Università degli Studi dell'Aquila

Prova Scritta di Algoritmi e Strutture Dati con Laboratorio

Giovedì 13 luglio 2023 – Prof. Guido Proietti (Modulo di Teoria)

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

Domande a risposta multipla: Il compito è costituito da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0. Se una domanda presenta più di una risposta, verrà considerata omessa

- 1. L'altezza dell'albero di decisione associato al problema dell'ordinamento di n elementi basato su confronti è: *a) $\Omega(n \log n)$ b) $\omega(n \log n)$ c) $O(n \log n)$ d) $\Theta(n!)$
- 2. Siano f(n) e g(n) i costi dell'algoritmo InsertionSort2 nel caso migliore e Quicksort in quello medio, rispettivamente. Quale delle seguenti relazioni asintotiche è vera:

*a) f(n) = o(g(n)) b) $f(n) = \Theta(g(n))$ c) $f(n) = \omega(g(n))$ d) $f(n) = \Omega(g(n))$

- 3. Sotto quali ipotesi la soluzione dell'equazione di ricorrenza $T(n) = a \cdot T(n/b) + f(n)$, con $T(1) = \Theta(1)$, a, b costanti non negative, è pari a $T(n) = \Theta(f(n))$?
 - a) Se $f(n) = O\left(n^{\log_b a + \epsilon}\right)$, per qualche $\epsilon > 0$, e se vale la condizione di regolarità: $af(n/b) \le cf(n)$ per qualche c < 1 ed n sufficientemente grande
 - *b) Se $f(n) = \Omega\left(n^{\log_b a + \epsilon}\right)$, per qualche $\epsilon > 0$, e se vale la condizione di regolarità: $af(n/b) \le cf(n)$ per qualche c < 1 ed n sufficientemente grande

c) Se $f(n) = \Theta\left(n^{\log_b a}\right)$ d) Se $f(n) = \Omega\left(n^{\log_b a - \epsilon}\right)$, per qualche $\epsilon > 0$

4. Quali sono, rispettivamente, i costi per implementare le operazioni di IncreaseKey, DecreaseKey e DeleteMin in una coda di priorità di n elementi implementata utilizzando un array non ordinato? (si supponga di avere un puntatore diretto all'elemento su cui eseguire le operazioni di IncreaseKey e DecreaseKey)

a) $\Theta(n), \Theta(n), O(n)$ b) O(1), O(1), O(1) *c) $O(1), O(1), \Theta(n)$ d) O(n), O(n), O(1)

- 5. Sia dato un albero AVL di n elementi perfettamente bilanciato, in cui cioè ogni nodo interno ha fattore di bilanciamento pari a 0. Quale delle seguenti affermazioni è falsa:
 - a) Inserendo un elemento nell'AVL, il fattore di bilanciamento di $O(\log n)$ nodi diventa pari a ± 1

b) Tutte le foglie sono allo stesso livello

- c) L'eliminazione di un elemento dall'AVL, induce O(1) rotazioni
- *d) Il numero di foglie dell'AVL è pari esattamente al numero di nodi interni
- 6. Dato il grafo G in figura, quale delle seguenti affermazioni è falsa?

a) G ha grado 4 *b) G è euleriano c) G è planare d) G non è completo

7. Si consideri il grafo di cui alla domanda (6) e si orientino gli archi dal nodo con lettera maggiore al nodo con lettera minore secondo l'ordine alfabetico. Quanti rilassamenti esegue in totale alla fine della prima passata l'algoritmo di Bellman e Ford con sorgente A e con l'ipotesi che gli archi vengano considerati in ordine lessicografico?

a) 0 b) 3 *c) 10 d) 15

8. Dato il grafo di Domanda 6, si applichi su di esso l'algoritmo di Dijkstra con sorgente il nodo G. Quale delle seguenti è una possibile sequenza di nodi estratti dalla coda di priorità?

a) G, I, A, H, D, E, C, B, F *b) G, I, A, H, E, D, B, C, F c) G, I, A, H, E, D, F, C, B *d) G, I, A, H, E, D, C, B, F

9. Dato il grafo di Domanda 6, si applichi su di esso l'algoritmo di Prim con sorgente il nodo D. Quale delle seguenti è una possibile sequenza di nodi estratti dalla coda di priorità?

*a) D, E, C, I, G, H, A, B, F b) D, E, C, I, H, G, A, B, F c) D, E, C, I, G, H, A, F, B d) D, E, C, G, I, H, A, B, F

10. Siano P(n,m), K(n,m), B(n,m) rispettivamente i costi nel caso peggiore degli algoritmi di Prim con heap binari, Kruskal con alberi QuickUnion con $Union\ by\ rank$, e Borůvka. Quale tra le seguenti relazioni asintotica è falsa?

a) B(n,m) = O(P(n,m)) e B(n,m) = O(K(n,m)) b) P(n,m) = O(B(n,m)) e K(n,m) = O(B(n,m))

c) P(n,m)=O(B(n,m)) e B(n,m)=O(K(n,m)) *d) P(n,m)=O(B(n,m)) e B(n,m)=o(K(n,m))

Griglia Risposte

			O		•					
	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
С										
d										