Vectors

CE40282-1: Linear Algebra Hamid R. Rabiee and Maryam Ramezani Sharif University of Technology

What is vector?

A vector is an ordered finite list of numbers. Written as:

$$\begin{bmatrix} -1.1 \\ 0.0 \\ 3.6 \\ -7.2 \end{bmatrix} \begin{pmatrix} -1.1 \\ 0.0 \\ 3.6 \\ -7.2 \end{pmatrix} (-1.1, 0.0, 3.6, -7.2)$$

- Size (dimension or length): A vector of size n is called an nvector $(x \in \mathcal{R}^n)$
- Elements (entries, coefficients, components) of a vector
- Two vectors a and b are equal, which we denote a = b, if they have the same size, and each of the corresponding entries is the same. If a and b are n-vectors, then a = b means a1 = b1, ..., an = bn.
- Numbers are called scalars The set of all n-vectors is denoted $\mathbb{R}^n \coloneqq \left\{ \left(\begin{array}{c} a_1 \\ \vdots \\ a_n \end{array} \right) \middle| a_1, \dots, a_n \in \mathbb{R} \right\}$

Block vectors

- Suppose b, c, and d are vectors with sizes m, n, p
- stacked vector or concatenation of b, c, and d. block vector with entries (blocks) b, c, d is:

$$a = \left[\begin{array}{c} b \\ c \\ d \end{array} \right]$$

- a has size m + n + p:
 - $a = (b_1, b_2, ..., b_m, c_1, c_2, ..., c_n, d_1, d_2, ..., d_p)$

Subvector

- $a_{r:s} = (a_r, \dots, a_s)$ is a subvector of a. It is a vector with size (s-r+1).
- Colon notation is used to denote subvectors.
- The subscript r:s is called the index range
- In a block vector a: $a = \begin{bmatrix} b \\ c \\ d \end{bmatrix}$
 - b, c, and d are subvectors or slices of a, with sizes m, n, and p, respectively.
 - $b = a_{1:m}, c = a_{(m+1):(m+n)}, d = a_{(m+n+1):(m+n+p)}$

Famous vectors

- Zero vector: O_n
- Ones vector: I_n
- Unit vector: e_i (e_i is the entry with 1 value)
- Question: Write all unit vectors with length of 3?
- Sparse vector: a vector if many of its entries are 0
 - can be stored and manipulated efficiently on a computer
 - nnz(x) is number of entries that are nonzero
 - Question: What is the most sparsest vector?

Location or displacement in 2-D or 3-D

2-vector (x_1,x_2) can represent a location or a displacement in 2-D

- A vector can also be used to represent a displacement in a plane or 3-D space, in which case it is typically drawn as an arrow.
- A vector can also be used to represent the velocity or acceleration, at a given time, of a point that moves in a plane or 3-D space.

Color (RGB)

 A 3-vector can represent a color, with its entries giving the Red, Green, and Blue (RGB) intensity values (often between 0 and 1).

Six colors and their RGB vectors.

Time series

- An n-vector can represent a time series or signal, that is, the value of some quantity at different times.
- The entries in a vector that represents a time series are sometimes called samples, especially when the quantity is something measured.
- An audio (sound) signal can be represented as a vector whose entries
- give the value of acoustic pressure at equally spaced times (typically 48000 or 44100 per second).
- A vector might give the hourly rainfall (or temperature, or barometric pressure) at some location, over some time period.
- These lines carry no information; they are added only to make the plot
- easier to understand visually.

Hourly temperature in downtown Los Angeles on August 5 and 2015 (starting at 12:47AM, ending at 11:47PM).

Word count vectors

a short document:

Word count vectors are used **in** computer based **document** analysis. Each entry of the **word** count vector is the **number** of times the associated dictionary **word** appears **in** the **document**.

a small dictionary (left) and word count vector (right)

word	3
in	2
number	1
horse	0
the	4
document	2

dictionaries used in practice are much larger

Basic Notation

- Column vector $x \in R^n$ Transpose: $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \end{bmatrix}$

$$\begin{bmatrix} 4 \\ 3 \\ 0 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 4 & 3 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 3 & 0 \end{bmatrix}^{TT} = \begin{bmatrix} 4 & 3 & 0 \end{bmatrix}$$
$$4^{T} = 4$$

- Row vector $x^T \in R^{1 \times n}$
- ith element of x is: x_i

Vector Addition

n-vectors a and b

$$a = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \text{ and } b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \qquad a + b = \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{pmatrix}$$

- Can be added, with sum denoted: a + b
- Subtraction is similar: (a-b)
- The result of vector subtraction is called the difference of the two vectors.

Vector Addition and Subtraction

The Head-to-Tail Rule

Given vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 , translate \mathbf{v} so that its tail coincides with the head of \mathbf{u} . The *sum* $\mathbf{u} + \mathbf{v}$ of \mathbf{u} and \mathbf{v} is the vector from the tail of \mathbf{u} to the head of \mathbf{v} . (See Figure 1.7.)

Figure 1.7
The head-to-tail rule

Vector Addition and Subtraction

The Parallelogram Rule

Given vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 (in standard position), their $\mathbf{sum} \ \mathbf{u} + \mathbf{v}$ is the vector in standard position along the diagonal of the parallelogram determined by \mathbf{u} and \mathbf{v} . (See Figure 1.9.)

Figure 1.9
The parallelogram rule

The vector p + a is the position of the point represented by p displaced by the displacement represented by a.

The vector p-q represents the displacement from the point represented by q to the point represented by p.

Vector Addition Properties

- Commutative a + b = b + a
- Associative
 - Note: the associative law is that parentheses can be moved around, e.g., (x+y)+z = x+(y+z) and x(yz) = (xy)z

$$(a + b) + c = a + (b + c) = a + b + c$$

Adding the zero vector to a vector has no effect

$$a + 0 = 0 + a = a$$

- What constraints should you have?
- Subtracting a vector from itself yields the zero vector

$$a - a = 0$$

What is size of 0 here?

Vector Addition Properties

- Transpose: For $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^m$, $(\boldsymbol{u} + \boldsymbol{v})^T = \boldsymbol{u}^T + \boldsymbol{v}^T$
 - Proof?

Can scalar and vector be added?

$$4 + \begin{bmatrix} 1 \\ 2 \\ -10 \end{bmatrix}$$
$$\begin{bmatrix} 1 \\ 2 \\ -10 \end{bmatrix} + 4$$

Scalar-Vector Product

- Scalar multiplication or scalar-vector multiplication:
 a vector is multiplied by a scalar (i.e., number), which is done by
 multiplying every element of the vector by the scalar.
 - scalar on the left or scalar on the right

$$(-2)\begin{bmatrix} 1\\9\\6 \end{bmatrix} = \begin{bmatrix} -2\\-18\\-12 \end{bmatrix} \qquad \begin{bmatrix} 1\\9\\6 \end{bmatrix} (1.5) = \begin{bmatrix} 1.5\\13.5\\9 \end{bmatrix}$$

- Some notations:
 - a/2 is a vector means $\left(\frac{1}{2}\right)a$
 - -a is a vector means (-1)a
 - $\mathbf{a} = \mathbf{0}$ vector

Scalar-Vector Product

The vector 0.75a represents the displacement in the direction of the displacement a, with magnitude scaled by 0.75; (-1.5)a represents the displacement in the opposite direction, with magnitude scaled by 1.5.

Scalar-Vector Product Properties

- Commutative $\beta a = a\beta$
- Associative

$$(\beta \gamma) a = \beta(\gamma a) = (\beta a) \gamma = \beta a \gamma = \beta \gamma a$$

Left-Distributive

$$(\beta + \gamma)a = \beta a + \gamma a$$

Right-Distributive

$$a(\beta + \gamma) = a\beta + a\gamma$$

 $\beta(a + b) = \beta a + \beta b$

Addition of n-vectors

- Given two vectors $x, y \in \mathbb{R}^n$: (should have same size)
 - x. y is called the inner product or dot product or scalar product of the vectors: $x^T y (y^T x)$

$$x^T y \in \mathbb{R} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i.$$

- Dot product is a single number that provides information about the relationship between two vectors
- It is the basic computational building-block from which many operations and algorithms are built, including convolution, correlation, the Fourier transform, matrix multiplication, signal filtering, and so on.
- The term "inner product" is used when the two vectors are continuous functions.
- Why is named scalar product, too?

Notations:
$$\langle a, b \rangle$$
 $\langle a | b \rangle$ $\langle a, b \rangle$ $\langle a, b \rangle$

Dot product between a vector and itself: magnitude-squared, the length squared, or the squared-norm, of the vector.

$$\mathbf{a}^{\mathrm{T}}\mathbf{a} = \|\mathbf{a}\|^2 = \sum_{i=1}^{n} a_i a_i = \sum_{i=1}^{n} a_i^2$$

- If the vector is mean-centered—the average of all vector elements is subtracted from each element—then the dot product of a vector with itself is call variance in statistics lingo.
- When n = 1, the inner product reduces to the usual product of two numbers.

The scalar product can be viewed as function taking two vectors as arguments and producing a single scalar as a result. The usual notation in this case is

$$\langle , \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{R}, \langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{u}^T \boldsymbol{v} = \sum_{i=1}^m u_i v_i$$

with $\mathcal{V} = \mathbb{R}^m$.

Transpose of dot product:

•
$$(a.b)^T = (a^T b)^T = (b^T a) = (b.a) = b^T a$$

Commutativity

The order of the two vector arguments in the inner product does not matter.

$$a^Tb = b^Ta$$

- Distributivity with vector addition
 - The inner product can be distributed across vector addition.

$$(a+b)^T c = a^T c + b^T c$$

$$a^T (b+c) = a^T b + a^T c$$

Bilinear (linear in both a and b)

$$a^T(\lambda b + \beta c) = \lambda a^T b + \beta a^T c$$

Positive Definite:

$$(a.a) = a^T a \ge 0$$

• 0 only if a itself is a zero vectora = 0

Associative

- Note: the associative law is that parentheses can be moved around, e.g., (x+y)+z = x+(y+z) and x(yz) = (xy)z
- 1) Associative property of the vector dot product with a scalar (scalar-vector multiplication embedded inside the dot product)

- Associative
 - 2) Does vector dot product obey the associative property?

General Examples

The inner product of a vector with the ith standard unit vector gives (or `picks out') the ith element of a.

$$e_i^T a = a_i$$

The inner product of a vector with the vector of ones gives the sum of the elements of the vector.

$$\mathbf{1}^T a = a_1 + \dots + a_n$$

The inner product of an n-vector with the vector $\mathbf{1}/n$ gives the average or mean of the elements of the vector.

$$aveg(a) = \mu_a = (1/n)^T a = (a_1 + \dots + a_n)/n$$

General Examples

The inner product of a vector with itself gives the sum of the squares of the elements of the vector.

$$a^T a = a_1^2 + \dots + a_n^2$$

Selective sum: Let b be a vector all of whose entries are either 0 or 1. Then b^Ta is the sum of the elements in a for which $b_i = 1$.

Inner product of block vectors

- If two block vectors conform, then the inner product of them is the sum of inner products of the blocks:
 - Proof?

- Example
 - For any vectors a, b, c, d with the same size:

$$(a + b)^{T}(c + d) = a^{T}c + a^{T}d + b^{T}c + b^{T}d$$

- Specify the vector and scalar additions?
- Applying the distributive property to the dot product between a vector and itself?

$$(\mathbf{u} + \mathbf{v})^{\mathrm{T}}(\mathbf{u} + \mathbf{v}) = \|\mathbf{u} + \mathbf{v}\|^{2} = \mathbf{u}^{\mathrm{T}}\mathbf{u} + 2\mathbf{u}^{\mathrm{T}}\mathbf{v} + \mathbf{v}^{\mathrm{T}}\mathbf{v}$$
$$= \|\mathbf{u}\|^{2} + \|\mathbf{v}\|^{2} + 2\mathbf{u}^{\mathrm{T}}\mathbf{v}$$

Vector dot product: Geometry

 Dot Product: the cosine of the angle between the two vectors, times the lengths of the two vectors.

- proof
- In statistics, cos() with suitable normalization is called the Pearson correlation coefficient.

Vector dot product: Geometry

- $\theta < 90^{\circ}$
- $\theta > 90^{\circ}$
- $\theta = 90^o$: vectors are orthogonal (-1,0)/180°
- $\theta = 0^o$: collinear
- $\theta = 180^{\circ}$: collinear

- Given two vectors $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$:
 - $x \otimes y = xy^T \in R^{m \times n}$ is called the outer product of the vectors: $(xy^T)_{i,i} = x_i y_j$

$$xy^{T} \in \mathbb{R}^{m \times n} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & \cdots & y_{n} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \cdots & x_{1}y_{n} \\ x_{2}y_{1} & x_{2}y_{2} & \cdots & x_{2}y_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m}y_{1} & x_{m}y_{2} & \cdots & x_{m}y_{n} \end{bmatrix}$$

- Is it symmetric?
- Example: Represent $A \in \mathbb{R}^{m \times n}$ with outer product of two vectors:

$$A = \begin{bmatrix} | & | & & | \\ x & x & \cdots & x \\ | & | & & | \end{bmatrix} = \begin{bmatrix} x_1 & x_1 & \cdots & x_1 \\ x_2 & x_2 & \cdots & x_2 \\ \vdots & \vdots & \ddots & \vdots \\ x_m & x_m & \cdots & x_m \end{bmatrix}$$

Outer Products

Properties:

- $(u \otimes v)^T = (v \otimes u)$
- $(v + w) \otimes u = v \otimes u + w \otimes u$
- $u \otimes (v + w) = u \otimes v + u \otimes w$
- $c(v \otimes u) = (cv) \otimes u = v \otimes (cu)$
- $(u.v) = trace(u \otimes v) (u, v \in \mathbb{R}^n)$
- $(u \otimes v)w = (v.w)u$

Hadamard vector product

Element-wise product

$$c = a \odot b = \begin{bmatrix} a_1 b_1 \\ a_2 b_2 \\ \vdots \\ a_n b_n \end{bmatrix}$$

Properties:

- $a \odot b = b \odot a$
- $\bullet \ a \odot (b \odot c) = (a \odot b) \odot c$
- $\bullet a \odot (b+c) = a \odot b + a \odot c$
- $(\theta a) \odot b = a \odot (\theta b) = \theta (a \odot b)$
- $a \odot 0 = 0 \odot a = 0$

Cross product

The cross product is defined only for two 3-element vectors, and the result is another 3-element vector. It is commonly indicated using a multiplication symbol
 (x)

(x).
$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta_{ab})$$
 $\mathbf{a} \times \mathbf{b} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$

It used often in geometry, for example to create a vector c that is orthogonal to the plane spanned by vectors a and b. It is also used in vector and multivariate calculus to compute surface integrals. u_1 v_1

Products

Dot

Wedge and Cross

Linear Combinations

• The linear combinations of m vectors $a_1, ... a_m$, each with size n is:

$$\beta_1 a_1 + \cdots + \beta_m a_m$$

where $\beta_1, ..., \beta_m$ are scalars and called the coefficients of the linear combination

Coordinates: We can write any n-vector b as a linear combination of the standard unit vectors, as:

$$b = b_1 e_1 + \dots + b_n e_n$$

Example: What are the coefficients and combination for this vector? $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

Linear Combinations

Left. Two 2-vectors a_1 and a_2 . Right. The linear combination $b = 0.75a_1 + 1.5a_2$

Special Linear Combinations

- Sum of vectors
- Average of vectors
- Affine combination

$$\beta_1 + \dots + \beta_m = 1$$

- Convex combination, mixture average, weighted average: When the coefficients in an affine combination are nonnegative
 - Note: The coefficients in an affine or convex combination are sometimes given as percentages, which add up to 100%.

Linear Combinations Example

The affine combination $(1 - \theta)a + \theta b$ for different values of θ . These points are on the line passing through a and b; for θ between 0 and 1, the points are on the line segment between a and b.

Linear Combinations

For vectors $x_1, x_2, ..., x_k$: any point y is a linear combination of them iff:

$$y = \alpha_1 x_1 + \alpha_2 x_2 \cdots + \alpha_k x_k \quad \forall i, \ \alpha_i \in \mathbb{R}$$

• If we restrict α_i 's to be positive then we get a conic combination.

$$y = \alpha_1 x_1 + \alpha_2 x_2 \cdots + \alpha_k x_k \quad \forall i, \ \alpha_i \ge 0 \in \mathbb{R}$$

- Instead of being positive, if we put the restriction that α_i 's sum up to 1, it is called an affine combination $y = \alpha_1 x_1 + \alpha_2 x_2 \cdots + \alpha_k x_k \ \ \forall i, \ \alpha_i \in \mathbb{R}, \ \sum \alpha_i = 1$
- When a combination is affine as well as conic, it is called a convex combination

$$y = \alpha_1 x_1 + \alpha_2 x_2 \cdots + \alpha_k x_k \quad \forall i, \ \alpha_i \ge 0 \in \mathbb{R}, \ \sum_i \alpha_i = 1$$

- Computers store (real) numbers in floating-point format
- Floating point= 64 bits or 8 bytes
 - How many possible sequences of bits?
 - How many bytes to store n-vector?
- Current memory and storage devices, with capacities measured in many gigabytes (109 bytes), can easily store vectors with dimensions in the millions or billions.
- Sparse vectors are stored in a more efficient way that keeps track of indices and values of the nonzero entries.
- Note about floating point operations and round-off error.

- How quickly the vector operations can be carried out by a computer depends very much on the computer hardware and software, and the size of the vector.
- Basic arithmetic operations (addition, multiplication, . . .) are called Floating Point Operations (FLOP)s.
- Estimate the time of computation= counting the total number of Floating Point Operations (FLOP)s.
- The complexity of an operation is the number of flops required to carry it out, as a function of the size or sizes of the input to the operation.
- Crude approximation of time to execute: (flopsneeded)/(computer speed)
- current computers are around 1Gflop/sec (10^9 flops/sec)

Floating point operation

Floating point operation (flop)

- the unit of complexity when comparing vector and matrix algorithms
- 1 flop = one basic arithmetic operation $(+, -, *, /, \sqrt{, \ldots})$ in \mathbf{R} or \mathbf{C}

Comments: this is a very simplified model of complexity of algorithms

- we don't distinguish between the different types of arithmetic operations
- we don't distinguish between real and complex arithmetic
- we ignore integer operations (indexing, loop counters, ...)
- we ignore cost of memory access

Complexity

Operation count (flop count)

- total number of operations in an algorithm
- in linear algebra, typically a polynomial of the dimensions in the problem
- a crude predictor of run time of the algorithm:

run time
$$\approx \frac{\text{number of operations (flops)}}{\text{computer speed (flops per second)}}$$

Dominant term: the highest-order term in the flop count

$$\frac{1}{3}n^3 + 100n^2 + 10n + 5 \approx \frac{1}{3}n^3$$

Order: the power in the dominant term

$$\frac{1}{3}n^3 + 10n^2 + 100 = \text{order } n^3$$

Examples

complexity of vector operations in this lecture (for vectors of size n)

- addition, subtraction: *n* flops
- scalar multiplication: *n* flops
- componentwise multiplication: n flops
- inner product: $2n 1 \approx 2n$ flops

these operations are all order n

	#FLOPS		Complexity	
Operation	General	Sparse	General	Sparse
Scalar-Vector product				
Vector-Vector sum				
Inner product				
Outer product (vectors with sizes "n" and "m"				
Hadamard product				

Vectors and Geometry

• Give a vector description of the midpoint M of a line segment \overline{AB} .

$$\mathbf{m} - \mathbf{a} = \overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB} = \frac{1}{2}(\mathbf{b} - \mathbf{a})$$

 $\mathbf{m} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) = \frac{1}{2}(\mathbf{a} + \mathbf{b})$

Line (R^2)

- The line ℓ with equation 2x + y = 0
- $\mathbf{n} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$, then the equation becomes $\mathbf{n} \cdot \mathbf{x} = 0$.
- ℓ as $\mathbf{x} = t\mathbf{d}$.

Equations of Lines in \mathbb{R}^2

Normal Form	General Form	Vector Form	Parametric Form
$n\boldsymbol{\cdot} x=n\boldsymbol{\cdot} p$	ax + by = c	$\mathbf{x} = \mathbf{p} + t\mathbf{d}$	$\begin{cases} x = p_1 + td_1 \\ y = p_2 + td_2 \end{cases}$

Plan (R^3)

$$\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \text{ and } \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix},$$

$$ax + by + cz = d \text{ (where } d = \mathbf{n} \cdot \mathbf{p})$$

$$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$$

Table 1.3	Lines ar	nd Planes	in \mathbb{R}^3
-----------	----------	-----------	-------------------

	Normal Form	General Form	Vector Form	Parametric Form
Lines	$\begin{cases} \mathbf{n}_1 \cdot \mathbf{x} = \mathbf{n}_1 \cdot \mathbf{p}_1 \\ \mathbf{n}_2 \cdot \mathbf{x} = \mathbf{n}_2 \cdot \mathbf{p}_2 \end{cases}$	$\begin{cases} a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \end{cases}$	$\mathbf{x} = \mathbf{p} + t\mathbf{d}$	$\begin{cases} x = p_1 + td_1 \\ y = p_2 + td_2 \\ z = p_3 + td_3 \end{cases}$
Planes	$\mathbf{n} \cdot \mathbf{x} = \mathbf{n} \cdot \mathbf{p}$	ax + by + cz = d	$\mathbf{x} = \mathbf{p} + s\mathbf{u} + t\mathbf{v}$	$\begin{cases} x = p_1 + su_1 + tv \\ y = p_2 + su_2 + tv \\ z = p_3 + su_3 + tv \end{cases}$

Reference

- Chapter 2,3,4: LINEAR ALGEBRA: Theory,
 Intuition, Code
- Chapter 1: Introduction to Applied Linear
 Algebra Vectors, Matrices, and Least Squares
- Chapter 8: Linear Algebra and its applications
- Chapter 2: Linear Algebra Jim Hefferon
- Chapter 4: Linear Algebra Devid Cherney