

09 (링크상태, 경로벡터) 라우팅과 멀티 캐스팅

링크상태 라우팅과 경로벡터 라우팅에 대해서 살펴본다.

09 (링크상태, 경로벡터) 라우팅과 멀티 캐스팅

멀티 캐스팅과 멀티캐스트에서 사용되는 주소와 그룹관리, 그리고 멀티캐스팅 패킷들을 라우팅하는 방법에 대해 살펴본다.

09 (링크상태, 경로벡터) 라우팅과 멀티 캐스팅

링크상태 라우팅과 경로벡터 라우팅

멀티캐스팅

- → 링크 상태 라우팅(Link State Routing)
 - ▶ 모든 노드가 전체 네트워크에 대한 구성도를 만들어서 경로를 구함
 - ㅇ 각 노드는 다른 모든 노드로부터 최단 경로를 구함
 - 각 노드는 Dijkstra's 최단 경로 알고리즘을 사용하여 라우팅 테이블을 구축
 - 네트워크에 변화가 생기면(링크 장애 등) 각 노드는 네트워크 구성도 갱신
 - ≫ OSPF(Open Shortest Path First) 라우팅 프로토콜은 링크 상태 라우팅 방법을 사용

→ 링크 상태 라우팅(Link State Routing)

- → 링크 상태 라우팅(Link State Routing)
 - ≫ 전체 네트워크 토폴로지는 각 노드의 부분정보를 모아서 구할 수 있음

- → 링크 상태 라우팅(Link State Routing)
 - ≫ 알고리즘의 동작
 - ㅇ 각 라우터는 인터넷의 전체 그림을 그려야 함
 - 이웃에 관한 정보를 공유
 - 모든 라우터와 공유
 - 변화가 발생하면 정보를 공유

- → 링크 상태 라우팅(Link State Routing)
 - ≫ 링크 상태 라우팅의 동작

→ 링크 상태 라우팅(Link State Routing)

≫ 예제

- → 링크 상태 라우팅(Link State Routing)
 - >>> Flooding of A's LSP

→ 링크 상태 라우팅(Link State Routing)

≫ 링크 상태 데이터베이스

Advertiser	Network	Cost	Neighbor
Α	14	1	В
Α	78	3	F
Α	23	2	E
В	14	4	Α
В	55	2	С
С	55	5	В
С	66	2	D
D	66	5	С
D	08	3	E
E	23	3	Α
E	08	2	D
F	78	2	А
F	92	3	-

모든 라우터가 이 테이블을 갖고 있다.

- ◆ 경로 벡터 라우팅(Path Vector Routing)
 - ≫ BGP(Border Gateway Protocol)은 자율 시스템 간의 라우팅 프로토콜
 - 현재 사용되는 버전은 BGP4
 - o 경로 벡터 라우팅 방법을 사용
 - 라우팅 테이블에 목적지까지의 경로가 명시
 - 경로는 자율 시스템의 리스트로 표현

◆ 경로 벡터 라우팅(Path Vector Routing)

- 测 Loop Prevention(루프방지)
 - 데이터 수신 시 라우터가 자신의 자율 시스템이 목적지 경로 항목에 있는지를 확인
 - 만약 포함되어 있다면 Loop에 포함됐으므로 해당 데이터는 무시
- >>> Policy Routing(정책 라우팅)
 - 경로 벡터 라우팅을 통해 쉽게 구현 가능
 - 데이터 수신 시 라우터는 경로를 확인 가능
 - 경로 확인 시 등록된 자율시스템 중 일부가 정책에 반대되면 그 경로와 목적지를 무시

→ 경로 벡터 라우팅(Path Vector Routing)

Network	Next Router	Path
N01	R01	AS14,AS23,AS67
N02	R05	AS22,AS67,AS05,AS89
N03	R06	AS67,AS89,AS09,AS34
N03	R12	AS62,AS02,AS09

<u>○</u>9 (링크상태, 경로벡터) 라우팅과 멀티 캐스팅

링크상태 라우팅과 경로벡터 라우팅

멀티캐스팅

