Lec10 Note of Complex Analysis

Xuxuayame

日期: 2023年4月6日

例 6.1. P126.3: 设 D 是由有限条光滑简单闭曲线围成的域, \mathbf{n} 是 ∂D 的单位法向量场,指向 D 的外部, $u,v \in C^2(\overline{D})$ 。证明:

$$\iint_D u \Delta v \, \mathrm{d} x \, \mathrm{d} y + \iint_D (u_x v_x + u_y v_y) \, \mathrm{d} x \, \mathrm{d} y = \int_{\partial D} u \frac{\partial v}{\partial \overrightarrow{n}} | \, \mathrm{d} z |.$$

证明. 设 ∂D : z(t) = x(t) + iy(t) $(a \le t \le b)$, $\vec{\tau}$ 为单位切向量,则

$$\vec{\tau}(t) = \frac{x'(t) + iy'(t)}{\sqrt{x'(t)^2 + y'(t)^2}}$$

$$\Rightarrow \vec{n}(t) = \vec{\tau}(t) \cdot (-i) = \frac{y'(t) - ix'(t)}{\sqrt{x'(t)^2 + y'(t)^2}}.$$

而 $|dz| = |z'(t)|dt = \sqrt{x'(t)^2 + y'(t)^2}dt$,所以

$$\int_{\partial D} u \frac{\partial v}{\partial \vec{n}} | dz | = \int_{\partial D} u \cdot \operatorname{grad} v \cdot \vec{n} | dz |$$

$$= \int_{a}^{b} u \left(\frac{\partial v}{\partial x} \cdot y'(t) - \frac{\partial v}{\partial y} x'(t) \right) dt = \int_{\partial D} u \left(\frac{\partial v}{\partial x} dy - \frac{\partial v}{\partial y} dx \right)$$

$$\stackrel{Green}{=} \iint_{D} (u_{x}v_{x} + u \cdot v_{xx} + u_{y}v_{y} + u \cdot v_{yy}) dx dy.$$

例 6.2. P119.4: f 为整函数,且 $f(\mathbb{C}) \subset \{z \in \mathbb{C} \mid \text{Im} z > 0\}$,证明: f 为常数。

证明.
$$\forall z \in \mathbb{C}, |f(z) + i| > 1 \Rightarrow \left| \frac{1}{f(z) + i} \right| < 1 \Rightarrow \frac{1}{f(z) + i} = \text{Const.}. \Rightarrow f(z) = \text{Const.}.$$

我们稍作推广:

f 为整函数且 $f(\mathbb{C})$ 的补集含有内点,则 f 为常数。($f(\mathbb{C})$ 在 \mathbb{C} 中非稠密。)

例 6.3. P119.5: f 为整函数且 $f(\mathbb{C}) \subset \mathbb{C} \setminus [0,1]$ 。证明 f 为常数。

证明.
$$\frac{1}{f(z)} - 1 \colon \mathbb{C} \to \mathbb{C} \setminus [0, +\infty)$$
 全纯。

$$\sqrt{z} \colon \mathbb{C} \setminus [0, +\infty) \to \mathrm{Im} z > 0 \ \text{$\pm i \text{$o$}}.$$

$$\sqrt{\frac{1}{f(z)}-1}$$
: $\mathbb{C}\to \mathrm{Im} z>0$ 全纯 $\Rightarrow \sqrt{\frac{1}{f(z)}-1}$ 为常数,从而 $f(z)$ 为常数。

Part IV

全纯函数的 Taylor 展开及应用

1 函数列与函数项级数

定义 1.1. 设 $K \subset \mathbb{C}$,称 $f_n \colon K \to \mathbb{C}$ $(n = 1, 2, \cdots)$ 在 $K \perp$ 一致收敛于 $f \colon K \to \mathbb{C}$,如果 对 $\forall \varepsilon > 0$,当 N,当 n > N 时, $|f_n(z) - f(z)| < \varepsilon$, $\forall z \in K$ 。

定理 1.1. Weierstrass: 设 $D \subset \mathbb{C}$ 为区域, $f_n: D \to \mathbb{C}$ 全纯。若 f_n 在 D 的每个紧致子集中一致收敛于 $f: D \to \mathbb{C}(f$ 在 D 中紧一致收敛), 则

- (1) f 在 D 中全纯。
- (2) 对 $\forall k \geq 1$, $f_n^{(k)}(z)$ 在 D 中紧一致收敛于 $f^{(k)}(z)$ 。

证明. (1) 对 $\forall z_0 \in D$ 和 r > 0 s.t. $\overline{B(z_0, r)} \subset D$,设 γ 为 $B(z_0, r)$ 中的一条可求长简 单闭曲线, γ 为紧致集,故在 $\gamma \perp f_n \rightrightarrows f$ 。对 $\forall \varepsilon > 0$, $\exists N$,当 n > N 时,

$$|f_n(z) - f(z)| < \varepsilon, \ \forall \ z \in \gamma$$

$$\Rightarrow \left| \int_{\gamma} f_n(z) \, \mathrm{d} z - \int_{\gamma} f(z) \, \mathrm{d} z \right| \le \int_{\gamma} |f_n(z) - f(z)| |\, \mathrm{d} z| < \varepsilon |\gamma|.$$

从而 $\int_{\gamma} f(z) dz = \lim_{n \to \infty} \int_{\gamma} f_n(z) dz = 0$,由 Morera 定理, f(z) 在 $B(z_0, r)$ 中全纯,再由 z_0 的任意性知 f 在 D 中全纯。

(2) 只需对 k=1 证明即可。

固定 $z_0 \in D$,取 $\delta > 0$ s.t. $\overline{B(z_0, 2\delta)} \subset D$ 。设 $z \in B(z_0, \delta)$, $\zeta \in \partial B(z_0, 2\delta)$,则 $|\zeta - z| \ge \delta$ 。于是

$$|f'_{n}(z) - f'(z)| = \left| \frac{1}{2\pi i} \int_{|\zeta - z_{0}| = 2\delta} \frac{f_{n}(\zeta) - f(\zeta)}{(\zeta - z)^{2}} d\zeta \right|$$

$$\leq \frac{1}{2\pi} \int_{|\zeta - z_{0}| = 2\delta} \frac{|f_{n}(\zeta) - f(\zeta)|}{\delta^{2}} |d\zeta|$$

$$\leq \frac{1}{2\pi} \sup_{|\zeta - z_{0}| = 2\delta} |f_{n}(\zeta) - f(\zeta)| \cdot \frac{1}{\delta^{2}} \cdot 2\pi \cdot 2\delta \to 0 \ (n \to +\infty).$$

所以 $f_n(z)$ 在 $B(z_0, \delta)$ 中一致收敛于 f'(z)。

设 $K \subset D$ 为紧致子集,对 $\forall z \in K$, $\exists \delta_z > 0$ s.t. f_n 在 $B(z, \delta_z)$ 中一致收敛。 $\{B(z, \delta_z) \mid z \in K\}$ 为 K 的开覆盖,故有有限子覆盖 $\{B(z_i, \delta_{z_i}) \mid i = 1, \cdots, n\}$,则 f_n 在 $\bigcup_{i=1}^n B(z_i, \delta_{z_i}) \supset K$ 上一致收敛。

评论. 这个定理对实函数不成立,因为一列实解析函数可以一致收敛到非 C^1 的连续函数 (Weierstrass 逼近定理)。

2