Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа Р3130 К работе допущен

Студент Анисова Т. С. Работа выполнена

Преподаватель Соловьев Д. П. Отчет принят

Рабочий протокол и отчет по лабораторной работе №4.10

ПОЛЯРИЗАЦИЯ. ЗАКОНЫ МАЛЮСА И БРЮСТЕРА

1. Цель работы

Исследование характера поляризации лазерного излучения и экспериментальная проверка законов Малюса и Брюстера.

2. Задачи, решаемые при выполнении работы

- получить зависимости интенсивности луча, прошедшего через поляризатор/анализатор/пластинку, от угла поворота
- найти степень линейной поляризации белого света, прошедшего через поляризатор
- получить степень поляризации белого света после прохождения его через пластинку

3. Объект исследования

Световой луч

4. Метод экспериментального исследования

Многократные измерения

5. Рабочие формулы и исходные данные

$$P = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$
 $I_{\text{OTH}} = \frac{I}{I_{max}}$ $k_{\parallel} = \frac{I_{max}}{I_{\Pi}}$ и $k_{\perp} = \frac{I_{min}}{I_{\Pi}}$

$$tg\alpha_{\rm Ep} = \frac{n_2}{n_1} = n_{21} P = \frac{(n^2 - 1)^2}{2(n^2 + 1)^2 - (n^2 - 1)^2}$$

6. Измерительные приборы

№ п/п	Наименование	Тип прибора
1	МУК-ОВ	Модульный учебный комплекс

7. Схема установки

- Основание 10, на котором установлены и закреплены электронный блок 11, стойка 8, служащая вертикальной оптической скамьей и блок осветителей 1
- Турель 2
- Защитный экран 3
- Поляризатор 4
- Анализатор 7
- Блок 6 для измерения угла Брюстера состоит из стеклянной пластинки с поворотным устройством и отсчетной вертикальной шкалой 9, закрепленной на стойке 8
- 12 индикатор измерений блока амперметра-вольтметра
- 13 индикатор режима измерений блока амперметра-вольтметра
- 14 индикаторы включенного источника
- 15 регулятор накала белого осветителя
- 16 кнопка переключения режима измерений блока амперметра-вольтметра
- 17 кнопка включения лазера
- 18 ручка установки относительной интенсивности «J/J0»
- 19 кнопка переключения фотоприемников
- 20 индикатор относительной интенсивности излучения
- 21 индикаторы включенного фотоприемника
- 22 кнопка «Сеть»
- 23 окно фотоприемников белого осветителя
- 24 окно фотоприемника лазерного излучения
- 25 кнопка включения лампы

8. Упражнение 1. Проверка закона Малюса

Для лазерного излучения:

$$I_0 = I_{\Pi} = 1,535 \text{ BT/m}^2$$

	<u> </u>					
φ ,°	<i>I,</i> Вт/м²	I omH	$\cos^2(\varphi - \varphi_m)$			
150	0,513	0,7076	0,7500			
140	0,398	0,5490	0,5868			
130	0,281	0,3876	0,4132			
120	0,154	0,2124	0,2500			
110	0,078	0,1076	0,1170			
100	0,020	0,0276	0,0302			
90 0,003		0,0041	0,0000			
80	0,025	0,0345	0,0302			
70	0,085	0,1172	0,1170			
60	0,182	0,2510	0,2500			
50	50 0,299		0,4132			
40	0,421	0,5807	0,5868			
30	0,547	0,7545	0,7500			
20	0,644	0,8883	0,8830			
10	0,677	0,9338	0,9698			
0	0 0,725		1,0000			

φ ,°	I, Вт/м²	I отн	$\cos^2(\varphi - \varphi_m)$	
-10	0,671	0,9255	0,9698	
-20	0,650	0,8966	0,8830	
-30	0,553	0,7628	0,7500	
-40	0,438	0,6041	0,5868	
-50	0,307	0,4234	0,4132	
-60	0,187	0,2579	0,2500	
-70	0,089	0,1228	0,1170	
-80	0,026	0,0359	0,0302	
-90	0,004	0,0055	0,000	
-100	0,024	0,0331	0,0302	
-110	0,080	0,1103	0,1170	
-120	0,157	0,2166	0,2500	
-130	0,267	0,3683	0,4132	
-140	0,380	0,5241	0,5868	
-150	0,482	0,6648	0,7500	
I _{ср} , Вт/м²		0,302		

$$P = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{(0.725 - 0.003) \text{ BT/m}^2}{(0.725 + 0.003) \text{ BT/m}^2} = 0.9918$$

$$\varphi_m = 0^{\circ}$$

$$k_{\parallel} = \frac{I_{max}}{I_{\Pi}} = \frac{0.725 \text{ BT/m}^2}{1.535 \text{ BT/m}^2} = 0.4723$$

$$k_{\perp} = \frac{I_{min}}{I_{\Pi}} = \frac{0,003 \text{ BT/M}^2}{1,535 \text{ BT/M}^2} = 0,002$$

Пример расчетов для ϕ = 150 $^{\circ}$:

$$I_{\text{отн}} = \frac{I}{I_{max}} = \frac{0.513 \text{ BT/m}^2}{0.725 \text{ BT/m}^2} = 0.7076$$

 $\cos^2(\varphi - \varphi_m) = \cos^2(150^\circ - 0^\circ) = 0.75$

Для излучения белого источника:

$${I_0}' = 1{,}550~{
m Bt/m^2}$$

$$I' = 0.414 \text{ BT/m}^2$$

φ ,°	I, Bm/м²	$\frac{I}{I'}$		
150	0,169	0,40821		
140	0,145	0,35024		
130	0,121	0,29227		
120	0,096	0,23188		
110	0,074	0,17874		
100	0,057	0,13768		
90	0,05	0,12077		
80	0,054	0,13043		
70	0,065	0,15700		
60	0,085	0,20531		
50	0,109	0,26329		
40	0,131	0,31643		
30	0,151	0,36473		
20	0,17	0,41063		
10	0,194	0,46860		
0	0,2	0,48309		

$$P = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{(0,200 - 0,049) \text{ BT/m}^2}{(0,200 + 0,049) \text{ BT/m}^2} = 0,6064$$

Пример расчетов для ϕ = 150 $^{\circ}$:

$$\frac{I}{I'} = \frac{0.169 \text{ BT/m}^2}{0.414 \text{ BT/m}^2} = 0.40821$$

φ ,°	I, Bm/м²	$\frac{I}{I'}$		
-10	0,195	0,47101		
-20	0,184	0,44444		
-30	0,179	0,43237		
-40	0,153	0,36957		
-50	0,125	0,30193		
-60	0,099	0,23913		
-70	0,072	0,17391		
-80	0,055	0,13285		
-90	0,049	0,11836		
-100	0,052	0,12560		
-110	0,066	0,15942		
-120	0,088	0,21256		
-130	0,112	0,27053		
-140	0,14	0,33816		
-150	0,162	0,39130		
I _{cp} , Bm/м²	0,116			

Результаты упражнения 1

Вид поляризации излучения – плоская (линейная).

Полученные зависимости $I_{\text{отн}}$ от угла ϕ для лазерного излучения и $cos^2(\phi-\phi_m)$ от угла ϕ имеют практически совпадающие графики, а график зависимости I/I' для белого света от угла ϕ имеет приблизительно такую же форму, но меньшие размеры. Можно заключить, что интенсивность света пропорциональна квадрату модуля светового вектора. Таким образом, мы экспериментально подтвердили справедливость закона Малюса.

9. Упражнение 2. Проверка закона Брюстера

$$\alpha_{\rm Bp} = 59^{\circ}$$

φ , °	30	32	34	36	38	40	42	44	46
<i>I, Вт/м</i> ²	0,508	0,516	0,521	0,527	0,533	0,537	0,539	0,540	0,541

φ , °	48	50	52	54	56	58	60	62	64
I, Bm/м²	0,544	0,543	0,540	0,538	0,536	0,531	0,523	0,512	0,504

$$I_0 = 0.047, I_{90} = 0.088$$

$$I_{\text{Make}} = 0.362, I_{\text{MWH}} = 0.286$$

$$n_2 = tg \, \alpha_{\rm Bp} \times n_1 = tg 59^{\circ} \times 1,003 = 1,6693$$

$$P = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{(0.544 - 0.504) \text{ BT/m}^2}{(0.544 + 0.504) \text{ BT/m}^2} = 0.0382$$

$$P = \frac{(n^2 - 1)^2}{2(n^2 + 1)^2 - (n^2 - 1)^2} = \frac{(1,6643^2 - 1)^2}{2(1,6643^2 + 1)^2 - (1,6643^2 - 1)^2} = \frac{3,1326}{25,2916} = 0,1239$$

$$P = \frac{I_{\text{MAKC}} - I_{\text{MUH}}}{I_{\text{MAKC}} + I_{\text{MUH}}} = \frac{(0.362 - 0.286) \text{ BT/M}^2}{(0.362 + 0.286) \text{ BT/M}^2} = 0.1173$$

Результаты упражнения 2

Полученные значения несколько отличаются от табличных, что можно объяснить неточностью при снятии замеров, особенно при работе с лазерным излучением. Тем не менее, можно установить, что при угле падения, равном углу Брюстера, степень поляризации достигает максимального значения. Это видно при сравнении значений, полученных с помощью формулы и с помощью обработки результатов измерений. Таким образом, мы проверили справедливость закона Брюстера на практике.

Окончательные результаты

Выполнив два упражнения, мы экспериментальным образом подтвердили, что законы Малюса и Брюстера справедливы.