In [1]:	<pre>import numpy as np import pandas as pd from IPython.display import Image</pre>
	Найти ху координаты монохроматического цвета 555 nm (отражающая способность 1.0) Источник освещения D65 Модель наблюдателя соответствует CIE 1931 (2 градуса)
In [2]: Out[2]:	<pre>cie = pd.read_csv("cccie31.csv") cie wave x y z 0 360 0.175560 0.005294 0.819146 1 365 0.175161 0.005256 0.819582</pre>
	1 365 0.175161 0.005256 0.819382 2 370 0.174821 0.005221 0.819959 3 375 0.174510 0.005182 0.820309 4 380 0.174112 0.004964 0.820924
	90 810 0.734690 0.265310 0.000000 91 815 0.734690 0.265310 0.000000 92 820 0.734690 0.265310 0.000000 93 825 0.734690 0.265310 0.000000
In [3]:	94 830 0.734690 0.265310 0.000000 95 rows × 4 columns cie[cie.wave==555]
Out[3]:	wave x y z 39 555 0.337363 0.658848 0.003788
	2 Даны координаты в системе sRGB(0,75 0,5 0,25) (Гамма=2,2 ; источник освещения D65) Найти XYZ координаты Найти XYZ координаты при изменении D65 на D50 по методу Бредфорда (Bradford)
In [4]:	def getSRGBtoXYZ(xyYR, xyYG, xyYB, xyzW): def XYZ(xyY): return (xyY[0]/xyY[1], 1, (1 - xyY[0] - xyY[1]) / xyY[1]) M = np.array([XYZ(xyYR), XYZ(xyYG), XYZ(xyYB)]).T
	<pre>M_inv = np.linalg.inv(M) S = M_inv.dot(xyzW) return M*S linearazie = lambda v: v/12.92 if v <= 0.04045 else np.power(((v+0.018)/1.018), 2.2)</pre>
	<pre>sRGB = np.array([0.75, 0.5, 0.25]) sRGB_lin = np.array(list(map(linearazie, sRGB))) sRGBtoXYZ = getSRGBtoXYZ([0.6400, 0.3300, 0.212656], [0.3000, 0.6000, 0.715158],</pre>
	<pre>[0.1500, 0.0600, 0.072186], [0.95047, 1.00000, 1.08883]) print(f"{sRGBtoXYZ=}")</pre>
	<pre>print(f"{sRGB=}") print(f"{sRGB_lin=}\n") print("XYZ:", sRGBtoXYZ.dot(sRGB_lin))</pre>
	<pre>sRGBtoXYZ=array([[0.41245644, 0.35757608, 0.18043748],</pre>
In [5]:	<pre>def getXYZtoXYZ(xyzWS, xyzWD): M_A = np.array([[0.8951000,</pre>
	<pre>M_A_inv = np.linalg.inv(M_A) s = M_A.dot(xyzWS) d = M_A.dot(xyzWD) diag = np.diag(d/s)</pre>
	<pre>return M_A_inv.dot(diag).dot(M_A) D65toD50 = getXYZtoXYZ([0.95047, 1.00000, 1.08883], [0.96422, 1.00000, 0.82521])</pre>
	<pre>print(f"{D65toD50=}\n") print("XYZ D50:", D65toD50.dot(sRGBtoXYZ.dot(sRGB_lin))) D65toD50=array([[1.04781124,</pre>
	[0.0295424 , 0.9904844 , -0.0170491], [-0.00923449, 0.01504362, 0.75213164]]) XYZ D50: [0.32928307 0.28506872 0.06736076]
	3 Гистограмма изображения задана линией у=х. Постройте LUT для эквализации гистограммы. Постройте LUT для инверсии изображения.
	Эквализация
	$H'(x) = \sum_{j=0}^{x-1} H(j)$ Тогда формула пикселя эквализированного изображения: $equalized(x,y) = H'(I(x,y))$
	Инверсия $LUT[i] = 1 - i \ i = y(x) = x$
	LUT[i] = 1 - x $inversion(x,y) = 255 - I(x,y)$
	4 Какие из ранговых фильтров являются сепарабельными? Доказать. Сепарабельный фильтр - фильтр, который можно представить ввиде произведения двух векторов $\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$egin{pmatrix} a_1 \\ \ldots \\ a_n \end{pmatrix} imes (b_1 & \ldots & b_n) = egin{pmatrix} a_1b_1 & \ldots & a_1b_n \\ \vdots & \ddots & \vdots \\ a_nb_1 & \ldots & a_nb_n \end{pmatrix}$ Каждая строка является линейной комбинацией любой другой строки
	Каждый столбец является линейной комбинацией любого другого столбца Следовательно ранг матрицы, полученной путем произведения двух векторов равен 1 Сепарабельными являются только одноранговые фильтры
	5 Преобразуйте цепной код 1527650432 так, чтобы он стал инвариантным по отношению к выбору начальной точки и к повороту.
	Исходный цепной код: 1527650432 Инвариантность к выбору начальной точки достигается путем сдвига последовательности таким образом, что полученное число наименьшее
	1527650432> 2152765043> 3215276504> 4321527650> 0432152765>
	Код инвариантный к выбору начальной точки: 0432152765 Инвариантность к повороту достигается если рассматривать первую разность значений кода 0 4 3 2 1 5 2 7 6 5 [0] L4J L7J L7J L5J L5J L7J L3J
	Код инвариантный к повороту: 4777455773
	Дано бинарное изображение равностороннего треугольника со стороной 6 Как будет выглядеть эрозия и дилатация этого изображения с квадратом стороной 2 Черный треугольник - исходный
In [6]:	 Синий треугольник - фигура после применения операции: слева - дилатация справа - эррозия Image (filename="err_dill.drawio.png")
Out[6]:	
	7 Дано изображение шахматного поля с клетками размером nxn пикселей.
	Какие параметры сдвига будут порождать матрицу смежности (GLCM) диагонального вида? Матрица значений яркости
	$n \begin{pmatrix} 0 & 1 & 0 & \dots & 1 \\ 1 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 1 & \dots & 0 \end{pmatrix}$
	Используется всего два уровня яркости, следовательно матрица GLCM имеет размер 2×2 $0 1 \\ 0 a_{00} a_{01} \\ 1 a_{10} a_{11}$
	Для построения данной матрицы необходимо опеределить соседний пиксель, который параметризуется направлением φ и расстоянием d . • φ - угол ($0^\circ, 45^\circ, 90^\circ, 135^\circ, 180^\circ, 225^\circ, 270^\circ, 315^\circ$) • d - расстояние в пикселях
	Из-за повторяемости шаблона изображение стоит рассматривать d как четное и нечетное, а углы $0^\circ, 45^\circ.$ Матрицы для нечетного расстояния: $\varphi=0^\circ\left(\begin{matrix}0&a_{01}\\a_{10}&0\end{matrix}\right);\;\varphi=45^\circ\left(\begin{matrix}a_{00}&0\\0&a_{11}\end{matrix}\right);$
	Матрицы для четного расстояния: $\varphi=0^\circ \ \left(\begin{array}{cc} a_{00} & 0 \\ 0 & a_{11} \end{array} \right); \ \varphi=45^\circ \ \left(\begin{array}{cc} a_{00} & 0 \\ 0 & a_{11} \end{array} \right);$
	Т.е. в случае, когда d - нечетное, а φ - вертикальное или горизонтальное, матрица смежности не является диагональной. Во всех остальных случаях матрица смежности диагональна.
	 8 К каким трансформациям (2D) изображения не инвариантен детектор Харриса? • Масштаб - при изменении масштаба изображениия, необходимо корректировать размер окна, поскольку линии, которые раньше образовавывали угол, теперь определяются детектором как сплошной контур.
	раньше образовавывали угол, теперь определяются детектором как сплошной контур. • Наличие шума - алгоритм допускает небольшое количество ошибок. Однако большое количество шумов рядом с контуром приводит к значительному изменению собственных чисел матрицы окна, что изменяет значения детектора. • Интенсивость - алгоритм частично инвариантен к изменению интенсивности, необходимо изменять значения порогов
	детектора. 9 Дано бинарное изображение прямоугольника 4x2 пикселя
	Дано оинарное изооражение прямоугольника 4х2 пикселя Посчитайте: 1. Компактность 2. Эксцентриситет 3. Центр масс
In [7]:	4. Ориентацию главной оси инерции 5. Первые 4-ре момента Hu
	<pre>def m(p,q): return sum([(x**p)*(y**q) for x in range(w) for y in range(h)]) def cm(p, q): return sum([((x-m(1,0)/m(0,0))**p)*((y-m(0,1)/m(0,0))**q) for x in range(w) for y in range(h)])</pre>
In [8]:	<pre>def eta(p, q): return cm(p,q)/np.power(cm(0,0), (p+q+2)/2) p = (w + h)*2 a = w*h print("Compactness:", p**2/a)</pre> Compactness: 18.0
In [9]:	<pre>Compactness: 18.0 m_20 = cm(2,0) m_02 = cm(0,2) m_11 = cm(1,1) print("Floogration:"</pre>
In [10]:	<pre>"Elongation:", (m_20 + m_02 + np.sqrt((m_20 - m_02)**2 + 4*m_11**2))/ (m_20 + m_02 - np.sqrt((m_20 - m_02)**2 + 4*m_11**2))) Elongation: 5.0</pre>
In [10]:	"Center:", (m(1,0)/m(0,0), m(0,1)/m(0,0))) Center: (1.5, 0.5) print(
	"Principal inertia axis", 0.5*np.arctan(2*m_11/(m_20-m_02))) Principal inertia axis 0.0 hu_1 = eta(0,2) + eta(2,0)
	$hu_2 = (eta(2,0) - eta(0,2))**2 + 4*eta(1,1)**2$ $hu_3 = (eta(3,0) - 3*eta(1,2))**2 + (3*eta(2,1) - cm(0,3))**2$ $hu_4 = (eta(3,0) - eta(1,2))**2 + (eta(2,1) + cm(0,3))**2$ $print(f''\{hu 1=\}'')$
	<pre>print(f"{hu_2=}") print(f"{hu_3=}") print(f"{hu_4=}") hu_1=0.1875 hu_2=0.015625</pre>
	hu_3=0.0 hu_4=0.0
	Чему равна сумма коэффициентов wavelet-фильтров? Скалирующей функции? Какая связь с квадратурными зеркальными фильтрами? Сумма коэффициентов wavelet-фильтров равна 1
	Сумма коэффициентов скалирующей функции равна $\sqrt{2}$ Дискретное вейлвлет-преобразование получают путем применения набора фильтров. Сначала сигнал пролускается через низко-частотный фильтр. в результате чего получаются коэффициенты адпроксимации
	Сначала сигнал пропускается через низко-частотный фильтр, в результате чего получаются коэффициенты аппроксимации. Затем сигнал пропускается через высоко-частотный фильтр, в резлуьтате чего получаются коэффициенты детализации. Данные НЧ и ВЧ фильтры связаны и называются квадратурными зеркальными фильтрами (QMF).
	11 Есть камера с фокусным расстоянием 10 см, размером кадра 1920х1080, размер пикселя 10 микрон, центр проекции находится на пикселе с координатами 950,550, угол наклона матрицы равен 0. Запишите матрицу внутренней калибровки камеры (intrinsic parameters)
	Запишите матрицу внутренней калибровки камеры (intrinsic parameters) Матрица внутренней калибровки имеет вид: $\begin{bmatrix} \alpha_x & \gamma & u_0 \\ 0 & \alpha_y & v_0 \\ 0 & 0 & 1 \end{bmatrix}$
	$lpha=f/px$, где f - фокусное расстояние, px - размер пикселя. $lpha_x=100/0.01=10000$
	$lpha_y=100/0.01=10000$ $\gamma=lpha_x*tg(arphi)$, где $arphi$ - угол наклона матрицы $\gamma=10000*tg(0)=0$
	Тогда, матрица калибровки принимает вид: $\begin{bmatrix} 10000 & 0 & 950 \\ 0 & 10000 & 550 \\ 0 & 0 & 1 \end{bmatrix}$