신용카드 사용자 연체 예측

딥러닝 신경망 (DNN, Deep Neural Network)을 이용한 분류 모델

빅데이터융합전공 202213212 박소현 빅데이터융합전공 202213419 이화연

01	주제 선정 배경
02	데이터 소개
03	데이터 전처리
04	모델 학습 및 분석 결과
05	기대효과

1.주제 선정 배경

경제

팍팍한 살림살이에... 카드 연체율 9년 만에 최고

강신 기자 입력 2024-03-18 11:17 | 수정 2024-03-18 15:56

지난해 카드 연체율이 9년 만에 최고치로 뛰어올랐다.

금융감독원은 18일 '2023년 여신전문금융회사 영업실적(잠정)' 자료를 발표했다. 지난해 8개 전업카드사 연체율은 1.63%로 전년 말(1.21%)보다 0.42%포인트 상승해 2014년(1.69%) 이후 9년 만에 최고치를 기록했다. 그만큼 서민 생활이 팍팍해진 것으로 풀이된다.

카드사의 부실채권 비중도 급증했다. 카드사의 지난해 말 기준 고정이하여신비율은 1.14%로 전년 말보다 0.29%포인트 높아졌다.

강신 기자, "팍팍한 살림살이에... 카드 연체율 9년 만에 최고", 서울신문, 2024년 3월 18일

● 보증기관이 대신 갚은 빚만 13조 원

빚을 제때 못 갚는 서민이 늘어나면서 공공기관들이 은행 대신 빚을 갚아주는 경우도 크게 늘어났다. 국회 정무위원회 소속 더불어민주당 오기형 의원실에 따르면 신용보증기금, 주택도시보증공사, 지역신용보증재단 등 13개 보증 공공기관의 지난해 대위변제액은 13조4412억 원으로 2022년(5조8297억 원) 대비 130.6% 급증했다.

대위변제란 대출자가 원금을 상환하지 못했을 때 정책기관이 은행 대신 빚을 상환해주는 것을 말한다. 대위변제액은 2019년부터 2022년까지 연평균 5조8000억 원 수준을 유지하다가 지난해 폭발적으로 늘어났다.

03

강우석 기자, "카드 연체액 2조 넘어... 20년전 카드대란 육박", 동아일보, 2024년 5월 23일

raw data

	index	gender	car	reality	child_num	income_total	income_type	edu_type	family_type	house_type	DAYS_BIRTH	DAYS_EMPLOYED	FLAG_MOBIL	work_phone	phone	email	occyp_type	family_size	begin_month	credit
0	0	F	Ν	N	0	202500.0	Commercial associate	Higher education	Married	Municipal apartment	-13899	-4709	1	0	0	0	NaN	2.0	-6.0	1.0
1	1	F	N	Υ	1	247500.0	Commercial associate	Secondary / secondary special	Civil marriage	House / apartment	-11380	-1540	1	0	0	1	Laborers	3.0	-5.0	1.0
2	2	М	Υ	Υ	0	450000.0	Working	Higher education	Married	House / apartment	-19087	-4434	1	0	1	0	Managers	2.0	-22.0	2.0
3	3	F	N	Υ	0	202500.0	Commercial associate	Secondary / secondary special	Married	House / apartment	-15088	-2092	1	0	1	0	Sales staff	2.0	-37.0	0.0
4	4	F	Υ	Υ	0	157500.0	State servant	Higher education	Married	House / apartment	-15037	-2105	1	0	0	0	Managers	2.0	-26.0	2.0
26452	26452	F	N	N	2	225000.0	State servant	Secondary / secondary special	Married	House / apartment	-12079	-1984	1	0	0	0	Core staff	4.0	-2.0	1.0
26453	26453	F	Ν	Υ	1	180000.0	Working	Higher education	Separated	House / apartment	-15291	-2475	1	0	0	0	NaN	2.0	-47.0	2.0
26454	26454	F	Υ	N	0	292500.0	Working	Secondary / secondary special	Civil marriage	With parents	-10082	-2015	1	0	0	0	Core staff	2.0	-25.0	2.0
26455	26455	М	Ν	Υ	0	171000.0	Working	Incomplete higher	Single / not married	House / apartment	-10145	-107	1	0	0	0	Laborers	1.0	-59.0	2.0
26456	26456	F	N	N	0	81000.0	Working	Secondary / secondary special	Civil marriage	House / apartment	-19569	-1013	1	0	0	0	Security staff	2.0	-9.0	2.0
26457 r	ows × 20	columns																		

변수 소개

이진 변수

gender: 성별

car: 차량 소유 여부

reality: 부동산 소유 여부

FLAG_MOBIL: 핸드폰 소유 여부

work_phone: 업무용 전화 소유 여부

phone: 전화 소유 여부

email: 이메일 소유 여부

gender의 고유값: ['F' 'M']

car의 고유값: ['N' 'Y']

reality의 고유값: ['N' 'Y']

FLAG_MOBIL의 고유값: [1]

work_phone의 고유값: [0 1]

phone의 고유값: [0 1]

email의 고유값: [0 1]

변수 소개

연속형 변수

child_num: 자녀 수

income_total: 연간 소득

DAYS_BIRTH: 출생일

→ 데이터 수집 당시 (0)부터 역으로 셈. 즉, -1은 데이터 수집일 하루 전에 태어났음을 의미

DAYS_EMPLOYED: 업무 시작일

→ 데이터 수집 당시 (0)부터 역으로 셈. 즉, -1은 데이터 수집일 하루 전부터 일을 시작함을 의미 (양수 값은 고용되지 않은 상태)

begin_month: 신용카드 발급 월

→ 데이터 수집 당시 (0)부터 역으로 셈. 즉, -1은 데이터 수집일 한 달 전에 신용카드를 발급함을 의미

family_size: 가족 규모

변수 소개

다중 범주형 변수

```
income_type: 소득 분류
```

['Commercial associate', 'Working', 'State servant', 'Pensioner', 'Student']

edu_type: 교육 수준

['Higher education','Secondary / secondary special', 'Incomplete higher', 'Lower secondary', 'Academic degree']

family_type: 결혼 여부

['Married', 'Civil marriage', 'Separated', 'Single / not married', 'Widow']

house_type: 생활 방식

['Municipal apartment', 'House / apartment', 'With parents', 'Co-op apartment', 'Rented apartment', 'Office apartment']

occyp_type: 직업 유형 (18개 종류)

변수 소개

다중 범주형 변수

income_type: 소득 분류

['Commercial associate', 'Working', 'State servant', 'Pensioner', 'Student']

• 상업적 종사자 / 일반 근로자 / 공무원 / 연금 수령자 / 학생

변수 소개

다중 범주형 변수

income_type: 소득 분류

['Commercial associate', 'Working', 'State servant', 'Pensioner', 'Student']

edu_type: 교육 수준

['Higher education', 'Secondary / secondary special', 'Incomplete higher', 'Lower secondary', 'Academic degree']

• 대학교 졸업 / 고등학교 졸업 및 특수 교육 / 대학교 재학 중 / 중학교 졸업 / 석사, 박사 등 고급 학위 보유

변수 소개

다중 범주형 변수

income_type: 소득 분류

['Commercial associate', 'Working', 'State servant', 'Pensioner', 'Student']

edu_type: 교육 수준

['Higher education', 'Secondary / secondary special', 'Incomplete higher', 'Lower secondary', 'Academic degree']

family_type: 결혼 여부

['Married', 'Civil marriage', 'Separated', 'Single / not married', 'Widow']

• 기혼 / 사실혼 / 별거 중 / 미혼 / 과부 또는 홀아비

변수 소개

다중 범주형 변수

income_type: 소득 분류

['Commercial associate', 'Working', 'State servant', 'Pensioner', 'Student']

edu_type: 교육 수준

['Higher education','Secondary / secondary special', 'Incomplete higher', 'Lower secondary', 'Academic degree']

family_type: 결혼 여부

['Married', 'Civil marriage', 'Separated', 'Single / not married', 'Widow']

house_type: 생활 방식

['Municipal apartment', 'House / apartment', 'With parents', 'Co-op apartment', 'Rented apartment', 'Office apartment']

공공 임대 아파트 / 자가 주택 또는 아파트 / 부모와 함께 거주 / 협동 아파트 / 임대 아파트 / 사무실 아파트

변수 소개

종속변수

credit: 사용자의 신용카드 대금 연체를 기준으로 한 신용도

낮을수록 높은 신용의 신용카드 사용자를 의미

credit의 고유값: [0. 1. 2.]

.info()

Data columns (total 18 columns): Column Non-Null Count Dtype 26457 non-null object gender 26457 non-null object car 26457 non-null object reality child_num 26457 non-null int64 income_total 26457 non-null float64 income_type 26457 non-null object 26457 non-null object edu type 26457 non-null object family_type 26457 non-null object house_type DAYS_BIRTH 26457 non-null int64 DAYS EMPLOYED 26457 non-null int64 work phone 26457 non-null int64 phone 26457 non-null int64 email 26457 non-null int64 18286 non-null object 14 occyp_type 15 family_size 26457 non-null float64 16 begin_month 26457 non-null float64 17 credit 26457 non-null float64 dtypes: float64(4), int64(6), object(8)

credit

DAYS_EMPLOYED

```
positive_count = (data['DAYS_EMPLOYED'] > 0).sum()
negative_count = (data['DAYS_EMPLOYED'] <= 0).sum()

print(f"양수 값 개수: {positive_count}")
print(f"음수 값 개수: {negative_count}")

data['DAYS_EMPLOYED'] -= -data['DAYS_EMPLOYED'].apply(lambda · x: ·0 · if · x · > ·0 · else · x)
```

고용되지 않은 상태: 4438

고용된 상태: 22019

occyp_type 제거

occyp_type	Accountants	Cleaning staff	Cooking staff	Core staff	Drivers	HR staff	High skill tech staff	IT staff	Laborers	Low-skill Laborers	Managers	Medicine staff	Private service staff	Realty agents	Sales staff	Secretaries	Security staff	Waiters/barmen staff
credit																		
0.0	5	2	3	15	8	0	5	0	26	1	12	4	2	0	13	0	2	0
1.0	5	2	3	14	8	0	6	0	25	0	11	4	1	0	15	1	2	1
2.0	5	2	2	14	9	0	6	0	24	1	12	5	1	0	14	0	3	1

범주형 변수

범주형 변수

family_size 제거

	child_num	family_size
child_num	1.00000	0.89053
family_size	0.89053	1.00000

```
data = data.drop('family_size', axis=1)
data['child_num'] = data['child_num'].apply(lambda x: 5 if x >= 5 else x)
```

라벨인코딩

```
Data columns (total 18 columns):
   Column
                   Non-Null Count Dtype
                   26457 non-null object
    gender
                   26457 non-null object
    car
                   26457 non-null object
    reality
                   26457 non-null int64
    child num
                   26457 non-null float64
    income total
                  26457 non-null object
    income_type
    edu_type
                   26457 non-null object
    family type
                  26457 non-null object
    house_type
                  26457 non-null object
    DAYS BIRTH
                  26457 non-null int64
    DAYS EMPLOYED 26457 non-null int64
                   26457 non-null int64
11 work phone
    phone
12
                   26457 non-null int64
13
                   26457 non-null int64
    email
                   18286 non-null object
                  26457 non-null float64
16 begin_month
                   26457 non-null float64
17 credit
                   26457 non-null float64
dtypes: float64(4), int64(6), object(8)
```

- 1. gender(F/M) int64로 바꾸기 ----> F:0, M:1
- 2. car(N/Y) int64로 바꾸기 ----> N:0,Y:1
- 3. reality(N/Y) int64로 바꾸기 ----> N:0,Y:1

절댓값 처리

Data	columns (total	18 columns):	
#	Column	Non-Null Count	Dtype
0	gender	26457 non-null	object
1	car	26457 non-null	object
2	reality	26457 non-null	object
3	child_num	26457 non-null	int64
4	income_total	26457 non-null	float64
5	income_type	26457 non-null	object
6	edu_type	26457 non-null	object
7	family_type	26457 non-null	object
8	house_type	26457 non-null	object
9	DAYS_BIRTH	26457 non-null	int64
10	DAYS_EMPLOYED	26457 non-null	int64
11	work_phone	26457 non-null	int64
12	phone	26457 non-null	int64
13	email	26457 non-null	int64
14 -	occyp_type	18286 non-null	object
15	family size	26457 non-null	float64
16	begin_month	26457 non-null	float64
17	credit	26457 non-null	float64
dtype	es: float64(4),	int64(6), object	t(8)

4. 'DAYS_BIRTH', 'DAYS_EMPLOYED', 'begin_month' 값을 절댓값(+)으로 바꾸기

정수형 변환

```
Data columns (total 18 columns):
   Column
                  Non-Null Count Dtype
                  26457 non-null object
    gender
                   26457 non-null object
    car
                   26457 non-null object
    reality
    child num
                   26457 non-null int64
                   26457 non-null float64
    income_total
                   26457 non-null object
    income_type
    edu_type
                   26457 non-null object
    family_type
                  26457 non-null object
                  26457 non-null object
    house_type
    DAYS_BIRTH
                   26457 non-null int64
    DAYS EMPLOYED 26457 non-null int64
11 work phone
                   26457 non-null int64
    phone
12
                   26457 non-null int64
13
                   26457 non-null int64
    email
                   18286 non-null object
                  26457 non-null float64
                   26457 non-null float64
16 begin_month
                   26457 non-null float64
17 credit
dtypes: float64(4), int64(6), object(8)
```

5. 'float64 -> int64로 바꾸기

라벨인코딩

```
Data columns (total 16 columns):
                   Non-Null Count Dtype
    Column
    gender
                   26457 non-null int64
                   26457 non-null int64
    car
    reality
                   26457 non-null int64
    child_num
                   26457 non-null
                                  int64
    income_total
                   26457 non-null int64
    income_type
                   26457 non-null object
    edu_type
                   26457 non-null object
    family_type
                   26457 non-null object
    house_type
                   26457 non-null object
    DAYS BIRTH
                   26457 non-null int64
    DAYS EMPLOYED
                   26457 non-null int64
    work_phone
                   26457 non-null int64
12
    phone
                   26457 non-null
                                  int64
   email
                   26457 non-null int64
    begin_month
                   26457 non-null int64
15 credit
                   26457 non-null int64
dtypes: int64(12), object(4)
```

```
'income_type':
{'Commercial associate': 0, 'Pensioner': 1, 'State servant': 2,
 'Student': 3, 'Working': 4}
'edu_type':
{'Academic degree': 0, 'Higher education': 1, 'Incomplete higher': 2,
 'Lower secondary': 3, 'Secondary / secondary special': 4}
'family_type':
{'Civil marriage': 0, 'Married': 1, 'Separated': 2,
 'Single / not married': 3, 'Widow': 4}
'house_type':
{'Co-op apartment': 0, 'House / apartment': 1, 'Municipal apartment': 2,
 'Office apartment': 3, 'Rented apartment': 4, 'With parents': 5}
```

이상치 확인

final data

전체 변수가 포함된 데이터프레임

	gender	car	reality	child_num	income_total	income_type	edu_type	family_type	house_type	DAYS_BIRTH	DAYS_EMPLOYED	work_phone	phone	email	begin_month	credit
0	0	0	0	0	202500	0	1	1	2	13899	4709	0	0	0	6	1
1	0	0	1	1	247500	0	4	0	1	11380	1540	0	0	1	5	1
2	1	1	1	0	450000	4	1	1	1	19087	4434	0	1	0	22	2
3	0	0	1	0	202500	0	4	1	1	15088	2092	0	1	0	37	0
4	0	1	1	0	157500	2	1	1	1	15037	2105	0	0	0	26	2
26452	0	0	0	2	225000	2	4	1	1	12079	1984	0	0	0	2	1
26453	0	0	1	1	180000	4	1	2	1	15291	2475	0	0	0	47	2
26454	0	1	0	0	292500	4	4	0	5	10082	2015	0	0	0	25	2
26455	1	0	1	0	171000	4	2	3	1	10145	107	0	0	0	59	2
26456	0	0	0	0	81000	4	4	0	1	19569	1013	0	0	0	9	2
26457 ro	ws × 16 co	olumn	S													

카이제곱 검정

```
# 이진 범주형 변수와 다중 범주형 변수 목록
binary_vars = ['gender', 'car', 'reality', 'work_phone', 'phone', 'email']
multi_category_vars = ['income_type', 'edu_type', 'family_type', 'house_type']
continuous_vars = ['child_num', 'income_total', 'DAYS_BIRTH', 'DAYS_EMPLOYED', 'begin_month']
# 다중 범주형 변수에 대해 원-핫 인코딩 수행
data_encoded = pd.get_dummies(data, columns=multi_category_vars)
# 결과를 저장할 리스트 생성
chi2_results = []
# 이진 변수에 대해 카이제곱 검정 수행
for var in binary_vars:
   contingency_table = pd.crosstab(data_encoded[var], data_encoded['credit'])
   chi2_stat, p_val, dof, _ = chi2_contingency(contingency_table)
   if p val <= 0.05: # 유의미한 변수만 저장
       chi2_results.append({
           'Variable': var,
           'Chi2 Statistic': chi2_stat,
           'p-value': round(p_val, 4),
           'Degrees of Freedom': dof
       })
```

```
# 다중 범주형 변수에 대해 원-핫 인코딩된 각 범주별로 카이제곱 검정 수행.
for var in multi category vars:
   encoded_cols = [col for col in data_encoded.columns if col.startswith(var)]
   for col in encoded_cols:
       contingency_table = pd.crosstab(data_encoded[col], data_encoded['credit'])
       chi2_stat, p_val, dof, _ = chi2_contingency(contingency_table)
       if p val <= 0.05: # 유의미한 변수만 저장
          chi2 results.append({
              'Variable': col,
              'Chi2 Statistic': chi2_stat,
              'p-value': round(p_val, 4),
              'Degrees of Freedom': dof
# 유의미한 변수들에 대한 카이제곱 검정 결과를 데이터프레임으로 변환
chi2 results df = pd.DataFrame(chi2 results)
# 최종 데이터프레임 생성: 유의미한 변수와 연속형 변수 결합
final_vars = chi2_results_df['Variable'].tolist() + continuous_vars
final_data = data_encoded[final_vars]
```

카이제곱 검정

	Variable	Chi2 Statistic	p-value
0	car	9.396436	0.0091
1	reality	11.231612	0.0036
2	phone	8.035167	0.0180
3	email	6.065864	0.0482
4	income_type_0	18.326786	0.0001
5	income_type_4	11.070212	0.0039
6	edu_type_1	7.017194	0.0299
7	family_type_0	9.901679	0.0071
8	family_type_1	29.757092	0.0000
9	family_type_3	22.936887	0.0000
10	family_type_4	7.498292	0.0235
11	house_type_2	8.262940	0.0161
12	house_type_4	27.572270	0.0000

이진 - 선택 O

차량 소유 여부

부동산 소유 여부

전화 소유 여부

이메일 소유 여부

이진 - 선택 X

성별

업무용 전화 소유 여부

다중 - 선택 O

라벨인코딩 → 원핫인코딩이므로 23페이지 참조

소득 분류 - 상업적 종사자 / 일반 근로자

교육 수준 - 대학교 졸업

결혼 여부 - 기혼 / 사실혼 / 미혼 / 과부 또는 홀아비

생활 방식 - 공공 임대 아파트 / 임대 아파트

final data

중요한 변수만 포함된 데이터프레임

	car	reality	phone	email	income_type_0	income_type_4	edu_type_1	family_type_0	family_type_1	family_type_3	family_type_4	house_type_2	house_type_4	child_num	income_total
0	0	0	0	0	True	False	True	False	True	False	False	True	False	0	202500
1	0	1	0	1	True	False	False	True	False	False	False	False	False	1	247500
2	1	1	1	0	False	True	True	False	True	False	False	False	False	0	450000
3	0	1	1	0	True	False	False	False	True	False	False	False	False	0	202500
4	1	1	0	0	False	False	True	False	True	False	False	False	False	0	157500
26452	0	0	0	0	False	False	False	False	True	False	False	False	False	2	225000
26453	0	1	0	0	False	True	True	False	False	False	False	False	False	1	180000
26454	1	0	0	0	False	True	False	True	False	False	False	False	False	0	292500
26455	0	1	0	0	False	True	False	False	False	True	False	False	False	0	171000
26456	0	0	0	0	False	True	False	True	False	False	False	False	False	0	81000
26457 ro	ws × 1	19 columr	ıs												

DNN 모델 학습

```
# 데이터 분할
X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.2, random_state=42)
# 스케일러 학습 및 변환
columns_to_scale = ['DAYS_BIRTH', 'DAYS_EMPLOYED', 'income_total', 'begin_month', 'child_num']
scaler = StandardScaler()
X_train[columns_to_scale] = scaler.fit_transform(X_train[columns_to_scale])
X test[columns to scale] = scaler.transform(X test[columns to scale])
# DNN 모델 생성
dnn_model2 = Sequential([Dense(64, input_dim=X.shape[1], activation='relu'),
                       Dense(32, activation='relu'),
                       Dense(32, activation='relu'),
                       Dense(16, activation='relu'),
                       Dense(3, activation='softmax')])# 3개의 클래스에 대한 확률 출력
dnn_model2.compile(optimizer=Nadam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
# EarlyStopping 콜백 설정
early_stopping = EarlyStopping(
   monitor='val loss', # 'val loss'를 모니터링
                    # 개선되지 않는 메포크 수 (10 메포크 동안 개선 없으면 종료)
   patience=10,
   restore_best_weights=True) # 최상의 가중치를 복원
#모델 학습
history = dnn_model2.fit(
   X_train, y_train,
   epochs=80,
   batch size=32,
   validation_data=(X_test, y_test),
   callbacks=[early stopping]) # 얼리스탑핑 콜백 추가
```

DNN 분석 결과

변수선택(원핫인코딩)

훈련 데이터 정확도: 0.7573 F

검증 데이터 정확도: 0.6614

F1 Score: 0.6140

Overall AUC Score: 0.6492

DNN 분석 결과

변수선택 + EarlyStopping

훈련 데이터 정확도 : 0.6977

검증 데이터 정확도: 0.6829

F1 Score: 0.5956

Overall AUC Score: 0.6292

DNN 분석 결과

변수전체(라벨인코딩)

훈련 데이터 정확도: 0.7417 F1 Score: 0.6137

검증 데이터 정확도: 0.6712 Overall AUC Score: 0.6436

DNN 분석 결과

변수전체 + EarlyStopping

훈련 데이터 정확도 : 0.6940

검증 데이터 정확도: 0.6846

F1 Score: 0.5997

Overall AUC Score: 0.6216

XGBoost

변수선택(원핫인코딩)

훈련 데이터 정확도: 0.7774 검증 데이터 정확도: 0.6975

F1 Score: 0.6381

XGBoost

변수전체(라벨인코딩)

훈련 데이터 정확도: 0.7841 검증 데이터 정확도: 0.6998

F1 Score: 0.6423

RandomForest

변수선택(원핫인코딩)

훈련 데이터 정확도: 0.9805

검증 데이터 정확도: 0.7016

F1 Score: 0.6781

RandomForest

변수전체(라벨인코딩)

훈련 데이터 정확도: 0.9806

검증 데이터 정확도: 0.7024 F1 Score: 0.6816

세 가지 모델 비교

DNN

XGBoost

RandomForest

5. 기대효과

신용카드 연체 예측의 기대효과

금융 기관의 리스크 관리

- 연체 위험 사전 파악
- : 대출 한도 조정
- : 신중한 신용 정책 수립
- 부실 채권 관리
- : 손실로 이어질 수 있는 부실 채권 관리

맞춤형 금융 서비스

- 고객 맞춤형 서비스
- : 재무 상태에 맞는 금융 상품 추천
- 고객 만족도 향상
- : 고객의 신용 점수를 유지

경제적 안정성

- 소비자 보호
- : 개인의 재무 안정성 유지
- 사회적 비용 감소
- : 대규모 연체 관리

THANK YOU

빅데이터융합전공 202213212 박소현 빅데이터융합전공 202213419 이화연