Question 2

$$T(A,B,C,D)$$

$$F = \{ABC \rightarrow D,CD \rightarrow A,CA \rightarrow B,AD \rightarrow C,CD \rightarrow B\}$$

Step 1: split rhs into singletons. Already singletons.

Step 2:

$$ABC \rightarrow D$$

$$J = H - \{ABC \to D\}$$

$$CD \to A: D \not\in ABC^+$$

$$CA \rightarrow B: CA \in ABC^+$$
 but B already in ABC^+

$$AD \to C : D \notin ABC^+$$

$$CD \rightarrow B: D \notin ABC^+$$

Since, $D \notin ABC^+ = \{A, B, C\}$, therefore $ABC \to D$ is necessary.

$$CD \to A$$

$$\overline{J = H - \{CD \to A\}}$$

$$ABC \to D : AB \not\in CD^+$$

$$CA \rightarrow B : A \notin CD^+$$

$$AD \to C: A \not\in CD^+$$

$$CD \rightarrow B : CD \in CD^+$$
 so, add $B : CD^+ = \{C, D, B\}$

Since, $A \notin CD^+ = \{C, D, B\}$, therefore $CD \to A$ is necessary.

$$\underline{CA \to B}$$

$$\overline{J = H - \{CA \to B\}}$$

$$ABC \to D : B \not\in CA^+$$

$$CD \to A: D \not\in CA^+$$

$$AD \to C : D \not\in CA^+$$

$$CD \rightarrow B: D \not\in CA^+$$

Since, $B \notin CA^+ = \{C, A\}$, therefore $CA \to B$ is necessary.

$AD \rightarrow C$

$$J = H - \{AD \to C\}$$

$$ABC \rightarrow D: BC \not\in AD^+$$

$$CD \to A: C \not\in AD^+$$

$$CA \to B : C \not\in AD^+$$

$$CD \to B : C \not\in AD^+$$

Since, $B \notin CA^+ = \{C, A\}$, therefore $CA \to B$ is necessary.

 $CD \to B$

$$\overline{J = H - \{CD \to B\}}$$

$$ABC \to D : AB \not\in CD^+$$

$$CD \rightarrow A : CD \in CD^+$$
 so, add $A : CD^+ = \{A, C, D\}$

$$CA \rightarrow B : CA \in CD^+$$
 so, add $B : CD^+ = \{A, B, C, D\}$

$$AD \to C : AD \in CD^+$$
 but, CD^+ already contains C

Since, $B \in CD^+ = \{A, B, C, D\}$, therefore $CD \to B$ is redundant.

Step 3: try to remove attr from LHS $H = \{ABC \rightarrow D, CD \rightarrow A, CA \rightarrow B, AD \rightarrow C, CD \rightarrow B\}$ $ABC \rightarrow D$ $D \not\in AB^+$ $D \not\in BC^+$ $D \in AC^+$ $CA \rightarrow B$ via augmentation $CA \rightarrow ABC$ Therefore, B is unnecessary : $AC \rightarrow D$ $CD \to A$ $A \not\in C^+$ $A \not\in D^+$ Therefore, $CD \to A$ is not extraneous. $CA \rightarrow B$ $B \not\in C^+$ $B \not\in A^+$ Therefore, $CA \to B$ is not extraneous. $AD \rightarrow C$ $\overline{C \not\in A^+}$ $C\not\in D^+$ Therefore, $AD \to C$ is not extraneous. Therefore, the minimal basis is $M = \{AC \rightarrow D, CD \rightarrow A, CA \rightarrow B, AD \rightarrow C\}$ Question 3 a) $CD \to E, CD \to F$ via decomposition $AB \to C$ via augmentation $ABD \to CD$ Since $A \to D$ therefore ABD = AB b/c redundant Therefore $AB \to F$ b) $BEF \to C$ via transitivity $BEF \to D$ $BE \to A$ via reflexivity $BEF \to A$ Therefore $BEF^+ = \{A, B, C, D, E, F\}$

Question 4

1

Two differnt companies cannot have the same company ID $companyID \rightarrow companyName, cityName, country, assets$ (companyID is a key for Company)

Two different departments cannot have the same deptID $deptID \rightarrow deptName, companyID, cityName, country, depMgrID$ (deptID is a key for Department) Two different cities cannot have the same cityID $cityID \rightarrow cityName, country$ (cityID is a key for City)

Two different cities in the same country cannot have the same name $(country, cityName) \rightarrow cityID$ (where (country, cityName) is a key for City)

The company name and the city its located in determine the company ID $(companyID, deptName) \rightarrow deptID$ (where (companyID, deptName) is a key for Department)

One manager cannot run 2 different departments $depMgrID \rightarrow deptID$

$\mathbf{2}$

The schema defined is a good one since 3NF is satisfied. For all FDs, either the left side is a superkey, or the right side is prime.

 $companyID \rightarrow companyName, cityName, country, assets$ (LHS is superkey for Company)

 $deptID \rightarrow deptName, companyiD, cityName, country, depMgrID$ (LHS is superkey for Department)

 $cityID \rightarrow cityName, country$ (LHS is superkey for City)

 $(country, cityname) \rightarrow cityID$ (LHS is superkey for City)

 $(companyName, cityID) \rightarrow companyID$ (LHS is superkey for Company)

 $(companyID, deptName) \rightarrow deptID \text{ (LHS is superkey for Department)}$

 $depMgrID \rightarrow deptID$ (LHS is NOT superkey for Department BUT RHS is prime)

Question 5

a)

ACA

 T_2 depends on T_3 (because T_3 writes to Y). T_2 reads Y after commit therefore ACA.

Recoverable

 T_1 depends on none, commits first. T_2 depends on T_3 , commits after T_3 . T_3 depends on none, commits second.

Strict

Yes, W(Y) and W(X) are committed before Y is read and X is written to.

b)

ACA

No T_2 reads from T_3 before T_3 commits.

Recoverable

No, T_2 depends on T_3 but commits before T_3 .

\underline{Strict}

No, $R_2(Y)$ happens before C_2

c)

<u>ACA</u>

Yes, there are no reads of any resource after X, Y and Z are written to.

Recoverable

 T_1 depends on none, T_2 depends on none, T_3 depends on none. Therefore, all commits can occur in any order, and the schedule is recoverable.

$\underline{\text{Strict}}$

No, $W_2(Y)$ happens before C_3

Question 7

a)

There is a cycle $(T_1 \text{ depends on } T_2 \text{ depends on } T_1)$ therefore the schedule is not serializable.

b)

There is no cycle in the schedule, therefore it is serializable. The serialized equivalent is T_2 , T_3 , T_1 .

Question 8

No lock on reads means we can read uncommitted writes, which means possible dirty reads and possible unrepeatable reads.

Serializability: no, can read before commit.

Conflict-serializability: no, dirty reads means possible cyclic dependency, therefore conflict serializability is not guaranteed.

Recoverability: same as above, reads before commit allows xactas to commit before the xacts it depends on commit.

ACA: dirty read from transaction that later aborts is possible.

Deadlock: no, lock on writes means its possible for transactions to wait on eachother cyclically.