LINEAR ALGEBRA (MT-121)

CHAPTER 6

EIGENVALUES

AND

EIGENVECTORS

Eigenvalues and Eigenvectors

- Eigenvalues are a fundamental concept in linear algebra with wide-ranging applications in various fields, including
 - Physics
 - Engineering
 - Computer science
 - Economics.
- Eigenvectors are the vectors (non-zero) that do not change the direction when any linear transformation is applied.
 - It changes by only a scalar factor.
 - If A is a linear transformation from a vector space V and **x** is a vector in V, which is not a zero vector, then v is an eigenvector of A if Ax is a scalar multiple of x. That scalar value is called the **eigenvalue**.

Major Applications

Principal Component Analysis (PCA):

• Eigenvalues and eigenvectors are used to reduce the dimensionality of data by transforming it into a new coordinate system where the axes correspond to the directions of maximum variance.

Differential Equations:

• Eigenvalues and eigenvectors play a crucial role in solving systems of ordinary and partial differential equations.

Structural Engineering:

 They are used in analyzing the stability and natural frequencies of structures like bridges and buildings.

Quantum Mechanics:

 Eigenvalues represent the possible measurable values (eigenvalues) of physical observables in quantum systems.

Eigenvalues and Eigenvectors

Given a square matrix A, an eigenvalue λ and its corresponding eigenvector x satisfy the equation:

$$Ax = \lambda x$$

- An eigenvector x is a non-zero vector that remains in the same direction (up to a scalar multiple) after multiplication by the matrix A.
- The corresponding eigenvalue λ represents the factor by which the eigenvector is scaled during this transformation.
- There could be infinitely many Eigenvectors corresponding to one eigenvalue.
- For distinct eigenvalues, the eigenvectors are linearly dependent.

Eigenvalues of a Square Matrix

- Suppose A is an n x n square matrix, then [A λI] is called an Eigen or characteristic matrix
- To find eigenvalues and eigenvectors of a matrix A, we solve the Eigen (or characteristic) equation:

$$\det (A - \lambda I) = 0$$

- Where I is the identity matrix of the same size as A.
- The solutions to this equation are the eigenvalues λ (eigen roots).
- The sum of the eigenvalues of a matrix equals the sum of its diagonal entries (the **trace** of the matrix).
- The product of the eigenvalues of a matrix equals the determinant of the matrix.

Introduction to Eigenvalues

- 1 An eigenvector x lies along the same line as Ax: $Ax = \lambda x$. The eigenvalue is λ .
- 2 If $Ax = \lambda x$ then $A^2x = \lambda^2 x$ and $A^{-1}x = \lambda^{-1}x$ and $(A + cI)x = (\lambda + c)x$: the same x.
- 3 If $Ax = \lambda x$ then $(A-\lambda I)x = 0$ and $A-\lambda I$ is singular and $\det(A-\lambda I) = 0$. n eigenvalues.
- **4** Check λ 's by $\det A = (\lambda_1)(\lambda_2)\cdots(\lambda_n)$ and diagonal sum $a_{11} + a_{22} + \cdots + a_{nn} = \text{sum of } \lambda$'s.
- 5 Projections have $\lambda = 1$ and 0. Reflections have 1 and -1. Rotations have $e^{i\theta}$ and $e^{-i\theta}$: complex!

Finding Eigenvalues and Eigenvectors

Given a 2 x 2 matrix
$$A = \begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix}$$
, find the Eigenvalues and Eigenvectors.

We know that
$$A - \lambda I$$
 is singular; so $|A - \lambda I| = 0$

$$\begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -6 - \lambda & 3 \\ 4 & 5 - \lambda \end{bmatrix} \text{ so } \begin{vmatrix} -6 - \lambda & 3 \\ 4 & 5 - \lambda \end{vmatrix} = 0$$

Now from the characteristic equation $\lambda^2 + \lambda + 42 = 0$, we find the

Eigenvalues as
$$\lambda_1 = 6$$
, $\lambda_2 = -7$

Note that $\lambda_1 + \lambda_2 = \text{sum of diagonal of A, and } \lambda_1 \lambda_2 = |A|$

Now since A
$$x = \lambda x$$
, $\begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix} \rightarrow -6x + 3y = \lambda x$ and $4x + 5y = \lambda y$

When
$$\lambda = 6$$
, $x = \begin{bmatrix} \frac{1}{4} \\ 1 \end{bmatrix}$ and when $\lambda = -7$, $x = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$

Finding Eigenvalues and Eigenvectors

Given a 3 x 3 matrix
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 2 & 3 \\ 3 & 3 & 20 \end{bmatrix}$$
, find Evalues and Evectors.

We know that $A - \lambda I$ is singular; so $|A - \lambda I| = 0$

$$\begin{bmatrix} 2 & 1 & 3 \\ 1 & 2 & 3 \\ 3 & 3 & 20 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 3 \\ 1 & 2 - \lambda & 3 \\ 3 & 3 & 20 - \lambda \end{bmatrix}$$

$$\begin{vmatrix} 2 - \lambda & 1 & 3 \\ 1 & 2 - \lambda & 3 \\ 3 & 3 & 20 - \lambda \end{vmatrix} = 0$$

So from the characteristic equation $\lambda^3 - 24\lambda^2 + 65\lambda - 42 = 0$, we find the Eigenvalues as $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 21$

Now we can easily find Eigenvectors as $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} -3\\-3\\1 \end{bmatrix}$, $\begin{bmatrix} 1/6\\1/6\\1 \end{bmatrix}$

Special Case 1: Singular Matrix

- If **A** matrix is singular, then at least one Eigenvalue $\lambda = 0$.
- In this case, Ax = 0.
- the corresponding eigenvectors are the vectors that lie in the null space (also known as **kernel**) of the matrix.
 - In other words, the eigenvectors associated with $\lambda = 0$ are the vectors that, when multiplied by the matrix, result in the zero vector.
 - These eigenvectors represent directions in which the linear transformation represented by the matrix A collapses to zero.

Special Case 2: Projection Matrix

- What are the Eigenvalues for a projection matrix?
- Is **b** an Eigenvector?
 - No, because Pb is in a different direction.
- What vectors are Eigenvectors of P?
 - Vectors in the same direction.
 - Any x in the plane.
 - Px = x
 - $\lambda = 1$
 - We have a complete plane of Eigenvalues.
 - Px = 0
 - $\lambda = 0$

Special Case 3: Permutation Matrix

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$|A - \lambda I| = 0$$

$$\begin{vmatrix} -\lambda & 1 \\ 1 & -\lambda \end{vmatrix} = 0$$

So from the characteristic equation $\lambda^2 - 1 = 0$, we find the Eigenvalues as $\lambda_1 = 1, \lambda_2 = -1$

So the Eigenvectors are $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Perpendicular to each other.

Adding a scalar multiple of I to A

$$B = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = A + 3I$$

$$|B - \lambda I| = 0$$

$$\begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix} = 0$$

So from the characteristic equation $\lambda^2 - 6\lambda + 8 = 0$, we find the Eigenvalues as $\lambda_1 = 2$, $\lambda_2 = 4$

So the Eigenvectors for $\lambda = 2$ is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and for $\lambda = 4$ is $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Same as in the previous example.

Since B = A + 3I, Eigenvalues are 3 more than previous example.

Special Case 4: Antisymmetric Matrix

$$Q = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 rotates every vector by 90°.

$$|A - \lambda I| = 0$$

$$\begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix} = 0$$

So from the characteristic equation $\lambda^2 + 1 = 0$, we find the Eigenvalues as $\lambda_1 = i$, $\lambda_2 = -i$ (Complex conjugates)

So the Eigenvectors are $\begin{bmatrix} i \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -i \\ 1 \end{bmatrix}$

Check: Sum of Eigenvalues = $\lambda_1 + \lambda_2 = i + (-i) = 0$ (Sum of Diagonal of A) Sum of Eigenvalues = $\lambda_1 \lambda_2 = (i)(-i) = 1$ (determinant of A)

Special Case 5: Triangular Matrix

$$A = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$$
 (Upper Triangular Matrix)

$$\begin{vmatrix} 3 - \lambda & 1 \\ 0 & 3 - \lambda \end{vmatrix} = 0$$

So from the characteristic equation $\lambda^2 - 6\lambda + 9 = 0$, we find the Eigenvalues as $\lambda_1 = 3$, $\lambda_2 = 3$ (Repeated Eigenvalues)

So the Eigenvectors are
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

No second independent Eigenvector.

Eigenvectors with distinct Eigenvalues are Linearly independent, but Eigenvectors with same Eigenvalues are not Linearly independent.

Special Case 6: Orthogonal Matrix

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{vmatrix} -1 - \lambda & 1 \\ 0 & 1 - \lambda \end{vmatrix} = 0$$

So from the characteristic equation $\lambda^2 - 1 = 0$, we find the Eigenvalues as $\lambda_1 = 1, \lambda_2 = -1$

Eigenvalues of an Orthogonal Matrix is $|\lambda| = 1$

Special Case 7: Inverse Matrix

If
$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
, then $\lambda = 2, 4$

Now
$$A^{-1} = \begin{bmatrix} \frac{3}{8} & \frac{-1}{8} \\ \frac{-1}{8} & \frac{3}{8} \end{bmatrix}$$

and
$$\lambda = \frac{1}{2}, \frac{1}{4}$$

If A is a square matrix having λ as its Eigenvalue, then $\lambda^{-1} = \frac{1}{\lambda}$ is an Eigenvalue of A⁻¹.

Special Case 8: Transpose Matrix

If A is a square matrix having λ as its Eigenvalue, then λ is an Eigenvalue of A^T.

Special Case 9: For Matrix powers

$$A = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 0.7 & 0.45 \\ 0.3 & 0.55 \end{bmatrix}, A^{3} = \begin{bmatrix} 0.65 & 0.525 \\ 0.35 & 0.475 \end{bmatrix}$$

$$\lambda (for A) = 1, \frac{1}{2} \text{ and } \lambda (for A^2) = 1, \frac{1}{4} \text{ and } \lambda (for A^3) = 1, \frac{1}{8}$$

If A is a square matrix having λ as its Eigenvalue and $n \ge 0$, then λ^n is an Eigenvalue of Aⁿ.

Special Case 10: For polynomial of Matrix

If A is a square matrix having λ as its Eigenvalue and p(x) is a polynomial in variable x then λ^n is an Eigenvalue of matrix p(A).