# Time Dilation and Contraction for Programmable Analog Devices with Jaunt

Sara Achour MIT CSAIL

Martin C. Rinard MIT CSAIL

E = 6800-ES S = 4400-ES  $\partial ES/\partial t = 0.0001 \cdot E \cdot S - 0.01 \cdot ES$  ES(0) = 0

### Dynamical System

E = 6800 - ES

S = 4400 - ES

 $\partial ES/\partial t = 0.0001 \cdot E \cdot S - 0.01 \cdot ES$ 

ES(0) = 0





Dynamical System

Programmable Analog Devices E = 6800 - ES

S = 4400 - ES

 $\partial ES/\partial t = 0.0001 \cdot E \cdot S - 0.01 \cdot ES$ 

ES(0) = 0





Dynamical System

Programmable
Analog Devices
With Physical Limitations

# Change Dynamic Range of Variables Change Speed of Simulation

$$E = 6800 - ES$$

S = 4400 - ES

 $\partial ES/\partial t = 0.0001 \cdot E \cdot S - 0.01 \cdot ES$ 

$$ES(0) = 0$$



Dynamical System

Programmable Analog Devices

With Physical Limitations

# Modeling the Physical World











# Dynamical Systems Model Biological Processes



$$E = 6800 - ES$$

$$S = 4400 - ES$$

$$\partial ES/\partial t = 0.0001 \cdot E \cdot S - 0.01 \cdot ES$$

$$ES(0) = 0$$







#### Dynamical Systems

$$E = 6800-ES$$

$$S = 4400-ES$$

$$\partial ES/\partial t = 0.0001 \cdot E \cdot S - 0.01 \cdot ES$$

$$ES(0) = 0$$

- state variables that model physical quantities (E, S, ES)
- differential equations that specify continuous dynamics of state variables over time

#### Goal: Simulate Dynamical System

E = 
$$6800$$
–ES  
S =  $4400$ –ES  
 $\partial ES/\partial t = 0.0001 \cdot E \cdot S - 0.01 \cdot ES$   
ES(0) = 0



- Compute dynamics of state variables over time
- Plot concentrations of compounds over time

#### Analog Computing circa 1950

#### direct mapping

- variables → properties of wires
- properties: voltage, current
- dynamics → circuit dynamics

#### straightforward simulation:

- power up circuit
- measure circuit properties over time
- 1970-2010: Age of Digital Computers
  - Analog computers out of fashion

#### Telefunken RAT 700





#### Programmable Analog Devices

- modernized hardware
  - modern semiconductor technology
- new capabilities
  - powerful, heavily optimized analog components
  - digital reprogrammability
  - exploit analog noise



S. S. Woo, J. Kim, and R. Sarpeshkar. A cytomorphic chip for quantitative modeling of fundamental bio-molecular circuits. IEEE Trans. Biomed. Circuits and Systems, 9(4):527–542, 2015.













DAC DAC DAC DAC DAC **Z**0 **X0 Y0** 

A X0 Z0 Y0 B  

$$Z = \int A \cdot X \cdot Y - B \cdot Z \, dt$$
  $X = X0 - Z$   
 $Z = Z0 @ t = 0$   $Y = Y0 - Z$   
X Z Y

B C D = A + B - C

A B C D = A + B - C

A B D = A + B - C

ADC

ADC

ADC

ADC

**ADC** 

```
DAC
          DAC
                     DAC
                                          DAC
                               DAC
                       Z0
              X0
                                Y0
      A
                                          B
    10-5, 10-3] [0, 1000]
                     [0,600]
                             [0,1000] [10-4,1]
            [0,1600] [0,1600] [0,1600]
               X
                                 Y
          C
      В
                        В
                            C
                                          В
                                              C
                   A
[0,5] [0,5] [0,5]
                  [0,5] [0,5] [0,5]
                                    [0,5] [0,5] [0,5]
    [0,10]
                                        [0,10]
                      [0,10]
ADC
           ADC
                                 ADC
                                            ADC
                      ADC
```









# Analog Device Configuration





#### Analog Device Specification



[1] Sara Achour, Rahul Sarpeshkar, and Martin C. Rinard. Configuration synthesis for programmable analog devices with Arco. PLDI 2016

# does not consider physical limitations of hardware

- operating range of ports

E = 680 Sampling rates of DACs/ADCs

 $\partial ES/\partial t = 0.0001 \cdot E \cdot -0.01 \cdot ES$ 

ES(0) = 0

Dynamical System



Analog Device Configuration

[1] Sara Achour, Rahul Sarpeshkar, and Martin C. Rinard. Configuration synthesis for programmable analog devices with Arco. PLDI 2016

#### Analog Device Configuration



#### Execution on Analog Device



#### Analog Device has Physical Limitations



#### Analog Device has Physical Limitations



#### Uniformly scaling the configuration



#### Uniformly scaling the configuration



#### Uniformly scaling the configuration



# Analog Device Configuration





# **Scaled** Analog Device Configuration



physically realizable: signals are within port operating ranges

recoverable: recover original simulation at digital interface



# **Scaled** Analog Device Configuration



#### Scaled Configuration



### Scaled Configuration



### Time Scaling Factor, T



### Multiply each DAC value by its scaling factor



#### The scaled signals propagate through the analog device



#### All of the internal signals fall in the port operating ranges





### Divide ADC samples by scaling factors



#### Multiply hardware time by T



## Jaunt

- Objective: Find numerical assignments for scaling factors that produces fastest simulation
  - Scaling Factors: **T,a**D1, ..., **a**D5, **a**A1,..., **a**A3,**a**A,...,**a**z
  - Values: real numbers > 0

## Jaunt

- Objective: Find numerical assignments for scaling factors that produces fastest simulation
  - Scaling Factors: **T,a**D1, ..., **a**D5, **a**A1,..., **a**A3,**a**A,...,**a**z
  - Values: real numbers > 0
- Geometric Program: Convex optimization problem
  - Device Configuration → Geometric Program

#### maximize T

### subject to:

Operating Range Constraints

Sampling Constraints

**Connection Constraints** 

**Factor Constraints** 

physically realizable

maximize T

subject to:

**Operating Range Constraints** 

Sampling Constraints

**Connection Constraints** 

**Factor Constraints** 

physically realizable



```
a_{D1}.0.0001 \in [0,10]
a_{D2}.6800 \in [0,3300]
a_{D3}.0 \in [0,3300]
```

$$a_{D4}.4400 \in [0,3300]$$

$$a_{D5}.0.0001 \in [0,10]$$



```
a_{D1}.0.0001 \in [0,10]
a_{D2}.6800 \in [0,3300]
a_{D3}.0 \in [0,3300]
```

$$a_{D4}.4400 \in [0,3300]$$
 $a_{D5}.0.0001 \in [0,10]$ 



```
a_{D1}.0.0001 \in [0,10]
a_{D2}.6800 \in [0,3300]
a_{D3}.0 \in [0,3300]
```

$$a_{D4}.4400 \in [0,3300]$$

$$a_{D5} \cdot 0.0001 \in [0,10]$$



```
a_{A\cdot}0.0001\in[10^{-5},10^{-3}] a_{Y0\cdot}4400\in[0,1000] a_{X0\cdot}6800\in[0,1000] a_{B\cdot}0.0001\in[10^{-4},1] a_{Z0\cdot}0\in[0,600]
```





```
a_{A1} \cdot [0,6800] \subseteq [0,3300]

a_{A2} \cdot [0,4400] \subseteq [0,3300]

a_{A3} \cdot [0,4400] \subseteq [0,3300]
```

#### maximize T

### subject to:

Operating Range Constraints

Sampling Constraints

**Connection Constraints** 

**Factor Constraints** 

physically realizable

maximize T

subject to:

Operating Range Constraints

**Sampling Constraints** 

**Connection Constraints** 

**Factor Constraints** 

physically realizable



1 hu  $\cdot \tau \leq 0.5$  su



1 hu 
$$\tau \le 0.5$$
 su  $\tau$ : hu  $\rightarrow$  su



time between simulation observations (su)



1 hu · 
$$\tau$$
 ≤ 0.5 su  $\tau$ : hu → su

user defined maximum time between samples

Limits simulation speed

Improves sample fidelity

#### maximize T

### subject to:

Operating Range Constraints

Sampling Constraints

**Connection Constraints** 

**Factor Constraints** 

physically realizable

#### maximize T

subject to:

Operating Range Constraints

Sampling Constraints

**Connection Constraints** 

**Factor Constraints** 

physically realizable

### Connection Constraints



$$a_{D1} = a_A$$
  $a_{D3} = a_{Z0}$ 

$$\mathbf{a}_{\mathrm{D2}} = \mathbf{a}_{\mathrm{X0}} \qquad \mathbf{a}_{\mathrm{D4}} = \mathbf{a}_{\mathrm{Y0}}$$

## Connection Constraints



$$\mathbf{a}_{\mathrm{D1}} = \mathbf{a}_{\mathrm{A}}$$

$$a_{D2} = a_{X0}$$

$$\mathbf{a}_{\mathrm{D3}} = \mathbf{a}_{\mathrm{Z0}}$$

$$\mathbf{a}_{\mathrm{D4}} = \mathbf{a}_{\mathrm{Y0}}$$

$$a_{D5} = a_{B}$$

## Connection Constraints



$$a_{X} = a_{A1}$$
  $a_{Z} = a_{A2}$   $a_{Y} = a_{A3}$ 

#### maximize T

### subject to:

Operating Range Constraints

Sampling Constraints

**Connection Constraints** 

**Factor Constraints** 

physically realizable

#### maximize T

### subject to:

Operating Range Constraints

Sampling Constraints

**Connection Constraints** 

**Factor Constraints** 

physically realizable



$$X = X0-Z$$

$$Y = Y0-Z$$

$$Z = \int A \cdot X \cdot Y - B \cdot Z dt$$

$$Z = Z0 @ t=0$$



$$a_X X = a_{X0} X 0 - a_Z Z$$

$$a_Y Y = a_{Y0} Y 0 - a_Z Z$$

$$\mathbf{a}_{\mathbf{Z}} \mathbf{Z} = \int [\mathbf{a}_{\mathbf{A}} \mathbf{A} \cdot \mathbf{a}_{\mathbf{X}} \mathbf{X} \cdot \mathbf{a}_{\mathbf{Y}} \mathbf{Y} - \mathbf{a}_{\mathbf{B}} \mathbf{B} \cdot \mathbf{a}_{\mathbf{Z}} \mathbf{Z}] \tau^{-1} dt$$

$$a_{\rm Z} Z = a_{\rm Z0} Z0$$
 @ t=0

$$a_XX = a_{X0}X0 - a_ZZ$$

$$a_XX = a_{X0}[X0-Z]$$

$$\mathbf{a}_{\mathsf{X}\mathsf{0}} = \mathbf{a}_{\mathsf{Z}}$$

$$a_X[X = X0-Z]$$

$$a_{X0} = a_Z$$
  $a_X = a_{X0}$ 

$$a_X[X = X0-Z]$$

$$\mathbf{a}_{\mathbf{x}_0} = \mathbf{a}_{\mathbf{z}}$$

$$a_{X0} = a_Z$$
  $a_X = a_{X0}$ 

$$a_Y Y = a_{Y0} Y 0 - a_Z Z$$

$$a_X[X = X0-Z]$$

$$\mathbf{a}_{\mathsf{X}\mathsf{0}} = \mathbf{a}_{\mathsf{Z}}$$

$$\mathbf{a}_{\mathsf{X}\mathsf{0}} = \mathbf{a}_{\mathsf{Z}} \qquad \mathbf{a}_{\mathsf{X}} = \mathbf{a}_{\mathsf{X}\mathsf{0}}$$

$$a_{Y}[Y = Y0-Z]$$

$$\mathbf{a}_{\mathbf{Y}\mathbf{0}} = \mathbf{a}_{\mathbf{Y}}$$

$$\mathbf{a}_{Y0} = \mathbf{a}_{Z}$$

$$a_{X}[X = X0-Z]$$

$$a_{X0} = a_{Z} \qquad a_{X} = a_{X0}$$

$$a_{Y}[Y = Y0-Z]$$

$$\mathbf{a}_{Y0} = \mathbf{a}_{Y}$$
  $\mathbf{a}_{Y0} = \mathbf{a}_{Z}$ 

$$\mathbf{a}_{\mathbf{Z}} \mathbf{Z} = \int [\mathbf{a}_{\mathbf{A}} \mathbf{A} \cdot \mathbf{a}_{\mathbf{X}} \mathbf{X} \cdot \mathbf{a}_{\mathbf{Y}} \mathbf{Y} - \mathbf{a}_{\mathbf{B}} \mathbf{B} \cdot \mathbf{a}_{\mathbf{Z}} \mathbf{Z}] \boldsymbol{\tau}^{-1} dt$$

$$a_{X}[X = X0-Z]$$

$$a_{X0} = a_{Z} \qquad a_{X} = a_{X0}$$

$$a_{Y}[Y = Y0-Z]$$

$$a_{Y0} = a_{Y} \qquad a_{Y0} = a_{Z}$$

$$\mathbf{a}_{\mathbf{Z}} \mathbf{Z} = \int \mathbf{a}_{\mathbf{B}} \cdot \mathbf{a}_{\mathbf{Z}} \left[ \mathbf{A} \cdot \mathbf{X} \cdot \mathbf{Y} - \mathbf{B} \cdot \mathbf{Z} \right] \boldsymbol{\tau}^{-1} dt$$

$$\mathbf{a}_{\mathbf{A}} \cdot \mathbf{a}_{\mathbf{X}} \cdot \mathbf{a}_{\mathbf{Y}} = \mathbf{a}_{\mathbf{B}} \cdot \mathbf{a}_{\mathbf{Z}}$$

$$a_{X}[X = X0-Z]$$

$$a_{X0} = a_{Z} \qquad a_{X} = a_{X0}$$

$$a_{Y}[Y = Y0-Z]$$

$$a_{Y0} = a_{Y} \qquad a_{Y0} = a_{Z}$$

$$\mathbf{a}_{\mathbf{Z}} \mathbf{Z} = \mathbf{a}_{\mathbf{B}} \cdot \mathbf{a}_{\mathbf{Z}} \cdot \mathbf{\tau}^{-1} \int [\mathbf{A} \cdot \mathbf{X} \cdot \mathbf{Y} - \mathbf{B} \cdot \mathbf{Z}] dt$$

$$\mathbf{a}_{\mathbf{A}} \cdot \mathbf{a}_{\mathbf{X}} \cdot \mathbf{a}_{\mathbf{Y}} = \mathbf{a}_{\mathbf{B}} \cdot \mathbf{a}_{\mathbf{Z}}$$

$$a_{X}[X = X0-Z]$$

$$a_{X0} = a_{Z} \qquad a_{X} = a_{X0}$$

$$a_{Y}[Y = Y0-Z]$$

$$a_{Y0} = a_Y$$
  $a_{Y0} = a_Z$ 

$$\mathbf{a}_{\mathbf{Z}} [\mathbf{Z} = \int [\mathbf{A} \cdot \mathbf{X} \cdot \mathbf{Y} - \mathbf{B} \cdot \mathbf{Z} \, dt]$$

$$\mathbf{a}_{\mathbf{A}} \cdot \mathbf{a}_{\mathbf{X}} \cdot \mathbf{a}_{\mathbf{Y}} = \mathbf{a}_{\mathbf{B}} \cdot \mathbf{a}_{\mathbf{Z}} \qquad \mathbf{a}_{\mathbf{Z}} = \mathbf{a}_{\mathbf{B}} \cdot \mathbf{a}_{\mathbf{Z}} \cdot \mathbf{\tau}^{-1}$$

$$a_{X}[X = X0-Z]$$

$$a_{X0} = a_{Z} \qquad a_{X} = a_{X0}$$

$$a_{Y}[Y = Y0-Z]$$

$$a_{Y0} = a_{Y} \qquad a_{Y0} = a_{Z}$$

$$a_{Z}[Z = \int [A \cdot X \cdot Y - B \cdot Z dt]$$

$$a_{A} \cdot a_{X} \cdot a_{Y} = a_{B} \cdot a_{Z} \qquad a_{Z} = a_{B} \cdot a_{Z} \cdot \tau^{-1}$$

$$a_{Z}Z = a_{Z0}Z0 @ t = 0$$

$$a_{Z0} = a_{Z}$$

Geometric Program

#### maximize $\tau$ subject to: $a_Z = a_B \cdot a_Z \cdot \tau^{-1}$

$$a_A \cdot a_X \cdot a_Y = a_B \cdot a_Z$$

$$a_{Y0} = a_{Y}$$

 $a_{Y0} = a_{Z}$ 

• • •

# Geometric Programming Library (GPKit)

Convert to
Convex
Program

Convex Solver (cvxopt)

#### Numerical Assignments

$$\tau = 0.50$$
 $a_{D1} = 8.28$ 
 $a_{A} = 8.28$ 
 $a_{D5} = 0.50$ 
 $a_{B} = 0.50$ 
 $a_{D2-D4} = 0.06$ 
 $a_{X0} = 0.06$ 
 $a_{Y0} = 0.06$ 
 $a_{X0} = 0.06$ 

Geometric Program

#### maximize $\tau$ subject to: $a_Z = a_B \cdot a_Z \cdot \tau^{-1}$ $a_A \cdot a_X \cdot a_Y = a_B \cdot a_Z$ $a_{Y0} = a_Y$ $a_{Y0} = a_Z$ ...



#### Numerical Assignments

```
\tau = 0.50
a_{D1} = 8.28
a_{A} = 8.28
a_{D5} = 0.50
a_{\rm B} = 0.50
a_{D2-D4} = 0.06
a_{X0} = 0.06
a_{Y0} = 0.06
a_{Z0} = 0.06
a_{\rm X} = 0.06
a_{Y} = 0.06
a_z = 0.06
a_{A1-A3} = 0.06
```

Numerical Assignments

Geometric Program

#### maximize $\tau$ subject to: $a_Z = a_B \cdot a_Z \cdot \tau^{-1}$ $a_A \cdot a_X \cdot a_Y = a_B \cdot a_Z$ $a_{Y0} = a_Y$ $a_{Y0} = a_Z$ ...



$$\tau = 0.50$$
 $a_{D1} = 8.28$ 
 $a_{A} = 8.28$ 
 $a_{D5} = 0.50$ 
 $a_{B} = 0.50$ 
 $a_{D2-D4} = 0.06$ 
 $a_{X0} = 0.06$ 
 $a_{Z0} = 0.06$ 
 $a_{X} = 0.06$ 









 $a_{A1-A3} = 0.06$ 

2x slower than real-time

## Recover Original Simulation



#### Recovered Simulation



## **Expected Simulation**



# Results

- Gene regulatory network that generates oscillations
  - synthetic genetic clock
- Model:
  - 9 diffeqs
  - 7 parameters
- Simulation
  - time: 1000 su
  - sample: 20 su





[1] Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcriptional regulators. Nature, 403(6767):335–338, 2000.



Reference

Jaunt + No Recover



2.839x faster



Jaunt + Recover



- Models the Paralysis of skeletal muscles after the introduction on Botulinum Neurotoxin A
- Model:
  - 5 diffeqs
  - 1 function
  - 8 parameters
- Simulation
  - time: 250 su
  - sample: 5 su



[1] Frank J Lebeda, Michael Adler, Keith Erickson, and Yaroslav Chushak. Onset dynamics of type a botulinum neurotoxin-induced paralysis. Journal of pharmacokinetics and pharmacodynamics, 35(3):251, 2008.



\*Jaunt still used for pruning search space



Jaunt + No Recover



5x faster



## Correctness+Speedup Results

| benchmark | speedup | No Jaunt | Jaunt    |
|-----------|---------|----------|----------|
| smol      | 0.50x   |          |          |
| sconc     | 1.00x   |          | <b>√</b> |
| mmrxnp    | 77.48x  |          |          |
| repri     | 2.839x  |          | <b>√</b> |
| bont      | 5.00x   | <b>*</b> |          |
| epor      | 0.142x  |          | <b>√</b> |
| gtoggle   | 0.1x    |          |          |

## Conclusion

- Powerful new computing substrate for biochemical models
- Jaunt transforms mapped simulations to:
  - respect physical limitations of hardware
  - accelerate simulation