

Niepubliczne Liceum Ogólnokształcące nr 81 SGH TEST EGZAMINACYJNY – 2020 r.

kod ucznia

Zadania egzaminacyjne – MATEMATYKA – grupa A

			Punkty:/	20
Zadanie 1 (1 pkt)				
wysokości 300	zł oraz doda sprzedał trzy sar	tkowo 0,5% kwoty	ę za każdy sprzedany samoch y za jaką sprzedano samo wotę 84 000 zł. Ile premii otrzyn	chód.
A) 1320 zł	B) 720 zł	C) 1020 zł	D) 942 zł	
Zadanie 2 (1 pkt)				
wygrywający upow	vażnia do odbior nód uzyskany	u nagrody w wysokośc	40 losów wygrywających. Każo ci 15 zł. Jak powinna być cena jeo tkich losów był wyższy od	dnego
A) 1,2 zł	B) 1,6 zł	C) 2,6 zł	D) 2,5 zł	
• •	wo zdarzenia po	-	losujemy jedną liczbę. wylosowana liczba jest kwadrat	tem
A) $\frac{4}{30}$	B) $\frac{5}{30}$	C) $\frac{6}{30}$	D) $\frac{10}{30}$	

BRUDNOPIS

Zadanie 4 (1 pkt)

W tabeli podano, w jaki sposób zmienia się cena biletu na 1 przejazd metrem w zależności od pory dnia.

Cena podstawowa biletu	8 zł
Cena biletu w godzinach 16.00–18.00	cena podstawowa podwyższona o 14%
Cena biletu w godzinach 7.00–8.00	cena podstawowa podwyższona o 52%
Cena biletu w godzinach 22.00–24.00	cena podstawowa obniżona o 36%
Cena biletu w pozostałych godzinach	cena podstawowa

Bilet na jeden przejazd metrem o godz. 23.00 jest tańszy od jednego przejazdu o godz. 7.00 o

- A) 4 zł
- B) 7,04 zł
- C) 1,12 zł
- D) 4,16 zł

Zadanie 5 (1 pkt)

Rozcinając powierzchnię boczną walca o promieniu r otrzymujemy kwadrat. Objętość tego walca wyraża się wzorem

- A) $2\pi^2 r^3$ B) $2\pi r^3$
- C) $\pi^2 r^4$ D) $\pi^2 r^3$

Zadanie 6 (1 pkt)

Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Jeżeli długość każdej krawędzi podstawy ostrosłupa prawidłowego czworokatnego zwiększymy 2 razy, a jego wysokość zmniejszymy 2 razy, to objętość ostrosłupa

- A) zwiększy się czterokrotnie.
- B) zwiększy się dwukrotnie.
- C) zmniejszy się dwukrotnie.
- D) nie zmieni się.

Zadanie 7 (1 pkt)

Z sześcianu o objętości 27 cm³ usunięto jedną kostkę sześcienną o krawędzi 1 cm. Ściana usunietej kostki należała do ściany sześcianu, ale żaden z wierzchołków tej kostki nie należał do krawędzi sześcianu. Pole powierzchni powstałej bryły jest równe

- A) $48 cm^2$

- B) $54 cm^2$ C) $58 cm^2$ D) $59 cm^2$

BRUDNOPIS

Zadanie 8 (1 pkt)

Ile spośród punktów: A = (-2, -3), B = (1, 8), C = (2, 10) należy do wykresu funkcji f(x) = 3x + 4?

A) nie należy żaden

B) należy tylko jeden

C) należą tylko dwa

D) należą wszystkie trzy

Zadanie 9 (1 pkt)

Do wykresu funkcji liniowej f należą punkty A = (1,2) i B = (-2,5). Funkcja f ma wzór

$$A) \ f(x) = x + 3$$

B)
$$f(x) = x - 3$$

A)
$$f(x) = x + 3$$
 B) $f(x) = x - 3$ C) $f(x) = -x - 3$ D) $f(x) = -x + 3$

$$D) f(x) = -x + 3$$

Zadanie 10 (1 pkt)

Z pudełka z metalowymi kulkami wyjęto najpierw 105 kulek, a potem $\frac{1}{3}$ kulek, które pozostały w pudełku. W wyniku tych dwóch operacji liczba kulek w pudełku zmniejszyła się czterokrotnie. Ile kulek było początkowo w pudełku?

Zadanie 11 *(1 pkt)*

Tomek otrzymał torebkę, w której było n cukierków. Sam zjadł z tej torebki 8 cukierków, a pozostałe cukierki rozdzielił pomiędzy swoich 5 kolegów. Czworo z tych chłopców otrzymało tyle samo cukierków, a piąty z nich, Szymon, otrzymał o jeden cukierek więcej od pozostałych. Liczba cukierków, które otrzymał Szymon jest równa

A)
$$\frac{n-2}{5}$$

B)
$$\frac{n-4}{5}$$

C)
$$\frac{n}{5}$$
 – 9

A)
$$\frac{n-2}{5}$$
 B) $\frac{n-4}{5}$ C) $\frac{n}{5} - 9$ D) $\frac{n-8}{5} + 1$

Zadanie 12 *(1 pkt)*

Liczby $m \ge 1$ i $n \ge 1$ spełniają warunek $\frac{m+1}{n} = \frac{5m}{2n+1}$. Wtedy liczba n jest równa

A)
$$\frac{m+1}{3m+2}$$

B)
$$\frac{m+1}{3m-2}$$

A)
$$\frac{m+1}{3m+2}$$
 B) $\frac{m+1}{3m-2}$ C) $\frac{m+1}{7m-2}$ D) $\frac{m+1}{7m+2}$

$$D) \frac{m+1}{7m+2}$$

5

BRUDNOPIS

Zadanie 13 (1 pkt)

W tabeli podano oceny czterech uczniów, oraz obliczone na podstawie tych danych: średnia i mediane.

	Oceny	Średnia arytmetyczna	Mediana
A)	3, 4, 3, 5, 3	3,6	3
B)	4, 3, 4, 5, 3	3,7	4
C)	2, 3, 2, 4, 3	2,8	3
D)	4, 3, 5, 5, 4	4,2	4

Wskaż, w którym wierszu tabeli popełniono błąd w obliczeniach.

Zadanie 14 *(1 pkt)*

Wiadomo, że mediana liczb x, x + 1, x + 3, x + 7, x + 9, x + 20 jest równa 9. Zatem suma najmniejszej i największej z tych liczb jest równa

- A) 5
- B) 26
- C) 28
- D) 4

Zadanie 15 *(1 pkt)*

Trójkąt ABC ma boki długości 4 cm, 13 cm, 15 cm oraz pole równe 24 cm^2 . Najdłuższa wysokość trójkąta DEF podobnego do trójkąta ABC w skali 1:3 ma długość

- A) 4 cm
- B) $\frac{16}{13}$ cm C) 2 cm
- D) $\frac{16}{15}$ cm

Zadanie 16 *(1 pkt)*

W równoległoboku ABCD kąt przy wierzchołku A ma większą miarę, niż kąt przy wierzchołku D. Suma miar pewnych trzech kątów tego równoległoboku jest równa 210°. Miara kata przy wierzchołku C równoległoboku jest równa A/B.

- A) 150°
- B) 120°

Miara kata przy wierzchołku A jest C/D razy większa od miary kata przy wierzchołku D.

- C) 4
- D) 5

F	BRUDNOPIS

Zadanie 17 (1 pkt)

W równoległoboku ABCD dłuższa podstawa ma długość |AB| = 15 cm. Wysokości tego równoległoboku mają długości: 8 cm i 12 cm. Zatem krótsza podstawa równoległoboku ma długość

A) 20 cm

B) 10 cm

C) 3,2 cm

D) 1,6 cm

Zadanie 18 (1 pkt)

Rozwiązaniem układu równań $\begin{cases} 3x - 5y = 0 \\ 2x - y = 14 \end{cases}$ jest para (x, y) liczb takich, że

A) x < 0 i y < 0 B) x < 0 i y > 0 C) x > 0 i y < 0 D) x > 0 i y > 0

Zadanie 19 *(1 pkt)*

Jacek i Ola testują swoje elektryczne deskorolki. W tym celu zmierzyli czasy przejazdu na trasie 400 m. Ola pokonała tę trasę w czasie 160 s, a Jacek – w czasie 100 s. Różnica średnich prędkości uzyskanych przez Jacka i przez Olę jest równa

A) $1.5\frac{km}{h}$ B) $5.4\frac{km}{h}$ C) $9\frac{km}{h}$ D) $14.4\frac{km}{h}$

Zadanie 20 (1 pkt)

Basen ma kształt prostopadłościanu, którego podstawa (dno basenu) ma wymiary 15 m na 10 m. Do basenu wlano 240 m^3 wody, która wypełniła go do $\frac{4}{5}$ głębokości. Jaka jest głębokość tego basenu?

A) 1,28 m

B) 1,5 m

C) 2 m

D) 3 m

BRUDNOPIS
