15. Матрица на линейно изображение на крайномерни пространства. Смяна на базис.

Трансформация на матрицата на линейно изображение при смяна на базисите. Подобни матрици

Александър Гуров 14 януари 2023 г.

Лема 15.2 (Матричен запис на линейно изображение)

Нека $\varphi: U \to V$ е линейно изображение, $u=(u_1,...,u_m)$ е наредена m-торка, съставена от вектори $u_1,...,u_m \in U,$ и $A=(a_{i,j})_{i=1}^m {n \atop j=1} \in M_{m \times n}(F).$ тогава

$$\varphi(uA) = \varphi(u)A$$

за

$$uA := (v_1, ..., v_n), \ v_i = (u_1, ..., u_m) \begin{pmatrix} a_{1j} \\ a_{2j} \\ ... \\ a_{mj} \end{pmatrix} = \sum_{i=1}^m a_{ij} u_i,$$

$$\varphi(uA):=\varphi(v_1,...,v_n)=(\varphi(v_1),...,\varphi(v_m)) \text{ и } \varphi(u)=(\varphi(u_1),...,\varphi(u_m))$$

Доказателство От равенството на ј-тия стълб на $\varphi(uA)$ и ј-тия стълб на $\varphi(u)A$:

$$\varphi(v_j) = \varphi\left(\sum_{i=1}^m a_{ij}u_i\right) = \sum_{i=1}^m a_{ij}\varphi(u_i) = (\varphi(u_1), ..., \varphi(u_m)) \begin{pmatrix} a_{1j} \\ a_{2j} \\ ... \\ a_{mj} \end{pmatrix}$$

за всяко $1 \le j \le n$.

Определение 15.2

Нека $\varphi:U\to V$ е линейно изображение, векторите $e_1,...,e_n$ образуват базис на линейното пространство U над поле F, векторите $f_1,...,f_n$ образуват базис на линейното пространство V над поле F. Матрицата:

$$A = (\varphi(e_1), ..., \varphi(e_n)) \in M_{m \times n}(F)$$

образувана по стълбовете от координатите на векторите $\varphi(e_1),...,\varphi(e_n)\in V$ спрямо базиса $f=(f_1,...,f_n)$ на V наричаме матрица на линейно изображение φ спрямо базисите е и f. Еквивалентно:

$$\varphi(e) = fA$$

за
$$\varphi(e) := (\varphi(e_1), ..., \varphi(e_n)).$$

Матрицата A се описва еднозначно φ чрез е и f, базиси на U и V, както чрез образите $\varphi(e_1),...,\varphi(e_n)$ на базиса е на U.

Лема 15.4 (Матрична форма на линейната независимост на вектори)

Нека $u_1,...,u_m$ са линейно независими вектори от линейно пространство U над поле F, $u=(u_1,...,u_m)$ и $A=(a_{ij})_{i=1j=1}^m$, $B=(b_{ij})_{i=1j=1}^m\in M_{m\times n}(F)$ са матрици с елементи от F. Тогава:

(i) от
$$uA = \underbrace{(\vec{\mathcal{O}}, ..., \vec{\mathcal{O}})}_{n}$$
 следва $A = \mathbb{O}_{m \times n}$;

(ii) от uA = uB следва A = B.

Доказателство (i) За всяко $1 \leq j \leq n$, сравняването на ј-тите компоненти на двете страни на

$$uA = \underbrace{(\vec{\mathcal{O}}, ..., \vec{\mathcal{O}})}_{r}$$

дава

$$(u_1 \dots u_m) \left(\begin{array}{c} a_{1j} \\ \dots \\ a_{mj} \end{array} \right) = \vec{\mathcal{O}}$$

Но равенството

$$\sum_{s=1}^{m} a_{sj} u_s$$

за линейно независимите вектори $u_1,...,u_m$ изисква $a_{sj}=0$ за $\forall 1\leq s\leq m.$ Това доказва $a_{sj}=0$ за всички $1\leq s\leq m, 1\leq j\leq n$ и $A=\mathbb{O}_{m\times n}.$

(ii) Ако uA = uB, то от

$$u(A - B) = uA - uB = \underbrace{(\vec{\mathcal{O}}, ..., \vec{\mathcal{O}})}_{n}$$

следва $A = B = \mathbb{O}_{m \times n}$

Ако произволно $u \in U$ има координатите

$$x = \left(\begin{array}{c} x_1 \\ \dots \\ x_n \end{array}\right) \in M_{n \times 1}$$

спрямо базиса $e = (e_1, ..., e_n)$, то

$$u = \sum_{i=1}^{n} x_i e_i = (e_1 \dots e_n) \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = ex$$

Прилагайки φ върху \mathbf{u} :

$$\varphi(u) = \varphi(ex) = \varphi(e)x = (fA)x = f(Ax)$$

съгласно Лема 15.1, Определение 15.2 за матрица на линейно изображение и асоциативността на умножението на матрици. Ако

$$y = \left(\begin{array}{c} y_1 \\ \dots \\ y_m \end{array}\right) \in M_{m \times 1}$$

са координатите на $\varphi(u)$ спрямо базиса $f=(f_1,...,f_m)$ на V , то $\varphi(u)=fy$, откъдето

$$fy = \varphi(u) = f(Ax)$$
$$y = Ax$$

По този начин, за да пресметнем координатите у на образа $\varphi(u)$ на $u\varphi U$ относно базиса f на V трябва да умножим матрицата A на φ спрямо е и f с координатния стълб x на и спр ямо базиса е на U.

Например, нулевото линейно изображение $\mathbb{O}: U \to V, \mathbb{O}(u) = \vec{\mathcal{O}}_v, \forall u \in U$ на n-мерно пространство U в m-мерно пространство V има нулевата матрица $\mathbb{O}_{m \times n} \in M_{m \times n}(F)$ спрямо произволен базис $e = (e_1, ..., e_n)$ на U и произволен базис $f = (f_1, ..., f_m)$ на V . Причина за това е $\mathbb{O}(e_i) = 0f_1 + ... + 0f_m$ за произволно $1 \le i \le n$.

Определение 15.4

Ако $\varphi:U\to U$ е линеен оператор в n-мерно пространство U и $e=(e_1,...,e_n)$ е базис на U, то матрицата

$$A = (\varphi(e_1), ..., \varphi(e_n)) \in M_{m \times n}(F),$$

образувана по стълбове от координатите на $\varphi(e_1),...,\varphi(e_n)$ спрямо $e_1,...,e_n$ се нарича матрица на φ спрямо базиса е. Еквивалентно, А се определя от равенството

$$\varphi(e) = eA.$$

Определение 15.5

Ако $e=(e_1,...,e_n)$ и $f=(f_1,...,f_n)$ са базиси на линейно пространство V над поле F, то матрицата

$$T = (f_1...f_j...f_n) = \begin{pmatrix} t_{11} & \dots & t_{1j} & \dots & t_{1n} \\ \dots & \dots & \dots & \dots \\ t_{n1} & \dots & t_{nj} & \dots & t_{nn} \end{pmatrix} \in M_{m \times n}(F)$$

образувана по стълбовете на координатите на

$$f_j = (e_1 \dots e_n) \begin{pmatrix} t_{1j} \\ \dots \\ t_{nj} \end{pmatrix} \in V, 1 \le j \le n$$

спрямо базиса $e_1,...,e_n$ се нарича матрица на прехода от базиса $e=(e_1,...,e_n)$ към базиса $f=(f_1,...,f_n)$. Еквивалентно, матрицата на прехода $T\in M_{n\times n}(F)$ от базиса е към базиса f е единствената матрица, изпълняваща равенството

$$f = (f_1, ..., f_n) = (e_1, ..., e_n)T = eT.$$

Твърдение 15.6

Нека $e = (e_1, ..., e_n)$ е базис на линейно пространство V над поле F, а $T \in M_{n \times n}(F)$ е квадратна матрица. В такъв случай, T е матрица на прехода от базиса е към базиса $f = (f_1, ..., f_n) = eT$ тогава и само тогава, когато матрицата T е неособена.

<u>Доказателство</u> Ако f=eT е базис на V , то e=fS за матрицата на прехода $S\in M_{n\times n}(F)$ от базиса f към базиса е. Тогава

$$eE_n = e = fS = (eT)S = e(TS)$$

откъдето $TS=E_n$ по Лема 15.3 (ii) за линейно независимите вектори $e_1,...,e_n$. Следователно T е обратима, а оттам е и неособена матрица. Ако T е неособена матрица и $det(T)\neq 0$, то вектор-стълбовете на T са линейно независими съгласно Твърдение 12.7, следователно векторите $f_1,...,f_n$, чиито координати спрямо базиса $e_1,...,e_n$ образуват вектор-стълбовете на T са линейно независими и образуват базис на n-мерното линейно пространство V по Твърдение 5.12.

Твърдение 15.7

Нека e=(e1,...,en) и f=(f1,...,fn) са базиси на линейно пространство V с матрица на прехода $T\in M_{n\times n}(F)$ от е към f. Тогава координатите $x\in M_{n\times 1}(F)$ на вектор $v\in V$ спрямо базиса е и координатите $y\in M_{n\times 1}(F)$ на същия вектор v спрямо базиса f са свързани с равенството

$$x = Ty$$
.

Доказателство Съгласно f = eT и ex = v = fy имаме

$$ex = fy = (eT)y = e(Ty),$$

откъдето x = Ty, съгласно 15.3 (ii) за линейно независимите вектори $e_1, ..., e_n$.

Твърдение 15.8

Нека $\varphi:U\to V$ е линейно изображение с матрица A спрямо базис $e=(e_1,....e_n)$ на U и базис $f=(f_1,...,f_m)$ на V , e'=eT е друг базис на U с матрица на прехода T от e към e' и f'=fS е друг базис на V с матрица на прехода S от f към f'. Тогава матрицата на φ спрямо базиса e' на U и базиса f' на V е

$$B = S^{-1}AT.$$

Доказателство По Определение 15.2 за матрица на линейно изображение спрямо базисите на U и V имаме $\varphi(e)=fA$ и $\varphi(e')=f'B$. Заместваме e'=eT,f'=fS съгласно Определение 15.5 за матрица на прехода между два базиса на линейно пространство. Като изпозваме Лема 15.1 и асоциативността на умножението на матрици, получаваме

$$f(AT) = (fA)T = \varphi(e)T = \varphi(eT) = \varphi(e') = f'B = (fS)B = f(SB).$$

По Лема 15.3 (ii) за линейно независимите вектори $f_1, ..., f_m$, това е достатъчно за AT = SB. По Твърдение 15.6, матрицата на прехода S от базиса f на V към базиса f' на V е обратима и $B = S^{-1}AT$.

Ако $\varphi: U \to U$ е линеен оператор с матрица $A \in M_{n \times n}(F)$ спрямо базис $e = (e_1, ..., e_n)$ на U и e' = eT е базис на U с матрица на прехода $T \in M_{n \times n}(F)$ от e към e', то матрицата на φ спрямо базиса e' е $B = T^{-1}AT$.

Определение 15.9

Квадратни матрици $A, B \in Mn \times n(F)$ с един и същи размер са подобни, ако съществува обратима матрица $T \in M_{n \times n}(F)$, така че $B = T^{-1}AT$.

Твърдение 15.10

Квадратни матрици $A, B \in Mn \times n(F)$ са подобни тогава и само тогава, когато съществува линеен оператор в n-мерно линейно пространство над F с матрици A и B спрямо подходящи базиси.

Доказателство От Твърдение 15.8 следва, че ако $\varphi:U\to U$ е линеен оператор с матрица $A\in M_{n\times n}(F)$ спрямо произволен базис е на U, то матрицата на φ спрямо базиса e'=eT с матрица на прехода $T\in M_{n\times n}(F)$ от e към e' е подобна на A и равна на $B=B=T^{-1}AT$.

Нека А и $B=T^{-1}AT$ са подобни матрици. Избираме базис $e=(e_1,...,e_n)$ на п-мерно линейно пространство U над F и разглеждаме линейния оператор $\varphi:U\to U$ с матрица A спрямо базиса е. Матрицата T е неособена, така че e'=eT е базис на U съгласно Твърдение 15.6. По Твърдение 15.8, матрицата на линейния оператор φ спрямо базиса e' на U е $T^{-1}AT=B$.