# INTRODUCTION TO PALEONTOLOGY

Shubhabrata Paul

#### Things to remember...

- What is a fossil?
- Types of fossils
- Fossilization
- □ Factors influencing preservation
- Preservation potential
- Modes of preservation

#### What is a fossil?

Fossil is the remains of an ancient organism or the trace of its activities and must be preserved under natural condition.





## Types of fossil - Body fossil

 Complete / partial record of the body of an organism.





## Types of fossil – Trace fossil

Records activity of an organism.







## Types of fossil – Chemical fossil

Molecular fossil

Isotope data

#### How are fossils formed?



#### 1. Sediment

An animal is buried by sediment, such as volcanic ash or silt, shortly after it dies. Its bones are protected from rotting by the layer of sediment.



#### 2. Layers

More sediment layers accumulate above the animal's remains, and minerals, such as silica (a compound of silicon and oxygen), slowly replace the calcium phosphate in the bones.



#### 3. Movement

Movement of tectonic plates, or giant rock slabs that make up Earth's surface, lifts up the sediments and pushes the fossil closer to the surface.



#### 4. Erosion

Erosion from rain, rivers, and wind wears away the remaining rock layers. Eventually, erosion or people digging for fossils will expose the preserved remains.

#### How are fossils formed?



 A fish dies and sinks to the bottom of a lake.



The fish rots and only the bones are left. The fish is covered with mud.



3. Millions of years pass and the mud turns to rock. Over time, the bone matter is completely changed into mineral matter. The fish is now a fossil.

# Modes of preservation

### Modes of preservation...

- Freezing
- Preservation in amber
- Carbonization
- Permineralization
- Replacement
- Recrystalization
- Molds & Casts

### Freezing...

Preserves an organism wholly without any alteration to the chemical composition of the organism.



#### Preservation in amber...

Amber, the fossilized resin of a plant or tree, sometimes preserves not only the external, but also the internal structure of an organism.





#### Carbonization...



- All living things contain an element called carbon.
- When an organism dies and is buried in sediment, the materials that make up the organism break down.
- Eventually, only carbon remains.
- The thin layer of carbon left behind can show an organism's delicate parts, like leaves on a plant.

#### Permineralization...

 Voids in the hard parts of organisms are filled with minerals.





## Replacement...

 Skeletal material is replaced by some new alien material.



## Recrystalization...

The original mineral crystals are altered in size and/or geometry over time, yet the chemical composition remains unchanged.

- Example:
  - Aragonite recrystallizing to calcite

#### Molds & Casts...



#### **MOLD FOSSIL**

This mold, or imprint, is of an extinct mollusk called an ammonite.



**CAST FOSSIL** 

This ammonite cast was discovered in the United Kingdom.

- A mold forms when hard parts of an organism are buried in sediment, such as sand, silt, or clay.
- The hard parts completely dissolve over time, leaving behind a hollow area with the organism's shape.
- A cast forms as the result of a mold.
- Water with dissolved minerals and sediment fills the mold's empty spaces.
- Minerals and sediment that are left in the mold make a cast.
- A cast is the opposite of its mold.

## Molds & Casts...



# Everything is not preserved

## Everything is not preserved...

TABLE 1-1 Estimates of the total number of living marine invertebrate species described and of the number of these that may be fossilizable because they have hard skeletons.

|                    | Total living<br>species<br>described | Total described<br>species<br>"fossilizable" |
|--------------------|--------------------------------------|----------------------------------------------|
| Foraminiferida and |                                      |                                              |
| Radiolaria         | 20,000                               | 20,000                                       |
| Porifera (sponges) | 2,250                                | 1,750                                        |
| Cnidaria (largely  |                                      |                                              |
| corals)            | 9,500                                | 6,200                                        |
| "Worms"            | 20,000                               | 1,000                                        |
| Bryozoa            | 3,000                                | 3,000                                        |
| Brachiopoda        | 225                                  | 225                                          |
| Mollusca           | 54,300                               | 53,100                                       |
| Arthropoda         | 23,000                               | 10,500                                       |
| Echinodermata      | 6,000                                | 5,000                                        |
| Others             | 2,000                                |                                              |
| TOTALS             | 140,275                              | 100,775                                      |

TABLE 1.4
Proportion of Living Taxa with
a Fossil Record

| Group         | Taxonomic Level | Percent |
|---------------|-----------------|---------|
| Sponges       | Family          | 48      |
| Corals        | Family          | 32      |
| Polychaetes   | Family          | 35      |
| Malacostracan |                 |         |
| crustaceans   | Family          | 19      |
| Ostracodes    | Family          | 82      |
|               | Genus           | 42      |
| Bryozoans     | Family          | 74      |
| Brachiopods   | Family          | 100     |
|               | Genus           | 77      |
| Crinoids      | Family          | 50      |
| Asterozoans   | Family          | 57      |
|               | Genus           | 5       |
| Echinoids     | Family          | 89      |
|               | Genus           | 41      |
| Bivalves      | Family          | 95      |
|               | Genus           | 76      |
| Gastropods    | Family          | 59      |
| Cephalopods   | Family          | 20      |
| Cartilaginous |                 |         |
| fishes        | Family          | 95      |
| Bony fishes   | Family          | 62      |
| Arachnids     | Genus           | 2       |
|               | Species         | < 1     |

SOURCES: Raup (1979); Foote & Sepkoski (1999); Valentine et al. (2006). Data are global.

#### Intrinsic biases in preservation

- Features of an organism that affect its preservation
  - Size
  - Robustness
  - Number of elements
  - Chemistry of the hard parts

#### Size bias





#### Robustness





#### Number of elements





# Chemistry of hard body parts





#### Extrinsic biases in preservation

- Features of an organism's surrounding environment that affect its preservation
  - Biotic
    - Predation / Scavenging
    - Boring
  - Extrinsic
    - Decay
    - Transport
    - Burial
    - Depositional environment



Increasing depth









Figure 7 Possible taphonomic scenario resulting in the accumulation of giant panda bones in the lower chamber (Jablonski et al. 2012)





# Boring





# Predation/Scavengeing





# Biological Destruction – predation/scavengeing



#### Decay

Decay occurs from the action of microbes
 metabolizing the organic carbon from dead tissue

$$C_6H_{12}O_6 + O_2 \longrightarrow CO_2 + H_2O$$

- Factors influence decay
  - Oxygen: More O<sub>2</sub> promotes faster decay
  - Temperature: Higher T promotes faster decay
  - pH: Lower pH promotes faster decay
  - Humidity: Higher humidity promotes faster decay

### Transport - Disarticulation

#### Results in disarticulation





# Transport - Fragmentation



#### Burial









#### Dissolution

□ Acidic water will dissolve carbonate shells



# Chemical diagenesis

Replacement

Recrystallization



0.2 mm

**Permineralization** 







Benton & Harper, 2016



#### Imperfections of the fossil record

- Temporal Gap
  - Unconformities leading to major gap in the rock record
  - Subduction leading to destruction of older rocks
- Ecological / Environmental
  - Ecological / environmental bias in preservation
  - Selective preservation of some groups
- Anatomical coverage
  - Loss / Deformation of body parts

#### Collector bias



Global data from the Paleobiology Database; Foraminifera; Phanerozoic

## Quiz: Who gets preserved?

- Jellyfish
  - Clam
  - Crocodile
  - Soft-body coral
  - Butterfly
  - Leaves of trees that grow in a swamp
  - Leaves of trees that grow in a floodplain

- 1
- 5
- 4 5
- 1 2
- 1 2
- 3 4
- 1 2

