Força e movimento ≡ causa e efeito



#### Conceitos Básicos:

• Quantidade de movimento (momento, p):  $\vec{p}=m\vec{v}$ 

$$m = massa$$
,  $v = velocidade$ 

#### • 1º Lei de Newton:

Para mudar o estado de movimento (*momento*) de um **corpo** é necessário aplicar a ele uma **força externa**:

$$\vec{F}_{ext} \Longrightarrow m\Delta \vec{v} = \Delta \vec{p}$$

• se F<sub>ext</sub>= 0, o corpo mantém seu estado de movimento inalterado:

$$\Delta \vec{v} = 0 \Longrightarrow \vec{v} = \text{constante}$$

• Essa afirmação é válida para os *referenciais inerciais* 

#### Conceitos Básicos:

• Quantidade de movimento (momento, p):  $\vec{p} = m\vec{v}$ 

#### • 1º Lei de Newton:

Para mudar o estado de movimento (*momento*) de um **corpo** é necessário aplicar a ele uma **força externa**:



#### Conceitos Básicos:

- Como quantificar a mudança no estado de movimento?
- 2º Lei de Newton:

Equações de movimento:

$$\vec{F}_{ext} = \frac{d\vec{p}}{dt} = m\frac{d\vec{v}}{dt} = m\vec{a}$$

$$\vec{F}_{ext} = m\vec{a}$$

Unidades no SI

$$[F] = \frac{kg \ m}{s^2} = N(\text{Newton})$$

| Sistema | Força      | Massa      | Aceleração       |
|---------|------------|------------|------------------|
| SI      | newton (N) | quilograma | $\frac{m}{s^2}$  |
| CGS     | dina       | grama (g)  | $\frac{cm}{s^2}$ |

#### Conceitos Básicos:

• 2º Lei de Newton:

Equações de movimento: 
$$\vec{F}_{ext} = \frac{d\vec{p}}{dt} = m\frac{d\vec{v}}{dt} = m\vec{a}$$

- (I)  $\vec{F}_{ext} = m\vec{a}$
- (II)  $\vec{F}_{ext} = 0 \Longrightarrow (\vec{a} = 0 \Longrightarrow \vec{v} = \text{constante})$
- Se (I) e (II) são verdadeiros, estamos num referencial inercial
- Referencial inercial se move em MRU
- Se o referencia estiver acelerado, ou seu movimento não for retilíneo, a Equação (I) precisa ser modificada para incluir a aceleração do referencial.
- Por exemplo: aceleração centrífuga, carro acelerando ou freiando.

#### Conceitos Básicos:

- Como quantificar a mudança no estado de movimento?
- 2º Lei de Newton:

Equações de movimento:

$$\vec{F}_{ext} = m\vec{a}$$

 $ec{a}$  é consequência da **força resultante**  $ec{F}_R$ 

$$\vec{F}_R = m\vec{a}$$



$$\vec{F}_{ext} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 = \vec{F}_R$$

#### Conceitos Básicos:

- Como quantificar a mudança no estado de movimento?
- 2º Lei de Newton:

Equações de movimento: 
$$ec{F}_{ext} = m ec{a}$$

 $ec{a}$  é consequência da **força resultante**  $ec{F}_R$ 

$$\vec{F}_R = m\vec{a}$$
  $\rightleftharpoons$   $\vec{a} = \frac{\vec{F}_R}{m}$ 

se 
$$\vec{F}_R = 0 \Longrightarrow \vec{a} = 0 \Longrightarrow \vec{v} = \text{constante}$$



$$\vec{F}_{ext} = \vec{F}_R$$
$$= \vec{F}_1 + \vec{F}_2 = 0$$

#### Conceitos Básicos:

• Estabilidade: 
$$\vec{F}_R = \sum_i \vec{F}_i = 0 \implies \vec{a} = 0$$





#### Conceitos Básicos:

- Como quantificar a mudança no estado de movimento?
- 2º Lei de Newton:

Equações de movimento: 
$$ec{F}_{ext} = m ec{a}$$

 $ec{a}$  é consequência da **força resultante**  $ec{F}_R$ 

$$\vec{a} = \frac{\vec{F}_R}{m}$$





#### Conceitos Básicos:

• 2º Lei de Newton:

Equações de movimento:

$$\vec{F}_R = m\vec{a}$$

Tipos de forças e sua natureza física. Exemplos.

- Força elétrica entre 2 cargas elétricas (q1,q2)  $\Longrightarrow F_{el} = k \frac{q_1 q_2}{d^2}$  separadas por uma distância d:
- Força gravitacional (força Peso) entre um corpo de massa  $m_c$  e a Terra  $(M_T)$

$$F_g = G \frac{m_c M_T}{R_T^2} = m_c \cdot \left( G \frac{M_T}{R_T^2} \right) = m_c g$$



#### Conceitos Básicos:

Equações de movimento:  $ert ec{F}_R = ec{m} ec{a}$ 



Massa Inercial

• Força gravitacional (força Peso) entre um corpo de massa  $m_c$  e a Terra  $(M_T)$ 

$$F_g = G \frac{m_c M_T}{R_T^2} = m_c \cdot \left( G \frac{M_T}{R_T^2} \right) = m_c g$$



Princípio da Equivalência

$$m = m_c$$

$$\therefore a = g$$

Massa inercial = massa gravitacional (são indistinguíveis), portanto qualquer corpo sofre a mesma atração gravitacional g

#### Conceitos Básicos:

Tipos de forças e sua natureza física.



Experimento de Galileu: https://www.youtube.com/watch?v=74MUjUj7bp8

### Conceitos Básicos:

Dinâmica: Força e Movimento

• Força (interna) de interação entre corpos que compõem o sistema.

#### • 3° Lei de Newton:

Ação e Reação:















$$\vec{v} = \vec{v}_0$$



$$\vec{v} = \vec{v}_0$$



#### Conceitos Básicos:

• Força (interna) de interação entre corpos que compõem o sistema.

• 3° Lei de Newton:

Ação e Reação:



Video: Pêndulo de Newton

### **Exemplos:**

Uma bala de fuzil de massa igual a 20 g atinge uma árvore com uma velocidade de 500 m/s, penetrando nela a uma profundidade de 10 cm. Calcule a força média exercida sobre a bala durante a penetração.



Supondo uma *desaceleração uniforme*, podemos aplicar fórmula de Torricelli  $v_f^2 - v_i^2 = 2\overline{a}\Delta x \implies \overline{a} = -\frac{v_i^2}{2\Delta x} = -1.25 \ 10^6 \frac{m}{e^2}$ 

$$\overline{F} = m\overline{a}$$
  
= 20 10<sup>-3</sup>kg × (-1.25 10<sup>6</sup>) $\frac{m}{s^2}$   
= -2.5 10<sup>4</sup> N

### **Exemplos:**

Duas pessoas puxam, com toda força que podem, cordas na horizontal amarradas a um barco que tem uma massa de 200 kg. Se elas puxam na mesma direção, o barco tem uma aceleração de 1.52 m/s² para a direita. Se puxarem em direções opostas, o barco tem uma aceleração de 0,518 m/s² para a esquerda. Qual é a intensidade da força que cada pessoa exerce no barco?





$$F_2 = 203.8N$$

 $F_1 = 100.2N$ 

### Exemplos:

Duas patinadoras, uma de 60 kg e outra de 40 kg, estão em uma pista de gelo e seguram as extremidades de uma corda de 10 m de comprimento e massa desprezível. As patinadoras se puxam ao longo da corda até se encontrarem. Qual é a distância percorrida pela patinadora de 40 kg?



Por estarem conectadas pela corda,  $\, \vec{F}_1 = - \vec{F}_2 \,$ 

$$x_1(t) = \frac{1}{2} \frac{F}{m_1} t^2$$
 ,  $x_2(t) = \frac{1}{2} \frac{F}{m_2} t^2$ 

$$\frac{x_1}{x_2} = \frac{m_2}{m_1}$$

No momento do encontro:

$$x_{1} + x_{2} = 10m$$

$$x_{1} = 10m - x_{2}$$

$$\frac{10m - x_{2}}{x_{2}} = \frac{m_{2}}{m_{1}} = \frac{2}{3}$$

$$x_{2} = 6m$$