

교수자소개

최영림/공학박사

소 속 : 동아대학교 소프트웨어혁신센터

전 공:로봇&인공지능윤리,임베디드시스템,심리융합

사무실: S06-0627 소프트웨어 교수 연구실

락: lotuswave@naver.com/

력 : 2009 삼성전자 소프트웨어 멤버십

2013 광원메디텍

2016 미래기술에이원(주)

2017 동아대학교 전자공학과 강사

2023 소프트웨어혁신센터 SW교수

수업계획서

수업 계획서

교과목 번호	분반	교과목명		학점/시간	영역
01415311	01	국문	AI시스템설계및개발 I		
01AIE311	01	영 문			

교수명	e-mail	연락처	기타 참고사항
최영림	lotuswave@naver.com		

수업소 개	AI와 머신러닝 기술은 현대 사회와 산업에서 필수적인 역할을 하며, 실용적인 AI 시 교과목 스템을 설계하고 개발하는 능력은 점점 더 중요해지고 있다. 본 과목은 학생들이 직 의 접 AI 시스템을 설계하고 개발하는 경험을 통해, 실제 산업 환경과 유사한 프로젝트 필요성 를 수행함으로써 이론과 실습을 통합하고, 창의적인 문제 해결 능력을 기를 수 있도 록 한다.			
	교과목 개요	이 과목은 AI 시스템 설계 및 개발을 중심으로 진행되는 프로젝트 기반 학습 (Project-Based Learning, PBL) 교과목으로, AI의 기본 원리, 데이터 처리, 시스템 설계 및 개발 방법을 학습한다. 또한, 실제 프로젝트를 통해 AI 시스템의 기획, 설계, 구현 및 테스트까지의 전 과정을 경험하며, 협업과 실전 문제 해결 능력을 배양한다.		
수업목 표	실제 데이터를 활용한 AI 모델 설계 및 개발 라즈베리 파이, Jetson Nano 등 임베디드 시스템을 활용한 AI 시스템 구축 오픈소스 소프트웨어(OSS) 및 Python, JavaScript, Arduino, Ubuntu 등 다양한 개발 도구 활용 팀 프로젝트를 통한 AI 기반 문제 해결 및 협업 능력 배양			

평가 그룹별 성적 비중:

그룹	비중
기타	0%
기말시험	40%
중간시험	20%
임의평가	20%
과제	10%
주차학습	10%
강의자료실	0%
합계	100%

출석: 10% 결석 -1점 지각 3번 결석 1번

으로 평가

과제: 10% 수업시간 발표 평가

임의평가:20% 5월에 TOPCIT 점수평가

중간시험: 20%

(초기발표평가10% 중간발표평가10%)

기말시험: 40%

(최종발표평가 40%)

수업계획서

◆ 주별 수업계획서

주		학습목표 및 내용	관련자료	수업활동
	학습목표	오리엔테이션	Their par	4.04
1	학습내용	수업내용 소개 및 오리엔테이션 공학설계의 개념, 수업 목표 및 평가 방법 소개	강의 PPT	수업
	학습목표	프로젝트 설계 방법 학습 공학설계의 개념		
2	학습내용	아이디어 찾기 프로젝트 아이디어 찾는 도구 학습 창의적 사고 방법론 및 창의적 문제 해결 기법 학습 공학 설계 프로세스 및 방법론 이해	강의 PPT	발표 수업 PBL, TBL
	학습목표	프로젝트 설계 방법 학습 디자인 프로세스		
3	학습내용	SW 프로젝트란 ? 소프트웨어 프로젝트의 요구 사항을 이해하고 분석 하는 방법 학습 요구 사항 수집 기술 및 방법론 소개 사용자 요구와 시스템 요구의 구분 요구 사항 명세서 작성 실습 프로젝트 요구 사항 정의 및 분석 방법 학습	강의 PPT	발표 수업 PBL, TBL
	학습목표	프로젝트 설계 방법 학습 요구 사항 분석		
4	학습내용	최종 프로젝트 팀 정하기 프로젝트 요구 사항 정의 및 분석 방법 학습 트렌드 분석 - 팀프로젝트 정하기	강의 PPT	PBL, TBL
5	학습목표	프로젝트 설계 방법 학습 트렌드 분석	강의 PPT	토론수업
5	학습내용	팀별 발표 1 - jamesdysonaward 를 기준으로 트랜드 분석하기	85 FF1	도준구립
	학습목표	요구사항 정의 및 역할분담	Zhol por	DDI TDI
6	학습내용	개발 요구사항 정의 역할분담 확정	강의 PPT	PBL, TBL
7	학습목표	초기 프로젝트 발표 및 평가	PPT 발표자료	발표 평가
L'	학습내용	프로젝트 초기 발표 학생들이 진행한 프로젝트 초기 발표 및 피드백	rrl 월표사묘	글프 정기
8	학습목표	프로그램 구현	강의 PPT	PBL, TBL
	학습내용	프로그램 구현(계속), 팀별 피드백 실시 및 개선	0-1	

♦ 주별 수업계획서

	T 그 T 1세국시					
주		학습목표 및 내용	관련자료	수업활동		
9	익급숙표	프도그램 구연	강의 PPT	PBL, TBL		
Ľ	학습내용	프로그램 구현(계속), 팀별 피드백 실시 및 개선	0-1111			
10	학습목표	프로그램 구현	강의 PPT	DDI TDI		
L 10	학습내용	프로그램 구현(계속), 팀별 피드백 실시 및 개선	85 66	PBL, TBL		
	학습목표	중간 프로젝트 발표 및 평가		발표 평가		
11	학습내용	프로젝트 중간 발표 학생들이 진행한 프로젝트 중간 발표 및 피드백	PPT 발표자료			
	학습목표	AI시스템 설계 프로젝트3				
12	학습내용	프로그램 구현(계속), 보고서 초안 발표(실험결과	강의 PPT	PBL, TBL		
	학급대공	호 결론 제외) 및 피드백				
	학습목표	AI시스템 설계 프로젝트4				
13	#141UQ	프로그램 구현(계속), 보고서 초안 발표(실험결과	강의 PPT	PBL, TBL		
	학습내용	및 결론 제외)및 피드백				
14	학습목표	AI시스템 설계 프로젝트5	Zhol por	DDI TOI		
14	학습내용	보고서 v1.0 발표 및 피드백, (평가)보고서	강의 PPT	PBL, TBL		
	학습목표	최종 프로젝트 발표 및 평가		=		
15	학습내용	팀별 프로젝트 발표 최종 평가 및 강의 마무리	PPT 발표자료	발표 평가 		

- 1.1. 공학설계란 무엇인가?
- 1.2. 공학발전을 위한 노력과 인증제도
- 1.3. 엔지니어란 무엇인가?
- 1.4. 공학적 설계 프로세스
- 1.5. AI 시스템 설계 시 고려 사항
- 1.6. 팀프로젝트 진행 구성원의 역할
- 1.7. 공학윤리의 개념
- 1.8. 지식재산권

1.1. 공학설계란 무엇인가?

- 1) 공학설계(engineering design)
- 통상 '설계(design)'라고도 부름
- 목적물을 만들거나 변경, 해체하는 일에 대한 계획을 세우는 일
- 아이디어, 목표, 블록 다이어그램, 요구사항 및 제한사항 등 포함
- 사물이나 시스템의 계획 또는 생산을 위한 제안이나 계획
- 설계도를 작성하고 구체적으로 내용을 명시하는 일
- 요즘은 목표 달성을 위한 구체적인 계획과 관련된 것들을 총칭^{solenoid}
- 최근 소프트웨어 작성 또는 분석도 공학설계 영역에 포함

Pseudo Code

- 1) initialize ports PA6-PA0 inputs PA7 output
- 2) turn off solenoid
- 3) set counterto 4000 if switch matches key
 - a) decrement counter
 - b) if counter is zero turn on solenoid otherwise
 - a) turn off solenoid
 - b) set counter to 4000

C Code

```
DDRA=0x80;
PORTA=0; cnt=4000;
while(1){
   if((PORTA&0x7F==key){
      if((--cnt)==0)
        PORTA|=0x80;}
   else{
      PORTA=0; cnt=4000;}}
```


1.2. 공학발전을 위한 노력과 인증제도

- 1) 한국공학교육인증원(ABEEK)
 - 1999년 미국의 ABET을 모델로 하여 설립
 - 인증평가, 상호교류 활동, 공학교육 연구 등의 활동 수행
 - 공학교육 교과내용에 대한 진단 및 평가 프로그램 설정
 - 공학 및 공학 관련 능력개발과 공학교육의 발전
- 주도적인 역할을 할 실력과 창의력을 갖춘 엔지니어 배출

1.2. 공학발전을 위한 노력과 인증제도

- 2) 미국공학기술인증원(ABET)
 - 1932년 ABET를 중심으로 공학교육 인증제도 도입
 - 응용과학, 컴퓨터, 공학, 기술 분야의 관련 학회를 구성원으로 둠
 - 관련 분야의 인증 평가자들을 뽑아 교육시키고 인증평가 시행
 - 한국과 미국의 인증기관 비교

표 1.3 한국과 미국의 인증기관 비교

구분	한국	미국
기관	ABEEK	ABET
시행평가 종류 공학, 공학기술, 컴퓨터정보기술		응용과학, 컴퓨터, 공학, 기술
인증평가 시작년도	2001년	1936년
 평가목적	공학 관련 교육의 질 향상	공학 관련 교육의 질 향상
경기국식	프로그램의 인증	프로그램의 발달과 개선

- 1) 엔지니어가 갖추어야 할 능력(요약)
 - 수학, 기초과학, 공학의 지식과 정보기술을 응용할 수 있는 능력
 - 자료 능력 및 실험을 계획하고 수행할 수 있는 능력
 - 제한 요소를 반영하여 시스템, 요소, 공정을 설계할 수 있는 능력
 - 공학 실무에 필요한 기술, 방법, 도구들을 사용할 수 있는 능력
- 효과적으로 의사를 전달할 수 있는 능력
- 직업적 책임과 윤리적 책임에 대한 인식

- 2) 기업의 고용주가 가장 선호하는 엔지니어의 11가지 주요 능력
 - 문제해결 능력 : 상황을 평가하고 문제를 이해한 후 문제해결 방안을 찾는 것
 - 컴퓨터 활용 지식, 관련 산업 기술 지식, 창의성, 팀워크(teamwork)
- 교육적 헌신 : 새로운 기술의 도입이 지속됨에 따라 계속 학습하려는 노력
- 데이터 모델링(modeling): 수집된 데이터로 데이터 모델을 만든 다음 실제에 적용하는 능력
- 리더십(leadership) : 다른 사람에게 동기를 부여할 수 있는 리더십 능력
- 스트레스 관리 능력: 프로젝트 수행 중 갑자기 일정을 변경해야 하는 상황 등에도 스트레스 관리하는 능력
- 의사소통 능력 : 다른 사람들과 계획이나 설계에 대해 논의할 경우 지식의 전달 등 명확한 의 사소통 능력
- 세부 사항에도 세심한 주의 능력: 기술 계획의 작성과 실행에서 세부 사항에도 주의를 기울 여 작은 오류도 없애 재정적 손실과 위험한 상황을 예방함

- 1) 자기소개서 준비는 얼마나?
- 네이버 자기소개서 [필수]
 - 1. 가장 열정을 가지고 임했던 프로젝트(목표/과제 등)를 소개해 주시고, 해당 프로젝트의 수행 과정 및 결과에 대해 기재해 주세요.
 - * 지원 부문과 관련된, 어려웠거나 인상 깊었던 문제를 해결한 경험을 중심으로 작성해 주세요. (학교수업, 경진대회, 대외활동 등)
 - * 맞닥뜨린 문제를 '구체적'으로 기술하고, 본인의 접근 방법과 해결 과정, 그리고 실제 결과를 '상세히' 기술해 주세요.
 - * 문제를 잘 해결했다면 그 경험에서 아쉬웠던 점 혹은 더 나은 방법은 없었을지에 대한 고민 과정을 함께 작성해 주세요.
 - * 해결하지 못한 경험이더라도 해결을 위해 얼마나 깊이 있게 고민을 했는지 그 과정에 대해 이야기 해 주세요.
 - ※ 코드로 설명해 주셔도 좋습니다.
- 네이버 자기소개서 [선택]
 - 본인의 대표적인 개발 경험이나 희망 분야 관련 과제 성과, 활동 등을 가장 잘 보여줄 수 있는 Github, 블로그등의 URL을 작성하시거나 자료를 첨부하시고, 간단한 소개나 설명을 해 주세요. 공동 프로젝트였다면 본인의역할을 명확히 써 주세요.
 - * 오픈소스 컨트리뷰션, 프로젝트, 본인이 작성한 소스코드 등 (임시저장 후 복수 첨부 가능 / 최대 200MB)
 - * 수강하셨거나 별도로 공부하신 컴퓨터공학 관련 학습/과제/프로젝트 활동을 보여 주셔도 좋습니다.
 - * 최대 1,000자 이내로 작성해주세요.

- 2) 네카라쿠배당토? 면접은?
- ① 네이버 면접 질문…"네이버의 경쟁사는 어디일까요?"
 - 이직을 할 때 고려하는 세 가지는 무엇인가? (영업/제휴)
 - 네이버의 미래에 있어 중요할 거라 생각하는 이슈는 무엇인가? (경영/기획/컨설팅)
 - 네이버의 경쟁사는 어디라고 생각하는지? 그 이유는 무엇인가? (IT/인터넷)
 - 네이버에서 잘 쓰고 있는 서비스로는 어떤 것이 있는가? (마케팅/시장조사)
 - 최근 읽은 책 제목은 무엇인가? (경영/기획/컨설팅)
 - 상사와 의견 차가 좁혀지지 않는 갈등이 일어났을 때 어떻게 해결할 것인가? (IT/인터넷)
 - 기억에 남는 네이버의 마케팅으로는 어떤 것이 있나? (마케팅/시장조사)
 - 열심히 했는데 성과가 나지 않았던 경험이 있나? (IT/인터넷)
 - 직무 관점에서 지금 다니는 회사와 네이버의 차이는 무엇이라고 생각하나? (미디어/홍보)
 - 협업방식에 대한 자신만의 노하우는? 스트레스를 어떻게 해소하는 편인가? (IT/인터넷)
 - 주변 동료들은 본인의 성격에 대해 어떻다고 평가하나? (디자인)
 - 네이버에 대한 다양한 뉴스 중 기억나는 것은? (IT/인터넷)
 - 주변 동료가 일을 잘 못할 때 흔쾌히 도와줄 건가? 어떻게 할 것인가? (IT/인터넷)
 - 아이디어를 내는것이 중요한가? 아니면 그것을 구체화 하는 추진력이 더 중요한가? (IT/인터넷)
 - 한 서비스에서 서로 상충하는 유저들의 요구가 들어왔을때 어떻게 처리할 것인가? (IT/인터넷)
 - 상사에게 좋지 않은 평가를 받는다면 어떻게 할 건가? (IT/인터넷)

- 2) 네카라쿠배당토? 면접은?
- ② 카카오 면접 질문..."자신과 닮은 카카오 프렌즈는?"
 - 매출이 높은 커머스와, 퀄리티가 높은 커머스 중 어떤 커머스가 더 좋다고 생각하는가? (미디어/홍보)
 - 회의할 때 남들과 다른 의견을 가지고 있다면, 어떻게 해결할 건가? (IT/인터넷)
 - 친구들 사이에서 스스로 어떤 포지션에 있다고 생각하나? (마케팅/시장조사)
 - 자신과 가장 닮았다고 생각하는 카카오 프렌즈 캐릭터는? (경영/기획/컨설팅)
 - 기존 카카오의 서비스를 코로나 시대에 맞게 바꾼다면 어떻게 하는 게 좋을까? (디자인)
 - 카카오가 아닌 타 기업의 어플을 사용한다면 어떤 곳을 사용할 건가? (IT/인터넷)
 - 선임한테서 배울 게 없다고 생각되면 어떻게 할 건가? (디자인)
 - 일할 때 어떤 가치를 추구하는가? (경영/기획/컨설팅)
 - 지원자 중 본인이 상위 몇 퍼센트 정도라고 생각하나? (IT/인터넷)

1.3. 엔지니어란 무엇인가?

- 2) 네카라쿠배당토? 면접은?
- ③ 라인플러스 면접 질문…"라인이 한국에서도 성공할까요?"
 - 라인의 기업 문화에 대해 알고 있는가? (IT/인터넷)
 - 작은 회사에서 근무하다가 큰 회사에 입사하는 건데, 적응할 수 있을까? (경영/기획/컨설팅)
 - 라인의 ㅇㅇ서비스가 잘 된 이유는 뭐라고 생각하는가? (IT/인터넷)
 - 라인이 한국 시장을 겨냥해서도 성공할 수 있을까? (IT/인터넷)
 - 라인이 미주에서 성공하지 못한 이유는 무엇이라고 생각하는가? (경영/기획/컨설팅)

④ 쿠팡 면접 질문…"쿠팡의 리더십 원칙을 아나요?"

- 본인의 리더십 유형을 쿠팡의 리더십 원칙과 비교하여 설명하라. (유통/무역)
- 왜 쿠팡이어야 하는가? 최근 쿠팡 이슈 중 알고 있는 것은? (생산관리/품질관리)
- 쿠팡의 서비스 중 로켓배송을 제외하고 아는 서비스가 있는가? (마케팅/시장조사)
- 친한 동료가 일을 못한다면 해고해야 할까? (경영/기획/컨설팅)
- 쿠팡은 실적 압박이 엄청난데, 이겨낼 수 있나? (유통/무역)
- 다른 회사에서 더 높은 연봉을 부른다면, 이직을 할 건가? (인사/총무)
- 안정적인 걸 추구하나, 도전적인 걸 추구하나? (경영/기획/컨설팅)
- 쿠팡이츠의 인지도를 높이려면 어떻게 해야 할까? (마케팅/시장조사)
- 정확도와 신속성 중 더 중요한 것은 무엇이라고 생각하나? (유통/무역)
- 쿠팡이 다른 이커머스와 다른 점은 무엇일까? (유통/무역)

- 2) 네카라쿠배당토? 면접은?
- ⑤ 배달의민족(우아한형제들) 면접 질문…"배민 조직문화 중 어떤 게 제일 마음에 들어요?"
 - 면접 준비했던 예상질문 중 하나를 뽑아 본인이 질문하고 답변해본다면? (영업/제휴)
 - 당신은 리더인가, 팔로워인가? (영업/제휴)
 - 송파구에서 일 잘하는 11가지 방법 중에 어떤 문구가 가장 마음에 드는지? (미디어/홍보)
 - 조직에 성과가 없는 팀원이 있다면 어떻게 하겠는가? (IT/인터넷)
 - 2주 동안 해야 할 일을 3일 안에 하라고 한다면 어떻게 할 건가? (IT/인터넷)
- ⑥ 당근마켓…"직무 관련 질의응답이 다수!"
 - 조직문화나 지원자 개인 성향에 대한 질문보다는 포트폴리오와 사전 과제 중심의 질의응답이 많은편.
 - 개발직군의 경우 업무 관련 지식과 관련해 스피드 퀴즈처럼 빠르게 질문과 답변을 주고 받는다 참고!
- ⑦ 토스(비바리퍼블리카) 면접 질문…"가장 친한 친구의 성격은?"
 - 워라밸이라는 단어에 대해 어떻게 생각하나? (영업/제휴)
 - 토스를 잘 모르는 분들이 토스가 뭐 하는 회사냐고 묻는다면 어떻게 대답할 것인가? (서비스/고객지원)
 - 최근에 읽은 금융 기사를 소개해달라. (서비스/고객지원)
 - 기존의 공고한 문화에 적극적으로 부딪쳐 더 나은 방향으로 변화시켜본 경험이 있나? (영업/제휴)
 - 토스를 퇴사하게 된다면 어떤 이유 때문일까? (IT/인터넷)
 - 근무 태만인 동료가 있을 때, 그 동료를 해고해야 한다면 그에 동의하나? (서비스/고객지원)

- 3) 자기소개서 [과제]
 - 입사 하고 싶은 곳 자기 소개서 양식을 구해서 작성하여 제출
 - 만약 창업을 하려 한다면 본인이 사람을 채용한다고 생각하고 자기소개서 양식을 만들고 거 기에 본인이 작성
 - 포트폴리오만 받는 회사라고 한다면 본인 포트폴리오 정리해서 그 양식으로 제출

1.4. 공학적 설계 프로세스

- 1) 3단계 공학설계 프로세스
- [1단계] 아이디어 만들기(Ideate): 개념적 해답의 생성
- [2단계] 실행하기(Implement): 자세한 해법의 수행
- [3단계] 테스트하기(Test): 테스트 및 평가

1.4. 공학적 설계 프로세스

2) 5단계 공학설계 프로세스(NASA)

- [1단계] 질의(Ask): 문제가 무엇인가? 제약조건은 무엇인가?
- [2단계] 상상(Imagine): 어떤 해결책들이 있을까?
- [3단계] 계획(Plan): 다이어그램 그린 후 필요한 물건 나열
- [4단계] 생성(Create): 계획에 따라 필요한 것을 생성 후 테스트
- [5단계] 개선(Improve): 어떻게 하면 더 나아질 수 있을까?

1단계

그림 4.7 5단계의 공학설계 프로세스

1.4. 공학적 설계 프로세스

3) 7단계 공학설계 프로세스

- [1단계] 문제 정의(Define the problem) : 문제가 무엇인가? 제약조건은 무엇인가?
- [2단계] 정보 수집(Collect information) : 다양한 자료들을 폭넓게 수집, 문제에 도움이 되는 정보
- [3단계] 해결책 생성(Generate multiple solutions) : 팀 프로젝트인 경우 팀원들의 다양한 의 견을 수렴, 다양한 아이디어와 해결 방안 생성
- [4단계] 분석과 선택(Analyze and select) : 해결책들을 종합적으로 분석
- [5단계] 프로토타입 만들기(Build a Prototype) : 실제와 같은 기능과 요구사항을 만족시키는!
- [6단계] 테스트와 성능 개선(Test and improve) : 프로토타입의 설계 목표에 대한 부합 여부 테스트
- [7단계] 설계 구현과 생산 계획(Implement the design and production plan) : 프로토타입을 바탕으로 최종 설계를 완료하고 제품을 완성

1.4. 공학적 설계 프로세스

3) 7단계 공학설계 프로세스

그림 4.8 7단계 공학설계 프로세스 모델링

1.4. 소프트웨어 관련 프로그래밍의 단계적 접근 방식

- 1) 간소한 프로그램 설계 과정
 - 아이디어 스케치 추상적 모델링과 모델링 과정에서 구체적인 방법론 제시
- 아이디어를 묶어서 제어 구조나 블럭 다이어그램으로 표현^{본문}
- 프로그래밍의 경우 의사코드(pseudo code) 단계까지 구체화
- 테스트와 적응

1.5. AI 시스템 설계 시 고려 사항

기술적 요소, 윤리적 고려, 사용자 경험, 데이터 관리 및 보안, 그리고 법적 준수 등의 카테고리로 나눌 수 있음.

1) 기술적 요소

- AI 시스템이 해결하려는 문제나 달성하려는 목표가 명확 해야 함
- 적절한 데이터를 수집, 정제, 라벨링하는 과정이 포함
- 문제 해결에 적합한 AI 모델을 선택하고, 최적의 성능을 위해 튜닝 필요
- 모델의 정확도, 속도, 일반화 능력 등을 평가하는 기준을 설정
- 시스템을 실제 환경에 배포, 사용자 요구에 맞게 스케일링 할 수 있는 계획 마련

1.5. AI 시스템 설계 시 고려 사항

기술적 요소, 윤리적 고려, 사용자 경험, 데이터 관리 및 보안, 그리고 법적 준수 등의 카테고리로 나눌 수 있음.

2) 윤리적 고려

- AI 모델이 편향되지 않도록 주의하며, 모든 사용자에게 공정하게 서비스를 제공
- 모델의 결정 과정을 이해할 수 있도록 투명성을 확보 방침 마련
- 사용자의 데이터를 안전하게 처리하고, 개인정보 보호 법규를 준수 필요

3) 사용자 경험(UX)

- 모든 사용자가 시스템을 쉽게 이해하고 사용할 수 있도록 설계.
- 직관적이고 사용하기 쉬운 사용자 인터페이스를 개발
- 사용자로부터의 지속적인 피드백을 통해 시스템을 개선가능 하게 설계

1.5. AI 시스템 설계 시 고려 사항

기술적 요소, 윤리적 고려, 사용자 경험, 데이터 관리 및 보안, 그리고 법적 준수 등의 카테고리로 나눌 수 있음.

4) 데이터 관리 및 보안

- 저장되는 데이터는 안전하게 보호되어야 함
- 데이터에 접근할 수 있는 권한을 명확히 구분하고 관리
- 수집하는 데이터의 사용이 윤리적인지 평가

5) 법적 준수

- AI 시스템이 관련 법규와 규제를 준수하는지 확인
- 사용하는 데이터나 알고리즘에 대한 저작권 및 지적 재산권을 존중
- 프로젝트에 사용되는 모든 외부 자원에 대해 적절한 계약이 이루어져 있는지 확인

1.6. 팀프로젝트 진행 구성원의 역할

1) [팀 리더]의 역할

- 프로젝트의 방향성과 목표를 설정하고, 이를 팀원들과 공유하여 모두가 동일한 목표를 향해 나아갈 수 있도록
- 프로젝트의 전반적인 계획을 수립하고, 일정을 관리하여 프로젝트가 시간 안에 완료될 수 있도록 함.
- 팀원 각자의 강점과 기술 수준을 고려하여 역할을 분배하고, 적절한 작업을 할당
- 프로젝트 진행 중 발생하는 다양한 문제에 대한 최종 의사 결정을 담당
- 팀 내외부 소통을 원활하게 하여, 정보가 투명하게 공유되고 협력이 이루어질 수 있도록 함
- 팀원들이 직면한 문제를 해결할 수 있도록 지원하고, 개발 관련 지식이나 경험을 공유하여 팀 원들의 성장을 도움
- 프로젝트의 품질을 관리하고, 코드 리뷰 등을 통해 결과물의 질을 보장

1.6. 팀프로젝트 진행 구성원의 역할

2) [팀 구성원]의 역할

- 할당된 업무와 프로젝트 관련 작업을 적극적으로 수행
- 자신의 기술을 지속적으로 발전시키고, 필요한 경우 팀 내 다른 구성원과 기술적 지식을 공유
- 작업 중 발생하는 문제를 식별하고, 가능한 해결책을 모색하며, 필요한 경우 팀 리더나 다른 팀원과 협력하여 문제를 해결
- 프로젝트 진행 상황, 발생한 문제, 아이디어 등을 팀 리더 및 다른 팀원과 적극적으로 공유
- 동료의 작업에 대해 건설적인 피드백을 제공하고, 자신의 작업에 대한 피드백을 개방적으로 받기

1.7. 공학윤리의 개념

1) 공학윤리란?

- 공학적 윤리의 중요성이 커지고 윤리 규범의 실천이 매우 중요
- 공학 윤리에서 윤리, 도덕, 법률의 3가지 규범을 고려
- 공학 윤리란?
- 엔지니어의 역할 수행에 있어 그들의 행위를 제어하는 규칙과 기준
- 연구 윤리란?
- - 공학을 연구하는 학자가 연구 대상자에게 지켜야 할 윤리
- - 연구 과정이나 내용을 조작하지 않을 윤리

1.7. 공학윤리의 개념

- 2) 이상적인 엔지니어의 표상
- 각종 공학 분야에서 이론적 지식과 실무경험을 잘 갖춘 사람
- 창의적인 사고력을 가진 사람
- 전체 사회 구성원의 삶의 질을 높여주는 사람
- 논리적이며 분석적인 능력, 협동정신과 의사소통 능력을 갖춘 사람
- 윤리 의식이 강하고 그것을 직접 실천하는 사람

1=

1.7. 공학윤리의 개념

3) 과학기술인 헌장

과학기술인 헌장

과학기술은 인류 공동의 소중한 문화유산이며 합리성과 보편성을 바탕으로 인간의 삶에 큰 영향을 미치는 지식체계이다. 이에 우리 과학기술인은 무한한 탐구심과 창의력으로 삶의 질을 향상시키고 밝은 미래사회를 여는 주체로서의 긍지와 사명감을 지닌다.

- 1. 우리는 과학지식을 증진시키고 기술혁신을 추구하여 인류의 행복과 평화를 위해 노력한다.
- 1. 우리는 지속 가능한 과학기술 발전을 통하여 깨끗하고 안전한 자연 환경을 만든다.
- 1. 우리는 탐구의 자율성을 소중히 여기며 과학기술에 대한 사회적 책임과 윤리의식을 갖는다.
- 1. 우리는 과학기술의 발전을 위해 미래세대를 육성하는 데 힘을 기울인다.
- 1. 우리는 과학기술에 대한 국민의 관심과 이해를 높이는 데 앞장선다.
- 1. 우리는 과학기술을 통해 자랑스러운 전통문화의 발전과 민족 화합에 이바지한다.

2004년 11월 11일 한국과학기술단체총연합회

1.7. 공학윤리의 개념

- 3) 과학기술인 헌장
 - 과학기술인 윤리강령
 - 강령의 취지와 목적을 제시한 전문과 12개 조항의 본문으로 구성

[과학기술인 윤리강령 12개 조항]

① 과학기술인의 사회적 책임

② 과학기술인의 기본 연구윤리

③ 보편성의 원칙

④ 전문직 종사자로서의 품위유지

⑤ 법령의 준수

⑥ 연구대상의 존중

⑦ 연구 자료의 기록, 보존

⑧ 저자표시와 지식재산권

⑨ 사회에 대한 권리와 의무

⑩ 이해 상충에 대한 대처

⑪ 연구 환경 조성

⑫ 윤리 교육의 시행

- 우리나라에서 논문조작 사건과 빈번한 논문 표절 시비를 겪음
- 데이터나 이론의 날조, 변조, 표절 등 엄격한 윤리관 확립이 중요

1.8. 지식재산권

- 1) 지식재산권의 정의
- '지식재산권(Intellectual property rights)'이란?
- 법령에 따라 인정되거나 보호되는 지식재산에 관한 권리
- 산업재산권, 저작권, 신지식재산권을 포괄하는 무형적 권리
- 과거에는 지적재산권 또는 지적소유권이라고도 불렀음
- 발명자나 창작자에게 독점적이고 배타적인 권리 부여
- 발명품과 창작물이 공개되고 널리 이용될 수 있게 되는 장점

1.8. 지식재산권

2) 지식재산권이 필요한 이유

- 시장에서 독점적 지위 확보
 - 독점적이고 배타적인 재산권에 대한 기술 판매로 로열티 수입 가능
- 분쟁예방 및 권리보호
 - 발명 및 개발기술을 출원함으로써 타인과의 분쟁을 사전에 예방
 - 타인이 자신의 권리를 무단으로 사용할 시 법적 보호가 가능
- 정부의 각종 정책자금 및 세제지원 혜택
 - 지식재산권을 보유의 경우 정부자금 활용과 세제지원 혜택 가능
 - 특허기술사업화 자금지원, 우수발명품 시작품 제작지원

1.8. 지식재산권

3) 지식재산권의 분류

지식재산권은 산업재산권, 저작권, 신지식재산권을 포함

그림 10.9 지식재산권의 체계(출처: 특허청)

1.8. 지식재산권

4) 산업재산권(industrial property)

- 산업재산권이란 특허권, 실용신안권, 디자인권 및 상표권을 총칭
- 특허청에 출원하여 등록 받음으로 써 배타적 독점권이 부여된 권리
- 생활과 산업 활동 관련 새로운 연구 결과나 방법에 대해 인정하는 권리

표 10.1 산업재산권의 정의, 예시, 존속기간

구분	특허권	실용신안권	디자인권	상표권
정의	자연법칙을 이용 한 기술적 사상의 창작으로서 발명 수준이 고도화된 것(대발명)	자연법칙을 이용한 기술적 사상의 창작으로서 물품의 형상, 구조, 조합에 관한 실용 있는 고안(소발명)	물품의 형상, 모양, 색채 또는 이들을 결 합한 것으로서 시각 을 통하여 미감을 느끼게 하는 것	타인의 상품과 식별하기 위해 사용되는 기호, 문자, 도형, 입체적 형상, 색 채, 홀로그램, 동작 또 는 이들을 결합한 것
전화기의 예시	벨이 처음으로 전화기를 생각해 낸 것	분리된 송수화기를 하나로 하여 편리하 게 한 것	탁상전화기를 반구형이나 네모꼴로 한 것	전화기 제조회사가 제품이나 포장 등에 표시하는 상호와 마크
만년필의 예시	만년필의 초기 발명	잉크가 마르지 않게 만년필에 뚜껑을 추가	해당 만년필의 독특 하고 고유한 디자인	만년필에 '파일럿'이 나 '몽블랑' 등의 고유 한 이름을 붙임
설정등록일 로부터 20년까지 존속 기간		10년까지 (구법 적용 분은 15년)	15년까지	10년(10년마다 갱신 가능, 반영구적 권리)

1.8. 지식재산권

4) 산업재산권(industrial property)

그림 10.10 자동차의 산업재산권

산업재산권을 자동차의 경우에 적용한 예

엔진제어 시스템 등은 고도한 발명으로서 특허에 해당 백미러는 라이프 사이클이 짧은 개량기술로서 실용신안에 해당

차체의 형상 등은 물품의 외관을 나타내는 디자인에 해당 제네시스 등은 상품의 명칭을 나타내는 상표에 해당

1.8. 지식재산권

4) 산업재산권(industrial property)

A. 발명과 특허

- 기존에 없던 기술이나 물건을 새롭게 창출해내는 것
- 자연법칙을 이용한 기술적 사상의 창작으로 고도한 것
- 증기기관, 청동기, 금속활자 등
- 수학법칙, 언어, 문자, 사회적 규범 등은 발명에 해당되지 않음
- 만유인력과 위치에너지를 이용하여 만든 디딜방아는 발명에 해당
- 컴퓨터 프로그램, 최면술을 이용한 수사방법 등은 발명이 아님

4) 산업재산권(industrial property)

A. 발명과 특허

표 10.2 세계를 움직인 획기적인 발명품

연도	발명품			
105년	종이(중국, 채륜)			
220년	나침반(중국, 왕충)			
1377년	금속활자(한국, 고려 초 직지심경))			
 1590년	현미경(네덜란드, 젠센)			
 1876년	전화기(미국, 그레이엄 벨)			
 1879년	전구(미국, 에디슨)			
1903년	비행기(미국, 라이트형제)			
1926년	텔레비전(영국, 베어드)			
1928년	페니실린(스코틀랜드, 알렉산더 플레밍)			
- 1947년	7년 트랜지스터(미국, 윌리엄 쇼클리 등)			
 1957년	인공위성(소련, 스푸트니크 1호)			
1983년	64K DRAM(한국, 삼성전자)			
1986년	인터넷(미국)			
1996년	복제 양(영국, 생명공학의 새로운 바탕)			

1.8. 지식재산권

4) 산업재산권(industrial property)

A. 발명과 특허

특허 제도의 목적

- 발명을 보호하고 장려함으로써 국가산업의 발전을 도모(특허법 제1조)
- '기술공개의 대가로 특허권을 부여'

■ 기술공개 → 기술축적, 공개기술 활용 → 산업 발전, 독점권 부여 → 사업화 촉진, 발명 의욕 고취

→ 산업발전

1.8. 지식재산권

4) 산업재산권(industrial property)

A. 발명과 특허

7가지 특허 등록 요건과 효력

- ① 자연법칙을 이용한 기술적 사상인가?
- ② 산업상 이용할 수 있는 것인가?
- ③ 새로운 발명인가?
- ④ 종전에 있던 발명보다 진보된 발명인가?
- ⑤ 불특허 사유에 해당되지 아니한 것인가?
- ⑥ 명세서에 발명이 구체적으로 기재되고 청구범위는 명확한가?
- ⑦ 다른 사람보다 먼저 출원하였는가?

- 1.특허 대상이 아닌 것
- 자연법칙 자체, 추상적인 아이디어
- 문학, 연극, 음악 등 예술적 창작
- 자연법칙을 이용하지 않는 것(경제법칙, 수학공식, 작도법
- 자연법칙에 위배되는 것(영구기관, 연금술 등)
- 단순한 정보제공을 위한 데이터베이스(Database) 등

- 특허권 존속기간은 출원일로부터 20년(실용신안권 10년)
- 특허권은 권리를 획득한 국가 내에만 효력 발생

1.8. 지식재산권

5) 저작권(copyright)

- '저작물'에 대해 창작자가 가지는 독 점적이고 배타적인 권리
- 산업재산권과 달리 창작과 동시에 보호를 받음
- 종류는 소설, 시, 강연, 논문, 건축물, 설계도, 컴퓨터 프로그램 등

표 10.3 협의의 저작권과 저작인접권

구분	협의의 저작권	저작인접권
정의	사람의 생각이나 감정을 표현한 결과물에 대하여 그 표현한 사람에게 주는 권리로 저작인격권과 저작재산권으로 구분됨	글자 그대로 저작권에 인접한, 저작권과 유사한 권리로서 이 권리는 실연자 (배우, 가수, 연주자), 음반제작자 및 방송사업자에게 귀속됨
예시	소설가가 소설작품을 창작한 경우에 원고 그대로 출판·배포할 수 있는 복제·배포권과 함께 그 소설을 영화나 번역물 등과 같이 다른 형태로 저작할 수 있는 2차 저작물 작성권, 연극 등으로 공연할 수 있는 공연권 등	 실연자가 그의 실연을 녹음 또는 녹화하거나 사진으로 촬영할 권리 음반제작자는 음반을 복제 · 배포할 권리 방송사업자는 그의 방송을 녹음, 녹화, 사진 등의 방법으로 복제하거나 동시에 중계 방송 할 권리
보호 기간	 사람이 저작자인 경우에는 저작물을 창작한 때로부터 시작되어 저작자가 살아있는 동안과 죽은 다음 해부터 50년간 법인이나 단체가 저작자인 경우는 공표한 다음해부터 50년간 	 실연의 경우의 그 실연을 할 때부터 50년간 음반의 경우에는 음을 최초로 음반에 고정한 때로부터 50년간 방송의 경우 방송을 한 때부터 50년간

1.8. 지식재산권

- 6) 신지식재산권(New Intellectual Property)
 - 산업재산권, 저작권에 속하지 않으 나 새롭게 보호하는 지식재산권
 - 첨단산업재산권, 산업저작권, 정보 재산권, 기타로 구성
 - 반도체 설계, 인공지능 등의 새로운 기술 등의 재산권을 포함

그림 10.12 신지식재산권

다음주 수업 내용

- 1. 계획서 양식과 쓰는 방법(사업계획서 양식을 통하여)
- 2. 한정된 시간에 주제에 맞춰 어떤 앱, 웹, 시스템을 만들 것이며, 어떤 기술이 필요 한지 발표 하기

