3000788 Intro to Comp Molec Biol

Lecture 16: Systems biology and dynamics

Fall 2025

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Today's agenda

- Systems thinking
- Approaches in systems biology
 - Multi-omics integration
 - Biological network
- Temporal dynamics of gene and protein expression

Systems thinking in biology

- A (biological) system consists of components (genes) and rules (gene expression regulations) that control its characteristics (phenotypes)
- Systems biology = integration of multi-layered data and mechanistic model to fully understand a biological system

Systems thinking is needed to understand biology

- How does gene and protein know when and where to express during development?
- Each cell starts in identical state
- Within-cell signals: epigenetics
- Cell-cell communication

Werz, C. Development 132:5343-52 (2006)

Anterior-posterior polarity in *drosophila* egg cells

Localization of mRNA guided by cytoskeleton and communication with follicle cells

Approaches in systems biology

Multi-omics integration (Lecture 17)

- **Genomics** → gene state
- **Epigenomics** → chromatin state
- Transcriptomics → gene expression
- **Proteomics** → protein expression
- **Metabolomics** → flux analysis
- Phenomics → macro-level state

Regulatory network modeling (Lecture 18)

Describe how genes / proteins affect each other's expression and function

Metabolic flux analysis

Antoniewicz, M.R. Metabolic Engineering 63:2-12 (2021)

- Describe chemical reactions across metabolites (and proteins)
- Propagate changes in one metabolite across the whole system

Differential equation

Differential equation

- Protein X is produced at a rate of 6 molecules per minute
 - $-X_{t+1} X_t = 6$
 - $-\frac{X_{t+1}-X_t}{(t+1)-t} = \frac{dX}{dt} = 6$ Linear increase
 - $X_t = 6t + X_0$
- Protein X degrades at a rate of 1 in 10 per minute
 - $-X_{t+1} = 0.9X_t$
 - $-\frac{X_{t+1}-X_t}{(t+1)-t} = \frac{dX}{dt} = -0.1X_t$ Exponential decay
 - $-X_t = 0.9^t X_0$
- Differential equation describes the rate of change of a system

Exponential decay described by differential equation

$$- \frac{dX}{dt} = -k_{\text{degradation}}[X]$$

- Fast decay in the beginning because there are a lot of molecules
- Slower decay towards the end because there are few molecules

General solution:
$$\frac{de^{-kt}}{dt} = -ke^{-kt}$$

Extrapolating a differential equation

Protein X is produced at a rate of 1 molecules per minute and degrades at a rate of 1 in 2 per minute

$$- \frac{dX}{dt} = 1 - 0.5X_t$$
$$- X_{t+1} = 1 + 0.5X_t$$

$$-X_{t+1} = 1 + 0.5X_t$$

Time	0	1	2	3	4	 10	20
X	4	3	2.5	2.25	2.125	 2.001953	2.000002

Time	0	1	2	3	4	 10	20
X	10	6	4	3	2.5	 2.007813	2.000008

Extrapolating a differential equation

Protein X is produced at a rate of 1 molecules per minute and degrades at a rate of 1 in 2 per minute

$$\frac{dX}{dt} = 1 - 0.5X_t$$

$$X_{t+1} = 1 + 0.5X_t$$

$$- X_{t+1} = 1 + 0.5X_t$$

Time	0	1	2	3	4	 10	20
X	0	1	1.5	1.75	1.875	 1.998047	1.999998

- X = 2 is the equilibrium of this system!
 - If $X_t = 2$, then $X_{t+1} = 1 + 0.5X_t = 2$ and so on

Impact of time resolution

Protein X is produced at a rate of 2 molecules per 2 minutes and degrades at a rate of 3 in 4 per 2 minutes

$$- \frac{dX}{dt} = 2 - 0.75X_t$$
$$- X_{t+1} = 2 + 0.25X_t$$

Higher resolution (smaller time step) is better but need more computation

Original result

Time	0	1	2	3	4	 10	20
X	4	3	2.5	2.25	2.125	 2.001953	2.000002

Time	0	2	4	6	8	10	 20
X	4	3	2.75	2.6875	2.671875	2.66769	 2.666667

New result

A simple model for gene expression

Recalling enzymatic reaction

$$E + S \underset{\mathsf{k}_{\mathsf{off}}}{\longleftrightarrow} ES \xrightarrow{\mathsf{k}_{\mathsf{react}}} E + P$$

- $\frac{d[S]}{dt} = \text{Rate of change in } S = -k_{\text{on}}[E][S] + k_{\text{off}}[ES]$
- $\frac{d[E]}{dt}$ = Rate of change in $E = -k_{on}[E][S] + k_{off}[ES] + k_{react}[ES]$
- $\frac{d[P]}{dt} = \text{Rate of change in } P = \mathbf{k_{react}}[ES]$
- Why do rates of change take these form?

A key mental image: molecules exist in 3D space

Rate of E + S → ES
Rate of E meeting S x
Rate of binding

Rate of E + S
$$\rightarrow$$
 ES = [E][S] x k

Rate of E meeting S scales linearly with [E] and [S]

Rate of binding is a constant for E and S

https://employees.csbsju.edu/cschaller/Reactivity/kinetics/rkphase.htm

- Reaction is a 2-step process: Collision & Binding
- P(collision) scales linearly with density, concentration, number of molecules

A reaction model for transcription

- Transcription factor binding: TF + DNA ↔ TF-DNA
- Recruitment of polymerase: RNAP + TF-DNA ↔ RNAP-TF-DNA
- Transcription: RNAP-TF-DNA → TF-DNA + RNAP + RNA

A simplified model for gene expression

$$k_{transcription}$$
 $DNA \rightarrow DNA + RNA$
 $RNA \rightarrow \emptyset$
 $k_{degradation}$

- $-\frac{d[RNA]}{dt} = \text{rate of change of RNA} = k_{transcription} k_{degradation}[RNA]$
- What would the graph of [RNA] look like?

Extrapolating the differential equation

$$x(t+1) = x(t) + (x(t+1) - x(t)) = x(t) + \frac{x(t+1) - x(t)}{(t+1) - t} \approx x(t) + x'(t)$$

- Differential equation defines x'(t)
 - $x'(t) = \frac{dx}{dt} = k_{transcription} k_{degradation}x$
- Given an initial condition $x(0) = x_0$,
 - $-x(1) = x(0) + x'(0) = x_0 + k_t k_d x_0$
 - $x(2) = x(1) + x'(1) = x(1) + k_t k_d x(1)$ $= (x_0 + k_t k_d x_0) + k_t k_d (x_0 + k_t k_d x_0)$

- ...

A toy example

$$-\frac{d[RNA]}{dt} = 4 - 0.2 [RNA]$$

- Given an initial condition x(0) = 100:
 - -x(1) = 100 + 4 20 = 84
 - -x(2) = 84 + 4 17 = 71
 - -x(3) = 71 + 4 14 = 61
 - -x(4) = 61 + 4 12 = 53
 - -x(5) = 53 + 4 10 = 47
 - Approaching the equilibrium [RNA] = 20

Another toy example

$$-\frac{d[RNA]}{dt} = 4 - 0.2 [RNA]$$

- Given an initial condition x(0) = 0:
 - -x(1) = 0 + 4 0 = 4
 - -x(2) = 4 + 4 1 = 7
 - -x(3) = 7 + 4 1 = 10
 - -x(4) = 10 + 4 2 = 12
 - -x(5) = 12 + 4 2 = 14
 - Approaching the equilibrium [RNA] = 20

RNA velocity is a two-stage model

- Two-step process: From DNA to unspliced RNA to spliced RNA
- $-\frac{d[U]}{dt} = \alpha \beta[U], \frac{d[S]}{dt} = \beta[U] \gamma[S] \rightarrow \frac{d[U] + [S]}{dt} = \alpha \gamma[S]$
- Not the same dynamics as one-step: $\frac{d[S]}{dt} = \alpha \gamma[S]$

Models for transcriptional regulation

Time-dependent activation

- Constant transcription for a period of time
- Followed by RNA degradation
- Similar to RNA velocity plot

Negative auto-regulation

http://be150.caltech.edu/2019/handouts/03_small_circuits.html

- X assembles and binds to DNA to deactivate transcription
- $\frac{d[X]}{dt} = k_{transcription}[DNA_{unbound}] k_{degradation}[X]$
- $[DNA_{unbound}]$ depends on [X] through binding

Negative auto-regulation

$$\begin{array}{c} \mathbf{k}_{\mathsf{bind}} \\ \mathbf{n}X + DNA_{unbound} \leftrightarrow DNA_{bound} \\ \mathbf{k}_{\mathsf{unbind}} \end{array}$$

- *n* molecules of X assemble as a complex
- $-\frac{dDNA_{bound}}{dt} = k_{bind}[X]^{n}[DNA_{unbound}] k_{unbind}[DNA_{bound}]$
- At equilibrium, fraction of unbound DNA = $\frac{k_{bind}[X]^n}{k_{unbind} + k_{bind}[X]^n}$
 - Also known as Hill function

Faster time to equilibrium, at lower expression level

Without negative auto-regulation

$$\frac{d[X]}{dt} = \frac{k_{transcription}}{1 + (k[X])^n} - k_{degradation}[X]$$

Positive auto-regulation

X assembles and binds to DNA to further activate transcription

$$-\frac{d[X]}{dt} = \frac{k_{transcription}(k[X])^{2}}{1 + (k[X])^{2}} - k_{degradation}[X]$$

Would the expression level rise indefinitely?

Equilibrium of positive auto-regulation

$$-\frac{d[X]}{dt} = \frac{k_{transcription}(k[X])^{2}}{1 + (k[X])^{2}} - k_{degradation}[X]$$

- $-\frac{d[X]}{dt} = \frac{k_{transcription}(k[X])^{2}}{1 + (k[X])^{2}} k_{degradation}[X]$ $\text{ There are three equilibria (three solutions to } \frac{d[X]}{dt} = 0)$
 - $0 = k_t(k[X])^2 k_d[X] k_d[X](k[X])^2$ is a polynomial with degree 3
- Let's solve: $0 = [X](k_t k^2 [X] k_d k_d k^2 [X]^2)$
 - **Trivial root**: [X] = 0
 - Quadratic roots: [X] = $\frac{k_t k^2 \pm \sqrt{k_t^2 k^4 4k_d^2 k^2}}{2k_1 k^2}$

Stability of an equilibrium

- Among three equilibria for positive autoregulation, one is unstable and the other two are stable
- Depending on the initial [X], this system will converge to one of the two stable equilibria

Bistability of positive autoregulation

- For low [X], degradation dominates, and
 [X] goes down to zero
- For intermediate [X], transcription dominates, and [X] increases until reaching the stable equilibrium
- For high [X], the degradation dominates, and [X] goes down to the stable equilibrium

Bistability as controllable cell memory

- Cells in low- or high-expression states will remain in their states
 - Robust to expression fluctuation
- In the gene is activate in a "lowexpression" cell and the expression rises above the **threshold**, the cell will be locked in "high" state
- Cells memorize their states

Two-gene systems

Cell memory from gene toggle switch

- A system of two genes repressing each other
 - Two equilibria: High lacl OR high tetR
- Once expression of lacl is established, it will constantly repress tetR
- Once expression of tetR is established, it will constantly repress lacl

Gene toggle switch simulation

- Top panel: High lacl represses tetR-GFP
- Bottom panel:
 - Add IPTG to neutralize **lacl** at t = 10
 - tetR-GFP rises

Linear two-gene system

$$\frac{d[X1]}{dt} = k_{1,1}[X1] + k_{1,2}[X2]$$

$$\frac{d[X2]}{dt} = k_{2,1}[X1] + k_{2,2}[X2]$$

- Simple system with only linear effects
- Depending on the sign and magnitude of $k_{i,j}$ interesting dynamics can be derived
 - **Trace** and **Determinant** of the matrix $\{k_{i,j}\}$

Non-linear dynamics from a linear system

Summary

- Biological system consists of components that interact with each other to drive the changes of the system
- Changes over time can be described with differential equations
- Properties of a system extend beyond gene/protein expression levels
 - How many equilibria?
 - Stability / cell memory
 - Response time (time to equilibrium)

Any question?

See you next time