Equations de droites du plan

Définition. Etant donnés un vecteur \vec{u} , et une droite d dont A et B sont deux points distincts, \vec{u} est un **vecteur directeur de la droite** d ssi \vec{u} est colinéaire à \overrightarrow{AB} .

Exemple. Si A = (2; -4) et B = (6; 2) alors $\overrightarrow{AB} = {8 \choose -2}$ et $\overrightarrow{u} = {4 \choose -1}$ sont des vecteurs directeurs de (AB).

Définition. Une **équation** est une expression d'une égalité, par ex « $3y + 4x^2 = 7$ ».

Dans ce contexte, les lettres non assignées et définies dans l'expression (ici x et y) sont des variables.

Définition et exemple. Un point (a; b) **vérifie l'équation** « $3y + 4x^2 = 7$ » ssi $3b + 4a^2 = 7$.

Exemples. Le point (-1; 1) vérifie l'équation « $3y + 4x^2 = 7$ » car $3 \times 1 + 4 \times (-1)^2 = 3 + 4 = 7$.

Le point (1; 1) vérifie aussi l'équation « $3y + 4x^2 = 7$ ». Le point (0; 0) ne la vérifie pas car $0 \neq 7$.

Remarque. Une équation à deux variables réelles, correspond donc toujours à un ensemble de points du plan : L'ensemble de tous les points qui rendent l'équation vraie.

Propriété. Equation cartésienne d'une droite

<u>Toute</u> droite du plan d peut être décrite comme l'ensemble des points (x; y) du plan vérifiant une équation de la forme « ax + by + c = 0 » où a et b sont des constantes réelles, <u>pas toutes les deux nulles</u>. La réciproque est vraie.

Définition. L'expression « ax + by + c = 0 » est <u>une</u> équation cartésienne de la droite d.

Remarque. Un point M = (x; y) du plan vérifie : M appartient à la droite $d \Leftrightarrow ax + by + c = 0$

Remarque. Une même droite admet une infinité d'équations cartésiennes équivalentes.

Exemple. $x + y = 0 \Leftrightarrow 2x + 2y = 0 \Leftrightarrow 123x + 123y = 0 \Leftrightarrow \frac{1}{2}x + \frac{1}{2}y = 0$

Propriété. <u>Un</u> vecteur directeur d'une droite d d'équation cartésienne « ax + by + c = 0 » est $\binom{-b}{a}$.

Propriétés et définitions. Equation réduite d'une droite

Toute droite du plan d non verticale admet une équation de la forme « y = mx + p » où m et p sont des constantes réelles. Dans ce cas l'expression « y = mx + p » est <u>l'équation réduite de la droite d.</u> Toute droite du plan d <u>verticale</u> admet une équation de la forme « x = k » où k est une constante réelle. Dans ce cas l'expression « x = k » est <u>l'équation réduite de la droite d.</u>

Propriété. Toute droite admet une unique équation sous forme réduite.

Hypothèse. Soit une droite d non verticale d'équation réduite « y = mx + p »

Définition. m s'appelle le coefficient directeur de la droite d, p s'appelle l'ordonnée à l'origine de d.

Propriété. Le vecteur $\binom{1}{m}$ est un vecteur directeur de la droite d.

Propriété. Le point d'intersection de la droite d avec l'axe $\underline{\text{des ordonnées}}$ a pour coordonnées (0; p).

Propriété. Si m > 0 la droite « monte ». Si m < 0 la droite « descend ». Si m = 0 la droite est horizontale (parallèle à l'axe des abscisses.). m est aussi appelé **pente** de d. m indique combien d'unités la droite monte (ou descend) si on va une unité à droite.

Propriété. Etant donnés $A=(x_A;y_A)$ et $B=(x_B;y_B)$ deux points du plan d'abscisses distinctes $(x_A \neq x_B)$, alors le coefficient directeur de la droite (AB) est $m=\frac{\Delta y}{\Delta x}=\frac{y_B-y_A}{x_B-x_A}$

Propriété. Deux droites du plan peuvent être soit sécantes, soit parallèles (strictement), soit confondues. **Propriété**. Deux droites d'équations réduites « y = mx + p » et « y = m'x + p' » sont parallèles ssi m = m'. De plus, si p = p' alors elles sont confondues.

Propriété. Deux droites d'équations cartésiennes « ax + by + c = 0 » et « a'x + b'y + c' = 0 » sont parallèles ssi ab' - ba' = 0 (ssi $\det \left(\binom{-b}{a}; \binom{-b'}{a'} \right) = 0$).