Tavole applicative

Corso di Controllo dei Robot

E. Puglisi A. Ryals January 15, 2019

Ingegneria robotica e dell'automazione Università di Pisa

Table of contents

Delta robot

Direct kinematic

Inverse kinematic

Dynamic

Working volume

Control

PD with gravity compensation

Computed torque

Backstepping

Adaptive backstepping

Ball and plate

Dynamic

Delta robot

Delta robot

The Delta robot is a 3-DOF parallel kinematic machine developed by Reymond Clavel¹ in 1991. It mainly consists of three actuated kinematic chains linked at a common moving platform. Each chain is a serial connection of a revolute actuator, a rear-arm and a forearm (composed of two parallel rods forming a parallelogram). The rear-arms and the forearms are linked through ball-and-socket passive joints. The parallelogram structure of the forearms ensures that the moving platform stays always parallel to the fixed base. Figure 1 shows a schematic view of the Delta robot with its main elements highlighted.

¹Reymond Clavel. *Conception d'un robot parallele rapide à 4 degres de liberté.* 1991.

Delta robot - Schematic view

Figure 1: Schematic view of Delta robot

- 1. Fixed base-plate
- 2. Actuator
- 3. Rear-arm
- 4. Forearm
- 5. Moving platform

We consider a model with a ternary symmetric configuration with three kinematic chains disposed with a period of 120°

Delta robot - Parameters

Figure 2: Delta robot length parameters and characteristic angles

Delta robot - Parameters

Parameter	Description	Value
I_A	Rear-arm length	0.2 <i>m</i>
m_A	Rear-arm mass	0.1 <i>Kg</i>
R	Base platform	0.126 <i>m</i>
l _B	dimension Forearm length	0.4 <i>m</i>
m_B	Forearm mass	0.045 <i>Kg</i>
m_c	Elbow mass	0.018 <i>Kg</i>
m_n	Moving platform	0.1 <i>Kg</i>
I _{bi}	mass Rear-arm inertia	$Kg imes m^2$

Table 1: Delta robot geometric and dynamic parameters

Delta robot - Parameters

Analytical studies on the working volume of the Delta robot² demonstrated that:

- A ratio $r = R/I_A < 0.63$ gives the most regular shape for the surface of the lower part of the working volume.
- If r > 0.0484 and $b = I_A/I_B > 1.75$ there is no singularity occurrence within the robot working volume.

Thus the parameters shown in table 1 have been chosen for the Delta model used in this project.

²L Rey and Reymond Clavel. "The Delta Parallel Robot". In: *Parallel Kinematic Machines. Advanced Manufacturing. Springer, London* (1999).

Since the moving platform is only translating we can study the model in figure 2 without loss of generality.

In this model the moving platform is reduced to an ideal point with a translation of the three kinematic chains

Scelta del sistema di riferimento, variabili.

Direct kinematic is found following the method presented by Clavel in 1991.

Taking in mind the Delta robot representation of figure 2 one can simply find that C_i coordinates are given by the intersection of three circles of radius L_A belonging to the plane π_i and the sphere centred in P having radius L_B . Those conditions give a three equations system that can be solved to find the coordinates of the end-effector.

Coordinates of the point C_i in the base frame:

$$C_{i} = \begin{pmatrix} (R + L_{A}cos\alpha_{i})cos\theta_{i} \\ (R + L_{A}cos\alpha_{i})sin\theta_{i} \\ -L_{A}sin\alpha_{i} \end{pmatrix}$$
(1)

Equation of the sphere centred in P:

$$((R + L_A cos\alpha_i) cos\theta_i - x^2) + ((R + L_A cos\alpha_i) sin\theta_i - y)^2 + (L_A sin\alpha_i + z)^2 = L_B^2$$
 (2)

The system has two possible solutions. The one with negative z coordinate that belongs to the Delta robot workspace is selected.

Delta robot - Inverse kinematic

of the position of the end effector. The model here presented have been developed by Codourey³ and has the advantage of removing the points of singularity contained in the model previously introduced by Clavel. The rationale is still the intersection of a sphere and three circles but the computation is made for each angle in a frame centred in the centre of the i-th joint and rotated with respect to the base frame of an angle θ_i .

The inverse kinematic model let calculate the joint angles q_i as functions

³Alain Codourey. "Contribution à la commande des robots rapides et précis application au robot delta à entraînement direct". In: (1991), p. 188. DOI: 10.5075/epfl-thesis-922. URL: http://infoscience.epfl.ch/record/31400.

Delta robot - Dynamic model assumptions

- Ideal joints are considered.
- The rotational inertia of the forearm is neglected.
- The mass of each forearm is split up into two point-masses located at both ends of the forearm.

Delta robot - Dynamic model

$$\begin{pmatrix} p - R_b \left(\overline{R} - L_A \cos \left(\overline{q_i} \right) \right) \\ p \\ p + L_A R_b \sin \left(\overline{q_i} \right) \end{pmatrix}$$
(3)

Delta robot - Dynamic model

Delta robot - Working volume

PD with gravity compensation

Control equation:

$$\tau_{PD} = K_P e + K_D \dot{e} + G(q) \tag{4}$$

with

$$K_P = diag(1500, 1500, 1500)$$

and

$$K_D = diag(60, 60, 60)$$

Computed torque

Backstepping

Adaptive backstepping

Ball and plate

Ball and plate

Ball and plate

Figure 3: Coordinate frame of the ball and plate system

Ball and plate - Parameters

Parameter	Description	Value
m	Mass of the ball	0.0109 Kg
r	Radius of the ball	0.01 <i>m</i>
I_b	Ball inertia	$4.3563e^{-7} \ Kg \times m^2$
I_p	Plate side	0.6 <i>m</i>
I_p	Plate inertia	$0.175\mathrm{Kg} imes \mathrm{m}^2$

Table 2: Ball and plate geometric and dynamic parameters

Ball and plate - Dynamic model

The general form of Euler-Lagrange for dynamic equations is used to describe the system:

$$\frac{d}{dt}\frac{\delta T}{\delta q_i} - \frac{\delta T}{\delta q_i} + \frac{\delta V}{\delta q_i} = Q_i \tag{5}$$

Where T is the kinetic energy, V is the potential energy, Q_i is the i-th generalized force and q_i id the i-th generalized coordinate. As generalized force we consider two torques acting on the plate ($Q_{\alpha} = \tau_{\alpha}, Q_{\beta} = \tau_{\beta}$). As generalized coordinates we select two ball position coordinates [x, y] on the frame fixed to the plate and two plate inclination $[\alpha, \beta]$.

Ball and plate - Dynamic model

Kinetic energy of the ball:

$$T_b = \frac{1}{2}mv^2 + \frac{1}{2}I_b\omega^2 = \frac{1}{2}\left(m + \frac{I_b}{r^2}\right)\left(\dot{x}^2 + \dot{y}^2\right)$$
 (6)

Kinetic energy of the plate:

$$T_{p} = \frac{1}{2} \left(I_{b} + I_{p} \right) \left(\dot{\alpha} + \dot{\beta} \right) + \frac{1}{2} m \left(\dot{\alpha} x + \dot{\beta} y \right)^{2} \tag{7}$$

Potential energy:

$$V = mgh = mg(x \sin\alpha + y \sin\beta)$$
 (8)

Ball and plate - Dynamic model

After some derivations we find the following non-linear system:

$$\left(m + \frac{l_b}{r^2}\right) \ddot{x} - m\left(\dot{\alpha}\dot{\beta}y + \dot{\alpha}^2x\right) + mg\sin\alpha = 0$$

$$\left(m + \frac{l_b}{r^2}\right) \ddot{y} - m\left(\dot{\alpha}\dot{\beta}x + \dot{\beta}^2y\right) + mg\sin\beta = 0$$

$$\left(I_p + I_b + mx^2\right) \ddot{\alpha} + m\left(\ddot{\beta}xy + \dot{\beta}\left(\dot{x}y + x\dot{y}\right) + 2\dot{\alpha}\dot{x}x\right) + mgx\cos\alpha = \tau_{\alpha}$$

$$\left(I_p + I_b + my^2\right) \ddot{\beta} + m\left(\ddot{\alpha}xy + \dot{\alpha}\left(\dot{x}y + x\dot{y}\right) + 2\dot{\beta}\dot{y}y\right) + mgy\cos\beta = \tau_{\beta}$$