Previously.

This Section.

- Binary Operations

- Groups

- Monoids

Definition. Suppose that

- 1. G is a set and * is a binary operation on G,
- **2.** * is associative,
- **3.** there is some $e \in G$ such that

$$g * e = e * g = g,$$

for all $g \in G$, and

4. for all $g \in G$, there is an $h \in G$ such that g * h = e = h * g.

Then (G, *) is a GROUP.

Note. A group is a monoid where every element has an inverse!

Exercise 1. Group or not?

(a) $(\mathbb{Z}, +)$

(g) (\mathbb{R},\cdot)

(b) $(\mathbb{R}, +)$

(h) (\mathbb{Z},\cdot)

(c) $(\mathbb{N}, +)$

(i) (\mathbb{Z}_4,\cdot)

(d) $(\mathbb{Z}_n, +)$

(j) (\mathbb{Z}_n,\cdot)

(e) $(M_n(\mathbb{R}), +)$

(k) (\mathbb{Z}_p,\cdot)

(f) $(M_n(\mathbb{R}), \cdot)$

(l) (S_3, \circ)

Definition. The nth roots of unity are the complex numbers that are the roots of

$$x^{n} - 1$$
.

Denote the set of roots as \mathcal{U}_n

Definition. If the operation of a group G is commutative, we call G an abelian group.

Theorem 2.1.4. If (G, *) is a group and $g \in G$, then the inverse of g is unique.

Theorem 2.2.1. If (M, \cdot) is a monoid, then the set of all units M^* is a group using the operation \cdot , called the unit group.

Exercise 2. Consider the following monoids. Determine their group of units.

- (\mathbb{R},\cdot) has units $\mathbb{R}^* =$
- (\mathbb{Z}, \cdot) has units $\mathbb{Z}^* =$
- (\mathbb{Z}_4, \cdot) has units $\mathbb{Z}_4^* =$

Theorem 2.2.2. If G_1, G_2, \ldots, G_n are groups with respective operations $*_1, *_2, \ldots, *_n$, then

$$G_1 \times G_2 \times \cdots \times G_n$$

is a group under component-wise operation

$$(g_1, g_2, \ldots, g_n) * (h_1, h_2, \ldots, h_n) = (g_1 *_1 h_1, g_2 *_2 h_2, \ldots, g_n *_n h_n).$$

Theorem 2.2.3. Let $g, h, g_1, g_2, \ldots, g_{n-1}, g_n$ be elements of a group G $(n \in \mathbb{Z}_{\geq 1})$.

- 1. $e^{-1} =$
- **2.** $(g^{-1})^{-1} =$
- 3. $(gh)^{-1} =$
- **4.** $(g_1g_2\cdots g_n)^{-1}=$
- 5. $(g^m)^{-1} =$

for all $m \geq 0$.

Theorem 2.2.4 (Exponent Laws). Let G be a group and $g, h \in G$. Then for all $m, n \in \mathbb{Z}$, the following hold,

- 1. $q^n q^m =$
- **2.** $(g^n)^m =$
- **3.** If gh = hg, then $(gh)^n =$

Last Updated: February 26, 2024

Theorem 2.2.5 (Cancellation Laws). Let G be a group and $g, h, f \in G$.

1. If gh = gf then h = f (left cancellation)

2. If hg = fg then h = f (right cancellation)

Theorem 2.2.6. Let G be a group and $g, h \in G$.

- **1.** The equation gx = h has a unique solution $x = g^{-1}h$ in G.
- **2.** The equation xg = h has a unique solution $x = hg^{-1}$ in G.

Definition. A Cayley table is essentially a multiplication table for a given binary operation.

Example.

*	e	a	b
e	e	a	b
\overline{a}	a	a^2	a*b
b	b	b*a	b^2

Exercise 3. Complete the Table for $(\mathbb{Z}_3, +)$

+	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{0}$			
$\overline{1}$			
$\overline{2}$			

Last Updated: February 26, 2024

Exercise 4. Consider operation * with the Cayley table

_	*	e	a	b	c
	e	e	a	b	c
	a	a	a	b	e
	b	b	b	c	c
	c	c	e	c	e

- (a) Is * commutative? Why?
- (b) Is there an identity?
- (c) Determine a * (b * c) and (a * b) * c. Is * associative?
- (d) Is it a monoid?!

Question 5. How many groups are there with 1 element?

Question 6. How many groups are there with 2 elements?

Let $G = \{e, g\}$ be a group with 2 elements. Complete the Cayley table.

*	e	g
e	e	g
\overline{a}	g	

(Recall that in a group, every element must have an inverse!)

Note. Note that if (G, *) is a group, every element appears exactly 1 time in every row and every column.

Exercise 7. If $G = \{e, g, h\}$ is a group, complete the Cayley table,

*	e	g	h
e	e	g	h
g	g		
h	h		

Note. We will say up to isomorphism there is only one group of order 3.

That is all of the following have the same group structure, even though they're different objects.

- (a) $(\mathbb{Z}_3, +)$ equivalences modulo 3
- (b) (A_3, \circ) the alternating group on 3 elements
- (c) $(\{1,\frac{-1+i\sqrt{3}}{2},\frac{-1-i\sqrt{3}}{2}\}\},\cdot)$ the third roots of unity

Exercise 8. What about a group with 4 elements, is there 1 or are there more? (I leave two tables for exploration purposes.)

*	e	g	h	k
e	e	g	h	k
g	g			
h	h			
\overline{k}	k			

*	e	g	h	k
e	e	g	h	k
g	g			
h	h			
\overline{k}	k			