Лабораторная работа №4

Моделирование сетей передачи данных

Еюбоглу Тимур

Содержание

1	Цель работы	6
2	Выполнение лабораторной работы	7
3	Вывод	37
4	Список литературы. Библиография	38

Список иллюстраций

2. 1	исправление прав запуска х-соединения в виртуальной машине	
	mininet	7
2.2	Создание простейшей топологии	7
2.3	Отображение информации их сетевых интерфейсов и ІР-адресов .	8
2.4	Проверка подключения между хостами h1 и h2	8
2.5	Добавление задержки в 100 мс к выходному интерфейсу на хосте h1	8
2.6	Проверка	9
2.7	Добавление задержки в 100 мс к выходному интерфейсу на хосте h2	9
2.8	Проверка	10
2.9	Изменение задержки со 100 мс до 50 мс	10
2.10	Проверка	10
2.11	Восстановление конфигураций по умолчанию	11
2.12	Добавление на узле h1 задержки в 100 мс со случайным отклонением	
	10 мс	11
2.13	Проверка	11
2.14	Восстановление конфигурации интерфейса по умолчанию	11
2.15	Проверка	12
2.16	Восстановление конфигурации интерфейса по умолчанию	12
2.17	Настройка нормального распределения задержки на узле h1 в эму-	
	лируемой сети	13
2.18	Проверка	13
2.19	Восстановление конфигурации интерфейса по умолчанию	13
2.20	Завершение работы mininet в интерактивном режиме	14
2.21	Обновление репозиториев программного обеспечения на втртуаль-	
	ной машине	14
2.22	Установка пакета geeqie	15
2.23	Создание нового каталога	15
2.24	Создание каталога simple-delay	15
2.25	Создание скрипта lab_netem_i.py для эксперимента	16
2.26	Создание файла ping_plot	16
2.27	Создание скрипта ping_plot для визуализации результатов экспери-	
	мента	17
2.28	Настройка прав доступа к файлу скрипта	17
2.29	Создание файла Makefile	17
2.30	Добавления скрипта в Makefile для управления процессом проведе-	
	ния эксперимента	18
2.31	Выполнение эксперимента	19

2.32	Просмотр графика	20
	Удаление первой строчки из файла ping.dat	21
	Повторное построение графика	22
	Просмотр графика	23
	Разработка скрипта для вычисления на основе данных файла	
	ping.dat минимального, среднего, максимального и стандартного	
	отклонения времени приёма-передачи	23
2.37	Добавление правила запуска скрипта в Makefil	24
2.38	Проверка	25
	Воспроизводимый эксперимент по изменению задержки	26
2.40	Воспроизводимый эксперимент по изменению задержки	26
2.41	Просмотр графика	27
2.42	Воспроизводимый эксперимент по изменению джиттера	28
2.43	Воспроизводимый эксперимент по изменению джиттера	29
2.44	Просмотр графика	30
	Воспроизводимый эксперимент по изменению значения корреля-	
	ции для джиттера и задержки	31
2.46	Воспроизводимый эксперимент по изменению значения корреля-	
	ции для джиттера и задержки	32
2.47	Просмотр графика	33
2.48	Воспроизводимый эксперимент по изменению распределения вре-	
	мени задержки в эмулируемой глобальной сети	34
2.49	Воспроизводимый эксперимент по изменению распределения вре-	
	мени задержки в эмулируемой глобальной сети	35
2.50	Просмотр графика	36

Список таблиц

1 Цель работы

Основной целью работы является знакомство с NETEM — инструментом для тестирования производительности приложений в виртуальной сети, а также получение навыков проведения интерактивного и воспроизводимого экспериментов по измерению задержки и её дрожания (jitter) в моделируемой сети в среде Mininet.

2 Выполнение лабораторной работы

В виртуальной машине mininet исправим права запуска X-соединения (рис. 2.1):

```
nininet@mininet-vm:~$ xauth list SDISPLAY
nininet-vm/unix:ll MIT-MAGIC-COOKIE-1 f840ebel4339lb74646a5e56af582083
nininet@mininet-vm:~$ sudo -i
root@mininet-vm:~$ xauth add mininet-vm/unix:llMIT-MAGIC-COOKIE-1 f840ebel4339l
b74646a5e56af582083
xauth: (argv):l: bad "add" command line
root@mininet-vm:~$ xauth add mininet-vm/unix:ll MIT-MAGIC-COOKIE-1 f840ebel4339
lb74646a5e56af582083
root@mininet-vm:~$ logout
nininet@mininet-vm:~$
```

Рис. 2.1: Исправление прав запуска X-соединения в виртуальной машине mininet

Зададим простейшую топологию, состоящую из двух хостов и коммутатора с назначенной по умолчанию mininet сетью 10.0.0.0/8 (рис. 2.2):

Рис. 2.2: Создание простейшей топологии

На хостах h1 и h2 введём команду ifconfig, чтобы отобразить информацию,

относящуюся к их сетевым интерфейсам и назначенным им IP-адресам. В дальнейшем при работе с NETEM и командой tc будут использоваться интерфейсы h1-eth0 и h2-eth0 (рис. 2.3):

Рис. 2.3: Отображение информации их сетевых интерфейсов и IP-адресов

Проверим подключение между хостами h1 и h2 с помощью команды ping с параметром -с 6 (рис. 2.4):

```
| Inet 127.0.0.1 netmask 255.0.0.0
| PING 10.0.0.2 | 10.0.0.2 | 56(84) bytes of data. | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 10
```

Рис. 2.4: Проверка подключения между хостами h1 и h2

На хосте h1 добавим задержку в 100 мс к выходному интерфейсу (рис. 2.5):

```
--- 10.0.0.2 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5091ms
rtt min/avg/max/mdev = 0.050/0.327/1.398/0.488 ms
root@mininet-vm:/home/mininet# sudo tc qdisc add dev h1-eth0 root netem delay 1
00ms
root@mininet-vm:/home/mininet#
```

Рис. 2.5: Добавление задержки в 100 мс к выходному интерфейсу на хосте h1

Проверим, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс, используя команду ping с параметром -с 6 с хоста h1 (рис. 2.6):

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=100 ms

64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=100 ms

64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=100 ms

64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms

65 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms

66 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms

67 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms

68 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms

69 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms

60 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms

60 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms

61 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms

62 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms

63 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms

64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms
```

Рис. 2.6: Проверка

Для эмуляции глобальной сети с двунаправленной задержкой необходимо к соответствующему интерфейсу на хосте h2 также добавить задержку в 100 миллисекунд (рис. 2.7):

Рис. 2.7: Добавление задержки в 100 мс к выходному интерфейсу на хосте h2

Проверим, что соединение между хостом h1 и хостом h2 имеет RTT в 200 мс (100 мс от хоста h1 к хосту h2 и 100 мс от хоста h2 к хосту h1), повторив команду ping с параметром -с 6 на терминале хоста h1 (рис. 2.8):

```
root@mininet-vm:/home/mininet# sudo tc qdisc add dev h2-eth0 root netem delay 1 00ms
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.1
PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.
64 bytes from 10.0.0.1: icmp_seq=1 ttl=64 time=201 ms
64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=202 ms
64 bytes from 10.0.0.1: icmp_seq=3 ttl=64 time=201 ms
64 bytes from 10.0.0.1: icmp_seq=4 ttl=64 time=202 ms
64 bytes from 10.0.0.1: icmp_seq=5 ttl=64 time=201 ms
64 bytes from 10.0.0.1: icmp_seq=5 ttl=64 time=201 ms
64 bytes from 10.0.0.1: icmp_seq=6 ttl=64 time=201 ms
65 bytes from 10.0.0.1: icmp_seq=6 ttl=64 time=201 ms
66 ctl=64 time=201 ms
67 ctl=64 time=201 ms
68 ctl=64 time=201 ms
69 ctl=64 time=201 ms
60 ctl=64 time=201 ms
61 ctl=64 time=201 ms
62 ctl=64 time=201 ms
63 ctl=64 time=201 ms
64 bytes from 10.0.0.1: icmp_seq=6 ttl=64 time=201 ms
64 bytes from 10.0.0.1: icmp_seq=6 ttl=64 time=201 ms
64 bytes from 10.0.0.1: icmp_seq=6 ttl=64 time=201 ms
```

Рис. 2.8: Проверка

Изменим задержку со 100 мс до 50 мс для отправителя h1 и для получателя h2 (рис. 2.9):

```
64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=202 ms
64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=202 ms
65 packets transmitted, 6 received, 0% packet loss, time 5000ms
66 bytes from 10.0.0.1: icmp_seq=3 ttl=64 time=202 ms
67 bytes from 10.0.0.1: icmp_seq=3 ttl=64 time=202 ms
68 bytes from 10.0.0.1: icmp_seq=5 ttl=64 time=202 ms
68 bytes from 10.0.0.1: icmp_seq=5 ttl=64 time=202 ms
69 bytes from 10.0.0.1: icmp_seq=5 ttl=64 time=202 ms
60 bytes from 10.0.0.1: icmp_seq=5 ttl=64 time=202 ms
60 bytes from 10.0.0.1: icmp_seq=5 ttl=64 time=202 ms
61 bytes from 10.0.0.1: icmp_seq=5 ttl=64 time=202 ms
62 bytes from 10.0.0.1: icmp_seq=5 ttl=64 time=202 ms
63 bytes from 10.0.0.1: icmp_seq=5 ttl=64 time=202 ms
64 bytes from 10.0.0.1: icmp_seq=5 ttl=64 time=201 ms
64 bytes from 10.0.0.1: icmp_seq=5 ttl
```

Рис. 2.9: Изменение задержки со 100 мс до 50 мс

Проверим, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс, используя команду ping с параметром -с 6 с терминала хоста h1 (рис. 2.10):

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=102 ms

64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=100 ms

64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=101 ms

--- 10.0.0.2 ping statistics ---

6 packets transmitted, 6 received, 0% packet loss, time 5010ms

rtt min/avg/max/mdev = 100.259/101.092/102.104/0.581 ms

root@mininet-vm:/home/mininet#
```

Рис. 2.10: Проверка

Восстановим конфигурацию по умолчанию, удалив все правила, применённые к сетевому планировщику соответствующего интерфейса (рис. 2.11):

```
rtt min/avg/max/mdev = 100.259/101.092/102.104/0.581 ms
root@mininet-vm:/home/mininet# sudo tc qdisc del dev h1-eth0 root netem
root@mininet-vm:/home/mininet# sudo tc qdisc del dev h1-eth0 root netem
fc bytes from 10.0.0.1: icmp_seq=4 ttl=64 time=101 ms
f4 bytes from 10.0.0.1: icmp_seq=6 ttl=64 time=100 ms

from the content of the con
```

Рис. 2.11: Восстановление конфигураций по умолчанию

Добавим на узле h1 задержку в 100 мс со случайным отклонением 10 мс (рис. 2.12):

```
6 packets transmitted, 6 received, 0% packet loss, time 5115ms rtt min/avg/max/mdev = 0.045/0.218/0.576/0.189 ms root@mininet-vm:/home/mininet# sudo tc qdisc add dev h1-eth0 root netem delay 1 θθms 10ms root@mininet-vm:/home/mininet# ½
```

Рис. 2.12: Добавление на узле h1 задержки в 100 мс со случайным отклонением 10 мс

Проверим, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс со случайным отклонением ±10 мс, используя в терминале хоста h1 команду ping с параметром -с 6 (рис. 2.13):

```
00ms 10ms
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=106 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=98.4 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=94.2 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=107 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=94.1 ms
65 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=94.1 ms
66 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=94.1 ms
67 bytes from 10.0.0.2 ping statistics
68 bytes from 10.0.0.2 ping statistics
69 packets transmitted, 6 received, 0% packet loss, time 5009ms
rtt min/avg/max/mdev = 94.073/100.060/106.534/4.989 ms
root@mininet-vm:/home/mininet#
```

Рис. 2.13: Проверка

Восстановим конфигурацию интерфейса по умолчанию на узле h1 (рис. 2.14):

```
rtt min/avg/max/mdev = 94.073/100.060/106.534/4.989 ms
root@mininet-vm:/home/mininet# sudo tc qdisc del dev hl-eth0 root netem
root@mininet-vm:/home/mininet# 

TX packets 62

TX packets 62

TX errors 0

To: flags=73<UP,LOOPBr6 p
```

Рис. 2.14: Восстановление конфигурации интерфейса по умолчанию

Добавим на интерфейсе хоста h1 задержку в 100 мс с вариацией ±10 мс и значением корреляции в 25%. Убедимся, что все пакеты, покидающие устройство h1 на интерфейсе h1- eth0, будут иметь время задержки 100 мс со случайным отклонением ±10 мс, при этом время передачи следующего пакета зависит от предыдущего значения на 25%. Используем для этого в терминале хоста h1 команду ping с параметром -с 20 (рис. 2.15):

```
* "host: h1"@mininet-vm
                                                                                64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=91.2 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=99.5 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=94.0 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=96.0 ms
64 bytes from 10.0.0.2: icmp seq=6 ttl=64 time=103 ms
64 bytes from 10.0.0.2: icmp_seq=7 ttl=64 time=100 ms
64 bytes from 10.0.0.2: icmp_seq=8 ttl=64 time=105 ms
64 bytes from 10.0.0.2: icmp_seq=9 ttl=64 time=96.8 ms
64 bytes from 10.0.0.2: icmp_seq=10 ttl=64 time=92.5 ms
64 bytes from 10.0.0.2: icmp seq=11 ttl=64 time=97.8 ms
64 bytes from 10.0.0.2: icmp_seq=12 ttl=64 time=91.0 ms
64 bytes from 10.0.0.2: icmp_seq=13 ttl=64 time=104 ms
64 bytes from 10.0.0.2: icmp_seq=14 ttl=64 time=96.7 ms
64 bytes from 10.0.0.2: icmp_seq=15 ttl=64 time=107 ms
64 bytes from 10.0.0.2: icmp_seq=16 ttl=64 time=99.4 ms
64 bytes from 10.0.0.2: icmp_seq=17 ttl=64 time=97.7 ms
64 bytes from 10.0.0.2: icmp seq=18 ttl=64 time=92.5 ms
64 bytes from 10.0.0.2: icmp_seq=19 ttl=64 time=103 ms
                                                                  Ι
64 bytes from 10.0.0.2: icmp_seq=20 ttl=64 time=104 ms
 -- 10.0.0.2 ping statistics -
20 packets transmitted, 20 received, 0% packet loss, time 19033ms rtt min/avg/max/mdev = 90.995/98.435/107.431/4.703 ms
root@mininet-vm:/home/mininet#
```

Рис. 2.15: Проверка

Восстановим конфигурацию интерфейса по умолчанию на узле h1 (рис. 2.16):

```
--- 10.0.0.2 ping statistics ---
20 packets transmitted, 20 received, 0% packet loss, time 19033ms
rtt min/avg/max/mdev = 90.995/98.435/107.431/4.703 ms
root@mininet-vm:/home/mininet# sudo tc qdisc del dev h1-eth0 root netem
root@mininet-vm:/home/mininet#

Texcrossin

TX packets 62 64
```

Рис. 2.16: Восстановление конфигурации интерфейса по умолчанию

Зададим нормальное распределение задержки на узле h1 в эмулируемой сети (рис. 2.17):

```
20 packets transmitted, 20 received, 0% packet loss, time 19033ms rtt min/avg/max/mdev = 90.995/98.435/107.431/4.703 ms root@mininet-vm:/home/mininet# sudo tc qdisc del dev hl-eth0 root netem root@mininet-vm:/home/mininet# sudo tc qdisc add dev hl-eth0 root netem delay 1 00ms 20ms distribution normal root@mininet-vm:/home/mininet#
```

Рис. 2.17: Настройка нормального распределения задержки на узле h1 в эмулируемой сети

Убедимся, что все пакеты, покидающие хост h1 на интерфейсе h1-eth0, будут иметь время задержки, которое распределено в диапазоне 100 мс ±20 мс. Используем для этого команду ping на терминале хоста h1 с параметром -с 10 (рис. 2.18):

```
root@mininet-vm:/home/mininet# sudo tc qdisc add dev h1-eth0 root netem delay 1
00ms 20ms distribution normal
root@mininet-vm:/home/mininet# ping -c 10 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=102 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=49.4 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=126 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=84.0 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=137 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=96.2 ms
64 bytes from 10.0.0.2: icmp_seq=7 ttl=64 time=90.5 ms
64 bytes from 10.0.0.2: icmp_seq=8 ttl=64 time=94.3 ms
64 bytes from 10.0.0.2: icmp_seq=9 ttl=64 time=122 ms
64 bytes from 10.0.0.2: icmp seq=10 ttl=64 time=105 ms
--- 10.0.0.2 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9014ms
rtt min/avg/max/mdev = 49.384/100.638/136.604/23.466 ms
root@mininet-vm:/home/mininet#
```

Рис. 2.18: Проверка

Восстановим конфигурацию интерфейса по умолчанию на узле h1 (рис. 2.19):

Рис. 2.19: Восстановление конфигурации интерфейса по умолчанию

Завершим работу mininet в интерактивном режиме (рис. 2.20):

Рис. 2.20: Завершение работы mininet в интерактивном режиме

Обновим репозитории программного обеспечения на виртуальной машине (рис. 2.21):

Рис. 2.21: Обновление репозиториев программного обеспечения на втртуальной машине

Установим пакет geeqie для просмотра файлов png (рис. 2.22):

```
mininet@mininet-vm: ~
                                                                        ×
 python3-talloc python3-tz python3-wadllib rtkit rygel samba-libs sane-utils
 session-migration sgml-base sgml-data switcheroo-control
 system-config-printer system-config-printer-common
 system-config-printer-udev ubuntu-docs ubuntu-session ubuntu-wallpapers
 ubuntu-wallpapers-focal update-inetd upower usb-modeswitch
 usb-modeswitch-data usbmuxd va-driver-all vdpau-driver-all
 whoopsie-preferences wpasupplicant xdg-dbus-proxy xfonts-base
 xfonts-encodings xfonts-utils xml-core xserver-common xserver-xephyr
 xserver-xorg xserver-xorg-core xserver-xorg-input-all
 xserver-xorg-input-libinput xserver-xorg-input-wacom xserver-xorg-legacy
 xserver-xorg-video-all xserver-xorg-video-amdgpu xserver-xorg-video-ati
 xserver-xorg-video-fbdev xserver-xorg-video-intel xserver-xorg-video-nouveau
 xserver-xorg-video-qxl xserver-xorg-video-radeon xserver-xorg-video-vesa
 xserver-xorg-video-vmware xwayland yaru-theme-gnome-shell yelp yelp-xsl
 zenity zenity-common
he following packages will be upgraded:
 dbus language-selector-common libcups2 libdbus-1-3 libdrm-amdgpul libegll
 libgll libglib2.0-0 libglvnd0 libglx0 libgstreamer-plugins-basel.0-0
 libgstreamerl.0-0 libpll-kit0 libpolkit-gobject-1-0 libpulse0 libtdbl
 libwebpmux3
7 upgraded, 410 newly installed, 0 to remove and 377 not upgraded.
Need to get 181 MB of archives.
after this operation, 744 MB of additional disk space will be used.
o you want to continue? [Y/n]
```

Рис. 2.22: Установка пакета geeqie

Для каждого воспроизводимого эксперимента expname создадим свой каталог, в котором будут размещаться файлы эксперимента (рис. 2.23):

```
Processing triggers for rygel (0.38.3-lubuntul) ...

Processing triggers for sgml-base (1.29.1) ... [
mininet@mininet-vm:~$ mkdir -p ~/work/lab_netem_i/expname
mininet@mininet-vm:~$
```

Рис. 2.23: Создание нового каталога

В виртуальной среде mininet в своём рабочем каталоге с проектами создадим каталог simple-delay и перейдём в него (рис. 2.24):

```
mininet@mininet-vm:~$ mkdir -p ~/work/lab_netem_i/simple-delay
mininet@mininet-vm:~$ cd ~/work/lab_netem_i/simple-delay
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ ls
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ touch lab_netem_i.py
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ ls
lab_netem_i.py
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$
```

Рис. 2.24: Создание каталога simple-delay

Создадим скрипт для эксперимента lab_netem_i.py (рис. 2.25):

```
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay
                                                                             X
 GNU nano 4.8
                                                                          Modified
                                     lab netem i.py
    info( '*** Starting network\n')
   net.start()
   info( '*** Set delay\n')
   hl.cmdPrint( 'tc qdisc add dev hl-eth0 root netem delay 100ms' )
   h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 100ms' )
   time.sleep(10) # Wait 10 seconds
   info( '*** Ping\n')
   hl.cmdPrint( 'ping -c 100', h2.IP(), '| grep "time=" | awk \'{print $5, $7}
   info( '*** Stopping network' )
   net.stop()
if name == ' main ':
    __name_____________
setLogLevel(\(\(\gamma\)'info'\)
   emptyNet()
File Name to Write: lab netem i.py
                     M-D DOS Format
                                          M-A Append
^G Get Help
                                                                M-B Backup File
                                          M-P Prepend
                         Mac Format
```

Рис. 2.25: Создание скрипта lab_netem_i.py для эксперимента

Создадим файл ping_plot (рис. 2.26):

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ nano lab_netem_i.py
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ touch ping_plot
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ ls
lab_netem_i.py ping_plot
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ nano lab_nete
```

Рис. 2.26: Создание файла ping plot

Затем создадим скрипт для визуализации ping_plot результатов эксперимента (рис. 2.27):

Puc. 2.27: Создание скрипта ping_plot для визуализации результатов эксперимента

Зададим права доступа к файлу скрипта (рис. 2.28):

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ chmod +x ping_plot
```

Рис. 2.28: Настройка прав доступа к файлу скрипта

Создадим файла Makefile (рис. 2.29):

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ touch Makefile
```

Рис. 2.29: Создание файла Makefile

Внутри файла Makefile поместим скрипт для управления процессом проведения эксперимента (рис. 2.30):

Рис. 2.30: Добавления скрипта в Makefile для управления процессом проведения эксперимента

Выполним эксперимент (рис. 2.31):

```
- D X
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay
*** Starting 1 switches
sl ...
*** Waiting for switches to connect
*** Set delay
*** hl : ('tc qdisc add dev hl-eth0 root netem delay 100ms',)
*** h2 : ('tc qdisc add dev h2-eth0 root netem delay 100ms',)
*** hl : ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\' |
sed -e \'s/time=//g\' -e \'s/icmp_seq=//g\' > ping.dat')
*** Stopping network*** Stopping 1 controllers
*** Stopping 2 links
*** Stopping 1 switches
sl
*** Stopping 2 hosts
hl h2
*** Done
sudo chown mininet:mininet ping.dat
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$
mininet@mininet-vm:~/work/lab netem i/simple-delay$
```

Рис. 2.31: Выполнение эксперимента

Просмотрим построенный в результате выполнения скриптов график (рис. 2.32):

Рис. 2.32: Просмотр графика

Из файла ping.dat удалим первую строку и заново построим график (рис. 2.33 - рис. 2.34):

Рис. 2.33: Удаление первой строчки из файла ping.dat

Рис. 2.34: Повторное построение графика

Просмотрим заново построенный график (рис. 2.35):

Рис. 2.35: Просмотр графика

Разработаем скрипт для вычисления на основе данных файла ping.dat минимального, среднего, максимального и стандартного отклонения времени приёмапередачи. Также добавим правило запуска скрипта в Makefile (рис. 2.36 - рис. 2.38):

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ make ping.png
./ping_plot
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$
```

Рис. 2.36: Разработка скрипта для вычисления на основе данных файла ping.dat минимального, среднего, максимального и стандартного отклонения времени приёма-передачи

Рис. 2.37: Добавление правила запуска скрипта в Makefil

```
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay
                                                                                X
                                                                       Modified
 GNU nano 4.8
                                        rtt.py
import numpy as np
def calc stat(data):
    times = np.array([float(line.split()[1]) for line in data])
   min time = np.min(times)
   avg time = np.mean(times)
   max time = np.max(times)
    std dev = np.std(times)
    return min time, avg time, max time, std dev
def read file():
   with open('ping.dat', 'r') as file:
       data = file.readlines()
   min time, avg time, max time, std dev = calc stat(data)
   print(f"Min time: {min time} ms")
   print(f"Avg time: {avg time} ms")
    print(f"Max time: {max time} ms")
   print(f"Std dev: {std dev} ms")
if name == " main ":
    read file()
File Name to Write: rtt.py
  Get Help
                    M-D DOS Format
                                         M-A Append
                                                             M-B Backup File
                        Mac Format
                                            Prepend
```

Рис. 2.38: Проверка

Очистим каталог от результатов проведения экспериментов.

Самостоятельно реализуем воспроизводимые эксперименты по изменению задержки, джиттера, значения корреляции для джиттера и задержки, распределения времени задержки в эмулируемой глобальной сети. Построим графики. Вычислим минимальное, среднее, максимальное и стандартное отклонение времени приёма-передачи для каждого случая (рис. 2.39 - рис. 2.50):

Рис. 2.39: Воспроизводимый эксперимент по изменению задержки

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ make stats

python rtt.py

Min time: 200.0 ms

Avg time: 200.878787878788 ms

Max time: 202.0 ms

Std dev: 0.6239775843022425 ms

mininet@mininet-vm:~/work/lab_netem_i/simple-delay$
```

Рис. 2.40: Воспроизводимый эксперимент по изменению задержки

Рис. 2.41: Просмотр графика

```
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay
 GNU nano 4.8
                                    lab netem i.py
                                                                         Modified
   net.addController( 'c0' )
    info( '*** Adding hosts\n' )
   h1 = net.addHost( 'h1', ip='10.0.0.1' )
h2 = net.addHost( 'h2', ip='10.0.0.2' )
   info( '*** Adding switch\n' )
   sl = net.addSwitch( 'sl' )
   info( '*** Creating links\n')
   net.addLink( hl, sl )
   net.addLink( h2, s1 )
   info( '*** Starting network\n')
   net.start()
   info( '*** Set delay\n')
   hl.cmdPrint( 'tc qdisc add dev hl-eth0 root netem delay 50ms')
    h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 50ms' )
    time.sleep(10) # Wait 10 seconds
   info( '*** Ping\n')
   hl.cmdPrint( 'ping -c 100', h2.IP(), '| grep "time=" | awk \'{print $5, $7}
   info( '*** Stopping network' )
   net.stop()
if name == ' main ':
Get Help O Write Out W Where Is K Cut Text Justify
                                                                    ^C Cur Pos
                Read File
                           ^\ Replace
                                        ^U Paste Text^T To Spell
```

Рис. 2.42: Воспроизводимый эксперимент по изменению джиттера

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ make
sudo python lab_netem_i.py
*** Adding controller
*** Adding hosts
*** Adding switch
*** Creating links
*** Starting network
*** Configuring hosts
hl h2
*** Starting controller
C0
*** Starting 1 switches
*** Waiting for switches to connect
*** Set delay
*** hl : ('tc qdisc add dev hl-eth0 root netem delay 50ms',)
*** h2 : ('tc qdisc add dev h2-eth0 root netem delay 50ms',)
*** Ping
*** hl : ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\' |
sed -e \'s/time=//g\' -e \'s/icmp seq=//g\' > ping.dat')
*** Stopping network*** Stopping 1 controllers
*** Stopping 2 links
*** Stopping 1 switches
sl
*** Stopping 2 hosts
hl h2
*** Done
sudo chown mininet:mininet ping.dat
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ make stats
python rtt.py
Min time: 100.0 ms
Avg time: 101.82 ms
Max time: 203.0 ms
Std dev: 10.181728733373324 ms
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$
```

Рис. 2.43: Воспроизводимый эксперимент по изменению джиттера

Рис. 2.44: Просмотр графика

Рис. 2.45: Воспроизводимый эксперимент по изменению значения корреляции для джиттера и задержки

Рис. 2.46: Воспроизводимый эксперимент по изменению значения корреляции для джиттера и задержки

Рис. 2.47: Просмотр графика

```
mininet@mininet-vm:~/work/lab netem i/simple-delay$ make clean
rm -f *.dat *.png
mininet@mininet-vm:~/work/lab netem i/simple-delay$ make
sudo python lab netem_i.py
*** Adding controller
*** Adding hosts
*** Adding switch
*** Creating links
*** Starting network
*** Configuring hosts
hl h2
*** Starting controller
c0
*** Starting 1 switches
sl ...
*** Waiting for switches to connect
*** Set delay
*** hl : ('tc qdisc add dev hl-eth0 root netem delay 100ms 10ms',)
*** h2 : ('tc qdisc add dev h2-eth0 root netem delay 100ms',)
*** Ping
*** hl : ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\' |
sed -e \'s/time=//g\' -e \'s/icmp_seq=//g\' > ping.dat')
*** Stopping network*** Stopping 1 controllers
co
*** Stopping 2 links
*** Stopping 1 switches
*** Stopping 2 hosts
hl h2
*** Done
sudo chown mininet:mininet ping.dat
./ping plot
mininet@mininet-vm:~/work/lab netem i/simple-delay$
```

Рис. 2.48: Воспроизводимый эксперимент по изменению распределения времени задержки в эмулируемой глобальной сети

Рис. 2.49: Воспроизводимый эксперимент по изменению распределения времени задержки в эмулируемой глобальной сети

Рис. 2.50: Просмотр графика

3 Вывод

В ходе выполнения лабораторной работы познакомились с NETEM — инструментом для тестирования производительности приложений в виртуальной сети, а также получили навыки проведения интерактивного и воспроизводимого экспериментов по измерению задержки и её дрожания (jitter) в моделируемой сети в среде Mininet.

4 Список литературы. Библиография

[1] Mininet: https://mininet.org/