MODELING OF NFV FOR NETWORK SLICING

- -Adili Chaima
- -Abdessamed Yosra
- -Khelifi Bilel
- -Sliti Khalil
- -Amri Montassar

Compréhension de la problématique

L'utilisation des technologies de virtualisation des fonctions réseau (NFV) et de réseaux définis par logiciel (SDN) dans les réseaux 5G offre aux opérateurs de réseaux mobiles (ORM) de nouvelles capacités pour déployer et orchestrer les fonctions réseau de manière virtualisée et programmable, leur permettant à leur tour de mieux fournir et prendre en charge les nouvelles exigences de connectivité exigées par les utilisateurs et les industries verticales. La fonction Network Slicing fournit la fonctionnalité de base pour virtualiser le réseau et le partager efficacement entre les clients.

Dans ce projet, on vise à modéliser le NFV pour le découpage réseau.

Technologie 5G: Ce Que Vous Devez Savoir? Comprendre la façon dont le nouveau réseau fonctionne:

- -Network slicing
- -Piliers de base de la 5G
- -Network Function Virtualization
- -Avantages & Défis de slicing

Trois pilers de base de la 5G

Bien que la liste des applications de la 5G semble illimitée, la plupart des cas entrent dans l'une des trois catégories suivantes :

- 1)Enhanced Mobile Broadband (eMBB)
- 2) Massive Machine Type Communications (mMTC)
- 3) Ultra-Reliable Low Latency Communication (uRRLC)

Network Slicing

Le découpage de réseau 5G est une architecture réseau qui permet le multiplexage de réseaux logiques virtualisés et indépendants sur la même infrastructure de réseau physique. Chaque tranche de réseau est un réseau de bout en bout isolé conçu pour répondre aux diverses exigences requises par une application particulière.

Pour cette raison, cette technologie joue un rôle central pour prendre en charge les réseaux mobiles 5G qui sont conçus pour englober efficacement une pléthore de services avec des exigences de niveau de service (SLR) très différentes. La réalisation de cette vision du réseau orientée services s'appuie sur les concepts de réseau défini par logiciel (SDN) et de virtualisation des fonctions réseau (NFV) qui permettent la mise en œuvre de tranches de réseau flexibles et évolutives audessus d'une infrastructure de réseau commune.

Les Avantages et les défis du slicing en 5G

- Un seul réseau peut être divisé pour couvrir divers cas d'utilisation en fonction de la demande et de la segmentation des clients.
- Les opérateurs peuvent allouer des ressources à chaque tranche, en utilisant la vitesse, le débit et la latence nécessaires d'une manière optimisée.

Les Avantages et les défis du slicing en 5G

Les RAN devront être repensés pour s'adapter au découpage du réseau.

La complexité introduite s'étend également aux considérations de sécurité du réseau.

Chaque tranche aura des exigences de sécurité uniques, proportionnelles au cas d'utilisation pour lequel elle a été conçue, et nécessitera son propre dispositif d'authentification pour valider les utilisateurs.

Les réseaux sans fil 5G sont envisagés pour répondre à la demande croissante de services de réseau de la part des utilisateurs. Les appareils des utilisateurs ont évolué et exigent des services différents de la part du réseau. Les demandes des utilisateurs peuvent être classées en fonction de la latence, de la fiabilité et de la bande passante requise. Afin de répondre aux diverses exigences des utilisateurs de manière rentable tout en garantissant une allocation efficace des ressources du réseau aux utilisateurs, les réseaux 5G devraient utiliser des technologies telles que les réseaux définis par

Logiciel (SDN), la virtualisation des fonctions réseau (NFV) et le découpage du réseau slicing.

NFV

La virtualisation des fonctions réseau (NFV) permet de virtualiser les services réseau (routeurs, pare-feu, d'équilibrage de charge, traditionnellement exécutés sur du matériel propriétaire. Ces services sont regroupés dans des machines virtuelles sur du matériel standard, ce qui permet aux opérateurs de services de faire fonctionner leur réseau sur des serveurs standard, plutôt que propriétaires. Ils constituent l'un des principaux composants d'un Telco Cloud, qui métamorphose actuellement le secteur des télécommunications.

Network Function Virtualization

NFV est une condition préalable au slicing. La stratégie consiste à installer la fonctionnalité réseau sur des machines virtuelles (VM) sur un serveur virtualisé afin de fournir des qui, traditionnellement, services fonctionnaient sur du matériel propriétaire. Le SDN peut être utilisé pour contrôler le provisionnement des VMs situées dans les clouds de périphérie ou de cœur. Ces technologies fonctionnant de concert peuvent fournir une base solide pour une utilisation efficace des ressources virtuelles et physiques, y compris les RAN.

Table 6. The relationship and comparison between <u>SDN</u> and <u>NFV</u>.

Category	NFV (Telecom Networks)	SDN (Data Center Networks)	Already Adopted
Network Control	Seamless control and dynamic provisioning of NFs	Provide a centralized network control	Yes
Architectural Design	Service or NFs abstractions	Networking Abstractions	Yes
Main Advantage	Offering flexibility needed by network	Offering programmable network with open control interfaces	Yes
Cost Efficiency	Replace hardware with software	Operational efficiency and energy consumption reduction	Yes
Standard Protocol	Supporting multiple control protocols	OpenFlow is the de-factor standard protocol	Yes
Leaders/Business Initiator	Born in Telcom Service Providers	Born for networking software and hardware vendors	N/A
Formalization	ETSI	ONF	N/A

Virtualisation des fonctions réseau (NFV):

NFV est la virtualisation des fonctions réseau (par exemple, pare-feu, optimiseurs TCP, NAT64, VPN, DPI) en plus des périphériques matériels de base. NFV envisage l'instanciation de VNF sur du matériel standard. De cette façon, il rompt l'approche unifiée d'utilisation des logiciels et du matériel qui existe dans les offres des fournisseurs traditionnels. Avec NFV, les fonctions réseau (NF) peuvent être facilement déployées et allouées dynamiquement. En outre, les ressources réseau peuvent être efficacement allouées aux fonctions de réseau virtuel (VNF) grâce à une mise à l'échelle dynamique pour réaliser le chaînage des fonctions de service (SFC). Avec les solutions logicielles NFV, certaines des NF sont déplacées vers les fournisseurs de services (SP) pour fonctionner. sur une infrastructure partagée telle que des serveurs à usage général. Par conséquent, l'ajout, la suppression ou la mise à jour d'une fonction pour l'ensemble ou un sous-ensemble de clients devient beaucoup plus gérable puisque les modifications ne peuvent être effectuées que chez le FAI plutôt que dans les locaux du client comme c'est le cas aujourd'hui. Pour les fournisseurs de services, NFV promet de fournir la flexibilité nécessaire qui leur permettrait d'augmenter/réduire les services pour répondre aux demandes changeantes des clients, de réduire leurs dépenses en capital (CAPEX) et leurs dépenses opérationnelles (OPEX) grâce à des infrastructures de réseau agiles à moindre coût, de réduire le déploiement moment de la mise sur le marché de nouveaux services réseau.

Dans le contexte des futurs réseaux 5G, NFV assure l'optimisation du provisionnement des ressources aux utilisateurs finaux avec une QoS élevée et garantit la performance des opérations VNF, y compris une latence et un taux d'échec minimum. Essentiellement, il peut assurer la compatibilité des VNF avec les non-VNF. Pour obtenir les avantages ci-dessus, NFV apporte trois différences sur la façon dont les services réseau sont provisionnés par rapport à la pratique traditionnelle, comme indiqué dans.

Découplage du logiciel de la plate-forme matérielle : les entités matérielles et logicielles dans NFV ne sont pas intégrées et leurs fonctions peuvent progresser séparément les unes des autres.

Une plus grande flexibilité pour le déploiement des fonctions réseau : étant donné que les logiciels sont détachés du matériel, les logiciels et le matériel peuvent exécuter différentes fonctions à différents moments. Cela permet aux opérateurs de déployer de nouveaux services innovants en utilisant la même plate-forme matérielle.

Exploitation dynamique du réseau et fourniture de services : les opérateurs de réseau peuvent introduire des services personnalisés en fonction des demandes des clients en adaptant dynamiquement les performances de NFV.

Example de simulation

Introduction

5G widely defines network slicing concept which aims to provide different and separate dedicated logical networks that can be customized to respective services. All slices under a cloud infrastructure are put together with their different requirements, e.g. bandwidth, latency

The purpose of this project is to provide a simulation suite for a network consisting of base stations and clients that possible scenarios of 5G can fit into and make analysis of different concepts easier.

Approach

- Discrete event simulation
- Using Python 3.7, Simpy, Matplotlib, KDTree
- YAML for reading input configurations
- Asynchronous programming
- Definitions:
 - Clients: Simulation consumers. Generates consume requests by given distribution parameters.
 - Slices of Base Stations: Simulation resources.

Structure

A base station has slices in it tailored for different needs:

- Guaranteed bandwidth for each customer
- Max bandwidth limit for each customer
- Allocated throughput for a slice
- QoS class
- Delay tolerance

Input Format with Example

Slices

Name	Guaranteed Bandwidth	Maximum Bandwidth	QoS Class
x_eMB8*		100 Mbps	5
x_mMTC**	1 Mbps	10 Mbps	2
x_URLLC***	5 Mbps	10 Mbps	1
x_voice	500 Kbps	1 Mbps	3
y_eMB8+		100 Mbps	5
y_eMBB_p	100 Mbps	1 Gbps	4
y_voice	500 Kbps	1 Mbps	3

^{*} Enhanced Mobile Broadband

Mobility Patterns

Name	Distribution	Parameters	Client Weight
Car	Normal Dist.	$\mathcal{N}(\mu=0,\sigma=7)$	0.1
Walk	Random Integer	min = 0, max = 7	0.4
Stationary	Normal Dist.	$\mathcal{N}(\mu=0,\sigma=0.1)$	0.2
Tram	Random Integer	min=-4, max=4	0.1
Slack Person	Random Integer	min = 0, max = 1	0.2

^{**} Massive Machine Type Communications

^{***} Ultra Reliable Low Latency Communications

^{****} Prioritized Enhanced Mobile Broadband

Base Stations

10	Coverage (x,y),r in meters	Throughput	Slices
1	(182, 1414), 224	20 Gbps	[]
	-	-	-
5	(126, 1016), 384	30 Gbps	JJ
	****	_	_
20	(44, 1916), 368	50 Gbps	J]

Clients Info

Name	Distribution	Parameters
x	Random Integer	min=0, max=1980
y	Random Integer	min=0, max=1980
Usage Frequency	Random	min = 0, max = 0.1

Example Simulation: Tunis

- Tunis Area is chosen as a geographical area sample because of high mobility and crowd population in that area.
- · The area spanned is a square with 2 km side lengths.
- Base stations are modeled as circles and pinned on the map with respect to the real locations.
- . The simulation is run for 1 hour (3600 seconds) with 1 second time units.
- 5% warmup and cooldown periods are set and statistics are collected between these interval.
- Statistics are collected from the clients who are in the canvas only. Clients being outside of the map are ignored.

Tunis Tunisia

· Final positions of clients and base stations are drawn:

Example output screenshot of the SliceSim simulation software.

python -m slicesim <input-file.yml>

Conclusion

 Increasing number of clients increases used bandwidth, and yet the simulation showed that block ratio also elevates for this specific configurations.

This simulation tool can be used for such scenarios as well:

- Testing the effect of different dynamic slicing algorithms on block and handover ratios.
- Analyzing various mobility patterns of clients using different statistical distributions.
- Observing the effect of usage frequency of clients and the effect of clients those are distributed unequally.
- Various Proof of Concepts like common base stations for multiple service providers.