Билет 12

Автор1, ..., Aвтор<math>N

20 июня 2020 г.

Содержание

0.1	Билет	12	: 1	vie	Tp.	ич	ecı	кие	9 11	рc	CI	'pa	щ	CT.	ва	 пĻ	ш	ме	ρь	Ι.	ш	ap	ы	В	M	er	ρи	46	CF	۲И.	X I	тb	OC	тµ	ar	1-	
	ствах.																																				1

Билет 12 СОДЕРЖАНИЕ

0.1. Билет 12: Метрические пространства. Примеры. Шары в метрических пространствах.

Определение 0.1.

Метрическое пространства - пара $\langle X, \rho \rangle$, где X - множество, $\rho: X \times X \mapsto \mathbb{R}$ - метрика, ρ обладает следующими свойствами:

- 1. $\rho(x,y) \geqslant 0$, и $\rho(x,y) = 0 \iff x = y$
- 2. $\rho(x, y) = \rho(y, x)$
- 3. $\rho(x,z)\leqslant \rho(x,y)+\rho(y,z)$ (неравенство треугольника, \triangle)

Пример.

Обычная метрика на \mathbb{R} : $\langle \mathbb{R}, \rho(x, y) = |x - y| \rangle$.

Пример.

«Метрика лентяя» на произвольном множестве: $\rho(x,y)= egin{cases} 0 & x=y \\ 1 & x
eq y \end{cases}$

Пример.

Обычная метрика на \mathbb{R}^2 - длина отрезка: $\rho(\langle x_1,y_1\rangle,\langle x_2,y_2\rangle)=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$

Пример.

Множество - точки на поверхности сферы, метрика - кратчайшая дуга межту точками.

Пример.

Манхэттанская метрика на \mathbb{R}^2 : $\rho(\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle) = |x_1 - x_2| + |y_1 - y_2|$.

Пример.

Французкая железнодорожная метрка: Есть центральный объект, от него есть несколько «лучей».

Если A и B на одном луче, то $\rho(A,B)=AB$

Если на разных: $\rho(A, B) = AP + PB$, где P - центральный объект.

Доказательство.

При условии что расстояния между объектами на одном луче являются метрикой, докажем что Φ ЖМ - метрика:

Если A и B находятся на одном луче, всё тривиально следует из того, что расстояние на луче - метрика.

Пусть A, B - на разных лучах $\implies A \neq B, A, B \neq P$.

$$\rho(A,B) = AP + PB > 0 \iff AP,PB > 0.$$

$$\rho(A,B) = AP + PB = PB + AP = BP + PA = \rho(B,A).$$

Пусть C лежит на одной ветке с A:

$$\rho(A, C) + \rho(C, B) = AC + (CP + PB) = (AC + CP) + PB \geqslant AP + PB = \rho(A, B).$$

Пусть C лежит на собственной ветке:

$$\rho(A,C) + \rho(C,B) = (AP + PC) + (CP + PB) \geqslant AP + PB = \rho(A,B).$$

Билет 12 СОДЕРЖАНИЕ

Определение 0.2.

Пусть $\langle X, \rho \rangle$ - метрическое пространство.

Открытым шаром радиуса $r \in \mathbb{R}_{>0}$ с центром в $a \in X$ называется $B_r(a) = \{x \in X \mid \rho(a,x) < r\}$.

Замкнутым шаром радиуса $r \in \mathbb{R}_{>0}$ с центром в $a \in X$ называется $\overline{B}_r(a) = \{x \in X \mid \rho(a,x) \leqslant r\}.$

Свойства.

$$B_{r_1}(a) \cap B_{r_2}(a) = B_{\min\{r_1, r_2\}}(a)$$

Если
$$a \neq b$$
, то $\exists r > 0$ $B_r(a) \cap B_r(b) = \varnothing$.

Доказательство.

Возьмём $r = \frac{\rho(a,b)}{2}$.

Пусть $x \in B_r(a) \cap B_r(b)$.

Тогда $\rho(a,x)<rac{
ho(a,b)}{2}$ и $ho(x,b)<rac{
ho(a,b)}{2}.$

Но тогда $\rho(a,x) + \rho(x,b) < \rho(a,b)$, противоречие с \triangle .

Аналогичная пара свойств есть и у \overline{B} .