江苏省南通中学 2020 学年第一学期 高一阶段性质量检测

数学

		<i>></i>	•					
命题范围:集合、常用逻辑用语、不等式、指数与对数								
	试卷分值	:150 分	考试时间: 120) 分钟				
		班级	姓名	2020年10	月 9 日			
	、单项选择题(本)	题共8小题,每小规	题 5 分,共 40 分.	在每小题给	出的四个选项中,			
	只有一项是符合题目	要求的.)						
1.	集合 $A = \{x \in N \mid -2 < x\}$	<2}的真子集个数是	<u> </u>					
	A. 8;	B. 7;	C. 4;		D. 3.			
2.	下列表述正确的是(▲	<u>.</u>)						
	A. $\varnothing \subseteq \{0\}$	B. $\varnothing \in \{0\}$	C. $0 \in \mathbb{Z}$	5	D. $\{0\}\subseteq\emptyset$			
3.	已知集合 $A = \{a-2, a^2 + a^2 \}$	$-4a,10$ },若 $-3 \in A$,则实数 a 的值为((<u>A</u>)				
	A. -1 ;	В. –3;	С. –3	或-1;	D. 无解			
4.	如图, U 是全集,集合 Δ	$A \times B$ 是集合 U 的两	个子集,则图中阴影	/部分所表示的	り集合是(▲)			
				A	B U			
	A. $A \cap (\check{Q}_U B)$;	B. $B \cap (\check{Q}_U A)$;	C. (療A)∩($_{U}B)$;	D. $\delta_U(A \cap B)$.			
5.	命题 P : $\forall x \in R$, $2x +$	$1>0$,则 $\neg p$ (<u> </u>					
	A. $\neg p : \exists x_0 \in R$, 2	$2x_0 + 1 > 0 ;$	В. ¬	$p: \ \exists x_0 \in R$	$, 2x_0 + 1 \le 0;$			
	C. $\neg p : \exists x_0 \in R$, 2	$2x_0 + 1 \ge 0$;	D. ¬	$p: \ \exists x_0 \in R$	$2x_0 + 1 < 0$.			
6.	设 a , b , c 均为不等于	1的正实数,则下列等	等式中恒成立的是(_)			
	A. $\log_a b \cdot \log_c b =$	$=\log_c a$;	B. $\log_a b \cdot \log_a b$	$\log_c a = \log_c b$, ,			

C. $\log_a(bc) = \log_a b$	$\log_a c$;	$D. \log_a(b+c) = \log_a b$	$b + \log_a c$.
7. 下列说法中正确的是(<u> </u>		
A. 当 $x > 1$ 时, $x + \frac{1}{x}$ 的	最小值为2;	B. 当 $x < 0$ 时, $x + \frac{1}{x}$	的最小值为-2;
C. 当 $0 < x < 1$ 时, \sqrt{x}	$+\frac{1}{\sqrt{x}}$ 的最小值为2;	D. $\exists x > 2$ 时, $\sqrt{x} + -$	$\frac{2}{\sqrt{x}}$ 的最小值为 $2\sqrt{2}$.
8. 已知二次函数 $y = x^2 + ax + a$	$-b (a, b \in R)$ if	$_{ m J}$ 最小值为 $_{ m 0}$,若关于 $_{ m x}$ 的不管	等式 <i>y < c</i> 的解集为区
间 $(m,m+6)$,则实数 c	的值为(▲)	
A. 9;	B. 6;	C. 3;	D. $\frac{1}{3}$.
二、多项选择题(本题)	共4小题,每小题 5	5 分,共 20 分. 在每小题组	合出的选项中,有多
项符合题目要求.全部选为	对的得 5 分,部分	选对的得3分,有选错的得	10分.)
9.	$B = \left\{ x \mid mx - 1 = 0 \right\}$,若 $A \cap B = B$,则实数 m 自	的值可以为(▲)
A. $\frac{1}{2}$;	31;	C. 0;	D. $-\frac{1}{2}$.
10. 下列说法正确的是(▲)		
A. 设 a , b , $c \in R$,	则关于 x 的方程 ax^2	+bx+c=0有一根为 -1 的一	-个充要条件是
a-b+c=0;			
B. $\forall a \in R$, $\exists x \in R$,	使得 $ax > 2$;		
C. 函数 $y = x^2 + x + 1$?	没有零点;		
D. 方程 $\log_{\sqrt{x}}(2x) = 4$	$\frac{1}{4}$ 的解为 $x=2$.		
11. 若关于 x 的不等式 $ax^2 + bx$	+c>0的解集为($-c$	$(\infty,-2)\cup(3,+\infty)$, $($)
A. $a > 0$;	B. 不等式	$tbx + c > 0$ 的解集是 $\{x \mid x < t\}$	-6;
C. $a+b+c>0$;	D. 不等ī	式 $cx^2 - bx + a < 0$ 的解集为(-	$-\infty, -\frac{1}{3}) \cup (\frac{1}{2}, +\infty)$.
12. 已知 $a > 0$, $b > 0$, 且 $a +$	$b=2$,则($ extbf{ exitbf{ extbf{ exitbf{ extbf{ extbf{\exitbf{ extbf{ exi}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$)	
A. $\sqrt{a} + \sqrt{b} \le 2$;	B. $a^2 + b^2 \ge 4$;	C. $a^{-1} + b^{-1} \ge 2$;	D. $a^3 + b^3 \ge 2$.
三、填空题(本大题共4	小题,每小题5分	分, 共 20 分.)	

- 13. 某班 45 名学生中, 有围棋爱好者 22 人, 足球爱好者 30 人, 同时爱好这两项的人最少有 ▲ 人.

- **16.** 实数 x , y 满足 $x^2 + y^2 = 6$, 则 $\sqrt{2}xy + 4x + \sqrt{2}y$ 的最大值为______.

四、解答题(本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.)

17. (本题满分 5+5 分)

已知集合 $A = \{x \mid x < a\}$, $B = \{x \mid 1 < x < 6\}$.

- (1) 若a = 5时,求 $A \cap B$, $A \cup B$.

18. (本题满分 5+7 分)

给出如下三个条件:①充分不必要;②必要不充分;③充要.请从中选择一个条件补充到下面的横线上.

注:如果选择多个条件分别解答,按第一个解答计分.

19. (本题满分 6+6 分)

(1) 不查表计算:
$$\lg^2 5 - \lg^2 2 + \lg 4 + (\frac{3}{2})^{-\frac{1}{3}} \times (-\frac{5}{8})^0 - \sqrt{(-\frac{2}{3})^{\frac{2}{3}}}$$
;

(2) 已知 $\log_{18} 9 = a$, $18^b = 5$, 试用 a, b 表示 $\log_{36} 5$.

20. (本题满分 6+6 分)

已知
$$y = \frac{ax-3}{x+1}$$
 ($a \in R$).

- (1) 若关于x的不等式y < 1的解集为区间(-1,4),求a的值;
- (2) 设 $a \le 0$,解关于x的不等式y > 0.

21. (本题满分 6+6 分)

已知
$$y = a^2x + \frac{c^2}{x-b}$$
 (a, b, c为常数,且 $a > 0$, $c > 0$).

- (1) 当 a = 1, b = 0时, 求证: $|y| \ge 2c$;
- (2) 当b=1时,如果对任意的x>1都有y>a恒成立. 求证: a+2c>1.

22. (本题满分 4+4+4 分)

如图,长方形 ABCD 表示一张 6×12 (单位:分米)的工艺木板,其四周有边框(图中阴影部分),中间为薄板.木板上一瑕疵(记为点 P)到外边框 AB,AD 的距离分别为1分米,2分米.现欲经过点 P 锯掉一块三角形废料 MAN,其中 M ,N 分别在 AB ,AD 上.设 AM ,AN 的长分别为 M 分米,N 分米。

(1) 求证:
$$\frac{2}{m} + \frac{1}{n} = 1$$
;

- (2) 为使剩下木板 MBCDN 的面积最大,试确定 m, n 的值;
- (3) 求剩下木板 MBCDN 的外边框长度(MB ,BC ,CD ,DN 的长度之和)的最大值及取得最大值时 m ,n 的值.

江苏省南通中学 2020 学年第一学期 高一阶段性质量检测答案

	数	学						
命题范围:集合、常用逻辑用语、不等式、指数与对数								
试卷分	分值:150 分	考试时间: 120 分钟						
	班级	姓名 2020 9	军 10 月 9 日					
一、单项选择题	(本题共8小题,每小)	题 5 分,共 40 分. 在每小	·题给出的四个选项中,					
只有一项是符合题	[目要求的.)							
1. 集合 $A = \{x \in N \mid -2\}$	(< x < 2) 的真子集个数是	<u>!</u> (<u>\</u>)						
A. 8;	в. 7;	C. 4;	D. 3.					
【答案】D.								
2. 下列表述正确的是((
A. $\varnothing \subseteq \{0\}$	B. $\varnothing \in \{0\}$	C. 0∈∅	D. $\{0\}\subseteq\emptyset$					
【答案】A.								
3. 已知集合 $A = \{a-2, a^2+4a, 10\}$,若 $-3 \in A$,则实数 a 的值为(\triangle)								
A1;	В3;	C3或-1;	D. 无解					
【答案】B.								
4. 如图, U 是全集,集合 A 、 B 是集合 U 的两个子集,则图中阴影部分所表示的集合是($ riangle$								
		A	<i>B U</i>					
A. $A \cap (\eth_U B)$;	B. $B \cap (\check{\Diamond}_U A)$;	C. $(\cancel{P}A) \cap (_{U}B)$;	D. $\delta_U(A \cap B)$.					
【答案】B.								
5. 命题 $P: \forall x \in R$,	$2x+1>0, \bigcup \neg p (\qquad $	(

B. $\neg p : \exists x_0 \in R , 2x_0 + 1 \le 0;$

A. $\neg p : \exists x_0 \in R , 2x_0 + 1 > 0 ;$

C. $\neg p : \exists x_0 \in R , 2x_0 + 1 \ge 0$;

D. $\neg p : \exists x_0 \in R , 2x_0 + 1 < 0$.

【答案】B.

6. 设a, b, c均为不等于1的正实数,则下列等式中恒成立的是(

A. $\log_a b \cdot \log_c b = \log_c a$;

B. $\log_a b \cdot \log_c a = \log_c b$;

C. $\log_a(bc) = \log_a b \cdot \log_a c$;

D. $\log_a(b+c) = \log_a b + \log_a c$.

【答案】B.

7. 下列说法中正确的是 (▲)

A. 当 x > 1 时, $x + \frac{1}{x}$ 的最小值为 2; B. 当 x < 0 时, $x + \frac{1}{x}$ 的最小值为 -2;

C. 当0 < x < 1时, $\sqrt{x} + \frac{1}{\sqrt{x}}$ 的最小值为2; D. 当x > 2时, $\sqrt{x} + \frac{2}{\sqrt{x}}$ 的最小值为 $2\sqrt{2}$.

【答案】B.

8. 已知二次函数 $y = x^2 + ax + b$ (a, $b \in R$) 的最小值为0, 若关于x的不等式y < c的解集为区

间(m, m+6),则实数c的值为(\triangle

A. 9;

B. 6;

C. 3;

D. $\frac{1}{3}$.

【答案】A.

二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多 项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.)

9. 设 $A = \{x \mid x^2 - x - 2 = 0\}$, $B = \{x \mid mx - 1 = 0\}$, 若 $A \cap B = B$, 则实数 m 的值可以为 (\triangle)

A. $\frac{1}{2}$; B. -1;

C. 0;

D. $-\frac{1}{2}$.

【答案】A. B. C.

10. 下列说法正确的是 (▲)

A. 设a, b, $c \in R$, 则关于x的方程 $ax^2 + bx + c = 0$ 有一根为-1的一个充要条件是 a - b + c = 0:

- B. $\forall a \in R$, $\exists x \in R$, 使得 ax > 2;
- C. 函数 $y = x^2 + x + 1$ 没有零点;

D. 方程 $\log_{\sqrt{x}}(2x) = 4$ 的解为 x = 2.

数 2210 的位数是 309.

【答案】因为 $\sqrt{2}xy \le \frac{x^2}{2} + y^2$, $4x \le x^2 + 4$, $\sqrt{2}y \le \frac{y^2}{2} + 1$,

所以
$$\sqrt{2}xy + 4x + \sqrt{2}y \le (\frac{x^2}{2} + y^2) + (x^2 + 4) + (\frac{y^2}{2} + 1) = \frac{3}{2}(x^2 + y^2) + 5 = 14$$
,

当且仅当
$$x = 2$$
 , $y = \sqrt{2}$ 时取 "=",

所以 $\sqrt{2}xy + 4x + \sqrt{2}y$ 的最大值为14.

另解: 因为 $x^2 + y^2 = 6$,由三元柯西不等式 $(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) \ge (a_1b_1 + a_2b_2 + a_3b_3)^2$

得
$$(2x^2+4^2+2y^2)(y^2+x^2+1^2) \ge (\sqrt{2}xy+4x+\sqrt{2}y)^2$$
,

所以 $\sqrt{2}xy + 4x + \sqrt{2}y \le 14$, 故 $\sqrt{2}xy + 4x + \sqrt{2}y$ 的最大值为14.

四、解答题(本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.)

17. (本题满分 5+5 分)

已知集合 $A = \{x \mid x < a\}, B = \{x \mid 1 < x < 6\}.$

- (1) 若a=5时,求 $A\cap B$, $A\cup B$.
- (2) 若 $\overline{x}A \subseteq {}_{\mathbf{R}}B$, 求实数a的取值范围.

【解析】(1) a = 5时, $A = \{x \mid x < 5\}$, $B = \{x \mid 1 < x < 6\}$,

$$A \cap B = \{x \mid 1 < x < 5\}, A \cup B = \{x \mid x < 6\}.$$

(2) $\eth_R A = \{x \mid x \ge a\}, \quad \eth_R B = \{x \mid x \le 1 \text{ or } x \ge 6\},$

: $\overline{m}A \subseteq {}_{R}B$ $, ∴ a \ge 6$, 故实数 a 的取值范围是 $[6,+\infty)$.

18. (本题满分 5+7 分)

给出如下三个条件:①充分不必要;②必要不充分;③充要.请从中选择一个条件补充到下面的横线上.

已知集合 $P = \{x \mid 1 \le x \le 4\}$, $S = \{x \mid 1 - m \le x \le 1 + m\}$,则 $x \in P$ 是 $x \in S$ 的_____条件.

若存在实数m, 求出m的取值范围; 若不存在,请说明理由.

注:如果选择多个条件分别解答、按第一个解答计分.

【解析】若选择①,即 $x \in P$ 是 $x \in S$ 的充分不必要条件,则P S,则 $S \neq \emptyset$ 即 $1-m \le 1+m$ $= \begin{cases} 1-m \le 1 \\ 1+m > 4 \end{cases}$,两个等号不同时成立,解得 $m \ge 3$,故 $m \ge 3$,即实数m的取值范围是 $[3, +\infty)$;

若选择②,即 $x \in P \neq x \in S$ 的必要不充分,则S = P,

当 $S = \emptyset$ 时,1-m > 1+m,解得m < 0,

当 $S \neq \emptyset$ 时, $1-m \leq 1+m$, 解得 $m \geq 0$ 且 $\begin{cases} 1-m \geq 1 \\ 1+m \leq 4 \end{cases}$, 两个等号不同时成立, 解得 $m \leq 0$,

综上, 实数m的取值范围是(-∞,0];

若选择③,即 $x \in P$ 是 $x \in S$ 的充要条件,则P = S,即 $\begin{cases} 1-m=1\\ 1+m=4 \end{cases}$,此方程组无解,则不存在实数m,使 $x \in P$ 是 $x \in S$ 的充要条件.

19. (本题满分 6+6 分)

(1) 不查表计算:
$$\lg^2 5 - \lg^2 2 + \lg 4 + (\frac{3}{2})^{-\frac{1}{3}} \times (-\frac{5}{8})^0 - \sqrt{(-\frac{2}{3})^{\frac{2}{3}}};$$

(2) 已知 $\log_{18} 9 = a$, $18^b = 5$, 试用 a, b 表示 $\log_{36} 5$.

【解析】(1) 原式=1;

(2)
$$\pm 18^b = 5$$
 $4 \log_{18} 5 = b$, $\log_{36} 5 = \frac{\log_{18} 5}{\log_{18} 36} = \frac{\log_{18} 5}{\log_{18} (4 \times 9)} = \frac{\log_{18} 5}{\log_{18} 5} = \frac{\log_{$

$$\frac{\log_{18} 5}{2\log_{18} 2 + \log_{18} 9} = \frac{\log_{18} 5}{2(1 - \log_{18} 9) + \log_{18} 9} = \frac{b}{2 - a}.$$

20. (本题满分 6+6 分)

已知
$$y = \frac{ax-3}{x+1}$$
 ($a \in R$).

- (1) 若关于x的不等式y < 1的解集为区间(-1,4),求a的值;
- (2) 设 $a \le 0$,解关于x的不等式y > 0.

【解析】(1) 由
$$y < 1$$
 得 $\frac{ax-3}{x+1} < 1$,即 $\frac{ax-3}{x+1} - 1 < 0$,即 $\frac{(a-1)x-4}{x+1} < 0$,

所以
$$[(a-1)x-4](x+1) < 0$$
,由题意得 $\frac{4}{a-1} = 4$,则 $a = 2$;

(2)
$$y > 0 \oplus \frac{ax-3}{x+1} > 0$$
, $\oplus (ax-3)(x+1) > 0$.

①当a=0时,不等式即为-3(x+1)>0,则x<-1,此时原不等式解集为 $(-\infty,-1)$;

②当
$$a < 0$$
时,不等式即为 $(x - \frac{3}{a})(x+1) < 0$.

$$1^{\circ}$$
 若 $a < -3$,则 $\frac{3}{a} > -1$,所以 $-1 < x < \frac{3}{a}$,此时原不等式解集为 $(-1, \frac{3}{a})$;

$$2^{\circ}$$
 若 $a = -3$,则 $\frac{3}{a} = -1$,不等式为 $(x+1)^{2} < 0$, x 不存在,此时原不等式解集为 \varnothing ;

$$3^{\circ}$$
 若 $-3 < a < 0$,则 $\frac{3}{a} < -1$,所以 $\frac{3}{a} < x < -1$,此时原不等式解集为 $(\frac{3}{a}, -1)$.

21. (本题满分 6+6 分)

已知
$$y = a^2x + \frac{c^2}{x-b}$$
 (a, b, c为常数,且 $a > 0$, $c > 0$).

- (1) 当 a = 1, b = 0时, 求证: $|y| \ge 2c$;
- (2) 当b=1时,如果对任意的x>1都有y>a恒成立. 求证: a+2c>1.

【解析】(1) 当
$$a=1$$
, $b=0$ 时, $y=x+\frac{c^2}{x}$.

当
$$x > 0$$
 时, $|y| = |x + \frac{c^2}{x}| = x + \frac{c^2}{x} \ge 2\sqrt{x \cdot \frac{c^2}{x}} = 2c$, 当且仅当 $x = \frac{c^2}{x}$ 即 $x = c$ 时取 " = ";

当
$$x < 0$$
时, $-x > 0$, $|y| = |x + \frac{c^2}{x}| = -x + \frac{c^2}{-x} \ge 2\sqrt{(-x) \cdot \frac{c^2}{-x}} = 2c$,当且仅当 $-x = \frac{c^2}{-x}$

即 x = -c 时取 "=".

综上, |y|≥ 2c;

(2) 当b=1时,对任意的x>1都有y>0恒成立,即 $y=a^2x+\frac{c^2}{x-1}>0$ 对任意的x>1恒成

立, 即 $y_{\min} > a$.

因为
$$x > 1$$
,所以 $y = a^2x + \frac{c^2}{x-1} = a^2(x-1) + \frac{c^2}{x-1} + a^2 \ge 2\sqrt{a^2(x-1) \cdot \frac{c^2}{x-1}} + a^2 = 2ac + a^2$,

当且仅当
$$a^2(x-1) = \frac{c^2}{x-1}$$
即 $x = 1 + \frac{c}{a}$ 时取"=",所以 $2ac + a^2 > a$,又 $a > 0$,所以 $a + 2c > 1$.

22. (本题满分 4+4+4 分)

如图,长方形 ABCD 表示一张 6×12 (单位:分米)的工艺木板,其四周有边框(图中阴影部分),中间为薄板. 木板上一瑕疵(记为点 P)到外边框 AB ,AD 的距离分别为1分米,2分米. 现欲经过点 P 锯掉一块三角形废料 MAN ,其中 M , N 分别在 AB , AD 上. 设 AM , AN 的长分别为 M 分米,N 分米。

- (1) 求证: $\frac{2}{m} + \frac{1}{n} = 1$;
- (2) 为使剩下木板 MBCDN 的面积最大, 试确定 m, n 的值;
- (3) 求剩下木板 MBCDN 的外边框长度(MB , BC , CD , DN 的长度之和)的最大值及取得最大值时 m , n 的值.
- **【解析】**(1) 证明: 过点 P 分别作 AB , AD 的垂线,垂足分别为 E , F ,则 ΔPNF 与 ΔMPE 相似,

从而
$$\frac{PF}{ME} = \frac{NF}{PE}$$
,所以 $\frac{2}{m-2} = \frac{n-1}{1}$,即 $mn = m+2n$,所以 $\frac{2}{m} + \frac{1}{n} = 1$.

(2) 欲使剩下木板的面积最大,即要锯掉的三角形 废料 MAN 的面积 $S=\frac{1}{2}mn$ 最小. 由(1)知,

(3) 欲使剩下木板的外边框长度最大,即要m+n最小.

而
$$m+n=(m+n)(\frac{2}{m}+\frac{1}{n})=3+\frac{2n}{m}+\frac{m}{n}\geq 3+2\sqrt{\frac{2n}{m}\cdot\frac{m}{n}}=3+2\sqrt{2}$$
 (当且仅当 $\frac{2n}{m}=\frac{m}{n}$,

即 $m=2+\sqrt{2}$, $n=\sqrt{2}+1$ 时,"="成立),此时剩下木板外边框长度最大,为 $33-2\sqrt{2}$ 分米. 答: (2) m , n 的值分别为 4 , 2 ;

(3) 剩下木板的外边框长度的最大值为 $33-2\sqrt{2}$ 分米,此时 $m=2+\sqrt{2}$, $n=\sqrt{2}+1$.