[Aspectos Intuitivos da Dedução - #8]				
As questões abaixo foram formuladas a partir dos vídeos: - [Pré-aula #6 Aspectos Intuitivos da Dedução] - [Aula do Dia 21.12.2020 - Aspectos Intuitivos da Dedução - Parte II] - [Aula do Dia 17.05.2021 - Aspectos Intuitivos da Dedução - Parte II] - [Aula do Dia 27.09.2021 - Introdução aos Sistemas Dedutivos - Parte II]:				
			Você terá trinta minutos para terminar de responder. Ao final desse tempo o envio das respostas não será possível.	;
			Nome: *	
Yago Elias Alves Silva				
X São exemplos de equivalências intersubstituíveis. *	0/1			
Leis de DeMorgan	✓			
Modus Ponnens	×			
Silogismo HIpotético	×			
✓ Silogismo HIpotético✓ Distribuição	× ✓			
	× •			
Distribuição	× •			
✓ Distribuição☐ Dupla Negação	× ✓			

!

X As regras da dedução natural são argumentos válidos. Uma maneira de *0/1 aplicar a dedução natural é através de regras de inclusão e exclusão de conectivos. Assinale os esquemas que são regras de inclusão e exclusão de conectivos válidas.

$$\dfrac{arphi o \psi, arphi}{\psi}$$
 (o e)

 $\frac{\varphi \to \psi}{\psi} \ (\to i)$

Exclusão da condicional

Inclusão da condicional

$$\frac{\varphi \psi}{\varphi \wedge \psi}$$
 (\lambde e)

$$rac{arphi o \psi}{\psi}$$
 (o e)

Exclusão da conjunção

Exclusão da Condicional

X

$$\frac{\varphi \wedge \psi}{\varphi}$$
 (\lambde e)

Exclusão da Conjunção	
Resposta correta	
Exclusão da condicional	
Exclusão da Conjunção	
É o argumento em que jamais as premissas serão verdadeir conclusão falsa.	ras e a *0/1
Falácia	×
Axioma	
Argumento válido	
Tautologia	
Resposta correta	
Argumento válido	
Uma equivalência notável só pode ser aplicada a um linha o fórmula e nunca a uma parte da mesma.	completa da *1/1
Verdadeiro	
Falso	✓

X Qual a forma do Dilema Destrutivo (DD)? ★

0/1

 $\phi \to \psi, \psi \to \beta$, logo $\phi \to \beta$

 $\phi \to \psi, \neg \phi, \log \sigma \neg \phi$

Opção 1

Opção 2

X

 $(\phi \to \psi) \land (\beta \to \alpha), \phi \lor \beta, \log_{\phi} \lor \alpha$

 $(\phi \to \psi) \land (\beta \to \alpha), \neg \psi \lor \neg \alpha, \log \neg \phi \lor \neg \beta$

Opção 3

Opção 4

Resposta correta

Opção 4

✓ Leia atentamente a definição abaixo. Ela é verdadeira ou falsa? *

1/1

X

Dizemos que ϕ é deduzível de um conjunto Γ de premissas se existe uma sequência finita $\phi_0, \phi_1, \cdots, \phi_n$ de fórmulas (a última das quais é precisamente ϕ), em que para cada ϕ_i ou é uma das premissas ou é obtida de uma das anteriores da sequência mediante emprego de um agumento elementar válido. A sequência $\phi_0, \phi_1, \cdots, \phi_n$ é uma dedução de ϕ_n (a partir de um conjunto Γ de premissas).

- Verdadeira
- Falsa

X Qual a sequência de dedução para provar a validade do argumento *0/1 abaixo?

$$(A \lor B) \land (A \lor C), A \rightarrow D, D \rightarrow E, (B \land C) \rightarrow (F \rightarrow E), \neg E, \log_{} \neg F$$

- 2,3 SH; 6,5 MT; 1 DIST; 8,7 SH; 4,9 MP; 10, 5 MP
- 2,3 SH; 6,5 MP; 1 DIST; 8,7 SD; 4,9 MP; 10, 5 MP
- 2,3 SD; 6,5 MT; 1 DIST; 8,7 SH; 4,9 MP; 10, 5 MT
- 2,3 SH; 6,5 MT; 1 DIST; 8,7 SD; 4,9 MP; 10, 5 MT

Resposta correta

2,3 - SH; 6,5 - MT; 1 - DIST; 8,7 - SD; 4,9 - MP; 10, 5 - MT

princípio da Lógica?

$$\frac{\varphi \neg \varphi}{\perp} (\perp i)$$

- Princípio da Dualidade
- Princípio do Terceiro Excluído
- Princípio da Não Contradição
- Princípio da Identidade

Resposta correta

Princípio da Não Contradição

Este formulário foi criado em Univerisade Estadual Vale do Acaraú.

Google Formulários