Tesina Segnali e Sistemi 2022

Lorenzo Franceschetti Mat. 2000263

1 Introduzione

È dato il segnale $x_t(t)$, ottenuto dalla modulazione in ampiezza del segnale x(t) alla frequenza F_m :

$$x_t(t) = x(t)\cos(2\pi F_m t) \tag{1}$$

Studiando il segnale $x_t(t)$ in frequenza, ci si aspetta di riconoscere la trasformata X(f) del segnale x(t) centrata in $f = F_m$ e la sua speculare centrata in $f = -F_m$. Infatti la trasformata $X_t(t)$ del segnale modulato in ampiezza con un coseno di frequenza F_m risulta essere:

$$X_t(f) = \frac{1}{2} [X(f - F_m) + X(f + F_m)]$$
 (2)

Per ottenere il segnale originale, si ricorre alla seguente procedura:

- Si moltiplica il segnale modulato per $2cos(2\pi F_m t)$
- Si filtra il segnale ottenuto tramite un filtro con risposta in frequenza data da

$$H_{lp}(f) = rect\left(\frac{f}{2B}\right) \tag{3}$$

con B larghezza di banda monolatera del segnale x(t)

2 Studio del segnale modulato

Il segnale $x_t(t)$ e la sua trasformata di Fourier $X_t(f)$ risultano essere:

Trascurando per il momento i due picchi a $\pm 31700Hz$ e $\pm 34750Hz$, il grafico di $|X_t(f)|$ mostra due gruppi di componenti, uno per frequenze positive e uno per quelle negative, entrambi simmetrici rispetto all'asse per $f = \pm 40000Hz$ rispettivamente, caratteristici della modulazione in ampiezza con un coseno di frequenza $F_m = 40000Hz$.

3 Eliminazione degli artefatti dal segnale

Il segnale demodulato presenta un disturbo causato da due componenti ad alta frequenza, corrispondenti ai picchi in $\pm 31700Hz$ e $\pm 34750Hz$ che una volta demodulati si traducono in picchi in $\pm 5250Hz$ e $\pm 8300Hz$.

Per ridurre il disturbo delle componenti ad alta frequenza, si può adottare un notch filter in grado di attenuare il segnale in un intervallo molto ristretto di frequenze. Tale filtro è caratterizzato da una frequenza centrale F_{filter} , attorno alla quale si sviluppa l'intervallo di attenuazione. Dovendo filtrare due componenti distanti tra loro più dell'ampiezza della banda attenuata del filtro, è necessario impiegare due distinti notch filter, centrati in $F_{filter} = 31700Hz$ e in $F_{filter} = 34750Hz$.

4 Campionamento del segnale

Si procede a campionare il segnale x(t) alla frequenza $F_c = 29400Hz$ ricavando il segnale $x_c(t)$. All'ascolto si nota la presenza di un disturbo ad alta frequenza, già presente in x(t) e legato alle componenti a 5250Hz e 8300Hz, assieme ad una leggera distorsione del suono legata al fenomeno di aliasing introdotto dal campionamento non ideale. Infatti il segnale x(t) ha una larghezza di banda monolatera pari a B = 20000Hz e viene campionato alla frequenza $F_c = 29400Hz$ che non rispetta il requisito $F_c > 2B$, violando così una delle ipotesi del teorema di Shannon sul campionamento. Questo comporta che la parte del segnale eccedente la frequenza $\frac{F_c}{2} = 14700Hz$ vada a sovrapporsi al segnale utile causando un errore in banda e provocando la leggera distorsione.

5 Schema alternativo per il campionamento

Per ridurre l'effetto dei disturbi e quello introdotto dal campionamento si può procedere come segue:

- Si filtra il segnale dato $x_t(t)$ con i due notch filter, per sopprimere i disturbi ad alta frequenza, e lo si demodula
- Si applica un filtro passa-basso con frequenza di taglio $F_{st}=14650Hz$, per ridurre la larghezza di banda del segnale a $B_{\hat{x}_c}=F_{st}<\frac{F_c}{2}$.
- $\bullet\,$ Si campiona il segnale così ottenuto a F_c per avere \hat{x}_c

L'aggiunta del filtro passa-basso consente di rispettare l'ipotesi del teorema di Shannon $F_c > 2B_{\hat{x}_c}$ per l'operazione di campionamento ed eliminare l'errore in banda a discapito però di un errore fuori banda, legato alla perdita di informazione delle componenti a più alta frequenza.

6 Considerazioni sui due metodi

Il segnale \hat{x}_c non presenta i disturbi che caratterizzano x_c , ma perde frequenze alte rispetto al segnale originale. Infatti si nota la scomparsa dei due picchi a $\pm 5250Hz$ e $\pm 8300Hz$ e, allargando i grafici verso la fine di entrambi gli spettri, si nota come $|X_c(f)|$ si interrompe bruscamente a f = 14700Hz e assume in generale valori maggiori di quelli assunti da $|\hat{X}_c(f)|$ nella stessa regione. Al contrario, quest'ultima ha una discesa meno brusca, dovuta all'applicazione del filtro passabasso che attenua fortemente le frequenze al di sopra di F_{st} . Scompare dunque il fenomeno di aliasing, e quindi l'errore in banda, nel segnale $\hat{x}_c(t)$, al prezzo però di introdurre un errore fuori banda, in quanto si va ad eliminare un intervallo di frequenze.