Laborator 3 – Programare Procedurala (Mate) Săptămâna a 3-a

- 1. (1p) Se citește un număr natural n de la tastatură.
 - a) Să se determine cel mai mare număr ce poate fi format cu cifrele lui n.
 - b) Să se determine numerele de 3 cifre mai mici decât n^2 care au suma divizorilor un număr de tip palindrom (12321 este un palindrom).
- 2. (4p) Se citește o valoare n de la tastatură și apoi se citesc n numere naturale.
 - a) Să se calculeze suma elementelor pare de pe poziții impare.
 - b) Să se determine elementul minim si elementul maxim și să se interschimbe.
 - c) Să se afișeze pozițiile pe care se afla o valoare k citită de la tastatură.
 - d) Să se determine câte numere au cifra zecilor o valoare din intervalul (2,8).
 - e) Să se determine câte numere au proprietatea de a fi palindrom.
 - f) Să se afișeze numerele care au cel mult 6 divizori.
 - g) Să se calculeze media aritmetică a numerelor pare și să se insereze între prima și a doua valoare a șirului.
 - h) Să se calculeze media aritmetică a numerelor și să se insereze între ultima și penultima valoare a șirului.
- 3. (2p) Fie un şir de \mathbf{n} (0 < \mathbf{n} <1000) numere întregi. Se cere:
 - a) Să se verifice dacă numerele din şirul dat pot forma o mulțime (elementele sunt distincte).
 - b) Să se scrie în ordine crescătoare factorii primi din descompunerea elementului maxim din şirul dat.
- 4. **(3p)** Se dau două mulțimi prin doi vectori (toate elementele vectorilor sunt distincte).
 - a) Să se verifice dacă un întreg aparține celor două mulțimi.
 - b) Determinați intersecția, reuniunea și diferența a celor două mulțimi.
- 5. **(10p)** Se consideră o secvență de numere naturale x₁, x₂, ..., x_n. Din această secvență se pot obține alte secvențe folosind următoarea operație: se extrage elementul de pe poziția **i** (i>1), se mută toate elementele situate la stânga poziției **i** cu o poziție la dreapta, iar elementul de pe poziția **i** se plasează pe prima poziție a secvenței.
 - (a) Să se scrie un program care primind o secvență de numere naturale x_1, x_2 , ..., x_n afișează toate secvențele care se pot obține din aceasta folosind o singură dată operația definită mai sus. Ordinea în care sunt afișate secvențele rezultate nu contează. De exemplu, din secvența 1, 2, 3 folosind o singură operație, mutând elementul de pe poziția 2 se obține secvența 2, 1, 3 și mutând de pe poziția 3 se obtine secvența 3,1,2.

(b) Să se scrie un program care primind două permutări $x_1, x_2, ..., x_n$ şi $y_1, y_2, ..., y_n$ ale multimii $\{1, ..., n\}$ afișează secvență minimă de operații de tipul de mai sus prin care permutarea $x_1, x_2, ..., x_n$ se poate transforma în permutarea $y_1, y_2, ..., x_n$. O operație va fi afișată prin acel element x_i care se mută pe prima poziție. De exemplu dacă se primesc permutările: 4, 5, 6, 7, 8, 9, 3, 1, 2 și 4, 9, 6, 5, 7, 8, 3, 1, 2 secvența optimă este: 6, 9, 4 adică din prima permutare se extrage 6 și se pune în față, apoi se extrage 9 și se pune în față, iar apoi se extrage 4 și se pune în față.