

第六节 组合电路

- 组合电路
- 逻辑门

与门, 或门, 非门, 与非门, 或非门

• 奎因-莫可拉斯基方法

组合电路

逻辑门: 实现逻辑运算的电子元件.

与门,或门,非门.

组合电路:实现命题公式的由电子元件组成的电路.

$$\frac{x}{y}$$
 $\xrightarrow{x \wedge y}$ $\frac{x}{y}$ \xrightarrow{x} $\frac{x}{y}$ \xrightarrow{x} $\frac{x}{y}$ \xrightarrow{x} 事门

组合电路的例子

 $(x \lor y) \land \neg x$ 的组合电路

第一种画法

第二种画法

例 楼梯的灯由上下2个开关控制,要求按动任何一个开关都能打开或关闭灯.试设计一个这样的线路.

 \mathbf{m} x,y:开关的状态,F:灯的状态,打开为1,关闭为0.

F(x,y)

不妨设当2个开关都为0时灯是打开的.

$$F=m_0 \lor m_3=(\neg x \land \neg y) \lor (x \land y)$$

设计组合电路

- 步骤: 1. 构造输入输出表(根据题意构造)
 - 2. 写出主析取范式
 - 3. 化简.

最简展开式:包含最少运算的公式

奎因-莫可拉斯基方法

- 1. 合并简单合取式生成所有可能出现在最简展开式中的项.
- 2. 确定最简展开式中的项.

<mark>例</mark> 求下述公式的最简展开式:

$$F = (\neg x_1 \land \neg x_2 \land \neg x_3 \land x_4) \lor (\neg x_1 \land \neg x_2 \land x_3 \land x_4) \lor (\neg x_1 \land x_2 \land \neg x_3 \land x_4) \lor (\neg x_1 \land x_2 \land x_3 \land x_4) \lor (x_1 \land \neg x_2 \land x_3 \land \neg x_4) \lor (x_1 \land \neg x_2 \land x_3 \land x_4) \lor (x_1 \land x_2 \land x_3 \land \neg x_4)$$

解 列出主析取范式的所有极小项的角码的二进制表示

编号	极小项	角码	标记
1	$x_1 \wedge x_2 \wedge x_3 \wedge \neg x_4$	1110	*
2	$x_1 \wedge \neg x_2 \wedge x_3 \wedge x_4$	1011	*
3	$\neg x_1 \land x_2 \land x_3 \land x_4$	0111	*
4	$x_1 \wedge \neg x_2 \wedge x_3 \wedge \neg x_4$	1010	*
5	$\neg x_1 \land x_2 \land \neg x_3 \land x_4$	0101	*
6	$\neg x_1 \land \neg x_2 \land x_3 \land x_4$	0011	*
7	$\neg x_1 \land \neg x_2 \land \neg x_3 \land x_4$	0001	*

例(续)

第一批				第二批		
合并项	项	表示串	标记	合并项	项	表示串
(1,4)	$x_1 \wedge x_3 \wedge \neg x_4$	1–10		(3,5,6,7)	$\neg x_1 \land x_4$	01
(2,4)	$x_1 \wedge \neg x_2 \wedge x_3$	101-				
(2,6)	$\neg x_2 \land x_3 \land x_4$	-011				
(3,5)	$\neg x_1 \land x_2 \land x_4$	01–1	*			
(3,6)	$\neg x_1 \land x_3 \land x_4$	0–11	*			
(5,7)	$\neg x_1 \land \neg x_3 \land x_4$	0-01	*			
(6,7)	$\neg x_1 \land \neg x_2 \land x_4$	00-1	*			

标记*表示该项已被合并

项	覆盖	运算符数
$x_1 \wedge x_3 \wedge \neg x_4$	(1,4)	3
$x_1 \wedge \neg x_2 \wedge x_3$	(2,4)	3
$-x_2 \wedge x_3 \wedge x_4$	(2,6)	3
$\neg x_1 \land x_4$	(3,5,6,7)	2

选择(1,4), (2,4)和(3,5,6,7), 或者(1,4), (2,6)和(3,5,6,7). 最简展开式为

 $F\Leftrightarrow (x_1 \land x_3 \land \neg x_4) \lor (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_4)$ 或

$$F \Leftrightarrow (x_1 \land x_3 \land \neg x_4) \lor (\neg x_2 \land x_3 \land x_4) \lor (\neg x_1 \land x_4)$$

课堂练习

有一盏灯由3个开关控制,要求按动任何 一个开关都能使灯由亮变黑或由黑变亮, 试设计一个这样的组合电路.