FU08 - Automata and Languages Exercise 1

Nguyen Tuan Dung s1312004

December 3, 2024

Question 1: Answer the following question

Give an example of a relation that is:

- (a) reflexive, transitive, but not symmetric
- (b) reflexive, symmetric, but not transitive
- (c) transitive, symmetric, but not reflexive

Solution:

(a) An example of a relation that is reflexive, transitive, but not symmetric is the relation $R = \{(0,0); (0,1); (0,2); (1,1); (1,2); (2,2)\}$ on the set $A = \{0,1,2\}$. R is the mathematical relation of \leq on the set A.

Reflexive: $\forall a \in A : (a, a) \in R$.

Transitive: $\forall ((a,b) \in R) \land ((b,c) \in R) \text{ also } (a,c) \in R.$

Not symmetric: $(1,2) \in R$ but $(2,1) \notin R$.

(b) An example of a relation that is reflexive, symmetric, but not transitive is the relation $R = \{(0,1); (1,0); (1,2); (2,1); (0,0); (1,1); (2,2)\}$ on the set $A = \{0,1,2\}$.

Reflexive: The relation R contains (0,0); (1,1) and (2,2).

Symmetric: The relation R contains (0,1); (1,0) also (1,2); (2,1).

Not transitive: The relation R contains (0,1) and (1,2) but does not contain (0,2).

(c) An example of a relation that is transitive, symmetric, but not reflexive is the relation $R = \{(0,1); (1,0); (0,0); (1,1)\}$ on the set $A = \{0,1,2\}$.

Transitive: The relation R satisfies (0,1), (1,0), (0,0), etc...

Symmetric: The relation R contains (0,1), (1,0).

Not reflexive: The relation R lacks (2,2) to satisfy the condition of reflexitivity.

Question 2: Answer the following question

Consider the relation between two sets defined by:

 $S_1 \equiv S_2$ if and only if $|S_1| = |S_2|$.

Show that this is an equivalence relation.

Solution:

To show that a relation is equivalence, we show that it is both reflexive, symmetric and transitive.

Reflexive: A set is equivalence to itself (i.e $S_1 \equiv S_1 \Leftrightarrow |S_1| = |S_1|$).

Symmetric: Since equality is an symmetric relation, if $|S_1| = |S_2| \Leftrightarrow |S_2| = |S_1|$.

Transitive: Say, $(|S_1| = |S_2|) \wedge (|S_2| = |S_3|)$, since equality is a transitive relation, hence $|S_1| = |S_3|$.

From the above proof, we see that the relation mentioned is Reflexive, Symmetric, Transitive, hence satisfies the condition of being an equivalence relation.

Question 3: Answer the following question

Let R be an equivalence relation on a set A.

For each $a \in A$ the equivalence class of a is denoted by $[a] = \{b : aRb\}$. Show that for all $a, b \in A$, either [a] = [b] or $[a] \cap [b] = \emptyset$.

Solution:

Say, $[a] \cap [b] \neq \emptyset$ then $\exists k \in A$ with $k \in ([a] \cap [b])$. Hence, $((a,k) \in R) \wedge ((b,k) \in R)$. Since R is an equivalence relation as mentioned $(k,b) \in R$, this implies that $(a,b) \in R$ (i.e transitivity).

- We know that $(a,b) \in R$. Let an arbitrary element $x \in [b] \implies (b,x) \in R$. Since R is an equivalence relation, $(a,x) \in R$ (i.e transitivity). According to definition $x \in [a]$. And since $x \in [b]$, then $[b] \subseteq [a]$. (1)
- Again, $(b, a) \in R$ (symmetric). Let an arbitrary element $y \in [a] \implies (a, y) \in R$. Since R is an equivalence relation, $(b, y) \in R$ (i.e transitivity). According to definition $y \in [b]$. And since $y \in [a]$, then $[a] \subseteq [b]$. (2) From (1) (2) $\implies [a] = [b] \ \forall (a, b) \in R$ (3).

Hence, we know that $\forall (a,b) \in R, [a] = [b]$ when $\exists x \in [a] \cap [b]$ (which means [a], [b] are joint sets). (4)

(3), (4)
$$\Longrightarrow \forall (a,b) \in R$$

$$\begin{bmatrix} [a] = [b] \\ [a] \cap [b] = \emptyset \end{bmatrix}$$