Árboles Binarios de Búsqueda y AVL

Algoritmos y Estructuras de Datos

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo

TAD Conjunto

- ► Ya hablamos un montón del TAD Conjunto
- ► Y lo diseñamos de diferentes formas
 - ► TAD Conjunto Acotado: Array de elementos, Bit Array
 - ► TAD Conjunto: Lista Enlazada

```
TAD ConjAcotado<N> {
  obs set: conj<N>
  obs cota: IN
  proc conjVacío(in cota: N): ConjAcotado<N>
     asegura{res.set = {} } \land res.cota = cota{}
  proc pertenece(in c: ConjAcotado<\mathbb{N}>, in e: \mathbb{N}): bool
     asegura{res = true \leftrightarrow e \in c.set}
  proc agregar(inout c: ConjAcotado<\mathbb{N}>, in e: \mathbb{N})
     requiere\{c = C_0 \land e \leq c.cota\}
     asegura{c.set = C_0.set \cup \langle e \rangle}
```

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo

TAD Diccionario

- ► También podemos usar un TAD un poco diferente (no mucho)
- ▶ Diccionario: como conjuntos, pero cada elemento tiene Clave y Valor
- ightharpoonup Se puede especificar con seg < KxV >, conj < KxV >, dict < K, V >

```
TAD Diccioanrio<K, V> {
  obs data: dict<K.V>
  proc diccionarioVacío(): Diccionario<K, V>
    asegura\{res.data = \{\}\}
  proc está(in d: Diccionario\langle K, V \rangle, in k: K): bool
    asegura{res = true \leftrightarrow k \in d.data}
  proc definir(inout d: Diccionario\langle K, V \rangle, in k: K, in v: V)
    requiere\{d = D_0\}
    asegura{d.data = setKey(D_0.data, k, v)}
  proc borrar(inout d: Diccionario\langle K, V \rangle, in k: K)
    requiere\{d = D_0 \land k \in d.data\}
    asegura{d.data = delKey(D_0.data, k)}
  proc obtener(in d: Diccionario\langle K, V \rangle, in k: K):V
    requiere\{k \in d.data\}
    asegura{res = d.data[k])}
```

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo

Diseño de Conjuntos y Diccionarios

Diseño sobre Arrays

- ► Conjuntos y diccionarios pueden representarse a través de arrays (con o sin repetidos, ordenados o desordenados).
- ► Ya vimos varias de esas soluciones.
- ► Intenten hacer ustedes diseñar todas estas alternativas, con sus INV, ABS, y los algoritmos
- ► Complejidad de las operaciones: depende de la implementación, pero
 - ► Tiempo: alguna de las operaciones requieren O(n) en el peor caso
 - Espacio: O(n).
 - ¿se podrá hacer mejor?

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo

5/1

Árboles/Árboles Binarios

- ► Sobre árboles, usamos terminología variada:
 - botánica: raíz, hoja
 - penealógica: padre, hijo, nieto, abuelo, hermano
 - física: arriba, abajo
 - topológica: nodo interno, externo
- ► Hay un tipo particular de árboles, que son los Árboles Binarios: la secuencia de árboles tiene como máximo dos elementos

Árbol Binario

Árbol No Binario

Árboles /Árboles Binarios

- ▶ Podemos definir el tipo conceptual (matemático) árbol < T >.
- ► Así como con las secuencias, podemos definir árboles de cualquier tipo T
- ► Se puede definir recursivamente como
 - ► Nil es un árbol< T >
 - Una secuencia que contiene un elemento de T y una secuencia de árboles
 T >, es un árbol
 T >.
- ► ¡Y se pueden dibujar!
- ► Ejemplos
 - ► Nil
 - ► < 5, < *Nil*, *Nil* >>
 - < 5, << 22, < 50, < Nil, < 20, < Nil, Nil >>> , Nil >, < 82, < Nil, Nil >>

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo

6/

Árboles/Árboles Binarios

- ► El concepto matemático árbol tiene muchos usos, propiedades y funciones muy conocidas.
- Por ejemplo, dado un árbol a, podemos hablar de nil?(a), raiz(a), altura(a), elementos(a), está(e,a) y muchas más.
- ► Y para árboles binarios, también izq(a) y der(a)
- ► Esas funciones se puede definir recursivamente, por ejemplo:

$$Altura(nil) = 0$$

$$Altura(< a, s >) = 1 + max_i(altura(s_i))$$

Árboles/Árboles Binarios

Especificación del TAD

- ► Podemos definir el TAD Arbol y el TAD Arbol Binario
- ► El TAD Arbol Binario podría tener versiones de todas las operaciones conceptuales y los constructores nil y bin(c,I,D).

Diseño del TAD

- ▶ Podemos implementar Árboles binarios con punteros: Nodo = Struct <dato: N, izq: Nodo, der: Nodo > Módulo AB implementa Árbol Binario { raíz: Nodo }
- ➤ Y podemos escribir un invariante de representación, y una función de abstracción (pero no lo vamos a hacer acá).

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo

Representación de conjuntos y diccionarios a través de AB

- ▶ ¿Podríamos representar conjuntos o diccionarios a través de árboles binarios?
- ► Claro que podríamos
- ► ¿Ganaríamos algo? En principio, no demasiado
- ➤ Sin importar cómo diseñemos un AB, las operaciones seguirán siendo lineales (O(n))
- ► Pero...

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo

10/1

Árboles Binarios de Búsqueda (ABB)

¿Qué es un Árbol Binario de Búsqueda?

- ► Es un AB que satisface la siguiente propiedad:
- ▶ Para todo nodo, los valores de los elementos en su subárbol izquierdo son menores que el valor del nodo, y los valores de los elementos de su subárbol derecho son mayores que el valor del nodo
- ▶ Dicho de otra forma, el valor de todos los elementos del subárbol izquierdo es menor que el valor de la raíz, el valor de todos los elementos del subárbol derecho es mayor que el valor de la raíz, y tanto el subárbol izquierdo como el subárbol derecho son ABB.

Formalmente

```
pred esABB(a: ArbolBinario< T >)
 \{ a = Nil \lor (
 (\forall e : T)(e \in elems(a.lzq) \rightarrow e \leq a.dato) \land 
 (\forall e : T)(e \in elems(a.Der) \rightarrow e > a.dato) \land 
 esABB(d.lzq) \land esABB(d.Der) ) \}
```

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo

Ejemplos

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo

Conjunto sobre ABB

```
Algoritmos - Crear Vacío y Agregar
    Nodo = Struct <dato: N, izq: Nodo, der: Nodo >
    Modulo ConjSobreABB implementa Conjunto {
           raíz: Nodo
           proc conjVacio():ConjSobreABB
             res.raiz = Null;
           proc agregar(inout c:ConjSobreABB, in e: T)
             if c.raiz == Null:
                c.raiz.data = e:
                c.raiz.izq = Null;
                c.raiz.der = Null;
             else:
                if e <= c.raiz.dato:
                   agregar(c.raiz.izq, e);
                else:
                   agregar(c.raiz.der, e);
             return res
```

Conjunto sobre ABB

```
Rep y Abs
    Nodo = Struct <dato: N, izq: Nodo, der: Nodo >
    Modulo ConjSobreABB implementa Conjunto {
            raíz: Nodo
           pred invRep(c: ConjSobreABB)
                   {esArbol(c.raiz)∧<sub>L</sub> esABB(c.raiz)}
           pred predAbs(c: ConjSobreABB, c':Conjunto)
                   \{(\forall e: T)(alcanzable(e, c) \leftrightarrow e \in c')\}
            pred esABB(c: ConjSobreABB)
                   \{c.raiz = Null \lor (
                   (\forall e: T)(alcanzable(e, c.raiz.izq) \rightarrow e \leq c.raiz.dato) \land
                   (\forall e: T)(alcanzable(e, c.raiz.der) \rightarrow e > c.raiz.dato) \land
                   esABB(d.raiz.izq) \land esABB(d.riaz.der) )}
            pred alcanzable(e: T, n:Nodo)
                   \{Null \neq n.raiz.dato \lor_L e = n.raiz.dato \lor
                   alcanzable(e, n.raiz.izg) \lor alcanzable(e, n.raiz.der) \}
```

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo

14/1

Conjunto sobre ABB

Algoritmos - Agregar

- ► Lo hicimos de forma recursiva
- ► Pero lo que estamos haciendo es:
 - 1. Buscar el padro del nodo a insertar
 - 2. Insertarlo como hijo de ese padre
- ► Costo de la inserción: Depende de la distancia del nodo a la raiz
 - ► En el peor caso:
 - ► O(n)
 - ► En el caso promedio (suponiendo una distribución uniforme de las claves):
 - O(log n)

13/1

Conjunto sobre ABB

Algoritmos - Borrar

A la hora de borrar un elemento u de un ABB podemos tener 3 casos:

- 1. *u* es una hoja
- 2. *u* tiene un solo hijo
- 3. *u* tiene dos hijos

Veamos caso por caso

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo

Conjunto sobre ABB

Algoritmos - Borrar nodo con 1 hijo

2 Borrar un nodo *u* con un solo hijo *v*

Este caso no es tan complejo: hay que asegurar que el hijo no quede desconectado.

- ightharpoonup Buscar al padre de u(w)
- Si existe w, reemplazar la conexión (w, u) con la conexión (w, v)
- Ahora ya podemos eliminar el elemento (si queremos)

Conjunto sobre ABB

Algoritmos - Borrar hoja

1. Borrar un nodo sin hijos (hoja)

Este es el caso más sencillo: el nodo a borrar no tiene conexiones a otros nodos.

- ▶ Buscar al padre (es el que tiene el puntero a nuestra hoja)
- ► Eliminar la hoja (poner Null en el campo correspondiente del nodo)

Conjunto sobre ABB

Algoritmos - Borrar nodo con 2 hijos

3 Borrar un nodo *u* con 2 hijos

Este es el caso complicado: para mantener el invRep tenemos que reemplazar u por un elemento que sea mayor a todo el subarbol izquierdo y menor a todo el subarbol derecho

- ▶ Buscar al predecesor inmediato de *u* (máximo del subarbol izquiero)
- ightharpoonup También podemos buscar al sucesor inmediato de u (mínimo del subarbol izquiero)
- Cualquiera de los dos (v) va a tener como máximo 1 hijo
- Copiar el elemento encontrado en el nodo u
- Borrar el nodo v (si o si entra en los casos anteriores)

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo

Conjunto sobre ABB

Algoritmos - Borrar

- ► Costo del borrado:
- ► El borrado de un nodo interno requiere encontrar:
 - ▶ al nodo que hay que borrar
 - y a su predecesor inmediato
- ► En el peor caso:
 - ► Encontrar el que tengo que borrar: O(n)
 - ► Encontrar predecesor: O(n)
- ► Es decir: O(n)

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo

Conjunto sobre ABB

- ► Hasta ahora vimos que podemos representar Conjuntos (y Diccionarios) con árboles
- ► Usar Árboles Binarios de Búsqueda parece una buena idea
- ▶ Pero en el Peor Caso vamos a seguir tiendo complejidad Lineal
- ▶ Principalmente porque el árbol puede estar desbalanceado
- ► ¿Cómo podemos mejorar esto?
- ► ¿Hay estructuras más eficientes?

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo

22/1

Introducción al balanceo

- - ightharpoonup | arbol(n) |= $log_k(n)$
- ► Pero…no podemos pretender tener siempre árboles completos (¡mantenerlos completos sería demasiado caro!)
- ► Quizás con alguna propiedad más débil...
- ► Noción intuitiva de balanceo
 - ► Todas las ramas del árbol tienen "casi" la misma longitud
 - ► Todos los nodos internos tienen "muchos" hijos
- ► Caso ideal para un arbol k-ario
 - ► Cada nodo tiene 0 o k hijos
 - La longitud de dos ramas cualesquiera difiere a lo sumo en una unidad

21/1

Balanceo

- ► Teorema: Un árbol binario perfectamente balanceado de *n* nodos tiene altura $|log_2(n)| + 1$
- ► Demotración: Si cada nodo tiene 0 o 2 hijos
 - ► "Podamos" el árbol eliminando primero las hojas de las ramas más largas
 - Luego podamos todas las hojas, nos queda otro árbol con las mismas características (cantidad de hijos por nodo v balanceo)
 - ¿Cuántas veces podemos "podar" el árbol?
 - Fácilmente generalizable a árboles

$$n_h = (k-1)n_i + 1 \Rightarrow n_h = \frac{(k-1)n+1}{k}$$
costo de búsqueda/inserción/borrado

- $O(\log n)$
- Pero... sucesiones de inserciones y borrados pueden destruir el balanceo!

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo

25/1

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo

26/1

AVL

- ► Un árbol se dice balanceado en altura si las alturas de los subárboles izquierdo y derecho de cada nodo difieren en a lo sumo una unidad
- ► Árboles AVL:
 - ► Fueron propuestos en 1962
 - ► Se llaman árboles AVL, por sus creadores Gueorgui Maksimovich Adelsón-Velski (1922-2014) y Yevgueni Mijáilovich Landis (1921-1997)
 - La ventaja principal de éstos árboles es que mantienen un nivel de balanceo que permiten que todas las operaciones sean en

AVL

Factor de Balanceo

factor de balanceo (FDB): altura subárbol Der altura subárbol Izg

- ightharpoonup En un árbol balanceado en altura $|FDB| \le 1$, para cada nodo
- ightharpoonup Si tenemos algún nodo con |FDB| > 1, no está balanceado (no es AVL)

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo 29/1

Profes de AED en Lucha: Las Universidades Nacionales están en Riesgo

AVL

Árboles de Fibonacci

Árboles de Fibonacci:

- \blacktriangleright Tiene todos los factores de balanceo de sus nodos internos ± 1
- ► Es el árbol balanceado más cercano a la condición de no-balanceo
- ► Un árbol de Fibonacci con n nodos tiene altura < 1,44 lg(n+2) - 0,328
 - demostrado por Adelson-Velskii y Landis
 - ightharpoonup \Rightarrow un AVL de n nodos tiene altura $\Theta(\lg n)$

