

The Cobb-Douglas Production Function

$$Y=AL^{\alpha}K^{\beta}$$

Goal: Find exponents (represent returns to scale)

By the power of logarithms...

$$Log(Y) = Log(A) + \alpha Log(L) + \beta Log(K)$$

Expectation: $\alpha+\beta\leq 1\leftrightarrow No$ Free Lunches!

Hack the CIA

Many hours later..were in!

230 Countries; 200 Features, a lot of NaNs

Y=GDP in PPP, L= Labor & K=.....Not-Labor

$$L(Y)=L(A)+\beta_1L(Labor)+\beta_2L(Land)+\lambda$$

 β_3 L(Rails)+ β_4 L(Airports)+ β_5 L(Debt)

Prevalent Not-Labor features: .. still kinda labor

GDP

Labor

Land Area

Railways

Airports

Public Debt

Check Residuals

Results

OLS Regression Results

Dep. Variable: GDP_1 R-squared: 0.947

Model: OLS Adj. R-squared: 0.945

	coef	std err	t	P> t	[0.025	0.975]
const	5.6441	0.753	7.494	0.000	4.151	7.137
labor	0.2031	0.055	3.715	0.000	0.095	0.311
land	-0.0934	0.045	-2.097	0.038	-0.182	-0.005
rails	0.0998	0.040	2.489	0.014	0.020	0.179
airports	0.1671	0.046	3.608	0.000	0.075	0.259
pdebt	0.6632	0.045	14.753	0.000	0.574	0.752

Going Forward

Look into ways un-bais explanatory variables through shared relationship with population.

Gather information by random sampling of individual firm across time and countries

New data; new features: try regularization