SIT-FO-007

School of Information Technology General Luna Road, Baguio City Philippines 2600

Telefax No.: (074) 442-3071 Website: www.ubaguio.edu E-mail Address: ub@ubaguio.edu

DATA STRUCTURES AND ALGORITHMS 1

	1 st Semester SY 2024-2025 First Grading Examination (Laboratory)	SCORE
Name:	Date:	
Course and Year:	Section:	
0 = N = D + 1 N 0 = D 1 0 = 1 0 1 0		

GENERAL INSTRUCTIONS

- 1. Use blue or black permanent ink for answering.
- 2. Mind your own test papers. Anyone caught cheating will automatically be given a 0 in his/her test, suspended or expelled as stated in the Students Handbook, Article XIII Section 1Bc.
- 3. Turn off ALL gadgets.
- 4. If there are any questions or concerns, approach the proctor/instructor.
- I. Algorithm Simulation. Follow the instructions indicated for each item to simulate the List/Array Operations and Sorting Algorithms to create the needed solutions for each item. 5 points for each simulation. (15 points in total). 1 point deduction is imposed for every mistake/error found in your simulation.
- 1. Suppose we have a list of elements $\mathbf{x} = [1, 2, 3, 4, 5]$ and $\mathbf{y} = []$ and $\mathbf{z} = []$. The final output for your simulation should be as follows:

x = []

y = [5, 4]

z = [1, 2, 3]

Simulate the different operations (**List Operations**, **Return Values and List Contents**) using pen and paper such that all of the elements from **list x** are moved into the **lists y and z**, the contents of the list should be the same as the final output shown above. **5 points** is allotted for the **List/Array** simulation.

- 2. Suppose we have a list X = [1, 2, 21, 33, 45, 65, 12]. Simulate the **Insertion Sort Algorithm** to sort the list in **descending order** and simulate the **Selection Sort Algorithm** to sort the list in **ascending order**. <u>5 points</u> is allotted for the **Insertion Sort Algorithm** and <u>5 points</u> is allotted for the **Selection Sort Algorithm** for a total of <u>10 points</u>.
- **II. Algorithm Implementation**. Implement and create Python Programs for the simulations of your algorithms from **Test 1**. **40 points each (80 points in total)**.

Rubrics for the Program:

	40% of the points	60% of the points	80% of the points	100% of the points
Coding Standards	No name, date or assignment title included.	Includes name, date, and assignment title.	Includes name, date and assignment title.	Includes name, data and assignment title.
10 points	Poor use of whitespace	White space makes program	Good use of whitespace.	Excellent use of variables (no globa variables,
To points	(indentation, blank, lines)	fairly easy to read.	Organized work. Good use of variables	unambiguous naming)
	Disorganized and messy	Organized Work Good use of	(no global variables, unambiguous naming).	Excellent use of white space.
	Poor use of variables(many global variables, ambiguous naming)	variables.		Creatively organized work.

Runtime	Does not execute	Executes without	Executes without	Executes without
	due to errors.	errors.	errors.	errors, excellent user prompts, good use of
20 points	User prompts are misleading or non-existed. No testing has been completed or no input validation.	User prompts contain little information, poor design. Some testing or input validation has been completed.	understandable, minimum use of symbols or spacing in output. Most testing or input	symbols, spacing in output. Thorough and organized testing or input validation has been completed.
Efficiency 10 points	A difficult to understand and inefficient solution. Code is huge and	A logical solution that is easy to follow but it is not the most efficient.	,	Solution is efficient, easy to understand and maintain.
	appears to be patched together.			

"First say to yourself what you would be; and then do what you have to do." -Epictetus

Prepared by:

JEREMY M Instructor MOSES T. EBREO

Reviewed By:

Program Chair, CS

DIVINE L. AGUILAR-AGUDONG

Program Chair, IT