3 集成逻辑门电路

- 3.1 集成电路基本概念
- 3.2 半导体器件开关特性
- 3.3 TTL系列集成门内部电路及电气特性
- 3.4 三态门在微处理器总线中的作用
- 3.5 CMOS集成门电路
- 3.6 集成逻辑器件接口的三要素

3.1 集成电路基本概念

1. 集成电路(Integrated Circuit, 简称IC)

集成电路就是把电路中的半导体器件、电阻、电容及导线制作在一块半导体基片(芯片)上,并封装在一个壳体内所构成的完整电路。

2. 集成电路的特点

与分立元件电路相比,集成电路具有重量轻、体积小、功 耗低、成本低、可靠性高和工作速度高等优点。

集成电路的分类:

数字集成电路分类:

- (1) 按电路内部有源器件的不同可分为
- a. 双极型晶体管集成电路:

主要有:

- (a) 晶体管—晶体管逻辑(TTL-Transistor Transistor Logic)
- (b) 发射极耦合逻辑(ECL-Emitter Coupled Logic)
- (c) 电阻晶体管逻辑 (RTL)

b. MOS(Metal Oxide Semiconductor)集成电路

主要有: NMOS、PMOS和CMOS等几种类型。

TTL和CMOS集成电路的特点:

- (a) TTL集成电路工作速度高、 驱动能力强,但功耗大、集 成度低;
- (b) MOS集成电路集成度高、功耗低,但工作速度略低,超大规模集成电路基本上都是MOS集成电路。

目前已生产了BiCMOS器件,它由双极型晶体管电路和MOS型集成电路构成,能够充分发挥两种电路的优势,缺点是制造工艺复杂。

(2) 按集成度分:

a. 小规模集成电路(SSI-Small Scale Integration),每 片组件内包含10~100个元件(或10~20个等效门)。

逻辑门和触发器是目前常用的SSI。

b. 中规模集成电路(MSI-Medium Scale Integration), 每片组件内含100~1000个元件(或20~100个等效门)。

译码器、数据选择器、加法器、计数器、移位寄存器等组件是常用的MSI。

- c. 大规模集成电路(LSI-Large Scale Integration), 每片组件内含1000~100 000个元件(或100~1000个等效门)。
- d. 超大规模集成电路(VLSI-Very Large Scale Integration), 每片组件内含100 000个元件(或1000个以上等效门)。

常见的LSI、VLSI有存储器、微处理器、单片微处理机、高速乘法累加器、通用和专用数字信号处理器,可编程逻辑器件PLD。PLD是近十几年来迅速发展的新型数字器件,目前应用十分广泛。

Intel Pentium Microprocessor, 42 M transistors.

集成逻辑门

集成逻辑门是最基本的数字集成电路,是组成数字逻辑的基础。

集成门电路外形图

常用的集成门电路,大多采用双列直插式封 装(Dual-In-line Package ,缩写成DIP)。

集成芯片表面有一个缺口(引脚编号的参考标志),如果将芯片插在实验板上且缺口朝左边,则引脚的排列规律为:左下管脚为1引脚,其余以逆时针方向从小到大顺序排列。

一般引脚数为: 14、16、20等。

数字电子技术基础

绝大多数 情况下,电源 从芯片左上角 的引脚接入, 地接右下引脚。

一块芯片中可集成若干个 (1、2、4、6 等) 同样功能但又各自独立的门电路,每个 门电路则具有若干个 (1、2、3等) 输入端。

GS: General Semiconductor 美国通用仪器公司半导体公司

L页 下

3.2 半导体器件开关特性

1. 二极管的特性:

二极管构成的跟随

高电平: V_{IH}=V_{cc}

低电平: V_{//}=0

- $V_I = V_{IH}$ D截止, $V_O = V_{OH} = V_{CC}$
- $V_I = V_{IL}$ D导通, $V_O = V_{OL} = 0.7$ V
 - * 输出分别靠近高电平和低电平,因此输入 是高电平时输出也是高电平,输入为低电 平时输出也是低电平,因此二极管就相当 于1个受控于输入电平的开关。这是1个逻 辑跟随。

上页

下页

二极管与门

假设 V_{CC} = 5V 加到A,B的 V_{IH}=3V V_{IL}=0V 二极管导通时 V_{DF}=0.7V

A	В	Y
0V	0V	0.7V
0V	3V	0.7V
3V	0V	0.7V
3V	3V	3.7V

规定3V以上为1

0.7 以下为0

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

上页

下页

二极管或门

设V_{CC} = 5V 加到A,B的 V_{IH}=3V V_{IL}=0V 二极管导通时 V_{DF}=0.7V

$A \longrightarrow D_1$	
B D_2 Y	$A \longrightarrow Y$
R	

A	В	Y
0V	0V	0V
0V	3V	2.3V
3V	0V	2.3V
3V	3V	2.3V

规定2.3V以上为1 0V以下为0

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

上页

下页

二极管构成的门电路的缺点

- 电平偏移(与门和或门定义的高低电平范围不同,进行复合运算时,如先或后与,或后得到的高2.3V到与门后(>3V)就无法当成高了。电压偏移是由二极管的导通压降0.7V造成的)。
- 带负载能力差

• 只用于IC内部电路

三极管的开关特性

在Rb、Rc和管子的电流放大倍数等参数取值合适的情况下,可使其在输入为高、低电平时分别工作在饱和导通和截止状态。

理想情况

上页 下页 返回

例: 计算参数设计是否合理

① 将发射极外接电路化为等效的V_B与R_B电路

$$\mathbf{R}_{\mathbf{B}} = \mathbf{R}_1 / / \mathbf{R}_2 = 2.5 \mathbf{K} \Omega$$

$$V_B = V_I - \frac{V_I - V_{EE}}{R_1 + R_2} R_1 = V_I - \frac{V_I + 8}{13.3} \times 3.3$$

返

② 当
$$V_I = V_{IL} = 0$$
时, $V_B = 0 - \frac{8}{13.3} 3.3 = -2.0V$ 所以 T 截止, $i_C = 0, V_O = V_{OH} = V_{CC} = 5.0V$

③ 当 $V_I = V_{IH} = 5V$ 时, $V_B = 5 - \frac{5+8}{13.3}$ 3.3 = 1.8V 所以T导通如果用折线等效电路,认为 $V_{BE} = 0.7V$

则得:
$$i_B = \frac{V_B - V_{BE}}{R_B} = 0.44 mA$$

④ 又深度饱和时 I_{BS} 为:

$$I_{BS} = \frac{I_{CS}}{\beta} = \frac{V_{CC} - V_{CE}(sat)}{\beta R_C} = 0.25mA$$

故 $i_B > i_{BS}$,T饱和, $V_O = V_{CE}(sat) \approx 0V$

⑤ 因此,参数设计合理

实际情况(结电容和分布电容的影响)

a) 开关时间

接通时间 $t_{\text{on:}}$ 从 u_{I} 上跳开始到 i_{C} 上升到 $0.9I_{\text{CS}}$ 所需要的时间。

关断时间 $t_{\rm off}:i_{\rm C}$ 从 $I_{\rm CS}$ 下降到 $0.1I_{\rm CS}$ 的时间。 $t_{\rm on}$ 、 $t_{\rm off}$ 统称为开关时间。越短速度越高。

上页

下页

b) 影响开关时间的因素 管子的结构工艺,外加输入电压的极性及大小。

c) 提高开关速度的途径

制造开关时间较小的管子(如肖特基晶体管);设计合理的外电路。

(a) circuit; (b) symbol

三极管开关特性

Saturated (ON) transistor and ideal switch equivalent

Cutoff (OFF) transistor and ideal switch equivalent

3.3 TTL系列集成门内部电路及电气特性

TTL底层采用双极型晶体管,可用于设计速度极快的开关网络。

TTL系列门有三种不同类型的输出配置:推 挽式 (图腾柱)输出、集电极开路输出和三态 输出。

TTL反相器经典电路 的内部结构及工作原理

实际使用时取如下典型值时

$$V_{CC} = 5V$$

$$V_{IH} = 3.4V$$

$$V_{IL} = 0.2V$$

① PN结导通压降 $V_{ON} = 0.7V$

内部参数是工程师们经过设计凝练而成,参数合理,保证了功能的实现。

 $v_{\rm O}/V$ B3.0 2.0 1.0 E0.5 1.0 0 $v_{\rm I}/{
m V}$ V_{TH}

上页

下页

二、电压传输特性

V₁为0V时: T1管的发射结正偏;

T1的集电极通过T2的集电结(呈反偏状态)和R2上拉到了电源,由于PN结反偏时等效为很大的电阻,因此相当于T1的集电极通过1个大电阻上拉到电源,所以T1一定处于饱和导通。故T1管的CE间压降很低,假设为0.2V,则T2管的基极此时为0.2V,显然无法导通。此时R3上无压降,故T5管也截止。

此时T4管的基极通过R2上拉到电源,故T4管可以导通。

$$V_{OH} = V_{CC} - V_{R2} - V_{BE4} - V_{D2} = 3.4V$$

*AB段:尽管T2的基极电压(输入+T1的CE间饱和压降)会随着输入增大而增加,但在 $V_I < 0.6V$ 时,T2、T5仍截止,故 $V_{B1} < 1.3V$ $V_{OH} = V_{CC} - V_{R2} - V_{BE4} - V_{D2} = 3.4V$

*BC段:线性区 0.7V < V₁ < 1.3V

 T_2 导通且工作在线性放大区,因为 T_2 在截止时, V_{E_2} 为0, V_{C_2} 通过 R_2 上拉到电源,所以 T_2 的CE间压差很大,意味着 T_2 的集电结反偏。此时如果其发射结进入正偏,便会处于放大状态。

 T_5 截止, T_4 导通,此时由于R2上的电流增加,导致其压降增大,故 $V_I \uparrow \Rightarrow V_o \downarrow$

*CD段:转折区 $V_I = V_{TH} \approx 1.4V$,所以 $V_{B1} \geq 2.1V$ T_2, T_5 同时导通,且T2由放大进入饱和,因为T2的集电极电位在下降。 T_2 饱和导致 T_4 的基极电位为0.7 + 0.1 = 0.8V,因此T4截止,T5相当于由一个很大的电阻上拉到电源,因此T5也是饱和导通,所以 V_0 迅速 $\downarrow \Rightarrow V_{OL} \approx 0$

*DE段: V_I 继续增加,大于1.4V后,此时由于T2和T5的导通,使T1的集电极被钳制在1.4V,于是出现T1的发射极电位高于集电极电位的倒置状态。此时T1的发射结和集电结失去关联,看作2个独立的PN结。

若从B1点看则为2个PN结的并联,且PN结的P端由R1接电源,因此2个PN结均导通,导致 V_{R1} 被钳制在2.1V。

此后,若输入电压继续升高,即便 T_1 的发射结出现反偏,但其它管子的状态不变,所以一直维持输出低电平,即 $V_0 = V_{OL}$

TTL与非门的内部结构及工作原理

(1) 输入级

输入级由多发射极晶体管 T_1 和基极电组 R_1 组成。

(2) 中间级

中间级由 T_2 、 R_2 和 R_3 组成,作为输出级的驱动电路。

(3) 输出级

输出级由 T_3 、 T_4 、D和 R_4 组成,其中D、 T_4 作为由 T_3 组成的反相器的有源负载。

上页

U _{IA}	u_{IB}	и _в
0	0	0
0	1	0
1	0	0
1	1	1

上页

下页

当输入端至少有一端接低时,输出为高(3.6V): T1饱和导通(发射结正偏), T2和T3截止,T4和D导通;

当输入端全部接高(如 3.4V)时,输出为低(0.3V): T1管倒置(发射结反偏), T2和T3饱和导通,T4截止。

T₃和T₄总是轮流导通,这种结构叫推拉 (Push-pull)输出级,它可使输出阻抗很低,静态功耗小、提高其负载能力。

上页 下页 返回

思考:输出级中D的 作用?

D保证了在T₃饱和导通时T₄可靠的截止: T₃饱和导通时输出为CE间的饱和压降,假设为0.1V。若无D,则T4的发射极即为0.1V,而此时T4的基极为0.7+0.1=0.8V,则T4可能会导通。

上页 下页

TTL与非门的外特性及有关参数

1. 电压传输特性

反映输出电压 u_0 随输入电压 u_I 变化的规律。

图中 Q_1 和 Q_2 点处的斜率 $du_0/du_1 = -1$

是传输特性的转折点。

以 Q_1 、 Q_2 两点为界,可将此图分为三个区域。

上页

下页

区域I:

 u_0 基本不随 u_1 而变,

输出高电平 U_{OH} 。

区域III:

输出低电平 $U_{\rm OL}$;

 U_{OL} 基本上亦与 u_{I} 无关。

区域工:

u_O急剧地随u_I变化。

区域工称为过渡区。

<mark>阈值电压U_{TH}:</mark> 过渡区的中 点对应的输入电压。是与非门开、 关门状态的分水岭。

典型值: 1.4V

几个重要参数:

(1) 输入低电平最大值 U_{ILmax} (关门电平 U_{off})

U_{II max}的典型值0.8√。

注意:在使用时,输入低电平不能大于 U_{Ilmax} 否则将引起逻辑混乱。

(2) 输入高电平最小值 U_{IHmin} (开门电平 U_{on})

UIIImin的典型值为2V。

(3) 输出高电平下限值U_{OHmin}

 U_{OHmin} 等于 Q_1 点在 u_{O} 轴上的投影值。

典型的 U_{OHmin} 为2.4V。

(4) 输出低电平上限值U_{OLmax}

 U_{OLmax} 为 Q_2 点在 u_O 轴上的投影值。

 U_{OLmax} 的典型值为0.4V。

标准TTL逻辑门参数及噪声容限

(5) 抗干扰度

抗干扰度也称噪声容限,它反映电路在多大的干扰电压 u_N 下仍能正常工作。

 $U_{
m N}$ 分为高电平噪声容限 $U_{
m NH}$ 和低电平噪声容限 $U_{
m NL}$ 。

$$U_{
m NH} = U_{
m OHmin} - U_{
m IHmin}$$

TTL与非门典型值:

$$U_{\rm NH} = 2.4 \, {\rm V} - 2 \, {\rm V} = 0.4 \, {\rm V}$$

低电平噪声容限 $U_{ m NL}$

 $U_{
m NL}$ = $U_{
m ILmax}$ - $U_{
m OLmax}$

TTL与非门典型值:

 $U_{\rm NL} = 0.8 \, \text{V} - 0.4 \, \text{V} = 0.4 \, \text{V}$

 $U_{\rm ILmax}$ 与 $U_{\rm IHmin}$ 越接近,则 $U_{\rm NH}$ 、 $U_{\rm NL}$ 越大,抗干扰能力就越强。

下一级门是前一级门的负载,一个门到底可以驱动几个同类型的门?

输入特性: 反映负载门对驱动门的影响

TTL与非门的输入特性

a. u₁为低电平 (如0V) 时:

发射结正偏, $i_{
m I}$ 流入信号源,此时,电流称为低电平输入电流 $I_{
m IL}$ 。

b. 当u_I为高电平 (如3.4V) 时:

发射结反偏,截止。 i_{T} 流入TTL门, i_{T} 即是 T_{T} 的漏电流。

此时,电流称为高电平输入电流/111。 /111通常约几十微安。

上页 下页 返[

总结

- 当TTL门电路输入高电平时,输入电流流入门电路。 漏电流。几十微安。
- 当TTL门电路输入低电平时,输入电流流出门电路。 1.6mA。

G₁输出高电平

 G_1 输出低电平

上页

下页

返回

3. 输出特性:

反映输出电压_u。随输出负载电流i_L变化的 输出负载电流i_L变化的 关系。分析门的驱动能 力。

与非门输出有高、低电平两种状态,下面分两种情况分析输出特性。

上页 下页 返回

(1) 输出高电平时

T₃截止, T₄和D导通, i₁为拉电流。

a. 若空载时 $(i_L=0)$

$$u_{\mathrm{OH}} \approx V_{\mathrm{CC}}$$

b. 随着 i_L 增大

$$u_{\mathrm{O}} = V_{\mathrm{CC}} - U_{\mathrm{CES4}} - u_{\mathrm{D}} - i_{\mathrm{R4}} R_{4}$$

$$= V_{\mathrm{CC}} - (U_{\mathrm{CES4}} + u_{\mathrm{D}}) - i_{\mathrm{L}} R_{4}$$

 u_0 随着 i_L 增加而下降。

高电平输出特性

由特性曲线,得到集成门所 允许的最大输出电流I_{OHmax}。

 $I_{\text{OHmax}} \leq 400 \mu A$ 最大可提供的拉电流

(a) Current sourcing (I_{II} value is maximum)

(2) 输出低电平时

T₃饱和,输出电流i_L从负载流进T₃,形成灌电流。

- a. 当灌电流增加时, T_3 饱和程度减轻, u_0 随 i_L 增加略有增加。
- b. 当 i_L 足够大时($pprox 70 \mathrm{mA}$) , T_3 将退出饱和进入放大状态, u_0 随 i_L 的增加而很快上升。

低电平输出特性

由低电平输出特性曲线可得:

低电平输出时最大输出端电流IOLmax

标准TTL逻辑门

*I*_{OLmax}≤16mA 最大可允许 <u>的灌电流</u>

可见,输出电路的灌电流和 拉电流能力都有一定的限制,否 则逻辑电平将遭破坏。

 $NI_{\rm IL} < I_{
m OLmax}$

决定了一个驱动门可以 带多少个负载门。

(3) TTL门带负载能力

- 由输出特性和输入特性共同决定.
- 用其所能驱动同类门的数目(扇出系数N) 来表示。

a. 当输出低电平时

$$N_{
m L} = \left\lfloor rac{I_{
m OL\; max}}{I_{
m IL}}
ight
floor$$

III为低电平输入负载电流

- (a) I_{II} 越小,对驱动门的负担越轻;
- (b) I_{OLmax} 愈大,则带负载能力愈强;
- (c) 两者之比越大,扇出系数 N_L 越大。

b. 当输出高电平时

$$N_{\mathrm{H}} = \begin{bmatrix} I_{\mathrm{OH\,max}} \\ I_{\mathrm{IH}} \end{bmatrix}$$

一个负载门只接 一个端子时

上页 下页 返回

c. TTL与非门总扇出系数

$$N = \min\{N_{\mathrm{L}}, N_{\mathrm{H}}\}$$

一般由于 $N_{\rm L} < N_{\rm H}$,因此通常所说的扇出系数N即指 $N_{\rm L}$ 。

标准TTL系列典型值为10。

$$\mathbf{P_{78}} \qquad N_{\rm H} = \left[\frac{I_{\rm OH \ max}}{I_{\rm IHmax}} \right] = \frac{400 \ \mu A}{40 \ \mu A} = 10$$

$$N_{\rm L} = \left[\frac{I_{\rm OL \ max}}{I_{\rm ILmax}} \right] = \frac{16 \ mA}{1.6 \ mA} = 10$$

无论几个输入端接到驱动门输出,负载门所需的电流量都近似为(V_{cc}-0.7)/R, 所以,低电平扇出数只与负载门数,而非端子数量有关。

$$N_{\rm L} = \left[\frac{I_{
m OL\ max}}{I_{
m IL}} \right]$$

对负载门,每个接的端子都需要一个 I_{IH} ,所以,高电平扇出数与负载门接的输入端的数量有关。

$$N_{\rm H} = \left[\frac{I_{\rm OH\ max}}{nI_{\rm IH}}\right]$$

n为一个门所接的端子数。

下页

返回

例:已知门电路的参数

 I_{OH} max=1.0mA

 I_{OL} max=20mA

 $I_{IH} = 50 \mu A$

 $I_{IL} = 1.43 \text{mA}$

试求门 Gp的扇出系数N。应为多少?

解:

对门Gp输出高电平和低电平时的情况分别讨论,然后取两个数中一个较小的作为门的扇出系数。

解: • 当门G。输出为低电平时,

$$N_{\rm OL} = \frac{I_{\rm OL} \max}{I_{\rm IL}} = \frac{20}{1.43} = 14$$

• 当门G_P输出为高电平时,

$$N_{\text{OH}} = \frac{I_{\text{OH}} \max}{2 \times I_{\text{IH}}} = \frac{1.0}{2 \times 0.05} = 10$$

N应选取{ N_{OL}, N_{OH}}_{min}, 即

$$N=10$$

TTL与非门输入端负载特性

自零开始逐渐增加R,则 $u_{\rm I}$ (= $i_{\rm R}R$ = $\frac{V_{cc}-0.7}{R+R_{\rm I}}R$

)和 u_{B1} 随之增加, T_2 、 T_3 一直处于截止状态 (关门状态),输出高电平;

当 $u_{\rm I} \approx 1.4 {
m V}$ 时, T_3 导通(开门状态),输出低电平。

上页

下页

返回

为使与非门可靠工作在关门状态(T_3 截止),R所允许的最大阻值叫该与非门的关门电阻,记作 R_{OFF} 。

为使与非门可靠地工作在开门状态(T_3 导通),R所允许的最小阻值叫该与非门的开门电阻,记作 R_{ON} 。

在工程技术中,常取

 $R_{\text{OFF}} = 0.9 \text{ k}\Omega$ $R_{\text{ON}} = 2 \text{k}\Omega$

若R ≤ 0.9 kΩ,该端相当于输入逻辑低;

若R≥2 kΩ,该端相当于输入逻辑高。

为保险起见, R_{OFF} 可按 $1k\Omega$ 考虑, R_{ON} 可按 $10k\Omega$ 考虑。

悬空的输入端相 当于接高电平。

上页 下页 返回

练习:写出下列TTL逻辑门的输出表达 式

$$L_1 = \overline{AB}$$

$$L_2 = \overline{C}$$

4. 动态响应特性(开关速度)

门电路输出对输入脉冲的响应称为门的动态特性。

描述动态特性参数:

(1) 传输延迟时间

当输入端接入输入信号后,需要经过一定的时间,才 能在输出端产生对应的输出信号。

延迟时间称为传输延迟时间。

从输入波形上升沿的50% 到输出波形下降沿的50%之间 的延迟时间,称为门的输出由 高电平降到低电平的传输时延 t_{PHL} 或称为导通延迟时间;

从输入波形下降沿的50%之间到输出波形上升沿的50%之间的延迟时间,称为门的输出由低电平升到高电平的传输时延 (大PLH,或称为截止延迟时间。

$$t_{\rm pd} = \frac{1}{2}(t_{\rm pHL} + t_{\rm pLH})$$

 $t_{
m pd}$ 是衡量门电路工作速度的重要指标。

典型TTL与非门的平均传输延迟时间 $t_{pd}=10\sim20\mathrm{ns}$ 。

上页 下页 返回

5. 电源电流及功耗

(1) 电源电流

TTL集成门电路的供电电源 V_{CC} 为+5V;

 $V_{\rm CC}$ 供给的电流叫电源电流,用 $I_{\rm E}$ 表示;

I_E小,则组件功耗就小;

但高功耗TTL门的开关速度较快。

(2) 功耗

组件工作时消耗的功率,等于电源电压 $V_{\rm CC}$ 与电源电流 $I_{\rm E}$ 之积。

电路在输入全0和全1时的功耗是不一样的,通常取其平均值。

要求低功耗与提高门电路的开关速度相矛盾。

常用功耗-时延积M作为衡量一个门的品质指标。

$$M=P \cdot t_{\rm pd}$$

M 值越大,表示组件的性能越差。

作业

自练题:

- 3.4
- 3.5
- 3.7

作业题:

• 3.11