pandas學習筆記3—數據重塑圖解Pivot, Pivot-Table, Stack and Unstack

文章目錄

數據重塑圖解—Pivot, Pivot-Table, Stack and Unstack

引言

Pivot

常見錯誤

Pivot Table

Stack/Unstack

數據重塑圖解—Pivot, Pivot-Table, Stack and Unstack 引言

Pandas是python中常用的數據分析軟件庫,它提供了DataFrames和Series的工具,這使得numpy和matplotlib可以更加便捷地讀取轉換數據。

數據重塑表示轉換一個表格或者向量的結構,使其適合於進一步的分析。Pandas擁有一些其他軟件不具備的 重塑功能,這對初學者來說可能會比較棘手。

本文中我將舉例說明Pandas中一些常用的重塑函數,並結合圖表進行闡述。

Pivot

pivot函數用於創建一個新的派生表,該函數有三個參數: index, columns和values。你需要在原始表中指定這三個參數所對定的列名,接下來pivot函數會創建一個新的表格,其中行索引和列索引都是唯一標示值,表格中的數值由原始表中參數value對應的數據所表示。

是不是感覺有點難以理解呢?看完下面這個例子你就明白了,假設給定下面這個表格:

其中item表示商品名稱,USD表示商品的美元價格,EU表示歐元價格,CType表示每個客戶對應的類別。

<u>ix</u>	<u>Item</u>	<u>CType</u>	<u>USD</u>	<u>EU</u>				
<u>0</u>	Item0	Gold	1\$	1€				
<u>1</u>	Item0	Bronze	2\$	2€				
<u>2</u>	Item1	Gold	3\$	3€				
<u>3</u>	Item1	Silver	4\$	4€				
	http://blog.csdn.net/liuweiyuxiang							

下述代碼片段用於創建DataFrame,需要注意的是本文中所有的代碼片段均需要導入以下模塊:

```
from collections import OrderedDict

from pandas import DataFrame

import pandas as pd

import numpy as np

table = OrderDict((

"Item",['Item0','Item0','Item1','Item1']),

("CType",['Gold','Bronze','Gold','Silver']),

("USD",['1$','2$','3$','4$']),

("EU",['16','26','36','46'])

""USD",['16','26','36','46'])

d = DataFrame(table)
```

在這個表格中,我們很難觀測到商品的美元價格在不同的客戶中是如何變化的。此時我們傾向於重塑表格, 使得所有的價格信息都按行排列:

```
p = d.pivot(index='Item', columns='CType', values='USD')
```

上述命令創建了一個新的表格,其中列索引是d.CType 中的唯一值,行索引是d.Item 中的唯一值,表格中的數值由d.USD 來填充。下圖形像地展示了這個過程:

換句話說,原始表中的USD數據已經被轉移到新表中,其中行列索引分別由Item和CType所表示,無法找到原始數據的用NaN所表示。

下述代碼介紹瞭如何分別從原始表和新表中查詢數據:

```
# Original DataFrame: Access the USD cost of Item0 for Gold customers

print(d[(d.Item=='Item0') & (d.CType=='Gold')].USD.values)

# Pivoted DataFrame: Access the USD cost of Item0 for Gold customers

print(p[p.index=='Item0'].Gold.values)
```

需要注意的是,該數據透視表中沒有包含歐元價格的任何信息。事實上,數據透視表是原始表格的簡化版本,它只包含我們所關心的變量信息。

現在我們對上述案例進行拓展,我們想將每個商品的歐元價格信息也納入數據透視表中(Pivoting By Multiple Columns)。這非常容易實現——我們只需將values 參數刪掉即可:

```
1 | p = d.pivot(index='Item', columns='CType')
```

此時,Pandas會在新表格中創建一個分層列索引。你可以將分層索引想像成一個樹形索引,每個行例索引都由從最頂層的索引到底部索引的路徑所組成。最頂層的索引由pivot函數中沒有定義的參數所組成——比如本例中的USD 和EU,第二層索引表示對應列中的所有唯一值。下圖形像地展示了該過程:

我們可以利用分層索引從原始表中過濾出某個變量的數據。比如p.USD將返回只包含USD數據的數據透視表, p.USD.Bronze將上述透視表中的第一列篩選出來。


```
# Original DataFrame: Access the USD cost of Item0 for Gold customers

print(d[(d.Item=='Item0')&(d.CType=='Gold')].USD.values)

# Pivoted DataFrame: p.USD gives a "sub-DataFrame" with the USD values only

print(p.USD[p.USD.index=='Item0'].Gold.values)
```

常見錯誤

從上文的描述中我們可以看出: pivot方法至少需要兩個參數—— index 和columns。那麼如果原始數據集中存在重複條目時,重塑過程將會發生什麼問題呢? pivot函數如何確定數據透視表中的數值呢? 下圖形像地展示了這個問題:

在這個案例中,原始數據集中存在重複條目,此時pivot函數無法確定數據透視表中的數值,它會返回一個錯誤信息: ValueError: Index contains duplicate entries, cannot reshape

<u>ix</u>	<u>Item</u>	СТуре	USD	EU					
<u>0</u>	Item0	Gold	1\$	1€		ix=Item	Bronze	Gold	<u>Silver</u>
1	Item0	Bronze	2\$	2€		Item0	2\$	1 or 3\$?	NaN
<u>2</u>	<u>Item0</u>	Gold	3\$	3€		ltem1	NaN	NaN	4 \$
<u>3</u>	Item1	Silver	4\$	4€		_		***************************************	
3 Item1 Silver 4\$ 4€ d.pivot(index='Item', columns='CType', values='USD') http://blog.csdn.net/liuweiyuxia									

```
table = OrderDict((

("Item",['Item0','Item0','Item1']),

('CType',['Gold','Bronze','Gold','Silver']),

('USD',['1$','2$','3$','4$']),

('EU',['1€','2€','3€','4€'])

d = DataFrame(table)

p = d.pivot(index='Item', columns='CType', values='USD')
```

因此,我們在調用pivot方法前需要保證數據集中不存在重複條目,否則我們需要調用另外一個方法——pivot table。

Pivot Table

pivot_table方法可以用來解決上述問題,與pivot相比,該方法可以匯總多個重複條目的數據。換句話說,在前面的例子中,我們可以用均值、中位數或者其他匯總函數來計算重複條目的數值。下圖形像地展示了這個過程:

注意,在這個例子中,我們移除了數據集中的美元和歐元符號。原始數據集中存在兩行重複條目,我們利用 樣本均值來填充數據透視表中的數據。pivot_table方法需要傳遞一個新的參數aggfunc,該參數用於指明轉換

<u>Item</u>	CType	USD	EU					
					ix=Item	Bronze	Gold	Silver
Item0	Gold	1	1		ltom0	2	2 = mean(1.3)	NaN
Item0	Bronze	2	2		<u>itemo</u>	*	<u>z = mean(1,0)</u>	Ivaiv
					Item1	NaN	NaN	4
Item0	Gold	3	3				anni anni	¥
141	0:1						***************************************	
Item1	Silver	4	4					
	Item0	Item0 Gold Item0 Bronze Item0 Gold	Item0 Gold 1 Item0 Bronze 2 Item0 Gold 3	Item0Gold11Item0Bronze22Item0Gold33	Item0 Gold 1 1 Item0 Bronze 2 2 Item0 Gold 3 3	Item0 Gold 1 1 Item0 Bronze 2 2 Item0 Gold 3 3 Item1 Silver 4	Item0 Gold 1 1 Item0 2 Item0 Bronze 2 2 Item0 Gold 3 3 Item1 NaN	Item0 Gold 1 ix=Item Bronze Gold Item0 Bronze 2 2 = mean(1.3) Item0 Gold 3 3 Item1 Silver A A

d.pivot_table(index='Item', columns='CType', values='USD', aggfunc=np.mean), aggfunc

```
table = OrderDict((

('Item',['Item0','Item0','Item1']),

('CType',['Gold','Bronze','Gold','Silver']),

('USD',[1,2,3,4]),

('EU',[1.1,2.2,3.3,4.4])

))

d = DataFrame(table)

p=d.pivot_table(index='Item',columns='CType',values='USD', aggfunc=np.mean)
```

從本質上來說, pivot_table方法是pivot的通用版, 該方法可以匯總重複條目的數據。

Stack/Unstack

實際上,軸向旋轉(pivot)運算是堆疊(stack)過程的特例。首先假設原始數據集中的行列索引中均為層次索引。stack 過程表示將數據集的列旋轉為行,同理unstack 過程表示將數據的行旋轉為列。下圖形像地展示了該過程:

在這個例子中,我們看到原始數據集中的行列索引都由二級分層索引組成。堆疊過程主要是將最內層的列索引轉換成最內層的行索引,然後再重新安排單元格中的數據。相反地,unstack過程是講最內層的行索引移到最內層的列索引中。

因此,我們可以發現stack使得數據集變得更長,unstack使得數據集變得更寬。

```
1  # Row Multi-Index
2  row_idx_arr = list(zip(['r0','r0'],['r-00','r-01']))
4  row_idx = pd.MultiIndex.from_tuples(row_idx_arr)
6  row_idx = pd.MultiIndex.from_tuples(row_idx_arr)
7  # Column Multi-Index
8  col_idx_arr = lis(zip(['c0','c0','c1'], ['c-00','c-01','c-10']))
10  col_idx = pd.MultiIndex.from_tuples(col_idx_arr)
11  # Create the DataFrame
12  # Create the DataFrame
13  # Create the DataFrame
14  d = DataFrame(np.arange(6).reshape(2,3),index=row_idx, columns=col_idx)
15  d = d.applymap(lambda x: (x // 3, x % 3))
18  # Stack/Unstack
20  s = d.stack()
21  s = d.stack()
```

事實上,Pandas允許我們利用stack/unstack 處理任一等級的索引。因此雖然默認設定處理最內層的索引,但是在上述的例子中,我們也可以處理最外層的索引。

Stacking 和Unstacking 也可以運用到單層索引的數據集中,如下圖所示:

參考文獻

- 1 Pandas中的數據重塑(reshape)功能
- 2 Reshaping in Pandas Pivot, Pivot-Table, Stack and Unstack explained with Pictures
- 3. python pandas stack和unstack函數stack和unstack這篇的講解不錯