HomeWork4

Katherine Penney

8/5/2021

```
library(moments)
```

Step 1

#Questions 1-2 print VecInfo function as a vector as input and put in functions

```
printVecInfo <- function(m) {
    meanM <- mean(m)
    medianM <- median(m)
    minM <- min(m)
    maxM <- max(m)
    sdM <- sd(m)
    quantile <- quantile(m, probs= c(.05,.95))
    skewM <- skewness(m)
    cat('mean:', meanM, '\n')
    cat('median:', medianM, '\n')
    cat('min:', minM, '\n')
    cat('std:', sdM, '\n')
    cat('quantile', quantile, '\n')
    cat('Skewness:', skewM, '\n\n')
}</pre>
```

Step 1

Question 3

```
m <- c(1,2,3,4,5,6,7,8,9,10,50)
printVecInfo(m)
```

```
## mean: 9.545455
## median: 6
## min: 1
## max: 50
## std: 13.72125
## quantile 1.5 30
## Skewness: 2.620396
```

Step 2

```
#Question 4 create variable 'jar' with 50 red and 50 read marbles
startjar <- c("redmar","bluemar")</pre>
jar <- rep(startjar,50)</pre>
#Question 5 #Confirm that there are 50 red marbles
length(which(jar == 'redmar'))
## [1] 50
\#Confirm that there are 50 blue marbles
length(which(jar == "bluemar"))
## [1] 50
#Total amount in jar
length(jar)
## [1] 100
#Question 6 #Sample 10 marbles from jar
thesample <- sample(jar, 10, replace = T)</pre>
#How many were red? (6)
redone <- length(which(thesample == "redmar"))</pre>
redone
## [1] 7
#What was the percentage of red marbles? 60%
redone/10
## [1] 0.7
#Replicate command 20 times #Use printVecInfo
thesecondsample <- replicate(20, length(which((sample(jar, 10, replace = T)) == 'redmar'))/10)
\# \text{Question 7 } \# \text{Histogram}
```

Histogram of thesecondsample

 $\# Use \ printVecInfo$

printVecInfo(thesecondsample)

```
## mean: 0.515
## median: 0.5
## min: 0.3
## max: 0.7
## std: 0.1308877
## quantile 0.3 0.7
## Skewness: 0.006863306
```

#Question 8 #100 times sampled from jar

```
thethirdsample <- replicate(20, length(which((sample(jar, 100, replace = T)) == 'redmar'))/100)</pre>
```

Histogram

hist(thethirdsample)

Histogram of thethirdsample


```
\# Use\ printVecInfo
```

```
printVecInfo(tthethirdsample <- replicate(20, length(which((sample(jar, 100, replace = T)) == 'redmar')

## mean: 0.5015

## median: 0.505

## min: 0.41

## max: 0.59

## std: 0.0482619

## quantile 0.4195 0.59

## Skewness: 0.03256155

#Question 9 #Replicating the sampling 100 times

thefourthsample <- replicate(100, length(which((sample(jar, 100, replace = T)) == 'redmar'))/100)

#Histogram

hist(thefourthsample)</pre>
```

Histogram of thefourthsample

Step 3

#Question 10 #Store airqulaity dataset

```
air <- airquality
summary(air)</pre>
```

```
##
        Ozone
                         Solar.R
                                             Wind
                                                               Temp
##
    Min.
           : 1.00
                      Min.
                              : 7.0
                                       Min.
                                               : 1.700
                                                                 :56.00
                                                          Min.
    1st Qu.: 18.00
                      1st Qu.:115.8
                                       1st Qu.: 7.400
                                                          1st Qu.:72.00
##
    Median : 31.50
                      Median :205.0
                                       Median: 9.700
                                                          Median :79.00
                              :185.9
##
    Mean
           : 42.13
                      Mean
                                       Mean
                                               : 9.958
                                                          Mean
                                                                 :77.88
    3rd Qu.: 63.25
                      3rd Qu.:258.8
                                       3rd Qu.:11.500
                                                          3rd Qu.:85.00
##
                              :334.0
##
    Max.
            :168.00
                      Max.
                                       Max.
                                               :20.700
                                                          Max.
                                                                 :97.00
            :37
                      NA's
                              :7
##
    NA's
##
        Month
                          Day
##
    Min.
            :5.000
                     Min.
                             : 1.0
    1st Qu.:6.000
                     1st Qu.: 8.0
##
##
    Median :7.000
                     Median:16.0
##
    Mean
            :6.993
                     Mean
                             :15.8
##
    3rd Qu.:8.000
                     3rd Qu.:23.0
            :9.000
                             :31.0
##
    Max.
                     Max.
##
```

#Question 11 Clean dataset

##		Ozone	Solar.R	Wind	Temp	Month	Day
##	1	41	190	7.4	67	5	1
##	2	36	118	8.0	72	5	2
##	3	12	149	12.6	74	5	3
##	4	18	313	11.5	62	5	4
##	7	23	299	8.6	65	5	7
##	8	19	99	13.8	59	5	8
##	9	8	19	20.1	61	5	9
##	12	16	256	9.7	69	5	12
##	13	11	290	9.2	66	5	13
##	14	14	274	10.9	68	5	14
##	15	18	65	13.2	58	5	15
##	16	14	334	11.5	64	5	16
##	17	34	307	12.0	66	5	17
##	18	6	78	18.4	57	5	18
##	19	30	322	11.5	68	5	19
##	20	11	44	9.7	62	5	20
##	21	1	8	9.7	59	5	21
##	22	11	320	16.6	73	5	22
##	23	4	25	9.7	61	5	23
##	24	32	92	12.0	61	5	24
##	28	23	13	12.0	67	5	28
##	29	45	252	14.9	81	5	29
##	30	115	223	5.7	79	5	30
##	31	37	279	7.4	76	5	31
##	38	29	127	9.7	82	6	7
##	40	71	291	13.8	90	6	9
##	41	39	323	11.5	87	6	10
##	44	23	148	8.0	82	6	13
##	47	21	191	14.9	77	6	16
##	48	37	284	20.7	72	6	17
##	49	20	37	9.2	65	6	18
##	50	12	120	11.5	73	6	19
##	51	13	137	10.3	76	6	20
##	62	135	269	4.1	84	7	1
##	63	49	248	9.2	85	7	2
##	64	32	236	9.2	81	7	3
##	66	64	175	4.6	83	7	5
##	67	40	314	10.9	83	7	6
##	68	77	276	5.1	88	7	7
##	69	97	267	6.3	92	7	8
##	70	97	272	5.7	92	7	9
##	71	85	175	7.4	89	7	10
##	73	10	264	14.3	73	7	12
##	74 76	27	175	14.9	81	7	13
##	76	7	48	14.3	80	7	15
##	77	48	260	6.9	81	7	16
##	78 70	35	274	10.3	82	7	17
##	79	61	285	6.3	84	7	18
##	80	79	187	5.1	87	7	19

##	81	63	220	11.5	85	7	20
##	82	16	7	6.9	74	7	21
##	85	80	294	8.6	86	7	24
##	86	108	223	8.0	85	7	25
##	87	20	81	8.6	82	7	26
##	88	52	82	12.0	86	7	27
##	89	82	213	7.4	88	7	28
##	90	50	275	7.4	86	7	29
##	91	64	253	7.4	83	7	30
##	92	59	254	9.2	81	7	31
##	93	39	83	6.9	81	8	
							1
##	94	9	24	13.8	81	8	2
##	95	16	77	7.4	82	8	3
##	99	122	255	4.0	89	8	7
##	100	89	229	10.3	90	8	8
##	101	110	207	8.0	90	8	9
##	104	44	192	11.5	86	8	12
##	105	28	273	11.5	82	8	13
##	106	65	157	9.7	80	8	14
##	108	22	71	10.3	77	8	16
##	109	59	51	6.3	79	8	17
##	110	23	115	7.4	76	8	18
##	111	31	244	10.9	78	8	19
##	112	44	190	10.3	78	8	20
##	113	21	259	15.5	77	8	21
##	114	9	36	14.3	72	8	22
##	116	45	212	9.7	79	8	24
##	117	168	238	3.4	81	8	25
##	118	73	215	8.0	86	8	26
##	120	76	203	9.7	97	8	28
##	121	118	225	2.3	94	8	29
##	122	84	237	6.3	96	8	30
##	123	85	188	6.3	94	8	31
##	124	96	167	6.9	91	9	1
##	125	78	197	5.1	92	9	2
##	126	73	183	2.8	93	9	3
##	127	91	189	4.6	93	9	4
##		47		7.4	93 87		5
						9	
##	129	32	92		84	9	6
##	130	20	252		80	9	7
##	131	23	220		78	9	8
##	132	21	230		75	9	9
##	133	24	259	9.7	73	9	10
##	134	44	236	14.9	81	9	11
##	135	21	259		76	9	12
##	136	28	238	6.3	77	9	13
##	137	9	24		71	9	14
##	138	13	112	11.5	71	9	15
##	139	46	237	6.9	78	9	16
##	140	18	224	13.8	67	9	17
##	141	13	27		76	9	18
##	142	24	238		68	9	19
##	143	16		8.0	82	9	20
##	144	13	238		64	9	21

```
## 145
                  14 9.2
                             71
                                        22
## 146
          36
                  139 10.3
                                        23
                             81
                                     9
## 147
          7
                  49 10.3
                             69
                                        24
## 148
          14
                  20 16.6
                             63
                                     9
                                        25
## 149
                      6.9
                                     9
                                        26
          30
                  193
                             70
## 151
          14
                  191 14.3
                             75
                                     9
                                        28
## 152
          18
                  131 8.0
                             76
                                     9
                                        29
## 153
          20
                  223 11.5
                             68
                                        30
```

 $\# \mbox{Question}$ 12 print Vec
Info $\# \mbox{Ozone}$

printVecInfo(cleandata\$0zone)

mean: 42.0991
median: 31
min: 1
max: 168
std: 33.27597
quantile 8.5 109
Skewness: 1.248104

hist(cleandata\$0zone)

Histogram of cleandata\$Ozone

 $\# \mathrm{Wind}$

printVecInfo(cleandata\$Wind)

mean: 9.93964 ## median: 9.7 ## min: 2.3 ## max: 20.7 ## std: 3.557713 ## quantile 4.6 15.5 ## Skewness: 0.4556414

hist(cleandata\$Wind)

Histogram of cleandata\$Wind

#Temp

printVecInfo(cleandata\$Temp)

mean: 77.79279 ## median: 79 ## min: 57 ## max: 97

std: 9.529969
quantile 61 92.5
Skewness: -0.2250959

Histogram of cleandata\$Temp

