Lipidni vesikli v valjasti ograditvi

Jure Lapajne

Mentor: prof. dr. Primož Ziherl

6.9.2018

Lipidni vesikli

membrane celic in celičnih organelov:

- sestava: fosfolipidni dvosloj, proteini
- velik nabor oblik: citoskelet, kemijska sestava membrane in vsebina celice/organela

Mitohondrij

- dve membrani: notranja in zunanja
- podolgovata oblika, številni uvihki
- dve stanji mitohondrija:
 - ortodoksno: intenzivno celično dihanje, tubularni uvihki
 - kondenzirano: počasno celično dihanje, lamelarni uvihki
- notranja membrana tvori gube - posledica prostorske ograditve?

mitochondrion_electron_micre

3d_tomogram.png

Ograjeni vesikli

- površina vesikla večja od površine ograditve
- najpreprostejša ograditev: sfera
- dobro ujemanje med eksperimentalnimi opazovanji ter numeričnimi in analitičnimi izračuni na osnovi teorije elastičnosti

```
ograjeni_vezikli_primer3.png
```

Preprost fizikalni model (Kavčič 2014)

motivacija:

- enostaven izračun energije, površine, prostornine...
- analitični izrazi razkrijejo bistvene odvisnosti

bor_rezultati.png

značilnosti:

- geometrijsko preproste oblike: sfere, sferne kapice, valjasti odseki...
- tesna ograditev

namen dela

razširitev modela na vesikle v valjasti ograditvi

Parametri za opis vesiklov

parametre definiramo relativno glede na sfero z enako površino kot vesikel

polmer sfere

$$R_s = \sqrt{rac{A}{4\pi}} = 1$$

zeks_svetina_da_veziklov

reducirana prostornina

$$v = V/(4\pi R_s^3/3)$$

reducirana razlika površin monoslojev

$$\Delta a = \frac{1}{8\pi R_s} \int H \mathrm{d}A$$

Brezdimenzijska energija vesikla

lokalna upogibna energija

$$w_b = \frac{1}{16\pi} \int (2H)^2 \mathrm{d}A,$$

pri čemer je H povprečna ukrivljenost

$$H = \frac{1}{2} \left(1/R_1 + 1/R_2 \right)$$

medmembranska interakcija

$$w_a = -\gamma \int_{\text{stične ploskve}} \frac{\mathrm{d}A}{4\pi R_s^2}$$

 γ : moč medmembranske interakcije

• nelokalna upogibna energija oziroma Area Difference Elasticity (ADE) člen

$$w_r = q(\Delta a - \Delta a_0)^2$$

q: razmerje med nelokalno in lokalno upogibno konstanto

povprecna_ukriv

L Oblike Robovi

trojni rob zunanji rob

U rob

torusni rob

C. Renken et a

$$\alpha = \pi$$

B. Kavčič, 2014

Lipidni vesikli v valjasti ograditvi

vezikel_z_invadehiteyoveziklawezikel_z_vzdolzevoinvakenecfj

Upogibna energija in ADE člen modelskih oblik

all_vesicle_energy_diagram_**ad02_metda@D9**d**psM**retni_vesikli.pd:

- lokalna upogibna energija
- $\eta = 0.99, R = 0.3$
- vesikel z vzdolžno steno močno izstopa: velika dolžina robov

- diskretna območja stabilnosti posameznih vesiklov
- parabole izvirajo iz ADE člena: $q(\Delta a \Delta a_0)^2$

Minimizacija energije

energija vesikla

$$w = \underbrace{\frac{1}{16\pi} \int (2H)^2 dA}_{\text{lokalna upogibna energija}} + \underbrace{\frac{q(\Delta a - \Delta a_0)^2}{\text{nelokalna upogibna energija}}}_{\text{nelokalna upogibna energija}} - \underbrace{\gamma \int_{\text{stične ploskve}} \frac{dA}{A}}_{\text{medmembranska interakcija}}$$

q: razmerje med nelokalno in lokalno upogibno konstanto

 γ : medmembranska interakcijska konstanta

 Δa_0 : ravnovesna vrednost Δa

- konstantna površina $A=4\pi$ oziroma $R_s=1$
- konstantna reducirana prostornina
- konstanten polmer ograditve R
- \blacksquare polnilno razmerje η blizu 1

Fazni diagrami: ni medmembranske interakcije

- lack q=0: fazni diagram ni odvisen od Δa_0
- v > 0.3: vesikli s popolnimi in nepopolnimi prečnimi stenami
- dominira vesikel z vzdolžno steno
- $v \approx 0.4$ in $\Delta a_0 \gtrsim 2.5$: vesikel s tubuli

Fazni diagrami: medmembranski odboj

- močna odbojna medmembranska interakcija: območje vesikla s tubuli narašča
- v < 0.4: vesikli z vzdolžnimi stenami

- $v \approx 0.425$: mehak prehod med vesikli z nepopolnimi prečnimi stenami
- majhni v: vesikel z vzdolžn steno

 močen odboj: območje vesikla s tubuli narašča

Lipidni vesikli v valjasti ograditvi

 ADE člen: energijsko ugodnješi vesikli z delnimi prečnimi stenami └ Interpretacija

Prevladujoča oblika gub

dve stanji mitohondrija glede na prevladujočo obliko gub

Zaključek in možne razširitve

- $lue{}$ sprememba oblike uvihkov ightarrow sprememba reducirane prostornine ightarrow fazni prehod ali reverzibilna kemijska reakcija
- odbojna interakcija in ADE člen
- gibka ograditev

$$W_g = \alpha (A - A_0)^2$$

- večje število prečnih in vzdolžnih sten
- uvihki, sestavljeni iz tubularnih in lamelarnih delov

Spontana ukrivljenost membrane

- vezava klinastih molekul na površino membrane z le ene strani.
- nepropustnost membrane za molekule
- vezavna energija reda *k_BT*

spontana_ukrivljenost_membrane.png

Prva opazovanja

- palade in Sjostrand
- 50-ta leta prejšnjega stoletja
- prva opazovanja ne dajo jasnega odgovora
- število membran
- topologija gub notranje membrane

1d_tomogram.png

Izbira polmera ograditve

srednja vrednost $L/R \approx 15$

polnilno razmerje mora biti blizu 1:

polnilno razmerje mora biti blizu 1:
$$\eta \approx 0.99 = \frac{4\nu}{3LR^2} = \frac{4}{3R^3} \frac{R}{L} \longrightarrow R = \left(\frac{4}{3\eta} \frac{R}{L}\right)^{1/3} \lesssim \frac{4 \times 0.7}{3 \times 0.99} \frac{1}{15} \approx \frac{4 \times 0.7}{15} \approx \frac{4 \times 0.$$

Energija vesikla

■ lokalna upogibna reducirana energija

$$W_b = \frac{k_b}{2} \int (H - C_0)^2 dA + k_s \int K_1 K_2 dA; \quad H = \frac{1}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

■ medmembranska interakcija

$$W_a = -\gamma \int_{\text{stične ploskye}} \frac{\mathrm{d}A}{4\pi R_s^2}$$

povprecna_ukrivljenost.pd:

 nelokalna upogibna reducirana energija oziroma Area difference elasticity (ADE) člen

$$W_r = \frac{k_r}{2Ah^2}(\Delta A - \Delta A_0)^2$$

Torusni rob

Parametri za opis vesiklov

Parametre definiramo relativno glede na sfero z enako površino kot vesikel.

Polmer sfere

$$R_s = \sqrt{\frac{A}{4\pi}}$$

zeks_svetina_da_veziklov.pr

reducirana prostornina

$$v = V/(4\pi R_s^3/3)$$

razlika površin monoslojev – sfera s polmerom R_s

reducirana razlika površin monoslojev

$$\Delta A = 2h \int H dA \longrightarrow \Delta A_s = 8\pi R_s h \longrightarrow \Delta a = \frac{\Delta A}{\Delta A_s}$$

Fazni diagrami brez medmembranske interakcije

- q=0: fazni diagram ni odvisen od Δa_0
- U rob → vesikel s popolnimi prečnimi stenami v območju vesikla z nepopolnimi prečnimi stenami

stabilizirani vesikli z nepopolnimi prečnimi stena tubuli in vzdlžno steno v primerjavi z vesikli s popoli prečnimi stenami