

Linearization errors as smooth perturbations of coprime factors in linearized Navier-Stokes equations

Jan Heiland

2021, September 30

M19 – Dynamics, stability and control in infinite dimensions, @DMV-ÖMV 2021, Passau

- 1. Introduction
- 2. Uncertain Linearization Points are Coprime Factor Uncertainties
- 3. Oseen Equations as Linear System
- 4. Conclusions

Problem: The steady state is unstable: any perturbation – no matter how small - will trigger a transition into a periodic regime.

Goal: Stabilizing feedback controller that can handle:

- limited measurements.
- system uncertainties.

Idea: Linearization-based feedback control for stabilization of the steady state.

[RAYMOND'05/'06, BENNER&JH'15, Breiten&Kunisch'14]

$$\dot{v} + (v \cdot \nabla)v - \nu \Delta v + \nabla p = Bu,$$
$$\nabla \cdot v = 0$$

Linearization & Semi-Discretization

$$\dot{v} - Av - J^{\mathsf{T}}p = Bu,$$
$$Jv = 0$$

Idea: Linearization-based feedback control for stabilization of the steady state.

[RAYMOND'05/'06, BENNER&JH'15, BREITEN&KUNISCH'14]

$$\dot{v} + (v \cdot \nabla)v - \nu \Delta v + \nabla p = Bu,$$
$$\nabla \cdot v = 0$$

Linearization & Semi-Discretization

$$\dot{v} - Av - J^{\mathsf{T}}p = Bu,$$
$$Jv = 0$$

Fragility of Observer-Based Controllers

LQG controllers have no guaranteed robustness margins and will likely fail in the presence of system uncertainties.

corrupted state-feedback

In fact: [IEEE Transaction on Automatic Control ('78)]:

Guaranteed Margins for LQG Regulators JOHN C. DOYLE

Abstract-There are none.

Good news: Uncertainties that come from

- [Curtain'03]: Galerkin approximations of evolution systems,
- [Benner&JH'17]: stable mixed-FEM approximation of the flow equations,
- [Benner&JH'16]: errors in the linearization point,

can be qualified as a coprime factor perturbation of the associated transfer function.

Moreover,

■ [THIS TALK, JH'21]: the coprime factor perturbation depends smoothly on the linearization error.

- 1. Introduction
- 2. Uncertain Linearization Points are Coprime Factor Uncertainties
- 3. Oseen Equations as Linear System
- 4. Conclusions

Transfer functions

Mapping of inputs (controls) to outputs (measurements) in frequency domain, i.e., after Laplace transform of the system.

$$\dot{x} = Ax + Bu$$
 $\xrightarrow{\mathcal{L}(s)}$ $SX(s) = AX(s) + BU(s)$
 $y = Cx$ $Y(s) = CX(s)$

Transfer functions

Mapping of inputs (controls) to outputs (measurements) in frequency domain, i.e., after Laplace transform of the system.

$$\dot{x} = Ax + Bu
y = Cx$$

$$sX(s) = AX(s) + BU(s)
Y(s) = CX(s) = \underbrace{C(sI - A)^{-1}B}_{=:G(s)} U(s).$$

Transfer functions

Mapping of inputs (controls) to outputs (measurements) in frequency domain, i.e., after Laplace transform of the system.

$$\dot{x} = Ax + Bu
y = Cx$$

$$sX(s) = AX(s) + BU(s)
Y(s) = CX(s) = \underbrace{C(sI - A)^{-1}B}_{=:G(s)} U(s).$$

1. A nominal system has the transfer function

$$G(s) = C(sI - A)^{-1}B \in \mathbb{C}^{q,r}.$$

Transfer functions

Mapping of inputs (controls) to outputs (measurements) in frequency domain, i.e., after Laplace transform of the system.

$$\dot{x} = Ax + Bu
y = Cx$$

$$sX(s) = AX(s) + BU(s)
Y(s) = CX(s) = \underbrace{C(sI - A)^{-1}B}_{=:G(s)} U(s).$$

1. A nominal system has the transfer function

$$G(s) = C(sI - A)^{-1}B \in \mathbb{C}^{q,r}$$
.

2. But uncertainty in the operator gives another transfer function

$$G_{\Delta}(s) = C(sI - A - \delta_A)^{-1}B \in \mathbb{C}^{q,r}.$$

Coprime Factorization

Given a transfer function G(s) of a linear system,

$$G(s) = M^{-1}(s)N(s)$$

is a (left) coprime factorization if there exist X(s), Y(s) such that the Bezout identity

$$M(s)X(s) + N(s)Y(s) = I$$

holds. Here, N, M, X, Y are all rational matrix functions with all poles in the open left half of the complex plane, i.e., they all represent stable linear systems.

Fact: N, M are coprime $\iff N, M$ have no common zeros in the right half plane.

Coprime Factorization

Given a transfer function G(s) of a linear system,

$$G(s) = M^{-1}(s)N(s)$$

is a (left) coprime factorization if there exist X(s), Y(s) such that the Bezout identity

$$M(s)X(s) + N(s)Y(s) = I$$

holds. Here, N, M, X, Y are all rational matrix functions with all poles in the open left half of the complex plane, i.e., they all represent stable linear systems.

Fact: N, M are coprime $\iff N, M$ have no common zeros in the right half plane.

Coprime Factor Perturbation

$$G_{\Delta}(s) = [N(s) + \delta_{N}(s)][M(s) + \delta_{M}(s)]^{-1}(s) \approx G(s) = N(s)M^{-1}(s),$$

where $N + \delta_N$, $M + \delta_N$ are stable.

Next we will show that

- Inexact linearizations of incompressible Navier-Stokes equations
- can be qualified as a coprime factor uncertainty
- that smoothly depends on the linearization error.

So that the standard H_{∞} -theory for robust controller design applies.

- 1. Introduction
- 2. Uncertain Linearization Points are Coprime Factor Uncertaintie
- 3. Oseen Equations as Linear System
- 4. Conclusions

We consider

where

- *V* . . . velocity,
- $\blacksquare P \dots \text{pressure},$
- ν ... diffusion parameter,

$$\dot{V} + (V \cdot \nabla)V + \nabla P - \nu \Delta V = 0,$$
 div $V = 0$, in Ω , $v \frac{\partial V}{\partial n} - nP = 0$ on $\Gamma_{\text{out}},$ $V = 0$ on $\Gamma_{w},$ $V = ng_{0} \cdot \alpha$ on $\Gamma_{0},$ $V = ng_{1} \cdot u_{1}$ on $\Gamma_{1},$ $V = ng_{2} \cdot u_{2}$ on Γ_{2} .

- \blacksquare $g_0, g_1, g_2 \dots$ spatial shape functions,
- $u_1, u_2 \dots$ scalar input functions,
- lacksquare α ... magnitude of the inflow velocity,
- n . . . normal vector at the boundaries.

A linearized I/O model is obtained as follows:

- 1. We relax the Dirichlet control $V|_{\Gamma_1} = ng_1u \varepsilon(\nu\frac{\partial V}{\partial n} Pn)$
- 2. Let v_{α} be the steady state solution for zero inputs, and let $v_{\delta}(t) = V(t) v_{\alpha}$ the deviation.
- 3. We consider the linearization

$$\dot{v}_{\delta} + (v_{\delta} \cdot \nabla)v_{\alpha} + (v_{\alpha} \cdot \nabla)v_{\delta} + \nabla p_{\delta} - \nu \Delta v_{\delta} = 0$$

that is a valid approximation as long as v_{δ} is small.

Then, with

$$\mathcal{H}_{div} := \{ v \in L^2(\Omega) : \text{div } v = 0, v \cdot n = 0 \text{ on } \Gamma_w \cap \Gamma_{\text{out}} \}$$

as the state space, the (orthogonal) Leray-projector

$$\Pi \in \mathcal{L}(L^2(\Omega)) \colon L^2(\Omega) \mapsto \mathcal{H}_{div},$$

and $x := \Pi v_{\delta}$ the model reads¹

$$\dot{x} = A_{\alpha}x + \Pi Bu$$
 in \mathcal{H}_{div} , $y = Cx$

where

- lacksquare $A_lpha\colon \mathcal{D}(A_lpha)\subset \mathcal{H}_{ extit{div}} o \mathcal{H}_{ extit{div}}$ is the *Oseen* operator
- lacksquare $\Pi B\colon \mathbb{R}^2 o \mathcal{H}_{ extit{div}}$ is the input operator
- lacksquare $C\colon \mathcal{H}_{div} o\mathbb{R}^q$ is the output operator

¹The pressure p_{δ} is gone, since Π maps along the orthogonal complement of the gradient

Boundedness of the input operator

Lemma (JH'21, Benner&JH'18)

If $g_i \in H_{00}^{1/2}(\Gamma_i)^2$, i = 1, 2, and $\varepsilon > 0$, then the input operator $B \colon \mathbb{R}^2 \to L^2(\Omega)$ for the Oseen system that realizes

$$V = ng_i u_i - \varepsilon (\nu \frac{\partial V}{\partial n} - nP)$$
 on Γ_i , $i = 1, 2$

is bounded.

Outline of the proof:

- By definition $B = \Pi B$, with Π being the orthogonal projector onto \mathcal{H}_{div} .
- We show that $\langle \Pi B u, w \rangle_{L^2(\Omega)} = \langle B u, \Pi w \rangle_{L^2(\Omega)}$.
- Thus, $\langle Bu, w \rangle_{L^2(\Omega)} = -\frac{1}{\varepsilon} \sum_{i=1,2} \int_{\Gamma_i} \Pi w \cdot (g_i n) ds u_i$.
- Since $\Pi w \cdot n \in H^{-1/2}(\Gamma_i)$, it follows $B = \Pi B \colon \mathbb{R}^2 \to L^2(\Omega)$ that.

 $^{^{2}}H_{00}^{1/2}(\Gamma_{i})$ contains those functions out of $H^{1/2}(\Gamma_{i})$ that are boundedly extendable by 0 to the complete boundary.

- ✓ The linearized model is a standard (A, B, C) system
 - we know: A_{α} is the generator of a C_0 -semi group [RAYMOND'06]
 - we choose: *C* to be bounded
 - we have just shown: ΠB is bounded.
- → The theory for robust stabilization of linearization errors applies.
- \leftarrow Assume that the linearization point v_{α} is uncertain
 - that is $v_{\alpha} \leftarrow v_{\alpha} + \delta_{v}$
 - then A is perturbed $A \leftarrow A + \delta_A$
 - as is the transferfunction

$$G_{\delta}(s) = C(sI - A - \delta_A)^{-1}B$$

Theorem (JH'19)

Consider the perturbed Oseen system and let $L \in \mathcal{L}(\mathbb{R}^k, V^0)$ and $\delta_A(\delta_v)$ be such that $(A + \delta_A - LC)$ is exponentially stable for all δ_A small. Then the associated transferfunction G_δ has a coprime factorization

$$G_{\delta} = [N + \delta_N][M + \delta_M]^{-1},$$

where $NM^{-1} = G$ is the transferfunction associated with the unperturbed system, and

$$\|\delta_N\|_{H_\infty} \to 0$$
 and $\|\delta_M\|_{H_\infty} \to 0$

as $\delta_v o 0$

Linearization error as CFP - Outline of the proof: I

1. The perturbation δ_N has the representation³

$$\delta_N(s) = C\delta_A(sI - A + LC)^{-1}(sI - A - \delta_A + LC)^{-1}\Pi B,$$

2. and can be realized as a cascaded system

$$\dot{v}_1 = (A + \delta_A - LC)v_1 + \Pi B u,$$
 (\mathcal{F}_1)
 $\dot{v}_2 = (A - LC)v_2 + v_1$ (\mathcal{F}_2)
 $y = C\delta_A v_2,$

in the time domain.

3. This results in the transferfunction (in the time domain):

$$y = C\delta_A \mathcal{F}_2 \mathcal{F}_1 u.$$

Linearization error as CFP - Outline of the proof: II

For the transfer function in the time domain

$$y = C\delta_A \mathcal{F}_2 \mathcal{F}_1 u$$

we have that:

- 1. Certainly $\|C\delta_A\| \to 0$ if $\|\delta_A\| \to 0$, but only on function spaces with sufficient regularity. (The operator δ_A contains spatial derivatives)
- 2. Therefore, we use
 - the uniform stability of $A + \delta_A LC$
 - lacksquare and the analyticity of the semi-group that is generated by A-LC

to show that $\mathcal{F}_2\mathcal{F}_1$ provides the needed regularity.

Linearization error as CFP - Outline of the proof: III

3. By means of a classical result⁴, that connects frequency- and time domain, we infer that dass

$$\|\delta_N\|_{H_\infty} \le \|C\delta_A \mathcal{F}_2 \mathcal{F}_1\|_{L^2 \to L^2},$$

so that $\|\delta_A\| \to 0$ implies that

$$\|\delta_N\|_{H_\infty} \to 0.$$

³Benner&JH(2016) IFAC PapersOnLine

⁴Weiss(1991) Representation of shift-invariant operators on L^2 by H^{∞} transfer functions

- 1. Introduction
- 2. Uncertain Linearization Points are Coprime Factor Uncertaintie
- 3. Oseen Equations as Linear System
- 4. Conclusions

Conclusions

Summary

Robust controller

- can compensate model uncertainties if
- they qualify as a coprime factor perturbation.

The general ∞ -dimensional theory

- applies to control of incompressible flows
- if Dirichlet control is relaxed as Robin control.

Uncertainty in the linearization

- is, in fact, a coprime factor perturbation
- that smoothly depends on size of the error.

Outlook

- Quantify the error in the factorizations.
- Incorporate the discretization error in the controller design.

References

P. Benner and J. Heiland.

LQG-balanced truncation low-order controller for stabilization of laminar flows.

In R. King, editor, *Active Flow and Combustion Control 2014*.

P. Benner and J. Heiland.

Robust stabilization of laminar flows in varying flow regimes.

IFAC-PapersOnLine, 49(8):31–36, 2016.

P. Benner and J. Heiland.

Convergence of approximations to Riccati-based boundary-feedback stabilization of laminar flows.

IFAC-PapersOnLine, 50(1):12296–12300, 2017.

T. Breiten and K. Kunisch.

Riccati-based feedback control of the monodomain equations with the Fitzhugh–Nagumo model.

SICON, 52(6):4057-4081, 2014.

R. F. Curtain.

Model reduction for control design for distributed parameter systems. In R. Smith and M. Demetriou, editors, *Research Directions in Distributed Parameter Systems*. SIAM, 2003.

J. Heiland.

Convergence of coprime factor perturbations for robust stabilization of Oseen systems.

Math. Control Relat. Fields, 2021.

J.-P. Raymond.

Local boundary feedback stabilization of the Navier-Stokes equations.

In Control Systems: Theory, Numerics and Applications, Rome, 30 March – 1 April 2005, Proceedings of Science. SISSA, 2005.

Available from http://pos.sissa.it.

J.-P. Raymond.

Feedback boundary stabilization of the two-dimensional Navier-Stokes equations.

SIAM J. Control Optim., 45(3):790–828, 2006.