ANALISIS FACTORIAL

1.- Lectura de la matriz de datos

```
x<-as.data.frame(state.x77)
x
```

##		Population	Income	Illiteracy	Life Exp	Murder	HS Grad	Frost
##	Alabama	3615	3624	2.1	69.05	15.1	41.3	20
##	Alaska	365	6315	1.5	69.31	11.3	66.7	152
##	Arizona	2212	4530	1.8	70.55	7.8	58.1	15
##	Arkansas	2110	3378	1.9	70.66		39.9	65
##	California	21198	5114	1.1	71.71		62.6	20
	Colorado	2541	4884	0.7			63.9	166
##	Connecticut	3100	5348	1.1	72.48		56.0	139
##	Delaware	579	4809	0.9	70.06	6.2	54.6	103
##	Florida	8277	4815	1.3	70.66	10.7	52.6	11
##	Georgia	4931	4091	2.0	68.54		40.6	60
	Hawaii	868	4963	1.9	73.60			0
##	Idaho	813	4119	0.6	71.87		59.5	126
##	Illinois	11197	5107	0.9	70.14		52.6	127
##	Indiana	5313	4458	0.7	70.88	7.1	52.9	122
##	Iowa	2861	4628	0.5	72.56	2.3	59.0	140
##	Kansas	2280	4669	0.6	72.58	4.5	59.9	114
##	Kentucky	3387	3712	1.6	70.10	10.6	38.5	95
##	Louisiana	3806	3545	2.8	68.76			12
##	Maine	1058	3694	0.7	70.39	2.7	54.7	161
##	Maryland	4122	5299	0.9	70.22		52.3	101
##	Massachusetts	5814	4755	1.1	71.83		58.5	103
	Michigan	9111	4751	0.9	70.63		52.8	125
	Minnesota	3921	4675	0.6	72.96	2.3	57.6	160
	Mississippi	2341	3098	2.4	68.09	12.5	41.0	50
##	Missouri	4767	4254	0.8	70.69		48.8	108
##	Montana	746	4347	0.6	70.56		59.2	155
	Nebraska	1544	4508	0.6	72.60		59.3	139
	Nevada	590	5149	0.5	69.03	11.5	65.2	188
	New Hampshire	812	4281	0.7	71.23	3.3	57.6	174
	New Jersey	7333	5237	1.1	70.93	5.2	52.5	115
##	New Mexico	1144	3601	2.2	70.32	9.7	55.2	120
	New York	18076	4903	1.4	70.55	10.9	52.7	82
	North Carolina	5441	3875	1.8	69.21		38.5	80
	North Dakota	637	5087	0.8	72.78		50.3	186
	Ohio	10735	4561	0.8	70.82		53.2	124
	Oklahoma	2715	3983	1.1	71.42		51.6	82
	Oregon	2284	4660	0.6			60.0	44
	Pennsylvania	11860	4449	1.0	70.43		50.2	126
	Rhode Island	931	4558	1.3	71.90		46.4	127
	South Carolina	2816	3635	2.3	67.96		37.8	65
	South Dakota	681	4167	0.5	72.08		53.3	172
	Tennessee	4173	3821	1.7	70.11		41.8	70
	Texas	12237	4188	2.2	70.90			35
	Utah	1203	4022	0.6	72.90	4.5	67.3	137
	Vermont	472	3907	0.6	71.64		57.1	168
	Virginia	4981	4701	1.4	70.08		47.8	85
	Washington	3559	4864	0.6	71.72		63.5	32
	West Virginia	1799	3617	1.4	69.48			100
	Wisconsin	4589	4468	0.7			54.5	149
	Wyoming	376	4566	0.6	70.29	6.9	62.9	173
##		Area						

##	Alabama	50708
	Alaska	566432
	Arizona	113417
	Arkansas	51945
	California	156361
	Colorado	103766
	Connecticut	4862
	Delaware	1982
	Florida	54090
	Georgia	58073
	Hawaii	
	Idaho	6425
		82677
	Illinois	55748
	Indiana -	36097
	Iowa	55941
	Kansas	81787
	Kentucky	39650
	Louisiana	44930
##	Maine	30920
##	Maryland	9891
##	Massachusetts	7826
##	Michigan	56817
##	Minnesota	79289
##	Mississippi	47296
	Missouri	68995
	Montana	145587
	Nebraska	76483
	Nevada	109889
	New Hampshire	9027
	New Jersey	7521
	New Mexico	121412
	New York	47831
	North Carolina	
	North Dakota	69273
	Ohio	40975
	Oklahoma	68782
	Oregon	96184
	Pennsylvania	44966
	Rhode Island	1049
	South Carolina	
	South Dakota	75955
	Tennessee	41328
	Texas	262134
	Utah	82096
##	Vermont	9267
##	Virginia	39780
##	Washington	66570
##	West Virginia	24070
##	Wisconsin	54464
##	Wyoming	97203

```
colnames(x)[4]="Life.Exp"
colnames(x)[6]= "HS.Grad"
```

3.- Separa n (estados) y p (variables)

```
n<-dim(x)[1]
p<-dim(x)[2]</pre>
```

4.- Generacion de un scarter plot para la visualización de variables originales

```
pairs(x, col="blue", pch=19, main="matriz original")
```

matriz original

Transformación de alguna varibles

1.- Aplicamos logaritmo para las columnas 1,3 y 8

```
x[,1]<-log(x[,1])
colnames(x)[1]<-"Log-Population"</pre>
```

```
x[,3]<-log(x[,3])
colnames(x)[3]<-"Log-Illiteracy"</pre>
```

```
x[,8]<-log(x[,8])
colnames(x)[8]<-"Log-Area"
```

```
pairs(x,col="blue", pch=19, main="Matriz original")
```

Matriz original

Nota: Como las variables tiene diferentes unidades de medida, se va a implementar la matriz de correlaciones para estimar la matriz de carga

Reduccion de la dimensionalidad Análsis Factorial de componentes principales (PCFA)

1.- Calcular la matriz de medias y de correlaciones

```
mu<-colMeans(x)

R<-cor(x)
R</pre>
```

```
Murder
##
                Log-Population
                                  Income Log-Illiteracy
                                                       Life.Exp
                   1.00000000 0.034963788
## Log-Population
                                            0.28371749 -0.1092630 0.3596542
                   0.03496379 1.000000000
                                           ## Income
## Log-Illiteracy 0.28371749 -0.351477726 1.00000000 -0.5699943 0.6947320
             -0.10926301 0.340255339
                                           -0.56999432 1.0000000 -0.7808458
## Life.Exp
## Murder
                 0.35965424 -0.230077610
                                           0.69473198 -0.7808458 1.0000000
## HS.Grad
                  -0.32211720 0.619932323
                                           -0.66880911 0.5822162 -0.4879710
## Frost
                  -0.45809012 0.226282179
                                           -0.67656232   0.2620680   -0.5388834
                                           -0.05830524 -0.1086351 0.2963133
## Log-Area
                   0.08541473 -0.007462068
##
                  HS.Grad
                               Frost
                                       Log-Area
## Log-Population -0.3221172 -0.45809012 0.085414734
## Income
                ## Log-Illiteracy -0.6688091 -0.67656232 -0.058305240
## Life.Exp
               0.5822162 0.26206801 -0.108635052
## Murder
               -0.4879710 -0.53888344 0.296313252
## HS.Grad
               1.0000000 0.36677970 0.196743429
## Frost
                0.3667797 1.00000000 -0.021211992
                0.1967434 -0.02121199 1.0000000000
## Log-Area
```

- 2.- Reducción de la dimensionalidad mediante Análisis factorial de componentes principales.
- 1.- Calcular los valores y vectores propios.

```
eR<-eigen(R)
```

2.- Valores propios

```
eigen.val<-eR$values
```

3.- Vectores propios

```
eigen.vec<-eR$vectors
```

4.- Calcular la proporcion de variabilidad

```
prop.var<-eigen.val/sum(eigen.val)</pre>
```

5.- Calcular la proporcion de variabilidad acumulada

```
prop.var.acum<-cumsum(eigen.val)/sum(eigen.val)</pre>
```

Estimacion de la matriz de carga

Nota: se estima la matriz de carga usando los autovalores y autovectores. se aplica la rotación varimax

Primera estimación de Lamda mayuscula se calcula multiplicando la matriz de los 3 primeros autovectores por la matriz diagonal formada por la raiz cuadrada de los primeros 3 autovalores.

```
L.est.1<-eigen.vec[,1:3] %*% diag(sqrt(eigen.val[1:3]))</pre>
```

```
L.est.1.var<-varimax(L.est.1)</pre>
```

Estimación de la matriz de los errores

1.- Estimación de la matriz de perturbaciones

```
Psi.est.1<-diag(diag(R-as.matrix(L.est.1.var$loadings)%*% t(as.matrix(L.est.1.var$loadings))))
```

2.- Se utiliza el método Análisis de factor principal (PFA) para estimación de autovalores y autovectores

```
RP<-R-Psi.est.1
```

```
eRP<-eigen(RP)
```

Autovalores

```
eigen.val.RP<-eRP$values
```

Autovectores

```
eigen.vec.RP<-eRP$vectors
```

Proporcion de variabilidad

```
prop.var.RP<-eigen.val.RP/ sum(eigen.val.RP)</pre>
```

Proporcion de variabilidad acumulada

```
prop.var.RP.acum<-cumsum(eigen.val.RP)/ sum(eigen.val.RP)</pre>
```

Estimación de la matriz de cargas con rotación varimax

```
L.est.2<-eigen.vec.RP[,1:3] %*% diag(sqrt(eigen.val.RP[1:3]))</pre>
```

Rotacion varimax

```
L.est.2.var<-varimax(L.est.2)</pre>
```

Estimación de la matriz de covarianzas de los errores.

```
Psi.est.2 < -diag(diag(R-as.matrix(L.est.2.var\$loadings)))** \\ t(as.matrix(L.est.2.var\$loadings))))
```

Obtencion de los scores de ambos métodos

PCFA

```
FS.est.1<-scale(x)%*% as.matrix(L.est.1.var$loadings)
```

```
FS.est.2<-scale(x)%*% as.matrix (L.est.2.var$loadings)
```

graficamos ambos scores

```
par(mfrow=c(2,1))
plot(FS.est.1[,1], FS.est.1[,2], xlab="primer factor",
    ylab="segundo factor", main="scores con factor I y II con PCFA",
    pch=19, col="blue")
```

scores con factor I y II con PCFA

