

NP-C: Problema del viajante

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Problema del viajante de comercio

Un viajante debe

Recorrer n ciudades $v_1, v_2, ..., v_n$

Partiendo de v1 se debe construir un tour visitando cada ciudad una vez y retornar a la ciudad inicial

Para cada par de ciudades vx, vy

Se especifica una distancia d(v_x,v_y)

No necesariamente hay simetria: $d(v_x, v_y)$ puede ser diferente a $d(v_y, v_x)$

No necesariamente se cumple la desigualdad triangular: $d(v_i,v_j) + d(v_j,v_k) > d(v_i,v_k)$

Problema decisión del viajante de comercio

Dado

n ciudades

Las distancias entre cada par de ciudades

Determinar

Si existe un tour (o ciclo) de distancia total menor a k

Problema decisión del viajante es NP

Sea

n ciudades

Las distancias entre cada par de ciudades

T certificado = tour de ciudades

K distancia como límite

Se debe verificar

T contiene todas las ciudades (solo 1 vez) y termina y comienza en la misma

La suma de la distancia recorrida es menor a k

¿Viajante es "P"?

No se conoce algoritmo

Problema de decisión de Ciclo Hamiltoneano

Reducción de HAM-CYCLE a Viajante

Sea una instancia I de HAM-CYCLE

G=(V,E)

Por cada

Vértice $v_i \in V \rightarrow creamos una ciudad v'_i$

Arista e_{i,j} ∈ E → definiremos la distancia d(v'_i,v'_j)=1

Aquellas distancias que no están definidas (no tienen aristas) las crearemos con valor 2

Ponemos como valor k = |V| (numero de vértices.

Solucionamos viajante con k definido

Si existe camino con longitud k, entonces existe ciclo hamiltoneano.

Presentación realizada en Junio de 2020