YR 12 ADV. T1 2019 Solutions	37 marks
1. 30,35,40,45, a=30 d=5	
$\frac{1}{21} = \frac{30 + (21 - 1) \times 5}{21 + (21 - 1) \times 5}$	
$= 130 \text{ min}$ 2 hrs 10 min $(ii) S_{21} = 21 [2(30) + 20 \times 5]$	
= 3½ × 160 = 1680 min } 28 hrs	
· · · · · · · · · · · · · · · · · · ·	(4)
$2.0 A = 800 (1+0.1)^{30}$ = \$13959.52	
$\$ 13960 $ (ii) A, = $\$ 00 (1-1)^{30}$	
(ii) $A_1 = 800 (1-1)^{30}$ $A_2 = 800 (1-1)^{29}$ $A_3 = 800 (1-1)^{28}$	
$A_{30} = 800 (1.1)'$	
$= 800 \times 1.1(1.1^{30}-1)$ $= 144754.74$	4

= \$144755

6% pa = 0.06 pa = 0.005 per month $A_1 = 100000 \times 1.005 - M$ \$ (100 500 - m) A, x 1.005 - M (100000 × 1.005 - M) 1.005 - M 100000 (1.005)2-1.005M-M A2 x 1.005 - M $(100000(1.005)^2 - 1.005M - M)1.005 - M$ $100000 (1.005)^3 - 1.005^2 m - 1.005 m - m$ $(00000(1.005)^3 - M(1+1.005+1.005^2)$ $A_n = 100000 (1.005)^n - M(1+1.005+1.005^2+...+1.005$ $A_n = 100000 (1.005)^n - M (1.005^{n-1})$ After 144 payments An = 0 $0 = 100000 \times 1.005^{144} - M(1.005^{144})$ 0.005 100 000 × 1.005 144 × 0.005 = \$ 975.85

Particular of Particular

(ii)
$$\frac{dy}{dx} = 12x - 3x^{2}$$
For local max m $\frac{dy}{dx} = 0$

$$12x - 3x^{2} = 0$$

$$3x(4-x) = 0$$

$$x = 0, 4$$

When
$$x = 4$$
, $M = (4,32)$ $y = 6(4)^2 - (4)^3$ $= 32$

6.
$$y = x^3 - 6x^2 + 9x - 4$$
 $dy = 3x^2 - 12x + 9$
 $dx^2 = 6x - 12x$

(i) For stat. pts. $dy = 0$
 $3(x^2 - 4x + 3) = 0$
 $(x - 3)(x - 1) = 0$
 $(x - 3)(x - 1) = 0$
 $(x - 3)(x - 1) = 0$

... Minh IP at $(3, -4)$

... Minh IP at $(3, -4)$

... Max TP at $(1, 0)$

(ii) For inflexion pt. $dx = 0$
 $6x - 12 = 0$

(iii) When $x = 5$, $y = 5^3 - 6(5)^2 + 9(5) - 4$

= 16

... absolute max "value is 16

(iv)

