AEDs III

Segunda lista de exercícios

- 1. Crie uma árvore B de ordem 3 vazia e, em seguida,
 - a) Acrescente a ela as seguintes chaves: A, L, G, O, R, I, T, H, M, e S.
 - b) Remova, da árvore resultante, as seguintes chaves: L, G, H, I, R e A.
- 2. Crie uma árvore B+ de ordem 5 vazia e, em seguida,
 - a) Acrescente a ela as seguintes chaves: 9, 5, 1, 7, 11, 13, 8, 6, 12, 3, 10, 2, 0, 15, 4 e 14.
 - b) Remova, da árvore resultante, as seguintes chaves: 7, 9, 3, 2 e 5. Priorize as fusões com e as cessões de chaves de irmãos esquerdos.
- 3. Se uma página que não é folha de uma árvore B possui 7 chaves, quantos filhos ela possui? Justifique a sua resposta.
- 4. Em uma árvore B de ordem 30, qual é o número mínimo e o número máximo de elementos em cada página da árvore? Esse valor é válido para todos as páginas sem exceção? Caso negativo, justifique.
- 5. Crie uma tabela hash dinâmica com buckets de tamanho 3 e acrescente a ela as chaves
 - 20, 25, 13, 9, 14, 22, 39, 19, 6, 7, 33.
- 6. Cite uma estrutura de dados adequada para armazenamento de listas invertidas em disco. Justifique.
- 7. Usando um dicionário cujos índices (ou posições) são representados com apenas 6 bits e considerando que o conjunto de símbolos é composto apenas 26 caracteres de A a Z, calcule quanto bits são necessários para a seguinte mensagem compactada com LZW:
 - ABBBAABACDBBBAABCDDDAABCDBBA
- 8. Crie a árvore de Huffman para a mensagem abaixo e informe quantos bits são necessários para compactar essa mensagem.
 - ABBBAABACDBBBAABCDDDAABCDBBA

GABARITO

Questão 1

b)

8. O número de filhos em páginas que não são folhas (exceto a raiz) é sempre o número de chaves + 1.

Questão 4

Em uma árvore B de ordem 30, o número máximo de filhos é 30. Assim, o número máximo de elementos é 29 (ordem – 1) e o número mínimo é 14 (a metade inteira do número máximo). A raiz é a única exceção, em que o número mínimo de chaves é 1.

Questão 5

ESTADO INICIAL

[Diretório		
	p=1		
0	0		
1	1		

	Buckets				
	p'	n	0	1	2
0	1	0			
1	1	0			

APÓS INCLUSÃO DE 20, 25, 13, 9, 14 E 22

I	Diretório		
	p=1		
0	0		
1	1		

		В	uckets	5	
	p'	n	0	1	2
0	1	3	14	20	22
1	1	3	9	13	25

APÓS INCLUSÃO DE 39 E 19

Diretório		
p=2		
0	0	
1	1	
2	0	
3	2	

	Buckets				
	p'	n	0	1	2
0	1	3	14	20	22
1	2	3	9	13	25
2	2	2	19	39	

APÓS INCLUSÃO DE 6 E 7

	Diretório		
	p=2		
0	0		
1	1		
2	3		
3	2		

	Buckets				
	p'	n	0	1	2
0	2	1	20		
1	2	3	9	13	25
2	2	3	7	19	39
3	2	3	6	14	22

APÓS INCLUSÃO DE 33

	Diretório	
	p=3	
0	0	
1	1	
2	3	
3	2	
4	0	
5	4	
6	3	
7	2	

	Buckets				
	p'	n	0	1	2
0	2	1	20		
1	3	3	9	25	33
2	2	3	7	19	39
3	2	3	6	14	22
4	3	1	13		

Uma possível estrutura para armazenamento das listas invertidas é uma combinação de uma tabela hash como dicionário e um arquivo contendo múltiplas listas invertidas, como mostra a figura abaixo:

ARQUIVO DE DADOS

Regis	tros
1	Java Web Services
2	Web Design Responsivo
3	Web Services em PHP
4	Programação Java para a Web
5	Desenvolvimento Web Java

TABEL	ΑН	ASH
-------	----	-----

termos	endereço
a	13
desenvolvimento	15
design	4
em	8
java	0
para	12
php	9
programação	10
responsivo	5
services	2
web	1

LISTAS

End.	Registro	Próximo
0	1	11
1	1	3
2	1	7
3	2	6
4	2	-1
5	2	-1
6	3	14
7	3	-1
8	3	-1
9	3	-1
10	4	-1
11	4	17
12	4	-1
13	4	-1
14	4	16
15	5	-1
16	5	-1
17	5	-1
	-	

Questão 7

TEXTO:	Α	В	В	В	Α	Α	В	Α	C	D	В	В	В	Α	Α	В	C	D	D	D	Α	Α	В	C	D	В	В	Α
SAÍDA:	0	1	2	7	0	2	6	0	2 3 27		7 1		29		1	32		3	3 36			32		28		**		
- 25																												
0	Α	S 8	9	J	8 8	18	S	8	27	BB		36	AAB	S.	45	1	8	54	18		63		×					
1	В	S S	10	K	8 8	19	T	\$	28	BBA		37	BC	S),	46	- 6	- 8	55	0	33								
2	С	S 8	11	L	8 8	20	U	8	29	AA		38	CDD	S),	47	- 60	- 8	56	100									
3	D	S 8	12	M	8 8	21	٧		30	ABA		39	DD	S.	48	10	- 8	57	10									
4	E	S. S	13	Ν	8 8	22	W	8	31	AC		40	DA	S	49		- 8	58	100									
5	F	S S	14	0	8 8	23	Х	8	32	CD		41	AABC	S	50		- 8	59	100									
6	G	S S	15	Р	8 8	24	Υ	8	33	DB		42	CDB	S),	51	- 10	- 8	60	100									
7	Н	S S	16	Q	8 8	25	Z	8	34	BBB		43	3%	S	52		- 8	61	18									
8	1	S S	17	R	8 8	26	AB	8	35	BA		44	3%	S	53	- 10	8	62	100									

Serão 18 índices na saída, de 6 bits cada, totalizando 108 bits de mensagem.

Serão necessários 53 bits para compactar a mensagem, sem considerar o armazenamento da árvore ou da tabela.

Se, na alteração, o registro mudar de tamanho, é importante considerar se esse registro (ou qualquer outro) precisará ser reposicionado. Isso geralmente acontece quando a alteração resulta em aumento do tamanho do registro. Nesse caso, qualquer índice direto, especialmente o baseado na chave primária, precisará ser alterado.