Documentation for atmospheric transmission code

Laurel Farris

April 21, 2016

Intro

This document describes the thought processes, required math, etc. for the code atmospheric_transmission.py.

Math

The following is the math carried out to get the atmospheric transmission, a_{λ} in terms of the user input:

- object magnitude: M_{obj}
- \bullet airmass: X

 M_{net} is the "net" transmitted magnitude observed from the ground. Equations

$$\begin{split} M_{net} &= M_{obj} + kX \\ M_{net} - M_{obj} &= -2.5 \log \left(\frac{F_{net}}{F_{obj}} \right) \\ M_{net} - M_{obj} &= -2.5 \log \left(a \right) \\ a &= 10^{\wedge} \left(\frac{M_{net} - M_{obj}}{-2.5} \right) \\ a &= 10^{\wedge} \left(\frac{kX}{-2.5} \right) \end{split}$$