希尔密码

Hill Cipher 刘卓

1 矩阵的模运算

矩阵的模运算 (Modulo arithmetic on matrices)。令 A,B 是 $m\times n$ 的矩阵,矩阵元素都为整数。如果

$$a_{i,j} \equiv b_{i,j} \mod m$$

对于全部的 $a_{i,j}, b_{i,j}$. 则 A and B 是模 m 的同余. 记作 $A \equiv B \mod m$. 如果存在 A, B 是 $n \times n$ 矩阵,其元素都为整数,使得

$$AB = I \mod m \pi BA = I \mod m$$
,

那么 $A^{-1} = B \mod m$, B 是 A 模 m 的逆。

例 1

$$\Leftrightarrow m = 5, A = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} \Re B = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}.$$

$$A + 2B \mod 5 = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ 6 & 4 \end{bmatrix} \pmod 5$$

$$= \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ 1 & 4 \end{bmatrix} \pmod 5$$

$$= \begin{bmatrix} 4 & 7 \\ 3 & 5 \end{bmatrix} \pmod 5$$

$$= \begin{bmatrix} 4 & 2 \\ 3 & 0 \end{bmatrix} \pmod 5$$

$$BA \bmod 5 = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} \pmod 5$$
$$= \begin{bmatrix} 6 & 5 \\ 10 & 11 \end{bmatrix} \pmod 5$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \pmod 5$$

2 矩阵行列式的模

矩阵行列式 (determinant)。

 $det(A) \mod m$

例 2

$$A = \begin{bmatrix} 3 & 4 \\ -9 & 8 \end{bmatrix} \mod 10$$

$$det(A) = ad - bc = (3)(8) - (-9)(4) = 60 = 0 \mod 10$$

3 希尔密码

希尔密码(Hill cipher)是一种分组密码,将成对的明文字母通过转换加密:

$$Y = AX \mod 26$$

其中 A 是一个 2×2 的可逆矩阵 (invertible matrix) 并且 mod 26. 模 26 的逆:

$$1^{-1} \equiv 1 \pmod{26} \qquad 3^{-1} \equiv 9 \pmod{26}$$

$$9^{-1} \equiv 3 \pmod{26} \qquad 5^{-1} \equiv 21 \pmod{26}$$

$$21^{-1} \equiv 5 \pmod{26} \qquad 7^{-1} \equiv 15 \pmod{26}$$

$$15^{-1} \equiv 7 \pmod{26} \qquad 11^{-1} \equiv 19 \pmod{26}$$

$$19^{-1} \equiv 11 \pmod{26} \qquad 17^{-1} \equiv 23 \pmod{26}$$

$$23^{-1} \equiv 17 \pmod{26} \qquad 25^{-1} \equiv 25 \pmod{26}$$

令
$$A = \begin{bmatrix} 22 & 13 \\ 11 & 5 \end{bmatrix}$$
,使用希尔密码加密明文" $MISSING$ ".

解:

/UT																									
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
A	В	С	D	Е	F	G	Н	Ι	J	K	L	Μ	N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z

$$\begin{bmatrix} M \\ I \end{bmatrix} \rightarrow \begin{bmatrix} 12 \\ 8 \end{bmatrix} \rightarrow AX \mod 26 \rightarrow \begin{bmatrix} 22 & 13 \\ 11 & 5 \end{bmatrix} \begin{bmatrix} 12 \\ 8 \end{bmatrix} \mod 26 \rightarrow \begin{bmatrix} 368 \\ 172 \end{bmatrix} \mod 26 \rightarrow \begin{bmatrix} 4 \\ 16 \end{bmatrix} \rightarrow \begin{bmatrix} E \\ Q \end{bmatrix}$$

$$\begin{bmatrix} S \\ S \end{bmatrix} \rightarrow \begin{bmatrix} 18 \\ 18 \end{bmatrix} \rightarrow \begin{bmatrix} 6 \\ 2 \end{bmatrix} \rightarrow \begin{bmatrix} G \\ C \end{bmatrix}$$

$$\begin{bmatrix} I \\ N \end{bmatrix} \rightarrow \begin{bmatrix} 8 \\ 13 \end{bmatrix} \rightarrow \begin{bmatrix} 7 \\ 23 \end{bmatrix} \rightarrow \begin{bmatrix} H \\ X \end{bmatrix}$$

$$\begin{bmatrix} G \\ K \end{bmatrix} \rightarrow \begin{bmatrix} 6 \\ 10 \end{bmatrix} \rightarrow \begin{bmatrix} 2 \\ 12 \end{bmatrix} \rightarrow \begin{bmatrix} C \\ M \end{bmatrix}$$

遇到明文长度为奇数时,可以规定某个字母为填充项。这里使用字母 K 作为填充项。

最后密文为: EQGCHXCM

希尔密码解密为: $X = A^{-1}Y \mod 26$

例 4

解密"
$$ZGWQ$$
", 令 $A = \begin{bmatrix} 3 & 7 \\ 9 & 10 \end{bmatrix}$

解:

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \mod 26$$

$$= \det(A)^{-1} \cdot \begin{bmatrix} 10 & -7 \\ -9 & 3 \end{bmatrix} \mod 26$$

$$= \det(A)^{-1} \begin{bmatrix} 10 & 19 \\ 17 & 3 \end{bmatrix} \mod 26$$

$$= (-33 \mod 26)^{-1} \times \begin{bmatrix} 10 & 19 \\ 17 & 3 \end{bmatrix} \mod 26$$

$$= 19^{-1} \times \begin{bmatrix} 10 & 19 \\ 17 & 3 \end{bmatrix} \mod 26$$

$$= 11 \times \begin{bmatrix} 10 & 19 \\ 17 & 3 \end{bmatrix} \mod 26$$

$$= \begin{bmatrix} 6 & 1 \\ 5 & 7 \end{bmatrix} \mod 26$$

$$\begin{bmatrix} Z \\ G \end{bmatrix} \to \begin{bmatrix} 25 \\ 6 \end{bmatrix} \to \begin{bmatrix} 6 & 1 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 25 \\ 6 \end{bmatrix} \mod 26 = \begin{bmatrix} 0 \\ 11 \end{bmatrix} \to \begin{bmatrix} A \\ L \end{bmatrix}$$
$$\begin{bmatrix} W \\ Q \end{bmatrix} \to \begin{bmatrix} 22 \\ 16 \end{bmatrix} \to \begin{bmatrix} 6 & 1 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 22 \\ 16 \end{bmatrix} \mod 26 = \begin{bmatrix} 18 \\ 14 \end{bmatrix} \to \begin{bmatrix} S \\ O \end{bmatrix}$$

解密字符为: "ALSO"

例 5

```
加密 CODE, \diamondsuit A = \begin{bmatrix} 22 & 13 \\ 11 & 5 \end{bmatrix}
```

```
import numpy as np
Plaintext = 'COKE'#字母需要大写
A = np.mat([[22,13],[11,5]])
Ciphertext = ''
if len(Plaintext)%2 == 0:
   pass
else:
   Plaintext += 'K' #填充K
for i in range(len(Plaintext)):
   if i%2 == 0:
       M = Plaintext[i:i+2]
       X = np.mat([[ord(M[0]) -65], [ord(M[1]) -65]])
       Y = A*X%26
       Ciphertext += chr(int(Y[0]) + 65)
       Ciphertext += chr(int(Y[1]) + 65)
print(Ciphertext)
```

输出: SOMA

例 6

已知密文"DLHIVDLZHIPNEU", 已知使用希尔密码和 2×2 作为加密手段。并且有明显证据证明明文开头为 DEAR。尝试解密。

解:

/UT :													
D	\mathbf{L}	Н	I	V	D	L	Z	Н	I	Р	N	\mathbf{E}	U
3	11	7	8	21	3	11	25	7	8	15	13	4	20
D	E	A	R										
3	4	0	17										

$$\left[\begin{array}{c} D \\ L \end{array}\right] \mapsto \left[\begin{array}{c} D \\ E \end{array}\right]$$

$$\left[\begin{array}{c} H \\ I \end{array}\right] \mapsto \left[\begin{array}{c} V \\ D \end{array}\right]$$

下一步计算 A^{-1} ,

$$A^{-1} \begin{bmatrix} 3 \\ 11 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \mod 26$$
$$A^{-1} \begin{bmatrix} 7 \\ 8 \end{bmatrix} = \begin{bmatrix} 0 \\ 17 \end{bmatrix} \mod 26$$

因为:

$$A^{-1} \left[\begin{array}{cc} 3 & 7 \\ 11 & 8 \end{array} \right] = \left[\begin{array}{cc} 3 & 0 \\ 4 & 17 \end{array} \right]$$

所以:

$$A^{-1} = \begin{bmatrix} 3 & 0 \\ 4 & 17 \end{bmatrix} \cdot \begin{bmatrix} 3 & 7 \\ 11 & 8 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & 0 \\ 4 & 17 \end{bmatrix} \cdot \begin{bmatrix} 18 & 7 \\ 11 & 23 \end{bmatrix} = \begin{bmatrix} 2 & 21 \\ 25 & 3 \end{bmatrix} \mod 26$$

 $X = A^{-1} \cdot Y$, 与例 4 同理