Assignment 6

Name: Rohit Chaudhary

Student ID Number: 112687906

Name: Prayag Goyal

Student ID Number: 112961923

Name: Nikhil Mangla

Student ID Number: 112820741

Name: Nikhil Mangla

Student ID Number: 112820741

Name: Abhay Goyal

Student ID Number: 112551276

Name: Sabrina Margetic

Student ID Number: 109898930

10	Date/ Page No.:		
3 9	Price for 0 - Normal (a, b2)		
(a)	Posterior => f (0/(x, x, 3) = f((x, x, x, 3/0). f(0)) f((x, x, x, 3))		
2	$\begin{array}{c} \overrightarrow{X} = \begin{cases} X_1, X_2, \dots, X_n \end{cases} \end{array}$		
	$f(0 \vec{x}) = f(\vec{x} 0) \cdot f(0)$ $\downarrow (\vec{x}) \cdot f(0)$ $\downarrow (\vec{x}) \cdot f(0)$ $\downarrow (\vec{x}) \cdot f(0)$		
	f(Olx) \(x \) f(x \) \(\lambda \) f(\(\rangle \) \(\lambda \) f(\(\rangle \) \(\rangle \) f(\(\rangle \) f(\(\rangle \) \(\rangle \) f(\(\rang		
	Likelihood $f(x 0) = \pi f(x;0) = \pi 1 = \frac{1}{1 - (x;0)^2}$ $\int_{i=1}^{\infty} f(x;0) = \pi 1 = \frac{1}{1 - (x;0)^2}$ $\int_{i=1}^{\infty} f(x;0) = \pi 1 = \frac{1}{1 - (x;0)^2}$ $\int_{i=1}^{\infty} f(x;0) = \pi 1 = \frac{1}{1 - (x;0)^2}$ $\int_{i=1}^{\infty} f(x;0) = \pi 1 = \frac{1}{1 - (x;0)^2}$ $\int_{i=1}^{\infty} f(x;0) = \pi 1 = \frac{1}{1 - (x;0)^2}$ $\int_{i=1}^{\infty} f(x;0) = \pi 1 = \frac{1}{1 - (x;0)^2}$ $\int_{i=1}^{\infty} f(x;0) = \pi 1 = \frac{1}{1 - (x;0)^2}$ $\int_{i=1}^{\infty} f(x;0) = \pi 1 = \frac{1}{1 - (x;0)^2}$ $\int_{i=1}^{\infty} f(x;0) = \pi 1 = \frac{1}{1 - (x;0)^2}$ $\int_{i=1}^{\infty} f(x;0) = \pi 1 = \frac{1}{1 - (x;0)^2}$ $\int_{i=1}^{\infty} f(x;0) = \pi 1 = \frac{1}{1 - (x;0)^2}$ $\int_{i=1}^{\infty} f(x;0) = \pi 1 = \frac{1}{1 - (x;0)^2}$ $\int_{i=1}^{\infty} f(x;0) = \pi 1 = \frac{1}{1 - (x;0)^2}$		
$-\frac{N}{E}(x;-0)^{2}$ $= C \cdot e^{-\frac{N}{E}(x;-0)^{2}}$			
3 F	$\frac{1}{2} \frac{1}{1} \frac{1}$		
$\frac{2}{10}(x_1-x_2)^2 - (x_2-x_2)^2$ $\frac{1}{10}(x_1-x_2)^2 - (x_2-x_2)^2$			
	We will just evaluate power of e and compare it with Normal distribution to get usefor?		
	"Failure comes only when we forget our ideals and objectives and principles." – Jawahartal Nehru		
Chitrá.			

2	Date
2	$\frac{-(b^2+1)^2(0^2-20(b^2x+1e^2a)+b^2x^2+1e^2a^2)}{b^2+1e^2}+\frac{b^2x^2+1e^2a^2}{(b^2+1e^2)}+\frac{b^2x^2+1e^2a^2}{(b^2+1e^2)}$
	$-\left(0^{2}-20\left(b^{2}\pi+40^{2}a\right)+b^{2}\pi^{2}+40^{2}a^{2}\right)$ $-\left(0^{2}-20\left(b^{2}\pi+40^{2}a\right)+b^{2}\pi^{2}+40^{2}a^{2}\right)$
3	b2+de2
	Multiplying and divide by $(b^2 e s e^2)(b^2 \bar{x} + s e^2 a)^2$ and ignoring the constants use get - $(0 - \frac{b^2 \bar{x} + s e^2 a}{b^2 + s e^2})^2$ $x \in \frac{b^2 \bar{b}^2}{b^2 + s e^2}$
	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
3	as $x = \frac{b^2 \pi + b^2 a}{b^2 + b^2}$ $y = \frac{b^2 + b^2}{b^2 + b^2}$
3	$f(0 \overline{x}) = Non (n, y^2).$
(b.)	As posterior followers Nor (2, y2)
3	Converting it to Handard Normal Z(0,1): 0-x
	1-x
???	-×/2 ×/2
3	1-x posterior interval will be (-Zx/2, Zx/2)
~	Ao, for o it will be (x-y. Za/2, x+yZx/2)
•	the state of the s
	"Failure comes only when we forget our ideals and objectives and principles." —Jawaharial Nehru
S Gitrá	

Assignment 6 Question 2 Part A:

- 1-Initial distribution is Normal(0,1). Now variance is given in question for both parts.
- 2-By using the formula in question 1 part a, we can find out the new mean and variance. We have calculated expected mean and se square for each set of 100 observations to find out new mean and variance of posterior.
- 3-These new values are now considered as prior for the next step to calculate posterior.

```
import math
import argparse
import statistics
import numpy as np
import pandas as pd
with open("q2_sigma3.dat", "r") as myfile:
   priorMean=0
     priorVariance=1
     newMean=0
     newVariance=0
givenSigmaSquare=9
     n=100
     seSquare=givenSigmaSquare/n
     for line in myfile:
          total=0
          expectedMean=0
         currentline = line.split(",")
for value in currentline:
   total+=float(value)
          expectedMean=total/n
          newMean=(priorVariance*expectedMean+seSquare*priorMean)/(priorVariance+se
          newVariance=(priorVariance*seSquare)/(priorVariance+seSquare)
          print("New mean: ", newMean, " New Variance: ", newVariance)
          priorMean=newMean
```

Table with estimates of the mean and variance of the posterior for all 5 steps:

Mean	Variance
4.590762414332327	0.08256880733944953
4.813523613446215	0.0430622009569378
4.921256878168492	0.02912621359223301
4.97283741207765	0.022004889975550123
4.983966097849453	0.01768172888015717

X-axis: value of observation x

Y-axis: probability value

Distribution after 1st row: blue

Distribution after 2nd row: orange

Distribution after 3rd row: green

Distribution after 4th row: red

Distribution after 5th row: purple

Observation:

We can see that when standard deviation is low, the distribution is less confident of the mean value and the posterior interval (Theta) is updated quite substantially with each step, resulting in a converging mean and hence the distribution becomes more confident of it's mean with ever more decreasing variance.

Assignment 6 Question 2 Part B:

```
import math
import argparse
import statistics
import numpy as np
import pandas as pd
import csv
with open("q2_sigma100.dat", "r") as myfile:
    priorMean=0
    priorVariance=1
    newMean=0
    newVariance=0
    givenSigmaSquare=10000
    seSquare=givenSigmaSquare/n
    for line in myfile:
         total=0
         expectedMean=0
        currentline = line.split(",")
for value in currentline:
   total+=float(value)
         expectedMean=total/n
         newMean=(priorVariance*expectedMean+seSquare*priorMean)/(priorVariance+seSquare)
         newVariance=(priorVariance*seSquare)/(priorVariance+seSquare)
         print("New mean: ", newMean, " New Variance: ", newVariance)
         priorMean=newMean
         priorVariance=newVariance
         print("\n")
```

Table with estimates of the mean and variance of the posterior for all 5 steps:

Mean	Variance
0.058716241479823114	0.990099009901
0.09500866961681816	0.9803921568627452
0.13822626152242073	0.970873786407767
0.17121883350740297	0.9615384615384617
0.2189182449674514	0.9523809523809524

X-axis: value of observation x

Y-axis: probability value

Distribution after 1st row: blue

Distribution after 2nd row: orange

Distribution after 3rd row: green

Distribution after 4th row: red

Distribution after 5th row: purple

Observation:

We can see that when variance is high, as compared to part a, with each progressing step, the distribution just moves slightly towards right (mean increases slightly every step with uniform amount) but there is no major sign of converging the mean and posterior confidence interval more or less remains the same.

Assignment 6 Question 2 Part C:

Conclusion:

In part a variance is low and the mean is converging to actual value and distribution is gaining confidence of true mean, but in part b variance is high and mean does not converge. Therefore, Bayesian inference works well for low variance and gets more confident (posterior interval decreases in such a case) of its mean with every step, whereas if the variance is high, the mean does not converge and posterior interval remains constant.

(9) a) Simple Linear Regression,
$$Y = \beta_0 + \beta_1 \times + \beta_1$$
 where $\mathcal{E}[\mathcal{E}_1] = 0$

Show, $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$

$$\hat{\beta}_1 = \frac{\bar{X}_1}{N_1} (X_1 - \bar{X}_1) (Y_1 - \bar{Y}_1) \quad \text{where } \bar{X}_1 = \frac{Z}{N_1} (X_1 - \bar{X}_1)^{\frac{1}{N_1}}$$

Sum of Squared Errors (S) = $\frac{Z}{N_1} (\hat{\beta}_1)^{\frac{1}{N_1}} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1))^{\frac{1}{N_1}}$

We need to minimize S

$$\frac{1}{N_1} = \frac{Z}{N_1} \frac{1}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1))^{\frac{1}{N_1}} = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1)) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1)) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1)) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1)) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1)) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1)) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1)) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1)) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1)) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1)) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1)) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1)) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1)) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1)) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1) = 0$$

$$\frac{1}{N_1} = \frac{Z}{N_1} (Y_1 - (\hat{\beta}_0 + \hat{\beta}_1 \times \hat{X}_1) = 0$$

$$\frac{1}{N_1} = \frac{Z}{$$

$$\frac{\partial S}{\partial \beta_{i}} = \frac{\tilde{\xi}}{i=1} 2 \left(Y_{i} - (\hat{R}_{0} + \hat{\beta}_{i} X_{i}) \right) (-X_{i}) = 0$$

$$\Rightarrow \quad \xi \times_{i} Y_{i} = \hat{\beta}_{0} \times X_{i} + \hat{\beta}_{i} \times X_{i}^{2}$$

$$= \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1$$

(93) b) Show that above estimators are unbiased

$$E[\hat{F}_{i}] = \hat{F}_{i} \quad \text{for unbiased}$$

$$E[\hat{F}_{i}] = E\left[\frac{\sum (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum (X_{i} - \bar{X})^{2}}\right] = E\left[\frac{\sum (X_{i} - \bar{X})Y_{i}}{\sum (X_{i} - \bar{X})^{2}}\right]$$

$$= \frac{E[\hat{F}_{i}]}{\sum (X_{i} - \bar{X})^{2}} = \frac{E[\hat{X}_{i}] \times [\hat{X}_{i}]}{\sum (X_{i} - \bar{X})^{2}}$$

$$= \frac{E[\hat{F}_{i}]}{\sum (X_{i} - \bar{X})^{2}} = \frac{E[\hat{X}_{i}] \times [\hat{X}_{i}]}{\sum (X_{i} - \bar{X})^{2}}$$

$$= \frac{E[\hat{F}_{i}]}{\sum (X_{i} - \bar{X})^{2}} = \frac{E[\hat{F}_{i}] \times [\hat{X}_{i}]}{\sum (X_{i} - \bar{X})^{2}} = \frac{E[\hat{F}_{i}]}{\sum (X_{i} - \bar{X})^{2}}$$

$$= \frac{E[\hat{F}_{i}]}{\sum (X_{i} - \bar{X})^{2}} + \frac{E[\hat{F}_{i}] \times [\hat{X}_{i}]}{\sum (X_{i} - \bar{X})^{2}} = \frac{E[\hat{F}_{i}]}{\sum (X_{i} - \bar{X})^{2}}$$

$$= \frac{E[\hat{F}_{i}]}{\sum (X_{i} - \bar{X})^{2}} = \frac{E[$$

E[E]20

Question 4:

Sum of Squares for the first partition is: 28176831.90115946 Sum of Squares for the second partition is: 10656145.20472363 Sum of Squares for the third partition is: 43197449.811269216 Sum of Squares for the fourth partition is: 10948958.73407211

```
Q5.
We know that,
    tw (w/H0) = N (w; -4,02) and
    tw(w(H1) = N. (co, 11,02).
 Also, as given
     C= { 0 if P(H=0|W) > P(H=1|W)
 Now, for choosing condition, we need to compare Pr(Holw) and Pr(H, Iw)
  Pr(Holw) = Pr(WIH=0). Pr(H=0)
           = Pr(w|H=0). p.
           = fr ( 2w, -- wny | H=0). p.
           = in pr (wilH=0) p. -(1)
 Now, for Pr (H, 1w)
  Pr(H, |w) = Pr (w|H=1) Pr(H=1)
            = Pr (w| H=1). (1-p)
           = # Pr(wil H=01) (-p) -(2)
```

Company D&D 17 Pr (wi | H=0). P = 7 Pr (wi | H=1) (1-p) $P = \frac{1}{121} = \frac{1}{\sqrt{5271}} = \frac{1}{\sqrt{5271}$ P. T. e 1/202 (2/10) > (1-p) = 202 (-2/10) p. e 202 (4 2wi) > (1-p) e 202 (-42wi) e-2/2 (MZWi) > 1-9

```
(b)
import pandas as pd
import numpy as np
data = pd.read_csv('q5.csv')
prior = [0.1, 0.3, 0.5, 0.8]
for prior_val in prior:
  print("For P(Ho) = ",prior_val," the hypotheses selected are::", end = " ")
  for cols in data:
     sum_w = np.sum(data[cols].values)
     log_val = np.log(prior_val/(1 - prior_val))
     if sum_w < log_val:
       res = 0
     else:
       res = 1
     print(res, end = " ")
  print(" ")
```

AEP = Pr(C=0|H=i) Pr(H=1) +Pr(C=1)H=0)Pr(H=0) (C) According to 95, Now, we know from (a) that for c=0, the condition that needs to be Zwi = 2 lu (P) or satisfied is Pr(Zwi 5 52 ln(P1-P) | H=1) Pr(H=1) + Pr(2101 > 02 ln(1/1-p) | H=0) Pr(H=0) We lute that. Po(H=) = 1-p, Pr(H=0)=p. thus, Pr (212) = 02 ln (Pp) | H=1). (i-p) + Pr(26) \$ > 02 ln(P) | H=0) P.

Now, the condition given to us fw: (wil+=0) v N (w; 3-4, 02) .- 0 Each cample is conditionally independent $W = \frac{2\omega_i}{10}$ So, O becomes fū (ū | H=0) ν N (ū; -ν, στη) and to (01 47) n N (0) U, 5/h) from the previous condition, we can pay that (H = 1) Pr (\(\frac{\xeta wi}{n} \) \(\frac{\xeta^2 \ln (\xeta - p) | H=1)}{2\pi \ln \(\frac{\xeta}{n} \) >> Pr (\overline -4 = \frac{6^2}{2411} ln (\frac{p}{1-p})