УТВЕРЖДЕНО Проректор по учебной работе и довузовской подготовке А.А.Воронов 9 января 2020 г.

ΠΡΟΓΡΑΜΜΑ

по дисциплине: Многомерный анализ, интегралы и ряды

по направлению

подготовки: <u>01.03.02 «Прикладная математика и информатика»</u>,

<u>03.03.01 «Прикладные математика и физика»,</u>

09.03.01 «Информатика и вычислительная техника»

физтех-школа: ФПМИ

кафедра: высшей математики

 $\begin{array}{cc} \text{курс:} & \underline{1} \\ \text{семестр:} & \underline{2} \end{array}$

Трудоёмкость:

теор. курс: базовая часть — 6 зачет. ед.;

лекции — 60 часов Экзамен — 2 семестр

практические (семинарские)

занятия — 60 часов

лабораторные занятия — нет

ВСЕГО АУДИТОРНЫХ ЧАСОВ — 120 — Самостоятельная работа:

<u>теор. курс — 120 часов</u>

Программу и задание составил

д. ф.-м. н., профессор А. Л. Лукашов

Программа принята на заседании кафедры высшей математики 27 ноября 2019 г.

Заведующий кафедрой д. ф.-м. н., профессор

Г. Е. Иванов

- 1. Первообразная и неопределенный интеграл. Линейность неопределенного интеграла, интегрирование подстановкой и по частям. Интегрирование рациональных функций. Основные приемы интегрирования иррациональных и трансцендентных функций.
- 2. Линейные нормированные, евклидовы, метрические пространства. Пространство \mathbb{R}^n . Открытые и замкнутые множества. Внутренние, предельные, изолированные точки множества, точки прикосновения. Внутренность, замыкание и граница множества. Компактные множества и их свойства. Критерий компактности в \mathbb{R}^n . Последовательности в метрических пространствах. Теорема Больцано-Вейерштрасса. Полные метрические пространства. Полнота \mathbb{R}^n .
- 3. Предел функции, отображающей метрическое пространство в метрическое пространство. Критерий Коши существования предела.
- 4. Непрерывность функции, отображающей метрическое пространство в метрическое пространство. Равносильные определения непрерывности. Непрерывность композиции. Непрерывность на метрическом пространстве через прообраз открытого множества. Непрерывные функции на компактах. Теорема Вейерштрасса. Теорема Кантора о равномерной непрерывности. Связные и линейно связные множества в метрических пространствах. Теорема о промежуточном значении.
- 5. Дифференцируемость функции многих переменных в точке. Производные по направлению и частные производные. Необходимые условия дифференцируемости. Градиент. Достаточные условия дифференцируемости. Дифференцируемость композиции.
- 6. Частные производные высших порядков. Независимость смешанной частной производной от порядка дифференцирования. Дифференциалы высших порядков. Формула Тейлора для функции многих переменных.
- 7. Меры Жордана и Лебега в \mathbb{R}^n . Критерии измеримости. Измеримость объединения, пересечения и разности измеримых множеств. Конечная аддитивность меры Жордана. σ -аддитивность и непрерывность меры Лебега. Борелевские множества, их измеримость по Лебегу.
- 8. Интеграл Римана. Суммы Римана, суммы Дарбу, критерий интегрируемости. Интегрируемость непрерывных, монотонных функций, функций с конечным числом точек разрыва. Свойства интеграла Римана: аддитивность, линейность, монотонность, интегрируемость композиции, теоремы о среднем. Интеграл с переменным верхним пределом, формула Ньютона-Лейбница. Интегрирование подстановкой и по частям в определенном интеграле.

- 9. Несобственные интегралы Римана и их свойства. Критерий Коши сходимости несобственных интегралов. Интегралы от неотрицательных функций. Признак сравнения и его следствия. Абсолютная и условная сходимости интегралов. Признаки Дирихле и Абеля.
- 10. Числовые ряды и их свойства. Критерий Коши сходимости рядов. Ряды с неотрицательными членами. Признак сравнения и его следствия. Признаки Даламбера и Коши, интегральный признак. Абсолютная и условная сходимости рядов. Признаки Дирихле и Абеля. Перестановка членов абсолютно сходящегося ряда. Теорема Римана о перестановке членов условно сходящегося ряда. Произведение абсолютно сходящихся рядов. Произведение рядов по Коши, теорема Мертенса.
- 11. Равномерно сходящиеся функциональные последовательности и ряды. Критерий Коши равномерной сходимости. Признаки Вейерштрасса, Дирихле и Абеля равномерной сходимости функциональных рядов. Теорема о перестановке пределов. Непрерывность суммы равномерно сходящегося ряда из непрерывных функций. Теорема о производной предела последовательности дифференцируемых функций. Почленное дифференцирование и интерирование функциональных рядов.
- 12. Степенные ряды, их радиус сходимости. Формула Коши-Адамара. Равномерная сходимость степенных рядов в круге. Теорема Абеля. Действительные степенные ряды. Теоремы об интегрировании и дифференцировании степенного ряда на интервале сходимости. Достаточное условие разложимости функции в степенной ряд. Ряды Тейлора показательной, тригонометрических, степенной и логарифмической функций. Ряд Тейлора комплекснозначной экспоненты. Формулы Эйлера.
- 13. Теорема о неявной функции, заданной одним уравнением. Непрерывно дифференцируемые отображения конечномерных пространств, их якобиан. Теорема о расщеплении отображения. Теорема о системе неявных функций. Локальная обратимость отображения с ненулевым якобианом.
- 14. Экстремумы функций многих переменных: необходимое условие, достаточное условие. Условный экстремум функции многих переменных при наличии связей: исследование при помощи функции Лагранжа. Необходимые условия. Достаточные условия.

Литература

<u>Основная</u>

- 1. Иванов Г. Е. Лекции по математическому анализу, Φ ОПФ. Ч.1. https://mipt.ru/education/chair/mathematics/study/uchebniki
- 2. Kapacës P. H. Отдельные темы математического анализа. http://rkarasev.ru/common/upload/an_explanations.pdf

- 3. Лукашов А.Л. Лекции по математическому анализу.1. https://mipt.ru/education/chair/mathematics/study/uchebniki/LukashovAL_1.pdf
- 4. Никольский С. М. Курс математического анализа. Т. 1, Т. 2. Москва : Наука, 2000.

Дополнительная

- 5. *Булдырев В. С., Павлов Б. С.* Линейная алгебра и функции многих переменных.— Ленинград: изд. Ленинградского университета, 1985.
- 6. Дьяченко М. И., Ульянов П. Л. Мера и интеграл Москва : Факториал, 1998.
- 7. Зорич В. А. Математический анализ. Москва : МЦНМО, 2007.
- 8. Φ ихтенгольц Г. М. Курс дифференциального и интегрального исчисления. 8-е изд. Москва : Физматлит, 2007.

ЗАДАНИЯ

Литература

- 1. Сборник задач по математическому анализу. Интегралы. Ряды: учебное пособие/под ред. Л.Д. Кудрявцева. — Москва: Физматлит, 2003. (цитируется — C2)
- Сборник задач по математическому анализу. Функции нескольких переменных: учебное пособие/под ред. Л.Д. Кудрявцева. Москва: Физматлит, 2003. (цитируется С3)

Замечания

- 1. Задачи с подчёркнутыми номерами рекомендовано разобрать на семинарских занятиях.
- 2. Задачи, отмеченные * , являются необязательными для всех студентов.

ПЕРВОЕ ЗАДАНИЕ

(срок сдачи 4-10 марта)

І. Неопределенный интеграл

C2, §1: 2(17); 12(10); 13(10); 15(5,15); 17(8); 21(4); 24(4).

C2, §2: 2(3); 3(8); 4(6); $6(2,5^*)$; $8(4)^*$.

C2, §3: 2(7); 5(2); $8(2)^*$; 18(3).

C2, §4: $\underline{4(3)}$; 15(1); $\underline{16(7)}$; $19(3)^*$; 23(2).

C2, §5: 158; <u>184</u>; 194.

II. Множества в метрических пространствах

C3, §2: 9 a), 6, 7) (3, 6).

Т.1. Для множества $M \subset \mathbb{R}$, $M = [1,2) \cup \{3\} \cup ([4,5) \cap \mathbb{Q})$ найдите все а) внутренние точки; б) точки прикосновения; в) граничные точки. Рассмотреть случаи обычной и дискретной метрик.

C3, §1 13; 36:

C3, §18: 49; 53; 54*.

Т.2. Является ли множество

$$C = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 + x_3^2 < x_4^2\}$$

в пространстве \mathbb{R}^4 :

а) открытым; б) замкнутым; в) областью?

III. Предел и непрерывность

C3, §2:
$$37(5, 8)$$
; $48(12)$; 52 ; $62(7)$; 71^* ; $63(9)^*$.

Т.3. Для функции $f(x,y)=\frac{x^2y}{x^4+y^2}$ исследовать существование предела в точке (0,0). Проверить, что предел по каждому направлению равен нулю.

IV. Частные производные. Дифференциал

C3, §3: $\underline{3(6)}$; 52(1).

C3, §4: 1(4); 4; 7(2); 27(3); <u>52(3)</u>.

C3, §3: $19(\underline{3}, 8)$; $\underline{20(3,8)}$; 23(1).

V. Формула Тейлора

C3, §4: 71(2); 75(2).

Рекомендации по решению

первого домашнего задания по неделям

1 неделя	C2 , §1: $2(17)$; $12(10)$; $13(10)$; $15(5,15)$; $17(8)$; $21(4)$; $24(4)$.
	C2 , §2: $2(3)$; $3(8)$; $4(6)$; $6(2.5^*)$; $8(4)^*$.
	C2 , §3: $2(7)$; $5(2)$; $8(2)^*$; $18(3)$.
2 неделя	C2 , §4: $\underline{4(3)}$; 15(1); $\underline{16(7)}$; 19(3)*; 23(2).
	C2 , §5: 158; <u>184</u> ; 194.
	C3 , §2: 9 a), 6), Γ) (3,6); T.1.
3 неделя	C3, §1: <u>13</u> ; 36.
	C3, §18: 49; 53; 54*; T.2.
	C3 , §2: $37(5,8)$; $48(12)$; 52 ; $62(7)$; 71^* ; $63(9)^*$; T.3.
	C3, §3: $3(6)$; $52(1)$.
4 неделя	C3 , §4: 1(4); 4; 7(2); 27(3); <u>52(3)</u> .
	C3 , §3: $19(\underline{3}, 8)$; $\underline{20(3,8)}$; $23(1)$.
	C3, §4: $71(2)$; $75(2)$.

ВТОРОЕ ЗАДАНИЕ

(срок сдачи 8-14 апреля)

І. Интеграл Римана

C2, §6: 5; $\underline{24}$; 27^* ; 30; 42^* ; 54(6); 108(3); 112(2); 118; 126; 140^* ; 197.

C2, §10: $\underline{43(1)}$; 45^* ; 50(4).

Т.1. Доказать, что $\left| \int_a^b \frac{\sin x}{x} dx \right| \leq \frac{2}{a}$, где 0 < a < b.

II. Несобственный интеграл Римана

C2, §11: 70; 85; 92; 94.

C2, §12: 91; 92; 100; 104; 121; 128*; 137; 139; 141; 182; 226*;.

III. Числовые ряды

C2, §13: 2(3); 10(2); 12(6); 13(2); 14(3).

C2, §14: 2(6); 4(3); 10(3); 11(6); 14(3); 19(15); 21(13); 25(9); 38^* ; 39.

C2, §15: 3(3); $4(5)^*$; 8(3); 9(1).

Во всех задачах §15 исследовать также абсолютную сходимость рядов.

IV. Функциональные последовательности и ряды

C2, §17: 5(5); 9(8); 12(1, 11); 16(4).

Т.2. Исследовать на поточечную и равномерную сходимость на отрезке E = [0, 1] функциональные последовательности:

a)
$$f_n(x) = x^n - x^{n+2}, n \in \mathbb{N};$$

$$f_n(x) = x^n - x^{3n}, n \in \mathbb{N}.$$

C2, §18: 22(2); 32(10); 33(7); $\underline{34(5)}$; $\underline{37(3)}$; 44; 46*.

Т.3. Исследовать на поточечную и равномерную сходимость на множествах $E_1=(0,\,1)$ и $E_2=(1,\,+\infty)$ функциональную последовательность $\{f_n(x)\}_{n=1}^\infty$ и ряд $\sum_{i=1}^\infty f_n(x)$, если $f_n(x)=x\sin\frac{1}{(xn)^2}$.

C2, §19: 4; 5; 7; <u>14</u>.

Рекомендации по решению

второго домашнего задания по неделям

1 неделя	C2 , §6: $5; \underline{24}; 27^*; 30; 42^*; 54(6); 108(3); 112(2); 118; 126; 140^*;$
	197.
	C2 , §10: <u>43(1)</u> ; 45*; 50(4); T.1.
2 неделя	C2, §11: 70; 85; 92; 94.
	C2 , §12: 91; 92; 100; <u>104</u> ; 121; 128*; 137; <u>139</u> ; 141; <u>182</u> ; 226*;.
3 неделя	C2 , §13: 2(3); <u>10(2)</u> ; 12(6); <u>13(2)</u> ; 14(3).
	C2, §14: $2(6)$; $4(3)$; $10(3)$; $11(6)$; $14(3)$; $19(15)$; $21(13)$; $25(9)$;
	$38^*; \frac{39}{}.$
	C2 , §15: $3(3)$; $4(5)^*$; $8(3)$; $9(1)$.
4 неделя	C2 , §17: 5(5); 9(8); 12(1, 11); 16(4); T.2.
	C2 , §18: 22(2); 32(10); 33(7); $\underline{34(5)}$; $\underline{37(3)}$; 44; 46^* ; T.3.
	C2, §19: 4; 5; 7; <u>14</u> .

59 + 9*

ТРЕТЬЕ ЗАДАНИЕ

(срок сдачи 13–19 мая)

І. Степенные ряды

C2, §20: 2(6); $3(6)^*$; 5(4); 8(3).

C2, §21: 6(7); 10(4); 11(4); 19(7); 27(3); 58(2); 80.

II. Меры Жордана и Лебега

C3, §7: 22; 40; 77.

- **Т.1.** Существует ли замкнутое множество $F\subset [0,1]$ с мерой Лебега $\mu(F)=3/4$, состоящее только из иррациональных чисел?
- **Т.2*.** Построить непрерывное отображение канторова множества на единичный квадрат.
- **Т.3*.** Существует ли ограниченная на отрезке функция, имеющая первообразную на этом отрезке, но неинтегрируемая по Риману на нем?
- **Т.4.** Существует ли предел последовательности отрезков $[a+\frac{(-1)^n}{n}, b-\frac{(-1)^n}{n}]$?
- **Т.5.** В кубе $[0,1]^n$ заданы n измеримых множеств A_1,\ldots,A_n таких, что $\mu(A_1)+\ldots+\mu(A_n)>n-1$. Доказать, что $\bigcap_{k=1}^n A_k$ имеет положительную меру.
- **Т.6.** Пусть $\{E_k\}$ последовательность измеримых подмножеств \mathbb{R}^n , таких что $\sum_{k=1}^{\infty} \mu(E_k)$ сходится. Показать, что множество $E = \{x \in \mathbb{R}^n \colon x \in E_k\}$

для бесконечного множества номеров $k\}$ измеримо и $\mu(E)=0$ (лемма Бореля–Кантелли).

- **Т.7.** Доказать, что если функция измерима на любом отрезке $[a+\varepsilon,b-\varepsilon],\ \ \varepsilon>0,$ то она измерима и на всем отрезке [a,b].
- ${\bf T.8}^*$. Докажите, что у произвольной функции $f\colon \mathbb{R} \to \mathbb{R}$ множество точек разрыва измеримо по Лебегу.
- **Т.9.** Докажите, что если $f \colon \mathbb{R} \to \mathbb{R}$ измерима по Лебегу, то её график имеет меру Лебега нуль на плоскости.
- **Т.10.** Пусть функция $f: \mathbb{R} \to \mathbb{R}$ дифференцируема везде. Докажите, что её производная измерима по Лебегу.

III. Неявные функции

- **Т.11.** Дано уравнение $x^2 = y^2$
 - а) Сколько функций $y:\mathbb{R}\to\mathbb{R}$ удовлетворяют этому уравнению?
 - б) Сколько непрерывных функций $y:\mathbb{R}\to\mathbb{R}$ удовлетворяют этому уравнению?
 - в) Сколько непрерывных функций $y:[1,2]\to\mathbb{R}$ удовлетворяют этому уравнению и условию y(1)=1?

C3, §3: 60(1); 64(1); 77; 103(2). **C3**, §4: 42(2); 44(2).

Т.12. Для отображения $f:\mathbb{R}^2 \to \mathbb{R}^2$, заданного координатными функциями

$$u = e^x \cos y, \quad v = e^x \sin y$$

показать, что якобиан отображения всюду в \mathbb{R}^2 отличен от нуля, но отображение не является взаимно-однозначным. Найти множество значений отображения f.

IV. Замена переменных

C3, §3: 85(5); 88(2); 90.

C3, §4: 52(1).

Т.13. Решить уравнение $yu''_{xx}+(x-y)u''_{xy}-xu''_{yy}-u'_x+u'_y=0$, преобразовав его к новым независимым переменным $\xi=x+y$, $\eta=x^2-y^2$.

V. Экстремумы функций многих переменных

C3, §5: <u>2(2)</u>; 9; 10*; 13(2); 18(2); <u>21(2)</u>; 25(7); 28(4); 31(3); 36*.

Рекомендации по решению

третьего домашнего задания по неделям

1 неделя	C2 , §20: $2(6)$; $3(6)^*$; $5(4)$; $8(3)$.
	C2 , §21: $6(7)$; $10(4)$; $11(4)$; $\underline{19(7)}$; $\underline{27(3)}$; $58(2)$; $\underline{80}$.
2 неделя	C3, §7: <u>22</u> ; 40; <u>77</u> .
	T.1-T.10.
3 неделя	C3 , §3: 60(1); 64(1); <u>77</u> ; 103(2); <u>85(5)</u> ; 88(2); 90.
	C3 , §4: 42(2); 44(2); 52(1); T.11–T.13.
4 неделя	C3 , §5: $2(2)$; 9; 10^* ; $13(2)$; $18(2)$; $21(2)$; $25(7)$; $28(4)$; $31(3)$; 36^* .
	$41 + 6^*$

Составитель задания

д. ф.-м. н., профессор А. Л. Лукашов