Qiskit 개발자 자격 시험

Inho Choi

Qiskit Advocate

구성

- Lecture 1: 게이트와 양자 회로
- Lecture 2: 양자 회로의 측정과 OpenQasm
- Lecture 3: 양자 백엔드에 양자회로 실행하기
- Lecture 4: 양자 회로 및 회로의 정보와 실행결과를 해석하기
- Lecture 5: 유용한 기능들

Lecture 4: 양자 회로 및 회로의 정보와 실행결과를 해석하기

- 1. 양자 회로 시각화
- 2. 카운트 시각화
- 3. 상태 시각화
- 4. 백엔드 시각화

회로 시각화

QuantumCircuit.draw

- text: 콘솔로 나타낼 수 있는 텍스트의 형태로 양자 회로를 출력합니다
- mpl: 파이썬에 색이 있는 이미지로 matplotlib을 사용해 출력합니다
- latex: latex의 형태로 높은 수준의 이미지를 컴파일 하여 출력합니다
- latex_source: 컴파일 되지 않은 latex를 출력합니다

text

mp1

latex

latex_source

```
qc.draw(output='latex_source')
```

'\\documentclass[border=2px]{standa lone}\n\n\\usepackage[braket, qm]{qcircuit}\n\\usepackage{graphic x}\n\n\\begin{document}\n\\scalebox {1.0}{\n\\Ocircuit @C=1.0em @R=0.2em @!R { \\\\n\t \t\\nghost{{q} {0} : } & \\lstick{{q} {0} : } & \\gate{\\mathrm{H}} & \\ctrl{1} & \\qw \\barrier[0em]{2} & \\qw & \\gate{\\mathrm{T}} & \\qw & \\qw\\\\n\t \t\\nghost{{q} {1} : } & \\lstick{{q} {1} : } & \\qw & \\targ & \\ctrl{1} & \\qw & \\gate{\\mathrm{S}} & \\qw & \\qw\\\\n\t \t\\nghost{{q}_{2} : } & \\lstick{{q} {2} : } & \\qw & \\qw & \\targ & \\qw & \\qw & \\qw & \\qw\\\\n\t \t\\nghost{\\mathrm{{c} : }} & \\lstick{\\mathrm{{c} : }} & \\lstick{/_{_{3}}} \\cw & \\cw & \\cw & \\cw & \\cw & \\cw & \\cw\\\\n\\\\ }\n\\end{document}'

배리어 표기, plot_barriers

Default

비트 역순 표기, reverse_bits

Default

초기 상태 표기, initial_state

Default

카운트시각화

카운트 시각화


```
from qiskit.visualization import plot_histogram
```

카운트 시각화


```
from qiskit.visualization import plot_histogram
```


카운트 시각화


```
from qiskit.visualization import plot_histogram
```

plot_histogram(counts,title="Counts Visualization without noise")

qc

plot_histogram

plot_histogram


```
plot_histogram([counts,counts2],legend=['with noise', 'without noise'], sort='desc', figstze=(15,12), color=['navy', 'purple'])
```


상태시각화

상태 시각화

큐비트의 상태 벡터를 여러가지의 방법으로 시각화 하여 다양한 정보를 나타냄

- 1. plot_state_city
- 2. plot_state_hinton
- 3. plot_state_qsphere
- plot_state_paulivec
- 5. plot_bloch_multivector

상태 시각화

큐비트의 상태 벡터를 여러가지의 방법으로 시각화 하여 다양한 정보를 나타냄

- plot_state_city
- 2. plot_state_hinton
- 3. plot_state_qsphere
- 4. plot_state_paulivec
- 5. plot_bloch_multivector

state_vector
$$-rac{\sqrt{2}}{2}|10
angle-rac{\sqrt{2}}{2}|11
angle$$

plot_state_city

$$-rac{\sqrt{2}}{2}|10
angle-rac{\sqrt{2}}{2}|11
angle$$

. . .

plot_state_city(state_vector)

qc

plot_state_hinton

$$-\frac{\sqrt{2}}{2}|10\rangle-\frac{\sqrt{2}}{2}|11\rangle$$

.

plot_state_hinton(state_vector)

plot_state_hinton

$$-rac{\sqrt{2}}{2}|10
angle-rac{\sqrt{2}}{2}|11
angle$$

plot_state_paulivec

$$-\frac{\sqrt{2}}{2}|10\rangle-\frac{\sqrt{2}}{2}|11\rangle$$

plot_state_paulivec(state_vector)

plot_state_multivec

$$-\frac{\sqrt{2}}{2}|10\rangle-\frac{\sqrt{2}}{2}|11\rangle$$

...

plot_bloch_multivector(state_vector)

Entangled State

$$\frac{\sqrt{2}}{2}|00\rangle+\frac{\sqrt{2}}{2}|11\rangle$$

qc

Entangled State

$$\frac{\sqrt{2}}{2}|00\rangle+\frac{\sqrt{2}}{2}|11\rangle$$

qc

백엔드시각화

백엔드 시각화

Qiskit

- 게이트맵
- 오류맵
- 회로 레이아웃

개이트맵


```
provider=IBMQ.load_account()
backend=provider.get_backend("ibm_oslo")
```

개이트맵 & 오류맵


```
plot_gate_map(backend)
```


개이트맵 & 오류맵

회로 레이아웃

회로 레이아웃

qc_transpile

회로 레이아웃

애니메이션

