

24-Port GbE Unmanaged Switch with 16 Copper PHYs

GENERAL DESCRIPTION

The Broadcom[®] BCM53334 System-on-a-Chip (SoC) switch family offers industry-leading integration and performance in a small footprint. The device offers up to 2416 multilayer GbE ports in a 23 mm x 23 mm package. Offering the industry's highest level of integration, the BCM53334 has embedded 16 GPHYs and a powerful 125 MHz ARM Cortex-A9 single-core processor. The BCM53334 is ideal for cost-sensitive edge connectivity applications, such as unmanaged and WebSmart[™]-lite WebSmart[™] switches for Small Medium Business.

The BCM53334 device offers multiple I/O configurations that address key segments of edge connectivity. A single BCM53334 device supports the popular 2416x GbE switch designs.

Furthermore, the BCM53334 device I/O is optimized for board layout. When used with the Broadcom QSGMII PHY, the BCM53334 device can be connected to the PHYs without any trace crossovers. The optimized I/O map reduces system design effort and enables low-cost PCB design.

The BCM53334 device offers many advanced features, such as IEEE 802.1Q VLAN, enhanced Denial of Service (DoS) protection, IPv4 and IPv6 support, advanced ContentAware [™] Engine, IEEE 802.1p Quality of Service (QoS), Energy Efficient Ethernet [™] (EEE)

BENEFITS

- Based on industry-leading and market-proven StrataXGS[®] IV architecture.
- Single-chip switch SoC optimized for unmanaged and WebSmart -lite connectivity applications for SMB networks.
- Enhanced memory technology delivers optimum usage of packet-buffer resources.
- Eight flexible Class of Service (CoS) queues per port assure the lowest latency to high-priority traffic.
- IPv6 support provides future-proofing.
- Optimized ball pattern for low-cost PCB design and single-system clock source.
- Low-power 40 nm CMOS technology.

FEATURES

- Highly integrated 2416-port 10/100/1000 Mbps Ethernet switch SoC.
- Embedded 16 integrated copper 10/100/1000 EEE PHYs.
- Two integrated QSGMII/1GbE interfaces
- Non-blocking architecture, line rate for all packet sizes.
- · Fully integrated 512 KB packet buffer
- Intelligent Memory Management Unit (MMU) optimized for handling bursty data traffic.
- IPv4/IPv6 support.
- Flexible Access Control List (ACL).
- · Enhanced DoS attack statistics gathering.
- Low-power Energy Efficient Ethernet (EEE) support with Burst and Batch control policy.
- AVB support.
- Support for Industrial Temperature.
- 40 nm CMOS process.

MMU Ingress Pipeline Admission Flow 8 x 1G 8 x GPHY Control Control MAC 16 GbE Ethernet Queueing 8 x 1G 8 x GPHY Switch Controller 512 KB Packet Buffer 8 x (4K x 128B) Octal 2 x QSGMII FE/1G Egress Pipeline **GPHY** MAC (EP) Scheduling Cortex-A9 125 MHz I\$ = 32K / D\$ = 32KL2\$ = 128 KB I²C/ LED LED Reset GPIO JTAG MDIO SPI Serial RS-232 BSC Serial Parallel

Figure 1: BCM53334 Functional Block Diagram

Broadcom Corporation 5300 California Avenue Irvine, CA 92617

© 2014 by Broadcom Corporation All rights reserved Printed in the U.S.A.

Broadcom[®], the pulse logo, Connecting everything[®], the Connecting everything logo, BroadScale[®], ContentAware [™], Ethernet@Wirespeed [™], and StrataXGS[®] IV are among the trademarks of Broadcom Corporation and/or its affiliates in the United States, certain other countries and/or the EU. Any other trademarks or trade names mentioned are the property of their respective owners.

This data sheet (including, without limitation, the Broadcom component(s) identified herein) is not designed, intended, or certified for use in any military, nuclear, medical, mass transportation, aviation, navigations, pollution control, hazardous substances management, or other high-risk application. BROADCOM PROVIDES THIS DATA SHEET "AS-IS," WITHOUT WARRANTY OF ANY KIND. BROADCOM DISCLAIMS ALL WARRANTIES, EXPRESSED AND IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-

BCM53334 Data Sheet Revision History

Revision History

Revision	Date	Change Description
53334-DS06-R	12/19/14	Updated:
		 Table 38: "Ordering Information for RoHS6 Devices with Exemption 15
		(Eutectic Bumps Internally Between Die and Substrate)," on page 97
		Added:
		 Table 37: "Ordering Information for RoHS6 Devices (Contact Broadcom for Availability)," on page 97
53334-DS05-R	07/18/14	Updated:
		 Change Advanced Data Sheet to Data Sheet.
		 "Power Supply Current" on page 79 - Added power column to Power Supply Current Tables.
		Sadcoin Confidential

BCM53334 Data Sheet Revision History

Sandard San
Removed: • Hardware strapping pin description to enable Super Isolate Mode.

BCM53334 Data Sheet Revision History

Revision	Date	Change Description					
53334-DS03-R	07/03/13	Updated:					
		 For power sequencing add requirement to power up the core VDDC at the same time or before GP-AVDDL SUPPLY. 					
		Remove SGMII/SerDes DC Characteristics					
		Update Parallel LED Interface.					
		 Table 1: "5615X_5333X_5334XCT SoC Port Configurations," on page 14 - Remove DSCP 					
		 Table 2: "Switch Features," on page 29 - Adjust table sizes. 					
		 Table 3: "Switch Internal Memory Table," on page 35 - Remove DSCP 					
		 Table 15: "5615X_5333X_5334XCT Hardware Signals," on page 83 - Add PU/PD 					
		 Section 7: "Pin List Description" - Add PU/PD 					
53334-DS02-R	04/05/13	Updated:					
		Update entire document.					
		"Pin List by Signal Name" on page 143					
		"AC Characteristics" on page 192					
53334-DS01-R	12/21/12	Updated entire document.					
53334-DS00-R	09/26/12	Initial release					

Table of Contents

About This Document		13
Purpose and Audience		13
Acronyms and Abbreviations		13
Document Conventions		13
References		14
Technical Support		14
Section 1: Introduction		15
Overview		15
Ethernet Switch Controller		16
ARM Cortex-A9 Processor		
Section 2: Common Interfaces		18
System Reset		18
Power Sequencing		19
JTAG		19
Section 3: Ethernet Switch Controller Features	Description	21
Architecture		21
Feature Overview		22
Memory		26
Address Management		26
Class of Service		27
Strict Priority-Based Scheduling		27
Weighted Round Robin Scheduling		27
Deficit Round Robin Scheduling		27
Backpressure Handling		28
Per Port Packet Rate (Storm) Control		28
Mirroring		28
Spanning Tree Support		29
IEEE 802.1D Support		29
Port Filtering Mode A		29
Port Filtering Mode B		29
Port Filtering Mode C		30
IEEE 802.1Q Support		30
Link Aggregation		30
Double-Tagging		30
Forwarding Control Block Mask		31
ContentAware Processing		31

Ingress Filter Processor (IFP)	31
Network Management Support	
Energy Efficient Ethernet	32
Section 4: Ethernet Switch Controller System Interfaces	33
Overview	33
1GbE (QSGMII)	34
MII Management	34
Broadcom Serial Interface (BSC)	35
LED Interfaces	36
Serial LED Mode	36
PHY-Driven Parallel LED Mode	36
Serial to Parallel LED Mode	37
Section 5: Gigabit Ethernet Transceiver	
Copper Interface	38
Encoder	
Decoder	
Link Monitor	39
Digital Adaptive Equalizer	
Echo Canceler	40
Crosstalk Canceler	40
Analog-to-Digital Converter	40
Clock Recovery/Generator	40
Baseline Wander Correction	41
Multimode TX Digital-to-Analog Converter	41
Stream Cipher	41
Wire Map and Pair Skew Correction	42
Automatic MDI Crossover	42
1000BASE-T Operation	43
10/100BASE-TX Operation (Auto-Negotiation Enabled)	43
10/100BASE-TX Operation (Forced Mode)	43
Full-Duplex Mode	43
Master/Slave Configuration	44
Next Page Exchange	44
Auto-Negotiation	44
Ethernet@Wirespeed	45
Ethernet@Wirespeed Example	45
Enabling/Disabling Ethernet@Wirespeed	45
Removing Ethernet@Wirespeed Downgrade	46

Changing the Number of Failed Link Attempts	46
Monitoring Ethernet@Wirespeed	46
Super Isolate Mode	47
Software Enable/Disable	47
Standby Power-Down Mode	47
Auto Power-Down (APD) Mode	47
ADP Mode Enable (Auto-Negotiation Enabled).	47
Sleep Cycle Settings	48
Wake Cycle Settings	48
Section 6: ARM Cortex-A9 Processor Subsyst	em Functional Description49
Cortex-A9	
NOR Serial Flash Interface	49
MIIM/UART/GPIO Interfaces	
SPI interface	50
Section 7: Pin List Description	52
Signal Name Descriptions	
Pin List by Pin Name	
Pin List by Signal Name	
Section 8: Electrical Specifications	
Absolute Maximum Ratings	
DC Characteristics	
Operating Conditions	
Power-Up and Power-Down Specifications	
Power Supply Current	
Standard 3.3V Signals	
BSC Signals	
QSGMII SerDes Signals	
MIIM (MDIO) Signals	
AC Characteristics	
AC Timing for Reset	
BSC AC Characteristics	
SPI AC Characteristics	80
MDIO AC Characteristics	83
JTAG AC Specifications	
QSPI Flash Interface Timing	
LED Controller Interface	
XTAL Clock Requirements	
LC_PLL0_REFCLK Clock Requirements	

BCM53334 Data Sheet Table of Contents

EXT_QS2_CLKP/N Clock Specifications	90
QSGMII AC Specifications	91
Transmitter	91
Receiver	92
AC-JTAG	93
Section 9: Thermal Characteristics	95
Section 10: Mechanical Information	96
Section 11: Ordering Information	97
Appendix A: Acronyms and Abbreviations	
Broadcom	

BCM53334 Data Sheet List of Figures

List of Figures

Figure 1: I	BCM53334 Functional Block Diagram	2
Figure 2: I	BCM53334 Embedded Processor Functional Block Diagram	17
Figure 3:	System Reset Sequence	18
Figure 4: I	Power Sequencing	19
Figure 5: /	AC-JTAG Test Block	20
Figure 6:	Typical BCM53334 BroadScale Switching Architecture	21
Figure 7: I	BCM53334 QSGMII Interface	34
Figure 8: I	BSC Interface	35
Figure 9: \$	Single LED Refresh Cycle	36
-	LED Refresh Cycle	
Figure 11:	Fast SPI Command Byte	50
	Power-Up and Power-Down Timing	
	BSC Timing Diagram	
	SPI Interface Master Mode Timing Diagram	
	SPI Interface Slave Mode Timing Diagram	
	MIIM Interface Timing Diagram	
Figure 17:	JTAG Timing	84
Figure 18:	QSPI BSPI Mode Master Interface Timing	85
	QSPI MSPI Mode Master Interface Timing	
Figure 20:	LED Timing Diagram	87
Figure 21:	XTALP/XTALN Input Timing Diagram	88
Figure 22:	LC_PLL0_REFCLKP/N Input Timing Diagram	89
Figure 23:	EXT_QS2_CLKP/N Output Timing Diagram	90
Figure 24:	QSGMII Transmit Eye Mask	91
Figure 25:	QSGMII Receive Eye Mask	92
Figure 26:	Single-Tone Sinusoidal Jitter Mask	93
Figure 27.	23 mm x 23 mm Package	96

BCM53334 Data Sheet List of Tables

List of Tables

Table 1: BCM53334 SoC Port Configurations	15
Table 2: Switch Features	22
Table 3: Switch Internal Memory Table	26
Table 4: ContentAware Field Processor Sizes	32
Table 5: System Interfaces	33
Table 6: Changing the Number of Failed Link Attempts before Downgrade	46
Table 7: Serial Flash Interface	49
Table 8: BCM53334 Hardware Signals	52
Table 9: Pin List by Pin Name - BCM53334 Devices	
Table 10: Pin List by Signal Name - BCM53334 Devices	67
Table 11: Absolute Maximum Ratings	72
Table 12: Operating Conditions	
Table 13: AC Specifications for Power-Up and Power-Down	75
Table 14: BCM53334 Power Supply Current for 24P 1G at 110°C Junction Temperature	75
Table 15: Standard 3.3V Signals	
Table 16: BSC Signals	
Table 17: QSGMII SerDes DC Characteristics	77
Table 18: MIIM (Clause 22 Electrical Characteristics)	78
Table 19: BSC Master/Slave Fast-Mode Timing	79
Table 20: BSC Master/Slave Standard-Mode Timing	80
Table 21: SPI Master Mode Timing	81
Table 22: SPI Slave Fast Mode Timing	82
Table 23: MDC/MDIO Timing	83
Table 24: AC Characteristics for JTAG	84
Table 25: QSPI BSPI Mode Master Interface Timing Specifications	85
Table 26: QSPI MSPI Mode Master Interface Timing Specifications	86
Table 27: LED Timing	87
Table 28: XTALP/XTALN Input Requirements	88
Table 29: LC_PLL0_REFCLK Input Requirements	89
Table 30: EXT_QS2_CLKP/N Output Specifications	90
Table 31: QSGMII TX	92
Table 32: QSGMII RX	93
Table 33: Serial Interface AC-JTAG Characteristics	94
Table 34: AC-JTAG Transmit Setting (Driver Bias Current)	94
Table 35: AC-JTAG Receive Configuration	94

BCM53334 Data Sheet List of Tables

Table 36:	648-FCBGA+HS Thermal Characteristics with 50 x 50 x 35 mm 3 External Heat Sink at TA = 40 $^{\circ}$ C	•
	= 9.84W	. 95
Table 37:	Ordering Information for RoHS6 Devices (Contact Broadcom for Availability)	97
Table 38:	Ordering Information for RoHS6 Devices with Exemption 15	
	(Eutectic Bumps Internally Between Die and Substrate)	. 97

Broadcom

BCM53334 Data Sheet About This Document

About This Document

Purpose and Audience

This document describes the Broadcom[®] BCM53334 System on Chip (SoC). The Broadcom BCM53334 integrates a high-performance 125 MHz ARM Cortex-A9 processor and an Ethernet Switch controller with 24 multilayer GbE ports. This document is intended for hardware design, application, and OEM engineers.

Acronyms and Abbreviations

In most cases, acronyms and abbreviations are defined on first use.

Acronyms and abbreviations in this document are also defined in Appendix A: "Acronyms and Abbreviations," on page 98.

For a comprehensive list of acronyms and other terms used in Broadcom documents, go to: http://www.broadcom.com/press/glossary.php.

Document Conventions

The following conventions may be used in this document:

Convention	Description
Bold	User input and actions: for example, type exit, click OK, press Alt+C
Monospace	Code: #include <iostream> HTML: Command line commands and parameters: wl [-1] <command/></iostream>
<>	Placeholders for required elements: enter your <username> or w1 <command/></username>
[]	Indicates optional command-line parameters: w1 [-1]
	Indicates bit and byte ranges (inclusive): [0:3] or [7:0]

BCM53334 Data Sheet Technical Support

References

The references in this section may be used in conjunction with this document.

Note: Broadcom provides customer access to technical documentation and software through its Customer Support Portal (CSP) and Downloads and Support site (see Technical Support).

Technical Support

Broadcom provides customer access to a wide range of information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software updates through its customer support portal (https://support.broadcom.com). For a CSP account, contact your Sales or Engineering support representative.

In addition, Broadcom provides other product support through its Downloads and Support site (http://www.broadcom.com/support/).

BCM53334 Data Sheet Introduction

Section 1: Introduction

Note: This is an Advanced Data Sheet; information presented in this document, including parameters, may change.

Overview

The Broadcom BCM53334 is a System on Chip (SoC) optimized for power and cost without compromising performance. The BCM53334 integrates:

- · A high-performance 125 MHz ARM Cortex-A9 processor
- · An Ethernet Switch controller with 24 multilayer GbE ports
- Two QSGMII interfaces
- Up to 16 GbE transceivers

The Broadcom BCM53334 SoC port configurations are shown in Table 1.

Table 1: BCM53334 SoC Port Configurations

				· ·	L3	L2
Device	GbE Port	QSGMII	TSC 1	TSC 0	Features	Features
BCM53334	16	2	_	_	Yes	Yes

BCM53334 Data Sheet Ethernet Switch Controller

Ethernet Switch Controller

The Broadcom® BCM53334 integrates 16 GbE ports with embedded GPHYs and 8 GbE ports through QSGMII interfaces.

The BCM53334 is a highly integrated solution ideally suited for stand-alone GbE switches. The switch controller combines all the functions of a high-speed switch system, including packet buffer, SerDes, media access controllers, address management, and a non-blocking switch fabric. The BCM53334 device supports auto-DoS attack prevention and SNMP, IEEE 802.1x, Spanning Tree, and Rapid Spanning Tree protocols.

The BCM53334:

- · Provides 16 full-duplex GbE ports with embedded GPHYs.
- Provides two QSGMII interface to external PHYs for additional 8 full-duplex GbE ports. These GbE ports support both copper and fiber media (via external PHY device).
- Integrates 512KB internal memory in the Common Buffer Pool (CBP) for packet buffering.
- Provides hardware support for IPv4 and IPv6 protocols.
- Supports a Broadcom Serial control (BSC) controller for communicating with external devices such as serial EEPROM, and Flash ROM devices.
- Supports a serial interface for the MII management (MDC/MDIO) of physical layer devices.
- Contains the memory needed to host L2 switching tables.
- Supports advanced QoS.

BCM53334 Data Sheet ARM Cortex-A9 Processor

ARM Cortex-A9 Processor

The BCM53334 Integrates a high-performance 125 MHz ARM Cortex-A9 processor with a 32 KB four-way set associative instruction cache, a 32 KB four-way set associative data cache, and a 128 KB L2 cache. The Cortex-A9 processor offers significant performance improvements in both transfer rates and CPU utilization.

The BCM53334 provides support for serial Flash port. There are up to 8 GPIOs on the Cortex-A9 processor. All inputs are capable of generating processor interrupts.

- Cortex-A9
- Maximum CPU speed 125 MHz
- 32 KB 4-way set associative I-cache and D-cache
- 128K L2 cache
- 128-entry TLB
- · Serial flash ports
- 1 port BSC
- 1 UART port
- 8 GPIOs
- · 1 MDIO interface
- 1 SPI port

Figure 2: BCM53334 Embedded Processor Functional Block Diagram

BCM53334 Data Sheet Common Interfaces

Section 2: Common Interfaces

System Reset

Upon system power-up, the device internal logic will stay in reset for roughly 5 ms. The power-up state is achieved when 1.0V, 1.2V, 1.5V, 1.8V, and 3.3V are at steady state voltage. It is recommended that the user asserts SYS_RST_L for at least 40 ms after the voltages are stable. Most external Power-on-Reset (POR) devices will properly keep the reset signal low immediately from power-on until the power supply is stable. When using an FPGA/CPLD to drive the reset, a pull-down resistor may be required to ensure the SYS_RST_L signal is low. Figure 3 illustrates the reset sequence relative to the ramping power supplies.

Figure 3: System Reset Sequence

The initialization process loads all the pin configurable modes (such as BSC slave address bits), clears all switching tables that are automatically maintained by the device, and places the switch in a disabled and idle state. Using the active PCle bus, further initialization must be performed to configure the ports, MACs, and the tables before switching of packets can occur.

BCM53334 Data Sheet Power Sequencing

Power Sequencing

As in any multi-supply system, during the power ramp-up period, the I/O pads are in an undetermined state, and bus contention and current spikes could result. This can be minimized by an orderly and rapid power ramp up sequencing:

- The I/O power (3.3V/1.8V/1.5V/1.2V) should come up first, followed by the core power (1.0V). This implies
 that the core power (1.0V) should not be ON until the I/O power (3.3V/1.8V/1.5V/1.2V) reaches at least
 1.0V
- When the core power reaches the nominal core voltage (1.0V ±5%), the I/O power should be stable at the nominal I/O voltage (3.3V ±5%, 1.8V ±5%, 1.5V ±5%, 1.2V ±5%).
- The maximum ramp-up time for the core power 1.0V (from 0V to nominal voltage ±5%) is t1 = 5 ms as shown in Figure 4. Additionally, for a successful power-up sequence, Broadcom recommends that the external hardware reset should stay active for at least t2 = 40 ms after both the I/O and core powers are stable (see Figure 4).
- The VDDC (1.0V core) must be powered up at the same time or before the GP_AVDDL (1.0V analog) supply.

Figure 4: Power Sequencing

JTAG

Traditional JTAG provides the capability to test for opens and shorts conditions when the device is mounted onto the PCB, based on a direct connection. Present technology, where most high-speed differential signals are required to be AC–coupled, can produce false results due to traditional DC tests for opens and shorts. To provide a means of testing high–speed differential signals, the BCM53334 supports the latest JTAG specification IEEE Std.1149.6 (also known as AC-JTAG). To determine manufacturing faults on a high-speed differential line within a PCB, the device incorporates independent transceivers with low-load capacitance to avoid any adverse effect on the high-speed differential line (see Figure 5).

BCM53334 Data Sheet JTAG

Section 3: Ethernet Switch Controller Features Description

Architecture

The integrated Ethernet Switch Controller has a modular, high-performance pipelined packet-switching (BroadScale®) architecture. This enables:

- · Cost reduction
- Migration to different process technologies without architectural changes
- · Flexible port configurations
- · Scalable throughput
- · Scalable custom features

ContentAware

Buffer
Management

Traffic
Management

Intelligent Paser

Modification

24x 1G

Figure 6: Typical BCM53334 BroadScale Switching Architecture

Feature Overview

Some switch features and port counts may vary depending on the device ID (see "Overview" on page 15 for additional details).

Table 2: Switch Features

Feature Description		
Configuration	 Versatile port configurations. See Table 1: "BCM53334 SoC Port Configurations," on page 15 for overall configuration 	
	Dynamic buffer management	
	Supports:	
	 Ethernet/IEEE 802.3 packet sizes (64 bytes to 1522 bytes) 	
	 Jumbo packets up to 9216 bytes 	
L2 Switching	Supports:	
	 Learning up to 8K MAC addresses depending on device 	
	 Static entries 	
	 MAC limiting per port/LAG/VLAN 	
	Line rate switching for all packet sizes	
	 Shared and Independent VLAN learning 	
	 VLAN flooding for broadcast and DLF packets 	
	 Hardware-based address learning 	
	 Six CPU-Managed Learning (CML) modes per port 	
	 Hardware-and software-based aging 	
	 Software insertion/deletion/lookups of the L2 table 	
	 Same port bridging supported 	
L2 Multicast	Supports 256 L2 multicast groups	
	 Line rate switching for all packet sizes 	
	 Three port filtering modes to control multicast packet behavior 	
VLAN	 Supports 4K VLANs and assign VLAN for untagged and priority tagged packet on: 	
	- IEEE 802.1p	
	- IEEE 802.1Q	
	Port-based VLAN	
Source Port Filtering	Egress port block masks	
	Trunk group blocking masks	

Table 2: Switch Features (Cont.)

Feature	Description
Storm Control	 4 meters for packet-based or byte-based rate control with the below packet types:
	 Unknown unicast (DLF) packet rate control
	 Broadcast packet rate control
	 Known L2MC packets rate control
	 Unknown L2MC packets rate control
	 Known IPMC packets rate control
	 Unknown IPMC packets rate control
	 Enable individual threshold per port
Spanning Tree	Supports:
	 IEEE 802.1D spanning tree protocol (single spanning tree per port).
	 IEEE 802.1s for multiple spanning trees.
	 IEEE 802.1w rapid spanning tree protocol—delete and/or replace per Port, per VLAN, or per Port per VLAN.
	 Spanning tree protocol packets detected and sent to the CPU.
802.3ad Link Aggregation	128 trunk groups supported with up to eight members per group.
	No adjacency limitation.
	 Traffic load distribution for L2 switched packets.
	 Trunk port selection based on hash on source/destination MAC, VLAN, EtherType, source/destination IP address, TCP/UDP ports.
	 Trunk port selection for DLF, broadcast, and multicast packets.
Mirroring	Ingress/egress mirroring support.
	 Mirror-to-port receives unmodified packet for ingress mirroring.
	 Mirror-to-port receives modified packet for egress mirroring.
	 Mirroring across stacked modules.
	 Remote Switched Port Analyzer (RSPAN) mirroring, VLAN mirroring, flow mirroring.
	 Encapsulated Remote Switched Port Analyzer (ERSPAN) mirroring. Mirror-to-port can be a link aggregation group.

Table 2: Switch Features (Cont.)

Table 2: Switch Features (Cont.)				
Feature	Description			
ContentAware - Ingress Filter Processing	 Up to 512 FP rules with 4 slices allowing 4 parallel lookup and match Layer 2–7 packet classification Intelligent Protocol Aware processor with backward compatible byte-based classification option Parses up to 128 bytes per packet Multiple look-ups per packet Supports: Multiple matches and actions per packet ACL-based policing Ingress/egress port based filtering MAC destination address remarking 			
	 Class-based marking for SLAs Traffic class definition based on the filter Classification of different packet formats (IPv6, IPv4, double tagged, HTLS, IEEE 802.1Q, Ether II, IEEE 802.3) Hierarchical min/max programmable meters allows policing of flows Metering granularity from 8 Kbps to 1 Gbps Dual leaky bucket meters support two rate three-color marking srTCM, trTCM, and modified trTCM (RFC2697, RFC2698, RFC4115) Metering support on ingress ports and CPU queues Jumbo packet metering TCP/UDP port number range checking IPv6 filtering (128 bits) Filtering IP packets with options 			
QoS Features	 Eight CoS queues per port Enhanced 8 CoS queues for CPU Three drop precedence colors Per port, per CoS drop profiles Minimum/maximum bandwidth guarantee (shaping) per CoS, per port Traffic shaping available on CPU queues: bandwidth based and packet-per-second based Programmable priority to CoS queue mapping Provides two levels of drop precedence per queue Strict Priority (SP), Weighted Round Robin (WRR), and Deficit Round Robin (DRR) mechanism for shaped queue selection Programmable bucket size of egress port shaping and COS shaping Support for ingress port rate based policing and pause flow control Mapping of incoming priority, CFI to outgoing priority and drop precedence 			

Table 2: Switch Features (Cont.)

Feature	Description			
Port Security	Supports 802.1x			
	Blocking of egress ports on per ingress port or LAG basis (source port filtering)			
	Blocking of egress ports on per MAC address basis			
	Blocking of egress ports for broadcast, unknown unicast, and multicast packets			
Denial of Service (DoS) Attack	Built-in illegal address check (IPv4, IPv6)			
Prevention/Protocol Checkers	Denial of Service detection/prevention			
	Land packets (SIP = DIP)			
	NullScan (TCP sequence number = 0, control bits = 0)			
	Ping flood (flood of IPMC packets)			
	SYN/SYN-ACK flooding			
	SYN with sPort < 1024			
	Smurf attack			
	Individual control over handling of DOS packet			
CPU Protocol Packet Processing	Ability to individually control CPU protocol packet handling, including BPDU, Address Resolution Protocol (ARP), Internet Group Management Protocol (IGMP), Multicast Listener Discovery (MLD), and DHCP.			
	Individual control of trapping protocol packets and setting internal priority			
	Extensive control of handling of IGMP and MLD packet types			
Management Information Base	RMON statistics group, IETF RFC2819			
	SNMP interface group, IETF RFC1213, 2836			
	Ethernet-like MIB, IETF RFC1643			
	Ethernet MIB, IEEE 802.3u			
	Bridge MIB, IETF RFC1493			
Energy Efficient Ethernet [™]	System power saving by informing GPHYs into Low Power Idle (LPI) state			
(EEE)	EEE is only supported on 1GbE ports.			

BCM53334 Data Sheet Memory

Memory

The BCM53334 device integrates all table memory necessary to support its functions. Table 3 indicates the major internal table memory allocations and their functions for switching, routing, and classification.

Table Name Size **Function** Port Table One entry per each Per port configuration settings and attributes, i.e., L2 learning, port discards, VLAN handling, priority assignment. GbE, and CPU port **VLAN Table** 4K VLANs Indicates port membership and spanning tree group for each VLAN. Spanning Tree Group Table 64 groups Indicates spanning tree state for each port for each spanning tree group. MAC Address Table 8K MAC addresses Contains learned and programmed MAC addresses: indicates destination port and additional properties of each MAC address, i.e., source/destination discard, priority, blocking, mirroring. Reserved MAC Address 128 entries Contains reserved MAC addresses, programmed by Table software for special handling, i.e., copy to CPU, drop, flood, for control packets, BPDUs. Reserved MAC Address table can also be used as an overflow for MAC address table. The only difference between these two tables is that the Reserved MAC table is managed by software. MAC Block Table Allows for selective blocking and flooding to egress ports 32 groups based on source MAC address groups. Layer 2 Multicast Table Indicates port membership for Layer 2 multicast groups. 256 groups Link Aggregation Group 128 groups Indicates port membership of link aggregation groups and Table hash selection criteria. Rules for L2-L7 packet classification on ingress, ACLs, Ingress ContentAware 512 rules, 4 parallel

Table 3: Switch Internal Memory Table

Address Management

lookups

Processor Table

The BCM53334 switch contains all of the tables required to manage station MAC addresses on the device. The address table (also referred to as the L2 table) has space for 8K entries. New entries in the table are automatically learned when packets are received on the ports. These entries can also be updated or created by the CPU. Learning is based on the source MAC address and VLAN ID. Entries that are not used for an extended period of time are automatically aged out. The device can be configured to age static entries as well.

metering, statistics

For any valid incoming packet, the source MAC address along with the VLAN ID (either from the packet or from VLAN tables inside the device) is used to search the tables. On a successful match of (S-MAC, VLAN-ID) the device performs station move checks. If the incoming port does not match a port in the MAC table, the entry is relearned with the new incoming port value.

BCM53334 Data Sheet Class of Service

The destination MAC address, along with the VLAN ID, is used as a search key for the packet's output port. If a match is found, then the packet is switched out on that port. If a match is not found, then a Destination Lookup Failure (DLF) occurs, and the packet is switched out on all ports that are members of the VLAN.

Class of Service

The IEEE 802.1D specification defines eight levels of priority 0–7, with priority 7 being the highest priority. This information is carried in the 3-bit priority field of the VLAN tag header. This service applies to all network ports.

The BCM53334 switch supports up to eight CoS queues per egress port. For tagged packets, the incoming packet priority can be mapped to one of the eight CoS queues, based on the priority field in the tag header or from the result of filtering mechanisms. For untagged packets, the CoS priority is derived either from a programmable field within the VLAN address tables or from the result of filtering mechanisms. After the packets are mapped into a CoS queue, they are forwarded or conditioned using either Strict Priority (SP), Deficit Round Robin (DRR), or Weighted Round Robin (WRR) schedulers.

Strict Priority-Based Scheduling

In SP policy, any packet residing in the higher priority queues is transmitted first. Only when these queues are empty, will packets in lower priority queues be transmitted. The disadvantage of this scheme is potential starvation of packets in lower-priority queues.

Weighted Round Robin Scheduling

In the WRR scheme, each queue is assigned a weight. The number of packets sent from each priority queue depends on the weight. Because the unit of the weight is one packet, the weight can be anywhere from 64 bytes to 1522 bytes, or 9216 bytes (when supporting jumbo frames).

Example: If there are four CoS queues of A, B, C, and D and the respective weights are 4, 3, 2, and 1, and if the packets are present in all the queues, the packets are sent in the sequence of A1, B1, C1, D1; A2, B2, C2; A3, B3; A4, accordingly.

Deficit Round Robin Scheduling

The Deficit Round Robin (DRR) scheme provides relative bandwidth sharing across all active COS queues. The DRR weights are relative to each other. If minimum bandwidth is configured in this mode, then it is served first. Any excess bandwidth is then shared according to the DRR weights.

BCM53334 Data Sheet Backpressure Handling

Backpressure Handling

The BCM53334 switch supports mechanisms to handle backpressure, allowing for flexible flow control on packet transactions. The limit at which backpressure is detected is based on the amount of memory utilized by the packets on an input port. A backpressure message (XOFF) is sent when the lower of the two conditions (cell count limit or packet count limit) is reached. When the corresponding count goes below the high threshold and reaches the low threshold, an XON message is sent. This limit flow control is applied to the:

- IEEE 802.3x flow control. If the port is configured in full-duplex mode, IEEE 802.3x flow control is used and the MAC control PAUSE frame is sent to inhibit traffic on that port for a specified period of time.
- Enable jamming signal. If the port is configured in half-duplex mode and enabled to send a jamming signal, the jamming signal is asserted.

For ports that continue to receive packets, even after applying the above-noted flow control, the packets are discarded. Similarly, when the packets are switched out and the memory utilization falls below the limit, incoming packets are handled again. For full-duplex ports, another PAUSE frame is sent, with the time period set to 0, upon which the remote port can transmit again. For half-duplex ports, if the jamming signal was asserted, it will now be deasserted.

Per Port Packet Rate (Storm) Control

The BCM53334 provides a per port packet or byte rate control mechanism to prevent the packets from flooding into other parts of the network. These programmable threshold limits apply to all ports. Several types of packets can be monitored:

- DLF/Unknown unicast packets
- Broadcast packets
- Unknown L2 Multicast packets
- · Known L2 Multicast packets

The packet types are flexibly mapped to four leaky bucket mechanisms, and packets are discarded if the respective bucket becomes out of profile.

Mirroring

Mirroring is a useful feature for monitoring the traffic coming in or going out on a particular port. A port can be ingress-mirrored or egress-mirrored. The mirrored-to port can be programmed as a sniffer port to monitor all traffic on the mirrored ports. When a port is ingress-mirrored, any packet received on that port is sent to a mirrored-to port, and any packet transmitted from the egress-mirrored port is also sent to the mirrored-to port.

The BCM53334 supports the following packet mirroring functions:

- · Mirror frames destined for an egress-specific port (egress mirroring)
- · Egress mirroring of packets sent by the CPU
- · Mirror frames coming from ingress-specified port (ingress mirroring)

BCM53334 Data Sheet Spanning Tree Support

· Mirror frames coming from a specific ingress port sent to a specific egress port

- · Mirror frames that match a certain rule in the filtering processor
- Mirror frames destined to a specific MAC address

The BCM53334 supports mirror across stack.

Spanning Tree Support

The BCM53334 provides a number of features for compliance with the IEEE 802.1D and IEEE 802.1S spanning tree support specifications, as well as some optimizations for IEEE 802.1W rapid spanning tree support:

- The state bits in the spanning tree group are configured by the CPU to indicate a specific spanning tree
 state, and the necessary action is taken on the incoming packet. The spanning tree states supported are:
 disable, blocking, listening, learning, and forwarding.
- Entries marked as static in the MAC table are not aged out.
- The MAC table entry allows for detecting a hit on an address entry. If there is no hit on an entry for the spanning tree age limit duration, the address entry is deleted.
- All non-reserved addresses are self-learned.
- Reserved addresses from 0x0180c2000000 to 0x0180c2000010 and from 0x0180c2000020 to 0x0180c200002F are detectable, and these packets are forwarded to the CPU.
- Supports multiple 64 spanning trees (IEEE 802.1s). Each VLAN can be associated with one spanning tree
 group, which allows spanning tree-per-VLAN operation.
- Support for IEEE 802.1W Rapid Spanning Tree Protocol, with the ability to delete MAC table entries or replace the associated port information based on search criteria such as port and VLAN.

IEEE 802.1D Support

The BCM53334 supports the IEEE 802.1D specification for traffic class expediting and dynamic multicast filtering support.

Port Filtering Mode A

Forwards all addresses. In this mode, forwarding operates as bridge filtering mode 1. The port bitmap from the VLAN tables is used to determine the destination ports.

Port Filtering Mode B

Forwards all unregistered addresses. In this mode, if the group MAC address registration entries exist in the multicast table, frames destined for the corresponding group MAC addresses are forwarded only on ports identified in the member port set, which is identified by the port bitmap. If the group MAC address does not exist in the multicast table, then Mode A filtering mechanism is used.

BCM53334 Data Sheet IEEE 802.1Q Support

Port Filtering Mode C

Filters all unregistered addresses. In this mode, frames destined for group MAC addresses are forwarded only if such forwarding is explicitly permitted by a group address entry in the multicast table. In other words, if the group MAC address exists in the multicast table, then the packets are forwarded using the port bitmap from that entry. Otherwise, the packets are dropped.

IEEE 802.1Q Support

The BCM53334 supports the IEEE 802.1Q specification for virtual bridged local area networks by providing the following features:

- For untagged (frame without a VLAN header) or priority tagged (frame with a tag header of VLAN ID = 0)
 frames, the ability to assign a VLAN based on the Source MAC Address, Source IP Address, or on a
 protocol. If a match is not found via these tables, then a default VLAN ID can be assigned per ingress port.
- Identification of the GVRP address 0x01-80-C2-00-00-21 and forwarding these frames to the CPU.

Link Aggregation

Link aggregation or trunking is a mechanism which bundles together up to eight ports to form a port bundle or a trunk. The port bundle is like one logical link and is useful when high bandwidth and/or redundancy between switches are required. The features include:

- Trunk ports in a bundle are always configured for full duplex.
- Trunking of network ports provides aggregate throughput up to a maximum of eight front-panel ports per trunk group.
- · Provides incremental bandwidth dependent upon requirements.
- Provides link redundancy. In case of trunk port failure, the trunk group is modified and the port that failed is removed from the group.
- · Provides load distribution on the trunk ports.

The BCM53334 supports 128 trunk groups, and each trunk group can have up to eight trunk ports. The trunk links are selected using a hashing function based on a combination of: MAC DA, MAC SA, VLAN, EtherType, IP DA, and IP SA. The BCM53334 supports link aggregation, with no adjacency limitation, within the same switch module and across stack.

Note: The Uplink ports may be included as trunk link members.

Double-Tagging

The BCM53334 provides full support for double tagging as specified in the emerging IEEE standard, including the following features:

- The Service Provider VLAN ID (SPVID) can be inserted based on ingress port or ingress port and customer VLAN.
- The Protocol field on the SPVID is fully programmable.
- The priority bits in the SPVID can be programmed by the provider or from the customer VLAN tag in the packet.
- The ability to distinguish customer control packets (such as spanning tree BPDUs). They may be discarded
 or processed locally depending on configuration.

Forwarding Control Block Mask

On certain ports in the switch, DLF unicast and multicast packets should be prevented from being forwarded. However, broadcast packets should always be forwarded to all ports.

To implement this feature:

- 1. Three separate registers, UNKNOWN_UCAST_BLOCK_MASK, UNKNOWN_MCAST_BLOCK_MASK, and BCAST_BLOCK_MASK are bitmasks for unknown unicast, unknown multicast, and unknown broadcast packets.
 - a. The bits not set in these bitmasks define a set of egress ports to which unknown unicast, multicast, and broadcast frames should be forwarded.
 - b. To block broadcast packets to a specific port, the appropriate bit is set in the BCAST_BLOCK_MASK.
 - c. To forward broadcast packets to all ports of the VLAN, set all the bits in BCAST BLOCK MASK to 0.
- 2. Ingress logic will pick up the port bitmap from the VLAN tables, using the VLAN ID assigned to the packet, for unknown unicast, unknown multicast, and broadcast packets.
 - For unknown unicast packets, the port bitmap is ANDed with the UNKNOWN_UCAST_BLOCK_MASK bitmask.
 - b. For unknown multicast packets, the port bitmap is ANDed with the UNKNOWN_MCAST_BLOCK_MASK bitmask.
 - c. For broadcast packets, the port bitmap is ANDed with the BCAST_BLOCK_MASK bitmask.

ContentAware Processing

ContentAware processing is described in the following sections:

Ingress Filter Processor (IFP)

For packets ingressing on the GbE ports. Ingress lookups occur on L2 and L3 pre-routed packets. The IFP is a flexible and powerful ContentAware Filter Processor. Filtering can be done by parsing the first 128 bytes of the packet using either predefined protocol fields such as VLAN, L2, and L3 addresses or using User Defined fields. Assigning a new priority, route, drop, or redirecting the packet are some of the actions that can be performed.

Table 4: ContentAware Field Processor Sizes

	Slices	Rules per Slice	Total # of Rules	Meters	Counters	Bits per Rule (Single Wide)
IFP	4	_	512	512	512	_

Network Management Support

The BCM53334 provides a set of counters to support the following Management Information Base (MIB) specifications:

- RMON statistics group (IETF RFC2819)
- SNMP interface group (IETF RFC1213 and 2863)
- Ethernet-like MIB (IETF RFC1643)
- Ethernet MIB (IEEE 802.3u)
- Bridge MIB (IETF RFC1493)

Energy Efficient Ethernet

The BCM53334 device support Energy Efficient Ethernet (EEE) to reduce power consumption by enabling the internal PHYs to enter a Low Power Idle (LPI) state, during extended idle periods that may exist between packets. The power savings aspects of EEE are largely implemented in the PHYs. However, the PHYs are reliant upon the MACs to inform them of when to enter and leave the LPI state. The MACs make these determinations by examining the state of the transmit queues associated with each MAC. The EEE signaling between a MAC and its PHY is conveyed by the SGMII signals between them. The EEE feature is only supported on 1GbE ports, not supported on the TSC uplink/stacking ports.

When the transmit MAC asserts its LPI signal to the PHY, the PHY transmits a sleep symbols on the wire for a short period. This informs the link partner's receive PHY that it is entering the LPI state. After the sleep symbols have been transmitted, a quiet period is entered where there is no signaling. At the beginning of the first quiet period, the receive PHY indicates to its MAC that it has entered the LPI mode. The transmit PHY interrupts the quiet period periodically to send refresh symbols that are used to keep PLLs, filters, and other functions in sync, so that the LPI state can be exited quickly. When the transmit MAC deasserts, the PHY wakes up and transmits wake symbols for a short period to the link partner's PHY, informing it that it is time to wake up. The time between the transmit MAC deasserting and its resumption of packet transmission may be adjusted upward from the minimum PHY wake up time to allow for other system components to wake up and be ready for packet reception. Therefore, an idle period may precede the appearance of the first packet after a LPI sequence.

In general, EEE operates in an asymmetric mode. Meaning, the transmit direction and receive direction may enter and exit the LPI state independently. For 1000BASE-T, however, symmetric operation is required in order to truly benefit from EEE. In symmetric mode, both the transmit and receive paths must be indicating with sleep symbols before either side will enter the quiet state. Therefore, the transmit half of a PHY will send sleep signals until either sleep symbols are received from the link partner or the PHY has been commanded to exit the LPI state by the MAC.

Section 4: Ethernet Switch Controller System Interfaces

Overview

The BCM53334 includes the following physical layer interfaces:

- GbE (QSGMII): Allows connection to 10/100/1000BASE-T physical layer devices
- MIIM (IEEE 802.3u): Communication with physical layer devices
- JTAG: For IEEE Std. 1149.6 boundary scan
- BSC: For low-speed configuration (as a slave) and low-speed communications (as a CPU-controlled master/slave)
- · LED: For system LED support

Table 5: System Interfaces

Interface	Description
GbE (SerDes) port	Up to 16 GbE ports, full-duplex mode of operation, compliant to IEEE 802.3
	Support for 10/100/1000 Mbps using auto-negotiation
	Supports 2 QSGMII interfaces
	Support for jumbo frames up to 9216 bytes
Serial LED	Control of up to 255 system LEDs at a 30 Hz refresh rate
	Simple microcontroller with instructions optimized for LED control
	Low-cost two-wire interface to system LEDs
	256 bytes of program RAM
	256 bytes of data RAM
	Direct access to per port speed, duplex state, flow control state, link state, transmit and receive activity, and collision activity
Parallel LED	16 embedded ports
	3 parallel drivers
MIIM (MDC/MDIO)	IEEE 802.3u-compliant MIIM interface for communication with external PHY devices
	2.5 MHz operation
	IEEE 802.3 Clause 22-compliant
Broadcom Serial Control (BSC) bus	BSC-compliant interface—The Broadcom serial control (BSC) bus is Philips [®] I ² C-compatible.
	Supports slave mode, allowing an external microcontroller to configure the BCM53334 device
	CPU-controlled master mode to communicate with other BSC devices
JTAG	JTAG-compliant interface used to support boundary scan operations
	20 MHz operation
-	-

BCM53334 Data Sheet 1GbE (QSGMII)

1GbE (QSGMII)

The BCM53334 provides up to 2 QSGMII links, each operating at 5.0 Gbps on two pairs of differential signals (1 TX pair and 1 RX pair). The QSGMII is a CML interface and connects to external QSGMII PHYs such as Broadcom's BCM54282. Each QSGMII link is an equivalent of four 1.25 Gbps SGMII links, conveying four ports of network data with significantly less number of signal pins compared to GMII or SGMII. With four GbE links multiplexed onto one QSGMII link, the data from port 0 will display first, followed by data from port 1, port 2, and port 3. This will then be followed by the next piece of data from port 0 and the rest of the ports following the same sequence. Since the data is 8b/10b encoded before being sent out the QSGMII link, the raw data throughput is 4 Gbps. The QSGMII operates in both half and full duplex and at all port speeds. The QSGMII link replicates the data 100 times and 10 times, respectively, when operating at 10 Mbps or 100 Mbps.

Figure 7: BCM53334 QSGMII Interface

MII Management

The CPU Management Interface Controller (CMIC) supports an IEEE 802.3u standard MII Management (MIIM) interface. This is a two-wire serial bus controlled by the CMIC. It allows register access to all system PHYs. PHY data can be read/written—to using this interface. The two signals for MIIM are IP_MDC (clock) and IP_MDIO (bidirectional data). The CPU programs the PHY registers using this interface. After the initialization sequence, the CPU could read the link up/down register bit to detect any link changes. Alternatively, the CPU can enable the MIIM_AUTO_LINK_SCAN_EN bit. In this mode, CMIC will scans the PHYs and detect link status for each port. The link status register is updated at the end of each scan. If a link status change is detected, CMIC sends a notification to the CPU.

Broadcom Serial Interface (BSC)

The BCM53334 switch provides an BSC interface to communicate with other devices that support a similar interface. The signals supported are shown in Figure 8.

Figure 8: BSC Interface

The BSC interface can be configured to operate in either master or slave mode. The supported BSC data protocol format is big endian, which is consistent with the BSC protocol supported by other vendors.

Upon reset, the BCM53334 switch enters the default slave mode, provided BSC_MODE strap is pulled high. In this mode, an external BSC master device can communicate with the BCM53334 switch and initialize the device using the BSC_SDA and BSC_SCL lines. The external master can write the 16-bit address of the register to be accessed, followed by the 32-bit data to be written. When all 32 bits (4 bytes) of data are provided, a write to the internal register is performed.

Note: There is no mechanism to support any interrupt structure or bus mastering in the BSC slaveonly mode.

A default BSC slave address of 0b1000100 is used for the slave-only mode. Additionally, the BSC_SA0 and BSC_SA1 inputs can be strapped high or low, to change the default slave address, giving a range of 0b1000100 to 0b1000111. Both 7-bit and 10-bit addressing schemes are supported.

Optionally, CPU-controlled master/slave mode is supported. This mode is disabled by default and is useful to connect other BSC devices, such as a time-of-day chip, temperature sensors, parallel ports, and so forth, to the BCM53334 switch. In master mode, read and write BSC operations are initiated under program control of the host CPU. A block of registers accessible by the CPU controls this function.

BCM53334 Data Sheet LED Interfaces

LED Interfaces

Serial LED Mode

A LED microprocessor controls the serial LED signals (clock and data). Both LED_CLK and LED_DATA are outputs. It can provide the port status for all GE and TSC ports. This requires programming some assembly code routines to run on the LED microprocessor. Please refer to the SDK and PRG for more details.

When active, LED_CLK is a 5 MHz clock. Both signals are held low during periods of inactivity. A single LED refresh cycle consists of clocking out a programmable number of LED_DATA bits. The LED_DATA signal is pulsed high at the start of each LED refresh cycle (see Figure 9). The LED refresh cycle is repeated every 30 ms to refresh the LEDs.

Figure 9: Single LED Refresh Cycle

The LED refresh cycle is repeated periodically (every 30 ms) to refresh the LEDs (see Figure 10).

Figure 10: LED Refresh Cycle

PHY-Driven Parallel LED Mode

In addition to the serial LED interface which provides status for all 24 ports, a 48-output parallel LED interface is available for the 16 integrated GPHYs. Parallel LED interface for the other 8 ports comes from the external QSGMII-based PHYs.

Note: Several LED pins behave as strap pins during reset and some LED pins are shared with the GPIO interfaces. When GPIO interface is enabled then the LED function is disabled. Refer to Section 7: "Pin List Description," on page 52 for more details.

BCM53334 Data Sheet LED Interfaces

The BCM53334 has three programmable LED balls per port that perform different functions. Each of the BCM53334 LEDs can be individually programmed to many available modes on a per port basis.

Serial to Parallel LED Mode

When the LED microprocessor is enabled, the parallel LED interface is also controlled by the LED microprocessor. It inputs the serial LED signals to the internal shift register circuit and outputs the LED signals on the parallel LED interface. In this mode, the LED signals come from the port status. It can support all GE and TSC ports, same as in serial LED mode. The LED signal count per port is controlled by the LED microprocessor code. It is not limited to three signals per port as in PHY-driven parallel LED mode. Since there are 48 pins in Broadcoin Confiderillal the parallel LED interface, it can output up to 48 LED signals.

Section 5: Gigabit Ethernet Transceiver

Copper Interface

The BCM53334 can communicate with Link Partners that support 10BASE-T, 100BASE-TX or 1000BASE-T. The BCM53334 supports auto-negotiation for 10BASE-T, 100BASE-TX or 1000BASE-T. The BCM53334 supports force mode for 10BASE-T and 100BASE-TX. Force mode is not supported for 1000BASE-T operation.

The following sections describe the internal circuitry and additional features of the copper interface.

Encoder

In 10BASE-T mode, Manchester encoding is performed on the data stream that is transmitted on the twisted-pair cable. The multimode transmit digital-to-analog converter (DAC) performs pre-equalization for 100m of Category 3 cabling.

In 100BASE-TX mode, the BCM53334 transmits a continuous data stream over the twisted-pair cable. The transmit packet is encapsulated by replacing the first 2 nibbles of preamble with a start-of-stream delimiter (/J/K codes) and appending an end-of-stream delimiter (/T/R codes) to the end of the packet. The transmitter repeatedly sends the idle code group between packets. The encoded data stream is serialized and then scrambled by the stream cipher block, as described in "Stream Cipher" on page 41. The scrambled data is then encoded into MLT-3 signal levels.

In 1000BASE-T mode, the BCM53334 simultaneously transmits and receives a continuous data stream on all four pairs of the Category 5 cable. Byte-wide data from the transmit data signals are scrambled when the transmit enable is asserted, and the trellis (a PAM5 symbol on each of the four twisted-pairs) is encoded into a four-dimensional code group and then inserted into the transmit data stream. The transmit packet is encapsulated by replacing the first 2-bytes of the preamble with a start-of-stream delimiter, and appending an end-of-stream delimiter to the end of the packet. When the transmit error input is asserted during a packet transmission, a transmit error code group is sent in place of the corresponding data code group. The transmitter sends idle code groups or carrier extend code groups between packets. Carrier extension is used by the switch to separate packets within a multiple-packet burst, and is indicated by asserting the transmit error signal and placing 0Fh on the transmit data signals while the transmit enable is low. A carrier extend error is indicated by replacing the transmit data input with 1Fh during carrier extension.

The encoding complies with IEEE 802.3ab and is fully compatible with previous versions of the Broadcom 1000BASE-T PHYs.

Decoder

In 10BASE-T mode, Manchester decoding is performed on the data stream.

In 100BASE-TX mode, following equalization and clock recovery, the receive data stream is converted from MLT-3 to serial non-return to zero (NRZ) data. The NRZ data is descrambled by the stream cipher block, as described later in this document. The descrambled data is then deserialized and aligned into 5-bit code groups. The 5-bit code groups are decoded into 4-bit data nibbles. The start-of-stream delimiter is replaced with preamble nibbles, and the end-of-stream delimiter and idle codes are replaced with zeros. The decoded data is driven onto the MII receive data outputs. When an invalid code group is detected in the data stream, the BCM53334 asserts the MII receive error (RX_ER) signal. RX_ER is also asserted when the link fails or when the descrambler loses lock during packet reception.

In 1000BASE-T mode, the receive data stream is:

- · Passed through the Viterbi decoder
- Descrambled
- Translated back into byte-wide data

The start-of-stream delimiter is replaced with preamble bytes, and the end-of-stream delimiter and idle codes are replaced with 0x00. Carrier extend codes are replaced with 0x0F or 0x1F. The decoded data is driven onto the QSGMII receive data outputs. Decoding complies with IEEE 802.3ab and is fully compatible with previous versions of Broadcom 1000BASE-T PHYs.

Link Monitor

In 10BASE-T mode, a link-pulse detection circuit constantly monitors the following pairs for the presence of valid link pulses.

- TDP_[73:0]_[0]/TDN_[73:0]_[0]
- TDP_[73:0]_[1]/TDN_[73:0]_[1]

In 100BASE-TX mode, receive signal energy is detected by monitoring the receive pair for transitions in the signal level. Signal levels are qualified using squelch detect circuits. When no signal is detected on the receive pair, the link monitor enters the Link Fail state, and the transmission and reception of data packets are disabled. When a valid signal is detected on the receive pair for a minimum of 1 ms, the link monitor enters the Link Pass state, and the transmit and receive functions are enabled.

Following auto-negotiation in 1000BASE-T mode, the master transceiver begins sending data on the media. The slave transceiver also begins transmitting when it has recovered the master transceiver's timing. Each end of the link continuously monitors its local receiver status. When the local receiver status has been good for at least 1 μ s, the link monitor enters the Link Pass state, and the transmission and reception of data packets are enabled. When the local receiver status is bad for more than 750 ms, the link monitor enters the Link Fail state, and the transmission and reception of data packets are then disabled.

Digital Adaptive Equalizer

The digital adaptive equalizer removes intersymbol interference (ISI) created by the transmission channel media. The equalizer accepts sampled unequalized data from the analog-to-digital converter (ADC) on each channel and produces equalized data. The BCM53334 achieves an optimum signal-to-noise ratio by using a combination of feed forward equalization (FFE) and decision feedback equalization (DFE) techniques. Under harsh noise environments, these powerful techniques achieve a bit error rate (BER) of less than 1 x 10⁻¹² for transmissions of: up to 100 meters on Category 5 twisted-pair cabling for 1000BASE-T and 100BASE-TX mode; up to 100 meters on Category 3 UTP cable for 10BASE-T mode. The all-digital nature of the design makes the BCM53334 very tolerant to noise. The filter coefficients are self-adapting to accommodate varying conditions of cable quality and cable length.

Echo Canceler

Because of the bidirectional nature of the channel in 1000BASE-T, an echo impairment is caused by each transmitter. The output of the echo filter is added to the FFE output to remove the transmitted signal impairment from the incoming receive signal. The echo canceler coefficients are self-adapting to manage the varying echo impulse responses caused by different channels, transmitters, and environmental conditions.

Crosstalk Canceler

The BCM53334 transmits and receives a continuous data stream on four channels in gigabit mode. For a given channel, the signals sent by the other three local transmitters cause impairments on the received signal because of near-end crosstalk (NEXT) between the pairs. It is possible to cancel the effect because each receiver has access to the data for the other three pairs that cause this interference. The output of the adaptive NEXT canceling filters is added to the FFE output to cancel the NEXT impairment.

Analog-to-Digital Converter

Each receive channel has its own 125 MHz analog-to-digital converter (ADC) that samples the incoming data on the receive channel and feeds the output to the digital adaptive equalizer. Advanced analog circuit techniques achieve the following results:

- · Low offset
- · High-power supply noise rejection
- · Fast settling time
- · Low bit error rate

Clock Recovery/Generator

The clock recovery and generator block creates the transmit and receive clocks for 1000BASE-T, 100BASE-TX, and 10BASE-T operation.

In 10BASE-T or 100BASE-TX mode, the transmit clock is locked to the reference clock input, and the receive clock is locked to the incoming data stream.

In 1000BASE-T mode, the two ends of the link perform loop timing. One end of the link is configured as the master, and the other is configured as the slave. The master transmit and receive clocks are locked to the reference clock input. The slave transmit and receive clocks are locked to the incoming receive data stream. Loop timing allows for the cancellation of echo and NEXT impairments by ensuring that the transmitter and receiver at each end of the link are operating at the same frequency.

Baseline Wander Correction

1000BASE-T and 100BASE-TX data streams are not always DC-balanced. Because the receive signal must pass through a transformer, the DC offset of the differential receive input can vary with data content. This effect, which is known as baseline wander, can greatly reduce the noise immunity of the receiver. The BCM53334 automatically compensates for baseline wander by removing the DC offset from the input signal, thereby significantly reducing the probability of a receive symbol error.

In 10BASE-T mode, baseline wander correction is not performed because the Manchester coding provides a perfect DC balance.

Multimode TX Digital-to-Analog Converter

The multimode transmit digital-to-analog converter (DAC) transmits PAM5, MLT-3, and Manchester coded symbols. The transmit DAC performs signal wave shaping that decreases the unwanted high frequency signal components, reducing electromagnetic interference (EMI). The transmit DAC uses a voltage drive output that is well-balanced, and therefore, produces very low-noise transmit signals.

Stream Cipher

In 1000BASE-T and 100BASE-TX modes, the transmit data stream is scrambled to reduce radiated emissions and to ensure that there are adequate transitions within the data stream. The 1000BASE-T scrambler also ensures that there is no correlation among symbols on the four different wire pairs and in the transmit and receive data streams. The scrambler reduces peak emissions by randomly spreading the signal energy over the transmit frequency range and eliminating peaks at certain frequencies. The randomization of the data stream also assists the digital adaptive equalizers and echo/crosstalk cancelers. The algorithms in these circuits require that there be no sequential or cross-channel correlation among symbols in the various data streams.

In 100BASE-TX mode, the transmit data stream is scrambled by exclusive ORing the encoded serial data stream. This is done with the output of an 11-bit wide linear feedback shift register (LFSR), producing a 2047-bit non-repeating sequence.

In 1000BASE-T mode, the transmit data stream is scrambled by exclusive ORing the input data byte with an 8-bit wide cipher text word. The cipher text word generates each symbol period from 8 uncorrelated maximal length data sequences that are produced by linear remapping of the output of a 33-bit wide LFSR. After the scrambled data bytes are encoded, the sign of each transmitted symbol is again randomized by a 4-bit wide cipher text word that is generated in the same manner as the 8-bit word. The master and slave transmitters use different scrambler sequences to generate the cipher text words. For repeater or switch applications, where all ports can transmit the same data simultaneously, signal energy is randomized further by using a unique seed to initialize the scrambler sequence for each PHY.

The receiver descrambles the incoming data stream by exclusive ORing it with the same sequence generated at the transmitter. The descrambler detects the state of the transmit LFSR by looking for a sequence representing consecutive idle code groups. The descrambler locks to the scrambler state after detecting a sufficient number of consecutive idle codes. The BCM53334 enables transmission and reception of packet data only when the descrambler is locked. The receiver continually monitors the input data stream to ensure that it has not lost synchronization by checking that inter-packet gaps containing idles or frame extensions are received at expected intervals. When the BCM53334 detects loss of synchronization, it notifies the link partner of the inability to receive packets (1000BASE-T mode only) and attempts to resynchronize to the received data stream. If the descrambler is unable to resynchronize for a period of 750 ms, the BCM53334 is forced into the Link Fail state.

In 10BASE-T mode, scrambling is not required to reduce radiated emissions.

Wire Map and Pair Skew Correction

During 1000BASE-T operation, the BCM53334 has the ability to automatically detect and correct some UTP cable wiring errors. The symbol decoder detects and compensates for (internal to the BCM53334) the following errors:

- Wiring errors caused by the swapping of pairs within the UTP cable
- Polarity errors caused by the swapping of wires within a pair

The BCM53334 also automatically compensates for differences in the arrival times of symbols on the four pairs of the UTP cable. The varying arrival times are caused by differing propagation delays (commonly referred to as delay skew) between the wire pairs. The BCM53334 can tolerate delay skews of up to 64 ns long. Autonegotiation must be enabled to take advantage of the wire map correction.

During 10/100Mb/s operation, pair swaps are corrected. Delay skew is not an issue though, because only one pair of wires is used in each direction.

Automatic MDI Crossover

During copper auto-negotiation, one end of the link needs to perform an MDI crossover so that each transceiver's transmitter is connected to the other receiver. The BCM53334 can perform an automatic media dependent interface (MDI) crossover, eliminating the need for crossover cables or cross-wired (MDIX) ports. During auto-negotiation, the BCM53334 normally transmits on TDP_[73:0]_0/TDN_[73:0]_0 and receives on TDP_[73:0]_1/TDN_[73:0]_1.

When connecting to another device that does not perform MDI crossover, the BCM53334 automatically switches its TDP_[73:0]_0/TDN_[73:0]_0 and TDP_[73:0]_1/TDN_[73:0]_1 pairs when necessary to communicate with the remote device. When connecting to another device that does have MDI crossover capability, an algorithm determines which end performs the crossover function.

The MDI Crossover State can be determined by reading RDB_Register, offset 0x001, bit[13].

- 1'b0 = Normal MDI mode
- 1'b1 = Crossover MDI mode

1000BASE-T Operation

During 1000BASE-T operation, the BCM53334 swaps the transmit symbols on pairs 0 and 1 and pairs 2 and 3 if auto-negotiation completes in the MDI crossover state. The 1000BASE-T receiver automatically detects pair swaps on the receive inputs and aligns the symbols properly within the decoder. The automatic MDI crossover function can not be disabled when in 1000BASE-T mode.

10/100BASE-TX Operation (Auto-Negotiation Enabled)

During 10BASE-T and 100BASE-TX operation, pair swaps automatically occur within the device and do not require user intervention. The automatic MDI crossover function by default only works when auto-negotiation is enabled. This function can be disabled during auto-negotiation by writing to RDB_Register, offset 0x000, bit[14] = 1'b1.

10/100BASE-TX Operation (Forced Mode)

The automatic MDI crossover function can also be enabled when in forced 10BASE-T or forced 100BASE-TX mode. This feature allows the user to disable the copper auto-negotiation in either 10BASE-T or 100BASE-TX and still take advantage of the automatic MDI crossover function. This feature is enabled by writing RDB Register, offset 0x02F, bit[9] = 1'b1.

When in forced 10BASE-T or 100BASE-TX mode, the BCM53334 has a feature that can manually swap the MDI state when the automatic MDI crossover function is disabled. Normally the BCM53334 transmits on TDP_[73:0]_[0]/TDN_[73:0]_[0] and receives on TDP_[73:0]_[1]/TDN_[73:0]_[1]. To change the MDI state to transmit on TDP_[73:0]_[1]/TDN_[73:0]_[1] and receive on TDP_[73:0]_[0]/TDN_[73:0]_[0] the following steps must be done.

- · Put PHY in non-link condition.
- Enable Manual Swap MDI (Write RDB Register, offset 0x00E, bit[7] = 1'b1).
- Set PHY into Force 10BASE-T or 100BASE-TX mode.

Note: To change the MDI state when in forced 100BASE-TX mode, the PHY must first be put into a non-link condition.

Full-Duplex Mode

The BCM53334 supports full-duplex operation. While in full-duplex mode, a transceiver can simultaneously transmit and receive packets on the cable. When auto-negotiation is disabled, full-duplex operation can be enabled by setting Register 0x00, bit[8] = 1'b1.

When auto-negotiation is enabled, full-duplex capability is advertised for:

- 10BASE-T: Register 0x04, bit[6] = 1'b1.
- 100BASE-TX: Register 0x04, bit[8] = 1'b1.
- 1000BASE-T: Register 0x09, bit[9] = 1'b1.

Master/Slave Configuration

In 1000BASE-T mode, the BCM53334 and its link partner perform loop timing. One end of the link must be configured as the timing master and the other end as the slave. Master/slave configuration is performed by the auto-negotiation function. The auto-negotiation function first looks at the manual master/slave configuration bits advertised by the local PHY and the link partner. If neither PHY requests manual configuration, then the auto-negotiation function looks at the advertised repeater/DTE settings. If one PHY is advertised as a repeater port and the other is advertised as a DTE port, then the repeater port is configured as the master and the DTE port the slave. Each end generates an 11-bit random seed if the two settings are equal; the end with the higher seed is configured as the master. If the local PHY and the link partner generate the same random seed, then auto-negotiation is restarted.

If both ends of the link attempt to force the same manual configuration (both master or both slave), or the random seeds match seven consecutive times, then the BCM53334 sets the Master/Slave Configuration Fault bit in the 1000BASE-T Status register and auto-negotiation is restarted.

For setting the BCM53334 to manual master/slave configuration or to set the advertised repeater/DTE configuration, see 1000BASE-T Control Register (Address 0x09).

Next Page Exchange

The 1000BASE-T configuration requires the exchange of three auto-negotiation next pages between the BCM53334 and its link partner. Exchange of 1000BASE-T Next Page information takes place automatically when the BCM53334 is configured to advertise 1000BASE-T capability.

The BCM53334 also supports software-controlled Next Page exchanges. When Register 0x04, bit[15] = 1'b1, all Next Page transactions are controlled through the MII management interface. This includes the three 1000BASE-T Next Pages, which are always sent first. The BCM53334 automatically generates the appropriate message code field for the 1000BASE-T pages. When the BCM53334 is not configured to advertise 1000BASE-T capability, the 1000BASE-T Next Pages are not sent.

When the BCM53334 is not configured to advertise 1000BASE-T capability and Register 0x04, bit[15] = 1'b0, the BCM53334 does not advertise Next Page ability.

Auto-Negotiation

The BCM53334, when configured to Copper mode, negotiates its mode of operation over the copper media using the auto-negotiation mechanism, defined in the IEEE 802.3u and 802.3ab specifications. When the auto-negotiation function is enabled, the BCM53334 automatically chooses the mode of operation by advertising its abilities and comparing them with those received from its link partner. The BCM53334 can be configured to advertise the following modes:

- 1000BASE-T full-duplex and/or half-duplex.
- 100BASE-TX full-duplex and/or half-duplex.
- 10BASE-T full-duplex and/or half-duplex.

The transceiver negotiates with its link partner and chooses the highest common operating speed and duplex mode, commonly referred to as highest common denominator (HCD). Auto-negotiation can be enabled or disabled by hardware and software control, but is always required for 1000BASE-T operation.

Ethernet@Wirespeed

Ethernet@Wirespeed™ is an enhancement to auto-negotiation that allows a network connection over impaired cable plants. If a link can not be established at the highest common denominator within a set number of link attempts then the BCM53334 advertises the next highest advertised speed using auto-negotiation. The set number of failed link attempts is programmable. See "Changing the Number of Failed Link Attempts" on page 46 for more details.

The BCM53334 has a link-up timer that times how long the link has been up. If the link stays up for less than 3 seconds then the Link-Fail Counter will get incremented. If the link stays up for greater than 5 seconds then the Link-Fail Counter is reset to zero.

The purpose of the link-up timer is to prevent scenarios where an unstable link (link is going up and down quickly) causes the BCM53334 to continuously try to link at a given speed and not try to downgrade and link to a lower speed. In this situation, if the link is up for less than 3 seconds, the Link-Fail Counter will get incremented. Once the Link-Fail Counter exceeds the programmable failed link attempts the BCM53334 will start advertising the next lowest speed and try to establish a link.

The link-up timer can be bypassed by setting RDB_Register, offset 0x02F, bit[10] = 1'b1. Setting this bit causes the number of failed link attempts to get reset to zero after every link up condition, no matter how short the link-up time is.

Ethernet@Wirespeed Example

At start-up the BCM53334 is advertising 1000BASE-T, 100BASE-TX, and 10BASE-T capabilities per Register 0x04 and Register 0x09 and the Link Partner is also advertising the same capabilities:

- If a link cannot be established within a programmable number of link attempts (two to nine) with 1000BASE-T being advertised then an Ethernet@Wirespeed downgrade occurs, the 1000BASE-T capability is masked out on the BCM53334 and the next highest advertised capability (100BASE-TX) is advertised.
- If a link cannot be established within a programmable number of link attempts (two to nine) with 100BASE-TX being advertised then an Ethernet@Wirespeed downgrade occurs, the 100BASE-TX is masked out on the BCM53334 and the next highest advertised capability (10BASE-T) is advertised.
- If a link can not be established within a programmable number of link attempts (two to nine) with 10BASE-T being advertised then an Ethernet@Wirespeed downgrade occurs and all advertising capabilities are enabled (1000BASE-T, 100BASE-TX, and 10BASE-T) on the BCM53334 and the whole process begins again.

Enabling/Disabling Ethernet@Wirespeed

Enabling or disabling Ethernet@Wirespeed is done on a per-port basis.

- Enable: Write RDB_Register, offset 0x02F, bit[4] = 1'b1.
- Disable: Write RDB_Register, offset 0x02F, bit[4] = 1'b0.

Removing Ethernet@Wirespeed Downgrade

Ethernet@Wirespeed downgrade can be removed by any of the following events:

- Stable link-up condition for greater than 5 seconds.
- · Unplug cable (no energy) for 6 seconds.
- Hardware reset.
- Software reset (Write Register 0x00, bit[15] = 1'b1).
- Disable auto-negotiation (Write Register 0x00, bit[12] = 1'b0).
- Restart auto-negotiation (Write Register 0x00, bit[9] = 1'b1).
- Disabling Wirespeed (Write RDB Register, offset 0x02F, bit[4] = 1'b0).
- Auto-negotiation resolves to no HCD (Highest Common Denominator).

Changing the Number of Failed Link Attempts

The number of failed link attempts before downgrading to a slower speed is programmable. The number can be programmed anywhere from two to nine failed link attempts before downgrading to a lower speed. The default value is five failed link attempts. The number of failed link attempts before downgrading to a lower speed can be programmed by writing to RDB_Register, offset 0x014, bits[4:2] as shown Table 6.

Table 6:	Changing the	Number of	Failed Link	Attempts	before Downgrade

Bits[4:2]	Description
0x0	Number of failed link attempts before Ethernet@Wirespeed downgrade = 2
0x1	Number of failed link attempts before Ethernet@Wirespeed downgrade = 3
0x2	Number of failed link attempts before Ethernet@Wirespeed downgrade = 4
0x3	Number of failed link attempts before Ethernet@Wirespeed downgrade = 5 (Default Value)
0x4	Number of failed link attempts before Ethernet@Wirespeed downgrade = 6
0x5	Number of failed link attempts before Ethernet@Wirespeed downgrade = 7
0x6	Number of failed link attempts before Ethernet@Wirespeed downgrade = 8
0x7	Number of failed link attempts before Ethernet@Wirespeed downgrade = 9

Monitoring Ethernet@Wirespeed

The status of the Ethernet@ Wirespeed downgrade can be monitored through the following registers and LEDs.

- Ethernet@Wirespeed Downgrade Status (Read RDB_Register, offset 0x001, bit[14]).
- Ethernet@Wirespeed Downgrade (Read RDB Register, offset 0x00C, bit[12]).
- Ethernet@Wirespeed Disable Gigabit Advertising (Read RDB_Register, offset 0x00C, bit[14]).
- Ethernet@Wirespeed Disable 100BASE-TX Advertising (Read RDB_Register, offset 0x00C, bit[13]).
- HCD Status (Read RDB Register, offset 0x00C, bits[11:0]).
- Auto-negotiation HCD and Current Status (Read RDB Register, offset 0x009, bits[10:8]).
- Ethernet@Wirespeed downgrade LED on LED[0] (Write RDB Register, offset 0x01D, bits[3:0] = 0x9).
- Ethernet@Wirespeed downgrade LED on LED[1] (Write RDB Register, offset 0x01D, bits[7:4] = 0x9).

Super Isolate Mode

When in Super Isolate mode the following happens:

• The BCM53334's transmitter and receiver on the Copper Media Dependent Interface are disabled. The link partner will go into a link down state since it is not receiving any FLPs, NLPs, or 100BASE-TX idles.

Software Enable/Disable

The BCM53334 can be put into Super Isolate mode on a per port basis by software.

- To enable Super Isolate mode:
 Write RDB Register, offset 0x02A, bit[5] = 1'b1 for each of the 84 ports.
- To disable Super Isolate mode:
 Write RDB_Register, offset 0x02A, bit[5] = 1'b0 for each of the 84 ports.

Standby Power-Down Mode

The BCM53334 can be placed into standby Power-down mode using software commands. In this mode, all PHY functions, except for the serial management interface, are disabled. To enter standby Power-down mode, write Register 0x00, bit[11] = 1'b1. There are three ways to exit standby Power-down mode:

- Write Register 0x00, bit[11] = 1'b0 (Clear MII Control register)
- Write Register 0x00, bit[15] = 1'b1 (Software reset)
- Assert the hardware RESET

Reads or writes to any MII register, other than Register 0x00 while the device is in the standby Power-down mode, returns unpredictable results. Upon exiting standby Standby Power-down mode, the BCM53334 remains in an internal reset state for 40 μ s, and then resumes normal operation.

Auto Power-Down (APD) Mode

When the BCM53334 is placed into Auto Power-Down (APD) mode the chip power is reduced when the signal from the copper link partner is not present. APD mode works whether the device is in auto-negotiation enabled or in forced mode. When APD mode is enabled, the BCM53334 automatically enters the low-power mode when energy on the line is lost, and it resumes normal operation when energy is detected. When the BCM53334 is in APD mode, the copper transmitter is disabled (Sleep Cycle) for 2.7 seconds or 5.4 seconds depending on the SLEEP_TIMER_SEL bit after which the transmitter is enabled (Wake Cycle) for a duration of 84 ms to 1260 ms depending on the settings on the WAKE_UP_TIMER_SEL bits. The BCM53334 enters normal operation and establishes a link if energy is detected, otherwise, the Sleep and Wake-up cycles repeat.

ADP Mode Enable (Auto-Negotiation Enabled)

- Write RDB Register, offset 0x01A, bits[6:5] = 2'b01.
- Write RDB_Register, offset 0x1A, bit[8] = 1'b'1.

ADP Mode Enable (Auto-Negotiation Disabled)

Write RDB Register, offset 0x01A, bits[6:5] = 2'b11.

• Write RDB_Register, offset 0x1A, bit[8] = 1'b'1.

ADP Mode Disable

Write RDB_Register, offset 0x01A, bits[6:5] = 2'b00.

Sleep Cycle Settings

Write RDB_Register, offset 0x01A, bit[4]

- 1'b0 = Disable copper transmitter for 2.7 seconds.
- 1'b0 = Disable copper transmitter for 5.4 seconds.

Wake Cycle Settings

Broadcom Write Register RDB_Register, offset 0x01A, bits[3:0]

- 0x1 = Enable copper transmitter for 84 ms.
- 0x2 = Enable copper transmitter for 168 ms.
- 0x3 = Enable copper transmitter for 252 ms.
- 0xF = Enable copper transmitter for 1.26 seconds.

Section 6: ARM Cortex-A9 Processor Subsystem Functional Description

Cortex-A9

The Cortex-A9 processor has an integrated 32×32 -bit single-cycle multiply/accumulate block running at CPU core speed, providing additional signal or media processing capabilities. The integrated MMU with a 128-entry TLB block allows support for common multi-threaded real-time operating systems (RTOS), such as the standard Linux[®] distribution.

NOR Serial Flash Interface

The BCM53334 has a NOR Serial Flash interface and supports Execute in Place (XIP) as a boot source configured by the strapped option.

Feature Value Comment Interface width 1, 2, 4 Supports single, dual, and quad SPI interfaces. In place execute (boot support) XIP Yes Maximum number of physical devices 1 Extended addressing support (4B mode) Yes Used to address greater than 16 MB. Devices size support 128 Mb - 4 Gb Cannot boot from devices that support 32b addressing only. Devices that support either 24b only or mixed 24/32b addressing are supported as a boot device. Block size 32 KB, 64 KB Page sizes 2 KB, 4 KB, 8 KB Maximum frequency 62.5 MHz NOR Flash support Yes Some Serial Flash in the managed NAND Flash that appears as a NOR.

Table 7: Serial Flash Interface

MIIM/UART/GPIO Interfaces

The BCM53334 supports:

- One MDC/MDIO interface.
- One UART1 interface with CTS and RTS signals.
- Eight 3.3V GPIO pins that can be used to connect to various external devices.

BCM53334 Data Sheet SPI interface

SPI interface

SPI is a serial interface that is compatible with a subset of the Motorola Synchronous Serial Peripheral Interconnect (SPI) bus. The SPI interface can be configured to operate in either master or slave mode. The SPI interface consists of a set of four signals:

- Serial clock (SCK)
- Slave select (SS_L)
- Master-in/slave-out (MISO)
- Master-out/slave-in (MISI)

When the SPI interface operates as an SPI slave device, in that it never initiates a transfer and allows external master to read and write to various internal register spaces and memory tables of the chip. During a transaction, data is captured on the rising edge of SCK and propagated at the falling edge of SCK. This corresponds to the modes 0 (SPO = 0 and SPH = 0) and 3 (SPO = 1 and SPH = 1) of the Motorola SPI format.

A layer of protocol is added to the basic SPI definition to facilitate data transfers from the chip. This protocol establishes the definition of the first two bytes issued by the external master to the SPI slave during a transfer. The first byte issued from the master in any transaction is defined as a command byte, which is always followed by a register address byte, and any additional address bytes and data bytes.

The SPI interface supports the fast SPI access mechanisms, determined by the content of the command byte. Figure 11 shows the fast SPI command byte.

Figure 11: Fast SPI Command Byte

Byte Offset (MSB)	Byte Offset	Byte Offset (LSB)	MODE = 1	CHIP ID 2 (MSB)	CHIP ID 1	CHIP ID 0 (LSB)	Read/Write (0/1)		

In a fast command byte, the Mode bit (bit [4]) of the command byte is a 1. Bits [7:5] indicate the byte offset into the register that the access starts from and bits [3:0] indicate the Chip ID to be accessed. Bit 0 of the command byte is the Read/Write signal (0= Read, 1= Write) that determines the data direction for the transaction.

The 4 bytes following the command byte are register address bytes. The register address is 32 bits wide. The lower byte of the address is transmitted first, followed by the higher bytes.

In case of a write command, 4 data bytes follow the write address. As in the case of address, the lower byte is transmitted first. A write transaction is initiated once all the address and data bytes are received.

All write operations are of the form:

<CMD, CHIP_ID, W><REG ADDR0> <REG ADDR1><REG ADDR2><REG ADDR3><DATA0><DATA1><DATA2><DATA3>

In case of a read command, a read transaction is initiated once all the address bytes are received. The data received back from the chip is transmitted as the read response to the master.

All read operations are of the form:

BCM53334 Data Sheet SPI interface

<CMD, CHIP_ID, R><REG ADDR0><REG ADDR1>><REG ADDR2><REG ADDR3>

SPI slave runs in Fast SPI mode. In Fast SPI mode, the SPI slave returns the ACK bit before transmitting the read data. The ACK bit is transferred as the LSB of each byte. Till the time the read access is on progress, SPI will return 0x00 on the MISO line. Once read data is available, SPI returns 0x01 followed by 4 bytes of read data.

BCM53334 Data Sheet Pin List Description

Section 7: Pin List Description

Signal Name Descriptions

Note: This is a preliminary pin assignment and is subject to change.

The section describes the BCM53334 hardware signals. The following conventions are used:

- I = Input signal
- O = Output signal
- B = Bidirectional signal
- BOD = Open-drain bidirectional signal
- BPU =Bidirectional signal with internal pull-up
- IPD = Input signal with internal pull-down
- IPU = Input signal with internal pull-up
- OOD = Open-drain output
- P = Power

Table 8: BCM53334 Hardware Signals

Pin Names	Quantity	I/O	V	Pin Description
GPIO		(11.	
GPIO[7:0]	8	I/O	3.3V	General-purpose I/O
				Note: GPIO[3:0] can be reset by resetting SYS_RST_L. GPIO[7:4] are reset only on power-on and cannot be reset by just doing the software chip reset alone.
UART Port 1				
UART1_RX	1	I _{PD}	3.3V	UART port 1 Receive data input
UART1_TX	1	0	3.3V	UART port 1 Transmit data output.
UART1_CTS_L	1	I_{PU}	3.3V	UART port 1Clear to Send
UART1_RTS_L	1	0	3.3V	UART port 1Request to Send
				Shared with SFLASH_BYTE_ADDR
UART1_DTR_L	1	0	3.3V	UART port 1 Data Terminal Ready
UART1_DCD_L	1	I _{PU}	3.3V	UART port 1 Data Carrier Detect
UART1_DSR_L	1	I _{PU}	3.3V	UART port 1 Data Set Ready
UART1_RI_L	1	I _{PU}	3.3V	UART port 1 Ring Indicator
SPI Port				

Table 8: BCM53334 Hardware Signals (Cont.)

Pin Names	Quantity	1/0	V	Pin Description
SCK	1	I/O	3.3V	Serial Port Interface Clock.
				This clock output is driven low during idle in master mode. In slave mode it is the clock input to the serial port interface supplied by the SPI master.
				Shared with LED_P8_2
MISO	1	I/O	3.3V	Master-In/Slave-Out.
				Output signal driven with serial data during a serial port interface Read operations.
				Shared with LED_P9_2
MOSI	1	I/O	3.3V	Master-Out/Slave-In.
				This output is driven low during idle in master mode. In slave mode it is the input signal which receives control and address information for the serial port interface, as well as serial data during Write operations.
				Shared with LED_P10_2
SS_L	1	I/O	3.3V	Slave Select.
				This output is driven high during idle in master mode. In slave mode it is an active low signal that enables a serial port interface Read or Write operations. Shared with LED_P11_2
QSPI FLASH Interfa	ice			
SFLASH CLK	1	0	3.3V	SPI flash clock
				This clock output is driven high during idle.
SFLASH_CS_L	1	0	3.3V	External SPI flash chip select
				This chip select is driven high during idle.
SFLASH_IO0	1	I/O	3.3V	SFLASH_IO_0:
_				SINGLE-SPI flash DO or MOSI
				DUAL-SPI flash IO0
				 QUAD-SPI flash IO0
				This output is driven low during idle.
SFLASH_IO1	1	I _{PD} /	3.3V	SFLASH_IO_1:
_		O _{PD}		SINGLE-SPI flash DI or MISO
				DUAL-SPI flash IO1
				 QUAD-SPI flash IO1
SFLASH_IO2	1	I/O	3.3V	SFLASH_IO_2:
				SINGLE-SPI flash WP_L
				DUAL-SPI flash WP_L
				QUAD-SPI flash IO2
				This output is driven high during idle.

Table 8: BCM53334 Hardware Signals (Cont.)

Pin Names	Quantity	1/0	V	Pin Description
SFLASH_IO3	1	I/O	3.3V	SFLASH_IO_3:
				SINGLE-SPI flash HOLD_L
				DUAL-SPI flash HOLD_L
				 QUAD-SPI flash IO3
				This output is driven high during idle.
Parallel LED Interfa				
LED_P0_[2:0]	3	0	3.3V	Per Port Parallel LED Indicators
LED_P1_[2:0]	3	0	3.3V	LED_P8_2 shared with SCK
LED_P2_[2:0]	3	0	3.3V	LED_P9_2 shared with MISO
LED_P3_[2:0]	3	0	3.3V	LED_P10_2 shared with MOSI
LED_P4_[2:0]	3	0	3.3V	LED_P11_2 shared with SS_L _
LED_P5_[2:0]	3	0	3.3V	
LED_P6_[2:0]	3	0	3.3V	_
LED_P7_[2:0]	3	0	3.3V	
LED_P8_[2:0]	3	0	3.3V	<u> </u>
LED_P9_[2:0]	3	0	3.3V	(0)
LED_P10_[2:0]	3	0	3.3V	
LED_P11_[2:0]	3	0	3.3V	
LED_P12_[2:0]	3	0	3.3V	-0,
LED_P13_[2:0]	3	0	3.3V	
LED_P14_[2:0]	3	0	3.3V	
LED_P15_[2:0]	3	0	3.3V	_
Serial LED Interface)		0	
LED_CLK	1	0	3.3V	Serial LED clock output
LED_DATA	1	0	3.3V	Serial LED data output
	\mathcal{L}	<u> </u>		Shared with EXT_UC_IS_SPI
Strap Pins				
OSC_XTAL_SEL	1	I_{PU}	3.3V	Select External 25 MHz Oscillator or Crystal for system
				clock source 0: Use External Oscillator
	*			1: Use External Crystal (Default)
EXT_UC_PRESENT	1	I _{PD}	3.3V	[EXT UC PRESENT, EXT UC IS SPI]
- 				• [0, x]: SPI master mode and BSC master mode
EXT_UC_IS_SPI	1	I_{PD}	3.3V	• [1, 0]: SPI master mode and BSC slave mode
				• [1, 1]: SPI slave mode and BSC master mode
				EXT_UC_IS_SPI shared with LED_DATA
IP_BOOT_DEV2	1	I _{PD}	3.3V	IP BOOT DEV[2:0]
IP BOOT DEV1	1	I _{PD}	3.3V	CPU ARM boot device selection:
IP BOOT DEV0	<u>'</u> 1		3.3V	3'b000 - SPI-NOR Flash (BSPI/QSPI)
" _DOO1_DEVU	1	I _{PD}	J.J V	• 3'b010 - Reserved
·	-		-	

Table 8: BCM53334 Hardware Signals (Cont.)

Pin Names	Quantity	1/0	V	Pin Description
LED_SPI_SEL[1:0]	2	I_{PD}	3.3V	Select LED/SPI Function
				0: LED Mode
				• 1: Reserved
				• 2: SPI Mode
CELACII DVTE ADDD	1	1	2.21/	• 3: Reserved
SFLASH_BYTE_ADDR	1	I _{PU}	3.3V	SFLASH Byte Address O: 4 byte address
				1: 3 byte address
				Shared with UART1_RTS_L
Clock Input				<u> </u>
XTALN	1	l	1.0V	25M crystal differential input negative leg
XTALP	1	I	1.0V	25M crystal differential input positive leg
JTAG Interface				X
JTCK	1	I _{PD}	3.3V	JTAG test clock
JTDO	1	0	3.3V	JTAG test data output
JTMS	1	I _{PU}	3.3V	JTAG mode select
JTRST	1	I _{PU}	3.3V	JTAG reset
		10		Must be pulled low during normal switch operation.
JTDI	1	I _{PU}	3.3V	JTAG test data input
JTCE1, JTCE	2	I _{PD}	3.3V	JTAG test enable
				[JTCE1, JTCE]
				1X: JTAG Mode
				01: ARM Debug Mode
				00: Normal Mode
OMITOU OPINAR 4 0 4	-			Must be pulled low during normal switch operation.
SWITCH GPHY Port 0-1		1 /0	4.0\(Dord O point O procitive loss
GP0_TD0P	1	I _A /O _A	1.0V	Port 0 pair 0 positive leg
GP0_TD0N	1	I _A /O _A	1.0V	Port 0 pair 0 negative leg
GP0_TD1P	1	I _A /O _A	1.0V	Port 0 pair 1 positive leg
GP0_TD1N	1	I_A/O_A	1.0V	Port 0 pair 1 negative leg
GP0_TD2P	1	I_A/O_A	1.0V	Port 0 pair 2 positive leg
GP0_TD2N	1	I _A /O _A	1.0V	Port 0 pair 2 negative leg
GP0_TD3P	1	I _A /O _A	1.0V	Port 0 pair 3 positive leg
GP0_TD3N	1	I _A /O _A	1.0V	Port 0 pair 3 negative leg
GP1_TD0P	1	I _A /O _A	1.0V	Port 1 pair 0 positive leg
GP1_TD0N	1	I _A /O _A	1.0V	Port 1 pair 0 negative leg
GP1_TD1P	1	I _A /O _A	1.0V	Port 1 pair 1 positive leg
GP1_TD1N	1	I _A /O _A	1.0V	Port 1 pair 1 negative leg
		.A, OA		

Table 8: BCM53334 Hardware Signals (Cont.)

Pin Names	Quantity	1/0	V	Pin Description
GP1_TD2P	1	I _A /O _A	1.0V	Port 1 pair 2 positive leg
GP1_TD2N	1	I _A /O _A	1.0V	Port 1 pair 2 negative leg
GP1_TD3P	1	I _A /O _A	1.0V	Port 1 pair 3 positive leg
GP1_TD3N	1	I_A/O_A	1.0V	Port 1 pair 3 negative leg
GP2_TD0P	1	I_A/O_A	1.0V	Port 2 pair 0 positive leg
GP2_TD0N	1	I _A /O _A	1.0V	Port 2 pair 0 negative leg
GP2_TD1P	1	I _A /O _A	1.0V	Port 2 pair 1 positive leg
GP2_TD1N	1	I _A /O _A	1.0V	Port 2 pair 1 negative leg
GP2_TD2P	1	I _A /O _A	1.0V	Port 2 pair 2 positive leg
GP2_TD2N	1	I _A /O _A	1.0V	Port 2 pair 2 negative leg
GP2_TD3P	1	I_A/O_A	1.0V	Port 2 pair 3 positive leg
GP2_TD3N	1	I_A/O_A	1.0V	Port 2 pair 3 negative leg
GP3_TD0P	1	I_A/O_A	1.0V	Port 3 pair 0 positive leg
GP3_TD0N	1	I _A /O _A	1.0V	Port 3 pair 0 negative leg
GP3_TD1P	1	I _A /O _A	1.0V	Port 3 pair 1 positive leg
GP3_TD1N	1	I _A /O _A	1.0V	Port 3 pair 1 negative leg
GP3_TD2P	1	I _A /O _A	1.0V	Port 3 pair 2 positive leg
GP3_TD2N	1	I _A /O _A	1.0V	Port 3 pair 2 negative leg
GP3_TD3P	1	I_A/O_A	1.0V	Port 3 pair 3 positive leg
GP3_TD3N	1	I _A /O _A	1.0V	Port 3 pair 3 negative leg
GP4_TD0P	1	I _A /O _A	1.0V	Port 4 pair 0 positive leg
GP4_TD0N	1	I _A /O _A	1.0V	Port 4 pair 0 negative leg
GP4_TD1P	1	I_A/O_A	1.0V	Port 4 pair 1 positive leg
GP4_TD1N	1	I _A /O _A	1.0V	Port 4 pair 1 negative leg
GP4_TD2P	1	I_A/O_A	1.0V	Port 4 pair 2 positive leg
GP4_TD2N	1	I_A/O_A	1.0V	Port 4 pair 2 negative leg
GP4_TD3P	1	I_A/O_A	1.0V	Port 4 pair 3 positive leg
GP4_TD3N	1	I_A/O_A	1.0V	Port 4 pair 3 negative leg
GP5_TD0P	1	I_A/O_A	1.0V	Port 5 pair 0 positive leg
GP5_TD0N	1	I_A/O_A	1.0V	Port 5 pair 0 negative leg
GP5_TD1P	1	I_A/O_A	1.0V	Port 5 pair 1 positive leg
GP5_TD1N	1	I_A/O_A	1.0V	Port 5 pair 1 negative leg
GP5_TD2P	1	I_A/O_A	1.0V	Port 5 pair 2 positive leg
GP5_TD2N	1	I_A/O_A	1.0V	Port 5 pair 2 negative leg
GP5_TD3P	1	I _A /O _A	1.0V	Port 5 pair 3 positive leg

Table 8: BCM53334 Hardware Signals (Cont.)

Pin Names	Quantity	I/O	V	Pin Description
GP5_TD3N	1	I _A /O _A	1.0V	Port 5 pair 3 negative leg
GP6_TD0P	1	I _A /O _A	1.0V	Port 6 pair 0 positive leg
GP6_TD0N	1	I _A /O _A	1.0V	Port 6 pair 0 negative leg
GP6_TD1P	1	I_A/O_A	1.0V	Port 6 pair 1 positive leg
GP6_TD1N	1	I_A/O_A	1.0V	Port 6 pair 1 negative leg
GP6_TD2P	1	I _A /O _A	1.0V	Port 6 pair 2 positive leg
GP6_TD2N	1	I _A /O _A	1.0V	Port 6 pair 2 negative leg
GP6_TD3P	1	I _A /O _A	1.0V	Port 6 pair 3 positive leg
GP6_TD3N	1	I _A /O _A	1.0V	Port 6 pair 3 negative leg
GP7_TD0P	1	I _A /O _A	1.0V	Port 7 pair 0 positive leg
GP7_TD0N	1	I _A /O _A	1.0V	Port 7 pair 0 negative leg
GP7_TD1P	1	I _A /O _A	1.0V	Port 7 pair 1 positive leg
GP7_TD1N	1	I _A /O _A	1.0V	Port 7 pair 1 negative leg
GP7_TD2P	1	I _A /O _A	1.0V	Port 7 pair 2 positive leg
GP7_TD2N	1	I _A /O _A	1.0V	Port 7 pair 2 negative leg
GP7_TD3P	1	I _A /O _A	1.0V	Port 7 pair 3 positive leg
GP7_TD3N	1	I _A /O _A	1.0V	Port 7 pair 3 negative leg
GP8_TD0P	1	I _A /O _A	1.0V	Port 8 pair 0 positive leg
GP8_TD0N	1	I _A /O _A	1.0V	Port 8 pair 0 negative leg
GP8_TD1P	1	I _A /O _A	1.0V	Port 8 pair 1 positive leg
GP8_TD1N	1	I _A /O _A	1.0V	Port 8 pair 1 negative leg
GP8_TD2P	1	I _A /O _A	1.0V	Port 8 pair 2 positive leg
GP8_TD2N	1	I _A /O _A	1.0V	Port 8 pair 2 negative leg
GP8_TD3P	1	I _A /O _A	1.0V	Port 8 pair 3 positive leg
GP8_TD3N	1	I _A /O _A	1.0V	Port 8 pair 3 negative leg
GP9_TD0P	1	I_A/O_A	1.0V	Port 9 pair 0 positive leg
GP9_TD0N	1	I _A /O _A	1.0V	Port 9 pair 0 negative leg
GP9_TD1P	1	I _A /O _A	1.0V	Port 9 pair 1 positive leg
GP9_TD1N	1	I _A /O _A	1.0V	Port 9 pair 1 negative leg
GP9_TD2P	1	I _A /O _A	1.0V	Port 9 pair 2 positive leg
GP9_TD2N	1	I_A/O_A	1.0V	Port 9 pair 2 negative leg
GP9_TD3P	1	I_A/O_A	1.0V	Port 9 pair 3 positive leg
GP9_TD3N	1	I _A /O _A	1.0V	Port 9 pair 3 negative leg
GP10_TD0P	1	I _A /O _A	1.0V	Port 10 pair 0 positive leg
GP10_TD0N	1	I _A /O _A	1.0V	Port 10 pair 0 negative leg

Table 8: BCM53334 Hardware Signals (Cont.)

Pin Names	Quantity	I/O	V	Pin Description
GP10_TD1P	1	I _A /O _A	1.0V	Port 10 pair 1 positive leg
GP10_TD1N	1	I _A /O _A	1.0V	Port 10 pair 1 negative leg
GP10_TD2P	1	I _A /O _A	1.0V	Port 10 pair 2 positive leg
GP10_TD2N	1	I_A/O_A	1.0V	Port 10 pair 2 negative leg
GP10_TD3P	1	I _A /O _A	1.0V	Port 10 pair 3 positive leg
GP10_TD3N	1	I _A /O _A	1.0V	Port 10 pair 3 negative leg
GP11_TD0P	1	I_A/O_A	1.0V	Port 11 pair 0 positive leg
GP11_TD0N	1	I _A /O _A	1.0V	Port 11 pair 0 negative leg
GP11_TD1P	1	I_A/O_A	1.0V	Port 11 pair 1 positive leg
GP11_TD1N	1	I_A/O_A	1.0V	Port 11 pair 1 negative leg
GP11_TD2P	1	I_A/O_A	1.0V	Port 11 pair 2 positive leg
GP11_TD2N	1	I _A /O _A	1.0V	Port 11 pair 2 negative leg
GP11_TD3P	1	I_A/O_A	1.0V	Port 11 pair 3 positive leg
GP11_TD3N	1	I_A/O_A	1.0V	Port 11 pair 3 negative leg
GP12_TD0P	1	I_A/O_A	1.0V	Port 12 pair 0 positive leg
GP12_TD0N	1	I_A/O_A	1.0V	Port 12 pair 0 negative leg
GP12_TD1P	1	I _A /O _A	1.0V	Port 12 pair 1 positive leg
GP12_TD1N	1	I_A/O_A	1.0V	Port 12 pair 1 negative leg
GP12_TD2P	1	I _A /O _A	1.0V	Port 12 pair 2 positive leg
GP12_TD2N	1	I _A /O _A	1.0V	Port 12 pair 2 negative leg
GP12_TD3P	1	I _A /O _A	1.0V	Port 12 pair 3 positive leg
GP12_TD3N	1	I _A /O _A	1.0V	Port 12 pair 3 negative leg
GP13_TD0P	1	I_A/O_A	1.0V	Port 13 pair 0 positive leg
GP13_TD0N	1	I _A /O _A	1.0V	Port 13 pair 0 negative leg
GP13_TD1P	1	I_A/O_A	1.0V	Port 13 pair 1 positive leg
GP13_TD1N	1	I_A/O_A	1.0V	Port 13 pair 1 negative leg
GP13_TD2P	1	I_A/O_A	1.0V	Port 13 pair 2 positive leg
GP13_TD2N	1	I_A/O_A	1.0V	Port 13 pair 2 negative leg
GP13_TD3P	1	I_A/O_A	1.0V	Port 13 pair 3 positive leg
GP13_TD3N	1	I_A/O_A	1.0V	Port 13 pair 3 negative leg
GP14_TD0P	1	I_A/O_A	1.0V	Port 14 pair 0 positive leg
GP14_TD0N	1	I_A/O_A	1.0V	Port 14 pair 0 negative leg
GP14_TD1P	1	I_A/O_A	1.0V	Port 14 pair 1 positive leg
GP14_TD1N	1	I_A/O_A	1.0V	Port 14 pair 1 negative leg
GP14_TD2P	1	I _A /O _A	1.0V	Port 14 pair 2 positive leg

Table 8: BCM53334 Hardware Signals (Cont.)

Pin Names	Quantity	I/O	V	Pin Description
GP14_TD2N	1	I _A /O _A	1.0V	Port 14 pair 2 negative leg
GP14_TD3P	1	I _A /O _A	1.0V	Port 14 pair 3 positive leg
GP14_TD3N	1	I _A /O _A	1.0V	Port 14 pair 3 negative leg
GP15_TD0P	1	I _A /O _A	1.0V	Port 15 pair 0 positive leg
GP15_TD0N	1	I_A/O_A	1.0V	Port 15 pair 0 negative leg
GP15_TD1P	1	I_A/O_A	1.0V	Port 15 pair 1 positive leg
GP15_TD1N	1	I _A /O _A	1.0V	Port 15 pair 1 negative leg
GP15_TD2P	1	I_A/O_A	1.0V	Port 15 pair 2 positive leg
GP15_TD2N	1	I _A /O _A	1.0V	Port 15 pair 2 negative leg
GP15_TD3P	1	I _A /O _A	1.0V	Port 15 pair 3 positive leg
GP15_TD3N	1	I _A /O _A	1.0V	Port 15 pair 3 negative leg
QSGMII Port Signals				
QS2_RD[1:0]N	2	I	1.0V	QSGMII 2 received serial 5.0 Gbps data—Negative leg of the differential pair.
QS2_RD[1:0]P	2	I	1.0V	QSGMII 2 received serial 5.0 Gbps data—Positive leg of the differential pair.
QS2_TD[1:0]N	2	0	1.0V	QSGMII 2 transmit serial 5.0 Gbps data—Negative leg of the differential pair.
QS2_TD[1:0]P	2	0	1.0V	QSGMII 2 transmit serial 5.0 Gbps data—Positive leg of the differential pair.
EXT_QS2_CLKP	1	0		Positive leg of differential reference clock out for external PHY
EXT_QS2_CLKN	1	0)	Negative leg of differential reference clock out for external PHY
MIIM Interface				
GIG_MDC	1	B _{PU}	3.3V	Serial management clock, used to communicate to external GPHY devices under software control. Clause 22 compliant.
GIG_MDIO	1	B _{PU}	3.3V	Serial management data, used to communicate to external GPHY devices under software control. Clause 22 compliant.
XG_MDC	1	B _{PU}	3.3V	Serial management clock, used to communicate to external GPHY devices under software control. Clauses 22 and 45 compliant.
XG_MDIO	1	B _{PU}	3.3V	Serial management data, used to communicate to external GPHY devices under software control. Clauses 22 and 45 compliant.
BSC Interface				

Table 8: BCM53334 Hardware Signals (Cont.)

Pin Names	Quantity	I/O	V	Pin Description
BSC_SA[1:0]	2	I _{PD}	3.3V	BSC Address [1:0].
				0: Address is 0x80 (Default)
				• 1: Address is 0x81
				• 2: Address is 0x82
				• 3: Address is 0x83
BSC_SCL	1	B_{OD}	3.3V	BSC master clock. External pull-up resistor is required
BSC_SDA	1	B_{OD}	3.3V	BSC serial data. External pull-up resistor is required
Miscellaneous Signals				
SYS_RST_L	1	I_{PU}	3.3V	Reset input for the whole chip
RDAC[3:0]	4	I_B/O_B	_	DAC Bias Resistor.
				Adjusts the drive level of the transmit DAC.
				A 6.04 K ±1% resistor to GND is required.
VSS_SENSE	1	0	0V	Ground monitor.
				Required for remote sensing of GND rail. This pin connects directly to die GND rail.
VDD_SENSE	1	Ο	1.0V	Core voltage monitor.
				Required for remote sensing of VDDC rail. This pin connects directly to die VDDC rail.
AVS0	1	0	3.3V	Reserved
DNC	29	_	-	Do not connect these pins.
Miscellaneous PLL Sign	nals			
XG_PLL2_REFCLKN	1	l	1.0V	PLL external reference clock input
XG_PLL2_REFCLKP	1	I	1.0V	_
LC_PLL0_REFCLKN	1	I	1.0V	QSGMII/QGPHYREFCLK PLL external reference
LC_PLL0_REFCLKP	1	Y	1.0V	clock input
DIGITAL POWER		O		
QS2_VDD	- ~(0	PWR	1.0V	Power for QSGMII 2
VDDC	70	PWR	1.0V	Power for core
VDD33)	PWR	3.3V	3.3V VDD
IP_PFLASH_VDDO	7	PWR	3.3V	Power for PFLASH
CORE_PLL_VDD33	1	PWR	3.3V	Power for core PLL
GEN_PLL_VDD10	1	PWR	1.0V	Power for generic PLL
GP0_PLLVDD10	1	PWR	1.0V	1.0V for QGPHY 0 PLL
GP0_PLLVDD33	1	PWR	3.3V	3.3V for QGPHY 0 PLL, should be connected to GP0_BVDD33 on PCB.
GP1_PLLVDD10	1	PWR	1.0V	1.0V for QGPHY 1 PLL
GP1_PLLVDD33	1	PWR	3.3V	3.3V for QGPHY 1 PLL, should be connected to GP1_BVDD33 on PCB.
GP2_PLLVDD10	1	PWR	1.0V	1.0V for QGPHY 2 PLL
GP2_PLLVDD33	1	PWR	3.3V	3.3V for QGPHY 2 PLL, should be connected to GP2_BVDD33 on PCB.

Table 8: BCM53334 Hardware Signals (Cont.)

Pin Names	Quantity	I/O	V	Pin Description
GP3_PLLVDD10	1	PWR	1.0V	1.0V for QGPHY 3 PLL
GP3_PLLVDD33	1	PWR	3.3V	3.3V for QGPHY 3 PLL, should be connected to GP3_BVDD33 on PCB.
ANALOG POWER				
GP_AVDDL	_	PWR	1.0V	1.0V for QGPHY analog supply
GP_AVDDH	_	PWR	3.3V	3.3V for QGPHY analog supply
LC_PLL0_AVDD33	1	PWR	3.3V	QGPHY and QSGMII PLL
GP0_BVDD33	1	PWR	3.3V	3.3V for QGPHY 0 Bandgap, should be connected to GP0_PLLVDD33 on PCB.
GP1_BVDD33	1	PWR	3.3V	3.3V for QGPHY 1 Bandgap, should be connected to GP1_PLLVDD33 on PCB.
GP2_BVDD33	1	PWR	3.3V	3.3V for QGPHY 2 Bandgap, should be connected to GP2_PLLVDD33 on PCB.
GP3_BVDD33	1	PWR	3.3V	3.3V for QGPHY 3 Bandgap, should be connected to GP3_PLLVDD33 on PCB.
QS2_PVDD	_	PWR	1.0V	1.0V, Filtered PLL voltage for QSGMII 2 clock distribution.
AVDD33	1	PWR	3.3V	Analog Power for PVT Monitor
XTAL_AVDD	1	PWR	1.0V	Power for internal oscillator
GROUND				c ()'
GND	_	GND	0V	Ground
GND_1K	1	GND	0V	This pin must be tied to ground through a 1K Ohm resistor.
GEN_PLL_VSS	1	GND	0V	Ground
ANALOG GROUND				
AVSS	_	GND	0V	Ground
CORE_PLL_AVSS	-	GND	0V	Ground
LC_PLL0_AVSS	- ~(GND	0V	Ground
LC_PLL1_AVSS	40	GND	0V	Ground
QS2_AVSS	7-	GND	0V	Ground
XG_PLL2_AVSS	/	GND	0V	Ground
XTAL_AVSS	_	GND	0V	Ground

Pin List by Pin Name

Table 9: Pin List by Pin Name - BCM53334 Devices

Ball	Signal Name	Ball	Signal Name	Ball	Signal Name	Ball	Signal Name
A10	XG_PLL2_REFCL	AA23	GP_AVDDH	AB7	GP_AVDDH	AD16	GP_AVDDH
	KN _	AA24	AVSS	AB8	GP_AVDDH	AD17	AVSS
A11	DNC	AA25	AVSS	AB9	AVSS	AD18	RDAC2
A12	DNC	AA26	GP14_TD3P	AC1	GP2_TD0N	AD19	AVSS
A13	AVSS	AA27	GP14_TD3N	AC10	GP1_BVDD33	AD2	GP2_TD2P
A14	DNC	AA3	GP1_TD2P	AC11	AVSS	AD20	AVSS
A15	AVSS	AA4	AVSS	AC12	: AVSS	AD21	RDAC3
A17	SFLASH_CLK	AA5	AVSS	AC13	AVSS	AD22	AVSS
A18	DNC	AA6	GP_AVDDH	AC14	AVSS	AD23	AVSS
A2	GND	AA7	GP_AVDDH	AC15	AVSS	AD24	DNC
A20	GPIO0	AA8	GP_AVDDH	AC16	AVSS	AD25	AVSS
A21	GPIO2	AA9	GP_AVDDH	AC17	AVSS	AD26	GP13_TD0P
A23	JTDO	AB1	GP1_TD1N	AC18	AVSS	AD27	GP13_TD0N
A24	BSC_SCL	AB10	GP0_BVDD33	AC19	AVSS	AD3	GP2_TD2N
A25	JTRST	AB11	AVSS	AC2	GP2_TD0P	AD4	AVSS
A26	DNC	AB12	GP0_PLLVDD33	AC20	GP3_BVDD33	AD5	AVSS
A27	XTAL_AVSS	AB13	AVSS	AC21	AVSS	AD6	DNC
A3	LED_SPI_SEL0	AB14	GP1_PLLVDD33	AC22	AVSS	AD7	AVSS
A4	UART1_RI_L	AB15	AVSS	AC23	DNC	AD8	AVSS
A6	UART1_TX	AB16	GP2_PLLVDD33	AC24	AVSS	AD9	RDAC0
A7	GIG_MDIO	AB17	AVSS	AC25	GP13_TD1P	AE1	GP2_TD3P
A8	XG_MDIO	AB18	GP3_PLLVDD33	AC26	GP13_TD1N	AE10	GP6_TD1P
A9	XG_PLL2_AVSS	AB19	AVSS	AC27	GP14_TD0P	AE11	GP6_TD3P
AA10	AVSS	AB2	GP1_TD1P	AC28	GP14_TD0N	AE12	AVSS
AA11	AVSS	AB20	GP2_BVDD33	AC3	GP2_TD1P	AE13	GP7_TD1P
AA12	GP0_PLLVDD10	AB21	AVSS	AC4	GP2_TD1N	AE14	GP8_TD0P
AA13	AVSS	AB22	GP_AVDDH	AC5	AVSS	AE15	AVSS
AA14	GP1_PLLVDD10	AB23	GP_AVDDH	AC6	AVSS	AE16	GP8_TD3P
AA15	AVSS	AB24	AVSS	AC7	DNC	AE17	GP9_TD2P
AA16	GP2_PLLVDD10	AB25	GP14_TD2P	AC8	AVSS	AE18	AVSS
AA17	AVSS	AB26	GP14_TD2N	AC9	AVSS	AE19	GP10_TD0P
AA18	GP3_PLLVDD10	AB27	GP14_TD1P	AD10	AVSS	AE2	GP2_TD3N
AA19	AVSS	AB28	GP14_TD1N	AD11	AVSS	AE20	GP10_TD2P
AA2	GP1_TD2N	AB3	GP1_TD0N	AD12	RDAC1	AE21	AVSS
AA20	AVSS	AB4	GP1_TD0P	AD13	AVSS	AE22	GP11_TD2P
AA21	GP_AVDDH	AB5	AVSS	AD14	· GP_AVDDH	AE23	GP11_TD0P
AA22	: GP_AVDDH	AB6	GP_AVDDH	AD15	GP_AVDDH	AE24	AVSS

Ball	Signal Name
AE25	GP12_TD2P
AE26	AVSS
AE27	GP13_TD2P
AE28	GP13_TD2N
AE3	GP3_TD3P
AE4	GP3_TD3N
AE5	GP4_TD1P
AE6	AVSS
AE7	GP5_TD3P
AE8	GP5_TD1P
AE9	AVSS
AF1	GP3_TD2P
AF10	GP6_TD1N
AF11	GP6_TD3N
AF12	GP7_TD3P
AF13	GP7_TD1N
AF14	GP8_TD0N
AF15	GP8_TD1P
	GP8_TD3N
AF17	GP9_TD2N
AF18	GP9_TD1P
AF19	GP10_TD0N
AF2	GP3_TD2N
AF20	GP10_TD2N
AF21	GP10_TD3P
AF22	GP11_TD2N
AF23	GP11_TD0N
AF24	GP12_TD0P
	GP12_TD2N
AF26	AVSS
AF27	GP13_TD3P
AF28	GP13_TD3N
AF3	AVSS
AF4	AVSS
AF5	GP4_TD1N
AF6	GP4_TD2P
AF7	GP5_TD3N
AF8	GP5_TD1N
AF9	GP5_TD0P
AG1	AVSS
-	

Ball	Signal Name
AG1 0	GP6_TD0P
AG11	GP6_TD2P
AG1 2	GP7_TD3N
AG1 3	GP7_TD2P
AG1 4	GP7_TD0P
AG1 5	GP8_TD1N
AG1 6	GP8_TD2P
AG1 7	GP9_TD3P
AG1 8	GP9_TD1N
AG1 9	GP9_TD0P
AG2	AVSS
AG2 0	GP10_TD1P
AG2 1	GP10_TD3N
AG2 2	GP11_TD3P
AG2 3	GP11_TD1P
AG2 4	GP12_TD0N
AG2 5	GP12_TD1P
AG2 6	GP12_TD3P
AG2 7	AVSS
AG2 8	AVSS
AG3	GP3_TD1N
AG4	GP3_TD0N
AG5	GP4_TD0P
AG6	GP4_TD2N
AG7	GP4_TD3P
AG8	GP5_TD2P

GP5_TD0N

AG9

Ball	Signal Name
	GP6_TD0N
AH11	GP6_TD2N
AH13	GP7_TD2N
AH14	GP7_TD0N
AH16	GP8_TD2N
AH17	GP9_TD3N
AH19	GP9_TD0N
AH2	AVSS
	GP10_TD1N
AH22	GP11_TD3N
AH23	GP11_TD1N
AH25	GP12_TD1N
AH26	GP12_TD3N
AH27	AVSS
AH3	GP3_TD1P
AH4	GP3_TD0P
AH5	GP4_TD0N
AH7	GP4_TD3N
AH8	GP5_TD2N
B1	GND
B10	XG_PLL2_REFCL
	KP
B11	DNC
B12	DNC
B13	AVSS
B14	DNC
B15	AVSS
B16	SFLASH_CS_L
B17	SFLASH_IO3
B18	DNC
B19	GPIO4
B2	GND
B20	GPIO1
B21	GPIO3
B22	JTDI
B23	JTCK
B24	BSC_SDA
B25	JTCE
B26	XTAL_AVSS
B27	XTAL_AVSS

XTAL_AVSS

B28

Ball	Signal Name
B3	LED_SPI_SEL1
B4	UART1_DTR_L
B5	UART1_DCD_L
B6	UART1_RX
B7	GIG_MDC
B8	XG_MDC
В9	XG_PLL2_AVSS
C1	LED_P1_2
C10	XG_PLL2_AVDD3 3
C11	CORE_PLL_VDD 33
C12	AVSS
C13	AVSS
C14	AVSS
C15	
C16	SFLASH_IO1
C17	SFLASH_IO0
C18	IP_BOOT_DEV0
C19	GPIO5
C2	LED_P0_2
C20	GPIO6
C21	GPIO7
C22	SYS_RST_L
C23	JTMS
C24	BSC_SA0
C25	XTAL_AVSS
C26	XTAL_AVDD
C27	XTALP
C28	XTALN
C3	LED_DATA
C4	GND
C5	UART1_DSR_L
C6	UART1_RTS_L
C7	DNC
C8	GND
C9	XG_PLL2_AVSS
D1	LED_P3_2
D10	XG_PLL2_AVSS
D11	CORE_PLL_AVS S

Ball	Signal Name	Ball	Signal Name	Ball	Signal Name	Ball	Signal Name
D12	GND	E23	GND	G1	LED_P12_2	J5	GND
D13	AVSS	E24	GND	G2	LED_P11_2/SS_L	J8	GND
D14	GND	E25	QS2_AVSS	G24	QS2_AVSS	J9	GND
D15	GND	E26	QS2_AVSS	G25	QS2_AVSS	K1	LED_P9_1
D16	AVS0	E27	QS2_AVSS	G26	QS2_AVSS	K10	GND
D17	SFLASH_IO2	E28	QS2_AVSS	G27	QS2_AVSS	K11	GND
D18	IP_BOOT_DEV1	E3	LED_P4_2	G28	QS2_AVSS	K12	GND
D19	DNC	E4	LED_P7_2	G3	LED_P10_2/	K13	GND
D2	LED_P2_2	E5	GND		MOSI	K14	GND
D20	IP_BOOT_DEV2	E6	GND	G4	LED_P13_2	K15	GND
D21	GND	E7	DNC	G5	GND	K16	GND
D22	GND	E8	GND	<u>H1</u>	LED_P15_2	K17	DNC
D23	GND	E9	DNC	H2	LED_P14_2	K18	DNC
D24	BSC_SA1	F10	GND	H24	QS2_VDD	K19	GND
D25	XTAL_AVSS	F11	AVSS	H25	QS2_VDD	K2	LED_P7_1
D26	XTAL_AVSS	F12	AVDD33	H26	QS2_AVSS	K20	GND
D27	XTAL_AVSS	F13	AVDD33	H27	QS2_RD0P	K21	GND
D28	XTAL_AVSS	F14	AVSS	H28	QS2_RD0N	K24	QS2_AVSS
D3	LED_CLK	F15	VDD33	H3	LED_P3_0	K25	QS2_AVSS
D4	GND	F16	GND	H4	LED_P3_1	K26	QS2_AVSS
D5	GND	F17	VDD33	H5	VDD33	K27	QS2_TD1N
D6	UART1_CTS_L	F18	GND	J10	GND_1K	K28	QS2_TD1P
D7	DNC	F19	GND	J11	GND	K3	LED_P0_0
D8	DNC	F2	LED_P9_2/MISO	J12	GND	K4	LED_P0_1
D9	GND	F20	VDD33	J13	GND	K5	VDD33
E1	LED_P6_2	F21	GND	J14	GND	K8	GND
E10	GND	F22	VDD33	J15	GND	K9	GND
E11	AVSS	F23	GND	J16	GND	L1	LED_P2_0
E12	GND	F24	GND	J17	AVDD33	L10	GND
E13	AVSS	F25	QS2_AVSS	J18	GND	L11	GND
E14	GND	F26	QS2_AVSS	J19	GND	L12	GND
E15	GND	F27	QS2_TD0N	J2	LED_P5_1	L13	GND
E16	GND	F28	QS2_TD0P	J20	GND	L14	GND
E17	DNC	F3	LED_P8_2/SCK	J21	GND	L15	GND
E18	DNC	F4	GND	J24	QS2_VDD	L16	GND
E19	GND	F5	VDD33	J25	QS2_VDD	L17	GND
E2	LED_P5_2	F6	GND	J26	QS2_AVSS	L18	GND
E20	DNC	F7	VDD33	J27	QS2_AVSS	L19	GND
E21	EXT_UC_PRESE	F8	GND	J28	QS2_AVSS	L2	LED_P2_1
_	NT	F9	DNC	J3	LED_P7_0	L20	GND
E22	JTCE1			<u>J4</u>	GND		

Ball	Signal Name	Ball	Signal Name	Ball	Signal Name	Ball	Signal Name
L21	GND	N15	GND	P5	VDD33	T21	GND
L24	DNC	N16	GND	P8	GND	T24	GND
L25	DNC	N17	GND	P9	GND	T25	GND
L26	QS2_AVSS	N18	GND	R10	GND	T26	LC_PLL0_AVSS
L27	QS2_AVSS	N19	GND	R11	GND	T27	EXT_QS2_CLKP
L28	QS2_AVSS	N2	LED_P8_1	R12	GND	T28	EXT_QS2_CLKN
L3	LED_P4_0	N20	GND	R13	VDDC	T3	LED_P11_1
L4	LED_P4_1	N21	GND	R14	VDDC	T4	LED_P13_0
L5	GND	N24	QS2_AVSS	R15	VDDC	T5	VDD33
L8	GND	N25	QS2_AVSS	R16	VDDC	T8	GND
L9	GND	N26	QS2_AVSS	R17	VDDC	T9	GND
M10	GND	N27	QS2_AVSS	R18	VDDC	U1	LED_P15_0
M11	GND	N28	QS2_AVSS	R19	VDDC	U10	AVSS
M12	GND	N3	LED_P10_0	R2	LED_P1_0	U11	AVSS
M13	VDDC	N4	LED_P10_1	R20	VDDC	U12	AVSS
M14	VDDC	N5	GND	R21	VDDC	U13	AVSS
M15	VDDC	N8	GND	R24	LC_PLL0_AVDD3	U14	AVSS
M16	VDDC	N9	GND		3	U15	AVSS
M17	VDDC	P1	LED_P12_0	R25	LC_PLL0_AVDD3	U16	AVSS
M18	VDDC	P10	VSS_SENSE	R26	LC_PLL0_AVSS	U17	AVSS
M19	VDDC	P11	VDD_SENSE	R27	LC_PLL0_AVSS	U18	AVSS
M2	LED_P6_0	P12	GND	R28	LC_PLL0_AVSS	U19	AVSS
M20	VDDC	P13	VDDC	R3	LED_P5_0	U2	LED_P15_1
M21	VDDC	P14	VDDC	R4	GND	U20	AVSS
M24	QS2_PVDD	P15	VDDC	R5	GND	U21	AVSS
M25	QS2_PVDD	P16	VDDC	R8	GND	U24	GND
M26	QS2_AVSS	P17	VDDC	R9	GND	U25	LC_PLL0_AVSS
M27	QS2_RD1P	P18	VDDC	T1	LED_P1_1	U26	LC_PLL0_AVSS
M28	QS2_RD1N	P19	VDDC	T10	GND	U27	LC_PLL0_AVSS
М3	LED_P6_1	P2	LED_P12_1	T11	GND	U28	LC_PLL0_AVSS
M4	GND	P20	VDDC	T12	GND	U3	LED_P14_0
M5	VDD33	P21	VDDC	T13	GND	U4	LED_P14_1
M8	GEN_PLL_VDD1	P24	LC_PLL0_AVSS	T14	GND	U5	GND
	0	P25	LC_PLL0_AVSS	T15	GND	U8	AVSS
M9	GEN_PLL_VSS	P26	LC_PLL0_AVSS	T16	GND	U9	AVSS
N1	LED_P8_0	P27	LC_PLL0_REFCL	T17	GND	V10	GP_AVDDL
N10	GND		KP	T18	GND	V11	GP_AVDDL
N11	GND	P28	LC_PLL0_REFCL KN	T19	GND	V12	GP_AVDDL
N12	GND	P3	LED_P11_0	T2	LED_P9_0	V13	GP_AVDDL
N13	GND	P4	LED_P13_1	T20	GND	V14	GP_AVDDL
N14	GND			120	CIAD		

_			
Ball	Signal Name	Ball	Signal Name
V15	GP_AVDDL	W2	GP0_TD2P
V16	GP_AVDDL	W24	AVSS
V17	GP_AVDDL	W25	AVSS
V18	GP_AVDDL	W26	AVSS
V19	GP_AVDDL	W27	GP15_TD1P
V2	GP0_TD0N	W28	GP15_TD1N
V20	GP_AVDDL	W3	GP0_TD1N
V21	GP_AVDDL	W4	GP0_TD1P
V24	OSC_XTAL_SEL	W5	AVSS
V25	AVSS	Y1	GP1_TD3N
V26	AVSS	Y2	GP1_TD3P
V27	GP15_TD0P	Y24	AVSS
V28	GP15_TD0N	Y25	GP15_TD2P
V3	GP0_TD0P	Y26	GP15_TD2N
V4	AVSS	Y27	GP15_TD3P
V5	AVSS	Y28	GP15_TD3N
V8	GP_AVDDL	Y3	GP0_TD3N
V9	GP_AVDDL	Y4	GP0_TD3P
W1	GP0_TD2N	Y5	AVSS

Pin List by Signal Name

Table 10: Pin List by Signal Name - BCM53334 Devices

	1
Signal Name	Ball
AVDD33	F12
AVDD33	F13
AVDD33	J17
AVS0	D16
AVSS	A13
AVSS	A15
AVSS	AA4
AVSS	AA5
AVSS	AA10
AVSS	AA11
AVSS	AA13
AVSS	AA15
AVSS	AA17
AVSS	AA19
AVSS	AA20
AVSS	AA24
AVSS	AA25
AVSS	AB5
AVSS	AB9
AVSS	AB11
AVSS	AB13
AVSS	AB15
AVSS	AB17
AVSS	AB19
AVSS	AB21
AVSS	AB24
AVSS	AC5
AVSS	AC6
AVSS	AC8
AVSS	AC9
AVSS	AC11
AVSS	AC12
AVSS	AC13
AVSS	AC14
AVSS	AC15
AVSS	AC16
AVSS	AC17

ble 10: Pin List	by Sign
Signal Name	Ball
AVSS	AC18
AVSS	AC19
AVSS	AC21
AVSS	AC22
AVSS	AC24
AVSS	AD10
AVSS	AD11
AVSS	AD13
AVSS	AD17
AVSS	AD19
AVSS	AD20
AVSS	AD22
AVSS	AD23
AVSS	AD25
AVSS	AD4
AVSS	AD5
AVSS	AD7
AVSS	AD8
AVSS	AE6
AVSS	AE9
AVSS	AE12
AVSS	AE15
AVSS	AE18
AVSS	AE21
AVSS	AE24
AVSS	AE26
AVSS	AF3
AVSS	AF4
AVSS	AF26
AVSS	AG1
AVSS	AG2
AVSS	AG2 7
AVSS	AG2 8
AVSS	AH2
AVSS	AH27

Signal Name	Ball
AVSS	B13
AVSS	B15
AVSS	C12
AVSS	C13
AVSS	C14
AVSS	D13
AVSS	E11
AVSS	E13
AVSS	F11_
AVSS	F14
AVSS	U8
AVSS	U9
AVSS	U10
AVSS	U11
AVSS	U12
AVSS	U13
AVSS	U14
AVSS	U15
AVSS	U16
AVSS	U17
AVSS	U18
AVSS	U19
AVSS	U20
AVSS	U21
AVSS	V4
AVSS	V5
AVSS	V25
AVSS	V26
AVSS	W24
AVSS	W25
AVSS	W26
AVSS	W5
AVSS	Y5
AVSS	Y24
BSC_SA0	C24
BSC_SA1	D24
BSC_SCL	A24

Signal Name	Ball
BSC_SDA	B24
CORE_PLL_AVS S	D11
CORE_PLL_VDD 33	C11
DNC	A11
DNC	A12
DNC	A14
DNC	A18
DNC	A26
DNC	AC7
DNC	AC23
DNC	AD24
DNC	AD6
DNC	B11
DNC	B12
DNC	B14
DNC	B18
DNC	C7
DNC	D7
DNC	D8
DNC	D19
DNC	E7
DNC	E9
DNC	E17
DNC	E18
DNC	E20
DNC	F9
DNC	K17
DNC	K18
DNC	L24
DNC	L25
EXT_QS2_CLKN	T28
EXT_QS2_CLKP	T27
EXT_UC_PRESE NT	E21
GEN_PLL_VDD1 0	M8

Signal Name	Ball	Signal Name	Ball	Signal Name	Ball	Signal Name	Ball
GEN_PLL_VSS	M9	GND	J4	GND L21		GND	T18
GIG_MDC	B7	GND	J5	GND M4		GND	T19
GIG_MDIO	A7	GND	J8	GND M10		GND	T20
GND	A2	GND	J9	GND			T21
GND	B1	GND	J11	GND			U5
GND	B2	GND	J12	GND	N5	GND	U24
GND	C4	GND	J13	GND	N8	GND	T24
GND	C8	GND	J14	GND	N9	GND	T25
GND	C15	GND	J15	GND	N10	GND_1K	J10
GND	D4	GND	J16	GND	N11	GP_AVDDH	AA6
GND	D5	GND	J18	GND	N12	GP_AVDDH	AA7
GND	D9	GND	J19	GND	N13	GP_AVDDH	AA8
GND	D12	GND	J20	GND	N14	GP_AVDDH	AA9
GND	D14	GND	J21	GND	N15	GP_AVDDH	AA21
GND	D15	GND	K8	GND	N16	GP_AVDDH	AA22
GND	D21	GND	K9	GND	N17	GP_AVDDH	AA23
GND	D22	GND	K10	GND	N18	GP_AVDDH	AB6
GND	D23	GND	K11	GND	N19	GP_AVDDH	AB7
GND	E5	GND	K12	GND	N20	GP_AVDDH	AB8
GND	E6	GND	K13	GND	N21	GP_AVDDH	AB22
GND	E8	GND	K14	GND	P8	GP_AVDDH	AB23
GND	E10	GND	K15	GND	P9	GP_AVDDH	AD14
GND	E12	GND	K16	GND	P12	GP_AVDDH	AD15
GND	E14	GND	K19	GND	R4	GP_AVDDH	AD16
GND	E15	GND	K20	GND	R5	GP_AVDDL	V8
GND	E16	GND	K21	GND	R8	GP_AVDDL	V9
GND	E19	GND	L5	GND	R9	GP_AVDDL	V10
GND	E23	GND	L8	GND	R10	GP_AVDDL	V11
GND	E24	GND	L9	GND	R11	GP_AVDDL	V12
GND	F4	GND	L10	GND	R12	GP_AVDDL	V13
GND	F6	GND	L11	GND	T8	GP_AVDDL	V14
GND	F8	GND	L12	GND	Т9	GP_AVDDL	V15
GND	F10	GND	L13	GND	T10	GP_AVDDL	V16
GND	F16	GND	L14	GND	T11	GP_AVDDL	V17
GND	F18	GND	L15	GND	T12	GP_AVDDL	V18
GND	F19	GND	L16	GND	T13	GP_AVDDL	V19
GND	F21	GND	L17	GND T14 GP_AVDI		GP_AVDDL	V20
GND	F23	GND	L18	GND	T15	GP_AVDDL	V21
GND	F24	GND	L19	GND T16 GP0_BVDD3		GP0_BVDD33	AB10
GND	G5	GND	L20	GND	T17	GP0_PLLVDD10	AA12

Signal Name	Ball
GP0_PLLVDD33	AB12
GP0_TD0N	V2
GP0_TD0P	V3
GP0_TD1N	W3
GP0_TD1P	W4
GP0_TD2N	W1
GP0_TD2P	W2
GP0_TD3N	Y3
GP0_TD3P	Y4
GP1_BVDD33	AC10
GP1_PLLVDD10	AA14
GP1_PLLVDD33	AB14
GP1_TD0N	AB3
GP1_TD0P	AB4
GP1_TD1N	AB1
GP1_TD1P	AB2
GP1_TD2N	AA2
GP1_TD2P	AA3
GP1_TD3N	Y1
GP1_TD3P	Y2
GP10_TD0N	AF19
GP10_TD0P	AE19
GP10_TD1N	AH20
GP10_TD1P	AG2
OD40 TD0N	0
GP10_TD2N	AF20
GP10_TD2P	AE20
GP10_TD3N	AG2 1
GP10_TD3P	AF21
GP11_TD0N	AF23
GP11_TD0P	AE23
GP11_TD1N	AH23
GP11 TD1P	AG2
	3
GP11_TD2N	AF22
GP11_TD2P	AE22
GP11_TD3N	AH22
GP11_TD3P	AG2 2
GP12_TD0N	AG2 4
	т

Signal Name	Ball
GP12_TD0P	AF24
GP12_TD1N	AH25
GP12_TD1P	AG2
GP12 TD2N	5 AF25
GP12 TD2P	AE25
GP12_TD3N	AH26
GP12_TD3P	AG2
01 12_1501	6
GP13_TD0N	AD27
GP13_TD0P	AD26
GP13_TD1N	AC26
GP13_TD1P	AC25
GP13_TD2N	AE28
GP13_TD2P	AE27
GP13_TD3N	AF28
GP13_TD3P	AF27
GP14_TD0N	AC28
GP14_TD0P	AC27
GP14_TD1N	AB28
GP14_TD1P	AB27
GP14_TD2N	AB26
GP14_TD2P	AB25
GP14_TD3N	AA27
GP14_TD3P	AA26
GP15_TD0N	V28
GP15_TD0P	V27
GP15_TD1N	W28
GP15_TD1P	W27
GP15_TD2N	Y26
GP15_TD2P	Y25
GP15_TD3N	Y28
GP15_TD3P	Y27
GP2_BVDD33	AB20
GP2_PLLVDD10	AA16
GP2_PLLVDD33	AB16
GP2_TD0N	AC1
GP2_TD0P	AC2
GP2_TD1N	AC4
GP2_TD1P	AC3
GP2_TD2N	AD3

Signal Name	Ball
GP2_TD2P	AD2
GP2_TD3N	AE2
GP2_TD3P	AE1
GP3_BVDD33	AC20
GP3_PLLVDD10	AA18
GP3_PLLVDD33	AB18
GP3_TD0N	AG4
GP3_TD0P	AH4
GP3_TD1N	AG3
GP3_TD1P	AH3
GP3_TD2N	AF2
GP3_TD2P	AF1
GP3_TD3N	AE40
GP3_TD3P	AE3
GP4_TD0N	AH5
GP4_TD0P	AG5
GP4_TD1N	AF5
GP4_TD1P	AE5
GP4_TD2N	AG6
GP4_TD2P	AF6
GP4_TD3N	AH7
GP4_TD3P	AG7
GP5_TD0N	AG9
GP5_TD0P	AF9
GP5_TD1N	AF8
GP5_TD1P	AE8
GP5_TD2N	AH8
GP5_TD2P	AG8
GP5_TD3N	AF7
GP5_TD3P	AE7
GP6_TD0N	AH10
GP6_TD0P	AG1
ODO TDAN	0
GP6_TD1N	AF10
GP6_TD1P	AE10
GP6_TD2N	AH11
GP6_TD2P	AG11
GP6_TD3N	AF11
GP6_TD3P	AE11
GP7_TD0N	AH14

Signal Name	Ball
GP7_TD0P	AG1 4
GP7_TD1N	AF13
GP7_TD1P	AE13
GP7_TD2N	AH13
GP7_TD2P	AG1 3
GP7_TD3N	AG1 2
GP7_TD3P	AF12
GP8_TD0N	AF14
GP8_TD0P	AE14
GP8_TD1N	AG1 5
GP8_TD1P	AF15
GP8_TD2N	AH16
GP8_TD2P	AG1 6
GP8_TD3N	AF16
GP8_TD3P	AE16
GP9_TD0N	AH19
GP9_TD0P	AG1 9
GP9_TD1N	AG1 8
GP9_TD1P	AF18
GP9_TD2N	AF17
GP9_TD2P	AE17
GP9_TD3N	AH17
GP9_TD3P	AG1 7
GPIO0	A20
GPIO1	B20
GPIO2	A21
GPIO3	B21
GPIO4	B19
GPIO5	C19
GPIO6	C20
GPIO7	C21
IP_BOOT_DEV0	C18
IP_BOOT_DEV1	D18
IP_BOOT_DEV2	D20

Signal Name	Ball	Signal Name	Ball	Signal Name	Ball	Signal Name	Ball
JTCE	B25	LED_P12_1	P2	QS2_AVSS E27		RDAC1	AD12
JTCE1	E22	LED_P12_2	G1	QS2_AVSS	E28	RDAC2	AD18
JTCK	B23	LED_P13_0	T4	QS2_AVSS	F25	RDAC3	AD21
JTDI	B22	LED_P13_1	P4	QS2_AVSS			A17
JTDO	A23	LED_P13_2	G4	QS2_AVSS	G24	SFLASH_CS_L	B16
JTMS	C23	LED_P14_0	U3	QS2_AVSS	G25	SFLASH_IO0	C17
JTRST	A25	LED_P14_1	U4	QS2_AVSS	G26	SFLASH_IO1	C16
LC_PLL0_AVDD3	R24	LED_P14_2	H2	QS2_AVSS	G27	SFLASH_IO2	D17
3		LED_P15_0	U1	QS2_AVSS	G28	SFLASH_IO3	B17
LC_PLL0_AVDD3	R25	LED_P15_1	U2	QS2_AVSS	H26	SYS_RST_L	C22
3	D04	LED_P15_2	H1	QS2_AVSS	J26	UART1_CTS_L	D6
LC_PLL0_AVSS	P24	LED_P2_0	L1	QS2_AVSS	J27	UART1_DCD_L	B5
LC_PLL0_AVSS	P25	LED_P2_1	L2	QS2_AVSS	J28	UART1_DSR_L	C5
LC_PLL0_AVSS	P26	LED_P2_2	D2	QS2_AVSS	K24	UART1_DTR_L	B4
LC_PLL0_AVSS	R26	 LED_P3_0	H3	QS2_AVSS	K25	UART1_RI_L	A4
LC_PLL0_AVSS	R27	 LED_P3_1	H4	QS2_AVSS	K26	UART1 RTS L	C6
LC_PLL0_AVSS	R28	 LED_P3_2	D1	QS2_AVSS	L26	UART1 RX	B6
LC_PLL0_AVSS	T26	 LED_P4_0	L3	QS2_AVSS	L27	UART1_TX	A6
LC_PLL0_AVSS	U25	 LED_P4_1	L4	QS2_AVSS	L28	VDD_SENSE	P11
LC_PLL0_AVSS	U26	 LED_P4_2	E3	QS2_AVSS	M26	VDD33	F5
LC_PLL0_AVSS	U27	 LED_P5_0	R3	QS2_AVSS	N24	VDD33	F7
LC_PLL0_AVSS	U28	 LED_P5_1	J2	QS2_AVSS	N25	VDD33	F15
LC_PLL0_REFCL KN	P28	 LED_P5_2	E2	QS2_AVSS	N26	VDD33	F17
LC_PLL0_REFCL	P27	LED P6 0	M2	QS2_AVSS	N27	VDD33	F20
KP	1 21	LED_P6_1	M3	QS2_AVSS	N28	VDD33	F22
LED_CLK	D3	LED P6 2	E1	QS2_PVDD	M24	VDD33	H5
LED_DATA	C3	LED_P7_0	J3	QS2_PVDD	M25	VDD33	K5
LED_P0_0	K3	LED_P7_1	K2	QS2_RD0N	H28	VDD33	M5
LED_P0_1	K4	LED_P7_2	E4	QS2_RD0P	H27	VDD33	P5
LED_P0_2	C2	LED_P8_0	N1	QS2_RD1N	M28	VDD33	T5
LED_P1_0	R2	LED_P8_1	N2	QS2_RD1P	M27	VDDC	M13
LED_P1_1	T1	LED_P8_2/SCK	F3	QS2 TD0N	F27	VDDC	M14
LED_P1_2	C1	LED_P9_0	T2	QS2_TD0P	F28	VDDC	M15
LED_P10_0	N3	 LED_P9_1	K1	QS2_TD1N	K27	VDDC	M16
LED_P10_1	N4	LED_P9_2/MISO	F2	QS2_TD1P	K28	VDDC	M17
LED_P10_2/	G3	LED_SPI_SEL0	A3	QS2_VDD	H24	VDDC	M18
MOSI		LED_SPI_SEL1	В3	QS2_VDD	H25	VDDC	M19
LED_P11_0	P3	OSC_XTAL_SEL	V24	QS2_VDD	J24	VDDC	M20
LED_P11_1	T3	QS2_AVSS	E25	QS2_VDD	J25	VDDC	M21
LED_P11_2/SS_L		QS2_AVSS	E26	RDAC0	AD9	VDDC	P13
LED_P12_0	P1						

Signal Name	Ball
VDDC	P14
VDDC	P15
VDDC	P16
VDDC	P17
VDDC	P18
VDDC	P19
VDDC	P20
VDDC	P21
VDDC	R13
VDDC	R14
VDDC	R15
VDDC	R16
VDDC	R17
VDDC	R18
VDDC	R19
VDDC	R20
VDDC	R21
VSS SENSE	P10
XG MDC	B8
XG_MDIO	A8
XG_PLL2_AVDD3	C10
3	
XG_PLL2_AVSS	A9
XG_PLL2_AVSS	B9
XG_PLL2_AVSS	C9
XG_PLL2_AVSS	D10
XG_PLL2_REFCL	A10
KN NO PLIA PEFOL	D40
XG_PLL2_REFCL KP	B10
XTAL_AVDD	C26
XTAL AVSS	A27
XTAL AVSS	B26
XTAL AVSS	B27
XTAL AVSS	B28
XTAL_AVSS	C25
XTAL_AVSS	D25
XTAL_AVSS	D25
XTAL_AVSS	D20 D27
XTAL_AVSS XTAL AVSS	D27
XTALN	C28

Signal Name	Ball
VDDC	P14
VDDC	P15
VDDC	P16
VDDC	P17
VDDC	P18
VDDC	P19
VDDC	P20
VDDC	P21
VDDC	R13
VDDC	R14
VDDC	R15
VDDC	R16
VDDC	R17
VDDC	R18
VDDC	R19
VDDC	R20
VDDC	R21
VSS_SENSE	P10
XG_MDC	B8
XG_MDIO	A8
XG_PLL2_AVDD3	3 C10
XG_PLL2_AVSS	A9
XG_PLL2_AVSS	В9
XG_PLL2_AVSS	C9
XG_PLL2_AVSS	D10
XG_PLL2_REFCL KN	_ A10
XG_PLL2_REFCL	_ B10
XTAL_AVDD	C26
XTAL_AVSS	A27
XTAL_AVSS	B26
XTAL_AVSS	B27
XTAL_AVSS	B28
XTAL_AVSS	C25
XTAL AVSS	D25

BCM53334 Data Sheet Electrical Specifications

Section 8: Electrical Specifications

Absolute Maximum Ratings

The specifications shown in Table 12 indicate levels where permanent damage to the device can occur. Functional operation is not guaranteed under these conditions. Operation at absolute maximum conditions for extended periods can adversely affect long-term reliability of the device.

Table 11: Absolute Maximum Ratings

Parameter	Symbol	Min.	Мах.	Units	Notes
1.00V, Core Voltage	_	-0.50	+1.37	V	_
1.00V, Analog Voltage	_	-0.40	+1.37	V	_
3.30V, I/O Voltage	_	-0.50	+4.10	V	_
Storage Temperature	T _{STG}	-4 0	+125	°C	_
Electrostatic Discharge (ESD) (non-SerDes pins)	V _{ESD}	-7(0)	_	_	_
 Human Body Model (HBM) per EIA/JESD22- A114-E 	Ç	10	±2000	V	_
 Machine Model (MM) per EIA/JESD-A115-A 		_	±100	V	_
 Charge Device Model (CDM) per EIA/JESD22- C101C 	- 0,	_	±300	V	_
ESD (QSGMII SerDes pins)	V _{ESD}	_	_	_	_
 Human Body Model per EIA/JESD22-A114-E 		_	±1400	V	_
 Machine Model per EIA/JESD-A115-A 		_	±75	V	_
 Charge Device Model per EIA/JESD22-C101C 		-	±200	V	_

DC Characteristics

Operating Conditions

Broadcom recommends operating the BCM53334 under the following conditions shown in Table 12.

Table 12: Operating Conditions

Parameter	Symbol	Min.	Тур.	Мах.	Units
1.00V ±2%, Core Voltage	_	0.980	1.00	1.020	V
1.00V ±2%, Analog Voltage	_	0.980	1.00	1.020	V
3.30V ±5%, I/O Voltage	_	3.135	3.30	3.465	V
Ambient Temperature	T _A	0	-	70	°C
Ambient Temperature (Industrial Temperature)	T _A	-4 0	·	+85	°C
Junction Temperature ^a	T _J	_	-	125	°C

a. Device must not operate at Maximum junction temperature $125^{\circ}C$ for extended periods of time. Steady state temperature is $110^{\circ}C$.

Power-Up and Power-Down Specifications

The power-up and power-down requirements for the BCM53334 are outlined in Figure 12. Violating sequencing can cause latch-up damage to the device.

Figure 12: Power-Up and Power-Down Timing

Note: When a crystal is used as the external clock source, there is no CLK2RST requirement.

Table 13: AC Specifications for Power-Up and Power-Down

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
t _{PUIO2CORE}	VDDO (3.3, 1.5/1.8, 1.2) to VDDC/Analog PWR (1.0V) power-up time	0	-	5	ms	1
t _{PDCORE2IO}	VDDO (3.3, 1.5/1.8, 1.2) to VDDC/Analog PWR (1.0V) power-down time	0	-	_	ms	1, 4
t _{PU2RST}	All voltages at valid operating conditions to the deassertion of sys_rst_n	40	-	-	ms	1, 3
t _{CLK2RST}	All clocks valid to the deassertion of sys_rst_n	t _{PU2RST} – 5	-	-	ms	2, 3
t _{COR2LCK}	Time for the core clock to internally become valid and allow register accesses	1	-	-	ms	2, 3
t _{RAMP}	Ramp time for each voltage rail 10% to 90%	0	_	5	ms	_

Note:

- 1. Valid operating conditions are listed in Table 12 on page 73.
- 2. Valid clocks are described in the AC Characteristics section.
- 3. Ensures lock time on internal PLL.
- 4. The power-down has no sequencing requirements and no time limit to parameter t_{PDCORE2IO}.
- **5.** The VDDC (1.0V core) must be powered up at the same time or before the GP_AVDDL (1.0V analog) supply.

Power Supply Current

Table 14: BCM53334 Power Supply Current for 24P 1G at 110°C Junction Temperature

Parameter	Voltage (V)	Current (A)	Power (W)
1.0V Digital	1.02	5.64	5.75
1.0V Analog	1.02	0.60	0.61
1.2V/2.5V/3.3V MDIO	2.55	0.02	0.05
3.3V	3.37	1.02	3.43
Total	- (0		9.84

Standard 3.3V Signals

The specifications shown in Table 15 apply to all CMOS 3.3V general I/O signals, along with Synchronous Ethernet Interface, UART, GPIO, JTAG, and LED signals, except for BSC and MDIO/MDC.

Table 15: Standard 3.3V Signals

Parameter	Symbol	Min.	Тур.	Max.	Units
Input Voltage	V _{IN}	-0.25	_	+3.63	V
Input Low Voltage	V _{IL}	-	_	0.8	V
Input High Voltage	V _{IH}	2.0	_	_	V
Input Leakage Current	I _I	–15	_	+15	μΑ
Output Low Voltage	V _{OL}	_	_	0.4	V
Output High Voltage	V _{OH}	VDDO33-0.4	-	_	V
I/O Pin Capacitance (GBD)	C _I	-	-	TBD	pF

BSC Signals

BSC_SCL and BSC_SDA are bidirectional open-drain signals. An external pull-up to 3.3V should be provided on the board. BSC_SA1 and BSC_SA0 are standard 3.3V signals. It is recommended that they be pulled high to 3.3V or left unconnected.

Table 16: BSC Signals^a

Parameter	Symbol	Condition	Min.	Тур.	Мах.	Units
Input Voltage	V _{IN}	_	-0.25	_	+3.63	V
Input Low Voltage	V _{IL}	_	_	_	0.3*VDDO ^b	V
Input High Voltage	V _{IH}	_	0.7*VDDO ^b	_	_	V
Input Leakage Current	I _I	_	-10	_	+10	μА
Output Low Voltage	V _{OL}	I_{OL} = 3 mA	_	-	0.4	V
Hysteresis of Schmitt Inputs (GBD)	V _{HYS}	_	0.18	-0	_	V
I/O Pin Capacitance (GBD)	C _I	_	-	+0	TBD	pF

a. BSC I/Os are true open-drain type and require external pull-up resistors.

QSGMII SerDes Signals

Table 17: QSGMII SerDes DC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units
Receiver					
RX Baud Rate	R_Baud	_	5.0	_	GSym/s
Input Differential Voltage	R_Vdiff	100	_	900	mVppd
Differential Resistance	R_Rdin	85	100	115	Ω
Bias Voltage Source Impedance (Load Type 2)	R_Zvtt	_	_	30	Ω
Transmitter					
Output Differential Voltage (into floating Load Rload=100Ω)	T_Vdiff	400	550	900	mVppd
Differential Resistance	T_Rd	85	100	115	Ω
Recommended Output Rise and Fall Times (20% to 80%)	5 Gps 3 Gps 1.25 Gps	30 67 100	78 136 200	-	ps

b. VDDO is 3.3V external pull-up supply.

MIIM (MDIO) Signals

Table 18: MIIM (Clause 22 Electrical Characteristics)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Units
Input Voltage	V _{IN}	_	-0.3	_	+3.6	V
Input Low Voltage	V _{IL}	_	_	_	0.8	V
Input High Voltage	V_{IH}	_	2.0	_	_	V
Input Leakage Current	I _I	_	–15	-	+15	μΑ
Output Low Voltage	V _{OL}	I _{OL} = 11 mA	_	_	0.4	V
Output High Voltage	V _{OH}	I _{OH} = -11 mA	A V _{DDO} - 0.4	_	-	V
I/O Pin Capacitance (GBD)	C _I	_	_	_	TBD	pF
Note: GRD = Guaranteed by	design are na	rameters that a	re not tested			

Note: GBD = Guaranteed by design are parameters that are not tested.

AC Characteristics

AC Timing for Reset

The SYS_RST_L signal is synchronized internal to the IC and, as such, asynchronous assertion and deassertion are acceptable.

BSC AC Characteristics

The BSC interface can be operated in two modes:

- · Slave mode
- · CPU-controlled master/slave mode

The external master drives BSC_SDA during a write operation and samples BSC_SDA during a read operation.

Figure 13: BSC Timing Diagram

Table 19: BSC Master/Slave Fast-Mode Timing

Parameter	Symbol	Min.	Тур.	Max.	Units
BSC_SCL Cycle Time	T _{CYCLE}	2.5	_	_	μS
BSC_SCL Low Time	T _{LOW}	1.3	_	_	μS
BSC_SCL High Time	T _{HIGH}	0.6	_	_	μS
Data Hold Time	T _H	0	_	_	μS
Data Setup Time	T _{SU}	100	_	_	ns
Rise Time, Clock and Data (See Note)	T _R	_	_	300	ns
Fall Time, Clock and Data (GBD)	T _F	_	_	300	ns
Hold Time, START or repeated START	T _{START-H}	0.6	_	_	μS
Setup Time, repeated START	T _{START-SU}	0.6	_	_	μS
Setup Time, STOP	T _{STOP-SU}	0.6	_	_	μS
Bus Free Time (Between STOP and START)	T _{BF}	1.3	_	_	μS

Table 20: BSC Master/Slave Standard-Mode Timing

Parameter	Symbol	Min.	Тур.	Max.	Units
BSC_SCL Cycle Time	T _{CYCLE}	2.5	_	_	μS
BSC_SCL Low Time	T_{LOW}	1.3	_	_	μS
BSC_SCL High Time	T _{HIGH}	0.6	_	_	μS
Data Hold Time	T _H	0	_	_	μS
Data Setup Time	T _{SU}	100	_	_	ns
Rise Time, Clock and Data (See Note)	T _R	_	_	300	ns
Fall Time, Clock and Data (GBD)	T _F	_	_	300	ns
Hold Time, START or repeated START	T _{START-H}	0.6	_	_	μS
Setup Time, repeated START	T _{START-SU}	0.6	-	_	μS
Setup Time, STOP	T _{STOP-SU}	0.6	-	_	μS
Bus Free Time (Between STOP and START)	T _{BF}	1.3	510	_	μS

Note: BSC_SCL and BSC_SDA are open-drain outputs. The rise time is dependent on the strength of the external pull-up resistor, which should be chosen to meet the rise time requirement.

The BCM53334 device drives the BSC_SCL clock, with a programmable speed of 100 kHz or 400 kHz based on the mode bit called MODE_400. The BCM53334 drives BSC_SDA during a write operation and samples BSC_SDA during a read operation.

SPI AC Characteristics

The SPI interface can be operated in two modes:

- · Master mode
- Slave mode

Figure 14: SPI Interface Master Mode Timing Diagram

Table 21: SPI Master Mode Timing

Parameter		Symbol	Min.	Тур.	Max.	Units
SCK Cycle Time	~0,	T _{CYCLE}	32	_	_	ns
SS_L Valid Time	70	t1_valid	5	_	_	ns
MOSI Valid Time		t2_valid	5	_	_	ns
MISO Setup Time	0,0	t_setup	5	_	_	ns
MISO Hold Time	- 40	t_hold	0	_	_	ns

Figure 15: SPI Interface Slave Mode Timing Diagram

Table 22: SPI Slave Fast Mode Timing

Parameter		Symbol	Min.	Тур.	Max.	Units
SCK Cycle Time	~0,	T _{CYCLE}	32	_	_	ns
SS_L Setup Time	70	t1_setup	4	_	_	ns
MOSI Setup Time	20,	t2_setup	4	_	_	ns
MOSI Hold Time		t_hold	4	_	_	ns
MISO Valid Time	-40	t_valid	9	_	_	ns

MDIO AC Characteristics

Figure 16: MIIM Interface Timing Diagram

Table 23: MDC/MDIO Timing

Parameter	Symbol	Min.	Тур.	Мах.	Units
MDC Cycle Time	T _{CYCLE}	80	400	_	ns
MDC Duty Cycle	~ - O	40	_	60	%
MDC Rise/Fall Time (Requirement 20%–80%)	T_{R,T_F}	_	_	10	ns
MDIO Setup Time	T _S	20	_	_	ns
MDIO Hold Time	T _H	10	_	_	ns
MDIO Output Delay	T _{OD}	0	_	25	ns

JTAG AC Specifications

Table 24: AC Characteristics for JTAG

Parameter	Symbol	Min.	Тур.	Мах.	Unit
j_tck cycle time	t _{CYCLE}	80.0	_	_	ns
j_tck falling edge to output valid.	t _{OD}	0	_	25	ns
Applicable to j_tdo.					
Data input setup time before j_tck.	t _{SU_JT}	15	_	_	ns
Applicable to j_tdi and j_tms.	_				
Data hold time after j_tck rise	t _{H_JT}	5	_	_	ns
Applicable to j_tdi and j_tms.	_				
Input setup time before j_tck rising edge.	t _{SU_JTRS}	15	_	_	ns
Applicable to j_trst.	_				
Input hold time after j_tck rising edge.	t _{H_JTRS}	5	()	_	ns
Applicable to j_trst.	_				

Note: Unless otherwise noted, the specifications are valid across the following operating conditions:

- The threshold value is at 50% of the applicable I/O rail voltage.
- The default loading on an output is 5 pF.

TCK TCYCLE TSU TH VALID

TDI/TMS/TRST

TDO

VALID

VALID

Figure 17: JTAG Timing

QSPI Flash Interface Timing

The QSPI interface operates as a Master, allowing access to an external SPI Flash or EEPROM from which the microcontroller boot code can be loaded. The SFLASH_CLK, SFLASH_CS_L and SFLASH_IO0 signals are outputs, while SFLASH_IO1 is an input.

Figure 18: QSPI BSPI Mode Master Interface Timing

Note: Figure 18 BSPI Mode only shows single lane operation. SFLASH_IO2 and SFLASH_IO3 signals are used to support dual-lane and quad-lane operation.

Table 25: QSPI BSPI Mode Master Interface Timing Specifications

Parameters	Symbol	Conditions	Min.	Тур.	Max.	Unit
SFLASH Clock Frequency ^a	F _{CLK}	(0)	_	62.5	62.5	MHz
SFLASH Clock Cycle Time	T _{CK}	+)	_	1/F _{CLK}	_	ns
SFLASH_CLK Clock High time	T _{WH}	_	0.4*T _{CK}	_	0.6*T _{CK}	ns
SFLASH_CLK Clock Low time	T _{WL}	_	0.4*T _{CK}	_	0.6*T _{CK}	ns
Chip Select (SFLASH_CS_L) Valid time	e T _{Val-CS}	_	0	_	4.0	ns
Data Out MOSI (SFLASH_IO0) Valid time	T _{Val}	_	-3.0	_	4.0	ns
Data In MISO (SFLASH_IO1) Setup time	T _{DS}	_	4.0	_	_	ns
Data In MISO (SFLASH_IO1) Hold time	e T _{DH}	_	1.0	_	_	ns
Rise Time	T _R	20% to 80%	_	_	1.5	ns
Fall Time	T _F	20% to 80%	_	_	1.5	ns

a. QSPI BSPI mode is used for initial code download when IP_BOOT_DEV=3'b000 and read operations during runtime. The frequency is set to a reset default value of 25 MHz through CRU_CONTROL.QSPI_CLK_SEL. When register access is established, the same register can be written to change the QSPI interface frequency to a value of 25 MHz, 31.25 MHz, 50 MHz, or 62.5 MHz.

Figure 19: QSPI MSPI Mode Master Interface Timing

Table 26: QSPI MSPI Mode Master Interface Timing Specifications

Davamatava	Cumbal	Conditions	Min	Tim	Mox	l lmi4
Parameters	Symbol	Conditions	Min.	Тур.	Max.	Unit
SFLASH Clock Frequency ^a	F_{CLK}	_	-700	15.625	15.625	MHz
SFLASH Clock Cycle Time	T _{CK}	-	40,	1/F _{CLK}	_	ns
SFLASH_CLK Clock High time	T _{WH}	-	0.4*T _{CK}	_	0.6*T _{CK}	ns
SFLASH_CLK Clock Low time	T _{WL}	-	0.4*T _{CK}	_	0.6*T _{CK}	ns
Chip Select (SFLASH_CS_L) Setup time	T _{CSS}	O	12.0	_	_	ns
Chip Select (SFLASH_CS_L) Hold time	e T _{CSH}	_	1.0	_	_	ns
Data Out MOSI (SFLASH_IO0) Valid time	T _{Val}	<u> </u>	0	_	4.0	ns
Data In MISO (SFLASH_IO1) Setup time	T _{DS}	_	12.0	_	_	ns
Data In MISO (SFLASH_IO1) Hold time	T _{DH}	_	1.0	_	_	ns
Rise Time	T _R	20% to 80%	_	_	1.5	ns
Fall Time	T _F	20% to 80%	_	_	1.5	ns

a. QSPI MSPI mode is typically used during runtime whenever write or erase operations are required.

LED Controller Interface

LED_CLK and LED_DATA are outputs. LED_CLK output clock period is 200 ns (5.0 MHz).

Figure 20: LED Timing Diagram

Table 27: LED Timing^a

Parameter	Symbol	Min.	Тур.	Мах.	Units
LED_CLK Cycle Time	T _{CYCLE}	-70	200	200	ns
LED_CLK High Time	T _{HIGH}	70	100	130	ns
LED_CLK Low Time	T _{LOW}	70	100	130	ns
LED_DATA Output Valid Time	T _{OV}	0	_	30	ns

a. Timing figures are specified at the 50% crossing thresholds.

Biosigcolly

XTAL Clock Requirements

The Master clock (XTALP/XTALN), when driven by an external oscillator, requires a 25 MHz single-ended or differential source with characteristics shown in Figure 21 and meets requirements outlined in Table 28.

XTALP / XTALN

THIGH

TCYCLE

Figure 21: XTALP/XTALN Input Timing Diagram

Table 28: XTALP/XTALN Input Requirements

Requirement	Symbol	Min.	Тур.	Max.	Units
XTALP/XTALN Frequency	- 5	70	25	_	MHz
XTALP/XTALN Accuracy	- 0	-50	_	+50	ppm
XTALP/XTALN Duty Cycle	-	45	_	55	%
Input Voltage Range	VIN	800	_	2000	mVpp diff
Minimum Input Voltage	V _{IL}	0	_	_	V
Maximum Input Voltage	V _{IH}	_	_	1.0	VDC
XTALP/XTALN Rise/Fall Time (20% to 80%)	T_{R,T_F}	0.10	_	1.0	ns
XTALP/XTALN Jitter RMS Max (12 kHz to 12.5 MHz)	_	_	_	0.5	ps

Note:

- Sample part Vectron VCC6-QAB-25M00 LVPECL Crystal Oscillator.
- AC-coupled externally.
- External 100Ω termination required.

LC_PLL0_REFCLK Clock Requirements

The QSGMII/QGPHY clock (LC_PLL0_REFCLKP/N) requires a 25 MHz differential source with characteristics shown in Figure 22.

Figure 22: LC_PLL0_REFCLKP/N Input Timing Diagram

Table 29: LC_PLL0_REFCLK Input Requirements

Requirement	Symbol	Min.	Тур.	Max.	Units
LC_PLL0_REFCLK Frequency	- (:-(0)	25	_	MHz
LC_PLL0_REFCLK Accuracy	- 3	-50	_	+50	ppm
LC_PLL0_REFCLK Duty Cycle	-	45	_	55	%
Input Voltage Range	VIN	700	_	2000	mVpp diff
LC_PLL0_REFCLK Rise/Fall Time (20% to 80%)	T _{R,} T _F	0.10	_	1.0	ns
LC_PLL0_REFCLK (25 MHz) Jitter RMS Max (12 kHz to 12.5 MHz)	<u>z</u> –	_	_	0.5	ps

Note:

- AC-coupled externally.
- Internal 100Ω termination.

EXT_QS2_CLKP/N Clock Specifications

These clocks (EXT_QS2_CLKP/N) provide a 125 MHz differential clocks that can be directly connecting to external GPHY such as Broadcom BCM54282.

EXT_QS2_CLK T_{HIGH} T_{LOW}

Figure 23: EXT_QS2_CLKP/N Output Timing Diagram

Table 30: EXT_QS2_CLKP/N Output Specifications

Requirement	Symbol	Min.	Тур.	Max.	Units
EXT_QS2_CLK Frequency	_	d.O	125	_	MHz
EXT_QS2_CLK Accuracy	-	-50	_	+50	ppm
EXT_QS2_CLK Duty Cycle	-	45	_	55	%
Output Voltage Range	V _{ODIFF}	300	_	500	mVpp diff
EXT_QS2_CLK Rise/Fall Time (20% to 80%)	T_{R,T_F}	0.10	_	0.22	ns
EXT_QS2_CLK Jitter RMS Max (12 kHz to 12.5 MHz	z) –	_	-	2	ps

Note:

- · AC-coupled externally.
- Measured with 50Ω termination as recommended in the Hardware Design Guide.

QSGMII AC Specifications

Transmitter

Figure 24: QSGMII Transmit Eye Mask

Table 31: QSGMII TX

Parameters	Symbol	Min.	Тур.	Max.	Units
Output Speed per lane	_	–100 ppm	+5.0	+100 ppm	Gbaud
Differential Resistance	Rin	80	100	120	Ω
Differential Output Voltage (pk-pk)	VOD	400	_	900	mVp-p
Transmit Eye Mask (Figure 24)	X1	_	_	0.15	UI
Transmit Eye Mask (Figure 24)	X2	_	_	0.40	UI
Transmit Eye Mask (Figure 24)	Y1	200	_	_	mV
Transmit Eye Mask (Figure 24)	Y2	_	_	450	mV
Common Mode Voltage	VCM	550	_	1060	mV
Differential Output Return Loss (min)	Equation ^a	_	_	-8	dB
Common-mode Output Return Loss (min)	Equation ^b	_	-	- 6	dB
Output Rise Time (20%–80%)	Tr	30	() –	pS
Output Fall Time (20%–80%)	Tf	30	7	_	pS
Output Jitter @ 1e ⁻¹² BER					
Uncorrelated	sut	- 26		0.15	Ulpp
Total	st	-((())	_	0.30	Ulpp

a. Return Loss (f) –8 dB for 100 MHz $\leq f \leq 2.5$ GHz Return Loss (f) $\leq [-8+16.6\log(f/2.5)]$ dB for 2.5 GHz $\leq f \leq 5$ GHz, where f is in Gigahertz.

Receiver

Figure 25: QSGMII Receive Eye Mask

b. Return Loss (f) \leq -6 dB for 100 MHz \leq f < 2.5 GHz

Table 32: QSGMII RX

Parameters	Symbol	Min.	Тур.	Мах.	Units
Receiver coupling	AC	_	0.1	_	μF
Differential Resistance	Rin	80	100	120	Ω
Receive eye mask (Figure 25 on page 92)	X1	_	_	0.30	UI
Receive eye mask (Figure 25 on page 92)	X2	_	_	0.5	UI
Receive eye mask (Figure 25 on page 92)	Y1	50	_	_	mV
Receive eye mask (Figure 25 on page 92)	Y2	_	_	450	mV
Differential input return loss	Equation ^a		_	-8	dB
Common mode input return loss	Equation ^b		_	-6	dB
Receiving speed per lane	_	–100 ppm	+5.0	+100 ppm	Gbaud
Sinusoidal jitter tolerance	Figure 26 on page 93	_	-	0.05	Ulpp
Bit error rate based channel characteristics per Clause 83A in IEEE802.3ba.	_	_	- (1)	1e-12	bps

a. Return loss $(f) \le -8$ dB for 100 MHz $\le f < 2.5$ GHz. Return loss $\le [-8 + 16.6\log(f/2.5)]$ dB for 2.5 GHz $\le f \le 5$ GHz, where f is in Gigahertz.

0.04 4 10x Loop Bandwidth

Frequency (MHz)

Figure 26: Single-Tone Sinusoidal Jitter Mask

AC-JTAG

The serial interface AC-JTAG characteristics are shown in Table 33.

b. Return loss (f) \leq -6 dB for 100 MHz \leq f < 2.5 GHz, where f is in Gigahertz.

Table 33: Serial Interface AC-JTAG Characteristics

Parameter	Symbol	Description	Min.	Тур.	Мах.	Unit
Fault Resistance Detect	R _{sc}	Short Circuit	0	-	5	Ω
	R _{oc}	Open Circuit	20	_	_	kΩ
Transmit Voltage Levels	V_{TX}	Differential p-p	0.5	1.0	1.3	V
Transmit Data Rate	_	EXTEST_TRAIN	1	_	30	Mbps
Output Resistance	R_{DRV}	DP or DM to VDD	_	50	-	Ω
Transmit Supply Current	I _{DD}	Operating mode	_	56	_	mA
Receiver Input Capacitance	C _{IN}	DP or DM to GND	_	0.5	0.6	pF
Common-Mode Voltage	V _{CM}	_	_	-	V _{DD} -0.2	V
Comparator Hysteresis ^a	V _{HYS}	Peak-to-peak	25	150	300	mV
Receive Data Rate	_	EXTEST_TRAIN	1	7.40	30	Mbps

a. Transmit voltage levels, as well as receiver hysteresis, are user programmable.

Table 34 and Table 35 show the AC-JTAG settings and the corresponding typical voltages.

Table 34: AC-JTAG Transmit Setting (Driver Bias Current)

Cfg Value	Transmit Amplitude [Vpp]	Cfg Value	Transmit Amplitude [Vpp]
0111	0.68	1111	1.04
0110	0.73	1110	1.06
0101	0.78	1101	1.07
0100	0.83	1100	1.08
0011	0.88	1011	1.08
0010	0.93	1010	1.09
0001	0.98	1001	1.09
0000	1.01	1000	1.10

Table 35: AC-JTAG Receive Configuration

Cfg Value	Rx Hysteresis (mVpp)	Cfg Value	Rx Hysteresis (mVpp)
111	130	011	0
110	100	010	300
101	70	001	230
100	40	000	170

BCM53334 Data Sheet Thermal Characteristics

Section 9: Thermal Characteristics

Table 36 shows the thermal characteristics of BCM53334 in 24x 1G configuration at T_A =40°C with 50 x 50 x 30 mm³ heatsink.

Table 36: 648-FCBGA+HS Thermal Characteristics with 50 x 50 x 35 mm³ External Heat Sink at $T_A = 40^{\circ}$ C, P = 9.84W

Air Flow (LFPM)	0	100	200	400	600
Theta- _{JA} (°C/W)	6.00	3.27	2.49	2.16	2.06
Theta- _{JB} (°C/W)	3.25	_	_	_	_
Theta- _{JC} (°C/W)	0.85	_	-	4	-
Maximum Junction Temperature T _J (°C) ^a 99.07		72.19	64.51	61.26	60.28
Heatsink: 50 mm x 50 mm x 30) mm				

a. Steady state junction temperature should not exceed 110 °C.

BCM53334 Data Sheet Mechanical Information

Section 10: Mechanical Information

BROADCOM PROPRIETARY Δ // bbb Z △ ccc Z Ø1.00±0.25 PIN1 THRU HOLE-SEATING PLANE **/**5\ 6 Α2 Α TOP VIEW SIDE VIEW DIMENSIONAL REFERENCES (mm) MIN NOM MAX 3.200 1.050 1.150 1.250 22.80 23.00 23.20 23.00 23.20 E1 21.60 BS 0.400 0.80 BSC 0.20 aaa bbb 0.25 0.20 ddd 0.25 PCB LAND PATTERN RECOMMENDATION: LAND PATTERN KEY C REFER TO BROADCOM PACKAGING APPLICATION NOTE "PRINTED CIRCUIT BOARD LAND PATTERN RECOMMENDATIONS FOR BALL GRID ARRAY PACKAGES." CORNER

A1 BALL PAD PRIMARY DATUM Z AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. DIMENSION IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM $\mathbf{Z}.$ BOTTOM VIEW THE BASIC SOLDER BALL GRID PITCH IS 0.80 mm (648 SOLDER BALLS) THIS PACKAGE CONFORMS TO THE JEDEC REGISTERED OUTLINE MO-261/ ALL DIMENSIONS AND TOLERANCES CONFORM TO ASME Y14.5M-1994. NOTES: LINLESS OTHERWISE SPECIFIED

Figure 27: 23 mm x 23 mm Package

BCM53334 Data Sheet Ordering Information

Section 11: Ordering Information

Table 37: Ordering Information for RoHS6 Devices (Contact Broadcom for Availability)

Part Number	Package	Ambient Temperature
BCM53334A0KFSBLG	648-pin FCBGA +HS (23 mm x 23 mm) RoHS6 Compliant	o°C to 70°C
BCM53334A0IFSBLG	648-pin FCBGA +HS (23 mm x 23 mm) RoHS6 Compliant	5 –40°C to 85°C

Table 38: Ordering Information for RoHS6 Devices with Exemption 15 (Eutectic Bumps Internally Between Die and Substrate)

Part Number	Package	Ambient Temperature
BCM53334A0KFSBG	648-pin FCBGA +HS (23 mm x 23 mm)	0°C to 70°C
BCM53334A0IFSBG	648-pin FCBGA +HS (23 mm x 23 mm)	–40°C to 85°C

Appendix A: Acronyms and Abbreviations

For a more complete list of acronyms and other terms used in Broadcom documents, go to: http://www.broadcom.com/press/glossary.php.

Term	Description/Usage
ACA	Accessory Charger Adapter
ACI	Adjacent Channel Interference
ACL	Access Control Logic
ACP	Accelerator Coherency Port
AH	Authentication
AHB	Advanced High Performance Bus
ALU	Arithmetic and Logic Unit
	1. The unit of a computing system that contains the circuits that perform arithmetic operations.
	2. A functional component of a computer system that performs arithmetic operations. See <i>vector unit</i> and <i>scalar unit</i> .
AOPC	Always-On Power Controller
APB	Advanced Peripheral Bus
AS	1. Autonomous System (ATM)
	2. access stratum (3GPP)
ATB	Advanced Trace Bus
AUTN	authentication token (3GPP)
AXI	Advanced eXtensible Interface
BB	Baseband. (Bluetooth)
BBC	backup battery charger
ВССН	Broadcast Control Channel
BER	Bit Error Rate
BIF	Battery Interface (MIPI Alliance)
BMC	Best Master Clock
BPS	Bits-Per-Second
BSC	Broadcom Serial Control: A proprietary Broadcom bus or interface that is compatible with the Philips [®] I ² C bus or interface.
CC	1. Call Control. (Bluetooth)
	2. Constant Current
CCBS	Completion of Calls to Busy Subscribers or Call Completion on Busy Subscriber
CCI	Camera Control Interface
CCP	Compact Camera Port
CCP2	Compact Camera Port 2 -
CCU	Clock Control Unit
CDP	1. compact display port
	2. Charging Downstream Port

Term	Description/Usage
CFP	Compact Field Processor
СМ	 configuration management: The detailed recording and updating of information that describes an enterprise's computer systems and networks, including all hardware and software components. congestion management Connection Manager or Connection Management
CML	Common Mode Logic
CMSP	Content Management Service Provider
CoS	Class-of-Service
CPE	Customer Premise Equipment
CSI	Camera Serial Interface
CSI2	Camera Serial Interface 2 - 02/18/10
CSR	1. Control and Status Register
	2. core switching regulator
CTI	cross trigger interface
СТМ	Cross Trigger Matrix
CV	1. Credential Vault
	2. Constant Voltage
DA	Destination Address
DAP	Debug Access Port
DBI	Display Bus Interface
DCP	Dedicated Charging Port
DCXO	Digitally Compensated Crystal Oscillator
DF	Don't Fragment
DigRF	Baseband/RF Digital interface specification
DLL	Data Link Layer
DLLP	Data Link Layer Packet
DMU	Device Management Unit
DoS	Denial of Service
DPI	Display Pixel Interface
DRM	1. Digital Rights Management
	2. Digital Restrictions Management
DSI	Display Stream Interface: A high-speed serial interface for LCD modules.
	2. Display Serial Interface
DT	Double Tag
DTE	Digital Timing Engine
DVFS	Dynamic Voltage and Frequency Scaling
DVS	Dynamic Voltage Scaling
EAPOL	Extensible Authentication Protocol over LAN
ECC	Error-Correction Code
ECRC	End-to-end CRC
ENS	Enhanced Network Selection (GPS)

Term	Description/Usage
ESP	Encapsulating Security Payload
ETB	Embedded Trace Buffer
ETM	Embedded Trace Macrocell (ARM Microprocessors)
EVM	Error Vector Magnitude
FG	fuel gauge
GIC	General Interrupt Controller
GMM	GPRS Mobility Management
GPRS	General Packet Radio Service: A standard for wireless communications that run at speeds of up to 171 Kbps, compared with GSM systems, which run at 9.6 Kbps. GPRS, which supports a wide range of bandwidths, is an efficient use of limited bandwidth particularly suited for sending and receiving small bursts of data, such as for e-mail and Web browsing, as well as large volumes of data.
GSM	Global System for Mobile Communications: A second generation digital cellular technology developed by European countries in the 1980s to facilitate pan-European roaming. GSM uses time division multiple access technology and operates at both cellular and PCS frequencies (900 MHz, 1800 MHz, 1900 MHz). Other technologies used are CDMA, PDC & TDMA. In 1999, 66% of the world's cell phones were GSM (source: EMC World Cellular Database).
HOSTON	PMU state is on
HPLMN	Home Public Land Mobile Network
HSDPA	High-Speed Downlink Packet Access
HSUPA	High-Speed Upload Packet Access
HVS	Hardware Video Scaler
I^2S	1. Inter-IC Sound
	2. Integrated Interchip Sound
	3. Internet Information Server (<i>Microsoft</i>)
	Electrical serial bus interface standard for connecting digital audio devices. Up to 16 audio channels at up to 192 kHz.
IDT	Intelligent Double Tag
IF	1. interface
	2. Intermediate Frequency: A frequency below Radio Frequency (RF). In a GPS receiver, the RF chip converts the analog RF signal to IF and then converts it to a digital signal that is processed by the baseband device.
IHL	Internet Header Length
IMSI	International Mobile Subscriber Identity
IOSR	Input/Output Service Request
ISI	Intersymbol Interference
ITM	Instruction Trace Module
ITU	International Telecommunications Union
LA	Location Area
LAI	Location Area Identification
LDO	1. Low-Dropout
	2. low dropout regulator
Li-ion	Lithium ion battery

Term	Description/Usage
LNA	low noise amplifier: Analog radio amplifier, used as the first stage in a GPS front-end. The GL-LN22
	RF chip contains an integrated LNA on-chip.
LPM	Longest Prefix Match: IP packet forwarding mechanism.
	2. Longest Prefix Match: An algorithm used by routers in Internet Protocol (IP) networking to select
	an entry from a routing table.
MDO	3. low power mode
MBC	main battery charger
MBRDY	PMU state is off but it is ready to turn on
MBWV	Main Battery Working Voltage
MEMC	memory controller
MF	More Fragments
MIDI	Musical Instrument Digital Interface
MIPI	Mobile Industry Processor Interface
MLC	Multi-Level Cell
MM	1. multimedia
	2. Mixed Mode
	3. ESD Machine Model
MMA	Mobility Management Adaptation
MME	Mobility Management Entity
MMR	Mobility Management Router
MS	1. mobile station: Refers to the handset or mobile wireless device in a C-plane architecture.
	2. mobile subscriber
MSTP	Multiple Spanning Tree Protocol
MTT	Mobile Trace Terminal
NCO	Numerically Controlled Oscillator
NM	normal mode
NNI	Service-Provider Network Interface
NTC	Negative Temperature Coefficient
OAM	Operations, Administration, and Maintenance
OCP	Open Core Protocol
ONFI	Open NAND Flash Interface
OTG	On-the-Go
P-TMSI	Packet Temporary Mobile Subscriber Identity (GSM 03.60 version 7.4.1)
PA	power amplifier
PCGUI	Phone Control Graphical User Interface
PCle [™]	PCI Express [®]
PCP	Priority Code Point
PD	Protocol Discriminator (GPRS LLC-layer address field format) -
	2. Phase Detector
PDM	pulse density modulation
PDP	Packet Data Protocol

Term	Description/Usage
PDU	protocol data unit
	1. OSI term for packet.
	2. Information that is delivered as a unit between peer entities of a LAN or a MAN and contains control information, address information, and may contain user data.
	3. A block of data that is exchanged between two devices using a protocol.
PHY	Physical Layer
PIM	1. Protocol-Independent Multicast: Multicast routing architecture that allows the addition of IP multicast routing protocols. Packets are forwarded on all outgoing interfaces until pruning and truncation occur. In dense mode, receivers are densely populated, and it is assumed that the downstream networks want to receive and will use the datagrams that are forwarded to them. The cost of using dense mode is its default flooding behavior. Sometimes referred to as Dense Mode PIM or PIM DM. Contrast with PIM Sparse Mode.
	2. personal information manager
	3. personal information management
PLMN	Public Land Mobile Network
PMM	Packet Mobility Management (in GPRS)
	2. Performance Measurement Matrix
	3. Pressurized Multipurpose Module
PMU	Power Management Unit
PPS	Packet-Per-Second
PSMS	Power System Monitoring and Simulation
PSRR	Power Supply Rejection Ratio
PTI	Parallel Trace-Data Interface
PTM	Program Trace Macrocell
PWM	Pulse-Width Modulator
PWRUP	PMU state is off and it is not ready to turn on
QoS	Quality of Service
RAI	Routing Area Identification
RNTI	Radio Network Temporary Identifier (3GPP)
RPLMN	Registered Public Land Mobile Network
RR	Radio Resource
RTOS	Real-time Operating Systems
RV	Rate Violation
S/PDIF	Sony/Philips Digital Interconnect Format
SAIC	Single Antenna Interference Cancellation
SCU	Snoop Control Unit
SDIO	Secure Digital Input/Output
SDP	1. Service Discovery Protocol
	2. Session Description Protocol
	3. Sockets Direct Protocol
	4. Standard Downstream Port
SDSR	SD switching regulator
SLC	Single-Level Cell

Term	Description/Usage
SP	Strict Priority
SS	Supplementary Services
STM	System Trace Module
STP	System Trace Protocol
SWD	Serial Wire Debug
TBF	Temporary Block Flow
TC	Traffic Class
TL	Transaction Layer
TLB	Translation Lookaside Buffer
TLLI	Temporary Logical Link Identity (GPRS protocols, LLC layer)
TLP	Transaction Layer Packet
TOS	Type Of Service
TPID	Tag Protocol ID
TPIU	Trace Port Interface Unit
TTL	Time To Live
UDFs	User-Defined Fields
UMI	Unified Memory Interface
UMTS	Universal Mobile Telecommunications System: The third generation mobile standards that will build on the success of GSM/GPRS and on the GSM operators' existing investment in infrastructure. Data rates offered will be up to 2 million bits per second.
UNI	User Network Interface
USBC	USB charger
USIM	User Services Identity Module (UMTS)
	2. Universal Mobile Telecommunications System
	3. UMTS subscriber identity mode
USIMAP	USIM application process
UTRAN	UMTS Terrestrial Radio Access Network: A conceptual term identifying that part of the network which consists of Radio Network Controllers and Node Base stations.
VID	VLAN ID
VLAN	Virtual LAN
VMBAT	Main Battery Voltage
WAC	wall adapter charger
WDT	watchdog timer
WRR	Weighted-Round-Robin
XIP	Execute in Place

Broadcom® Corporation reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design.

Information furnished by Broadcom Corporation is believed to be accurate and reliable. However, Broadcom Corporation does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

Broadcom Corporation

5300 California Avenue Irvine, CA 92617 © 2014 by BROADCOM CORPORATION. All rights reserved. Phone: 949-926-5000 Fax: 949-926-5203

E-mail: info@broadcom.com Web: www.broadcom.com

everything®