New U.S. Patent Application Inventors: R. JURECIC et al. Title: HEPP, A Novel Gene with a Role in Hematopoietic and Neural Development" Attorney Docket No. 39532.176599 Sheet 1 of 14

FIGURE 1A

_		CO
	CCCCGCGTCGGTCTTCCACCTCACCTTTCGAGCTGGCCGCCGCTTGCTGTGCGCAGTTTC	60
61	GGGGGACTGGACCTTCCCTGGCTTT <u>TAG</u> CAGCGCCGAGCGCCATGGCGACCCTTTGCTGG	120
121	GCAGGTGACCGATTCCGGGTGCCCGAAGGAGCTGGCGTGGGTCTGCCTTGCAGCCGCCCG	180
181	CCTGGACAGGATGTTTGCTAGAGGGCTGAAGAGGAATATGGTGACCAGGAAGAAGGAGT	240
1	MFARGLKRKYGDQEEGV	17
	AGAGGGTTTTGGCACTGTCCCTTCCTATAGCCTGCAGCGACAGTCACTCCTGGACATGTC	300
247	E G F G T V P S Y S L O R O S L L D M S	37
201		360
301	CCTTGTCAAGCTCCAGCTCTGTCACATGCTAGTGGAGCCCAATCTCTGCCGCTCGGTCCT	
	LVKLQLCHMLVEPNLCRSVL	57
361	CATCGCCAACACGTCCGGCAGATCCAGGAGGAAATGAGCCAGGATGGTGTGGCATGG	420
	IANTVRQIQEEMSQDGVWHG	77
421	GATGGCACCCCAGAATGTAGATCGGGCACCAGTTGAACGCCTGGTGTCCACAGAGATCCT	480
	MAPQNVDRAPVERLVSTEIL	97
481	GTGTCGTACAGTGAGGGAGCTGAGGAAGAGCACCCTGCTCCTGAACTGGAAGATGCTCC	540
	CRTVRGAEEEHPAPELEDAP	117
541	CTTGCAAAACTCGGTTTCCGAGCTCCCCATCGTTGGCTCAGCACCAGGGCAAAGGAACCC	600
211	L O N S V S E L P I V G S A P G Q R N P	137
601	TCAGAGCAGCCTCTGGGAGATGGACAGCCCCACAAGAAAACAGGGGAAGCTTTCAGAAGTC	660
601		157
661	ACTGGACCAGATATTTGAGACCCTGGAGAACAAAAACTCCAGTTCAGTGGAGGAACTCTT	720
	LDQIFETLENKNSSSVEELF	177
721	CTCAGATGTGGACAGCTCCTACTATGACCTGGACACAGTGCTAACAGGAATGATGAGTGG	780
	S D V D S S Y Y D L D T V L T G M M S G	197
781	GACCAAGTCCAGTCTCTGCAATGGCCTTGAGGGCTTTGCTGCAGCCACCCCTCCTCCCAG	840
	TKSSLCNGLEGFAAATPPPS	217
841	TTCCACTTGCAAGTCTGACCTGGCTGAGCTGGACCATGTGGTAGAGATTCTGGTGGAGAC	900
	STCKSDLAELDHVVEILVET	237
901	CTGAGAGGCCACCCCAGTGGGCTAAGGGTGAGGCCACCAGTCCCCATGGAGCTCACGTGT	960
201	*	
061	GTTGTGACCCAGAGACAGATAAGCACTTGTCCTAAGAGGGGCTCTGGCTCTTGAGCTCAT	1020
		1020
	TATCCTTTTGTGTGACATTGGACTCACTGTGGAGGATGGTGTCACAGCTATGTCTAGT	
	CTATTTCAATTAGATAGGTGAACTTTCTAAAATTAAGTTTTATATGTTTTTTGGGCAATA	1140
	TTTTGTCTTAAGATATATTTTTTAAACTTTTTATACTTTAGATTTTTTTCAGCTATTTTC	1200
	TTAAAAGTATATTTTTCTACAAACATCCTCTGCTGCTACATTAGAAACATTTATAACCT	1260
1261	AAATACGATTGGTGTCATTTTAAAGGTTTAAATAGAAAACTTCTTTTGTTACTGAGTC	1320
1321	TCTACACTCCCAAGGCAACTGTAAATGTAGCCGGCCGGGTGTTTACATGAGAGGCTCCAG	1380
1381	TATGGTCTACATTCTAGTAGAGCTTGAAAAGAACCATGCACAGCTCCACTGCCCCCTCAC	1440
1441	TGGGTCTGCTCTGGCGGATCGGAGCTCTCTTCCTAGCCCCGTGTGCAGGATGGCTTTATT	1500
1501	TATGCCTATTTATATGTAAATGCCACTGAAAGCTAAGGTCTTACTCCTGGAAATCCCAAC	1560
	ACCAGTTCTTCAGGGACTGCTGTGAGGCAGTGCCTTATGCAGGTCTTGTCCTTGGCCATC	1620
1621	ACTGTCTGGTTCCCAGCCCAGCACATGTGACATGAGGACATGACATGCCCGAACCACCCA	1680
	GCACCACATGCTCCATGTCAAGTGTGTACGTGGAGACCACTGGCTCCCAGGCCTGTGCTC	1740
	AGAGAGGGTGTGCAGTCCTACGTGTGCTGGGGGGGACGACGGTGACCTGTGCTTGC	1800
	TTTTAAAATGGTGCTTGGACGTTTTAAGGTTAAAAACAATCCGACTCCATATGATTTAGG	1860
		1920
	GCTCCTCCACCCTGGGGTGGCCCCTATGCTGTTCTGCTTGGATCTCAAAGTCTTGGTACTC	
	GGCACTGTCAGACTCCACCCCATGTATCCTTTTTGTTTCTCTTGTGCTTTTTTTGGACTT	1980
	CCCAACCTGAGCCTAAGGTTTTATTTTATATGTGCTTCAATATCAACAATGTAAACCTCA	2040
2041	CTTT ATTAA AAGTATCCAGCAAATGGAAAAAAAAAAAAAAAAA	

New U.S. Patent Application Inventors: R. JURECIC et al. Title: HEPP, A Novel Gene with a Role in Hematopoietic and Neural Development" Attorney Docket No. 39532.176599

Sheet 2of 14

FIGURE 1B

7	GGGAAGCTGGCGCACAGCCGTGGCGCCTGGCTGAGCAGAGGACCCGGCGGGCG	60
	CGGGTCAGGACACAATGTTTGCACGAGGACTGAAGAGGAAATGTGTTGGCCACGAGGAAG	120
1	M F A R G L K R K C V G H E E D	16
	ACGTGGAGGGAGCCCTGGCCGGCTTGAAGACAGTGTCCTCATACAGCCTGCAGCGGCAGT	180
121	V E G A L A G L K T V S S Y S L Q R Q S	36
107	CGCTCCTGGACATGTCTCTGGTGAAGTTGCAGCTTTGCCACATGCTTGTGGAGCCCAACC	240
101	L L D M S L V K L O L C H M L V E P N L	240 56
247	TGTGCCGCTCAGTCCTCATTGCCAACACGGTCCGGCAGATCCAAGAGGAGATGACGCAGG	300
241		300 76
201	C R S V L I A N T V R Q I Q E E M T Q D ATGGGACGTGGCGCACAGTGGCACCCCAGGCTGCAGAGCGGCGCCGCTCGACCGCTTGG	360
201		360 96
261	•	420
201	TCTCCACGGAGATCCTGTGCCGTGCAGCGTGGGGGCAAGAGGGGGCACATCCTGCTCCTG S T E I L C R A A W G O E G A H P A P G	116
401	GCTTGGGGGACGCCACACACAGGGTCCAGTTTCTGACCTTTGCCCAGTCACCTCAGCAC	480
421		136
107	L G D G H T Q G P V S D L C P V T S A Q AGGCACCAAGGCACCTGCAGAGCAGCGCCTGGGAGATGGATG	540
401	A P R H L Q S S A W E M D G P R E N R G	156
E 17	GAAGCTTTCACAAGTCACTTGATCAGATATTTGAAACGCTGGAGACTAAAAACCCCAGCT	600
241	S F H K S L D O I F E T L E T K N P S C	176
601	GCATGGAAGAGCTGTTCTCAGACGTGGACAGCCCCTACTACGACCTGGACACAGTACTGA	660
601	M E E L F S D V D S P Y Y D L D T V L T	196
661	CAGGCATGATGGGGGGTGCCAGGCCGGGCCCCTGCGAAGGGCTCGAGGGCTTGGCTCCGG	720
001	G M M G G A R P G P C E G L E G L A P A	216
721	CCACCCCAGGCCCTAGCTCCAGCTGCAAGTCCGACCTGGGCGAGCTGGACCACGTGGTGG	780
121		
		236
701	T P G P S S S C K S D L G E L D H V V E	236
781	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG	840
	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T *	840 241
841	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGGCTCCCACGGAGGGTGCGCCTGCCGCCAGCCCTGCTGCTGC	840 241 900
841 9.01	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGGCTCCCACGGAGGGTGCGCCTGCCGCCAGCCCTGCTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA	840 241 900 960
841 901 961	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGCCTCCCACGGAGGGTGCGCCTGCCGCCAGCCCTGCTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCCTGTGGAGCGCCAGGAGAGGCTGTTCTGGAAAGGCTT	840 241 900 960 1020
841 901 961 1021	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGGCTCCCACGGAGGGTGCGCCTGCCGCCAGCCCTTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCTGTGGAGCGCCAGGAGGGTGTTCTGGAAGGCTT CTTGTCTTCTGACGTCCCCACAGCCCTGGGCCCCTCGTGTCTCTTTTGTGTCCCCCACTGT	840 241 900 960 1020 1080
841 9.01 961 1021 1081	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGGCTCCCACGGAGGGTGCGCCTGCCGCCAGCCGCCTTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCTGTGGAGCGCCAGGAGGGTGTTCTGGAAGGCTT CTTGTCTTCTGACGTCCCCACAGCCCTGGGCCCCTCGTGTCTCTTTTTTGTCCCCCACTGT AGAGGACGGTGAGCCGCAGCTGCATCAACCTCCTTTTACCTTTAGATAGGTGAATTTTTA	840 241 900 960 1020 1080 1140
841 9.01 961 1021 1081 1141	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGGCTCCCACGGAGGGTGCGCCTGCCGCCAGCGCCCAGCCTTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCTGTGGAGCGCCAGGAGAGGCTGTTCTGGAAGGCTT CTTGTCTTCTGACGTCCCCACAGCCCTGGGCCCCTCGTGTCTCTTTTTTTT	840 241 900 960 1020 1080 1140 1200
841 901 961 1021 1081 1141 1201	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGGCTCCCACGGAGGGTGCGCCTGCCGCCAGCGGCCCAGCCTTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCTGTGGAGCGCCAGGCAGAGGCTGTTCTGGAAGGCTT CTTGTCTTCTGACGTCCCCACAGCCCTGGGCCCCTCGTGTCTCTTTTGTGTCCCCCACTGT AGAGGACGGTGAGCCGCAGCTGCATCAACCTCCTTTTACCTTTAGATAGGTGAATTTTTA CAATTCAGTTTTACATGTTTTGGGCAGTATTTTTCTTAAAAGTATATTTTTTAAACTTTT	840 241 900 960 1020 1080 1140 1200 1260
841 901 961 1021 1081 1141 1201 1261	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGGCTCCCACGGAGGGTGCGCCTGCCGCCAGCGGCCCAGCCTTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCCTGTGGAGCGCCAGGCAGAGGCTGTTCTGGAAGGCTT CTTGTCTTCTGACGTCCCCACAGCCCTGGGCCCCTCGTGTCTCTTTTGTGTCCCCCACTGT AGAGGACGGTGAGCCGCAGCTGCATCAACCTCCTTTTACCTTTAGATAGGTGAATTTTTA CAATTCAGTTTTACATGTTTTGGGCAGTATTTTTTAAAATTATTTTTTAAACTTTT TATACCTTATCTCTTTAGATTTTTTCAGCTATTTTCTTAAAAGTATATTTTTTCTATAAA CATCCTTTGCTGCTACATTAGAACTTTTAAGCCTAAACAATTGCAGTTGGTGTTTTCA	840 241 900 960 1020 1080 1140 1200 1260 1320
841 901 961 1021 1081 1141 1201 1261 1321	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGGCTCCCACGGAGGGTGCGCCTGCCGCCAGCGGCCCAGCCTTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCCTGTGGAGCGCCAGGCAGAGGCTGTTCTGGAAGGCTT CTTGTCTTCTGACGTCCCCACAGCCCTGGGCCCCTCGTGTCTCTTTTTTTT	840 241 900 960 1020 1080 1140 1200 1260 1320 1380
841 9.01 961 1021 1081 1141 1201 1261 1321 1381	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGGCTCCCACGGAGGGTGCGCCTGCCGCCAGCGGCCCAGCCTTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCCTGTGGAGCGCCAGGCAGAGGCTGTTCTGGAAGGCTT CTTGTCTTCTGACGTCCCCACAGCCCTGGGCCCCTCGTGTCTCTTTTTTTT	840 241 900 960 1020 1080 1140 1260 1320 1380 1440
841 901 961 1021 1081 1141 1201 1261 1321 1381 1441	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGGCTCCCACGGAGGGTGCGCCTGCCGCCAGCGGCCCAGCCTTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCCTGTGGAGCGCCAGGCAGAGGCTGTTCTGGAAGGCTT CTTGTCTTCTGACGTCCCCACAGCCCTGGGCCCCTCGTGTCTCTTTTTTTT	840 241 900 960 1020 1080 1140 1200 1320 1380 1440 1500
841 901 961 1021 1081 1141 1201 1261 1321 1381 1441 1501	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGGCTCCCACGGAGGGTGCGCCTGCCGCCAGCGGCCCAGCCTTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCCTGTGGAGCGCCAGGCAGAGGCTGTTCTGGAAGGCTT CTTGTCTTCTGACGTCCCCACAGCCCTGGGCCCCTCGTGTCTCTTTTTTTT	840 241 900 960 1020 1080 1140 1200 1320 1380 1440 1500 1560
841 9.01 961 1021 1081 1141 1201 1261 1321 1381 1441 1501 1561	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGGCTCCCACGGAGGGTGCGCCTGCCGCCAGCGGCCCAGCCTTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCCTGTGGAGCGCCAGGCAGAGGCTGTTCTGGAAGGCTT CTTGTCTTCTGACGTCCCCACAGCCCTGGGCCCCTCGTGTCTCTTTGTGTCCCCCACTGT AGAGGACGGTGAGCCGCAGCCTGCATCAACCTCCTTTTACCTTTAGATAGGTGAATTTTTA CAATTCAGTTTTACATGTTTTGGGCAGTATTTTCTTAAAAGTATATTTTTTAAACTTTT TATACCTTATCTCTTTAGATTTTTTCAGCTATTTTCTTAAAAGTATATTTTTTCTATAAA CATCCTTTGCTGCTACATTAGAACTTTTATAGCCTAAACAATTGCAGTTGGTGTGTTTCA TTTTTTTAAGGTTTAAATAAGGGTTTTTTTTTT	840 241 900 960 1020 1080 1140 1200 1320 1380 1440 1500 1560 1620
841 9.01 961 1021 1081 1141 1201 1261 1321 1381 1441 1501 1561 1621	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGGCTCCCACGGAGGGTGCGCCTGCCGCCAGCGGCCCAGCCTTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCCTGTGGAGCGCCAGGCAGAGGCTGTTCTGGAAGGCTT CTTGTCTTCTGACGTCCCCACAGCCCTGGGCCCCTCGTGTCTCTTTTTTTT	840 241 900 960 1020 1080 1140 1200 1320 1380 1440 1500 1560
841 901 961 1021 1081 1141 1201 1261 1321 1381 1441 1501 1561 1621 1681	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGGCTCCCACGGAGGGTGCGCCTGCCGCCAGCGGCCCAGCCTTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCCTGTGGAGCGCCAGGCAGAGGCTGTTCTGGAAGGCTT CTTGTCTTCTGACGTCCCCACAGCCCTGGGCCCCTCGTGTCTCTTTGTGTCCCCCACTGT AGAGGACGGTGAGCCGCAGCCTGCATCAACCTCCTTTTACCTTTAGATAGGTGAATTTTTA CAATTCAGTTTTACATGTTTTGGGCAGTATTTTCTTAAAAGTATATTTTTTAAACTTTT TATACCTTATCTCTTTAGATTTTTTCAGCTATTTTCTTAAAAGTATATTTTTTCTATAAA CATCCTTTGCTGCTACATTAGAACTTTTATAGCCTAAACAATTGCAGTTGGTGTGTTTCA TTTTTTTAAGGTTTAAATAAGGGTTTTTTTTTT	840 241 900 960 1020 1080 1140 1200 1320 1380 1440 1500 1560 1620 1680
841 901 961 1021 1081 1141 1201 1261 1321 1381 1441 1501 1561 1621 1681 1741	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGCCTCCCACGGAGGGTGCGCCTGCCGCCAGCGGCCCAGCCTTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCTGTGGAGCCCCAGGAGGCTGTTCTGGAAGGCTT CTTGTCTTCTGACGTCCCCACAGCCCTGGGCCCCTCGTGTCTCTTTTTTTT	840 241 900 960 1020 1080 1140 1200 1320 1380 1440 1500 1560 1620 1680 1740
841 9.01 961 1021 1081 1141 1201 1261 1321 1381 1441 1501 1561 1621 1681 1741 1801	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGCCTCCCACGGAGGGTGCGCCTGCCGCCAGCGGCCCAGCCTTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCTGTGGAGCGCCAGGAGAGGCTGTTCTGGAAGGCTT CTTGTCTTCTGACGTCCCCACAGCCCTGGGCCCTCGTGTCTCTTTTTTTGTCCCCCCACTGT AGAGGACGGTGAGCCGCAGCCTGACACCTCCTTTTACCTTTAGATAGGTGAATTTTTA CAATTCAGTTTTACATGTTTTGGGCAGTATTTTTCTTAAAAGTATATTTTTTCTATAAA CATCCTTATCTCTTTAGATTTTTTCAGCTATTTTCTTAAAAGTATATTTTTTCTATAAA CATCCTTTGCTGCTACATTAGAACTTTTTTTTTT	840 241 900 960 1020 1080 1140 1200 1320 1380 1440 1500 1620 1680 1740 1800
841 9.01 961 1021 1081 1141 1201 1261 1321 1381 1441 1501 1561 1681 1741 1801 1861	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGGCTCCCACGGAGGGTGCGCCTGCCGCCAGCGGCCCAGCCTTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCCTGTGGAGCGCCAGCAGAGGCTGTTCTGGAAGGCTT CTTGTCTTCTGACGTCCCCACAGCCCTGGGGCCCTCGTGTCTCTTTTGTGTCCCCCACTGT AGAGGACGGTGAGCCGCACAGCCCTGGGCCCCTCGTGTCTTTTAGATAGGTGAATTTTTA CAATTCAGTTTTACATGTTTTTGGGCAGTATTTTTCTTAAAAGTATATTTTTTAAACTTTT TATACCTTATCTCTTTAGATTTTTTCAGCTATTTTCTTAAAAGTATATTTTTTCTATAAA CATCCTTTGCTGCTACATTAGAACTTTTTTTTTT	840 241 900 960 1020 1080 1140 1200 1320 1380 1440 1560 1620 1680 1740 1800 1860 1920
841 9.01 961 1021 1081 1141 1201 1321 1381 1441 1501 1561 1621 1681 1741 1801 1861	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGGCTCCCACGGAGGGTGCGCCTGCCGCCAGCGGCCCAGCCTTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCCTGTGGAGCCCCAGCGCAGAGGCTGTTCTGGAAGGCTT CTTGTCTTCTGACGTCCCCACAGCCCTGGGCCCCTCGTGTCTCTTTTGTGTCCCCCACTGT AGAGGACGGTGAGCCGCAGCCTGGGCCCTCGTGTCTCTTTTGTGTCCCCCACTGT AGAGGACGTGAGCCGCAGCCTGCATCAACCTCCTTTTACCTTTAGATAGGTGAATTTTTA CAATTCAGTTTTACATGTTTTTGGGCAGTATTTTTCTTAAAAGTATATTTTTTCAATAAA CATCCTTTGCTGCTACATTAGAACTTTTTAAACCTAAACAATTGCAGTTGGTGTGTTTCA TTTTTTTAAGGTTTAAATAAGGGTTTTTTTTTT	840 241 900 960 1020 1080 1140 1200 1320 1380 1440 1560 1620 1680 1740 1800 1860 1920 1980
841 9.01 961 1021 1081 1141 1201 1321 1381 1441 1501 1561 1621 1681 1741 1801 1861 1921 1981	AGATCCTGGTGGAGACCTGAGCAGGAGCCCTGAGTGCTCACAGCCGCCTCTGACGCATTG I L V E T * ACACGTGAGCACTGGCTCCCACGGAGGGTGCGCCTGCCGCCAGCGGCCCAGCCTTGCTGC CCTGTCTGCTGATTCTGAGAAATCCCAGAACAGCCCATTACCAGTGGGGCTGCAGCCCTA GGCCCGTCCCACTCACCTCCCCCCTGTGGAGCGCCAGCAGAGGCTGTTCTGGAAGGCTT CTTGTCTTCTGACGTCCCCACAGCCCTGGGGCCCTCGTGTCTCTTTTGTGTCCCCCACTGT AGAGGACGGTGAGCCGCACAGCCCTGGGCCCCTCGTGTCTTTTAGATAGGTGAATTTTTA CAATTCAGTTTTACATGTTTTTGGGCAGTATTTTTCTTAAAAGTATATTTTTTAAACTTTT TATACCTTATCTCTTTAGATTTTTTCAGCTATTTTCTTAAAAGTATATTTTTTCTATAAA CATCCTTTGCTGCTACATTAGAACTTTTTTTTTT	840 241 900 960 1020 1080 1140 1200 1320 1380 1440 1560 1620 1680 1740 1800 1860 1920

New U.S. Patent Application Inventors: R. JURECIC *et al.* Title: HEPP, A Novel Gene with a Role in Hematopoietic and Neural Development" Attorney Docket No. 39532.176599 Sheet 3 of 14

FIGURE 2

Mouse <i>Hepp</i>	1 mfarglkrkyg <mark>doeegyegfgtypsyslorosildmslyklolchmlvepnl</mark> crsv
Human <i>HEPP</i>	1 mfarglkrk <mark>cygheedyegalaglktyssyslorosildmslyklolchmlvepnlcrsy</mark>
Mouse Hepp	57 LIANTVRQIQEEMSQDGVWHGMAPQNVDRAPVERLVSTEILCRTVRGAEEEHPAPELEDA
Human HEPP	61 LIANTVRQIQEEMTQDGTWRTVAPQAAERAPLDRLVSTEILCRAAWGQEGAHPAPGLGDG
Mouse Hepp	117 PLONSVSELPIVGSAPGORNPOSSLWEMDSPOENRGSFOKSLDOIFETLENKNSSSVEEL
Human HEPP	121 HTOGPVSDLCPVTSAQAPRHLOSSAWEMDGPRENRGSFEKSLDOIFETLETKNPSCMEEL
Mouse Hepp	177 FSDVDSSYYDLDTVLTGMMSGTRSSLCNGLEGFAAATPPPSSTCKSDLAELDHVVEILVE
Human HEPP	181 FSDVDSPYYDLDTVLTGMMGGARPGPCEGLEGLAPATPGPSSSCKSDLGELDHVVEILVE
Mouse Hepp	237 T
Human HEPP	241 T

FIGURE 3

Zebrafish Hepp Mouse Hepp Human HEPP	1	MFSKG <mark>i</mark> krkfadggeeisddglvaarvassysloroslldmsliklolchmlvepnlcrs MFARGLKRKYG <mark>Do</mark> eegvegfgiv <mark>e</mark> sysloroslldmslvklolchmlvepnlcrs MFARGLKRK <mark>ovgh-eedve</mark> galagiktvssysloroslldmslvklolchmlvepnlcrs
Zebrafish Hepp		VLIANTVRQIQEEMTHDGSWHMVTEAFCGASQSPSERLVATEVLCR
Mouse Hepp	56	VLIANTVRQIQEEMSQDGVWEGMAPONVDRAPMERLVSTEILCRTVRGAEEEHPAPEL
Human HEPP	60	VLIANTVRQIQEEMTQDG WRTVAPQAAERAPUDRLVSTEILCRAAWGQEGAHPAPGL

FIGURE 4B

FIGURE 4A

New U.S. Patent Application Inventors: R. JURECIC *et al*.

Title: HEPP, A Novel Gene with a Role in Hematopoietic and Neural Development" Attorney Docket No. 39532.176599

BRAIN
HEART
KIDNEY
LIVER
LUNG
MUSCLE
SKIN
INTESTINE
SPLEEN
STOMACH
TESTIS
TESTIS

FIGURE 5

New U.S. Patent Application Inventors: R. JURECIC *et al.* Title: HEPP, A Novel Gene with a Role in Hematopoietic and Neural Development" Attorney Docket No. 39532.176599 Sheet 5 of 14

New U.S. Patent Application Inventors: R. JURECIC et al. Title: HEPP, A Novel Gene with a Role in Hematopoietic and Neural Development" Attorney Docket No. 39532.176599 Sheet 6 of 14

New U.S. Patent Application Inventors: R. JURECIC *et al.* Title: HEPP, A Novel Gene with a Role in Hematopoietic and Neural Development" Attorney Docket No. 39532.176599 Sheet 7 of 14

FIGURE 7

Chromosome 14

translocation breakpoints

Title: HEPP, A Novel Gene with a Role in Hematopoietic and Neural Development" Attorney Docket No. 39532.176599

Sheet 8 of 14

FIGURE 8

Title: HEPP, A Novel Gene with a Role in Hematopoietic and Neural Development" Attorney Docket No. 39532.176599

Sheet 9 of 14

FIGURE 9

Нерр

Embryo day 13 1. Telencephalon/Diencephalon

- Mesencephaton (Midbrain)
- 3. Rhombeacophsion (Hindbrain)
- 4. Spinal cord

Embryo day 15

- 5. Telencephalon
- 6. Dienoephalon
- 7. Midbrain
- 8. Poas
- 9. Modella
- 10. Spinal cord

Embryo day 18

- 11. Frontal cortex
- 12. Posterior cortex
- 13. Entochinal corex
- 14. Offsctory bulb
- 15. Hippocampes
- 16. Striscum
- 17. Thalamso
- 18. Hypothalamus
- 19. Midbrain
- 20 Pocs
- 21. Medulla
- 22. Spinal cord

Postnatal day ?

- 23. Frontal cortex
- 24. Posterior cortex
- 25. Entochinal corkx
- 26. Offsctory bulb
- 27. Нірроськорся
- 28. Stringum
- 29. Thalances
- 30. Hypothalamus
- 31. Cerebellum.
- 32. Midbrain
- 33. Poes
- 34. Medulla
- 35. Spinal cord

Adult 5 week

- 36. Fructal dwifex
- 37. Posterior contex
- 38. Entorbinal cores
- 39 Officiency bulb
- 40. Нерожатория
- 41. Striatum
- 42. Thalastas
- 43. Hypothalamus
- 44. Cerebellum
- 45. Medbrain
- 46. Pocs
- 47. Medulla
- 48 Spinal cord

Title: HEPP, A Novel Gene with a Role in Hematopoietic and Neural Development" Attorney Docket No. 39532.176599 Sheet 10 of 14

FIGURE 10

FIGURE 11

New U.S. Patent Application Inventors: R. JURECIC *et al.* Title: HEPP, A Novel Gene with a Role in

Hematopoietic and Neural Development" Attorney Docket No. 39532.176599

Sheet 11 of 14

FIGURE 12

FIGURE 13

Title: HEPP, A Novel Gene with a Role in Hematopoietic and Neural Development" Attorney Docket No. 39532.176599

Sheet 12 of 14

FIGURE 14

FIGURE 15A-B

FIGURE 15C

Hepp +/+

Hepp +/-

Title: HEPP, A Novel Gene with a Role in Hematopoietic and Neural Development" Attorney Docket No. 39532.176599

FIGURE 16 Sheet 13 of 14

FIGURE 17

New U.S. Patent Application Inventors: R. JURECIC et al. Title: HEPP, A Novel Gene with a Role in Hematopoietic and Neural Development" Attorney Docket No. 39532.176599 Sheet 14 of 14

FIGURE 18A

FIGURE 18B

FIGURE 18C

