Sept Discovery Colored Bi Francis Bi Francis

ආතන්ද විදපාලය - කොළඹ 10

10 S I

දෙවන වාර පරීක්ෂණය - 2019 මාර්තු අධ්නයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු

සංයුක්ත ගණිතය I Combined Maths I

13 ලේණිය

පැය තුනයි Three hours

නම	7
_	

උපදෙස් :

- * මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ. A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17)
- * A කොටස සියලුම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙති ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකිය.
- * B කොටස පුශ්න පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.
- නියමිත කාලය අවසන් වූ පසු A කොටස, B කොටසට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයෙහි B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙනයාමට ඔබට අවසර ඇත.

පරික්ෂකගේ පුයෝජනය සඳහා පමණි.

(10)) සංයුක්ත ගණිතය	1
තොටස	පුශ්න අංක	ଓଡ଼ି ଓକ୍ଷ
	1	
	2	
	3	
	4	
A	5	
	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	
	පුතිශතය	

පතුය I	
පතුය II	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරින්	

සංකේත අංක

උත්තර පතු පරිඃ	ವಕದಾ	
	1	
පරීක්ෂා කළේ:	2	
අධීක්ෂණය		

A කොටස

ත්වූත්තයෙන් පො	300333. 664)	r e z 60.			

	***************************************				***************************************

විසඳුම් කුලකය ෙ	සායන්න. තවද	2x-1 =x	+1+k සමීකර		
විසඳුම් කුලකය ෙ	සායන්න. තවද	2x-1 =x	+1+k සමීකර		
විසඳුම් කුලකය ෙ	සායන්න. තවද	2x-1 =x	+1+k සමීකර		
විසඳුම් කුලකය ෙ	සායන්න. තවද	2x-1 =x	+1+k සමීකර		
විසඳුම් කුලකය ෙ	සායන්න. තවද	2x-1 =x	+1+k සමීකර		
විසඳුම් කුලකය ෙ	සායන්න. තවද	2x - 1 = x - 0 = 8 k ∈ R	+ 1 + k සම්කර වේ.	ණයට විසඳුම	
විසඳුම් කුලකය ෙ	සායන්න. තවද	2x - 1 = x - 0	+ 1 + k සම්කර වේ.	කෙට විසඳුම	නොතිබීම සඳහ
විසඳුම් කුලකය ෙ	සායන්න. තවද	2x - 1 = x - 0	+ 1 + k සම්කර වේ.	ණයට විසඳුම 	නොතිබීම සඳහ
y = 2x - 1 හා : විසඳුම කුලකය ග ගතහැකි අගය පර	සායන්න. තවද	2x - 1 = x - 0	+ 1 + k සම්කර වේ.	ණයට විසඳුම 	නොතිබීම සඳහ
විසඳුම් කුලකය ෙ	සායන්න. තවද	2x - 1 = x - 0	+ 1 + k සම්කර වේ.	නෙයට විසඳුම 	නොතිබීම සඳහ
විසඳුම් කුලකය ෙ	සායන්න. තවද	2x - 1 = x - 0	+ 1 + k සම්කර වේ.	ණයට විසඳුම 	නොතිබීම සඳහ
විසඳුම් කුලකය ෙ	සායන්න. තවද	2x - 1 = x - 0	+ 1 + k සම්කර වේ.	නෙයට විසඳුම 	නොතිබීම සඳහ
විසඳුම් කුලකය ෙ	සායන්න. තවද	2x - 1 = x - 0	+ 1 + k සම්කර වේ.	කෙට විසඳුම	නොතිබීම සඳහ
විසඳුම් කුලකය ෙ	සායන්න. තවද	2x - 1 = x - 0	+ 1 + k සම්කර වේ.	කෙට විසඳුම	නොතිබීම සඳහ
විසඳුම් කුලකය ෙ	සායන්න. තවද	2x - 1 = x - 0	+ 1 + k සම්කර වේ.	කෙට විසඳුම	නොතිබීම සඳහ

මට්ටමේ උ	ස වෙනස් වන	ා සීසුතාවය	$-\frac{4}{9\pi} \text{ cm s}^{-1}$	බව පෙන්වන්න).	

	•••••	•••••	•••••			
	(4)	x	a finday			
$f(x) = 2^{x}$	$\zeta = g(x) = -$	$\sqrt{1-x^2}$ q	නම්]g 0 f(x) dx සොයන්න.		
		Va.				
					••••••••••••	

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						

C ₀ , C ₁ , C ₂ ,) ⁿ ඉතාරණයේ අනුයාත පදවල සංගුණය සාම
$C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = \frac{(2n)!}{(n!)^2}$	කර ලෙස්වන්න.

04.
$$\lim_{n \to \infty} \left[\frac{1}{2n^2} + \frac{2}{2n^2} + \frac{3}{2n^2} + \dots + \frac{h}{2n} \right] = \frac{1}{4}$$
 as easieris.

07.	$y=2x^2+1$ ශිතය $\left[0,\sqrt{2} ight]$ පුාත්තරය තුළ x අක්ෂය වටා 2π කෝණයන් හුමණය කිරීමෙන් ලැබෙන
	පරිමාව $\frac{103\sqrt{2}\pi}{15}$ බව පෙන්වන්න.
08.	OAB සමපාද තිකෝණයකි. A හා B ශීර්ෂ $y=4$ සහ $y=-8$ රේඛා මත පිළිවෙලින් පිහිටයි. O මූල $\sqrt{3}$
	ලක්ෂය චන අතර OA රේඛාව x අක්ෂය ධන දිශාව සමග $\theta < \frac{\pi}{2}$ කෝණයක් සාදයි. $\tan \theta = \frac{\sqrt{3}}{5}$ බව පෙන්වා තිකෝණයේ පාදයක දිග $8\sqrt{\frac{7}{3}}$ බවද පෙන්වන්න.
	<u>කුව පෙනවා තුකොණයෙ පාදයක දහ 8√3</u>

ආනන්ද විදුනාලය - කොළඹ 10

10 S I

දෙවන වාර පරීක්ෂණය - 2019 මාර්තු අධ්නයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු

සංයුක්ත ගණිතය I Combined Maths I

13 ශේණය

B කොටසින් පුස්න පහකට පමණක් පිළිතුරු සපයන්න.

B කොටස

- 11. (a) λ යනු තාත්වික නියනයක් විව $10x^2+4x+1=2\lambda x$ (2-x) සමීකරණයේ මූල α හා β වේ.
 - (i) $\frac{\alpha^2}{\beta}$ හා $\frac{\beta^2}{\alpha}$ මූලවන සම්කරණය සොයන්න.
 - (ii) α හා β සාක්වික වන පරිදි λ හි අගය පරාසය සොයන්න. $\alpha = \beta$ වීම සඳහා λ හි අගයන් අපෝහනය කරන්න.
 - (iii) $f(x) = 2(5+k)x^2 + 4(1-k) + 1$ හා $F(x) = \frac{1}{f(x)}$ ලෙස දී ඇත්නම f(x) = 0 හි මූල සාක්වික වන බවද F(x) හි අවම අගය $F(x_1)$ වන බවද දී ඇත. k යනු තාත්වික නියතයක් වේ.
 - (α) k නි අගය කුලකය සොයන්න.
 - (β) x $_1$ සෙවීමෙන් $F(x_1)$ හි අවම අගය k ඇසුරෙන් සොයන්න.
 - (b) f(x) වර්ගජ මූසය (x-1), (x-2) හා (x+2) න් බෙදුවිට ශේෂයන් පිළිවෙලින් -1, 4 හා 2 වේ. $g(x) = px^3 + qx^2 + rx 5 = 2x \cdot f(x) 1$ වේ නම් p, q, r සොයන්න.
- 12. (a) $(3+7x)^{29}$ ද්විපද පුසාරණයේ r වන පදයේ හා (r+1) වන පදයේ සංගුණක සමාන නම් r වන පදය සොයන්න. එහි සංගුණකය සොයන්න.
 - (b) කොටස් කුනසින් සමන්විත ගණික ප්‍රශ්න පත්‍රයක එක් කොටසක් ප්‍රශ්න පහකින් සමන්විත වේ නම් අඩු වශයෙන් එක් කොටසකින් එක් ප්‍රශ්නයක් වත් තෝරාගෙන මුළු ප්‍රශ්න 5 කට පිළිතුරු ලිවිය හැකි ආකාර ගණන සොයන්න.
 - (c) $\frac{1^4}{1 \times 3} + \frac{2^4}{3 \times 5} + \frac{3^4}{5 \times 7} + \dots$ ලේකියේ r වන පදය U_r ලියා දක්වන්න. භින්න භාග භාවිතයෙන් ලේකියේ පද n වල ඓකාය $\frac{n(n+1)(n^2+n+1)}{6(2n+1)}$ බව පෙන්වන්න.

$$0.00$$
, $\sum_{r=1}^{n} r^2 = \frac{n}{6} (n+1) (2n+1) 0.0$.

5 _ 2 _ 2	=1 බව ලෙපන්ව		2 2		
$S_1 \equiv x^2 + y^2$	+2gx+2fy+c=	0 සහ S ₂ ≡ >	$x^2 + y^2 + 2gx +$	$-2fy+c \cdot \cos^2$	$^2\alpha + (g^2 + f^2)s$
***************************************	***************************************	•••••	***************************************		
	***************************************		***************************************		
***************************************			••••••		
•••••					
		•••••			
***************************************	***************************************		•••••		***************************************
					,
	$s^{-1}(1-x) = \sin^{-1}($				······································
				•	
sin ⁻¹ x + cos	$s^{-1}(1-x) = \sin^{-1}($	—x) විසඳන්න		*	
sin ⁻¹ x + cos	$s^{-1}(1-x) = \sin^{-1}($	(-x) විසඳන්න).		
sin ⁻¹ x + cos	$s^{-1}(1-x) = \sin^{-1}($	(-x) විසඳන්න	5.		
sin ⁻¹ x + cos	$s^{-1}(1-x) = \sin^{-1}($	(-x) විසඳන්න	5.		
sin ⁻¹ x + cos	$s^{-1}(1-x) = \sin^{-1}($	(–x) විසඳන්ප	5.		
sin ⁻¹ x + cos	$s^{-1}(1-x) = \sin^{-1}($	(–x) විසඳන්න	2.		
sin ⁻¹ x + cos	$s^{-1}(1-x) = \sin^{-1}(x)$	(–x) විසඳන්ප	5.		
sin ⁻¹ x + cos	$s^{-1}(1-x) = \sin^{-1}($	(–x) විසඳන්ප	5.		
sin ⁻¹ x + cos	$s^{-1}(1-x) = \sin^{-1}(x)$	(-x) විසඳන්ව	5.		
sin ⁻¹ x + cos	$s^{-1}(1-x) = \sin^{-1}(1-x)$	(-x) විසඳන්ව	5.		
sin ⁻¹ x + cos	$s^{-1}(1-x) = \sin^{-1}(x)$	(-x) විසඳන්ප			
sin ⁻¹ x + cos	$s^{-1}(1-x) = \sin^{-1}(1-x)$	—x) විසඳන්න	2.		
sin ⁻¹ x + cos	$s^{-1}(1-x) = \sin^{-1}(1-x)$	—x) විසඳන්න	2.		
sin ⁻¹ x + cos	$s^{-1}(1-x) = \sin^{-1}(1-x)$	(-x) විසඳන්ව			
sin ⁻¹ x + cos	$s^{-1}(1-x) = \sin^{-1}(1-x)$	(-x) විසඳන්ප			
sin ⁻¹ x + cos	$s^{-1}(1-x) = \sin^{-1}(1-x)$	(-x) විසඳන්න			

16. S හා S^1 යනු පිළිවෙලින් අරයන් r හා r^1 ද කේන්දුයන් පිළිවෙලින් C හා C^1 ද ලෙස ඇති වෘත්ත දෙසාකි. S හා S^1 අභාාන්තරව ස්පර්ශ වන්නේ $\left|r-r^1\right|=C\ C^1$ නම හා නම්ම පමණක් බව පෙන්වන්න. S හා S^1 වෘත්ත බාහිරව ස්පර්ශ කිරීම සඳහා අනිවාර්ය හා පුමාණවත් අවශාතාව පුකාශ කරන්න.

 $S_1 \equiv x^2 + y^2 - 6x + 8 = 0$ හා $S_2 \equiv x^2 + y^2 - 4 = 0$ වෘත්ත ඉදක බාහිරව ස්පර්ශ කරන බව පෙන්වන්න.

 $\lambda>-2$ හා $\lambda\neq 0$ වූ λ හි සියලුම තාත්වික අගයන් සඳහා $S_3=x^2+y^2+2\lambda x-4$ $(1+\lambda)=0$ වෘත්තය $S_2=0$ වෘත්තය අභාගන්තරවද $S_1=0$ වෘත්තය බාහිරවද ස්පර්ශ කරන බව පෙන්වන්න.

4x + 3y - 44 = 0 සරළ රේඛාව ස්පර්ශ කරමින් $S_2 = 0$ වෘත්තය අභාගන්කරවද $S_1 = 0$ වෘත්තය ඛාහිරව ස්පර්ශ කරන වෘත්තයේ අරය සොයන්න. $S_1 = 0$ හා $S_2 = 0$ වෘත්ත දෙකම අභාගන්තරව ස්පර්ශ කරන වෘත්තයක් පවතීද?

- 17. (a) $\cos\theta = \frac{\sin\beta}{\sin\alpha}$, $\cos\phi = \frac{\sin\gamma}{\sin\alpha}$ සහ $\cos(\theta-\phi) = \sin\beta$. $\sin\gamma$ යැයි ගනිමු. මෙහි $0<\alpha$, β , $\gamma<\frac{\pi}{2}$ වනවිට $\tan^2\alpha = \tan^2\beta + \tan^2\gamma$ බව සාධනය කරන්න.
 - (b) $2^{1+|\cos x|+|\cos x|^2+|\cos x|^3+\dots}=4$ සම්කරණයෙහි සාධාරණ විසඳුම සොයන්න.
 - (c) (i) $f(x) = \cos^2 x 2\sin x \cos x \sin^2 x$ යැයි ගනිමු. මෙහි $0 < x < 2\pi$ වේ. $f(x) = a\cos(bx + \alpha)$ ආකාරයෙන් පුකාශ කරන්න. මෙහි a, b සහ α නිර්ණය කළයුතු නියන වේ.
 - (ii) 0 < x < 2π සඳහා y = f(x) හි දළ පුස්තාරය අඳින්න.

13. (a) $f(x) = \frac{x^3(ax+b)}{(x+2)^3}$ ලෙස දී ඇත. මෙහි $x \neq -2$ වේ. $\left(-7, -\frac{2401}{25}\right)$ යනු f(x) හි හැරුම ලක්ෂායකි. a=6 හා b=7 බව පෙන්වා සියලුම හැරුම ලක්ෂ සොයන්න.

 $f''(x) = \frac{12(17x^2 + 14x)}{(x+2)^5}$ බව පෙන්වා එනයින් අවශා පුාන්තරවලදී අවසලසාව පැහැදිලිව දක්වමින් ශීතයේ දළ පුස්තාරය අඳින්න.

- (b) OA යනු මූල ලක්ෂාය වේ. $y=3-\frac{x^2}{12}$ වනුය මත x අක්ෂයට සමාන්තරව පිහිටි ලක්ෂා 2 ක් A හා B වේ. AB රේඛාව x අක්ෂයට ඉහළින් පිහිටයි. OAB නිකෝණයේ වර්ගඵලයට ගතහැකි වැඩිතම අගය සොයන්න.
- 14. (a) $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$ බව සාධනය කරන්න. $\int_{\pi/\sqrt{1+\tan^{1/3}x}}^{\pi/3} \frac{dx}{1+\tan^{1/3}x}$ අගයන්න.
 - (b) $\int \frac{dx}{\sqrt{x} \left(\sqrt[4]{x} + 1\right)^{2019}}$ අගයන්න.
 - (c) $\int \cos 2x \ln \left| 1 + \tan x \right| dx$ කොටස් වශයෙන් අනුකලනය භාවිතයෙන් හෝ අන්කුමයකින් හෝ අනුකලනය කරන්න.
 - (d) $y = \sqrt{x-1}$ හා $y = (x-1)^2$ වකු වලින් පර්යන්ත වන කොටස් වර්ගඵලය x අක්ෂය වටා 360° කෝණයකින් පරිභුමණයේදී ජනනය වන පරිමාව සොයන්න.
- 15. ax + by + c = 0 යනු u නම් ජේඛාවක සමීකරණය වන අතර $P = (x_1, y_1)$ සහ $Q = (x_2, y_2)$ යනු u ජේඛාවේ දෙපස පිහිටී ලක්ෂා දෙකකි. u මගින් PQ ජේඛාව බෙදනු ලබන අනුපාතය සොයන්න, P සහ Q යන ලක්ෂා u ජේඛාව දෙපස පිහිටීම සඳහා අවශාතාව ලබාගන්න.

A(-1,-1) සහ $C\equiv (3,\ 1)$ යනු ABCD සමාන්තරාසුයක පුතිවිරුද්ධ ශීර්ෂ දෙකකි. BD විකර්ණය 8x-y=0 රේඛාවට සමාන්තර වේ. එහි දිග ඒකක $\sqrt{65}$ කි. B ලක්ෂාය පළමුවන වෘත්ත පාදයේ වේ.

- (i) B හා D හි ඛණ්ඩාංක සොයන්න.
- (ii) ABC හා BAC අභාන්තර කෝණ සමච්ඡේදකවල සමීකරණ සොයන්න.
- (iii) ABC තිකෝණයේ අන්තර් වෘත්ත කේන්දුය සොයන්න.

A කොටස

	කර තන්තුවේ මධා ලක්ෂය අචල නාදැත්තකට ගැට ගසා තන්තු කොටස් දෙක තිරස්ව පවතින පරිදි ගෝද සෙත එක්කෙකට 24 දුරික් තවා ජ්වා ජිපාකාවයෙන් පහරදින ලැබේ. පෙර පෙර පෙරමේ සු රණය
	දෙක එකිනෙකට 2ℓ දුරින් තබා ඒවා නිසලතාවයෙන් අතහරිනු ලැබේ. ගෝල අතර පුත්තාගති සංගුණකා ෙනම ගැටුමෙන් පසු එක් එක් ගෝලයේ පුවේගය සොයන්න.

	*
	······································
02.	බර w වූ ඒකාකාර දණ්ඩක් එක් කෙළවරක් රඑ නිරස් තලයක් මත ද අනෙක් කෙළවර නිරසට 60° ආනත සුමට තලයක් මත ද තබා දණ්ඩ නිරසට 30° ආනතව සීමාකාරී සමතුලිතතාවයේ ඇත. තලය හා දණ්ඩ
	අතර සර්ෂණ සංගුණකය μ නම් $\mu=\frac{1}{\sqrt{3}}$ බව පෙන්වන්න.

03.	තිරසට α අානක සුමට හලයක් මත නැඹූ m ස්කාන්ධය ඇති P අංශුවකට ඇඳු තන්තුවක් M ස්කාන්ධයක් ඇති R නම් වූ සවල කාප්පියක් යටින් ද, S වූ අවල කාප්පියක් උඩන් ද ගොස් නිදහස් කෙළෙවර ස්කාන්ධය m වූ Q අංශුවකට ඇඳා රූපයේ පරිදි ඇත. පද්ධතිය සිරුවෙන්
	මුදා නල විට, තන්තුවේ ආකතිය $\frac{Mmg(3+\sin\alpha)}{4m+2M}$ බව පෙන්වන්න.
	~ (B)

	•••••••••••••••••••••••••••••••••••••••

04.	මාර්ග පුතිරෝධය පුවේගයට සමානුපාතික වන තිරසට sin ⁻¹ 15 කෝණයකින් ආනත මාර්ගයක් දිගේ
	ස්කන්ධය 1500 kg වූ ලොරියක් 18 kmh ⁻¹ නියත වේගයකින් ඉහළට ගමන් කරන විට 75 kw ජවයකින් කියා කරයි. ලොරියේ ජවය 90 kw දක්වා වැඩි කළවිට ද ලොරිය එම පුවේගයෙන් ම ගමන් කරයි නම එහි
	ත්වරණය සොයන්න.

ආනන්ද විදුපාලය කොළඹ 10

10 S II

දෙවන චාර පරීක්ෂණය - 2019 මාර්තු අධ්නයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු

සංයුක්ත ගණිතය II Combined Maths II

13 ලේණිය

O3 hours

උපදෙස් :

- * මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ. A කොට්ක (පුශ්න 1 - 10) සහ B කොට්ක (පුශ්න 11 - 17)
- A කොවස සියලුම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉයෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකිය.
- * B කොටස ප්‍රශ්න පහසට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.
- නියමිත කාලය අවසන් වූ පසු A කොටස, B කොටසට උඩිත් සිටින පරිදි කොටස් දෙක අපුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- ප්‍රශ්න පත්‍රයෙහි B කොටස පමණක් විභාග ශාලාවෙන් පිටතව ගෙනයාමට ඔබට අවසර ඇත.

පරීක්ෂකගේ පුයෝජනය සඳහා පමණි.

)) සංයුක්ත ගණිතය	
තොටස	පුග්න අංක	ପ୍ରେ ପ୍ରେମ୍ବ
	1	
	2	
	3	
	4	
A	5	
	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	
1	පුතිගතය	

පතුය I	
පතුය II	
එකතුව	2
අවසාන ලකුණු	

අවසාන අතුණ

ඉලක්කමෙන්		
අකුරින්		

සංකේත අංක

උත්තර පනු පරිඃ	ವೆಅದಾ	
2 / /	1	
පරික්ෂා කළේ:	2	
අධීක්ෂණය		

5.	නවතා ඇති A නම් මෝටර් රථයක්, එය පසු කරගෙන යන 60 kmh ⁻¹ නියත පුවේගයෙන් ගමන් කරන B නම් රථයක් දකි. ඉන් විනාධ්යකට පසු B රථය අල්ලා ගැනීම සඳහා A රථය f නියත ත්වරණයකින් 50
	m දුරක් චලිත වී 72 kmh ^{-l} පුවේගයක් ලබාගෙන එම නියත පුවේගයෙන් ගමන් කර B රථය අල්ලා ගනි ඉහත චලිතයන්ට පුවේග කාල පුස්තාර එකම සටහනක අඳින්න. එමගින් A විසින් B පසුකරන විට A චලිතය ආරම්භ කළ මොහොතේ සිට ගතවූ කාලය සොයන්න.
	*
06.	ස්කන්ධ m, 2m, 3m වන A, B, C අංශු තුනක් AB, BC පිළිවෙලින් 2ℓ හා ℓ දිගැති සැහැල්ලු අවිතන ෙතන්තු දෙකකින් ඇඳා සුමට තලයක් මත A, B, C සරල රේඛාවක පිහිටන පරිදි අනුපිළිවෙලට තබා ඇත්තේ තන්තු කොටස් හැකිලී තිබෙන පරිදි වේ.
	A අංශුවට තලය දිගේ BA දිශාවට U ms ් පුවේගයක් ලබාදේ. C අංශුව ගමන් අරඹන වේගය සොයන්න.

හන ලද ස්ථානයේ සිට පළමු භාජපයට දුර $\frac{3u^2-2\mathrm{gd}}{4\mathrm{g}}$ බව පෙන්වන්න.
*
*
පථයේ පහළම ලක්ෂායේ ඇති විට u පුවේගයක් දෙනු ලැබේ. අංශුව O සිට $\frac{2a}{3}$ සිරස් උසස බුරුල් වේ නම් $u=2\sqrt{ag}$ බව පෙන්වන්න.
301G GO SIG II = 2 And INC CONCERN.
gold eo sie ii = 2 vag ioo cooscoo.

	\underline{a} හා \underline{b} යන ඒකක දෛශික දෙක අතර කෝණය α නම් $\sin \frac{\alpha}{2} = \frac{1}{2} \underline{a} - \underline{b} $ බව හා $\cos \frac{\alpha}{2} = \frac{1}{2} \underline{a} + \underline{b} $
	බව පෙන්වන්න.

08.	දිග 2a වූද බර w වූද AB හා BC ඒකාකාර දඬු දෙකක් B හි දී සුමට ව අසව කර ඇත. අරය r වූද අක්ෂය තිරස් වන පරිදි දෘඪ ලෙස සවිකරන ලද තිරස් තලයක් මත වූ සිලින්ඩරයක වනු පෘෂ්ඨය ස්පර්ශ වන පරිදි දඬු දෙක සිරස් තලයක සමතුලිතතාවයේ තබා ඇත්තේ දඬු දෙකේ මධා ලක්ෂ යා කරන සැහැල්ලු
	අවිතනය තන්තවක් මගිනි. $ABC=2\theta$ නම් තන්තුවේ ආතතිය $W=cosec^{-}\theta-tan\theta$ බව පෙන්වන්න.
	මෙහි සියලුම ස්පර්ශයන් සුමට වේ.
	මෙහි සියලුම ස්පර්ශයන් සුමට වේ.

- ති්රස් සුමට අවල තලයක් මත ස්කන්ධය 2 m වූ ති්රසට α ආනතියක් සහිත කුඤ්ඤයක් තබා ඇත. 12. (a) ති්රසට α ආනත සුමට මුහුණත මත ස්කන්ධය m වන අංශුවක් තබා සි්රුවෙන් මුදා හරිනු ලැබේ. රේඛීය ගමාතා සංස්ථිති මූලධර්මය සහ යාන්තුික ශක්ති සංස්ථිති මූලධර්මය භාවිතා කරමින් කුඤ්ඤයට සාපේක්ෂව අංශුවේ ත්වරණයත් පොළවට සාපේක්ෂව කුඤ්ඤයේ ත්වරණයත් සොයන්න.
 - (b) ස්කන්ධ පිළිවෙලින් m හා 2 m වන P හා Q අංශු දෙකක් සැහැල්ලු අවිතනා තන්තුවකින් ඇදා රූපයේ දැක්වෙන පරිදි සිරස් තලයක සිටින සේ අචලව සවිකරන ලද අරය r වූ සුමට සිහින් නලයක් තුළ තබා සීරුවෙන් මුදාහරිනු ලැබේ. P අංශුව θ කෝණයකින් හැරී චලනය වනවිට P හි පුවේගයත් P මත නලයෙන් ඇතිවන පුතිකියාවත් සොයන්න.

තවද P හා Q අංශුවල පුවේග අසමාන වන කෝණය සොයා එවිට P මත නලයෙන් ඇතිවන පුතිකියාව ද සොයන්න.

තවද P හා Q හි පුවේග අසමාන වීමට පෙර P මත නලයෙන් ඇති කරන පුතිතුියාව ශූනා වන්නේ ද?පිළිතුර සනාථ කරන්න.

ස්වභාවික දිග (වන පුතාස්ථ දුන්නක් අවල හලයක් මත සිරස් ලෙස සිටුවා තිබේ. ස්කන්ධය m වන අංශුවක් දුන්න මන සීරුවෙන් තබා සමතුලිකව පවතින්නේ දුන්න d දුරක් සම්පීඩනය වීමෙනි. දුන්න සම්පීඩනය නොවී ඇතිවිට (ස්වභාවික දිගෙහි ඇතිවිට) එහි ඉහළ කෙළවරේ සිට තවත් 2 d උසක් සිරස්ව ඉහළින් පිහිටි ලක්ෂයයක සිට ස්කන්ධය 2 m වූ තවත් අංශුවක් පළමු අංශුව මතට අතහරිනු ලැබේ. අංශු දෙක ගැටෙනවාත් සමගම ඒවා තනි අංශුවක් ලෙස සංයුක්ත වේ. ගැටුමෙන් පසු සංයුක්ත අංශුව චලිතය ආරම්භ කරන පුවෙගයේ විශාලත්වය සොයන්න.

අංශු ගැටෙන පිහිටීමේ සිට පහළට මනින විස්තාපනය x නම් සංයුක්ත අංශුවේ චලිතය $x+rac{g}{2d}(x-2d)=0$ මගින් දැක්විය හැකි බව පෙන්වන්න. මෙම චලිතයේ විසදුම $\mathbf{x} = \mathbf{A}\cos\mathbf{w}\mathbf{t} + \mathbf{B}\sin\mathbf{w}\mathbf{t} + \mathbf{C}$ ආකාරයේ විසදුමක් වේ.

- මෙනි A, B, C හා w ඔබ විසින් නිර්ණය කළයුතු තාත්වික නියත වේ. ඒ නයින් ඉහත චලිතයේ
 - නාභියට (දෝලන කේන්දුයට) ගැටුම ලක්ෂායේ සිට දුර හා නාභියේ දී පුවේගයන්
 - (ii) විස්තාරයත් සොයන්න.

තවද සංයුක්ත අංශුව දුන්න මත පවතින මුලු කාලය $\sqrt{\frac{3d}{g}}\left(\frac{11\pi}{6}-\cos^{-1}\frac{1}{\sqrt{3}}\right)$ බව අපෝහනය කරන්න.

දුම්රියක ස්කන්ධය w kg වන අතර නියත පුතිරෝධය කිලෝග්රෑම් බර R වේ. ක්ලෝග්රෑම් බර P වන පුකර්ශන බලයට යටත්ව මීටර් S දුර පුමාණයක් චලිත වීමට දුම්රිය ගන්නා අවම කාලය පුවේග

කාල පුස්තාරය ඇසුරින් $\left[rac{2S}{g} \cdot rac{wP}{R(P-R)}
ight]^{1/2}$ බව පෙන්වා දුමරියේ උපරිම පුවේගය

 $\left[\frac{2gSR(P-R)}{mP}\right]^{1/2}$ බව ද පෙන්වන්න.

(b) සමාන අරයන් ඇති A, B සහ C ශෝලවල ස්කන්ධ පිළිවෙලින් 7 m, 7 m හා m වන අතර ඒවා කේවල පුතනස්ථ වේ. ඒවායේ කේන්දු ඒකරේබීය වන අතර A හා B අතර C පිහිටයි. ආරම්භයේදී A හා B හා නිශ්චලව පවතින අතර C ශෝලයට කේන්දු යා කරන රේඛාව මස්සේ A දෙසට පුවේගයක් දෙනු ලැබේ. C ගෝලය A ගෝලය සමහත් පසුව B සමඟත් ගැටී නැවත A සමගත් එක් වරක් ගැටීමෙන් පසු A, B සහ C ගෝලවල අවසාන පුවේග අතර අනුපාතය 21 : 12 : 1 යව පෙන්වන්න.

ආනන්ද විදුපාලය - කොළඹ 10

10 S II

දෙවන වාර පරික්ෂණය - 2019 මාර්තු අධනයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු

සංයුක්ත ගණිතය II Combined Maths II

13 ලේණය

* B කොටසින් පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

B කොටස

- 11. (a) තිරසට β කෝණයකින් ආනත තලයක් මත සිරස් h උසකින් පිහිටි ලක්ෂයක සිට සිරසට α. කෝණයකින් ආනත දිශාවකට අංශුවක් u ආරම්භක පුක්ෂේපන පුවේගයකින් මුදාහැරෙනුයේ ආනත තලයේ වැඩිනම බෑවුම් රේඛාව ඔස්සේ උඩු අත් දිශාවේදී නලය හා ගැටෙන පරිදිය. ආනත තලය අපරිමිත ලෙස දිග යැයිද. ආනත තලය ඔස්සේ අංශුවෙහි පරාසය R ද යැයි ගනිමු.
 - (i) ආනත තලය ඔස්සේ උඩු අත් දිශාවට අංශුවෙහි පරාසය වන R සඳහා සම්කරණයක් ලබාගන්න.
 - (ii) ඉහත (i) කොටසෙහි ලබාගත් සමීකරණය විසඳීමෙන් හෝ අන්කුමයකින් සුදුසු R පරාසය ලබාගන්න.
 - (iii) අංශුව ති්රසට සමාන්තරව පුක්ෂේපනය කරයි නම R නි අගය

$$\dfrac{u}{g\cos^2\beta}\left[\sqrt{(u^2-2gh)\sin^2\beta+2gh}-u\sin\beta
ight]$$
 බව අපෝහනය කරන්න.

(b) නිසල ජලයෙහි V පුවේගයෙන් පිහිනිය හැකි P මිනිසෙක් පොළවට සාපේක්ෂව W(< V) පුවේගයෙන් ගලා බසින සමාන්තර ඉවුරු සහිත පළල d වන ගඟක A ලක්ෂයෙන් අරඹා ගං ඉවුරේ උඩුඅත් දිශාව සමග $\alpha\left(<\frac{\pi}{2}\right)$ කෝණයක් සාදන දිශාවක් ඔස්සේ පිහිනා ගොස් B ලක්ෂයෙන් එතෙර වේ. එවිටම නිසල ජලයෙහි V පුවේගයෙන්ම පිහිනිය හැකි තවත් මිනිසෙක් A නිදී අරඹා ඉවුරට සමාන්තරව පිහිනා ගොස් එම ඉවුරෙහිම B ව පුහිවිරුද්ධ ලක්ෂයක වූ C නිදී එගොඩ වී BC යා කෙරෙන සෘජු පාලමක $\frac{V}{2}$ පුවේගයෙන් ඇවිද යයි. P හා Q එකවිට ඉහත මාර්ග දෙක ඔස්සේ B ලක්ෂයට ළඟා වෙයි නම්, සාපේක්ෂ පුවේග නිකෝණ භාවිතයෙන්

 $V(V-W) = [V(2\sin\alpha + \cos\alpha) - 2W\sin\alpha] \left[\sqrt{V^2 - W^2\sin^2\alpha} - W\cos\alpha \right]$ බව පෙන්ඩන්න.

රූපයේ පරිදි AB, AC, AD, AE, BC, CD හා DE සැහැල්ලු දඬු හතකින් සමන්විත රාමු සැකිල්ල A වලින් සුමටව අසව කර B හා C සන්ධිවලට w භාර තබා ඇත. දිග a වන AB දණ්ඩ තිරස් වන පරිදි පද්ධතිය සිරස් තලයක තබා ඇත්තේ E වලින් යෙදූ P බලයක් මගිනි. මෙහි,

$$BAC = CAD = DAE = 30^{\circ}$$

$$\hat{ACB} = \hat{ADC} = \hat{AED} = 90^{\circ}$$

P බලයේ අගය සොයා, AB, BC, AC හා CD දඬු සඳහා පුත්‍යාබල සටහනක් ඇඳ එමගින් පුත්‍යාබල සොයා ඒවා ආතති ද සම්පීඩන ද ලෙස වෙන් කර දක්වන්න.

- අරය 5 r වන කුතර ගෝලයක O කේන්දුයේ සිට දෙපසට 4 r හා 3 r දුරින් පිහිටි y අක්ෂයට 17. සමාන්තර තල දෙකක් ඔස්සේ කැපීමෙන් ලැබෙන ගෝල බණ්ඩය රූපයේ දැක්වේ. අනුකලනය ඇසුරින්.
 - (i) එහි ස්කන්ධය සොයන්න.
 - (ii) ස්කන්ධ කේන්දුයට O සිට ඇති දුර ¹/₂ බව පෙන්වන්න.

ඉහත ගෝල බණ්ඩයේ කුඩා වෘත්ත දාරයට අරය 3 r හා උස h වූ කුහර සිලින්ඩරයක් සම්බන්ධ කර ඇති අතර, විශාල වෘත්ත ආරයට සමපාත වන පරිදි අරය 4 r වූ ඒකාකාර පතුලක් සවිකර ගුරුලේන්තුවක් සාදා ඇත. ගුරුලේත්තුව සෑදීමට ගත් දුවනයේ පෘෂ්ඨික සනන්වය p වේ.

ගුරුලේත්තුවේ ස්කන්ධ කේන්දුයේ පිහිටීම, එහි වෘත්තාකාර පතුලේ සිට සොයන්න.

ගුරුලේත්තුවේ විවෘත දාරයේ ලක්ෂායකට සැහැල්ලු අවිතනා තන්තුවක් ගැටගසා එල්ලන ලදී. සමතුලිත පිහිටීමේදී එහි සමමිතික අක්ෂය සිරස සමග සාදන කෝණය සොයන්න.

ABCD තුැපීසියමකි. A, B හා D ලක්ෂාවල පිහිටුම දෛශික පිළිවෙලින් p, q, t වේ. AB හා DC සමාන්තර වන අතර AB=3 DC වේ. E යනු $AE=EC=\lambda$; I වන පරිදි AC වන පිහිටි ලක්ෂයෙකි.

(i)
$$\overrightarrow{AE} = \frac{\lambda}{3(1+\lambda)} (3\underline{r} - 4\underline{p} + \underline{q})$$
 බව පෙන්වන්න.

(ii) μ ED = BC වන පරිදි DE, BC ට සමාන්තර වේ නම

$$\overrightarrow{AE} = \frac{1}{3\mu} \left[3(\mu - 1)\underline{r} - (3\mu - 1)\underline{p} + 2\underline{q} \right]$$
 බව පෙන්වන්න.

- (iii) ඉහත (i) හා (ii) කොටස් භාවිතයෙන් λ හා μ නියනවල අගයන් සොයන්න.
- (iv) දික්කල DE, F හිදී AB හමුවේ. k DE = DF ලෙස ගෙන k ඇසුරින් AF සොයන්න. එනයින් k නි අගය සොයා $3\,AF=2\,AB$ බව අපෝහනය කරන්න.
- ABCD යනු පාදයක දිග 4 m වන සමවතුරපුයකි. DE 3 m වන සේ AD පාදය E දක්වා දික්කර ඇත. නිව්වන් $2,5,3,1,5,\sqrt{2}$ හා $2\sqrt{2}$ විශාලත්ව ඇති ඒකතල බල පද්ධතියක් AB , CB , DC , AD . CE . BD හා AC දිගා ඔස්සේ කියා කරයි.
 - බල පද්ධතියේ සම්පුයුක්තයේ විශාලත්වය හා එය AB සමග සාදන කෝණය සොයන්න. (i)
 - ඉහත සම්පුයුක්ත කියා ජේබාව A හරහා යන බව පෙන්වන්න. (ii)
 - බල පද්ධතිය D හා E ලක්ෂයයක් හරහා කියාකරන F_1 හා F_2 සමාන්තර බල දෙකකට තුලය (iii) වේ නම් F₁ හා F₂ සොයන්න.
 - බල පද්ධතිය AB හා BD දිගේ කිුිියා කරන F_3 හා F_4 බල දෙකකට හා යුග්මයකට තුලා (iv) වේ නම් F3 හා F4 සොයන්න.

16. (a)

එක එකෙහි දිග 2 a ද බර W ද වූ AB, BC, CD හා DA ඒකාකාර දඬු හතරක් සුමටව සන්ධි තර BAD = 60° වන පරිදි සකසා ඇත්තේ CD හා AD දසුවල මධා ලක්ෂයක් වන P හා Q ට සම්බන්ධ කර ඇති සැහැල්ලු අවිතන ෙතන්තුවක් මගිනි. AB නිරස්ව හා ABCD සැකිල්ල සිරස්ව තමා ඇත්තේ A හා B ශීර්ෂයන්හි කැමු ආධාරක දෙකක් මගිනි.

- A හා B ශීර්ෂ පත ආධාරක පගින් ඇති කරන පුතිකියා සොයන්න.
- C හා D සන්ධිවල පුනිකියා හා තන්තුවේ ආකතිය කෙවීම සඳහා පුමාණවත් සම්කරණ ලියා දක්වන්න.