

RHEL High Availability Overview, Use Cases & Roadmap

David Vossel <dvossel@redhat.com> Senior Software Engineer November 20, 2014

Agenda

- Introducing HA Concepts
- Pacemaker
- Cluster Architecture
- Pacemaker Remote
- Testing
- What's new for HA in RHEL6 and RHEL7
- Questions

Not like the other databases

Not like the other databases

A distributed self replicating database

Not like the other databases

A distributed self replicating database

Everyone: HOORAY!

* Everyone: collectively thinks

Everyone: Node Failure?

Everyone: lots of node failures?

Everyone: lots of node failures?

Everyone: But... what about the other nodes

Everyone: But... what about the other nodes

The HA misconception.

"Our application doesn't need an HA cluster manager because the application itself is fault tolerant."

Wrong!

HA misconception explained

System Level HA

System level HA

- System level HA is holistic.
- Defines the policy of how to recover a set of applications
- Enforces the policy to achieve system wide deterministic behavior.

System Level HA cont...

- Application level Fault Tolerance and System Level HA
 are NOT mutually exclusive.
- They work together.

System Level HA cont...

- System Level HA is <u>NOT</u> systemd
- System Level HA controls an entire distributed set of nodes.

System level HA - Complexity

- System level HA is not wishful thinking.
- The concept should not be intimidating.
- System level HA is not something only attained by some special super class of deployments

Reducing complexity

• The underlying form is quite simple.

- Once we strip away all the complexities
 - Resource management
 - Fencing
 - Quorum
 - Placement strategies
 - Failover
- We are left with the underlying form.

• System Level HA is a <u>finite state machine</u>.

- System Level HA is a <u>finite state machine</u>.
- Every Node and Resource within the cluster is locked into this finite state machine.

- System Level HA is a <u>finite state machine</u>.
- Every Node and Resource within the cluster is locked into this finite state machine.
 - Each failure condition has a predictable outcome.
 - We know exactly what happens if resource X dies.
 - Or if node Y's network connectivity disappears.
 - No guess work to what the failure matrix looks like.

Which brings us to Pacemaker

Pacemaker: Basics

 Pacemaker is an advanced, scalable High-Availability cluster resource manager.

Pacemaker: Resource Constraints

- Pacemaker has unique capabilities for managing resources and modeling complex resource dependencies.
 - Start resource X then start resource Y
 - Colocate resource X with resource Y
 - Resource X prefers node A over node B
 - Resource X prefers node A between 8am-5pm

Pacemaker: Resource Groups

- Resource groups lock a set of resources to together on the same node.
- Resources in a group migrate as a single unit.

Pacemaker: Resource Clones

- Resource clones launch an identical resource across multiple nodes.
- Even resource groups can be cloned.

Pacemaker: Multistate Resources

Pacemaker has the ability to generically represent Master/Slave resources.

Pacemaker: Scaling

- No limits in the number of resources.
- Pacemaker supports "n-node" clusters.
- Cluster are limited by the corosync messaging layer to 16 nodes.

Pacemaker: Scaling 100s of nodes and beyond.

- Pacemaker Remote allows clusters to scale beyond corosync membership layer limitations.
- Pacemaker Remote can scale clusters to 100s possibly 1000s of nodes.

Pacemaker Remote?!

• Sit tight, more on pacemaker remote later.

As we add complexity, never forget the underlying form.

- As we add complexity, never forget the underlying form.
- Pacemaker does two things.

- As we add complexity, never forget the underlying form.
- Pacemaker does two things.

"Provides structure for defining the HA finite state machine."

- As we add complexity, never forget the underlying form.
- Pacemaker does two things.

"Provides structure for defining the HA finite state machine."

"Enforces the HA finite state machine."

- As we add complexity, never forget the underlying form.
- Pacemaker does two things.

"Provides structure for defining the HA finite state machine."

"Enforces the HA finite state machine."

• Everything Pacemaker interacts with serves a purpose in fulfilling these two goals.

HA Architecture: from the ground up.

Hardware

Hardware Architecture Support

- CPU Architecture
 - X86 64
 - 1686
 - Interest in SystemZ/s390?
- Baremetal hardware nodes do <u>not</u> have to have identical specs.
- Cluster membership is network latency sensitive.
- Nodes geographically separated must maintain LAN like latency response to maintain cluster membership.

Corosync

Corosync

- Cluster Membership
 - Unicast (default)
 - Multicast also supported.
- Cluster messaging (This is black magic)
 - CPG groups make distributed application act like a local application.
- Built in Quorum Support replaces CMAN

Corosync: Two Node Cluster Support

- Two node cluster support is surprisingly difficult
- Corosync 2.0 (in RHEL7) handles it like a champ!
 - wait_for_all: waits for all nodes to join before declaring quorum, solving startup fencing issues.
 - last_man_standing: allows clusters to be downgraded to one node
 - auto_tie_breaker: allows 50/50 split, allowing a preferred partition to continue operating (Also used in stretch clustering)

Pacemaker

Pacemaker

- Already covered this.
- Pacemaker handles cluster resource management.
- It is the finite state machine.

Resource Agents

Resource Agents Overview

- Pacemaker is agnostic to type of resources it manages.
- To pacemaker, all resources are the same.
- The ability to start/stop/monitor/migrate a resource exists entirely in the resource-agent scripts.

Resource Agents Standards

- Pacemaker supports several resource agent standards
 - OCF most preferred, designed specifically for HA
 - LSB system initd style scripts
 - Systemd
 - Upstart
 - Nagios
 - STONITH

Fence Agents

Fence Agents Overview

- Pacemaker uses these agents to enforce fencing actions.
- Fence agent support for several kinds of fencing devices.
 - Power level fencing (fence_acp, fence_wti, fence_ipmilan ...)
 - Storage fencing (fence_scsi, fence_sanlock, sdb ...)
 - Virtualization fencing (fence xvm, fence virt ...)

Pacemaker: Fencing support

- Compatible with existing agents used with CMAN+rgmanager
- Supports application level fencing. (If resource X dies. Fence that node and bring X up somewhere else.)
- New hardware watchdog recovery feature as alternative for traditional fencing on the way.

Pacemaker: Fencing Levels

- Fencing levels let users build complex fencing logic.
- Example: Power fence a node with redundant power sources.
 - Power off PDU1
 - Power off PDU2
 - Power on PDU1
 - Power on PDU2

PCS

PCS: Overview

- PCS is the admin's view into the cluster.
- Unified CLI and Web UI
- Handles most aspects of the HA configuration.
 - Setup, configuration, status
 - No other tools are necessary
- CLI available on both RHEL6 and RHEL7
- Web UI only available on RHEL7 (for now)
- REST API is a work in progress

- Enable pcsd daemon on all nodes in the cluster.
 - # systemctl enable pcsd
 - # systemctl start pcsd

- Enable pcsd daemon on all nodes in the cluster.
 - # systemctl enable pcsd
 - # systemctl start pcsd
- Set hacluster user password on all nodes in cluster.
 - # passwd hacluster

- Enable pcsd daemon on all nodes in the cluster.
 - # systemctl enable pcsd
 - # systemctl start pcsd
- Set hacluster user password on all nodes in cluster.
 - # passwd hacluster
- Authenticate pcs on a single node.
 - # pcs cluster auth <node1> <node2> <node3> ...

- Enable pcsd daemon on all nodes in the cluster.
 - # systemctl enable pcsd
 - # systemctl start pcsd
- Set hacluster user password on all nodes in cluster.
 - # passwd hacluster
- Authenticate pcs on a single node.
 - # pcs cluster auth <node1> <node2> <node3> ...
- From there pcs is capable of centralizing most aspects of cluster management.

PCS: Cluster Creation

- Form a new cluster
 - \$pcs cluster setup mycluster node1 node2 node3
 - \$pcs cluster start -all
- pcs abstracts away all the distributed commands and configuration management that would have been required.

node1 node2 node3

PCS: Resource Creation

Make an Active/Passive Apache resource group with floating IP.

PCS: Resource Creation

- Make an Active/Passive Apache resource group with floating IP.
 - \$pcs resource create web-data Filesystem device="/dev/sdb2" directory=/var/www"
 - \$pcs resource create web-daemon apache
 - \$pcs resource create web-ip IPaddr2 ip=192.168.122.10
 - \$pcs resource group add WEBGROUP web-data web-daemon web-ip

PCS: Cluster status

\$pcs cluster status

```
Online: [ node1 node2 node3 ]
```

Resource Group: WEBGROUP

```
web-ip(ocf::heartbeat:IPaddr2):Started node1web-daemon(ocf::heartbeat:apache):Started node1web-data(ocf::heartbeat:Filesystem):Started node1
```


PCS: Test Failover

- \$pcs cluster standby node1
- \$pcs cluster status

Node node1 (1): standby

Online: [node1 node2 node3]

Resource Group: WEBGROUP

web-ip (ocf::heartbeat:IPaddr2): Started node3 web-daemon (ocf::heartbeat:apache): Started node3 web-data (ocf::heartbeat:Filesystem): Started node3

Pacemaker Remote: Overview

- Pacemaker remote is a daemon, pacemaker_remoted
- This daemon is a lightweight way of integrating nodes into the cluster.

Pacemaker Remote?

• Why is this interesting to us?

Pacemaker Remote?

Why is this interesting to us?

• Two reasons...

Pacemaker Remote Use Cases

- Baremetal scaling cluster node limits
 - 16 node cluster running 1000's of resources across 100's of remotely controlled peers
 - For the most part Pacemaker Remote peers behave just like cluster nodes once they are integrated into the cluster.

Pacemaker Remote Use Cases

- Container transparently manage resources inside of resources
 - Install pacemaker_remote & resource-agents on VM
 - Pacemaker manages both the VM and the services running within the VM.

Pacemaker Remote Limitations

- Remote nodes do not take part in quorum
- Does not work with services that require corosync (Like DLM)
 - Primarily affects GFS2
 - And Clustered LVM
- No nested remote nodes
 - Baremetal remote nodes can not host container remote nodes

Testing

- Pacemaker is insanely tested.
- Over 500 regression tests
- More added weekly
- A feature isn't done until a test exists to verify it.

Testing Strategy

- Testing Hierarchy Tiers
 - Component Test suites for individual pacemaker components

OCFT
pEngine LRMD STONITH
libqb

Resource Agents Fence Agents
Pacemaker
Corosync

Node 1 Node 2 Node 3

HTTP HTTP HTTP

GFS2 GFS2 GFS2

HA Cluster Software

Node 1 Node 2 Node 3

Component

Testing Strategy

- Testing Hierarchy Tiers
 - Component Test suites for individual pacemaker components
 - Cluster integration Tests pacemaker integration with the rest of the cluster software

Testing Strategy

- Testing Hierarchy Tiers
 - Component Test suites for individual pacemaker components
 - Cluster integration Tests pacemaker integration with the rest of the cluster software
 - Deployment integration Test suites for deployment validation

Deployment Integration

Testing: Deployment Integration cont...

- Unexpected side effect.
- Deployment Tests == deployment guides
- https://github.com/davidvossel/phd

Rgmanager status

- Rgmanager bug fixes only
- Fully supported for the whole RHEL6 lifetime
- Red Hat will evaluate critical RFEs up to RHEL6.7 GA

Pacemaker RHEL6

- Pacemaker supported in RHEL6
 - Starting in RHEL 6.5
 - Uses Pacemaker+CMAN
 - Open for bug fixes and feature requests
 - Supported until RHEL6 end of life.

Pacemaker RHEL6 cont...

- New HA deployments are strongly recommended to use Pacemaker over rgmanager.
 - Easier migration from RHEL6->RHEL7
 - Pacemaker is far more flexible/powerful

Whats new in RHEL7

The new Hotness

Pacemaker support in RHEL

- RHEL7 starting in 7.0
- New HA architecture, Pacemaker+Corosync 2.0

RHEL7 Improvements.

- Slimmed down implementation.
 - Drastic reduction in complexity
- Improved scalability
 - Profiled every pacemaker component
 - Re-architected components
 - Even re-wrote some components entirely.

Future Goals

- Improved thrid-party application support.
 - Oracle, Sybase, DB2 related resource agents
- Continued improvements to scalability
- Access lists (limit who can modify portions of the cluster config)
- Docker Support
 - First gen milestone already done and will be released in 7.1
 - Future improvements simplify container deployment/management
- Improved stretch clustering

Future Goals cont...

- PCS web interface new features in development.
- New clever ways to visualize cluster status and configuration
- Setup Wizards
 - Launch wizards to automatically deploy cluster building blocks.
 - Like gfs2, NFS, mariaDB, Apache WebFarms.

