- 1) Zeigen Sie mittels vollständiger Induktion, dass für alle natürlichen Zahlen $n \geq 4$: $n! \geq 2^n$
- 2) Betrachten Sie die folgende induktive Definition von Palindromen über Σ .
 - Basis: das leere Wort ϵ ist ein Palindrom.
 - Basis: für jedes $e \in \Sigma$ ist e ein Palindrom.
 - \bullet Schritt: Wenn wein Palindrom ist, dann ist für jedes $e \in \Sigma$ auch eweein Palindrom.

Beweisen Sie mittels struktureller Induktion, dass jedes Palindrom w über $\{a,b\}$ gerader Länge eine gerade Anzahl an as hat.

- 3) Sei Σ ein endliches Alphabet. Zeigen Sie: Wenn w ein Palindrom über Σ ist, dann ist ww ein Palindrom gerader Länge über Σ .
 - Hinweis: Verwenden Sie die Eigenschaft aus Aufgabe??.
- 4) Zeigen Sie mittels wohlfundierter Induktion, dass alle natürlichen Zahlen $n \geq 2$ als Produkt von Primzahlen dargestellt werden können (also dass es ein $k \geq 1$ gibt so dass $n = p_1 p_2 \cdots p_k$ und für alle $1 \leq i \leq k$ gilt dass p_i eine Primzahl ist).