- (1) 画出散点图,给出 $\hat{\beta}$ 的几何表示并推出代数表达式。
- (2) 计算 $\hat{\boldsymbol{\beta}}$ 的期望值并对所做假设进行陈述。这个估计值是有偏的还是无偏的?解释理由。
 - (3) 证明为什么该估计值不如我们以前用 OLS 方法所获得的估计值,并做具体解释。

例5 试证:

- (1)模型 $y_i = β_0 + u_i$ (i = 1,2,···,n) 中 $β_0$ 的最小二乘估计量为 $β_0 = \bar{y}$;
 - (2)如(1)中的随机项满足经典回归的基本假定,则有

$$E(\hat{\beta}_0) = \beta_0, V(\hat{\beta}_0) = \frac{1}{n} \sigma_u^2$$

§ 2.3 一元线性回归模型的统 计检验

- 一、拟合优度检验
- 二、变量的显著性检验
- 三、参数的置信区间

- 回归分析是要通过样本所估计的参数来代替总体的真实参数,或者说是用样本回归线代替总体回归线。
- 尽管从统计性质上已知,如果有足够多的重复抽样,参数的估计值的期望(均值)就等于其总体的参数真值,但在一次抽样中,估计值不一定就等于该真值。
- 那么,在一次抽样中,参数的估计值与真值 的差异有多大,是否显著,这就需要进一步进 行统计检验。
- 主要包括拟合优度检验、变量的显著性检验及参数的区间估计。

一、拟合优度检验

拟合优度检验: 对样本回归直线与样本观测值之间拟合程度的检验。

度量拟合优度的指标:判定系数(可决系数) R^2

1、总离差平方和的分解

已知由一组样本观测值(X_i,Y_i),i=1,2...,n得到如下样本回归直线

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

而Y的第i个观测值与样本均值的离差 $y_i = (Y_i - \overline{Y})$ 可分解为两部分之和

$$y_i = Y_i - \overline{Y} = (Y_i - \hat{Y}_i) + (\hat{Y}_i - \overline{Y}) = e_i + \hat{y}_i$$

 $\hat{y}_i = (\hat{Y}_i - \bar{Y})$ 是样本回归拟合值与观测值的平均值之差,可认为是由回归直线解释的部分;

 $e_i = (Y_i - \hat{Y_i})$ 是实际观测值与回归拟合值之差,是回归直线不能解释的部分。

对于所有样本点,则需考虑这些点与样本均值离差的平方和,可以证明:

$$\sum y_i^2 = \sum \hat{y}_i^2 + \sum e_i^2 + 2\sum \hat{y}_i e_i$$
$$= \sum \hat{y}_i^2 + \sum e_i^2$$

$$\exists \overline{L} \quad TSS = \sum y_i^2 = \sum (Y_i - \overline{Y})^2$$

总体平方和(Total Sum of Squares)

$$ESS = \sum \hat{y}_i^2 = \sum (\hat{Y}_i - \overline{Y})^2$$

回归平方和 (Explained Sum of Squares)

$$RSS = \sum e_i^2 = \sum (Y_i - \hat{Y}_i)^2$$

残差平方和(Residual Sum of Squares)

TSS-ESS+RSS

Y的观测值围绕其均值的总离差(total variation)可分解为两部分:一部分来自回归线(ESS),另一部分则来自随机势力(RSS)。

2、可决系数R²统计量

记
$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$

称 R² 为(样本)可决系数/判定系数(coefficient of determination)。

可决系数的取值范围: [0, 1]

R²越接近1,说明实际观测点离样本线越近,拟 合优度越高。

二、变量的显著性检验

回归分析是要判断解释变量X是否是被解释变量Y的一个显著性的影响因素。

在一元线性模型中,就是要判断X是否对Y具有显著的线性性影响。这就需要进行变量的显著性检验。

<u>计量经计学中,主要是针对变量的参数真值是否</u> <u>为零来进行</u>假设检验<u>的。</u>

1、假设检验

- 所谓假设检验,就是事先对总体参数或总体分布形式作出一个假设,然后利用样本信息来判断原假设是否合理,即判断样本信息与原假设是否有显著差异,从而决定是否接受或否定原假设。
- 假设检验采用的逻辑推理方法是反证法。 先假定原假设正确,然后根据样本信息,观察 由此假设而导致的结果是否合理,从而判断是否 接受原假设。
- 判断结果合理与否,是基于"小概率事件不易发生"这一原理的

2、变量的显著性检验

对于一元线性回归方程中的 Â, 已经知道它服 从正态分布

$$\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{\sum x_i^2})$$

由于真实的 σ^2 未知,在用它的无偏估计量 $\hat{\sigma}^2 = \sum e_i^2 / (n-2)$ 替代时,可构造如下统计量

$$t = \frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{\hat{\sigma}^{2} / \sum x_{i}^{2}}} = \frac{\hat{\beta}_{1} - \beta_{1}}{S_{\hat{\beta}_{1}}} \sim t(n-2)$$

检验步骤:

(1) 对总体参数提出假设

$$H_0$$
: $\beta_1=0$, H_1 : $\beta_1\neq 0$

$$H_1$$
: $\beta_1 \neq 0$

(2) 以原假设H0构造t统计量,并由样本计算其值

$$t = \frac{\hat{\beta}_1}{S_{\hat{\beta}_1}}$$

- (3) 给定显著性水平 α ,查t分布表,得临界值t α 2(n-2)
- (4) 比较,判断

若 $|t| > t_{\alpha/2}(n-2)$,则拒绝 H_0 ,接受 H_1 ;

若 $|t| \le t_{\alpha/2}(n-2)$,则拒绝 H_1 ,接受 H_0 ;

对于一元线性回归方程中的 β_0 ,可构造如下t统计量进行显著性检验:

$$t = \frac{\hat{\beta}_0 - \beta_0}{\sqrt{\hat{\sigma}^2 \sum_{i} X_i^2 / n \sum_{i} X_i^2}} = \frac{\hat{\beta}_0}{S_{\hat{\beta}_0}} \sim t(n-2)$$

接例2.2.1: 在上述家庭可支配收入-消费支出例中,进行显著性检验。

表 2.2.1 参数估计的计算表

	T									
	X_{i}	Y_{i}	\mathcal{X}_{i}	${\cal Y}_i$	$x_i y_i$	x_i^2	y_i^2	X_i^2	Y_i^2	
1	800	594	-1350	-973	1314090	1822500	947508	640000	352836	
2	1100	638	-1050	-929	975870	1102500	863784	1210000	407044	
3	1400	1122	-750	-445	334050	562500	198381	1960000	1258884	
4	1700	1155	-450	-412	185580	202500	170074	2890000	1334025	
5	2000	1408	-150	-159	23910	22500	25408	4000000	1982464	
6	2300	1595	150	28	4140	22500	762	5290000	2544025	
7	2600	1969	450	402	180720	202500	161283	6760000	3876961	
8	2900	2078	750	511	382950	562500	260712	8410000	4318084	
9	3200	2585	1050	1018	1068480	1102500	1035510	10240000	6682225	
10	3500	2530	1350	963	1299510	1822500	926599	12250000	6400900	
求和	21500	15674			5769300	7425000	4590020	53650000	29157448	
平均	2150	1567								

$$\hat{\beta}_1 = \frac{\sum x_i y_i}{\sum x_i^2} = \frac{5769300}{7425000} = 0.777$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_0 \overline{X} = 1567 - 0.777 \times 2150 = -103.172$$

因此,由该样本估计的回归方程为:

$$\hat{Y}_i = -103.172 + 0.777X_i$$

下面进行显著性检验,首先计算 σ_2 的估计值

$$\hat{\sigma}^2 = \frac{\sum e_i^2}{n-2} = \frac{\sum y_i^2 - \hat{\beta}_1^2 \sum x_i^2}{n-2} = \frac{4590020 - 0.777^2 \times 7425000}{10-2} = 13402$$

于是 β₁和 β₂的标准差的估计值分别是:

$$S_{\hat{\beta}_1} = \sqrt{\hat{\sigma}^2 / \sum x_i^2} = \sqrt{13402 / 7425000} = \sqrt{0.0018} = 0.0425$$

$$S_{\hat{\beta}_0} = \sqrt{\hat{\sigma}^2 \sum X_i^2 / n \sum x_i^2} = \sqrt{13402 \times 53650000 / 10 \times 7425000} = 98.41$$

t统计量的计算结果分别为:

$$t_1 = \hat{\beta}_1 / S_{\hat{\beta}_1} = 0.777/0.0425 = 18.29$$

$$t_0 = \hat{\beta}_0 / S_{\hat{\beta}_0} = -103.17/98.41 = -1.048$$

给定显著性水平α=0.05,查t分布表得临界值

$$t_{0.05/2}(8)=2.306$$

|t₁|>2.306,说明家庭可支配收入在95%的置信 度下显著,即是消费支出的主要解释变量;

|t₂|<2.306, 表明在95%的置信度下,无法拒绝截距项为零的假设。

三、参数的置信区间

回归分析希望通过样本所估计出的参数 β, 来, 代替总体的参数 β,。

要判断样本参数的估计值在多大程度上可以 "近似"地替代总体参数的真值,往往需要通过 构造一个以样本参数的估计值为中心的"区间", 来考察它以多大的可能性(概率)包含着真实的 参数值。这种方法就是参数检验的置信区间估计。 要判断估计的参数值 $\hat{\beta}$ 离真实的参数值 β 有多"近",可预先选择一个概率 $\alpha(0 < \alpha < 1)$,并求一个正数 δ , 使得随机区间 $(\hat{\beta} - \delta, \hat{\beta} + \delta)$ 包含参数的真值的概率为 $1-\alpha$ 。即:

$$P(\hat{\beta} - \delta \le \beta \le \hat{\beta} + \delta) = 1 - \alpha$$

如果存在这样一个区间,称之为置信区间 (confidence interval); 1-α称为置信系数(置信度) (confidence coefficient), α称为显著性水平(level of significance); 置信区间的端点称为置信限 (confidence limit)或临界值(critical values)。

一元线性模型中,β_i (i=1, 2)的置信区间:

在变量的显著性检验中已经知道:

$$t = \frac{\hat{\beta}_i - \beta_i}{S_{\hat{\beta}_i}} \sim t(n-2)$$

意味着,如果给定置信度(1- α),从分布表中查得自由度为(n-2)的临界值,那么t值处在(- $t_{\alpha/2}$, $t_{\alpha/2}$)的概率是(1- α)。表示为:

$$P(-t_{\frac{\alpha}{2}} < t < t_{\frac{\alpha}{2}}) = 1 - \alpha$$

$$P(-t_{\frac{\alpha}{2}} < \frac{\hat{\beta}_i - \beta_i}{s_{\hat{\beta}_i}} < t_{\frac{\alpha}{2}}) = 1 - \alpha$$

$$P(\hat{\beta}_i - t_{\frac{\alpha}{2}} \times s_{\hat{\beta}_i} < \beta_i < \hat{\beta}_i + t_{\frac{\alpha}{2}} \times s_{\hat{\beta}_i}) = 1 - \alpha$$

于是得到: $(1-\alpha)$ 的置信度下, β 的置信区间是

$$(\hat{\beta}_i - t_{\frac{\alpha}{2}} \times s_{\hat{\beta}_i}, \hat{\beta}_i + t_{\frac{\alpha}{2}} \times s_{\hat{\beta}_i})$$

在上述收入-消费支出例中,如果给定 $\alpha = 0.01$,查表得:

$$t_{\frac{\alpha}{2}}(n-2) = t_{0.005}(8) = 3.355$$

由于 $S_{\hat{a}}$

$$S_{\hat{\beta}_1} = 0.042$$
 $S_{\hat{\beta}_0} = 98.41$

于是, $β_1$ 、 $β_0$ 的置信区间分别为:

(0.6345, 0.9195)

(-433, 32, 226, 98)

由于置信区间一定程度地给出了样本参数估计值与总体参数真值的"接近"程度,因此置信区间越小越好。

要缩小置信区间,需

- (1) 增大样本容量n,因为在同样的置信水平下,n越大,t分布表中的临界值越小;同时,增大样本容量,还可使样本参数估计量的标准差减小;
- (2)提高模型的拟合优度,因为样本参数估计量的标准差与残差平方和呈正比,模型拟合优度越高,残差平方和应越小。

§ 2.4 一元线性回归分析的应用: 预测问题

- 一、 \hat{y}_0 是 Y_0 的一个无偏估计
- 二、个值预测值的置信区间

对于一元线性回归模型

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

给定样本以外的解释变量的观测值 X_0 ,可以得到被解释变量的预测值 \hat{y}_0 ,可以此作为个别值 Y_0 的一个近似估计。

一、 \hat{y}_0 是 Y_0 的一个无偏估计

对总体回归模型 $Y=\beta_0+\beta_1X+\mu$, 当 $X=X_0$ 时

$$Y_0 = \beta_0 + \beta_1 X_0 + \mu$$

于是

$$E(Y_0) = E(\beta_0 + \beta_1 X_0 + \mu) = \beta_0 + \beta_1 X_0 + E(\mu) = \beta_0 + \beta_1 X_0$$

而 通过样本回归函数 $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$,求得拟合值

$$\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 X_0$$

的期望为

$$E(\hat{Y}_0) = E(\hat{\beta}_0 + \hat{\beta}_1 X_0) = E(\hat{\beta}_0) + X_0 E(\hat{\beta}_1) = \beta_0 + \beta_1 X_0$$

 \hat{Y}_0 是个值 Y_0 的无偏估计。

二、个值预测值的置信区间

由于
$$\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 X_0$$

$$\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{\sum x_i^2}) \qquad \hat{\beta}_0 \sim N(\beta_0, \frac{\sum X_i^2}{n \sum x_i^2} \sigma^2)$$
 于是
$$E(\hat{Y}_0) = E(\hat{\beta}_0) + X_0 E(\hat{\beta}_1) = \beta_0 + \beta_1 X_0$$

$$Var(\hat{Y}_0) = Var(\hat{\beta}_0) + 2X_0 Cov(\hat{\beta}_0, \hat{\beta}_1) + X_0^2 Var(\hat{\beta}_1)$$
 可以证明
$$Cov(\hat{\beta}_0, \hat{\beta}_1) = -\sigma^2 \overline{X} / \sum x_i^2$$

因此
$$Var(\hat{Y}_0) = \frac{\sigma^2 \sum_i X_i^2}{n \sum_i x_i^2} - \frac{2X_0 \overline{X} \sigma^2}{\sum_i x_i^2} + \frac{X_0^2 \sigma^2}{\sum_i x_i^2}$$

$$= \frac{\sigma^2}{\sum_i x_i^2} \left(\frac{\sum_i X_i^2 - n \overline{X}^2}{n} + \overline{X}^2 - 2X_0 \overline{X} + X_0^2 \right)$$

$$= \frac{\sigma^2}{\sum_i x_i^2} \left(\frac{\sum_i x_i^2}{n} + (X_0 - \overline{X})^2 \right) = \sigma^2 \left(\frac{1}{n} + \frac{(X_0 - \overline{X})^2}{\sum_i x_i^2} \right)$$

$$\hat{Y}_0 \sim N(\beta_0 + \beta_1 X_0, \sigma^2 \left(\frac{1}{n} + \frac{(X_0 - \overline{X})^2}{\sum_i x_i^2} \right))$$

由 $Y_0 = \beta_0 + \beta_1 X_0 + \mu$ 知:

$$Y_0 \sim N(\beta_0 + \beta_1 X_0, \sigma^2)$$

于是 $\hat{Y}_0 - Y_0 \sim N(0, \sigma^2 (1 + \frac{1}{n} + \frac{(X_0 - X)^2}{\sum_i x_i^2}))$

将未知的 σ^2 代以它的无偏估计量 $\hat{\sigma}^2$,可构造t统计量

$$t = \frac{\hat{Y}_0 - Y_0}{S_{\hat{Y}_0 - Y_0}} \sim t(n - 2)$$

$$\vec{S}_{\hat{Y}_0 - Y_0} = \sqrt{\hat{\sigma}^2 \left(1 + \frac{1}{n} + \frac{(X_0 - \overline{X})^2}{\sum X_i^2}\right)}$$

从而在 $1-\alpha$ 的置信度下, Y_0 的置信区间为

$$\hat{Y_0} - t_{\frac{\alpha}{2}} \times S_{\hat{Y_0} - Y_0} < Y_0 < \hat{Y_0} + t_{\frac{\alpha}{2}} \times S_{\hat{Y_0} - Y_0}$$

对于Y的个体值的预测区间(置信区间):

- (1) 样本容量n越大,预测精度越高,反之 预测精度越低;
- (2) 样本容量一定时,置信带的宽度当在X均值处最小,其附近进行预测(插值预测)精度越大; X越远离其均值,置信带越宽,预测可信度下降。

例 $_{1}$ 已知回归模型 $_{E} = \alpha + \beta N + \mu$,式中 $_{E}$ 为某类公司一名新员工的起始薪金(元), $_{N}$ 为所受教育水平(年)。随机扰动项 $_{\mu}$ 的分布未知,其他所有假设都满足。

- (1) 从直观及经济角度解释 α 和 β 。
- (2) OLS 估计量 $\hat{\alpha}$ 和 $\hat{\beta}$ 满足线性性、无偏性及有效性吗? 简单陈述理由。
- (3) 对参数的假设检验还能进行吗?简单陈述理由。

例2 在例1中¹,如果被解释变量新员工起始薪金的计量单位由元改为 100 元,估计的 截距项与斜率项有无变化?如果解释变量所受教育水平的度量单位由年改为月,估计的截距 项与斜率项有无变化?

例3 考虑如下双变量 PRF 表达式:

模型 I: $Y_i = \beta_1 + \beta_2 X_i + \mu_i$

模型 II: $Y_i = a_1 + a_2(X_i - X) + u_i$

- a. 求 β, 和 α, 的估计量。它们是否相同? 它们的方差是否相同?
- b. 求 ß 和 a2 的估计量,它们是否相同?它们的方差是否相同?
- c. 如果模型 II 比模型 I 好,好在哪里?

例4 令 r_1 为 n 对 (X_i, Y_i) 值的相关系数,而 r_2 为 n 对 (aX_i+b, cY_i+d) 值的相关系数,其中 a , b , c 和 d 为常数。证明 $r_1=r_2$,从而证实相关系数对度量单位和原点的改变保持不变的性质。

提示,应用方程(3.5.13)中所给的 r 定义。

注:运算 aX_i , X_i+b 和 aX_i+b 分别叫做尺度变换、原点变换和尺度与原点同时变换。

例5 假设在回归 $Y_i = \beta_i + \beta_i X_i + u_i$ 中,我们将每个 X 值都乘以 2,这会不会改变 Y 的残差及拟合值? 为什么? 如果我们给每个 X 值都加上一个常数 2,又会怎样?

例6 参考方程(3.7.3)中所给出的手机需求回归。

- a. 在5%的显著水平上, 截距系数估计值显著吗? 你进行检验的虚拟假设是什么?
- b. 在5%的显著水平上,斜率系数估计值显著吗?
- c. 构造真实斜率系数的 95%置信区间。

$$\hat{Y}_i = 14.4773 + 0.0022X_i$$

 $se(\hat{\beta}_1) = 6.1523$ $se(\hat{\beta}_2) = 0.00032$
 $r^2 = 0.6023$

样本个数为34