(Pettigrew & Tropp, 2006)

Results

Search results

Preregistered analyses

As preregistered, we ran three random-effects metaanalysis models, one for each outcome variable. Figure 3 shows posterior distributions from these analyses.

Perceived injustice. Across 201,912 participants from 123 samples in 84 studies, we found strong evidence for a weak association (r = -.07, [-.10, -.04]) between intergroup contact and perceived injustice, with > 99.9% of posterior samples for the mean correlation coefficient falling below zero. We found evidence that correlation coefficients varied across studies ($\tau_I = .14$, [.12, .17]) and across samples within studies ($\tau_I = .08$, [.05, .12]). Based on these analyses, we predicted that 80% of studies would result in correlation coefficients between -.25, [-.30, -.21] and .11, [.07, .16] and that researchers would need sample sizes of at least 2,299, [1,558, 3,295] participants to find significant associations ($\alpha = .05$, two-sided) in 80% of their studies.¹

Collective action. Across 119,085 participants from 37 samples in 24 studies, we found some evidence for a weak association (r = -.06, [-.13,.02]) between intergroup contact and collective action, with 93.6% of posterior samples for the mean correlation coefficient falling below zero. We found evidence that correlation coefficients varied across studies ($\tau_I = .16$, [.12,.23]) and across samples within studies ($\tau_I = .09$, [.06,.14]). Based on these analyses, we predicted that 80% of studies would result in correlation coefficients between -.26, [-.37,-.18] and .15, [.07,.27] and that researchers would need sample sizes of at least 1,925, [911,3,724] participants to find significant associations ($\alpha = .05$, two-sided) in 80% of their studies.

Policy support. Across 13,703 participants from 19 samples in 14 studies, we found some evidence for a weak association (r = -.07, [-.14, -.00]) between intergroup contact and policy support, with 98.1% of posterior samples for the mean correlation coefficient falling below zero. We found evidence that correlation coefficients varied across studies ($\tau_I = .10$, [.06, .18]) and, to a lesser extent, across samples within studies ($\tau_I = .03$, [.00, .12]). Based on these analyses, we predicted that 80% of studies would result in correlation coefficients between -.20, [-.32, -.13] and .06, [-.02, .18] and that researchers would need sample sizes of at least 2,992, [949, 8,077] participants to find sig-

nificant associations (α = .05, two-sided) in 80% of their studies.

As preregistered, we ran another three random-effects meta-analysis models to estimate the relationships between the three outcome variables. As we were not interested in the direction of these relationships, we used cross-sectional correlation coefficients as effect sizes for longitudinal studies. Across 111,753 participants from 25 samples in 14 studies, we found evidence for a moderate association (r = .31, [.23, .38]) between perceived injustice and collective action. Across 6,244 participants from 12 samples in 9 studies, we found evidence for a moderate association (r = .23, [.08, .35]) between perceived injustice and policy support. Across 8,558 participants from 6 samples in 3 studies, we found evidence for a moderate association (r = .30, [.13, .42]) between collective action and policy support.

Robustness checks

First, we assessed to what extent our findings were sensitive to choosing narrower, $\mu \sim \text{Normal}(0, 0.1)$, or wider, $\mu \sim \text{Normal}(0,1)$, prior distributions. Choosing narrower or wider prior distribution did not affect mean effect size estimates for perceived injustice (Δr = -.00, [-.05, .04] and $\Delta r = .00, [-.05, .05]$), collective action ($\Delta r = -.01, [-.11, .09]$ and $\Delta r = -.00, [-.10, .11]$), and policy support ($\Delta r = -.01, [-.10, .08]$ and $\Delta r =$.00, [-.09, .10]). Second, we assessed to what extent our findings were sensitive to including or excluding influential studies by repeating the preregistered analyses J times while leaving out one of J studies each time and by calculating the mean absolute difference (MAD) for the estimated mean effect size across left-out studies. For perceived injustice (MAD = .02, [.01, .04]), collective action (MAD = .02, [.01, .04]).04, [.02, .09]), and policy support (*MAD* = .03, [.02, .08]), the MAD was small. Leaving out the most influential study, for example, did not change estimates of the mean effect size for the three outcomes ($\Delta r = .00, [-.04, .05]$; $\Delta r = .02, [-.09, .12]; \Delta r = -.02, [-.11, .07]).$ Together, these analyses showed that our findings were robust to choosing different prior distributions and to excluding influential studies.

References

Pettigrew, T. F., & Tropp, L. R. (2006). A meta-analytic test of intergroup contact theory. *Journal of Personality and Social Psychology*, 90(5), 751–783. https://doi.org/10.1037/0022-3514.90.5.751

¹Sample sizes are based on posterior predictions from the three models, which implied that, for 80% of studies, the absolute correlation coefficient would be |r| > .041, [.034, .050] for perceived injustice, |r| > .045, [.032, .065] for collective action, and |r| > .036, [.022, .064] for policy support.

Figure 1 Flow diagram illustrating the preregistered search strategy, study selection, and data collection

Figure 2
Overview of the relevant literature

Note. **A** Map of all countries included in the meta-analysis with combined sample sizes. **B** Proportion of eligible samples in each category as well as the absolute number of samples in each category.

Figure 3Posterior distributions from the preregistered random-effect meta-analysis models

Note. **A** Posterior distributions for the estimated mean correlation coefficients, highlighting the proportion of posterior samples for which $r_{\rm mean} <$ o. **B** Posterior predictive distributions for the estimated study-wise correlation coefficients, based on point estimates of the μ and τ_J parameters, with point estimates for the estimated correlation coefficients for all studies in the sample.