Introduction to LATEX

Alexandre Poupeau

April 5, 2019

Exercice 1

1) [1]

Exercice 2

1.1) Prove that all natural number can be expressed in factorial representation. First, we need the show this property:

Property 1.
$$P_n: \sum_{k=0}^{n} (k * k!) + 1 = (n+1)!$$

We can prove this quite easily using induction.

Proof. Case
$$n = 0: 0 * 0! + 1 = (0 + 1)! = 1$$

Let us suppose that P_n is true. We have to prove that P_{n+1} is true.

$$\sum_{k=0}^{n+1} (k * k!) + 1 = (n+1) * (n+1)! + \sum_{k=0}^{n} (k * k!) + 1$$
$$= (n+1) * (n+1)! + (n+1)!$$
$$= (n+2)!$$

Thus the property is true $\forall n \geq 0$.

Now we are going to prove the following property which is the one we want to prove here.

Property 2. P_n : The natural number n can be written using factorial representation. This means that $\exists k \in \mathbb{N}$ and $\forall i \in [0,k]$, $\exists a_i \in [0,i]$ such that $n = \sum_{i=0}^k a_i * i!$. The factorial representation of n is represented by $a_k...a_1a_0$ where k is the smallest natural number that satisfies the previous result.

Proof. Case
$$n = 0$$
: $0 = a_0 * 0! = \sum_{i=0}^{k} a_i * i!$ with $k = 0$ and $a_0 = 0$.

Let us suppose that P_n is true. We have to prove that P_{n+1} is true.

As this is our induction hypothesis, we know that $\exists k \in \mathbb{N}$ and $\forall i \in \llbracket 0, k \rrbracket$, $\exists a_i \in \llbracket 0, i \rrbracket$ such that $n = \sum_{i=0}^k a_i * i!$. For convenience, let us take the smallest k such that $\forall i \in \llbracket 0, k \rrbracket$, $\exists a_i \in \llbracket 0, i \rrbracket$ such that $n = \sum_{i=0}^k a_i * i!$. This way we do not work with useless zeros.

Let
$$i^* = min(i \in [0, k+1] \mid a_i \neq i)$$
.

Here is a property we want to prove:

$$\bullet \text{ If } i^* \leq k \text{, then } n+1 = \sum_{i=0}^{k'} a_i' * i! \text{ where } k' = k \text{ and } a_i' = \left\{ \begin{array}{l} 0, \, \forall i < i^* \\ a_i, \, \forall i > i^* \\ a_i + 1, \, \text{if } i = i^* \end{array} \right.$$

• If
$$i^* = k + 1$$
, then $n + 1 = 1 * (k + 1)! = \sum_{i=0}^{k'} a'_i * i!$ where $k' = k + 1$ and $a'_i = \begin{cases} 0, \forall i < i^* \\ 1, \text{ if } i = i^* \end{cases}$

Proving this previous property implies that n+1 can be written in factorial representation.

Let us consider the first case where $i^* \leq k$. Then $\forall i \in [0, i^* - 1], a_i = i$ and $a_{i^*} \in [0, i^* - 1]$.

$$n+1 = \sum_{i=0}^{k} a_i * i! + 1$$

$$= \sum_{i=i^*+1}^{k} a_i * i! + a_{i^*} * i^*! + \sum_{i=0}^{i^*-1} (i * i!) + 1$$

$$= \sum_{i=i^*+1}^{k} a_i * i! + a_{i^*} * i^*! + i^*!$$
Because of the property 1
$$= \sum_{i=i^*+1}^{k} a_i * i! + (a_{i^*}+1) * i^*!$$

$$= \sum_{i=0}^{k'} a_i' * i!$$

Where
$$k' = k$$
 and $a'_i = \begin{cases} 0, \forall i < i^* \\ a_i, \forall i > i^* \\ a_i + 1, \text{ if } i = i^* \end{cases}$

Let us now consider the second case where $i^* = k+1$, which is a special case. Here $\forall i \in [0, k], \ a_i = i$.

$$n+1 = \sum_{i=0}^{k} i * i! + 1$$

$$= (k+1)!$$
 Because of the property 1
$$= \sum_{i=0}^{k'} a'_i * i!$$

Where
$$k' = k + 1$$
 and $a'_i = \begin{cases} 0, \forall i < i^* \\ 1, \text{ if } i = i^* \end{cases}$

In both cases, n+1 can be expressed in factorial representation.

To conclude, we have seen that the property is true when n=0, we have proven that P_n implies that P_{n+1} is true. Thus the property stands $\forall n \geq 0$.

1.2) Prove that this expression is unique (there is not two ways to express a natural number in factorial representation).

Proof. Let us suppose there exists n, a natural number such that $n = \sum_{i=0}^{k} a_i * i!$

and
$$n = \sum_{i=0}^{k'} b_i * i!$$
 where there is at least a i such that $a_i \neq b_i$.

Without loss of generality, we can write that k' = k (because in the case of k' > k we can say that all the $a_i = 0, \forall i \in [k+1, k']$).

Let
$$l = max(i \in [0, k] \mid a_i \neq b_i), A = (a_0, a_1, \dots, a_{l-1}) \text{ and } B = (b_0, b_1, \dots, b_{l-1}).$$

We define $\phi_{A,l}$ as follows: $\phi_{A,l} = \frac{1}{l!} \sum_{i=0}^{l-1} a_i * i!$

Hence we have that:

$$\sum_{i=0}^{k} a_i * i! = \sum_{i=0}^{k} b_i * i! \Rightarrow a_l * l! + \sum_{i=0}^{l-1} a_i * i! = b_l * l! + \sum_{i=0}^{l-1} b_i * i!$$

$$\Rightarrow a_l + (\frac{1}{l!} \sum_{i=0}^{l-1} a_i * i!) = b_l + (\frac{1}{l!} \sum_{i=0}^{l-1} b_i * i!)$$

$$\Rightarrow a_l + \phi_{A,l} = b_l + \phi_{B,l}$$

$$\Rightarrow (a_l - b_l) = (\phi_{B,l} - \phi_{A,l})$$

By definition of a_l and b_l , we know that $(a_l - b_l) \in \mathbb{Z} \setminus \{0\}$. Moreover, by definition, we know that $\forall i \in [0, l-1], a_i \leq i$ and $b_i \leq i$. Thus:

Thus
$$0 \le \phi_{A,l} \le \frac{1}{l!} \sum_{i=0}^{l-1} i * i! \le \frac{1}{l!} (\sum_{i=0}^{l-1} (i * i!) + 1 - 1) = \frac{l!-1}{l!} = 1 - \frac{1}{l!} < 1.$$

Then $-1 > -\phi_{A,l} \ge 0$. We can deduce the same results for $\phi_{B,l}$, and especially $0 \le \phi_{B,l} < 1$. Given those two results, we have that :

$$-1 < \phi_{B,l} - \phi_{A,l} < 1$$

This result is absurd since we have that $(a_l - b_l) = (\phi_{B,l} - \phi_{A,l})$ and that $(a_l - b_l) \in \mathbb{Z} \setminus \{0\}.$

Hence we showed that supposing there exists a natural number that can be expressed in two different ways in factorial representation implies a absurd result. Therefore the factorial representation a all natural numbers is different.

Exercice 3

1.1) Prove that all natural number can be expressed in Fibonacci representation.

Property 3. P_n : The natural number n can be written using Fibonacci representation. This means that $\exists k \in \mathbb{N}$ and $\forall i \in [0,k]$, $\exists a_i \in [0,1]$ such that

$$n = \sum_{i=0}^{k} a_i * f_{i+2}$$
 and $\forall i \in [0, k-1], a_i a_{i+1} = 0$. The Fibonacci representa-

tion of n is represented by $a_k...a_1a_0$ where k is the smallest natural number that satisfies the previous result.

The very first thing we have to consider is that the Fibonacci number associated to a_i is f_{i+2} , not f_i . The other important thing, is the constraint $\forall i \in [0, k-1]$, $a_i a_{i+1} = 0$. This implies that we can not have two consecutive a_i equal to one. Now that we have a better understanding of P_n , we are going to prove it.

Proof. Case
$$n = 0$$
: $0 = 0 * 1 = \sum_{i=0}^{k} a_i * f_{i+2}$ where $k = 0$ and $a_0 = 0$.

Let us suppose P_n is true. We want to prove that P_{n+1} is true. As this is our induction hypothesis, we know that $\exists k \in \mathbb{N}$ and $\forall i \in [0, k]$, $\exists a_i \in [0, 1]$ such

that
$$n = \sum_{i=0}^{k} a_i * f_{i+2}$$
 and $\forall i \in [0, k-1], a_i a_{i+1} = 0$. For convenience, let us

take the smallest k such that $\forall i \in [0, k], \exists a_i \in [0, 1]$ such that $n = \sum_{i=0}^k a_i * f_{i+2}$ and $\forall i \in [0, k-1], a_i a_{i+1} = 0$. This way we do not work with useless zeros. We have $a_k = 1$ in all cases except if n = 0.

Let $i^* = min(i \in [0, k+1] \mid a_i + a_{i+1} = 0)$. By this definition, we have that $a_{i^*} = 0$ and $a_{i^*+1} = 0$.

Here is a property we want to prove:

• If
$$i^* = 0$$
, then $n + 1 = \sum_{i=0}^{k'} a'_i * f_{i+2}$ where $k' = k = 0$ and $a'_0 = 1$.

• If
$$0 < i^* \le k$$
, then $n+1 = \sum_{i=0}^{k'} a_i' * f_{i+2}$ where $k' = k$ and $a_i' = \begin{cases} 0, \forall i < i^* \\ a_i, \forall i > i^* \\ 1, \text{ if } i = i^* \end{cases}$

• If
$$i^* = k + 1$$
, then $n + 1 = \sum_{i=0}^{k'} a'_i * f_{i+2}$ where $k' = k + 1$ and $a'_i = \begin{cases} 0, \forall i < i^* \\ 1, \text{ if } i = i^* \end{cases}$

Moreover the property states that in all cases $\forall i \in [0, k'-1], a'_i a'_{i+1} = 0.$

Proving the previous property implies that n+1 can be written in Fibonacci representation. So let us prove it now :

The case $i^*=0$ is trivial. This implies that n=0, thus $n+1=1*1=1*f_2$. We obviously have $\forall i \in \llbracket 0,k'-1 \rrbracket,\ a_i'a_{i+1}'=0.$

In the case $0 < i^* \le k$, we can say that $\begin{cases} \forall i \in \llbracket 0, i^* - 1 \rrbracket, \ a_i a_{i+1} = 0 \\ \forall i \in \llbracket 0, i^* - 1 \rrbracket, \ a_i + a_{i+1} \ne 0 \\ a_{i^*-1} = 1 \end{cases}$ We can notice that i^* is necessarily different from k or k-1.

In this case, n can be written in this way $n = \sum_{i=i^*+2}^k a_i * f_{i+2} + \sum_{i=0}^{i^*-1} a_i * f_{i+2}$. Here we can divide the problem in two parts : $i^* - 1$ is even and $i^* - 1$ is odd.

If $i^* - 1$ is even, $\forall i \in \mathbb{N}$ such that $2i \leq i^* - 1$, $a_{2i} = 1$ y $a_{2i-1} = 0$. Thus $n = \sum_{i=i^*+2}^k a_i * f_{i+2} + \sum_{i=0}^{(i^*-1)/2} f_{2i+2}$. As $f_1 = 1$, and by the property of the Fibonacci sequence $f_{n+2} = f_{n+1} + f_n$, we can show that :

$$n+1 = \sum_{i=i^*+2}^{k} a_i * f_{i+2} + \sum_{i=0}^{(i^*-1)/2} f_{2i+2} + 1$$

$$= \sum_{i=i^*+2}^{k} a_i * f_{i+2} + \underbrace{\sum_{i=0}^{(i^*-1)/2} f_{2i+2} + f_1}_{=f_{i^*+2}}$$
Property of the Fibonacci sequence
$$= \sum_{i=0}^{k'} a_i' * f_{i+2}$$

If $i^* - 1$ is odd, $\forall i \in \mathbb{N}$ such that $2i + 1 \leq i^* - 1$, $a_{2i} = 0$ y $a_{2i+1} = 1$. Thus $n = \sum_{i=i^*+2}^k a_i * f_{i+2} + \sum_{i=0}^{(i^*-2)/2} f_{2i+3}$. As $f_2 = 1$, and by the property of the Fibonacci sequence $f_{n+2} = f_{n+1} + f_n$, we can show that :

$$n+1 = \sum_{i=i^*+2}^{k} a_i * f_{i+2} + \sum_{i=0}^{(i^*-2)/2} f_{2i+3} + 1$$

$$= \sum_{i=i^*+2}^{k} a_i * f_{i+2} + \underbrace{\sum_{i=0}^{(i^*-2)/2} f_{2i+3} + f_2}_{=f_{i^*+2}}$$
Property of the Fibonacci sequence
$$= \sum_{i=0}^{k'} a_i' * f_{i+2}$$

In both cases $(i^* - 1 \text{ even and odd})$, k' = k and $a'_i = \begin{cases} 0, \forall i < i^* \\ a_i, \forall i > i^* \\ 1, \text{ if } i = i^* \end{cases}$

In both cases $\forall i > i^*$, $a_i' = a_i$ so as we have that $\forall i \in [i^* + 1, k - 1]$, $a_i a_{i+1} = 0$ we have that $\forall i \in [i^* + 1, k' - 1]$, $a_i' a_{i+1}' = 0$. Moreover, $\forall i < i^*$, $a_i' = 0$ so $\forall i \in [0, i^* - 1]$, $a_i' a_{i+1}' = 0$. Finally, we know that $a_{i^*}' a_{i^*+1}' = 0$

because $a'_{i^*+1} = a_{i^*+1} = 0$ by definition of i^* . So $\forall i \in [0, k'-1], a'_i a'_{i+1} = 0$

If
$$i^* = k + 1$$
, then if k is even $n + 1 = \sum_{i=0}^{k/2} f_{2i+2} + 1 = \sum_{i=0}^{k/2} f_{2i+2} + f_1 = f_{k+3}$.

If k is odd
$$n+1 = \sum_{i=0}^{(k-1)/2} f_{2i+3} + 1 = \sum_{i=0}^{(k-1)/2} f_{2i+3} + f_2 = f_{k+3}$$
.

So in both cases (k even and odd), $n+1=\sum_{i=0}^{k'}f_{i+2}$ where k'=k+1 and

$$a_i' = \begin{cases} 0, \forall i < i^* \\ 1, \text{ if } i = i^* \end{cases}$$

Then obviously, as only $a_{i^*} = 0$, $\forall i \in [0, k' - 1], a'_i a'_{i+1} = 0$.

To conclude, we have seen that the property is true when n=0, we have proven that P_n implies that P_{n+1} is true. Thus the property stands $\forall n \geq 0$.

1.2) Prove that this expression is unique (there is not two ways to express a natural number in Fibonacci representation). In order to proove this, we are going to use the same idea or method from the previous part.

Proof. Let us suppose there exists a natural number n such that $n = \sum_{i=0}^{k} a_i f_{i+2} =$

 $\sum_{i=0}^{k'}b_if_{i+2} \text{ (like the previous exercice we can assume without loss of generality that } k'=k) \text{ where } \forall i\in \llbracket 0,k\rrbracket,\ a_i\in \llbracket 0,1\rrbracket \text{ and } b_i\in \llbracket 0,1\rrbracket, \text{ where there exists at least a } i\in \llbracket 0,k-1\rrbracket \text{ such that } a_i\neq b_i. \text{ We have that } \forall i\in \llbracket 0,k-1\rrbracket,\ a_ia_{i+1}=0 \text{ and } \forall i\in \llbracket 0,k-1\rrbracket,\ b_ib_{i+1}=0.$

Let $l = max(i \in [0, k] \mid a_i \neq b_i)$. We know that $|a_l - b_l| = 1$. Let $A = (a_0, a_1, \dots, a_{l-1})$ and $B = (b_0, b_1, \dots, b_{l-1})$. We define $\beta_{A,l}$ as follows: $\beta_{A,l} = \frac{1}{f_{l+2}} \sum_{i=0}^{l-1} a_i f_{i+2}$.

$$\sum_{i=0}^{k} a_i f_{i+2} = \sum_{i=0}^{l-1} b_i f_{i+2} \Rightarrow a_l f_{l+2} + \sum_{i=0}^{k} a_i f_{i+2} = b_l f_{l+2} + \sum_{i=0}^{l-1} b_i f_{i+2}$$

$$\Rightarrow a_l + \left(\frac{1}{f_{l+2}} \sum_{i=0}^{l-1} a_i f_{i+2}\right) = b_l + \left(\frac{1}{f_{l+2}} \sum_{i=0}^{l-1} b_i f_{i+2}\right)$$

$$\Rightarrow a_l + \beta_{A,l} = b_l + \beta_{B,l}$$

$$\Rightarrow (a_l - b_l) = (\beta_{B,l} - \beta_{A,l})$$

Because of the constraint that $\forall i \in [0, k-1], a_i a_{i+1} = 0$, if l-1 is even :

$$0 \le \beta_{A,l} = \frac{1}{f_{l+2}} (\sum_{i=0}^{l-1} a_i f_{i+2}) = \frac{1}{f_{l+2}} (f_{l+1} + f_{l-1} + \dots + f_4 + f_2 + f_1 - 1) = \frac{1}{f_{l+2}} (f_{l+2} - 1) = 1 - \frac{1}{f_{l+2}} < 1$$

If l-1 is odd, we obtain the same result :

$$0 \le \beta_{A,l} = \frac{1}{f_{l+2}} (\sum_{i=0}^{l-1} a_i f_{i+2}) = \frac{1}{f_{l+2}} (f_{l+1} + f_{l-1} + \dots + f_5 + f_3 + f_2 - 1) = \frac{1}{f_{l+2}} (f_{l+2} - 1) = 1 - \frac{1}{f_{l+2}} < 1$$

Then $-1 > -\beta_{A,l} \ge 0$. We can deduce the same results for $\beta_{B,l}$, and especially $0 \le \beta_{B,l} < 1$. Given those two results, we have that :

$$-1 < \beta_{B,l} - \beta_{A,l} < 1$$

Finally, we have that $1 = |a_l - b_l| = \beta_{B,l} - \beta_{A,l} < 1$ which is absurd. Thus the Fibonacci representation is unique for all $n \in \mathbb{N}$.

References

[1] J. F. C. Smith and J. Bourne, "The Pain of Having a Foolish Name," *Journal of Modern Fiction*, vol. 52, no. 1, p. 114, 2009.