Grado de Ingeniería Informática ETSINF

Contenido

- Los buses
 - ✓ Concepto de bus
 - ✓ Tecnología de los buses
 - ✓ Topologías
 - ✓ Interconexión de buses
 - ✓ Jerarquía de buses

- Buses actuales:
 - ✓ Tendencias
 - ✓ PCI y PCIe
 - ✓ SATA
 - ✓ USB y Firewire
 - ✓ Jerarquía de buses actual
- Transferencias dentro del computador
 - ✓ El papel del controlador y el papel del sistema operativo
 - ✓ Ejemplos de temporización

Necesidad de interconectar distintas unidades

 El procesador, la memoria, los dispositivo de E/S, con distintos requerimientos de ancho de banda

La interconexión de los mismos se realiza mediante diferentes

tipos de buses

Generalidades sobre los buses

Concepto de bus

- ✓ Es un sistema de comunicación entre dos o más dispositivos que permite:
 - Direccionamiento: la selección de los dispositivos y de los elementos direccionables contenidos dentro del dispositivo seleccionado
 - Sincronización: la señalización de que un dispositivo está preparado para transmitir datos
 - Transferencia: la transmisión efectiva de datos entre los dispositivos
- ✓ Otras funciones opcionales son:
 - la alimentación eléctrica de los dispositivos
 - la conexión en caliente (hot plug)
- ✓ Ciclo de bus: período de tiempo donde se normaliza una transferencia de datos elemental entre dos dispositivos en un bus

Requerimientos de un bus

- ✓ Ancho de banda suficiente para las transferencias
- ✓ Distancia
 - Algunos dispositivos están muy próximos (pocos centímetros): procesador, controlador de memoria, controlador de gráficos, etc
 - Otros dispositivos pueden estar distantes (I metro o más): impresora, escáner, etc. Hará falta un cable flexible para conectarlos al procesador y a la memoria

✓ Estandarización

- Los dispositivos fijos de la placa base (procesador, reloj del sistema, controlador de memoria, etc.) no necesitan conexión estándar
- Los periféricos que se pueden sustituir (discos, adaptador gráfico, teclado, etc) habrá que conectarlos a un bus estándar

Problemas eléctricos de los buses

- ✓ Ruido electromagnético: otros componentes del computador y los equipos vecinos producen interferencias
 - El problema crece con la longitud de los cables y se reduce con apantallamiento
- ✓ Distorsión y clock skew: las señales eléctricas pierden sincronía entre los cables que forman del bus. El problema crece:
 - Al acortar el ciclo de bus
 - Con la flexibilidad de los cables, porque las torsiones alteran la geometría y las características eléctricas de cada hilo
- ✓ Diafonía o crosstalk: los cables producen interferencia eléctrica entre sí. El problema crece:
 - Al incrementar el número de cables del bus
 - Al limitar el apantallamiento electromagnético para conseguir que el cable sea flexible

Detalles físicos

- ✓ Un bus está formado por un conjunto de conductores de características eléctricas dadas
 - Hay un conductor pantalla que envuelve los demás haciendo una jaula de Faraday que reduce el ruido electromagnético
 - Los conductores tienen una separación determinada para reducir el crosstalk
 - · La longitud de los cables está limitada
- ✓ La especificación de un bus describe las características mecánicas de los conectores
- ✓ El bus tiene un protocolo: un mecanismo de detección y corrección de errores de transmisión basado en unas señales de control específicas
- ✓ El bus puede ser serie o paralelo

Tecnología de los buses

- Bus paralelo
 - ✓ Todos los bits de una palabra se transmiten simultáneamente en una única transferencia elemental.
 - ✓ Ejemplo de bus paralelo (unidireccional)

Dos registros de carga paralela permiten implementar un bus paralelo:

- 1. El transmisor escribe la palabra en su registro.
- Se hace la transferencia de la palabra desde el registro del emisor al del receptor
- 3. El receptor puede leer la palabra

Tecnología de los buses

Bus serie

- ✓ Los bits de la palabra se transmiten en serie. Hay que hacer varias transferencias elementales de un bit para transferir una palabra.
- ✓ Un bus serie equivale a una única línea
 - En la práctica, hay que añadir más líneas para señalización, alimentación, protección, etc

Dos registros de desplazamiento permiten comunicar dos dispositivos con un bus serie

- 1. El transmisor escribe la palabra en su registro.
- 2. De la salida serie en el emisor a la entrada serie en el receptor, se transfiere la palabra bit a bit
- 3. El receptor puede leer toda la palabra al final

- Comparación entre los buses serie y paralelo
 - ✓ El control de la conexión serie es complicado
 - ✓ El cableado de los buses paralelos externos es pesado y rígido. Los conectores son incómodos y delicados
 - ✓ En condiciones ideales, el bus paralelo es más rápido que el serie
 - Condiciones ideales: sin ruido electromagnético y con conductores perfectos (sin capacitancia ni inductancia)
 - ✓ Cuando los relojes de los dispositivos conectados funcionan a frecuencias de GHz, los buses paralelos sólo pueden funcionar a distancias muy cortas (unos pocos centímetros) por culpa del clock skew y el cross-talk

Tipo	Complejidad de control	Problemas eléctricos	Número de cables y terminales
Paralelo	baja	graves	muchos
Serie	alta	simples	pocos

- Ancho de banda máximo de un bus
 - ✓ Un bus tiene una frecuencia de reloj característica f
 - ✓ Si se trata de un bus paralelo y a cada ciclo transfiere w bits, el ancho de banda resultante será B = f w/8 Bps
 - Ejemplo: PCI-X. f = 133,3 MHz, w = 64 bits, B = 1066,6 MBps
 - Ejemplo: Parallel ATA-133. f = 66 MHz, w = 16 bits, B = 133 MBps
 - ✓ Si se trata de un bus serie, el ancho de banda será f bps, pero habrá que descontar la información redundante para control de errores
 - Ejemplo: PCle-1x (versión 2). f = 5 GHz, codificación 8b/10b (10 bits/byte),
 B = 500 MBps
 - Ejemplo: SATA-3 Gbps. f = 3 GHz, codificación 8b/10b (10 bits/byte),
 B = 300 MBps

Topologías de bus

- Multipunto (multidrop)
 - √ Hay un conjunto (limitado) de dispositivos seleccionables
 - ✓ Ejemplo: ATA (límite = 2), PCI (límite = 232 o 264)

- Punto a punto (point-to-point)
 - √ Sólo un dispositivo
 - No hace falta selección de dispositivos
 - ✓ Ejemplo: RS-232, AGP

Topologías de bus

- Bus en estrella
 - ✓ Conexión punto a punto

- √ Hay elementos de conmutación adicionales: concentrador o hub
- ✓ Ejemplo: USB, SATA

Topologías de bus

- Bus en cadena margarita (daisy chain)
 - √ Conexión punto a punto y repetidores
 - ✓ Cada dispositivo contiene dos conexiones y un repetidor
 - ✓ Ejemplo: SCSI, Firewire

✓ Con concentradores: topología de árbol (Firewire)

Interconexión de buses

Problemática

- ✓ Para conectar dos buses hay que resolver, al menos, dos problemas:
 - <u>La adaptación física</u>: cada bus tiene su especificación sobre las señales que transmite. Habrá que traducir las señales y adaptar las temporizaciones de un bus al otro
 - <u>La adaptación lógica</u>: cada bus contiene diversos dispositivos conectados.
 Habrá que hacer posible que un dispositivo conectado en un bus pueda seleccionar a los conectados en el otro

Interconexión de buses

- Puentes (bridges)
 - ✓ Un puente mantiene la unidad lógica
 - Es decir, que el espacio de direcciones es único y los programas no notan las diferencias entre un bus y el otro
 - ✓ En cada bus, el puente se comporta como un dispositivo cualquiera que responde de parte del conjunto de los dispositivos del otro bus
 - En el bus A, las direcciones de P3 y P4 seleccionan el puente
 - En el bus B, las direcciones de P1 y P2 seleccionan el puente
 - ✓ Cuando está seleccionado en un bus, el puente traduce las señales al otro bus

Interconexión de buses

Adaptadores de bus

- ✓ Los adaptadores de bus ofrecen una interfaz a los programas
- ✓ Los buses tienen espacios de direccionamiento separados.
- ✓ Los programas han de seleccionar el adaptador y programar sus registros para comunicarse con los periféricos que se conectan a través del adaptador de bus
- ✓ Ejemplo: P1, P2 y el adaptador comparten el mismo mapa de memoria accesible mediante el bus A. P3 y P4 se seleccionan desde el bus A escribiendo sus direcciones en un registro del adaptador

Interconexión de buses

Ancho de banda

- ✓ Cuando se conectan dos buses con un puente o con un adaptador, el ancho de banda máxima será:
 - para las transferencias que no atraviesen la interconexión: el ancho de banda del bus implicado
 - para las transferencias que atraviesan la interconexión: el ancho de banda menor
- ✓ Ejemplos de ancho máximo: para T1 la del bus A, para T3 la del bus B y para T2 la del bus más lento de los dos

Jerarquía de buses

- El controlador del sistema
 - ✓ Es la combinación del controlador de memoria DRAM y un sistema de puentes que comunican:
 - El bus del procesador. Su diseño es propietario, depende de la UCP en concreto y está orientado a la máxima productividad.
 - El bus de expansión estándar, orientado a la compatibilidad. Contiene conectores para los adaptadores de periférico
 - <u>La memoria principal</u>, que cumple un estándar tecnológico dado (DDR3, por ejemplo)

Jerarquía de buses

El bus de sistema

- ✓ Un bus del sistema permite conectar los dispositivos mapeados en el espacio de direccionamiento del procesador
- ✓ El bus del sistema está formado por el bus del procesador, el controlador del sistema y el bus de expansión
 - El bus de expansión puede estar compuesto por diversos buses conectados mediante puentes

Jerarquía de buses

- Los buses de entrada/salida
 - ✓ Un conjunto de buses de entrada/salida estándar, que se conectan al bus del sistema mediante adaptadores
 - ✓ Cada bus de entrada/salida dispone de su mapa de memoria. Para direccionar, leer y escribir en un dispositivo del bus, los programas han de operar sobre la interfaz del adaptador del bus

Jerarquía de buses

Resumen

- ✓ En un computador hay un conjunto de buses.
 - Los diferentes buses están conectados por puentes y adaptadores
 - Cada bus se escoge para satisfacer ciertos criterios: compatibilidad, ancho de banda, etc
- ✓ Cuanto más cerca esté un bus de la memoria principal, mayor ancho de banda ha de ofrecer.

Tendencias

- Años 1980...2000 (aprox):
 - ✓ Buses de expansión paralelos multipunto (PCI, NuBus...)
 - ✓ Buses de periférico paralelos (Centronics, SCSI, ATA) si hacía falta gran ancho de banda (escáner, disco duro, etc)
 - ✓ Buses de periférico serie (RS-232) para periféricos lentos (ratón o teclado) o lejanos (impresoras)
- Años 2000...2004
 - ✓ Buses de expansión paralelos (PCI y AGP)
 - ✓ Buses de periférico paralelos sólo para discos internos (ATA)
 - ✓ Buses de periférico serie (USB y Firewire)
- Actualmente (2005...)
 - ✓ Buses de expansión serie punto a punto (PCI express)
 - ✓ Buses de periférico serie (SATA, USB y Firewire)
 - ✓ Sólo el bus del procesador es siempre paralelo! (y ya veremos...)

Tendencias

Ancho de banda de los dispositivos

Dispositivo	MBps
procesador (Core Duo 2GHz)	~10000
canal SDRAM DDR3 400 MHz	6400
pantalla gráfica (1600x1200, 50 fps)	300
disco duro (7200 rpm, 1000 sectores/pista)	100
DVD (20x)	27
CD-ROM (52x)	7,8

Adaptadores de periféricos

Periférico	antiguo	actual
ratón, teclado	RS232	USB
pantalla gráfica	PCI, AGP	PCIe
disco duro interno	ATA	SATA
disco duro externo	SCSI	USB,Firewire,eSATA
unidad óptica ATA	ATA	SATA

PCI

Características

- ✓ Es un bus paralelo multipunto diseñado para funcionar como bus del sistema
- ✓ En uso desde 1993, todavía se mantiene por razones de compatibilidad

Ancho de banda

- ✓ Ha tenido muchas versiones. El ancho de banda ha evolucionado desde 133 MBps hasta 4GBps
 - PCI 2.3 (convencional): 533 MB/s (64bits/66MHz)
 - PCI-X I.0: IGB/s (64bits/I33MHz)
 - PCI-X 2.0: 2GB/s (64bits/266MHz); 4GB/s (64bits/533MHz)

PCI-express (PCIe)

Carriles

- ✓ Es el bus de sistema continuador del PCI clásico
- ✓ Bus serie: codificación 8b/10b (v1.x, v2.0) y 128/130 (v3.0, v4.0)
- ✓ Es un bus punto a punto caracterizado por un número LB de carriles o lanes (1x, 2x, 4x, 8x, 12x, 16x o 32x)
- ✓ Cada carril permite hacer transferencias en serie con un ancho de banda de 250 MBps 2.5GT/s (PCIe versiones I.0 y I.I); 500 MBps 5GT/s (PCIe versión 2.0); 984,6 MBps 8GT/s (PCIe versión 3.0)

Bus 1x

PCI-express

- Adaptadores de periférico PCI-express
 - ✓ Cada adaptador de periférico tiene un número LP de conexiones a carril (1x, 2x, etc...) del bus
 - ✓ Al inicio, el sistema establece por cuántos carriles puede recibir o enviar el periférico a través del bus: min{LB,LP}
 - √ Valores comunes de LP: 8x para el adaptador de gráficos, Ix para el adaptador de sonido
 - ✓ Ejemplos con PCIe 2.0:

PCI-express

Adaptadores y conectores PCI-express

Adaptador 16x

Adaptador 1x

Buses de periféricos

Bus SATA

- ✓ Es un bus de periféricos especializado en almacenamiento, sobre todo discos duros y unidades ópticas
- ✓ Conexión serie (I m máximo), codificación 8b/10b.
- ✓ Dos topologías posibles:
 - Punto a punto: un periférico por bus
 - En estrella, con un nivel de conmutadores (multiplicadores). Hasta 15 periféricos.
- ✓ Versiones y anchos de banda:
 - SATA 1.5 Gb/s: 150 MBps efectivos
 - SATA 3 Gb/s "SATA II": 300 MBps
 - SATA 6 Gb/s: 600 MBps
- ✓ Hay una versión externa eSATA que permite cables de 2 m y 3 Gb/s
 (300 MB/s)

Buses de periféricos

- ✓ Soporta SATA y PCle 3.0
- ✓ Hasta 1969 MBps (2 carriles PCIe)
- ✓ Conector compatible con SATA
- ✓ Pensado para discos SSD

Buses de periféricos

Bus USB

- ✓ Bus de periféricos de propósito general
- ✓ Conexión serie. Topología de estrella
- ✓ Consta de un controlador, varios concentradores y periféricos
- ✓ Cables:
 - longitud máxima = 5 m
 - conectores asimétricos
 - permite alimentación (5 V, hasta 0.5 A)
- ✓ Hasta seis niveles de concentradores
- ✓ Hasta 127 dispositivos por bus
- ✓ Versiones y anchos de banda:
 - USB 1.0 y 1.1: 12 Mbit/s
 - USB 2.0: 480 Mbit/s
 - USB 3.0: 4.8 Gbit/s (8b/10b)
 - USB 3.1: 10 Gbit/s (128b/132b)

Buses de periféricos

- Tarjetas con conectores M.2
 - ✓ Permiten múltiples interfaces sobre un conector de 75 pines

A PCle x2, USB 2.0, l2C, DisplayPort x4 cards B PCle x2, SATA, USB SATA y PCle x2 SSDs 2.0, USB 3.0, audio, PCM, IUM, SSIC, I2C E PCle x2, USB 2.0, l2C, SDIO, UART, PCM M PCle x4, SATA PCle x4 SSDs			
B PCle x2, SATA, USB SATA y PCle x2 SSDs 2.0, USB 3.0, audio, PCM, IUM, SSIC, I2C E PCle x2, USB 2.0, Wi-Fi/Bluetooth, cellular I2C, SDIO, UART, Cards PCM	KEY	INTERFACES	USOS COMUNES
2.0, USB 3.0, audio, PCM, IUM, SSIC, I2C E PCle x2, USB 2.0, Wi-Fi/Bluetooth, cellular I2C, SDIO, UART, cards PCM	Α	,	•
I2C, SDIO, UART, cards PCM	В	2.0, USB 3.0, audio,	SATA y PCle x2 SSDs
M PCle x4, SATA PCle x4 SSDs	E	12C, SDIO, UART,	,
	М	PCIe x4, SATA	PCIe x4 SSDs

Dos B- y M-keyed SSDs, y un M-keyed SSD.

Buses de periféricos

- Bus Firewire (IEEE 1394, i.Link)
 - ✓ Bus de periféricos de propósito general
 - Hasta 63 periféricos
 - ✓ Conexión serie. Topología de margarita
 - Longitud máxima: 4,5 m un cable, 72 m el bus completo
 - ✓ Muy versátil
 - · Permite interconexión de computadores
 - · Permite comunicación directa entre dos dispositivos conectados al bus
 - Estándar de vídeo profesional
 - ✓ Versiones y anchos de banda:
 - Firewire 400 Mbps
 - Firewire 800 Mbps (8b/10b)
 - Firewire 1600 y 3200 Mbps (8b/10b)

Tendencias

- Jerarquía de buses actual
 - ✓ El controlador del sistema o northbridge da acceso directo a los buses más rápidos (para pantalla gráfica) y a dos canales de memoria DRAM
 - Un bus (suele ser propietario) conecta northbridge con el southbridge
 - ✓ El southbridge, system hub o controlador de entrada/salida es una colección de puentes y adaptadores de bus de E/S

Conectores en una placa base

ASUS P5Q PRO

Conectores de entrada/salida

Tendencias

- Las unidades externas
 - ✓ Con adaptador de bus:
 - · Combinan un adaptador y una unidad óptica o de disco duro
 - El adaptador hace la conversión entre bus de entrada/salida de propósito general (USB, Firewire) y un bus específico (SATA)
 - la IODTR* aplicable es baja porque el ancho de banda del bus USB es menor que el del bus SATA
 - ✓ Sin adaptador de bus
 - · Con bus eSATA
 - La IODTR aplicable es alta, superior a la SDTR * *

*IODTR = Input-Output Data Transfer Rate

* *SDTR = Sustained Data Transfer Rate

- El tráfico de datos dentro del computador
 - ✓ La memoria principal es el recurso central
 - El procesador lee allí las instrucciones y también lee y escribe los datos
 - ✓ Todo el tráfico pasa por el controlador del sistema
 - Los dispositivos de bloques que funcionan por ADM hacen transferencias del tipo MP↔periférico
 - Los dispositivos de bloques que hacen transferencias por programa (PIO) y los dispositivos de carácter hacen intercambios de la forma MP↔UC↔periférico.

Control del flujo de datos

- ✓ El bus del sistema y muchos buses de entrada/salida pueden soportar diversas transferencias al mismo tiempo
 - · Los elementos conectados a un bus competirán por su uso
 - Los controladores y árbitros del bus multiplexan temporalmente el uso del bus entre las diversas transferencias en curso
 - En cada bus, el consumo total de ancho de banda es la suma de los consumos de las transferencias que lo atraviesan
 - El consumo total de un bus no puede superar su ancho de banda máximo. Si hace falta, el arbitraje del bus reducirá las velocidades de algunas o de todas las transferencias, con las consecuencias correspondientes
- ✓ Cuando una transferencia implique más de un bus, el ancho de banda vendrá limitado por el bus más lento

- El papel del sistema operativo
 - ✓ Para utilizar los periféricos, los programas utilizan las funciones del SO.
 - Hay que destacar las funciones de manejo del sistema de archivos
 - ✓ Las funciones del SO programan las interfaces de los periféricos y realizan las transferencias (PIO o ADM) correspondientes.
 - En el caso de las operaciones con el sistema de archivos, el sistema realizará operaciones adicionales de mantenimiento (modificación de directorios, gestión de tablas de asignación, etc)
 - ✓ En condiciones ideales hay un ancho de banda teórico BT que sólo depende de los buses y los periférico que participan en la transferencia
 - ✓ En la realidad, el ancho de banda disponible es menor que la teórica debido al tiempo de programación de los periféricos, de los conflictos de arbitraje de bus y otros

Aspectos de tiempo real

- √ Transferencias sin restricciones de tiempo real
 - La mayoría de los casos: transferencias de archivos, lectura y escritura de archivos, navegación por internet, etc
 - La transferencia se hace al máximo ancho de banda B disponible y el tiempo mínimo teórico será T = (volumen de los datos)/BT
- ✓ Transferencias con restricciones de tiempo real
 - Es el caso de la multimedia: reproducción y grabación de audio o vídeo, streaming, etc...
 - Han que satisfacer las restricciones de tiempo real (fps o cuadros de vídeo por segundo, muestras de audio por segundo)
 - Si el ancho de banda disponible es suficiente, las transferencias se hacen a la velocidad correspondiente
 - Si el ancho de banda no es suficiente, las transferencias serán defectuosas y se perderán datos

- Ejemplo I
 - ✓ Un programa abre un archivo de I GB del disco duro (conectado al bus SATA I.5 Gbps) y lo lee completamente
 - Características disco: 100 MBps (SDTR), transferencia DMA
 - Contexto:

- El ancho de banda máximo viene determinado por el disco duro
- Tiempo mínimo de transferencia: 10 segundos
- Consumo de ancho de banda en los buses:
 100/12800 = 0.78% (M), 100/2000 = 5% (NS), 100/150 = 67% (SATA)

- Ejemplo 2
 - ✓ Un programa abre un archivo de I GB del disco duro externo (conectado por USB) y lo lee completamente
 - Características disco: 100 MBps (SDTR), transferencia DMA
 - Contexto:

- El ancho de banda máximo viene determinado por el bus USB
- Tiempo mínimo de transferencia: 16.7 segundos
- Consumo de ancho de banda en los buses:
 60/12800 = 0.47% (M), 60/2000 = 3% (NS), 100% (USB)

- Ejemplo 3
 - ✓ Copiar un archivo de I GB de un disco duro (conectado al bus SATA I.5 Gbps) a otro disco (conectado al bus USB 2.0)
 - Características disco: 100 MBps (SDTR), transferencia ADM
 - Contexto:

- El ancho de banda máximo viene determinado por el bus USB
- Tiempo mínimo de transferencia: 16.7 segundos
- Consumo de ancho de banda en los buses:
 2*60/12800 = 0.94% (M), 2*60/2000 = 6% (NS), 60/150 = 40% (SATA), 100% (USB)

- Ejemplo 4
 - ✓ Copiar un archivo de I GB en el mismo disco duro (conectado al bus SATA I.5 Gbps)
 - Características disco: 100 MBps (SDTR), transferencia DMA
 - Contexto:

- El ancho de banda máximo viene determinado por el disco
- Tiempo mínimo de transferencia: 2*1GB/100 MBps = 20 segundos
- Consumo de ancho de banda en los buses:
 100/12800 = 0.78% (M), 100/2000 = 5% (NS), 67% (SATA)

- Ejemplo 5 (con restricciones de tiempo real)
 - ✓ Reproducción de una película en DVD
 - Hay que transferir el contenido (mpeg-2) del DVD a la MP
 - Mientras, el procesador ha de ejecutar el código del descodificador de mpeg 2 para obtener los cuadros de vídeo y el audio PCM
 - Hay que transferir los cuadros al monitor a la frecuencia correspondiente
 - Hay que transferir el audio PCM al adaptador de sonido

✓ Contexto:

- Película de 30 fps (cuadros/s)
- Codificación mpeg-2 a 10 Mbps
- Suponemos que el procesador puede descodificar mpeg-2 a la velocidad apropiada
- Audio 5.1 a 16 bits 48 KHz
- Monitor 1600 x 1200 píxeles, color de 24 bits

Ejemplo 5

La transferencia no está limitada por los buses:

- Lectura de DVD: 10 Mbps = 1.25 MBps
- Pantalla gráfica: 1600 x 1200 x 3 x 30 = 172,8 MBps
- Audio: 6 x 48000 x 2 = 576 KBps = 0.576 MBps

Ocupación:

• 1.25/150 = 0.83% (SATA); 172,8/2000=8.6% (PCIe gráficos); 0,576/250 = 0.23% (PCIe audio); (1.25 + 0.576)/2000 = 0,091% (NS); (1.25 + 0.576 + 172,8)/12800 = 0.14% (Memoria)

- Ejemplo 6 (con restricciones de tiempo real)
 - ✓ Reproducción de una película muda de alta definición (30 fps, 1920 x 1080 píxeles, 24 bits de color) contenida en el disco duro sin comprimir
 - Cada segundo, hay que leer 30 cuadros de 1920x1080x3 bytes del disco duro
 - No hay que descodificar las imágenes
 - Cada segundo, hay que escribir 30 cuadros en la memoria gráfica
 - El ancho de banda de cada una de las dos transferencias es de 186 MBps
 - ✓ Contexto:
 - Monitor 1920 x 1080 píxeles, color de 24 bits
 - Disco duro de 100 MBps conectado a bus SATA de 3Gbps

La reproducción será defectuosa El disco duro no ofrece el ancho de banda necesario