二元关系

关系的运算

Lijie Wang

基本运算

复合运算

关系的运算

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

关系的并交差补运算

基本运算

38

关系是一种特殊的集合,因此集合的所有基本运算(并、交、差、补),都可以应 用到关系中,并且同样满足集合的所有运算定律.

Definition

设 R, S 是从 A 到 B 的两个关系,则

- $R \cup S = \{ \langle x, y \rangle | (xRy) \lor (xSy) \}$;
- $R \cap S = \{ \langle x, y \rangle | (xRy) \wedge (xSy) \}$;
- $R S = \{ \langle x, y \rangle | (xRy) \wedge (x \not S y) \}$;
- $\overline{R} = \{\langle x, y \rangle | (x \not R y) \}$ (即全集为 $A \times B$)。

关系的并交差补运笪

基本运算

 $R = \{ \langle a, 1 \rangle, \langle b, 2 \rangle, \langle c, 3 \rangle \}, S = \{ \langle a, 1 \rangle, \langle a, 2 \rangle, \langle a, 3 \rangle, \langle a, 4 \rangle \}$ 计算 $R \cup S$, $R \cap S$, S - R, \overline{R} .

解:

Example

2
$$R \cap S = \{ \langle a, 1 \rangle \}$$
;

④
$$\overline{R}$$
 = $A \times B - R$ = {< a , 1 >, < a , 2 >, < a , 3 >, < a , 4 >, < b , 1 >, < b , 2 >, < b , 3 >, < b , 4 >, < c , 1 >, < c , 2 >, < c , 3 >, < c , 4 >} − {< a , 1 >, < b , 2 >, < c , 3 >} = {< a , 2 >, < a , 3 >, < a , 4 >, < b , 1 >, < b , 3 >, < b , 4 >, < c , 1 >, < c , 2 >, < c , 4 >};

关系的复合运算

关系的运算

Lijie Wang

基个区异

复合运算

Definition

设 A,B,C 是三个集合,R 是从 A 到 B 的关系,S 是从 B 到 C 的关系(即 $R:A\to B,S:B\to C$),则 R 与 S 的复合关系(合成关系)(composite relation) $R\circ S$ 是从 A 到 C 的关系,并且: $R\circ S=\{<x,z>|(x\in A)\land (z\in C)\land (\exists y)(y\in B\land xRy\land ySz)\}$ 。运算 " \circ " 称为复合运算(composite operation)。

Example

设 $A = \{a, b, c, d\}, B = \{b, c, d\}, C = \{a, b, d\}, R = \{\langle a, b \rangle, \langle c, d \rangle, \langle b, b \rangle\}$ 是 A 到 B 的关系, $S = \{\langle d, b \rangle, \langle b, d \rangle, \langle c, a \rangle\}$ 是 B 到 C 的关系。

则 $R \circ S = \{ \langle a, d \rangle, \langle c, b \rangle, \langle b, d \rangle \}_{\bullet}$

用三种关系表示法进行复合运算

关系的运算

_ijie Wang

基本运算

复合运算

复合运算(关系图形式)

复合运算(关系矩阵形式)

$$M_{R \circ S} = M_R \odot M_S = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \odot \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

用三种关系表示法进行复合运算

关系的运算

Lijie Wang

基本运算

复合运算

☞ 总结

- ① 集合表示法求复合: 寻找所有满足 $< x, y > \in R$ 并且 $< y, z > \in S$, 从而得到 $< x, z > \in R \circ S$;
- ② 关系图表示法求复合: 将关系 R, S 的关系图画在一起, 然后寻找所有首尾相接的两条有向边, 再去掉中间相接的结点 y, 可得到 $R \circ S$ 的关系图;

$$\stackrel{\circ}{\times} \stackrel{\circ}{\times} \stackrel{\circ}$$

③ 关系矩阵表示法求复合: 直接将关系 R 和 S 的关系矩阵做布尔积运算即得 $R \circ S$ 的关系矩阵.

关系的逆运算

关系的运算

Lijie Wang

基本运算

复合运算

Definition

设 A, B 是两个集合,R 是 A 到 B 的关系,则从 B 到 A 的关系 $R^{-1} = \{ \langle b, a \rangle \mid \langle a, b \rangle \in R \}$ 称为 R 的逆关系(inverse relation),运算 " $^{-1}$ " 称为逆运算(inverse operation)。

Ŧ

由逆运算的定义可知:

$$(R^{-1})^{-1} = R$$

2
$$\emptyset^{-1} = \emptyset$$

$$(A \times B)^{-1} = B \times A$$

用三种关系表示法求逆

关系的运算 Lijie Wang

基本运算

复合运算 逆运**算**

Example

设 $A = \{1,2,3,4\}$ $B = \{a,b,c,d\}$, R 是从 A 到 B 的一个关系且

$$R = \{<1, a>, <2, c>, <3, b>, <4, b>, <4, d>\}$$
 则

$$R^{-1} = \{ < \textit{a}, 1>, < \textit{c}, 2>, < \textit{b}, 3>, < \textit{b}, 4>, < \textit{d}, 4> \}_{\bullet}$$

$$M_{R^{-1}} = (M_R)^T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

用三种关系表示法求逆

关系的运算

Lijie Wang

基本运算

复合运算

逆运算

☞ 总结

- 将 R 的关系图中有向边的方向改变成相反方向即得 R^{-1} 的关系图 , 反之亦 然;
- ② 将 R 的关系矩阵转置即得 R^{-1} 的关系矩阵,即 R 和 R^{-1} 的关系矩阵互为转置矩阵;
- ③ R^{-1} 的定义域和值域正好是 R 的值域和定义域,即 $domR = ranR^{-1}$, $domR^{-1} = ranR$:
- $|R| = |R^{-1}|.$

关系的运算

Lijie Wang

基本运算

复合运算

THE END, THANKS!