### **Problem Statement**

## **Linear Regression**

## **Import Libraries**

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [4]: a=pd.read_csv("Sleep.csv")
```

Out[4]:

|                       | Person<br>ID | Gender | Age | Occupation              | Sleep<br>Duration | Quality<br>of<br>Sleep | Physical<br>Activity<br>Level | Stress<br>Level | BMI<br>Category | Blood<br>Pressure |
|-----------------------|--------------|--------|-----|-------------------------|-------------------|------------------------|-------------------------------|-----------------|-----------------|-------------------|
| 0                     | 1            | Male   | 27  | Software<br>Engineer    | 6.1               | 6                      | 42                            | 6               | Overweight      | 126/83            |
| 1                     | 2            | Male   | 28  | Doctor                  | 6.2               | 6                      | 60                            | 8               | Normal          | 125/80            |
| 2                     | 3            | Male   | 28  | Doctor                  | 6.2               | 6                      | 60                            | 8               | Normal          | 125/80            |
| 3                     | 4            | Male   | 28  | Sales<br>Representative | 5.9               | 4                      | 30                            | 8               | Obese           | 140/90            |
| 4                     | 5            | Male   | 28  | Sales<br>Representative | 5.9               | 4                      | 30                            | 8               | Obese           | 140/90            |
| •••                   |              |        |     |                         |                   |                        |                               |                 |                 |                   |
| 369                   | 370          | Female | 59  | Nurse                   | 8.1               | 9                      | 75                            | 3               | Overweight      | 140/95            |
| 370                   | 371          | Female | 59  | Nurse                   | 8.0               | 9                      | 75                            | 3               | Overweight      | 140/95            |
| 371                   | 372          | Female | 59  | Nurse                   | 8.1               | 9                      | 75                            | 3               | Overweight      | 140/95            |
| 372                   | 373          | Female | 59  | Nurse                   | 8.1               | 9                      | 75                            | 3               | Overweight      | 140/95            |
| 373                   | 374          | Female | 59  | Nurse                   | 8.1               | 9                      | 75                            | 3               | Overweight      | 140/95            |
| 374 rows × 13 columns |              |        |     |                         |                   |                        |                               |                 |                 |                   |

# To display top 10 rows

```
In [5]: c=a.head(15) c
```

Out[5]: **Quality Physical** 

|    | Person<br>ID | Gender | Age | Occupation              | Sleep<br>Duration | of<br>Sleep | Activity<br>Level | Stress<br>Level | BMI<br>Category | Blood<br>Pressure | ı |
|----|--------------|--------|-----|-------------------------|-------------------|-------------|-------------------|-----------------|-----------------|-------------------|---|
| 0  | 1            | Male   | 27  | Software<br>Engineer    | 6.1               | 6           | 42                | 6               | Overweight      | 126/83            |   |
| 1  | 2            | Male   | 28  | Doctor                  | 6.2               | 6           | 60                | 8               | Normal          | 125/80            |   |
| 2  | 3            | Male   | 28  | Doctor                  | 6.2               | 6           | 60                | 8               | Normal          | 125/80            |   |
| 3  | 4            | Male   | 28  | Sales<br>Representative | 5.9               | 4           | 30                | 8               | Obese           | 140/90            |   |
| 4  | 5            | Male   | 28  | Sales<br>Representative | 5.9               | 4           | 30                | 8               | Obese           | 140/90            |   |
| 5  | 6            | Male   | 28  | Software<br>Engineer    | 5.9               | 4           | 30                | 8               | Obese           | 140/90            |   |
| 6  | 7            | Male   | 29  | Teacher                 | 6.3               | 6           | 40                | 7               | Obese           | 140/90            |   |
| 7  | 8            | Male   | 29  | Doctor                  | 7.8               | 7           | 75                | 6               | Normal          | 120/80            |   |
| 8  | 9            | Male   | 29  | Doctor                  | 7.8               | 7           | 75                | 6               | Normal          | 120/80            |   |
| 9  | 10           | Male   | 29  | Doctor                  | 7.8               | 7           | 75                | 6               | Normal          | 120/80            |   |
| 10 | 11           | Male   | 29  | Doctor                  | 6.1               | 6           | 30                | 8               | Normal          | 120/80            |   |
| 11 | 12           | Male   | 29  | Doctor                  | 7.8               | 7           | 75                | 6               | Normal          | 120/80            |   |
| 12 | 13           | Male   | 29  | Doctor                  | 6.1               | 6           | 30                | 8               | Normal          | 120/80            |   |
| 13 | 14           | Male   | 29  | Doctor                  | 6.0               | 6           | 30                | 8               | Normal          | 120/80            |   |
| 14 | 15           | Male   | 29  | Doctor                  | 6.0               | 6           | 30                | 8               | Normal          | 120/80            |   |
| 4  |              |        |     |                         |                   |             |                   |                 |                 |                   |   |

## To find Missing values

In [6]:

c.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 15 entries, 0 to 14 Data columns (total 13 columns): Non-Null Count Dtyne Column

| #    | Column                    | Non-Null Count | υτype   |
|------|---------------------------|----------------|---------|
|      |                           |                |         |
| 0    | Person ID                 | 15 non-null    | int64   |
| 1    | Gender                    | 15 non-null    | object  |
| 2    | Age                       | 15 non-null    | int64   |
| 3    | Occupation                | 15 non-null    | object  |
| 4    | Sleep Duration            | 15 non-null    | float64 |
| 5    | Quality of Sleep          | 15 non-null    | int64   |
| 6    | Physical Activity Level   | 15 non-null    | int64   |
| 7    | Stress Level              | 15 non-null    | int64   |
| 8    | BMI Category              | 15 non-null    | object  |
| 9    | Blood Pressure            | 15 non-null    | object  |
| 10   | Heart Rate                | 15 non-null    | int64   |
| 11   | Daily Steps               | 15 non-null    | int64   |
| 12   | Sleep Disorder            | 15 non-null    | object  |
| dtyp | es: float64(1), int64(7), | object(5)      |         |

memory usage: 1.6+ KB

### To display summary of statistics

In [7]: a.describe()

Out[7]:

|       | Person ID  | Age        | Sleep<br>Duration | Quality of<br>Sleep | Physical<br>Activity<br>Level | Stress<br>Level | Heart Rate | Daily S   |
|-------|------------|------------|-------------------|---------------------|-------------------------------|-----------------|------------|-----------|
| count | 374.000000 | 374.000000 | 374.000000        | 374.000000          | 374.000000                    | 374.000000      | 374.000000 | 374.000   |
| mean  | 187.500000 | 42.184492  | 7.132086          | 7.312834            | 59.171123                     | 5.385027        | 70.165775  | 6816.844  |
| std   | 108.108742 | 8.673133   | 0.795657          | 1.196956            | 20.830804                     | 1.774526        | 4.135676   | 1617.915  |
| min   | 1.000000   | 27.000000  | 5.800000          | 4.000000            | 30.000000                     | 3.000000        | 65.000000  | 3000.000  |
| 25%   | 94.250000  | 35.250000  | 6.400000          | 6.000000            | 45.000000                     | 4.000000        | 68.000000  | 5600.000  |
| 50%   | 187.500000 | 43.000000  | 7.200000          | 7.000000            | 60.000000                     | 5.000000        | 70.000000  | 7000.000  |
| 75%   | 280.750000 | 50.000000  | 7.800000          | 8.000000            | 75.000000                     | 7.000000        | 72.000000  | 8000.000  |
| max   | 374.000000 | 59.000000  | 8.500000          | 9.000000            | 90.000000                     | 8.000000        | 86.000000  | 10000.000 |
| 4     |            |            |                   |                     |                               |                 |            |           |

## To display column heading

### **Pairplot**

```
In [9]: s=a.dropna(axis=1)
s
```

Out[9]:

|     | Person<br>ID | Gender | Age | Occupation              | Sleep<br>Duration | Quality<br>of<br>Sleep | Physical<br>Activity<br>Level | Stress<br>Level | BMI<br>Category | Blood<br>Pressure |
|-----|--------------|--------|-----|-------------------------|-------------------|------------------------|-------------------------------|-----------------|-----------------|-------------------|
| 0   | 1            | Male   | 27  | Software<br>Engineer    | 6.1               | 6                      | 42                            | 6               | Overweight      | 126/83            |
| 1   | 2            | Male   | 28  | Doctor                  | 6.2               | 6                      | 60                            | 8               | Normal          | 125/80            |
| 2   | 3            | Male   | 28  | Doctor                  | 6.2               | 6                      | 60                            | 8               | Normal          | 125/80            |
| 3   | 4            | Male   | 28  | Sales<br>Representative | 5.9               | 4                      | 30                            | 8               | Obese           | 140/90            |
| 4   | 5            | Male   | 28  | Sales<br>Representative | 5.9               | 4                      | 30                            | 8               | Obese           | 140/90            |
| ••• |              |        |     |                         |                   |                        |                               |                 |                 |                   |

|     | Person<br>ID | Gender | Age | Occupation | Sleep<br>Duration | Quality<br>of<br>Sleep | Physical<br>Activity<br>Level | Stress<br>Level | BMI<br>Category | Blood<br>Pressure |
|-----|--------------|--------|-----|------------|-------------------|------------------------|-------------------------------|-----------------|-----------------|-------------------|
| 369 | 370          | Female | 59  | Nurse      | 8.1               | 9                      | 75                            | 3               | Overweight      | 140/95            |
| 370 | 371          | Female | 59  | Nurse      | 8.0               | 9                      | 75                            | 3               | Overweight      | 140/95            |
| 371 | 372          | Female | 59  | Nurse      | 8.1               | 9                      | 75                            | 3               | Overweight      | 140/95            |
| 372 | 373          | Female | 59  | Nurse      | 8.1               | 9                      | 75                            | 3               | Overweight      | 140/95            |
| 373 | 374          | Female | 59  | Nurse      | 8.1               | 9                      | 75                            | 3               | Overweight      | 140/95            |

374 rows × 13 columns

Out[11]: <seaborn.axisgrid.PairGrid at 0x2366bf08ac0>



# **Distribution Plot**

```
In [12]: sns.displot(c['Person ID'])
```

Out[12]: <seaborn.axisgrid.FacetGrid at 0x2366f42d6a0>



### Correlation

#### Out[14]: <AxesSubplot:>



## Train the model - Model Building

```
In [24]: g=c[['Person ID']] h=c['Age']
```

## To split dataset into training end test

```
In [25]:
    from sklearn.model_selection import train_test_split
    g_train,g_test,h_train,h_test=train_test_split(g,h,test_size=0.6)
```

### To run the model

```
In [26]: from sklearn.linear_model import LinearRegression
In [27]: lr=LinearRegression()
lr.fit(g_train,h_train)
Out[27]: LinearRegression()
In [28]: print(lr.intercept_)
27.412154696132596
```

### Coeffecient

```
In [29]: coeff=pd.DataFrame(lr.coef_,g.columns,columns=['Co-effecient'])
coeff
Out[29]: Co-effecient
```

### **Best Fit line**

**Person ID** 

0.134807

```
In [30]: prediction=lr.predict(g_test)
   plt.scatter(h_test,prediction)
```

Out[30]: <matplotlib.collections.PathCollection at 0x236719526d0>



### To find score

```
In [31]: print(lr.score(g_test,h_test))

0.4550044259943232
```

### Import Lasso and ridge

```
In [32]: from sklearn.linear_model import Ridge,Lasso
```

### Ridge

### Lasso

```
In [36]:
    l=Lasso(alpha=6)
    l.fit(g_train,h_train)
```

Out[36]: Lasso(alpha=6)

| In [37]: | 1.score(g_test,h_test)    |
|----------|---------------------------|
| Out[37]: | -0.5000000000000036       |
| In [38]: | ri.score(g_train,h_train) |
| Out[38]: | 0.821473876862364         |
| In [ ]:  |                           |
| In [ ]:  |                           |