Homework 2

Nathaniel Hamovitz Math 118B, Ponce, W23

due 2023-01-26

1. Let $f:[a,b]\to\mathbb{R}$ be a function such that $\exists M>0, \exists \alpha>1$ such that

$$\forall x, y \in \mathbb{R}, \qquad |f(x) - f(y)| \le M |x - y|^{\alpha}.$$

Prove that f is constant.

Proof. First we show that f must be continuous on [a,b]. Let $\varepsilon > 0$. Consider $\delta = \left(\frac{\varepsilon}{M}\right)^{\frac{1}{\alpha}}$. Then $|x-y| < \delta$ implies $|f(x) - f(y)| < \varepsilon$.

Now we show that f must also be differentiable. Let $x_0 \in [a, b]$ and let

$$f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Note that

$$0 \le \left| \frac{f(x) - f(x_0)}{x - x_0} \right|$$

$$= \frac{|f(x) - f(x_0)|}{x - x_0}$$

$$\le \frac{M |x - x_0|^{\alpha}}{x - x_0}$$

$$= M |x - x_0|^{\alpha - 1}$$

and as $\alpha > 1$, this clearly goes to 0 as $x \to x_0$. Thus by Squeeze Theorem $f' \equiv 0$.

Finally we appeal to the Mean Value Theorem; the equation $f(x_2) - f(x_1) = (x_2 - x_1)f'(x)$ must, for all $x_1, x_2 \in (a, b)$, hold for some $x \in (a, b)$. But we know that $\forall x \in (a, b), f'(x) = 0$, and hence that $\forall x_1, x_2 \in (a, b), f(x_2) = f(x_1)$. Therefore f is constant.

2. Let $n \in \mathbb{N}$, n > 2, $a, b \in \mathbb{R}$, and $f : \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x) = x^n + ax + b.$$

Prove that f vanishes in at most three points.

Proof. We have $f'(x) = nx^{n-1} + a$, and so at any critical point f'(x) = 0,

$$0 = nx^{n-1} + a$$
$$-\frac{a}{n} = x^{n-1}$$
$$x = \sqrt[n-1]{-\frac{a}{n}}$$

Such an expression has at most 2 real solutions (1 when n-1 is odd or a=0. For n-1 even, it depends on the sign of a: 2 solutions for a < 0 and 0 for a > 0.)

The Mean Value Theorem tells us that each vanishing point of a function after the first requires a corresponding point where f'(x) = 0 somewhere before, in order to satisfy $f(x_2) - f(x_1) = 0 = (x_2 - x_1)f'(x)$.

Therefore f vanishes in at most three points.

3. Show that $(\sin(x))' = \cos(x)$.

Proof. The proof relies upon a few trigonometric identities and the facts that: $\lim_{x\to 0} \frac{\sin x}{x} = 1$ (which can be proven by considering the areas of the two right triangles with base along the x-axis and height equal to $|\sin x|$ and $|\tan x|$, respectively, and then employing the Squeeze Theorem); and $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$ (which can be proven using the identity $1-\cos^2 x = \sin^2 x$ and some clever algebra).

$$(\sin x)' \equiv \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{(\cos x)(\sin h) + (\sin x)(\cos h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{(\cos x)(\sin h)}{h} + \frac{(\sin x)(\cos h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{(\cos x)(\sin h)}{h} + \lim_{h \to 0} \frac{(\sin x)(\cos h) - \sin x}{h}$$

$$= \lim_{h \to 0} (\cos x) \frac{\sin h}{h} + \lim_{h \to 0} \frac{(\sin x)(\cos h) - \sin x}{h}$$

$$= \cos x \cdot \left[\lim_{h \to 0} \frac{\sin h}{h}\right] - \sin x \cdot \left[\lim_{h \to 0} \frac{1 - \cos h}{h}\right]$$

$$= \cos x \cdot 1 - \sin x \cdot 0$$

$$= \cos x$$

4. For $a \geq 0$ define $f_a : \mathbb{R} \to \mathbb{R}$ by

$$f_a(x) = \begin{cases} x^a \sin\left(\frac{1}{x}\right), & x > 0\\ 0, & x \le 0 \end{cases}$$

For which values of a:

1. ... is f_a continuous (on \mathbb{R})?

Proof. As the composition of continuous functions, f_a is continuous on $\mathbb{R} - \{0\}$ for all a. The only possible problem is at x = 0. Consider when a = 0. The $\lim_{x\to 0} x^0 = 1$ and so $\lim_{x\to 0} f_a(x) = \sin\left(\frac{1}{x}\right)$, which is not even defined; that function has crazy oscillations as $x\to 0$. But for any a>0, $\lim_{x\to 0} x^a = 0$, and since the sin term is bounded, the whole thing reaches 0 at 0. As a consequence, for any $\epsilon>0$, $\exists \delta>0$, $|f_{a>0}(\delta)|=\epsilon$, and hence f_a is continuous on all of \mathbb{R} .

2. ... does $f'_a(0)$ exist?

Proof. By definition,

$$f'_a(0) = \lim_{x \to 0} \frac{f_a(x) - f_a(0)}{x - 0}$$
$$= \lim_{x \to 0} \frac{f_a(x) - 0}{x}$$
$$= \lim_{x \to 0} x^{a-1} \sin\left(\frac{1}{x}\right)$$

 $f'_a(0)$ exists when this limit converges, and by a similar argument to above, this limit only converges when a > 1, so that $\lim_{x\to 0} x^{a-1} = 0$.

3. ... is f'_a continuous at x = 0?

Proof. Clearly $f'_a = 0$ on x < 0, we saw above that $f'_a(0) = 0$ if a > 1, and for x > 0 the function is well-behaved and we can use our usual differentiation rules:

$$f'_a(x) = ax^{a-1}\sin\left(\frac{1}{x}\right) + x^a\cos\left(\frac{1}{x}\right)\left(-\frac{1}{x^2}\right), \quad x > 0$$
$$= ax^{a-1}\sin\left(\frac{1}{x}\right) - x^{a-2}\cos\left(\frac{1}{x}\right)$$

Perfectly continuous on x > 0; to ensure continuity at x = 0, this expression must go to 0 as $x \to 0$. Our smallest exponent of x now is a - 2, and so we need a > 2.

4. ... does $f_a''(0)$ exist?

Proof. Once again we appeal to the limit definition:

$$f_a''(0) = \lim_{x \to 0} \frac{f_a'(x) - f_a'(0)}{x - 0}$$

$$= \lim_{x \to 0} \frac{ax^{a - 1}\sin\left(\frac{1}{x}\right) - x^{a - 2}\cos\left(\frac{1}{x}\right)}{x}$$

$$= \lim_{x \to 0} ax^{a - 2}\sin\left(\frac{1}{x}\right) - x^{a - 3}\cos\left(\frac{1}{x}\right)$$

The derivative exists iff this limit converges; our smallest exponent is now a-3 and so $f''_a(0)$ will exist when a>3.

5. ... is f_a'' continuous at x = 0?

Proof. And now we must again consider the expression for f_a'' on x > 0:

$$f_a''(x) = (a)(a-1)x^{a-2}\sin\left(\frac{1}{x}\right) + ax^{a-1}\cos\left(\frac{1}{x}\right)\left(-\frac{1}{x^2}\right) - (a-2)x^{a-3}\cos\left(\frac{1}{x}\right) - x^{a-2}\sin\left(\frac{1}{x}\right)\left(-\frac{1}{x^2}\right)$$

And the smallest power of x, coming from the last term, will be a-4; therefore f''_a is continuous at x=0 when a>4.

Rudin 5-2. (pt 1) Suppose f'(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b).

Proof. This is a simple application of the Mean Value Theorem. Let $x_1, x_2 \in (a, b)$ such that $x_2 > x_1$, the equation $f(x_1) - f(x_2) = (x_2 - x_1)f'(x)$ for some $x \in (x_1, x_2)$. The RHS is positive, and so we have $f(x_1) > f(x_2)$.

Rudin 5-2. (pt 2) Now let g be the inverse function of f. Prove that g is differentiable, and that

$$g'(f(x)) = \frac{1}{f'(x)} \quad x \in (a, b).$$

Proof. We first show that g is differentiable on (a, b). Let $x_0 \in (a, b)$. As $g = f^{-1}$, $x - x_0 = g(f(x)) - g(f(x_0))$. Hence

$$1 = \frac{g(f(x)) - g(f(x_0))}{x - x_0}$$

$$1 = \frac{g(f(x)) - g(f(x_0))}{x - x_0} \cdot 1$$

$$1 = \frac{g(f(x)) - g(f(x_0))}{x - x_0} \cdot \frac{f(x) - f(x_0)}{f(x) - f(x_0)}$$

$$1 = \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \cdot \frac{f(x) - f(x_0)}{x - x_0}$$

Now take the limit on both sides as $x \to x_0$:

$$\lim_{x \to x_0} 1 = \lim_{x \to x_0} \left[\frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \cdot \frac{f(x) - f(x_0)}{x - x_0} \right]$$

$$1 = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \cdot \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Finally note that since f' exists, f is continuous, and thus as $x \to x_0$, $|f(x) - f(x_0)| \to 0$. Hence, while the LHS remains 1, the RHS is in the form of derivative formulas, and we can write $1 = g'(f(x)) \cdot f'(x)$. Simply divide by f'(x) (recalling that f' is always positive) and we have

$$g'(f(x)) = \frac{1}{f'(x)}.$$

Rudin 5-3. Suppose g is a real function on \mathbb{R} , with bounded derivative (say $|g'| \leq M$). Fix $\varepsilon > 0$, and define $f(x) = x + \varepsilon g(x)$. Prove that f is one-to-one if ε is small enough.

Proof. Let $x_1, x_2 \in \mathbb{R}$ (WLOG, suppose $x_1 \leq x_2$) and suppose that $f(x_1) = f(x_2)$. Then $f(x_2) - f(x_1) = 0$ and so by the Mean Value Theorem either $x_2 - x_1 = 0$ or f'(x) = 0 for some $x \in (x_1, x_2)$.

Suppose for a contradiction that f'(x) = 0. We have $f'(x) = 1 + \varepsilon g'(x)$. Hence

$$0 = 1 + \varepsilon g'(x)$$
$$g'(x) = -\frac{1}{\varepsilon}$$
$$|g'(x)| = \frac{1}{\varepsilon}$$

Now consider when $\varepsilon \leq \frac{1}{M+1}$. Then |g'(x)| = M+1 > M, which is a contradiction. Thus $x_2 = x_1$, and therefore f is injective.

Rudin 5-15. Suppose $a \in \mathbb{R}$, f is a twice-differentiable real function on (a, ∞) , and M_0 , M_1 , M_2 are the least upper bounds of |f(x)|, |f'(x)|, |f''(x)|, respectively, on (a, ∞) . Prove that

$$M_1^2 \le 4M_0M_2$$
.

Proof. It can be shown from the hypothesis that $\forall h > 0$,

$$|f'(x)| \le hM_2 + \frac{M_0}{h}.$$

(This is given as a hint in Rudin; deriving it involves a clever reformulation of the Taylor Polynomial Theorem.) From there by a property of the supremum we have that $M_1 \leq h M_2 + \frac{M_0}{h}$. All these values are nonnegative so we can square and find $M_1^2 \leq h^2 M_2^2 + \frac{M_0^2}{h^2} + 2 M_2 M_0$. Call the RHS g(h); as $M_1^2 \leq g(h)$ holds for all positive h, it suffices to show there $\exists h > 0, g(h) = 4 M_0 M_2$. Consider $h = \sqrt{\frac{M_0}{M_2}}$ (can be deduced by solving for h directly or by considering the critical points of g); then

$$g(h) = \frac{M_0}{M_2} M_2^2 + \frac{M_0^2}{\frac{M_0}{M_2}} + 2M_2 M_0$$
$$= M_0 M_2 + M_0 M_2 + 2M_0 M_2$$
$$= 4M_0 M_2$$

As the above holds for h > 0, we must also consider when $M_0 = 0$; in that case, $f \equiv 0$ and so f = f' = f'' = 0 and indeed $0^2 \le 4 \cdot 0 \cdot 0$.