

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Osamu IWASAKI

Application No.: 09/770,2

Filed: January 29, 2001

Examiner: Not Assigned

Group Art Unit: 2852

For: IMAGE PROCESSING APPARATUS) June 28, 2001

Commissioner for Patents Washington, D.C. 20231

CLAIM TO PRIORITY

Sir:

Applicant hereby claims priority under the International Convention and all rights to which he is entitled under 35 U.S.C. § 119 based upon the following Japanese Priority Application:

JAPAN

2000-022393

January 31, 2000

A certified copy of the priority document is enclosed.

Applicant's undersigned attorney may be reached in our Washington, D.C. office by telephone at (202) 530-1010 All correspondence should continue to be directed to our address given below.

Respectfully submitted,

Attorney for Applicant Brian L. Klock

Registration No. 36,570

FITZPATRICK, CELLA, HARPER & SCINTO 30 Rockefeller Plaza New York, New York 10112-3801 Facsimile: (212) 218-2200

BLK/dc

本 国 特 許 庁 PATENT OFFICE JAPANESE GOVERNMENT

09/770,248 Osamu Iwasaki January 29,200

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2000年 1月31日

出 願 番 号 Application Number:

特願2000-022393

· 類 人 pplicant (s):

キヤノン株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

2001年 2月23日

特許庁長官 Commissioner, Patent Office

特2000-022393

【書類名】 特許顯

【整理番号】 4053002

【提出日】 平成12年 1月31日

【あて先】 特許庁長官殿

【国際特許分類】 H04N 5/00

【発明の名称】 画像データ処理装置、画像データ記録装置、画像データ

記録システム、画像データ記録方法及び記憶媒体

【請求項の数】 12

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】 岩崎 督

【特許出願人】

【発明者】

【識別番号】 000001007

【氏名又は名称】 キヤノン株式会社

【代理人】

【識別番号】 100090273

【弁理士】

【氏名又は名称】 國分 孝悦

【電話番号】 03-3590-8901

【手数料の表示】

【予納台帳番号】 035493

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9705348

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 画像データ処理装置、画像データ記録装置、画像データ記録システム、画像データ記録方法及び記憶媒体

【特許請求の範囲】

【請求項1】 偽造防止処理が施された入力画像データに応じた印字IDを 生成して画像データ記録装置に転送する第1の転送手段と、

上記画像データ記録装置から送られてきた共通鍵を用いて、上記画像データを 暗号化するとともに印字制御コマンド化して印字制御データを生成する印字制御 データ生成手段と、

上記印字制御データと上記印字 I Dとを上記画像データ記録装置に転送する第2の転送手段とを具備することを特徴とする画像データ処理装置。

【請求項2】 入力された画像データに偽造防止を含む画像処理を施す画像 処理手段と、

上記画像処理手段によって偽造防止処理が施された画像データに応じた印字 I Dを生成する印字 I D生成手段と、

上記印字ID生成手段によって生成された印字IDを画像データ記録装置に転送する第1の転送手段と、

上記画像データ記録装置から送られてきた共通鍵を用いて、上記画像処理手段 によって所定の処理が施された画像データを暗号化する暗号化手段と、

上記暗号化手段によって暗号化された印字画像データを印字制御コマンド化して印字制御データを生成する印字制御データ生成手段と、

上記印字制御データ生成手段によって生成された印字制御データと上記印字 I D 生成手段によって生成された印字 I D とを上記画像データ記録装置に転送する第2の転送手段とを具備することを特徴とする画像データ処理装置。

【請求項3】 上記暗号化手段は、上記共通鍵で生成された変換テーブルを 使用して暗号化処理を行うことを特徴とする請求項2に記載の画像データ処理装 置。

【請求項4】 画像データ処理装置から転送されてきた印字IDに基づいて 共通鍵を生成する共通鍵生成手段と、 上記共通鍵生成手段によって生成された共通鍵及び上記画像データ処理装置から転送されてきた印字IDを管理する管理手段と、

上記共通鍵生成手段によって生成された共通鍵を上記画像データ処理装置に送 出する共通鍵発行手段と、

上記画像データ処理装置から印字ID及び印字制御データが送られてきたときに、上記印字IDに対応する共通鍵を上記管理手段から取得する共通鍵取得手段と、

上記共通鍵取得手段によって取得された共通鍵を用いて上記印字制御データの コマンドを解析し、暗号化された印字画像データを抽出する解析手段と、

上記解析手段によって抽出された印字画像データを、上記共通鍵取得手段によって取得した共通鍵を用いて復号化する復号化手段と、

上記復号化手段によって復号化された印字画像データを記録媒体に記録する印字手段とを具備することを特徴とする画像データ記録装置。

【請求項5】 上記共通鍵生成手段は、上記共通鍵を無作為に生成することにより、生成する共通鍵を印字IDに対応させないことを特徴とする請求項4に記載の画像データ記録装置。

【請求項6】 上記復号化手段は、上記共通鍵で生成された変換テーブルを使用して復号化処理を行うことを特徴とする請求項4に記載の画像データ記録装置。

【請求項7】 偽造防止処理が施された入力画像データに応じた印字ID を生成して画像データ記録装置に転送する第1の転送手段と、上記画像データ記録装置から送られてきた共通鍵を用いて、上記画像データを暗号化するとともに印字制御コマンド化する印字制御データ生成手段と、上記印字制御コマンド化された印字制御データと上記印字IDとを上記画像データ記録装置に転送する第2の転送手段とを有する画像データ処理装置と、

上記画像データ処理装置から転送されてきた印字IDに基づいて共通鍵を生成する共通鍵生成手段と、上記共通鍵生成手段によって生成された共通鍵及び上記画像データ処理装置から転送されてきた印字IDを管理する管理手段と、上記共通鍵生成手段によって生成された共通鍵を上記画像データ処理装置に送出する共

通鍵発行手段と、上記画像データ処理装置から送られてくる印字ID及び印字制御データに対応する共通鍵を上記管理手段から取得する共通鍵取得手段と、上記共通鍵取得手段によって取得された共通鍵を用いて上記印字制御データのコマンドを解析し、暗号化された印字画像データを抽出する解析手段と、上記解析手段によって抽出された印字画像データを、上記共通鍵取得手段によって取得した共通鍵を用いて復号化する復号化手段と、上記復号化手段によって復号化された印字画像データを記録媒体に記録する印字手段とを有する画像データ記録装置とからなることを特徴とする画像データ記録システム。

【請求項8】 入力された画像データに偽造防止を含む画像処理を施す画像処理手段と、上記画像処理手段によって偽造防止処理が施された画像データに応じた印字IDを生成する印字ID生成手段と、上記印字ID生成手段によって生成された印字IDを画像データ記録装置に転送する第1の転送手段と、上記画像データ記録装置から送られてきた共通鍵を用いて、上記画像処理手段によって所定の処理が施された画像データを暗号化する暗号化手段と、上記暗号化手段によって暗号化された印字画像データを印字制御コマンド化して印字制御データを生成する印字制御データ生成手段と、上記印字制御データ生成手段によって生成された印字IDとを上記画像データ記録装置に転送する第2の転送手段とを有する画像データ処理装置と、

上記画像データ処理装置から転送されてきた印字IDに基づいて共通鍵を生成する共通鍵生成手段と、上記共通鍵生成手段によって生成された共通鍵及び上記画像データ処理装置から転送されてきた印字IDを管理する管理手段と、上記共通鍵生成手段によって生成された共通鍵を画像データ処理装置に送出する共通鍵発行手段と、上記画像データ処理装置から送られてくる印字ID及び印字制御データに対応する共通鍵を上記管理手段から取得する共通鍵取得手段と、上記共通鍵取得手段によって取得された共通鍵を用いて上記印字制御データのコマンドを解析し、暗号化された印字画像データを抽出する解析手段と、上記解析手段によって抽出された印字画像データを、上記共通鍵取得手段によって取得した共通鍵を用いて復号化する復号化手段と、上記復号化手段によって復号化された印字画

像データを記録媒体に記録する印字手段とを有する画像データ記録装置とからなることを特徴とする画像データ記録システム。

【請求項9】 偽造防止処理が施された入力画像データに応じた印字ID を生成して画像データ記録装置に転送する第1の転送処理と、上記画像データ記録装置から送られてきた共通鍵を用いて、上記画像データを暗号化するとともに印字制御コマンド化する印字制御データ生成処理と、上記印字制御コマンド化された印字制御データと上記印字IDとを上記画像データ記録装置に転送する第2の転送処理とを画像データ処理装置が行い、

上記画像データ処理装置から転送されてきた印字IDに基づいて共通鍵を生成する共通鍵生成処理と、上記共通鍵生成処理によって生成された共通鍵及び上記画像データ処理装置から転送されてきた印字IDを管理手段により管理する管理処理と、上記共通鍵生成処理によって生成された共通鍵を上記画像データ処理装置に送出する共通鍵発行処理と、上記画像データ処理装置から送られてくる印字ID及び印字制御データに対応する共通鍵を上記管理手段から取得する共通鍵取得処理と、上記共通鍵取得処理によって取得された共通鍵を用いて上記印字制御データのコマンドを解析し、暗号化された印字画像データを抽出する解析処理と、上記解析処理によって抽出された印字画像データを抽出する解析処理と、上記解析処理によって抽出された印字画像データを、上記共通鍵取得処理によって取得した共通鍵を用いて復号化する復号化処理と、上記復号化処理によって復号化された印字画像データを記録媒体に記録する印字処理とを画像データ記録装置が行うことを特徴とする画像データ記録方法。

【請求項10】 入力された画像データに偽造防止を含む画像処理を施す画像処理処理と、上記画像処理処理によって偽造防止処理が施された画像データに応じた印字IDを生成する印字ID生成処理と、上記印字ID生成処理によって生成された印字IDを画像データ記録装置に転送する第1の転送処理と、上記画像データ記録装置から送られてきた共通鍵を用いて、上記画像処理処理によって所定の処理が施された画像データを暗号化する暗号化処理と、上記暗号化処理によって暗号化された印字画像データを印字制御コマンド化して印字制御データを生成する処理と、上記印字制御データ生成処理によって生成された印字制御データと上記印字ID生成処理によって生成された印字IDとを上記画像データ記

録装置に転送する第2の転送処理とを画像データ処理装置が行い、

上記画像データ処理装置から転送されてきた印字IDに基づいて共通鍵を生成する共通鍵生成処理と、上記共通鍵生成処理によって生成された共通鍵及び上記画像データ処理装置から転送されてきた印字IDを管理手段により管理する管理処理と、上記共通鍵生成処理によって生成された共通鍵を画像データ処理装置に送出する共通鍵発行処理と、上記画像データ処理装置から送られてくる印字ID及び印字制御データに対応する共通鍵を上記管理手段から取得する共通鍵取得処理と、上記共通鍵取得処理によって取得された共通鍵を用いて上記印字制御データのコマンドを解析し、暗号化された印字画像データを抽出する解析処理と、上記解析処理によって抽出された印字画像データを、上記共通鍵取得処理によって取得した共通鍵を用いて復号化する復号化処理と、上記復号化処理によって復号化された印字画像データを記録媒体に記録する印字処理とを画像データ記録装置が行うことを特徴とする画像データ記録方法。

【請求項11】 上記請求項1~8の何れか1項に記載の各手段を構成する プログラムをコンピュータから読み出し可能に記録したことを特徴とする記憶媒体。

【請求項12】 上記請求項9または10に記載の方法を実行するプログラムをコンピュータから読み出し可能に記録したことを特徴とする記憶媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は画像データ処理装置、画像データ記録装置、画像データ記録システム、画像データ記録方法及び記憶媒体に関し、特に、ホストコンピュータで画像処理を行い記録装置で印字を行う記録システムにおける弊紙等の偽造防止に用いて好適なシステムに関する。

[0002]

【従来の技術】

紙幣及び有価証券等の偽造防止システムの多くは、複写機等のように入出力装置が一体となったシステムである。しかし、今日のパーソナルコンピュータの発

展に追従して、その周辺機器であるスキャナ、デジタルカメラ、プリンタ等の高性能化が目覚しく、複写機以上の高画質の画像を出力することが可能となった。 これに伴い、上記の偽造行為も多数発生しており、その防止システムを構築する ことが求められている。

[0003]

パーソナルコンピュータ環境での偽造防止システムの特徴は、入力装置、出力装置の制御をホストコンピュータが行うため、紙幣及び有価証券等の特定パターンの認識処理をホストコンピュータの画像処理手段に盛り込む必要がある。パーソナルコンピュータにおいては、出力装置の制御コードさえ分かれば特定の画像処理手段を使用しなくても出力作業が可能である。

[0004]

そこで、偽造防止手段を盛り込んだ特定の画像処理手段以外の使用を避ける手段として、出力装置の制御コードを暗号化する方法が有用である。上記のような方法はパーソナルコンピュータ環境ではないが、例えば、特開平6-105141号で開示されている。この方法を、パーソナルコンピュータ環境に適応させると、図2に示すようになる。

[0005]

図2において、ステップS2001~ステップS2005は、ホストコンピュータにおける処理であり、ステップS2006からステップS2009は記録装置本体における処理である。

[0006]

まず、最初のステップS2001で「OS(基本ソフトウエア)」、もしくは アプリケーションより画像データを人力する。次に、ステップS2002で偽造 防止を含む画像処理を行う。上記ステップS2002の画像処理は、カラーマッ チングやガンマの補正等と量子化で構成され、印字画像データに変換される。こ のステップS2002での偽造防止は、一般的にはパターン識別による特定画像 の判断を行い、上記特定画像の場合に画像データに欠陥を施す処理となる。

[0007]

次に、画像処理された印字データをステップS2003において暗号化する。

この暗号化された印字データをステップS2004でプリンタ本体を制御する印字制御データにコマンド化する。

[0008]

上記のコマンド化された印字制御データを、ステップS2005でデータの転送回路(不図示)を制御(実際に制御を行うのは「OS」でもよい。)して、プリンタ本体に転送する。

[0009]

次に、プリンタ本体のステップS2006の処理において、印字制御データを 受信する。この受信した印字制御データを、ステップS2007でコマンド解析 の処理を行い、暗号化されている印字画像データを生成する。

[0010]

次に、この暗号化されている印字画像データをステップS2008の復号化処理によって印字データに変換する。そして、この復号化された印字データをステップS2009において記録媒体に印字する。

[0011]

【発明が解決しようとする課題】

しかしながら、上記のシステムはホストコンピュータとプリンタ本体との間において暗号化しているが、入力画像に対するプリンタに転送するデータが1対1 に対応するため、暗号の解読が容易となっている。

[0012]

すなわち、従来のシステムで行われているプリンタの制御コードが未公開であるのと同等であり、画像の偽造防止を有効に行うことができない問題があった。

本発明は上述の問題点にかんがみ、入力画像に対する偽造防止を有効に行うことができるシステムを構築することを目的とする。

[0013]

【課題を解決するための手段】

本発明の画像データ処理装置は、偽造防止処理が施された入力画像データに応 じた印字IDを生成して画像データ記録装置に転送する第1の転送手段と、上記 画像データ記録装置から送られてきた共通鍵を用いて、上記画像データを暗号化 するとともに印字制御コマンド化して印字制御データを生成する印字制御データ 生成手段と、上記印字制御データと上記印字IDとを上記画像データ記録装置に 転送する第2の転送手段とを具備することを特徴としている。

また、本発明の他の特徴とするところは、入力された画像データに偽造防止を含む画像処理を施す画像処理手段と、上記画像処理手段によって偽造防止処理が施された画像データに応じた印字IDを生成する印字ID生成手段と、上記印字ID生成手段によって生成された印字IDを画像データ記録装置に転送する第1の転送手段と、上記画像データ記録装置から送られてきた共通鍵を用いて、上記画像処理手段によって所定の処理が施された画像データを暗号化する暗号化手段と、上記暗号化手段によって暗号化された印字画像データを印字制御コマンド化して印字制御データを生成する印字制御データ生成手段と、上記印字制御データ生成手段によって生成された印字制御データと上記印字ID生成手段によって生成された印字制御データと上記印字ID生成手段によって生成された印字IDとを上記画像データ記録装置に転送する第2の転送手段とを具備することを特徴としている。

また、本発明のその他の特徴とするところは、上記暗号化手段は、上記共通 鍵で生成された変換テーブルを使用して暗号化処理を行うことを特徴としている

[0014]

本発明の画像データ記録装置は、画像データ処理装置から転送されてきた印字 I Dに基づいて共通鍵を生成する共通鍵生成手段と、上記共通鍵生成手段によって生成された共通鍵及び上記画像データ処理装置から転送されてきた印字 I Dを 管理する管理手段と、上記共通鍵生成手段によって生成された共通鍵を上記画像 データ処理装置に送出する共通鍵発行手段と、上記画像データ処理装置から印字 I D及び印字制御データが送られてきたときに、上記印字 I Dに対応する共通鍵を上記管理手段から取得する共通鍵取得手段と、上記共通鍵取得手段によって取得された共通鍵を用いて上記印字制御データのコマンドを解析し、暗号化された印字画像データを抽出する解析手段と、上記解析手段によって抽出された印字画像データを、上記共通鍵取得手段によって取得した共通鍵を用いて復号化する復号化手段と、上記復号化手段によって復号化された印字画像データを記録媒体に

記録する印字手段とを具備することを特徴としている。

また、本発明の他の特徴とするところは、上記共通鍵生成手段は、上記共通鍵を無作為に生成することにより、生成する共通鍵を印字IDに対応させないことを特徴としている。

また、本発明のその他の特徴とするところは、上記復号化手段は、上記共通 鍵で生成された変換テーブルを使用して復号化処理を行うことを特徴としている

[0015]

本発明の画像データ記録システムは、偽造防止処理が施された入力画像データに応じた印字IDを生成して画像データ記録装置に転送する第1の転送手段と、上記画像データ記録装置から送られてきた共通鍵を用いて、上記画像データを暗号化するとともに印字制御コマンド化する印字制御データ生成手段と、上記印字制御コマンド化された印字制御データと上記印字IDとを上記画像データ記録装置に転送する第2の転送手段とを有する画像データ処理装置と、

上記画像データ処理装置から転送されてきた印字IDに基づいて共通鍵を生成する共通鍵生成手段と、上記共通鍵生成手段によって生成された共通鍵及び上記画像データ処理装置から転送されてきた印字IDを管理する管理手段と、上記共通鍵生成手段によって生成された共通鍵を上記画像データ処理装置に送出する共通鍵発行手段と、上記画像データ処理装置から送られてくる印字ID及び印字制御データに対応する共通鍵を上記管理手段から取得する共通鍵取得手段と、上記共通鍵取得手段によって取得された共通鍵を用いて上記印字制御データのコマンドを解析し、暗号化された印字画像データを抽出する解析手段と、上記解析手段によって抽出された印字画像データを、上記共通鍵取得手段によって取得した共通鍵を用いて復号化する復号化手段と、上記復号化手段によって復号化された印字画像データを記録媒体に記録する印字手段とを有する画像データ記録装置とからなることを特徴としている。

また、本発明の他の特徴とするところは、入力された画像データに偽造防止 を含む画像処理を施す画像処理手段と、上記画像処理手段によって偽造防止処理 が施された画像データに応じた印字 I Dを生成する印字 I D生成手段と、上記印 字I D生成手段によって生成された印字I Dを画像データ記録装置に転送する第 1 の転送手段と、上記画像データ記録装置から送られてきた共通鍵を用いて、上 記画像処理手段によって所定の処理が施された画像データを暗号化する暗号化手段と、上記暗号化手段によって暗号化された印字画像データを印字制御コマンド 化して印字制御データを生成する印字制御データ生成手段と、上記印字制御データ生成手段によって生成された印字制御データと上記印字I D生成手段によって生成された印字I Dとを上記画像データ記録装置に転送する第2の転送手段とを有する画像データ処理装置と、

上記画像データ処理装置から転送されてきた印字IDに基づいて共通鍵を生成する共通鍵生成手段と、上記共通鍵生成手段によって生成された共通鍵及び上記画像データ処理装置から転送されてきた印字IDを管理する管理手段と、上記共通鍵生成手段によって生成された共通鍵を画像データ処理装置に送出する共通鍵発行手段と、上記画像データ処理装置から送られてくる印字ID及び印字制御データに対応する共通鍵を上記管理手段から取得する共通鍵取得手段と、上記共通鍵取得手段によって取得された共通鍵を用いて上記印字制御データのコマンドを解析し、暗号化された印字画像データを抽出する解析手段と、上記解析手段によって抽出された印字画像データを、上記共通鍵取得手段によって取得した共通鍵を用いて復号化する復号化手段と、上記復号化手段によって復号化された印字画像データを記録媒体に記録する印字手段とを有する画像データ記録装置とからなることを特徴としている。

[0016]

本発明の画像データ記録方法は、偽造防止処理が施された入力画像データに応じた印字IDを生成して画像データ記録装置に転送する第1の転送処理と、上記画像データ記録装置から送られてきた共通鍵を用いて、上記画像データを暗号化するとともに印字制御コマンド化する印字制御データ生成処理と、上記印字制御コマンド化された印字制御データと上記印字IDとを上記画像データ記録装置に転送する第2の転送処理とを画像データ処理装置が行い、

上記画像データ処理装置から転送されてきた印字IDに基づいて共通鍵を生成する共通鍵生成処理と、上記共通鍵生成処理によって生成された共通鍵及び上記

画像データ処理装置から転送されてきた印字IDを管理手段により管理する管理 処理と、上記共通鍵生成処理によって生成された共通鍵を上記画像データ処理装置に送出する共通鍵発行処理と、上記画像データ処理装置から送られてくる印字 ID及び印字制御データに対応する共通鍵を上記管理手段から取得する共通鍵取 得処理と、上記共通鍵取得処理によって取得された共通鍵を用いて上記印字制御 データのコマンドを解析し、暗号化された印字画像データを抽出する解析処理と 、上記解析処理によって抽出された印字画像データを、上記共通鍵取得処理によって取得した共通鍵を用いて復号化する復号化処理と、上記復号化処理によって 復号化された印字画像データを記録媒体に記録する印字処理とを画像データ記録 装置が行うことを特徴としている。

また、本発明の他の特徴とするところは、入力された画像データに偽造防止を含む画像処理を施す画像処理処理と、上記画像処理処理によって偽造防止処理が施された画像データに応じた印字IDを生成する印字ID生成処理と、上記印字ID生成処理によって生成された印字IDを画像データ記録装置に転送する第1の転送処理と、上記画像データ記録装置から送られてきた共通鍵を用いて、上記画像処理処理によって所定の処理が施された画像データを暗号化する暗号化処理と、上記暗号化処理によって暗号化された印字画像データを印字制御コマンド化して印字制御データを生成する処理と、上記印字制御データ生成処理によって生成された印字IDと成られた印字目のとと上記画像データに記録装置に転送する第2の転送処理とを画像データ処理装置が行い、

上記画像データ処理装置から転送されてきた印字IDに基づいて共通鍵を生成する共通鍵生成処理と、上記共通鍵生成処理によって生成された共通鍵及び上記画像データ処理装置から転送されてきた印字IDを管理手段により管理する管理処理と、上記共通鍵生成処理によって生成された共通鍵を画像データ処理装置に送出する共通鍵発行処理と、上記画像データ処理装置から送られてくる印字ID及び印字制御データに対応する共通鍵を上記管理手段から取得する共通鍵取得処理と、上記共通鍵取得処理によって取得された共通鍵を用いて上記印字制御データのコマンドを解析し、暗号化された印字画像データを抽出する解析処理と、上

記解析処理によって抽出された印字画像データを、上記共通鍵取得処理によって取得した共通鍵を用いて復号化する復号化処理と、上記復号化処理によって復号化された印字画像データを記録媒体に記録する印字処理とを画像データ記録装置が行うことを特徴としている。

[0017]

本発明の記憶媒体は、上記に記載の各手段を構成するプログラムをコンピュータから読み出し可能に記録したことを特徴としている。

また、本発明の他の特徴とするところは、上記に記載の方法を実行するプログラムをコンピュータから読み出し可能に記録したことを特徴としている。

[0018]

【作用】

本発明は上記技術手段を有するので、画像データ処理装置により、画像データ記録装置に印字を行わせる際に、上記画像データ記録装置を制御する印字制御データが、上記画像データ記録装置により発行された共通鍵によって暗号化されているので、記録画像を生成するためには、上記共通鍵を生成した画像データ記録装置を使用しなければならないことにより、不特定多数の画像データ記録装置によって印字処理が行われることを有効に防止できすることができる。

[0019]

【発明の実施の形態】

(第1の実施形態)

以下、図面を用いて本発明の画像データ処理装置、画像データ記録装置、画像 データ記録システム、画像データ記録方法及び記憶媒体の実施形態を詳細に説明 する。

[0020]

図1は、本発明の記録システムにおけるデータ処理の手順を説明したフローチャートである

[0021]

図1において、ステップS1001~ステップS10004、及びステップS 1009~ステップS1012はホストコンピュータにおける処理である。また 、ステップS1005からステップS1008、及びステップS1013からステップS1017は、記録装置本体側で行われる処理である。

[0022]

まず、最初のステップS1001で画像データを人力する。次に、ステップS1002で偽造防止処理を含む画像処理を行う。

次に、ステップS1003で印字IDの生成を行い、その後、ステップS1004で印字IDを記録装置本体に転送する。

[0023]

次に、ステップS1005で、記録装置本体は印字IDを受信し、上記受信した印字IDをステップS1006で記憶して確保する。

次に、ステップS1007で共通鍵の生成を行う。この際に、記録装置本体は 上記印字IDと共通鍵とが対(ペア)になるように管理する。

[0024]

また、ステップS1007において共通鍵を生成する場合は無作為に行い、共通鍵を印字IDに対応させないようにする。

次に、ステップS1008で上記共通鍵をホストコンピュータに伝送する。

[0025]

上記記録装置本体から伝送された共通鍵は、ステップS1009においてホストコンピュータで受信される。これにより、ホストコンピュータの印字IDの転送に応答して記録装置本体が共通鍵を発行する形になるため、ステップS1004における印字IDの転送は共通鍵発行の請求を兼ねていることになる。

[0026]

次に、ステップS1010において、ステップS1002の処理で生成された 印字画像データを、上記ステップS1009で受信した共通鍵で暗号化する。

次に、ステップS1011において、上記暗号化された印字画像データを印字 制御コマンド化する。次に、ステップS1012において、上記印字IDとコマンド化された印字制御データとを記録装置本体側に転送する。

[0027]

次に、ステップS1013において、記録装置本体は印字IDと印字制御デー

タを受信する。その後、ステップS1014に進み、上記受信した印字IDに対応する共通鍵を、管理している印字IDと共通鍵の対より検索して取得する。次に、ステップS1015に進んで印字制御データのコマンドを解析し、暗号化された印字画像データを抽出する。

[0028]

次に、ステップS1016に進み、ステップS1014で取得した共通鍵を用いて印字画像データを復号化する。次に、ステップS1017において印字画像データを記録媒体に記録する印字処理を行う。

[0029]

なお、上述したステップS1012とステップS1013における印字データの転送処理と、ステップS1015~ステップS1017の処理は、順次繰り返して並列に行うようにしてもよい。また、図1には記していないが、ステップS1017の印字処理を終了した後、使用した印字IDとそれと対をなす共通鍵を破棄するようにしてもよい。

[0030]

図3は、ステップS1010で行われる暗号化処理の内容を説明するフローチャートである。

本実施形態における乱数テーブルは、0~255の整数値(1バイト長)を不 規則に並べた数列で構成している。すなわち、テーブルサイズは256バイトと なる。共通鍵は「0」から「255」の整数とした。

[0031]

まず、ステップS3001において、乱数テーブルをホストコンピュータのメモリ(RAM)上に格納する。次に、ステップS3002において、共通鍵を用いてメモリ(RAM)上の乱数テーブルを暗号化テーブルに変換する。

[0032]

次にステップS3003に進み、上記生成された暗号化テーブルを用いて印字画像データを暗号化する。この場合、印字画像データを1バイトづつ順次読み込み、この読み込んだ1バイトのデータ値を暗号化テーブルの先頭アドレスからのオフセット分として、該当するアドレスの数値を暗号化印字画像データとする。

[0033]

図5は、ステップS3002で行われる処理を説明したフローチャートである

まず、最初のステップS5000で処理を開始する。次に、ステップS500 1で変数nを「0」に設定する。この変数nは、後述のステップS5003~ステップS5005を100回繰り返すための管理用のカウンタである。

[0034]

次に、ステップS5002で、変数Bに共通鍵の値を代入する。次に、ステップS5003に進み、変数Aに変数Bを用いて次の数式(1)の計算値を代入する。

 $A = (5 \times B + 13) \mod 256 \cdots (1 \text{ } \pm 1)$

[0035]

次に、ステップS5004で変数Bに変数Aを用いて次の数式(2)の計算値 を代入する。

 $B = (5 \times A + 13) \mod 256 \cdots (23)$

[0036]

数式(1)及び(2)の計算は、線形合同法によって擬似乱数を発作している。 。すなわち、共通鍵は線形合同法における初期値に利用していることになる。

次に、ステップS5005では、上述したステップS3002でメモリに格納された乱数の先頭アドレスからのオフセットがAのテーブル値と、オフセットがBのテーブル値を入れ替える処理を行う。次に、ステップS5006でnを「1」だけ増加させる。

[0037]

次に、ステップS5007でnが「100」かどうかを判断する。この判断の結果、nが「100」であった場合はステップS5008に進み、変換作業を終了する。一方、ステップS5007の判断の結果、nが「100」でない場合にはステップS5003に進む。

[0038]

図4は、ステップS1016で行う暗号化処理の手順を説明するフローチャー

トである。ここで用いられる乱数テーブルは、ステップS3001の処理で用いたものと同一のテーブルである。

[0039]

まず、最初のステップS4001において、乱数テーブルを記録装置本体のメモリ(RAM)上に展開する。

次に、ステップS4002において、共通鍵を用いてメモリ(RAM)上の乱数テーブルを復号化テーブルに変換する。ここで、変換した復号化テーブルは、上記暗号化テーブルにおける数列の先頭アドレスからのオフセット値と、そのアドレスに格納されている整数値の関係が逆になっている関係にしてある。

[0040]

例えば、暗号化テーブルの先頭から25番目の数値が「12」であるとすると、復号化テーブルの先頭から12番目の数値は「25」になるようにしている(ただし、テーブルの先頭は0番目と定義する)。

[0041]

すなわち、暗号化テーブルは復号化テーブルの逆変換テーブルとなり、暗号化テーブルによる変換を関数A()、復号化テーブルによる変換を関数B()とすると、

a = A (d), d = B (a)

の関係になる。

[0042]

次に、生成された復号化テーブルを用いて、暗号化印字画像データをステップ S4003で復号化する。ステップS4003では、暗号化印字画像データを順次1バイトづつ読み込み、この読み込んだ1バイトのデータ値を暗号化テーブルの先頭アドレスからのオフセット分として、該当するアドレスの数値を印字画像データとする。

[0043]

図6は、ステップS4002の処理を説明したフローチャートである。

図6において、ステップS6000~ステップS6007は、ステップS500~ステップS6007と同一の暗号化テーブルの変換作業である。暗号化テ

ーブル作成後、ステップS6008においてアドレス値とテーブル値とを入れ替えて復号化テーブルに変換する。

[0044]

下記の表1、表2、表3は、本実施形態で使用もしくは生成したテーブルである。

[0045]

【表1】

乱数テーブル

x R(x)	x R(x)	x R(x)	x R(x)	x R(x)	x R(x)	\times R(x)	x R(x)
0 88	32 184	64 24	96 120	128 216	160 56	192 152	224 248
1 197	33 165	65 133	97 101	129 69	161 37	193 5	225 229
2 230	34 70	66 166	98 6	130 102	162 198	194 38	226 134
3 139	35 107	67 75	99 43	131 11	163 235	195 203	227 171
4 196	36 36	68 132	100 228	132 68	164 164	196 4	228 100
5 225	37 193	69 161	101 129	133 97	165 65	197 33	229 1
6 114	38 210	70 50	102 146	134 242	166 82	198 178	230 18
7 71	39 39	71 7	103 231	135 199	167 167	199 135	231 103
8 112	40 208	72 48	104 144	136 240	168 80	200 176	232 16
9 61	41 29	73 253	105 221	137 189	169 157	201 125	233 93
10 62	42 158	74 254	106 94	138 190	170 30	202 126	234 222
11 67	43 35	75 3	107 227	139 195	171 163	203 131	235 99
12 92	44 188	76 28	108 124	140 220	172 60	204 156	236 252
13 217	45 185	77 153	109 121	141 89	173 57	205 25	237 249
14 74	46 170	78 10	110 106	142 202	174 42	206 138	238 234
15 127	47 95	79 63	111 31	143 255	175 223	207 191	239 159
16 136	48 232	80 72	112 168	144 8	176 104	208 200	240 40
17 181	49 149	81 117	113 85	145 53	177 21	209 245	241 213
18 150	50 246	82 86	114 182	146 22	178 118	210 214	242 54
19 251	51 219	83 187	115 155	147 123	179 91	211 59	243 27
20 244	52 84	84 180	116 20	148 116	180 212	212 52	244 148
21 209	53 177	85 145	117 113	149 81	181 49	213 17	245 241
22 34	54 130	86 226	118 66	150 162	182 2	214 98	246 194
23 183	55 151	87 119	119 87	151 55	183 23	215 247	247 215
24 160	56 0	88 96	120 192	152 32	184 128	216 224	248 64
25 45	57 13	89 237	121 205	153 173	185 141	217 109	249 77
26 238	58 78	90. 174	122 14	154 110	186 206	218 46	250 142
27 179	59 147	91 115	123 83	155 51	187 19	219 243	251 211
28 140	60 236	92 76	124 172	156 12	188 108	220 204	252 44
29 201	61 169	93 137	125 105	157 73	189 41	221 9	253 233
30 250	62 90	94 186	126 26	158 122	190 218	222 58	254 154
31 239	63 207	95 175	127 143	159 111	191 79	223 47	255 15

[0046]

【表2】

暗号化テーブル

x A(x)	x (x)	x A(x)	x A(x)	× A(x)	x A(x)	x A(x)	x A(x)
0 217	32 57	64 24	96 249	128 89	160 56	192 25	224 121
1 197	33 196	65 164	97 132	129 100	161 68	193 36	225 229
2 183	34 70	66 119	98 215	130 55	162 151	194 38	226 87
3 154	35 122	67 75	99 43	131 26	163 250	195 218	227 186
4 165	36 5	68 101	100 228	132 37	164 133	196 4	228 69
5 32	37 0	69 224	101 192	133 160	165 128	197 33	229 64
6 35	38 131	70 227	102 67	134 242	166 3	198 99	230 18
7 246	39 214	71 7	103 231	135 118	167 86	199 54	231 22
8 177	40 208	72 113	104 209	136 240	168 145	200 241	232 81
9 156	41 124	73 92	105 60	137 28	169 252	201 220	233 93
10 207	42 47	74 254	106 239	138 79	170 175	202 15	234 222
11 146	43 114	75 82	107 50	139 195	171 163	203 210	235 178
12 253	44 188	76 189	108 29	140 125	172 221	204 61	236 157
13 88	45 185	77 153	109 248	141 216	173 184	205 152	237 120
14 187	46 27	78 123	110 219	142 202	174 155	206 251	238 91
15 127	47 78	79 46	111 14	143 238	175 206	207 174	239 142
16 136	48 233	80 73	112 168	144 9	176 105	208 201	240 41
17 84	49 52	81 20	113 244	145 212	177 180	209 245	241 213
18 150	50 71	82 167	114 182	146 103	178 199	210 39	242 135
19 138	51 106	83 74	115 42	147 10	179 234	211 59	243 170
20 85	52 181	84 21	116 117	148 116	180 53	212 149	244 148
21 144	53 112	85 80	117 48	149 16	181 49	213 17	245 176
22 83	54 130	86 19	118 115	150 162	182 51	214 147	246 243
23 230	55 198	87 166	119 134	151 102	183 23	215 247	247 6
24 97	56 193	88 96	120 129	152 225	184 65	216 161	248 1
25 12	57 236	89 204	121 172	153 140	185 108	217 109	249 77
26 255	58 95	90 191	122 31	154 110	186 223	218 63	250 159
27 179	59 98	91 66	123 34	155 2	187 226	219 194	251 211
28 173	60 13	92 76	124 205	156 45	188 141	220 237	252 44
29 200	61 169	93 137	125 104	157 72	189 40	221 8	253 232
30 235	62 90	94 171	126 11	158 107	190 203	222 58	254 139
31 94	63 62	95 30	127 143	159 111	191 190	223 158	255 126

[0047]

【表3】

彼号化テーブル

x B(x)	x B(x)	x B(x)	x B(x)	× (B(x)	x B(x)	x B(x)	x B(x)
0 37	32 5	64 229	96 88	128 165	160 133	192 101	224 69
1 248	33 197	65 184	97 24	129 120	161 216	193 56	225 152
2 155	34 123	66 91	98 59	130 54	162 150	194 219	226 187
3 166	35 6	67 102	99 198	131 38	163 171	195 139	227 70
4 196	36 193	68 161	100 129	132 97	164 65	196 33	228 100
5 36	37 132	69 228	101 68	133 164	165 4	197 1	229 225
6 247	38 194	70 34	102 151	134 119	166 87	198 55	230 23
7 71	39 210	71 50	103 146	135 242	167 82	199 178	231 103
8 221	40 189	72 157	104 125	136 16	168 112	200 29	232 253
9 144	41 240	73 80	105 176	137 93	169 61	201 208	233 48
10 147	42 115	74 83	106 51	138 19	170 243	202 142	234 179
11 126	43 99	75 67	107 158	139 254	171 94	203 190	235 30
12 25	44 252	76 92	108 185	140 153	172 121	204 89	236 57
13 60	45 156	77 249	109 217	141 188	173 28	205 124	237 220
14 111	46 79	78 47	110 154	142 239	174 207	206 175	238 143
15 202	47 42	79 138	111 159	143 127	175 170	207 10	239 106
16 149	48 117	80 85	112 53	144 21	176 245	208 40	240 136
17 213	49 181	81 232	113 72	145 168	177 8	209 104	241 200
18 230	50 107	82 75	114 43	146 11	178 235	210 203	242 134
19 86	51 182	83 22	115 118	147 214	179 27	211 251	243 246
20 81	52 49	84 17	116 148	148 244	180 177	212 145	244 113
21 84	53 180	85 20	117 116	149 212	181 52	213 241	245 209
22 231	54 199	86 167	118 135	150 18	182 114	214 39	246 7
23 183	55 130	87 226	119 66	151 162	183 2	215 98	247 215
24 64	56 160	88 13	120 237	152 205	184 173	216 141	248 109
25 192	57 32	89 128	121 224	153 77	185 45	217 0	249 96
26 131	58 222	90 62	122 35	154 3	186 227	218 195	250 163
27 46	59 211	91 238	123 78	155 174	187 14	219 110	251 206
28 137	60 105	92 73	124 41	156 9	188 44	220 201	252 169
29 108	61 204	93 233	125 140	157 236	189 76	221 172	253 12
30 95	62 63	94 31	126 255	158 223	190 191	222 234	254 74
31 122	63 218	95 58	127 15	159 250	191 90	223 186	255 26

[0048]

上記表1は、本実施形態で用いた乱数テーブルの一例である。また、表2は本 実施形態で共通鍵が「15」の場合の暗号化テーブルである。さらに、表3は本 実施形態で共通鍵が「15」の場合の復号化テーブルである。

[0049]

なお、上述した実施形態では、暗号化処理及び復号化処理をテーブル用いた変換方式にした例を示した。これは、演算による変換方式に対して処理的な負荷が少なくて済み、印字速度の低下の原因にならないように考慮したためである。

[0050]

また、本実施形態で記録装置本体が印字IDと共通鍵を管理しているため、記録装置本体が複数のホストコンピュータと接続されている場合に、共通鍵を発行した順番によらず、印字制御データを転送してきた順番に従って印字の処理を行うことが可能である。

[0051]

(その他の実施形態)

e " i .

上記実施形態では、共通鍵によって乱数テーブルを変換して暗号化テーブルを 生成したが、共通鍵自体が暗号化テーブルでもよい。また、共通鍵を合同法にお けるパラメータとして用い、擬似乱数の発生により暗号化テーブルを作成しても よい。

[0052]

また、暗号化テーブルの作成は、共通鍵によって変化すればよく、合同法に限 らず平均採中法などでもよい。また、上記実施形態における共通鍵の発行は、不 特定の数でならないため、記録装置の内部タイマの値を使用してもよい。

[0053]

次に、図7のブロック図を参照しながら、本発明を実施する画像データ記録シ ステムの構成例を説明する。

図7において、70は画像データ処理装置、71はインタフェース、72は画像処理手段、73は印字ID生成手段、74は印字ID記憶手段、75は第1の転送手段、76は暗号化手段、77は印字制御データ生成手段、78は第2の転送手段である。

[0054]

また、80は画像データ記録装置、81はインタフェース、82は共通鍵生成手段、83は管理手段、84は共通鍵発行手段、85は共通鍵取得手段、86は解析手段、87は復号化手段、88は印字手段である。

[0055]

図7に示したように、この画像データ記録システムは、画像データ処理装置70と画像データ記録装置80とで構成されており、それぞれに設けられているインタフェース71及びインタフェース81を介して種々のデータ及びコマンドを送受信することで画像データ処理装置70に入力された画像データを画像データ記録装置80で印字して出力するようになされている。

[0056]

図7において、画像処理手段72は、入力された画像データに偽造防止を含む

画像処理を施す。また、印字ID生成手段73は、上記画像処理手段72によって偽造防止処理が施された画像データに応じた印字IDを生成する。上記生成された印字IDは、印字ID記憶手段74に記憶されるとともに、第1の転送手段75によって画像データ記録装置80に転送される。

[0057]

4 B 1 4

暗号化手段76は、上記画像データ記録装置80から送られてくる共通鍵を用いて、上記画像処理手段1によって所定の処理が施された画像データを暗号化する。また、印字制御データ生成手段77は、上記暗号化手段76によって暗号化された印字画像データを印字制御コマンド化して印字制御データを生成する。そして、上記生成された印字制御データと上記印字ID生成手段73によって生成され、印字ID記憶手段74に記憶されている印字IDが第2の転送手段78によって上記画像データ記録装置80に転送される。

[0058]

共通鍵生成手段82は、画像データ処理装置70から転送されてきた印字IDに基づいて共通鍵を生成する。そして、生成された共通鍵、及び上記転送されてきた印字IDが管理手段83のメモリに記憶されて管理される。

[0059]

共通鍵発行手段84は、上記共通鍵生成手段82によって生成された共通鍵を上記画像データ処理装置70に送出する。また、共通鍵取得手段85は上記画像データ処理装置70から、印字ID及び印字制御データが送られてきたときに、上記印字IDに対応する共通鍵を上記管理手段83から取得する。

[0060]

解析手段86は、上記共通鍵取得手段85によって取得された共通鍵を用いて 上記印字制御データのコマンドを解析し、暗号化された印字画像データを抽出す る。復号化手段12は、上記解析手段によって抽出された印字画像データを、上 記共通鍵取得手段85によって取得した共通鍵を用いて復号化する。そして、上 記復号化された印字画像データが印字手段88によって記録媒体(図示せず)に 記録される。

[0061]

(本発明の他の実施形態)

e fr y

本発明は複数の機器(例えば、ホストコンピュータ、インタフェース機器、リーダ、プリンタ等)から構成されるシステムに適用しても1つの機器からなる装置に適用しても良い。

[0062]

また、上述した実施の形態の機能を実現するように各種のデバイスを動作させるように、上記各種デバイスと接続された装置あるいはシステム内のコンピュータに対し、上記実施の形態の機能を実現するためのソフトウェアのプログラムコードを供給し、そのシステムあるいは装置のコンピュータ(CPUあるいはMPU)に格納されたプログラムに従って上記各種デバイスを動作させることによって実施したものも、本発明の範疇に含まれる。

[0063]

また、この場合、上記ソフトウェアのプログラムコード自体が上述した実施の 形態の機能を実現することになり、そのプログラムコード自体、およびそのプロ グラムコードをコンピュータに供給するための手段、例えばかかるプログラムコ ードを格納した記憶媒体は本発明を構成する。かかるプログラムコードを記憶す る記憶媒体としては、例えばフロッピーディスク、ハードディスク、光ディスク 、光磁気ディスク、CD-ROM、磁気テープ、不揮発性のメモリカード、RO M等を用いることができる。

[0064]

また、コンピュータが供給されたプログラムコードを実行することにより、上述の実施の形態で説明した機能が実現されるだけでなく、そのプログラムコードがコンピュータにおいて稼働しているOS(オペレーティングシステム)あるいは他のアプリケーションソフト等の共同して上述の実施の形態で示した機能が実現される場合にもかかるプログラムコードは本発明の実施の形態に含まれることは言うまでもない。

[0065]

さらに、供給されたプログラムコードがコンピュータの機能拡張ボードやコン ピュータに接続された機能拡張ユニットに備わるメモリに格納された後、そのプ ログラムコードの指示に基づいてその機能拡張ボードや機能拡張ユニットに備わるCPU等が実際の処理の一部または全部を行い、その処理によって上述した実施の形態の機能が実現される場合にも本発明に含まれる。

[0066]

【発明の効果】

D 1

以上説明したように、本発明によれば、画像データ記録装置から発行された共通鍵を用いて印字制御データを暗号化するので、画像データ処理装置が画像データ記録装置を制御して記録画像を生成するためには、上記共通鍵を発行した画像データ記録装置を使用しなければならないこととなり、不特定多数の画像データ記録装置により印字されることを有効に防止することができ、上記画像データ処理装置における偽造防止処理を確実に実行することが可能となった。これにより、紙幣及び有価証券等の偽造を確実に防止することができる。

【図面の簡単な説明】

【図1】

本発明の第1の実施形態における記録システムの動作手順を示すフローチャートである。

【図2】

従来技術を用いた記録システムにおける暗号化処理の手順を示すフローチャートである。

【図3】

第1の実施形態における暗号化処理の手順を示すフローチャートである。

【図4】

第1の実施形態における復号化処理の手順を示すフローチャートである。

【図5】

第1の実施形態における暗号化テーブル作成処理の手順を示すフローチャート である。

【図6】

第1の実施形態における復号化テーブル作成処理の手順を示すフローチャート である。

【図7】

本発明を実現する画像データ記録システムの構成例を示すブロック図である。

【符号の説明】

- 70 画像データ処理装置
- 71 インタフェース
- 72 画像処理手段
- 73 印字 I D生成手段
- 74 印字 I D記憶手段
- 75 第1の転送手段
- 76 暗号化手段
- 77 印字制御データ生成手段
- 78 第2の転送手段
- 80 画像データ記録装置
- **´81** インタフェース
- 82 共通鍵生成手段
- 83 管理手段
- 84 共通鍵発行手段
- 85 共通鍵取得手段
- 86 解析手段
- 87 復号化手段
- 88 印字手段

【書類名】

. .

図面

【図1】

【図2】

[図3]

【図4】

【図5】

【図6】

【図7】

【書類名】要約書

【要約】

【課題】 入力画像に対する偽造防止を有効に行うことができるようにする。

【解決手段】 偽造防止処理が施された入力画像データに応じた印字IDを生成する処理、画像データ記録装置から送られてきた共通鍵を用いて上記画像データを暗号化及び印字制御コマンド化する処理、上記印字制御コマンド化した印字制御データと上記印字IDとを転送する処理とを画像データ処理装置が行い、上記転送されてきた印字IDに基づいて共通鍵を生成する処理、上記生成した共通鍵を上記画像データ処理装置に送出する処理、上記印字制御データのコマンドを解析し、暗号化された印字画像データを抽出する処理、上記抽出した印字画像データを記録媒体に記録する印字処理とを画像データ記録装置によって行うことにより、不特定多数の画像データ記録装置によって印字処理が行われないようにする。

【選択図】 図1

出願人履歷情報

識別番号

[000001007]

1. 変更年月日 1990年 8月30日

[変更理由] 新規登録

住 所 東京都大田区下丸子3丁目30番2号

氏 名 キヤノン株式会社