Оглавление

1 Цель работы	3
2 Ход работы	4
2.1 Изучение схем счетчиков на ЈК- триггерах	4
2.1.1 Изучение работы асинхронного суммирующего счетчика на ЈК-	
триггерах	4
2.1.5 Изучение схемы асинхронного вычитающего счетчика на ЈК-	
триггерах	5
2.1.6 Изучение схемы синхронного суммирующего счетчика на ЈК-	
триггерах	6
2.2 Изучение счетчиков на D-триггерах	7
2.2.6 Изучение схемы асинхронного вычитающего счетчика	8
2.3 Изучение недвоичных счетчиков на ЈК- триггерах	9
2.4 Изучение и исследование работы микросхемы КМ555ИЕ9	9
2.5 Исследование и изучение работы микросхемы К155ИЕ13	11
Список источников	13

1 Цель работы

Построить счетчики на интегральных триггерах, изучить и исследовать микросхемные счётчики различных серий (К155, К555, К531). Изучить принципы построения суммирующих, вычитающих, реверсивных, асинхронных и синхронных счетчиков, собрать схемы счетчиков на ЈК- и D- триггерах, исследовать режимы работы счетчиков различных серий.

2 Ход работы

Работу выполняют на лабораторном стенде УМ-11М.

2.1 Изучение схем счетчиков на ЈК- триггерах

2.1.1 Изучение работы асинхронного суммирующего счетчика на JKтриггерах

Необходимо собрать асинхронный суммирующий счетчик, представленный на рисунке 1:

Рисунок 1 – Асинхронный суммирующий счетчик на ЈК- триггерах

- 2.1.2 Входы R всех триггеров объединяем и подсоединяем к одному из гнезд переключательного регистра. Объединённый вход будет выполнять функцию входа для обнуления счетчика.
- 2.1.3 Для проверки работы счетчика ко входу С подключаем ГОИ, на вход синхронизации которого (СИНХР) подаём СИ1 положительной полярности.
- 2.1.4 Нажимая кнопку «ПУСК», проверить работоспособность счетчика по тактам, фиксируя состояние триггеров счетчика по светодиодам. Составляем таблицу истинности (таблица 1):

Таблица 1 – Таблица истинности счетчика

$N_{\underline{0}}$	01	02	03	04	№	01	02	03	04
имп.					имп.				
1	0	0	0	0	9	0	0	0	1
2	1	0	0	0	10	1	0	0	1
3	0	1	0	0	11	0	1	0	1
4	1	1	0	0	12	1	1	0	1
5	0	0	1	0	13	0	0	1	1
6	1	0	1	0	14	1	0	1	1
7	0	1	1	0	15	0	1	1	1
8	1	1	1	0	16	1	1	1	1

2.1.5 Далее проверяем действие шины обнуления счетчика. Предварительно заполняем счетчик произвольным числом, затем подаём на объединённый вход R сигнал обнуления.

Далее необходимо собрать схему асинхронного вычитающего счетчика на ЈК- триггерах и выполнить для него все те же действия, что и для асинхронного суммирующего счетчика (2.1.1-2.1.5). Схема асинхронного вычитающего счетчика на ЈК- триггерах представлена на рисунке 2:

Рисунок 2 - асинхронный вычитающий счетчик на ЈК- триггерах

2.1.6 Далее необходимо собрать схему синхронного суммирующего счетчика на JK- триггерах согласно рисунку 3:

Рисунок 3 — схема синхронного суммирующего счетчика на JK- триггерах Для снятия замеров стоит выполнить все те же действия, что выполнялись в предыдущих опытах (2.1.1-2.1.5).

2.2 Изучение счетчиков на D-триггерах

2.2.1 Собираем схему асинхронного суммирующего 4-х разрядного счетчика на D-триггерах согласно рисунку 4:

Рисунок 4 — схема асинхронного суммирующего 4-х разрядного счетчика на D- триггерах

- 2.2.2 Входы R всех триггеров объединить и подсоединить к одному из гнезд переключательного регистра. Объединённый вход будет выполнять роль шины обнуления счетчика.
- 2.2.3 Для проверки счетчика ко входу С счетчика подключить ГОИ, на вход СИНХР которого подать СИ2 отрицательной полярности.
- 2.2.4 Нажимая кнопку «ПУСК», проверить работоспособность счетчика и зафиксировать состояния по светодиодам. Составить таблицу истинности счетчика:

Таблица 2 – Таблица истинности

No	01	02	03	04	№	01	02	03	04
имп.					имп.				
1	0	0	0	0	9	0	0	0	1
2	1	0	0	0	10	1	0	0	1
3	0	1	0	0	11	0	1	0	1
4	1	1	0	0	12	1	1	0	1
5	0	0	1	0	13	0	0	1	1
6	1	0	1	0	14	1	0	1	1
7	0	1	1	0	15	0	1	1	1
8	1	1	1	0	16	1	1	1	1

- 2.2.5 Проверить действие шины обнуления счетчика. Предварительно заполнить счетчик произвольным числом импульсов, затем подать на объединённый вход R сигнал обнуления.
- 2.2.6 Собрать схему асинхронного вычитающего счетчика в соответствии с рисунком 5:

Рисунок 5 – схема асинхронного вычитающего счетчика

2.2.7 Повторить пункты (2.1.1-2.1.5) из предыдущих опытов

2.3 Изучение недвоичных счетчиков на ЈК- триггерах

Для указанного преподавателем коэффициента пересчёта, используя известные способы построения недвоичных счетчиков, построить недвоичных счетчик на JK- триггерах, D- триггерах.

2.4 Изучение и исследование работы микросхемы КМ555ИЕ9 (4-х разрядного двоично-десятичного счетчика)

2.4.1 Изучить работу микросхемы К555ИЕ9. Условное обозначение счетчика представлено на рисунке 6:

Рисунок 6 – Условное обозначение микросхемы счетчика К555ИЕ9

Данная микросхема представляет собой 4-х разрядный синхронный двоично-десятичный счетчик на D-триггерах. Счетчик переключается положительным перепадом тактового импульса (передний фронт), подаваемым на вход синхронизации С. Счетчик имеет: счетный вход С, 4 входа параллельной записи информации «1», «2», «4», «8», управляющий вход EWR, разрешающий параллельную загрузку информации в счетчик, вход R установки счетчика в «0», входы EC1, EC2, ECR для каскадного включения счетчиков, выводы 4-х разрядов счетчика, выход CR, вырабатывающий сигнал переноса положительной полярности длительностью в один период импульсов синхронизации и служащий для каскадного соединения счетчиков.

2.4.2 Исследовать работу элемента КМ555ИЕ9

Соединить выходы счетчика со светодиодами. Соединить входы «1», «2», «4», «8» с соответствующими гнездами переключательного регистра.

- 2.4.3 Убедиться, что при подаче на вход R сигнала «0» счетчик устанавливается в состояние, когда на всех выходах счетчика появляется логический ноль. При работе счетчика во всех остальных режимах на вход R подать сигнал «1».
- 2.4.4 Проверить работу счетчика в режиме параллельной записи информации, для чего на вход EWR подать логический ноль, а на вход $R-\ll 1$ ». Набрать на переключательном регистре число в двоичном коде по заданию преподавателя и посмотреть информацию на выходе счетчика по светодиодам.
- 2.4.5 Перевести счетчик в режим хранения. Убедиться, что при изменении состояния на информационных входах информация, записанная в счетчике, не изменяется.
- 2.4.6 Проверить работу счетчика в счетном режиме, подавая на счетный вход С счетчика импульсы от ГОИ, а затем от генератора импульсов.

Данные по всем режимам занести в таблицу 3:

Таблица 3 – Полученные данные

Режим		Выходы						
работы	R	EWR	С	EC1	EC2	Di	Qi	CR
Сброс				X	X			
счетчика								
Параллельная				X	X			
нагрузка				X	X			
Счет				1	1			
Хранение				0	X			
				X	0			

2.5 Исследование и изучение работы микросхемы К155ИЕ13

Условное обозначение К155ИЕ13 представлено на рисунке 7:

Рисунок 7 – УГО микросхемы К155ИЕ13

Микросхема К155ИЕ13 представляет собой реверсивный 4-х разрядный двоичный счетчик. При работе со счетчиком в счетном режиме импульсы счета подаются на вход С и счетчик складывает или вычитает при наличии разрешающего сигнала на входе ЕС. Направление счета определяется потенциалом на входе Е-1. Уровень логического нуля на этом входе определяет направление прямого счета, а уровень логической единицы – обратного счета. При счете в прямом направлении в случае переполнения вырабатывается сигнал переноса на выходе СR, при счете в обратном направлении – сигнал заёма на выходе ВR. При каскадном соединении счетчиков выход СR(BR) предыдущего счетчика соединяют со счетным входом С последующего счетчика. В счетчике имеется возможность внесения начальной информации со входов D1...D4 асинхронным способом, при наличии на входе уровня логического нуля на входы ЕС, EWR запрещена.

2.5.1 Проверить все режимы работы счетчика и данные занести в соответствии с методикой, приведённой2 для исследования счетчика КМ155ИЕ9 в таблицу 4:

Таблица 4 – полученные данные

Режим		Выходы				
работы	EWR	EC	С	E-1	Di	Qi
Параллельная		1				
нагрузка		1				
Счет вперёд		0				
Счет назад		0				
Хранение		1				

Список источников

- 1. Аристов Е.В., Основы микропроцессорной и преобразовательной техники: учеб. пособие/ Е.В. Аристов. Пермь: Изд-во Перм. гос. техн. ун-та, 2008.-115 с.
- 2. Сажин Р.А., Элементы систем автоматики: конспект лекции / Р.А. Сажин. Пермь: Изд-во Перм. гос. техн. ун-та, 2007. 99 с.