Spatial modelling

David Orme

Spatial modelling tools

- The examples presented here use R
- Another excellent program with a nice GUI interface:
 - Spatial Analysis in Macroecology
 - http://www.ecoevol.ufg.br/sam/

Overview

- Example data: Afrotropical bird diversity
- Naive models
- Describing spatial autocorrelation
- Accounting for spatial autocorrelation

Afrotropical bird species richness

Explanatory variables

A simple linear model

Richness ~ AET + Temperature + Elevation

	Est	SE	t	р
(Intercept)	189.45	21.33	8.88	< 0.001
MeanAET	0.18	0.00	37.34	< 0.001
MeanAnnTemp	-4.18	0.72	-5.79	< 0.001
MeanElev	0.08	0.01	13.85	< 0.001

A simple GAM

Richness ~ s(AET) +s(Temperature) + s(Elevation)

Model predictions

Rooks move

All cells within one step:

- vertically or
- horizontally

Queens move

All cells within one step:

- vertically,
- horizontally or
- diagonally

Distance based

All cells within:

• 2.4 units

k nearest

The closest *k* cells

Spatial autocorrelation

Global Moran's I

- \bullet | = 0.922
- p << 0.001

Global Geary's C

- C = 0.070
- p << 0.001

Spatial autocorrelation

Global Moran's I

$$\bullet$$
 | = -0.003

•
$$p = 0.607$$

Global Geary's C

•
$$C = 1.002$$

•
$$p = 0.577$$

Local autocorrelation

Local indicators of spatial autocorrelation (LISA)

Effects of Spatial Autocorrelation

- Data points not independent
- Degrees of freedom reduced:
 - standard errors and significance testing affected
- Not equally weighted:
 - parameter estimation affected

Dealing with Spatial Autocorrelation

- Modify the degrees of freedom in significance testing
- Account for autocorrelation in models:
 - Simultaneous autoregressive models
 - Generalised least squares
 - Eigenvector filtering
 - Geographically weighted regression

Degrees of freedom correction

Degrees of freedom correction

Spatial Autoregression

•	•	•	•	
				$bx_1+rac{1}{2}bx_2$
				$\frac{1}{2}bx_1 + bx_2 + \frac{1}{2}bx_3$
				$\left[rac{1}{2}bx_2+bx_3+rac{1}{2}bx_4 ight]$
				$rac{1}{2}bx_3+rac{1}{2}bx_4$
x_1	x_1	x_3	x_4	

The best fit for coefficient *b* is influenced by the neighbour and weightings schemes.

Spatial Autoregresssion

Spatial Autoregresssion

```
Call:lagsarlm(formula = Rich ~ MeanAETScaled + MeanAnnTempScaled +
    MeanElevScaled, data = figDat@data, listw = figDat.lw, type = "lag")
Residuals:
                    10
                            Median
        Min
                                                       Max
-266.301618 -9.585387 -0.050679
                                      9.997008 105.697309
Type: lag
Coefficients: (asymptotic standard errors)
                  Estimate Std. Error z value Pr(>|z|)
(Intercept)
                  3.03299 0.70394 4.3086 1.643e-05
MeanAETScaled
                  2.84545 0.48197 5.9037 3.553e-09
MeanAnnTempScaled 1.34439 0.65707 2.0460 0.04075
MeanElevScaled
                  5.77947
                             0.69995 8.2570 2.220e-16
Rho: 0.98408, LR test value: 6043.7, p-value: < 2.22e-16
Asymptotic standard error: 0.0025867
    z-value: 380.44, p-value: < 2.22e-16
Wald statistic: 144730, p-value: < 2.22e-16
Log likelihood: -11459.21 for lag model
ML residual variance (sigma squared): 462.9, (sigma: 21.515)
Number of observations: 2484
Number of parameters estimated: 6
AIC: 22930, (AIC for lm: 28972)
LM test for residual autocorrelation
+ est value: 107 71 p_{-}value: < 2 22e_{-}16
```

Correlogram

Variogram

Generalised Least Squares

- Model variance as a function of distance
- Generate a covariance matrix

Generalised Least Squares

- Different shapes:
 - Exponential
 - Spherical
 - Linear
- Parameters

Generalised Least Squares

```
Generalized least squares fit by REML
  Model: Rich ~ MeanAETScaled + MeanAnnTempScaled + MeanElevScaled
  Data: figDat
               BIC logLik
      AIC
  24676.89 24705.97 -12333.44
Correlation Structure: Gaussian spatial correlation
 Formula: ~e_centre_behr + n_centre_behr
 Parameter estimate(s):
 range nugget
 650.0 0.1
Coefficients:
                     Value Std.Error t-value p-value
(Intercept)
                 199.67323 16.755430 11.916927 0.0000
MeanAETScaled
                 17.65050 3.038337 5.809265 0.0000
MeanAnnTempScaled -27.53775 5.663121 -4.862645 0.0000
MeanFlevScaled
               3.59893 4.321932 0.832712 0.4051
 Correlation:
                 (Intr) MnAETS MnAnTS
MeanAETScaled
                 0.048
MeanAnnTempScaled 0.141 0.047
MeanElevScaled 0.156 0.079 0.936
Standardized residuals:
        Min
                               Med
                                                      Max
-2.35080108 0.09376345 0.73813223 1.30659392 4.48588628
Residual standard error: 97.85917
```

Stationarity and isotropy

Is the same process happening in:

- different locations (stationarity)?
- different directions (isotropy)?

Is the problem in:

- the spatial structure of autocorrelation?
- differences in the actual relationship?

- Take the eigendecomposition of a spatial weights model
- Use the eigenvectors as variables in the model
- Use a selection process to identify and include only important eigenvectors

- First four eigenvector filters
- Independent components of spatial patterning

lm(Rich ~ MeanAET + MeanAnnTemp + MeanElev

	Est	SE	t	р
(Intercept)	189.45	21.33	8.88	< 0.001
MeanAET	0.18	0.00	37.34	< 0.001
MeanAnnTemp	-4.18	0.72	-5.79	< 0.001
MeanElev	0.08	0.01	13.85	< 0.001

 $lm(Rich \sim ... + Re(spEV1) + Re(spEV2) + Re(spEV3) + Re(spEV4)$

	Est	SE	t	р
(Intercept)	79.95	33.00	2.42	1.5e-02
MeanAET	0.18	0.01	31.45	< 0.001
MeanAnnTemp	0.11	1.14	0.09	9.3e-01
MeanElev	0.08	0.01	12.71	< 0.001
Re(spEV1)	1617.43	77.65	20.83	< 0.001
Re(spEV2)	-964.81	129.21	-7.47	< 0.001
Re(spEV3)	813.41	95.80	8.49	< 0.001
Re(spEV4)	147.25	100.29	1.47	1.4e-01

lm(Rich ~ ... + MeanElev + Re(spEV1) + Re(spEV2) + Re(spEV3)

	Est	SE	t	р
(Intercept)	58.55	29.62	1.98	4.8e-02
MeanAET	0.19	0.00	43.67	< 0.001
MeanAnnTemp	0.74	1.06	0.70	4.8e-01
MeanElev	0.08	0.01	13.78	< 0.001
Re(spEV1)	1610.70	77.53	20.78	< 0.001
Re(spEV2)	-1031.06	121.10	-8.51	< 0.001
Re(spEV3)	847.10	93.03	9.11	< 0.001

Geographically weighted regression

Fit a model for every cell:

- Define a local region size and a weighting function
- Fit a weighted regression for each cell using the weights
- Look at how coefficients vary in space
- Possibly serious statistical issues!

Geographically weighted regression

Geographically weighted regression

- Local r^2 values
- Variation in the explanatory power of the model

Problems

- Profusion of packages: sf, sp, spdep, mgcv, ncf, gstat, nlme, spgwr
- Different data structures
- Sometimes poor documentation
- Speed of calculation (= size of dataset)
- Memory hungry
- Too many options