CONVERGÊNCIA GLOBAL: COMEÇANDO PE QUALQUER PONTO INICIAL 2°,

O MÉTOPO CAMINHA PARA UMA SOLUÇÃO X\*.

CONVERGÊNCIA LOCAL: DADA UMA SOLUÇÃO X\*, EXISTE E>O

TAL QUE, SE ||x^-z\*|| \leq E || ENTÃO

O MÉTODO CAMINHA PARA Z\*.

CLOBAL.

LOCAL.

O MÉTO PO PE NENTON (PURO) PODE NÃO CONVERGIR GLOBALMENTE (EXEMPLO DA ALLA PASSADA).



SEUA DADA UMA FUNÇÃO  $g: \mathbb{R}^m \longrightarrow \mathbb{R}^p$ . DIZEMOS QUE g  $\not\in$  LIPSCHITZ (-CONTÍNUA) SE EXISTE L > 0 TAL QUE  $\|g(\pi) - g(y)\| \le L \|\chi - y\|$ ,  $\forall \chi, y \in \mathbb{R}^m$ .

OBS.:1) TODA FUNÇÃO LIPSCHITZIANA É CONTÍNUA.

DE FATO,  $\chi - y \rightarrow 0$  ENTÃO  $g(x) - g(y) \rightarrow 0$ .

2) NEM TODA FUNÇÃO CONTÍNUA É LIPSCHITZIANA.

 $\underline{\xi}$  :  $f(x) = e^{x}$ 

## COMO MEDIMOS A VELOCIPADE DE UM ALGORITMO

PISTANCIA ENTRE O ITERANDO DO ALGORITMO À SOLUETE; (ERRO)  $C_{x} = \|\chi^{x} - \chi^{*}\|.$ 



ORDEM DE CONVERGÊNCIA

SEJA PAKS COM LIM ZK = Z\* . A ORDEM DE

CONVERGÊNCIA DE PAKS À Z\* É

LINEAR SE EXISTE RE(0,1) TAL QUE

CX44 \ Text Pex , \ \ K GRANDE.

· SUPERLINEAR SE EXISTE 3TK THE QUE TK > 0, lim TK = 0

E CK+1 = Nx Cx, XX GRANDE.

• QUADRATICA SE EXISTE C > 0 TAL QUE  $e_{KH} \leq c(e_{K})^{2}, \forall K GRANDE.$ 

LINEAR: 
$$n = \frac{1}{2}$$
 | Superlinear:  $n_x = \frac{1}{k+2}$  | QUADRATICA:  $C = 1$ 
 $e_0 = \frac{1}{2}$  |  $e_0 = \frac{1}{2}$  |  $e_0 = \frac{1}{2}$  |  $e_0 = \frac{1}{2}$ 
 $e_1 < \frac{1}{4}$  |  $e_1 < \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{4}$  |  $e_1 < \frac{1}{4} \cdot \frac{1}{3} = \frac{1}{4}$  |  $e_2 < \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4}$  |  $e_3 < \frac{1}{4} \cdot$ 



- · MÉTODOS DE DESCIDA COM CONVERGÊNCIA CLOBAL COSTUMAM TER ORDEM LINEAR...
- · MÉTODO DE NEWTON TEM ORDEM QUADRATICA SE VALE LMA HIPOTESE DE LIPSCHITZ:

Vimos que Newton não converge globalmente.

Porém, perto da solução ele é rápido (convergência quadrática)

Ideia do método de descida usando Newton (aula passada):

- 1. Inicie com qualquer ponto xº
- 2. Tente a direção de Newton. Se der certo, continue. Se não der certo, tome a direção do gradiente.
- 3. Veremos adiante que próximo à solução Newton sempre dá certo (mediante algumas hipóteses).

O esquema de descida se encarrega de "chegar próximo à solução", e Newton se encarrega de acelerar a convergência!

