Online High-Rank Matrix Completion

Jicong Fan Madeleine Udell Cornell University

Low-rank matrix completion (LRMC)

(a) Low-rank matrix

(b) Matrix completion^[1]

Applications

- ocollaborative filtering (recommendation system)
- classification (especially on incomplete data)
- image inpainting
- other data pre-processing tasks

High-rank matrix completion (HRMC)

Example

•the columns of
$$X \in \mathbb{R}^{3 \times 100}$$
 are generated by $x_1 = s$, $x_2 = s^2$, $x_3 = s^3$, $s \sim \mathcal{U}(-1,1)$; •randomly remove one entry of each column of X .

KFMC: kernel factorization based matrix completion

High-rankness of polynomial model in data space

Assumption

The columns of $X \in \mathbb{R}^{m \times n}$ are given by

$$\mathbf{x} = \mathbf{f}(\mathbf{s}) = [f_1(\mathbf{s}), f_2(\mathbf{s}), \cdots, f_m(\mathbf{s})]^{\top}.$$
 (1)

 $s \in \mathbb{R}^d$ ($d \ll m < n$): uncorrelated random variables.

 $\{f_i: \mathbb{R}^d \to \mathbb{R}\}_{i=1}^m: p$ -order polynomials with random coefficients.

Lemma 1

Suppose the columns of X satisfy (1). Then with probability 1,

$$\operatorname{rank}(\boldsymbol{X}) = \min\{m, n, \binom{d+p}{p}\}.$$

*When p is large, X is of high-rank or even full-rank and hence cannot be recovered by LRMC.

Low-rankness in polynomial feature space

Let $\phi: \mathbb{R}^m \to \mathbb{R}^{\bar{m}}$ be a q-order polynomial feature map: $\phi(x) = \{x_1^{\mu_1} \cdots x_m^{\mu_m}\}_{|\mu| \leqslant q}, \quad \bar{m} = {m+q \choose q}.$

Theorem 1

Suppose the columns of X satisfy (1). Then with probability 1,

$$\operatorname{rank}(\phi(\boldsymbol{X})) = \min\{\bar{m}, n, \binom{d+pq}{pq}\}.$$

* $\phi(X)$ is of low-rank when \bar{m} and n are sufficiently large.

KFMC

Factorization in feature space

minimize
$$\frac{1}{2} || \phi(X) - \phi(D) Z ||_F^2 + \frac{\alpha}{2} || \phi(D) ||_F^2 + \frac{\beta}{2} || Z ||_F^2$$
 subject to $X_{ij} = M_{ij}, \ (i,j) \in \Omega.$

$$D \in \mathbb{R}^{m \times r}$$
, $Z \in \mathbb{R}^{r \times n}$, and $r = {d+pq \choose pq}$.

Kernel representation

minimize
$$\frac{1}{2}\text{Tr}\left(\boldsymbol{K}_{XX}-2\boldsymbol{K}_{XD}\boldsymbol{Z}+\boldsymbol{Z}^{\top}\boldsymbol{K}_{DD}\boldsymbol{Z}\right)+\frac{\alpha}{2}\text{Tr}(\boldsymbol{K}_{DD})+\frac{\beta}{2}\|\boldsymbol{Z}\|_{F}^{2}.$$
 subject to $\boldsymbol{X}_{ij}=\boldsymbol{M}_{ij},\ (i,j)\in\Omega.$

Online KFMC

- streaming data
- large-scale problem
- data structure changes with time

Out-of-sample extension

use trained model to recover new data without re-training

Space and time complexity

	Space complexit	y Time complexity (per iteration)
VMC [2]	$O(n^2)$	$O(n^3 + mn^2)$
NLMC [3]	$O(n^2)$	$O(n^3 + mn^2)$
KFMC	$O(n^2)$	$O(mn^2 + rmn)$
OL-KFMC	$O(mr + r^2)$	$O(r^3)$
OSE-KFMO	$CO(mr+r^2)$	O(mr)

* $r, m \ll n$.

Generalization for union of subspaces

Suppose the columns of $X \in \mathbb{R}^{m \times n}$ are given by

$$\{x^{\{k\}} = \mathbf{f}^{\{k\}}(s^{\{k\}})\}_{k=1}^{u}$$

where $s^{\{k\}} \in \mathbb{R}^d$ ($d \ll m < n$) are random variables and $\mathbf{f}^{\{k\}} : \mathbb{R}^d \to \mathbb{R}^m$ are p-order polynomial functions for each k = 1, ..., u. We have

$$\begin{cases} \operatorname{rank}(\boldsymbol{X}) = \min\{m, n, u\binom{d+p}{p}\} \\ \operatorname{rank}(\boldsymbol{\phi}(\boldsymbol{X})) = \min\{\bar{m}, n, r\} \end{cases}$$
(3)

where $\bar{m} = \binom{m+q}{q}$ and $r = u\binom{d+pq}{pq}$.

Sampling complexity (rule of thumb)

KFMC with *q*-order polynomial kernel:

$$\rho_{\text{KFMC}} > \left(r/n + r/\bar{m} - r^2/n/\bar{m} \right)^{1/q}, \qquad \bar{m} = \binom{m+q}{q}, \quad r = u \binom{d+pq}{pq}.$$

LRMC:

$$\rho_{LRMC} > ((m+n)r_X - r_X^2)/(mn), \qquad r_X = \min\{m, n, u\binom{d+p}{p}\}.$$

Example

Suppose m = 20, n = 300, d = 2, p = 2, u = 3, and q = 2. Then $\rho_{LRMC} > 0.91$ and $\rho_{KFMC} > 0.56$.

Experiments on synthetic data

Let $x = \mathbf{f}(s)$, where $s \sim \mathcal{U}(0,1)$ and $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^{30}$ is a p-order polynomial mapping.

• single nonlinear subspaces: p = 3, u = 1, $X \in \mathbb{R}^{30 \times 100}$, $\mathrm{rank}(X) = 19$.

• union of nonlinear subspaces: p = 3, u = 3, $X \in \mathbb{R}^{30 \times 300}$, $\mathrm{rank}(X) = 30$.

• union of linear subspaces: p = 1, u = 10, $X \in \mathbb{R}^{30 \times 1000}$, $\mathrm{rank}(X) = 30$.

Online matrix completion

Out-of-sample extension

Experiments on CMU motion capture data

Time-series trajectories of human motions, e.g. walking, running and jumping $^{[4]}$.

Time costs (second) {*matrix size: 62×3392 ; RSVD: randomized singular value decomposition}

VMC[RSVD]	370	NLMC[RSVD]	610
KFMC(Poly)	170	KFMC(RBF)	190
OL-KFMC(Poly)	16	OL-KFMC(RBF)	19

leterence

- [1] Emmanuel J. Candès and Benjamin Recht. Foundations of Computational Mathematics, 2009.
- [2] Greg Ongie, Rebecca Willett, Robert D. Nowak, and Laura Balzano. ICML, 2017.
- [3] Jicong Fan and Tommy W.S. Chow. Pattern Recognition, 2018.
- [4] Ehsan Elhamifar. NIPS, 2016.