二等期 信息安全 数学基础

3.5元

上海交通大学试卷(A卷) _{©-0}0_年(2008至2009学年第2学期)

班级号	学号	姓名	i
课程名称 信息安全数学基础(II)	成绩	

- 一. (30 分) 设 $f(x) = x^6 + x^5 + x^2 + x + 1$.
- i) 证明: f(x) 是 F_2 上的不可约多项式.
- ii) 证明: 由 f(x) 生成的理想 I = (f(x)) 是 $F_2[x]$ 中的极大理想.
- iii) 证明: 由理想 I = (f(x)) 生成的商环 $\mathbf{F}_{2^6} = \mathbf{F}_2[x]/(f(x))$ 是 2^6 元有限域.
- iv) 求有限域 $F_{2^6} = F_2[x]/(f(x))$ 的生成元 g. 即 F_{2^6} 中元素 g 使得 $F_{2^6}^* = F_{2^6} \setminus \{0\} = \langle g \rangle = \{g, g^2, \ldots, g^{2^6-2}, g^{2^6-1} = 1\}.$
- 二. $(40 \, \text{分})$ 设 $f(x) = x^8 + x^4 + x^3 + x^2 + 1$ 是 \mathbf{F}_2 上的不可约 多项式,有限域 $\mathbf{F}_{2^8} = \mathbf{F}_2[x]/(f(x))$.
- i) 证明: Frobenius 映射 $\sigma: u \mapsto u^2$ 是 F_{2^8} 的自同构.
- ii) 设 g = x 是 \mathbf{F}_{2^8} 的生成元, $g_1 = g^{85} = x^7 + x^6 + x^4 + x^2 + x$. 计算 $g_2 = g_1^2$, $g_3 = g_1^{2^2}$.
- iii) 证明 $K = \{0, 1, g_1, g_2\}$ 是 F_{28} 的子域.
- iv) 求 g1 的定义多项式.
- v) 求 F_{28} 的 Galois 群 $G = Aut_{F_2}F_{28}$ 的子群 H 使得 H 的不变域 I(H) = K

三. (10 分) 设 $f(x) = x^6 + x^5 + x^2 + x + 1$. 求有限域 $\mathbf{F}_{2^6} = \mathbf{F}_2[x]/(f(x))$ 的一组正规基底.

我承诺, 我将严格 遵守考试纪律.

承诺人: _____

题号						
得 分			,			٠.
批阅人 (流水阅 卷教师签名处)						

四. $(10 \, \text{分})$ 设域 \mathbf{F}_p (p > 3) 上椭圆曲线 $E: y^2 = x^3 + a_4 x + a_6$. E 在 \mathbf{F}_p 上的运算规则为: 设 $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E$, O 为无穷远点. 则

(1)
$$O + P_1 = P_1 + O$$
;

$$(2) -P_1 = (x_1, -y_1);$$

(3) 如果
$$P_3 = (x_3, y_3) = P_1 + P_2 \neq 0$$
, 则

$$\begin{cases} x_3 = \lambda^2 - x_1 - x_2, \\ y_3 = \lambda(x_1 - x_3) - y_1. \end{cases} \quad \cancel{\sharp} \ \, \mathbf{p} \ \, \lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } \mathbf{p} \ \, \mathbf{p} \$$

设 F_{17} 上椭圆曲线 $E: y^2 = x^3 + 3x + 10$ 上的点 P = (13, 11). 求 $2P = (x_2, y_2), 3P = (x_3, y_3), -P = (x_4, y_4)$.

五. (10 分) 设域 \mathbf{F}_{2^n} 上椭圆曲线 $E: y^2 + xy = x^3 + a_2x^2 + a_6$.

五. $(10 \, \mathcal{G})$ 设域 \mathbf{F}_{2^n} 上椭圆曲线 $E: y^2 + xy = x^3 + a_2x^2 + a_6$. E 在 \mathbf{F}_{2^n} 上运算规则为: 设 $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E$, O 为无穷远点. 则

(1)
$$O + P_1 = P_1 + O;$$
 (2) $-P_1 = (x_1, x_1 + y_1);$

(3) 如果
$$P_3 = (x_3, y_3) = P_1 + P_2 \neq O$$
,

$$\begin{cases} x_3 = \lambda^2 + \lambda + x_1 + x_2 + a_2, \\ y_3 = \lambda(x_1 + x_3) + x_3 + y_1. \end{cases} \quad \sharp \to \lambda = \begin{cases} \frac{y_2 + y_1}{x_2 + x_1} & \text{mf. } x_1 \neq x_2, \\ \frac{x_1^2 + y_1}{x_1} & \text{mf. } x_1 = x_2. \end{cases}$$

设 $\mathbf{F}_{2^8} = \mathbf{F}_2[t]/(t^8+t^4+t^3+t^2+1)$ 上椭圆曲线 $E: y^2+xy=x^3+x^2+1$ 设 $P_1=(t^6+t^2, t^3+t)$. 试证明 P_1 是 E 的一个点,并计算 $-P_1$, $2P_1$, $3P_1$.

上海交通大学试卷(B卷) (2008至2009学年第2学期)

班级号		学	号	 - ,	姓名
课程名称_	信息安全数学基础(II)	 	成绩

- 一. (30 分) 设 $f(x) = x^6 + x^5 + x^4 + x^2 + 1$.
- i) 证明: f(x) 是 F_2 上的不可约多项式.
- ii) 证明:由 f(x) 生成的理想 I = (f(x)) 是 $\mathbf{F}_2[x]$ 中的极大理想.
- iii) 证明: 由理想 I = (f(x)) 生成的商环 $\mathbf{F}_{2^6} = \mathbf{F}_2[x]/(f(x))$ 是 2^6 元有限域.
- iv) 求有限域 $\mathbf{F}_{2^6} = \mathbf{F}_2[x]/(f(x))$ 的生成元 g. 即 \mathbf{F}_{2^6} 中元素 g 使得 $\mathbf{F}_{2^6}^* = \mathbf{F}_{2^6} \setminus \{0\} = \langle g \rangle = \{g, g^2, \ldots, g^{2^6-2}, g^{2^6-1} = 1\}.$
- 二. $(40 \, \text{分})$ 设 $f(x) = x^8 + x^4 + x^3 + x + 1$ 是 \mathbf{F}_2 上的不可约 多项式,有限域 $\mathbf{F}_{2^8} = \mathbf{F}_2[x]/(f(x))$.
- i) 证明: Frobenius 映射 $\sigma: u \mapsto u^2$ 是 \mathbf{F}_{2^8} 的自同构.
- ii) 设 g = x 是 \mathbf{F}_{2^8} 的生成元, $g_1 = g^{85} = x^7 + x^5 + x^4 + x^3 + x^2 + 1$. 计算 $g_2 = g_1^2$, $g_3 = g_1^{2^2}$.
- iii) 证明 $K = \{0, 1, g_1, g_2\}$ 是 F_{28} 的子域.
- iv) 求 g_1 的定义多项式.
- v) 求 \mathbf{F}_{2^8} 的 Galois 群 $G = Aut_{\mathbf{F}_2}\mathbf{F}_{2^8}$ 的子群 H 使得 H 的不变域 $I(H) = \mathbf{K}$.

三. (10 分) 设 $f(x) = x^6 + x^5 + x^4 + x^2 + 1$. 求有限域 $\mathbf{F}_{2^6} = \mathbf{F}_2[x]/(f(x))$ 的一组正规基底.

我承诺,我将严格 遵守考试纪律.

承诺人:

	T	 	_	1	 	 	г
题号							
得 分				,			
批阅人 (流水阅 卷教师签名处)							

四. (10 分) 设域 \mathbf{F}_p (p > 3) 上椭圆曲线 $E: y^2 = x^3 + a_4 x + a_6$. E 在 \mathbf{F}_p 上的运算规则为: 设 $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E$, 0 为无穷远点,则

(1)
$$O + P_1 = P_1 + O;$$
 (2) $-P_1 = (x_1, -y_1);$

$$(2) -P_1 = (x_1, -y_1)$$

(3) 如果
$$P_3 = (x_3, y_3) = P_1 + P_2 \neq O$$
, 则

$$\begin{cases} x_3 = \lambda^2 - x_1 - x_2, \\ y_3 = \lambda(x_1 - x_3) - y_1. \end{cases} \neq \begin{cases} x_1 + x_2 + y_3 \\ x_2 - x_1 \end{cases} \text{ where } x_1 \neq x_2, \\ \frac{3x_1^2 + a_4}{2y_1} \text{ where } x_1 = x_2. \end{cases}$$

设 F_{17} 上椭圆曲线 $E: y^2 = x^3 + 5x + 7$ 上的点 P = (13, 5).

五. (10 分) 设域 \mathbf{F}_{2^n} 上椭圆曲线 $E: y^2 + xy = x^3 + a_2x^2 + a_6$. E 在 \mathbf{F}_{2^n} 上运算规则为: 设 $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E$, O 为无穷远点. 则

(1)
$$O + P_1 = P_1 + O;$$
 (2) $-P_1 = (x_1, x_1 + y_1);$

(3) 如果
$$P_3 = (x_3, y_3) = P_1 + P_2 \neq O$$
,

设 $\mathbf{F}_{2^8} = \mathbf{F}_2[t]/(t^8+t^4+t^3+t^2+1)$ 上椭圆曲线 $E: y^2+xy=x^3+x^2+1$ 设 $P_1=(t^3+t, t^7+t^4+t)$. 试证明 P_1 是 E 的一个点,并计算 $-P_1$, $2P_1$, $3P_1$.

上海交通大学试卷解答(A卷) (2008至2009学年第2学期)

信息安全数学基础(II)

- 一. (30 分) 设 $f(x) = x^6 + x^5 + x^2 + x + 1$.
- i) 证明: f(x) 是 \mathbf{F}_2 上的不可约多项式.
- ii) 证明:由 f(x) 生成的理想 I = (f(x)) 是 $F_2[x]$ 中的极大理想.
- iii) 证明: 由理想 I = (f(x)) 生成的商环 $F_{2^6} = F_2[x]/(f(x))$ 是 2^6 元有限域.
- iv) 求有限域 $\mathbf{F}_{2^6} = \mathbf{F}_2[x]/(f(x))$ 的生成元 g. 即 \mathbf{F}_{2^6} 中元素 g 使得 $\mathbf{F}_{2^6}^* = \mathbf{F}_{2^6} \setminus \{0\} = \langle g \rangle = \{g, g^2, \dots, g^{2^6-2}, g^{2^6-1} = 1\}$.
- 解 i) \mathbf{F}_2 次数小于 n/2 = 6/2 的不可约多项式为

$$x, x+1, x^2+x+1, x^3+x+1, x^3+x^2+1$$

因为

$$f(x) = x(x^5 + x^4 + x + 1) + 1$$

$$f(x) = (x+1)(x^5+x)+1$$

$$f(x) = (x^2 + x + 1)(x^4 + x^2 + x + 1) + x$$

$$f(x) = (x^3 + x + 1)(x^3 + x^2 + x) + x^2 + 1$$

$$f(x) = (x^3 + x^2 + 1)(x^3 + 1) + x$$

所以 $x \nmid f(x)$, $x+1 \nmid f(x)$, $x^2+x+1 \nmid f(x)$, $x^3+x+1 \nmid f(x)$, $x^3+x^2+1 \nmid f(x)$. 因此, f(x) 是 F_2 上的不可约多项式.

ii) 设有理想 M 真包含理想 I=(f(x)), 则存在 $g(x)\in M$, 但 $g(x)\not\in I$. 由此, f(x) /g(x), 进而 (g(x),f(x))=1. 根据多项式的广义欧几里得除法,存在多项式 g(x), g(x), g(x), g(x), g(x)

$$s(x)g(x) + t(x)f(x) = 1.$$

根据理想的定义, 以及 $g(x), f(x) \in M$, 我们有

$$1 = s(x)g(x) + t(x)f(x) \in M.$$

从而, $M = \mathbb{F}_2[x]$. 这说明 f(x) 生成的理想 I = (f(x)) 是 $\mathbb{F}_2[x]$ 中的极大理想.

iii) 因为由理想 I = (f(x)) 生成的商环 $F_{2^0} = F_2[x]/(f(x))$ 对于如下运算:

$$a(x) \oplus b(x) := (a(x) + b(x)) \mod f(x)$$

 $a(x) \otimes b(x) := (a(x)b(x)) \mod f(x)$

构成一个域, 且 $1, x, x^2, x^3, x^4, x^5$ 是一组基底, 所以 F_{26} 是 2^6 元有限域.

iv) $2^6 - 1 = 63 = 3^2 \cdot 7$. 有限域 $F_{2^6} = F_2[x]/(f(x))$ 的元素 g 满足条件

$$\begin{cases} g(x)^{(2^6-1)/3} & \not\equiv 1 \mod f(x) \\ g(x)^{(2^6-1)/7} & \not\equiv 1 \mod f(x) \end{cases}$$

即为生成元.

取 g=x,有

$$\begin{cases} g(x)^{(2^5-1)/3} & \equiv x^5 + x^3 + x^2 \neq 1 \mod f(x) \\ g(x)^{(2^5-1)/7} & \equiv x^3 + x^2 + 1 \neq 1 \mod f(x) \end{cases}$$

因此, g = x 为生成元.

- 二. $(40 \, \text{分})$ 设 $f(x) = x^8 + x^4 + x^3 + x^2 + 1$ 是 \mathbf{F}_2 上的不可约 多项式,有限域 $\mathbf{F}_{2^8} = \mathbf{F}_2[x]/(f(x))$.
- i) 证明: Frobenius 映射 σ: u → u² 是 F₂₈ 的自同构.
- ii) 设 g = x 是 \mathbf{F}_{2^6} 的生成元, $g_1 = g^{85} = x^7 + x^6 + x^4 + x^2 + x$. 计算 $g_2 = g_1^2$, $g_3 = g_1^{2^2}$.
- iii) 证明 $K = \{0, 1, g_1, g_2\}$ 是 F_{28} 的子域.
- iv) 求 g1 的定义多项式.
- v) 求 \mathbf{F}_{2^8} 的 Galois 群 $G = Aut_{\mathbf{F}_2}\mathbf{F}_{2^8}$ 的子群 H 使得 H 的不变域 $I(H) = \mathbf{K}$.

解 i) 证明: Frobenius 映射 $\sigma: u \mapsto u^2$ 是 F_{28} 的自同构.

首先证明: σ 是自同态. 事实上, 对任意元素 $a,b \in \mathbb{F}_{2^8}$, 有

$$\sigma(a+b) = (a+b)^2 = a^2 + 2ab + b^2 = a^2 + b^2 = \sigma(a) + \sigma(b)$$

$$\sigma(a+b) = (ab)^2 = (ab)^2 = a^2 \cdot b^2 = \sigma(a)\sigma(b).$$

其次证明: σ 是单射. 事实上, $\ker \sigma = \{u|u^2 = 0\} = \{0\}$.

最后, F_{28} 是有限元集. σ 也是满射. 因此, Frobenius 映射 $\sigma: u \mapsto u^2$ 是 F_{28} 的自同构.

ii) 设 g = x 是 \mathbf{F}_{2^8} 的生成元, $g_1 = g^{85} = x^7 + x^6 + x^4 + x^2 + x$. 我们有

$$g_2 = g_1^2 \equiv x^{14} + x^{12} + x^8 + x^4 + x^2$$

$$\equiv x^7 + x^6 + x^4 + x^2 + x + 1 \mod f(x)$$

$$g_3 = g_2^2 \equiv x^{14} + x^{12} + x^8 + x^4 + x^2 + 1$$

$$\equiv x^7 + x^6 + x^4 + x^2 + x$$

$$\equiv g_1 \mod f(x)$$

- iii) 因为 $1+g_1=g_2$, $1+g_2=g_1$, $g_1^2=g_2$, $g_2^2=g_1$, $g_1\cdot g_2=1$, 所以 $K=\{0,\ 1,\ g_1,\ g_2\}$ 是 F_{28} 的子
- iv) g1 的定义多项式为

域.

$$h(y) = (y - g_1)(y - g_2) = y^2 - (g_1 + g_2)y + g_1g_2 = y^2 + y + 1.$$

v) 求 \mathbf{F}_{2^8} 的 Galois 群 $G = Aut_{\mathbf{F}_2}\mathbf{F}_{2^8}$ 的子群 H 使得 H 的不变域 $I(H) = \mathbf{K}$.

$$H = A(\mathbf{K}) = \{ \sigma^d \in G \mid \sigma^d(g_1) = g_1 \}$$

$$= \{ \sigma^d \in G \mid (g^{85})^{2^d} = g^{85} \}$$

$$= \{ \sigma^d \in G \mid 2^8 - 1 | 85(2^d - 1) \}$$

$$= \{ \sigma^2, \sigma^4, \sigma^6, \sigma^8 = e \}$$

三. (10 分) 设 $f(x) = x^6 + x^5 + x^2 + x + 1$. 求有限域 $F_{26} = F_2[x]/(f(x))$ 的一组正规基底.

解 有限域 $F_{2^6} = F_2[x]/(f(x))$ 的一组正规基底为 $\beta, \beta^2, \beta^{2^3}, \beta^{2^3}, \beta^{2^4}, \beta^{2^5}$. 取 $\beta = x$, 有

$$\beta \equiv x,
\beta^{2} \equiv x^{2},
\beta^{2^{2}} \equiv x^{4},
\beta^{2^{3}} \equiv x^{5} + x^{4} + x^{2} + 1,
\beta^{2^{4}} \equiv x^{5} + x^{4} + x^{3} + x^{2} + x,
\beta^{2^{5}} \equiv x^{4} + x^{3} + x^{2}.$$

系数矩阵为

$$A = \left(\begin{array}{cccccc} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{array}\right)$$

为可逆矩阵, 所以 $\beta, \beta^2, \beta^{2^2}, \beta^{2^3}, \beta^{2^4}, \beta^{2^5}$ 是正规基底

四. (10 分) 设域 \mathbf{F}_p (p > 3) 上椭圆曲线 $E: y^2 = x^3 + a_4x + a_6$. E 在 F_p 上的运算规则为: 设 $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E$, 0 为无穷远点. 则

(1)
$$O + P_1 = P_1 + O;$$
 (2) $-P_1 = (x_1, -y_1);$

(1)
$$\forall P_1 = 1 + 0$$
, (2) $\exists 1 = (x_1, y_1)$,
(3) $\exists P_2 = (x_3, y_3) = P_1 + P_2 \neq O$, $\exists P_2 = (x_1, y_2) = 0$, $\exists P_2 = (x_2, y_2) = 0$, $\exists P_2 = (x_1, y_2) = 0$, $\exists P_2 = (x_2, y_2) = 0$, $\exists P_2 = (x_1, y_2) = 0$, $\exists P_2$

设 F_{17} 上椭圆曲线 $E: y^2 = x^3 + 3x + 10$ 上的点 P = (13, 11).

解 i) 设 $x_1 = 13, y_1 = 11$, 我们有

$$x_1^3 + 3x_1 + 10 \equiv 2$$
, $y_1^2 \equiv 2 \mod 17$

所以
$$P = (x_1, y_1)$$
 是 E 上的点.
$$\begin{cases}
\lambda_2 &= \frac{3x_1^2 + 3}{2y_1} = 0 \\
x_2 &= \lambda_2^2 - 2x_1 = 8 \\
y_2 &= \lambda_2(x_1 - x_2) - y_1 = 6
\end{cases}$$

$$\begin{cases}
\lambda_3 &= \frac{y_2 - y_1}{x_2 - x_1} = 1 \\
x_3 &= \lambda_3^2 - x_1 - x_2 = 14 \\
y_3 &= \lambda_3(x_1 - x_3) - y_1 = 5
\end{cases}$$
iv) $(x_4, y_4) = -P = (x_1, -y_1) = (13, -11) = (13, 6)$.

五. (10 分) 设域 \mathbf{F}_{2} 上椭圆曲线 $E: y^2 + xy = x^3 + a_2x^2 + a_6$. $E \propto F_{2n}$ 上运算规则为: 设 $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E$, 0 为无穷远点.则

(1)
$$O + P_1 = P_1 + O;$$
 (2) $-P_1 = (x_1, x_1 + y_1);$

(3) 如果
$$P_3 = (x_3, y_3) = P_1 + P_2 \neq O$$
,
$$\begin{cases} x_3 = \lambda^2 + \lambda + x_1 + x_2 + a_2, \\ y_3 = \lambda(x_1 + x_3) + x_3 + y_1. \end{cases} \quad \text{其中 } \lambda = \begin{cases} \frac{y_2 + y_1}{x_2 + x_1} & \text{如果 } x_1 \neq x_2, \\ \frac{x_1^2 + y_1}{x_2} & \text{如果 } x_1 = x_2. \end{cases}$$

设 $\mathbf{F}_{2^8} = \mathbf{F}_2[t]/(t^8 + t^4 + t^3 + t^2 + 1)$ 上椭圆曲线 $F: y^2 + xy = x^3 + x^2 + 1$.

设 $P_1 = (t^6 + t^2, t^3 + t)$. 试证明 P_1 是 E 的一个点,

并计算 -P₁, 2P₁, 3P₁.

解 i) 设 $p(t) = t^8 + t^4 + t^3 + t^2 + 1$, $x_1 = t^6 + t^2$, $y_1 = t^3 + t$, 我们有

$$x_1^3 + x_1^2 + 1 \equiv t^7 + t^6 + t^4 + t^2 + t$$
, $y_1^2 + x_1 \cdot y_1 \equiv t^7 + t^6 + t^4 + t^2 + t \mod p(t)$

所以 $P = (x_1, y_1)$ 是 E 上的点.

$$\begin{aligned} &\text{ii)} \quad (x_4,y_4) = -P = (x_1,x_1+y_1) = (t^6+t^2,t^6+t^2+t^3+t) = (t^6+t^2,t^6+t^3+t^2+t). \\ & \quad \begin{cases} \lambda_2 &= \frac{x_1^2+y_1}{x_1} = t^7+t^4+t^3+1 \\ x_2 &= \lambda_2^2+\lambda_2+x_1+x_1+1=t^7+t^6+t^4+t^2+t+1 \\ y_2 &= \lambda_2(x_1+x_2)+x_2+y_1=1 \end{cases} \\ & \quad \begin{cases} \lambda_3 &= \frac{y_2+y_1}{x_2+x_1} = t^7+t^4+t+1 \\ x_3 &= \lambda_3^2+\lambda_3+x_1+x_2+1=t^3+t \\ y_3 &= \lambda_3(x_1+x_3)+x_3+y_1=t^7+t^4+t \end{cases} \end{aligned}$$

上海交通大学试卷解答(B卷) (2008至2009学年第2学期)

信息安全数学基础(II)

- 一. (30 分) 设 $f(x) = x^6 + x^5 + x^4 + x^2 + 1$.
- i) 证明: f(x) 是 F_2 上的不可约多项式.
- ii) 证明: 由 f(x) 生成的理想 I = (f(x)) 是 $F_2[x]$ 中的极大理想.
- iii) 证明:由理想 I = (f(x)) 生成的商环 $F_{2^6} = F_2[x]/(f(x))$ 是 2^6 元有限域.
- iv) 求有限域 $\mathbf{F}_{2^6} = \mathbf{F}_2[x]/(f(x))$ 的生成元 g. 即 \mathbf{F}_{2^6} 中元素 g 使得 $\mathbf{F}_{2^6}^* = \mathbf{F}_{2^6} \setminus \{0\} = \langle g \rangle = \{g, g^2, \dots, g^{2^6-2}, q^{2^6-1} = 1\}.$

解 i) F_2 次数小于 n/2 = 6/2 的不可约多项式为

$$x$$
, $x + 1$, $x^2 + x + 1$, $x^3 + x + 1$, $x^3 + x^2 + 1$

因为

$$f(x) = x(x^5 + x^4 + x^3 + x) + 1$$

$$f(x) = (x+1)(x^5+x^3+x^2)+1$$

$$f(x) = (x^2 + x + 1)(x^4 + 1) + x$$

$$f(x) = (x^3 + x + 1)(x^3 + x^2) + 1$$

$$f(x) = (x^3 + x^2 + 1)(x^3 + x) + x^2 + x + 1$$

所以 $x \nmid f(x)$, $x+1 \nmid f(x)$, $x^2+x+1 \nmid f(x)$, $x^3+x+1 \nmid f(x)$, $x^3+x^2+1 \nmid f(x)$. 因此, f(x) 是 F_2 上的不可约多项式.

ii) 设有理想 M 真包含理想 I=(f(x)), 则存在 $g(x)\in M$, 但 $g(x)\not\in I$. 由此, f(x) lg(x), 进而 (g(x),f(x))=1. 根据多项式的广义欧几里得除法,存在多项式 g(x), g(x), 使得

$$s(x)g(x) + t(x)f(x) = 1.$$

根据理想的定义, 以及 $g(x), f(x) \in M$, 我们有

$$1 = s(x)g(x) + t(x)f(x) \in M.$$

从而, $M = \mathbb{F}_2[x]$. 这说明 f(x) 生成的理想 I = (f(x)) 是 $\mathbb{F}_2[x]$ 中的极大理想.

iii) 因为由理想 I = (f(x)) 生成的商环 $F_{2^6} = F_2[x]/(f(x))$ 对于如下运算:

$$a(x) \oplus b(x) := (a(x) + b(x)) \mod f(x)$$

 $a(x) \otimes b(x) := (a(x)b(x)) \mod f(x)$

构成一个域, 且 $1, x, x^2, x^3, x^4, x^5$ 是一组基底, 所以 F_{26} 是 2^6 元有限域.

iv) $2^6 - 1 = 63 = 3^2 \cdot 7$. 有限域 $\mathbf{F}_{2^6} = \mathbf{F}_{2}[x]/(f(x))$ 的元素 g 满足条件

$$\begin{cases} g(x)^{(2^6-1)/3} & \not\equiv 1 \bmod f(x) \\ g(x)^{(2^6-1)/7} & \not\equiv 1 \bmod f(x) \end{cases}$$

即为生成元.

取 g=x, 有

$$\begin{cases} g(x)^{(2^6-1)/3} & \equiv x^4+x^3+x^2+x+1 \neq 1 \bmod f(x) \\ g(x)^{(2^6-1)/7} & \equiv x^5+x^4+x^2 \neq 1 \bmod f(x) \end{cases}$$

因此, g = x 为生成元.

- 二. (40 f) 设 $f(x) = x^8 + x^4 + x^3 + x + 1$ 是 F_2 上的不可约 多项式,有限域 $F_{2^8} = F_2[x]/(f(x))$.
- i) 证明: Frobenius 映射 $\sigma: u \mapsto u^2$ 是 F_{28} 的自同构.
- ii) 设 g = x + 1 是 F_{28} 的生成元, $g_1 = g^{85} = x^7 + x^5 + x^4 + x^3 + x^2 + 1$. 计算 $g_2 = g_1^2$, $g_3 = g_1^2$.
- iii) 证明 $K = \{0, 1, g_1, g_2\}$ 是 F_{28} 的子域.
- iv) 求 g1 的定义多项式.
- v) 求 \mathbf{F}_{2^8} 的 Galois 群 $G = Aut_{\mathbf{F}_2}\mathbf{F}_{2^8}$ 的子群 H 使得 H 的不变域 $I(H) = \mathbf{K}$.

 \mathbf{H} i) 证明: Frobenius 映射 $\sigma: u \mapsto u^2$ 是 \mathbf{F}_{2^8} 的自同构.

首先证明: σ 是自同态. 事实上, 对任意元素 $a,b \in \mathbb{F}_{2^8}$, 有

$$\sigma(a+b) = (a+b)^2 = a^2 + 2ab + b^2 = a^2 + b^2 = \sigma(a) + \sigma(b)$$

$$\sigma(a+b) = (ab)^2 = (ab)^2 = a^2 \cdot b^2 = \sigma(a)\sigma(b).$$

其次证明: σ 是单射. 事实上, $\ker \sigma = \{u|u^2 = 0\} = \{0\}$.

最后, F_{28} 是有限元集. σ 也是满射. 因此, Frobenius 映射 $\sigma: u \mapsto u^2$ 是 F_{28} 的自同构.

ii) 设 g = x 是 \mathbf{F}_{2^8} 的生成元, $g_1 = g^{85} = x^7 + x^5 + x^4 + x^3 + x^2 + 1$. 我们有

$$g_2 = g_1^2 \equiv x^{14} + x^{10} + x^8 + x^6 + x^4 + 1$$

$$\equiv x^7 + x^5 + x^4 + x^3 + x^2 \mod f(x)$$

$$g_3 = g_2^2 \equiv x^{14} + x^{10} + x^8 + x^6 + x^4$$

$$\equiv x^7 + x^5 + x^4 + x^3 + x^2 + 1$$

$$\equiv g_1 \mod f(x)$$

- iii) 因为 $1+g_1=g_2$, $1+g_2=g_1$, $g_1^2=g_2$, $g_2^2=g_1$, $g_1\cdot g_2=1$, 所以 $K=\{0,\ 1,\ g_1,\ g_2\}$ 是 F_{2^8} 的子
- iv) g1 的定义多项式为

$$h(y) = (y - g_1)(y - g_2) = y^2 - (g_1 + g_2)y + g_1g_2 = y^2 + y + 1.$$

v) 求 F₂ 的 Galois 群 G = Aut_F, F₂ 的子群 H 使得 H 的不变域

$$I(H) = K$$
.

域.

$$H = A(K) = \{ \sigma^d \in G \mid \sigma^d(g_1) = g_1 \}$$

$$= \{ \sigma^d \in G \mid (g^{85})^{2^d} = g^{85} \}$$

$$= \{ \sigma^d \in G \mid 2^8 - 1 | 85(2^d - 1) \}$$

$$= \{ \sigma^2, \sigma^4, \sigma^6, \sigma^8 = e \}$$

三. (10 分) 设 $f(x) = x^6 + x^5 + x^4 + x^2 + 1$. 求有限域 $\mathbf{F}_{2^6} = \mathbf{F}_2[x]/(f(x))$ 的一组正规基底.

解 有限域 $\mathbf{F}_{2^6} = \mathbf{F}_2[x]/(f(x))$ 的一组正规基底为 $\beta, \beta^2, \beta^{2^2}, \beta^{2^3}, \beta^{2^4}, \beta^{2^5}$. 取 $\beta = x$, 有

$$\beta \equiv x,$$

$$\beta^2 \equiv x^2,$$

$$\beta^{2^2} \equiv x^4,$$

$$\beta^{2^3} \equiv x^5 + x^4 + x^3 + x^2 + x,$$

$$\beta^{2^4} \equiv x^3 + x^2 + 1,$$

$$\beta^{2^5} \equiv x^5 + x^2.$$

系数矩阵为

$$A = \left(\begin{array}{cccccc} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array}\right)$$

为可逆矩阵, 所以 β,β²,β²²,β²³,β²⁴,β²⁵ 是正规基底.

四. (10 分) 设域 \mathbf{F}_p (p > 3) 上椭圆曲线 $E: y^2 = x^3 + a_4x + a_6$. E 在 \mathbf{F}_p 上的运算规则为: 设 $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E$, O 为无穷远点. 则

(1)
$$O + P_1 = P_1 + O;$$
 (2) $-P_1 = (x_1, -y_1);$

(3) 如果
$$P_3 = (x_3, y_3) = P_1 + P_2 \neq O$$
, 则
$$\begin{cases} x_3 = \lambda^2 - x_1 - x_2, \\ y_3 = \lambda(x_1 - x_3) - y_1. \end{cases}$$
其中 $\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{如果 } x_1 \neq x_2, \\ \frac{3x_1^2 + a_4}{2y_1} & \text{如果 } x_1 = x_2. \end{cases}$

设 \mathbf{F}_{17} 上椭圆曲线 $E: y^2 = x^3 + 5x + 7$ 上的点 P = (13, 5).

$$\vec{x}$$
 $2P = (x_2, y_2), 3P = (x_3, y_3), -P = (x_4, y_4).$

解 i) 设 $x_1 = 13, y_1 = 5$, 我们有

$$x_1^3 + 5x_1 + 7 \equiv 8$$
, $y_1^2 \equiv 8 \mod 17$

所以
$$P = (x_1, y_1)$$
 是 E 上的点.
$$\begin{cases}
\lambda_2 &= \frac{3x_1^2 + 3}{2y_1} = 7 \\
x_2 &= \lambda_2^2 - 2x_1 = 6 \\
y_2 &= \lambda_2(x_1 - x_2) - y_1 = 10
\end{cases}$$

$$\begin{cases}
\lambda_3 &= \frac{y_2 - y_1}{x_2 - x_1} = 9 \\
x_3 &= \lambda_3^2 - x_1 - x_2 = 11 \\
y_3 &= \lambda_3(x_1 - x_3) - y_1 = 13
\end{cases}$$
iv) $(x_4, y_4) = -P = (x_1, -y_1) = (13, -11) = (13, 6)$.

五. (10 分) 设域 \mathbf{F}_{2^n} 上椭圆曲线 $E: y^2 + xy = x^3 + a_2x^2 + a_6$. E 在 \mathbf{F}_{2^n} 上运算规则为: 设 $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E$, O 为无穷远点. 则

上海交通大学试卷(A卷) (2007至2008学年第2学期)

班级号	学号	2	姓名
课程名称_	信息安全数学基础(II)	,	成绩

- -. (20 分) 设 $f(x) = x^6 + x + 1$.
- i) 证明: f(x) 是 F_2 上的不可约多项式.
- ii) 证明:由 f(x) 生成的理想 $(f(x)) = \{g(x)f(x) \mid g(x) \in \mathbb{F}_2[x]\}$ 是 \mathbb{F}_2 中的素理想.
- 二. (20 分) 设 $f(x) = x^6 + x + 1$.
- i) 证明商集 $F_2[x]/(f(x))$ 对于如下加法和乘法两种运算构成一个 2^6 元域:

$$a(x) + b(x) := (a(x) + b(x) \mod f(x))$$

 $a(x) \cdot b(x) := (a(x) \cdot b(x) \mod f(x))$

这里 $(a(x) \mod f(x))$ 表示 a(x) 被 f(x) 除的次数最小的余式.

- ii) 求有限域 $\mathbf{F}_{2^6} = \mathbf{F}_2[x]/(f(x))$ 的生成元 g. 即 \mathbf{F}_{2^6} 中元素 g 使得 $\mathbf{F}_{2^6}^* = \mathbf{F}_{2^6} \setminus \{0\} = \langle g \rangle = \{g, g^2, \ldots, g^{2^6-2}, g^{2^6-1} = 1\}.$
- 三. (20 分) 设 $f(x) = x^6 + x + 1$.
- i) 求有限域 $F_{2^6} = F_2[x]/(f(x))$ 的 $2^3 = 8$ 元子域 E (写出所有元素).
- ii) 求 3 次多项式 $h(y) \in F_2[y]$ 使得 E 同构于有限域 $F_{2^3} = F_2[y]/(h(y))$.
- 四. (10 分) 设域 $F_p(p > 3)$ 上椭圆曲线 $E: y^2 = x^3 + a_4x + a_6$.

E 在 F_p 上的运算规则为: 设 $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E, O$ 为无穷远点. 则

(1)
$$O + P_1 = P_1 + O$$
;

(2)
$$-P_1 = (x_1, -y_1);$$

(3) 如果 $P_3 = (x_3, y_3) = P_1 + P_2 \neq O$, 则

$$\begin{cases} x_3 = \lambda^2 - x_1 - x_2, \\ y_3 = \lambda(x_1 - x_3) - y_1. \end{cases}$$
其中 $\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{如果 } x_1 \neq x_2, \\ \\ \frac{3x_1^2 + a_4}{2y_1} & \text{如果 } x_1 = x_2. \end{cases}$

设 \mathbf{F}_{17} 上椭圆曲线 $E: y^2 = x^3 + 3x + 7$ 上的点 P = (4,7).

我承诺, 我将严格 遵守考试纪律.

承诺人: _____

		,				
题号				_		
得 分						
批阅人 (流水阅 卷教师签名处)						
卷教师签名处)						

五. (10 分) 设域 \mathbf{F}_{2^n} 上椭圆曲线 $E: y^2 + xy = x^3 + a_2x^2 + a_6$.

E 在 \mathbf{F}_{2^n} 上运算规则为: 设 $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E, O$ 为无穷远点. 则

(1)
$$O + P_1 = P_1 + O$$
;

(2)
$$-P_1 = (x_1, x_1 + y_1);$$

(3) 如果 $P_3 = (x_3, y_3) = P_1 + P_2 \neq O$,

$$\begin{cases} x_3 = \lambda^2 + \lambda + x_1 + x_2 + a_2, \\ y_3 = \lambda(x_1 + x_3) + x_3 + y_1. \end{cases} \qquad \text{\sharp ψ $\lambda = } \begin{cases} \frac{y_2 + y_1}{x_2 + x_1} & \text{\sharp ψ \mathbb{R} $x_1 \neq x_2, $} \\ \frac{x_1^2 + y_1}{x_1} & \text{\sharp ψ \mathbb{R} $x_1 = x_2. $} \end{cases}$$

设 $\mathbf{F}_{2^8} = \mathbf{F}_2[t]/(t^8 + t^4 + t^3 + t^2 + 1)$ 上椭圆曲线 $E: y^2 + xy = x^3 + x^2 + 1$. 设 $P_1 = (t^6 + t^2, t^3 + t)$. 试证明 P_1 是 E 的一个点,

并计算 $-P_1$, $2P_1$, $3P_1$.

六. $(20 \, \text{分})$ 设 \mathbf{F}_q 是特征为 p 的有限域, $q = p^n$.

- i) 证明: 对任意 $a, b \in \mathbf{F}_q$, 有 $(a+b)^p = a^p + b^p$.
- ii) 证明: Frobenius 映射 $\sigma: x \longmapsto x^p$ 是 \mathbf{F}_q 的线性变换.
- iii) 证明: 映射 $Tr := \sigma + \sigma^2 + \cdots + \sigma^n$:

$$Tr(x) = \sigma(x) + \sigma^2(x) + \cdots + \sigma^n(x) = x^p + x^{p^2} + \cdots + x^{p^n}$$

是 F, 的线性变换.

上海交通大学试卷(B卷) (2007至2008学年第2学期)

班级号	学号_	e	姓名
课程名称	信息安全数学基础(II)		成绩

- -. (20 分) 设 $f(x) = x^6 + x^5 + 1$.
- i) 证明: f(x) 是 F_2 上的不可约多项式.
- ii) 证明: 由 f(x) 生成的理想 $(f(x)) = \{g(x)f(x) \mid g(x) \in F_2[x]\}$ 是 F_2 中的素理想...
- 二. (20 分) 设 $f(x) = x^6 + x^5 + 1$.
- i) 证明商集 $F_2[x]/(f(x))$ 对于如下加法和乘法两种运算构成一个 2^6 元域:

$$a(x) + b(x) := (a(x) + b(x) \mod f(x))$$

 $a(x) \cdot b(x) := (a(x) \cdot b(x) \mod f(x))$

这里 $(a(x) \mod f(x))$ 表示 a(x) 被 f(x) 除的次数最小的余式.

- ii) 求有限域 $\mathbf{F}_{2^6} = \mathbf{F}_2[x]/(f(x))$ 的生成元 g. 即 \mathbf{F}_{2^6} 中元素 g 使得 $\mathbf{F}_{2^6}^* = \mathbf{F}_{2^6} \setminus \{0\} = \langle g \rangle = \{g, g^2, \dots, g^{2^6-2}, g^{2^5-1} = 1\}.$
- 三. (20 分) 设 $f(x) = x^6 + x^5 + 1$.
- i) 求有限域 $F_{2^6} = F_2[x]/(f(x))$ 的 $2^3 = 8$ 元子域 E (写出所有元素).
- ii) 求 3 次多项式 $h(y) \in \mathbb{F}_2[y]$ 使得 E 同构于有限域 $\mathbb{F}_{2^3} = \mathbb{F}_2[y]/(h(y))$.
- 四. (10 分) 设域 $F_p(p > 3)$ 上椭圆曲线 $E: y^2 = x^3 + a_4x + a_6$.

E 在 F_p 上的运算规则为: 设 $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E, O$ 为无穷远点. 则

(1)
$$O + P_1 = P_1 + O$$
;

$$(2) -P_1 = (x_1, -y_1);$$

(3) 如果 $P_3 = (x_3, y_3) = P_1 + P_2 \neq O$, 则

$$\begin{cases} x_3 = \lambda^2 - x_1 - x_2, \\ y_3 = \lambda(x_1 - x_3) - y_1. \end{cases} \not\exists P \lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{mf. } x_1 \neq x_2, \\ \frac{3x_1^2 + a_4}{2y_1} & \text{mf. } x_1 = x_2. \end{cases}$$

设 \mathbf{F}_{17} 上椭圆曲线 $E: y^2 = x^3 + 7x + 1$ 上的点 P = (4,5).

我承诺, 我将严格 遵守考试纪律。

承诺人: _____

题 号			,			
得分						
批阅人 (流水阅 卷教师签名处)			}			

五. (10 分) 设域 \mathbf{F}_{2^n} 上椭圆曲线 $E: y^2 + xy = x^3 + a_2x^2 + a_6$.

E 在 \mathbf{F}_{2^n} 上运算规则为: 设 $P_1=(x_1,y_1),\ P_2=(x_2,y_2)\in E,\ O$ 为无穷远点. 则

(1)
$$O + P_1 = P_1 + O$$
;

$$(2) -P_1 = (x_1, x_1 + y_1);$$

(3) 如果 $P_3 = (x_3, y_3) = P_1 + P_2 \neq O$,

$$\begin{cases} x_3 = \lambda^2 + \lambda + x_1 + x_2 + a_2, \\ y_3 = \lambda(x_1 + x_3) + x_3 + y_1. \end{cases} \qquad \text{\sharp \uparrow $\lambda = } \begin{cases} \frac{y_2 + y_1}{x_2 + x_1} & \text{\sharp \downarrow $$ $\mu \mathbb{R} $x_1 \neq x_2, \\ \\ \frac{x_1^2 + y_1}{x_1} & \text{\sharp \downarrow $$ $\mu \mathbb{R} $x_1 = x_2. \end{cases}$$

设 $\mathbf{F_{28}} = \mathbf{F_2}[t]/(t^8 + t^4 + t^3 + t^2 + 1)$ 上椭圆曲线 $E: y^2 + xy = x^3 + x^2 + 1$. 设 $P_1 = (t^3 + t, t^7 + t^4 + t)$. 试证明 P_1 是 E 的一个点,

并计算 -P₁, 2P₁, 3P₁.

六. $(20 \, \mathcal{G})$ 设 \mathbf{F}_q 是特征为 p 的有限域, $q = p^n$.

- i) 证明: 对任意 $a, b \in \mathbb{F}_q$, 有 $(a+b)^p = a^p + b^p$.
- ii) 证明: Frobenius 映射 $\sigma: x \mapsto x^p$ 是 F_a 的线性变换.
- iii) 证明: 映射 $Tr := \sigma + \sigma^2 + \cdots + \sigma^n$:

 $Tr(x) = \sigma(x) + \sigma^{2}(x) + \cdots + \sigma^{n}(x) = x^{p} + x^{p^{2}} + \cdots + x^{p^{n}}$

是 F_q 的线性变换.

2005-2006 年第一学期 ユロシンショクニ 学期 信息安全数学基础 (II) 考试题 (A 卷)

-. (10 分) 将置换
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 6 & 9 & 5 & 7 & 8 & 4 & 2 & 1 \end{pmatrix}$$
 表示成循环的乘积.

二. (15分)

- i) 判断 $f(x) = x^4 + x + 1$ 是否为 F_2 不可约多项式?
- ii) 设 $g(x) = x^3 + x + 1$, 求多项式 s(x), t(x) 使得

$$s(x)f(x)+t(x)g(x)=1 \pmod{2}.$$

三. (15 分) 设 $f(x) = x^4 + x + 1$.

- i) 求出有限域 $F_{24} = F_2/(f(x))$ 的生成元 g,
- ii) 计算 g^k , $0 \le k \le 2^4 2$.

四. (15 分) 设 $f(x) = x^4 + x + 1$.

- i) 求 $\beta \in \mathbb{F}_2/(f(x))$ 使得 β , β^2 , β^{2^2} , β^{2^3} 构成 $\mathbb{F}_2/(f(x))$ 在 \mathbb{F}_2 的基底.
- ii) 设 $\alpha = \beta + \beta^2 + \beta^{2^2} + \beta^{2^3}$, 计算 α^{16} .

五. (15 分) 设 \mathbf{F}_{17} 上椭圆曲线 $E: y^2 = x^3 + 3x + 1$, 设 P = (2,7).

- i) 证明: P是 E 上的点,
- ii) 求 -P, 2P 和 3P.

六. (15 分) 设
$$f(x) = x^8 + x^4 + x^3 + x + 1$$
. 在 \mathbf{F}_2 上证明: $f(x) \mid x^{256} - x$.

七. (15分)

- i) 证明: F₇[x] 是主理想环,
- ii) 证明: I = (f(x)) 是 $F_7[x]$ 的素理想当且仅当 f(x) 是不可约多项式.

2005-2006 年第一学期 信息安全数学基础 (II) 考试题 (A 卷) 解答

姓名 _____

学号 ______

一. (10 分) 将置换
$$σ = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 6 & 9 & 5 & 7 & 8 & 4 & 2 & 1 \end{pmatrix}$$
 表示成循环的乘积.

解

$$\sigma = \begin{pmatrix} 1 & 3 & 9 \\ 3 & 9 & 1 \end{pmatrix} \begin{pmatrix} 2 & 6 & 8 \\ 6 & 8 & 2 \end{pmatrix} \begin{pmatrix} 4 & 5 & 7 \\ 5 & 7 & 4 \end{pmatrix} = (1,3,9)(2,6,8)(4,5,7)$$

二. (15分)

- i) 判断 $f(x) = x^4 + x + 1$ 是否为 F_2 不可约多项式?
- ii) 设 $g(x) = x^3 + x + 1$, 求多项式 s(x), t(x) 使得

$$s(x)f(x) + t(x)g(x) = 1 \pmod{2}.$$

解

i) 次数 ≤ 2 的不可约多项式为 $x, x+1, x^2+x+1$, 因为

$$x^4 + x + 1 = (x^3 + 1)x + 1$$

 $x^4 + x + 1 = (x^3 + x^2 + x)(x + 1) + 1$
 $x^4 + x + 1 = (x^2 + x)(x^2 + x + 1) + x + 1$

所以 $x, x+1, x^2+x+1$ 都不能整除 x^4+x+1 , 从而 x^4+x+1 是不可约多项式.

ii) 因为

$$x^4 + x + 1 = x(x^3 + x + 1) + x^2 + 1, \quad x^3 + x + 1 = x(x^2 + 1) + 1,$$

所以

$$1 = x^3 + x + 1 + x(x^4 + x + 1 + x(x^3 + x + 1)) = x(x^4 + x + 1) + (x^2 + 1)(x^3 + x + 1)$$

 $\mathbb{P} s(x) = x, t(x) = x^2 + 1.$

三. (15 分) 设 $f(x) = x^4 + x + 1$.

- i) 求出有限域 $F_{24} = F_2/(f(x))$ 的生成元 g_1
- ii) 计算 g^k , $0 \le k \le 2^4 2$.
- 解i) 因为 |F₂₄| = 15 = 3·5, 所以满足

$$g(x)^3 \not\equiv 1 \pmod{x^4 + x + 1}, \quad g(x)^5 \not\equiv 1 \pmod{x^4 + x + 1}$$

的元素 g(x) 都是生成元.

对于 g(x) = x, 有

$$x^3 \equiv x^3 \not\equiv 1 \pmod{x^4 + x + 1}, \quad x^5 \equiv x^2 + x \not\equiv 1 \pmod{x^4 + x + 1},$$

所以 g(x) = x 是 $F_2[x]/(x^4 + x + 1)$ 的生成元.

对于 t = 0, 1, 2, ..., 14, 计算 $q(x)^t \pmod{x^4 + x + 1}$:

$$\begin{array}{llll} g(x)^0 \equiv 1, & g(x)^1 \equiv x, & g(x)^2 \equiv x^2, \\ g(x)^3 \equiv x^3, & g(x)^4 \equiv x+1, & g(x)^5 \equiv x^2+x, \\ g(x)^6 \equiv x^3+x^2, & g(x)^7 \equiv x^3+x+1, & g(x)^8 \equiv x^2+1, \\ g(x)^9 \equiv x^3+x, & g(x)^{10} \equiv x^2+x+1, & g(x)^{11} \equiv x^3+x^2+x, \\ g(x)^{12} \equiv x^3+x^2+x+1, & g(x)^{13} \equiv x^3+x^2+1, & g(x)^{14} \equiv x^3+1. \end{array}$$

四. $(15 分) 设 f(x) = x^4 + x + 1$.

- i) 求 $\beta \in F_2/(f(x))$ 使得 β , β^2 , β^{2^2} , β^{2^3} 构成 $F_2/(f(x))$ 在 F_2 的基底.
- ii) 设 $\alpha = \beta + \beta^2 + \beta^{2^2} + \beta^{2^3}$, 计算 α^{16} .

 \mathbf{H} i) 对于 $\beta = x$, 我们有

$$\beta = x$$

$$\beta^2 = x^2$$

$$\beta^4 = x+1$$

$$\beta^8 = x^2+1$$

所以 β , β^2 , β^{2^2} , β^{2^3} 不构成一个基底.

对于 $\beta = x^3$, 我们有

$$\beta = x^3 = x^3$$
 $\beta^2 = x^6 = x^3 + x^2$
 $\beta^4 = x^{12} = x^3 + x^2 + x + 1$
 $\beta^8 = x^9 = x^3 + x$

所以 β , β^2 , β^{2^2} , β^{2^3} 构成一个基底, 是正规基.

ii) 因为
$$\alpha = \beta + \beta^2 + \beta^{2^2} + \beta^{2^3} = 1$$
, 所以 $\alpha^{16} = 1$.

五. (15 分) 设 \mathbf{F}_{17} 上椭圆曲线 $E: y^2 = x^3 + 3x + 1$, 设 P = (2,7).

- i) 证明: $P \neq E$ 上的点,
- ii) 求 -P, 2P 和 3P.

解 i) 因为 $(x^3 + 3x + 1)(2) = 2^3 + 3 \cdot 2 + 1 = 15 \equiv 7^2 \pmod{17}$, 所以 P = (2,7) 是 E 上的点.

ii) 令 $P = (2,7) = (x_1,y_1)$, 则 $-P = (x_1,-y_1) = (2,10)$. 又设 $2P = (x_2,y_2)$, $3P = (x_3,y_3) = P + 2P$,

则

$$\lambda_2 = \frac{3x_1^2 + a_4}{2y_1} = 12, \qquad x_2 = \lambda_2^2 - 2x_1 = 4, \qquad y_3 = \lambda_2(x_1 - x_2) - y_1 = 3$$

$$\lambda_3 = \frac{y_2 - y_1}{x_2 - x_1} = 15, \qquad x_3 = \lambda_3^2 - x_1 - x_2 = 15, \qquad y_3 = \lambda_3(x_1 - x_3) - y_1 = 2$$

六. (15 分) 设 $f(x) = x^8 + x^4 + x^3 + x + 1$. 在 \mathbf{F}_2 上证明: $f(x) \mid x^{256} - x$.

证 首先证明 $f(x) = x^8 + x^4 + x^3 + x + 1$ 是不可约多项式. 次数 $\leq 8/2 = 4$ 的不可约多项式为 $x, x+1, x^2+x+1, x^3+x+1, x^3+x^2+1, x^4+x+1, x^4+x^3+1$, 因为

$$x^{8} + x^{4} + x^{3} + x + 1 = (x^{7} + x^{3} + x^{2} + 1)x + 1$$

$$x^{8} + x^{4} + x^{3} + x + 1 = (x^{7} + x^{6} + x^{5} + x^{4} + x^{2} + x)(x + 1) + 1$$

$$x^{8} + x^{4} + x^{3} + x + 1 = (x^{6} + x^{5} + x^{3})(x^{2} + x + 1) + x + 1$$

$$x^{8} + x^{4} + x^{3} + x + 1 = (x^{5} + x^{3} + x^{2} + 1)(x^{3} + x + 1) + x^{2}$$

$$x^{8} + x^{4} + x^{3} + x + 1 = (x^{5} + x^{4} + x^{3})(x^{3} + x^{2} + 1) + x + 1$$

$$x^{8} + x^{4} + x^{3} + x + 1 = (x^{4} + x)(x^{4} + x + 1) + x^{3} + x^{2} + 1$$

$$x^{8} + x^{4} + x^{3} + x + 1 = (x^{4} - x^{3} + x^{2} - x + 1)(x^{4} + x^{3} + 1) + x^{3} + x^{2}$$

所以 x, x+1, x^2+x+1 , x^3+x+1 , x^3+x^2+1 , x^4+x+1 , x^4+x^3+1 都不能整除 f(x), 从而 f(x) 是不可约多项式.

在有限域 $F_{28} = F_2[x]/(f(x))$ 中, 有

$$x^{2^8-1}-1\equiv 0\ (\mathrm{mod}\ f(x)),$$

故在 \mathbf{F}_2 上, $f(x) \mid x^{256} - x$.

七. (15分)

- i) 证明: F₇[x] 是主理想环,
- ii) 证明: I = (f(x)) 是 $F_7[x]$ 的素理想当且仅当 f(x) 是不可约多项式.
- 证 i) 易证: $F_7[x]$ 是环. 现证明: $F_7[x]$ 的每个理想 I 是主理想.

在 I 中取一个次数 $n \ge 1$ 为最小的多项式 f(x), 则

$$I = (f(x)) = \{q(x)f(x) \mid q(x) \in \mathbf{F}_7[x]\}$$

事实上,对于 $g(x) \in I$,如果 g(x) / f(x),则存在 $q(x), r(x) \in \mathbb{F}_7[x]$ 使得

$$g(x) = q(x)f(x) + r(x), \qquad \deg r(x) < \deg f(x).$$

因为 I 是理想,所以由 $f(x), g(x) \in I$,可推出

$$r(x) = g(x) - q(x)f(x) \in I$$

这与 f(x) 是 I 中次数最小的多项式矛盾. 故结论成立.

ii) 充分性. 如果 n 次 f(x) 不是不可约多项式,则存在多项式 $f_1(x)$, $f_2(x) \in \mathbf{F}_7[x]$, $1 < \deg f_i(x) < n$ 使得 $f(x) = f_i(x)f_2(x)$, 这时 $I_i = (f_i(x))$ 都是 I = (f(x)) 的真理想,且使得 $I = I_1 \cdot I_2$,这与 I 是素理想矛盾.

必要性. 如果 I 不是素理想,则存在真理想 I_1,I_2 使得 $I=I_1\cdot I_2$. 因为 $F_7[x]$ 是主理想环,所以存在非常数多项式 $f_i(x)$ 使得 $I_i=(f_i(x))$. 进而 $f(x)=cf_1(x)f_2(x)$, 其中 c 是常数. 这与 f(x) 是不可约多项式矛盾.

2005-2006 年第一学期 信息安全数学基础 (II) 考试题 (B 卷)

姓名 _____ 学号 ____

$$-$$
. (10 分) 将置换 $σ = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 5 & 6 & 8 & 9 & 7 & 3 & 1 & 2 \end{pmatrix}$ 表示成循环的乘积.

- 二. (15分)
- i) 判断 $f(x) = x^4 + x^3 + 1$ 是否为 F_2 不可约多项式?
- ii) 设 $g(x) = x^3 + x + 1$, 求多项式 s(x), t(x) 使得

$$s(x)f(x) + t(x)g(x) = 1 \pmod{2}.$$

- 三. $(15 分) 设 f(x) = x^4 + x^3 + 1$.
- i) 求出有限域 $\mathbf{F}_{2^4} = \mathbf{F}_2/(f(x))$ 的生成元 g,
- ii) 计算 g^k , $0 \le k \le 2^4 2$.
- 四. (15 分) 设 $f(x) = x^4 + x^3 + 1$.
- i) 求 $\beta \in \mathbb{F}_2/(f(x))$ 使得 β , β^2 , β^{2^2} , β^{2^3} 构成 $\mathbb{F}_2/(f(x))$ 在 \mathbb{F}_2 的基底.
- ii) 设 $\alpha = \beta + \beta^2 + \beta^{2^2} + \beta^{2^3}$, 计算 α^{16} .
- 五. (15 分) 设 \mathbf{F}_{17} 上椭圆曲线 $E: y^2 = x^3 + 3x + 1$, 设 P = (7,5).
- i) 证明: $P \neq E$ 上的点,
- ii) 求 -P, 2P 和 3P.

六. (15 分) 设
$$f(x) = x^8 + x^4 + x^3 + x^2 + 1$$
. 在 \mathbf{F}_2 上证明: $f(x) \mid x^{256} - x$.

- 七. (15分)
- i) 证明: F₁₁[x] 是主理想环,
- ii) 证明: I = (f(x)) 是 $F_{11}[x]$ 的素理想当且仅当 f(x) 是不可约多项式.

2005-2006 年第一学期 信息安全数学基础 (II) 考试题 (B 卷) 解答

姓名

学号_____

一.
$$(10 \, \mathcal{G})$$
 将置换 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 5 & 6 & 8 & 9 & 7 & 3 & 1 & 2 \end{pmatrix}$ 表示成循环的乘积.

解

$$\sigma = \begin{pmatrix} 1 & 4 & 8 \\ 4 & 8 & 1 \end{pmatrix} \begin{pmatrix} 2 & 5 & 9 \\ 5 & 9 & 2 \end{pmatrix} \begin{pmatrix} 3 & 6 & 7 \\ 6 & 7 & 3 \end{pmatrix} = (1,4,8)(2,5,9)(3,6,7)$$

- 二. (15分)
- i) 判断 $f(x) = x^4 + x^3 + 1$ 是否为 F_2 不可约多项式?
- ii) 设 $g(x) = x^3 + x + 1$, 求多项式 s(x), t(x) 使得

$$s(x)f(x)+t(x)g(x)=1 \pmod{2}.$$

解

i) 次数 ≤ 2 的不可约多项式为 $x, x+1, x^2+x+1, 因为$

$$x^4 + x^3 + 1 = (x^3 + x^2)x + 1$$

 $x^4 + x^3 + 1 = x^3(x+1) + 1$
 $x^4 + x^3 + 1 = (x^2 + 1)(x^2 + x + 1) + x$

所以 x, x+1, x^2+x+1 都不能整除 x^4+x^3+1 , 从而 x^4+x^3+1 是不可约多项式.

ii) 因为

$$x^4+x^3+1=(x+1)(x^3+x+1)+x^2, \quad x^3+x+1=x\cdot x^2+x+1, \quad x^2=(x+1)(x+1)+1,$$

所以

$$1 = x^{2} + (x+1)(x^{3} + x + 1 + x \cdot x^{2})$$

$$= (x+1)(x^{3} + x + 1) + (x^{2} + x + 1)(x^{4} + x^{3} + 1 + (x+1)(x^{3} + x + 1))$$

$$= (x^{2} + x + 1)(x^{4} + x^{3} + 1) + (x^{3} + x)(x^{3} + x + 1)$$

 $\mathbb{P} s(x) = x^2 + x + 1, t(x) = x^3 + x.$

- 三. (15 分) 设 $f(x) = x^4 + x^3 + 1$.
- i) 求出有限域 $F_{24} = F_2/(f(x))$ 的生成元 g,
- ii) 计算 g^k , $0 \le k \le 2^4 2$.
- 解 i) 因为 |F₂₄| = 15 = 3·5, 所以满足

$$g(x)^3 \not\equiv 1 \pmod{x^4 + x^3 + 1}, \quad g(x)^5 \not\equiv 1 \pmod{x^4 + x^3 + 1}$$

的元素 g(x) 都是生成元.

对于 g(x) = x, 有

$$x^3 \equiv x^3 \not\equiv 1 \pmod{x^4 + x^3 + 1}, \quad x^5 \equiv x^3 + x + 1 \not\equiv 1 \pmod{x^4 + x^3 + 1},$$

所以 g(x) = x 是 $\mathbf{F}_2[x]/(x^4 + x^3 + 1)$ 的生成元.

对于 t = 0, 1, 2, ..., 14, 计算 $g(x)^t \pmod{x^4 + x^3 + 1}$:

$$\begin{array}{llll} g(x)^0 \equiv 1, & g(x)^1 \equiv x, & g(x)^2 \equiv x^2, \\ g(x)^3 \equiv x^3, & g(x)^4 \equiv x^3 + 1, & g(x)^5 \equiv x^3 + x + 1, \\ g(x)^6 \equiv x^3 + x^2 + x + 1, & g(x)^7 \equiv x^2 + x + 1, & g(x)^8 \equiv x^3 + x^2 + x, \\ g(x)^9 \equiv x^2 + 1, & g(x)^{10} \equiv x^3 + x, & g(x)^{11} \equiv x^3 + x^2 + 1, \\ g(x)^{12} \equiv x + 1, & g(x)^{13} \equiv x^2 + x, & g(x)^{14} \equiv x^3 + x^2. \end{array}$$

四. (15 分) 设 $f(x) = x^4 + x^3 + 1$.

- i) 求 $\beta \in F_2/(f(x))$ 使得 β , β^2 , β^{2^2} , β^{2^3} 构成 $F_2/(f(x))$ 在 F_2 的基底.
- ii) 设 $\alpha = \beta + \beta^2 + \beta^{2^2} + \beta^{2^3}$, 计算 α^{16} .

 \mathbf{M} i) 对于 $\beta = x$, 我们有

$$\beta = x$$

$$\beta^2 = x^2$$

$$\beta^4 = x^3 + 1$$

$$\beta^8 = x^3 + x^2 + x$$

所以 β , β^2 , β^{2^2} , β^{2^3} 构成一个基底, 是正规基.

ii) 因为
$$\alpha = \beta + \beta^2 + \beta^{2^2} + \beta^{2^3} = 1$$
, 所以 $\alpha^{16} = 1$.

五. (15 分) 设 F_{17} 上椭圆曲线 $E: y^2 = x^3 + 3x + 1$, 设 P = (7,5).

- i) 证明: P 是 E 上的点,
- ii) 求 -P, 2P 和 3P.

则

解i) 因为 $(x^3 + 3x + 1)(7) = 7^3 + 3 \cdot 7 + 1 = 8 \equiv 5^2 \pmod{17}$, 所以 P = (7,5) 是 E 上的点.

ii) $\Leftrightarrow P = (7,5) = (x_1,y_1), \text{ } \bigcirc P = (x_1,-y_1) = (7,12). \text{ } \bigcirc \bigvee 2P = (x_2,y_2), \text{ } \bigcirc 3P = (x_3,y_3) = P + 2P,$

$$\lambda_2 = \frac{3x_1^2 + a_4}{2y_1} = 12, \qquad x_2 = \lambda_2^2 - 2x_1 = 7, \qquad y_3 = \lambda_2(x_1 - x_2) - y_1 = 12$$

因为 2P = -P, 所以 3P = O (无穷远点).

六. $(15 \, \text{分})$ 设 $f(x) = x^8 + x^4 + x^3 + x^2 + 1$. 在 \mathbf{F}_2 上证明: $f(x) \mid x^{256} - x$. 证 首先证明 $f(x) = x^8 + x^4 + x^3 + x^2 + 1$ 是不可约多项式. 次数 $\leq 8/2 = 4$ 的不可约多项式为

x, x+1, x^2+x+1 , x^3+x+1 , x^3+x^2+1 , x^4+x+1 , x^4+x^3+1 , 因为

$$x^{8} + x^{4} + x^{3} + x^{2} + 1 = (x^{7} + x^{3} + x^{2} + x)x + 1$$

$$x^{8} + x^{4} + x^{3} + x^{2} + 1 = (x^{7} + x^{6} + x^{5} + x^{4} + x^{2})(x + 1) + 1$$

$$x^{8} + x^{4} + x^{3} + x^{2} + 1 = (x^{6} + x^{5} + x^{3} + 1)(x^{2} + x + 1) + x$$

$$x^{8} + x^{4} + x^{3} + x^{2} + 1 = (x^{5} + x^{3} + x^{2} + 1)(x^{3} + x + 1) + x$$

$$x^{8} + x^{4} + x^{3} + x^{2} + 1 = (x^{5} + x^{4} + x^{3})(x^{3} + x^{2} + 1) + x^{2} + 1$$

$$x^{8} + x^{4} + x^{3} + x^{2} + 1 = (x^{4} + x)(x^{4} + x) + x^{3} + x + 1$$

$$x^{8} + x^{4} + x^{3} + x^{2} + 1 = (x^{4} + x^{3} + x^{2} + x + 1)(x^{4} + x^{3} + 1) + x^{3} + x$$

所以 x, x+1, x^2+x+1 , x^3+x+1 , x^3+x^2+1 , x^4+x+1 , x^4+x^3+1 都不能整除 f(x), 从而 f(x) 是不可约多项式.

在有限域 $F_{28} = F_2[x]/(f(x))$ 中,有

$$x^{2^6-1}-1\equiv 0\ (\mathrm{mod}\ f(x)),$$

故在 \mathbf{F}_2 上, $f(x) \mid x^{256} - x$.

七. (15分)

- i) 证明: F₁₁[x] 是主理想环.
- ii) 证明: I = (f(x)) 是 $F_{11}[x]$ 的素理想当且仅当 f(x) 是不可约多项式.
- 证 i) 易证: $F_{11}[x]$ 是环. 现证明: $F_{11}[x]$ 的每个理想 I 是主理想.

在 I 中取一个次数 $n \ge 1$ 为最小的多项式 f(x), 则

$$I = (f(x)) = \{q(x)f(x) \mid q(x) \in \mathcal{F}_{11}[x]\}$$

事实上,对于 $g(x) \in I$,如果 $g(x) \nmid f(x)$,则存在 $q(x), r(x) \in \mathbb{F}_{11}[x]$ 使得

$$g(x) = q(x)f(x) + r(x), \qquad \deg r(x) < \deg f(x).$$

因为 I 是理想, 所以由 $f(x), g(x) \in I$, 可推出

$$r(x) = g(x) - q(x)f(x) \in I$$

这与 f(x) 是 I 中次数最小的多项式矛盾. 故结论成立.

ii) 充分性. 如果 n 次 f(x) 不是不可约多项式,则存在多项式 $f_1(x)$, $f_2(x) \in F_{11}[x]$, $1 < \deg f_i(x) < n$ 使得 $f(x) = f(x)f_2(x)$, 这时 $I_i = (f_i(x))$ 都是 I = (f(x)) 的真理想,且使得 $I = I_1 \cdot I_2$,这与 I 是素理想矛盾.

必要性. 如果 I 不是素理想,则存在真理想 I_1 , I_2 使得 $I = I_1 \cdot I_2$. 因为 $\mathbf{F}_{11}[x]$ 是主理想环,所以存在非常数多项式 $f_i(x)$ 使得 $I_i = (f_i(x))$. 进而 $f(x) = cf_1(x)f_2(x)$, 其中 c 是常数. 这与 f(x) 是不可约多项式矛盾.