ANALISI ESPLORATIVA DEL CONSUMO DI PRODOTTI A BASE DI TABACCO NEL MONDO DAL 2010 AL 2020

Data Science for Health Systems

Marco Venturi Dipartimento di Ingegneria Università degli studi di Perugia

INTRODUZIONE

- L'epidemia del tabacco rappresenta una delle più grandi minacce per la salute pubblica che il mondo abbia mai affrontato, causando la morte di oltre 8 milioni di persone all'anno in tutto il mondo.
- Più di 7 milioni di queste morti sono il risultato dell'uso diretto del tabacco, mentre circa 1,3 milioni sono il risultato dell'esposizione al fumo passivo da parte dei non fumatori [1].
- Lo studio propone di analizzare il consumo di tabacco e prodotti a base di tabacco nel mondo nel periodo compreso tra il 2000 e il 2020, esaminando le differenze nell'incidenza tra diverse aree geografiche e tra i sessi.

OBIETTIVO DELL'ANALISI

Questa analisi mira a comprendere meglio l'entità del problema del tabacco e a identificare le disparità geografiche e di genere nell'uso del tabacco durante il periodo 2010-2020.

IL DATASET

DESCRIZIONE

- Il dataset analizzato è chiamato "Non-age-standardized estimates of current tobacco use, tobacco smoking, and cigarette smoking (Tobacco Control: Monitor)." Questi dati sono forniti dall'Organizzazione Mondiale della Sanità.
- Questo dataset contiene informazioni sul consumo di prodotti a base di tabacco.
- Il dataset fornisce informazioni sulla percentuale della popolazione in ciascun paese
- Questi valori percentuali derivano dalla popolazione di età pari o superiore a 15 anni che attualmente utilizza qualsiasi prodotto a base di tabacco.
- Il dataset originale è composto da 13.284 campioni, ciascuno con 34 variabili.

IL DATASET

MODELLAZIONE

- 1. Rimozione delle variabili NaN e delle colonne non informative.
- 2. Cambio nome delle variabili selezionate
- 3. Rimozione dell'intervallo di confidenza dalla variabile 'value'.
- 4. Rimozione dei campioni raccolti nei anni 2023 e 2025
- 5. Riduzione dell'informazione ridondante

IL DATASET

DATASET FINALE

_	geo_region \$	state ‡	year ‡	sex ‡	value	‡
3050	Americas	Canada	2020	Male		14
3051	Africa	Mali	2020	Male		15
3052	Europe	Norway	2020	Female		15
3053	Africa	Eritrea	2020	Male		15
3054	Western Pacific	Australia	2020	Male		15
3055	Americas	Belize	2020	Male		15
3056	Africa	Eswatini	2020	Male		15
3057	Western Pacific	Tonga	2020	Female		15
3058	Europe	Portugal	2020	Female		15
3059	South-East Asia	Bangladesh	2020	Female		15
3060	Americas	Jamaica	2020	Male		15
3061	Africa	Burundi	2020	Male		15
3062	Europe	Norway	2020	Both sexes		16

1. Distribuzione dei valori

2. Distribuzione dei valori su area geografica

3. Valori delle medie per area geografica

4. Valori delle medie delle aree geografiche nel tempo

eries of Mean Tobacco Use Percentage by Geographic Area divide by Sex

1. Plot del quantile teorico dei maschi

2. Plot del quantile teorico delle femmine

3. Verifica della Normalità maschi

Anni	Statistica W	P-value
2010	0.98049	0.02058
2015	0.97356	0.003125
2018	0.96975	0.00118
2019	0.96925	0.001042
2020	0.96742	0.0006639

La normalità è rifiutata in tutti i gruppi di sesso maschile

4. Verifica della Normalità femmine

Anni	Statistica W	P-value
2010	0.86804	7.991e-11
2015	0.85454	1.827e-11
2018	0.84469	6.587e-12
2019	0.84195	4.998e-12
2020	0.83917	3.788e-12

La normalità è rifiutata in tutti i gruppi di sesso femminile

TEST STATISTICI (prerequisiti Anova)

1. Verifica dell'omoschedasticità (Test di Bartlett)

Sesso	Statistica K-square	P-value
Maschio	0.055455	0.9996
Femmina	3.431	0.4885

In entrambi i sessi <u>è presente l'omoschedasticità</u>

TEST STATISTICI (prerequisiti Anova)

2. Verifica della sfericità

Sesso	Epsilon
Maschio	0.9860699
Femmina	0.9866401

In entrambi i sessi il valore di epsilon <u>non</u> si discosta di troppo da 1 quindi la sfericità non influenza il risultato

TEST STATISTICI(ipotesi nulla)

1. Test dell'ipotesi su campioni maschi

- Si è deciso di applicare sia il test non parametrico di Friedman che il test di Anova
- Questa decisione è dovuta al fatto che nonostante il test di shapiro-wilk rifiuti la normalità, la forma della distribuzione dei dati in questione è vicina alla forma della distribuzione normale, e i dati sembrano rispettare anche il pattern del quantile teorico
- o Anova e Friedman convergono a un risultato vicino
- Il test F subjects invece risulta avere un valore nullo

Test	p-value
Anova	< 2 × 10^-16
F subjects	0
Friedman	< 2.2 ×10-16

TEST STATISTICI(ipotesi nulla)

2. Test dell'ipotesi su campioni Femminili

- Si è applicato il test non parametrico di Friedman sui campioni Femminili, poiché la normalità è rifiutata dal test di shapiro-wilk
- Poiché entrambi i campioni di sesso maschile e femminile hanno confermato le ipotesi nulle, si prosegue con l'analisi post-hoc per osservare se la conferma dell'ipotesi nulla avviene anche tra gruppi

Test	p-value
Friedman	< 2.2 ×10^-16

TEST STATISTICI(analisi post-hoc)

1. Analisi post-hoc maschile

Correzione Bonferroni

Anno 1	Anno 2	p-value
2015	2010	<2×10^-16
2018	2010	<2×10^-16
2018	2015	<2×10^-16
2019	2010	<2×10^-16
2019	2015	<2×10^-16
2019	2018	<2.8×10^-15
2020	2010	<2×10^-16
2020	2015	<2×10^-16
2020	2018	<2×10^-16
2020	2019	<2×10^-16

Procedura Benjamini-Hochber

Anno 1	Anno 2	p-value
2015	2010	<2×10^-16
2018	2010	<2×10^-16
2018	2015	<2×10^-16
2019	2010	<2×10^-16
2019	2015	<2×10^-16
2019	2018	<2.8×10^-15
2020	2010	<2×10^-16
2020	2015	<2×10^-16
2020	2018	<2×10^-16
2020	2019	<2×10^-16

TEST STATISTICI(analisi post-hoc)

1. Analisi post-hoc femmine

Correzione Bonferroni

Anno 1	Anno 2	p-value
2015	2010	<2×10^-16
2018	2010	<2×10^-16
2018	2015	<1.1x10^-15
2019	2010	<2×10^-16
2019	2015	<2×10^-16
2019	2018	<1.9x10^-10
2020	2010	<2×10^-16
2020	2015	<2×10^-16
2020	2018	<6.1×10^-15
2020	2019	<1.2×10^-8

Procedura Benjamini-Hochber

Anno 1	Anno 2	p-value
2015	2010	<2×10^-16
2018	2010	<2×10^-16
2018	2015	<2×10^-16
2019	2010	<2×10^-16
2019	2015	<2×10^-16
2019	2018	<2.2×10^-11
2020	2010	<2×10^-16
2020	2015	<2×10^-16
2020	2018	<7.6×10^-16
2020	2019	<1.2×10^-9

CONCLUSIONI

Le analisi effettuate mostrano come l'andamento negli ultimi dieci anni sia in gruppi maschili che femminili abbia un trend decrescente.

Il Test post-hoc conferma come questo trend sia confermato anche in singoli anni e non solo nel gruppo.

REFERENZE

• Il codice sorgente e la documentazione sono disponibili al seguente link:

https://github.com/Arcaici/TobaccoControlMonitor_WHO

Fonte dati \rightarrow Tobacco control: Monitor, World Health Organization:

https://www.who.int/data/gho/data/indicators/indicator-details/GHO/gho-tobacco-control-

monitor-current-tobaccouse-tobaccosmoking-cigarrettesmoking-nonagestd-tobnonagestdcurr

