CPU烧板时,Basys3板的使用说明

使用Basys3板来运行所设计的CPU时,如何通过4个数码显示器来查看CPU执行指令的情况?

- 1、当前指令地址PC:下条指令地址PC?
- 2、RS寄存器地址:RS寄存器数据?
- 3、RT寄存器地址:RT寄存器数据?
- 4、ALU结果输出:DB总线数据?

请看以下分析与原理结构图。

怎么认识CPU执行指令后,指令的正确与否?

说明: 指令存储器中的指令地址范围: 0~255; 数据存储器中的数据地址范围: 0~255。也就是只使用低8位。

开关说明: (以下数据都来自CPU) (SW15、SW14、SW0为Basys3板上开关名,BTNR为按键名)

开关SW_in (SW15、SW14)状态情况如下。显示格式: 左边两位数码管BB: 右边两位数码管BB。以下是数码管的显示内容。

SW_in = 00: 显示 当前 PC值:下条指令PC值

SW_in = 01:显示 RS寄存器地址:RS寄存器数据

SW_in = 10:显示 RT寄存器地址:RT寄存器数据

SW_in = 11: 显示 ALU结果输出:DB总线数据。

复位信号(reset)接开关SW0,按键(单脉冲)接按键BTNR。

另外,

- 1、7段数码管的位控信号AN3-AN0,每组编码中只有一位为0(亮),其余都是1(灭)。
- 2、七段数码显示器编码与引脚对应关系为(左到右,高到低):七段共阳极数码管->1gfedcba;七段共阴极数码管->0gfedcba。
- 3、必须有足够的刷新频率,频率太高或太低都不成,系统时钟必须适当分频,否则效果达不到。

指令执行采用**单步(按键控制)**执行方式,由开关(**SW15、SW14**)控制选择查看数码管上的相关信息,地址和数据。地址或数据的输出经以下模块代码转换后接到数码管上。

设计思路:

- 1、实现CPU在板上运行需要两个时钟信号,CPU工作时钟和Basys3板系统时钟。CPU工作时钟即为按键,是CPU正常工作时钟信号,按键必须进行消抖处理; Basys3板系统时钟即为板提供的正常工作时钟信号,即为100MHZ。Basys3板系统时钟信号引脚对应管脚W5。
- 2、每个按键周期,4个数码管都必须刷新一次。数码管位控信号 AN3-AN0是 1110、1101、1011、0111, 为0时点亮该数码管, 当然, 还应该为数码管各位 "1gfedcba"引脚输出信号, 最高位为"1"。比如, "当前PC值"低8位中的高4位和低4位, 必须经下页转换后送给数码管各引脚。

显示模块设计大概分为4个部分:

- (1)对Basys3板系统时钟信号进行分频,分频的目的用于计数器;
- (2) 生成计数器, 计数器用于产生4个数。这4数用于控制4个数码管;
- (3) 根据计数器产生的数生成数码管相应的位控信号(输出)和接收CPU来的相应数据;
- (4) 将从CPU 接收到的相应数据转换为数码管显示信号,再送往数码管显示(输出),即下页内容。
- 还必须清楚,数码管显示的内容是受开关控制的,不同情况显示内容是不同的。看上页说明。

"0"~"F"到七段数码显示器的转换(代码,共阳极)

(Basys3版采用共阳极)

```
module 7 SegLED(
  input [3:0] display data,
  output reg [7:0] dispcode
 always @( num ) begin
   case (num)
     4'b0000: dispcode = 8'b1100_0000; //0; '0'-亮灯, '1'-熄灯
     4'b0001 : dispcode = 8'b1111 1001; //1
     4'b0010 : dispcode = 8'b1010_0100; //2
     4'b0011 : dispcode = 8'b1011 0000; //3
     4'b0100 : dispcode = 8'b1001 1001; //4
     4'b0101 : dispcode = 8'b1001 0010; //5
     4'b0110 : dispcode = 8'b1000 0010; //6
     4'b0111 : dispcode = 8'b1101 1000; //7
     4'b1000 : dispcode = 8'b1000 0000; //8
     4'b1001 : dispcode = 8'b1001 0000; //9
     4'b1010 : dispcode = 8'b1000 1000; //A
     4'b1011 : dispcode = 8'b1000 0011; //b
     4'b1100 : dispcode = 8'b1100 0110; //C
     4'b1101 : dispcode = 8'b1010 0001; //d
     4'b1110 : dispcode = 8'b1000 0110; //E
     4'b1111 : dispcode = 8'b1000 1110; //F
     default : dispcode = 8'b0000 0000; //不亮
  endcase
 end
endmodule
```

"0"~"F"到七段数码显示器的转换(代码,共阴极)

```
module 7 SegLED(
  input [3:0] display data,
  output reg [7:0] dispcode
 always @( num ) begin
   case (num)
     4'b0000: dispcode = 2'b00111111; //0; '1'-亮灯, '0'-熄灯
     4'b0001 : dispcode = 2'b00000110; //1
     4'b0010 : dispcode = 2'b01011011; //2
     4'b0011 : dispcode = 2'b01001111; //3
     4'b0100 : dispcode = 2'b01100110; //4
     4'b0101 : dispcode = 2'b01101101: //5
     4'b0110 : dispcode = 2'b01111101; //6
     4'b0111 : dispcode = 2'b00000111; //7
     4'b1000 : dispcode = 2'b01111111; //8
     4'b1001 : dispcode = 2'b01101111; //9
     4'b1010 : dispcode = 2'b01110111; //A
     4'b1011 : dispcode = 2'b01111100; //b
     4'b1100 : dispcode = 2'b00111001; //C
     4'b1101 : dispcode = 2'b01011110; //d
     4'b1110 : dispcode = 2'b01111001; //E
     4'b1111 : dispcode = 2'b01110001; //F
     default : dispcode = 2'b00000000; //不亮
  endcase
 end
endmodule
```

七段数码显示器字型码

七段LED字型码

显示字符	共阴极字型码	共阳极字型码	显示字符	共阴极字型码	共阳极字型码
0	0x3F	0xC0	С	0x39	0xC6
1	0x06	0xF9	d	0x5E	0xA1
2	0x5B	0xA4	Е	0x79	0x86
3	0x4F	0xB0	F	0x71	0x8E
4	0x66	0x99	P	0x73	0x8C
5	0x6D	0x92	U	0x3E	0xC1
6	0x7D	0x82	Γ	0x31	0xCE
7	0x07	0xF8	у	0x6E	0x91
8	0x7F	0x80	Н	0x76	0x89
9	0x6F	0x90	L	0x38	0xC7
A	0x77	0x88	"灭"	0x00	0xFF
b	0x7C	0x83			

Basys3 板引脚分配表

LED	PIW	CLOCK	PIN	SWITCH	PIN	BUTTON	PIN	Seven-segment digital tube	PIN
LD0	U16	MRCC	₩5	SW0	V17	BTNU	T18	ANO ANO	U2
LD1	E19	личес	TO TO	SW1	V16	BTNR	T17	AN1	U4
LD2	U19			SW2	W16	BTND	U17	AN2	74
LD3	V19			SW3	W17	BTNL	W19	AN3	W4
LD4	W18			SW4	W15	BTNC	U18	CA	W7
LD5	U15			SW5	V15			CB	W6
LD6	U14			SW6	W14			СС	U8
LD7	V14			SW7	W13			CD	V8
LD8	V13	USB (J2)	PIN	SW8	₩2			CE	U5
LD9	V 3	PS2_CLK	C17	SW9	T3			CF	V5
LD10	W3	PS2_DAT	B17	SW10	T2			CG	U7
LD11	U3			SW11	R3			DP	٧7
LD12	P3			SW12	₩2				
LD13	N3			SW13	U1				
LD14	P1			SW14	T1				
LD15	L1			SW15	R2				