Wave operator and propagator

	$\Delta_{1}^{\#1}{}_{lphaeta}$	$\Delta_{1}^{\#2}{}_{lphaeta}$	$\Delta_{1}^{\#3}_{+\alpha\beta}$	$\Delta_{1^{-}\alpha}^{\#1}$	$\Delta_{1^{-}\alpha}^{\#2}$	$\Delta_{1}^{#3}{}_{\alpha}$	$\Delta_{1}^{\#4}{}_{lpha}$	$\Delta_{1}^{\#5}{}_{lpha}$	$\Delta_{1^{-}\alpha}^{\#6}$
$\Lambda_{1}^{\#} + + \alpha \beta$	$(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2 - a_0(6a_1 + 3a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9)))$	$\frac{2}{3}\sqrt{2}\left(-\frac{1}{a_0+4a_1-4a_2}+(-2a_0+8a_1+4a_2+6a_3-32a_6+8a_7+4a_9)\right)$ $(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-$ $a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9)))$	$\frac{4 \left(2 a_{1} + a_{2} + a_{9}\right)}{3 \left(a_{0}^{2} + \left(2 a_{1} + a_{2}\right) \left(2 a_{1} + a_{2} + 3 a_{3} - 16 a_{6} + 4 a_{7}\right) - a_{9}^{2} - a_{0} \left(6 a_{1} + 3 a_{2} + 3 a_{3} - 16 a_{6} + 4 a_{7} + 2 a_{9}\right)\right)}$	0	0	0	0	0	0
$\Delta_{1+}^{\#2} \uparrow^{\alpha\beta}$	$(-\frac{1}{a_0+4a_1-4a_2} + (-2a_0+8a_1+4a_2+6a_3-32a_6+8a_7+4a_9)/$ $(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-$ $a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9)))$	$-\frac{2}{3(a_0+4a_1-4a_2)} + \frac{8(a_0-4a_1-2a_2-3a_3+16a_6-4a_7-2a_9)}{3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	$-\frac{4\sqrt{2}(2a_1+a_2+a_9)}{3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	0	0	0	0	0	0
$\Delta_{1+}^{\#3} + \alpha \beta = \frac{1}{3(a_0^2 + a_0^2 + a$	$4(2a_1+a_2+a_9)$ $+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))$	$-\frac{4\sqrt{2}(2a_1+a_2+a_9)}{3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	$\frac{4(a_0-2a_1-a_2)}{3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	0	0	0	0	0	0
$\Delta_1^{\#1} \dagger^{lpha}$	0	0	0	$\frac{4}{3} \left(-\frac{2}{2a_0 + 2a_1 + a_2 + 3a_3} + (a_0 - 4a_1 - 2a_2 - 3a_3 + 16a_6 - 4a_7 - 2a_9) / (a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2 - a_0 (6a_1 + 3a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9)) \right)$	$(4\sqrt{2}(3a_0^2 - 4a_1^2 - a_2^2 - 3a_3(3a_3 + 4(-4a_6 + a_7)) - 6a_3a_9 - a_9^2 - 2a_2(3a_3 + a_9) - 4a_1(a_2 + 3a_3 + a_9) - 6a_0(2a_1 + a_2 + a_3 - 8a_6 + 2a_7 + a_9)))/$ $(3(2a_0 + 2a_1 + a_2 + 3a_3)$ $(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2 - a_0(6a_1 + 3a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9)))$	0	0	$\frac{4\sqrt{\frac{2}{3}}\left(2a_{1}+a_{2}+a_{9}\right)}{3\left(a_{0}^{2}+\left(2a_{1}+a_{2}\right)\left(2a_{1}+a_{2}+3a_{3}-16a_{6}+4a_{7}\right)-a_{9}^{2}-a_{0}\left(6a_{1}+3a_{2}+3a_{3}-16a_{6}+4a_{7}+2a_{9}\right)\right)}$	-((4 (2 $a_1 + a_2 + a_9$))/ (3 $\sqrt{3}$ ($a_0^2 + (2 a_1 + a_2)$ (2 $a_1 + a_2 + 3 a_3 - 16 a_6 + 4 a_7$)- $a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))))$
$\Delta_{1}^{#2} \dagger^{lpha}$	0	0	0	$(4\sqrt{2}(3a_0^2 - 4a_1^2 - a_2^2 - 3a_3(3a_3 + 4(-4a_6 + a_7)) - 6a_3a_9 - a_9^2 - 2a_2(3a_3 + a_9) - 4a_1(a_2 + 3a_3 + a_9) - 6a_0(2a_1 + a_2 + a_3 - 8a_6 + 2a_7 + a_9)))/$ $(3(2a_0 + 2a_1 + a_2 + 3a_3)$ $(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2 - a_0(6a_1 + 3a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9)))$	$-\frac{4}{3(2a_0+2a_1+a_2+3a_3)} + \frac{8(a_0-4a_1-2a_2-3a_3+16a_6-4a_7-2a_9)}{3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	0	0	$\frac{8 (2 a_1 + a_2 + a_9)}{3 \sqrt{3} (a_0^2 + (2 a_1 + a_2) (2 a_1 + a_2 + 3 a_3 - 16 a_6 + 4 a_7) - a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))}$	$-\frac{4\sqrt{\frac{2}{3}}\left(2a_{1}+a_{2}+a_{9}\right)}{3\left(a_{0}^{2}+\left(2a_{1}+a_{2}\right)\left(2a_{1}+a_{2}+3a_{3}-16a_{6}+4a_{7}\right)-a_{9}^{2}-a_{0}\left(6a_{1}+3a_{2}+3a_{3}-16a_{6}+4a_{7}+2a_{9}\right)\right)}$
$\Delta_{1}^{#3} + \alpha$	0	0	0	0	0	$-\frac{5}{18(a_0+4a_6-4a_7)}$	$\frac{\sqrt{5}}{18(a_0 + 4a_6 - 4a_7)}$	0	0
$\Delta_{1}^{\#4} \uparrow^{\alpha}$	0	0	0	0	0	$\frac{\sqrt{5}}{18(a_0 + 4a_6 - 4a_7)}$	1	0	0
$\Delta_{1}^{\#5} \uparrow^{\alpha}$	0	0	0	$\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	$\frac{8 (2 a_1 + a_2 + a_9)}{8 \sqrt{3} (a_0^2 + (2 a_1 + a_2) (2 a_1 + a_2 + 3 a_3 - 16 a_6 + 4 a_7) - a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))}$	0	0	$\frac{8 (a_0 - 2 a_1 - a_2)}{9 (a_0^2 + (2 a_1 + a_2) (2 a_1 + a_2 + 3 a_3 - 16 a_6 + 4 a_7) - a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))}$	$\frac{4\sqrt{2}(-a_0+2a_1+a_2)}{9(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$
$\Delta_{1}^{\#6} \dagger^{\alpha}$	0	0	0	$-((4(2a_1+a_2+a_9))/$ $(3\sqrt{3}(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-$ $a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))))$	$-\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	0	0	$\frac{4\sqrt{2}\left(-a_{0}+2a_{1}+a_{2}\right)}{9\left(a_{0}^{2}+\left(2a_{1}+a_{2}\right)\left(2a_{1}+a_{2}+3a_{3}-16a_{6}+4a_{7}\right)-a_{9}^{2}-a_{0}\left(6a_{1}+3a_{2}+3a_{3}-16a_{6}+4a_{7}+2a_{9}\right)\right)}$	$\frac{4(a_0-2a_1-a_2)}{9(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$
$\mathcal{T}_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0	0	0

Quadratic (free) action

_	$\Gamma_{1}^{\#1}{}_{\alpha\beta}$	$\Gamma_{1}^{\#2}{}_{\alpha\beta}$	$\Gamma_{1}^{\#3}_{\alpha\beta}$	$\Gamma_{1}^{#1}{}_{\alpha}$	$\Gamma_1^{\#2}{}_{\alpha}$	Γ ₁ ^{*3} α	$\Gamma_{1}^{\#4}{}_{\alpha}$	Γ ₁ ^{#5} α	$\Gamma_{1}^{\#6}{}_{lpha}$	$h_1^{\#1}\alpha$
$\Gamma_{1}^{\#1} \dagger^{lphaeta}$	$\frac{1}{4} \left(-a_0 - 6 a_1 + 5 a_2 \right)$	$-\frac{a_0+2a_1-3a_2}{2\sqrt{2}}$	$\frac{1}{4} \left(-2 a_1 - a_2 - a_9 \right)$	0	0	0	0	0	0	0
$\Gamma_1^{\#2} \dagger^{lphaeta}$	$-\frac{a_0+2a_1-3a_2}{2\sqrt{2}}$	$\frac{1}{2} \left(-2 a_1 + a_2 \right)$	$\frac{2a_1 + a_2 + a_9}{2\sqrt{2}}$	0	0	0	0	0	0	0
$\Gamma_{1}^{#3} \dagger^{lphaeta}$	$\frac{1}{4} \left(-2 a_1 - a_2 - a_9 \right)$	$\frac{2a_1+a_2+a_9}{2\sqrt{2}}$	$\frac{3}{4} (a_0 - 4a_1 - 2a_2 - 3a_3 + 16a_6 - 4a_7 - 2a_9)$	0	0	0	0	0	0	0
$\Gamma_1^{#1} \uparrow^{\alpha}$	0	0	0	$\frac{1}{4} \left(-a_0 - 2 a_1 - a_2 - 2 a_3 \right)$	$\frac{a_0 + a_3}{2\sqrt{2}}$	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$\frac{2a_1 + a_2 + a_9}{4\sqrt{3}}$	0
$\Gamma_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{a_0 + a_3}{2\sqrt{2}}$	$\frac{1}{4}$ (-2 a_1 - a_2 - a_3)	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{3}}$	$\frac{2 a_1 + a_2 + a_9}{2 \sqrt{6}}$	0
$\Gamma_{1}^{#3} \dagger^{\alpha}$	0	0	0	0	0	$-\frac{5}{2}(a_0+4a_6-4a_7)$	$\frac{1}{2} \sqrt{5} (a_0 + 4 a_6 - 4 a_7)$	0	0	0
Γ ₁ -4 † ^α	0	0	0	0	0	$\frac{1}{2} \sqrt{5} (a_0 + 4 a_6 - 4 a_7)$	$-\frac{a_0}{2}$ - 2 a_6 + 2 a_7	0	0	0
$\Gamma_{1}^{\#5} \uparrow^{\alpha}$	0	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$-\frac{2a_1+a_2+a_9}{2\sqrt{3}}$	0	0	$\frac{1}{2} (a_0 - 4 a_1 - 2 a_2 - 3 a_3 + 16 a_6 - 4 a_7 - 2 a_9)$	$\frac{-a_0 + 4a_1 + 2a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9}{2\sqrt{2}}$	0
$\Gamma_1^{\#6} \uparrow^{\alpha}$	0	0	0	$\frac{2a_1 + a_2 + a_9}{4\sqrt{3}}$	$\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	0	0	$\frac{-a_0 + 4a_1 + 2a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9}{2\sqrt{2}}$	$\frac{1}{4} (a_0 - 4 a_1 - 2 a_2 - 3 a_3 + 16 a_6 - 4 a_7 - 2 a_9)$) 0
$h_{1}^{#1} + \alpha$	0	0	0	0	0	0	0	0	0	0

_	$\Gamma_{2}^{\#1}_{\alpha\beta}$	$\Gamma_{2}^{#2}_{+ \alpha\beta}$	Γ ₂ ^{#3} αβ	$h_{2}^{\#1}_{\alpha\beta}$	$\Gamma_{2^{-} \alpha \beta \chi}^{\# 1}$	$\Gamma_{2}^{\#2}{}_{\alpha\beta\chi}$
$\Gamma_2^{#1} \dagger^{\alpha\beta}$	$\frac{1}{4}(a_0 - 2a_1 - a_2)$	0	$-\frac{1}{4} \sqrt{3} (2 a_1 + a_2 + a_9)$	0	0	0
$\Gamma_2^{\#2} + \alpha \beta$	0	$-3(a_0+4a_6-4a_7)$	0	0	0	0
$\Gamma_2^{#3} \dagger^{\alpha\beta}$	$-\frac{1}{4} \sqrt{3} (2a_1 + a_2 + a_9)$	0	$\frac{3}{4}$ (a_0 - 4 a_1 - 2 a_2 - 3 a_3 + 16 a_6 - 4 a_7 - 2 a_9)	0	0	0
$h_2^{\#1} \dagger^{\alpha\beta}$	0	0	0	$-\frac{a_0 k^2}{8}$	0	0
$\Gamma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{1}{4}(a_0-2a_1-a_2)$	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$
$\Gamma_2^{\#2} \uparrow^{\alpha\beta\chi}$	0	0	0	0	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	$\frac{3}{4} (a_0 - 4 a_1 - 2 a_2 - 3 a_3 + 16 a_6 - 4 a_7 - 2 a_9)$

				U								U				U
Γ ₀ -1 †	$h_{0+}^{#2} +$	$h_{0+}^{#1}$ †	Γ ₀ ^{#4} †	Γ ₀ ^{#3} †	Γ ₀ ^{#2} †	Γ ₀ ^{#1} †	_	$\Delta_{0}^{\#1}$ †	T ₀ ^{#2} †	$\mathcal{T}_{0^{+}}^{*1}$ †	$\Delta_{0^{+4}}^{#4}$ †	$\Delta_{0^{+}}^{#3}$ †	$\Delta_{0^{+}}^{#2}$ †	$\Delta_{0^{+}}^{#1}$ †		Γ ₃ - + ^{αβχ}
0	0	0	0	0	0	$\frac{1}{4} \left(-2 a_0 - 2 a_1 - a_2 - 3 a_3 \right)$	Γ#1 0+	0	0	0	0	0	0	$-\frac{4}{2a_0+2a_1+a_2+3a_3}$	$\Delta_{0}^{\#1}$	$\Gamma_{3^{-}\alpha\beta\chi}^{\#1}$ $-3(a_0+4a_6-4a_7)$
				$\frac{3}{2}(a_0 +$	$-\frac{3}{2}(a_0 +$	-3 <i>a</i> ₃)		0	0	0	0	$\frac{1}{6a_0 + 24a_6 - 24a_7}$	$\frac{1}{-6(a_0+4a_6)+24a_7}$	0	$\Delta_0^{\#2}$	$\Delta_{3}^{#1} + \alpha \beta \chi$
0	0	0	0	$(a_0 + 4 a_6 - 4 a_7)$	$-\frac{3}{2}(a_0+4a_6-4a_7)$	0	Γ#2 0+	0	0	0	0	$\frac{1}{-6(a_0+4a_6)+24a_7}$	$\frac{1}{6(a_0 + 4a_6 - 4a_7)}$	0	$\Delta_{0}^{#3}$	$\Delta_{3}^{\#1} \alpha \beta \chi$ 1 -3 $(a_0 + 4 a_6) + 12 a_7$
				$-\frac{3}{2}(a_0+4a_6-4a_7)$	$\frac{3}{2}(a_0+4a_6-4a_7)$							24 47	<i>a</i> 7)		7	77
0	0	0	0	+ 4	+ 4 (0	Γ#3	0	0	0	0	0	0	0	$\Delta_0^{\#4}$	
				a ₆ -4	1 ₆ -4 a		+ω	0	0	$\frac{4}{a_0 k^2}$	0	0	0	0	$\mathcal{T}_{0^+}^{\#1}$	
				a ₇)	17)			0	0	0	0	0	0	0	$\mathcal{T}_{0^{+}}^{#2}$	
0	0	0	0	0	0	0	Γ ₀ #4								. 10	
0	0	$\frac{a_0 k^2}{4}$	0	0	0	0	$h_{0+}^{#1}$	2 a ₀ +4(a ₁ -a ₂ +3							7	
0	0	0	0	0	0	0	$h_{0+}^{#2}$	2 -a ₂ +3	0	0	0	0	0	0	$\Delta_{0}^{\#1}$	

$$\begin{split} &\iiint (\frac{1}{2^4} \left(4 \left(4 \, a_1 + 2 \, a_2 + 3 \, a_3 - 12 \, a_6 + 2 \, a_9 \right) \, \Gamma_{\alpha \ \chi}^{\ X} \, \Gamma^{\alpha \beta}_{\ \beta} - 6 \left(a_0 + 6 \, a_1 + a_2 + 3 \, a_3 - 8 \, a_6 - 4 \, a_7 + 2 \, a_9 \right) \\ &\Gamma_{\alpha \chi \beta} \, \Gamma^{\alpha \beta \chi} + 3 \left(-4 \, a_0 + 2 \, a_1 - 3 \, a_2 + 3 \, a_3 - 32 \, a_6 + 20 \, a_7 \right) \, \Gamma^{\alpha \beta \chi} \, \Gamma_{\beta \alpha \chi} + \\ &6 \left(-6 \, a_0 + 2 \, a_1 + 5 \, a_2 + 3 \, a_3 - 32 \, a_6 + 20 \, a_7 + 2 \, a_9 \right) \, \Gamma^{\alpha \beta \chi} \, \Gamma_{\beta \chi \chi} + \\ &12 \left(a_0 - 2 \, a_1 - a_2 - a_3 + 8 \, a_6 - 4 \, a_7 - a_9 \right) \, \Gamma^{\alpha \beta}_{\ \alpha} \, \Gamma_{\beta \ \chi}^{\ \chi} + \\ &12 \left(a_0 - 2 \, a_1 - a_2 - 3 \, a_3 + 24 \, a_6 - 12 \, a_7 - a_9 \right) \, \Gamma^{\alpha \beta}_{\ \alpha} \, \Gamma_{\beta \ \chi}^{\ \chi} + \\ &3 \left(-4 \, a_0 + 10 \, a_1 + a_2 + 3 \, a_3 - 32 \, a_6 + 20 \, a_7 + 4 \, a_9 \right) \, \Gamma^{\alpha \beta \chi} \, \Gamma_{\chi \beta \alpha} + \\ &4 \left(3 \, a_0 + 2 \, a_1 + a_2 + 3 \, a_3 - 6 \, a_7 + a_9 \right) \, \Gamma^{\alpha \beta}_{\ \alpha} \, \Gamma_{\beta \chi}^{\ \chi} - 12 \, a_7 \, \Gamma^{\alpha \beta}_{\ \alpha} \, \Gamma_{\beta \chi}^{\ \chi} + \\ &4 \left(2 \, a_1 + a_2 + 3 \, a_3 - 6 \, a_7 + a_9 \right) \, \Gamma^{\alpha \beta}_{\ \alpha} \, \Gamma_{\beta \chi}^{\ \chi} - 12 \, a_7 \, \Gamma^{\alpha \beta}_{\ \alpha} \, \Gamma_{\beta \chi}^{\ \chi} + \\ &4 \left(2 \, a_1 + a_2 - 3 \, a_7 + a_9 \right) \, \Gamma^{\alpha \beta}_{\ \alpha} \, \Gamma_{\chi \beta}^{\ \chi} + 24 \, h^{\alpha \beta}_{\ \beta} \, \Gamma_{\alpha \beta}^{\ \chi} - 24 \, \Gamma^{\alpha \beta \chi}_{\ \beta \lambda} \, \Delta_{\alpha \beta \chi}^{\ \gamma} - \\ &12 \, a_0 \, \Gamma^{\alpha \beta \chi}_{\ \beta \lambda} \, \partial_{\beta h}_{\alpha \chi}^{\ \gamma} - 6 \, a_0 \, \Gamma^{\alpha \beta}_{\ \alpha} \, \partial_{\beta h}_{\chi}^{\ \chi} + 6 \, a_0 \, \Gamma^{\alpha \beta}_{\ \alpha} \, \partial_{\beta h}_{\chi}^{\ \chi} - 6 \, a_0 \, h^{\chi}_{\chi} \, \partial_{\beta \Gamma}^{\ \alpha}_{\ \alpha}^{\ \beta} + \\ &6 \, a_0 \, h^{\chi}_{\chi} \, \partial_{\beta} \Gamma^{\alpha \beta}_{\ \alpha} - 12 \, a_0 \, h_{\alpha \chi} \, \partial_{\beta} \Gamma^{\alpha \beta \chi} + 6 \, a_0 \, h^{\alpha \beta}_{\ \beta} \, \partial_{\beta} \partial_{\alpha} h^{\chi}_{\chi} - 3 \, a_0 \, \partial_{\beta} h^{\chi}_{\chi} \, \partial_{\beta} h^{\alpha}_{\ \alpha} + \\ &12 \, a_0 \, \Gamma^{\alpha \beta}_{\ \alpha} \, \partial_{\chi} h_{\beta}^{\ \chi} + 6 \, a_0 \, \partial^{\beta}_{\ \alpha}^{\ \alpha} \, \partial_{\chi} h_{\beta}^{\ \chi} - 6 \, a_0 \, h^{\alpha \beta}_{\ \alpha} \, \partial_{\chi} h_{\alpha \beta}^{\ \beta} + 6 \, a_0 \, \partial_{\beta} h_{\alpha \chi}^{\ \lambda} + 3 \, a_0 \, \partial_{\chi} h_{\alpha \beta}^{\ \beta} h^{\alpha}_{\ \alpha} + \\ &12 \, a_0 \, h_{\alpha \beta} \, \partial_{\chi} \partial^{\chi} h_{\alpha \beta}^{\ \beta} - 6 \, a_0 \, \partial_{\beta} h_{\alpha \chi}^{\ \lambda} \partial^{\beta}_{\ \beta} - 6 \, a_0 \, \partial_{\beta} h_{\alpha \chi}^{\ \lambda} \partial^{\beta}_{\ \beta} \Gamma^{\alpha \beta \chi} - 48 \, a_1 \, \partial_{\alpha} \Gamma_{\mu \mu \chi} \partial^{\mu} \Gamma^{\alpha \beta \chi} - 48 \, a_1 \, \partial_{\alpha} \Gamma_{\mu \mu \chi} \partial^{\mu} \Gamma^{\alpha \beta \chi} - 48 \, a_1 \, \partial_{\alpha} \Gamma_{\mu \mu \chi} \partial^{\mu} \Gamma^{\alpha \beta \chi} - 48 \, a_1 \,$$

 $24 a_1 \partial_{\alpha} \Gamma_{\mu \chi \beta} \partial^{\mu} \Gamma^{\alpha \beta \chi} - 48 a_1 \partial_{\beta} \Gamma_{\alpha \chi \mu} \partial^{\mu} \Gamma^{\alpha \beta \chi} + 24 a_1 \partial_{\beta} \Gamma_{\alpha \mu \chi} \partial^{\mu} \Gamma^{\alpha \beta \chi} -$

 $24 a_1 \partial_{\beta} \Gamma_{\chi\mu\alpha} \partial^{\mu} \Gamma^{\alpha\beta\chi} + 24 a_1 \partial_{\chi} \Gamma_{\alpha\beta\mu} \partial^{\mu} \Gamma^{\alpha\beta\chi} - 24 a_1 \partial_{\chi} \Gamma_{\beta\alpha\mu} \partial^{\mu} \Gamma^{\alpha\beta\chi} +$

 $48\,a_1\,\partial_\chi\Gamma_{\beta\mu\alpha}\,\partial^\mu\Gamma^{\alpha\beta\chi} - 24\,a_1\,\partial_\mu\Gamma_{\alpha\beta\chi}\,\partial^\mu\Gamma^{\alpha\beta\chi} + 24\,a_1\,\partial_\mu\Gamma_{\alpha\chi\beta}\,\partial^\mu\Gamma^{\alpha\beta\chi} +$

 $24 a_1 \partial_\mu \Gamma_{\beta\alpha\chi} \partial^\mu \Gamma^{\alpha\beta\chi} - 48 a_1 \partial_\mu \Gamma_{\beta\chi\alpha} \partial^\mu \Gamma^{\alpha\beta\chi} + 24 a_1 \partial_\mu \Gamma_{\chi\beta\alpha} \partial^\mu \Gamma^{\alpha\beta\chi} +$

 $24\,a_1\,\partial_\chi\partial_\beta h_{\alpha\mu}\partial^\mu\partial^\chi h^{\alpha\beta} - 24\,a_1\,\partial_\mu\partial_\beta h_{\alpha\chi}\,\partial^\mu\partial^\chi h^{\alpha\beta}))[t,\,x,\,y,\,z]\,dz\,dy\,dx\,dt$

_	$\Delta^{\#1}_{2^+lphaeta}$	$\Delta^{\#2}_{2}{}^{+}{}_{lphaeta}$	$\Delta_{2^{+}\alpha\beta}^{#3}$	$\mathcal{T}_{2}^{\#1}_{\alpha\beta}$	$\Delta_2^{\#1}{}_{lphaeta\chi}$	$\Delta^{\#2}_{2^-}{}_{lphaeta\chi}$
$\Delta_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{4 (a_0 - 4 a_1 - 2 a_2 - 3 a_3 + 16 a_6 - 4 a_7 - 2 a_9)}{{a_0}^2 + (2 a_1 + a_2) (2 a_1 + a_2 + 3 a_3 - 16 a_6 + 4 a_7) - a_9}^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9)}$	0	$\frac{4(2a_1+a_2+a_9)}{\sqrt{3}(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	0	0	0
$\Delta_2^{\#2} \dagger^{lphaeta}$	0	$\frac{1}{-3(a_0+4a_6)+12a_7}$	0	0	0	0
$\Delta_{2}^{#3}$ † lphaeta	$\frac{4(2a_1+a_2+a_9)}{\sqrt{3}(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	0	$\frac{4(a_0-2a_1-a_2)}{3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	0	0	0
${\mathcal T}_2^{\sharp 1}\dagger^{lphaeta}$	0	0	0	$-\frac{8}{a_0 k^2}$	0	0
$\Delta_2^{\#1} \dagger^{lphaeta\chi}$	0	0	0	0	$\frac{4 (a_0 - 4 a_1 - 2 a_2 - 3 a_3 + 16 a_6 - 4 a_7 - 2 a_9)}{{a_0}^2 + (2 a_1 + a_2) (2 a_1 + a_2 + 3 a_3 - 16 a_6 + 4 a_7) - a_9}^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9)}$	$\frac{4 \left(2 a_{1} + a_{2} + a_{9}\right)}{\sqrt{3} \left(a_{0}^{2} + \left(2 a_{1} + a_{2}\right) \left(2 a_{1} + a_{2} + 3 a_{3} - 16 a_{6} + 4 a_{7}\right) - a_{9}^{2} - a_{0} \left(6 a_{1} + 3 a_{2} + 3 a_{3} - 16 a_{6} + 4 a_{7} + 2 a_{9}\right)}$
$\Delta_2^{\#2} \dagger^{lphaeta\chi}$	0	0	0	0	$\frac{4 \left(2 a_{1} + a_{2} + a_{9}\right)}{\sqrt{3} \left(a_{0}^{2} + \left(2 a_{1} + a_{2}\right) \left(2 a_{1} + a_{2} + 3 a_{3} - 16 a_{6} + 4 a_{7}\right) - a_{9}^{2} - a_{0} \left(6 a_{1} + 3 a_{2} + 3 a_{3} - 16 a_{6} + 4 a_{7} + 2 a_{9}\right)\right)}$	$\frac{4(a_0-2a_1-a_2)}{3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$

Source constraints	Source constraints/gauge generators
SO(3) irreps	Multiplicities
$T_{0+}^{#2} == 0$	1
$\Delta_{0+}^{\#4} == 0$	1
$\Delta_{0+}^{\#3} + 3 \Delta_{0+}^{\#2} == 0$	1
$\mathcal{T}_{1}^{\#1\alpha} == 0$	3
$\Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#5\alpha} == 0$	3
$\Delta_1^{\#4\alpha} + \Delta_1^{\#3\alpha} == 0$	3
Total constraints: 12	12

Massive and massless spectra

e	? \
$\frac{1}{6a_1} > 0$	
1	?
$-\frac{a_0 + 4a_1 - 4a_2}{12a_1} > 0$	

Quadratic pole
Pole residue: $-\frac{1}{a_0} > 0$ Polarisations: 2

Unitarity conditions

 $a_0 < 0 \&\& a_2 > \frac{1}{4} (a_0 + 4 a_1) \&\& a_1 > 0$