haploinsufficient gene, such that loss of a single copy of TP53 can result in tumor formation[61].

TP53 V157F lies within the DNA-binding domain (DBD) of the p53 protein(UniProtKB). This mutation results in destabilization of the protein and decreased DNA binding activity. However, biochemical assays revealed that V157F also confers gain-of-function to the p53 protein, as demonstrated by transactivation of target genes, such as hTERT, ASNS, and GEF-H1, which are not transactivated by wild-type p53^{[62][63][64]}.

Therapeutic and prognostic relevance

Despite having a high mutation rate in cancers, there are currently no approved targeted therapies for TP53 mutations. A phase II trial demonstrated that Wee1 inhibitor (AZD1775) in combination with carboplatin was well tolerated and showed promising anti-tumor activity in TP53-mutated ovarian cancer refractory or resistant (< 3 months) to standard first-line therapy (NCT01164995)[65].

In a retrospective study (n=19), advanced sarcoma patients with TP53 loss-of-function mutations displayed improved progression-free survival (208 days versus 136 days) relative to patients with wild-type TP53 when treated with pazopanib[66]. Results from another Phase I trial of advanced solid tumors (n=78) demonstrated that TP53 hotspot mutations are associated with better clinical response to the combination of pazopanib and vorinostat [67].

Advanced solid tumor and colorectal cancer patients harboring a TP53 mutation have been shown to be more sensitive to bevacizumab when compared with patients harboring wild-type TP53[69][70]. In a pilot trial (n=21), TP53-negative breast cancer patients demonstrated increased survival following treatment with bevacizumab in combination with chemotherapy agents, Adriamycin (doxorubicin) and Taxotere (docetaxel)[71]. TP53 mutations were correlated with poor survival of advanced breast cancer patients receiving tamoxifen or primary chemotherapy[72][73]. In a retrospective study of non-small cell lung cancer (NSCLC), TP53 mutations were associated with high expression of VEGF-A, the primary target of bevacizumab, offering a mechanistic explanation for why patients exhibit improved outcomes after bevacizumab treatment when their tumors harbor mutant TP53 versus wild-type TP53^[74].

CD79B Amplification

Biological Impact

CD79B encodes a surface immunoglobulin that forms a heterodimer with CD79A and non-covalently assembles with membrane-bound IgM to form the B cell receptor (BCR) which plays essential roles in B cell development, activation and survival of mature B cells[75][76]. Activating mutations of CD79B has been demonstrated resulting in chronic BCR signaling and constitutive activation of the NF-kB pathway. Besides, recurrent mutations of CD79B and MYD88 genes have been suggested as a genetic hallmark in primary central nervous system lymphoma[77]and diffuse large B-cell lymphoma^[78].

Therapeutic and prognostic relevance

A preclinical study has demonstrated that CD79B up-regulation associates with limited response to ibrutinib, a selective and reversible inhibitor of BCR, in diffuse large B cell lymphoma^[79].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 7 of 24

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

Combined therapy consisting of polatuzumab vedotin, an antibody-drug conjugate targeting CD79B, with bendamustine and rituximab, have been shown with significant efficacy in relapsed/ refractory (R/R) diffuse large B cell lymphoma (DOI: 10.1200/JCO.2018.36.15_suppl.7507).

CDKN2A Heterozygous deletion

Biological Impact

The Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) gene encodes the p16 (p16INK4a) and p14 (ARF) proteins. p16INK4a binds to CDK4 and CDK6, inhibiting these CDKs from binding D-type cyclins and phosphorylating the retinoblastoma (RB) protein whereas p14 (ARF) blocks the oncogenic activity of MDM2 by inhibiting MDM2-induced degradation of p53^{[80][81][82]}. CDKN2A has been reported as a haploinsufficient tumor suppressor with one copy loss that may lead to weak protein expression and is insufficient to execute its original physiological functions^[83]. Loss of CDKN2A has been frequently found in human tumors that result in uncontrolled cell proliferation^{[84][85]}.

Therapeutic and prognostic relevance

Intact p16-Cdk4-Rb axis is known to be associated with sensitivity to cyclin-dependent kinase inhibitors^{[86][87]}. Several case reports also revealed that patients with CDKN2A-deleted tumors respond to the CDK4/6-specific inhibitor treatments^{[88][89][90]}. However, there are clinical studies that demonstrated CDKN2A nuclear expression, CDKN2A/CDKN2B co-deletion, or CDKN2A inactivating mutation was not associated with clinical benefit from CDK4/6 inhibitors, such as palbociclib and ribociclib, in RB-positive patients^{[91][92][93]}. However, CDKN2A loss or mutation has been determined as an inclusion criterion for the trial evaluating CDK4/6 inhibitors efficacy in different types of solid tumors (NCT02693535, NCT02187783).

The phase II TAPUR trial demonstrated clinical benefits to palbociclib monotherapy in advanced NSCLC or head and neck cancer harboring a CDKN2A mutation or copy number loss. However, pancreatic and biliary cancer patients harboring a CDKN2A mutation or copy number loss did not demonstrate an objective response or stable disease when treated with palbociclib monotherapy for 16 weeks (DOI: 10.1200/JCO.2021.39.15_suppl.6043)^{[94][95]}.

Notably, the addition of several CDK4/6 inhibitors to hormone therapies, including palbociclib in combination with letrozole, ribociclib plus letrozole, and abemaciclib combines with fulvestrant, have been approved by the U.S. FDA for the treatment of ER+ and HER2- breast cancer^{[87][96][97]}.

In a Phase I trial, a KRAS wild-type squamous non-small cell lung cancer (NSCLC) patient with CDKN2A loss had a partial response when treated with CDK4/6 inhibitor abemaciclib^[89]. Administration of combined palbociclib and MEK inhibitor PD-0325901 yield promising progression-free survival among patients with KRAS mutant non-small cell lung cancer (NSCLC) (AACR 2017, Abstract CT046). Moreover, MEK inhibitor in combination with CDK4/6 inhibitor demonstrates significant anti-KRAS-mutant NSCLC activity and radiosensitizing effect in preclinical models^[98].

A retrospective analysis demonstrated that concurrent deletion of CDKN2A with EGFR mutation in patients with non-small cell lung cancer (NSCLC), predicts worse overall survival after EGFR-TKI treatment^[99].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **8** of **24**

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

OlympiA	Her2-negative high-risk early breast cancer (Approved on 2022/03/11)
NCT02032823	HER2-/gBRCA mutation
NC102032023	Olaparib vs. Placebo [invasive disease-free survival (IDFS)(M):]
PROfound ^[10]	Prostate cancer (Approved on 2020/05/19)
NCT02987543	HRR genes mutation
NC102907543	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]
DAGI A 4[100]	Ovarian cancer (Approved on 2020/05/08)
PAOLA-1 ^[100]	HRD+
NCT02477644	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]
 [101]	Pancreatic adenocarcinoma (Approved on 2019/12/27)
POLO ^[101]	gBRCA mutation
NCT02184195	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]
201.0.4[102]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)
SOLO-1 ^[102]	gBRCA mutation or sBRCA mutation
NCT01844986	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]
1021	Breast cancer (Approved on 2018/02/06)
OlympiAD ^[103]	HER2-/gBRCA mutation
NCT02000622	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]
201 0 0/51/207 0 04/10/1	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)
SOLO-2/ENGOT-Ov21 ^[104]	gBRCA mutation
NCT01874353	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]
04 4 40[105]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)
Study19 ^[105]	-
NCT00753545	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TDITONS	Prostate cancer (Approved on 2020/05/15)						
TRITON2 NCT02952534	gBRCA mutation or sBRCA mutation						
NC102952554	Rucaparib [ORR(%): 44.0, DOR(M): NE]						
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)						
ARIEL3[13]							
NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS						
	(tBRCA)(M): 16.6 vs. 5.4]						

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 9 of 24

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **10** of **24**

Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
CHEK2	H371Y	11	c.1111C>T	NM_007194	COSM4002125	49.2%	866
KRAS	G12D	2	c.35G>A	NM_004985	COSM521	14.9%	2005
TP53	V157F	5	c.469G>T	NM_000546	COSM10670	15.0%	720

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-50

AG4-QP4001-02(06) page 11 of 24

Project ID: C22-M001-02867 Report No.: AA-22-05575 ON

Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage	
CDH1	P126L	3	c.377C>T	NM_004360	-	52.4%	737	
DNMT3A	Splice acceptor	-	c.2479-2A>G	NM_175629	COSM5944895	9.2%	714	
EPHA7	Y949C	16	c.2846A>G	NM_004440	-	44.2%	462	
HIST1H1E	T146I	1	c.437C>T	NM_005321	-	49.7%	1100	
KIT	T84M	2	c.251C>T	NM_000222	COSM3380948	43.6%	2793	
KMT2C	V2322A	36	c.6965T>C	NM_170606	COSM1581245	46.9%	932	
MUC16	T3820A	3	c.11458A>G	NM_024690	-	49.2%	1511	
NEFH	S776C	4	c.2327C>G	NM_021076	-	42.5%	327	
NF1	M1162V	26	c.3484A>G	NM_001042492	-	49.2%	683	
PIK3CD	V445I	10	c.1333G>A	NM_005026	COSM8643023	6.4%	1083	
RET	Q194H	3	c.582G>C	NM_020975	-	48.8%	346	
SDHA	R554Q	12	c.1661G>A	NM_004168	-	48.2%	623	
SMAD4	A406V	10	c.1217C>T	NM_005359	COSM1389072	18.8%	849	
SYNE1	T2540M	51	c.7619C>T	NM_182961	COSM3020858	39.1%	774	
TEK	Splice region	-	c.3104-7C>G	NM_000459	-	48.1%	1069	

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

AG4-QP4001-02(06)

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

TEST DETAILS SPECIMEN RECEIVED AND PATHOLOGY REVIEW

Collection date: Sep 12, 2022Facility retrieved: 臺北榮總

- H&E-stained section No.: S11171298A

Collection site: Pancreas head

Examined by: Dr. Chien-Ta Chiang

- 1. The percentage of viable tumor cells in total cells in the whole slide (%): 30%
- 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 30%
- 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
- 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
- 5. Additional comment: NA
- Manual macrodissection: Not performed
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

Panel: ACTOnco®+

DNA test

Mean Depth: 836x

Target Base Coverage at 100x: 94%

RNA test

Average unique RNA Start Sites per control GSP2: 139

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.
- 2. The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 13 of 24

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.

3. This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

NEXT-GENERATION SEQUENCING (NGS) METHODS

DNA test

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage \geq 20, allele frequency \geq 5% and actionable variants with allele frequency \geq 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at $100x \geq 85\%$ with a mean coverage \geq 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or lon S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 \geq 3; (2) Number of supporting reads spanning the fusion junction \geq 5; (3) Percentage of supporting reads spanning the fusion junction \geq 10%; (4) Fusions annotated

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 14 of 24

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師黃靖婷 博士 Ching-Ting Huang Ph.D. 檢字第 016511 號 CTHUANG

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **15** of **24**

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	ВТК	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	ЕРНА7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA1
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	КМТ2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРКЗ
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	МИТҮН	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	РІКЗСЗ
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1*
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

ALK	BRAF	EGFR	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **16** of **24**

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Not Applicable.

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Olaparib, Rucaparib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **17** of **24**

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報 告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 18 of 24

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

REFERENCE

- PMID: 21088254; 2011, Clin Cancer Res;17(3):401-5
 Tumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability.
- PMID: 15261141; 2004, Cancer Cell;6(1):45-59
 Chk1 is haploinsufficient for multiple functions critical to tumor suppression.
- PMID: 15539958; 2005, Cell Cycle;4(1):131-9
 Chk1 is essential for tumor cell viability following activation of the replication checkpoint.
- PMID: 23296741; 2013, Fam Cancer;12(3):473-8
 The risk of gastric cancer in carriers of CHEK2 mutations.
- 5. PMID: 24713400; 2014, Hered Cancer Clin Pract;12(1):10
 A risk of breast cancer in women carriers of constitutional CHEK2 gene mutations, originating from the North Central Poland.
- PMID: 25583358; 2015, Int J Cancer;137(3):548-52
 CHEK2 mutations and the risk of papillary thyroid cancer.
- PMID: 12052256; 2002, Breast Cancer Res;4(3):R4
 Mutation analysis of the CHK2 gene in breast carcinoma and other cancers.
- PMID: 15125777; 2004, Mol Cancer;3():14
 CHK2 kinase expression is down-regulated due to promoter methylation in non-small cell lung cancer.
- PMID: 21618645; 2011, Hum Mutat;32(9):1000-3
 A recurrent CHEK2 p.H371Y mutation is associated with breast cancer risk in Chinese women.
- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- PMID: 33119476; 2020, J Clin Oncol;38(36):4274-4282
 TBCRC 048: Phase II Study of Olaparib for Metastatic Breast Cancer and Mutations in Homologous Recombination-Related Genes.
- 12. PMID: 32086346; 2020, Clin Cancer Res;26(11):2487-2496
 Non-BRCA DNA Damage Repair Gene Alterations and Response to the PARP Inhibitor Rucaparib in Metastatic Castration-Resistant Prostate Cancer: Analysis From the Phase II TRITON2 Study.
- 13. PMID: 28916367; 2017, Lancet;390(10106):1949-1961
 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- PMID: 25884806; 2015, BMC Cancer;15():194
 Association between CHEK2 H371Y mutation and response to neoadjuvant chemotherapy in women with breast cancer.
- PMID: 2453289; 1988, Cell;53(4):549-54
 Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.
- PMID: 2114981; 1990, Eur J Clin Invest;20(3):225-35 ras oncogenes: their role in neoplasia.
- PMID: 20617134; 2010, J Biomed Biotechnol;2010():150960
 Clinical relevance of KRAS in human cancers.
- 18. PMID: 21993244; 2011, Nat Rev Cancer;11(11):761-74 RAS oncogenes: weaving a tumorigenic web.
- 19. PMID: 3047672; 1988, Nucleic Acids Res;16(16):7773-82

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 19 of 24

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas.

- PMID: 3587348; 1987, Nature;327(6120):293-7
 Prevalence of ras gene mutations in human colorectal cancers.
- PMID: 1942608; 1991, Nihon Shokakibyo Gakkai Zasshi;88(8):1539-44
 [Prevalence of K-ras gene mutations in human colorectal cancers].
- PMID: 2252272; 1990, Am Rev Respir Dis;142(6 Pt 2):S27-30
 The ras oncogenes in human lung cancer.
- PMID: 1486840; 1992, Environ Health Perspect;98():13-24
 Role of proto-oncogene activation in carcinogenesis.
- PMID: 16474405; 2006, Nat Genet; 38(3):331-6
 Germline KRAS mutations cause Noonan syndrome.
- PMID: 26037647; 2015, Mol Cancer Res;13(9):1325-35
 Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations.
- 26. PMID: 22871572; 2012, Mol Cancer Res;10(9):1228-39 KRAS(G12D)- and BRAF(V600E)-induced transformation of murine pancreatic epithelial cells requires MEK/ERK-stimulated IGF1R signaling.
- PMID: 25414119; 2014, Drugs;74(18):2111-28
 The biology and clinical development of MEK inhibitors for cancer.
- PMID: 25265492; 2014, N Engl J Med;371(20):1877-88
 Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma.
- PMID: 22663011; 2012, N Engl J Med;367(2):107-14
 Improved survival with MEK inhibition in BRAF-mutated melanoma.
- PMID: 25265494; 2014, N Engl J Med;371(20):1867-76
 Combined vemurafenib and cobimetinib in BRAF-mutated melanoma.
- 31. PMID: 29573941; 2018, Lancet Oncol;19(5):603-615
 Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial.
- PMID: 26075998; 2014, Gynecol Oncol Rep;10():28-9
 Response to MEK inhibitor in small cell neuroendocrine carcinoma of the cervix with a KRAS mutation.
- PMID: 29946554; 2018, Gynecol Oncol Rep;25():41-44
 Binimetinib (MEK162) in recurrent low-grade serous ovarian cancer resistant to chemotherapy and hormonal treatment.
- 34. PMID: 25722381; 2015, Ann Oncol;26(5):894-901
 A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC)†.
- 35. PMID: 24947927; 2014, Clin Cancer Res;20(16):4251-61
 Phase I expansion and pharmacodynamic study of the oral MEK inhibitor RO4987655 (CH4987655) in selected patients with advanced cancer with RAS-RAF mutations.
- PMID: 27340376; 2016, Curr Colorectal Cancer Rep;12():141-150
 Molecular Subtypes and Personalized Therapy in Metastatic Colorectal Cancer.
- 37. PMID: 22392911; 2012, Clin Cancer Res;18(9):2515-25
 Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas.

ACCREDITED COLLEGE OF AMERICAN PATHOLOGISTS

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 20 of 24

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

- PMID: 26369631; 2016, Clin Cancer Res;22(2):405-14
 Sensitivity of KRAS-Mutant Colorectal Cancers to Combination Therapy That Cotargets MEK and CDK4/6.
- PMID: 25937522; 2015, Eur J Cancer;51(10):1243-52
 FOLFOX4 plus cetuximab treatment and RAS mutations in colorectal cancer.
- 40. PMID: 19188670; 2009, J Clin Oncol;27(12):2091-6 American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy.
- 41. PMID: 18802721; 2008, Virchows Arch;453(5):417-31
 KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program.
- 42. PMID: 25605843; 2015, J Clin Oncol;33(7):692-700
 Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer.
- PMID: 27422777; 2016, Tumour Biol;37(9):11645-11655
 Potential biomarkers for anti-EGFR therapy in metastatic colorectal cancer.
- PMID: 24024839; 2013, N Engl J Med;369(11):1023-34
 Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer.
- 45. PMID: 24666267; 2014, Acta Oncol;53(7):852-64
 The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis.
- 46. PMID: 27722750; 2017, JAMA Oncol;3(2):194-201
 Prognostic and Predictive Relevance of Primary Tumor Location in Patients With RAS Wild-Type Metastatic Colorectal Cancer: Retrospective Analyses of the CRYSTAL and FIRE-3 Trials.
- 47. PMID: 27736842; 2016, Br J Cancer;115(10):1206-1214
 A phase 3 trial evaluating panitumumab plus best supportive care vs best supportive care in chemorefractory wild-type KRAS or RAS metastatic colorectal cancer.
- 48. PMID: 20921465; 2010, J Clin Oncol;28(31):4697-705
 Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study.
- 49. PMID: 24407191; 2014, Br J Cancer;110(5):1148-54 Sorafenib and irinotecan (NEXIRI) as second- or later-line treatment for patients with metastatic colorectal cancer and KRAS-mutated tumours; a multicentre Phase I/II trial.
- 50. PMID: 23224737; 2013, Clin Cancer Res;19(3):743-51
 A phase II study of sorafenib in patients with platinum-pretreated, advanced (Stage IIIb or IV) non-small cell lung cancer with a KRAS mutation.
- PMID: 26307133; 2016, Clin Cancer Res;22(2):374-82
 Copy Number Changes Are Associated with Response to Treatment with Carboplatin, Paclitaxel, and Sorafenib in Melanoma.
- 52. PMID: 23828442; 2013, Med Oncol;30(3):650
 KRAS as prognostic biomarker in metastatic colorectal cancer patients treated with bevacizumab: a pooled analysis of 12 published trials.
- 53. PMID: 28632865; 2017, JAMA;317(23):2392-2401
 Effect of First-Line Chemotherapy Combined With Cetuximab or Bevacizumab on Overall Survival in Patients With KRAS Wild-Type Advanced or Metastatic Colorectal Cancer: A Randomized Clinical Trial.
- 54. PMID: 18349398; 2008, J Clin Oncol;26(9):1472-8

 Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 21 of 24

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

- 55. PMID: 23401440; 2013, J Clin Oncol;31(8):1112-21 KRAS mutation: should we test for it, and does it matter?
- 56. PMID: 18024870; 2007, J Clin Oncol;25(33):5240-7
 Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer.
- 57. PMID: 15923428; 2005, Ann Oncol;16 Suppl 4():iv44-49
 Prognostic and predictive factors in colorectal cancer: Kirsten Ras in CRC (RASCAL) and TP53CRC collaborative studies.
- 58. PMID: 26484411; 2015, Br J Cancer;113(9):1254-8
 Impact of mutational status on survival in low-grade serous carcinoma of the ovary or peritoneum.
- 59. PMID: 24549645; 2013, J Pathol;231(4):449-56 KRAS (but not BRAF) mutations in ovarian serous borderline tumour are associated with recurrent low-grade serous carcinoma.
- 60. PMID: 24739573; 2014, Nat Rev Cancer;14(5):359-70 Unravelling mechanisms of p53-mediated tumour suppression.
- 61. PMID: 21125671; 2011, J Pathol;223(2):137-46 Haplo-insufficiency: a driving force in cancer.
- PMID: 15077194; 2004, Oncogene;23(25):4430-43
 Tumor-derived p53 mutants induce oncogenesis by transactivating growth-promoting genes.
- 63. PMID: 16778209; 2006, Cancer Res;66(12):6319-26

 Mutant p53 induces the GEF-H1 oncogene, a guanine nucleotide exchange factor-H1 for RhoA, resulting in accelerated cell proliferation in tumor cells.
- 64. PMID: 22710932; 2012, Int J Oncol;41(3):1157-63
 Transactivation and reactivation capabilities of temperature-dependent p53 mutants in yeast and human cells.
- 65. PMID: 27998224; 2016, J Clin Oncol;34(36):4354-4361
 Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months.
- 66. PMID: 26646755; 2016, Ann Oncol;27(3):539-43
 TP53 mutational status is predictive of pazopanib response in advanced sarcomas.
- 67. PMID: 25669829; 2015, Ann Oncol;26(5):1012-8
 Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation.
- PMID: 27466356; 2016, Mol Cancer Ther;15(10):2475-2485
 TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics.
- 69. PMID: 23670029; 2013, Oncotarget;4(5):705-14 P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy.
- PMID: 17145525; 2006, Semin Oncol;33(5 Suppl 10):S8-14
 Bevacizumab in combination with chemotherapy: first-line treatment of patients with metastatic colorectal cancer.
- 71. PMID: 21399868; 2011, Int J Oncol;38(5):1445-52 p53, HER2 and tumor cell apoptosis correlate with clinical outcome after neoadjuvant bevacizumab plus chemotherapy in breast cancer.
- PMID: 20549698; 2011, Int J Cancer;128(8):1813-21
 p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines.
- 73. PMID: 10786679; 2000, Cancer Res;60(8):2155-62
 Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 22 of 24

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

- PMID: 25672981; 2015, Cancer Res;75(7):1187-90
 VEGF-A Expression Correlates with TP53 Mutations in Non-Small Cell Lung Cancer: Implications for Antiangiogenesis Therapy.
- PMID: 15186779; 2004, Cell;117(6):787-800
 Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer.
- PMID: 8602530; 1996, Science;272(5260):411-4
 Regulation of an early developmental checkpoint in the B cell pathway by Ig beta.
- PMID: 26111727; 2016, Neuropathol Appl Neurobiol;42(3):279-90
 Recurrent mutations of CD79B and MYD88 are the hallmark of primary central nervous system lymphomas.
- PMID: 24013661; 2013, Blood Cancer J;3():e139
 High prevalence of oncogenic MYD88 and CD79B mutations in diffuse large B-cell lymphomas presenting at immune-privileged sites.
- PMID: 26699656; 2016, Leuk Lymphoma;57(6):1413-22
 CD79B limits response of diffuse large B cell lymphoma to ibrutinib.
- 80. PMID: 17055429; 2006, Cell;127(2):265-75
 The regulation of INK4/ARF in cancer and aging.
- 81. PMID: 8521522; 1995, Cell;83(6):993-1000
 Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest.
- 82. PMID: 9529249; 1998, Cell;92(6):725-34
 ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.
- 83. PMID: 16115911; 2005, Clin Cancer Res;11(16):5740-7
 Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype.
- PMID: 7550353; 1995, Nat Genet;11(2):210-2
 Frequency of homozygous deletion at p16/CDKN2 in primary human tumours.
- 85. PMID: 24089445; 2013, Clin Cancer Res;19(19):5320-8 The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma.
- 86. PMID: 27849562; 2017, Gut;66(7):1286-1296
 Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma.
- 87. PMID: 25524798; 2015, Lancet Oncol;16(1):25-35
 The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study.
- 88. PMID: 28283584; 2017, Oncologist;22(4):416-421
 Clinical Benefit in Response to Palbociclib Treatment in Refractory Uterine Leiomyosarcomas with a Common CDKN2A Alteration.
- 89. PMID: 27217383; 2016, Cancer Discov;6(7):740-53
 Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non-Small Cell Lung Cancer, and Other Solid Tumors.
- 90. PMID: 26715889; 2015, Curr Oncol;22(6):e498-501 Does CDKN2A loss predict palbociclib benefit?
- 91. PMID: 25501126; 2015, Clin Cancer Res;21(5):995-1001

 CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment.
- 92. PMID: 27542767; 2016, Clin Cancer Res;22(23):5696-5705
 A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 23 of 24

Project ID: C22-M001-02867 Report No.: AA-22-05575_ONC Date Reported: Sep 30, 2022

ACTOnco® + Report

- 93. PMID: 24797823; 2014, Oncologist;19(6):616-22
 - Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel.
- 94. PMID: 35050752; 2020, JCO Precis Oncol;4():757-766

Palbociclib in Patients With Non-Small-Cell Lung Cancer With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study.

- 95. PMID: 35100714; 2019, JCO Precis Oncol;3():1-8
 - Palbociclib in Patients With Pancreatic and Biliary Cancer With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study.
- 96. PMID: 27717303; 2016, N Engl J Med;375(18):1738-1748

Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer.

- 97. PMID: 28580882; 2017, J Clin Oncol;35(25):2875-2884
 - MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy.
- 98. PMID: 26728409; 2016, Clin Cancer Res;22(1):122-33

Coadministration of Trametinib and Palbociclib Radiosensitizes KRAS-Mutant Non-Small Cell Lung Cancers In Vitro and In Vivo.

- 99. PMID: 31401335; 2019, Transl Oncol;12(11):1425-1431
 - Concomitant Genetic Alterations are Associated with Worse Clinical Outcome in EGFR Mutant NSCLC Patients Treated with Tyrosine Kinase Inhibitors.
- 100. PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428

Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.

101. PMID: 31157963; 2019, N Engl J Med;381(4):317-327

Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.

102. PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505

Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.

103. PMID: 28578601; 2017, N Engl J Med;377(6):523-533

Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.

104. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284

Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.

105. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **24** of **24**