Last Class...

What is the gain K for the bode plots below

COLLEGE OF ENGINEERING

Intro to Operational Amplifiers

- Learning Objectives:
 - Describe the basic properties of an op amp and state the constraints of the ideal op-amp model.

© 2023 I. Fernandez

 It acquired the adjective operational because it is a versatile device capable not only of amplifying a signal but also inverting it (reversing its polarity), integrating it, or differentiating it.

Operational Amplifiers

Properties:

- High Gain: $A = 10^5 10^6$
- Differential input: $v_{in} = v_p v_n$
 - Linear operating range:
 - Saturated by $+ v_{cc}$ and v_{ee}
 - Usually $v_{ee} = -v_{cc}$

Operational Amplifiers

- Amplifier functions:
 - Signal Amplification.
 - Filtering.
 - Add, Subtract, Integrate, Differentiate.

- Example amplifier applications:
 - Digital audio player.
 - Measurement sensors.
 - Feedback.

- Process of using the output to reinforce (positive feedback) or inhibit (negative feedback) its input.
 - Open-loop mode if feedback is not used.
 - Closed-loop if feedback is used.
- Key benefits:
 - Decreased sensitivity to signal variations.
 - Increased bandwidth and linearity.
 - Increased signal-to-noise ratio.

Internal Circutry of 741 Op-Amp IC

Amplifier Behavioral Model

voltage Division

Amplifier Load

Vollage Division:

$$Vout = \frac{RL}{Rout + RL} \cdot AVIN$$

$$Vout = \frac{RL}{Rout + RL} \cdot A \cdot \frac{RIN}{RS + RIN} VS$$

$$Vout = A VS \frac{RL}{Rout + RL} \cdot \frac{RIN}{RS + RIN}$$

Ideal Amplifier

$$A = 0$$

Realistically

$$P_{10} = 10^6 - 10^{13}$$

$$A = 10^6$$

Example

we will Anish on wednesday.