Transformation du vecteur

Soit le vecteur $\overset{\mathbf{I}}{A}$,

En coordonnés cylindrique :
$$\overset{r}{A} = A_r \ \hat{r} + A_\phi \ \hat{\phi} + A_z \ \hat{z} = \begin{pmatrix} A_r \\ A_\phi \\ A_z \end{pmatrix}$$

	Vers cartésienne	Vers cylindrique	Vers sphérique
De cartésienne		$ \begin{pmatrix} A_r \\ A_{\phi} \\ A_z \end{pmatrix} = \begin{pmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} $	$ \begin{pmatrix} A_r \\ A_{\theta} \\ A_{\phi} \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\ -\sin\phi & \cos\phi & 0 \end{pmatrix} \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} $
De cylindrique	$ \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} A_r \\ A_\phi \\ A_z \end{pmatrix} $		
De sphérique	$ \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\phi & \cos\theta\cos\phi & -\sin\phi \\ \sin\theta\sin\phi & \cos\theta\sin\phi & \cos\phi \\ \cos\theta & -\sin\theta & 0 \end{pmatrix} \begin{pmatrix} A_r \\ A_\theta \\ A_\phi \end{pmatrix} $		