Paper3: Diagnostic potential for a serum miRNA neural network for detection of ovarian cancer

Team member:

章峻福 110753503 葉冠宏 108753208

Inputs

Our inout data:

ID	Study	Stage	Grade	Histology	Age	Pathology	CA-125	CA-125 >35	outcome_cat	hsa-let-7a-3p	hsa-let-7a-5p	hsa-let-7b-3p	hsa-let
1	NECC	*	*	control	53	control	?	*	control	1.6304622	4.18628263	0.639502171	3.9392
10	PMP	*	*	serous cystadenoma	45	benign	17.4	BBC	benign	1.654456516	4.03505743	1.06294409	3.6969
100	PMP	II	3	serous adenocarcinoma	52	1/11	1132	CA	invasive	1.688491555	3.746013438	1.404598289	4.3101
101	PMP	II	3	mixed with clear cell adenocarcinoma or endometroid component	59	1/11	542.6	CA	invasive	2.288865047	2.986056447	1.277109865	3.7505
102	PMP	*	*	serous cystadenoma	53	benign	?	*	benign	1.875832864	4.023678572	1.4480646	4.0178
103	NECC	*	*	control	53	control	?	*	control	1.792358007	3.67584117	1.296086113	4.2913
104	PMP	III	2	clear cell adenocarcinoma	62	III/IV	?	*	invasive	1.847796081	3.743381131	0.721938748	3.8001
105	PMP	L	1	endometrioid adenocarcinoma	45	1/11	31.4	BBC	invasive	2.030103182	3.809302697	1.420149266	4.3172
106	PMP	II	3	serous adenocarcinoma	48	1/11	681	CA	invasive	1.709485242	3.510758256	1.371756797	3.7307
107	PMP	II	2	serous adenocarcinoma	55	1/11	88.6	CA	invasive	1.88980974	4.139097083	1.029112015	4.1714
108	PMP	III	3	clear cell adenocarcinoma	50	III/IV	721.1	CA	invasive	1.63089641	3.957749895	1.029112015	3.8576
109	PMP	*	*	serous cystadenoma	50	benign	?	*	benign	1.994873872	3.602649537	0.788612316	3.8369
11	PMP	*	0	serous borderline	59	borderline	42.8	CA	borderline	1.688057344	3.991000679	1.181827248	3.7291

Note: We didn't do further data preprocessing since the author of the paper has done it for us.

Feature

Significance-based selection	Correlation-based feature subset selection	Expression fold change selection
miR-29a-3p	miR-16-2-3p	miR-23b-3p
miR-30d-5p	miR-200a-3p	miR-29a-3p
miR-200a-3p	miR-200c-3p	miR-32–5 p
miR-200c-3p	miR-320b	miR-92a-3p
miR-320d	miR-320d	miR-150–5 p
miR-320c		miR-200a-3p
miR-450b-5p		miR-200c-3p
miR-203a		miR-203a
miR-486–3 p		miR-320c
miR-1246		miR-320d
miR-1307–5 p		miR-335–5 p
		miR-450b-5p
		miR-1246
		miR-1307–5 p

DOI: https://doi.org/10.7554/eLife.28932.007

Workflow

Our flowchart:

Figure 1. Flowchart of study design. (a) Protocol for miRNA sequencing, filtering, batch adjustment and separation into the training and testing sets. (b) Protocol for model development and testing.

DOI: https://doi.org/10.755//al.ifa.28032.003

Packages

Which tools do you use?(related publication):

- Which packages do you use?
 - Authors use STATISTICA software & Python to accomplish the results.
 - o 峻福 use R & related packages to reproduce results.
 - Packages: openxlsx(read data), rminer(AutoML), sampling(Stratified random sampling), caret(automated feature seletion)
 - o 冠宏 use Python & related packages to reproduce results.
 - Packages: sklearn, sklego, pgmpy.models, pandas, numpy

Results

峻福part:

i: 1 model: naive predicted classification accuracy rate: 52.3 i: 2 model: ctree predicted classification accuracy rate: 50 i: 3 model: cv.glmnet predicted classification accuracy rate: 52.3 i: 4 model: dt predicted classification accuracy rate: 52.3 i: 5 model: knn predicted classification accuracy rate: 56.8 i: 6 model: sym predicted classification accuracy rate: 54.5 i: 7 model: lssvm predicted classification accuracy rate: 54.5 i: 8 model: mlp predicted classification accuracy rate: 50 i: 9 model: randomForest predicted classification accuracy rate: 63.6 i: 10 model: xgboost predicted classification accuracy rate: 59.1 i: 11 model: bagging predicted classification accuracy rate: 68.2 i: 12 model: boosting predicted classification accuracy rate: 59.1 i: 13 model: 1da predicted classification accuracy rate: 56.8 i: 14 model: multinom predicted classification accuracy rate: 56.8

Results

冠宏part:

过太part:						
	Significance-based variable subset	Correlation-based feature selection subset	Fold change-based variable subset			
Linear discriminant analysis	0.76	0.73	0.76			
Logistic regression	0.76	0.73	0.77			
Neural network	0.77	0.73	0.76			
Support vector machine	0.7	0.67	0.71			
Naive Bayes classifier	0.66	0.71	0.66			
Random forest	0.77	0.71	0.72			

Results

Resu	lt in	the	paper:	
------	-------	-----	--------	--

Result in the paper.	Variable selection method						
Statistical model	Significance-based variable subset AUC (95% CI)	Correlation-based feature selection subset AUC (95% CI)	Fold change-based variable subset AUC (95% CI)				
Linear discriminant analysis	0.80 (0.66–0.93)	0.76 (0.62–0.90)	0.78 (0.64–0.92)				
Logistic regression	0.81 (0.68–0.94)	0.75 (0.61–0.90)	0.82 (0.70–0.94)				
Neural network	0.84 (0.72–0.96)	0.75 (0.60–0.89)	0.90 (0.81–0.99)				
Support vector machine	0.77 (0.63–0.91)	0.73 (0.58–0.87)	0.77 (0.63–0.91)				
Multivariate adaptive regression splines	0.57 (0.40–0.74)	0.66 (0.49–0.82)	0.73 (0.58–0.88)				
Naive Bayes classifier	0.75 (0.60–0.89)	0.68 (0.52–0.84)	0.75 (0.60–0.89)				
Least Absolute Deviation regression tree	0.77 (0.63–0.91)	0.61 (0.44–0.78)	0.69 (0.53–0.84)				
Functional tree	0.78 (0.64–0.91)	0.77 (0.63–0.91)	0.68 (0.52–0.84)				
Bayesian network	0.72 (0.56–0.87)	0.67 (0.52–0.83)	0.72 (0.56–0.87)				
Random forest	0.78 (0.64–0.91)	0.71 (0.56–0.86)	0.76 (0.62–0.90)				
Elastic net	0.80 (0.67–0.93)	0.76 (0.62–0.90)	0.79 (0.66–0.92)				

DOI: https://doi.org/10.7554/eLife.28932.008

What do we find?

1. The result Kuan-Hung did has inferior result. =>may be due to statistical bias.

On-line demo

Reproducibility

1. How to document our project? How to maintain our code? How to reproduce our result?

冠宏part: use data "final_dset_combine.csv" and run "test.py"

峻福part: run "f_project_tmp.r"

2.Teamwork coordination

峻福:research on feature engineering, run AutoML methods which is not implemented by the author, edit Github 冠宏:do some package research, implement the methods mentioned in the paper, edit Github, edit slides