F08T1A1

Wir betrachten die Differentialgleichung

$$x' = 1 + x^2 \sin(t - x)$$

- a) Die Lösungen $x_k: \mathbb{R} \to \mathbb{R}$, $k \in \mathbb{Z}$ von obiger Differentialgleichung zu den Anfangsbedingungen $x_k(k\pi) = 0$ lassen sich einfach angeben. Bestimme diese Lösungen.
- b) Für $k \in \mathbb{Z}$ sei

$$T_k := \{(t, x) \in \mathbb{R}^2 : k\pi < t - x < (k - 1)\pi\}.$$

Man zeige: Liegt ein Punkt des Graphen $G_x := \{(t, x(t)) : t \in I\}$ einer Lösung $x : I \to \mathbb{R}$ von der Differentialgleichung in T_k , so ist $G_x \subseteq T_k$.

c) Zeige: Alle maximalen Lösungen der Differentialgleichung sind auf ganz $\mathbb R$ definiert.

Zu a):

$$\mathbb{R} \to \mathbb{R}, t \mapsto t - k\pi$$

$$x_k(k\pi) = 0, \quad x'_k(t) = 1 = 1 + (x_k(t))^2 \sin(\underbrace{t - x_k(t)})$$

$$x_k : \mathbb{R} \to \mathbb{R}, t \mapsto t - k\pi \text{ löst } x' = 1 + x^2 \sin(t - x), x(k\pi) = 0$$

Zu b):

$$T_{0} = \{(t, x) : 0 < t - x < \pi\}$$

$$\downarrow$$

$$x = t, \quad t - \pi = x \text{ (Grenze)}$$

$$T_{-1} = \{(t, x) : -\pi < t - x < 0\}$$

$$\downarrow$$

$$x = t + \pi, \quad x = t \text{ (Grenze)}$$

$$f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}, (t, x) \mapsto 1 + x^{2} \sin(t - x) \in C^{1}(\mathbb{R}^{2})$$

 \Rightarrow Für alle $(\tau, \xi) \in \mathbb{R}^2$ hat x' = f(t, x), $x(\tau) = \xi$ eine eindeutige maximale Lösung $\lambda_{(\tau, \xi)} : I_{(\tau, \xi)} \to \mathbb{R}$. Insbesondere sind $x_k = \lambda_{(k\pi, o)}$ die maximalen Lösungen (da sie auf \mathbb{R} definiert sind und richtiges Randverhalten haben). Ist $(\tau, \xi) \in T_k$, dann ist $\Gamma(\lambda_{(\tau, \xi)})$ verschieden zu allen $\Gamma(\lambda_{(l\pi, 0)})$, $l \in \mathbb{Z}$. Laut Zwischenwertsatz ist $(t, \lambda_{(\tau, \xi)}(t)) \in T_k$, denn sonst besitzt $\lambda_{(\tau, \xi)} - \lambda_{(k\pi, 0)}$ oder $\lambda_{(\tau, \xi)} - \lambda_{((k+1)\pi, 0)}$ eine Nullstelle, was $\Gamma(\lambda_{(\tau, \xi)}) \cap \Gamma(\lambda_{(l\pi, 0)}) = \emptyset$ widerspricht.

Zu c):

Alle maximalen Lösungen $\lambda_{(\tau,\xi)}:]a(\tau,\xi),b(\tau,\xi)[\to \mathbb{R} \text{ sind auf } \mathbb{R}=]a(\tau,\xi),b(\tau,\xi)[$ definiert:

- 1. Klar für $\lambda_{(\tau,\xi)} = \lambda_{(k\pi,0)}$
- 2. Für $(\tau, \xi) \in T_k$: Ist $b(\tau, \xi) < \infty$, dann ist

$$\Gamma_{+}(\lambda_{(\tau,\xi)}) := \{(t,\lambda_{(\tau,\xi)}(t)) : t \in [\tau,b(\tau,\xi)[\} \subseteq ([\tau,b(\tau,\xi)[\times \mathbb{R}) \cap T_k)]\}$$

also $\overline{\Gamma_+(\lambda_{(\tau,\xi)})}$ kompakt in \mathbb{R}^2 im Widerspruch zur Charakterisierung maximaler Lösungen.

Analog: $a(\tau, \xi) > -\infty \Rightarrow$

$$\Gamma_{-}(\lambda_{(\tau,\xi)}) := \{(t,\lambda_{(\tau,\xi)}(t)) : t \in]a(\tau,\xi),\tau]\} \subseteq (]a(\tau,\xi),\tau] \times \mathbb{R}) \cap T_k$$

relativ kompakt in \mathbb{R} im Widerspruch.