浙江大学季 2008-2009 学年春夏学期 《 信号与系统甲(4.5) 》(B)卷课程期末考试试卷

请考生仔细阅读以	下注意事项:
----------	--------

1. 诚信考	试,沉着应	考, 杜绝过	纪。				
2. 开课学	院:						
3. 考试形	式: _ 闭_	卷,允	午带)	场		
4. 考试日	期: 2009年	6月23日	,考试时	间:120)分针	钟	
考生姓名:		学号:					
题序 -	=	Ξ	四	五	六	七	总 分
得分					EE	X-14	
平卷人				RAIS			
		1 7					
 4. 如果 n 5.如 X(jω) 6. 若一连 的傅 	ω)=COS(2 < N ₁ , x[n]=0, = δ (ω) + 读信号的拉普 立叶变换为 TI 系统的系	n< N ₂ ,h[n] δ (ω- π 普拉斯变换 X(s) _{s=jw}	=0,则 n· τ) + δ 表达式 <i>l</i>	<n1+n2 序<br="">(ω —4), Y(s) 已知,</n1+n2>	f, x[n] * 则 x(t) 長 则可确定	h[n] =0 是周期信号 连续信号	0
8. 离散时间	统一定不稳定 周期信号的 并周期 T<2T	定。 傅立叶级数	太不存在	吉布斯现象	象。		₫.
10. e ^{j2t} δ (t	-2)的付氏变	换是 e ^{-j2ω}					
二. 选择题, 1.、一个因! A、单位图		放时间系统	函数 H(z) 的极点 、z 平面2		D、单位	圆以内
2. 离散时间位	号 x[n] 的	Z 变换的收	女敛域是:				

B. 基本的形状是圆环状

D. 与 z=re^j ° 的 r 变量无关

3.信号
$$x(t) = \left(\frac{\sin(1000\pi t)}{\pi t}\right)^2$$
的奈奎斯特频率是

A. $1000\,\pi$, B. $2000\,\pi$, C. $4000\,\pi$,

D. 8000π

4. 已知x[n]如图所示,则 $\int_{-\pi}^{\pi} X(e^{h}) dw$ 的值为___

A. 2π B. 3π C. 4π D.

 6π

5.. $x(2t-5)*\delta(t-2)$ 的正确结果为

A, $x(-9)\delta(t-2)$ B, $x(-1)\delta(t-2)$ C, x(2t-9) D, x(2t-1)

6. 若X(s)的 ROC 为 $-0.5 < \text{Re}\{s\} < 2$,则下列那个点不可能是其极点

A, s = 0 B, s = 2 + j C, s = 2 - j D, s = -.05

(前至常厅这次以 D可能写错 3

7. 若H(s) = 1/(s+1), 则当输入 $x(t) = e^{2t}$ 时, 系统的输出为

(A)

A.
$$y(t) = \frac{1}{3}e^{2t}$$
B. $y(t) = \frac{1}{3}e^{-2t}$ C. $y(t) = \frac{1}{3}e^{2t}u(t)$ D. $y(t) = \frac{1}{3}e^{-2t}u(t)$

8.如.x[n]的傅氏变换为 $e^{j2\omega} + e^{j\omega} + 1 + e^{-j\omega}$.则

A.
$$x[n] = u[n+2] - u[n-2]$$
 B. $x[n] = u[n+2] - u[n-1]$

B.
$$x[n] = u[n+2] - u[n-1]$$

C.
$$x[n] = u[n+2] + u[n-2]$$

C.
$$x[n] = u[n+2] + u[n-2]$$
 D. $x[n] = u[n+2] + u[n-1]$

9.离散时间非周期信号的付氏变换是

A、离散的 B、连续的 C、非周期的 D、与离散时间周期信号的付氏变换

10.Sinω₀t u(t)的拉氏变换为

A,
$$\frac{\pi}{2}[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$$
 B, $\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$

B.
$$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$$

$$C, \frac{s}{s^2 + \omega_0^2}$$

D,
$$\frac{\omega_0}{s^2 + \omega_0^2}$$

三.基本题 (每题 5 分共 20 分)

1..已知一信号的
$$Z$$
 变换 X $(Z) = Z^2/(Z^2 - 2.5Z + 1)$,且 $\sum_{n=-\infty}^{\infty} |x[n]| < \infty$ 求 $x \in [n]$
$$\frac{X(2)}{Z} = \frac{Z}{(Z-2)(Z-\frac{1}{2})} = \frac{\frac{4}{3}}{Z-2} - \frac{\frac{1}{3}}{Z-\frac{1}{2}}$$

$$\frac{1}{Z-2} = \frac{Z}{(Z-2)(Z-\frac{1}{2})} = \frac{Z}{Z-2} - \frac{1}{Z-\frac{1}{2}}$$

$$\frac{1}{Z-2} = \frac{Z}{(Z-2)(Z-\frac{1}{2})} = \frac{1}{Z-2} = \frac{1}{Z-\frac{1}{2}}$$

 $X[n] = -\frac{4}{3} 2^n u[-n-1] - \frac{1}{3} (\frac{1}{2})^n u[n]$

2.已知如下信号x(t),求它的 $X(j\omega)$

4. 设 x[n]是一个绝对可和信号,其有理 z 变换为 X(z)。若已知 X(z)在 z=1/2 有一个极点,x[n] 能够是(a)有限长信号吗?(b)左边信号吗?(c)右边信号吗?(d)双边信号吗?说出理由

四. (10分)某一因果LTI系统的差分方程为

$$y[n] + \frac{1}{6}y[n-1] - \frac{1}{6}y[n-2] = x[n] - x[n-1]$$

- (1) 求该系统的频率响应
- (2) 求该系统的单位样值响应 h[n]。

解:
$$H(z) = \frac{1-z^{-1}}{1+z^{-1}-z^{-2}}$$
 $H(e^{j\omega}) = \frac{1-e^{-j\omega}}{1+z^{-1}-z^{-2}}$ $H(z) = \frac{1-e^{-j\omega}}{(1+z^{-1})(1-z^{-2})} = \frac{z}{(1+z^{-1})} + \frac{z}{(1-z^{-1})}$ 因果 $\Rightarrow 1z1>z$ $h[n] = \frac{9}{5}(-\frac{1}{2})^n u[n] - \frac{4}{5}(\frac{1}{3})^n u[n]$

五. (10分) 已知一离散 LIT 系统, 其极零点图如下图所示

(1)若系统为因果系统,且其冲激响应 h[0]=2,求其冲激响应 h[n]及系统函数 H(Z);

(1) 系统的 H(s), 零极图, 系统的稳定性;

- (2) 画出模拟框图:
- (3) $y(0^-) = y'(0^-) = 1$, $x(t) = e^{-2t}u(t)$ 时, 求 y(t) (t > 0);
- (4) 当激励 x(t) = u(-t) + 2u(t) 时, 求 y(t) ($-\infty < t < \infty$)。

见第六章试题汇编

七. (15分) 因果 LTI 系统方框图如下:

- 1. 写出系统的差分方程;
- 2. 求系统函数, 判断系统的稳定性;
- 3. 己知 y[-1] = 1, y[-2] = 0, $x[n] = (\frac{1}{3})^n u[n]$, 求输出 y(n)。

见第七章试题汇编