

Model Optimization and Tuning Phase Template

Date	8 Sep 2024
Team ID	team-739715
Project Title	Real-time Bone Fracture Detection with YOLO-V8 Using X-ray Images
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters
YOLOv8l	<pre>#resize images resized_images = [cv2.resize(img, (640, 640)) for img in images] # Display a resized image as a sample plt.imshow(cv2.cvtColor(resized_images[0], cv2.COLOR_BGR2RGB)) plt.axis('off') plt.show()</pre>


```
#normalisation
normalized_images = [img / 255.0 for img in resized_images]

YOLOv8l  # Display a normalized image as a sample
plt.imshow(normalized_images[0])
plt.axis('off')
plt.show()
```

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The YOLOv8l model was chosen for its ability to handle complex
	object detection tasks with high precision and recall. Its deeper and
	wider architecture enables it to capture fine details and subtle patterns,
	making it well-suited for detecting fractures in X-ray images where
	precision is critical. Additionally, YOLOv8l balances accuracy and
	speed effectively, ensuring reliable performance in real-time
	applications. Despite its higher computational demands, its superior
	performance on high-resolution data and complex datasets makes it the
YOLOv8l	ideal choice for tasks requiring advanced object detection capabilities.