

ACARE* targets for 2020

Reduce perceived external noise by 50%

Reduce fuel consumption and CO₂ emissions by 50%

Reduce NO_X emissions by 80%

Targets for new aircraft and whole industry relative to 2000

AeIGT

* Advisory Council for Aeronautical Research in Europe

New ACARE Vision – "FLIGHTPATH 2050"

In 2050:-

- Technologies and Procedures available to give 75% reduction in CO2 emissions, 90% reduction in NOx emissions and 65% reduction in perceived noise (relative to new aircraft delivered in 2000)
- Aircraft are emission free when taxiing
- Air vehicles designed and manufactured to be recyclable
- Europe established as a centre of excellence on sustainable alternative fuels including for Aviation
- Europe leading on atmospheric research and establishment of global environmental standards

Persistent contrail induced cirrus cloud

Aviation chief contributors to Climate Change (after TRADEOFF, 2003)

• CO₂ 100%

• NO_x (net effect of $O_3 - CH_4$) 45%

Contrails plus Contrail Cirrus 79 – 355%

Total compared with CO₂ alone: 224% to 500%

To reduce the impact, the most significant improvement will be to reduce fuel burn

Reducing NOx – the lean-burn premixed combustor

Premixed flame does not pass through stochiometric mixture, avoiding peak NOx production.

Direct injection, lean-burn single annular combustor

Staged injector

40% CAEP/2 NOx

Source Rolls-Royce

Aviation Fuel Price - \$/US Gallon

What about Bio-fuels?

- •It is fundamental that production must be sustainable, without prejudice to land and water resources for food production
- There are good possibilities for example Halophytes (salt water tolerant plants eg Salicornia) and Algae
- •But all predictions are that the cost will be high (at least the equivalent of 4\$/USG) and therefore the demand for reduced fuel burn will remain.

reduce fuel burn!

Typical Direct Operating Cost Breakdown - Fuel Price \$0.8

Direct Operating Cost Breakdown - Fuel Price \$4

Direct Operating Cost Breakdown

- Fuel Price \$4
- First cost 150%
- Fuel burn 50%

Options for reducing fuel burn per passenger-km

The Bréguet range equation

Fuel burn per tonne-kilometre

$$\frac{W_{F}}{W_{P}R} = \frac{1}{X} \left(1 + \frac{W_{E}}{W_{P}} \right) \left(\frac{1.022 \exp\left(\frac{R}{X}\right) - 1}{\left(\frac{R}{X}\right)} \right)$$

```
\begin{array}{lll} W_F = \text{Fuel Weight} & X & = H \eta L / D \\ W_P = \text{Payload} & H & = \text{calorific value of fuel} \\ W_E = \text{Aircraft Weight-} & \eta & = \text{overall propulsive efficiency} \\ R = \text{Range} & L / D & = \text{lift/drag ratio} \end{array}
```

Reducing fuel burn by reducing weight – A350 CFRP Fuselage Test Specimen

Efficiency improvements - cycle potential

Evolutionary development of current powerplants – Higher bypass ratio etc.

Open Rotor Configurations

1952- Bristol Britannia

Tupolev TU-114

A400M

Specific fuel consumption versus noise for open-rotor vs Turbo-fan

Next generation product evolution

Technology EIS Readiness	2020+	2025+	
Bypass Ratio	11+	15+	
Overall Pressure Ratio	60+	70+	
Efficiency relative to Trent 700	20%+	25%+	

Maximising lift-to-drag ratio in cruise

Drag =
$$qS_{DO} + \frac{\kappa}{\pi q} \left(\frac{W}{b}\right)^2$$
 $(C_D = C_{D0} + \kappa C_L^2 / \pi A)$

L/D is a maximum when the two components of drag are equal, giving

$$\left(\frac{L}{D}\right)_{MAX} = b\sqrt{\frac{\pi}{4\kappa S_{DO}}} \qquad \qquad \boxed{S_{DO} = \sum SC_{DO} \\ W = Weight}$$

when
$$q = W \sqrt{\frac{\kappa}{\pi b^2 S_{DO}}}$$
 $\kappa = \text{Induced Drag Factor}$ $L/D = \text{Lift/Drag Ratio}$

$$S^{D0} = \sum SC^{D0}$$

b = Span

q = dynamic pressure

Minimising Surface Area

Reducing C_{D0} - Hybrid Laminar Flow

A320 - Hybrid Laminar Flow Fin

- •Flight trials successfully completed
- •Up to 50% chord laminarised
- •Better than anticipated tolerance to external environment

Reducing C_{D0} – Natural Laminar Flow **Reducing Vortex Drag** – High Span

Future Aircraft Configurations? Unlikely?

Transonic M = 0.9 - 1.2

A350 – First Flight 14th June 2013

Short range configuration concepts

A320neo First Flight – 25th September 2014

Concept studied in EU NACRE project

Boeing "SUGAR" Braced Wing Concept

Hybrid turbo-electric propulsion

Effect of design range on fuel burn for long-distance travel

Design range km	Payload tonne	Mission fuel tonne	Reserve fuel tonne	Max TOW tonne	OEW tonne	Fuel for 15,000km tonne
15,000	25.9	120.3	13.5	300.0	140.3	120.3
5,000	25.9	20.4	5.4	120.0	68.4	61.1

Travelling 15,000km in one hop or three

Revision of earlier GBD estimates:

Correction published in August 2006 issue of the Aeronautical Journal

