

理论物理系列学术报告:第6期

Geometric Structure of Carbon-12 and Beryllium Isotopes Using Nuclear Lattice Effective Field Theory

Shihang Shen

Beihang University

Collaborators: Serdar Elhatisari, Timo A. Lähde, Dean Lee, Bing-Nan Lu, and Ulf-G. Meißner

Carbon-12

Life element: 12C

F. Hoyle, Astrophys. J. Suppl. Ser. 1, 121 (1954)

https://www.quantamagazine.org/the-physics-behind-the-elements-of-life-20121204/

Low-Lying Levels in Carbon-12

- Rotation of equilateral triangle: 0^+ , 2^+ , 3^- , 4^\pm , and 5^- states (ground state band) R. Bijker and F. Iachello, Phys. Rev. C, 61, 067305 (2000)
- Shape of Hoyle state and Hoyle band
 M. Freer and H. O. U. Fynbo, Prog. Part. Nucl. Phys., 78, 1–23 (2014)
- Breathing modes of Hoyle state and its rotational excitations
 K. C. W. Li et al., Phys. Lett. B, 827, 136928 (2022); Z. Cheng et al. arXiv: 2406.15060

•

Structure and Shape

Hoyle State, debate M. Freer and H.O.U. Fynbo., Prog. Part. Nucl. Phys. 78, 1 (2014)

- Linear arrangement of 3α -particles H. Morinaga, Phys. Rev. 101, 254 (1956)
- Vibrational excitation, triangular symmetry R. Bijker and F. Iachello, PRC, 61, 067305 (2000)
- Bose Einstein Condensate of α-particles A. Tohsaki, et al., Phys. Rev. Lett. 87, 192501 (2001)
- Cluster-gas close to an equilateral triangle Y. Kanada-En'yo, Prog. Theor. Phys. 117, 655 (2007)
- Superposition of 3α arrangements M. Chernykh, et al., Phys. Rev. Lett., 98, 032501 (2007)

Ab initio Study

Hoyle state is a challenge for ab initio method

No-core shell model

P. Choudhary et al., Phys. Rev. C, 107, 014309 (2023)

Ab initio Study

 First successful ab initio description: nuclear lattice effective field theory (NLEFT)

- Green's function Monte Carlo
- J. Carlson, et al., Rev. Mod. Phys., 87, 1067 (2015)

- Monte Carlo Shell Model
- T. Otsuka et al., Nature Commun., 13, 2234 (2022)

Study low-lying structure of ¹²C in NLEFT

In this work

- Make use of SU(4) symmetry to alleviate sign problem
- To give a full description of all the low-lying states, both cluster and shell-model type
- To propose new method to study the geometric structure (using pinhole algorithm)
- To propose geometric description to quantify different excitation mode

Nuclear lattice effective field theory (NLEFT)

	2N force	3N force	4N force
LO	X - 	—	—
NLO	XHMMI		_
N^2LO	취석	 	
N³LO	X 中		

Lattice simulations for few- and many-body systems

Department of Physics. North Corolina State University: Roleigh, NC 27000, United States

- 160, E. Epelbaum et al., PRL 112, 102501 (2014)
- α-α scattering, S. Elhatisari et al., Nature 528, 111 (2015)
- thermodynamics, B.-N. Lu et al., PRL 125, 192502 (2020)
-

Starting from an initial many-body wave function:

$$|\Phi_0\rangle = \mathscr{A}[\phi_1(\mathbf{r}_1)\phi_2(\mathbf{r}_2)\dots\phi_A(\mathbf{r}_A)]$$

$$\phi(\mathbf{r}) = \exp\left(-(\mathbf{r} - \mathbf{r}_0)^2 / 2w^2\right)$$

> Euclidean time projection with transfer matrix:

$$M =: \exp(-\alpha_t H): \quad \alpha_t = a_t/a$$

with H the many-body Hamiltonian, a_t and a the temporal and spatial lattice spacing.

Wigner SU(4) symmetric interaction (spin and isospin independent):

S. Elhatisari et al., PRL 119, 222505 (2017)

$$V = \frac{C_2}{2!} \sum_{\mathbf{n}} \tilde{\rho}(\mathbf{n})^2 + \frac{C_3}{3!} \sum_{\mathbf{n}} \tilde{\rho}(\mathbf{n})^3,$$

$$\tilde{\rho}(\mathbf{n}) = \sum_{i=1}^{A} \tilde{a}_{i}^{\dagger}(\mathbf{n}) \tilde{a}_{i}(\mathbf{n}) + s_{L} \sum_{|\mathbf{n}'-\mathbf{n}|=1} \sum_{i=1}^{A} \tilde{a}_{i}^{\dagger}(\mathbf{n}') \tilde{a}_{i}(\mathbf{n}'), \qquad \qquad \tilde{a}_{i}(\mathbf{n}) = a_{i}(\mathbf{n}) + s_{NL} \sum_{|\mathbf{n}'-\mathbf{n}|=1} a_{i}(\mathbf{n}').$$

- Sign problem is largely suppressed J.W. Chen, D. Lee, T. Schäfer, PRL, 93, 242302 (2004)
- Ground state properties of light and medium mass nuclei, and neutron matter can be well reproduced B.-N. Luu et al., PLB 797 (2019) 134863

Higher order (e.g. N3LO) can be built on with perturbation

Auxilary field with Monte-Carlo sampling

$$\exp\left(-\frac{C\alpha_t}{2}\rho^2\right) := \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} ds : \exp\left(-\frac{1}{2}s^2 + \sqrt{-C\alpha_t}s\rho\right) :$$

Final states are a superposition of millions of configurations (Slater determinants)

$$|\Phi_{L_t}
angle = \sum_{s_i} |\Phi_{s_i,L_t}
angle$$

$$|\Phi_{s_i,L_t}\rangle = M_{s_i}^{L_t}|\Phi_0\rangle = \mathscr{A}[\phi_{s_i,1}(\mathbf{r}_1)\phi_{s_i,2}(\mathbf{r}_2)\dots\phi_{s_i,A}(\mathbf{r}_A)]$$

Pinhole algorithm

S. Elhatisari et al., PRL 119, 222505 (2017)

A time slice is inserted to sample the positions and spin-isospin indices in the middle time step.

 $r_1, r_2, ..., r_A$

Those millions of A-body positions contains all correlation information and provides a powerful tool to study the structure and geometry of nuclei

Numerical Details

Lattice length L = 14.8 fm with spacing a = 1.64 fm ($\pi/a \sim 378$ MeV) Temporal lattice spacing a_t = 0.55 fm/c.

Fitted results for SU(4) interaction

C_2 [MeV ⁻²]	C_3 [MeV ⁻⁵]	S_{L}	S _{NL}
-2.15×10 ⁻⁵	6.17×10 ⁻¹²	0.08	0.05

	NLEFT	Exp.
E(⁴ He) [MeV]	-28.1 (1)	-28.3
E(12C) [MeV]	-91.6 (1)	-92.2
r _c (12C) [fm]	2.52 (1)	2.47 (2)

And to some extent transition properties.

Calculation of the Hoyle State

Hoyle state

Angular momentum projection: SO(3) group reducted to cubic group O

-70

-75

1	ı

J	irrepresentation
0	A_1
1	T_1
2	E + T ₂
3	$A_2 + T_1 + T_2$
4	$A_1 + E + T_1 + T_2$

Shell-Model States Used as Initial Wave

 $t \text{ (MeV}^{-1})$

Low-lying Spectrum

Spectrum of ¹²C calculated by NLEFT using N2LO and SU(4) interaction in comparison with experimental data.

Electromagnetic Properties

ightharpoonup Quadrupole moment and transition rates of 12 C calculated by NLEFT, comparing with other theoretical calculations and Experiments. Units for Q and M(E0) are e fm² and for B(E2) e^2 fm⁴.

	NLEFT	FMD	α cluster	NCSM	GCM	Exp.
$Q(2_1^+)$	6.8(3)(1.2)	2002	_	6.3(3)		8.1(2.3)
$Q(2_{2}^{+})$	-35(1)(1)	_	_	-	_	<u> </u>
$M(E0, 0_1^+ \to 0_2^+)$	4.8(3)	6.5	6.5	_	6.2	5.4(2)
$M(E0,0_1^+ \to 0_3^+)$	0.4(3)		-	<u></u>	3.6	6455 9X
$M(E0, 0_2^+ \rightarrow 0_3^+)$	7.4(4)		-	-	47.0	<u> </u>
$B(E2,2_1^+ \to 0_1^+)$	11.4(1)(4.3)	8.7	9.2	8.7(9)		7.9(4)
$B(E2,2_1^+ \to 0_2^+)$	2.4(2)(7)	3.8	0.8			2.6(4)

Future Experiments can be used as a test.

fermion molecular dynamics (FMD) M. Chernykh et al., PRL 98, 032501 (2007)

α cluster M. Chernykh et al., PRL 98, 032501 (2007)

BEC Y. Funaki et al., PRC 67, 051306 (2003); EPJA 24, 321 (2005)

in-medium no-core shell model (NCSM) A. D'Alessio et al., PRC 102, 011302 (2020)

generator coordinate method (GCM) B. Zhou, PRC 94, 044319 (2016)

Exp. F. Ajzenberg-Selove, NPA 506, 1 (1990); J. Saiz Lomas, PhD thesis, University of York, UK (2021)

Density Profiles

Charge density distributions (left) and form factors (right) of ground state, Hoyle state, and transitions between them.

Exp. M. Chernykh et al., PRL 105, 022501 (2010) I. Sick and J. S. Mccarthy, NPA 150, 631 (1970)

Investigation of the Geometry

- \triangleright Define (α) clusters
 - Identify 3 spin-up protons;
 - Find the closest possible of the other 3 types of particles (spin-down proton, spin-up neutron, spin-down neutron);

3. Calculate the rms radius of α cluster defined this way and compare with 4He calculation.

	12C, 0_1+	12C, 0_2+	4He
rms α cluster [fm]	1.65	1.71	1.63

Distribution of Angles

Probability distribution for the two inner angles of the triangle formed by the three α clusters.

Intrinsic Density Distribution

Alignment of configurations:

For equilateral triangle type:

- 1. Align shortest principal axis to x
- 2. Rotate 1 α to y = 0 (positive z), and (randomly) +/- 120°.

For obtuse triangle type:

- 1. Align longest principal axis to z;
- 2. Rotate central α to x = 0 (positive y).

Web figure from: https://en.wikipedia.org/wiki/Spheroid

Cluster Formation

Polynomial Density distribution of 12 C ground state using (a-d) harmonic oscillator or (e-h) cluster wave function as initial states, with Euclidean projection time ranging from t = 0 to 0.2 MeV⁻¹.

confirms the finding in Ref. E. Epelbaum et al., PRL 109, 252501 (2012)

Cluster Excitation? Single-Particle Excitation?

Band Structure

Breathing Mode of Hoyle State

3D density at y = 0 plane

Angle distribution

Distance distribution

Geometry Information in the Low-Lying Spectrum

- ➤ To summarize the geometry properties of each states in the low-lying spectrum of ¹²C calculated by NLEFT:
 - 2 types of shape: equilateral or large angle obtuse triangle.
 - α cluster is well maintained (solid triangles) or diminished (dashed ones).

Recent Advance in NLEFT

Article

Wavefunction matching for solving quantum many-body problems

Nature 630 (2024) 59

https://doi.org/10.1038/s41586-024-07422-z Received: 23 November 2022

2.0

1.5

2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 24 28 32 36 40 50 58

A

26

Recent Advance in Nuclear Shape Imaging

Beryllium isotopes

Nucleosynthesis in ⁷Be

alpha decay in 8 Be, $8.19 \times 10^{-17} \text{ s}$

Molecule-Like Structure in ¹⁰Be

P. Li, et al., Phys. Rev. Lett. **131**, 212501 (2023)

M. Hernanz., Nature **518**, 307 (2015)

One neutron halo in ¹¹Be

W. Nörtershäuser, et al., Phys. Rev. Lett. **102**, 062503 (2009)

Breakdown of N = 8 shell in ¹²Be

A. Krieger, et al., Phys. Rev. Lett. 108, 142501 (2012)

Theoretical Studies

- Cluster models
 - Antisymmetrized Molecular Dynamics (AMD)
 Y. Kanada-En'yo, Phys. Rev. C 91 (2015)
 - Fermionic Molecular Dynamics (FMD) A. Krieger, et al., Phys. Rev. Lett. 108, 142501 (2012)
 - molecular-orbital W. Von Oertzen, Z. Phys. A 354 (1996) 37; N. Itagaki and S. Okabe, Phys. Rev. C 61 (2000), 044306
 - Tohsaki–Horiuchi–Schuck–Röpke (THSR) M. Lyu, et al., Eur. Phys. J. A 57 (2021), 51

(a) π (b) σ M. Kimura, T. Suhara and Y. Kanada-En'yo, EPJA 52 (2016), 373

Density functional theory

J. Geng, P. W. Zhao, Y. F. Niu and W. H. Long, Phys. Lett. B 858 (2024), 139036 J. P. Ebran, E. Khan, T. Niksic and D. Vretenar, Phys. Rev. C 90 (2014), 054329

- Ab initio methods
 - no-core shell model (NCSM) A. Calci, et al., PRL 117 (2016), 242501; P. Navratil, et al., PRL 99 (2007), 042501
 - Green's function Monte Carlo E. McCutchan, et al., PRL 103 (2009), 192501; R. Wiringa, et al., PRC 62 (2000), 014001
 - Monte Carlo shell model (MCSM) T. Yoshida, et al., FBS 54 (2013), 1465; L. Liu, et al., PRC 86 (2012), 014302
 - resonating group K. Kravvaris and A. Volya, Phys. Rev. Lett. 119 (2017) 062501

A systematic ab initio study is still lacking

Energy spectrum and radii

SS, S. Elhatisari, D. Lee, U.-G. Meißner, Z. Ren, arXiv:2411.14935

2.8

2.7

Be

Nuclear Shape Imaging from ab initio Study

α-cluster-view intrinsic density

 \triangleright Group 2 α cluster and align them to z-axis

SS, S. Elhatisari, D. Lee, U.-G. Meißner, Z. Ren, arXiv:2411.14935

Comparing with principal-axis alignment view:

$$\mathcal{M} = \sum_{i=1}^{A} \begin{pmatrix} x_i^2 & x_i y_i & x_i z_i \\ y_i x_i & y_i^2 & y_i z_i \\ z_i x_i & z_i y_i & z_i^2 \end{pmatrix}$$

α-cluster-view intrinsic density

Density distribution and Halo structure

> Charge density of 9Be (left) and matter density of 9Be and 11Be (right)

➤ Intrinsic density in ¹¹Be

E(Exp.): -65.2 MeV, -65.5 MeV

Summary

☐ Nuclear Lattice Effective Field Theory (NLEFT) provided an unified ab inition framework to study various nuclear structure phenomena. ☐ Low-lying spectrum of ¹²C and p-shell Beryllium isotopes have been studied by NLEFT, the agreement with experiment is impressive, not only energies, but also electromagnetic transitions and density profiles. ☐ A tomographic scan of the three-dimensional geometry of the nuclear states has been introduced. The Hoyle state and its rotational excitations, as already stated in E. Epelbaum et al., PRL 109, 252501 (2012), are found to be an obtuse triangle with large angle. Geometric structure has been discussed, characteristics of cluster structure and single-particle structure are shown. Prominent two-center cluster structures, the emergence of one-neutron halo, and complex nuclear molecular dynamics in Beryllium isotopes are revealed.

APPENDIX

4He: Puzzle for Nuclear Forces?

PHYSICAL REVIEW LETTERS 130, 152502 (2023)

Editors' Suggestion

Featured in Physics

Measurement of the α-Particle Monopole Transition Form Factor Challenges Theory: A Low-Energy Puzzle for Nuclear Forces?

Probing the Helium Nucleus beyond the Ground State

Evgeny Epelbaum

Faculty of Physics and Astronomy, Ruhr University Bochum, Bochum, Germany

April 10, 2023 • Physics 16, 58

A new electron-scattering experiment challenges our understanding of the first excited state of the helium nucleus.

Energies and Threshold

> SU(4) interaction from B.-N.

B.-N. Luu et al., PLB 797 (2019) 134863

L [fm]	$E(0_1^+)$ [MeV]	$E(0_2^+)$ [MeV]	$\Delta E [{ m MeV}]$
13.2	-28.32(3)	-8.37(14)	0.28(14)
14.5	-28.30(3)	-8.02(14)	0.42(14)
15.7	-28.30(3)	-7.96(9)	0.40(9)

U.-G. Meißner, SS, S. Elhatisari, D. Lee, PRL 132, 062501 (2024)

	NLEFT	Exp.
4He (0 ₁ +)	-28.30(3)	-28.30
4He (0 ₂ +)	-7.96(9)	-8.09
3H	-8.36	-8.48
3He	-7.65	-7.72
$\Delta E = 4He$ (0 ₂ +) - 3H	0.40(9)	0.39

N. Michel, W. Nazarewicz, and M. Płoszajczak, PRL 131, 242502 (2023)

The explicit reproduction of particleemission thresholds is crucial for the theoretical understanding of the 0_2+ state.

Transition form factor

$$\frac{Z|\mathcal{F}_{\rm M0^+}(q^2)|}{q^2} = \frac{\langle r^2 \rangle_{\rm tr}}{6} \left[1 - \frac{q^2}{20} \mathcal{R}^2_{\rm tr} + \mathcal{O}(q^4) \right]$$

	<r²></r²>	R
Exp.	1.53 (5)	4.56 (15)
NLEFT	1.49 (1)	4.00 (4)
Bacca et al.	1.83 (1)	3.97 (5)

-		SU(4)	N^3LO	Exp.
⁷ Be	$E2, \frac{3}{2}^- \to \frac{1}{2}^-$	16.0(2)	15.2(5)	26(6)(3) [15]
⁹ Be	$Q(\frac{3}{2}^-)$	7.3(1)	7.4(1.0)	5.29(4) [25]
	$E1, \frac{1}{2}^+ \to \frac{3}{2}^-$	0.131(3)	0.060(15)	0.136(2) [26]
	$E1, \frac{5}{2}^+ \to \frac{3}{2}^-$	0.045(14)	0.049(5)	0.010(8) [9]
	$E2, \frac{5}{2}^- \to \frac{3}{2}^-$	35.7(1.8)	27.8(1.9)	27.1(2.0) [9]
	$E2, \frac{7}{2}^- \to \frac{3}{2}^-$	11.6(2.5)	5.3(8)	9.5(4.1) [9]
¹⁰ Be	$E1, 3_1^- \to 2_1^+$	0.026(2)	0.004(3)	0.009(1) [9]
	$E2, 2_1^+ \to 0_1^+$	10.6(4)	8.5(9)	9.2(3) [31]
¹¹ Be	$E1, \frac{1}{2}^- \to \frac{1}{2}^+$	0.023(3)	0.038(3)	0.102(2) [33]
¹² Be	$E1, 0_1^+ \to 1_1^-$	0.049(2)	0.056(26)	0.051(13) [39]
	$E2, 2_1^+ \to 0_1^+$	7.8(1.1)	9.0(3.1)	14.2(1.0)(2.0) [40]

	C_0	$C_{ m GIR,0}$	$C_{\mathrm{GIR},1}$	$C_{\mathrm{GIR},2}$	$s_{\rm NL}$	$s_{\rm L}$
SU(4)	-0.17395	-0.07001	0.01417	-0.00125	0.1	0.06
_	C ₀	$C_{\mathrm{GIR},0}$	$C_{\mathrm{GIR},1}$	$C_{\mathrm{GIR,2}}$		
Q^0 , 1S_0	0.44365	0.07410	-0.00980	-0.00128		
Q^0 , 3S_1	-0.25149	-0.04505	0.01092	-0.00170		
Q^2 , 1S_0	0.55249	0.02521	0.01665	-0.01042		
Q^2 , 3S_1	-0.01090	1.15209	-0.64469	0.22634		
Q^2 , ${}^1S_0^{0,1}$	0.03241	-0.03062	0.00780	-0.00135		
Q^2 , ${}^3S_1^{0,1}$	0.02738	0.18172	-0.09556	0.03264		
Q^2 , ${}^3S_1 - {}^3D_1$	-0.49342	0.09280	0.03828	-0.02687		
Q^2 , 1P_1	0.96569	0.95481	-0.21826	0.02956		
Q^2 , 3P_0	-0.19448	-0.07901	0.01729	-0.00206		
Q^2 , 3P_1	0.92671	0.91735	-0.20962	0.02836		
Q^2 , 3P_2	-0.04801	-0.03012	0.00730	-0.00114		
	$ c_D $	c_E	$s_{ m L}$			
3N	-0.77527	0.67901	0.2			

a = 1.97 fm $\pi/a \sim 314 \text{ MeV}$

a = 1.64 fm $\pi/a \sim 378 \text{ MeV}$

a = 1.32 fm $\pi/a \sim 469 \text{ MeV}$

a = 0.99 fm $\pi/a \sim 626 \text{ MeV}$

Shell-Model States as Initial Wave

α cluster structure is less clear due to single-particle excitation, especially when excited to the next shell.

48

Shell-Model States as Initial Wave

	V1	V2	V3
$s_{ m NL}$	0.05	0.1	0.2
$s_{ m L}$	0.08	0.071	0.06
C_2 [MeV $^{-2}$]	-2.15×10^{-5}	-1.11×10^{-5}	-3.47×10^{-6}
C_3 [MeV $^{-5}$]	6.17×10^{-12}	-5.92×10^{-13}	-1.46×10^{-12}
$E_{^4\mathrm{He}}$ [MeV]	-28.1(1)	-28.3(1)	-27.3(1)
$E_{^{12}\mathrm{C}}$ [MeV]	-91.6(1)	-91.8(1)	-90.7(2)
$r_{c,~^{12}\mathrm{C}}$ [fm]	2.52(1)	2.55(1)	2.58(1)
$E_{\rm Hoyle}$ [MeV]	-84.2(1)	-84.8(5)	-83.2(11)
$E_{^{3}\mathrm{H}}$ [MeV]	-10.1(1)	-8.1(1)	-5.1(1)
$r_{c, ^4\mathrm{He}}$ [fm]	1.63(1)	1.63(1)	1.64(1)
$Q(2_1^+) [e \text{fm}^2]$	6.9(3)	7.2(4)	6.1(8)
$M(E0, 0_1^+ \to 0_2^+) [e \text{fm}^2]$	4.3(3)	2.9(3)	5.9(7)
$B(E2, 2_1^+ \to 0_1^+) [e^2 \text{fm}^4]$	10.3(2)	10.7(3)	12.0(5)
$B(E2, 2_1^+ \to 0_2^+) [e^2 \text{fm}^4]$	1.8(1)	3.6(2)	4.1(5)

S. Shen, T. A. Lähde, D. Lee, U.-G. Meißner, EPJA 57, 276 (2021)