High Energy Event Reconstruction

Michinari Sakai

University of Hawaii

2014 September 4

Section 1

Energy Calibration

High Energy ($>\sim$ 1 GeV) Calibration

- ► KamLAND has traditionally used energy calibrations for lower energy regimes (~MeV)
- ► Can this calibration be used for higher energy (~GeV) events too?
- Need energy calibration for higher energies
- Candidates:
 - ▶ linac (5 MeV–10 MeV)
 - ▶ Michel electron (~ 50 MeV)
 - cosmic ray muon
- Choose cosmic ray muon b/c it is the only source with GeV range energies

Muon candidate selection

For each run, choose

- ▶ 1000 LS muons (impact parameter < 650 cm)
- ▶ 1000 MO muons (impact parameter > 650 cm)

Subtract Cherenkov component to get scintillation component of LS muons

Convert $dx \rightarrow dE$ using muon events in LS (KLG4)

Figure : Use average value of $dE/dx = 1.719 \,\text{MeV}\,\text{cm}^{-1}$

PE/MeV for all runs (new high-energy calibration)

PE/MeV for all runs (KAT energy)

$\mathsf{PE}_{\mathsf{scint}}/\mathsf{MeV} \ (\mathsf{TotalChargeID})$

Section 2

Neutrino Directionality

Test with muon data

Neutrino directionality algorithm was previously tested against KamLAND Muon Fitter using cosmic ray muon data

Figure : Agreement between Neutrino & Muon Fitters for 1000 muons in run 5000.

Found prepulsing of PMTs greatly affects direction algorithm.

PMT Prepulsing

PMT prepulsing is seen at few % level

How to resolve prepulsing?

- ► Throw away PMT hits that look early compared to surrounding neighbor PMTs.
 - \rightarrow Throwing away information!
 - \rightarrow Cannot remove clusters of prepulsing PMTs
- Can we do better?
 - ightarrow Maybe just throw away first small pulse in multi-pulse waveform and use first big pulse as PMT hit time?

Algorithm to filter prepulse:

Algorithm:

- 1. threshold $\equiv 0.05 \times$ (charge of largest pulse Q_2)
- 2. choose first pulse above threshold
- 3. let hit time = t_2
- 4. let charge = $Q_1 + Q_2 + Q_3$

Unfortunately, naively cutting first "small" and using next "large" pulse does not work!

204 events, runs 5000-5009

Gain Dependency of Prepulse

- Difficult to cut all of prepulse
 - Prepulse is easy to filter when pulse is from large gain
 - ▶ But harder to filter when pulse is from mid/low gain (prepulse is only sometimes seen depending on pulse charge)

Improved ν fitter

Sensitivity to outlier hit times was reduced

 $\rightarrow \nu$ fitter agreement with KamLAND μ fitter was improved

Test neutrino direction algorithm for simulated events (no prepulsing)

Procedure:

- 1. Use GENIE to let $\nu_{\rm e}$ (0.1 GeV–5 GeV) interact with main LS nuclei (¹H, ¹²C)
- Use KLG4 to simulate detector response using uniform distribution of events in ID (no residual nucleus / no prepulsing)
- 3. Place OD hit < 5
- 4. Reconstruct event properties using neutrino fitter and KAT

Agreement between true/reconstructed ν angle

no fiducial volume cut

Black line: 1σ of reconstructed angle from ν direction

Red line: 1σ of lepton angle from ν direction

Agreement between true/reconstructed ν angle

vertex $R < 600 \,\mathrm{cm}$

Black line: 1σ of reconstructed angle from ν direction

Red line: 1σ of lepton angle from ν direction

- Direction reconstruction is improved by fiducial volume cut on reconstructed vertex.
- ▶ What does the vertex mean for an finite size track size event?

Define lepton track length as (does not include shower):

Perpendicular distance from reconstructed vertex to track

track using simulated track end points

4000 5000 energy [MeV]

energy [MeV]

Is the vertex reconstructed at the middle of the track?

Distance of reconstructed vertex from track end points projected along tracks

Conclusion for reconstruction vertex

For ν_e energies 0.1 GeV–5 GeV:

- ▶ Vertex is within ~40 cm perpendicular from track
- ▶ Vertex is on average at ~middle of track
- peak of vertex distribution is biased toward track beginning.

Summary

- High energy calibration was done using minimum ionizing muon events
- ► Explored ways to cut PMT prepulsing → still work in progress (minor issue)
- ► Tested neutrino fitter with simulation for energies 0.1 GeV-5 GeV
- Have minimum tools to start doing analysis for indirect Dark Matter search