15/01/2022

Implementation and Attack of Trapdoored Stream Ciphers (Project)

ESIEA Laval - N&IS 2012/2013

The aim of this purpose is to practice about trapped encryption systems. Two encryption systems $SCEX_T$ which are presented hereafter embed a trapdoor each, that enables to break them very quickly instead of performing a time-consuming brute-force key search. These cases are inspired from real cases. Your work consists in :

- Implementing the system $\mathrm{SCEX_T1}$ and $\mathrm{SCEX_T2}.$
- Analyzing them to identify the trapdoor (mathematical analysis).
- Finding a method to exploit this trapdoor efficiently and implementing your attack.
- Recovering the plaintext of the four ciphertexts provided to you.

1 Description of the Trapped Stream Cipher SCEX_T1

The SCEX_T1 system is a combining stream cipher (whose type has been presented if a former project). Its secret key has an entropy of 131 bits.

The linear feedback polynomials are the following:

$$P_1(x)=x^{41}\oplus x^5\oplus x^3\oplus x^2\oplus 1$$

$$P_2(x)=x^{43}\oplus x^{13}\oplus x^{12}\oplus x^9\oplus x^8\oplus x^5\oplus x^3\oplus x\oplus 1$$

$$P_3(x)=x^{47}\oplus x^6\oplus x^5\oplus x^3\oplus 1$$

POLY1 = 20000000 20 POLY2 = 8000000 332B POLY3 = 8000000000000069

FIGURE 1 – Stream Cipher SCEX_T1

Functions f_1, f_2 and f_3 are given as truth tables :

_:	x_3	x_2	x_1	$f_1(x_3, x_2, x_1)$	x_3	x_2	x_1	$f_1(x_3, x_2, x_1)$	x_3	x_2	x_1	$f_1(x_3, x_2, x_1)$
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	1	0	0	0	1	1	0	0	1	0
	0	1	0	0	0	1	0	0	0	1	0	1
	0	1	1	1	0	1	1	0	0	1	1	1
	1	0	0	0	1	0	0	1	1	0	0	0
	1	0	1	1	1	0	1	0	1	0	1	1
	1	1	0	1	1	1	0	1	1	1	0	0
	1	1	1	1	1	1	1	1	1	1	1	1

Finally the encryption is performed as follows. If we consider the plaintext bit sequence $(m_t)_{t\geq 0}$, the ciphertext bits $(c_t)_{t\geq 0}$ are given by

$$c_t = \left\{ \begin{array}{ll} m_t \oplus \sigma_t & \text{if } t \equiv 0 \pmod{3} \\ m_t \oplus \sigma_{t+1} & \text{if } t \equiv 1 \pmod{3} \\ m_t \oplus \sigma_{t+2} & \text{if } t \equiv 2 \pmod{3} \end{array} \right.$$

Figure 1 describes the system graphically.

2 Description of the Trapped Stream Cipher SCEX_T2

The stream cipher SCEX_T2 uses the same cryptographic primitives than SCEX_T1. Only the ciphertext operation differs since ciphertext bit is produced from the corresponding plaintext bit as follows:

 $c_t = m_t \oplus (f_1(x_3, x_2, x_1) \oplus f_2(x_3, x_2, x_1) \oplus f_3(x_3, x_2, x_1))$

Figure 4 describes the system graphically.

FIGURE 2 - Stream Cipher SCEX_T2

3 Cryptanalysis

Four ciphertexts are provided. You must decrypt them (find the key and recover the plaintext) :

 Cipher1 contains the string ****BEGINNINGOFMESSAGE*** somewhere in the text (necessarily at the first position). It has been produced by SCEX_T1.

- Cipher2 contains the string ****ZFZFZFZFZF*** somewhere in the text.
 It has been produced by SCEX_T1.
- Cipher3 contains the string ****ZCZCZCZCZCX*** somewhere in the text.
 It has been produced by SCEX_T2.
- Cipher4 has been exchanged between the US embassy in Jerusalem and Hillary Clinton's US State Secretary Office on November 19th, 2012. It has been produced by SCEX_T2.