Matemática 1

Lista de Exercícios da Semana 1

Temas abordados: Funções

Seções do livro: 1.1; 1.2; 1.3; 1.4

1) A função módulo é definida, para todo $x \in \mathbb{R}$, como sendo

$$|x| = \begin{cases} x & \text{se } x \ge 0\\ -x & \text{se } x < 0. \end{cases}$$

Marcando o ponto x na reta real, o módulo de x é exatamente a distância desse ponto até o ponto 0. Utilizando a definição acima descreva o conjunto dos valores x que satisfazem as seguintes relações.

(a)
$$|2x + 5| = 4$$

(b)
$$|x-3| = |2x+1|$$

(c)
$$|3x - 8| < 4$$

(d)
$$|x+3| \ge 2$$

2) Determine o domínio de cada uma das funções abaixo.

(a)
$$f(x) = \frac{3x+4}{x^2-x-2}$$
 (b) $g(x) = \frac{|x^2-1|}{\sqrt[3]{x+1}}$ (c) $h(x) = \sqrt{|x|-x}$ (d) $r(x) = \frac{x}{\sqrt{|x|-1}}$ (e) $p(x) = \sqrt{1-\sqrt{1-x^2}}$

(b)
$$g(x) = \frac{|x^2 - 1|}{\sqrt[3]{x + 1}}$$

(c)
$$h(x) = \sqrt{|x| - x}$$

(d)
$$r(x) = \frac{x}{\sqrt{|x| - 1}}$$

(e)
$$p(x) = \sqrt{1 - \sqrt{1 - x^2}}$$

3) Considerando $f(x) = 2x^2 - 8$ e g(x) = 2/(x-7), determine o domínio e a expressão de cada uma das funções abaixo.

(a)
$$(f+g)(x)$$
 (b) $(f \cdot g)(x)$

(b)
$$(f \cdot g)(x)$$

(c)
$$\left(\frac{f}{g}\right)(x)$$

(d)
$$\left(\frac{g}{f}\right)(x)$$

(d)
$$\left(\frac{g}{f}\right)(x)$$
 (e) $(f \circ g)(x) = f(g(x))$ (f) $(g \circ f)(x) = g(f(x))$

(f)
$$(g \circ f)(x) = g(f(x))$$

4) Considerando f(x) = (4-x)/x, determine a expressão de cada uma das funções abaixo.

(a)
$$f\left(\frac{1}{x}\right) - \frac{1}{f(x)}$$
 (b) $f(x^2) - f(x)^2$ (c) $f(f(x))$

(b)
$$f(x^2) - f(x)^2$$

(c)
$$f(f(x))$$

5) Em cada um dos itens abaixo, encontre a equação da reta que satisfaz as exigências apresentadas.

- (a) passa pelos pontos (3,4) e (-2,5)
- (b) passa pelo ponto (-1,3) e tem inclinação igual a -1
- (c) passa pelo ponto (5, -1) e é paralela à reta 2x + 5y = 15
- (d) passa pelo ponto (0,1) e é perpendicular à reta 8x 13y = 13

6) Denotando por x e y os lados de um retângulo cujo perímetro é igual a 100, determine o domínio e a expressão da função d(x) que fornece o comprimento da diagonal do retângulo em função de x.

- 7) A partir de uma cartolina medindo 14×22 vamos construir uma caixa sem tampa como segue: recortamos quadrados de lado x em cada um dos vértices da cartolina e dobramos as abas. Determine a expressão e o domínio da função V(x) que fornece o volume da caixa em função de x.
- 8) Sejam x, y e z os lados de um triângulo retângulo, onde x é a hipotenusa. Suponha que o triângulo tem perímetro igual a 6. Determine a expressão da função A(x) que fornece a área do triângulo em função de x.

Dica: eleve os dois lados da igualdade y + z = 6 - x ao quadrado.

- 9) Um grama de gelo, inicialmente a -40° C, é posto em uma fonte de calor. Neste experimento, observa-se a menor quantidade de calor absorvido Q(T), em calorias, para que a amostra atinja temperatura T, em ${}^{\circ}$ C. Sabe-se que a cada 1 cal, o gelo aumenta sua temperatura em 2° C. Quando atinge 0° C, são necessárias mais 80 cal para o derretimento total (que ocorre sob temperatura constante). Depois de liquefeita, a água necessita de 1 cal para aumentar sua temperatura em 1° C.
 - (a) Calcule Q(-40), Q(-38), Q(0), Q(1) e Q(2).
 - (b) Determine a expressão de Q(T), para $T \in [-40, 80]$. Em seguida, desenhe o gráfico da função.
- 10) A figura abaixo ilustra um recipiente formado por dois cilindros circulares retos justapostos de altura 10m e raios respectivamente 12m e 6m. Suponha que, a partir do instante t=0, o recipiente comece a ser abastecido a uma vazão constante de modo que o nível da água s(t) no recipiente é dada por

$$s(t) = \begin{cases} 2t, & \text{para } 0 \le t \le 5\\ 8t - 30, & \text{para } 5 < t \le 6 \end{cases}$$

onde a altura é dada em metros e o tempo é dado em segundos.

- (a) Esboce o gráfico da função s(t).
- (b) Determine, caso existam, os instantes $\tau \in [0, 6]$ nos quais $s(\tau) = 15$.
- (c) Determine a imagem da função s.

RESPOSTAS

1) (a)
$$x \in \left\{-\frac{9}{2}, -\frac{1}{2}\right\}$$

(b)
$$x \in \{-4, \frac{2}{3}\}$$

(c)
$$x \in (\frac{4}{3}, 4)$$

1) (a)
$$x \in \left\{-\frac{9}{2}, -\frac{1}{2}\right\}$$
 (b) $x \in \left\{-4, \frac{2}{3}\right\}$ (c) $x \in \left(\frac{4}{3}, 4\right)$ (d) $x \in (-\infty, -5] \cup [-1, +\infty)$

2) (a)
$$\mathbb{R} \setminus \{-1, 2\}$$

(b)
$$\mathbb{R} \setminus \{-1\}$$

2) (a)
$$\mathbb{R} \setminus \{-1, 2\}$$
 (b) $\mathbb{R} \setminus \{-1\}$ (c) \mathbb{R} (d) $(-\infty, -1) \cup (1, +\infty)$ (e) $[-1, 1]$

(e)
$$[-1, 1]$$

3) (a)
$$2x^2 - 8 + \frac{2}{(x-7)}$$
, para $x \neq 7$

(b)
$$\frac{4x^2 - 16}{(x - 7)}$$
, para $x \neq 7$

(c)
$$(x^2-4)(x-7)$$
, para $x \in \mathbb{R}$

(d)
$$\frac{1}{(x-7)(x^2-4)}$$
, para $x \notin \{-2, 2, 7\}$

(e)
$$\frac{8}{(x-7)^2} - 8$$
, para $x \neq 7$

(f)
$$\frac{2}{2x^2 - 15}$$
, para $x \neq \pm \sqrt{15/2}$

4) (a)
$$\frac{-4(x^2-4x+1)}{4-x}$$

(b)
$$\frac{-2(x^2 - 4x + 6)}{x^2}$$

(c)
$$\frac{5x-4}{4-x}$$

5) (a)
$$y = -\frac{1}{5}x + \frac{23}{5}$$
 (b) $y = -x + 2$ (c) $y = -\frac{2}{5}x + 1$ (d) $y = -\frac{13}{8}x + 1$

$$(b) y = -x +$$

(c)
$$y = -\frac{2}{5}x +$$

(d)
$$y = -\frac{13}{8}x + \frac{1}{8}$$

6)
$$d(x) = \sqrt{x^2 + (50 - x)^2}, x \in (0, 50)$$

7)
$$V(x) = x(22 - 2x)(14 - 2x), x \in (0, 7)$$

8)
$$A(x) = 9 - 3x$$

9) (a)
$$Q(-40) = 0$$
, $Q(-38) = 1$, $Q(0) = 20$, $Q(1) = 101$, $Q(2) = 102$

(b)
$$Q(T) = \begin{cases} (T/2) + 20 & \text{se } T \in [-40, 0] \\ T + 100 & \text{se } T \in (0, 80] \end{cases}$$

10) (a)
$$\tau = 45/8$$
 (b) $Im(\tau) = [0, 18]$