Vertex of the Quadratic

 $y_1 = -\frac{b}{2a}$ namely $j(y_1) = C - \frac{b^2}{4a}$ Now compute the same quadratic at $y_1 + h$, namely $j(y_1 + h) = -\frac{b^2}{4a} + ah^2 + c$

Given a quadratic $j(y) = a y^2 + b y + c$ compute its value at

 $j (y_1+h) = -\frac{b^2}{4a} + a h^2 + c$ Compute $\triangle = j (y_1+h) - j (y_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum!

Example 1. j (y) = 3 y² - 24 y - 45

-50

-100

-150