Bachelor of Science Semester:-5 Group theory

Group Theory

Groupoid or Binary Algebra Definition

- > A non-empty set G equipped with one binary operation is called groupoid
 - > i.e. G is a Groupoid is closed for *.

It is denated by (G,*).

For Example :- (N,+), (Z, -), (Q, x) etc.

Note: - Groupoid is also called Quasi Group.

Semi Group :- Definition

> An Algebraic Structure (G, *) is called a semi Group if the binary operation * satisfy associative Property

i.e. :- [G] $(a * b) * c = a * (b * c), \forall a \in G$

Ex.1

The algebraic structures (N,+), (Z,+), (Z,x), (Q,x) are semi groups but the structure (Z,-) is not so because subtraction, (-) is associative.

Ex. 2

The structures (p(s), u) and (P(s), \cap) where P(s) is the power set of a set S are Semi Groups as both the Operations Union (U) an intersection (\cap) are associative.

Monoid: Definition

A Semi Group is called monoid if there exist an identity element 'e' in G such that [G2] $e * a = a * e = a, \forall a \in G$

Ex.1

The Semi Group (N, x) is Monoid because 1 is the identity for the multiplication. But the Semi Group (N, +) is not because 0 is the identity for addition is not in N.

Ex. 2

The Semi Group (P(s), u) and (P(s), \cap) are monoid because Φ and S are the identity respectively for union (u) and (\cap) in P(s).