Facultad: Ingeniería Escuela: Computación Asignatura: Base de datos I

Tema: Uso de sentencias SOL

Objetivo

- Modificar, eliminar e insertar registros en una tabla
- · Listar los registros de una tabla utilizando la sentencia select

Materiales y Equipo

- Computadora con SQL Server 2008.
- Guía Número 5

Introducción

En esta guía terminaremos de examinar los elementos que pueden ir en una instrucción SELECT así como las instrucciones que nos ayudan a definir una estructura de una base de datos y las instrucciones para poder realizar modificaciones a los objetos de la base de datos.

Sintaxis general de la consulta SELECT

```
SELECT sta de columnas>
[FROM <tabla(s) de origen >]
[WHERE <condición restrictiva >]
[GROUP BY <nombre de columna o expresión que utiliza una columna en la lista de selección>]
[HAVING <condición restrictiva basadas en los resultados de GROUP BY>]
[ORDER BY stas de columna>]
```

Ejemplo:

```
USE NORTHWIND
SELECT OrderID, Quantity As [Sin nombre de columna]
FROM [Order Details]
WHERE OrderID BETWEEN 11000 AND 11002
```

Nota: Observe el uso de corchetes en esta consulta. Se debe de utilizar corchetes si el nombre de un objeto (en este caso una tabla) tiene espacios de por medio en él, tenemos que delimitar el nombre utilizando corchetes o comillas simples, lo que permite a SQL Server saber dónde empieza y dónde termina el nombre.

Resultado de la consulta anterior es el siguiente:

ORDER ID	Sin nombre de columna
11000	25
11000	30
11000	30
11001	60
11001	25
11001	25
11001	6
11002	56
11002	15
11002	24
11002	40

Aunque se ha solicitado sólo tres pedidos, se están viendo cada línea individual de detalle del pedido. Podríamos utilizar una calculadora o podríamos utilizar la cláusula GROUP BY con un agregado (en este caso vamos a utilizar **SUM** ()) para obtener el total deseado.

```
SELECT OrderID, SUM (Quantity) As [Sin nombre de columna]
FROM [Order Details]
WHERE OrderID BETWEEN 11000 AND 11002
GROUP BY OrderID
```

Así obtiene lo que se está buscando:

ORDER ID	Sin nombre de columna
11000	85
11001	116
11002	135

Lo que hizo fue agrupar en una suma los ORDER ID de los resultados, es decir en la primera consulta aparecían

ORDER ID	Sin nombre de columna
11000	25
11000	30
11000	30

Con la función sum lo que hace es agrupar(en este caso por el ORDER ID) y realizar la suma, por eso da el resultado

ORDER ID	Sin nombre de columna	
11000	85	

TIPS: Puedo agregarle un titulo a la columna sin nombre con AS Como es de suponer, la función SUM devuelve totales; ¿pero totales de qué? Si no hubiésemos suministrado la cláusula GROUP BY, la función SUM habría sumado todos los valores de todas las filas para la columna con nombre. Sin embargo, en este caso hemos suministrado una cláusula GROUP BY y, por tanto, el total proporcionado por la función SUM es el total de cada grupo.

También podemos agrupar basándonos en múltiples columnas. Para ello, sólo tenemos que añadir una coma y el nombre de la siguiente columna.

Funciones de agregado

Las funciones de agregado realizan un cálculo sobre un conjunto de valores y devuelven un solo valor. Con la excepción de COUNT, las funciones de agregado omiten los valores NULL. Las funciones de agregado se suelen utilizar con la cláusula GROUP BY de la instrucción SELECT.

COUNT:

Devuelve el número de elementos de un grupo (conjunto de resultados).

SELECT COUNT(*) FROM Employees

AVG

Devuelve la media de los valores de un grupo. Los valores nulos se pasan por alto al probar a ejecutar la misma consulta que ejecutamos anteriormente, pero ahora vamos a modificarla para que devuelva el promedio de la cantidad por pedido en lugar del total de cada pedido:

4 Base de datos I, Guía 5

SELECT OrderID, AVG (Quantity) AS promedio FROM [Order Details] WHERE OrderID BETWEEN 11000 AND 11002 GROUP BY OrderID

El resultado es:

OrderID	promedio
11000	28
11001	29
11002	33

MAX / MIN:

MAX devuelve el valor máximo de la expresión o del valor de una columna y MIN lo contrario.

SELECT OrderID, MIN(Quantity) AS promedio FROM [Order Details] WHERE OrderID BETWEEN 11000 AND 11002 GROUP BY OrderID

NOTA: En realidad todas las funciones de agregado ignoran los valores NULL excepto COUNT (*).

Agrupar condiciones con la cláusula HAVING. Hasta el momento, hemos aplicado todas nuestras condiciones a filas específicas. Si una determinada columna en una fila no tiene un valor específico o no se encuentra dentro de un rango de valores, se omitirá toda la fila, y todo ello antes de pensar siquiera en las agrupaciones.

¿Qué pasaría si deseáramos agrupar condiciones? Es decir, ¿Qué pasaría si deseáramos que todas las filas se agregasen a un grupo pero sólo cuando los grupos se hubiesen acumulado completamente estaríamos preparados para aplicar la condición? Bueno, aquí es donde entra en acción la cláusula HAVING.

La cláusula HAVING sólo se utiliza si también existe una cláusula GROUP BY en la consulta. Mientras la cláusula WHERE se aplica a todas las filas antes incluso de tener la oportunidad de convertirse en parte de un grupo, la cláusula HAVING se aplica al valor agregado de dicho grupo.

Ejemplo:

Primero vamos a realizar un ejemplo que no lleve la cláusula HAVING y después vamos a utilizar el mismo ejemplo, pero ahora con la cláusula HAVING.

Sin HAVING

SELECT OrderID, SUM(Quantity) AS TOTAL FROM [Order Details]
GROUP BY OrderID

El resultado es:

El resultado es:			
OrderID	TOTAL		
10248	27		
10249	49		
10250	60		
10251	41		
10252	105		
10253	102		
10254	57		
10255	110		
10256	27		
10257	46		
10258	121		
10259	11		
10260	102		
10261	40		
10262	29		
10263	184		
10264	60		
10265	50		
10266	12		
10267	135		
10268	14		
10269	80	(830	
filas afectadas)			

Lamentablemente, es bastante difícil analizar una lista tan larga. Por tanto, vamos a dejar que SQL Server reduzca esta lista para ayudarnos a realizar nuestro análisis. Supongamos que sólo estamos interesados en cantidades de pedidos más grandes. ¿Podemos modificar la consulta para que devuelva la misma información pero limitándose a los pedidos cuya cantidad total esté por encima de 300? La respuesta es sí, y es tan fácil como añadir la cláusula HAVING.

Con HAVING

```
SELECT OrderID, SUM(Quantity) AS TOTAL FROM [Order Details]
GROUP BY OrderID
HAVING SUM(Quantity) > 300
```

El resultado es:

Como puede comprobar, podemos reducir rápidamente la lista hasta los elementos que nos interesan.

INSTRUCCION SELECT

Ejemplo:
USE Northwind
SELECT * FROM Employees

En la instrucción anterior la primera línea indica que utilizaremos la base de datos **Northwind**.

La segunda line se ha pedido seleccionar información (SELECT puede pensar en ello como en pedir que se muestre o consulte información). El asterisco * podría parecer algo extraño, pero realmente funciona igual que en cualquier otro sitio: es un **comodín**.

Cuando escribimos **SELECT** * estamos indicando que deseamos seleccionar todas las columnas de la tabla (En este caso la tabla **Employees**.) **FROM** indica que hemos terminado de especificar los elementos que deseamos ver y estamos a punto de indicar el origen de la información (el origen es la tabla **Employees**).

Ejemplo:

USE AdventureWorks
SELECT FirstName, Lastname, EmailAddress FROM Person.Contact

En esta consulta solamente se piden los campos **FirstName**, **Lastname** y **EmailAddress** de la table *Person.Contact*

LA CLAUSULA WHERE.

Esta cláusula nos permite colocar condiciones sobre los resultados deseados.

Los ejemplos que hemos visto hasta el momento son consultas SELECT sin restricciones en el sentido de que se han incluido en el resultado todas las filas de la tabla especificada. Las consultas sin restricciones son muy útiles para rellenar cuadros de lista y cuadros combinados y en otros escenarios en los que intentamos proporcionar un listado de dominio.

Ejemplo:

Ahora vamos a buscar información más específica de la tabla Person. Address de la base de datos *AdventureWorks*:

USE AdventureWorks

SELECT City, AddressLine1, PostalCode, StateProvinceID

FROM Person Address

WHERE StateProvinceID = 74

Los primeros 3 resultados son:

City	AddressLine1	PostalCode
Nevada	2487 Riverside Drive	84407
Salt Lake City	683 Larch Ct.	84101
Salt Lake City	6119 11th	84101

Ejemplo:

Esta sentencia listara productos que tengan un precio único mayor a 60 USE NORTHWIND

SELECT * FROM dbo.Products WHERE UnitPrice >60.00

Esta sentencia listara todas los campos de la tabla categoria donde el nombre de categoria tenga coincidencia con la palabra produ(en cualquier parte del nombre) SELECT * FROM dbo.Categories WHERE CategoryName LIKE '%produ%'

Operador	Efecto
=, >, <, >=, <=, <>, !=, !>, !<	Operadores de comparación estándar: funcionan como lo hacen en cualquier lenguaje de programación con un par de puntos importantes: 1) Lo que constituye "mayor que", "menor que" e "igual a" puede cambiar, dependiendo del orden de comparación seleccionado. Por ejemplo, "ROMEY" = "romey" es verdadero cuando se ha seleccionado una ordenación en la que no se tienen en cuenta las mayúsculas y minúsculas. Pero "ROMEY" <> "romey" es una situación en la que si se distinguen las mayúsculas de las minúsculas. 2) Tanto != como <> significan no igual a. 3) !>, !< significan no menor que y no mayor que respectivamente.

Insertando datos en una Tabla.

Operador	Efecto
AND, OR, NOT	Valores lógicos boléanos estándar. Puede utilizarlos para combinar múltiples condiciones en una cláusula WHERE. Con respecto al orden NOT se evalúa primero, posteriormente AND y por último OR. Si tiene que cambiar el orden de evaluación, puede utilizar paréntesis. Tenga en cuenta que no se admite XOR.
BETWEEN	La comparación es verdadera, TRUE, si el primer valor se encuentra comprendido entre el segundo y tercer valor, ambos inclusive. Es la equivalencia funcional de A >= B AND A <= B. cualquier valor especificado puede ser un nombre de columna, una variable o un literal. Ej: <columna> BETWEEN 1 AND 5</columna>
LIKE	Utiliza los caracteres % y _ como comodines. 1) % indica que un valor de cualquier longitud puede remplazar al carácter % (Ej: LIKE "ROM%"). 2) _ indica que cualquier otro carácter puede remplazar al carácter 3) La escritura de caracteres entre corchetes, [] indica que cualquier carácter único dentro de dichos corchetes es correcto ([a-c] significa que a, b y c son valores correctos. [ab] indica que los valores de a o b son correctos). 4) ^ funciona como operador NOT (indicando que se excluye el siguiente carácter).

El comando INSERT inserta una nueva fila en la tabla, al llenar las columnas con valores específicos.

Sintaxis:

INSERT INTO <tabla> [(lista de columnas)] VALUES (valores_de_datos)

Ejemplo:

INSERT demo(cod sucursal,nombre,apellido,telefono) INTO **VALUES** (14, 'Julia', 'Morales', '22552100')

Eliminando datos de una tabla.

El comando DELETE elimina filas de una tabla o vista, que satisfagan una condición específica.

Sintaxis:

DELETE FROM table_name WHERE condición.

Ejemplo:

DELETE FROM demo where nombre='julia'

Si no se incluye la cláusula WHERE, se eliminarán todas las filas en la tabla indicada.

Actualizando datos de una tabla.

Este comando permite la actualización de uno o más campos de una fila o grupo de filas de una tabla o vista. Las sentencias UPDATE se utilizan para modificar datos existentes.

Sintaxis:

```
UPDATE nombre_tabla | nombre_vista SET (nombre_columna = expresion |
DEFAULT | NULL)
WHERE (condición)
```

Eiemplo:

UPDATE demo **SET** cod_sucursal = '55' **WHERE** apellido= 'Morales'

Set: especifica la lista de columnas que se actualizarán.

Procedimiento

Ejercicio No 1

Realizar lo siguiente:

1. Crear una Base de datos con el siguiente nombre: SUCARNET_PRACTICA3.

Nota: recuerde que SUCARNET se refiere a su código de carné como estudiante de la UDB

- 2. Poner en uso la base de datos que acaba de crear con el comando USE. Ejemplo: USE SUCARNET_PRACTICA3
- 3. Crear las siguientes tablas dentro de la base de datos:

TABLA : ESTUDIANTES			
CAMPO	TIPO DE DATO	LONGITUD	
IdEstudiante	INT		
Nombres	VARCHAR	25	
Apellidos	VARCHAR	25	
Direccion	VARCHAR	50	
Telefono	VARCHAR	8	
sexo	char	1	

TABLA: MATERIAS		
CAMPO TIPO DE DATO LONGITUD		
IdMateria	INT	
Materia	VARCHAR	30

TABLA : NOTAS		
CAMPO TIPO DE DATO LONGITUD		
IdEstudiante	INT	

IdMateria	INT	
Nota	DECIMAL	(10,2)

4. Insertar los siguientes datos a las tablas creadas anteriormente.

TABLA ESTUDIANTES					
IdEstudiante	Nombres	Apellidos	Dirección	Teléfono	Sexo
01	Maria	HERNANDEZ	COL. SANTA	2254212	F
			ISABEL		
02	OSCAR	MEJIA	FINAL 4 CALLE	2609834	М
			OTE.		
03	HILARIO	URRUTIA	Fnal cl progreso	2907834	М
04	JOSE	QUEZADA	Mejicanos	23663322	М
	JOSE				
05	ELIAS	URRUTIA	Santa Tecla	2778934	М
	ALFREDO				

TABLA MATERIAS				
IdMateria Materias				
111	Base de datos II			
114	Ingenieria del Software			
115	SQL SERVER			

TABLA NOTAS						
IdEstudiante	IdMateria	Nota				
01	111	7				
01	114	6.0				
01	115	4				
02	111	6				
02	114	10				
02	115	8.0				

5. Eliminar registros.

Eliminar los registros de la tabla NOTAS; su IdMateria sea igual a 111

DELETE FROM NOTAS WHERE IdMateria = 113

6. Actualizar registros.

Modificar los registros de la tabla NOTAS para el IdEstudiante = 2 y IdMateria = 115, la nota a modificar es 8.0 a 9.0

UPDATE NOTAS SET Nota=9.0 WHERE IdEstudiante =1 AND IdMateria=115

- 7-Modificar el nombre de la materia Ingeniería del Software por Desarrollo del Software
- 8- Eliminar a todos los alumnos que tengan apellido URRUTIA
- 9-Listar todos los estudiantes la tabla estudiantes
- 10-listar los apellidos y la dirección de los estudiantes que tienen id=1

ASIGNACION

A continuación deberá realizar diferentes consultas con distintos niveles de dificultad, utilizando en algunas de ellas diferentes funciones asociadas con la sentencia SELECT:

- 1) Se desea un listado de los alumnos ordenados ascendentemente apellido
- 2) Se desea conocer cuántos estudiantes hay por cada género
- 3) Se desea conocer la nota promedio del alumno con id 1
- 4) Se desea conocer la nota mayor de las evaluaciones
- 5) De la tabla notas que estudiantes tienen promedios mayor o igual que 6

Bibliografía

Guía 5: SQL	USO	DE	SENTENCIAS	Hoja de cotejo: 5
Alumno:				Máquina No:
Docente:				GL: Fecha:

EVALUACION						
	8	1-4	5-7	8-10	Nota	
CONOCIMIENTO	Del 20 al 30%	Conocimie nto deficient e de los fundament os teóricos	Conocimiento y explicación incompleta de los fundamentos teóricos	Conocimiento completo y explicación clara de los fundamentos teóricos		
APLICACIÓN DEL CONOCIMIENTO	Del 40% al 60%					
ACTITUD	Del 15% al 30%	No tiene actitud proactiva	Actitud propositiva y con propuestas no aplicables al contenido de la guía.	Tiene actitud proactiva y sus propuestas son concretas.		
TOTAL	100%					