

Time series modelling in time domain

- Moving average
- · Exponential smoothing
- Autocorrelation plot
- Autoregression model

1

Time series analysis

- · Characteristics of time series:
 - Trends or other systematic variations
 - Periodic oscillations: with fixed or varing patterns
 - Irregularity: unexpected situations or events or scenarios, spikes in short time span
- Stationary time series (stationary stochastic process):
 - Mean, variance, covariances will not change with time
 - White noise: uniform uncorrelated normally distributed variations
- Modelling of time series
 - Reveal the characteristics or structure of the series
 - Facilitate prediction
 - Handle accompanying noises

Moving average

 $x_1, x_2, x_3, ..., x_t, ..., x_N$ Original time series:

 $y_2, y_3, ..., y_t, ..., y_N$ Smoothed time series:

 $y_t = \frac{1}{M} \sum_{i=1}^{M} x_{t-i}$ Simple moving average:

 $y_t = \frac{1}{M} \sum_{i=-M2}^{M2} x_{t-i}$ $M2 = \frac{M-1}{2}$ $y_t = \frac{1}{M} \sum_{i=-M2}^{M2} x_{t-i}$, $M2 = \frac{M}{2}$ Centered moving average: (M is odd)

Centered moving average:

(M is even)

3

Example of moving average

t	x(t)	Simple averaging			Simple moving averaging			Centered moving averaging (M=3)			
		smoothed	error	error squared	smoothed	error	error squared	smoothed	error	error squared	
1	71	71	0	0							
2	70	71	-1	1				70,00	0,00	0,00	
3	69	71	-2	4	70,00	-1,00	1,00	69,00	0,00	0,00	
4	68	71	-3	9	69,00	-1,00	1,00	67,00	1,00	1,00	
5	64	71	-7	49	67,00	-3,00	9,00	65,67	-1,67	2,78	
6	65	71	-6	36	65,67	-0,67	0,44	67,00	-2,00	4,00	
7	72	71	1	1	67,00	5,00	25,00	71,67	0,33	0,11	
8	78	71	7	49	71,67	6,33	40,11	75,00	3,00	9,00	
9	75	71	4	16	75,00	0,00	0,00	76,00	-1,00	1,00	
10	75	71	4	16	76,00	-1,00	1,00	75,00	0,00	0,00	
11	75	71	4	16	75,00	0,00	0,00	73,33	1,67	2,78	
12	70	71	-1	1	73,33	-3,33	11,11				
SUM=	852			198	709,67		88,67	709,67		20,67	
Average=	71	Root of mean square error =		4,06	70,967	MSE=	2,72	70,967	MSE=	1,31	

Example of simple moving average

7

Example of simple moving average

Example of simple moving average

M = 12 months

9

Exponential smoothing

Original time series

 $x_{t,}$ t = 1, 2, 3, ..., N

New smoothed time series:

 y_t , t = 2, 3, 4, ..., N

$$y_2 = x_1$$

$$y_t = \alpha \ x_{t-1} + (1 - \alpha) \ y_{t-1}$$
 $0 < \alpha < 1 \ t \ge 3$

 $y_3 = \alpha x_2 + (1 - \alpha) y_2$

 $y_4 = \alpha x_3 + (1 - \alpha) y_3$

 $y_5 = \alpha x_4 + (1 - \alpha) x_4$

.....

Exponential smoothing

$$y_t = \alpha \sum_{i=1}^{t-2} \left[(1-\alpha)^{i-1} x_{t-i} \right] + (1-\alpha)^{t-2} x_1, \quad t \ge 2$$

Averaging/smoothing: sum of all coeeficients is equal to 1

$$\alpha \sum_{i=1}^{t-2} (1 - \alpha)^{i-1} + (1 - \alpha)^{t-2}$$

$$= \alpha \sum_{i=0}^{t-3} (1 - \alpha)^{i-1} + (1 - \alpha)^{t-2}$$

$$= \alpha \frac{1 - (1 - \alpha)^{t-3+1}}{1 - (1 - \alpha)} + (1 - \alpha)^{t-2} = 1$$

$$\sum_{i=0}^{n} z^i = \frac{1 - z^{n+1}}{1 - z}$$

11

Examples of exponential smoothing

t	x(t)		Alpha = 0,1		Alpha=0,3			Alpha=0,5		
		y(t)	error	error squared	y(t)	error	error squared	y(t)	error	error squared
1	71									
2	70	71,00	-1,00	1,00	71,00	-1,00	1,00	71,00	-1,00	1,00
3	69	70,90	-1,90	3,61	70,70	-1,70	2,89	70,50	-1,50	2,25
4	68	70,71	-2,71	7,34	70,19	-2,19	4,80	69,75	-1,75	3,06
5	64	70,44	-6,44	41,46	69,53	-5,53	30,61	68,88	-4,88	23,77
6	65	69,80	-4,80	22,99	67,87	-2,87	8,25	66,44	-1,44	2,07
7	72	69,32	2,68	7,21	67,01	4,99	24,89	65,72	6,28	39,45
8	78	69,58	8,42	70,83	68,51	9,49	90,10	68,86	9,14	83,55
9	75	70,43	4,57	20,92	71,36	3,64	13,28	73,43	1,57	2,47
10	75	70,88	4,12	16,95	72,45	2,55	6,51	74,21	0,79	0,62
11	75	71,29	3,71	13,73	73,21	1,79	3,19	74,61	0,39	0,15
12	70	71,67	-1,67	2,77	73,75	-3,75	14,06	74,80	-4,80	23,08
SUM=	852			208,82			199,59			181,46
verage=	71		Root of mean square error =				4,26		MSE=	4,06

Examples of exponential smoothing

t	x(t)		Alpha =	0,75	Alpha=0,95			Alpha=0,99		
		y(t)	error	error squared	y(t)	error	error squared	y(t)	error	error squared
1	71									
2	70	71,00	-1,00	1,00	71,00	-1,00	1,00	71,00	-1,00	1,00
3	69	70,25	-1,25	1,56	70,05	-1,05	1,10	70,01	-1,01	1,02
4	68	69,31	-1,31	1,72	69,05	-1,05	1,11	69,01	-1,01	1,02
5	64	68,33	-4,33	18,73	68,05	-4,05	16,42	68,01	-4,01	16,08
6	65	65,08	-0,08	0,01	64,20	0,80	0,64	64,04	0,96	0,92
7	72	65,02	6,98	48,71	64,96	7,04	49,56	64,99	7,01	49,13
8	78	70,26	7,74	59,98	71,65	6,35	40,35	71,93	6,07	36,85
9	75	76,06	-1,06	1,13	77,68	-2,68	7,20	77,94	-2,94	8,64
10	75	75,27	-0,27	0,07	75,13	-0,13	0,02	75,03	-0,03	0,00
11	75	75,07	-0,07	0,00	75,01	-0,01	0,00	75,00	0,00	0,00
12	70	75,02	-5,02	25,17	75,00	-5,00	25,00	75,00	-5,00	25,00
SUM=	852			158,09			142,39			139,66
Average=	71	Root of mean square error =		3,79			3,60			3,56

Autocorrelation

Data points at different time epochs are correlated

$$x_t$$
, $t = 1, 2, 3, ..., N$

Mean of a time series:
$$\overline{x} = \frac{1}{N} \sum_{t=1}^{N} x_t$$

Variance of a time series:
$$\gamma_0 = \frac{1}{N} \sum_{t=1}^{N} \left(x_t - \overline{x} \right)^2$$

Autocovariance function for time lag au:

$$\gamma_{\tau} = \frac{1}{N} \sum_{t=1}^{N-\tau} [(x_t - \overline{x}) (x_{t+\tau} - \overline{x})], \quad \tau = 1, 2, 3, \dots$$

Autocorrelation coefficient: $\rho(\tau) = \frac{\gamma_{\tau}}{\gamma_{0}}$

Autoregression (AR) model

$$x_t$$
, $t = 1, 2, 3, ..., N$

$$x_{t,}$$
 $t = 1, 2, 3, ..., N$ $E(x_{t}) = \mu, Var(x_{t}) = \sigma^{2},$

$$E(\varepsilon_t) = 0, \quad Var(\varepsilon_t) = \sigma_{\varepsilon}^2$$

$$x_t = \sum_{i=1}^{p} \alpha_i x_{t-i} + \varepsilon_t$$

Coefficients α_i can be determined via least squares adjustment,

or via Yue-Walker equation:

$$\begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \cdots \\ \gamma_p \end{bmatrix} = \begin{bmatrix} \gamma_0 & \gamma_{-1} & \gamma_{-2} & \cdots \\ \gamma_1 & \gamma_0 & \gamma_{-1} & \cdots \\ \gamma_2 & \gamma_1 & \gamma_0 & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ \gamma_{p-1} & \gamma_{p-2} & \gamma_{p-3} & \cdots \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \cdots \\ \alpha_p \end{bmatrix}$$

19

AR model for p = 1, 2

$$p = 1$$

$$x_t = \alpha \ x_{t-1} + \varepsilon_t$$

$$\gamma_1 = \gamma_0 \ \alpha_1 \quad \rightarrow \quad \alpha_1 = \frac{\gamma_1}{\gamma_0} = \rho(1)$$

$$\sigma^2 = \alpha^2 \ \sigma^2 + \sigma_{\varepsilon}^2 \quad \rightarrow \quad \sigma^2 = \frac{\sigma_{\varepsilon}^2}{1 - \alpha^2}$$

$$p = 2$$

$$x_t = \alpha_1 \ x_{t-1} + \alpha_2 \ x_{t-2} + \varepsilon_t$$

$$\left[\begin{array}{c} \gamma_1 \\ \gamma_2 \end{array}\right] = \left[\begin{array}{cc} \gamma_0 & \gamma_{-1} \\ \gamma_1 & \gamma_0 \end{array}\right] \left[\begin{array}{c} \alpha_1 \\ \alpha_2 \end{array}\right]$$

Examples of AR for 0, 1, 2

p=0, only white noise

p=1, if α is close to 1, mainly white noise, if α is close to 1 it is smoothing p=2, if two α_s are positive, high frequency noise is reduced; if two α_s have opposite signs, output oscillates and change directions

21

Other types of time series models

Autoregression moving average model (ARMA)

$$x_t = \sum_{i=1}^p \alpha_i x_{t-i} + \sum_{i=1}^q \beta_i \ \varepsilon_{t-i}$$

- Autoregression integrated moving average model (ARIMA)
- Double (triple) exponential smoothing
- Box-jenkins model