

THE UNIVERSITY OF CALGARY DEPARTMENT OF GEOMATICS ENGINEERING

ENGO 623: INERTIAL SURVEYING AND INS/GPS INTEGRATION

Winter semester 2023

Developing an INS Navigation Module - Due date: Monday April 17, 2020

Objectives

Design and implement the INS mechanization in the local level frame and show step by step implementation details.

Deliverables

- 1. A document detailing
 - a. the step by step implementation of the mechanization module.
 - b. Plots of the final latitude, longitude and height and comments on the results
 - c. Plots of the position (in meters), velocity (m/sec) and attitude errors (degrees)
- 2. Source code of the module.

The information for the dataset attached is provided below. The simulated data mimics a situation in which an aligned IMU was left running without any motion for a period of time.

The data was simulated using the following parameters:

IMU data rate	64	Hz
Gyro bias (calibration residual error + random constant)	0.1	deg/hr
gyro white noise (ARW)	0.01	deg/hr ^{1/2}
Gyro bias instability (1 st -order Gauss Markov)	0.015	deg/hr

Gyro correlation time	1	hr
Accelerometer bias (calibration residual error + random constant)	3	μg
Accelerometer white noise (VRW)	0.003	m/s/hr ^{1/2}
Accelerometer bias instability (1 st -order Gauss Markov)	50	μg
Accelerometer correlation time	1	hr

The initial conditions are as follows:

Initial latitude	51.07995352	deg
Initial longitude	-114.13371127	deg
Initial height	1118.502	m

The data format is as follows:

Time	sec
Gyro x	rad/s
Gyro y	rad/s
Gyro z	rad/s
Accelerometer x	m/s ²
Accelerometer y	m/s ²
Accelerometer z	m/s ²

Where x is right (sideways), y is forward and z is pointing up.

Needed Information:

- ☐ Earth Fixed Frame related parameters: WGS84
 - Earth is not round and the semi-major axis a=6378137;
 - \blacksquare Eccentricity squared is $e^2=6.69438e^{-3}$;
 - Earth rotation rate in rad/s is $w_e = 7.292115147e^{-5}$
- ☐ Gravity is a function of height and latitude
 - \blacksquare a1 = 9.7803267715; a2 = 0.0052790414;
 - \blacksquare a3 = 0.0000232718; a4 = -0.000003087691089;
 - \blacksquare a5 = 0.00000004397731;
 - \blacksquare a6 = 0.000000000000721;
 - Where φ = latitude and h = height

$$g = a1 \cdot (1 + a2 \cdot \sin^2 \varphi + a3 \cdot \sin^4 \varphi) + (a4 + a5 \cdot \sin^2 \varphi) \cdot h + a6 \cdot h^2$$

☐ Radius of curvature in the prime vertical (N) and meridian (M) directions

$$M = \frac{a(1 - e^2)}{(1 - e^2 \sin^2 \varphi)^{\frac{3}{2}}} \qquad N = \frac{a}{(1 - e^2 \sin^2 \varphi)^{\frac{1}{2}}}$$

1. Notes about alignment

Roll, pitch and azimuth are defined as follows:

- Roll to right is positive
- Pitch upwards is positive
- Azimuth is from North direction clockwise

Using the above definitions:

1. The roll, pitch and azimuth in ENU frame (the one used in the lecture notes) can be calculated as:

$$r = -sign(f_z)\sin^{-1}\left(\frac{f_x}{g}\right)$$

$$p = sign(f_z)\sin^{-1}\left(\frac{f_y}{g}\right)$$

$$A = \tan^{-1}\left(-\frac{\omega_x^b}{\omega_y^b}\right)$$

2. The roll, pitch and azimuth in NED frame (the one used in Eun Shin MSc thesis) can be calculated as:

$$r = sign(f_z) \sin^{-1} \left(\frac{f_y}{g}\right)$$

$$p = -sign(f_z) \sin^{-1} \left(\frac{f_x}{g}\right)$$

$$A = \tan^{-1} \left(\frac{\omega_y^b}{\omega_x^b}\right)$$

2. Scale Factor

SF is a unit matrix for this dataset.

3. DCM to Quaternions

$$M = \begin{bmatrix} m11 & m12 & m13 \\ m21 & m22 & m23 \\ m31 & m32 & m33 \end{bmatrix} - - > Q = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}$$

For computation compute q_0 to q_3 first and then take the biggest component to compute the rest. q_0 is the scalar.

$$\begin{split} q_0 &= \frac{\sqrt{m11 + m22 + m33 + 1}}{2} => q_1 = \frac{m23 - m32}{4q_0}, q_2 = \frac{m31 - m13}{4q_0}, q_3 = \frac{m12 - m21}{4q_0} \\ q_1 &= \frac{\sqrt{m11 - m22 - m33 + 1}}{2} => q_0 = \frac{m23 - m32}{4q_1}, q_2 = \frac{m12 + m21}{4q_1}, q_3 = \frac{m31 + m13}{4q_1} \\ q_2 &= \frac{\sqrt{-m11 + m22 - m33 + 1}}{2} => q_0 = \frac{m31 - m13}{4q_2}, q_1 = \frac{m12 + m21}{4q_2}, q_3 = \frac{m23 + m32}{4q_2} \\ q_3 &= \frac{\sqrt{-m11 - m22 + m33 + 1}}{2} => q_0 = \frac{m12 - m21}{4q_3}, q_1 = \frac{m31 + m13}{4q_3}, q_2 = \frac{m23 + m32}{4q_3} \end{split}$$

4. Data File to be Used

File name is "project data.bin".