Diffie-Hellman Problem and Elgamal Encryption Scheme

Yu Zhang

HIT/CST/NIS

Cryptography, Spring, 2014

Outline

1 Cyclic Groups and Discrete Logrithms

2 Diffie-Hellman Assumptions and Applications

Content

1 Cyclic Groups and Discrete Logrithms

2 Diffie-Hellman Assumptions and Applications

Cyclic Groups and Generators

 \mathbb{G} is a finite group and $g \in \mathbb{G}$, the set

$$\langle g \rangle \stackrel{\text{def}}{=} \{ g^0, g^1, \dots, \} = \{ g^0, g^1, \dots, g^{i-1} \}.$$

- The **order** of g is the smallest positive integer i with $g^i = 1$.
- \mathbb{G} is a **cyclic group** if $\exists g$ has order $m = |\mathbb{G}|$. $\langle g \rangle = \mathbb{G}$, g is a **generator** of \mathbb{G} .
- lacksquare $\langle g \rangle$ is a subgroup of \mathbb{G} , and $|\langle g \rangle| \mid |\mathbb{G}|$.
- If \mathbb{G} is a group of prime order p, then \mathbb{G} is cyclic. All elements of \mathbb{G} except the identity are generators of \mathbb{G} .

Theorem 1

If p is prime, then \mathbb{Z}_p^* is cyclic.

Examples of Cyclic Groups

- \mathbb{Z}_{15} with '+' is cyclic and the '1' is a generator.
- \mathbb{Z}_7 with '+' is cyclic and all non-zero elements are generators.
- For \mathbb{Z}_7^* , 2 is not a generator, but 3 is.

 $\mathbb G$ is a cyclic group of order n, and g is a generator of $\mathbb G$. Then the mapping $f:\mathbb Z_n\to\mathbb G$ given by $f(a)=g^a$ is an isomorphism. For $a,a'\in\mathbb Z_n$,

$$f(a+a') = g^{[a+a' \mod n]} = g^{a+a'} = g^a \cdot g^{a'} = f(a) \cdot f(a').$$

All cyclic groups of the same order are "the same" in an algebraic sense, but this is not true in a computational sense.

Discrete Logarithm

If $\mathbb G$ is a cyclic group of order q, then \exists a generator $g\in\mathbb G$ such that $\{g^0,g^1,\ldots,g^{q-1}\}=\mathbb G$.

- $\blacksquare \ \forall h \in \mathbb{G}, \ \exists \ \mathsf{a} \ \mathsf{unique} \ x \in \mathbb{Z}_q \ \mathsf{such that} \ g^x = h.$
- $\blacksquare x = \log_q h$ is the discrete logarithm of h with respect to g.
- If $g^{x'} = h$, then $\log_q h = [x' \mod q]$.

The Discrete Logarithm Assumption

The discrete logarithm experiment $\mathsf{DLog}_{\mathcal{A},\mathcal{G}}(n)$:

- I Run a group-generating algorithm $\mathcal{G}(1^n)$ to obtain (\mathbb{G},q,g) , where \mathbb{G} is a cyclic group of order q (with $\|q\|=n$), and g is a generator of \mathbb{G} .
- **2** Choose $h \leftarrow \mathbb{G}$. $(x' \leftarrow \mathbb{Z}_q \text{ and } h := g^{x'})$
- **3** \mathcal{A} is given \mathbb{G}, q, g, h , and outputs $x \in \mathbb{Z}_q$.

Definition 2

The discrete logarithm problem is hard relative to $\mathcal G$ if \forall PPT algorithm $\mathcal A$, \exists negl such that

$$\Pr[\mathsf{DLog}_{\mathcal{A},\mathcal{G}}(n) = 1] \le \mathsf{negl}(n).$$

Overview of Discrete Logarithm Algorithms

- Given a generator $g \in \mathbb{G}$ and $y \in \langle g \rangle$, find x such that $g^x = y$.
- Brute force: $\mathcal{O}(q)$, $q = \operatorname{ord}(g)$ is the order of $\langle g \rangle$.
- Baby-step/giant-step method [Shanks]: $\mathcal{O}(\sqrt{q} \cdot \mathsf{polylog}(q))$.
- **Pohlig-Hellman** algorithm: when q has small factors.
- Index calculus method: $\mathcal{O}(\exp(\sqrt{n \cdot \log n}))$.
- The best-known algorithm is the **general number field sieve** with time $\mathcal{O}(\exp(n^{1/3} \cdot (\log n)^{2/3}))$.
- Elliptic curve groups vs. \mathbb{Z}_p^* : more efficient for the honest parties, but that are equally hard for an adversary to break. (Both 1024-bit \mathbb{Z}_p^* and 132-bit elliptic curve need 2^{66} steps.)

Content

1 Cyclic Groups and Discrete Logrithms

2 Diffie-Hellman Assumptions and Applications

Diffie-Hellman Assumptions

■ Computational Diffie-Hellman (CDH) problem:

$$\mathsf{DH}_g(h_1,h_2) \stackrel{\mathsf{def}}{=} g^{\log_g h_1 \cdot \log_g h_2}$$

■ Decisional Diffie-Hellman (DDH) problem: Distinguish $DH_g(h_1, h_2)$ from a random group element h'.

Definition 3

DDH problem is hard relative to \mathcal{G} if \forall PPT \mathcal{A} , \exists negl such that

$$\begin{split} |\Pr[\mathcal{A}(\mathbb{G},q,g,g^x,g^y,g^z) = 1] - \Pr[\mathcal{A}(\mathbb{G},q,g,g^x,g^y,g^{xy}) = 1]| \\ \leq \mathsf{negl}(n). \end{split}$$

Intractability of DL, CDH and DDH

DDH is easier than CDH and DL.

Recall Secure Key-Exchange Experiment

The key-exchange experiment $KE_{\mathcal{A},\Pi}^{eav}(n)$:

- I Two parties holding 1^n execute protocol Π . Π results in a **transcript** trans containing all the messages sent by the parties, and a **key** k that is output by each of the parties.
- 2 A random bit $b \leftarrow \{0,1\}$ is chosen. If b=0 then choose $\hat{k} \leftarrow \{0,1\}^n$ u.a.r, and if b=1 then set $\hat{k}:=k$.
- **3** \mathcal{A} is given trans and \hat{k} , and outputs a bit b'.
- **4** $\mathsf{KE}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1$ if b' = b, and 0 otherwise.

Definition 4

A key-exchange protocol Π is secure in the presence of an eavesdropper if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr[\mathsf{KE}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1] < \frac{1}{2} + \mathsf{negl}(n).$$

Diffie-Hellman Key-Exchange Protocol

$$k_A = k_B = k = g^{xy}.$$

 $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}} \text{ denote an experiment where if } b = 0 \text{ the adversary is given } \hat{k} \leftarrow \mathbb{G}.$

Theorem 5

If DDH problem is hard relative to \mathcal{G} , then DH key-exchange protocol Π is secure in the presence of an eavesdropper (with respect to the modified experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}$).

Security

Insecurity against active adversaries (Man-In-The-Middle).

Proof of Security in DH Key-Exchange Protocol

Proof.

$$\begin{split} \Pr\left[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1\right] \\ &= \frac{1}{2} \cdot \Pr\left[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1 | b = 1\right] + \frac{1}{2} \cdot \Pr\left[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1 | b = 0\right] \end{split}$$

If b=1, then give true key; otherwise give random q^z .

$$= \frac{1}{2} \cdot \Pr\left[\mathcal{A}(g^{x}, g^{y}, g^{xy}) = 1\right] + \frac{1}{2} \cdot \Pr\left[\mathcal{A}(g^{x}, g^{y}, g^{z}) = 0\right]$$

$$= \frac{1}{2} \cdot \Pr\left[\mathcal{A}(g^{x}, g^{y}, g^{xy}) = 1\right] + \frac{1}{2} \cdot (1 - \Pr\left[\mathcal{A}(g^{x}, g^{y}, g^{z}) = 1\right])$$

$$= \frac{1}{2} + \frac{1}{2} \cdot (\Pr\left[\mathcal{A}(g^{x}, g^{y}, g^{xy}) = 1\right] - \Pr\left[\mathcal{A}(g^{x}, g^{y}, g^{z}) = 1\right])$$

$$\leq \frac{1}{2} + \frac{1}{2} \cdot |\Pr\left[\mathcal{A}(g^{x}, g^{y}, g^{xy}) = 1\right] - \Pr\left[\mathcal{A}(g^{x}, g^{y}, g^{z}) = 1\right]|$$

Content

1 Cyclic Groups and Discrete Logrithms

2 Diffie-Hellman Assumptions and Applications

Lemma on Perfectly-secret Private-key Encryption

Lemma 6

 \mathbb{G} is a finite group and $m \in \mathbb{G}$ is an arbitrary element. Then choosing random $g \leftarrow \mathbb{G}$ and setting $g' := m \cdot g$ gives the same distribution for g' as choosing random $g' \leftarrow \mathbb{G}$. I.e, $\forall \hat{g} \in \mathbb{G}$:

$$\Pr[m\cdot g = \hat{g}] = 1/|\mathbb{G}|.$$

Proof.

Let $\hat{g} \in \mathbb{G}$ be arbitrary, then

$$\Pr[m \cdot g = \hat{g}] = \Pr[g = m^{-1} \cdot \hat{g}].$$

Since g is chosen u.a.r, the probability that g is equal to the fixed element $m^{-1} \cdot \hat{g}$ is exactly $1/|\mathbb{G}|$.

The Elgamal Encryption Scheme

An algorithm \mathcal{G} , on input 1^n , outputs a description of a cyclic group \mathbb{G} , its order q (with ||q||=n), and a generator g.

Construction 7

- Gen: on input 1^n run $\mathcal{G}(1^n)$ to obtain (\mathbb{G}, q, g) . Choose a random $x \leftarrow \mathbb{Z}_q$ and compute $h := g^x$. $pk = \langle \mathbb{G}, q, g, h \rangle$ and $sk = \langle \mathbb{G}, q, g, x \rangle$.
- Enc: on input pk and $m \in \mathbb{G}$, choose a random $y \leftarrow \mathbb{Z}_q$ and output $\langle c_1, c_2 \rangle = \langle g^y, h^y \cdot m \rangle$.
- Dec: on input sk and $\langle c_1, c_2 \rangle$, output $m := c_2/c_1^x$.

Theorem 8

If the DDH problem is hard relative to G, then the Elgamal encryption scheme is CPA-secure.

Example of Elgamal Encryption

$$q = 83$$
, $p = 2q + 1 = 167$, $g = 2^2 = 4 \pmod{167}$, $\hat{m} = 011101$

The receiver chooses secrete key $37 \in \mathbb{Z}_{83}$.

The public key is $pk = \langle 167, 83, 4, [4^{37} \mod 167] = 76 \rangle$.

 $\hat{m} = 011101 = 29, \ m = [(29+1)^2 \mod 167] = 65.$

Choose y = 71, the ciphertext is

 $\langle [4^{71} \mod 167], [76^{71} \cdot 65 \mod 167] \rangle = \langle 132, 44 \rangle.$

Decryption: $m = [44 \cdot (132^{37})^{-1}] \equiv [44 \cdot 66] \equiv 65 \pmod{167}$. 65 has the two square roots 30 and 137, and 30 < q, so $\hat{m} = 29$.

CCA in Elgamal Encryption

Constructing the ciphertext of the message $m \cdot m'$.

Given $pk = \langle g, h \rangle$, $c = \langle c_1, c_2 \rangle$, $c_1 = g^y$, $c_2 = h^y \cdot m$, **Method I**: compute $c_2' := c_2 \cdot m'$, and $c' = \langle c_1, c_2' \rangle$.

$$\frac{c_2'}{c_1^x} = \frac{h^y \cdot m \cdot m'}{g^{xy}} = \frac{g^{xy} \cdot m \cdot m'}{g^{xy}} = m \cdot m'.$$

Method II: compute $c_1'':=c_1\cdot g^{y''}$, and $c_2'':=c_2\cdot h^{y''}\cdot m'$.

$$c_1'' = g^y \cdot g^{y''} = g^{y+y''}$$
 and $c_2'' = h^y m \cdot h^{y''} m' = h^{y+y''} m m'$

so $c'' = \langle c_1'', c_2'' \rangle$ is an encryption of $m \cdot m'$.

Elgamal Implementation Issues

- Encoding binary strings: depends on the particular type of group.
 - the subgroup of quadratic residues modulo a strong prime p=(2q+1).
 - \blacksquare a string $\hat{m} \in \{0,1\}^{n-1}$, n = ||q||.
 - map \hat{m} to the plaintext $m = [(\hat{m} + 1)^2 \mod p]$.
 - The mapping is one-to-one and efficiently invertible.
- Sharing public parameters: \mathcal{G} generates parameters \mathbb{G} , q, g.
 - generated "once-and-for-all".
 - used by multiple receivers.
 - lacktriangle each receiver must choose their own secrete values x and publish their own public key containing $h=g^x$.

Parameter sharing

In the case of Elgamal, the public parameters can be shared, but in the case of RSA, parameters cannot be shared.

Summary

- cyclic group, discrete log., baby-step/giant-step
- CDH, DDH, DHKE protocol.
- Elgamal encryption, sharing public parameters.