ALGORITMA GENETIKA

UNTUK OPTIMASI FUNGSI

- Pengertian Dasar
- lacksquare AG untuk optimasi fungsi $R \rightarrow R$
- ightharpoonup AG untuk optimasi fungsi $R^n
 ightharpoonup R$

PENGERTIAN DASAR AG

- Merupakan metode adaptif yang dapat digunakan untuk optimisasi berdasarkan proses seleksi alamiah
- Penggunaan istilah disesuaikan dengan ilmu genetika
- Bertujuan menghasilkan individu keturunan yang lebih baik
- □ Keturunan yang baik diperoleh dari indukinduk yang baik. Keturunan merupakan bentuk dari solusi yang ingin dicapai

PERBEDAAN ALGORITMA GENETIK DAN TEKNIK OPTIMISASI STANDARD

- Bekerja dengan sebuah himpunan pengkodean parameter, bukan himpunan parameter itu sendiri
- Mencari dari suatu populasi titik-titik, bukan satu titik
- Menggunakan informasi fungsi sasaran (FITNESS), tidak menggunakan derivatif
- Menggunakan operasi random dengan aturan perubahan probabilistik, bukan operasi dengan aturan tertentu dalam setiap iterasi

KROMOSOM

- Kandidat solusi suatu masalah dikodekan dalam bentuk barisan simbol-simbol (string) yang disebut Kromosom
- Kromosom terdiri dari elemen-elemen yang berupa simbol-simbol dari himpunan terpilih
- Himpunan yang lazim adalah {0,1} yaitu simbol 0 dan 1 dengan panjang L
- Tiap-tiap kromosom berkorespondensi dengan fungsi sasaran (fitness function)

PENGKODEAN

BINARY ENCODING :

Setiap kromosom dinyatakan dalam barisan bit

0 atau 1

Kromosom 1: 1 0 1 0 1 0 0 1

Kromosom 2: 0 0 1 1 1 0 0 0

Contoh skema binary encoding 3 parameter

Parameter	β_1			β_2				β_3				
Binary number	1	0	1	1	1	1	1	0	0	0	1	1
	gl	g2	g3	g4	g5	g6	g7	g8	g9	g10	gll	g12

EVALUASI

MENGGANTI GENOTIP KROMOSOM MENJADI FENOTIP KROMOSOM, BERARTI MENGGANTI BINARY STRINGS MENJADI REAL VALUE (PROSES DECODING) & MENGHITUNG FITNESS

Formula Umum:

$$\beta_j = a_j + (b_j - a_j) g$$

 a_j = Batas bawah dan b_j = Batas atas

Decoding untuk Binary Encoding:

$$\beta_j = a_j + (b_j - a_j) \sum_{i=1}^{N} g_i 2^{-i}$$

N= banyaknya bit atau gen

SELEKSI

- PROSES SELEKSI DIDASARKAN PADA NILAI FITNESS DARI SETIAP KROMOSOM
- PROSES SELEKSI MENJAMIN INDIVIDU/ KROMOSOM DENGAN KUALITAS (FITNESS)
 YANG LEBIH BAIK CENDERUNG TERPILIH UNTUK PERKAWINAN SILANG DARIPADA YANG BERKUALITAS (FITNESS) LEBIH RENDAH

BEBERAPA METODE SELEKSI

• SELEKSI ROULETTE WHEEL

Dihitung probabilitas kumulatifnya, kemudian dibangkitkan bilangan random [0,1] untuk memilih kromosom yang akan dijadikan induk

Kromosom	Fitness	
A	15	A 27.50/
В	5	B 37,5% 12,5%
С	10	E 12,5%
D	5	C D 12,5%
Е	5	12,576
(i)		(ii)

BEBERAPA METODE SELEKSI

SELEKSI RANKING (RANK SELECTION)

- o populasi dirangking berdasarkan fitnessnya
- o semua kromosom mempunyai kemungkinan untuk terpilih

Kromosom	Fitness	Fitness Baru
В	5	1
D	5	2
E	5	3
С	10	4
A	15	5

LINEAR FITNESS RANKING (LFR)

- UNTUK MENGHINDARI TERJADINYA KONVERGENSI DINI (OPTIMUM LOKAL)
- FORMULA:

$$f(i) = f_{max} - (f_{max} - f_{min}) \left(\frac{R(i) - 1}{N - 1} \right)$$

f(i) = fitness baru

fmax =fitness maksimum

fmin = fitness minimum

R(i) = ranking fitness ke-i

N = banyaknya kromosom

CROSSOVER (KAWIN SILANG)

- Probabilitas suatu individu/kromosom terpilih untuk perkawinan silang dinyatakan dengan pc
- Menurut beberapa peneliti nilai pc yang baik adalah :

$$80\% < pc < 95\%$$

CROSSOVER (2)

• Perkawinan silang 1 titik (titik persilangannya 4)

 Kromosom Orangtua 1 :
 0
 0
 0
 0
 0
 0
 0

 Kromosom Orangtua 2 :
 1
 1
 1
 1
 1
 1
 1

 Keturunan 1 :
 0
 0
 0
 0
 1
 1

 Keturunan 2 :
 1
 1
 1
 1
 0
 0

• Perkawinan silang 2 titik (titik persilangannya 2 & 4)

 Kromosom Orangtua 1 :
 0
 0
 0
 0
 0
 0
 0

 Kromosom Orangtua 2 :
 1
 1
 1
 1
 1
 1
 1

 Keturunan 1 :
 0
 0
 1
 1
 0
 0
 1
 1

 Keturunan 2 :
 1
 1
 0
 0
 1
 1

CROSSOVER (3)

• Perkawinan silang seragam (titik persilangannya 2, 3, 5 & 7)

Kromosom Orangtua 1 :	0	0	0	0	0	0	0	0
Kromosom Orangtua 2 :		1	1	1	1	1	1	1
Keturunan 1 :	0	0	1	0	0	1	1	0
Keturunan 2 :		1	0	1	1	0	0	1

MUTASI

- Mutasi merupakan proses mengubah nilai dari satu atau beberapa gen dalam satu kromosom
- Untuk menghindari terjadinya konvergensi dini karena proses pemilihan kromosom cenderung terus pada kromosom yang baik saja
- o Proses mutasi tidak selalu menghasilkan fitness yang lebih baik, sehingga probabilitas mutasi (pm) dipilih angka yang kecil
- o Contoh mutasi pada bit ke-4 dan ke-6

Kromosom sebelum mutasi :	1	0	0	1	0	0	1	1
Kromosom setelah mutasi :	1	0	0	0	0	1	1	1

MUTASI (2)

PENENTUAN PROBABILITAS MUTASI

- OPm Mengikuti Distribusi Uniform(rate=bilangan kecil)
- OPm Mengikuti Distribusi Gaussian (mean = 0)

UPDATE GENERASI

- *update secara generasi*: mengganti seluruh kromosom pada generasi sebelumnya dengan kromosom yang diperoleh pada proses seleksi, perkawinan silang dan mutasi
- *update secara kontinu* mengizinkan orangtua dan anak untuk bercampur dalam satu generasi melalui strategi elitism, yaitu melakukan copy terhadap kromosom-kromosom yang baik sehingga tetap terpelihara pada generasi berikutnya

DIAGRAM ALIR

AG UNTUK OPTIMASI $R \rightarrow R$

maksimumkan
$$f(x)$$
 untuk $x \in \Re$
$$f(x) = \frac{1}{(x-0.3)^2 + 0.01} + \frac{1}{(x-0.9)^2 + 0.04} - 6$$

Cari nilai Maksimum f(x) pada interval [-3,3]

- Tipe kromosom : bit string {0,1}
- o Jumlah individu tiap generasi: 200
- $p_c: 0,9$
- opm: 0.005
- Metode seleksi : seleksi roda roulette
- o Kriteria berhenti : jika jumlah generasi telah mencapai 1000

Grafik fungsi
$$f(x) = \frac{1}{(x-0.3)^2 + 0.01} + \frac{1}{(x-0.9)^2 + 0.04} - 6$$
 pada interval [-3, 3]

PROGRAM MATLAB 7.8

```
function fitnes = fungsi1(x,a)
fitnes = abs(1/(1./((x-0.3).^2+0.01)+1./((x-0.9).^2+0.04)-6+a));
```

```
function programutama
a=0.005:
Generations=1000:
PopulationSize=200;
PopulationType='bitstring';
%FitnessScalingFcn=@fitscalingrank;
CrossoverFcn=@crossoversinglepoint;
EliteCount=2:
MutationFcn=@mutationadaptfeasible;
OPTIONS=gaoptimset('SelectionFcn', @selectionroulette, 'CrossoverFraction', 0.9, 'PlotFcns', @gaplotbestf);
[x,fitnes] = ga(@(x) fungsi1(x,a),1,[],[],[],[],-3,3,[],OPTIONS)
y=1./((x-0.3).^2+0.01)+1./((x-0.9).^2+0.04)-6;
Nilai maksimum fungsi = y
Nilai maksimum diperoleh pada x = x
figure (1)
xsatu=-3:0.01:3:
ysatu=1./((xsatu-0.3).^2+0.01)+1./((xsatu-0.9).^2+0.04)-6;
plot(xsatu, ysatu, 'r-')
```

OUTPUT MATLAB

Command Window

```
Optimization terminated: average change in the fitness value less than options

Nilai_maksimum_fungsi = 96.5014

Nilai_maksimum_diperoleh_pada_x = 0.3004

>> |
```

AG UNTUK OPTIMASI $\mathbb{R}^n \to \mathbb{R}$

maksimumkan f(x, y) untuk $x, y \in \Re$

$$f(x,y) = 3(1-x)^2 e^{-x^2 - (y+1)^2} - 10\left(\frac{x}{2} - x^3 - y^4\right) e^{-x^2 - y^2} - \frac{e^{-(x+1)^2 - y^2}}{3}$$

Cari nilai Maksimum f(x,y) pada interval [-3,3]

- Tipe kromosom : bit string {0,1}
- o Jumlah individu tiap generasi: 200
- $op_c: 0,9$
- $p_{m}:0,05$
- o Metode seleksi: seleksi roda roulette
- Kriteria berhenti : jika jumlah generasi telah mencapai 1000

Grafik fungsi f(x, y) dengan -3 < x, y < 3

PROGRAM MATLAB 7.8

```
function programutama2
a=0.005:
Generations=1000:
PopulationSize=100;
PopulationType='bitstring';
%FitnessScalingFcn=@fitscalingrank;
CrossoverFcn=@crossoversinglepoint;
EliteCount=2:
MutationFcn=@mutationadaptfeasible;
OPTIONS=gaoptimset('SelectionFcn',@selectionroulette,'CrossoverFraction',0.9,'PlotFcns',@gaplotbestf);
[out,fitnes] = ga(@(v) fungsi2(v,a),2,[],[],[],[],[-3,-3],[3,3],[],OPTIONS);
x=out (1);
 y=out (2);
z=3*((1-x).^2).*exp(-x.^2-(y+1).^2)-10*(x/2-x.^3-y.^4).*exp(-x.^2-y.^2)-(exp(-(x+1).^2-y.^2))/3;
Nilai maksimum fungsi = z
Nilai maksimum diperoleh pada x = x
Nilai maksimum diperoleh pada y = y
figure(2)
%xst=-3:0.01:3:
[xst,yst] = meshgrid(-3:.01:3);
%vst=-3:0.01:3;
zst=3*((1-xst).^2).*exp(-xst.^2-(yst+1).^2)-10*(xst/2-xst.^3-yst.^4).*exp(-xst.^2-yst.^2)-(exp(-(xst+1).^2)-10*(xst/2-xst.^3-yst.^4).*exp(-xst.^2-yst.^2)-(exp(-(xst+1).^2)-10*(xst/2-xst.^3-yst.^4).*exp(-xst.^2-yst.^2)-(exp(-(xst+1).^2)-10*(xst/2-xst.^3-yst.^4).*exp(-xst.^2-yst.^2)-(exp(-(xst+1).^2)-10*(xst/2-xst.^3-yst.^4).*exp(-xst.^2-yst.^2)-(exp(-(xst+1).^2)-10*(xst/2-xst.^3-yst.^4).*exp(-xst.^2-yst.^2)-(exp(-(xst+1).^2)-10*(xst/2-xst.^3-yst.^4).*exp(-xst.^2-yst.^2)-(exp(-(xst+1).^2)-10*(xst/2-xst.^3-yst.^4).*exp(-xst.^2-yst.^2)-(exp(-(xst+1).^2)-10*(xst/2-xst.^3-yst.^4).*exp(-xst.^2-yst.^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(exp(-(xst-1).^2)-(e
mesh(xst,yst,zst)
%surf(xst, yst, zst)
grid on
axis([-3 \ 3 \ -3 \ 3 \ -5 \ 10])
colormap prism
```

OUTPUT MATLAB

Command Window

```
Optimization terminated: average change in the fitness value
Nilai_maksimum_fungsi =
    9.2764
Nilai_maksimum_diperoleh_pada_x =
   -0.3652
Nilai_maksimum_diperoleh_pada_y =
   -1.2633
```

>>

AG UNTUK OPTIMASI MODEL LINEAR

- o Dipunyai data time series KURS rupiah terhadap dolar AS
- Dibangun model linear AR(2)

$$x_t = \varphi_0 + \varphi_1 x_{t-1} + \varphi_2 x_{t-2} + \varepsilon_t$$

- o Dilakukan estimasi parameter menggunakan AG
- Diperoleh output berikut :

$$x_t = 0.3046 + 0.0724 x_{t-1} + 0.9274 x_{t-2}$$

• Ukuran Kebaikan :

$$RMSE = 0.1038$$

PLOT DATA ASLI & PREDIKSI

Terima Kasih