Криптографические протоколы

Лекция 4

Протоколы аутентификации: классификация, атаки Протоколы "слабой" аутентификации

Деркач Максим Юрьевич

September 20, 2018

Ссылки

https://habr.com/post/154229/

Протоколы аутентификации Определения

Определение 1

Аутентификация - подтверждение подлинности.

Определение 2

Идентификация - однозначное именование (присвоение уникальных имён или признаков) компонентов автоматизированной системы и всех лиц (пользователей), взаимодействующих с системой.

Определение 3

Протокол аутентификации - криптографический протокол, в ходе которого одна сторона удостоверяется в идентичности другой стороны, вовлеченной в протокол, а также убеждается в том, что вторая сторона активна во время или непосредственно перед моментом выполнения протокола.

Классификация аутентификации

- + По количеству доказывающих сторон:
 - * одностороняя доказывающая сторона A и проверяющая сторона B;
 - * двустороняя обе стороны A и B доказывают свою подлинность друг другу.
- + По устойчивости:
 - * протоколы "слабой" аутентификации (на основе фиксированных или одноразовых паролей);
 - * протоколы "сильной" аутентификации (на основе запроса типа "вопрос-ответ");
 - * протоколы основанные на техники доказательства знания.

Цель протокола - установление того факта, что проверяемая сторона является той, за кого она себя выдаёт.

Возможны два исхода: подтверждение подлинности, не подтверждение.

Протоколы слабой аутентификации

Фиксированные пароли

$$A->S:ID_A||P$$

Угрозы:

- 1. раскрытие пароля (разглашение, восстановление из системной информации);
- 2. перехват пароля (внутри системы);
- 3. угадывание пароля.

Атаки на фиксированные пароли:

- 1. повторное использование пароля;
- 2. тотальный перебор;
- 3. атака со словарём.

Фиксированные пароли

Приёмы повышения стойкости

- 1. Хранение в компьютерной системе файлов паролей в защищенном режиме (с защитой от чтения/записи).
- 2. Хранение в системе не самих паролей, а их образов.
- 3. Задание правил выбора паролей.
- 4. Ограничение попыток ввода пароля.
- 5. Добавление "соли" к паролю (добавление случайной величины к паролю перед обработкой его однонаправленной функцией).
- 6. Многофакторная аутентификация.

Фиксированные пароли Многофакторная аутентификация

- 1. Смарт-карта
- 2. Электронный идентификатор
- 3. Биометрические аутентификаторы
- 4. SMS-аутентификация

Фиксированные пароли

Использование криптографических методов для повышения стойкости

На сервере обычно хранятся пароли в зашифрованном виде либо хэш от пароля.

- 1. $A > S : ID_A$
- 2. $S->A:R_S||text_A|$
- 3. $A > S : ID_A||h_1(R_S||h_2(p_A||text_A))$

где ID_A , $text_A$, $h_2(p_A||text_A)$ хранятся на проверяющей стороне(сервере).

Однако такой протокол неустойчив к атаке MITM и атаке параллельного сеанса.

Одноразовые пароли

- 1. Разделяемые списки одноразовых паролей: пользователь и система имеют заранее определенный список паролей, который каждый из них хранит самостоятельно. При выполнении очередного сеанса протокола аутентификации выбирается пользователем и проверяется системой очередной пароль из этого списка.
- 2. Последовательно обновляемые одноразовые пароли: Первоначально пользователь и система имеют только один пароль, условно с номером і. Затем пользователь создает и передает системе пароль под номером і-1, зашифрованный на ключе, вычисленном из і-го пароля. Такой метод затруднительно реализовать при ненадежном канале связи (при возможности обрыва связи).
- 3. Последовательности одноразовых паролей, основанные на однонаправленных функциях.

Одноразовые пароли

Схема Лэмпорта с одноразовыми паролями (RFC 1760 - The S/Key One-Time Password System)

На проверяющей стороне(сервере) хранятся ID_A , $h^n(p_A)$, где n - достаточно большое.

- 1. $A > S : ID_A || h^{n-1}(p_A)$
- 2. Сервер вычисляет $h(h^{n-1}(p_A))$ и сравнивает с хранящимися данными, если совпало, то аутентификация пройдена успешна, и запись обоновляется на $ID_A||h^{n-1}(p_A)$.

S/Key

- 1. $A > S : ID_A$
- 2. S > A : m
- 3. $A > S : h^{m-1}(p_A)$

Одноразовые пароли

Схема Лэмпорта с одноразовыми паролями (RFC 1760 - The S/Key One-Time Password System)

Существует атака

- 1. $A > I(S) : ID_A$
- 2. $I(A) > S : ID_A$
- 3. S > I(A): m
- 4. I(S) > A : m 1
- 5. $A > I(S) : h^{m-2}(p_A)$
- 6. $I(A) > S : h(h^{m-2}(p_A))$

Следующий раз

- 1. $I(A) > S : ID_A$
- 2. S > I(A) : m 1
- 3. $I(A) > S : h^{m-2}(p_A)$