STIEFEL-WHITNEY AND CHERN CLASSES

First, we will show that Characteristic classes exist by defining specific ones, the SW classes W: and the Chern classes Ci. Then we will show these are all char. classes (in the \mathbb{R} , \mathbb{Z}_2 & \mathbb{C} , \mathbb{Z} cases, resp.) by computing $\mathbb{H}^*(G_n;\mathbb{Z}_2)$ and $\mathbb{H}^*(G_n(\mathbb{C});\mathbb{Z})$.

Thm. $\exists !$ seq. of fins $W_1, W_2, ...$ assigning to each lead $V.b. \ E \to B$ a class $W_i(E) \in H^i(B; \mathbb{Z}_2)$ s.t.

(i)
$$W_i(f^*(E)) = f^*(W_i(E))$$

(ii)
$$W(E_1 \oplus E_2) = W(E_1) \cup W(E_2)$$
 $W = 1 + W_1 + W_2 + \cdots$

(iv) W_1 (canon. burdle $\rightarrow \mathbb{RP}^{\infty}$) is gen. of $H^1(\mathbb{RP}^{\infty}; \mathbb{Z}_2)$.

W = total SW class. (iii) ⇒ it is a finite sum.

(ii) is Whitney sum formula.

(iv) ⇒ the Wi are not all Zero!

For complex bundles, have $C_i \in H^{2i}(B; \mathbb{Z})$. Thus is or $W_i(TS^n)=0$.

Same except:

(iv) $C_1(Canon \rightarrow \mathbb{CP}^{\infty})$ gen. $H^2(\mathbb{CP}^{\infty}; \mathbb{Z})$.

Proof requires one tool from alg. top....

THE LERAY-HIRSCH THEOREM

When does H*(E) look like H*(F×B)? First, recall:

KUNNETH FORMULA. H*(X; R) OR H*(Y; R) - H*(X×Y; R) a 6b > p*(a) U p*(b)

for a fiber bundle, $H^*(E) \rightarrow H^*(F)$ not nec. Surj, so don't always have a map the other way. To get a Künneth-like formula, must add this to the assumptions.

General themes in burdle theory: try to extend an object related to the fiber (inner prod, cohom. class) to whole bundle.

L-H Theorem. Let F→E →B be a fiber bundle, Raning s.t. (i) Hr(F; R) is a free f.g. R-module Yn. (ii) Ici & Hkj (E; R) s.t. the i*(cj) form a basis for H*(F; R) H*(B; R) & H*(F; R) = H*(E, R) Then: Zbi⊗i*(cj) → p*(bi)∪cj

In other words: H*(E;R) a free H*(B;R) module w/basis cj. Module structure given by U.

· The ci do exist for product bundles: pull back via projection.

• The Ci do not exist for $S^1 \rightarrow S^3 \rightarrow S^2$ as $H^1(S^3) = 1$.

Pf. of LH (a few words) Using long ex. seq. for a pair, plus excision, you reduce to understanding $\rho^{-1}(B^{n-1}) \longrightarrow B^{n-1}$ (n-skeleton) p-1 (n-cell) - n-cell former works by induction, latter by local triviality. 四 Pf of SWThm. TI: E-B $\longrightarrow P(T): P(E) \longrightarrow B$ P(E) = Space of linesfibers TRPn-1 To use L-H, need X; & H'(P(E); 7/2) restricting to gens for Hi(RP"; 7/2). $(E \rightarrow B) \longrightarrow q: E \rightarrow \mathbb{R}^{\infty}$ lin. inj on fibers. $\longrightarrow P(g): P(E) \longrightarrow \mathbb{R}P^{\infty}$ Let K = gen for H'(RPa; 7/2) P(E) $\chi = P(g)^*(x)$ = easy to see this generales H'(fiber). i.e. X & Hom (H. (5), Z) also indep. of q Xi = XL records whether a line comes back w/same or. after the loop. L-H => H*(P(E)) a free H*(B)-module with

L-H \Rightarrow H*(P(E)) a free H*(B)-module with basis 1,x,..., xⁿ⁻¹ \Rightarrow xⁿ = unique linear combo: $x^n + w_i(E)x^{n-1} + ... + w_n(E) \cdot 1 = 0.$ for Some $w_i(E) \in H^*(B; \mathbb{Z}_2)$.
Also set $w_i(E) = 0$ for i > n $w_0(E) = 1.$

These are the SW classes. Need to check properties (i)-(iv), uniqueness.

(i) Naturality

Say
$$E' \xrightarrow{\tilde{f}} E \xrightarrow{g} \mathbb{R}^{\infty}$$

 $\downarrow \qquad \qquad \downarrow$
 $B' \xrightarrow{f} B$

$$P(\hat{f})^* \times (E) = \times (E')$$

$$P(\hat{f})^* \times_i(E) = \times_i(E')$$
Commutativity \Rightarrow module Structure pulls back
i.e. $\times^n + W_i(E) \times^{n-1} + \cdots + W_n(E) \cdot 1 = 0$

$$\times^n + f^*(W_i(E)) \times^{n-1} + \cdots + f^*(W_n(E)) \cdot 1 = 0$$
But this defines $W_i(E')$ so $W_i(E') = f^*(W_i(E)) \quad \forall i$.

- (ii) Whitney sum similar flavor
- (iii) wi(E)=0 (>n by definition.
- (iv) $W_1(CB \rightarrow \mathbb{RP}^{\infty}) \neq 0$.

Almost by definition: X(loop in P(E)) measures whether or not a line comes back to where it started with same or different orientation.

$$X + W_1(CB)! = 0.$$

$$\Rightarrow W_1(CB) = X.$$

For uniqueness of wi, need a tool.

Splitting Principle. Given E→B 3 f: A→B s.t.

(i) f*(E) splits as a sum of line bundles

(ii) f*: H*(B) → H*(A) injective

Now, the wi are unique because:

(iv) determines W1(CB → TRP00)

(iii) determines Wi (CB → RP°) i>1.

(i) determines Wi (line bundles)

(ii) determines Wi (sum of line bundles)

SP + (i) determines Wi (any bundle).

Pf of SP. A = F(E) = flag bundle of E $= Space of orthog. Splittings l_1 \oplus \cdots \oplus l_n$ of E into lines

 $f:A \rightarrow B$ projection $f^*(E) = \{(splitting of fiber over b, vector in fiber over b)\}$ This has n obvious linear subbundles, which give the splitting.

For (ii) use Leray-Hirsch \implies $H^*(B).1$ a summand of $H^*(A)$.

IMPORTANT EXAMPLE.

$$(E_1)^{\circ} \longrightarrow (G_1)^{\circ}$$

 $(E_i)^n \rightarrow (G_i)^n$ $E_i = Canon. line bundle$

$$(E_i)^n \cong \bigoplus \Upsilon_i^*(E_i)$$
 $\Upsilon_i : (G_i)^n \longrightarrow G_i$ true for any $E^n \longrightarrow B^n$

$$\Rightarrow$$
 $W((E_1)^r) = TT(1+\alpha_i) \in \mathbb{Z}_2[\alpha_1,...,\alpha_n] \cong H^*((\mathbb{R}P^{\infty})^r;\mathbb{Z}_2)$

e.g. for
$$n=3$$
: $\nabla_1 = x_1 + \alpha_2 + \alpha_3$

$$\nabla_2 = x_1 x_2 + x_1 x_3 + x_2 x_3$$

$$\nabla_3 = x_1 x_2 x_3$$

So all wi nonzero isn.

Next: We'll use this to show

 $\mathbb{Z}_2 [\omega_1, ..., \omega_n] \longrightarrow H^*(G_n; \mathbb{Z}_2)$