Lezione 3 Geometria I

Federico De Sisti2024-03-21

1 Nella lezione precedente...

Abbiamo introdotto i sottospazi affini di (A, V) come i sottospazi del tipo

$$p + W$$
 $W \subseteq V$ sottospazio vettoriale.

Ricordiamo anche che $p + W = q + W \Leftrightarrow \overrightarrow{PQ} \in W$

2 Nuova lezione

Osservazione

Se $\Sigma_1 = p_1 + W_1$, $_2 = p_2 + W_2$ sono sottospazi affini , la loro intersezione, se non vuota, è un sottospazio affine. Infatti $p \in \Sigma_1 \cap \Sigma_2$

$$\Sigma_1 \cap \Sigma_2 = p + W_{12}.$$

Lemma 1

$$\begin{array}{l} \overrightarrow{\emptyset} \neq S \subset A & p,q \in S \\ H_p = \{\overrightarrow{px} \mid x \in S\} \ H_q = \{\overrightarrow{qy} \mid y \in S\} \\ Allora < H_p > = < H_q > e \ p + < H_p > = q + < H_q > \\ (sottospazio \ generato \ da \ S) \end{array}$$

Dimostrazione

$$\begin{array}{l} V_0 = \overrightarrow{pq} \quad v_0 \in H_p \quad -v_0 = \overrightarrow{qp} \in H_q \\ H_p \ni \overrightarrow{px} = \overrightarrow{pq} + \overrightarrow{qx} = v_0 + \overrightarrow{qx} \in < H_q > \\ H_p \subseteq < H_q > \ \Rightarrow \ < H_p > \subseteq < H_q > \\ H_q \ni \overrightarrow{qp} = \overrightarrow{qp} + \overrightarrow{py} \in < H_q > \Rightarrow < H_q > \subseteq < H_p > \\ Quindi \quad ; H_p > = < H_q > \\ \overrightarrow{pq} \in < H_p > = < H_q > \\ p + < H_p > = q + < H_q > \end{array}$$

Nomenclatura 1

 Σ_1, Σ_2 sottospazi affini

 $\Sigma_1 \vee \Sigma_2 := sottospazio generato da \Sigma_1 \cup \Sigma_2.$

Lemma 2

Siano $\Sigma_i = p_i + W_i$, i = 1, 2 sottospazi affini. Allora (a) $\Sigma_1 \cap \Sigma_2 \neq \emptyset \Leftrightarrow \overrightarrow{p_1 p_2} \in W_1 + W_2$ (b) $\Sigma_1 \vee \Sigma_2 = p_1 + (W_1 + W_2 + \langle \overrightarrow{p_1 p_2} \rangle)$

Dimostrazione

(a)
$$p_0 \in \Sigma_1 \cap \Sigma_2$$
 allora $\Sigma_1 = p_0 + W_1$ $_2 = p_0 + W_2$
 $\exists w_i \in W_i, i = 1, 2$ $t.c$
 $p_1 = p_0 + W_1, p_2 = p_0 + W_2$
 $\overline{p_1 p_2} = w_2 - w_1 \in W_1 + W_2$
 $Viceversa, se \ \overline{p_1 p_2} = w_1 + w_2, w_1 \in W_1, w_2 \in W_2$
 $p_2 = p_1 + \overline{p_1 p_2} = p_1 + w_1 + w_2$
 $p_2 - w_2 = p_1 + w_1 \in \Sigma_1 \cap \Sigma_2$
 $\overline{p_1 x} \in W_1 \text{ se } x \in \Sigma_1$
 $p_2 = w_1 + w_2 \in \Sigma_1$
 $p_3 = w_1 + w_2 \in \Sigma_1$

$$\overrightarrow{p_1x} \in \overrightarrow{p_1p_2} + W_2 \quad (\overrightarrow{p_1x} = \overrightarrow{p_1p_2} + \overrightarrow{p_2x}).$$

Dunque la giacitura di $\Sigma_1 \vee \Sigma_2$ è

$$W_1 + W_2 + \langle \overrightarrow{p_1 p_2} \rangle.$$

3 Posizioni Reciproche di sottospazi affini

Definizione 1

Siano Σ_1, Σ_2 sottospazi affini di (A, V) di giacitura rispettivamente W_1, W_2 $Diciamo\ che$

- 1) Σ_1, Σ_2 sono **incidenti**, se $\Sigma_1 \cap \Sigma_2 \neq \emptyset$
- $(2)\Sigma_1, \Sigma_2 \text{ sono } \textbf{paralleli } \text{se } W_1 \subseteq W_2 \text{ } p \text{ } W_2 \subseteq W_1$
- 3) Σ_1, Σ_2 sono **sghembi** se $\Sigma_1 \cap \Sigma_2 = \emptyset$ e $W_1 \cap W_2 = \{0\}$

Osservazione

Queste posizioni non sono mutuamente esclusive e non costituiscono tutte le possibilità

Esercizi Elementari 4

Esercizio 1

Dire se $p = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ appartiene alla retta per $\begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix}$ e direzione $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ Svolgimento Scriviamo l'equazione parametrica della retta

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

$$\begin{pmatrix} 1\\0\\2 \end{pmatrix} = \begin{pmatrix} 1\\5\\4 \end{pmatrix} + t \begin{pmatrix} 1\\1\\1 \end{pmatrix} \qquad \begin{cases} t = 0\\t = -5 \end{cases}$$

alternativamente avrei potuto cercare le coordinate cartesiane

Esercizio 2

Scrivere le equazioni parametriche e cartesiane per il piano contenente

$$A = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, C = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

$$P = A + t\overrightarrow{AB} + s\overrightarrow{AC}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$\left(\begin{smallmatrix} x_1-1\\x_2\\x_3\end{smallmatrix}\right)\in<\left(\begin{smallmatrix} 0\\1\\0\end{smallmatrix}\right),\left(\begin{smallmatrix} 0\\1\\1\end{smallmatrix}\right)>$$

$$\det \left(\begin{smallmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ x_1 - 1 & x_2 & x_3 \end{smallmatrix} \right) = 0 \quad \Rightarrow \quad x_1 = 1$$

Esercizio 3

Scrivere equazioni per il piano identificato dalla retta
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
e dal punto $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Svolgimento

modo 1, scelgo due punti distinti sulla retta e riduco al punto precedente modo 2, sia $q = \begin{pmatrix} 1\\2\\3 \end{pmatrix}$, $v = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$ e $O = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$

considero il piano
$$P = a + tv + s\overrightarrow{Oq}$$

considero il piano
$$P = q + tv + sC$$

consider il piano
$$P = q + tv + s\overrightarrow{Oq}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{3} \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} \frac{1}{2} \\ \frac{1}{3} \end{pmatrix}$$

$$det \begin{pmatrix} x_1 - 1 & x_2 - 2 & x_3 - 3 \\ 0 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix} = 0$$

$$3(x_1 - 1) - (x_3 - 3) = 0$$

$$3(x_1 - 1) - (x_3 - 3) = 0$$

$$3x_1 - x_3 = 0$$

Fascio di piani di asse una retta r è l'insieme dei piani che contengono r

$$r = \begin{cases} a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 = 0\\ b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 = 0 \end{cases}$$

Equazione del fascio

$$\lambda(a_1x_1 + a_2x_2 + a_3x_3 + a_4) + \mu(b_1x_1 + b_2x_2 + b_3x_3 + b_4) = 0 \quad \lambda, \mu \in \mathbb{K}.$$

Ogni piano del fascio si ottiene con una coppia $(\lambda,\mu)\in\mathbb{K}^2$. Coppie proporzioneali per un fattore non nulla invidiano lo stesso piano

Lezione 4 Geometria I

Federico De Sisti 2024-03-16

1 Formula di Grassmann affine

Richiami dalla scorsa lezione

Dati $\Sigma_i = p_i + W_i$, i = 1, 2 sottospazi affini (di (A, V, +)) allora:

$$\Sigma_1 \cap \Sigma_2 \neq \emptyset \Leftrightarrow \overrightarrow{p_1 p_2} \in W_1 + W_2.$$

$$\Sigma_1 \vee \Sigma_2 = p_1 + (W_1 + W_2 + \langle \overrightarrow{p_1 p_2} \rangle).$$

Inoltre Σ_1, Σ_2 si dicono:

incidenti se $\Sigma_1 \cap \Sigma_2 \neq \emptyset$

paralleli se $W_1 \subseteq W_2$ o $W_2 \subseteq W_1$

sghembi se $\Sigma_1 \cap \Sigma_2 = \emptyset$ e $W_1 \cap W_2 = \{0\}$

Proposizione 1 (Fromula Grassmann per spazi affini)

Siano Σ_1, Σ_2 sottospazi affini di A, Allora

$$dim(\Sigma_1 \vee \Sigma_2) \leq dim\Sigma_1 + dim\Sigma_2 - dim(\Sigma_1 \cap \Sigma_2).$$

e vale l'uguaglianza se Σ_1, Σ_2 sono incidenti o sghembi si usa la notazione $dim(\emptyset) = -1$

Dimostrazione

- Supponiamo Σ_1, Σ_2 incidenti, allora esiste

$$\begin{aligned} p_0 &\in \Sigma_1 \cap \Sigma_2 \\ \Sigma_1 &= p_0 + W_1, \Sigma_2 = p_0 + W_2 \\ \Sigma_1 \cap \Sigma_2 &= p_0 + W_1 \cap W_2, \Sigma_1 \vee \Sigma_2 = p_0 + W_1 + W_2 \end{aligned}$$

dunque vale l'uguaglianza per Grassman vettoriale

- Sia ora $\Sigma_1 \cap \Sigma_2 = \emptyset$ allora $\Sigma_i = p_i + W_i$ i = 1, 2 risulta $\overline{p_1 p_2} \notin W_1 + W_2$ (per lemma)

$$dim(\Sigma_1 \vee \Sigma_2) = dim(W_1 + W_2 + \langle \overrightarrow{p_1 p_2'}) = dim(W_1 + W_2) + 1 \le$$

$$\le dim(W_1) + dim(W_2) - (-1) = dim(W_1) + dim(W_2) + dim(\Sigma_1 \cap \Sigma_2)$$

e vale l'uguaglianza se e solo se $dim(W_1) + dim(W_2) = dim(W_1 + W_2)$ ovvero $W_1 \cap W_2 = 0$ ovvero se Σ_1, Σ_2 sono sghembi \square

Proposizione 2

siano Σ_1, Σ_2 sottospazi affini di $\mathbb{A}^n(\mathbb{K})$ definiti dai sistemi lineari

$$A_i X = b_i \ i = 1, 2.$$

Allora:

(a) Σ_1, Σ_2 sono incidenti se e solo se

$$rk \begin{pmatrix} A_1 & b_1 \\ A_2 & b_2 \end{pmatrix} = rk \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}.$$

detto r tale rango, $dim(\Sigma_1 \cap \Sigma_2) = n - r$

(b) Σ_1, Σ_2 sono sghembi se e solo se

$$rk\frac{\begin{pmatrix} A_1 & b_1 \\ A_2 & b_2 \end{pmatrix}}{} \geq rk\frac{\begin{pmatrix} A_1 \\ A_2 \end{pmatrix}}{} = n.$$

(c) Se

$$rk\frac{\begin{pmatrix} A_1 & b_1 \\ A_2 & b_2 \end{pmatrix}}{} \geq rk\frac{\begin{pmatrix} A_1 \\ A_2 \end{pmatrix}}{} = r < n.$$

allora Σ_1 (rispetto a Σ_2) contiene un sottospazio affine di dimensione n-r parallelo a Σ_2 (rispetto a Σ_1)

Dimostrazione

- (a) $\Sigma_1 \cap \Sigma_2 \neq \emptyset \Leftrightarrow il \ sistema \ \grave{e} \ compatibile \ quindi \ tutto \ segue \ da \ Roch \grave{e}$ -Capelli
- (b) la disuguaglianza tra i ranghi dice che $\Sigma_1 \cap \Sigma_2 = \emptyset$;

il fatto che
$$rk\left(\frac{A_1}{A_2}\right) = n$$
 implica che $W_1 \cap W_2 = 0$

- (c) Di nuovo là disuguaglianza dei ranghi implica $\Sigma_1 \cap \Sigma_2 = \emptyset$;
- Se ora $W_1 \cap W_2 = W$ allora $dim(W_1 \cap W_2) = n r$

Scelto $p_1 \in \Sigma_1$ risulta

$$p_1 + W \subset \Sigma_1$$
 $(W_1 \cap W_2 = W \text{ sottospazio di } W_1)$

$$e\ W\subset W_2\Rightarrow p_1+W\ \ \grave{e}\ parallelo\ a\ \Sigma_2\ \ e\ dim(p_1+W)=dim(W)=n-r\ \Box$$

Esempio

 $\mathbb{A} \pi_1, \pi_2 \ piani \ distinti$

$$A_1, A_2$$
 vettori riga $(A_1 = (a_{11} \ a_{12} \ a_{13})$

$$C = \begin{pmatrix} A_1 & b_1 \\ A_2 & b_2 \end{pmatrix} \in M_{2,4}(\mathbb{R})$$

 $piani\ distinti \Rightarrow rk(C) = 2$

$$rg\left(\frac{A_1}{A_2}\right)=1 \ \Rightarrow \pi_1\cap\pi_2=\emptyset$$
 piani paralleli poiché $W_1=W_2$

 $\mathbb{A}^4, \pi_1\pi_2$ piani distinti tali che $rk(A_i|b_i)=2$

$$C = \begin{pmatrix} A_1 & b_1 \\ A_2 & b_2 \end{pmatrix} \in M_{45} \ rk(C) \le 4.$$

$\operatorname{rk}\left(\frac{A_1}{A_2}\right)$	rk(C)	$\pi_1 \cap \pi_2$
4	4	{p}
3	4	\emptyset e W_1, W_2 hanno una direzione in comune
3	3	r
2	3	\emptyset

Lezione 5 Geometria I ebbene sì, sta accadendo davvero

Federico De Sisti 2024-03-17

V, V' spazi vettoriali su $\mathbb{K}, (A, V, +), (A', V', +)$ spazi affini

Definizione 1

 $f:A\to A'$ è un'applicazione affine se esiste un'applicazione lineare $\phi:$ $V \rightarrow V'$ tale che:

$$f(p+v) = f(p) + \phi(v) \quad \forall p \in A, \forall v \in V.$$

$$\begin{pmatrix} ovvero & f(Q) = f(P) + \phi(\overrightarrow{PQ}) & \forall P,Q \in A \\ \hline f(P)f(\overrightarrow{Q}) = \phi(\overrightarrow{PQ}) & \forall P,Q \in A \end{pmatrix}$$

Nomenclatura

Se f è biunivoca, f è detto isomorfismo affine

Un isomorfismo affine $A \to A$ è detto affinità. Oss

vedremo che le affinità formano un gruppo rispetto alla composizione di applicazione che denoteremo come Aff(A)

Esempio

 $Ov_1...vn$ rifermento affine in A

$$f: \mathbb{A} \to \mathbb{A}^n$$
 $f(p) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ $e \quad \overrightarrow{OP} = \sum_{i=1}^n x_i v_i.$

Dico che f è un isomorfismo affine con associato isomorfismo lineare

$$\varphi(\sum_{i=1}^{n} x_{i} v_{0}) = \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}$$

$$Verifichiamo che \overrightarrow{f(P)f(Q)} = \varphi(\overrightarrow{PQ})$$

$$\overrightarrow{OQ} = \sum_{i=1}^{n} y_i v_i \quad f(Q) = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \overrightarrow{f(P)f(Q)} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} - \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 - x_1 \\ \vdots \\ y_n - x_n \end{pmatrix} = \begin{pmatrix} y_1 - x_1 \\ \vdots \\ y_n - x_n \end{pmatrix}$$

$$\varphi(\sum_{i=1}^{n}(y_i-x_i)v_i)=\varphi(\overrightarrow{OQ}-\overrightarrow{OP})=\varphi(\overrightarrow{PQ})$$

3 Esempi di affinità

I Transazioni

Fissato $v \in V$ definiamo

 $t_v: A \to A, \quad t_v(P) = p + v$ Dico che t_v è un'affinità con assoviato isomorfismo Id_V dato che:

$$t_V(p+w) = (p+w) + v = p + (w+v) = p + (v+w) = (p+v) + w = (p+v)$$

 $= t_V(p) + w = t_V(p) + \varphi(w) \leftarrow Id_V$ la biunicità segue dagli assiomi per A II Simmetria rispetto ad un punto

$$\sigma_C(p) = C - \overrightarrow{CP}$$

Dico che σ_C è un'affinità con parte lineare $\varphi = -Id$

$$\sigma_C(p+v) = c - \overrightarrow{CQ} \quad Q = p+v \quad v = \overrightarrow{PQ}$$

$$\sigma_C(p+v) = c - \overrightarrow{CQ} \quad Q = p+v \quad v = \overrightarrow{PQ}$$

$$\sigma_C(p) + \phi(v) = c - \overrightarrow{CP} - v = c - \overrightarrow{CP} - \overrightarrow{PQ} = c - \overrightarrow{CQ}$$

III Otetia di centro O e fattore $\gamma \in R \setminus \{0\}$

$$\omega_{O,\gamma}(p) = O + \gamma \overrightarrow{OP}.$$

è un'affinità con parte lineare $\phi = \gamma I d_V$

$$\omega_{O,\gamma}(p+v) = O + \gamma \overrightarrow{OQ} = O + \gamma (\overrightarrow{OP} + \overrightarrow{PQ}) = (O + \gamma \overrightarrow{OP}) + \gamma \overrightarrow{PQ} = \omega_{O,\gamma}(p) = \varphi(v)$$

Lemma 1

Fissato $O \in \mathbb{A}$, per ogni $O' \in \mathbb{A}$ e per ogni $\varphi \in GL(V)$ esiste un'unica affinità tale che f(O) = O' e che ha φ come isomorfismo associato

Dimostrazione

esistenza

Pongo
$$f(P) = O' + \varphi(\overrightarrow{OP} \quad f(O) = O' + \varphi(\overrightarrow{OQ}) = O' + O = O'$$

 $f(p+v) = O' + \varphi(\overrightarrow{OQ}) = O' + \varphi(\overrightarrow{OP} + \overrightarrow{PQ}) = O' + \varphi(\overrightarrow{OP}) + \varphi(\overrightarrow{PQ}) = f(p) + \varphi(v)$
dove abbiamo usato $Q = p + v \quad v = \overrightarrow{PQ}$

unicità

Supponiamo che g abbia le stesse proprietà di f, allora

$$\overrightarrow{f(O)f(p)} = \varphi(\overrightarrow{OP}) = \overrightarrow{g(O)g(p)} = \overrightarrow{O'f(p)} = \overrightarrow{f(O)g(p)} \Rightarrow f(p) = g(p)$$

$$\Rightarrow f = g$$

Definizione 2

Definiamo $Aff_O(A) = \{ f \in Aff(A) | f(O) = O \} \le Aff(A)$ tale gruppo è anche isomorfo a GL(V)

Lemma 2

Sia $O \in A, f \in Aff(A)$ Esistono $v, v' \in V$ e $g \in Aff_O(A)$, univocamente determinate da f tale che

$$f = g \circ t_v = t_{v'} \circ g.$$

Dimostrazione

poniamo $v = -\overrightarrow{Of^{-1}}, \quad v' = \overrightarrow{Of(O)}, \quad g = f \circ t_{-v'}, \quad g' = t_{-v} \circ f$ Allora

$$(g \circ t_v) = (f \circ t_{-v})t_v = f \circ (t_{-v} \circ t_v) = f.$$

quindi vale $f = g \circ t_v$

$$t_{v'} \circ g' = t_{v'} \circ (t_{-v'} \circ f) = (t_{v'} \circ t_{-v'}) \circ f = f.$$

Vedremo che g = g', per cui ho dimostrato anche $f = t_{v'} \circ g$

$$g(O) = (f \circ t_{-v})(O) = f(O - v) = f(O + \overrightarrow{Of^{-1}(O)}) =$$

$$= f(O + f^{-1}(O) - O) = f(f^{-1}(O)) = f(O + f^{-1}(O)) = 0$$

$$g'(O) = t_{-v}(f(O)) = f(O) - v' = f(O) - \overrightarrow{Of(O)} = 0.$$

d'altra parte g, g' hanno lo stesso isomorfismo associato e mandano entrambi O in O, dunque coincidono \square Descrizione in coordinate delle affinità di \mathbb{A}^n

$$\delta(x) = f(O) + L_A X = AX + b.$$

$$b = f(O) \quad \varphi = L_A \quad L_A : \mathbb{K}^n \to \mathbb{K}^n$$

$$X \to AX$$

con $det(A) \neq 0$ ovviamente Viceversa, per $A \in GL(n, \mathbb{K}), b \in \mathbb{K}^n$

$$f_{A,b} = AX + b.$$

 $f_{A,b}$ è un'affinità con parte lineare ${\cal L}_A$

$$f_{A,b}(x+v) = f_{A,b}(x) + \varphi(v)$$

$$f_{A,b}(x+y) = f_{A,b}(x) + L_A y$$

$$f_{A,b}(x+y) = A(x+y) + b = AX + AY + b = (AX+b) + AY = f_{A,b}(x) + L_A(y).$$
 Aff $(\mathbb{A}^n = \{f_{A,b} | A \in GL(n, \mathbb{K}), b \in \mathbb{K}^n\}.$

Osservazione

Aff \mathbb{A}^n è un gruppo per composizione

$$(f_{A,b} \circ f_{C,d})(x) = f_{A,b}(f_{C,d}(x)) =$$

$$= f_{A,b}(CX + d) =$$

$$= A(CX + d) + b =$$

$$= ACX + Ad + b = f_{AC,Ad+b}(x)$$

Osservo che $f_{I,O}$ è l'elemento neutro

$$(f_{A,b} \circ f_{I,O})(x) = f_{A,b}(Ix + O) = f_{A,b}(x)$$

 $(f_{I,O} \circ f_{A,b})(x) = f_{A,b}(x)$

Manca solo dimostrare l'esistenza dell'inverso di $f_{A,b}$, ovvero che esiste $f_{C,d}$ tale che $f_{A,b}\circ f_{C,d}=f_{C,d}\circ f_{A,b}=f_{I,O}$

$$(f_{A,b} \circ f_{C,d}(x) = f_{I,O}(x) = x$$

$$ACX + Ad + b + X \quad \forall X \in \mathbb{K}^n$$

$$\Rightarrow AC = Id \quad Ad + b = 0$$

$$C = A^{-1} \quad d = -A^{-1}b$$

$$(f_{A,b})^{-1} = f_{A^{-1},-A^{-1}b}$$

Lezione 6 Geometria I

Federico De Sisti 2024-03-13

1 Equivalenza per affinità

Definizione 1

Equivalenza per affinità Due sottoinsiemi $F, F' \subseteq A$ spazio affine, si dicono affinamente equivalenti se esiste $f \in Aff(A)$ tale che f(F) = F'Definiamo anche una proprietà **affine** se è equivalente per affinità

Proposizione 1

Se $f \in Aff(A)$ e F un sottospazio affine di A di dimensione k, allora f(F) è un sottospazio affine di dimensione k

Dimostrazione

F=p+W dim(W)=k Sia φ la parte lineare di f, che è un omomorfismo $\varphi:V\to V.$

Poniamo F' = f(p) + W' dove $W' = \varphi(W)$ Chiaramente, $dim(W') = dim(\varphi(W)) = k$ risulta f(F) = F'

$$Q \in F$$
 $\overrightarrow{f(P)f(Q)} = \varphi(\overrightarrow{PQ}) \in \varphi(W) = W'.$

 $e\ dato\ che\ \overrightarrow{PQ}\in W\ \Rightarrow f(F)\subseteq F'\ Viceversa,\ dato\ R\in F$

$$\overrightarrow{Pf^{-1}(R)} = \varphi^{-1}(\overrightarrow{f(P)R}) \in W \Rightarrow f^{-1}(R) \in F, R \in f(F).$$

dunque $F \subseteq f(F)$

Teorema 1

Sia (A, V, +) uno spazio affine di dimensione n e siano $\{p_0, \ldots, p_n\}$, $\{a_0, \ldots, a_n\}$ due (n + 1)-ple di punti indipendenti. Allora esiste un'unica affinità $f \in Aff(A)$ tale che $f(p_i) = q_i$, $0 \le i \le n$

Dimostrazione

Per ipotesi $\{\overrightarrow{p_0p_1}, \dots, \overrightarrow{p_0p_n}\}, \{\overrightarrow{q_0q_1}, \dots, \overrightarrow{q_0q_n} \ Sono \ basi \ di \ V, \ dunque \ esiste un unico operatore lineare <math>\varphi \in GL(V)$ tale che $\varphi(\overrightarrow{p_0p_i} = \overrightarrow{q_0q_i})$ $1 \le i \le n$ $Pongo \ f(p) = q_0 + \varphi(\overrightarrow{p_0p})$

$$f(p_i) = q_0 + \varphi(\overrightarrow{p_0p_i} = q_0 + \overrightarrow{q_0q_i} = q_i$$

$$f \ \grave{e} \ chiaramente \ biettiva \ \overrightarrow{f(p)f(p')} = \overrightarrow{q_0f(p)} - \overrightarrow{q_0f(p')} = \varphi(\overrightarrow{p_0p'}) - \varphi(\overrightarrow{p_0p}) =$$

$$= \varphi(\overrightarrow{p_0p'} - \overrightarrow{p_0p}) = \varphi(pp')$$

L'unicità di f segue da quella di φ e dal fatto che $f(p_0) = q_0$ (un'affinità è determinata dalla parte lineare e dall'immagine di un punto.

Esempio

Determino $f \in Aff(\mathbb{A}^2)$ t.c.

$$f\left(\begin{smallmatrix}2\\1\end{smallmatrix}\right) = \left(\begin{smallmatrix}1\\2\end{smallmatrix}\right), \quad f\left(\begin{smallmatrix}-1\\-1\end{smallmatrix}\right) = \left(\begin{smallmatrix}1\\1\end{smallmatrix}\right), \quad f\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right) = \left(\begin{smallmatrix}2\\-1\end{smallmatrix}\right).$$
$$\{\overrightarrow{p_0p_1}, \overrightarrow{p_0p_2}\} \to \{\overrightarrow{q_0q_1}, \overrightarrow{q_0q_2}\}$$

 $\varphi(\overrightarrow{p_0p_1}) = \overrightarrow{q_0q_1}, \varphi(\overrightarrow{p_0p_2}) = \overrightarrow{q_0q_2}$

Cercherò quindi $\varphi \in GL(V)$ tale che

$$\varphi\begin{pmatrix} -3 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \quad \varphi\begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

$$P = \left\{ \begin{pmatrix} -3 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \end{pmatrix} \right\} \quad \varepsilon\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

$$[\varphi]_B^\varepsilon = \begin{pmatrix} 0 & 1 \\ -1 & -3 \end{pmatrix} \qquad [Id]_B^\varepsilon = \begin{pmatrix} -3 & -2 \\ -2 & 0 \end{pmatrix}$$

$$[\varphi]_\varepsilon^\varepsilon = [\varphi]_B^\varepsilon [Id]_\varepsilon^B = [\varphi]_B^\varepsilon [Id]_B^\varepsilon ^{-1} =$$

$$= \begin{pmatrix} 0 & 1 \\ -1 & -3 \end{pmatrix} \begin{pmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{4} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & \frac{3}{4} \\ \frac{3}{2} & -\frac{7}{4} \end{pmatrix}$$

$$f\left(\frac{x_1}{x_2}\right) = \left(\frac{1}{2}\right) + \left(\frac{-\frac{1}{2}}{\frac{3}{2}} - \frac{3}{4}\right) \left(\frac{x_1 - 2}{x_2 - 1}\right)$$
$$f(p) = q_0 + \varphi(\overrightarrow{p_0 p})$$

$$f\left(\begin{smallmatrix} x_1 \\ x_2 \end{smallmatrix}\right) = \left(\begin{smallmatrix} \frac{9}{4} \\ \frac{11}{4} \end{smallmatrix}\right) + \left(\begin{smallmatrix} -\frac{1}{2} & \frac{3}{4} \\ \frac{3}{2} & -\frac{7}{4} \end{smallmatrix}\right) \left(\begin{smallmatrix} x_1 \\ x_2 \end{smallmatrix}\right) = \left(t_V \circ L_A\right) \left(\begin{smallmatrix} x_1 \\ x_2 \end{smallmatrix}\right) \quad v = \left(\begin{smallmatrix} \frac{9}{4} \\ \frac{11}{4} \end{smallmatrix}\right)$$

Corollario

(A, V, +) spazio affine di dimensione n

- 1. per ogni $1 \le k \le n+1$ due qualsiasi k-uple di punti sono affinamente equivalenti
- ${\it 2. Due \ sottospazi \ affini \ sono \ affinamente \ equivalenti \ se \ e \ solo \ se \ hanno \ al \ stessa \ dimensione}$

Dimostrazione

1. Se $\{p_0, \ldots, p_{k-1}\}$, $\{q_0, \ldots, q_{k-1}\}$ sono le k-ple date, completiamole a (n+1)-ple di punti indipendenti $\{p_0, \ldots, p_n\}$, $\{q_0, \ldots, q_n\}$ e usiamo il teorema 2. Abbiamo già visto che un'affinità preserva la dimensione dei sottospazi.

Viceversa, se S,S' sono sottospazi affini della stessa dimensione k, possiamo trovare k+1 punti indipendenti in S, e k+1 punti indipendenti in S' tali che

$$S = \overrightarrow{p_0, \dots, p_k}, \quad S' = \overrightarrow{q_0, \dots, q_n}.$$

Per la parte 1, esiste un'affinità che manda P_i in q_i , $0 \le i \le k$, dunque

$$f(S) = S'$$
.

2 Proiezioni e Simmetrie

Definizione 2 (Proiezioni e Simmetrie)

In (A, V, +) Sia L un sottospazio affine, L = P + WSia U un complementare di W in V, ovvero $V = W \bigoplus U$

$$\pi_W^U(w+u) = w \qquad \qquad \pi_W^U: V \to V$$

$$\sigma_W^U(w+u) = w - u \qquad \sigma_W^U: V \to V$$

$$p_L^U(x) = p + \pi_W^U(\overrightarrow{px})$$
 proiezione su L parallela a U

$$s_L^U(x) = p + \sigma_W^U(\overrightarrow{px})$$
 simmetria di asse L e direzione U

Lezione 7 Geometria I

Federico De Sisti 2024-03-14

1 Esercizi Vari

Piccola definizione per esercizio

$$\mathbb{A}^n_{\mathbb{K}} \operatorname{Aff}(\mathbb{A}^n_{\mathbb{K}}) = \{ f_{a,b} | A \in GL(n, \mathbb{K}), b \in \mathbb{K}^n \}$$

$$f_{A,b}(X) = AX + b$$

$$\begin{pmatrix} 1 & 0 \\ b & A \end{pmatrix}$$

Esercizio 1

$$f: \mathbb{A}_{\mathbb{R}}^{3} \to \mathbb{A}_{\mathbb{R}}^{3}$$

$$f\left(\frac{1}{2}\right) = \begin{pmatrix} 2\\-1\\1 \end{pmatrix}, \quad f\left(\frac{1}{3}\right) = \begin{pmatrix} 3\\-1\\0 \end{pmatrix}$$

$$\varphi(e_{1}) = e_{1} + e_{3}, \quad \varphi(e_{2}) = e_{1} - e_{2}$$
e chiamiamo
$$p_{0} = \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \quad q_{0} = \begin{pmatrix} 2\\-1\\1 \end{pmatrix}, \quad p_{1} = \begin{pmatrix} 1\\3\\1 \end{pmatrix}, \quad q_{1} = \begin{pmatrix} 3\\-1\\0 \end{pmatrix}$$

Dove φ è la parte lineare di f.

Trovare l'espressione di f
 in coordinate affini canoniche e trovare i punti fissi di f.

Svolgimento

$$\varphi\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\1 \end{pmatrix} \qquad \varphi\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 1\\-1\\0 \end{pmatrix} \qquad \varphi(\overrightarrow{p_0p_1}) = \overrightarrow{q_0q_1}$$

$$\varphi(\begin{pmatrix} 1\\3\\1 \end{pmatrix} - \begin{pmatrix} 1\\2\\0 \end{pmatrix}) = \begin{pmatrix} 3\\-1\\0 \end{pmatrix} - \begin{pmatrix} 2\\-1\\1 \end{pmatrix}$$

$$\varphi\begin{pmatrix} 0\\1\\1 \end{pmatrix} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$$

$$\varphi\begin{pmatrix} 0\\1\\1 \end{pmatrix} = \varphi(\begin{pmatrix} 1\\0\\1\\1 \end{pmatrix} - \begin{pmatrix} 0\\1\\0 \end{pmatrix}) = \varphi\begin{pmatrix} 0\\1\\1 \end{pmatrix} - \varphi\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix} - \begin{pmatrix} 1\\-1\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\-1 \end{pmatrix}$$

Se $\varepsilon = \{e_1, e_2, e_3\}$ è la stessa base standard di \mathbb{R}^3

$$[\varphi]_{\varepsilon}^{\varepsilon} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}.$$

$$f\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 - 1 \\ x_2 - 2 \\ x_3 \end{pmatrix}$$
$$f\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
$$f\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 - 1 \\ -x_2 + x_3 + 1 \\ x_1 - x_2 \end{pmatrix}$$

Dove abbiamo utilizzato il fatto che $F(p) = f(p_0) + \varphi(\overrightarrow{p_0p}) = q_0 + \varphi(\overrightarrow{p_0p})$ Cerchiamo ora i punti fissi

$$\begin{pmatrix} x_1 + x_2 - x_1 \\ -x_2 + x_3 + 1 \\ x_1 - x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\begin{cases} x_2 - 1 = 0 \\ -2x_2 + x_3 = -1 \\ x_1 - 2x_3 = 0 \end{cases} = \begin{cases} x_1 = 2 \\ x_2 = 1 \\ x_3 = 1 \end{cases}$$

Esercizio 2

Dimostrare che un'affinità di piano affine che ha tre punti fissi non allineati è l'identità

Svolgimento

Osservo che in un piano affine tre punti p_0, p_1, p_2 sono non allineati se e solo se $\overrightarrow{p_0p_1}, \overrightarrow{p_0p_2}$ sono linearmente indipendenti, ovvero p_0, p_1, p_2 sono affinamente indipendenti. D'altra parte, un'affinità è univocamente determinatta dall'immagine di tre punti indipendenti. L'identità è un'affinità con (almeno) tre punti fissi. Per l'unicità si ha f = Id.

Esercizio 3

In $\mathbb{A}^2_{\mathbb{R}}$ consideriamo la retta r: x + y = 1

- i. Determinare le affinità che fissano tutti i punti di r
- ii. Tra le affinità determinate in (i), trovare quelle che mandano $\begin{pmatrix} 1\\3 \end{pmatrix}$ in $\begin{pmatrix} 2\\-2 \end{pmatrix}$
- iii. Tra le affinità determinate in i, trovare le traslazioni

Svolgimento

$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} e & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \quad ad - bc \neq 0.$$

Basta scegliere f(p) = p per due punti distinti $p \in r$. Posso scegliere $\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$\begin{cases} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{cases}$$

$$\begin{cases} a + \alpha = 1 \\ c + \beta = 0 \\ d + \alpha = 0 \\ d + \beta = 1 \end{cases}$$

$$\begin{cases} a = 1 - \alpha \\ b = -\alpha \\ c = -\beta \\ d = 1 - \beta \end{cases} \qquad f \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 - \alpha & -\alpha \\ -\beta & 1 - \beta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

$$(1-\alpha)(1-\beta) - \alpha\beta = 1 - \alpha - \beta \neq 0 \quad \alpha + \beta \neq 1$$

$$ii \quad \begin{pmatrix} 1-\alpha & -\alpha \\ -\beta & 1-\beta \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} + \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$

$$\begin{cases} 1--3\alpha + \alpha = 2 \\ -\beta + 3 - 3\beta + \beta = -2 \end{cases} \quad \begin{cases} -3\alpha = 1 \\ -3\beta = -5 \end{cases} \quad \begin{cases} \alpha = -\frac{1}{3} \\ \beta = \frac{5}{3} \end{cases}$$

$$iii \quad \begin{pmatrix} 1 & 0 & 0 \\ \alpha & 1-\alpha & -\alpha \\ \beta & -\beta & 1-\beta \end{pmatrix} \rightarrow \begin{pmatrix} 1-\alpha & \alpha \\ -\beta & 1-\beta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \alpha = \beta = 0$$
a windi Evrica tradegions à Videntità

Nota

$$f_{A,b} = AX + b \quad f_{A,b} \circ f_{C,b} = f_{AC,Ad+b}$$

$$\begin{pmatrix} 1 & 0 \\ b & A \end{pmatrix} \in M_{(n+1)\times(n+1)}(\mathbb{K}) \quad A \in M_{n\times n}(\mathbb{K})$$

$$\begin{pmatrix} 1 & 0 \\ b & A \end{pmatrix} \begin{pmatrix} 1 & 0 \\ d & C \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ Ad+b & AC \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ b_1 & a_{11} & a_{12} \\ b_2 & a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ d_1 & c_{11} & c_{12} \\ d_2 & c_{21} & c_{22} \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ b_1 + a_{11}d_1 + a_{12}d_2 & a_{11}c_{11} + a_{12}c_{21} & a_{11}c_{12} + a_{12}c_{22} \\ b_2 + a_{21}d_1 + a_{22}d_2 & a_{21}c_{11} + a_{22}c_{22} & a_{21}c_{12} + a_{22}c_{22} \end{pmatrix}$$

Esercizio 4

In
$$\mathbb{A}^4_{\mathbb{Q}}$$
 $L: \begin{cases} x_1 - 3x_3 = 2 \\ x_2 + x_4 = 1 \end{cases}$ $W = < \begin{pmatrix} 2 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ -2 \end{pmatrix} >$

Scrivere le matrici delle proiezioni su L parallela a W e la matrice della simmetria di asse L e direzione W

Svolgimento

$$\begin{split} L &= \overrightarrow{P} + W_1 \quad V = W_1 \oplus W_2 \\ p_L^{W_2}(X) &= P + \pi_L^{W_2}(\overrightarrow{px}) \qquad \text{Cerco ora l'equazione parametrica di L} \\ s_L^{W_2}(X) &= P + \sigma_L^{W_2}(\overrightarrow{px}) \end{split}$$

$$\begin{cases} x_1 - 3x_3 = 2 \\ x_2 = x_4 = 1 \end{cases} \rightarrow \begin{cases} x_1 = 2 + 3t \\ x_2 = 1 - s \\ x_3 = t \\ x_4 s \end{cases} \rightarrow \begin{cases} x_1 \\ x_2 \\ x_3 \\ x_4 \end{cases} = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 3 \\ 0 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$

$$V + W : \begin{pmatrix} x_1 - 2 \\ x_2 - 1 \\ x_3 \\ x_4 \end{pmatrix} = \alpha \begin{pmatrix} 2 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \\ 0 \\ -2 \end{pmatrix} + \gamma \begin{pmatrix} 3 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \delta \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$

Qui il professore utilizza la sacra formula di Antani per giungere al seguente risultato

$$\gamma = -2 + x_1 - 2x_3$$

$$\delta = -2 + 2x_2 + x_4 \quad p_L^W \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} + \delta \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\frac{1}{-4} \begin{vmatrix} 0 & 0 & 0 & 0 \\ -4 & 3 & 0 & -6 & 0 \\ -1 & 0 & 2 & 0 & 1 \\ -2 & 1 & 0 & -2 & 0 \\ 2 & 0 & -2 & - & -2 \end{pmatrix}$$

$$W \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ x_4 \end{pmatrix} + \gamma \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + \delta \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\begin{split} s_L^W \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} &= \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} - \alpha \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} - \beta \begin{pmatrix} 0 \\ 1 \\ 0 \\ -2 \end{pmatrix} + \gamma \begin{pmatrix} 3 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \delta \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \\ \begin{pmatrix}$$

Lezione 8 Geometria I

Federico De Sisti 2024-03-18

1 Complementi

 $\mathbb A$ spazio affine reale con associato spazio vettoriale V

Definizione 1 (Semiretta)

Possiamo definire la semiretta di origine $Q \in \mathbb{A}$ e direzione $v \in V \setminus \{0\}$

$$P = Q + tv, t \ge 0 \quad (\overrightarrow{QP} = tv, t \ge 0).$$

Definizione 2 (Segmento)

Possiamo definire il segmento di estremi $A, B \in \mathbb{A} \ (A \neq B)$

$$P = A + t\overrightarrow{AB} \qquad 0 \le t \le 1.$$

i punti p_1, \ldots, p_t che dividono il segmento AB in t parti uguali sono dati, cioè

$$\overrightarrow{AP_1} = \overrightarrow{p_1p_2} = \overrightarrow{p_2p_3} = \ldots = \overrightarrow{p_{t-1}B}.$$

sono dati da

$$\overrightarrow{AP_i} = \frac{i}{t}\overrightarrow{AB} \quad 1 \le i \le t - 1.$$

In un riferimento affine $Oe_1 \dots, e_n$, in cui

$$A = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}, \quad B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \quad P_i = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

$$\begin{pmatrix} x_1^i - a_1 \\ \vdots \\ x_n^i - a_n \end{pmatrix} = \frac{i}{t} \begin{pmatrix} b_1 - a_1 \\ \vdots \\ b_n = a_n \end{pmatrix}.$$

$$\begin{pmatrix} x_1^i \\ \vdots \\ x_n^i \end{pmatrix} = \frac{1}{t} \begin{pmatrix} ib_1(t-i)a_1 \\ \vdots \\ \vdots \\ x_n^i \end{pmatrix}.$$

in particolare, il punto medio del segmento AB ha coordinate

$$\left(\begin{array}{c} \frac{a_1+b_1}{2} \\ \vdots \\ \vdots \\ \frac{a_n+b_n}{2} \end{array}\right).$$

A, B, C non allineati

$$\overrightarrow{AP} = t\overrightarrow{AB} + k\overrightarrow{AC}.$$

se $t,n\geq 0$ e $t+n\leq 1$ allora abbiamo un triangolo ABC se $0\leq t,n\leq 1$ abbiamo il parallelogramma individuato da A,B,C

Osservazione

Questo procedimento funziona in ogni dimensione, Ad esempio se A,B,C,D sono quattro punti indipendenti

$$\overrightarrow{AP} = t\overrightarrow{AB} + k\overrightarrow{AC} + v\overrightarrow{AD}.$$

se $0 \le t, n, v \le 1$ tetraedro di vertici ABCD se $n, t, v \ge 0$ e $n + t + v \le 1$ si ha un parallelogramma in generale dati p_0, \ldots, p_k punti indipendenti:

$$\overrightarrow{p_0p} = \sum_{i=1}^k t_i p_0 p_i, \quad \sum_{i=1}^k t_i \le 1.$$

definisce il k-simplesso di vertici p_0, \ldots, p_k

Definizione 3 (Sottosineime Convesso)

 $S\subseteq \mathbb{A}$ si dice Convesso se per ogni $A,B\in S$ il segmento AB è contenuto in S

2 Cambiamenti di riferimento affine

Sia (A, V, +) uno spazio affine *n*-dimensionale

$$R = Ee_1, \dots, e_n;$$
 $R' = Ff_1, \dots, f_n$ due riferimenti affini.

$$\varepsilon = \{e_1, \dots, e_n\}, \quad \Gamma = \{f_1, \dots, f_n\}$$

$$\overrightarrow{EP} = \sum_{i=1}^n x_i e_i \quad \overrightarrow{FE} = \sum_{i=1}^n b_i e_i \quad \overrightarrow{FP} = \sum_{i=1}^n y_i f_i.$$

$$A = (e_{ij}) = {}_{\varepsilon} (Id_V)_{\Gamma}.$$

$$\overrightarrow{FP} = \overrightarrow{FE} + \overrightarrow{EP} = -\overrightarrow{EF} + \overrightarrow{EP} = -\sum_{i=1}^{n} b_i e_i + \sum_{i=1}^{n} x_i e_i$$
 (1)

$$\overrightarrow{FP} = \sum_{i=1}^{n} y_i f_i = \sum_{i=1, j=1}^{n} y_i a_{ij} - e_i$$
 (2)

Comparando (1), (2) troviamo

$$X = AY + b.$$

$$\left(\frac{1}{X}\right) = \left(\frac{1 \mid 0}{b \mid A}\right) = \left(\frac{1}{Y}\right).$$

$$Y = A^{-1}X - A^{-1}b$$
.

3 Esercizi

Trovare l'affinità $F:\mathbb{A}^2\to\mathbb{A}^2$ tale che

$$f\left(\frac{1}{3}\right) = \left(\frac{1}{1}\right)$$
 $f(r) = r'$, $f(s) = s$.

dove r: x = 0, s: 2x - y = 0 r': x - 2y = 1

f è del tipo $f\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} e & b \\ c & d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$ con $ad + bc \neq 0$

$$\begin{pmatrix} 1 & 0 & 0 \\ \alpha_1 & a & b \\ \alpha_2 & c & d \end{pmatrix} \qquad \begin{pmatrix} \frac{1}{f \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \alpha_1 & a & b \\ \alpha_2 & c & d \end{pmatrix} \begin{pmatrix} \frac{1}{x_1} \\ \frac{1}{x_2} \end{pmatrix}.$$

Imponiamo le condizioni del testo

$$f\left(\frac{1}{3}\right) = \left(\frac{1}{1}\right) \to \begin{cases} a + \alpha_1 + 3b = 1\\ \alpha_2 + c + 3d = 1 \end{cases}$$
.

Un punto in $r(x_1=0)$ è del tipo $\begin{pmatrix} 0 \\ t \end{pmatrix} \Rightarrow f \begin{pmatrix} 0 \\ t \end{pmatrix} \in r \quad \forall t \in$

$$\binom{1+bt}{\alpha_2+dt} \in v'.$$

$$x_1 - 2x_2 = 1 \Leftrightarrow \alpha_1 + bt - 2)\alpha_2 + dt) = 1 \quad \forall t.$$

$$\Rightarrow \alpha_1 - 2\alpha_2 = 1.$$

$$b - 2d = 0.$$

Sicuramente il punto di S ha coordinate

$$\begin{pmatrix} t \\ 2t \end{pmatrix}, \ \ \text{e imponiamo} \ \ f\left(\frac{t}{2t} \right) \in s$$

$$f\left(\frac{t}{2t} \right) = \begin{pmatrix} \alpha_1 + at + 2bt \\ \alpha_2 + ct + 2dt \end{pmatrix}$$

$$2(\alpha_1 + at + 2bt) = \alpha_2 + ct + 2dt$$

$$\Rightarrow \begin{cases} 2\alpha_1 - alpha_2 = 0 \\ 2a + 4b - c - 2d = 0 \end{cases}$$

$$a = -\frac{2}{3} \ \ b = \frac{2}{3} = c \ \ d = \frac{1}{3} \ \ \alpha_1 = -\frac{1}{3} \ \ \alpha_2 = -\frac{2}{3}$$

$$f\left(\frac{x_1}{x_2} \right) = \begin{pmatrix} -\frac{1}{3} - \frac{2}{3}x_1 + \frac{2}{3}x_2 \\ -\frac{2}{3} + \frac{2}{3}x_1 + \frac{1}{3}c_2 \end{pmatrix}$$

$$\pi_1 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \rangle \quad \pi_2 : \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \rangle .$$

Dire se sono incidenti, paralleli o sghembi

$$\pi_1: \begin{cases} x_3 = 0 \\ x_4 = 0 \end{cases} \qquad \pi_2: \begin{cases} x_2 = 0 \\ x_3 = 1 \end{cases}$$

Dalle equazioni cartesiane è chiaro che $pi_1 \cap pi_2 = \emptyset$, quindi $\pi_1\pi_2$ non sono incidenti la giacitura di π_1, π_2 sono $W_1 = e_1 + e_2$, $W_2 = e_1 + e_2$ dunque **APPUNTI DA RECUPERARE**

$$\begin{split} f: A &\to A \\ R_1 & R_1' \\ R_2 & R_2' \end{split}$$

$$[f]_{R_1}^{R_1'} = \begin{pmatrix} 1 & | & 0 \\ b & | & A \end{pmatrix}.$$

$$[f]_{R_2}^{R_2} = [Id]_{R_1'}^{R_2}[f]_{R_1}^{R_1'}[Id]_{R_2}^{R_1}.$$

Troviamo l'affinità che manda ordinatamente A,B,C in $A^{\prime},B^{\prime},C^{\prime}$ ove

$$A = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad B = \begin{pmatrix} 3 \\ a \end{pmatrix} \quad C = \begin{pmatrix} 4 \\ 4 \end{pmatrix}.$$
$$A = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \quad B' \begin{pmatrix} -3 \\ 2 \end{pmatrix} \quad C' = \begin{pmatrix} 1 \\ 4 \end{pmatrix}.$$

 $R_1 = \{A, \{\overrightarrow{AB}, \overrightarrow{AC}\}\}\$ è un riferimento affine $R_2 = \{A', \{\overrightarrow{A'B'}, \overrightarrow{A'C'}\}\}$ è un riferimento affine

$$[F]_{R_{1}}^{R_{2}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$f(\overrightarrow{AB}) = \alpha \overrightarrow{A'B'} + \beta \overrightarrow{B'C'}.$$

$$R = \{\binom{0}{0}, \binom{1}{0}, \binom{0}{1}\}.$$

$$[f]_{R}^{R} = [Id]_{R_{2}}^{R}[f]_{R_{1}}^{R_{2}}[Id]_{R}^{R_{1}}.$$

$$R_{2} = \{A', \{\overrightarrow{AB}, \overrightarrow{A'C'}\}\} = \{\binom{-1}{0}, \{\binom{-4}{2}, \binom{8}{4}\}\}.$$

Quindi la matrice del cambio di base da Ra R_2 è

$$[Id]_{R_2}^R = \begin{pmatrix} 1 & 0 & 0 \\ -1 & -4 & 8 \\ 0 & 2 & 4 \end{pmatrix}.$$

Analogamente si fa con $R_1 = \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 3 \end{pmatrix} \} \}$

4 Forme Bilineari e Simmetriche

V Spazio vettoriale su \mathbb{K}

Definizione 4

Una funzione $g: VxV \to \mathbb{K}$ Si dice **Forma bilineare** se è lineare in ciascuna variabile fissata l'altra

in altre parole:

$$g(\alpha v_1 + v_2, v_3) = \alpha g(v_1, v_3) + \beta g(v_2, v_3) \quad \forall \alpha, \beta \in \mathbb{K} \quad \forall \alpha, \beta \in V \quad \forall v_1, v_2, v_3 \in V.$$

Definizione 5

g si dice **simmetrica** se

$$g(v_1, v_2) = g(v_2, v_1) \quad \forall v_1, v_2 \in V.$$

Esempio

Sia A una atrice quadrata nxn

Allora
$$g_A(x,y) = X^t A Y$$
.

è una forma bilineare su K^n

Esempio

 g_A è bilineare con

$$A = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}$$

$$f\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}\right) = (x_1 x_2) \begin{pmatrix} 2y_1 + y_2 \\ -y_1 + 3y_2 \end{pmatrix} = x_1 (2y_1 + y_2) + x_2 (-y_1 + ey_2) =$$

$$= 2x_1 y_1 + x_1 y_2 - x_2 y_1 + 3x_2 y_2$$

Osservazione

 g_A è simmetrica se e solo se A è simmetrica

Esempio (Importante)

in \mathbb{K}^n prendiamo $A = I_n$

$$g_{I_m}(X,Y) = X^t Y = \sum_{i=1}^n x_i y_i.$$

Se g è una forma bilineare simmetrica su V e $B=\{v_1,\ldots,v_n\}$ è una base di V, definisco la matrice di g rispetto a B come

$$[g]_B \rightarrow a_{ij} = g(v_i, v_j) \quad 1 \le i, j \le n.$$

$$g(v, w) = g(\sum_{i=1}^{n} x_i v_i, \sum_{i=1}^{n} y_i v_i) = \sum_{i,j=1}^{n} x_i y_i g(v_i, v_j) = \sum_{i,j=1}^{n} x_i y_i a_{ij} = X^t A Y.$$

Ricorda: X^t è la matrice trasposta di X

5 Prodotto Scalare

V spazio vettoriale Reale

Definizione 6 (Prodotto Scalare)

Un prodotto scalare su V è una forma bilineare simmetrica <,>: $V \times V \to \mathbb{R}$ tale che

$$< v, v > \geq 0 \ \forall v \in V$$

$$\langle v, v \rangle = 0 \Leftrightarrow v = 0$$

Nomenclatura 1. $1.v, w \in V$ si dicono **ortogonali** se

$$< v, w > = 0.$$

2. $||v|| = \sqrt{< v, v>}$ è la norma di v

3.
$$In \mathbb{R}^n$$
, $<\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, $\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} > = \sum_{i=1}^n x_i y_i \ \dot{e} \ detto \ \textbf{prodotto scalare stan-}$

dard

$$||\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}|| = \sqrt{\sum_{i=1}^n x_i^2}.$$

Proposizione 1 (Disuguaglianza di Schwarz)

$$v, w \in V$$
 $< v, w >^2 \le < v, V > < w, w > .$

e vale l'uguaglianza se e solo se v,w sono dipendenti

Dimostrazione

Se w=0 la disuguaglianza è ovvia, quindi possiamo assumere $w \neq 0$. Per $v, w, a, b \in$

$$\begin{split} 0 \leq < av + bw, av + bw > &= a < v, av + bw > + b < w, av + bw > = \\ &= a(a < v, v > + b < v, w >) + b(a < w, v > + b < w, w >)i = \\ &= a^2 < v, v > + 2ab < v, w > + b^2 < w, w > \end{split}$$

Dove abbiamo utilizzato la simmetria del prodotto scalare < v, w> = < w, v>Notiamo che vale l'uguaglianza solo se av+bw=0, cioè v,w sono paralleli. La relazione

$$a^{2} < v, v > +2ab < v, w > +b^{2} < w, w >> 0.$$

vale per ogni scelta di a,b.

 $Prendo\ a = < w, w > e\ b = - < v, w >$

$$0 \le \langle w, w \rangle^2 < v, v > -2 < w, w > \langle v, w \rangle^2 + \langle v, w \rangle^2 < w, w > .$$

Poiché $W \neq 0$, < w, w >> 0 quindi posso dividere la relazione precedente per < w, w >, per altro senza cambiare verso dato che il prodotto scalare è definito positivo

$$0 \le \langle w, w \rangle \langle v, w \rangle - \langle v, w \rangle^2$$
.

ovvero

$$< v, w >^2 \le < v, v > < w, w > .$$

Osservazione

 $|< v, w > | \le ||v|| ||w||$

Proprietà della lunghezza

- 1. $\forall v \in V \ ||v|| \ge 0 \ e \ ||v|| = 0 \Leftrightarrow v = 0$
- 2. $||\alpha v|| = |\alpha|||v|| \quad \forall \alpha \in, \ \forall v \in V$
- 3. $||v + w|| \le ||v|| + ||w|| \quad \forall v, w \in V$

Lezione 9 Geometria I

Federico De Sisti 2024-03-20

1 Rimembranze dalla scorsa lezione

V spazio vettoriale. Un prodotto scalare su V è una funzione bilineare simetirca $<\cdot$, $\cdot>:V\times V\to\mathbb{R}$ tale che:

$$\langle v, v \rangle \ge 0 \quad \forall v.$$

 $\langle v, v \rangle = 0 \Leftrightarrow v = 0.$

2 Nuova effettiva lezione

Dimostriamo alcune proprietà del prodotto scalare:

Lemma 1

1.
$$||v|| \ge 0$$
 e $||v|| = 0$ se e solo se $v = 0$..

2.
$$||\alpha v|| = |\alpha| \cdot ||v|| \quad \alpha \in \mathbb{R}, v \in V.$$

3.
$$||v+w|| \le ||v|| + ||w|| \quad \forall v, w \in V$$
.

Dimostrazione

1. seque dalla definizione

2.
$$||\alpha v|| = \sqrt{\langle \alpha v, \alpha v \rangle} = \sqrt{\alpha^2 \langle v, v \rangle} = |\alpha| \cdot ||v||$$

3.
$$||v+w||^2 = \langle v+w, v+w \rangle =$$

$$= < v, v > + < w, v > + < v, w > + < w, w > =$$

$$= ||v||^2 + 2 < v, w > + ||w||^2 \le ||v||^2 + 2||v||w|| + ||w||^2 = (||v|| + ||w||)^2$$

Ci basta ora prendere le radici quadrate del primo e del secondo termine (possiamo farlo poiché sono entrambi positivi $\hfill\Box$

Nomenclatura 1

- $v, w' \in V$ si dicono ortogonali se $\langle v, v' \rangle = 0$
- \cdot Un insieme S di vettori è detto ortogonale se

$$0 \in S \ e \ \langle s_1, s_2 \rangle = 0 \quad \forall s_1, s_2 \in S.$$

 \cdot Una base di V si dice ortogonale se è un insieme ortogonale \cdot Una base

$$\{vi\}_{i \in I} \text{ si dice ortonormale se } \langle v_i, v_j \rangle = \delta_{i,j} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Definizione 1 (Versore)

 $Sia\ v \in V\ tale\ che\ ||v|| = 1\ allora\ v\ \grave{e}\ un\ versore$

Oss

Dat $u \neq 0$, $\frac{u}{||u||}$ è un versore

$$\left| \left| \frac{u}{||u||} \right| \right| = \frac{1}{||u||} \cdot ||u|| = 1.$$

Proposizione 1

Sia $\{v_1, \ldots, v_k\}$ un insieme ortogonale allora v_1, \ldots, v_k sono linearmente indipendenti. In particolare se $\dim(V) = n$, un insieme ortogonale di n vettori è una base

Dimostrazione

Supponiamo $\alpha_1 v_1 + \dots \alpha_k v_k = 0$

$$<\alpha_1 v_1 + \ldots + \alpha_k v_k, v_i> = <0, v_i> = 0$$

$$= \alpha_1 < v_1, v_i > + \ldots + \alpha_k < v_k, v_i >$$

$$= \alpha_i < v_i, v_i >$$

Dato che $\langle v_i, v_i \rangle > 0$ poiché $v_i \neq 0$ per ipotesi, dunque $\alpha_i = 0$, dato che posso scegliere qualunque v_i

Osservazioni

1. La base standard di \mathbb{R}^n è ortonormale rispetto al prodotto scalare standard

2. Sia g=<,> un prodotto scalare su V, Se $B=\{v_1,\ldots,v_n\}$ è una base g-ortonormale allora $[g]_B=Id_n$ ovvero $g(v_i,v_j)=\delta_{i,j}$

Inoltre, se
$$X = [v]_B$$
, $Y = [Id]_B$

 $g(v, w) = X^{t}[g]_{B}Y = X^{t}Y$ (sempre con B ortonormale)

Proposizione 2

Se $\{v_1, \ldots, v_n\}$ è una base ortonormale, per ogni $v \in V$ risulta

$$v = \sum_{i=1}^{n} \langle v, v_i \rangle v_i.$$

Dimostrazione

(1) Sia $v = \sum_{j=1}^{n} a_j v_j$

$$< v, v_i > = < \sum_{i=1}^{n} a_j v_j, v_i > = \sum_{i=1}^{n} a_j < v_j, v_i > = \sum_{i=1}^{n} a_j \delta_{ij} = a_i$$

Basta poi sostituire in (1) a_i con $\langle v, v_i \rangle$

Nomenclatura 2

Dato $v \neq 0$ viene detto coefficiente di Fourier di $w \in V$ risptto a v

$$a_v(w) = \frac{\langle v, w \rangle}{\langle v, v \rangle}.$$

Nota

In sostanza il coefficiente di Fourier è il modulo della proiezione di w rispetto a v (moltiplicato quindi per il versore di v otteniamo il vettore della proiezione) Abbiamo quindi una definizione canonica della proiezione.

$$\langle w - a_v(w)v, v \rangle = \langle w - \frac{\langle v, w \rangle}{\langle v, v \rangle} v, v \rangle = \langle w, v \rangle - \frac{\langle v, w \rangle}{\langle v, v \rangle} \cdot \langle v, v \rangle$$

3 Procedimento di ortogonalizzazione di Gram-Schmidt

Lemma 2

Sia v_1, v_2, \ldots una successione di vettori in V spazio vettoriale euclideo. Allora:

1. Esiste una successione w_1, w_2, \ldots in V tale che per ogni $k \geq 1$

a)
$$\langle v_1, \dots, v_K \rangle = \langle w_1, \dots, w_k \rangle$$
.

b)
$$\langle w_i, w_j \rangle = 0 \text{ se } i \neq j.$$

2. Se u_1, u_2, \ldots è un'altra successione che verifica le proprietà a e b, allora esistono non nulli $\gamma_1, \gamma_2, \ldots$ tali che

$$u_k = \gamma_k w_k, \quad k = 1, 2, \dots$$

Dimostrazione

Costruiamo i w_i per induzione su k.

Base k = 1

$$v_1 \rightarrow w_1 = v_1 \text{ verifica } a, b.$$

Supponiamo per induzione di aver costruito $w_1, \dots w_t, t > 1$ verificanti a e b e costruiamo w_{t+1}

$$\emptyset w_{t+1} = v_{t+1} - \sum_{i=1}^{t} a_{w_i}(v_{t+1})w_i.$$

Verifichiamo a

$$v_{t+1} = w_{t+1} + \sum_{i=1}^{t} a_{w_i}(v_{t+1})w_i.$$

per induzione $v_i \in \langle w_1, \dots, w_t \rangle \subseteq \langle w_1, \dots, w_{t+1} \rangle$ $1 \leq i \leq t$ dunque

$$\langle v_1, \dots, v_{t+1} \rangle \subseteq \langle w_1, \dots, w_{t+1} \rangle.$$

D'altra parte $w_{t+1} \in \langle w_{1,t}, v_{t+1} \rangle = \langle v_1, \dots, v_{t+1} \rangle$ perché per induzione $w_i \in \langle v_1, \dots, v_t \rangle$ $1 \le i \le t$

 $Quindi < w_1, \ldots, w_{t+1} > \subseteq < v_1, \ldots, v_{t+1} > e quindi le proprietà a è verificata$

Verifichiamo ora b, sia $w_i \neq 0$

$$\langle w_{t+1}, w_i \rangle = \langle v_{t+1} - \sum_{j=1}^{\iota} a_{w_j}(v_{t+1})w_j, w_i \rangle =$$

$$= \langle v_{t+1}, w_i \rangle - a_{w_j} \langle (v_{t+1})w_j, w_j \rangle =$$

$$=<\boldsymbol{v}_{t+1},\boldsymbol{w}_i>-\frac{<\boldsymbol{v}_{t+1},\boldsymbol{w}_i>}{\leq \boldsymbol{w}_i,\boldsymbol{w}_i>}\leq \boldsymbol{w}_i,\boldsymbol{w}_i>=0$$

2. Di nuovo procedo per induzione su k, con base ovvia k=1Supponiamo t>1 e apponiamo che esistano γ_1,\ldots,γ_t con $u_k=\delta_k w_k$ per ogni $k\leq t$. per (a)

$$\begin{array}{ll} u_{t+1} = z + \gamma_{t+1} w_{t+1} & z \in < w_1, \dots, w_t > = < u_1, \dots, u_t > . \\ D'altra\ parte, < u_{t+1}, z > = < w_{t+1}, z > = = 0 \\ Quindi < u_{t+1} - \gamma_{t+1} w_{t+1}, w > = 0\ ovvero < z, z > \\ \Rightarrow z = 0\ e\ u_{t+1} = \gamma_{t+1} w_{t+1} & \Box \end{array}$$

Lezione 10 Geometria

Federico De Sisti2024-03-21

1 Utilizzo del procedimento di Gram Schmidt

 $\{v_1,\ldots,v_n\}\subset V,\ V$ spazio euclideo $w_1=v_1$

$$w_{t+1} = v_{t+1} - \sum_{i=1, w_i \neq 0}^{t} \frac{\langle v_{t+1}, w_i \rangle}{\langle w_i, w_i \rangle} w_i$$

 $< w_1, \dots, w_n > = < v_1, v_n >$ e i w_i sono a due a due ortogonali

Esercizio 1

Applicare il procedimento di G.S ai vettori di \mathbb{R}^4

$$v_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, v_4 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}.$$

Scrivere le corrispondente base ortonormale

Svolgimento

 $w_1 = v_1$

$$w_2 = v_2 - \frac{< v_2, v_1 >}{< v_1, v_1 >} v_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 1 \end{pmatrix} - \frac{< \begin{pmatrix} 2 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >}{< \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \frac{< \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >}{< \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} > \frac{< \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >}{< \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} > \frac{< \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >}{< \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >$$

$$\begin{pmatrix} 2\\1\\0\\1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} = \begin{pmatrix} 2\\0\\0\\0 \end{pmatrix}$$

$$w_3 = v_3 - \frac{\langle v_3, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 - \frac{\langle v_3, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 =$$

$$= \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \frac{<\begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}>}{<\begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}>} - \frac{<\begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 0 \\ 1 \end{pmatrix}>}{<\begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}>} \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{-1}{2} \\ 0 \\ \frac{1}{2} \end{pmatrix}$$

Il procedimento è analogo e banale per w_4 . I vettori della alla fine dello svolgimento sono:

$$\left(\begin{pmatrix}0\\1\\0\\1\end{pmatrix},\begin{pmatrix}2\\0\\0\\0\end{pmatrix},\begin{pmatrix}0\\-\frac{1}{2}\\0\\\frac{1}{2}\end{pmatrix},\begin{pmatrix}0\\0\\1\\0\end{pmatrix}\right)$$

Vanno solo normalizzare (fatto dal professore ma non da me)

Eserczio 2

Ortogonalizzare la base standard di \mathbb{R}^4 rispetto al prodotto scalare

$$\langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} \rangle = 2x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2 + 2x_3y_3 + x_3y_4 + y_4x_3 + 2x_4y_4.$$

 ε base standard i \mathbb{R}^4

$$\langle \; , \; \rangle_{\varepsilon} = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}.$$

Svolgimento

Notare come a_{ij} sia il coefficiente di $x_i y_j$ $\mathbf{w}_1 = v_1$

$$w_2 = v_2 - \frac{\langle v_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 = v_2 - \frac{v_2^t A w_1}{w_1^t A w_1} w_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} - \frac{\begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}}{\begin{pmatrix} 1 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}} = \begin{pmatrix} -\frac{1}{2} \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Il procedimento continua, ma non è niente di che.

Foglio 2 Esercizio 2

$$p_1, \dots, p_n \in A, c_1, \dots, c_n \in \mathbb{K}, \sum_{i=1}^n c_i = 1.$$

Dimostrare che dato qualunque $q \in A$

$$p = q + \sum_{i=1}^{n} c_i \overrightarrow{op_i}.$$

non dipende da q

 $\sum_{i=1}^{n} c_i p_i$ combinazione baricentrica dei punti p_i con coefficienti c_i Dobbiamo dimostrare che se $q' \in A$

$$q + \sum_{i=1}^{n} c_i \overrightarrow{qp_i} = q' + \sum_{i=1}^{n} c_i \overrightarrow{q'p_i}.$$

$$\begin{array}{l} \mathbf{q} = \mathbf{q'} + \overrightarrow{q'q} \\ q + \sum_{i=1}^{n} c_i \overrightarrow{qp_i} = q' - \overrightarrow{q'q} + \sum_{i=1}^{n} c_i \overrightarrow{qp_i} = q' - \sum_{i=1}^{n} c_i \overrightarrow{something} \end{array}$$

non sono riuscito a finire l'esericizo in tempo pene pene TODO

Punto b dell'esercizio 3

$$f: A \to A', \varphi: V \to V' \text{ parte lineare}$$
Devo vedere che $f(\sum_{i=1}^{n} c_i p_i) = \sum_{i=1}^{n} c_i f(p_i)$ $\sum_{i=1}^{n} c_i = 1$

$$f(p_0 + \sum_{i=1}^{n} c_i \overrightarrow{p_0 p_i}) = f(p_i) + \sum_{i=1}^{n} c_i \varphi(\overrightarrow{p_0 p_i}) =$$

$$= f(p_0) + \sum_{i=1}^{n} c_i \overline{f(p_0) f(p_i)} = \sum_{i=1}^{n} c_i f(p_i)$$

$$= (1 - \sum_{i=1}^{n} c_i) f(p_0) + \sum_{i=1}^{n} c_i \overline{f(p_0) f(p_i)}$$

Dove nell'ultimo passaggio si spezza la somma

Viceversa supponiamo che $f:A\to A'$ rispetti le combinazioni baricentriche; verifichiamo che $\varphi:V\to V'$

$$p_0 \in A$$
 $\varphi(v) = \overline{f(p_0)f(p_0 + v)}.$

è lineare
$$v_1, v_2 \in V$$
 $\alpha_1, \alpha_2 \in \mathbb{K}$ $p_1 = p_0 + v_1$ $p_2 = p_0 + v_2$
$$v_1 = \overrightarrow{p_0 p_1} \quad v_2 = \overrightarrow{p_0 p_2}$$

$$\varphi(\alpha_1 v_1 + \alpha_2 v_2) = \overrightarrow{f(p_0) f(p_0 + \alpha_1 v_1 + \alpha_2 v_2)} = \overrightarrow{f(p_0) f(p_0 + \alpha_1 \overrightarrow{p_0 p_1} + \alpha_2 \overrightarrow{p_1 p_2})} = \overrightarrow{f(p_0) f(\alpha_0 p_0 + \alpha_1 p_1 + \alpha_2 p_2)} = = \alpha_0 \overrightarrow{f(p_0) f(p_0)} + \alpha_1 \overrightarrow{f(p_0) f(p_1)} + \alpha_2 \overrightarrow{f(p_0) f(p_2)} = \alpha_2 \varphi(v_1) + \alpha_2 \varphi(v_2)$$
 infatti $f(p_1) = f(p_0 + v_1), \overrightarrow{f(p_0) f(p_1)} = \overrightarrow{f(p_0) f(p_0 + v_1)} = \varphi(v_1)$

Lezione 11 Geometria I

Federico De Sisti 2024-03-27

1 Varie robe su basi ortonormali

Proposizione 1

Sia $B = \{v_1, \dots, v_n\}$ una base ortonormale dello spazio euclideo V, la base $L = \{w_1, \dots, w_n\}$ è ortonormale se e solo se $M = [Id_V]_L^B$ è ortogonale $(MM^t = Id_v)$

Dimostrazione

Sia $M = (m_{ij})$ per definizione di M $w_i = \sum_{j=1}^n m_{ji} v_j$ $1 \le i \le n$

$$\langle w_i, w_j \rangle = \langle \sum_{k=1}^n m_{ki} v_k, \sum_{h=1}^n m_{hj} v_h \rangle = \sum_{k,h=1}^n m_{ki} m_{kj} \langle v_k, v_h \rangle = \sum_{k=1}^n m_{ki} m_{kj} = (M^t M)_{i,j}.$$

 \square Osservazione

Sia $V = \mathbb{R}[x] \ \langle p(x), q(x) \rangle = \int_{-1}^{1} p(x)q(x)dx$ è un prodotto scalare

Definizione 1 (Angolo non orientato tra vettori)

$$|\langle v, w \rangle| \le ||v|| ||w|| \Rightarrow -1 \le \frac{\langle v, w \rangle}{||v|| ||w||} \le 1 \quad (v, w \ne 0)$$
allora

 $\exists ! \in [0, \pi] : \cos = \frac{\langle v, w \rangle}{||v|| ||w||}$

è detto angolo non orientato tra v, w

Definizione 2

Sia $S \subseteq V$ con V spazio euclideo, $S^{\perp} := \{v \in V | \langle v, s \rangle = 0 \ \forall s \in S\}$

Osservazione

 S^{\perp} è un sottospazio vettoriale di V.

Siano $v_1, v_2 \in \dot{S}^{\perp}$ e $\alpha_{1,2} \in \mathbb{K}$

$$\Rightarrow \langle \alpha_1 v_1 + \alpha_2 v_2, s \rangle = \alpha_1 \langle v, s \rangle + \alpha_2 \langle v_2, s \rangle = 0 \quad \forall s \in S$$

Proposizione 2

Sia V uno spazio vettoriale euclideo e W un sottospazio di V allora

$$V = W + W^{\perp}$$

Dimostrazione

 $Sia \{w_1, \ldots, w_k\}$ una base ortogonale di W

consideriamo $\pi: V \to W$ con $\pi(v) = \sum_{i=1}^n \frac{\langle v, w_i \rangle}{\langle w_i, w_i \rangle} w_i$, dobbiamo mostrare che $V = W + W^{\perp}$ e che $W \cap W^{\perp} = \{0\}$ ma la seconda è ovvia poiché se $w \in W \cap W^t$ è ortogonale a se stesso $\Rightarrow \langle w, w \rangle = 0 \Leftrightarrow w = 0$

Osserviamo inoltre che se $v \in V \Rightarrow v = \pi(v) + (v - \pi(v))$ la richiesta è dunque $v - \pi(v) \in W^{\perp}$. Basta verificare che $\langle v - \pi(v), w_i \rangle = 0 \ \forall i$

$$\langle v - \sum_{j=1}^n \frac{\langle v, w_j \rangle}{\langle w_j, w_j \rangle} w_j \rangle = \langle v, w_i \rangle - \sum_{j=1}^n \frac{\langle v, w_j \rangle}{\langle w_j, w_j \rangle} \langle w_j, w_i \rangle = \langle v, w_i \rangle - \frac{\langle v, w_i \rangle}{\langle w_j, w_j \rangle} \langle w_j, w_j \rangle = 0.$$

☐ Osservazione

1- Se V è spazio euclideo e W è sottospazio di V,

 $(W, \langle, \rangle|_{W \times W})$ è uno spazio euclideo

2- Se $\{w_1, \ldots, w_k\}$ è base ortogonale di W risulta:

$$||v - \sum_{h=1}^{n} a_h w_i|| \ge ||v - \sum_{h=1}^{n} \frac{\langle v, w_h \rangle}{\langle w_h, w_h \rangle} w_h||$$

 $||v - \sum_{h=1}^{n} a_h w_l| \ge ||v - \sum_{h=1}^{n} \frac{\langle v, w_h \rangle}{\langle w_h, w_h \rangle} w_h||$ e vale l'uguaglianza se se solo se $a_h = \frac{\langle v, w_h \rangle}{\langle w_h, w_h \rangle}$

Dimostrazione (Punto 2)

$$||v - \sum_{h=1}^{n} a_h w_k|| \ge ||v - \sum_{h=1}^{n} \frac{\langle v, w_h \rangle}{\langle w_h, w_h \rangle} w_h||;$$

$$||v - w||^2 = \langle v - u, v - u \rangle =$$

$$||v-w||^2 = \langle v-u, v-u \rangle =$$

$$= \langle v - w + w - u, v - w + w - u \rangle = \langle v - w, v - w \rangle + \langle w - u, w - u \rangle \ge ||v - w||^2$$

□ La lezione prosegue con lo svolgimento di alcuni esercizi

2 Prodotto vettoriale

Sia V uno spazio vettoriale euclideo per cui dim(V)=3 sia $\{v,j,k\}$ una base ortonormale di V

Definizione 3 (Prodotto vettoriale)

Dati
$$v = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$
 $w = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$ pongo $v \wedge w = \begin{pmatrix} y_1 z_2 - y_2 z_1 \\ x_2 z_1 - x_1 z_2 \\ x_1 y_2 - x_2 y_1 \end{pmatrix}$

 B_1, B_2 si dicono concordemente orientate se $det([Id]_{B_1}^{B_2}) > 0$, questa è inoltre una relazione di equivalenza.

una relazione di equivalenza. Di fatti se
$$B_1 \sim B_2, \ B_2 \sim B_3 \ det([Id]_{B_1}^{B_3}) = det([Id]_{B_2}^{B_3}[Id]_{B_1}^{B_2}) = det([Id]_{B_2}^{B_3})det([Id]_{B_1}^{B_2}) > 0 \Rightarrow B_1 \sim B_2$$

Lezione 12 Geometira

Federico De Sisti 2024-03-27

1 Operatori Lineari Unitari

Sia V uno spazio vettoriale euclideo

Definizione 1

Un operatore lineare $T: V \to V$ si dice unitario se $\langle T(u), T(v) \rangle = \langle u, v \rangle \ \forall u, v \in V$

Proposizione 1

Sia V spazio vettoriale euclideo n- dimensionale e sia $T:V\to V$ un applicazione, TFAE (The Following Are Equivalent)

- $1. T \ \dot{e} \ unitario$
- 2. $T \in lineare e||T(w)|| = ||v|| \quad \forall v \in V$
- 3. $T(O) = O, ||T(v) T(w)|| = ||v w|| \quad \forall v, w \in V$
- 4. T è lineare e manda basi ortonormali in basi ortonormali
- 5. T è lineare ed esiste una base $\{v_1, \ldots, v_n\}$ ortonormale di V tale che $\{T(v_1), \ldots, T(v_n)\}$ è una base ortonormale

Dimostrazione

$$1 \Rightarrow 2$$
. Unitario $\Rightarrow \langle T_{\ell}v \rangle, T(v) \rangle = ||T(v)||^2 = \langle v, v \rangle = ||v||^2$

$$2 \Rightarrow 3 \ T \ \mathit{lineare} \Rightarrow T(O) = O \ ||T(v) - T(w)|| = ||T(v - w)|| = ||v - w||$$

$$3 \Rightarrow 1||T(v)|| = ||T(v) - O|| = ||T(v) - T(O)|| = ||v - O|| = ||v||$$

$$Esplicitiamo ||T(v) - T(w)||^2 = ||v - w||^2$$

$$\langle T(v) - T(w), T(v) - T(w) \rangle = \langle v - w, v - w \rangle$$

$$\Rightarrow ||T(v)||^2 - 2\langle T(v), T(w) \rangle + ||T(w)||^2 = ||v||^2 - 2\langle v, w \rangle + ||w||^2$$

Dunque
$$\langle T(v), T(w) \rangle = \langle v, w \rangle$$

Resta da vedere che T è lineare.

Sia $\{e_1, \ldots, e_n\}$ una base ortonormale di V allora $\{T(e_1), \ldots, T(e_n)\}$ è una base ortonormale per quanto dimostrato prima.

$$\langle T(e_j), T(e_i) \rangle = \langle e_j, e_i \rangle = \delta_{ij}.$$

$$v = \sum_{i=1}^{n} x_i e_i \ (\Rightarrow x_i = \langle v, e_i \rangle)$$

$$T(v) = \sum_{i=1}^{n} \langle T(v), T(e_i) \rangle T(e_i) = \sum_{i=1}^{n} \langle v, e_i \rangle T(e_i) = \sum_{i=1}^{n} x_i T(e_j)$$

Dunque
$$T(\sum_{i=1}^{n} x_i e_i) = \sum_{i=1}^{n} x_i T(e_i)$$
 quindi T è lineare

 $1 \Rightarrow 4\{e_1, \ldots, e_n\}$ è una base ortonormale

$$\langle T(e_i), T(e_j) \rangle = \langle e_i, e_j \rangle = \delta_{ij}.$$

 $4 \Rightarrow 5 \ Ovvio$

 $5 \Rightarrow 1$ Sia e_1, \dots, e_n la base ortonormale dell'enunciato. Considero $u, v \in V$

$$u = \sum_{i=1}^{n} x_i e_i, \quad w = \sum_{i=1}^{n} y_i e_i.$$

$$\langle T(u), T(w) \rangle = \langle T(\sum_{i=1}^{n} x_i e_i, T(\sum_{j=1}^{n} y_i e_i) \rangle =$$

$$= \langle \sum_{i=1}^{n} x_i T(e_i), \sum_{j=1}^{n} y_i T(e_i) \rangle =$$

$$= \sum_{i,j=1}^{n} x_i y_i \langle T(e_i), T(e_j) \rangle$$

$$= \sum_{i=1}^{n} x_i y_i = \langle u, w \rangle$$

Dove abbiamo usato $\langle T(e_i), T(e_i) \rangle = \delta_{ij}$

$$\alpha \in V\{0\}$$
 $S_{\alpha} = v - 2\frac{\langle v, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha$ riflessione rispetto ad α^2

- 1. S_{α} è unitaria 2. $S_{\alpha}^2 = Id$
- 3. Esiste una base B di V tale che $(S_{\alpha})_B = diag(1, \dots, 1, -1)$

Dimostrazione

$$\begin{array}{l} 1. \ \langle S_{\alpha}(v), S_{\alpha}(w) \rangle = \langle v, w \rangle \\ \langle v - 2 \frac{\langle v, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha, w - 2 \frac{\langle w, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha \rangle = \\ \langle v, w \rangle - 2 \frac{\langle v, \alpha \rangle \langle \alpha, w \rangle}{\langle \alpha, \alpha \rangle} - 2 \frac{\langle v, \alpha \rangle \langle w, \alpha \rangle}{\langle \alpha, \alpha \rangle} + 4 \frac{\langle v, \alpha \rangle \langle w, \alpha \rangle}{\langle \alpha, \alpha \rangle \langle \alpha, \alpha \rangle} \langle \alpha, \alpha \rangle = \langle v, w \rangle \\ \end{array}$$

$$V = \mathbb{R}\alpha \oplus \alpha^{\perp}.$$

Quindi presa una base $\{w_1, \ldots, w_{n-1}\}\ di\ \alpha^{\perp}$, $B = \{w_1, \dots, w_{n-1}, \alpha\}$ è una base di V e $S_{\alpha}(w_i) = w_i, i = 1, \dots, n-1$

$$S_{\alpha}(\alpha) = -\alpha$$

$$(S_{\alpha})_{B} = \begin{pmatrix} 1 & 0 & \dots \\ 0 & \ddots & 0 \\ \dots & 0 & -1 \end{pmatrix} = M$$

In particolare $S_{\alpha} = Id$ poiché $M^2 = Id$

2 Osservazioni sugli operatori unitari

1. Se T è unitario, e $v \in Ker(T)$, allora

$$0 = ||T(v)|| = ||v|| \Rightarrow v = 0.$$

Dunque T è invertibile.

È facile vedere che se T_1, T_2 sono unitarie, lo è anche $T_1T_2^{-1}$, quindi, posto

$$O(V) = \{T \in End(V) | T \text{ è unitario} \}.$$

$$O(V) \leq GL(V)$$
.

e O(V) viene chiamato gruppo ortogonale di V.

2. Se fissiamo in V una base ortonormale B, e $T \in O(V)$, $[T]_B^B$ è ortogonale. Infatti sia $A = [T]_B^B$, $B = \{e_1, \ldots, e_n\}$. Le colonne di A sono le coordinate di $T(e_i)$ rispetto a B, quindi T è unitario se e solo se

$$\langle A^i, A^j \rangle = \delta_{ij}.$$

dove A^i, A^j rappresentano la riga *i*-esima e *j*-esima della matrice A

3. Se $T\in O(V)$ e $\lambda\in\mathbb{R}$ è un autovalore di T, allora $\lambda=\pm 1$ Se λ è autovalore, esiste $v\neq 0$ tale che $T(v)=\lambda v$

$$||v|| = ||T(v)|| = ||\lambda v|| = |\lambda|||v||.$$

Poiché $v \neq 0, ||v|| \neq 0$ quindi $|\lambda| = 1$, cioè $\lambda = \pm 1$

4. Se V è uno spazio euclideo di dimensione n,ogni $T\in O(V)$ è composizione di al più n riflessioni S_n

Dimostrazione

per induzione su n, con base ovvia n = 1.

Supponiamo il teorema valga per ogni spazio euclideo di dimensione n-1 e dimostriamo per uno spazio euclideo di dimensione n. Sia $f \in O(V)$

Primo caso

f ha un punto fisso non nullo

$$v \in V$$
, $v \neq 0$, $f(v) = v$.

$$V = \mathbb{R}v \oplus v^{\perp}$$
.

 $W = v^{\perp}, \quad (W, \langle, \rangle|_{W \times W})$ è euclideo di dimensione n-1 $F|_W : W \to W, infatti, se u \in W$

$$\langle f(u), v \rangle = \langle f(u), f(v) \rangle = \langle u, v \rangle = 0.$$

Per induzione $f|_W = S_{\alpha_1} \circ \dots \circ S_{\alpha_r}, \quad r \leq n-1$ e quindi $f = S_{\alpha_1} \circ \dots \circ S_{\alpha_r}, \quad r \leq n-1$

$Secondo\ caso$

Sia $v \neq 0$ tale che $f(v) \neq v$. Allora

$$S_{f(v)-v}(f(v)) = v.$$

$$Infatti \ S_{f(v)-v}(f(v)) = f(v) - 2 \frac{\langle f(v), f(v) - v \rangle}{\langle f(v) - v, f(v) - v \rangle} (f(v) - v)$$

$$Ma = f(w) = +2 \frac{\langle f(v), f(v) - v \rangle}{\langle f(v) - v, f(v) - v \rangle} (v - f(v))$$

$$Ora \ \langle f(v), f(v) - v \rangle = ||v||^2 - \langle f(v), v \rangle$$

$$\langle f(v) - v, f(v) - v \rangle = 2||v||^2 - 2\langle f(v), v \rangle.$$

$$Dunque \ (S_{f(v)-v} \circ f) \ ha \ un \ punto \ fisso. \ Per \ il \ primo \ caso \ S_{f(v)-v} \circ f = S_{\alpha_1} \circ ... \circ S_{\alpha_r} \quad r \leq n-1$$

$$Dunque \ S_{f(v)-v} \circ S_{f(v)-v} \circ f = S_{f(v)-v} \circ S_{\alpha_1} \ldots \circ S_{\alpha_r}$$

$$\Rightarrow f = S_{f(v)-v} \circ S_{\alpha_1} \circ \ldots \circ S_{\alpha_r}$$

$$quindi \ f \ \grave{e} \ composizione \ di \ al \ più \ n \ riflessioni$$

3 Spazi affini euclidei

Uno spazio affine euclideo è uno spazio affine (E,V,+) dove V è uno spazio euclideo.

Si può definire una distanza tra punti di E

$$d(P,Q) = ||\overrightarrow{PQ}||.$$

Un riferimento cartesiano per uno spazio affine euclideo è il dato $Oe_1 \dots e_n$ di un punto e di una base ortonormale di V

In particolare se
$$P = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad Q = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
 allora

$$d(P,Q) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \qquad \overrightarrow{PQ} = \begin{pmatrix} y_1 - x_1 \\ \vdots \\ y_n - x_n \end{pmatrix}.$$

Definizione 2

Due sottospazi affini si dicono ortogonali se le loro giaciture sono ortogonali

(cioè se
$$S = P + U$$
, $T = Q + W$, $\langle u, w \rangle = 0 \quad \forall u \in U$, $\forall w \in W$).

Lezione 14 Geometria 1

Federico De Sisti2024-04-04

Precisazione 1

Siano S,T sottospazi affini in uno spazio euclideo δ di dimensione n. Diciamo che S, T sono ortogonali se, posto $S = p + U, T = q + W, p \in S, q \in T$ U, W sottospazi vettoriali di V,

$$\langle U, W \rangle = 0$$
 se $dim(S) + dim(T) < n$.
 $\langle U^{\perp}, W^{\perp} \rangle = 0$ se $dim(S) + dim(T) \ge n$.

Esempi

1. Due rette r, s in \mathbb{E}^3 con vettori direttori v_s, v_r

COMPLETARE CON DISEGNI

2. retta e piano in \mathbb{E}^3

COMPLETARE CON DISEGNI

3. due piani in \mathbb{E}^3

COMPLETARE CON DISEGNI

sarò sincero, non si capisce un cazzo

2 Esercizi foglio 4

$$r: \begin{cases} x_1 - x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \qquad r' = \begin{cases} x_1 + x_2 = 0 \\ x_3 = -1 \end{cases}$$

Posizione reciproca

La direzione di $r \in \mathbb{R} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, quella di $r' = \mathbb{R} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ Essendo tali vettori indipendenti, le rette non sono parallele

$$p' = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \in r', \quad O \in r$$

$$\overrightarrow{Op'} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \rangle$$
quindi r, r' sono sghembi

 $S = \pi \cap \pi'$ π piano per r parallelo a $v \wedge v'$ π' piano per r' parallelo a $v \wedge v'$

$$v \wedge v' \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix} \quad v \wedge v' = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$$
$$\pi : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$$
$$\pi' : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$$

trasformiamo in coordinate cartesiane

$$\pi \to \det \begin{pmatrix} x_1 & x_2 & x_3 \\ 1 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix} = 0 \to x_1 - x_2 = 0$$

analogo per π' es 4 proiezione ortogonale su π simmetria ortogonale di asse π

$$\pi: 2x_1 + x_2 - x_3 + 2 = 0.$$

vettore normale a π $P_0 \in \pi$ $p(P) = P_0 + \widetilde{p}(\overrightarrow{p_0p})$ $\sigma(P) = P_0 + \widetilde{\sigma}(\overrightarrow{p_0p})$ scelgo $p_0 \in \pi$ $P_0 = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$ W giacitura di $\pi = \langle \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \rangle$ $\mathbb{R}^3 = W \oplus W^{\perp}$ Dobbiamo decomporre $\overline{P_0P}$ rispetto a $W \oplus W^{\perp}$ $W^{\perp} = \mathbb{R} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$

 $\begin{pmatrix} \frac{x_1}{x_2} \\ \frac{x_2}{x_3-2} \end{pmatrix} = \alpha \begin{pmatrix} \frac{1}{-2} \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ \frac{1}{1} \end{pmatrix} + \gamma \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix}$ Questo poi è solo un sistema noioso da risolvere

 $p\left(\begin{smallmatrix}x_1\\x_2\\x_3\end{smallmatrix}\right)=($ guarda le lavagnate, è un super vettore).

sulle lavagnate trovi anche il risultato della simmetria ma non lo svoglimento es 5

Lezione 15 Geometria

Federico De Sisti2024-04-08

1 Definizioni su operatori

Definizione 1

 $T \in End(V)$ è

 \cdot Simmetrico o Autoaggiunto se

$$T = T^t$$
.

 $\cdot \ Antisimmetrico \ se$

$$T = -T^t$$
.

Proposizione 1

T è unitario se e solo se $T^t \circ T = Id_V$

Definizione 2

Sia E uno spazio euclideo. Un'affinità $f:E\to E$ si dice Isometria se la sua parte lineare $\varphi:V\to V$ è un operatore unitario

Osservazione

Le isometrie formano un gruppo denotato con Isom(E) (difatti, $Isom(E) \leq Aff(E)$)

Infatti la composizione di isometrie è un isometria.

se φ_1, φ_2 sono le parti lineari di $f_1, f_2 \in Isom(E)$

Per ipotesi $\varphi_1 \circ \varphi_1 = Id$, $\varphi_2^t \circ \varphi_2 = Id$

$$(\varphi_1 \circ \varphi_2)^t \circ (\varphi_1 \circ \varphi_2) = \varphi_2^t \circ \varphi_1^t \circ \varphi_1 \circ \varphi_2 = \varphi_2^t \circ \varphi_2 = Id.$$

Inoltre, dalla definizione, l'inversa di un operatore unitario è unitario. In effetti, ho dimostrato che

$$O(V) = \{ f \in End(V) | f^t \circ f = Id \}.$$

è un gruppo, e un sottogruppo di GL(V)

Data $f \in Isom(E)$ diciamo che:

fè diretta se $\det(\varphi)=1$

f è inversa se $det(\varphi) = -1$

Le isometrie dirette formano un sottogruppo

$$Isom^+(E) \leq Isom(E)$$
.

Osservazione

1. Sia $O \in E$

$$Isom^+(E)_O \le Isom(E)_O = \{ f \in Isom(E) | f(O) = O \} \le Isom(E).$$

Dove $Isom^+(E)_O$ sono le rotazioni di centro O

2. Se nello spazio euclideo E è assegnato con riferimento cartesiano $R = Oe_1, \ldots, e_n$, ogni isometria $f \in Isom(E)$ con parte lineare $\varphi \in O(V)$ si scrive in coordinate rispetto al riferimento nella forma

$$Y + AX + c$$
 $A \in O(n)$.

$$\begin{array}{l} \text{dove } p \in E, \quad X = [P]_R, \quad Y + [f(P)]_R \\ A = [\varphi]^{\{e_1, \ldots, e_n\}}_{\{e_1, \ldots, e_n\}}, \quad c = [f(O)]_R \end{array}$$

Teorema 1

Sia E uno spazio euclideo, Un'applicazione $f: E \to E$ è un isometria se e solo se

$$\circledast d(P,Q) = d(f(P), f(Q)) \quad \forall P, Q \in E.$$

Dimostrazione

supponiamo che f sia un'isometria, con parte lineare φ

$$d(f(P), f(Q)) = ||\overrightarrow{f(P)f(Q)}|| = ||\varphi(\overrightarrow{PQ})|| = ||\overrightarrow{PQ}|| = d(P, Q).$$

Viceversa se $f:E\to E$ un'affinità verificante l'equazione \circledast , fissiamo $O\in E$ e definiamo $\varphi:V\to V$ ponendo

$$\varphi(\overrightarrow{OP}) = \overrightarrow{f(O)f(P)}.$$

Poiché ogni vettore $v \in V$ è del tipo \overrightarrow{OP} per qualche $P \in E$, φ è definita, e tale che se O è il vettore nullo in V

$$\varphi(\underline{O}) = \varphi(\overrightarrow{OO}) = \overline{f(O)f(O)} = \underline{O}.$$

$$\begin{split} & Inoltre \ se \ v = \overrightarrow{OP}, w = \overrightarrow{OQ} \\ & ||\varphi(v) - \varphi(w)|| = ||\varphi(\overrightarrow{OP}) - \varphi(\overrightarrow{OQ})|| = \\ & = ||\overrightarrow{f(O)f(P)} - \overrightarrow{f(O)f(q)}|| = ||\overrightarrow{f(Q)f(P)}|| = \\ & = d(f(Q), f(P)) = d(Q, P) = ||\overrightarrow{PQ}|| = ||v - w|| \end{split}$$

Quindi, per una delle caratterizzazioni già dimostrati, φ è un operatore unitario. Dimostro ora che f è un'affinità con parte lineare φ

$$\varphi(\overrightarrow{PQ}) = \varphi(\overrightarrow{OQ} - \overrightarrow{OP}) = \varphi(\overrightarrow{OQ}) - \varphi(\overrightarrow{OP}) = \overrightarrow{f(O)f(P)} - \overrightarrow{f(O)} - \overrightarrow{f(Q)} = \overrightarrow{f(P)f(Q)}.$$

2 Isometrie di piani e spazi euclidei di dimensione 3

$$a^2+c^2=1$$

$$A\in SO(2) \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ tale che:} \quad \begin{aligned} a^2+c^2=1 \\ ab+cd=0 \\ ad-bc=1 \\ a^2+c^2=1 & \leadsto & a=\cos\theta, & c=\sin\theta \\ \text{altre condizioni} \leadsto & b=-\sin\theta, & d=\cos\theta \\ \text{Dunque} \end{aligned}$$

$$SO(2) = \{R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} | \theta \in \mathbb{R} \}.$$

Osserviamo che se det(A) = det(B) = -1 allora det(AB) = 1, quindi se $A \in O(2) \setminus SO(2)$

$$A = (AB)B^{-1} = (AB)B^t.$$

con $B \in O(2) \setminus SO(2)$ fissato.

Scegliendo $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, tutti gli elementi di $O(2) \setminus SO(2)$ sono del tipo

$$A_{\theta} = R_{\theta} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}.$$

Lemma 1

- 1) $A_{\theta} = R_{\theta} A_O = A_O R_{-\theta}$
- 2) $A_{\varphi} \circ A_{\theta} = R_{\varphi \theta}$
- 3) A_{θ} ha autovalori 1 e -1 con autospazi ortogonali

Dimostrazione

- 1. ovvio
- 2. $A_{\varphi}A_{\theta} = R_{\varphi}A_{O}R_{\theta}A_{O} = R_{\varphi}A_{O}A_{O}R_{-\theta} = R_{\varphi}R_{-\theta} = R_{\varphi-\theta}$
- 3. Calcoliamo il polinomio caratteristico di A_{φ} :

$$\det \begin{pmatrix} T - \cos \theta & -\sin \theta \\ -\sin \theta & T + \cos \theta \end{pmatrix} = (T - \cos \theta)(T + \cos \theta) - \sin^2 \theta = T^2 - 1.$$

quindi A_{θ} ha autovalori 1. Si capisce direttamente che gli autospazi sono ortogonali. In realtà

$$V_1 = \mathbb{R} \begin{pmatrix} \cos \theta - 1 \\ \sin \theta \end{pmatrix}, \quad V_{-1} - \begin{pmatrix} \cos \theta + 1 \\ \sin \theta \end{pmatrix}.$$

Sia $c \in E$ $\sigma : E \to E$ rotazione di centro c.

La parte lineare di σ appartiene a SO(2), quindi è del tipo R_{θ} . Se Oe_1e_2 è un riferimento cartesiano

$$R_{c,\theta} = t_{\overrightarrow{OP}} \circ R_{O,\theta} \circ t_{-\overrightarrow{OC}}.$$

riflessione: isometria diretta che fissa tutti i punti di una retta, detta asse di riflessione

Osservazione

Riflessioni per $O \Leftrightarrow O(w) \setminus SO(2)$

Lemma 2

1. $r \subset E$ retta, $C \in r$, $R_{C,\theta}$ rotazione di centro C. Esistono rette s,t contenenti C tali che

$$R_{C,\theta} = \rho_r \circ \rho_s = \rho_t \circ \rho_r.$$

Viceversa, per ogni coppia di rette r,s passanti per C $\rho_r \circ \rho_s$ è una rotazione di centro C e

$$\rho_r \circ \rho_s = Id \Leftrightarrow r = s.$$

- 2. $R_{C,\theta} \circ R_{D,\varphi}$ è una rotazione di angolo $\theta + \varphi$ a meno che $\theta + \varphi = 2k\pi$, $k \in \mathbb{Z}$, in tal caso è una traslazione che è diversa dall'identità se e solo se $C \neq D$
- 3. Se $C, D \in E$, $C \neq D$ e r è la retta per C e D. Se $R_{C,\theta}, R_{D,\varphi}$ sono non banali e $\theta + \varphi \neq 2k\pi$, $k \in \mathbb{Z}$, allora $R_{C,\theta} \circ R_{D,\varphi}$ e $R_{C,-\theta} \circ R_{D,-\varphi}$ hanno centri destini e simmetrici rispetto ad r.

Lezione 15 Geometria I

Federico De Sisti2024-04-10

1 Ultima Parte teorica prima del compito

 $O(2) = SO(2) \cup O(2) \setminus SO(2)$

$$R_{\theta} = \begin{pmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{pmatrix} \quad A_{\theta} = R_{\theta}A_{\theta} = \begin{pmatrix} cos\theta & sin\theta \\ sin\theta & -cos\theta \end{pmatrix}.$$

$$R_{\theta}R_{\varphi} = R_{\theta+\varphi}.$$

$$A_{\theta}A_{\varphi} = R_{\theta-\varphi}.$$

Definizione 1 (Riflessione)

Isometria che fissa puntualmente una retta (detta asse della riflessione)

E piano euclideo $C \in E, r \subset E$ retta $\exists s, t$ rette passanti per C tali che

$$R_{c,\theta} = \rho_r \circ \rho_s = \rho_t \circ \rho_r.$$

"e viceversa"

Possiamo fissare c = 0 $p_r = A_{o,\alpha}$. Allora

$$R_{\theta} = A_{\alpha} \circ A_{\alpha - \theta} = A_{\theta + \alpha} \circ A_{\alpha}.$$

dove $\rho_r = A_{\alpha} \in A_{\alpha-\theta} \equiv \rho_s$

Il viceversa segue, sostituendo $c \equiv 0$, da $A_{\alpha} \circ A_{\beta} = R_{\alpha-\beta}$

$$R_{C,\theta} \circ R_{D,\varphi} \to \text{rotazione di angolo } \theta + \varphi \text{ Se } \theta + \varphi \neq 2k\pi, \ k \in \mathbb{Z}.$$

altrimenti è una traslazione (che è l'identità = D)

Se C = D chiaramente $R_{C,\theta} \circ R_{C,\varphi} = R_{C,\theta+\varphi}$

Se $C \neq D$ sia r la retta per C e D Per la parte precedente possiamo scrivere

$$R_{C,\theta} = \rho_t \circ \rho_r, \quad R_{D,\varphi} = \rho_r \circ \rho_s.$$

per certe rette s, t

$$T = R_{C,\theta} \circ R_{D,\varphi} = \rho_t \circ \rho_r \circ \rho_r \circ \rho_s.$$

Se s,t sono incidenti allora per la parte precedente T è una rotazione, altrimenti s $\parallel t$

TODO disegno

In coordinate rispetto ad un riferimetro cartesiano Oe_1e_2 Se $P \equiv \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

$$(R_{C,\theta} \circ R_{D,\varphi})(P)$$
 ha coordinate.

$$R_{\rho}(R(x-d)+d-x)+x.$$

dove c,d sono i vettori delle coordinate di C,D rispettivamente $R_{\theta+\varphi}(x-d)+R_{\theta}(d-c)+c$ parte lineare

T T è una translazione se e solo se $\theta + \varphi = 2k\pi, k \in \mathbb{Z}$ e in tal caso

$$T(x) = x + R_{\theta}(d - c) = (d - c).$$

che è l'identità se e solo se d=c cio
èD=C

Definizione 2 (Glissoriflessione)

Una glissoriflessione è un'isometria di un piano euclideo ottenuta come composizione $t_v \circ \rho_r$ di una riflessione di asse r con una traslazione $t_v \neq Id$ con $v \neq 0, v \parallel r$

TODO disegno

Teorema 1 (Charles, 1831)

Un'isometria di un piano euclideo che fissa un punto è una rotazione o una riflessione a seconda che sia diretta o inversa. Un'isometria senza punti fissi è una traslazione o una glissoriflessione a seconda che sia diretta o inversa

Dimostrazione

 $Sia\ f \in Isom(E)$

Se f ha un punto fisso abbiamo già visto che f è una rotazione se è diretta o una riflessione se f è inversa

se f diretta priva di punti fissi. Allora anche f^2 non ha punti fissi, perché se $f^2(p) = p$

Disegno TODO

Dunque f(M) = M escluso.

DIco che $p, f(p), f^2(p)$ che sono distinti per quanto abbiamo visto, sono allineati, Altrimneti **Disegno TODO**

$$\begin{split} d(P,f(p)) &= d(f(p),f^2(p)) (\ poich\`e\ f\ \`e\ un'isometria). \\ d(Q,P) &= d(Q,f(P)) = d(Q,f^2(P)). \end{split}$$

Poiché f preserva l'orientazione, il triangolo QPf(P) viene trasformato in $Q, f(P), f^2(P)$ da cui f(Q) = Q

Dunque tutti i punti $f^i(P)$, $i \ge 0$ sono allineati, quindi se r è la retta che li contiene, f agisce su r come una traslazione.

Poiché f è diretta, f agisce su tutto il piano come una traslazione.

Sia ora f inversa senza punti fissi,

Allora f^2 è diretta e come prima $f^2 = t_v$ per qualche v

Sia $P \in E$ un punto $r_0 = \overrightarrow{Pf^2(P)}$, $r_1 = \overrightarrow{f(P)f^2(P)}$ sono rette parallele che sono scambiate tra loro da f

Disegno TODO

Sia r la retta equidistante da r_0 e r_1 .

Allora
$$f(r) \subseteq r$$
 Ma $f^2 = t_v f|_r = t_{v/2}$

Se ora consideriamo $t_{-v/2} \circ f$

questa è un'isometria inversa che fissa puntualmente r, quindi è una riflessione che indichiamo con ρ . Dunque

$$f = t_{v/2} \circ t_{-v/2} \circ f = t_{v/2} \circ \rho.$$

2 Diagonalizzazione di operatori simmetrici

Ricorda

 $f\in End(V)$ diagonalizzabile se esiste una base di V di autovettori di $f\Leftrightarrow A=[f]_R^B$ B base $\exists N\in GL(n,\mathbb{K}):N^{-1}AN$ è diagonale

Lemma 1

Il polinomio caratteristico di $A \in M_n(\mathbb{R})$ simmetrica ha solo radici reali

Dimostrazione

 $A \in M_n(\mathbb{R}) \subseteq (\mathbb{C})$ $L_A : \mathbb{C}^n \to \mathbb{C}^n$.

Sia $\lambda \in \mathbb{C}$ un autovalore e $x \neq 0$ un corrispondente autovettore

$$Ax = \lambda x$$
.

$$\overline{Ax} = \overline{\lambda x}$$
.

$$A\overline{x} = \overline{\lambda}\overline{x}.$$

$$\overline{x}^t A x = \overline{x}^t (A x) = \overline{x}^t (\lambda x) = \lambda \overline{x}^t x$$

$$\overline{x}^t A x = \overline{x}^t A^t x = (A\overline{x})^t x = (\overline{\lambda} \overline{x})^t x = \overline{\lambda} \overline{x}^t x$$

 $\overline{x}^t x = \sum_{i=1}^n \overline{x}_i x_i \leftarrow \hat{e}$ un numero reale positivo poiché $x \neq 0$

$$\lambda \overline{x}^t x = \overline{\lambda} x^t x \quad \Rightarrow \quad \lambda = \lambda.$$

Teorema 2 (Teorema Spettrale)

Sia V uno spazio euclideo di dimensione finita e $T \in End(V)$ un operatore simmetrico, esiste una bas ortonormale di autovettori per T

Corollario 1

Per ogni matrice reale simmetrica $A \in M_n(\mathbb{R})$ esiste una matrice ortogonale $N \in O(n)$ tale che

$$N^{-1}AM = N^tAN$$
 è ortogonale.

Dimostrazione (Teorema)

Per induzione su n = dim(V). Base n = 1 ovvia

Supponiamo $n = dim(v) \ge 2$. Poichè T è simmetrico il polinomio caratteristico ha radici reali (per il lemma precedente) quindi T ammette un autovalore λ d sia e_1 il suo corrispondente autovettore di lunghezza 1

$$V = \mathbb{R}e_1 \oplus (\mathbb{R}e_1)^{\perp}.$$

Chiamo $U \equiv (\mathbb{R}e_1)^{\perp}$

Dico che $T|_U: U \to$, per cui $T|_U \in End(U)$

Infatti, dimostro che $u \in U \to T(u) \in U$

ipotesi: $\langle u, e_1 \rangle = 0$ Tesi: $\langle Tu, e_1 \rangle = \langle u, T^t e_1 \rangle = \langle u, Te_1 \rangle = \langle u, \lambda e_1 \rangle = \lambda \langle u, e_1 \rangle = 0$ dove abbiamo usato la simmetria di T

Chiaramente $T|_U$ è simmetrico, quindi per induzione U ha una base ortonormale

di autovettori $\{e_2,\ldots,d_n\}$. Ne segue che $\{e_1,\ldots,e_n\}$ è una base ortonormale di V formata da autovettori per T

Lezione 17 Geometria I

Federico De Sisti2024-04-17

1 Prodotto Hermitiano

V spazio vettoriale complesso

Definizione 1 (Funzione sesquilineare)

Una funzione sesquilineare su V è un'applicazione $h: V \times V \to \mathbb{C}$ che è lineare nella prima variabile e antilineare nella seconda, cioè

$$h(v + v', w) = h(v, w) + g(v', w)$$

$$h(\alpha v, w) = \alpha h(v, w)$$

$$h(v, w + w') = h(v, w) + h(v, w')$$

$$h(v, \alpha w) = \overline{\alpha}h(v, w)$$

per ogni scelta di $v, w, v', w' \in V$ e $\alpha \in \mathbb{C}$

Definizione 2 (Forma hermitiana)

Una forma sesquilineare si dice hermitiana se

$$h(v, w) = \overline{h(w, v)}.$$

Osservazione

Se h è hermitiana, $h(v,v) \in \mathbb{R}$, infatti deve risultare $h(v,v) = \overline{h(v,v)}$

Definizione 3 (Forma antihermitiana)

Una forma sesquilineare si dice antihermitiana se

$$g(v, w) = -\overline{h(v, w)}.$$

Osservazione

In questo caso $h(v,v) \in \sqrt{1}\mathbb{R}$

Definizione 4

Una forma hermitiana si dice semidefinita positiva se

$$h(v, v) \ge 0 \quad \forall v \in V.$$

Definizione 5

Una forma hermitiana si dice definita positiva se

$$h(v,v) > 0 \quad \forall v \neq 0.$$

ovvero

$$(h(v, v) \ge 0 \ e \ h(v, v) = 0 \Rightarrow v = 0).$$

Esempio

 $V=\mathbb{C}^n$

$$h\left(\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}, \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}\right) = \sum_{i=1}^n z_i \overline{w_i}.$$

questo viene chiamato prodotto hermitiano standard su \mathbb{C}^n

$$h(\left(\begin{array}{c} z_1 \\ \vdots \\ z_n \end{array}\right), \left(\begin{array}{c} z_1 \\ \vdots \\ z_n \end{array}\right)) = \sum_{i=1}^n z_i \overline{z_i} = \sum_{i=1}^n |z_i|^2$$

Dato V, consideriamo una base $B = \{v_1, \ldots, v_n\}$ di V Se h è una forma heritiana, diciamo che $(h_{ij}) = h(v_i, v_j)$ è la matrice che rappresenta h nella base B e la denoto come $(h)_B$

e la denoto come
$$(h)_B$$

se $v = \sum_{i=1}^n x_i v_i$, $w = \sum_{i=1}^n y_i v_i$
 $h(v, w) = h(\sum_{i=1}^n x_i v_i, \sum_{i=1}^n y_i v_i) =$
 $= \sum_{i=1}^n x_i h_i(v_i, \sum_{i=1}^n y_i v_i) =$
 $= \sum_{i=1}^n x_i \overline{y_i} h(v_i, v_i) =$
 $= x^t H \overline{y}$

Poiché h è hermitiana, $h(v, w) = \overline{h(w, v)}$

$$X^{t}HY = \overline{Y^{t}HX}$$

$$= \overline{Y}^{t}\overline{HX}$$

$$= (\overline{Y}^{t}\overline{HX})^{t}$$

$$= \overline{X}^{t}\overline{H}^{t}\overline{Y} \implies H = \overline{H}^{t}$$

Definizione 6

Una matrice $M \in M_n(\mathbb{C})$ si dice hermitiana se

$$H = \overline{H}^t$$
.

Esercizio

le matrici hermitiane 2×2 sono un \mathbb{R} -sottospazio di $M_2(\mathbb{C})$ di dimensione 4

$$\begin{pmatrix} a_1 + ib_1 & a_2 + ib_2 \\ a_3 + ib_3 & a_4 + ib_4 \end{pmatrix} = \begin{pmatrix} a_1 - ib_1 & a_3 - ib_3 \\ a_2 - ib_2 & a_4 - ib_4 \end{pmatrix}.$$

$$a_1 + ib_1 = a_1 - ib_1 \Rightarrow b_1 = 0$$

$$a_2 + ib_2 = a_3 - ib_3 \Rightarrow a_2 = a_3 \quad b_2 = -b_3$$

$$a_3 + ib_3 = a_2 - ib_2 \Rightarrow a_2 = a_3 \quad b_2 = -b_3$$

$$a_4 + ib_4 = a_4 - ib_4 \Rightarrow b_4 = 0$$

$$\begin{pmatrix} a_1 & a_2 + ib_2 \\ a_2 - ib_2 & a_4 \end{pmatrix}$$

$$M_2 = \mathbb{R} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \oplus \mathbb{R} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \oplus \mathbb{R} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \oplus \mathbb{R} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

 $M_2=\mathbb{R}\left(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}\right)\oplus\mathbb{R}\left(\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix}\right)\oplus\mathbb{R}\left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}\right)\oplus\mathbb{R}\left(\begin{smallmatrix} 0 & i \\ -i & 0 \end{smallmatrix}\right)$ il professore qui lascia un esercizio, non penso che realisticamente qualcuno lo farà

Si definiscano allo stesso modo del caso reale simmetrico S^t coefficiente di Fourier

$$|\langle v, w \rangle| \le ||v|| ||w||.$$

disuguaglianza triangolare $||v + w|| \le ||v|| + ||w||$ Operatore unitario: $T \in End_{\mathbb{C}}(V)$ t.c.

$$\langle T(u), T(v) \rangle = \langle u, v \rangle \quad \forall u, v \in V.$$

Verifichiamo le caratteristiche degli operatori unitari dati nel caso reale

Gram Schmidt

 $T \in End(V)$ operatore unitario

- 1. Gli autovalori hanno modulo 1
- 2. Autospazi relativi ad autovalori distinti sono ortogonali
- 1. Sia v un autovettore di autovalore λ

$$\langle v, v \rangle = \langle Tv, Tv \rangle = \langle tv, tv \rangle = \lambda \overline{\lambda} \langle v, v \rangle = |\lambda|^2 \langle v, v \rangle.$$

$$v \neq 0 \Rightarrow |\lambda|^2 = 1 \Rightarrow |\lambda| = 1.$$

2. Sia $v \in V_{\lambda}$, $w \in V_{\mu}$ $\lambda \neq \mu$

$$\langle v, w \rangle = \langle Tv, Tw \rangle = \langle \lambda v, \mu w \rangle = \lambda \overline{\mu} \langle v, w \rangle.$$

$$\begin{array}{ll} \operatorname{Se} \ \langle v,w\rangle \neq 0 \neq 0 \Rightarrow \lambda \overline{\mu} = 1. Perilpunto 1 \\ \lambda \overline{\lambda} \ \Rightarrow \ \overline{\lambda} = \overline{\mu} \ \Rightarrow \ \lambda = \mu \ \text{assurdo}. \end{array}$$

Definizione 7

Diciamo che $U \in M_n(\mathbb{C})$ è unitaria se

$$U\overline{U}^t = Id.$$

Proposizione 1

 $T \in End(V)$ è unitario se e solo se la sua matrice in una base ortonormale è unitaria

Dimostrazione

Sia $B = \{v_1, \dots, v_n\}$ una base ortonormale di V

$$\delta_{ij} = \langle v_i, v_j \rangle = \langle Tv_i, Tv_j \rangle = \langle Ae_i, Ae_j \rangle = e_i^t A^t \overline{A} e_j = A_i^t \overline{A}_j$$

dove abbiamo posto $A = (T)_B \ e \ \{e_i\} \ \dot{e}$ una base di \mathbb{C}^n

TODO dimostrazione da finire

Come nel caso reale si dimostra

Teorema 1

Sia $T \in End(V)$ un operatore unitario Esiste una base standard di autovettori per T

In particolare, per ogni matrice unitaria $A \in U(n)$ esiste $M \in U(n)$ tale che $M^{-1}AM$ è diagonale a volte si pone

$$A^* = \overline{A}^t$$
.

Aunitario $AA^{\ast}=Id$

A hermitiano A = A*

A antihermitiano A = -A*

Definizione 8 (Operatore Aggiunto)

Dato $T \in End(V)$, esiste unico $S \in End(V)$ tale che

$$\langle Tu, w \rangle = \langle u, Sw \rangle \quad \forall u, w \in V.$$

Tale operatore è detto aggiunto hermitiano di T e denotato con T^*

Definizione 9

Sia V uno spazio vettoriale complesso dotato di prodotto hermitiano (forma hermitiana definita positiva), un operatore $L \in End(V)$ è normale se

$$L \circ L^* = L^* \circ L.$$

Osservazione

L unitario, hermitiano, antihermitiano $\Rightarrow L$ diagonale

Teorema 2

Sono equivalenti le seguenti affermazioni: $1)\ L\ \grave{e}\ normale$

- $\stackrel{\cdot}{2}$ esiste una base ortonormale di V formata da autovettori di L

Lezione 19 Geometria I

Federico De Sisti 2024-04-18

1 Esercizi vari

Esercizio 1 Foglio 6

 $f:A\to A$ affinità ha un unico punto fisso se e solo se la sua parte lineare (φ) non ha l'autovalore 1

Svolgimento

Sia $F = \{x \in A | f(x) = x\}$

Supponiamo $F \neq \emptyset$ e $P \in F$ dico che

$$\star F = P + \ker(\varphi - Id).$$

dove $\ker(\varphi-Id)$ è l'autospazio di autovalore 1 di φ

$$u \in V$$
 $P + u \in F \Leftrightarrow P + u = f(P + u) = f(P) + \varphi(u) = P + \varphi(u) \Leftrightarrow \varphi(u) = u$ ovvero $u \in \ker(\varphi - Id)$

Se ora F ha un unico punto fisso \star implica che

$$ker(\varphi - Id) = \{0\}.$$

cio
è 1 non è autovalore di φ

Viceversa facciamo vedere che se $\ker(\varphi-Id)=\{0\}$ allora $F\neq\emptyset$ Cerchiamo Q+v tale che

$$f(Q+v) = Q+v$$

$$f(Q) + \varphi(v)$$

$$f(Q) - P = v - \varphi(v)$$

$$\overrightarrow{Qf(Q)} = -(\varphi - Id)(v)$$

Quindi, poiché $(\varphi - Id)$ è invertibile (per ipotesi), dato Q trovo un unico $v = -(\varphi - Id)^{-1}(\overline{Qf(Q)})$

per cui Q+v è un punto fisso

Esercizio 5 Foglio 6

$$f(x) = Ax + b$$
 in \mathbb{E}^2

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix} \quad b = 0$$

1

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad b = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

SvolgimentoA

- 1. è una traslazione quindi non ha punti fissi
- 2. $\det A = 1$ e A ortogonale

$$\begin{split} AX+b&=X\\ (A-I)X&=-b\\ \begin{pmatrix} 1/2 & -\sqrt{3}/2\\ \sqrt{3}/2 & 1/2 \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix} = \begin{pmatrix} 0\\ -1 \end{pmatrix}\\ x_1&=\det\begin{pmatrix} 0 & -\sqrt{3}/2\\ -1 & -1/2 \end{pmatrix} = -\frac{\sqrt{3}}{2} \quad x_2=\det\begin{pmatrix} -1/2 & 0\\ \sqrt{3}/2 & -1 \end{pmatrix} = \frac{1}{2}\\ 3. & \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} \in SO(2) \text{ rotazione di } \frac{\pi}{2}\\ \text{Esercizio da finire} \end{split}$$

2 Diangonalizzazione unitaria di operatori normali

 $(\mathbb{C}^n,$ prodotto hermitiano standard) $M^\star=\overline{M}^t$ Mè normale se $MM^\star=M^\star M$ siano normali le matrici

unitarie $MM^* = Id$ hermitiane $M = M^*$ antihermitiane $M = -M^*$

Teorema 1 (Spettrale)

 $M \ \hat{e} \ normale \ se \ e \ solo \ se \ \exists U \in U(n): \ U^tMU \ \hat{e} \ ortogonale$

nota

U(n) spazio delle matrici unitarie

$$\begin{split} L &= \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} \quad L^\star = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} \Rightarrow L \text{ matrice hermitiana} \\ \text{Trovo ora il polinomio caratteristico} \\ t^2 - 2t &= 0 \text{ che ha quindi autovalori } t = 0, t = 2 \\ v_0 &= \mathbb{C} \begin{pmatrix} 1 \\ i \end{pmatrix} \quad v_2 = \mathbb{C} \begin{pmatrix} 1 \\ -i \end{pmatrix} \\ \langle \begin{pmatrix} 1 \\ i \end{pmatrix}, \begin{pmatrix} 1 \\ -i \end{pmatrix} \rangle &= 1 \cdot 2 + i \cdot i = 0 \\ \langle \begin{pmatrix} 1 \\ i \end{pmatrix}, \begin{pmatrix} 1 \\ i \end{pmatrix} \rangle &= 1 \cdot 1 + i \cdot (-i) = 1 - i^2 = 2 \\ U &= \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ i/\sqrt{2} & -i/\sqrt{2} \end{pmatrix} \qquad U^-1LU = 0002. \end{split}$$

Dove il prodotto scalare standard è stato fatto per verificare che siano ortogonali, il secondo mi serve per normalizzare la matrice (di fatti divido per la radice del risultato)

Esempio 2

Leschipis 2 $L = \begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix} \text{ matrice ortogonale con determinante 1, quindi rotazione}$ il polinomio caratteristico è $t^2 - \sqrt{3}t + 1$ gli autovalori sono quindi $t = \frac{\sqrt{3} \pm i}{2}$ $v_{\frac{\sqrt{3} \pm i}{2}} = \mathbb{C} \begin{pmatrix} i \\ \pm 1 \end{pmatrix}$

$$U = \begin{pmatrix} i/\sqrt{2} & i/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}.$$

Ultimo esempio

$$\begin{split} L = \begin{pmatrix} 1+i & i \\ -i & 1+i \end{pmatrix} \quad L^\star = \begin{pmatrix} 1-i & i \\ -i & 1-i \end{pmatrix} \\ LL^\star = \begin{pmatrix} 3 & 2i \\ -2i & 3 \end{pmatrix} = L^\star L. \end{split}$$

$$t^2 - 2(i+1) + 2i - 1 = 0 \quad t_1, t_2$$
$$v_{t_1} = \mathbb{C} \begin{pmatrix} i \\ 1 \end{pmatrix} \quad v_{t_2} = \mathbb{C} \begin{pmatrix} i \\ -1 \end{pmatrix}$$

U come nell'esercizio precedente

3 Cenni sulla classificazione delle isometrie

Nomenclatura 1

- $\cdot \ rotazioni$
- \cdot riflessioni
- $\cdot traslazioni$
- · glissoriflessione = $t_v \circ s_\alpha$ con $v \parallel \alpha^t$ (disegno de li mortacci sua)
- \cdot glissorotazioni = $t \circ R$ dove $v \parallel a$, a asse di R (altro disegno)
- · riflessioni rotatorie $s_a \circ R$ R rotazione di asse \underline{a} , $s_{\underline{a}}$ è una riflessione rispetto ad una retta parallela ad \underline{a}

Teorema 2 (Eulero 1776)

Ogni isometria di \mathbb{E}^3 è di uno dei sei tipi sopra descritti

Lezione 20 Geometria I

Federico De Sisti 2024-04-22

1 Teoremi vari su spazi Hermitiani e company

Lemma 1

Sia V uno spazio vettoriale su un campo \mathbb{R} Siano $P,Q \in End(V)$ tali che PQ = QP. Allora, se V_{λ} è l'autospazio di autovalore λ su P, risulta

$$Q(V_{\lambda}) \subseteq V_{\lambda}$$
.

Dimostrazione

Sia $v \in V_{\lambda}$ (cioè $P(v) = \lambda v$). Dobbiamo vedere che $Qv \in V_{\lambda}$.

$$P(Q(v)) = (P \circ Q)(v) = (Q \circ P)(v) = Q(\lambda v) = \lambda Q(v).$$

(V,h)spazio Hermitiano (Spazio vettoriale complesso h forma hermitiana definita positiva in V) $\dim(V)<+\infty$

Teorema 1

Sia (V,h) uno spazio hermitiano, $L \in End(V)$ operatore, sono equivalenti

- L è normale (rispetto ad h)
- ullet esiste una base ortonormale B di V composta da autovettori per L

Lemma 2

(V,h) spazio hermitiano, $L \in End(V)$ normale sono equivalenti

- $Lv = \lambda v$
- $L^*v = \overline{\lambda}v$

In particolare λ è l'autovalore per L se e solo se $\overline{\lambda}$ è autovalore per L^{\star}

$$V_{\lambda}(L) = V_{\overline{\lambda}}(L^{\star}).$$

Dimostrazione

Se v = 0 non c'è niente da dimostrare.

Se $v \neq 0$ basta far vedere che se $v \in V_{\lambda}(L)$ allora $v \in V_{\overline{\lambda}}(L^{\star})$. L'inclusione contraria segue da $L^{\star t} = L$

$$w \in V_{\lambda}(L), \quad v \in V_{\lambda}(L).$$

$$h(L^{*}(v), w) = h(v, L(w)) = h(v, \lambda w)$$

$$= \overline{\lambda}h(v, w) = h(\overline{\lambda}v, w)$$

$$h(L^{*}(v) - \overline{\lambda}v, w) = 0 \quad \circledast$$

Per il lemma, siccome per ipotesi L è normale,

$$L^{\star}(v) \in V_{\lambda}(L), \quad \overline{\lambda}v \in V_{\lambda}(L)$$

$$\Rightarrow L^{\star}(v) - \overline{\lambda}v \in V_{\lambda}(L)$$

Quindi nella \circledast posso prendere $w = L^*(v) - \overline{\lambda}v$, ottenendo

$$h(L^{\star}(v) - \overline{\lambda}v, L^{\star}(v) - \overline{\lambda}v) = 0.$$

Poiché h è definito positivo, segue

$$L^{\star}(v) - \overline{\lambda}v = 0$$

 $cio \grave{e}$

$$L^{\star}(v) = \overline{\lambda}v$$

Osservazione

Dal lemma segue $V_{\lambda}(L) \perp V_{\mu}(L)$ se $\lambda \neq \mu$

$$v \in V_{\lambda}, \quad w \in V_{\mu}$$

$$\lambda h(v,w) = h(\lambda v,w) = h(Lv,w) = h(v,L^*w) = h(v,\overline{\mu}w) = \mu h(v,w) \Rightarrow h(v,w) = 0$$

Dato che $\lambda \neq \mu$

Dimostrazione (Teorema Spettrale)

 $1)\Rightarrow 2)$ Procediamo per induzione su dimV,conbase ovvia dimV=1 Supponiamo il teorema vero per gli spazi hermitiani di dimensione $\leq n-1$ e sia $\dim_{\mathbb{C}}V=n$

Sia $v_1 \in V$ un autovettore per L, che possiamo assumere di norma 1. Sia $V_1 = \mathbb{C}v_1, W = v_1^p erp$.

Allora $V = V_1 \oplus W$.

Poiché V_1 è L-invariante (per costruzione) e L*-invariante per il lemma precedente, lo stesso accade per W.

Inoltre $L|_W \in End(V)$ è normale.

Per induzione, esiste una base $h|_W$ -ortonormale formata da autovettori per $L|_W$, sia $\{v_2, \ldots, v_n\}$. Allora $\{v_1, \ldots, v_n\}$ è una base h-ortonormale di V formata da autovettori per L.

2) \Rightarrow 1). Sia $B = \{v_1, \dots, v_n\}$ una base h-ortonormale di autovettori per L. Allora

$$[L]_B^B = \bigwedge = \begin{pmatrix} \lambda_1 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \lambda_n \end{pmatrix}$$

$$[L^{\star}]_{B}^{B} = \overline{[L]_{B}^{B}}^{t} = \overline{\bigwedge}$$

$$[L\circ L^\star]_B^B=[L]_B^B[L^\star]_B^B=\bigwedge\overline{\bigwedge}=\overline{\bigwedge}\bigwedge=[L^\star]_B^B[L]_B^B=[L^\star\circ L]_B^B$$

Poiché la mappa $A \to [A]_B^B$ è un isomorfismo tra End(V) e $M_{nn}(\mathbb{C})$, segue

$$L \circ L^* = L^* \circ L$$
.

cioè L è normale

Osservazioni

1. È essenziale che h sia definita positiva.

$$h(x,y) = x^t H \overline{y} \quad M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

non è definita positiva $h(\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right),\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right))=-1$

$$L_A: \mathbb{C}^2 \to \mathbb{C}^2 \ A = \begin{pmatrix} 0 & i \\ i & -2 \end{pmatrix}.$$

Dico che L_A è autoaggiunto, quindi normale

$$\begin{split} h(L_AX,Y) &= h(X,L_AY) \\ (L_AX)^t H \overline{Y} &= X^t H \overline{L_AY} \\ X^t A^t H \overline{Y} &= X^t H \overline{AY} \quad \forall X,Y \\ A^t H &= H \overline{A} & \text{Calcolo il poli-} \\ \begin{pmatrix} 0 & u \\ i & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -i \\ -i & -2 \end{pmatrix} \end{split}$$

nomio caratteristico di A

$$\det \begin{pmatrix} t & -i \\ -i & t+2 \end{pmatrix} = t(t+2) + 1 = (t+1)^2.$$

 $\begin{pmatrix} 0 & -i \\ i & 2 \end{pmatrix} = \begin{pmatrix} 0 & -i \\ i & 2 \end{pmatrix}$

Ma $A \neq \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, in particolare non è diagonalizzabile

2. Vediamo in dettaglio il fatto che $L|_W$ è normale

Ritornando alla dimostrazione del teorema spettrlae, osserviamo che se W è L-invariante è anche L^* -invariante.

Infatti, se $V = \bigoplus_{\lambda} V_{\lambda}(L)$ (per esercizio da dimostrare)

$$W = \bigoplus_{\lambda} (V_{\lambda}(L) \cap W)$$

$$= \bigoplus_{\lambda} (V_{\overline{\lambda}}(L^{\star}) \cap W)$$

$$=> W \stackrel{\sim}{e} L^*$$
-invariante

Adesso osservo che $(L|_W)^* = (L^*)|_W$

$$(L|_{W}) \circ (L|_{--})^* = (L|_{W}) \circ (L^s tar|_{W}) =$$

$$\begin{array}{l} (\mathbf{L}\big|_W) \circ (L\big|_W)^\star = (L|_W) \circ (L^s tar|_W) = \\ (L \circ L^\star)|_W = (L^\star \circ L)|_W = (L^\star|_W) \circ L|_W = (L|_W)^\star \circ L|_W \end{array}$$

2 Richiami su spazi vettoriali duali

Vspazio vettoriale su $\mathbb K$ di dimensione finita

$$V^V - V^{\acute{s}tar=Hom(V,\mathbb{K})}$$
.

sia $A \leq V$

$$Ann(A) = A^{\#} = \{ f \in V^{*} | f(a) = 0 \ \forall a \in A \}.$$

Osservazioni

1) $A^{\#}$ è un sottospazio

$$2) A^{\#\#} = \langle A \rangle$$

$$i: V \to V^{\star\star}$$

$$v \in V, \quad f \in V^{\star}$$

$$i(v)(f) = f(v)$$

V,W spazi vettoriali di dimensione finita $f\in Hom_{\mathbb{K}}(V,W),\,f^{\star}\in Hom_{\mathbb{K}}(W^{\star},V^{\star}),$ la trasposta di f è definita con $\phi\in W^{\star}$

$$f^{\star}(\phi) = \phi \circ f$$

Definizione 1

 $Definisco\ la\ dualit\`{a}\ standard\ su\ V\ come$

$$\langle , \rangle : V^* \times V \to \mathbb{K}.$$

 $\langle v, f \rangle = \langle f, v \rangle = f(v)$ con questa proprietà

$$\langle f(v), w^* \rangle = \langle v, f^*(w^*) \rangle.$$

Ricordo che se $B = \{v_1, \dots, v_n\}$ è una base di Vallora i funzionali v_i^\star definiti da

$$\langle v_i^{\star}, v_j \rangle = \delta_{ij}.$$

per $1 \leq i \leq n$ formano una base B^* di V^* detta base duale di B Sia $f: V \to W$ un'applicazione lineare, siano $B = \{v_1, \dots, v_n\}, L = \{w_1, \dots, w_m\}$ basi di V, W consideriamo $f^*: W^* \to V^*$ Allora:

$$[f]_B^B = [f^*]_{L^*}^{B^*t}$$

$$\parallel \qquad \parallel$$

$$(a_{ij}) \qquad (a_{ij}^*)$$

Tesi
$$a_{ih} = a_{hi}^{\star}$$

 $f^{\star}(w_{i}^{\star}) = \sum_{i=1}^{n} a_{ij}^{\star}$
 $f^{\star}(w_{i}^{\star})(v_{h}) = \sum_{i=1}^{n} a_{ij}^{\star} v_{i}^{\star}(v_{h}) = \sum_{i=1}^{n} a_{ij}^{\star} \delta_{ih} = a_{hi}^{\star}$
 \vdots
 $w_{i}^{\star}(f(w_{h})) = w_{i}^{\star}(\sum_{i=1}^{n} a_{ih}w_{i}) = \sum_{i=1}^{n} a_{ih}w_{i}^{\star}(w_{i}) = \sum_{i=1}^{n} a_{ih}\delta_{ij} = a_{ih}$

```
{\bf Teorema~2~({\it Qualche~propriet\`a~importante})}
```

$$f: V \to W \ lineare \ f^{\star}: W^{\star} \to V^{\star}$$

$$1)(Imf)^{\#} = \ker f^{\star}$$

$$2)(\ker f)^{\#} = Imf^{\star}$$

3)
$$(\lambda f + \mu g)^* = \lambda f^* + \mu g^*$$
 $(\lambda, \mu \in \mathbb{K}, g \in Hom(V, W))$

$$4)(h \circ f)^* = f^* \circ h^* \qquad h: W \Rightarrow U \text{ lineare}$$

Dimostrazione (Il punto 2, 3 e 4 vengono lasciati per esercizio)

1)
$$\emptyset \in (Imf)^{\#}$$

$$\Leftrightarrow \forall w \in Imf \ \emptyset(w) = 0$$

$$\Leftrightarrow \forall v \in V \emptyset(f(v)) = 0$$

$$\Leftrightarrow \emptyset \circ f = 0$$

$$\Leftrightarrow \emptyset \in kerf^*$$

Quindi abbiamo visto che $(Imf)^{\#} = \ker F^{\star}$

Proposizione 1

Sia V uno spazio vettoriale di dimensione n su \mathbb{K} e W un sottospazio. Allora

$$\dim(W) + \dim W^{\#} = n.$$

Dimostrazione

Da quanto visto, la mappa

$$Hom(V_1, V_2) \rightarrow Hom(V^s tar_2, V^s tar_1)$$

è un isomorfismo di spazi vettoriali. Inoltre f è iniettiva (rispettivamente suriettiva) se e solo se f^* è suriettiva (rispettivamente iniettiva)

Consideriamo la proiezione $\pi: V \to V|_W := U$

Poiché π è suriettiva $\pi^{\star}: U^{\star} \to V^{\star}$ è iniettiva e

$$W^{\#} = (\ker \pi)^{\#} = Im\pi^{*}.$$

per cui

$$\dim W^{\#} = \dim(Im\pi^{\star}) = \dim U^{\star} = \dim V - \dim W.$$

Lezione 21 Geometria 1

Federico De Sisti2024-04-24

Nuove informazioni sulle forme bilineari 1

V spazio vettoriale su \mathbb{R}

Ricordiamo che una forma bilineare è un'applicazione

$$b: V \times V \to \mathbb{R}$$
.

Abbiamo già osservato che se $A = [b]_B$

$$X = [v]_B, \quad Y = [w]_B$$

$$b(v, w) = X^t A Y.$$

Come cambia $[b]_B$ se cambio B

$$B = \{v_1, \dots, v_n\}$$
 $X = [v]_B$ $X' = [v]_B'$

$$B' = \{v'_1, \dots, v'_n\} \quad Y = [w]_B \quad Y' = [w]'_B$$

$$A = [b]_B \ A' = [b]_{B'}$$

$$b(v, w) = X^t A Y = X'^T A' Y'$$

$$X = MX', \quad Y = MY' \quad M = [Id_V]_B^B$$

$$(MX')^t A(MY') = X'^t A'Y'$$

$$X'M^tAMY' = X'^tA'Y'$$

$$A' = M^t A M$$

Definizione 1

Diciamo che due matrici A, B sono congruenti se esiste una matrice invertibile M tale che $B = M^t A M$

Proposizione 1

Due matrici rappresentano la stessa forma bilineare in basi diversi se e solo se sono congruenti

Osservazione

- 1. La congruenza è una relazione di equivalenza
- 2. Il rango è invariante per la congruenza
- 3. Per matrici reali invertibili, il segno del determinante è invariante
- 4. Se M è ortogonale

$$M^t A M = M^{-1} A M.$$

Se ho una forma bilineare $b:V\times V\to\mathbb{K}$ posso definire due applicazioni $V\to V^\star$ nel modo seguente.

Fissato
$$v \in V$$
, prendo
$$b_v(w) = b(v, w)$$

$$b_v'(w) = b(w, v)$$

$$b_v'(w) = b(w, v)$$

È chiaro che $b_v, b_v' \in V^*$ (usiamo il fatto che b è bilineare)

Dunque ho due applicazioni $V \to V^*$

$$\delta_b(v) = b_v \quad \delta_b'(v) = b_v'.$$

Definizione 2

Il rango di una funzione bilineare è il rango di una qualsiasi matrice che la rappresenta

Definizione 3

Una forma bilineare è non degenere se ha rango (massimo) $\dim V$

Proposizione 2

Sia V uno spazio vettoriale di dimensione finita,

 $b: V \times V \to \mathbb{K}$ una forma bilineare.

 $Sono\ equivalenti$

- $b \ \dot{e} \ non \ degenere \ ovvero \ b(v,v) = 0 \Leftrightarrow v = 0$
- $\forall v \in V, v \neq 0 \quad \exists w \in V : \quad b(v, w) \neq 0$
- $\forall w \in V, \ w \neq 0 \ \exists v \in V : b(v, w) \neq 0$
- $\delta_b: V \to V^{\star}$ è un isomorfismo
- $\delta_b': V \to V^*$ è un isomorfismo

Dimostrazione

 $Sia\ B = \{v_1, \dots, v_n\}\ una\ base\ di\ V\ e\ sia\ A = [b]_B$

1)
$$\Rightarrow$$
 2) per ipotesi det $A \neq 0$ se $X = [v]_B$ $X \neq 0 \Rightarrow X^t A \neq 0$ quindi esiste $Y \in \mathbb{K}^n : X^t A Y \neq 0$.

Se $w \in V$ è tale che $[w]_B = Y$ ho dimostrato che $b(v, w) = X^t A Y \neq 0$

 $(2) \Rightarrow 1)$ Riscrivendo l'ipotesi in coordinate abbiamo

$$\forall X \neq 0 \ \exists Y: \ X^t A Y \neq 0$$

$$\Rightarrow X^t A \neq 0 \quad \forall X \neq 0 \Rightarrow A \ \dot{e} \ invertibile$$

- 1) \Leftrightarrow 3) è come sopra
- 2) \Rightarrow 4) Poiché dim $V = \dim V^*$ basta vedere che δ_b è iniettava, cioè ker $\delta_b = \{0\}$ $v \in \ker \delta_b \Rightarrow \delta_b(v) = b_v$ è il funzionale nullo, cioè

$$b_v(w) = 0 \quad \forall w \in V$$

$$b_v(w) = b(v, w) \Rightarrow v = 0$$

4) \Rightarrow 2) Dato $v \neq 0$, $\delta_b(v) = b_v \neq 0$ perché δ_b è un isomorfismo, quindi esiste $w \in V$:

$$b(v, w) = b_v(w) \neq 0$$

$$3) \Leftrightarrow 5) \stackrel{.}{e} simile \ a \ 2) \Leftrightarrow 4)$$

2 Caso Simmetrico

$$b(v, w) = b(w, v).$$

Osservazione

b è simmetrica se e solo se lo è qualsiasi matrice che la rappresenta. Dato $S \subset V$ definiamo

$$S^{\perp} = \{ v \in V | b(v, s) = 0 \quad \forall s \in S \}.$$

Esercizio S^{\perp} è un sottogruppo e, $S^{\perp} = < s >^{\perp}$

Definizione 4

Due sottospazi U, W si dicono ortogonali se

$$Y \subseteq W^p erp \Leftrightarrow W \subset U^{\perp}$$

Definizione 5

 $v \in V$ si dice isotropo se b(v, v) = 0

Definizione 6

$$\ker b = \{v \in V | b(v, w) = 0 \quad \forall w \in V\} = V^{\perp}$$

Osservazione

b è non degenere se e solo se $\ker b = \{0\}$

Proposizione 3

Sia b non degenere, $W \subseteq V$ sottospazio,

Allora, se $\delta_b: V \to V^*$ è l'isomorfismo canonico indotto da b, $\delta_b(W^t) = W^*$. In particolare risulta sempre $\dim W + \dim W^{\perp} = \dim V$

Nota

Non è vero, anche nel caso non degenere, che $V=W\oplus W^\perp$

Dimostrazione

 $w \in W^{\perp}$ $\delta_b(w) = b_w$ Voglio vedere che

 $b_w \in W^\#$ $b_w(w') = b(w, w') = 0 \ \forall w' \in W$

Quindi $\delta_b(W^{\perp}) \subseteq W^{\#}$

Prendo ora $f \in W^{\#}$; poiché b è non degenere, δ_b è un isomorfismo, quindi esiste $v \in V$

$$f = \delta_b(v) = b_v \quad b(v, w) = b_v(w) = 0 \quad \forall w \Rightarrow v \in W^{\perp}.$$

quindi
$$f = \delta(b_v) \ con \ v \in W^{\perp}$$

Proposizione 4

Sia V spazio vettoriale, $W \subset V$ sottospazio, $b \in Bi(V)$. Sono equivalenti:

- $V = W \oplus W^{\perp}$
- $b|_W$ è non degenere

Lemma 1

 $\ker b|_W = W \cap W^{\perp}$

Dimostrazione (lemma)

 $w \in \ker b|_W \Leftrightarrow b(w, w') = 0 \quad \forall w' \in W \Leftrightarrow w \in W \cap W'$

Dimostrazione (proposizione)

- 1) \Rightarrow 2) segue dal lemma perché dall'ipotesi $W \cap W^{\perp} = \{0\}$
- $(2) \Rightarrow 1)$ Sia $\{w_1, \ldots, w_s\}$ una base di W

Per ipotesi $A = (b(w_i, w_j))$ è invertibile, in particolare dato $v \in V$, il sistema lineare

$$* A \begin{pmatrix} x_1 \\ \vdots \\ x_s \end{pmatrix} = \begin{pmatrix} b(v, w_1) \\ \vdots \\ b(v, w_s) \end{pmatrix}$$

ha soluzione unica. Poniamo

$$w = v - \sum_{h=1}^{s} x_j w_j.$$

Notiamo che * significa

$$\sum_{h=1}^{s} b(v_h, w_j) x_h = b(v, w_j) \quad 1 \le j \le s.$$

Calcoliamo

$$b(w, w_i) = b(v - \sum_{h=1}^{s} x_h w_h, w_j) = b(v, w_j) - \sum_{h=1}^{s} x_h b(w_h, w_j) = b(v, w_j) =$$

$$= b(v, w_i) - b(v, w_i) = 0$$

Poiché i $\{w_i\}$ sono una base di W, risulta $b(w,u)=0 \quad \forall u \in W$, cioè $w \in W^{\perp}$ Allora

$$v = w + \sum_{h=1}^{s} x_h w_h.$$

Pertanto $V=W+W^{\perp}$, per ipotesi $W\cap W^{\perp}=\ker b|_{W}=\{0\}$, quindi $V=W\oplus W^{\perp}$

Lezione 22 Geometria I

Federico De Sisti 2024-04-29

1 Boh non ero a lezione

 $W\subseteq V$ sottospazio $g\in Bi(V)$
 $g|_W$ è non degenere $\Leftrightarrow V=W\oplus W^\perp$

Cosa dimostreremo oggi

Sia V spazio vettoriale di dimensione finita e $g \in Bi_s(V)$ (forma bilineare simmetrica

 \mathbb{K} qualsiasi, esiste una base g-ortogonale

 \mathbb{K} algebricamente chiuso ($\mathbb{K}\cong\mathbb{C}$), esiste una base di V rispetto alla quale la matrice di g è $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ r=rg(g)

 $\mathbb{K} = \mathbb{R}$ esiste una base di V rispetto alla quale la matrice di $g \in \begin{pmatrix} I_r & 0 & 0 \\ 0 & -I_s & 0 \\ 0 & 0 & 0 \end{pmatrix}$ r+

 $s=rg(g) \ n-r-s$ indice di nullità, ker della forma V spazio vettoriale $(\dim(V)<+\infty), g\in Bi_s(V)$

Definizione 1

la forma quadrativi associata a V è l'applicazione $q:V\to\mathbb{K}$ definita da q(v)=g(v,v) e questa è una funzione omogenea di grado 2

Esempio

 $V \cong \mathbb{K}^n, g = \text{prodotto scalare standard}$

$$g\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{i=1}^n x_i^2$$

Osservazione

Valgono:

1)
$$q(kv) = k^2 q(v)$$

2)
$$2g(v, w) = q(v + w) - q(v) - q(w)$$

dove g(v, w) è la forma polare di q

Dimostrazione

1.
$$q(kv) = g(kv, kv) = k^2 g(v, v) = k^2 q(v)$$

$$2.\frac{q(v+w) - q(v) - q(w)}{2} = g(v+w, v+w) - g(v, v) - g(w, w) = g(v, v) + 2g(w, v) + g(w, w) - g(v, v) - g(w, w) = \frac{2g(w, v)}{2}$$

Osservazione

V =
$$\mathbb{R}^4$$
 e sia $q\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_1^2 + 2x_2^2 - x_4^2 + x_1x_4 + 6x_2x_3 - 2x_1x_2$

Voglio trovare la matrice della forma polare di q rispetto alla base canonica

$$\begin{pmatrix}
3 & -1 & 0 & 1/2 \\
-1 & 2 & 3 & 0 \\
0 & 3 & 0 & 0 \\
1/2 & 0 & 0 & -1
\end{pmatrix}$$

Sulla diagonale ci sono i coefficienti delle componenti al quadrato $(x_i)^2$ gli altri li ottieni dividendo per 2 ogni altro coefficiente

2

Teorema 1 ((Caratteristica di \mathbb{K}) \neq 2)

Dato V spazio vettoriale di dimensione $n \geq 1$ e g forma bilineare simmetrica su V, allora esiste una base g-ortogonale.

Dimostrazione

Per induzione su dim V = n. Se n = 1 non c'è nulla da dimostrare.

se g è la forma bilineare nulla $(g(v, w) = 0 \ \forall v, w \in V)$ ogni base è g-ortogonale. Altrimenti esistono, $v, w \in V$ con $g(v, w) \neq 0$.

Assumo che almeno uno tra v, w, v + w è non isotropo. Infatti se v, w sono isotropi

$$g(v + w, v + w) = g(v, v) + g(v, w) + g(w, w) = 2g(v, w) \neq 0.$$

quindi $\exists v_1 \in V \ t.c \ g(v_1,v_1) \neq 0$. Allora $g|_{\mathbb{K}v_1}$ è non degenere quindi V = $\mathbb{K}v_1 \oplus W \ con \ W = (\mathbb{K}v_1)^{\perp}$

$$\dim(W) = n - 1$$
, per induzione \exists una base $\{v_2, \ldots, v_n\}$ di W con $g(v_1, v_j) = 0$ se $2 \le j \le n, \{v_1, \ldots, v_n\}$ è una base g -ortogonale di V

Teorema 2

Supponiamo \mathbb{K} algebricamente chiuso. Sia V spazio vettoriale dimensione $n \ge 1$ e g forma bilineare simmetrica su V, esiste una base di V rispetto alla quale la matrice di g è $D = \begin{pmatrix} I_r & 0 \\ 0 & O_{n-r} \end{pmatrix}$ r = rg(D)

In modo equivalente, ogni matrice simmetrica a coefficienti in \mathbb{K} è congru $ente\ a\ D$

Dimostrazione

Per il teorema precedente, esiste una base $B = \{v'_1, \dots, v'_n\}$ di V rispetto alla

quale
$$(g)_{B'} = \begin{pmatrix} a_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & a_{nn} \end{pmatrix}$$

Possiamo assumere che a_{11}, \ldots, a_{rr} siano non nulli e che $a_{r+i,r+i} = 0$ con 1 < i < n - r.

Poiché \mathbb{K} è algebricamente chiuso, esistono $\alpha_1, \ldots, \alpha_r \in \mathbb{K}$ t.c. $\alpha_i^2 = a_{ii}, 1 \leq$

$$\begin{aligned} &i \leq r \ \textit{poniamo}. \\ &v_i = \begin{cases} \frac{1}{\alpha_i} v_i', \ 1 \leq i \leq r \\ v_i' \quad r+1 \leq i \leq n \end{cases} \end{aligned}$$

Osservazione

Se g è non degenere, esiste una base B rispetto alla quale $(g)_B = Id_n$

Caso Reale $\mathbb{K} = \mathbb{R}$

V spazio vettoriale reale (dim $V = n \ge 1$)

$$g \in Bi_s(V)$$

Sia B una base g-ortogonale. Definiamo

Definizione 2

Chiamiamo $i_{+}(g), i_{-}(g), i_{0}(g)$ indice di positività, negatività e nullità di g, e sono rispettivamente

$$i_{+}(g) = \{v \in B | g(v, v) > 0\}$$

$$i_{-}(g) = \{v \in B | g(v, v) < 0\}$$

$$i_0(g) = \{ v \in B | g(v, v) = 0 \}$$

Teorema 3 (Sylvester)

Gli indici non dipendono dalla scelta di B. Posto $p = i_+(g), q = i_-(g)$ allora 1 + q = n - r (r = rg(g))

ed esiste una base di V rispetto alla quale la matrice E di g è tale che

$$E = \begin{pmatrix} Id_p & \dots & 0 \\ \vdots & -Id_q & \vdots \\ 0 & \dots & O_{n-r} \end{pmatrix}.$$

equivalentemente, ogni matrice simmetrica reale A è congruente ad una matrice della forma E in cui r = rg(A) e p dipende solo da A

Dimostrazione

Dal teorema di esistenza di una base g-ortogonale deduciamo che esiste una base $\{f_1,\ldots,f_n\}$ di V rispetto alla quale, se $v=\sum_{i=1}^n y_i f_i$

$$a(v) = a_{11}y_1^2 + a_{22}y_2^2 + a_{23}y_3^2 + a_{23}y_3^2$$

 $q(v) = a_{11}y_1^2 + a_{22}y_2^2 + \ldots + a_{nn}y_n^2$ con esattamente n coefficienti diversi da 0, che possiamo supporre essere a_{11}, \ldots, a_{rr} Siano $a_{11}, \ldots, a_{pp} > 0, \quad a_{p+1,p+1}, \ldots, a_{rr} < 0$

$$\exists c$$
 $c \in \mathbb{D}$

$$\alpha_i^2 = a_{ii} \quad 1 \le i \le p \qquad \alpha_i^2 = -a_{ii} \quad p+1 \le i \le r$$

$$\exists \alpha_1, \dots, \alpha_p, \alpha_{p+1}, \dots, \alpha_r \in \mathbb{R} \ t.c.$$

$$\alpha_i^2 = a_{ii} \ 1 \le i \le p \quad \alpha_i^2 = -a_{ii} \ p+1 \le i \le r$$

$$Allora \ posto \ e_i = \begin{cases} \frac{1}{\alpha_i} f_i \ 1 \le i \le r \\ f_i \ r+1 \le i \le n \end{cases}$$

la matrice di g rispetto a $\{e_1, \dots, e_n\}$ è $\begin{pmatrix} Id_p & \dots & 0 \\ \vdots & -Id_q & \vdots \\ 0 & \dots & O_{n-r} \end{pmatrix}$

Resta da dimostrare che p dipende solo da g e non dalla base B usata per definir lo

Supponiamo che rispetto ad un'altra base g-ortogonale $\{b_1,\ldots,b_n\}$, risulti, per

$$v = \sum_{i=1}^{n} z_i b_i$$

$$q(v) = z_1^2 + \ldots + z_t^2 - z_{t+1}^2 - \ldots - z_r^2.$$

 $mostriamo \ che \ p=t$

se per assurdo $p \neq t$ assumo $t \leq p$ considero quindi i sottospazi $S = \langle e_1, \dots, e_n \rangle$ $T = \langle b_{t+1}, \dots, b_n \rangle$

Poiché $\dim S + \dim T = p+n-t > n$ perché t < p per Grassman vettoriale $S \cap T \neq \{0\}$ sia $0 \neq v \in S \cap T$

allora $r = x_1e_1 + \ldots + x_pe_p = z_{t+1}b_{t+1} + \ldots, z_nb_n$ contraddizione:

$$q(v) = \sum_{i=1}^{p} x_i^2 > 0.$$

$$q(v) = -\sum_{i=1}^{r} z_i^2 + z_{r+1}^2 + \dots + z_n^2 < 0.$$

Osservazioni

1. Esiste una definizione più intrinseca degli indici. Ricordiamo che $g \in Bil_S(V), V$ spazio vettoriale su /R è definita positiva se $g(v, v) > 0, \ \forall v \in V \setminus \{0\}$ e che g è definita negativa se -g è definita positiva.

 $2. \mathrm{Il}$ teorema di Sylvester si estende, con la stessa dimostrazione alla forma hermitiana.

In particolare ogni matrice hermitiana è congruente a una matrice diagonale del del tipo

$$\begin{pmatrix} I_p & \dots & 0 \\ \vdots & I_{r-p} & \vdots \\ 0 & \dots & O_{n-r} \end{pmatrix}$$

Proposizione 1

Sia (V,g) uno spazio vettoriale su $\mathbb R$ dotati di una forma bilineare simmetrica g

Siano dati un prodotto scalare h e una forma bilineare simmetrica k Allora esiste una base di V che sia h-ortonormale e k-ortogonale

Dimostrazione

(V,h) è uno spazio euclideo, quindi per il teorema di rappresentazione delle forme bilineari, esiste un operatore $L \in End(V)$ tale che

$$h(L(v), w) = k(v, w).$$

Poiché k è simmetrica, L è simmetrica, per il teorema spettrale siste una base h-ortonormale costituita da autovettori per L.

Sia $\{v_1, \ldots, v_n\}$ tale base. Voglio dimostrare che $\{v_1, \ldots, v_n\}$ è k-ortogonale

$$k(v_r, v_s) = h(L(v_r), v_s) = h(\lambda_r v_r, v_s) = \lambda_r h(v_r, v_s) = \lambda_r \delta_{rs}.$$

Corollario 1

Sia (V,h) uno spazio euclideo, e k una forma bilineare simmetrica su V. Allora $i_+(k), i_-(k), i_0(k)$ corrispondono al numero di autovalori positivi, negativi, nulli, dell'endomorfismo di V che rappresenta k rispetto ad h

Dimostrazione

Sia come nella proposizione, $\{v_1, \ldots, v_n\}$ una h-ortonormale e k-ortogonale, per il teorema di Sylvester

$$i_{+}(k) = |\{v_{i}|k(v_{i}, v_{i}) > 0\}|.$$

Ma abbiamo visto che $k(v_i, v_i) = \lambda_i$ quindi $i_+(k) = |\{\lambda_i > 0\}|$. La dimostrazione non è terminata.

Definizione 3

 $\label{lem:constraint} Una\ matrice\ simmetrica\ reale\ si\ dice\ definita\ positiva\ se\ tutti\ gli\ autovalori\ sono\ positivi$

Definizione 4

Data una matrice quadrata $n \times n$, i minori principali leading, sono quelli ottenuti estraendo righe e colonne come segue

$$\{1\}, \{1, 2\}, \{1, 2, 3\}, \dots, \{1, 2, 3, \dots, n\}.$$

Esempio

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$|1| = 1$$

$$\det \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = -2$$

$$\det \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \det \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} + \det \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = 1 - 1 - 1 = -1$$

Teorema 4

A è definita positiva se e solo se tutti i suoi autovalori principali leading sono positivi $\,$

$$q\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 3x_1^2 + 4x_1x_2 + 8x_1x_3 + 4x_2x_3 + 3x_3^2$$
1. Determinare gli indici

2. Calcolare $W\perp$ se $W=\mathbb{R}\left(\begin{array}{c}1\\-1\\0\end{array}\right)$ Scriviamo la matrice della forma bilineare associata rispetto alla base standard

$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}.$$

$$\det \begin{pmatrix} \lambda - 3 & -2 & -4 \\ -2 & \lambda & -2 \\ -4 & -2 & \lambda - 3 \end{pmatrix} = 0 \quad i_{-} = 2$$

Lezione 23 Geometria I

Federico De Sisti 2024-05-02

1 In questa lezione il signorino ha semplciemente riportato gli esoneri e fatto esercizi della scherda 7, nnon è roba mia

Lezione 24 Geometria I

Federico De Sisti2024-05-06

1 Spazi proiettivi e Antani

Servirebbe un'introduzione per tutto ciò, ma non sarà il Posta a darcela, la motivazione matematica è che la formula di Grassmann vale sempre (antani)

Definizione 1 (Spazio Proiettivo)

Sia V uno spazio vettoriale di dimensione finita sul campo \mathbb{K} . Lo **spazio proiettivo** associato a V denominato con $\mathbb{P}(V)$ è l'insieme dei sottospazi 1-dimensionali di V

$$\mathbb{K}v \leftrightarrow [v] \iff punto \ di \ \mathbb{P}(v).$$

 $\dim V = 0 \quad \mathbb{P}(V) = \emptyset$

 $\dim V = 1 \quad \mathbb{P}(V) = \{pt\}$

 $\dim V = 2 \quad \mathbb{P}(V) \ \textit{retta proiettiva}$

 $\dim V = 2$ $\mathbb{P}(V)$ piano proiettivo

 $Quindi \dim \mathbb{P}(V) = \dim V - 1$

Caso importante $V = \mathbb{K}^{n+1}$

$$\mathbb{P}(V) = \mathbb{P}^n (= \mathbb{P}^n(K)).$$

Osservazione

- 1. Dati $v \in V \setminus \{0\}$, $\mathbb{K}v$ è un sottospazio 1-dimensionale, quindi esso dà luogo a un punto nello spazio proiettivo che denotiamo [v]
- 2. La nozione di spazio proiettivo di V può introdursi in modo equivalente tramite la seguente relazione d'equivalenza su $V\setminus\{0\}$

$$v \sim w \Leftrightarrow \exists \lambda \in \mathbb{K} \setminus \{0\} \text{ t.c. } v = \lambda w.$$

Allora

$$\mathbb{P}(v) = V \setminus \{0\} / INSERISCIQUOTIENTSPACE.$$

Riprendendo l'osservazione 1, nel caso $V = \mathbb{K}^{n+1}$

$$(x_0,\ldots,x_n)\in\mathbb{K}^n+1\setminus\{0\}\leadsto[x_0\ldots,x_n]\in\mathbb{P}^n.$$

$$[x_0,\ldots,x_n]=[y_0,\ldots,y_n].$$

$$\Leftrightarrow \exists \lambda \in \mathbb{K} \setminus \{0\}: \quad y_i = \lambda x_i, \quad 0 \le i \le n$$

Definizione 2

 $Sia \mathbb{P} = \mathbb{P}(V) \ ed \{e_1, \ldots, e_n\} \ una \ base \ di \ V.$

Diciamo che $\{e_1, \ldots, e_n\}$ definisce un sistema di coordinate omogenee (o riferimento proiettivo) su V, denotato con $e_0 \ldots e_n$

Dato $v \in V\{0\}$

$$v = x_0 e_0 + \ldots + x_n e_n.$$

$$\rightsquigarrow (x_0,\ldots,x_n) \in \mathbb{K}^{\{n+1\}} \setminus \{0\}$$

$$P[x_1, \dots, x_n] \leftrightarrow P = [v].$$

 x_0, \ldots, x_n si dicono coordinate omogenee di vAd esempio, fissata la base $\{e_0, e_1, e_2 \text{ in } \mathbb{P}^2, P[1, 2, 3] \text{ è il sottospazio 1-dim di } V \text{ generato da } e_0 + 2e_1 + 3e_2$

Nomenclatura 1

Fissato $e_0 \dots e_n$, i punti

$$F_0[1,0,\ldots,0] = [e_0],\ldots,F_n[0,\ldots,1] = [e_n].$$

sono i punti fondamentali del riferimento $U[1,\ldots,1]$ punto unità del riferimento

Nota Bene

 $Poichè[v] = [\lambda v] risulta$

$$\lambda v = \lambda x_0 e_0 + \ldots + \lambda x_n e_n.$$

quindi le coordinate omogenee sono determinate solo a meno di un fattore di proporzionalità non nullo

Osservazione

se $e_0 \dots e_n$ è un riferimento proiettivo, anche $(\mu e_0) \dots (\mu e_n)$, $\mu \in \mathbb{K} \setminus \{0\}$ è un riferimento proiettivo e i punti hanno le stesse coordinate omogenee rispetto ai due riferimenti.

Quindi

consideriamo identici due riferimenti se definiti da basi proporzionali

$$e_0, \dots, e_n = (\mu e_0), \dots, (\mu e_n).$$

Un riferimento in \mathbb{P}^n determinato dalla base canonica di \mathbb{K}^{n+1} si dice riferimento standard.

i punti fondamentali sono

$$[1,0,\ldots,0],[0,1,\ldots,0],\ldots,[0,\ldots,0,1].$$

Dato $W\subset V$ sottospazio vettoriale possiamo considerare $\mathbb{P}(W)\leq \mathbb{P}(V)$ $\mathbb{P}(W)$ è detto sottospazio proiettivo di $\mathbb{P}(V)$

$$\dim \mathbb{P}(V) - \dim \mathbb{P}(W) = (\dim V - 1) - (\dim W - 1) = \dim V - \dim W.$$

Definizione 3

Un iperpiano in \mathbb{P}^n è un sottospazio proiettivo di codimensione 1

Supponiamo che in \mathbb{P}^n sia dissato un riferimento e_0, \ldots, e_n con coordinate omogenee x_0, \ldots, x_n

$$\circledast$$
 $a_0x_0 + a_1x_1 + \ldots + a_nx_n = 0$ $\begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix} \neq \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$.

Se leggiamo quest'equazione in V è l'equazione cartesiana di un iperpiano vettoriale $H\subset V$

I punti di $P = [v] \in \mathbb{P}$ le cui coordinate omogenee verificano \circledast sono quelli tali che $v \in H, v \neq 0$ quindi sono i punti di $\mathbb{P}(H)$

Nota bene

Se
$$[x_0, \ldots, x_{n2}] = [y_0, \ldots, y_n]$$
 e

$$a_0x_0 + \dots + x_n = 0.$$

allora anche $a_0y_0+\ldots+a_ny_n=0$ perché $[x_0,\ldots,x_n]=[y_0,\ldots,y_n]$ significa $y_i=\mu x_i \ \mu\in\mathbb{K}\{0\}$ e

$$a_0y_0 + \ldots + a_ny_n = a_0\mu x_0 + \ldots + a_n\mu x_n = \mu(a_0x_0 + \ldots + a_nx_n) = 0.$$

Iperpiano coordinati su \mathbb{P}^n (rispetto al riferimento standard)

$$H_i = \{ [x_0, \dots, x_n] \in \mathbb{P}^n | x_i = 0 \} \ 0 \le i \le n.$$

Ad esmpio, in \mathbb{P}^2 , $H_0 = \{x_0 = 0\}$

$$H_1 = \{x_1 = 0\}$$

 $H_2 = \{x_2 = 0\}$ Più in generale consideriamo un sistema di t equazioni omogenee

$$\begin{cases} a_{10}x_0 + \dots a_{1n}x_n = 0 \\ \dots \\ a_{t0}x_0 + \dots + a_{tn}x_n = 0 \end{cases}$$

Se $W \subset V$ è il sottospazio definito dal sistema precedente, l'insieme di punti $P \in \mathbb{P}$ le cui coordinate verificano il sistema è $\mathbb{P}(W)$

Sia $A = (a_{ij})$ $1 \le i \le t, 0 \le j \le n$ e sia $r = rk(A) \dim \mathbb{P}(V) = \dim W - 1 = \dim V - r - 1 = \dim \mathbb{P}(V) - r$ Quindi $\mathbb{P}(W)$ ha condimensione r su \mathbb{P}

Intersezione

$$A_1x = 0 \quad \mathbb{P}(W_1)$$

$$A_2x = 0 \quad \mathbb{P}(W_2)$$

$$\begin{cases} A_1x = 0 \\ A_2x = 0 \end{cases} \quad \mathbb{P}(W_1) \cap \mathbb{P}(W_2) = \mathbb{P}(W_1 \cap W_2)$$
In particolare $\mathbb{P}(W_1) \cap \mathbb{P}(W_2) \neq 0 \Leftrightarrow W_1 \cap W_2 = \{0\}$

Definizione 4

 $\mathbb{P}(W_1), \mathbb{P}(W_2)$ si dicono Incidenti se $\mathbb{P}(W_1) \cap \mathbb{P}(W_2) \neq \emptyset$ Sghembi se $\mathbb{P}(W_1) \cap \mathbb{P}(W_2) =$

Osservazion

La formula si generalizza in

$$\bigcap_{i \in I} \mathbb{P}(W_i) = \mathbb{P}\left(\bigcap_{i \in I} W_i\right).$$

Definizione 5

Se $\emptyset \neq J \subset \mathbb{P}$, il sottospazio proiettivo generato da J è

$$L(J) = \bigcap_{\mathbb{P}(W) \supseteq J} \mathbb{P}(W).$$

 $con\ W\ sottospazio\ di\ V$

Caso speciale

 $J = \{p_{1,t}\}$. Scriveremo in tal caso $L(p_1, \ldots, p_y)$ Notiamo che se

$$p_1 = [v_1], \dots, p_t = [v_t].$$

$$L(p_1, \dots, p_t) = \mathbb{P}(\langle v_1, \dots, v_t \rangle).$$

In particolare

 $\dim(L(p_1,\ldots,p_t)) \le t-1$

Definizione 6

 p_1, \ldots, p_t si dicono linearmente indipendenti se

$$\dim(L(p_{1,t})) = t - 1.$$

Esempio

 p_1, p_2 sono indipendenti \Leftrightarrow sono distinti

 p_1, p_2, p_3 sono indipendenti \Leftrightarrow non sono allineati

Definizione 7

 p_1, \ldots, p_t in $\mathbb{P} = \mathbb{P}(V)$, $\dim(V) = n + 1$ si dicono in posizione generale se \circ sono linearmente indipendenti $(t \leq < n + 1)$

 \circ se t>n+1 e n+1 tra essi, comunque scelti, sono linearmente indipendenti

AGGIUGNI ESMEPIO SU POSIZIONE GENERALE

Equazioni parametriche di un sottospazio $\mathbf{2}$

k+1 punti linearmente indipendenti $[v_0],\ldots,[v_n]$ in un sottospazio proiettivo S di dimensione k.

Per ogni $P \in S$,

$$P = [\lambda_0 v_0 + \lambda_1 v_1 + \ldots + \lambda_k v_k].$$

Fissiamo ora un riferimento e_0, \ldots, e_n du \mathbb{P}

Allora se v_i ha coordinate $(p_{i0}, \dots, p_{in})^t$ rispetto a $0, \dots, e_n$ e $P = P[x_0, \dots, x_n]$

si ha
$$\begin{cases} x_0 = \lambda_0 p_{00} + \lambda_1 p_{10} + \ldots + \lambda_k p_{k0} \\ x_1 = \lambda_0 p_{01} + \lambda_1 p_{11} + \ldots + \lambda_k p_{k1} \\ \vdots \\ x_n = \lambda_0 p_{0n} + \lambda_1 p_{1n} + \ldots + \lambda_k p_{kn} \end{cases}$$
Caso importante: rette $[v_0], [v_1]$

$$\begin{cases} x_0 = \lambda_0 p_{00} + \lambda_1 p_{10} \\ x_0 = \lambda_0 p_{01} + \lambda_1 p_{11} \\ \vdots \\ x_0 = \lambda_0 p_{0n} + \lambda_1 p_{1n} \end{cases}$$

 $\mathbb P$ piano proiettivo, rretta per $P[p_0,p_1,2],Q[q_0,q_1,q_2]$ rè un iperpiano in $\mathbb P$

$$\det \begin{pmatrix} x_0 & x_1 & x_2 \\ p_0 & p_1 & p_2 \\ q_0 & q_1 & q_2 \end{pmatrix} = 0.$$

Esercizio Se in \mathbb{P}^3 sono dati punti non allineati

$$P[p_0, p_1, p_2, p_3], Q[q_0, q_1, q_2, q_3], R[r_0, r_1, r_2, r_3].$$

l'equazione del piano per P, Q, E è

$$\det \begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ p_0 & p_1 & p_2 & p_3 \\ q_0 & q_1 & q_2 & q_3 \\ r_0 & r_1 & r_2 & r_3 \end{pmatrix} = 0.$$

Esempio Retta in $\mathbb{P}^2(\mathbb{C})$ per [-1,1,1],[1,3,2i]

$$\det \begin{pmatrix} x_0 & x_1 & x_2 \\ -1 & 1 & 1 \\ 1 & 3 & 2i \end{pmatrix} = 0.$$

allineati e scrivere un'equazione ella retta che li contiene

$$\det \begin{pmatrix} x_0 & x_1 & x_2 \\ 1 & 2 & 2 \\ 3 & 1 & 4 \end{pmatrix} = 0.$$

 \circ Verificare che le rette per $\mathbb{P}(\mathbb{C})$

$$ix_1 - x_2 + 3ix_0 = 0$$

$$x_0 + x_1 - ix_2 = 0$$

5...

hanno intersezione non vuota (basta verificare che il determinante sia no nullo)

$$A = \begin{pmatrix} 3i & i & -1 \\ 1 & 1 & -i \\ 5 & 1 & 3i \end{pmatrix}.$$

 $\det A = 0$

Siano $S_1 = \mathbb{P}(W_1), S_2 = \mathbb{P}(W_2)$ due sottospazi proiettivi

 $L(S_1 \cup S_2)$ è detto sottospazio somma.

$$L(S_1, S_2) = P(W_1 + W_2).$$

Infatti, se $\mathbb{P}(W) \supset S_1 \cup S_2$, allora contiene $\mathbb{P}(W_1 + W_2)$ perché W deve contenere sia W_1 che W_2

D'altra parte, $W_1 + W_2 \supseteq W_1$, $W_1 + W_2 \supseteq W_2$

quindi
$$\mathbb{P}(W_1 + W_2) \supseteq P(W_1) = S_1$$

$$\mathbb{P}(W_1 + W_2) \supseteq P(W_2) = S_2 \Rightarrow \supseteq L(S_1, S_2)$$

Teorema 1 (Forumla di Grassmann proiettiva)

$$\dim L(S_1, S_2) = \dim S_1 + \dim S_2 - \dim S_1 \cap S_2.$$

$$(S1, S_2 \text{ sottospazi proiettivi di } \mathbb{P}(V))$$

Dimostrazione

La dimostrazione segue subito dalla formula di Grassmann vettoriale

$$\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim W_1 \cap W_2.$$

$$\dim L(S_1, S_2) - 1 = \dim S + 1 + \dim S_2 + 1 - (\dim S_1 \cap S_2 + 2)$$

Osservazione

Poiché dim $L(S_1, S_2) \leq \dim \mathbb{P}$, risulta dalla formula di Grassmann

$$\dim S_1 \cap S_2 \ge \dim S_1 + \dim S_2 - \dim \mathbb{P}.$$

In particolare

$$\dim S_1 + \dim S_2 \ge \dim \mathbb{P} \Rightarrow S_1, S_2$$
 sono incidenti.

(Infatti dim
$$S_1 \cap S_2 \ge 0 \Leftrightarrow S_1 \ge S_2 \ne \emptyset$$
)

Corollario 1 (Antani²)

- 1. In un piano proiettivo due rette si intersecano
- 2. In uno spazio proiettivo di dimensione 3 una retta e un piano si intersecano e due piani distinti si intersecano in una retta