

Circles Ex 16.5 Q14

Answer:

It is given that, O is the center of the circle and $\angle AEC = 30^{\circ}$

We have to find the value of $\angle y$ and $\angle z$

Since angle in the same segment are equal

So $\angle AEC = \angle ADC = 30^{\circ}$

And $\angle z = 30^{\circ}$ Because same arc subtend same angle on the circumference of the same circle.

Since $\angle AOC = 2\angle ADC$ ($\angle y$ is at center)

As angle subtended by a arc on the center is double the angle subtended at the circumference.

Then

$$y = 2\angle z$$
$$= 2 \times 30^{\circ} \left(\angle z = 30^{\circ} \right)$$
$$= 60^{\circ}$$

Now since angle in alternate segment are complementary

So

$$\angle z + \angle x = 180^{\circ}$$

$$\angle x = 180^{\circ} - \angle z$$

$$\angle x = (180^{\circ} - 30^{\circ}) \text{ (Since } \angle z = 30^{\circ} \text{)}$$

$$\Rightarrow \angle x = 150^{\circ}$$

Hence

$$\angle x = 150^{\circ}$$

$$\angle y = 60^{\circ}$$

and
$$\angle z = 30^{\circ}$$

Circles Ex 16.5 Q15

Answer:

It is given that, $\angle A = 78^{\circ}$ and ABCD, DCFE are cyclic quadrilateral

We have to find $\angle x$ and $\angle y$

Since ABCD is cyclic quadrilateral

So $\angle A + \angle BCD = 180^{\circ}$ (opposite angle of a cyclic quadrilateral are supplementary)

$$\angle BCD = 180^{\circ} - \angle A(\angle A = 78^{\circ})$$

$$\angle BCD = 180^{\circ} - 78^{\circ}$$

$$\angle BCD = 102^0 \dots (1)$$

Total angle at point C is 180° (BF is straight line)

So

$$\angle BCD + \angle DCF = 180^{\circ}$$

$$\angle DCF = 180^{\circ} - \angle BCD$$

$$\angle x = 180^{\circ} - 102^{\circ}$$

$$= 78^{\circ}$$

Now in cyclic quadrilateral DCFE

$$\angle x + \angle y = 180^{\circ}$$

$$\angle y = 180^{\circ} - 78^{\circ}$$
 (opposite angle of a cyclic quadrilateral are supplementary)

$$=102^{\circ}$$

Hence $\angle x = 78^{\circ}$ and $\angle y = 102^{\circ}$