

Differential Equations

Homogeneous Systems, Eigenvalues, and Eigenvectors

Eigenvalues and Eigenvectors

Def: Let A be an $n \times n$ matrix with constant entries. We say the number λ is an eigenvalue of A if there exists a nonzero vector \vec{v} such that

$$A\vec{v} = \lambda \vec{v}.\tag{\dagger}$$

Any nonzero vector satisfying the equality (†) is an eigenvector of A corresponding to λ .

A general description of eigenvectors corresponding to the same eigenvalue λ will be given by a linear combination of eigenvectors corresponding to λ .

Ex: Let

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \quad \text{and} \quad \vec{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Then

$$A\vec{v} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2\vec{v},$$

so $\lambda = 2$ is an eigenvalue of A and \vec{v} is an eigenvector of A corresponding to the eigenvalue 2.

Def: The <u>identity matrix</u> I is the $n \times n$ matrix whose entries a_{ij} are zero if $i \neq j$ and 1 if i = j:

$$I := egin{bmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ \vdots & \vdots & \vdots \ 0 & 0 & \cdots & 1 \end{bmatrix}.$$

Note: For any *n*-vector \vec{v} , $I\vec{v} = \vec{v}$, as

$$I\vec{v} = egin{bmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ dots & dots & dots \ 0 & 0 & \cdots & 1 \end{bmatrix} egin{bmatrix} v_1 \ dots \ v_n \end{bmatrix} = egin{bmatrix} v_1 \ dots \ v_n \end{bmatrix} = \vec{v}.$$

Finding Eigenvalues

· The number λ is an eigenvalue of A.

 $\uparrow \downarrow$

· There exists some $\vec{v} \neq 0$ such that

$$A\vec{v} = \lambda \vec{v}$$
.

· There exists some $\vec{v} \neq 0$ such that

$$\vec{0} = A\vec{v} - \lambda\vec{v} = A\vec{v} - \lambda I\vec{v} = (A - \lambda I)\vec{v}.$$

(Cramer's \(\psi \) determinant test)

$$\det(A - \lambda I) = 0$$

Thus,

Fact: The number λ is an eigenvalue of A if and only if $\det(A - \lambda I) = 0$.

Ex: Find the eigenvalues of

$$A = \begin{bmatrix} -1 & -1 & 0 \\ 1 & -3/2 & 3/2 \\ 0 & 1 & -1 \end{bmatrix}.$$

Sln: We expand $det(A - \lambda I)$ along the first column:

$$\det(A - \lambda I) = \det \begin{bmatrix} -1 - \lambda & -1 & 0 \\ 1 & -3/2 - \lambda & 3/2 \\ 0 & 1 & -1 - \lambda \end{bmatrix}$$
$$= -(\lambda + 1) \det \begin{bmatrix} -3/2 - \lambda & 3/2 \\ 1 & -1 - \lambda \end{bmatrix} - \det \begin{bmatrix} -1 & 0 \\ 1 & -1 - \lambda \end{bmatrix}$$
$$= -(\lambda + 1) \left(\lambda^2 + \frac{5}{2}\lambda + 1\right)$$
$$= -(\lambda + 1)(\lambda + 2) \left(\lambda + \frac{1}{2}\right).$$

The eigenvalues of A are roots of this polynomial.

$$\lambda = -1$$
, $\lambda = -2$, and $\lambda = -\frac{1}{2}$.

Ex: Find the eigenvalues of

$$A = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$$

Sln: Here

$$\det(A - \lambda I) = \det \begin{bmatrix} 1 - \lambda & 0 & 4 \\ 0 & 3 - \lambda & 0 \\ 1 & 0 & 1 - \lambda \end{bmatrix}$$
$$= (3 - \lambda) \det \begin{bmatrix} 1 - \lambda & 4 \\ 1 & 1 - \lambda \end{bmatrix}$$
$$= (3 - \lambda) (\lambda^2 - 2\lambda - 3)$$
$$= (3 - \lambda)(\lambda - 3)(\lambda + 1),$$

where the second equality follows from expansion along the second row. The eigenvalues of A are

$$\lambda = 3$$
 and $\lambda = -1$.

Fact: If A is an $n \times n$ matrix, then $det(A - \lambda I)$ is a Apply Cramer's determinant test. polynomial in λ of degree n.

Def: the characteristic polynomial of A :=

$$\det(A - \lambda I)$$

Note: Eigenvalues of A are the roots of the characteristic polynomial of A.

Fact: Let A be an n by n matrix and \vec{s} an arbitrary *n*-vector. The equation $A\vec{v} = \vec{s}$ has a unique solution for \vec{v} if and only if $\det(A) \neq 0$.

Pf: Write out the entries A, \vec{v} and \vec{s} . Equating the vectors $A\vec{v}$ and \vec{s} entrywise gives a system

$$v_{1}a_{11} + v_{2}a_{12} + \dots + v_{n}a_{1n} = s_{1}$$

$$v_{1}a_{21} + v_{2}a_{22} + \dots + v_{n}a_{2n} = s_{2}$$

$$\vdots$$

$$v_{1}a_{n1} + v_{2}a_{n2} + \dots + v_{n}a_{nn} = s_{n}.$$

Solutions of a Homogeneous System

Focus: homogeneous linear systems

$$D\vec{x} = A\vec{x} \tag{H}$$

with constant coefficients.

Special case:

If (H) is the equivalent system of a single equation P(D)x = 0, then the characteristic polynomial of A agrees with the P(r) up to a sign.

If λ is a root of the polynomial P(r), then $e^{\lambda t}$ is a solution of P(D)x = 0, and (H) has a solution

$$\vec{x} = \begin{bmatrix} x \\ x' \\ \vdots \\ x^{(n-1)} \end{bmatrix} = \begin{bmatrix} e^{\lambda t} \\ \lambda e^{\lambda t} \\ \vdots \\ \lambda^{n-1} e^{\lambda t} \end{bmatrix} = e^{\lambda t} \begin{bmatrix} 1 \\ \lambda \\ \vdots \\ \lambda^{n-1} \end{bmatrix} := e^{\lambda t} \vec{v}.$$

Since λ is also a root of the characteristic polynomial of A, λ is an eigenvalue. We can show that \vec{v} is an eigenvector of A corresponding to λ .

Fact: \vec{v} is an eigenvector of A corresponding to the eigenvalue λ if and only if

$$\vec{x} = e^{\lambda t} \vec{v}$$

is a solution of $D\vec{x} = A\vec{x}$, where $v \neq 0$.

General case:

 \cdot \vec{v} is an eigenvector of A corresponding to the eigenvalue λ .

$$A\vec{v} = \lambda \vec{v}.$$

$$\updownarrow$$

$$D(e^{\lambda t}\vec{v}) = D \begin{bmatrix} v_1 e^{\lambda t} \\ \vdots \\ v_n e^{\lambda t} \end{bmatrix} = \begin{bmatrix} v_1 \lambda e^{\lambda t} \\ \vdots \\ v_n \lambda e^{\lambda t} \end{bmatrix}$$
$$= e^{\lambda t} \lambda \vec{v} = e^{\lambda t} A \vec{v} = A(e^{\lambda t} \vec{v})$$
$$\updownarrow$$

 $\vec{x} = e^{\lambda t} \vec{v}$ is a solution of $D\vec{x} = A\vec{x}$.

Ex: In the first example, $\vec{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is an eigenvector of

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

corresponding to the eigenvalue $\lambda=2$. The vector valued function

$$\vec{x} = e^{2t}\vec{v} = \begin{bmatrix} e^{2t} \\ 0 \end{bmatrix}$$

is a solution of $D\vec{x} = A\vec{x}$.

To find the general solution of a homogeneous linear system with constant coefficients, our strategy now is to find the eigenvalues and eigenvectors first, and hope we get n solutions with independent initial vectors.