

PO-202 - Programação Linear

Atividade 3

Grupo:

Gabriel Telles Missailidis Rafael Silva de Oliveira Samir Nunes da Silva

Professor:

Luiz Leduino Salles Neto

14/09/2022

Instituto Tecnológico de Aeronáutica – ITA

1 Parte 1: Otimização da Distribuição de Produtos

O problema pode ser resumido em:

$$Minimizar \sum_{(f,c)\subset(F,C)} C_{f,c}\cdot Q_{f,c}$$

Onde, sendo $f \in F = \{\text{Denver}, \text{Las Vegas}, \text{Phoenix}, \text{San Francisco}, \text{Seattle}\}$ as filiais de entrega e $c \in C = \{\text{Arizona}, \text{California}, \text{Colorado}, \text{Idaho}, \text{Montana}, \text{Nevada}, \text{Oregon}, \text{Utah}, \text{Washington}, \text{Wyoming}\}$ os contratos a receberem entregas, $C_{f,c}$ representa o custo de transporte individual e $Q_{f,c}$ a quantidade de itens a serem transportadas de f a c. É desejável minimizar, então, o custo total de transporte.

Quanto às condições às quais as entregas estão sujeitas, os contratos estão sujeitos às restrições de demanda e número mínimo de fornecedores, segundo a tabela fornecida:

Contratos	Demanda	Número Mínimo de Fornecedores
Washington	100	3
Oregon	65	2
California	100	3
Idaho	70	2
Nevada	120	3
Montana	60	2
Wyoming	75	2
Arizona	100	3
Utah	95	3
Colorado	85	3

Figura 1: Restrições dos Contratos.

Além disso, as filiais estão sujeitas a condições sobre capacidade e entrega mínima:

Filiais	Capacidade	Entrega Mínima				
Seattle	175	25				
San Francisco	175	30				
Las Vegas	175	30				
Phoenix	175	35				
Denver	175	25				

Figura 2: Restrições das Filiais.

Os custos individuais $C_{f,c}$ são representados pela tabela fornecida:

Custo de Entrega (R\$/unid.)	Washington	Oregon	California	Idaho	Nevada	Montana	Wyoming	Arizona	Utah	Colorado
Seattle	10	15	10	15	20	20	20	40	10	30
San Francisco	30	15	10	20	10	20	20	30	20	30
Las Vegas	20	10	5	15	10	15	15	10	5	5
Phoenix	40	25	15	20	10	30	30	10	15	10
Denver	30	30	25	10	5	35	35	15	5	10

Figura 3: Custos por entrega.

Dessa forma, as cinco restrições podem ser adicionadas ao problema:

```
Estoque
                                                "Seattle": 175,
                                                                           MinDeFornecedores = {
Demanda = {
                                                "San Francisco": 175,
                                                                                        "Washington": 3,
             "Washington": 100,
                                                "Las Vegas": 175,
                                                                                        "Oregon": 2,
             "Oregon": 65,
                                                "Phoenix": 175,
                                                                                        "California": 3,
             "California": 100,
                                                "Denver": 175
                                                                                        "Idaho": 2,
             "Idaho": 70,
                                                                                         'Nevada": 3,
             "Nevada": 120,
                                                                                        "Montana": 2,
                                     EntregaMinima = {
             "Montana": 60,
                                                "Seattle": 25,
                                                                                        "Wyoming": 2,
             "Wyoming": 75,
                                                "San Francisco": 30,
                                                                                        "Arizona": 3,
             "Arizona": 100,
                                                "Las Vegas": 30,
             "Utah": 95,
                                                                                        "Utah": 3,
                                                "Phoenix": 35,
                                                                                        "Colorado": 3
             "Colorado": 85
                                                "Denver": 25
```

Figura 4: Todas as restrições adaptadas ao código.

```
custos = [
    # Washington, Oregon, California, Idaho, Nevada, Montana, Wyoming, Arizona, Utah, Colorado
    [10, 15, 10, 15, 20, 20, 20, 40, 10, 30], # Seattle
    [30, 15, 10, 20, 10, 20, 20, 30, 20, 30], # San Francisco
    [20, 10, 5, 15, 10, 15, 15, 10, 5, 5], # Las Vegas
    [40, 25, 15, 20, 10, 30, 30, 10, 15, 10], # Phoenix
    [30, 30, 25, 10, 5, 35, 35, 15, 5, 10] # Denver
]
```

Figura 5: Custos adaptados ao código.

Então, foi criada uma tupla contendo, para cada filial f e contrato c, uma "rota", por exemplo, rota (["Washington"]["Seattle"]), de forma a organizar, posteriormente, um dataframe com a quantidade de entregas e o custo de cada trajeto, sendo essa tupla chamada de vars.

Além disso, é interessante definir uma matriz booleana de Entrega para cada TRA-JETO, isto é, para certa rota vars[f][c], a matriz contém 0 para rotas que não há entrega e 1 para as que há.

Assim, foram adicionadas as restrições de estoque e demanda e mínimo de fornecedores:

```
for f in Filiais:
   prob += (
       lpSum([vars[f][c] for c in Contratos]) <= Estoque[f],</pre>
        "Soma_dos_Produtos_na_Filial_%s" % f,
   for c in Contratos:
       prob += (
           vars[f][c] <= Entrega[f][c] * Estoque[f],</pre>
            "Quantidade_maxima_de_entrega_%s_%s" % (f, c)
       prob += (
           vars[f][c] >= Entrega[f][c] * EntregaMinima[f],
            "Quantidade_minima_de_entrega_%s_%s" % (f, c)
for c in Contratos:
   prob += (
       lpSum([vars[f][c] for f in Filiais]) >= Demanda[c],
        "Soma_dos_Produtos_no_Contrato__min_%s" % c,
   prob += (
       lpSum([Entrega[f][c] for f in Filiais]) >= MinDeFornecedores[c],
        "Minimo_de_Fornecedores_para_%s" %c
```

Figura 6: Limitantes do problema.

A matriz de entrega é útil porque, sendo x_{ij} a quantidade de itens a serem entregues da cidade i para a cidade j, se houver uma quantidade mínima K_i e máxima de Q_i de itens a serem entregues, sendo E_{ij} a booleana da matriz de entrega que define se haverá ou não entrega para a localidade:

$$x_{ij} \leq Q_i * E_{ij}$$

$$x_{ij} \ge K_i * E_{ij}$$

Nota-se que, caso $E_{ij}=0$, isto é, não haja entrega da cidade i para a cidade j, a única solução de entrega será $x_{ij}=0$.

Finalmente, para atender a todas as condições, foram obtidas as seguintes tabelas booleana de entregas e quantidades de itens a serem entregues:

	Arizona	California	Colorado	Idaho	Montana	Nevada	Oregon	Utah	Washington	Wyoming
Denver	1.0	0.0	1.0	1.0	0.0	1.0	0.0	1.0	1.0	0.0
Las Vegas	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0
Phoenix	1.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0
San Francisco	0.0	1.0	0.0	0.0	1.0	1.0	1.0	0.0	0.0	1.0
Seattle	0.0	1.0	0.0	1.0	1.0	0.0	1.0	1.0	1.0	0.0

Figura 7: Matriz booleana de entregas.

	Arizona	California	Colorado	Idaho	Montana	Nevada	Oregon	Utah	Washington	Wyoming
Denver	25.0	0.0	25.0	40.0	0.0	25.0	0.0	35.0	25.0	0.0
Las Vegas	30.0	45.0	30.0	0.0	0.0	0.0	0.0	0.0	30.0	40.0
Phoenix	45.0	0.0	35.0	0.0	0.0	60.0	0.0	35.0	0.0	0.0
San Francisco	0.0	30.0	0.0	0.0	35.0	35.0	40.0	0.0	0.0	35.0
Seattle	0.0	25.0	0.0	30.0	25.0	0.0	25.0	25.0	45.0	0.0

Figura 8: Quantidades de produtos a serem entregues.

Assim, tal configuração requer um custo total de entrega de R\$ 10.800,00.

2 Parte 2: Resolução de Exercícios via Método Simplex

2.1 Item a

O problema pode ser enunciado da seguinte forma:

Minimizar
$$z = -2x_1 - x_2$$

sujeito a: $3x_1 + x_2 \le 9$
 $2x_1 - 2x_2 \le 3$
 $0 \le x_1 \le 1$
 $0 < x_2 < 8$

Transformando-se o sistema para se adequar a um problema de maximização e adicionando-se as variáveis de folga a_j , j = 1, 2, 3, 4, tem-se:

$$Maximizar \quad w = 2x_1 + x_2 = -z$$

$$sujeito \ a: \quad 3x_1 + x_2 + a_1 + 0a_2 + 0a_3 + 0a_4 = 9$$

$$2x_1 - 2x_2 + 0a_1 + a_2 + 0a_3 + 0a_4 = 3$$

$$x_1 + 0x_2 + 0a_1 + a_2 + a_3 + 0a_4 = 1$$

$$0x_1 + x_2 + 0a_1 + 0a_2 + 0a_3 + a_4 = 8$$

$$x_1, x_2, a_1, a_2, a_3, a_4 \ge 0$$

Fazendo-se $x_1 = x_2 = 0$, obtém-se um solução inicial viável dada por $(x_1, x_2, a_1, a_2, a_3, a_4)$ = (0,0,9,3,1,4), por meio da qual w = 0. Nesse caso inicial, a base é $\{a_1, a_2, a_3, a_4\}$.

$2.1.1 1^{\underline{a}} iteração$

Observando-se a função-objetivo $w(x_1,x_2,a_1,a_2,a_3,a_4) = 2x_1 + x_2$, nota-se que $\nabla w = (2,1,0,0,0,0)$, ou seja, a variável não-básica x_1 é aquela que permite o maior crescimento de w. Nesse sentido, substitui-se a variável a_3 da base pela variável x_1 , pois, ao se zerar a variável básica a_3 e a variável não-básica x_2 , obtém-se o máximo valor de x_1 que respeita o sistema $(x_1 = 1)$ e que permite o aumento do valor da função-objetivo w, conforme já visto pelo gradiente. Assim, pelo método de Gauss-Jordan, reescreve-se o sistema na base $\{a_1, a_2, x_1, a_4\}$ como:

$$\begin{aligned} & Maximiz ar \quad w = 2 + x_2 - 2a_3 \\ & sujeito \ a: \quad 0x_1 + x_2 + a_1 + 0a_2 - 3a_3 + 0a_4 = 6 \\ & 0x_1 - 2x_2 + 0a_1 + a_2 - 2a_3 + 0a_4 = 1 \\ & x_1 + 0x_2 + 0a_1 + 0a_2 + a_3 + 0a_4 = 1 \\ & 0x_1 + x_2 + 0a_1 + 0a_2 + 0a_3 + a_4 = 8 \\ & x_1, x_2, a_1, a_2, a_3, a_4 \geq 0 \end{aligned}$$

$2.1.2 2^{\underline{a}}$ iteração

Agora, temos $\nabla w = (0, 1, 0, 0, -2, 0, 0)$, ou seja, x_2 é a variável que permite o maior crescimento de w. Troca-se, então, a variável básica a_1 pela variável x_2 , pois, ao se zerar a_1 e a variável não-básica a_3 , obtém-se o máximo valor de x_2 que respeita o sistema ($x_2 = 6$) e que permite o aumento do valor da função-objetivo w. Assim, pelo método de Gauss-Jordan, reescreve-se o sistema na base $\{x_2, a_2, x_1, a_4\}$ como:

$$\begin{aligned} Maximiz ar & w = 8 - a_1 + a_3 \\ sujeito \ a: & 0x_1 + x_2 + a_1 + 0a_2 - 3a_3 + 0a_4 = 6 \\ 0x_1 + 0x_2 + 2a_1 + a_2 - 8a_3 + 0a_4 = 13 \\ & x_1 + 0x_2 + 0a_1 + 0a_2 + a_3 + 0a_4 = 1 \\ 0x_1 + 0x_2 - a_1 + 0a_2 + 3a_3 + a_4 = 2 \\ & x_1, x_2, a_1, a_2, a_3, a_4 \ge 0 \end{aligned}$$

$2.1.3 \quad 3^{\underline{a}} \text{ iteração}$

Agora, temos $\nabla w = (0, 0, -1, 0, 1, 0)$, ou seja, a_3 é a variável que permite o maior crescimento de w. Troca-se, então, a variável básica a_4 pela variável a_3 , pois, ao se zerar a_4 e a variável não-básica a_1 , obtém-se o máximo valor de a_3 que respeita o sistema $(a_3 = \frac{2}{3})$ e que permite o aumento do valor da função-objetivo w. Assim, pelo método de Gauss-Jordan, reescreve-se o sistema na base $\{x_2, a_2, x_1, a_3\}$ como:

$$Maximizar \quad w + \frac{2}{3}a_1 + \frac{1}{3}a_4 = \frac{26}{3}$$

$$sujeito \ a: \quad 0x_1 + x_2 + 0a_1 + 0a_2 + 0a_3 + a_4 = 8$$

$$0x_1 + 0x_2 - \frac{2}{3}a_1 + a_2 - 0a_3 + \frac{8}{3}a_4 = \frac{55}{3}$$

$$x_1 + 0x_2 + \frac{1}{3}a_1 + 0a_2 + 0a_3 - \frac{1}{3}a_4 = \frac{1}{3}$$

$$0x_1 + 0x_2 - \frac{1}{3}a_1 + 0a_2 + a_3 + \frac{1}{3}a_4 = \frac{2}{3}$$

$$x_1, x_2, a_1, a_2, a_3, a_4 \ge 0$$

Notamos que nessa base, $\nabla w = (0,0,-\frac{2}{3},0,0,-\frac{1}{3})$, ou seja, não há coeficientes positivos nas variáveis não-básicas. Logo, tomando-se $a_1=a_4=0$, obtém-se o valor máximo da função-objetivo modificada: $w=\frac{26}{3}$. Voltando-se à função original, tem-se que seu valor mínimo procurado através do Método Simplex é: $z=-\frac{26}{3}$.

: Resposta:
$$z = -\frac{26}{3}$$
, para $(x_1, x_2, a_1, a_2, a_3, a_4) = (\frac{1}{3}, 8, 0, \frac{55}{3}, \frac{2}{3}, 0)$.

2.2 Item b

O problema pode ser enunciado da seguinte forma:

Minimizar
$$z = -x_1 - 2x_2 + x_3 + 2x_4 + 3x_5$$

sujeito a: $2x_1 - x_2 - x_3 - x_4 + 2x_5 = 0$
 $2x_1 - x_2 + 2x_3 - x_4 + x_5 = 0$
 $x_1 + x_2 + x_3 + x_4 + x_5 = 0$
 $x_i > 0, j = 1, ..., 5$

Transformando-se o sistema para se adequar a um problema de maximização e adicionandose as variáveis artificiais a_j , j = 1, 2, 3, tem-se:

$$\begin{aligned} Maximiz ar & z = x_1 + 2x_2 - x_3 - 2x_4 - 3x_5 \\ sujeito \ a: & -2x_1 + x_2 + x_3 + x_4 - 2x_5 + a_1 + 0a_2 + 0a_3 = 0 \\ & -2x_1 + x_2 - 2x_3 + x_4 - x_5 + 0a_1 + a_2 + 0a_3 = 0 \\ & -x_1 - x_2 - x_3 - x_4 - x_5 + 0a_1 + 0a_2 + a_3 = 0 \\ & x_j \ge 0, j = 1, 2, ..., 5 \\ & a_j \ge 0, j = 1, 2, 3 \end{aligned}$$

Fazendo-se $x_1 = x_2 = x_3 = x_4 = x_5 = 0$, obtém-se um solução inicial viável dada por $(x_1, x_2, x_3, x_4, x_5, a_1, a_2, a_3) = (0, 0, 0, 0, 0, 0, 0, 0, 0)$, por meio da qual z = 0. A base é a_1, a_2, a_3 .

2.2.1 $1^{\underline{a}}$ iteração

Observando-se a função-objetivo, nota-se que $\nabla z = (1, 2, -1, -2, -3, 0, 0, 0)$, ou seja, a variável não-básica x_2 é aquela que permite o maior crescimento de z. Usando como pivô o primeiro elemento 1 da coluna de x_2 , temos:

$$\begin{aligned} Maximiz & ax = 5x_1 - 3x_3 - 4x_4 + x_5 \\ & sujeito \ a: \ -2x_1 + x_2 + x_3 + x_4 - 2x_5 = 0 \\ & 0x_1 + 0x_2 - 3x_3 + 0x_4 + 1x_5 = 0 \\ & -3x_1 + 0x_2 + 0x_3 + 0x_4 - 3x_5 = 0 \\ & x_i \ge 0, j = 1, 2, ..., 5 \end{aligned}$$

Note que a variável que entrou na base, x_2 , não possui em sua coluna nenhum elemento positivo, de modo que é impossível determinar a linha pivô. Isso se enquadra como **solução** ilimitada.

2.3 Item c

O problema pode ser enunciado da seguinte forma:

$$\begin{aligned} Maximiz & ax = x_1\\ sujeito \ a: \ x_1 + 3x_2 + 4x_3 + x_4 &= 20\\ 2x_1 + x_3 &= 5\\ -7x_1 + 3x_2 + x_4 &= 0\\ x_j &\geq 0, j = 1, ..., 4 \end{aligned}$$

Adicionando-se as variáveis artificiais $a_j, j=1,2,3$ e definindo-se a função objetivo auxiliar $W(a_1,a_2,a_3)=-a_1-a_2-a_3$, a qual se quer maximizar até zerá-la, tem-se:

$$\begin{aligned} Maximiz ar & z = x_1\\ Maximiz ar & W = -a_1 - a_2 - a_3\\ sujeito \ a: \ x_1 + 3x_2 + 4x_3 + x_4 + a_1 + 0a_2 + 0a_3 = 20\\ 2x_1 + 0x_2 + x_3 + 0x_4 + 0a_1 + a_2 + 0a_3 = 5\\ -7x_1 + 3x_2 + 0x_3 + x_4 + 0a_1 + 0a_2 + a_3 = 0\\ x_j \ge 0, j = 1, ..., 4\\ a_j \ge 0, j = 1, 2, 3 \end{aligned}$$

Por meio das condições de contorno do problema, pode-se isolar a_1 , a_2 e a_3 e escrever W como função de x_1 , x_2 , x_3 e x_4 . Assim, tem-se o sistema:

$$\begin{aligned} Maximiz ar & z = x_1 \\ Maximiz ar & W = -25 - 4x_1 + 6x_2 + 5x_3 + 2x_4 \\ sujeito \ a: \ x_1 + 3x_2 + 4x_3 + x_4 + a_1 + 0a_2 + 0a_3 = 20 \\ 2x_1 + 0x_2 + x_3 + 0x_4 + 0a_1 + a_2 + 0a_3 = 5 \\ 7x_1 - 3x_2 + 0x_3 - x_4 + 0a_1 + 0a_2 + a_3 = 0 \\ x_j \ge 0, j = 1, ..., 4 \\ a_i \ge 0, j = 1, 2, 3 \end{aligned}$$

$2.3.1 1^{\underline{a}}$ iteração

Nesse caso inicial, a base é $\{a_1, a_2, a_3\}$ e $\nabla W = (-4,6,5,2,0,0,0)$, de tal forma que a variável não-básica x_2 é aquela que permite o maior crescimento de W. Nesse sentido, substitui-se a variável a_3 da base pela variável x_2 , pois, ao se zerar a variável básica a_3 e a variável não-básica x_1 , obtém-se o máximo valor de x_2 que respeita o sistema $(x_2 = 0)$. Assim, pelo método de Gauss-Jordan, reescreve-se o sistema na base $\{a_1, a_2, x_2\}$ como:

$$\begin{aligned} Maximiz ar & z = x_1 \\ Maximiz ar & W = -25 + 10x_1 + 5x_3 - 2a_3 \\ sujeito \ a: & 8x_1 + 0x_2 + 4x_3 + 0x_4 + a_1 + 0a_2 - a_3 = 20 \\ & 2x_1 + 0x_2 + x_3 + 0x_4 + 0a_1 + a_2 + 0a_3 = 5 \\ & -\frac{7}{3}x_1 + x_2 + 0x_3 + \frac{1}{3}x_4 + 0a_1 + 0a_2 + \frac{1}{3}a_3 = 0 \\ & x_j \geq 0, j = 1, ..., 4 \\ & a_j \geq 0, j = 1, 2, 3 \end{aligned}$$

2.3.2 $2^{\underline{a}}$ iteração

Agora, temos $\nabla W = (10, 0, 5, 0, 0, 0, 0, -2)$, ou seja, a variável x_1 é a que permite maior crescimento de W. Troca-se, então, a variável básica a_2 pela variável x_1 , pois, ao se zerar a_2 e a variável não-básica x_3 , obtém-se o máximo valor de x_1 que respeita o sistema $(x_1 = \frac{5}{2})$ e que permite o aumento do valor da função-objetivo auxiliar W. Assim, pelo método de Gauss-Jorda, reescreve-se o sistema na base $\{a_1, x_1, x_2\}$ como:

$$\begin{aligned} Maximiz ar & z = x_1 \\ Maximiz ar & W = -2a_3 - 5a_2 \\ sujeito \ a: \ 0x_1 + 0x_2 + 0x_3 + 0x_4 + a_1 + -4a_2 - a_3 = 0 \\ x_1 + 0x_2 + \frac{1}{2}x_3 + 0x_4 + 0a_1 + \frac{1}{2}a_2 + 0a_3 = \frac{5}{2} \\ 0x_1 + x_2 + \frac{7}{6}x_3 + \frac{1}{3}x_4 + 0a_1 + \frac{7}{6}a_2 + \frac{1}{3}a_3 = 0 \\ x_j \ge 0, j = 1, ..., 4 \\ a_j \ge 0, j = 1, 2, 3 \end{aligned}$$

Ao se fazer $a_2 = a_3 = 0$, maximiza-se W e sobra o sistema:

$$\begin{aligned} Maximiz ar & z = x_1 \\ Maximiz ar & W = 0 \\ sujeito \ a: \ 0x_1 + 0x_2 + 0x_3 + 0x_4 + a_1 = 0 \\ x_1 + 0x_2 + \frac{1}{2}x_3 + 0x_4 + 0a_1 &= \frac{5}{2} \\ 0x_1 + x_2 + \frac{7}{6}x_3 + \frac{1}{3}x_4 + 0a_1 &= \frac{35}{6} \\ x_j &\geq 0, j = 1, ..., 4 \\ a_1 &\geq 0 \end{aligned}$$

o qual pode ser reescrito como:

Maximizar
$$z = \frac{5}{2} - \frac{1}{2}x_3$$

Maximizar $W = 0$
sujeito $a: a_1 = 0$
 $x_1 + 0x_2 + \frac{1}{2}x_3 = \frac{5}{2}$
 $x_2 + \frac{7}{6}x_3 + \frac{1}{3}x_4 = \frac{35}{6}$
 $x_j \ge 0, j = 1, ..., 4$

Assim, conclui-se que o valor máximo da função objetivo é z = $\frac{5}{2}$, quando $x_3=0$, $x_1=\frac{5}{2}$ e $x_4=\frac{35}{2}-3x_2$, havendo, assim, infinitas soluções ótimas para o problema. Uma delas é $(x_1,x_2,x_3,x_4)=(\frac{5}{2},\frac{35}{6},0,0)$.

∴ **Resposta:** $z = \frac{5}{2}$. Há infinitas soluções ótimas na forma $(x_1, x_2, x_3, x_4) = (\frac{5}{2}, x_2, 0, \frac{35}{2} - 3x_2)$, com $x_2 \ge 0$, sendo uma delas $(x_1, x_2, x_3, x_4) = (\frac{5}{2}, \frac{35}{6}, 0, 0)$.

2.4 Item d

O problema pode ser enunciado da seguinte forma:

Minimizar
$$z = -x_1 + 3x_2$$

sujeito a : $2x_1 + 3x_2 \le 6$
 $-x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$

Transformando-se o sistema para se adequar a um problema de maximização e adicionando-se as variáveis de folga $a_j, j=1,2$, tem-se:

Maximizar
$$w = x_1 - 3x_2 = -z$$

sujeito $a: 2x_1 + 3x_2 + a_1 + 0a_2 = 6$
 $-x_1 + x_2 + 0a_1 + a_2 = 1$
 $x_1, x_2, a_1, a_2 > 0$

Fazendo-se $x_1 = x_2 = 0$, obtém-se um solução inicial viável dada por $(x_1, x_2, a_1, a_2) = (0,0,6,1)$, por meio da qual w = 0. Nesse caso inicial, a base é $\{a_1, a_2\}$.

$2.4.1 1^{\underline{a}} iteração$

Observando-se a função-objetivo $w(x_1,x_2,a_1)=x_1$ - $3x_2$, nota-se que $\nabla w=(1,-3,0,0)$, ou seja, a variável não-básica x_1 é aquela que permite o maior crescimento de w. Nesse sentido, substitui-se a variável a_1 da base pela variável x_1 , pois, ao se zerar a variável básica a_1 e a variável não-básica x_2 , obtém-se o máximo de x_1 que respeita o sistema $(x_1=3)$ e que permite o aumento do valor da função-objetivo w, conforme já visto pelo gradiente. Assim, pelo método de Gauss-Jordan, reescreve-se o sistema na base $\{x_1, a_2\}$ como:

$$\begin{aligned} Maximiz & ax & w = 3 - \frac{9}{2}x_2 - \frac{1}{2}a_1 \\ sujeito & a: & x_1 + \frac{3}{2}x_2 + \frac{1}{2}a_1 + 0a_2 = 3 \\ & 0x_1 + \frac{5}{2}x_2 + \frac{1}{2}a_1 + a_2 = 4 \\ & x_1, x_2, a_1, a_2 \ge 0 \end{aligned}$$

Notamos que nessa base, $\nabla w = (0, -\frac{9}{2}, -\frac{1}{2}, 0)$, ou seja, não há coeficientes positivos nas variáveis não-básicas. Logo, tomando-se $x_2 = a_1 = 0$, obtém-se o valor máximo da função-objetivo modificada: w = 3. Voltando-se à função original, tem-se que seu valor mínimo procurado através do Método Simplex é: z = -3.

: Resposta:
$$z = -3$$
, para $(x_1, x_2, a_1, a_2) = (3,0,0,4)$.

2.5 Item e

O problema pode ser enunciado da seguinte forma:

Maximizar
$$z = 2x_1 + 4x_2$$

sujeito a : $x_1 + 2x_2 \le 4$
 $-x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$

Adicionando-se as variáveis de folga $a_i, j = 1, 2$, tem-se:

Maximizar
$$z = 2x_1 + 4x_2$$

sujeito $a: x_1 + 2x_2 + a_1 = 4$
 $-x_1 + x_2 + a_2 = 1$
 $x_1, x_2, a_1, a_2 \ge 0$

Fazendo-se $x_1 = x_2 = 0$, obtém-se um solução inicial viável dada por $(x_1, x_2, a_1, a_2) = (0,0,4,1)$, por meio da qual z = 0. Nesse caso inicial, a base é $\{a_1, a_2\}$.

$2.5.1 1^{\underline{a}} iteração$

Observando-se a função-objetivo $z(x_1,x_2,a_1) = 2x_1 + 4x_2$, nota-se que $\nabla z = (2,4,0,0)$, ou seja, a variável não-básica x_2 é aquela que permite o maior crescimento de z. Nesse sentido, substitui-se a variável a_1 da base pela variável x_2 , pois, ao se zerar a variável básica a_1 e a variável não-básica x_1 , obtém-se o máximo de x_2 que respeita o sistema $(x_2 = 4)$ e que permite o aumento do valor da função-objetivo z, conforme já visto pelo gradiente. Assim, pelo método de Gauss-Jordan, reescreve-se o sistema na base $\{x_2, a_2\}$ como:

$$\begin{aligned} Maximiz & a & z &= 4 + 6x_1 - 4a_2 \\ sujeito & a: & 3x_1 + 0x_2 + 1a_1 - 2a_2 &= 2 \\ & -x_1 + x_2 + 0a_1 + a_2 &= 1 \\ & x_1, x_2, a_1, a_2 &\geq 0 \end{aligned}$$

2.5.2 $2^{\underline{a}}$ iteração

Agora, o gradiente é $\nabla z = (6, 0, 0, -4)$, então a variável não-básica x_1 é a que permite o maior crescimento de z. Usando como pivô o elemento 3, da coluna de x_1 , temos:

$$Maximizar z = 8 + 2a_1$$

$$sujeito a: x_1 + 0x_2 + \frac{1}{3}a_1 - \frac{2}{3}a_2 = \frac{2}{3}$$

$$0x_1 + x_2 + \frac{1}{3}a_1 + \frac{1}{3}a_2 = \frac{5}{3}$$

$$x_1, x_2, a_1, a_2 \ge 0$$

Note que o coeficiente da variável não-básica a_2 é zero, ou seja, esta variável poderia entrar na base sem alterar a função objetivo, gerando outra solução ótima. Então, qualquer combinação linear dessas duas soluções também seria ótima. Este é o caso de infinitas soluções.

 \therefore Resposta: z = 8, para infinitos valores de x_1 e x_2 contidos na reta $x_1 + 2x_2 = 4$, com $0 \le x_2 \ge \frac{5}{3}$.

2.6 Item f

O problema pode ser enunciado da seguinte forma:

Maximizar
$$z = x_1 + 3x_2$$

sujeito a: $x_1 - 2x_2 \le 4$
 $-x_1 + x_2 \le 3$
 $x_1, x_2 \ge 0$

Adicionando-se as variáveis de folga $a_i, j = 1, 2$, tem-se:

Maximizar
$$z = x_1 + 3x_2$$

sujeito a : $x_1 - 2x_2 + a_1 = 4$
 $-x_1 + x_2 + a_2 = 3$
 $x_1, x_2, a_1, a_2 \ge 0$

Fazendo-se $x_1 = x_2 = 0$, obtém-se um solução inicial viável dada por $(x_1, x_2, a_1, a_2) = (0,0,4,3)$, por meio da qual z = 0. Nesse caso inicial, a base é $\{a_1, a_2\}$.

$2.6.1 1^{\underline{a}} iteração$

Observando-se a função-objetivo $\mathbf{z}(x_1,x_2,a_1)=x_1+3x_2$, nota-se que $\nabla z=(1,3,0,0)$, ou seja, a variável não-básica x_2 é aquela que permite o maior crescimento de z. Usando como pivô o elemento 1 da coluna de x_2 , temos:

$$Maximiz ar$$
 $z = 9 + 4x_1 - 3a_2$
 $sujeito a:$ $-x_1 + 0x_2 + a_1 + a_2 = 10$
 $-x_1 + x_2 + a_2 = 3$
 $x_1, x_2, a_1, a_2 \ge 0$

Note que a variável que entrou na base, x_1 , não possui em sua coluna nenhum elemento positivo, de modo que é impossível determinar a linha pivô. Isso se enquadra como **solução** ilimitada.