Universidad Simón Bolívar Departamento de Computación y Tecnología de la Información Estructuras Discretas para el Análisis de Algoritmos

Solución Prática 6

1. Determine la dominación asintótica si existe, por O grande y Ω , entre las funciones dadas a continuación:

a.
$$f_1: \mathbb{N} \to \mathbb{R}$$
 tal que $f_1(n) = n^2$

b.
$$f_2: \mathbb{N} \to \mathbb{R}$$
 tal que $f_2(n) = n^2 + 1000n$

c.
$$f_3: \mathbb{N} \to \mathbb{R}$$
 tal que

Ci-2525k.

$$f_3(n) \begin{cases} n & \text{si } n \text{ es par} \\ n^3 & \text{si } n \text{ es impar} \end{cases}$$

d.
$$f_4: \mathbb{N} \to \mathbb{R}$$
 tal que

$$f_4(n) \begin{cases} n & \text{si } n < 100\\ n^3 & \text{si } n \ge 100 \end{cases}$$

e.
$$f_5: \mathbb{N} \to \mathbb{R}$$
 tal que $f_5(n) = \ln(n^{\ln(2n)})$

Solución: Recordemos la definición de O y Ω :

O grande: f(x) es O(g(x)) si y sólo si existe x_0 y una constante k positiva tal que $|f(x)| \le k|g(x)|$ para todo $x \ge x_0$

 Ω grande: f(x) es O(g(x)) si y sólo si existe x_0 y una constante k positiva tal que $|f(x)| \ge k|g(x)|$ para todo $x \ge x_0$

Observación: en lo que sigue k será una constante positiva.

Comparación de f_1 con f_2 : f_1 es $O(f_2)$ ya que:

$$|f_1(n)| \leq k|f_2(n)| \Longleftrightarrow |n^2| \leq k|n^2 + 1000n|$$
se cumple para $k=1$ y $n \geq 0$

$$f_1 \text{ es } \Omega(f_2) \text{ ya que:}$$

$$|f_2(n)| = |n^2 + 1000n|$$

$$\leq |n^2 + 1000n^2|$$

$$\leq |1001n^2|$$

$$= 1001|n^2|$$

$$\Rightarrow |f_2(n)| \leq 1001|f_1(n)| \iff |f_1(n)| \geq \frac{1}{1001}|f_2(n)|, \text{ con } k = \frac{1}{1001} \text{ y } n \geq 0$$

Observe que f_2 es $O(f_1)$ y también $\Omega(f_1)$, por lo tanto f_2 es $\Theta(f_1)$

Comparación de f_2 con f_1 : f_2 es $O(f_1)$ ya que:

$$|f_2(n)| = |n^2 + 1000n|$$

$$\leq |n^2 + 1000n^2|$$

$$\leq |1001n^2|$$

$$= 1001|n^2|$$

$$\Rightarrow |f_2(n)| \leq 1001|f_1(n)|, \text{ con } k = 1001 \text{ y } n \geq 0$$

 f_2 es $\Omega(f_1)$ ya que: $|f_2(x)| \ge k|f_1(x)| \Longleftrightarrow |n^2+1000n| \ge k|n^2|,$ se cumple con k=1 y $n\ge 0$

Observe que f_2 es $O(f_1)$ y también $\Omega(f_1)$, por lo tanto f_2 es $\Theta(f_1)$

Comparación de f_1 con f_3 : f_1 no es $O(f_3)$ ya que aunque se cumple que $|n^2| \le k|n^3|$, con k=1 para todo $n \ge 0$ en el caso en que n es impar, para el caso en que n es par no se cumple que $|f_1| \le k|f_3|$, por lo tanto f_1 no es $O(f_3)$. Un caso similar ocurre si comparanos f_3 con f_1 .

 f_1 **no** es $\Omega(f_3)$ ya que aunque se cumple que $|n^2| \geq k|n|$, con k=1 para todo $n \geq 0$ en el caso en que n es par, para el caso en que n es impar no se cumple que $|f_1| \geq k|f_3|$, por lo tanto f_1 **no** es $\Omega(f_3)$. Un caso similar ocurre si comparanos f_3 con f_1 .

Comparación de f_2 con f_3 : Como f_2 es $\Theta(f_1)$, es decir que f_2 y f_1 son equivalentes asiontóticamente y f_1 no es ni $O(f_3)$ ni $\Omega(f_3)$ entonces tampoco f_2 es ni $O(f_3)$ ni $\Omega(f_3)$. De igual forma ocurre al comparar f_3 con f_2 .

Comparación de f_3 con f_4 : f_3 es $O(f_4)$ ya que:

 $|f_3(n)| \le k|f_4(n)| \iff |n| \le k|n^3|$ se cumple para k=1 y $n \ge 100$ cuando n es par y $|n^3| \le k|n^3|$ se cumple para k=1 y $n \ge 101$ cuando n es impar

 f_3 **no** es $\Omega(f_4)$ ya que para un número par cualquiera mayor de 100 no se cumple que $|f_3| \ge k|f_4|$.

Comparación de f_4 con f_3 : f_4 no es $O(f_4)$ ya que para un número par cualquiera mayor de 100 no se cumple que $|f_4| \leq k|f_3|$.

 f_4 es $\Omega(f_3)$ ya que:

 $|f_4(n)| \ge k|f_3(n)| \iff |n^3| \ge k|n|$ se cumple para k = 1 y $n \ge 100$ cuando n es par y $|n^3| \ge k|n^3|$ se cumple para k = 1 y $n \ge 101$ cuando n es impar

Análisis de f_5 : $f_5(n) = ln(n^{n(2n)}) = ln(2n)ln(n) = (ln(2) + ln(n))ln(n) = ln(2)ln(n) + (ln(n))^2$ Esta función es $O(ln(n)^2)$ ya que:

$$|f_5(n)| = |ln(2)ln(n) + (ln(n))^2| \le |ln(n)^2 + ln(n)^2 = 2|ln(n)^2| \Rightarrow |f_5| \le 2|ln(n)^2| \Longleftrightarrow$$

$$f_5(n) = O(\ln(n)^2),$$

con k = 2 y para todo $n \ge 1$.

Esta función es asintóticamente menor que todas las demás funciones ya que una función logarítmica es siempre menor que una función lineal o polinómica en general. Esto lo podemos verificar de la siguiente forma, aplicando dos veces la regla de L'Hopital para comparar la función $ln(n)^2$ con n:

$$\lim_{n \to \infty} \frac{ln(n)^2}{n} = \lim_{n \to \infty} \frac{ln(n)^{2\prime}}{n\prime} = \lim_{n \to \infty} \frac{\frac{2ln(n)}{n}}{1} = \lim_{n \to \infty} \frac{2ln(n)}{n} = \lim_{n \to \infty} \frac{2ln(n)\prime}{n\prime} = \lim_{n \to \infty} \frac{\frac{2}{n}}{1} = \lim_{n \to \infty} \frac{2}{n} = 0$$

Por lo tanto n crece más rápido que $\ln(n)^2$. También n^2 y n^3 acotarán asintóticamente a $\ln(n)^2$

2. Sea $f: \mathbb{N} \to \mathbb{R}$ tal que f es $O(n^{\frac{1}{2}})$. Si definimos la funcin $g: \mathbb{N} \to \mathbb{R}$ tal que:

$$g(n) \begin{cases} f(n) + f(\frac{n}{2}) + \dots + f(\frac{n}{2^i}) & \text{si } n = 2^i \text{ para } i \text{ en } \mathbb{N} \\ 0 & \text{en otro caso} \end{cases}$$

Concluya que g es $O(\sqrt{n}ln(n))$. Observación: la definición de g indica que esta función alcanza valores distintos de cero en potencias de 2.

3. Suponga $f: \mathbb{N} \to \mathbb{R}^+, g: \mathbb{N} \to \mathbb{R}^+, h: \mathbb{N} \to \mathbb{R}^+, w: \mathbb{N} \to \mathbb{R}^+$ tal que f es O(g), h es O(w) deduzca que:

a.
$$f + h$$
 es $O(g + w)$

b.
$$f * h \text{ es } O(q * w)$$

Solución: Por hipótesis tenemos que si k y k' son constantes positivas entonces:

$$|f(x)| \le k|g(x)|(i)$$

$$|h(x)| \le k'|w(x)|(ii)$$

a. Si sumamos las hipótesis (i), (ii): $|f(x)| + |h(x)| \le k|g(x)| + k'|w(x)|$, como las funciones son siempre positivas entonces:

$$|f(x) + h(x)| \le k|g(x)| + k'|w(x)| \le k''|g(x)| + k''|w(x)|,$$

Con $k'' = max\{k, k'\}$. Si agrupamos las k'':

$$|f(x) + h(x)| \le k'' |g(x) + w(x)|,$$

Por lo tanto f + h es O(g + w), con $k'' = max\{k, k'\}$

b. Si multiplicamos las hipótesis (i), (ii): $|f(x)||h(x)| \le k|g(x)|k'|w(x)|$, por propiedad commutativa y del valor absoluto nos queda:

$$|f(x)h(x)| \le (kk')|g(x)w(x)|$$

$$|f(x)h(x)| \le k''|g(x)w(x)|$$

Por lo tanto f * h es O(g * w), con k'' = k * k'

4. Suponga que $f: \mathbb{N} \to \mathbb{R}$ es $O(n^{-\frac{1}{3}})$. Determine el $\lim_{x\to\infty} f(n)$

Solución: Por definición tenemos que $|f(n)| \le k|g(n)|$, con k una constante positiva y $n \ge n_o$. Para este caso particular se traduce en: $|f(n)| \le k|n^{-\frac{1}{3}}|$. Aplicándole el límite en ambos lados de la desigualdad tenemos que:

$$\lim_{x\to\infty} |f(n)| \le \lim_{x\to\infty} k |n^{-\frac{1}{3}}|$$

$$\lim_{x\to\infty} |f(n)| \le k * \lim_{x\to\infty} |\frac{1}{n^3}|$$
 linealidad del límite
$$\lim_{x\to\infty} |f(n)| \le k * 0$$
 definición del límite
$$\lim_{x\to\infty} |f(n)| \le 0$$

$$\Rightarrow \lim_{x\to\infty} f(n) = 0$$

5. Muestre que el número de comparaciones C(n) que realiza el procedimiento de ordenamiento por intercambio descrito a continuación es $O(n^2)$. Los elementos a ordenar son a[1], a[2], ..., a[n].

Algoritmo 1 (Algoritmo de Ordenamiento)

- 1. Hacer desde i = 1 hasta i = n 1
 - 2. Hacer desde j = i + 1 hasta j = n
 - 3. Si $a[i] \le a[j]$ entonces intercambiar a[i] con a[j],

Solución: Analizando el algoritmo nos damos cuenta que el número de comparaciones que hace el algoritmo sobre una lista de n elementos, la cual denotaremos como C(n), satisface la siguiente relación de recurrencia:

$$C(n) = C(n-1) + C(n-2) + \dots + C(1)$$

El algoritmo ordena una lista de n elementos fijando un elemento y comparandolo con los elementos de listas más pequeñas de n-1, n-2, ..., 1 elementos. De esta forma C(1)=1, ya para comparar el elemento fijo con una lista de longitud 1 se necesita sólo una comparación. También se cumple que C(2)=2,...,C(n-2)=n-2,C(n-1)=n-1. Por lo tanto, la cantidad de comparaciones necesarias para ordenar una lista de n elementos es la suma de los primeros n-1 enteros positivos.

La forma cerrada de la suma de los primeros n enteros positivos es:

$$1+2+\ldots+n = \frac{n(n+1)}{2}$$

El número de comparaciones del algoritmo en cuestión llega hasta n-1, así que restamos n de ambos lados de la ecuación:

$$1+2+\ldots+n-n=\frac{n(n+1)}{2}-n \Longleftrightarrow 1+2+\ldots+n-1=\frac{n^2-n}{2}$$

Por lo tanto,

$$C(n) = \frac{n^2 - n}{2}$$

Verifiquemos que esta función es $O(n^2)$:

$$|C(n)| = \left| \frac{n^2 - n}{2} \right|$$

$$= |2^{-1}(n^2 - n)|$$

$$\leq |2^{-1}|(|n^2| + |n^2|)$$

$$\leq 2^{-1}2|n^2|$$

$$\leq |n^2|$$

$$\Rightarrow |C(n)| \leq |n^2| \iff C(n) = O(n^2), \text{ con } k = 1 \text{ y } x \geq 0$$