Generalized Weierstrass representation for surfaces and Lax-Phillips scattering theory for automorphic functions

Vadim V. Varlamov

Computer Division, Siberian State Industrial University, Novokuznetsk 654007. Russia

Abstract

Relation between generalized Weierstrass representation for conformal immersion of generic surfaces into three-dimensional space and Lax-Phillips scattering theory for automorphic functions is considered.

It is well-known that Poincare plane Π , i.e., the upperhalf plane

$$y > 0$$
, $-\infty < x < \infty$, $z = x + iy$

be the model of Lobachevsky geometry, where the role of motion group played the group $G = SL(2, \mathbf{R})$ of fractional linear transformations

$$z \longrightarrow zg = \frac{az+b}{cz+d}, \quad g = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$
 (1)

where $a, b, c, d \in \mathbf{R}$, ad - bc = 1.

The group $SL(2, \mathbf{R})$ has a great number of so-called discrete subgroups. The sugroup Γ is called discrete if the identical transformation is isolate from the other transformations $\gamma \in \Gamma$. For example, a modular group consisting of transformations with integer a, b, c, d is discrete subgroup. Further, a fundamental domain F of discrete subgroup Γ be an any domain on Poincare plane such that the every point of Π may be transferred into a closing \overline{F} of domain F by means of some transformation $\gamma \in \Gamma$, at the same time no

there exists the point from F which transferred to the other point of F by such transformation. The function f defined on Π is called *automorphic* with reference to discrete subgroup Γ if

$$f(\gamma z) = f(z), \quad \gamma \in \Gamma.$$

Further, generalized Weierstrass representation for surfaces was proposed by Konopelchenko in 1993 [1, 2] is defined by the following formulae

$$X^{1} + iX^{2} = i \int_{\epsilon} (\bar{\psi}^{2} dz' - \bar{\varphi}^{2} d\bar{z}'),$$

$$X^{1} - iX^{2} = i \int_{\epsilon} (\varphi^{2} dz' - \psi^{2} d\bar{z}'),$$

$$X^{3} = - \int_{\epsilon} (\psi \bar{\varphi} dz' + \varphi \bar{\psi} d\bar{z}'),$$
(2)

where ϵ is arbitrary curve in \mathbf{C} , ψ and φ are complex-valued functions on variables $z, \bar{z} \in \mathbf{C}$ satisfying to the linear system (two-dimensional Dirac equation):

$$\psi_z = U\varphi,
\varphi_{\bar{z}} = -U\psi,$$
(3)

where $U(z, \bar{z})$ is a real-valued function. If to interpret the functions $X^{i}(z, \bar{z})$ as coordinates in a space $\mathbf{R}^{3,0}$, then the formulae (2), (3) define a conformal immersion of surface into $\mathbf{R}^{3,0}$ with induced metric

$$ds^{2} = D(z, \bar{z})^{2} dz d\bar{z}, \quad D(z, \bar{z}) = |\psi(z, \bar{z})|^{2} + |\varphi(z, \bar{z})|^{2},$$

at this the Gaussian and mean curvature are

$$K = -\frac{4}{D^2} [\log D]_{z\bar{z}}, \quad H = \frac{2U}{D}. \tag{4}$$

Let us consider a closed surface with genus > 1, and let $F : \Sigma \longrightarrow \mathbf{R}^{3,0}$ be an immersion of surface with genus > 1 given by (2)-(3). It is well-known that every closed oriented surface Σ with positive genus is uniformizable:

$$\rho: M \longrightarrow \Sigma,$$

where a surface M is conformal covering. Hence it immediately follows that a factor-space M/Γ is conformally equivalent to the surface Σ , where Γ is a

discrete subgroup of a group of isometries of M. In our case a space M is isometric to the Poincare plane Π . The group of isometries of Π is the group $G = SL(2, \mathbf{R})$, the transformations of which are defined by (1).

According to [3] (Proposition 4) we have that a surface Σ with genus > 1 immersing into $\mathbf{R}^{3,0}$ by formulas (2)-(3) is conformally equivalent to a surface Π/Γ , where Γ is a discrete subgroup of $SL(2,\mathbf{R})$. The functions ψ and φ , the metric tensor $D(z)^2$ and potential U(z), are transformed by elements of Γ as follows

$$\psi(\gamma(z)) = (c\bar{z} + d)\psi(z),$$

$$\varphi(\gamma(z)) = (cz + d)\varphi(z),$$

$$D(\gamma(z)) = |cz + d|^2D(z),$$

$$U(\gamma(z)) = |cz + d|^2U(z).$$

Hence it immediately follows from (4) that

$$H(\gamma(z)) = H(z), \quad \gamma \in \Gamma.$$
 (5)

Therefore, the mean curvature is automorphic function.

Further, follows to [4] let us consider the discrete subgroup $\Gamma \subset SL(2, \mathbf{R})$ satisfying to the following requirements:

- 1. A space $SL(2, \mathbf{R})/\Gamma$ is noncompact.
- 2. Γ contains the only one parabolic subgroup.

The fundamental domain $F_{\Gamma} = F$ for the group Γ choosing as follows

- **a.** F lies on a strip -X < x < X, y > Y > 0.
- **b.** Intersection $F \cap \{y > d\}$ at the some d, d > 1, is coincide with a strip $-X_1 < x < X_1, y > d$.
- **c.** A boundary of F is smooth and consists of geodesic segments with a finite number of corner points.

In Hilbert space $L_2(F, d\mu)$, where $d\mu = y^{-2}dxdy$ is a measure, consider a symmetric operator L defined by the differential expression

$$L = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) - \frac{1}{4}$$
 (6)

on all sufficiently smooth and uniformly restricted in F the functions H, which satisfying to automorphity condition (5). A spectrum of the operator L consists of finite set of own values: $\lambda_0 = -\frac{1}{4}$ (this own number corresponds to the unit representation of group $SL(2,\mathbf{R})$, the numbers $\lambda_l = -\mu_l^2$, l = $1,2,\ldots,N$ are belong to $(-\frac{1}{4},0)$ (additional series), the set of positive own values λ_l , $l = N + 1, N + 2, \dots$, $\lambda_l \in (0, \infty)$ (basic series), and the branch of absolutely continuous spectrum $\lambda = k^2$ on $[0, \infty]$.

If we assume that functions H compose the basis of Hilbert space $L_2(F,d\mu)$, then the automorphic wave equation may be written as

$$H_{tt} + LH = 0, (7)$$

where operator L has the form (6). This equation naturally defines a group \mathcal{V}_t of transformations (smooth and finite) of Cauchy data $\mathcal{U}(z,t) = \begin{pmatrix} u(z,t) \\ \frac{\partial}{\partial u} u(z,t) \end{pmatrix}$, the action of which expressed by the formula

$$\mathcal{U}(z,t) = \mathcal{V}_t \mathcal{U}(z,0).$$

The group \mathcal{V}_t has orthogonal in- and out-spaces \mathcal{D}_- , \mathcal{D}_+ are satisfying to conditions

1)_
$$\mathcal{V}_t \mathcal{D}_- \subset \mathcal{D}_-, \ t < 0,$$

$$1)_{+} \quad \mathcal{V}_{t} \mathcal{D}_{+} \subset \mathcal{D}_{+}, \ t > 0,$$

2)
$$\bigcap_{t<0} \mathcal{V}_t \mathcal{D}_- = \bigcap_{t>0} \mathcal{V}_t \mathcal{D}_+ = 0,$$
3)
$$\bigcup_{t>0} \mathcal{V}_t \mathcal{D}_- = \bigcup_{t>0} \mathcal{V}_t \mathcal{D}_+,$$

3)
$$\bigcup_{t>0} \mathcal{V}_t \mathcal{D}_- = \bigcup_{t>0} \mathcal{V}_t \mathcal{D}_+,$$

4)
$$\mathcal{D}_- \perp \mathcal{D}_+$$

These conditions allow to apply the Lax-Phillips framework [5] and to find generalized own functions e(z) of automorphic wave equation (7) which are expressed via the Eisenstein series, and also to define the spectrum representation of operator L and scattering matrix.

References

- B. G. Konopelchenko, Induced surfaces and their integrable dynamics, Stud. Appl. Math., 96, 9-51, (1996); Preprint of Institute of Nuclear Physics, N 93-144, Novosibirsk, (1993).
- [2] B. G. Konopelchenko, Multidimensional integrable systems and dynamics of surfaces in space, preprint of Institute of Mathematics, Taipei, August 1993; in: National Workshop on Nonlinear Dynamics, (M. Costato, A. Degasperis and M. Milani, Eds.), Ital. Phys. Society, Bologna, 1995, pp. 33-40.
- [3] I. A. Taimanov, Modified Novikov-Veselov equation and differential geometry of surfaces, Trans. Amer. Math. Soc., Ser.2, 179, 133-159, (1997).
- [4] B. S. Pavlov, L. D. Faddeev, Scattering theory and automorphic functions, Zapiski nauch. seminarov LOMI, 27, 161-193, (1972).
- [5] P. D. Lax and R. S. Phillips, Scattering theory for automorphic functions (Princeton University Press, 1976).