Quantum Recommendation Systems

Irene Dovichi

Introduction to Quantum Computing presentation a.y. 22/23

The Recommendation Problem

- Purpose: provide personalized recommendations to users based on the purchases and ratings they have made.
- Setting:
 - m users
 - n products
 - $P \in \mathcal{M}(m,n,\mathbb{R})$ preference matrix with a good rank-k approximation

in practice: $m \approx 100$ million, $n \approx 1$ million, $k \approx 100$

- Classical algorithms run in time polynomial in the matrix dimension
- Here: quantum algorithm that runs in time O(poly(k)polylog(mn)) and which solves approximately the same problem as the classic version

Our model for the problem

	P_1	P_2	P_3	P_4	• • •	• • •	P_{n-1}	P_n
U_1	.8	.4	?	?			?	.9
U_2	.2	?	.6	?			.85	?
<i>U</i> ₃	?	?	.8	.9			?	.2
:						• • •		
U_m	?	.75	?	?			?	.2

	P_1	P_2	P_3	P_4	• • • •	 P_{n-1}	P_n
U_1	1	0	0	0		 0	1
U_2	0	0	0	0		 1	0
<i>U</i> ₃	0	0	1	1		 0	0
:						 	
U_m	0	1	0	0		 0	0

Figure: Preference matrix P

Figure: Rounded preference matrix T

Observation

The rounding process can be done in different ways.

The low-rank assumption

Observation

It is reasonable to assume that the matrices P and T have a good low-rank approximation.

- There are *k* types of users, and the users of each type agree on the items of greatest value.
- There are some basic parameters that determine the preference for a product: price, quality, brand, popularity.
- Empirical evidence.

The low-rank approximation

The low-rank approximation of T can be computed as follows:

ullet define the subsample matrix $\widehat{\mathcal{T}}$ as:

$$\widehat{T}_{ij} = \begin{cases} T_{ij}/p & p \\ 0 & 1-p \end{cases}$$

• perform the SVD and project \widehat{T} to its top-k right singular vectors, obtaining \widehat{T}_k

Theorem (SVD)

A matrix $A \in \mathcal{M}(m, n, \mathbb{R})$ can be decomposed as:

$$A = U\Sigma V^{t} = \sum_{i=1}^{rnkA} \sigma_{i} u_{i} v_{i}^{t}$$

where $U \in \mathcal{M}(m, m, \mathbb{R})$ and $V \in \mathcal{M}(n, n, \mathbb{R})$ are orthogonal, and $\Sigma \in \mathcal{M}(m, n, \mathbb{R})$ is diagonal with nonnegative entries.

Sampling vs Reconstructing

Definition

Given a matrix $A \in \mathcal{M}(m, n, \mathbb{R})$, we sample from A when we pick an element (i,j) with probability $|A_{ij}|^2/||A||_F^2$. We write: $(i,j) \sim A$.

Observation

Sampling from T always gives a good recommendation.

Sampling vs Reconstructing

Definition

Given a matrix $A \in \mathcal{M}(m, n, \mathbb{R})$, we sample from A when we pick an element (i,j) with probability $|A_{ij}|^2/||A||_F^2$. We write: $(i,j) \sim A$.

Observation

Sampling from T always gives a good recommendation.

Lemma

Let \widetilde{T} be a matrix such that $||T-\widetilde{T}||_F \leq \varepsilon ||T||_F$. The probability that $(i,j) \sim \widetilde{T}$ is bad is:

$$Pr[(i,j) \ bad] \le \left(\frac{\varepsilon}{1-\varepsilon}\right)^2$$

Sampling vs Reconstructing

Definition

Given a matrix $A \in \mathcal{M}(m, n, \mathbb{R})$, we sample from A when we pick an element (i,j) with probability $|A_{ij}|^2/||A||_F^2$. We write: $(i,j) \sim A$.

Observation

Sampling from T always gives a good recommendation.

Lemma

Let \widetilde{T} be a matrix such that $||T-\widetilde{T}||_F \leq \varepsilon ||T||_F$. The probability that $(i,j) \sim \widetilde{T}$ is bad is:

$$Pr[(i,j) \ bad] \le \left(\frac{\varepsilon}{1-\varepsilon}\right)^2$$

But which \widetilde{T} should we choose?

Sampling matrix

The matrix from which we will sample is:

$$\widehat{T}_{\geq \sigma, \nu}$$

which is the projection of \widehat{T} onto the space spanned by the right singular vectors v_i which correspond to the singular values $\geq \sigma$, and some in the range $[(1-\nu)\sigma,\sigma)$.

Observation

Sampling from $\widehat{T}_{\geq \sigma, \nu}$ is enough to have good recommendations for 'typical' users, as implied by the following Theorem.

Theorem

For a certain value of the probability p, and for $\nu = 1/3$:

$$||T - \widehat{T}_{\geq \sigma, \nu}||_F \le 9\varepsilon ||T||_F$$

How to sample?

- We use a quantum procedure that given $|\widehat{T}_i\rangle$ outputs $|(\widehat{T}_{>\sigma,\nu})_i\rangle$.
- We measure in the computational basis.

The procedure is called Quantum Projection Algorithm and it requires two tools:

- an appropriate data structure
- ② an efficient quantum algorithm for Singular Value Estimation and it runs in time O(polylog(mn)).

Quantum Singular Value Estimation

Theorem (SVE)

Let $A \in \mathcal{M}(m,n,\mathbb{R})$ be a matrix with SVD decomposition $A = \sum_{i=1}^{m} \sigma_i u_i v_i^t$ stored in an appropriate data structure, and $\varepsilon > 0$. There is an algorithm (SVE algorithm) that performs the mapping:

$$\sum_{i=1}^{n} \alpha_{i} | \mathbf{v}_{i} \rangle \mapsto \sum_{i=1}^{n} \alpha_{i} | \mathbf{v}_{i} \rangle | \bar{\sigma}_{i} \rangle$$

where $|\bar{\sigma}_i - \sigma_i| \leq \varepsilon ||A||_F$, in $O(polylog(mn)/\varepsilon)$ time.

SVE - idea

- Factorize A with two isometries: $\frac{A}{||A||_F} = P^t Q$
- Use P,Q to define a unitary W such that: $WQv_i=e^{i\theta_i}Qv_i$, with $\sigma_i=||A||_F\cos(\theta_i/2)$
- ullet Use QPE to estimate the $heta_i$

Theorem (QPE)

Let U be a unitary operator such that $U|v_j\rangle=e^{i\theta_j}|v_j\rangle$, and $\varepsilon>0$. There is an algorithm (QPE algorithm) that performs the mapping:

$$\sum_{j=1}^{n} \alpha_j |v_j\rangle \mapsto \sum_{j=1}^{n} \alpha_j |v_j\rangle |\bar{\theta}_j\rangle$$

where $|\bar{\theta}_j - \theta_j| \leq \varepsilon$, in $O(T(U)\log n/\varepsilon)$ time.

SVE - components

- Factorize A with two isometries: $\frac{A}{||A||_F} = P^t Q$
 - Take $P \in \mathcal{M}(mn, m, \mathbb{R})$ with columns

$$P^i = e_i \otimes \frac{A_i}{||A_i||}$$

• Take $Q \in \mathcal{M}(mn, n, \mathbb{R})$ with columns

$$Q^j = \frac{\widetilde{A}}{||A||_F} \otimes e_j$$

where $\widetilde{A} \in \mathbb{R}^m$ with components $\widetilde{A}_i = ||A_i||$

SVE - components

- Factorize A with two isometries: $\frac{A}{||A||_F} = P^t Q$
 - Take $P \in \mathcal{M}(mn, m, \mathbb{R})$ with columns

$$P^i = e_i \otimes \frac{A_i}{||A_i||}$$

• Take $Q \in \mathcal{M}(mn, n, \mathbb{R})$ with columns

$$Q^j = \frac{\widetilde{A}}{||A||_F} \otimes e_j$$

where $\widetilde{A} \in \mathbb{R}^m$ with components $\widetilde{A}_i = ||A_i||$

- Use P, Q to define a unitary W such that: $WQv_i = e^{i\theta_i}Qv_i$
 - Take $W = (2PP^t I)(2QQ^t I)$

SVE - components

- Factorize A with two isometries: $\frac{A}{||A||_{E}} = P^{t}Q$
 - Take $P \in \mathcal{M}(mn, m, \mathbb{R})$ with columns

$$P^i = e_i \otimes \frac{A_i}{||A_i||}$$

• Take $Q \in \mathcal{M}(mn, n, \mathbb{R})$ with columns

$$Q^j = \frac{\widetilde{A}}{||A||_F} \otimes e_j$$

where $\widetilde{A} \in \mathbb{R}^m$ with components $\widetilde{A}_i = ||A_i||$

- Use P, Q to define a unitary W such that: $WQv_i = e^{i\theta_i}Qv_i$
 - Take $W = (2PP^t I)(2QQ^t I)$
- It holds that $\sigma_i = ||A||_F \cos(\theta_i/2)$
 - $cos(\theta_i/2) = Pu_i \cdot Qv_i/||Pu_i|| \, ||Qv_i|| = u_i^t Av_i/||A||_F = \sigma_i/||A||_F$

SVE - procedure

 $\frac{\overline{\text{Input}}: A \in \mathcal{M}(\textit{m},\textit{n},\mathbb{R}), \, \textit{x} \in \mathbb{R}^{\textit{n}} \text{ stored in an appropriate data structure},}{\varepsilon > 0.}$

 $\underline{\mathsf{Output}}$: The state $\sum \alpha_i |v_i\rangle |\bar{\sigma}_i\rangle$.

- 1: Create $|x\rangle = \sum_{i=1}^{n} \alpha_i |v_i\rangle$
- 2: Append the register $|0^{\lceil \log m \rceil}\rangle$ and create $|Qx\rangle = \sum_{i=1}^{n} \alpha_i |Qv_i\rangle$:

$$|0^{\lceil \log m \rceil} x\rangle = \sum_{j=1}^{n} x_j |0^{\lceil \log m \rceil} j\rangle \longrightarrow \sum_{j=1}^{n} x_j |\widetilde{A}j\rangle = |Qx\rangle$$

- 3: Apply the QPE for W on $|Qx\rangle$: $\sum_{i=1}^{n} \alpha_{i} |Qv_{i}\rangle |\bar{\theta}_{i}\rangle$ (with 2ε)
- 4: Compute $\bar{\sigma}_i = ||A||_F \cos(\bar{\theta}_i/2)$ and apply the IQPE: $\sum_{i=1}^n \alpha_i |Qv_i\rangle |\bar{\sigma}_i\rangle$
- 5: Apply the inverse transformation of line 2: to get: $\sum_{i=1}^{n} \alpha_{i} |v_{i}\rangle |\bar{\sigma}_{i}\rangle$

SVE - analysis

• $|\bar{\sigma}_i - \sigma_i| \leq \varepsilon ||A||_F$:

$$\begin{split} |\bar{\sigma}_i - \sigma_i| &= ||A||_F \left| \cos(\bar{\theta}_i/2) - \cos(\theta_i/2) \right| \\ &\leq |\sin(\phi)| \frac{|\bar{\theta}_i - \theta_i|}{2} ||A||_F \\ &\leq \varepsilon ||A||_F \end{split}$$

where we applied the Mean Value Theorem to f(t) = cos(t) (ϕ is between $\bar{\theta}_i/2$ and $\theta_i/2$), and we used that $|\bar{\theta}_i - \theta_i| \leq 2\varepsilon$ (we performed the QPE with 2ε).

• $O(polylog(mn)/\varepsilon)$ time : the unitary W can be implemented in time O(polylog(mn)) and the QPE runs in time $O(T(W)log\ n/\varepsilon)$.

Pseudo-inverse matrix

Definition

Let $A=U\Sigma V^t=\sum\limits_{i=1}^{rnkA}\sigma_iu_iv_i^t\in\mathcal{M}(m,n,\mathbb{R}).$ The Moore-Penrose inverse of A is the matrix:

$$A^+ = V\Sigma^+U^t = \sum_{i=1}^{rnkA} \frac{1}{\sigma_i} v_i u_i^t$$

Observation

- A^+A is the projection onto the row space Row(A).
- $Row(A) = Span\{v_i\}.$

Quantum Projection Algorithm

 $\frac{\overline{\text{Input}}: A \in \mathcal{M}(\textit{m},\textit{n},\mathbb{R}), \ \textit{x} \in \mathbb{R}^{\textit{n}} \ \text{stored in an appropriate data structure},}{\text{and the parameters } \sigma, \ \nu > 0.}$

 $\underline{\text{Output}}: \text{The state } |A^+_{>\sigma,\nu}A_{\geq\sigma,\nu}x\rangle \text{ with probability } \geq 1-1/\textit{poly}(\textit{n}).$

- 1: Create $|x\rangle = \sum_{i=1}^{n} \alpha_i |v_i\rangle$
- 2: Apply the SVE on $|x\rangle$: $\sum_{i=1}^{n} \alpha_i |v_i\rangle |\bar{\sigma}_i\rangle$ (with $\varepsilon = \nu \sigma/2||A||_F$)
- 3: Apply the unitary operator $|t\rangle|0\rangle \mapsto \begin{cases} |t\rangle|0\rangle & \text{if } t \geq (1-\frac{\nu}{2})\,\sigma \\ |t\rangle|1\rangle & \text{otherwise} \end{cases}$ on a second register : $\sum_{i \in S} \alpha_i |v_i\rangle|\bar{\sigma}_i\rangle|0\rangle + \sum_{i \in S^C} \alpha_i |v_i\rangle|\bar{\sigma}_i\rangle|1\rangle$
- 4: Apply the ISVE on the state in line 3: to erase the $|ar{\sigma}_i
 angle s$:

$$\sum_{i \in S} \alpha_i |v_i\rangle |0\rangle + \sum_{i \in S^C} \alpha_i |v_i\rangle |1\rangle = \beta |A^+_{\geq \sigma, \nu} A_{\geq \sigma, \nu} x\rangle |0\rangle + \sqrt{1 - \beta^2} |A^+_{\geq \sigma, \nu} A_{\geq \sigma, \nu} x\rangle^{\perp} |1\rangle$$

5: Post-select on getting outcome $|0\rangle$: $|A^+_{\geq \sigma,\nu}A_{\geq \sigma,\nu}x\rangle$ in the first register.

Quantum Projection Algorithm - analysis

Theorem

The Quantum Projection Algorithm outputs $|A_{\geq \sigma, \nu}^+ A_{\geq \sigma, \nu} x\rangle$ with probability $\geq 1 - 1/poly(n)$ in time

$$O\Big(\frac{\operatorname{polylog}(\operatorname{mn})||A||_F\,||x||^2}{\sigma||A_{>\sigma}A^+_{>\sigma}x||^2}\Big).$$

Quantum Recommendation Algorithm

 $\frac{\mathsf{Input}}{\mathsf{nnput}} : \mathsf{A} \text{ subsample matrix } \widehat{\mathcal{T}} \text{ stored in an appropriate data structure,}$ and a user index i.

 $\underline{\mathsf{Output}}: \mathsf{A} \mathsf{\ product\ index}\ j.$

1: Applying the Quantum Projection Algorithm with input

$$A = \widehat{T} \qquad \sigma = \sqrt{\varepsilon^2 p/2k} ||\widehat{T}||_F$$
$$x = \widehat{T}_i \qquad \nu = 1/3$$

we will get the state $|\widehat{T}_{\geq \sigma, \nu}^+ \widehat{T}_{\geq \sigma, \nu} \widehat{T}_i \rangle$ with probability at least 1 - 1/poly(n).

2: Measure the state $|\widehat{T}_{>\sigma,\nu}^{+}\widehat{T}_{\geq\sigma,\nu}\widehat{T}_{i}\rangle$ in the computational basis.

Observation

The state $|\widehat{T}_{\geq \sigma, \nu}^+ \widehat{T}_{\geq \sigma, \nu} \widehat{T}_i\rangle$ is exactly the state $|(\widehat{T}_{\geq \sigma, \nu})_i\rangle$.

References

- [1] I. Kerenidis and A. Prakash. *Quantum Recommendation Systems*. 2016. DOI: 10.48550/arXiv.1603.08675.
- [2] C. Shao and H. Xiang. Quantum Circulant Preconditioner for Linear System of Equations. 2018. DOI: 10.48550/arXiv.1807.04563.
- [3] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, 1997.