

# Arbitrary Data Manipulation and Leakage with CPU Zero-Day Bugs on RISC-V

Fabian Thomas, Lorenz Hetterich



## The Advertisement Panel























# The Challenge: Sandboxing





## The Challenge: Sandboxing





Hardware



# black hat USA 2024 The Challenge: Container







# black hat USA 2024 The Challenge: Full Isolation







# black hat USA 2024 The Challenge: Full Isolation







# black hat The Challenge: Full Isolation





## You can't break out.



## You can't break out. : GhostWrite



**Fabian Thomas** PhD student @CISPA (Germany)

E-Mail fabian.thomas@cispa.de Web fabianthomas.de Twitter @fth0mas



**Lorenz Hetterich** PhD student @CISPA (Germany)

E-Mail lorenz.hetterich@cispa.de Twitter @hetterichlorenz







#### **Research Group Schwarz**

- · Research focus:
  - Hardware vulnerabilities
  - · ... from software
- Recent discoveries:















#### Software World



#### Software World





#### Hardware World





# black hat Memory Isolation USA 2024





# black hat Memory Isolation USA 2024





# black hat Memory Isolation USA 2024





# Memory Isolation: GhostWrite





# Memory Isolation: GhostWrite





# Memory Isolation: GhostWrite



```
mv t0, phys_addr
vmv.v.x v0, value
vsetvli zero, zero, e8, m1
vse128.v v0, 0(t0)
```

```
mv t0, phys_addr
vmv.v.x v0, value
vsetvli zero, zero, e8, m1
vse128.v v0, 0(t0)
```



vse128.v v0, 0(t0)



| t0     | v0 | v1 | v2 | v3 | v4 | v5 |
|--------|----|----|----|----|----|----|
| 0x1000 | R  | I  | S  | С  | -  | V  |



vse128.v v0, 0(t0)



| t0     | v0 | v1 | v2 | v3 | v4 | v5 |
|--------|----|----|----|----|----|----|
| 0x1000 | R  | I  | S  | С  | -  | V  |





vse128.v v0, 0(t0)



| t0     | v0 | v1 | v2 | v3 | v4 | v5 |
|--------|----|----|----|----|----|----|
| 0x1000 | R  | I  | S  | С  | -  | V  |















































| t0     | v0 | v1 | v2 | v3 | v4 | v5 |
|--------|----|----|----|----|----|----|
| 0x1000 | R  | I  | S  | С  | -  | V  |







|    | t0    | v0 | v1 | v2 | v3 | v4 | v5 |
|----|-------|----|----|----|----|----|----|
| 0: | x1000 | R  | I  | S  | С  | -  | V  |





vse128.v v0, 0(t0)



| t   | 0   | v0 | v1 | v2 | v3 | v4 | v5 |
|-----|-----|----|----|----|----|----|----|
| 0x1 | 000 | R  | ı  | S  | С  | -  | V  |















#### virtual



#### physical







#### physical















| tO     | v0 | v1 | v2 | v3 | v4 | v5 |
|--------|----|----|----|----|----|----|
| 0x1000 | R  | I  | S  | С  | -  | V  |





vse128.v v0, 0(t0)



| t   | 0   | v0 | v1 | v2 | v3 | v4 | v5 |
|-----|-----|----|----|----|----|----|----|
| 0x1 | 000 | R  | ı  | S  | С  | -  | V  |















| tO     | v0 | v1 | v2 | v3 | v4 | v5 |
|--------|----|----|----|----|----|----|
| 0x1000 | R  | I  | S  | С  | -  | V  |

ox1000 k....physical S H U S 2 4







| t0     | v0 | v1 | v2 | v3 | v4 | v5 |
|--------|----|----|----|----|----|----|
| 0x1000 | R  | l  | S  | С  | -  | V  |









| t0     | v0 | v1 | v2 | v3 | v4 | v5 |
|--------|----|----|----|----|----|----|
| 0x1000 | R  | I  | S  | С  | -  | V  |









| t0     | v0 | v1 | v2 | v3 | v4 | v5 |
|--------|----|----|----|----|----|----|
| 0x1000 | R  | -  | S  | С  | -  | V  |





# Is every system vulnerable?



x86













x86













# black hat T-Head Xuan Tie C910



· one of the fastest RISC-V CPUs



#### T-Head Xuan Tie C910



- one of the fastest RISC-V CPUs
- 4 cores, 2GHz, vector extension

#### T-Head Xuan Tie C910



- one of the fastest RISC-V CPUs
- 4 cores. 2GHz, vector extension
- available in the cloud





- one of the fastest RISC-V CPUs
- 4 cores, 2GHz, vector extension
- available in the cloud
- available in laptops





















Defines legal programs











Defines legal programs



Licensing fees







Specifies behavior



Licensing fees



Defines legal programs



Limited customization





open, community-driven



#### RISC-V







no licensing fees











no licensing fees



well designed







no licensing fees





well designed



extensible





# black hat Software Fuzzing



# black hat Software Fuzzing



# black hat Software Fuzzing











# black hat Hardware Fuzzing













































### C908 and C906





## Demo: Freezing the C906









































disable vector extension

















OS: disable extension





OS: disable extension

up to 33% overhead lose  $\sim 50\%$  instructions







OS: disable extension

up to 33% overhead

lose  $\sim 50\%$  instructions





OS: disable extension

up to 33% overhead lose  $\sim 50\%$  instructions



OS: disable extension





OS: disable extension

up to 33% overhead lose  $\sim$  50% instructions



OS: disable extension

up to 77% overhead lose  $\sim$  50% instructions





OS: disable extension

up to 33% overhead lose  $\sim$  50% instructions



OS: disable extension

up to 77% overhead lose  $\sim 50\%$  instructions







OS: disable extension

up to 33% overhead lose  $\sim$  50% instructions



OS: disable extension

up to 77% overhead lose  $\sim$  50% instructions



no mitigation





#### **Reading Arbitrary Memory**





#### **Reading Arbitrary Memory**





#### **Reading Arbitrary Memory**





## **Demo: Reading Arbitrary Memory**

#### **Getting root**

```
if kernel_get_user() is not root then
  require_authentication()
start_root_shell()
```

```
kernel_get_user:
   process = get_current_process()
   user = user_for_process(process)
   return user
```

#### **Getting root**

```
if kernel_get_user() is not root then
  require_authentication()
start_root_shell()

syscall
```

```
kernel_get_user:
   process = get_current_process()
   user = user_for_process(process)
   return user
```

#### **Getting root**

```
if kernel_get_user() is not root then
  require_authentication()
start_root_shell()

syscall
```

```
kernel_get_user:
   process = get_current_process()
   user = user_for_process(process)
   return root
```



#### Getting root: Patching the Kernel





#### **Demo: Getting root**



# black hat Is GhostWrite the only bug?





#### Is GhostWrite the only bug?





















| Hardware | Software |
|----------|----------|
| read     |          |
|          |          |
|          |          |
|          |          |
| <u> </u> |          |
| write    |          |
|          |          |
|          |          |
|          |          |
|          |          |



































































## GhostWrite: Comparison







|              |           |           | •          |
|--------------|-----------|-----------|------------|
|              | Rowhammer | CacheWarp | GhostWrite |
| Restrictions | bit flips |           |            |
| Speed        |           |           |            |
| Practicality | <u></u>   |           |            |



## GhostWrite: Comparison







|              | Rowhammer | CacheWarp | GhostWrite |
|--------------|-----------|-----------|------------|
| Restrictions | bit flips | old state |            |
| Speed        | <b>6</b>  | <u> </u>  |            |
| Practicality | <u></u>   | •         |            |



## GhostWrite: Comparison







|              | Rowhammer | CacheWarp | GhostWrite |
|--------------|-----------|-----------|------------|
| Restrictions | bit flips | old state | _          |
| Speed        | <b>6</b>  | <u> </u>  | <u> </u>   |
| Practicality | 2         | •         | <u> </u>   |



## black hat What can we learn?





# black hat What can we learn?







### What can we learn?







Quality control important



### What can we learn?









Quality control important

Configurable hardware



### **GhostWrite: Overview**





### Microarchitecture Vulnerabilities:

Past, Present, and Future















 GhostWrite destroys all isolations on C910 RISC-V CPU

#### OfthOmas Ohetterichlorenz



ghostwriteattack.com



- GhostWrite destroys all isolations on C910 RISC-V CPU
- Mitigation: disable vector extension, up to 33% overhead

### OfthOmas Ohetterichlorenz



ghostwriteattack.com



- GhostWrite destroys all isolations on C910 RISC-V CPU
- Mitigation: disable vector extension, up to 33% overhead
- Hardware bugs are everywhere

OfthOmas Ohetterichlorenz



ghostwriteattack.com

### generate input

```
vsetvli x0, x0, ...
vse128.v t0, 0(t0)
li x1, 42
x1: 0
```









