

Introduction to Combinatorics

Dat Tran (FMI, Leipzig University)

SoSe 2020 (Day 5 - 05/05/2020)

Contents

- Introduction to Graph theory
 - Basic concepts
 - Matchings

- A graph G consists of a pair G = (V, E), where V is the set of vertices and E the set of edges. We write V(G) for the vertices of G and E(G) for the edges of G when necessary to avoid ambiguity.
- G has no multiple edges if no two edges have the same endpoints.
- G has no loops if no edge has a single vertex as both endpoints.

- *G* is a simple graph if it has no loops and no multiple edges.
- *G* is a multigraph if it has no loops, but possibly has multiple edges.
- The condensation of a graph is the simple graph formed by eliminating multiple edges and loops.

 Given two vertices v, w in G. A walk in G from v to w is a sequence of vertices and edges,

$$v = v_1, e_1, v_2, e_2, \dots, v_k, e_k, v_{k+1} = w$$

such that the endpoints of edge e_i are v_i and v_{i+1} , $\forall i = 1, ..., k$. If v = w, the walk is a closed walk or a circuit.

• G is connected if each pair of vertices $v, w \in V$ is connected by a walk from v to w.

- A path in G is a walk in which all edges are distinct and all vertices are distinct. Notation P_n
- A cycle in G is a path with an extra edge by joining the first and last vertices. Notation C_n

- If two vertices in *G* are connected by an edge, we say they are adjacent.
- If a vertex v is an endpoint of edge e, we say they are incident.
- The set of vertices adjacent to v is called the neighbourhood of v, denoted N(v).
- The degree of a vertex v is the number of edges incident with v, denoted d(v).

- A complete graph K_n is a graph with n vertices v_1, \ldots, v_n in which every two distinct vertices are joined by an edge.
- A graph G is bipartite if its vertices can be partitioned into two distinct parts $V = V_1 \sqcup V_2$ so that all edges has one endpoint in V_1 and the other one in V_2 .

A matching in a graph is a set of edges with no common endpoints.

A maximal matching cannot be enlarged by adding another edge. A maximum matching is one of maximum size.

Suppose M is a matching in a graph G. Given $k \in \mathbb{N}$. An alternating chain is a sequence of vertices $v_1, w_1, v_2, w_2, \dots, v_k, w_k$ such that

- v_1, w_k are unsaturated by M, i.e., no edge in M is incident with v_1 or w_k ;
- $\{v_i, w_i\} \in M^c := E M \text{ for } i = \overline{1, k} \text{ and } \{w_i, v_{i+1}\} \in M \text{ for } i = \overline{1, k-1}.$

Matchings

Theorem

Suppose that M is a matching in a bipartite graph G, and there is no alternating chain. Then M is a maximum matching.

Proof.

Algorithm.

Suppose we have a bipartite graph with vertex partition $\{v_1, v_2, \dots, v_n\}$ and $\{w_1, w_2, \dots, w_n\}$ and a matching M. An algorithm for finding the alternating chain:

- **0.** step = 0. Label (S, 0) all vertices that are unsaturated by M; Now repeat the next two steps until no vertex acquires a new label:
- **1.** step = step + 1. If v_i is labelled, w_j is not labelled and $\{v_i, w_j\} \in M^c$ then we label w_j as (i, step)
- 2. step = step + 1. If w_j is labelled, v_i is not labelled and $\{w_j, v_i\} \in M$ then we label v_i as (i, step)

At the conclusion of the algorithm, if there is a labeled vertex w_i that is unsaturated by M, then there is an alternating chain, and we say the algorithm succeeds. If there is no such w_i , then there is no alternating chain, and we say the algorithm fails.

A vertex cover in a graph is a set of vertices S such that every edge in the graph has at least one endpoint in S.

Theorem

If M is a matching in a graph and S is a vertex cover, then $|M| \leq |S|$.

Proof.

Theorem

Suppose the algorithm fails on the bipartite graph G with matching M. Let U be the set of labeled w_i , L the set of unlabeled v_i , and $S = L \cup U$. Then S is a vertex cover and |M| = |S|.

Proof.

Theorem

In a bipartite graph G, the size of a maximum matching is the same as the size of a minimum vertex cover.

Proof.