Singular Value Decomposition (SVD) and Principal Component Analysis (PCA)

Jaehyuk Choi

March 23, 2017

Eigen(spectral) decomposition

For a matrix \boldsymbol{A} , eigenvalue λ_k and eigenvector \boldsymbol{v}_k satisfy

$$\mathbf{A}\mathbf{v}_k = \lambda_k \mathbf{v}_k.$$

The matrix \boldsymbol{A} can be decomposed into

$$A = Q \Lambda Q^{-1}$$

where Λ is a diagonal matrix with values λ_k and $\mathbf{Q} = (\mathbf{v}_1 \cdots \mathbf{v}_n)$, i.e., $\mathbf{Q}_{*j} = \mathbf{v}_j$. When \mathbf{A} is real and symmetric, \mathbf{Q} is an orthogonal matrix, $\mathbf{Q} \mathbf{Q}^T = \mathbf{I}$,

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T$$

 Jaehyuk Choi
 SVD PCA
 March 23, 2017
 2 / 10

Singular Value Decomposition (SVD)

The single most useful practical concept in linear algebra:

- Any matrix (even rectangular) has a SVD.
- SVD tells everything on a matrix.

For any $m \times n$ matrix A, there is a unique decomposition:

$$A = USV^T$$
, where

- $U(m \times m)$: orthogonal $(UU^T = U^T U = I)$
- $S(m \times n)$: diagonal. Singular values, $s_k \ge 0$, are in decreasing order for $1 \le k \le \min(m, n)$
- $V(n \times n)$: orthogonal $(VV^T = V^TV = I)$

SVD: Intuition

Linear transformation A is decomposed into

- \bullet a rotation by V^T
- \bullet a scaling by S
- ullet a rotation by U

SVD: Compact Form, Low Rank Approximation

- For a non-square matrix, a compact form is enough: $U(m \times r)$, $S(r \times r)$, $V(n \times r)$ where $r = \min(m, n)$.
- If the rank is $k (\leq r)$, $s_{j>k} = 0$: $U(m \times k)$, $S(k \times k)$, $V(n \times k)$
- Using the first $j (\leq k)$ biggest singular values,

$$A_j = U_j S_j V_j^T = \sum_{i=1}^j \mathbf{u}_i s_i \mathbf{v}_i^T, \quad U_j(m \times j), S_j(j \times j), V_j(n \times j)$$

is the best approximation with rank j minimizing the norm $\|A - A_j\|_F$

SVD: Image Compression

An image file is nothing but a matrix, so the low-rank approximation of SVD works as an image compression method. The storage is reduced from mn to (m+n+1)k.

Principal Component Analysis (PCA)

If **X** is a matrix of *n* samples of *p* features $(n \times p)$, the covariance matrix is

$$\mathbf{\Sigma} = \frac{1}{n} \mathbf{X}^T \mathbf{X} : (p \times p)$$
 symmetric matrix

The covariance matrix of the transformed space $\mathbf{Z} = \mathbf{X} \mathbf{W}$ is

$$Cov(\mathbf{Z}) = \frac{1}{n}(\mathbf{X}\mathbf{W})^{T}(\mathbf{X}\mathbf{W}) = \frac{1}{n}\mathbf{W}^{T}(\mathbf{X}^{T}\mathbf{X})\mathbf{W} = \mathbf{W}^{T}\Sigma\mathbf{W}$$

If we pick W to be the orthogonal transformation of SVD, i.e., $\mathbf{\Sigma} = WSW^T$,

$$Cov(\boldsymbol{Z}) = \boldsymbol{S} = diag(S_{11}, \cdots, S_{pp}).$$

Notice that $Cov(Z_i, Z_j) = \boldsymbol{W}_{*i}^T \boldsymbol{\Sigma} \boldsymbol{W}_{*j} = S_{ij}$ is zero if $i \neq j$, so the extracted features are orthogonal.

Jaehyuk Choi SVD PCA March 23, 2017

Process of finding W

Let
$$W = (W_{*1} W_{*2} \cdots W_{*p}).$$

- Find W_{*1} such that $|W_{*1}| = 1$ and $|W_{*1}^T \Sigma W_{*1}|$ is maximized.
- Find \boldsymbol{W}_{*2} such that $|\boldsymbol{W}_{*2}|=1$, $|\boldsymbol{W}_{*2}^T\boldsymbol{\Sigma}\boldsymbol{W}_{*2}|$ is maximized and $\boldsymbol{W}_{*1}^T\boldsymbol{W}_{*2}=0$.
- o . .
- Find \boldsymbol{W}_{*k} such that $|\boldsymbol{W}_{*k}| = 1$, $|\boldsymbol{W}_{*k}^T \boldsymbol{\Sigma} \boldsymbol{W}_{*k}|$ is maximized and \boldsymbol{W}_{*k} is orthogonal to $\{\boldsymbol{W}_{*j}\}$ for j < k.

Total and Explained Variance

The total variance is the variance of all original features. Under PCA,

$$\textstyle\sum_{k=1}^p \mathsf{Var}(X_k) = \textstyle\sum_{k=1}^p S_{kk}.$$

Therefore the ratio

$$\frac{\sum_{j=1}^{k} S_{jj}}{\sum_{j=1}^{p} S_{jj}}$$

indicates how much of the total variance is *explained* by the first k PCA factors. Extracting features from PCA is an unsupervised learning, NOT supervised learning, because the response variable is not associated.

Jaehyuk Choi SVD PCA March 23, 2017 9 / 1

PCA vs Simple Linear Regression for (x, y)

PCA is not same as Simple Linear regression (OLS)!

- Linear Regression minimize the the (squared) distance in y-axis.
- PCA (1st component) minimize the (squared) shortest distance.

