Pseudocode and Diagrams for Differential Privacy Methods

Contents

1	Intr	oduction	2
2	2 Pseudocode and Diagrams for Quantitative Methods		2
	2.1	Duchi et al. Mechanism (duchi_mechanism)	2
	2.2	Piecewise Mechanism (piecewise_mechanism)	3
	2.3	Laplace Mechanism (laplace_mechanism)	5
	2.4	Multidimensional Duchi Mechanism (multidimensional_duchi_mechanism)	6
	2.5	Custom Multidimensional Mechanism (multidimensional_mechanism)	7
3	Pseu	idocode and Diagrams for Categorical Methods	8
	3.1	Direct Encoding (direct_encoding)	8
	3.2	Optimized Unary Encoding (OUE) (optimized_unary_encoding)	10
	3.3	RAPPOR (rappor)	12

1 Introduction

This document presents the pseudocode and conceptual diagrams of the differential privacy methods implemented for quantitative and categorical variables. The included algorithms are:

• Quantitative Data:

- Duchi et al. Mechanism (duchi_mechanism)
- Laplace Mechanism (laplace_mechanism)
- Piecewise Mechanism (piecewise_mechanism)
- Multidimensional Duchi Mechanism (multidimensional_duchi_mechanism)
- Custom Multidimensional Mechanism (multidimensional_mechanism)

• Categorical Data:

- Direct Encoding (direct_encoding)
- Optimized Unary Encoding (OUE) (optimized_unary_encoding)
- RAPPOR (rappor)

Below, the pseudocode and diagram for each of these methods are presented.

2 Pseudocode and Diagrams for Quantitative Methods

2.1 Duchi et al. Mechanism (duchi_mechanism)

Algorithm 1 Duchi et al. Mechanism

Require: Input vector t_i with values in [-1, 1], privacy budget ϵ

- 1: **for** each element t_i in the input vector **do**
- 2: Clone and convert t_i to double precision
- 3: Compute $\tanh\left(\frac{\epsilon}{2}\right)$
- 4: Compute probability $p = 0.5 \times (1 + t_i \times \tanh(\epsilon/2))$
- 5: Generate Bernoulli variable u with probability p
- 6: Compute scaling factor $w = 1/\tanh(\epsilon/2)$
- 7: Compute $t_i^* = (2u 1) \times w$
- 8: end for
- 9: **return** Vector t_i^*

Figure 1: Diagram of the Duchi et al. Mechanism

2.2 Piecewise Mechanism (piecewise_mechanism)

Algorithm 2 Piecewise Mechanism

Require: Input vector t_i with values in [-1, 1], privacy budget ϵ

- 1: Compute $e^{\epsilon/2}$ and $C = \frac{e^{\epsilon/2} + 1}{e^{\epsilon/2} 1}$
- 2: **for** each element t_i in the input vector **do**
- 3: Clone and convert t_i to float
- Compute $l(t_i)$ and $r(t_i)$ 4:
- 5:
- Generate $x \sim \text{Uniform}(0, 1)$ Compute threshold $u = \frac{e^{\epsilon/2}}{e^{\epsilon/2} + 1}$ 6:
- 7: if x < u then
- Generate t_i^* uniformly in $[l(t_i), r(t_i)]$ 8:
- 9: else
- Randomly choose between intervals $[-C, l(t_i)]$ and $[r(t_i), C]$ 10:
- Generate t_i^* uniformly in the selected interval 11:
- end if 12:
- 13: **end for**
- 14: **return** Vector t_i^*

Figure 2: Diagram of the Piecewise Mechanism

2.3 Laplace Mechanism (laplace_mechanism)

Algorithm 3 Laplace Mechanism

Require: Input vector t_i , privacy budget ϵ , sensitivity s

Ensure: Privatized vector t_i^*

1: **for** each element t_i in the input vector **do**

2: Clone and convert t_i to float

3: Compute scale $b = s/\epsilon$

4: Generate Laplace noise $n \sim \text{Laplace}(0, b)$

5: Compute $t_i^* = t_i + n$

6: end for

7: **return** Vector t_i^*

Figure 3: Diagram of the Laplace Mechanism

2.4 Multidimensional Duchi Mechanism (multidimensional_duchi_mechanism)

Algorithm 4 Multidimensional Duchi Mechanism

Require: Input vector t_i of dimension d, privacy budget ϵ , number of samples N

- 1: Clone and clamp t_i to the range [-1, 1]
- 2: Generate random vector $v \in \{-1, 1\}^d$ based on t_i
- 3: Generate sets T_+ and T_- via random sampling
- 4: Compute probability $p = \frac{e^{\epsilon}}{e^{\epsilon} + 1}$
- 5: Generate Bernoulli variable u with probability p
- 6: **if** u = 1 and $T_+ \neq \emptyset$ **then**
- 7: Randomly select t_i^* from T_+
- 8: else if $T_{-} \neq \emptyset$ then
- 9: Randomly select t_i^* from T_-
- 10: **else**
- 11: Assign $t_i^* = B$ or -B according to u
- 12: **end if**
- 13: **return** Vector t_i^*

Figure 4: Diagram of the Multidimensional Duchi Mechanism

2.5 Custom Multidimensional Mechanism (multidimensional_mechanism)

Algorithm 5 Custom Multidimensional Mechanism

Require: Input vector t_i of dimension n, privacy budget ϵ , unidimensional mechanism M, constant C

- 1: Clone and clamp t_i to the range [-1, 1]
- 2: **for** each index i in n **do**
- 3: Apply mechanism M to t_i with budget ϵ
- 4: Scale t_i^* by multiplying with C
- 5: end for
- 6: Clamp t_i^* to the range [-C, C]
- 7: **return** Vector t_i^*

Figure 5: Diagram of the Custom Multidimensional Mechanism

3 Pseudocode and Diagrams for Categorical Methods

3.1 Direct Encoding (direct_encoding)

Algorithm 6 Direct Encoding

Require: Categorical data X, privacy budget ϵ

Ensure: Privatized data X^*

1: Encode categories with numerical values

2: Obtain the number of categories k

3: Compute
$$p = \frac{e^{\epsilon}}{e^{\epsilon} + k - 1}$$

4: Compute
$$q = \frac{1}{e^{\epsilon} + k - 1}$$

5: **for** each element x_i in X **do**

6: Assign probabilities: p to the original category, q to the others

7: Generate category x_i^* based on the assigned probabilities

8: end for

9: **return** Privatized data X^*

Figure 6: Diagram of Direct Encoding

3.2 Optimized Unary Encoding (OUE) (optimized_unary_encoding)

Algorithm 7 Optimized Unary Encoding (OUE)

Require: Categorical data X, privacy budget ϵ

Ensure: Privatized data X^*

- 1: Encode categories with numerical values
- 2: Obtain the number of categories d
- 3: Create original binary matrix (One-Hot Encoding)
- 4: Set p = 0.5 and $q = \frac{1}{e^{\epsilon} + 1}$
- 5: **for** each binary vector u_i **do**
- 6: **for** each bit u_{ij} in u_i **do**
- 7: **if** $u_{ij} = 1$ **then**
- 8: Perturb u_{ij} with probability p
- 9: **else**
- 10: Perturb u_{ij} with probability q
- 11: **end if**
- 12: end for
- 13: Reconstruct x_i^* from the perturbed vector
- 14: **end for**
- 15: **return** Privatized data X^*

Figure 7: Diagram of Optimized Unary Encoding (OUE)

3.3 RAPPOR (rappor)

Algorithm 8 RAPPOR

Require: Categorical data X, privacy budget ϵ

Ensure: Privatized data X^*

- 1: Encode categories with numerical values
- 2: Obtain the number of categories d
- 3: Create original binary matrix (One-Hot Encoding)
- 4: Compute $f = \frac{1}{e^{\epsilon} + 1}$
- 5: **for** each binary vector u_i **do**
- 6: **for** each bit u_{ij} in u_i **do**
- 7: **if** $u_{ij} = 1$ **then**
- 8: Perturb u_{ij} with probability 1 f
- 9: **else**
- 10: Perturb u_{ij} with probability f
- 11: **end if**
- 12: end for
- 13: Reconstruct x_i^* from the perturbed vector
- 14: **end for**
- 15: **return** Privatized data X^*

Figure 8: Diagram of RAPPOR