

PYTHON WORKSHOP 3

DICTIONARIES & FUNCTIONS

RECAP

- 1. DATA TYPES
- 2. OPERATORS
- 3. COMPARATORS
- 4. FOR LOOPS
- 5. WHILE LOOPS

CONTENT

- 1. RECAP (20 minutes)
- 2. Dictionaries (40 minutes)
- 3. Break (10 minutes)
- 4. Functions (50 minutes)

DICTIONARIES (CODE TOGETHER)

- 1. Consists of **unordered** Key-Value pairs
- 2. Word -> definition
- 3. The **key** must be **immutable**
- 4. Example: Student as a dictionary
 - 1. Creating a dictionary
 - 2. Assigning a key to a value
 - 3. Re-assigning
 - 4. Deleting
 - 5. Getting all the keys and getting all the values
 - 6. Looping through a dictionary
 - 7. Getting the length of a dictioanry

EXERCISE 1

• Define a dictionary called released

• released = { iPhone = } released = { "iphone" : 2007, "iphone 3G" : 2008, "iphone 3GS" : 2009, "iphone 4" : 2010, "iphone 4S" : 2011, "iphone 5" :

2012 }

PRINT IT OUT!

- 1. Which year was iPhone 4 released?
- 2. How many iPhone models are there from 2007 to 2011?
- 3. Since iPhone 3G, how long did it take for Apple to release iPhone 4S?
- iPhone 5 was released in 2012, add that in to the dict.
- Remove iPhone 3G from the dict.
- First iPhone's actual release date was 2007, change it

iPhone Model	Year
iPhone	2006
iPhone 3G	2008
iPhone 3GS	2009
iPhone 4	2010
iPhone 4S	2011

EXERCISE 2

- You are interested in the price of computers. After doing some research, you
 decided to compile the prices of different brands in a dictionary.
- Computers = {}

- 1. Print the price of an ideapad
- 2. Reassign the price of Folio 13 to 1200
- 3. You have a budget of \$1200. Loop through the dictionary and find print out the models of computers you can afford.
- 4. Challenge: Find out the total price of all the computers

Computer	Price (\$)
Macbook Air	1300
Aspire S3	900
Zenbook	1050
Ideapad	1500
Folio 13	1100

INTROTOFUNCTION

- Functions are building blocks of complicated programmes.
- Higher degree of reusing code.
- It allows you to perform abstraction.
- Enhances modularity.

GREETINGS

- Print the following for "Jane", "Marry" and "Jones"
- Hi <name>
- "Good morning"
- "How have you been"
- "It is a pleasure to meet you"

SOMECONVERSIONFUNCTIONS

Code Together

- 1 cm = 0.393701 inches
- Programme a cm_to_inches function
- Programme an inches_to_cm function
- Returning (Void vs Fruitful functions)

Now you try

- 1 kg = 2.20462 pounds
- To convert temperatures in degrees **Celsius to Fahrenheit**, multiply by 1.8 (or 9/5) and add 32.

GREETINGS WITHPARAMETERS

Rewrite the greeting function to accept 2 parameters.

- 1. A string variable name.
- 2. An integer in 0000 hours format. Your greeting should vary from Good Morning (600 to 1159) / Good afternoon (1200 1759) / Good Night (1800 to 0559)
 - 1. You may write 0000 to 0959 as 0 and 959 respectively.

MOREON VOID VS FRUITFUL FUNCTIONS

- Code Together
- Sort vs Sorted example [1,4,5,2,3,6].sort() vs sorted(1,4,5,2,3,6])

- Now you try
- Create a function that takes in a list of integers and multiply them by 2.
 - 1. Modify the list, do not return the list
 - 2. Return, but do not modify the list

CHALLENGE

- Supposed you are a 7-up ice breaker enthusiast. You would like to memorise all the 7 ups below a certain number so that you can "train" for the game.
- Create a function that takes in **an integer** and prints all the numbers from 1 to the **integer (inclusive)**. For multiples of 7 and numbers containing 7, print "Seven up!" instead.
- Seven_up(10)
 - 1,2,3,4,5,6,**"Seven up!"** ,8,9,10
- Seven_up(20)
 - 1,2,3,4,5,6,"Seven up!", 8, 9, 10, 11, 12, 13, ,"Seven up!", , 15 16, ,"Seven up!", , 18, 19, 20

MORE ADVANCED CONCEPTS

- Returning booleans
- Key-word arguments
- Default parameters
- Recursive function

