Linear Algebra I: Homework 10

Due: Friday, November 10, 2017

- 1. For vectors $ec v=inom{v^1}{v^2}$ and $ec w=inom{w^1}{w^2}$, $\langle ec v,ec w
 angle=3v^1w^1+2v^2w^2$ is an inner product.
 - a. Find **all** unit vectors in \mathbb{R}^2 with respect to this new inner product.
 - b. Find two different orthonormal bases for \mathbb{R}^2 with respect to this new inner product.
- 2. If $ec{v}=egin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$ and $ec{u}=egin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, find a decomposition

$$ec{v}=ec{v}^{||}+ec{v}^{\perp}$$

where $ec{v}^{||}$ is parallel to $ec{u}$ and $ec{v}^{\perp}$ is orthogonal to $ec{u}$.

3. For two $m \times n$ matrices M,N we can define the inner product,

$$\langle M, N \rangle = tr(M^T N)$$
.

Are the vectors,

$$\begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}$$
 and $\begin{pmatrix} -3 & 0 \\ 0 & 2 \end{pmatrix}$

orthogonal? Explain why or why not.