

Smart and Connected Water Resource Management via Social Media and Community Engagement

Long Nguyen, Rattikorn Hewett, Akbar S. Namin, Nicholas Alvarez, Cristina Bradatan, Fang Jin

Department of Computer Science, Texas Tech University

Outline

- Overview of Existing Platforms
- Motivations & Objectives & Approach
- Solution Design
- Methodology
- Demo

Existing Platform

Water Data for Texas

Basic well water information

https://waterdatafortexas.org/groundwater

Texas Water Development Board

Water planning until year 2070

http://www.twdb.texas.gov/waterplanning/index.asp

Existing Platform

United States Geological Survey

Well distribution - NOT updated

https://txpub.usgs.gov/txwaterdashboard

United States Geological Survey – raw data

	aree estregisar earrey ran	- Gata	
Station Number	Station name	Date/Time	below LSD
Bandera County			
295204099340201	AS-69-12-206 (Bandera County Edwards GW Well 1)	07/25 23:30 CDT	249.38
Bexar County			
292943098354404	AY-68-36-132 (Z DED)	07/25 23:00 CDT	194.10
293252098380801	AY-68-27-610 (Parkwood Park)	07/25 23:00 CDT	194.96
293516098325501	AY-68-28-211 (Shavano Park at Fawn Drive)	07/26 00:00 CDT	236.38
El Paso County			
315712106361803	MBOWN-238 - JL-49-04-476 (CWF-2C)	07/25 22:00 MDT	84.87
Fort Bend Coun	ty		
294327095445201	JY-65-29-106 (Fort Bend Extensometer)	07/25 23:15 CDT	26.16
Galveston Coun	ty		
	KH-65-40-707 (Galveston)	07/26 00:00 CDT	93.12
Harris County			
	LJ-65-32-428 (Clear Lake Deep Extensometer)	07/25 23:45 CDT	
	LJ-65-21-226 (Southwest Monitor No. 1)	07/25 23:30 CDT	
	LJ-65-21-230 (Southwest Piezometer No. 2)	07/25 23:30 CDT	
	LJ-65-12-725 (Addicks Piezometer No. 2)	07/25 23:00 CDT	
	LJ-65-12-726 (Addicks Monitor No. 1)	07/25 23:00 CDT	
	LJ-65-12-729 (Addicks Piezometer No. 1)	07/25 23:00 CDT	
	LJ-65-14-738 (Northeast Piezometer No. 4)	07/25 23:00 CDT	
	LJ-65-07-905 (Lake Houston Piezometer No. 2)	07/25 23:30 CDT	74.21
Lamb County			
<u>341010102240801</u>	RU-10-53-602	07/26 00:00 CDT	148.79
Medina County			
	TD-69-38-601 (Seco Creek Well)	07/26 00:00 CDT	
293202099063501	TD-69-32-703 (MED-1)	07/26 00:00 CDT	176.32
	•		

Only water raw data. Limited analytics.

https://waterdata.usgs.gov/tx/nwis/current/?type=gw&group_key=county_cd

Limitation

- Most of the websites focus on a small part of specific water resource information
- No comprehensive water resource management website that could integrate information
- * The information is delivered as one-way data reporting (administration boards to the public). No community engagement.

Project Motivation

Motivations

- To provide a multi-source information sharing platform
- To allow collaboration among different parties
- To encourage community engagement in water resource management.
- To improve water use efficiencies across the industries

Approaches

- Smart Platform
- Information Integration
- Connecting Communities

Objectives

- Design for everyone via unified view of water related information.
- Advanced analytics support
- Integrate concerns via social media
- Community engagement via knowledge sharing and discussion board

Solution Design

Water Supply Forecasting (using LSTM).

Water Supply Forecasting.

$$i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)$$
 (1)

$$f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)$$
 (2)

$$c_t = f_t c_{t-1} + i_t tanh(W_{xc} x_t + W_{hc} h_{t-1} + b_c)$$
 (3)

$$o_{t} = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_{t} + b_{o})$$
 (4)

$$h_t = o_t tanh(c_t) (5)$$

Water Supply forecasting with LSTM

❖ Social media data => SVM classifier + Natural Language Processing => Concern stream

SVM classifier

which classifier is the best?

$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t.
$$y_i(w^T x_i + b) \ge 1, \quad i = 1, ..., m$$

Constraint transformed: $g_i(w, b) = -y_i(w^T x_i + b) + 1 \le 0$

Lagrangian: $\mathcal{L}(w,b,\alpha) = \frac{1}{2}||w||^2 - \sum_{i=1}^m \alpha_i(y_i(w^Tx_i+b)-1)$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^m \alpha_i (y_i (w^T x_i + b) - 1)$$

$$= \frac{1}{2} w^T w - \sum_{i=1}^m \alpha_i y_i w^T x_i - \sum_{i=1}^m \alpha_i y_i b + \sum_{i=1}^m \alpha_i$$

$$= \frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j x_i^T x_j - \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j x_i^T x_j - \sum_{i=1}^m \alpha_i y_i b + \sum_{i=1}^m \alpha_i$$

$$= \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m y_i y_j \alpha_i \alpha_j x_i^T x_j$$

Topic modeling with LDA

1. WATER SOURCES

3. WATER USAGE

2. WATER PROCESSING

4. WATER TREATMENT

Topic modeling with LDA

Bottled water, often called drinking water, is usually bottled at the source and sealed in safe drinking containers. There are many water of bottled water, held inside many water of unique shaped bottles. It seems the fancier the bottle, the more expensive the water inside. Let's take a look at the kinds of bottled water available:

- Spring water: this comes from an underground formation and must flow naturally to the earth's surface or through a sanitary borehole.
- Purified drinking water: this was of water has been processed to remove chlorine and a majority of dissolved solids, such as magnesium. The source is not required to be named unless it is untreated public source of water.
- Naturally sparkling water: this is naturally carbonated from a spring or artesian well.
- Seltzer Water: the 150A regulates this as a soft drink, which means rules are less unto than those for bottled water.
- Mineral water: typically, from a spring, this contains dissolved solids like calcium, magnesium, sodium, potassium, silica and bicarbonates.

Bottled water, some say, is not always safer than tap water. Tap water, from city water systems, is monitored by the Environmental monitors. Agency, while the monitors water bottling activity. In fact, bottled water is one of the products most closely monitored by the water is one of the products most closely monitored by the water is one of the products most closely monitored by the water is a little different; for example, the EPS monitors for asbestos while the water is a little different; for example, the EPS monitors for asbestos while the water is monitor or disinfect for parasites. This is mainly because the water is a little from, it is unlikely to harbor parasites or contain these dangerous elements. However, water bottlers are given standards for lead and chlorine.

But, there is more than just the **Livia**. Bottled water is actually **monitored** at three levels to ensure high quality and safety standards, the first being federal through the FDA. It is also regulated by the state and also by trade associations such as the International Water **Bottlers** Association (IBWA). While every water **bottler** has different techniques, here are some general guidelines of the steps to bottling water. Bottling water starts at the source. As mentioned above, there are several sources to find water: **Sources** underground **springs**, wells and municipal supplies. The next step is to filter the water through multi-barrier sources which could included source **Sources**, source **monitoring**, reverse osmosis, ultraviolet light, distillation, micron filtration and <u>ozonation</u>. Water **bottlers** may use one or more of those **processes**.

Overview

Demonstration 1 - Water Logistics

Between counties water logistics

Between wells water logistics

Demonstration 2 - Water Trend and Forecast

Water trend with time series data

Water forecasting

Demonstration 3 - Knowledge Sharing

Water related topics

1. WATER SOURCES

3. WATER USAGE

2. WATER PROCESSING

4. WATER TREATMENT

Water related sub-topics

Water Processing

CATEGORY

Bottled water processing

Purified water

Recreational water

Bottled water processing

The Bottled Water Purification Process

A trip to the local grocery store and a walk down the beverage aisle will reveal dozens of varieties of bottled water. From big, two gallon jugs with spouts to mini bottles that can fit in a lunch box, there are kinds galore. But many may take for granted to process that takes place to get that water from the source, safely into the bottle and into our lives.

more...

Bottling Process & Tour

Welcome to our bottling plant!! While pictures don't really do it justice, we've assembled a few photos to give you an idea of how the whole thing works. We start with racks of empty bottles collected by our route managers. When they pick up your bottles at your home or office, they inspect each of them for cleanliness Development Board and put them into these blue racks. Once the racks arrive at the bottling line, the bottles are again inspected visually and the each bottle is sniffed for any foreign contaminants. Once a bottle passes these inspections, it is loaded onto the washer conveyor. more...

Texas Water

Demo 4 - Concerns from Texas Water Development Boar

What are the HOTTEST concerns?

Demonstration 5 - Concerns from Farmer Bureau

Online Demo

http://myweb.ttu.edu/fjin/projects/west-tx-water/

Q & A

감사합니다 Natick
Danke Ευχαριστίες Dalu 응 で Thank You Köszönöm Tack Tack Tack Onacибо Dank Gracias O 的 がとう