## МГУ лаба №114 Изучение тензора инерции твердого тела

Сергей Слепышев 109 группа

Ноябрь 2022

### 0.1 Вступление

#### Цель работы

Знакомство с понятием «тензор инерции». Определение компонент тензора инерции цилиндра и параллелепипеда из измерений периода колебаний и углового ускорения при вращении исследуемого тела.

#### Идея эксперимента

Приводя исследуемое тело в то или иное движение, измерить либо период колебаний, либо угловое ускорение при вращении. По соответствующим формулам оценить момент инерции. Реализуется возможность приведения тела во вращательное движение вокруг различных центральных осей.

## 0.2 Эксперимент и обработка

# 0.2.1 Упражнение 1. Изучение тензора инерции в режиме вращательного движения рамки.

В качестве тела был взят параллелепипед со сторонами a,b,c. Радиус шкива обозначен буквой r.

Радиус шкива r я решил измерить "методом рядов", наматывая веревку с закрепленным на ней грузом на величину  $\Delta h$  в несколько полных оборотов n (измерял  $\Delta h$  линейкой):

$$r = \frac{\Delta h}{2\pi n}$$

Размеры параллелепипеда a, b, c измерил штангенциркулем. Погрешности тут получились только систематические (хоть я и измерял предмет с разных мест, і-значения получились одинаковыми), их приписал в таблице. Также прилагаю другие характеристики установки:



| груз  |         | тело   | (диск)  | Стер  | табличное |       |
|-------|---------|--------|---------|-------|-----------|-------|
| m     | Sigma m | m      | Sigma m | m     | Sigma m   | g     |
| g     | g       | g      | g       | g     | g         | m/s^2 |
| 87,98 | 0,05    | 131,86 | 0,05    | 79,81 | 0,05      | 9,82  |

| delta h | Sigma h | n | r     | Sigma r | ai   | bi   | ci   | mean a | Sigma a | mean b | Sigma b | mean c | Sigma c |
|---------|---------|---|-------|---------|------|------|------|--------|---------|--------|---------|--------|---------|
| sm      | sm      |   | sm    | sm      | sm   | sm   | sm   | sm     | sm      | sm     | sm      | sm     | sm      |
| 35,2    | 0,1     | 5 | 2,241 | 0,006   | 2,88 | 4,81 | 7,94 | 2,88   | 0,01    | 4,81   | 0,01    | 7,94   | 0,01    |
|         |         |   |       |         | 2,88 | 4,81 | 7,94 |        |         |        |         |        |         |
|         |         |   |       |         | 2,88 | 4,81 | 7,94 |        |         |        |         |        |         |

Далее мерю время  $t_0$  прохождения грузом m расстояния  $x_2 - x_1$  без закрепленного в рамке тела.

| tx    | ty    | tz    | t AG  | t MN  | mean tx | Sigma tx | mean ty | Sigma ty | mean tz | Sigma tz | mean tAG | Sigma<br>tAG | mean t<br>MN | Sigma t<br>MN |
|-------|-------|-------|-------|-------|---------|----------|---------|----------|---------|----------|----------|--------------|--------------|---------------|
| S     |       |       |       |       |         |          |         |          |         |          |          |              |              |               |
| 3,064 | 1,909 | 2,643 | 2,277 | 2,91  | 3,04    | 0,07     | 1,91    | 0,04     | 2,69    | 0,06     | 2,24     | 0,05         | 2,87         | 0,06          |
| 2,98  | 1,921 | 2,758 | 2,206 | 2,883 |         |          |         |          |         |          |          |              |              |               |
| 3,083 | 1,91  | 2,663 | 2,261 | 2,841 |         |          |         |          |         |          |          |              |              |               |
|       |       |       | 2,21  | 2,847 |         |          |         |          |         |          |          |              |              |               |

В данной таблице я перечислил получившиеся значения  $x_4$ :

| x4   | x4   | x4   | x4   | x4   | mean x4 | Sigma x4 | mean x4 | Sigma x4 | mean x4 | Sigma x4 | mean x4 | Sigma x4 | mean x4 | Sigma x4 |
|------|------|------|------|------|---------|----------|---------|----------|---------|----------|---------|----------|---------|----------|
| sm   | sm   | sm   | sm   | sm   | sm      | sm       | sm      | sm       | sm      | sm       | sm      | sm       | sm      | sm       |
| x    |      |      | AG   | MN   |         | K        |         | у        |         | z        | А       | G        | M       | IN       |
| 16,3 | 12,6 | 17,2 | 13,6 | 15,9 | 15,9    | 0,2      | 12,7    | 0,2      | 17,0    | 0,2      | 13,4    | 0,3      | 16,6    | 0,2      |
| 15,6 | 13   | 16,6 | 13   | 16,9 |         |          |         |          |         |          |         |          |         |          |
| 15,9 | 12,5 | 17,3 | 13,1 | 16,9 |         |          |         |          |         |          |         |          |         |          |
|      |      |      | 13,9 | 16,6 |         |          |         |          |         |          |         |          |         |          |

Погрешность измерения времени принял за:

$$\sigma_t = \sqrt{S_t^2 + \sigma_{\text{сист}}^2}$$

где

$$\sigma_{\text{сист}} = 0.02 * t$$

Случайная погрешность вычислена по формуле:

$$S_a = \sqrt{\frac{(a_i - \overline{a})^2}{N * (N - 1)}}$$

Все координаты  $x_i$  измерены с помощью линейки. Если были проведены несколько измерений одной величины  $x_i$ , то полную погрешность считал по формуле:

$$\sigma_x = \sqrt{S_x^2 + \sigma_{\text{сист}}^2}$$

Для упрощения математических выкладок взял  $x_1 = x_0$  (по совету Митина).

Я ЗАБЫЛ ПОМЕРИТЬ  $x_4$  для измерений  $t_0(((($  Но расстраиваться не буду и напишу оценки погрешностей:

$$x = \frac{M_{\text{Tp}}}{r} = mg \frac{x_4 - x_0}{2x_3 - x_0 - x_4}$$

$$\sigma_x = x * \sqrt{\left(\frac{\sigma_m}{m}\right)^2 + \left(\frac{\sigma_{x_4 - x_0}}{x_4 - x_0}\right)^2 + \left(\frac{\sigma_{2x_3 - x_0 - x_4}}{2x_3 - x_0 - x_4}\right)^2}$$

где:

$$\sigma_{x_4-x_0} = \sqrt{\sigma_{x4}^2 + \sigma_{x_0}^2}$$

$$\sigma_{2x_3-x_0-x_4} = \sqrt{4\sigma_{x3}^2 + \sigma_{x_0}^2 + \sigma_{x_4}^2}$$

Потенциально можно найти эти величины. Далее приму  $M_{\bf rp}/r \approx 0$  (!!!) для хоть какогото завершения эксперимента.

Погрешность измерений массы принял за 1%:

$$\sigma_m = 0.01 * m$$

 $\Phi$ ормула расчета J была:

$$J = r^2 \frac{mg - M_{\rm TP}/r}{2(\sqrt{x_0 - x_2} - \sqrt{x_0 - x_1})^2} (t^2 - t_0^2)$$

Но я приколист, поэтому приму:

$$t_0^2 \ll t^2$$
,  $x_0 = x_1$ ,  $M_{\rm TD}/r \approx 0$ 

И формула J упростится до:

$$J = \frac{mgr^2}{2(x_0 - x_2)}t^2$$

Отсюда оценка погрешности J (решил добавить "на глаз" 5% от величины как погрешность от пренебрежения величинами):

$$\sigma_J = J * \sqrt{\left(\frac{\sigma_m}{m}\right)^2 + \left(2\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_{(x_0 - x_2)}}{x_0 - x_2}\right)^2 + \left(2\frac{\sigma_t}{t}\right)^2 + (0.05)^2}$$

Теоретическое значение  $J_{MN}^{theor}$  рассчитал по формуле:

$$J_{MN}^{theor} = J_x \cos^2 \alpha + J_z * \cos^2 \gamma$$

$$\sigma_{\cos^2 \alpha} = \sigma_{\cos^2 \gamma} = \frac{2ac}{(a^2 + c^2)^2} \sqrt{(c\sigma_a)^2 + (a\sigma_c)^2}$$

$$\sigma_{J_{MN}^{theor}} = \sqrt{(\cos^2 \alpha * \sigma_{J_x})^2 + (\cos^2 \gamma * \sigma_{J_z})^2 + (J_x * \sigma_{\cos^2 \alpha})^2 + (J_z * \sigma_{\cos^2 \gamma})^2}$$

| Jx             | Sigma Jx | Jy  | Sigma Jy | Jz  | Sigma Jz | J AG | Sigma J AG | J MN | Sigma J MN | th J MN | Sigma th J MN |  |  |
|----------------|----------|-----|----------|-----|----------|------|------------|------|------------|---------|---------------|--|--|
| kg * m^2 * E-4 |          |     |          |     |          |      |            |      |            |         |               |  |  |
| 10,0           | 0,7      | 6,3 | 0,4      | 8,8 | 0,6      | 7,3  | 0,5        | 9,4  | 0,6        | 8,9     | 0,5           |  |  |



Вычислил теоретическое значение  $\left[t_{AG}^2\right]^{theor}$  по формуле:

$$\left[t_{AG}^2\right]^{theor} = \frac{a^2t_x^2 + b^2t_y^2 + c^2t_z^2}{a^2 + b^2 + c^2}$$

Если взять  $\delta a, \delta b, \delta c \ll \delta t_x, \delta t_y, \delta t_z,$  то выражение для расчета погрешности упростится:

$$\sigma_{[t_{AG}^2]^{theor}} = \frac{2}{a^2 + b^2 + c^2} \sqrt{(a^2 t_x \sigma_{t_x})^2 + (b^2 t_y \sigma_{t_y})^2 + (c^2 t_z \sigma_{t_z})^2}$$

Правда я попутал b и c при написании решения, здесь я написал в соответствии с методичкой (после просто поменял буквы местами при расчетах).

| name        | Value, s | Sigma, s |
|-------------|----------|----------|
| t AG ^2 exp | 5,01     | 0,23     |
| t AG ^2 th  | 5,02     | 0,13     |



$$\begin{split} \sigma_t &= \sqrt{S_t^2 + \sigma_t^{\text{cmct}^2}} \\ J &= \frac{g(ml - m_0 l_0/2)(T^2 - T_0^2)}{4\pi^2} \\ \sigma_{(ml - m_0 l_0)} &= \sqrt{(l\sigma_m)^2 + (m\sigma_l)^2 + (l_0\sigma_{m_0})^2 + (m_0\sigma_{l_0})^2} \\ \sigma_{(T^2 - T_0^2)} &= 2\sqrt{(T\sigma_T)^2 + (T_0\sigma_{T_0})^2} \\ \sigma_J &= J\sqrt{\left(\frac{\sigma_{(ml - m_0 l_0)}}{ml - m_0 l_0}\right)^2 + \left(\frac{\sigma_{(T^2 - T_0^2)}}{T^2 - T_0^2}\right)^2} \end{split}$$

| Ri      | di      | mean R | Sigma R | mean d | Sigma d |
|---------|---------|--------|---------|--------|---------|
| sm      | sm      | sm     | sm      | sm     | sm      |
| 4       | 3,98    | 3,997  | 0,011   | 3,993  | 0,012   |
| 3,99    | 4       |        |         |        |         |
| 4       | 4       |        |         |        |         |
| SE of R | SE of d |        |         |        |         |
| 0,003   | 0,007   |        |         |        |         |

| m       | m0       | I_0       | I_1       |
|---------|----------|-----------|-----------|
| g       | g        | sm        | sm        |
| 131,86  | 79,81    | 19,4      | 13,7      |
| Sigma m | Sigma m0 | Sigma I_0 | Sigma I_1 |
| 1,3186  | 0,7981   | 0,1       | 0,2       |

| tn0          | tny    | tnz    | tnMN    | T_0     | T_y     | T_z      | T_MN  |
|--------------|--------|--------|---------|---------|---------|----------|-------|
| S            | S      | S      | S       | S       | S       | S        | S     |
| 3,721        | 4,294  | 4,542  | 4,386   | 0,74    | 0,86    | 0,91     | 0,87  |
| 3,679        | 4,296  | 4,538  | 4,358   | Sigma   | Sigma   | Sigma    | Sigma |
| 3,704        | 4,293  | 4,531  | 4,355   | 0,02    | 0,02    | 0,02     | 0,02  |
|              | mean   | SE     | Sigma   |         |         |          |       |
| tn0          | 3,70   | 0,01   | 0,08    |         |         |          |       |
| tny          | 4,29   | 0,00   | 0,09    |         |         |          |       |
| tnz          | 4,54   | 0,00   | 0,09    |         |         |          |       |
| tnMN         | 4,37   | 0,01   | 0,09    |         |         |          |       |
|              |        |        |         |         |         |          |       |
| n            | 5      |        |         |         |         |          |       |
|              |        |        | Jy      | Jz      | J_MN    |          |       |
|              |        |        | 0,00049 | 0,00071 | 0,00055 | Kg * m^2 |       |
|              |        |        | 0,00010 | 0,00010 | 0,00010 |          |       |
|              |        |        |         |         |         |          |       |
| T^2 - T_0^2  | 0,19   | 0,04   | у       |         |         |          |       |
| T^2 - T_0^2  | 0,28   | 0,04   | Z       |         |         |          |       |
| T^2 - T_0^2  | 0,21   | 0,04   | MN      |         |         |          |       |
|              |        |        |         |         | m       | m0       |       |
| I            | 0,137  | 0,002  |         |         | 0,13    | 0,08     |       |
| I_0          | 0,194  | 0,001  |         |         |         |          |       |
| g            | 9,82   |        |         |         | Sigma m | Sigma m0 |       |
|              |        |        |         |         | 0,0013  | 0,0008   |       |
|              |        |        |         |         |         |          |       |
| ml - m0lo/2  | 0,0103 | 0,0003 |         |         |         |          |       |
| Ty^2 - T0^2  | 0,19   | 0,04   |         |         |         |          |       |
| Tz^2 - T0^2  | 0,28   | 0,04   |         |         |         |          |       |
| TMN^2 - T0^2 | 0,21   | 0,04   |         |         |         |          |       |

| tnx        | tny        | tnz        | tnAG       | Tx         | Ту         | Tz         | TAG        | T AG<br>theor |
|------------|------------|------------|------------|------------|------------|------------|------------|---------------|
| S          | S          | S          | S          | S          | S          | S          | S          | S             |
|            |            |            |            | mean       | mean       | mean       | mean       |               |
| 4,159      | 3,878      | 4,135      | 3,98       | 0,8302     | 0,7745     | 0,8244     | 0,7956     | 0,6272        |
| 4,14       | 3,862      | 4,122      | 3,977      | SE of mean    |
| 4,154      | 3,877      | 4,109      | 3,977      | 0,0011     | 0,0010     | 0,0015     | 0,0002     | 0,0012        |
| mean       | mean       | mean       | mean       |            |            |            |            |               |
| 4,151      | 3,872      | 4,122      | 3,978      |            |            |            |            |               |
| SE of mean | SE of mean | SE of mean | SE of mean |            | n = 5      |            |            |               |
| 0,0057     | 0,0052     | 0,0075     | 0,0010     |            |            |            |            |               |