Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	К работе допущен	22.02.2024
СтудентБолорболд Аригуун	Работа выполнена	16.03.2024
Преподаватель Смирнов А. В.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №3.00

И:	зучение электрических сигналов с помощью ла	бораторного
----	---	-------------

изучение электрических сигналов с помощью лаобраторного	
осциллографа	

Цель работы:

Ознакомление с устройством осциллографа, изучение с его помощью процессов в электрических цепях.

Приборы:

- 1. Осциллограф цифровой запоминающий GDS-71102B
- 2. Генераторы сигналов произвольной формы АКИП-3409
- 3. Стенд С3-ЭМ01

Рабочие формулы:

Уравнение колебаний при малом изменении частоты:

 $U_Y=U_2\cos\bigl(\omega t+(\Delta\omega t+lpha)\bigr)$, где $\Delta\omega t+lpha$ - разность фаз, медленно изменяющаяся со временем

Задание №1. Исследование сигналов различной формы

-:		Автоматические	Измерения с помощью	ГС АКИП-	Ген	Авто	Относит.
sin		измерения	курсора	3409	авто.	руч.	погрешность
Частота сигнала	кГц	10	10	10	0	0	0%
Амплитуда сигнала	В	1,02	1	1	-0,02	0,02	-2%
Период	МС	100	100	100	0	0	0%
Меандр	_	_	_			_	_
Частота сигнала	кГц	10	10	10	0	0	0%
Амплитуда сигнала	В	1,04	1,01	1	-0,04	0,03	-4%
Период	мс	100	100	100	0	0	0%
Пилообразный сигнал	_	_	_		-	_	_
Частота сигнала	кГц	10	10	10	0	0	0%
Амплитуда сигнала	В	1	1,01	1	0	-0,01	0%
Период	МС	99	100	100	1	-1	1%

Задание №2. Исследование предельных характеристик прибора.

Сигнал с частотой 10мГц и амплитудой 1 В:

Видно, что сигнал отличается от теоретического. Виден сильный проскок на фронте и на спаде сигнала

При понижении частоты форма сигнала приблизилась к теоретической:

При малых частотах (около 3 Гц) сигнал на осциллографе сразу соответствовал теоретическому

Задание №3. Изучение сложения взаимно перпендикулярных колебаний кратных частот. (Фигуры Лиссажу.)

Отношение частот	Разность амплитуд (радиан)	
1:1	$\frac{\pi}{2}$	

1:2	$\frac{\pi}{2}$	3
1:3	$\frac{\pi}{2}$	
2:3	$\frac{\pi}{2}$	
3:4	$\frac{\pi}{2}$	
1:3	0	

При малом изменении одной из частот линии разделялись, и фигура переставала быть замкнутой, что соответствует теоретическим изменениям, выходящим из формул:

