Part 8: Policy Evaluation- Regression Discontinuity

Chris Conlon

March 31, 2020

Applied Econometrics

RDD

Regression Discontinuity Design

- Another popular research design is the Regression Discontinuity Design.
- In some sense this is a special case of IV regression. (RDD estimates a LATE).
- Most of this is taken from the JEL Paper by Lee and Lemieux (2010).

RDD: Basics

We have a running or forcing variable x such that

$$\lim_{x \to c^{+}} P(T_{i}|X_{i} = x) \neq \lim_{x \to c^{-}} P(T_{i}|X_{i} = x)$$

- The idea is that there is a discontinuous jump in the probability of being treated.
- For now we focus on the sharp discontinuity: $P(T_i|X_i > c) = 1$ and $P(T_i|X_i < c) = 0$

But we might not have that many people

- There is no single x for which we observe treatment and control. (Compare to Propensity Score!).
- The most important assumption is that of no manipulability $\tau_i \perp D_i$ in some neighborhood of c.
- Example: a social program is available to people who earned less than \$25,000.
 - If we could compare people earning \$24,999 to people earning \$25,001 we would have as-if random assignment. (MAYBE)

RDD: In Pictures

RDD: Sharp RD Case

RDD uses a set of assumptions distinct from our LATE/IV assumptions. Instead it depends on continuity.

- We need that $E[Y^{(1)}|X]$ and $E[Y^{(0)}|X]$ both be continuous at X=c.
- ullet People just to the left of c are a valid control for those just to the right of c.
- ullet This is not a testable assumption o draw pictures!
- We could run the regression where $D_i = \mathbf{1}[X_i > c]$.

$$Y_i = \beta_0 + \tau D_i + X_i \beta + \epsilon_i$$

- ullet This puts a lot of restrictions (linearity) on the relationship between Y and X.
- Also (without additional assumptions) we only learn about τ_i at the point X=c.

RDD: Nonlinearity

First thing to relax is assumption of linearity.

$$Y_i = f(x_i) + \tau D_i + \epsilon_i$$

This is known as partially linear model.

- Two options for $f(x_i)$:
 - 1. Kernels: Local Linear Regression
 - 2. Polynomials: $Y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_p x^p + \tau D_i + \epsilon_i$.
 - Actually, people suggest different polynomials on each side of cutoff! (Interact everything with D_i).
- Same objective. Want to flexibly capture what happens on both sides of cutoff.
- Otherwise risk confusing nonlinearity with discontinuity!

RDD: Kernel Boundary Problem

RDD: Polynomial Implementation Details

To make life easier:

- replace $\tilde{x}_i = x_i c$.
- Estimate coefficients β : $(1, \tilde{x}, \tilde{x}^2, \dots, \tilde{x}^p)$ and $\tilde{\beta}$: $(D_i, D_i \tilde{x}, D_i \tilde{x}^2, \dots, D_i \tilde{x}^p)$.
- Now treatment effect at c just the coefficient on D_i . (We can ignore the interaction terms).
- If we want treatment effect at $x_i > c$ then we have to account for interactions.
 - ullet Identification away from c is somewhat dubious.
- Lee and Lemieux (2010) suggest estimating a coefficient on a dummy for each bin in the polynomial regression $\sum_k \phi_k B_k$.
 - Add polynomials until you can satisfy the test that the joint hypothesis test that $\phi_1 = \cdots \phi_k = 0$.
 - There are better ways to choose polynomial order...

RDD: Checklist

Most RDD papers follow the same formula (so should yours)

- Plot of P(D|X) so that we can see the discontinuity
- ullet Plot of E[Y|X] so that we see discontinuity there also
- ullet Plot of E[W|X] so that we don't see a discontinuity in controls.
- Density of X (check for manipulation).
- Show robustness to different "windows"
- The OLS RDD estimates
- The Local Linear RDD estimates
- The polynomial (from each side) RDD estimates
- An f-test of "bins" showing that the polynomial is flexible enough.

Read Lee and Lemieux (2010) before you get started.

Application: Lee (2008)

Looked at incumbency advantage in the US House of Representatives

- Running variable was vote share in previous election
 - Problem of naive approach: good candidates get lots of votes!
 - ullet Compare outcomes of districts with barely D to barely R.
- First we plot bin-scatter plots and quartic (from each side) polynomials.
- Discussion about how to choose bin-scatter bandwidth (CV).

Lee (2008)

Lee (2008)

 $\it Figure~9.$ Winning the Next Election, Bandwidth of 0.02 (50 bins)

Lee (2008)

 ${\it Figure}~18.~Local~Linear~Regression~with~Varying~Bandwidth:~Share~of~Vote~at~Next~Election$

Other Examples

Luca on Yelp

- Have data on restaurant revenues and yelp ratings.
- Yelp produces a yelp score (weighted average rating) to two decimals ie: 4.32.
- Score gets rounded to nearest half star
- \bullet Compare 4.24 to 4.26 to see the impact of an extra half star.
- Now there are multiple discontinuities: Pool them? Estimate multiple effects?

Fuzzy RD

An important extension in the Fuzzy RD. Back to where we started:

$$\lim_{x \to c^{+}} P(T_{i}|X_{i} = x) \neq \lim_{x \to c^{-}} P(T_{i}|X_{i} = x)$$

• We need a discontinuous jump in probability of treatment, but it doesn't need to be $0 \to 1$.

$$\tau_i(c) = \frac{\lim_{x \to c^+} P(Y_i | X_i = x) - \lim_{x \to c^-} P(Y_i | X_i = x)}{\lim_{x \to c^+} P(T_i | X_i = x) - \lim_{x \to c^-} P(T_i | X_i = x)}$$

- Under sharp RD everyone was a complier, now we have some always takers and some never takers too.
- Now we are estimating the treatment effect only for the population of compliers at x=c.

Related Idea: Kinks

A related idea is that of kinks.

- Instead of a discontinuous jump in the outcome there is a discontinuous jump in β_i on x_i .
- Often things like tax schedules or government benefits have a kinked pattern.

One quantity to rule them all: MTE

Heckman and Vytlacil provide a unifying non-parametric framework to categorize treatment effects. Their approach is known as the marginal treatment effect or MTE

- The MTE isn't a number it is a function.
- All of the other objects (LATE, ATE, ATT, etc.) can be written as integrals (weighted averages) of the MTE.
- The idea is to bridge the treatment effect parameters (stuff we get from running regressions) and the structural parameters: features of $f(\beta_i)$.

One quantity to rule them all: MTE

- Consider a treatment effect $\beta_i = Y_i(1) Y_i(0)$.
- Think about a single-index such that $T_i = 1(v_i \leq Z_i'\gamma)$.
- Think about the person for whom $v_i = Z_i' \gamma$ (just barely untreated).

$$\Delta^{MTE}(X_i, v_i) = E[\beta_i | X_i, v_i = Z_i' \gamma]$$

- MTE is average impact of receiving a treatment for everyone with the same $Z'\gamma$.
- For any single index model we can rewrite

$$T_i = 1(v_i \le Z_i'\gamma) = 1(u_{is} \le F(Z_i'\gamma)) \text{ for } u_s \in [0, 1]$$

- ullet F is just the cdf of v_i
- Now we can write $P(Z) = Pr(T = 1|Z) = F(Z'\gamma)$.

MTE: Derivation

Now we can write,

$$Y_0 = \gamma_0' X + U_0$$

$$Y_1 = \gamma_1' X + U_1$$

P(T=1|Z)=P(Z) works as our instrument with two assumptions:

- 1. $(U_0, U_1, u_s) \perp P(Z)|X$. (Exogeneity)
- 2. Conditional on X there is enough variation in Z for P(Z) to take on all values $\in (0,1)$.
 - This is much stronger than typical relevance condition. Much more like the special regressor method we will discus next time.

MTE: Derivation

Now we can write,

$$Y = \gamma'_0 X + T(\gamma_1 - \gamma_0)' X + U_0 + T(U_1 - U_0)$$

$$E[Y|X, P(Z) = p] = \gamma'_0 X + p(\gamma_1 - \gamma_0)' X + E[T(U_1 - U_0)|X, P(Z) = p]$$

Observe T=1 over the interval $u_s=[0,p]$ and zero for higher values of u_s . Let $U_1-U_0\equiv\eta$.

$$E[T(U_1 - U_0)|P(Z) = p, X] = \int_{-\infty}^{\infty} \int_{0}^{p} (U_1 - U_0) f((U_1 - U_0)|U_s = u_s) du_s d(U_1 - U_0)$$

$$E[T(\eta)|P(Z) = p, X] = \int_{-\infty}^{\infty} \int_{0}^{p} \eta f(\eta | U_s = u_s) d\eta du_s$$

$$\Delta^{MTE}(p) = \frac{\partial E[Y|X, P(Z) = p]}{\partial p} = (\gamma_1 - \gamma_0)'X + \int_{-\infty}^{\infty} \eta f(\eta|U_s = p) d\eta$$
$$= (\gamma_1 - \gamma_0)'X + E[\eta|u_s = p]$$

What is $E[\eta|u_s=p]$? The expected unobserved gain from treatment of those people who are on the treatment margin P(Z)=n.

How to Estimate an MTE

Easy

- 1. Estimate P(Z) = Pr(T=1|Z) nonparametrically (include exogenous part of X in Z).
- 2. Nonparametric regression of Y on X and P(Z) (polynomials?)
- 3. Differentiate w.r.t. P(Z)
- 4. plot it for all values of P(Z) = p.

So long as P(Z) covers (0,1) then we can trace out the full distribution of $\Delta^{MTE}(p)$.

Everything is an MTE

Calculate the outcome given (X, Z) (actually X and P(Z) = p).

• ATE : This one is obvious. We treat everyone!

$$\int_{-\infty}^{\infty} \Delta^{MTE}(p) = (\gamma_1 - \gamma_0)' X + \underbrace{\int_{-\infty}^{\infty} E(\eta | u_s) d u_s}_{0}$$

• LATE: Fix an X and P(Z) varies from b(X) to a(X) and we integrated over the area between (compliers).

$$LATE(X) = \int_{-\infty}^{\infty} \Delta^{MTE}(p) = (\gamma_1 - \gamma_0)'X + \frac{1}{a(X) - b(X)} \int_{b(X)}^{a(X)} E(\eta | u_s) du_s$$

ATT

$$TT(X) = \int_{-\infty}^{\infty} \Delta^{MTE}(p) \frac{Pr(P(Z|X) > p)}{E[P(Z|X)]} dp$$

• Weights for IV and OLS are a bit more complicated. See the Heckman and Vytlacil paper(s).

Carneiro, Heckman and Vytlacil (AER 2010)

- Estimate returns to college (including heterogeneity of returns).
- NLSY 1979
- $Y = \log(wage)$
- Covariates X: Experience (years), Ability (AFQT Score), Mother's Education, Cohort Dummies, State Unemployment, MSA level average wage.
- Instruments Z: College in MSA at age 14, average earnings in MSA at 17 (opportunity cost), avg unemployment rate in state.

FIGURE 1. MTE ESTIMATED FROM A NORMAL SELECTION MODEL

Notes: To estimate the function plotted here, we estimate a parametric normal selection model by maximum likelihood. The figure is computed using the following formula:

Panel A. Test of linearity of	$f E(Y \mathbf{X}, P = p)$	using model	s with different	t orders of poly	nomials in P^a	
Degree of polynomial for model	2	3	4	5		
p-value of joint test of nonlinear terms	0.035	0.049	0.086	0.122		
Adjusted critical value 0.057						
Outcome of test	Reject					
Panel B. Test of equality of Ranges of U_S for LATE ^{j} Ranges of U_S for LATE $^{j+1}$	$\frac{\text{f LATEs } (H_0: I)}{(0,0.04)}$ $\frac{(0.08,0.12)}{(0.08,0.12)}$	$\frac{ATE^{j} \left(U_{S}^{Lj}, U_{S}^{H}\right)}{(0.08, 0.12)}$ $(0.16, 0.20)$	$\frac{(0.16, 0.20)}{(0.24, 0.28)}$	$rac{U_{S}^{L_{f+1}},U_{S}^{H_{f+1}})=}{(0.24,0.28)} \ (0.32,0.36)$	(0.32, 0.36) (0.40, 0.44)	(0.40, 0.44) (0.48, 0.52)
Difference in LATEs p-value	0.0689 0.0240	0.0629 0.0280	0.0577 0.0280	0.0531 0.0320	0.0492 0.0320	0.0459 0.0520
Ranges of U_S for LATE ^j Ranges of U_S for LATE ^{j+1}	(0.48, 0.52) (0.56, 0.60)	(0.56, 0.60) (0.64, 0.68)	(0.64, 0.68) (0.72, 0.76)	(0.72, 0.76) (0.80, 0.84)	(0.80, 0.84) (0.88, 0.92)	(0.88, 0.92) (0.96, 1)
	0.0431	0.0408	0.0385	0.0364	0.0339	0.0311
Difference in LATEs p-value	0.0520	0.0760	0.0960	0.1320	0.1800	0.2400

Table 5—Returns to a Year of College

Model		Normal	Semiparametric
$ATE = E(\beta)$		0.0670	Not identified
		(0.0378)	
$TT = E(\beta S = 1)$		0.1433	Not identified
		(0.0346)	
$TUT = E(\beta S = 0)$		-0.0066	Not identified
V 1 /		(0.0707)	
MPRTE			
Policy perturbation	Metric		
$Z_{\alpha}^{k} = \hat{Z}^{k} + \alpha$	$ \mathbf{Z}\gamma - V < e$	0.0662	0.0802
		(0.0373)	(0.0424)
$P_{\alpha} = P + \alpha$	P-U < e	0.0637	0.0865
		(0.0379)	(0.0455)
$P_{\alpha} = (1 + \alpha)P$	$ \frac{P}{U} - 1 < e$	0.0363	0.0148
4 ()	' 0	(0.0569)	(0.0589)
Linear IV (Using $P(\mathbf{Z})$ as the in:	(0.0951	
, ,	,	(0	0.0386)
OLS		0.0836	
		(0	0.0068)

Notes: This table presents estimates of various returns to college, for the semiparametric and the normal selection models: average treatment effect (ATE), treatment on the treated (TT),

Figure 4. $E(Y_1-Y_0|\mathbf{X},U_S)$ with 90 Percent Confidence Interval— Locally Quadratic Regression Estimates

FIGURE 6. WEIGHTS FOR IV AND MPRTE

Note: The scale of the y-axis is the scale of the MTE, not the scale of the weights, which are scaled to fit the picture.

Diversion Example

I have done some work trying to bring these methods into merger analysis.

 Key quantity: Diversion Ratio as I raise my price, how much do people switch to a particular competitor's product

$$D_{jk}(p_j, p_{-j}) = \left| \frac{\partial q_k}{\partial p_j}(p_j, p_{-j}) / \frac{\partial q_j}{\partial p_j}(p_j, p_{-j}) \right|$$

- We hold p_{-j} fixed and trace out $D_{jk}(p_j)$.
- The treatment is leaving good j.
- The Y_i is increased sales of good k.
- The Z_i is the price of good j.
- The key is that all changes in sales of k come through people leaving good j (no direct effects).

Diversion for Prius (FAKE!)

Diversion Example

$$\widehat{D_{jk}^{LATE}} = \frac{1}{\Delta q_j} \int_{p_j^0}^{p_j^0 + \Delta p_j} \underbrace{\frac{\partial q_k(p_j, p_{-j}^0)}{\partial q_j}}_{=D_{ik}(p_i, p_{-j}^0)} \left| \frac{\partial q_j(p_j, p_{-j}^0)}{\partial p_j} \right| dp_j$$

- $D_{jk}(p_j, p_{-j}^0)$ is the MTE.
- Weights $w(p_j) = \frac{1}{\Delta q_j} \frac{\partial q_j(p_j, p_{-j}^0)}{\partial p_j}$ correspond to the lost sales of j at a particular p_j as a fraction of all lost sales.
- When is $LATE \approx ATE$?
 - Demand for Prius is steep: everyone leaves right away
 - $D_{j,k}(p_j)$ is relatively flat.
 - We might want to think about raising the price to choke price (or eliminating the product from the consumers choice set) same as treating everyone!