o-Minimality and its Variations

Vagios Vlachos

Graduate Program in Logic and Theory of Algorithms and Computation

2014

o-Minimality

Assumptions

- $\mathcal{M} = (M, <, ...)$
- < is dense, linear, without endpoints
- definability with parameters

Definition

The structure \mathcal{M} is called *o-minimal* if every definable subset of M is a finite union of singletons and open intervals with endpoints in $M_{\infty} := M \cup \{-\infty, +\infty\}.$

A theory T is called *o-minimal* if every model \mathcal{M} of T is o-minimal.

o-Minimality

The class of o-minimal structures is,

- closed under reducts (if < still remains in the language)
- closed under expansions by constants

Some o-minimal structures

- \bullet $(\mathbb{Q},<)$
- \bullet $(\mathbb{Q},<,+)$
- $\mathcal{R} = (\mathbb{R}, <, +, -, \cdot, 0, 1)$

$(\mathbb{Q}, <, +, \cdot, 0, 1)$ is not o-minimal

The infinite discrete set of perfect squares is definable.

Monotonicity and Finiteness

Monotonicity Theorem [Pillay & Steinhorn, 1986]

Let \mathcal{M} be an o-minimal structure and $f:(a,b) \to M$ be a definable function with domain (a,b) (possibly $a=-\infty$ or $b=+\infty$). Then, there are points $a=a_0 < a_1 < \cdots < a_{k+1}$ s.t. for each $j=0,\ldots,k,$ $f|_{(a_j,a_{j+1})}$ is either,

- constant, or
- a strictly monotonic and continuous bijection to an interval.

Finiteness Lemma [Knight et al., 1986]

Let $A \subseteq M^2$ be definable and suppose that for each $x \in M$ the fiber $A_x := \{y \in M | (x,y) \in A\}$ is finite. Then there is $N < \omega$ s.t. $|A_x| \leq N$ for all $x \in M$.

Corollary

Let $f:(a,b)\to M$ be definable and continuous. Then f takes a maximum and minimum value on [a,b].

Exchange Principle [Pillay & Steinhorn, 1986]

Let \mathcal{M} be o-minimal. Let $b, c, a_1, \ldots, a_n \in \mathcal{M}$. If b is definable over c, a_1, \ldots, a_n , and b is not definable over a_1, \ldots, a_n , then c is definable over b, a_1, \ldots, a_n .

Motivation

Question

What happens with the definable subsets of M^n ?

Notation

Given a definable $X \subseteq M^n$

- $C(X) := \{f : X \to M | f \text{ is definable and continuous} \}$
- $C_{\infty}(X) := C(X) \cup \{-\infty, +\infty\}$
- for $f, g \in C_{\infty}(X)$ s.t. $(\forall \bar{x} \in X)(f(\bar{x}) < g(\bar{x}))$ then

$$(f,g)_X := \{(\bar{x},y) \in X \times M | f(\bar{x}) < y < g(\bar{x})\}$$

Cells

Let (i_1, \ldots, i_n) be a binary sequence. Then a (i_1, \ldots, i_n) -cell is a definable subset of M^n defined as follows,

- a (0)-cell is a singleton
- a (1)-cell is an open interval

Suppose that we have defined (i_1, \ldots, i_{n-1}) -cells, then

Cells

Let (i_1, \ldots, i_n) be a binary sequence. Then a (i_1, \ldots, i_n) -cell is a definable subset of M^n defined as follows,

- a (0)-cell is a singleton
- a (1)-cell is an open interval

Suppose that we have defined (i_1, \ldots, i_{n-1}) -cells, then

• a $(i_1, \ldots, i_{n-1}, 0)$ -cell is the graph of some $f \in C(X)$, where X is a (i_1, \ldots, i_{n-1}) -cell

Cells

Let (i_1, \ldots, i_n) be a binary sequence. Then a (i_1, \ldots, i_n) -cell is a definable subset of M^n defined as follows,

- a (0)-cell is a singleton
- a (1)-cell is an open interval

Suppose that we have defined (i_1, \ldots, i_{n-1}) -cells, then

- a $(i_1, \ldots, i_{n-1}, 0)$ -cell is the graph of some $f \in C(X)$, where X is a (i_1, \ldots, i_{n-1}) -cell
- a $(i_1, \ldots, i_{n-1}, 1)$ -cell is the set $(f, g)_X$ where X is a (i_1, \ldots, i_{n-1}) -cell and $f, g \in C_{\infty}(X)$

Decompositions

A decomposition of M^n is a partition of M^n into finitely many cells. It is defined recursively.

• A decomposition of M is a collection,

$$\{(-\infty, a_1), (a_1, a_2), \dots, (a_k, +\infty), \{a_1\}, \dots, \{a_k\}\}$$

where $a_1 < \ldots < a_k$ are points in M;

• a decomposition of M^{n+1} is a finite partition of M^{n+1} into cells C s.t. the set of projections $\pi(C)$ is a decomposition of M^n .

A decomposition \mathcal{D} of M^n is said to partition a set $S \subseteq M^n$ if S is a union of cells in \mathcal{D} .

Cell Decomposition Theorem

Uniform Finiteness Property [Knight et al., 1986]

Let $Y \subseteq M^{n+1}$ be definable and also for every $\bar{x} \in M^n$,

$$Y_{\bar{x}} := \{ r \in M | (\bar{x}, r) \in Y \}$$

is finite. Then there exists $N < \omega$ s.t. $Y_{\bar{x}} \leq N$ for all $\bar{x} \in M^n$.

Cell Decomposition Theorem [Knight et al., 1986]

- Given any definable sets $A_1, \ldots, A_k \subseteq M^n$ there is a decomposition of M^n partitioning each of A_1, \ldots, A_k .
- ② For each definable function $f: A \to M$, $A \subseteq M^n$, there is a decomposition \mathcal{D} of M^n partitioning A s.t. the restriction $f|B: B \to M$ to each cell $B \in \mathcal{D}$ with $B \subseteq A$ is continuous.

Theorem [Knight et al., 1986]

If \mathcal{M} is an o-minimal structure, then $\mathrm{Th}(\mathcal{M})$ is an o-minimal theory.

We will show that if $\mathcal{N} \equiv \mathcal{M}$ then \mathcal{N} is o-minimal.

Theorem [Knight et al., 1986]

If \mathcal{M} is an o-minimal structure, then $\mathrm{Th}(\mathcal{M})$ is an o-minimal theory.

We will show that if $\mathcal{N} \equiv \mathcal{M}$ then \mathcal{N} is o-minimal.

Let $\phi(x_1,\ldots,x_m,y)$ be a formula.

By o-minimality for all $\bar{a} \in M^m$ the set,

$$\phi(\bar{a}, y)^M := \{ y \in M | \mathcal{M} \vDash \phi(\bar{a}, y) \}$$

is finite union of singletons and intervals. Consider now $\psi(\bar{x},z)$ s.t.

$$\psi(\bar{x}, z)^M := \{ (\bar{x}, z) | z \in \mathrm{bd}(y | \mathcal{M} \vDash \phi(\bar{x}, y)) \}$$

Theorem [Knight et al., 1986]

If \mathcal{M} is an o-minimal structure, then $\mathrm{Th}(\mathcal{M})$ is an o-minimal theory.

We will show that if $\mathcal{N} \equiv \mathcal{M}$ then \mathcal{N} is o-minimal.

Let $\phi(x_1,\ldots,x_m,y)$ be a formula.

By o-minimality for all $\bar{a} \in M^m$ the set,

$$\phi(\bar{a}, y)^M := \{ y \in M | \mathcal{M} \vDash \phi(\bar{a}, y) \}$$

is finite union of singletons and intervals. Consider now $\psi(\bar{x},z)$ s.t.

$$\psi(\bar{x}, z)^M := \{(\bar{x}, z) | z \in \mathrm{bd}(y | \mathcal{M} \vDash \phi(\bar{x}, y))\}$$

- ★ boundary is definable
- \star boundary is finite for definable subsets of M
- $\star \psi$ is finite over M^m

Theorem [Knight et al., 1986]

If \mathcal{M} is an o-minimal structure, then $\mathrm{Th}(\mathcal{M})$ is an o-minimal theory.

We will show that if $\mathcal{N} \equiv \mathcal{M}$ then \mathcal{N} is o-minimal.

By UFP, $\psi(\bar{x}, z)$ will be uniformly finite over M^m .

Thus for some $\kappa < \omega$ we have that,

$$\mathcal{M} \vDash (\forall \bar{x})(\{y|\phi(\bar{x},y)\} \text{ has at most } \kappa \text{ boundary points})$$

Therefore for any $\mathcal{N} \equiv \mathcal{M}$ and \bar{a} , $\phi(\bar{a}, y)^N$ has finite boundary points and so it will be a finite union of points and intervals.

Prime models

Definition

Let $\mathcal{M} \models T$ and $A \subseteq \mathcal{M}$. \mathcal{M} is said to be *prime over* A if for any $\mathcal{M}' \models T$ with $A \subseteq \mathcal{M}'$, there is an elementary mapping $f : \mathcal{M} \to \mathcal{M}'$ that is identity on A.

Theorem [Pillay & Steinhorn, 1986]

Let $A \subseteq \mathcal{M} \models T$, where T is an o-minimal theory. Then there is an a model $\mathcal{M}' \models T$, $A \subseteq \mathcal{M}'$ that is prime over A, and is unique up to isomorphism over A.

Ressayre's Theorem

Definition

Let \mathcal{M} be an L-structure and let $A \subseteq M$. Let δ be an ordinal and $(a_{\alpha} : \alpha < \delta)$ be a sequence of elements from M. Let $A_{\alpha} = A \cup \{a_{\beta} : \beta < \alpha\}$. We call $(a_{\alpha} : \alpha < \delta)$ a construction over A if $\operatorname{tp}(a_{\alpha}/A_{\alpha})$ is isolated for all $\alpha < \delta$.

Theorem [Ressayre]

Suppose that $A \subseteq \mathbb{M}$, $\mathcal{M} \prec \mathbb{M}$, $\mathcal{N} \prec \mathbb{M}$, and \mathcal{M} and \mathcal{N} are constructible over A. Then the identity map on A extends to an isomorphism between \mathcal{M} and \mathcal{N} .

Let $\mathcal{M} \models T$. Let $p(x) \in S_1(M)$. We say that p(x) is a *cut* over \mathcal{M} iff there are non empty disjoint subsets C_0 and C_1 of M, s.t. $C_0 \cup C_1 = M$, C_0 has no greatest element, C_1 has no least element, for all $c \in C_0$, "c < x" $\in p(x)$, and for all $c \in C_1$, "x < c" $\in p(x)$. If p(x) is not isolated and is not a cut, we call p(x) a *noncut*.

Let $\mathcal{M} \models T$. Let $p(x) \in S_1(M)$. We say that p(x) is a *cut* over \mathcal{M} iff there are non empty disjoint subsets C_0 and C_1 of M, s.t.

 $C_0 \cup C_1 = M$, C_0 has no greatest element, C_1 has no least element, for all $c \in C_0$, "c < x" $\in p(x)$, and for all $c \in C_1$, "x < c" $\in p(x)$.

If p(x) is not isolated and is not a cut, we call p(x) a noncut.

Example

Let $\tilde{\mathbb{Q}}$ be the field of real algebraic numbers. We know that $\pi \in \mathbb{R} \setminus \tilde{\mathbb{Q}}$, so $\operatorname{tp}(\pi, \tilde{\mathbb{Q}})$ is a cut.

If t is an infinite hyperreal or t is infinitesimally close to an element of $\tilde{\mathbb{Q}}$, then $\operatorname{tp}(t,\tilde{\mathbb{Q}})$ is a noncut.

Let $\mathcal{M} \models T$. Let $p(x) \in S_1(M)$. We say that p(x) is a *cut* over \mathcal{M} iff there are non empty disjoint subsets C_0 and C_1 of M, s.t.

 $C_0 \cup C_1 = M$, C_0 has no greatest element, C_1 has no least element, for all $c \in C_0$, "c < x" $\in p(x)$, and for all $c \in C_1$, "x < c" $\in p(x)$.

If p(x) is not isolated and is not a cut, we call p(x) a noncut.

Example

Let $\tilde{\mathbb{Q}}$ be the field of real algebraic numbers. We know that $\pi \in \mathbb{R} \setminus \tilde{\mathbb{Q}}$, so $\operatorname{tp}(\pi, \tilde{\mathbb{Q}})$ is a cut.

If t is an infinite hyperreal or t is infinitesimally close to an element of $\tilde{\mathbb{Q}}$, then $\operatorname{tp}(t,\tilde{\mathbb{Q}})$ is a noncut.

Let $\mathcal{M} \models T$. Let $p(x) \in S_1(M)$. We say that p(x) is a *cut* over \mathcal{M} iff there are non empty disjoint subsets C_0 and C_1 of M, s.t.

 $C_0 \cup C_1 = M$, C_0 has no greatest element, C_1 has no least element, for all $c \in C_0$, "c < x" $\in p(x)$, and for all $c \in C_1$, "x < c" $\in p(x)$.

If p(x) is not isolated and is not a cut, we call p(x) a noncut.

Example

Let $\tilde{\mathbb{Q}}$ be the field of real algebraic numbers. We know that $\pi \in \mathbb{R} \setminus \tilde{\mathbb{Q}}$, so $\operatorname{tp}(\pi, \tilde{\mathbb{Q}})$ is a cut.

If t is an infinite hyperreal or t is infinitesimally close to an element of $\tilde{\mathbb{Q}}$, then $\operatorname{tp}(t,\tilde{\mathbb{Q}})$ is a noncut.

Let $\mathcal{M} \models T$, where T is an o-minimal theory.

Theorem [Marker, 1986]

Let $\sigma(x) \in S_1(M)$ be a cut. Let $\tau(x) \in S_1(M)$ be a noncut, and b be a realization of $\tau(x)$. Then $\sigma(x)$ is omitted in $P(\mathcal{M} \cup \{b\})$.

Theorem [Marker, 1986]

Let $\tau(x) \in S_1(M)$ be a noncut. Let $\sigma(x) \in S_1(M)$ be a cut, and b be a realization of $\sigma(x)$. Then $\tau(x)$ is omitted in $P(\mathcal{M} \cup \{b\})$.

Let $\mathcal{M} \models T$, where T is an o-minimal theory.

Theorem [Marker, 1986]

Let $\sigma(x) \in S_1(M)$ be a cut. Let $\tau(x) \in S_1(M)$ be a noncut, and b be a realization of $\tau(x)$. Then $\sigma(x)$ is omitted in $P(\mathcal{M} \cup \{b\})$.

Theorem [Marker, 1986]

Let $\tau(x) \in S_1(M)$ be a noncut. Let $\sigma(x) \in S_1(M)$ be a cut, and b be a realization of $\sigma(x)$. Then $\tau(x)$ is omitted in $P(\mathcal{M} \cup \{b\})$.

Theorem [Pillay & Steinhorn, 1986]

Let \mathcal{M} be a linearly ordered structure. Then \mathcal{M} is o-minimal iff for any cut C in \mathcal{M} , there is a unique complete one-type with parameters from \mathcal{M} which extends C.

Ordered Groups and Fields

Theorem [Pillay & Steinhorn, 1986]

Let $\mathcal{G} = (G, +, 0, <)$ be an o-minimal ordered group. Then \mathcal{G} is a divisible oredered abelian group.

Reminder

An abelian group G is divisible if, for every positive integer n and every $g \in G$, there exists $y \in G$ such that ny = g.

Theorem [Pillay & Steinhorn, 1986]

Let $\mathcal{R} = (R, +, \cdot, 1, <)$ be an o-minimal ordered ring. Then \mathcal{R} is a real closed field.

Reminder

A field F is real closed if it is elementarily equivalent to \mathbb{R} .

Trichotomy Theorem

Question

Is there a sense in which an o-minimal structure is either "trivial", or group-like, or field-like?

Any answer to this has to be "local".

Trichotomy Theorem

Question

Is there a sense in which an o-minimal structure is either "trivial", or group-like, or field-like?

Any answer to this has to be "local".

Example

- \bullet L is carrying the structure of a pure dense linear order
- ullet M is carrying the structure of a divisible abelian ordered group
- R is carrying the structure of a real closed field

Trichotomy Theorem

Trichotomy Theorem [Peterzil & Starchenko, 1998]

Let \mathcal{M} be a sufficiently saturated o-minimal structure. Given an $a \in M$ one and only one of the following holds,

- a is trivial,
- the structure that \mathcal{M} induces on some convex neighborhood of a is an ordered vector space over an ordered division ring.
- the structure that \mathcal{M} induces over some open interval around a is an o-minimal expansion of a real closed field.

Weakly o-minimal structures

Let $\mathcal{M} = (M, <, ...)$ be a linearly ordered structure.

Definition

A set $C \subseteq M$ is called convex, if for any $a,b \in C$ with a < b, and $c \in M$ such that a < c < b, then $c \in C$.

Definition

A structure \mathcal{M} will be called *weakly o-minimal*, if the definable subsets of \mathcal{M} are finite unions of convex sets in (M,<).

We say that a complete theory T is weakly o-minimal if every model of T is weakly o-minimal.

Theorem

Expanding an o-minimal structure with unary predicates for convex subsets yields a structure with weakly o-minimal theory.

Monotonicity

Let $\mathcal{M} = (M, <, P, Q, f)$ such that.

- M is the disjoint union of the interpretations of the unary relations P and Q
- P is the interpretation of \mathbb{Q} with the usual order
- Q is the interpretation of $\mathbb{Q} \times \mathbb{Q}$, lexicographically ordered
- P precedes Q in < on M
- $f: Q \to P, f((n,m)) = n \text{ for all } n, m \in \mathbb{Q}$

M is weakly o-minimal and also $Th(\mathcal{M})$ is weakly o-minimal.

Monotonicity

Weakly o-minimal structures

- ★ We have a local monotonicity theorem. [Arefiev, 1997]
- ★ Weakly o-minimal structures do not neccessarily have weakly o-minimal theory.
- ★ Weakly o-minimal structures do not neccessarily have prime models.

Theorem [Macpherson $et\ al.$, 2000]

Every weakly o-minimal ordered group is divisible and abelian.

Theorem [Macpherson $et\ al.$, 2000]

Every weakly o-minimal ordered field is real closed.

A definition for minimality

Let $L \subset L^+$ be languages, and \mathcal{K} be an elementary class of L-structures.

Definition [Macpherson & Steinhorn, 1996]

An L^+ -structure \mathcal{M} is \mathcal{K} -minimal if the reduct $\mathcal{M}|_L$ is in \mathcal{K} and every L^+ -definable subset of M is definable by a quantifier-free L-formula. A complete L^+ -theory is \mathcal{K} -minimal if all its models are \mathcal{K} -minimal.

- ★ o-minimality is a special case of the above definition but not weak o-minimality.
- \star \mathcal{K} -minimality is closed under reducts to languages containing L, and under expansion by constants.

C-minimality

Let C(x; y, z) be a ternary realation, $L = \{C\}$, and \mathcal{K}_C be the class of L-structures satisfying the following axioms.

- $(\forall xyz)[C(x;y,z) \to C(x;z,y)]$
- $(\forall xyz)[C(x;y,z) \to C(y;x,z)]$
- $\bullet \ (\forall xyzw)[C(x;y,z) \to (C(w;y,z) \vee C(x;w,z))]$
- $(\forall xy)[x \neq y \rightarrow (\exists z \neq y)C(x; y, z)]$
- $\bullet \ (\exists xy)(x \neq y)$

Definition

A structure $\mathcal{M} = (M, C, ...)$ is C-minimal if its theory is \mathcal{K}_C -minimal.

P-minimality

Definition

Let $L = (+, -, \cdot, 0, 1, (P_n)_{n>1})$, where P_n are unary predicates. Regard \mathbb{Q}_p as an L-structure, letting P_n picking the n^{th} powers in \mathbf{Q}_p . Let \mathcal{K}_P be the class of L-structures elementarily equivalent to \mathbb{Q}_p . Then if $L^+ \supseteq L$, an L^+ -structure is P-minimal if all models of its theory are \mathcal{K}_P -minimal

Summary

	o-minimal	weakly	C-minimal	P-minimal
Monotonicity	1	local	√	✓
CDT	✓	✓	✓	iff it has Skolem functions ¹
Prime Model	✓	Х	Х	Х
Groups	DAG	DAG		
Fields	RCF	RCF	ACVF	
Exchange	✓	Х	X	✓
IP	\mathbf{X}^2	X3	χ^4	X ⁵

¹Mourgues [2009]

²Pillay & Steinhorn [1986]

³Macpherson *et al.* [2000]

⁴Macpherson & Steinhorn [1996]

⁵Haskell & Macpherson [1997]

References I

- Arefiev, Roman. 1997. On monotonicity for weakly o-minimal structures. *preprint*.
- Haskell, Deirdre, & Macpherson, Dugald. 1997. A version of o-minimality for the p-adics. The Journal of Symbolic Logic, 62(4), 1075–1092.
- Knight, Julia F, Pillay, Anand, & Steinhorn, Charles. 1986. Definable sets in ordered structures. II. Transactions of the American Mathematical Society, 295(2), 593–605.
- Macpherson, Dugald, & Steinhorn, Charles. 1996. On variants of o-minimality. Annals of Pure and Applied Logic, **79**(2), 165–209.
- Macpherson, Dugald, Marker, David, & Steinhorn, Charles. 2000. Weakly o-minimal structures and real closed fields. *Transactions of the American Mathematical Society*, **352**(12), 5435–5483.

References II

- Marker, David. 1986. Omitting types in o-minimal theories. *The Journal of Symbolic Logic*, **51**(1), 63–74.
- Mourgues, Marie-Hélène. 2009. Cell decomposition for P-minimal fields. *Mathematical Logic Quarterly*, **55**(5), 487–492.
- Peterzil, Ya'acov, & Starchenko, Sergei. 1998. A trichotomy theorem for o-minimal structures. *Proceedings of the London Mathematical Society*, **77**(3), 481–523.
- Pillay, Anand, & Steinhorn, Charles. 1986. Definable sets in ordered structures. I. *Transactions of the American Mathematical Society*, **295**(2), 565–592.