Universidade Federal do ABC

BC 0208 - Fenômenos Mecânicos

Experimento 1 - Roteiro Movimento Retilíneo Uniforme (MRU)

Professor:	Turma:	Data://2015
Nome:		RA:

Introdução e Objetivos

Na disciplina de Fenômenos Mecânicos, estamos interessados em estudar o movimento de corpos materiais numa situação idealizada, livre de forças de atrito. Para se aproximar dessa situação idealizada, utilizamos um equipamento denominado *trilho* (ou *colchão*) *de ar*. Esse equipamento é projetado para minimizar as forças de atrito. O corpo que flutua sobre o *colchão de ar* é denominado *carrinho*.

Nesse experimento introdutório, o objetivo é estudar o movimento livre do carrinho após este adquirir uma determinada velocidade inicial. Iremos medir diretamente intervalos de espaço, L, e tempo, Δt , avaliando as incertezas envolvidas nessas medidas diretas, σ_L e $\sigma_{\Delta t}$. Para a construção do gráfico de posição x em função do tempo t, será necessário utilizarmos as regras de propagação de erros para o cálculo das incertezas σ_x e σ_t . Através do coeficiente angular desse gráfico, seremos capazes de obter a taxa de variação da posição com o tempo (a velocidade) no percurso total e comparar esse dado experimental com as velocidades médias em cada intervalo.

Materiais

- Trilho de ar
- Gerador de fluxo de ar
- Carrinho deslizante
- Régua
- Chave inversora
- Cronômetro digital
- Sensores fotoelétricos

Advertências

- Para não produzir arranhões na superfície do trilho de ar, nunca movimente os carrinhos sobre o mesmo sem que o gerador de fluxo de ar esteja funcionando.
- Verifique se a pista e a parte inferior do carrinho se encontram bem limpas; caso contrário, limpe-as com um pano úmido.
- Evite choques mecânicos fortes entre o carrinho e o trilho.
- Tenha cuidado com o equipamento. Uma queda de alguns centímetros pode inutilizar o carrinho por completo.

Procedimento Experimental

- 1. Identifique todos os componentes do conjunto experimental.
- 2. Como mostrado na Figura 1, sobre o trilho de ar estão dispostos cinco módulos de detecção que registram o momento da passagem do carrinho e definem quatro intervalos espaciais bem definidos *L*₁, *L*₁₁, *L*₁₁ e *L*_{1V}.
- 3. Com o auxílio de uma régua, determine os intervalos entre os módulos de detecção medindo a distância entre os fotodetectores. Note que estes últimos têm uma dimensão finita, a qual deve ser levada em conta ao se medir a distância entre eles. Para tanto, efetue três medidas, considerando:
 - ✓ Medida 1: distância centro a centro de cada módulo;
 - ✓ Medida 2: distância entre seus extremos mais distantes e
 - ✓ Medida 3: distância entre seus extremos mais próximos.
- 4. Anote os dados na Tabela 1.

Figura 1. Diagrama esquemático do trilho de ar, do carrinho e dos suportes dos detectores de passagem.

- 5. Posicione o carrinho no centro do trilho e ligue o gerador de fluxo de ar. Ajuste o fluxo para que o carrinho deslize livremente, isto é, sem atrito, sobre o trilho. Não é necessário utilizar a potência máxima do gerador! Isso é até desaconselhável, pois a potência máxima pode provocar trepidações.
- 6. Verifique o nivelamento do trilho de ar. Posicione o carrinho no centro do mesmo, procurando mantê-lo parado sem ter que apoiá-lo. Caso ele tenda a deslizar sozinho sempre para o mesmo lado, isso indica que o trilho está desnivelado. Se necessário, ajuste os pés do trilho.

- 7. Posicione o carrinho na extremidade do trilho onde está localizado o eletroímã, travando-o magneticamente na posição inicial.
- 8. Familiarize-se com os controles do cronômetro digital. Verifique se o mesmo está funcionando. Para isso, zere o cronômetro e, em seguida, obstrua os detectores com a mão em sequência, um a um. Efetuados os testes, zere o cronômetro novamente. Casa haja algum problema, chame o técnico do laboratório.
- 9. Acione a chave inversora para liberar o carrinho e, ao mesmo tempo, dar a ele uma determinada velocidade inicial. Sempre que acionar a chave, mantenha-a pressionada por pelo menos um segundo. Anote na Tabela 1 os quatro intervalos de tempo Δt_{I} , Δt_{II} , Δt_{III} , Δt_{III} , Δt_{III} , Δt_{III} mostrados no cronômetro essa é a **Medida 1**.
- 10. Volte o carrinho para a sua posição inicial, zere o cronômetro e repita o passo 9 para fazer a Medida 2.
- 11. Repita o passo 10 para obter os dados da Medida 3.

Tratamento e Análise dos Dados Experimentais

Cálculo da velocidade média de cada intervalo

Conhecendo-se o intervalo de tempo Δt_i e o intervalo de espaço entre o respectivo par de sensores, ou seja, a distância entre dois sensores L_i , pode-se determinar a velocidade média em cada trecho i do percurso pela fórmula

$$\frac{-}{v_i} = \frac{L_i}{\Delta t_i} \tag{1}$$

$$com i = Ia IV$$

Como a velocidade média é uma grandeza determinada de forma indireta, para determinarmos sua incerteza experimental σ_{v_i} é necessário fazermos a <u>propagação de erro</u>, considerando as incertezas na determinação direta de L_i e Δt_i .

Método gráfico para obtenção da velocidade média

Quando um objeto efetua um Movimento Retilíneo Uniforme (MRU), podemos descrever a evolução temporal de sua posição pela seguinte equação:

$$X(t) = X_0 + Vt(2)$$

Para determinar se o carrinho que flutua sobre o trilho de ar efetua um MRU devemos verificar se os dados experimentais satisfazem a relação linear expressa pela Equação (2). Note que o que medimos, de fato, são os intervalos espaciais L_i (ou Δx_i) e temporais Δt_i e não a posição x e o tempo t que aparecem nessa equação. Assim, o próximo passo é conectar esses intervalos com x e t. Vamos considerar a posição do detector 1 como a origem do eixo x (x_0 = 0) e a origem do tempo (t_0 = 0) como o instante em que o carrinho passa por esse detector. Dessa forma, as posições x_i e os respectivos tempos t_i são determinados por:

$$X_{1} = L_{1},$$

$$X_{2} = L_{I} + L_{II},$$

$$X_{3} = L_{I} + L_{II} + L_{III},$$

$$X_{4} = L_{I} + L_{II} + L_{III} + L_{IV}$$

$$e$$

$$t_{1} = Dt_{I},$$

$$t_{2} = Dt_{I} + Dt_{II},$$

$$t_{3} = Dt_{I} + Dt_{II} + Dt_{III},$$

$$t_{4} = Dt_{I} + Dt_{II} + Dt_{III} + Dt_{IV}$$

$$(4)$$

Observação: Considerar a média das 3 medidas de L_i e de Δt_i , conforme calculado na Tabela 1.

O gráfico de x versus t pode assim ser traçado utilizando os dados obtidos das relações (3) e (4).

Procedimento de análise de dados

- 1. Faça o tratamento estatístico dos dados de espaço, calculando os valores médios L_i e as incertezas σ_{L_i} , usando a fórmula do desvio padrão da média.
- 2. Faça o mesmo tratamento estatístico dos dados de tempo.
- 3. Calcule e anote na Tabela 1 as velocidades médias de cada intervalo e suas respectivas incertezas, usando a equação (1) e as regras de propagação de erro apropriadas.
- 4. Considerando as relações (3) e (4), bem como as regras de propagação de erro apropriadas, preencha a Tabela
 2.
- 5. No papel milimetrado, trace um gráfico de *posição X* (eixo vertical) versus *tempo t* (eixo horizontal), utilizando todos os dados disponíveis na Tabela 2. Utilize escalas otimizadas em ambos os eixos, não esquecendo o rótulo/nome de cada eixo e a respectiva unidade de medida.
- 6. Após esboçar os pontos experimentais com as barras de erro correspondentes, trace a reta que melhor se ajusta visualmente a esses pontos.
- 7. Obtenha, então, o coeficiente angular dessa reta.
- 8. Trace as retas mínima e máxima para determinar a incerteza dos coeficientes angular e linear.

QUESTÕES

QUESTÃO 1
Qual é a fórmula <u>prática</u> utilizada no cálculo da incerteza da velocidade de cada intervalo?
QUESTÃO 2
Considerando a Eq.(2), qual a interpretação do coeficiente angular da reta obtida no gráfico de x versus t?
QUESTÃO 3
Qual o valor da velocidade média do carrinho determinado pelo método gráfico? Mostre explicitamente os cálculos
utilizados para chegar ao resultado (se necessário, use o verso).
QUESTÃO 4
Compare os valores da velocidade média em cada trecho com o valor da velocidade média encontrada pelo método
gráfico. Levando em consideração as incertezas de todas essas medidas, o que seu experimento permite concluir?

Tabela 1. Dados das medições de intervalos de espaço e tempo do experimento de MRU relativos aos quatro trechos do trilho de ar.

Intervalo			I	II	I	II	ין	V
Medida #	<i>L</i> ₁ (cm)	Δt _i (s)	L _{II} (cm)	Δt _# (s)	<i>L_{III}</i> (cm)	Δt _{///} (s)	L _{IV} (cm)	Δt_{IV} (s)
1								
2								
3								
Média								
Incerteza								
$\overline{v}(cm/s)$								
$\sigma_v\left(cm/s\right)$								

Tabela 2. Posição do carrinho ao passar por um sensor em função do tempo.

Sensor #	$\overline{X}(cm)$	$\sigma_X(cm)$	$\bar{t}(s)$	$\sigma_t(s)$
1	0	0	0	0
2				
3				
4				
5				

v.1 2015