

Photonics Curriculum Version 7.0

Lecture Series

Basics of Fiber Propagation Fiber 1

Module Prerequisites

Introduction to Fiber-Optic Communications I & II

Module Objectives

- Structure of optical fibers
- Ray representation of fiber optic transmission
 - Snell's Law, Total internal reflection
- Wave representation of fiber optic transmission
 - Modes, multimode and single mode fibers
- Attenuation in optical fibers
- Dispersion in optical fibers

The Structure of an Optical Fiber

An optical fiber is made up of:

- Doped core: refractive index $n_1 \cong 1.5$
- Cladding: refractive index n₁ > n₂
- Buffer (or primary coating): protects fiber from damage

Fiber Refractive Index Profile

- Core Refractive Index (n₁)
- Cladding Refractive Index (n₂)
- Step Index Profile
- Graded Index Profile
- $n_1 n_2 << 1$
- Why different profiles?

How do Fibers Transmit Light?

What is a Ray?

- Light is an electromagnetic field
- Propagates as a wave $E(z, t) = E \cos(\omega t \beta z)$
- Ray = vector of the direction of wave propagation

Law of Reflection and Snell's Law

Angle of Incidence θ_i = Angle of Reflection θ_r

Snell's Law: $n_1 \sin \theta_i = n_2 \sin \theta_t$

Total Internal Reflection

As θ_i increases... θ_t increases... until $\theta_t = 90^{\circ}$

Value of θ_i (where $\theta_t = 90^{\circ}$) = "Critical Angle" = θ_{cr}

For $\theta_i > \theta_{cr}$ the ray is totally reflected

How do Fibers Transmit Light?

if θ_1 < critical angle θ_{cr} , ray refracted and reflected

if θ_1 > critical angle θ_{cr} , ray totally reflected

Rays, Wavefronts and Modes

Waves reflecting inside fiber interfere

Only rays yielding a standing wave allowed

Each allowed ray is a "mode" of the fiber

Wave Representation of Modes

Solve Maxwell's equations

A finite number of *guided* modes

An infinite number of *radiation (leaky)* modes

Mode Picture of Light Transmission

Leaky Mode

Guided Mode

Guided Modes in an Optical Fiber

In any waveguide, many modes can form at once Below are some guided modes of an optical fiber

Cross-sectional view of fiber core the intensity distribution

Different modes can propagate simultaneously

A multimode fiber. Also single mode fiber.

Single mode & Multimode optical fiber

What makes a fiber single mode or multimode?

- dimension of core
- n_1 and n_2
- wavelength

Numerical Aperture (NA)

NA measures light gathering ability of a fiber

$$NA = n_0 sin\theta_{0max} = n_1 cos \theta_{ci} = (n_1^2 - n_2^2)^{0.5}$$

Acceptance Angle

How much light can be captured by the fiber core?

Within the angle $\theta_{0max'}$ such that light is transmitted

As light travels along a fiber, its power decreases exponentially with distance

How to determine the attenuation coefficient α_p ?

The "cut-back" method

$$\alpha_p = \frac{-1}{(z_1 - z_2)} ln \left[\frac{P(z_1)}{P(z_2)} \right]$$

Note that α_p is not in decibel units Prefer attenuation coefficient in decibel units

$$a (dB/km) = \frac{P_2(dBm)-P_1(dBm)}{|L_2(km)-L_1(km)|} (dB/km)$$

a (dB/km) is referred to as the fiber attenuation

Fiber attenuation is a function of the wavelength

Fiber Dispersion

Fiber dispersion is made up of several components

Intermodal Dispersion

Each mode experiences different group velocity

Minimum transit time

$$t_{min} = (L/c) \cdot n_1$$

Maximum transit time

$$t_{max} = (L/c) \cdot (n_1^2/n_2)$$

Intermodal Dispersion

The delay difference or pulse spread in time:

$$\delta t_{mod} = t_{max} - t_{min} = (L/c)n_1(n_1/n_2-1) \cong (L/c)(NA^2/2n_1)$$

The rms pulse broadening per unit length due to intermodal dispersion (for a step index fiber):

$$\sigma_{\text{mod}} \cong \frac{(\text{NA})^2}{4\sqrt{2}n_1c}$$
 ns/km

Intermodal Dispersion

Can be reduced by using a graded index profile

Minimized using a nearly parabolic index profile

Intramodal Dispersion: GVD

Group Velocity Dispersion (GVD)

Discrete spectral components of a pulse travel at different speeds (e.g. in a multi-frequency laser)

Pulse spreads out (its width increases) in time (e.g. in a modulated single frequency laser)

Intramodal Dispersion: Material Dispersion

Refractive index varies with wavelength.

Intramodal Dispersion: Waveguide Dispersion

- An SMF confines ~ 80 % of optical power to the core
- Velocity depends on the proportion of power in the core

- At longer wavelengths, the wave is less tightly confined
- Therefore, on average, it sees a lower refractive index

Total Dispersion: Multimode Fibers

- Includes Intramodal σ_c and Intermodal σ_n dispersion
- The total fiber dispersion per unit length:

$$\sigma_T = (\sigma_c^2 + \sigma_n^2)^{1/2}$$
 ns/km

• Pulse width will increase by s_{τ} after 1 km

Total Dispersion: Single Mode Fibers

GVD measured by a single Dispersion Parameter D

$$D = -\frac{2\pi}{c\lambda^2} \cdot \frac{d^2\beta}{dk^2}$$
 ps nm⁻¹km⁻¹

- D is not normally calculated, but is measured and quoted as a characteristic of the fiber
- A pulse will spread out by D ps for every nm of spectral width and every km of distance traveled

Total Dispersion: Single Mode Fibers

Combination of material and waveguide dispersion

Dispersion Modified Single Mode Fibers

Dispersion shifted fiber:

 By controlling the core radius and refractive index, it is possible to change the wavelength of the dispersion zero

Dispersion Modified Single Mode Fibers

Dispersion flattened fibers:

The typical fiber with 'W' core structure

Refractive index profile of "W" fiber

Summary

- Structure of fiber
- Ray representation in optical fiber
- Wave representation in optical fiber
- Attenuation in fiber
- Dispersion in fiber
- Total dispersion of multimode fiber
- Total dispersion of signal mode fiber
- Dispersion modified single mode fibers

Proceed with the *Interactive Learning Module*