

<u>Gameboard</u>

Maths

Maxima and Minima: Problems 1ii

## Maxima and Minima: Problems 1ii





Figure 1: The diagram shows a rectangular enclosure, with a wall forming one side. A rope, of length  $20\,$  metres, is used to form the remaining three sides. The width of the enclosure is x metres, and the area of the enclosure is x metres.

### Part A Express as equation

Show that A can be expressed in the form  $px-qx^2$ , and find this expression.

The following symbols may be useful: x

### Part B Use differentiation

Use differentiation to find the maximum value of A.

The following symbols may be useful: A

Used with permission from UCLES, A Level, June 2007, Paper 4721, Question 5.



<u>Gameboard</u>

Maths

Maxima and Minima: Problems 2ii

## Maxima and Minima: Problems 2ii



A curve has equation  $y=3x^3-7x+rac{2}{x}$ 

## Part A Verify stationary point

Verify the curve has a stationary point when x = 1.

## Part B Nature of stationary point

Determine the nature of this stationary point.

Maximum

Minimum

Neither/inconclusive

## Part C Tangent to curve

The tangent to the curve at this stationary point meets the y-axis at the point Q. Find the y-coordinate of Q.

Used with permission from UCLES, A Level, June 2014, Paper 4721, Question 8.

Gameboard:

**STEM SMART Single Maths 12 – Curves** 



<u>Gameboard</u>

Maths

Maxima and Minima: Problems 1i

## Maxima and Minima: Problems 1i



A cuboid has an volume of exactly  $8\,\mathrm{m}^3$ . The base of the cuboid is a square with side length x metres. The surface area of the cuboid is  $A\,\mathrm{m}^2$ .

## Part A Find expression for A

Show that A can be expressed in the form  $ax^2 + \frac{b}{x}$ , where a and b are constants, and find this expression.

The following symbols may be useful: x

## Part B Find $\frac{\mathrm{d}A}{\mathrm{d}x}$

Find  $\frac{\mathrm{d}A}{\mathrm{d}x}$ .

The following symbols may be useful: x

#### Part C Find minimum

Find the value of x which gives the smallest surface area of the cuboid.

The following symbols may be useful: x

Used with permission from UCLES, A level, June 2006, Paper 4721, Question 8.

Gameboard:

**STEM SMART Single Maths 12 – Curves** 



Gameboard

Maths

Calculus

Differentiation

Minimising the area

## Minimising the area



A rectangular cuboid has a base with sides of length a and b and a height c. Its volume V and height c are fixed. By following the steps below find expressions in terms of V and c for the values of a and b which will minimise the surface area a of the cuboid, find an expression for this minimum surface area and check that this is indeed a minimum.

#### Part A Volume V and surface area A

Write down the equation for the volume V of the rectangular cuboid in terms of a, b and c.

The following symbols may be useful: V, a, b, c

Write down the equation for the surface area A of the rectangular cuboid in terms of a, b and c.

The following symbols may be useful: A, a, b, c

From your equation for V deduce an expression for b in terms of V, a and c. Hence, by substitution, obtain an equation for A in terms of V, a and c.

The following symbols may be useful: A,  $\,$  V, a,  $\,$  c

### Part B Expressions for a and b

Differentiate with respect to a the expression for A you found in Part A (since V and c are fixed you may treat them as constants). Hence find in terms of V and c an expression for the value of a for which the surface area A is minimised.

The following symbols may be useful: v, c

Find, in terms of V and c, the expression for b corresponding to this value of a.

The following symbols may be useful: v, c

#### Part C The minimum area

Find an expression for the minimum surface area in terms of V and c.

The following symbols may be useful: v, c

### Part D Check that the area is a minimum

Find, at the value of a deduced in Part B, an expression in terms of V and c for the second derivative of A with respect to a; convince yourself that the value of the second derivative indicates that the value of A is a minimum at this point.

The following symbols may be useful: v, c

Created for isaacphysics.org by Julia Riley

Gameboard:

**STEM SMART Single Maths 12 – Curves** 



<u>Gameboard</u>

Maths

Stationary Points 1ii

# **Stationary Points 1ii**



The curve  $y=x^3-kx^2+x-3$  has two stationary points.

### Part A Differentiate

Find  $\frac{\mathrm{d}y}{\mathrm{d}x}$ .

The following symbols may be useful: k, x

#### Part B Find k

Given that there is a stationary point when x=1, find the value of k.

The following symbols may be useful:  $\ensuremath{k}$ 

#### **Part C** Differentiate twice

Find  $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$ .

The following symbols may be useful:  $\boldsymbol{x}$ 

Hence determine whether the stationary point is a minimum or a maximum.

Minimum

| Maximum |
|---------|

### Part D Find coordinate

Find the x-coordinate of the other stationary point.

The following symbols may be useful: x

Used with permission from UCLES, A Level, June 2009, Paper 4721, Question 10.

Gameboard:

**STEM SMART Single Maths 12 – Curves** 



<u>Gameboard</u>

Maths

Stationary Points 1i

# **Stationary Points 1i**



## Part A Find stationary points

| Find the coordinates of the stationary points on the curve $y=2x^3-3x^2-12x-7$ . Enter the $x$ |
|------------------------------------------------------------------------------------------------|
| and $y$ coordinates of the stationary point with the largest $x$ coordinate.                   |

Enter the x coordinate:

The following symbols may be useful:  $\times$ 

## Enter the y coordinate:

The following symbols may be useful: y

## Part B Nature of stationary points

Determine whether each stationary point is a minimum or maximum point. Identify the nature of the stationary point whose coordinates you have entered in Part A.

( ) Maximum

Minimum

## Part C Expand and simplify

Expand and simplify  $(x+1)^2(2x-7)$ .

The following symbols may be useful: x

#### Part D Sketch

Hence sketch the curve  $y=2x^3-3x^2-12x-7$ , indicating the coordinates of all stationary points and intercepts with the axes. In order to check your answer, give the value of the intercept with the y-axis.

The following symbols may be useful: y

Used with permission from UCLES, A Level, Paper 4721 specimen, Question 8.

Gameboard:

**STEM SMART Single Maths 12 – Curves** 



<u>Gameboard</u>

Maths

Stationary Points 2i

# **Stationary Points 2i**



#### Part A Find minimum

Find the coordinates of the minimum point of the curve  $y=(x+2)(x^2-3x+5)$ . Enter the x and y coordinates below.

Enter the *x*-coordinate:

The following symbols may be useful:  $\times$ 

## Enter the y-coordinate:

The following symbols may be useful: y

## Part B Finding nature of stationary point

How did you know that the stationary point in part A was a minimum point?

At this point,  $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$  is positive.

- At this point,  $\frac{\mathrm{d}y}{\mathrm{d}x}$  is zero.
- At this point,  $\frac{d^2y}{dx^2}$  is negative.

## Part C Calculate discriminant

Calculate the discriminant of  $x^2-3x+5$ . Enter the exact value.

## Part D Explain

Explain why  $(x+2)(x^2-3x+5)$  is always positive whenever x>-2.

## Easier question?

Used with permission from UCLES, A Level, January 2012, Paper 4721, Question 7

Gameboard:

### **STEM SMART Single Maths 12 – Curves**



<u>Gameboard</u>

Maths

Stationary Points 2ii

# **Stationary Points 2ii**



#### Part A Find coordinate

Find the coordinates of the stationary points on the curve  $y=x^3-3x^2+4$ . Enter the x and y coordinates of the stationary point with the greatest x coordinate.

Enter the *x*-coordinate:

The following symbols may be useful:  $\times$ 

## Enter the y-coordinate:

The following symbols may be useful: y

## Part B Stationary point

Determine whether the stationary point whose coordinates you entered is a maximum point or a minimum point.

Minimum

- ( ) Maximum
- ( ) Inconclusive

## ${\bf Part \ C} \qquad {\bf Range \ of} \ x$

For which range of values of x does  $x^3 - 3x^2 + 4$  decrease as x increases?

What form does your answer take? Choose from the list below, where a and b are constants and a < b, and then find a and/or b.

- $\bigcirc x < a$
- $x \leq a$
- x > a
- $x \geq a$ 
  - a < x < b
- $a \le x \le b$
- x < a or x > b
- $x \le a \text{ or } x \ge b$

Write down the value of a.

Write down the value of b (or if your chosen form has no b, write "n").

The following symbols may be useful: n

Used with permission from UCLES, A level, January 2006, Paper 4721, Question 6

Gameboard:

**STEM SMART Single Maths 12 – Curves** 



<u>Gameboard</u>

Maths

Stationary Points 4ii

# **Stationary Points 4ii**



| <b>-</b> | <b>~</b> . |      |       |       |
|----------|------------|------|-------|-------|
| Part A   | 4 FI       | nd c | oordi | nates |
|          |            |      |       |       |

Find the coordinates of the stationary point on the curve  $y=x^4+32x$ . Enter the x and y coordinates below.

Enter *x* coordinate:

The following symbols may be useful: x

## Enter y coordinate:

The following symbols may be useful: y

### Part B Maxima or Minima

Determine whether this stationary point is a maximum or a minimum.

Minimum

( ) Maximum

## ${\bf Part \ C} \qquad {\bf Range \ of} \ x$

For what range of values of x does  $x^4+32x$  increase as x increases? Give your answer in the form of an inequality.

The following symbols may be useful: <, <=, >, >=,  $\times$