Abstract Algebra

: Lecture 20

Leo

2024.12.12

We always assume that our fields is of char=0.

Theorem 1. Let L be a splitting feild extension of K. Then for any irreducible polynomial $f \in K[x]$, L contains one root of f(x) if and only if L contains all roots of f(x).

证明. Assume L is a splitting field of an irreducible polynomial $g(x) \in K[x]$, then $L = K(\alpha_1, \ldots, \alpha_m)$, where $\alpha_1, \ldots, \alpha_m$ are roots of g(x).

Let $f(x) \in K[x]$ be irreducible, and α, β two roots of f(x). Then $L = K(\alpha_1, \ldots, \alpha_m), L(\alpha) = K(\alpha_1, \ldots, \alpha_m)(\alpha) = K(\alpha)(\alpha_1, \ldots, \alpha_m), L(\beta) = K(\alpha_1, \ldots, \alpha_m)(\beta) = K(\beta)(\alpha_1, \ldots, \alpha_m).$

Since $K(\alpha) \simeq K[x]/(f) \simeq K(\beta)$, we have $K(\alpha)(\alpha_1) \simeq K(\alpha)[x]/(g) \simeq K(\beta)[x]/(g^{\sigma}) \simeq K(\beta)(\alpha_1^{\sigma})$, and $[K(\alpha)(\alpha_1) : K(\alpha)] = [K(\beta)(\alpha_1^{\sigma}) : K(\beta)]$. Inductively, $K(\alpha)(\alpha_1, \ldots, \alpha_m) \simeq K(\beta)(\alpha_1^{\sigma}, \ldots, \alpha_m^{\sigma}) = K(\beta)(\alpha_1, \ldots, \alpha_m)$.

In particular, $L(\alpha) \simeq L(\beta)$ and $[L(\alpha) : K(\alpha)] = [L(\beta) : K(\beta)]$.

So
$$[L(\beta):L][L:K] = [L(\beta):K] = [L(\beta):K(\beta)][K(\beta):K] = [L(\alpha):K(\alpha)][K(\alpha):K] = [L(\alpha):K] = [L(\alpha):L][L:K]$$
. Thus $[L(\beta):L] = [L(\alpha):L]$

Definition 2. An algebraic extension E/F is called normal if, for each irreducible polynomial $f(x) \in F[x]$, whenever E contains one root of f(x), E contains all roots of f(x).

Corollary 3. An algebraic extension is normal if and only if it is a splitting field of some polynomial over F.

Let E/F be finite extension, Gal(E/F) = G, G acts on E has orbits. For $F \subset L \subset E$ and $\sigma \in G$, $F = F^{\sigma} \subset L^{\sigma} \subset E^{\sigma} = E$, we want to know $L^{\sigma} \stackrel{?}{=} L$.

Lemma 4. Let L be a field with $F \subset L \subset E$, then L is a field fixed by Gal(E/F) if and only if $Gal(E/L) \lhd Gal(E/F)$.

证明. Suppose L is fixed by $\operatorname{Gal}(E/F)$, then each element of $\operatorname{Gal}(E/F)$ induces an automorphism of L and hence E/F acts on L naturally. The kernel of this action is $\operatorname{Gal}(E/L)$. So $\operatorname{Gal}(E/L) \lhd \operatorname{Gal}(E/F)$. Conversely, suppose $\operatorname{Gal}(E/L) \lhd \operatorname{Gal}(E/F)$. Let $\alpha \in L$ and $g \in \operatorname{Gal}(E/F)$. Claim: $\alpha^g \in L$.

Let
$$\beta = \alpha^g$$
. Then for $h \in \text{Gal}(E/L)$, $\beta^{hg^{-1}} = \alpha^{ghg^{-1}} = \alpha$ as $ghg^{-1} \in \text{Gal}(E/L)$. Hence $\beta = \alpha^{gh^{-1}} = \beta^{h^{-1}}$, i.e. $\beta^h = \beta$ i.e. $\beta = \alpha^g \in L$. And L is fixed by $\text{Gal}(E/F)$.

Theorem 5. Let $F \subset L \subset E$. Then $Gal(E/L) \triangleleft Gal(E/F)$ if and only if L is a splitting extension of F (L is a normal extension of F).

证明. Assume $Gal(E/L) \triangleleft Gal(E/F)$.

Let $f \in F[x]$ be irreducible, and β be a root of f s.t. $\beta \in L$. We aim to prove all roots of f in L. Let β' be another root of f. Since f is irreducible. There exists $\sigma \in \operatorname{Gal}(E/F)$ s.t. $\beta' = \beta^{\sigma}$. For any $h \in \operatorname{Gal}(E/L)$, $\beta'^h = \beta^{\sigma h} = \beta^{\sigma h \sigma^{-1} \sigma} = \beta^{\sigma} = \beta'$. So $\beta' \in L$. Hence L is a splitting field of f. Conversely, Let L be a splitting field extension of F. Then for any $\alpha \in L$, and $\sigma \in \operatorname{Gal}(E/F)$, $\alpha^{\sigma} \in L$. By the Lemma $\operatorname{Gal}(E/L) \lhd \operatorname{Gal}(E/F)$.

Example 6. Let $\omega = \frac{-1+\sqrt{3}i}{2}$ be the 3rd primitive root of unity. Let $F = \mathbb{Q} \subset L = \mathbb{Q}(\omega) \subset E = \mathbb{Q}(\sqrt[3]{2},\omega)$. Then $\mathbb{Q}(\omega)$ is a splitting field of $x^2 + x + 1$, $\mathbb{Q}(\sqrt[3]{2},\omega)$ is a splitting field of $x^3 - 2$. Gal $(L/F) = Z_2$, Gal $(E/L) = Z_3$ and Gal $(E/F) = S_3$.

Example 7. Let $f(x) = x^5 - 7$. Gal $(f)_{\mathbb{Q}} = \text{Gal}(E/\mathbb{Q})$ where E is the splitting field of f(x) over \mathbb{Q} , find Gal $(f)_{\mathbb{Q}}$.