Department of Electronic and Telecommunication Engineering University of Moratuwa

EN3030 - Circuits and Systems Design

Instruction Set Architecture (ISA)

W.M.T.D Wijesundara	170714H
S.I Jayalath	170253R
A.P.R.C Abeydeera	170004G
O.W.H.P Opatha	170416V

A custom CPU is to be designed for a matrix multiplication. The following specifications of the CPU have been given to you.

- CPU process 16-bit Data.
- The CPU can access 64k words of memory, each word being 16-bits wide.
- The CPU does this by outputting a 16- bit address on its output pins A[15...] and reading in the 16-bit value from memory on its inputs D[15...]
- The CPU contains an 16-bit address register(AR), an 16-bit accumulator(AC), 5-bit instruction register, 16-bit data register(DR),16-bit general purpose registers (RA,RB,RC,R1,R2,R3) and an 1-bit zero flag (Z)
- Note that T is a 16-bit value stored in the location immediately following that instruction.

Instruction	Instruction Code	Operation
NOP	00000XXXXXXXXXXX	No operation
LDAC	00001XXXXXXXXXXX T	AC ← M[T]
LDACRA	00010XXXXXXXXXXX	AC ← M[RA]
LDACRB	00011XXXXXXXXXXX	AC ← M[RB]
LDACRC	00100XXXXXXXXXXX	AC ← M[RC]
LDRA	00101XXXXXXXXXX T	RA ← M[T]
LDRB	00110XXXXXXXXXX T	RB ← M[T]
LDRC	00111XXXXXXXXXXX T	RC ← M[T]
STAC	01000XXXXXXXXXXX	M[T] ← AC
STACRA	01001XXXXXXXXXXX	M[RA] ← AC
STACRB	01010XXXXXXXXXXX	M[RB] ← AC
STACRC	01011XXXXXXXXXXX	M[RC] ← AC
MVACR1	01100XXXXXXXXXXX	R1 ← AC
MVACR2	01101XXXXXXXXXXX	R2 ← AC
MVACR3	01110XXXXXXXXXXX	R3 ← AC
JPNZ	01111XXXXXXXXXXX	IF Z=0, then go to T
ADDR3	10000XXXXXXXXXXX	AC \leftarrow AC+R3, IF (AC+R3=0) THEN Z \leftarrow 1 ELSE Z \leftarrow 0
SUB1	10001XXXXXXXXXXX	AC \leftarrow R1-AC, IF (R1-AC=0) THEN Z \leftarrow 1 ELSE Z \leftarrow 0
SUB2	10010XXXXXXXXXXX	AC \leftarrow R2-AC, IF (R2-AC=0) THEN Z \leftarrow 1 ELSE Z \leftarrow 0
INAC	10011XXXXXXXXXXX	AC ← AC+1
INCRA	10100XXXXXXXXXXX	RA ← RA+1
INCRB	10101XXXXXXXXXXX	RB ← RB+1
INCRC	10110XXXXXXXXXXX	RC ← RC+1
CLAC	10111XXXXXXXXXXX	AC ← 0
MULT3	11000XXXXXXXXXXX	AC ← AC*R3