EA772A CIRCUITOS LÓGICOS 02/12/2010 Prova 3.1 Duração: 100 minutos Nome: RA:

Questão 1 (1,5) Seja um somador de transporte antecipado de 5 bits, com entradas \underline{x} , \underline{y} e c_0 , e saídas \underline{z} e c_5 , tal que:

$$\begin{aligned} z_i &= p_i \oplus c_i & p_i &= x_i \oplus y_i & propagação \\ c_{i+1} &= g_i + p_i \ c_i & g_i &= x_i \ y_i & geração \end{aligned}$$

- a) Determinar as expressões lógicas para c₅ e z₃.
- b) Determinar os atrasos correspondentes a partir do momento em que as entradas estejam estabilizadas, para $t_{XOR} = 9$ ns; $t_{AND} = 3$ ns e $t_{OR} = 4$ ns. Considerar que os atrasos nas portas independem do número de entradas.

Questão 2 (1,5) Mostre todos os passos para a realização das seguintes operações aritméticas usando 6 bits para as representações em Complemento de 2 (C2) e em Complemento de 1 (C1). Quais são os resultados obtidos em representação decimal?

c) 22 + 17

Questão 3 (1,5) Seja um conversor de código BCD para Excesso de 3 implementado por um decodificador BCD cujas saídas $(y_0, y_1, ..., y_9)$ são as entradas para o codificador Excesso de 3.

- a) Determinar as expressões lógicas simplificadas para y₉ e y₈
- b) Determinar as expressões lógicas para as saídas do codificador (z_3, z_2, z_1, z_0) em função das saídas do decodificador $(y_0, y_1, ..., y_9)$.

Dígito	BCD	Excesso de 3	2421
0	0000	0011	0000
1	0001	0100	0001
2	0010	0101	0010
3	0011	0110	0011
4	0100	0111	0100
5	0101	1000	1011
6	0110	1001	1100
7	0111	1010	1101
8	1000	1011	1110
9	1001	1100	1111

Questão 4 (1,0) Mostrar como um multiplexador de 8 entradas pode ser usado para implementar a função lógica expressa pelo conjunto-um $f(x_2, x_1, x_0) = \{0, 1, 4, 7\}$. Mostrar como essa mesma função pode ser implementada usando um multiplexador de 4 entradas.

Questão 5 (1,0) Seja a implementação da unidade aritmética e lógica abaixo..

Explicar passo a passo como o circuito funciona na execução da operação ADD, a partir da estabilização das entradas \underline{x} , \underline{y} e c_{in} .

Questão 6 (1,0) Seja um deslocador direita-esquerda módulo 31, implementado pelo encadeamento de deslocadores 0 ou 2^i , i=0,1,...,k. As entradas para o deslocador encadeado são d (0: direita, 1: esquerda), \underline{s} ($s_0,...,s_k$), além dos dados de entrada \underline{x} ($s_0,...,s_k$); a saída é \underline{y} ($s_0,...,s_k$) bits); a saída é \underline{y} ($s_0,...,s_k$). Mostrar a implementação do deslocador 0 ou 4 usando multiplexadores (basta mostrar para um bit). De quantos bits e em que direção ocorre o deslocamento para $\underline{d} = 0$ e $\underline{s} = 10100$?

Questão 7 (1,0) Usando um registrador de deslocamento de 8 bits, implementar reconhecedores dos seguintes padrões (**com sobreposição**):

- a) 101100101
- b) 10111
- c) 11x0x

Questão 8 (1,5) A partir do contador binário com entrada paralela módulo 16 abaixo, implementar:

- a) Contador módulo 13
- b) Contador 5-para-11
- c) Divisor de frequência módulo 5

CLR – Clear

LD – Load

CNT – Count enable

TC – Terminal count