Arithmetic volumes of unitary Shimura varieties (joint work with B. Howard)

Jan Hendrik Bruinier

Technische Universität Darmstadt

International Seminar on Automorphic Forms
October 26, 2021

Modular curves

Consider the moduli stack of elliptic curves

$$Y \to \operatorname{\mathsf{Spec}} \mathbb{Z}$$
.

Have $Y(\mathbb{C}) \cong SL_2(\mathbb{Z}) \backslash \mathbb{H}$.

- Let $\pi: E \to Y$ be the universal elliptic curve.
- ▶ Determines line bundle of modular forms of weight 1:

$$\omega_{E/Y} = \pi_* \Omega^1_{E/Y} \in \mathsf{Pic}(Y).$$

Petersson (also known as Hodge or L^2) metric:

Let $\tau \in Y(\mathbb{C})$, let E_{τ} be the corresponding elliptic curve, and $s_{\tau} \in \omega_{E/Y,\tau} = H^0(E_{\tau}(\mathbb{C}), \Omega^1_{E_{\tau}(\mathbb{C})})$. Set

$$\|s_{\tau}\|^2 = \left| \frac{1}{2\pi i} \int_{E_{\tau}(\mathbb{C})} s_{\tau} \wedge \overline{s_{\tau}} \right|.$$

Get metrized line bundle

$$\hat{\omega}_{E/Y} \in \widehat{\mathsf{Pic}}(Y).$$

Extension to compactification

The bundle $\omega_{E/Y}$ extends to the Deligne-Rapoport compactification \bar{Y} of Y.

- Metric does not extend smoothly across the boundary.
- It has logarithmic singularity.
- Get a class in the generalized arithmetic Picard group

$$\hat{\omega}_{E/Y} \in \widehat{\operatorname{Pic}}(\bar{Y})$$

in the sense of Burgos-Kramer-Kühn.

Complex volume

The Chern form

$$\operatorname{ch}(\hat{\omega}_{E/Y}) = -dd^c \log \|s\|^2 = -dd^c \log |s(\tau)|^2 v| = \frac{1}{4\pi} \frac{du \, dv}{v^2}$$

is integrable. Here $\tau = u + iv \in \mathbb{H}$.

Proposition

The complex volume of Y is

$$\operatorname{\mathsf{vol}}_{\mathbb{C}}(\hat{\omega}_{E/Y}) = \int_{Y(\mathbb{C})} \operatorname{\mathsf{ch}}(\hat{\omega}_{E/Y}) = \frac{1}{12} = -\zeta(-1).$$

Given by special value of zeta function.

Arithmetic volume

Arithmetic intersection theory (Arakelov, Gillet-Soulé, Burgos-Kramer-Kühn) gives

arithmetic Chern class

$$\widehat{\mathsf{Pic}}(\bar{Y}) \to \widehat{\mathsf{CH}}^1(\bar{Y}), \quad \hat{\mathcal{L}} \mapsto \widehat{\mathsf{div}}(s) = (\mathsf{div}(s), -\log \|s\|^2),$$

intersection pairing

$$\widehat{\mathsf{CH}}^1(\bar{Y})\times\widehat{\mathsf{CH}}^1(\bar{Y})\to\widehat{\mathsf{CH}}^2(\bar{Y}),$$

lacktriangledown arithmetic degree $\widehat{\mathsf{deg}}:\widehat{\mathsf{CH}}^2(ar{Y}) o \mathbb{R}.$

Define the arithmetic volume by

$$\widehat{\operatorname{vol}}(\hat{\omega}_{E/Y}) = \widehat{\operatorname{deg}}(\hat{\omega}_{E/Y} \cdot \hat{\omega}_{E/Y}).$$

Arithmetic volume of the modular curve

Theorem (Bost, Kühn, ∼1999)

$$\widehat{\operatorname{vol}}(\hat{\omega}_{E/Y}) = -rac{1}{2}\operatorname{vol}_{\mathbb{C}}(\hat{\omega}_{E/Y})\left(1 + 2rac{\zeta'(-1)}{\zeta(-1)}
ight)$$

Given by logarithmic derivative of zeta function.

Idea of the proof

Take two sections s,t of $\hat{\omega}_{E/Y}^{\otimes k}$ whose divisors intersect properly on $\bar{Y}(\mathbb{C})$. Compute

$$\begin{split} \widehat{\mathrm{vol}}(\widehat{\omega}_{E/Y}) &= \frac{1}{k^2} \left((\mathrm{div}(s), \mathrm{div}(t))_{\mathit{fin}} + (\widehat{\mathrm{div}}(s), \widehat{\mathrm{div}}(t))_{\infty} \right), \\ (\widehat{\mathrm{div}}(s), \widehat{\mathrm{div}}(t))_{\infty} &= - \int_{Y(\mathbb{C})} \log \|s\| \operatorname{ch}(\widehat{\omega}_{E/Y}^{\otimes k}) - (\log \|t\|) [\mathrm{div}(s)]. \end{split}$$

- ► Take k = 12, and $s = E_{\Delta}^3$, $t = \Delta$.
- ▶ Then $(\operatorname{div}(s),\operatorname{div}(t))_{fin}=0$, and $\|E_4^3\|=|E_4^3(\tau)|v^6$, and

$$(\widehat{\mathsf{div}}(s), \widehat{\mathsf{div}}(t))_{\infty} = -12 \int\limits_{Y(\mathbb{C})} \log \|E_4^3\| \frac{du \, dv}{4\pi \, v^2} - (\log \|\Delta\|) (\frac{1+i\sqrt{3}}{2}).$$

Evaluating the right hand side gives the result.

Generalizations

For any PEL Shimura variety M with universal abelian scheme $\pi:A\to M$ we can try to compute the arithmetic volume of

$$\omega_{A/M} = \pi_* \Omega_{A/M}^{\dim(A)} \in \mathsf{Pic}(M)$$

equipped with the Petersson metric as above.

- ► Kudla-Rapoport-Yang: Quaternionic Shimura curves
- ▶ B.-Burgos-Kühn: Hilbert modular surfaces
- Jung-Pippich: Siegel threefold
- ▶ Hörmann: O(n,2) Shimura varieties (up to few 'bad' primes).

$\mathsf{GU}(n-1,1)$ Shimura varieties

Fix $K \subset \mathbb{C}$ imaginary quadratic, assume $D = -\operatorname{disc}(K)$ is odd. For $n \geq 1$, let $M_{(n-1,1)}(\mathbb{C})$ be the moduli space of (A, ι, ψ) , where

- ightharpoonup A abelian variety over $\mathbb C$ of dimension n,
- ▶ $\iota: \mathcal{O}_K \to \operatorname{End}(A)$ an \mathcal{O}_K -action such that the induced action on $\operatorname{Lie}(A) \cong \mathbb{C}^n$ has signature (n-1,1),
- $\psi: A \to A^{\vee}$ a principal polarization compatible with ι .

Pappas, Krämer: There exists a flat regular integral model

$$M_{(n-1,1)} o \operatorname{\mathsf{Spec}} \mathcal{O}_{\mathcal{K}}$$

of dimension n. Has a canonical toroidal compactification $\bar{M}_{(n-1,1)}$.

$\mathsf{GU}(n-1,1)$ Shimura varieties

There is a decomposition

$$M_{(n-1,1)}=\bigsqcup_V M_V,$$

where V runs over all similarity classes of K-hermitian spaces of signature (n-1,1) that admit a self-dual \mathcal{O}_K -lattice.

- Similarity means isometric after possibly rescaling the hermitian form by a positive rational factor.
- \triangleright For *n* even: similar=isometric. For *n* odd: all *V* are similar.
- $ightharpoonup M_V$ is integral model of a GU(V) Shimura variety.

The universal abelian scheme $\pi: A \to M_V$ gives Hodge bundle

$$\hat{\omega}_{A/M_V} \in \widehat{\mathsf{Pic}}(\bar{M}_V).$$

Some notation

Let $\varepsilon(\cdot) = \left(\frac{\cdot}{D}\right)$ be the quadratic Dirichlet character of K/\mathbb{Q} . For $k \in \mathbb{Z}_{>0}$ put

$$\beta_k(s) = \frac{D^{k/2}\Gamma(s+k)L(2s+k,\varepsilon^k)}{2^k\pi^{s+k}} \\ \times \prod_{\ell \mid D} \begin{cases} 1, & k=1 \\ \left[1+\left(\frac{-1}{\ell}\right)^{\frac{k}{2}} \mathrm{inv}_{\ell}(V)\ell^{-s-\frac{k}{2}}\right], & k \geq 2 \text{ even} \\ \left[1+\left(\frac{-1}{\ell}\right)^{\frac{k-1}{2}} \mathrm{inv}_{\ell}(V)\ell^{-s-\frac{k-1}{2}}\right]^{-1}, & k \geq 2 \text{ odd,} \end{cases}$$

where

- we understand $L(s, \varepsilon^k) = \zeta(s)$ for k even, and
- ▶ $\operatorname{inv}_{\ell}(V) = (\det(V), -D)_{\ell} \in \{\pm 1\}$ is the local invariant of V.

Main result

Theorem (B.-Howard)

i) The complex volume $\operatorname{vol}_{\mathbb{C}}(\hat{\omega}_{A/M_V})$ of M_V is

$$\int_{M_V(\mathbb{C})} \operatorname{ch}(\hat{\omega}_{A/M_V})^{n-1} = \beta_1(0) \cdots \beta_n(0) \cdot \begin{cases} 2^{n-1} & \text{n even,} \\ 2^{n-o(D)} & \text{n odd.} \end{cases}$$

ii) The arithmetic volume is

$$\widehat{\text{vol}}(\widehat{\omega}_{A/M_V}) = \left[\frac{2\beta_1'(0)}{\beta_1(0)} + \dots + \frac{2\beta_n'(0)}{\beta_n(0)} + \log(D) - nC_0(n)\right] \times \text{vol}_{\mathbb{C}}(\widehat{\omega}_{A/M_V}),$$

where

$$C_0(n) = 2\log\left(\frac{4\pi e^{\gamma}}{\sqrt{D}}\right) + (n-4)\left(\frac{L'(0,\varepsilon)}{L(0,\varepsilon)} + \frac{\log(D)}{2}\right).$$

Example

If n = 3 then the generic fiber of M_V is a *Picard modular surface*. We obtain in this case:

$$\begin{aligned} \operatorname{vol}_{\mathbb{C}}(\hat{\omega}_{A/M_{V}}) &= \frac{D^{3}}{2^{2+o(D)}\pi^{6}} \cdot L(1,\varepsilon)\zeta(2)L(3,\varepsilon), \\ \widehat{\operatorname{vol}}(\hat{\omega}_{A/M_{V}}) &= \left[4\frac{L'(1,\varepsilon)}{L(1,\varepsilon)} + 4\frac{\zeta'(2)}{\zeta(2)} + 4\frac{L'(3,\varepsilon)}{L(3,\varepsilon)} + \log(D) \right. \\ &\left. + 5 - 6\gamma - 6\log(\pi) - 3C_{0}(3)\right] \cdot \operatorname{vol}_{\mathbb{C}}(\hat{\omega}_{A/M_{V}}). \end{aligned}$$

▶ If n is odd, the volumes only depend on n but not on V.

Idea of the proof

- Use induction on n.
- If n = 2 we have sig(V) = (1, 1). Use $SU(1, 1) \cong SL_2(\mathbb{R})$ to relate M_V to a modular curve (or a quaternionic Shimura curve). Reduce to the result of Bost, Kühn (or Kudla-Rapoport-Yang).
- ▶ If n > 2, use Borcherds products on M_V to relate the volume of M_V to volumes of $M_{V'}$ for hermitian spaces V' of smaller dimension.
- Vary the Borcherds product relations to simplify the computations.

Kudla-Rapoport divisors

Convenient to replace M_V by its finite etale cover $M_{(1,0)} \times M_V$, where $M_{(1,0)}$ is the moduli space of elliptic curves with CM by \mathcal{O}_K .

Any point $(E, A) \in M_{(1,0)} \times M_V$ has associated \mathcal{O}_K -module $\operatorname{Hom}_{\mathcal{O}_K}(E, A)$ with positive definite hermitian form:

$$\langle x, y \rangle = \psi_E^{-1} \circ y^{\vee} \circ \psi_A \circ x \qquad \qquad E \xrightarrow{\quad x \quad} A$$

$$\in \operatorname{End}_{\mathcal{O}_K}(E) \cong \mathcal{O}_K \qquad \qquad \psi_E \downarrow \qquad \qquad \downarrow \psi_A$$

$$E^{\vee} \longleftarrow_{Y^{\vee}} A^{\vee}.$$

Z(m): moduli stack of triples (E, A, x), where

- ▶ $(E,A) \in M_{(1,0)} \times M_V$.
- $ightharpoonup x \in \operatorname{Hom}_{\mathcal{O}_K}(E,A) \text{ and } \langle x,x \rangle = m.$

A nice special case

Let $p \equiv 1 \pmod{D}$ be a prime. Let V' be the K-hermitian space of signature (n-2,1) whose local invariants satisfy

$$\operatorname{inv}_{\ell}(V') = (p, -D)_{\ell} \cdot \operatorname{inv}_{\ell}(V)$$

for all places $\ell \leq \infty$.

- ▶ Equivalently, $V' = x^{\perp} \subset V$ of any $x \in V$ with $\langle x, x \rangle = p$.
- ightharpoonup V' admits a self-dual \mathcal{O}_K -lattice.

Proposition

$$Z(p) = (p^{n-1} + 1) \cdot M_{V'}$$

▶ Pull-back of $\hat{\omega}_V$ via each $M_{V'} \to Z(p) \to M_V$ is $\hat{\omega}_{V'}$ (up to some explicit vertical divisors).

Borcherds products

Theorem (Borcherds, BHKRY)

Let

$$f = \sum_{m} c(m)q^{m} \in M_{2-n}^{1,\infty}(\Gamma_{0}(D), \varepsilon^{n})$$

be a weakly holomorphic modular form with integral coefficients c(m). There is a rational section $\Psi(f)$ of

$$\omega_V^{\otimes c(0)} \in \operatorname{Pic}(\bar{M}_V)$$

such that:

- ▶ $\operatorname{div}(\Psi(f)) = \sum_{m>0} c(-m)Z(m)$ (up to explicit vertical and boundary components),
- ▶ induced section on $\overline{M}_V(\mathbb{C})$ is given by regularized theta lift.

The inductive argument: Complex volume

For simplicity, assume that we can chose $f \in M^{!,\infty}_{2-n}(\Gamma_0(D), \varepsilon^n)$ with

$$f = q^{-p} + c(0) + c(1)q + \dots$$

for a prime $p \equiv 1 \pmod{D}$.

- Proposition: $c(0) = \frac{p^{n-1}+1}{\beta_n(0)}$.
- ▶ The Borcherds product $\Psi(f)$ gives in $H^2(\bar{M}_V(\mathbb{C}), \mathbb{C})$:

$$[Z(p)] = c(0) \cdot \operatorname{ch}(\hat{\omega}_V).$$

$$\Rightarrow \int_{M_{V}(\mathbb{C})} \operatorname{ch}(\hat{\omega}_{V})^{n-1} = \frac{1}{c(0)} \int_{Z(p)} \operatorname{ch}(\hat{\omega}_{V})^{n-2}$$

$$= \frac{p^{n-1}+1}{c(0)} \int_{M_{V'}(\mathbb{C})} \operatorname{ch}(\hat{\omega}_{V'})^{n-2}$$

$$= \beta_{n}(0) \int_{M_{V'}(\mathbb{C})} \operatorname{ch}(\hat{\omega}_{V'})^{n-2}.$$

The inductive argument: Arithmetic volume

The Borcherds product $\Psi(f)$ gives in $\widehat{\operatorname{CH}}^1(\bar{M}_V)$ the relation

$$\hat{\omega}_{V}^{\otimes c(0)} = \widehat{\mathsf{div}}(\Psi(f)) = (Z(p), -\log \|\Psi(f)\|^{2}).$$

Hence,

$$\begin{split} \widehat{\text{vol}}(\hat{\omega}_V) &= \widehat{\text{deg}}(\hat{\omega}_V \cdots \hat{\omega}_V) \\ &= \frac{1}{c(0)} \widehat{\text{deg}} \left(\hat{\omega}_V \cdots \hat{\omega}_V \cdot \widehat{\text{div}}(\Psi(f)) \right) \\ &= \frac{p^{n-1} + 1}{c(0)} \cdot \widehat{\text{vol}}(\hat{\omega}_{V'}) - \int_{M_V(\mathbb{C})} \log \|\Psi(f)\|^2 \cdot \text{ch}(\hat{\omega}_V)^{n-1} \\ &= \beta_n(0) \cdot \widehat{\text{vol}}(\hat{\omega}_{V'}) + B'(p, s_0) \, \text{vol}_{\mathbb{C}}(\hat{\omega}_V). \end{split}$$

Here B(p, s) = p-th coefficient of an Eisenstein series of weight n.

▶ Proposition:
$$B(p,s) = \frac{1}{\beta_n(s-s_0)} \cdot \prod_{\ell \mid pD} (\text{local factor in } \ell^{s-s_0}).$$

Integrals of automorphic Green functions

Here we have used the following result (due to Kudla and B.-Kühn in the orthogonal case).

Theorem

Let
$$f = \sum_m c(m)q^m \in M^{!,\infty}_{2-n}(\Gamma_0(D),\varepsilon^n)$$
. Then

$$-\int_{M_V(\mathbb{C})}\log\|\Psi(f)\|^2\cdot \mathrm{ch}(\hat{\omega}_V)^{n-1}=\mathrm{vol}_{\mathbb{C}}(\hat{\omega}_V)\sum_{m>0}c(-m)B'(m,s_0),$$

where $G(\tau,s) = \sum_{m \geq 0} B(m,s)q^m$ is a weight n Eisenstein series for $\Gamma_0(D)$ and $s_0 = \frac{n-1}{2}$.

Upshot: All contributions to $\widehat{\text{vol}}(\hat{\omega}_V)$ are expressed in terms of $\beta_1(s), \ldots, \beta_n(s)$ and various corrections factors from primes $\ell \mid pD$, which one must keep track of.

Thank you for your attention!