

CIS 4560 Term Project Tutorial

Authors: Kathlyne Alilain, Jennifer Mazas

Instructor: <u>Iongwook Woo</u>

Date: 05/05/2025

Lab Tutorial

Kathlyne Alilain (kalilai2@calstatela.edu)

Jennifer Mazas(jmazas@calstatela.edu)

05/05/2025

Evolution of Europe's Climate Monitoring Infrastructure

Objectives

In this hands-on lab, you will learn how to:

- Download and load the stations_info_tx_v31.0e.txt dataset (4.6 GB).
- Create Hive tables and perform queries using Hadoop Cluster.
- Conduct tempo-spatial analysis of maximum temperature patterns.
- Visualize regional trends in Excel.
- Understand the application of Big Data tools in climate research.

Platform Specs

• IBM Bluemix BigInsights

• CPU Speed: 2.4 GHz

• # of CPU cores: 4 cores per node

• # of nodes: 3 nodes

• Total Memory Size: 24 GB (8 GB per node x 3 nodes)

Step 1: Load Data to Hadoop Cluster

Log in to the remote cluster and download the data file:

Upload the file to the Stations directory of HDFS:

```
hdfs dfs -mkdir Stations
hdfs dfs -mkdir Stations/stations_info/
-bash-4.2$ hdfs dfs -mkdir Stations
-bash-4.2$ hdfs dfs -mkdir Stations/stations_info/
```

hdfs dfs -put stations_info_tx_v31.0e.txt Stations/stations_info/
hdfs dfs -ls Stations/stations info/

```
-bash-4.2$ hdfs dfs -put stations_info_tx_v31.0e.txt Stations/stations_info/
-bash-4.2$ hdfs dfs -ls Stations/stations_info/
Found 1 items
-rw-r--r-- 3 kalilai2 hdfs 433591 2025-04-29 02:56 Stations/stations_info/
stations_info_tx_v31.0e.txt
-bash-4.2$ |
```

Step 2: Create Hive Table

Start Beeline CLI and switch to your assigned database.

```
$ beeline
use [your database];
```

If you do not have a database yet, create one:

CREATE DATABASE your database name;

Create the external Hive table by running these commands:

```
DROP TABLE IF EXISTS max_temp_data;

CREATE EXTERNAL TABLE IF NOT EXISTS max_temp_data(station_id STRING, station_name STRING, country STRING, latitude DOUBLE, longitude DOUBLE, elevation DOUBLE, start_date STRING, end_date STRING, end_date STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY '|'

STORED AS TEXTFILE LOCATION '/user/your_user/Stations/stations_info/'

TBLPROPERTIES ("skip.header.line.count"="1");
```

After creating the table, check if the table is created and confirm the structure of the columns using these commands:

SHOW tables;

DESCRIBE max temp data;

station_id string	col_name	data_type	comment
elevation double	station_name country latitude longitude elevation start_date	string string double double double string	

To make sure the data is loaded correctly, run:

SELECT * FROM max_temp_data LIMIT 5;

max_temp	data.station_id max_temp_data.end	max_temp_data.station_name	max_temp_data.country	max_temp_data.latitude	max_temp_data.longitude	max_temp_data.elevation	max_temp_data.st
		+ Vaexioe	SWEDEN	56.87	14.8	1 166.0	1950-01-01
1 -	2006-12-31						
2	 2024-12-31	Falun	SWEDEN	60.62	15.62	160.0	1950-01-01
3	2004–12–31	Stensele	SWEDEN	65.07	17.15	325.0	1950-01-01
4		Linkoeping	SWEDEN	58.4	15.53	93.0	1950-01-01
5	2024-12-31	 Linkoeping-Malmslaett	SWEDEN	58.4	15.53	93.0	1950-01-01
+	2024-12-31 		·	+	+	+	+

Step 3: Run Hive Queries

Run these queries for analysis:

Find out which countries had the highest average elevations of weather stations:

```
SELECT country, AVG(elevation) AS avg_elevation
FROM max_temp_data
GROUP BY country
ORDER BY avg_elevation DESC
LIMIT 10;
```

, 	, , , , , , , , , , , , , , , , , , ,
country	avg_elevation
ARMENIA KYRGYZSTAN IRAN, ISLAMIC REPUBLIC OF BOSNIA AND HERZEGOVINA SWITZERLAND TAJIKISTAN NORTH MACEDONIA AUSTRIA SAUDI ARABIA TÜRKTYF	1955.075 1398.5 1355.142857142857 1348.5 1018.972972972973 934.0 779.5 758.083333333334 689.0 568.60909090908
	689.0 568.60909

Which countries have the most stations (more spatial coverage)?

```
SELECT country, COUNT(*) AS num_stations
FROM max_temp_data
GROUP BY country
ORDER BY num_stations DESC
LIMIT 5;
```

What are the top 5 stations at the highest elevations?

```
SELECT station_id, country, elevation
FROM max_temp_data
ORDER BY elevation DESC
LIMIT 5;
```

+ station_id	+ country	elevation
2073 2941 15 58 878	ITALY ARMENIA AUSTRIA GERMANY ITALY	3480.0 3223.0 3109.0 2964.0

Step 4: Downloading Data to Your Personal Computer

Run an INSERT OVERWRITE DIRECTORY query to save the table's content into a file in HDFS:

```
INSERT OVERWRITE DIRECTORY '/user/your_user/max_temp_export/'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
SELECT * FROM max temp data;
```

This will export all the data from your max_temp_data table into a new HDFS directory /user/your_user/max_temp_export/.

Open another terminal to download the output file at the HDFS path.

```
$ ssh your_user@144.24.46.199
$ your_user@144.24.46.199 enter your password:

cxthl@Kats_Laptop MINGW64 /
$ ssh kalilai2@144.24.46.199
calilai2@144.24.46.199's password:
Last login: Tue Apr 29 03:18:25 2025 from 172.56.235.234
-bash-4.2$
```

Locate the file.

Export manually.

```
hdfs dfs -copyToLocal /user/your_user/max_temp_export/000000_0
max_temp_data.csv
```

Then transfer to local machine:

```
$ scp
your_user@your_ip_address:/home/your_local_machine/max_temp_data.csv
~/Downloads/
```

```
$ scp kalilai2@144.24.46.199:/home/kalilai2/max_temp_data.csv ~/Downloads/kalilai2@144.24.46.199's password:
max_temp_data.csv 100% 371KB 1.0MB/s 00:00
```

Step 5: Visualize Data

Open the downloaded file through Excel.

Right click on the first row and insert a new row above to create column headers.

Insert column headers: station_id, station_name, country, latitude, longitude, elevation, start_date, end_date

Go to File > Save As, and select file type as 'Excel Workbook (*.xlsx).

Create two new columns called 'fixed_start_date' and 'fixed_end_date'. Use this formula, =DATEVALUE(cell), and select the cell containing the corresponding dates.

Drag the corner of the formulated cell to copy the formula to the rest of the column.

	start_date	end_date	fixed_start_date	fived_end_date
i	1950-01-01	2006-12-31	1/1/1950	=DATEVALUE(H2)
١	1950-01-01	2024-12-31	1/1/1950	12/31/2024
ï	1000 01 01	0004 10 01	4 /4 /4 0 0 0	10/01/0004

start_date	end_date	fixed_start_date	fixed_end_date
1950-01-01	2006-12-31	1/1/1950	12/31/2006
1950-01-01	2024-12-31	1/1/1950	12/31/2024
1950-01-01	2004-12-31	1/1/1950	12/31/2004
1950-01-01	2024-12-31	1/1/1950	12/31/2024
1950-01-01	2024-12-31	1/1/1950	12/31/2024

NOTE: You may also need to review the data to make sure everything is formatted correctly and fix any errors.

Next, go to the 'Data' tab, then 'Data Model' > 3D Map.

On the 3D Map screen, in the Data pane, select 'latitude' as the Location.

Drag 'elevation' to Height, 'country' to Category, and 'fixed_start_Date' to Time.

It should generate this map with the ability to see changes over time.

References

1. URL of Data Source,

https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles

2. URL of your Github, https://github.com/kalilai2/CIS-4560-01-Group-Project.git