

Department of Mathematics and Statistics, Sejong University Department of Digital Content, Sejong University

Jungeun Lee, Yeonkyung Lee, Sung Wook Baik and Jin Hee Yoon

01 Introduction

Background

Need for study

04 Results

Comparison of effects of CMA & FMA

Significance Test of effects of CMA & FMA

02 Preliminaries

Mediation Analysis

Fuzzification

Fuzzy Mediation Analysis

05 Conclusion

Summary

03 Main Contribution

Data Preprocessing

Modeling relationship of data

Background

BP, Energy Outlook 2020 edition

It is important to predict accurate amount of solar power.

Need for research

01 The focus of prior research with solar power data

Lack of research on the relationships between variables

- ARMA, ARIMA
- SVM, ANN, LSTM

02 The focus of prior mediation study

Absence of mediation model with multiple covariates

03 Characteristics of solar power data

Ambiguity, the key characteristic of climate data

Need for extend independent variable to multiple version

Need for reflect ambiguity of data

Fuzzy Mediation Analysis with multiple covariates

Mediation Analysis

Preliminaries

Mediation Analysis

Step **01**
$$Y = \beta_{10} + \beta_{11}X_1 + \beta_{12}X_2 + \dots + \beta_{1p}X_p + \varepsilon_1$$

Step **02**
$$M = \beta_{20} + \beta_{21}X_1 + \beta_{22}X_2 + \dots + \beta_{2p}X_p + \varepsilon_2$$

Step **03**
$$Y = \beta_{30} + \sum_{j=1}^{p} \beta_{31}^{j} X_{j} + \beta_{32} M + \varepsilon_{3}$$

$$\boldsymbol{\beta}_{1j} = \boldsymbol{\beta}_{31}^j + \boldsymbol{\beta}_{2j} \boldsymbol{\beta}_{32}$$

Mediation Analysis

Step **01**
$$Y = \beta_{10} + \beta_{11}X_1 + \beta_{12}X_2 + \dots + \beta_{1p}X_p + \varepsilon_1$$

Step **02**
$$M_h$$

= $\beta_{20}^h + \beta_{21}^h X_1 + \beta_{22}^h X_2 + \dots + \beta_{2p}^h X_p + \varepsilon_2^h$

Step **02**
$$M_h$$

= $\beta_{20}^h + \beta_{21}^h X_1 + \beta_{22}^h X_2 + \dots + \beta_{2p}^h X_p + \varepsilon_2^h$
Step **03** $Y = \beta_{30} + \sum_{j=1}^p \beta_{31}^j X_j + \sum_{h=1}^k \beta_{32}^h M_h + \varepsilon_3$

$$\beta_{1j} = \beta_{31}^j + \beta_{2j}^h \beta_{32}^h$$

Fuzzification

Fuzzy numbers by Zadeh (1986)

L-R fuzzy numbers

$$\mu_{A}(x) = \begin{cases} L\left(\frac{m-x}{l}\right) & \text{if } x \leq m \\ R\left(\frac{x-m}{l}\right) & \text{if } x > m \end{cases}$$

$$X = (l_x, x, r_x), Y = (l_y, y, r_y) \in F_T \text{ for } k \in \mathbf{R}$$

$$X \bigoplus Y = (l_x + l_y, x + y, r_x + r_y)$$
$$kX = \begin{cases} (kl_x, kx, kr_x) & \text{if } k \ge 0\\ (kr_x, kx, kl_x) & \text{if } k < 0 \end{cases}$$

l: width of left

m: mode

Fuzzy Mediation Analysis

Fuzzy Mediation Analysis

Fuzzy Mediation Analysis for multiple covariates with one mediator

Step **01**
$$\tilde{Y} = \beta_{10} \oplus \beta_{11} \tilde{X}_1 \oplus \cdots \oplus \beta_{1p} \tilde{X}_p \oplus \tilde{E}_1$$
,

Step **02**
$$\widetilde{M} = \beta_{20} \oplus \beta_{21} \widetilde{X}_1 \oplus \cdots \oplus \beta_{2p} \widetilde{X}_p \oplus \widetilde{E}_2$$

Step **03**
$$\widetilde{Y} = \beta_{30} \oplus \sum_{j=1}^{p} \beta_{31}^{j} \widetilde{X}_{j} \oplus \beta_{32} \widetilde{M} \oplus \widetilde{E}_{3}$$

$$\boldsymbol{\beta}_{1j} = \boldsymbol{\beta}_{31}^j + \boldsymbol{\beta}_{2j} \boldsymbol{\beta}_{32}$$

Fuzzy Mediation Analysis

Step **01**
$$\tilde{Y} = \beta_{10} \oplus \beta_{11} \tilde{X}_1 \oplus \cdots \oplus \beta_{1p} \tilde{X}_p \oplus \tilde{E}_1$$

Step **02**
$$\widetilde{M}_h = \beta_{20} \oplus \beta_{21}^h \widetilde{X}_1 \oplus \cdots \oplus \beta_{2p}^h \widetilde{X}_p \oplus \widetilde{E}_2$$

Step **03**
$$\tilde{Y} = \beta_{30} \oplus \sum_{j=1}^{p} \beta_{31}^{j} \tilde{X}_{i} \oplus \sum_{h=1}^{k} \beta_{32}^{h} \tilde{M}_{h} \oplus \tilde{E}_{3}$$

$$\beta_{1j} = \beta_{31}^j + \beta_{2j}^h \beta_{32}^h$$

Preliminaries

Estimation in Fuzzy Mediation Analysis

LSE Method

$$\widetilde{Y}_i = \beta_0 \oplus \beta_1 \widetilde{X}_{1i} \oplus \beta_2 \widetilde{X}_{2i} \oplus \cdots \oplus \beta_p \widetilde{X}_{pi} \oplus \widetilde{E}_i$$

$$Q(\beta_{k0},\beta_{k1},\ldots,\beta_{kp_i}) = \sum_{i=1}^n d^2(\tilde{Y}_i,\sum_{j=0}^p \beta_{kj}\tilde{X}_{ij}) \quad \rightarrow \quad \frac{\partial Q}{\partial \beta_{kl}} = 0$$

where

$$d^{2}(\tilde{Y}_{i}, \sum_{j=0}^{p} \beta_{kj} \tilde{X}_{ij}) = (l_{y_{i}} - \sum_{j=0}^{p} \beta_{kj} l_{x_{ij}})^{2} + (y_{i} - \sum_{j=0}^{p} \beta_{kj} x_{ij})^{2} + (r_{y_{i}} - \sum_{j=0}^{p} \beta_{kj} r_{x_{ij}})^{2}$$

$$d^{2}(X,Y) = D_{2}^{2}(Supp\ X, Supp\ Y) + [m_{l}(X) - m_{l}(Y)]^{2} + [m_{r}(X) - m_{r}(Y)]^{2}$$

$$\widehat{\boldsymbol{\beta}_k} = \left(\widetilde{X}^t \circ \widetilde{X}\right)^{-1} \widetilde{X}^t \circ \widetilde{Y}$$

where

$$\tilde{X}^{t} \diamond \tilde{X} = \left[\sum_{i=1}^{n} (l_{x_{il}} l_{x_{ij}} + x_{il} x_{ij} + r_{x_{il}} r_{x_{ij}}) \right]_{(p+1) \times (p+1)}$$

$$\tilde{X}^{t} \diamond \tilde{y} = \left[\sum_{i=1}^{n} (l_{x_{il}} l_{y_i} + x_{il} y_i + r_{x_{il}} r_{y_i}) \right]_{(p+1) \times 1}$$

$$\tilde{X} = \begin{bmatrix} (1,1,1) & (l_{x_{11}}, x_{11}, r_{11}) & \cdots & (l_{x_{1p}}, x_{1p}, r_{1p}) \\ \vdots & \ddots & \vdots \\ (1,1,1) & (l_{x_{n1}}, x_{n1}, r_{n1}) & \cdots & (l_{x_{np}}, x_{np}, r_{np}) \end{bmatrix}$$

$$\widetilde{\boldsymbol{y}} = \left[\left(l_{y_1}, y_1, r_{y_1} \right), \cdots, \left(l_{y_n}, y_n, r_{y_n} \right) \right]^t$$

Inference of the effects

Step 01 Inference of Total effect and Direct effect

 $(1-\alpha)100\%$ CI for the total effect c_T : $c\pm z_{\frac{\alpha}{2}}\cdot se(c)$

$$se(c) = se(c') = \frac{SD}{\sqrt{n}}$$

$$Z = \frac{c}{se(c)} \sim N(0,1)$$

$$H_0$$
: $c_T = 0 \ v.s. H_1$: $c_T \neq 0$

$CSD = \sqrt{\frac{1}{n-1} \sum_{h=1}^{n} (X_{ih} - \bar{X})^2}, FSD = \sqrt{\frac{1}{n-1} \sum_{h=1}^{n} d^2(\tilde{X}_{ih}, \bar{\tilde{X}})}.$

CSD : Crisp Standard Deviation FSD : Fuzzfied Standard Deviation

Step 02 Inference of Indirect effect

 $(1-\alpha)100\%$ CI for the indirect effect $a_Tb_T: ab \pm z_{\frac{\alpha}{2}} \cdot se(ab)a_T$

$$se(ab) = \sqrt{a^2 se_b^2 + b^2 se_a^2 + se_a^2 se_b^2}$$
 (del

$$Z = \frac{ab}{se(ab)} \sim N(0,1)$$

$$H_0: a_T b_T = 0 \ v.s. H_1: a_T b_T \neq 0$$

1. Data Preprocessing

Climate condition data in Dangjin, Korea

Every hour from 1 a.m., Jan 1, 2015, to 11 p.m., Dec 31, 2017

Step 01 Linear interpolation for missing values

$$f(x_k) = f(x_{k-1}) + \frac{f(x_{k+1}) - f(x_{k-1})}{x_{k+1} - x_{k-1}} (x_k - x_{k-1})$$

Step 03 Normalization

$$x = \frac{x_0 - x_{min}}{x_{max} - x_{min}}$$

Step 02 Significance Test for independent variables

temp, rain, wind_speed, humidity, solar radiation, sun hour, snow, cloud, solar power

all significant

Step 04 Fuzzification

Date	Crisp	m, l, r	Fuzzified
01-01-2015 1:00AM	-4.4	m:-4.4, l, r: -4.6-(-4.4) /2 = 0.1	(-4.5,-4.4,-4.3)
01-02-2015 2:00AM	-4.6	m:-4.6, l, r: -4.7-(-4.6) /2 = 0.05	(-4.65, -4.6, -4.55)
01-03-2015 3:00AM	-4.7	m : -4.7, l, r : -5-(-4.7) /2 = 0.15	(-4.85, -4.7, -4.55)

2. Modeling with solar power data

Fuzzy Mediation Analysis for multiple covariates with one mediator

Step **01**
$$\widetilde{Y} = \beta_{10} \oplus \beta_{11}\widetilde{X_1} \oplus \beta_{12}\widetilde{X_2} \oplus \beta_{13}\widetilde{X_3} \oplus \beta_{14}\widetilde{X_4} \oplus \beta_{15}\widetilde{X_5} \oplus \beta_{16}\widetilde{X_6} \oplus \beta_{17}\widetilde{X_7} + \varepsilon_1$$

Step **02**
$$\widetilde{M} = \beta_{20} \oplus \beta_{21}\widetilde{X_1} \oplus \beta_{22}\widetilde{X_2} \oplus \beta_{23}\widetilde{X_3} \oplus \beta_{24}\widetilde{X_4} \oplus \beta_{25}\widetilde{X_5} \oplus \beta_{26}\widetilde{X_6} \oplus \beta_{27}\widetilde{X_7} + \varepsilon_2$$

Step **03**
$$\widetilde{Y} = \beta_{30} \oplus \beta_{31}\widetilde{X_1} \oplus \beta_{32}\widetilde{X_2} \oplus \beta_{33}\widetilde{X_3} \oplus \beta_{34}\widetilde{X_4} \oplus \beta_{35}\widetilde{X_5} \oplus \beta_{36}\widetilde{M_6} \oplus \beta_{37}\widetilde{X_7} \oplus \beta_{38}\widetilde{X_8} + \varepsilon_3$$

$$\sum_{i=1}^{7} \beta_{1i} = \sum_{i=1, i \neq 6}^{8} \beta_{3i} + \sum_{i=1}^{7} \beta_{2i} \cdot \beta_{36}$$

3. Calculation of coefficients with CMA & FMA and Comparison of their effects

Step 01

Method	Parameter estimates								
	$oldsymbol{eta_{10}}_{ ext{const}}$	$oldsymbol{eta_{11}}_{ ext{temp}}$	$oldsymbol{eta_{12}}_{rain}$	$oldsymbol{eta}_{13}$ windspeed	$oldsymbol{eta_{14}}$ humidity	$oldsymbol{eta_{15}}$ sun hour	$oldsymbol{eta_{16}}_{ ext{snow}}$	$oldsymbol{eta_{17}}_{ ext{cloud}}$	
CMA	0.114	0.240	- 0.718	0.153	- 0.291	0.327	0.038	0.064	
FMA	0.112	0.248	- 0.585	0.170	- 0.291	0.316	0.043	0.056	

Step 02

Method	Parameter e	stimates						
	β ₂₀ const	β ₂₁ temp	β ₂₂ rain	$oldsymbol{eta}_{23}$ windspeed	$oldsymbol{eta_{24}}$ humidity	$oldsymbol{eta_{25}}$ sun hour	$oldsymbol{eta}_{26}$ snow	$oldsymbol{eta_{27}}$ cloud
CMA	0.107	0.201	-0.601	0.113	-0.255	0.360	0.063	0.054
FMA	0.104	0.208	- 0.487	0.130	- 0.254	0.350	0.067	0.047

Step 03

Method	Parameter es	stimates				7-7-			
	$oldsymbol{eta_{30}}_{ ext{const}}$	$oldsymbol{eta_{31}}_{ ext{temp}}$	$oldsymbol{eta_{32}}_{rain}$	$oldsymbol{eta}_{33}$ windspeed	$oldsymbol{eta_{34}}$ humidity	$oldsymbol{eta}_{35}$ sun hour	$oldsymbol{eta}_{36}$ solar radiation	$oldsymbol{eta}_{37}$ snow	$oldsymbol{eta}_{38}$ cloud
CMA	0.005	0.033	- 0.101	0.037	- 0.029	- 0.042	1.027	- 0.027	0.009
FMA	0.006	0.035	- 0.088	0.038	- 0.031	- 0.041	1.027	- 0.026	0.008

CMA: Crisp Mediation Analysis FMA: Fuzzy Mediation Analysis

Method	Effect		
	Total effect	Direct effect	Indirect effect
CMA	-0.187	-0.120	-0.067^a
FMA	-0.043	-0.105	0.062^{b}
		-	

Fuzzy Mediation Analysis prevents the effects from overestimating

4. Significance Test of effects with CMA & FMA

temperature

Effect	Method	95% CI (lower bound)	95% CI (upper bound)	z(t)	<i>p</i> -value
Total	CMA	-0.191	-0.183	-82.318	< 0.001
	FMA	-0.048	-0.038	-18.344	< 0.001
Direct	CMA	-0.128	-0.112	-27.853	< 0.001
	FMA	-0.110	-0.100	-44.795	< 0.001
Indirect	CMA	-0.074	-0.060	-17.607	< 0.001
	FMA	0.057	0.067	25.849	< 0.001

rain

Effect	Method	95% CI (lower bound)	95% CI (upper bound)	z(t)	<i>p</i> -value
Total	CMA	-0.271	-0.103	-4.348	< 0.001
	FMA	-0.043	-0.043	-366.673	< 0.001
Direct	CMA	-0.289	0.049	-1.394	0.1633
	FMA	-0.105	-0.105	-895.365	< 0.001
Indirect	CMA	-0.213	0.079	-0.898	0.369
	FMA	0.061	0.063	184.145	< 0.001

wind speed

Effect	Method	95% CI (lower bound)	95% CI (upper bound)	z(t)	<i>p</i> -value
T-1-1	CMA			E4.1EE	-0.001
Total	CMA	-0.194	-0.180	-54.155	< 0.001
	FMA	-0.046	-0.040	-28.122	< 0.001
Direct	CMA	-0.133	-0.107	-17.465	< 0.001
F	FMA	-0.108	-0.102	-68.671	< 0.001
Indirect CM	CMA	-0.079	-0.055	-11.225	< 0.001
	FMA	0.059	0.065	39.632	< 0.001

humidity

Effect	Method	95% CI (lower bound)	95% CI (upper bound)	z(t)	<i>p</i> -value
Total	CMA	-0.193	-0.181	-60.349	< 0.001
	FMA	-0.047	-0.039	-21.180	< 0.001
Direct	CMA	-0.132	-0.108	-20.259	< 0.001
	FMA	-0.109	-0.101	-51.718	< 0.001
Indirect	CMA	-0.077	-0.057	-12.843	< 0.001
	FMA	0.058	0.066	29.798	< 0.001

4. Significance Test of effects with CMA & FMA

sun hour

Effect	Method	95% CI (lower bound)	95% CI (upper bound)	z(t)	<i>p</i> -value
Total	CMA	-0.191	-0.183	-99.014	<0.001
	FMA	-0.052	-0.034	-9.500	< 0.001
Direct	CMA	-0.125	-0.115	-44.084	< 0.001
	FMA	-0.114	-0.096	-23.198	< 0.001
Indirect	CMA	-0.072	-0.062	-24.819	< 0.001
	FMA	0.053	0.071	13.391	< 0.001

snow

Effect	Method	95% CI (lower bound)	95% CI (upper bound)	z(t)	<i>p</i> -value
Total	CMA	-0.201	-0.173	-26.059	< 0.001
	FMA	-0.044	-0.042	-66.492	< 0.001
Direct	CMA	-0.148	-0.092	-8.348	< 0.001
	FMA	-0.106	-0.104	-162.365	< 0.001
Indirect C	CMA	-0.091	-0.043	-5.377	< 0.001
	FMA	0.061	0.063	93.640	< 0.001

cloud

Effect	Method	95% CI (lower bound)	95% CI (upper bound)	z(t)	<i>p</i> -value
Total	CMA	-0.189	-0.185	-161.048	< 0.001
	FMA	-0.052	-0.034	-9.672	< 0.001
Direct	CMA	-0.124	-0.116	-52.312	< 0.001
	FMA	-0.114	-0.096	-23.618	< 0.001
Indirect	CMA	-0.071	-0.063	-33.541	< 0.001
	FMA	0.053	0.070	13.650	< 0.001

Reject H_0 in all independent variables in FMA

VS

Cannot reject H_0 in 'rain' variable in CMA

Using without considering ambiguous information can lead to biased results

Summary

Need for study

Data preprocessing & Modeling

Result

Follow-up study

Conclusion

- Lack of research on the relationships between variables
- Lack of reflection of characteristics of climate information data

Fuzzy Mediation Analysis

- prevents the effects from overestimating
- prevents the effects from biased results

To be extended to

Moderation Analysis,

Mediation-Moderation Analysis,

etc.

