Chapter 1

Connected Fuzzy Topological Space

Definition 1 (Separated Fuzzy Sets). Let $\langle \mathcal{F}(x), \delta \rangle$ be a fuzzy topological space. Then $A, B \in \mathcal{F}(x)$ are called separated sets if $\bar{A} \wedge B = \underline{0} = A \wedge \bar{B}$.

Lemma. Let $\langle \mathcal{F}(x), \delta \rangle$ be a fuzzy topological space and $A, B, C \in \mathcal{F}(x)$. If B and C are separated sets then $A \wedge B$ and $A \wedge C$ are separated.

Proof. Since B and C are separated, we have, $\bar{B} \wedge C = \underline{0} = B \wedge \bar{C}$.

We have, $A \wedge B < B \implies \overline{A \wedge B} < \overline{B}$ and $A \wedge C < C$.

This implies, $\overline{(A \wedge B)} \wedge (A \wedge C) \leq \overline{B} \wedge C = \underline{0}$. Similarly, $(A \wedge B) \wedge \overline{(A \wedge C)} \leq B \wedge \overline{C} = \underline{0}$.

Hence, $A \wedge B$ and $A \wedge C$ are separated.

Definition 2 (Connected Fuzzy Sets). Let $\langle \mathcal{F}(x), \delta \rangle$ be a fuzzy topological space. A fuzzy set A on X is called connected if there do not exist $C, D \in \mathcal{F}(x) \setminus \{\underline{0}\}$ such that $A = C \vee D$. Or, A set A is connected if $A = B \vee C$ then either $B = \underline{0}$ or, $C = \underline{0}$.

Theorem 1.0.1. Let, $\langle \mathcal{F}(x), \delta \rangle$ be a fuzzy topological space and $A \in \mathcal{F}(x)$. Then the following are equivalent:

- 1. A is connected.
- 2. $B, C \in \mathcal{F}(x)$ are separated, $A \leq B \vee C$ implies $A \wedge B = \underline{0}$ or, $A \wedge C = \underline{0}$.
- 3. B, $C \in \mathcal{F}(x)$ are separated, $A < B \lor C$ implies A < B or, A < C.

Proof. (1) \Rightarrow (2), Since, B and C are separated set. By the above lemma, we have $(A \land B)$ and $(A \land C)$ are separated. Since, A is connected and $A \leq B \lor C$ implies

$$A = A \wedge (B \vee C)$$

= $(A \wedge B) \vee (A \wedge C)$

then by definition of connectedness, either $A \wedge B = \underline{0}$ or, $A \wedge C = \underline{0}$. Hence, (2) holds.

 $(2) \Rightarrow (3)$, Suppose, $A \wedge B = \underline{0}$, then,

$$A = (A \wedge B) \vee (A \wedge C)$$
$$= \underline{0} \vee (A \wedge C)$$
$$= (A \wedge C).$$

So, $A \leq C$. Similarly, if $A \wedge C = 0$, then we can prove that $A \leq B$. Thus, (3) holds.

Finally, (3) \Rightarrow (1), Suppose, (3) holds, we need to show that, A is connected. Let $B, C \in \mathcal{F}(x)$ are two separated fuzzy sets such that $A = B \vee C$.

We need to prove that, either, $B = \underline{0}$ or, $C = \underline{0}$. By (3), we have either $A \leq B$ or, $A \leq C$. Now if $A \leq B$ then $C \wedge A \leq C \wedge B \leq C \wedge \bar{B}$. But since, B, C are separated sets so, $C \wedge \bar{B} = \underline{0}$. $\therefore C \wedge A = \underline{0}$. Again, $C \wedge A = C \wedge (B \vee C) = C$. So $C = \underline{0}$.

Now if $A \leq C$, we can similarly prove that B = 0. Thus, A is connected.

Theorem 1.0.2. Let $\langle \mathcal{F}(x), \delta \rangle$ be a fuzzy topological space, $A \in \mathcal{F}(x)$ is connected such that $A \leq B \leq \bar{A}$. Show that B is connected.

Proof. Suppose, C and D are two separated fuzzy sets such that, $B = C \vee D$. To show that, B is connected we need only to show either, C = 0 or, D = 0.

By the lemma, we have $(A \wedge C)$ and $(A \wedge D)$ are separated sets. Let $F = A \wedge C$, $G = A \wedge D$. Now

$$F \lor G = (A \land C) \lor (A \land D)$$
$$= A \lor (C \land D)$$
$$= A \lor B$$
$$= A$$

Since, A is connected, we have either $F = \underline{0}$ or, $G = \underline{0}$.

Suppose, F = 0. Then, $A = F \vee G = G = A \wedge D$. This implies, A < D. Thus, $\bar{A} < \bar{D}$. i.e., $B < \bar{A} < \bar{D}$. Now, $C \wedge B < C \wedge \bar{A} < C \wedge \bar{D} = 0$. i.e.,

$$C \land B \leq \underline{0}$$

$$\Rightarrow C \land (C \lor D) \leq \underline{0}$$

$$\Rightarrow C = 0$$

Similarly, if G=0, then we can show that D=0. Hence, B is connected.

Definition 3 (Connected Fuzzy Topological Space). If the fuzzy set <u>1</u> is connected i.e., there does not exist separated sets $C, D \in \mathcal{F}(x) \setminus \{0\}$ such that $1 = C \vee D$, then the fuzzy topological space $\langle \mathcal{F}(x), \delta \rangle$ is called a connected fuzzy topological space.

Theorem 1.0.3 (Characterization Theorem). Let $\langle \mathcal{F}(x), \delta \rangle$ be a fuzzy topological space. Then the followings are equivalent

- 1. $\langle \mathcal{F}(x), \delta \rangle$ is connected.
- 2. $A, B \in \delta, A \vee B = 1, A \wedge B = 0, \text{ implies } 0 \in \{A, B\}.$
- 3. $A, B \in \delta', A \vee B = 1, A \wedge B = 0, \text{ implies } 0 \in \{A, B\}.$

Proof. (1) \Rightarrow (2), Suppose, (2) is false. Then there are $A, B \in \delta \setminus \{0\}$ such that

$$A \lor B = \underline{1}, \qquad A \land B = \underline{0}$$

 $\Rightarrow A^c \land B^c = \underline{0}, \text{ and } A^c \lor B^c = \underline{1} \text{ [By De Morgan's Law]}$
 $\Rightarrow \bar{A}^c \land B^c = 0, \text{ and } A^c \land \bar{B}^c = 0 \text{ [Since, } A^c, B^c \text{ are closed.]}$

 \therefore We have by definition, A^c and B^c are two separated sets. Therefore, we have $A^c \vee B^c = \underline{1}$ and A^c , B^c are two separated sets. Hence, $\langle \mathcal{F}(x), \delta \rangle$ is disconnected. Hence, (2) is true.

 $(2) \Rightarrow (3)$, Let $A, B \in \delta'$ such that $A \vee B = \underline{1}$ and $A \wedge B = \underline{0}$. Then by De Morgan's Laws, $A^c \wedge B^c = \underline{0}$ and $A^c \vee B^c = 1$. By (2), $0 \in \{A^c, B^c\}$. Hence, $0 \in \{A, B\}$.

 $(3) \Rightarrow (1)$, If $\langle \mathcal{F}(x), \delta \rangle$ is not connected, then there exists non-zero separated sets $A, B \in \delta' \setminus \{0\}$ such that $A \vee B = \underline{1}$, which contradicts (3).

Hence, $\langle \mathcal{F}(x), \delta \rangle$ is connected.