

Effect of Alignment Systematics on High Di-Muon Mass (This analysis is still rather rough)

Jim Pivarski, Alexei Safonov

Texas A&M University

1 October, 2007

Figure of merit for a good alignment

- ▶ I have been using accuracy as a figure of merit: RMS and core fit of residual misalignment after an alignment process
- ▶ But there is a different accuracy for each degree of freedom

▶ and distributions can sometimes be non-Gaussian

- ▶ How important are e.g. ϕ_x and y relative to x?
- ▶ How important are tail contributions relative to core width?
- ▶ ⇒ look at consequences for physics

Dependence on integrated luminosity: Z, Z' resolution

ightharpoonup Muon alignment only influences $\sim \! 100$ GeV muons in standalone mode: I'll focus on $\sim 1000 \text{ GeV}$

Drell-Yan and Z' at 1 TeV

2.5 pb⁻¹ and 25 pb⁻¹ muon alignments have ideal tracker

10 pb⁻¹ tracker alignment is the standard scenario with ideal muon alignment

tracker + muon has both misaligned: muon alignment has small systematic errors from tracker \rightarrow muon track extrapolation

Drell-Yan and Z' at 2 TeV

2.5 pb⁻¹ and 25 pb⁻¹ muon alignments have ideal tracker

10 pb⁻¹ tracker alignment is the standard scenario with ideal muon alignment

 $tracker + muon has both misaligned: muon alignment has small systematic errors from <math>tracker \rightarrow muon track extrapolation$

What's surprising to me: not much Drell-Yan smearing

- ▶ Drell-Yan is exponentially distributed: $f(x) = e^{-kx}$
- ► Convoluted: $f(y) = \int f(x) \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(x-y)^2}{2\sigma^2}\right) dx$
- $f(y) = e^{-ky} \exp(\sigma^2 k^2/2)$
- Convolution kernel is a series: $A_1 e^{x^2/2/\sigma_1^2} + A_2 e^{x^2/2/\sigma_2^2} + \dots$ ("tails" are wide Gaussians with small contribution)
- $f(y) = e^{-ky} (A_1 \exp(\sigma_1^2 k^2/2) + A_2 \exp(\sigma_2^2 k^2/2) + \ldots)$
- ▶ Depends linearly on A_i and as $e^{\sigma_i^2}$ on width: could be big!

What's surprising to me: not much Drell-Yan smearing

- ▶ Drell-Yan is exponentially distributed: $f(x) = e^{-kx}$
- ► Convoluted: $f(y) = \int f(x) \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(x-y)^2}{2\sigma^2}\right) dx$
- $f(y) = e^{-ky} \exp(\sigma^2 k^2/2)$
- Convolution kernel is a series: $A_1 e^{x^2/2/\sigma_1^2} + A_2 e^{x^2/2/\sigma_2^2} + \dots$ ("tails" are wide Gaussians with small contribution)
- $f(y) = e^{-ky} (A_1 \exp(\sigma_1^2 k^2/2) + A_2 \exp(\sigma_2^2 k^2/2) + \dots)$
- ▶ Depends linearly on A_i and as $e^{\sigma_i^2}$ on width: could be big!
- Fit Drell-Yan distributions: $k = 6 \times 10^{-3}/\text{GeV} \text{ (near 1 TeV)}$ and $3.4 \times 10^{-3}/\text{GeV} \text{ (near 2 TeV)}$
- What's σ ?

Worst case: tracker + muon misalignment

Sample	Central σ	$e^{\sigma^2 k^2/2}$	
Near 1 TeV	52 GeV	1.05	
Near 2 TeV	115 GeV	1.08	

A Gaussian twice as wide would be down by a factor of ~ 10 :

Sample	Tail σ	$e^{\sigma^2 k^2/2}$	
Near 1 TeV	100 GeV	1.21	
Near 2 TeV	230 GeV	1.36	

$$0.9 \times 1.08 + 0.1 \times 1.36 = 1.11$$

Worse than worst case: $2 \times \text{tracker} + \text{muon misalignment}$

Estimates of Gaussian series

A_i	Width	$A_i e^{\sigma_i^2 k^2/2}$
0.9	100 GeV	1.08
0.1	200 GeV	0.21
0.01	300 GeV	0.05
		1.34

Estimates of Gaussian series

A_i	Width	$A_i e^{\sigma_i^2 k^2/2}$
0.9	205 GeV	1.15
0.1	300 GeV	0.07
0.01	400 GeV	0.03
		1 25

Conclusions for Drell-Yan smearing

- ▶ Not as bad as I imagined: smallness of k wins over σ
- ▶ I need a better way to fit double-, triple-, or NIe-Gaussians
- or maybe an expansion series, like Taylor or Fourier (I couldn't find one)
- ► There must be a threshold where $A_i e^{\sigma_i^2 k^2/2}$ explodes: how close are we to that threshold?

Event-by-event effect of alignment

Helps to express effect more quantitatively

misaligned di-muon mass RMS of event-by-event ideal di-muon mass

Source of alignment	Z'(1000)	Z'(2000)	DY(1000)	DY(2000)	
1 k μ $(0.25~{ m pb}^{-1})$	6.0%	5.5%	4.8%	6.6%	
10 k μ (2.5 pb $^{-1}$)	1.8%	1.7%	1.6%	2.1%	
100k μ (25 pb $^{-1}$)	1.2%	1.1%	1.0%	1.3%	
325k μ (82 pb $^{-1}$)	1.0%	1.0%	0.7%	1.2%	
high $ \vec{p} $ (> 60 GeV)	1.0%	1.0%	0.8%	1.2%	
low $ \vec{p} $ (20–60 GeV)	1.7%	1.7%	1.5%	2.1%	

[&]quot;Restricting to high $|\vec{p}|$ is like getting a factor of ten more tracks"

Not shown at EMU: effect of tracker misalign at high η

Outer endcap (1/3,2/2, 3/2) only widens

But inner endcap (1/2,N/1) gets more outliers

May need to apply standalone procedure to these, if tracker is bad

Tracker systematic

RMS of $\frac{\text{tracker and muon misaligned di-muon mass}}{\text{tracker misaligned di-muon mass}}$

	Z'(1000)	Z'(2000)	DY(1000)	DY(2000)
Both μ 's in $ \eta < 1.6$	0.7%	0.9%	0.5%	1.0%
One in $ \eta >1.6$	1.8%	1.5%	1.3%	2.0%

Conclusions

- ▶ In even the worst sample alignments, the tails in the accuracy distribution (outlier chambers) are not large enough to significantly smear the Drell-Yan distribution. (As a background to high-mass resonances, they are only increased by tens of percent by alignment.)
- ► The second moment of the distribution (RMS) matters most: Z' peaks are deflated by about a factor of 2.
- ► Careful! I'm comparing muon alignment output (realistic) with tracker alignment scenario (possibly pessimistic).
- ► Standalone muon analysis would be cleaner, but less relevant to physics goals
- Perhaps I should look at a less digested distribution: event-by-event smearing of individual tracks as a function of momentum. I'd still have to detangle tracker misalignment effects from muon misalignment effects.