Question2:

I programmed in python3 to implement the MDP. As the formula in the lecture note:

We have a state space S.

For $x \in S$, action set A(x)

For $x \in S$, $a \in A(x)$, we have immediate reward $r_{x,a}$.

For $x \in S$, $a \in A(x)$, we have transition to state s' with probability $p_{x,s'}^a$.

For $x \in S$:

$$U^{*}(s) = \max_{a \in A(s)} \left[r_{s,a} + \beta \sum_{s'} p_{s,s'}^{a} U^{*}(s') \right].$$

$$\pi^{*}(s) = \operatorname{argmax}_{a \in A(s)} \left[r_{s,a} + \beta \sum_{s'} p_{s,s'}^{a} U^{*}(s') \right].$$

And by value iteration,

$$\max_{s \in S} |U_k^*(s) - U^*(s)| \to 0 \text{ as } k \to \infty.$$

Hence.

$$|U_{k+1}^{*}(s) - U^{*}(s)| \le \beta \epsilon_{k}$$
.

In my approach, I use the following convergence condition to accelerate the convergence,

$$\left|U_{k+1}^*(s) - U^*(s)\right| \le \frac{1-\beta}{\beta}\varepsilon.$$

And the representation of data is showed below.

State Set

New	Used1	Used2	Used3	Used4	Used5	Used6	Used7	Used8	Dead
0	1	2	3	4	5	6	7	8	9

Action Set

Used	Replace
0	1

Transition Set

Transition_used	Transition_replace
-----------------	--------------------

Transition used, (-infinite denotes can't be reach)

state	0	1-8	9
(probability, next state)	(1, 1)	(0.1 * i, i + 1), (1 - 0.1 * i, i)	(negative infinite, 0)

Transition replace

state	0	1-9
(probability, next state)	(negative infinite, 0)	(1, 0)

Reward Set

Reward_used Reward_replace	Reward_used	Reward_replace
------------------------------	-------------	----------------

Reward used, (0 denotes can't be reach and no reward)

0	1	2	3	4	5	6	7	8	9
100	90	80	70	60	50	40	30	20	0

Reward replace, (0 denotes can't be reach and no reward)

0	1	2	3	4	5	6	7	8	9
0	-250	-250	-250	-250	-250	-250	-250	-250	-250

So when I get U by value iteration, I can easily use it to find the best action to do on the exactly state.

a)

	state	U* (state)
New	0	800.5305499262429,
Used1	1	778.3673954680371,
Used2	2	643.2212348213058,
Used3	3	556.1225096942011,
Used4	4	502.8349428957191,
Used5	5	475.8449436861682,
Used6	6	470.4773889386281,
Used7	7	470.4773889386281,
Used8	8	470.4773889386281,
Dead	9	470.4773889386281

b) 0 is used, 1 is replace.

	state	action
New	0	0
Used1	1	0
Used2	2	0
Used3	3	0
Used4	4	0
Used5	5	0
Used6	6	1
Used7	7	1
Used8	8	1
Dead	9	1

c)

Assume we just let the cost to be integer, so I modify the code to the file mdp_c.py to output the U of this problem.

From observation, I found that when the cost is 169, all the U*(state) are slightly larger than the U I have got in a) with a delta = 0.8 approximately. And when the cost is 170, the U is smaller than the U in a).

So, I conclude that the highest price supposed to be 169 so that the used machine would be a rational choice.

d)

I modify the code to mdp_d.py

Just use different values of beta to run the program, so I get: when beta increases, the number of states best to *replace* is increases.

```
beta: 0.1
U: (0: 109.9779, 1: 99.86569, 2: 88.63138000000001, 3: 77.39707, 4: 66.16276, 5: 54.92845, 6: 43.60678, 7: 30.98847, 8: 0.888159999999992, 9: -229.01])
public: (0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 1)

beta: 0, 3
U: (0: 133.377347948037, 1: 177.9298439850653, 2: 112.09452833945341, 3: 98.07280181449545, 4: 83.08722259512952, 5: 67.76682141830502, 6: 50.68713217984347, 7: 25.590690189794335, 8: -31.95621123992038, 9: -208.4883800955
public: (0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 1)

beta: 0, 5
U: (0: 188.88825849765377, 1: 177.7733892418129, 2: 155.515667889483, 3: 133.0976291826778, 4: 110.093226139082, 5: 85.3292893538812, 6: 55.99018894664512, 7: 13.97563734965005, 8: -44.91457965152193, 9: -155.55731062762135
public: (0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 1)

beta: 0, 7
U: (0: 302.91870649833665, 1: 289.8884546766802, 2: 246.33633318561768, 3: 202.40224648112854, 4: 150.64501423722783, 5: 118.48006173627267, 6: 77.17816918446792, 7: 37.068118307907866, 8: -1.460924513171328, 9: -37.96724740
public: (0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 1)

beta: 0, 9
U: (0: 8643.980056468315, 1: 6613.088956035842, 2: 470.4773889380284, 8: 6624.518465812904, 9: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 9: 6624.518465812904, 9: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 9: 6624.518465812904, 9: 6624.518465812904, 9: 6624.518465812904, 9: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 8: 6624.518465812904, 9: 6624.518465812904, 9: 6624.518465812904, 9: 6624.518465812904, 9: 6
```

So, from the outcome I could assume that there is a policy,

	state	action
New	0	Used
Used1	1	Used
Used2	2	Used
Used3	3	Used
Used4	4	Used
Used5	5	Used
Used6	6	Used
Used7	7	Used
Used8	8	Used
Dead	9	Replace

That using this policy we can have the optimal until beta is 0.7. But for beta larger than 0.7, we may not have a optimal policy for all beta.

Bonus)

```
heta: 0.7
U: (0: 300.91870049833665, 1; 289.8843404766802, 2: 246.5383315861768, 3: 203.40224661812884, 4: 160.64501423722783, 5: 118.48006173627267, 6: 77.17816918446792, 7: 37.068118307907866, 8: -1.460924513171328, 9: -37.95724740 policy: (0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 1)

—del__

heta: 0.8
U: (0: 483.47789183547104, 1: 420.5976442246861, 2: 347.0945510712057, 3: 280.9641455258718, 4: 223.43519823304214, 5: 175.58289195430893, 6: 138.37489318275885, 7: 112.69822855047994, 8: 99.37656501586491, 9: 99.18209011876 policy: (0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 1)

—del__

—del__
```

For beta = 0.8, I found all U is bigger than 0, and beta smaller than 0.7 there are always negative Us, so I think the long term discounted value \boldsymbol{x} may be between 0.7 and 0.8. When it is small than \boldsymbol{x} , we will get net loss and otherwise we can get a net gain.