Examenul național de bacalaureat 2024 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{1}{8} + 3 \cdot \left(1 - \frac{3}{8}\right) = \frac{1}{8} + 3 \cdot \frac{5}{8} =$	3 p
	$=\frac{1}{8}+\frac{15}{8}=2$	2 p
2.	f(a) = 2a - 2, pentru orice număr real a	3 p
	2a-2=0, de unde obținem $a=1$	2 p
3.	2x = 2 + x	3 p
	x=2	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	2p
	În mulțimea A sunt 6 numere n pentru care $n+9 \le 15$, deci sunt 6 cazuri favorabile, de	
	unde obținem $p = \frac{6}{9} = \frac{2}{3}$	3 p
5.	$a = \frac{0+4}{2} = 2$	3p
	$b = \frac{5 + \left(-5\right)}{2} = 0$	2p
6.	$\sin 45^\circ = \frac{\sqrt{2}}{2}$, $\cos 45^\circ = \frac{\sqrt{2}}{2}$, $\sin 30^\circ = \frac{1}{2}$	3 p
	$\sqrt{2} \cdot \left(\sin 45^\circ + \cos 45^\circ\right) \cdot \sin 30^\circ = \sqrt{2} \cdot \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\right) \cdot \frac{1}{2} = 2 \cdot \frac{1}{2} = 1$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 3 & 2 \\ -1 & 0 \end{vmatrix} = 3 \cdot 0 - 2 \cdot (-1) =$	3p
	=0+2=2	2p
b)	$B + 3I_2 = \begin{pmatrix} 3 & 4 \\ -2 & -3 \end{pmatrix} + \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 6 & 4 \\ -2 & 0 \end{pmatrix} =$	3 p
	$=2\begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix} = 2A$	2p
c)	$xA + B = \begin{pmatrix} 3x + 3 & 2x + 4 \\ -x - 2 & -3 \end{pmatrix} \Rightarrow A \cdot (xA + B) = \begin{pmatrix} 7x + 5 & 6x + 6 \\ -3x - 3 & -2x - 4 \end{pmatrix}$, pentru orice număr real x	3p
	$\begin{pmatrix} 7x+5 & 6x+6 \\ -3x-3 & -2x-4 \end{pmatrix} = \begin{pmatrix} 2x & 0 \\ 0 & 2x \end{pmatrix}, \text{ de unde obținem } x = -1$	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Model

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

2.a)	$1 \circ 0 = 2 \cdot 1 \cdot 0 - 3(1+0) + 1 =$ $= 0 - 3 + 1 = -2$	3 p
	=0-3+1=-2	2p
b)	$y \circ x = 2yx - 3(y + x) + 1 =$	2 p
	= $2xy - 3(x + y) + 1 = x \circ y$, pentru orice numere reale $x \neq y$, deci legea de compoziție " \circ "	3p
	este comutativă	- 1
c)	$x \circ (-2x) = -4x^2 + 3x + 1$, pentru orice număr real x	2 p
	$-4x^2 + 3x + 1 \ge 0$, de unde obținem $x \in \left[-\frac{1}{4}, 1 \right]$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{3(x-4)-(3x-4)}{(x-4)^2} =$	3p
	$= \frac{3x - 12 - 3x + 4}{\left(x - 4\right)^2} = -\frac{8}{\left(x - 4\right)^2}, \ x \in \left(4, +\infty\right)$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{3x - 4}{x - 4} = \lim_{x \to +\infty} \frac{3 - \frac{4}{x}}{1 - \frac{4}{x}} = 3$	3p
	Dreapta de ecuație $y = 3$ este asimptota orizontală spre $+\infty$ la graficul funcției f	2p
c)	$g'(x) = f''(x) = \frac{16}{(x-4)^3}, x \in (4,+\infty)$	3p
	$g'(x) > 0$, pentru orice $x \in (4, +\infty)$, deci funcția g este crescătoare	2p
2.a)	$\int_{0}^{2} \left(f(x) - (x+3)^{2} \right) dx = \int_{0}^{2} x dx = \frac{x^{2}}{2} \Big _{0}^{2} =$	3p
	$=\frac{4}{2}-0=2$	2p
b)	$\int_{-2}^{0} \frac{1}{f(x) - x} dx = \int_{-2}^{0} \frac{1}{(x+3)^2} dx = \int_{-2}^{0} \frac{(x+3)'}{(x+3)^2} dx = -\frac{1}{x+3} \Big _{-2}^{0} =$	3р
	$=-\frac{1}{3}+1=\frac{2}{3}$	2p
c)	$\int_{0}^{6} \frac{f(x)}{x+3} dx = \int_{0}^{6} \frac{x + (x+3)^{2}}{x+3} dx = \int_{0}^{6} \left(x + 4 - \frac{3}{x+3}\right) dx = \frac{x^{2}}{2} \Big _{0}^{6} + 4x \Big _{0}^{6} - 3\ln(x+3) \Big _{0}^{6} = 42 - 3\ln 3$	3p
	$42-3\ln 3 = 3(a-\ln 3)$, de unde obținem $a = 14$	2p