

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA TEMA I. MATEMÁTICA II (0826201)

MÉTODO POR PARTES

- 1. DEFINICIÓN DEL MÉTODO POR PARTES
- 2. MODO DE APLICACIÓN
- 3. PROCEDIMIENTO A SEGUIR PARA APLICACIÓN DEL MÉTODO
- 4. EJERCICIOS RESUELTOS
- 5. ACTIVIDAD COMPLEMENTARIA

OBJETIVO: CALCULAR INTEGRALES INDEFINIDAS EMPLEANDO EL MÉTODO DE INTEGRACIÓN POR PARTES.

MÉTODO POR PARTES

DEFINICION:

Una razón para transformar una integral en otra es la de producir una integral que sea más fácil de evaluar. Hay dos formas generales de lograr dicha transformación; la primera es la integración por sustitución y la segunda es la *integración por partes*.

La fórmula de integración por partes es una consecuencia sencilla de la regla del producto para derivadas.

Si *u* y *v* son funciones diferenciables de x, por la regla del producto tenemos:

$$(u.v)' = (u'.v) + (u.v')$$

O bien

$$u. dv = (u. v) - (v. du)$$

Finalmente, integrando esta última ecuación se obtiene la fórmula:

$$\int u. \, dv = u. \, v - \int v. \, du \quad \dots \tag{I}$$

La fórmula I expresa una integral que bajo la forma $\int u. dv$ puede reducirse al cálculo de una segunda integral $\int v. du$. Eligiendo adecuadamente u y dv, la segunda integral puede resultar más fácil de calcular que la primera.

A veces, para reducir la integral dada a una inmediata, hay que emplear más de una vez el método de integración por partes.

MODO DE APLICACIÓN

Casi de forma general, este método se aplica para integrales de la forma:

• $\int e^{\alpha x} Q(x) dx$, donde Q(x) es una de las funciones siguientes: $sen(\alpha x)$, $cos(\alpha x)$, $ln(\alpha x)$, y cualesquiera de las funciones trigonométricas inversas

- $\int Ln(x) Q(x) dx$, donde Q(x) es una de las funciones siguientes: $sen(\alpha x)$, $cos(\alpha x)$, y cualesquiera de las funciones trigonométricas inversas

Además, a integrales cuyo integrando contienen:

- Sólo funciones trigonométricas inversas.
- Ciertas raíces cuadradas.
- Sólo logaritmos.

PROCEDIMIENTO:

- 1. PASO 1: Seleccionamos u, utilizando el orden de prioridad de las funciones, el cual lo podemos recordar con la regla nemotécnica de la palabra ILATE cada letra representa a una función (Inversa, Logarítmica, Algebraica, Trigonométrica y Exponencial) y esta se utiliza de la siguiente manera: se identifican cada una de las funciones presentes en la integral y aquella que se ubique primero en el orden de izquierda a derecha será la que debemos seleccionar como u, quedando la segunda expresión para el dv.
- 2. **PASO 2:** se debe derivar u y integrar el dv. De esta manera se obtienen las partes du y v que aparecen en la formula de integración por partes.
- 3. **PASO 3:** sustituir las partes en la formula.

4. **PASO 4:** revisar que la expresión integral de la formula sea más sencilla de integrar.

5. **PASO 5:** integrar hasta obtener la primitiva total. De ser necesario, se puede utilizar este método las veces que lo requiera para conseguir la solución final.

EJERCICIOS RESUELTOS

EJEMPLO 3.1:

Hallar $\int (x\cos(x))dx$

Paso 1: Seleccionar el u y dv.

$$u = x$$
 y $dv = \cos(x) dx$

Derivamos u, du = dx

Integramos $dv \int dv = \int \cos(x) dx \rightarrow v = sen(x) + C$

Paso 2: Sustituimos los valores de uy dv en la fórmula de integración por partes

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx$$
$$= x \sin x + \cos x + C$$

EJEMPLO 3.2:

Hallar
$$\int e^{3x} \sin 2x \, dx$$

Solución:

Paso 1: Seleccionar el u y dv.

$$u = e^{3x}$$
 y $dv = \text{sen}(2x) dx$

Derivamos u, $du = e^{3x}$. 3 dx

Integramos $dv = \int sen(2x)dx$ para poder integrar se debe plantear cambio de variable en el argumento ya que la integral no es directa, entonces el cambio es $t = 2x \rightarrow dt = 2 dx$, sustituyendo en la integral, obtenemos:

$$\rightarrow v = \frac{1}{2} \int sen(t) dt$$

$$\rightarrow \quad v = -\frac{1}{2}\cos(t) + c$$

$$\rightarrow v = -\frac{1}{2}\cos(2x) + c$$

Paso 2: Sustituimos los valores de uy dv en la fórmula de integración por partes

$$\int e^{3x} \sin 2x \, dx = -\frac{1}{2} e^{3x} \cos 2x + \frac{3}{2} \int e^{3x} \cos 2x \, dx$$

Paso 3: La última integral obtenida se resuelve mediante integración por partes

Paso 3.1: Seleccionar el *u y dv*.

$$u = e^{3x}$$
 y $dv = \cos(2x) dx$

Derivamos u, $du = e^{3x}$. 3 dx

Integramos $dv = \int cos(2x)dx$ para poder integrar se debe plantear cambio de variable en el argumento ya que la integral no es directa, entonces el cambio es $t = 2x \rightarrow dt = 2 dx$, sustituyendo en la integral, obtenemos:

Paso 3.2: Sustituimos los valores de uy dv en la fórmula de integración por partes, obtenemos:

$$\int e^{3x}\cos 2x \, dx = \frac{1}{2}e^{3x}\sin 2x - \frac{3}{2}\int e^{3x}\sin 2x \, dx$$

Paso 5: Sustituimos el resultado obtenido del paso 3, en el resultado del paso 2 y resolvemos la ecuación resultante

$$\int e^{3x} \sin 2x \, dx = -\frac{1}{2} e^{3x} \cos 2x + \frac{3}{2} \int e^{3x} \cos 2x \, dx$$

$$\int e^{3x} \sin 2x \, dx = -\frac{1}{2} e^{3x} \cos 2x + \frac{3}{2} \left(\frac{1}{2} e^{3x} \sin 2x - \frac{3}{2} \int e^{3x} \sin 2x \, dx \right)$$

$$\int e^{3x} \sin 2x \, dx + \frac{9}{4} \int e^{3x} \sin 2x \, dx = -\frac{1}{2} e^{3x} \cos 2x + \frac{3}{4} e^{3x} \sin 2x$$

$$\int e^{3x} \sin 2x \, dx = \frac{4}{13} \left(-\frac{1}{2} e^{3x} \cos 2x + \frac{3}{4} e^{3x} \sin 2x \right) + C$$

$$\int e^{3x} \sin 2x \, dx = \frac{1}{13} e^{3x} \left(-2\cos 2x + 3\sin 2x \right) + C$$

Este tipo de integral es conocida como integral cíclica, ya que la expresión de la integral dada aparece al aplicar la fórmula de integración por partes y su solución se obtiene al agrupar de un solo lado de la igualdad la integral original dada.

EJEMPLO 3.3

Hallar
$$\int (x^3 + 5x^2 - 2) e^{2x} dx$$

Paso 1: Seleccionar el u y dv.

$$u = (x^3 + 5x^2 - 2)$$
 $y dv = e^{2x} dx$

Derivamos u, $du = (3x^2 + 10x) dx$

Integramos dv $\int dv = \int e^{2x} dx$ para poder integrar se debe plantear cambio de variable en el argumento ya que la integral no es directa, entonces el cambio es $t = 2x \rightarrow dt = 2 dx$, sustituyendo en la integral, obtenemos:

Paso 2: Sustituimos los valores de uy dv en la fórmula de integración por partes, obtenemos:

$$\int (x^3 + 5x^2 - 2) e^{2x} dx = \frac{1}{2} (x^3 + 5x^2 - 2) e^{2x} - \frac{1}{2} \int (3x^2 + 10x) e^{2x} dx$$

Paso 3: La última integral obtenida se resuelve mediante integración por partes, obtenemos:

Paso 3.1: Seleccionar el u y dv.

$$u = (3x^2 + 10x) \quad y \quad dv = e^{2x} dx$$

Derivamos u, du = (6x + 10) dx

Integramos $dv \int dv = \int e^{2x} dx$, ya fue resuelta anteriormente copiamos la primitiva.

$$\rightarrow v = \frac{1}{2}e^{2x} + c$$

Paso 3.2: Sustituimos los valores de uy dv en la fórmula de integración por partes, obtenemos:

$$\int (3x^2 + 10x) e^{2x} dx = \frac{1}{2} (3x^2 + 10x) e^{2x} - \frac{1}{2} \int (6x + 10) e^{2x} dx$$

Paso 4: La última integral obtenida se resuelve mediante integración por partes,

Paso 4.1: Seleccionar el *u y dv*.

$$u = (6x + 10)$$
 $y dv = e^{2x} dx$

Derivamos u, du = (6) dx

Integramos $dv \int dv = \int e^{2x} dx$, ya fue resuelta anteriormente copiamos la primitiva.

$$\rightarrow v = \frac{1}{2}e^{2x} + c$$

Paso 4.2: Sustituimos los valores de uy dv en la fórmula de integración por partes, obtenemos:

$$\int (6x+10) e^{2x} dx = \frac{1}{2} (6x+10) e^{2x} - 3 \int e^{2x} dx$$
$$= \frac{1}{2} (6x+10) e^{2x} - \frac{3}{2} e^{2x}$$

Recordar que $\int e^{2x} dx$, ya fue resuelta anteriormente copiamos la primitiva.

$$\rightarrow v = \frac{1}{2}e^{2x} + c$$

Paso 5: Sustituimos el resultado obtenido del paso 4, en el resultado del paso 3

$$\int (3x^2 + 10x) e^{2x} dx = \frac{1}{2} (3x^2 + 10x) e^{2x} - \frac{1}{2} \int (6x + 10) e^{2x} dx$$

$$= \frac{1}{2} (3x^2 + 10x) e^{2x} - \frac{1}{2} \left(\frac{1}{2} (6x + 10) e^{2x} - \frac{3}{2} e^{2x} \right)$$

$$= \frac{1}{2} (3x^2 + 10x) e^{2x} - \frac{1}{4} (6x + 10) e^{2x} + \frac{3}{4} e^{2x}$$

Paso 6: Sustituimos el resultado obtenido del paso 5, en el resultado del paso 2

$$\int (x^3 + 5x^2 - 2) e^{2x} dx = \frac{1}{2} (x^3 + 5x^2 - 2) e^{2x} - \frac{1}{2} \int (3x^2 + 10x) e^{2x} dx$$

$$= \frac{1}{2} (x^3 + 5x^2 - 2) e^{2x} - \frac{1}{2} \left(\frac{1}{2} (3x^2 + 10x) e^{2x} - \frac{1}{4} (6x + 10) e^{2x} + \frac{3}{4} e^{2x} \right) + C$$

$$= \frac{1}{2} (x^3 + 5x^2 - 2) e^{2x} - \frac{1}{4} (3x^2 + 10x) e^{2x} + \frac{1}{8} (6x + 10) e^{2x} - \frac{3}{8} e^{2x} + C$$

$$= \left(\frac{1}{2} x^3 + \frac{7}{4} x^2 - \frac{7}{4} x - \frac{1}{8} \right) e^{2x} + C$$

OBSERVACION: Este ejercicio requiere de la aplicación del método por partes varias veces, por lo que podemos ir resolviendo las integrales que se obtienen de manera individual y luego se unen los resultados, así como se hizo en la resolución de este ejercicio.

EJEMPLO 3.4

Hallar $\int \frac{\ln x}{x^3} dx$

Paso 1: Seleccionar el u y dv.

$$u = Ln(x)$$
 y $dv = \frac{1}{x^3}dx$

Derivamos u, $du = \frac{1}{x} dx$

Integramos $dv = \int \frac{1}{x^3} dx$ para poder integrar se debe plantear por propiedades de potencia de la siguiente manera:

Paso 2: Sustituimos los valores de uy dv en la fórmula de integración por partes, obtenemos:

$$\int \frac{\ln x}{x^3} dx = -\frac{1}{2x^2} \ln x + \frac{1}{2} \int \frac{1}{x^3} dx$$
$$= -\frac{1}{2x^2} \ln x - \frac{1}{4x^2} + C$$

Como la integral que se obtiene ya fue resuelta previamente, simplemente copiamos la primitiva.

EJEMPLO 3.5

Hallar: /

$$\int \ln^2 x \, dx$$

Paso 1: Seleccionar el u y dv.

$$u = Ln^2(x)$$
 y $dv = dx$

Derivamos u, $du = 2ln(x)\frac{1}{x} dx$

Integramos $dv \int dv = \int dx \rightarrow v = x + c$

Paso 2: Sustituimos los valores de uy dv en la fórmula de integración por partes, obtenemos:

$$\int \ln^2 x \, dx = x \ln^2 x - 2 \int \ln x \, dx$$

Paso 3: La última integral obtenida se resuelve mediante integración por partes,

Paso 3.1: Seleccionar el u y dv.

$$\mathbf{u} = \mathbf{L}\mathbf{n}(\mathbf{x}) \quad \mathbf{v} \quad d\mathbf{v} = d\mathbf{x}$$

Derivamos u, $du = \frac{1}{x} dx$

Integramos $dv \int dv = \int dx \rightarrow v = x + c$

Paso 3.2: Sustituimos los valores de uy dv en la fórmula de integración por partes, obtenemos:

$$\int \ln x \, dx = x \ln x - \int 1 \, dx$$
$$= x \ln x - x$$

Paso 4: Sustituimos el resultado obtenido del paso 3, en el resultado del paso 2

$$\int \ln^2 x \, dx = x \ln^2 x - 2 \int \ln x \, dx$$

$$= x \ln^2 x - 2(x \ln x - x) + C$$

$$= x \ln^2 x - 2x \ln x + 2x + C$$

ACTIVIDAD COMPLEMENTARIA

En los siguientes enlaces encontraras otros ejemplos por medio de videos que te pueden ayudar a entender mejor el tema.

REVISAR LOS SIGUIENTES ENLACES

https://www.youtube.com/watch?v=93kW5colCAU&t=16s

https://www.youtube.com/watch?v=6nu-snYlA0Q

https://www.youtube.com/watch?v=hvYDrt_Aq2U

https://www.youtube.com/watch?v=jo31gr9xQgE

ACTIVIDAD

Realizar del Libro 801 ejercicios resueltos los ejercicios propuestos del capítulo 4/ Del 27 al 82.pag 119.