UNCLASSIFIED AD NUMBER AD119103 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 21 NOV 1956. Other requests shall be referred to U.S. Naval Ordnance Laboratory, White Oak, MD. **AUTHORITY** USNOL ltr dtd 29 Aug 1974

Reproduced by DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, 0 HIO

This document is the property of the United States Government. It is furnished for the duration of the contract and shall be returned when no longer required, or upon recall by ASTIA to the following address: Armed Services Technical Information Agency, Document Service Center, Knott Building, Dayton 2, Ohio.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO B: REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

UNCLASSIFIED

STUDY OF BOUNDARY—LAYER TRANSITION FROM LAMINAR TO TURBULENT FLOW

21 NOVEMBER 1956

U. S. NAVAL ORDNANCE LABORATORY WHITE OAK, MARYLAND

Aeroballistic Research Report 349

A STUDY OF BOUNDARY-LAYER TRANSITION FROM LAMINAR TO TURBULENT FLOW

Prepared by:

Jerome Persh

ABSTRACT: A large amount of boundary-layer data in the region of transition from laminar to turbulent flow has been collected from a number of experimental investigations of boundary-layer flows on flat plates, circular cylinders, and airfoils. These data are for both incompressible and compressible flows without heat transfer.

The criterion for determining the axial position of the beginning and end of transition proposed by the author in reference (a) is verified by examination of a large amount of experimental data. Comparisons are given between the experimental values of soveral boundary-layer parameters at the start of transition and the theoretical values predicted by the modified (reference b) stability theory of Schlichting and Ulrich (reference c). It is shown that for incompressible flows, the start of transition may be roughly predicted by stability theory. This is demonstrated by comparisons between a number of zero pressure gradient and pressure gradient examples.

U. S. NAVAL ORDNANCE LABORATORY WHITE OAK, MARYLAND

This report contains the results of a preliminary investigation of the mechanics of the boundary-layer transition process. From an examination of a large amount of experimental boundary-layer velocity profile data on flat plates, circular cylinders, and airfoils in both subsonic and supersonic airstreams. Several significant conclusions are drawn. This study is important at the present time because probably the weakest link in the calculation of wall temperatures and heat transfer to missiles is the determination of the transition region.

This work was sponsored by the U. S. Navy Bureau of Ordnance and was performed under Task Number NOL M9a-133-1-56. The author is indebted to Dr. R. E. Wilson and Dr. R. K. Lobb for their encouragement and continued interest during the course of the investigation.

WILLIAM W. WILBOURNE Captain, USN Commander

H. H. KURZWEG By direction

CONTENTS

	Page
Introduction	. 1
Review of Experimental Investigations	. 1
Zero Pressure Gradient Data	. 2
Pressure Gradient Data	. 2
Evaluation and Presentation of Data	. 3
Discussion of Results	
Correlation of the Boundary-Layer Parameters at the	•
Start of Transition	. 4
Incompressible Flows	. 4
Compressible Flows	• 5
Correlation of Boundary-Layer Velocity Profile Data.	
Concluding Remarks	
References	
Table I	
Table II	
Table III	
Table IV	
	44

ILLUSTRATIONS

- Figure 1. Variation of H with distance along flat plate. Data of reference d.
- Figure 2. Variation of H with distance along flat plate. Data of reference e.
- Figure 3. Variation of H_{inc} with distance along circular cylinder in axial flow at M = 2.41. Data of reference f.
- Figure 4. Variation of H_{inc} with distance along circular cylinder in axial flow at M = 3.05. Data of reference g.
- Figure 5. Variation of H with distance along NACA 0009 airfoil. Data of reference h.
- Figure 6. Variation of H with distance along NACA 0012 airfoil. Data of reference h.
- Figure 7. Variation of H with distance along NACA 0018 airfoil. Data of reference h.
- Figure 8. Variation of H with distance along symmetrical Joukowski airfoil. Data of reference i.
- Figure 9. Comparison between the theoretical values of $R_{\theta_{Cr.min}}$ and experimental data as a function of R_{θ} θ/u_{00} du_{00}/dx for incompressible flow data.
- Figure 10. Comparison between theoretical values of $H_{\text{Cr.}}$ and experimental data as a function of R_{θ} $\theta/u_{\infty} du_{\infty}/dx$ for incompressible flow data.
- Figure 11. Variation of RoTr with Mach number for compressible flow data.
- Figure 12. Variation of R9Tr with supply pressure for compressible flow data.
- Figure 13. Correlation of transition region velocity profile data.

SYMBOLS

H = boundary-layer shape parameter ($\delta*/\theta$)

M - Mach number

P_O = stagnation pressure

q = dynamic pressure outside the boundary layer $(1/2 \rho_{\infty} U_{\infty}^2)$

 R_{θ} = boundary-layer Reynolds number based on momentum thickness ($U_{\infty} \theta / \nu_{\infty}$)

u = velocity parallel to surface at a perpendicular distance y from wall

 U_{∞} = velocity parallel to surface at a distance δ from wall

x = longitudinal distance from leading edge of flat
plate or circular cylinder

s = longitudinal distance from leading edge of airfoil measured along surface

y - perpendicular distance from wall to point at which velocity u is measured

 δ = boundary-layer thickness, defined as perpendicular distance from wall to point at which contribution to the integrals for δ^* and θ is negligible

δ * - boundary-layer displacement thickness for incompressible flow

$$\int_{0}^{\delta} (1 - \frac{u}{u_{\infty}}) dy$$

δ*comp boundary-layer displacement thickness for compressible

$$\int_0^{\varepsilon} (1 - \frac{\rho u}{\rho_{\infty} v_{\infty}}) dy$$

θ = boundary-layer momentum thickness for incompressible flow

$$\int_0^{\delta} \frac{u}{\overline{u}_{\infty}} \left(1 - \frac{u}{\overline{u}_{\infty}}\right) dy$$

 θ_{comp} - boundary-layer momentum thickness for compressible flow

$$\int_{0}^{\delta} \frac{\rho u}{\rho \omega U_{\infty}} (1 - \frac{u}{U_{\infty}}) dy$$

- viscosity
- ρ density
- > = kinematic viscosity,
- c_f = wall shear stress coefficient ($?_w/q$)

Subscripts:

- inc incompressible flow
- comp compressible flow
- exp = experimental
- Tr experimental transition value

When values of δ^* , θ , H, and R θ are not subscripted, the incompressible and experimental values of these parameters are inferred.

A STUDY OF BOUNDARY-LAYER TRANSITION FROM LAMINAR TO TURBULENT FLOW

INTRODUCTION

- 1. The study of boundary-layer transition from laminar to turbulent flow involves not only the determination of the factors which control the occurrence of transition, but also the changes that the boundary-layer velocity profile undergoes while reverting from wholly laminar flow to fully turbulent flow. Although a great deal of theoretical and experimental work has been done on transition, very little is known of the behavior of the boundary layer in the transition region.
- 2. To the author's knowledge, no theoretical work on the behavior of the boundary layer in the transition region has been done. The present work deals with both aspects of the problem. From an examination of a large amount of velocity profile and pressure distribution data taken from a number of experimental investigations of flat plates, hollow cylinder models, and airfoils in both incompressible and compressible flows, it is shown that the criterion for determining the axial location of the start of transition proposed by the author in reference (a) is substantiated. It is also shown that for incompressible flows with moderate values of stream turbulence, roughness, or pressure gradient, the start of transition may be roughly predicted by stability theory.

REVIEW OF EXPERIMENTAL INVESTIGATIONS

- 3. While it is realized that the published results of a number of experimental investigations, in addition to the results presented herein, are available, the data presented were drawn from those investigations that were most suited to the present work and it is felt that the results shown are representative of the entire fund of information. It should be noted that only the general features of each investigation can be discussed in the present reportand it is suggested that the reader consult the original papers for more detailed information.
- 4. For convenience, the results of the experimental investigations have been separated into two categories, namely, the zero pressure gradient cases (flat plate and hillow cylinder models) and the cases for which pressure gradients existed (airfoils). In order that the data presented be as complete as possible, the values of stream turbulence when available, are given in the tables presented.

Zero Pressure Gradient Data

- 5. The pioneer measurements of the boundary-layer flow on a flat plate were made by van der Hegge Zijnen (reference d) with the aid of a hot-wire anemometer. The results are presented in the form of numerous tables and curves giving the observed speeds at several hundred points, whose x and y coordinates with respect to the leading edge of the plate are tabulated for five subsonic speeds of the approaching airstream. All the results of this investigation are included in the present report in both graphical and tabular form (Table I).
- 6. Also included in this table are results obtained during the course of an experimental investigation of the boundary-layer flow on a flat plate made at the National Bureau of Standards by Schubauer and Klebanoff (reference e). These data were obtained at a free-stream velocity of about 80 feet/second.
- 7. The results of experimental investigations of the boundary-layer development on hollow cylinder models conducted by O'Donnell and Brinich and Diaconis (references f and g) with their axes aligned parallel to the airstream at Mach numbers of 2.41 and 3.05 are presented graphically and are tabulated in Table II. Results are given for four model diameters (1.87, 3, 4, and 5 inches). Only the natural transition results for these models are presented.

Pressure Gradient Data

- 8. The results of an experimental investigation of boundary-layer transition on three symmetrical airfoil sections, each at three angles of attack, presented by Silverstein and Becker (reference h) are given graphically and in Table III. In these tests, boundary-layer velocity profiles were measured on the upper surfaces of airfoils of the NACA 0009, 0012, and 0018 sections over a lift coefficient range from -0.57 to 0.65. Although tests were made at tunnel velocities from 30 to 90 miles per hour, only those data at 60 miles per hour are included in the present work because these are typical of all the data included in this reference.
- 9. The results of an experimental investigation of the boundary-layer flow on a symmetrical Joukowski airfoil section presented by Fage and Falkner (reference i) are illustrated and are also tabulated in Table IV. For this experiment a series of boundary-layer velocity profile measurements were made on the airfoil surface at tunnel airspeeds of 60 and 80 feet per second.

EVALUATION AND PRESENTATION OF DATA

- 10. For all of the boundary-layer velocity profile data accumulated, values of the displacement thickness (6*), momentum thickness (9), and boundary-layer shape parameter (H) were evaluated by graphical integration. It has been pointed out (reference j) that compressible boundary-layer velocity profiles are similar in shape to incompressible velocity profiles. The values of parameters derived from the compressible boundary-layer velocity profiles, ignoring the temperature distribution across the boundary layer, are therefore close to those for incompressible flow. These values of the boundary-layer parameters are ficticious in a sense, but their use provides a common basis for comparisons between the results for incompressible and compressible flows. For the compressible flow data the boundary-layer parameters were therefore evaluated using both the incompressible and compressible flow definitions. Each of the tabulated sets of data are identified by the conditions of the experiment and the reference letter.
- 11. For the pressure gradient data investigated, the values of the stability parameter (reference b)

$$R_{\theta} \frac{\theta}{u_{\infty}} \frac{du_{\infty}}{dx} = \frac{\theta^2}{v_{\infty}} \frac{du_{\infty}}{dx}$$
 (1)

are also tabulated. These values were calculated from the pressure distribution graphs given in the pertinent references.

DISCUSSION OF RESULTS

- 12. The large mass of experimental data presented herein are used first to give additional support to the transition criterion proposed in reference (a). In this reference it is shown that at the transition point an abrupt drop occurs in the curve showing the variation of the incompressible (or compressible) value of H with distance along the surface. This occurs because at the start of transition, the velocity gradient near the surface, or the skin friction, rises rapidly. The value of H is quite sensitive to the velocity ratios near the surface, and small increases in the velocity gradient near the wall cause a dimunition of the values of H. Since near the leading edge, the laminar flow region is characterized by values of H which are about 2.6 and in the turbulent region the values of H are about 1.4 to 1.5, the mean position for the start of transition should be readily recognizable.
- 13. Figures 1 to 8 show the variation of H with distance along the surface for each of the sets of data tabulated. In each of the cases shown, a more or less abrupt drop occurs

in the H curve. In some cases (Figures 1b and 1c, for example) the curves appear rounded at the transition point. These are probably more physically realistic than the curves showing the abrupt change in slope. It is reasonable to assume that the rounding is probably present for all of the data and would have been evident if more data in this region were available. In general, however, all of the curves exhibit the same characteristic behavior. These data validate the criterion proposed in reference (a) for determining the start of transition.

14. The determination of the end of transition region is more difficult because of the asymtotic nature of the curves shown in the preceding figures. Consequently, the end of transition is arbitrarily defined as the axial position where the value of H first reaches its characteristic turbulent value of 1.4 or 1.5, or where no further decrease in H is noted. This is indicated on each of the figures showing H as a function of x.

CORRELATION OF THE BOUNDARY-LAYER PARAMETERS AT THE START OF TRANSITION

Incompressible Flows

- 15. On each of the preceding figures, the point at which the minimum critical Reynolds number for laminar boundary-layer stability ($R_{\theta cr,min}$) is indicated as a shaded data point. The position of these points was determined by first plotting the experimental values of Ro as a function of distance along the surface, and noting the axial position at which Recr.min occurred. For the incompressible flow data the values of Recr.min which were used for this procedure were obtained from the modified Schlichting analysis of reference (b). The ordinate value for the shaded data points was determined as the value of Hcr. associated with the value of Rocr.min. An examination of Figure 1 indicates that, in general, the start of transition occurs close to Rocr.min; this is more clearly illustrated in Figure 9. In this figure the experimental values of Retr. are compared to the theoretical curve of reference (b). While there is considerable scatter in the data, which is probably due in part to insufficient data at the start of transition, it is evident that transition starts at values of Ro which are of the same order of magnitude as those given by theory.
- 16. It is difficult to justify those data points which are less than $R_{\Theta Cr.min}$. This is because it was found in the experimental investigation of reference (e), that efforts to disturb the laminar boundary layer in the region where the Reynolds number was less than $R_{\Theta Cr.min}$ were unsuccessful. While the artificial disturbance created in this region was

not damped, it amplified only beyond the axial position of ROCT.min. For this reason, those transition data points which fall below the theoretical value appear inconsistent, unless the turbulence level of the airstream outside the boundary layer exerts a disturbance which has characteristics different than that created artificially in the experiments of reference (e).

17. As pointed out previously, both $R_{\rm QCT.min}$ and $H_{\rm CT}.$ are uniquely defined when the value of the non-dimensional pressure gradient parameter $R_{\rm Q}$ $\theta/u_{\rm QO}$ $du_{\rm QO}/dx$, is specified. A comparison is shown in Figure 10 between the theoretical curve of $H_{\rm CT}$ and experimental values of $H_{\rm tT}$ as a function of $R_{\rm Q}$ $\theta/u_{\rm QO}/dx$. No conclusion can be drawn from this comparison because of the large data scatter. It is indicative, however, of the sensitive nature of H.

Compressible Flows

18. Figure 11 shows the values of $R_{\theta tr}$ determined in the manner previously described for all of the compressible flow data examined. In view of the large scatter of the data, it is not possible to describe any trend with Mach number. To determine whether the transition point is a function of stagnation pressure as was suggested in reference (k), the experimental data shown in Figure 11, are plotted versus P_0 in Figure 12. In this coordinate system, there seems to be some trend of increasing $R_{\theta tr}$ with increasing stagnation pressure, but the scatter of the data is too large to draw any definite conclusions.

Correlation of Boundary-Layer Velocity Profile Data

- 19. From previous discussion and inspection of the related figures, it is apparent that only a small portion of the large mass of velocity profile data presented falls into the transition region. However, the data that are applicable have been isolated and are considered of sufficient quantity for the present correlation.
- 20. It has been shown by von Doenhoff and Tetervin (reference 1) that turbulent boundary-layer velocity profiles form a single parameter family of curves. To determine whether the transition region velocity profiles are of a single parameter family of curves, and, if so, whether the transition region velocity profiles are of the same family as those for turbulent boundary-layer velocity profiles, values of u/u_{00} were plotted against H for various values of y/θ for all the data entering into the analysis. The variation of u/u_{00} with H for several values of y/θ is shown in Figure 13. Because of the large amount of data points, and the fact that no significant

trends were detected between sets of data, no effort was made to identify the points of any one investigation. Also plotted in Figure 13 are curves of u/u_{∞} versus H for corresponding values of y/θ for turbulent boundary-layer velocity profiles. Figure 13 shows that u/u_{∞} is a function of H alone for a given value of y/θ . This conclusion is important because it means that transition region boundary-layer velocity profiles form single parameter family of curves. It is also apparent that the transition region velocity profiles are of a different shape than those for turbulent boundary-layer velocity profiles.

CONCLUDING REMARKS

- 21. A large amount of boundary-layer data in the region of transition from laminar to turbulent flow has been collected from a number of experimental investigations of boundary-layer flows on flat plates, circular cylinders, and airfoils. These data are presented in both graphical and tabular form.
- 22. A criterion for determining the axial position of the beginning and end of transition previously proposed in reference (a) is substantiated. Comparisons are given between the experimental values of two local boundary-layer parameters (R $_{\theta}$ and $_{\theta}^{2}/_{\theta}$ du $_{\theta}$ du $_{\theta}$ dx) at the start of transition and the theoretical values of these parameters as predicted by stability theory. It is shown that for incompressible flows the start of transition may be roughly predicted by stability theory. No correlation between the measured values of R $_{\theta}$ tr. at the start of transition and the minimum critical values of R $_{\theta}$ was found for the compressible flow data.
- 23. It is shown that the shape of all transition region boundary-layer velocity profiles may be expressed as a function of a single parameter. It is also shown that transition region velocity profiles differ in shape from turbulent boundary-layer velocity profiles, particularly in the region near the wall.

REFERENCES

- (a) Persh, Jerome, "The Behavior of the Boundary Layer in the Region of Transition From Laminar to Turbulent Flow," Jour. Aero. Sci., Vol. 22, No. 6, pp. 443-444, June 1955
- (b) Tetervin, Neal and Levine, David A., "A Study of the Stability of the Laminar Boundary Layer as Affected by Changes in the Boundary-Layer Thickness in Regions of Pressure Gradient and Flow Through the Surface," NACA TN 2752, 1952
- (c) Schlichting, H., and Ulrich, A., "Zur Berechnung Des Umschlages Laminar/Turbulent," Bericht S 10 der Lilienthal-Gesellschaft für Luft Fahrtorschung, Preisausschreiben 1940, pp. 75-133
- (d) van der Hegge Zijnen, B. G., "Measurements of the Velocity Distribution in the Boundary Layer along a Plane Surface," Rept. 6, Aero. Lab., Tech., H. S., Delft, 1924
- (e) Schubauer, G. B., and Klebanoff, P. S., "Contributions on the Mechanics of Boundary-Layer Transition," NACA TN 3489, 1955
- (f) O'Donnell, Robert M., "Experimental Investigation at a Mach Number of 2.41 of Average Skin-Friction Coefficients and Velocity Profiles for Laminar and Turbulent Boundary Layers and on Assessment of Probe Effects," NACA TN 3122, 1954
- (g) Brinich, P. F., and Diaconis, N. S., "Boundary Layer Development and Skin Friction at Mach Number 3.05," NACA TN 2742, July 1952
- (h) Silverstein, A., and Becker, John V., "Determination of Boundary-Layer Transition on Three Symmetrical Airfoils in the NACA Full-Scale Wind Tunnel," NACA Rept. No. 637, 1939
- (i) Fage, A., and Falkner, V. M., "An Experimental Determination of the Intensity of Friction on the Surface of an Aerofoil," Aero. Res. Comm., R & M No. 1315 (Ae. 470), April 1930
- (j) Persh, Jerome, "A Theoretical Investigation of Turbulent Boundary-Layer Flow with Heat Transfer at Supersonic and Hypersonic Speeds," NAVORD 3854, 1955
- (k) Brinich, Paul F., "Boundary-Layer Transition at Mach 3.12 With and Without Single Roughness Elements," NACA TN 3267 1954

(1) von Doenhoff, Albert E., and Tetervin, Neal, "Determination of General Relations for the Behavior of Turbulent Boundary Layers," NACA Rept. No. 772, 1943

TABLE I

Values of Boundary-Layer Parameters for Data of Reference d
Estimated stream turbulence 1-2 percent

U = 400 cm/sec

X, cm	δ*, cm	θ, cm	Н	$R_{m{\Theta}}$
15	.1166	.04	2.915	111.9
20	.1279	.04592	2.785	125
25	.14	.0506	2.767	136.8
37.5	.1732	.0692	2.503	183.3
50	.185	.0757	2.444	206
62.5	.2166	.0976	2.22	264
75	.2422	.1129	2.145	309.3
87.5	.2464	.119	2.071	321.6
100	.2596	.1182	2.196	313
125	.2876	.133	2.162	352.3
150	.29	.1508	1.923	418.7

U = 800 cm/sec

X, cm	δ*, cm	θ, cm	Н	Ro
5 7.5 10 12.5 15 17.5 20 25 30 40 50 62.5	.04624 .05744 .06592 .0756 .082 .08488 .08624 .0912 .1036 .118 .1356	.01992 .02344 .02744 .0284 .03264 .034 .0343 .03824 .0449 .0514 .0642 .0761	2.321 2.451 2.402 2.662 2.512 2.497 2.516 2.385 2.307 2.296 2.112 1.974	105.6 122.7 145.5 149.5 175.3 179 184 207 243 280 336 406
75 80 85 90 100 125 150	.1544 .1712 .1616 .1808 .2 01 6 .252 .2992	.0884 .108 .105 .12 .1448 .182 .1536	1.747 1.585 1.539 1.507 1.392 1.385 1.948	456 576 545 635.5 777 971 825

TABLE I continued

U = 1200 cm/sec

X, cm	8*, cm	θ, cm	Н	R ₀
2.5	.03368	.01684	2.0	136.5
5	.04024	.01596	2.52	127.7
7.5	.04944	.01828	2.705	144.3
10	.0553	.02036	2.715	164
15	.068	.02584	2.632	209.6
20	.07112	.02644	2.69	220.5
25	.07728	.0301	2.56	244
37.5	.0926	.0411	2.253	326.7
50	.1048	.0573	1.829	467.7
62.5	.1234	.0747	1.652	614
7 5	.1424	.0956	1.49	760
87.5	.1668	.1126	1.481	908
100	.2188	.1542	1.419	1210
125	.2776	.1888	1.47	1471
150	.2492	.1788	1.394	1512

U = 1600 cm/sec

X, cm	δ* , cm	θ , cm	Н	Ro
10	.05104	.01868	2.732	196.7
15	.05768	.0232	2.486	247.6
20	.06568	.02568	2.558	274
25	.0689	.0287	2.401	304
37.5	.0758	.034	2.229	357.7
50	.0982	.0625	1.571	680
62.5	.12	.078	1.539	849
7 5	.1512	.0994	1.521	1075
87.5	.172	.1214	1.417	1278
100	.1852	.1312	1.412	1419
125	.2544	.1708	1.49	1872
150	.2416	.170	1.421	1890

TABLE I concluded

U = 2400 cm/sec

X, cm	δ*, cm	θ, cm	H	R_{Θ}
10	.04	.01612	2.481	254.5
15	.04432	.01844	2.403	295
20	.049	.02046	2.395	329.5
25	.05168	.0218	2.371	346.6
37.5	.05696	.03124	1.823	493.5
50	.0928	.0628	1.478	1005
62.5	.108	.0718	1.504	1142
7 5	.1292	.092	1.404	1473
87.5	.1496	.1064	1.406	1692
100	.1832	.1284	1.427	2069
125	.224	.1614	1.388	2619
150	.2384	.169	1.411	2836

Values of Boundary-Layer Parameters for Data of Reference © Stream turbulence 0.03 percent

U = 79 ft/sec

X, ft	δ^* , in	θ, in	Н	R ₀
5.00	.067	.024	2.79	924
5.25	.067	.024	2.79	928
5.75	.073	.028	2.61	1091
6.25	.060	.032	1.88	1281
6.75	.061	.041	1.49	1632
7.50	.077	.055	1.40	2180
8.00	.090	.064	1.41	2486

TABLE II

Values of Boundary-Layer Parameters for Data of Reference g M = 3.05 Stream turbulence unknown

3-inch circular cylinder $p_0 = 12$ psia

NAVORD	Report	4339	t	
361 644 846.5 1107	1468 2106 2461 3038		Кө сомр	1038 1574 3014 5505 6070 7170 8380 10040
7.928 8.465 8.419 6.49	6.003 5.793 5.796		Нсошр	8.888 8.322 5.858 6.01 5.751 6.28 6.043
.002014 .003752 .00496 .006496	.01236 .01446 .01784		θcomp, in	.001493 .002264 .004336 .00792 .008736 .01032
.01668 .03176 .04176 .04216	.03272 .0742 .08376 .1034	r po = 50 psia	6*comp, in	.01327 .01884 .0254 .0476 .05024 .0648 .07288
691.5 1308 1661 1931	2130 3133 3797 4740	r cylinde	Re inc	2033 3090 4622 8110 9600 11240 13140
2.53 2.629 2.681 1.786	1.300 1.522 1.464 1.422	1 1	Hinc	3.002 2.715 1.444 1.507 1.308 1.46 1.321
.004032 .007624 .009728 .01133	.01286 .0184 .0223 .02784	3-inc	θ _{inc} , in	.002926 .004456 .006648 .01168 .01382 .01616
.0102 .02004 .02608 .02024	. 0204 . 028 . 03264 . 0396		6*inc, in	.008784 .0121 .0096 .0176 .01808 .0236 .02496
			X, in	3.5 6.5 9.5 15.5 18.5
	.5 .0102 .004032 2.53 691.5 .01668 .002014 7.928 361 .5 .02004 .007624 2.629 1308 .03176 .003752 8.465 644 .5 .02608 .009728 2.681 1661 .04176 .00496 8.419 846.5 .5 .02024 .01133 1.786 1931 .04216 .006496 6.49 1107	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 .0102 .004032 2.53 691.5 .01668 .002014 7.928 361 5 .02004 .007624 2.629 1308 .03176 .003752 8.455 644 5 .02004 .009728 2.681 1661 .04176 .00496 8.419 846. 5 .02024 .01133 1.786 1931 .04216 .006496 6.49 1107 5 .0204 .01286 1.586 2130 .05272 .00872 6.046 1468 5 .0204 .0223 1.464 3797 .08376 .01246 5.793 22461 5 .03264 .0223 1.464 3797 .08376 .01446 5.793 2461 5 .0396 .02784 1.422 4740 .1034 .01784 5.796 3038 3-inch circular cylinder $p_0 = 50$ psia	3.5 .0102 .0046032 2.53 691.5 .01668 .002014 7.928 361 644 6.5 .002004 .007624 2.629 1308 .003176 .003752 8.465 644 6.5 .02608 .009728 2.681 1661 .04176 .00496 8.419 846.5 9.5 .02024 .01133 1.786 1931 .04216 .006496 6.49 1107 12.5 .0204 .01286 1.586 2130 .05272 .00872 6.046 1468 115.5 .028 .01284 1.522 3133 .0742 .01236 6.003 2106 118.5 .03264 .0223 1.464 3797 .08376 .01246 5.793 2461 21.5 .0396 .02784 1.422 4740 .1034 .01784 5.796 33038 X, in δ*inc, in Hinc Rθ inc δ*comp, in Hcomp Rθ comp

TABLE II continued 4-inch circular cylinder $p_0 = 12$ psia

1		NAVORD Report	4339
Re солар	352 537 847 1350	2408 2408 2926 3518	Re comp 885.5 2290 4360 6520 7805 8930 10320 12710
Нсошр	6.605 9.343 7.254 5.911	5.657	Hcomp 12.232 7.297 6.02 5.743 5.968 5.821 5.746 5.502
θcomp, in	.002094 .003196 .00504 .008032	.01432 .01741 .02092	θcomp, in .001259 .003256 .0062 .009264 .0111 .0127 .01466
6*comp, in	. 01383 . 02986 . 03656 . 04748	.08832 .08432 .09848 .1162	6*comp, in .0154 .02376 .03732 .0532 .06624 .07392 .08424
Ro inc	668 1193 1690 2155	3164 3904 4800 5690 r cylinder	Re inc 2582 4609 7370 10920 13130 14610 16780 20420
Hinc	2.642 2.804 2.062 1.473	1.50g 1.443 1.374 1.436 h circular	Hinc 2.801 1.665 1.447 1.389 1.389 1.366 1.409
θinc, in	.003978 .007096 .01005	nc	00367 .00367 .006548 .01048 .01552 .01866 .02078
6*inc, in	.01051 .0199 .02072	. 0284 . 03352 . 03928 . 0486	6*inc, in .01028 .0109 .01516 .02264 .02592 .02928
X, in		12.5 15.5 18.5 21.5	x, in 3.5 3.5 6.5 12.5 18.5 21.5

TABLE II continued

5-inch circular cylinder $p_0 = 7$ psia

,	1	NAVORD Report	4339	
	Ве сомр	165.6 346.8 581.5 794 1039 1406 1624 1954	Кө сошр	243.7 534 1469 1923 2375 2788 3420
	Нсошр	9.613 10.987 8.569 6.125 5.718 5.494 5.413	Hcomp	9.685 9.519 5.327 5.646 5.652 5.365
	θ _{comp} , in	.001704 .003568 .00598 .008176 .01069 .01446 .0167	Ocomp, in	.00146 .0032 .0088 .01152 .01424 .0167
	5*comp, in	.01638 .0392 .05124 .05008 .06112 .07944 .0904 .1048	6*comp, in	.01414 .03046 .04688 .06504 .08048 .0896
	Ro inc	347.5 665.5 1143 1397 1660 2135 2485 3050	Re inc	512 1072 2010 3144 3730 4440 5255
	Hinc	6 3.317 4 4.231 2.982 1 1.854 1 1.57 1 1.57 2 1.467 2 1.357 3	Hinc	3.173 3.355 1.555 1.445 1.414 1.454
	θinc, in	.003576 .006844 .01175 .01437 .02197 .02197 .02558	θinc, in	.00307 .00642 .01204 .01384 .02236 .0266
	6*inc, in	.01186 .02896 .03504 .02664 .03296 .03752	6*inc, in	.00974 .02154 .01872 .02608 .03232 .0376
	X, in	2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	X, in	3.5 9.5 12.5 18.5 21.5
		**		

NAVORD Report 4339

TABLE II continued 5-inch circular cylinder p_o = 20 psia

	Кө сомр	326.2 635.5 1272 2330 3027 3791 4527 5425	в сошр	505 1003 2277 3805 5365 6450 8150
	Нсошр	10.741 10.425 6.283 5.565 5.524 5.55 5.367 5.367	Hcomp	10.487 8.322 5.821 6.509 5.715 5.434 5.19
	θcomp, in	.00116 .00226 .00452 .00828 .01076 .01348	θcomp, in	.00119 .00236 .00536 .00896 .01264 .0152
r P _O = 20 ps.a	6*comp, in	.01246 .02356 .02356 .0284 .04608 .05944 .0748	r p ₀ = 30 psia 6*comp, in	.01248 .01964 .0312 .05832 .07224 .0826
ar cylinder	Re inc	748 1427 2070 3454 4690 5925 7030 8125	nnch circular cylinder n Hinc Rθ inc	1113 1996 3754 6720 8860 10070 12660
n circular	Hinc	3.196 3.196 1.707 1.564 1.448 1.374 1.36	Hinc	3.221 2.647 1.511 1.657 1.368 1.283
3-incn	Oinc, in	1	b-inc, in	.00262 .0047 .00884 .01584 .02088 .0237
	6*inc, in	.0085 .01604 .01256 .0192 .02416 .02896 .034 .0414	ξ*inc, in	.00844 .01244 .01336 .02624 .02856 .0396
	X, in	11000000000000000000000000000000000000	x, in	3.5 6.5 12.5 18.5 21.5 51.5

TABLE II continued

5-inch circular cylinder $p_0 = 50 psia$

a	NAVORD	Report 4339		
Re comp	1144 2387 4290 5930 7250 8750 9060		Кө сомр	140 200 250 310 350 420 450
Hcomp	8.36 6.828 5.25 5.98 5.536 6.025 5.466	2.41		H 0 0 0 0 0 4 0 4
θ _{comp} , in	.00162 .00338 .00608 .0084 .01028 .0124 .01284	E X	Re inc	234 315 369 562 694 693
6*comp, in	.01354 .02308 .038 .05024 .06 .06864 .07736	Data of Reference unknown o = 7 inches Hq ab	θ _{comp} , in	.0023 .0034 .0042 .00525 .0057 .00700 .00605
Re inc	2337 4080 7000 9620 11300 13530 14580 17850	Parameters for Data of am Turbulence unknown	Hinc	2.354 2.985 3.2194 2.3224 2.8559 2.539 3.171
Hinc	2.556 1.972 1.661 1.493 1.5 1.361 1.315	yer Par Stream ircular	θ _{inc} , in	.00384 .00536 .0062 .00856 .00916 .01156
θinc, in	.00331 .00578 .00992 .01364 .016 .02064	Boundary-La	, in	04 0 96 88 16 36 64
8*inc, in	.00846 .0114 .01648 .02036 .024 .02608	Values of	6* inc	.00904 .0160 .01996 .01988 .02616 .02936
X, in	3,0 6,5 12,5 18,5 21,5 5		X, in	0.58 12.58 3.58 3.58 6.58 6.58

TABLE II continued

1.87-inch circular cylinder $p_0 = 30$ inches Hq abs

in	&*inc, in	θ _{inc} , in	Hinc	$\theta_{\text{comp, in}}$	Re inc	ве сомр
æ	00592	.00272	1 '	.0014	089	350
80.00	26200	.00356	2,225	.00195	912	200
58	00600	.00368		.00215	924	540
58	.01108	.00428		.0026	1055	640
58	.01168	.00484		.0028	1210	200
558	.01224	.00556		.0031	1365	160
58	.00972	,00516		.0031	1282	770
.08	.00724	.00552	•	.0041	1440	1070
, in	6*inc, in	θ _{inc} , in	Hinc	$\theta_{\text{comp, in}}$	R _Q inc	КӨ сомр
58	00424	.00248	1,7097	.0012	1260	610
0 00	00656	.00264	2,485	.0016	1305	190
200	.00724	.00292	2.48	.00175	1435	850
ο ις ο α	00200	.00356	7	.0018	1740	880
ο α α	00616	.00352	7	.0019	1742	940
0 00	0900	.00324	1.852	.0031	1620	1550
.28	9200	.00612	S	.0043	3770	2650
	01088	89200	4	0059	3970	3050

TABLE II concluded

1.87-inch circular cylinder p_O = 90 inches Hq abs

8*inc, in	θ _{inc} , in	$^{\rm H}{}_{ m inc}$	Ocomp, in	$^{ m R}$ $_{ m i}$ inc	в сошр
.00256	.00204	1.255	.0012	1515	890
.00304	.00228	1,333	.00165	1657	1200
.00492	.00376	1,3085	.0025	2780	1850
.00444	.0034	1,306	.0022	2426	1570
.00632	.0038	1,663	.0031	2660	2170
.00736	00208	1.449	.0042	3630	3000
.00964	.00736	1,310	.0053	5280	3800
.01160	.0092	1,261	.00665	6640	4800
6 *inc, in	θ _{inc} , in	Hinc	θ_{comp} , in	Re inc	Re comp
.00212	.00144	1.472	.0011	1360	1040
.00380	.00264	1,44	.0018	2464	1630
.00532	.00380	1.40	.0028	3600	2650
.00568	.00376	1.511	.0028	3560	2650
.00672	.00508	1,323	.0038	4810	3600
.00912	.00636	1.434	.0047	5680	4200
			.0057		5800
01212	0.0968	1.252	0000	9260	6700

TABLE III Values of Boundary-Layer Parameters for Data of Reference h Stream turbulence 0.3 percent NACA 0009 airfoil

C1 -	(.57
------	---	-----

		c ₁ -	-0.57		
s c	δ*, in	θ, in	Н	Rə	$R_{\theta} \frac{\theta}{u_{00}} \frac{du_{00}}{dx}$
.05 .10 .20 .30 .35 .45	.011125 .01409 .02057 .02669 .0308 .03292 .03266	.00465 .00655 .00984 .01238 .01487 .01818	2.392 2.151 2.09 2.16 2.07 1.812 1.623	211.2 297.5 446.8 561.5 675 816.5 850	.0294 .0262 .0188 .0156 .0181 .0176 .00981
		C1 =	. 0		
s	δ*, in	0, in	Н	R _O	$R_{\theta} \frac{\theta}{u_{\infty}} \frac{du_{\infty}}{dx}$
.06 .11 .21 .31 .36 .46	.0157 .02 .0296 .03109 .0262 .0267	.00538 .007575 .01281 .01605 .0167 .0171	2.918 2.64 2.31 1.937 1.569 1.561 1.484	244.2 344 581.5 714 705 691 638	00874 0165 0417 0553 0473 0376 0266
	· · · · · · · · · · · · · · · · · · ·	c ₁ -	0.65		
s c	δ*, in	θ, in	Н	Rg	
.07 .12 .22 .32	.0248 .0323 .0274 .02549	.0154 .0202 .0181 .01686	1.610 1.599 1.514 1.512	699 839 641 559	

1.476

1.591

1.5

510

381

413.2

.0164

.0132

.014

.32 .47

.57

.0242

.021

.021

TABLE III continued

NACA 0012 airfoil

 $C_1 = -0.57$

s	δ*, in	θ, in	II	R _O	$R_{\theta} \frac{\theta}{u_{00}} \frac{du_{00}}{dx}$
.05 .15 .25 .35 .45 .55	.01014 .01805 .02522 .026 .0236 .03138 .03116	.003892 .007695 .01027 .0125 .0128 .0164 .01873	2.603 2.346 2.456 2.08 1.844 1.913 1.663	176.8 349.5 466.5 568 564 704 756	0396 0245 0156 00763 + .00188 + .00693 + .0292
		c ₁ =	= 0		
s	δ*, in	θ, in	Н	R _O	$R_{\theta} \frac{\theta}{u_{00}} \frac{du_{00}}{dx}$
.07 .17 .27 .37 .47 .57	.0118 .0224 .0287 .0275 .0235 .0234 .02177	.0049 .00886 .0109 .0164 .0162 .01535 .0157	2.408 2.528 2.633 1.677 1.451 1.525 1.386	222.6 402.5 495 726 677 578.5 534.5	00949 .0207 .0300 .0708 .0598 .0448 .0384
		C1 =	0.65		
s	δ*, in	θ, in	Н	R⊕	
.18 .28 .38 .48 .58	.02697 .0284 .02408 .0232 .02169 .02298	.01693 .01852 .0158 .01661 .01445	1.593 1.533 1.524 1.397 1.502 1.582	722.5 693.5 538 539.5 436.3 412	

TABLE III concluded

NACA 0018 airfoil

 $C_1 = -0.57$

s c	δ*, in	0, in	Н	R _Q		R _O	$\frac{\theta}{u_{00}}$	du _{oo}
.06	.0092 .0164	.00438	2.1 2.246	198.9 331.4			293 223	
.26	.02097	.00948	2.212	430.3	-	.00	0328	
.36 .46	.0272 .03304	.01088 .01656	$\frac{2.5}{1.996}$	494 729.5	_	U,	388	
.56	.0277	.01589	1.744	674	-		262	
.66	.02252	.01474	1.528	575.5	-		0284	
		c ₁	33 0					
s	δ*, in	0, in	Н	R _O		R _O	$\frac{\theta}{u_{\infty}}$	du _{co}
.08	.013	.0055	2.363	249.7		. 0:	203	
.18	.02158	.00846	2.55	384.2			105	
.28 .38	.02656	.01136 .01588	2.336 1.537	516 692		.14		
.48	.0244 $.02204$.01388	1.527	557	-	.1		
.58	.0232	.01608	1.443	595	-	.10		
.68	.02292	.01504	1.525	525.5	-	. 08	801	
		c ₁	- 0.65					
<u>s</u> <u>c</u>	δ*, in	θ, in	Н	R _O		R ₀	$\frac{\theta}{u}_{\infty}$	du _{co}
.10	.0113	.00494	2.287	224.3	-	.00	643	
.20	.02128	.0133	1.6	604		1.5		
.30	.02744	.018	1.525	736	-	1.6		
.40	.0248	.0162	1.531	596	_	.40		
.50 .60	.02356	.01476 .01546	1.595 1.483	489.4 481	_	.17		
.70	.01968	.01346	1.553	363	***		460	
	11							

TABLE IV

Values of Boundary-Layer Parameters for Data of Reference i
Stream Turbulence Unknown

Uo =	60	ft/	/sec
------	----	-----	------

$\frac{s}{c}$ 8	;*, in	θ, in	Н	R_{Θ}	$R_{\theta} \frac{\theta}{u_{00}} \frac{du_{00}}{dx}$
.0524 .1007 .151 .202 .252 .302 .403	.00835 .1239 .01578 .01998 .0216 .03081 .03073	.004045 .00578 .00759 .00934 .00978 .01655 .02025	2.067 2.144 2.08 2.139 2.209 1.862 1.518 1.364	145.9 215 286.8 354.5 371 628 743 1076	.0141 .00715 00261 0210 0584 162
.605 .706 .807 .956	.05717 .07971 .09655 .1424	.03994 .05645 .06888 .09917	1.431 1.412 1.402 1.436	1367 1880 2188 2930	306 573 904 -1.428

 $U_0 = 80 \text{ ft/sec}$

s	δ*, in	θ, in	Н	Rg	$R_{\theta} \frac{\theta}{u_{\infty}} \frac{du_{\infty}}{dx}$
.0524	.00732	.0036 .00519	2.035 2.174	171.8 258.4	.0148
.151	.01366	.00638	2.139 1.938	320.2 440	.00171
.252	.01836	.01085	1.692 1.421	553.5 897	00432 0324
.403	.02890	.02132	1.356 1.353	1045 1564	0866 254
.605	.06479	.04693 .05129	1.381 1.347	2161 2235	- 7568 619
.807 .956	.09909 .1404	.07178	1.381 1.454	3023 3804	-1.302 -1.805

FIG.I VARIATION OF H WITH DISTANCE ALONG A FLAT PLATE (DATA OF REF. d) A. TUNNEL AIRSPEED: 400 CENTIMETERS PER SECOND

I

B. TUNNEL AIRSPEED: 800 CENTIMETERS PER SECOND FIG.I CONTINUED

D. TUNNEL AIRSPEED: 1600 CENTIMETERS PER SECOND FIG.1 CONTINUED

FIG. 2 VARIATION OF H WITH DISTANCE
ALONG FLAT PLATE
(DATA OF REFERENCE e)

FIG.3 VARIATION OF HINC WITH DISTANCE ALONG CIRCULAR CYLINDER IN AXIAL FLOW AT M=2.41 (DATA OF REFERENCE f)

B. I.87-INCH DIAMETER; P_0 = 60-INCH Hg ABSOLUTE

FIG. 3 CONCLUDED

A. 3-INCH DIAMETER; Po = 12 PSIA

B.3-INCH DIAMETER; Po = 50 PSIA

FIG.4 VARIATION OF H_{INC} WITH DISTANCE ALONG CIRCULAR CYLINDER IN AXIAL FLOW AT M=3.05 DATA OF REFERENCE g

C.4-INCH DIAMETER, Po=12 PSIA

D.4-INCH DIAMETER, Po=50 PSIA FIG.4 CONTINUED

H. 5-INCH DIAMETER; Po = 30 PSIA FIG. 4 CONTINUED

1. 5 - INCH DIAMETER; Po = 50 PSIA

FIG. 4 CONCLUDED

FIG.5 VARIATION OF H WITH DISTANCE ALONG NACA 0009 AIRFOIL (DATA OF REFERENCE h)

FIG. 6 VARIATION OF H WITH DISTANCE ALONG NACA 0012 AIRFOIL (DATA OF REFERENCE h)

C. $C_{\ell} = 0.65$

FIG.7 VARIATION OF H WITH DISTANCE ALONG NACA 0018 AIRFOIL (DATA OF REFERENCE h)

A. AIRSPEED: 60 FEET PER SECOND

B. AIRSPEED: 80 FEET PER SECOND

FIG.8 VARIATION OF H WITH DISTANCE ALONG SYMMETRICAL JOUKOWSKI AIRFOIL (DATA REFERENCE i)

FIG. 9 COMPARISON BETWEEN THEORETICAL VALUES OF R $_{\theta}$ and experimental data as a function of R $_{\theta}$ $\frac{\theta}{u_{\varpi}}$ $\frac{du_{\varpi}}{d_{x}}$ for INCOMPRESSIBLE FLOW DATA

FIG.10 COMPARISON BETWEEN THEORETICAL VALUES OF H_{Cr} AND EXPERIMENTAL DATA AS A FUNCTION OF $R_{\theta} \frac{\theta}{u_{\infty}} \frac{du_{\infty}}{d_{x}} \text{ FOR INCOMPRESSIBLE FLOW}$

FIG.II VARIATION OF $\mathbf{R}_{\theta\,\mathrm{TR}}$ WITH MACH NUMBER FOR COMPRESSIBLE FLOW DATA

FIG.12 VARIATION OF R $_{ extsf{TR}}$ WITH SUPPLY PRESSURE FOR COMPRESSIBLE FLOW DATA

FIG.13 CORRELATION OF TRANSITION REGION VELOCITY PROFILE DATA

Aeroballistic Research Department External Distribution List for Development (X1)

No. of Copies		No. of Copies	
Departm Washing l Attn: l Attn: l Attn:	Ad6 Ree	5 3 1	Commander, WADC Wright-Patterson AF Base Ohio Attn: WCOSI-3 Attn: WCRRD Attn: WCLGH-3
1 Attn:	Re3d Re9a	1	Director Air University Library
3 Attn: Commar Inyokeri	ton 25, D. C. TD-414 nder, U. S. NOTS n, China Lake, Calif.	1 1	Maxwell AF Base, Alabama Commanding General Aberdeen Proving Ground, Md. Attn: Technical Info. Br. Attn: Ballistics Res. Lab.
l Attn: Commar Point M	Technical Library Code 503 ader, NAMTC agu, California	1	Commanding General Redstone Arsenal Huntsville, Alabama Attn: Aero. Lab, GMDD
Superint U.S.Na	val Postgraduate School	5	ASTIA Document Service Center Knott Building
l Attn:	r, California Tech. Rpts Section r, NRL ton 25, D. C.		NACA High Speed Flight Station Box 273
l Attn:	Code 2021 in Charge, NPG	1	Edwards Air Force Base, Calif. Attn: Mr. W. C. Williams
l Attn:	n, Virginia Technical Library Chief of Ordnance nent of the Army	1	NACA Ames Aeronautical Laboratory Moffett Field, California Attn: Librarian
Washing 1 Attn: Office o	on 25, D. C. ORDTU f the Assistant	1	NACA Langley Aeronautical Lab. Langley Field, Virginia Attn: Librarian
Room 3 Washing	ry of Defense (R and D) E 1065, The Pentagon ton 25, D. C. Technical Library	1 1 1	Attn: Mr. C. H. McLellan Attn: Comp. Res. Div. Attn: Adolf Busemann Attn: John J. Stack
	FSWP ton 25, D. C. Document Library Br.	1	NACA Lewis Flight Propulsion Lab. 21000 Brookpark Road Cleveland 11, Ohio Attn: Librarian

1 NACA 1512 H Street, N. W. Washington 25, D. C.

Commanding Officer, DOFL Washington 25, D.C.

Attn: Lib., Rm 211, Bldg 92

Office of Naval Research Room 2709, T-3 Building Washington 25, D. C.

Attn: Head, Mechanics Br.

Director of Intelligence Headquarters, USAF Washington 25, D. C.

Attn: AFOlN-3B

Director, DTMB Aerodynamics Laboratory Washington 7, D. C.

Attn: Library

University of California Berkeley 4, California

Attn: G. J. Maslach, 205-T3

Attn: Dr. S. A. Schaaf 2

Via: ONR

The University of Texas P.O. Box 8029 Austin 12, Texas

Attn: Deferse Res. Lab.

Via: ONR

1 Applied Math. and Statistics Lab. Stanford University Stanford, California Via: ONR

University of Michigan Willow Run Research Center Willow Run Airport Ypsilanti, Michigan

Attn: Librarian

Via: ONR

APL/JHU 8621 Georgia Avenue Silver Spring, Maryland

Attn: Tech. Rpts. Group

Via: InsOrd

The Ohio State University Research Foundation Nineteenth Avenue Columbus 10, Ohio

Attn: Security Officer

Via: ONR

CIT

Pasadena 4, California

1 Attn: Aeronautics Dept. 2 Attn: Jet Propulsion Lab.

Via: ONR

University of Minnesota Minneapolis 14, Minnesota

Attn: Mechanical Eng. Dept.

Via: ONR

1 BAR

1

1

Aeroject-General Corporation 6352 N. Irwindale Ave. Azusa, California

RAND Corp. 1700 Main St.

Santa Monica, California

Attn: Lib., USAF Project RAND

Via: lnsMat

Douglas Aircraft Co., Inc. Santa Monica Division 3000 Ocean Park Blvd. Santa Monica, California

Attn: Chief Engineer

Via: InsMat

1 CONVAIR Corp.

A Div. of Gen. Dynamics Corp.

Daingerfield, Texas

Via: InsMat

United Aircraft Corporation 400 Main Street East Hartford 8, Connecticut Attn: Chief Librarian Via: InsMat

Guggenheim Aeronautical Lab. California Inst. of Technology Pasadena 4, California Attn: Aeronautics Lib.

Via: ONR

Cornell Aeronautical Lab., Inc. P. O. Box 235, 4455 Genessee St. Buffalo 21, New York

Attn: Librarian Via: InsMat

Lewis Flight Propulsion Lab. 21000 Brookpark Road Cleveland 11, Ohio

Attn: Chief, Supersonic Propulsion Div.

Via: InsMat

Armour Research Foundation 10 West 35th Street Chicago 16, Illinois

2 Attn: Dept. M Via: InsMat

Hughes Aircraft Corp.
Culver City, California

Attn: Assistant Director GMRD Div.

Via: InsMat

1 McDonnell Aircraft Corporation
P.O. Box 516
St. Louis 3, Missouri
Via: InsMat

General Electric Company 2900 Campbell Avenue Schenectady 5, New York

Attn: Library,

Guided Missiles Dept.

Via: InsMat

Eastman Kodak Company
Navy Ordnance Division
50 West Main Street
Rochester 14, New York
Attn: Mr. W. B. Forman

Via: InsOrd

Aeroballistic Research Department External Distribution List for Aeroballistic Research (X la)

No. of Copies

No. of Copies

1 Chief, Fluid Mechanics Section National Bureau of Standards Washington 25, D. C.

National Bureau of Standards Washington 25, D. C.

1 Attn: Applied Math. Div.

Commanding Officer Office of Naval Research Br. Off. Box 39, Navy 100 Fleet Post Office New York, New York

Langley Aeronautical Laboratory Langley Field, Virginia Attn: Theoretical Aerodynam.

Div.

Case Institute of Technology Cleveland 6, Ohio Attn: G. Kuerti

Massachusetts Institute of Tech. Cambridge 39, Mass.

1 Attn: Prof. Joseph Kaye Room 1-212

The Johns Hopkins Univ.
Charles and 34th Streets
Baltimore 18, Maryland
Attn: Dr. Francis H. Clauser

2 Director Inst. for Fluid Dynamics and Applied Mathematics University of Maryland College Park, Maryland

Cornell University Graduate School of Aero. Eng. Ithaca, New York

l Attn: Prof. W. R. Sears

1 AERCON, Inc. 560 Punahou St. Altadena, California Princeton University
James Forrestal Research Center
Gas Dynamics Laboratory
Princeton, New Jersey
Attn: Prof. S. M. Bogdonoff

No. of Copies

Opies	<u>-</u>	copies	-
	Commanding Officer and		New York University
	Director		45 Fourth Avenue
	David Taylor Model Basin		New York 3, New York
	Washington 7, D. C.	1	Attn: Prof. R. Courant
2	Attn: Hydrodynamics Lab.	_	Acti. Flor. R. Courant
2	Acti. Hydrodynamics hab.		Polytechnic Institute of
	Res. and Development Board		Brooklyn
	Pentagon 3D1041		527 Atlantic Avenue
	Washington 25, D. C.		Freeport, New York
2	Attn: Library Branch	1	Attn: Dr. A. Ferri
4	Attn. Dibrary Branch	1	Attn: Prof. N. J. Hoff
	Tet Dranulaion Lab	1	Attn: Prol. N. J. Holl
	Jet Propulsion Lab.	1	Attn: Dr. M. Bloom
	CIT	1	Attn: Dr. P. Libby
	4800 Oak Grove Drive		Anna Tat Canama 1 Cama
	Pasadena, California		AeroJetGeneral Corp.
1	Attn: F. E. Goddard, Jr.		6352 North Irwindale Ave.
1	Attn: Dr. P. Wegener	1	Axusa, California
1	Attn: Mr. J. Laufer	1	The state of the s
1	Attn: Mr. D. R. Bartz		sentative
1	Attn: Mr. L. Lees		**
1	Attn: Prof. M. S. Plesset		Harvard University
1	Attn: Dr. H. W. Liepmann	_	Cambridge 38, Massachusetts
1	Attn: Mr. A. Roshko	1	Attn: Prof. G. Birkhoff
1	Attn: Dr. D. Coles	1	Attn: Prof. R. von Mises
1	Attn: Mr. Satish Dhawan		
			Hughes Aircraft Co.
	University of Illinois		Missile Aero. Dept.
	202 E. E. R. L.		Culver City, California
	Urbana, Illinois	1	Attn: Dr. Allen E. Puckett
1	Attn: Prof. A. H. Taub		
	MIT		Engineering Res. Institute
	Cambridge 39, Massachusetts		East Engineering Bldg.
1	Attn: Project Meteor		Ann Arbor, Michigan
1	Attn: Prof. G. Stever	1	· —
ī	Attn: Prof. Dean		
ī	Attn: Mr. J. Baron		The Artillery School
ī	Attn: Mr. M. Sweeney, Jr.		Anti-Aircraft & Guided Missiles
ī	Attn: Prof. E. Reissner		Branch
î	Attn: Guided Missiles		Fort Bliss, Texas
•	Library	1	Attn: Res. & Analysis Sec.
	Dumanu of Ondressa		Prown University
	Bureau of Ordnance		Brown University
Room 0432, ReS1-e			Div. of Engr.
	Main Navy Building	1	Providence, Rhode Island
	17th St., & Const. Ave.	1	Attn: Prof. R. F. Probstein
	Washington 25, D. C.		
1	Attn: Mr. L. L. Liccini		

1

1

1

1

1

Arnold Res. Organization, Inc. Chief, Gas Dynamics Facility Tullahoma, Tennessee

Attn: Mr. R. Smelt

Facilities Division DCS/ Development Hdqts. USAF, Rm. 5C368 Pentagon Washington 25, D. C. Attn: Dr. F. L. Wattendorf

Ohio State University

Aero, Engr. Department Columbus, Ohio

1 Attn: Prof. G. L. Von Eschen

> Consolidated Vultee Aircraft Corp.

San Diego, California 1 Attn: Mr. R. L. Bayless

> University of Minnesota Minneapolis 14, Minnesota

Attn: Dr. E. R. G. Eckert 1 Attn: Dr. W. S. Bradfield 1

Attn: Dr. J. Hartnett 1

Holloman Air Force Base Alamagordo, New Mexico 1 Attn: Dr. G. R. Eber

> Air Force Dir. of Res. & Development Pentagon, Rm. 4E348 Washington 25, D. C.

1 Attn: Dr. A. E. Lombard

> North American Aviation Inc. Aerophysics Lab. Downing, California

1 Attn: Dr. E. R. Van Driest

Douglas Aircraft Co., Inc. El Segundo, California

1 Attn: D. N. Morris

1 Attn: K. E. Van Every Daniel Guggenheim School of Aeronautics New York University New York 3, New York Attn: Prof. H. F. Ludloff K.

U. S. Air Force Main Navy Bldg., Rm. 3816 Washington 25, D. C.

Attn: Major H. W. Keller

University of California P. O. Box 1663 Los Alamos, New Mexico Attn: W. F. Brown

Applied Physics Laboratory The Johns Hopkins University 8621 Georgia Avenue Silver Spring, Maryland

1 Attn: Dr. F. Frenkiel 1 Attn: Dr. F. K. Hill Mr. E. A. Bonney 1 Attn:

1 Mr. D. Fox Attn:

> Chance-Vought Aircraft Development Section Dallas, Texas

1 Attn: Dr. R. E. Wilson

Dept. of Aeronautical Engr. Rensselaer Polytechnic Institute

Troy, New York

AVION - Division of ACF Paramus, New Jersey 1 Attn: Mr. R. G. Grape

Philco Corporation G & I Division-Research 4700 Wissahickon Ave. Philadelphia 44, Penn. Attn: Mr. A. Bernstein

Research Dept. United Aircraft Corp. East Hartford, Connecticut Attn: Mr. W. E. Powers

1

Air Force Armament Center
Eglin Air Force Base, Florida

Attn: ACZ

General Electric Company
Special Defense Projects Dept.
3198 Chestnut Street
Philadelphia, Pennsylvania
Attn: Dr. Nathan Ness

CONVAIR
A Division of General Dynamics
Corp.
Scientific Research Laboratory
3595 Frontier Street
San Diego, California
1 Attn: Mr. M. Sibulkin

- 1 University of Southern California Engineering Center 3518 University Ave. Los Angeles 7, California
- Avco Manufacturing Corp.
 Research Labs
 2385 Revere Beach Parkway
 Everett 49, Massachusetts
 Via: WDSIT
 Western Dev. Div.
 Inglewood, Calif.