

$$\therefore \left[\frac{1}{x} \left(\frac{1}{x} \right) = \frac{2}{\pi} \left[\frac{1 - \cos x}{x^2} \right] \right]$$

Q-2. Find F.T of
$$f(x) = \{1-x^2, |x| \le 1$$

(My 2018)

Here,
$$f(\alpha) = \begin{cases} 1-\alpha^2, -1 \leq \alpha \leq 1 \\ 0, \text{ otherwise.} \end{cases}$$

$$F(\lambda) = \int_{-\infty}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du$$

$$= \int_{-\infty}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot e^{-i\lambda u} \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} (u) \cdot du + \int_{1}^{\infty} \int_{1}^{\infty} ($$

$$= \int_{-1}^{1} (1-u^2) (\cos \lambda u - i \sin \lambda u) \cdot du$$

$$= \int_{-1}^{2} \left(\frac{(1-u^2)(\cos du)}{\cos u} \right) \cdot du - \int_{-1}^{2} \frac{(1-u^2)(\sin du)}{\cos u} \cdot du$$

$$=2^{3}((1-a^{2})\cos(2u).du - i(0)$$

$$= 2 \left[\frac{(1-u^2) \sin du}{d} - \frac{2 u \cos du}{d^2} + \frac{2 \sin du}{d^3} \right]^{\frac{1}{2}}$$

For FIR, take inverse F.T of F(A). $f(\alpha) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \{F(A) \cdot e^{-iAu} \cdot du \}$ $f(x) = \frac{2}{\pi} \int_{0}^{\infty} \sin x \cdot \cos dx \cdot d\lambda$ $\Rightarrow FIRM f(x).$ Hence, $f(x) = \frac{2}{\pi} \int_{\lambda}^{\infty} \sin d \cdot \cos dx \cdot d\lambda$ $\int_{0}^{\infty} \frac{\sin d}{dt} \cdot \cos dx \cdot dt = \frac{\pi}{2} \cdot \chi(\alpha)$ $= \pi . \begin{cases} 1, |\alpha| < 1 \\ 2, |\alpha| > 1 \end{cases}$ $= \int \pi/2 , |x| < 1$ $= \int 0 , |x| > 1$

	CIASSMATE
Q-4.	Find $F(z) = \frac{1}{(z-3)(z-4)}$, $ z >4$ [Nov. 2017]
→	F(z) = 1 $(z-3)(z-4)$
6-	$ \frac{z-1}{(z-3)} + \frac{1}{(z-4)} $
	$z^{-1}(F(z)) = z^{-1} \left(\frac{1}{(z-3)} \right) + z^{-1} \left(\frac{1}{(z-4)} \right)$
6	$=-1.3^{k}.+1.4^{k}$ $=-1.3^{k}.+1.4^{k}$ $=-1.3^{k}.+1.4^{k}$
	$ \frac{1}{(z-3)(z-4)} = \begin{cases} 0, & k \le 0 \\ \frac{1}{(z-3)(z-4)} & k > 0 \end{cases} $
Q-5.	Solve the following difference equation:-
	12 $f(k+2) - 7f(k+1) + f(k) = 0$, $k \ge 0$, $f(0) = 0$, $f(1) = 3$ Yiven DE -> 12 $f(k+2) - 7f(k+1) + f(k) = 0$.

CIASSMAte Date: Page:
Applying z-transform, we get $12 z \{ j(k+2) \} - 7 z \{ j(k+1) + z \{ j(k) = z \} 0 \}$ $z \{ j(k+2) \} = z^2 F(z) - z^2 j(0) - z j(1) = z^2 F(2) - 3z$
$z \left\{ \sqrt{(k+1)} \right\} = z F(z) - z \sqrt{(0)} = z \left\{ F(z) \right\}$ $12 \left[z^2 F(z) - 3z \right] - 7 \left[z F(z) + F(z) \right] = 0$ $F(z) = 36z$ $12z^2 - 7z + 1$
= 36Z $= 36Z$ $= 36Z$ $4(z-44)3(z-4/3)$ $= 3Z = 0 low sre 4/4 and 4/3$
$(z-\frac{1}{4})(z-\frac{1}{3})$ $F(z)z^{k-1} = 3z z^{k-1} = 3z^{k}$ $(z-\frac{1}{4})(z-\frac{1}{3}) (z-\frac{1}{4})(z-\frac{1}{3})$ Residue of $F(z)$ z^{k-1} at pole $z=\frac{1}{4}$ is
$= 3. \frac{(4/4)^{k}}{4} = -36 = -9$ $\begin{bmatrix} \frac{1}{4} & 1 \\ 4 & 3 \end{bmatrix}$

