VE216 Lecture 15

Fourier Series

Fourier Series

- ullet analysis equation: $a_k=rac{1}{T}\int_T x(t)e^{-j\omega_0kt}dt=rac{1}{T}\int_T x(t)e^{-jrac{2\pi}{T}kt}dt$
- synthesis equation: $x(t) = x(t+T) = \sum_{k=-\infty}^{\infty} a_k e^{j\omega_0 kt}$

Orthogonal Decompositions

Integrate over period $oldsymbol{T}$, then we **sift** out the $oldsymbol{k}^{th}$ Fourier series component.

The sifting is a inner product:

$$a_k=e^{jrac{2\pi}{T}kt}\cdot x(t)=rac{1}{T}\int_T x(t)e^{-jrac{2\pi}{T}kt}dt$$
 , or so to say $a(t)\cdot b(t)=rac{1}{T}\int_T a^*(t)b(t)dt$.

Then we see the inner product of k^{th} and m^{th} equal to 1 iff k=m.

Filtering

It is trivial that we get the following input and output of a LTI system:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jrac{2\pi}{T}kt}
ightarrow y(t) = \sum_{k=-\infty}^{\infty} a_k H(jrac{2\pi}{T}k) e^{jrac{2\pi}{T}kt}$$

Low-Pass Filtering

Then we can see if the $\omega = k\omega_0$ under different frequency.

