

EUROPÄISCHE PATENTSCHRIFT

- (4) Veröffentlichungstag der Patentschrift: 26.04.95 (51) Int. CI.⁶: C11D 3/386
- (21) Anmeldenummer: 92900162.6
- Anmeldetag: 06.12.91

(12)

- (6) Internationale Anmeldenummer: PCT/EP91/02340
- (87) Internationale Veröffentlichungsnummer: WO 92/11347 (09.07.92 92/17)
- ENZYMZUBEREITUNG FÜR WASCH- UND REINIGUNGSMITTEL.
- (30) Priorität: 24.12.90 DE 4041752
- (3) Veröffentlichungstag der Anmeldung: 13.10.93 Patentblatt 93/41
- (49) Bekanntmachung des Hinweises auf die Patenterteilung: 26.04.95 Patentblatt 95/17
- (A) Benannte Vertragsstaaten: AT BE CHIDE DK ES FRIGBIT LINL
- 68 Entgegenhaltungen: EP-A- 0 168 526
 - EP-A- 0 216 322
 - DF-B- 1 067 711
 - US-A- 4 176 079

- 73 Patentinhaber: Henkel Kommanditgesellschaft auf Aktien
 - D-40191 Düsseldorf (DE)
- Erfinder: PAWELCZYK, Hubert Alt Eller 23 D-4000 Düsseldorf (DE) Erfinder: RÄHSE, Wilfried Bahlenstrasse 168 D-4000 Düsseldorf 13 (DE) Erfinder: CARDUCK, Franz-Josef Landstrasse 18 D-5657 Haan (DE) Erfinder: KÜHNE, Norbert Diirerstrasse 83 D-5657 Haan (DE)
 - Erfinder: RUNGE, Volker Am Feldkothen 23 D-4030 Ratingen (DE) Erfinder: UPADEK, Horst Im Sandforst 26
 - D-4030 Ratingen (DE)

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

Die Erfindung betrifft ein Enzymgranulat, ein Verfahren zu seiner Herstellung und die Verwendung des Granulats in festen Wasch- und Reinigungsmitteln.

Enzyme, insbesondere Proteasen, finden ausgedehnte Verwendung in Wasch-, Waschhilfs- und Reinigungsmitteln. Üblicherweise kommen die Enzyme dabei nicht als Konzentrate, sondern in Mischungen mit einem Verdünnungs- und Trägermaterial zum Einsatz. Mischt man solche Enzymzubereitungen üblichen Waschmitteln bei, so kann beim Lagern ein erheblicher Abbau der Enzymaktivität eintreten, insbesondere wenn bleichaktive Verbindungen zugegen sind. Das Aufbringen der Enzyme auf Trägersalze unter gleich-10 zeitiger Granulation gemäß der deutschen Offenlegungsschrift DT 16 17 190 beziehungsweise durch Aufkleben mit nichtionischen Tensiden gemäß der deutschen Offenlegungsschrift DT 16 17 118 oder wäßrigen Lösungen von Celluloseethern gemäß der deutschen Offenlegungschrift DT 17 87 568 führt nicht zu einer nennenswerten Verbesserung der Lagerstabilität, da sich die empfindlichen Enzyme in solchen Aufmischungen in der Regel auf der Oberfläche der Trägersubstanz befinden. Zwar kann die Lagerstabilität 15 der Enzyme wesentlich erhöht werden, wenn man die Enzyme mit dem Trägermaterial umhüllt beziehungsweise in dieses einbettet und anschließend durch Extrudieren, Pressen und Marumerisieren in die gewünschte Partikelform überführt, wie zum Beispiel in der deutschen Patentschrift DE 16 17 232, der deutschen Offenlegungsschrift DT 20 32 768, und den deutschen Auslegeschriften DE 21 37 042 und DE 21 37 043 beschrieben. Derartige Enzymzubereitungen besitzen jedoch nur mangelhafte Löslichkeitseigen-20 schaften. Die ungelösten Partikel können sich im Waschgut verfangen und dieses verunreinigen bzw. sie werden ungenutzt in das Abwasser überführt. Aus der deutschen Offenlegungsschrift DT 18 03 099 bekannte Einbettungsmittel, die aus einem Gemisch fester Säuren beziehungsweise saurer Salze und Carbonaten beziehungsweise Bicarbonaten bestehen und bei Wasserzusatz zerfallen, verbessern zwar das Lösungsvermögen, sind aber ihrerseits sehr empfindlich gegen Feuchtigkeit und erfordern daher zusätzli-25 che Schutzmaßnahmen.

Ein weiterer Nachteil der vorgenannten Zubereitung ist darin zu sehen, daß die Enzyme nur in Form trockener Pulver verarbeitet werden können. Die üblicherweise bei der Enzymherstellung anfallenden Fermentbrithen lassen sich in dieser Form nicht einsetzen, sondern müssen zuvore nichtsäsent zuvoren diese Voraussetzung sind auch solche Verfahren gebunden, bei denen ausschließlich leicht lösliche 30 Trägermaterialen, wie Zucker, Stärke und Celluloseether als Bindemittel zur Herstellung von Enzymzubereitungen eingesetzt werden.

Aus der europäischen Patentschrift EP 166 526 sind Enzymgranulate bekannt die in Wasser quellfähige Stärke, Zooith und wasserdösliches Grauniterhilfsmittel enthalten. In diesem Dekument wird ein Herstellungsverfahren für derartige Formulierungen vorgeschlagen, das im wesentlichen darin besteht, eine von unlöslichen Bestandteilen befreite Fermenterlösung aufzukonzontrieren, mit den genannten Zuschlagstoffen zu versetzten und das entstandene Gemisch zu granulieren. Das Verfahren mit dem dort vorgeschlagenen Zuschlagstoffgemisch wird vorteilhaft mit Fermentationslösungen durchgeführt, die auf einen relativ hohen Trockensbistanzpehalt, beispielswiese S5 Gew-%, aufkonzentriert worden sind. Außerdem weisen die derart hergestellten Granulate eine hohe Lösungs- beziehungsweise Zerfallsgeschwindigkeit unter Waschbedingungen auf, so das die Enzyme unter Umständen relativ rasch desaktilvert werden.

Es bestand daher die Aufgabe, durch ein Herstellungsverfahren, das den Einsatz niedrigkonzentrierter Fermentationsbrühen erlaubt, die Pulvereigenschaften, insbesondere die gleichmäßige Löslichkeit der bekannten Produkte zu verbessern, die Aktivitätsverluste bei der Enzymverarbeitung weiter zu vermindern und die Lagerbeständigkeit der Enzyme noch weiter zu erhöhen. Diese Aufgabe wird durch die nachfolgend geschilderte Erfindung gelöst.

Die Erfindung betrifft ein für die Einarbeitung in Wasch- und Reinigungsmittel geeignetes Enzymgranutat mit einer Korngröße von 0,1 mm bis 2 mm, enthaltend 2 Gew-% bis 20 Gew-% Protease, Amylase
undroder Celluliase, berechnet als Trockensubstanz, 10 Gew-% bis 50 Gew-% quellfähige Stärke, 5 Gewbis 50 Gew-% Granulierhilfsmittel, das ein wasserlösliches organisches Polymer enthält, nicht über 10
60 Gew-% bis 53 Gew-% Satz und 3 Gew-% bis 12 Gew-% Wasser, das dadurch gekennzeichnet ist, daß
es 10 Gew-% bis 35 Gew-% Getreidemehl enthält, und seine Verwendung zur Herstellung körniger
Wasch- und Reinicunosmittel.

Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung eines derartigen Enzymgranulates durch Extrudieren eines durch Vermischen einer von unlöslichen Bestandteilen befreiten und aufkonzentrierten 56 Fermentationsbrühe mit Zuschlagstoffen entstandenen Enzym-Vorgemischs, Sphäronsierung des Extrudats in einem Rondiergerät, Trocknung und gegebenenfalls Aufbringen eines Farbstoff oder Pigment enthaltenden Überzugs aus wasserlöslichen, filmbildendem Polymer, wobei das Verfahren dadurch gekennzeichnet ist, daß man die unlöslichen Bestandteile aus der Fermentationsbrühe durch Mikrofiliration entfernt und die

aufkonzentrierte Fermentationsbrühe mit einem Zuschlagstoff vermischt, der 10 Gew.-% bis 35 Gew.-% Getreidemehl, bezogen auf fertiges Granulat, enthält.

Als Enzymo kommen in erster Linie die aus Mikroorganismen, wie Bakterien oder Pitzen, gewonnenen
Proteasen, Lipasen, Amylasen und/oder Cellulasen in Frage, wobei von Bacillus-Arten erzeugte Proteasen
5 sowie ihre Gemische mit Amylasen bevorzugt sind. Sie werden in bekannter Weise durch Fermentationsprozesse aus geeigneten Mikroorganismen gewonnen, die zum Beispiel in den deutschen Offenlegungsschriften DE 19 40 488, DE 20 44 161, DE 22 01 803 und DE 21 21 397, den US-amerikanischen
Patentschriften US 3 632 957 und US 4 264 738 sowie der europäischen Patentammeldung EP 006 638
beschrieben sind. Besonders vorteilhaft kann das erfindungsgemäße Verfahren zur Formulierung der sehr
70 aktiven Proteasen der sogenannten zweiten Generation verwendet werden, zu denen beispielsweise
Savinase⁶⁷⁰ und aus der internationalen Patentammeldung WO 91/2792 bekannte Enzyme gehören, dere
lagerstablie Einarbeitung in Wasch- und Reniquungsmittel in der Regel Probleme bereitet. Ertindungsgemäß
ist es möglich, die bei den Fermentationsprozessen anfallenden Brühne retrazellulärer Enzyme nach
Abtrennen der unlöslichen Begleitstoffe durch Mikrofiltration sowie nachfolgende Aufknozentration durch
15 Ultrafiltration und gegebenenfalls anschließendes Eindampfen im Vakum unmittelbar in lagerbeständige,
weitgehend geruchlose Granulate zu überführen. Die Entstehung unerwünschter Enzymstäube und die bei
zusätzlichen Trocknungsprozessen auftrenden Aktivitätsverulste werden vermieden.

Enzyme sind in den erfindungsgemäßen Granulaten vorzugsweise in Mengen von 4 Gew-% bis 20 Gew-% enthalten. Falls es sich bei dem erfindungsgemäßen Enzymgranulat um eine proteasehaltige 20 Formulierung handelt, beträgt die Proteaseakhvität vorzugsweise 70 000 Proteaseeinheiten (PE, bestimmt nach der in Tenside 7 (1970), 125 beschriebenen Methode) bis 250 000 PE, insbesondere 140 000 PE bis 200 000 PE, pro Gramm Enzymgranulat.

Bei der in Wasser quellfähigen Stärke handelt es sich vorzugsweise um Maistärke, Reisstärke, Kartoffelstärke oder Gemische aus diesen, wobei der Einsatz von Maisstärke besonders bevorzugt ist. 20 Quellfähige Stärke ist in den erfindungsgemäßen Enzymgranulaten in Mengen von 10 Gew.-% bis 50 Gew.- %, insbesondere von 20 Gew.-% bis 40 Gew.-% enthalten, wobei die Summe der Mengen der quellfähigen Stärke und des Mehls vorzugsweise nicht Über 60 Gew.-%, insbesondere 32 Gew.-% bis 55 Gew.-% berfänt.

Bei dem erifindungsgemäß geeigneten Getreidemehl handelt es sich insbesondere um ein aus Weizen, Roggen, Gerste oder Hafer herstellbares Produkt oder um ein Gemisch dieser Mehle, wobei Vollkommehle bevorzugt sind. Unter einem Vollkommehl wird im Rahmen der Erifindung ein nicht voll ausgemahlenes Mehl verstanden, das aus ganzen, ungeschälten Körnern hergestellt worden ist oder zumindest überwiegend aus einem derartigen Produkt besteht, wobei der Rest aus voll ausgemahlenen Mehl beziehungsweise Stärke besteht. Vorzugsweise werden handelsübliche Weizenmehl-Qualitäten, wie Type 450 oder Type 550, eingesetzt. Auch die Verwendung von Mehlprodukten der zu vorgenannten quellfähigen Stärken führenden Getreidearten ist möglich, wenn darauf geachtet wird, daß die Mehle aus den ganzen Körnern hergestellt worden sind. Durch die Mehlkomponente des Zuschlagstoftgemisches wird eine wesentliche Geruchsreduzierung der Enzymzubereitung erreicht, welche die Geruchsverminderung durch die Einarbeitung gleicher Mengen entsprechender Stärkearten bei weitem übertrifft. Derartiges Getreidemehl ist in den erfindungsgemäßen Enzymgranutaten in Mengen von 10 Gew.-% bis 35 Gew.-%, insbesondere von 12 Gew.-% bis 25 Gew.-% erhalten.

Weiterhin enthalten die erfindungsgemäßen Enzymgranulate 5 Gew. % bis 50 Gew. %, vorzugsweise 15 Gew. % for Sew. % Granulierhiltsmittel, das mindestens ein wassenfösliches organisches Polymer enthält. Geeignete Verbindungen dieser Klasse sind zum Beispiel Cellulose- und Stärkeether, wie Carbox49 ymethylcellulose, Carboxymethylstärke, Methylcellulose, Hydroxyethylcellulose, Hydroxypropylcellulose sowie entsprechende Cellulosemischether. Gegebenenfalls können auch Gelatine, Casein, Traganth, Maltodextrose, Saccharose, Invertzucker, Glukosesirup oder andere in Wasser lösliche beziehungsweise gut
dispergierbare Oligomere oder Polymere nattdrichen Ursprungs verwendet werden. Brauchbare synthetische wasserlösliche Polymere sind Polyethylenglykol. Polyacrylate, Polymethacrylate, Copolymer 6
50 Acrylsäure mit Maleinsäure oder vinylgruppenhaltige Verbindungen, ferner Polyvinylalkohol, tellverseittes
Polyvinylacetat und Polyvinylpyrrolidon. Soweit es sich bei den vorgenaniente Verbindungen um solche mit
freien Carboxylgruppen handelt, liegen sie normalerweise in Form ihrer Natriumsalze vor.

Zusätzlich können die Enzymgranulate wasserunlösliche Granulierhilfsmittel enthalten, zu denen insbesondere Cellulose und Schichtsilikate, beispielsweise Bentonite oder Smectite, gehören.

Als besonders geeignet haben sich Kombinationen von 8 Gew.-% bis 20 Gew.-% Natriumcarboxymethylcellulose und 3 Gew.-% bis 10 Gew.-% Polyethylenglykol erwiesen, wobei letzteres ein Molekulargewicht von vorzugsweise 1000 bis 20 000, insbesondere von 2000 bis 15 000 aufweist. Die Natriumcarboxymethylcellulose setzt die Zerfalls- und Dispergiergeschwindigkeit der Granulate in kalten Waschlaugen

herab. Durch einen Zusatz von Polyethylenglykol kann diese Wirkung in Richtung auf eine höhere Auflösungsgeschwindigkeit verändert werden. Gleichzeitig erleichtert dieser Zusatz das Sphäronisieren der Granulate. Als zusätzliches Granulierhilfsmittel kann das erfindungsgemäße Granulat eine Kombination aus vorzugsweise 2 Gew.-% bis 10 Gew.-% Cellulose und vorzugsweise 2 Gew.-% bis 3 Gew.-% Sacchaross oder eine Kombination aus vorzugsweise 2 Gew.-% bis 10 Gew.-% Cellulose und vorzugsweise 2 Gew.-% bis 5 Gew.-% einer Verbindung ausgewählt aus der Gruppe umfassend Sorbit, Maltodextrin, Polyvinylpyrroidon, Amylogum und deren Gemische enthalten.

Als weitere Bestandteile können die Granulate noch geringe Mengen, vorzugsweise nicht über 10 Gew-%, insbesondere 1 Gew-% bis 10 Gew-%, an wassertöslichen Salzen enthalten, die so ausgewählt sind, 10 das sie die Lagerbeständigkeit der Erzyme nicht nachteilig beenflussen. Diese Salze können die Zerfallsund Dispergiergeschwindigkeit der Granulate insbesondere in kalten Waschlaugen erhöhen. Geeignete Salze sind zum Beispiel Natriumchlorid, Natriumsulat, Natriumacatat, Kaliumacatat oder deren Gemische

Zur Herstellung der erfindungsgemäßen Enzymgranulate geht man von Fermentbrühen aus, die durch Mikrofilitration von unlösilichen Begleitstoffen befreit werden. Die Mikrofilitration wird dabei vorzugsweise als 15 Querstrom-Mikrofilitration unter Verwendung poröser Rohre mit Mikroporen größer 0.1 um, Fließgeschwindigkeiten der Konzentratiösung von mehr als 2 mis und einem Druckunterschied zur Permeatseiste von unter 5 bar durchgeführt, wie beispielsweise in der europäischen Patentanmeidung EP 200 032 beschieben. Anschließend wird das Mikrofilitrationspermeat vorzugsweise durch Ultrafilitration, gegebenentalls mit anschließender Vakunmeindampfung, aufkonzentriert. Ein besonderer Vorteil der Erfindung ist darin zu sehen, 20 daß die Aufkonzentration so geführt werden kann, daß man nur zu relativ niedrigen Gehalten an Trockensubstanz von vorzugsweise 5 Gew.-% bis 50 Gew.-%, insbesondere von 10 Gew.-% bis 40 Gew.-% gelangt. Das Konzentrat wird einem zweckmäßigerweise zuvor hergestellten trockenen, putverfürnigen bis kömigen Gemisch der oben beschriebenen Zuschlagstoffe zudosiert. Der Wassergehalt der Mischung sollte so gewählt werden, daß eis sich bei der Bearbeitung mit Rühr- und Schlagwerkzeugen in Köringe, bei 28 Aumtemperatur nicht klebende Partikel überführen und bei Anwendung höherer Drücke plastisch verformen und extrudieren läßt.

Das risselfähige Vorgemisch wird im Prinzip bekannter Weise anschließend in einem Kneter sowie einem angeschlossenen Ertruder zu einer platistischen Masse verarbeitet, wobei als Folge der mechanischen Bearbeitung sich die Masse auf Temperaturen zwischen 40 °C und 60 °C, insbesondere 45 °C bis 30 55 °C erwärmen kann. Das den Extruder verlassende Gut wird durch eine Lockscheibe mit nachfolgendem Abschlagmesser gelführt und dadurch zu zylinderförnigen Partikel definierter Größe zerkelienert. Zweckmäßigerweise beträgt der Durchmesser der Bohrungen in der Lochscheibe 0,4 mm bis 1 mm, vorzugsweise 0,5 mm bis 0,9 mm. Die in dieser Form vorliegenden Partikel können anschließend getrocknet und der späteren Verwendung zugeführt werden. Es hat sich jedoch als vorleilhaft erwiesen, die den Extruder und Zerhacker verlassenden zylindrischen Partikel anschließend zu sphäronisieren, das heißt sie in geeigneten Vorrichtungen abzurunden und zu entgraten. Ein solches Sphäronisierungsverfahren ist beispielsweise in den deutschen Auslegeschriften DE 21 37 042 und DE 21 37 043 beschrieben. Man verwendet hierzu eine Vorrichtungen, die aus einem zylindrischen Behälter mit stationären, festen Seltenwänden und einer bodenseitig drehbar gelagerten Reibplatte bestehen. Vorrichtungen dieser Art sind unter der Warenbezeichnung 40 Marumerizer⁶ in der Technik verbreitet.

Nach der Sphäronisierung werden die noch feuchten Kügelichen kontinuterlich oder chargenweise, vorzugsweise unter Verwendung einer Wirbelschichttrockenanlage, bei vorzugsweise maximal 45 °C, insbesondere maximal 40 °C Produkt-Temperatur bis zu einem Restfeuchtegehalt von 3 Gew.-% bis 12 Gew.-%, vorzugsweise 6 Gew.-% bis 8 Gew.-% getrocknet. Nach oder vorzugsweise während der Trocknung können zusätzlich Stoffe zum Umfüllen und Beschichten der Partikel eingebracht werden. Geeignete Hüllstoffe sind insbesondere die Filmbildner unter den vorgenannten wasserlöslichen organischen Polymeren, vorzugsweise höhermolektualer, das heißt ein Molekulargewicht von 1 000 bis 20 000 aufweisende Polyethylenglykole. Weiterhin lassen sich in diesem Stadium auch Farbstoffe oder Pigmente auf die Partikel aufbringen, um so eine eventuelle Eigenfarbe, die meist vom Enzymkonzentrat herrührt, zu 6 überdeckehe beziehungsweise zu veränden. Als inertes und physiologisch unbedenkliches Pigment hat sich insbesondere Titandioxid bewährt, das vorzugsweise in wäßriger Dispersion eingebracht wird. Das über die Pigmentdispersion beziehungsweise über die Polymer-Lösung zugeführte Wasser wird bei der gleichzeitig vorgenommenen oder anschließeder dernet frockenung wieder entlernt.

Durch Sieben oder Windsichten können eventuell auftretende staubförmige Anteile mit einer Kongröße ber unter 0,1 mm, vorzugsweise unter 0,2 mm sowie eventuelle Grobanteile mit einer Kongröße über 2 mm, vorzugsweise über 1,8 mm entfernt und gegebenenfalls in den Herstellungsprozess zurückgeführt werden. Die erfindungsgemäßen Granulate enthalten vorzugsweise weniger als 5 Gew-%, insbesondere höchstens 1 Gew-% an Partiklen mit Kongrößen außerhalb des Bereichs von 0,2 mm bis 1,8 mm.

Die erhaltene Enzymzubereitung besteht aus weitgehend abgerundeten, staubfreien Partikein, die in der Regel ein Schüttgewicht von etwa 500 bis 900 Gramm pro Liter, insbesondere 650 bis 800 Gramm pro Liter aufweisen. Sie wird vorzugsweise zur Herstellung von festen, insbesondere körnigen Wasch- oder Reinigungsmitteln verwendet. Ihre Enzymaktivität kann bei Einsatz von Protease-haltigen Fermenterbrühen, 5 bedingt durch den flexbiben Trockensubstanzpehalt der Brühen vor dem Vermischen mit den Zuschlagstoften, auf Werte im Bereich von vorzugsweise 70 000 bis 250 000 Proteaseeinheiten pro Gramm (PE/g), insbesondere von 140 000 bis 200 000 PE/g, eingestellt werden. Die erfindungsgemäßen Granulate zeichnen sich durch ihren geringen Eigengeruch und, auch im Gemisch mit Wasch- und Reinigungsmitteln sowie Perverbindungen, durch eine sehr hohe Lagerstabilität, insbesondere bei Temperaturen über Raum 100 mehren geringen Eigengeruch und, auch im Gemisch mit Wasch- und Reinigungsmitteln sowie Perverbindungen, durch eine sehr hohe Lagerstabilität, insbesondere bei Temperaturen über Raum 100 mehren zur und hoher Luffleuchtigkeit, sowie ein gleichmäßiges Lösungsverhalten in der Waschflotte aus. Als weiterer Vorfeil ist zu werten, daß die erfindungsgemäßen Enzymgranulate in Wasser bei 25 °C innerhalb von 2 Minuten vorzugsweise nicht mehr als 90 % und innerhalb von 5 Minuten vorzugsweise über 97 % ihrer Enzymaktivität freisietzen und somit eine ausreichend lange Einwirkzeit des Enzyms auf enzymatisch entfernbare Anschmutzungen, insbesondere in wäßrigen Wasch- oder Reinigungslaugen, gewährleisten.

Beispiele

Beispiel 1

Durch Fermentation von nach dem in der internationalen Patentanmeldung WO 91/2792 beschriebenen Verfahren durch Transformation einer Gensequenz aus Bacillus lentus DSM 5483 modifiziertem Bacillus licheniformis (ATCC 53926) analog dem in der deutschen Patentschrift DE 29 25 427 angegebenen Verfahren wurden 3,3 m3 einer biomassehaltigen Fermenterbrühe erhalten, die ca. 50 000 Proteaseeinheiten 25 pro Gramm (PE/g) enthielt. Der pH-Wert der Fermenterbrühe wurde durch Zugabe von 33-gewichtsprozentiger CaCl₂-Lösung auf ca. 7.5 eingestellt. Anschließend wurden grobe Verunreinigungen durch Dekantieren entfernt. Die Brühe wurde mit Wasser auf ein Volumen von 11,5 m3 verdünnt. Die Abtrennung des Enzyms von der Zellmasse erfolgte mittels Querstrom-Mikrofiltration (Membranporendurchmesser 0,14 μm). Man erhielt etwa 24 m3 Mikrofiltrationspermeat mit ca. 7 000 PE/g. Durch Ultrafiltation (Trenngrenze bei 30 Molekulargewicht 10 000) des enzymhaltigen Filtrats und anschließendes Eindampfen im Vakuum (50 mbar. Temperatur bis zu 30 °C) erhielt man 0,3 m3 einer Brühe F1 mit einem Trockensubstanzgehalt von 35 Gew.-% und einem Proteasegehalt von 500 000 PE/g. Aus gleichartigen Fermenterbrühen wurden durch analoges Vorgehen die Brühen F2 (28 Gew.-% Trockensubstanz, 480 000 PE/g), F3 (19 Gew.-% Trockensubstanz, 350 000 PE/g) und F4 (38 Gew.-% Trockensubstanz, 600 000 PE/g) erhalten. Die so aufkonzen-35 trierten Fermenterbrühen F1 bis F4 wurden in einem mit rotierendem Schlagwerkzeug ausgerüsteten Mischer mit den in Tabelle 1 aufgeführten Zuschlägen vermischt und in einem mit einer Außenkühlung versehenen Kneter homogenisiert. Die Extrusion der plastischen Massen erfolgte mittels eines mit einer Lochscheibe (Lochdurchmesser 0,7 mm) und einem rotierenden Messer ausgerüsteten Extruder. Man erhielt die in Tabelle 1 durch ihre Zusammensetzung charakterisierten Extrudate E1 bis E5 mit Längen von 40 0.7 mm bis 1 mm, die in einer Sphäronisierungsvorrichtung (Marumerizer^(R)) während einer Bearbeitungszeit von etwa 5 Minuten unter gleichzeitigem Bestäuben mit pulverförmigem Calciumcarbonat (3 Gew.-%) zu abgerundeten Partikeln verformt und entgratet wurden. Das den Sphäronisator verlassende Gut wurde in einem Wirbelschichttrockner bei Temperaturen von 40 °C bis 45 °C innerhalb von etwa 15 Minuten auf einen Wassergehalt von etwa 6 Gew.-% getrocknet. Durch anschließendes Sieben wurden Partikel mit 45 Teilchengrößen unter 0,2 mm und über 1,6 mm weitgehend entfernt, die dem Prozeß auf der Stufe des Vermischens mit den Zuschlagstoffen wieder zugeführt wurden. Die Enzymgranulate wurden durch Aufsprühen einer wäßrigen Titandioxidpigment-Suspension und anschließendes Aufsprühen einer wäßrigen Polyethylenglykol-Lösung während der Wirbelschichttrocknung gecoatet. Man erhielt so aus den Extrudaten E1 bis E5 die Endprodukte G1 bis G5 mit den in Tabelle 2 angegebenen Enzymaktivitäten.

Tabelle 1

Zusammensetzung der Extrudate [Gew%]						
	E1	E2	E3	E4	E5	
F1	29,0	27,5	-	-	-	
F2	-	-	28,0	-	-	
F3	-	-	-	20,0	-	
F4	-	-	-	-	30,0	
Weizenmehl Type 450	13,0	20,0	25,0	12,8	20,0	
Saccharose	2,5	2,5	2,5	3,0	2,5	
Maisstärke	29,2	23,0	23,2	38,2	21,5	
Natriumacetat	1,0	1,0	1,0	2,0	1,0	
Zellulosepulver ^{a)}	3,3	3,0	3,3	3,0	3,0	
Carboxymethylcellulose ^{b)}	15,0	17,0	12,0	15,0	17,0	
Polyethylenglykol ^{o)}	7,0	6,0	5,0	6,0	5,0	

a): Technocel(R) 30 (Hersteller Cellulose Füllstoff Fabrik)

Tabelle 2

Enzymaktivität der Granulate [PE/g]				
Granulat	hergestellt aus Extrudat	Enzymaktivität [PE/g]		
G1	E1	145 000		
G2	E2	137 500		
G3	E3	134 400		
G4	E4	70 000		
G 5	E 5	180 000		

Beispiel 2

5

10

15

20

25

30

35

40

55

Zur Bestimmung der Lösegeschwindigkeit wurde, wie in EP 168 526 beschrieben, 1 Gramm Enzymgranular in 100 ml mittels Magnetrühren gerührtes Wässer von 16 °dH (160 mg CaO7) bei 25 °C gegeben. Nach jeweils 1 Minute wurden Proben entnommen und deren Enzymativität nach Abfiltrieren ungelöster Bestandteile bestimmt. Die in Tabelle 3 angegebenen Bereiche ergaben sich aus 3 Bestimmungen, die Lösungsgeschwindigkeiten der gemäß Beispiel 1 hergestellten Granulate G1 bis G5 unterschieden sich nicht signifikant.

b): Tylose^(R) CR 1500 (Hersteller Hoechst)

c): Mittleres Molekulargewicht 2000

Tabelle 3

Geschwindigkeit der Enzymfreisetzung				
Zeit [Minuten]	freigesetzte Aktivität [%]			
1	60 - 70			
2	83 - 86			
3	93 - 97			
5	100			

Beispiel 3

5

10

30

35

46

2 Gramm des Enzymgranulats 62 wurden mit 98 Gramm eines handelsüblichen Vollwaschmittels (Perboratgehalt 18 Gew.-%) vermischt und in einem Kartonbehälter aus unkaschierter Pappe bei 30 °C und 30 % relativer Luffteuchtigkeit gelagent. Zum Vergleich wurde eine Probe, welche die gleiche Menge eines handelsüblichen Granulats einer alkalischen Protease (Savinasse⁶¹ 4.0 T, Hersteller Novo Industri A/S) enthielt, unter den gleichen Bedingungen gelagent. Die Proben wiesen nach Lagerungsdauern von 2 und 4 Wochen die in Tabelle 4 angegebenen Enzymaltivitäten (bezogen auf eingesetzte Aktivität = 100 %) auf. Die Aktivität der weiteren erfindungspernäßen Enzymgranulate nach Beispiel 1 unterschieden sich nach Lagerung nicht signifikant von der des Granulats G2. Die Waschleistung des G2-haltigen Waschmittels gegenüber proteinhaltigen Anschmutzungen war derjenigen des Vergleichswaschmittels in keinem Fall unterdegen.

Tabelle 4

Lagerstabilität in einer Waschmittelformulierung (30 °C, 80 % relative Luftfeuchtigkeit)					
Lagerungsdauer [Wochen]	Aktivität [Rel%]				
	G2	Vergleich			
2	85	60			
4	77	26			

40 Patentansprüche

- 1. Für die Einarbeitung in Wasch- oder Reinigungsmittel geeignetes Enzymgranulat mit einer Komgröße von 0,1 mm bis 2 mm, enthaltend 2 Gew-% bis 20 Gew-% Protease, Lipase, Amylase undloder Cellulase, berechnet als Trockensubstanz, 10 Gew-% is 50 Gew-% uellfälige Stärke, 5 Gew-% bis 50 Gew-% Granulierhilfsmittel, das ein wasserlösliches organisches Polymer enthält, nicht über 10 Gew-% wasserlösliches Salz und 3 Gew-% bis 12 Gew-% Wasser, dadurch gekennzeichnet, daß es 10 Gew-% bis 35 Gew-% Getreidemell enthält
- Enzymgranulat nach Anspruch 1, dadurch gekennzeichnet, daß es 4 Gew.-% bis 20 Gew.-% Protease,
 Lipase, Amylase unddoder Cellulase, insbesondere Protease, 20 Gew.-% bis 40 Gew.-% cuellfähige
 Stärke, insbesondere Reisstärke, 15 Gew.-% bis 40 Gew.-% Granulierhilfsmittel und 12 Gew.-% bis 25
 Gew.-% Getreidemehl enthält, wobei die Summe der Mengen der quellfähigen Stärke und des Mehls
 nicht Über 60 Gew.-%, insbesondere 32 Gew.-- & bis 55 Gew.-% berträgt.
- 3. Enzymgranulat nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Mehl aus der Gruppe umfassend Weizenmehl, Roggenmehl, Gerstenmehl, Hafermehl und deren Gemische ausgewählt wird.

- Enzymgranulat nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß es Protease mit einer Aktivität von 70 000 PE bis 250 000 PE, insbesondere 140 000 PE bis 200 000 PE, pro Gramm Enzymgranulat enthätt.
- 5 5. Enzymgranulat nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß es als Granulierhilfsmittel 8 Gew.-% bis 20 Gew.-% Carboxymethylcellulose und 3 Gew.-% bis 10 Gew.-% Polyethylengly-kol mit einem mittleren Molekulargewicht von 1000 bis 20 000 enthält.
- 6. Enzymgranulat nach Anspruch 5, dadruch gekennzeichnet, daß es als zusätzliches Granulierhilfsmittel eine Kombination aus 2 Gew.-% bis 10 Gew.-% Cellulose und 2 Gew.-% bis 3 Gew.-% Saccharose oder eine Kombination aus 2 Gew.-% bis 10 Gew.-% Cellulose und 2 Gew.-% bis 5 Gew.-% einer Verbindung ausgewählt aus der Gruppe umfassend Sorbit, Maltodextrin, Polyvinylpyrrolldon, Amylogum und deren Gemische enhält.
- 7. Enzymgranulat nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß es als zusätzliches Granulierhilfsmittel nicht über 10 Gew.-% Schichtslikat enthält und die Summe der Mengen an Schichtslikat und Carboxymethylcellulose nicht über 20 Gew.-% beträgt.
- Enzymgranulat nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es 1 Gew-% bis 3
 Gew-% eines wasserlöslichen Salzes, das ein Alkalichlorid, ein Alkalisulfat, ein Alkaliacetat oder ein Gemisch aus diesen ist, enthält.
 - Enzymgranulat nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß es mit einem Farbstoff oder Pigment enthaltenden Überzug aus wasserlöslichem, filmbildendem Polymer überzogen ist.
 - 10. Enzymgranulat nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß es weniger als 5 Gew.-%, vorzugsweise höchstens 1 Gew.-% an Partikeln mit Komgrößen außerhalb des Bereichs von 0.2 mm bis 16 mm aufweist.
 - Enzymgranulat nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß es in Wasser bei 25

 C innerhalb von 2 Minuten nicht mehr als 90 % und innerhalb von 5 Minuten über 97 % seiner Enzymaktivität freisetzt.
- 38 12. Verfahren zur Herstellung eines Enzymgranulates mit einer Korngröße von 0,1 mm bis 2 mm, die 2 Gew-% bis 20 Gew-% Protease, Lipsea, Amylase und/oder Cellulase, berechnet als Trockensubstanz, 10 Gew-% bis 50 Gew-% quelitähige Stärke, 5 Gew-% bis 50 Gew-% Granulierhilfsmittel, das ein wasserlösliches organisches Polymer enthält, 3 Gew-% bis 12 Gew-% Wässer und nicht über 10 Gew-% wasserlösliches Saz enthalten, durch Extrudieren eines durch Vermischen einer von unlöslichen Bestandtellen befreiten und aufkonzentrierten Fermentationsbrühe mit Zuschlagstoffen entstandenen Enzym-Vorgemischs, Sphäronislerung des Extrudist in einem Rondlergerät, Trockunug und gegebenenfalls Aufbringen eines Farbstoff oder Pigment enthaltenden Überzugs aus wasserlöslichem, filmbildendem Polymer, dadurch gekennzeichnet, daß man die unlöslichen Bestandteile aus der Fermentationsbrühe durch Mikrofilträtion entfertund die aufkonzentrierte Fermentationsbrühe mit einem Zuschlagstoff vermischt, der 10 Gew-% bis 35 Gew-% Getreidemehl, bezogen auf fertiges Granulat enthält.
 - Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß das Mehl aus der Gruppe umfassend Weizenmehl, Roggenmehl, Gerstenmehl, Hafermehl und deren Gemische ausgewählt wird.
 - Verwendung eines Enzymgranulats gemäß einem der Ansprüche 1 bis 11 zur Herstellung fester, insbesondere k\u00f6rniger Wasch- und Reinigungsmittel.

Claims

55

50

30

 Enzyme granules suitable for incorporation in detergents with a particle size of 0.1 mm to 2 mm and containing 2% by weight to 20% by weight protease, lipses, amylase and/or cellulase, expressed as dry matter, 10% by weight to 50% by weight to 50%

granulation aid containing a water-soluble organic polymer, not more than 10% by weight water-soluble sait and 3% by weight to 12% by weight water, characterized in that the enzyme granules contain 10% by weight to 35% by weight to cereal flour.

- 5 2. Enzyme granules as claimed in claim 1, characterized in that they contain 4% by weight to 20% by weight protease, lipase, amylase and/or cellulase, more especially protease, 20% by weight to 40% by weight swellable starch, more especially rice starch, 15% by weight to 40% by weight granulation aid and 12% by weight to 25% by weight cereal flour, the sum total of the quantities of swellable starch and flour being no more than 60% by weight and, more particularly, between 32% by weight and 55% by weight and 55%
 - Enzyme granules as claimed in claim 1 or 2, characterized in that the flour is selected from the group consisting of wheat flour, rye flour, barley flour, oat flour and mixtures thereof.
- Enzyme granules as claimed in any of claims 1 to 3, characterized in that they contain protease having an activity of 70,000 PU to 250,000 PU and, more particularly, 140,000 PU to 200,000 PU per gram enzyme granules.
- Enzyme granules as claimed in any of claims 1 to 4, characterized in that they contain 8% by weight to 20% by weight carboxymethyl cellulose and 3% by weight to 10% by weight polyethylene glycol having an average molecular weight of 1000 to 20,000 as the granulation aid.
 - 6. Enzyme granules as claimed in claim 5, characterized in that they contain a combination of 2% by weight to 10% by weight cellulose and 2% by weight to 3% by weight weight cellulose and 2% by weight of a compound selected from the group consisting of sorbitol, maltodextrin, polyvinyl pyrrollidone, amylogum and mixtures thereof as the additional granulation aid.
 - Enzyme granules as claimed in claim 5 or 6, characterized in that they contain no more than 10% by weighty style of the contained that the sum total of the quantities of layer silicate and carboxymethyl cellulose not exceeding 20% by weight.

30

- Enzyme granules as claimed in any of claims 1 to 7, characterized in that they contain 1% by weight to 3% by weight of a water-soluble salt containing an alkali metal chloride, an alkali metal sulfate, an alkali metal acetate or a mixture thereof.
 - Enzyme granules as claimed in any of claims 1 to 8, characterized in that they are coated with a dyeor pigment-containing coating of water-soluble film-forming polymer.
- 40 10. Enzyme granules as claimed in any of claims 1 to 9, characterized in that they contain less than 5% by weight and preferably at most 1% by weight particles having particle sizes outside the 0.2 mm to 1.6 mm range.
- 11. Enzyme granules as claimed in any of claims 1 to 10, characterized in that they release no more than 90% of their enzyme activity in 2 minutes and more than 95% of their enzyme activity in 5 minutes in water at 25 °C.
- 12. A process for the production of enzyme granules with a particle size of 0.1 mm to 2 mm and containing 2% by weight to 20% by weight protease, lipase, amylase and/or cellulase, expressed as dry matter, 10% by weight to 50% by weight swellable starch, 5% by weight to 50% by weight of a granulation aid containing a water-soluble and polymer, 3% by weight to 12% by weight water and not more than 10% by weight water-soluble salt by extruding an enzyme premix prepared by mixing a fernmentation broth freed from insoluble constituents and concentrated with additives, spheronizing the extrudate in a spheronizer, drying and optionally applying a dye- or pigment-containing coating of water-soluble film-forming polymer, characterized in that the insoluble constituents are removed from the fernmentation broth by microfiltration and the concentrated fernmentation broth is mixed with an additive containing 10% by weight to 35% by weight creaf flow, based on the final rennules.

- 13. A process as claimed in claim 12, characterized in that the flour is selected from the group consisting of wheat flour, tye flour, barley flour, oat flour and mixtures thereof.
- 14. The use of the enzyme granules claimed in any of claims 1 to 11 for the production of solid, more particularly granular, detergents and cleaning products.

Revendications

15

- 1. Granulé enzymatique approprié à l'incorporation dans des agents de lavage ou de nettoyage, présentant une grosseur de granulé de 0,1 à 2 mm, renfermant 2 à 20 % en poids de protéase, d'amylase efou de cellulase, calculés code substance sèche, 10 à 50 % en poids d'amidon suscaptible de gonflement, 5 à 50 % en poids d'adjuvant de granulation, qui renferme un polymère organique soluble dans l'eau, pas plus de 10 % en poids de sel soluble dans l'eau et 3 à 12 % en poids d'eau, qui est caractérés en ce qu'il contient 10 à 35 % en poids de farine de cérédales.
 - 2. Granulé enzymatique selon la revendication 1, caractérisé en ce qu'il renferme 4 à 20 % en poids de proféase, de lipase, d'amylase et/ou de cellulase, en particulier de la protéase, 20 à 40 % en poids d'amidon susceptible de gonflement, en particulier de l'amidon de riz, 15 à 40 % en poids d'apridot de granulation et 12 à 25 % en poids de farine de céréales, la somme des quantités de l'amidon susceptible de gonflement et de la farine n'excédant pas 60 % en poids et étant comprise en particulier entre 32 et 55 % en poids.
 - Granulé enzymatique selon la revendication 1 ou 2, caractérisé en ce que la farine est sélectionnée parmi le groupe comprenant la farine de blé, la farine de seigle, la farine d'orge, la farine d'avoine et les mélanges de celles-ci.
 - 4. Granulé enzymatique selon une des revendications 1 à 3, caractérisé en ce qu'il renferme de la protéase avec une activité de 70 000 à 250 000 PE, en particulier de 140 000 à 200 000 PE, par gramme de granulé enzymatique.
- 5. Granulé enzymatique selon une des revendications 1 à 4, caractérisé en ce qu'il renferme comme adjuvant de granulation, 8 à 20 % en poids de carboxyméthycollulose et 3 à 10 % en poids de polyéthylèneglycols présentant un poids moléculaire moyen de 1000 à 20 000.
- 38 6. Granulé enzymatique selon la revendication 5, caractérisé en ce qu'il renferme comme adjuvant de granulation supplémentaire, une association de 2 à 10 % en poids de cellulose et de 2 à 3 % en poids de saccharose ou une association de 2 à 10 % en poids de cellulose et de 2 à 5 % en poids d'un composé sélectionné parmi le groupe comprenant le sorbitol, la maltodextrine, la polyvinylpyrrolidone, l'amylogum et les mélanges de cœux-ci.
 - 7. Granulé enzymatique selon la revendication 5 ou 6, caractérisé en ce qu'il renferme comme adjuvant de granulation supplémentaire, pas plus de 10 % en poids de silicate stratifié, la somme des quantités du silicate stratifié et de la carboxyméthyclellulse n'excédant pas 20 % en poids.
- 46 8. Granulé enzymatique selon une des revendications 1 à 7, caractérisé en ce qu'il renferme 1 à 3 % en poids d'un sel soluble dans l'eau, qui contient un chlorure de métal alcalin, un suifate de métal alcalin, un mélange de œux-ci.
- Granulé enzymatique selon une des revendications 1 à 8, caractérisé en ce qu'il est recouvert d'un revêtement de polymère filmogène soluble dans l'eau, renfermant un colorant ou un pigment.
 - 10. Granulé enzymatique selon une des revendications 1 à 9, caractérisé en ce qu'il présente moins de 5 % en poids, de préférence, au maximum 1 % en poids, de particules avec des grosseurs de grain situées en dehors de l'intervalle de 0,2 à 1,6 mm.
 - 11. Granulé enzymatique selon une des revendications 1 à 10, caractérisé en ce qu'il libère son activité enzymatique dans une au à 25 °C, en 2 minutes, de préférence à pas plus de 90 % et en 5 minutes, à plus de 97 %.

12. Procédé de fabrication d'un granulé enzymatique, présentant une grosseur de granulé de 0,1 à 2 mm, renfermant 2 à 20 % en poids de protéase, d'amylase et/ou de cellulase, calculés comme substance sèche, n 0 à 50 % en poids d'amidon susceptible de gonflement, 5 à 50 % en poids d'adjuvant de granulation, qui renferme un polymère organique soluble dans l'eau, 3 à 12 % en poids d'eau et pas plus de 10 % en poids de sel soluble dans l'eau, par extrusion d'un prémélange enzymatique obtenu par mélange avec des agrégats d'un bouillon de termentation débarrassé des constituants insolubles et concentré, sphéronisation du produit d'extrusion dans un appareil à arrondir, séchage et éventuellement application d'un revêtement renfermant un colorant ou un pigment de polymère filmogène, soluble dans l'eau, le procédé étant caractérisé en ce que l'on élimine les constituants insolubles du bouillon de fermentation par microfilitration et en ce que l'on mélange le bouillon de fermentation concentré avec un agrépat, qui renterme 10 à 35 % en poids de fariné de céréales par rapport au granulé final.

- 13. Procédé selon la revendication 12, caractérisé en ce que la farine est sélectionnée parmi le groupe comprenant la farine de blé, la farine de seigle, la farine d'orge, la farine d'avoine et les mélanges de celles-ci.
- 14. Utilisation d'un granulé enzymatique, conforme à l'une des revendications 1 à 11, pour la fabrication d'agents de lavage et de nettoyage solides, en particulier granuleux.