LWE and cryptography

June 5, 2019

Motivation

• Originally as an attempt to solve lattice problems

Motivation

- Originally as an attempt to solve lattice problems
- RSA broken by Shor's algorithm

Intuition

$$14s_1 + 15s_2 + 5s_3 + 2s_4 \approx 8 \pmod{17}$$
 $13s_1 + 14s_2 + 14s_3 + 6s_4 \approx 16 \pmod{17}$
 $6s_1 + 10s_2 + 13s_3 + s_4 \approx 3 \pmod{17}$
 $10s_1 + 4s_2 + 12s_3 + 16s_4 \approx 12 \pmod{17}$
 $9s_1 + 5s_2 + 9s_3 + 6s_4 \approx 9 \pmod{17}$
 $3s_1 + 6s_2 + 4s_3 + 5s_4 \approx 16 \pmod{17}$
 \vdots
 $6s_1 + 7s_2 + 16s_3 + 2s_4 \approx 3 \pmod{17}$

Let $A_{\vec{s},\chi}$ be a distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$ as follows:

Let $A_{\vec{s},\chi}$ be a distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$ as follows:

ullet Pick $ec{a} \in \mathbb{Z}_q^n$ uniformly randomly

Let $A_{\vec{s},\chi}$ be a distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$ as follows:

- Pick $\vec{a} \in \mathbb{Z}_q^n$ uniformly randomly
- ullet Pick e according to χ

Let $A_{\vec{s},\chi}$ be a distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$ as follows:

- Pick $\vec{a} \in \mathbb{Z}_q^n$ uniformly randomly
- ullet Pick e according to χ
- Output $(\vec{a}, \langle \vec{a}, \vec{s} \rangle + e)$

Search vs. Decision

Enc and Dec are separate functions, each parametrized by a key. For a valid key pair (pk, sk), $Dec_{sk}^{-1} = Enc_{pk}$.

• Alice generates "public key" and "secret key"

- Alice generates "public key" and "secret key"
- Alice sends the public key to Bob

- Alice generates "public key" and "secret key"
- Alice sends the public key to Bob
- Bob encrypts the message using public key

- Alice generates "public key" and "secret key"
- Alice sends the public key to Bob
- 3 Bob encrypts the message using public key
- Observed Bob sends the ciphertext to Alice

- Alice generates "public key" and "secret key"
- Alice sends the public key to Bob
- 3 Bob encrypts the message using public key
- Observed Bob sends the ciphertext to Alice
- **3** Alice decrypts it using the secret key.

Safety

- CPA
- CCA1
- CCA2

Malleability

Homomorphic encryption

References

- O. Regev. The Learning with Errors Problem.
- C. Gentry, A. Sahai, B. Waters. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based.