

Общероссийский математический портал

Ф. Х. Арсланов, С. Р. Насыров, Некоторые обобщения условий однолистности Беккера для аналитических функций, $Tp.~ceм.~no~\kappa paee.~sa\partial aчam,~1992,$ выпуск 27,~37–47

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 178.205.19.235

7 июня 2024 г., 16:24:48

Литература

- І. Аксентьев Л. А. Достаточные условия многолист ности интегральных представлений // Тр. семин. по краев. задачам. Казань, 1980. Вып. 17. С.2 17.
- 2. Аксентьев Л. А., Зорин И. А. Условия конечнолистности интегральных представлений // Тр. семин. по краев.задачам. Казань. 1990. — Вып. 25. — С.20 — 3I.
- 3. S t y e r D. Close to convex multivalent functions with respect to weakly starlike functions // Trans. Amer. Math. Soc. 1972. V.169. N 7. P. 105 II2.
- 4. Гахов Ф. Д. Краевые задачи. М.: Наука, 1977. 640 с.
- 5. Векуа И. Н. Обобщенные аналитические функции. М.: Наука, 1988. — 509 с.
- 6. Прохоров Д. В., Рахманов Б. Н. Обинте гральном представлении одного класса однолистных функций // Матем. заметки. 1976. Т.19. № 1. С.41 48.
- 7. Аксентьев Л. А. Достаточные условия однолистности решения обратной задачи теории фильтрации // УМН. — 1959. — Т.14. — Вып. 4. — С.133 — 140.

Ф.Х.Арсланов, С.Р.Насиров

НЕКОТОРЫЕ ОБОБЩЕНИЯ УСЛОВИЙ ОДНОЛИСТНОСТИ БЕККЕРА ДЛЯ АНАЛИТИЧЕСКИХ ФУНКЦИЙ

Пусть функция $f(\mathcal{Z})$ регулярна и локально однолистна в единичном круге $\mathcal{E} = \{ \mathcal{Z} : |\mathcal{Z}| < \ell \}$. Хорошо известно, что $f(\mathcal{Z})$ будет однолистна в \mathcal{E} , если выполняется одно из условий [1]:

$$|f'(z)/f'(z)| \le 1/(1-|z|^2), z \in E,$$
 (I)

(RIM [2])

$$|\int f''(z)/f'(z)| \leq 3.05 \dots, z \in E . \tag{2}$$

Естественно поставить вопрос о "соединении" этих двух условий, то есть получении достаточных условий однолистности вида — 37 —

$$|f''(z)/f'(z)| \leq R(|z|, \alpha), z \in E',$$

где мажоранта \mathcal{R} зависит непрерывно от параметра \mathscr{A} , $\mathcal{O} \leq \mathscr{A} \leq 4$, причем $\mathcal{R}(|\mathscr{A}|,\mathcal{O}) = const$, $\mathcal{R}(|\mathscr{A}|,1) = const/(1-|\mathscr{A}|^2)$. В [3] было получено "соединение" степенного вида

$$|f''(z)/f'(z)| \leq A(\alpha)/(1-|z|^2)^{\alpha}, z \in E$$

 $O \le \alpha \le 1$ (такие же условия рассматривались позднее в [4], [5], но с худщими константами). Константы $A(\alpha)$, лучшие, чем в [3], были получены в [6] с использованием цепей подчинения, в частности, при $\alpha = 1$ условие однолистности превращалось в (I), при $\alpha = 0$ условие имело вид

$$|f''(z)/f'(z)| \le 3/2 + \ln 4 = 2.88 \dots,$$
 (3)

что несколько хуже, чем (2).

Аналогично можно поставить задачу о "соединении" достаточ — ных условий однолистности Беккера [7]

$$|zF''(z)/F'(z)| \le 1/(|z|^2-1), z \in E^-,$$
 (4)

и С.Н.Кудряшова [2]

$$|F''(z)/F'(z)| \le B = \frac{4\pi^2}{\pi^2 + 16} = 1,53 \dots, z \in E^-.$$
 (5)

В силу деммы Шварца это условие эквивалентно условию $|F'(\mathcal{C})/F(\mathcal{C})| \le \frac{\mathcal{B}}{|\mathcal{C}|}$ для функций, регулярных во внешности единичного круга $\mathcal{E} = \{\mathcal{C}: |\mathcal{C}| \ge 1\}$ и имеющих простой полюс на бесконечности.

В данной работе, используя метод статьи [6], получим линей — ное "соединение" условий (I), (3) вида

$$|f''(z)/f'(z)| \leq A(\alpha) \left[\alpha + (1-\alpha)/(1-|z|^2) \right], \quad z \in E, \quad (6)$$

(теорема 2) и степенное "соединение" условий (4) и (5):

$$|\mathcal{L}F'(\mathcal{L})/F'(\mathcal{L})| \leq B(\beta)/|\mathcal{L}|^{2(1-\beta)}(|\mathcal{L}|^{2-1})^{\beta}, 0 \leq \beta \leq 1, \mathcal{L} \in E^{-1}, (7)$$

(теорема 3), где неулучшаемые константы $\mathcal{B}(\beta)$ определяются как решения некоторого уравнения.

В качестве следствия теоремы 3 получено условие типа (5) с

константой $\mathcal{B}=1,7081...$, большей, чем у С.Н.Кудряшова (следствие I).

Включив локально однолистные в E функции $f(\mathcal{Z})$ и $F(\mathcal{I}/\mathcal{Z})$ в цепи подчинения по формулам

$$f(z,t) = f(e^{-t}z) + \varphi(t)e^{-t}zf'(e^{-t}z),$$

$$f(z,t) = F(e^{t}/z) - \frac{\varphi(t)}{t + \varphi(t)} \cdot \frac{e^{t}}{z} F'(e^{t}/z),$$

 $\mathcal{Z} \in \mathcal{E}$, $t \geqslant \mathcal{O}$, Беккер [8] доказал следующую теорему.

Теорема I. Пусть функция $\varphi:[\mathcal{O},\infty)\to \mathcal{C}$ такова, что $\varphi\in \mathcal{C}^1[\mathcal{O},\infty)$, $\varphi(\mathcal{O})=\mathcal{O}$, $e^{-t}/\varphi(t)$ $\to\infty$ при $t\to\infty$. Тогда условие

$$|-\varphi'(t)/2+\varphi(t)+1+\varphi(t)zf''(z)/f'(z)| \leq |\varphi'(t)/2|, \qquad (8)$$

где $t=-\ln|\mathcal{Z}|$, $\mathcal{Z}\in E$, достаточно для однолистности функции $f(\mathcal{Z})$ в E , а условие

$$|(e^{t} - r(t))F'(1/2)/xF'(1/2) - (r(t) + r'(t))/2| \le |r(t) - r'(t)|/2 , \qquad (9)$$

где $\varepsilon(t) = e^t/(1+\varphi(t))$, достаточно для однолистности функции $F(\mathcal{C})$, $\mathcal{C}=1/2$, в E^- .

Рассмотрим условие (6) и предположим, что функция $\varphi(t)$ удовлетворяет посылкам теоремы I и условию

$$|\varphi'(t)/2|-|1+\varphi(t)-\varphi'(t)/2| \ge A(\alpha)|z||\varphi(t)|[\alpha+(1-\alpha)/(1-|z|^2)],$$
 (IO)

 $t = \ln |\mathcal{X}|$, $\mathcal{X} \in \mathcal{E}$. Тогда (6) в сиду теоремы I будет достаточно для однолистности функции $f(\mathcal{X})$, так как из (6) и (I0) и неравенства треугольника будет следовать (8).

Ограничимся случаем вещественной и монотонно возрастающей $\varphi(t)$. Пусть $\varphi(e^{-t}) = \varphi(t)$. Тогда функция $\varphi(r)$, $r \in (0,1]$, будет убивающей и условие (IO) можно записать в виде

$$-r\phi'(r)/2-|1+\phi(r)+r\phi'(r)/2| > A\phi(r)s(r)$$
,

где $s(r)=r[\alpha+(1-\alpha)/(1-r^2)]$. Это неравенство равносильно сис — теме

$$\left\{ \begin{array}{c} r\varphi'(r) + \varphi c r) + 1 \leq A\varphi(r)s(r), \\ \varphi(r) + 1 \geq A\varphi(r)s(r), r \in (0,1). \end{array} \right.$$

Введем функции

$$\varphi(r) = \int_{0}^{r} \frac{s(r)}{r} dr = \alpha r + \frac{1-\alpha}{2} \ln \frac{1+r}{1-r}, \quad \theta(r) = \int_{0}^{r} \frac{A\varphi(r)}{r} dr = \int_{0}^{r} \frac{A\alpha r}{1-r} \frac{1+\alpha}{2} A dr.$$

После этого (II) можно записать в виде

$$\left\{ \begin{array}{l} (r\varphi(r)) + Ar\varphi(r) \varphi(r) + 1 \leq 0 , r \in (0,1), \\ \varphi(r) \leq (As(r) - 1)^{-1}, r \in (0,1) \Lambda \left\{ r : s(r) > A^{-1} \right\}, \end{array} \right.$$

или

$$\omega'(r) \leq 0, r \in (0,1), \omega(r) \leq k(r), r \in (0,1) \cap \left\{r : s(r) > A^{-1}\right\}, \quad (12)$$

$$\Delta P(r) = A P(r)
\Delta P(r) + P(r) + P(r) + P(r) = A P(r)
\Delta P(r)$$

Как и в статье [6], можно показать, что при $0 \le \alpha \le 1$ учетом равенства $\omega(1) = \theta(1)$ условие

$$\min_{\substack{(r_o,1)}} k(r) \geqslant \theta(1) \quad , \tag{I3}$$

где r_o единственный в сиду монотонности $\mathcal{S}(r)$, корень урав — нения $\mathcal{S}(r) = \mathcal{A}^{-1}$, необходимо и достаточно для существования функции $\omega(r)$, удовлетворяющей (I2).

Найдем минимум функции
$$\hat{X}(r)$$
 на $(r_o, 1]$. Имеем $\hat{X}'(r) = \frac{2A s^2(r) e^{A\mathcal{O}(r)}}{(A s(r) - 1)^2} (A - \mathcal{T}(r))$,

где

$$T(r) = \frac{2s(r) + rs'(r)}{2s^{2}(r)} = \frac{3 - (1 + 5\alpha)r^{2} + 3\alpha r^{4}}{2r(1 - \alpha r^{2})^{2}}$$

Несложное исследование показывает, что $\mathcal{T}(r)$ при $0 \le \alpha \le 1/3$ убывает, а при $1/3 < \alpha < 1$ имеет единственный минимум в точке $r = r_1 > r_2$, являющейся корнем уравнения

$$T'(r) = \frac{3\alpha^2 r^6 + 3\alpha (2 - 5\alpha)r^4 + (10\alpha - 1)r^2 - 3}{2r^2 (1 - \alpha r^2)^3} = 0$$

В случае $\alpha = I$ получаем монотонно убывающую функцию $\mathcal{T}(r) = 3/2 \ r$.

Если $O \le d \le 1/3$, то при A = I(1) = 1/(1-d) функция k(r) убывает и принимает наименьшее значение при r = I, а так как $k(1) = \theta(1)$, то условие (I3) выполнено (рис. Ia).

 $\begin{array}{c|c}
y & y = k(\tau) \\
A & T(\tau) & \theta(\tau) \\
\hline
 & \tau_o & \tau
\end{array}$

Pwc. Ia

Puc. Id

Если A > T(1), то функция K(r) будет на $(r_o, 1]$ иметь единственный экстремум, а именно минимум, причем $min\ k(r) < \Theta(1)$ (рис.

I6). Поэтому при всех \propto таких, что $0 \le \alpha \le 1/3$, наидучшая константа $A = 1/(1-\alpha)$.

Pwc. 2a

PMc. 26

Пусть теперь $1/3 < \alpha < 1$. По-прежнему справедливо равенство $\mathcal{K}(1) = \Theta(1)$. Если A > T(1) , то функция $\mathcal{K}(r)$ будет иметь един-

ственный экстремум-минимум (рис. 2a) и условие (I3) невыполнимо. Если A таково, что $\mathcal{T}(r) < A < \mathcal{T}(I)$, то функция $\mathcal{K}(r)$ имеет два экстремума, один из которых является минимумом, а другой - мак симумом (рис. 26). Поэтому условие (ІЗ) можно обеспечить, потребовать выполнения равенства $\mathcal{K}(r_s) = \mathcal{O}(1)$, где r_s — точ минимума функции $\mathcal{K}(r)$.

Если $\alpha = I$, то I(r) = 3/2r монотонно убывает и функция k'(r) будет иметь единственный экстремум-минимум в точке $r_2 \in (r_o, r_1)$ при некотором A > T(1) = 3/2. Коль скоро $k'(1) = e^4/(A-1) + (e^4-1) = e^4/(A-1) = e^4/(A-1$ $-1)/A > 0/1) = (e^A - 1)/A$, to (I3) будет иметь место, если потребовать выполнения равенства $k(r_a) = \theta(1)$.

Таким образом, если $\alpha \in (1/3,1]$, то для определения A и r_2 можно рассмотреть систему уравнений $A = T(r_2)$, $k(r_2) = \theta(1)$, которую можно записать в виде

$$A = \frac{3 - (1 + 5\alpha)r_2^2 + 3\alpha r_2^4}{2r_2(1 - \alpha r_2^2)^2},$$
 (I4)

$$A = \frac{3 - (1 + 5\alpha) r_2^2 + 3\alpha r_2^4}{2 r_2 (1 - \alpha r_2^2)^2}, \qquad (I4)$$

$$r_2 e^{A\alpha r_2} \left(\frac{1 + r_2}{1 - r_2}\right)^{\frac{A(1 - \alpha)}{2}} \left[Ar_2 \left(\alpha + \frac{1 - \alpha}{1 - r_2^2}\right)^{-1}\right] = \int_{r_2}^{-1} e^{A\alpha r} \left(\frac{1 + r}{1 - r}\right)^{\frac{A(1 - \alpha)}{2}} \alpha r. \qquad (I5)$$

Эта система в сиду монотонности $\mathcal{I}(r)$ на (\mathcal{O}, r) имеет единст – венное решение.

Сформулируем полученный результат.

Теорема 2. Регулярная в единичном круге \mathcal{E} функция $f(\mathcal{Z}) =$ $=\mathcal{Z}+\mathcal{Q}_{2}\mathcal{Z}^{2}+\ldots$ будет однолистной, если имеет место неравенство (6), причем при $\alpha \in [0,1/3]$ константа $A(\alpha)$ равна $1/(1-\alpha)$, а при $\alpha \in (1/3,1]$ $A(\alpha)$ есть единственное решение системы уравнений (І4) и (І5).

В следующей таблице приведены приближенные значения констант A, COOTBETCTBYXWUX SHAYEHUЯМ \ll ИЗ (1/3,1], ПОЛУЧЕННЫЕ В результате решения системы (I4), (I5) на ЭВМ. Сначала решалось уравнение (I5) с заменой A по формуле (I4), причем для решения на ЭВМ это уравнение заменялось таким его приближением, чтобы полученные решения были не меньше точных решений (15). Затем по (14) внуислядись константи A . Так как $\mathcal{I}(r)$ на (0,r) убивает, то полученные таким образом константи A не превосходят точных.

d	0,35	0,36	0,40	0,43	0,46	0,50	0,53	0,56	0,60	0,63
A	1,5373	1,5597	1,6485	1,7145	1,7803	1,8674	1,9324	1,9970	2,0827	2,1464
ά	0,66	0,70	0,73	.0,76	0,80	0,83	0,87	0,90	0,94	0,98
A	2,2095	2,2931	2,3551	2,4164	2,4976	2,5573	2,6364	2,6945	2,7714	2,8465

Отметим, что константа A(1) вичисляется точно. Действи — тельно, при $\alpha = 1$ (I4) принимает вид $A = 3/2r_2$. Исключив из (I5) A, и после несложных преобразований для определения r_2 получим уравнение $4 \exp(3/2) = \exp(3/2r_2)$. Поэтому $A(1) = 3/2 + \ln 4$, что согла — суется с результатами из работы [6].

Замечание. Для $\alpha \in [0,1/3]$ имеем достаточное условие одноли — стности

$$|\int_{0}^{\pi} |f'(z)| \leq \alpha / (1-\alpha) + 1/(1-|z|^{2})$$

которое является, очевидно, усилением условия (I). Однако оба эти условия слабее достаточного признака однолистности Беккера [I] с множителем $\mathcal Z$ в левой части:

$$|\mathcal{Z}f''(\mathcal{Z})/f'(\mathcal{Z})| \leq 1/(1-|\mathcal{Z}|^2)$$

с точной константой в правой части [9].

Перейдем теперь к рассмотрению условия вида (7), предположив, что для функции $\mathcal{C}(t)$, удовлетворяющей посылкам теоремы I, справедливо неравенство

$$|\tau(t)-\tau'(t)|/2-|\tau(t)+\tau'(t)|/2>|e^{t}-\tau(t)|B/|E|^{2(t-\beta)}(|E|-1)^{\beta}$$
, (I6)

где $t = \ln |\mathcal{E}|$, $\mathcal{E} \in \mathcal{E}^-$. Тогда (7) в силу теоремы I будет достаточно для однолистности функции $F(\mathcal{E})$ в \mathcal{E}^- .

Пусть функция $\mathcal{C}(t)$ вещественная и такая, что $\mathcal{C}(t) < \mathcal{O}$, t > 0. Как и при обосновании достаточности условия вида (6), рас — смотрим функцию $\mathcal{L}(e^{-t}) = \mathcal{C}(t)$ и приведем (16) к равносильной системе неравенств

$$Q(r) \geqslant 0$$
, $Q(r) \geqslant K(r)$, $r \in (0,1)$, (I7)

где
$$\gamma = e^{-t}$$
, а

$$Q(r) = \Psi(r)e \qquad -\theta(r), K(r) = e \qquad r BS(r)/(1+r^2BS(r))-\theta(r),$$

причем $S(r) = (1-r^2)^{-\beta}$,

$$\mathcal{Q}(r) = \int_{0}^{r} S(r) dr = \frac{1}{2(1-\beta)} \left[1 - (1-r^{2})^{1-\beta} \right], \quad \theta(r) = \int_{0}^{r} \frac{B \mathcal{Q}(r)}{S(r) dr}.$$

Установим, что равенство Q(1) = 0 или

$$e^{\frac{B}{2(1-\beta)}\left(1-B\int_{0}^{1-\frac{B}{2(1-\beta)}(1-r^{2})^{1-\beta}}\frac{dr}{(1-r^{2})^{\beta}}\right)=0$$
(I8)

является достаточным условием существования функции Q(r), удовлетворяющей системе (17). Действительно, положим Q(r)=0, тогда $\psi(r)=\theta(r)e^{-B\,\varphi(r)}$. Отсюда $\psi(0)=0$, и $\psi(1)=1$. Это влечет за собой выполнение условий теоремы $1:e^{-t}|\varphi(t)|=|1/\psi(r)-r|\to\infty$, $r=e^{-t}$ при $t\to\infty$ и $\varphi(0)=0$. Для функции Q(r), тождественно равной нулю, первое неравенство в (17), очевидно, выполняется. Покажем, что выполняется и второе.

Имеем

$$K'(r) = \frac{2r^{2}BS^{2}(r)e^{BP(r)}}{(1+r^{2}BS(r))^{2}} (B-T(r)),$$

где $T(r) = S'(r)/2rS^2(r) = \beta/(1-r^2)^{-\beta}$. Если $\beta \neq 0$, то при $B > \beta$ функция K(r) на $(0, r_0)$ убивает, а на $(r_0, 1)$ — возрастает. Здесь r_0 — единственный корень уравнения $T(r) = B^{-1}$. Так как $\Psi(0) = 0$, $\Psi(1) = 1$, то Q(0) = K(0) = 0 и Q(1) = K(1). Поэтому и второе неравенство в (I7) выполнено. Если $\beta = 0$, то при любом B > 0 $K(r) \leq 0$, а в случае $\beta = 1$ неравенство $K(r) \leq 0$ спра — ведливо, если B > 1, то есть имеем Q(r) > K(r)

Соотношение (I8) можно рассматривать как уравнение относи — тельно \mathcal{B} , которое равносильно уравнению

вно
$$\frac{\beta}{\beta}$$
, которое равносильно уравнению $\frac{1}{\beta} \frac{\beta}{2(1-\beta)} \left[1 - (1-r^2)^{1-\beta} \right] \frac{(1-r)^{1-\beta}}{(1+r)^{\beta}} \alpha r = 1$

с единственным корнем в силу монотонности левой части. Таким образом, имеет место следующая

 $\frac{\text{Теорема 3.}}{\mathcal{E}^{-2}+\dots}$ Аналитическая в $E = \{\infty\}$ функция $F(\mathcal{E}) = \mathcal{E} + \mathcal{B}_0 + \mathcal{B}_2 + \dots$ будет однолистной, если выполняется условие (7), при чем константа $B(\beta)$ для каждого фиксированного значения β из [0, I] определяется из уравнения (ІВ) и является неулучшаемой.

Неудучшаемость константи $\mathcal{B} = \mathcal{B}(\beta)$ проверяется с помощью

ФУНКШИИ

Функции
$$F_{\beta}(\xi,\beta) = \xi e^{\frac{\beta'}{2(1-\beta)}\left[1-(1-1/\xi^2)^{1-\beta}\right]} - B_{\beta}' e^{\frac{\beta'}{2(1-\beta)}\left[1-(1-r^2)^{1-\beta}\right]} \frac{dr}{(1-r^2)^{\beta}}.$$

Для функции $F_{\beta}(\mathcal{Z}, \mathcal{B}')$ справедливо неравенство (7) с заменой \mathcal{B} на \mathcal{B}' и $F_{\beta}(\pm 1, \mathcal{B}') = \pm \mu(\mathcal{B}')$, где $\mu(\mathcal{B})$ есть левая часть уравнения (18). Если $\mathcal{B}' = \mathcal{B}$, то $\mu(\mathcal{B}) = \mathcal{O}$ и $F_{\beta}(-1, \mathcal{B}) = F_{\beta}(1, \mathcal{B})$, то есть функция $F_{\beta}(\mathcal{Z}, \mathcal{B})$ неоднолистна в $E = \{\mathcal{Z}: |\mathcal{Z}_{\beta}| > 1\}$, а при $\mathcal{B}' > \mathcal{B}$ отображает E^- на двулистную область $F_{\mathcal{O}}\left(E^-,\mathcal{B}'\right)$.

В таблице 2 приведем приближенные значения констант $\mathcal{B}(\mathcal{B})$, полученные при решении уравнения (18) на ЭВМ. Вычисления проводились таким образом, чтобы получаемые приближенные значения превосходили точных решений (18).

Таблица 2

ß	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45
В	1,7081	1,7008	1,6750	1,6487	1,6218	1,5943	1,5661	1,5373	1,5078	1,4774
ß	0,50	0,55	0,60	0,65	0,70	0,75	0,30	0,85	0,90	0,95
B	1,4462	1,4141	1,3810	1,3468	1,3114	1,2746	1,2364	1,1966	1,1550	1,1100

Интересно отметить, что при β , стремящемся к единице, величина $\mathcal{B}(\beta)$ стремится к единице, а функция $\mathcal{F}_{\beta}(\mathcal{C},\mathcal{B}(\beta))$ пере ходит в функцию $\mathcal{F}(\mathcal{C}) = (\mathcal{C}^2 - 1)^{2/2}$, с помощью которой установлена неулучшаемость константы, равной единице, в достаточном условии однолистности Беккера (I) (см., напр., [9]).

При $\beta = 0$ из теоремы 3 получаем такое усиление достаточного условия однолистности С.Н.Кудряшова (5).

Следствие I. Пусть для аналитической в $\mathcal{E}^{-}\setminus \{\infty\}$ функции $F(\mathcal{C}) = \mathcal{C} + \mathcal{C} + \mathcal{C} + \mathcal{C} + \mathcal{C} + \mathcal{C}$ справедливо неравенство

$$|z|^2 |z|^2 |z|^2 \cdot z \in E^-$$

причем константа B = 1,7081... является корнем уравнения

$$e^{B/2} \int_{0}^{1} \frac{Br^{2}/2}{e} dr = 0 . {(19)}$$

Тогда функция $\mathcal{F}(\mathcal{Z})$ однолистна в \mathcal{E}^- . Константу \mathcal{B} нельзя заменить на большую.

Заметим, что в работе [2] для наилучшей константи в условии (5) получена верхняя оценка, являющаяся приближенным корнем уравнения (19).

В заключение автори олагодарят профессора Л.А.Аксентьева и старшего научного сотрудника Ф.Г.Авхадиева за внимание к работе и полезние совети.

Литература

- I. Becker I. Löwnersche Differentialgleichung und quasikonform fortsetzbore schlichte Funktionen // J.reine und angew. Math. 1972. V.255. P.23 43.
- 2. Кудряшов С. Н. О некоторых признаках однолистности аналитических функций // Матем. заметки. 1973. Т.13, № 3.— С.359 366.
- 3. А в хадиев Ф. Г. Некоторые достаточные условия од нолистности аналитических функций // Тр. семинара по краевым за-дачам. Казань: Изд-во Казан.ун-та, 1972. Вып.9. С.3 II.
- 4. Yamashita S. On theorem of Duren, Shapiro 'and Shields // Proc. Amer. Math. Soc. 1979. V.73, N.2. P. 180 182.
- 5. Yamashita S. Hardy norm, Bergman norm and univalency // Ann. pol. math. 1983. V.43, N.I. P.23 33.
- 6. Насиров С. Р. О применении уравнения Левнера-Куфарева к получению достаточных условий однолистности // Изв. вузов. Математика. — 1983. — № 12. — С.52 — 54.
- 7. Becker J. Löwnersche Differentialgleichung und Schlichtheitskriteren // Math. Ann. 1973. V.202, N.4. P.32I-335.
- 8. Becker J. Uber die Lösungsstruktur einer Differentialgleichung in der konformen Abbildung // J.reine und angew. Math.- 1976.- V.285.- P.66 74.46 -

9. Becker J., Pommerenke Ch. Schlicht - heitskriterien und Jordangebiete // J.reine und angew. Math. - 1984. - V.354. - P.74 - 94.

Доложено на семинаре 3 апреля 1989 г.

А.В.Казанцев

ОБ ОДНОЙ ЗАДАЧЕ, СВЯЗАННОЙ С ЭКСТРЕМУМОМ ВНУТРЕННЕТО РАДИУСА

Одной из величин, связанных с областью f(E), в которую преобразуется единичный круг $E = \{ c : |c| < \ell \}$ под действием регу – лярной и локально однолистной функции f(c), является внутренний (конформный) радиус этой области

$$R(\xi) = R(f(E), f(\xi)) = |f'(\xi)|(1 - |\xi|^2)$$
 (I)

в точке $f(\mathcal{C})$. Примечательным свойством функции $\mathcal{R}(\mathcal{C})$ является ее связь с обратными краевыми задачами (окз) [I]: если $f(\mathcal{C})$ – решение внутренней окз по некоторым граничным условиям, то число решений внешней окз по этим условиям не превосходит числа крити — ческих точек (I), которые определяются из уравнения Гахова [2]

$$f''(\varsigma)/f'(\varsigma) = 2\bar{\varsigma}/(1-|\varsigma|^2)$$
. (2)

Единственность критической точки (I) является критерием однозначной разрешимости соответствующей внешней задачи ([I], [3]). Первые достаточные признаки единственности критической точки (I) в связи с окз были выделены в статье [I] с помощью метода под чиненности и получили дальнейшее развитие в работах [3] — [5].

В данной статье с использованием подходов из [6] (с.31) и [7] указанный метод применяется к исследованию следующей задачи.

Пусть \mathcal{H} — класс регулярных и локально однолистных в \mathcal{E} функций $\mathcal{F}(\mathcal{Z})$ с условием

$$\mathcal{F}(0) = \mathcal{F}'(0) - 1 = 0 \quad ; \tag{3}$$

 A_n , $n \gg 2$, — подкласс $\mathcal H$ функций $f(\mathcal E)$ с дополнительными ограничениями — 47 —