Numeric Regression

葉建華

jhyeh@mail.au.edu.tw

http://jhyeh.csie.au.edu.tw/

Linear Regression

Linear regression

Pros: Easy to interpret results, computationally inexpensive

Cons: Poorly models nonlinear data

Works with: Numeric values, nominal values

Regression

- To predict a numeric target value
- A simple way: an equation for the target value with respect to the inputs (regression equation)
 - E.g. forecast the horsepower of your sister's boyfriend's automobile

```
HorsePower =
```

- 0.0015*annualSalary 0.99*hoursListeningToPublicRadio
- 0.0015 and 0.99 are called regression weights
- Regression: find regression weights!
- Nonlinear regression: not linear combination

General Approach

General approach to regression

- 1. Collect: Any method.
- 2. Prepare: We'll need numeric values for regression. Nominal values should be mapped to binary values.
- 3. Analyze: It's helpful to visualized 2D plots. Also, we can visualize the regression weights if we apply shrinkage methods.
- 4. Train: Find the regression weights.
- 5. Test: We can measure the R2, or correlation of the predicted value and data, to measure the success of our models.
- 6. Use: With regression, we can forecast a numeric value for a number of inputs. This is an improvement over classification because we're predicting a continuous value rather than a discrete category.

Explanation

Input data matrix X, regression weights vector w

$$y_1 = X_1^T w$$

Use error minimization to find w

$$\sum_{i=1}^{m} (y_i - x_i^T w)^2 \mathbf{X}^{T} (\mathbf{y} - \mathbf{X} \mathbf{w})$$
ation $(\mathbf{y} - \mathbf{X} \mathbf{w})^{T} (\mathbf{y} - \mathbf{X} \mathbf{w})$

• Solve by taking derivative: $\mathbf{X}^{T}(\mathbf{y}-\mathbf{X}\mathbf{w})$ and set to 0 then $\hat{w} = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y}$ (matrix inverse must exists!)

Example Data

Standard Regression Function

Listing 8.1 Standard regression function and data-importing functions

```
from numpy import *
def loadDataSet(fileName):
    numFeat = len(open(fileName).readline().split('\t')) - 1
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr =[]
        curLine = line.strip().split('\t')
        for i in range (numFeat):
            lineArr.append(float(curLine[i]))
        dataMat.append(lineArr)
        labelMat.append(float(curLine[-1]))
    return dataMat, labelMat
def standRegres(xArr,yArr):
    xMat = mat(xArr); yMat = mat(yArr).T
    xTx = xMat.T*xMat
    if linalq.det(xTx) == 0.0:
        print "This matrix is singular, cannot do inverse"
        return
    ws = xTx.I * (xMat.T*yMat)
    return ws
```


Best Fit Line of Regression

Locally Weighted Linear Regression, LWLR

- One problem with linear regression is that it tends to underfit the data
 - Lowest mean-squared error for unbiased estimators
- Locally weighted linear regression (LWLR)
 - Give a weight to data points near the data point of interest
 - Uses kernel like SVM to weight nearby points more heavily T_{TTT}

$$\hat{w} = (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W} \mathbf{y}$$
 W is a matrix to weight data points

- Gaussian kernel:
$$u(i,i) = \exp\left(\frac{1}{\lambda}\right)$$

$$w(i,i) = \exp\left(\frac{\left|x^{(i)} - x\right|}{-2k^2}\right)$$

Gaussian Kernel

Figure 8.4 Plot showing the original data in the top frame and the weights applied to each piece of data (if we were forecasting the value of x=0.5.) The second frame shows that with k=0.5, most of the data is included, whereas the bottom frame shows that if k=0.01, only a few local points will be included in the regression.

LWLR Algorithm

Listing 8.2 Locally weighted linear regression function

```
def lwlr(testPoint,xArr,yArr,k=1.0):
    xMat = mat(xArr); yMat = mat(yArr).T
                                                                Create diagonal
    m = shape(xMat)[0]
                                                                matrix
    weights = mat(eye((m)))
    for j in range(m):
                                                                   Populate weights
        diffMat = testPoint - xMat[j,:]
                                                                   with exponentially
        weights[j,j] = exp(diffMat*diffMat.T/(-2.0*k**2))
                                                                   decaying values
    xTx = xMat.T * (weights * xMat)
    if linalq.det(xTx) == 0.0:
        print "This matrix is singular, cannot do inverse"
        return
    ws = xTx.I * (xMat.T * (weights * yMat))
    return testPoint * ws
def lwlrTest(testArr, xArr, yArr, k=1.0):
    m = shape(testArr)[0]
    yHat = zeros(m)
    for i in range(m):
        yHat[i] = lwlr(testArr[i],xArr,yArr,k)
    return yHat
```

LWLR Smoothing

Figure 8.5 Plot showing locally weighted linear regression with three smoothing values. The top frame has a smoothing value of k=1.0, the middle frame has k=0.01, and the bottom frame has k=0.003. The top value of k is no better than least squares. The middle value captures some of the underlying data pattern. The bottom frame fits the best-fit line to noise in the data and results in overfitting.

When Linear Regression not Work

- More features than data points
 - m data points, n features, n>m
 - Not full rank, no inverse matrix
 - Solution: shrinkage methods
- Shrinkage method: ridge regression, lasso

Ridge Regression

Add additional matrix λI to the matrix

$$\hat{w} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^T y$$

- Can also used to add bias into our estimations
- Constraints: $\sum_{k=1}^{n} w_k^2 \le \lambda$

Ridge Regression Algorithms

Listing 8.3 Ridge regression

```
def ridgeRegres(xMat,yMat,lam=0.2):
    xTx = xMat.T*xMat
    denom = xTx + eye(shape(xMat)[1])*lam
    if linalq.det(denom) == 0.0:
        print "This matrix is singular, cannot do inverse"
        return
    ws = denom.I * (xMat.T*yMat)
    return ws
def ridgeTest(xArr,yArr):
    xMat = mat(xArr); yMat=mat(yArr).T
    yMean = mean(yMat, 0)
    yMat = yMat - yMean
    xMeans = mean(xMat, 0)
    xVar = var(xMat, 0)
    xMat = (xMat - xMeans)/xVar
    numTestPts = 30
    wMat = zeros((numTestPts,shape(xMat)[1]))
    for i in range(numTestPts):
        ws = ridgeRegres(xMat,yMat,exp(i-10))
        wMat[i,:]=ws.T
    return wMat
```


Regression Coefficient

Figure 8.6 Regression coefficient values while using ridge regression. For very small values of λ the coefficients are the same as regular regression, whereas for very large values of λ the regression coefficients shrink to 0. Somewhere in between these two extremes, you can find values that allow you to make better predictions.

Lasso

Similar to ridge regression except the constraints

$$\sum_{k=1}^{n} \left| w_k \right| \le \lambda$$

Forward Stagewise Regression

- Easier algorithm than the lasso, gives close results
- A greedy algorithm
 - Each step it reduce the error the most at that step

Pseudo Algorithm

Regularize the data to have 0 mean and unit variance For every iteration:

Set lowestError to $+\infty$

For every feature:

For increasing and decreasing:

Change one coefficient to get a new W

Calculate the Error with new W

If the Error is lower than lowestError: set Wbest to the current W Update set W to Wbest

Forward Stagewise Regression Algorithm

Listing 8.4 Forward stagewise linear regression

```
def stageWise(xArr,yArr,eps=0.01,numIt=100):
    xMat = mat(xArr); yMat=mat(yArr).T
    yMean = mean(yMat, 0)
    yMat = yMat - yMean
    xMat = regularize(xMat)
    m, n=shape(xMat)
    ws = zeros((n,1)); wsTest = ws.copy(); wsMax = ws.copy()
    for i in range(numIt):
        print ws.T
        lowestError = inf;
        for j in range(n):
            for sign in [-1,1]:
                wsTest = ws.copy()
                wsTest[j] += eps*sign
                yTest = xMat*wsTest
                rssE = rssError(yMat.A,yTest.A)
                if rssE < lowestError:
                    lowestError = rssE
                    wsMax = wsTest
        ws = wsMax.copy()
        returnMat[i,:]=ws.T
    return returnMat
```


Regression Coefficient

Figure 8.7 Coefficient values from the abalone dataset versus iteration of the stagewise linear regression algorithm. Stagewise linear regression gives values close to the lasso values with a much simpler algorithm.

21

Bias/Variance Tradeoff

Figure 8.8 The bias variance tradeoff illustrated with test error and training error. The training error is the top curve, which has a minimum in the middle of the plot. In order to create the best forecasts, we should adjust our model complexity where the test error is at a minimum.

Cross-Validation Test

Listing 8.6 Cross-validation testing with ridge regression

def crossValidation(xArr,yArr,numVal=10):

m = len(yArr)

```
indexList = range(m)
errorMat = zeros((numVal,30))
for i in range(numVal):
    trainX=[]; trainY=[]
                                                Create training and
    testX = []; testY = []
                                                test containers
    random.shuffle(indexList)
    for j in range(m):
        if j < m*0.9:
            trainX.append(xArr[indexList[j]])
            trainY.append(yArr[indexList[j]])
        else:
            testX.append(xArr[indexList[j]])
             testY.append(yArr[indexList[j]])
    wMat = ridgeTest(trainX,trainY)
    for k in range (30):
        matTestX = mat(testX); matTrainX=mat(trainX)
        meanTrain = mean(matTrainX,0)
        varTrain = var(matTrainX,0)
        matTestX = (matTestX-meanTrain)/varTrain
        yEst = matTestX * mat(wMat[k,:]).T + mean(trainY)
        errorMat[i,k]=rssError(yEst.T.A,array(testY))
meanErrors = mean(errorMat,0)
minMean = float(min(meanErrors))
bestWeights = wMat[nonzero(meanErrors==minMean)]
xMat = mat(xArr); yMat=mat(yArr).T
meanX = mean(xMat,0); varX = var(xMat,0)
unReq = bestWeights/varX
print "the best model from Ridge Regression is:\n",unReg
print "with constant term: ",\
      -1*sum(multiply(meanX,unReq)) + mean(yMat)
```

2 Split data into test and training sets

Regularize test with training params

Undo regularization

Summary

- Regression is the process of predicting a target value similar to classification
 - Ridge regression is an example of a shrinkage method
- Another shrinkage method that's powerful is the lasso
- The lasso is difficult to compute, but stagewise linear regression is easy to compute and gives results close to those of the lasso
- Shrinkage methods can also be viewed as adding bias to a model and reducing the variance

