Malware Analysis using Data Mining Techniques on GPGPU

Submitted to:

Dr. S K Sahay

Mr. Hemant Rathore

By:

Mayank Chaudhari

2016H1030014G

Contents

- Motivation
- Objectives
- Data Source
- Methodology
- Result Analysis
- Conclusions

Motivation

- The day by day increasing threat due to malwares
- Malware creation is easier than before
- My previous study over malware analysis

Objective

- Perform comparative study of different classifiers and their parallel implementations
- Develop an approach to classify malwares and benign using GPU

Data Source

- Malware dataset :
 - The malware dataset is taken from malicia-project
 - It contains 11088 samples
- Benign dataset:
 - The benign dataset is collected from different systems verified by virustotal
 - It contains 2900 samples

Methodology

- In this project I focused on neural network implementation
- Data preprocessing
- Data normalization
- Designing deep neural networks
- Evaluation of different models

Result Analysis

- The computational intensive nature of neural net makes it slow
- But it is able to out-perform Naïve Bayes in tems of accuracy
- There is a trade of in accuracy between computation time
- In case of our dataset a 3 layer architecture is sufficient
- Using a ReLU or PReLU function performs better than all sigmoid and tanh
- Increasing no of epochs increases accuracy due to overfitting so dropout needed

figure 2: 4-layer network with dropout showing train test accuracy

figure 3: 4-layer network with dropout showing train test loss variation

figure 4: 3-layer network with dropout showing train and test accuracy

figure 5: 3-layer network with dropout showing train-test loss variation

figure 6: 3-layer design with dropout rate of .50

figure 7: 3-layer design with dropout rate of .50

NO of layers hidden layers	Accuracy Testing(avg)	Best False Positive rate	Worst False Positive rate	10-fold cross- validation
1 sigmoid layer	91%	1%	22%	
1 sigmoid and 1 PReLU layer	96.97%	4.1%	5.2%	97.53(+/-58) %
1 sigmoid and 2 PReLU layers	97.77%	3.0%	4.7%	98.10(+/-0.85) %

Conclusions

- Neural networks can provide better accuracy then Niave Bayes method
- The added testing computational time is not very huge
- Reinforcement learning support can be added easily
- Some other approaches needs to be explored which we encountered during our study

THANK YOU