

	UZUPEŁNIA ZDAJĄCY	
KOD	PESEL	miejsce na naklejkę

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

Cześć I

DATA: 17 maja 2016 r.

GODZINA ROZPOCZECIA: 14:00

CZAS PRACY: 60 minut

LICZBA PUNKTÓW DO UZYSKANIA: 15

			1	1	IN	L D	1	11	D _	16	2

MIN-R1_**I**P-162

UZUPEŁNIA ZDAJĄCY

(środowisko)
(kompilator)
(Komphator)

(program użytkowy)

WYBRANE:

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w notacji wybranej przez siebie: listy kroków, pseudokodu lub języka programowania, który wybierasz na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Zadanie 1. Liczby skojarzone

Dwie różne liczby całkowite a i b większe od 1 nazwiemy skojarzonymi, jeśli suma wszystkich różnych dodatnich dzielników a mniejszych od a jest równa b+1, a suma wszystkich różnych dodatnich dzielników b mniejszych od b jest równa a+1.

Skojarzone są np. liczby 140 i 195, ponieważ:

- a) dzielnikami 140 są 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, a ich suma wynosi 196 = 195+1.
- b) dzielnikami 195 są 1, 3, 5, 13, 15, 39, 65, a suma tych liczb równa jest 141 = 140+1.

Zadanie 1.1. (0–1)

Zbadaj, które z następujących par liczb (*a, b*) są liczbami skojarzonymi, i wypełnij poniższą tabelę:

а	b	dzielniki <i>a</i> (mniejsze od <i>a</i>)	dzielniki <i>b</i> (mniejsze od <i>b</i>)	suma dzielników a	suma dzielników <i>b</i>	skojarzone TAK/NIE
78	64	1, 2, 3, 6, 13, 26, 39	1, 2, 4, 8, 16, 32	90	63	NIE
20	21	124,5160	1,3,7	2)	11	M
75	48	1,5,15,25	1,2,4,12,6	49	76	+

3	24,9,16,3	,
Miejsce na obliczenia.	110 12	

Zadanie 1.2. (0-4)

Dana jest liczba całkowita a większa od 1. Ułóż i zapisz w wybranej przez siebie notacji algorytm, który znajdzie i wypisze liczbę b skojarzoną z a lub komunikat "NIE", jeśli taka liczba nie istnieje.

W zapisie algorytmu możesz korzystać tylko z następujących operacji arytmetycznych: dodawania, odejmowania, mnożenia, dzielenia całkowitego i obliczania reszty z dzielenia.

Uwaga:

Przy ocenie algorytmu będzie brana pod uwagę liczba operacji arytmetycznych wykonywanych przez Twój algorytm.

Specyfikacja:

Dane:

Liczba całkowita a > 1.

Wynik:

Liczba całkowita b skojarzona z a lub komunikat "NIE", jeśli taka liczba nie istnieje.

	Nr zadania	1.1.	1.2.
Wypełnia	Maks. liczba pkt.	1	4
egzaminator	Uzyskana liczba pkt.		

Zadanie 2. Przestawienia w tablicy

Parametrem podanej poniżej funkcji *przestaw* jest tablica *A* o długości *n*, indeksowana od 1, w której znajdują się liczby całkowite. Niech *klucz* będzie wartością pierwszego elementu tablicy *A*. Funkcja przestawia (zamienia wzajemnie) elementy tablicy *A* tak, aby po jej wykonaniu w lewej części tablicy były wszystkie elementy tablicy mniejsze od *klucza*, natomiast w prawej części – wszystkie większe lub równe *kluczowi*.

Specyfikacja:

```
Specynkacja.

Dane:

n-\text{liczba całkowita dodatnia}
A[1..n]-\text{tablica liczb całkowitych}

Wynik:

A[1..n]-\text{tablica liczb całkowitych ułożona według podanej reguły}

funkcja \text{ przestaw}(A)
klucz \leftarrow A[1]
w \leftarrow 1
dla k = 2, 3, ..., n \text{ wykonaj}
jeśli A[k] < klucz
zamień(A[w], A[k])
```

 $w \leftarrow w+1$

Uwaga:

Funkcja zamień(x,y) zamienia wzajemnie wartości zmiennych x i y – w powyższym przypadku zamienia wzajemnie dwa elementy tablicy A.

Zadanie 2.1. (0-2)

Dana jest liczba n = 6 oraz tablica A = [4,6,3,5,2,1]. Podaj kolejność elementów w tablicy A po wykonaniu funkcji przestaw(A).

Zadanie 2.2. (0-1)

Podaj przykład siedmioelementowej tablicy A, dla której funkcja przestaw(A) dokładnie 5 razy wykona $zamie\acute{n}$.

Miejsce na obliczenia. 1 10 28 2 12 8 2140. 3 228 [1,2,3,4] 4 × 8 [1,2,3,4] 1 × 8 [1,2,3,4] 1 × 8 [1,2,3,4] 1 × 8 [1,2,3,4] 1 × 8 [1,2,3,4]

Zadanie 2.3. (0-3)

Tablica A[1..100] zawiera wszystkie liczby całkowite z przedziału <1, 100> w następującej kolejności:

$$A = [10, 20, 30, ..., 100, 9, 19, 29, ..., 99, 8, 18, 28, ..., 98, ..., 1, 11, 21, ..., 91].$$

(najpierw rosnąco wszystkie liczby kończące się na 0, potem rosnąco liczby kończące się na 9, potem na 8 itd.)

Podaj wartość zmiennej w oraz wartości trzech pierwszych elementów tablicy A (A[1], A[2], A[3]), po wykonaniu funkcji przestaw(A).

$$Odp. \ w = 100...$$
 $A[1] = 100...$
 $A[2] = 100...$
 $A[3] = 100...$

Wymalnia	Nr zadania	2.1.	2.2.	2.3.
Wypełnia	Maks. liczba pkt.	2	1	3
egzaminator	Uzyskana liczba pkt.			

Zadanie 3. Test

Oceń, czy poniższe zdania są prawdziwe. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli zdanie jest fałszywe.

W każdym zadaniu cząstkowym punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1. (0-1)

Po wpisaniu w pasku adresu przeglądarki *http://81.219.47.83* otwiera się strona Centralnej Komisji Egzaminacyjnej, ale po wpisaniu *http://cke.edu.pl* pojawia się błąd "Nie można odnaleźć podanej strony". Możliwe przyczyny tego stanu rzeczy to:

1.	awaria serwera SMTP Centralnej Komisji Egzaminacyjnej,	P	F
2.	awaria serwera poczty użytkownika,	P	E
3.	awaria serwera DNS,	P	F
4.	brak prawidłowego klucza szyfrującego w przeglądarce.	Р (

Zadanie 3.2. (0-1)

Dana jest funkcja f określona wzorem rekurencyjnym

$$\begin{cases} f(1) = 4 \\ f(n+1) = \frac{1}{1 - f(n)} & \text{dla } n \ge 1 \end{cases}$$

Wtedy:

1.	$f(8) = \frac{1}{3}$	P	
2.	$f(9) = \frac{3}{4}$	¥	F
3.	f(10) = 4	P	F
4.	$f(100) = -\frac{1}{3}$	P	

Zadanie 3.3. (0–1)

Dla dwóch liczb $1111_{(2)}$ i $101_{(2)}$, ich

1.	suma jest równa 10110 ₍₂₎ .	P	F
2.	różnica jest równa 1010 ₍₂₎ .	P	F
3.	iloczyn jest mniejszy od 110000 ₍₂₎ .	P	F
4.	iloraz jest większy od 10 ₍₂₎ .	P	(

Miejsce na obliczenia.		

Zadanie 3.4. (0–1)

1.	Jednym z zadań systemu operacyjnego jest przydział pamięci działającym programom.	P	F
2.	Na jednym dysku twardym mogą być zainstalowane dwa systemy operacyjne.	P	F
3.	System operacyjny musi być przechowywany w pamięci ROM.	P	F
4.	System operacyjny musi być przechowywany na twardym dysku.	P	F

Wypełnia egzaminator	Nr zadania	3.1.	3.2.	3.3.	3.4.
	Maks. liczba pkt.	1	1	1	1
	Uzyskana liczba pkt.				

BRUDNOPIS (nie podlega ocenie)