Piotr Bury 2023/24

Zadania dodatkowe

Termin: wrzesień

Zadanie 1. Podać przykład figury (wystarczy rysunek), która składa się z dwóch prostokątów (ale nie jest kwadratem), ma środek symetrii oraz 4 osie symetrii.

Zadanie 2. Znajdź wszystkie liczby pierwsze p, takie że liczba $7p^2 + 8$ jest pierwsza.

Zadanie 3. Rozważmy liczbę $1000(5\sqrt{2}-7)^2$. Ile wynosi jej przybliżenie, gdy użyjemy standardowego przybliżenia $\sqrt{2}\approx 1,41$ wstawiając je bezpośrednio do powyższej postaci? A ile będzie wynosić to przybliżenie, gdy użyjemy kalkulatora naukowego (czyli znacznie dokładniejszego przybliżenia)? Ile będzie wynosić przybliżenie, gdy najpierw podniesiemy nawias do kwadratu ze wzoru skróconego mnożenia i wtedy wstawimy przybliżenie 1,41? O czym świadczą otrzymane wyniki?

Zadanie 4. Czy istnieje czworościan, którego siatka jest trójkątem prostokątnym?

Zadanie 5. Rozważmy nierówności $x^2 + 1 \ge g(x) \ge -x^2 - 1$. Podaj przykład funkcji g spełniającej powyższe nierówności dla każdego x, aby:

- a) g była stała,
- b) g była liniowa ale nie stała,
- c) istniały x_1, x_2 realizujące równość, tzn. aby wykres g był styczny do wykresu funkcji danej wzorem $y = x^2 + 1$ oraz do wykresu funkcji danej wzorem $y = -x^2 1$.

Termin: październik

Zadanie 6. Wykaż, że w dowolnym trójkącie środek ciężkości, ortocentrum oraz środek okręgu opisanego leżą na jednej prostej.

Wskazówka: Umieść trójkąt w układzie współrzędnych tak, by wierzchołki były na osiach Ox i Oy.

Zadanie 7. Rozważmy następujący ciąg równości:

$$\frac{23}{24} = \frac{2323}{2424} = \frac{232323}{242424} = \dots,$$

gdzie każdy kolejny ułamek powstaje przez dopisanie do licznika liczby 23, a do mianownika liczby 24. Wykazać, że możemy dowolnie długo go przedłużać i równości nadal będą zachodzić.

Zadanie 8. Niech w, k, s oznacza kolejno liczbę wierzchołków, krawędzi, ścian w wielościanie wypukłym. Czy istnieje taki wielościan, dla którego zachodzi $w \cdot k \cdot s = 2023^{2023}$?

Zadanie 9. Czy dla dowolnego $n \in \mathbb{N}_+$ istnieje n kolejnych liczb naturalnych, z których wszystkie są złożone?

Zadanie 10. Rozwiąż równanie:

$$4^{\frac{1}{x}} = 6^{\frac{1}{x}} + 9^{\frac{1}{x}}$$

Termin: listopad

Zadanie 11. Rozwiaż równanie:

$$\varphi^{\ln x} + x^{\ln \varphi} = 3 + \sqrt{5}.$$

Zadanie 12. Niech
$$x > 0$$
. Oblicz $\sqrt{x\sqrt{x\sqrt{x\sqrt{x\sqrt{x\sqrt{x}\dots}}}}}$

Zadanie 13. Jedna z najbardziej znanych hipotez to Hipoteza Goldbacha. Mówi ona o tym, że każdą liczbę parzystą większą od 2 można przedstawić w postaci sumy dwóch liczb pierwszych. Wykaż, że jeśli ta hipoteza jest prawdziwa, to każdą liczbę nieparzystą większą niż 7 można przedstawić w postaci sumy trzech liczb pierwszych. Czy można uznać za prawdziwe zdanie: "Każda liczba nieparzysta większa od 7 jest sumą trzech liczb pierwszych"?

Zadanie 14. Czy istnieje liczba naturalna n, której iloczyn cyfr wynosi 0, a iloczyn cyfr liczby n+1 wynosi 1000?

Zadanie 15. Czy istnieje liczba naturalna n, której iloczyn cyfr wynosi 1000, a iloczyn cyfr liczby n+1 wynosi 0?

Termin: grudzień

Zadanie 16. Weźmy dowolną liczbę naturalną n i policzmy sumę kwadratów jej cyfr. Z otrzymanym wynikiem postępujemy analogicznie. Proces wykonujemy do momentu, aż otrzymamy liczbę 1. Jeśli tak się stanie, to liczbę n nazywamy liczbą wesołą. W przeciwnym wypadku nazywamy ją smutną. Określić, które liczby od 0 do 10 są wesołe, a które smutne. Jak na bycie wesołą/smutną wpływa przestawienie cyfr w liczbie, a jak dodanie dowolnej liczby zer w dowolnym miejscu?

Przykład: Niech n = 133. Wtedy $1^2 + 3^2 + 3^2 = 19$, $1^2 + 9^2 = 82$, $8^2 + 2^2 = 68$, $6^2 + 8^2 = 100$, $1^2 + 0^2 + 0^2 = 1$, a więc liczba 133 jest wesola.

Zadanie 17. Oprócz znanych ze szkoły średnich istnieje też średnia logarytmiczna zdefiniowana następująco:

$$S_L := L(a,b) := \frac{b-a}{\ln b - \ln a},$$

gdzie $a, b \in \mathbb{R}_+, a \neq b$.

- a) Wykaż, że średnia logarytmiczna jest przemienna tzn. L(a,b) = L(b,a)
- b) Oblicz średnią logarytmiczną dla liczb e i e^2 ; 2 i 1 oraz dnia i miesiąca swoich urodzin.
- c) Średnia ta "wpasowuje się" w ciąg nierówności między średnimi: $S_K \geqslant S_A \geqslant S_G \geqslant S_H$. Na podstawie obliczonych wyżej przykładów, wywnioskuj, między którymi średnimi znajduje się średnia logarytmiczna.

Zadanie 18. Rozwiąż równanie $|x+y^2|+|x-y^2|+|y+x^2|+|y-x^2|=2023$ w zbiorze liczb całkowitych.

Zadanie 19. Czy da się zapisać liczbę 1 jako sumę odwrotności pewnej liczby **różnych** liczb pierwszych, tzn. czy istnieją liczby pierwsze p_1, p_2, \dots, p_n , że $1 = \frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_n}$?

Zadanie 20. Rozwiąż równanie: $2023^{|x|} = \sin x^{2023}$.

Termin: styczeń

Zadanie 21. Wykaż, że dla x, y, z > 0 zachodzi nierówność:

$$\frac{x}{y+z} + \frac{y}{x+z} + \frac{z}{x+y} \geqslant \frac{3}{2}.$$

Wskazówka: twierdzenie o odcinkach stycznych w trójkącie o bokach x, y, z.

Zadanie 22. Oblicz
$$xyzt$$
 jeśli
$$\begin{cases} 2020^x = 2021 \\ 2021^y = 2022 \\ 2022^z = 2023 \\ 2023^t = 2024 \end{cases}$$

Zadanie 23. Zachodzą następujące prawa dla kwantyfikatorów:

$$\exists x \in X : [\varphi(x) \lor \psi(x)] \Leftrightarrow [\exists x \in X : \varphi(x)] \lor [\exists x \in X : \psi(x)]$$

$$\exists x \in X : [\varphi(x) \land \psi(x)] \Rightarrow [\exists x \in X : \varphi(x)] \land [\exists x \in X : \psi(x)]$$

$$\forall x \in X : [\varphi(x) \land \psi(x)] \Leftrightarrow [\forall x \in X : \varphi(x)] \land [\forall x \in X : \psi(x)]$$

$$[\forall x \in X : \varphi(x)] \lor [\forall x \in X : \psi(x)] \Rightarrow \forall x \in X : [\varphi(x) \lor \psi(x)],$$

gdzie $\varphi(x), \psi(x)$ to dowolne formy zdaniowe.

Warto zwrócić uwagę, że w dwóch przypadkach zachodzą tylko implikacje, a nie równoważności. Proszę podać przykłady pokazujące, że nie działają implikacje w drugą stronę, tzn. prawa strona jest prawdziwa, a lewa nie.

Zadanie 24. Dany jest trójkąt o bokach długości 6, 8, 10. Wykaż, że jeśli odległości dowolnego punktu z wnętrza trójkąta od wierzchołków są liczbami wymiernymi, to odległości tego punktu od boków trójkąta również są liczbami wymiernymi.

Zadanie 25. Odpowiedzieć z uzasadnieniem na następujące pytania:

- a) Czy istnieją na płaszczyźnie dwa takie zbory, że niezależnie od ich położenia na tejże płaszczyźnie ich część wspólna będzie zawsze jednoelementowa?
- b) Czy istnieją na płaszczyźnie dwa takie zbory, że niezależnie od ich położenia na tejże płaszczyźnie ich część wspólna będzie zawsze dwuelementowa?
- c) Czy istnieją na płaszczyźnie dwa takie zbory, że niezależnie od ich położenia na tejże płaszczyźnie ich część wspólna będzie zawsze 2024-elementowa?

Rozwiązanie 1.

Rozwiązanie 2.

• Jeśli p = 3, to $7p^2 + 8 = 7 \cdot 9 + 8 = 71 \in \mathbb{P}$.

- Jeśli p = 3k + 1, $k \in \mathbb{N}$, to $7p^2 + 8 = 7(3k + 1)^2 + 8 = 7(9k^2 + 6k + 1) + 8 = 63k^2 + 42k + 15 = 3(21k^2 + 14k + 5) = 3q$ oraz $q \in \mathbb{N} \land n > 1$, a więc liczba ta dzieli się przez 3, więc nie jest pierwsza.
- Jeśli p = 3k + 2, $k \in \mathbb{N}$, to $7p^2 + 8 = 7(3k + 2)^2 + 8 = 7(9k^2 + 12k + 4) + 8 = 63k^2 + 84k + 36 = 3(21k^2 + 28k + 12) = 3q$ oraz $q \in \mathbb{N} \land q > 1$, a więc liczba ta dzieli się przez 3, więc nie jest pierwsza.

Zatem p = 3.

Rozwiązanie 3.

- $1000(5\sqrt{2}-7)^2 \approx 1000(5\cdot 1,41-7)^2 = 1000(7,05-7)^2 = 1000\cdot 0,05^2 = \mathbf{2.5}$
- $1000(5\sqrt{2}-7)^2 = 1000(50-70\sqrt{2}+49) = 1000(99-70\sqrt{2}) \approx 1000(99-70\cdot 1,41) = 1000($
- $1000(5\sqrt{2}-7)^2 \approx 1000(5\cdot 1,4142135623731-7)^2 = 1000(7,0710678118655-7)^2 = 1000\cdot 0,0710678118655^2 \approx 1000\cdot 0,0050506338833501 = \mathbf{5,0506338833501}$

Otrzymane rozbieżności świadczą o tym, że po pierwsze różnica w przybliżeniu nawet na częściach tysięcznych może bardzo znacznie wpłynąć na wynik końcowy – dlatego m.in należy przybliżać do podanej liczby miejsc po przecinku dopiero końcowy wynik, a nie wyniki pośrednie. Po drugie, dwa pierwsze rachunku świadczą o tym, że znaczenia ma nie tylko dokładność przybliżenia, ale też to, do jakiej postaci końcowej wstawiamy przybliżenie. Z tego m.in. powodu należy usuwać niewymierność z mianownika, ponieważ przybliżanie niewymierności w mianowniku generuje większy błąd niż przybliżanie w liczniku.

Rozwiązanie 4. Nie istnieje taki czworościan. Narysujmy dowolny trójkąt prostokątny i załóżmy, że jest on naszą hipotetyczną siatką. Połączmy środki jego boków (łączymy środki, aby po sklejeniu odpowiednie krawędzie się skleiły).

Niech $| \triangleleft AFD | = \alpha$. Wtedy $| \triangleleft CFE | = 90^{\circ} - \alpha$. Ponieważ $(90^{\circ} - \alpha) + \alpha = 90^{\circ}$, to czerwone krawędzie złączą się dopiero, gdy będą płasko leżeć na podstawie, a więc po ich zagięciu nie otrzymamy ostrosłupa, a jedynie płaski trójkąt.

Rozwiązanie 5. Funkcje ograniczające szukaną funkcję g są funkcjami kwadratowymi o następujących wykresach.

Dzięki rysunkowi¹ łatwo podać przykłady:

- a) g(x) = 0
- b) g(x) = x

Jeśli chodzi o ostatni podpunkt, to szukamy prostej, która jest styczna do obu wykresów, tzn. ma z każdym z nich dokładnie jeden punkt wspólny. W tym celu rozwiążmy układy równań:

$$\begin{cases} y = x^2 + 1 \\ y = ax + b \end{cases} \qquad \begin{cases} y = -x^2 - 1 \\ y = ax + b \end{cases}$$
$$x^2 + 1 = ax + b \\ x^2 - ax + 1 - b = 0 \end{cases} \qquad -x^2 - 1 = ax + b$$
$$x^2 + ax + b - 1 = 0$$

Są to równania kwadratowe, więc musi zachodzić warunek $\Delta=0,$ aby był dokładnie jeden punkt wspólny z wykresem. Zatem:

 $\Delta_1 = a^2 - 4(1-b) = 0$ oraz $\Delta_2 = a^2 - 4(b-1) = 0$. Stąd $a^2 = 4(1-b) \wedge a^2 = 4(b-1)$. Przyrównując prawe strony otrzymujemy $1-b=b-1 \Rightarrow b=1 \Rightarrow a^2=1 \Rightarrow a=1 \vee a=-1$. Ostatecznie uzyskujemy dwie funkcje: g(x)=x+1 lub g(x)=-x+1.

Rozwiązanie 6. Wykorzystamy geometrię analityczną. W tym celu umieśćmy trójkąt w układzie współrzędnych tak, by dwa wierzchołki były na osi Ox i jeden na osi Oy – tak jak na rysunku. Wtedy A(a,0), B(b,0), C(0,c).

- Punkt K przecięcia środkowych, czyli środek ciężkości ma współrzędne $K\left(\frac{x_A+x_B+x_C}{3},\frac{y_A+y_B+y_C}{3}\right)=\left(\frac{a+b}{3},\frac{c}{3}\right).$
- Punkt L przecięcia wysokości, czyli ortocentrum: Wysokość h_C zawiera się w prostej x=0. Wyznaczymy równanie prostej zawierającej h_B . Jest ona prostopadła do pr. BC, której współczynnik kierunkowy wynosu $a_{BC} = \frac{c}{-a} = -\frac{c}{a}$. Zatem współczynnik kierunkowy prostej zawierającej h_B wynosi $\frac{a}{c}$. Prosta ta przechodzi przez punkt B, więc

$$0 = \frac{a}{c} \cdot b + b_h$$
$$b_h = -\frac{ab}{c},$$

a więc h_B zawiera się w prostej o równaniu $y=\frac{a}{c}x-\frac{ab}{c}$. By znaleźć punkt przecięcia wystarczy rozwiązać układ równań:

$$\begin{cases} x = 0 \\ y = \frac{a}{c}x - \frac{ab}{c} \end{cases}$$
z którego otrzymujemy $L\left(0, -\frac{ab}{c}\right)$.

 $^{^{1}}$ Łatwo też w razie potrzeby uzasadnić poprawność nierówności dzięki nietrudnemu rachunkowi.

• Punkt M przecięcia symetralnych boków, czyli środek okręgu opisanego na trójkącie: Środek odcinka AB ma współrzędne $S_{AB}=\left(\frac{a+b}{2},0\right)$, więc równanie symetralnej boku AB ma postać $x=\frac{a+b}{2}$. Środkiem boku AC jest punkt $S_{AC}=\left(\frac{a}{2},\frac{c}{2}\right)$. Symetralna boku AC ma współczynnik kierunkowy równy $\frac{a}{c}$ (taki sam jak h_B) i przechodzi przez punkt S_{AC} , więc

$$\frac{c}{2} = \frac{a}{c} \cdot \frac{a}{2} + b_s$$

$$b_s = \frac{c}{2} - \frac{a^2}{2c} = \frac{c^2 - a^2}{2c},$$

a więc równanie tej symetralnej to: $y = \frac{a}{c}x + \frac{c^2 - a^2}{2c}$. By znaleźć punkt przecięcia wystarczy rozwiązać układ równań:

rozwiązać układ równań:
$$\begin{cases} x = \frac{a+b}{2} \\ y = \frac{a}{c}x + \frac{c^2 - a^2}{2c} \end{cases}$$

z którego po nietrudnych rachunkach otrzymujemy $M\left(\frac{a+b}{2}, \frac{ab+c^2}{2c}\right)$.

Aby wykazać, że punkty K, L, M leżą na jednej prostej można napisać równanie prostej KL oraz sprawdzić, że punkt M na niej leży. Prościej jednak będzie wyliczyć współczynniki kierunkowe a_{LK} raz a_{LM} :

$$a_{LK} = \frac{\frac{a+b}{3} - 0}{\frac{c}{3} + \frac{ab}{c}} = \frac{a+b}{3} \cdot \frac{3c}{c^2 + 3ab} = \frac{(a+b)c}{c^2 + 3ab}$$
$$a_{LM} = \frac{\frac{a+b}{2} - 0}{\frac{ab+c^2}{2c} + \frac{ab}{c}} = \frac{a+b}{2} \cdot \frac{2c}{ab+c^2 + 2ab} = \frac{(a+b)c}{c^2 + 3ab},$$

a więc punkty te leżą na jednej prostej. Prosta ta ma swoją nazwę – jest to prosta Eulera.

Rozwiązanie 7. Ułamek w dowolnym miejscu tego ciągu możemy zapisać w postaci:

$$\frac{23 + 23 \cdot 10^2 + 23 \cdot 10^4 + \ldots + \cdot 23 \cdot 10^{2k}}{24 + 24 \cdot 10^2 + 24 \cdot 10^4 + \ldots + \cdot 24 \cdot 10^{2k}}$$

dla pewnego $k \in \mathbb{N}$.

Z licznika możemy wyjąć przed nawias 23, a z mianownika 24 otrzymując:

$$\frac{23(1+10^2+10^4+\ldots+10^{2k})}{24(1+10^2+10^4+\ldots+10^{2k})} = \frac{23(1+10^2+10^4+\ldots+10^{2k})}{24(1+10^2+10^4+\ldots+10^{2k})} = \frac{23}{24},$$

co pokazuje, że dla dowolnego $k \in \mathbb{N}$ (czyli dla dowolnej długości ułamka) wynik zawsze wynosi $\frac{23}{24}$.

Rozwiązanie 8. Dla każdego wielościanu wypukłego zachodzi wzór Eulera: w-k+s=2. Iloczyn $w\cdot k\cdot s=2023^{2023}$ oznacza, że wszystkie liczby w,k,s są nieparzyste, bo prawa strona jest nieparzysta. Ponieważ różnica liczb nieparzystych jest parzysta, a suma liczby parzystej i nieparzystej jest nieparzysta otrzymujemy po lewej stronie tożsamości Eulera liczbę nieparzystą. Sprzeczność. A zatem taki wielościan nie istnieje.

Rozwiązanie 9. Tak. Są to: (n+1)! + 2, (n+1)! + 3, (n+1)! + 4, ... + (n+1)! + (n+1). Wszystkie są złożone, ponieważ pierwsza dzieli się przez 2, druga przez 3, trzecia przez 4 itd., a ostatnia przez n+1.

Rozwiązanie 10. Dziedziną równanie jest $D = \mathbb{R} \setminus \{0\}$.

$$4^{\frac{1}{x}} = 6^{\frac{1}{x}} + 9^{\frac{1}{x}} \quad | : 4^{\frac{1}{x}}$$

$$1 = \left(\frac{6}{4}\right)^{\frac{1}{x}} + \left(\frac{9}{4}\right)^{\frac{1}{x}}$$

$$1 = \left(\frac{3}{2}\right)^{\frac{1}{x}} + \left[\left(\frac{3}{2}\right)^{2}\right]^{\frac{1}{x}}$$

$$1 = \left(\frac{3}{2}\right)^{\frac{1}{x}} + \left[\left(\frac{3}{2}\right)^{\frac{1}{x}}\right]^2$$

Podstawimy $\left(\frac{3}{2}\right)^{\frac{1}{x}} = t, \ t > 0.$

$$1 = t + t^{2}$$

$$t^{2} + t - 1 = 0$$

$$\Delta = 5, \ \sqrt{\Delta} = \sqrt{5}$$

$$t_{1} = \frac{-1 + \sqrt{5}}{2}, \quad t_{1} = \frac{-1 - \sqrt{5}}{2} < 0$$

Zatem $(\frac{3}{2})^{\frac{1}{x}} = \frac{-1 + \sqrt{5}}{2}$.

Wiedząc, że $\varphi = \frac{1+\sqrt{5}}{2}$ możemy zapisać $\left(\frac{3}{2}\right)^{\frac{1}{x}} = \frac{1}{\varphi}$. Obustronnie logarytmując otrzymujemy:

$$\log_{\frac{3}{2}} \left(\frac{3}{2}\right)^{\frac{1}{x}} = \log_{\frac{3}{2}} \left(\frac{1}{\varphi}\right)$$
$$\frac{1}{x} = \log_{\frac{3}{2}} \left(\frac{1}{\varphi}\right) = \log_{\frac{3}{2}} \varphi^{-1} = -\log_{\frac{3}{2}} \varphi$$
$$x = -\log_{\varphi} \left(\frac{3}{2}\right) = -\log_{\varphi} \left(\frac{2}{3}\right)^{-1} = \log_{\varphi} \left(\frac{2}{3}\right)$$

Rozwiązanie 11. Skorzystamy najpierw z własności logarytmów: $e^{\ln x} = x$

$$\varphi^{\ln x} + \left(e^{\ln x}\right)^{\ln \varphi} = 3 + \sqrt{5}$$

$$\varphi^{\ln x} + \left(e^{\ln \varphi}\right)^{\ln x} = 2 + 1 + \sqrt{5}$$

$$\varphi^{\ln x} + \varphi^{\ln x} = 2 + 2\left(\frac{1 + \sqrt{5}}{2}\right)$$

$$2\varphi^{\ln x} = 2 + 2\varphi \quad | : 2$$

$$\varphi^{\ln x} = 1 + \varphi \quad | \ln()$$

$$\ln \varphi^{\ln x} = \ln(1 + \varphi)$$

$$\ln x \cdot \ln \varphi = \ln(1 + \varphi).$$

Wiemy, że złota liczba jest rozwiązaniem równania $x^2-x-1=0$, a więc $\varphi+1=\varphi^2$.

$$\ln x \cdot \ln \varphi = \ln \varphi^{2}$$

$$\ln x \cdot \ln \varphi = 2 \ln \varphi \quad |: \ln \varphi$$

$$\ln x = 2$$

$$x = e^{2}$$

Możemy również inaczej przekształcać nasze równanie. Zamiast zamieniać drugi składnik, by wyglądał jak pierwszy, możemy analogicznie zamienić pierwszy i otrzymać

$$2 (e^{\ln x})^{\ln \varphi} = 2 + 2\varphi$$
$$(e^{\ln x})^{\ln \varphi} = 1 + \varphi$$
$$x^{\ln \varphi} = 1 + \varphi \quad |()^{\frac{1}{\ln \varphi}}$$
$$x = (1 + \varphi)^{\frac{1}{\ln \varphi}}$$
$$x = {}^{\ln \varphi}\sqrt{1 + \varphi}.$$

Choć wyniki wydają się zupełnie inne, to po łatwych przekształceniach uzyskujemy, że $\sqrt[\ln \varphi]{1+\varphi}=e^2$.

Rozwiązanie 12. Najprościej rozwiązać to następująco. Niech $\sqrt{x\sqrt{x\sqrt{x\sqrt{x\sqrt{x}\dots}}}}=:S.$ Podnosząc do kwadratu otrzymujemy:

$$x\sqrt{x\sqrt{x\sqrt{x\sqrt{x\sqrt{x}\dots}}}} = S^2,$$

czyli $xS = S^2$. Stąd (wyciągając przed nawias) S = 0 lub S = x. Pierwsza opcja jest oczywiście sprzeczna, więc S = x.

Aby to rozumowanie było w pełni poprawne, należy najpierw udowodnić, że wynikiem tego "nieskończonego" pierwiastka jest liczba rzeczywista. Tylko wtedy możemy cały pierwiastka oznaczyć jako liczbę S. Mogłoby się bowiem zdarzyć, że wynik rozbiega w plus (lub minus) nieskończoność albo w ogóle przy obliczaniu coraz dokładniejszego wyniku (braniu coraz większej liczby pierwiastków) wyniki nie zbliżają się do żadnej granicy (nawet niewłaściwej)².

Wykażemy to za pomocą indukcji matematycznej. W tym celu niech $x_n := \sqrt{x\sqrt{x}},$ gdzie w tym wyrażeniu występuje dokładnie n liter x. Pokażemy, że ciąg (x_n) ma granicę. Rozważmy najpierw sytuację, gdy x > 1:

- I. (ograniczoność)
 - 1. Dla n = 1 mamy $0 \leqslant \sqrt{x} \leqslant x$.
 - 2. $Z_{ind}: 0 \leqslant x_n \leqslant x$, $T_{ind}: 0 \leqslant x_{n+1} \leqslant x$

Z założenia indukcyjnego wiemy, że

$$0 \leqslant x_n \leqslant x$$

$$0 \leqslant \sqrt{x\sqrt{x \dots \sqrt{x\sqrt{x\sqrt{x}}}}} \leqslant x \quad | \cdot x$$

$$0 \leqslant x\sqrt{x\sqrt{x \dots \sqrt{x\sqrt{x\sqrt{x}}}}} \leqslant x^2 \quad | \checkmark$$

$$0 \leqslant \sqrt{x\sqrt{x \dots \sqrt{x\sqrt{x\sqrt{x}}}}} \leqslant |x| (= x \text{ bo } x > 0)$$

$$0 \leqslant x_{n+1} \leqslant x$$

Na mocy indukcji matematycznej ciąg (x_n) jest ograniczony (z góry przez x).

- II. (monotoniczność)
 - 1. Dla n = 1 mamy $x_1 = \sqrt{x}, x_2 = \sqrt{x\sqrt{x}}$

$$x_{1} \stackrel{?}{<} x_{2}$$

$$\sqrt{x} \stackrel{?}{<} \sqrt{x\sqrt{x}} \quad |^{2}$$

$$x \stackrel{?}{<} x\sqrt{x} \quad |: x$$

$$1 \stackrel{?}{<} \sqrt{x} \quad |^{2}$$

$$1 \stackrel{?}{<} x$$

$$TAK$$

2. $Z_{ind}: x_n < x_{n+1}$,

$$T_{ind}: x_{n+1} < x_{n+2}$$

Z założenia indukcyjnego wiemy, że $x_n < x_{n+1}$, czyli:

$$\sqrt{x\sqrt{x}\dots\sqrt{x\sqrt{x\sqrt{x}}}} < \sqrt{x\sqrt{x}\dots\sqrt{x\sqrt{x\sqrt{x}}}},$$

 $^{^2}$ Najbardziej znanym przykładem jest chyba rozumowanie, które przez analogiczne myślenie (czyli oznaczenie przez x pewnego wyrażenia, które nie jest liczbą rzeczywistą) "dowodzi", że $1+2+3+4+\ldots=-\frac{1}{12}$, czyli, że suma liczb naturalnych wynosi $-\frac{1}{12}$.

przy czym po lewej jest n pierwiastków, a po prawej jest ich n+1.

Mnożąc obie strony nierówności przez x, a następnie pierwiastkując otrzymujemy analogiczne pierwiastki, ale po lewej stronie jest ich n+1, a po prawej n+2, czyli:

$$x_{n+1} < x_{n+2},$$

co na mocy indukcji matematycznej dowodzi, że ciąg (x_n) jest rosnący.

Rozważany ciąg (x_n) jest monotoniczny (rosnacy) oraz ograniczony, a wiec jest zbieżny.

W analogiczny sposób wykazujemy, ograniczoność i monotoniczność dla $x \in (0,1)$. Dla x=1 ciąg jest stale równy 1, więc jego granica to 1.

To pozwala oznaczyć granicę tego ciągu, czyli szukany "nieskończony" pierwiastek przez S.

Rozwiązanie 13. Rozważmy liczbę nieparzystą x większą od 7, czyli x = 2n + 1 > 7:

$$2n+1 > 7 \quad |-3$$

 $2n-2 > 4$
 $2(n-1) > 4$

Liczba po lewej jest parzysta i większa od 4 (a więc też od 2). Korzystając z Hipotezy Goldbacha jest ona sumą dwóch liczb pierwszych, tzn.

$$2(n-1) = p_1 + p_2$$

$$2n - 2 = p_1 + p_2 + 3$$

$$2n + 1 = p_1 + p_2 + 3,$$

a więc przedstawiliśmy liczbę x jako sumę trzech liczb pierwszych.

Zdania: "Każda liczba nieparzysta większa od 7 jest sumą trzech liczb pierwszych" nie możemy uznać za prawdziwe, ponieważ dowód tego faktu korzysta z własności, której do tej pory nikt nie potwierdził. Jeśli jednak okaże się, że hipoteza Goldbacha jest prawdziwa, to automatycznie prawdziwe będzie również powyższe zdanie. Gdyby jednak Hipoteza Goldbacha była fałszywa to **NIE** oznacza to, że powyższe zdanie jest fałszywe. Być może da się je udowodnić innymi metodami, nie wykorzystującymi Hipotezy Goldbacha.

Rozwiązanie 14. Aby iloczyn cyfr pewnej liczby wynosił 0, to jedna z cyfr musi być równa 0. W tym przypadku zero musi być ostatnią cyfrą, aby liczba o 1 większa miała iloczyn cyfr różny od 0 (dokładniej = 1000). Rozłóżmy liczbe 1000 na czynniki:

$$1000 = 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 5.$$

Mamy trzy przypadki spełniające warunki zadania:

- \bullet liczba n to dowolna permutacja cyfr: 2, 2, 2, 5, 5, 5 i dowolnej liczby cyfr 1 oraz 0 na końcu,
- \bullet liczba n to dowolna permutacja cyfr: 2, 4, 5, 5, 5 i dowolnej liczby cyfr 1 oraz 0 na końcu,
- $\bullet\,$ liczba nto dowolna permutacja cyfr
: 5, 5, 5, 8 i dowolnej liczby cyfr 1 oraz 0 na końcu.

Wtedy liczba n+1 ma ostatnią cyfrę równą 1, więc iloczyn jej wszystkich cyfr to 1000. Szukanych liczb jest więc nieskończenie wiele, a przykładową może być: n=112225550.

Rozwiązanie 15. Taka liczba nie istnieje. Aby w liczbie n+1 iloczyn cyfr wynosił 0, to jedna z cyfr musi być 0. Musi to być ostatnia cyfra, ponieważ gdyby to była któraś z pozostałych, to wtedy iloczyn cyfr liczby n również wynosiłby zero (a ma wynosić 1000). To oznacza, że ostatnią cyfrą liczby n jest 9, a więc iloczyn cyfr liczby n dzieli się przez 9. Sprzeczność, bo $9 \nmid 1000$.