Probabilistic Method Pset 2

EGMOTC 2023 - Rohan

November 5, 2023

Problems

Remark. * marked problems are considered harder.

Remark. Try to do as much as possible and submit whatever progress you have. You can then look at the solutions after submitting. Try to spend atleast somewhere around 30-40 minutes on this set.

- 1. (MP4G 2022) Across the face of a rectangular post-it note, you idly draw lines that are parallel to its edges. Each time you draw a line, there is a 50% chance it'll be in each direction and you never draw over an existing line or the edge of the post-it note. After a few minutes, you notice that you've drawn 20 lines. What is the expected number of rectangles that the post-it note will be partitioned into?
- 2. (Folklore) Let $v_1, v_2, \ldots v_n \in \mathbb{R}^n$, all $|v_i| = 1$ where |x| refers to the Euclidean distance of x from the origin. Then there exist $\epsilon_1, \epsilon_2, \ldots \epsilon_n = \pm 1$ such that

$$|\epsilon_1 v_1 + \epsilon_2 v_2 + \dots + \epsilon_n v_n| \le \sqrt{n}$$

and also there exist $\epsilon_1, \epsilon_2, \dots \epsilon_n = \pm 1$ such that

$$|\epsilon_1 v_1 + \epsilon_2 v_2 + \dots + \epsilon_n v_n| \ge \sqrt{n}$$

3. (*) Suppose $p > n > 10m^2$, with p prime, and let $0 < a_1 < a_2 < \cdots < a_m < p$ be integers. Prove that there is an integer 0 < x < p for which the m numbers

$$(xa_i \pmod{p}) \pmod{n}$$

are pairwise distinct.