Chap 2. Arrays and Structures (2)

Contents

- 2.1 Arrays
- 2.2 Dynamically Allocated Array
- 2.3 Structures
- 2.4 Polynomials
- 2.5 Sparse Matrices

2.4 Polynomials

2.4.1 The Abstract Data Type

- Ordered list or linear list
 - an ordered set of data items

```
ex) Days-of-week

(Sun, Mon, Tue, Wed, Thu, Fri, Sat) : list

1st 2nd 3rd 4th 5th 6th 7th : order
```

- denote as ($item_0$, $item_1$, ..., $item_{n-1}$)
- empty list : ()
- operations on ordered list

```
i. find the length n
ii. read the items in a list from right to left (or left to right)
iii. retrieve ith item, 0 \le i < n
iv. replace ith item's value, 0 \le i < n
v. insert ith position, 0 \le i < n:
i, i+1, ..., n-1 \rightarrow i+1, i+2, ..., n
vi. delete ith item, 0 \le i < n:
i+1, ..., n-1 \rightarrow i, i+1, ..., n-2
```

Implementation of Ordered List

Array

- associate the list element, $item_i$, with the array index i
- sequential mapping
- retrieve, replace an item, or find the length of a list,
 in constant time
- problems in insertion and deletion
 - sequential mapping forces us to move items

Linked List

- Non-sequential mapping
- Chapter 4

A Problem Requiring Ordered Lists

Manipulation of symbolic polynomials

$$A(x) = 3x^{20} + 2x^5 + 4$$
, $B(x) = x^4 + 10x^3 + 3x^2 + 1$

degree : the largest exponent of a polynomial

When
$$A(x) = \sum a_i x^i$$
 and $B(x) = \sum b_i x^i$,
 $A(x) + B(x) = \sum (a_i + b_i) x^i$
 $A(x) B(x) = \sum (a_i x^i \sum (b_j x^j))$

 assumption: unique exponents arranged in decreasing order

ADT Polynomial is

objects: $p(x) = a_1 x^{e_1} + \cdots + a_n x^{e_n}$; a set of ordered pairs of $\langle e_i, a_i \rangle$ where a_i in Coefficients and e_i in Exponents, e_i are integers >= 0

functions:

for all poly, poly1, $poly2 \in Polynomial$, $coef \in Coefficients$, $expon \in Exponents$

Polynomial Zero() ::= return the polynomial,

p(x) = 0

Boolean IsZero(poly) ::= **if** (poly) **return** FALSE

else return TRUE

Coefficient Coef(poly,expon) ::= if $(expon \in poly)$ return its

coefficient else return zero

Exponent LeadExp(poly) ::= **return** the largest exponent in

poly

Polynomial Attach(poly, coef, expon) ::= if $(expon \in poly)$ return error

else return the polynomial *poly* with the term *<coef*, *expon>*

inserted

Polynomial Remove(poly, expon) ::= if $(expon \in poly)$

return the polynomial poly with

the term whose exponent is

expon deleted

else return error

Polynomial SingleMult(poly, coef, expon) ::= return the polynomial

 $poly \cdot coef \cdot x^{expon}$

Polynomial Add(poly1, poly2) ::= **return** the polynomial

poly1 + poly2

Polynomial Mult(poly1, poly2) ::= return the polynomial

poly1 · poly2

end Polynomial

2.4.2 Polynomial Representation

polynomial addition

$$D(x) = 0$$

$$A(x) = 2x^{1000} + 2x^{3}$$

$$B(x) = x^{4} + 10x^{3} + 3x^{2} + 1$$

(step1)

$$D(x) = 2x^{1000}$$

$$A(x) = 2x^{3}$$

$$B(x) = x^{4} + 10x^{3} + 3x^{2} + 1$$

$B(x) = x^4 + 10 x^3 + 3 x^2 + 1$

(step3)

$$D(x) = 2x^{1000} + x^4 + 12x^3$$

$$A(x) = 0$$

$$B(x) = 3x^2 + 1$$

(step2)

$$D(x) = 2x^{1000} + x^4$$

$$A(x) = 2x^3$$

$$B(x) = 10 x^3 + 3 x^2 + 1$$

$$D(x) = 2x^{1000} + x^4 + 12x^3 + 3x^2 + 1$$

$$A(x) = 0$$

$$B(x) = 0$$

```
#define COMPARE(x, y) ( ((x) < (y)) ? -1 : ((x) == (y)) ? 0: 1 )
/* d = a + b, where a, b, and d are polynomials */
d = Zero()
while (! IsZero(a) && ! IsZero(b)) do {
   switch COMPARE (LeadExp(a), LeadExp(b)) {
     case -1: d =
        Attach(d, Coef(b, LeadExp(b)), LeadExp(b));
        b = Remove(b, LeadExp(b));
        break;
     case 0: sum = Coef( a, LeadExp(a))
                    + Coef(b, LeadExp(b));
        if (sum) {
           Attach(d, sum, LeadExp(a));
        a = Remove(a, LeadExp(a));
        b = Remove(b, LeadExp(b));
        break;
     case 1: d =
        Attach(d, Coef(a, LeadExp(a)), LeadExp(a));
        a = Remove(a, LeadExp(a));
insert any remaining terms of a or b into d
```

Program 2.5: Initial version of *padd* function

Representation of polynomials in C

```
(1) #define MAX_DEGREE 101 /*Max degree of polynomial+1*/ typedef struct { int degree; float coef[MAX_DEGREE]; } polynomial; polynomial; A(x) = \sum_{i=0}^{n} a_i x^i \text{ would be represented as :}
```

```
a.degree = n
a.coef[i] = a_{n-i}, 0 \le i \le n , n < MAX_DEGREE
```


a.coef[i] is the coefficient of x^{n-i}

Representation of polynomials in C(cont')

#define MAX_TERMS 100 /*size of terms array*/
typedef struct {
 float coef;
 int expon;
 }term;
term terms[MAX_TERMS];
int avail = 0;

$$A(x) = 2x^{1000} + 1$$
 and $B(x) = x^4 + 10x^3 + 3x^2 + 1$

	startA	finishA	startB			finishB	avail
	\downarrow	\downarrow	\downarrow			\downarrow	\downarrow
coef	2	1	1	10	3	1	
exp	1000	0	4	3	2	0	
	0	. 1	2	3	4	5	6

	sA	fA	sB			fB	avail					
coef	2	1	1	10	3	1						
exp	1000	0	4	3	2	0						
		A . C4	D			(TD	D	.,				
		sA fA	sB			fB	sD	avail				
coef	2	1	1	10	3	1	2					
exp	1000	0	4	3	2	0	1000					
		sA fA		sB		fB	sD		avail			
coef	2	1	1	10	3	1	2	1				
exp	1000	0	4	3	2	0	1000	4				
		sA fA			sB	fB	sD			avail		
coef	2	sA fA	1	10	<i>sB</i>	fB 1	sD 2	1	10	avail		
coef exp	2		1	10			1	1	10	avail		
		1		-	3	1	2			avail		
		1		-	3	1	2			avail	avail	
		0		-	3	0	1000			avail	avail	
exp	1000	1 0	4	3	3 2	1 0 sB fB	2 1000 sD	4	3		avail	
exp	1000	1 0 sA fA	1	3 10	3 2	1 0 sB fB	2 1000 sD 2	1	3 10	3	avail	
exp	1000	1 0 sA fA 1 0	1 4	3 10	3 2	1 0 sB fB 1 0	2 1000 sD 2 1000	1	3 10	3		
exp coef exp	1000 2 1000	1 0 sA fA 1 0 fA	4 1 4 sA	3 10 3	3 2 3 2	1 0 sB fB 1 0 fB	2 1000 sD 2 1000	1 4	3 10 3	3 2	fD	avail
exp	1000	1 0 sA fA 1 0	1 4	3 10	3 2	1 0 sB fB 1 0	2 1000 sD 2 1000	1	3 10	3		avail

```
void padd(int startA, int finishA, int startB, int finishB,
                                               int *startD, int *finishD)
            \{/* \text{ add } A(x) \text{ and } B(x) \text{ to obtain } D(x) */
              float coefficient;
iterations
              *startD = avail;
              while (startA <= finishA && startB <= finishB)
< m+n-1
                 switch(COMPARE(terms[startA].expon,
                                 terms[startB].expon)) {
                    case -1: /* a expon < b expon */
                          attach(terms[startB].coef,terms[startB].expon);
                          startB++;
                          break;
                    case 0: /* equal exponents */
                          coefficient = terms[startA].coef +
                                         terms[startB].coef;
                          if (coefficient)
                             attach(coefficient, terms[startA].expon);
                          startA++;
                          startB++;
                          break;
                    case 1: /* a expon > b expon */
                          attach(terms[startA].coef,terms[startA].expon);
                          startA++;
              /* add in remaining terms of A(x) */
  < m
              for(; startA <= finishA; startA++)</pre>
                 attach(terms[startA].coef,terms[startA].expon);
  \leq n
              /* add in remaining terms of B(x) */
              for( ; startB <= finishB; startB++)</pre>
                 attach(terms[startB].coef, terms[startB].expon);
              *finishD = avail-1;
```

```
void attach(float coefficient, int exponent)
{/* add a new term to the polynomial */
   if (avail >= MAX_TERMS) {
      fprintf(stderr, "Too many terms in the polynomial\n");
      exit(EXIT_FAILURE);
   }
   terms[avail].coef = coefficient;
   terms[avail++].expon = exponent;
}
```

Program 2.7: Function to add a new term

Analysis of padd

- Let m and n be the number of nonzero terms in A and B, respectively.
- ① If m>0 and n>0, while loop
 - each iteration : O(1)
 - The iteration terminates when either *startA* or *startB* exceeds *finishA* or *finishB*, respectively
 - The number of iterations is bounded by m+n-1
 - the worst case : ex) $a(x) = x^6 + x^4 + x^2 + x^0$, $b(x) = x^7 + x^5 + x^3 + x^1$
- 2 The remaining two for loops $\rightarrow O(m+n)$
- $-1.82 \rightarrow 0(m+n)$

2.5 Sparse Matrix

2.5.1 The Abstract Data Type

- Standard representation of a matrix
 - A[MAX_ROWS][MAX_COLS]

Figure 2.4: Two matrices

Sparse matrix

$$-m \times n$$
 matrix A s.t. $\frac{\text{no. of nonzero elements}}{m \times n} \ll 1$

ADT SparseMatrix is

objects: a set of triples, <*row*, *column*, *value*>, where *row* and *column* are integers and form a unique combination, and *value* comes from the set *item*.

functions:

for all $a, b \in SparseMatrix, x \in item, i, j, maxCol, maxRow \in index$

SparseMatrix Create(maxRow, maxCol) ::=

return a SparseMatrix that can hold up to $maxItems = maxRow \times maxCol$ and whose maximum row size is maxRow and whose maximum column size is maxCol.

SparseMatrix Transpose(a) ::=

return the matrix produced by interchanging the row and column value of every triple.

SparseMatrix Add(a, b) ::=

if the dimensions of a and b are the same return the matrix produced by adding corresponding items, namely those with identical row and column values.

else return error

SparseMatrix Multiply(a, b) ::=

if number of columns in a equals number of rows in b

return the matrix d produced by multiplying a by b according to the formula: $d[i][j] = \sum (a[i][k] \cdot b[k][j])$ where d(i, j) is the (i, j)th element

else return error.

2.5.2 Sparse Matrix Representation

- An array of triples
 - <row, column, value> : 3-tuples (triples)

```
SparseMatrix Create(maxRow, maxCol) ::=
```

```
#define MAX_TERMS 101 /* maximum number of terms +1*/
typedef struct {
    int col;
    int row;
    int value;
    } term;
term a[MAX_TERMS];
```

1 (-1	1	1	2	1	2	1	1	1	=
col (, (100	1	COL	4	COL)	COL	4	COL)

	COLO	COLI	COI 2	COLD	COI	1 001 5
row 0	15	0	0	22	0	-15
row 1	0	11	3	0	0	0
row 2	0	0	0	-6	0	0
row 3	0	0	0	0	0	0
row 4	91	0	0	0	0	0
row 5	0	0	28	0	0	0

	row	col	value
a[0]	6	6	8
[1]	0	0	15
[2]	0	3	22
[3]	0	5	-15
[4]	1	1	11
[5]	1	2	3
[6]	2	3	-6
[7]	4	0	91
[8]	5	2	28

Use an array of triples (cont')

a[0].row : the number of rows
 a[0].col : the number of columns
 a[0].value : the total number of nonzero entries

 The triples are ordered by row and within rows by columns.

(row major ordering)

2.5.3 Transposing a Matrix

	row	col	value		row	col	value
a[0]	6	6	8	b[0]	6	6	8
[1]	0	0	15	[1]	0	0	15
[2]	0	3	22	[2]	0	4	91
[3]	0	5	-15	[3]	1	1	11
[4]	1	1	11	[4]	2	1	3
[5]	1	2	3	[5]	2	5	28
[6]	2	3	-6	[6]	3	0	22
[7]	4	0	91	[7]	3	2	-6
[8]	5	2	28	[8]	5	0	-15
	(a	1)			(b)	

Figure 2.5: Sparse matrix and its transpose stored as triples

• Is this a good algorithm for transposing a matrix?

for each row i of original matrix
 take element <i, j, value> and store it
 as element <j, i, value> of the transpose;

	row	col	value	\boldsymbol{a}		\boldsymbol{b}
				(0, 0, 15)	\rightarrow	(0, 0, 15)
a[0]	6	6	8	(0, 3, 22)		` ' ' '
[1]	0	0	15	` ' ' '		` ' ' '
[2]	0	3	22	(0, 5, -15)	\rightarrow	(5, 0, -15)
[3]	0	5	-15	(1, 1, 11)	\rightarrow	(1, 1, 11)
[4]	1	1	11			data movement
[5]	1	2	3	(1, 2, 3)	\rightarrow	(2, 1, 3)
[6]	2	3	-6	<i>、,,,</i>		data movement
[7]	4	0	91			data movement
[8]	5	2	28		•••	
				Wa must	ma	va alamanta ta

We must move elements to maintain the correct order!

• Using column indices

for all elements in column j of original matrix
 place element <i, j, value> in
 element <j, i, value> of the transpose

	row	col	value	
				a b
a[0]	6	6	8	$(0,0,15) \rightarrow (0,0,15)$
[1]	0	0	15	$(4, 0, 91) \rightarrow (0, 4, 91)$
[2]	0	3	22	
[3]	0	5	-15	$(1, 1, 11) \rightarrow (1, 1, 11)$
[4]	1	1	11	$(1,2,3) \qquad \rightarrow \qquad (2,1,3)$
[5]	1	2	3	$(5, 2, 28) \rightarrow (2, 5, 28)$
[6]	2	3	-6	
[7]	4	0	91	•••
[8]	5	2	28	We can avoid data movement!

```
void transpose(term a[], term b[])
{/* b is set to the transpose of a */
  int n,i,j, currentb;
  n = a[0].value; /* total number of elements */
  b[0].row = a[0].col; /* rows in b = columns in a */
  b[0].col = a[0].row; /* columns in b = rows in a */
  b[0].value = n;
  if (n > 0) { /* non zero matrix */
     currentb = 1;
     for (i = 0; i < a[0].col; i++)
     /* transpose by the columns in a */
       for (j = 1; j \le n; j++)
       /* find elements from the current column */
          if (a[j].col == i) {
          /* element is in current column, add it to b */
            b[currentb].row = a[j].col;
            b[currentb].col = a[j].row;
            b[currentb].value = a[j].value;
            currentb++;
          }
```

- Analysis of *transpose*
 - Nested for loops are the decisive factor.
 - The remaining part requires only constant time.
 - Time complexity : **O**(columns · elements)
 - If elements = $rows \cdot columns$, $O(columns^2 \cdot rows)$
 - To conserve space, we have traded away too much time.
 - cf) If the matrices are represented as 2D arrays,

```
for ( j = 0; j < columns; j++)
for ( i = 0; i < rows; i++)
b[j][i] = a[i][j];
```

• $O(columns \cdot rows)$

• Fast transpose of a sparse matrix

	row	col	value				row	col	value
$\overline{a[0]}$	6	6	8		\overline{b} [0]	6	6	8
[1]	0	0	15		\rightarrow [
[2]	0	3	22		[2]			
[3]	0	5	-15			3]			
[4]	1	1	11		\rightarrow [4]			
[5]	1	2	3	[5]					
[6]	2	3	-6	\rightarrow [6]					
[7]	4	0	91		[7]			
[8]	5	2	28		\rightarrow [[8]			
		1 cal	culation	of					
		rov	wTerms						
		[0	[1]	[2]	[3]	[4]	[5]		
rowT	erms =	2	2 1	2	2	0	1		
start	ingPos =		> 3	4	6	8	8		
	O		② ca	lculati	on of				
			sta	artingI	Pos				

• Fast transpose of a sparse matrix(cont')

$$3b(j,i)\leftarrow a(i,j)$$

	row	col	value				row	col	value
a[0]	6	6	8		\overline{b} [0)]	6	6	8
[1]	0	0	15		[1	[]	0	0	15
[2]	0	3	22		0	4	91		
[3]	0	5	-15		[3	1	1	11	
[4]	1	1	11		[4	2	1	3	
[5]	1	2	3	[5]				5	28
[6]	2	3	-6		[6	5]	3	0	22
[7]	4	0	91		[7	7]	3	2	-6
[8]	5	2	28		8]	3]	5	0	-15
	Terms = tingPos =		0] [1] 2 1 3 4	[2] 2 6	[3] 2 8	[4] 0 8	[5] 1		

```
void fastTranspose(term a[], term b[])
        {/* the transpose of a is placed in b */
          int rowTerms[MAX_COL], startingPos[MAX_COL];
          int i, j, numCols = a[0].col, numTerms = a[0].value;
          b[0].row = numCols; b[0].col = a[0].row;
          b[0].value = numTerms;
          if (numTerms > 0) { /* nonzero matrix */
            for (i = 0; i < numCols; i++)
calculation of ____ rowTerms[i] = 0;
            for (i = 1; i <= numTerms; i++)
rowTerms
                rowTerms[a[i].col]++;
            startingPos[0] = 1;
calculation of | for (i = 1; i < numCols; i++)
            startingPos[i] =
startingPos
                            startingPos[i-1] + rowTerms[i-1];
            for (i = 1; i <= numTerms; i++) {
b(j,i) \leftarrow a(i,j) 
j = startingPos[a[i].col]++;
b[j].row = a[i].col; b[j].col = a[i].row;
                b[j].value = a[i].value;
```

- Analysis of fastTranspose
 - The number of iterations of the four loops
 - numCols, numTerms, numCols-1, numTerms, respectively
 - The statements within the loops require constant time.
 - Time complexity : O(columns+ elements)
 - If elements = columns · rows, $O(columns \cdot rows)$
 - equals that of the 2D array representation
 - However, if elements << columns · rows,</p>
 - much faster than 2D array representation
 - Thus, in this representation we save both time and space.