COVER PAGE

STAT 608 Homework 02, Summer 2017

Please write your name and email address below and attach as the first page of your homework upload.

NAME:

EMAIL:

STATISTICS 608 Homework 608 S17 02

Due: 11:59 PM, June 7, 2017

Question 1 [1 mark]

A straight line was fit by least squares to 50 pairs of points using the standard model $y = \beta_0 + \beta_1 x + e$ in which $var(e) = \sigma^2$ is independent of x. Suppose that all the usual assumptions are met. The following were part of the regression output:

- sample variance, S_y^2 , of the 50 response values = 100.
- estimate, $\hat{\sigma}^2$, of the error variance, based on 48 degrees of freedom = 10.

 S_y^2 and $\hat{\sigma}^2$ are so very different because (choose one)

- (a) S_y^2 was calculated incorrectly;
- (b) $\hat{\sigma}^2$ was calculated incorrectly;
- (c) S_y^2 is not an estimator of σ^2 ;
- (d) $S_y^2 = 100$ implies that there is a great deal of statistical variation, so the discrepancy is to be expected.

Question 2 [3+3 marks] Work Exercise 1 on page 103 of our textbook.

Question 3 [4 marks] When Y (> 0) has mean and variance both equal to μ it is shown on pages 76 -77 of our textbook that the appropriate transformation of Y to stabilize variance is the square root transformation. Now, suppose that Y has mean equal to μ and variance equal to μ^2 . Find the transformation Z = f(Y) of Y that makes the variance of Z approximately equal to 1.

Question 4 [4 marks] Work Exercise 2 on page 122 of our textbook

Question 5 [4+1+2=7 marks] Work Exercise 3 on page 122 of our text-book