

Machine Learning Algorithms At Scale - Clustering

K V Subramaniam

Computer Science and Engineering

Why Machine Learning

- Sometimes, problems are complex
 - We don't want to write explicit programs
 - E.g., recognizing syllables in speech recognition
 - Theoretically, each syllable is a mixture of frequencies
 - Simpler to give the computer examples of syllables and ask the computer to "learn"
- Machine learning is an area of artificial intelligence

Overview of Machine Learning

PES UNIVERSITY ONLINE

- The examples we give are called *training* data
- The program may process the training data to calculate certain quantities called features
 - E.g., in speech recognition, the frequencies of each syllable or akshara
- It then uses the features to build a model
 - E.g., in speech recognition, which frequencies are associated with each syllable
 - Face recognition: for each person, e.g., how big are eyes, nose, mouth
- This process is called training

Overview of Machine Learning

PES UNIVERSITY ONLINE

- To see how good the model is, we can input test data to the program
 - E.g., input syllables to the model
- We can calculate the accuracy
 - How many syllables are correct
- If the accuracy is good, we can use the program in a product
- Input real data, get the output

Exercise 0

PES UNIVERSITY ONLINE

- You want to write a program to separate out the rocks into different categories.
- What will your approach be?

Types of Learning

- There are two types of learning
 - Supervised learning
 - Unsupervised learning

Supervised Learning

- We define the concepts we want the computer to learn
- Consider the photograph of pebbles on the right
 - We can input examples of each kind of pebble
 - Pebble 1 Large
 - Pebble 2 Medium
 - Pebble 3 Small
- The program will learn to classify pebbles

Unsupervised Learning

- The program
 - Computes various features of the pebbles
 - Groups similar pebbles together
 - It's own classification of pebbles
- These may be different from the way a human being would classify them
- The same program can come up with different classifications if we change some parameters
 - E.g., if we ask the program to classify the pebbles into 3 groups or 4 groups
- Finds structure that's already there in the data

Supervised vs. Unsupervised Learning

Different Example required for this slide

- Why is unsupervised learning useful?
 - Recall the IPL class project
 - We asked you to group the batsmen into groups
 - We can manually define the groups; i.e., groups like "opener" "attacking" and so on
 - Supervised learning
 - Simpler to feed data about the batsmen and let the program group similar batsmen
 - Unsupervised learning

Training

Supervised

- Input data is labeled
- Input training set consists of a pair
 - Data point or example
 - Classification

Unsupervised

- Input only training data points
- No labels
- Algorithm groups similar data points together

Review

- What is the basic method of machine learning and big data?
- Supervised vs Unsupervised learning

- What is the basic method of ML and big data?
 - Feature extraction
 - Model, train
 - Predict
- Supervised vs unsupervised learning
 - Predefined vs no predefined concepts

Exercise 1: 5 minutes

- Consider the list of machine learning applications on the right. Which use supervised learning and which use unsupervised learning?
- In Google News, grouping together similar articles.
- Determining if a particular credit card transaction is fraudulent
- Analyzing an image to determine if a lump is cancerous
- Recommending a product based on what the user buys
- Market segmentation: dividing customers into various groups

Exercise 1: Solution

 Consider the list of machine learning applications on the right. Which use supervised learning and which use unsupervised learning?

- In Google News, grouping together similar articles.
 unsupervised
- Determining if a particular credit card transaction is fraudulent. supervised
- Analyzing an image to determine if a lump is cancerous. <u>supervised</u>
- Recommending a product based on what the user buys. <u>unsupervised</u>
- Market segmentation: dividing customers into various groups. either depending on whether we already have pre-defined groups or not

Common ML Algorithms

Supervised

- Logistic regression
- Support Vector Machines
- Decision trees
- K-nearest neighbors

Unsupervised

- Principal Component Analysis
- Mixture models
- Hidden Markov models
- K-means

Scalable Machine Learning

- This class, focus on scalable or large-scale machine learning
 - Google search index (finding page rank over millions of pages)
 - Amazon recommendation (recommendations for millions of users over thousands of products)
- Challenges (as usual)
 - Data size is huge
 - Huge amount of computation
 - Failure is likely (huge amount of hardware)
- Solution
 - Use the right infrastructure (Hadoop, Spark,...)
 - Scalable algorithms
- In this class, we talk about *K-means* and *Alternating Least Squares* algorithm on MapReduce

Scalable machine learning algorithms

- K-means introduction

Clustering - Introduction

- Clustering
 - Partition a number of data points into related groups called clusters.
 - K-means clustering partitions a dataset into <u>a specified</u> number <u>k</u> of clusters
 - The points in a cluster should be similar to each other
- E.g., the IPL modeling, batsmen can be characterized by many parameters
 - E.g., strike rate, highest score, position (opener, ...)
- To divide batsmen into groups, we need to be able to measure how similar batsmen are to each other

Distance Metrics

- We can consider each batsman to be a point in an *n*-dimensional space
 - *n* is the number of parameters we are measuring
- A distance metric measures the similarity (distance) between the two points
- For simplicity, consider a 2D space
 - Euclidean: Geometric distance
 - Manhattan: city blocks, used in traffic
 - Cosine: measures angle between points – used if points can have very different distances from origin

Manhattan

Example for clustering:

Note the outliers in the clusters.

K-Means Algorithm

Demonstration of the standard algorithm

 k initial "means" (in this case k=3) are randomly selected from the data set (shown in color).

 k clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.

The centroid of each of the k clusters becomes the new means.

 Steps 2 and 3 are repeated until convergence has been reached.

Iterative algorithm until convergence

K-Means Algorithm

- **Initialize:** Select *K* points at random (Centers)
- **Step 1**: For each data point, assign it to the closest center
 - Now we formed K clusters
- **Step 2:** For each cluster, re-compute the centers
 - E.g., in the case of 2D points →
 - X: average over all x-axis points in the cluster
 - Y: average over all y-axis points in the cluster
- Loop check: If the new centers are different from the old centers (previous iteration) → Go to Step 1

Exercise 2: 10 minutes

- How can the k-means algorithm be modified to run with MapReduce?
- What is the output of Map and Reduce stages?

Hints:

- Iterative algorithm like page rank
- Which steps can be done in Map and which in Reduce?

- **Initialize:** Select *K* points at random (Centers)
- Step 1: For each data point, assign it to the closest center
 - Now we formed *K* clusters
- Step 2: For each cluster, re-compute the centers
 - E.g., in the case of 2D points →
 - X: average over all x-axis points in the cluster
 - Y: average over all y-axis points in the cluster
- Loop check: If the new centers are different from the old centers (previous iteration) → Go to Step 1

Scalable machine learning algorithms

- K-means with Map-Reduce

K-Means in MapReduce – 1/2

Input

- Dataset (set of points in 2D) --Large
- Initial centroids (K points) --Small

Map (reads 2 files as input)

- Each map reads the K-centroids + one block from dataset
- Assign each point to the closest centroid
- Output <centroid, point> centroid is the key

 k initial "means" (in this case k=3) are randomly selected from the data set (shown in color).

 k clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.

K-Means in MapReduce 2/2

Reduce

- Gets all points for a given centroid
- Re-compute a new centroid for this cluster
- Output: <new centroid>

Loop check

- Compare the old and new set of Kcentroids
 - If similar → Stop
 - Else
 - If max iterations has reached →
 Stop
 - Else → Start another Map-Reduce Iteration

The centroid of each of the k clusters becomes the new means.

 Steps 2 and 3 are repeated until convergence has been reached.

K-Means in MapReduce : Exercise

- Given the following points
 - 20, 30, 99, 102,
 - 53, 9, 11, 54
- Partition them into two clusters using kmeans assuming initial centroids are 20, 30.
- Assume that each row of numbers is on a different machine
- Show what the keys and values are for one iteration of k-means

K-Means in MapReduce : Exercise

Mapper1 output

- 20, 20,
- 30, 30,
- 30, 99,
- 30, 102

Mapper 2 output

- 30, 53,
- 20, 9,
- 20, 11,
- 30, 54

• Reducer input

- 20, <20, 9, 11>
- 30, <30, 99, 102, 53, 54>

Reducer output

• 13.33 and 67.6

Scalable machine learning algorithms

- K-means optimizations

K-Means Optimizations

Use of Combiners

- Similar to the reducer
- Computes for each centroid the local sums (and counts) of the assigned points
- Sends to the reducer <centroid, <partial sums>>

Use of Single Reducer

- Amount of data to reducers is very small
- Single reducer can tell whether any of the centers has changed or not
- Creates a single output file

Scalable machine learning algorithms - Alternating least squares

Collaborative Filtering

 Recover a rating matrix from a subset of its entries.

Collaborative Filtering – ALS algorithm 1

- Express User-Item Rating matrix (R) as a product of
 - User vector (A) dimension n=no of users
 - Item vector(B) dimension m=no of movies
 - Calculate A,B such that R ≈ AB
 - A is a nx1 vector, B is a 1xm vector
 - R will be an nxm vector
- Suppose we need to find r_{ij} which is unknown
 - This is the rating of user i for item j
 - Calculate R' = AB
 - Use the *ij*th element of R'

Xiangrui Meng, *MLLib:* scalable machine learning on Spark, Spark Workshop April 2014, http://stanford.edu/~rezab/sparkworkshop/

Collaborative Filtering – Matrix Factorization

- Both A and B are not known
- This is like an optimization problem and can use Gradient Descent
 - But GD is too slow.
- Alternative Factorize the matrix R into A and B
- We have to factorize R to get
 - A and B

Xiangrui Meng, MLLib: scalable machine learning on Spark, Spark Workshop April 2014, http://stanford.edu/~rezab/sparkworkshop/

Alternating Least Squares – 1/2

- Start with Random A and B
- The algorithm will loop until the correct value is calculated
 - Each iteration, the program will calculate new values for A and B.
 - Let A_i and B_i be the values of A and B on the ith iteration of the loop.
- On the ith iteration of the loop
 - We have calculated A_{i-1} and B_{i-1} on the previous iteration
 - Step 1: assume B_{i-1} is correct. Calculate best value for A_i
 - Step 2: assume A_i is correct. Calculate best value for B_i
 - Loop until converged

Alternating Least Squares – 2/2

- On the ith iteration of the loop
 - We have calculated A_{i-1} and B_{i-1} on the previous iteration
 - Step 1: assume B_{i-1} is correct. Calculate best value for A_{i} . How???
 - Consider $R A_i B_{i-1}^T$
 - B_{i-1} and R are fixed. For any value of A_i , we can find $R A_i B_{i-1}^T$
 - For any value of A_i , $R A_i B_{i-1}^T$ is like an error term
 - The difference between R (the correct rating) and $A_i B_{i-1}^T$
 - The smaller the value of $R A_i B_{i-1}^T$, the better
 - Since $R A_i B_{i-1}^T$ can be –ve, we take $//R A_i B_{i-1}^T //$ (determinant) and find A_i that will minimize
 - It can be shown that the solution is $A_i = (B_{i-1}^T B_{i-1})^{-1} B_{i-1}^T R^T$
 - Similarly for B_i
 - For the mathematics lovers, this is a least squares regression estimate

Exercise 3: 10 minutes

 How can the ALS algorithm be modified to run with MapReduce?

- Start with Random A and B
- The algorithm will loop until the correct value is calculated
 - Each iteration, the program will calculate new values for A and B.
 - Let A_i and B_i be the values of A and B on the ith iteration of the loop.
- On the ith iteration of the loop
 - We have calculated A_{i-1} and B_{i-1} on the previous iteration
 - Step 1: assume B_{i-1} is correct. Calculate best value for $A_i = (B_{i-1}^T B_{i-1})^{-1} B_{i-1}^T R^T$
 - Step 2: assume A_i is correct. Similarly calculate best value for B_i
 - Loop until converged

Scalable machine learning algorithms - Alternating least squares with MR

Exercise 3:Solution

How can the ALS algorithm be modified to run with MapReduce?

Solution

- In Step 1, A_i is calculated by doing a number of matrix multiplications and inversions
- We have studied how to do matrix multiplication using MapReduce
- There are similar algorithms for doing matrix inverse using MapReduce

- Start with Random A and B
- The algorithm will loop until the correct value is calculated
 - Each iteration, the program will calculate new values for A and B.
 - Let A_i and B_i be the values of A and B on the ith iteration of the loop.
- On the ith iteration of the loop
 - We have calculated A_{i-1} and B_{i-1} on the previous iteration
 - Step 1: assume B_{i-1} is correct. Calculate best value for $A_i = (B_{i-1}^T B_{i-1})^{-1} B_{i-1}^T R^T$
 - Step 2: assume A_i is correct. Similarly calculate best value for B_i
 - Loop until converged

THANK YOU

K V Subramaniam, Usha Devi

Dept. of Computer Science and Engineering

subramaniamkv@pes.edu
ushadevibg@pes.edu

Machine learning Case Study Spark MLLib

K V Subramaniam

Computer Science and Engineering

Motivational Problem: Text Classification

Goal: Given a text Document, Predict its topic.

Dataset: "20 Newsgroups" From UCI KDD Archive

<u>Features</u>

Subject: Re: Lexan Polish?
Suggest McQuires #1 plastic
polish. It will help somewhat
but nothing will remove deep
scratches without making it
worse than it already is.
McQuires will do something...

<u>Label</u>

1: about science

0: not about science

CTR, inches of rainfall, ...

Logistic Regression

Goal: Find best line separating two sets of points.

Classify into science and nonscience. Each point represents a document.

Further details on logistic regression can be found at - https://en.wikipedia.org/wiki/ Logistic regression

Machine Learning Workflow and Challenges

Example ML Workflow

TRAINING

TESTING/PRODUCTION

Almost identical workflow

What are the pain points?

- Create and Handle Many RDDs and data types
 - Labels, features, predictions...
- Write as a script
 - Whole pipeline needs to be coded as a script
 - Not modular
- Tune parameters
 - Key part of ML
 - Training many models
 - For different splits of data
 - Different sets of parameters

Solving the Machine learning challenges

How can the task be made easier?

- Make RDDs easier to read
 - Have to explicitly break up the fields in RDD
 - E.g., break line into blank separated tokens
- As developers we would like to just
 - Program to extract features
 - Specify the model to be used
- However, ML needs additional work
 - Write a script to do all the steps
 - Train the model
 - Evaluate the error of the model by testing

TRAINING

Key concepts

Reading RDDs: DataFrame

Solves the RDD creation pain-point

- ML Pipeline
 - Transformers
 - Estimators
 - Evaluators

Solves the Scripting..

- Parameters
 - API
 - Tuning

Solves the parameter tuning pain point

Dataframes

- Recall
- Announced Feb 2015
- Inspired by data frames in R and Pandas in Python
- Works in:

What is a Dataframe?

- a distributed collection of data organized into named columns
- Like a table in a relational database

Dataframes

Features

- Scales from KBs to PBs
- Supports wide array of data formats and storage systems (Hive, existing RDDs, etc)
- State-of-the-art optimization and code generation via Spark SQL Catalyst optimizer
- APIs in Python, Java

Dataframe

Dataframe: RDD + Schema + DSL

Named columns with types

label: Double

text: String

words: Seq[String]

features: Vector

prediction: Double

label	text	words	features
0	This is	["This", "is",]	[0.5, 1.2,]
0	When we	["When",]	[1.9, -0.8,]
1	Knuth was	["Knuth",]	[0.0, 8.7,]
0	Or you	["Or", "you",]	[0.1, -0.6,]

Domain-Specific Language

```
# Select science articles
sciDocs =
   data.filter("label" == 1)
# Scale labels
data("label") * 0.5
```


ML Pipelines

ML Pipelines

- Introduced in Spark 1.2 and 1.3
- Allows developers to just
 - Program to extract features
 - Specify the model to be used
- Automates the process of
 - Write a script to do all the steps
 - Train the model
 - Evaluate the error of the model by testing
 - Or deploy in production

TESTING/PRODUCTION

The ML Pipeline

Transformers

- Extract features from DataFrame
- Features are stored in a new DataFrame

Estimators

- ML Algorithms
- MLLib has standard defined ML algorithms (e.g., Logistic Regression)
- User can add his own

Evaluators

- Compute predictions and estimate metrics such as error
- Tune algorithm parameters
- Evaluator depends upon estimator
 - Evaluator that trains Logistic Regression cannot be used for Decision Trees

Transformers

TRAINING

def transform(DataFrame): DataFrame

Label	Text
0	
1	

Label	Text	Features
0		
1		

Estimator

TRAINING

def fit(DataFrame): Model

label: Double
text: String
features: Vector

LogisticRegression

Model

Label	Text	Features
0		
1		

Evaluator

TRAINING

def evaluate (DataFrame): Double

label: Double

text: String

features: Vector

prediction: Double

 \Rightarrow

Metric:

accuracy

AUC

MSE

. . .

Label	Text	Features	Prediction
0			
1			

Model

TESTING/PRODUCTION

Model is a type of Transformer

def transform(DataFrame): DataFrame

text: String
features: Vector

prediction: Double

Text	Features

Text	Features	Prediction

The training Pipeline

TRAINING

Pipeline is a type of Estimator

def fit(DataFrame): Model

label: Double

text: String

PipelineModel

The testing pipeline/model

TESTING/PRODUCTION

PipelineModel is a type of Transformer

def transform (DataFrame): DataFrame

text: String

features: Vector

prediction: Double

Putting it all together

Parameter Tuning

Given:

- Estimator
- Parameter Grid
- Evaluator

Find the Best parameters

CrossValidator

Exercise 4: 10 minutes

- Suppose we have a dataset in which each line has a recording of a noise, and its classification
- E.g., <bell.wav>, bell

- What would be the input DataFrame be?
- Suppose we want to recognize sounds by
 - Extracting the frequencies from the wav file
 - Gaussian model
 - Find the average frequency of each sound
 - For a new sound, calculate average frequency
 - Find closest matching sound
- What are the DataFrames, Evaluators, etc needed.

Exercise 4: Solution

- Suppose we have a dataset in which each line has a recording of a noise, and its classification
- E.g., <bell.wav>, bell

- Input DataFrame
 - <bell.wav>, bell
- Feature DataFrame
 - <bell.wav>, bell, frequencies
- Transformer (use same transformer for train/ predict)
 - <bell.wav> Bell, average frequency
- Model
 - train(FeatureDataFrame)
 - Associate average frequency for "Bell"
 - predict(PredictDataFrame)
 - Output closest matching sound

Mllib algorithms

- Classification
 - Logistic Regression
 - Decision Tree
 - Random Forest
 - Gradient boosted tree
 - Multilayer Perceptron
 - SVM
 - Naïve Bayes

- Clustering
 - K-Means
 - LDA
 - GMM
- Collaborative Filtering
 - ALS
- Frequent Pattern Mining

Deep Learning with Big Data

Challenges for Deep Learning

- Heterogenous cluster
- Deep Learning (Tensorflow)
 - Iterative
 - Matrix vector multiplication Linear algebra
- Initially evolved on a single machine only scale up
- Then had its own cluster
 - Typically heterogenous with CPUs, GPUs,
 TPUs

Challenges for Deep Learning

- But data resides on HDFS and big data platform uses Spark
- How should the two work together.
- Typically the two clusters are different

Figure 1: ML Pipeline with multiple programs on separated clusters

https://developer.yahoo.com/blogs/157196317141/

Challenges for Deep Learning

- Can we use the same cluster?
- Tensorflow on Spark
 - From Yahoo

Figure 2: TensorFlowOnSpark for deep learning on Spark clusters

https://developer.yahoo.com/blogs/157196317141/

Tensorflow on Spark Architecture

PES UNIVERSITY

- Supports both
 - Model parallelism
 - Data parallelism
- <10 lines of code change reqd
- Algorithm and parameter server rule on Spark executors
 - Can read data directly from https://developer.yahoo.com/blogs/157196317141/
 HDFS
 - Spark RDD data is fed to spark executor which passes it to Tensorflow
- RDMA → faster network transfers

Figure 3: TensorFlowOnSpark system architecture

Other solutions

- SystemML systemml.apache.org
 - IBM
 - SystemML: Declarative Machine Learning on Spark http://www.vldb.org/pvldb/vol9/p1425-boehm.pdf
 - Uses a declarative ML language
 - Translated to MR/Spark
- Intel BigDL
 - Modeled on Torch

THANK YOU

K V Subramaniam, Usha Devi

Dept. of Computer Science and Engineering

subramaniamkv@pes.edu
ushadevibg@pes.edu