Introduction

- Quick introduction from the lecturers
- Who are we?
- What are the expectations from this course?
- Which skills would you like to gain at the end of this course?

MAT386E - Computational Data Science

Topics	Weeks
Data Science: Big data and project management	1
Machine learning: Linear Regression, Polinomial Regression	2
Machine learning: Classification	3
Machine learning: Clustering	4
Deep learning: Basic deep learning method and applications	5
Text Processing: What is NLP? NLP Techniques, Current	6
Technologies and Applications	O
Big Data Platforms: Architecture, Tools and frameworks	7
Data Storage	8
Data extraction, transformation and loading (ETL)	9
Batch Data Processing	10
Streaming Data Processing	11
Spark ML: Variable selection and transformation, regression,	12
clustering model evaluation	12
Data visualization & Scoring	13
Project Presentations	14

MAT386E, Computational Data Science - Grading

4 Homeworks: %30

1 Term Project: %30

1 Final Exam: %40

Attendance: Not Required

.....

Garanti BBVA Technology Coordinators:

Sena Tezcan — <u>senatezcan96@gmail.com</u> Musa Bayır — <u>bayirmusa45@gmail.com</u>

Textbook: Géron A., Hands-On Machine Learning with Scikit-Learn and TensorFlow, O'Reilly Media, Inc, 2017.

ITU Computational Data Science Week 1

Sep'23

Big Data & Advanced Analytics Unit

Providing advanced analytical solutions for business problems by using all available data sources

- Sales & Marketing Analytics
- Digital & Customer Analytics
- Process Analytics
- Natural Language, Image & Speech Processing
- Big Data Technologies

What is Data Science?

This document is confidential to Garanti BBVA Technology and should not be used and distributed without prior written consi

Data Scientist: Creating Knowledge & Wisdom

DIKW Pyramid:

Each step up,

- The pyramid adds value to the initial data
- Enrich data with context & meaning
- Answers questions
- Guide to make better decisions

Statistics, ML and Deep Learning

- 1- Show the reality captured via statistics
- 2- Generalize sample conclusions to the entire population and study the relationships between variables and compare hypotheses
- 3- Determine future data via historical data
- 4- Recommend the suitable action and its consequences

Al vs Machine Learning (ML) vs Deep Learning (DL)

- Al involves machines that can perform tasks that are characteristic of human intelligence» (John McCarthy)
 - General Al
 - Narrow Al
- **Machine learning** is a way of achieving AI. «The ability to learn without being explicitly programmed» (Arthur Samuel)
 - Supervised
 - Unsupervised
 - Reinforcement
- Machine learning uses algorithms to parse data, learn from that data, and make informed decisions based on what it has learned
- **Deep learning** is one of many approaches to machine learning
- Deep learning structures algorithms in layers to create an "artificial neural network" that can learn and make intelligent decisions on its own

Overview of ML Algorithms

Deep Learning Theory (DL)

- A subset of machine learning
- Inspired by the biology of human brain to make its own intelligent decisions
- A tool for achieving Artificial Intelligence fed by large amounts of data

Business Value:

- Natural language processing (text to speech, speech to text, language translation)
- Voice processing (virtual assistants Al robot interact with customers and gathering data about their behavior)
- Text processing (chat-bots or service-bots providing customer service on online banking)
- Image processing (face recognition, eye detection)
- Anomaly detection
- Recommendation engines

Generative Al

Application Landscape

Analytical Modeling Life Cycle & Roles

BO: Business Owner DS: Data Scientist DD: Data Developer

DS Modelling Platforms

SQL

- Oracle
 - Toad
 - Sql Developer
- Microsoft-SQL
- MySQL
- Postgre-SQL

Open-Sourced Products

- Python
 - Spyder
 - Pycharm
 - JupyterNotebooks
 - JupyterLab
- R
- R Studio
- Spark
 - Scala
 - PySpark
 - Java

Licensed Products

- SAS Enterprise Guide
- SAS Enterprise Miner
- SPSS
- Oracle Data Miner
- KNIME

Python Libraries

Core Libraries & Statistics

- Numpy
 - Scipy
- Pandas
- StatsModels
- SciPy SciPy

NumPv

Machine Learning

- Scikit-learn | learn
- Xgboost/LightGBM/CatBoost
- Eli5

Natural Language Processing

- NLTK
- spaCy SpaCy
- gensim Gensim

Visualization

- matpl tlib Matploblib
- Seaborn
- seaborn

plotly

- Plotly
 - Bokeh
- Pydot

Deep Learning

- Tensowflow
- Pytorch
- Keras
- K Keras

Distributed Deep Learning

- Dist-keras
- elephas
- Spark-deep-learning

Data Scraping

Scrapy

Data Governance

- Data Governance is the set of policies, processes, rules, roles and responsibilities of data.
- Being a data-driven company requires not only understanding or processing data but also managing them.
- Data Governance allows strategic decisions to be based on complete, high quality and reliable data.

Transparent

Reliable

Traceable

Accessible

Components of Data Governance

Data Content

Creating the content of the data with all functional (definition, owner, security, etc.) and technical (location, type, etc.) information

Data Quality

Ensuring that the data has the required quality, with the help of data quality tools.

Data Traceability

Documentation and monitoring of all processes from the origination of data to annihilation of data.

Data Accessibility

Ensuring the accessibility of data by all relevant teams in line with customer privacy and security / authorization procedures

What Business Goals Are Organizations Pursuing With Al

Enhance customer experience and engagement

Technology Skills Enable Use Case Imagination

				_			
Search	Sentiment	Detecting Credit Card Fraud	Spam Filtering for Email		Retail	 Segmentation, marketing, customer experience 	
			O				
Writing Recognition	Speech Understanding	Stock Analysis	Structural Health Monitoring		Automotive	 Computer vision in cabin and roadway 	
Syntactic Pattern							
Recognition	Topic Spotting	Weather Prediction	Face Detection		Logistics	 Automated packing, transportation, planning, safety improvement 	
Finance –		Software as a	Customer			planning, salety improvement	
Derivatives Trading	Game Playing	Service	Segmentation	on E			
					Healthcare	 Lifestyle management, drug discovery, 	
Machine Translation	Medical Diagnosis	Mood Analysis	Brain Machine Interface		Ticallicale	resource planning, patient experience	
Hansiauon			interface				
Optical Character Recognition	Recommen- dation Systems	Robot Locomotion	Advertising - Targeting		Medical	 Diagnoses, pharmaceutical optimization, computer vision 	
Bioinformatics	Automatic Word Completion	Classifying DNA Sequences	Computer Vision		Oil and Gas	 Increase production and to optimize costs 	

Source: https://www.zendesk.com/blog/machine-learning-and-deep-learning/

Use of Analytics in Different Business Areas

Data Science & Big Data

Are Big Data and Data Science the same thing?

- I wouldn't say so...
- Data Science can be done on small data sets.
- And not everything done using Big Data would necessarily be called Data Science.
- But there certainly is a substantial overlap!

♦ MEDALLIA X

CREDIT

TractableT

CXEVES Celect

Ø

KNOX

Big Data Components

Technological Comparison 2012 vs 2017

Online Educational Platforms

coursera

https://www.coursera.org/

kaggle

https://www.kaggle.com/

https://www.datacamp.com/

https://www.edx.org/

https://www.udemy.com/

https://colab.research.google.com/

https://machinelearningmastery.com/

https://online.stanford.edu/courses/cs221-artificial-intelligence-principles-and-techniques

Data Engineer? Data Developer? Big Data Engineer?

Data Engineer vs Software Engineer

Similar Skills, Different Professions

Data Engineer vs Data Scientist

Two pieces jigsaw

Big Data Engineer vs Data Scientist

Similar Skills, Different Professions

How to Start Your Career in Data Engineering

Before beginning

- Start this because you want to be a data engineer, not because it's popular
- Know yourself
- Do not need to know much, know that how to reach content you needed
- Do not stuck on which programming language is perfect.
- Avoid over engineering

After beginning

- Learn storage platforms
- Learn how to ingest and transform data
- Learn distributed systems and cloud
- Learn automation and scripting
- Keep yourself up to date

An Ordinary Day for Big Data Engineers

- Architecture knowhow usage in wide perspective
- Design
- Data manipulations
- Coding in different languages
- Maintenance & monitoring
- Integration & impact analysis
- Reverse engineering

Sample Big Data Ecosystem

