Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_pedagogic*BAREM DE EVALUARE ȘI DE NOTARE

Test 9

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{32} = 4\sqrt{2}$, $\sqrt{18} = 3\sqrt{2}$, $\sqrt{8} = 2\sqrt{2}$	3 p
	$\sqrt{32} - \sqrt{18} - \sqrt{8} + \sqrt{2} = 4\sqrt{2} - 3\sqrt{2} - 2\sqrt{2} + \sqrt{2} = 0$	2 p
2.	f(2) = 10 + a	2 p
	a = 0	3 p
3.	$7x - 12 = x^2 \implies x^2 - 7x + 12 = 0$	2 p
	x = 3 sau $x = 4$, care convin	3 p
4.	Cifra unităților poate fi aleasă în 9 moduri și, cum cifrele sunt distincte, pentru fiecare alegere a cifrei unităților, cifra zecilor poate fi aleasă în câte 8 moduri	2p
	Pentru fiecare alegere a cifrei unităților și a cifrei zecilor, cifra sutelor poate fi aleasă în câte 7 moduri, deci se pot forma $9.8.7 = 504$ numere	3p
5.	Dreapta d intersectează axa Ox în punctul $A(4,0)$ și axa Oy în punctul $B(0,-4)$	2 p
	$AB = 4\sqrt{2}$	3 p
6.	$5^2 + 12^2 = 13^2 \Rightarrow \triangle ABC$ este dreptunghic în A	2p
	$\mathcal{A}_{\Delta ABC} = \frac{5 \cdot 12}{2} = 30$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.	$1*(-1)=1\cdot(-1)-(1+(-1))+2=$	3 p
	=-1-0+2=1	2 p
2.	x * y = xy - x - y + 1 + 1 =	2p
	=x(y-1)-(y-1)+1=(x-1)(y-1)+1, pentru orice numere reale x și y	3 p
3.	x * 2 = (x-1)(2-1) + 1 = x - 1 + 1 = x, pentru orice număr real x	2p
	2*x = (2-1)(x-1)+1=x-1+1=x=x*2, pentru orice număr real x , deci $e=2$ este elementul neutru al legii de compoziție ,, *"	3p
4.	$4*\frac{4}{3} = (4-1)\left(\frac{4}{3}-1\right)+1=3\cdot\frac{1}{3}+1=2$	2p
	$\frac{4}{3}*4 = \left(\frac{4}{3}-1\right)(4-1)+1 = \frac{1}{3}\cdot 3+1=2$, deci $\frac{4}{3}$ este simetricul lui 4 în raport cu legea de compoziție,,*"	3 p
5.	$x * x = (x-1)^2 + 1$, unde x este număr real	2p
	$(x-1)^2 + 1 \le x \Leftrightarrow (x-1)(x-2) \le 0$, deci $x \in [1,2]$	3p
6.	Sunt 10 numere naturale nenule mai mici decât 11, deci sunt 10 cazuri posibile	2p
	$\left(n-1\right)^3+1=n$ și, cum n este număr natural nenul, obținem $n=1$ sau $n=2$, deci sunt 2 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{10} = \frac{1}{5}$	1p

SUBIECTUL al III-lea (30 de puncte)

1.	$M(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \det(M(0)) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} =$	3p
	$=1\cdot 1-0\cdot 0=1$	2 p
2.	$M(1)-M(3) = I_2 + A - (I_2 + 3A) = -2A$	2p
	$M(3)-M(5) = I_2 + 3A - (I_2 + 5A) = -2A = M(1) - M(3)$	3 p
3.	$A \cdot A = \begin{pmatrix} (-2) \cdot (-2) + 2 \cdot (-3) & (-2) \cdot 2 + 2 \cdot 3 \\ (-3) \cdot (-2) + 3 \cdot (-3) & (-3) \cdot 2 + 3 \cdot 3 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 4-6 & -4+6 \\ 6-9 & -6+9 \end{pmatrix} = \begin{pmatrix} -2 & 2 \\ -3 & 3 \end{pmatrix} = A$	2p
4.	$M(x^2) = \begin{pmatrix} 1 - 2x^2 & 2x^2 \\ -3x^2 & 1 + 3x^2 \end{pmatrix} \Rightarrow \det(M(x^2)) = 1 + x^2$, pentru orice număr real x	3 p
	$1+x^2 < 5 \Leftrightarrow (x-2)(x+2) < 0$, deci $x \in (-2,2)$	2 p
5.	$M(x) \cdot M(y) = (I_2 + xA)(I_2 + yA) = I_2 + xA + yA + xyA \cdot A =$	3p
	= $I_2 + xA + yA + xyA = I_2 + (x + y + xy)A = M(x + y + xy)$, pentru orice numere reale x și y	2 p
6.	$M(m+n+mn) = M(2) \Leftrightarrow m+n+mn = 2$	2p
	(m+1)(n+1)=3 și, cum m și n sunt numere întregi, $m < n$, obținem $m=-4$, $n=-2$ sau $m=0$, $n=2$	3 p