

Finger formation at the base of ash clouds: A linear stability analysis

Jonathon Lemus 1 Allan Fries 1 Paul Jarvis ¹ Amanda Clarke ² Jeremy Phillips ³ Costanza Bonadonna ¹

¹Section of Earth and Environmental Sciences, University of Geneva

²School of Earth and Space Exploration, Arizona State University

³School of Earth Sciences, University of Bristol

Figure 1. a) Visible and b) infrared images of ash clouds from Vulcanian explosions of Sabancaya volcano, Peru. Fingers can be seen in both images.

Base states

Equations of motion

Introduction

Volcanic ash presents a hazard for infrastructure and human health. Understanding ash settling is therefore crucial for assessing the associated risk. Downard-propagating fingers(Figure 1), hypothesised to form from a gravitational instability at the base of the ash cloud (Figure 2) have been seen at many volcanoes, and in analogue experiments (Allan Fries) and numerical models (Jonathon Lemus). Here we present a linear stability analysis, that predicits the initial growth rate of the fingers.

Expansion

 $\mathbf{u}(\mathbf{x},t) = \mathbf{\hat{u}}(z)e^{i(k_x x + k_y y - \omega t)}$ $\nabla \cdot \mathbf{u}(\mathbf{x}, t)$ Conservation of mass

$$\frac{\partial \mathbf{u}(\mathbf{x},t)}{\partial t} + \left[\mathbf{u}(\mathbf{x},t)\right] \cdot \nabla \left[\mathbf{u}(\mathbf{x},t) = \frac{\nabla P(\mathbf{x},t)}{\rho_0} + \nu \nabla^2 \mathbf{u}(\mathbf{x},t) - g' \mathbf{\hat{z}} \right] P(\mathbf{x},t) = P^{(0)}(\mathbf{x},t) + \hat{P}(z)e^{i(kx-\omega t)}$$

$$P(\mathbf{x},t) = P^{(0)}(\mathbf{x},t) + \hat{P}(z)e^{i(kx-\omega t)}$$

Conservation of momentum

$$\frac{\partial \phi(\mathbf{x},t)}{\partial t} + [\mathbf{u}(\mathbf{x},t)] - \mathbf{U}_{\mathsf{p}}] \cdot \nabla \phi(\mathbf{x},t) = D_{\mathsf{p}} \nabla^2 \phi(\mathbf{x},t) \qquad \qquad \phi(\mathbf{x},t) = \phi^{(0)}(\mathbf{x},t) + \hat{\phi}(z) e^{i(kx - \omega t)}$$

$$\phi(\mathbf{x},t) = \phi^{(0)}(\mathbf{x},t) + \hat{\phi}(z)e^{i(kx-\omega t)}$$

Conservation of solute

$$\frac{\partial s(\mathbf{x}, t)}{\partial t} + \mathbf{u}(\mathbf{x}, t)x \cdot \nabla s(\mathbf{x}, t) = D_{\mathsf{s}} \nabla^2 s(\mathbf{x}, t)$$

$$s(\mathbf{x},t) = s^{(0)}(\mathbf{x},t) + \hat{s}(z)e^{i(kx-\omega t)}$$

 $2L_{
m p}$

$$g' = g \left[[1 + \alpha s(\mathbf{x}, t)][1 - \phi(\mathbf{x}, t)] + \frac{\rho_p \phi(\mathbf{x}, t)}{\rho_0} \right]$$

$$\hat{P} \ll P^{(0)}, \hat{\phi} \ll \phi^{(0)}, \hat{s} \ll s^{(0)}$$

Dimensionless parameters

We nondimensionalise the system using the characteristic length and velocity scales

$$U_{\mathsf{c}} = U_{\mathsf{p}}$$

$$L_{\mathsf{c}} = \left(rac{
u U_{\mathsf{p}}}{a}
ight)^{1/2}$$

This gives six dimensionless parameters

$$extit{Re} = rac{U_{
m p}^3}{g
u}, \qquad L_{
m p}' = L_{
m p} \Big(rac{gU_{
m p}}{
u}\Big)^{1/2}$$

$$\beta = \alpha s_0, \qquad \gamma = \frac{\rho_p}{\rho_0}$$

$$Sc_{\mathsf{s}} = rac{
u}{D_{\mathsf{s}}}, \qquad Sc_{\mathsf{p}} = rac{
u}{D_{\mathsf{p}}}$$

Figure 2. Despite an initial stable configuration, ash settling leads to the formation of a gravitationally unstable particle boundary layer.

Unknowns		Parameters	
$\mathbf{u}(\mathbf{x},t)$	Fluid velocity	ρ_0	Reference fluid density
$P(\mathbf{x}, t)$	Pressure	ν	Kinematic viscosity
$\phi(\mathbf{x},t)$	Particle volume	\mathbf{U}_{p}	Particle settling velocity
$s(\mathbf{x},t)$	Solute concentration	$ ho_{p}$	Particle density
Variables		D_{p}	Particle diffusivity
X	Position vector	D_{s}	Solute diffusivity
t	time	g	Gravity
${f \hat{z}}$	Vertical unit vector	α	Expansivity

Dimensionless equations

Can express problemas a generalised eigenvalue equation

$$\mathbf{Me} = \omega \mathbf{Qe},$$

where

$$\mathbf{M} = \begin{pmatrix} \frac{\mathrm{d}^4}{\mathrm{d}z'^4} - 2k^2 \frac{\mathrm{d}^2}{\mathrm{d}z'^2} + k^4 & k^2 \beta & k^2 \gamma \\ \frac{\partial s^{(0)}}{\partial z'} & \frac{1}{ReSc_s} \left(k^2 - \frac{\mathrm{d}^2}{\mathrm{d}z'^2} \right) & 0 \\ \frac{\partial \phi^{(0)}}{\partial z'} & 0 & \frac{1}{ReSc_p} \left(k^2 - \frac{\mathrm{d}^2}{\mathrm{d}z'^2} \right) - U'_{\mathsf{p}} \frac{\mathrm{d}}{\mathrm{d}z'} \end{pmatrix}$$

$$\mathbf{e} = egin{pmatrix} \hat{u}_z \ \hat{s} \ \hat{\phi} \end{pmatrix},$$

$$\mathbf{Q} = i\omega \begin{pmatrix} \left(\frac{\mathrm{d}^2}{k^2 - \mathrm{d}z'^2}\right) & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Figure 3. Choice of base states for the particle and solute concentrations. The transitions have length scales L_p and L_s respectively.

1/2

Special case: Rayleigh-Taylor instability

