COMPARAISON DE SUITES

Négligeabilité :

• Soient $\alpha, \beta \in \mathbb{R}$ tels que $\alpha < \beta$. Alors : $n^{\alpha} = o(n^{\beta})$.

• Soient $a, b \in \mathbb{R}$ tels que 0 < a < b. Alors : $a^n = o(b^n)$.

• Soient $\alpha, \beta \in \mathbb{R}$ avec $\alpha > 0$. Alors : $(\ln n)^{\beta} = o(n^{\alpha})$.

• Soient $a, \alpha \in \mathbb{R}$ avec a > 1. Alors : $n^{\alpha} = o(a^n).$

• Soit $a \in \mathbb{R}$. Alors: $a^n = o(n!).$

Équivalents:

Soient $(u_n)_{n\in\mathbb{N}}$ une suite <u>de limite nulle</u> et $\alpha\in\mathbb{R}$.

	Équivalents	Écriture avec o
Logarithme,	$\ln(1+u_n) \underset{n\to+\infty}{\sim} u_n$	$\ln(1+u_n) \underset{n\to+\infty}{=} u_n + o(u_n)$
exponentielle,	$e^{u_n} - 1 \underset{n \to +\infty}{\sim} u_n$	$e^{u_n} = 1 + u_n + o(u_n)$
puissances	$(1+u_n)^{\alpha} - 1 \underset{n \to +\infty}{\sim} \alpha \ u_n$	$(1+u_n)^{\alpha} = 1 + \alpha u_n + o(u_n)$
Fonctions	$\sin u_n \underset{n \to +\infty}{\sim} u_n$	$\sin u_n \underset{n \to +\infty}{=} u_n + o(u_n)$
trigonométriques	$\cos u_n \underset{n \to +\infty}{\sim} 1$	$\cos u_n \underset{n \to +\infty}{=} 1 + o(1)$
circulaires	$\cos u_n - 1 \underset{n \to +\infty}{\sim} -\frac{u_n^2}{2}$	$\cos u_n \underset{n \to +\infty}{=} 1 - \frac{u_n^2}{2} + o(u_n^2)$
	$\tan u_n \underset{n \to +\infty}{\sim} u_n$	$\tan u_n \underset{n \to +\infty}{=} u_n + o(u_n)$
Fonctions	$\operatorname{Arcsin} u_n \underset{n \to +\infty}{\sim} u_n$	$\operatorname{Arcsin} u_n \underset{n \to +\infty}{=} u_n + o(u_n)$
trigonométriques	$\operatorname{Arccos} u_n \underset{n \to +\infty}{\sim} \frac{\pi}{2}$	$\operatorname{Arccos} u_n \underset{n \to +\infty}{=} \frac{\pi}{2} + o(1)$
circulaires	$Arccos u_n - \frac{\pi}{2} \underset{n \to +\infty}{\sim} -u_n$	$Arccos u_n = \frac{\pi}{n \to +\infty} \frac{\pi}{2} - u_n + o(u_n)$
inverses	$\operatorname{Arctan} u_n \underset{n \to +\infty}{\sim} u_n$	$Arctan u_n \underset{n \to +\infty}{=} u_n + o(u_n)$
Fonctions	$\operatorname{sh} u_n \underset{n \to +\infty}{\sim} u_n$	$ sh u_n \underset{n \to +\infty}{=} u_n + o(u_n) $
trigonométriques	$\operatorname{ch} u_n \underset{n \to +\infty}{\sim} 1$	$\operatorname{ch} u_n \underset{n \to +\infty}{=} 1 + o(1)$
hyperboliques	$\operatorname{ch} u_n - 1 \underset{n \to +\infty}{\sim} \frac{u_n^2}{2}$	$\operatorname{ch} u_n \underset{n \to +\infty}{=} 1 + \frac{u_n^2}{2} + o(u_n^2)$
	$ th u_n \underset{n \to +\infty}{\sim} u_n $	$ th u_n \underset{n \to +\infty}{=} u_n + o(u_n) $