MOTIVIC SHEAVES

LECTURER: SIMON PEPIN LEHALLEUR, TYPESETTER: MICHAŁ MRUGAŁA

Plan:

- L1: Motivation, construction, examples.
- L2: Six-functor formalism.
- L3: Motivic *t*-structures and weight structures.
- L4: ∞-categorical methods.

§1. MOTIVATION FROM GRT AND COHOMOLOGY

1.1. Cohomology and sheaves for representation theory

Question: How do you construct interesting representations? *Answer:*

- 1) Find interesting actions.
- 2) Linearlize them.

Example 1.1.1. — Let K be a compact Lie group. The action of K on itself gives us an action of K on $L^2(K)$ with respect to a Haar measure. The Peter-Weyl theorem says that

$$L^2(K) \simeq \bigoplus_{\pi \text{ unitary}} \pi^{\oplus dim(\pi)}.$$

"Lie theory \subset algebraic geometry". Reductive groups are algebraic groups with many associated varieties with group actions: flag varieties...

The linearizations we consider in this course are the many types of cohomology theories.

Example 1.1.2 (Borel-Weil-Bott). — Let $T \subset B \subset G$ be a reductive group over \mathbf{C} . Let $\lambda \in X^{\vee}(T)$ such that there exists $w \in W$ with $w * \lambda = w(\lambda + \rho) - \rho > 0$ (where $\rho = (1/2) \sum_{\alpha \in \Phi^+} \alpha$). Then

$$R\Gamma(G/B, L_{\lambda}) \simeq \pi_{w*\lambda}[-\ell(w)]$$

where $\ell(w)$ is the length of w.

Cohomology fits in the wider context of sheaf theory. If T is a locally contractible topological space, then

$$H_{\text{sing}}^n(T,\mathbb{Z}) \simeq H^n(T,\underline{\mathbb{Z}}_T) \simeq R^n(\pi_T)_*(\underline{\mathbb{Z}}_T)$$

where π_T is the morphism $\pi_T : T \to \mathsf{pt}$ with

$$R\pi_{T*}: D(T,\mathbb{Z}) \longrightarrow D(\mathbb{Z}) \simeq D(*,\mathbb{Z}).$$

Cohomology (singular with Q-coefficients) of algebraic varieties over C is very special.

- There is a weight filtration.
- There is a mixed hodge structure.

Sheaves on complex algebraic varieties are also very special:

- Perverse sheaves:
- Decomposition theorem;
- Mixed Hodge modules.

This leads to great success stories in GRT:

- Springer theory;
- Kazdhan-Lustig theory;
- geometric Satake...

1.2. From sheaves to motivic sheaves There are situations which can't be directly studied using these tools:

- Representation theory of reductive groups over other fields/rings/schemes.
- Modular/integral representation theory.
- *q*-deformations, quantum groups, canonical bases.

These can be attacked using:

- l-adic sheaves,
- sheaves cohomology with Z-coefficients,
- *K*-theory.

Motivic sheaves will give us a unified perspective.

Motivic dream: There should exist universal cohomology/sheaf theories such that

- 1) they unify and "explain" the special stracture in cohomology/sheaves;
- 2) they are of algebro-geometric nature;
- 3) they "explain" the realization of algebraic cycles and algebraic K-theory.

§2. CONSTRUCTION OF DAÉT AND SH (MOREL-VOEVODSKY)

2.1. Triangulated categories and localization

Definition. — A **triangulated category** is the data:

- an additive category C,
- an automorphism $\Sigma = (-)[1] : C \xrightarrow{\sim} C$,
- a collection of distinguished triangles

$$A \longrightarrow B \longrightarrow C \longrightarrow A[1].$$

The data satisfies the following conditions:

- shifted distinguished triangles are distinguished up to isomorphism,
- for all $f: A \to B$ there exists

$$A \xrightarrow{f} B \longrightarrow \operatorname{Cone}(f) \xrightarrow{+}$$

unique up to isomorphism and functorial,

• (??)

Example 2.1.1. — Let A be an abelian category, Ch(A) be the abelian category of chain complexes in A. We define $(A[1])_n = A_{n-1}$. Given $f: A_{\bullet} \to B_{\bullet}$ the maping cone is given by

Cone
$$(f)_n = A_{n-1} \oplus B_n$$
, $d_n = \begin{pmatrix} -d_{n-1}^A & 0 \\ f & d_n^B \end{pmatrix}$.

Definition. — $f: A_{\bullet} \to B_{\bullet}$ is a **quasi-isomorphism** if for all $n \in \mathbb{Z}$, the map $H_n(A_{\bullet}) \simeq H_n(B_{\bullet})$ is an isomorphism.

Definition. — D(A) is defined as the localization of Ch(A) by quasi-isomorphisms.

Now we consider reflexive localizations (1-categorical ones lead to triangulated and ∞ -categorical ones).

Definition. — Let C be a 1-category.

- 1) $C' \subset C$ is **reflexive** if $\iota : C' \to C$ has a left adjoint.
- 2) $L_W : C \to C[W^{-1}]$ is **reflexive** if L_W has a right adjoint.

Lemma 2.1.1 (Reflexive subcategories are the same thing as reflexive localizations). —

3

a) Let $C' \subset C$ be reflexive, $L : C \to C'$ be the left adjoint to ι . Define

$$W_L = \{f : L(f) \text{ is an isomorphism}\}.$$

Then $C' \simeq C[W_L^{-1}]$ and $L \simeq L_{W_L}$.

b) If L is a reflexive localization, then its right adjoint ι is fully faithful and $\iota: C[W^{-1}] \xrightarrow{\sim} EssIm(\iota) \subset C$.

Definition. — Let $S \subset C$ be a collection of morphisms.

a) $A \in C$ is S-local if for all $f : B \to C$ in S

$$\operatorname{Hom}_{\mathsf{C}}(C,A) \xrightarrow{\sim} \operatorname{Hom}_{\mathsf{C}}(B,A).$$

b) $f: B \to C$ is an *S*-equivalence if for all *S*-local *A*

$$\operatorname{Hom}_{\mathsf{C}}(C,A) \xrightarrow{\sim} \operatorname{Hom}_{\mathsf{C}}(B,A).$$

Lemma 2.1.2. — If $L: C \rightleftharpoons C': \iota$ is a reflexive localizaton, W_L as before, then

- ι gives an isomorphism between C' and W_L-local objects.
- W_L are the W_L -equivalences.

Definition. — Let D be a triangulated category with all small products.

• Let κ be a regular cardinal (for example $\kappa = \aleph_0$). Then $A \in D$ is κ -small/ κ -compact if and only if

$$\operatorname{colim}_{\substack{I'\subset I\\|I'|<\kappa}}\operatorname{Hom}\left(A,\bigoplus_{I'}B_i\right)\stackrel{\sim}{\to}\operatorname{Hom}\left(A,\bigoplus_{I}B_i\right).$$

• **Compact** means \aleph_0 -small. *A* is compact if and only if

$$\bigoplus_{I} \operatorname{Hom}(A, B_{i}) \xrightarrow{\sim} \operatorname{Hom}\left(A, \bigoplus_{I} B_{i}\right).$$

• D is **presentable/well-generated** if and only if there exist κ and a set $S \subset D$ of κ -small objects which generate D:

$$\forall B \in D, (\forall A \in S, \text{Hom}(A, B) = 0) \implies B = 0.$$

• D is **compactly generated** if it is \aleph_0 -presentable.

Definition. — $E \subset D$ is **localizing** if it is

- triangulated,
- stable under coproducts,
- thick (stable under subobjects and subquotients).

Theorem 2.1.1 (Adjoint Functor Theorem). — Let D, D' be triangulated categories with all coproducts, $F: D \to D'$ be a triangulated functor and D be presentable. Then F admits a right adjoint if and only if F preserves all coproducts.

Corollary 2.1.1 (Verdier Localization). — *Let* D *be a presentable category and* E *be a localizing subcategory. Define*

$$\mathsf{D}/\mathsf{E} = D[W_\mathsf{E}^{-1}], \quad W_\mathsf{E} = \{f : \mathsf{Cone}(f) \in \mathsf{E}\}.$$

Then D \rightarrow D/E *is a reflexive localization.*

Let $S \subset D$ be a subset of objects, then $\langle\!\langle S \rangle\!\rangle$ is the smallest subcategory containing S such that $D / \langle\!\langle S \rangle\!\rangle$ is a reflexive localization.

Let's get some inspiration from Betti homology, i.e. singular homology on complex algebraic varieties. Let $X \in Var_{\mathbb{C}}^{(f,t)}$, then we get

$$C_*^{\text{sing}}(X(\mathbf{C}), \mathbb{Z}) \in D(\mathbb{Z}).$$

This comes with some data:

- (a) $D(\mathbb{Z})$ has a symmetric monoidal structure: $\otimes^{\mathbb{Z}}$,
 - (Künneth) $C_*(X \times Y) \simeq C_*(X) \otimes^{\mathbb{Z}} C_*(Y)$.

which satisfies sproperties:

MOTIVIC SHEAVES

4

(b) (\mathbb{A}^1 -homotopy invariance) $C_*(X \times \mathbb{A}^1) \xrightarrow{\sim} C_*(X)$ ((\mathbb{A}^1)^{an} = \mathbb{C} is contractible). (c) (Mayer-Vietoris sequence) Let $X = U \cup V$ be a Zariski cover, then

$$C_*(U \cap V) \longrightarrow C_*(U) \oplus C_*(V) \longrightarrow C_*(X) \xrightarrow{\partial} C_*(U \cap V)[1].$$

(d) (Étale descent) Let $U \to X$ be étale surjective. Define

$$\check{C}_n(U/X) = U^{n+1}$$
.

Then $\check{C}_{\bullet}(U/X)$ is a simplicial scheme, so $C_*(\check{C}_{\bullet}(U/X))$ is a simplicial complex of abelian groups and $C(C_*(\check{C}_{\bullet}(U/X)))$ is a double complex. (??)

Concretely we have a descent spectral sequence which gives us $(U = U \cup V)$ Mayer Vietoris. (e) (\mathbb{P}^1 -stabilization)

$$C_*(\mathbb{P}^1_{\mathbf{C}}) \simeq C_*(\mathrm{pt}) \oplus \widetilde{C}_*(\mathbb{P}^1_{\mathbf{C}})$$

 $\simeq \mathbb{Z}[0] \oplus \mathbb{Z}(1)[2].$

 $\mathbb{Z}(1)$ is \oplus -invertible.

Smooth varieties play a special role:

- Poincaré duality
- Gysin sequences
- $C_*(-)$ also satisfies "h-descent", so $C_*(-)$ is "determined" by $C_*(-)_{\lfloor (2) \rfloor}$.

There is an associated sheaf theory:

$$D_B(-): \mathsf{Var}_{\mathbf{C}} \longrightarrow \mathsf{TriCat}^{\otimes}, \quad X \longmapsto D_B(X) = D(\mathsf{Sh}(X^{\mathsf{an}}, \mathbb{Z})).$$

Sketch of $DA^{\acute{e}t}$: Let *S* be a base scheme.

• Start with

$$\begin{cases} D(\mathsf{PSh}(\mathsf{Sm}_S,\mathbb{Z})) = D_{\mathsf{PSh}}(S) \\ \mathbb{Z}[-] : \mathsf{Sm}_S \to D_{\mathsf{PSh}}(S) \end{cases}.$$

• Impose \mathbb{A}^1 -invariance, étale descent, and \mathbb{P}^1 -stability. This will give us $\mathsf{DA}^{\mathrm{\acute{e}t}}(S,\mathbb{Z})$ and $M_S(-): \mathsf{Sm}_S \to \mathsf{DA}^{\mathrm{\acute{e}t}}(S, \mathbb{Z}).$

The surprise is that the result satisfies many other properties of singular (co)homology and derived categories of sheaves on complex varieties which can largely be packaged into the six-functor formalism. The result is closely related to algebraic cycles/higher Chow groups and algebraic K-theory.