A Mathematical Model of COVID-19 Transmission

Y. Tang*1, R. Jayatilaka1, R. Patel1, M. Brar1, H. (F). Li1, N.M. Jisrawi1,2, S.R. Valluri1,2

¹Department of Physics & Astronomy, Western University, 1151 Richmond Street, London, Ontario, Canada

²King's University College, Western University, 266 Epworth Avenue, London, Ontario, Canada

WOSU, 2020 NCR, 2020

1918 "Spanish" Influenza

2020 COVID-19

How do we model disease to better understand disease transmission, and better prepare for disease burden?

Foundation of Epidemics

The goal of epidemics is to figure out what causes different health outcomes in different groups of people

Importance of Epidemics

Disease distribution
Source of disease
Cause of disease
Methods of disease control

Epidemiology plays a very crucial aspect in studying the transmission of diseases since it provides a strong foundation

It is an inexact science, but the various branches of study encompass essential aspects of accurately understanding and predicting disease transmission

Discussion - Recent Covid-19 Development

What is the SIR Model?

In an SIR model for contagious diseases, an individual can be categorized as:

Susceptible
$$(S(t))$$
:
 $s(t)=S(t)/N$

Infected (I(t)):
$$i(t)=I(t)/N$$

Removed (R(t)) (dead or cured): r(t) = R(t)/N

along an independent variable, time, in a closed population, where (S(t)), (I(t)) and (R(t)) represent a numerical value over a selected population (N).

Overall, these equations must add to 1: s(t)/N+i(t)/N+r(t)/N=1

The Susceptible Equation:

 $dS/dt = -\beta s(t) i(t)$ Where β represents the infection rate

The Recovered Equation:

 $dR/dt=\gamma i(t)$ Where γ represents the recovery rate

The Infected Equation:

 $dI/dt = -\beta s(t) i(t) - \gamma i(t)$

What is the Lambert W function?

$$W(z)e^{W(z)}=z$$

Quotetab, 2020

Multivalued inverse of function:

$$w \rightarrow we^{w}$$

Implicitly elementary

Wide range of applications

How to apply SIR Model to COVID-19?

Gather data from
Government of Canada's
Health Infobase:

- Susceptible cases
 total population infected population
- Infected cases = confirmed cases
- Removed cases = recovered cases + deceased cases

- Estimate initial values (beta, gamma)
- Numerically solve SIR equation

Utilize LambertW function to identify phase transition point

From the two equations,

$$ds(t)/dt = -k * s(t) * i(t)$$

and

$$dr(t)/dt = l * i(t)$$

We can obtain

$$s(t) = s_0 * e^{-k*r(t)/l}$$

Therefore,

$$dr(t)/dt = l * (N - r(t) - s_0 * e^{-k*r(t)/l})$$

We obtain the Lambert function

$$l * LambertW(-999/1000 * k * e^{-k/l}/l)/k + 1$$

Work in Progress Effect of Social/Physical Distancing

- By limiting social contact in a physical aspect, one can reduce opportunity for disease to spread
- Matrajt and Leung :
 - Social distancing interventions earlier in epidemic delay curve while later interventions flatten curve
 - Epidemic rebounded when interventions ended
- Chen et. al:
 - Interventions could reduce reproduction number of the disease.

Conclusion

- In the SIR model, the asymptotic value of the recovered class can be expressed as a Lambert W function. From the plot of the W function, we can see that the phase transition happens when gamma equals to beta.
- Future steps: include the effect of social distancing into our models

References

- 1 Centers for Disease Control and Prevention. 2019. 1918 Pandemic (H1N1 virus) | Pandemic Influenza (Flu) | CDC. https://www.cdc.gov/flu/pandemic-resources/1918-pandemic-h1n1.html.
- 2 Kermack W. O, McKendrick A. G. 1927. A Contribution to the Mathematical Theory of Epidemics. Laboratory of the Royal College of Physicians, Edinburgh. 115(772): 700-721.
- Nature Communications. 2018. Epidemiology is a science of high importance. Nat. Commun. 9(1): 1.
- 4 Predictions on COVID-19 evolution: Status Worldwide. Nanotexnology.

https://www.nanotexnology.com/index.php/nanotexnology-observes-the-current-situation-worldwide.

- 5 MPHonline. 2020. What is Epidemiology? https://www.mphonline.org/importance-of-epidemiology/.
- 6 Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE. 1996. On the Lambert W function. Adv. Comput. Math. **5**(1): 329.
- Valluri SR, Jeffrey DJ, Corless RM, Valluri SR, Corless RM, Some Applications DJJ", Jeffrey DJ. Some applications of the Lambert W function to physics Some Applications of the Lambert Function to Physics. vol 782000.
- 8 Chen Y-C, Lu P-E, Chang C-S, Liu T-H. A Time-dependent SIR model for COVID-19 with Undetectable Infected Persons.
- 9 Matrajt L, Leung T. 2020. Evaluating the Effectiveness of Social Distancing Interventions to Delay or Flatten the Epidemic Curve of Coronavirus Disease. Emerg. Infect. Dis. **26**(8): .
- Smith D, Moore L. 2004. The SIR Model for Spread of Disease The Differential Equation Model.

https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model.

11 Wang F. 2009. Application of the Lambert W Function to the SIR Epidemic Model. MapleSoft.

https://www.maplesoft.com/applications/view.aspx?SID=7088&view=html.

- Weisstein E.W. Kermack-McKendrick Model. <u>MathWorld</u> A Wolfram Web Resource. https://mathworld.wolfram.com/Kermack-McKendrickModel.html.
- Weisstein E W. SIR Model. MathWorld A Wolfram Web Resource. https://mathworld.wolfram.com/SIRModel.html.
- Yadav A, Deshmukh, P, Roberts K, Jisrawi N. Valluri SR. 2019. An Analytic Study of the Wiedemann-Franz Law and the Thermoelectric Figure of Merit. Journal of Physics Communications 3.