Harvard University Computer Science 121

Section 6 Notes Week of 11.01.10

1 Outline

- Turing Machines
- Enumerators
- Equivalences
- Problems

2 Turing Machines

- We write a computation using configurations uqv (state q, head before v, tape holds uv).
- We use ⇒ to denote one configuration leads to the next according to the transitions of the machine; ⇒* for multiple steps.
- Many intuitive formulations are equivalent (multi-tape, nondeterministic, etc.).
- We prove by simulating any machine in one representation by some machine in the other.

3 Enumerators

- Recall, an enumerator prints the strings in a language.
- We define a language to be enumerable if it has an enumerator.
- A language is recursively enumerable iff it is enumerable.
- A language is recursive iff it is enumerable in lexicographic order.

4 Other equivalences

- Also equivalent to general grammar, 2 counters, etc.
- Church-Turing thesis tells us they are also equivalent to an "algorithm".
- But, when changing representation, running time or memory usage might change.

5 Problems

Exercise 5.1 Write a general grammar that generates $\{a^i : i \text{ is composite}\}$.

Exercise 5.2 Write a general grammar that generates $\{a^{2^n} : n \geq 0\}$.

Exercise 5.3 Show that the language

 $L = \{\langle M, w \rangle : M \text{ never moves its head left when running on } w\}$

 $is\ decidable.$

Exercise 5.4 Let $L = \{\langle M \rangle : M \text{ is a TM that accepts at least one string in } \Sigma^* \}$. Show that L is recognizable.

Exercise 5.5 Let $L = \{\langle M \rangle : M \text{ is a TM that eventually writes a non-blank symbol when started on the empty tape}\}. Show that <math>L$ is decidable.