Part-1

Theta 1 function?- 0, = (-9 sin 0, - m Lz sin (0, -02) 0, - 7, Lz cos (0,-02)			
Ao	19, = U(1) 19, = U(1) 11, = U(3)	レ, レン= ロ(ロ) レ, = ロ(ら) ゆ; = ロ(ら)	ü = u(7)

 θ_1 function

```
Theta 2 - function:-

0_1 = -g \sin \theta_1 + L_1 \sin(\theta_1 - \alpha_2) \dot{\theta}_1^2 - L_1 \cos(\theta_1 - \alpha_2) \ddot{\theta}_1^2

L_2

0_1 = u(1)

L_2 = u(u)

0_1 = u(1)

0_1 = u(1)
```

 θ_2 function

Simulink design

Show m2 trajectory plot (X2,Y2) with time

 θ_1 and θ_2 plots with time on one figure

display m2 location (X2,Y2) after 10 seconds

Read me:

- 1. Go to part 1 and open model_part1 and code_for_point_t_10
- 2. Run model_part1
- 3. Get plot of trajectory of M2 from XY graph for M2 in Simulink model
- 4. Get plot of θ_1 and θ_2 from theta 1 and theta2 plot in Simulink model
- 5. Run code_for_point_t_10 to get the position of M2 after 10 sec

Part-2

Here is the app for trajectory of second mass.

The star show the position of M2 after 10 second x2 vs y2 plot.

Read me:

- 1. Go to part2 and open app1.mlapp
- 2. Run app1.mlapp
- 3. Enter the value of l1, l2 m1 and m2
- 4. Run simulation