Тема 4. Основні проблеми теорії систем. Класифікація динамічних систем.

4.1. Основні проблеми теорії систем.

Проблеми, які стоять перед системним дослідником, зв'язані з побудовою множини X, відображень σ та η і вивченням їх властивостей. Круг проблем <u>аналізу систем</u> в основному починають з виявлення всіх факторів, які впливають на поведінку досліджуваної системи. В системному аналізі останні називають *релевантними факторами*. По суті ця проблема зв'язана з вивченням і описом множин $U, U(\cdot), Y, Y(\cdot)$.

Потім виникає задача опису динамічних взаємозв'язків між входами і виходами, тобто задача побудови моделей цих зв'язків, яка називається проблемою ідентифікації. Розв'язком цієї проблеми є множина значень станів $X(X(\cdot))$ і відображення σ і η .

Нехай X, σ, η задані чи ідентифіковані. Одною із основних цілей одержання X, σ, η є можливість передбачати (прогнозувати) поведінку системи. В основному представляє інтерес прогноз спостережуваної поведінки, тобто виходу y(t). Проте, враховуючи зв'язок

$$y(t) = \eta(x(t), t), \tag{1}$$

цю задачу можна звести до прогнозу процесу в просторі станів. Із співвідношення $x(t) = \sigma(t; t_0, x^0, u(\cdot))$ випливає, що передбачення x(t) для $t \ge t_0$ при відомому вході $u(\cdot)$ являється можливим, якщо в момент t_0 відомо x^0 . У відповідності з цим третя основна проблема теорії систем з точки зору аналізу пов'язана з вивченням розв'язуваності задачі знаходження стану системи по спостережуваному входу і виходу, яка називається *проблемою спостережності*.

Нехай фіксований вхід $u(\cdot)$ і для знаходження стану в момент t_1 використовується інформація тільки про вихід в момент t_1 . Тоді задача зводиться до розв'язуваності відносно x^1 рівняння виходу $y(t) = \eta(x(t),t)$, при $y(t_1) = y^1$:

$$y^1 = \eta(x^1, t_1). \tag{2}$$

Якщо, наприклад, розмірність вектора x^1 дорівнює розмірності вектора y^1 і рівняння в (2) незалежні, то із цієї системи можна визначити єдиний розв'язок x^1 . Проте множина станів системи в основному буває

«багатшою» за множину Y (в цьому і проявляється складність систем). Для систем, у яких X і Y – скінчено вимірні лінійні простори, це виражається в тому, що розмірність X більша розмірності Y . Тоді розв'язок рівняння (2) не являється єдиним, тобто спостережуваному y^1 будуть відповідати різні стани, при яких воно може реалізовуватись. Отже, інформації про вихід в фіксований момент t_1 недостатньо для відновлення стану в цей момент; необхідно мати більше інформації про вихід, наприклад, на інтервалі $[t_0,t_1]$.

Введемо дві множини процесів $X(\cdot)|_{[t_0,t_1]}$ і $Y(\cdot)|_{[t_0,t_1]}$. Процес $x[t_0,t_1]$ однозначно визначає відповідний йому вихід $y[t_0,t_1]$, тобто існує відображення

$$H_{u(\cdot)}: X(\cdot)|_{[t_0,t_1]} \to Y(\cdot)|_{[t_0,t_1]}$$
.

Якщо б для $H_{u(\cdot)}$ існувало обернене відображення $H_{u(\cdot)}^{-1}$, тобто $H_{u(\cdot)}^{-1}$ було б взаємно однозначним, то довільний спостережуваний вихід $y[t_0,t_1]$ породжувався би єдиним процесом $x[t_0,t_1]$ і задача оцінки стану була би розв'язуваною. Для її розв'язання достатньо знайти $H_{u(\cdot)}^{-1}$. Якщо ж $H_{u(\cdot)}$ відображує різні $x[t_0,t_1]$ в один і той же вихід $y[t_0,t_1]$, то оцінити однозначно стан по цьому виходу неможливо.

Означення 1. Система Ξ , відображення $H_{u(\cdot)}$ якої являється взаємно однозначним, називається t_0 – *спостережуваною*.

Відмітимо, що властивість спостережуваності залежить від конкретного входу $u(\cdot)$. Тому при оцінці стану виникає не тільки задача синтезу відповідного алгоритму, але і задача знаходження входу $u(\cdot)$, при якому система буде повністю спостережуваною. Із визначення повністю спостережуваної системи випливає, що спостережуваність являється властивістю відображень σ і η , тобто внутрішньою структурною властивістю системи. В теорії спостережуваності вивчаються умови на σ і η , при яких спостережуваність має місце.

В теорії скінчених автоматів проблему спостережуваності називають *діагностичною проблемою*. Прикладом проблеми спостережуваності є задача діагностики захворювань. Конкретні захворювання — це один із можливих станів, в якому в даний момент знаходиться організм як система. Задача полягає в оцінці цього стану по спостережуваному виходу системи, наприклад, тиск, температура, пульс, кардіограма, аналіз крові і т. і.

Із повної t_0 — спостережуваності системи на $[t_0,t_1]$ випливає можливість оцінки довільного стану в момент t_0 за виходом $y[t_0,t_1]$. Якщо ж розглянути задачу оцінки стану в момент t_0 за виходом, який спостерігався до моменту t_0 , наприклад, за $y[t_{-1},t_0]$, де $t_{-1} < t_0$, то ця задача відрізняється від задачі спостережуваності. Задачу оцінки стану системи за виходом, який спостерігався в попередні моменти часу, Р. Калман назвав задачею реконструкції чи оцінювання.

Наступна основна проблема теорії систем пов'язана з дослідженням питань розв'язуваності задач формування спеціальної поведінки систем. Формування спеціальної поведінки диктується необхідністю задоволення певних вимог, які накладаються на процес. Останні називаються *ціллю (метою)*, яка ставиться перед системою. При цьому вважається, що в момент початку формування входів процес в системі не задовольняв вимогам, сформульованим в цілі (меті) керування.

Впливати на поведінку системи можна тільки входами, тому в множині входів виділяється підмножина $U_1(\cdot)$, елементи якої формуються суб'єктом. Таким чином, множина входів розбивається на дві підмножини $U_1(\cdot)$ і $U_2(\cdot)$, $(U_1(\cdot) \cup U_2(\cdot) = U(\cdot), U_1(\cdot) \cap U_2(\cdot) = \emptyset)$, одна з яких не залежить від суб'єкта (і називається *підмножиною збурень* $U_2(\cdot)$), а друга – *підмножина керувань* $U_1(\cdot)$. Система, ціль (мета) і початкові дані, на основі яких повинна розв'язуватись задача знаходження керувань (входів), які забезпечують досягнення цілі (мети), називається *проблемою керування*.

Вимоги на поведінку системи в основному накладаються на вихідний процес. Проте, враховуючи (1), їх завжди можна (і це має смисл при розв'язуванні задач керування) переформулювати у вигляді умов, які накладаються на процес в просторі станів (тобто, на $x(\cdot)$).

Однією з найважливіших задач теорії керування є двохточкова гранична задача , яка полягає в наступному. Нехай ціль керування полягає в тому, щоби в момент $t_1 > t_0$ система знаходилася в стані x^1 (причому в момент t_0 система знаходилася в стані x^0). Потрібно знайти такий вхід $\overline{u}(\cdot) \in U(\cdot)$, щоби виконувалася рівність

$$x^{1} = \sigma(t_{1}; t_{0}, x^{0}, \overline{u}(\cdot)) . \tag{3}$$

Якщо зафіксувати (t_0, x^0) , то для деяких (t_1, x^1) рівняння (3) відносно $\bar{u}(\cdot)$ може бути розв'язаним, а для інших — нерозв'язаним. (Лабораторна №3).

Означення 2. Система називається (t_0, x^0) – глобально досяжною, якщо для довільного x^1 існують $t_1(x^1) > t_0$ та $\overline{u}(\cdot)$, які задовольняють співвідношення (3).

Означення 3. Система називається (t_1, x^1) – глобально керованою, якщо для довільного x^0 існує $t_0(x^0) < t_1$ і $\bar{u}(\cdot)$ такі, що виконується співвідношення (3).

Якщо можна вказати скінчений окіл точки x^0 , такий що для всіх x^1 із цього околу виконуються умови досяжності, то кажуть про *локальну* досяжність. Аналогічно треба розуміти *локальну керованість*.

Можна також ввести поняття керованості і досяжності на заданому скінченому інтервалі часу.

Із означень 2, 3 витікає, що керованість і досяжність являються властивостями перехідного відображення σ . Задачі, які зв'язані з розробкою ефективних критеріїв, що дозволяють за відображенням σ встановлювати , чи являється система повністю керованою чи повністю досяжною, складають предмет теорії керування.

Важливою проблемою аналізу систем є проблема стійкості. Вона виникає при вивчені питання, чи буде система виконувати свою функцію і призначення в умовах , коли виникають різні збурення, що часто являється проявом неповного знання про навколишнє середовище і саму систему. Нехай призначення системи полягає в перетворені заданого входу $u^{0}(\cdot)$ (який породжує процес $x^{0}(\cdot)$) у вихід $y^{0}(\cdot)$. Якщо в результаті деяких обставин процес $\bar{x}(\cdot)$ в просторі станів не співпадає з $x^{0}(\cdot)$, тобто $\bar{x}(t_{0}) = x^{0}(t_{0}) + \Delta x(t_{0})$, що може бути наслідком того, що в момент t_{0} появилось відхилення $\Delta x(t_{0})$, то природно виникає питання , чи збігається при $t > t_{0}$ і $t \to \infty$ процес $\bar{y}(t) = \eta(\bar{x}(t), t)$ в деякому розумінні до процесу $y^{0}(\cdot)$, чи буде він до нього близький. Вказана збіжність буде мати місце, якщо $\sigma(t;t_{0},x^{0}+\Delta x(t_{0}),u^{0}(\cdot))$ буде збігатися до $\sigma(t;t_{0},x^{0},u^{0}(\cdot))$. Процес $x^{0}(\cdot)$ називають незбуреним рухом системи, а процес $x^{0}(\cdot) = 3$ буреним рухом. Вивчення властивостей відображення σ , які забезпечують вказану збіжність процесів чи їх близькість, складають предмет теорії стійкості систем. (Лабораторна №4).

Багато інших проблем теорії систем являються деталізацією сформульованих вище проблем. Ці проблеми виникають при синтезі систем з потрібними властивостями. До них відносяться такі проблеми синтезу: *оптимального програмного керування; оптимальних законів* керування(синтез), тобто керування, яке формується в кожний момент часу на

основі інформації про стан системи в цей момент (Тема №6); *законів керування*, які забезпечують стійкість системи; *оберненого зв'язку*, тобто керування за виходом системи; *адаптивних систем*, де в процесі керування проходить, зокрема, процес ідентифікації системи, зв'язаний з оцінкою її структурних параметрів; *систем розпізнавання чи класифікації вхідних даних* і т.д..

4.2. Класифікація динамічних систем.

Означення 1. Динамічна система називається *дискретною за часом*, якщо

$$T = \{t_k : k = 0, \pm 1, \pm 2, ...; t_{k-1} \le t_k \}$$
.

Означення 2. Динамічна система називається *неперервною за часом* , якщо T співпадає із множиною всіх дійсних чисел, чи є інтервалом $[\alpha, \beta]$

$$[\alpha,\infty)$$
.

Означення 3. Динамічна система називається *скінченим автоматом*, якщо вона являється дискретною за часом а множини U, X, Y мають скінчене число елементів.

Означення 4. Динамічна система називається *скінчено вимірною*, якщо множини U, X, Y являються скінчено вимірними лінійними просторами .

Означення 5. Динамічна система називається стаціонарною, якщо:

- 1) т являється адитивною групою;
- 2) для довільного $s \in T$ із $u(\cdot) \in U(\cdot)$ витікає $u(\cdot) \in U(\cdot)$, де для всіх $t \in T$ виконується рівність u(t-s) = u(t);
- 3) рівність $\sigma(t;t_0,x,u(\cdot)) = \sigma(t-s;t_0-s,x,u(\cdot))$ виконується для всіх $s \in T$;
- 4) відображення $\eta(x,t)$ не залежить від t.

Означення 6. Динамічна система називається лінійною, якщо:

- 1) множини $X,Y,U,U(\cdot),Y(\cdot)$ являються лінійними просторами;
- 2) відображення $\sigma(t;t_0,x,u(\cdot))$ лінійне по x і $u(\cdot)$;
- 3) відображення $\eta(x,t)$ лінійне по x.

Таким чином, у випадку лінійних систем відображення σ і η мають вигляд:

$$\sigma(t;t_0,x,u(\cdot)) = \Phi^0(t,t_0)x + \Theta^0(t,t_0)u(\cdot),$$

$$\eta(x,t) = C^0(t)x,$$

де $\Phi^0(t,t_0)$ – лінійний оператор, що відображає X в X; $\Theta^0(t,t_0)$ – лінійний оператор із $U(\cdot)$ в X; $C^0(t)$ – лінійний оператор із X в Y.

Означення 7. Лінійний скінчений автомат називається *лінійною послідовною машиною*.

Зауважимо, що клас лінійних систем (що задається означенням 6) значно ширший класу систем, які описуються скінченим набором лінійних диференціальних рівнянь.

Означення 8. Динамічна система називається гладкою, якщо:

- 1) множини $T,U,X,Y,U(\cdot)$ являються топологічними просторами;
- 2) функція $x(t) = \sigma(t; s, x, u(\cdot))$ при довільних s, x належить класу гладких функцій, якщо $u(\cdot)$ неперервна функція.

Як показано у книзі Р. Калмана, у випадку гладких систем існує таке відображення $f: T \times X \times U \to X$, що перехідне відображення σ являє собою розв'язок диференціального рівняння

$$\frac{dx(t)}{dt} = f(x(t), u(t), t)$$

при початковій умові $x(s) = x^s$.

Тому проблема ідентифікації для гладких систем зводиться до знаходження відображення $f: T \times X \times U \to X$, що є менш громіздкою задачею.

Аналогічно, у випадку дискретних за часом динамічних систем існує таке відображення $f(x,u,t_k)$, що $\sigma(t_k;t_0,x^0,u(\cdot))$ являється розв'язком рекурентного співвідношення (чи різницевого рівняння):

$$x(t_{k+1}) = f(x, u, t_k), x(t_0) = x^0$$
.

На основі сказаного закон поведінки систем, які належать класу гладких чи класу дискретних за часом систем, можна описувати парою відображень f, η а не парою σ, η .

Дану класифікацію можна продовжувати, вимагаючи певних властивостей від X,Y,U і фіксуючи ті чи інші властивості відображень σ,η чи відображень f,η . Наприклад, якщо X не являється лінійним простором, але має узгоджені між собою топологічні і групові структури, то одержуємо *клас систем на многовидах*.