Intro to Complexity Theory

Kunwar Shaanjeet Singh Grover

Contents

1	Introduction		
		1.0.1	Automata, Computability, and Compelxity
		1.0.2	Mathematical notions and terminology
2	Regular Languages		
	2.1	Finite	Automata
		2.1.1	The Regular Operations
	2.2	NonDe	eterminism
		2.2.1	Formal defination of a nondeterministic finite automaton
		2.2.2	Equivalence of NFAs and DFAs
		2.2.3	Closure under the regular operations

2 CONTENTS

Chapter 1

Introduction

1.0.1 Automata, Computability, and Compelxity

What are the fundamental capabilities and limitations of computers?

- Complexity Theory: What makes some problems harder than others?
- Computability Theory
- Automata theory: Deals with the definations and properties of mathematical models of computation

1.0.2 Mathematical notions and terminology

Strings and Languages We define an alphabet to be any nonempty finite set. The members of the alphabet are the **symbols** of the alphabet. Generally \sum and Γ are used to designate alphabets.

A string over an alphabet is a finite sequence of symbols from the alphabet written next to one another and not seperated by commas.

Chapter 2

Regular Languages

2.1 Finite Automata

Defination 1. A finite automation is a 5-tuple $(Q, \sum, \delta, q_0, F)$ where

- 1. Q is a finite set called the **states**
- 2. \sum is a finite set called the **alphabet**
- 3. $\delta: Q \times \sum \rightarrow Q$ is the **transition function**
- 4. $q_0 \in Q$ is the **start state**, and
- 5. $F \subseteq Q$ is the **set** of accept states

If A is the set of all strings that machine M accepts, we say that A is the language of machine M and write L(M) = A. We say that M recognizes A or that M accepts A.

A machine may accept several strings, but it always recognizes only one lnaguage.

Formal defination of Computation

Let $M = (Q, \sum, \delta, q_0, F)$ be a finite automaton and let $w = w_1 w_2 \dots w_n$ be a string where each w_i is a member of the alphabet \sum . Then M accepts w if a sequence of states r_0, r_1, \dots, r_n in Q exists with three conditions:

- 1. $r_0 = q_0$,
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for $i = 0, \dots, n-1$, and
- 3. $r_n \in F$.

Condition 1 says that the machine starts in the start state, Condition 2 says that the machine goes from the state to state according to the transition function. Condition 3 says that machine accepts its input if it ends up in accept state. We say that M recognizes language A if $A = \{w \mid Macceptsw\}$

Defination 2. A language is called a **regular language** if some finite automaton recognizes it.

2.1.1 The Regular Operations

Defination 3. Let A and B be languages. We define the regular operations union, concatenation, and star as follows:

- Union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}.$
- $A^* = \{x_1 x_2 \dots x_k \mid k \geq 0 \text{ and each } x_i \in A\}.$

2.2 NonDeterminism

When the machine was in a given state and read the next input symbol, we knew what the next state would be, it is determined. We call this **deterministic** computation. In a **nondeterministic** machine, several choices may exist for the next state at any point. Nondeterminism is a generalization of determinism, so every deterministic finite automaton is automatically a nondeterministic finite automaton.

2.2.1 Formal defination of a nondeterministic finite automaton

Defination 4. A nondeterministic finite automaton is a 5-tuple $(Q, \sum, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- 2. \sum is a finite alphabet,
- 3. $\delta: Q \times \sum_{\epsilon} \to P(Q)$ is the transition function,
- 4. $q_0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept states.

The formal defination of computation for an NFA is similar to that or a DFA. Let $N = \{Q, \sum, \delta, q_0, F\}$ be an NFA and w a string over the alphabet \sum . Then we say that N accepts w if we can write w as $w = y_1 y_2 \dots y_m$, where each y_i is a member of \sum_{ϵ} and a sequence of states r_0, r_1, \dots, r_m exists in Q with three conditions

- 1. $r_0 = q_0$,
- 2. $r_{i+1} \in \delta(r_i, y_{i+1})$, for i = 0, ..., m-1, and
- 3. $r_m \in F$.

Condition 1 says that the machine starts out in the start state. Condition 2 says that state r_{i+1} is one of the allowable next states when N is in the state r_i and reading y_{i+1} . Observe that $\delta(r_i, y_{i+1})$ is the set of allowable next states and so we say that r_{i+1} is a member of that set. Finally, condition 3 says that the machine accepts its input if the last state is an accept state.

2.2.2 Equivalence of NFAs and DFAs

Theorem 1. Every nondeterministic finite automaton has an equivalent deterministic finite automaton

Proof idea: We keep track of the current states and create a transition function based on that. If there are k states o the NFA, then it has 2^k subsets of states. To keep track of these states, the DFA will have 2^k states.

Corollary 2. A language is regular if and only if some nondeterministic finite automaton recognizes it.

2.2.3 Closure under the regular operations

Theorem 3. The class of regular languages is closed under the union operation **Proof:** Let:

$$N_1=(Q_1,\sum,\delta_1,q_1,F_1)$$
recognize $A_1,$ and
$$N_2=(Q_2,\sum,\delta_2,q_2,F_2)$$
recognize $A_2.$

Construct $N = (Q, \sum, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

- 1. $Q = \{q_0\} \cup Q_1 \cup Q_2$ The states of N are all the states of N_1 and N_2 , with the addition of a new start state q_0 .
- 2. The state q_0 is the start state of N.
- 3. The set of accept states $F = F_1 \cup F_2$.
- 4. Define δ so that for any $q \in Q$ and any $a \in \sum_{\epsilon}$

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \\ \delta_2(q, a) & q \in Q_2 \\ \{q_1, q_2\} & q = q_0 \text{and} a = \epsilon \\ \phi & q = q_0 \text{and} a \neq \epsilon \end{cases}$$

Figure 2.1: Construction of an NFA N to recognize $A_1 \cup A_2$

Theorem 4. The class of regular languages is closed under the concatenation operation

The formal proof is similar to the previous proof. The follwing image describes the contruction:

Figure 2.2: Construction of N to recognize $A_1\circ A_2$

Theorem 5. The class of regular languages is closed under the star operation.

The formal proof is similar to union proof. The following image describes the construction:

Figure 2.3: Construction of N to recognize A^*