CM 1

QUESTION DE REFLEXION

Fibonacci

On a programmé la fonction de Fibonacci en récursif.

On mesure le temps mis pour faire le calcul, on obtient :

```
n=5 fibo=5 temps en ms =0
n=10 fibo=55 temps en ms =0
n=15 fibo=610 temps en ms =0
n=20 fibo=6765 temps en ms =0
n=25 fibo=75025 temps en ms =0
n=30 fibo=832040 temps en ms =3
n=35 fibo=9227465 temps en ms = ? (40)
n=40 fibo=102334155 temps en ms = ? 405
n=45    fibo=1134903170    temps    en    ms = ? 4470
n=50 fibo=-298632863 temps en ms =49901
```

Sauriez-vous répondre aux questions suivantes (et comment faites-vous ?)

- Etes-vous d'accord pour mesurer le temps de fibonacci (100) sur une machine de l'ENSEM (sous-entendu j'attends la fin du calcul pour repartir ?)
- Si j'ai deux heures à disposition, quelle valeur de fibonacci (en récursif) puis-je calculer?

Quelle loi sous-jacente exprime la relation entre n et le temps mis à calculer la valeur? Pouvez-vous expliquer comment vous avez obtenu cette loi (classe de complexité)? En quoi le fait de savoir que la fonction est récursive influence l'analyse?

Tri

Soit un algorithme de tri (peu importe lequel), le principe exprimé ci-dessus est-il encore valable ?

Pourquoi ? Si non expliquez comment vous pouvez essayer d'estimer la loi qui régit la taille des données et le temps de calcul

Pouvez-vous faire la relation avec les différentes notions de complexité (exacte, pire cas, moyenne, etc) ?

Mise en pratique et réflexion

Pour répondre à cette question il n'est pas utile de connaître le tri par tas. Il s'agit ici de réfléchir ... \odot

Si vous êtes intéressés, voyez page 343 à 347 de Gaudel et al.

Une première version (algo 1) est proposée, puis une seconde (algo 2).

```
Algo 1
Soit t[1..n] de element les données
p<--0
Tant que p <n faire
  ajouter(t,p,t[p+1]) // on ajoute le nouveau
FinTantQue
Tant que p>1 faire
  min <--détruire(t,p)
  p--
  t[p+1]<--min
FinTantQue
Algo 2
Soit t[1..n] de element les données
Pour p de n div 2 à 1 faire
  Ordonner(t,p)
FinTantQue
p<--n
Tant que p>1 faire
  min <--détruire(t,p)
  p--
  t[p+1]<--min
FinTantQue
```

La classe de complexité de la partie grisée italique est en O(N log₂ N) avec N la taille des données.

Que peut-on dire des *classes de complexités* respectives de ces deux algorithmes (algo 1 et algo 2), comment les comparer (laquelle est plus faible que l'autre, etc.) ? A quelle condition le second sera plus performant que le premier ?