Adequacy using a Binary Logical Relation

August 16, 2016

We define a binary logical relation R, which contains relations $R_A \subseteq [\![A]\!] \times \{e \mid e : A\}$, defined by induction on types for each type as follows:

$$dR_{\text{Nat}}e \Leftrightarrow \forall n \in \mathbb{N}. \ d = n \Rightarrow e \mapsto^* n$$

$$fR_{A\to B}e \Leftrightarrow \forall d \in [A]. \ \forall e' \in \{e \mid \vdash e : A\}. \ dR_Ae' \Rightarrow f(d)R_Be \ e'$$

1 Lemmas for Main Lemma

1.1 Bottom Element Lemma

Lemma 1. For any type A and $\Gamma \vdash e : A, \perp R_A e$

Proof. By induction on types. For Nat, we want to show $\forall n \in \mathbb{N}$. $\bot = n \Rightarrow e \mapsto^* n$. Because $\bot \notin \mathbb{N}$, this statement is vacuously true.

For $R_{A\to B}$, we have that \bot is the function $\lambda x:A.\bot$, so we want to show $\forall d \in [\![A]\!]$. $\forall e' \in \{e \mid \vdash e:A\}$. $dR_Ae' \Rightarrow (\lambda x:A.\bot)(d)R_Be$ e'. Assume d is an element of the domain representing type A and e' is an expression of type A such that d R_Ae' . We want to show that \bot R_B e e' and by the inductive hypothesis, we know for any e:B that \bot R_Be , so we can just use this with e e' to get our conclusion.

1.2 Expansion Lemma

Lemma 2. If $\Gamma \vdash e : A \text{ and } e \mapsto e' \text{ and } dR_A e' \text{ then } dR_A e$

Proof. By induction on types. For base case we assume $dR_{\text{Nat}}e'$, so we have $\forall n \in \mathbb{N}. d = n \Rightarrow e' \mapsto^* n$. Let n = d. Then, as $e \mapsto e'$ and $e' \mapsto^* n$, we know that $e \mapsto^* n$. Therefore, $dR_{\text{Nat}}e$.

For the inductive case, assume $e_0 \mapsto e'_0$ and $f \ R_{A \to B} \ e_0$, so we have $\forall a \in [\![A]\!]$. $\forall e' \in \{e \mid \vdash e : A\}$. $a \ R_A \ e' \Rightarrow f(a) \ R_B \ e_0 \ e'$. Let a be an element in the domain representing A and e_1 be an expression of type A such that aR_Ae_1 . Then $f(a) \ R_B \ e_0 \ e_1$.

By the inductive hypothesis we know that for any $e \mapsto e'$ for expressions of type B, that they are both related to the same denotation. Therefore we have f(a) R_B e'_0 e_1 , so we know $\forall a \in \llbracket A \rrbracket$. $\forall e' \in \{e \mid \vdash e : A\}$. a R_A $e' \Rightarrow f(a)$ R_B e'_0 e', so f $R_{A \to B}$ e'_0 .

1.3 Chains Lemma

Lemma 3. For an expression e : A and a chain $x_0 \sqsubseteq x_1 \sqsubseteq \dots$, if $x_n R_A e$, then $\bigsqcup x_n R_A e$

Proof. By induction on types. For base type, Nat, then we assume we have a chain of elements in \mathbb{N}_{\perp} such that x_n $R_{\text{Nat}}e$. Therefore for any element in the chain we know $\forall n \in \mathbb{N}$. $x_n = n \Rightarrow e \mapsto^* n$. We have two cases depending on the values of $| x_n |$

- 1. $\bigsqcup x_n = n$. Then we know that $e \mapsto^* \sqcup x_n$, as any $x_n R_{\text{Nat}} e$
- 2. | | $x_n = \bot$. By Lemma 2 we know that $\bot R_{\text{Nat}} e$ for any e

The inductive case is for $R_{A\to B}$. Assume we have a chain $f_1 \sqsubseteq f_2 \sqsubseteq \ldots$ of elements in $[\![A]\!] \to [\![B]\!]$ and $d R_A e'$ for some $d \in [\![A]\!]$ and e : A. Then we need to show $\bigsqcup f_n(d) R_B e e'$. By induction we know for any expression of type B and a chain $f_1(d) \sqsubseteq f_2(d) \sqsubseteq \ldots$ of elements of $[\![B]\!]$, $\bigsqcup f_n(d)$ is related to that expression. Therefore we have $\bigsqcup f_n(d) R_B e e'$.

2 Fixpoint Constant

We can define a constant Fix, for any type A, as the term $\text{Fix}_A : (A \to A) \to A$ that takes a function of type $A \to A$ to its fixpoint.

The interpretation of Fix applied to a function f is the following:

$$\llbracket \operatorname{Fix} \rrbracket f = \bigsqcup_{n} f^{n}(\bot)$$

which is the limit of chain obtained by repeatedly applying f to \bot .

We can use this to prove the following lemma:

Lemma 4. For any $f \in D_{A \to A}$ and $e : A \to A$, $fR_{A \to A}e \Rightarrow [\![Fix]\!] f R_A$ Fix e

Proof. Assume there is f and e such that $f R_{A\to A} e$. Then we want to prove $[\![\operatorname{Fix}]\!] f R_A$ Fix e, which is the same as $\coprod_n f^n(\bot) R_A$ Fix e.

Next we must prove $\forall n \in \mathbb{N}$. $f^n(\perp)$ R_A Fix e, which we prove by induction:

The base case is $\perp R_A$ Fix e, which we know by Lemma 2. For the inductive case, assume $f^n(\perp)$ R_A Fix e. As we know f R_A e, we have $f(f^n(\perp))$ R_A e(Fix e). by its definition. As Fix $e \mapsto e(\text{Fix } e)$, we can use Lemma 3 to get f^{n+1} R_A Fix e.

Then by Lemma 4, as we have the chain $f^0(\bot) \sqsubseteq f^1(\bot) \sqsubseteq \ldots$ and we know $\forall n \in \mathbb{N}. \ f^n(\bot) \ R_A$ Fix e, we know $\bigsqcup_n f^n(\bot) \ R_A$ Fix e.

2.1 Converting between terms

Converting from our PCF term to the constant:

$$fix x : A.e : A = Fix(\lambda x : A.e)$$

Converting from the constant to our PCF term:

$$Fix e = fix x : A. (e x) : A$$

3 Main Lemma

For this relation, the **Main Lemma** will be the following:

Lemma 5. If $\Gamma = x_1 : A_1, \dots, x_n : A_n, \Gamma \vdash e : A \text{ and } d_1 R_{A_1} t_1, d_2 R_{A_2} t_2, \dots, d_n R_{A_n} t_n, then$

$$[\![\Gamma \vdash e : A]\!](d_1, \ldots, d_n) \ R_A \ e[x_1/t_1, \ldots, x_n/t_n]$$

Proof. By induction on the possible values of e.

Variables For a variable $x_1: A_1, \ldots, x_n: A_n \vdash x: A$, assume for any $i = 1, \ldots, n$ that $d_i R_{A_i} t_i$. Then we want to show:

$$(\lambda(d_1,\ldots,d_n) \in [\Gamma] : \pi_i(d_1,\ldots,d_n)(d_1,\ldots,d_n) R_A [x_1/t_1,\ldots,x_n/t_n] x$$

As we have $\Gamma \vdash x : A$, by the typing rule for variables we have $\Gamma(x) = A$, so $x \in dom(\Gamma)$ and $\exists i.\ d_i R_{A_i} t_i$. Then on the right hand side we have $[x/t_i]x$. Therefore we want to show

$$d_i R_{A_i} t_i$$

which we have as an assumption.

Zero For z: Nat, we want to show:

$$[\Gamma \vdash z : \text{Nat}](d_1, \dots, d_n) \ R_{\text{Nat}} \ [x_1/t_1, \dots, x_n/t_n]z$$

Expanding the definitions gives us $0 R_{\text{Nat}} z$, so we must show $\forall n \in \mathbb{N}.0 = n \Rightarrow z \mapsto^* n$, which is the case as z reduces to n in zero steps. Therefore $0 R_{\text{Nat}} z$.

Successor For $x_1: A_1, \ldots, x_n: A_n \vdash s(e):$ Nat, assume for any $i=1, \ldots, n$ that $d_i R_{A_i} t_i$. Then we want to show:

$$[\Gamma \vdash s(e) : \text{Nat}](d_1, \dots, d_n) \ R_{\text{Nat}} \ [x_1/t_1, \dots, x_n/t_n](s(e))$$

Which expands to $\forall n \in \mathbb{N}$. $\llbracket \Gamma \vdash s(e) : \operatorname{Nat} \rrbracket (d_1, \ldots, d_n) = n \Rightarrow [x_1/t_1, \ldots, x_n/t_n] s(e) \mapsto^* n$. By the inductive hypothesis, we know:

$$[\Gamma \vdash e : \text{Nat}](d_1, \dots, d_n) \ R_{\text{Nat}} \ [x_1/t_1, \dots, x_n/t_n]e$$

This expands to $\forall n \in \mathbb{N}$. $[\Gamma \vdash e : \text{Nat}](d_1, \ldots, d_n) = n \Rightarrow [x_1/t_1, \ldots, x_n/t_n]e \mapsto^* n$. (If the denotation of e is \bot then this is vacuously true.)

Therefore there will be two cases:

- 1. If $[\Gamma \vdash e : \text{Nat}](d_1, \dots, d_n) = \bot$, then we must show $\bot R_{\text{Nat}}[x_1/t_1, \dots, x_n/t_n]s(e)$, which we get from Lemma 2
- 2. If $\llbracket \Gamma \vdash e : \operatorname{Nat} \rrbracket (d_1, \ldots, d_n) = v$, then we must show v+1 $R_{\operatorname{Nat}} [x_1/t_1, \ldots, x_n/t_n]s(e)$. Let n = v+1. From the inductive hypothesis we know that $[x_1/t_1, \ldots, x_n/t_n]e \mapsto^* v$. Using the congruence evaluation rule for successor, we get $s([x_1/t_1, \ldots, x_n/t_n]e) \mapsto s(v)$ and s(v) is the same as v+1. Therefore we have v+1 $R_{\operatorname{Nat}}s(v)$, so if we use this with the congruence rule in Lemma 3, we have v+1 $R_{\operatorname{Nat}}s([x_1/t_1, \ldots, x_n/t_n]e)$

Case For $x_1: A_1, \ldots, x_n: A_n \vdash \operatorname{case}(e, z \mapsto e_0, s(x) \mapsto e_S)$, assume for any $i = 1, \ldots, n$ that $d_i R_{A_i} t_i$. Then we want to show:

$$\llbracket \Gamma \vdash \operatorname{case}(e, z \mapsto e_0, s(x) \mapsto e_S) : A \rrbracket (d_1, \dots, d_n) \ R_A \ [x_1/t_1, \dots, x_n/t_n] \ \operatorname{case}(z \mapsto e_0, s(x) \mapsto e_S)$$

The result of the denotation depends on the value of e, so we have three cases:

- 1. $\llbracket \Gamma \vdash e : \operatorname{Nat} \rrbracket (d_1, \dots, d_n) = \bot$, then we must show $\bot R_A [x_1/t_1, \dots, x_n/t_n]$ case $(z \mapsto e_0, s(x) \mapsto e_s)$, which we get by applying Lemma 2.
- 2. $\llbracket\Gamma \vdash e : \operatorname{Nat}\rrbracket(d_1, \ldots, d_n) = 0$, then we want to show $\llbracket\Gamma \vdash e_0 : A\rrbracket(d_1, \ldots, d_n)$ $R_A[x_1/t_1, \ldots, x_n/t_n] \operatorname{case}(z \mapsto e_0, s(x) \mapsto e_S)$. As we have $\Gamma \vdash e_0 : A$ from the typing rule of case, we can get $\llbracket\Gamma \vdash e_0 : A\rrbracket(d_1, \ldots, d_n) \ R_A[x_1/t_1, \ldots, x_n/t_n]e_0$ by the induction hypothesis. We can now use this in Lemma 3, with the operational semantics rule for case when the expression is zero, to get $\llbracket\Gamma \vdash e_0 : A\rrbracket(d_1, \ldots, d_n) \ R_A[x_1/t_1, \ldots, x_n/t_n] \operatorname{case}(z \mapsto e_0, s(x) \mapsto e_S)$
- 3. $\llbracket \Gamma \vdash e : \operatorname{Nat} \rrbracket (d_1, \dots, d_n) = n + 1$ we want to show $\llbracket \Gamma, x : \operatorname{Nat} \vdash e_S : \operatorname{Nat} \rrbracket (d_1, \dots, d_n, d) \ R_A \ [x_1/t_1, \dots, x_n/t_n, x/t] \operatorname{case}(e, z \mapsto e_0, s(x) \mapsto e_S)$

From the induction hypothesis we have

$$\llbracket \Gamma, x : \text{Nat} \vdash e_S : \text{Nat} \rrbracket (d_1, \dots, d_n, d) \quad R_A \ [x_1/t_1, \dots, x_n/t_n, x/t] e_S$$

We can now use this in Lemma 3, with the operational semantics rule for case when the expression is not zero to get $[\Gamma, x : \text{Nat} \vdash e_S : \text{Nat}](d_1, \ldots, d_n, d)$ $R_A[x_1/t_1, \ldots, x_n/t_n, x/t] \operatorname{case}(e, z \mapsto e_0, s(x) \mapsto e_S).$

Application For $x_1: A_1, \ldots, x_n: A_n \vdash e \ e': B$, assume for any $i=1, \ldots, n$ that $d_i R_{A_i} t_i$. Then we want to show:

$$[\![\Gamma \vdash e \ e' : B]\!](d_1, \ldots, d_n) \ R_B \ [x_1/t_1, \ldots, x_n/t_n] e \ e'$$

Using the denotational semantics and substitution function we can rewrite this as:

$$[\![\Gamma \vdash e : A \to B]\!](d_1, \dots, d_n)([\![\Gamma \vdash e' : B]\!](d_1, \dots, d_n)) R_B([\![x_1/t_1, \dots, x_n/t_n]\!]e)([\![x_1/t_1, \dots, x_n/t_n]\!]e')$$

By the inductive hypothesis we have $\llbracket \Gamma \vdash e : A \rightarrow B \rrbracket (d_1, \ldots, d_n) \ R_{A \rightarrow B} \ [x_1/t_1, \ldots, x_n/t_n] e$. Expanding this gives us $\forall d \in \llbracket A \rrbracket$. $\forall e' \in \{e \mid \vdash e : A\}$. $dR_A e' \Rightarrow \llbracket \Gamma \vdash e : A \rightarrow B \rrbracket (d_1, \ldots, d_n) (d) R_B [x_1/t_1, \ldots, x_n/t_n] e$ e'. Let $d = (\llbracket \Gamma \vdash e' : B \rrbracket (d_1, \ldots, d_n))$ and $e' = [x_1/t_1, \ldots, x_n/t_n] e'$. Then we have $\llbracket \Gamma \vdash e : A \rightarrow B \rrbracket (d_1, \ldots, d_n) (\llbracket \Gamma \vdash e' : B \rrbracket (d_1, \ldots, d_n) R_B ([x_1/t_1, \ldots, x_n/t_n] e) ([x_1/t_1, \ldots, x_n/t_n] e')$.

 λ -Abstraction For $x_1: A_1, \ldots, x_n: A_n \vdash \lambda x: A.\ e: A \rightarrow B$, assume for any $i=1,\ldots,n$ that $d_iR_{A_i}t_i$. Then we want to show:

$$[\![\Gamma \vdash \lambda x : A.\ e : A \to B]\!](d_1, \dots, d_n) \ R_{A \to B}[x_1/t_1, \dots, x_n/t_n](\lambda x : A.\ e)$$

Expanding the definition of the logical relation gives us

$$\forall d \in [\![A]\!]. \ \forall e' \in \{e \mid \vdash e : A\}. \ dR_A e' \Rightarrow$$
$$[\![\Gamma, x : A \vdash e : B]\!](d_1, \dots, d_n)(d) \ R_B \ [\![x_1/t_1, \dots, x_n/t_n]\!](\lambda x : A. \ e) \ t$$

Let d be an element of the domain of type A and t be an expression of type A such that $dR_A t$.

Then by the using the denotational semantics for λ abstraction, we want to show:

$$(\lambda d \in [A]. [\Gamma, x : A \vdash e : B](d_1, \dots, d_n))(d) R_B [x_1/t_1, \dots, x_n/t_n](\lambda x : A. e) t$$

which is the same as:

$$[\Gamma, x : A \vdash e : B](d_1, \dots, d_n, d) R_B [x_1/t_1, \dots, x_n/t_n, x/t] e$$

which we get by the inductive hypothesis.

Fixpoint For $x_1: A_1, \ldots, x_n: A_n \vdash \lambda x: A$. fix x: A. e: A, assume for any $i=1,\ldots,n$ that d_iR_A,t_i . Then we want to show:

$$[\Gamma \vdash \text{fix } x : A.\ e : A](d_1, \ldots, d_n) \ R_A \ [x_1/t_1, \ldots, x_n/t_n](\text{fix } x : A.\ e : A)$$

Using the fixpoint constant (see 1.1), we can rewrite this as:

$$\llbracket \Gamma \vdash \text{Fix } (\lambda x : A. \ e) : A \rrbracket (d_1, \dots, d_n) \ R_A \ [x_1/t_1, \dots, x_n/t_n] (\text{Fix } (\lambda x : A. \ e) : A)$$

As Fix $(\lambda x:A.\ e)$ is a function application, by its typing rule we have $\Gamma \vdash \lambda x:A.\ e:A\to A$, so we can use the inductive hypothesis to get:

$$[\Gamma \vdash \lambda x : A.\ e](d_1, \dots, d_n)\ R_{A \to A}\ [x_1/t_1, \dots, x_n/t_n](\lambda x : A.\ e)$$

```
Then, we use Lemma 1 with f = \llbracket \Gamma \vdash \lambda x : A. e \rrbracket (d_1, \ldots, d_n) and e = [x_1/t_1, \ldots, x_n/t_n](\lambda x : A.e). This gives us \llbracket \operatorname{Fix} \rrbracket \llbracket \Gamma \vdash \lambda x : A. e \rrbracket (d_1, \ldots, d_n) \ R_A \ \operatorname{Fix} [x_1/t_1, \ldots, x_n/t_n](\lambda x : A.e).
```

Using the denotational semantics for function application, we have:

$$\llbracket\Gamma \vdash \operatorname{Fix} \ \lambda x : A. \ e \rrbracket(d_1, \dots, d_n) \ R_A \ [x_1/t_1, \dots, x_n/t_n] \operatorname{Fix}(\lambda x : A. \ e)$$

.

7