Lecture 14: Performance Analysis

CS/ECE 438: Communication Networks

Prof. Matthew Caesar

May 5, 2010

How to evaluate a network design?

- Implementation and testbed/field deployment
 - Pros: high accuracy
 - Cons: costly, difficult to repair/experiment in-field
- Simulations
 - Pros: can be accurate, given realistic models; broad applicability
 - Cons: can be slow, don't always provide intuition behind results
- Analytical results
 - Pros: Quick answers, provides insights
 - Cons: Can be inaccurate or inapplicable

Simulation

- Build an "imitation" of the network that runs on a computer
 - Can be studied to estimate how system would operate in real network
 - Can change variables, replay different workloads perform experiments, to predict and learn behavior of the system
- Useful for situations too complex to analytically model

One approach: Discrete Event Simulation

- Operation of the system is represented as a chronological sequence of events
- Each event occurs at an instant of time, can trigger new events to be generated
- Composed of:
 - Clock: current simulation time
 - Event list: list of future events that will occur, sorted by occurrence time
 - Event handlers: function called when event is "executed", may trigger new event to be placed onto list

Discrete Event Simulation: Example

- Example: Simple ping protocol
- Host A sends echo request to Host B, Host B responds with echo reply
- What time does A receive the reply?

Discrete Event Simulation: Example

- Each event takes place at a certain time
- Algorithm: when processing an event, figure out when the next event will happen, and put it in the queue

Discrete Event Simulation: Example

Analysis

- Write down a set of formulas describing relationships between components
- Plug in numbers to estimate system performance in different settings
- Equations provide insight into underlying characteristics
 - Also, simple/quick to apply
- But, some systems are too complex to analytically model
 - Luckily, a lot of important properties of a lot of important systems can be characterized through analysis

- Suppose you're sitting on the side of the road watching cars go by
- Suppose you see a big burst of cars come by
- After the burst: does the likelihood new cars will come increase or decrease?

- After the burst: does the likelihood new cars will come increase or decrease?
- Answer: neither!
- Reason: Car arrival times are (reasonably)
 well modeled by a Poisson Process
- The Poisson distribution is "memoryless" (history gives no information about future events)
- A distribution is memoryless iff:
 - $Pr(X>m+n \mid X>m) = Pr(X>n)$

 Interarrival times are independent and exponentially distributed

 Models well the accumulated traffic many independent sources

 The average interarrival time is 1/λ (secs/packet), so I is the arrival rate (packets/sec)

- A stochastic (random) process, where
 - Events occur continuously and independently of each other
- Composed of a collection of {N(t) : t ≥ 0} random variables, where N(t) is number of events at time t
 - Number of events between times A and B is N(B)-N(A)
- Probability distribution of N(t) is a Poisson distribution

- Very useful, accurate model for an extremely large class of real events:
 - Arrival of customers in a queue
 - Arrival of HTTP sessions/VoIP calls/etc. at a server
 - Number of raindrops falling in an area
 - Number of photons hitting a photodetector
 - Number of telephone calls at a switchboard
 - Number of particles emitted by radioactive decay of an unstable substance

Poisson Distribution

- Probability distribution of N(t) is a Poisson distribution
- The probability that there are
 - n occurrences,
 - given an arrival rate of λ
- Is:

$$f(n;\lambda) = \frac{\lambda^n e^{-\lambda}}{n!},$$

 We can use Poisson Process to find expected number of arrivals in an interval

$$P[(N(t+\tau) - N(t)) = k] = \frac{e^{-\lambda \tau} (\lambda \tau)^k}{k!}$$
 $k = 0, 1, ...,$

- Where
 - N(t+τ)-N(t) is the number of events in the time interval [t+τ, t]

Poisson Process: Example

- Example: suppose
 - Cars arrive with rate λ =4 cars/minute
 - Suppose is it Noon on April 14th
 - What is probability that k=7 cars arrive within a 2 minute period?

$$P[(N(t+\tau) - N(t)) = k] = \frac{e^{-\lambda \tau} (\lambda \tau)^k}{k!}$$
 $k = 0, 1, ...,$

- Pr[N("Noon on Apr 14" + 2)-N("Noon on Apr 14" + 0)]
- = Pr[N(2)-N(0)]
- $Pr[N(2)-N(0)]=e^{-(-4*2)*(4*2)^{7}/(7!)}$
- =0.139=14%

Variant on Poisson: Batch Arrivals

- Some sources transmit in packet bursts
- May be better modeled by a batch arrival process (e.g., bursts of packets arriving according to a Poisson process)
- The case for a batch model is weaker at queues after the first hop, because of shaping

Markov Modulated Rate Process (MMRP)

- An "on-off" model for traffic
 - E.g., a VoIP sender with silence suppression
- Stay in each state an exponentially distributed time
 - Transmit according to different model (e.g., Poisson, deterministic, etc) at each state
- Extension: models with more than two states

Source type properties

	Characteristics	QoS Requirements	Model
Voice	* Alternating talk- spurts and silence intervals. * Talk-spurts produce constant packet-rate traffic	Delay < ~150 ms Jitter < ~30 ms Packet loss < ~1%	* Two-state (on-off) Markov Modulated Rate Process (MMRP) * Exponentially distributed time at each state
Video	* Highly bursty traffic (when encoded) * Long range dependencies	Delay < ~ 400 ms Jitter < ~ 30 ms Packet loss < ~1%	K-state (on-off) Markov Modulated Rate Process (MMRP)
Interactive BitTorrent ssh web	* Poisson type * Sometimes batch- arrivals, or bursty, or sometimes on-off	Zero or near-zero packet loss Delay may be important	Poisson, Poisson with batch arrivals, Two-state MMRP

Typical voice source behavior

- Suppose we arrive at a bus stop. Suppose we know buses arrive randomly with average interarrival time 10 minutes.
- Suppose you walk up at a random time
- How long will you have to wait, on average, before a bus arrives?

- Suppose we arrive at a bus stop. Suppose we know buses arrive randomly with average interarrival time 10 minutes.
- Suppose you walk up at a random time
- How long will you have to wait, on average, before a bus arrives?

- How long will you have to wait, on average, before a bus arrives?
- Answer: 10 minutes
- Reason: distribution is memoryless
 - Just because there were 5 minutes without a bus before you got there, has nothing to do with how much longer you'll have to wait
- Related example: Average lifespan is 78
 years. If you meet a 77 year old, his expected
 lifespan is not 78 years.

- Suppose you own a bank
 - Customers arrive with rate 30 customers/hour
 - Each customer takes on average 6 minutes to be serviced by the teller
 - You don't know anything about the distribution
- How many customers will be standing in line, on average?

- How many customers will be standing in line, on average?
- Answer: 30 customers per hour * 1/10 hours per customer = 3
- Reason:
 - The length of the queue is proportional to the average service time and the average arrival rate
 - In fact, it's equal to the two multiplied together – regardless of arrival distribution!

Analysis: Little's Law

- For a given arrival rate, the time in the system is proportional to packet occupancy
 - $-N=\lambda T$
- where
 - N: average # of packets in the system
 - $-\lambda$: packet arrival rate (packets per unit time)
 - T: average delay (time in the system) per packet

• Examples:

- On rainy days, streets and highways are more crowded
- Fast food restaurants need a smaller dining room than regular restaurants with the same customer arrival rate
- Large buffering together with large arrival rate cause large delays
- If you see a long line that you're thinking of joining, and you can guess the arrival rate, you can estimate how long you'll wait in that line

Queuing Theory

- What we've been discussing so far is known as Queuing Theory
 - Mathematical study of waiting lines (queues)

- Extensions can handle more complex analyses
 - Modeling departure rate from queue
 - Modeling non-Poisson arrival distributions
 - Modeling networks of queues

M/M/1 System

- Nomenclature: M stands for "Memoryless" (a property of the exponential distribution)
 - M/M/1 stands for Poisson arrival process (which is memoryless)
 - M/M/1 stands for exponentially distributed transmission times
- Assumptions:
 - Arrival process is Poisson with rate λ packets/sec
 - Packet transmission times are exponentially distributed with mean $1/\mu$
 - One server
 - Independent interarrival times and packet transmission times
- Transmission time is proportional to packet length
- Note $1/\mu$ is secs/packet so μ is packets/sec (packet transmission rate of the queue)
- Utilization factor: $\rho = \lambda/\mu$ (stable system if $\rho < 1$)

Delay calculation for M/M/1 system

• Let

Q = Average time spent waiting in queue T = Average packet delay (transmission plus queuing)

- Note that $T = 1/\mu + Q$
- Also by Little's law

$$N = \lambda T$$
 and $N_{d} = \lambda Q$

where

N_a = Average number waiting in queue

 These quantities can be calculated with formulas described previously

M/M/1 Results

- The analysis gives the steady-state probabilities of number of packets in queue or transmission
- P{n packets} = $\rho^{n}(1-\rho)$ where $\rho = \lambda/\mu$
- From this we can get the averages:

$$N = \rho/(1 - \rho)$$

$$T = N/\lambda = \rho/\lambda(1 - \rho) = 1/(\mu - \lambda)$$

Example: How Delay Scales with Bandwidth

Occupancy and delay formulas

$$N = \rho/(1 - \rho)$$
 $T = 1/(\mu - \lambda)$ $\rho = \lambda/\mu$

- Assume:
 - Traffic arrival rate λ is doubled
 - System transmission capacity μ is doubled
- Then:
 - Queue sizes stay at the same level (ρ stays the same)
 - Packet delay is cut in half (μ and λ are doubled)
- A conclusion: In high speed networks
 - propagation delay increases in importance relative to delay
 - buffer size and packet loss may still be a problem

M/M/m, M/M/∞ System

- Same as M/M/1, but it has m (or ∞) servers
- In M/M/m, the packet at the head of the queue moves to service when a server becomes free
- Qualitative result
 - Delay increases to ∞ as $\rho = \lambda/m\mu$ approaches 1
- There are analytical formulas for the occupancy probabilities and average delay of these systems

Finite Buffer Systems: M/M/m/k

- The M/M/m/k system
 - Same as M/M/m, but there is buffer space for at most k packets. Packets arriving at a full buffer are dropped
- Formulas for average delay, steady-state occupancy probabilities, and loss probability
- The M/M/m/m system is used widely to size telephone or circuit switching systems

Characteristics of M/M/. Systems

- Advantage: Simple analytical formulas
- Disadvantages:
 - The Poisson assumption may be violated
 - The exponential transmission time distribution is an approximation at best
 - Interarrival and packet transmission times may be dependent (particularly in the network core)
 - Head-of-the-line assumption precludes heterogeneous input traffic with priorities (hard or soft)

M/G/1 System

- Same as M/M/1 but the packet transmission time distribution is general, with given mean $1/\mu$ and variance σ^2
- Utilization factor $\rho = \lambda / \mu$
- Pollaczek-Kinchine formula for Average time in queue = $\lambda(\sigma^2 + 1/\mu^2)/2(1-\rho)$ Average delay = $1/\mu + \lambda(\sigma^2 + 1/\mu^2)/2(1-\rho)$
- The formulas for the steady-state occupancy probabilities are more complicated
- Insight: As σ^2 increases, delay increases

Visualising Markov Chains (the confused hippy hitcher example)

A hitchhiking hippy begins at A town. For some reason he has poor short-term memory and travels at random according B to the probabilities shown. What is the chance he is back at A after 2

days? What about after 3 days? Where is he likely to end up?

The Hippy Hitcher (continued)

- After 1 day he will be in B town with probability
 3/4 or C town with probability 1/4
- The probability of returning to A via B after 1 day is 3/12 and via C is 1/8 total 3/8
- We can perform similar calculations for 3 or 4 days but it will quickly become tricky and finding which city he is most likely to end up in is impossible.

Transition Matrix

 Instead we can represent the transitions as a matrix

Prob of going to B from A

$$P = \begin{bmatrix} 0 & 3/4 & 1/4 \\ 1/3 & 0 & 2/3 \\ 1/2 & 1/2 & 0 \end{bmatrix}$$

Prob of going to A from C

Markov Chain Transition Basics

• p_{ij} are the transition probabilities of a chain. They have the following properties:

$$p_{ij} \ge 0, \sum_{j=0}^{\infty} p_{ij} = 1, \quad i = 0, 1....$$

The corresponding probability matrix is:

Transition Matrix

- Define λ_n as a distribution vector representing the probabilities of each state at time step n.
- We can now define 1 step in our chain as: $\lambda_{n+1} = \lambda_n P$
- And clearly, by iterating this, after m steps we have:

$$\lambda_{n+m} = \lambda_n P^m$$

The Return of the Hippy Hitcher

- What does this imply for our hippy?
- We know the initial state vector:

$$-\lambda_0 = [1\ 0\ 0]$$

- So we can calculate λ_n with a little drudge work.
- (If you get bored raising P to the power n then you can use a computer)
- But which city is the hippy likely to end up in?
- We want to know $\pi=\lim_{n\to \inf} \lambda_n$

Invariant (or equilibrium) probabilities)

$$\pi=\lim_{n\to \inf} \lambda_n$$

- Assuming the limit exists, the distribution vector π is known as the invariant or equilibrium probabilities.
- We might think of them as being the proportion of the time that the system spends in each state or alternatively, as the probability of finding the system in a given state at a particular time.
- They can be found by finding a distribution which solves the equation $\pi = \pi P$

 Suppose the weather, given the preceeding day, is given by the matrix

$$P = \begin{pmatrix} sun & rain \\ 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix} sun rain$$

- Represents a model where
 - A sunny day is followed by another sunny day with probability 90%
 - Rainy day is followed by rain with 50%
 - Etc.

- Given a random day, what is its weather?
 - Weather on day 0 is known to be sunny
 - Option #1: "simulate" the weather over time:

$$\mathbf{x}^{(0)} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} P = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{bmatrix} = \begin{bmatrix} 0.9 & 0.1 \end{bmatrix}$$
:

$$\mathbf{x}^{(2)} = \mathbf{x}^{(1)} P = \begin{bmatrix} 0.9 & 0.1 \end{bmatrix} \begin{bmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{bmatrix} = \begin{bmatrix} 0.86 & 0.14 \end{bmatrix}$$
:

But, this is tedious.

 Alternative: note that in steady state, the next day's probabilities won't change from the current day

• If we can find a vector π such that $\pi = \pi P$, then π are the steady-state probabilities we're looking for

$$P = \begin{bmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{bmatrix}$$

$$\mathbf{q}P = \mathbf{q} \qquad \qquad (\mathbf{q} \text{ is unchanged by } P.)$$

- So $-0.1q_1 + 0.5q_2 = 0$, and since they are a probability vector we know that $q_1 + q_2 = 1$
- Solving this gives:

$$[q_1 \quad q_2] = [0.833 \quad 0.167]$$

Extra slides for review

Where are we?

Understand

- How to build a network on one physical medium
- How to connect networks
- How to implement an adaptive, reliable byte stream
- How to address network heterogeneity
- How to address global scale
- End-to-end issues and common protocols
- Congestion control: TCP heuristics, switch/router approaches to fairness

Performance Metrics and Analysis

Metrics

- Traditional and extensions
- Sources of delay
- Optimizing communication systems
- Measuring systems
- Basic queueing theory
 - Distributions and processes
 - Single, memoryless queues
- Analysis
 - Prefix problems (good for some Markov chains)
 - Example:
 - Throughput with TCP congestion control
 - Shared medium protocols

- Traditional metrics
 - End-to-end latency/RTT
 - Measures time delay
 - Across all layers of network
 - Often abbreviated to "latency" (even for RTT)
 - Bandwidth/throughput
 - Measures data sent per unit time
 - Across all layers of network
- Question: what's missing?

- CPU utilization not captured by latency/bandwidth
- Adopt additional metric from parallel computing
 - Distinguish between
 - Latency
 - Propagation delay between hosts
 - Overhead
 - Time spent by processor
 - RTT is twice the sum of
 - One overhead on sending processor
 - Propagation delay
 - One overhead on receiving processor
 - Send/receive overheads can differ

- Sources of delay
 - Latency: three main components
 - DMA from sending/to receiving host memory
 - Propagation delay in network
 - Queueing delay in routers
 - Overhead: also three main components
 - Data copy between buffers (e.g., into kernel memory)
 - Protocol (TCP, IP, etc.) processing
 - PIO to write description of frame
 - Note that overhead has fixed and per-byte costs

- Optimizing communication systems
 - Optimize the common case
 - Send/receive usually more important than connection setup/teardown
 - TCP header changes little between segments
 - Often only a few connections at end hosts
 - Minimize context switches
 - Minimize copying of data
- Question:
 - what's hard about having 0 copies?

- Optimizing communication systems
 - General rule of thumb
 - Most (80-90%) messages are short
 - Most data (80-90%) travel in long messages
 - Focus on bottlenecks
 - Reduce overhead to improve short message performance
 - Reduce number of copies to improve long message performance
 - Thus, CPU speed is often more important than network speed

- Optimizing communication systems
 - Maximize network utilization
 - Use large packets when possible
 - Fill delay-bandwidth pipe
 - Avoid timeouts
 - Set timers conservatively
 - Use "smarter" receiver (e.g., with selective ACK's)
 - Avoid congestion rather than recovering from it

- Measuring communication systems
 - Latency
 - Measure RTT for 0-byte (or 1-byte) messages
 - Also report variability
 - Bandwidth
 - Measure RTT for range of long messages
 - Divide by number of bytes sent
 - Report as graph or as value in asymptotic limit
 - Overhead
 - Time multiple N-byte message send operations
 - Be careful of flow control and aggregation

Modeling and Analysis

- Problem
 - The inputs to a system (i.e., number of packets and their arrival times) and the exact resource requirements of these packets cannot be predetermined in advance exactly
- But, we can probabilistically characterize these quantities
 - On average, 100 packets arrive per second
 - On average, packets are 500KB
- So, given a probabilistic characterization of these quantities
 - Can we draw some intelligent conclusions about the performance of the system

Delay

- Link delay consists of four components
 - Processing delay
 - From when the packet is correctly received to when it is put on the queue
 - Queueing delay
 - From when the packet is put on the queue to when it is ready to transmit
 - Transmission delay
 - From when the first bit is transmitted to when the last bit is transmitted
 - Propagation delay
 - From when the last bit is transmitted to when the last bit is received

Delay Models

- Consider a data link using stop-and-wait ARQ
 - What is the throughput?
 - Given
 - MSS = packet payload size
 - C = raw link data rate
 - RTT = round trip time (for one bit)
 - p = probability a packet is successful

Delay Models

- Calculate the maximum throughput for stop-andwait
 - Max throughput = packetlength/(RTT + (packetlength/C))
 - Could also multiply by (payload/packetlength) and p = probability of correct reception
- But what about the delay incurred?
 - There may be multiple bursty data sources

60

Basic Queueing Theory

- Elementary notions
 - Things arrive at a queue according to some probability distribution
 - Things leave a queue according to a second probability distribution
 - Averaged over time
 - Things arriving and things leaving must be equal
 - Or the queue length will grow without bound
 - Convenient to express probability distributions as average rates

Goal

- Estimate relevant values
 - Average number of customers in the system
 - The number of customers either waiting in queue or receiving service
 - Average delay per customer
 - The time a customer spends waiting plus the service time
- In terms of known values
 - Customer arrival rate
 - The number of customers entering the system per unit time
 - Customer service rate
 - The number of customers the system serves per unit time

 For any box with something steady flowing through it

Mean amount in box

Mean throughput

Mean time spent in box

Example

- Suppose you arrive at a busy restaurant in a major city
- Some people are waiting in line, while other are already seated (i.e., being served)
- You want to estimate how long you will have to wait to be seated if you join the end of the line
- Do you apply Little's Law? If so
 - What is the box?
 - What is N?
 - What is λ ?
 - What is T?

Mean amount in box

Mean time spent in box

Box

- Mean throughput
- Include the people seated (i.e., being served)
- Do not include the people waiting in line
- Let N = the number of people seated (say 200)
- Let T = mean amount of time a person stays seated (say 90 min)
- Conclusion
 - Throughput = 200/90 = 2.22 persons per minute
- Wait time
 - If 100 people are waiting, you could estimate that you will need to wait 100/2.22 = 45 min

Variables

- N(t) = number of customers in the system at time t
- A(t) = number of customers who arrived in the interval [0,t]
- T_i = time spent in the system by the ith customer
- $-\lambda_t$ = average arrival rate over the interval [0,t]

- Suppose ATM streams are multiplexed at an output link with speed 622 Mbps
- Question
 - If 200 cells are queued on average, what is the average time in queue?
- Answer
 - T = N/ λ
 - T = 200 * 53 * 8 / 622M
 - T = 0.136 ms

Proof of Little's Law

- But this is $N_t = \lambda_t t_t$
 - With time averaging over [0,t]
- Let t tend to infinity: $N = \lambda t$

Memoryless Distributions/ Poisson Arrivals

- Goal for easy analysis
 - Want processes (arrival, departure) to be independent of time
 - i.e., likelihood of arrival should depend neither on earlier nor on later arrivals
- In terms of probability distribution in time (defined for t > 0),

$$f(t) = \frac{f(t+\Delta t)}{\int_{\Delta t}^{\infty} f(t') dt'}$$
 for all $\Delta t \ge 0$

Memoryless Distributions/ Poisson Arrivals

solution is:

what is λ ?

- •it's the rate of events
- note that the average time until the next event is

$$f(t) = \lambda e^{-\lambda t}$$

$$\int_0^\infty f(t) t dt = \left(t e^{-\lambda t} \right)_0^\infty + \int_0^\infty e^{-\lambda t} dt$$

$$= \left(-\frac{1}{\lambda}e^{-\lambda t}\right]_{0}^{\infty}$$
$$= \frac{1}{\lambda}$$

Plan

- Review exponential and Poisson probability distributions
- Discuss Poisson point processes and the M/M/1 queue model

Exponential Distribution

• A random variable X has an exponential distribution with parameter λ if it has a probability density function

-
$$f(x) = \lambda e^{\lambda x}$$
, for $x \ge 0$

Exponential Distribution

- Suppose a waiting time X is exponentially distributed with parameter $\lambda = 2/\text{sec}$
 - Mean wait time is ½ sec
- What is
 - P[X>2]?
 - P[X>6]?
 - P[X>6 | X>4]?

Exponential Distribution

- Remember: $\lambda = 2$
- P[X>2]- $=e^{2\lambda}=0.183$
- P[X>6]- $= e^{6\lambda} = 6.14 \times 10^{-6}$
- P[X>6|X>4]- = P[X>6,X>4]/P[X>4]- = P[X>6]/P[X>4]- = $e^{6\lambda}/e^{4\lambda}$ - = $e^{2\lambda}$ - = 0.183!
- Note: this demonstrates the memoryless property of exponential distributions

Poisson Distribution

- The random variable X has a Poisson distribution with mean λ, if for non-negative integers i:
 - $P[X = i] = (\lambda^{i}e^{-\lambda})/i!$
- Facts
 - $E[X] = \lambda$
 - If there are many independent events,
 - The k^{th} of which has probability p_k (which is small) and
 - λ = the sum of the p_k is moderate
 - Then the number of events that occur has approximately the Poisson distribution with mean $\boldsymbol{\lambda}$

Poisson Distribution

Example

- Consider a CSMA/CD like scenario
- There are 20 stations, each of which transmits in a slot with probability 0.03. What is the probability that exactly one transmits?

Poisson Distribution

- Exact answer
 - $20 * (0.03) * (1 0.03)^{19} = 0.3364$
- Poisson approximation
 - Use $P[X = i] = (\lambda^i e^{-\lambda})/i!$
 - With i = 1 and $\lambda = 20 * (0.03) = 0.6$
 - Approximate answer = $\lambda e^{\lambda} = 0.3393$

Definition

- A Poisson point process with parameter λ
 - A point process with interpoint times that are independent and exponentially distributed with parameter λ .

Equivalently

 The number of points in disjoint intervals are independent, and the number of points in an interval of length t has a Poisson distribution with mean λt

Shown are three disjoint intervals. For a Poisson point process, the number of points in each interval has a Poisson distribution.

Exercise

– Given a Poisson point process with rate $\lambda = 0.4$, what is the probability of NO arrivals in an interval of length 5?

Try to answer two ways, using two equivalent descriptions of a Poisson process

Solution 1: $P[X > 5] = e^{-5\lambda} = 0.1353$

Solution 2: $P[N = 0] = e^{-5\lambda} = 0.1353$

(remember: $P[N = i] = (5\lambda)^i * (e^{-5\lambda}) / i!$, for i = 0)

Simple Queueing Systems

- Classify by
 - "arrival pattern/service pattern/number of servers"
 - Interarrival time probability density function
 - The service time probability density function
 - The number of servers
 - The queueing system
 - The amount of buffer space in the queues
 - Assumptions
 - Infinite number of customers

Simple Queueing Systems

Terminology

- M = Markov (exponential probability density)
- D = deterministic (all have same value)
- G = general (arbitrary probability density)

Example

- M/D/4
 - Markov arrival process
 - Deterministic service times
 - 4 servers

- Goal
 - Describe how the queue evolves over time as customers arrive and depart
- An M/M/1 system with arrival rate λ and departure rate μ has
 - Poisson arrival process, rate λ
 - Exponentially distributed service times, parameter μ
 - One server

N(t) = number in system (system = queue + server)

- If the arrival rate λ is greater then the departure rate μ
 - N(t) drifts up at rate λ μ

- On the other hand,
 - if $\lambda < \mu$, expect an equilibrium distribution.
- The state of the queue is completely described by the number of customers in the queue
 - Due to the memoryless property of exponential distributions, N is described by a single state transition diagram
 - N is a Markov process, meaning past and future are independent given present

States of the queue

3

- - -

- N is a discrete random variable
 - $-p_k$ = probability that there are k customers in the queue
 - Equivalently,
 - p_k = probability that queue is in state k

States of the queue

1

2

3

- - -

- Goal
 - Find the steady state (long run) probabilities of the queue being in state i, i = 0, 1, 2, 3, ...
- Transitions occur only when
 - A customer finishes service
 - A customer arrives
- Birth-death process
 - Transition from state i to state i+1 on arrival
 - Transition from state i to state i-1 on departure

M/M/1: Transition rates

- If the queue is in state i with probability p_i
 - Then equivalently , the queue is in state i a fraction of p_i of the time
- The number of transitions/second out of state i onto state i+1 is given by
 - (fraction of time queue is in state i) * (arrival rate)
 - $p_i * \lambda$
- The number of transitions/second out of state i onto state i-1 is given by
 - (fraction of time queue is in state i) * (departure rate)
 - $-p_i * \mu$

M/M/1: Steady State

- Claim
 - For the steady state to exist, # of transitions/sec from state i to state i+1 must equal # of transitions/sec from state i+1 to state i
- Result
 - Net flow across boundary between states must be zero
- Basic idea (not a real proof)
 - Otherwise, in the long run, the net flow of the system would always drift to the higher state with probability 1

- Given that we must balance flow across all boundaries,
 - $\lambda p_i = \mu p_{i+1} \text{ for all } i \ge 0$
- Balance Equations

$$\begin{array}{lllll} \lambda p_0 = \mu p_1 & \Rightarrow & p_1 = (\lambda / \mu) \; p_0 \\ \lambda p_1 = \mu p_2 & \Rightarrow & p_2 = (\lambda / \mu) \; p_1 & \Rightarrow & p_2 = (\lambda / \mu)^2 \; p_0 \\ \lambda p_2 = \mu p_3 & \Rightarrow & p_3 = (\lambda / \mu) \; p_2 & \Rightarrow & p_3 = (\lambda / \mu)^3 \; p_0 \\ \dots & \dots & \dots & \dots \\ \lambda p_i = \mu p_{i+1} & \Rightarrow & p_{i+1} = (\lambda / \mu) \; p_i & \Rightarrow & p_{i+1} = (\lambda / \mu)^{i+1} \; p_0 \end{array}$$

- Problem
 - To solve the balance equations, we need one more equation:

•
$$\sum_{i=0}^{\infty} p_i = 1$$

Thus

$$- p_k = (\lambda/\mu)^k p_0$$
 (1)

$$- \sum_{i=0}^{\infty} p_i = 1 \tag{2}$$

• Plugging 1 into 2, we get

$$- \sum_{i=0}^{\infty} p_0 * (\lambda/\mu)^i = 1$$

• Result (for $\lambda < \mu$)

$$- p_0 = 1 / (\sum (\lambda/\mu)^i) = ... = 1 - \lambda/\mu$$

$$- p_k = (\lambda/\mu)^k * (1 - \lambda/\mu)$$

- So What?
 - We now know the probability that there are 0, 1, 2, 3, ...
 customers in the queue (p_i)
- Define N_{avq}
 - = average # of customers in queue
 - = expected value of the # of customers in the queue
- N_{avg}
 - $= \sum_{\text{all possible # of cust}} i * P[i customers]$
 - $= \sum_{i=0}^{\infty} i * p_i = \sum_{i=0}^{\infty} (1 \lambda/\mu) * (\lambda/\mu)^i * i$
 - $= (\lambda/\mu)/(1 \lambda/\mu)$

- Define Q_{avg}
 - average # of customers in waiting area of the queue
- ullet Q_{avg}
 - $= \sum_{\text{all possible # of cust in waiting area}} i * P[i customers in waiting area]$
 - $= \sum_{i=0}^{\infty} i * P[i+1 \text{ customers in queue}]$
 - $= \sum_{i=0}^{\infty} (1 \lambda/\mu) * (\lambda/\mu)^{i+1} * i$
 - $= (\lambda/\mu)/(1 \lambda/\mu) \lambda/\mu$
 - $= N_{avg} \lambda/\mu$

Utilization

- The fraction of time the server is busy
- = P[server is busy]
- = 1 P[server is NOT busy]
- = 1 P[zero customers in queue]
- $= 1 p_0$
- $= 1 (1 \lambda/\mu)$
- $= \lambda/\mu$
- Since utilization cannot be greater then 1,
 - Utilization = min(1.0, λ/μ)

Utilization example

- Packets arrive for transmission at an average (Poisson) rate of 0.1 packets/sec
- Each packet requires 2 seconds to transmit on average (exponentially distributed)

$$-N_{avg} = (\lambda/\mu)/(1 - \lambda/\mu) = 0.1*2/(1 - 0.1*2) = 0.25$$

$$- Q_{avg} = N_{avg} - \lambda/\mu = 0.25 - 0.2*2 = 0.005$$

$$-\rho = \lambda/\mu = 0.2$$

• Intuitively, as the number of packets arriving per second (λ) increases, the number of packets in the queue should increase

CS/ECE 438

97

- Normalized Traffic Parameter (ρ)
 - Note that N_{avq} and Q_{avq} only depend on the ratio λ/μ
 - Define ρ
 - = (avg arrival rate * avg service time)
 - = $\lambda * 1/\mu = \lambda/\mu$
 - Intuitively, if we scale both arrival rate and service time by a constant factor, N_{avg} and Q_{avg} should remain the same
 - Note
 - If $\lambda > \mu$ (i.e. $\lambda/\mu > 1$), then more packets are arriving per second than can be serviced
 - Thus, N_{avg} and Q_{avg} are unbounded when $\rho \geq 1!$

M/M/1 System — Time Delays

- Given {p₀, p₁, p₂, ...}, we can derive N_{avg} and Q_{avg}
- We may also want to know the following
 - T_{avg} = average time from when a packet arrives until it completes transmission
 - W_{avg} = average time from when a packet arrives until it starts transmission

M/M/1 System — Time Delays

M/M/1 System - Little's Law

• Now we can use Little's Law to relate N_{avq} and Q_{avq} to T_{avq} and W_{avq}

$$\begin{array}{ll} - & N_{avg} = \lambda T_{avg} & \qquad \Rightarrow T_{avg} = N_{avg}/\lambda \\ - & Q_{avg} = \lambda W_{avg} & \qquad \Rightarrow W_{avg} = Q_{avg}/\lambda \end{array}$$

- Also note: $W_{avg} + 1/\mu = T_{avg}$

101

- Packets arrive with the following parameters
 - $-\lambda = 2$ packets per second
 - $-1/\mu = \frac{1}{4}$ sec per packets
 - $-\rho = 0.5$
- Utilization = $\rho = \lambda/\mu = 2/4 = 0.5$
- $N_{avg} = \rho/(1 \rho) = 0.5/1-0.5 = 1$ packet $\Rightarrow T_{avg} = N_{avg}/\lambda = \frac{1}{2} = 0.5$ sec
- $Q_{avg} = N_{avg} \rho = 1 0.5 = 0.5$ $-\Rightarrow W_{avg} = Q_{avg}/\lambda = 0.5/2 = 0.25 \text{ sec}$

M/M/1 System - Summary

1. Draw state diagram

- 2. Write down balance equations flow "up" = flow "down"
- 3. Solve balance equations using

$$\sum_{i=0}^{\infty} p_i = 1 \text{ for } \{p_0, p_1, p_2, \ldots\}$$

- 4. Compute N_{avg} and Q_{avg} from {p_i}
- 5. Compute T_{avg} and W_{avg} using Little's Theorem

- Packets arrive at an output link according to a Poisson process
 - The mean total data rate is 80Kbps (including headers)
 - The mean packet length is 1500
 - The link speed is 100Kbps
- Questions
 - What assumptions can we make to fit this situation to the M/M/1 model?
 - Under these assumptions, what is the mean time needed for queueing and transmission of a packet?

- Answer Part 1:
 - "Customers"
 - Packets
 - "Server"
 - The transmitter
 - Service times
 - The transmission times
 - Packets have variable lengths, with a exponential distribution
 - Packet lengths are independent of each other and independent of arrival time

- Remember
 - The mean total data rate is 80Kbps
 - The mean packet length is 1500
 - The link speed is 100Kbps
- Answer Part 2: Find λ, μ and T
 - Need to convert from bit rates to packet rates
 - $\lambda = 80$ Kbps/12Kb = 6.66 packets/sec
 - $\mu = 100 \text{ Kbps/12Kb} = 8.33 \text{ packets/sec}$
 - So, T = mean time for queueing and transmission
 - T = $1/(\mu \lambda) = 1/1.67 = 0.6$ sec

Also

- The mean transmission time is
 - $1/\mu = 0.12 \text{ sec}$,
- So the mean time spent in queue is
 - W = T $1/\mu$ = 0.6 0.12 = 0.48sec
- The mean number of packets is
 - N = $\rho/(1 \rho) = 0.8/(1 0.8) = 4$ packets

M/M/1 System in Practice

- The assumptions we made are often not realistic
- We still get the correct qualitative behavior
- Simple formulas for predictive delay are useful for provisioning resources in a network and setting controls
- Real traffic seems to have bursty behavior on multiple time scales
 - This is not true for Poisson processes

Analysis: Tools and Examples

- Cycle analysis for discrete Markov processes
 - Start with a discrete Markov process
 - Transitions happen periodically (every ∆t)
 - Probabilities independent of past/future behavior
 - Form all possible cyclic sequences (cycles)
 - Pick a "start" state
 - List all cycles from that state
 - Calculate probability per cycle
 - Calculate average cycle length
 - Can calculate expected values of cycle-dependent properties with average length and cycle probabilities

Network Example

- Slotted CSMA/CD access
- 10 transmitters
- Each with 1/20 probability to transmit in an idle slot
- A transmission
 - Lasts 5 slots,
 - Transmits 5 data units, and
 - Suppresses other transmissions.
- What is average throughput per slot?

Network Example

- What is average throughput per slot?
 - Find the number of successful transmissions
- Two types of slots
 - Non-suppressed
 - Chance of success in non-suppressed slot is:

$$10 \bullet (p) \bullet (1-p)^9 = 10 \bullet (1/20) \bullet (19/20)^9 = 0.315$$

- Suppressed
 - Chance of success in suppressed slot is:

1

Network Example

Use cycle analysis

cycle probability 0.685 1234I 0.315

- Average cycle length = 1•0.685+5•0.315 = 2.260 slots
- Average throughput
 - $= 5 \cdot 0.315$
 - = 1.575 data units/cycle
- Throughput per slot
 - = 1.575/2.260
 - = 0.697 data units/slot

(compare with 0.315 data units/slot using 1-slot packets)

Analysis of Shared Medium Protocols

ALOHA

- Packet radio system on Hawaiian Islands
- Two forms
 - Pure
 - No global synchronization
 - Low utilization
 - Slotted
 - Global synchronization (to define time slots)
 - Larger (but still fairly low) utilization

- User model
 - Each transmitter hooked to one terminal
 - One person at each terminal
 - Person types a line, presses return
 - Transmitter sends line
 - Checks for success (no interference)
 - If collision occurred, wait random time and resend

User		
Α		
В		
С		
D		
E		
	Time ——►	

Collisions

- A frame not will suffer a collision if no other frames are sent within one frame time of its start
- Let t = time to send a frame
- If any other user has generated a frame between time t_0 and time t_0 + t, the end of that frame will collide with the beginning of our frame
- Similarly, any other frame started between time
 t₀ + t and time t₀ + 2t will collide with the end of our frame

- Also assume fixed packet sizes (maximizes throughput)
- Arrival and success rates
 - Frames generated at rate S
 - In steady state, must leave at S as well
 - Some frames retransmitted
 - Assume also Poisson with rate G, G > S

- Question:
 - How does G (retransmission rate) relate to S (frame rate)?
- $S = G P_0$
 - P₀ is the probability of successful transmission

- Simplifying assumptions
 - Poisson arrival process
 - Infinite pool of users (want to ignore blocked user effects)
- Frame Arrival
 - The probability that k frames will be generated during a given frame time is governed by a Poisson distribution

$$Pr[k] = \frac{G^k e^{-G}}{k!}$$

- Empty slot
 - The probability of no frames being transmitted is e-G
- How many frames in our transmission period?
 - In an interval two frames long, the mean number of frames generated is 2G
- Collision?
 - The probability of no other traffic being generated during the entire vulnerable period is
 - $P0 = e^{-2G}$
- Remember
 - $-S = GP_0$
 - S = Ge^{-2G}

- What is the relationship between offered traffic and throughput?
 - Maximum throughput occurs
 - G = 0.5
 - S = 1/2e
- Utilization
 - Maximum of 0.184!

Slotted ALOHA

- Hosts wait for next slot to transmit
- Vulnerable period is now cut in half
- How many frames in our transmission period?
 - In an interval one frame long, the mean number of frames generated is G
- Collision?
 - The probability of no other traffic being generated during the entire vulnerable period is
 - $P0 = e^{G}$
 - $-S=Ge^{G}$

Slotted ALOHA

- What is the relationship between offered traffic and throughput?
 - Maximum throughput occurs
 - G = 1
 - S = 1/e
- Utilization
 - Maximum of 0.368!
 - 37% empty slots
 - 37% successes
 - 26% collisions

Slotted ALOHA

- Higher values of G
 - Reduces the number of empty slots
 - Increases the number of collisions exponentially
- Consider the transmission of a test frame
 - P[collision] = $1 e^{-G}$
 - P[transmit in k attempts] = $e^{-G} (1 e^{-G})^{k-1}$
 - (k-1 collisions followed by one success)
 - E[# of transmissions] = $\Sigma_{k-1}^{\infty} kP_k$ = $\Sigma_{k-1}^{\infty} ke^{-G} (1 - e^{-G})^{k-1}$ = e^G
- Small increases in channel load can drastically reduce its performance

125

Aloha Analysis

ALOHA Analysis

- Tradeoff
 - Pure ALOHA provides smaller delays
 - Slotted ALOHA provides higher throughput

Carrier Sense Protocols

- Unlike ALOHA, listen for other transmissions before sending
- Two classes divided by action taken when another host is transmitting
 - Persistent:
 - listen until transmission completes
 - Non-persistent:
 - back off randomly, then try again
- Persistent protocols vary by chance of transmission
 - p-persistent gives p chance of transmission per idle slot
 - Ethernet is special case: 1-persistent, always transmits when idle slot perceived

CSMA Analysis

TCP Throughput on a Congested Link

- What assumption was made for fairness?
 - At equilibrium, AIMD growth and backoff go in opposite directions
 - Backoff always goes toward origin
- What about growth (i.e., does it always have slope 1)?

Expected TCP Throughput

NO!

- Additive increase adds fixed amount per RTT
- Throughput growth is proportional to 1/RTT
- For two-flow case, slope is RTT₁/RTT₂
- Analysis with many flows
 - Bottleneck capacity C
 - Rates grow to bottleneck, then all back off at once
 - Total rate of throughput growth is fixed, so time ∆t between backoffs is also fixed
 - Growth for each flow is ∆t/RTT, and throughput is proportional to this growth

Throughput Dependence on RTT

Throughput Dependence on RTT

- What's going on?
 - Assumed all flows back off under contention
 - (arguably) more likely that only one flow backs off
 - Probability of congestion packet loss is proportional to throughput
 - Intuition
 - Low-RTT flow is more likely to back off
 - Reduces throughput advantage of low-RTT flows

"Analysis"

- Consider a flow F among many, varied flows
 - Backoffs happen very frequently
 - Probability to back off proportional to rate
 - Could happen any time
 - Approximate by Poisson process
- Let flow F have expected throughput C
 - Exp. time between backoffs proportional to 1/C
 - Between backoffs, throughput changes from 2/3 C to 4/3 C (average is C)
 - Rate of change proportional to C²
 - Rate of change also proportional to 1/RTT
 - Thus C proportional to 1/sqrt(RTT)

Lessons from this Example

- Analysis
 - Only as good as your understanding
 - Easy to shortcut steps when you know the answer (non-rigorous math is not uncommon)
- Simulation
 - No better than analysis with regard to understanding
 - e.g., a simulator that backs off all flows achieves throughput proportional to 1/RTT
- Experiments are necessary! (but can be hard to set up)