CS3102 Theory of Computation

Warm up: How do I know X isn't in the list?

Take-away Ideas

- All finite sets are countable
- Anything with a bijection to the naturals is countable
- A subset of a countable set is countable
- A union of countably many sets is countable
 - Formal proof of this is homework
- To be computable by Java, the set of possibilities must be countable!

Are the Real Numbers Countable?

- Things that don't work:
 - List out every real number that starts with 1, then2, then 3, ...
 - List out every real number that has one number after the decimal, then 2, then 3, ...
- How would we prove it wasn't?

Diagonalization

- Used to prove that a set is not countable
 - Shows that there cannot be a bijection with the Natural Numbers
- 1. Assume toward a contradiction there is a bijection with the natural numbers
- 2. Treat this arbitrary bijection as an ordered list containing all items (item 0 is the thing which maps to 0, etc.)
- 3. Show that this list must always be missing something

Diagonalization

Assume toward a contradiction that $f: \mathbb{N} \leftrightarrow \mathbb{R}$, show that f cannot be onto (something from \mathbb{R} is not mapped to)

N	\mathbb{R}											
f(1) =	3	. (1	4	1	5	9	2	6	5	3	• • •
f(2) =	1	•	0	0	0	0	0	0	0	0	0	
f(3) =	2	•	7		8	2	8	1	8	2	8	
f(4) =	1	• '	4	1	4	2	1	3	5	6	2	• • •
<i>f</i> (5) =	0	•	3	3	3	3	3	3	3	3	3	• • •
	• •	•										
$X = 0.21934\ldots \in \mathbb{R}$												

This number X cannot appear anywhere in the list. It's different from each f(i) at digit i

Is the set of all Languages Countable?

13	-	и	D	ии	uD	Du	טט	uuu	•••			
f(1) =	$\boxed{1}$	1	1	1	1	1	1	1	1	1	1	• • •
f(2) =												
f(3) =	0	1(0	1	0	1	0	1	0	1	0	• • •
f(4) =	1	1	0	(1)	1	0	1	1	0	1	1	• • •
f(5) =	0	0	0	1	0)	0	1	1	1	0	1	• • •
• • •	• • •	•										
L=	0	1	1	0	1	• • •						

a h aa ah ha hh aaa

Each row represents a language which includes string *i* provided column *i* has a 1

This Language L cannot appear anywhere in the list. It's different from each f(i) because its containment of string i is opposite

Correlary

Some languages cannot be decided by Java

Another Correlary

Some languages have no finite description!

Yet Another Correlary

- Some languages (problems) cannot be described!
- Can any of these be decided by Java?

Cantor's Theorem

- For any set S, $|2^S| < S$
 - Holds when S is finite (homework)
 - What about when S is infinite?
 - If S is countably infinite: diagonalization
- Assume toward contradiction we have $f: S \leftrightarrow 2^S$
 - $\operatorname{Let} T = \{ x \in S | x \in f(x) \}$
 - Note that $T \subseteq S$, so there must be some x_t s.t. $f(x_t) = T$
 - $\operatorname{Is} x_t \in T$?

Continuum Hypothesis

- We know that $|\mathbb{N}| < |\mathbb{R}|$
- Is there a set S s.t. $|\mathbb{N}| < |S| < |\mathbb{R}|$?
- Answer:
 - Unanswerable

Godel's Incompleteness Theorem

- Says any axiomatic system is at least one of:
 - Inconsistent: There are false things that you can prove
 - 2. Incomplete: There are true things that you cannot prove
 - 3. Weak: You can't talk about prime numbers
- Proof idea: Show that any system can construct the paradox "This statement cannot be proven"

Incompleteness in CS*

- Expectation Maximization Problem
 - You want to put ads on your website
 - You don't know yet who will visit your website
 - Select ads to maximize the maximum number of potential customers
- Answering this problem requires "tools" not yet addressed by set theory!

End of Phase 1

Until now:

- Mathematical foundations
- Proof strategies
- Key ideas/insights
- Main takeaway: Some languages (and numbers) cannot be computed by Java (or anything else)
 - Why? There are more language (numbers) than there are Java programs (or even finite descriptions)

Phase 2

- Now we start filling in this box
 - First option: finite state machine

Operations on Strings

Length

- -|s| = Number of characters in the string s
- |Ringo| = 5

Concatenation

- $-s \cdot t = st = string$ which has all of the characters from s followed by all of the characters from t
- $John \cdot Paul = JohnPaul$
- $-|s \cdot t| = |s| + |t|$

Exponentiation

- $-s^k$ =The string created by concatenation s with itself k times
- $(George)^5 = GeorgeGeorgeGeorgeGeorgeGeorge$
- $|s^k| = |s| \cdot k$

Empty String ("")

- Notation for this class: ε
 - \varepsilon in Latex
- $|\varepsilon| = 0$
- $s \cdot \varepsilon = s$
- $\varepsilon^k = \varepsilon$
- $s^0 = \varepsilon$

Operations on Languages

- Everything we can do on sets (U,∩, -, ...)
- Concatenation
- Exponentiation
- Kleene Closure

Language Concatenation

- $L_1 \cdot L_2$ or L_1L_2
 - Notation is the same as string concatenation
 - Every possible way to concatenate a string from L_1 with a string from L_2 (in that order)
 - Idea: take $L_1 \times L_2$ and concatenate the strings that are paired
 - $\{john, paul\} \cdot \{george, ringo\} = \\ \{johngeorge, jonringo, paulgeorge, paulringo\}$
 - $-|L_1L_2| \le |L_1 \times L_2|$
 - $\{a, aa, aaa\} \cdot \{a, aa\} = \{aa, aaa, aaaa, aaaaa\}$

Language Exponentiation

• L^k

- L concatenated with itself k times
- $-L^5 = L \cdot L \cdot L \cdot L \cdot L$
- $-\{a,b\}^3 = \{aaa,aab,aba,abb,baa,bab,bba,bbb\}$
- $-L^0 = \{\varepsilon\}$

Kleene Closure

- L*
 - L concatenated with itself 0 or more times
 - $-L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \dots$
 - $-\{a,bb\}^* = \{\varepsilon,a,bb,aa,abb,bba,bbb,aaa,...\}$
 - $\emptyset^* = \{\varepsilon\}$
 - $-\{\varepsilon\}^* = \{\varepsilon\}$
 - For any other language L, L^* is infinite

Sigma Star

- We denote our alphabet as Σ
 - \Sigma in Latex
- A character is just a really short string, so an alphabet is a language
- Σ^* is the set of all strings using the alphabet Σ
- 2^{Σ^*} is the set of all languages using Σ

What Shall we put in the box?

- Goal: start with something easy to prove things about
- We've talked about Java, but that's complex

Finite State Automaton

- Simple model of computation
- Represents computation without memory
- Kind of decider
- Our machine reads the input string only once, and one character at a time
- After reading each character, enters a new "state"
- State transition rules depend only on the current state and the current character (no looking back!)
- There are only finitely many states

Gumball Machine

- Our gumball machine takes only coins and does not give change
- Each gumball costs 7 cents
- $\Sigma = \{p, n\}$ (penny, nickel)
- We need to decide the language of sequences of coins adding up to at least 7 cents

Gumball Machine

- What are all the possible "states" the machine could be in?
- 0c, 1c, 2c, 3c, 4c, 5c, 6c, 7+c
- Which "state" should the machine start in?
- Which "state" means we've sold a gumball?
- 6c plus a penny is always 7c, no matter how I got to 6c (pppppp, or pn, or np)

Gumball Machine

- What are all the possible "states" the machine could be in?
- 0c, 1c, 2c, 3c, 4c, 5c, 6c, 7+c
- Which "state" should the machine start in?
- Which "state" means we've sold a gumball?
- 6c plus a penny is always 7c, no matter how I got to 6c (pppppp, or pn, or np)

Finite State Automata

- Basic idea: a FA is a "machine" that changes states while processing symbols, one at a time.
- Finite set of states: $Q = \{q_0, q_1, \dots q_7\}$
- Transition function: $\delta: Q \times \Sigma \to Q$
- Initial state: $q_0 \in Q$
- Final states: $F \subseteq Q$
- Finite state automaton is $M = (Q, \Sigma, \delta, q_0, F)$
- Accept if we end in a Final state, otherwise Reject

 q_1

FSA for our Gumball Machine

Strings this accepts:

ppppppp nnnnnnn

pnp

ppn

Strings this rejects:

ppp

n

np

EvenA

- In HW1 you were asked to give a decider for EvenA (accepts all strings with an even number of A's)
- How did you do it?

EvenA using FSA

- 1. What's our alphabet? (pick Σ)
- 2. What should our states be? (pick Q)
- 3. Which states are the accept states? (pick F)
- 4. Which state is the start state? (pick q_0)
- 5. How should we transition? (pick δ)

Let's Draw It!

EvenAOddB

- Let's make a finite state automaton which accepts strings that have an even number of a's followed by an odd number of b's (in that order)
- It should accept:
 - *− b, bbb, aab, aaaabbbb, ...*
- It should reject:
 - − bb, ab, baa, aba, aaabb

EvenAOddB using FSA

- 1. What's our alphabet? (pick Σ)
- 2. What should our states be? (pick Q)
- 3. Which states are the accept states? (pick F)
- 4. Which state is the start state? (pick q_0)
- 5. How should we transition? (pick δ)