

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 41: Popular CNN Models V

CONCEPTS COVERED

Concepts Covered:

- ☐ CNN
 - ☐ AlexNet
 - ☐ VGG Net
 - ☐ Transfer Learning
 - ☐ Challenges in Deep Learning
 - ☐ GoogLeNet
 - ☐ ResNet
 - **u** etc.

Challenges

- ☐ Deep learning is data hungry.
- Overfitting or lack of generalization.
- ☐ Vanishing/Exploding Gradient Problem.
- ☐ Appropriate Learning Rate.
- ☐ Covariate Shift.
- ☐ Effective training.

Vanishing Gradient Problem

$$\frac{\partial O}{\partial W_1} = X.f_1'.W_2.f_2'.W_3.f_3'.W_4.f_4'$$

Vanishing Gradient Problem

- Choice of activation function: ReLU instead of Sigmoid.
- ☐ Appropriate initialization of weights.
- ☐ Intelligent Back Propagation Learning Algorithm.

GoogLeNet ILSVRC 2014 Winner

GoogLeNe

- 22 Layers with parameters
- ❖ 27 Layer including Maxpool layers

Convolution Layer

Maxpool Layer

Feature Concatenation

Softmax Layer

GoogLeNe

THE COME STATE OF THE COME STA

Inception Module

- Module
 Computing 1×1, 3×3, and 5×5 convolutions within the same module of the network.
- Covers a bigger area, at the same time preserves fine resolution for small information on the images.
- ☐ Use different convolution kernels of different sizes in parallel from the most accurate detailing (1x1) to a bigger one (5x5).
- ☐ 1x1 convolution also reduces computation.

Inception Module

Number of operations for $1\times1 = (14\times14\times16)\times(1\times1\times480) = 1.5M$ Number of operations for $5\times5 = (14\times14\times48)\times(5\times5\times16) = 3.8M$ Total number of operations = 1.5M + 3.8M = 5.3M

Number of operations = (14×14×48)×(5×5×480) = 112.9M

https://medium.com/coinmonks/paper-review-of-googlenet-inception-v1-winner-of-ilsvlc-2014-image-classification-c2b3565a64e7

Inception Module

- Outputs of these filters are then stacked along the channel dimension.
- Multi-level feature extractor.
- ☐ There are 9 such inception modules.
- ☐ Top-5 error rate of less than 7 %.

GoogLeNe

t

Auxiliary Classifier

Auxiliary

Classifier

- Due to large depth of the network, ability to propagate gradient back through all the layers was a concern.
- ☐ Auxiliary Classifiers are smaller CNNs put on top of middle Inception modules.
- Addition of auxiliary classifiers in the middle exploits the discriminative power of the features produced by the layers in the middle.

AuxiliaryClassifier

- ☐ During training, loss of Auxiliary classifiers are added to the total loss of the network.
- ☐ Losses from Auxiliary classifiers were weighted by 0.3.
- ☐ Auxiliary classifiers are discarded at Inference time.

NPTEL ONLINE CERTIFICATION COURSES

Thank you

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 42: Popular CNN Models VI

CONCEPTS COVERED

Concepts Covered:

☐ CNN

☐ Challenges in Deep Learning

☐ GoogLeNet

☐ ResNet

☐ Momentum Optimizer

Challenges

- ☐ Deep learning is data hungry.
- Overfitting or lack of generalization.
- ☐ Vanishing/Exploding Gradient Problem.
- ☐ Appropriate Learning Rate.
- ☐ Covariate Shift.
- ☐ Effective training.

Vanishing Gradient Problem

- ☐ Choice of activation function: ReLU instead of Sigmoid.
- ☐ Appropriate initialization of weights.
- ☐ Intelligent Back Propagation Learning Algorithm.

GoogLeNe

Inception Module

GoogLeNe

t

Auxiliary Classifier

ResNet

ResNe

t

- ☐ Core idea is: introduction of Skip Connection/ Identity Shortcut Connection that skips one or more layers.
- ☐ Stacking layers should not degrade performance compared to its shallow counterpart.
- \Box Weight layer learns F(x)=H(x)-x

ResNe

- By stacking identity mappings the resultant deep network should give at least same performance as its shallow counterpart.
- ☐ Deeper network should not give higher training error than shallow network.
- ☐ During learning the gradient can flow to any earlier network through shortcut connections alleviating vanishing gradient problem.

ResNe t

ResNe

t

Forward flow:

$$a^{l} = f(W^{l-1,l}.a^{l-1} + b^{l} + W^{l-2,l}.a^{l-2})$$
$$= f(Z^{l} + W^{l-2,l}.a^{l-2})$$

$$a^{l} = f(Z^{l} + a^{l-2})$$
 if same dimension

ResNe

t

Backward Propagation:

$$\nabla W^{l-1,l} = -a^{l-1}.\delta^l \quad \text{normal path}$$

$$\nabla W^{l-2,l} = -a^{l-2}.\delta^l \quad \text{skip path}$$

If the skip path has fixed weights, identity matrix, then they are not updated.

Challenges

- ☐ Deep learning is data hungry.
- Overfitting or lack of generalization.
- ☐ Vanishing/Exploding Gradient Problem.
- ☐ Appropriate Learning Rate.
- ☐ Covariate Shift.
- ☐ Effective training.

Optimizing Gradient Descent

Gradient Descent Challenges

Challenges of Mini-batch Gradient Descent

- ☐ Choice of Proper Learning Rate:
 - ☐ Too small a learning rate leads to slow convergence.
 - □ A large learning rate may lead to oscillation around the minima or may even diverge.

Gradient Descent Challenges

Challenges of Mini-batch Gradient Descent

- ☐ Choice of Proper Learning Rate:
 - ☐ Too small a learning rate leads to slow convergence.
 - □ A large learning rate may lead to oscillation around the minima or may even diverge.

Gradient Descent

- Challenges
 Learning Rate Schedules: changing learning rate according to some predefined schedule.
 - The same learning rate applies to all parameter updates.
 - The data may be sparse and different features have very different frequencies.
 - ☐ Updating all of them to the same extent might not be proper.
 - ☐ Larger update for rarely occurring features might be a better choice.

Gradient Descent Challenges

- Challenges

 Avoiding getting trapped in suboptimal local minima.
 - ☐ Difficulty arises in from saddle points, i.e. points where one dimension slopes up and another slopes down.
 - ☐ These saddle points are usually surrounded by a plateau of the same error, which makes it hard for SGD to escape, as the gradient is close to zero in all dimensions.

Momentum Optimizer

NPTEL ONLINE CERTIFICATION COURSES

Thank you

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 43: Popular Optimizing Gradient Descent

Challenges

- ☐ Deep learning is data hungry.
- Overfitting or lack of generalization.
- ☐ Vanishing/Exploding Gradient Problem.
- ☐ Appropriate Learning Rate.
- ☐ Covariate Shift.
- ☐ Effective training.

CONCEPTS COVERED

Concepts Covered:

☐ CNN

☐ ResNet

☐ Gradient Descent Challenges

■ Momentum Optimizer

☐ Nestevor Accelerated Gradient

☐ Adagrad.

u etc.

Gradient Descent Challenges

Challenges of Mini-batch Gradient Descent

- ☐ Choice of Proper Learning Rate:
 - ☐ Too small a learning rate leads to slow convergence.
 - □ A large learning rate may lead to oscillation around the minima or may even diverge.

Gradient Descent

- Challenges
 Learning Rate Schedules: changing learning rate according to some predefined schedule.
 - The same learning rate applies to all parameter updates.
 - The data may be sparse and different features have very different frequencies.
 - ☐ Updating all of them to the same extent might not be proper.
 - ☐ Larger update for rarely occurring features might be a better choice.

Gradient Descent Challenges

- Challenges

 Avoiding getting trapped in suboptimal local minima.
 - ☐ Difficulty arises from saddle points, i.e. points where one dimension slopes up and another slopes down.
 - ☐ These saddle points are usually surrounded by a plateau of the same error, which makes it hard for SGD to escape, as the gradient is close to zero in all dimensions.

Optimizing Gradient Descent

CONCEPTS COVERED

Concepts Covered:

- ☐ CNN
 - ☐ ResNet
 - ☐ Gradient Descent Challenges
 - Momentum Optimizer
 - ☐ Adagrad.
 - **u** etc.

Nesterov Accelerated Gradient (NAG)

Nesterov Accelerated Gradient (NAG)

Problem with Momentum Optimizer/NAG

- ☐ Both the algorithms require the hyper-parameters to be set manually.
- ☐ These hyper-parameters decide the learning rate.
- ☐ The algorithm uses same learning rate for all dimensions.
- ☐ The high dimensional (mostly) non-nonconvex nature of loss function may lead to different sensitivity on different dimension.
- ☐ We may require learning rate could be small in some dimension and large in another dimension.

NPTEL ONLINE CERTIFICATION COURSES

Thank you

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 44: Optimizing Gradient Descent II

CONCEPTS COVERED

Concepts Covered:

- ☐ CNN
 - ☐ Gradient Descent Challenges
 - ☐ Momentum Optimizer
 - ☐ Nesterov Accelerated Gradient
 - ☐ Adagrad
 - **□**RMSProp
 - **u** etc.

Nesterov Accelerated Gradient (NAG)

Nesterov Accelerated Gradient (NAG)

Problem with Momentum Optimizer/NAG

- Optimizer/NAG

 Both the algorithms require the hyper-parameters to be set manually.
- ☐ These hyper-parameters decide the learning rate.
- ☐ The algorithm uses same learning rate for all dimensions.
- ☐ The high dimensional (mostly) non-nonconvex nature of loss function may lead to different sensitivity on different dimension.
- ☐ We may require learning rate be small in some dimension and large in another dimension.

- ☐ Adagrad adaptively scales the learning rate for different dimensions.
- ☐ Scale factor of a parameter is inversely proportional to the square root of sum of historical squared values of the gradient.
- ☐ The parameters with the largest partial derivative of the loss will have rapid decrease in their learning rate.
- ☐ Parameters with small partial derivatives will have relatively small decrease in learning rate.

$$g_{t} = \frac{1}{n} \sum_{\forall X \in Minibatch} \nabla_{W} L(W_{t}, X) \qquad r_{t} = \sum_{\tau=1}^{l} g_{\tau} \circ g_{\tau}$$

$$W_{t+1} = W_t - \frac{\eta}{\sqrt{\in I + r_t}} \circ g_t$$

∘ → element - wise product

$$\begin{bmatrix} W_{t+1}^{(1)} \\ W_{t+1}^{(2)} \\ \vdots \\ W_{t+1}^{(d)} \end{bmatrix} = \begin{bmatrix} W_{t}^{(1)} \\ W_{t}^{(2)} \\ \vdots \\ W_{t}^{(d)} \end{bmatrix} - \begin{bmatrix} \frac{\eta}{\sqrt{\in +r_{t}^{(1)}}} \cdot g_{t}^{(1)} \\ \frac{\eta}{\sqrt{\in +r_{t}^{(2)}}} \cdot g_{t}^{(2)} \\ \vdots \\ \frac{\eta}{\sqrt{\in +r_{t}^{(d)}}} \cdot g_{t}^{(d)} \end{bmatrix}$$

Positive Side

- Adagrad adaptively scales the learning rate for different dimensions by normalizing with respect to the gradient magnitude in the corresponding dimension.
- ☐ Adagrad eliminates the need to manually tune the learning rate.
- ☐ Reduces learning rate faster for parameters showing large slope and slower for parameters giving smaller slope.
- ☐ Adagrad converges rapidly when applied to convex functions.

Negative side:

- ☐ If the function is non-convex:- trajectory may pass through many complex terrains eventually arriving at a locally region.
- ☐ By then learning rate may become too small due to the accumulation of gradients from the beginning of training.
- ☐ So at some point the model may stop learning.

NPTEL ONLINE CERTIFICATION COURSES

Thank you

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 45: Optimizing Gradient Descent III

CONCEPTS COVERED

Concepts Covered:

- ☐ CNN
 - ☐ Gradient Descent Challenges
 - ☐ Momentum Optimizer
 - ☐ Nesterov Accelerated Gradient
 - ☐ Adagrad
 - **□**RMSProp
 - **u** etc.

$$g_{t} = \frac{1}{n} \sum_{\forall X \in Minibatch} \nabla_{W} L(W_{t}, X) \qquad r_{t} = \sum_{\tau=1}^{l} g_{\tau} \circ g_{\tau}$$

$$W_{t+1} = W_t - \frac{\eta}{\sqrt{\in I + r_t}} \circ g_t$$

∘ → element - wise product

Positive Side

- Adagrad adaptively scales the learning rate for different dimensions by normalizing with respect to the gradient magnitude in the corresponding dimension.
- ☐ Adagrad eliminates the need to manually tune the learning rate.
- ☐ Reduces learning rate faster for parameters showing large slope and slower for parameters giving smaller slope.
- ☐ Adagrad converges rapidly when applied to convex functions.

Negative side:

- ☐ If the function is non-convex:- trajectory may pass through many complex terrains eventually arriving at a locally region.
- ☐ By then learning rate may become too small due to the accumulation of gradients from the beginning of training.
- ☐ So at some point the model may stop learning.

RMSProp

RMSPro

- p
- RMSProp uses exponentially decaying average of squared gradient and discards history from the extreme past.
- ☐ Converges rapidly once it finds a locally convex bowl.
- ☐ Treats this as an instance of Adagrad algorithm initialized within that bowl.

RMSPro

p

$$g_{t} = \frac{1}{n} \sum_{\forall X \in Minibatch} \nabla_{W} L(W_{t}, X)$$

$$r_{t} = \beta r_{t-1} + (1-\beta)g_{t} \circ g_{t} \longrightarrow \text{Exponentially decaying average}$$

$$W_{t+1} = W_t - \frac{\eta}{\sqrt{\in I + r_t}} \circ g_t$$

RMSProp with Nesterov Momentum

$$\widetilde{W} = W_t + \alpha v$$

$$g_t = \frac{1}{n} \sum_{\forall X \in Minibatch} \nabla_W L(\widetilde{W}, X)$$

$$r_{t} = \beta r_{t-1} + (1 - \beta) g_{t} \circ g_{t}$$

$$v_{t+1} = \alpha v_t - \frac{\eta}{\sqrt{\in I + r_t}} \circ g_t \qquad W_{t+1} = W_t + v_t$$

Adaptive Moments (Adam)

Adam

- ☐ Variant of the combination of RMSProp and Momentum.
- ☐ Incorporates first order moment (with exponential weighting) of the gradient (Momentum term).
- ☐ Momentum is incorporated in RMSProp by adding momentum to the rescaled gradients.
- Both first and second moments are corrected for bias to account for heir initialization to zero.

Adam

$$g_{t} = \frac{1}{n} \sum_{\forall X \in Minibatch} \nabla_{W} L(W, X)$$

Biased first and second moments

$$s_t = \beta_1 s_{t-1} + (1 - \beta_1) g_t$$

$$r_{t} = \beta_{2} r_{t-1} + (1 - \beta_{2}) g_{t} \circ g_{t}$$

Adam

Bias corrected first and second moments

$$\hat{s}_t = \frac{s_t}{1 - \beta_1} \qquad \hat{r}_t = \frac{r_t}{1 - \beta_2}$$

$$W_{t+1} = W_t - \eta \frac{\hat{S}_t}{\sqrt{\in I + \hat{r}_t}}$$

NPTEL ONLINE CERTIFICATION COURSES

Thank you