EXERCICE B – MESURE DE LA MASSE DE JUPITER ET DU SOLEIL (5 points) <u>Mots-clés</u>: Lois de Newton, gravitation, mouvement des planètes et des satellites

En 1610, Galilée a été le premier à observer les quatre principaux satellites de Jupiter (lo, Europe, Ganymède et Callisto) en utilisant une lunette astronomique qu'il avait lui-même fabriquée.

À la suite de Galilée, les observations de ces quatre satellites ont permis de réaliser les mesures regroupées dans le tableau ci-dessous.

Satellite	Période de révolution <i>T</i> en jours	Demi-grand axe a de la
	(j)	trajectoire elliptique (x105 km)
lo	1,75	4,22
Europe	3,55	6,71
Ganymède	7,16	10,7
Callisto	16,7	18,8

À l'aide d'un tableur, on a positionné les mesures dans un graphique donnant les variations de T^2 en fonction de celles de a^3 pour les quatre satellites de Jupiter. Le tableur permet de superposer à ces points de mesure une modélisation par une droite (Cf. figure 1 ci-dessous).

Figure 1. T^2 en fonction de a^3 .

Donnée: Constante de gravitation universelle $G = 6.67 \times 10^{-11} \text{ m}^3 \cdot \text{kg}^{-1} \cdot \text{s}^{-2}$

Exploitation des résultats expérimentaux

1. À partir des résultats expérimentaux (figure 1), préciser la relation qui existe entre T^2 et a^3 pour les quatre satellites de Jupiter. Donner le nom de la loi correspondante (établie en 1618).

22 PYCJ2G11 10/15

Modélisation du mouvement d'un satellite de Jupiter

On se place dans le cadre théorique de la mécanique de Newton (publiée en 1687) pour retrouver la relation évoquée dans la question 1 et déterminer la masse M_I de Jupiter.

On étudie le mouvement du satellite dans le référentiel joviocentrique (centré sur Jupiter), supposé galiléen. On fait l'approximation que le mouvement du centre S du satellite est circulaire, centré sur le centre J de Jupiter, et on considère que la seule force qui s'applique sur le satellite est la force de gravitation $\overrightarrow{F_{J/S}}$ exercée par Jupiter sur le satellite.

On désigne par r la distance entre les centres des deux astres, par M_J la masse de Jupiter et par m la masse du satellite.

- 2. Sur un schéma, reprendre les éléments donnés sur la figure 2 et représenter sans souci d'échelle :
 - Le vecteur vitesse \vec{V}_S du satellite ;
 - La force de gravitation $\overrightarrow{F_{I/_S}}$ exercée par Jupiter sur le satellite.
- **3.** Donner l'expression de la force de gravitation $\overline{F_{J/S}}$ exercée par Jupiter sur le satellite en fonction de M_I , m, G, r et \vec{n} .
- **4.** Appliquer la deuxième loi de Newton et en déduire l'expression de la vitesse V_S du satellite en fonction de G, M_J et r.
- **5.** En déduire que, dans le cadre de l'approximation du mouvement circulaire, le quotient $\frac{T^2}{a^3}$ est égal à $\frac{4\pi^2}{GM_J}$.
- **6.** À l'aide des résultats expérimentaux, calculer la valeur de la masse M_j de Jupiter. Commenter un éventuel écart à la valeur tabulée : 1,898 6 x 10^{27} kg. Aide éventuelle : 1 $\rm j^2 \cdot km^{-3} = 7,46 \ s^2 \cdot m^{-3}$

La relation établie à la question 5 pour le système composé de Jupiter et de ses satellites est universelle et est applicable à d'autres systèmes constitués de satellites en orbite autour d'un astre central.

7. Déterminer la masse du Soleil.

<u>Donnée</u> : la distance entre la Terre et le Soleil est de 150 millions de kilomètres.

Le candidat est invité à faire preuve d'initiative, à justifier ses choix et à présenter sa démarche. Certaines valeurs numériques nécessaires aux calculs sont supposées connues du candidat.

22 PYCJ2G11 11/15