

Winning Space Race with Data Science

Isabella Winters 24.03.2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion

Executive Summary

Challenges

- There are already several very successful players in the space industry
- To enter the market it is necessary to be able to compete with SpaceX
- Major cost driver is the first stage of the rocket, the prediction of successful landing is therefore essential

Results

- Based on the available Data it was possible to analyse the landing outcomes based on different parameters
- Through machine learning several predictive models were trained to compare their performance

Methodologies

- Collecting Data
 - SpaceX API
 - Web Scraping
- Data wrangling
- Exploratory Data Analysis (EDA)
 - Data Visualization using Pandas and Matplotlib
 - SQL Queries
- Visual Analytics
 - Interactive map with Folium
 - Dashboard with Plotly Dash
- Predictive analysis
 - Classification

Introduction

The ability to reuse the **first stage** of a Falcon 9 rocket gives SpaceX a big advantage over their competitors. Launches can be offered at a much lower price, because this stage is so large and expensive. Instead of costs upwards of 165 million dollars each, Falcon 9 rocket launches can be offered with a cost of 62 million dollars.

To determine the cost of a launch we have to find out if the first stage will land successfully or not. This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.

To gain this knowledge it is necessary to collect the available information for Falcon 9 rocket launches. With this data it is possible to train a machine learning model and predict if SpaceX will reuse the first stage.

We will also find out how different parameters like launch site, payload mass, orbit type and booster version influence the landing outcomes.

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX REST API
 - Web Scraping Falcon 9 Launch Records
- Perform data wrangling
 - Landing outcomes converted into Training Labels (O = not successful, 1 = successful)
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Logistic Regression, Support Vector Machine, Decision Tree Classifier, K-nearest Neighbors

Data Collection

Data collected with SpaceX REST API (Endpoint for past launch data: https://api.spacexdata.com/v4/launches/past)

Falcon 9 Launch Records collected with Web Scraping from Wikipedia

Data Collection – SpaceX API

spacex url="https://api.spacexdata.com/v4/launches/past"

Link to GitHub: Data Collection API.ipynb

```
via SpaceX url
response = requests.get(spacex url)
static json url='https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/API
response = requests.get(static json url)
results = json.loads(response.text)
                                                                  with a static response object
data = pd.json normalize(results)
def getLaunchSite(data):
    for x in data['launchpad']:
       if x:
         response = requests.get("https://api.spacexdata.com/v4/launchpads/"+str(x)).json()
         Longitude.append(response['longitude'])
         Latitude.append(response['latitude'])
         LaunchSite.append(response['name'])
LaunchSite = []
# Call getLaunchSite
getLaunchSite(data)
```

- - PayLoadMass)
 - G Convert data to csv file

```
launch dict = {'FlightNumber': list(data['flight number'])
'Date': list(data['date']),
'BoosterVersion':BoosterVersion,
'PayloadMass':PayloadMass,
'Orbit':Orbit,
'LaunchSite':LaunchSite,
'Outcome':Outcome,
'Flights':Flights,
'GridFins':GridFins,
'Reused':Reused,
'Legs':Legs,
'LandingPad':LandingPad,
'Block':Block,
'ReusedCount':ReusedCount.
'Serial':Serial,
'Longitude': Longitude,
'Latitude': Latitude}
```

```
data falcon9 = df[df['BoosterVersion']!='Falcon 1']
```

```
# Calculate the mean value of PayloadMass column
avg Payload = data falcon9["PayloadMass"].astype("float").mean(axis=0)
avg Payload
# Replace the np.nan values with its mean value
data_falcon9["PayloadMass"].replace(np.nan, avg_Payload, inplace=True)
data falcon9.isnull().sum()
```

```
data falcon9.to csv('dataset part 1.csv', index=False)
```

- B Decode the response content as a Json and turn it into a Pandas dataframe
- C Get additional information for data represented as IDs with helper functions, e.g. for Launch Site
- D Combine the columns into a dictionary
- E Filter for Falcon 9 data only
- F Fill empty values (mean used for feature

Data Collection - Scraping

Link to GitHub: Web Scraping.ipynb

- static_url = "https://en.wikipedia.org/w/index.php?title=List_of_Falcon_9_and_Falcon_Heavy_launches&oldid=1027686922"
 data = requests.get(static_url)

 soup = BeautifulSoup(data.content,'html.parser')
- html_tables = soup.find_all('table')
 for x in range(len(all_th)):
 name = extract_column_from_header(all_th[x])
 if (name is not None and len(name) > 0):
 column names.append(name)
 - for table number,table in enumerate(soup.find all('table', "wikitable plainrowheaders collapsible")): # get table row for rows in table.find all("tr"): #check to see if first table heading is as number corresponding to launch a number if rows.th: if rows.th.string: flight number=rows.th.string.strip() flag=flight number.isdigit() else: flag=False #get table element row=rows.find all('td') #if it is number save cells in a dictonary if flag: extracted row += 1 # Flight Number value launch_dict['Flight No.'].append(flight_number) print("Flight number:", flight_number) datatimelist=date time(row[0])
- E df= pd.DataFrame({ key:pd.Series(value) for key, value in launch_dict.items() })
- df.to_csv('spacex_web_scraped.csv', index=False)

- A Request data with GET method
- B Create a BeautifulSoup object from the response text content
- C Iterate through all html table header elements to extract the column/variable names
- D Parse the tables to fill a dictionary with launch data, e.g. for Flight Numbers
- E Create a dataframe
- F Convert data to csv file

Data Wrangling

Link to GitHub: Data Wrangling.ipynb

A - Load dataset df=pd.read csv("https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/d B - Identify missing values df.isnull().sum()/len(df)*100 C - Investigate columns df['LaunchSite'].value_counts() Launch Sites df['Orbit'].value_counts() Orbit landing_outcomes = df['Outcome'].value_counts() Landing Outcomes landing_class = [] for i, outcome in enumerate(df['Outcome']): D - Create landing outcomes label if outcome in bad_outcomes: landing_class.append(0) Class O for unsuccessful landings else: landing class.append(1) Class 1 for successful landings E - Determine Success Rate df["Class"].mean()

It is often difficult to understand complex datasets. Data visualization offers an easily approach to comprehend these datasets. Trends and relationships can be highlighted that might be otherwise overseen.

In this project different types of plots are used:

Scatter plots to explore relationships between variables, helping us identify correlations or trends.

- Flight Number vs. Payload Mass
- Flight Number and Launch Site
- · Payload and Launch Site
- Flight Number and Orbit type
- · Payload and Orbit type

Bar plots to compare categories or groups, providing a visual comparison of their values.

Success Rate of each orbit type

Line plots to capture trends and changes over time, allowing us to see patterns and fluctuations.

Yearly Success Rate

EDA with SQL

In this project SQL queries were used to answer following questions:

- Display the names of the unique launch sites in the space mission
- Display 5 records where launch sites begin with the string 'CCA'
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1
- List the date when the first succesful landing outcome in ground pad was acheived.
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- List the names of the booster_versions (with use of a subquery) which have carried the maximum payload mass.
- List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.
- Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.

Build an Interactive Map with Folium

Interactive visual analytics provide a lot of advantages, like:

- Explore and manipulate data in an interactive and real-time way
- Patterns could be found fast and effectively
- User engagement and interest is higher than with static graphs

For this project these map objects were used:

- circles and marker to add a highlighted circle area with a text label for launch sites
- marker cluster for markers with different colors to show launch successes and failures for a launch site
- **lines** between launch sites and landmarks or infrastructure to show the distance (to calculate the distance the **mouse position** was included in the map to determine the necessary coordinates)

Build a Dashboard with Plotly Dash

For this project these elements were added to the dashboard:

- Dropdown List to select Launch Sites, this enables to investigate them further. The other charts on a dashboard can be updated with this selection.
- Pie Chart to easily see how much each launch sites distributes to the total success
- Slider to select from a range of values. This enables to zoom in and see more details.
- Scatter Chart to show the correlation between payload and launch success. Booster versions are displayed in different colors in this scatter chart to provide more information.

Predictive Analysis (Classification)

Link to GitHub: Predictive Analysis.ipynb

```
URL1 = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/dataset part 2.csv"
resp1 = await fetch(URL1)
text1 = io.BytesIO((await resp1.arrayBuffer()).to_py())
data = pd.read csv(text1)
 Y = data["Class"].to_numpy()
 transform = preprocessing.StandardScaler()
 X = transform.fit(X).transform(X)
 X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size=0.2, random_state=2)
lr=LogisticRegression()
logreg_cv = GridSearchCV(lr, parameters, scoring='accuracy', cv = 10)
logreg cv.fit(X train,Y train)
```

- logreg_cv.score(X_train, Y_train)
- yhat=logreg cv.predict(X test) plot_confusion_matrix(Y_test,yhat)

```
Report2 = {
    "Accuracy (on validation data)": [logreg cv.best score , svm cv.best score , tree cv.best score , knn cv.best score ],
df1 = pd.DataFrame(Report2)
df1.rename(index={0:'LogReg',1:'SVM',2:'Tree',3:'KNN'}, inplace=True)
print(df1)
```

- A Load dataframe
- B Create a NumPy array and transform it
- C Split the data into training and test data
- D Fit a GridSearchCV object to find the best parameters
- E Calculate the accuracy on the test data
- F Check predictions with Confusion Matrix

Steps D-F are done for

- Logistic Regression
- Support Vector Machine
- Decision Tree Classifier
- K-nearest neighbors

(code example on the left side given for Logistic Regression)

G - Compare accuracy and performance of methods to find the best method

Results

The results of this project are included in the next sections:

- EDA Data Visualisation
- EDA with SQL
- Interactive Map (Folium)
- Interactive Dashboard (Plotly Dash)
- Predictive Analysis (Classification)

Flight Number vs. Launch Site

Class 0 (blue) = unsuccessful Class 1 (orange) = successful

- For each site most of the earlier flights failed, while the higher flight numbers were more successful
- Site VAFB SLC 4E was used much less than the others, although it had only few unsuccessful outcomes

Payload vs. Launch Site

Class 0 (blue) = unsuccessful Class 1 (orange) = successful

- Most of the launches with high payloads were successful
- Site VAFB SLC 4E was not used for payloads over 10.000 kg
- While transporting low payloads the site CCAFS SLC 40 had much more failures than the other sites

Success Rate vs. Orbit Type

The y-axis shows the mean success rate for orbits

- Orbits ES-L1, GEO, HEO, and SSO have 100% success
- GTO has the lowest success rate
- For orbit SO no data is available

Flight Number vs. Orbit Type

Class 0 (blue) = unsuccessful Class 1 (orange) = successful

- GTO orbits show mixed outcomes
- LEO, ISS, MEO, and VLEO have improved outcomes with later flight numbers
- Some orbits were used only once (ES-L1, HEO, SO, GEO)
- SSO is the orbit that was used more than once with 100% success

Payload vs. Orbit Type

Class 0 (blue) = unsuccessful Class 1 (orange) = successful

- 4 orbits were used for payloads over 10.000 kg
- For low payloads ES-L1, SSO, HEO, and GEO had 100% success
- Payload cannot be used as an indicator if an GTO orbit will have a positive outcome or not

Launch Success Yearly Trend

- From 2010 until 2013 all outcomes were not successful
- With exception of 2018 and 2020 the success rate increases each year
- 100% success is not yet achieved

All Launch Site Names

• Used query for the names of the launch sites:

```
%sql SELECT DISTINCT Launch_Site FROM SPACEXTABLE;

to get only unique results table with SpaceX data
```

outcome

Launch Site Names Begin with 'CCA'

Used query for the launch sites beginning with 'CCA':

%sql SELECT DISTINCT Launch_Site FROM SPACEXTABLE WHERE Launch_Site LIKE 'CCA%' search in the column Launch_Site

outcome

Launch_Site CCAFS LC-40 CCAFS SLC-40

filter the results

- starting with CCA
- after that % is used as a wildcard

Total Payload Mass

• Used query for the calculation of total payload mass carried by boosters launched by NASA (CRS):

outcome

Customer	total_payload_mass
NASA (CRS)	48213

Average Payload Mass by F9 v1.1

• Used query for the calculation of average payload mass carried by F9 v1.1:

outcome

Booster_Version	average_payload_mass	
F9 v1.1 B1003	2534.666666666665	

side due to limited cell width in Jupiter Labs)

First Successful Ground Landing Date

• Used query to find the first successful landing outcome on ground pad:

outcome

MIN(Date)

2015-12-22

December 22, 2015

Successful Drone Ship Landing with Payload between 4000 and 6000

 Used query to find names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000:

outcome

F9 FT B1022
F9 FT B1026
F9 FT B1021.2
F9 FT B1031.2

combine two criteria to filter the query result

Total Number of Successful and Failure Mission Outcomes

• Used query to calculate the total number of successful and failure mission outcomes:

outcome

Mission_Outcome	total number
Failure (in flight	1
Success	99
Success (payload status unclear	1

Boosters Carried Maximum Payload

 Used query to list the names of the booster which have carried the maximum payload mass:

outcome

booster_version
F9 B5 B1048.4
F9 B5 B1049.4
F9 B5 B1051.3
F9 B5 B1056.4
F9 B5 B1048.5
F9 B5 B1051.4
F9 B5 B1049.5
F9 B5 B1060.2
F9 B5 B1058.3
F9 B5 B1051.6
F9 B5 B1060.3
F9 B5 B1049.7

Booster Version

2015 Launch Records

• Used query to list the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015: (one line query split up in 2 screenshots here)

outcome

Date	Landing_Outcome	Booster_Version	Launch_Site	YEAR	MONTH
2015-01-10	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40	2015	01
2015-04-14	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40	2015	04

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

• Used query to rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order: (one line query split up in 2 screenshots here)

%sql SELECT Landing_Outcome, Count(Landing_Outcome) FROM SPACEXTBL WHERE (Date BETWEEN '2010-06-04' AND '2017-03-20') —

calculate number of landing outcomes filter result for Date within a defined period of time

outcome

Landing_Outcome	Count(Landing_Outcome)
No attempt	10
Success (drone ship)	5
Failure (drone ship)	5
Success (ground pad)	3
Controlled (ocean)	3
Uncontrolled (ocean)	2
Failure (parachute)	2
Precluded (drone ship)	1

```
→ GROUP BY Landing_Outcome ORDER BY COUNT(Landing_Outcome) DESC;
```

sort the result in descending order for number of landing outcomes

Locations of Launch Sites

- All launch sites are located in the United States – one near the west coast and three near the east coast
- The launch sites are located near the Equator line

Launch Outcomes

Site VAFB SLC-4E

 More than half of the launch outcomes were not successful

Site CCAFS SLC-40

 A low number of launches and a mixed result of launch outcomes

Site KSC LC-39A

 Most launch outcomes were successful, only 3 were not successful

Site CCAFS SC-40

 Highest number of launches, but a low number of successful outcomes

Proximities to Landmarks and Infrastructure

Launch sites are built far away from cities, but near to infrastructure like highways or railways.

Distance to next city: 14.76 km

Distance to next highway: 0.84 km

Distance to next railway: 0.69 km

Launch Success Count for all sites

- Nearly half of all successful launches are coming from launch site KSC LC-39A
- The site with least success is CCAFS SLC-40

Launch Site with highest Launch Success

Class 1 (blue) = successful Class 2 (red) = unsuccessful

 Site KSC LC-39A is the site with the highest percentage of successful launches

Launch Outcomes based on different Payloads

Low Payload range selected: 0 – 6.000 kg

- Booster Versions FT and B4 were more successful
- Booster Version v1.1 had the most failures

High Payload range selected: 6.000 - 10.000 kg

- · Only Booster Versions FT and B4 were used
- Only 1 Launch outcome was successful

Classification Accuracy

Decision Tree has the highest classification accuracy

	Accuracy	(on	<pre>validation data)</pre>
LogReg			0.846429
SVM			0.848214
Tree			0.889286
KNN			0.848214

Confusion Matrix

The Confusion Matrix shows the corrected and wrong predictions in comparison with the actual labels.

In this example for the **decision tree** model you can see that the landing was correctly predicted. However, there are still some false positive results for the landing.

Conclusions

- Higher flight numbers and launches with high payloads were more successful
- Launch sites are built far away from cities, but near to infrastructure like highways or railways
- The site CCAFS SC-40 had the highest number of launches, but a low number of successful outcomes
- The site KSC LC-39A is the site with the highest percentage of successful launches
- The orbit GTO has the lowest success rate. No correlation with payload can be found for this orbit.
- The orbit SSO was only used for low payloads, but has a success rate of 100%
- Booster versions FT and BF were used for all payload ranges. For low payloads they are more reliable than other booster versions, but for payloads over 6.000 kg only one launch was successful
- Launch success was zero from 2010 until 2013 and improved during most years after that
- Compared with the other models in this project the Decision Tree Model has the highest accuracy and is therefore the best learning algorithm in this case

