НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

VİTMO

Электрический привод

Лабораторная работа №3

Выполнил студент:

Мысов М.С.

Группа № R33372

Руководитель:

Маматов А.Г.

1. Задание

- 1) Исследование статических характеристик электропривода с АД с КЗР
- 2) Построение динамической модели АД с КЗР
- 3) Построение скалярного частотного управления АД с КЗП

2. Данные для расчета

Вариант – 10

Таблица 1 – характеристики двигателя

Технические данные двигателей основного исполнения, степень защиты IP54, класс нагревостойкости изоляции «F», 2p=6; n = 1000 об/мин

Тип двигателя	Номинальная мощность, кВт	Номинальная частота вращения, об/мин	Коэффициент полезного действия, %	Коэффициент мощности	Номинальный ток при 380 В, А	Номинальный момент, Нм	Индекс механической характеристики	Отношение пускового момента к номиналь- ному моменту	Отношение пускового тока к номинальному току	Отношение максималь- ного момента к номи- нальному моменту	Динамический момент инерции ротора, кг ^{.м²}	Масса, кг	Сервис-фактор
5A80MA6	0.75	930	70,0	0,68	2,4	7,7	1	2,0	4,5	2,3	0,0033	14	1,15

3. Расчет

Задание 1. Исследование статических характеристик электропривода с

Рисунок 1. Схема замещения двигателя

Расчет недостающих значений для определения параметров схемы замещения

$$U_{1N} = \frac{U_N}{\sqrt{3}} = 219.39 \text{ B}$$
 $I_{1N} = I_N = 2.4 \text{ A}$ $\omega_1 = 2\pi f = 314.16 \text{ рад/с}$ $z_p = \frac{2p}{2} = 3$ $s_N = 1 - \frac{n_N}{n_1} = 0.07$

Активное сопротивление статора

$$r_1 = \frac{U_{1N}I_{1N}\cos\phi_{1N} - M_N\omega_1/(m_1z_p)}{I_{1N}^2} = 15.498 \text{ Om}$$

Активное сопротивление ротора

$$r_{20}' = rac{m_1 z_p U_{1N}^2 s_N}{\omega_1 M_N} = 12.54 \; \mathrm{Om}$$

Критическое скольжение

$$s_{\rm m}(r_2') = \frac{s_{\rm N}(\lambda + \sqrt{\lambda^2 - A(r_2')})}{A(r_2')} = 0.43$$

Индуктивное сопротивление ветви короткого замыкания

$$x_{ks}(r'_2) = \sqrt{\frac{{r'_2}^2}{s_m(r'_2)}^2 - r_1^2} = 17.575 \text{ Om}$$

$$b(r_2') = \frac{x_{ks}(r_2')}{(r_1 + r_2'/s_N)^2 + (x_{ks}(r_2'))^2} = 0.00068 \text{ Om}$$

Индуктивное сопротивление ветви намагничивания

$$x_{\rm m}(r_2') = \frac{1}{(I_{\rm N}\sqrt{1-\cos^2\phi_{1\rm N}})/U_{1\rm N}-b(r_2')} = 136.23 \text{ Om}$$

$$I_2'(r_2') = \frac{U_{1N}}{\sqrt{(r_1 + r_2'/s_m(r_2'))^2 + x_{ks}(r_2')^2}} = 1.38 \text{ A}$$

Относительное значение опрокидывающего момента

$$\mu_m(r_2') = \frac{m_1 z_p (I_2(r_2'))^2 r_2'}{\omega_1 s_m M_N} = 0.167$$

Коэффициенты вытеснения

$$k_r(h) = h \frac{sh2h + \sin 2h}{ch2h - \cos 2h} = 1.13$$

$$k_x(h) = \frac{3}{2h} \frac{sh2h + sin2h}{ch2h - cos2h} = 0.96$$

Пусковой момент

$$\mu_s(h) = \frac{m_1 z_p U_{1N}^2 r_2' k_r}{\omega_1 \left(\left(r_1 + r_2' k_r(h) \right)^2 + \left(x_{1\sigma} + x_{2\sigma}' k_x(h) \right)^2 \right) M_n} = 2$$

Семейства механических характеристик

Рисунок 2 - M(n)

Рисунок 3 - механическая характеристика при изменении напряжения питания

Рисунок 4 - механическая характеристика при изменении частоты питания

Рисунок 5 – механическая характеристика при скалярном частотном регулировании

Рисунок 6 – механическая характеристика при скалярном частотном регулировании и IR компенсации

Рисунок 7 — механическая характеристика при скалярном частотном регулировании и IZ компенсации

Задание 2. Построение динамической модели АД с КЗР

Модель Simulink

Рисунок 8 – генератор 3-х фазного напряжения

Рисунок 9 – расчет тока статора

Рисунок 10 – ток статора в двухфазной неподвижной системе координат

Рисунок 11 – потокосцепление в двухфазной неподвижной системе координат

Рисунок 12 – график момента при прямом пуске АД

Рисунок 13 – график момента при прямом пуске АД

Рисунок 14 – график скорости при прямом пуске АД

Рисунок 15 – график тока статора

Модель Simscape

Рисунок 16 – схема Simcape

Рисунок 17 – график скорости при пуске в Simscape

Рисунок 18 – график тока статора

Задание 3. Построение скалярного частотного управления АД с КЗР

Рисунок 19 – частотный пуск АД без нагрузки

Рисунок 20 — частотный пуск АД с нагрузкой, с разными скоростями нарастания частоты

Рисунок 21 – график скорости при частотном пуске АД без нагрузки

Рисунок 22 — график скорости при частотном пуске АД с нагрузкой и разной скоростью управления

Рисунок 23 – график тока статора при частотном пуске АД без нагрузки

Рисунок 24 — график тока статора при частотном пуске АД с нагрузкой и скоростью нарастания частоты 75%

Рисунок 25 – график тока статора при частотном пуске АД с нагрузкой и скоростью нарастания частоты 100%

Рисунок 26 – график тока статора при частотном пуске АД с нагрузкой и скоростью нарастания частоты 150%

Вывод

В данной работе были успешно исследованы статические и динамические характеристики электропривода с АД с КЗР. Были построены семейства механических характеристик при разных регулированиях. А также модели в Simulink и Simscape, с помощью которых проведено моделирование прямого пуска АД и пуска с линейным увеличением частоты питания. Построены графики тока статора, момента и скорости.