Applied Kalman Filtering Dr. Robert H. Bishop

Part 6: Sensitivity Analysis and Error Budgets

Background: Consider the two-dimensional tracking problem and the extended Kalman filter developed in Part 4 and 5.

Tasks:

- 1. Run the simulation and determine the time at which the height above the radar is about 10 m. Denote that time t_s
- 2. Run the EKF up to time t_s and store the optimal Kalman gain matrix at each t_k for use in the error budget table computations. Plot each element of the Kalman gain matrix.
- 3. Create a set of error groups. Suggest that you form the error groups around the elements of the initial state estimation error covariance matrix, the constant process noise spectral density, \mathbf{Q}_s and the constant measurement noise covariance, \mathbf{R}
- 4. At t_s , create an error budget table and quantify the state estimation error contributions of each error group to each state estimation error uncertainty (as represented by the state estimation error covariance)
- 5. Using the error budget table in (4), create a set of sensitivity plots