

Unique Science Academy, 60 – D Nawab Town, Lahore

Statistics 12 Monthly Test

(Chapter 10 – Normal Distribution – Objective Type)

29 August 2024		Allowed Time: 50 minutes
Total M	arks: 50	
Name		
1. Select	all that are true.	$(1 \times 40 = 40)$
1. Ti	he normal distribution is a	that ranges form
0	Discrete probability distribution, $-\infty$ to $-\infty$	-∞
0	Continuous probability distribution, 0 to	1.
0	Continuous frequency distribution, -1 to	+1
0	Continuous probability distribution, −∞ t	to +∞
2. The value of the parameter σ of a standard normal distribution is always		ormal distribution is always
0	Positive	
0	Negative	
0	1	
0	Can be positive and negative	

- 3. The normal distribution is a bell shaped ______ distribution.
 - Skew Symmetrical
 - o Symmetrical
 - o No skewed
 - o Positively and Negatively Skewed
- 4. If $X \sim N(50,25)$, then $\mu = ____$ and $\sigma = _____$
 - \circ 50 and 25
 - \circ 50 and $\sqrt{25}$
 - o 0 and 1
 - o 50 and 5

5.	Th	e maximum ordinate of the standard normal curve is at $Z = $
	0	μ
	0	σ
	0	0.39
	0	0
6.	Th	e maximum ordinate of the normal curve is at $X = $
	0	Mode
	0	μ
	0	σ
	0	+∞
7.	Th	e total area under a normal curve is
	0	Unity
	0	1
	0	100%
	0	∞
8.	Th	e of a normal distribution corresponds to $z = 0$ in the standard normal
	dis	stribution.
	0	Mean
	0	Median
	0	Mode
	0	σ

9.	In a normal distribution, the mean, median and mode are		
	0	Same	
	0	Identical	
	0	Equal	
	0	Can be different	
10.	In a	a standard normal distribution, if $P(Z < Z_{0.975}) = 0.975$, then $Z_{0.975} = $	
	0	0.975	
	0	0.025	
	0	1.96	
	0	97.5%	
11.	In a	a normal distribution, = $\mu - 0.6745 \ \sigma$	
	0	Q_1	
	0	$z_{0.25}$	
	0	$\Phi^{-1}(0.25)$	
	0	P_{25}	
12.	In a	a normal distribution, = μ + 0.6745 σ	
	0	Q_3	
	0	$Z_{0.75}$	
	0	$\Phi^{-1}(0.75)$	
	0	P_{75}	

13.	In	a normal distribution, Quartile Deviation \approx σ
	0	0.6745
	0	2/3
	0	0.7979
	0	4/5
14.	In	a normal distribution, Mean Deviation \approx σ
	0	4/5
	0	0.7979
	0	$\sqrt{2/\pi}$
	0	0.6745
15.	In	a normal distribution, all odd order moments about mean are
15.	In a	a normal distribution, all odd order moments about mean are Positive
15.		
15.	0	Positive
15.	0	Positive Negative
	0 0 0	Positive Negative Zero
	0 0 0	Positive Negative Zero Additive identity of Real Numbers
		Positive Negative Zero Additive identity of Real Numbers a normal distribution, $\beta_1 = \underline{\hspace{1cm}}$ and $\beta_2 = \underline{\hspace{1cm}}$.
	000In :0	Positive Negative Zero Additive identity of Real Numbers a normal distribution, $\beta_1 = $ and $\beta_2 = $

17.	7. The normal distribution is			
	0	Platykurtic		
	0	Mesokurtic		
	0	Leptokurtic		
	0	Symmetrical		
18.	Th	e points of inflexion of a normal curve are from mean.		
	0	Equidistant		
	0	Having different distance		
	0	Skewed		
	0	Zero		
19.	Th	e limits $\mu \pm \sigma$ include percent area under the normal curve.		
	0	68.27		
	0	95.45		
	0	99.73		
	0	68.45		
20.	Th	e limits $\mu \pm 2\sigma$ include percent area under the normal curve.		
	0	68.27		
	0	95.45		
	0	99.73		
	0	68.45		

21.	Th	e limits $\mu \pm 3\sigma$ include percent area under the normal curve.
	0	68.27
	0	99.45
	0	99.73
	0	68.45
22.	Th	e limits $\mu \pm 0.6745\sigma$ include percent area under the normal curve.
	0	25
	0	50
	0	75
	0	100
23.	No	rmal distribution has two parameters namely and
	0	Mean, Standard Deviation
	0	μ , σ^2
	0	μ , σ
	0	Mean, Variance
24.	If Z	X is normally distributed with mean μ and variance σ^2 , then it is denoted by
	0	$X \sim N(\mu, \sigma)$
	0	$X \sim N(0,1)$
	0	$X \sim N(\mu, \sigma^2)$
	0	$Z\sim(\mu,\sigma)$

25.	Th	e standard normal distribution has mean and variance
	0	0, 1
	0	1, 0
	0	μ, σ
	0	0, 0
26.	Wl	nich of the following statement is NOT correct about maximum ordinate of a standard
	noi	rmal curve?
	0	The maximum ordinate of a standard normal curve is approximately 0.3989
	0	The maximum ordinal of a standard normal curve is at $Z = \mu$
	0	The maximum ordinate of a standard normal curve is at $Z = 1$
	0	The maximum ordinate of a standard normal curve is at $Z = 0$
27.	Th	e standard normal distribution is symmetrical about
	0	$Z = \mu$
	0	Z = 0
	0	$Z = \mu \pm \sigma$
	0	$\mu - \sigma < Z < \mu + \sigma$
28.	Th	e normal curve has maximum ordinate at
	0	X = 0
	0	X = 1
	0	$X = \mu$
	0	$X \to \infty$

- 29. In a standard normal distribution, if P(|Z| < a) = 0.95, then a =_____.

 -1.96

 1.96

 $\Phi^{-1}(0.95)$ $2\Phi^{-1}(0.95) 1$ 30. In a standard normal distribution, if $P(Z < z_{0.025}) = 0.025$, then $z_{0.025} =$ _____.

 -1.96

 1.96

 $\Phi^{-1}(0.025)$ $1 \Phi^{-1}(0.95)$ 31. In a standard normal distribution, if $P(Z < z_{0.975}) = 0.975$, then $z_{0.975} =$ _____.

 -1.96

 1.96
- 32. The normal curve gets closer and closer to the x- axis but never touches it. This property of normal distribution is known as:
 - o Symmetrical

0 1.645

0 -1.645

- o Asymmetrical
- o Asymptotic
- o Invariant

33.	Th	e expected value of a normal distribution is
	0	Mean
	0	Median
	0	Mode
	0	Variance
34.	Th	e shape of a normal distribution depends upon
	0	Ordinates
	0	Area
	0	Parameters
	0	$\sqrt{2\pi}$
35.	Th	e second moment about mean of the normal distribution is
	0	σ
	0	σ^2
	0	$3\sigma^4$
	0	μ^2
36.	In	a normal distribution:
	0	Mean and variance are always equal
	0	Variance can be zero.
	0	$P(\mu - \sigma < X < \mu + \sigma) = P(-1 < Z < +1)$
	0	$P(\mu - 2\sigma < X < \mu + 2\sigma) = P(-2 < Z < +2)$

37.	Th	e parameter σ controls the of the normal curve.
	0	Location on x- axis
	0	Relative flatness
	0	Origin
	0	Symmetry
38.	In	a normal distribution, all even moments about mean are
	0	Zero
	0	Negative
	0	Positive
	0	Same
39.	Th	e points of inflexion of the normal curve lie at
	0	$\mu \pm \sigma$
	0	$\mu \pm 2\sigma$
	0	$\mu \pm 3\sigma$
	0	$\mu^2 \pm 2\sigma^2$
40.	Fo	arth moment about mean in a normal distribution is
	0	σ^2
	0	3
	0	$3\sigma^4$
	0	$3\sigma^2$

Mathematical / Theoretical Part

2. Match the correct statements.

 $(2 \times 4 = 8)$

Function Name	Function
Normal Probability Density Function <i>p.d.f</i>	$F(x) = P(X \le x) = P(-\infty < X \le x)$
Normal Cumulative Distribution Function c.d.f	$\varphi(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$
Standard Normal Probability Density Function	$\Phi(z) = P(Z \le z) = P(-\infty < Z \le z)$
Standard Normal Cumulative Distribution Function	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$

3. Select all correct options

 $(1 \times 2 = 2)$

- a. Which table is used for finding the value $\Phi(1.96)$?
 - \circ Ordinates of the Standard Normal Curve at Z = z
 - o Quantiles of the Standard Normal Distribution
 - Values of the Normal Cumulative Distribution Function
 - o Values of the Standard Normal Cumulative Distribution Function
- b. Which table is used for finding the value $\Phi^{-1}(0.95)$?
 - Ordinates of the Standard Normal Curve at Z = z
 - o Quantiles of the Standard Normal Distribution
 - o Inverse Standard Normal Cumulative Distribution Function
 - o Values of the Standard Normal Cumulative Distribution Function