import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

df=pd.read_csv('/content/train.csv')

df.sample(5)

₹		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	696	697	0	3	Kelly, Mr. James	male	44.0	0	0	363592	8.0500	NaN	S
	727	728	1	3	Mannion, Miss. Margareth	female	NaN	0	0	36866	7.7375	NaN	Q
	863	864	0	3	Sage, Miss. Dorothy Edith "Dolly"	female	NaN	8	2	CA. 2343	69.5500	NaN	S
	118	119	0	1	Baxter, Mr. Quigg Edmond	male	24.0	0	1	PC 17558	247.5208	B58 B60	С
	848	849	0	2	Harper, Rev. John	male	28.0	0	1	248727	33.0000	NaN	S

df.head()

→		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

df=df.drop(['PassengerId','Name','Ticket','Cabin'],axis=1)

df.head()

→		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	0	3	male	22.0	1	0	7.2500	S
	1	1	1	female	38.0	1	0	71.2833	С
	2	1	3	female	26.0	0	0	7.9250	S
	3	1	1	female	35.0	1	0	53.1000	S
	4	0	3	male	35.0	0	0	8.0500	S

from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer

```
from sklearn.preprocessing import OneHotEncoder
```

from sklearn.compose import ColumnTransformer

from sklearn.pipeline import Pipeline,make_pipeline

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score

from sklearn.feature_selection import SelectKBest,chi2

from sklearn.preprocessing import MinMaxScaler

let's plan

missing value impute --> onehotencoder --> scaling --> feature selection (top 8/5)--> decisiontree -->

x_train,x_test,y_train,y_test=train_test_split(df.drop(columns=['Survived']),df['Survived'],test_size=0.2,random_state=42)

x_train

₹		Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	331	1	male	45.5	0	0	28.5000	S
	733	2	male	23.0	0	0	13.0000	S
	382	3	male	32.0	0	0	7.9250	S
	704	3	male	26.0	1	0	7.8542	S
	813	3	female	6.0	4	2	31.2750	S
	106	3	female	21.0	0	0	7.6500	S
	270	1	male	NaN	0	0	31.0000	S
	860	3	male	41.0	2	0	14.1083	S
	435	1	female	14.0	1	2	120.0000	S
	102	1	male	21.0	0	1	77.2875	S

712 rows × 7 columns

x_test.head()

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
9	3	male	NaN	1	1	15.2458	С
39	2	male	31.0	0	0	10.5000	S
10	3	male	20.0	0	0	7.9250	s
20	2	female	6.0	0	1	33.0000	S
9	3	female	14.0	1	0	11.2417	С
	39 10 20	3 3 39 2 40 3 20 2	3 male 2 male 3 male 2 female	3 male NaN 39 2 male 31.0 40 3 male 20.0 20 2 female 6.0	3 male NaN 1 39 2 male 31.0 0 40 3 male 20.0 0 20 2 female 6.0 0	3 male NaN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 male NaN 1 1 15.2458 9 2 male 31.0 0 0 10.5000 10 3 male 20.0 0 0 7.9250 2 female 6.0 0 1 33.0000

```
06/06/2025, 11:57
    y_train.head()
    \overline{\mathbf{x}}
                Survived
          331
                        0
          733
                        0
          382
                        0
          704
                        0
          813
                        0
          d4...... in+C1
    # imputation of null values
    df.isnull().sum()
    →
                         0
                         0
            Survived
            Pclass
                         0
              Sex
                         0
             Age
                      177
             SibSp
                         0
                         0
             Parch
             Fare
                         0
```

])

Embarked

2

```
dtype: int64
trf1=ColumnTransformer([
    ('impute_age',SimpleImputer(),[2]),
    ('impute_embarked',SimpleImputer(strategy='most_frequent'),[6])
],remainder='passthrough')
# ohe
trf2=ColumnTransformer([
    ('ohe_sex_embarked',OneHotEncoder(sparse_output=False,handle_unknown='ignore'),[1,6])
],remainder='passthrough')
# scaling
trf3=ColumnTransformer([
    ('scale',MinMaxScaler(),slice(0,10))
```

```
#feature selection
trf4=SelectKBest(score_func=chi2,k=8)
# decision tree
trf5=DecisionTreeClassifier()
# Display Pipeline
from sklearn import set_config
set_config(display='diagram')
# now apply the pipeline
pipe=Pipeline([
   ('trf1',trf1),
   ('trf2',trf2),
   ('trf3',trf3),
   ('trf4',trf4),
    ('trf5',trf5)
])
# Alternate Syntax
# pipe = make_pipeline(trf1,trf2,trf3,trf4,trf5)
# train
pipe.fit(x_train,y_train)
```


pipe.named_steps {'trf1': ColumnTransformer(remainder='passthrough', transformers=[('impute_age', SimpleImputer(), [2]), ('impute embarked', SimpleImputer(strategy='most_frequent'), [6])]), 'trf2': ColumnTransformer(remainder='passthrough', transformers=[('ohe_sex_embarked', OneHotEncoder(handle_unknown='ignore', sparse_output=False), [1, 6])]), 'trf3': ColumnTransformer(transformers=[('scale', MinMaxScaler(), slice(0, 10, None))]), 'trf4': SelectKBest(k=8, score_func=<function chi2 at 0x7891dc4bb1a0>), 'trf5': DecisionTreeClassifier()} pipe.named_steps['trf1'] $\overline{\Rightarrow}$ ColumnTransformer (i) (?) impute_age impute_embarked remainder SimpleImputer SimpleImputer passthrough

cross validation pipeline give mean of all accrurancy score

exporting pipeline