Step-1

Given that A, B, C are three invertible square matrices and M = ABC. To find a formula for B^{-1} that involves M^{-1} and A and C.

See that as A,B,C are three invertible square matrices and M = ABC so M is also invertible and $M^{-1} = C^{-1}B^{-1}A^{-1}$ as $C^{-1}B^{-1}A^{-1}ABC = C^{-1}B^{-1}BC = C^{-1}C = I$.

Step-2

So,
$$M^{-1} = C^{-1}B^{-1}A^{-1} \hat{a} \in \hat{a} \in (1)$$

Now, multiplying the equation (1) from left by C gives, $CM^{-1} = CC^{-1}B^{-1}A^{-1} = IB^{-1}A^{-1} = B^{-1}A^{-1}$.

So,
$$CM^{-1} = B^{-1}A^{-1} \hat{a} \in \hat{a} \in (2)$$

Now, multiplying the equation (2) from right by A gives, $CM^{-1}A = B^{-1}A^{-1}A = B^{-1}I = B^{-1}$.

Hence,
$$B^{-1} = CM^{-1}A$$
.