TP3

Equations différentielles

3 janvier 2018

MILHA El Mehdi & ERDEMIR Eren

Dans ce TP, on présente quelques méthodes pour intégrer numériquement sur un intervalle $t \in [0, T]$, une équation différentielle ordinaire - dite EDO - c'est-à-dire de la forme

$$u'(t) = f(t, u(t)), \quad u(0) = u_0$$
 (1)

La fonction f, qui prend en argument un couple de réels et qui renvoie un réel, ainsi que la valeur initiale u_0 sont donnés; la fonction u, qui prend un réel en argument et qui renvoie un réel, est inconnue; c'est la solution cherchée.

1. Exemple : considérons l'EDO très simple

$$u'(t) = -u(t), \quad u(0) = 1.0$$

Le problème est ici de déterminer la solution u.

- (a) La fonction f vaut f(t, u(t)) = u'(t) = -u(t).
- (b) on a calculé à la main la solution u de l'EDO ci-dessus, c'est $u(t) = -u'(t) = \exp(-x)$ et on l'a dessiné sur papier; sur un intervalle $t \in [0, 2]$ (voir feuille).
- (c) Pour représenter graphiquement u, on a utilisé le module matplotlib; on l'a défini dans notre fichier tp3 en utilisant la fonction np.exp(-x), malgré quelques difficultés qu'on a rencontré au départ avec le module math, on a réussi grâce à l'aide du professeur. On a sauvegardé la figure au format png sans problème.
- 2. Calcul approché de u au moyen de la **méthode d'Euler**.
- (a) On a calculé la suite u_k , définie par la méthode d'Euler, avec T=2.0 et n=10. On a donc réalisé une subdivision sur [0;2] en 10 parties égales,on a posé h=T/n, d'où l'on obtient une subdivision $t_k=2*k$. On définit ensuite une suite récursive $u_k+1=u_k+h*f$ que l'on a enregistré dans une liste. On obtient ainsi par récurrence une suite d'approximation u(k+1) de la valeur exacte $u_{tk}+1$.
- (b) On a représenté sur le même graphique la solution exacte u et les points (t_k, u_k) en rouge. Remarque :les approximations sont assez précises.

On a écrit une fonction python euler qui prend en arguments une foncion f de deux variables scalaires t, u, une valeur initiale u_0 , un réel T, un entier n, et qui renvoie deux numpy arrays, tt contenant les valeurs t_k et uu contenant les valeurs u_k , obtenues par la méthode d'Euler.

(a) On a appliqué la fonction euler à l'exemple précédent (on aura besoin d'écrire la fonction f de l'EDO - fonction de deux variables - dans une fonction python) et retrouvé les résultats précédents.

(b) On a examiné les EDOs suivantes dont certaines équations peuvent être facilement intégrées à la main, d'autres non.

$$u'(t) = -u(t) + t,$$
 $u(0) = 1.0$
 $u'(t) = u^{2}(t),$ $u(0) = 1.0$
 $u'(t) = u^{2}(t) - t,$ $u(0) = 1.0$

Nous montrons maintenant comment intégrer une EDO d'ordre supérieur. Prenons l'exemple de l'oscillateur harmonique (modélisation du ressort) qui est une EDO d'ordre 2

$$u''(t) + \omega^2 u(t) = 0, \quad u(0) = u_0, \quad u'(0) = v_0$$
 (2)

où ω, u_0, v_0 sont des scalaires donnés; ω s'appelle la pulsation, u_0 la position initiale, v_0 la vitesse initiale. Posons ensuite v = u' et écrivons l'EDO sous la forme

$$\begin{cases} u'(t) = v(t) \\ v'(t) = -\omega^2 u(t) \end{cases}$$
(3)

On pose U = [u, v] et $U_0 = [u_0, v_0]$ de sorte que l'EDO s'écrit maintenant

$$U'(t) = F(t, U(t)), \quad U(0) = U_0$$
 (4)

avec $F(t, [u, v]) = [v, -\omega^2 u]$; F est donc une fonction de $\mathbb{R} \times \mathbb{R}^2$ dans \mathbb{R}^2 .

On a ainsi réécrit l'EDO d'ordre 2 en l'EDO) d'ordre 1. Attention ! dans le premier cas, la fonction f va de $\mathbb{R} \times \mathbb{R}$ dans \mathbb{R} ; dans le deuxième cas, la fonction F va de $\mathbb{R} \times \mathbb{R}^2$ dans \mathbb{R}^2 . Il est maintenant facile de résoudre cette EDO numériquement, il suffit de lui appliquer la méthode d'Euler sous la forme $U_{k+1} = U_k + hf(t_k, U_k)$, avec U_0 qui est donnée. C'est une récurrence qui fournit la suite des points U_k de \mathbb{R}^2 , approximations des valeurs $U(t_k)$, où U est la solution exacte de l'EDO.

- (a) On a calculé, à la main, la solution exacte de l'EDO.
- (b) On a modifié la fonction euler, pour qu'elle prenne en arguments F, une foncion de deux variables $t \in \mathbb{R}, U \in \mathbb{R}^2, U_0 \in \mathbb{R}^2$, un réel T, un entier n, et qui renvoie deux numpy arrays, tt contenant les valeurs t_k et UU contenant les valeurs U_k , obtenues par la méthode d'Euler.
- (c) On a résolu numériquement l'EDO, avec $\omega = 1.0, T = 4\pi$ et les conditions initiales $u(0) = 1.0, \quad u'(0) = 0.0$; on écrira la fonction F dans une fonction python; on prendra différentes valeures de n.
- (d) Faire trois graphiques:

position u en fonction du temps t vitesse v en fonction du temps t vitesse v en fonction de position u

Sur chaque graphique, représenter la solution exacte et la solution approchée donnée par la méthode d'Euler.