Теория автоматов и формальных языков Введение

Лектор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

сентября 2016г.

Контекст: языки

- Естественные
 - Русский, английский...

Контекст: языки

- Естественные
 - Русский, английский...
- Искусственные
 - ▶ Эсперанто, ложбан...
 - Клингонский, эльфийский...

Контекст: языки

- Естественные
 - Русский, английский...
- Искусственные
 - Эсперанто, ложбан...
 - Клингонский, эльфийский...
 - ► C++, Java, C#, Haskell, OCaml, Perl, Coq, Agda...

Контекст: языковые процессоры

- Текстовые редакторы
- Компиляторы, интерпретаторы, трансляторы
- Среды разработки
- Все нуждаются в некотором формализованном представлении языка

Язык программирования

- Синтаксис правила построения программ из символов
- Семантика правила истолкования программ, определяющие их смысл

Пример: язык арифметических выражений

- Алфавит символов: цифры, скобки, знаки арифметических операций (+,-,*,/)
- Синтаксис
 - ► **Терм**: последовательность цифр или любое **выражение** в скобках
 - Слагаемое: последовательность термов, соединненых знаками умножения и деления
 - ► Выражение: последовательность слагаемых, соединенных знаками сложения и вычитания (перед первым слагаемым может стоять минус)
- Семантика
 - Значение выражения

- Язык, на котором дано описание языка
 - ▶ Естественный язык

- Язык, на котором дано описание языка
 - Естественный язык
 - Язык металингвистичесих формул Бэкуса (БНФ)

- Язык, на котором дано описание языка
 - ▶ Естественный язык
 - Язык металингвистичесих формул Бэкуса (БНФ)
 - ▶ Синтаксические диаграммы

- Язык, на котором дано описание языка
 - Естественный язык
 - Язык металингвистичесих формул Бэкуса (БНФ)
 - ▶ Синтаксические диаграммы
 - Грамматики...

Алфавит

• Алфавит — конечное множество символов

```
 \begin{array}{l} \blacktriangleright \ \{a,b,c,\ldots,z\} \\ \blacktriangleright \ \{\alpha,\beta,\gamma,\ldots,\omega\} \\ \blacktriangleright \ \{0,1\} \end{array}
```

▶ { <u>let</u>, <u>in</u>, <u>where</u>, . . . }

Цепочка

- Цепочка (предложение, слово) любая конечная последовательность символов алфавита
 - cat
 - ▶ κατ
 - 011000110110000101110100
 - ▶ main = putStrLn . show . inc 2 where inc = \x -> x + 1
- ullet Пустая цепочка arepsilon цепочка, не содержащая ни одного символа
 - ightharpoonup arepsilon не является символом алфавита

Конкатенация строк

- Конкатенация строк α и β ($\alpha \cdot \beta = \alpha \beta$) результат приписывания строки β в конец строки α
 - $\forall \alpha \beta \gamma. (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$
 - $\forall \alpha. \alpha \cdot \varepsilon = \varepsilon \cdot \alpha = \alpha$

БНФ — Бэкуса-Наура форма

- Символ элементарное понятие языка
 - + означает сложение в языке арифметических выражений
- Метапеременная сложное понятие языка
 - ▶ Переменной <выражение> можно обозначить выражение
- Формула
 - ▶ <определяемый символ>::=<посл. $1>|\dots|<$ посл.n>
 - В правой части формулы альтернатива конкатенаций строк, составленных из символов и метапеременных
- Пример: число
 - <число>::=<цифра> | <цифра><число>

Расширенная форма Бэкуса Наура (EBNF)

- Более емкие операции
- Итерация

•
$$<$$
x $>$::= $\{<$ y $>\}$ эквивалентно: $<$ x $>$::= ε $|$ $<$ y $><$ x $>$

- Условное вхождение
 - ▶ <х> ::= [<у>] эквивалентно: <х> ::= ε | <у>
- Скобки для группировки
 - ► (<x> | <y>) <z> эквивалентно: <x><z> | <y><z>

Пример: арифметические выражения

```
< expr > ::= [-] < factor > {< +- > < factor >} 
< +- > ::= +|- 
< factor > ::= < term > {< */ > < term >} 
< */ > ::= *|/ 
< term > ::= < number > | (< expr >)
```


Операции над строками

- Обращение (реверс) цепочки a^R цепочка, символы которой записаны в обратном порядке
 - ▶ Если x = abc, $x^R = cba$
 - $ightharpoonup \varepsilon^R = \varepsilon$
- n-я степень цепочки a^n конкатенация n повторений цепочки
 - $a^0 = \varepsilon$
 - $a^n = a \cdot a^{n-1} = a^{n-1} \cdot a$
- ullet Длина цепочки |a| количество составляющих ее символов
 - $|babb| = 4, |babb|_a = 1, |babb|_b = 3, |babb|_c = 0$
 - $|\varepsilon|=0$

Формальный язык

- V алфавит
 - $V = \{0, 1\}$
- V^* множество, содержащее все цепочки в алфавите V, включая пустую цепочку
 - $V^* = \{\varepsilon, 0, 1, 00, 11, 01, 10, 000, 001, 011, ...\}$
- $V^+ = V^* \setminus \{\varepsilon\}$
 - $V^+ = \{0, 1, 00, 11, 01, 10, 000, 001, 011, \dots\}$
- V подмножество множества всех цепочек в этом алфавите.
 - lacktriangle Для любого языка L справедливо $L \in V^*$