Math 136 382 Final Exam Solutions
Summer 2006

$$N = C(1 - bc - kt) \qquad (k > 0)$$
Assume C is known
$$\frac{N}{C} = 1 - bc - kt$$

$$(1 - \frac{N}{C}) = bc - kt$$

$$(2 - \frac{N}{C}) = bc - kt$$

$$(2 - \frac{N}{C}) = bc - kt$$

$$(3 - \frac{N}{C}) = bc - kt$$

$$(2 - \frac{N}{C}) = bc - kt$$

$$(2 - \frac{N}{C}) = bc - kt$$

$$(3 - \frac{N}{C}) = bc - kt$$

$$(3 - \frac{N}{C}) = bc - kt$$

$$(4 - \frac{N}{C}) = bc - kt$$

$$(5 - \frac{N}{C}) = bc - kt$$

$$(5 - \frac{N}{C}) = bc - kt$$

$$(7 - \frac{N}{C}) = bc - kt$$

$$(7 - \frac{N}{C}) = bc - kt$$

$$(8 - \frac{N}{C}) = bc - kt$$

$$(9 - \frac{N}{C}) = bc - kt$$

2 (a) Note: D'yi should be constant + has aveage value Thus, asome 12 yi = 4 Corrected table Dyi Corrections 6 concerus need only 3 data pts - use host three 2= a+b+c 7= 4a+2b+c 16= 9a+3b+c y= 2x2-x+/

3) (a)
$$\frac{dN}{dt} = kN \left(1 - \frac{N}{2}\right) + i$$
 $i = r(c - N)$
 $i = r(c - N)$
 $v = c$
 $v = c$

(c)
$$M = N + \frac{rc}{h} \Rightarrow \frac{dN}{dt} = \frac{dN}{dt}$$

$$N=N-\frac{r}{L}$$

$$= (L(n-\frac{r}{L})+rC)(1-\frac{r}{L})$$

$$= (L(n-\frac{r}{L})+rC)(1-\frac{r}{L})$$

(d)
$$M = \frac{C*}{1+Fe^{-k*t}}$$

$$\frac{dy}{dt} = y(mx-k) + gy^{2}$$

dx = lx-nxy with 1=0.2, n=0.001 dy = hy - mxy with h= 0.4, m= 0.002 (a) $KC = \frac{k}{m} = \frac{0.4}{0.002} = 200$ Ye= 1 = 0.2 = 200 yee-ny= 1/x ke-nx. 2 Y 0,2 e-0,0014 = Kx0.4 e-0.002x (100, 150) m => (150) 0.2 = 0.001 (150) = 1180 0,2 e.15 (100)0,4 e-2 ~ 0.453871566 is trajectory is given by Y 0.2 = 0.0014 = 0.45387 1566 x 0.4 = 0.002x. for max value of x we must have y = 4c = 200-> Xmax must sulisty = 0.456871566 x 0.4 e -0.002x $= x^{0.4}e^{-0.002x} = 5.204920914$

(d)	let !	f(x) =	x0,4 e	-0.002×	- (,20	924	814
-	To 8	solve	f(x) =0	omy nu Xc	t mbre e	ma beva	Ylan
/ Table	ge e versione e versio	SEC. WE SEC. CAMPACE CONTROL OF	* 0	×c	(X	0 7	200
e de manadada e	ge same	+ Com	nder the	recensive	ly defu	red	sequeree
	3	Xn+1	= Xn-	fixn)	N2(Newfor's
er ender ein sein wenne			8	fle me	thocks explain	ol i	Newton's method.

185 116 B 1964

The same of the sa

555

$$6 (a) \quad (P_{N})_{MAX} = P_{N} \left((t_{M})_{N} \right) = P_{N} \left(\frac{1}{b} \ln \left(\frac{N}{N_{0}} \right) \right)$$

$$= \left(\frac{N-1}{N_{0}-1} \right) c^{-N_{0}} \ln \left(\frac{N}{N_{0}} \right) \left[1 - e^{-L_{0}} \left(\frac{N}{N_{0}} \right) \right] (N-N_{0})$$

$$= \left(\frac{N-1}{N_{0}-1} \right) \left(\frac{N}{N_{0}} \right)^{N_{0}} \left(\frac{1}{N_{0}} \right) \left(\frac{N-N_{0}}{N_{0}} \right) \left(\frac{N-N_{0}}{N_{0}} \right)$$

$$= \left(\frac{N-1}{N_{0}-1} \right) \left(\frac{N_{0}}{N} \right)^{N_{0}} \left(\frac{N-N_{0}}{N} \right)^{N-N_{0}}$$

$$= \left(\frac{N-1}{N_{0}-1} \right) \left(\frac{N-N_{0}}{N_{0}} \right) \left(\frac{N-N_{0}}{N_{0}} \right) \left(\frac{N+1-N_{0}}{N_{0}} \right) \left(\frac{N+1-N_{0}}{N_{0}} \right) \left(\frac{N+1-N_{0}}{N_{0}} \right) \left(\frac{N-N_{0}}{N-N_{0}} \right)$$

$$= \left(\frac{N}{N-1-N_{0}} \right) \left(\frac{N+1-N_{0}}{N-N_{0}} \right) \left(\frac{N+1-N_{0}}{N-N_{0}} \right) \left(\frac{N+1-N_{0}}{N-N_{0}} \right)$$

$$= \left(\frac{N+1-N_{0}}{N-N_{0}} \right) \left(\frac{N+1-N_{0}}{N-N_{0}} \right) \left(\frac{N+1-N_{0}}{N-N_{0}} \right)$$

$$= \left(\frac{N+1-N_{0}}{N-N_{0}} \right) \left(\frac{N-N_{0}}{N-N_{0}} \right) \left(\frac{1+1}{N} \right) \left(\frac{N-N_{0}}{N-N_{0}} \right)$$

$$= \left(\frac{1+1-N_{0}}{N-N_{0}} \right) \left(\frac{1+1-N_{0}}{N-N_{0}} \right) \left(\frac{1+1-N_{0}}{N-N_{0}} \right)$$

$$= \left(\frac{1+1-N_{0}}{N-N_{0}} \right) \left(\frac{1+1-N_{0}}{N-N_{0}} \right)$$

$$= \left(\frac{1+1-N_{0}}{N-N_{0}} \right) \left(\frac{1+1-N_{0}}{N-N_{0}} \right)$$

$$= \left(\frac{1+1-N_{0}}{N-N_{0}} \right) \left(\frac{1+1-N_{0}}{N-N_{0}} \right)$$

(c) Since a population must reach nie M hipore reaching size N+1, (PN)MAX must be greater that (PN+1) MAX.

(a)
$$\frac{dS}{dt} = -\beta SI$$
, $\frac{dR}{dt} = rI$, $S+I+R=N$.

(a) $\frac{dI}{dt} = -\frac{dS}{dt} - \frac{dR}{dt} = \beta SI - rI = I(\beta S-r)$
 $\frac{dI}{dt} = 0 \Leftrightarrow I = 0 \text{ or } S = r/\beta$.

 $\frac{dI}{dt} = 0 \Leftrightarrow I = 0 \text{ or } S = r/\beta$.

(b) along a trajectory: $\frac{dI}{dS} = \frac{\beta SZ - rZ}{-\beta SI}$
 $\frac{dI}{dt} = 0 \text{ when } S = \frac{\beta SZ - rZ}{-\beta SI}$
 $\frac{dI}{dt} = \frac{1}{\beta S} - \frac{1}{\beta S} + C$

But $I = rO$ when $S = 9990$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 - 9990 + C$
 $\Rightarrow rO = \frac{1}{\beta} \ln 9990 + C$
 $\Rightarrow rO =$

But
$$\frac{r}{s} = \frac{0.9}{0.0002} = 4500$$

= 1911.21761852