A note on rational surfaces in projective four-space.

Ph. Ellia ¹

Dipartimento di Matematica, Università di Ferrara via Machiavelli 35 - 44100 Ferrara, Italy e-mail: phe@dns.unife.it

1. Introduction

A few years ago Ellingsrud and Peskine proved ([12]) that there exist only finitely many irreducible components of the Hilbert scheme of \mathbb{P}^4 parametrizing smooth surfaces not of general type; in particular, as conjectured by Hartshorne and Lichtenbaum, the degree of smooth rational surfaces $S \subset \mathbb{P}^4$ is bounded. This result has been successively improved ([5], [8], [4], [9]) and today it is believed that if $S \subset \mathbb{P}^4$ is of non general type, then $deg(S) \leq 15$; also no rational surface of degree d > 12 is known.

In this note we consider rational surfaces $S \subset \mathbb{P}^4$ ruled by cubics and quartics (i.e. possessing a base point free pencil of cubic or quartic rational curves) and we prove that such a surface has $deg(S) \leq 12$. (We recall that the classification of scrolls and conic bundles is known [3], [11], [6], [1]).

The proof uses ad-hoc arguments which (unfortunately) do not seem to generalize.

Using this result we then prove that if $S \subset \mathbb{P}^4$ is the image of a blow-up of \mathbb{F}_n embedded by a linear system of the form $aC_0 + bf - E_1 - \ldots - E_r$ (in the sequel, we will call such a linear system a "linear system on \mathbb{F}_n with simple base points") then, again, $deg(S) \leq 12$.

2. Generalities

Let $S \subset \mathbb{P}^4$ be a smooth, non-degenerated, rational surface. If S is isomorphic to \mathbb{P}^2 then, by Severi's theorem, S is a Veronese surface. If $S \simeq \mathbb{F}_n$ then S is geometrically ruled and it is not difficult to see that n=1 and S is a cubic scroll. Hence we may assume that S is isomorphic to a blow-up of some $\mathbb{F}_n, n \geq 0$.

Definition 1. We will say that S is a-ruled if there exists on S a base point free pencil of rational curves of degree a in \mathbb{P}^4 .

¹ Partially supported by MURST and Ferrara Univ. in the framework of the project: "Geometria algebrica, algebra commutativa e aspetti computazionali"

Remark 1. Such a pencil yields a morphism $p: S \to \mathbb{P}^1$ which presents S as ruled by the curves of the pencil. Of course the same S might be a-ruled for different values of a.

Notice that since S is not geometrically ruled, there is at least one singular fiber.

Lemma 1. Let $S \subset \mathbb{P}^4$ be a smooth, rational a-ruled surface, $a \geq 3$. If the general fiber of $p: S \to \mathbb{P}^1$ is degenerated in \mathbb{P}^4 , then S contains a plane curve of degree d-a, residual to a fiber in an hyperplane section.

Proof: Let x be a general point of \mathbb{P}^1 . The fiber f_x is a smooth rational curve of degree a in \mathbb{P}^4 . By assumption f_x is contained in an hyperplane, H_x (note that H_x is uniquely determined because f_x is not a plane curve since $a \geq 3$). Let C_x denote the residual curve: $C_x \sim H_x - f_x$. Since two general fibers are linearly equivalent, we have $C_x \sim C_y$ (they are both sections of $\mathcal{O}_S(1) \otimes p^* \mathcal{O}_{\mathbf{P}^1}(-1)$). Since S is linearly normal (Severi's theorem) and since f_x is not a plane curve, $h^0(\mathcal{O}_S(1-f_x))=1$. It follows that $C_x=C_y$. Now $C_x \subset H_x \cap H_y$, and since S is non-degenerated, we may assume $H_x \neq H_y$, hence C_x is a plane curve of degree d-a.

The next proposition will be used several time in the sequel:

Proposition 2. Let $S \subset \mathbb{P}^4$ be a smooth, non-degenerated, surface of degree d, not of general type. If $d \geq 9$, then $h^0(\mathcal{I}_S(3)) = 0$; in particular if d > 9 then $\pi \leq G(d,4)$ where π is the sectional genus of S and where G(d,4)denotes the maximal genus of smooth degree d curves in \mathbb{P}^3 not lying on a cubic surface.

Proof: See [10]

Remark 2. If d > 12, then $G(d,4) = 1 + \frac{d^2 - 3r(4-r)}{8}$ where $d+r \equiv 0 \pmod{4}$ and $0 \le r < 4$. In particular $\pi \le 1 + \frac{d^2}{8}$; moreover if equality occurs then $\pi = G(d,4)$ and the general hyperplane section of S is a.C.M. (arithmetically Cohen-Macaulay), but this is impossible because an a.C.M. surface in \mathbb{P}^4 not of general type has d < 8 (see [10]).

In conclusion if d > 12 and S is not of general type then $\pi < 1 + \frac{d^2}{8}$.

Corollary 3. Let $S \subset \mathbb{P}^4$ be a smooth, a-ruled, rational surface. Assume $a \geq 3$. If the general fiber of $p: S \to \mathbb{P}^1$ is degenerated, then:

(i)
$$\pi = \frac{(d-a-1)(d-a-2)}{2} + a - 1$$
.

(ii)
$$1 + 2a - \sqrt{2a^2 - 6a + 5} \le d \le 1 + 2a + \sqrt{2a^2 - 6a + 5}$$
.

(ii)
$$1 + 2a - \sqrt{2a^2 - 6a + 5} \le d \le 1 + 2a + \sqrt{2a^2 - 6a + 5}$$
.
(iii) if $d > 12$, then $\frac{4a + 6 - 2\sqrt{a^2 - 3a + 15}}{3} < d < \frac{4a + 6 + 2\sqrt{a^2 - 3a + 15}}{3}$.

Proof: (i) From lemma 1 it follows that $H \sim C + f$ where C is a plane curve of degree d-a and where f is a rational curve of degree a. Since a = f.H = f.C, we get: $\pi = p_a(C \cup f) = p_a(C) + p_a(f) + a - 1 = \frac{(d-a-1)(d-a-2)}{2} + a - 1$.

(ii) The general hyperplane section of S is non-degenerated in \mathbb{P}^3 so its genus has to satisfy Castelnuovo's inequality: $\pi \leq (\frac{d}{2} - 1)^2$. Combining with (i) yields: $d^2 + 2d(-1 - 2a) + 2a^2 + 10a - 4 \leq 0$, and the result follows.

(iii) By Remark 2: $\pi < 1 + \frac{d^2}{8}$, combining with (i) gives: $3d^2 + 2d(-4a - 6) + 4a^2 + 20a - 8 < 0$, and we conclude.

3. a-ruled rational surfaces with $a \leq 3$.

For sake of completeness we recall the following:

Proposition 4. Let $S \subset \mathbb{P}^4$ be a smooth, non degenerated, rational surface.

(i) if S is a scroll (a = 1), then S is a cubic scroll.

(ii) if S is ruled in conics (a = 2), then either S is a Del Pezzo surface (d = 4), or S is a Castelnuovo surface (d = 5).

Proof: For (i) see [3], for (ii) see [11], [6] \blacksquare

Proposition 5. Let $S \subset \mathbb{P}^4$ be a smooth rational surface ruled in cubics (a=3).

(i) $5 \le d \le 9$

(ii) the possibilities for (d, π) are: (5, 2), (6, 3), (7, 5), (8, 8), (9, 12).

Proof: Since the fibers are cubics we can apply Corollary 3. From (ii) we get $5 \le d \le 9$, then we compute π with (i).

4. Rational surfaces ruled in quartics.

Lemma 6. Let $S \subset \mathbb{P}^4$ be a smooth rational surface ruled in quartics. If the general fiber of $p: S \to \mathbb{P}^1$ is non-degenerated, then $h^1(\mathcal{O}_S(1)) = 0$ and d < 9.

Proof: Consider Euler's sequence:

$$0 \to M_S \to V \otimes \mathcal{O}_S \xrightarrow{\rho} \mathcal{O}_S(1) \to 0$$

 $(M := \Omega_{\mathbf{P}^4}(1)).$

We want to apply p_* to this exact sequence. Restricting to a fiber we have:

$$0 \to M_{f_x} \to V \otimes \mathcal{O}_{f_x} \stackrel{\rho_x}{\to} \mathcal{O}_{f_x}(1) \to 0$$

Notice that $h^0(\mathcal{O}_{f_x}(1)) = 5$ and $h^1(\mathcal{O}_{f_x}(1)) = 0$ for every x in \mathbb{P}^1 (even if f_x is singular); by base change it follows that $p_*(\mathcal{O}_S(1))$ is a rank 5 vector bundle on \mathbb{P}^1 and $R^ip_*(\mathcal{O}_S(1)) = 0$, i > 0. Moreover, since for general x, f_x spans \mathbb{P}^4 , ρ_x is an isomorphism and $h^0(M_{f_x}) = 0$ for general x. This implies $p_*(M_S) = 0$ (it would be a torsion subsheaf of $p_*(V \otimes \mathcal{O}_S) = 5.\mathcal{O}_{\mathbf{P}^1}$). Hence we get an injection: $0 \to 5.\mathcal{O}_{\mathbf{P}^1} \to p_*(\mathcal{O}_S(1))$; let T denote the cokernel, T has finite support (it has rank zero). Taking cohomology in the exact sequence:

$$0 \to 5.\mathcal{O}_{\mathbf{P}^1} \to p_*(\mathcal{O}_S(1)) \to T \to 0$$

and since $h^0(p_*(\mathcal{O}_S(1)) = h^0(\mathcal{O}_S(1)) = 5$ by Severi's theorem, we have $h^0(T) = 0$, hence T = 0 and $5.\mathcal{O}_{\mathbf{P}^1} \simeq p_*(\mathcal{O}_S(1))$. It follows that $h^1(p_*(\mathcal{O}_S(1)) = 0$. Since $R^i p_*(\mathcal{O}_S(1)) = 0$, i > 0, by Leray's spectral sequence $h^1(\mathcal{O}_S(1)) = h^1(p_*(\mathcal{O}_S(1)) = 0$ and S is non-special.

As shown in [2], non-special rational surfaces have $d \leq 9$.

Remark 3. Non-special rational surfaces are classified in [2].

Proposition 7. Let $S \subset \mathbb{P}^4$ be a smooth rational surface ruled in quartics, then $d \leq 12$.

Proof: If the general fiber f_x is a non-degenerated quartic in \mathbb{P}^4 , we conclude with the previous proposition. If f_x is degenerated, we conclude with Corollary 3. \blacksquare

Remark 4. As claimed in [7], every known rational surface contains a plane curve.

Linear systems with simple base points on F_n .

In this section we consider rational surfaces which are images of \mathbb{F}_n by linear systems with simple base-points.

Notations: Let $S \subset \mathbb{P}^4$ be a smooth, non degenerated, surface isomorphic to \mathbb{F}_n blown-up at r points $y_1,...,y_r$.

We have $Pic(\mathbb{F}_n) = C_0'\mathbf{Z} \oplus f'\mathbf{Z}$ where $(C_0')^2 = -n$. Denoting by C_0, f the strict transform of C_0', f' , we have $Pic(S) = C_0\mathbf{Z} \oplus f\mathbf{Z} \oplus E_1\mathbf{Z} \oplus ... \oplus E_r\mathbf{Z}$. We will work under the following assumptions:

$$(*) \begin{cases} (a) & \text{the } y_i\text{'s lie in different fibers of } \pi: \mathbb{F}_n \to \mathbb{P}^1 \\ (b) & \text{If } n \geq 1, \text{ no } y_i \text{ lies on } C_0' \\ (c) & H \sim aC_0 + bf - E_1 - \ldots - E_r \text{ ("simple base points on } \mathbb{F}_n\text{"}) \end{cases}$$

Remark 5. It follows that S is a-ruled and that the fibers of the ruling $S \to \mathbb{P}^1$ have at most two irreducible components.

The intersection theory on S is given by: $C_0^2 = -n, C_0E_i = 0, C_0f = 1, f^2 = 0, fE_i = 0, E_iE_j = \delta_{ij}$. The canonical class is $K_S \sim -2C_0 - (n+2)f + \Sigma E_i$.

We have the relations:

- 1) $H^2 = d$
- 2) $2\pi 2 = H(H + K)$
- 3) $d(d-5) 10(\pi-1) + 12\chi = 2K^2$

After some computations we get:

- 1) $d = -a^2n + 2ab r$
- 2) $2\pi 2 = -a^2n + an 2a + 2ab 2b$
- 3) $d(d-5) 10(\pi-1) = 4 2r$

Lemma 8. With notations as above, if $\pi < \frac{d^2}{8}$, then $a \leq 9$.

Proof: From 1): $r = -a^2n + 2ab - d$, inserting in 3): $d^2 - 7d + 3a^2n - 5an + 10a - 4 + b(10 - 6a) = 0$, i.e.

$$b = \frac{d^2 - 7d + 3a^2n - 5an + 10a - 4}{6a - 10} \tag{*}$$

Using 2): $\pi - 1 = -\frac{an}{2}(a-1) - a + \frac{(a-1)(d^2 - 7d + 3a^2n - 5an + 10a - 4)}{6a - 10}$

Now, using this expression of $\pi - 1$ in the inequality $\pi - 1 < \frac{d^2}{8}$, yields $f_a(d) < 0$ (**), where:

$$f_a(d) = d^2(a+1) - 28(a-1)d + 16a^2 - 16a + 16$$

Notice that n has disappeared!

We have $\frac{\partial f_a(d)}{\partial d} = 0 \Leftrightarrow d = \frac{14(a-1)}{a+1} =: d_0$. Now $f_a(d_0) = (a-1)(16a - \frac{196(a-1)}{a+1}) + 16$. If $a \ge 10$, we have $f_a(d) \ge f_a(d_0) > 0$, $\forall d$, contradicting (**). (indeed $(16a - \frac{196(a-1)}{a+1}) > 0$ if $a \ge 11$ and one checks directly that $f_{10}(d_0) > 0$.)

In conclusion, if $\pi < 1 + \frac{d^2}{8}$ and if $a \ge 10$, then $f_a(d) > 0, \forall d$, which contradicts (**)

Lemma 9. With notations as above, if $\pi < 1 + \frac{d^2}{8}$, then the possibilities are:

$$a = 5$$
: $d = 11, 6$
 $a = 7$: $d = 13, 10$

$$a = 8: d = 7$$

 $or: a \le 4.$

Proof: From lemma 8 we may assume $a \le 9$ and the inequality $f_a(d) \le 0$ (see proof of lemma 8); i.e. $d^2(a+1) - 28(a-1)d + 16a^2 - 16a + 16 \le 0$. Solving for the values of a under consideration we obtain:

 $a = 5, 4 \le d \le 14;$ $a = 6, 5 \le d \le 15;$ $a = 7, 6 \le d \le 15;$ $a = 8, 7 \le d \le 15;$

 $a = 9, 9 \le d \le 14;$

On the other hand, using (*) of the proof of lemma 8:

$$(a-1)b = \frac{(a-1)(d^2 - 7d + 10a - 4) + (a-1)an(3a - 5)}{2(3a - 5)}$$
$$(a-1)b = n\frac{a(a-1)}{2} + \frac{(a-1)(d^2 - 7d + 10a - 4)}{(6a - 10)}$$

It follows that $\frac{(a-1)(d^2-7d+10a-4)}{(6a-10)}$ is an integer. Now among the (a,d) listed above, we take only those for which this further condition holds; this gives the statement of the lemma \blacksquare

Theorem 10. Let $S \subset \mathbb{P}^4$ be a smooth, non degenerated, rational surface isomorphic to \mathbb{F}_n blown-up at r points $y_1, ..., y_r$. Suppose assumptions (*) (see beginning of this section) are satisfied. Then $deg(S) \leq 12$.

Proof: Assume d > 12. By Remark 2, $\pi < 1 + \frac{d^2}{8}$. By Lemma 9, $a \le 4$ or (a,d) = (7,13). In the first case, we know by Proposition 7 that $d \le 12$. Let's consider the case (a,d) = (7,13). We use relations 1), ...,3) before Lemma 8. From 2): $\pi - 1 = 6b - 7 - 21n$ (+); from 1): -r = 13 + 49n - 14b. Inserting in 3): 2b = 7n + 9. Finally, from (+): $\pi = 21$. We observe that 21 = G(13,4), hence arguing as in Remark 2, we conclude that S is a.C.M.; but this is impossible ([10]) ■

References

- [1] Abo H., Decker W., Sasakura N.: "An elliptic conic bundle in \mathbb{P}^4 arising from a stable rank three vector bundle", preprint (1997)
- [2] Alexander, J.: "Surfaces non spéciales dans \mathbb{P}^4 ", Math. Zeitschrift, **200**, 87-110 (1988)
- [3] Aure, A.: "On surfaces in projective fourspace", Thesis, Oslo (1987)

- [4] Braun, R.-Cook, M.: "A smooth surface in \mathbb{P}^4 not of general type has degree at most 66", Compositio Math., 107, 1-9 (1997)
- [5] Braun, R.-Fløystad, G.: "A bound for the degree of smooth surfaces in \mathbb{P}^4 not of general type", *Compositio Math.*, **93**, 211-229 (1994)
- [6] Braun, R.-Ranestad, Ch.: "Conic bundles in projective fourspace", in Algebraic Geometry: papers presented for the Europroj conferences in Catania and Barcelona, (Ed. P. Newstead)", Lect. Notes in Pure and Applied Math., (M. Dekker Inc.) 200, 331-339 (1998)
- [7] Catanese, F.-Hulek, K.: "Rational surfaces in \mathbb{P}^4 containing a plane curve", Ann. Mat. Pura ed Appl., (4) 172, 229-256 (1997)
- [8] Cook, M.: "An improved bound for the degree of smooth surfaces in \mathbb{P}^4 not of general type", *Compositio Math.*, **102**, 141-145 (1996)
- [9] Cook, M.: "A smooth surface in \mathbb{P}^4 not of general type has degree at most 46", preprint.
- [10] De Candia A.C.-Ellia, Ph.: "Some classes of non general type codimension two subvarieties in \mathbb{P}^n ", Ann. Univ. Ferrara, vol XLIII, 135-156 (1997)
- [11] Ellia, Ph.-Sacchiero, G.: "Smooth surfaces in \mathbb{P}^4 ruled in conics", in Algebraic Geometry: papers presented for the Europroj conferences in Catania and Barcelona, (Ed. P. Newstead)", Lect. Notes in Pure and Applied Math., (M. Dekker Inc.) 200, 49-62 (1998)
- [12] Ellingsrud, G.-Peskine, Ch.: "Sur les surfaces lisses de \mathbb{P}^4 ", Invent. Math., **95**, 1-11 (1989)