8. (10 points) Find the *x*-coordinate of the centroid of the shaded region below.

- 9. (10 total points) Consider the region bounded by x = 1, x = 10, $y = \frac{1}{x}$, and $y = \frac{1}{2x}$.
 - (a) (8 points) Find the centroid of this region.

(b) (2 points) Determine whether the centroid lies inside the region.

- 9. (10 total points) Consider the region \mathscr{R} bounded between the curves $y = 5 x^2$ and $y = 4x^2$.
 - (a) (3 points) Find the area of \mathcal{R} .

(b) (3 points) Find the x-coordinate \overline{x} of the centroid (center of mass) of \mathcal{R} .

(c) (4 points) Find the y-coordinate \overline{y} of the centroid (center of mass) of \mathcal{R} .

9. (8 points) Find the x-coordinate \bar{x} of the center of mass of the region below.

9. (8 points) Consider the region bounded by the curves

$$y = x^3$$
, $x + y = 2$, $y = -\sqrt{x}$.

The area of this region is 49/12. Find the *x*-coordinate of its center of mass. Leave your answer in exact form: do not use decimal expansions.

