

PDIH

Periféricos y Dispositivos de Interfaz Humana

Seminario: Manejo del sonido con R

Autora: Cristina María Crespo Arco Correo: cmcrespo@correo.ugr.es

Profesor: Pedro A. Castillo Valdivieso

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Curso 2021 - 2022

${\bf \acute{I}ndice}$

1.	Primer ejercicio: Leer dos ficheros de sonido (WAV o MP3) de unos	
	pocos segundos de duración cada uno.	2
	1.1. Código:	2
	1.2. Ejecución del programa:	
2.	Segundo ejercicio: Dibujar la forma de onda de ambos sonidos	3
	2.1. Código:	3
	2.2. Ejecución del programa:	
3.	Tercer ejercicio: Obtener la información de las cabeceras de ambos so-	
	nidos	5
	3.1. Código:	5
	3.2. Ejecución del programa:	
4.	Cuarto ejercicio: Unir ambos sonidos en uno nuevo	6
	4.1. Código:	6
	4.2. Ejecución del programa:	
5.	Quinto ejercicio: Reproducir la señal obtenida y almacenarla como un	
	nuevo fichero WAV, denominado "mezcla.wav"	7
	5.1. Código:	7
	5.2 Figuraión del programa:	7

1. Primer ejercicio: Leer dos ficheros de sonido (WAV o MP3) de unos pocos segundos de duración cada uno.

Para leer los ficheros *gato.mp3* y *oveja.wav* es necesario usar las funciones "readMP3 ('gato.mp3')" y "readWave ('oveja.wav')", respectivamente.

1.1. Código:

Figura 1: Ejecución del primer ejercicio

2. Segundo ejercicio: Dibujar la forma de onda de ambos sonidos

Para dibujar la forma de onda de ambos sonidos he usado la función plot (extractWave ('sonido', from = 1, to = 'ultimaMuestra')).

2.1. Código:

```
# ******** Ejercicio 2: Dibujar la forma de onda de ambos sonidos.
# ********
plot( extractWave(gato, from = 1, to = 393984) )
plot( extractWave(oveja, from = 1, to = 19764) )
```


Figura 2: Ejecutar la primera gráfica: gato.mp3

Figura 3: Gráfica del sonido gato

Figura 4: Ejecutar la primera gráfica: oveja.wav

Figura 5: Gráfica del sonido **oveja**

3. Tercer ejercicio: Obtener la información de las cabeceras de ambos sonidos

Para obtener la información de las cabeceras de cada archivos he usado la función str('sonido').

3.1. Código:

```
# ********* Ejercicio 3: Obtener la información de las cabeceras de
# ambos sonidos. **********
str(gato)
str(oveja)
```


Figura 6: Ejecución del tercer ejercicio

4. Cuarto ejercicio: Unir ambos sonidos en uno nuevo

La función que he ejecutado para unir los dos sonidos ha sido **pastew(gato, oveja, output = "Wave")** y el resultado lo he almacenado en una variable denominada "mezcla".

4.1. Código:

******* Ejercicio 4: Unir ambos sonidos en uno nuevo. ********
mezcla <- pastew(gato, oveja, output = "Wave")</pre>

Figura 7: Ejecución del cuarto ejercicio.

5. Quinto ejercicio: Reproducir la señal obtenida y almacenarla como un nuevo fichero WAV, denominado "mezcla.way"

Primero se muestra el contenido de la variable muestra, a continuación ejecutamos la función plot(extractWave(mezcla, from = 1, to = 412748)) para mostrar el gráfico obtenido (Figura 9). Posteriormente, ejecutamos la función listen (mezcla) para reproducir el sonido. Y por último, almacenamos el sonido en el fichero mezcla.wav.

5.1. Código:

```
# ********** Ejercicio 5: Reproducir la señal obtenida y almacenarla
# como un nuevo fichero WAV, denominado \mezcla.wav". **********
mezcla
plot( extractWave(mezcla, from = 1, to = 412748) )
listen(mezcla)
writeWave(mezcla, file.path("mezcla.wav"))
```


Figura 8: Ejecución del quinto ejercicio.

Figura 9: Gráfica del sonido mezcla

Figura 10: Guardar sonido en el fichero mezcla.wav