

Data Visualization with Python

Session-4

Table of Contents

- Scatter Plots
- Distribution Plots
- Categorical Plots
- Comparison Plots
- Matrix and Grid Plots

I've completed the pre-class content.

Students choose an option

Pear Deck Interactive Slide

Do not remove this bar

No Multiple Choice Response

You didn't answer this question

Categorical Plots

barplot

countplot

violinplot

stripplot

swarmplot

boxplot

boxenplot

Plots are basically used for visualizing the relationship between variables. Those variables can be either be completely numerical or a category like a group, class or division.

Seaborn besides being a statistical plotting library also provides some default datasets. We will be using one such default dataset called **'tips'**. The 'tips' dataset contains information about people who probably had food at a restaurant and whether or not they left a tip for the waiters, their gender, whether they smoke and so on.

Categorical Plots

barplot

countplot

boxplot

Categorical Plots

violinplot

stripplot

swarmplot

import seaborn as sns
tips = sns.load_dataset("tips")
sns.countplot(x='day',data=tips)
sns.countplot(tips['day'])

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Categorical Plots - barplot


```
import seaborn as sns

tips = sns.load_dataset("tips")

sns.barplot(x='day', y="total_bill",
   data=tips)

sns.barplot(x='day', y="total_bill",
   data=tips, hue='sex')
```

79	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Categorical Plots - boxplot


```
import seaborn as sns
tips = sns.load_dataset("tips")
sns.boxplot(x='day',
y="total_bill", data=tips)
```

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Categorical Plots - violinplot


```
import seaborn as sns
tips =
sns.load_dataset("tips")
sns.violinplot(x='day',y="tota
l_bill", data=tips)
```

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Categorical Plots - swarmplot


```
import seaborn as sns
tips = sns.load_dataset("tips")
sns.swarmplot(x="total_bill",
data=tips)
sns.swarmplot(x="day",
y="total_bill", data=tips)
```

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Categorical Plots - boxenplot


```
import seaborn as sns
tips = sns.load_dataset("tips")
sns.boxenplot(x="total_bill",
data=tips)
sns.boxenplot(x="day",
y="total_bill", data=tips)
```

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

No Draggable™ Response

You didn't answer this question