ECE0202: Embedded Systems and Interfacing

Lab 4: Keypad Scanning (in assembly)

Due: 3/21/21 at 11:59pm

Objectives

- Understand I/O multiplexing technique
- Be familiar with keypad scanning algorithms
- Implement software debouncing

Pre-Lab Reading

• Chapter 14.9 Keypad Scanning

Deliverables – total 100 points

- (40 points) demonstration of keypad scanning that displays the pressed character on the Tera Term.
- (35 points) Code submission. Code should use software debouncing and be well-written and commented.
- (25 points) Submission of the pre-lab register tables and post-lab questions. Indicate how each group member participates and contributes to the lab at the end of the lab report.
- (10 points extra credit) Display the last pressed 6 characters, in order, on the Tera Term.
- Indicate each group member's Participation and Contribution.

Please submit your code as *.s files and your schematic as a pdf

Keyboard Interface

The 4x4 keypad used in this lab requires 8 pins (4 row pins and 4 column pins). In this lab, the connection between the keypad and the discovery kit is shown in the following table.

Row	R1 → PC0	R2 →PC1	R3 →PC2	R4 →PC3
Column	C1 → PB1	C2 → PB2	C3 → PB3	C4 → PB5

All pins of the input port (C1, C2, C3, and C4) are pulled up to 3V via $2.2k\Omega$ resistors already placed on the Discovery board; however, the output port pins (R1, R2, R3, and R4) will require us to configure pull-up resistors. Within the processor, each GPIO pin can be pulled up via an internal resistor (between 20 and $55k\Omega$), but the internal pull-up current capability is too weak, and therefore an external pull-up resistor is required, as drawn in Fig. 1.

When looking at the front side of the keypad, the pins on the connector from left to right are:

Figure 1- Picture and schematic of the keypad

The maximum current a GPIO pin can source or sink is 20 mA. When calculating the value of external pull-up resistors, make sure that the current does not exceed 20 mA. For example:

$$\frac{3 V}{2.2 k\Omega} = 1.4 mA$$

On the Nucleo board, all pins in the input port (PB1, PB2, PB3, and PB5) are connected to ground via a 100 nF capacitor. A very short delay should be added before reading the input port, as seen later in the software flowchart.

ASCII

In order to write to the Tera Term, you must store the code for an ASCII character into a memory location. In lab 1, the string to be displayed on the Tera Term is stored at a memory location called "str". This can also be used as the memory location that stores the character you display in this lab.

To display a character on the Tera Term, you must store the associated ASCII code in the memory location "str", load the memory address of "str" into r0, and then run the instruction *BL USART2_Write*. The following table gives ASCII codes for many characters. Note that these are in decimal!

ASCII	Character	ASCII	Character	ASCII	Character
va.	Lue	val	ue	val	ue
00	oo ^@	04	3 +	80	6 V
00)1 ^A	04	4,	80	7 W
00	02 ^B	04		80	8 X
00	O3 ^C	04		80	9 Y
00	04 ^D	04	7 /	09	0 Z
00	05 ^E	04	8 0	09	_
00)6 ^F	04		09	•
00	07 ^G	05	0 2	09	-
00	N	05	1 3	09	4 ^
00)9 ^I	05		09	
01	10 ^J	05	3 5	09	6 '
01	11 ^K	054		09	7 а
	12 ^L	05		09	
	13 ^M	05		09	
	14 ^N	05		10	
	15 ^0	15		10	
	16 ^P	05		10	
	17 ^Q	06		10	
	18 ^R	06		10	
	19 ^5	06		10	
	20 °T	06		10	-
02		06		10	
	22 ^V	06		10	
	23 ~₩	06		10	
	24 ^X	06		11	
	25 ^ Y	06		11	
	26 ^Z	06		11	•
	27 ^[07		11	-
	28 ^\	07		11	
	29 ^]	07:		11	
	JU	073		11	
	• +	074		11	
	32 [spac			11	
	33 ! 34 "	07		11	
	, .	07		12	
	35 #	078		12	•
	36 \$	07		12	
	37 %	80		12	-
	38 &	80	•	12	,
	,,,	08:		12	-
	10 (08:		12	
04	•	80		12	7 DEL
04	12 *	08	5 U		

Figure 2 - ASCII character codes. From https://ee.hawaii.edu/~tep/EE160/Book/chap4/subsection2.1.1.1.html

Software Flowchart

The following software flowchart is a modified version of that shown in textbook chapter 14.9, and should be used as a general guide for writing the program used in this lab.

Figure 3 - Software Flowchart for the keypad scanning algorithm

Pre-Lab Register Tables (5 points)

Configure Port C: Pin 0, 1, 2, and 3 as Digital Output

GPIO Mode: Digital Input (00), Digital Output (01), Alternative Function (10), Analog (11)

Register	31	30	29	28	27	56	25	24	23	22	20	9	2 8	17	16		14	13	12	11	10	6	8	7	9	2	4	3	2	1	0
MODER	MODER15[1:0]		MODER14[1:0]	•	MODER13[1:0]		MODER12[1:0]		MODER11[1:0]		MODER10[1:0]		MODER9[1:0]	MODER8[1:0]		MODER 7[1:0]		MODER6[1:0]		MODERS[1:0]	model (9)	MODER4[1:0]		MODED3[1:0]	MODERS[1.0]	MODER 2(1-0)		MODER 1[1-0]		MODER0[1:0]	
MASK																				. , ,	D	Ó	0		١	1	1	1	1	1	
VALUE																					X	X	X	0)	0	١	0	1	0	١

GPIOC Mode Register MASK Value = 0x	FF	(in HEX
GPIOC Mode Register Value = 0x	5 <i>5</i>	(in HEX)

Configure Port B: Pin 1, 2, 3, and 5 as Digital Input

GPIO Mode: Digital Input (00), Digital Output (01), Alternative Function (10), Analog (11)

Register	31	30	29	28	27	26	25	24	23	22	7	3	19	9 1	16	15	14	13	12	11	10	6	8	7	9	2	4	3	2	1	0
MODER	MODER 15[1-0]	- 1	MODER14[1:0]		MODER13[1:0]		MODER12[1:0]		MODEP11[1:0]	-	MODER10[1:0]		MODER9[1:0]		MODER8[1:0]	MODER 7[1:0]	6:13:13:13:13:13:13:13:13:13:13:13:13:13:	MODER6[1:0]	[c.:]c.:	MODEDETA:01	MODERAS[1:0]	MODER4[1-0]	MODEL 1-10	10.170.014.01	MODERS[1:0]	MODER 2(1-0)	- 1	MODER 1[1-0]		MODER0[1:0]	
MASK																٠	0	D	ď	(l	0	0	Į١	1		()	1	0	٥
VALUE																	χ	χ	X	0	0	Х	X	0	0	0	0	0	0	χ	

GPIOB Mode Register MASK Value = 0x	CFC	(in HEX)
GPIOB Mode Register Value = 0x		(in HEX)

Write to Port C: Pins 0, 1, 2, and 3 connect to the rows of the keypad

27 22
26 26
25 25
24 24
23 23
22 22
19 19
18 18
14 14
13 13
12 12
11 11
10 10
6 6
8
7 7
9 9
5 5
3 3

Read from Port B: Pins 1, 2, 3, and 5 connect to the columns of the keypad

/alue ODR
Pin 31
Pin 28
Pin 27
Pin 26
Pin 25
Pin 24
Pin 23
Pin 22
Pin 21
Pin 20
Pin 19
Pin 18
Pin 17
Pin 16
Pin 15
Pin 14
Pin 13
Pin 12
Pin 11
Pin 10
Pin 9
Pin 8
Pin 7
Pin 6
Pin 5
Pin 4
Pin 3
Pin 2
Pin 1
Pin 0

Mask to check if a button from column 1 has been pressed:	Οx <u>ζ</u>	(in HEX
Mask to check if a button from column 2 has been pressed:	0x 4	(in HEX
Mask to check if a button from column 3 has been pressed:	0x8	(in HEX
Mask to check if a button from column 4 has been pressed:	0x20	(in HEX

Post-Lab Questions (20 points)

Please include answers to the following questions with your submission of the pre-lab register contents:

Debouncing waits for input to Stabilize before reading buttons

- 1. How is software debouncing implemented in your program? (3 points)
- 2. What do we mean when we say that the STM32L4's internal pull-up resistors are too weak for this application? (5 points)

 The internal resistors' Lurrent capacities are too by
- 3. When multiple keys are pressed, there could be a short circuit (as shown in the figure). How to configure the output GPIO to avoid this scenario? (7 points)

Set output to open drain & put circuit in HiZ state

4. In the following 2 cases, can the scan algorithm correctly detect all keys pressed? If so, how to modify the flowchart (figure 4) of the scan algorithm. If not, explain the reason. (5 points)

8

Participation and Contribution

Please indicate the participation and contribution for each group member using the following table.

Name	Participation and Contribution

