Surabhi Singh

The Spark Foundation

Iris Task

Prediction of the optimum number of cluster and visual representation

Exploratory Data Analysis

Python libraries being used

A. Data Analysis

```
import pandas as pd
import numpy as np
```

B. Data Visualization

```
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn import datasets
```

C. Model Prediction

```
In [8]:
from sklearn import datasets
from sklearn.cluster import KMeans
```

Data Extraction

Importing Data from Iris Data

```
import types
import pandas as pd
from botocore.client import Config
import ibm_boto3

def __iter__(self): return 0

# @hidden_cell
# The following code accesses a file in your IBM Cloud Object Storage. It includes your c redentials.
# You might want to remove those credentials before you share the notebook.
```

```
client_df59ba2aae8f4254afb2ed76c5028249 = ibm_boto3.client(service_name='s3',
    ibm_api_key_id='C0K_2AXLl0Mc0wYapj_sm2un8kk7QWfw3bhgF6k6e3mK',
    ibm_auth_endpoint="https://iam.cloud.ibm.com/oidc/token",
    config=Config(signature_version='oauth'),
    endpoint_url='https://s3-api.us-geo.objectstorage.service.networklayer.com')

body = client_df59ba2aae8f4254afb2ed76c5028249.get_object(Bucket='tsf-donotdelete-pr-spz8
z9iaocdhoc', Key='Iris.csv')['Body']
# add missing __iter__ method, so pandas accepts body as file-like object
if not hasattr(body, "__iter__"): body.__iter__ = types.MethodType(__iter__, body)

df = pd.read_csv(body)
df.head()
```

Out[9]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [10]:

df.describe()

Out[10]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

In [11]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
Column Non-Null Count Data

#	Column	Non-Null Count	Dtype				
0	Id	150 non-null	int64				
1	SepalLengthCm	150 non-null	float64				
2	SepalWidthCm	150 non-null	float64				
3	PetalLengthCm	150 non-null	float64				
4	PetalWidthCm	150 non-null	float64				
5	Species	150 non-null	object				
<pre>dtypes: float64(4), int64(1), object(1)</pre>							
memory usage: 7.2+ KB							

Data Visualization

In [13]:

In [14]:

```
sns.FacetGrid(df, hue = "Species", height = 3) \
.map(plt.scatter, "SepalLengthCm", "SepalWidthCm") \
.add_legend();
plt.show
```

Out[14]:

<function matplotlib.pyplot.show(*args, **kw)>

In [15]:

and FrankCrid/df hus - "Crosica" haight - 21\

```
.map(plt.scatter, "PetalLengthCm","PetalWidthCm")\
   .add_legend();
plt.show
```

Out[15]:

<function matplotlib.pyplot.show(*args, **kw)>

In [16]:

```
sns.scatterplot(x = 'SepalLengthCm', y = 'PetalWidthCm', hue = 'Species', data = df)
```

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fedf1c1c590>

In [17]:

```
plt.figure(figsize=(10,5))
sns.heatmap(df.corr(), annot=True)
```

Out[17]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fedfa1a0110>

Elbow Mwthod to find out the optimal number of clusters

```
In [18]:
```

```
X = df.iloc[:, [0,1,2,3]].values
```

In [19]:

```
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)
plt.plot(range(1, 11), wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```


The elbow method' from the above graph, the optimum clusters is where the elbow occurs. This is when the within cluster sum of squares (WCSS) doesn't decrease significantly with every iteration.

From this we choose the number of clusters as '3'.

Training the K-Means model on the dataset

```
In [20]:
```

```
kmeans = KMeans(n_clusters = 3, init = 'k-means++', random_state = 42)
y_kmeans = kmeans.fit_predict(X)
```

Clusters Visualization

In [21]:

```
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Iris-
setosa')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Iris
-versicolour')
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Iri
s-virginica')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 150, c = '
yellow', label = 'Centroids')
```

```
plt.title('Clusters of Species')
plt.legend()
plt.show()
```


In []: