

Politecnico di Milano Fisica Sperimentale 1

a.a. 2009-2010 - Facoltà dei Sistemi - Ind. Fisica-Matematica

I prova in itinere - 27/04/2010

Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori numerici solo alla fine, dopo aver ricavato le espressioni letterali. Scrivere in stampatello nome, cognome, matricola e firmare ogni foglio.

Al Game City di Bollate hanno installato un nuovo flipper, per il quale il lancio della pallina di gioco di massa m è costituito da una molla inclinata di un angolo α rispetto all'orizzontale, la cui bocca di lancio sbuca dal piano del flipper. La molla viene compressa di Δx per permettere il lancio della pallina, ed il flipper fa guadagnare punti se con il lancio si riesce a mandare la pallina di gioco direttamente in una buca, posta a distanza d dalla bocca di lancio. Determinare:

- a) la velocità di lancio della pallina all'uscita della bocca di lancio in funzione della compressione Δx della molla;
- b) la compressione iniziale Δx da dare alla molla perché si riesca a mandare in buca con un colpo la pallina.

[
$$m = 50 \text{ g}; k = 150 \text{ N/m}; d = 80 \text{ cm}; \alpha = 30^{\circ}$$
]
[$v = \sqrt{\frac{k}{m} \Delta x^2 - 2g\Delta x \sin \alpha}; v = \sqrt{\frac{dg}{\sin(2\alpha)}} = 3.01 \text{ m/s}; \Delta x = 5.66 \text{ cm}$]

2. Si enunci la seconda legge della dinamica del punto materiale e se ne discuta il significato fisico.

Si consideri il seguente caso pratico: due blocchi di massa m_1 e m_2 sono posti a contatto tra loro su un piano orizzontale scabro (coefficiente di attrito dinamico μ_d) che li sostiene. Si applichi per un intervallo di tempo t una forza orizzontale F costante come in figura.

- Si determini la forza di contatto che il corpo I esercita sul corpo 2 durante la spinta ed al termine di essa.
- Si discuta se e come cambia la forza di contatto tra i corpi 1 e 2 applicando la forza F alla massa m₂ in verso opposto rispetto a quello indicato in figura.

[N = F
$$\frac{m_2}{m_1 + m_2}$$
; al termine N = 0; N = F $\frac{m_1}{m_1 + m_2}$]

3. Una autovettura sta percorrendo a velocità costante nota v una curva di raggio R inclinata α rispetto all'orizzontale; all'interno dell'autovettura un piccolo pendaglio avente massa m è appeso allo specchietto retrovisore, ed il conducente osserva che durante il moto il filo elastico (di lunghezza a riposo trascurabile e con costante elastica k) del pendaglio risulta inclinato di β rispetto alla verticale dell'auto. Determinare:

- il raggio della traiettoria del pendaglio in funzione di R, α , β e dell'allungamento Δx del filo elastico;
- l'allungamento Δx del filo elastico;
- la velocità v dell'auto.

$$[R = 30\text{m}; m = 30\text{ g}; k = 17\text{ N/m}; \alpha = 20^\circ; \beta = 60^\circ]$$

$$[r = R + \Delta x \cdot \sin(\alpha + \beta); \Delta x = \frac{mg}{k \cdot \cos(\alpha + \beta)} = 9.98 \text{ cm}; v = \sqrt{\frac{k\Delta x}{m} \cdot \sin(\alpha + \beta)[R + \Delta x \cdot \sin(\alpha + \beta)]} = 147 \text{ km/h}]$$

- **4.** Un corpo è in moto su un piano inclinato scabro. Il grafico mostra i dati della velocità del corpo sull'asse *x* in funzione del tempo. A partire da tali dati, si calcoli:
 - a) lo spazio percorso dal corpo dall'istante iniziale (t = 0) all'istante in cui inverte il proprio moto;
 - b) la pendenza del piano e il coefficiente di attrito dinamico μ_d tra corpo e piano.

$$[x = \frac{1}{2} \frac{{v_0}^2}{a_s} = 1 \text{ m}; \sin\theta = \frac{a_d - a_s}{2g}; \theta = 30.6^\circ;$$

$$\mu_d = \frac{\frac{-a_s}{g} - \sin\theta}{\cos\theta} = 0.355]$$

