```
In [1]: import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import Ridge
    from sklearn.preprocessing import LabelBinarizer
    import matplotlib.pyplot as plt
    import numpy as np
    %matplotlib inline
```

The dataset used is "Students Performance in Exams: Marks secured by the students in various subjects" by jaki <u>link</u> (https://www.kaggle.com/spscientist/students-performance-in-exams) that has scores for different exams and different factors for 1000 students. Futher description below.

Loading the Dataset and seeing

```
In [2]: data=pd.read_csv('datasets_74977_169835_StudentsPerformance.csv')
data.head()

Out[2]:
gender race/ethnicity parental level of education lunch test preparation course math score reading score writing score
```

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75

In [3]: data.describe()

Out[3]:

	math score	reading score	writing score
count	1000.00000	1000.000000	1000.000000
mean	66.08900	69.169000	68.054000
std	15.16308	14.600192	15.195657
min	0.00000	17.000000	10.000000
25%	57.00000	59.000000	57.750000
50%	66.00000	70.000000	69.000000
75%	77.00000	79.000000	79.000000
max	100.00000	100.000000	100.000000

```
In [4]: plt.title('Gender Distribution')
    plt.pie([len(data.where(data['gender']==g).dropna()) for g in data['gender'].unique()],labels=data['gender'].
    unique(),autopct='%1.1f%%')
```

Gender Distribution

For our first categorical feature, gender, we have an even distribution almost split 50:50 between males and females in the dataset

```
plt.title('race/ethnicity Distribution')
In [5]:
        plt.pie([len(data.where(data['race/ethnicity']==g).dropna()) for g in data['race/ethnicity'].unique()],labels
        =data['race/ethnicity'].unique(),autopct='%1.1f%%')
Out[5]: ([<matplotlib.patches.Wedge at 0x26f61f7a908>,
          <matplotlib.patches.Wedge at 0x26f61f7b448>,
          <matplotlib.patches.Wedge at 0x26f61f7bcc8>,
          <matplotlib.patches.Wedge at 0x26f61f845c8>,
          <matplotlib.patches.Wedge at 0x26f61f8d108>],
         [Text(0.9097886363331099, 0.618291708822899, 'group B'),
          Text(-0.6437648321003798, 0.8919455369868554, 'group C'),
          Text(-1.038434601178987, -0.362840983178911, 'group A'),
          Text(-0.14472078029994478, -1.0904383961276194, 'group D'),
          Text(0.9953097568356061, -0.4683572225853327, 'group E')],
         [Text(0.4962483470907872, 0.33725002299430845, '19.0%'),
          Text(-0.3511444538729344, 0.48651574744737563, '31.9%'),
          Text(-0.5664188733703563, -0.19791326355213326, '8.9%'),
          Text(-0.07893860743633352, -0.5947845797059742, '26.2%'),
          Text(0.5428962310012396, -0.255467575955636, '14.0%')])
                race/ethnicity Distribution
```


When we come to our ethnic distribution in our data set we have to categories that predominate the dataset by representing more than 50% of the elements, and one that only represents a small (less than 10%) part of the elements in our data set. We can either decide to eliminate random elements from the dominat categories and/or eliminate the category that least represents our data to avoid biases. In this case, since our dataset isn't that big, we are going to keep them all (also to see the true error of our future models and how well they behave with different data).

```
plt.title('parental level of education Distribution')
In [6]:
        plt.pie([len(data.where(data['parental level of education']==g).dropna()) for g in data['parental level of ed
        ucation'].unique()],labels=data['parental level of education'].unique(),autopct='%1.1f%%')
Out[6]: ([<matplotlib.patches.Wedge at 0x26f61fe1c08>,
          <matplotlib.patches.Wedge at 0x26f61fe3388>,
          <matplotlib.patches.Wedge at 0x26f61fe3c08>,
          <matplotlib.patches.Wedge at 0x26f61fec508>,
          <matplotlib.patches.Wedge at 0x26f61ff7048>,
          <matplotlib.patches.Wedge at 0x26f61ff7988>],
         [Text(1.0252782228085795, 0.3985029056788436, "bachelor's degree"),
          Text(0.13100688469389565, 1.092170863996472, 'some college'),
          Text(-0.7704522508666288, 0.7851135772195926, "master's degree"),
          Text(-1.0957469709260732, -0.09663630635705887, "associate's degree"),
          Text(-0.18571680664389534, -1.0842090516731513, 'high school'),
          Text(0.9306078067899267, -0.5864887977972321, 'some high school')],
         [Text(0.5592426669864978, 0.21736522127936922, '11.8%'),
          Text(0.07145830074212489, 0.5957295621798938, '22.6%'),
          Text(-0.4202466822908884, 0.428243769392505, '5.9%'),
          Text(-0.5976801659596762, -0.052710712558395746, '22.2%'),
          Text(-0.10130007635121563, -0.5913867554580825, '19.6%'),
          Text(0.5076042582490509, -0.319902980616672, '17.9%')])
                   parental level of education Distribution
```


Like we talked before, but in this case most of the categories represent almost a same portion of our data except for the master's degree that only represents 6%. Nevertheless we are going to keep them to test for true error.

```
In [7]: | plt.title('Lunch Distribution')
        plt.pie([len(data.where(data['lunch']==g).dropna()) for g in data['lunch'].unique()],labels=data['lunch'].uni
        que(),autopct='%1.1f%%')
Out[7]: ([<matplotlib.patches.Wedge at 0x26f6204b508>,
          <matplotlib.patches.Wedge at 0x26f6204d688>],
         [Text(-0.48393302764960144, 0.9878303623344902, 'standard'),
          Text(0.48393293516224545, -0.9878304076435662, 'free/reduced')],
         [Text(-0.2639634696270553, 0.5388165612733582, '64.5%'),
          Text(0.2639634191794066, -0.5388165859873997, '35.5%')])
```


We can see the most dominant is standard lunch, but free/reduced still has a significant representation of our dataset

```
In [8]: | plt.title('Test Preparation Course Distribution')
        plt.pie([len(data.where(data['test preparation course']==g).dropna()) for g in data['test preparation course'
        ].unique()],labels=data['test preparation course'].unique(),autopct='%1.1f%%')
Out[8]: ([<matplotlib.patches.Wedge at 0x26f620a0108>,
          <matplotlib.patches.Wedge at 0x26f620a1188>],
         [Text(-0.47460171119818767, 0.9923473261553901, 'none'),
          Text(0.4746018041084478, -0.9923472817199666, 'completed')],
         [Text(-0.2588736606535569, 0.5412803597211218, '64.2%'),
          Text(0.2588737113318806, -0.5412803354836181, '35.8%')])
```

Test Preparation Course Distribution

The same as explained above, most of the people didn't take a course but there is still a significant amount of people that have taken them.

The following continous features have alredy been 'explained' above in data.describe()

```
In [9]: | data['math score'].plot(kind='hist',title='Math Scores')
Out[9]: <matplotlib.axes. subplots.AxesSubplot at 0x26f620f33c8>
```



```
In [10]: data['writing score'].plot(kind='hist',title='Writing Scores')
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x26f62184c08>


```
In [11]: data['reading score'].plot(kind='hist',title='Reading Scores')
```

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x26f621fa748>

Cleaning and Preprocessing

we have 5 categorical features (gender,race/ethnicity,parental level of education,lunch,test preparation course) and 3 numeric/continuous features (math score,reading score,writing score) so to facilitate the process to create models we are going to onehot encode the categorical features and normalize the continuous features and putting all together in a temproal dataframe

```
In [12]: new_data=pd.DataFrame()
```

Gender

it is our first categorical variable

```
In [13]: print('Gender categories: ',data['gender'].unique())
Gender categories: ['female' 'male']
```

Since gender is a categorical feature we have to onehot enconde it using LabelBinarizer from sklearn (female,male)->R^1

```
In [14]: genderLabelBin=LabelBinarizer().fit(data['gender'].unique())
    new_data['gender']=[genderLabelBin.transform([g])[0][0] for g in data['gender']]
    new_data.head()
```

Out[14]:

	gender
0	0
1	0
2	0
3	1
4	1

Race/ethnic group

our second categorical feature

```
In [15]: | print('race/ethnicity categories: ',data['race/ethnicity'].unique())
         race/ethnicity categories: ['group B' 'group C' 'group A' 'group D' 'group E']
```

LabelBinarizer from sklearn ('group B' 'group C' 'group A' 'group D' 'group E')->R^5

```
In [16]: | raceLabelBin=LabelBinarizer().fit(data['race/ethnicity'].unique())
         new_data['race']=[raceLabelBin.transform([r])[0]for r in data['race/ethnicity']]
         new_data['group A']=[r[0] for r in new_data['race']]
         new_data['group B']=[r[1] for r in new_data['race']]
         new_data['group C']=[r[2] for r in new_data['race']]
         new_data['group D']=[r[3] for r in new_data['race']]
         new data['group E']=[r[4] for r in new data['race']]
         del new_data['race']
         new data.head()
```

Out[16]:

	gender	group A	group B	group C	group D	group E
0	0	0	1	0	0	0
1	0	0	0	1	0	0
2	0	0	1	0	0	0
3	1	1	0	0	0	0
4	1	0	0	1	0	0

Parental Leve of education

```
In [17]: | print('Parental Level of Education: ',data['parental level of education'].unique())
         Parental Level of Education: ["bachelor's degree" 'some college' "master's degree" "associate's degree"
          'high school' 'some high school']
```

LabelBinarizer from sklearn ('group B' 'group C' 'group A' 'group D' 'group E')->R^6

```
parentLabelBin=LabelBinarizer().fit(data['parental level of education'].unique())
In [18]:
         new_data['parental level of education']=[parentLabelBin.transform([r])[0] for r in data['parental level of ed
         ucation']]
         new_data['associate degree']=[p[0] for p in new_data['parental level of education']]
         new_data['bachelor degree']=[p[1] for p in new_data['parental level of education']]
         new_data['high school']=[p[2] for p in new_data['parental level of education']]
         new_data['master degree']=[p[3] for p in new_data['parental level of education']]
         new_data['some college']=[p[4] for p in new_data['parental level of education']]
         new_data['some high school']=[p[5] for p in new_data['parental level of education']]
         del new_data['parental level of education']
         new data.head()
```

Out[18]:

	gender	group A	group B	group C	group D	group E	associate degree	bachelor degree	high school	master degree	some college	some high school
0	0	0	1	0	0	0	0	1	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	1	0
2	0	0	1	0	0	0	0	0	0	1	0	0
3	1	1	0	0	0	0	1	0	0	0	0	0
4	1	0	0	1	0	0	0	0	0	0	1	0

Lunch

Out[20]:

```
In [19]: | print('Lunch: ',data['lunch'].unique())
         Lunch: ['standard' 'free/reduced']
In [20]: lunchLabelBin=LabelBinarizer().fit(data['lunch'].unique())
         new_data['lunch']=lunchLabelBin.transform(data['lunch'])
         new data.head()
```

gend	er gro	up A	group B	group C	group D	group E	associate degree	bachelor degree	high school	master degree	some college	some high school	lunch
0	0	0	1	0	0	0	0	1	0	0	0	0	1
1	0	0	0	1	0	0	0	0	0	0	1	0	1
2	0	0	1	0	0	0	0	0	0	1	0	0	1
3	1	1	0	0	0	0	1	0	0	0	0	0	0

0

0

0

0

0

Test preparation course

```
In [21]: print('test preparation course: ',data['test preparation course'].unique())
        test preparation course: ['none' 'completed']
In [22]: testLabelBin=LabelBinarizer().fit(data['test preparation course'].unique())
        new_data['test preparation course']=testLabelBin.transform(data['test preparation course'])
        new_data.head()
```

Out[22]:

	gender	group A	group B	group C	group D	group E	associate degree	bachelor degree	high school	master degree	some college	some high school	lunch	test preparation course
0	0	0	1	0	0	0	0	1	0	0	0	0	1	1
1	0	0	0	1	0	0	0	0	0	0	1	0	1	0
2	0	0	1	0	0	0	0	0	0	1	0	0	1	1
3	1	1	0	0	0	0	1	0	0	0	0	0	0	1
4	1	0	0	1	0	0	0	0	0	0	1	0	1	1

Normalizing continous features

Out[23]:

	gender	group A	group B	group C	group D	group E	associate degree	bachelor degree	high school	master degree	some college	some high school	lunch	test preparation course	math score	readi scc
0	0	0	1	0	0	0	0	1	0	0	0	0	1	1	0.72	0.
1	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0.69	0.
2	0	0	1	0	0	0	0	0	0	1	0	0	1	1	0.90	0.
3	1	1	0	0	0	0	1	0	0	0	0	0	0	1	0.47	0.
4	1	0	0	1	0	0	0	0	0	0	1	0	1	1	0.76	0.

Now the dataset is splitted into labels that we can use as features for our model and are normalized

Analysis after processing and cleaning data

We are going to se the disrtibutions of scores corresponding to different features

Gender

Female

```
In [24]: for c in new_data.columns[-4:]:
    new_data.where(new_data['gender']==0).dropna().plot(y=c,kind='box',title='Female '+c)
    new_data[new_data.columns[-4:]].where(new_data['gender']==0).dropna().describe()
```

Out[24]:

	math score	reading score	writing score	average score
count	518.000000	518.000000	518.000000	518.000000
mean	0.636332	0.726081	0.724672	0.695695
std	0.154915	0.143782	0.148448	0.145418
min	0.000000	0.170000	0.100000	0.090000
25%	0.540000	0.632500	0.640000	0.606667
50%	0.650000	0.730000	0.740000	0.703333
75%	0.740000	0.830000	0.820000	0.786667
max	1.000000	1.000000	1.000000	1.000000

Males

```
In [25]: for c in new_data.columns[-4:]:
    new_data.where(new_data['gender']==1).dropna().plot(y=c,kind='box',title='Male '+c)
    new_data[new_data.columns[-4:]].where(new_data['gender']==1).dropna().describe()
```

Out[25]:

	math score	reading score	writing score	average score
count	482.000000	482.000000	482.000000	482.000000
mean	0.687282	0.654730	0.633112	0.658375
std	0.143563	0.139318	0.141138	0.136988
min	0.270000	0.230000	0.150000	0.230000
25%	0.590000	0.560000	0.530000	0.560000
50%	0.690000	0.660000	0.640000	0.663333
75%	0.790000	0.750000	0.737500	0.762500
max	1.000000	1.000000	1.000000	1.000000

We can see in the 6 graphs above that the distributions for the scores depending on gender are quite different. In the case of females, there are more outliers in the lower bound in all the scores. Nevertheless females actually perform, on average, better than men by 4%.

Groups

Group A

```
In [27]: for c in new_data.columns[-4:]:
    new_data.where(new_data['group A']==1).dropna().plot(y=c,kind='box',title='Group A '+c)
    new_data[new_data.columns[-4:]].where(new_data['group A']==1).dropna().describe()
```

Out[27]:

	math score	reading score	writing score	average score
count	89.000000	89.000000	89.000000	89.000000
mean	0.616292	0.646742	0.626742	0.629925
std	0.145230	0.155438	0.154683	0.144446
min	0.280000	0.230000	0.190000	0.233333
25%	0.510000	0.530000	0.510000	0.520000
50%	0.610000	0.640000	0.620000	0.613333
75%	0.710000	0.740000	0.730000	0.730000
max	1.000000	1.000000	0.970000	0.963333

Group B

```
In [28]: for c in new_data.columns[-4:]:
    new_data.where(new_data['group B']==1).dropna().plot(y=c,kind='box',title='Group B '+c)
    new_data[new_data.columns[-4:]].where(new_data['group B']==1).dropna().describe()
```

Out[28]:

	math score	reading score	writing score	average score
count	190.000000	190.000000	190.000000	190.000000
mean	0.634526	0.673526	0.656000	0.654684
std	0.154682	0.151775	0.156252	0.147321
min	0.080000	0.240000	0.150000	0.183333
25%	0.540000	0.560000	0.552500	0.566667
50%	0.630000	0.670000	0.670000	0.650000
75%	0.740000	0.797500	0.780000	0.768333
max	0.970000	0.970000	0.960000	0.966667


```
In [29]: for c in new_data.columns[-4:]:
    new_data.where(new_data['group C']==1).dropna().plot(y=c,kind='box',title='Group C '+c)
    new_data[new_data.columns[-4:]].where(new_data['group C']==1).dropna().describe()
```

Out[29]:

	math score	reading score	writing score	average score
count	319.000000	319.000000	319.000000	319.000000
mean	0.644639	0.691034	0.678276	0.671317
std	0.148527	0.139970	0.149834	0.138722
min	0.000000	0.170000	0.100000	0.090000
25%	0.550000	0.600000	0.570000	0.576667
50%	0.650000	0.710000	0.680000	0.683333
75%	0.740000	0.785000	0.790000	0.770000
max	0.980000	1.000000	1.000000	0.986667

Group D

```
In [30]: for c in new_data.columns[-4:]:
    new_data.where(new_data['group D']==1).dropna().plot(y=c,kind='box',title='Group D '+c)
    new_data[new_data.columns[-4:]].where(new_data['group D']==1).dropna().describe()
```

Out[30]:

	math score	reading score	writing score	average score
count	262.000000	262.000000	262.000000	262.000000
mean	0.673626	0.700305	0.701450	0.691794
std	0.137694	0.138953	0.143677	0.132528
min	0.260000	0.310000	0.320000	0.310000
25%	0.590000	0.602500	0.610000	0.603333
50%	0.690000	0.710000	0.720000	0.700000
75%	0.770000	0.790000	0.800000	0.785833
max	1.000000	1.000000	1.000000	0.990000


```
In [31]: for c in new_data.columns[-4:]:
    new_data.where(new_data['group E']==1).dropna().plot(y=c,kind='box',title='Group E '+c)
    new_data[new_data.columns[-4:]].where(new_data['group E']==1).dropna().describe()
```

Out[31]:

	math score	reading score	writing score	average score
count	140.000000	140.000000	140.000000	140.000000
mean	0.738214	0.730286	0.714071	0.727524
std	0.155343	0.148740	0.151139	0.145650
min	0.300000	0.260000	0.220000	0.260000
25%	0.647500	0.630000	0.620000	0.646667
50%	0.745000	0.740000	0.720000	0.735000
75%	0.850000	0.840000	0.802500	0.824167
max	1.000000	1.000000	1.000000	1.000000


```
In [32]: new_data[['group A','group B','group C','group D','group E']+new_data.columns[-4:].tolist()].corr()[new_data.columns[-4:]].iloc[:-4]
```

Out[32]:

	math score	reading score	writing score	average score
group A	-0.091977	-0.096274	-0.110714	-0.104803
group B	-0.084250	-0.060283	-0.078254	-0.078247
group C	-0.073387	-0.003074	-0.010203	-0.030691
group D	0.050071	0.035177	0.082032	0.058902
group E	0.205855	0.106712	0.089077	0.141050

In the case of groups we see many things. For example, the group performed best on average, has at least 1 one in each subject, few outliers, but didn 't had the smallest standard deviation of all. In another way the group that performed the worst on average, didn't had any outliers and had at least 1 one in both reading and mathematics. Neverless 3 groups performed under average and the rest above average in the entire dataset

Parental Level Education

Associate Degree

Out[33]:

	math score	reading score	writing score	average score
count	222.000000	222.000000	222.000000	222.000000
mean	0.678829	0.709279	0.698964	0.695691
std	0.151121	0.138689	0.143111	0.136709
min	0.260000	0.310000	0.350000	0.316667
25%	0.570000	0.610000	0.580000	0.586667
50%	0.670000	0.725000	0.705000	0.696667
75%	0.800000	0.810000	0.800000	0.790000
max	1.000000	1.000000	1.000000	1.000000

Bachelor Degree

```
In [34]: for c in new_data.columns[-4:]:
    new_data.where(new_data['bachelor degree']==1).dropna().plot(y=c,kind='box',title='bachelor degree '+c)
    new_data[new_data.columns[-4:]].where(new_data['bachelor degree']==1).dropna().describe()
```

Out[34]:

	math score	reading score	writing score	average score
count	118.000000	118.000000	118.000000	118.000000
mean	0.693898	0.730000	0.733814	0.719237
std	0.149438	0.142853	0.147283	0.139466
min	0.290000	0.410000	0.380000	0.390000
25%	0.610000	0.630000	0.625000	0.640833
50%	0.680000	0.730000	0.740000	0.711667
75%	0.790000	0.827500	0.830000	0.806667
max	1.000000	1.000000	1.000000	1.000000


```
In [35]: for c in new_data.columns[-4:]:
    new_data.where(new_data['high school']==1).dropna().plot(y=c,kind='box',title='high school '+c)
    new_data[new_data.columns[-4:]].where(new_data['high school']==1).dropna().describe()
```

Out[35]:

	math score	reading score	writing score	average score
count	196.000000	196.000000	196.000000	196.000000
mean	0.621378	0.647041	0.624490	0.630969
std	0.145397	0.141321	0.140859	0.135106
min	0.080000	0.240000	0.150000	0.183333
25%	0.537500	0.540000	0.520000	0.539167
50%	0.630000	0.660000	0.640000	0.650000
75%	0.720000	0.742500	0.730000	0.726667
max	0.990000	0.990000	1.000000	0.956667

Master Degree

```
In [36]: for c in new_data.columns[-4:]:
    new_data.where(new_data['master degree']==1).dropna().plot(y=c,kind='box',title='master degree '+c)
    new_data[new_data.columns[-4:]].where(new_data['master degree']==1).dropna().describe()
```

Out[36]:

	math score	reading score	writing score	average score
count	59.000000	59.000000	59.000000	59.000000
mean	0.697458	0.753729	0.756780	0.735989
std	0.151539	0.137752	0.137307	0.136010
min	0.400000	0.420000	0.460000	0.446667
25%	0.555000	0.655000	0.670000	0.631667
50%	0.730000	0.760000	0.750000	0.733333
75%	0.810000	0.845000	0.850000	0.855000
max	0.950000	1.000000	1.000000	0.976667

Some College

Out[37]:

	math score	reading score	writing score	average score
count	226.000000	226.000000	226.000000	226.000000
mean	0.671283	0.694602	0.688407	0.684764
std	0.143129	0.140570	0.150123	0.137110
min	0.190000	0.230000	0.190000	0.233333
25%	0.590000	0.600000	0.600000	0.600000
50%	0.675000	0.705000	0.700000	0.686667
75%	0.760000	0.797500	0.790000	0.780000
max	1.000000	1.000000	0.990000	0.990000

Out[38]:

	math score	reading score	writing score	average score
count	179.000000	179.000000	179.000000	179.000000
mean	0.634972	0.669385	0.648883	0.651080
std	0.159280	0.154793	0.157362	0.149841
min	0.000000	0.170000	0.100000	0.090000
25%	0.530000	0.565000	0.540000	0.556667
50%	0.650000	0.670000	0.660000	0.666667
75%	0.740000	0.790000	0.770000	0.765000
max	0.970000	1.000000	1.000000	0.990000

-0.079852

math score reading score writing score average score 0.064386 0.067414 associate degree 0.063228 0.064799 0.096024 0.128297 bachelor degree 0.079664 0.106599 high school -0.128725 -0.151068 -0.182211 -0.161936 master degree 0.060417 0.106452 0.125693 0.102411 some college 0.037056 0.010782 0.027989 0.026761

-0.071369

We can see that the parents education can actually affect the mean scores of their kids, the better education they had it would be reflected positively on their kids.

-0.087247

-0.097326

Lunch

some high school

Standard

```
In [40]: for c in new_data.columns[-4:]:
    new_data.where(new_data['lunch']==1).dropna().plot(y=c,kind='box',title='Standard '+c)
    new_data[new_data.columns[-4:]].where(new_data['lunch']==1).dropna().describe()
```

Out[40]:

	math score	reading score	writing score	average score
count	645.000000	645.000000	645.000000	645.000000
mean	0.700341	0.716543	0.708233	0.708372
std	0.136535	0.138306	0.143395	0.131865
min	0.190000	0.260000	0.220000	0.260000
25%	0.610000	0.630000	0.620000	0.623333
50%	0.690000	0.720000	0.720000	0.713333
75%	0.800000	0.820000	0.810000	0.796667
max	1.000000	1.000000	1.000000	1.000000

Free/reduced

```
In [41]: for c in new_data.columns[-4:]:
    new_data.where(new_data['lunch']==0).dropna().plot(y=c,kind='box',title='Free/reduced '+c)
    new_data[new_data.columns[-4:]].where(new_data['lunch']==0).dropna().describe()
```

Out[41]:

	math score	reading score	writing score	average score
count	355.000000	355.000000	355.000000	355.000000
mean	0.589211	0.646535	0.630225	0.621991
std	0.151600	0.148953	0.154338	0.144583
min	0.000000	0.170000	0.100000	0.090000
25%	0.490000	0.560000	0.530000	0.528333
50%	0.600000	0.650000	0.640000	0.626667
75%	0.690000	0.750000	0.740000	0.725000
max	1.000000	1.000000	1.000000	0.976667

We see that lunch has a relatively good correlation with the math score 1:3, and the people that had standard lunches perform a 5% better on average

Test Preparation Course

None

```
In [43]: for c in new_data.columns[-4:]:
    new_data.where(new_data['test preparation course']==1).dropna().plot(y=c,kind='box',title='None Test Prep
aration Course '+c)
    new_data[new_data.columns[-4:]].where(new_data['test preparation course']==1).dropna().describe()
```

Out[43]:

	math score	reading score	writing score	average score
count	642.000000	642.000000	642.000000	642.000000
mean	0.640779	0.665343	0.645047	0.650389
std	0.151924	0.144639	0.149997	0.141867
min	0.000000	0.170000	0.100000	0.090000
25%	0.540000	0.570000	0.540000	0.554167
50%	0.640000	0.670000	0.650000	0.653333
75%	0.747500	0.760000	0.740000	0.750000
max	1.000000	1.000000	1.000000	1.000000


```
In [44]: for c in new_data.columns[-4:]:
    new_data.where(new_data['test preparation course']==0).dropna().plot(y=c,kind='box',title='Had Test Prepa
ration Course '+c)
new_data[new_data.columns[-4:]].where(new_data['test preparation course']==0).dropna().describe()
```

Out[44]:

	math score	reading score	writing score	average score
count	358.000000	358.000000	358.000000	358.000000
mean	0.696955	0.738939	0.744190	0.726695
std	0.144447	0.136384	0.133753	0.130370
min	0.230000	0.370000	0.360000	0.343333
25%	0.600000	0.650000	0.660000	0.650000
50%	0.690000	0.750000	0.760000	0.735000
75%	0.790000	0.840000	0.830000	0.821667
max	1.000000	1.000000	1.000000	1.000000


```
In [45]: new_data[['test preparation course']+new_data.columns[-4:].tolist()].corr()[new_data.columns[-4:]].iloc[:-4]

Out[45]:

math score reading score writing score average score

test preparation course -0.177702 -0.24178 -0.312946 -0.25671
```

We can see that studying actually increases the mean average score by 7%, but still we can se in both groups there were people that achive ones in their scores.

Splitting the Dataset into Train, Validation, and Test sets

60:20:20 split

600:200:200 split

```
In [46]: train, testVal =train_test_split(new_data,test_size=0.4,random_state=1)
    test,validation=train_test_split(testVal,test_size=0.5,random_state=1)
    print('Train set:',len(train))
    print('Validation set:',len(validation))
    print('Test set:',len(test))

Train set: 600
    Validation set: 200
    Test set: 200
```

Refine and Evaluate Your Model

we are going to make models for each of the original categories (gender,race/ethnicity,parental level of education,lunch,test preparation course), see how it reflects on each of the different scores (math score,reading score,writing score), and in the end see how they reflect the average score.

this will be done using a ridge regression for alpha between [-9,9]

For calculating error we are going to use MSE, so we can increment our accurancy by penalizing the biggests mistakes.

Gender Model

-Math Score

```
In [48]: valError=float('inf')
        bestModel=None
        mses=[]
        msesTrain=[]
        for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train['gender'].values.reshape((-1,1)),train['math score'])
            preds=model.predict(validation['gender'].values.reshape((-1,1)))
            MSE=sum([(r-p)**2 for r,p in zip(validation['math score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['math score'],model.predict(train['gender'].values.re
        shape((-1,1))))])/len(train))
            if(MSE<valError):</pre>
               bestModel=model
                valError=MSE
        print('----')
        print('Best Model: ',bestModel)
        plt.title('MSE of train and validation VS Alpha (Math Score)')
        plt.xlabel('Alpha (power of 10)')
        plt.ylabel('MSE')
        plt.plot(lambdas,mses, label='Validation MSE')
        plt.plot(lambdas,msesTrain, label='Train MSE')
        plt.legend()
```

> Alpha of: 1e-09 Validation MSE: 0.022574065227669474 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.02257406522767783 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.022574065227715514 -----Alpha of: 9.236708571873865e-08 Validation MSE: 0.022574065227885905 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.02257406522865621 -----Alpha of: 1.8873918221350957e-06 Validation MSE: 0.022574065232138164 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.02257406524787794 -----Alpha of: 3.856620421163472e-05 Validation MSE: 0.022574065319027205 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.02257406564064733 ______ Alpha of: 0.0007880462815669905 Validation MSE: 0.02257406709448807 -----Alpha of: 0.003562247890262437 Validation MSE: 0.022574073666446468 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.02257410337573887 -----Alpha of: 0.07278953843983146 Validation MSE: 0.02257423770725469 -----Alpha of: 0.3290344562312671 Validation MSE: 0.022574845642703522 Alpha of: 1.4873521072935119 Validation MSE: 0.02257760769383895 ______ Alpha of: 6.723357536499335 Validation MSE: 0.02259033322404906 ______ Alpha of: 30.39195382313195 Validation MSE: 0.022649727554218013 -----Alpha of: 137.3823795883261 Validation MSE: 0.02287110195738924 -----Alpha of: 621.0169418915604 Validation MSE: 0.023221257084225636 _____ Alpha of: 2807.21620394117 Validation MSE: 0.023412777006881248 ______ Alpha of: 12689.610031679182 Validation MSE: 0.02346873537901534 ______ Alpha of: 57361.52510448681 Validation MSE: 0.02348198487911752 Alpha of: 259294.3797404667 Validation MSE: 0.02348496142545981 _____ Alpha of: 1172102.2975334793 Validation MSE: 0.02348562216035587 _____ Alpha of: 5298316.906283702 Validation MSE: 0.02348576844009752 Alpha of: 23950266.199874908 Validation MSE: 0.02348580080577117 _____ Alpha of: 108263673.38740563 Validation MSE: 0.023485807966024053 _____ Alpha of: 489390091.8477499 Validation MSE: 0.023485809550039857 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.023485809900459044 -----Alpha of: 10000000000.0 Validation MSE: 0.02348580997797941

localhost:8888/nbconvert/html/Documents/Meaningful Predictive Modeling/Proyect/Exam Scores Factors.ipynb?download=false

Best Model: Ridge(alpha=1e-09, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[48]: <matplotlib.legend.Legend at 0x26f637f9748>

We see that the best model might have a high complexity for the gender feature since the best MSE is achivied with a low alpha.

Now we calculate the generalaization error

```
In [49]: preds=bestModel.predict(test['gender'].values.reshape((-1,1)))
MSE=sum([(r-p)**2 for r,p in zip(test['math score'],preds)])/len(preds)
print('MSE for test set Math Score: ', MSE)
```

MSE for test set Math Score: 0.02398411001483309

-Reading Score

```
In [50]: valError=float('inf')
        bestModel=None
        mses=[]
        msesTrain=[]
        for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train['gender'].values.reshape((-1,1)),train['reading score'])
            preds=model.predict(validation['gender'].values.reshape((-1,1)))
            MSE=sum([(r-p)**2 for r,p in zip(validation['reading score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['reading score'],model.predict(train['gender'].values))
         .reshape((-1,1))))])/len(train))
            if(MSE<valError):</pre>
                bestModel=model
                valError=MSE
        print('----')
        print('Best Model: ',bestModel)
         plt.title('MSE of train and validation VS Alpha (Reading Score)')
        plt.xlabel('Alpha (power of 10)')
        plt.ylabel('MSE')
        plt.plot(lambdas,mses, label='Validation MSE')
        plt.plot(lambdas,msesTrain, label='Train MSE')
         plt.legend()
```

Alpha of: 1e-09 Validation MSE: 0.01900320990809008 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.01900320990807442 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.019003209908003634 -----Alpha of: 9.236708571873865e-08 Validation MSE: 0.01900320990768366 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.01900320990623731 ______ Alpha of: 1.8873918221350957e-06 Validation MSE: 0.019003209899699267 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.019003209870145026 _____ Alpha of: 3.856620421163472e-05 Validation MSE: 0.01900320973654951 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.019003209132652736 -----Alpha of: 0.0007880462815669905 Validation MSE: 0.019003206402870548 Alpha of: 0.003562247890262437 Validation MSE: 0.0190031940642066 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.01900313830781324 -----Alpha of: 0.07278953843983146 Validation MSE: 0.019002886651635093 -----Alpha of: 0.3290344562312671 Validation MSE: 0.019001756862625355 Alpha of: 1.4873521072935119 Validation MSE: 0.018996806298693415 _____ Alpha of: 6.723357536499335 Validation MSE: 0.0189773986017701 ______ Alpha of: 30.39195382313195 Validation MSE: 0.01893416479891168 -----Alpha of: 137.3823795883261 Validation MSE: 0.019033366740272263 -----Alpha of: 621.0169418915604 Validation MSE: 0.019456812469172385 ______ Alpha of: 2807.21620394117 Validation MSE: 0.01974632720185902 _____ Alpha of: 12689.610031679182 Validation MSE: 0.019835816366900877 _____ Alpha of: 57361.52510448681 Validation MSE: 0.019857283412885524 Alpha of: 259294.3797404667 Validation MSE: 0.01986212016534067 _____ Alpha of: 1172102.2975334793 Validation MSE: 0.01986319452526652 _____ Alpha of: 5298316.906283702 Validation MSE: 0.01986343241133946 Alpha of: 23950266.199874908 Validation MSE: 0.019863485047385922 Alpha of: 108263673.38740563 Validation MSE: 0.01986349669213191 ______ Alpha of: 489390091.8477499 Validation MSE: 0.01986349926822674 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.01986349983811586 -----Alpha of: 10000000000.0 Validation MSE: 0.019863499964187716

Best Model: Ridge(alpha=30.39195382313195, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[50]: <matplotlib.legend.Legend at 0x26f637f0a08>

We see that the best model might have a high complexity for the gender feature since the best MSE is achivied with a low alpha.

Now we calculate the generalaization error

```
In [51]: preds=bestModel.predict(test['gender'].values.reshape((-1,1)))
    MSE=sum([(r-p)**2 for r,p in zip(test['reading score'],preds)])/len(preds)
    print('MSE for test set Reading Score: ', MSE)
```

MSE for test set Reading Score: 0.021682737817237428

-Writing Score

```
In [52]: valError=float('inf')
        bestModel=None
        mses=[]
        msesTrain=[]
        for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train['gender'].values.reshape((-1,1)),train['writing score'])
            preds=model.predict(validation['gender'].values.reshape((-1,1)))
            MSE=sum([(r-p)**2 for r,p in zip(validation['writing score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['writing score'],model.predict(train['gender'].values
        .reshape((-1,1))))])/len(train))
            if(MSE<valError):</pre>
                bestModel=model
                valError=MSE
        print('----')
        print('Best Model: ',bestModel)
        plt.title('MSE of train and validation VS Alpha(Writing score)')
        plt.xlabel('Alpha (power of 10)')
        plt.ylabel('MSE')
        plt.plot(lambdas,mses, label='Validation MSE')
        plt.plot(lambdas,msesTrain, label='Train MSE')
        plt.legend()
```

Alpha of: 1e-09 Validation MSE: 0.020383026847223897 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.02038302684720926 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.020383026847143007 -----Alpha of: 9.236708571873865e-08 Validation MSE: 0.020383026846843545 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.02038302684548989 _____ Alpha of: 1.8873918221350957e-06 Validation MSE: 0.020383026839370953 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.020383026811711096 _____ Alpha of: 3.856620421163472e-05 Validation MSE: 0.02038302668667889 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.020383026121492027 _____ Alpha of: 0.0007880462815669905 Validation MSE: 0.020383023566707643 Alpha of: 0.003562247890262437 Validation MSE: 0.020383012019404574 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.02038295984655666 -----Alpha of: 0.07278953843983146 Validation MSE: 0.02038272451816836 -----Alpha of: 0.3290344562312671 Validation MSE: 0.020381671158646066 Alpha of: 1.4873521072935119 Validation MSE: 0.020377118594916057 ______ Alpha of: 6.723357536499335 Validation MSE: 0.02036049074856724 ______ Alpha of: 30.39195382313195 Validation MSE: 0.02034340405497416 -----Alpha of: 137.3823795883261 Validation MSE: 0.020612490327959202 -----Alpha of: 621.0169418915604 Validation MSE: 0.02137879916984015 -----Alpha of: 2807.21620394117 Validation MSE: 0.02187195573803672 ______ Alpha of: 12689.610031679182 Validation MSE: 0.022022307887399572 Alpha of: 57361.52510448681 Validation MSE: 0.022058263149023878 Alpha of: 259294.3797404667 Validation MSE: 0.022066358653898985 _____ Alpha of: 1172102.2975334793 Validation MSE: 0.022068156586499837 _____ Alpha of: 5298316.906283702 Validation MSE: 0.022068554673425833 Alpha of: 23950266.199874908 Validation MSE: 0.022068642755778255 _____ Alpha of: 108263673.38740563 Validation MSE: 0.02206866224232767 _____ Alpha of: 489390091.8477499 Validation MSE: 0.022068666553214423 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.02206866750687777 -----Alpha of: 10000000000.0 Validation MSE: 0.022068667717848846

Best Model: Ridge(alpha=30.39195382313195, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[52]: <matplotlib.legend.Legend at 0x26f623ee148>

We see that the best model might have a high complexity for the gender feature since the best MSE is achivied with a low alpha.

Now we calculate the generalaization error

```
In [53]: preds=bestModel.predict(test['gender'].values.reshape((-1,1)))
MSE=sum([(r-p)**2 for r,p in zip(test['writing score'],preds)])/len(preds)
print('MSE for test set writing Score: ', MSE)
```

MSE for test set writing Score: 0.023013780061304216

Average Score

```
In [54]: valError=float('inf')
        bestModel=None
        mses=[]
        msesTrain=[]
        for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train['gender'].values.reshape((-1,1)),train['average score'])
            preds=model.predict(validation['gender'].values.reshape((-1,1)))
            MSE=sum([(r-p)**2 for r,p in zip(validation['average score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['average score'],model.predict(train['gender'].values))
         .reshape((-1,1))))])/len(train))
            if(MSE<valError):</pre>
                bestModel=model
                valError=MSE
        print('----')
        print('Best Model: ',bestModel)
         plt.title('MSE of train and validation VS Alpha (Average Score)')
        plt.xlabel('Alpha (power of 10)')
        plt.ylabel('MSE')
        plt.plot(lambdas,mses, label='Validation MSE')
        plt.plot(lambdas,msesTrain, label='Train MSE')
        plt.legend()
```

> Alpha of: 1e-09 Validation MSE: 0.019532245887085492 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.019532245887078005 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.0195322458870442 _____ Alpha of: 9.236708571873865e-08 Validation MSE: 0.019532245886891376 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.01953224588620056 -----Alpha of: 1.8873918221350957e-06 Validation MSE: 0.01953224588307776 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.019532245868961615 -----Alpha of: 3.856620421163472e-05 Validation MSE: 0.019532245805151723 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.019532245516709304 -----Alpha of: 0.0007880462815669905 Validation MSE: 0.01953224421286319 Alpha of: 0.003562247890262437 Validation MSE: 0.019532238319338296 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.01953221168507213 -----Alpha of: 0.07278953843983146 Validation MSE: 0.01953209142252217 -----Alpha of: 0.3290344562312671 Validation MSE: 0.019531550516935833 Alpha of: 1.4873521072935119 Validation MSE: 0.01952916023268754 ______ Alpha of: 6.723357536499335 Validation MSE: 0.01951940075334835 ______ Alpha of: 30.39195382313195 Validation MSE: 0.019491297625218392 -----Alpha of: 137.3823795883261 Validation MSE: 0.01948248664260704 -----Alpha of: 621.0169418915604 Validation MSE: 0.019566766637107876 -----Alpha of: 2807.21620394117 Validation MSE: 0.019634202973911587 _____ Alpha of: 12689.610031679182 Validation MSE: 0.019655711669030497 ______ Alpha of: 57361.52510448681 Validation MSE: 0.019660906932439475 Alpha of: 259294.3797404667 Validation MSE: 0.019662079264372447 ______ Alpha of: 1172102.2975334793 Validation MSE: 0.019662339755449162 _____ Alpha of: 5298316.906283702 Validation MSE: 0.019662397437997036 Alpha of: 23950266.199874908 Validation MSE: 0.019662410201381167 Alpha of: 108263673.38740563 Validation MSE: 0.01966241302505274 ______ Alpha of: 489390091.8477499 Validation MSE: 0.01966241364971657 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.019662413787906032 _____ Alpha of: 10000000000.0 Validation MSE: 0.01966241381847656

localhost:8888/nbconvert/html/Documents/Meaningful Predictive Modeling/Proyect/Exam Scores Factors.ipynb?download=false

Best Model: Ridge(alpha=137.3823795883261, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[54]: <matplotlib.legend.Legend at 0x26f62252b48>

We see that the best model might have a lower complexity than the other models seen for this feature because it penalizes more the complexity

Now we calculate the generalaization error

```
In [55]: preds=bestModel.predict(test['gender'].values.reshape((-1,1)))
MSE=sum([(r-p)**2 for r,p in zip(test['average score'],preds)])/len(preds)
print('MSE for test set average score: ', MSE)
```

MSE for test set average score: 0.021817606680576668

Race/Ethnicity Model

-Math Score

```
In [56]: valError=float('inf')
        bestModel=None
        mses=[]
        msesTrain=[]
        for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train[['group A','group B','group C','group D','group E']],train['math s
            preds=model.predict(validation[['group A','group B','group C','group D','group E']])
            MSE=sum([(r-p)**2 for r,p in zip(validation['math score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['math score'],model.predict(train[['group A','group
         B','group C','group D','group E']]))])/len(train))
            if(MSE<valError):</pre>
                bestModel=model
                valError=MSE
        print('----')
         print('Best Model: ',bestModel)
        plt.title('MSE of train and validation VS Alpha')
        plt.xlabel('Alpha (power of 10)')
        plt.ylabel('MSE')
        plt.plot(lambdas,mses, label='Validation MSE')
        plt.plot(lambdas,msesTrain, label='Train MSE')
        plt.legend()
```

Alpha of: 1e-09 Validation MSE: 0.021757852351217907 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.02175785235125594 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.02175785235142783 _____ Alpha of: 9.236708571873865e-08 Validation MSE: 0.02175785235220492 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.02175785235571763 _____ Alpha of: 1.8873918221350957e-06 Validation MSE: 0.021757852371596272 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.021757852443373377 -----Alpha of: 3.856620421163472e-05 Validation MSE: 0.021757852767831282 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.021757854234495996 -----Alpha of: 0.0007880462815669905 Validation MSE: 0.0217578608643429 Alpha of: 0.003562247890262437 Validation MSE: 0.021757890833672088 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.021758026307193267 -----Alpha of: 0.07278953843983146 Validation MSE: 0.021758638726443215 -----Alpha of: 0.3290344562312671 Validation MSE: 0.021761407644394385 Alpha of: 1.4873521072935119 Validation MSE: 0.021773929748917027 ______ Alpha of: 6.723357536499335 Validation MSE: 0.021830199794665384 ______ Alpha of: 30.39195382313195 Validation MSE: 0.022059445873281208 -----Alpha of: 137.3823795883261 Validation MSE: 0.02262632900541318 -----Alpha of: 621.0169418915604 Validation MSE: 0.023176252425400654 -----Alpha of: 2807.21620394117 Validation MSE: 0.023405761478912792 ______ Alpha of: 12689.610031679182 Validation MSE: 0.023467399200219362 ______ Alpha of: 57361.52510448681 Validation MSE: 0.023481700870688543 Alpha of: 259294.3797404667 Validation MSE: 0.02348489917531622 ______ Alpha of: 1172102.2975334793 Validation MSE: 0.023485608417726435 _____ Alpha of: 5298316.906283702 Validation MSE: 0.02348576540132431 Alpha of: 23950266.199874908 Validation MSE: 0.02348580013359704 _____ Alpha of: 108263673.38740563 Validation MSE: 0.02348580781732793 ______ Alpha of: 489390091.8477499 Validation MSE: 0.023485809517145212 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.02348580989318205 -----Alpha of: 10000000000.0

Validation MSE: 0.02348580997636957

Best Model: Ridge(alpha=1e-09, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[56]: <matplotlib.legend.Legend at 0x26f62629648>

We see that the best model might have really high complexity because it has the smallest alpha possible.

Now we calculate the generalaization error

```
In [57]: preds=bestModel.predict(test[['group A','group B','group C','group D','group E']])
MSE=sum([(r-p)**2 for r,p in zip(test['math score'],preds)])/len(preds)
print('MSE for test set Math Score: ', MSE)
```

MSE for test set Math Score: 0.02372989201447016

-Reading Score

```
In [58]: valError=float('inf')
        bestModel=None
        mses=[]
        msesTrain=[]
        for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train[['group A','group B','group C','group D','group E']],train['readin
        g score'])
            preds=model.predict(validation[['group A','group B','group C','group D','group E']])
            MSE=sum([(r-p)**2 for r,p in zip(validation['reading score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['reading score'],model.predict(train[['group A','grou
        p B','group C','group D','group E']]))])/len(train))
            if(MSE<valError):</pre>
                bestModel=model
                valError=MSE
        print('----')
         print('Best Model: ',bestModel)
        plt.title('MSE of train and validation VS Alpha')
        plt.xlabel('Alpha (power of 10)')
        plt.ylabel('MSE')
        plt.plot(lambdas,mses, label='Validation MSE')
        plt.plot(lambdas,msesTrain, label='Train MSE')
        plt.legend()
```

Alpha of: 1e-09 Validation MSE: 0.019232547068647646 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.019232547068667543 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.01923254706875758 ______ Alpha of: 9.236708571873865e-08 Validation MSE: 0.019232547069164618 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.01923254707100445 -----Alpha of: 1.8873918221350957e-06 Validation MSE: 0.019232547079321257 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.019232547116916167 -----Alpha of: 3.856620421163472e-05 Validation MSE: 0.019232547286858363 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.019232548055056656 -----Alpha of: 0.0007880462815669905 Validation MSE: 0.019232551527572833 Alpha of: 0.003562247890262437 Validation MSE: 0.019232567224334057 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.019232638174339317 ______ Alpha of: 0.07278953843983146 Validation MSE: 0.01923295879298533 -----Alpha of: 0.3290344562312671 Validation MSE: 0.019234406030779833 Alpha of: 1.4873521072935119 Validation MSE: 0.019240904088451544 ______ Alpha of: 6.723357536499335 Validation MSE: 0.0192692680679696 ______ Alpha of: 30.39195382313195 Validation MSE: 0.019374854996093146 -----Alpha of: 137.3823795883261 Validation MSE: 0.019595124282644604 -----Alpha of: 621.0169418915604 Validation MSE: 0.019773860442882346 ______ Alpha of: 2807.21620394117 Validation MSE: 0.019840988621088265 ______ Alpha of: 12689.610031679182 Validation MSE: 0.019858362327373365 ______ Alpha of: 57361.52510448681 Validation MSE: 0.019862355362484287 Alpha of: 259294.3797404667 Validation MSE: 0.019863246382248335 _____ Alpha of: 1172102.2975334793 Validation MSE: 0.019863443874687813 ______ Alpha of: 5298316.906283702 Validation MSE: 0.019863487582908294 Alpha of: 23950266.199874908 Validation MSE: 0.01986349725302381 Alpha of: 108263673.38740563 Validation MSE: 0.019863499392307173 ______ Alpha of: 489390091.8477499 Validation MSE: 0.019863499865565088 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.019863499970260087 -----Alpha of: 10000000000.0 Validation MSE: 0.019863499993420866

localhost:8888/nbconvert/html/Documents/Meaningful Predictive Modeling/Proyect/Exam Scores Factors.ipynb?download=false

45/100

Best Model: Ridge(alpha=1e-09, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[58]: <matplotlib.legend.Legend at 0x26f63c8aa08>

We see that the best model might have really high complexity because it has the smallest alpha possible.

Now we calculate the generalaization error

```
In [59]: preds=bestModel.predict(test[['group A','group B','group C','group D','group E']])
MSE=sum([(r-p)**2 for r,p in zip(test['reading score'],preds)])/len(preds)
print('MSE for test set Reading Score: ', MSE)
```

MSE for test set Reading Score: 0.022316533418641992

-Writing Score

```
In [60]: valError=float('inf')
        bestModel=None
        mses=[]
        msesTrain=[]
        for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train[['group A','group B','group C','group D','group E']],train['writin
        g score'])
            preds=model.predict(validation[['group A','group B','group C','group D','group E']])
            MSE=sum([(r-p)**2 for r,p in zip(validation['writing score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['writing score'],model.predict(train[['group A','grou
        p B','group C','group D','group E']]))])/len(train))
            if(MSE<valError):</pre>
                bestModel=model
                valError=MSE
        print('----')
         print('Best Model: ',bestModel)
        plt.title('MSE of train and validation VS Alpha')
        plt.xlabel('Alpha (power of 10)')
        plt.ylabel('MSE')
        plt.plot(lambdas,mses, label='Validation MSE')
        plt.plot(lambdas,msesTrain, label='Train MSE')
        plt.legend()
```

> Alpha of: 1e-09 Validation MSE: 0.021511220390213474 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.021511220390227584 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.02151122039029133 ______ Alpha of: 9.236708571873865e-08 Validation MSE: 0.02151122039057946 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.02151122039188194 -----Alpha of: 1.8873918221350957e-06 Validation MSE: 0.021511220397769537 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.021511220424383633 -----Alpha of: 3.856620421163472e-05 Validation MSE: 0.021511220544688712 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.021511221088510318 -----Alpha of: 0.0007880462815669905 Validation MSE: 0.021511223546776002 -----Alpha of: 0.003562247890262437 Validation MSE: 0.021511234659002735 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.02151128489011799 -----Alpha of: 0.07278953843983146 Validation MSE: 0.021511511950549744 -----Alpha of: 0.3290344562312671 Validation MSE: 0.02151253827153428 Alpha of: 1.4873521072935119 Validation MSE: 0.021517173314362207 -----Alpha of: 6.723357536499335 Validation MSE: 0.021537833514179122 ______ Alpha of: 30.39195382313195 Validation MSE: 0.02161830089263854 -----Alpha of: 137.3823795883261 Validation MSE: 0.021797654057981578 -----Alpha of: 621.0169418915604 Validation MSE: 0.021966984192450162 ______ Alpha of: 2807.21620394117 Validation MSE: 0.022041738469888134 ______ Alpha of: 12689.610031679182 Validation MSE: 0.02206243281550564 _____ Alpha of: 57361.52510448681 Validation MSE: 0.022067274031816745 Alpha of: 259294.3797404667 Validation MSE: 0.02206835873465069 _____ Alpha of: 1172102.2975334793 Validation MSE: 0.022068599375587188 _____ Alpha of: 5298316.906283702 Validation MSE: 0.022068652644011567 Alpha of: 23950266.199874908 Validation MSE: 0.022068664429777084 Alpha of: 108263673.38740563 Validation MSE: 0.022068667037123468 ______ Alpha of: 489390091.8477499 Validation MSE: 0.022068667613928835 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.022068667741530823 _____ Alpha of: 10000000000.0 Validation MSE: 0.022068667769759173

localhost:8888/nbconvert/html/Documents/Meaningful Predictive Modeling/Proyect/Exam Scores Factors.ipynb?download=false

48/100

Best Model: Ridge(alpha=1e-09, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[60]: <matplotlib.legend.Legend at 0x26f622bb308>

We see that the best model might have really high complexity because it has the smallest alpha possible.

Now we calculate the generalaization error

```
In [61]: preds=bestModel.predict(test[['group A','group B','group C','group D','group E']])
MSE=sum([(r-p)**2 for r,p in zip(test['writing score'],preds)])/len(preds)
print('MSE for test set writing Score: ', MSE)
```

MSE for test set writing Score: 0.02432281838571152

Average Score

```
In [62]: valError=float('inf')
        bestModel=None
        mses=[]
        msesTrain=[]
        for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train[['group A','group B','group C','group D','group E']],train['averag
        e score'])
            preds=model.predict(validation[['group A','group B','group C','group D','group E']])
            MSE=sum([(r-p)**2 for r,p in zip(validation['average score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['average score'],model.predict(train[['group A','grou
        p B','group C','group D','group E']]))])/len(train))
            if(MSE<valError):</pre>
                bestModel=model
                valError=MSE
        print('----')
         print('Best Model: ',bestModel)
        plt.title('MSE of train and validation VS Alpha')
        plt.xlabel('Alpha (power of 10)')
        plt.ylabel('MSE')
        plt.plot(lambdas,mses, label='Validation MSE')
        plt.plot(lambdas,msesTrain, label='Train MSE')
        plt.legend()
```

> Alpha of: 1e-09 Validation MSE: 0.01873055826340837 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.01873055826343345 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.018730558263546818 -----Alpha of: 9.236708571873865e-08 Validation MSE: 0.018730558264059317 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.018730558266375916 _____ Alpha of: 1.8873918221350957e-06 Validation MSE: 0.01873055827684786 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.018730558324184743 -----Alpha of: 3.856620421163472e-05 Validation MSE: 0.018730558538164105 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.01873055950542617 _____ Alpha of: 0.0007880462815669905 Validation MSE: 0.018730563877785114 Alpha of: 0.003562247890262437 Validation MSE: 0.01873058364223763 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.018730672981356188 -----Alpha of: 0.07278953843983146 Validation MSE: 0.018731076760076334 -----Alpha of: 0.3290344562312671 Validation MSE: 0.018732900606260258 Alpha of: 1.4873521072935119 Validation MSE: 0.018741113931675376 ______ Alpha of: 6.723357536499335 Validation MSE: 0.018777391065638173 ______ Alpha of: 30.39195382313195 Validation MSE: 0.01891735279991355 -----Alpha of: 137.3823795883261 Validation MSE: 0.01923092207350791 -----Alpha of: 621.0169418915604 Validation MSE: 0.01951064980175255 ______ Alpha of: 2807.21620394117 Validation MSE: 0.01962345438525887 _____ Alpha of: 12689.610031679182 Validation MSE: 0.019653469448987892 Alpha of: 57361.52510448681 Validation MSE: 0.019660418339357114 Alpha of: 259294.3797404667 Validation MSE: 0.019661971550160036 ______ Alpha of: 1172102.2975334793 Validation MSE: 0.01966231594509946 _____ Alpha of: 5298316.906283702 Validation MSE: 0.019662392171532497 Alpha of: 23950266.199874908 Validation MSE: 0.01966240903636935 _____ Alpha of: 108263673.38740563 Validation MSE: 0.01966241276732908 ______ Alpha of: 489390091.8477499 Validation MSE: 0.01966241359270262 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.019662413775293326 -----Alpha of: 10000000000.0 Validation MSE: 0.019662413815686355

localhost:8888/nbconvert/html/Documents/Meaningful Predictive Modeling/Proyect/Exam Scores Factors.ipynb?download=false

Best Model: Ridge(alpha=1e-09, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[62]: <matplotlib.legend.Legend at 0x26f62275708>

We see that the best model might have really high complexity because it has the smallest alpha possible.

Now we calculate the generalaization error

```
In [63]: preds=bestModel.predict(test[['group A','group B','group C','group D','group E']])
MSE=sum([(r-p)**2 for r,p in zip(test['average score'],preds)])/len(preds)
print('MSE for test set average score: ', MSE)
```

MSE for test set average score: 0.021582651456023064

Parental Education Level Model

-Math Score

```
In [64]: valError=float('inf')
         bestModel=None
         mses=[]
         msesTrain=[]
         for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train[['associate degree', 'bachelor degree', 'high school', 'master deg
         ree',
                'some college', 'some high school']],train['math score'])
            preds=model.predict(validation[['associate degree', 'bachelor degree', 'high school', 'master degree',
               'some college', 'some high school']])
            MSE=sum([(r-p)**2 for r,p in zip(validation['math score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['math score'], model.predict(train[['associate degree']
         , 'bachelor degree', 'high school', 'master degree',
                'some college', 'some high school']]))])/len(train))
            if(MSE<valError):</pre>
                bestModel=model
                valError=MSE
         print('----')
         print('Best Model: ',bestModel)
         plt.title('MSE of train and validation VS Alpha')
         plt.xlabel('Alpha (power of 10)')
         plt.ylabel('MSE')
         plt.plot(lambdas,mses, label='Validation MSE')
         plt.plot(lambdas,msesTrain, label='Train MSE')
         plt.legend()
```

Alpha of: 1e-09 Validation MSE: 0.023286746779763737 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.02328674677973517 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.023286746779606182 -----Alpha of: 9.236708571873865e-08 Validation MSE: 0.02328674677902306 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.0232867467763871 _____ Alpha of: 1.8873918221350957e-06 Validation MSE: 0.02328674676447172 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.023286746710609933 _____ Alpha of: 3.856620421163472e-05 Validation MSE: 0.02328674646713583 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.023286745366551776 ______ Alpha of: 0.0007880462815669905 Validation MSE: 0.02328674039162272 -----Alpha of: 0.003562247890262437 Validation MSE: 0.023286717905230604 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.02328661630059167 -----Alpha of: 0.07278953843983146 Validation MSE: 0.023286157864645093 -----Alpha of: 0.3290344562312671 Validation MSE: 0.023284102882589072 Alpha of: 1.4873521072935119 Validation MSE: 0.023275156744903266 ______ Alpha of: 6.723357536499335 Validation MSE: 0.023240866902108935 ______ Alpha of: 30.39195382313195 Validation MSE: 0.02316235280723738 -----Alpha of: 137.3823795883261 Validation MSE: 0.023171800083685204 -----Alpha of: 621.0169418915604 Validation MSE: 0.02334187672017418 _____ Alpha of: 2807.21620394117 Validation MSE: 0.023446011157217492 ______ Alpha of: 12689.610031679182 Validation MSE: 0.02347651617450725 ______ Alpha of: 57361.52510448681 Validation MSE: 0.02348372870062586 Alpha of: 259294.3797404667 Validation MSE: 0.023485348317787383 _____ Alpha of: 1172102.2975334793 Validation MSE: 0.023485707804381434 _____ Alpha of: 5298316.906283702 Validation MSE: 0.023485787389105846 Alpha of: 23950266.199874908 Validation MSE: 0.02348580499783369 Alpha of: 108263673.38740563 Validation MSE: 0.02348580889340539 ______ Alpha of: 489390091.8477499 Validation MSE: 0.023485809755196995 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.02348580994584426 -----Alpha of: 10000000000.0

Validation MSE: 0.02348580998801959

Best Model: Ridge(alpha=30.39195382313195, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[64]: <matplotlib.legend.Legend at 0x26f62313fc8>

We see that the best model might have high complexity but still smaller than the other models for the previous features

Now we calculate the generalaization error

MSE for test set Math Score: 0.02435247199905342

-Reading Score

```
In [66]: valError=float('inf')
         bestModel=None
         mses=[]
         msesTrain=[]
         for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train[['associate degree', 'bachelor degree', 'high school', 'master deg
         ree',
                'some college', 'some high school']],train['reading score'])
            preds=model.predict(validation[['associate degree', 'bachelor degree', 'high school', 'master degree',
               'some college', 'some high school']])
            MSE=sum([(r-p)**2 for r,p in zip(validation['reading score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['reading score'],model.predict(train[['associate degr
         ee', 'bachelor degree', 'high school', 'master degree',
               'some college', 'some high school']]))])/len(train))
            if(MSE<valError):</pre>
                bestModel=model
                valError=MSE
         print('----')
         print('Best Model: ',bestModel)
         plt.title('MSE of train and validation VS Alpha')
         plt.xlabel('Alpha (power of 10)')
         plt.ylabel('MSE')
         plt.plot(lambdas,mses, label='Validation MSE')
         plt.plot(lambdas,msesTrain, label='Train MSE')
         plt.legend()
```

Alpha of: 1e-09 Validation MSE: 0.01973029817836148 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.019730298178328064 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.019730298178177008 -----Alpha of: 9.236708571873865e-08 Validation MSE: 0.01973029817749423 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.019730298174407714 _____ Alpha of: 1.8873918221350957e-06 Validation MSE: 0.019730298160455715 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.019730298097387664 -----Alpha of: 3.856620421163472e-05 Validation MSE: 0.019730297812298115 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.019730296523598263 -----Alpha of: 0.0007880462815669905 Validation MSE: 0.019730290698338822 Alpha of: 0.003562247890262437 Validation MSE: 0.019730264368547818 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.019730145398459156 -----Alpha of: 0.07278953843983146 Validation MSE: 0.019729608629031302 -----Alpha of: 0.3290344562312671 Validation MSE: 0.019727202871500298 Alpha of: 1.4873521072935119 Validation MSE: 0.019716735285840115 ______ Alpha of: 6.723357536499335 Validation MSE: 0.01967660901580924 ______ Alpha of: 30.39195382313195 Validation MSE: 0.01958159697306496 -----Alpha of: 137.3823795883261 Validation MSE: 0.019562914736196927 -----Alpha of: 621.0169418915604 Validation MSE: 0.019719546996564766 ______ Alpha of: 2807.21620394117 Validation MSE: 0.019823171990068084 ______ Alpha of: 12689.610031679182 Validation MSE: 0.019854053186844065 ______ Alpha of: 57361.52510448681 Validation MSE: 0.019861382954708 Alpha of: 259294.3797404667 Validation MSE: 0.01986303031529449 _____ Alpha of: 1172102.2975334793 Validation MSE: 0.019863396029403145 _____ Alpha of: 5298316.906283702 Validation MSE: 0.019863476996214314 Alpha of: 23950266.199874908 Validation MSE: 0.01986349491090643 Alpha of: 108263673.38740563 Validation MSE: 0.019863498874174663 _____ Alpha of: 489390091.8477499 Validation MSE: 0.019863499750942707 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.019863499944903124 -----Alpha of: 10000000000.0 Validation MSE: 0.01986349998781138

Best Model: Ridge(alpha=137.3823795883261, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[66]: <matplotlib.legend.Legend at 0x26f63b000c8>

It has the same complexity as the model before for the same feature

Now we calculate the generalaization error

MSE for test set Reading Score: 0.02258436614749226

-Writing Score

```
In [68]: valError=float('inf')
         bestModel=None
         mses=[]
         msesTrain=[]
         for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train[['associate degree', 'bachelor degree', 'high school', 'master deg
         ree',
                'some college', 'some high school']],train['writing score'])
            preds=model.predict(validation[['associate degree', 'bachelor degree', 'high school', 'master degree',
               'some college', 'some high school']])
            MSE=sum([(r-p)**2 for r,p in zip(validation['writing score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['writing score'],model.predict(train[['associate degr
         ee', 'bachelor degree', 'high school', 'master degree',
               'some college', 'some high school']]))])/len(train))
            if(MSE<valError):</pre>
                bestModel=model
                valError=MSE
         print('----')
         print('Best Model: ',bestModel)
         plt.title('MSE of train and validation VS Alpha')
         plt.xlabel('Alpha (power of 10)')
         plt.ylabel('MSE')
         plt.plot(lambdas,mses, label='Validation MSE')
         plt.plot(lambdas,msesTrain, label='Train MSE')
         plt.legend()
```

Alpha of: 1e-09 Validation MSE: 0.021207242531231005 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.021207242531216277 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.02120724253114963 ______ Alpha of: 9.236708571873865e-08 Validation MSE: 0.021207242530848363 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.02120724252948654 -----Alpha of: 1.8873918221350957e-06 Validation MSE: 0.021207242523330685 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.021207242495503875 -----Alpha of: 3.856620421163472e-05 Validation MSE: 0.02120724236971727 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.02120724180112167 -----Alpha of: 0.0007880462815669905 Validation MSE: 0.021207239230959244 -----Alpha of: 0.003562247890262437 Validation MSE: 0.021207227614768995 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.021207175143327817 -----Alpha of: 0.07278953843983146 Validation MSE: 0.021206938725817935 -----Alpha of: 0.3290344562312671 Validation MSE: 0.021205885681939964 Alpha of: 1.4873521072935119 Validation MSE: 0.02120143394861412 ______ Alpha of: 6.723357536499335 Validation MSE: 0.02118671317578702 ______ Alpha of: 30.39195382313195 Validation MSE: 0.021182409579122048 -----Alpha of: 137.3823795883261 Validation MSE: 0.021380971905232152 -----Alpha of: 621.0169418915604 Validation MSE: 0.02177708461041001 ______ Alpha of: 2807.21620394117 Validation MSE: 0.021989526019803005 ______ Alpha of: 12689.610031679182 Validation MSE: 0.022050262996483574 Alpha of: 57361.52510448681 Validation MSE: 0.02206454991157 Alpha of: 259294.3797404667 Validation MSE: 0.022067754521531823 _____ Alpha of: 1172102.2975334793 Validation MSE: 0.02206846563311504 _____ Alpha of: 5298316.906283702 Validation MSE: 0.02206862305349094 Alpha of: 23950266.199874908 Validation MSE: 0.02206865788352825 _____ Alpha of: 108263673.38740563 Validation MSE: 0.02206866558894257 _____ Alpha of: 489390091.8477499 Validation MSE: 0.02206866729355943 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.022068667670658165 _____ Alpha of: 10000000000.0 Validation MSE: 0.022068667754080604

Best Model: Ridge(alpha=30.39195382313195, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[68]: <matplotlib.legend.Legend at 0x26f626be0c8>

We see that the best model might have really high complexity, but smaller than the ones before.

Now we calculate the generalaization error

MSE for test set writing Score: 0.024678440200529853

Average Score

```
In [70]: valError=float('inf')
         bestModel=None
         mses=[]
         msesTrain=[]
         for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train[['associate degree', 'bachelor degree', 'high school', 'master deg
         ree',
                'some college', 'some high school']],train['average score'])
            preds=model.predict(validation[['associate degree', 'bachelor degree', 'high school', 'master degree',
               'some college', 'some high school']])
            MSE=sum([(r-p)**2 for r,p in zip(validation['average score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['average score'],model.predict(train[['associate degr
         ee', 'bachelor degree', 'high school', 'master degree',
               'some college', 'some high school']]))])/len(train))
            if(MSE<valError):</pre>
                bestModel=model
                valError=MSE
         print('----')
         print('Best Model: ',bestModel)
         plt.title('MSE of train and validation VS Alpha')
         plt.xlabel('Alpha (power of 10)')
         plt.ylabel('MSE')
         plt.plot(lambdas,mses, label='Validation MSE')
         plt.plot(lambdas,msesTrain, label='Train MSE')
         plt.legend()
```

> Alpha of: 1e-09 Validation MSE: 0.01928405985614211 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.019284059856115855 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.019284059855997168 -----Alpha of: 9.236708571873865e-08 Validation MSE: 0.019284059855460674 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.019284059853035593 ______ Alpha of: 1.8873918221350957e-06 Validation MSE: 0.019284059842073313 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.019284059792519955 _____ Alpha of: 3.856620421163472e-05 Validation MSE: 0.019284059568521486 _____ Alpha of: 0.00017433288221999874 Validation MSE: 0.019284058555974325 -----Alpha of: 0.0007880462815669905 Validation MSE: 0.01928405397900813 Alpha of: 0.003562247890262437 Validation MSE: 0.01928403329164904 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.019283939821319575 -----Alpha of: 0.07278953843983146 Validation MSE: 0.019283518196892956 -----Alpha of: 0.3290344562312671 Validation MSE: 0.01928163044697266 Alpha of: 1.4873521072935119 Validation MSE: 0.019273455647386018 ______ Alpha of: 6.723357536499335 Validation MSE: 0.019242852365993643 ______ Alpha of: 30.39195382313195 Validation MSE: 0.019180860930539678 -----Alpha of: 137.3823795883261 Validation MSE: 0.019238762838623014 -----Alpha of: 621.0169418915604 Validation MSE: 0.01947355010323507 ______ Alpha of: 2807.21620394117 Validation MSE: 0.019610487702360197 ______ Alpha of: 12689.610031679182 Validation MSE: 0.01965030262524796 _____ Alpha of: 57361.52510448681 Validation MSE: 0.019659702305796067 Alpha of: 259294.3797404667 Validation MSE: 0.01966181238147412 ______ Alpha of: 1172102.2975334793 Validation MSE: 0.019662280695920843 _____ Alpha of: 5298316.906283702 Validation MSE: 0.019662384371809415 Alpha of: 23950266.199874908 Validation MSE: 0.01966240731081171 _____ Alpha of: 108263673.38740563 Validation MSE: 0.019662412385594 ______ Alpha of: 489390091.8477499 Validation MSE: 0.01966241350825436 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.01966241375661155 -----Alpha of: 10000000000.0 Validation MSE: 0.019662413811553543

localhost:8888/nbconvert/html/Documents/Meaningful Predictive Modeling/Proyect/Exam Scores Factors.ipynb?download=false

Best Model: Ridge(alpha=30.39195382313195, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[70]: <matplotlib.legend.Legend at 0x26f63ab10c8>

It has a relative high complexity

Now we calculate the generalaization error

MSE for test set average score: 0.02189094181095825

Lunch Model

-Math Score

```
In [72]: valError=float('inf')
        bestModel=None
        mses=[]
        msesTrain=[]
        for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train['lunch'].values.reshape((-1,1)),train['math score'])
            preds=model.predict(validation['lunch'].values.reshape((-1,1)))
            MSE=sum([(r-p)**2 for r,p in zip(validation['math score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['math score'],model.predict(train['lunch'].values.res
        hape((-1,1))))])/len(train))
            if(MSE<valError):</pre>
               bestModel=model
                valError=MSE
        print('----')
        print('Best Model: ',bestModel)
        plt.title('MSE of train and validation VS Alpha (Math Score)')
        plt.xlabel('Alpha (power of 10)')
        plt.ylabel('MSE')
        plt.plot(lambdas,mses, label='Validation MSE')
        plt.plot(lambdas,msesTrain, label='Train MSE')
        plt.legend()
```

Alpha of: 1e-09 Validation MSE: 0.020121483648474072 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.0201214836484929 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.02012148364857807 _____ Alpha of: 9.236708571873865e-08 Validation MSE: 0.020121483648963098 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.020121483650703546 _____ Alpha of: 1.8873918221350957e-06 Validation MSE: 0.020121483658570933 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.020121483694134377 -----Alpha of: 3.856620421163472e-05 Validation MSE: 0.02012148385489376 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.02012148458158531 _____ Alpha of: 0.0007880462815669905 Validation MSE: 0.020121487866534275 Alpha of: 0.003562247890262437 Validation MSE: 0.02012150271660816 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.020121569863454845 -----Alpha of: 0.07278953843983146 Validation MSE: 0.020121873784025725 -----Alpha of: 0.3290344562312671 Validation MSE: 0.020123255599166542 Alpha of: 1.4873521072935119 Validation MSE: 0.020129660975194804 -----Alpha of: 6.723357536499335 Validation MSE: 0.020161513775665208 ______ Alpha of: 30.39195382313195 Validation MSE: 0.020340954646104924 -----Alpha of: 137.3823795883261 Validation MSE: 0.02114638686633111 -----Alpha of: 621.0169418915604 Validation MSE: 0.02248639077940999 -----Alpha of: 2807.21620394117 Validation MSE: 0.02321190591745903 ______ Alpha of: 12689.610031679182 Validation MSE: 0.023421919640972434 ______ Alpha of: 57361.52510448681 Validation MSE: 0.02347150491480879 Alpha of: 259294.3797404667 Validation MSE: 0.02348263691697355 ______ Alpha of: 1172102.2975334793 Validation MSE: 0.023485107628736426 _____ Alpha of: 5298316.906283702 Validation MSE: 0.023485654599880147 Alpha of: 23950266.199874908 Validation MSE: 0.023485775621133582 _____ Alpha of: 108263673.38740563 Validation MSE: 0.023485802394602275 ______ Alpha of: 489390091.8477499 Validation MSE: 0.023485808317519136 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.023485809627798723 _____ Alpha of: 10000000000.0 Validation MSE: 0.023485809917661013

Best Model: Ridge(alpha=1e-09, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[72]: <matplotlib.legend.Legend at 0x26f63cb6dc8>

We see that the best model might have really high complexity because it has the smallest alpha possible.

Now we calculate the generalaization error

```
In [73]: preds=bestModel.predict(test['lunch'].values.reshape((-1,1)))
    MSE=sum([(r-p)**2 for r,p in zip(test['math score'],preds)])/len(preds)
    print('MSE for test set Math Score: ', MSE)
```

MSE for test set Math Score: 0.02191234258801995

-Reading Score

```
In [74]: valError=float('inf')
        bestModel=None
        mses=[]
        msesTrain=[]
        for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train['lunch'].values.reshape((-1,1)),train['reading score'])
            preds=model.predict(validation['lunch'].values.reshape((-1,1)))
            MSE=sum([(r-p)**2 for r,p in zip(validation['reading score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['reading score'],model.predict(train['lunch'].values.
        reshape((-1,1))))])/len(train))
            if(MSE<valError):</pre>
                bestModel=model
                valError=MSE
        print('----')
        print('Best Model: ',bestModel)
        plt.title('MSE of train and validation VS Alpha (Reading Score)')
        plt.xlabel('Alpha (power of 10)')
        plt.ylabel('MSE')
        plt.plot(lambdas,mses, label='Validation MSE')
        plt.plot(lambdas,msesTrain, label='Train MSE')
        plt.legend()
```

Alpha of: 1e-09 Validation MSE: 0.018220409217750515 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.01822040921777554 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.01822040921788852 _____ Alpha of: 9.236708571873865e-08 Validation MSE: 0.018220409218399264 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.018220409220707973 ______ Alpha of: 1.8873918221350957e-06 Validation MSE: 0.018220409231144145 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.01822040927831935 -----Alpha of: 3.856620421163472e-05 Validation MSE: 0.018220409491567984 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.018220410455526876 ______ Alpha of: 0.0007880462815669905 Validation MSE: 0.018220414812954513 Alpha of: 0.003562247890262437 Validation MSE: 0.018220434509915097 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.018220523544010336 -----Alpha of: 0.07278953843983146 Validation MSE: 0.018220925945560785 -----Alpha of: 0.3290344562312671 Validation MSE: 0.018222743630566817 Alpha of: 1.4873521072935119 Validation MSE: 0.018230933072824425 ______ Alpha of: 6.723357536499335 Validation MSE: 0.018267371939201905 ______ Alpha of: 30.39195382313195 Validation MSE: 0.01841901467527508 -----Alpha of: 137.3823795883261 Validation MSE: 0.01887503648919585 -----Alpha of: 621.0169418915604 Validation MSE: 0.019466818439923966 ______ Alpha of: 2807.21620394117 Validation MSE: 0.019757142513353358 _____ Alpha of: 12689.610031679182 Validation MSE: 0.019838827230959828 ______ Alpha of: 57361.52510448681 Validation MSE: 0.01985798266507993 Alpha of: 259294.3797404667 Validation MSE: 0.0198622765132311 _____ Alpha of: 1172102.2975334793 Validation MSE: 0.019863229194327897 _____ Alpha of: 5298316.906283702 Validation MSE: 0.01986344008487961 Alpha of: 23950266.199874908 Validation MSE: 0.019863486745134475 Alpha of: 108263673.38740563 Validation MSE: 0.01986349706772018 ______ Alpha of: 489390091.8477499 Validation MSE: 0.019863499351315452 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.019863499856496904 -----Alpha of: 10000000000.0 Validation MSE: 0.019863499968253994

Best Model: Ridge(alpha=1e-09, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[74]: <matplotlib.legend.Legend at 0x26f63996a88>

We see that the best model might have really high complexity because it has the smallest alpha possible.

Now we calculate the generalaization error

```
In [75]: preds=bestModel.predict(test['lunch'].values.reshape((-1,1)))
    MSE=sum([(r-p)**2 for r,p in zip(test['reading score'],preds)])/len(preds)
    print('MSE for test set Reading Score: ', MSE)
```

MSE for test set Reading Score: 0.020961393969171377

-Writing Score

```
In [76]: valError=float('inf')
        bestModel=None
        mses=[]
        msesTrain=[]
        for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train['lunch'].values.reshape((-1,1)),train['writing score'])
            preds=model.predict(validation['lunch'].values.reshape((-1,1)))
            MSE=sum([(r-p)**2 for r,p in zip(validation['writing score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['writing score'], model.predict(train['lunch'].values.
        reshape((-1,1))))])/len(train))
            if(MSE<valError):</pre>
                bestModel=model
                valError=MSE
        print('----')
        print('Best Model: ',bestModel)
        plt.title('MSE of train and validation VS Alpha (Writing Score)')
        plt.xlabel('Alpha (power of 10)')
        plt.ylabel('MSE')
        plt.plot(lambdas,mses, label='Validation MSE')
        plt.plot(lambdas,msesTrain, label='Train MSE')
        plt.legend()
```

> Alpha of: 1e-09 Validation MSE: 0.020199689408218063 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.020199689408242367 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.020199689408352275 -----Alpha of: 9.236708571873865e-08 Validation MSE: 0.020199689408848993 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.020199689411094356 ______ Alpha of: 1.8873918221350957e-06 Validation MSE: 0.020199689421244282 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.020199689467125456 _____ Alpha of: 3.856620421163472e-05 Validation MSE: 0.020199689674524565 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.02019969061204198 -----Alpha of: 0.0007880462815669905 Validation MSE: 0.0201996948499514 Alpha of: 0.003562247890262437 Validation MSE: 0.02019971400678669 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.020199800602166685 -----Alpha of: 0.07278953843983146 Validation MSE: 0.020200192037878515 -----Alpha of: 0.3290344562312671 Validation MSE: 0.02020196133357883 Alpha of: 1.4873521072935119 Validation MSE: 0.020209955669383474 ______ Alpha of: 6.723357536499335 Validation MSE: 0.020245953705397248 ______ Alpha of: 30.39195382313195 Validation MSE: 0.02040173810552105 -----Alpha of: 137.3823795883261 Validation MSE: 0.020904098218271917 -----Alpha of: 621.0169418915604 Validation MSE: 0.0215935904602947 -----Alpha of: 2807.21620394117 Validation MSE: 0.021940533580202252 _____ Alpha of: 12689.610031679182 Validation MSE: 0.022038898616429173 Alpha of: 57361.52510448681 Validation MSE: 0.022062008504229205 Alpha of: 259294.3797404667 Validation MSE: 0.022067190949714637 _____ Alpha of: 1172102.2975334793 Validation MSE: 0.022068340892199022 ______ Alpha of: 5298316.906283702 Validation MSE: 0.022068595454838778 Alpha of: 23950266.199874908 Validation MSE: 0.022068651777949682 _____ Alpha of: 108263673.38740563 Validation MSE: 0.022068664238248704 ______ Alpha of: 489390091.8477499 Validation MSE: 0.022068666994756368 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.022068667604556454 -----Alpha of: 10000000000.0 Validation MSE: 0.022068667739457468

localhost:8888/nbconvert/html/Documents/Meaningful Predictive Modeling/Proyect/Exam Scores Factors.ipynb?download=false

72/100

Best Model: Ridge(alpha=1e-09, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[76]: <matplotlib.legend.Legend at 0x26f63c73e08>

We see that the best model might have really high complexity because it has the smallest alpha possible.

Now we calculate the generalaization error

```
In [77]: preds=bestModel.predict(test['lunch'].values.reshape((-1,1)))
    MSE=sum([(r-p)**2 for r,p in zip(test['writing score'],preds)])/len(preds)
    print('MSE for test set writing Score: ', MSE)
```

MSE for test set writing Score: 0.022805815329092302

Average Score

```
In [78]: valError=float('inf')
        bestModel=None
        mses=[]
        msesTrain=[]
        for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train['lunch'].values.reshape((-1,1)),train['average score'])
            preds=model.predict(validation['lunch'].values.reshape((-1,1)))
            MSE=sum([(r-p)**2 for r,p in zip(validation['average score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['average score'],model.predict(train['lunch'].values.
        reshape((-1,1))))])/len(train))
            if(MSE<valError):</pre>
                bestModel=model
                valError=MSE
        print('----')
        print('Best Model: ',bestModel)
        plt.title('MSE of train and validation VS Alpha (Average Score)')
        plt.xlabel('Alpha (power of 10)')
        plt.ylabel('MSE')
        plt.plot(lambdas,mses, label='Validation MSE')
        plt.plot(lambdas,msesTrain, label='Train MSE')
        plt.legend()
```

> Alpha of: 1e-09 Validation MSE: 0.017384335384640154 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.017384335384665665 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.017384335384780947 -----Alpha of: 9.236708571873865e-08 Validation MSE: 0.01738433538530207 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.017384335387657702 -----Alpha of: 1.8873918221350957e-06 Validation MSE: 0.017384335398306038 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.017384335446440344 -----Alpha of: 3.856620421163472e-05 Validation MSE: 0.017384335664024378 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.01738433664758151 ______ Alpha of: 0.0007880462815669905 Validation MSE: 0.017384341093614548 -----Alpha of: 0.003562247890262437 Validation MSE: 0.017384361191399432 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.017384452043417885 -----Alpha of: 0.07278953843983146 Validation MSE: 0.017384862786230817 -----Alpha of: 0.3290344562312671 Validation MSE: 0.01738672069029647 Alpha of: 1.4873521072935119 Validation MSE: 0.01739514219674231 ______ Alpha of: 6.723357536499335 Validation MSE: 0.017433562312713747 ______ Alpha of: 30.39195382313195 Validation MSE: 0.01760671856209385 -----Alpha of: 137.3823795883261 Validation MSE: 0.01820266427164576 -----Alpha of: 621.0169418915604 Validation MSE: 0.01905945451346281 _____ Alpha of: 2807.21620394117 Validation MSE: 0.01949906798237221 ______ Alpha of: 12689.610031679182 Validation MSE: 0.01962442181230645 _____ Alpha of: 57361.52510448681 Validation MSE: 0.01965391297207962 Alpha of: 259294.3797404667 Validation MSE: 0.01966052848491461 ______ Alpha of: 1172102.2975334793 Validation MSE: 0.019661996514603267 _____ Alpha of: 5298316.906283702 Validation MSE: 0.01966232149713408 Alpha of: 23950266.199874908 Validation MSE: 0.01966239340120058 _____ Alpha of: 108263673.38740563 Validation MSE: 0.019662409308468905 _____ Alpha of: 489390091.8477499 Validation MSE: 0.019662412827526822 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.01966241360601984 -----Alpha of: 10000000000.0

Validation MSE: 0.019662413778239386

Best Model: Ridge(alpha=1e-09, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[78]: <matplotlib.legend.Legend at 0x26f63b5cb88>

We see that the best model might have really high complexity because it has the smallest alpha possible.

Now we calculate the generalaization error

```
In [79]: preds=bestModel.predict(test['lunch'].values.reshape((-1,1)))
MSE=sum([(r-p)**2 for r,p in zip(test['average score'],preds)])/len(preds)
print('MSE for test set average score: ', MSE)
```

MSE for test set average score: 0.019841617719585862

Test Preparation Model

-Math Score

```
In [80]: valError=float('inf')
                           bestModel=None
                           mses=[]
                           msesTrain=[]
                           for power in lambdas:
                                      print('----')
                                      print('Alpha of: ',10**power)
                                      model=Ridge(alpha=10**power).fit(train['test preparation course'].values.reshape((-1,1)),train['math scor
                                      preds=model.predict(validation['test preparation course'].values.reshape((-1,1)))
                                      MSE=sum([(r-p)**2 for r,p in zip(validation['math score'],preds)])/len(preds)
                                      print('Validation MSE: ',MSE)
                                      mses.append(MSE)
                                      msesTrain.append(sum([(r-p)**2 for r,p in zip(train['math score'],model.predict(train['test preparation c r,p in zip(train['test preparation c r,p in zip(tr
                           ourse'].values.reshape((-1,1))))])/len(train))
                                      if(MSE<valError):</pre>
                                                  bestModel=model
                                                  valError=MSE
                           print('----')
                            print('Best Model: ',bestModel)
                            plt.title('MSE of train and validation VS Alpha (Math Score)')
                           plt.xlabel('Alpha (power of 10)')
                           plt.ylabel('MSE')
                           plt.plot(lambdas,mses, label='Validation MSE')
                           plt.plot(lambdas,msesTrain, label='Train MSE')
                           plt.legend()
```

Alpha of: 1e-09 Validation MSE: 0.022309373362891485 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.022309373362907902 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.022309373362982093 -----Alpha of: 9.236708571873865e-08 Validation MSE: 0.022309373363317418 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.022309373364833275 -----Alpha of: 1.8873918221350957e-06 Validation MSE: 0.022309373371685336 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.02230937340265931 -----Alpha of: 3.856620421163472e-05 Validation MSE: 0.022309373542672515 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.02230937417558152 -----Alpha of: 0.0007880462815669905 Validation MSE: 0.022309377036551437 -----Alpha of: 0.003562247890262437 Validation MSE: 0.02230938996909306 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.022309448427646133 -----Alpha of: 0.07278953843983146 Validation MSE: 0.02230971265827917 -----Alpha of: 0.3290344562312671 Validation MSE: 0.022310906606140723 Alpha of: 1.4873521072935119 Validation MSE: 0.02231629373195376 -----Alpha of: 6.723357536499335 Validation MSE: 0.022340411093510905 ______ Alpha of: 30.39195382313195 Validation MSE: 0.02244285648052731 -----Alpha of: 137.3823795883261 Validation MSE: 0.022763034207087494 -----Alpha of: 621.0169418915604 Validation MSE: 0.023192651218942126 _____ Alpha of: 2807.21620394117 Validation MSE: 0.02340689193543753 ______ Alpha of: 12689.610031679182 Validation MSE: 0.023467483643873806 ______ Alpha of: 57361.52510448681 Validation MSE: 0.023481710878975673 Alpha of: 259294.3797404667 Validation MSE: 0.02348490095856822 ______ Alpha of: 1172102.2975334793 Validation MSE: 0.02348560879106792 _____ Alpha of: 5298316.906283702 Validation MSE: 0.02348576548287959 Alpha of: 23950266.199874908 Validation MSE: 0.023485800151588094 _____ Alpha of: 108263673.38740563 Validation MSE: 0.023485807821305466 _____ Alpha of: 489390091.8477499 Validation MSE: 0.02348580951802502 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.02348580989337669 -----Alpha of: 10000000000.0 Validation MSE: 0.023485809976412596

78/100

Best Model: Ridge(alpha=1e-09, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[80]: <matplotlib.legend.Legend at 0x26f626f99c8>

We see that the best model might have really high complexity because it has the smallest alpha possible.

Now we calculate the generalaization error

```
In [81]: preds=bestModel.predict(test['test preparation course'].values.reshape((-1,1)))
MSE=sum([(r-p)**2 for r,p in zip(test['math score'],preds)])/len(preds)
print('MSE for test set Math Score: ', MSE)
```

MSE for test set Math Score: 0.023887814844591557

-Reading Score

```
In [82]: valError=float('inf')
        bestModel=None
        mses=[]
        msesTrain=[]
        for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train['test preparation course'].values.reshape((-1,1)),train['reading s
            preds=model.predict(validation['test preparation course'].values.reshape((-1,1)))
            MSE=sum([(r-p)**2 for r,p in zip(validation['reading score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['reading score'],model.predict(train['test preparatio
        n course'].values.reshape((-1,1))))])/len(train))
            if(MSE<valError):</pre>
                bestModel=model
                valError=MSE
        print('----')
         print('Best Model: ',bestModel)
         plt.title('MSE of train and validation VS Alpha (Reading Score)')
        plt.xlabel('Alpha (power of 10)')
        plt.ylabel('MSE')
        plt.plot(lambdas,mses, label='Validation MSE')
        plt.plot(lambdas,msesTrain, label='Train MSE')
        plt.legend()
```

> Alpha of: 1e-09 Validation MSE: 0.018254189700397105 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.018254189700405772 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.01825418970044492 ______ Alpha of: 9.236708571873865e-08 Validation MSE: 0.01825418970062195 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.018254189701422178 _____ Alpha of: 1.8873918221350957e-06 Validation MSE: 0.018254189705039475 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.01825418972139092 -----Alpha of: 3.856620421163472e-05 Validation MSE: 0.018254189795305367 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.01825419012942589 -----Alpha of: 0.0007880462815669905 Validation MSE: 0.018254191639791216 Alpha of: 0.003562247890262437 Validation MSE: 0.018254198467636124 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.01825422934129355 -----Alpha of: 0.07278953843983146 Validation MSE: 0.01825436909265426 -----Alpha of: 0.3290344562312671 Validation MSE: 0.018255004709708332 Alpha of: 1.4873521072935119 Validation MSE: 0.01825795546393272 ______ Alpha of: 6.723357536499335 Validation MSE: 0.01827270893253915 ______ Alpha of: 30.39195382313195 Validation MSE: 0.01835686447336914 -----Alpha of: 137.3823795883261 Validation MSE: 0.018739713677341376 -----Alpha of: 621.0169418915604 Validation MSE: 0.019382121013910084 _____ Alpha of: 2807.21620394117 Validation MSE: 0.01973142254580171 _____ Alpha of: 12689.610031679182 Validation MSE: 0.019832682553430018 ______ Alpha of: 57361.52510448681 Validation MSE: 0.01985659947508283 Alpha of: 259294.3797404667 Validation MSE: 0.01986196933588569 _____ Alpha of: 1172102.2975334793 Validation MSE: 0.01986316118182127 _____ Alpha of: 5298316.906283702 Validation MSE: 0.01986342503619001 Alpha of: 23950266.199874908 Validation MSE: 0.01986348341589924 _____ Alpha of: 108263673.38740563 Validation MSE: 0.01986349633121447 ______ Alpha of: 489390091.8477499 Validation MSE: 0.019863499188384138 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.019863499820452938 _____ Alpha of: 10000000000.0 Validation MSE: 0.019863499960280303

localhost:8888/nbconvert/html/Documents/Meaningful Predictive Modeling/Proyect/Exam Scores Factors.ipynb?download=false

Best Model: Ridge(alpha=1e-09, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[82]: <matplotlib.legend.Legend at 0x26f63bebc08>

We see that the best model might have really high complexity because it has the smallest alpha possible.

Now we calculate the generalaization error

```
In [83]: preds=bestModel.predict(test['test preparation course'].values.reshape((-1,1)))
MSE=sum([(r-p)**2 for r,p in zip(test['reading score'],preds)])/len(preds)
print('MSE for test set Reading Score: ', MSE)
```

MSE for test set Reading Score: 0.02189865388154558

-Writing Score

```
In [84]: valError=float('inf')
        bestModel=None
        mses=[]
        msesTrain=[]
        for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train['test preparation course'].values.reshape((-1,1)),train['writing s
            preds=model.predict(validation['test preparation course'].values.reshape((-1,1)))
            MSE=sum([(r-p)**2 for r,p in zip(validation['writing score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['writing score'],model.predict(train['test preparatio
        n course'].values.reshape((-1,1))))])/len(train))
            if(MSE<valError):</pre>
                bestModel=model
                valError=MSE
        print('----')
         print('Best Model: ',bestModel)
         plt.title('MSE of train and validation VS Alpha (Writing Score)')
        plt.xlabel('Alpha (power of 10)')
        plt.ylabel('MSE')
        plt.plot(lambdas,mses, label='Validation MSE')
        plt.plot(lambdas,msesTrain, label='Train MSE')
        plt.legend()
```

> Alpha of: 1e-09 Validation MSE: 0.018890831879488087 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.018890831879518108 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.018890831879653767 -----Alpha of: 9.236708571873865e-08 Validation MSE: 0.01889083188026705 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.0188908318830393 _____ Alpha of: 1.8873918221350957e-06 Validation MSE: 0.01889083189557084 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.01889083195221783 _____ Alpha of: 3.856620421163472e-05 Validation MSE: 0.018890832208282363 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.018890833365785602 -----Alpha of: 0.0007880462815669905 Validation MSE: 0.01889083859812955 -----Alpha of: 0.003562247890262437 Validation MSE: 0.01889086225058224 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.01889096917635843 -----Alpha of: 0.07278953843983146 Validation MSE: 0.01889145268849202 -----Alpha of: 0.3290344562312671 Validation MSE: 0.01889364177621344 Alpha of: 1.4873521072935119 Validation MSE: 0.01890360502157119 ______ Alpha of: 6.723357536499335 Validation MSE: 0.018949811779931644 ______ Alpha of: 30.39195382313195 Validation MSE: 0.01916840121754517 -----Alpha of: 137.3823795883261 Validation MSE: 0.019976016197129402 -----Alpha of: 621.0169418915604 Validation MSE: 0.021193331553040543 -----Alpha of: 2807.21620394117 Validation MSE: 0.021830441536314762 _____ Alpha of: 12689.610031679182 Validation MSE: 0.02201319481962399 ______ Alpha of: 57361.52510448681 Validation MSE: 0.02205625217937627 Alpha of: 259294.3797404667 Validation MSE: 0.02206591404936247 _____ Alpha of: 1172102.2975334793 Validation MSE: 0.02206805824355987 _____ Alpha of: 5298316.906283702 Validation MSE: 0.022068532918488697 Alpha of: 23950266.199874908 Validation MSE: 0.022068637943147378 _____ Alpha of: 108263673.38740563 Validation MSE: 0.022068661177671187 ______ Alpha of: 489390091.8477499 Validation MSE: 0.022068666317689445 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.02206866745477455 -----Alpha of: 10000000000.0 Validation MSE: 0.022068667706322462

localhost:8888/nbconvert/html/Documents/Meaningful Predictive Modeling/Proyect/Exam Scores Factors.ipynb?download=false

Best Model: Ridge(alpha=1e-09, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[84]: <matplotlib.legend.Legend at 0x26f638701c8>

We see that the best model might have really high complexity because it has the smallest alpha possible.

Now we calculate the generalaization error

```
In [85]: preds=bestModel.predict(test['test preparation course'].values.reshape((-1,1)))
    MSE=sum([(r-p)**2 for r,p in zip(test['writing score'],preds)])/len(preds)
    print('MSE for test set writing Score: ', MSE)
```

MSE for test set writing Score: 0.022917551606776138

Average Score

```
In [86]: valError=float('inf')
       bestModel=None
       mses=[]
       msesTrain=[]
       for power in lambdas:
          print('----')
           print('Alpha of: ',10**power)
          model=Ridge(alpha=10**power).fit(train['test preparation course'].values.reshape((-1,1)),train['average s
          preds=model.predict(validation['test preparation course'].values.reshape((-1,1)))
          MSE=sum([(r-p)**2 for r,p in zip(validation['average score'],preds)])/len(preds)
          print('Validation MSE: ',MSE)
          mses.append(MSE)
          n course'].values.reshape((-1,1))))])/len(train))
           if(MSE<valError):</pre>
              bestModel=model
              valError=MSE
       print('----')
       print('Best Model: ',bestModel)
       plt.title('MSE of train and validation VS Alpha (Average Score)')
       plt.xlabel('Alpha (power of 10)')
       plt.ylabel('MSE')
       plt.plot(lambdas,mses, label='Validation MSE')
       plt.plot(lambdas,msesTrain, label='Train MSE')
       plt.legend()
```

Alpha of: 1e-09 Validation MSE: 0.0177409813571112 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.017740981357129877 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.017740981357214306 -----Alpha of: 9.236708571873865e-08 Validation MSE: 0.017740981357595952 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.017740981359321083 -----Alpha of: 1.8873918221350957e-06 Validation MSE: 0.01774098136711934 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.017740981402370203 -----Alpha of: 3.856620421163472e-05 Validation MSE: 0.017740981561716503 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.017740982282018834 -----Alpha of: 0.0007880462815669905 Validation MSE: 0.017740985538051077 Alpha of: 0.003562247890262437 Validation MSE: 0.01774100025669433 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.01774106679478186 _____ Alpha of: 0.07278953843983146 Validation MSE: 0.017741367664588205 -----Alpha of: 0.3290344562312671 Validation MSE: 0.017742729609422688 Alpha of: 1.4873521072935119 Validation MSE: 0.01774892356987625 ______ Alpha of: 6.723357536499335 Validation MSE: 0.017777562793928104 ______ Alpha of: 30.39195382313195 Validation MSE: 0.017911881517085136 -----Alpha of: 137.3823795883261 Validation MSE: 0.01840231349054999 -----Alpha of: 621.0169418915604 Validation MSE: 0.019136242763952382 ______ Alpha of: 2807.21620394117 Validation MSE: 0.019519300879702904 _____ Alpha of: 12689.610031679182 Validation MSE: 0.01962909382490401 _____ Alpha of: 57361.52510448681 Validation MSE: 0.019654956616415756 Alpha of: 259294.3797404667 Validation MSE: 0.019660759861299643 _____ Alpha of: 1172102.2975334793 Validation MSE: 0.019662047724580512 _____ Alpha of: 5298316.906283702 Validation MSE: 0.019662332827089145 Alpha of: 23950266.199874908 Validation MSE: 0.019662395907690474 _____ Alpha of: 108263673.38740563 Validation MSE: 0.019662409862961566 _____ Alpha of: 489390091.8477499 Validation MSE: 0.01966241295019274 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.019662413633156194 -----Alpha of: 10000000000.0

Validation MSE: 0.019662413784242553

Best Model: Ridge(alpha=1e-09, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[86]: <matplotlib.legend.Legend at 0x26f626c0a88>

We see that the best model might have really high complexity because it has the smallest alpha possible.

Now we calculate the generalaization error

```
In [87]: preds=bestModel.predict(test['test preparation course'].values.reshape((-1,1)))
MSE=sum([(r-p)**2 for r,p in zip(test['average score'],preds)])/len(preds)
print('MSE for test set average score: ', MSE)
```

MSE for test set average score: 0.02094556319124707

All Feature Model

-Math Score

```
In [88]: valError=float('inf')
        bestModel=None
        mses=[]
        msesTrain=[]
        for power in lambdas:
            print('----')
            print('Alpha of: ',10**power)
            model=Ridge(alpha=10**power).fit(train[new_data.columns[:-4]],train['math score'])
            preds=model.predict(validation[new_data.columns[:-4]])
            MSE=sum([(r-p)**2 for r,p in zip(validation['math score'],preds)])/len(preds)
            print('Validation MSE: ',MSE)
            mses.append(MSE)
            msesTrain.append(sum([(r-p)**2 for r,p in zip(train['math score'],model.predict(train[new_data.columns[:-
        4]]))])/len(train))
            if(MSE<valError):</pre>
               bestModel=model
                valError=MSE
        print('----')
        print('Best Model: ',bestModel)
        plt.title('MSE of train and validation VS Alpha (Math Score)')
        plt.xlabel('Alpha (power of 10)')
        plt.ylabel('MSE')
        plt.plot(lambdas,mses, label='Validation MSE')
        plt.plot(lambdas,msesTrain, label='Train MSE')
        plt.legend()
```

> Alpha of: 1e-09 Validation MSE: 0.016847738202133488 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.016847738202155026 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.01684773820225243 ______ Alpha of: 9.236708571873865e-08 Validation MSE: 0.016847738202692638 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.016847738204682584 ______ Alpha of: 1.8873918221350957e-06 Validation MSE: 0.01684773821367783 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.01684773825433956 -----Alpha of: 3.856620421163472e-05 Validation MSE: 0.01684773843814543 _____ Alpha of: 0.00017433288221999874 Validation MSE: 0.016847739269022506 Alpha of: 0.0007880462815669905 Validation MSE: 0.016847743025075718 Alpha of: 0.003562247890262437 Validation MSE: 0.01684776000774838 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.016847836856805253 -----Alpha of: 0.07278953843983146 Validation MSE: 0.016848185901426324 -----Alpha of: 0.3290344562312671 Validation MSE: 0.01684979734661592 Alpha of: 1.4873521072935119 Validation MSE: 0.016857744539511846 ______ Alpha of: 6.723357536499335 Validation MSE: 0.016905236500306283 ______ Alpha of: 30.39195382313195 Validation MSE: 0.017245556913417524 -----Alpha of: 137.3823795883261 Validation MSE: 0.018866720860180188 -----Alpha of: 621.0169418915604 Validation MSE: 0.0215113166436075 _____ Alpha of: 2807.21620394117 Validation MSE: 0.022942701286013764 ______ Alpha of: 12689.610031679182 Validation MSE: 0.023358953724910342 ______ Alpha of: 57361.52510448681 Validation MSE: 0.023457397231019413 Alpha of: 259294.3797404667 Validation MSE: 0.023479507137696812 _____ Alpha of: 1172102.2975334793 Validation MSE: 0.02348441481910125 _____ Alpha of: 5298316.906283702 Validation MSE: 0.02348550131411145 Alpha of: 23950266.199874908 Validation MSE: 0.02348574170996392 _____ Alpha of: 108263673.38740563 Validation MSE: 0.02348579489266707 ______ Alpha of: 489390091.8477499 Validation MSE: 0.02348580665792632 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.023485809260660778 _____ Alpha of: 10000000000.0 Validation MSE: 0.023485809836442148

localhost:8888/nbconvert/html/Documents/Meaningful Predictive Modeling/Proyect/Exam Scores Factors.ipynb?download=false

Best Model: Ridge(alpha=1e-09, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[88]: <matplotlib.legend.Legend at 0x26f6265fb88>

We see that the best model might have really high complexity because it has the smallest alpha possible.

Now we calculate the generalaization error

```
In [89]: preds=bestModel.predict(test[new_data.columns[:-4]])
    MSE=sum([(r-p)**2 for r,p in zip(test['math score'],preds)])/len(preds)
    print('MSE for test set Math Score: ', MSE)
```

MSE for test set Math Score: 0.018738439375397105

-Reading Score

```
In [90]: valError=float('inf')
                            bestModel=None
                            mses=[]
                            msesTrain=[]
                            for power in lambdas:
                                        print('----')
                                        print('Alpha of: ',10**power)
                                        model=Ridge(alpha=10**power).fit(train[new_data.columns[:-4]],train['reading score'])
                                        preds=model.predict(validation[new_data.columns[:-4]])
                                        MSE=sum([(r-p)**2 for r,p in zip(validation['reading score'],preds)])/len(preds)
                                        print('Validation MSE: ',MSE)
                                        mses.append(MSE)
                                        msesTrain.append(sum([(r-p)**2 for r,p in zip(train['reading score'],model.predict(train[new_data.columns for r,p in zip(train['reading score'],model.predict(train[new_data.columns for r,p in zip(train['reading score'],model.predict(train['reading score'],model.predic
                             [:-4]]))])/len(train))
                                        if(MSE<valError):</pre>
                                                   bestModel=model
                                                    valError=MSE
                            print('----')
                            print('Best Model: ',bestModel)
                            plt.title('MSE of train and validation VS Alpha (Reading Score)')
                            plt.xlabel('Alpha (power of 10)')
                            plt.ylabel('MSE')
                            plt.plot(lambdas,mses, label='Validation MSE')
                            plt.plot(lambdas,msesTrain, label='Train MSE')
                             plt.legend()
```

Alpha of: 1e-09 Validation MSE: 0.015863204519644944 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.01586320451957793 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.015863204519275115 -----Alpha of: 9.236708571873865e-08 Validation MSE: 0.01586320451790624 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.015863204511718423 ______ Alpha of: 1.8873918221350957e-06 Validation MSE: 0.015863204483747294 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.01586320435730792 -----Alpha of: 3.856620421163472e-05 Validation MSE: 0.015863203785758225 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.015863201202168584 ______ Alpha of: 0.0007880462815669905 Validation MSE: 0.015863189523781622 Alpha of: 0.003562247890262437 Validation MSE: 0.015863136740532486 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.015862898288446548 -----Alpha of: 0.07278953843983146 Validation MSE: 0.015861823396934732 -----Alpha of: 0.3290344562312671 Validation MSE: 0.015857025292883575 Alpha of: 1.4873521072935119 Validation MSE: 0.015836539032546268 ______ Alpha of: 6.723357536499335 Validation MSE: 0.01576535614291117 ______ Alpha of: 30.39195382313195 Validation MSE: 0.015704336734886085 -----Alpha of: 137.3823795883261 Validation MSE: 0.016502938030734514 -----Alpha of: 621.0169418915604 Validation MSE: 0.018363182360044448 ______ Alpha of: 2807.21620394117 Validation MSE: 0.019446231132205158 _____ Alpha of: 12689.610031679182 Validation MSE: 0.019765803659230242 ______ Alpha of: 57361.52510448681 Validation MSE: 0.019841606954674174 Alpha of: 259294.3797404667 Validation MSE: 0.019858642863505784 _____ Alpha of: 1172102.2975334793 Validation MSE: 0.0198624248129272 _____ Alpha of: 5298316.906283702 Validation MSE: 0.019863262111894906 Alpha of: 23950266.199874908 Validation MSE: 0.019863447372367643 _____ Alpha of: 108263673.38740563 Validation MSE: 0.01986348835754925 ______ Alpha of: 489390091.8477499 Validation MSE: 0.01986349742443416 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.019863499430228932 _____ Alpha of: 10000000000.0 Validation MSE: 0.019863499873954308

Best Model: Ridge(alpha=30.39195382313195, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[90]: <matplotlib.legend.Legend at 0x26f637c4448>

has a lower complexity than the one before

Now we calculate the generalaization error

```
In [91]: preds=bestModel.predict(test[new_data.columns[:-4]])
    MSE=sum([(r-p)**2 for r,p in zip(test['reading score'],preds)])/len(preds)
    print('MSE for test set Reading Score: ', MSE)
```

MSE for test set Reading Score: 0.01844106300098884

-Writing Score

```
In [92]: valError=float('inf')
       bestModel=None
       mses=[]
       msesTrain=[]
       for power in lambdas:
          print('----')
          print('Alpha of: ',10**power)
          model=Ridge(alpha=10**power).fit(train[new_data.columns[:-4]],train['writing score'])
          preds=model.predict(validation[new_data.columns[:-4]])
          MSE=sum([(r-p)**2 for r,p in zip(validation['writing score'],preds)])/len(preds)
          print('Validation MSE: ',MSE)
          mses.append(MSE)
          [:-4]]))])/len(train))
          if(MSE<valError):</pre>
             bestModel=model
              valError=MSE
       print('----')
       print('Best Model: ',bestModel)
       plt.title('MSE of train and validation VS Alpha (Writing Score)')
       plt.xlabel('Alpha (power of 10)')
       plt.ylabel('MSE')
       plt.plot(lambdas,mses, label='Validation MSE')
       plt.plot(lambdas,msesTrain, label='Train MSE')
       plt.legend()
```

Alpha of: 1e-09 Validation MSE: 0.015067299634438515 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.015067299634376828 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.015067299634097983 -----Alpha of: 9.236708571873865e-08 Validation MSE: 0.015067299632837539 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.0150672996271399 _____ Alpha of: 1.8873918221350957e-06 Validation MSE: 0.015067299601384547 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.015067299484961287 _____ Alpha of: 3.856620421163472e-05 Validation MSE: 0.015067298958688026 _____ Alpha of: 0.00017433288221999874 Validation MSE: 0.01506729657976821 Alpha of: 0.0007880462815669905 Validation MSE: 0.015067285826647903 Alpha of: 0.003562247890262437 Validation MSE: 0.015067237227701934 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.015067017726315309 -----Alpha of: 0.07278953843983146 Validation MSE: 0.015066029236679228 -----Alpha of: 0.3290344562312671 Validation MSE: 0.0150616366831569 Alpha of: 1.4873521072935119 Validation MSE: 0.015043281090692796 -----Alpha of: 6.723357536499335 Validation MSE: 0.014987079108406768 ______ Alpha of: 30.39195382313195 Validation MSE: 0.015058080859156728 -----Alpha of: 137.3823795883261 Validation MSE: 0.016574669124297295 -----Alpha of: 621.0169418915604 Validation MSE: 0.019655629520912585 ______ Alpha of: 2807.21620394117 Validation MSE: 0.02140085525282514 ______ Alpha of: 12689.610031679182 Validation MSE: 0.02191249597352203 ______ Alpha of: 57361.52510448681 Validation MSE: 0.02203368014437435 Alpha of: 259294.3797404667 Validation MSE: 0.022060905968948715 _____ Alpha of: 1172102.2975334793 Validation MSE: 0.02206694962822031 _____ Alpha of: 5298316.906283702 Validation MSE: 0.022068287633554395 Alpha of: 23950266.199874908 Validation MSE: 0.02206858367908961 _____ Alpha of: 108263673.38740563 Validation MSE: 0.0220686491732035 ______ Alpha of: 489390091.8477499 Validation MSE: 0.022068663662037413 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.02206866686728669 -----Alpha of: 10000000000.0 Validation MSE: 0.02206866757635744

Best Model: Ridge(alpha=6.723357536499335, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[92]: <matplotlib.legend.Legend at 0x26f651ce8c8>

Has the same complexity as the one shown before.

Now we calculate the generalaization error

```
In [93]: preds=bestModel.predict(test[new_data.columns[:-4]])
    MSE=sum([(r-p)**2 for r,p in zip(test['writing score'],preds)])/len(preds)
    print('MSE for test set writing Score: ', MSE)
```

MSE for test set writing Score: 0.01693878437160637

Average Score

```
In [94]: valError=float('inf')
       bestModel=None
       mses=[]
       msesTrain=[]
       for power in lambdas:
          print('----')
          print('Alpha of: ',10**power)
          model=Ridge(alpha=10**power).fit(train[new_data.columns[:-4]],train['average score'])
          preds=model.predict(validation[new_data.columns[:-4]])
          MSE=sum([(r-p)**2 for r,p in zip(validation['average score'],preds)])/len(preds)
          print('Validation MSE: ',MSE)
          mses.append(MSE)
          [:-4]]))])/len(train))
          if(MSE<valError):</pre>
             bestModel=model
              valError=MSE
       print('----')
       print('Best Model: ',bestModel)
       plt.title('MSE of train and validation VS Alpha (Average Score)')
       plt.xlabel('Alpha (power of 10)')
       plt.ylabel('MSE')
       plt.plot(lambdas,mses, label='Validation MSE')
       plt.plot(lambdas,msesTrain, label='Train MSE')
       plt.legend()
```

> Alpha of: 1e-09 Validation MSE: 0.014988043138041083 -----Alpha of: 4.520353656360241e-09 Validation MSE: 0.01498804313800411 -----Alpha of: 2.0433597178569395e-08 Validation MSE: 0.01498804313783701 _____ Alpha of: 9.236708571873865e-08 Validation MSE: 0.014988043137081644 _____ Alpha of: 4.1753189365604003e-07 Validation MSE: 0.014988043133667122 _____ Alpha of: 1.8873918221350957e-06 Validation MSE: 0.014988043118232217 -----Alpha of: 8.531678524172814e-06 Validation MSE: 0.014988043048461113 _____ Alpha of: 3.856620421163472e-05 Validation MSE: 0.014988042733071688 ______ Alpha of: 0.00017433288221999874 Validation MSE: 0.014988041307414773 ______ Alpha of: 0.0007880462815669905 Validation MSE: 0.014988034863242728 Alpha of: 0.003562247890262437 Validation MSE: 0.014988005739465729 _____ Alpha of: 0.01610262027560939 Validation MSE: 0.014987874215511638 -----Alpha of: 0.07278953843983146 Validation MSE: 0.014987282247415237 -----Alpha of: 0.3290344562312671 Validation MSE: 0.01498465840212653 Alpha of: 1.4873521072935119 Validation MSE: 0.014973826849581347 ______ Alpha of: 6.723357536499335 Validation MSE: 0.01494310178791182 ______ Alpha of: 30.39195382313195 Validation MSE: 0.01502001869892487 -----Alpha of: 137.3823795883261 Validation MSE: 0.016084147687417942 -----Alpha of: 621.0169418915604 Validation MSE: 0.01811774784346582 ______ Alpha of: 2807.21620394117 Validation MSE: 0.019238185909733318 _____ Alpha of: 12689.610031679182 Validation MSE: 0.01956341341170717 ______ Alpha of: 57361.52510448681 Validation MSE: 0.01964024530140032 Alpha of: 259294.3797404667 Validation MSE: 0.019657496402677454 _____ Alpha of: 1172102.2975334793 Validation MSE: 0.019661325335292797 _____ Alpha of: 5298316.906283702 Validation MSE: 0.019662172997325554 Alpha of: 23950266.199874908 Validation MSE: 0.019662360548831147 Alpha of: 108263673.38740563 Validation MSE: 0.019662402040765282 _____ Alpha of: 489390091.8477499 Validation MSE: 0.019662411219751198 _____ Alpha of: 2212216291.0704503 Validation MSE: 0.019662413250344978 -----Alpha of: 10000000000.0 Validation MSE: 0.019662413699556413

localhost:8888/nbconvert/html/Documents/Meaningful Predictive Modeling/Proyect/Exam Scores Factors.ipynb?download=false

99/100

Best Model: Ridge(alpha=6.723357536499335, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[94]: <matplotlib.legend.Legend at 0x26f652505c8>

Has the same complexity as the one before

Now we calculate the generalaization error

```
In [95]: preds=bestModel.predict(test[new_data.columns[:-4]])
    MSE=sum([(r-p)**2 for r,p in zip(test['average score'],preds)])/len(preds)
    print('MSE for test set average score: ', MSE)
```

MSE for test set average score: 0.01707478235435576

Conclusions

In the end we can conclude that for this dataset the more accurate models tend to have a relative high complexity. Also, in the end the best model was the one that took into account all of the features to predict the scores and the average score, but the true error (Test error) is still too high which could mean a lot of noise that may come due to the many outliers.