- 7.			-
Jessica			
Jessica Diller		2248.62	
	1 25 0 8	2	
page 1	(1) (1) (1) (1) (1) (1) (1) (1)		-
	(1) Consider signal x(t) band limited to com		2
	p(t) is an impulse train w/impulses by Ts p(t) = Z 8(t - kTs)		-
	$\frac{p(t) - z(t)}{x(t) - x(t)} p(t)$		6
	x(t) x(w)		6
	+		
	-WM Wm		0
	a) sketch a representation of xp(t)		8
	P(t)		5
	-7 0 T, 2.T.		6
	-30 T325	·	0
	X.P. (t)		0
	-15 o 15		2
	b) sketch P(w)		8
***************************************	21		
	7 75 1		Q.
	-27/TS 0 2T/TS 4T/TS		
	c) sketch Xp(w)		S
	-1		es es
	TOTAL TOTAL	_	-
	-2=-Wm 2=-Wm ==-Wm		-0
	-2T -WM T5+WM	0	Q
	TSTUM	-	9000
			8
			W

PS08 page 3 i) $X(\omega) = X_2(\omega) \circ H(\omega)$ W.= # ω_c $\chi(\omega) = \chi_{\rho}(\omega) \cdot H(\omega)$ Wc== 77 7 Jun 其>Wn I'm not 100% sure Dwn > Ts, about So there could De some leakage from the significant of the signifi multiplied everything within the range - we to we by I and everything outside that range by 0

PSOS f X(w) 3 & les differt? -43-distortion (3) ratio of X (un) X (un) X (un) Qu Wm = T/Ts Xz(w)= Xp(w)·z(w) X, · Z(E) = (100) Z/w>= SMC = Complex exponntial X, is a function e ju tshit of Kp Change X(w)=Xplx(w) H(w) X=Xplw) H(w) IS IS A SIN (WS) P

PS 08 (untinued) Page 5 b) (continued) sketch Fourier transform of g(t) cos (wit) => Y(w) * Sowij-wz +2/1 / twice reight offer -3W2 spacing between each thing > 0 c) using appropriate sketches, describe now you can recover x,(t) and x2(t) from y(t) $X_1(t) \xrightarrow{W_1}$ $X_2(t) \xrightarrow{W_2}$ $Y_2(t) \xrightarrow{Y_2}$ $Y_2(t) \xrightarrow{Y_2}$ take y(t) cos (w,t) and tonsolve
if freg do main and then
apply a low pass filter \$5 "limit"
OR just take the thing in the
Middle @ w=0 thats double on strength to all other ones do again but w/ y(6) (os(wzt)

1508 i(t)=Cof Vout(t) V_(+)=L#i(+) $V_{R}(t) = i(t)R$ Via (t) = Vp(t) + V, (t) + Vou+(t) a) write differential eq. colating Vont (+) 3 ym (+) Vin(t)=i(t)R+L2:(t) + Vout(t) Vinlt)=10 & Voutlet)+L& C& Voutlet) + Vout (t) Vin(+)=1C & Vout (t) + LC & Vout (t) + Vout (t) b) treating vin(t) and vout(t) & as inputs & outputs of LTI system find expression for frequency response H(w) of the system) Vin(t)=(Cat+LCat2+1) Vou+(t) AND SOME THE Vinladate = r C Voullabout L C (ju) Pout(w) + Vout(w) Vinladate = r C Voullabout L C (ju) Pout(w) + Vout(w) Vinladate = r C Vout(w) + Vout(w) jurct L C gu) = r C (ju) = f(w) jurct L C gu) = r C (ju) = f(w)

6 4

0

0

2

EV I

4

66644666 (w) magnitude RC jw+ - LCw3+1 (-LC w²+1)²+(RCw)² J²C²w⁴-2LCw²+1+R²C²w² inaginary VL2C2W4-2LCW2+1+R2C2W2 d) as function of R, L, C, and w to max//+(a) Smallest 1, L2C2 W - 2LCw2 + + R2C2W2 (LRCZW4-21CB+1+R2CZW2) 4L2c2w3-4LCw & +2R2c2w 0= w(412c2w2+2R2c2-4LC) 463c2w2 = 282c2-46C /W=0 W2 = 2R202-4LC Ex 1/28263-4LC 2R2 4KX Cameron told Me ay light $W=\int_{2l^2}^{2l^2}$ were wong fort I didny want for it reeded to thed

PS08 Question Three

E)

