Proof by Contradiction -- ANSWERS

Handout

Prove: There do not exist integers a, b such that 18a + 6b = 1.

Seeking a contradiction, assume the negation:

"There exist integers a, b such that 18a + 6b = 1."

- Dividing both sides by 6, we get $3a + b = \frac{1}{6}$
- Since a, b are integers, 3a + b is an integer
- So $\frac{1}{4}$ is an integer.
- This completes the contradiction: 1/6 is not actually an integer. (explain contradiction if at
- (optional concluding sentence) Assuming that these integers do exist led to contradiction. Thus, we have proved that there do **not** exist integers a, b such that 18a + 6b = 1.

Rational Reasoning

x is rational if there exist two integers a, b with $x \Rightarrow a$

Prove:

For all **rational** numbers x and **irrational** numbers y, x + y is irrational.

Proof:

· Seeking a contradiction, we will assume the negation:

"There exists a rational number x and an irrational number y for which x + y is rational."

- Let a, b, c, d be integers such that $x = \frac{a}{b}$ and $x + y = \frac{c}{d}$.
- So y = (x + y) x
- Since a, b, c, d are integers, cb ad and bd are both integers
- So y is rational.
- This completes the contradiction (y is both rational and irrational).

铺块砖

Definition: A "tiling" of a grid by 2x1 dominoes is a placement of dominoes on the grid so that every square has exactly one domino.

Proposition (negation of original):

There does not exist a way to tile an 8x8 grid with the two opposite corners removed with 2x1 dominoes.

Proof:

Tilings

- Seeking a contradiction, assume the negation:
 - "There exists a way to tile an 8x8 grid with the two opposite corners removed with 2x1 dominoes."
- Color the cells in a checkerboard pattern.

- Every domino covers one black square and one white square.
- We count 30 black squares remaining, so the tiling must use 30 dominos • We count 32 white squares remaining, so the tiling must use 32 dominos
- . This completes the contradiction, and so no such tiling exists

Irrationality of $\sqrt{2}$ (Main Proof)

Proof:

• Seeking a contradiction, assume the negation: "There exist ints a, b with $a^2 = 2b^2$."

• Let a, b be ints with $a^2 = 2b^2$, with a as small as possible.

• Consider the ints c = 2b - a, d = a - b• We have $c^2 = (2b - a)^2$ $= 4b^2 - 4ab + a^2$ $= 4b^2 - 4ab + a^2$ $= 2b^2 - 4ab + 2a^2$ $= 2b^2 - 4ab + 2a^2$ $= 2(b^2 - 2ab + a^2)$ $= 2(b^2 - 2ab + a^2)$ $= 2(b^2 - a)^2$ • Also, we have c = 2b - a < 2a - a < 2a - a = a• This is a contradiction: we found new ints c, d with c < a and $c^2 = 2d^2$, but we had assumed that a was as small as possible.

if $a^2 = 2b^2$ then $(2ar)^2 = 2(2b)^2$ these exists a smallest pair satisfying the identity

i. Let a be as small as possible and there is always a pair that is smaller, as long as $a^2 = 2b^2$ i. untadition.