Math 335, Homework 6

Due Wednesday, March 17

1. Apply the Fundamental Theorem of Cyclic Groups to list all of the subgroups of \mathbb{Z}_{30} , which is a group under addition modulo 30.

Answer:

Divisors of 30: 1, 2, 3, 5, 6, 10, 15. Hence all the subgroups of \mathbb{Z}_{30} are:

 $\langle 1 \rangle$: 30 elements

 $\langle 2 \rangle$: 15 elements

 $\langle 3 \rangle$: 10 elements

 $\langle 5 \rangle$: 6 elements

 $\langle 10 \rangle$: 3 elements

 $\langle 15 \rangle$: 2 elements

2. Let $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$, which is a group under addition modulo 6, and let S_3 be the symmetric group, which is a group under composition. Consider the following function $\varphi : \mathbb{Z}_6 \to S_3$:

$$\varphi(0) = e$$

$$\varphi(1) = (1, 2)$$

$$\varphi(2) = (1,3)$$

$$\varphi(3) = (2,3)$$

$$\varphi(4) = (1, 2, 3)$$

$$\varphi(5) = (1, 3, 2).$$

Is φ an isomorphism? Prove your answer.

Proof. As outlined above, we know that $\varphi : \mathbb{Z}_6 \to S_3$ is a bijection. Nevertheless, recall that \mathbb{Z}_6 under addition modulo 6 is abelian and S_3 (whose operation is composition) is not. Therefore, by the Theorem that explains the abelian properties of isomorphic groups, φ is not an isomorphism.

3. Let G and H be two groups, and suppose that there exists an isomorphism $\varphi: G \to H$. Prove that G is abelian if and only if H is abelian.

Proof. Let G and H be groups and suppose $G \cong H$. Let G be abelian, meaning for all $a, b \in G$,

$$a * b = b * a$$
.

Applying the function φ to ab results in

$$\varphi(a*b) = \varphi(a)*\varphi(b).$$

Similarly,

$$\varphi(b*a) = \varphi(b)*\varphi(a).$$

Hence

$$\varphi(a) * \varphi(b) = \varphi(b) * \varphi(a).$$

The argument for the converse is similar, but with $\varphi^{-1}: H \to G$.

4. Prove that the function $\varphi(x) = 10^x$ is an isomorphism from the group \mathbb{R} (under addition) to the group $\mathbb{R}^+ = \{\text{positive real numbers}\}\$ (under multiplication).

Proof. Let $\varphi : \mathbb{R}$ (under addition) $\to \mathbb{R}^+$ (under multiplication) and $\varphi(x) = 10^x$. To prove that φ is an isomorphism, we must first prove that it is a bijection. Recall that a function is a bijection if and only if it has an inverse. Notice that the inverse of $\varphi(x) = 10^x$ is $\varphi^{-1}(x) = \log_{10}(x)$. Since φ^{-1} exists, φ is bijective.

We must now prove that

$$\varphi(a*b) = \varphi(a)*\varphi(b)$$
 for all $a, b \in G$.

Replacing the operations in our function to match the operations in our domain and co-domain results in the following:

$$\varphi(a*b) = \varphi(a)*\varphi(b)$$

$$\varphi(a+b) = \varphi(a) \cdot \varphi(b)$$

$$\varphi(a+b) = 10^{a} \cdot 10^{b}$$

$$\varphi(a+b) = 10^{a+b}.$$

Hence, by definition, φ is an isomorphism.

- 5. In each of the following cases, decide whether G and H are isomorphic, and prove your answer. (**Hint**: In both cases, calculating orders of elements will be helpful.)
 - (a) $G = \mathbb{Z}_4$ (under addition modulo 4) and $H = \{1, a, b, c\}$, under the operation described by the following table:

	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
c	c	b	a	1

(The group H is called the *Klein four-group*.)

Proof. Let $G = \mathbb{Z}_4$ (under addition modulo 4) and $H = \{1, a, b, c\}$, under the operation described by the above table. Recall that by Theorem, given $G \cong H$, G is cyclic if and only if H is cyclic. Recollect that G is cyclic, and notice from the table that H is not. Explicitly stated,

$$\begin{split} \langle 1 \rangle &= \{1\} \\ \langle a \rangle &= \{1, a\} \\ \langle b \rangle &= \{1, b\} \\ \langle c \rangle &= \{1, c\}. \end{split}$$

Therefore, there is no element $h \in H$ such that $\langle h \rangle = H$. Hence, $G \ncong H$.

(b) $G = S_4$ and $H = D_{12} = \{\text{symmetries of a regular 12-gon}\}$ (under composition)

Proof. Let $G = S_4$ and $H = D_{12} = \{\text{symmetries of a regular 12-gon}\}$ (under composition). Notice that G does not have an order greater than 4. This can be illustrated as

$$ord(I) = 1$$
$$ord\{(1,2)\} = 2$$
$$ord\{(1,2,3)\} = 3$$
$$ord\{(1,2,3,4)\} = 4.$$

This remains true for any permutation of G. But observe that for H, $\operatorname{ord}(R_{30}) = 12$ (30 degree rotation). Recall that by Theorem, that given $G \cong H$, the number of elements in G of $\operatorname{ord}(d)$ must equal the number of elements in H of $\operatorname{ord}(d)$. But the number of elements in G of $\operatorname{ord}(d) = 12$ is zero, while the number of elements in H of $\operatorname{ord}(d) = 12$ is not zero. Therefore, $G \ncong H$.