Convention: Throughout this discussion a feasible direction d at a point is by definition taken to be a nonzero vector, although there is no significant harm even if assumed otherwise. Sometimes I may have forgotten to explicitly write it.

Notation: $\nabla^2 f(\mathbf{x}) = H(\mathbf{x})$ is the Hessian matrix of f at \mathbf{x} .

 $\nabla f(\mathbf{x})$ is the gradient **row** vector (or the vector of partial derivatives) written as a row vector).

Nonlinear Programming

Let f be a real valued function defined on $\Omega \subseteq \mathbb{R}^n$.

The problem is to minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in \Omega$, where f need not be a linear function.

Throughout the discussion we will assume that $\Omega \subseteq \mathbb{R}^n$, for some n.

A point (or an element) $\mathbf{x}^* \in \Omega$ is called a local minimum of f if there exists an Definition 1: $\epsilon > 0$, such that

 $\mathbf{x} \in \Omega$ and $\|\mathbf{x} - \mathbf{x}^*\| < \epsilon$ implies $f(\mathbf{x}^*) \le f(\mathbf{x})$.

Definition 2: A point $\mathbf{x}^* \in \Omega$ is called a global minimum of f if $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \Omega$.

Definition 3: A vector $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is said to be a feasible direction at $\mathbf{x}^* \in \Omega$, if there exists a c > 0 such that for all t, 0 < t < c, $\mathbf{x}^* + t\mathbf{d} \in \Omega$.

Example 1: Let $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0\}.$

At $[0,0]^T$ if $\mathbf{d} = [d_1,d_2]^T$ is a feasible direction then $d_1 \geq 0$ and $d_2 \geq 0$.

At $[0, \frac{1}{2}]^T$ if **d** is a feasible direction then $d_1 \geq 0$ but d_2 can be any real number.

At $[\frac{1}{2}, 0]^T$ if **d** is a feasible direction then $d_2 \ge 0$ but d_1 can be any real number. At $[\frac{1}{2}, \frac{1}{2}]^T$ any $\mathbf{d} \in \mathbb{R}^2$ will be a feasible direction.

Remark 1: If \mathbf{x}^* is an interior point of Ω then any $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is a feasible direction at \mathbf{x}^* .

First order necessary conditions for a point to be a local minimum

The results obtained in this section is based on first order approximation of the function f near the local minimum point \mathbf{x}^* .

Throughout this discussion we will assume $\Omega \subseteq \mathbb{R}^n$ and \mathbf{x}^*, \mathbf{d} are elements of \mathbb{R}^n for some $n \in \mathbb{N}$.

Theorem 1: Let $f:\Omega\to\mathbb{R}$ be a continuously differentiable function (that is, the first order partial derivatives of f exists and are continuous as functions from \mathbb{R}^n to \mathbb{R}). If \mathbf{x}^* is a local minimum point then for any feasible direction \mathbf{d} at \mathbf{x}^* ,

 $\nabla f(\mathbf{x}^*)\mathbf{d} \geq 0$,

where $\nabla f(\mathbf{x}^*)$, the gradient vector of f at \mathbf{x}^* is written as a row vector (the components of $\nabla f(\mathbf{x}^*)$ are the first order partial derivatives of f at \mathbf{x}^*) and $\mathbf{d} \in \mathbb{R}^n$ is a column vector.

Proof: Let \mathbf{x}^* be a local minimum and let \mathbf{d} be a feasible direction at \mathbf{x}^* .

Let $g(t) = f(\mathbf{x}(t))$, where $\mathbf{x}(t) = \mathbf{x}^* + t\mathbf{d}$.

Since f is differentiable throughout Ω and \mathbf{d} is a feasible direction at \mathbf{x}^* $\lim_{h\to 0} \frac{f(\mathbf{x}^*+h\mathbf{d})-f(\mathbf{x}^*)}{h}$ exists.

Since $g(h) - g(0) = f(\mathbf{x}^* + h\mathbf{d}) - f(\mathbf{x}^*)$, $\lim_{h\to 0} \frac{g(h) - g(0)}{h}$ also exists and $\lim_{h\to 0} \frac{g(h) - g(0)}{h} = \lim_{h\to 0} \frac{f(\mathbf{x}^* + h\mathbf{d}) - f(\mathbf{x}^*)}{h} = \nabla f(\mathbf{x}^*)\mathbf{d}$. Hence g'(0) exists and if we look at the first order Taylor's approximation of g around t = 0, then g(t) = g(0) + tg'(0) + o(t), where o(t) is a function of t such that $\lim_{t\to 0} \frac{o(t)}{t} = 0$.

If we take $0 < t \le c$, then (**) gives,

 $f(\mathbf{x}^* + t\mathbf{d}) = f(\mathbf{x}^*) + t\nabla f(\mathbf{x}^*)\mathbf{d} + o(t).$

Since for t sufficiently small, $|t\nabla f(\mathbf{x}^*)\mathbf{d}| \geq |o(t)|$,

if $\nabla f(\mathbf{x}^*)\mathbf{d} < 0$, $f(\mathbf{x}^* + t\mathbf{d}) < f(\mathbf{x}^*)$ for all t sufficiently small, which contradicts that \mathbf{x}^* minimizes f locally.

Theorem 2: Let $f:\Omega\to\mathbb{R}$ be a continuously differentiable function. Let \mathbf{x}^* be an interior point of Ω . If \mathbf{x}^* is a local minimum point of f then

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$

Proof: Follows from Theorem 1, by taking $\mathbf{d} = -(\nabla f(\mathbf{x}^*))^T$. Since \mathbf{x}^* is an interior point we know that every $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is a feasible direction at \mathbf{x}^* .

Second order necessary conditions for a point to be a local minimum

The following conditions are obtained by considering second order approximation of the function f near the local minimum point \mathbf{x}^* .

Theorem 3: Let $f:\Omega\to\mathbb{R}$ be a twice continuously differentiable function (that is all the second order partial derivatives of f (given by $\frac{\partial^2 f}{\partial x_i \partial x_i}$) exists and are continuous as functions from \mathbb{R}^n to

Because of the assumptions on f our hessian matrix $\nabla^2 f$ for all our discussions is a symmetric matrix for all $\mathbf{x} \in \Omega$. If \mathbf{x}^* is a local minimum then for any feasible direction \mathbf{d} at \mathbf{x}^*

1. $\nabla f(\mathbf{x}^*)\mathbf{d} > 0$.

2. If
$$\nabla f(\mathbf{x}^*)\mathbf{d} = 0$$
, then $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*)\mathbf{d} \geq 0$.

Note: The matrix $\nabla^2 f$ (also denoted by H) is called the Hessian matrix of f, is the matrix of the second order partial derivatives of f and the (i,j) th entry of $\nabla^2 f(\mathbf{x}^*)$ is given by $\frac{\partial^2 f}{\partial x_i \partial x_i}(x^*)$ or $\frac{\partial^2 f}{\partial x_j \partial x_i} \mid_{x^*}$.

Let **d** be a feasible direction at \mathbf{x}^* . That \mathbf{x}^* satisfies condition 1 is already shown in Proof: Theorem 1.

As before, take $g(t) = f(\mathbf{x}(t))$, where $\mathbf{x}(t) = \mathbf{x}^* + t\mathbf{d}$.

The second order Taylor's approximation of g around t = 0 gives,

$$g(t) = g(0) + tg'(0) + \frac{t^2}{2!}g''(0) + o(t^2), \tag{**}$$

$$g(t) = g(0) + tg'(0) + \frac{t^2}{2!}g''(0) + o(t^2),$$

Since $g'(t) = (\nabla f(\mathbf{x}^* + t\mathbf{d}))\mathbf{d} = \sum_i (\frac{\partial f}{\partial x_i})(\mathbf{x}^* + t\mathbf{d})d_i,$

 $g'(t) = \sum_{i} h_i(t) d_i,$ where $h_i(t) = \frac{\partial f}{\partial x_i}(\mathbf{x}^* + t\mathbf{d}).$

Hence
$$g''(t) = \sum_{i} h'_{i}(t)d_{i}$$
,

Hence
$$g''(t) = \sum_{i} h'_{i}(t)d_{i}$$
,
where $h'_{i}(t) = ((\nabla \frac{\partial f}{\partial x_{i}})(\mathbf{x}^{*} + t\mathbf{d}))\mathbf{d} = \sum_{j} \frac{\partial}{\partial x_{j}} (\frac{\partial f}{\partial x_{i}})(\mathbf{x}^{*} + t\mathbf{d})d_{j} = \sum_{j} (\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(\mathbf{x}^{*} + t\mathbf{d}))d_{j}$.

Hence
$$g''(t) = \sum_{i} h'_{i}(t)d_{i} = \sum_{i} (\sum_{j} (\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} (\mathbf{x}^{*} + t\mathbf{d}))d_{j})d_{i}$$
,
Hence $g''(0) = \sum_{i} (\sum_{j} (\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} (x^{*}))d_{j})d_{i} = \mathbf{d}^{T} \nabla^{2} f(\mathbf{x}^{*})\mathbf{d}$,

Hence
$$g''(0) = \sum_{i} (\sum_{j} (\frac{\partial^2 f}{\partial x_i \partial x_i} (x^*)) d_j) d_i = \mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d}_j$$

where $\nabla^2 f(\mathbf{x}^*) (= H(\mathbf{x}^*))$ is an $n \times n$ matrix whose (i, j) th entry is given by $\frac{\partial^2 f}{\partial x_i \partial x_j} (\mathbf{x}^*)$.

Note that because we have assumed f to be twice continuously differentiable the matrix $\nabla^2 f(\mathbf{x}^*)$ is a symmetric matrix.

Again from (**) we get,

$$f(\mathbf{x}^* + t\mathbf{d}) = f(\mathbf{x}^*) + t\nabla f(\mathbf{x}^*)\mathbf{d} + \frac{t^2}{2}\mathbf{d}^T \nabla^2 f(\mathbf{x}^*)\mathbf{d} + o(t^2).$$

Since for sufficiently small t,

$$\left|\frac{t^2}{2!}g''(0)\right| \ge |o(t^2)|,$$

hence if $\nabla f(\mathbf{x}^*) = 0$ and \mathbf{x}^* is a local minimum then it should satisfy the condition $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} \ge 0.$

Theorem 4: Let $f: \Omega \to \mathbb{R}$ be a twice continuously differentiable function and let \mathbf{x}^* be an interior point of Ω . If \mathbf{x}^* is a local minimum of f then

- 1. $\nabla f(\mathbf{x}^*) = \mathbf{0}$.
- 2. $\nabla^2 f(\mathbf{x}^*)$ is positive semidefinite (defined later).

Proof: Follows from the previous theorem and the fact that for an interior point, every nonzero vector $\mathbf{d} \in \mathbb{R}^n$ is a feasible direction.

Definition: A real symmetric matrix A is said to be positive semidefinite (negative semidefinite) if $\mathbf{x}^T A \mathbf{x} \geq 0$ ($\mathbf{x}^T A \mathbf{x} \leq 0$) for all $x \in \mathbb{R}^n$.

Definition: A real symmetric matrix A is said to be positive definite (negative definite) if $\mathbf{x}^T A \mathbf{x} > 0$ ($\mathbf{x}^T A \mathbf{x} < 0$) for all **nonzero** vectors $\mathbf{x} \in \mathbb{R}^n$.

Remark: Note that in general a matrix satisfying the condition $\mathbf{x}^T A \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$ need not be symmetric for example $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Theorem: If A is a symmetric, $n \times n$, real matrix then the following statements are equivalent:

- 1. A is positive semidefinite.
- 2. All eigenvalues of A are nonnegative.
- 3. All principal minors of A are nonnegative.

Definition: λ is called an eigenvalue of an $n \times n$ matrix A if there exists an $\mathbf{x} \in \mathbb{C}^n$, $\mathbf{x} \neq \mathbf{0}$ (that is at least one component of \mathbf{x} is nonzero) such that $A\mathbf{x} = \lambda \mathbf{x}$.

For example the $\mathbf{0}$ matrix has all n eigenvalues equal to 0, the identity matrix I_n has all n eigenvalues equal to 1 and for an upper triangular matrix the diagonal entries are its eigenvalues.

Definition: If A is an $n \times n$ matrix and $\alpha \subseteq \{1, \ldots, n\}$, $\beta \subseteq \{1, \ldots, n\}$ then $A[\alpha, \beta]$ is the (sub)matrix obtained from A by deleting all rows of A which do not belong to α and by deleting all the columns which do not correspond to β .

If $\alpha = \beta$ then $A[\alpha, \alpha]$ is called a principal submatrix of A and $det A[\alpha, \alpha]$ is called a principal minor of A.

For example if $\alpha = \beta = \{i\}$ where $i \in \{1, ..., n\}$ then $A[\alpha, \alpha] = [a_{ii}]$ and $det A[\alpha, \alpha] = a_{ii}$ the i th diagonal entry.

If
$$\alpha = \beta = \{i, j\}$$
 where $i, j \in \{1, ..., n\}$ and $i < j$ then $A[\alpha, \alpha] = \begin{pmatrix} a_{ii} & a_{ij} \\ a_{ji} & a_{jj} \end{pmatrix}$. If $\alpha = \{1, ..., n\}$ then $A[\alpha, \alpha] = A$ and $det A[\alpha, \alpha] = det(A)$.

Remark: A nonsingular (nonzero determinant) positive semidefinite matrix is positive definite.

In the following examples there is a slight abuse of notation. Instead of writing $f([x_1, x_2]^T)$, to avoid cumbersome notation, I have written it as $f(x_1, x_2)$.

Example 1: Consider the following problem:

Minimize
$$f(x_1, x_2) = x_1^2 - x_1 + x_2 + x_1x_2$$

subject to $x_1 \ge 0, x_2 \ge 0$.

One can easily check that f has a global minimum at $x_1 = \frac{1}{2}, x_2 = 0$.

Also f is a twice continuously differentiable function.

At
$$\left[\frac{1}{2},0\right]^T$$
, $\frac{\partial f}{\partial x_1} = 2x_1 - 1 + x_2 = 0$
 $\frac{\partial f}{\partial x_2} = 1 + x_1 = \frac{3}{2}$.
If **d** is a feasible direction at $\left[\frac{1}{2},0\right]^T$, then d_2 has to be nonnegative.

Hence $\nabla f(\mathbf{x})|_{\left[\frac{1}{2},0\right]^T}\mathbf{d} = \frac{3}{2}d_2 \geq \overline{0}$ for any feasible direction \mathbf{d} .

Hence the first order necessary conditions for $\mathbf{x}^* = \begin{bmatrix} \frac{1}{2}, 0 \end{bmatrix}^T$ to be a locally minimum point is satisfied.

Also if $\nabla f(\mathbf{x}^*)\mathbf{d} = 0$, then $d_2 = 0$, and for all such \mathbf{d}

 $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} = 2d_1^2 \ge 0.$

Hence the second order necessary conditions for \mathbf{x}^* to be locally minimum is also satisfied.

Example 2: Consider the following problem:

Minimize $f(x_1, x_2) = x_1^3 - x_1^2 x_2 + 2x_2^2$

subject to $x_1 \ge 0$, $x_2 \ge 0$. $\nabla f(x) = (3x_1^2 - 2x_1x_2, -x_1^2 + 4x_2) = [0, 0]$ has two solutions $x_1 = 0, x_2 = 0$ and $x_1 = 6, x_2 = 9$. Here $[6, 9]^T$ an interior point of the feasible region $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0\}$ satisfies the first order necessary conditions.

But since
$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} 6x_1 - 2x_2 & -2x_1 \\ -2x_1 & 4 \end{pmatrix}$$
.

But since
$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} 6x_1 - 2x_2 & -2x_1 \\ -2x_1 & 4 \end{pmatrix}$$
.
At $\mathbf{x}^* = [6, 9]^T$, $\nabla^2 f(\mathbf{x}^*) = \begin{pmatrix} 18 & -12 \\ -12 & 4 \end{pmatrix}$ is not positive semidefinite.

Hence $\mathbf{x}^* = [6, 9]^T$ is not a local minimum point of f.

Hence the first order necessary conditions are necessary but not sufficient for a point to be a local minimum.

At $\mathbf{x}^* = [0, 0]^T$ a nonzero direction \mathbf{d} is feasible if and only if $d_1 \ge 0$ and $d_2 \ge 0$. Since $\nabla f(\mathbf{x}^*) = \mathbf{0}$, $\nabla f(\mathbf{x}^*)\mathbf{d} = 0$ for all \mathbf{d} .

Since
$$\nabla^2 f(\mathbf{x}^*) = 0$$
, $\nabla^2 f(\mathbf{x}^*) = 0$ for all \mathbf{d} .
Since $[0,0]^T$ satisfies both the first and second order necessary conditions, we can only say that

 $\mathbf{x}^* = [0, 0]^T$ can be a candidate for local minimum, but since these are only necessary conditions we cannot conclude from previous calculations that $[0,0]^T$ is indeed a local minimum.

Exercise: Check that $[0,0]^T$ is a local minimum point of f in **Example 2**.

Solution: Note that $f(x_1, x_2) = x_1^3 - x_1^2 x_2 + 2x_2^2 = x_1^2 (x_1 - x_2) + 2x_2^2$ can take values < 0 only when $x_2 > x_1$, but then for $|x_1|, |x_2| < 1$, clearly $x_1^2 (x_1 - x_2) + 2x_2^2 \ge 0$, hence $[0, 0]^T$ is a local minimum.

It is quite clear that for any f, of the form $f(x_1, x_2) = x_1^3 - x_1^2 x_2 + c x_2^2, c > 0$, $\mathbf{x}^* = [0, 0]^T$ will be a local minimum point of f for the domain given in **Example 2**.

However if we take c=0 in the above expression, then $f(x_1,x_2)=x_1^3-x_1^2x_2$, then one can check that $\nabla^2 f(\mathbf{x}^*) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, is a positive semidefinite matrix, but $\mathbf{x}^* = [0, 0]^T$ is not a local optimum point.

Hence the first order and the second order necessary conditions are **necessary** but **not sufficient** for a point \mathbf{x}^* to be a local minimum.

Sufficient conditions for a local minima:

Theorem 4: Let $f:\Omega\to\mathbb{R}$ be a twice continuously differentiable function. Let \mathbf{x}^* be an interior point of Ω . If \mathbf{x}^* satisfies the following conditions

1. $\nabla f(\mathbf{x}^*) = \mathbf{0}$

 $2.\nabla^2 f(\mathbf{x}^*)$ is positive definite,

then \mathbf{x}^* is a local minimum point of f.

Proof: Since \mathbf{x}^* is an interior point of Ω , if $\nabla f(\mathbf{x}^*) = \mathbf{0}$, then by Taylor's second order approximation formula for f near \mathbf{x}^* , we get

 $f(\mathbf{x}^* + t\mathbf{d}) = f(\mathbf{x}^*) + \frac{t^2}{2}\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} + o(t^2)$, for all $\mathbf{d} \in \mathbb{R}^n$ and all t > 0 sufficiently small.

For t small, $\left|\frac{t^2}{2}\mathbf{d}^T\nabla^2 \tilde{f}(\mathbf{x}^*)\mathbf{d}\right| \ge |o(t^2)|$,

hence \mathbf{x}^* is a local minimum point if $\nabla^2 f(\mathbf{x}^*)$ is positive definite.

Since maximizing f is same as minimizing -f, all the previous theorems have Remark: corresponding analogues for a maximization problem with some obvious changes. For example < conditions in the results are replaced by \geq conditions and with positive semidefinite (or positive definite) matrices in the results are appropriately replaced by negative semidefinite matrices (or negative definite matrices).

Definition 4: A real valued function f defined on a convex set $\Omega \subseteq \mathbb{R}^n$ is said to be a convex function if for all $\mathbf{x}, \mathbf{y} \in \Omega$ and all $0 \le \alpha \le 1$, $f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).$

Definition 5: A function f defined on a convex set Ω is said to be concave if -f is convex.

Theorem 1: If f is a convex function defined on Ω (a convex set), then the set $S = \{x : x \in \mathbb{R} : x \in \mathbb{R} \}$ $f(\mathbf{x}) \leq c$ is a convex set (for all real c).

Proof: Exercise.

Theorem 2: Let f be a continuously differentiable function defined on a convex set, $\Omega \subseteq \mathbb{R}^n$, then f is convex if and only if $f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})(\mathbf{y} - \mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \Omega$.

Proof: Let $f: \Omega \to \mathbb{R}$ be a convex function. Then for all $\mathbf{x}, \mathbf{y} \in \Omega$ and all $0 \le \alpha \le 1$, $f(\alpha \mathbf{y} + (1 - \alpha)\mathbf{x}) \le \alpha f(\mathbf{y}) + (1 - \alpha)f(\mathbf{x}).$

For all
$$\alpha > 0$$
, sufficiently small,
$$\frac{f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\alpha} \le f(\mathbf{y}) - f(\mathbf{x})$$

Letting $\alpha \to 0$ we get

$$\nabla f(\mathbf{x})(\mathbf{y} - \mathbf{x}) \le f(\mathbf{y}) - f(\mathbf{x}).$$

To show the converse,

let
$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})(\mathbf{y} - \mathbf{x})$$
 for all $\mathbf{x}, \mathbf{y} \in \Omega$. (**

Fix $\mathbf{x}, \mathbf{y} \in \Omega$, and let \mathbf{z} be a point in between and on the straight line segment joining \mathbf{x} and \mathbf{y} .

That is $\mathbf{z} = \alpha \mathbf{x} + (1 - \alpha) \mathbf{y}$ for some $0 \le \alpha \le 1$. From (**) we get

$$f(\mathbf{x}) \geq f(\mathbf{z}) + \nabla f(\mathbf{z})(\mathbf{x} - \mathbf{z})$$
 and

$$f(\mathbf{y}) \ge f(\mathbf{z}) + \nabla f(\mathbf{z})(\mathbf{y} - \mathbf{z}).$$

By multiplying the first equation by α , the second by $(1-\alpha)$ and adding the two equations we

$$\alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) \ge f(\mathbf{z}) + \nabla f(\mathbf{z})(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y} - \mathbf{z}).$$

Since $\mathbf{z} = \alpha \mathbf{x} + (1 - \alpha) \mathbf{y}$ we get

$$\alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) \ge f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}).$$

Since the above condition is difficult to verify and check, let me state the following result without proof.

Theorem 3: Let f be a twice continuously differentiable function on a convex set Ω (let Ω be such that it has at least one interior point), then f is convex on Ω if and only if for all $\mathbf{x} \in \Omega$, $\nabla^2 f(\mathbf{x})$ is positive semidefinite.

Proof: For those interested in the proof, refer to Luenberger.

Revisiting Example 2: Let $f(x_1, x_2) = x_1^3 - x_1^2 x_2 + 2x_2^2$ be defined on

$$\Omega = \{ [x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0 \}.$$

$$\Omega = \{ [x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0 \}.$$
Since $\nabla^2 f(\mathbf{x}) = \begin{pmatrix} 6x_1 - 2x_2 & -2x_1 \\ -2x_1 & 4 \end{pmatrix}$,

at
$$x_1 = 1, x_2 = 3, \nabla^2 f(\mathbf{x}) = \begin{pmatrix} 0 & -2 \\ -2 & 4 \end{pmatrix}$$

is clearly not positive semidefinite, hence f is not a convex function on Ω .

Remark: Since minimizing f is same as maximizing -f, all the previous theorems for minimizing a convex function have corresponding analogues for maximizing a concave function and the positive semidefinite matrix in the previous theorem can be appropriately replaced by a negative semidefinite matrix.

Theorem 4: Let $f: \Omega \to \mathbb{R}$ be a continuously differentiable function. If f is convex on Ω , then \mathbf{x}^* is a local minimum point of f if and only if for all feasible direction \mathbf{d} at \mathbf{x}^* $\nabla f(\mathbf{x}^*)\mathbf{d} \geq 0.$

Proof: Since the **only if** part is already shown before, we have to only show the **if** part.

Let $\mathbf{x}^* \in \Omega$ satisfy $\nabla f(\mathbf{x}^*)\mathbf{d} \geq 0$ for all feasible \mathbf{d} at \mathbf{x}^* .

Since
$$f$$
 is convex $f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})(\mathbf{y} - \mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \Omega$. (1)

Hence for all $\mathbf{y} \in \Omega$, $f(\mathbf{y}) \ge f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)(\mathbf{y} - \mathbf{x}^*)$.

Since Ω is convex, $\mathbf{x} = \alpha \mathbf{y} + (1 - \alpha) \mathbf{x}^* = \mathbf{x}^* + \alpha (\mathbf{y} - \mathbf{x}^*)$ belongs to Ω , for all $0 \le \alpha \le 1$, hence $(\mathbf{y} - \mathbf{x}^*)$ is a feasible direction at \mathbf{x}^* and $\nabla f(\mathbf{x}^*)(\mathbf{y} - \mathbf{x}^*) \geq 0$.

Hence $f(\mathbf{y}) \ge f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)(\mathbf{y} - \mathbf{x}^*) \ge f(\mathbf{x}^*)$.

Since $\mathbf{y} \in \Omega$ was arbitrary, \mathbf{x}^* is a local minimum of f (in fact a global minimum of f).

Corollary 4: Let $f:\Omega\to R$ be a continuously differentiable function. If f is convex on Ω and \mathbf{x}^* an interior point of Ω , then \mathbf{x}^* is a local minimum for f if and only if $\nabla f(\mathbf{x}^*) = \mathbf{0}.$

Proof: Follows from the previous result.

That the above result is not necessarily true if f is not convex as you have already seen in Example 2.

Theorem 5: Let f be a convex function defined on a convex set Ω , then the following statements are true.

1. Let S be the collection of all \mathbf{x} 's where f attains its minimum value (that is, the set of all optimal solutions of f for a minimization problem). Then S is a convex set, or in other words the set $S = \{\mathbf{x} : f(\mathbf{x}) \leq f(\mathbf{y}) \text{ for all } \mathbf{y} \in \Omega \}$, is a convex set.

2. If \mathbf{x}^* is a local minimum point of f then it is also a global minimum point of f.

Proof:

1. If f does not have a minimum then the above result is vacuously true.

If f takes a minimum value then let $a = min_{\mathbf{x} \in \Omega} \{ f(\mathbf{x}) \}.$

Since f is a convex function, $S_1 = \{\mathbf{x} : f(\mathbf{x}) \leq a\}$ is convex, by Theorem 1.

Note that $S_1 = S$.

2. To show that a local minimum of f is a global minimum of f.

If not, then let \mathbf{x}^* be a local minimum point of f and let there exist a $\mathbf{y} \in \Omega$ such that $f(\mathbf{y}) < f(\mathbf{x}^*)$.

Join \mathbf{x}^* and \mathbf{y} by a straight line.

Since Ω is a convex set, the straight line segment joining \mathbf{x}^* and \mathbf{y} lies entirely in Ω .

Since f is a convex function, for all $0 < \alpha \le 1$,

$$f((1-\alpha)\mathbf{x}^* + \alpha\mathbf{y}) \le (1-\alpha)f(\mathbf{x}^*) + \alpha f(\mathbf{y}) < f(\mathbf{x}^*).$$

This contradicts that \mathbf{x}^* is a local minimum point of f.

Remark: A natural question would be whether the conclusions of Theorem 5 holds good when maximizing a convex function. The answer however is not true.

Take
$$f(x) = x^2, -1 \le x \le 2$$
.

From previous discussions however it is clear that the above result is true if you are maximizing -f or maximizing a concave function.

Remark: We had seen while minimizing or maximizing a linear function over a polyhedral set, the extremum was attained in at least one extreme point. An extreme point of a polyhedral set, (more generally convex set) is one which cannot be written as a strict convex combination of two distinct points of that set).

But in the problem of minimizing a convex function over a convex set, the minimum may be attained at an interior point of Ω .

The following theorem however gives a similar result when maximizing a convex function over a convex set.

I will just state the result without proof.

Theorem 6: Let f be a convex function defined on a closed and bounded convex set Ω (so it has at least one extreme point), then there exists an extreme point of Ω , where f takes its maximum value. (For proof refer, Luenberger).

FJ conditions and Karush Kuhn Tucker (KKT) conditions in constrained optimization problems:

Consider the following nonlinear programming problem (P) of the form,

Minimize $f(\mathbf{x})$

subject to
$$g_i(\mathbf{x}) \leq \mathbf{0}$$
, for $i = 1, ..., m$, $\mathbf{x} \in \Omega$, $(\Omega \text{ open })$ or $\mathbf{x} \in \mathbb{R}^n$.

Assume all the functions $f, g_i : \mathbb{R}^n \to \mathbb{R}$. As the name suggests the function f and the constraint functions g_i may not be linear functions.

The feasible region now is given by $S = Fea(P) = \{ \mathbf{x} \in \mathbb{R}^n : g_i(\mathbf{x}) \leq 0, \text{ for } i = 1, 2, ..., m \}$. Since the problem is again of optimizing a function, we are again looking for feasible directions at $\mathbf{x}^* \in S$ such that starting from \mathbf{x}^* if we move along \mathbf{d} , we will get points of the feasible region with better values of the objective function than that obtained at \mathbf{x}^* .

Note that for this problem the set D of feasible directions at \mathbf{x}^* is given by, $D = \{\mathbf{d} \in \mathbb{R}^n : g_i(\mathbf{x}^* + t\mathbf{d}) \le 0, \text{ for all } i = 1, 2, ..., m, \text{ and for all } 0 \le t \le c, \text{ for some } c > 0\}.$

If I is the set of indices which corresponds to the constraints binding at $\mathbf{x}^* \in S$ then, $I = \{i \in \{1, ..., m\} : g_i(\mathbf{x}^*) = 0\}$. Let $I^* = \{i \in \{1, ..., m\} : g_i(\mathbf{x}^*) < 0\}$.

For all $i \in I^*$, we assume that g_i is continuous at \mathbf{x}^* .

Then note that for each $i \in I^*$ there exists $c_i > 0$ such that

 $g_i(\mathbf{x}^* + t\mathbf{d}) < 0 \text{ for all } 0 \le t \le c_i,$

since $g_i(\mathbf{x}^*) < 0$ and g_i is continuous at \mathbf{x}^* .

By taking $c = \min_{i \in I^*} \{c_i\}$, we can get a c > 0 (which depends on **d**) such that

 $g_i(\mathbf{x}^* + t\mathbf{d}) < 0$ for all $0 \le t \le c$ and for all $i \in I^*$.

Since $g_i(\mathbf{x}^*) = 0$, for $i \in I$, if g_i 's are continuously differentiable at \mathbf{x}^* and \mathbf{d} satisfies the condition, $\nabla g_i(\mathbf{x}^*)\mathbf{d} < 0$ for all $i \in I$,

then from Taylor's formula of first order approximation applied to the g_i 's,

we get that for each $i \in I$ there exists an $a_i > 0$ such that

 $g_i(\mathbf{x}^* + t\mathbf{d}) < 0 \text{ for all } 0 \le t \le a_i.$

Again by taking $a = min_{i \in I}\{a_i\} > 0$, we get that $g_i(\mathbf{x}^* + t\mathbf{d}) < 0$ for all $0 \le t \le a$ and for all $i \in I$.

From the above discussion it is clear that if

for all $i \in I^*$, g_i 's are assumed to be continuous at \mathbf{x}^*

and for all $i \in I$, if g_i 's are assumed to be continuously differentiable at \mathbf{x}^* then $G_0 \subseteq D$,

where $G_0 = \{ \mathbf{d} \in \mathbb{R}^n : \nabla g_i(\mathbf{x}^*) \mathbf{d} < 0 \text{ for all } i \in I \}.$

From the first order necessary conditions for a local minimum (discussed earlier) it is already seen that if \mathbf{x}^* is a local minimum then it should satisfy the condition that $F_0 \cap D = \phi$, where D is the set of feasible directions at \mathbf{x}^* and $F_0 = \{\mathbf{d} \in \mathbb{R}^n : \nabla f(\mathbf{x}^*)\mathbf{d} < 0\}$.

Since $G_0 \subseteq D$ under the assumptions made above, hence necessary conditions for \mathbf{x}^* to be a local minimum is also given by $F_0 \cap G_0 = \phi$.

Theorem 7: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function. Consider the problem of minimizing f subject to the conditions $g_i(\mathbf{x}) \leq 0, i = 1, 2, ..., m$, where $g_i: \mathbb{R}^n \to \mathbb{R}$ for all i. Let $S = \{\mathbf{x} \in \mathbb{R}^n : g_i(\mathbf{x}) \leq 0, i = 1, 2, ..., m\}$ and $\mathbf{x}^* \in S$.

For all $i \in I^*$, g_i 's are assumed to be continuous at \mathbf{x}^* and for all $i \in I$, g_i 's are assumed to be continuously differentiable at \mathbf{x}^* .

Then if \mathbf{x}^* is a local minimum of f over S

there exists nonnegative constants, $u_0, u_i, i \in I$, not all zeros such that

$$u_0 \nabla f(\mathbf{x}^*) + \sum_{i \in I} u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}. \tag{1}$$

Proof: If \mathbf{x}^* is a local minimum point of f then $F_0 \cap G_0 = \phi$, hence the following system $\nabla f(\mathbf{x}^*)\mathbf{d} < 0$ and $\nabla g_i(\mathbf{x}^*)\mathbf{d} < 0$ for $i \in I$

does not have a solution.

That is, the system $A\mathbf{d} < 0$ does not have a solution,

where the rows of A are given by $\nabla f(\mathbf{x}^*)$ and $\nabla g_i(\mathbf{x}^*)$, $i \in I$.

From a theorem of alternative (called Gordon's theorem, proof given at the end) we get that the system

 $\mathbf{u} \neq \mathbf{0}, \, \mathbf{u} \geq \mathbf{0}, \, \mathbf{u}^T A = \mathbf{0} \text{ has a solution.}$

Hence the components of \mathbf{u} satisfy condition (1).

If all the g_i 's for i = 1, ..., m are continuously differentiable at \mathbf{x}^* , then the above conditions reduces to

$$u_0 \nabla f(\mathbf{x}^*) + \sum_{i=1}^m u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}$$
, and $u_i g_i(\mathbf{x}^*) = 0$ for all $i = 1, 2, ..., m$. (2)

Here $\mathbf{x}^* \in S$ is called the primal feasibility condition, the condition given in (1) together with non-negativity of the u_i 's, is called the dual feasibility condition.

 $u_i g_i(\mathbf{x}^*) = 0$ for all i = 1, 2, ..., m, is called the complementary slackness condition.

All the conditions taken together are called the \mathbf{FJ} (Fritz John) conditions and the point $(\mathbf{x}^*, \mathbf{u})$ (or \mathbf{x}^*) is called a Fritz John, or an \mathbf{FJ} point.

 \mathbf{x}^* is said to satisfy **KKT** condition if there exists nonnegative constants u_i , $i \in I$, such that $\nabla f(\mathbf{x}^*) + \sum_{i \in I} u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}$. (3)

If all the g_i 's for i = 1, ..., m are continuously differentiable at \mathbf{x}^* then the above condition reduces to

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0} \text{ and } u_i g_i(\mathbf{x}^*) = 0 \text{ for all } i = 1, 2, ..., m.$$

$$\tag{4}$$

The above conditions, that is conditions given by (3) and (4) are called **KKT** (**Karush**, **Kuhn**, **Tucker**) conditions.

Any $(\mathbf{x}^*, \mathbf{u})$ (or \mathbf{x}^*) which satisfies the **Karush Kuhn Tucker (KKT)** conditions is called a **KKT** point.

Theorem 8: If in addition to the conditions assumed for f and g_i 's, as in the previous theorem, $\nabla g_i(\mathbf{x}^*)$'s for $i \in I$ are assumed to be linearly independent (as vectors) where \mathbf{x}^* is a local minima (as in the previous theorem) then it can be easily shown that there exists nonnegative constants u_i , $i \in I$, such that

$$\nabla f(\mathbf{x}^*) + \sum_{i \in I} u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}.$$
 (3)

Proof: Follows from the previous theorem and the fact that if $\nabla g_i(\mathbf{x}^*)$, i = 1, 2, ..., m are LI then the system

 $\mathbf{u}' \neq \mathbf{0}, \, \mathbf{u}' \geq \mathbf{0}, \, \mathbf{u}'^T A' = \mathbf{0}$ does not have a solution,

where A' is the matrix whose rows are given by $\nabla g_i(\mathbf{x}^*)$, $i \in I$.

Hence in the FJ conditions which \mathbf{x}^* must satisfy since it is local minima, u_0 cannot be zero, hence one can divide equation (1) by $u_0 > 0$ to get condition (3).

Remark: Hence from **Theorem 8** it is clear that if $(\mathbf{x}^*, \mathbf{u})$ (or \mathbf{x}^*) is an **FJ** point and if $\nabla g_i(\mathbf{x}^*)$'s for $i \in I$ are LI then $(\mathbf{x}^*, \mathbf{u})$ (or \mathbf{x}^*) is a **KKT** point.

Remark: If \mathbf{x}^* satisfies the Karush Kuhn Tucker (KKT) conditions then it necessarily satisfies the \mathbf{FJ} conditions.

Remark: KKT conditions basically says that under the assumptions of the theorem, if \mathbf{x}^* is a local minimum, then $-\nabla f(\mathbf{x}^*)$ lies in the cone generated by the $\nabla g_i(\mathbf{x}^*)$'s, $i \in I$.

Example 1: Minimize $(x_1 - 3)^2 + (x_2 - 2)^2$ subject to $x_1^2 + x_2^2 \le 5$.

$$x_1 + 2x_2 \le 4$$
.
 $-x_1 \le 0$
 $-x_2 \le 0$.

By inspection one can see that f takes its minimum value at $[2,1]^T$.

Solution given by a student **Romel**: The point $[2,3]^T$, is outside the feasible region, hence we can construct circles of larger and larger radius (starting with radius 0) with center at $[2,3]^T$, till it cuts the feasible region S. The radius of the smallest such circle centered at $[2,3]^T$ which intersects S will give the optimal value, and the point where this circle cuts S will give optimal solutions.

Here
$$g_1(\mathbf{x}) = x_1^2 + x_2^2 - 5$$
, $g_2(\mathbf{x}) = x_1 + 2x_2 - 4$, $g_3(\mathbf{x}) = -x_1$ and $g_4(\mathbf{x}) = -x_2$.

At $\mathbf{x}^* = [2, 1]^T$ the binding constraints are g_1 and g_2 .

$$\nabla g_1(\mathbf{x}^*) = [4, 2] \text{ and } \nabla g_2(\mathbf{x}^*) = [1, 2] \text{ and } \nabla f(\mathbf{x}^*) = [-2, -2].$$

 $\nabla g_1(\mathbf{x}^*)$ and $\nabla g_2(\mathbf{x}^*)$ are linearly independent.

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^2 u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}$$

Take $u_1 = \frac{1}{6}$, $u_2 = \frac{1}{3}$, then $\nabla f(\mathbf{x}^*) + \sum_{i=1}^2 u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}$. Hence $[2,1]^T$ satisfies the KKT condition.

Example 2: Minimize $-x_1$.

subject to

$$x_2 - (1 - x_1)^3 \le 0$$

$$-x_2 \le 0$$

It is clear that $\mathbf{x}^* = [1, 0]^T$ is a local minimum.

At $[1,0]^T$ both the constraints are binding.

$$\nabla f(\mathbf{x}^*) = [-1, 0], \ \nabla g_1(\mathbf{x}^*) = [0, 1] \text{ and } \nabla g_2(\mathbf{x}^*) = [0, -1].$$

Take $u_0 = 0, u_1 = 1, u_2 = 1$, then

$$u_0 \nabla f(\mathbf{x}^*) + \sum_{i=1}^2 u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}.$$

But since $\nabla g_i(\mathbf{x}^*)$'s are not LI, $-\nabla f(\mathbf{x}^*)$ does not lie in the cone generated by the $\nabla g_i(\mathbf{x}^*)$'s, i=1,2. Hence $[1,0]^T$ is an FJ point but **not** a KKT point.

Hence the above example shows that the KKT condition is not a necessary condition for a local minima, although FJ conditions are necessary conditions for a local minima.

The following theorem shows that if f and the q_i 's are (in addition to conditions already assumed) assumed to be convex functions, then the KKT conditions become a sufficient condition for a local minima (although not necessary).

Theorem 9: Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and continuously differentiable. Consider the problem of minimizing f subject to the conditions $g_i(\mathbf{x}) \leq 0, i = 1, \dots, m$, where $g_i : \mathbb{R}^n \to \mathbb{R}$ for all i. Let $S = \{ \mathbf{x} \in \mathbb{R}^n : g_i(\mathbf{x}) \leq 0, i = 1, \dots, m \}$ and $\mathbf{x}^* \in S$. For all $i \in I^*$, we assume that g_i is continuous at \mathbf{x}^* and for all $i \in I$, g_i 's are assumed to be continuously differentiable at \mathbf{x}^* . Let all the g_i 's be convex functions, so that $S = \{ \mathbf{x} \in \mathbb{R}^n : g_i(\mathbf{x}) \leq 0, i = 1, 2, \dots, m \}$ is convex. Then \mathbf{x}^* is a global minimum of f over S if there exists nonnegative constants, $u_i, i \in I$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i \in I} u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}. \tag{1}$$

Proof: Since this problem now becomes the problem of minimizing a convex function over a convex set hence if at \mathbf{x}^* , $F_0 \cap D = \phi$ then \mathbf{x}^* is a local minimum, hence a global minimum of f.

To show $F_0 \cap D = \phi$ at \mathbf{x}^* .

Let $\mathbf{d} \in D$, where D is the set of feasible directions at \mathbf{x}^* . If $D = \phi$ then since S is convex, \mathbf{x}^* should be the only point in S (since for any $y \in S$, $(y - x^*)$ should be a feasible direction at x^*), hence \mathbf{x}^* is the global minimum.

Hence let $\mathbf{d} \in D \neq \phi$,

then
$$g_i(\mathbf{x}^* + t\mathbf{d}) \le 0 = g_i(\mathbf{x}^*)$$
 for all t sufficiently small and for all $i \in I$. (**)

But since g_i 's are convex functions and continuously differentiable for $i \in I$, $g_i(\mathbf{x}^* + t\mathbf{d}) \geq g_i(\mathbf{x}^*) + t\nabla g_i(\mathbf{x}^*)\mathbf{d}$ for all t sufficiently small and for all $i \in I$, which together with (**) implies $\nabla g_i(\mathbf{x}^*)\mathbf{d} \leq 0$ for all $i \in I$. Since $\nabla f(\mathbf{x}^*) + \sum_{i \in I} u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}$ has a solution, $\nabla f(\mathbf{x}^*)\mathbf{d} + \sum_{i \in I} u_i \nabla g_i(\mathbf{x}^*)\mathbf{d} = \mathbf{0}$ has a solution, which implies that $\nabla f(\mathbf{x}^*)\mathbf{d} \geq 0$. Since $\mathbf{d} \in D$ was arbitrary, $F_0 \cap D = \phi$.

Note that for a nonconvex function even if \mathbf{x}^* satisfies the above conditions it may not be a local minimizer. Check this for the following example by taking $\mathbf{x}^* = (0,0)$.

Example 3:
$$f(x) = -x^2$$
 for $x \le 0$
= x^2 for $x > 0$.

In fact any x^* for which $\nabla f(x^*) = 0$ and x^* not a local minima will provide an example.

Exercise: Write the KKT conditions for the linear programming problem Min $\mathbf{c}^T \mathbf{x}$ subject to, $A_{m \times n} \mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}$.

Solution: Note that we have to write the constraints as: $(A\mathbf{x} - \mathbf{b})_i \leq 0$ for i = 1, ..., m, $(-A\mathbf{x} + \mathbf{b})_i \leq 0$ for i = 1, ..., m and $-x_i \leq 0$ for i = 1, ..., n.

Note that $\nabla f(\mathbf{x}^*) = \mathbf{c}^T$, $\nabla g_i(\mathbf{x}^*) = \mathbf{a}_i^T$ for the first m constraints, $\nabla g_i(\mathbf{x}^*) = -\mathbf{a}_i^T$ for the next m constraints and $\nabla g_i(\mathbf{x}^*) = -\mathbf{e}_i^T$ for the nonnegativity constraints, where \mathbf{a}_i^T for i = 1, ..., m, is the i th row of A, and \mathbf{e}_i^T for i = 1, ..., n, is the i th row of I_n ,

respectively.

Since all the functions f and g_i 's are continuously differentiable, the KKT conditions reduces to $\mathbf{c}^T + \sum_{i=1}^m u_i \mathbf{a}_i^T + \sum_{i=1}^m u_i' (-\mathbf{a}_i^T) + \sum_{i=1}^n v_i (-\mathbf{e}_i^T) = \mathbf{0}$ (1)

and $u_i(A\mathbf{x} - \mathbf{b})_i = 0$ for all i = 1, 2, ..., m (2)

 $u'_i(-A\mathbf{x} + \mathbf{b})_i = 0 \text{ for all } i = 1, 2, ..., m$ (3)

 $v_i x_i = 0$ for all i = 1, 2, ..., nwhere all u_i, u'_i, v_i are nonnegative.

Conditions (1), (2), (3) and (4) can be rewritten as:

 $\mathbf{c}^T - \mathbf{y}^T A - \mathbf{v}^T = \mathbf{0}$, or $\mathbf{c}^T - \mathbf{y}^T A = \mathbf{v}^T$

where $\mathbf{v} = [v_1, \dots, v_n]^T$ is a nonnegative vector, $y_i = u_i' - u_i$ and $\mathbf{y} = [y_1, \dots, y_m]^T$.

 $(A\mathbf{x} - \mathbf{b})_i y_i = 0$ for all i = 1, 2, ..., m

and $v_i x_i = 0$ for all i = 1, 2, ..., n.

The above conditions reduces to the dual feasibility and the complementary slackness conditions in a LPP as follows:

 $\mathbf{y}^T A \leq \mathbf{c}^T$, $(A\mathbf{x} - \mathbf{b})_i y_i = 0$ for all i = 1, 2, ..., m, and $(\mathbf{c}^T - \mathbf{y}^T A)_i x_i = 0$ for all i = 1, 2, ..., n.

Conclusion: Hence from the above derivation we can conclude that $\mathbf{x}^* \in Fea(P)$ is optimal for (P) if and only if \mathbf{x}^* is a KKT point of (P).

Exercise: What are the FJ points of the above problem?

Exercise: Write the KKT conditions for the linear programming problem

 $\operatorname{Min} \mathbf{c}^T \mathbf{x}$

subject to, $A\mathbf{x} \geq \mathbf{b}, \mathbf{x} \geq \mathbf{0}$.

Gordon's Theorem: Exactly one of the following two systems has a solution:

$$\mathbf{u} \neq \mathbf{0}, \ \mathbf{u} \geq \mathbf{0}, \ \mathbf{u}^T A = \mathbf{0}$$

$$\mathbf{y}^T A > \mathbf{0}$$
(1)

Proof: System (1) has a solution if and only if

$$\mathbf{u} \geq \mathbf{0}, \qquad \mathbf{u}^T A = \mathbf{0}, \qquad \sum_i u_i = 1 \text{ has a solution,}$$

that is the system

$$\mathbf{u} \geq \mathbf{0}, \qquad \mathbf{u}^T \begin{bmatrix} A \\ e^T \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix}$$
 has a solution,

where e is the vector with all entries equal to 1.

But we already know (Farka's lemma) that exactly one of the following two systems has a solution

$$A\mathbf{x} = \mathbf{b} \ \mathbf{x} \ge \mathbf{0}$$

$$\mathbf{y}^T A \ge \mathbf{0}, \ \mathbf{y}^T \mathbf{b} < 0$$
 (2)

Hence by using this lemma in the previous systems we get that exactly one of the following two systems has a solution

$$\mathbf{u} \geq \mathbf{0}, \qquad \mathbf{u}^{T} \begin{bmatrix} A \\ e^{T} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix}$$
(1)
$$[\mathbf{y}^{T}, a] \begin{bmatrix} A \\ e^{T} \end{bmatrix} \geq \mathbf{0}, \qquad [\mathbf{y}^{T}, a] \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix} < 0$$
(2)
But system (2) reduces to $\mathbf{y}^{T}A > (-a)e^{T}$, where $a < 0$.

But $\mathbf{y}^T A > (-a)e^T$, a < 0 has a solution, if and only if $\mathbf{y}^T A > 0$ has a solution.

Hence exactly one of the following two systems has a solution

$$\mathbf{u} \ge \mathbf{0}, \qquad \mathbf{u}^T \begin{bmatrix} A \\ e^T \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix}$$

$$\mathbf{y}^T A > 0 \qquad (2)$$

Or exactly one of the following two systems has a solution:

$$\mathbf{u} \neq \mathbf{0}, \qquad \mathbf{u} \geq \mathbf{0}, \qquad \mathbf{u}^T A = \mathbf{0}$$

$$\mathbf{y}^T A > \mathbf{0}$$
(1)