Fonctions dérivables

OUIKENE Fethia

Department of Mathematics University of Science and Technology of Oran, Algeria

January 24, 2024

Dérivée d'une fonction en un point:

Définition: Soit I un intervalle de \mathbb{R} , $x_0 \in I$ et $f: I \to \mathbb{R}$ une fonction réelle. On dit que f est dérivable au point x_0 si la limite suivante existe et finie

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}.$$

Cette limite est unique, elle est appelée dérivée de f en x_0 et notée $f'(x_0)$. (on notera aussi $Df(x_0)$, $\frac{df}{dx}(x_0)$. Si on pose $h = x - x_0$, on obtient

$$\lim_{h\to 0}\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=f'\left(x_{0}\right).$$

Dérivée à droite, dérivée à gauche:

Définition: On dit que f est dérivable à droite (resp. à gauche) du point x_0 , si le rapport $\frac{f(x)f(x_0)}{x-x_0}$ admet une limite finie à droite (resp. à gauche), elle est appelée dérivée à droite (resp.à gauche) de f au point x_0 ,

elle est notée $f'_d(x_0)$ ou $f'(x_0+0)$ (resp. $f'_g(x_0)$ ou $f'(x_0-0)$.

$$f$$
 est dérivable au point $x_0 \Leftrightarrow f_d'(x_0)$ et $f_g'(x_0)$ existent et $f_d'(x_0) = f_g'(x_0)$

Alors on a

$$f'_{d}(x_{0}) = f'_{g}(x_{0}) = f'(x_{0}).$$

Dérivabilité et continuité

Proposition: Si une fonction est dérivable en un point, elle est continue en ce point.

Remarque:

1. L'inverse de la proposition est faux.

```
f est dérivable en x_0 \Rightarrow f est continue en x_0

f est continue en x_0 \Rightarrow f est dérivable en x_0.
```

2. Contraposé de (f est dérivable en $x_0 \Rightarrow f$ est continue en x_0) est

```
f n'est pas continue en x_0 \Rightarrow f n'est pas dérivable en x_0.
```

Opérations sur les fonctions dérivables:

Théorème: Soient f et g deux fonctions dérivables en x_0 , alors

1.
$$f + g$$
 est dérivable en x_0 et $(f + g)'(x_0) = f'(x_0) + g'(x_0)$.

- 2. αf est dérivable en x_0 et $(\alpha f)'(x_0) = \alpha f'(x_0)$.
- 3. f.g est dérivable en x_0 et $(f.g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$.
- 4. $\frac{f}{g}$ est dérivable en x_0 et

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - g'(x_0)f(x_0)}{(g(x_0))^2}/g(x_0) \neq 0.$$

Dérivée d'une fonction composée:

Proposition: Soit $f: I \to J$ et $g: J \to \mathbb{R}$, $x_0 \in I$, si f est dérivable en x_0 et g est dérivable en $f(x_0)$ alors $g \circ f$ est dérivable en x_0 et on a:

$$(g \circ f)'(x_0) = f'(x_0) g'(f(x_0)).$$

Exemple:

- 1. $(e^f)'(x) = f'(x) e^{f(x)}$.
- 2. $(\ln f)'(x) = f'(x)(\ln)'(f(x)) = \frac{f'(x)}{f(x)}$.
- 3. $(\sin f)'(x) = f'(x)(\sin)'(f(x)) = f'(x)\cos(f(x))$.
- $4. \left(\sqrt{f}\right)'(x) = \frac{f'(x)}{2\sqrt{f(x)}}.$

Dérivée d'une fonction inverse:

Théorème: Soit f une application bijective et continue de $I \to J$, dérivable en $x_0 \in I$ telle que $f'(x_0) \neq 0$ alors f^{-1} est dérivable en $y_0 = f(x_0) \in J$ et on a:

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))} = \frac{1}{f'(x_0)}.$$

Dérivée de fonctions trigonométriques inverses:

1. Fonction arcsin x:

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, -1 < x < 1.$$

$$(\arcsin f)' = \frac{1}{\sqrt{1-f^2}}, -1 < f(x) < 1.$$

2. Fonction arccos x:

$$(\arccos x)' = \frac{-1}{\sqrt{1-x^2}}, -1 < x < 1.$$

$$(\arccos f)' = \frac{-1}{\sqrt{1-f^2}}, -1 < f(x) < 1.$$

2. Fonction arctgx:

$$(arctgx)' = \frac{1}{1+x^2}, x \in \mathbb{R}.$$

$$(arctgf)' = \frac{1}{1+f^2}.$$

Dérivée de fonctions thyperboliques inverses:

1. Fonction argchx:

$$(\arg chx)' = \frac{1}{\sqrt{x^2 - 1}}, x > 1.$$

$$(\arg chf)' = \frac{f'}{\sqrt{f^2 - 1}}, f(x) > 1.$$

2. Fonction arg shx:

$$(\operatorname{arg} shx)' = \frac{1}{\sqrt{1+x^2}}, x \in \mathbb{R}.$$

$$(\operatorname{arg} shf)' = \frac{f'}{\sqrt{1+f^2}}.$$

1. Fonction arg thx:

$$(\arg thx)' = \frac{1}{1-x^2}, -1 < x < 1.$$

$$(\arg thf)' = \frac{f'}{1 - f^2}, -1 < f(x) < 1.$$

Dérivées successives:

Soit $f:I\to\mathbb{R}$ dérivable sur I, alors la fonction f' est appelée dérivée première de f ou dérivée d'ordre 1 de f et si la fonction $f':I\to\mathbb{R}$ dérivable sur I, alors la fonction (f')' est appelée dérivée deuxième de f ou dérivée d'ordre 2 de f, et on note f'' ou $f^{(2)}$. En général, pour tout $n\in\mathbb{N}$, $f^{(n)}:I\to\mathbb{R}$ est la fonction vérifiante:

- 1. $f^{(0)} = f$.
- 2. $f^{(p+1)} = (f^{(p)})', 0 \le p \le n$.
- $f^{(n)}$ est la dérivée $n^{ième}$ de f ou dérivée d'ordre n de f.

Fonction de classe C^n :

On dit que f est de classe $C^n(f \in C^n(I))$ si f admet des dérivées continues jusqu'à l'ordre n.

C'est à dire

$$f \in C^{n}(I) \Leftrightarrow f$$
 continue et $f', f'', ..., f^{(n)}$ existent et continues.

Définition:

f est dite de classe $C^{\infty}(I) \Leftrightarrow f \in C^{n}(I), \forall n \in \mathbb{N}$.

Formule de Leibeniz:

Soient $f, g: I \to \mathbb{R}, x \in I$, si $f^{(n)}(x)$ et $g^{(n)}(x)$ existent, $\forall n \in \mathbb{N}$, alors (f.g) admet une dérivée $n^{i
en m}$ au point x définie par

$$(f.g)^{(n)}(x) = \sum_{k=0}^{n} C_n^k f^{(n-k)}(x) g^{(k)}(x) / C_n^k = \frac{n!}{k! (n-k)!}$$

Extremum

Définition: On dit que f admet un maximum (resp. minimum) local en x_0 s'il existe un intervalle ouvert I contenant x_0 tel que

$$\forall x \in I, f(x) \leq f(x_0)$$
 (resp. $f(x) \geq f(x_0)$).

Un maximum local en x_0 ou un minimum local en x_0 est dit extremum local en x_0 .

Théorème de Fermat: (condition necessaire d'extremum) Soit f une fonction dérivable sur]a, b[telle que f admet un extremum local en x_0 , alors $f'(x_0) = 0$. autrement dit: si f dérivable sur]a, b[

f admet un extremum local en $x_0 \Rightarrow f'(x_0) = 0$.

Condition suffisante d'extremum:

f,f',f'' étant continues sur [a,b], si $x_0 \in]a,b[,f'(x_0)=0$ et $f''(x_0) \neq 0$, la fonction f admet un extremum local en x_0 . Il sagit d'un maximum si $f''(x_0) < 0$ et d'un monimum local si $f''(x_0) > 0$. Autrement dit

$$f'(x_0) = 0$$
 et $f''(x_0) \neq 0 \Rightarrow f$ admet un extremum en x_0 ,

$$\begin{cases} \text{un maximum si } f''(x_0) < 0 \\ \text{un minimum si } f''(x_0) > 0 \end{cases}$$

