AE2ADS: Algorithms Data Structures and Efficiency

Lecturer: Heshan Du

Email: <u>Heshan.Du@nottingham.edu.cn</u>

University of Nottingham Ningbo China

Big-Oh

Let f(n) and g(n) be functions mapping positive integers to positive real numbers.

We say that f(n) is O(g(n)), if there exist a real constant c > 0 and an integer constant $n_0 \ge 1$ such that for every $n \ge n_0$, $f(n) \le cg(n)$.

Prove that:

- 5 is O(1)
- 6 is O(n)
- 2n + 3 is O(n)
- $3\log n$ is O(n)
- $-\frac{1}{n} \text{ is } O(1)$

Prove that:

- 100n + 1000 is O(n)
- $n^2 + 8n 6$ is $O(n^2)$
- $n \log n$ is $O(n^2)$
- $(\log n)^2$ is $O(n \log n)$
- n^3 is $O(2^n)$

Multiplication Rule for Big-Oh

Let d(n), f(n), e(n), g(n) be functions mapping positive integers to positive real numbers.

Show that if d(n) is O(f(n)) and e(n) is O(g(n)), then d(n)e(n) is O(f(n)g(n)).

Big-Oh Rules: Drop smaller terms

Let f(n), h(n) be functions mapping positive integers to positive real numbers. Show that if f(n) = (1 + h(n)) with $h(n) \to 0$ as $n \to \infty$, then f(n) is O(1).

Big-Oh Rules: Drop smaller terms

Show that if f(n) = (1 + h(n)) with $h(n) \rightarrow 0$ as $n \rightarrow \infty$, then f(n) is O(1).

Proof (sketch):

- $h(n) \to 0$ as $n \to \infty$ means that for large enough n then h(n) will become arbitrarily close to 0.
- Hence, there exists n_0 such that

$$h(n) \le 1$$
 for all $n \ge n_0$

- Hence, $f(n) \le 2$ for all $n \ge n_0$.
- Therefore, f(n) is O(1).

What is big-Oh of each of the following functions? Apply the big-Oh rules to justify your answer.

1.
$$f(n) = n^2 + n$$

2.
$$f(n) = n^2 + 2^n$$

3.
$$f(n) = (n \log n) + n^2$$

What is big-Oh of each of the following functions? Apply the big-Oh rules to justify your answer.

1.
$$f(n) = 5n^2 + 1000n + 10000$$

2.
$$f(n) = 6n^2 + 2^n/1000$$

3.
$$f(n) = (10000n \log n) + n^2$$

Order the following functions by asymptotic growth rate.

$$4n(\log n) + 2n, 2^{20}, 2^{\log n}$$

 $3n + 100 \log n, 4n, 2^n$
 $n^2 + 10n, n^3, n(\log n)$

More Exercises

M. T. Goodrich, R. Tamassia and M. H. Goldwasser, Data Structures and Algorithms in Java, 6th Edition, 2014.

Chapter 4. Analysis Tools