# Universidade Federal do Rio Grande do Sul Instituto de Informática

# Organização de Computadores Aula 21

# Memória Virtual no Pentium

# Revisão Memória Virtual: Paginação e Segmentação

- Memória virtual pode ser categorizada em 2 principais classes:
  - Memória Paginada: blocos de tamanho fixo
  - Memória Segmentada: blocos de tamanho variável



FIGURE 5.38 Example of how paging and segmentation divide a program.

# Revisão MV <u>Segmentação vs. Paginação</u>

#### Memória Paginada

- Blocos de tamanho fixo (4Kb a 64Kb)
- Uma palavra por endereço (número da página + offset)
- Fácil de trocar as páginas (todas de mesmo tamanho)
- Fragmentação interna (nem todas páginas são usadas)
- Comunicação com disco eficiente (otimização do tamanho da página)

#### Memória Segmentada

- Blocos de tamanho variável ( até 64 KB ou 4GB)
- Duas palavras por endereço (segmento + offset)
- Dificuldade de troca dos segmentos ( procurar segmentos )
- Fragmentação externa(porções da memória não usadas)
- Ineficiência na comunicação com disco (grandes e pequenos transfer)

#### Soluções Híbridas

Segmentos paginados: segmentos são a múltiplos de um tamanho de página

# Memória Virtual no Pentium

- 1. Introdução
- 2. Segmentação
- 3. Paginação

# 1. Introdução Processadores Intel

# 1. Introdução

- Gerenciamento de memória virtual foi introduzido no 286, modificado no 386 e mantido inalterado no 486
- Pentium também segue mesmo modelo do 386
- Suporte simultâneo a paginação e segmentação



• Windows utiliza apenas a paginação, com um único segmento

# Introdução

- Processador 286 introduziu dois modos de operação
- Modo real
  - emula o modo normal de operação do 8086, para permitir compatibilidade de software
  - 1 MB de memória real endereçável
  - microprocessador entra automaticamente em modo real quando é ligado
- Modo protegido
  - permite uso de memória virtual
  - instruções especiais disponíveis
  - 16 MB de memória real endereçável 4 bits extras de endereço

# Sistema de Memória do Pentium III



• 128 KB -- 2 MB

# 2. Segmentação no Pentium

- Registradores seletores de segmento
  - com 16 bits
  - similares aos registradores de segmento do 8086, mas com função diferente

| CS | segmento de código |  |
|----|--------------------|--|
| SS | segmento de pilha  |  |
| DS | segmento de dados  |  |
| ES | segmento de dados  |  |
| FS | segmento de dados  |  |
| GS | segmento de dados  |  |

- Segmentação está disponível apenas no modo protegido
  - cuidado! no modo real, também existem "segmentos" (de 64 KB, como no 8086), mas não há relação entre os dois mecanismos
- Segmentos têm qualquer tamanho e podem iniciar em qualquer endereço
- Registrador de segmento contém um <u>seletor</u>, que é um apontador para um <u>descritor de segmento</u>, armazenado na memória
- Descritor contém endereço base e tamanho do segmento endereço linear
- Endereço linear = endereço base do segmento + deslocamento paginação endereço físico
- Se deslocamento for maior do que o tamanho do segmento, é gerada interrupção ("falha de segmento")

segmentação

endereço lógico

Interpretação do valor contido no seletor (registrador de segmento)



- LDT ("Local Descriptor Table"), que descreve os segmentos locais a cada programa (código, dados, pilha)
- GDT ("Global Descriptor Table"), partilhado por todos os programas.

#### Geração do endereço linear



- Descritores de segmento
  - ocupam 8 bytes
  - contêm 3 campos

| endereço base do segmento – 32 bits |                                                             |  |
|-------------------------------------|-------------------------------------------------------------|--|
| tamanho do segmento – 20 bits       |                                                             |  |
| atributos do segmento               |                                                             |  |
|                                     | bit de granularidade G – tamanho é em bytes ou páginas (4K) |  |
|                                     | bit de segmento presente P                                  |  |
|                                     | bit de segmento acessado A                                  |  |
|                                     | nível de privilégio do segmento – 2 bits                    |  |
|                                     | tipo do segmento – 5 bits – dados, código, executável,      |  |

#### GDTR e LDTR

- registradores de 32 bits
- contêm o endereço base das duas tabelas de descritores ( local e global )
- estes endereços já são lineares, não passam pelo mapeamento da segmentação
- Tabelas de descritores estão armazenadas na memória
- Processador possui em hardware um buffer com imagem dos 6 descritores de segmento que correspondem aos 6 seletores
  - quando seletor é carregado com novo valor, descritor correspondente é trazido da tabela para este buffer
  - mapeamento de endereços é feito portanto em hardware

# 3. Paginação no Pentium

# 3. Paginação

- Paginação é recurso opcional
  - não havendo paginação, o endereço linear é igual ao endereço físico
- Paginação é habilitada pelo bit PG bit 31 do registrador de controle CR0
- Ocorre após a segmentação
- Com paginação ativa, o endereço linear é interpretado como sendo formado por 3 campos

| 10 bits   | 10 bits | 12 bits      |
|-----------|---------|--------------|
| diretório | página  | deslocamento |

# **Pentium III**



### Paginação

- Mapeamento de endereços lineares em endereços físicos envolve pesquisa em duas tabelas
  - PD diretório de páginas
  - PT tabela de páginas
- PD diretório de páginas
  - 1024 entradas de 32 bits
    - ocupa portanto exatamente uma página da memória
  - contém PDEs
    - PDE é um endereço base para uma tabela de páginas
    - este endereço é físico, e não linear
- Endereço base do diretório de páginas está armazenado no registrador de controle CR3
  - é um endereço físico, e não linear

### Paginação

- PT tabela de páginas
  - também 1024 entradas de 32 bits
  - contém PTEs, com 2 campos

endereço de page frame – 20 bits

atributos de página

dirty – página alterada

accessed – página acessada recentemente

presente – página presente

nível de privilégio – usuário ou supervisor

operação permitida – leitura ou escrita

Existe uma tabela de páginas para cada página do diretório

# Two-Level Lookup



**Page Directory** 

# Paginação



### Paginação

- TLB Translation Look-aside Buffer
  - mantém informação para mapeamento das páginas mais recentemente utilizadas (tipicamente 32 a poucas centenas)
  - memória associativa
  - recebe endereço linear e fornece a PTE correspondente
  - economiza tempo de acesso às tabelas PD e PT
  - hit ratio no TLB maior que 98 % é usual
- Pentium também permite páginas de 2 Mbytes, enquanto no 386 as páginas são fixas, com 4 Kbytes
- TLBs no Pentium II -- IV: 2 TLBs
  - TLB para dados : Pentium II: 64 entradas/posições , Pentium IV: 128 entr.
  - TLB para instruções : Pentium II: 32 entradas , Pentium IV: 128 entradas
  - ambos são associativas em 4 grupos (4-way set associative)
  - Pentium : substituição pseudo-LRU

# Pentium III L1 Cache Access



# L1 Cache Access



- Partition physical address into CO, CI, and CT.
- Use CT to determine if line containing word at address PA is cached in set CI.
- If no: check L2.
- If yes: extract word at byte offset CO and return to processor.

# **FIM**