

Schletter, Inc.		35° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, $P_g =$
(ASCE 7-05, Eq. 7-2)	14.43 psf	Sloped Roof Snow Load, $P_s =$
	1.00	I _s =
	0.64	$C_s =$
	0.90	$C_e =$

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.200 (Property)	
Cf+ BOTTOM	=	1.200 2.000 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.700	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.100 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.200	approd array normano carracor

2.4 Seismic Loads

$S_S =$	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6W + 0.5S 0.9D + 1.6W M 1.54D + 1.3E + 0.2S R $0.56D + 1.3E^{R}$ 1.54D + 1.25E + 0.2S $^{\circ}$

1.2D + 1.6S + 0.8W

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 1.0W1.0D + 0.75L + 0.75W + 0.75S $0.6D + 1.0W^{M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S $^{\circ}$ 0.362D + 0.875E O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>114.10</u>	<u>6539.97</u>	k
Compressive Load =	2304.82	<u>4616.97</u>	k
Lateral Load =	<u>255.35</u>	<u>4534.70</u>	k
Moment (Weak Axis) =	0.46	0.12	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 167396.9 in-lbs Resisting Force Required = 2536.32 lbs A minimum 132in long x 33in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4227.19 lbs to resist overturning. Minimum Width = 33 in in Weight Provided = 6579.38 lbs Sliding Force = 1090.27 lbs Use a 132in long x 33in wide x 18in tall Friction = 0.4 Weight Required = 2725.67 lbs ballast foundation to resist sliding. Resisting Weight = 6579.38 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 1090.27 lbs Cohesion = 130 psf Use a 132in long x 33in wide x 18in tall 30.25 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3289.69 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required.

2500 psi

8 in

 $f'_c =$ Length =

 Bearing Pressure

 Ballast Width

 33 in
 34 in
 35 in
 36 in

 P_{ftg} = (145 pcf)(11 ft)(1.5 ft)(2.75 ft) =
 6579 lbs
 6779 lbs
 6978 lbs
 7178 lbs

ASD LC		1.0D ·	+ 1.0S		1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W					
Width	33 in	34 in	35 in	36 in	33 in	34 in	35 in	36 in	33 in	34 in	35 in	36 in	33 in	34 in	35 in	36 in
FA	654 lbs	654 lbs	654 lbs	654 lbs	998 lbs	998 lbs	998 lbs	998 lbs	1155 lbs	1155 lbs	1155 lbs	1155 lbs	60 lbs	60 lbs	60 lbs	60 lbs
FB	566 lbs	566 lbs	566 lbs	566 lbs	2124 lbs	2124 lbs	2124 lbs	2124 lbs	1944 lbs	1944 lbs	1944 lbs	1944 lbs	-3142 lbs	-3142 lbs	-3142 lbs	-3142 lbs
F _V	82 lbs	82 lbs	82 lbs	82 lbs	1961 lbs	1961 lbs	1961 lbs	1961 lbs	1523 lbs	1523 lbs	1523 lbs	1523 lbs	-2181 lbs	-2181 lbs	-2181 lbs	-2181 lbs
P _{total}	7799 lbs	7999 lbs	8198 lbs	8398 lbs	9701 lbs	9900 lbs	10100 lbs	10299 lbs	9679 lbs	9878 lbs	10078 lbs	10277 lbs	866 lbs	986 lbs	1105 lbs	1225 lbs
M	1961 lbs-ft	1961 lbs-ft	1961 lbs-ft	1961 lbs-ft	2782 lbs-ft	2782 lbs-ft	2782 lbs-ft	2782 lbs-ft	3310 lbs-ft	3310 lbs-ft	3310 lbs-ft	3310 lbs-ft	4409 lbs-ft	4409 lbs-ft	4409 lbs-ft	4409 lbs-ft
е	0.25 ft	0.25 ft	0.24 ft	0.23 ft	0.29 ft	0.28 ft	0.28 ft	0.27 ft	0.34 ft	0.34 ft	0.33 ft	0.32 ft	5.09 ft	4.47 ft	3.99 ft	3.60 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	222.5 psf	222.3 psf	222.2 psf	222.1 psf	270.5 psf	269.0 psf	267.5 psf	266.1 psf	260.3 psf	259.0 psf	257.8 psf	256.7 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	293.2 psf	291.0 psf	288.9 psf	286.9 psf	370.9 psf	366.4 psf	362.1 psf	358.1 psf	379.7 psf	374.9 psf	370.4 psf	366.1 psf	513.5 psf	225.9 psf	167.2 psf	143.2 psf

Maximum Bearing Pressure = 513 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 33in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_0 = 1066.7 \text{ ft-lbs}$

Resisting Force Required = 775.79 lbs S.F. = 1.67

Weight Required = 1292.99 lbs Minimum Width = 33 in in Weight Provided = 6579.38 lbs A minimum 132in long x 33in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E			
Width		33 in			33 in		33 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	241 lbs	387 lbs	112 lbs	470 lbs	1049 lbs	372 lbs	116 lbs	113 lbs	-13 lbs	
F _V	140 lbs	137 lbs	142 lbs	103 lbs	102 lbs	108 lbs	140 lbs	137 lbs	141 lbs	
P _{total}	8386 lbs	8533 lbs	8257 lbs	8224 lbs	8803 lbs	8126 lbs	2498 lbs	2495 lbs	2369 lbs	
М	508 lbs-ft	499 lbs-ft	512 lbs-ft	378 lbs-ft	376 lbs-ft	392 lbs-ft	507 lbs-ft	499 lbs-ft	509 lbs-ft	
е	0.06 ft	0.06 ft	0.06 ft	0.05 ft	0.04 ft	0.05 ft	0.20 ft	0.20 ft	0.22 ft	
L/6	0.46 ft	0.46 ft	0.46 ft	0.46 ft	0.46 ft	0.46 ft	0.46 ft	0.46 ft	0.46 ft	
f _{min}	240.6 psf	246.0 psf	236.0 psf	244.6 psf	263.9 psf	240.3 psf	46.0 psf	46.5 psf	41.6 psf	
f _{max}	313.8 psf	318.1 psf	309.9 psf	299.1 psf	318.1 psf	296.9 psf	119.1 psf	118.5 psf	115.1 psf	

Maximum Bearing Pressure = 318 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 33in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 33in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut	
Maximum Axial Load =	1.773 k
M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k
Utilization =	<u>24%</u>
Diagonal Strut	

Maximum Axial Load = 4.325 k
M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity = 7.421 k
Utilization = 58%

 Diagonal Strut

 Maximum Axial Load =
 2.840 k

 M12 Bolt Shear Capacity =
 12.808 k

 Strut Bearing Capacity =
 7.421 k

 Utilization =
 38%

Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, $h_{sx} =$ 53.78 in

Allowable Story Drift for All Other
Structures, $\Delta = \{$ 0.020 h_{sx} 1.076 in

Max Drift, $\Delta_{MAX} =$ 0.35 in

0.35 \leq 1.076, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 72 \text{ in}$$

$$J = 0.432$$

$$199.186$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 72 \\ \mathsf{J} &= 0.432 \\ 126.67 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi \mathsf{b}[\mathsf{Bc-1.6Dc}^* \sqrt{((\mathsf{LbSc})/(\mathsf{Cb}^* \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_I} &= 29.7 \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 28.8 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

$$Rb/t =$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr^*h/t]$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = \frac{36.9}{m} = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$k = 897074 \text{ mm}^4$$

$$2.155 \text{ in}^4$$

$$y = 41.015 \text{ mm}$$

$$Sx = 1.335 \text{ in}^3$$

$$M_{max} St = 2.788 \text{ k-ft}$$

43.2 ksi

 $\phi F_L =$

$$\begin{array}{lll} \phi F_L W k = & 23.1 \text{ ksi} \\ ly = & 446476 \text{ mm}^4 \\ & 1.073 \text{ in}^4 \\ x = & 45.5 \text{ mm} \\ Sy = & 0.599 \text{ in}^3 \\ M_{max} W k = & 1.152 \text{ k-ft} \end{array}$$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE)})/(1.6b/t)$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.88 \text{ in}^2$
 $\phi F_L = 41.32 \text{ kips}$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 =$ 29.2

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used

Rb/t = 18.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

3.4.16.1 N/A for Weak Direction

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18
$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 29.4 \text{ ksi} \\ \text{lx} = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ \text{y} = & 43.717 \text{ mm} \\ \text{Sx} = & 1.375 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 3.363 \text{ k-ft} \end{array}$$

43.2 ksi

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

b/t =

 $\phi F_L =$

3.4.9

 $\begin{array}{lll} S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 31.6 \text{ ksi} \\ \\ b/t = & 7.4 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

Rev. 11.05.2015

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 24.8 \\ \mathsf{J} &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= \varphi \mathsf{b}[\mathsf{Bc-1.6Dc^*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2})}] \end{split}$$

3.4.16

$$\begin{aligned} \text{b/t} &= 24.5 \\ S1 &= \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp} \\ \text{S1} &= 12.2 \\ S2 &= \frac{k_1 Bp}{1.6Dp} \\ \text{S2} &= 46.7 \\ \phi \text{F}_{\text{L}} &= \phi \text{b} [\text{Bp-1.6Dp*b/t}] \\ \phi \text{F}_{\text{L}} &= 28.2 \text{ ksi} \end{aligned}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

0.672 in⁴

0.621 in³

27.5 mm

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$CC = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

Sy =

 $M_{max}Wk = 1.460 \text{ k-ft}$

0.621 in³

24.5

y =

 $M_{max}St = 1.460 \text{ k-ft}$

Sx=

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.87952$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

 $\phi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\phi F_L =$

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

28.2 ksi

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_{b} = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$
$\varphi F_L = 29.6 \text{ ksi}$	$\phi F_L = 29.6$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt} \right)^2 \\ \text{S1} &= & 1.1 \\ S2 &= & C_t \\ \text{S2} &= & 141.0 \\ \text{ϕF}_L &= & 1.17 \text{ϕyFcy} \\ \text{ϕF}_L &= & 38.9 \text{ ksi} \end{aligned}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

$$\begin{array}{lll} \lambda = & 2.00335 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.86047 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 7.50396 \text{ ksi} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis: 3.4.14

$L_b =$ 78.03 in

$$J = 0.942$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

$$L_b = 78.03$$

 $J = 0.942$

$$\left(Bc - \frac{\theta_y}{2}Fcy\right)$$

$$S1 = \left(\frac{BC - \frac{1}{\theta_b}FCY}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{b_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$1.6Dp$$
 S2 = 46.7

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used 0.0 Rb/t =

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.80509 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.83271 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 8.94465 \text{ ksi} \end{array}$$

$$\begin{array}{lll} \textbf{9} \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \boldsymbol{\phi} \boldsymbol{F}_{L} = & \boldsymbol{\phi} \boldsymbol{c} [Bp-1.6Dp^*b/t] \\ \boldsymbol{\phi} \boldsymbol{F}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \boldsymbol{\phi} \boldsymbol{F}_{L} = & \boldsymbol{\phi} \boldsymbol{c} [Bp-1.6Dp^*b/t] \\ \boldsymbol{\phi} \boldsymbol{F}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015 Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-32.97	-32.97	0	0
2	M14	Υ	-32.97	-32.97	0	0
3	M15	Υ	-32.97	-32.97	0	0
4	M16	Υ	-32 97	-32 97	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-88.797	-88.797	0	0
2	M14	٧	-88.797	-88.797	0	0
3	M15	V	-147.995	-147.995	0	0
4	M16	٧	-147.995	-147.995	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	199.793	199.793	0	0
2	M14	V	155.395	155.395	0	0
3	M15	V	88.797	88.797	0	0
4	M16	V	88.797	88.797	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Z	6.693	6.693	0	0
2	M14	Ζ	6.693	6.693	0	0
3	M15	Ζ	6.693	6.693	0	0
4	M16	Ζ	6.693	6.693	0	0
5	M13	Ζ	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	1027.105	2	1199.699	2	.223	1	0	1	0	1	0	1
2		min	-1189.667	3	-1656.518	3	-14.973	5	091	4	0	1	0	1
3	N7	max	.033	3	646.535	1	358	10	0	10	0	1	0	1
4		min	189	2	-87.771	5	-196.421	4	357	4	0	1	0	1
5	N15	max	.151	3	1772.935	2	0	11	0	11	0	1	0	1
6		min	-1.698	2	60.214	15	-188.649	4	346	4	0	1	0	1
7	N16	max	3163.289	2	3551.519	2	0	3	0	3	0	1	0	1
8		min	-3488.233	3	-5030.747	3	-15.251	5	092	4	0	1	0	1
9	N23	max	.033	3	646.535	1	3.945	1	.007	1	0	1	0	1
10		min	189	2	60.391	12	-192.535	5	352	4	0	1	0	1
11	N24	max	1027.105	2	1199.699	2	02	10	0	10	0	1	0	1
12		min	-1189.667	3	-1656.518	3	-15.409	5	092	4	0	1	0	1
13	Totals:	max	5215.423	2	8956.621	2	0	11						
14		min	-5867.351	3	-8010.909	3	-621.364	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	43.993	4	361.83	2	-9.306	12	0	15	.11	4	0	4
2			min	2.489	10	-718.117	3	-102.969	1	011	2	.006	10	0	3
3		2	max	37.15	4	251.643	2	-7.94	12	0	15	.072	4	.409	3
4			min	2.489	10	-507.931	3	-78.268	1	011	2	002	10	204	2
5		3	max	34.14	1	141.456	2	-5.842	10	0	15	.045	5	.677	3
6			min	2.489	10	-297.745	3	-53.568	1	011	2	024	1	336	2
7		4	max	34.14	1	31.268	2	-2.067	10	0	15	.025	5	.806	3
8			min	2.489	10	-87.558	3	-35.961	4	011	2	051	1	393	2
9		5	max	34.14	1	122.628	3	1.707	10	0	15	.007	5	.794	3
10			min	2.489	10	-78.919	2	-27.627	4	011	2	062	1	377	2
11		6	max	34.14	1	332.814	3	20.534	1	0	15	005	12	.642	3
12			min	.246	15	-189.107	2	-23.742	5	011	2	057	1	288	2
13		7	max	34.14	1	543	3	45.235	1	0	15	002	10	.35	3
14			min	-6.36	5	-299.294	2	-21.628	5	011	2	035	1	125	2
15		8	max	34.14	1	753.186	3	69.935	1	0	15	.008	2	.111	2
16			min	-13.203	5	-409.481	2	-19.515	5	011	2	038	4	082	3
17		9	max	34.14	1	963.372	3	94.636	1	0	15	.059	1	.421	2
18			min	-20.047	5	-519.669	2	-17.401	5	011	2	05	5	654	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]							LC		LC
19		10	max	42.227	4	629.856	2	-2.988	12	.005	3	.13	1	.804	2
20			min	2.489	10	-1173.558	3	-119.336	1	011	2	008	3	-1.366	3
21		11	max	35.383	4	519.669	2	-1.622	12	.011	2	.073	4	.421	2
22			min	2.489	10	-963.372	3	-94.636	1	0	15	01	3	654	3
23		12	max	34.14	1	409.481	2	043	3	.011	2	.038	4	.111	2
24			min	2.489	10	-753.186	3	-69.935	1	0	15	01	3	082	3
25		13	max	34.14	1	299.294	2	2.007	3	.011	2	.018	5	.35	3
26			min	2.489	10	-543	3	-45.235	1	0	15	035	1	125	2
27		14	max	34.14	11	189.107	2	4.056	3	.011	2	0	15	.642	3
28			min	2.489	10	-332.814	3	-31.707	4	0	15	057	1	288	2
29		15	max	34.14	1	78.919	2	6.105	3	.011	2	003	12	.794	3
30			min	-1.144	5	-122.628	3	-24.777	5	0	15	062	1	377	2
31		16	max	34.14	1	87.558	3	28.867	1	.011	2	0	3	.806	3
32			min	-7.988	5	-31.268	2	-22.664	5	0	15	051	1	393	2
33		17	max	34.14	1	297.745	3	53.568	1	.011	2	.006	3	.677	3
34			min	-14.831	5	-141.456	2	-20.55	5	0	15	054	4	336	2
35		18	max	34.14	1	507.931	3	78.268	1	.011	2	.02	1	.409	3
36			min	-21.675	5	-251.643	2	-18.436	5	0	15	061	5	204	2
37		19	max	34.14	1	718.117	3	102.969	1	.011	2	.081	1	0	2
38			min	-28.518	5	-361.83	2	-16.323	5	0	15	073	5	0	3
39	M14	1	max	25.571	4	440.64	2	-9.689	12	.012	3	.167	4	0	2
40			min	2.052	10	-608.184	3	-107.682	1	012	2	.008	10	0	3
41		2	max	22.158	1	330.452	2	-8.322	12	.012	3	.116	4	.351	3
42			min	2.052	10	-445.356	3	-82.982	1	012	2	0	10	257	2
43		3	max	22.158	1	220.265	2	-6.402	10	.012	3	.072	5	.594	3
44			min	2.052	10	-282.528	3	-63.534	4	012	2	011	1	441	2
45		4	max	22.158	1	110.078	2	-2.627	10	.012	3	.041	5	.728	3
46			min	773	5	-119.699	3	-55.2	4	012	2	042	1	551	2
47		5	max	22.158	1	43.129	3	1.147	10	.012	3	.011	5	.753	3
48			min	-7.616	5	-3.299	1	-46.866	4	012	2	056	1	587	2
49		6	max	22.158	1	205.957	3	15.821	1	.012	3	004	12	.67	3
50			min	-14.46	5	-110.297	2	-41.615	5	012	2	054	1	551	2
51		7	max	22.158	1	368.785	3	40.521	1	.012	3	003	10	.479	3
52			min	-21.303	5	-220.485	2	-39.501	5	012	2	054	4	44	2
53		8	max	22.158	1	531.614	3	65.222	1	.012	3	.006	2	.179	3
54		0	min	-28.147	5	-330.672	2	-37.388	5	012	2	071	4	257	2
55		9	max	22.158	1	694.442	3	89.922	1	.012	3	.052	1	.018	1
56		9	min	-34.99	5	-440.859	2	-35.274	5	012	2	094	5	23	3
57		10	max	51.573	4	551.047	2	-2.606	12	.012	2	.166	4	.331	2
58		10	min	2.052	10	-857.27	3	-114.623	1	012	3	008	3	747	3
59		11	may	44.729	4	440.859			12	.012	2	.115	4	.018	1
60		11	min	2.052	10	-694.442	3	-89.922	1	012	3	01	3	23	3
61		12		37.886	4	330.672	2	.542	3	.012	2	.069	5	.179	3
62		12	min	2.052	10			-65.222	1		3	01	3		2
		12				-531.614	3	2.591		012		.038		<u>257</u>	
63		13	max	31.042 2.052	4	220.485 -368.785	2	-56.002	3	.012	2		5	.479	2
64		4.4	min		10		3		4	012	3	035	_	44	
65		14	max	24.199	4	110.297	2	4.64	3	.012	2	.008	5	.67	3
66		4.5	min	2.052	10	-205.957	3	-47.668	4	012	3	054	1	<u>551</u>	2
67		15	max	22.158	1	3.299	1_	8.88	1	.012	2	002	12	.753	3
68		40	min	2.052	10	-43.129	3	-41.819	5	012	3	056	1	<u>587</u>	2
69		16	max	22.158	1	119.699	3	33.58	1	.012	2	.002	3	.728	3
70			min	2.052	10	-110.078	2	-39.705	5	012	3	058	4	<u>551</u>	2
71		17	max	22.158	1	282.528	3_	58.281	1	.012	2	.009	3	.594	3
72			min	-2.303	5	-220.265	2	-37.592	5	012	3	076	4	441	2
73		18	max	22.158	1	445.356	3	82.982	1	.012	2	.036	1	.351	3
74			min	-9.147	5	-330.452	2	-35.478	5	012	3	098	5	257	2
75		<u> 19</u>	max	22.158	1	608.184	3	107.682	1	.012	2	.099	1	0	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Transfer	70	Member	Sec		Axial[lb]		y Shear[lb]								z-z Mome	
Tell		NAC.	1			_									_	
Page		IVITO	1													
80			-													
81						_										
Record Process Record Record			-			_										
84			3									_				
B84			4			_										
B6			4													
86			-					_								_
88			5													
88														_		
89			6													
90			_													
92			/			_										
92						_										
94			8									_				
Max -1.582 10 906.082 2 -2.908 12 .011 3 -1.28 5 .001 15						_										
95			9													
96																_
98			10													
98						_										
99			11													
100																
101			12	max		10				3	.01				.222	
102				min		_										
103			13	max		10				3	.01	3		5		
104				min		4					013					
105	103		14	max		10	212.755	2		3	.01	3	.012	5	.465	3
106				min	-33.24	4	-90.096	3	-62.649	4	013	2	054	1	735	2
107			15			10		2				3		12		
108				min		4				5	013			1		
109			16	max		10					.01			3		
110				min		4	-133.909	2		5	013		074	4	788	
111			17	max	-1.582	10		3	58.367	1	.01		.008	3	.369	
112				min		4				5	013	2		4		
113 19 max -1.582 10 368.856 3 107.768 1 .01 3 .1 1 0 2 114 min -67.458 4 -653.905 2 -48.286 5 013 2 167 5 0 5 115 M16 1 max 54.076 5 579.76 2 -8.33 12 .004 2 .16 4 0 2 116 min -37.521 1 -298.467 3 -103.514 1 01 3 .007 10 0 3 117 2 max 47.233 5 406.428 2 -6.964 12 .004 2 .111 4 .168 3 118 min -37.521 1 -206.676 3 -78.813 1 01 3 .00 10 -329 2 119 3 .00 10 <td< td=""><td></td><td></td><td>18</td><td>max</td><td>-1.582</td><td>10</td><td>277.066</td><td>3</td><td>83.068</td><td>1</td><td>.01</td><td>3</td><td>.036</td><td>1</td><td>.215</td><td></td></td<>			18	max	-1.582	10	277.066	3	83.068	1	.01	3	.036	1	.215	
114 min -67.458 4 -653.905 2 -48.286 5 013 2 167 5 0 5 115 M16 1 max 54.076 5 579.76 2 -8.33 12 .004 2 .16 4 0 2 116 min -37.521 1 -298.467 3 -103.514 1 01 3 .007 10 0 3 117 2 max 47.233 5 406.428 2 -6.964 12 .004 2 .111 4 .168 3 118 min -37.521 1 -206.676 3 -78.813 1 01 3 0 10 -32.92 2 119 3 max 40.389 5 233.096 2 -5.598 12 .004 2 .073 5 .276 2 120 min -37.521				min		4				_	013			5	378	
115 M16 1 max 54.076 5 579.76 2 -8.33 12 .004 2 .16 4 0 2 116 min -37.521 1 -298.467 3 -103.514 1 01 3 .007 10 0 3 117 2 max 47.233 5 406.428 2 -6.964 12 .004 2 .111 4 .168 3 118 min -37.521 1 -206.676 3 -78.813 1 01 3 0 10 -329 2 119 3 max 40.389 5 233.096 2 -5.598 12 .004 2 .073 5 .276 3 120 min -37.521 1 -114.886 3 -60.075 4 01 3 023 1 542 2 121 4 max			19	max		10		3		1				1	0	
116 min -37.521 1 -298.467 3 -103.514 1 01 3 .007 10 0 3 117 2 max 47.233 5 406.428 2 -6.964 12 .004 2 .111 4 .168 3 118 min -37.521 1 -206.676 3 -78.813 1 01 3 0 10 -329 2 119 3 max 40.389 5 233.096 2 -5.598 12 .004 2 .073 5 .276 3 120 min -37.521 1 -114.886 3 -60.075 4 01 3 023 1 542 2 121 4 max 33.546 5 59.765 2 -2.614 10 .004 2 .043 5 .322 3 122 min -37.521 1 <td>114</td> <td></td> <td></td> <td>min</td> <td>-67.458</td> <td>4</td> <td>-653.905</td> <td>2</td> <td>-48.286</td> <td>5</td> <td>013</td> <td>2</td> <td>167</td> <td>5</td> <td>0</td> <td></td>	114			min	-67.458	4	-653.905	2	-48.286	5	013	2	167	5	0	
117 2 max 47.233 5 406.428 2 -6.964 12 .004 2 .111 4 .168 3 118 min -37.521 1 -206.676 3 -78.813 1 01 3 0 10 329 2 119 3 max 40.389 5 233.096 2 -5.598 12 .004 2 .073 5 .276 3 120 min -37.521 1 -114.886 3 -60.075 4 01 3 023 1 542 2 121 4 max 33.546 5 59.765 2 -2.614 10 .004 2 .043 5 .322 3 122 min -37.521 1 -23.095 3 -51.741 4 01 3 05 1 64 2 123 5 max 26.703 5 68.695 3 1.161 10 .004 2 .015 5	115	M16	1	max					-8.33			2				2
118 min -37.521 1 -206.676 3 -78.813 1 01 3 0 10 329 2 119 3 max 40.389 5 233.096 2 -5.598 12 .004 2 .073 5 .276 3 120 min -37.521 1 -114.886 3 -60.075 4 01 3 023 1 542 2 121 4 max 33.546 5 59.765 2 -2.614 10 .004 2 .043 5 .322 3 122 min -37.521 1 -23.095 3 -51.741 4 01 3 05 1 64 2 123 5 max 26.703 5 68.695 3 1.161 10 .004 2 .015 5 .306 3 124 min -37.521 1	116			min		1			-103.514				.007	10		
119 3 max 40.389 5 233.096 2 -5.598 12 .004 2 .073 5 .276 3 120 min -37.521 1 -114.886 3 -60.075 4 01 3 023 1 542 2 121 4 max 33.546 5 59.765 2 -2.614 10 .004 2 .043 5 .322 3 122 min -37.521 1 -23.095 3 -51.741 4 01 3 05 1 64 2 123 5 max 26.703 5 68.695 3 1.161 10 .004 2 .015 5 .306 3 124 min -37.521 1 -113.567 2 -43.408 4 01 3 062 1 622 2 125 6 max 19.859 5 160.485 3 19.989 1 .004 2 005 12 <td></td> <td></td> <td>2</td> <td>max</td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td>12</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			2	max		5				12						
120 min -37.521 1 -114.886 3 -60.075 4 01 3 023 1 542 2 121 4 max 33.546 5 59.765 2 -2.614 10 .004 2 .043 5 .322 3 122 min -37.521 1 -23.095 3 -51.741 4 01 3 05 1 64 2 123 5 max 26.703 5 68.695 3 1.161 10 .004 2 .015 5 .306 3 124 min -37.521 1 -113.567 2 -43.408 4 01 3 062 1 622 2 125 6 max 19.859 5 160.485 3 19.989 1 .004 2 057 1 488 2 127 7 max 13.016 </td <td></td> <td></td> <td></td> <td>min</td> <td>-37.521</td> <td>1</td> <td></td> <td>3</td> <td>-78.813</td> <td>1</td> <td>01</td> <td>3</td> <td></td> <td>10</td> <td>329</td> <td></td>				min	-37.521	1		3	-78.813	1	01	3		10	329	
121 4 max 33.546 5 59.765 2 -2.614 10 .004 2 .043 5 .322 3 122 min -37.521 1 -23.095 3 -51.741 4 01 3 05 1 64 2 123 5 max 26.703 5 68.695 3 1.161 10 .004 2 .015 5 .306 3 124 min -37.521 1 -113.567 2 -43.408 4 01 3 062 1 622 2 125 6 max 19.859 5 160.485 3 19.989 1 .004 2 005 12 .23 3 126 min -37.521 1 -286.899 2 -39.398 5 01 3 057 1 488 2 127 7 max 13.016 5 252.276 3 44.69 1 .004 2 .003 10	119		3	max	40.389	5	233.096	2	-5.598	12	.004	2	.073	5	.276	3
122 min -37.521 1 -23.095 3 -51.741 4 01 3 05 1 64 2 123 5 max 26.703 5 68.695 3 1.161 10 .004 2 .015 5 .306 3 124 min -37.521 1 -113.567 2 -43.408 4 01 3 062 1 622 2 125 6 max 19.859 5 160.485 3 19.989 1 .004 2 005 12 .23 3 126 min -37.521 1 -286.899 2 -39.398 5 01 3 057 1 488 2 127 7 max 13.016 5 252.276 3 44.69 1 .004 2 003 10 .092 3 128 min -37.521 1<	120			min	-37.521	1	-114.886	3	-60.075	4	01	3		1	542	2
123 5 max 26.703 5 68.695 3 1.161 10 .004 2 .015 5 .306 3 124 min -37.521 1 -113.567 2 -43.408 4 01 3 062 1 622 2 125 6 max 19.859 5 160.485 3 19.989 1 .004 2 005 12 .23 3 126 min -37.521 1 -286.899 2 -39.398 5 01 3 057 1 488 2 127 7 max 13.016 5 252.276 3 44.69 1 .004 2 003 10 .092 3 128 min -37.521 1 -460.231 2 -37.285 5 01 3 047 4 239 2 129 8 max 6.172 5 344.066 3 69.39 1 .004 2 .006 2 .126 2 130 min -37.521 1 -633.563 2 -35.171 5 01 3 -			4	max	33.546	5	59.765	2		10	.004	2		5	.322	
124 min -37.521 1 -113.567 2 -43.408 4 01 3 062 1 622 2 125 6 max 19.859 5 160.485 3 19.989 1 .004 2 005 12 .23 3 126 min -37.521 1 -286.899 2 -39.398 5 01 3 057 1 488 2 127 7 max 13.016 5 252.276 3 44.69 1 .004 2 003 10 .092 3 128 min -37.521 1 -460.231 2 -37.285 5 01 3 047 4 239 2 129 8 max 6.172 5 344.066 3 69.39 1 .004 2 .006 2 .126 2 130 min -37.521				min		1				4	01					
125 6 max 19.859 5 160.485 3 19.989 1 .004 2 005 12 .23 3 126 min -37.521 1 -286.899 2 -39.398 5 01 3 057 1 488 2 127 7 max 13.016 5 252.276 3 44.69 1 .004 2 003 10 .092 3 128 min -37.521 1 -460.231 2 -37.285 5 01 3 047 4 239 2 129 8 max 6.172 5 344.066 3 69.39 1 .004 2 .006 2 .126 2 130 min -37.521 1 -633.563 2 -35.171 5 01 3 062 4 106 3 131 9 max 363 15 435.857 3 94.091 1 .004 2 .057 1 .606 2			5	max	26.703	5	68.695	3		10	.004	2	.015	5	.306	3
126 min -37.521 1 -286.899 2 -39.398 5 01 3 057 1 488 2 127 7 max 13.016 5 252.276 3 44.69 1 .004 2 003 10 .092 3 128 min -37.521 1 -460.231 2 -37.285 5 01 3 047 4 239 2 129 8 max 6.172 5 344.066 3 69.39 1 .004 2 .006 2 .126 2 130 min -37.521 1 -633.563 2 -35.171 5 01 3 062 4 106 3 131 9 max 363 15 435.857 3 94.091 1 .004 2 .057 1 .606 2	124			min	-37.521	1	-113.567	2	-43.408	4	01	3	062	1	622	2
127 7 max 13.016 5 252.276 3 44.69 1 .004 2 003 10 .092 3 128 min -37.521 1 -460.231 2 -37.285 5 01 3 047 4 239 2 129 8 max 6.172 5 344.066 3 69.39 1 .004 2 .006 2 .126 2 130 min -37.521 1 -633.563 2 -35.171 5 01 3 062 4 106 3 131 9 max 363 15 435.857 3 94.091 1 .004 2 .057 1 .606 2	125		6	max	19.859	5	160.485	3	19.989	1	.004	2	005	12	.23	3
128 min -37.521 1 -460.231 2 -37.285 5 01 3 047 4 239 2 129 8 max 6.172 5 344.066 3 69.39 1 .004 2 .006 2 .126 2 130 min -37.521 1 -633.563 2 -35.171 5 01 3 062 4 106 3 131 9 max 363 15 435.857 3 94.091 1 .004 2 .057 1 .606 2				min		1		2	-39.398	5	01	3	057	1	488	2
128 min -37.521 1 -460.231 2 -37.285 5 01 3 047 4 239 2 129 8 max 6.172 5 344.066 3 69.39 1 .004 2 .006 2 .126 2 130 min -37.521 1 -633.563 2 -35.171 5 01 3 062 4 106 3 131 9 max 363 15 435.857 3 94.091 1 .004 2 .057 1 .606 2	127		7	max		5	252.276	3	44.69	1	.004	2	003	10	.092	3
129 8 max 6.172 5 344.066 3 69.39 1 .004 2 .006 2 .126 2 130 min -37.521 1 -633.563 2 -35.171 5 01 3 062 4 106 3 131 9 max 363 15 435.857 3 94.091 1 .004 2 .057 1 .606 2				min		1				5						
130 min -37.521 1 -633.563 2 -35.171 5 01 3 062 4 106 3 131 9 max 363 15 435.857 3 94.091 1 .004 2 .057 1 .606 2			8			5										
131 9 max363 15 435.857 3 94.091 1 .004 2 .057 1 .606 2						1				5						
			9			15								1		
	132			min	-37.521		-806.895	2	-33.058	5	01	3	084	5	366	3

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
133		10	max	-3.297	10	980.227	2	-3.965	12	.01	3	.158	4	1.201	2
134			min	-37.521	1	-527.647	3	-118.791	1	004	2	003	3	688	3
135		11	max	-3.297	10	806.895	2	-2.599	12	.01	3	.107	4	.606	2
136			min	-37.521	1	-435.857	3	-94.091	1	004	2	006	3	366	3
137		12	max	-3.297	10	633.563	2	-1.233	12	.01	3	.062	4	.126	2
138			min	-37.521	1	-344.066	3	-69.39	1	004	2	007	3	106	3
139		13	max	-3.297	10	460.231	2	.445	3	.01	3	.031	5	.092	3
140			min	-37.521	1	-252.276	3	-55.739	4	004	2	035	1	239	2
141		14	max	-3.297	10	286.899	2	2.494	3	.01	3	.002	5	.23	3
142			min	-37.521	1	-160.485	3	-47.405	4	004	2	057	1	488	2
143		15	max	-3.297	10	113.567	2	4.711	1	.01	3	003	12	.306	3
144			min	-43.948	4	-68.695	3	-40.413	5	004	2	062	1	622	2
145		16	max	-3.297	10	23.095	3	29.412	1	.01	3	0	12	.322	3
146			min	-50.791	4	-59.765	2	-38.3	5	004	2	065	4	64	2
147		17	max	-3.297	10	114.886	3	54.113	1	.01	3	.004	3	.276	3
148			min	-57.634	4	-233.096	2	-36.186	5	004	2	082	4	542	2
149		18	max	-3.297	10	206.676	3	78.813	1	.01	3	.022	1	.168	3
150			min	-64.478	4	-406.428	2	-34.072	5	004	2	1	5	329	2
151		19	max	-3.297	10	298.467	3	103.514	1	.01	3	.082	1	0	2
152			min	-71.321	4	-579.76	2	-31.959	5	004	2	122	5	0	5
153	M2	1	max	952.075	2	2.046	4	.114	1	0	2	0	3	0	1
154			min	-1419.401	3	.492	15	-11.136	4	0	4	0	2	0	1
155		2	max	952.596	2	1.927	4	.114	1	0	2	0	1	0	15
156			min	-1419.01	3	.464	15	-11.595	4	0	4	004	4	0	4
157		3	max	953.116	2	1.808	4	.114	1	0	2	0	1	0	15
158			min	-1418.62	3	.436	15	-12.053	4	0	4	008	4	001	4
159		4	max	953.637	2	1.689	4	.114	1	0	2	0	1	0	15
160			min	-1418.229	3	.408	15	-12.512	4	0	4	013	4	002	4
161		5	max		2	1.57	4	.114	1	0	2	0	1	0	15
162			min	-1417.839	3	.38	15	-12.97	4	0	4	017	4	003	4
163		6	max	954.679	2	1.451	4	.114	1	0	2	0	1	0	15
164			min	-1417.448	3	.352	15	-13.428	4	0	4	022	4	003	4
165		7	max	955.199	2	1.333	4	.114	1	0	2	0	1	0	15
166			min	-1417.058	3	.324	15	-13.887	4	0	4	027	4	004	4
167		8	max	955.72	2	1.214	4	.114	1	0	2	0	1	0	15
168			min	-1416.667	3	.284	12	-14.345	4	0	4	032	4	004	4
169		9	max	956.241	2	1.095	4	.114	1	0	2	0	1	001	15
170			min	-1416.277	3	.238	12	-14.803	4	0	4	037	4	004	4
171		10	max		2	.976	4	.114	1	0	2	0	1	001	15
172			min	-1415.886	3	.191	12	-15.262	4	0	4	042	4	005	4
173		11		957.282	2	.859	2	.114	1	0	2	0	1	001	15
174			min	-1415.496	3	.145	12	-15.72	4	0	4	048	4	005	4
175		12	max		2	.766	2	.114	1	0	2	0	1	001	15
176		1,2	min		3	.099	12	-16.178	4	0	4	054	4	005	4
177		13	max		2	.674	2	.114	1	0	2	0	1	001	15
178		13	min	-1414.714	3	.052	12	-16.637	4	0	4	059	4	006	4
179		14		958.844	2	.581	2	.114	1	0	2	0	1	001	12
180		17	min	-1414.324	3	009	3	-17.095	4	0	4	065	4	006	4
181		15		959.365	2	.488	2	.114	1	0	2	0	1	001	12
182		13	min	-1413.933	3	078	3	-17.553	4	0	4	072	4	006	4
183		16		959.886	2	.396	2	.114	1	0	2	0	1	001	12
184		10	min	-1413.543	3	148	3	-18.012	4	0	4	078	4	006	4
185		17			2	.303	2	.114	1	0	2	076	1	001	12
186		17	max min		3	217	3	-18.47	4	0	4	084	4	006	4
187		18			2	.211	2	.114	1		2	064	1	006	12
188		10	max min	-1412.762	3		3	-18.928	4	0	4	091	4		4
		10				287				0				006	
189		19	шах	961.448	2	.118	2	.114	_ 1_	0	2	0	_1_	001	12

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
190			min	-1412.371	3	356	3	-19.387	4	0	4	098	4	006	4
191	M3	1	max	895.249	2	7.685	4	4.116	4	0	3	0	1	.006	4
192			min	-978.541	3	1.816	15	.011	10	0	4	018	4	.001	12
193		2	max	895.079	2	6.924	4	4.65	4	0	3	0	1	.004	2
194			min	-978.669	3	1.637	15	.011	10	0	4	016	4	0	3
195		3	max	894.908	2	6.164	4	5.185	4	0	3	0	1	.001	2
196			min	-978.797	3	1.458	15	.011	10	0	4	014	4	001	3
197		4	max	894.738	2	5.403	4	5.72	4	0	3	0	1	0	15
198			min	-978.925	3	1.279	15	.011	10	0	4	012	5	003	3
199		5	max	894.568	2	4.642	4	6.254	4	0	3	0	1	0	15
200			min	-979.052	3	1.101	15	.011	10	0	4	009	5	004	6
201		6	max	894.397	2	3.881	4	6.789	4	0	3	0	1	001	15
202			min	-979.18	3	.922	15	.011	10	0	4	007	5	006	6
203		7	max	894.227	2	3.12	4	7.324	4	0	3	0	1	002	15
204			min	-979.308	3	.743	15	.011	10	0	4	004	5	007	6
205		8	max	894.057	2	2.359	4	7.858	4	0	3	0	1	002	15
206			min	-979.436	3	.564	15	.011	10	0	4	0	5	008	6
207		9	max	893.886	2	1.598	4	8.393	4	0	3	.003	4	002	15
208			min	-979.563	3	.385	15	.011	10	0	4	0	10	009	6
209		10	max	893.716	2	.837	4	8.928	4	0	3	.007	4	002	15
210			min	-979.691	3	.164	12	.011	10	0	4	0	10	01	6
211		11	max	893.546	2	.223	2	9.462	4	0	3	.01	4	002	15
212			min	-979.819	3	214	3	.011	10	0	4	0	10	01	6
213		12	max		2	152	15	9.997	4	0	3	.014	4	002	15
214			min	-979.947	3	686	6	.011	10	0	4	0	10	01	6
215		13	max		2	33	15	10.532	4	0	3	.019	4	002	15
216			min	-980.074	3	-1.447	6	.011	10	0	4	0	10	009	6
217		14	max		2	509	15	11.066	4	0	3	.023	4	002	15
218			min	-980.202	3	-2.208	6	.011	10	0	4	0	10	009	6
219		15	max	892.864	2	688	15	11.601	4	0	3	.028	4	002	15
220			min	-980.33	3	-2.969	6	.011	10	0	4	0	10	007	6
221		16	max		2	867	15	12.136	4	0	3	.033	4	001	15
222			min	-980.458	3	-3.73	6	.011	10	0	4	0	10	006	6
223		17	max	892.524	2	-1.046	15	12.671	4	0	3	.038	4	001	15
224			min	-980.586	3	-4.491	6	.011	10	0	4	0	10	004	6
225		18	max		2	-1.225	15	13.205	4	0	3	.043	4	0	15
226			min	-980.713	3	-5.252	6	.011	10	0	4	0	10	002	6
227		19	max		2	-1.404	15	13.74	4	0	3	.049	4	0	1
228			min	-980.841	3	-6.013	6	.011	10	0	4	0	10	0	1
229	M4	1	max	643.468	1	0	1	361	10	0	1	.047	4	0	1
230				-89.202	5	0	1	-193.939		0	1	0	10		1
231		2		643.639	1	0	1	361	10	0	1	.024	4	0	1
232			min	-89.122	5	0	1	-194.087		0	1	0	10	0	1
233		3	max	643.809	1	0	1	361	10	0	1	.002	4	0	1
234			min	-89.043	5	0	1	-194.234		0	1	0	10	0	1
235		4		643.979	1	0	1	361	10	0	1	0	12	0	1
236			min	-88.963	5	0	1	-194.382	4	0	1	02	4	0	1
237		5	max		1	0	1	361	10	0	1	0	10	0	1
238			min	-88.884	5	0	1	-194.53	4	0	1	043	4	0	1
239		6	max	644.32	1	0	1	361	10	0	1	0	10	0	1
240		Ĭ	min	-88.804	5	0	1	-194.677	4	0	1	065	4	0	1
241		7		644.49	1	0	1	361	10	0	1	0	10	0	1
242			min	-88.725	5	0	1	-194.825		0	1	087	4	0	1
243		8		644.661	1	0	1	361	10	0	1	0	10	0	1
244			min	-88.645	5	0	1	-194.973	4	0	1	11	4	0	1
245		9	max		1	0	1	361	10	0	1	0	10	0	1
246			min	-88.566	5	0	1	-195.12	4	0	1	132	4	0	1
2 70			111111	00.000				100.12	Т			1102			

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
247		10	max		1	0	1	361	10	0	1	0	10	0	1
248			min	-88.486	5	0	1	-195.268	4	0	1	155	4	0	1
249		11	max		1	0	1	361	10	0	1	0	10	0	1
250			min	-88.407	5	0	1	-195.416	4	0	1	177	4	0	1
251		12	max	645.342	1	0	1	361	10	0	1	0	10	0	1
252			min	-88.327	5	0	1	-195.563	4	0	1	199	4	0	1
253		13	max	645.512	1	0	1	361	10	0	1	0	10	0	1
254			min	-88.248	5	0	1	-195.711	4	0	1	222	4	0	1
255		14	max		1	0	1	361	10	0	1	0	10	0	1
256			min	-88.168	5	0	1	-195.858	4	0	1	244	4	0	1
257		15	max		1	0	1	361	10	0	1	0	10	0	1
258		1.0	min	-88.089	5	0	1	-196.006	4	0	1	267	4	0	1
259		16	max		1	0	1	361	10	0	1	0	10	0	1
260		'	min	-88.009	5	0	1	-196.154	4	0	1	289	4	0	1
261		17	max		1	0	1	361	10	0	1	0	10	0	1
262		1 ' '	min	-87.93	5	0	1	-196.301	4	0	1	312	4	0	1
263		18	max		1	0	1	361	10	0	1	0	10	0	1
264		10	min	-87.85	5	0	1	-196.449	4	0	1	335	4	0	1
265		19			1	0	1	361	10	0	1	0	10	0	1
		19	max			0	1				1				1
266	Me	1	min	-87.771	5	2.217	2	-196.597	1	0	1	357	4	0	
267	M6			2811.758 -4325.477	2			0	_	0	_	0	<u>4</u> 1	0	1
268		2	min		3	.257	12	-11.251	4	0	5	0		0	1
269		2		2812.279	2	2.124	2	0	1	0	1	0	1	0	12
270			min	-4325.087	3	.211	12	-11.709	4	0	5	004	4	0	2
271		3	max	2812.8	2	2.031	2	0	1	0	1	0	1	0	12
272			min	-4324.696	3	.164	12	-12.168	4	0	5	008	4	002	2
273		4	max		2	1.939	2	0	1	0	1	0	1	0	12
274		+	min	-4324.306	3	.118	12	-12.626	4	0	5	013	4	002	2
275		5		2813.841	2	1.846	2	0	1	0	1_	0	1	0	12
276			min	-4323.915	3	.055	3	-13.084	4	0	5	017	4	003	2
277		6		2814.362	2	1.754	2	0	1	0	1	0	1	0	12
278		<u> </u>	min	-4323.525	3	014	3	-13.543	4	0	5	022	4	004	2
279		7		2814.882	2	1.661	2	0	1	0	1_	0	1	0	12
280		_	min	-4323.134	3	084	3	-14.001	4	0	5	027	4	004	2
281		8		2815.403	2	1.568	2	0	1	0	1_	0	1	0	3
282			min	-4322.743	3	153	3	-14.459	4	0	5	032	4	005	2
283		9		2815.924	2	1.476	2	0	1	0	1	0	1	0	3
284			min	-4322.353	3	223	3	-14.918	4	0	5	037	4	005	2
285		10		2816.444	2	1.383	2	0	1	0	1	0	1_	0	3
286			min	-4321.962	3	292	3	-15.376	4	0	5	043	4	006	2
287		11	max	2816.965	2	1.291	2	0	1	0	1	0	1	0	3
288			min	-4321.572	3	362	3	-15.834	4	0	5	048	4	006	2
289		12		2817.486	2	1.198	2	0	1	0	1	0	1	0	3
290			min	-4321.181	3	431	3	-16.293	4	0	5	054	4	007	2
291		13	max	2818.006	2	1.105	2	0	1	0	1	0	1	0	3
292			min	-4320.791	3	501	3	-16.751	4	0	5	06	4	007	2
293		14	max	2818.527	2	1.013	2	0	1	0	1	0	1	0	3
294			min		3	57	3	-17.21	4	0	5	066	4	007	2
295		15	max	2819.048	2	.92	2	0	1	0	1	0	1	0	3
296			min	-4320.01	3	64	3	-17.668	4	0	5	072	4	008	2
297		16		2819.569		.827	2	0	1	0	1	0	1	.001	3
298			min		3	709	3	-18.126	4	0	5	079	4	008	2
299		17		2820.089	2	.735	2	0	1	0	1	0	1	.001	3
300			min		3	779	3	-18.585	4	0	5	085	4	008	2
301		18		2820.61	2	.642	2	0	1	0	1	0	1	.002	3
302		'	min		3	848	3	-19.043	4	0	5	092	4	009	2
303		19		2821.131	2	.55	2	0	1	0	1	0	1	.003	3
000		10	IIIIUA	2021.101										.002	

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]	LC		LC	z-z Mome	<u>LC</u>
304			min	-4318.448	3	917	3	-19.501	4	0	5	099	4	009	2
305	M7	1	_	2779.781	2	7.678	6	3.855	4	0	1	0	1	.009	2
306			min	-2837.629	3	1.804	15	0	1	0	4	018	4	002	3
307		2		2779.611	2	6.917	6	4.39	4	0	1	0	1	.006	2
308			min	-2837.756	3	1.625	15	0	1	0	4	016	4	003	3
309		3	max	2779.44	2	6.156	6	4.925	4	0	1_	0	1_	.004	2
310			min	-2837.884	3	1.446	15	0	1	0	4	014	4	005	3
311		4	max	2779.27	2	5.395	6	5.459	4	0	1	0	1	.002	2
312			min	-2838.012	3	1.267	15	0	1	0	4	012	4	006	3
313		5	max	2779.1	2	4.634	6	5.994	4	0	_1_	0	1	0	2
314			min	-2838.14	3	1.088	15	0	1	0	4	01	4	007	3
315		6	max	2778.929	2	3.873	6	6.529	4	0	_1_	0	1	001	15
316			min	-2838.267	3	.91	15	0	1	0	4	007	5	007	3
317		7	max	2778.759	2	3.112	6	7.063	4	0	1	0	1	002	15
318			min	-2838.395	3	.731	15	0	1	0	4	004	5	008	3
319		8	max	2778.589	2	2.372	2	7.598	4	0	1	0	1_	002	15
320			min	-2838.523	3	.456	12	0	1	0	4	001	5	008	4
321		9	max	2778.418	2	1.779	2	8.133	4	0	1	.002	4	002	15
322			min	-2838.651	3	.16	12	0	1	0	4	0	1	009	4
323		10	max	2778.248	2	1.186	2	8.668	4	0	1	.005	4	002	15
324			min	-2838.778	3	251	3	0	1	0	4	0	1	01	4
325		11	max	2778.077	2	.593	2	9.202	4	0	1	.009	4	002	15
326			min	-2838.906	3	695	3	0	1	0	4	0	1	01	4
327		12	max	2777.907	2	0	2	9.737	4	0	1	.013	4	002	15
328			min	-2839.034	3	-1.14	3	0	1	0	4	0	1	01	4
329		13	max	2777.737	2	343	15	10.272	4	0	1	.017	4	002	15
330			min	-2839.162	3	-1.585	3	0	1	0	4	0	1	009	4
331		14	max	2777.566	2	521	15	10.806	4	0	1	.022	4	002	15
332			min	-2839.289	3	-2.215	4	0	1	0	4	0	1	009	4
333		15	max	2777.396	2	7	15	11.341	4	0	1	.026	4	002	15
334			min	-2839.417	3	-2.976	4	0	1	0	4	0	1	007	4
335		16	max	2777.226	2	879	15	11.876	4	0	1	.031	4	001	15
336			min	-2839.545	3	-3.737	4	0	1	0	4	0	1	006	4
337		17	max	2777.055	2	-1.058	15	12.41	4	0	1	.036	4	001	15
338			min	-2839.673	3	-4.497	4	0	1	0	4	0	1	004	4
339		18	max	2776.885	2	-1.237	15	12.945	4	0	1	.041	4	0	15
340			min	-2839.8	3	-5.258	4	0	1	0	4	0	1	002	4
341		19	max	2776.715	2	-1.416	15	13.48	4	0	1	.047	4	0	1
342			min	-2839.928	3	-6.019	4	0	1	0	4	0	1	0	1
343	M8	1		1769.869	2	0	1	0	1	0	1	.045	4	0	1
344			min	=0.000	15	0	1	-187.73	4	0	1	0	1	0	1
345		2		1770.039		0	1	0	1	0	1	.023	4	0	1
346			min	59.34	15	0	1	-187.877	4	0	1	0	1	0	1
347		3		1770.21	2	0	1	0	1	0	1	.001	5	0	1
348			min	59.391	15	0	1	-188.025	4	0	1	0	1	0	1
349		4		1770.38	2	0	1	0	1	0	1	0	1	0	1
350			min	59.443	15	0	1	-188.173	4	0	1	02	4	0	1
351		5		1770.55	2	0	1	0	1	0	1	0	1	0	1
352			min		15	0	1	-188.32	4	0	1	042	4	0	1
353		6		1770.721	2	0	1	0	1	0	1	0	1	0	1
354			min		15	0	1	-188.468		0	1	063	4	0	1
355		7	_	1770.891	2	0	1	0	1	0	1	0	1	0	1
356			min	59.597	15	0	1	-188.616		0	1	085	4	0	1
357		8		1771.061	2	0	1	0	1	0	1	0	1	0	1
358		0	min	59.648	15	0	1	-188.763		0	1	107	4	0	1
359		9		1771.232		0	1	0	1	0	1	107	1	0	1
360		3		59.7		0	1	-188.911		0	1	128	4	0	1
300			min	Jy.1	15	U		-100.911	4	U		120	4	U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
361		10	max	1771.402	2	0	1	0	1	0	_1_	0	1_	0	1
362			min	59.751	15	0	1	-189.058	4	0	1	15	4	0	1
363		11	max	1771.572	2	0	1	0	1	0	_1_	0	1_	0	1
364			min	59.802	15	0	1	-189.206	4	0	1	172	4	0	1
365		12	max	1771.743	2	0	1	0	1	0	1	0	1	0	1
366			min	59.854	15	0	1	-189.354	4	0	1	194	4	0	1
367		13	max	1771.913	2	0	1	0	1	0	1	0	1	0	1
368			min	59.905	15	0	1	-189.501	4	0	1	215	4	0	1
369		14	max	1772.083	2	0	1	0	1	0	1	0	1	0	1
370			min	59.957	15	0	1	-189.649	4	0	1	237	4	0	1
371		15	max	1772.254	2	0	1	0	1	0	1	0	1	0	1
372			min	60.008	15	0	1	-189.797	4	0	1	259	4	0	1
373		16	max	1772.424	2	0	1	0	1	0	1	0	1	0	1
374			min	60.059	15	0	1	-189.944	4	0	1	281	4	0	1
375		17	max	1772.594	2	0	1	0	1	0	1	0	1	0	1
376			min	60.111	15	0	1	-190.092	4	0	1	303	4	0	1
377		18	max	1772.765	2	0	1	0	1	0	1	0	1	0	1
378			min	60.162	15	0	1	-190.239	4	0	1	324	4	0	1
379		19	max	1772.935	2	0	1	0	1	0	1	0	1	0	1
380			min	60.214	15	0	1	-190.387	4	0	1	346	4	0	1
381	M10	1	max	952.075	2	1.996	6	009	10	0	1	0	4	0	1
382			min	-1419.401	3	.458	15	-11.219	4	0	5	0	3	0	1
383		2	max	952.596	2	1.877	6	009	10	0	1	0	10	0	15
384			min	-1419.01	3	.43	15	-11.677	4	0	5	004	4	0	6
385		3	max	953.116	2	1.758	6	009	10	0	1	0	10	0	15
386			min	-1418.62	3	.402	15	-12.136	4	0	5	008	4	001	6
387		4	max	953.637	2	1.639	6	009	10	0	1	0	10	0	15
388			min	-1418.229	3	.374	15	-12.594	4	0	5	013	4	002	6
389		5	max		2	1.52	6	009	10	0	1	0	10	0	15
390			min	-1417.839	3	.346	15	-13.052	4	0	5	017	4	003	6
391		6	max	954.679	2	1.402	6	009	10	0	1	0	10	0	15
392			min	-1417.448	3	.318	15	-13.511	4	0	5	022	4	003	6
393		7	max	955.199	2	1.283	6	009	10	0	1	0	10	0	15
394			min	-1417.058	3	.29	15	-13.969	4	0	5	027	4	004	6
395		8	max	955.72	2	1.164	6	009	10	0	1	0	10	0	15
396		-	min	-1416.667	3	.262	15	-14.427	4	0	5	032	4	004	6
397		9	max	956.241	2	1.045	6	009	10	0	1	0	10	0	15
398		1 3	min	-1416.277	3	.235	15	-14.886	4	0	5	037	4	004	6
399		10	max		2	.952	2	009	10	0	1	0	10	004	15
400		10	min	-1415.886	3	.191	12	-15.344	4	0	5	043	4	005	6
		11								_	<u> </u>	043	_		
401		11	min	957.282	3	.859	12	009 -15.802	10	0		048	10	001 005	1 <u>5</u>
		12				.145 .766					<u>5</u> 1	046	10		
403		12	max		2		2	009	10	0	_		10	001	15
404		10	min		3	.099	12 2	-16.261	4	0	5	054	4	005	6
405		13	max	-1414.714	2	.674		009	10	0	1	0	10	001	15
406		4.4	min		3	.052	12	-16.719	4	0	5	06	4	005	6
407		14	max		2	.581	2	009	10	0	1	0	10	001	15
408		4.5	min	-1414.324	3_	009	3	-17.177	4	0	5	066	4	006	6
409		15		959.365	2	.488	2	009	10	0	1_	0	10	001	15
410		40	min	-1413.933	3	078	3	-17.636	4	0	5	072	4	006	6
411		16		959.886	2	.396	2	009	10	0	1_	0	10	001	15
412			min	-1413.543	3	148	3	-18.094	4	0	5	078	4	006	6
413		17	max		2	.303	2	009	10	0	_1_	0	10	001	15
414			min	-1413.152	3	217	3	-18.552	4	0	5	085	4	006	6
415		18			2	.211	2	009	10	0	1	0	10	001	12
416			min	-1412.762	3	287	3	-19.011	4	0	5	092	4	006	2
417		19	max	961.448	2	.118	2	009	10	0	_1_	0	10	001	12

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
418			min	-1412.371	3	356	3	-19.469	4	0	5	098	4	006	2
419	M11	1	max	895.249	2	7.643	6	4.028	4	0	1	0	10	.006	2
420			min	-978.541	3	1.787	15	123	1	0	4	018	4	.001	12
421		2	max	895.079	2	6.882	6	4.562	4	0	_1_	0	10	.004	2
422			min	-978.669	3	1.608	15	123	1	0	4	016	4	0	3
423		3	max	894.908	2	6.121	6	5.097	4	0	_1_	0	10	.001	2
424			min	-978.797	3	1.429	15	123	1	0	4	014	4	001	3
425		4	max	894.738	2	5.36	6	5.632	4	0	_1_	0	10	0	2
426			min	-978.925	3	1.25	15	123	1	0	4	012	4	003	3
427		5	max	894.568	2	4.599	6	6.166	4	0	_1_	0	10	001	15
428			min	-979.052	3	1.071	15	123	1	0	4	009	4	004	4
429		6	max	894.397	2	3.838	6	6.701	4	0	_1_	0	10	001	15
430			min	-979.18	3	.893	15	123	1	0	4	007	4	006	4
431		7	max	894.227	2	3.077	6	7.236	4	0	_1_	0	10	002	15
432			min	-979.308	3	.714	15	123	1	0	4	004	4	007	4
433		8	max	894.057	2	2.316	6	7.77	4	0	_1_	0	10	002	15
434			min	-979.436	3	.535	15	123	1	0	4	0	4	009	4
435		9	max	893.886	2	1.555	6	8.305	4	0	_1_	.003	5	002	15
436			min	-979.563	3	.356	15	123	1	0	4	0	1	009	4
437		10	max	893.716	2	.816	2	8.84	4	0	1_	.006	5	002	15
438			min	-979.691	3	.164	12	123	1	0	4	0	1	01	4
439		11	max		2	.223	2	9.374	4	0	_1_	.01	5	002	15
440			min	-979.819	3	214	3	123	1	0	4	0	1	01	4
441		12	max		2	181	15	9.909	4	0	_1_	.014	5	002	15
442			min	-979.947	3	729	4	123	1	0	4	0	1	01	4
443		13	max	893.205	2	36	15	10.444	4	0	_1_	.018	5	002	15
444			min	-980.074	3	-1.49	4	123	1	0	4	0	1	009	4
445		14	max	893.035	2	538	15	10.979	4	0	_1_	.023	5	002	15
446			min	-980.202	3	-2.251	4	123	1	0	4	0	1	009	4
447		15	max	892.864	2	717	15	11.513	4	0	1_	.027	4	002	15
448			min	-980.33	3	-3.012	4	123	1	0	4	0	1	008	4
449		16	max		2	896	15	12.048	4	0	_1_	.032	4	001	15
450			min	-980.458	3	-3.773	4	123	1	0	4	0	1	006	4
451		17	max	892.524	2	-1.075	15	12.583	4	0	_1_	.037	4	001	15
452			min	-980.586	3	-4.534	4	123	1	0	4	0	1	004	4
453		18	max	892.353	2	-1.254	15	13.117	4	0	_1_	.043	4	0	15
454			min	-980.713	3	-5.295	4	123	1	0	4	001	1	002	4
455		19	max	892.183	2	-1.433	15	13.652	4	0	_1_	.048	4	0	1
456			min	-980.841	3	-6.056	4	123	1	0	4	001	1	0	1
457	M12	1_	max		1	0	1_	4.012	1	0	_1_	.046	4	0	1
458			min	58.858	12	0	1	-191.078	4	0	1	0	1	0	1
459		2	max		1	0	1	4.012	1	0	_1_	.024	4	0	1
460			min	58.943	12	0	1	-191.226	4	0	1_	0	1	0	1
461		3	max		1_	0	1	4.012	1_	0	_1_	.002	5	0	1
462			min	59.028	12	0	1	-191.373	4	0	1_	0	1	0	1
463		4	max		1	0	1	4.012	1	0	_1_	0	1	0	1
464			min	59.113	12	0	1	-191.521	4	0	_1_	02	4	0	1
465		5	max		1	0	1	4.012	1	0	_1_	0	1	0	1
466			min	59.198	12	0	1	-191.669	4	0	1_	042	4	0	1
467		6	max		1	0	1	4.012	1	0	_1_	.001	1	0	1
468			min	59.283	12	0	1	-191.816	4	0	1	064	4	0	1
469		7	max		1	0	1	4.012	1	0	_1_	.002	1	0	1
470			min	59.369	12	0	1_	-191.964		0	1_	086	4	0	1
471		8	max		1	0	1	4.012	1	0	1	.002	1	0	1
472			min	59.454	12	0	1	-192.112	4	0	1	108	4	0	1
473		9	max		1	0	1	4.012	1	0	1	.003	1	0	1
474			min	59.539	12	0	1	-192.259	4	0	1	13	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	645.001	1	0	1	4.012	1	0	1	.003	1	0	1
476			min	59.624	12	0	1	-192.407	4	0	1	152	4	0	1
477		11	max	645.172	1	0	1	4.012	1	0	1	.004	1	0	1
478			min	59.709	12	0	1	-192.555	4	0	1	174	4	0	1
479		12	max	645.342	1	0	1	4.012	1	0	1	.004	1	0	1
480			min	59.795	12	0	1	-192.702	4	0	1	197	4	0	1
481		13	max	645.512	1	0	1	4.012	1	0	1	.005	1	0	1
482			min	59.88	12	0	1	-192.85	4	0	1	219	4	0	1
483		14	max	645.683	1	0	1	4.012	1	0	1	.005	1	0	1
484			min	59.965	12	0	1	-192.997	4	0	1	241	4	0	1
485		15	max	645.853	1	0	1	4.012	1	0	1	.005	1	0	1
486			min	60.05	12	0	1	-193.145	4	0	1	263	4	0	1
487		16	max	646.023	1	0	1	4.012	1	0	1	.006	1	0	1
488			min	60.135	12	0	1	-193.293	4	0	1	285	4	0	1
489		17	max	646.194	1	0	1	4.012	1	0	1	.006	1	0	1
490			min	60.22	12	0	1	-193.44	4	0	1	307	4	0	1
491		18	max		1	0	1	4.012	1	0	1	.007	1	0	1
492			min	60.306	12	0	1	-193.588	4	0	1	33	4	0	1
493		19	max	646.535	1	0	1	4.012	1	0	1	.007	1	0	1
494			min	60.391	12	0	1	-193.736	4	0	1	352	4	0	1
495	M1	1	max	102.972	1	718.047	3	28.495	5	0	2	.081	1	0	15
496			min	-16.323	5	-361.396	2	-34.116	1	0	3	073	5	011	2
497		2	max	103.794	1	717.167	3	29.736	5	0	2	.063	1	.18	2
498		_	min	-15.94	5	-362.57	2	-34.116	1	0	3	057	5	384	3
499		3	max	614.003	3	496.31	2	20.027	5	0	3	.045	1	.362	2
500			min	-356.11	2	-575.503	3	-34.035	1	0	2	041	5	746	3
501		4	max	614.62	3	495.136	2	21.269	5	0	3	.027	1	.1	2
502			min	-355.288	2	-576.383	3	-34.035	1	0	2	031	5	442	3
503		5	max		3	493.963	2	22.51	5	0	3	.009	1	003	15
504			min	-354.466	2	-577.263	3	-34.035	1	0	2	019	5	161	2
505		6	max		3	492.79	2	23.751	5	0	3	0	10	.167	3
506			min	-353.645	2	-578.143	3	-34.035	1	0	2	009	4	421	2
507		7	max		3	491.616	2	24.993	5	0	3	.006	5	.472	3
508			min	-352.823	2	-579.023	3	-34.035	1	0	2	027	1	681	2
509		8	max	617.085	3	490.443	2	26.234	5	0	3	.02	5	.778	3
510			min	-352.002	2	-579.903	3	-34.035	1	0	2	045	1	94	2
511		9	max		3	52.367	2	43.386	5	0	9	.029	1	.902	3
512			min	-307.523	2	.354	15	-56.209	1	0	3	082	5	-1.072	2
513		10	max		3	51.193	2	44.627	5	0	9	0	10	.885	3
514			min	-306.702	2	002	5	-56.209	1	0	3	059	4	-1.099	2
515		11		633.817		50.02	2	45.869	5	0	9	002	10		3
516			min	-305.88	2	-1.483	4	-56.209	1	0	3	043	4	-1.126	2
517		12		648.838	3	403.775	3	108.047	5	0	2	.045	1	.764	3
518				-261.163	2	-602.393	2	-33.711	1	0	3	164	5	-1.002	2
519		13			3	402.895	3	109.288	5	0	2	.027	1	.551	3
520		10		-260.341	2	-603.567	2	-33.711	1	0	3	107	5	684	2
521		14		650.071	3	402.015	3	110.53	- 5	0	2	.009	1	.338	3
522		17		-259.52	2	-604.74	2	-33.711	1	0	3	049	5	365	2
523		15		650.687	3	401.134	3	111.771	5	0	2	.01	5	.127	3
524		10	min	-258.698	2	-605.913	2	-33.711	1	0	3	009	1	048	1
525		16		651.303	3	400.254	3	113.012	5	0	2	.069	5	.274	2
526		10			2	-607.087	2	-33.711	1	0	3	026	1	085	3
527		17		651.919	3	399.374	3	114.254	5	0	2	.129	5	.595	2
528		17		-257.055	2	-608.26	2	-33.711	1	0	3	044	1	296	3
529		18		31.575	5	581.315	2	-33.711	10	0	5	.155	5	.302	2
530		10	min	-104.333	1	-297.688	3	-3.29 <i>1</i> -72.551	4	0	2	063	1	147	3
531		10	max		5	580.141	2	-3.297	10	0	5	.122	5	.01	3
USI		l 19	шах	31.900	່	JOU. 14 I		-3.291	ΙU	U	J	.122	⊥ິວ	.01	<u> </u>

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
532			min	-103.511	1	-298.569	3	-71.31	4	0	2	082	1	004	2
533	M5	1	max	238.666	1	2347.1	3	59.989	5	0	1	0	1	.021	2
534			min	5.978	12	-1257.798	2	0	1	0	4	145	4	0	15
535		2	max	239.488	1	2346.22	3	61.231	5	0	1	0	1	.685	2
536			min	6.389	12	-1258.971	2	0	1	0	4	113	4	-1.228	3
537		3	max	1829.53	3	1265.874	2	52.353	4	0	4	0	1	1.319	2
538			min	-1070.58	2	-1608.844	3	0	1	0	1	08	4	-2.419	3
539		4	max	1830.147	3	1264.7	2	53.595	4	0	4	0	1	.652	2
540			min	-1069.758	2	-1609.724	3	0	1	0	1	052	4	-1.57	3
541		5	max	1830.763	3	1263.527	2	54.836	4	0	4	0	1	.018	9
542				-1068.936	2	-1610.604	3	0	1	0	1	024	4	72	3
543		6	max	1831.379	3	1262.354	2	56.078	4	0	4	.006	4	.13	3
544				-1068.115	2	-1611.484	3	0	1	0	1	0	1	682	2
545		7	max	1831.995	3	1261.18	2	57.319	4	0	4	.036	4	.981	3
546			min	-1067.293	2	-1612.364	3	0	1	0	1	0	1	-1.348	2
547		8		1832.611	3	1260.007	2	58.56	4	0	4	.066	4	1.832	3
548			min	-1066.472	2	-1613.244	3	0	1	0	1	0	1	-2.013	2
549		9		1840.343	3	179.328	2	147.56	4	0	1	0	1	2.107	3
550				-957.976	2	.349	15	0	1	0	1	13	4	-2.311	2
551		10		1840.959	3	178.155	2	148.802	4	0	1	0	1	2.038	3
552		10		-957.155	2	006	7	0	1	0	1	052	4	-2.405	2
553		11		1841.575	3	176.981	2	150.043	4	0	1	.027	4	1.971	3
554				-956.333	2	-1.468	6	0	1	0	1	0	1	-2.499	2
555		12		1850.266	3	1075.454	3	156.686	4	0	1	0	1	1.724	3
556		12	min	-848.315	2	-1618.085	2	0	1	0	4	235	4	-2.24	2
557		13		1850.882	3	1074.574	3	157.927	4	0	1	0	1	1.157	3
558		13		-847.493	2	-1619.258	2	0	1	0	4	152	4	-1.386	2
559		14		1851.498	3	1073.694	3	159.168	4	0	1	0	1	.59	3
		14				-1620.431	2	0	1		4		4		_
560		15		-846.672	2				•	0		069		<u>531</u>	2
561 562		15		1852.115 -845.85	<u>3</u>	1072.814	2	160.41	4	0	4	.016 0	5	<u>.324</u>	15
		16	min	1852.731		1071.934					1				2
563		16			3	-1622.778	3	161.651	4	0		.101	4	1.18	
564		47		-845.028	2		2	0	1	0	4	0	1	542	3
565		17		1853.347	3_	1071.054	3	162.893	4	0	1	.186	4	2.037	2
566		40	min	-844.207	2	-1623.952	2	0	1	0	4	0	1	-1.107	3
567		18	max	-8.339	12	1963.012	2	0	1	0	4	.238	4	1.044	2
568		40	min	-238.41	1_	-1054.601	3	-9.338	5	0	1	0	1	<u>577</u>	3
569		19	max	-7.929	12	1961.838	2	0	1_	0	4	.234	4	.008	2
570				-237.588	_1_	-1055.481	3	-8.096	5	0	1	0	1	02	3
571	<u>M9</u>	1	max		1_	718.047	3	44.078	4	0	3	006	10	0	15
572						-361.396			10		4	11	4	011	2
573		2		103.794	1_	717.167	3	45.319	4	0	3	004	10	.18	2
574			min		12	-362.57	2	2.489	10	0	4	086	4	384	3
575		3		614.003	3_	496.31	2	35.814	4	0	2	003	10	.362	2
576			min	-356.11	2	-575.503	3	2.48	10	0	3	062	4	746	3
577		4		614.62	3_	495.136	2	37.055	4	0	2	002	10	1	2
578				-355.288	2	-576.383	3	2.48	10	0	3	043	4	442	3
579		5		615.236	3	493.963	2	38.297	4	0	2	0	10	003	15
580			min	-354.466	2	-577.263	3	2.48	10	0	3	023	4	161	2
581		6	max	615.852	3	492.79	2	39.538	4	0	2	.009	1	.167	3
582			min	-353.645	2	-578.143	3	2.48	10	0	3	005	5	421	2
583		7	max	616.468	3	491.616	2	40.78	4	0	2	.027	1	.472	3
584				-352.823	2	-579.023	3	2.48	10	0	3	.002	10	681	2
585		8		617.085	3	490.443	2	42.021	4	0	2	.045	1	.778	3
586				-352.002	2	-579.903	3	2.48	10	0	3	.003	10	94	2
587		9		632.585	3	52.367	2	69.029	4	0	3	002	10	.902	3
588				-307.523	2	.363	15	4.534	10	0	9	096	4	-1.072	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	633.201	3	51.193	2	70.27	4	0	3	0	3	.885	3
590			min	-306.702	2	.01	15	4.534	10	0	9	059	4	-1.099	2
591		11	max	633.817	3	50.02	2	71.512	4	0	3	.03	1	.869	3
592			min	-305.88	2	-1.429	6	4.534	10	0	9	03	5	-1.126	2
593		12	max	648.838	3	403.775	3	123.833	4	0	3	004	10	.764	3
594			min	-261.163	2	-602.393	2	2.95	10	0	2	186	4	-1.002	2
595		13	max	649.454	3	402.895	3	125.075	4	0	3	002	10	.551	3
596			min	-260.341	2	-603.567	2	2.95	10	0	2	12	4	684	2
597		14	max	650.071	3	402.015	3	126.316	4	0	3	0	10	.338	3
598			min	-259.52	2	-604.74	2	2.95	10	0	2	054	4	365	2
599		15	max	650.687	3	401.134	3	127.558	4	0	3	.013	4	.127	3
600			min	-258.698	2	-605.913	2	2.95	10	0	2	0	10	048	1
601		16	max	651.303	3	400.254	3	128.799	4	0	3	.081	4	.274	2
602			min	-257.877	2	-607.087	2	2.95	10	0	2	.002	10	085	3
603		17	max	651.919	3	399.374	3	130.041	4	0	3	.149	4	.595	2
604			min	-257.055	2	-608.26	2	2.95	10	0	2	.004	10	296	3
605		18	max	-8.741	12	581.315	2	37.544	1	0	2	.184	4	.302	2
606			min	-104.333	1	-297.688	3	-55.439	5	0	3	.006	10	147	3
607		19	max	-8.33	12	580.141	2	37.544	1	0	2	.16	4	.01	3
608			min	-103.511	1	-298.569	3	-54.197	5	0	3	.007	10	004	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.119	2	.01	3	1.01e-2	2	NC	1	NC	1
2			min	364	4	037	3	007	2	-3.599e-3	3	NC	1	NC	1
3		2	max	0	1	.091	2	.012	3	1.071e-2	2	NC	4	NC	1
4			min	364	4	.002	15	005	2	-3.312e-3	3	1791.4	3	NC	1
5		3	max	0	1	.109	3	.015	3	1.133e-2	2	NC	4	NC	1
6			min	364	4	.002	15	006	5	-3.025e-3	3	981.151	3	NC	1
7		4	max	0	1	.152	3	.018	3	1.195e-2	2	NC	4	NC	2
8			min	364	4	.001	15	005	5	-2.738e-3	3	759.192	3	7624.355	1
9		5	max	0	1	.167	3	.021	3	1.257e-2	2	NC	4	NC	2
10			min	364	4	.001	15	005	10	-2.45e-3	3	703.878	3	6815.723	1
11		6	max	0	1	.155	3	.024	3	1.319e-2	2	NC	4	NC	2
12			min	364	4	.002	15	007	10	-2.163e-3	3	750.407	3	7551.928	1
13		7	max	0	1	.12	3	.027	3	1.381e-2	2	NC	1	NC	1
14			min	364	4	.002	15	01	2	-1.876e-3	3	917.349	3	8772.133	3
15		8	max	0	1	.14	2	.029	3	1.442e-2	2	NC	1	NC	1
16			min	364	4	.002	15	015	2	-1.588e-3	3	1307.759	3	7936.693	3
17		9	max	0	1	.167	2	.03	3	1.504e-2	2	NC	4	NC	1
18			min	364	4	.003	15	019	2	-1.301e-3	3	2163.851	3	7524.64	3
19		10	max	0	1	.179	2	.03	3	1.566e-2	2	NC	4	NC	1
20			min	364	4	.003	15	021	2	-1.014e-3	3	2421.362	2	7404.859	3
21		11	max	0	10	.167	2	.03	3	1.504e-2	2	NC	4	NC	1
22			min	364	4	.003	15	019	2	-1.301e-3	3	2163.851	3	7524.64	3
23		12	max	0	10	.14	2	.029	3	1.442e-2	2	NC	1	NC	1
24			min	364	4	.002	15	015	2	-1.588e-3	3	1307.759	3	7936.693	3
25		13	max	0	10	.12	3	.027	3	1.381e-2	2	NC	1	NC	1
26			min	364	4	.002	15	01	2	-1.876e-3	3	917.349	3	8772.133	3
27		14	max	0	10	.155	3	.024	3	1.319e-2	2	NC	4	NC	2
28			min	364	4	.001	15	007	10	-2.163e-3	3	750.407	3	7551.928	1
29		15	max	0	10	.167	3	.021	3	1.257e-2	2	NC	4	NC	2
30			min	364	4	0	15	005	10	-2.45e-3	3	703.878	3	6815.723	1
31		16	max	0	10	.152	3	.018	3	1.195e-2	2	NC	4	NC	2
32			min	364	4	0	15	004	10	-2.738e-3	3	759.192	3	7624.355	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r LC (n)	L/v Ratio LC	(n) I /z Ratio	I.C
33		17	max	0	10	.109	3	.015	3 1.133e-2 2	NC 4	NC	1
34			min	364	4	0	15	004		81.151 3	NC	1
35		18	max	0	10	.091	2	.012	3 1.071e-2 2	NC 4	NC	1
36			min	364	4	.001	15	005		1791.4 3	NC	1
37		19	max	0	10	.119	2	.01	3 1.01e-2 2	NC 1	NC	1
38			min	364	4	037	3	007	2 -3.599e-3 3	NC 1	NC	1
39	M14	1	max	0	1	.284	3	.009	3 5.408e-3 2	NC 1	NC	1
40			min	282	4	368	2	006	2 -4.727e-3 3	NC 1	NC	1
41		2	max	0	1	.395	3	.01	3 6.117e-3 2	NC 4	NC	1
42			min	282	4	471	2	008		290.907 3	NC	1
43		3	max	0	1	.495	3	.012	3 6.827e-3 2	NC 5	NC	1
44			min	282	4	565	2	01		882.36 3	NC	1
45		4	max	0	1	.573	3	.015	3 7.536e-3 2	NC 5	NC	2
46			min	282	4	644	2	007		96.737 3	9439.399	1
47		5	max	0	1	.627	3	.018	3 8.246e-3 2	NC 5	NC	2
48			min	282	4	704	2	005		19.338 3	8050.498	1
49		6	max	0	1	.654	3	.021	3 8.955e-3 2	NC 5	NC	2
50			min	282	4	743	2	006		83.726 2	8649.561	1
51		7	max	0	1	.658	3	.023	3 9.665e-3 2	NC 5	NC	1
52			min	282	4	763	2	009		64.285 2	NC	1
53		8	max	0	1	.646	3	.025	3 1.037e-2 2	NC 5	NC	1
54			min	282	4	768	2	014		59.991 2	9038.899	3
55		9	max	0	1	.627	3	.026	3 1.108e-2 2	NC 5	NC	1
56			min	282	4	764	2	018		63.737 2	8502.472	3
57		10	max	0	1	.617	3	.026	3 1.179e-2 2	NC 5	NC	1
58			min	282	4	76	2	02	2 -1.089e-2 3 3	67.339 2	8344.704	3
59		11	max	0	10	.627	3	.026	3 1.108e-2 2	NC 5	NC	1
60			min	282	4	764	2	018		63.737 2	8502.472	3
61		12	max	0	10	.646	3	.025	3 1.037e-2 2	NC 5	NC	1
62			min	282	4	768	2	014		59.991 2	9038.899	3
63		13	max	0	10	.658	3	.023	3 9.665e-3 2	NC 5	NC	1
64			min	282	4	763	2	009		64.285 2	NC	1
65		14	max	0	10	.654	3	.021	3 8.955e-3 2	NC 5	NC	2
66			min	282	4	743	2	006		83.726 2	8649.561	1
67		15	max	0	10	.627	3	.018	3 8.246e-3 2	NC 5	NC	2
68			min	282	4	704	2	005	10 -7.464e-3 3 4	19.338 3	8050.498	1
69		16	max	0	10	.573	3	.016	4 7.536e-3 2	NC 5	NC	2
70			min	282	4	644	2	004		96.737 3	8988.601	4
71		17	max	0	10	.495	3	.016	4 6.827e-3 2	NC 5	NC	1
72			min	282	4	565	2	004		882.36 3	8818.392	4
73		18	max	0	10	.395	3	.011	4 6.117e-3 2	NC 4	NC	1
74			min	282	4	471	2	005		290.907 3	NC	1
75		19	max	0	10	.284	3	.009	3 5.408e-3 2	NC 1	NC	1
76			min	282	4	368	2	006	2 -4.727e-3 3	NC 1	NC	1
77	M15	1	max	0	10	.288	3	.009	3 4.212e-3 3	NC 1	NC	1
78			min	237	4	366	2	006	2 -5.693e-3 2	NC 1	NC	1
79		2	max	0	10	.375	3	.01	3 4.823e-3 3	NC 4	NC	1
80			min	237	4	491	2	012		152.835 2	NC	1
81		3	max	0	10	.456	3	.012	3 5.433e-3 3	NC 5	NC	1
82			min	237	4	603	2	015		08.053 2	8824.126	5
83		4	max	0	10	.523	3	.014	3 6.043e-3 3	NC 5	NC	2
84			min	237	4	693	2	011		41.076 2	9368.285	
85		5	max	0	10	.574	3	.017	3 6.653e-3 3	NC 5	NC	2
86			min	237	4	755	2	004		70.483 2	7975.844	
87		6	max	0	10	.608	3	.02	3 7.264e-3 3	NC 5	NC	2
88			min	237	4	789	2	006		40.964 2	8537.364	
89		7	max	0	10	.626	3	.022	3 7.874e-3 3	NC 5	NC	1
								_				=

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

90							_							(n) L/z Ratio	
			min	237	4	<u>797</u>	2	008	2	-1.023e-2	2	334.579	2	8844.659	4
91	3	3	max	0	10	<u>.631</u>	3	.023	3	8.484e-3	3	NC	5	NC	1
92			min	237	4	786	2	013	2	-1.098e-2	2	342.939	2	7933.442	4
93	S)	max	0	10	.628	3	.024	3	9.095e-3	3	NC 250 024	5	NC	1
94	1	$\overline{}$	min	237	1	768	3	017 .025	3	-1.174e-2	2	358.234 NC	<u>2</u> 5	9174.517 NC	3
95	1	U	max	0 237	4	.625 758	2	025 019	2	9.705e-3 -1.25e-2	2	367.536	2	9017.553	3
97	1	1	min max	<u>231</u> 0	1	.628	3	019 .024	3	9.095e-3	3	NC	5	NC	1
98		_	min	237	4	768	2	017	2	-1.174e-2	2	358.234	2	9174.517	3
99	1	2	max	<u>237</u> 0	1	.631	3	.023	3	8.484e-3	3	NC	5	NC	1
100	1.	_	min	237	4	786	2	014	5	-1.098e-2	2	342.939	2	9720.062	3
101	1:	3	max	0	1	.626	3	.022	3	7.874e-3	3	NC	5	NC	1
102			min	237	4	797	2	009	5	-1.023e-2	2	334.579	2	NC	1
103	1.	4	max	0	1	.608	3	.02	3	7.264e-3	3	NC	5	NC	2
104	•		min	237	4	789	2	006	10	-9.472e-3	2	340.964	2	8537.364	1
105	1:	5	max	0	1	.574	3	.017	3	6.653e-3	3	NC NC	5	NC	2
106			min	237	4	755	2	004	10	-8.717e-3	2	370.483	2	7975.844	1
107	1	6	max	0	1	.523	3	.02	4	6.043e-3	3	NC	5	NC	2
108			min	237	4	693	2	003	10	-7.961e-3	2	441.076	2	7251.274	4
109	1	7	max	0	1	.456	3	.021	4	5.433e-3	3	NC	5	NC	1
110			min	237	4	603	2	003	10	-7.205e-3	2	608.053	2	6868.136	4
111	1	8	max	0	1	.375	3	.014	4	4.823e-3	3	NC	4	NC	1
112			min	237	4	491	2	005	2	-6.449e-3	2	1152.835	2	9681.244	4
113	1	9	max	0	1	.288	3	.009	3	4.212e-3	3	NC	1	NC	1
114			min	237	4	366	2	006	2	-5.693e-3	2	NC	1	NC	1
115 M16	3 1		max	0	10	.106	2	.007	3	7.972e-3	3	NC	1_	NC	1_
116			min	095	4	098	3	005	2	-8.358e-3	2	NC	1	NC	1
117	2	2	max	00	10	.051	2	.009	3	8.556e-3	3	NC	4	NC	1
118			min	095	4	077	3	009	5	-8.603e-3		2643.655	2	NC	1
119	3	3	max	0	10	.017	1	.012	1	9.141e-3	3	NC	4_	NC	1
120			min	095	4	062	3	012	5	-8.849e-3	2	1474.111	2	NC	1
121	4	1	max	0	10	.009	9	.018	1	9.725e-3	3	NC	4	NC	2
122		_	min	095	4	057	3	01	5	-9.094e-3	2	1179.078	2	7480.163	1
123	5)	max	0	10	.009	9	.02	1	1.031e-2	3_	NC 4457.055	4_	NC 2007 040	2
124			min	095	4	063	3	005	5	-9.34e-3	2	1157.955	2	6627.219	1_
125	6)	max	0	10	.015	1	.019	1	1.089e-2	3	NC	4	NC 7000 C04	2
126	7	,	min	095	4	079	3	005	10	-9.585e-3	3	1371.403	2	7228.681	1
127	/		max	0	10	.04	3	.019	3	1.148e-2	2	NC 2093.881	2	NC NC	1
128 129	8	,	min	<u>095</u> 0	10	103 .081	2	006 .021	3	-9.83e-3 1.206e-2	3	NC	1	NC NC	1
130	C		max min	095	4	131	3	011				4407.395		NC NC	1
131	ç		max	095	10	.121	2	.021	3	1.265e-2	3	NC	4	NC	1
132		,	min	095	4	154	3	015	2	-1.032e-2		2566.216	3	NC	1
133	1	<u></u>	max	<u>.095</u>	1	.139	2	.021	3	1.323e-2	3	NC	4	NC	1
134			min	095	4	164	3	017	2	-1.057e-2	2	2166.922	3	NC	1
135	1	1	max	0	1	.121	2	.021	3	1.265e-2	3	NC	4	NC	1
136			min	095	4	154	3	015	2	-1.032e-2	2	2566.216	3	NC	1
137	1:	2	max	0	1	.081	2	.021	3	1.206e-2	3	NC	1	NC	1
138			min	095	4	131	3	011	2	-1.008e-2	2	4407.395	3	NC	1
139	1:	3	max	0	1	.04	1	.019	3	1.148e-2	3	NC	3	NC	1
140			min	095	4	103	3	006	10	-9.83e-3	2	2093.881	2	NC	1
141	1.	4	max	0	1	.015	1	.019	1	1.089e-2	3	NC	4	NC	2
142			min	095	4	079	3	005		-9.585e-3	2	1371.403	2	7228.681	1
143	1:	5	max	0	1	.009	9	.02	1	1.031e-2	3	NC	4	NC	2
144			min	095	4	063	3	003	10	-9.34e-3	2	1157.955	2	6627.219	1
145	1	6	max	0	1	.009	9	.02	4	9.725e-3	3	NC	4	NC	2
146			min	095	4	057	3	003	10	-9.094e-3			2	7147.015	

Model Name

: Schletter, Inc. : HCV

....

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					LC
147		17	max	0	1	.017	1	.019	4	9.141e-3	3	NC	4_	NC	1
148			min	095	4	062	3	003	10	-8.849e-3	2	1474.111	2	7379.706	
149		18	max	00	1	.051	2	.013	4	8.556e-3	3_	NC	_4_	NC	1
150			min	095	4	077	3	003	2	-8.603e-3	2	2643.655	2	NC	1
151		19	max	0	1	.106	2	.007	3	7.972e-3	3_	NC	_1_	NC	1
152			min	095	4	098	3	005	2	-8.358e-3	2	NC	1_	NC	1
153	<u>M2</u>	1	max	.007	2	.011	2	.003	1	1.159e-3	5	NC	1_	NC	1
154			min	01	3	016	3	345	4	-6.869e-5	1_	7114.189	2	223.316	4
155		2	max	.007	2	.009	2	.002	1	1.18e-3	_5_	NC	_1_	NC	1
156		_	min	01	3	<u>016</u>	3	317	4	-6.523e-5	_1_	8217.113	2	242.577	4
157		3	max	.006	2	.008	2	.002	1	1.202e-3	5	NC	1_	NC	1
158			min	009	3	015	3	29	4	-6.176e-5	1_	9700.222	2	265.355	4
159		4	max	.006	2	.007	2	.002	1	1.223e-3	5	NC	1_	NC	1
160			min	009	3	01 <u>5</u>	3	263	4	-5.83e-5	1_	NC	1_	292.554	4
161		5	max	.006	2	.005	2	.002	1	1.245e-3	_5_	NC	1_	NC 005 404	1
162			min	008	3	<u>014</u>	3	237	4	-5.483e-5	1_	NC	1_	325.401	4
163		6	max	.005	2	.004	2	.002	1	1.267e-3	5_	NC	1	NC	1
164		-	min	008	3	013	3	211	4	-5.136e-5	<u>1</u>	NC NC	1_	365.585	4
165		7	max	.005	2	.003	2	.001	1	1.288e-3	_5_	NC	_1_	NC 445,400	1
166			min	007	3	013	3	185	4	-4.79e-5	1_	NC NC	1_	415.492	4
167		8	max	.004	2	.002	2	.001	1	1.31e-3	5_	NC	1_	NC	1
168		_	min	006	3	012	3	161	4	-4.443e-5	1_	NC NC	1_	478.581	4
169		9	max	.004	2	0	2	.001	1	1.331e-3	5	NC	1_	NC FCO 004	1
170		40	min	006	3	011	3	138	4	-4.096e-5	_1_	NC NC	1_	560.024	4
171		10	max	.004	2	0	2	0	1	1.353e-3	5	NC NC	1_1	NC CC7 040	1
172		4.4	min	005	3	01	3	115	4	-3.75e-5	1_	NC NC	1_	667.842	4
173		11	max	.003	2	0	2	0	1	1.374e-3	5_4	NC NC	1_1	NC 045,000	1
174		40	min	005	3	009	3	094	4	-3.403e-5	1_	NC NC	1_	815.038	4
175		12	max	.003	2	001	15	0	1	1.396e-3	5_4	NC	<u>1</u> 1	NC 4000 OCE	1
176 177		13	min	004 .002	2	009 001	15	075 0	1	-3.057e-5 1.418e-3	<u>1</u> 5	NC NC	1	1023.865 NC	1
178		13	max	003	3	001	3	058	4	-2.71e-5	1	NC NC	1	1335.071	4
179		14	min	.003	2	<u>008</u> 0	15	056 0	1	1.44e-3	4	NC NC	1	NC	1
180		14	max min	003	3	006	3	042	4	-2.363e-5	4	NC NC	1	1830.169	
181		15		.002	2	000 0	15	<u>042</u> 0	1	1.462e-3	4	NC	1	NC	1
182		15	max min	002	3	005	3	029	4	-2.017e-5	1	NC	1	2692.896	
183		16	max	.002	2	<u>003</u> 0	15	<u>029</u> 0	1	1.485e-3	4	NC	1	NC	1
184		10	min	002	3	004	3	017	4	-1.67e-5	1	NC	1	4415.476	
185		17	max	<u>002</u> 0	2	004	15	017	1	1.508e-3	4	NC	1	NC	1
186		17	min	001	3	003	3	009	4	-1.323e-5	1	NC	1	8736.991	4
187		18	max	0	2	<u>003 </u>	15	<u>009</u> 0	1	1.53e-3		NC	1	NC	1
188		10	min	0	3	001	3	003	4	-9.767e-6	1	NC	1	NC	1
189		19	max	0	1	0	1	0	1	1.553e-3	4	NC	1	NC	1
190		10	min	0	1	0	1	0	1	-6.301e-6	1	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	1.49e-6	1	NC	1	NC	1
192	IVIO	1	min	0	1	0	1	0	1	-3.981e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.007	4	8.2e-6	1	NC	1	NC	1
194			min	0	2	002	6	0	1	-2.474e-5	5	NC	1	NC	1
195		3	max	0	3	0	15	.014	4	3.544e-4	4	NC	1	NC	1
196			min	0	2	004	6	0	1	1.326e-6	10	NC	1	6500.087	4
197		4	max	.001	3	001	15	.02	4	7.306e-4	4	NC	1	NC	1
198			min	001	2	006	6	0	1	1.958e-6	10	NC	1	4546.073	4
199		5	max	.002	3	002	15	.025	4	1.107e-3	4	NC	1	NC	1
200			min	002	2	008	6	0	1	2.589e-6	10	NC	1	3566.986	_
201		6	max	.002	3	002	15	.03	4	1.483e-3	4	NC	1	NC	1
202			min	002	2	01	6	0	1	3.221e-6		9386.777	6	2974.383	
203		7	max	.003	3	002	15	.035	4	1.859e-3	4	NC	1	NC	1
						_						_		_	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
204			min	003	2	011	6	0	3	3.853e-6		8108.719	6	2571.555	
205		8	max	.003	3	003	15	.04	4	2.235e-3	4	NC	2	NC	1
206			min	003	2	012	6	0	3	4.485e-6		7321.847	<u>6</u>	2273.82	4
207		9	max	.004	3	003	15	.044	4	2.612e-3	4	NC COCA DAA	5	NC	1
208		40	min	003	2	013	6	0	12	5.116e-6	10	6861.841	6	2038.683	4
209		10	max	.004	3	003	15	049 0	4	2.988e-3	4	NC	5	NC 1842.627	4
210		11	min	004	3	013	6		12	5.748e-6		6649.487 NC	6	NC	1
212			max	.005 004	2	003 013	15	<u>.054</u> 0	12	3.364e-3 6.38e-6	<u>4</u> 10	6653.759	<u>5</u>	1671.873	
213		12		.005	3	013	15	.059	4	3.74e-3	4	NC	5	NC	1
214		12	max min	005	2	003 013	6	<u>.059</u>	10	7.012e-6	10	6879.91	6	1518.194	
215		13	max	.006	3	003	15	.065	4	4.117e-3	4	NC	2	NC	1
216		13	min	005	2	003 012	6	<u>.005</u>	10	7.644e-6	10	7373.039	6	1376.784	
217		14	max	.006	3	002	15	.072	4	4.493e-3	4	NC	1	NC	1
218		14	min	006	2	011	6	0	10	8.275e-6	10	8240.985	6	1245.036	4
219		15	max	.007	3	002	15	.08	4	4.869e-3	4	NC	1	NC	1
220		10	min	006	2	009	6	0	10	8.907e-6	10	9720.94	6	1121.752	4
221		16	max	.007	3	001	15	.089	4	5.245e-3	4	NC	1	NC	1
222		10	min	006	2	007	3	0	10	9.539e-6	10	NC	1	1006.576	
223		17	max	.008	3	0	15	.1	4	5.621e-3	4	NC	1	NC	1
224			min	007	2	006	3	0	10	1.017e-5	10	NC	1	899.58	4
225		18	max	.008	3	0	15	.112	4	5.998e-3	4	NC	1	NC	1
226			min	007	2	004	3	0	10	1.08e-5	10	NC	1	800.97	4
227		19	max	.008	3	0	2	.126	4	6.374e-3	4	NC	1	NC	1
228			min	008	2	003	3	0	10	1.143e-5	10	NC	1	710.892	4
229	M4	1	max	.002	1	.008	2	0	10	1.179e-3	4	NC	1	NC	2
230			min	0	5	009	3	126	4	4.292e-6	10	NC	1	196.285	4
231		2	max	.001	1	.007	2	0	10	1.179e-3	4	NC	1	NC	1
232			min	0	5	008	3	117	4	4.292e-6	10	NC	1	212.677	4
233		3	max	.001	1	.007	2	0	10	1.179e-3	4	NC	1_	NC	1_
234			min	0	5	008	3	107	4	4.292e-6	10	NC	1_	232.235	4
235		4	max	.001	1	.006	2	0	10	1.179e-3	4	NC	1_	NC	1
236			min	0	5	007	3	097	4	4.292e-6	10	NC	1_	255.771	4
237		5	max	.001	1	.006	2	0	10	1.179e-3	_4_	NC	_1_	NC	1
238		_	min	0	5	007	3	087	4	4.292e-6	10	NC	1_	284.391	4
239		6	max	.001	1	.006	2	0	10	1.179e-3	4_	NC	_1_	NC	1
240			min	0	5	006	3	078	4	4.292e-6	10	NC	1_	319.63	4
241		7	max	.001	1	.005	2	0	10	1.179e-3	4_	NC	1_	NC	1
242			min	0	5	006	3	068	4	4.292e-6	10	NC	1_	363.666	4
243		8	max	0	1	.005	2	0	10	1.179e-3	4	NC NC	1_	NC	1
244			min		5	005	3	059		4.292e-6			1	419.673	
245		9	max	0	1	.004	2	0		1.179e-3	4	NC	1_1	NC	1
246		10	min	0	5	005	2	<u>05</u>	4	4.292e-6	<u>10</u>	NC NC	<u>1</u> 1	492.43	1
247 248		10	max	0	5	.004	3	0		1.179e-3	4		1	NC 589.404	
249		11	min	0	1	004 .003	2	042 0	10	4.292e-6 1.179e-3	<u>10</u> 4	NC NC	1	NC	1
250		11	max min	0	5	004	3	034	4	4.292e-6	10	NC	1	722.803	4
251		12		0	1	.003	2	034 0			4	NC	1	NC	1
252		12	max min	0	5	003	3	027	4	4.292e-6	10	NC	1	913.734	4
253		13	max	0	1	.003	2	<u>027</u> 0	10	1.179e-3	4	NC	1	NC	1
254		13	min	0	5	003	3	021	4	4.292e-6	10	NC	1	1201.344	_
255		14	max	0	1	.002	2	<u>021</u> 0	10	1.179e-3	4	NC	1	NC	1
256		17	min	0	5	002	3	015	4	4.292e-6	10	NC	1	1665.217	4
257		15	max	0	1	.002	2	<u>013</u> 0		1.179e-3	4	NC	1	NC	1
258		10	min	0	5	002	3	01	4	4.292e-6	10	NC	1	2488.632	4
259		16	max	0	1	.002	2	<u>01</u>	10	1.179e-3	4	NC	1	NC	1
260		1.5	min	0	5	001	3	006	4	4.292e-6	10	NC	1	4177.639	_
200			1111111			.001	J	.000		1.2020 0	.0	110			

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

261 17 max 0 1 0 2 0 10 1.179e-3 4 NC 1 262 min 0 5 0 3 003 4 4.292e-6 10 NC 1 263 18 max 0 1 0 2 0 10 1.179e-3 4 NC 1 264 min 0 5 0 3 0 4 4.292e-6 10 NC 1 265 19 max 0 1 0 1 0 1 1.179e-3 4 NC 1 266 min 0 1 0 1 0 1 4.292e-6 10 NC 1 267 M6 1 max .021 2 .033 2 0 1 1.198e-3 4 NC 4 268 min 032 3 048 3 348 <t< th=""><th>NC 1 8605.385 4 NC 1 NC 1 NC 1 NC 1 NC 1 NC 1 221.463 4 NC 1 240.567 4 NC 1 263.158 4 NC 1 290.135 4 NC 1 322.712 4</th></t<>	NC 1 8605.385 4 NC 1 NC 1 NC 1 NC 1 NC 1 NC 1 221.463 4 NC 1 240.567 4 NC 1 263.158 4 NC 1 290.135 4 NC 1 322.712 4
263 18 max 0 1 0 2 0 10 1.179e-3 4 NC 1 264 min 0 5 0 3 0 4 4.292e-6 10 NC 1 265 19 max 0 1 0 1 0 1 1.179e-3 4 NC 1 266 min 0 1 0 1 0 1 4.0292e-6 10 NC 1 267 M6 1 max .021 2 .033 2 0 1 1.198e-3 4 NC 4 268 min 032 3 048 3 348 4 0 1 1613.102 3 269 2 max .02 2 .03 2 0 1 1.219e-3 4 NC 4 270 min 03 3 045 3	NC 1 NC 1 NC 1 NC 1 NC 1 NC 1 221.463 4 NC 1 240.567 4 NC 1 263.158 4 NC 1 290.135 4 NC 1
264 min 0 5 0 3 0 4 4.292e-6 10 NC 1 265 19 max 0 1 0 1 0 1 1.179e-3 4 NC 1 266 min 0 1 0 1 0 1 4.292e-6 10 NC 1 267 M6 1 max .021 2 .033 2 0 1 1.198e-3 4 NC 4 268 min 032 3 048 3 348 4 0 1 1613.102 3 269 2 max .02 2 .03 2 0 1 1.219e-3 4 NC 4 270 min 03 3 045 3 32 4 0 1 1707.533 3 271 3 max .019 2 <t< td=""><td>NC 1 NC 1 NC 1 NC 1 221.463 4 NC 1 240.567 4 NC 1 263.158 4 NC 1 290.135 4 NC 1</td></t<>	NC 1 NC 1 NC 1 NC 1 221.463 4 NC 1 240.567 4 NC 1 263.158 4 NC 1 290.135 4 NC 1
265 19 max 0 1 0 1 0 1 1.179e-3 4 NC 1 266 min 0 1 0 1 4.292e-6 10 NC 1 267 M6 1 max .021 2 .033 2 0 1 1.198e-3 4 NC 4 268 min 032 3 048 3 348 4 0 1 1613.102 3 269 2 max .02 2 .03 2 0 1 1.219e-3 4 NC 4 270 min 03 3 045 3 32 4 0 1 1707.533 3 271 3 max .019 2 .027 2 0 1 1.24e-3 4 NC 4 272 min 028 3 042 3	NC 1 NC 1 NC 1 221.463 4 NC 1 240.567 4 NC 1 263.158 4 NC 1 290.135 4 NC 1
266 min 0 1 0 1 0 1 4.292e-6 10 NC 1 267 M6 1 max .021 2 .033 2 0 1 1.198e-3 4 NC 4 268 min 032 3 048 3 348 4 0 1 1613.102 3 269 2 max .02 2 .03 2 0 1 1.219e-3 4 NC 4 270 min 03 3 045 3 32 4 0 1 1707.533 3 271 3 max .019 2 .027 2 0 1 1.24e-3 4 NC 4 272 min 028 3 042 3 293 4 0 1 1813.852 3 273 4 max .017 2 </td <td>NC 1 NC 1 221.463 4 NC 1 240.567 4 NC 1 263.158 4 NC 1 290.135 4 NC 1</td>	NC 1 NC 1 221.463 4 NC 1 240.567 4 NC 1 263.158 4 NC 1 290.135 4 NC 1
267 M6 1 max .021 2 .033 2 0 1 1.198e-3 4 NC 4 268 min 032 3 048 3 348 4 0 1 1613.102 3 269 2 max .02 2 .03 2 0 1 1.219e-3 4 NC 4 270 min 03 3 045 3 32 4 0 1 1707.533 3 271 3 max .019 2 .027 2 0 1 1.24e-3 4 NC 4 272 min 028 3 042 3 293 4 0 1 1813.852 3 273 4 max .017 2 .025 2 0 1 1.261e-3 4 NC 4 274 min 027 <	NC 1 221.463 4 NC 1 240.567 4 NC 1 263.158 4 NC 1 290.135 4 NC 1
268 min 032 3 048 3 348 4 0 1 1613.102 3 269 2 max .02 2 .03 2 0 1 1.219e-3 4 NC 4 270 min 03 3 045 3 32 4 0 1 1707.533 3 271 3 max .019 2 .027 2 0 1 1.24e-3 4 NC 4 272 min 028 3 042 3 293 4 0 1 1813.852 3 273 4 max .017 2 .025 2 0 1 1.261e-3 4 NC 4 274 min 027 3 04 3 265 4 0 1 1934.583 3 275 5 max .016 2	221.463 4 NC 1 240.567 4 NC 1 263.158 4 NC 1 290.135 4 NC 1
269 2 max .02 2 .03 2 0 1 1.219e-3 4 NC 4 270 min 03 3 045 3 32 4 0 1 1707.533 3 271 3 max .019 2 .027 2 0 1 1.24e-3 4 NC 4 272 min 028 3 042 3 293 4 0 1 1813.852 3 273 4 max .017 2 .025 2 0 1 1.261e-3 4 NC 4 274 min 027 3 04 3 265 4 0 1 1934.583 3 275 5 max .016 2 .022 2 0 1 1.282e-3 4 NC 4 276 min 025 3 <td< td=""><td>NC 1 240.567 4 NC 1 263.158 4 NC 1 290.135 4 NC 1</td></td<>	NC 1 240.567 4 NC 1 263.158 4 NC 1 290.135 4 NC 1
270 min 03 3 045 3 32 4 0 1 1707.533 3 271 3 max .019 2 .027 2 0 1 1.24e-3 4 NC 4 272 min 028 3 042 3 293 4 0 1 1813.852 3 273 4 max .017 2 .025 2 0 1 1.261e-3 4 NC 4 274 min 027 3 04 3 265 4 0 1 1934.583 3 275 5 max .016 2 .022 2 0 1 1.282e-3 4 NC 4 276 min 025 3 037 3 239 4 0 1 2072.971 3 277 6 max .015 2	240.567 4 NC 1 263.158 4 NC 1 290.135 4 NC 1
271 3 max .019 2 .027 2 0 1 1.24e-3 4 NC 4 272 min 028 3 042 3 293 4 0 1 1813.852 3 273 4 max .017 2 .025 2 0 1 1.261e-3 4 NC 4 274 min 027 3 04 3 265 4 0 1 1934.583 3 275 5 max .016 2 .022 2 0 1 1.282e-3 4 NC 4 276 min 025 3 037 3 239 4 0 1 2072.971 3 277 6 max .015 2 .019 2 0 1 1.302e-3 4 NC 4 278 min 023 3 034 3 212 4 0 1 2233.26 3 279 7 max .014 2 .016 2 0 1 1.323e-3 4 NC 1 280 min	NC 1 263.158 4 NC 1 290.135 4 NC 1
272 min 028 3 042 3 293 4 0 1 1813.852 3 273 4 max .017 2 .025 2 0 1 1.261e-3 4 NC 4 274 min 027 3 04 3 265 4 0 1 1934.583 3 275 5 max .016 2 .022 2 0 1 1.282e-3 4 NC 4 276 min 025 3 037 3 239 4 0 1 2072.971 3 277 6 max .015 2 .019 2 0 1 1.302e-3 4 NC 4 278 min 023 3 034 3 212 4 0 1 2233.26 3 279 7 max .014 2	263.158 4 NC 1 290.135 4 NC 1
273 4 max .017 2 .025 2 0 1 1.261e-3 4 NC 4 274 min 027 3 04 3 265 4 0 1 1934.583 3 275 5 max .016 2 .022 2 0 1 1.282e-3 4 NC 4 276 min 025 3 037 3 239 4 0 1 2072.971 3 277 6 max .015 2 .019 2 0 1 1.302e-3 4 NC 4 278 min 023 3 034 3 212 4 0 1 2233.26 3 279 7 max .014 2 .016 2 0 1 1.323e-3 4 NC 1 280 min 021 3 032 3 187 4 0 1 2421.11 3	NC 1 290.135 4 NC 1
274 min 027 3 04 3 265 4 0 1 1934.583 3 275 5 max .016 2 .022 2 0 1 1.282e-3 4 NC 4 276 min 025 3 037 3 239 4 0 1 2072.971 3 277 6 max .015 2 .019 2 0 1 1.302e-3 4 NC 4 278 min 023 3 034 3 212 4 0 1 2233.26 3 279 7 max .014 2 .016 2 0 1 1.323e-3 4 NC 1 280 min 021 3 032 3 187 4 0 1 2421.11 3	290.135 4 NC 1
275 5 max .016 2 .022 2 0 1 1.282e-3 4 NC 4 276 min 025 3 037 3 239 4 0 1 2072.971 3 277 6 max .015 2 .019 2 0 1 1.302e-3 4 NC 4 278 min 023 3 034 3 212 4 0 1 2233.26 3 279 7 max .014 2 .016 2 0 1 1.323e-3 4 NC 1 280 min 021 3 032 3 187 4 0 1 2421.11 3	NC 1
276 min 025 3 037 3 239 4 0 1 2072.971 3 277 6 max .015 2 .019 2 0 1 1.302e-3 4 NC 4 278 min 023 3 034 3 212 4 0 1 2233.26 3 279 7 max .014 2 .016 2 0 1 1.323e-3 4 NC 1 280 min 021 3 032 3 187 4 0 1 2421.11 3	
277 6 max .015 2 .019 2 0 1 1.302e-3 4 NC 4 278 min 023 3 034 3 212 4 0 1 2233.26 3 279 7 max .014 2 .016 2 0 1 1.323e-3 4 NC 1 280 min 021 3 032 3 187 4 0 1 2421.11 3	322 712 1
278 min 023 3 034 3 212 4 0 1 2233.26 3 279 7 max .014 2 .016 2 0 1 1.323e-3 4 NC 1 280 min 021 3 032 3 187 4 0 1 2421.11 3	022.112 4
279 7 max .014 2 .016 2 0 1 1.323e-3 4 NC 1 280 min 021 3 032 3 187 4 0 1 2421.11 3	NC 1
280 min021 3032 3187 4 0 1 2421.11 3	362.566 4
280 min021 3032 3187 4 0 1 2421.11 3	NC 1
	412.064 4
	NC 1
282 min02 3029 3162 4 0 1 2644.243 3	474.633 4
283 9 max .012 2 .012 2 0 1 1.365e-3 4 NC 1	NC 1
284 min018 3026 3139 4 0 1 2913.475 3	555.403 4
285 10 max .01 2 .009 2 0 1 1.386e-3 4 NC 1	NC 1
286 min016 3024 3116 4 0 1 3244.433 3	662.326 4
287	NC 1
288 min014 3021 3095 4 0 1 3660.573 3	808.295 4
289	NC 1
290 min012 3018 3076 4 0 1 4198.774 3	1015.366 4
291 13 max .007 2 .004 2 0 1 1.448e-3 4 NC 1	NC 1
292 min011 3016 3058 4 0 1 4920.525 3	1323.931 4
293	NC 1
294 min009 3013 3042 4 0 1 5936.546 3	1814.77 4
	NC 1
	2669.934 4
	NC 1
299 17 max .002 2 0 2 0 1 1.532e-3 4 NC 1	NC 1
300 min004 3005 3009 4 0 1 NC 1	8657.796 4
301	NC 1
302 min002 3003 3003 4 0 1 NC 1	NC 1
303	NC 1
304 min 0 1 0 1 0 1 NC 1	NC 1
305 M7 1 max 0 1 0 1 0 1 NC 1	NC 1
306 min 0 1 0 1 -4.037e-4 4 NC 1	NC 1
307 2 max .001 3 0 2 .007 4 0 1 NC 1	NC 1
308 min001 2003 3 0 1 -3.682e-5 5 NC 1	NC 1
309 3 max .003 3 0 15 .014 4 3.312e-4 4 NC 1	NC 1
310 min003 2006 3 0 1 0 1 NC 1	6413.03 4
311 4 max .004 3001 15 .02 4 6.987e-4 4 NC 1	NC 1
312 min004 2008 3 0 1 0 1 NC 1	4486.898 4
313 5 max .005 3002 15 .025 4 1.066e-3 4 NC 1	NC 1
314 min005 201 3 0 1 0 1 NC 1	
315 6 max .007 3002 15 .031 4 1.434e-3 4 NC 1	3523.149 4
316 min007 2012 3 0 1 0 1 8848.929 3	
317 7 max .008 3003 15 .035 4 1.801e-3 4 NC 1	3523.149 4

Model Name

: Schletter, Inc. : HCV

TICV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
318		_	min	008	2	014	3	0	1	0	1_	7906.829	3	2546.838	
319		8	max	.01	3	003	15	.04	4	2.168e-3	4	NC	_1_	NC	1
320			min	009	2	01 <u>5</u>	3	0	1	0	_1_	7295.399	4_	2256.55	4
321		9	max	.011	3	003	15	.044	4	2.536e-3	_4_	NC	_1_	NC	1
322		10	min	011	2	<u>016</u>	3	0	1	0	_1_	6838.534	4_	2028.265	4
323		10	max	.012	3	003	15	.049	4	2.903e-3	4	NC	1	NC 4000 000	1
324		4.4	min	012	2	017	3	0	1	0	1_	6628.115	4	1838.622	4
325		11	max	.014	3	003	15	.054	4	3.271e-3	4	NC	1_	NC 4070 000	1
326		10	min	013	2	017	3	0	1	0	1_	6633.403	4_	1673.832	4
327		12	max	.015	3	003	15	.059	4	3.638e-3	4	NC	1_	NC 4505 550	1
328		40	min	015	2	017	3	0	1	0	1_	6859.765	4	1525.559	
329		13	max	.016	3	003	15	.065	4	4.006e-3	4	NC 7050,000	1_	NC 4000 054	1
330		144	min	016	2	016	3	0	1	0	1_	7352.268	4_	1388.851	4
331		14	max	.018	3	003	15	.071	4	4.373e-3	4	NC	1_	NC 4000 005	1
332		4.5	min	017	2	01 <u>5</u>	3	0	1	0	1_	8218.533	4_	1260.965	4
333		15	max	.019	3	002	15	.079	4	4.741e-3	4	NC OCOE 404	1_	NC 4440.04	1
334		40	min	019	2	014	3	0	1	0	1_	9695.194	4	1140.61	4
335		16	max	.02	3	002	15	.087	4	5.108e-3	4	NC	1	NC	1
336		47	min	02	2	013	3	0	1	0	1_4	NC NC	1_	1027.405	
337		17	max	.022	3	0	2	.097	4	5.475e-3	4	NC NC	1	NC OOA 474	1
338		4.0	min	021	2	011	3	0	1	0	1_1	NC NC		921.471	4
339		18	max	.023	3	0	2	.109	4	5.843e-3	4	NC NC	1_	NC 000 440	1
340		10	min	023		009	3	0	1	0	1_1	NC NC	1_	823.116	4
341		19	max	.025	3	.003	2	.123	4	6.21e-3	4	NC NC	1_	NC 700 CO4	1
342	MO	4	min	024	2	007	3	0	1	0	1_1	NC NC	1_	732.634	4
343	<u>M8</u>	1	max	.004	2	.024	2	0	1	1.075e-3	4	NC NC	1_	NC 202 200	1
344		2	min	0	15 2	026 .022	3	123 0	1	0	1_1	NC NC	<u>1</u> 1	202.288	4
345		-	max	.004	15		2	113	4	1.075e-3	<u>4</u> 1	NC NC	1	NC	1
346		3	min	0		024	3	113 0	1	1.075e-3		NC NC	1	219.197 NC	1
347		3	max	.004	15	.021 023	3	104	4	1.075e-3	<u>4</u> 1	NC NC	1	239.37	4
349		4	min	.004	2	023 .02	2	104 0	1	1.075e-3	4	NC NC	1	NC	1
350		4	max	.004	15	021	3	094	4	0	1	NC NC	1	263.646	4
351		5		.003	2	.018	2	<u>094</u> 0	1	1.075e-3	4	NC NC	1	NC	1
352		1	max min	.003	15	02	3	085	4	0	1	NC	1	293.164	4
353		6	max	.003	2	.017	2	<u>085</u> 0	1	1.075e-3	4	NC	1	NC	1
354		10	min	0	15	019	3	075	4	0	1	NC	1	329.508	4
355		7	max	.003	2	.016	2	<u>073</u> 0	1	1.075e-3	4	NC	1	NC	1
356		+ '	min	0	15	017	3	066	4	0	1	NC	1	374.924	4
357		8	max	.003	2	.015	2	000	1	1.075e-3	4	NC	1	NC	1
358		0	min		15	016	3	057	4	0	1	NC NC	1	432.686	
359		9	max	.002	2	.013	2	0	1	1.075e-3	4	NC	1	NC	1
360			min	0	15	014	3	049	4	0	1	NC	1	507.722	4
361		10	max	.002	2	.012	2	0	1	1.075e-3	4	NC	1	NC	1
362		-10	min	0	15	013	3	041	4	0	1	NC	1	607.734	4
363		11	max	.002	2	.011	2	0	1	1.075e-3	4	NC	1	NC	1
364			min	0	15	011	3	033	4	0	1	NC	1	745.312	4
365		12	max	.002	2	.009	2	0	1	1.075e-3	4	NC	1	NC	1
366		·-	min	0	15	01	3	026	4	0	1	NC	1	942.226	4
367		13	max	.001	2	.008	2	0	1	1.075e-3	4	NC	1	NC	1
368		1.0	min	0	15	009	3	02	4	0	1	NC	1	1238.853	4
369		14	max	.001	2	.007	2	0	1	1.075e-3	4	NC	1	NC	1
370			min	0	15	007	3	014	4	0	1	NC	1	1717.275	
371		15	max	0	2	.005	2	0	1	1.075e-3	4	NC	1	NC	1
372		1.0	min	0	15	006	3	01	4	0	1	NC	1	2566.529	4
373		16	max	0	2	.004	2	0	1	1.075e-3	4	NC	1	NC	1
374			min	0	15	004	3	006	4	0	1	NC	1	4308.575	4
															_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
375		17	max	0	2	.003	2	0	1	1.075e-3	4	NC	1_	NC	1
376			min	0	15	003	3	003	4	0	1_	NC	1_	8875.508	4
377		18	max	0	2	.001	2	0	1	1.075e-3	_4_	NC	_1_	NC	1
378		40	min	0	15	001	3	0	4	0	1_	NC	1_	NC	1
379		19	max	0	1	0	1	0	1	1.075e-3	4_	NC	1_	NC NC	1
380	M40	4	min	0	1	0	1	0	1	0	1_	NC NC	1_	NC NC	1
381	M10	1	max	.007	2	.011	2	0	10	1.197e-3	4	NC 7444400	1_	NC 000.074	1
382		2	min	01	3	016	2	347	4	4.175e-6 1.217e-3		7114.189 NC	2	222.074 NC	1
383		2	max	.007	3	.009	3	0	10		4		<u>1</u> 2	241.232	
384 385		3	min	01 .006	2	016 .008	2	<u>319</u> 0	10	3.96e-6 1.237e-3	<u>10</u> 4	8217.113 NC	1	NC	1
386		- 3	max	009	3	015	3	292	4	3.744e-6		9700.222	2	263.888	4
387		4	max	.006	2	.007	2	<u>292</u> 0	10	1.257e-3	4	NC	1	NC	1
388		4	min	009	3	015	3	265	4	3.528e-6	10	NC NC	1	290.943	4
389		5	max	.006	2	.005	2	0	10	1.277e-3	4	NC	1	NC	1
390			min	008	3	014	3	238	4	3.312e-6	10	NC	1	323.616	4
391		6	max	.005	2	.004	2	0	10	1.297e-3	4	NC	1	NC	1
392		-	min	008	3	013	3	212	4	3.097e-6	10	NC	1	363.589	4
393		7	max	.005	2	.003	2	0	10	1.317e-3	4	NC	1	NC	1
394			min	007	3	013	3	186	4	2.881e-6	10	NC	1	413.235	4
395		8	max	.004	2	.002	2	0	10	1.337e-3	4	NC	1	NC	1
396			min	006	3	012	3	162	4	2.665e-6	10	NC	1	475.995	4
397		9	max	.004	2	0	2	0	10	1.357e-3	4	NC	1	NC	1
398			min	006	3	011	3	138	4	2.45e-6	10	NC	1	557.016	4
399		10	max	.004	2	0	2	0	10	1.377e-3	4	NC	1	NC	1
400			min	005	3	01	3	116	4	2.234e-6	10	NC	1	664.279	4
401		11	max	.003	2	0	2	0	10	1.397e-3	4	NC	1	NC	1
402			min	005	3	009	3	095	4	2.018e-6	10	NC	1	810.723	4
403		12	max	.003	2	001	2	0	10	1.417e-3	4	NC	_1_	NC	1
404			min	004	3	009	3	076	4	1.803e-6	10	NC	1	1018.49	4
405		13	max	.002	2	002	2	00	10	1.437e-3	_4_	NC	_1_	NC	1
406			min	003	3	008	3	058	4	1.587e-6	10	NC	1_	1328.135	4
407		14	max	.002	2	002	15	0	10	1.457e-3	4_	NC	_1_	NC	1
408			min	003	3	006	3	042	4	1.371e-6	10	NC	1_	1820.779	4
409		15	max	.002	2	001	15	0	10	1.477e-3	4	NC	1_	NC 0070 004	1
410		10	min	002	3	005	3	029	4	1.155e-6	10	NC NC	1_	2679.301	4
411		16	max	.001	2	001	15	0	10	1.497e-3	4	NC NC	1_	NC 4000 CO4	1
412		47	min	002	3	004	3	018	4	9.398e-7	10	NC NC	1_	4393.684	
413		17	max	0	3	0	15	0	10	1.517e-3	4	NC NC	1	NC	1
414		10	min max	001 0	2	003 0	15	009 0	4	7.241e-7 1.537e-3	10	NC NC	1	8695.409 NC	1
416		10	min	0	3	002	4	003	4	5.084e-7	10	NC NC	1	NC NC	1
417		19	max	0	1	<u>002</u> 0	1	<u>003</u> 0	1	1.557e-3	4	NC	1	NC	1
418		13	min	0	1	0	1	0	1	2.927e-7	10	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	-6.232e-8	10	NC	1	NC	1
420	IVIII		min	0	1	0	1	0	1	-3.992e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.007	4	-6.941e-7	10	NC	1	NC	1
422			min	0	2	002	4	0	10	-2.773e-5	4	NC	1	NC	1
423		3	max	0	3	001	15	.014	4	3.444e-4	5	NC	1	NC	1
424			min	0	2	004	4	0	10	-1.491e-5	1	NC	1	6483.159	
425		4	max	.001	3	002	15	.02	4	7.152e-4	4	NC	1	NC	1
426			min	001	2	006	4	0	10	-2.162e-5	1	NC	1	4536.035	4
427		5	max	.002	3	002	15	.025	4	1.087e-3	4	NC	1	NC	1
428		Ť	min	002	2	008	4	0	10	-2.833e-5	1	NC	1	3561.008	_
429		6	max	.002	3	003	15	.03	4	1.458e-3	4	NC	1	NC	1
430		Ĭ	min	002	2	01	4	0	10	-3.504e-5	1	9134.849	4	2971.419	-
431		7	max	.003	3	003	15	.035	4	1.83e-3	4	NC	1	NC	1
			,								_				

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
432			min	003	2	012	4	0	2	-4.175e-5	1_	7906.794	4	2571.137	
433		8	max	.003	3	003	15	.039	4	2.201e-3	4	NC	2	NC	1
434			min	003	2	013	4	0	1	-4.846e-5	1_	7151.364	4_	2275.705	
435		9	max	.004	3	003	15	.044	4	2.572e-3	4	NC C744 407	5_	NC 0040.704	1
436 437		10	min	003 .004	3	014 004	15	<u> </u>	4	-5.517e-5	1	6711.427 NC	<u>4</u> 5	2042.701 NC	1
438		10	max min	004	2	004 014	4	<u>.049</u>	1	2.944e-3 -6.188e-5	<u>4</u> 1	6511.418	4	1848.61	4
439		11	max	.005	3	004	15	.053	4	3.315e-3	4	NC	5	NC	1
440			min	004	2	014	4	0	1	-6.859e-5	1	6522.144	4	1679.615	_
441		12	max	.005	3	004	15	.059	4	3.687e-3	4	NC	5	NC	1
442		1-	min	005	2	014	4	0	1	-7.53e-5	1	6749.571	4	1527.434	
443		13	max	.006	3	003	15	.065	4	4.058e-3	4	NC	2	NC	1
444			min	005	2	013	4	0	1	-8.201e-5	1	7238.568	4	1387.206	4
445		14	max	.006	3	003	15	.072	4	4.43e-3	4	NC	1	NC	1
446			min	006	2	012	4	0	1	-8.872e-5	1	8095.556	4	1256.287	4
447		15	max	.007	3	003	15	.079	4	4.801e-3	4	NC	1	NC	1
448			min	006	2	01	4	001	1	-9.543e-5	1	9554.103	4	1133.462	4
449		16	max	.007	3	002	15	.088	4	5.173e-3	4	NC	1_	NC	1
450			min	006	2	008	4	001	1	-1.021e-4	1	NC	1	1018.39	4
451		17	max	.008	3	002	15	.099	4	5.544e-3	_4_	NC	1	NC	1
452		10	min	007	2	006	4	002	1	-1.089e-4	1_	NC	1_	911.185	4
453		18	max	.008	3	001	10	.111	4	5.916e-3	4_	NC	1	NC 040400	1
454		40	min	007	2	004	3	002	1	-1.156e-4	1_	NC	1_	812.109	4
455		19	max	.008	3	0	2	.125	4	6.287e-3	4	NC	1	NC 704.070	1
456	MAO	1	min	008	1	003	3	003	1	-1.223e-4	1_	NC NC	1	721.376 NC	2
457 458	M12		max	.002 0	12	.008 009	3	.003 125	4	1.145e-3 -5.108e-5	<u>5</u> 1	NC NC	1	199.179	4
459		2	min max	.001	1	.007	2	.002	1	1.145e-3	5	NC NC	1	NC	1
460			min	0	12	008	3	115	4	-5.108e-5	1	NC	1	215.815	4
461		3	max	.001	1	.007	2	.002	1	1.145e-3	5	NC	1	NC	1
462			min	0	12	008	3	105	4	-5.108e-5	1	NC	1	235.662	4
463		4	max	.001	1	.006	2	.002	1	1.145e-3	5	NC	1	NC	1
464			min	0	12	007	3	096	4	-5.108e-5	1	NC	1	259.546	4
465		5	max	.001	1	.006	2	.002	1	1.145e-3	5	NC	1	NC	1
466			min	0	12	007	3	086	4	-5.108e-5	1	NC	1	288.589	4
467		6	max	.001	1	.006	2	.002	1	1.145e-3	5	NC	1	NC	1
468			min	0	12	006	3	076	4	-5.108e-5	1	NC	1	324.349	4
469		7	max	.001	1	.005	2	.001	1	1.145e-3	5	NC	_1_	NC	1
470			min	0	12	006	3	067	4	-5.108e-5	1_	NC	1_	369.036	4
471		8	max	0	1	.005	2	.001	1	1.145e-3	_5_	NC	_1_	NC	1
472			min	0	12	005	3	058		-5.108e-5		NC	1	425.87	4
473		9	max	0	1	.004	2	.001	1	1.145e-3	5_	NC	1	NC 400.700	1
474		40	min	0	12	005	3	<u>05</u>	4	-5.108e-5	1_	NC NC	1_	499.703	4
475		10	max	0	12	.004	2	0	1	1.145e-3	5	NC NC	<u>1</u> 1	NC FOR 11	1
476 477		11	min	<u> </u>	1	004 .003	2	041 0	1	-5.108e-5 1.145e-3	<u>1</u> 5	NC NC	1	598.11 NC	1
477			max min	0	12	003	3	034	4	-5.108e-5	1	NC NC	1	733.48	4
479		12	max	0	1	.003	2	034	1	1.145e-3	5	NC	1	NC	1
480		12	min	0	12	003	3	027	4	-5.108e-5	1	NC	1	927.232	4
481		13	max	0	1	.003	2	0	1	1.145e-3	5	NC	1	NC	1
482		10	min	0	12	003	3	02	4	-5.108e-5	1	NC	1	1219.092	-
483		14	max	0	1	.002	2	0	1	1.145e-3	5	NC	1	NC	1
484			min	0	12	002	3	015	4	-5.108e-5	1	NC	1	1689.82	4
485		15	max	0	1	.002	2	0	1	1.145e-3	5	NC	1	NC	1
486			min	0	12	002	3	01	4	-5.108e-5	1	NC	1	2525.403	
487		16	max	0	1	.001	2	0	1	1.145e-3	5	NC	1	NC	1
488			min	0	12	001	3	006	4	-5.108e-5	1	NC	1	4239.37	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
489		17	max	0	1	0	2	0	1	1.145e-3	5	NC	1	NC	1
490			min	0	12	0	3	003	4	-5.108e-5	1	NC	1	8732.554	4
491		18	max	0	1	0	2	0	1	1.145e-3	5	NC	1	NC	1
492			min	0	12	0	3	0	4	-5.108e-5	1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	1.145e-3	5	NC	1	NC	1
494			min	0	1	0	1	0	1	-5.108e-5	1	NC	1	NC	1
495	M1	1	max	.01	3	.119	2	.364	4	3.722e-3	2	NC	1	NC	1
496			min	007	2	037	3	0	10	-1.042e-2	3	NC	1	NC	1
497		2	max	.01	3	.055	2	.355	4	3.398e-3	4	NC	4	NC	1
498			min	007	2	014	3	002	1	-5.163e-3	3	1798.026	2	NC	1
499		3		.01	3	.017	3	.345	4	6.267e-3	4	NC	5	NC	1
		- 3	max												
500		-	min	007	2	013	2	003	1	-8.284e-5	3	874.018	2	NC NC	1
501		4	max	.01	3	.062	3	.334	4	5.333e-3	4_	NC	5	NC	1
502			min	007	2	087	2	002	1	-2.707e-3	3	558.78	2	7488.958	
503		5	max	.01	3	.116	3	.322	4	4.874e-3	2	NC	<u>5</u>	NC	1
504			min	007	2	163	2	002	1	-5.33e-3	3	407.72	2	6119.36	5
505		6	max	.01	3	.173	3	.311	4	7.295e-3	2	NC	5_	NC	1
506			min	006	2	236	2	0	1	-7.954e-3	3	323.881	2	5270.554	5
507		7	max	.01	3	.226	3	.299	4	9.716e-3	2	NC	15	NC	1
508			min	006	2	301	2	0	3	-1.058e-2	3	274.075	2	4636.825	4
509		8	max	.009	3	.27	3	.287	4	1.214e-2	2	NC	15	NC	1
510			min	006	2	352	2	0	10	-1.32e-2	3	244.474	2	4123.855	4
511		9	max	.009	3	.298	3	.275	4	1.364e-2	2	NC	15	NC	1
512		Ť	min	006	2	384	2	0	1	-1.366e-2	3	229.013	2	3737.935	4
513		10	max	.009	3	.308	3	.261	4	1.452e-2	2	NC	15	NC	1
514		10	min	006	2	395	2	0	10	-1.269e-2	3	224.514	2	3572.712	4
515		11		.009	3	.301	3	.247	_	1.541e-2	2	NC	15	NC	1
			max						4						
516		40	min	006	2	384	2	0	10	-1.171e-2	3	229.943	2	3557.19	4
517		12	max	.008	3	.276	3	.231	4	1.477e-2	2	NC	15	NC	1
518		10	min	006	2	35	2	0	1	-1.031e-2	3	247.21	2	3677.278	
519		13	max	.008	3	.235	3	.212	4	1.184e-2	2	NC	<u>15</u>	NC	1
520			min	006	2	296	2	0	1	-8.248e-3	3	280.536	2	4191.094	4
521		14	max	.008	3	.184	3	.191	4	8.909e-3	2	NC	5	NC	1
522			min	006	2	228	2	0	12	-6.19e-3	3	337.359	2	5366.208	4
523		15	max	.008	3	.126	3	.169	4	5.979e-3	2	NC	5	NC	1
524			min	006	2	153	2	0	10	-4.132e-3	3	434.819	2	7981.535	4
525		16	max	.008	3	.065	3	.147	4	5.412e-3	4	NC	5	NC	1
526			min	005	2	077	2	0	10	-2.073e-3	3	614.472	2	NC	1
527		17	max	.007	3	.006	3	.127	4	6.365e-3	4	NC	_ <u></u>	NC	1
528			min	005	2	007	2	0	10		3	996.874	2	NC	1
529		18	max	.007	3	.052	2	.109	4	3.542e-3	2	NC	4	NC	1
530		10		005	2	047	3	0		-1.343e-3	3	2105.458	2	NC	1
531		19	min	.005	3	.106	2	.095	4	7.114e-3	2	NC	1	NC NC	1
		19								7.1146-3			1		1
532	N 4 5	-	min	005	2	098	3	0	1	-2.749e-3	3	NC NC	•	NC NC	
533	<u>M5</u>	1	max	.03	3	.179	2	.364	4	0	1_	NC	1_	NC NC	1
534		_	min	021	2	.003	15	0	1	-1.171e-5	4	NC	1_	NC	1
535		2	max	.03	3	.078	2	.357	4	3.211e-3	_4_	NC	4	NC	1
536			min	021	2	.001	15	0	1	0	1_	1160.161	2	NC	1
537		3	max	.03	3	.05	3	.347	4	6.333e-3	4	NC	5	NC	1
538			min	022	2	036	2	0	1	0	1	542.154	2	8520.85	4
539		4	max	.029	3	.129	3	.336	4	5.158e-3	4	NC	5	NC	1
540			min	021	2	175	2	0	1	0	1	328.846	2	6655.013	4
541		5	max	.029	3	.238	3	.324	4	3.984e-3	4	NC	15	NC	1
542			min	021	2	326	2	0	1	0	1	229.797	2	5768.721	4
543		6	max	.028	3	.362	3	.311	4	2.809e-3	4	NC	15	NC	1
544			min	02	2	477	2	0	1	0	1	176.688		5207.875	
545		7	max	.027	3	.484	3	.298	4	1.635e-3	4	8862.148		NC	1
J40			πιαχ	.021	J	.404	J	.230	+	1.0000	-	10002.140	ıJ	INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

546	Member	Sec	min	x [in] 02	LC 2	y [in] 615	LC 2	z [in]	LC 1	x Rotate [r	LC 1	(n) L/y Ratio	LC 2	(n) L/z Ratio	LC 4
547		8	max	.027	3	.585	3	.287	4	4.602e-4	4	7770.085	15	NC	1
548		10	min	02	2	726	2	0	1	0	1	128.195	2	4197.105	
549		9	max	.026	3	.65	3	.275	4	0	1	7211.911	15	NC	1
550		- 3	min	019	2	796	2	0	1	-8.912e-6	5	119.051	2	3725.564	
551		10	max	.026	3	.673	3	.261	4	0	1	7044.201	15	NC	1
552		10	min	019	2	82	2	0	1	-8.669e-6	5	116.397	2	3600.348	
553		11	max	.025	3	.655	3	.246	4	0.0030 0	1	7212.944	15	NC	1
554			min	019	2	796	2	0	1	-8.425e-6	5	119.599	2	3605.494	
555		12	max	.024	3	.597	3	.231	4	4.465e-4	4	7772.44	15	NC	1
556		12	min	018	2	722	2	0	1	0	1	130.056	2	3611.543	
557		13	max	.024	3	.504	3	.213	4	1.584e-3	4	8866.673	15	NC	1
558			min	018	2	603	2	0	1	0	1	150.991	2	4101.685	
559		14	max	.023	3	.389	3	.191	4	2.722e-3	4	NC	15	NC	1
560			min	018	2	456	2	0	1	0	1	188.186	2	5492.848	
561		15	max	.022	3	.262	3	.167	4	3.86e-3	4	NC	15	NC	1
562			min	018	2	298	2	0	1	0	1	255.635	2	9310.159	4
563		16	max	.022	3	.134	3	.144	4	4.998e-3	4	NC	5	NC	1
564			min	017	2	147	2	0	1	0	1	389.632	2	NC	1
565		17	max	.021	3	.017	3	.123	4	6.136e-3	4	NC	5	NC	1
566			min	017	2	02	2	0	1	0	1	700.174	2	NC	1
567		18	max	.021	3	.07	2	.107	4	3.113e-3	4	NC	4	NC	1
568			min	017	2	08	3	0	1	0	1	1514.564	3	NC	1
569		19	max	.021	3	.139	2	.095	4	0	1	NC	1	NC	1
570			min	017	2	164	3	0	1	-7.258e-6	4	NC	1	NC	1
571	M9	1	max	.01	3	.119	2	.364	4	1.042e-2	3	NC	1	NC	1
572			min	007	2	037	3	0	1	-3.722e-3	2	NC	1	NC	1
573		2	max	.01	3	.055	2	.356	4	5.163e-3	3	NC	4	NC	1
574			min	007	2	014	3	0	10	-1.828e-3	2	1798.026	2	NC	1
575		3	max	.01	3	.017	3	.347	4	6.312e-3	4	NC	5	NC	1
576			min	007	2	013	2	0	10	-3.177e-5	2	874.018	2	9120.363	4
577		4	max	.01	3	.062	3	.336	4	5.033e-3	5	NC	5	NC	1
578			min	007	2	087	2	0	10	-2.453e-3	2	558.78	2	6920.668	4
579		5	max	.01	3	.116	3	.324	4	5.33e-3	3	NC	5	NC	1
580			min	007	2	163	2	0	10	-4.874e-3	2	407.72	2	5839.992	4
581		6	max	.01	3	.173	3	.311	4	7.954e-3	3	NC	_5_	NC	1
582			min	006	2	236	2	0	10	-7.295e-3	2	323.881	2	5164.91	4
583		7	max	.01	3	.226	3	.299	4	1.058e-2	3	NC	15	NC	1_
584			min	006	2	301	2	0	1	-9.716e-3	2	274.075	2	4640.332	
585		8	max	.009	3	.27	3	.287	4	1.32e-2	3_	NC	<u>15</u>	NC	1
586			min	006	2	352	2	0	1	-1.214e-2	2	244.474		4151.292	
587		9	max	.009	3	.298	3	.275	4	1.366e-2	3	NC	<u>15</u>	NC	1
588		10	min	006	2	384	2	0	10		2	229.013	2	3729.205	
589		10	max	.009	3	.308	3	.261	4	1.269e-2	3	NC	15	NC	1
590		4.4	min	006	2	<u>395</u>	2	0	1	-1.452e-2	2	224.514	2	3573.699	
591		11	max	.009	3	.301	3	.246	4	1.171e-2	3_	NC 000 040	<u>15</u>	NC 0500.04	1
592		40	min	006	2	384	2	0	1	-1.541e-2	2	229.943	2	3566.61	4
593		12	max	.008	3	.276	3	.231	4	1.031e-2	3_	NC 0.47.04	15	NC	1
594		40	min	006	2	35	2	0	10	-1.477e-2	2	247.21	2	3655.706	
595		13	max	.008	3	.235	3	.212	4	8.248e-3	3	NC 200 F26	<u>15</u>	NC	1_1
596		4.4	min	006	2	296	2	0	10	-1.184e-2	2	280.536	2	4184.821	4
597		14	max	.008	3	.184	3	.19	4	6.19e-3	3	NC 227.250	5	NC 5474 202	1
598		15	min	006	2	228	2	169	1	-8.909e-3	2	337.359	2	5471.302	
599		15	max	.008	3	.126	3	.168	4	4.132e-3	3	NC	5	NC	1
600		16	min	006	2	153	2	002	1	-5.979e-3	2	434.819	2	8462.842	
601		16	max	.008	3	.065	2	.146	4	5.031e-3	5	NC 614 472	5	NC NC	1
002			min	005		077		002	1	-3.048e-3	2	614.472	2	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:___

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ration	o LC
603		17	max	.007	3	.006	3	.125	4	6.251e-3	4	NC	5	` NC	1
604			min	005	2	007	2	003	1	-1.905e-4	1	996.874	2	NC	1
605		18	max	.007	3	.052	2	.108	4	3.117e-3	5	NC	4	NC	1
606			min	005	2	047	3	002	1	-3.542e-3	2	2105.458	2	NC	1
607		19	max	.007	3	.106	2	.095	4	2.749e-3	3	NC	1	NC	1
608			min	005	2	098	3	0	10	-7.114e-3	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Seismic design: No

Load factor source: ACI 318 Section 9.2 Load combination: not set

Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2559.0	1783.5	0.0	1783.5
2	2559.0	1783.5	0.0	1783.5
Sum	5118.0	3567.0	0.0	3567.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5118 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)		
4855	1.0	0.65	3156		

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_e)$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.5}$	5 (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	$_{Vc}/A_{Vco})\Psi_{ec,V}\Psi_{e}$	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ղ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\mathscr{V}_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
558.00	648.00	1.000	0.919	1.000	1.000	15593	0.70	8641

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.16	17908		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
710.64	779.34	1.000	1.000	1.000	17908	0.70	22862

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	in <i>kcpNag</i> ; <i>kcpN</i>	$ c_{cbg} = \phi \min k_{cp} $	(A Na / A Na0) Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arPsi_{ec,Na}$	$\Psi_{p,Na}N_{a0}$; $K_{cp}(A_{cp})$	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$Y_{ed,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b} $	(Eq. D-30b)
K cp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status	
Steel	2559	6071	0.42	Pass	
Concrete breakout	5118	10231	0.50	Pass	
Adhesive 5118		8093	0.63	Pass (Governs)	
Shear Factored Load, V _{ua} (lb)		Design Strength, øVn (lb)	Ratio	Status	
Steel	1784	3156	0.57	Pass (Governs)	
T Concrete breakout x+	3567	8641	0.41	Pass	
Concrete breakout y-	1784	22862	0.08	Pass	
Pryout	3567	20601	0.17	Pass	
Interaction check Nuc	a/φNn Vua/φVn	Combined Rati	o Permissible	Status	

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 31-33 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.63 0.57 119.8 % 1.2	Sec. D.7.3	0.63	0.57	119.8 %	1.2	Pass
----------------------------------	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.