軟X線加工装置及び軟X線加工方法

技術分野

- [0001] 本発明は、被加工物を多段階の工程を経ることなく1工程で、微細に(数nmまでの 精度で)加工する汎用性の高い光加工装置及び光加工法に関するものである。本発 明の加工対象である被加工物には、無機材料、有機材料、透明材料、不透明材料、 或いはSi、SiO₂、シリコーン等のSi系材料等が含まれる。
 - 背景技術
- [0002] 無機材料は、例えばフォトニッククリスタルや光導波路等の光素子、医療及びいイオテクノロジーにおける超微量な化学分析及び化学反応等の分野で利用価値が高く、無機材料の精度に優れ、低コストの加工や改質の技術が要請されている。
- [0003] 従来、レーザー光を物質に強照射し、照射面を剥ぎ取ることで加工するレーザーア ブレーションという技術は、炭酸ガスレーザーを用いた金属加工において既に実用 化されている。最も微細化が進んでいる光リングラフィーに代表される光を用いた加 工では、加工精度は加工に用いるレーザー光の波長で制限され、よくて100nmの程 度である。
- [0004] 又、従来の光加工技術で、特に無機透明材料を加工しようとしても、無機透明材料 は無色であるからレーザー光を吸収しないため加工は困難である。
- [0005] さらに、無機材料等の被加工物の光加工技術として既に知られている従来技術に ついては次のとおりである。
 - (1)被加工物を光を吸収する溶液に浸してレーザー加工を行なう技術が報告されて いるが、加工精度は被長の程度まで到達していない。
- [0006] (2)被加工物表面にレーザーアプレーションにより生成したレーザーブラズマを接触 させて、この部分に加工用レーザー光を照射すると、そのエネルギーを吸収したプラ ズマで被加工物が削り取られることが報告されている。しかしこの技術においても、加 工精度は波長の程度まで到達していない。
- [0007] (3)二酸化珪素にF₀レーザーを照射すると非晶質性に起因する状態に吸収され、そ

の状態で同時にKrF(クリプトンフロライド)レーザー光を強照射することにより、加工 を行なえることが報告されている。この技術では、第一のレーザー光を吸収する状態 が予め存在することが前提となり、汎用性が低い。

- [0008] (4)被加工物にフェムト秒レーザー光を照射し、同時に複数の光子を吸収させる多 光子吸収により透明な加工物でも吸収が起こり、切削や改質の加工が可能となるが、 加工精度は波長程度までである。
- [0009] (5)被加工物の表面でフェムト秒レーザー光の2つのピームを干渉させ、数nmの干渉パターンで加工できることが報告されている。しかしながら加工できるパターンは限られている。
- [0010] さらに、5~200μmの厚さのポリイミドフィルムなどの絶縁性フィルムの表面をレー ザによって25μmφ程度のパンプホールの穿孔することで生じたパンプホール内や その周辺に付着した「すす」や「かす」などのカーボン等をプラズマ処理及び/又はX 線(敵X線)阻射で処理し、除去することは知られている(特許文献)参照)。
- [0011] そして、本発明者は、石英等の無機透明材料をナノスケール(10nmまで)の精度で加工できる汎用性の高い加工技術を実現するために、図7に示すように、軟X線額1から放射される軟X線2を、凸面鏡と凹面鏡の組み合わせから成る光学系3により所定のパターンで無機透明材料4に集光して照射し、無機透明材料4の照射部分のみに新たな吸収を生じさせ、これに加工用のレーザー光5を照射することにより、パターニングした無機透明材料4の部分のみに高エネルギー密度の可視又は紫外の加工用のレーザー光5(Nd:YAGレーザー光(266nm))を吸収させて無機透明材料4を加工する加工装置及び加工方法をすでに提案している(特許文献2、3参照)。

特許文献1:特開2002-252258号公報

特許文献2:特開2003-167354号公報

特許文献3:米国特許第6,818,908号明細書

発明の開示

発明が解決しようとする課題

[0012] 特許文献1記載の技術は、5〜200μmの厚さのポリイミドフィルムなどの絶縁性フィルムに25μmφ程度の穿孔をレーザ加工を行い、その残渣等の除去においてプ

ラズマ処理及び/又はX線(軟X線)照射を利用するものであり、被加工物をナノ精 度で加工するものではない。

- [0013] そして、上記特許文献2、3に記載の技術は、ナノスケールの精度で石英等の無機 透明材料を加工できる汎用性の高い加工技術を実現するものであるが、パターニン グした軟X線により生成された吸収体による紫外線吸収を利用しているために、パタ ーニングした軟X線(パターニング光)と加工用のレーザー光の両方を照射しなくては ならないので、装置や加工操作が複雑になり、さらには、吸収体が生成される材料の みが加工可能であることから、さらに改良の余地があるという問題があった。
- [0014] 本発明は、上記従来の問題点を解決し、加工用のレーザー光を照射することなく紫 外光及び/又は軟X線のみで、被加工物のナノオーダーの加工を可能とすることを 目的とするものであり、そのために加工に最適な紫外光及び/又は軟X線を発生す るための光源を選択するとともに、紫外光及び/又は軟X線の波長とマッチして集光 効率を向上させ紫外光及び/又は軟X線のエネルギー密度を高くする最適条件を 備えた紫外光及び/又は軟X線と楕円ミラーの構成を実現することを課題とするもの である。

課題を解決するための手段

- [0015] 本発明は上記課題を解決するために、光源部と、集光照射手段とから成る光加工 装置であって、上記光源部は、レーザー光を集光光学系でターゲットに集光照射し、 被加工物が実効的に光吸収を生じるための紫外光及び/又は軟X線を発生させる 光源部であり、上記集光照射手段は、上記紫外光及び/又は軟X線の波長に応じ て紫外光及び/又は軟X線を高エネルギー密度に集光する光学系を備え、該高エ ネルギー密度に集光された紫外光及び/又は軟X線を、被加工物に所定のパター ンで照射し、上記被加工物を加工及び/又は軟X線を、被加工物に所定のパター ンで照射し、上記被加工物を加工及び/又は軟質することを特徴とする光加工装置 を提供する。
- [0016] 本発明は上記課題を解決するために、光源部とパターン化照射手段とから成る光 加工装置であって、上記光源部は、レーザー光を集光光学系でターゲットに集光照 射し、被加工物が実効的に光吸収を生じるための紫外光及び/又は軟X線を発生さ せる光源部であり、上記パターン化照射手段は、上記紫外光及び/又は軟X線の波

長に応じて紫外光及び/又は軟X線を高エネルギー密度に集光する光学系を備え、該高エネルギー密度に集光された紫外光及び/又は軟X線を、加工すべき形状に合わせた所定のパターニング光として被加工物に照射し、上記被加工物を加工することを特徴とする光加工装置を提供する。

- [0017] 上記光加工装置では、上記紫外光及び/又は軟X線の波長に応じて紫外光及び/又は軟X線を高エネルギー密度に集光する光学系は、楕円ミラーであり、上記光源部のうち紫外光及び/又は軟X線の発生源が楕円ミラーの二つの焦点のうちの一方の焦点に配置され、該楕円ミラーで反射され他方の焦点に集光される紫外光及び/又は軟X線の波長に対する楕円ミラー表面の反射率と上記光源部から楕円ミラーを見込む立体角との積を大きくする構成とすることが好ましい。
- [0018] 上記紫外光及び/又は軟X線の被長に応じて紫外光及び/又は軟X線を高エネ ルギー密度に集光する光学系は、楕円ミラーであり、上記光源部のうち紫外光及び /又は軟X線の発生源が楕円ミラーの二つの焦点のうちの一方の焦点に配置され、 該楕円ミラーで反射され他方の焦点に集光される紫外光及び/又は軟X線の被長 に対する楕円ミラー表面の反射率Rと上記光源部から楕円ミラーの長軸方向の両端 を見込む角であり下記の数式1で規定される。との積を大きくする構成としてもよい。 但し、下記数式1中の符号は次のとおりである。

θ:上記一方の焦点から出た光が楕円ミラーに入射するときの仰角w/f:焦点間距離2fに対する楕円ミラーの回転軸方向の長さ2wの比。

- α:「楕円ミラーの回転軸」と「楕円ミラーの上記一方の焦点と該焦点に近い楕円ミラ 一の回転軸方向の端点を通る直線|のなす角度
- β:「楕円ミラーの回転軸」と「楕円ミラーの上記一方の焦点と該焦点に違い楕円ミラ 一の回転方向の端点を通る直線1のなす角度

[0019] [数1]

$$\begin{array}{ll} \phi &=& \alpha-\beta \\ &=& \tan^{-1}\frac{\tan\theta\sqrt{1-\left(\frac{w}{f}\right)^2\cos^2\theta}}{1-\frac{w}{f}} - \tan^{-1}\frac{\tan\theta\sqrt{1-\left(\frac{w}{f}\right)^2\cos^2\theta}}{1+\frac{w}{f}} \end{array}$$

- [0020] 上記紫外光及び/又は軟X線の波長に応じて紫外光及び/又は軟X線を高エネ ルギー密度に集光する光学系は、回転放物面ミラー、トロイダルミラー、回転楕円ミラ 一及び回転双曲線ミラーから成る群のうちのいずれか1種のミラー又は2種以上のミ ラーの組み合わせから成る構成としてもよい。
- [0021] 上記紫外光及び/又は軟X線の波長に応じて紫外光及び/又は軟X線を高エネ ルギー密度に集光する光学系は、回転双曲面ミラーと回転楕円面ミラーとを組み合 わせて成るウォルターミラーである構成としてもよい。
- [0022] 本発明は上記課題を解決するために、光源部において、レーザー光を集光光学系でターゲットに集光照射し、被加工物が実効的に光吸収を生じるための紫外光及び/又は軟X線を発生させ、上記紫外光及び/又は軟X線を、該紫外光及び/又は軟X線の放長に応じて楕円ミラーにて高エネルギー密度に集光し、該高エネルギー密度に集光した紫外光及び/又は軟X線を、所定のパターンで被加工物に照射し、上記被加工物を加工及び/又は軟X線を、所定のパターンで被加工物に照射し、上記被加工物を加工及び/又は改質することを特徴とする光加工方法を提供する。発明の効果
- [0023] 以上の構成からなる本発明によれば、加工に最適な軟X線を発生するための光源 を選択するとともに、軟X線の波長とマッチして集光効率を向上させる楕円ミラーを利 用することで、軟X線のエネルギー密度を高くし、パターニングした軟X線(パターニング光)と加工用のレーザー光の両方を照射することなく、パターニングした軟X線の みで、被加工物をナノスケールの精度で加工できる。
- [0024] 本発明によれば、無機材料、有機材料、或いはSi、SiO₃、シリコーン等のSi系材料 等の被加工物が加工でき、しかも、透明材料も不透明材料も加工が可能である。 図面の簡単な説明
- [0025] [図1]図1は本発明の実施例1の構成を説明する図である。
 - 「図2]図2は本発明の実施例1を説明する図である。
 - [図3]図3は本発明の実施例2の構成を説明する図である。
 - 「図4]図4は本発明の実施例1を説明する図である。
 - [図5]図5は本発明の実施例1と実施例2を説明するために必要な引用資料である。
 - [図6]図6は本発明の実施例3の構成を説明する図である。

[図7]図7は本発明の従来技術を説明する図である。

符号の説明

- [0026] 1 光源
 - 2、18 パターニング光
 - 3.17 光学系
 - 4、19 被加工物
 - 5 加工用レーザー光
 - 6 加工用レーザー
 - 7 光源部
 - 8 パターン化照射手段部
 - 9 試料部
 - 11 紫外光及び/又は軟X線発生レーザー
 - 12 集光光学系
 - 13 Taターゲット
 - 14 軟X線
 - 15 楕円ミラー
 - 16 マスターパターン
 - 20 ステージ
 - 21 ウォルターミラー

発明を実施するための最良の形態

- [0027] 本発明に係る無機材料等の被加工物を加工する光加工装置及び光加工方法の実 施の形態を実施例に基づいて図面を参照して説明する。
- [0028] 本発明は、無機材料等の被加工物に敷加の精度で加工を可能とする加工装置及 び加工方法であるが、まず、本発明の基本原理について説明する。従来のようにレ 一ザで被加工物の加工を行おうとしても加工精度は波長程度までである。又、被加 工物が無機透明材料の場合は無色であるから光を吸収しにくいために、直接レーザ 一光を照射しても加工はできない。
- [0029] 本発明者による先行発明(特許文献2、3参照)は、パターニング光を照射した部分

- のみで新たな光吸収が生じることを利用し、コストや安定性等の面で有利なより波長 の長い可視から紫外の波長領域の加工用レーザー光をさらに照射し吸収させて、容 易に軟X線の波長程度までの加工精度が確保できる加工(切削、切断等の加工)や 改質が可能とするものである。
- [0030] これに対して、本発明は、パターニング光として使用する較X線を高エネルギー密度に被加工物に集光限射することで、別の加工用レーザー光をさらに吸収させることなく、較X線の被長程度までの加工精度が確保できる加工(切削、切断等の加工)や改質を可能とするものである。
- [0031] このような原理である本発明では、軟X線を無機材料等の被加工物に加工すべき 所定の形状になるようにパターン化して照射することで、同時に被加工物の表面の加 工(切削、切断等の加工)や改管も可能とするものである。
- [0032] この原理を実現するために、本発明では、軟X線を、その波長にマッチした構成の 光学系を用いて高エネルギー密度となるように集光を行い、これを、可動走査ステー ジ或いはマスタパターン等のパターニング光照射化手段を用いて被加工物に照射し 、所定のパターンで加工(切削、切断等の加工)や改質するものである。 実施例 1
- [0033] 図1は、本発明に係る光加工装置及び光加工方法の実施例1の構成を説明する図である。この実施例1の装置は、光源部7、集光照射手段である光学系15及び試料部9かた構成される。
- [0034] 軟X線を発生する光源部7は、レーザー光を集光光学系12でターゲット13に集光 照射し、軟X線14を発生させる構成としている。
- [0035] レーザーとしては、エキシマレーザー、Nd:YAGレーザー、チタンサファイアレーザ ーに代表されるフェムト砂レーザー等が用いられ、ターゲットとしては、スズ、タンタル 、ハフニウム、キセノン等のターゲットが用いられる。本実施例では、Nd:YAGレーザ ー11から720mJ/pulse、532nmのパルスレーザー光をTa(タンタル)ターゲットに 生光することにより軟X線14を発生する。
- [0036] 光源部7から軟X線14を発生させて楕円ミラー15で集光させて、被加工物19(無機材料等)に照射する。これにより、被加工物19に所定のパターンで軟X線を照射し

- 、被加工物19の加工(切削、切断等の加工)や改質が可能となる。
- [0037] 被加工物に、較X線を、加工すべき所定の形状に合わせたパターンになるように限 射するパターン化限射手段は、本実施例1では、被加工物19を設置した可動なステ ージ20を軟X線に対して相対的に走査する構成とすることにより実現できる。これ以 外のパターン化照射手段としては次のような構成がある。
- [0038] (1) 走査鏡により、 軟X線を被加工物に集光照射し、走査することでパターニングする。
 - (2)被加工物の表面にコンタクトマスクを配置して、このコンタクトマスクのスリットを通 して軟X線をパターン照射する。
 - (3) 軟X線をマスタパターンと結像光学系により所定のパターンを転写する。
- [0039] ここで本発明の特徴とする構成は、光源部7からの軟X線14は、単位時間、単位体 積当たりの光子数の多い高エネルギー密度のレーザープラズマ軟X線を使用し、こ れを、楕円ミラー15を使用して広い立体角で集光して軟X線のエネルギー密度を高 め、これを被加工物19に照射することで、従来のように、パターニング光(軟X線)を 照射した部分に、さらに加工用レーザを照射する必要なく、加工可能とする構成であ る。
- [0040] 特に重要な点は、本発明者等は、使用する軟X線14の波長域における楕円ミラー 表面での入射角及び反射率を考慮し、楕円ミラーの集光効率が高くなるよう楕円ミラ ー15の形状を設計した点である。このような楕円ミラー15の構成(設計)について次 に説明する。
- [0041] 図2は、本発明に係る楕円ミラー15を説明するための図である。楕円ミラー15は、図2(a)に示すように、2つの焦点を通る回転軸X-X'の周りに楕円又はその一部を回転させることにより形成されるミラーである。その回転楕円体の内面が反射面となるものである。
- [0042] 図2(b)は楕円ミラー15を、楕円体の回転軸X-X'を含む平面で切断した断面図で ある。ここで、A、Bは楕円ミラー15の焦点であり、焦点Aの位置に軟X線14の発生源 (ターゲット13)を配置し、焦点Bに配置した被加工物19に集光する。
- [0043] 2つの焦点A、Bの中点を原点とし、回転軸X-X'と同じ方向にx軸、それと垂直な

方向にy軸をとることとする。この座標系において、断面を形成する楕円を $x^2/a^2+y^2/b^2=1$ と表すこととする。

- [0044] 図2(b)において、2wは楕円ミラー15の回転軸方向の長さとする。焦点A、Bの座標をそれぞれ(-f、0)、(f、0)とする。このとき、楕円の焦点A、B間の距離は2fである。楕円ミラー15の反射面の回転軸方向の端点のうち焦点Aに近い方を点P、遠い方を点Qとする。このとき、「焦点Aと端点Pを通る直線AP」と「焦点Aと端点Qを通る直線AQ」がなす見込み角をもとする。
- [0045] 楕円とy軸の交点(0、b)を点Cとし、「点C(0、b)における楕円の接線」と「焦点A(-「、0)と点C(0、b)を通る直線」がなす角をθとする。この角θは、焦点Aから出た光 が楕円ミラー15に入射する時の仰角である。
- [0046] 図2(e)は楕円ミラー15を、原点Oを通り、回転軸に垂直な平面で切断した断面図である。。。 は楕円ミラー15を見込む角度である。 点M、Nをそれぞれ楕円ミラーの端点とすると、。 は直線OMと直線ONがなす角である。
- [0047] 焦点Aに置いた軟X線14の発生源からの軟X線14を、どれだけ焦点Bにある被加工物上に集められるかは、「ゅとゅで決まるミラーの立体角」と「ミラー表面の反射率R」によって決定される。ここで、ゅは大きいほど集光できる光量が多くなる。
- [0048] φを加工可能な最大値に固定すると、集光効率は、反射率Rと見込み角の積Rφで決まる。以下では、これを「集光効率」ということにする。
- [0049] 楕円ミラー15の長軸方向の長さ2w及び焦点間距離2fの比を一定にした場合、θを大きくすると、φは大きくなるが反射率Rが小さくなる。逆に、θを小さくすると、φは小さくなるが反射率Rが大きくなる。本発明では、これらのことを考慮して集光効率R×φを大きくすることを楕円ミラー15の設計指針とする。
- [0050] ところで、図2(b)において、楕円の焦点A、B(±f, 0)は、次の数式2で表される。
- [0051] [数2]

 $(\pm f, 0) = (\pm \sqrt{a^2 - b^2}, 0)$

- [0052] 点Pの座標は、 $a=f/\cos\theta$ 、 $b=f\tan\theta$ であることを注意すると、次の数式3で表 される。
- [0053] [数3]

$$\left(-w, b\sqrt{1-\frac{w^2}{a^2}}\right)$$

$$\left(-w, f \tan \theta \sqrt{1-\left(\frac{w}{f}\right)^2 \cos^2 \theta}\right)$$

[0054] 従って、図2(b)に示す「焦点Aと端点Pを通る直線AP」と回転軸X-X'がなす角αとすると、tanαは次の数式4で表される。

「0055] 「数4]

$$\tan\alpha = \frac{\tan\theta\sqrt{1-\left(\frac{w}{f}\right)^2\cos^2\theta}}{1-\frac{w}{f}}$$

- [0056] この数式4から、αは、「仰角 θ」と「無点間距離2fに対する楕円ミラー15の長軸方向の長さ2wの比2w/2f=w/f」により決まってくることがわかる。
- [0057] 同様に、図2(b)に示す「焦点Aと端点Qを通る直線AQ」と回転軸X-X'がなす角 をβとすると、tanβは次の数式5のように表される。

[0058] [数5]

$$\tan \beta = \frac{\tan \theta \sqrt{1 - \left(\frac{w}{f}\right)^2 \cos^2 \theta}}{1 + \frac{w}{f}}$$

[0059] そして、見込み角 φ は次の数式6で表される。 なお、数式6中、tan⁻¹はtanの逆関数である。

[0060] [数6]

$$\begin{split} \phi &= \alpha - \beta \\ &= \tan^{-1} \frac{\tan \theta \sqrt{1 - \left(\frac{w}{f}\right)^2 \cos^2 \theta}}{1 - \frac{w}{f}} - \tan^{-1} \frac{\tan \theta \sqrt{1 - \left(\frac{w}{f}\right)^2 \cos^2 \theta}}{1 + \frac{w}{f}} \end{split}$$

- [0061] 以上からして、本発明を実施する加工装置の全体的な大きさから、軟X線の発生源 (焦点A)と被加工物19(焦点B)との焦点間距離2fと、楕円ミラー15の長軸方向の 長さ2wを設定し、仰角 θ を決めれば、α、β、φがそれぞれ一意に決まる。これによ り、楕円ミラー15の楕円形状が決定され、楕円ミラー15の反射面が形成可能となる。
- [0062] ところで、仰角 θ は次のように決めればよい。軟X線14の楕円ミラー15の反射面に おける反射率Rは、反射表面の材料と軟X線14の波長と仰角 θ に依存する。この依 存性については既存値を使用する。一方、φ は仰角 θ に依存し、数式6からφ を算 出できる。このようにして得られた使用する軟X線14の波長に対してR×φ が最大と なるように仰角 θ を決定する。
- [0063] 本実施例では、波長が10nm前後の軟X線を使用することとする。この波長領域で 反射率Rが高い金を反射表面に使用する。実際には、楕円ミラー15本体を石英で作 成し、石英の表面をクロムコートし、さらにその上に金コートする。
- [0064] 本発明者らが行った仰角 θ の決定の具体例を、図2と、図4に示すグラフを参照して説明する。図2(b)において、楕円ミラー15の長軸方向の長さ2w、楕円ミラー15の 焦点A、B間の距離2fをそれぞれ2w=80mm、2f=150mmとした。
- [0065] そして、10nm前後の被長の軟X線領域における波長及び仰角 8 に対する反射体 である金(Au)の表面の反射率Rの既存値として、図5に示す引用資料である「 Atomic Data and Nuclear Data Tables vol.54 No.2 July(1993) p.315」記載の「TABLE III. Specular Reflectivity for Mirrors」の表、及びこの表をプロットして作成されたグラフに示す値を引用した。
- [0066] なお、この引用資料中、「Line」は、X線領域における各物質の発光線である。「E(eV)」は、当該各種のX線光源材料から発生したX線の光子エネルギー(1つの光子の持つエネルギー)である。「β」は、X線が金表面に入射する入射角(金表面と入射するX線とのなす角度)であり、その単位はミリラジアン(mr)である。「β(%)」は反射率である。「β=19、30gm/cm³ は反射体である金の密度を示す。
- [0067] このようにして得られたのが図4(a)に示すグラフである。このグラフによると、θ が4 .6° ~23.9° の範囲で、10nm前後の波長の軟X線14が効率良く集光できるとい う知見を得た。特に、図4(a)に示す例では、θ =11.5° にすると集光効率R φ が

最大となる。又、より長波長の軟X線14を集光するには、θを大きくすると集光効率 が高くなる。一方、特に8nm以下のより短波長の軟X線14を集光するにはθ=7.2 °以下とすると集光効率Rもが高くなる。

- [0068] ところで、焦点Aに置いた較X線14の発生源からの較X線14を、どれだけ焦点Bに ある被加工物上に集められるかは、前述のとおり、「ゅとゅで決まるミラーの立体角の 」と「ミラー表面の反射率R」によって決定されるが、ゅを加工可能な最大値に固定す ると、集光効率は、概略、反射率Rと見込み角の積R。で決まる。そして、図4(a)は、 このR。を「集光効率」と仮定して得られたグラフである。より正確に「。
 ととで決まるミラーの立体角の」と「ミラー表面の反射率R」により算出して得られた、集光効率を表 すグラフを図4(b)で示す。
- [0069] 即ち、図4(b)は、入射角 θ を50m、………400mrと変化させて、光子エネルギー(入射光の1つの光子の持つエネルギー)に対する集光効率 $R \times \omega / 4\pi$ を示すグラフである。
- [0070] 図4(b)に示すグラフによると、100eVの光子エネルギーを有する軟X線14はθ = 300mrとすると効率良く集光でき、また150eVの光子エネルギーを有する軟X線14はθ = 200mrとすると効率良く集光できるという知見を得た。図4(a)でも、図4(b)でも、より高い光子エネルギーを有する軟X線を効率よく集光するためには、θを大きくする必要がある点で同じ傾向が得られた。図4(a)ではより簡便に、図4(b)ではより精密に最適な入射角θが求められる。
- [0071] 軟X線14が楕円ミラー15で試料部9に高エネルギー密度に集光される。この軟X 線14は、可動なステージ20(載置台)上に載置された被加工物19に照射される。ス テージ20が軟X線14に対して所定の移動をすることで、被加工物19に所定のパタ ーンで加工及び/改質を行う。
- [0072] なお、パターニングとしては上記のとおり、可動なステージ20を採用するのではなく 、コンタクトマスクを使用してもよい。即ち、軟X線14を集光光学系を用いて高エネル ギー密度にし、さらにコンタクトマスクを用いて所定のパターンにパターニングして被 加工物19に照射することで、切削、切断等の加工や改質が可能となる。
- [0073] コンタクトマスクとして、被加工物19の軟X線が照射される被加工面にパターニング

するためのマスクの材料を直接成膜したものを用いてもよい。コンタクトマスクの成膜 手段としては、例えば、蒸着又はスペッタリングを利用する。コンタクトマスクの材料と しては、WS(タングステンシリサイド)、Au、Cr等の材料が利用される。パターニング には、光リングラフィ法、電子ビームリングラフィ法、又はレーザー加工法を用いる。 実施例 2

- [0074] 図3は、本発明に係る光加工装置及び光加工方法の実施例2を説明する図である。この実施例2は、実施例1同様に、レーザープラズマ軟X線14を、楕円ミラー15で集光しエネルギー密度を高くし、ステージ20上の被加工物19の表面に照射し加工や改管を行う加工装置及び加工方法である。
- [0075] この実施例2は、そのパターニングは、マスターパターン16を結像光学系17により 転写する例である。即ち、楕円ミラー15で集光された較X線14をマスターパターン1 6を透過させて、結像光学系17によりパターン光18として被加工物19に照射する構 成を採用している。

実施例3

- [0076] 図6は、本発明に係る光加工装置及び光加工方法の実施例3を説明する図である。この実施例3は、実施例2の光学系17に代えてウォルターミラー21を利用した構成であり、その他の構成は、実施例2と同じである。即ち、楕円ミラー15で集光された飲 X終14をマスターパターン16を透過させて、ウォルターミラー21によりパターン光18 として被加工物19に照射する構成を採用している。
- [0077] この実施例3では、マスターパターン16を透過した軟X線14を、紫外光及び/又は 較X線の波長に応じて紫外光及び/又は軟X線を高エネルギー密度に結像する光 学系としてウォルターミラー21を利用する。
- [0078] ウォルターミラー21は、回転双曲面ミラーと回転楕円面ミラーとを組み合わせて成る ミラーである。軟X線14をウォルターミラー21の反射面で2回反射させて、被加工物1 9にパターニング照射する。これにより、被加工物19に所定のパターンで軟X線を照 射し、被加工物19の加工(切削、切断等の加工)や改質が可能となる。
- [0079] 以上、本発明に係る光加工装置及び光加工方法の実施形態を実施例に基づいて 説明したが、本発明は、特にこのような実施例に限定されることなく、特許請求の範

囲記載の技術的事項の範囲内でいるいるな実施例があることはいうまでもない。例えば、上記実施例1、2では、軟X線の波長に応じて軟X線を高エネルギー密度に集光する光学系として楕円ミラーを使用し、実施例3では楕円ミラーとウォルターミラーを利用したが、楕円ミラーやウォルターミラー以外に、回転放物面ミラー、トロイダルミラー、回転楕円ミラー又は回転双曲線ミラー、或いはこれらタイプの異なるミラーの組み合わせを採用する構成もある。

産業上の利用可能性

[0080] 本発明は以上の構成であるから、例えばフォトニッククリスタルや光導波路等の光 学機能性部品、DNA分析や血液検査等のマイクロチップケミストリーの分野等に適 用することができる。

請求の範囲

15

[1] 光源部と、集光照射手段とから成る光加工装置であって、

上記光源部は、レーザー光を集光光学系でターゲットに集光照射し、被加工物が 実効的に光吸収を生じるための紫外光及び/又は軟X線を発生させる光源部であり

上記集光照射手段は、上記紫外光及び/又は軟X線の波長に応じて紫外光及び/又は軟X線を高エネルギー密度に集光する光学系を備え、該高エネルギー密度 に集光された紫外光及び/又は軟X線を、被加工物に所定のパターンで照射し、上 記被加工物を加工及び/又は改質することを特徴とする光加工装置。

[2] 光源部とパターン化照射手段とから成る光加工装置であって、

上記光源部は、レーザー光を集光光学系でターゲットに集光照射し、被加工物が 実効的に光吸収を生じるための紫外光及び/又は軟X線を発生させる紫外光及び / 又は軟X線を発生する光源部であり、

上記パターン化照射手段は、上記紫外光及び/又は軟X線の波長に応じて紫外 光及び/又は軟X線を高エネルギー密度に集光する光学系を備え、該高エネルギ 一密度に集光された紫外光及び/又は軟X線を、加工すべき形状に合わせた所定 のパターニング光として被加工物に照射し、上記被加工物を加工することを特徴とす る光加工装置。

- [3] 上記紫外光及び/又は軟X線の被長に応じて紫外光及び/又は軟X線を高エネルギー密度に集光する光学系は、楕円ミラーであり、上記光源部のうち紫外光及び/又は軟X線の発生源が楕円ミラーの二つの焦点のうちの一方の焦点に配置され、 該楕円ミラーで反射され他方の焦点に集光される紫外光及び/又は軟X線の被長に対する楕円ミラー表面の反射率と上記光源部から楕円ミラーを見込む立体角との 積を大きくする構成であることを特徴とする請求の範囲第1項又は第2項記載の光加工装置。
- [4] 上記紫外光及び/又は軟X線の被長に応じて紫外光及び/又は軟X線を高エネ ルギー密度に集光する光学系は、楕円ミラーであり、上記光源部のうち紫外光及び / 又は軟X線の発生源が楕円ミラーの二つの焦点のうちの一方の焦点に配置され、

該楕円ミラーで反射され他方の焦点に集光される紫外光及び/又は軟X線の波長 に対する楕円ミラー表面の反射率Rと上記光源部から楕円ミラーの長軸方向の両端 を見込む角であり下記の数式7で規定される ø との積を大きくする構成であることを 特徴とする請求の範囲第1項又は第2項記載の光加工装置。

但し、下記の数式7中の符号は次のとおりである。

θ:上記一方の焦点から出た光が楕円ミラーに入射するときの仰角

w/f:焦点間距離2fに対する楕円ミラーの回転軸方向の長さ2wの比

- α:「楕円ミラーの回転軸」と「楕円ミラーの上記一方の焦点と該焦点に近い楕円ミラーの回転軸方向の端点を通る直線」のなす角度
- β:「楕円ミラーの回転軸」と「楕円ミラーの上記一方の焦点と該焦点に遠い楕円ミラ ーの回転方向の端点を涌る直線」のなす角度

[数7]

$$\phi = \alpha - \beta$$

$$= \tan^{-1} \frac{\tan \theta \sqrt{1 - \left(\frac{w}{f}\right)^2 \cos^2 \theta}}{1 - \frac{w}{f}} - \tan^{-1} \frac{\tan \theta \sqrt{1 - \left(\frac{w}{f}\right)^2 \cos^2 \theta}}{1 + \frac{w}{f}}$$

- [5] 上記紫外光及び/又は軟X線の波長に応じて紫外光及び/又は軟X線を高エネルギー密度に集光する光学系は、回転放物面ミラー、トロイダルミラー、回転楕円ミラー及び回転双曲線ミラーから成る群のうちのいずれか1種のミラー又は2種以上のミラーの組み合わせから成ることを特徴とする請求の範囲第1項又は第2項記載の光加工装置。
- [6] 上記紫外光及び/又は軟X線の波長に応じて紫外光及び/又は軟X線を高エネ ルギー密度に集光する光学系は、回転双曲面ミラーと回転楕円面ミラーとを組み合 わせて成るウォルターミラーであることを特徴とする請求の範囲第1項又は第2項記 載の光加工装置。
- [7] 光源部において、レーザー光を集光光学系でターゲットに集光照射し、被加工物が実効的に光吸収を生じるための紫外光及び/又は軟X線を発生させ、

上記紫外光及び/又は軟X線を、該紫外光及び/又は軟X線の波長に応じて精

円ミラーにて高エネルギー密度に集光し、該高エネルギー密度に集光した紫外光及 び/又は軟X線を、所定のパターンで被加工物に照射し、上記被加工物を加工及 び/又は軟質することを特徴とする光加工方法。 [図1]

[図2]

(c)

[図3]

[図4]

[図5]

TABLE III. Specular Reflectivity for Mirrors See page 211 for Explanation of Tables

Gold (Au) $\rho = 19.30 \text{ gm/cm}^3$

L	ine	E(eV)	5 mr	10 mr	15 mr	20 mr	30 mr	50 mr	80 mr	125 mr	200 mr	400 mr
				87.5	98.3	85.0	92.8	88.0	81.5	72.3	58.6	28.1
Al Si	L2,3	72.4 91.5	88.7 98.9	97.7	98.8	95.5	93.4	89.1	83.1	74.4	60.7	24.1
	L2.3		99.0	98.0	96.9	95.9	94.0	90.1	84.5	78.2	52.1	14.6
Be	K	108.5					92.2	87.2	79.7	68.0	42.7	1.19
Zr	Mζ	151.1	98.7	97.4	96.0	94.8	82.9	72.8	58.7	38.8	11.1	.376
В	Kα	183.3	97.0	84.0	91.1	88.3	82.9	72.8	28.7	30.0	11.1	.310
С	Kα	277.0	94.9	90.0	85.4	81.0	72.7	58.0	39.6	18.8	3.50	.152
Ň	Kα	392.4	94.2	88.7	83.6	78.6	59.4	53.2	33.0	11.7	1.58	7.00B-2
Ti	Lα	452.2	83.9	88.2	82.8	77.7	68.1	51.2	29.9	8.78	1.07	4.83E-2
ö	Kα	524.9	83.8	87.9	82.3	77.0	67.1	49.5	26.8	6.20	.708	3.24E-2
Čr	Lα	572.8	93.7	87.7	82.0	78.6	88.5	48.3	24.6	4.82	.540	2.51E-2
F	Kα	878.8	93.5	87.4	81.6	78.0	85.5	46.1	19.9	2.86	.322	1.53E-2
Co	Lα	776.2	93.5	87.4	81.5	75.8	65.2	44.5	15.3	1.77	.205	9.95B-3
Ni	Lα	851.5	93.5	87.4	81.5	75.8	64.9	43.0	11.7	1.24	.147	7.25E-3
Cu	Lα	929.7	93.5	87.4	81.5	75.8	84.5	41.1	8.47	.880	.107	5.34E-3
$\mathbf{z}_{\mathbf{n}}$	Lα	1011.7	93.6	87.5	81.6	75.8	84.3	39.0	5.91	.628	7.82E-2	3.94E-3
Mg	Kα	1253.6	93.8	87.8	81.9	75.0	53.3	27.7	2.08	.251	3.31E-2	1.71E-3
Äľ	Ka	1486.7	93.7	87.7	81.5	75.2	60.1	11.8	.869	.117	1.59E-2	8.36E-4
Si	Kα	1740.0	93.5	87.1	80.5	73.2	53.0	4.03	.386	5.55E-2	7.75E-3	4.11E-4
Zr	La	2042.4	92.3	84.7	76.3	65.9	28.3	1.22	.143	2.17E-2	3.10E-3	1.86E-4
Ĉ.	Κα	2622.4	82.9	87.4	52.3	36.7	9.46	.753	9.80E-2	1.49B-2	2.15E-3	1.16E-4
Ag	Lα	2984.3	83.6	68.3	52.7	35.1	6.58	.519	8.75E-2	1.06E-2	1.53E-3	8.25E-8
Ca	Kα	3691.7	84.9	89.8	51.8	28.3	2.88	.238	3.23 E-2	5.15E-3	7.48E-4	4.04E-5
Ti	Kα	4510.8	88.4	71.1	46.5	10.2	1.05	.105	1.48E-2	2.39E-3	3.49E-4	1.89E-5
v	Kα	4952.2	86.9	71.1	38.5	5.74	.677	7.14E-2	1.02B-2	1.65E-3	2.41E-4	1.31E-5
Cr	Kα	5414.7	87.3	70.6	24.4	3.41	.449	4.91E-2	7.06B-3	1.15E-3	1.88E-4	9.132-8
Mn	Kα	5898.8	87.7	89.5	12.8	2.13	.304	3.42E-2	4.97E-3	8.10E-4	1.19B-4	6.46E-6
Co	Kα	8930.3	88.2	62.9	4.29	.929	.148	1.74E-2	2.55E-3	4.18E-4	8.15E-5	3.34E-8
Ni	Kα	7478.2	88.4	53.0	2.74	.641	.108	1.28E-2	1.86E-3	3.05E-4	4.49E-5	2.44E-8
Cu	Kα	8047.8	88.5	30.7	1.82	.451	7.87E-2	9.24E-3	1.37E-3	2.25B-4	3.32E-5	1.80E-8
Ge	Κα	9888.4	88.3	5.38	.628	.172	3.10E-2	3.84E-3	5.74E-4	9.45E-5	1.39E-5	7.58B-7
			1									
Y	Kα	14988.0	44.7	.627	.104	3.11E-2	5.90E-3	7.49E-4	1.13E-4	1.87E-5	2.78B-8	1.50E-7
Mo	Kα	17479.0	15.9	.333	5.79E-2	1.76E-2	3.37E-3	4.29B-4	8.48E-5	1.07E-5	1.58E-8	8.81E-8
Pd	Kα	21177.0	4.28	.147	2.67B-2	8.21E-3	1.59E-3	2.03E-4	3.07E-5	5.09E-6	7.52E-7	4.09E-8
Sn	Kα	25271.0	1.62	6.96E-2	1.30E-2	4.02E-3	7.83E-4	1.01E-4	1.52E-5	2.52E-6	3.72E-7	2.03E-8
Xe	Kα	29778.0	.720	3.50E-2	6.63E-3	2.07E-3	4.04E-4	5.20E-5	7.87E-8	1.30E-6	1.93B-7	1.05E-8

[図6]

[図7]

(従来例)

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2005/001886

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl⁷ G21K1/06, 5/02, B23K26/00, H05G2/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁷ G21K1/06, 5/02, B23K26/00, H05G2/00

INC.CI G21K1/06, 5/02, B23K26/00, H05G2/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Roho 1921-1996 Jitsuyo Shinan Toxoku Kotho 1996-2005
Rokai Jitsuyo Shinan Roho 1971-2005 Toxoku Jitsuyo Shinan Roho 1974-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Form PCT/ISA/210 (second sheet) (January 2004)

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
¥	JP 2001-68296 A (Kabushiki Kaisha Riezon Kenkyusho), 16 March, 2001 (16.03.01), Columm 4, lines 20 to 29; column 6, lines 4 to 12; column 9, lines 14 to 18; Figs. 1, 7 (Family: none)	1-3,5-7
¥	JP 2003-14895 A (Rigaku Denki Co., Ltd.), 15 January, 2003 (15.01.03), Columm 4, lines 3 to 32; column 6, line 14 to column 7, line 1; Figs. 3 to 5, 15 & EP 1273906 A2	1-3,5-7 4

	Further documents are listed in the continuation of Box C.	ш	See patent rammy annex.		
*A"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention		
"E"	earlier application or patent but published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is		
"O"	document referring to an oral disclosure, use, exhibition or other means		combined with one or more other such documents, such combination being obvious to a person skilled in the art		
"P"	document published prior to the international filing date but later than the priority date claimed		document member of the same patent family		
Date	of the actual completion of the international search 10 May, 2005 (10.05.05)	Dat	e of mailing of the international search report 24 May, 2005 (24.05.05)		
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer			
Facs	imile No.	Tele	ephone No.		

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2005/001886

	PC1/SF	2005/001886
(Continuation)). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
¥	JF 8-271697 A (Canon Inc.), 18 October, 1996 (18.10.96), Claims; column 1, lines 14 to 30, 42 to 47; column 2, lines 11 to 37; Figs. 1 to 2 (Family: none)	5-6 1-4,7
A	US 452863 A (ENERGY CONVERSION DEVICES, INC.), 25 June, 1985 (25.06.85), Column 6, line 21 to column 7, line 18; Figs. 3A to 5 & JF 60-88399 A	1-7
A	JF 8-5796 A (Hitachi, Ltd.), 12 January, 1996 (12.01.96), Column 3, lines 6 to 40; Fig. 10 (Family: none)	1-7
A	JF 11-26199 A (Mitsubishi Electric Corp.), 29 January, 1999 (29.01.99), Claims 4 to 5; column 3, line 46 to column 4, line 16; Fig. 1 (Family: none)	1-7
A	JP 11-64595 A (Rigaku Industrial Co.), 05 March, 1999 (05.03.99), Claims; Detailed Explanation of the Invention; Par. Nos. [0019] to [0024]; Fig. 1 (Family: none)	1-7

発明の風する分野の分類(国際特許分類(IPC)) Int.Cl.7 G21K1/06, 5/02, B23K26/00, H05G2/00

調査を行った分野

惣杏を行った最小限資料(国際特許分類(IPC))

Int.Cl.7 G21K1/06, 5/02, B23K26/00, H05G2/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 日本国公開実用新案公報 1922-1996年 1971-2005年 1996-2005年

日本国実用新案登録公報 1994-2005年 日本国登録実用新案公報

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献						
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号				
Y A	JP 2001-68296 A (株式会社リエゾン研究所) 2001. 03. 16, 第 4 欄第 20-29 行、第 6 欄第 4-12 行,第 9 欄第 14-18 行,第 1,7 図 (ファミリーなし)	<u>1-3, 5-7</u> 4				
Y A	JP 2003-14895 A (理学電機株式会社) 2003. 1. 15, 第 4 欄第 3-32 行, 第 6 欄第 14 行-第 7 欄第 1 行, 第 3-5, 15 図 & EP 1273906 A2	<u>1-3, 5-7</u> 4				

▽ C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

出順と矛盾するものではなく、発明の原理又は理論

上の文献との、当業者にとって自明である組合せに

- 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 「E」国際出願日前の出願または特許であるが、国際出願日
- 以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行
- 日若しくは他の特別な理由を確立するために引用す る文献 (理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願目前で、かつ優先権の主張の基礎となる出願

- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以
 - よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

電話番号 03-3581-1101 内線

の日の後に公表された文献

の理解のために引用するもの

国際調査報告の発送日

24. 5. 2005

9257

3364

国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP)

国際調査を完了した日

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員) 加藤 昌人

3 P

様式PCT/ISA/210 (第2ページ) (2004年1月)

10.05.2005

	国際調査報告	国際出願番号 PC1/JP20	03/001880
C (続き).	関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときに	は、その関連する箇所の表示	関連する 請求の範囲の番号
<u>Y</u> A	JP 8-271697 A(キヤノン株式会社)1996. 1 第 1 欄第 14-30 行、第 1 欄第 42-47 行,第 (ファミリーなし)	0. 18, 特許請求の範囲, 2 欄第 11-37 行, 第 1-2 図	<u>5-6</u> 1-4, 7
A	US 4525853 A(ENERGY CONVERSION DEVICE 第6欄第21行-第7欄第18行,第3A-5図		1-7
A	JP 8-5796 A(株式会社日立製作所)1996.0 第 3 欄第 6-40 行,第 10 図(ファミリーなり		1-7
A	JP 11-26199 A (三菱電機株式会社) 1999. 0 請求項 4-5, 第 3 欄第 46 行-第 4 欄第 16 行		1-7
A	JP 11-64595 A(理学電機工業株式会社)19 特許請求の範囲, 発明の詳細な説明 [0019 (ファミリーなし)		1-7