TD 4 - PRODUIT TENSORIEL

Exercice 1. Soient p et q des nombres entiers, et $(n,m) \in \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$.

- 1. Montrer que $p.(n \otimes m) = 0 = q.(n \otimes m)$ dans $\mathbb{Z}/p\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/q\mathbb{Z}$.
- 2. On suppose maintenant p,q premier entre eux. En utilisant le théorème de Bézout, montrer que $n \otimes m = 0$ dans $\mathbb{Z}/p\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/q\mathbb{Z}$.
- 3. En déduire que $\mathbb{Z}/p\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/q\mathbb{Z} = \{0\}.$

Plus généralement, il est possible de montrer que $\mathbb{Z}/p\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/q\mathbb{Z} \simeq \mathbb{Z}/pgcd(p,q)\mathbb{Z}$.

Exercice 2. Soient R un anneau, S une R-algèbre, et M un R-module. Montrer que l'application

$$s.(s' \otimes m) := (ss') \otimes m$$

muni $S \otimes_R M$ d'une structure de S-module.

En particulier, il est possible de montrer que $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{R}^n \simeq \mathbb{C}^n$ en tant que \mathbb{C} -espace vectoriel.

Exercice 3. Soit $n \in \mathbb{N}^*$ un entier,

- 1. Soit $k \in \mathbb{Z}/n\mathbb{Z}$. Montrer que n. $\left(\frac{a}{b} \otimes k\right) = 0$ dans $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$.
- 2. En utilisant $1 = \frac{n}{n}$, montrer que tout tenseur pur de $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$ est nul.
- 3. En déduire que $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} = \{0\}.$

Exercice 4. Soient R un anneau, S et T deux R-algèbres. Montrer que le produit défini par

$$(s \otimes t)(s' \otimes t') = (ss') \otimes (tt')$$

étendu par (bi)linéarité munit $S \otimes_R T$ d'une structure d'anneau (et de R-algèbre).

Exercice 5. (Propriété universelle du produit tensoriel)

Soient M, N et P trois R-modules, on définit $\mathrm{Bilin}_R((M, N), P)$ comme l'ensemble des applications $M \times N \to P$ R-bilinéaires.

- 1. Montrer que l'application $p:(m,n)\mapsto m\otimes n$ est R-bilinéaire.
- 2. Soit $\varphi: M \otimes_R N \to P$ un morphisme de modules, montrer que $f:=\varphi \circ p$ est une application bilinéaire $M \times N \to P$
- 3. Réciproquement, montrer que si $f: M \times N \to P$ est bilinéaire, l'application $\varphi: M \otimes_R N \to P$ définie par $\varphi(m \otimes n) = f(m,n)$ est un morphisme de module tel que $\varphi \circ p = f$.
- 4. En déduire une bijection

$$\operatorname{Hom}_R(M \otimes_R N, P) \simeq \operatorname{Bilin}((M, N), P)$$

Exercice 6. (Base d'un produit tensoriel)

Soient E, F deux k-espaces vectoriels, et soient $\{e_i\}_{i\in I}$ et $\{f_j\}_{j\in J}$ des bases respectives de E et F.

1. On considère $\{e_i^*\}_{i\in I}$ et $\{f_i^*\}_{j\in J}$ les familles duales de $\{e_i\}$ et $\{f_j\}$. Montrer que l'application définie par

$$\varphi_{i,j}: E \times F \longrightarrow k$$

$$(u,v) \longmapsto e_i^*(u)f_j^*(v)$$

est une application bilinéaire, telle que $\varphi_{i,j}(e_k,f_\ell)=\delta_{(i,j),(k,l)}.$

2. En déduire une application linéaire $\widetilde{\varphi_{i,j}}: E \otimes_k F \to k$, telle que $\widetilde{\varphi_{i,j}}(e_k \otimes f_\ell) = \delta_{(i,j),(k,\ell)}$. (cf exercice 5).

- 3. En déduire que la famille $\{e_i \otimes_k f_j\}_{(i,j) \in I \times J}$ est une famille libre de $E \otimes_k F$.
- 4. Montrer que la famille $\{e_i \otimes_k f_j\}_{(i,j) \in I \times J}$ engendre tous les tenseurs purs de $E \otimes F$.
- 5. En déduire que $k^n \otimes k^m$ est isomorphe à k^{mn} et à $\mathcal{M}_{n,m}(k)$.
- 6. En déduire que $k[X] \otimes_k k[Y] \simeq k[X,Y]$ en tant que k-espace vectoriel. Quels sont les tenseurs purs de $k[X] \otimes_k k[Y]$ vus dans k[X,Y]?

Exercice 7. (Ma deuxième adjonction)

Soient M, N et P trois R-modules,

1. a) Soit $f: M \times N \to P$ une application R-bilinéaire, montrer que, pour tout $m \in M$, l'applications

$$f_m: N \longrightarrow P$$
 $n \longmapsto f(m,n)$

est un morphisme de modules.

- b) Montrer que $f_{r,m+m'} = rf_m + f_{m'}$, autrement dit que l'application $\varphi : m \mapsto f_m$ appartient au R-module $\operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P))$
- 2. Réciproquement, pour $\varphi \in \operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P))$, montrer que l'application

$$\begin{array}{cccc} f: & M \times N & \longrightarrow & P \\ & (m,n) & \longmapsto & \varphi(m)(n) \end{array}$$

est une application R-bilinéaire.

3. Grâce à l'exercice 5, déduire (et expliciter) une bijection

$$\operatorname{Hom}_R(M \otimes_R N, P) \simeq \operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P))$$

4. Bonus : Soit $\Omega \subset \mathbb{R}^n$ un ouvert, $f:\Omega \to \mathbb{R}$ une fonction lisse, montrer que, pour $x \in \Omega$, la différentielle seconde d^2f_x est un élément de Bilin $((\mathbb{R}^n,\mathbb{R}^n),\mathbb{R})$