Frühjahr 11 Themennummer 2 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Gegeben sei das Differenzialgleichungssystem

$$\dot{x} = -x + 2e^{2t}y$$

$$\dot{y} = -2y.$$

- a) Bestimmen Sie die allgemeine Lösung des Differenzialgleichungssystems.
- b) Geben Sie alle Ruhelagen des Systems an und untersuchen Sie diese auf Attraktivität.

Lösungsvorschlag:

- a) Die zweite Gleichung $\dot{y} = -2y$ wird bekanntermaßen genau von Funktionen der Form $y(t) = ce^{-2t}$, $c \in \mathbb{R}$ gelöst. Setzen wir das in die erste Gleichung ein, so erhalten wir $\dot{x} = -x + 2c$. Auch hier ist (nach dem Superpositionsprinzip) bekannt, dass die Lösungen genau die Funktionen $ke^{-t} + 2c$, $k \in \mathbb{R}$ sind. Die allgemeine Lösung ist also $(x(t), y(t)) = (ke^{-t} + 2c, ce^{-2t}), t \in \mathbb{R}$.
- b) Die Ruhelagen könnte man aus der allgemeinen Lösung ablesen. Noch einfacher ist es aber festzustellen, dass aus $0 \equiv \dot{y} = 2y$ schon $y \equiv 0$ und folglich $0 \equiv \dot{x} = -x$ folgt, was wiederum $x \equiv 0$ impliziert. 0 ist also die einzige Ruhelage. Sie ist nicht attraktiv; um das zu sehen, sei $t_0 = 0$ und $\varepsilon > 0$ beliebig. Dann ist $\|(0, \frac{\varepsilon}{2})\|_2 = \frac{\varepsilon}{2} < \varepsilon$ und die Lösung der Differentialgleichung zur Anfangsbedingung $(x(0), y(0)) = (0, \frac{\varepsilon}{2})$ lautet $(x(t), y(t)) = (-\varepsilon e^{-t} + \varepsilon, \frac{\varepsilon}{2} e^{-2t})$, was für $t \to \infty$ gegen $(\varepsilon, 0) \neq (0, 0)$ konvergiert. Per Definitionem ist (0, 0) nicht attraktiv.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$