<u>Trabajo Práctico Nº 1:</u> Modelo de Probabilidad Lineal, Logit y Probit.

Ejercicio 1: Porcentaje Correctamente Predicho.

Sea y una variable binaria y considerar algún modelo de probabilidad $P(y=1|x)=F(X\beta)$. Mostrar que el porcentaje general predicho correctamente es un promedio ponderado del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y d

$$\hat{q}_0 = \frac{cantidad\ de\ observaciones\ correctamente\ predichas\ cuando\ y=0}{cantidad\ de\ observaciones\ con\ y=0} = \frac{A}{n_0}.$$

$$\hat{q}_1 = \frac{cantidad\ de\ observaciones\ correctamente\ predichas\ cuando\ y=1}{cantidad\ de\ observaciones\ con\ y=1} = \frac{B}{n_1}.$$

$$\hat{q} = \frac{cantidad\ de\ observaciones\ correctamente\ predichas}{cantidad\ de\ observaciones} = \frac{A+B}{n_0+n_1}$$

$$\hat{q} = \frac{A+B}{n_0+n_1}$$

$$\hat{q} = \frac{a_0\hat{q}_0+n_1\hat{q}_1}{n_0+n_1}$$

$$\hat{q} = \frac{n_0\hat{q}_0+n_1\hat{q}_1}{n_0+n_1}$$

$$\hat{q} = \frac{n_0\hat{q}_0+n_1\hat{q}_1}{n_0+n_1}$$

$$\hat{q}_0 = \frac{n_0\hat{q}_0+n_1\hat{q}_1}{n_0+n_1}$$

Ejercicio 2: Interpretación del Modelo de Probabilidad Lineal I.

Suponer que se estima el modelo:

$$y_i = \beta_0 + \beta_1 x_i + u_i,$$

donde x es es una variable continua, mientras que y es una variable que sólo puede valer 0 o 1. El tamaño de la muestra es n y sea n_1 la cantidad de elementos que verican $y_i = 1$. Llamar \bar{x}_1 a la media de la variable x tomada sólo para aquellos elementos que verican $y_i = 1$ y \bar{x}_0 a la media de la variable x tomada sobre los valores restantes. Mostrar que:

$$\hat{\beta}_1 = \frac{p(1-p)(\bar{x}_1 - \bar{x}_0)}{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2},$$

donde
$$p = \frac{n_1}{n}$$
.

Partiendo del estimador de Mínimos Cuadrados Ordinarios (MCO) para el parámetro de pendiente (β_1) de este modelo, se tiene:

$$\begin{split} \hat{\beta}_{1} &= \frac{\sum_{i=1}^{n} x_{i}(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}(y_{i} - \overline{y})}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}(y_{i} - \overline{n}_{1})}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}y_{i} - \frac{n_{1}}{n}}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}y_{i} - \sum_{i=1}^{n} x_{i} \frac{n_{1}}{n}}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} (\sum_{i=1}^{n_{1}} x_{i}y_{i} - \frac{n_{1}}{n} \sum_{i=1}^{n} x_{i})}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} (\sum_{i=1}^{n_{1}} x_{i} - \frac{n_{1}}{n} (n_{0} \overline{x}_{0} + n_{1} \overline{x}_{1})]}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} (n_{1} \overline{x}_{1} - \frac{n_{1}}{n} n_{1} n_{0} \overline{x}_{0} - \frac{n_{1}^{2}}{n} \overline{x}_{1})}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} (n_{1} \overline{x}_{1} - \frac{1}{n} n_{1} n_{0} \overline{x}_{0} - \frac{n_{1}^{2}}{n} \overline{x}_{1})}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} (n_{1} \overline{x}_{1} - \frac{1}{n} p(n - n_{1}) \overline{x}_{0} - \frac{1}{n} p n_{1} \overline{x}_{1}}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{p \overline{x}_{1} - p(1 - p) \overline{x}_{0} - p^{2} \overline{x}_{1}}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{p(1 - p) \overline{x}_{1} - p(1 - p) \overline{x}_{0}}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{p(1 - p) \overline{x}_{1} - p(1 - p) \overline{x}_{0}}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{p(1 - p) (\overline{x}_{1} - \overline{x}_{0})}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} . \end{cases}$$

Ejercicio 3: Interpretación del Modelo de Probabilidad Lineal II.

Sea y una resultado binario y sean d_1 , d_2 , ..., d_M variables binarias mutuamente excluyentes y colectivamente exhaustivas, es decir, cada persona de la población cae en una y sólo una categoría.

(a) Mostrar que los valores ajustados de la regresión sin intercepto y_i sobre d_{1i} , d_{2i} , ..., d_{Mi} están siempre en el intervalo unitario. En particular, describir qué representa cada coeficiente y el valor ajustado para cada i.

Cada coeficiente (1 .. k) representa la proporción de observaciones que tienen un resultado binario igual a 1 (y= 1) cuando la variable binaria independiente en cuestión es igual a 1 ($d_k=1$), es decir, $\bar{y}_k=\frac{\sum_{i=1}^{m_k}y_i}{m_k}$ (proporcion de "éxitos" de cada categoría), siendo m_k la cantidad de observaciones con $d_k=1$, k= 1, ..., M.

El valor ajustado para cada i corresponde al coeficiente asociado a la variable d_k que para esa observación sea igual a 1.

(b) ¿Qué ocurre si y_i se regresa sobre M combinaciones lineales de d_{1i} , d_{2i} , ..., d_{Mi} linealmente independientes entre sí? Ayuda: Considerar I, d_2 , ..., d_M .

Lo que ocurre si y_i se regresa sobre M combinaciones lineales de d_{1i} , d_{2i} , ..., d_{Mi} linealmente independientes entre sí es que se omite una de las variables independientes porque existe multicolinealidad perfecta entre el intercepto y la combinación lineal de las variables independientes (mutuamente excluyentes y colectivamente exhaustivas).

Ejercicio 4: Efectos Marginales.

Sea y un resultado binario y $x = (x_1, ..., x_k)$ un vector de variables explicativas. Sea G (.) la función de distribución acumulada de una variable aleatoria continua. Recordar que, si x_i es continua, su efecto marginal se obtiene como:

$$\frac{\partial p(x)}{\partial x_i} = g (\beta_0 + x\beta) \beta_j$$
, donde $g(z) = \frac{\partial G}{\partial z}(z)$.

(a) Mostrar que los efectos relativos de dos variables explicativas cualesquiera no dependen de x.

$$\frac{\frac{\partial p(x)}{\partial x_1}}{\frac{\partial p(x)}{\partial x_2}} = g (\beta_0 + x\beta) \beta_1$$

$$\frac{\frac{\partial p(x)}{\partial x_2}}{\frac{\partial p(x)}{\partial x_2}} = g (\beta_0 + x\beta) \beta_2$$

$$\frac{\frac{\partial p(x)}{\partial x_1}}{\frac{\partial p(x)}{\partial x_2}} = \frac{g(\beta_0 + x\beta)\beta_1}{g(\beta_0 + x\beta)\beta_2}$$

$$\frac{\frac{\partial p(x)}{\partial x_1}}{\frac{\partial p(x)}{\partial x_1}} = \frac{\beta_1}{\beta_2}.$$

Por lo tanto, los efectos relativos de dos variables explicativas cualesquiera no dependen de x.

(b) Sea x_1 una variable binaria. ¿Cuál es el efecto parcial de cambiar x_1 de 0 a 1? ¿De qué depende? Interpretar en el caso en el que y es un indicador de empleo y x_1 es una variable binaria que indica la participación en un programa de capacitación laboral.

El efecto parcial de cambiar x_1 de 0 a 1 es:

$$\frac{\frac{\partial p(x)}{\partial x_1}}{\frac{\partial p(x)}{\partial x_1}} P(y=1 \mid x_1=1) - P(y=1 \mid x_1=0)$$

$$\frac{\frac{\partial p(x)}{\partial x_1}}{\frac{\partial p(x)}{\partial x_1}} g(\beta_0 + x\beta) \beta_1,$$

que depende de la función de densidad de la variable aleatoria continua y del coeficiente β_1 .

En el caso en el que y es un indicador de empleo y x_1 es una variable binaria que indica la participación en un programa de capacitación laboral, este efecto parcial indica en cuánto varía, céteris páribus, la probabilidad de obtener empleo al participar en un programa de capacitación laboral respecto a no participar.

(c) Sea x_2 una variable discreta numérica. ¿Cuál es el efecto parcial de cambiar x_2 de cierto nivel c a c+1? ¿De qué depende? Interpretar en el caso en el que y es un indicador de si la persona i fuma y x_2 la cantidad de cigarrillos que fuma por día.

$$\frac{\partial p(x)}{\partial x_2} = P(y=1 \mid x_2=c+1) - P(y=1 \mid x_2=c)$$

$$\frac{\partial p(x)}{\partial x_2} = g(\beta_0 + x\beta) \beta_2,$$

que depende de la función de densidad de la variable aleatoria continua y del coeficiente β_2 .

En el caso en el que y es un indicador de si la persona i fuma y x_2 la cantidad de cigarrillos que fuma por día, este efecto parcial indica en cuánto varía, *céteris páribus*, la probabilidad de que la persona i fume cuando la cantidad de cigarrillos que fuma por día aumenta en una unidad.

Considerar, ahora, el siguiente modelo:

$$P(y=1 \mid z) = G(\beta_0 + \beta_1 z_1 + \beta_2 z_1^2 + \beta_3 \log(z_2) + \beta_4 z_3).$$

(d) ¿Cuál es el efecto parcial de z_1 sobre $P(y=1 \mid z)$?

El efecto parcial de z_1 sobre P ($y=1 \mid z$) es:

$$\frac{\partial P(y=1|z)}{\partial z_1} = g(\beta_0 + \beta_1 z_1 + \beta_2 z_1^2 + \beta_3 \log(z_2) + \beta_4 z_3) \beta_1.$$

(e) ¿Cuál es el efecto parcial de z_2 sobre $P(y=1 \mid z)$?

El efecto parcial de z_2 sobre P (y= 1 | z) es:

$$\frac{\partial P(y=1 \mid z)}{\partial z_2} = g(\beta_0 + \beta_1 z_1 + \beta_2 z_1^2 + \beta_3 \log(z_2) + \beta_4 z_3) \beta_3 \frac{1}{z_2}$$

(f) ¿Cuál es la elasticidad de z_3 sobre P ($y=1 \mid z$)? ¿Siempre tiene el mismo signo que β_4 ?

La elasticidad de z_3 sobre P (y= 1 | z) es:

$$\varepsilon_{z_{3}} = \frac{\partial P(y=1|z)}{\partial z_{3}} \frac{z_{3}}{P(y=1|z)} = g (\beta_{0} + \beta_{1}z_{1} + \beta_{2}z_{1}^{2} + \beta_{3} \log (z_{2}) + \beta_{4}z_{3}) \beta_{4}$$

$$\frac{z_{3}}{G(\beta_{0} + \beta_{1}z_{1} + \beta_{2}z_{1}^{2} + \beta_{3}\log(z_{2}) + \beta_{4}z_{3})}.$$

No siempre tiene el mismo signo que β_4 , ya que éste también depende del valor que tome z_3 .

(g) ¿Cuál es la elasticidad de z_1 sobre $P(y=1 \mid z)$?

$$\begin{split} \varepsilon_{z_1} &= \ \frac{\partial^{p} \left(y = 1 \mid z\right)}{\partial z_1} \ \frac{z_1}{P\left(y = 1 \mid z\right)} = \ g \ \left(\beta_0 \ + \ \beta_1 z_1 \ + \ \beta_2 z_1^2 \ + \ \beta_3 \ \log \ (z_2) \ + \ \beta_4 z_3\right) \ \beta_1 \\ \frac{z_1}{G(\beta_0 + \beta_1 z_1 + \beta_2 z_1^2 + \beta_3 \log(z_2) + \beta_4 z_3)}. \end{split}$$

(h) ¿Cómo se obtendrían errores estándar para todos estos efectos?

Los errroes estándar para todos estos efectos se pueden obtener utilizando la matriz de varianzas y covarianzas de los coeficientes estimados del modelo, mediante métdos analíticos, siempre que la distribución de los estimadores sea conocida, o mediante métodos de remuestreo, siempre que la distribución de los estimadores no sea conocida.

Ejercicio 5: MPL, Logit y Probit en Stata I.

En este ejercicio, se van a demostrar algunas propiedades de las estimaciones para modelos con variable dependiente discreta.

(a) Estimar a ins contra retire, age, hstatusg, hhincome, educyear, married, hisp por OLS, Logit y Probit.

OLS:

Source	SS	df	MS	Number of obs F(7, 3198)	=	3,206 41.14
Model Residual	62.8403396 697.78505		8.97719137	Prob > F R-squared Adj R-squared	=	0.0000 0.0826 0.0806
Total	760.62539	3,205	.237324615	Root MSE	=	.46711
ins	Coefficient	Std. err.	t P>	> t [95% cd	onf.	interval]
1.retire age 1.hstatusg hhincome educyear 1.married 1.hisp _cons	0028955 .0655583 .0004921 .0233686 .1234699	.0182197 .0024189 .0194531 .0001375 .0028672 .0193618 .033666 .1605628	-1.20 0. 3.37 0. 3.58 0. 8.15 0. 6.38 03.59 0.	.025 .005123 .231007638 .001 .027416 .000 .000222 .000 .01774 .000 .085503 .00018703 .429187730	33 66 25 47 71	.0765743 .0018473 .1037001 .0007617 .0289903 .1614326 0549969 .4419021

Logit:

Logistic regre	Number of ob: LR chi2(7)	s = 3,206 = 289.79				
Log likelihood	= -1994.8784				Prob > chi2 Pseudo R2	= 0.0000 = 0.0677
ins	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
1.retire age 1.hstatusg hhincome educyear 1.married 1.hisp cons	.1969297 0145955 .3122654 .0023036 .1142626 .578636 8103059 -1.715578	.0842067 .0112871 .0916739 .000762 .0142012 .0933198 .1957522 .7486219	2.34 -1.29 3.41 3.02 8.05 6.20 -4.14 -2.29	0.019 0.196 0.001 0.003 0.000 0.000 0.000	.0318875 0367178 .1325878 .00081 .0864288 .3957327 -1.193973 -3.18285	.3619718 .0075267 .491943 .0037972 .1420963 .7615394 4266387 2483064

Probit:

Probit regression Number of obs = 3,206 LR chi2(7) = 292.30 Prob > chi2 = 0.0000 Log likelihood = -1993.6237 Pseudo R2 = 0.0683

ins	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
1.retire age	.1183567 0088696 .1977357	.0512678 .006899	2.31 -1.29	0.021	.0178736 0223914 .0889835	.2188397 .0046521 .3064878
1.hstatusg hhincome educyear	.001233	.0003866	3.56 3.19 8.34	0.000 0.001 0.000	.0889835	.0019907
1.married 1.hisp _cons	.362329 4731099 -1.069319	.0560031 .1104393 .4580794	6.47 -4.28 -2.33	0.000 0.000 0.020	.252565 689567 -1.967139	.4720931 2566529 1715002

Tabla comparativa:

	(1)	(2)	(3)
	OLS	Logit	Probit
main 0.retire	0	0	0
1.retire	0.0409**	0.197**	0.118**
	(0.0182)	(0.0842)	(0.0513)
age	-0.00290	-0.0146	-0.00887
	(0.00242)	(0.0113)	(0.00690)
0.hstatusg	0	0 (.)	0 (.)
1.hstatusg	0.0656***	0.312***	0.198***
	(0.0195)	(0.0917)	(0.0555)
hhincome	0.000492***	0.00230***	0.00123***
	(0.000138)	(0.000762)	(0.000387)
educyear	0.0234***	0.114***	0.0707***
	(0.00287)	(0.0142)	(0.00848)
0.married	0	0 (.)	0 (.)
1.married	0.123***	0.579***	0.362***
	(0.0194)	(0.0933)	(0.0560)
0.hisp	0	0 (.)	0 (.)
1.hisp	-0.121***	-0.810***	-0.473***
	(0.0337)	(0.196)	(0.110)
_cons	0.127	-1.716**	-1.069**
	(0.161)	(0.749)	(0.458)
N R-sq pseudo R-sq	3206 0.083	3206 0.068	3206 0.068

Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01

(b) ¿Cuál es el problema de estimar el modelo por OLS?

Los problemas de estimar el modelo por OLS son que los valores estimados de la variable dependiente pueden caer fuera del rango [0, 1] y que los errores del modelo son heterocedásticos, lo cual resulta en estimadores ineficientes.

(c) Explicar, analíticamente, cuál es la interpretación de un coeficiente β en un modelo de regresión lineal y en un modelo Probit/Logit. ¿Es constante el efecto marginal en los modelos no lineales?

La interpretación de un coeficiente β en un modelo de regresión lineal es cuánto afecta un cambio en la variable independiente a la probabilidad de y= 1 (es decir, corresponde al efecto marginal, constante), mientras que, en un modelo Probit/Logit, es parte del efecto marginal, ya que, ahora, el efecto marginal refleja las diferentes pendientes de la curva, por lo que no es constante en los modelos no lineales.

(d) Para evaluar la eficacia de los modelos Probit y Logit, definir el valor estimado de la variable dependiente y como:

$$\hat{y} = \begin{cases} 1, si \ P \ (\hat{y} = 1) > 0.5 \\ 0, si \ P \ (\hat{y} = 0) \le 0.5 \end{cases}$$

Realizar un cuadro de doble entrada con las variables y y ŷ. Comentar.

ins	yhat_ 0	_probit 1	Total
0 1	+ 1,660 906	305 335	
Total	 2 , 566	640	3,206

(e) En la literatura, se sugiere que $\beta^{logit} \approx 4\beta^{ols}$ y $\beta^{probit} \approx 2.5\beta^{ols}$. Comprobarlo para esta muestra.

```
prueba logit[12,2]
                  Betas Logit 4 * Betas ~S
  ins:0b.retire
                   .19692966 .16340327
   ins:1.retire
                   -.01459553
                                 -.01158219
       ins:age
ins:0b.hstatusq
                      0
ins:1.hstatusg
                   .31226537
                                 .26223337
   ins:hhincome
                    .0023036
                                  .00196835
                                .00196835
   ins:nnincome .0023036
ins:educyear .11426256
 ins:0b.married
                      0
                   .57863605
0
  ins:1.married
                                 .49387952
    ins:0b.hisp
     ins:1.hisp
                   -.81030593
                                 -.48402374
      ins: cons
                   -1.7155784
                                  .50834278
prueba probit[12,2]
                 Betas Probit 2,5 * Beta~S
                       0
  ins:0b.retire
                   .11835665
   ins:1.retire
                                 .10212704
                   -.00886962
                                 -.00723887
       ins:age
ins:0b.hstatusg
                       0
ins:1.hstatusg
  ins:hhincome
                   .19773566
                                  .16389585
                   .00123304
                                 .00123022
                  .07074775
   ins:educyear
                                 .05842157
ins:0b.married 0 0
ins:1.married .36232905 .3086747
ins:0b.hisp 0 0
ins:1.hisp -.47310993 -.30251484
      ins: cons
                   -1.0693194
                                 .31771424
```

(f) Computar la probabilidad esperada que ins= 1 cuando las variables están evaluadas en la media.

La probabilidad esperada que ins= 1 cuando las variables están evaluadas en la media es:

- en el modelo OLS, 0,387;
- en el modelo Logit, 0,373; y
- en el modelo Probit, 0,374.

(g) Definir el odds ratio como el cociente entre la probabilidad que y = 1 y y = 0. De este modo, un odds ratio de 2 implica que es dos veces más probable que y = 1 a que y = 0. Demostrar que, para el caso de un modelo Logit, se verifica que:

$$\ln \left(\frac{P(y=1|x)}{P(y=0|x)} \right) = X\beta.$$

Recordar que para un modelo Logit:

$$P(y=1 \mid x) = \frac{1}{1+e^{-X\beta}}$$
.

P (y= 1 | x)=
$$\frac{e^{X\beta}}{1+e^{X\beta}}$$

P (y= 1 | x)= $\frac{e^{X\beta}}{e^{X\beta}(\frac{1}{e^{X\beta}}+1)}$
P (y= 1 | x)= $\frac{1}{1+\frac{1}{e^{X\beta}}}$
P (y= 1 | x)= $\frac{1}{1+e^{-X\beta}}$.

P (y= 0 | x)= 1 - P (y= 1 | x)
P (y= 0 | x)= 1 -
$$\frac{1}{1+e^{-X\beta}}$$

P (y= 0 | x)= $\frac{1+e^{-X\beta}-1}{1+e^{-X\beta}}$
P (y= 0 | x)= $\frac{e^{-X\beta}}{1+e^{-X\beta}}$.

$$\frac{\frac{P(y=1|x)}{P(y=0|x)}}{\frac{P(y=1|x)}{P(y=0|x)}} = \frac{\frac{1}{1+e^{-X\beta}}}{\frac{e^{-X\beta}}{1+e^{-X\beta}}}$$

$$\frac{\frac{P(y=1|x)}{P(y=0|x)}}{\frac{P(y=1|x)}{P(y=0|x)}} = e^{X\beta}$$

$$\ln\left(\frac{\frac{P(y=1|x)}{P(y=0|x)}\right) = \ln e^{X\beta}$$

$$\ln\left(\frac{\frac{P(y=1|x)}{P(y=0|x)}\right) = X\beta \ln e$$

$$\ln\left(\frac{\frac{P(y=1|x)}{P(y=0|x)}\right) = X\beta * 1$$

$$\ln\left(\frac{\frac{P(y=1|x)}{P(y=0|x)}\right) = X\beta.$$

Ejercicio 6: MPL, Logit y Probit en Stata II.

Utilizar la base de datos de Mroz, T. A. (1987): "The Sensitiviy of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions", Econometrica, 55, 765-799. La misma posee datos sobre el desempleo de las mujeres en Estados Unidos en 1975.

(a) Para comenzar, realiza un análisis exploratorio simple de los datos. Para esto, se puede ayudar de los comandos describe, summarize, browse, tab.

ariable	Obs	Mean	Std. dev.	Min	Max
inlf	753	.5683931	.4956295	0	1
hours	753	740.5764	871.3142	0	4950
kidslt6	753	.2377158	.523959	0	3
kidsge6	753	1.353254	1.319874	0	8
age	753	42.53785	8.072574	30	60
educ	753	12.28685	2.280246	5	17
wage	753	2.374565	3.241829	0	25
repwage	753	1.849734	2.419887	0	9.98
hushrs	753	2267.271	595.5666	175	5010
husage	753	45.12085	8.058793	30	60
nuseduc nuswage faminc mtr otheduc	753 753 753 753 753	12.49137 7.482179 23080.59 .6788632 9.250996	3.020804 4.230559 12190.2 .0834955 3.367468	3 .4121 1500 .4415	17 40.509 96000 .9415
atheduc unem city exper vifeinc	753 753 753 753 753 753	8.808765 8.623506 .6427623 10.63081 20.12896	3.57229 3.114934 .4795042 8.06913 11.6348	0 3 0 0 0290575	17 14 1 45 96
lwage	428	1.190173	.7231978	-2.054164	3.218876
expersq	753	178.0385	249.6308	0	

(b) Crear una variable de educación centrada. Recordar que se le llama variable centrada a una variable transformada como $\tilde{x}_i = x_i - \bar{x}$.

Variable	Obs	Mean	Std. dev.	Min	Max
educ	, 753	12.28685	2.280246	5	17
educ_cent	753	-165.7517	2.280246	-173.0385	-161.0385

(c) Estudiar, gráficamente, la relación entre el salario y la educación. Se puede también desagregar por las variables inlf, kidslt6. Para esto, se puede ayudar de los comandos graph, twoway, scatter, lfit y sus opciones.

(d) ¿Hay valores faltantes o duplicados en la muestra? Intentar resolver esto sin el comando browse ni edit.

Variable	Missing	Total	Percent Missing
inlf	0	753	0.00
hours	0	753	0.00
kidslt6	0	753	0.00
kidsge6	0	753	0.00
age	0	753	0.00
educ	0	753	0.00
wage	0	753	0.00
repwage	0	753	0.00
hushrs	0	753	0.00
husage	0	753	0.00
huseduc	0	753	0.00
huswage	0	753	0.00
faminc	0	753	0.00
mtr	0	753	0.00
motheduc	0	753	0.00
fatheduc	0	753	0.00
unem	0	753	0.00
city	0	753	0.00
exper	0	753	0.00
nwifeinc	0	753	0.00
lwage	325	753	43.16
expersq	0	753	0.00
educ_cent	0	753	0.00

Sí, en la variable *lwage*, hay 325 valores faltantes en la muestra de 753 observaciones. No, no hay valores duplicados en la muestra.

(e) Estimar un modelo de probabilidad lineal de inlf sobre educ, city, exper, kidslt6, expersq. Además, generar la predicción del modelo.

OLS:

Source	SS	df	MS		ber of obs	=	753 37.62
Model Residual	37.1605056 147.56725	5 747	7.43210111 .19754652	Prol	o > F quared R-squared	=	0.0000 0.2012 0.1958
Total	184.727756	752	.245648611	_	t MSE	=	.44446
inlf	Coefficient	Std. err.	t t	P> t	[95% cor	nf.	interval]
educ city exper kidslt6 expersq _cons	.0388373 0574649 .0444919 1691606 0009058 1433578	.0073171 .0343425 .0058467 .031841 .0001881	-1.67 7.61 -5.31 -4.82	0.000 0.095 0.000 0.000 0.000 0.118	.0244729 1248842 .033014 2316691 0012751 323416	2 4 L L	.0532018 .0099544 .0559698 1066522 0005366 .036701

(f) ¿Se puede realizar inferencia con este modelo? Estimar el modelo con errores estándares robustos. ¿Cómo cambian los resultados?

OLS (con errores estándar robustos):

Linear regress	sion			Number of F(5, 747) Prob > F R-squared Root MSE	= =	753 52.82 0.0000 0.2012 .44446
inlf	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
educ city exper kidslt6 expersq _cons	.0388373 0574649 .0444919 1691606 0009058 1433578	.0069696 .0342117 .0055926 .0300823 .0001738 .0852798	5.57 -1.68 7.96 -5.62 -5.21 -1.68	0.000 0.093 0.000 0.000 0.000 0.093	.0251549 1246275 .0335128 2282165 001247 3107744	.0525197 .0096976 .055471 1101047 0005647 .0240588

Sí, se puede realizar inferencia con este modelo. Si se estima el modelo con errores estándares robustos, mejora la significatividad estadística de las variables.

(g) ¿Qué ocurre si se elimina la constante del modelo?

OLS (con errores estándar robustos y sin constate):

Linear regres:	sion			Number of F(5, 748) Prob > F R-squared Root MSE	= =	753 310.35 0.0000 0.6541 .44489
inlf	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
educ city exper kidslt6 expersq	0617278 .0425785 1700338	.0035986 .0340414 .005629 .0300221 .0001749	7.99 -1.81 7.56 -5.66 -4.91	0.000	.0216835 1285558 .0315281 2289713 0012023	.0358125 .0051002 .053629 1110963 0005154

Lo que ocurre si se elimina la constante del modelo es que aumenta la significatividad estadística de la variable *city*.

(h) ¿Qué ocurre si estima el modelo sólo para una ciudad?

OLS (con errores estándar robustos y sólo para una ciudad):

Linear regress	sion			Number of F(4, 479) Prob > F R-squared Root MSE	= =	484 46.75 0.0000 0.2065 .44379
inlf	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
educ city	.0413565	.0090158 (omitted)	4.59	0.000	.0236411	.0590718
exper	.0497399	.0068528	7.26	0.000	.0362745	.0632052
kidslt6	1426504	.0416024	-3.43	0.001	2243963	0609046
expersq	0009985	.0002023	-4.94	0.000	001396	000601
_cons	2781658	.1143471	-2.43	0.015	5028497	053482

Lo que ocurre si se estima el modelo sólo para una ciudad es que se omite la variable *city* porque existe multicolinealidad perfecta entre el intercepto del modelo y esta variable.

(i) Estimar un modelo Logit de inlf sobre educ, city, exper, kidslt6, expersq.

Logit:

Logistic regression	Number of obs = 753
	LR chi2(5) = 163.38
	Prob > chi2 = 0.0000
Log likelihood = -433.18195	Pseudo R2 = 0.1587

	Coefficient		Z	P> z	[95% conf.	interval]
educ city exper kidslt6 expersq _cons	.1991157 2786654 .2041167 8274419 0040423 -3.199722	.039264 .176285 .0302627 .1684161 .0009801 .5019472	5.07 -1.58 6.74 -4.91 -4.12 -6.37	0.000 0.114 0.000 0.000 0.000	.1221596 6241777 .144803 -1.157531 0059633 -4.18352	.2760717 .0668469 .2634304 4973525 0021213 -2.215924

(j) Calcular la predicción del modelo.

<mark>Stata.</mark>

(k) Generar la curva ROC.

(I) Calcular los efectos marginales en las medias.

Efectos marginales (condicionales en las medias) en Logit:

```
Conditional marginal effects
                                                                   Number of obs = 753
Model VCE: OIM
Expression: Pr(inlf), predict()
dy/dx wrt: educ city exper kidslt6 expersq
At: educ = 12.28685 (mean)
   city = .6427623 (mean)
exper = 10.63081 (mean)
    kidslt6 = .2377158  (mean)
    expersq = 178.0385 (mean)
______
                            Delta-method
              dy/dx std.err.
                                               z P>|z|
                                                                 [95% conf. interval]
______
        educ | .0485166 .0095555 5.08 0.000 .0297881 .0672452
        city | -.0678998 .0429316 -1.58 0.114 -.1520443 .0162447

      exper |
      .0497352
      .007403
      6.72
      0.000
      .0352256
      .0642448

      kidslt6 |
      -.201615
      .0411714
      -4.90
      0.000
      -.2823095
      -.1209206

      expersq |
      -.0009849
      .0002397
      -4.11
      0.000
      -.0014547
      -.0005152
```

(m) Calcular los efectos marginales en valores particulares de la variable que le resulten de interés.

Efectos marginales (condicionales en valores particulares) en Logit:

```
Conditional marginal effects
                                                                                         Number of obs = 753
Model VCE: OIM
Expression: Pr(inlf), predict()
dy/dx wrt: educ city exper kidslt6 expersq
At: educ = 10
     citv
                       1
     city = 1 exper = 20
     kidslt6 = 3
     expersq = 400
                                      Delta-method
                                                                      P>|z|
                             dy/dx std.err.
                                                                                      [95% conf. interval]
_______
          educ | .0296194 .0096332 3.07 0.002 .0107386 .0485001

      city | -.0414528
      .0272418
      -1.52
      0.128
      -.0948456
      .0119401

      exper | .0303633
      .0117144
      2.59
      0.010
      .0074035
      .0533231

      kidslt6 | -.1230858
      .0197055
      -6.25
      0.000
      -.1617079
      -.0844637

      expersq | -.0006013
      .0002532
      -2.37
      0.018
      -.0010976
      -.000105
```

(n) Estimar un modelo Probit con las mismas variables que en el inciso (i) y crear una tabla con las estimaciones de todos los modelos.

Probit:

Probit regress Log likelihood					Number of ob LR chi2(5) Prob > chi2 Pseudo R2	s = 753 = 163.97 = 0.0000 = 0.1592
inlf	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
educ city exper kidslt6 expersq _cons	.1209674 169242 .1251388 5046704 0025089 -1.945429	.0231872 .1051678 .0181038 .1003243 .0005879 .294419	5.22 -1.61 6.91 -5.03 -4.27 -6.61	0.000 0.108 0.000 0.000 0.000	.0755213 3753671 .089656 7013024 0036611 -2.522479	.1664136 .0368831 .1606216 3080385 0013567 -1.368378

Tabla comparativa:

	(1)	(2)	(3)
	OLS	Logit	Probit
main educ	0.0388***	0.199***	0.121***
	(0.00697)	(0.0393)	(0.0232)
city	-0.0575*	-0.279	-0.169
	(0.0342)	(0.176)	(0.105)
exper	0.0445***	0.204***	0.125***
	(0.00559)	(0.0303)	(0.0181)
kidslt6	-0.169***	-0.827***	-0.505***
	(0.0301)	(0.168)	(0.100)
expersq	-0.000906***	-0.00404***	-0.00251***
	(0.000174)	(0.000980)	(0.000588)
_cons	-0.143*	-3.200***	-1.945***
	(0.0853)	(0.502)	(0.294)
N R-sq	753 0.201	753	753
pseudo R-sq		0.159	0.159

Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01

Juan Menduiña

Ejercicio 7: Estimar el Efecto de la Educación sobre la Probabilidad de estar Desempleado.

Utilizar la EPH con datos de individuos del segundo trimestre de 2015, disponible en http://www.indec.gob.ar/bases-de-datos.asp. Usar la muestra de jefes de hogar, hombres, 25-65 años, para todos los conglomerados disponibles. Estudiar cómo se define el desempleo de acuerdo al INDEC. Rentrinjir la muestra a personas empleadas o desempleadas, es decir, excluir aquellos que están fuera de la fuerza laboral (no buscan trabajo, estudian, retirados, etc.). Usar las ponderaciones pondera.

(a) Utilizar un modelo de probabilidad lineal para estimar el efecto de la educación sobre la probabilidad de estar desempleado, controlando por ubicación geográfica, edad y estado civil. Construir las probabilidades para cada individuo. ¿Qué proporción de la muestra tiene probabilidades predecidas mayores a 1 o menores a 0?

Stata.

La proporción de la muestra que tiene probabilidades predecidas mayores a 1 y menores a 0 es 0 y 0,101, respectivamente.

(b) Estimar el modelo del inciso (a) usando los modelos Probit y Logit. ¿Cómo cambian los resultados?

Stata.

(c) Estimar la probabilidad de estar desempleado para un hombre casado, para cada área metropolitana de la EPH, para todos los años posibles de edad 25-65. Graficar los efectos marginales de la edad sobre la probabilidad de estar desempleado, junto con los errores estándar de la estimación.

Stata.