Hardware Mechanical design

8DOF Quad tiny / 12DOF Quad tiny Module design

|180mm*87mm |470g

|Capstan reducer –

Maximum output-0.8N*M

12DOF Quad bai

|1000mm*550mm |18kg

Timing belt reducer -

Maximum output-40N*M

Joint actuator Mechanical design

Quad tiny – Capstan reducer 6:1

Pros:

| Without backlash, small moment of inertia, achievable high transmission ratio in limited space

Cons:

Pre-tensioned rope is vital

Quad bai – Timing belt reducer 9:1

Pros:

|Small backlash, small moment of inertia,

Cons:

Higher friction, timing belt needed to be tensioned

Leg Mechanical design for quad tiny Guidelines

| Low weight/moment of inertia /sufficient strength

For Quad tiny

| Parallel leg mechanical design

Simulation of leg's workspace

Single leg demo

Leg Mechanical design for quad bai Guidelines

Low weight/moment of inertia /sufficient strength

For Quad tiny

| Serial leg design

Actuator 2

Actuator 1

Actuator 3

Assembly a leg

Single leg demo

Eletronic driver/controller for quad tiny

Motor driver_gen 1:

|Atmega328/Drv8313/AS5600 |IIC*1/UART*1 | Maximum 1.5A / 5.4g

Controller board:

|Esp32 Bluetooth/WIFI/IMU |IIC*1/UART*1/SPI*1

Battery management, 4S 450mah Lion bat

Motor driver_gen 2:

SIM_{v-rep} simulation of quad tiny

Hopping torque simed

Hopping with feedforward controller

2021, Shuang Peng, <u>www.psrobotics.tech</u>