

Chapter 8

Baseband Transmission of Digital Signals

(Part 1 of 2)

Introduction

- The objective of a digital communication system is to transmit data with a minimum number of errors.
- Signal waveform gets distorted when going through the channel due to:

Channel noise

Added to the signal and may cause signal wrongly received.

Limited channel bandwidth

Cause loss of some frequency components and thus Intersymbol interference (ISI).

- Choice of a pair of pulses to represent '1' and '0' is called line coding / line formatting.
- Baseband transmission systems transmits these pulses directly without modulation.

e.g. LANS (Ethernet), optical communication systems

- Representing binary "1' and "0" using pulses is known as line coding.
- Line code waveforms are Classified into 4 main groups:
 - 1. Non return-to-zero (NRZ)
 - 2. Return-to-zero (RZ)
 - 3. Phase encoded
 - 4. Multilevel binary

Group 1 - Non return-to-zero (NRZ)

Unipolar NRZ

Used in digital logics

Seldom used in direct transmission

Polar NRZ

Used in RS232C interface, digital logic and magnetic tape recording.

 T_b = bit duration

Group 2 – Return-to-zero (RZ)

Unipolar RZ
Polar RZ
RZ-AMI

Binary bits are represented by half-width pulses

Unipolar RZ

Used in data transmission and magnetic recording

Polar RZ

Group 2 – Return-to-zero (RZ)

Unipolar RZ
Polar RZ
RZ-AMI

Binary bits are represented by half-width pulses

RZ-AMI

"Alternate Mark Inversion"

Most often used in telemetry systems

Binary 1 is represented by (half-width pulses). alternating pulses of opposites polarities

Group 3 – Phase encoded waveforms

Used in magnetic recording, optical communication and satellite telemetry links.

Manchester coding

used in Ethernet LAN networks.

a half-bit-wide pulse positioned during 1st half bit interval.

a half-bit-wide pulse positioned during 2nd half bit interval.

Manchester coding

Group 4 - Multilevel binary

Binary data is represented by 3 levels instead of 2.

e.g. polar RZ and RZ-AMI

Choice of a coding scheme is mainly based on 4 important parameters

Transmission bandwidth

As small as possible

DC component

System that requires AC coupling cannot use line codes that have DC component. e.g. unipolar NRZ

Self-Clocking

Some systems require line codes with self-clocking capability for symbol or bit synchronization. e. g. Manchester code

Noise immunity

Some codes are more immune to noise than others. e.g. NRZ waveforms have better error performances than RZ.

End

CHAPTER 8

(Part 1 of 2)

