STRONGLY CONNECTED COMPONENT

CONNECTIVITY

Connected Graph

■ An <u>undirected graph</u> G(V, E) is called connected, if G contains a path between every pair of vertices

Otherwise, they are called disconnected.

■ A <u>directed graph</u> is called connected if every pair of distinct vertices in the graph is connected.

■ A connected component is a maximal connected subgraph of G. Each vertex belongs to exactly one connected component, as does each edge.

CONNECTIVITY (CONT.)

- Weakly Connected Graph
 - A directed graph is called weakly
 connected if replacing all of its
 directed edges with undirected edges
 produces a connected (undirected) graph.

CONNECTIVITY (CONT.)

- Strongly Connected Graph
 - It is strongly connected or strong if it contains a directed path from u to v for every pair of vertices u, v. The strong components are the maximal strongly connected subgraphs
 Strongly Connected ?

CONNECTED COMPONENTS

- Strongly Connected Components (SCC)
 - The strongly connected components (SCC) of a directed graph are its maximal strongly connected subgraphs.
- Here, we work with
 - Directed unweighted graph

STRONGLY CONNECTED COMPONENTS

- *G* is strongly connected if every pair (*u*, *v*) of vertices in *G* is reachable from one another.
- A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all $u, V \in C$, both $u \sim V$ and $V \sim u$ exist.

DFS - STRONGLY CONNECTED COMPONENTS

DFS - STRONGLY CONNECTED COMPONENTS

COMPONENT GRAPH

- $G^{\text{SCC}} = (V^{\text{SCC}}, E^{\text{SCC}}).$
- VSCC has one vertex for each SCC in G.
- ESCC has an edge if there's an edge between the corresponding SCC's in G.
- G^{SCC} for the example considered:

STRONGLY CONNECTED COMPONENTS

The **transpose** M^T of an NxN matrix M is the matrix obtained when the rows become columns and the column become rows:

TRANSPOSE OF A DIRECTED GRAPH

- G^{T} = transpose of directed G.
 - $G^{T} = (V, E^{T}), E^{T} = \{(u, v) : (v, u) \in E\}.$
 - lacksquare G^{T} is G with all edges reversed.
- Can create G^T in $\Theta(V + E)$ time if using adjacency lists.
- G and G^T have the *same* SCC's. (u and v are reachable from each other in G if and only if reachable from each other in G^T .)

ALGORITHM TO DETERMINE SCCS

SCC(G)

- 1. call DFS(G) to compute finishing times f[u] for all u
- 2. compute G^{T}
- call DFS(G^T), but in the main loop, consider vertices in order of decreasing f[u] (as computed in first DFS)
- 4. output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Time: $\Theta(V + E)$.

EXAMPLE

DFS on the initial graph G

b e a c d g h f 16 15 14 10 9 7 6 4

DFS on GT:

- start at b: visit a, e
- start at c: visit d
- start at g: visit f
- start at h

Strongly connected components: $C_1 = \{a, b, e\}, C_2 = \{c, d\}, C_3 = \{f, g\}, C_4 = \{h\}$

COMPONENT GRAPH

- - $V^{SCC} = \{v_1, v_2, ..., v_k\}$, where v_i corresponds to each
 - strongly connected component C_i
 - There is an edge $(v_i, v_j) \in E^{SCC}$ if G contains a directed edge (x, y) for some $x \in C_i$ and $y \in C_j$
- The component graph is a DAG

