1. Esercizi sulle varietà topologiche

- 1) Dimostrare che B^m è una m-varietà topologica con bordo S^{m-1} .
- 2) Dimostrare che $B^m \cong I^m$, dove I = [0, 1].
- 3) Sia $A = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}$ con la topologia indotta da \mathbb{R}^2 . Dire se A è una varietà topologica con bordo.
- 4) Poniamo $S = \{(x,y,z) \in R^3 \mid x^2+y^2=1, 0 < z \le 1\}$. Dimostrare che S è una varietà e determinarne bordo e dimensione. S è compatta?
- 5) Sia $C=\{(x,y,z)\in R^3\mid x^2+y^2=z^2, 0\leq z\leq 1\}$. Dimostrare che C è una varietà, determinandone anche bordo e dimensione. C è compatta?

2. Esercizi sulle curve

- 1) Su $R \sqcup R$ consideriamo la relazione d'equivalenza che identifica x appartenente alla prima copia di R con x della seconda copia, $\forall x \neq 0$. Sia X lo spazio quoziente (chiamato retta con due origini). Dimostrare che X è loc. euclideo e II-numerabile, ma non T_2 .
- 2) Se $U \subset R$ è un aperto, le sue componenti connesse possono essere ordinate con l'ordine indotto da R nel modo seguente: se $A, B \subset U$ sono due componenti, diciamo che A < B sse $\forall a \in A$ e $\forall b \in B$ si ha a < b. Si mostri che questo è un ordine totale sulle componenti di U. Esiste U t.c. l'ordine delle sue componenti sia isomorfo a $\mathbb Q$ con l'ordine usuale?
- 3) L'insieme delle componenti connesse di un compatto $K \subset R$ è al più numerabile?

3. Esercizi di topologia del piano

- 1) Trovare un omeomorfismo esplicito di \mathbb{R}^2 che manda la circonferenza nel bordo di un triangolo.
- 2) Trovare un omeomorfismo esplicito di \mathbb{R}^2 che manda la circonferenza nel bordo di un quadrato.
- 3) Sia $C \subset S^2$ una curva di Jordan (cioè $C \cong S^1$). Dimostrare che $S^2 C$ ha esattamente due componenti connesse di cui C è la frontiera.
- 4) Sia $C \subset \mathbb{R}^2$ una curva di Jordan. Dimostrare che esiste un triangolo equilatero inscritto in C (ovvero che esistono $a, b, c \in C$ t.c. d(a, b) = d(a, c) = d(b, c) > 0 dove d è la distanza euclidea di \mathbb{R}^2).
- 5) Nel toro $T^2=R^2/\mathbb{Z}^2$ è vero l'analogo del teorema di Jordan? In altre parole, se $C\subset T^2$ soddisfa $C\cong S^1$, è sempre vero che T^2-C è non connesso?
- 6) Nel piano proiettivo reale vale l'analogo del teorema di Jordan?

4. Esercizi sulle superfici

- 1) Siano X e Y spazi connessi per archi e $f, g: X \to Y$ applicazioni omotope. Dimostrare che $f_* = g_*: H_1(X) \to H_1(Y)$. Dedurne che $X \simeq Y$ implica $H_1(X) \cong H_1(Y)$.
- 2) Trovare una triangolazione per S^2 , T^2 e P^2 .
- 3) Dimostrare che $\chi(S_1 \# S_2) = \chi(S_1) + \chi(S_2) 2$.
- 4) Classificare la superficie S(p) con $p=a_1a_2a_3a_4a_1a_2^{-1}a_3a_4^{-1}$, utilizzando i passi da 1 a 5 della dimostrazione del teorema di classificazione. Calcolare il gruppo fondamentale di S(p).
- 5) Determinare le superfici connesse compatte con gruppo fondamentale abeliano.
- 6) Classificare la superficie rappresentata dalla parola $abacbc^{-1}$ utilizzando i risultati noti e calcolarne il primo gruppo d'omologia.
- 7) Classificare la superficie rappresentata dalla parola $abc^{-1}dca^{-1}d^{-1}$ e calcolarne il gruppo fondamentale e la caratteristica di Eulero.