Extrapolação de Séries e Aplicações à Distribuição de Tweedie

Wellington José Leite da Silva Orientador: Luiz Max Carvalho

December 14, 2023

Séries

Definição

Seja uma sequência $\{a_k\}_{k\in\mathbb{N}}\subset\mathbb{R}$. Definimos uma série a partir dessa sequência tomando $S_n:=\sum_{k=1}^n a_k$. Assim a sequência $\{S_n\}_{n\in\mathbb{N}}$ é dita uma série de termos reais, e se

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \sum_{i=0}^n a_i = L < \infty$$

dizemos que a série é convergente à L.

Algumas séries podem ter vários formatos: $\sum_{k=1}^{\infty} \frac{1}{k^s}$, $\sum_{k=0}^{\infty} \frac{x^k}{k!}$, $\sum_{k=1}^{\infty} \frac{1}{k^3 \sin^2 k}$, $\sum_{k=2}^{\infty} \frac{\sin(kx)}{\ln k}$, $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2k-1}$, $\sum_{k=1}^{\infty} \left(\frac{1}{3^k} + \frac{1}{4^k}\right) \frac{1}{k}$, ...

Transformação de séries

Seja uma série $S_n = \sum_{k=1}^n a_k$, definimos outra sequência

$$S'_n = \frac{S_n S_{n+2} - S_{n+1}^2}{S_{n+2} - 2S_{n+1} + S_n}.$$

está transformação de sequência é chamada *Aitken*, tem como objetivo convergir mais rápido que a série original.

AITKEN, A. C. On Bernoulli's Numerical Solution of Algebraic Equations. v. 46, p. 289-305, 1927.

3/32

Problema de Basel

$$S_n = \sum_{k=1}^n \frac{1}{k^2}$$

DELAHAYE, J. P.; GERMAIN-BONNE, B. Résultats négatifs en accélération de la convergence. v. 35, n. 4, p. 443–457, 1980.

4/32

Wellington Silva Extrapolação de Séries December 14, 2023

Série Harmônica Alternada

$$S_n = \sum_{k=1}^n (-1)^{k+1} \frac{1}{k}$$

Aceleração

Definição

Seja $\{S_n\}_{n\in\mathbb{N}}$ uma série que converge para um limite $L<\infty$. Considere também uma transformação T tal que mapeie $\{S_n\}_{n\in\mathbb{N}}$ em $\{T_n\}_{n\in\mathbb{N}}$. A nova sequência $\{T_n\}$ deve satisfazer:

- $\{T_n\}_{n\in\mathbb{N}}$ converge para o mesmo limite de $\{S_n\}_{n\in\mathbb{N}}$;
- $\{T_n\}_{n\in\mathbb{N}}$ converge mais rapidamente que $\{S_n\}_{n\in\mathbb{N}}$, ou seja,

$$\lim_{n\to\infty}\frac{T_n-L}{S_n-L}=0.$$

Se T satisfaz essas três propriedades, dizemos^a que T acelera a convergência da sequência $\{S_n\}_{n\in\mathbb{N}}$ ou que a sequência $\{T_n\}_{n\in\mathbb{N}}$ converge mais rápido que $\{S_n\}_{n\in\mathbb{N}}$.

^aBREZINSKI, C.; ZAGLIA, M. Redivo. Extrapolation Methods: Theory and Practice, 2003.

Principais objetivos

- Há uma grande literatura sobre aplicação de métodos de extrapolação em um determinado problema, mas poucas em aplicação de forma geral;
- Criação de uma biblioteca em Python numericamente estável, com os métodos de aceleração considerados aqui;

Estrutura do trabalho: (i) Métodos de extrapolação selecionados (ii) Criação da biblioteca em *Python* e (iii) aplicação dos métodos na distribuição de Tweedie.

Algoritmo E

O algorítimo E (Brezinski, 1980) dá suporte teórico aos demais métodos. Se baseia no fato de que podemos escrever a sequência $\{S_n\}$ convergente com limite L da seguinte forma

$$S_{n+i} = L + a_1 g_1(n+i) + \ldots + a_k g_k(n+i), \quad i = 0, \ldots, k,$$

onde as funções $(g_i(n))'s$ são dadas pela transformação escolhida, e L pode ser obtido resolvendo um sistema linear.

Wellington Silva Extrapolação de Séries December 14, 2023

8/32

Algoritmo E

$$E_n^{(k)} = \frac{\begin{vmatrix} S_n & S_{n+1} & \dots & S_{n+k} \\ g_1(n) & g_1(n+1) & \dots & g_1(n+k) \\ \vdots & \vdots & \ddots & \vdots \\ g_k(n) & g_k(n+1) & \dots & g_k(n+k) \end{vmatrix}}{\begin{vmatrix} g_1(n) & g_1(n+1) & \dots & g_1(n+k) \\ \vdots & \vdots & \ddots & \vdots \\ g_k(n) & g_k(n+1) & \dots & g_k(n+k) \end{vmatrix}}.$$

Teorema

Se $\lim_{n\to\infty} S_n = L$, $\lim_{n\to\infty} g_i(n+1)/g_i(n) = b_i \neq 1 \ \forall i$, com $b_i \neq b_j \ \forall i \neq j$, então $\lim_{n\to\infty} E_n^{(k)} = L \ \forall k$.

Prova: Veja Apêndice.

BREZINSKI, C.; ZAGLIA, M. Redivo. Extrapolation Methods: Theory and Practice, 2003.

Método de Aitken

Assim como as demais transformações de sequência podemos escrever a transformação de Aitken como

$$T_{n} = \frac{\begin{vmatrix} S_{n} & S_{n+1} \\ a_{n} & a_{n+1} \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ a_{n} & a_{n+1} \end{vmatrix}},$$

$$= \frac{S_{n}(S_{n} - S_{n-1}) - S_{n+1}(S_{n+1} - S_{n})}{(S_{n} - S_{n-1}) - (S_{n+1} - S_{n})},$$

$$= \frac{S_{n}S_{n+2} - S_{n+1}^{2}}{S_{n+2} - 2S_{n+1} + S_{n}}.$$

BREZINSKI, C.: ZAGLIA, M. Redivo, Extrapolation Methods: Theory and Practice, 2003.

10/32

Método de Richardson

Método para séries de termos positivos, dado por

$$T_n = S_{2n} + \frac{S_{2n} - S_n}{2^p - 1},$$

onde p é variável ajustável. Para p=1

$$T_n=2S_{2n}-S_n.$$

Método de Richardson

A fim de exemplo, observe a Tabela 1, aplicando a transformação de Richardson com p=1 para o problema de Basel, $\zeta(2)=\sum_{k=1}^{\infty}\frac{1}{k^2}$:

Table: Richardson (p=1) aplicado à Basel

n	S_n	T_n	T'_n	T_n''
1	1.0000	1.5000	1.6296	1.6444
2	1.2500	1.5972	1.6425	
4	1.4236	1.6312		
8	1.5274			

Note que, o limite da série é $\pi^2/6=1.6449...$ Para este exemplo simples podemos provar que Richardson acelera o problema de Basel. Veja a prova no Apêndice.

Método Epsilon

O Método de Epsilon para séries de convergencia lenta. Seja a série $\{S_n\}_{n\in\mathbb{N}}$, primeiro definimos

$$\varepsilon_n^{(-1)} = 0$$
 e $\varepsilon_n^{(0)} = S_n$

e iterativamente

$$\varepsilon_n^{(k+1)} = \varepsilon_{n+1}^{(k-1)} + \frac{1}{\varepsilon_{n+1}^{(k+1)} - \varepsilon_n^{(k)}}.$$

A sequencia acelerada é definida pelos valores de k pares, os impares são sequências intermediarias.

Algoritmo G

Com foco em integrais improprias o Algoritmo G é o penúltimo método de extrapolação apresentado aqui. Seja a série $S_n = \sum_{k=1}^n a_k$, então definiremos duas sequências auxiliares da seguinte forma

$$s_n^{(0)} = 1, \ r_n^{(1)} = a_n, \ n = 0, 1, \dots,$$

e iterativamente

$$s_n^{(k+1)} = s_{n+1}^{(k)} \left(\frac{r_{n+1}^{(k+1)}}{r_n^{(k+1)}} - 1 \right), \ k, n = 0, 1, \dots,$$

$$r_n^{(k+1)} = r_{n+1}^{(k)} \left(\frac{s_{n+1}^{(k+1)}}{s_n^{(k+1)}} - 1 \right), \ k = 1, 2, \dots; n = 0, 1, \dots$$

Algoritmo G

Daí podemos obter $G_n^{(k)}$'s pelo método iterativo

$$G_n^{(k)} = G_n^{(k-1)} - \frac{G_{n+1}^{(k-1)} - G_n^{(k-1)}}{r_{n+1}^{(k)} - r_n^{(k)}} r_n^k, \ k = 1, 2, \dots; n = 0, 1, \dots,$$

 $\mathsf{com}\ G_n^{(0)} = S_n.$

Método de Levin generalizado

O último método é o Método de Levin, se diferencia dos outros por ser uma versão mais simples do Algoritmo E. Sendo $S_n = \sum_{k=1}^n a_k$, a nova sequência extrapolada é definida como

$$W_n^{(k)} = \frac{M_n^{(k)}}{N_n^{(k)}}$$

onde

$$M_n^{(0)} = \frac{S_n}{g(n)},$$

$$M_n^{(k+1)} = \frac{M_{n+1}^{(k)} - M_n^{(k)}}{a_{n+k}^{-1} - a_{n+1}^{-1}},$$

Método de Levin generalizado

е

$$N_n^{(0)} = \frac{1}{g(n)},$$

$$N_n^{(k+1)} = \frac{N_{n+1}^{(k)} - N_n^{(k)}}{a_{n+1}^{-1} - a_{n+1}^{-1}}.$$

Note que, o método é constituído por uma função g(.) livre que Levin sugere 3 opções para g

- t variante: $g(n) = a_{n+1}$;
- **u variante**: $g(n) = na_n$;
- **v** variante: $g(n) = a_n a_{n+1}/(a_{n+1} a_n)$.

17 / 32

Wellington Silva Extrapolação de Séries December 14, 2023

LEVIN, David. Development of non-linear transformations for improving convergence of sequences. v. 3, n. 1-4, p. 371–388, 1972.

Mpmath

Mpmath é uma biblioteca de precisão ponto flutuante em *python*, usada em bibliotecas como *Sage* e *SymPy*. Representa números com precisão de ponto flutuante

$$(-1)^s x \cdot 2^y$$

por (s, x, y, b), sendo x e y inteiros e b (padrão b = 53 bits) uma variável global que guarda a precisão de x.

A biblioteca também provem de uma função para avaliar séries

```
from mpmath import nsum, inf

nsum(lambda x: 1/x**2, [1, inf])

✓ 0.0s
```

mpf('1.6449340668482264')

Mpmath

$$S_n = \sum_{k=2}^{\infty} \frac{1}{k(\log(k))^2}$$

mp1(1.5105025507000055)

Porém com 15 casas decimais de precisam o resultado deveria ser 2.10974280123689.

Escala Logarítmica

Operar com números muito pequenos ou muito grandes pode trazer erros numéricos.

- multiplicação → adição;
- divisão → subtração;
- exponenciação → multiplicação;
- adição → logSumExp:

$$LSE(x_1, x_2, \dots, x_n) = x_{max} + \log \sum_{i=1}^n \exp(x_i - x_{max});$$

•

Funções principais

A função principal da biblioteca é esum

- *Uma série*: Na forma de uma função $f: \mathbb{N} \to \mathbb{R}$ que retorna os termos da série;
- *O método*: Podendo ser "Aitken", "Richardson", "Epsilon", "G", "Levin-t", "Levin-u", "Levin-v" ou "None" para soma usual;
- O erro (ε) : Um valor para o critério de parada $|T_{n-1} T_n| < \varepsilon$;
- Um boleano: Os cálculos são feitos em escala logarítmica, e é
 retornado em escala normal, mas caso o usuário prefira trabalhar em
 escala logarítmica basta passar "True" e será retornado um objeto com
 sinal e valor na escala logarítmica;
- A precisão: Se a precisão for 53 usamos o float64 padrão do Python, caso contrario a estrutura aritmética de ponto flutuante da mpmath.

esum vs. nsum

	esum		nsum	
	value	time (seg)	value	time (seg)
Atiken	1.9529	0.1451	-	-
Richardson	1.9648	0.0954	1.9105	0.0040
Epsilon	1.9529	0.1541	1.9105	0.0359
G	1.9450	0.5862	-	-
Levin-t	1.9529	0.2057	1.9105	0.0769
Levin-u	2.0142	0.1866	1.9105	0.0790
Levin-v	2.0257	0.1939	1.9105	0.0764
None	1.9350	0.0246	1.9105	0.0011

22 / 32

esum vs. nsum

	esum		nsum	
	value	time (seg)	value	time (seg)
Atiken	1.9529	0.1489	-	-
Richardson	1.9648	0.1737	1.9399	0.0126
Epsilon	1.9529	0.1809	2.0110	0.2795
G	1.9450	0.6675	-	-
Levin-t	1.9529	0.2485	1.9399	0.7834
Levin-u	2.0142	0.2129	1.9399	0.7698
Levin-v	2.0257	0.2340	1.9399	0.7757
None	1.9350	0.0541	1.9399	0.0043

A biblioteca pode ser encontrada em https://pypi.org/project/extrapolation.

Tweedie

Os modelos exponenciais de dispersão (EDM) têm uma função de densidade de probabilidade da forma

$$f(z; \mu, \phi) = a(z, \phi) \exp \left[\frac{1}{\phi} \{z\theta - \kappa(\theta)\}\right],$$

onde $\kappa()$ e a() são funções conhecidas, porém a() não tem formula fechada. A distribuição de Tweedie é um EDM, que satisfaz

$$Var(X) = \sigma(E[X])^p,$$

para qualquer p fora do intervalo (0,1).

Wellington Silva Extrapolação de Séries December 14, 2023

24 / 32

JØRGENSEN, Bent; PAES DE SOUZA, Marta C. Fitting Tweedie's compound poisson model to insurance claims data. p. 69–93. ian. 1994.

Tweedie p > 2

Para alguns valores específicos de p obtemos distribuições famosas como a Normal (p=0), Poisson (p=1), Gamma (p=2) e Gaussiana Inversa (p=3).

Jørgensen provou que para 1 e <math>p > 2, que podemos escrever a() como uma série. Para 1

$$a(z,\phi)=\frac{1}{z}V(z,\phi,\rho),$$

com
$$V(z,\phi,p)=\sum_{k=1}^{\infty}V_{k}$$
 e

$$V_k = \frac{\Gamma(1+\alpha k)\phi^{k(\alpha-1)}(p-1)^{\alpha k}}{\Gamma(k)(p-2)^k z^{\alpha k}} (-1)^k \sin(-k\pi\alpha).$$

Forma da Tweedie

Figure: $\alpha = 0.01$, $\theta = -1/2$, $z \in (0.1, 1)$, n = 200

Forma da Tweedie

Figure: $\alpha = 0.99$, $\theta = -1/2$, $z \in (1, 1.1)$, n = 100

Experimento de Dias & Ribeiro (2019)

É implementado em Dias uma versão para avaliação da Tweedie no intervalo p>2, que atinge resultados melhores que os do R. Sendo $\alpha=\frac{2-p}{1-p}$,

- A f.d.p. integra 1;
- 1000-bits de precisão;
- $\quad \alpha \in [0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99];$
- Quadratura com 1000 pontos (para $\alpha = 0.99$ usasse 10000);
- Intervalo (1e-6, 20) (para $\alpha = 0.99$ usasse (1e-6, 50));

DIAS, Nelson L.; RIBEIRO JR, Paulo J. Practical rules for summing the series of the Tweedie probability density function with high-precision arithmetic. 2019.

28 / 32

Dias vs. tweedie

		Dias		tweedie	
α	pontos	Ι	erro (I - 1)	I	erro (I - 1)
0.01	1000	1.0000e-00	7.0451e-07	nan	nan
0.1	1000	1.0000e-00	2.0245e-08	2.9811e + 08	2.9811e + 08
0.2	1000	1.0000e-00	1.2977e-11	7.2761e + 15	7.2761e + 15
0.3	1000	1.0000e-00	7.7060e-13	nan	nan
0.4	1000	1.0000e-00	6.0196e-13	1.6752e + 35	1.6752e + 35
0.5	1000	1.0000e-00	9.1116e-13	1.0000e-00	2.5501e-13
0.6	1000	1.0000e-00	3.2041e-13	nan	nan
0.7	1000	1.0000e-00	9.9475e-14	8.0891e + 87	8.0891e + 87
0.8	1000	1.0000e-00	9.6034e-13	2.3095e + 129	2.3095e + 129
0.9	1000	1.0000e-00	1.5676e-11	8.9866e + 239	8.9866e + 239
0.99	10000	1.0000e-00	3.3810e-09	nan	nan

Dias vs. métodos de extrapolação

- Mudança na estrutura (resultando numa perda de 20% em tempo);
- Foi avaliado com todos os métodos 3 vezes para medições de tempo;
- Para analisar melhor os modelos atribuímos um 'score' que é dado por

$$score = \frac{erroDias - erroMetodo}{min(erroDias, erroMetodo}.$$

Dias vs. métodos de extrapolação

O método com melhores resultados foi o Levin com variante t

α	erro		tempo (1	score	
	Dias	Dias com 'Levin-t'	Dias	Dias com 'Levin-t'	
0.01	7.0451e-07	7.0451e-07	17.5309	30.7279	0.0
0.1	2.0245e-08	2.0245e-08	1.8232	3.4692	0.0
0.2	1.2977e-11	1.2981e-11	1.0835	2.0639	-0.0003
0.3	7.7060e-13	6.8522e-13	0.8759	1.6194	0.1245
0.4	6.0196e-13	5.4878e-13	0.9057	1.6796	0.0969
0.5	9.1116e-13	1.1095e-12	0.8929	1.6510	-0.2177
0.6	3.2041e-13	8.3910e-13	1.1767	2.0020	-1.6188
0.7	9.9475e-14	9.3991e-13	1.3225	2.1988	-8.4486
0.8	9.6034e-13	8.3093e-12	1.4956	2.4455	-7.6524
0.9	1.5676e-11	1.4293e-11	1.2956	2.2279	0.0968
0.99	3.3810e-09	3.3825e-09	1.3509	2.3331	-0.0004

Veja os resultados completos no Apêndice.

Ideias Futuras

- Criar tratamentos para diferentes tipos de problemas.
- As funções principais retornam uma sequência e não só o valor de extrapolação (permite aplicar vários métodos, mas é menos eficiente).
- Buscar outros critérios de, além do $|T_{n-1} T_n| < \varepsilon$.