

 $(\lambda x. (\lambda y. y. a) x) ((\lambda x. x) ((\lambda y. y. b))$ Eager / CBV (2 y. y b) (nx. (ny.ya)x) (7y.ya) (7y.yb) (Ay. 4 b) c $(\lambda \chi, \chi)((\lambda \chi, \chi \chi)(\lambda \chi, \chi \chi))$ infinite

frue = XX. Xy, X false = 1 x. 19, y not (or false true) => false not (Ux. 1y. x true y) fa (se true) not (() y false true (3) true) not (false true true) not ((1x. 2y. y) true true) not ((14,4) +ruz) not true

(1xx false true) true true false true (() x /y, x) false) true (ly, false) frue false

Cby												<u> </u>	-				
				•							Boubie	-7 loosloi	•	Ken -	s ken		
-) _A 7	£2→ √2	Y ₃ is k	ev :?	ı, is b	arbie ar	VA Va	is bod	<u>bi</u> e									
		E7 Q	£⊅ -	> V3			£1->	٧	£₂->	42	₹3 is	borbie	e is u	is bor	bie and	V ₂ is	ken
											£Τ	Q i	ว →	V3			
-7 V 1	Ez - vz	V3 is	borbie	if v	is ken	and	vz is (ien_									
		EL Ø) = -3.					1 -5 V4		£, → v	(a	Va is	ten i	u, is	لحد ا	and vo	_ is k
		- J.L. V	±2	*3			•										
												£Τ	Ω £Σ	. → v _.	3		
					n –1 ken				આબાદ	-							
		Borbi	e->borbi		Ken (١	is is l	cen	_				
Bark	oie —> balbie			Borbie	. O (r	er &	Ken)	\rightarrow k	en					43	is bou	bie	_
		Barbie	γ (p	۳:۵ (۸) (Var	ധ	11 .	-> h.	th:c								

	A, var: vai	(var)=	val			□ ···	
	A, var: va					24	
						2 T	
	A.var:val()	x) = val					
	A, Var: Vai;		-	var:vai; e1 ⇒ V	$A, Var: V_2 ; e_2 \Rightarrow$	V ₃	
	A, vav:vo	ıı; ExcH	ANGE VAY	for ei in e	.2 ⇒ v ₃		
		A; e1 =	V, V ₁	s yap		_	
		Ai Slai	yp?e1⇒ ·	чар			
		Δ · ρ \ ;	٠	is slay			
			yp? e1 =>		A,x:51ay; 51ay =	Siau	
		11, 01	400	3149			
					#7 = 5104		
#2		ب	# 4				
					A,X:S104; #6		Slay 15
# 1		AIX	: yap;	# 3	# 5		
	A . x :	E	νς IJΦνι (Æ	o for slower	? slow in Slowp?	× -\ shu	
	A , x:	yaρ ; Ε!	XCHAN GE	× for slowp	? slay in slayp?	× => slow	
				× for slowp	? slay in slayp?	× => slay	
#1: A,	Α, *:			x for slayp	? slay in slayp?	× => slay	
	(x:4ap j	X => y	αφ	x for slowp	? slay in slayp?	× => sloug	
₩2: A,	, x: yap ; x: yap (x	X => y	αρ	x for slowp	? slay in slayp?	× => slow	
#2: A, #3: 51	(x:yap ;	X => y () = y a => S(a)	αρ	x for slowp	? slay in slayp?	× => slay	
#2: A, #3: 51 #4: «	Slay => Slay (x: Yap (x x: Yap ;	X => y () = y a => S(a)	ap ip y		? slay in slayp?	× => slay	
#2: A, #3: 51 #4: «	(x: yap ; X: yap (x layp? slay Slay =) slay A, X: Slau	X => y () = y a => S(a)	αρ 19 9 14p? Χ	⇒ "5(6y "	? slay in slayp?	× => slay	
#2: A, #3: 5! #4: 4	(x: yap ; X: yap (x layp? slay Slay =) slay A, X: Slau	X => y () = y a => S(a)	αρ 19 9 14p? Χ	⇒ "5(6y "	? slay in slayp?	× => slay	
# 2: A, # 3: 5! # 4: 4 # 5: 4	(x: yap ; x: yap (x layp? slay slay =) slay A, x: ς (αυ	x => y x => y x => s(a) y : S(a) x ==	αρ 19 19 19p? X 19p? X	⇒ "5(6y "	? slay in slayp?	× => sloy	
# 2: A, # 3: 5! # 4: 4 # 5: 4	(x: yap ; X: yap (x layp? slay Slay =) slay A, X: Slau	x => y x => y x => s(a) y : S(a) x ==	αρ 19 19 19p? X 19p? X	⇒ "5(6y "	? slay in slayp?	× => slay	
# 2: A, # 3: 5! # 4: 4 # 5: 4	(x: yap ; x: yap (x layp? slay slay =) slay A, x: ς (αυ	x => y x => y x => s(a) y : S(a) x ==	αρ 19 19 19p? X 19p? X	⇒ "5(6y "	? slay in slayp?	× => slay	
# 2: A, # 3: 5! # 4: 4 # 5: 4	(x: yap ; x: yap (x layp? slay slay =) slay A, x: ς (αυ	x => y x => y x => s(a) y : S(a) x ==	αρ 19 19 19p? X 19p? X	⇒ "5(6y "	? slay in slayp?	× => slay	
# 2: A, # 3: 5! # 4: 4 # 5: 4	(x: yap ; x: yap (x layp? slay slay =) slay A, x: ς (αυ	x => y x => y x => s(a) y : S(a) x ==	αρ 19 19 19p? X 19p? X	⇒ "5(6y "	? slay in slayp?	× => slay	
# 2: A, # 3: 5! # 4: 4 # 5: 4	(x: yap ; x: yap (x layp? slay slay =) slay A, x: ς (αυ	x => y x => y x => s(a) y : S(a) x ==	αρ 19 19 19p? X 19p? X	⇒ "5(6y "	? slay in slayp?	× => slay	
# 2: A, # 3: 5! # 4: 4 # 5: 4	(x: yap ; x: yap (x layp? slay slay =) slay A, x: ς (αυ	x => y x => y x => s(a) y : S(a) x ==	αρ 19 19 19p? X 19p? X	⇒ "5(6y "	? slay in slayp?	× => slay	

Exam 2 Review - OCaml & Opsem

Date: @November 7, 2023

Context Free Grammars

- Any regular expression can be expressed as a string that is in the following set
 - S → Non terminal
 - o others are terminals

$$\begin{array}{ccc} S \rightarrow & \epsilon & & |\sigma & & \\ & |\sigma & & |SS & & \\ & |S|S & & |S^* & & \\ & |(S) & & & \end{array}$$

Example

$$S \rightarrow NPVP$$

$$|\det AN|$$
 $AN \rightarrow adj AN$

$$VP \rightarrow \text{verb}$$
 $|\text{verb } NP|$

- Terminals → pronoun, proper_noun, det, adj, noun, verb
- Non-terminals \rightarrow S, NP, VP, AN
- Production → a production tells us all the things a non-terminal can be

$$\circ$$
 S \rightarrow NPVP

Designing Grammars

- Base Cases
 - $\circ \ \ \varnothing \rightarrow$ the empty set, the language contains no strings
 - \circ ϵ \rightarrow regex accepts an empty string, the CFG should have a single production

 $\circ \ \sigma \rightarrow$ The regular expression is a single character, CFG should have a single production

■
$$S \rightarrow \sigma$$

- Recursive Definitions
 - Concatenation (Union) → To concatenate two strings together, we can just push them together with either non-terminals or just the string you would expect

$$S \rightarrow AB$$

$$A \rightarrow a$$

$$B \rightarrow b$$

- Branching (Or) \rightarrow to branch, we can use the same symbol we used in regex : | S \rightarrow hello | hi
- Kleene Closure (Star) → To allow repeated values, we initialize the recursive property these sets have

$$S \rightarrow aS \mid \epsilon \text{ (same thing as a*)}$$

- Not Supported by Regular Expressions
 - CFG's support more than regular expressions
 - We can check balanced parentheses like this:
 Balanced parentheses surrounding "a" → S → (S)|a
 Palindromes of "a", "b", "c" → S → aSa | bSb | cSc | ε
- Abstract Syntax Trees

$$A \rightarrow A + A|A - A|A * A|A/A|(A)|N$$

 $N \rightarrow number$

$$\circ$$
 2 + 3 * 4

Operational Semantics

 Operational semantics is a way to help describe the meaning of a statement in a programming language. It helps us to determine the correctness of a programming statement o Axiom: things that are basic enough that we don't need to prove it

$$n \Rightarrow n$$

- Target language: a language that the operational semantics is describing
- Environment: a mapping from variables to values.
 - [x:3, y:4]
 - how to look up a variable in our environment?
 - if we want to evaluate V into a value, we need to look up that value in the environment

$$\frac{A(x) \Rightarrow v}{A; x \Rightarrow v}$$

$$\frac{A, x: 4; (x) \Rightarrow 4}{A, x: 4; x \Rightarrow 4}$$