Chapitre 8 : Ensembles et Applications

1 Ensembles

1.1 Définitions

Définition

Un ensemble est une collection d'objets. Chacun de ces objets est appelé **élément** de cet ensemble. Si x est un élément d'un ensemble E, alors on dit que x **appartient** à E et on note $x \in E$. Dans le cas contraire, on dit que x n'appartient pas à E et on note $x \notin E$.

Deux ensembles E et F sont égaux si et seulement si ils ont les mêmes éléments i.e $\forall x \in E, x \in F$ et $\forall x \in F, x \in E$

Exemple:

- L'**ensemble vide**, noté Ø est l'ensemble ne contenant aucun élément.
- Un ensemble constitué d'un unique élément est appelé singleton.
- \bigwedge Ne pas confondre l'élément x et le singleton $\{x\}$.

Un ensemble peut être défini :

• en donnant la liste de ses éléments entre accolades (l'ordre n'a pas d'importance).

Exemple : $A = \{1, 3, 4\} = \{4, 1, 3\}$

 $B = \{f_1, f_2\}$, où f_1 désigne la fonction constante égale à 1 et f_2 la fonction de \mathbb{R} dans \mathbb{R} telle que : $\forall x \in \mathbb{R}$, $f_2(x) = x^2$.

• en énonçant une propriété caractérisant ses éléments.

Exemple : $C = \{n \in \mathbb{N} \text{ , } n \text{ pair}\}$

 $D = \{ f : \mathbb{R} \to \mathbb{R}, \forall x, y \in \mathbb{R}, f(x+y) = f(-x) + f(-y) \}$

Définition

Soit E et F deux ensembles.

On dit que F est **inclus** dans E et on note $F \subset E$ ssi tous les éléments de F appartiennent à E, c'est à dire :

$$\forall x \in F, x \in E$$
.

On dit alors que F est une **partie** de E ou que F est un **sous-ensemble** de E.

On note $\mathcal{P}(E)$ l'ensemble des parties de E.

Remarque:

- On a: $F \in \mathcal{P}(E) \iff F \subset E$
- $\bigwedge \mathcal{P}(E)$ est un ensemble dont les éléments sont eux-mêmes des ensembles.

Exemple:

Remarque : On a toujours $E \in \mathcal{P}(E)$ et $\emptyset \in \mathcal{P}(E)$.

Proposition

Soient *E*, *F* deux ensembles. On a :

E = F si et seulement si $E \subset F$ et $F \subset E$.

Méthode: inclusion et égalité d'ensembles

• Pour montrer que $F \subset E$, le modèle de rédaction est :

Soit $x \in F$.

Raisonnement

Alors, $x \in E$.

On a donc $F \subset E$.

• Montrer que E = F:

Sauf dans les cas simples, où l'on peut montrer directement que $x \in E$ équivaut à $x \in F$ par équivalence, on raisonnera souvent par double inclusion pour montrer une égalité d'ensemble.

1.2 Opérations sur les parties d'un ensemble

Définition

Soient *E* un ensemble, *A* et *B* deux sous-ensembles de *E*.

1. L'**intersection** de A et B, noté $A \cap B$, est l'ensemble des éléments de E appartenant à la fois à A et à B:

$$A \cap B = \{x \in E , x \in A \text{ et } x \in B\}$$

2. La **réunion** de A et B, noté $A \cup B$, est l'ensemble des éléments de E appartenant à A ou à B:

$$A \cup B = \{x \in E , x \in A \text{ ou } x \in B\}$$

3. La différence de A et B, noté $A \setminus B$, est l'ensemble des éléments de A qui ne sont pas dans B.

$$A \setminus B = \{x \in E, x \in A \text{ et } x \not\in B\} = \{x \in A, x \not\in B\}$$

4. le **complémentaire** de A dans E, noté C_E^A ou $E \setminus A$ est l'ensemble des éléments de E qui n'appartiennent pas à A.

$$C_E^A = E \setminus A = \{x \in E , x \notin A\}$$

Lorsqu'il n'y a pas d'ambiguïté sur E, le complémentaire de A dans E est aussi noté \overline{A} .

(a) Schéma de $A \cup B$

(b) Schéma de $A \cap B$

(c) Schéma de $A \setminus B$

(d) Schéma de C_F^A

Remarque:

- On a : $A \setminus B = A \cap C_E^B$.
- Soient *E* un ensemble et $A, B \in \mathcal{P}(E)$. Alors, on a toujours les inclusions suivantes :

$$A \cap B \subset A \subset A \cup B$$
,

$$A \cap B \subset B \subset A \cup B$$
.

· Vocabulaire:

Soit *E* un ensemble et *A*, *B* deux sous-ensembles de *E*.

A et *B* sont dits **disjoints** si $A \cap B = \emptyset$

Proposition: Propriétés algébriques de l'intersection et l'union

Soient *A*, *B* et *C* trois parties d'un ensemble *E*.

1. L'intersection et l'union sont commutatives :

$$A \cap B = B \cap A$$
 et $A \cup B = B \cup A$.

2. L'intersection et l'union sont associatives :

$$A \cap (B \cap C) = (A \cap B) \cap C$$
$$A \cup (B \cup C) = (A \cup B) \cup C$$

On pourra omettre les parenthèses et noter $A \cap B \cap C$ l'ensemble des éléments communs aux trois sousensembles A, B et C et noter $A \cup B \cup C$ l'ensemble des éléments qui sont dans l'un au moins des trois sous-ensembles A, B ou C.

- 3. $A \cap E = A$ $A \cap \emptyset = \emptyset$ $A \cup E = E$ $A \cup \emptyset = A$.
- 4. L'intersection et la réunion sont **distributives** l'une par rapport à l'autre :

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

Démonstration. • Montrons que : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. Soit $x \in E$, on a:

$$x \in A \cap (B \cup C) \iff x \in A \text{ et } x \in B \cup C$$

$$\iff x \in A \text{ et } (x \in B \text{ ou } x \in C)$$

$$\iff (x \in A \text{ et } B) \text{ ou } (x \in A \text{ et } C)$$

$$\iff (x \in A \cap B) \text{ ou } (x \in A \cap C)$$

$$\iff x \in (A \cap B) \cup (A \cap C)$$

On montre de même l'égalité $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

• Montrons que : $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. Soit $x \in E$, on a :

$$x \in A \cup (B \cap C)$$
 \iff $x \in A \text{ ou } x \in B \cap C$
 \iff $x \in A \text{ ou } (x \in B \text{ et } x \in C)$
 \iff $(x \in A \text{ ou } B) \text{ et } (x \in A \text{ ou } C)$
 \iff $(x \in A \cup B) \text{ et } (x \in A \cup C)$
 \iff $x \in (A \cup B) \cap (A \cup C)$

Proposition: Propriétés algébriques du complémentaire

Soient A et B deux parties d'un ensemble E. 1. $C_E^{\emptyset} = E$, $C_E^E = \emptyset$. 2. $A \cup C_E^A = E$ et $A \cap C_E^A = \emptyset$.

1.
$$C_E^{\emptyset} = E, C_E^E = \emptyset.$$

2.
$$A \cup C_E^A = \overline{E}$$
 et $A \cap C_E^A = \emptyset$.

3.
$$C_E^{C_E^A} = A$$

$$4. \ A \subseteq B \iff C_E^B \subseteq C_E^A.$$

3.
$$C_E^{C_E^A} = A$$

4. $A \subset B \iff C_E^B \subset C_E^A$
5. $C_E^{A \cap B} = C_E^A \cup C_E^B$
 $C_E^{A \cup B} = C_E^A \cap C_E^B$.

3. Montrons $A = C_E^{C_E^A}$ par double inclusion. Démonstration.

• Soit
$$x \in C_E^{C_E^A}$$
 alors $x \notin C_E^A$ donc $x \in A$.

• Soit
$$x \in A$$
 alors $x \notin C_E^A$ donc $x \in C_E^{C_E^A}$.

Ainsi,
$$A = C_E^{C_E^A}$$
.

4. Montrons par double implication que $A \subset B \implies C_E^B \subset C_E^A$.

• Supposons que $A \subset B$.

Soit $x \in C_E^B$ alors $\notin B$.

par l'absurde : supposons que $x \in A$ alors $x \in B$ car $A \subset B$. Absurde.

Ainsi, $x \notin A$ d'où $x \in C_E^A$. Ainsi $C_E^B \subset C_E^A$.

• Supposons que $C_E^B \subset C_E^A$.

On a alors avec le point précédent $C_E^{C_E^A} \subset C_F^{E_E^B}$.

Donc $A \subset B$.

- Ainsi, $A \subset B \implies C_E^B \subset C_E^A$.

 Montrons par double inclusion que $C_E^{A \cup B} = C_E^A \cap C_E^B$.
 - Soit $x \in C_E^{A \cup B}$.

On a non($x \in A \cup B$). Donc $non(x \in A \text{ ou } x \in B)$.

Ainsi, $non(x \in A)$ et $non(x \in B)$.

Donc $x \notin A$ et $x \notin B$.

D'où $x \in C_E^A$ et $x \in C_E^B$. Donc $x \in C_E^A \cap C_E^B$.

• Soit $x \in C_E \cap C_E^B$. Alors $x \in C_E^A$ et $x \in C_E^B$.

Raisonnons par l'absurde et supposons que $x \in A \cup B$. Alors $x \in A$ ou $x \in B$.

Si $x \in A$ alors $x \notin C_E^A$ Absurde. Si $x \in B$ alors $x \notin C_E^B$ Absurde. Ainsi, $x \notin A \cup B$ donc $x \in C_E^{A \cup B}$.

On obtient donc $C_F^{A \cup B} = C_F^A \cap C_F^B$.

$$\bullet \ \ C_E^{C_E^A \cup C_E^B} = C_E^{C_E^A} \cap C_E^{C_E^B} = A \cap B.$$

D'où
$$C_E^{A\cap B} = C_E^{C_E^{A\cap B}} = C_E^{C_E^{C_E^A \cup C_E^B}} = C_E^A \cup C_E^B.$$

1.3 Produit cartésien

Définition

Soient E et F deux ensembles.

Etant donné $x \in E$ et $y \in F$, on construit le couple (x, y) de sorte que :

$$\forall x, x' \in E, \ \forall y, y' \in F, \quad (x, y) = (x', y') \Longleftrightarrow x = x' \text{ et } y = y'$$

On appelle **produit cartésien** de E et F et on note $E \times F$, l'ensemble des couples (x, y) où $x \in E$ et $y \in F$:

$$E \times F = \{(x, y) \mid x \in E \text{ et } y \in F\}$$

• Plus généralement, soient $E_1,...,E_n$ des ensembles.

Etant donné $x_1 \in E_1, ..., x_n \in E_n$, on construit le n-uplet $(x_1, ..., x_n)$ de sorte que :

$$\forall x_1, x_1' \in E_1, ..., \forall x_n, x_n' \in E_n, \quad (x_1, ..., x_n) = (x_1', ..., x_n') \iff \forall i \in [1, n], \ x_i = x_i'$$

On note $E_1 \times ... \times E_n$ l'ensemble des n-uplet $(x_1,...,x_n)$ où : $\forall i \in [1,n], x_i \in E_i$:

$$E_1 \times ... \times E_n = \{(x_1, ..., x_n) \mid \forall i \in [1, n], x_i \in E_i\}$$

Si $E_1 = ... = E_n = E$, l'ensemble $E_1 \times \cdots \times E_p$ est noté E^p .

2 Applications

Dans toute cette section, E, F, G, H désignent des ensembles non vides.

2.1 Définition et premiers exemples

Définition

On appelle **application** f la donnée d'un ensemble de départ E, d'un ensemble d'arrivée F et d'une correspondance qui à tout élément x de E associe un unique élément de F noté f(x). On la note $f: \begin{cases} E & \to & F \\ x & \mapsto & f(x) \end{cases}$. Si $x \in E$ et y = f(x), on dit que :

- y est l'image de x par f
- x est un **antécédent** de y par f (pas forcément unique).

On appelle **graphe** de l'application f l'ensemble des couples $\{(x, f(x)), x \in E\}$. On note $\mathcal{F}(E, F)$ ou F^E l'ensemble des applications de E dans F.

Diagramme sagittal.

Proposition Egalité de deux applications

Deux applications f et g sont égales ssi elles ont même ensemble de départ E, même ensemble d'arrivée et si : $\forall x \in E, f(x) = g(x)$.

Définition

Soit *A* une partie de *E*.

• On appelle **identité** de E et on note Id_E l'application

$$Id_E: E \rightarrow E$$

$$x \mapsto x$$

• On appelle **fonction indicatrice** de A et on note $\mathbb{1}_A$ l'application

$$\begin{array}{ccc} \mathbb{1}_A \colon & E & \to & \{0,1\} \\ & x & \mapsto & \left\{ \begin{array}{l} 1 \text{ si } x \in A \\ 0 \text{ si } x \notin A \end{array} \right. \end{array}$$

Proposition

Soit E un ensemble et A, B deux sous-ensemble de E.

$$A = B \iff \mathbb{1}_A = \mathbb{1}_B$$

5

Démonstration. Procédons par double implication.

- Supposons A = B. Alors, on a $\mathbb{1}_A = \mathbb{1}_B$.
- Supposons $\mathbb{1}_A = \mathbb{1}_B$. Montrons par double implication A = B.
 - Soit $x \in A$. On a $\mathbb{1}_A(x) = 1$ donc $\mathbb{1}_B(x) = 1$ donc $x \in B$. Ainsi, $A \subset B$.
 - Par symétrie entre A et B, on obtient $B \subset A$

Ainsi, A = B.

Proposition

Soit *E* un ensemble et *A*, *B* deux sous-ensemble de *E*.

$$\mathbb{1}_{C_n^A} = 1 - \mathbb{1}_A$$
, $\mathbb{1}_{A \cap B} = \mathbb{1}_A \mathbb{1}_B$, $\mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_{A \cap B}$

Démonstration. • $\mathbb{1}_{C_E^A}$ et $\mathbb{1}_A$ ont même ensemble de départ E et même ensemble d'arrivée $\{0,1\}$. Soit $x \in E$:

- Si $x \in A$, alors, $x \notin C_E^A$, donc $\mathbb{1}_A(x) = 1$ et $\mathbb{1}_{C_E^A}(x) = 0$ d'où $\mathbb{1}_{C_E^A}(x) = 1 \mathbb{1}_A(x)$.
- Si $x \notin A$ alors $x \in C_E^A$, donc $\mathbbm{1}_A(x) = 0$ et $\mathbbm{1}_{C_E^A}(x) = 1$ d'où $\mathbbm{1}_{C_E^A}(x) = 1 \mathbbm{1}_A(x)$.

Ceci montre : $\forall x \in E$, $\mathbb{1}_{C_E^A}(x) = 1 - \mathbb{1}_A(x)$.

On conclut : $\mathbb{1}_{C_F^A} = 1 - \mathbb{1}_A^L$.

- 1 _{A∩B} et 1 _A 1 _B ont même ensemble de départ E et même ensemble d'arrivée {0, 1}.
 Soit x ∈ E.
 - Si $x \in A \cap B$, alors $x \in A$ et $x \in B$, donc $\mathbb{1}_{A \cap B}(x) = 1$, $\mathbb{1}_{A}(x) = 1$, $\mathbb{1}_{B}(x) = 1$, d'où $\mathbb{1}_{A \cap B}(x) = 1 = \mathbb{1}_{A}(x)\mathbb{1}_{B}(x)$.
 - Si $x \notin A \cap B$, alors $x \notin A$ ou $x \notin B$, donc $\mathbb{1}_{A \cap B}(x) = 0$. De plus, $(\mathbb{1}_A(x) = 0 \text{ ou } \mathbb{1}_B(x) = 0)$, d'où $\mathbb{1}_{A \cap B}(x) = 0 = \mathbb{1}_A(x)\mathbb{1}_B(x)$.

Ceci montre : $\forall x \in E$, $\mathbb{1}_{A \cap B}(x) = \mathbb{1}_A(x)\mathbb{1}_B(x)$.

On conclut : $\mathbb{1}_{A \cap B} = \mathbb{1}_A \mathbb{1}_B$.

• On a, en passant par des complémentaires et en utilisant des résultats précédents :

$$\begin{split} \mathbb{1}_{A \cup B} &= 1 - \mathbb{1}_{C_E^{A \cup B}} \\ &= 1 - \mathbb{1}_{C_E^A \cap C_E^B} \\ &= 1 - \mathbb{1}_{C_E^A} \mathbb{1}_{C_E^B} \\ &= 1 - (1 - \mathbb{1}_A)(1 - \mathbb{1}_B) \\ &= 1 - (1 - \mathbb{1}_A - \mathbb{1}_B + \mathbb{1}_A \mathbb{1}_B) \\ &= \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_A \mathbb{1}_B \end{split}$$

Définition

Soit A une partie de E.

• Soit $f: E \to F$ une application. On appelle **restriction** de f à A et on note $f|_A$ l'application

$$f|_A: A \rightarrow F$$

 $x \mapsto f(x)$

• On dit que *f* est un prolongement de *g* si *g* est une restriction de *f* .

Définition : famille

Soit I un ensemble fini. On appelle famille d'éléments de E indexée par I toute application x de I dans E. L'image de $i \in I$ est noté x_i plutôt que x(i) et on note $(x_i)_{i \in I}$ une telle famille.

2.2 Composition des applications

Définition

Soit $f: E \to F$ et $g: F \to G$, on appelle composée de f par g, notée $g \circ f$ l'application $g \circ f: E \to G$ $x \mapsto (g \circ f)(x) = g(f(x))$

Proposition

Soient $f: E \to F$, $g: F \to G$ et $h: G \to H$. On a:

- $Id_F \circ f = f$ et $f \circ Id_E = f$.
- $h \circ (g \circ f) = (h \circ g) \circ f$.

Démonstration. • $Id_F \circ f$ et f ont même ensemble de départ E et même ensemble d'arrivée F.

Soit $x \in E$, $(Id_F \circ f)(x) = Id_F(f(x)) = f(x)$.

Ainsi : $\forall x \in E$, $(Id_F \circ f)(x) = f(x)$.

Donc $Id_F \circ f = f$.

• $f \circ Id_E$ et f ont même ensemble de départ E et même ensemble d'arrivée F.

Soit $x \in E$, $(f \circ Id_E)(x) = f(Id_E(x)) = f(x)$.

Ainsi : $\forall x \in E$, $(f \circ Id_E)(x) = f(x)$.

Donc $f \circ Id_E = f$.

• $g \circ f \in \mathcal{F}(E,G)$ donc $h \circ (g \circ f) \in \mathcal{F}(E,H)$. De même, $h \circ g \in \mathcal{F}(F,H)$ donc $(h \circ g) \circ f \in \mathcal{F}(E,H)$.

Ainsi, $h \circ (g \circ f)$ et $(h \circ g) \circ f$ ont même ensemble de départ E et même ensemble d'arrivée H.

Soit $x \in E$, $(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x)))$.

De même $((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x))).$

Donc: $\forall x \in E$, $((h \circ g) \circ f)(x) = (h \circ (g \circ f))(x)$.

Ainsi, $h \circ (g \circ f) = (h \circ g) \circ f$.

2.3 Image directe et réciproque

Définition

Soient $f: E \to F$.

• Soit $A \in \mathcal{P}(E)$, on appelle image directe de A par f et on note f(A) l'ensemble :

$$f(A) = \{ y \in F \mid \exists x \in A, y = f(x) \} = \{ f(x), x \in A \}.$$

$$\forall y \in F, y \in f(A) \iff (\exists x \in A, y = f(x))$$

• Soit $B \in \mathcal{P}(F)$, on appelle image réciproque de B par f et on note $f^{-1}(B)$ l'ensemble :

$$f^{-1}(B) = \{ x \in E, \ f(x) \in B \}.$$

$$\forall x \in E, x \in f^{-1}(B) \iff f(x) \in B$$

Remarque:

• Attention $f^{-1}(B)$ est une notation et ne suppose pas que f soit bijective. Cependant, si f est bijective, $f^{-1}(B)$ représente l'image réciproque de B par f mais aussi l'image directe de B par f^{-1} (ces deux ensembles sont identiques)

• Si $A \in \mathcal{P}(E)$, $f(A) \subset F$ Si $B \in \mathcal{P}(F)$, $f^{-1}(B) \subset E$.

Exemple: Soit $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto |x|$.

Déterminer f([-2,3]) et $f^{-1}([-2,3])$

Montrons que f([-2,3]) = [0,3]:

- Soit $y \in f([-2,3])$, alors il existe $x \in [-2,3]$ tel que y = |x|. Or:
 - si $x \in [-2,0]$ alors $|x| \in [0,2]$
 - si $x \in [0,3]$ alors $|x| \in [0,3]$.

Ainsi, dans tous le cas $|x| \in [0,3]$.

D'où, $y \in [0,3]$.

Donc f([-1,3]) ⊂ [0,3]

• Soit $y \in [0,3]$, posons x = y.

Alors, $x \in [0,3]$ donc $x \in [-2,3]$ et f(x) = |x| = x = y.

Donc *y* ∈ f([-2,3]).

Ainsi, $[0,3] \subset f([-2,3])$.

Donc f([-1,2]) = [0,3].

Montrons que $f^{-1}([-2,3]) = [-3,3]$:

- Soit $x \in f^{-1}([-2,3])$. Alors $f(x) \in [-2,3]$ donc $|x| \in [-2,3]$. Donc $|x| \in [0,3]$. Ainsi, $x \in [-3,3]$. D'où, $f^{-1}([-2,3]) \subset [-3,3]$
- Soit $x \in [-3,3]$ alors $|x| \in [0,3]$. D'où $f(x) \in [0,3]$ Donc $f(x) \in [-2,3]$. Ainsi, $x \in f^{-1}([-2,3])$. Donc, $[-3,3] \subset f^{-1}([-2,3])$.

Finalement, $f^{-1}(|-2,3]) = [-3,3]$.

2.4 Injections, surjections et bijections

Définition

Soit $f: E \rightarrow F$, on dit que f est:

• **injective** (ou est une injection) si tout élément de *F* admet au plus un antécédent par *f* dans *E*, c'est à dire lorsque :

$$\forall (x, x') \in E^2, \ f(x) = f(x') \implies x = x'.$$

• **surjective** (ou est une surjection) si tout élément de *F* admet au moins un antécédent par *f* dans *E*, c'est à dire lorsque :

$$\forall y \in F, \exists x \in E, y = f(x).$$

• **bijective** (ou est une bijection) si tout élément de F admet un unique antécédent par f dans E, c'est à dire lorsque :

$$\forall y \in F, \exists ! x \in E, y = f(x)$$

(e) Application injective

(f) Application surjective

(g) Application bijective

Exemple: Soit $f_1: \mathbb{R} \to \mathbb{R}$, $f_2: \mathbb{R}_+ \to \mathbb{R}$, $f_3: \mathbb{R} \to \mathbb{R}_+$ et $f_4: \mathbb{R}_+ \to \mathbb{R}_+$ $x \mapsto x^2$.

Les fonctions f_1 , f_2 , f_3 et f_4 sont-elles injectives, surjectives ou bijectives?

- f_1 n'est pas injective : $f_1(1) = f_1(-1)$ donc 1 admet deux antécédents distincts.
 - f_1 n'est pas surjective : -3 n'admet aucun antécédent.
 - f_1 n'est donc pas bijective.
- f_2 est injective : soient $x, y \in \mathbb{R}_+$, supposons que $f_2(x) = f_2(y)$. Alors $x^2 = y^2$. D'où $\sqrt{x^2} = \sqrt{y^2}$. Donc |x| = |y|. Or, $x, y \ge 0$ donc x = y.
 - f_2 n'est pas surjective : -3 n'admet aucun antécédent.
 - f_2 n'est donc pas bijective.
- f_3 n'est pas injective : $f_3(1) = f_3(-1)$ donc 1 admet deux antécédents distincts.
 - f_3 est surjective : Soit $y \in \mathbb{R}_+$. Posons $x = \sqrt{y}$. On a bien $x \in \mathbb{R}$ et $f_3(x) = f_3(\sqrt{y}) = (\sqrt{y})^2 = y$.
 - f_3 n'est donc pas bijective.
- f_4 est injective : soient $x, y \in \mathbb{R}_+$, supposons que $f_4(x) = f_4(y)$. Alors $x^2 = y^2$. D'où $\sqrt{x^2} = \sqrt{y^2}$. Donc |x| = |y|. Or, $x, y \ge 0$ donc x = y.

- f_4 est surjective: Soit $y \in \mathbb{R}_+$. Posons $x = \sqrt{y}$. On a bien $x \in \mathbb{R}$ et $f_4(x) = f_4(\sqrt{y}) = (\sqrt{y})^2 = y$.
- f_4 est donc bijective.

Remarque : Le changement des ensembles de départ et d'arrivée d'une application modifie ses propriétés (injectivité, surjectivité, ...)

Proposition

Soit $f \in \mathcal{F}(E, F)$. On a l'équivalence :

f bijective si et seulement si f est injective et surjective.

Méthode:

Pour montrer qu'une application est :

• injective, le modèle de rédaction est :

Soit $(x, y) \in E^2$.

Supposons f(x) = f(y)

...

Donc x = v.

Ainsi f est injective.

• surjective, le modèle de rédaction est :

Soit $y \in F$.

Posons $x = \cdot$.

Alors $x \in E$ (car...) et y = f(x) (car...).

Ainsi, f est surjective.

• bijective, on pourra raisonner en deux étapes en montrant l'injectivité et la surjectivité.

Proposition

Soient $f: E \to F$ et $g: F \to G$.

- Si f et g sont injectives, alors $g \circ f$ est injective.
- Si f et g sont surjectives, alors $g \circ f$ est surjective.
- Si f et g sont bijectives, alors $g \circ f$ est bijective.

Démonstration. • Supposons f et g injective. Soit $(x, x') \in E^2$. Supposons $(g \circ f)(x) = (g \circ f)(x')$. Alors, g(f(x)) = g(f(x')) donc f(x) = f(x') (car g est injective) puis x = x' (car f est injective). Ainsi, $g \circ f$ est injective.

- Soit $z \in G$. Comme g est surjective, il existe $y \in F$ tel que g(y) = z. Comme f est surjective, il existe $x \in E$ tel que y = f(x). Ainsi $z = g(y) = g(f(x)) = (g \circ f)(x)$ et $g \circ f$ est surjective.
- Supposons f et g bijective. Alors f et g sont injectives et surjectives. Ainsi, $g \circ f$ est injective par le premier point, surjective par le second, donc bijective.

Définition

Soit $f: E \to F$ une application bijective, on appelle réciproque de f et on note f^{-1} l'application de F dans E qui à tout élément $y \in F$ associe son unique antécédent par f. Par définition, on a :

$$\forall (x, y) \in E \times F, \ y = f(x) \Longleftrightarrow x = f^{-1}(y).$$

Remarque: \bigwedge On ne peut considérer f^{-1} que si f est bijective!

Voici la représentation d'une application bijective et de sa bijection réciproque :

Proposition

Soit $f: E \to F$ une application bijective. Alors :

$$f \circ f^{-1} = Id_F$$
 et $f^{-1} \circ f = Id_E$.

(h) Représentation de f

(i) Représentation de f^{-1}

Démonstration. $f \circ f^{-1}$ et Id_F ont même ensemble de départ F, même ensemble d'arrivée F.

Soit $y \in F$, $f^{-1}(y)$ est par définition l'antécédent de y par \hat{f} , ainsi $(f \circ f^{-1})(y) = y$.

Donc : $f \circ f^{-1} = Id_F$.

 $f^{-1} \circ f$ et Id_E ont même ensemble de départ E, même ensemble d'arrivée F.

Soit $x \in E$, f(x) admet par f un unique antécédente qui est x. Ainsi, $(f^{-1} \circ f)(x) = x$.

Donc, $f^{-1} \circ f = Id_E$

Proposition : Caractérisation de la bijection réciproque

Soit $f: E \to F$. On a l'équivalence :

$$f$$
 est bijective de E dans $F \iff \exists g \in \mathscr{F}(F, E), \left\{ \begin{array}{l} g \circ f = Id_E \\ f \circ g = Id_F \end{array} \right.$

Dans ce cas, l'application g est unique et $g = f^{-1}$.

Démonstration. • Supposons f est bijective alors f^{-1} convient d'après la proposition précédente.

• Réciproquement, supposons qu'il existe $g: F \to E$ telle que $g \circ f = Id_E$ et $f \circ g = Id_F$.

Montrons que f est injective. Soit $(x, x') \in E$, supposons f(x) = f(x'). Alors, g(f(x)) = g(f(x')) d'où x = x'.

Ainsi, f est injective.

Montrons que f est surjective.

Soit $y \in F$. On a f(g(y)) = y et $g(y) \in E$.

Ainsi, f est surjective.

f est donc bijective.

$$f^{-1}=f^{-1}\circ Id_F=f^{-1}\circ (f\circ g)=(f^{-1}\circ f)\circ g=Id_E\circ g=g.$$

Donc g est unique et $g = f^{-1}$.

Exemple : Les fonctions carrée $\begin{cases} f: \mathbb{R}_+ \to \mathbb{R}_+ \\ x \mapsto x^2 \end{cases}$ et racine carrée $\begin{cases} g: \mathbb{R}_+ \to \mathbb{R}_+ \\ x \mapsto \sqrt{x} \end{cases}$ sont bijectives et réciproques l'une de l'autre. En effet :

$$\forall x \in \mathbb{R}_+, (f \circ g)(x) = (\sqrt{x})^2 = x$$
 et $\forall x \in \mathbb{R}_+, (g \circ f)(x) = \sqrt{x^2} = x$.

Corollaire

- Si $f: E \to F$ est bijective, alors $f^{-1}: F \to E$ est bijective et $(f^{-1})^{-1} = f$.
- Si $f: E \to F$ et $g: F \to G$ sont bijectives, alors $g \circ f: E \to G$ est une bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Démonstration. • On a $f \circ f^{-1} = Id_F$ et $f^{-1} \circ f = Id_E$ donc $f^{-1} : F \to E$ est bijective et $(f^{-1})^{-1} = f$.

• On a $(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ Id_F \circ f = f^{-1} \circ f = Id_E$, et de même $(g \circ f) \circ (f^{-1} \circ g^{-1}) = Id_G$. Ainsi $g \circ f$ et $f^{-1} \circ g^{-1}$ sont bijectives, réciproques l'une de l'autre.

3 Relation d'équivalence

Dans toute cette partie E désigne un ensemble quelconque.

Définition

On appelle **relation binaire** \mathcal{R} sur E, la donnée d'une partie \mathcal{P} de $E \times E$. On dit que x en relation avec y et on note xRy ssi $(x,y) \in \mathcal{P}$.

Exemple:

- Dans \mathbb{R} , on a rencontré les relations binaire : \leq , =, $\equiv [2\pi]$
- Dans $\mathcal{P}(E)$, on a rencontré l'inclusion \subset .

Définition

On dit qu'une relation binaire $\mathcal R$ sur E est une relation d'équivalence sur E si :

- R est réflexive : $\forall x \in E, x \Re x$.
- R est symétrique : $\forall (x, y) \in E^2$, $x \Re y \Longrightarrow y \Re x$.
- R est transitive : $\forall (x, y, z) \in E^3$, $(x \mathcal{R} y \text{ et } y \mathcal{R} z) \Longrightarrow x \mathcal{R} z$.

Exemple:

- L'égalité = est une relation d'équivalence sur tout ensemble E.
 En général, l'appartenance ∈ ou l'inclusion ⊂ ne sont pas des relations d'équivalence (non symétriques).
- La congruence ($\equiv [2\pi]$) est une relation d'équivalence sur \mathbb{R} .

Rappel : Pour tout $x, y \in \mathbb{R}$, on dit que $x \equiv y \ [2\pi]$ s'il existe $k \in \mathbb{Z}$ tel que $x = y + 2k\pi$.

Soit $x \in \mathbb{R}$, $x = x + 0 \times 2\pi$, donc $x \equiv x \ [2\pi]$, donc $\equiv \ [2\pi]$ est réflexive.

Soient $(x, y) \in \mathbb{R}^2$ tels que $x \equiv y \ [2\pi]$. Alors il existe $k \in \mathbb{Z}$ tel que $x = y + 2k\pi$ d'où $y = x - 2k\pi = x + 2(-k)\pi$ avec $-k \in \mathbb{Z}$, donc $y \equiv x \ [2\pi]$ et $\equiv \ [2\pi]$ est symétrique.

Soient $(x, y, z) \in \mathbb{R}^3$ tels que $x \equiv y$ [2 π] et $y \equiv z$ [2 π]. Alors, il existe $(k, l) \in \mathbb{Z}^2$ tel que $x = y + 2k\pi$ et $y = z + 2l\pi$. Alors $x = y + 2k\pi = z + 2(k + l)\pi$, avec $k + l \in \mathbb{Z}$, donc $x \equiv z$ [2 π] et $z = [2\pi]$ est transitive.

En conclusion, la congruence modulo 2π ($\equiv [2\pi]$) est bien une relation d'équivalence sur \mathbb{R} .

Définition

Soit \mathcal{R} une relation d'équivalence sur E et $x \in E$. On appelle classe d'équivalence de x pour la relation R et on note $cl_{\mathcal{R}}(x)$, l'ensemble constitué des éléments $y \in E$ en relation avec x. Autrement dit :

$$cl_{\mathcal{R}}(x) = \{ y \in E, \ y \mathcal{R} x \}.$$

Si $y \in cl_{\mathcal{R}}x$, on dit que y est un représentant de $cl_{\mathcal{R}}x$.

Exemple:

- Pour la relation d'égalité =, la classe d'équivalence de x est $\{x\}$.
- Pour la relation de congruence $\equiv [2\pi]$ sur \mathbb{R} , la classe d'équivalence de x est $\{x + 2k\pi, k \in \mathbb{Z}\}$.