

PC ZHAW, MPC FS16, M.

Begriffe und Grundlagen

M. Thaler, TG208, tham@zhaw.ch www.zhaw.ch/~tham

Februar 16

- 1

- Literartur
 - [McCool] pp. 39-75
 - [Mattson] pp. 17-23
 - [Grama] pp. 197 231
 - [Gove] pp. 333 382

Lehrziele

Sie können

- die Begriffe Concurrent und Parallel erklären
- die wichtigsten Begriffe im Zusammenhang mit Parallel Computing aufzählen und erklären
- die wichtigsten Grössen zur Performance Evaluation aufzählen und erklären
- das Gesetz von Amdhal und Gustafson erklären und diskutieren
- Datentransfer mit Hilfe von Latenz und Bandbereite beschreiben
- Skalierbarkeit bei parallelen Systemen erklären
- können die O-Notation erklären

Februar 16

Inhalt

- Parallel Computing
- Wichtige Begriffe
- Performance Evaluation
- Skalierbarkeit
- Komplexität

ZHAW, MPC FS16, M. Thaler

MPC

Februar 16 3

What is parallel computing?

Concurrent computing

- traditionell auf Uniprozessor-Systemen
- Betriebssystem → schaltet zwischen Tasks um
 - bessere Ausnutzung der Rechnerressourcen
 - Tasks "scheinen" gleichzeitig verarbeitet zu werden
 - gilt auch wenn mehrere Prozessoren zur Verfügung stehen
- nicht notwendigerweise "gleichzeitg"

Parallel computing

- mehrere Prozessoren arbeiten gleichzeitig, um ein Programm schneller zu berarbeiten als mit einem Prozessor
- treibende Kräfte
 - Performance (faster, more, less power)
 - aktuelle HW-Plattformen

Februar 16

- Concurrent in Sinne von
 - das Betriebssystem kann keine Tasks parallelisieren sondern "verschränkt" die Ausführung der Tasks
- Anmerkung zu den Begriffen
 - concurrent: alle Tasks machen "Fortschritte"
 - parallel: alle arbeiten echt gleichzeitig (parallel)
- Zitat Tanenbaum (Operating Systems, 3rd ed.) zum Thema Shared Memory Multiprozessoren
 - " A program running on any of the CPU's sees a normal (usually paged) virtual address space. The only unusal property this system has is that the CPU can write some value into a me-mory word and then read the word back and get a different value (because another CPU has changed it)."

Wichtige Begriffe

Task

- Programm oder Algorithmus: in Tasks aufgeteilt
 - eine Sequenz von Instruktionen (Teilaufgaben)
 - "logischer" Teil eines Programms oder Algorithmus
- z.B.
 - eine Funktion
 - Bearbeitung eines Datenblocks
 - Update eines Datenwertes
 - etc.

Februar 16

J

Wichtige Begriffe

Unit of Execution: UE

- Ausführung eines Tasks: Task wird UE zugeteilt
 - Thread: gemeinsame Ressourcen → Shared Memory
 - Prozess: keine gemeinsamen Ressourcen → IPC

Processing Element: PE

- generisches Hardware-Element, das Instruktionsstrom ausführt
 - Workstation
 - Prozessor, CPU, ALU, ...

F-1----- 10

... wichtige Begriffe

Load Balance / Load Balancing

- Zuteilung: Task → UE → PE
 - beeinflusst gesamte Performance (PE Nutzung)
- Zuteilung: UE → PE
 - statisch oder dynamisch

Synchronisation

- stellt sicher, dass Ereignisse und Abläufe in der richtigen Reihenfolge stattfinden, falls gefordert
- verhindert Race Conditions

Februar 16

7

Zuteilung UE → PE

ZHAW, MPC FS16, M. Thaler

- statisch: zur Compilationszetit
- dynamisch: zur Laufzeit
- Race Condition
 - mindestens zwei Tasks greifen auf gemeinsame Daten zu
 - mindestens ein Zugriff ist ein Schreibzugriff

Performance Measures

Analytische Modellierung

- Speedup
- Effizienz
- Kosten

Modelle

- Amdhal
- Gustafson
- Work-Span

Weitere Faktoren

- Skalierbarkeit
- Daten Transfers
- Arithmetische Dichte

Februar 16

ZHAW, MPC FS16, M. Thaler

ZHAW, MPC FS16, M. Thale

Performance Measures

Ausführunszeiten

- T(1): Ausführungszeit auf einem Prozessor
- T(P): Ausführungszeit auf P Prozssoren
- $T_i(P)$: Ausführungszeit auf Prozessor i bei P Prozessoren

Speedup¹⁾

• beantwortet: wie viel mal schneller als auf einem Prozessor

$$S(P) = \frac{T(1)}{T(P)}$$

■ Effizienz¹): mittlere Auslastung

$$E(P) = \frac{S(P)}{P}$$

1) Speedup und Effizienz: relative Masse

Februar 16

- Annahme
 - die P Prozessoren stehen während der gesamten Ausführungszeit als "eine Parallel-Ressource" zur Verfügung
 - diese Ressource ist nicht "sharable"
- Ausführungszeiten
 - Ausführungszeiten → Wall-Clock Time
 - nur Tasks, die zum Programm gehören
- Effizienz
 - gibt Hinweis auf Rechnerauslastung

... Performance Measures

Kosten

• gesamter Rechenaufwand (Zeit) auf P Prozessoren

$$C(P) = P \cdot \max(T_i(P)) \ i = 0 \dots P-1$$

• kostenoptimal für C(P) = C(1)

Rechenleistung & Leistungsverbrauch

- Power $\sim P \cdot f^3$
- Performance $\sim P \cdot f$

Februar 16

- Kosten
 - Parallel-Ressource ist während längster $T_i(P)$ belegt
 - beinhalten die gesamten Prozessor-Ressource-Kosten
 - Overhead "erzeugt" Kosten

- Hinweis zu P
 - Anzahl Prozessoren
 - auch Anzahl Tasks, die von Hardware parallel ausgeführt werden können
 - meist Verdoppelung, weil i.d.R. Anzahl Prozessoren Zweierpotenz

... Amdahls Law

Ansatz

- Rechenzeit für paralleles Programm
 - T(1): Ausführungszeit auf einem Prozessor
 - $-\gamma$: serieller, nicht parallelisierbarer Anteil von T(1)
 - P: Anzahl Prozessoren

$$T(P) = T_{seriell} + T_{parallel} = \gamma \cdot T(1) + \frac{(1 - \gamma) \cdot T(1)}{P}$$

Speedup und Effizienz

$$S(P) = \frac{T(1)}{T(P)} = \frac{1}{\gamma + \frac{1 - \gamma}{P}}$$

$$E(P) = \frac{S(P)}{P} = \frac{1}{\gamma \cdot P + 1 - \gamma}$$

Februar 16

12

Hinweise

ZHAW, MPC FS16, M. Thale

MPC

- berücksichtigt nicht
 - Overhead durch Parallel Computing: z.B. Erzeugen und Beenden von Threads
 - "schlechte Load Balance"
 - Overhead für Kommunikation
- wichtigste Annahme
 - Problemgrösse bleibt konstant

$$E(P \rightarrow \infty) = ?$$

ZHAW, MPC FS16, M. Thale

MPC

- gleiche Problemstellung → ändern der Anzahl Prozessoren
 - für gewisse Fälle eine unrealistische Annahme
- zu pessimistisch, wenn Problemgrösse und Anzahl Prozessoren wachsen, Rechenzeit aber konstant bleibt → Gustafson's Law

Februar 16

zh

- In gewissen Fällen ist Amdhal aber auch zu optimistisch
 - keine Berücksichtigung des Overheads
 - Kurven beginnen in diesem Fall mit steigender Anzahl Prozessoren wieder zu sinken

... Gustafson's Law

Gustafson's Law (1988)

- Annahme
 - Problemgrösse N und Anzahl Prozessoren P nehmen zu
 - Rechenzeit $T_{total}(P)$ bleibt konstant
- für *S*(*P*) gilt:

$$S(P) = P - (P-1) \cdot \gamma$$

- Zunahme Speedup → proportional zur Anzahl Prozessoren
 - Speedup bezieht sich hier auf "Menge" der Berechnung
- für *E*(*P*) gilt:

$$E(P) = \frac{S(P)}{P} = 1 - \left(1 - \frac{1}{P}\right) \cdot \gamma$$

Februar 16

- Gustafson's Law: bei Problemstellungen mit sehr viel Parallelität
 - Speedup, wenn Anzahl P und Problemgrösse N steigen
 - Annahme: $T_{seriell}$ konstant für steigende Anzahl P $T_{total}(P)$ bleibt gleich gross
- Berechnungen

$$T(P) = T_{seriell} + T_{parallel} = const = T(1)$$

$$\Rightarrow S(P) = \frac{T_{seriell} + P \cdot T_{parallel}}{T_{seriell} + T_{parallel}} = \frac{T_{seriell}}{T_{seriell}} + \frac{P \cdot T_{parallel}}{T_{seriell}} + T_{parallel}$$

$$S(P) = \frac{T_{seriell}}{T_{seriell}} + \frac{P}{T_{seriell}} \cdot \frac{T_{seriell} \cdot T_{parallel}}{T_{seriell}} + T_{parallel}$$

$$S(P) = \frac{T_{seriell}}{T_{seriell}} + T_{parallel} \cdot \left(1 + \frac{P}{T_{seriell}} \cdot T_{parallel}\right)$$

$$T_{parallel} = T_{parallel}$$

$$T_{parallel} = T_{parallel} \cdot \frac{1 - \gamma}{\gamma}$$

• Effizienz
$$E(P) = 1 - \left(1 - \frac{1}{P}\right) \cdot \gamma \approx 1 - \gamma$$

MPC

Work-Span Model

Grunidee

- Algorithmus als Graph (DAG)
- Länge kritischer Pfad: "span"

Annahme: alle Tasks gleiche Rechenzeit T = 1

$$\rightarrow T_{seriell} = 2 \text{ und } T(1) = 16$$

Februar 16

... Work-Span Model

- Span (Länge kritischer Pfad)
 - definiert kürzest mögliche Rechenzeit

$$T(P \to \infty) = T_{\infty}$$

- Speedup
 - obere Grenze durch "Struktur" der Anwendung

$$S_{upper}(P \to \infty) = \frac{T(1)}{T(P \to \infty)} \le \frac{T(1)}{T_{\infty}} = S_{\infty}$$

Beispiel (vorne)

$$T(1) = 16$$
 $T_{\infty} = 6$ $\rightarrow S_{\infty} = \frac{16}{6} \approx 2.66$ $S_{Amdahl}(\infty) = \frac{1}{\gamma} = 8$

ZHAW, MPC FS16, M. Thaler

... Work-Span

Brennt's Lemma (1974)

• obere Grenze für Rechenzeit

$$T(P) \le \frac{T(1) - T_{\infty}}{P} + T_{\infty}$$

perfekt parallelisiebar : $T(1) - T_{\infty}$ nicht parallelisierbar:

• untere Grenze für Speedup

$$S(P) = \frac{T(1)}{T(P)} \ge \frac{T(1)}{\frac{T(1) - T_{\infty}}{P} + T_{\infty}} = \frac{P \cdot T(1)}{T(1) + (P - 1) \cdot T_{\infty}}$$

Speedup-Bereich

$$\frac{T(1)}{\frac{T(1)}{P} - \frac{T_{\infty}}{P} + T_{\infty}} \le S(P) \le \frac{T(1)}{T_{\infty}} \qquad \text{mit } T_{\infty} << T(1) \\ \rightarrow T_{\infty} / P \text{ vernachlässigbar}$$

Februar 16 18

Work Span & Parallel Slack

- Mit Brent's Lemma und $\frac{T(1)}{P} >> T_{\infty} \rightarrow \frac{T(1)}{P \cdot T} >> 1$
 - linearer Speedup, wenn Programm mehr Parallelität hat, als parallele Hardware verarbeiten kann

$$S(P) \approx \frac{P \cdot T(1)}{T(1) + (P - 1) \cdot T_{\infty}} \approx \frac{P \cdot T(1)}{T(1)} = P$$

■ Parallel Slack → potentieller Parallelismus

$$S_{\infty} = \frac{T(1)}{T_{\infty}} \rightarrow \frac{S_{\infty}}{P} = \frac{T(1)}{P \cdot T_{\infty}}$$

- sollte > 8 sein [McCool]
- Motivation für "Over-decomposition" mit "Greedy Scheduling"

- Greedy Scheduler
 - "A greedy scheduler is a scheduler in which no processor is idle if there is more work it can do"

Guy Blelloch

- $T(1) >> P \cdot T_{\infty}$
 - auch wenn $P \cdot T_{\infty}$ als minimale Rechnenzeit verwendet wird, gibt es immer noch viele Tasks bzw. "Rechenzeit", die gleichzeitig ausgeführt werden kann

- Over-decomposition
 - macht nur Sinn wenn Support von Laufzeitumgebung
 - z.B. Taskpool mit Greedy Scheduling, etc.
- Task Queues
 - es werden soviele Threads gestartet wir die Hardware parallel verarbeiten kann
 - Tasks werden dynamische diesen Threads zugewiesen
 - ermöglicht Greedy Scheduling
- Greedy Scheduling
 - keine Prozessor ist idle, solange noch Arbeit zur Verfügung steht

Skalierbarkeit (Scaling)

Parallele Programme

- Entwurf und Implementation i.A. mit "kleinen Systemen"
 - Anzahl Prozessoren
 - Problemgrösse (Daten, Umfang, etc.)

Frage

- wie verhält sich Performance
 - mit mehr Prozessoren P
 - und grösserem Problem N
- ist das System immer noch korrekt
- d.h. wie skaliert das System

Skalierbarkeit

- Vergrösserung des Systems (HW/SW)
 - → proportionale Vergrösserung des Resultats

Februar 16 22

- Skalierbarkeit
 - Zunahme nicht notwendigerweise linear
 - nicht skalierbar wenn
 - z.B. zusätzliche Prozessoren → Abnahme des Speedups (Kommunikation nimmt überproportional zu)
- Skalierbarkeit nach [Grama]
 - für konstanten Effizienzwert E(N) existiert ein Paar "Anzahl PE's" und "Problemgrösse"
 - Anzahl PE's und Problemgrösse nehmen monton zu

Weak and Strong Scaling

Weak Scaling

- die Problemgrösse wird erhöht
- die Anzahl Prozessoren wird erhöht
- die Arbeitsmenge pro Prozessor bleibt konstant
- Gustafson gehört in diese Katergorie

Strong Scaling

- die Problemgrösse bleibt konstant
- die Anzahl Prozessoren wird erhöht
- die Arbeitsmenge pro Prozessor nimmt ab
- schwieriger als Weak Scaling → weniger Data Re-Use und mehr Kommunikation
- Amdhal gehört in diese Kategorie

Februar 16 23

- Weak Scaling
 - interessant für O(n) Algorithmen
 - e.g. GPU computing
- Strong Scaling
 - schwieriger zu realisieren
 - weniger Arbeit pro Prozessor
 - weniger Daten pro Prozessor und Re-Use
 - mehr Overhead für Task-Verwaltung

Skalierbarkeit

■ Speedup *S*(*P*)

- linear → optimal, möglich
- sublinear → üblich
 - Amdhal
 - Zusatzaufwand
- nicht skalierbar
 - Overhead durch
 - Datenaustausch / Kommunikation
 - Synchronisation
- superlinear
 - Cache Effekte (selten)

• Speedup

- linear → SIMD und Vektorprozessing → möglich
- sublinear
 - → serieller Anteil fast immer vorhanden
 - → Zusatzaufwand durch
 - Parallelisierung
 - Datenaustausch / Kommunikation
 - Synchronisation
- nicht skalierbar
 - wenn Kommunikation und/oder Synchronisation überproportional zunehmen
 - z.B. zu geringe Busbandbreite resp. zu viele Prozessoren am gleichen Bus
- superlinear ... sehr selten
 - möglich, vor allem wegen Cache Effekten mehr Prozessoren → Problem hat in Cache Platz

ZHAW, MPC FS16, M. Thaler

Daten Transfers

Latenz und Bandbreite

• beschreiben Modell für "Message Transfers"

$$T_{transfer} = T_{latenz} + \frac{M}{Bandbreite}$$

- Anzahl Bytes pro Meldung
- Bandbreite → Anzahl Bytes pro Zeiteinheit • B

Diameter

• Anzahl Abschnitte in einem "Netzwerk" zwischen zwei Rechnerknoten (Sender und Empfänger)

Februar 16 25

- Transferzeit bei mehreren "Hops"
 - Diameter x T_{transfer}

... Daten Transfer

Beispiel: Zugriff auf Speicher (Cache Line)

- DDR3 (typ. Werte): $T_{latenz} \approx 60 ns$, $B \approx 20 GB/s$
- Cache Line: 64 Bytes

$$T_{transfer} = T_{latenz} + \frac{M}{Bandbreite} = 60ns + \frac{64}{20GB/s} = 63.2ns$$

• einfacher Benchmark: pointer chasing (linked list in array)

- Benchmark: Pointer Chasing
 - eine "linked list" mit Arrays
 - a[i] enthält Pointer auf a[j]
 - a[i] und a[j] in verschiedenen Cache Lines
 - Distanz i und j: d = (N-1)/4
 - Berechnung j: j = (i + d) % N
 - Zugriff in C: ptr = (char **)(*p)
 - Realisierung in Assembler: siehe oben
- Sequentielle Adressierung des Arrays
 - 4.0 ns pro Cache line
 - 0.6 ns pro double / long / pointer
 - 0.4 ns pro int
 - 0.4 ns pro byte
- Daten zu Speicherzugriffe: Intel i7

http://software.intel.com/en-us/forums/topic/287236

http://software.intel.com/sites/products/collateral/hpc/vtune/ performance_analysis_guide.pdf

Arithmetic Density

Anzahl Instruktionen / Anzahl Datenzugriffe

$$D = \frac{\mathsf{i}}{\mathsf{r} + \mathsf{w}}$$

i: instructions, r: reads, w: writes
Caching nicht berücksichtigt

Beispiel: Laplace Operator

$$\nabla^2 U = \left(\frac{d^2 U(x, y)}{dx^2} + \frac{d^2 U(x, y)}{dy^2}\right)$$

diskretisiert

$$\nabla^{2}U(x,y) = U(x-1,y) + U(x+1,y) + U(x,y-1) + U(x,y-1) - 4 \cdot U(x,y)$$
"stencil"

• arithmetische Dichte D

$$D = \frac{5}{5+1} = \frac{5}{6} = 0.83$$

Februar 16

07

Diskussion

ZHAW, MPC FS16, M. Thale

- arithmetische Dichte → ein relativ ungenaues Mass
- Performance: abhängig davon, ob Datenzugriffe auf Daten in Cache oder Memory
- gibt Hinweis, ob Anwendung "computation bound" oder "data bound"
- je grösser, desto besser
- Zugriffsmuster → Stencil (Schablone)
 - häufig bei der Lösung von Differentialgleichungen anzutreffen
 - z.B. Heat Diffusion, Wettersimulationen, etc.
- Hinweis zu Dichte:
 - Caching "pre-loads" Data
 - exakte Berücksichtigung schwierig
 - obiges Beispiel (best case): $1 \text{ r} \rightarrow 1 \text{ w} = \text{Dichte D} = 2.5$

MPC ZHAW, MPC FS16, M. Thaler

Komplexität: O-Notation

O-Notation beschreibt

- die asymptotische Komplexität eines Problems
- Zusammenhang zwischen Problemvergrösserung und Laufzeitzunahme
- z.B. Verdoppelung des Problems → doppelte Laufzeit: linear

Wichtige Klassen

Klasse	Name
O(1)	konstant
O(N)	linear
O(log N)	logarithmisch
O(N ²)	quadratisch
O(2 ^N)	exponentiell

Hinweise

- die Notation gilt für grosse N
 - was gross ist, muss von Fall zu Fall entschieden werden
- Komplexität → guter "Hinweis"
 - deckt nicht alle Aspekte ab
 - berücksichtigt Anzahl der Instruktionen , aber
 - → nicht Komplexität
 - → nicht Cache Verhalten
 - → Skalierbarkeit
 - → Anzahl Prozessoren
 - → etc.
- für Anzahl Instruktionen → korrekte Funktionen verwenden (z.B. log2 statt log)

Beispiele

- O(N): komponentenweise Mul zweier Vektoren

- O(log₂ N): Summe der Vektorelemente

- O(N²): Filterung eines Bildes

- O(N log₂ (N): Quicksort (Mittelwert)

Siehe auch Theoretische Informatik (W.Weck)

