

9-13-00

A

09/12/00
JCS21
U.S.
PTO

UTILITY PATENT APPLICATION TRANSMITTAL

(Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No.
2204/A55

Total Pages in this Submission
57

10818 U.S. PTO
09/660370
09/12/00

TO THE ASSISTANT COMMISSIONER FOR PATENTS

Box Patent Application
Washington, D.C. 20231

Transmitted herewith for filing under 35 U.S.C. 111(a) and 37 C.F.R. 1.53(b) is a new utility patent application for an invention entitled:

SYSTEM, DEVICE, AND METHOD FOR CONTROLLING ACCESS IN A MULTICAST COMMUNICATION NETWORK

and invented by:

Thomas P. Hardjono

If a **CONTINUATION APPLICATION**, check appropriate box and supply the requisite information:

Continuation Divisional Continuation-in-part (CIP) of prior application No.: _____

Which is a:

Continuation Divisional Continuation-in-part (CIP) of prior application No.: _____

Which is a:

Continuation Divisional Continuation-in-part (CIP) of prior application No.: _____

Enclosed are:

Application Elements

1. Filing fee as calculated and transmitted as described below
2. Specification having 40 pages and including the following:
 - a. Descriptive Title of the Invention
 - b. Cross References to Related Applications (*if applicable*)
 - c. Statement Regarding Federally-sponsored Research/Development (*if applicable*)
 - d. Reference to Microfiche Appendix (*if applicable*)
 - e. Background of the Invention
 - f. Brief Summary of the Invention
 - g. Brief Description of the Drawings (*if drawings filed*)
 - h. Detailed Description
 - i. Claim(s) as Classified Below
 - j. Abstract of the Disclosure

UTILITY PATENT APPLICATION TRANSMITTAL
(Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No.
2204/A55

Total Pages in this Submission
57 PTO

59/66037
05/12/00

Application Elements (Continued)

3. Drawing(s) (*when necessary as prescribed by 35 USC 113*)
a. Formal Number of Sheets _____
b. Informal Number of Sheets 9

4. Oath or Declaration
a. Newly executed (*original or copy*) Unexecuted
b. Copy from a prior application (37 CFR 1.63(d)) (*for continuation/divisional application only*)
c. With Power of Attorney Without Power of Attorney
d. **DELETION OF INVENTOR(S)**
Signed statement attached deleting inventor(s) named in the prior application,
see 37 C.F.R. 1.63(d)(2) and 1.33(b).

5. Incorporation By Reference (*usable if Box 4b is checked*)
The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under
Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby
incorporated by reference therein.

6. Computer Program in Microfiche (*Appendix*)

7. Nucleotide and/or Amino Acid Sequence Submission (*if applicable, all must be included*)
a. Paper Copy
b. Computer Readable Copy (*identical to computer copy*)
c. Statement Verifying Identical Paper and Computer Readable Copy

Accompanying Application Parts

8. Assignment Papers (*cover sheet & document(s)*)

9. 37 CFR 3.73(B) Statement (*when there is an assignee*)

10. English Translation Document (*if applicable*)

11. Information Disclosure Statement/PTO-1449 Copies of IDS Citations

12. Preliminary Amendment

13. Acknowledgment postcard

14. Certificate of Mailing
 First Class Express Mail (*Specify Label No.*): EL54349998US

UTILITY PATENT APPLICATION TRANSMITTAL
(Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No.
 2204/A55

Total Pages in this Submission
 57

Accompanying Application Parts (Continued)

JC918 U.S. PTO
 09/660370
 09/12/00

15. Certified Copy of Priority Document(s) (if foreign priority is claimed)

16. Additional Enclosures (please identify below):

Fee Calculation and Transmittal

CLAIMS AS FILED

For	#Filed	#Allowed	#Extra	Rate	Fee
Total Claims	69	- 20 =	49	x \$18.00	\$882.00
Indep. Claims	18	- 3 =	15	x \$78.00	\$1,170.00
Multiple Dependent Claims (check if applicable)	<input type="checkbox"/>				\$0.00
				BASIC FEE	\$690.00
OTHER FEE (specify purpose)					\$0.00
				TOTAL FILING FEE	\$2,742.00

A check in the amount of _____ to cover the filing fee is enclosed.
 The Commissioner is hereby authorized to charge and credit Deposit Account No. _____ as described below. A duplicate copy of this sheet is enclosed.

- Charge the amount of _____ as filing fee.
- Credit any overpayment.
- Charge any additional filing fees required under 37 C.F.R. 1.16 and 1.17.
- Charge the issue fee set in 37 C.F.R. 1.18 at the mailing of the Notice of Allowance, pursuant to 37 C.F.R. 1.311(b).

Dated: September 12, 2000

cc:

Jeffrey T. Klayman
 Signature
 Jeffrey T. Klayman, Reg. No. 39,250
 BROMBERG & SUNSTEIN LLP
 125 Summer Street
 Boston, MA 02110
 (617) 443-9292

CERTIFICATE OF MAILING BY "EXPRESS MAIL" (37 CFR 1.10)

Applicant(s): Hardjono

Docket No.

2204/A55

Serial No. Not Yet Assigned	Filing Date Herewith	Examiner Not Yet Assigned	Group Art Unit Not Yet Assigned
--------------------------------	-------------------------	------------------------------	------------------------------------

Invention: **SYSTEM, DEVICE, AND METHOD FOR CONTROLLING ACCESS IN A MULTICAST
COMMUNICATION NETWORK**

jc918 U.S. PTO
09/660370
09/12/00

I hereby certify that this Utility Patent Application Transmittal and enclosures referred to therein
(Identify type of correspondence)

is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under
37 CFR 1.10 in an envelope addressed to: The Assistant Commissioner for Patents, Washington, D.C. 20231 on
September 12, 2000

(Date)

Jeffrey T. Klayman

(Typed or Printed Name of Person Mailing Correspondence)

(Signature of Person Mailing Correspondence)

EL54349998US

("Express Mail" Mailing Label Number)

Note: Each paper must have its own certificate of mailing.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION FOR UNITED STATES PATENT

FOR

**SYSTEM, DEVICE, AND METHOD FOR CONTROLLING ACCESS
IN A MULTICAST COMMUNICATION NETWORK**

Inventor:

Thomas P. Hardjono
430 Highland Avenue
Winchester, MA 01890

100 200 300 400 500 600 700 800 900 1000

Attorney Docket No.: 2204/A55

Client Reference No.: BA0472

Attorneys:

BROMBERG & SUNSTEIN LLP
125 Summer Street
Boston, MA 02110
(617) 443-9292

SYSTEM, DEVICE, AND METHOD FOR CONTROLLING ACCESS IN A MULTICAST COMMUNICATION NETWORK

5

PRIORITY

The present patent application claims priority from the commonly-owned United States Provisional Patent Application No. 60/204,218 entitled SYSTEM, DEVICE, AND METHOD FOR CONTROLLING ACCESS IN A MULTICAST COMMUNICATION

10 NETWORK, which was filed on May 15, 2000 in the name of Thomas P. Hardjono, and is hereby incorporated herein by reference in its entirety.

15
20
25

FIELD OF THE INVENTION

The present invention relates generally to communication systems, and more particularly to controlling access to a shared multicast distribution tree in a Protocol Independent Multicast (PIM) communication network.

30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9

In order to distribute multicast packets from a particular multicast source S to the multicast clients for a particular multicast group G, the multicast packet is routed through the communication network by a number of routers. The communication network may include multiple routing domains, and therefore the multicast packet may traverse multiple routing domains. Each router runs various routing protocols to determine, among other things, a "next hop" for each packet based upon address information in the packets. Such routing information is used to establish a multicast distribution tree (referred to hereinafter as the "shared tree"), and is maintained by each router in one or more routing tables (often referred to as a "routing information base").

One problem that plagues many multicast communication networks is security, or more specifically, the lack thereof. Many multicast communication networks are based upon an anonymous receiver model in which any host can join the shared tree, for example, using a group management mechanism such as the Internet Group Management Protocol (IGMP) as described in Fenner, Internet Engineering Task Force (IETF) Request for Comments (RFC) 2236, Internet Group Management Protocol, Version 2 (November 1997), which is hereby incorporated herein by reference in its entirety. This anonymous receiver model exposes the shared tree to various types of attacks.

One attempt to protect the shared tree involves the use of data encryption to prevent unauthorized hosts from accessing multicast data. For data encryption, a group-wide encryption key (referred to hereinafter as the "group key") is used to encrypt and decrypt all multicast data for a particular multicast group. The group key is distributed to the multicast source as well as to all authorized multicast clients (hosts). The multicast source uses the group key to encrypt the multicast data, while all authorized multicast clients use the group key to decrypt the multicast data. Unauthorized hosts that receive the encrypted multicast data are unable to decrypt the multicast data, and are therefore prevented from accessing the multicast data.

Another attempt to protect the shared tree involves the authentication of control messages between multicast routers. Specifically, the multicast routers exchange various control messages for, among other things, joining the shared tree. These control messages are authenticated hop-by-hop according to a predetermined authentication scheme. By

-3-

authenticating all control messages, only authorized multicast routers are able to join the shared tree.

Unfortunately, neither data encryption nor control message authentication prevents an unauthorized host from joining the shared tree and thereby consuming valuable communication resources. Because authentication operates only between the multicast routers, an unauthorized host can still join the shared tree, specifically by sending a join request, for example, using IGMP or other group management mechanism. The multicast routers establish the appropriate multicast routes for routing multicast packets to the unauthorized host, perhaps even using authentication to perform hop-by-hop authentication. As a member of the shared tree, the unauthorized host receives multicast packets. This is true even if the multicast packets are protected using data encryption, in which case the unauthorized host simply discards the encrypted multicast data.

Thus, a technique for controlling access in a multicast communication network is needed.

SUMMARY OF THE INVENTION

An unauthorized host device is prevented from joining the PIM shared tree using a centralized host authentication mechanism. Each authorized host is allocated a unique authentication key, which is used by the designated router to encode the PIM join message and by the rendezvous point router to authenticate the PIM join message. If the PIM join message is authentic, then each PIM router from the rendezvous point router to the designated router establishes appropriate multicast routes to route multicast packets to the host. If the PIM join message is not authentic, then multicast packets are prevented from reaching the host. Otherwise, the host device is added to the shared tree and receives multicast packets forwarded by the rendezvous point router.

The foregoing and other objects and advantages of the invention will be appreciated more fully from the following further description thereof with reference to the accompanying drawings wherein:

5 FIG. 1 is a network diagram showing an exemplary PIM communication network in accordance with an embodiment of the present invention;

FIG. 2 is a logic flow diagram showing exemplary key server logic in accordance with an embodiment of the present invention;

10 FIG. 3 is a logic flow diagram showing exemplary host logic in accordance with an embodiment of the present invention;

FIG. 4 is a logic flow diagram showing exemplary designated router (DR) logic in accordance with an embodiment of the present invention;

15 FIG. 5 is a logic flow diagram showing exemplary intermediate PIM router logic in accordance with an embodiment of the present invention in which the intermediate PIM router is not already joined to the shared tree;

FIG. 6 is a logic flow diagram showing exemplary intermediate PIM router logic in accordance with an embodiment of the present invention in which the intermediate PIM router is already joined to the shared tree;

20 FIG. 7 is a logic flow diagram showing exemplary rendezvous point (RP) logic in accordance with an embodiment of the present invention;

FIG. 8 is a communication message diagram showing the relevant fields of an exemplary GKM protocol message in accordance with an embodiment of the present invention;

25 FIG. 9 is a communication message diagram showing the relevant fields of an exemplary tagged PIM join message in accordance with an embodiment of the present invention;

FIG. 10 is a communication message diagram showing the relevant fields of an exemplary explicit acknowledgment in accordance with an embodiment of the present invention; and

FIG. 11 is a communication message diagram showing the relevant fields of an exemplary extended IGMP join request message in accordance with an embodiment of the present invention.

5

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

An embodiment of the present invention uses a centralized host authentication scheme to prevent unauthorized hosts from joining the shared tree. This centralized host authentication scheme is in addition to data encryption and control message authentication.

10

In the centralized host authentication scheme of an embodiment of the present invention, host authentication is performed by a central device when the host attempts to join the shared tree. Specifically, an authorized host obtains an authentication key, for example, from a key server. The authentication key is also sent to the central device, for example, by the key server, and to an access device through which the host accesses the shared tree, for example, by the host within an IGMP join request. In any case, upon receiving an IGMP join request from the host, the access device generates an encoded join request using the authentication key for the host, and forwards the encoded join request upstream toward the central device. Upon receiving the encoded join request, the central device authenticates the encoded join request using the authentication key for the host. If the encoded join message is authentic, then each intermediate device from the central device to the access device establishes appropriate multicast routes to route multicast packets to the host. If the encoded join message is not authentic, then multicast packets are prevented from reaching the host.

20

Various aspects of the present invention are described herein with reference to a Protocol Independent Multicast (PIM) communication network. PIM is a well-known protocol for routing multicast packets within a multicast routing domain. PIM is so named because it is not dependent upon any particular unicast routing protocol for setting up a multicast distribution tree within the multicast routing domain. PIM has two modes of operation, specifically a sparse mode and a dense mode. PIM Sparse Mode (PIM-SM) is described in Estrin et al., Internet Engineering Task Force (IETF) Request For Comments

25

30

(RFC) 2362, Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (June 1998), which is hereby incorporated herein by reference in its entirety. PIM Dense Mode (PIM-DM) is described in Deering et al., Internet Engineering Task Force (IETF) Internet Draft draft-ietf-pim-v2-dm-03.txt, Protocol Independent Multicast Version 2 Dense Mode Specification (June 7, 1999), which is hereby incorporated herein by reference in its entirety.

In accordance with the PIM protocol, the various routers within a particular PIM domain establish a default multicast distribution tree, referred to as a "shared tree," for each multicast group. Each shared tree is rooted at a Rendezvous Point (RP) router (i.e., the central device) that acts as the distribution point of all multicast packets for the multicast group. Before a router can join the shared tree for a particular multicast group, the router must learn the identity of the multicast group RP router. A router learns the identity of the multicast group RP router by receiving a PIM Bootstrap Message including a list of all RP routers in the PIM domain. The router receives the PIM Bootstrap Message either from a Bootstrap Router (BSR), which sends the PIM Bootstrap Message to all routers in the PIM domain at predetermined intervals (typically every 60 seconds), or from a neighboring router, which sends the PIM Bootstrap Message to the router if and only if the neighboring router has lost contact with the router for a predetermined period of time (typically 105 seconds). Upon learning the identity of the multicast group RP router, or at any time thereafter, each router that supports a downstream multicast group member (i.e., multicast client) joins the shared tree by sending a PIM Join/Prune Message hop-by-hop toward the multicast group RP router. Each intermediate router that receives the PIM Join/Prune Message from a downstream router also joins the shared tree by forwarding the PIM Join/Prune Message toward the multicast group RP router.

Typically, a PIM router joins the shared tree when a downstream multicast client joins the shared tree. Specifically, each host accesses the shared tree through a PIM router that is referred to as the Designated Router (DR) for that host (i.e., the access device). The host and the DR support a multicast group management protocol, such as IGMP. In order to join the shared tree, the host sends a join request to the DR using the multicast group management protocol, and the DR forwards a PIM join message upstream towards the RP.

Each PIM router that receives the PIM join message establishes the appropriate multicast routes for routing multicast packets to the host, and also joins the shared tree (if it is not already joined to the shared tree) by forwarding the PIM join message upstream towards the RP.

5 Data encryption may be used to prevent unauthorized hosts from accessing multicast data. For data encryption, a group-wide encryption key (referred to hereinafter as the “group key”) is used to encrypt and decrypt all multicast data for a particular multicast group. The group key is distributed to the multicast source as well as to all authorized multicast clients (hosts). The multicast source uses the group key to encrypt the multicast data, while all authorized multicast clients use the group key to decrypt the multicast data. Unauthorized hosts that receive the encrypted multicast data are unable to decrypt the multicast data, and are therefore prevented from accessing the multicast data.

10 Authentication may be used to prevent unauthorized routers from joining the PIM shared tree. For PIM authentication, all PIM control messages are authenticated hop-by-hop from the DR to the RP, as described in Wei, Internet Engineering Task Force (IETF) Internet Draft [draft-ietf-pim-v2-auth-00.txt](#), [Authenticating PIM Version 2 Messages](#) (November 11, 1998), which is hereby incorporated herein by reference in its entirety. PIM authentication is performed using IPsec AH and a symmetric encryption key that is shared by all routers in the PIM domain (referred to hereinafter as the “equal-opportunity key”), as described in Kent et al., Internet Engineering Task Force (IETF) Request for Comments (RFC) 2401, [Security Architecture for the Internet Protocol](#) (November 1998), which is hereby incorporated herein by reference in its entirety. By authenticating all PIM control messages, only authorized PIM routers are able to join the shared tree.

15 FIG. 1 shows an exemplary PIM communication network 100. The exemplary PIM communication network 100 includes key server (118), BSR (120), RP (106), intermediate PIM router (108), multicast source S (102), two multicast hosts H1 (112) and H2 (116), and three designated routers DR (104), DR1 (110), and DR2 (114). The multicast source S (102) accesses the shared tree via DR (104). The multicast host H1 (112) accesses the shared tree via DR1 (110). The multicast host H2 (116) accesses the

10
15
20
25

shared tree via DR2 (114). The three designated routers DR (104), DR1 (110), and DR2 (114) are coupled through RP (106) and the intermediate PIM router (108).

In an exemplary embodiment of the present invention, an authorized host is allocated a unique authentication key (referred to hereinafter as the “DR key”). The DR key is distributed to the DR, for example, by the host within an IGMP join request. The DR key is used by the DR to encode a corresponding PIM join message and by the RP to authenticate the PIM join message. If the PIM join message is authentic, then each PIM router from the RP to the DR establishes appropriate multicast routes to route multicast packets to the host. If the PIM join message is not authentic, then multicast packets are prevented from reaching the host.

The DR key is distributed to the host using a key distribution protocol that is typically scalable, secure, and independent of the underlying unicast and multicast routing protocols. Because the host already uses a group key management (GKM) protocol to obtain a group key for data encryption from a secure key server, it is preferable for the host to also use the GKM protocol to obtain the DR key from the key server. Specifically, the host uses the GKM protocol to request the group key from the key server. Upon receiving the request from the host using the GKM protocol, the key server authenticates the host and, assuming the host is authorized to receive the group key, generates a unique DR key for the host and sends both the group key and the DR key to the host using the GKM protocol.

FIG. 2 shows exemplary key server logic 200. Beginning at block 202, and upon receiving a request from the host, the logic authenticates the host, in block 204, to determine whether the host is authorized to receive the group key. Assuming the host is authorized to receive the group key, the logic allocates a unique DR key for the host, in block 206. The logic then forwards both the group key and the DR key to the host, in block 208, for example, using the GKM protocol. The logic also forwards the DR key to the RP, in block 210. The logic 200 terminates at block 299.

FIG. 8 shows the relevant fields of an exemplary GKM protocol message 800. The GKM protocol message 800 includes, among other things, a group key field 802 and a DR

key field 804. The GKM protocol message 800 is sent by the key server 118 to the host as part of the group key management function.

After receiving its DR key from the key server using the GKM protocol, the host sends its DR key to its DR. The host may send the DR key to the DR prior to sending a join request to the DR, although the host preferably includes the DR key in the join request, for example, in an extended IGMP join request that includes a DR key field.

FIG. 3 shows exemplary host logic 300. Beginning at block 302, and upon obtaining the DR key from the key server 118, the logic sends the DR key to the DR 104, in block 306, and sends a join request to the DR 104, in block 308. In a typical embodiment of the invention, the host sends both the DR key and the join request in an extended IGMP join request that includes a DR key field. The logic 300 terminates at block 399.

FIG. 11 shows the relevant fields of an exemplary extended IGMP join request message 1100. The extended IGMP join request message 1100 includes, among other things, a join field 1102 and a DR key field 1104. The extended IGMP join request message 1100 is sent by the host to the DR in order to join the shared tree. The host includes its DR key in the DR field 1104.

In any case, after receiving both the DR key and the join request, the DR generates a specially formatted PIM join message that can be authenticated using the DR key. In an exemplary embodiment of the invention, the specially formatted PIM join message includes, among other things, a (join, tag, nonce) triplet that is treated as a payload to be protected using PIM authentication, and is referred to hereinafter as a “tagged” PIM join message. The tag is preferably a digest/MAC that the DR computes using a keyed hash function and the DR key. The nonce is a number that the DR changes each time it generates a tagged PIM join message, and is used in part to prevent a “playback” attack. The DR forwards the tagged PIM join message (with PIM authentication) upstream toward the RP.

FIG. 4 shows exemplary DR logic 400. Beginning at block 402, and upon receiving the DR key from the host, in block 404, as well as a join request from the host, in block 406, the logic generates a tag using the DR key, in block 408. The logic also

5

10
15
20
25

25

30

-10-

generates a nonce, in block 410. The logic generates a tagged PIM join message including, among other things, the tag and the nonce, in block 412. Assuming PIM Authentication is used, the logic encrypts the tagged PIM join message using the equal opportunity key according to IPsec AH, in block 414, and forwards the tagged PIM join message upstream toward the RP 106, in block 416. The logic 400 terminates at block 499.

5

FIG. 9 shows the relevant fields of an exemplary tagged PIM join message 900. The tagged PIM join message 900 includes, among other things, a join field 902, a tag field 904, and a nonce field 906. The tagged PIM join message is generated by the DR and forwarded by the DR upstream toward the RP 106.

10

Each intermediate PIM router between the DR and the RP processes the tagged PIM join message and forwards the tagged PIM join message upstream toward the RP. Specifically, after authenticating the tagged PIM join message using the equal opportunity key, the intermediate PIM router determines whether or not it is already joined to the shared tree.

15

If the intermediate PIM router is not already joined to the shared tree, then the intermediate PIM router is not yet receiving multicast packets. Therefore, the intermediate PIM router establishes multicast routes for forwarding multicast packets to the host, and forwards the tagged PIM join message upstream toward the RP. If the host is authentic, then the intermediate PIM router will receive multicast packets from its upstream neighbor for forwarding to the host. If the host is not authentic, then the intermediate PIM router will not receive multicast packets from its upstream neighbor, and the intermediate PIM router will eventually remove the multicast routes.

20

However, if the intermediate PIM router is already joined to the shared tree, then the intermediate PIM router is already receiving and forwarding multicast packets, and cannot simply establish multicast routes for forwarding multicast packets to the host. This is because, by establishing such multicast routes, multicast packets would be forwarded to the host even if the host ultimately fails authentication. Therefore, before establishing such multicast routes, the intermediate PIM router forwards the tagged PIM join message upstream toward the RP and waits for an explicit acknowledgment from the RP indicating

25

that the host is authentic. The intermediate PIM router preferably also saves a copy of the tagged PIM join message for correlation to the explicit acknowledgment.

As discussed below with reference to the RP, the intermediate PIM router may or may not receive the explicit acknowledgment (or may receive an explicit negative acknowledgment indicating that the host is not authentic). If the intermediate PIM router receives the explicit acknowledgment from the RP indicating that the host is authentic, then the intermediate PIM router establishes multicast routes for forwarding multicast packets to the host. If the intermediate PIM router does not receive the explicit acknowledgment from the RP indicating that the host is authentic (or receives the explicit negative acknowledgment), then the intermediate PIM router does not establish multicast routes for forwarding multicast packets to the host.

FIGs. 5 and 6 show exemplary intermediate PIM router logic 500 for processing the tagged PIM join message. Beginning at block 502, and upon receiving the tagged PIM join message, in block 504, the logic authenticates the tagged PIM join message using the equal opportunity key according to IPsec AH, in block 506. If the tagged PIM join message is not authentic (NO in block 508), then the logic 500 terminates at block 599. If the tagged PIM join message is authentic (YES in block 508), then the logic determines whether the router is already joined to the shared tree, in block 510. If the router is not already joined to the shared tree (NO in block 512), then the logic proceeds to block 514. If the router is already joined to the shared tree (YES in block 512), then the logic proceeds to block 600.

At block 514, the logic establishes appropriate multicast routes for forwarding multicast packets downstream toward the host. The logic also forwards the tagged PIM join message upstream toward the RP 106, in block 516. The logic 500 terminates at block 599.

At block 600, as shown in FIG. 6, the logic stores a copy of the tagged PIM join message, in block 602, and forwards the tagged PIM join message upstream toward the RP 106, in block 604. The logic waits for an explicit acknowledgment from the RP 106, in block 606. Upon receiving the explicit acknowledgment from the RP 106, in block 608, the logic compares the explicit acknowledgment to the stored copy of the tagged PIM join

message, in block 610, specifically to verify that the explicit acknowledgment corresponds to the tagged PIM join message. Upon determining that the explicit acknowledgment corresponds to the tagged PIM join message, in block 612, the logic establishes appropriate multicast routes for forwarding multicast packets downstream toward the host, 5 in block 614. The logic 500 terminates at block 599.

Eventually, the RP router receives the tagged PIM join message that was generated by the DR and forwarded upstream by the intermediate PIM routers. The RP maintains a list of all DR keys, which it obtains from the key server over a secure communication link. Upon receiving the tagged PIM join message, the RP searches the list of DR keys for the DR key associated with the host, and uses the DR key to authenticate the tagged PIM join message. Specifically, the RP uses the DR key to verify the tag using the keyed hash function. If the RP determines that the tagged PIM join message is authentic, then the RP generates an explicit acknowledgment including both the tag and the nonce and forwards the explicit acknowledgment downstream toward the host. If the RP fails to find the DR key associated with the host or the RP determines that the tagged PIM join message is not authentic, then the RP considers the host to be unauthorized, in which case the RP does not generate an explicit acknowledgment (or alternatively generates an explicit negative acknowledgment).

FIG. 7 shows exemplary RP logic 700. Beginning at block 702, and upon 20 receiving the tagged PIM join message, in block 704, the logic authenticates the tagged PIM join message using the equal opportunity key according to IPsec AH, in block 706. If the tagged PIM join message is not authentic (NO in block 707), then the logic 700 terminates at block 799. If the tagged PIM join message is authentic (YES in block 707), then the logic searches for the DR key associated with the host, in block 708, specifically 25 from a list of DR keys maintained by the RP. If the RP fails to find the DR key associated with the host (NO in block 710), then the logic 700 terminates at block 799. If the RP finds the DR key associated with the host (YES in block 710), then the logic authenticates the tagged PIM join message using the DR key associated with the host, in block 712. If the tagged PIM join message is not authentic (NO in block 714), then the logic 700 30 terminates at block 799. If the tagged PIM join message is authentic (YES in block 714),

then the logic establishes appropriate multicast routes for forwarding multicast packets to the host, in block 716, and sends an explicit acknowledgment downstream toward the host, in block 718. The logic 700 terminates at block 799.

FIG. 10 shows the relevant fields of an exemplary explicit acknowledgment 1000.

5 The explicit acknowledgment 1000 includes, among other things, an acknowledgement (ACK) field 1002, a tag field 1004, and a nonce field 1006. The RP generates the explicit acknowledgment 1000 and forwards it downstream toward the host. The RP sets the tag field 1004 and the nonce field 1006 equal to the tag field 904 and nonce field 906, respectively, from the tagged PIM join message so that the intermediate PIM routers can correlate the explicit acknowledgment to the tagged PIM join message.

10 It should be noted that the term "router" is used herein to describe a communication device that may be used in a communication system, and should not be construed to limit the present invention to any particular communication device type. Thus, a communication device may include, without limitation, a bridge, router, bridge-router (brouter), switch, node, or other communication device.

15 It should also be noted that the term "packet" is used herein to describe a communication message that may be used by a communication device (e.g., created, transmitted, received, stored, or processed by the communication device) or conveyed by a communication medium, and should not be construed to limit the present invention to any particular communication message type, communication message format, or communication protocol. Thus, a communication message may include, without limitation, a frame, packet, datagram, user datagram, cell, or other type of communication message.

20 It should also be noted that the logic flow diagrams are used herein to demonstrate various aspects of the invention, and should not be construed to limit the present invention to any particular logic flow or logic implementation. The described logic may be partitioned into different logic blocks (e.g., programs, modules, functions, or subroutines) without changing the overall results or otherwise departing from the true scope of the invention. Often times, logic elements may be added, modified, omitted, performed in a different order, or implemented using different logic constructs (e.g., logic gates, looping

10
15
20

25

30

primitives, conditional logic, and other logic constructs) without changing the overall results or otherwise departing from the true scope of the invention.

The present invention may be embodied in many different forms, including, but in no way limited to, computer program logic for use with a processor (*e.g.*, a microprocessor, microcontroller, digital signal processor, or general purpose computer), programmable logic for use with a programmable logic device (*e.g.*, a Field Programmable Gate Array (FPGA) or other PLD), discrete components, integrated circuitry (*e.g.*, an Application Specific Integrated Circuit (ASIC)), or any other means including any combination thereof. In a typical embodiment of the present invention, predominantly all of the described logic is implemented as a set of computer program instructions that is converted into a computer executable form, stored as such in a computer readable medium, and executed by a microprocessor within the corresponding communication device (host, key server, DR, intermediate PIM router, RP) under the control of an operating system.

Computer program logic implementing all or part of the functionality previously described herein may be embodied in various forms, including, but in no way limited to, a source code form, a computer executable form, and various intermediate forms (*e.g.*, forms generated by an assembler, compiler, linker, or locator). Source code may include a series of computer program instructions implemented in any of various programming languages (*e.g.*, an object code, an assembly language, or a high-level language such as Fortran, C, C++, JAVA, or HTML) for use with various operating systems or operating environments. The source code may define and use various data structures and communication messages. The source code may be in a computer executable form (*e.g.*, via an interpreter), or the source code may be converted (*e.g.*, via a translator, assembler, or compiler) into a computer executable form.

The computer program may be fixed in any form (*e.g.*, source code form, computer executable form, or an intermediate form) either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (*e.g.*, a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (*e.g.*, a diskette or fixed disk), an optical memory device (*e.g.*, a CD-ROM), or other memory device. The computer program may be fixed in any form in a signal that is transmittable to a computer

using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies, networking technologies, and internetworking technologies. The computer program may be distributed in any form as a removable storage medium with accompanying printed or electronic documentation (*e.g.*, shrink wrapped software), preloaded with a computer system (*e.g.*, on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (*e.g.*, the Internet or World Wide Web).

Hardware logic (including programmable logic for use with a programmable logic device) implementing all or part of the functionality previously described herein may be designed using traditional manual methods, or may be designed, captured, simulated, or documented electronically using various tools, such as Computer Aided Design (CAD), a hardware description language (*e.g.*, VHDL or AHDL), or a PLD programming language (*e.g.*, PALASM, ABEL, or CUPL).

Programmable logic may be fixed either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (*e.g.*, a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (*e.g.*, a diskette or fixed disk), an optical memory device (*e.g.*, a CD-ROM), or other memory device. The programmable logic may be fixed in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies, networking technologies, and internetworking technologies. The programmable logic may be distributed as a removable storage medium with accompanying printed or electronic documentation (*e.g.*, shrink wrapped software), preloaded with a computer system (*e.g.*, on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (*e.g.*, the Internet or World Wide Web).

Thus, the present invention may be embodied as a communication system having a rendezvous point device that forwards multicast communication messages to members of a shared tree, a designated device in communication with the rendezvous point device via a number of intermediate devices, and a host device in communication with the designated device. The host device sends a join request to the designated device using a

predetermined multicast group management protocol in order to join the shared tree for receiving the multicast communication messages forwarded by the rendezvous point device. The designated device receives the join request and forwards to the rendezvous point device via the number of intermediate devices an encoded join request generated using an authentication key associated with the host device. The rendezvous point device receives the encoded join request and authenticates the encoded join message using the authentication key associated with the host device. The host device is prevented from receiving the multicast communication messages forwarded by the rendezvous point device if the rendezvous point device determines that the encoded join request is not authentic, but is added to the shared tree if the rendezvous point device determines that the encoded join request is authentic. In the communication system, a key server may authenticate the host device, generate the authentication key for the host device, and provide the authentication key to both the host device and the rendezvous point device using a secure key distribution mechanism. The designated device obtains the authentication key, preferably from the host device included within the join request.

The present invention may also be embodied as key server logic for authenticating a host device, generating an authentication key for the host device, and sending the authentication key to the host device and to a rendezvous point device using a secure key distribution mechanism.

The present invention may also be embodied as host device logic for obtaining an authentication key and sending a join request to a designated device using a predetermined multicast group management protocol. The join request includes the authentication key. The predetermined multicast group management protocol is preferably an extended Internet Group Management Protocol (IGMP) including means for including the authentication key in the join request.

The present invention may also be embodied as DR logic for receiving a join request from a host device, generating an encoded join request using an authentication key associated with the host device, and sending the encoded join request toward a rendezvous point device. The join request preferably includes the authentication key. The DR also

joins a shared tree on behalf of the host device and establishes appropriate multicast routes for forwarding multicast communication messages to the host device.

The present invention may also be embodied as intermediate device logic for receiving an encoded join request for a host device and forwarding the encoded join request toward a rendezvous point device. The intermediate device may join a shared tree and establish appropriate multicast routes for forwarding multicast communication messages toward the host device, if the intermediate device is not already joined to the shared tree, or else the intermediate device may wait for an explicit acknowledgment message from the rendezvous point device before establishing appropriate multicast routes for forwarding multicast communication messages toward the host device, if the intermediate device is already joined to the shared tree.

The present invention may also be embodied as rendezvous point device logic for receiving an encoded join request for a host device, authenticating the encoded join request to determine whether or not the encoded join request is authentic, and establishing appropriate multicast routes for forwarding multicast communication messages to the host device if and only if the encoded join request is determined to be authentic.

Authenticating the encoded join request involves maintaining a number of authentication keys, determining the host device for the encoded join request, and searching for an authentication key associated with the host device. If there is no authentication key associated with the host device, then the encoded join request is considered to be not authentic. If there is an authentication key associated with the host device, then the authentication key is used to authenticate the encoded join request. The rendezvous point device may send an explicit acknowledgment if the encoded join request is determined to be authentic.

The present invention may also be embodied as a method in a communication system having a host device, a designated device, and a rendezvous point device. The method involves sending a join request by the host device to the designated device in order to join a shared tree, sending an encoded join request by the designated device to the rendezvous point device, authenticating the encoded join request by the rendezvous point device, adding the host device to the shared tree if the encoded join request is authentic,

and excluding the host device from the shared tree if the encoded join request is not authentic.

The present invention may also be embodied as a communication message embodied in a data signal. The communication message may be a key distribution message including a group key for a multicast group and an authentication key for a host device. The communication message may be a join request including an authentication key for a host device. The communication message may be an encoded join request including a tag field and a nonce field. The communication message may be an explicit acknowledgment including a tag field and a nonce field.

The present invention may be embodied in other specific forms without departing from the true scope of the invention. The described embodiments are to be considered in all respects only as illustrative and not restrictive.

I claim:

1. A communication system comprising:

5 a rendezvous point device that forwards multicast communication messages to members of a shared tree;

a designated device in communication with the rendezvous point device via a number of intermediate devices; and

a host device in communication with the designated device, wherein:

10 the host device sends a join request to the designated device using a predetermined multicast group management protocol in order to join the shared tree for receiving the multicast communication messages forwarded by the rendezvous point device;

the designated device receives the join request and forwards to the rendezvous point device via the number of intermediate devices an encoded join request generated using an authentication key associated with the host device;

15 the rendezvous point device receives the encoded join request and authenticates the encoded join message using the authentication key associated with the host device; and

the host device is prevented from receiving the multicast communication messages forwarded by the rendezvous point device, if the rendezvous point device determines that the encoded join message is not authentic.

20 2. The communication system of claim 1, further comprising a key server for authenticating the host device and generating the authentication key for the host device.

25 3. The communication system of claim 2, wherein the key server provides the authentication key to both the host device and the rendezvous point device using a secure key distribution mechanism.

4. The communication system of claim 1, wherein the host device sends the authentication key to the designated device.

5. The communication system of claim 4, wherein the host device sends the authentication key to the designated device in the join request.

6. The communication system of claim 5, wherein the predetermined multicast group management protocol is an extended Internet Group Management Protocol (IGMP) including means for including the authentication key in the join request.

7. The communication system of claim 1, wherein the designated device joins the shared tree on behalf of the host device.

10. The communication system of claim 7, wherein the designated device establishes appropriate multicast routes for forwarding multicast communication messages to the host.

15. The communication system of claim 1, wherein each intermediate device receives the encoded join request and forwards the encoded join request toward the rendezvous point device.

20. The communication system of claim 9, wherein each intermediate device that is not already joined to the shared tree joins the shared tree on behalf of the host device and establishes appropriate multicast routes for forwarding multicast communication messages toward the host device upon receiving the encoded join request.

25. The communication system of claim 9, wherein each intermediate device that is already joined to the shared tree waits for an explicit acknowledgment message from the rendezvous point device and establishes appropriate multicast routes for forwarding multicast communication messages toward the host device only upon receiving the explicit acknowledgment message from the rendezvous point device.

12. The communication system of claim 1, wherein the rendezvous point device sends an explicit acknowledgment message toward the host device upon determining that the encoded join request is authentic.

13. A method comprising:
 - authenticating a host device;
 - generating an authentication key for the host device; and
 - sending the authentication key to the host device and to a rendezvous point device

5

using a secure key distribution mechanism.

ALL INFORMATION CONTAINED
HEREIN IS UNCLASSIFIED
DATE 09-12-2000 BY SPACER

14. An apparatus comprising:

- authentication logic operably coupled to authenticate a host device;
- key generation logic operably coupled to generate an authentication key for the host device; and
- key distribution logic operably coupled to send the authentication key to the host device and to a rendezvous point device using a secure key distribution mechanism.

5

15. A computer readable medium having embodied therein a computer program for controlling a computer system, the computer program comprising:

authentication logic programmed to authenticate a host device;

5 key generation logic programmed to generate an authentication key for the host device; and

key distribution logic programmed to send the authentication key to the host device and to a rendezvous point device using a secure key distribution mechanism.

16. The computer readable medium of claim 15, wherein the computer readable medium is a computer storage medium.

10 17. The computer readable medium of claim 15, wherein the computer readable medium is a computer communication medium.

18. A method comprising:
 - obtaining an authentication key; and
 - sending a join request to a designated device using a predetermined multicast group management protocol, the join request including the authentication key.
- 5
19. The method of claim 18, wherein the predetermined multicast group management protocol is an extended Internet Group Management Protocol (IGMP) including means for including the authentication key in the join request.

GOORLIC 2000 00000000000000000000000000000000

20. An apparatus comprising:
receiving logic operably coupled to receive an authentication key; and
joining logic operably coupled to send a join request to a designated device using a
predetermined multicast group management protocol, the join request including the
authentication key.

5

21. The apparatus of claim 20, wherein the predetermined multicast group
management protocol is an extended Internet Group Management Protocol (IGMP)
including means for including the authentication key in the join request.

50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

22. A computer readable medium having embodied therein a computer program for controlling a computer system, the computer program comprising:

receiving logic programmed to receive an authentication key; and
group management logic programmed to send a join request to a designated device
using a predetermined multicast group management protocol, the join request including
the authentication key.

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450

26. A method comprising:

- receiving a join request from a host device;
- generating an encoded join request using an authentication key associated with the host device; and
- sending the encoded join request toward a rendezvous point device.

5

27. The method of claim 26, wherein the join request includes the authentication key.

28. The method of claim 26, further comprising:

- joining a shared tree on behalf of the host device and establishing appropriate multicast routes for forwarding multicast communication messages to the host device.

10

29. An apparatus comprising:
receiving logic operably coupled to receive a join request from a host device;
encoding logic operably coupled to generate an encoded join request using an authentication key associated with the host device; and
5 sending logic operably coupled to send the encoded join request toward a rendezvous point device.

30. The apparatus of claim 29, wherein the join request includes the authentication key.

10 31. The apparatus of claim 29, further comprising:
joining logic operably coupled to join a shared tree on behalf of the host device;
and
15 routing logic operably coupled to establish appropriate multicast routes for forwarding multicast communication messages to the host device.

32. A computer readable medium having embodied therein a computer program for controlling a computer system, the computer program comprising:

receiving logic programmed to receive a join request from a host device;
5 encoding logic programmed to generate an encoded join request using an authentication key associated with the host device; and
 sending logic programmed to send the encoded join request toward a rendezvous point device.

10 33. The computer readable medium of claim 32, wherein the join request includes the authentication key.

15 34. The computer readable medium of claim 32, further comprising:
 joining logic operably coupled to join a shared tree on behalf of the host device;
and
 routing logic operably coupled to establish appropriate multicast routes for forwarding multicast communication messages to the host device.

20 35. The computer readable medium of claim 32, wherein the computer readable medium is a computer storage medium.

36. The computer readable medium of claim 32, wherein the computer readable medium is a computer communication medium.

37. A method comprising:
receiving an encoded join request for a host device; and
forwarding the encoded join request toward a rendezvous point device.

5 38. The method of claim 37, further comprising:
joining a shared tree for the host device; and
establishing appropriate multicast routes for forwarding multicast communication messages toward the host device.

10 39. The method of claim 37, further comprising:
waiting for an explicit acknowledgment message from the rendezvous point device; and
establishing appropriate multicast routes for forwarding multicast communication messages toward the host device only upon receiving the explicit acknowledgment message from the rendezvous point device.

15

40. An apparatus comprising:
receiving logic operably coupled to receive an encoded join request for a host
device; and
forwarding logic operably coupled to forward the encoded join request toward a
rendezvous point device.

5

41. The apparatus of claim 40, further comprising:
joining logic operably coupled to join a shared tree for the host device; and
routing logic operably coupled to establish appropriate multicast routes for
forwarding multicast communication messages toward the host device.

10

42. The apparatus of claim 40, further comprising:
waiting logic operably coupled to wait for an explicit acknowledgment message
from the rendezvous point device; and
routing logic operably coupled to establish appropriate multicast routes for
forwarding multicast communication messages toward the host device only upon receiving
the explicit acknowledgment message from the rendezvous point device.

15

43. A computer readable medium having embodied therein a computer program for controlling a computer system, the computer program comprising:

receiving logic programmed to receive an encoded join request for a host device;
and

5 forwarding logic programmed to forward the encoded join request toward a rendezvous point device.

44. The computer readable medium of claim 43, further comprising:

joining logic programmed to join a shared tree for the host device; and
routing logic programmed to establish appropriate multicast routes for forwarding multicast communication messages toward the host device.

45. The computer readable medium of claim 43, further comprising:

waiting logic programmed to wait for an explicit acknowledgment message from the rendezvous point device; and

routing logic programmed to establish appropriate multicast routes for forwarding multicast communication messages toward the host device only upon receiving the explicit acknowledgment message from the rendezvous point device.

20 46. The computer readable medium of claim 43, wherein the computer readable medium is a computer storage medium.

47. The computer readable medium of claim 43, wherein the computer readable medium is a computer communication medium.

48. A method comprising:

receiving an encoded join request for a host device;

authenticating the encoded join request to determine whether or not the encoded join request is authentic; and

5 establishing appropriate multicast routes for forwarding multicast communication messages to the host device if and only if the encoded join request is determined to be authentic.

10 49. The method of claim 48, wherein authenticating the encoded join request comprises:

maintaining a number of authentication keys;

determining the host device for the encoded join request; and

searching for an authentication key associated with the host device.

15 50. The method of claim 49, wherein authenticating the encoded join request further comprises:

failing to find an authentication key associated with the host device; and

determining that the encoded join request is not authentic.

20 51. The method of claim 49, wherein authenticating the encoded join request further comprises:

finding an authentication key associated with the host device; and

authenticating the encoded join request using the authentication key associated with the host device.

25 52. The method of claim 48, further comprising:

sending an explicit acknowledgment toward the host device if and only if the encoded join request is determined to be authentic.

53. An apparatus comprising:

receiving logic operably coupled to receive an encoded join request for a host
device;

authenticating logic operably coupled to authenticate the encoded join request to
determine whether or not the encoded join request is authentic; and

routing logic operably coupled to establish appropriate multicast routes for
forwarding multicast communication messages to the host device if and only if the
encoded join request is determined to be authentic.

10 54. The apparatus of claim 53, wherein the authenticating logic is operably coupled to
maintain a number of authentication keys, determine the host device for the encoded join
request, and search for an authentication key associated with the host device.

15 55. The apparatus of claim 54, wherein the authenticating logic is operably coupled to
determine that the encoded join request is not authentic if the authenticating logic fails to
find an authentication key associated with the host device.

20 56. The apparatus of claim 54, wherein the authenticating logic is operably coupled to
authenticate the encoded join request using an authentication key associated with the host
device if the authenticating logic finds the authentication key associated with the host
device.

25 57. The apparatus of claim 53, further comprising:

acknowledgment logic operably coupled to send an explicit acknowledgment
toward the host device if and only if the encoded join request is determined to be
authentic.

58. A computer readable medium having embodied therein a computer program for controlling a computer system, the computer program comprising:

receiving logic programmed to receive an encoded join request for a host device;

authenticating logic programmed to authenticate the encoded join request to

determine whether or not the encoded join request is authentic; and

routing logic programmed to establish appropriate multicast routes for forwarding multicast communication messages to the host device if and only if the encoded join request is determined to be authentic.

10. 59. The computer readable medium of claim 58, wherein the authenticating logic is programmed to maintain a number of authentication keys, determine the host device for the encoded join request, and search for an authentication key associated with the host device.

15. 60. The computer readable medium of claim 59, wherein the authenticating logic is programmed to determine that the encoded join request is not authentic if the authenticating logic fails to find an authentication key associated with the host device.

20. 61. The computer readable medium of claim 59, wherein the authenticating logic is programmed to authenticate the encoded join request using an authentication key associated with the host device if the authenticating logic finds the authentication key associated with the host device.

25. 62. The computer readable medium of claim 58, further comprising:

acknowledgment logic programmed to send an explicit acknowledgment toward the host device if and only if the encoded join request is determined to be authentic.

30. 63. The computer readable medium of claim 58, wherein the computer readable medium is a computer storage medium.

64. The computer readable medium of claim 58, wherein the computer readable medium is a computer communication medium.

65. In a communication system having a host device, a designated device, and a rendezvous point device, a method comprising:

sending a join request by the host device to the designated device in order to join a shared tree;

5 sending an encoded join request by the designated device to the rendezvous point device;

authenticating the encoded join request by the rendezvous point device;

adding the host device to the shared tree, if the encoded join request is authentic;
and

excluding the host device from the shared tree, if the encoded join request is not
authentic.

66. A communication message embodied in a data signal, the communication message comprising a group key for a multicast group and an authentication key for a host device.

5 67. A communication message embodied in a data signal, the communication message comprising a join request including an authentication key for a host device.

68. A communication message embodied in a data signal, the communication message comprising an encoded join request including a tag field and a nonce field.

10 69. A communication message embodied in a data signal, the communication message comprising an explicit acknowledgment including a tag field and a nonce field.

10
9
8
7
6
5
4
3
2
1
FEB 2001

ABSTRACT

A system, device, and method for controlling access in a multicast communication network uses a centralized host authentication scheme to prevent unauthorized hosts from joining a shared multicast distribution tree. Each authorized host is allocated a unique authentication key, which is used by the designated router to encode the PIM join message and by the rendezvous point router to authenticate the PIM join message. If the PIM join message is authentic, then each PIM router from the rendezvous point router to the designated router establishes appropriate multicast routes to route multicast packets to the host. If the PIM join message is not authentic, then multicast packets are prevented from reaching the host.

FIG. 1 100

FIG.2 200

FIG. 3 300

FIG. 4 400

FIG. 5 500

FIG. 6

FIG. 7 700

Fig. 8 800

Fig. 9 900

FIG. 10 1000

FIG. 11 1100

Docket No.
2204/A55

Declaration and Power of Attorney For Patent Application

English Language Declaration

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

SYSTEM, DEVICE, AND METHOD FOR CONTROLLING ACCESS IN A MULTICAST COMMUNICATION NETWORK

the specification of which

(check one)

is attached hereto.

was filed on _____ as United States Application No. or PCT International

Application Number _____

and was amended on _____

(if applicable)

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose to the United States Patent and Trademark Office all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, Section 119(a)-(d) or Section 365(b) of any foreign application(s) for patent or inventor's certificate, or Section 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate or PCT International application having a filing date before that of the application on which priority is claimed.

Prior Foreign Application(s)

Priority Not Claimed

(Number)	(Country)	(Day/Month/Year Filed)	<input type="checkbox"/>
(Number)	(Country)	(Day/Month/Year Filed)	<input type="checkbox"/>
(Number)	(Country)	(Day/Month/Year Filed)	<input type="checkbox"/>

I hereby claim the benefit under 35 U.S.C. Section 119(e) of any United States provisional application(s) listed below:

60/204,218

May 15, 2000

(Application Serial No.)

(Filing Date)

(Application Serial No.)

(Filing Date)

(Application Serial No.)

(Filing Date)

I hereby claim the benefit under 35 U. S. C. Section 120 of any United States application(s), or Section 365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of 35 U.S.C. Section 112, I acknowledge the duty to disclose to the United States Patent and Trademark Office all information known to me to be material to patentability as defined in Title 37, C. F. R., Section 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of this application:

(Application Serial No.)

(Filing Date)

(Status)

(patented, pending, abandoned)

(Application Serial No.)

(Filing Date)

(Status)

(patented, pending, abandoned)

(Application Serial No.)

(Filing Date)

(Status)

(patented, pending, abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith. (*list name and registration number*)

Bruce D. Sunstein	Reg. No. 27,234	Jay Sandvos	Reg. No. 43,900
Robert M. Asher	Reg. No. 30,445	Sonia K. Guterman	Reg. No. 44,729
Timothy M. Murphy	Reg. No. 33,198	Keith J. Wood	Reg. No. 45,235
Steven G. Saunders	Reg. No. 36,265	Mary M. Steubing	Reg. No. 37,946
Harriet M. Strimpel	Reg. No. 37,008	Christopher J. Cianciolo	Reg. No. 42,417
Samuel J. Petuchowski	Reg. No. 37,910	Lindsay J. McGuinness	Reg. No. 38,549
Jeffrey T. Klayman	Reg. No. 39,250		
John J. Stickevers	Reg. No. 39,387		
Herbert A. Newborn	Reg. No. 42,031		
Elizabeth P. Morano	Reg. No. 42,904		
Jean M. Tibbetts	Reg. No. 43,193		

Send Correspondence to: **Jeffrey T. Klayman**
Bromberg & Sunstein LLP
125 Summer Street
Boston, MA 02110

Direct Telephone Calls to: (*name and telephone number*)
Jeffrey T. Klayman at (617) 443-9292

Full name of sole or first inventor Thomas P. Hardjono	Date
Sole or first inventor's signature	
Residence 430 Highland Avenue, Winchester, MA 01890	
Citizenship Australia	
Post Office Address Same as residence	

Full name of second inventor, if any	
Second inventor's signature	Date
Residence	
Citizenship	
Post Office Address	