통계분석 Statistical Analysis

Inferential Statistics: 추론통계

Sampling

- Let us consider a population.
 - X = Random variable of the population distribution
- Let us do n observations.

```
We have n data, \{x_1, x_2, \dots, x_n\}. [The first sample]
```

- When we do another n observations, We have a new set of n data, $\{x_1', x_2', \cdots, x_n'\}$. [The 2nd sample]
- Two set of sample data are different. There is uncertainty about sampling points $\{x_i\}$.
- Each of x_i can be regarded as a random variable. from the same population distribution.

Sampling

sample mean, sample variance, etc. sample mean, sample variance, etc.

What is the distribution of sample statistics?

Random Sample and Statistic

• If (1) X_i s are independent of one another and (2) every X_i has the same probability distribution,

Random Variables (RVs) $X_1, X_2, ..., X_n = a$ Random Sample of size n

• A *statistic* is any quantity calculated from sampling data.

• Due to uncertainty of sample data, a statistic is also a *random variable*.

Statistics

statistic =
$$f(x_1, x_2, \cdot, x_n)$$

Sample Mean

Sample Mean =
$$\frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$$

Population Mean =
$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Sample Median

sample median =
$$\tilde{x} = x_{(n+1)/2}$$
 [n is odd]
$$= \frac{1}{2} \left[x_{n/2} + x_{n/2+1} \right]$$
 [n is even]

population median = $\tilde{\mu}$ = the middle of the ordered population values

deviation from the mean $= x_i - \bar{x}$ sum of squared deviations $= \sum_{i=1}^{n} (x_i - \bar{x})^2$ sample variance =?? $\frac{1}{n}$?

deviation from the mean $= x_i - \bar{x}$

sum of squared deviations =
$$\sum_{i=1}^{n} (x_i - \bar{x})^2$$

sample variance =??

You might want to write
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

deviation from the mean $= x_i - \bar{x}$

sum of squared deviations =
$$\sum_{i=1}^{n} (x_i - \bar{x})^2$$

sample variance =??

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \qquad \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

sample variance =??
$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Unbiased sample variance

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Biased sample variance

Variance of empirical distribution

sample variance =??
$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Unbiased sample variance

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Biased sample variance

Variance of empirical distribution

 σ^2 = population variance

We would like to estimate the population variance.

Biased sample variance tends to <u>underestimate</u> the population variance.

- sample variance = $\frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2 = s^2$
- sample standard deviation = $s = \sqrt{s^2}$

- population standard deviation = $\sigma = \sqrt{\sigma^2}$
- σ^2 = population variance

Distribution of Statistics

We would like to know <u>distributions of statistics</u> (sample mean, sample variance, etc.), which are random variables.

Distribution of Sample Mean

 X_1, X_2, \cdots, X_n : Random sample from a distribution with mean μ and variance σ^2 population distribution

Sample Mean
$$= \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 \longrightarrow Expectation Value of Sample Mean $= \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ \longrightarrow $E(\bar{X}) = \mu_{\bar{X}} = \mu$

Expectation Value of Sample Mean

$$E(\bar{X}) = \mu_{\bar{X}} = \mu$$

Variance of Sample Mean

$$V(\bar{X}) = \sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$$

Standard Deviation of Sample Mean

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

Here we are discussing properties of sample means, NOT sample variances.

Distribution of Sample Mean

Variance of Sample Mean

$$V(\bar{X}) = \sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$$

• Standard Deviation of Sample Mean

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

Here we are discussing properties of sample means, NOT sample variances.

Distribution of Sample Mean

Sample Mean
$$= \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 - Expectation Value of Sample Mean $= \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ - $= EXPECTATION Value of Sample Mean $= \bar{X} = 0$$

$$u(X_1,\cdots X_n)=rac{1}{n}\sum_{i=1}^n X_i$$

$$E[u(X_1,\cdots X_n)] = Eigg[rac{1}{n}\sum_{i=1}^n X_iigg]$$

$$E[u(X_1,\cdots X_n)]=rac{1}{n}\sum_{i=1}^n E[X_i]=rac{1}{n}n imes\mu=\mu$$

Distribution of Linear Combinations

• X_1, X_2, \cdots, X_n : Random variables

 X_1, X_2, \dots, X_n have means $\mu_1, \mu_2, \dots, \mu_n$, respectively.

 X_1, X_2, \cdots, X_n have variances $\sigma_1^2, \sigma_2^2, \cdots, \sigma_n^2$, respectively.

Distribution of Linear Combinations

Generalization of Sample Mean

- X_1, X_2, \dots, X_n : Random variables X_1, X_2, \dots, X_n have means $\mu_1, \mu_2, \dots, \mu_n$, respectively. X_1, X_2, \dots, X_n have variances $\sigma_1^2, \sigma_2^2, \dots, \sigma_n^2$, respectively.
- Let us consider a linear combination,

$$Y = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$
 for some constants a_1, a_2, \dots, a_n

Mean

$$E(Y) = E(a_1X_1 + a_2X_2 + \dots + a_nX_n) = a_1E(X_1) + \dots + a_nE(X_n)$$
$$= a_1\mu_1 + \dots + a_n\mu_n$$

It does not matter whether X_1, X_2, \dots, X_n are independent or not

Distribution of Linear Combinations

- X_1, X_2, \dots, X_n : Random variables X_1, X_2, \dots, X_n have means $\mu_1, \mu_2, \dots, \mu_n$, respectively. X_1, X_2, \dots, X_n have variances $\sigma_1^2, \sigma_2^2, \dots, \sigma_n^2$, respectively.
- Let us consider a linear combination,

$$Y = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$

for some constants a_1, a_2, \cdots, a_n

Variance of Y

$$V(Y) = V(a_1 X_1 + a_2 X_2 + \dots + a_n X_n) = \sum_{i=1}^n \sum_{j=1}^n \text{Cov}(X_i, X_j) a_i a_j$$

If X_1, X_2, \cdots, X_n are independent,

$$V(Y) = V(a_1X_1 + a_2X_2 + \dots + a_nX_n) = a_1^2V(X_1) + \dots + a_n^2V(X_n)$$
$$= a_1^2\sigma_1^2 + \dots + a_n^2\sigma_n^2$$

Variance of <u>Sample Mean</u>

 X_1, X_2, \cdots, X_n : Random sample from a distribution with mean μ and variance σ^2

These variables are **independent of one another**.

(Imagine the example of tossing coin many times. Each trial is independent of the other trials.

$$egin{aligned} V[u(X_1,\cdots X_n)] &= Vigg[rac{1}{n}\sum_{i=1}^n X_iigg] = \sum_{i=1}^n \sum_{j=1}^n \mathrm{Cov}igg(rac{1}{n}X_i,rac{1}{n}X_jigg) \ &= \sum_{i=1}^n \mathrm{Cov}igg(rac{1}{n}X_i,rac{1}{n}X_iigg) + \sum_{i
eq j} \mathrm{Cov}igg(rac{1}{n}X_i,rac{1}{n}X_jigg) \ &= rac{1}{n^2}\sum_{i=1}^n \mathrm{Cov}(X_i,X_i) = rac{1}{n^2}\sum_{i=1}^n \mathrm{V}(X_i) = rac{1}{n^2}\sum_{i=1}^n \sigma^2 = rac{\sigma^2}{n} \end{aligned}$$

Distribution of Linear Combinations Generalization of Sample Mean

- X_1, X_2, \dots, X_n : Random variables X_1, X_2, \dots, X_n have means $\mu_1, \mu_2, \dots, \mu_n$, respectively. X_1, X_2, \dots, X_n have variances $\sigma_1^2, \sigma_2^2, \dots, \sigma_n^2$, respectively.
- Let us consider a linear combination,

$$Y = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$
 for some constants a_1, a_2, \dots, a_n

- We can calculate expectation value and variance of Y, but we do not know the probability distribution of a random variable Y, which is what we want to know.
- In general, we do not know the exact expression of the distribution for Y.
- (Special case I) For sample mean of very large n, the central limit theorem gives us an approximate expression of the probability distribution.
- (Special case II) When the population distribution is normal, then we can know the distribution of Y.

Large Number of Samples

 X_1, X_2, \dots, X_n : Random sample from a distribution with mean μ and variance σ^2 Independent and identically-distributed (i.i.d.)

When n becomes large,

- 1) The Law of Large Numbers
- 2) The Central Limit Theorem**

The Law of Large Numbers

 X_1, X_2, \dots, X_n : Random sample from a distribution with mean μ and variance σ^2 Independent and identically-distributed (i.i.d.)

- As *n* increases, the probability that the sample mean is close to the population mean goes to 1.
- The sample mean based on a large *n* tends to be closer to the population mean than does the sample mean based on a small *n*.

In general,
$$\mu \neq \bar{x}$$
When $n \to \infty$, $P(\bar{x} = \mu) \approx 1$

The Central Limit Theorem

 X_1, X_2, \dots, X_n : Random sample from a distribution with mean μ and variance σ^2 Independent and identically-distributed (i.i.d.)

• For a sufficiently large n,

 \bar{X} is approximately a normal distribution with $\mu_{\bar{X}} = \mu, \sigma_{\bar{X}}^2 = \sigma^2/n$

- When n is large, $\bar{X} \sim N(\mu, \sigma^2/n)$
- How large is n?

Example: Uniform Distributions

 X_1, X_2, \dots, X_n : Random sample from a distribution with mean μ and variance σ^2 Independent and identically-distributed (i.i.d.)

Example: Uniform Distributions

 X_1, X_2, \dots, X_n : Random sample from a distribution with mean μ and variance σ^2 Independent and identically-distributed (i.i.d.)

random sample from uniform distribution normal distribution = $N(\mu, \sigma^2/n)$

Even for n=16, these two distribution are almost identical.

The Central Limit Theorem

 X_1, X_2, \dots, X_n : Random sample from a distribution with mean μ and variance σ^2 Independent and identically-distributed (i.i.d.)

• For a sufficiently large n,

 \bar{X} is approximately a normal distribution with $\mu_{\bar{X}} = \mu, \sigma_{\bar{X}}^2 = \sigma^2/n$

- When n is large, $\bar{X} \sim N(\mu, \sigma^2/n)$
- How large is n?

Roughly speaking, n > 30 might be large enough to use the central limit theorem.

Here we do not have to know the population distribution.

Random Sample from Normal Distributions

$$X_1, X_2, \cdots, X_n$$
: Random sample from $N(\mu, \sigma^2)$

The population follows the normal distribution.

•
$$\bar{X}=\frac{1}{n}\sum_{i=1}^n X_i$$
 is normally distributed $\sim N(\mu,\sigma^2/n)$ NOT APPROXIMATION, BUT **EXACT** Central Limit Theorem NOT APPLIED HERE NOT PROVED; RESULTS JUST GIVEN

• As n increases, the normal distribution of \bar{X} becomes sharper.

Random Sample from Normal Distributions

$$X_1, X_2, \cdots, X_n$$
: Random sample from $N(\mu, \sigma^2)$

What is the distribution of any linear combination?: $Y=a_1X_1+a_2X_2+\cdots+a_nX_n$ (Generalization of the previous slide)

• Any linear combination of X_1, \dots, X_n is normally distributed.

$$a_1 X_1 + a_2 X_2 + \dots + a_n X_n \sim N(\mu', \sigma'^2)$$

 $\mu'?, \sigma'?$

NOT APPROXIMATION, BUT **EXACT**Central Limit Theorem NOT APPLIED HERE
NOT PROVED; RESULTS JUST GIVEN