Eigen Values and Eigen Vectors: Level 3- Tutorial Problems

- 1. For the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, A^{-1} is
 - (1) $A^2 2A$
 - (2) $A^2 + 2A + 3I$
 - (3) $A^2 2A I$
 - (4) A 3I
- 2. Consider the system of equations Ax = cx, where A is an n × n real matrix, x is an n × 1 real matrix, and c is a real scalar. Let (c_i, x_i) be an eign pair of an eign value and its corresponding eigen vector of A. Which of the following statements is not correct?
 - (1) for homogenous $n \times n$ system of linear equations, (A cI)x = 0 having a non-trivial solution, the rank of (A cI) < n
 - (2) for the matrix A^m , m beign a positive integer, (c_i^m, x_i^m) will be the eigen pair for all i
 - (3) If $A^T = A^{-1}$, then $|c_i| = 1$, for all *i*
 - (4) If $A^T = A$, then c_i is real for all i
- 3. The minimal polynomial of the matrix $A = \begin{bmatrix} 0 & 0 & 0 & 4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ is
 - (1) $(x^2-1)(x^2-4)$
 - (2) $(x^2+1)(x^2-4)$
 - $(3) (x^2-1)(x^2+4)$
 - (4) $(x^2+1)(x^2+4)$
- 4. Let P, M and N be $n \times n$ matrices such that M and N are non-singular. If x is an eigen vector of P corresponding to the eigen value λ , then an eigen vector of $N^{-1}MPM^{-1}N$ corresponding to λ is
 - (1) $MN^{-1}x$
 - (2) $M^{-1}Nx$
 - (3) $NM^{-1}x$
 - $(4) N^{-1}Mx$
- 5. If $A = \begin{bmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{bmatrix}$ where a, b, c are non-zero real numbers, then A has
 - (1) three non-zero real eigen values
 - (2) purely imaginary eigen values
 - (3) two non-zero real eigen values
 - (4) only one non-zero real eigen value
- 6. If $A = \begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix}$, $0 < x < \pi$, then A
 - (1) is skew symmetric
 - (2) is orthogonal
 - (3) is symmetric
 - (4) has no real eigen value

- 7. Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ and let α_n and β_n denote the two eigenvalues of A^n such that $|\alpha_n| \ge |\beta_n|$. Then
 - (1) $\alpha_n \to \infty$ as $n \to \infty$
 - (2) $\beta_n \to 0 \text{ as } n \to \infty$
 - (3) β_n is positive if n is even
 - (4) β_n is negative if n is odd.
- 8. Let n be an odd number ≥ 7 . Let $A = [a_{ij}]$ be an $n \times n$ matrix with $a_{i,i+1} = 1$ for all i = 1, 2, ..., n-1 and $a_{n,1} = 1$. Let $a_{ij} = 0$ for all the other pairs (i, j). Then we can conclude that
 - (1) A has 1 as an eigenvalue.
 - (2) A has -1 as an eigenvalue.
 - (3) A has at least one eigenvalue with multiplicity ≥ 2
 - (4) A has no real eigenvalues.
- 9. Let A be an $n \times n$ matrix with $n \geq 2$ with chara-polynomial $x^{n-2}(x^2-1)$, then
 - (1) $A^n = A^{n-2}$
 - (2) $Rank(A) \geq 2$
 - (3) Rank(A) = 2
 - (4) there exists non-zero vectors x & y such that A(x+y) = x y
- 10. Let A be a real symmetric matrix and B = I + iA, where $i^2 = -1$. Then
 - (1) B is invertible if and only if A is invertible.
 - (2) All eigen values of B are necessarily real.
 - (3) B I is necessarily invertible
 - (4) B is necessarily invertible
- 11. Consider the matrix

Consider the matrix
$$A(x) = \begin{pmatrix} 1 + x^2 & 7 & 11 \\ 3x & 2x & 4 \\ 8x & 17 & 13 \end{pmatrix}; x \in \mathbb{R}. \text{ Then}$$

- (1) A(x) has eigenvalue 0 for some $x \in \mathbb{R}$
- (2) 0 is not an eigenvalue of A(x) for any $x \in \mathbb{R}$
- (3) A(x) has eigenvalue 0 for all $x \in \mathbb{R}$
- (4) A(x) is invertible for every $x \in \mathbb{R}$
- 12. Let $P_A(x)$ denote the characteristic polynomial of a matrix A. Then for which of the following matrices, $P_A(x) P_{A^{-1}}(x)$ is a constant?

$$1. \left(\begin{array}{cc} 3 & 3 \\ 2 & 4 \end{array}\right)$$

$$2. \left(\begin{array}{cc} 4 & 3 \\ 2 & 3 \end{array}\right)$$

$$3. \left(\begin{array}{cc} 3 & 2\\ 4 & 3 \end{array}\right)$$

$$4. \left(\begin{array}{cc} 2 & 3\\ 3 & 4 \end{array}\right)$$