

DATA VISUALIZATION

ggplot2 & Grammar of Graphics

CONTENT

- Credits & References
- Pleas for Data Visualization
- The Grammar of Graphics
 - Basic Layers (data, aesthetics, geometry)
 - Advanced Layers (statistics, scales, facets, coordinates, themes)
- What to plot? Important visualizations for different applications

CREDITS

This slide deck is heavily inspired by the workshop "Plotting anything with ggplot2" by Tomas Lin Pedersen:

- Workshop video part 1
- Workshop video part 2
- Slides

REFERENCES

Wickham, Hadley. ggplot2. Springer Science + Business Media, LLC, 2016. Online verfügbar: https://ggplot2-book.org/

Wilke, C. Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures. First edition, O'Reilly Media, 2019.

Online verfügbar: https://clauswilke.com/dataviz/index.html

A ggplot2 Tutorial for Beautiful Plotting in R

https://cedricscherer.netlify.app/2019/08/05/a-ggplot2-tut orial-for-beautiful-plotting-in-r/

PLEAS FOR DATA VISUALIZATION

PLEAS FOR DATA VISUALIZATION

Find two examples here

THE GRAMMAR OF GRAPHICS BASIC LAYERS

- In the **Grammar of Graphics**, a visualization consists of a minimum of three layers:
 - o Data
 - Mapping of data to aesthetic elements
 - Geometric shapes
- ggplot2 implements this idea → Visualizations are built as a stack of theses layers


```
What is the data?
ggplot(covid))+
    aes(x = date, y = new_cases_smoothed_per_million) +
    geom_line()
                            Which geometric shape represents our data?
    How to map the data to aesthetics?
```

THE GRAMMAR OF GRAPHICS ALL LAYERS

THE GRAMMAR OF GRAPHICS

COMPOSITION CONCEPT

Any data visualization

THE GRAMMAR OF GRAPHICS

COMPOSITION CONCEPT

Only those 3 are needed! Everything else has a default!

THE DATA LAYER

- Data must be provided as a data frame (tibble)
- Contains only
 - necessary variables
 - relevant rows and
 - o the right level of aggregation
 - pre-computed statistics
- Toolset for data transformation (dplyr)

- The aesthetics mapping (aes) links variables in the data to graphics properties
- Most important: What should be shown on x and y-axis?
- More mappings:
 - Line color & style
 - Fill color
 - Point size & shape
 - Alpha
 - 0 ..

THE STATISTICS LAYER

- If not pre-computed, statistics can be calculated by the visualization
- All geometries are assigned a default statistic (and vice versa)
- Example statistics:
 - identity → The value provided as is
 - count → Count rows
 - \circ bin \rightarrow Bin continuous variables
 - o density → Estimate density
 - Many more...

Check out: https://ggplot2tutor.com/scales

- All aesthetics mappings have a scale attached
- A scale maps values in the data to the <u>x and</u>
 <u>v-axis</u>, <u>colors</u> or <u>sizes</u> for shapes
- All scale functions follow the same naming scheme:
 - o scale_<aes>_<type>()
- We use scales mainly for:
 - Color palettes
 - Axis labeling (breaks, formatting)

THE GEOMETRY LAYER

- The geometry is central to how the plot visualizes data
- Depending on the geometry, different aesthetics can or must be mapped
- We can add more than one geometry to a plot
- geom_<type>()

THE FACETS LAYER

- Create small panels with the samevisualizations for different data
- Panel logic determined by variable in the data
- Good to avoid overplotting and maintain readability!
- facet_wrap() vs facet_grid()

THE COORDINATES LAYER

- Specify the coordinate system underlying the visualization:
 - Cartesian (default)
 - Polar
- Allows for changing axis limits (just like scales)
- coord_flip() is useful to quickly flip x and y

We will rarely use this layer!

THE THEME LAYER

Check out: https://ggplot2tutor.com/theme

- Style the plot
 - Background colors
 - Fonts (axis, titles)
 - Legends
 - 0 ...
- There are predefined themes for us to use:
 - o theme_bw()
 - o theme_light()
 - o theme_dark()

WHAT TO PLOT?

TRENDS & DEVELOPMENTS

- x-axis displays the time (usually), the y-axis some value over time:
 - Line chart
 - Area Chart
 - One vs. multiple series
 - Facets
- Example: Covid19

WHAT TO PLOT?

AMOUNTS & PROPORTIONS

Read more:

https://clauswilke.com/dataviz/visualizing-proportions.html

■ A geometry's size (height, width, area) represents values in the data for easy comparison:

- Bar Chart
 - next to each other
 - stacked
- o Pie chart

Read more:

https://clauswilke.com/dataviz/histograms-density-plots.html

- How are observations of a variable distributed?
 - o Histogram (one vs. multiple series)
 - Density plot
 - o Ridgeline Plots
 - Box plots

- What associations between variables can we find in the data?
 - Point diagram (scatter plot)
 - Trendlines
 - Heat maps

