بسم الله الرحمن الرحيم

THE GOAL IS GET 100 % FOR Diabetes Expectation Class

This dataset contains the following:

	# age v	# bs_fast Y	# bs_pp v	# plasma_r V	# plasma_f V	# hba1c Y		class 🗸
1	50	6.8	8.8	11.2	7.2	62	Type1	true
2	31	5.2	6.8	10.9	4.2	33	Normal	false
3	32	6.8	8.8	11.2	7.2	62	Type1	true
4	21	5.7	5.8	10.7	4.8	49	Normal	false
5	33	6.8	8.8	11.2	7.2	62	Type1	true
6	30	5.2	7.4	8.7	5.6	41	Normal	false
7	26	5.8	4.2	11.4	8.4	53	Type2	true

In this project we chose

- low volume data and its concept.
- We prepared it properly
- We chose a suitable algorithm< DecisionTreeClassifire>

Thus, we were able to obtain a 100% class expectation. And because this type of decision does not tolerate any error, you need a result of 0 or 1 diabetes or non-diabetes.

We also used machine learning as an essential element in data science to make all data numeric

Libraries AND methods we used: Pandas, NumPy, Matplotlib, Seaborn Warnings

sklearn.metrics sklearn.model_selection

sklearn.preprocessing sklearn.tree

This dataset can be found at [data. World] (Diabetes type dataset - dataset by abelvikas data. World).

- We reviewed the data on jupyter and we do EDA.
- We used the following presentation tools:
- 1- Class count plot 2-Histogram of each feature
- 3- pairplot 4-heatmap(data[top_corr_features)
- We separated the data to train and test.
- We succeeded in building the model and apply it.
- DecisionTreeClassifier(criterion='entropy', random_state=0)
- We tested the model by comparing betwe y_pred and y_test

- Then we tested the model's results using two methods
- 1- confusion_matrix 2- accuracy_score and got a 100% perfect prediction.

```
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

cm

array([[110, 0, 0],
        [ 0, 20, 0],
        [ 0, 0, 26]], dtype=int64)

from sklearn.metrics import accuracy_score
print('Accuracy score is :' ,accuracy_score(y_test, y_pred))
Accuracy score is : 1.0
```

SADAIA TUWAIQ BOOTCAMP T5 4 WEEKS

Prepare by: Atif Eid Alnefaie

Supervisor: Dr-Mariam – Dr-Shikh Data scientist: Abdulrahman – Rasha