STATEMENT OF RELEVANCY FOR JP 9-321672

This document was cited as part of an office action in Japanese Patent Application No. 2003-570573 corresponding to US 7,221,389 to the same assignee.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-321672

(43)公開日 平成9年(1997)12月12日

(51) Int.Cl. 8		識別記号	庁内整理番号	FΙ	技術表示箇所
H04B	3/10			H 0 4 B 3/10	В
H03H	17/00	601	9274-5 J	H03H 17/00	601B

審査請求 有 請求項の数17 OL (全 28 頁)

		審金前又	有
(21)出願番号	特顯平9-4057	(10)	0005223 士通株式会社
(22)出顧日	平成9年(1997)1月13日		奈川県川崎市中原区上小田中4丁目1番 号
(31) 優先權主張番号 (32) 優先日 (33) 優先權主張国	特顯平8-76457 平 8 (1996) 3 月29日 日本 (JP)	神	來 尚 察川県川崎市中原区上小田中4丁目1番 号 富士通株式会社内
		神	田 界 奈川県川崎市中原区上小田中4丁目1番 号 富士通株式会社内
		(74)代理人 弁	理士 真田 有
			最終頁に続く

(54) 【発明の名称】 線路等化器制御方法並びに積分回路, 周波数シフト回路及び伝送装置

(57)【要約】

【課題】 変復調装置等の線路等化器制御方法に関し、トレーニング信号のやりとりをデータ伝送開始前に行なうことなく、また変復調装置等のハードウェア量を増やすことなく、線路等化器の制御を行なうことを目的とする。

【解決手段】 伝送信号に重畳された特定周波数成分を持つ複数のトーン信号を抽出する抽出ステップS1と、抽出されたトーン信号のレベルを判定する判定ステップS2と、判定されたトーン信号のレベルに基づいて、受信信号を等化する線路等化器の特性を制御する制御ステップS3とをそなえて構成する。

本発明の原理説明図

【特許請求の範囲】

【請求項1】 伝送信号に重叠された特定周波数成分を持つ複数のトーン信号を抽出する抽出ステップと、抽出されたトーン信号のレベルを判定する判定ステップと、

判定されたトーン信号のレベルに基づいて、受信信号を 等化する線路等化器の特性を制御する制御ステップとか らなることを特徴とする、線路等化器制御方法。

【請求項2】 該抽出ステップにおいては、該複数のトーン信号として、ある帯域における上限の周波数成分を 10 有するトーン信号と、該帯域における下限の周波数成分を有するトーン信号とを抽出することを特徴とする、請求項1記載の線路等化器制御方法。

【請求項3】 前記判定ステップにおいて、前記抽出された複数のトーン信号を加算した値と基準値とを比較し、

前記制御ステップにおいて、前記トーン信号と基準値と の比較結果の値並びに大小に基づいて前記線路等化器の 特性を制御することを特徴とする、請求項1記載の線路 等化器制御方法。

【請求項4】 前記判定ステップにおいて、前記抽出された複数のトーン信号のレベル差を算出し、

前記制御ステップにおいて、前記レベル差の値並びに正 負に基づいて、前記線路等化器の特性を制御することを 特徴とする、請求項1記載の線路等化器制御方法。

【請求項5】 受信信号に含まれる複数の特定周波数成分を持つ信号をそれぞれ抽出し、

前記抽出された特定周波数信号のそれぞれのレベルを算出し、

前記算出されたそれぞれの特定周波数信号レベルに基づ 30 いて線路等化器の特性を決定する係数を算出するととも に、

前記特定周波数信号レベルにより表される受信信号の特性に基づいて前記算出される係数を制御し、前記線路等 化器の次数を切り替えることを特徴とする、線路等化器 制御方法。

【請求項6】 n桁の信号から下位のm桁を抽出する第1の抽出部と、

前記n桁の信号から上位のn-m桁を抽出する第2の抽出部と、

前記第2の抽出部から出力される信号を1/2する乗算器と、

前記第1の抽出部出力と、前記乗算器出力とを加算する 第1の加算器と、

前記第1の加算器出力が一時的に格納される記憶部と、 前記記憶部に格納された信号と入力するn桁の信号とを 加算する第2の加算器をそなえたことを特徴とする、積 分回路。

【請求項7】 入力信号の実数成分を一時的に格納し、 1タイミング後に出力する第1の記憶部と、 前記入力信号の虚数成分を一時的に格納し、1タイミング後に出力する第2の記憶部と、

前記第1の記憶部に記憶された1タイミング前の実数成分信号と、入力した虚数成分信号とを加算する第1の加算部と、

前記第2の記憶部に記憶された1タイミング前の虚数成分と、入力した実数成分とを加算する第2の加算部とを そなえたことを特徴とする、周波数シフト回路。

【請求項8】 特定周波数成分を持つ複数のトーン信号 が重畳された伝送信号を受信信号として受信する受信部 を有する伝送装置であって、

該受信部が、

該受信信号について等化を行なう線路等化器と、

該線路等化器からの出力信号に含まれる該複数のトーン 信号のレベルに基づいて、該線路等化器をフィードバッ ク制御する線路等化器制御部とをそなえて構成されたことを特徴とする、伝送装置。

【請求項9】 該線路等化器制御部が、

該線路等化器からの出力信号から特定周波数成分を持つ 信号を抽出する帯域通過フィルタ部と、

前記帯域通過フィルタ部により抽出された複数の特定周 波数信号のレベルを算出するレベル算出部と、

前記レベル算出部により算出された信号レベルの値に基づいて、前記線路等化器の特性を決定する係数を算出する係数算出部とをそなえたことを特徴とする、請求項8記載の伝送装置。

【請求項10】 該線路等化器が、該線路等化器制御部 によるフィードバック制御に基づいて、2次のフィルタ, 1次のフィルタ又は0次のフィルタのいずれかのフィルタとして動作するように構成されたことを特徴とする、請求項8記載の伝送装置。

【請求項11】 該線路等化器制御部が、該線路等化器 に対するフィードバック制御を通じて、該受信信号に関する自動利得制御を行なうように構成されたことを特徴とする、請求項8記載の伝送装置。

【請求項12】 該線路等化器制御部の前段にそなえられ、該線路等化器からの出力信号についてランダム抽出するランダム抽出回路をそなえたことを特徴とする、請求項8記載の伝送装置。

40 【請求項13】 該帯域通過フィルタ部が、

受信信号の中から複数の特定周波数信号を抽出するバン ドパスフィルタと、

該バンドパスフィルタにて抽出された該複数の特定周波 数信号について所定の周波数分シフトさせる周波数シフト部と、

該周波数シフト部からの該複数の特定周波数信号のうち の少なくとも一方を抽出するローパスフィルタとをそな えて構成されたことを特徴とする、請求項9記載の伝送 装置。

50 【諸求項14】 上記の周波数シフト部及びローパスフ

ィルタが、

入力信号の実数成分を一時的に格納し、1タイミング後 に出力する第1の記憶部と、

前記入力信号の虚数成分を一時的に格納し、1タイミング後に出力する第2の記憶部と、

前記第1の記憶部に記憶された1タイミング前の実数成分信号と、入力した虚数成分信号とを加算する第1の加算部と、

前記第2の記憶部に記憶された1タイミング前の虚数成分と、入力した実数成分とを加算する第2の加算部とを 10 そなえてなる周波数シフト・ローパスフィルタ共用部により構成されたことを特徴とする、請求項13記載の伝送装置。

【請求項15】 該レベル算出部が、

前記帯域通過フィルタ部により抽出された複数の特定周波数信号を和を演算することにより、送信データにおける中間帯域信号のレベルを算出する全パワー算出部と、前記帯域通過フィルタ部により抽出された複数の特定周波数信号のパワー差分を算出するパワー差分算出部とをそなえて構成されたことを特徴とする、請求項9記載の20伝送装置。

【請求項16】 該係数算出部が、

該レベル算出部にて算出された信号レベルのパワー情報 を、予め設定された参照値と比較する比較部と、

該比較部からの比較結果を積分する積分回路と、

該積分回路からの積分演算結果に基づいて、前記線路等 化器を制御するための係数を算出するリミッタとをそな えて構成されたことを特徴とする、請求項9記載の伝送 装置。

【請求項17】 該積分回路が、

n桁の信号から下位のm桁を抽出する第1の抽出部と、 前記n桁の信号から上位のn-m桁を抽出する第2の抽 出部と、

前記第2の抽出部から出力される信号を1/2する乗算 器と、

前記第1の抽出部出力と、前記乗算器出力とを加算する 第1の加算器と、

前記第1の加算器出力が一時的に格納される記憶部と、 前記記憶部に格納された信号と入力するn桁の信号とを 加算する第2の加算器をそなえたことを特徴とする、請 40 求項16記載の伝送装置。

【発明の詳細な説明】

【0001】(目次)

発明の属する技術分野

従来の技術(図33~図35)

発明が解決しようとする課題(図33)

課題を解決するための手段(図1、図2)

発明の実施の形態(図3~図32)

発明の効果

[0002]

1971 J J Z I G / Z

【発明の属する技術分野】本発明は、例えば構内回線,自営回線等のメタリック回線を使用してデータを伝送する際に用いて好適な伝送装置や、この伝送装置において用いられる線路等化器制御方法,積分回路並びに周波数シフト回路に関する。構内回線等を介してデータを伝送する場合にはモデムを使用することが一般的であり、特に伝送速度が高速で且つ安価なモデムが強く要求されている。特に画像情報は情報量が多いため、通常のデータを送信するためのモデムよりも更に高速な、例えば伝送速度が1.5 Mbps程度の高速モデムが要求されている。

[0003]

【従来の技術】図33は一般的なモデムの構成を示す図であり、この図33に示すモデム280は、回線を介することにより対向モデムとの間でデータ信号を送受しうるものであり、回線からのデータ信号を受信し端末等に出力する受信部281をそなえるとともに、端末等からのデータ信号を回線を介することにより対向装置に対して送信する送信部286をそなえて構成されている。

20 【0004】 ここで、送信部286は、機能的には論理 処理部286a, ロールオフフィルタ(ROF)286 b,変調部286c,ディジタル/アナログ変換部(D /A変換部)286d等をそなえている一方、受信部2 81は、機能的には、アナログ/ディジタル変換部(A /D変換部)281a,線路等化器281b,復調部2 81c,ロールオフフィルタ281d,自動利得制御部 (AGC; AutomaticGain Control)281e,自動等 化器(EQL; Equalizer)281f,キャリア検出部 (CD)281g,タイミング抽出部281h及びクロ ック信号発生部281i等をそなえている。

【0005】なお、これらの送信部286及び受信部281は、ハードウェア的にはA/D変換器、D/A変換器、MPU (Microprocessor Unit)及びディジタル信号処理を行なうDSP (Digital Signal Processor)により構成されている。このような構成により、モデム280と対向モデムとの間でのデータ信号の送受に先行して、データ伝送の開始前にトレーニング信号を相手側装置に送信し、これに基づいて受信用モデム内の自動利得制御回路(AGC回路)、線路等化器(LEQ)等を調整する、いわゆるトレーニングの処理が行なわれる。これによって、回線の特性によってレベルの減衰や周波数特性の劣化が生じた受信信号を最適な状態に調整している。

【0006】その後、上述の図33に示すモデム280の送信部286では、例えば端末等からの送信データ信号について、論理処理部286aによる処理を通じて信号点が発生し、この信号点についてロールオフフィルタ286bにて波形成形処理が施された後、変調部286cにて変調される。その後、D/A変換部286dにて70でででででででででである。その後、D/A変換部286dにである。その後、D/A変換部286dにです。アナログ信号に変換されて、データ信号として送信され

る。

【0007】また、モデム280の受信部281では、 対向する装置から回線を介して入力されるアナログ受信 データについて、A/D変換部281aにてディジタル 信号に変換して、復調部281cにおいてこのディジタ ル受信信号を復調する。その後、ロールオフフィルタ2 81 dでは復調部281 cからの復調信号について波形 整形処理を施す。続いて、自動利得制御部281eでは ロールオフフィルタ281dからの受信信号について自 動利得制御を行ない、自動等化部281fでは自動利得 10 制御部281eからの信号に等化処理を施して、受信端 末等に出力する。

【0008】ところで、上述のごときモデムを、構内回 線などのメタリック回線に接続することにより通信シス テムを構築した場合には、図34に図示されるようなメ タリック回線の周波数特性を考慮する必要がある。即 ち、メタリック回線は、例えば図34に示すように1/ √ f の周波数特性を有し、信号に振幅歪みが生じ、特に 低域周波数成分に対して高域周波数成分の方が減衰しや すい。

【0009】このような特性を持つメタリック回線を介 して伝送されたデータ信号を受信側モデムにて受信する と、受信側モデムにおける受信信号の周波数特性も1/ √ f となる。図33に示すモデム280における受信部 281の線路等化器281bは、上述したような回線特 性による受信信号の周波数特性の変化を補正するための ものであり、この線路等化器281bは例えば上述のD SPにより構成することができる。

【0010】図35は上述の受信信号の周波数特性1/ √ fを等化するための線路等化器281bの周波数特性 30 の一例を示す図である。即ち、この線路等化器281b の特性は、図34の回線による周波数特性の劣化を補正 するように√f の特性を有している。これにより、受信 信号の周波数特性を平坦に補正することができる。ここ で、線路等化器281bの特性としては、回線状態、即 ち受信する信号の振幅歪みの度合いに応じて、図35に 図示される特性の傾斜を変化させる必要があり、線路等 化器281bとしては、フラットな特性から急峻な特性 まで対応できることが望まれる。従来よりの線路等化器 としては、このような要望を達成すべく、2次のHPF (High Pass Filter)が使用されていた。

[0011]

【発明が解決しようとする課題】しかしながら、上述の 図33に示すモデム280における受信部281の線路 等化器281においては、2次のHPFによりフラット な特性を実現するためには、HPFのタップ係数を非常 に大きくすることが必要である。この場合においては、 線路等化器としてのディジタル信号処理に固定小数点演 算を適用することができず、浮動少数点演算を適用する ことになる。即ち、線路等化器として浮動少数点演算を 50 する線路等化器の特性を制御する(請求項1)。

適用したDSPを用いなければならないが、この浮動少 数点演算を適用したDSPはコストが高く処理速度が低

【0012】従って、上述の浮動少数点演算を適用した DSPを適用することにより装置を構成した場合には、 高コスト化、低処理速度という課題が、フラットな特性 を実現するという課題よりも重要な課題となってしま う。また、上述の図33に示すモデム280を用いたデ ータ伝送を行なう場合には、データ伝送の開始前にトレ ーニング信号をやり取りし、受信したトレーニング信号 に基づいて等化器や自動利得制御回路を制御しているの で、トレーニングを行なう期間はある程度の短くない時 間が必要となる。

【0013】特に受信側において複数のモデムが並列に 接続されて、送信側のモデムから同報でデータ伝送を行 なうような通信システムにおいては、その分トレーニン グに時間を要し、回線を接続した後に即データ伝送を開 始することができない。近年においては、データ伝送開 始までの時間をできる限り短縮することが望まれている が、上述したように、データ伝送開始前に受信側モデム との間のトレーニングを行なうと、データ伝送開始まで の時間が延びるという課題がある。

【0014】さらには、近年のモデムに対する処理速度 の高速化に対する要求に応えるためには、従来よりのモ デムの信号処理機能を維持しながら、DSP等における 信号処理機能を極力減らすことが望まれる。本発明は、 このような課題に鑑み創案されたもので、低コストで装 置を構成し且つ高処理速度で、回線状態に応じて要求さ れる所望の特性で、線路等化処理を行なうことができる ようにした、線路等化器制御方法並びに積分回路、周波 数シフト回路及び伝送装置を提供することを目的とす

【0015】また、本発明は独立した自動利得制御回路 を設けることなく、自動利得制御を行なうことができる ようにした、伝送装置を提供することを目的とする。さ らに、本発明は、データ伝送開始前のトレーニングを行 なうことなく、線路等化器等の制御を行なうことができ るようにした、線路等化器制御方法及び伝送装置を提供 することを目的とする。

[0016]

【課題を解決するための手段】図1は本発明の原理説明 図であり、この図1に示す本発明の線路等化器制御方法 は、以下に示すステップ S 1 ~ ステップ S 3 の処理ステ ップにより構成される。即ち、抽出ステップ(ステップ S 1) において、伝送信号に重畳された特定周波数成分 を持つ複数のトーン信号を抽出し、判定ステップ(ステ ップS2)において、抽出されたトーン信号のレベルを 判定し、制御ステップ(ステップS3)において、判定 されたトーン信号のレベルに基づいて、受信信号を等化

【0017】この場合においては、抽出ステップ(ステ ップS1)においては、複数のトーン信号として、ある 帯域における上限の周波数成分を有するトーン信号と、 上述のある帯域における下限の周波数成分を有するトー ン信号とを抽出することができる(請求項2)。さら に、判定ステップ(ステップS2)において、抽出され た複数のトーン信号を加算した値と基準値とを比較し、 制御ステップ(ステップS3)において、前記トーン信 号と基準値との比較結果の値並びに大小に基づいて前記 線路等化器の特性を制御したり(請求項3)、判定ステ 10 ップ(ステップS2)において、抽出された複数のトー ン信号のレベル差を算出し、制御ステップ(ステップS 3) において、レベル差の値並びに正負に基づいて、線 路等化器の特性を制御したりすることもできる(請求項 4) . .

【0018】さらに、本発明の線路等化器制御方法は、 受信信号に含まれる複数の特定周波数成分を持つ信号を それぞれ抽出し、抽出された特定周波数信号のそれぞれ のレベルを算出し、算出されたそれぞれの特定周波数信 号レベルに基づいて線路等化器の特性を決定する係数を 20 算出するとともに、特定周波数信号レベルにより表され る受信信号の特性に基づいて算出される係数を制御し、 線路等化器の次数を切り替えることを特徴としている (請求項5)。

【0019】また、本発明の積分回路は、n桁の信号か ら下位のm桁を抽出する第1の抽出部と、n桁の信号か ら上位のn-m桁を抽出する第2の抽出部と、第2の抽 出部から出力される信号を1/2する乗算器と、第1の 抽出部出力と、乗算器出力とを加算する第1の加算器 と、第1の加算器出力が一時的に格納される記憶部と、 記憶部に格納された信号と入力するn桁の信号とを加算 する第2の加算器をそなえたことを特徴としている (請 求項6)。

【0020】さらに、本発明の周波数シフト回路は、入 力信号の実数成分を一時的に格納し、1タイミング後に 出力する第1の記憶部と、入力信号の虚数成分を一時的 に格納し、1タイミング後に出力する第2の記憶部と、 第1の記憶部に記憶された1タイミング前の実数成分信 号と、入力した虚数成分信号とを加算する第1の加算部 と、第2の記憶部に記憶された1タイミング前の虚数成 40 分と、入力した実数成分とを加算する第2の加算部とを そなえたことを特徴としている(請求項7)。

【0021】図2は本発明の原理プロック図であり、こ の図2において、17は特定周波数成分を持つ複数のト ーン信号が重畳された伝送信号を受信信号として受信す る受信部10を有する伝送装置であり、この受信部10 としては線路等化器 1 及び線路等化器制御部 1 6 をそな えて構成されている。ここで、線路等化器1は、受信信 号について等化を行なうものであり、線路等化器制御部 16は、線路等化器1からの出力信号に含まれる複数の 50

特定周波数信号のレベルに基づいて、線路等化器1をフ ィードバック制御するものである(請求項8)。

【0022】さらに、上述の線路等化器制御部16とし ては、線路等化器1からの出力信号から特定周波数成分 を持つ信号を抽出する帯域通過フィルタ部と、帯域通過 フィルタ部により抽出された複数の特定周波数信号のレ ベルを算出するレベル算出部と、レベル算出部により算 出された信号レベルの値に基づいて、前記線路等化器の 特性を決定する係数を算出する係数算出部とをそなえる こともできる(請求項9)。

【0023】また、線路等化器1を、線路等化器制御部 16によるフィードバック制御に基づいて、2次のフィ ルタ、1次のフィルタ又は0次のフィルタのいずれかの フィルタとして動作するように構成することもでき(請 求項10)、線路等化器制御部16を、線路等化器1に 対するフィードバック制御を通じて、受信信号に関する 自動利得制御を行なうように構成することもできる(請 求項11)。

【0024】さらに、線路等化器制御部16の前段にそ なえられ、線路等化器1からの出力信号についてランダ ム抽出するランダム抽出回路をそなえることもできる (請求項12)。また、上述の帯域通過フィルタ部を、 受信信号の中から複数の特定周波数信号を抽出するバン ドパスフィルタと、バンドパスフィルタにて抽出された 該複数の特定周波数信号について所定の周波数分シフト させる周波数シフト部と、周波数シフト部からの該複数 の特定周波数信号のうちの少なくとも一方を抽出するロ ーパスフィルタとをそなえて構成することもできる(請 求項13)。

【0025】この場合においては、周波数シフト部及び ローパスフィルタを、入力信号の実数成分を一時的に格 納し、1タイミング後に出力する第1の記憶部と、前記 入力信号の虚数成分を一時的に格納し、1タイミング後 に出力する第2の記憶部と、第1の記憶部に記憶された 1タイミング前の実数成分信号と、入力した虚数成分信 号とを加算する第1の加算部と、第2の記憶部に記憶さ れた1タイミング前の虚数成分と、入力した実数成分と を加算する第2の加算部とをそなえてなる周波数シフト ・ローパスフィルタ共用部により構成することもできる (請求項14)。

【0026】また、上述のレベル算出部を、帯域通過フ ィルタ部により抽出された複数の特定周波数信号を和を 演算することにより、送信データにおける中間帯域信号 のレベルを算出する全パワー算出部と、帯域通過フィル タ部により抽出された複数の特定周波数信号のパワー差 分を算出するパワー差分算出部とをそなえて構成するこ ともできる(請求項15)。

【0027】さらに、係数算出部を、レベル算出部にて 算出された信号レベルのパワー情報を、予め設定された 参照値と比較する比較部と、比較部からの比較結果を積 分する積分回路と、積分回路からの積分演算結果に基づいて、前記線路等化器を制御するための係数を算出するリミッタとをそなえて構成することもできる(請求項16)。

【0028】また、上述の係数算出部の積分回路を、n桁の信号から下位のm桁を抽出する第1の抽出部と、n桁の信号から上位のn-m桁を抽出する第2の抽出部と、前記第2の抽出部から出力される信号を1/2する乗算器と、第1の抽出部出力と、前記乗算器出力とを加算する第1の加算器と、第1の加算器出力が一時的に格 10納される記憶部と、記憶部に格納された信号と入力するn桁の信号とを加算する第2の加算器をそなえることもできる(請求項17)。

[0029]

【発明の実施の形態】図5は本発明の一実施形態にかかる伝送装置としてのモデムが適用されたデータ通信システムを示すブロック図である。この図5に示すデータ通信システム40は、一台の送信用モデム41と並列に設けられた複数台(例えば2台)の受信用モデム42,43とが例えば構内回線などのメタリック回線44を介し20て接続されることにより構成されている。

【0030】即ち、このデータ通信システム40においては、送信用モデム41からメタリック回線44を介して1.5Mbpsの伝送速度を有する各種のデータを受信用モデム42,43に対して伝送することができるようになっている。即ち、送信用モデム41と受信用モデム42,43との間では、例えば画像情報のように情報量が多いデータを同報で伝送することができる。

【0031】例えば、テレビ会議システムや交通機関での事故現場の状況を遠隔地で確認しうるシステムを構築する場合においても、この図5に示すようなデータ通信システム40により、必要な画像情報の同報伝送(同一内容の画像情報の並行伝送)を行なうことができる。換言すれば、図5に示すデータ通信システム40では、送信用モデム41に図示しないホスト装置等を接続し、受信用モデム42、43に各種受信端末を接続することにより、ホスト装置からの画像データ等を送信用モデム41ではホスト装置からの送信データに必要な変調処理等を施し、メタリック回線44及び受信用モデム42、43を介して送信するようになっている。これにより、各種受信端末においては送信用モデム41からの送信データを同時に受信することができる。

【0032】ところで、上述の図5に示す送信用モデム41は、例えば図4に示す送信部20をそなえて構成されている。ここで、この図4に示す送信部20は、論理処理部21、ロールオフフィルタ(ROF)22、ナイキスト信号発生部23、加算器24、変調部25、D/A変換部26及びローパスフィルタ(LPF;Low Pass Filter)27をそなえている。

10

【0033】なお、この送信部20を構成する論理処理部21を、例えばMPUにより構成するとともに、ロールオフフィルタ22,ナイキスト周波数発生部23,加算器24及び変調部25をDSPにより構成することができる。ここで、論理処理部21は、例えばグレイコード/ナチュラルコード変換、送信データに応じた信号点の発生の処理等の論理処理を行なうもので、ロールオフフィルタ22は論理処理部21からの送信信号の波形成形を行なうものである。

【0034】さらに、ナイキスト周波数信号発生部23は、ナイキスト周波数成分を持つ信号を発生するものであり、加算器24は、ロールオフフィルタ22出力とナイキスト周波数信号発生部23にて発生されたナイキスト周波数成分とを加算するものである。また、変調部25は、送信データを所定の変調方法により変調するものであり、ディジタル/アナログ変換部(D/A変換部)26は、変調されたディジタル送信データをアナログ信号に変換し、メタリック回線などに伝送できるようにするものである。

【0035】さらに、ローパスフィルタ27は、使用帯域外の雑音を除去するものであり、このローパスフィルタ27から出力される信号は、メタリック回線44を介して受信側のモデムに伝送されるようになっている。これにより、送信部20においては、例えば図6(a)に示すように、特定帯域(12kHz~204kHzの帯域)を有する伝送信号としての送信データ(伝送速度は1.5Mbps)31に、ナイキスト周波数を有するトーン信号(12kHz)32及びトーン信号(204kHz)33を重畳して、メタリック回線44に伝送するようになっている。

【0036】ここで、送信データ31に重畳されるトーン信号32は、伝送信号31の帯域における下限の周波数成分を有するトーン信号であって、送信データ31に重畳されるトーン信号33は、伝送信号31の帯域における上限の周波数成分を有するトーン信号である。また、上述の図5に示す受信用モデム42,43は、例えば図3に示す受信部10をそなえて構成されている。

【0037】ここで、この図3に示す受信部10は、線路等化器1,復調部2,ロールオフフィルタ3,受信信号処理部15及び線路等化器制御部16をそなえて構成されている。線路等化器(LEQ;Line Eqaulizer)1は、回線から受信したアナログ信号をディジタル信号に変換する図示しないアナログーディジタル変換器の後段に設けられ、線路等化器制御部16からの制御を受けて、メタリック回線の特性などにより発生する振幅歪みを補正するためのものである。

【0038】また、この線路等化器1としては、詳細に は図7に示すように、2次のリカーシブフィルタにより 構成されている。ここで、この図7に示す線路等化器1 50 は、乗算器171~175,加算器176~179及び タップ(Y1, Y2)180, 181をそなえて構成されている。ここで、乗算器171~175は、後述する線路等化器制御部16により設定された係数A~Eを入力信号に乗算するものであり、この係数の設定により線路等化器1の特性が決定されるようになっている。タップ180, 181はそれぞれ1タイミング前の信号を格納するタップ(Y1, Y2)である。

【0039】これにより、線路等化器1には、その前段に接続されたA/D変換器からの信号(AD1~AD4;メタリック回線44回線から受信されたアナログ信号がディジタル信号に変換された信号)が入力され、この入力信号について所望の特性が与えられた線路等化処理を施して出力(RLEQ1~RLEQ4)するようになっている。また、乗算器171には係数Aが与えられ、入力信号と乗算される。係数Aの値に応じて、乗算器171に入力する信号のレベルが増減されることになる。即ち、乗算器171はAGC回路とほぼ同等の機能を有することができる。

【0040】さらに、乗算器172~175には、それぞれ係数B~Eが供給される。これらの係数は線路等化器170の周波数特性を決定する係数であり、係数B~Eの値によって線路等化器170の特性が変化するようになっている。具体的には、係数C,Eを「0」と設定することにより、図8(a)に示すような1次のフィルタを構成することができる一方、B~Eを全て「0」と設定することにより、図8(b)に示すような0次のフィルタを構成することができるのである。

【0041】また、図3において、復調部2は線路等化器1からの受信信号を復調するものであり、ローフオフフィルタ(ROF)3は復調された受信信号の波形整形を施すものであり、ロールオフフィルタ3からの出力信30号は受信データを処理するための受信信号処理部15とともに、線路等化器制御部16に供給されるようになっている。

【0042】受信信号処理部15は、ロールオフフィルタ3からの受信信号について後段の端末において識別を行なうための信号処理を行なうものであり、ナイキスト周波数信号をキャンセルするナイキスト信号キャンセラ(NQCL)11、NQCL11の出力を等化する自動等化器(EQL)12、キャリア位相制御部(CAPC)13、受信信号に基づいて信号点判定を行なう判定 40部14などをそなえている。なお、上述の受信信号処理部15は従来のモデムとほぼ同様の構成を有しており、詳細な説明は省略する。

【0043】線路等化器制御部16は、ロールオフフィルタ3からの受信信号を入力されて、上述の送信用モデム41からの送信データ31に重量されたトーン信号32、33を抽出し、抽出されたトーン信号32、33のレベルに基づいて、データが伝送されている回線の特性を判定し、係数A~Eの設定により線路等化器1の自動調節を行なうものである。

12

【0044】換言すれば、線路等化器制御部16は、抽出されたトーン信号32,33のレベルの比較結果によって線路等化器1の自動制御を行ない、受信信号の周波数特性が平坦となり、且つ受信信号のレベルが所定レベルとなるように線路等化器1の係数A~Eを設定するものである。即ち、回線を介して伝送された送信データは特性が変化する。メタリック回線44では、例えば図6(b)に示すように、周波数が高くなるほど信号の減衰量が大きくなり、送信信号の周波数特性が平坦ではなくなってくる。また、伝送される距離が長くなればなるほど信号が減衰し、全体的な信号のレベルが低下する。

【0045】線路等化器制御部16は、このような受信信号の減衰をナイキスト周波数信号32、33のレベルに基づいて判定することができ、この判定結果に基づいて線路等化器1を所望の特性を有するように係数A~Eを設定するのである。具体的には、受信信号のナイキスト周波数信号32、33の平均を取ることによって、送信データの中間帯域34における信号のレベルを算出し、これを振幅値特性情報とすることができる。これにより、中間帯域のレベルを基準となる信号レベルと比較することによって、受信信号が全体的にどの位減衰しているかを判別することができる。

【0046】また、ナイキスト周波数信号32,33の差分を取ることによって、2つのナイキスト周波数信号を結ぶ直線35の傾きを算出する。直線35の傾きにより、高群のレベルが減衰しているのか、低群のレベルが減衰しているのかを判断することができ、受信信号の周波数特性の傾向を示している。即ち、ナイキスト周波数信号の差分の正負、大小によって受信信号の周波数特性がどのように劣化しているのかを判断できる。

【0047】なお、モデム41の送信部20では、送信データ31に重量されるナイキスト周波数信号32,33を、モデム42,43がメタリック回線44を介して接続されている期間中は、継続して伝送するようになっている。即ち、線路等化器制御部16では、データ伝送時に重量されるナイキスト周波数信号32,33のレベルを確認することによって、データが伝送されている回線の特性を推測し線路等化器1を制御することが可能であり、送信用モデム41では受信用モデム42,43のトレーニングを行なわずにデータを伝送しても、線路等化器1の自動調節を行なうことができるようになるのである。

【0048】換言すれば、本実施形態におけるモデム41~43を適用したデータ通信システムにおいては、データ伝送の開始前にトレーニングを行なうことが必要でなくなり、即座にデータ伝送を開始できるように構成されている。ところで、この図3に示す線路等化器制御部16は、詳細には図9に示すように、帯域通過フィルタ部4,パワー演算部5,加算部6,参照値保持部7,積50分回路8及びリミッタ9をそなえて構成されている。

【0049】帯域通過フィルタ部4は、受信信号中の特 定周波数成分としてのナイキスト周波数成分32,33 を抽出するものであって、高群の周波数を抽出する高群 ・バンドパスフィルタ(BPFH)と、低群の周波数を抽 出する低群バンドパスフィルタ(BPFL)としての機 能を有しており、後述するように、詳細にはバンドパス フィルタ(帯域フィルタ)4-1,周波数シフト部4-2及びローパスフィルタ4-3をそなえて構成されてい

【0050】なお、帯域通過フィルタ部4においては、 抽出すべき周波数としてのナイキスト周波数信号32, 33の周波数を予め設定しておくことができる。また、 パワー演算部5は、帯域通過フィルタ部4を通過した信 号成分のパワー、即ち振幅を計算するものである。換言 すれば、パワー演算部5は、帯域通過フィルタ部4によ り抽出された特定周波数信号のレベル(後述するような 和レベル及び差レベル)を算出するレベル算出部として の機能を有している。

【0051】さらに、加算部6は、参照値保持部7から の基準値REFとパワー演算部5により算出された受信 信号のパワー情報(特定周波数信号のレベル情報)との 差分をとり、振幅誤差及び周波数誤差(振幅値の周波数 特性)を算出するものである換言すれば、加算部6は、 パワー演算部5にて算出された信号レベルのパワー情報 を、参照値保持部7にて予め設定された参照値と比較す る比較部としての機能を有している。

【0052】ここで、参照値保持部7にて保持される参 照値REFの値には基準となる振幅値が設定される。こ の参照値REFは、送信時のナイキスト周波数成分3 2, 33のレベルと受信時のナイキスト周波数成分3 2、33の減衰度を比較するための基準値として機能す るようになっている。さらに、積分回路8は、加算部6 からの誤差成分(振幅誤差情報及び周波数誤差情報)を 積分するものである。リミッタ9は、積分回路8からの 周波数誤差情報に基づいて、線路等化器 1 を制御するた めのパラメータとしての係数B~Eを出力するものであ る。ここで、線路等化器 1 を制御するための係数情報 B ~Eは、積分回路8から受信した信号の大きさに応じて 決定される。

【0053】従って、上述の加算器6,参照値保持部 7、積分回路8及びリミッタ9により、レベル算出部5 により算出された信号レベルの値に基づいて、前記線路 等化器 1 の特性を決定する係数を算出する係数算出部と しての機能を有することになる。ところで、上述のバン ドパスフィルタ4-1の構成としては、詳細には図10 に示すような等化回路によりあらわすことができる。即 ち、このバンドパスフィルタ4-1は、ロールオフフィ ルタ3の後段に接続され、受信信号の中から複数のナイ キスト周波数信号を抽出するためのものである。これに より、線路等化器1の自動制御のために不要な送信デー 50 り、実部成分と虚部成分とが混じっている。

タを含む周波数成分を除去することができる。

【0054】この図10に示すように、バンドパスフィ ルタ4ー1には、DCM1R, DCM2R, DCM1 I, DCM2Iの4つの信号が入力され、送信データを 含む周波数成分の除去された4つの信号BPF1R、B PF2R, BPF1I, BPF2Iの4つの信号が出力 されるようになっている。なお、4つの入力信号のそれ ぞれは、復調部2により復調された信号であり、ベース バンド信号となっている。また、入力信号、出力信号の 10 それぞれの信号に付された符号「R」は実部成分である ことを示しており、符号「I」は虚部成分であることを 示している。

【0055】バンドパスフィルタ4-1は、実部成分か 596kHz帯の信号を抽出する部分51aと、虚部成 分から96kHz帯の信号を抽出する部分51bとに分 けられている。両者は基本的に同様の構成を有してい る。さらに、56,57はそれぞれタップ(YT1,Y T2)であり、1タイミング前の信号を格納するもので ある。また、52,53はそれぞれ乗算器であり、フィ ルタの係数ATM, CTMをそれぞれ入力される信号に 対して乗算するものである。また、54,55はそれぞ れ加算器である。

【0056】周波数シフト部4-2は、バンドパスフィ ルタ4-1から出力されるBPF1R, BPF2R, B PF1I, BPF2Iを入力されて、これらの信号につ いて所定の周波数分(例えば土96kHz)シフトさせ るものである。ここで、上述の周波数シフト部4-2と して、+96kH2シフト処理を行なう機能に着目すれ ば、例えば図11に示す等価回路80を用いて構成する ことができる。さらに、上述の等価回路80の後段に接 続されるローパスフィルタ4-3としては、詳細には例 えば図12に示すような等価回路82を用いて構成する こともできる。

【0057】即ち、この周波数シフト部としての等価回 路80は乗算器81をそなえて構成されており、この乗 算器81により、バンドパスフィルタ4-1から入力さ れる信号を+96kHzで回転させて、ナイキスト周波 数信号に関する+96kHzの周波数シフト処理を行な うものであり、これにより、後段のローパスフィルタ (LPF) 4-3にてナイキスト周波数信号を抽出する ことができるようになっている。

【0058】具体的には、バンドパスフィルタ4-1か らの周波数シフト部4-2に入力される信号のうち、ナ イキスト周波数成分32,33の成分は透過される一 方、送信データの周波数成分が除去されて、図13に示 すような周波数スペクトルを有するベースバンド信号に 変換されている。即ち、この図1.3に示すようにパンド パスフィルタ4-1からのナイキスト周波数信号3 1′,32′の周波数成分は土96kHzを有してお

【0059】周波数シフト部4-2では、このような土 96kHzの位置にあるナイキスト周波数成分を、例え ば図14(a)又は図14(b)に示すように、±96 kHzシフトさせることにより、ナイキスト周波数成分 中の+96kHzの成分と、-96kHzの成分とを分 離するようになっており、これにより、後段のローパス フィルタ4-3でのナイキスト周波数成分の抽出を容易 なものにしている。

【0060】具体的には、図13に示す信号31',3 2'を+96kHzシフトさせることにより、図14 (a) に示すように周波数0kHzの成分71と、周波 数192kHzの成分72とに分離することができる一 方、図12に示す信号31', 32'を-96kHzシ フトさせることにより、図14(b)に示すように周波 数-192kHzの成分71と、周波数0kHzの成分 72とに分離することができるのである。

【0061】これにより、後段のローパスフィルタ4ー 3において、例えば図14(a)のように+96kHz シフトした信号が入力されると、低群のナイキスト周波 数信号に相当する一方の信号71のみを通過させ、高群 のナイキスト周波数信号に相当する他方の信号72を除 去することができる。同様に、例えば図14(b)のよ うに-96kHzシフトした信号が入力されると、高群 のナイキスト周波数信号に相当する一方の信号 72のみ を诵過させ、低群のナイキスト周波数信号に相当する他 方の信号71を除去することができるのである。

【0062】換言すれば、周波数シフト回路4-2にお いて、パンドパスフィルタ4-1からの信号をシフトさ せた後にローパスフィルタ4-3を通過させることによ って、±96kHzのナイキスト周波数信号のうちの少 30 なくとも一方を抽出することができ、バンドパスフィル タ4-1を通過させた後の±96kHzの成分を分離す るための処理を行なう必要がなくなる。

【0063】例えば、上述の周波数シフト回路4-2に おいて+96kHzの周波数シフトを行なった場合に は、後段のローパスフィルタ4-3としては図15に示 すような通過特性Aを有するようなものを用いることに より、低群のナイキスト周波数信号に相当する一方の信 号(直流成分)71のみを通過させ、高群のナイキスト 周波数信号に相当する他方の信号72を除去することが できるのである。

【0064】 さらに、ローパスフィルタ4-3としての 等価回路82は、図12に示すように、乗算器83,8 6. 加算器84及びタップ85をそなえて構成されてい る。なお、図12中、二重線はベクトル信号を示す。こ こで、乗算器83は、入力される信号に対して係数値L 3から入力される信号に乗算器86から入力される信号*

*を加算するものであり、タップ85は加算器84からの 1タイミング前の信号を格納するものであり、乗算器8 6はタップ85からの出力に対して係数LPA2を乗算 し、加算器84に出力するものである。

【0065】従って、上述の周波数シフト部4-2とし て、+96kHzシフト処理を行なう機能部(図12の 符号80参照)とともに-96kHzシフト処理を行な う機能部をそなえる一方、ローパスフィルタとして、周 波数シフト部としての各機能部からの出力信号につい

10 て、それぞれローパスフィルタ処理を施すような等価回 路を並列的にそなえることにより、ローパスフィルタを 構成することができる。

【0066】また、上述の周波数シフト部4-2にて+ 96kHzシフト処理を行なう機能に着目した場合にお いては、ローパスフィルタ4-3として、図16に示す ような等価回路110で構成されるものを用いることが できる。この図16に示す等価回路89は、加算器87 及びタップ88のみにより構成され、図12に図示され る等価回路82の場合に比して、各種係数を乗算する必 要がなく、処理数を少なくすることができる。特に、本 実施形態にかかるモデムが伝送速度が高いことに対応し て、等価回路の構成を簡易化させて、DSPの処理サイ クルに余裕を持たせることができる。

【0067】周波数シフト部4-2の前段には、既に説 明した通り96kHz帯域の信号のみを通過させるバン ドパスフィルタ4-1が接続されている。そのため、そ の他の帯域成分はシフト回路 4-2への入力時点でほぼ 除去されており、その分周波数シフト部4-2の後段の ローパスフィルタ4-3の構成を簡易化することができ

【0068】つまり、図16に示す等価回路89は、タ ップ88に格納された1タイミング前の信号と今回入力 した信号とを加算することによって、ローパスフィルタ 4-3として機能することができ、図12に示す等価回 路82のように、ローパスフィルタ4-3を実現するた めの各種の係数の乗算を行なう必要がなくなるのであ る。

[0069] ところで、上述の周波数シフト回路4-2 及びローパスフィルタ4-3としての機能は、本実施形 態によるシフト回路における周波数シフト量(土96 k H z) が、ナイキスト周波数 (192kHz) の1/2 であることを利用することにより、前述の図12、図1 6に示すものよりもさらに簡易化させて、例えば後述す る図17(a)、図17(b)に示す等価回路90、9 5のように構成することも可能である。

【0070】ところで、入力される信号をX+jYとす 表すことができる。

(X+jY) (cos $x+j\sin x$)

また、周波数シフト量に対応する96kH2を持つsi n波とcos波とを、π/2毎のフェーズに分解する と、±96kHzシフトさせるためのsin波とcos 波は図18(a)のようにそれぞれ0あるいは±1で表 現できる。図18(b), 図18(c)は、それぞれ+ 96kHz, -96kHzの波形を示した図である。 【0071】ここで、+96kHzシフトを行なう場合 には、それぞれのフェーズは式(1)から以下に示すよ うになる。

*フェーズ0: X+jY フェーズ1: Y+|X フェーズ2:-X-|Y フェーズ3:-Y-JX

で表される。この信号が図17に図示された等価回路9 0に入力されると、等価回路90では以下に示すような 値が出力される。

[0072]

 $7x-x_0+7x-x_1: (X+Y)+j(Y+X)$

 $7x-x^{2}+7x-x^{2}:(Y-X)+j(X-Y)$

 $7x-x^2+7x-x^3:(-x-y)+y(-y-x)$

フェーズ3+フェーズ0:(-Y+X)+|(-X+Y) ※は、式(1)より、

となる。ここで、フェーズ0+フェーズ1とフェーズ2 +フェーズ3とは位相差が180°となり、同様にフェ ーズ1+フェーズ2とフェーズ3+フェーズ0との位相 差は180°である。また、フェーズ0+フェーズ1と フェーズ1+フェーズ2,フェーズ1+フェーズ2とフ ェーズ2+フェーズ3との位相差はそれぞれ90°であ る。

フェーズ0: X+iY フェーズ1: YーjX フェーズ2:-X-|Y フェーズ3:-Y+iX

となる。その結果、図16の簡易LPFに各フェーズの 20 信号を入力させた結果は、

【0073】また、-96kHzシフトを行なう場合に※

 $7x-x_0+7x-x_1: (X+Y)+1(Y-X)$ $7x-x_1+7x-x_2: (Y-X)+i(-X-Y)$ $7x-x^2+7x-x^3:(-X-Y)+y(-Y+x)$ $7x-x^{3}+7x-x^{0}: (-Y+X)+j(X+Y)$

となる。なお、位相の関係は+96kHzシフトの場合 と同様である。

【0074】ここで、フェーズ0とフェーズ1との関係 のみに着目した場合、+96kHz、-96kHzシフ トさせるための等価回路を、それぞれ図17(a),図 30 17 (b) に示すように構成することができる。なお、 詳細は後述するが、本実施形態による周波数シフト部4 -2及びローパスフィルタ4-3は、ナイキスト周波数 192kHzよりも低い12kHzによる処理を行なう ため、周波数シフトの処理を行なう場合には、フェーズ 0とフェーズ1との関係のみに着目するようにしても充 分である。

【0075】即ち、図17(a)に示す等価回路90 は、+96kHzシフト処理を行なう周波数シフト部4 -2としての機能と、ローパスフィルタ4-3としての 機能を有し、タップ91、92及び加算器93、94を そなえて構成されている。一方、図17(b)に示す等 価回路95は、-96kHzシフト処理を行なう周波数 シフト部4-2としての機能と、ローパスフィルタ4-3としての機能を有し、タップ96,97及び加算器9 8.99をそなえて構成されている。

【0076】図17(a)に図示される等価回路では、...... 入力端から入力された実部成分X、虚部成分Yは、それ ぞれタップ91、92に供給されるとともに、加算器9

らの1タイミング前の入力実部成分Xと、今回入力され た虚部成分との差分を取る一方、加算器94ではタップ 92からの1タイミング前の入力虚部成分Yと今回入力 された実部成分Xとを加算する。

【0077】加算器93の出力(X-Y)は、「フェー ズ0+フェーズ1」の実部成分であり、LPFRとして 出力される一方、加算器94の出力(Y+X)は「フェ ーズ0+フェーズ1」の虚部成分であり、LPFIとし て出力される。また、図17(b)に図示される等価回 路の場合においては、入力端から入力された実部成分 X. 虚部成分 Y は、それぞれタップ 96.97 に供給さ れるとともに、加算器98、99に供給される。

【0078】加算器98では、タップ96からの1タイ ミング前の入力実部成分Xと、今回入力された虚部成分 Yとを加算する(X+Y)。また、加算器99では、タ ップ97に格納された1タイミング前の入力虚部成分Y-と今回入力された実部成分Xとの差分を取る(Yー X)。これにより、加算器98の出力はLPFRとし て、加算器99の出力はLPFIとしてそれぞれ出力さ れる。

【0079】上述したような構成の等価回路90,95 を、図19に示すようにパワー演算部5の前段に介装す... ることにより、これら等価回路90、95は、周波数シ フト・ローパスフィルタ共用部として機能することにな 3.94に供給される。加算器93では、タップ91か 50 る。さらに、この図19に示す周波数シフト部4-2及

びローパスフィルタ4-3、パワー演算部5及び加算部 6により、第1RLEO制御部130が構成される。な お、このRLEO制御部130についても例えばDSP を用いて構成することができる。

【0080】ここで、この図19に示す等価回路90に おいては、前述の図10に示すバンドパスフィルタ4-1からの信号(BPF1R,BPF2R,BPF1I,BPF2I) を入力され て、ベースバンド帯のナイキスト周波数信号31',3 2' (図13参照) から低群、即ち-96kHz帯のナ イキスト周波数信号71(図14(a)参照)を抽出す 10 るようになっている。

【0081】同様に、等価回路95においては、バンド パスフィルタ4-1からのナイキスト周波数信号3 1', 32'(図13参照)から高群、即ち+96kH 2帯のナイキスト周波数信号72(図14(b)参照) を抽出するようになっている。なお、図19中、乗算器 100aは、前述の図17(a)においては図示されて いない等価回路90の構成要素であって、加算器93及 び加算器94からの出力信号についてベクトル信号化さ れたものを入力されて、後段の信号処理にてオーバーフ ローが発生することを防止すべく、レベル調整値として の例えば「1/2」を乗算するものである。

【0082】また、乗算器100bは、前述の図17 (b) においては図示されていない等価回路95の構成 要素であって、加算器98及び加算器99からの出力信 号についてベクトル信号化されたものを入力されて、後 段の信号処理にてオーバーフローが発生することを防止 すべく、レベル調整値としての例えば「1/2」を乗算 するものである。

【0083】なお、上述の周波数シフト部4-2, ロー 30 パスフィルタ4-3の等価回路90、95において、符 号1R,1I,2R,2Iはそれぞれ入力する信号を示 しており、符号R、Iはそれぞれの信号が実部成分、虚 部成分であることを示し、「1」、「2」はそれぞれ等 価回路90,95に入力した順を示している。つまり、 信号1R、1Iは信号2R、2Iよりも1タイミング前 に入力した(つまりタップ91,92,96,97に格 納された)信号であることを示している。

【0084】ところで、図3又は図9に示すパワー演算 部5は、詳細には図19に示すような等価回路101 a, 101bにより構成され、加算部6についても、詳 細には図19に示すような等価回路104a,104b により構成される。なお、図19中で二重線で図示され ている経路は、ベクトル信号を示し、実線で図示された 経路はスカラー信号の経路となっている。また、図中X は実部信号を、Yは虚部信号を示している。

【0085】ここで、パワー演算部5を構成する等価回..... 路101aは、帯域通過フィルタ部4にて抽出された2 つのナイキスト周波数信号(図14(a)の符号71に 示すトーン信号及び図14(b)の符号72に示すトー 50 る。ここで、それぞれの信号は乗算回路131gにより

ン信号参照)のレベルの和(1/2を乗算しているので 値としては平均値)を演算することにより、送信データ

における中間帯域信号のレベルを算出する全パワー算出 部として機能するものであり、加算器103aをそなえ て構成されている。

【0086】さらに、等価回路101bは、複数の特定 周波数信号としての2つのトーン信号71,72のパワ 一差分を算出することにより、抽出された2つのナイキ スト周波数信号のレベル値を結ぶ直線の傾き成分を算出 するパワー差分算出部として機能するものであり、加算 器103bをそなえている。また、図3又は図9に示す 加算部6は、上述のパワー演算部5にて演算された中間 帯域信号34のレベル及び2つのトーン信号のパワー差 分を入力され、これらの値の、送信時に重畳されたトー ン信号における値に対する誤差を算出する誤差算出部と して機能するものであって、振幅誤差算出部104aと 周波数誤差算出部104bとをそなえて構成されてい る。

【0087】ここで、振幅誤差算出部104aは、参照 値保持部7からの所定の大きさを持つ第1基準値(参照 値)REF1と全パワー算出部101aからの信号との 差分を演算する加算器105aをそなえ、この加算器1 05aにおける演算結果を振幅値誤差情報として出力す るようになっている。なお、第1基準値REFとしては 例えば16進で〔4000〕とすることができるが、こ の値は適宜選択できる。

【0088】また、周波数誤差算出部104bは、参照 値保持部7からの所定の大きさを持つ第2基準値(参照 値)REF2とパワー算出部101bからの信号との差 分を演算する加算器 105 bをそなえ、この加算器 10 5 bにおける演算結果に応じた値を周波数誤差情報とし て出力するようになっている。なお、上述の第2基準値 REF2は、16進で〔0000〕とすることができ る。

【0089】これにより、この図19に示す第1RLE ○制御部130では、バンドパスフィルタ4-1から入 力されるベクトル信号が、実部成分と虚部成分を持つ2 つのスカラー信号に分けられて、周波数シフト部4ー 2. ローパスフィルタ4-3に入力される。周波数シフ ト部4-3及びローパスフィルタ4-3として機能する 機能部(等価回路90、95)からの出力信号は、パワ 一演算部5としての機能部(等価回路101a, 101 b) に入力される。

【0090】パワー演算部5の全パワー算出部101a には、等価回路90からの低群ナイキスト周波数信号が 入力され、パワー差分算出部101bには等価回路95 …からの高群ナイキスト周波数信号が入力される。全パワ 一算出部101aの加算器103aでは、低群ナイキス ト周波数信号と高群ナイキスト周波数信号とを加算す

1/2にされているため、加算器132dの出力は2つのナイキスト周波数信号の平均値、つまり中間帯域信号(図6(b)の符号34参照)のレベルに相当するものとなる。

【0091】一方、パワー差分算出部101bの加算器103bでは、高群ナイキスト周波数信号から低群ナイキスト周波数信号を差し引く。これによって、2つのナイキスト周波数信号の振幅の差を求めることができ、図6(b)の直線の傾きBが算出される。これによって、受信信号の周波数特性が算出される。パワー演算部5(全パワー算出部101a及びパワー差分算出部101b)からの出力は、誤差算出部としての加算部6(振幅誤差算出部104a及び周波数誤差算出部104b)に入力される。

【0092】振幅誤差算出部104aでは、加算器105aにおいて、全パワー算出部132aからの信号を、所定の大きさを持つ第1基準値REF1と比較し、受信信号の減衰量を算出し、振幅誤差情報として出力する。周波数誤差算出部104bでは、加算器105bにおいて、パワー差分算出部101bからの信号を、所定の大20きさを持つ第2基準値REF2と比較し、その結果に応じた値を、周波数誤差情報として出力する。

【0093】受信信号の周波数特性が平坦である場合には、2つのナイキスト周波数信号のレベルは同一であり、パワー差分算出部101bからの出力は「0」となる。また、パワー差分算出部101bの出力が16進の参照値〔0000〕よりも大きい場合、即ち正の値をとる場合には、受信信号の高域成分が低域成分よりも大きいことがわかる。そして、この場合には、周波数誤差算出部104bからは負の値を持つ信号が出力される。

【0094】一方、パワー差分算出部101bの出力が [0000]よりも小さい場合、つまり負の値をとる場合には、逆に高域成分が減衰していることがわかる。この場合、周波数誤差算出部104bからは正の値をもつ信号が出力される。従って、周波数誤差算出部104bの出力は、受信信号の周波数特性を示していることになる。

【0095】このように、第1RLEQ制御部130においては、誤差算出部としての加算部6から出力される信号の値に応じて、受信信号の振幅誤差と周波数誤差を判別することができるようになっている。ところで、図3又は図9に示す積分回路8は、上述の第1RLEQ制御部130出力としての加算部6からの振幅誤差情報及び周波数誤差情報について積分するものであり、図20に示すような第2RLEQ制御部として構成されるようになっている。即ち、この図20に示す第2RLEQ制御部8は、振幅誤差積分部142及び周波数誤差積分部143をそなえた二段構成を有している。

【0096】また、振幅誤差積分部142は、詳細には AND回路141a,加算器141c,乗算器141 e, 加算器 1 4 1 g, A N D 回路 1 4 1 i, 1 4 1 k, タップ 1 4 1 m, 加算器 1 4 1 o, 乗算器 1 4 1 q, 1 4 1 s, 加算器 1 4 1 u, 二乗回路 1 4 1 w及びタップ 1 4 1 yがそなえられている。同様に、周波数誤差積分部 1 4 3 は、詳細には A N D 回路 1 4 1 b, 加算器 1 4 1 d, 乗算器 1 4 1 f, 加算器 1 4 1 h, A N D 回路 1 4 1 j, 1 4 1 l, タップ 1 4 1 n, 加算器 1 4 1 p, 乗算器 1 4 1 r, 1 4 1 t, 加算器 1 4 1 v, 二乗回路 1 4 1 x 及びタップ 1 4 1 z がそなえられている。

【0097】上述の振幅誤差積分部142及び周波数誤差積分部143は、それぞれ扱う情報種別が異なる以外は基本的な構成は同じであるため、特に上段に着目して説明を行ない、必要な部分について下段の説明を行なうこととする。ここでまず、振幅誤差積分部142のAND回路141a,加算器141c,乗算器141eまでの信号処理について図21を用いて説明する。なお、ここでは信号は16進法により表記している。

【0098】本実施形態によるRLEO制御部130. 8はDSPを使用しているが、このDSPは+2.0~ -2. 0の範囲の信号を扱うことができるものであると する。そのため、図21の表では10進で表記された数 値は+2.0~-2.0の範囲となっている。また、1 6 進法による数値は〔0000〕~ [FFFF] の範囲 を取りうる。ここで、+0.0~+2.0は〔000 0)~ [7 F F F] が対応しており、-0.0~-2. Oは [FFFF] ~ [8000] の範囲になっている。 【0099】AND回路141aでは、入力される信号 と16進の〔8000〕のAND(論理積演算)が取ら れる。これによって、AND回路141aに入力される 信号から極性ビットを抽出することができる。即ち、こ のAND回路141aにおいて、〔0000〕~〔7F FF〕の範囲の数値と〔8000〕とのANDを取ると AND結果が [0000] となり、 [FFFF] ~ [8 000〕の範囲の数値と〔8000〕とのAND演算の 結果は〔8000〕となる。

【0100】つまり、入力信号の符号が正の場合にはAND回路141aの出力は常に〔0000〕となり、2進法で表記した場合の先頭ピットは「0」となる一方、入力信号の符号が負の場合は、AND回路141aの出力は常に〔8000〕となり、先頭ピットは「1」となる。即ち、AND回路141aの出力により、入力信号の正負を判別することができる。ここで、〔0000〕は10進法の+0.0、〔8000〕は同じく-2.0に対応している。

【0101】続いて、加算器141cにより16進表記の[4000]がAND回路141aの出力に加算される。[4000]は10進法の+1.0に対応しているため、加算器141cへの入力信号が〔0000〕の場合には加算器141cの出力は〔4000〕(10進法50の+1.0)となり、加算器141cへの入力信号が

[8000] の場合には加算器141cの出力は[C000] (10進法で-1.0)となる。このように、加算器141cからは振幅誤差積分回路142に入力される信号の正負に応じて10進表記の±1.0の値が出力される。

【0102】さらに、加算器141cの出力は乗算器141eに供給され、16進法の〔0001〕と乗算される。加算器141cの出力が〔4000〕の場合には、 乗算器141eの出力は〔0001〕となり、これは+ LSBとなる。一方、加算器141cの出力が〔C00 10 0〕の場合には、乗算器141eの出力は〔FFFF〕 となり、これは-LSBとなる。

【0103】従って、乗算器141eからは入力信号の振幅に対応した符号を持つ信号ALLが出力される。ALLは入力信号のレベルが基準値よりも小さい場合に+LSBを出力し、入力信号のレベルが基準値よりも大きい場合には、-LSBを出力する。即ち、AND回路141a~乗算器141eにより、入力する信号の符号に応じて±LSBを出力することができるようになっているのである。

【0104】なお、周波数誤差積分部143の乗算器141fからは入力信号の周波数特性に応じた符号を持つ信号DFFが出力される。このDFFとしては入力信号の高群が小さい場合に+LSBを出力し、入力信号の高群が大きい場合に-LSBを出力する。また、加算器141gにおいて、乗算器141eから出力されたALLとタップ141mにて格納されたALLAとを加算する。周波数積分部143の加算器141hにおいても同様に、乗算器141fからのDFFとともにタップ141nに格納されたDFFAとを加算して出力する。

【0105】振幅誤差積分部 142のAND回路 141 i は、加算器 141gからの出力信号と16進〔00FF〕とのANDを取り、加算器 141gからの出力信号についての2進法で表記した場合の下位8ビットを抽出するものである。同様に、AND回路 141kは加算器 141gからの信号と16進〔FF00〕とのANDを取り、加算器 141gからの出力信号についての上位8ビットを抽出するものである。

【0106】図22は、AND回路141kでの処理を 説明するための図である。即ち、AND回路141kに 40 おいて入力信号に対して16進〔FF00〕とのAND 演算を行なった結果は、入力信号が〔0000〕~〔0 0FF〕の範囲である場合には、AND結果はいずれも 〔0000〕となるが、入力信号が〔0100〕~〔7 FFF〕の範囲にある場合には、AND結果は〔010 0〕~〔7F00〕となり、これによって入力信号の上 位8ビットが抽出される。

【0107】同様に、入力信号が〔FFFF〕~〔80 5の出力〔0080〕は、上述の加算結果 00〕の範囲にある場合には、AND結果は〔FF0 中間位置に引き戻す作用をなし、中間位置 0〕~〔8000〕となり、図22に図示されるように 50 を始めることができるようになっている。

上位8ビット(図22の場合は16進表記となっている)が抽出される。一方、AND回路141iにより入力信号と〔00FF〕とのANDを取った結果を見ると、〔0000〕~〔00FF〕の範囲ではAND結果は〔0000〕~〔00FF〕、つまり入力信号と同一の信号が出力される。また、〔0100〕~〔7FFF〕の範囲では、順次〔0000〕~〔00FF〕が繰り返される。

【0108】一方、乗算器141qは、AND回路141kからの出力に対して1/2を乗算するものであり、AND回路141kの出力(上位8ビット)の1/2の数値が出力されるようになっている。具体的には、図22に示すように、入力信号が〔0000〕~〔00FF〕の範囲にある場合には、AND結果の上位8ビットは〔00〕であり、乗算器141qの出力は〔0000〕となる。一方、入力信号が〔0100〕の場合には、乗算器141qの出力は〔0080〕となる。また、入力信号が〔FFFF〕の場合には、乗算器141qの出力は〔FF80〕(〔0080〕の正負が逆転したもの)となる。

【0109】さらに、加算器141oでは、AND回路141iの出力(入力信号の下位8ビット)と乗算器141qの出力(入力信号の上位8ビットの1/2)とが加算される。その結果、入力信号が〔0000〕~〔00FF〕の範囲にある場合には、乗算器141qの出力が〔0000〕のために、加算器141oからは入力信号と同じ値を持つ信号が出力される。加算器141oからの出力信号は、前述のタップ141mにALLAとして格納され、順次入力されるALL(土LSB)と加算される。

【0110】一方、入力信号が〔0100〕の場合には加算器1410の出力は〔0080〕となり、入力信号が〔FFFF〕の場合にも加算器1410の出力は〔0080〕という値は、〔0000〕と〔00FF〕との丁度中間にあたる。このように、加算器1410から出力された〔0080〕という値は上述の場合と同様にタップ141mにALLAとして格納される。

【0111】 ここで、加算器141gに入力されるのは、±LSBであるため、加算器出力は一時に±1LSB程度の変動となる。そのため、加算器141gからの入力信号が〔0000〕~〔00FF〕の範囲を外れた場合(〔0100〕か〔FFFF〕には、ALLAには〔0080〕がセットされる。さらに、〔0000〕~〔00FF〕の範囲は、線路等化器1の調整幅を決定するための範囲となっている。そして、加算器141aの加算結果が前述の範囲を超えた場合、加算器141aの加算結果が前述の範囲を超えた場合、加算器141aの加算結果が前述の範囲を超えた場合、加算器141aの中間位置に引き戻す作用をなし、中間位置から再び加算を始めることができるようになっている。

【0112】この範囲は適宜選ぶことができ、これは上位ビットと下位ビットをそれぞれ何ビットにするかによって決定される。例えば、上位ビットのビット数を減らすことによってこの幅を広くとることができ、逆に上位ビット数を増やすことによってこの幅を狭くすることができる。なお、加算器141g, AND回路141i, 141k, タップ141m, 乗算器141q及び加算器141oは積分回路を構成し、加算器141h, AND回路141j, 141l, タップ141n, 乗算器141r及び加算器141h, Epwプ141n, 乗算器141r及び加算器141pについても積分回路を構成しているが、これらの積分回路は、上記の数値の幅に応じて積分回路の時定数を長くしたり短くしたりすることができる。

【0113】また、上述の如き積分回路に供給される信号(ALL, DFF)は±1であり、加算器141gから出力される加算値は一時に±1LSBしか変化しない。積分回路からの出力は後段の線路等化器を制御するために用いられるが、このような±LSBのようにできる限り小さい値を用いることによって、線路等化器の変動を抑え、線路等化器の動作を安定させることができる。

【0114】換言すれば、積分回路から出力される信号の変動幅が大きい場合のように、線路等化器の動作の変動の仕方が大きくなりすぎ、線路等化器を安定して動作させることができなくることを防止している。ところで、振幅誤差積分部142の乗算器141sでは、AND回路141kの出力に16進〔0040〕を乗算する。この結果乗算器141sからは再び土LSBが出力される。

【0115】乗算器141sからの出力信号(±LSB)は、加算器141u,二乗回路141w,タップ141yにより構成される積分回路で再び積分され、振幅誤差を示す信号ALEQ(線路等化器1に入力される係数A)として出力される。周波数誤差積分部143においても、上述の場合と同様に、加算器141v,二乗回路141xタップ141zにより構成される積分回路で積分された後、周波数特性の誤差を示す信号FLEQとして出力される。

【0116】これにより、第1RLEQ制御部130からの振幅誤差情報からALL(±LSB)を生成し、この±LSBによって振幅誤差を示す信号ALEQを生成することができる。即ち、この信号ALEQにより後段の線路等化器1の係数を調整して、入力信号のレベルを補正することができる。具体的には、ALLとして+LSBが出力されると入力信号のレベルを増幅させるような線路等化器1の係数が設定され、ALLとして-LSBが出力されると、入力信号のレベルを減衰させるような線路等化器1の係数が設定されるのである。

【0117】換言すれば、第2ALEQ制御部8から出力される信号ALEQは、第1RLEQ制御部130に

入力される信号のレベルが基準値よりも小さい場合に増大し、第1RLEQ制御部130に入力される信号レベルが基準値よりも大きい場合に減少する。従って、前述の線路等化器1(図7参照)における乗算器171から出力される信号は、ALEQの大きさに応じてレベルが調整される。具体的には、第1RLEQ制御部130への入力信号が小さい場合には乗算器171の出力は大きくなり、第1RLEQ制御部130への入力信号が大きい場合には乗算器1710出力信号の値が抑えられる。このように、乗算器171は、入力される振幅誤差信号ALEQによって実質的にAGC回路として機能することになるのである。

【0118】また、第2RLEQ制御部8では、第1RLEQ制御部130からの振幅誤差情報からDFF(土LSB)を生成し、この土LSBによって振幅誤差を示す信号FLEQを生成することができる。即ち、この信号FLEQにより後段の線路等化器1の係数を調整して、入力信号の周波数特性を補正することができるのである。

20 【0119】具体的には、DFFとして+LSBが出力されると、振幅誤差信号FLEQに基づいて、高群の周波数信号を増幅するような線路等化器1の係数が後段のリミッタ9を介して設定され、DFFとして-LSBが出力されると高群を減衰させるような線路等化器1の係数がリミッタ9を介して設定されるのである。さらに、図3又は図9に示すリミッタ9は、詳細には図23に示すような構成を有している。即ち、この図23に示すような構成を有している。即ち、この図23に示すリミッタ9は、第2RLEQ制御部(積分回路)8からの振幅誤差を示す信号FLEQに基づいて、前述の図7に30 示す線路等化器1の係数B~Eを設定するものであり、各係数B~Eを設定するためのBLEQ部212,CLEQ部213,DLEQ部214及びELEQ部215をそなえて構成されている。

【0120】即ち、上述のリミッタ9のBLEQ部212~ELEQ部215は、それぞれ、入力されるFLEQの値に基づいて、図24に示すような1次関数特性で係数B~Eの値を設定(又は生成)して出力するようになっている。なお、この図24において、横軸はFLEQの大きさを示しており、最右端が0であり、左側ほどFLEQの値が大きくなる。前述したように、FLEQは、低群ナイキスト周波数信号と高群ナイキスト周波数信号のレベルの差分に対応した値である。また、横軸は係数の値であり、最下端が0であり上となるに従って値が小さくなる(負となる)例を図示している。

【0121】 ここで、BLEQ部212は、FLEQの値に対して1次関数(y=ax+b;この場合においてはyはBに該当し、xはFLEQに該当する)における傾きaに該当する値aBを乗算する乗算器212aをそなえており、これにより、BLEQ部212から出力される係数値Bは、入力されるFLEQの値に応じて図2

6に示すBLEQのように変化するようになっている。 【0122】同様に、DLEQ部214は、FLEQの 値に対して1次関数(y = ax + b)における傾きaに 該当する値aDを乗算する乗算器214aをそなえてお り、これにより、DLEO部214から出力される係数 値Dは、入力されるFLEQの値に応じて図26に示す DLEQのように変化するようになっている。一方、係 数CLEQについては、1次関数 (y=ax+b) にお ける切片bに該当する項はOではないため、CLEQ部 213には乗算器213aに加えて加算器213bがそ 10 なえられている。乗算器213aによりFLEQと係数 a C (CLEOの傾き)が乗算され、その結果に対して 更に加算器213bにて係数bCが加算されるようにな っている。

【0123】同様に、係数ELEOについても、1次関 数(y=ax+b)における切片bB該当する項は0で はなく、ELEQ部215には乗算器215aに加えて 加算器215bがそなえられている。乗算器215aで はFLEQと係数aEが乗算され、加算器215bによ り更に係数 b E が加算される。ここで、係数 C L E Q, ELEOについては、図24中における(2)の領域で はその値を0とする必要がある。そのため、CLEQ部 213、ELEO部215では、領域(2)で係数値を 0とするための回路がそなえられている。

【0124】即ち、CLEQ部213には、上述の乗算 器213a及び加算器213bのほか、加算器213c と加算器213dとがそなえられている。加算器213 cは加算器213bの出力に2.0を加算するもので、 加算器213dは加算器213cの出力に-2.0を加 算するものである。図25は加算器213c, 213d 30 の作用を説明するための図である。

【0125】加算器213bの出力は、図25のCLE O(1)に対応している。図25において点線の部分は 本来係数値が0となるべき領域を表しているが、加算器 213bの出力はこの部分は0とはなっていない。ここ で、加算器213cにおいて、加算器213bの出力に 対して2.0を加算すると、図26のCLEQ(2)の ように加算器213bの出力がシフトする(矢印①参 照)。次に加算器213dにより加算器213cの出力 に「-2.0」を加算すると、CLEO(2)は再びC 40 LEO(1) にシフトする(矢印②参照)。

【0126】ここで、線路等化器1及びリミッタ9は、 +2.0~-2.0の数値範囲を採りうるDSPにより 構成されているので、数値が例えば「+2.0」を超え た領域(図25の領域A参照)においては信号がクリッ プされた状態となる。即ち、図26の(A)の領域で は、加算器2136の出力は0以上となっているため... に、加算器213cにより「2.0」を加算するとその 結果は「2.0」を超えてしまう。そのため、図26 (A) の領域では加算器 2 1 3 c からの出力は「2.

0」にクリップされる(図示一点鎖線及び矢印30参 照)。

【0127】この加算器213c出力に対して、加算器 213dにより「-2.0」を加算すると、図26 (A)の領域については加算器213dの出力は一律0 となる。これにより、加算器213cと加算器213d により、線路等化器1を1次のHPFとして作用させる 必要がある領域(図24における(2)参照)では係数 CLEQの値を「O」とすることができる。

【0128】ELEO部215でも、CLEO部213 におけるもの(符号213c, 213d)とほぼ同様の 機能を有する加算器215c,加算器215dをそな え、上述のCLEQ部213の場合と同様にして(矢印 ④~矢印⑥参照)、線路等化器 1 を 1 次のHPFとして 作用させる必要がある領域(図24における(2)参 照)で、係数値Eを「O」とすることができる。

【0129】即ち、この図24において、(1)の領域 は線路等化器1を2次のHPFとして作用させる領域で あり、(2)の領域は線路等化器1を1次のHPFとし て作用させる領域であり、FLEQ=Oでは線路等化器 1を0次のHPFとして作用させる。なお、図24、図 25中、F1は、横軸を(1)の領域と、(2)の領域 とに分割する点を示している。

【0130】即ち、線路等化器1を0次のHPFとして 作用させる場合には、各係数値B~Eは「O」となる。 また、線路等化器1を1次のHPFとして作用させる場 合には、係数値B, DはFLEQの値に応じた上述の如 く設定され、係数値C, Eは「O」となる。そして、線 路等化器 1 を 2 次の H P F として 作用させる 場合には、 係数値B~EはFLEQの値に応じて上述の如く設定さ れる。

【0131】以上のように、リミッタ回路211により 入力するFLEQの値に応じて生成される係数BLEQ ~ELEOの値を変えるために、受信信号の周波数特性 に適した線路等化器1の係数を発生させることができる ようになる。換言すれば、図24に示すような値にBL EQ~ELEQを設定することにより、各係数BLEQ ~ELEOの値を連続的に変化させることができるの で、線路等化器1の周波数特性の変化を連続的にするこ とができる。

【0132】ところで、本実施形態にかかる線路等化器 1は、線路等化器1の乗算器171による自動利得制御 による作用を除いて考慮すると、例えば図26に示すよ うな周波数特性を有することができる。即ち、前述した ように、メタリック回線44においては、一般的に高域 の周波数成分を持つ信号は減衰しやすく、低域周波数成 分は髙域周波数成分と比較して減衰しにくいので、本実.... 施形態にかかる線路等化器 1 は、リミッタ 9 からの係数 B~Eの設定により、図26に示すような周波数特性を 50 持たせることが必要である。

【0133】特に、送信用モデム41と受信用モデム42,43との間の距離(即ち回線44の物理的な長さ)が長くなると、高周波成分の減衰量が非常に大きくなるため、受信信号の周波数成分が高くなるに従って、信号の増幅量が多くなるように特性を設定する。一方、低周波成分については減衰量が大きくないため、線路等化器1においては、低周波成分については増幅を行なわず、逆に減衰させるような特性を持つ。

【0134】このように、線路等化器1においては、高域成分は増幅し、低域成分は減衰させることによって、高域成分・低域成分のバランスを取ることができ、出力される信号の周波数特性を平坦にさせることができる。なお、線路等化器1は、高域成分を通過させ、低域成分を減衰させる特性を持つため、ハイパスフィルタ(HPF)と考えることもできる。

【0135】低域成分の信号についても回線による減衰が全くないわけではないが、受信信号の全体的なレベルは信号レベル調整用の乗算器171により調整されているため、乗算器171以外の線路等化器の構成要素(符号172~181参照)は、単に信号の周波数特性を平20坦にするためのみに作用している。ここで、リミッタ9では、線路等化器1の係数B~Eを設定することにより、図26に図示されるように入力する信号の周波数特性に応じてフィルタ特性を変えているが、(1)のような範囲では2次のHPFで処理を行なっても処理速度が高速な固定小数点演算を行なうDSPを使用することができる。

【0136】また、フラットな特性が必要となる範囲(2)では、入力する信号の特性に応じて各係数B~Eを可変させることにより、線路等化器1を2次HPF-301次HPF-0次HPFと連続的に切り換え、線路等化器1の周波数特性を変化させる。これにより、各乗算器172~175に与える係数の値を非常に大きなものとする必要がなくなり、浮動小数点演算を行なうDSPを使用せずに、演算速度が高速な固定小数点演算を行なうDSPで対応することができる。

【0137】例えば係数C, Eを「0」とすることによって、図7に図示される線路等化器1の最下段の動作を実質的に無効化させて、図8に示すような1次フィルタを構成することができる。更に、係数B, Dを「0」とすることによって、図7に図示される線路等化器1の最下段及び中段の動作を無効化させて、図9に示すような0次フィルタを構成することができるのである。

【0138】なお、図27は、上述の如き線路等化器1の特性の一例を示した図である(乗算器171を考慮せず)。この図25において、(1)の領域は線路等化器1を2次のHPFとして動作させた場合(図7参照)の特性を示し、(2)の領域は線路等化器1を1次のHPFとして動作させた場合(図8参照)の特性を示し、

(3) のフラットな領域は線路等化器1を0次のHPF 50 当する数の信号がランダム抽出部に入力するのに必要な

として動作させた場合 (図9参照) の特性を示している。

【0139】ここで、本実施形態にかかるモデムのボーレートは192kHzであるが、DSPの処理の負荷を低減することが望まれるため、可能な部分では処理速度を落とすことが望ましい。例えば本実施形態にかかる線路等化器1の制御などは、1ボーレート毎に処理を行なわなくてもよいため、処理の速度を低減させることが可能となる。

【0140】そのため、本実施形態による第1,第2R LEQ制御部130,8は、12kHzによる処理を行なう。これによって、線路等化器制御のためのDSPの 処理の負荷を低減することができる。ここで、入力する 信号は192kHzの周期を有しているために、入力してくる信号を12kHzの周期で抽出しなければならない。図28はこの場合に発生すると考えられる課題を説明する図である。

【0141】モデムにより受信される信号は、±96kHzの帯域を持っており、線路等化器1の特性を制御するためには受信信号の帯域全体の特性(振幅)を見る必要がある。これに対して12kHz単位で信号を抽出する場合には、一時に受信信号の一部帯域しかみることができない。96kHzの帯域幅を持つ信号を12kHzで分割すると、受信信号は8つの区画に分割することができる。ここで、12kHz単位で分割された受信信号の1区画のみを確認した場合、その部分の振幅がどの程度であるかを確認することができる。

【0142】受信信号全体の特性は一様になっているわけでなく、帯域によっては確認できた区画よりも振幅が大きい、あるいは小さいという可能性は非常に大きい。しかし、確認できた一部分のみの振幅に基づいて線路等化器1の特性を制御することとなると、受信信号の特性に対応した周波数特性を線路等化器1に持たせることができなくなる。

【0143】そのため、仮に12kHz単位で分割された一区画に基づいて受信信号の確認を行なうとしても、全体的な受信信号の傾向を把握できるようにするようがある。そこで、例えば図29に示すように、図9に示す帯域通過フィルタ部4の前段にランダム抽出回路271をそなえ、12kHz単位での受信信号の抽出をランダムに行なう。

【0144】即ち、図29はランダム抽出回路271とそれに接続される帯域通過フィルタ部4のバンドパスフィルタ4-1を示す図である。ここで、バンドパスフィルタ4-1は、図10に図示したものと同一のものである。ランダム抽出回路271は、入力される復調信号の実部成分及び虚部成分毎に、複数段接続されたタップ2、73とランダム抽出部274とをそなえて構成されており、タップ273は、FRM1周期分のサンプル点に相当する数の信号がランダム抽出部に入力するのに必要な

段数だけ接続される(中間部分図示省略)。このランダ ム抽出回路271を用いることによって、線路等化器制 御部16におけるバンドパスフィルタ4-1以降の各機 能部にて12kHzの処理を行なうことが可能となる。 【0145】ところで、図30は、上述のランダム抽出 回路271にて行なわれるランダム抽出の考え方を説明 するための図であり、この図30において、241は線

路等化器としてのフィルタ(LEO)に相当、242は 受信信号に基づいて信号点判定を行なう判定部、243 は上述のランダム抽出部274としてのランダム抽出回 10 路である。

【0146】フィルタ241に入力する信号は192k Hzで入力しているが、ランダム抽出回路243からの 出力は12kHz単位となっている。図31は各信号の タイミングを示す図である。この図31において、FR Mは12kHz単位で発生するフレーム信号を示してい る。また、FBOは192kHz単位で発生するタイミ ング信号である。FRMの1周期中にFBOが16シン ボル含まれる。また、下段はサンプル信号であり、FB Oの2倍の384kHzの信号である。

【0147】FRMの1周期中では、全体で32回のサ ンプリングが行なわれるため、8通りのランダム抽出を 行なうためには、入力信号の1周期当たり4個のサンプ ル点を抽出すればよい。図32は入力波形のランダム抽 出について説明する図である。入力信号は96kHzの 周期であり、入力信号1周期あたり4回サンプリングさ れることになる。

【0148】ここで、入力波形1周期分のAを抽出した 後に同様に 1 周期分の B を抽出するが、この際にランダ ム抽出した後の波形が連続的となるように、ランダム抽 出を行なう。これにより、ランダム抽出回路271を帯 域通過フィルタ部4の前段にそなえ、線路等化器1の制 御を受信信号の周波数よりも低い12kHzで行なうこ とができるので、DSPの処理の負荷を低減させること ができる。

【0149】上述の構成により、本発明の一実施形態に かかる伝送装置としてのモデムが適用されたデータ通信 システム40では、送信用モデム41において、送信信 号として、図示しないホスト装置等からの送信データ3 1にナイキスト周波数信号32、33としてのトーン信 号を重畳させることにより、メタリック回線44を介し て受信用モデム42、43に送信している。

【0150】受信用モデム42、43では、受信信号 (アナログ信号) についてディジタル信号に変換した後 (AD1~AD4)、線路等化器1において、後段の線路等化器 制御部16からのフィードバック情報としての係数設定 ...情報に基づいて、受信信号の振幅特性の劣化をAGC回..... 路とほぼ同様に改善するとともに、周波数特性を改善さ せて出力する(RLEO1~RLEO4,図23参照)。

タ部4において、復調部2及びロールオフフィルタ3を 介して線路等化器1からの受信信号を入力されて、この 受信信号から伝送信号(送信信号)に重畳された特定周 波数成分 (ナイキスト周波数成分) を持つ複数のトーン 信号32′、33′を抽出する。また、パワー演算部 5. 加算器 6 (第1 R L E O 制御部 130) において、 帯域通過フィルタ部4にて抽出されたトーン信号3 21、331のレベルを判定し、積分回路(第2RLE Q制御部) 8及びリミッタ9において、判定されたトー ン信号のレベルに基づいて係数A~Eを決定して、受信 信号を等化する線路等化器1の特性を制御する。

【0152】即ち、線路等化器制御部16では、線路等 化器 1 にて必要とされる特性に応じて、フィルタ特性を 2次-1次-0次と連続的に切り換えることによって、 2次HPFにより処理すると浮動小数点演算を行なわな ければならないような場合でも、固定小数点演算により 対応することができる。そのため、演算速度が高い固定 小数点演算を行なうDSPを使用することが可能とな る。

【0153】なお、このように線路等化器1にて回線特 20 性による受信信号の周波数特性、振幅特性の変化が補正 されると、復調部2及びロールオフフィルタ3における 受信信号の復調処理及びロールオフフィルタ処理が施さ れた後に、ロールオフフィルタ3からの受信信号につい て後段の端末において識別を行なうための信号処理を行 なう。

【0154】このように、本発明の一実施形態によれ ば、線路等化器制御部16において、線路等化器1のフ ィルタ特性を、受信信号から抽出されたトーン信号のレ ベルに基づいて、連続的な2次-1次-0次のフィルタ となるように自動制御を行なうことができるので、低コ ストで装置を構成し且つ高処理速度で、回線状態に応じ て要求される所望の特性で、線路等化処理を行なうこと ができる利点がある。

【0155】特に、本発明によれば、線路等化器制御部 16により、受信信号の特性に応じて線路等化器1の次 数を変える処理を行なうことができるので、線路等化器 を実現するために比較的安価で髙速な固定小数点演算を 行なうDSP等を使用することができる利点がある。さ らに、線路等化器制御部16により、受信信号から抽出 された複数のトーン信号を用いることにより、トーン信 号のレベルの平均値を算出することを通じて受信信号の 滅衰の度合いを確認することができるほか、トーン信号 のレベルの差分を算出することを通じて受信信号の周波 数特性を識別することができ、線路等化器1の自動調整 を飛躍的に簡易なものとすることができる。

【0.156】また、線路等化器1の乗算器171及び線 路等化器制御部16により、振幅誤差に対応した値を持 つ信号を入力信号に対して乗算することを通じて、入力 【0151】即ち、線路等化器制御部16帯域のフィル 50 信号の振幅制御を行なうことができ、独立したAGC回

路を別個に設ける必要がなくなるので、回路構成を簡素 化させ、DSPの処理負荷を低減させることができる利 点もある。

【0157】さらに、第1RLEQ制御部130において、継続して伝送されるナイキスト周波数信号に基づいて算出された受信信号の振幅誤差情報と周波数誤差情報をもとに、線路等化器1の係数を設定してその特性を変化させることができるので、振幅誤差・周波数誤差を線路等化器1により補正することができ、ひいてはデータ伝送開始前のトレーニング信号のやりとりを行なう必要が無くすことができるので、データ伝送開始までの時間を短縮させることもできる。

【0158】一方、n桁(ビット)を持つ信号の上位ビットと下位ビットとをそれぞれ抽出し、上位ビットの1/2の値を下位ビットに加算してフィードバックすることにより、ある定められた範囲を積算値が超えた場合には、前述の範囲の中点に引き戻すことができるような積分回路8を実現することができ、このような積分回路を上述のモデム42,43の積分回路8に適用することにより、出力される信号の変更幅を大きくなり過ぎないように抑制することができ、線路等化器1の動作を安定化させることができる利点がある。

【0159】さらに、周波数シフト部4-2により、前後の信号の加算のみの簡単な信号処理で周波数シフト処理を行なうことができるので、複雑な信号処理を行なう必要もなくなり、回路規模、処理時間等の面においても従来の周波数シフト機能よりも有利なものを実現させることができ、このような周波数シフト部4-2を上述のモデム42、43に適用することにより、DSPの信号処理の負荷の低減、処理時間短縮に大いに寄与し、ひい 30 ては、回路規模、処理時間等の面で従来の周波数シフトよりも有利なものが実現される。

[0160]

【発明の効果】以上詳述したように、本発明(請求項1~17記載)によれば、線路等化器制御部(制御ステップ)により、線路等化器のフィルタ特性を、受信信号から抽出された特定周波数信号のレベルに基づいて、連続的な2次-1次-0次のフィルタとなるように自動制御を行なうことができるので、低コストで装置を構成し且つ高処理速度で、回線状態に応じて要求される所望の特性で、線路等化処理を行なうことができる利点がある。特に、受信信号の特性に応じて線路等化器の次数を変える処理を行なうことができるので、線路等化器を実現するために比較的安価で高速な固定小数点演算を行なうDSP等を使用することができる利点がある。

 4

ることができ、ひいてはデータ伝送開始前のトレーニン グ信号のやりとりを行なう必要が無くすことができるの で、データ伝送開始までの時間を短縮させることもでき る。

【0162】さらに、請求項3,4及び15記載の本発明によれば、線路等化器制御部により、受信信号から抽出された複数の特定周波数信号(トーン信号)を用いることにより、特定周波数信号のレベルの平均値を算出することを通じて受信信号の減衰の度合いを確認することができるほか、特定周波数信号のレベルの差分を算出することを通じて受信信号の周波数特性を識別することができ、線路等化器の自動調整を飛躍的に簡易なものとすることができる。

【0163】また、請求項11記載の本発明によれば、 振幅誤差に対応した値を持つ信号を入力信号に対して乗 算することを通じて、入力信号の振幅制御を行なうこと ができ、独立したAGC回路を別個に設ける必要がなく なるので、回路構成を簡素化させ、DSPの処理負荷を 低減させることができる利点もある。さらに、請求項 6, 17記載の本発明によれば、n桁(ビット)を持つ 信号の上位ビットと下位ビットとをそれぞれ抽出し、上 位ピットの1/2の値を下位ビットに加算してフィード バックすることにより、ある定められた範囲を積算値が 超えた場合には、前述の範囲の中点に引き戻すことがで きるような積分回路を実現することができ、このような **積分回路を受信用モデムの積分回路に適用することによ** り、出力される信号の変更幅を大きくなり過ぎないよう に抑制することができ、線路等化器の動作を安定化させ ることができる利点がある。

30 【0164】さらに、請求項7,14記載の本発明によれば、周波数シフト・ローパスフィルタ共用部において、前後の信号の加算のみの簡単な信号処理で周波数シフト処理を行なうことができるので、複雑な信号処理を行なう必要もなくなり、回路規模、処理時間等の面においても従来の周波数シフト機能よりも有利なものを実現させることができ、このような周波数シフト回路を受信用モデムに適用することにより、DSPの信号処理の負荷の低減、処理時間短縮に大いに寄与し、ひいては、回路規模、処理時間等の面で従来の周波数シフトよりも有40 利なものが実現される。

【図面の簡単な説明】

【図1】本発明の原理説明図である。

【図2】本発明の原理ブロック図である。

【図3】本発明の一実施形態にかかるモデムにおける受信部を示すプロック図である。

【図4】本発明の一実施形態にかかるモデムにおける送信部を示すブロック図である。

【図5】本発明の一実施形態にかかる伝送装置としての モデムが適用されたデータ通信システムを示すプロック 図である。

【図6】本実施形態かかるデータ通信システムにおける 送信信号・受信信号の周波数スペクトルを示す図であ

【図7】本実施形態にかかる線路等化器の等価回路を示 す図である。

【図8】 (a), (b) はともに本実施形態にかかる線 路等化器の等価回路を示す図である。

【図9】本実施形態にかかる線路等化器制御部を示すブ ロック図である。

【図10】本実施形態にかかる線路等化器制御部の要部 10 の等価回路を示す図である。

【図11】本実施形態にかかる線路等化器制御部の要部 の等価回路を示す図である。

【図12】本実施形態にかかる線路等化器制御部の要部 の等価回路を示す図である。

【図13】本実施形態にかかる線路等化器制御部の要部 の動作を説明するための図である。

【図14】 (a), (b) はともに本実施形態にかかる 線路等化器制御部の要部の動作を説明するための図であ

【図15】本実施形態にかかる線路等化器制御部の要部 の動作を説明するための図である。

【図 1 6】本実施形態にかかる線路等化器制御部の要部 の等価回路を示す図である。

【図17】(a), (b) はともに本実施形態にかかる 線路等化器制御部の要部の等価回路を示す図である。

【図18】(a)~(c)はいずれも本実施形態にかか る線路等化器制御部の要部の動作を説明するための図で ある。

【図19】本実施形態にかかる線路等化器制御部の要部 30 の等価回路を示す図である。

【図20】本実施形態にかかる線路等化器制御部の要部 の等価回路を示す図である。

【図21】本実施形態にかかる線路等化器制御部の要部 の動作を説明するための図である。

【図22】本実施形態にかかる線路等化器制御部の要部 の動作を説明するための図である。

【図23】本実施形態にかかる線路等化器制御部の要部 の等価回路を示す図である。

【図24】本実施形態にかかる線路等化器制御部の要部 の動作を説明するための図である。

【図25】本実施形態にかかる線路等化器制御部の要部 の動作を説明するための図である。

【図26】本実施形態にかかる線路等化器制御部の要部 の動作を説明するための図である。

【図27】本実施形態にかかる線路等化器制御部の要部 の動作を説明するための図である。

【図28】本実施形態にかかるランダム信号抽出処理を 説明するための図である。

【図29】本実施形態にかかる線路等化器制御部の要部 50 44 メタリック回線

の等価回路を示す図である。

【図30】本実施形態にかかるランダム信号抽出処理を 説明するための図である。

【図31】本実施形態にかかるランダム信号抽出処理を 説明するためのタイムチャートである。

【図32】本実施形態にかかるランダム信号抽出処理を 説明するためのタイムチャートである。

【図33】一般的なモデムの構成を示す図である。

【図34】一般的なモデムにおける線路等化器の動作を 説明するための図である。

【図35】一般的なモデムにおける線路等化器の動作を 説明するための図である。

【符号の説明】

- 1. 線路等化器
- 2 復調部
- 3 ロールオフフィルタ
- 4 帯域通過フィルタ部
- 4-1 バンドパスフィルタ
- 4-2 周波数シフト部
- 20 4-3 ローパスフィルタ
 - 5 パワー演算部(レベル算出部)
 - 6 加算器 (係数演算部)
 - 7 参照值保持部(係数演算部)
 - 8 積分回路(第2RLEQ制御部,係数演算部)
 - 9 リミッタ(係数演算部)
 - 10 受信部
 - 11 ナイキスト信号キャンセラ
 - 12 自動等化器
 - 13 キャリア位相制御部
- 1 4 判定部
 - 15 受信信号処理部
 - 16 線路等化器制御部
 - 17 伝送装置
 - 20 送信部
 - 21 論理処理部
 - 22 ロールオフフィルタ
 - 23 ナイキスト信号発生部
 - 2.4 加算部
 - 25 変調部
- 40 26 D/A変換部
 - 27 ローパスフィルタ
 - 31 送信データ
 - 32, 33, 31', 32' ナイキスト周波数信号 (トーン信号)
 - 71.72 ナイキスト周波数信号(トーン信号)
 - 40 データ通信システム
 - . 4.1. 送信用モデム
 - 4.2 受信用モデム
 - 43 受信用モデム

*141y, 141z タップ 51a, 51b 部分 171~175 乗算器 52,53 乗算器 176~179 加算器 54,55 加算器 180, 181 タップ 56.57 タップ 212 BLEO部 80 等価回路 213 CLEO部 81 乗算器 213a 乗算器 82 ローパスフィルタ 213b~213d 加算器 83 ローパスフィルタ 214 DLEQ部 84 加算器 10 214a 乗算器 85 タップ 215 ELEQ部 86 乗算器 215a 乗算器 87 加算器 215b~215d 加算器 88 タップ 241 線路等化器としてのフィルタ 89 等価回路 242 判定部 90 等価回路 243 ランダム抽出部 91.92 タップ 271 ランダム抽出回路 93,94 加算器 273 タップ 95 等価回路 274 ランダム抽出部 96, 97 タップ 20 280 モデム 98.99 加算器 281 受信部 100a, 100b 乗算器 281a A/D変換部 101a, 101b 等価回路 281b 線路等化器 103a, 103b 加算器 281c 復調部 104a, 104b 等価回路 281d ロールオフフィルタ 105a、105b 加算器 281e 自動利得制御部 130 第1RLEQ制御部 281f 自動等化器 141a, 141b AND回路 281g キャリア検出部 141c, 141d 加算器 281h タイミング抽出部 141e, 141f 乗算器 30 281 i クロック信号発生部 141g, 141h 加算器 286 送信部 141i~1411 AND回路 286a 論理処理部 141m, 141nタップ 2866 ロールオフフィルタ 141o, 141p 加算器 286c 変調部 141q~141t 乗算器 141w, 141x 二乗回路 286d D/A変換部

[図2]

本発明の原理ブロック図

【図11】

本実施形態にガガる線路等価器制御部の要部の等価回路を 示す図

[図1]

【図3】

[図4]

本発明の原理説明図

本発明の一実施形態にかかるモデムにおける受倍部を 示すブロック図 本発明の-実施形態にかかるモデムにおける送色部を 示すプロック図

【図5】

[図6]

本発明の一実施形態にかかる伝送装置としてのモデムが適用 されたデータ通信システムを示すブロック図 太実施形態にサガラデラ通信システムにおける送信信号・ 対信信号の周波数スペクトルを示す図

RLEO 1

【図7】 本実施形態にかける線路等化器の等価回路を示す図

[図8] 本実施形態にかける線路等化器の等価回路を示す図

(ロ)ー次フィルタとして搭載する場合 1/2 5 \$~\$ [図12] 【図10】

本実施形態にかかる線路等化器制御部の要部の等価回路を示す図

本実施形態にかかる線路等価器制御部の要部の 等価回路を示す図

⊵.

\$~\$

RLE04

(b) 0次プルグとして搭触する場合

【図9】

本実施形態にけかる線路等化器制御部を示すブロック図

[図13]

本実施形態にかかる線路等化器制御部の要部の動作 を説明するための図

【図15】

本実施形態にかかる緑路等化器制御部の要部の動作と 説明するための図

[図14]

本実施形態にかかろ線路等化器制御部の要部の動作を 説明するための図

【図16】

本実施开始にササラ線路等化器制御部の要音の等面回路を 示す図

【図17】

[図19]

4-2,4-3

-96kHzシフト

本実施刑態にかかる線路等化器制御時の要部の等価回路を示す団

[図18]

本実施形態にかかる線路等化器制御部の要部の動作を説明 するための図

		96kHz		- 96kHz	
	フェーズ	COSX	sinx	COSX	sinx
(-)	フェーズの	1	0	1	0
(a)	フェーズ1	0	1	0	-1
	フェーズ2	-1	0	-1	0
	フェ-ズ3	0	-1	0	1

[図21]

本実施形態に分ける線路等化器制御部の要部の重加を記述明するための図

10進	16 進	(8000) Ł AND	(4000) 紅加賀	(0001)
-2.0 } +0.0	7FFF } 0000	0000	4000 \$ 4000 (+1,0)	0001 { 0001 (+LSB)
-0.0 { -2.0	FFFF } FFFF	8000 \$ 8000 (-2.0)	COOO (COOO (-1.0)	FFFF } FFFF (-LSB)

【图20】

【図28】 本実施形能にかかろランダム信号抽出処理を説明するための図

【図22】

本実施形態にけかる線**岡等化器制御部の**要部の動作を説明する ための図

【図23】

本实施形態にかかる線路等化器則智部の要部の等価回路を示す図

【図24】

本実施形態にかかる線路等化器部御部の要部の動作を説明 するための図

【図26】 本実施形態にサかる線路等化器制御部の要部の動作を説明 するための図

【図25】

本実施形態にかかる線路等化器制御部の要部の動作を 説明するための図

本実施形態に対ける線路等化器制御部の要部の金が作を説明 するための図

【図29】
本実施形態にかかる線路等化器制御部の等価回路を示す図

【図30】 本実施形態にかかろランダム信号抽出処理を説明するための図

【図31】

本実施予機にかかるランダム信号抽出処理を説明するための タイムケャート

[図32]

本実施形態にかかるランダム信号抽出処理を説明するための タイムチャート

【図33】 一般的なモデムの構成を示す図

一般的なモデムにおける線路等化器の動作を説明するための図

周波数f

[図34]

【図35】

一般的なモデムにおける練路等化器の動作を説明するための図

フロントページの続き

(72)発明者 宮澤 秀夫 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 仁垣 友里 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内