A Two-Level Linear Dependent Type Theory (Appendix)

ANONYMOUS AUTHOR(S)

The appendix serves to clarify the elided details in the main paper. Coq proofs and OCaml source code for our compiler are available at https://anonymous.4open.science/r/POPL24-2A8D.

1	Syntax	2
2	Logical Level	3
2.1	Sort Order	3
2.2	Logical Context	3
2.3	Logical Typing	3
3	Program Level	4
3.1	Program Context	4
3.2	Context Merge	4
3.3	Context Constraint	4
3.4	Program Typing	4
4	Erasure	5
4.1	Erasure Relation	5
5	Logical Semantics	6
5.1	Logical Reduction	6
5.2	Conversion	6
6	Program Semantics	7
6.1	Value	7
6.2	Program Reduction	7
7	Heap Semantics	8
7.1	Heaps	8
7.2	Heap Lookup	8
8	Heap Judgments	9
8.1	Pointer Resolution	9
8.2	Well-Resolved	9
8.3	WR-Heaps	9
9	Complete Examples	10
9.1	Sort Polymorhpic Length	10
9.2	Concurrent Mergesort	11
9.3	Diffie-Hellman Key Exchange	12
9.4	RSA Public Key Encryption	13
10	Meta Theory	14
10.1	Logical Theories	14
10.2	Program Theories	26
10.3	Erasure Theories	32
10.4	Heap Theories	38

1 SYNTAX

2 LOGICAL LEVEL

2.1 Sort Order

$$U \sqsubseteq s$$
 $L \sqsubseteq L$

The sort order relation $s \sqsubseteq t$ is derivable if and only if $(t = U) \Rightarrow (s = U)$ is true. This makes expressing the side conditions of Σ -type formation rules less verbose.

2.2 Logical Context

$$\frac{\Gamma \vdash \Gamma \vdash A : s \qquad x \notin \Gamma}{\Gamma, x : A \vdash}$$

2.3 Logical Typing

3 PROGRAM LEVEL

3.1 Program Context

$$\frac{\Gamma;\Delta \vdash \qquad \Gamma \vdash A:s \qquad x \not\in \Gamma}{\Gamma,x:A;\Delta,x:_s A \vdash} \qquad \qquad \frac{\Gamma;\Delta \vdash \qquad \Gamma \vdash A:s \qquad x \not\in \Gamma}{\Gamma,x:A;\Delta \vdash}$$

3.2 Context Merge

$$\frac{\Delta_1 \cup \Delta_2 = \Delta \qquad x \notin \Delta}{(\Delta_1, x :_U A) \cup (\Delta_2, x :_U A) = (\Delta, x :_U A)}$$

$$\frac{\Delta_1 \cup \Delta_2 = \Delta \qquad x \notin \Delta}{(\Delta_1, x :_L A) \cup \Delta_2 = (\Delta, x :_L A)}$$

$$\frac{\Delta_1 \cup \Delta_2 = \Delta \qquad x \notin \Delta}{\Delta_1 \cup (\Delta_2, x :_L A) = (\Delta, x :_L A)}$$

3.3 Context Constraint

$$\frac{\Delta \triangleright U}{\Delta, x :_{U} A \triangleright U} \qquad \frac{\Delta \triangleright L}{\Delta, x :_{s} A \triangleright L}$$

3.4 Program Typing

$$\frac{\Gamma;\Delta \vdash x:_{S} A \in \Delta \quad \Delta/\{x:_{S} \Delta\} \triangleright U}{\Gamma;\Delta \vdash x:A} \qquad \frac{\Gamma,x:_{A};\Delta,x:_{S} A \vdash m:_{B} \quad \Delta \triangleright t}{\Gamma;\Delta \vdash \lambda_{t}(x:A).m:_{\Pi_{t}}(x:A).B}$$

$$\frac{\Gamma,x:_{A};\Delta \vdash m:_{B} \quad \Delta \triangleright t}{\Gamma;\Delta \vdash \lambda_{t}\{x:_{A}\}.m:_{\Pi_{t}}\{x:_{A}\}.B} \qquad \frac{\Gamma;\Delta_{1} \vdash m:_{\Pi_{t}}(x:A).B \quad \Gamma;\Delta_{2} \vdash n:_{A}}{\Gamma;\Delta_{1} \cup \Delta_{2} \vdash m:_{B}[n/x]}$$

$$\frac{\Gamma;\Delta \vdash m:_{\Pi_{t}}\{x:_{A}\}.B \quad \Gamma \vdash n:_{A}}{\Gamma;\Delta \vdash m:_{B}[n/x]} \qquad \frac{\Gamma \vdash \Sigma_{t}(x:_{A}.B):_{t} \quad \Gamma;\Delta_{1} \vdash m:_{A} \quad \Gamma;\Delta_{2} \vdash n:_{B}[m/x]}{\Gamma;\Delta_{1} \cup \Delta_{2} \vdash \langle m,n \rangle_{t}:\Sigma_{t}(x:_{A}.B)}$$

$$\frac{\Gamma \vdash \Sigma_{t}\{x:_{A}.B\}:_{t} \quad \Gamma;\Delta \vdash m:_{A} \quad \Gamma \vdash n:_{B}[m/x]}{\Gamma;\Delta \vdash \{m,n\}_{t}:\Sigma_{t}\{x:_{A}.B\}}$$

$$\frac{\Gamma, z : \Sigma_t(x : A.B) \vdash C : s \qquad \Gamma; \Delta_1 \vdash m : \Sigma_t(x : A.B) \qquad \Gamma, x : A, y : B; \Delta_2, x :_{r1} A, y :_{r2} B \vdash n : C[\langle x, y \rangle_t/z]}{\Gamma; \Delta_1 \cup \Delta_2 \vdash \mathsf{R}^{\Sigma}_{\lceil z \rceil C}(m, [x, y]n) : C[m/z]}$$

$$\frac{\Gamma, z : \Sigma_t\{x : A.B\} \vdash C : s \qquad \Gamma; \Delta_1 \vdash m : \Sigma_t\{x : A.B\} \qquad \Gamma, x : A, y : B; \Delta_2, x :_r A \vdash n : C[\{x,y\}_t/z]}{\Gamma; \Delta_1 \cup \Delta_2 \vdash \mathbb{R}^\Sigma_{\lfloor z \rfloor C}(m, [x,y]n) : C[m/z]}$$

$$\frac{\Gamma; \Delta \vdash m : A \qquad \Gamma; \Delta \vdash n : B \qquad \Delta \triangleright t}{\Gamma; \Delta \vdash (m, n)_t : A \&_t B} \qquad \frac{\Gamma; \Delta \vdash m : A \&_t B}{\Gamma; \Delta \vdash \pi_1 \, m : A} \qquad \frac{\Gamma; \Delta \vdash m : A \&_t B}{\Gamma; \Delta \vdash \pi_2 \, m : B}$$

$$\frac{\Gamma, x: A, p: m =_A x \vdash B: s \qquad \Gamma; \Delta \vdash H: B[m/x, \operatorname{refl} m/p] \qquad \Gamma \vdash P: m =_A n}{\Gamma; \Delta \vdash R_{[x,p]B}^=(H,P): B[n/x,P/p]}$$

$$\frac{\Gamma \vdash B : s \qquad \Gamma; \Delta \vdash m : A \qquad A \simeq B}{\Gamma; \Delta \vdash m : B}$$

4 ERASURE

4.1 Erasure Relation

$$\frac{\Gamma; \Delta \vdash \quad x :_s \ A \in \Delta \quad \Delta / \{x :_s \ A\} \triangleright \mathbf{U}}{\Gamma; \Delta \vdash x \sim x : A} \qquad \frac{\Gamma, x :_A; \Delta, x :_s \ A \vdash m \sim m' :_B \quad \Delta \triangleright t}{\Gamma; \Delta \vdash \lambda_t (x :_A) . m \sim \lambda_t (x :_\Box) . m' :_\Pi_t (x :_A) . B}$$

$$\frac{\Gamma, x :_A; \Delta \vdash m \sim m' :_B \quad \Delta \triangleright t}{\Gamma; \Delta \vdash \lambda_t \{x :_A\} . m \sim \lambda_t \{x :_\Box\} . m' :_\Pi_t \{x :_A\} . B} \qquad \frac{\Gamma; \Delta_1 \vdash m \sim m' :_\Pi_t (x :_A) . B}{\Gamma; \Delta_2 \vdash m \ n \sim m' :_A}$$

$$\frac{\Gamma; \Delta_1 \vdash m \sim m' :_\Pi_t \{x :_A\} . B}{\Gamma; \Delta_2 \vdash m \ n \sim m' :_B [n/x]}$$

$$\Gamma; \Delta_1 \vdash m \sim m' :_A$$

$$\frac{\Gamma; \Delta \vdash m \sim m' : \Pi_t\{x : A\}.B \qquad \Gamma \vdash n : A}{\Gamma; \Delta \vdash m \ n \sim m' \ \Box : B[n/x]}$$

$$\frac{\Gamma \vdash \Sigma_t(x:A.B): t \qquad \Gamma; \Delta_1 \vdash m \sim m': A \qquad \Gamma; \Delta_2 \vdash n \sim n': B[m/x]}{\Gamma; \Delta_1 \cup \Delta_2 \vdash \langle m, n \rangle_t \sim \langle m', n' \rangle_t : \Sigma_t(x:A.B)}$$

$$\frac{\Gamma \vdash \Sigma_t \{x : A.B\} : t \qquad \Gamma; \Delta \vdash m \sim m' : A \qquad \Gamma \vdash n : B[m/x]}{\Gamma; \Delta \vdash \{m, n\}_t \sim \{m', \square\}_t : \Sigma_t \{x : A.B\}}$$

$$\frac{\Gamma, z: \Sigma_t(x:A.B) \vdash C: s}{\Gamma; \Delta_1 \vdash m \sim m': \Sigma_t(x:A.B)} \frac{\Gamma, z: \Sigma_t(x:A.B) \vdash C: s}{\Gamma, x:A, y:B; \Delta_2, x:_{r1} A, y:_{r2} B \vdash n \sim n': C[\langle x,y \rangle_t/z]}{\Gamma; \Delta_1 \cup \Delta_2 \vdash \mathsf{R}^{\Sigma}_{[z]C}(m, [x,y]n) \sim \mathsf{R}^{\Sigma}_{\square}(m', [x,y]n'): C[m/z]}$$

$$\frac{\Gamma, z: \Sigma_t\{x: A.B\} \vdash C: s}{\Gamma; \Delta_1 \vdash m \sim m': \Sigma_t\{x: A.B\}} \frac{\Gamma, x: A, y: B; \Delta_2, x:_r A \vdash n \sim n': C[\{x,y\}_t/z]}{\Gamma; \Delta_1 \cup \Delta_2 \vdash \mathbb{R}^{\Sigma}_{[z]C}(m, [x,y]n) \sim \mathbb{R}^{\Sigma}_{\square}(m', [x,y]n'): C[m/z]}$$

$$\frac{\Gamma; \Delta \vdash m \sim m' : A \qquad \Gamma; \Delta \vdash n \sim n' : B \qquad \Delta \triangleright t}{\Gamma; \Delta \vdash (m, n)_t \sim (m', n')_t : A \&_t B} \qquad \frac{\Gamma; \Delta \vdash m \sim m' : A \&_t B}{\Gamma; \Delta \vdash \pi_1 \ m \sim \pi_1 \ m' : A} \qquad \frac{\Gamma; \Delta \vdash m \sim m' : A \&_t B}{\Gamma; \Delta \vdash \pi_2 \ m \sim \pi_2 \ m' : B}$$

$$\frac{\Gamma, x: A, p: m =_A x \vdash B: s \qquad \Gamma; \Delta \vdash H \sim H': B[m/x, \operatorname{refl} m/p] \qquad \Gamma \vdash P: m =_A n}{\Gamma; \Delta \vdash \mathbb{R}^{=}_{[x,p]B}(H,P) \sim \mathbb{R}^{=}_{\square}(H',\square): B[n/x, P/p]}$$

$$\frac{\Gamma \vdash B : s \qquad \Gamma; \Delta \vdash m \sim m' : A \qquad A \simeq B}{\Gamma; \Delta \vdash m \sim m' : B}$$

5 LOGICAL SEMANTICS

5.1 Logical Reduction

5.2 Conversion

$$\frac{A \simeq B \qquad B \leadsto C}{A \simeq A} \qquad \frac{A \simeq B \qquad C \leadsto B}{A \simeq C}$$

6 PROGRAM SEMANTICS

6.1 Value

$$\frac{m \rightsquigarrow m'}{\mathsf{R}^{\Sigma}_{[z]A}(m,[x,y]n) \rightsquigarrow \mathsf{R}^{\Sigma}_{[z]A}(m',[x,y]n)} \qquad \frac{u \, value \quad v \, value}{\mathsf{R}^{\Sigma}_{[z]A}(\langle u,v\rangle_t,[x,y]n) \rightsquigarrow n[u/x,v/y]}$$

$$\frac{v \, value}{\mathsf{R}^{\Sigma}_{[z]A}(\{v,m\}_t,[x,y]n) \rightsquigarrow n[v/x,m/y]} \qquad \frac{m \rightsquigarrow m'}{\pi_1 \, m \rightsquigarrow \pi_1 \, m'} \qquad \frac{m \rightsquigarrow m'}{\pi_2 \, m \rightsquigarrow \pi_2 \, m'} \qquad \frac{\pi_1 \, (m,n)_t \rightsquigarrow m}{\pi_1 \, (m,n)_t \rightsquigarrow m}$$

$$\overline{\pi_2(m,n)_t \sim n} \qquad \overline{\mathbf{R}^{=}_{[x,p]A}(H,P) \sim H}$$

7 HEAP SEMANTICS

7.1 Heaps

Heaps H are maps from unique locations l to sort annotated values. Generally, a heap is of the following form.

$$H ::= \{l_1 \mapsto_{s_1} v_1, l_2 \mapsto_{s_2} v_2, \dots, l_k \mapsto_{s_k} v_k\}$$

7.2 Heap Lookup

$$\frac{(l \mapsto_{\mathrm{U}} v) \in H}{lookup(H, l, v, H)} \qquad \qquad \frac{(l \mapsto_{\mathrm{L}} v) \in H}{lookup(H, l, v, H/\{l \mapsto_{\mathrm{L}} v\})}$$

Heap Reductions

8 HEAP JUDGMENTS

8.1 Pointer Resolution

8.2 Well-Resolved

$$\frac{\Gamma; \epsilon \vdash a \sim b : A \qquad H; c \sim b}{\Gamma: H \vdash a \sim b \sim c : A}$$

8.3 WR-Heaps

$$\frac{FV(m)/\{x\}=\emptyset \quad H \ wr-heap \quad l \notin H}{H \cup \{l \mapsto_t \lambda_t \{x : \square\} . m\} \ wr-heap} \qquad \frac{FV(m)/\{x\}=\emptyset \quad H \ wr-heap \quad l \notin H}{H \cup \{l \mapsto_t \lambda_t (x : \square) . m\} \ wr-heap}$$

$$\frac{H \ wr-heap \quad l \notin H}{H \cup \{l \mapsto_t \{*l_0, \square\}_t\} \ wr-heap} \qquad \frac{H \ wr-heap \quad l \notin H}{H \cup \{l \mapsto_t (*l_1, *l_2)_t\} \ wr-heap}$$

$$\frac{FV(m)=\emptyset \quad FV(n)=\emptyset \quad H \ wr-heap \quad l \notin H}{H \cup \{l \mapsto_t (m, n)_t\} \ wr-heap}$$

9 COMPLETE EXAMPLES

This section presents the complete versions of examples that were elided in the main paper. More examples are included with the source code of our compiler ¹.

9.1 Sort Polymorhpic Length

```
inductive list<s,t> (A : Type<s>) : Type<t> =
| nil
| cons of (hd : A) (tl : list<s,t> A)
program len<s,t> \{A : Type < s>\} (xs : list<_,t> A) : nat \otimes list<_,t> A =
  match xs with
  \mid nil \Rightarrow \langle 0, nil \rangle
  \mid cons hd tl \Rightarrow
     match len \_ tl with
     |\langle n, tl \rangle \Rightarrow \langle S n, cons hd tl \rangle
     end
  end
logical snd<s,t> \{A : Type < s>\} \{B : Type < t>\} (m : A \otimes B) : B =
  let \langle \_, b \rangle = m \text{ in } b
logical len_id<s,t> \{A : Type<s>\} (ls : list<_,t> A) : ls \equiv snd _ _ (len _ ls) =
  match ls as ls0 in ls0 \equiv snd \_ (len \_ ls0) with
   | nil \Rightarrow refl
   \mid cons x xs \Rightarrow
     match len xs as p in
       len \_ xs \equiv p \rightarrow
        cons x xs \equiv snd _ _ (let \langle n, xs\theta \rangle = p in \langle S n, cons x xs\theta \rangle)
     with
      |\langle a, b\rangle \Rightarrow fn e0 \Rightarrow
        rew [ l, \_ \Rightarrow cons x xs \equiv cons x l ]
          rew [ p, \_\Rightarrow xs \equiv snd \_ \_p ] e0 in len_id A xs
     end refl
  end
```

 $^{^{1}} https://anonymous.4 open.science/r/POPL24-2A8D/ocaml/README.md \\$

9.2 Concurrent Mergesort

```
program msort<t> (zs : list< ,t> nat) : list< ,t> nat = ...
inductive uniq<t> (A : Type<t>) (a : A) : Type<t> =
| Uniq of (m : A) \{ pf : m \equiv a \}
logical cmsort ch<t> (xs : list< ,t> nat) : L =
  ch( \uparrow (uniq \_ (msort xs)) \rightarrow \bullet )
program cmsort worker<t> (zs : list< ,t> nat) : cmsort ch<t> zs \rightarrow IO unit =
ln c \Rightarrow
  match zs as zs_i in cmsort_ch zs_i \rightarrow I0 unit with
  \mid nil \Rightarrow ln c \Rightarrow let c \Leftarrow send c (Uniq nil refl) in close c
  | z0 :: zs0 \Rightarrow ln c \Rightarrow
     match zs0 as _zs0_ in cmsort_ch (z0 :: _zs0_) → IO unit with
     \mid nil \Rightarrow ln c \Rightarrow let c \Leftarrow send c (Uniq (z0 :: nil) refl) in close c
     | z1 :: zs1 \Rightarrow ln c \Rightarrow
       match split (z0 :: z1 :: zs1) as _p_ in
          \{\_p\_ \equiv split (z0 :: z1 :: zs1)\} \multimap I0 unit
       with
        |\langle xs0, ys0 \rangle \Rightarrow ln \{e\} \Rightarrow
          let r1 ← fork (r1 : cmsort ch xs0) in cmsort worker xs0 r1 in
          let r2 \leftarrow fork (r2 : cmsort_ch ys0) in cmsort_worker ys0 r2 in
          let \langle msg1, r1 \rangle \leftarrow recv r1 in
          let \langle msg2, r2 \rangle \leftarrow recv r2 in
          match msg1 with Uniq xs1 pf1 \Rightarrow
          match msg2 with Uniq xs2 pf2 \Rightarrow
            let zs = merge xs1 xs2 in
            let c \Leftarrow send c (Uniq zs)
               rew [p, \_ \Rightarrow zs \equiv (let \langle xs, ys \rangle = p in merge (msort xs) (msort ys))] e in
               rew [l, \_ \Rightarrow zs \equiv merge l (msort ys0)] pf1 in
               rew [l, \_ \Rightarrow zs \equiv merge xs1 l] pf2 in
            in close r1; close r2; close c
          end end
       end refl
     end c
  end c
program cmsort<t> (zs : list<_,t> nat) : IO (uniq<t> _ (msort zs)) =
  let c ← fork (c : cmsort_ch zs) in cmsort_worker zs c in
  let \langle msg, c \rangle \leftarrow recv c in
  close c; return msg
```

9.3 Diffie-Hellman Key Exchange

```
logical DH (p g : nat) : proto =
   \label{eq:alpha} \ensuremath{\Uparrow} \{a \ : \ \mathsf{nat}\} \ \to \ \ensuremath{\Uparrow} (A \ : \ \mathsf{nat}) \ \to \ \ensuremath{\Uparrow} \{\ A \ \equiv \ \mathsf{pow} \ \mathsf{g} \ \mathsf{a} \ \% \ \mathsf{p} \ \} \ \to \ \ensuremath{\Uparrow} \ \ensuremath{\bowtie} \ \mathsf{pow} \ \mathsf{g} \ \mathsf{a} \ \% \ \mathsf{p} \ \}
   \Downarrow \{b : \mathsf{nat}\} \to \Downarrow (\mathsf{B} : \mathsf{nat}) \to \Downarrow \{ \mathsf{B} \equiv \mathsf{pow} \ \mathsf{g} \ \mathsf{b} \ \% \ \mathsf{p} \ \} \to \bullet
logical DH ch (p g : nat) : L = ch\langle DH p g \rangle
logical DH hc (p g : nat) : L = hc\langle DH p g \rangle
program alice (a : nat) (p g : nat) (ch : DH_ch p g) : IO unit =
   let ch \leftarrow send ch a in
   let ch \Leftarrow send ch (pow g a % p) in
   let ch \leftarrow send ch refl in
   let \langle \{b\}, ch \rangle \leftarrow recv ch in
   let \langle B, ch \rangle \leftarrow recv ch in
   let \langle \{pf\}, ch\rangle \leftarrow recv ch in
   let s = pow B a % p in
   close ch
program bob (b : nat) (p g : nat) (ch : DH_hc p g) : IO unit =
   let \langle \{a\}, ch \rangle \leftarrow recv ch in
   let ⟨A, ch⟩ ← recv ch in
   let \langle \{pf\}, ch \rangle \leftarrow recv ch in
   let ch \leftarrow send ch b in
   let ch \Leftarrow send ch (pow g b % p) in
   let ch ← send ch refl in
   let s = pow A b % p in
   close ch
program key_exchange (_ : unit) : IO unit =
   let p = 23 in
   let g = 5 in
   let \ c \ \Leftarrow
       fork (c : DH_ch p g) in
         alice 4 p g c
   let c0 ←
       fork (c0 : ch(Uh_hc p g) \rightarrow \bullet)) in
         let \langle c, c\theta \rangle \leftarrow recv c\theta in
          close c0; bob 3 p g c
   let c0 \Leftarrow send c0 c in
   close c0
```

9.4 RSA Public Key Encryption

The programs gcd, lcm and powm are for computing the greatest common divisor, least common multiple and modular exponentiation respectively.

```
logical coprime (a b : nat) : U = gcd \ a \ b \equiv 1
-- x and y are prime numbers that the public/private keys are computed from
-- P0 is the paintext that the client encrypts
-- C is the ciphertext that client actually sends
-- At runtime only public key (n, e) and C are transmitted across the channel.
logical RSA : proto =
   \uparrow \{x : nat\} \rightarrow \uparrow \{y : nat\} \rightarrow
   \uparrow (n : nat) \rightarrow \uparrow \{n \equiv x * y\} \rightarrow
   \label{eq:tot} \ensuremath{\Uparrow} \ensuremath{\{\mbox{tot} \ : \ \mbox{nat}\}} \ \to \ensuremath{\Uparrow} \ensuremath{\{\mbox{tot} \ \equiv \ \mbox{lcm} \ (x \ - \ 1) \ (y \ - \ 1)\}} \ \to
   \uparrow(e : nat) \rightarrow \uparrow{coprime e tot} \rightarrow \uparrow{1 < e \equiv true} \rightarrow \uparrow{e < tot \equiv true} \rightarrow
   \Downarrow \{ \texttt{P0} \; : \; \texttt{nat} \} \; \rightarrow \; \Downarrow (\texttt{C} \; : \; \texttt{nat}) \; \rightarrow \; \Downarrow \{ \texttt{C} \; \equiv \; \texttt{powm} \; \; \texttt{P0} \; \; \texttt{e} \; \; \texttt{n} \} \; \rightarrow \; \bullet
logical RSA ch : L = ch\langle RSA \rangle
logical RSA hc : L = hc\langle RSA \rangle
program server (ch : RSA_ch) : IO unit =
   let x = 61 in
   let y = 53 in
   let n = x * y in
   let tot = lcm (x - 1) * (y - 1) in
   let e = 17 in
   let d = 413 in
   let ch \leftarrow send ch x in
   let ch ← send ch y in
   let ch \leftarrow send ch n in
   let ch ← send ch refl in
   let ch \leftarrow send ch tot in
   let ch ← send ch refl in
   let ch \leftarrow send ch e in
   \texttt{let} \ \mathsf{ch} \ \Leftarrow \ \mathsf{send} \ \mathsf{ch} \ \mathsf{refl} \ \mathsf{in}
   let ch \leftarrow send ch refl in
   let ch ← send ch refl in
   let \langle \{P0\}, ch \rangle \leftarrow recv ch in
   let \langle C, ch \rangle \leftarrow recv ch in
   let \langle \{pf\}, ch \rangle \leftarrow recv ch in
    -- P1 is the decrypted message from the client
   let P1 = powm C d n in
   close ch
program client (ch : RSA hc) : IO unit =
   -- P0 is the paintext that the client encrypts
   let P0 = 123 in
   let \langle \{x\}, ch \rangle \leftarrow recv ch in
   let \langle \{y\}, ch \rangle \leftarrow recv ch in
   let \langle n, ch \rangle \leftarrow recv ch in
   let \langle \{pf1\}, ch \rangle \leftarrow recv ch in
   let \langle \{tot\}, ch \rangle \leftarrow recv ch in
   let \langle \{pf2\}, ch \rangle \leftarrow recv ch in
   let \langle e, ch \rangle \leftarrow recv ch in
   let \langle \{pf3\}, ch \rangle \leftarrow recv ch in
   let \langle \{pf4\}, ch \rangle \leftarrow recv ch in
   let \langle \{pf5\}, ch \rangle \leftarrow recv ch in
   let ch ← send ch P0 in
   let ch ← send ch (powm P0 e n) in
   let ch ← send ch refl in
   close ch
```

10 META THEORY

All definitions and proofs are labeled with their corresponding Coq filenames and identifiers.

10.1 Logical Theories

10.1.1 Confluence

The proof of confluence for the logical level is carried out using the standard technique of parallel reductions. The derivation rules for parallel reduction are formally presented in Figure 1.

$$\frac{A \leadsto_{p} A' \quad B \leadsto_{p} B'}{\prod_{s} \{x : A\}, B \leadsto_{p} B'} \qquad \frac{A \leadsto_{p} A' \quad B \leadsto_{p} B'}{\prod_{s} \{x : A'\}, B'} \qquad \frac{A \leadsto_{p} A' \quad B \leadsto_{p} B'}{\prod_{s} (x : A), B \leadsto_{p} \prod_{s} (x : A'), B'}$$

$$\frac{A \leadsto_{p} A' \quad m \leadsto_{p} m'}{\lambda_{s} \{x : A\}, m \leadsto_{p} \lambda_{s} \{x : A'\}, m'} \qquad \frac{A \leadsto_{p} A' \quad m \leadsto_{p} m'}{\lambda_{s} (x : A), m \leadsto_{p} \lambda_{s} (x : A'), m'} \qquad \frac{m \leadsto_{p} m' \quad n \leadsto_{p} n'}{m \quad n \leadsto_{p} m' \quad n}$$

$$\frac{m \leadsto_{p} m' \quad n \leadsto_{p} n'}{(\lambda_{s} \{x : A\}, m) \quad n \leadsto_{p} m' [n'/x]} \qquad \frac{m \leadsto_{p} m' \quad n \leadsto_{p} n'}{(\lambda_{s} (x : A), m) \quad n \leadsto_{p} m' [n'/x]} \qquad \frac{A \leadsto_{p} A' \quad B \leadsto_{p} B'}{\sum_{s} \{x : A, B\} \leadsto_{p} \sum_{s} \{x : A', B'\}}$$

$$\frac{A \leadsto_{p} A' \quad B \leadsto_{p} B'}{\sum_{s} (x : A, B) \leadsto_{p} \sum_{s} (x : A', B')} \qquad \frac{m \leadsto_{p} m' \quad n \leadsto_{p} n'}{\{m, n\}_{s} \leadsto_{p} \{m', n'\}_{s}} \qquad \frac{m \leadsto_{p} m' \quad n \leadsto_{p} n'}{(m, n)_{s} \leadsto_{p} \{m', n'\}_{s}}$$

$$\frac{A \leadsto_{p} A' \quad m \leadsto_{p} m' \quad n \leadsto_{p} n'}{\{m, n\}_{s} \leadsto_{p} \{m', n'\}_{s}} \qquad \frac{m \leadsto_{p} m' \quad n \leadsto_{p} n'}{\{m, n\}_{s} \leadsto_{p} \{m', n'\}_{s}}$$

$$\frac{A \leadsto_{p} A' \quad m \leadsto_{p} m' \quad n \leadsto_{p} n'}{\{m\}_{s} \sum_{s} \{m\}_{s} \sum_{s} \{m\}_{s}$$

Fig. 1. Parallel Logical Reductions (logical_conf.v - pstep)

LEMMA 1. For terms m and n and substitution σ , if there is $m \rightsquigarrow n$ then $m[\sigma] \rightsquigarrow n[\sigma]$ is valid.

PROOF. (logical_conf.v - logical_step_subst) By induction on the derivation of $m \rightsquigarrow n$.

LEMMA 2. For terms m and n and substitution σ , if there is $m \rightsquigarrow^* n$ then $m[\sigma] \rightsquigarrow^* n[\sigma]$ is valid.

Proof. (logical_conf.v - logical_red_subst)
Immediate from Lemma 1 and the definition of \rightsquigarrow *.

LEMMA 3. For substitutions σ and τ , if for any variable x there is $\sigma(x) \rightsquigarrow^* \tau(x)$, then for any term m there is $m[\sigma] \rightsquigarrow^* m[\tau]$.

Proof. (logical conf.v - logical red compat)

By induction on the structure of m. Due to the fact that iterated reduction \sim^* is congruent over all syntactic cases, we can directly prove this result for all individual cases.

Lemma 4. For terms m and n and substitution σ , if there is $m \simeq n$ then $m[\sigma] \simeq n[\sigma]$ is valid.

Proof. (logical_conf.v - logical_conv_subst)

Conversion $m \simeq n$ is defined as m and n being joinable by iterated logical reductions. So it suffices to show that for $m \leadsto n$ there is $m[\sigma] \leadsto n[\sigma]$ which we have already proven as Lemma 1.

LEMMA 5. For substitutions σ and τ , if for any variable x there is $\sigma(x) \simeq \tau(x)$, then for any term m there is $m[\sigma] \simeq m[\tau]$.

PROOF. (logical_conf.v - logical_conv_compat)

By induction on the structure of m. Due to the fact that conversion \simeq is congruent over all syntactic cases, we can directly prove this result for all individual cases.

LEMMA 6. For any m there is $m \rightsquigarrow_p m$.

Proof. (logical_conf.v - pstep_reflexive)

By induction on the structure of *m*.

Lemma 7. For terms m and n, if there is $m \rightsquigarrow_p n$, then there is $m \rightsquigarrow^* n$.

PROOF. (logical_conf.v - pstep_logical_red)

By induction on the derivation of $m \rightsquigarrow_p n$. The interesting cases are the β -reduction of λ -terms and ι -reduction of pairs. Both of these cases are proven by applying Lemma 2 and Lemma 3. \square

LEMMA 8. For terms m and n and substitution σ , if there is $m \leadsto_p n$ then $m[\sigma] \leadsto_p n[\sigma]$ is valid.

Proof. (logical_conf.v - pstep_subst)

By induction on the derivation of $m \rightsquigarrow_p n$.

Lemma 9. For terms m and n and substitutions σ and τ , if $m \rightsquigarrow_p n$ and for any variable x there is $\sigma(x) \rightsquigarrow_p \tau(x)$, then $m[\sigma] \rightsquigarrow_p n[\tau]$.

PROOF. (logical_conf.v - pstep_compat)

By induction on the derivation of $m \rightsquigarrow_p n$. Due to the fact that \rightsquigarrow_p is congruent over the syntax of terms by definition, the induction hypothesis is sufficiently strong to prove all cases.

LEMMA 10 (DIAMOND PROPERTY OF PARALLEL REDUCTION). For term m, if there is $m \rightsquigarrow_p m_1$ and $m \rightsquigarrow_p m_2$, then there exists m' such that $m_1 \rightsquigarrow_p m'$ and $m_2 \rightsquigarrow_p m'$.

PROOF. (logical_conf.v - pstep_diamond)

By induction on the derivation of $m \rightsquigarrow_p m_1$. For each case the syntactic form of m is fixed, allowing us to perform case analysis on the derivation of $m \rightsquigarrow_p m_2$. All resulting cases can be proven by applying Lemmas 6 and 9 and the corresponding induction hypothesis.

Theorem 1 (Confluence of Logical Reductions). If $m \rightsquigarrow^* m_1$ and $m \rightsquigarrow^* m_2$, then there exists n such that $m_1 \rightsquigarrow^* n$ and $m_2 \rightsquigarrow^* n$.

Proof. (logical conf.v - confluence)

Immediate corollary of Lemma 7 and Lemma 10.

10.1.2 Weakening

Weakening at the logical level is proven through a generalized renaming lemma. We first define a ternary relation logical-agree- $ren(\xi, \Gamma, \Gamma')$ that essentially applies renaming ξ to context Γ and obtains a new context Γ' . The formal rules for this relation are presented in Figure 2.

$$\frac{}{logical\text{-}agree\text{-}ren(\xi,\epsilon,\epsilon)} \text{(logical-agree-ren-nil)}$$

$$\frac{\Gamma \vdash A : s \quad logical\text{-}agree\text{-}ren(\xi,\Gamma,\Gamma') \quad x \not\in \Gamma}{logical\text{-}agree\text{-}ren(\xi \cup \{x \mapsto x\}, (\Gamma,x : A), (\Gamma',x : A[\xi]))} \text{(logical-agree-ren-cons)}$$

$$\frac{\Gamma' \vdash A : s \quad logical\text{-}agree\text{-}ren(\xi,\Gamma,\Gamma') \quad x \not\in \Gamma'}{logical\text{-}agree\text{-}ren(\xi,\Gamma,(\Gamma',x : A))} \text{(logical-agree-ren-cons)}$$

Fig. 2. Agreement on Logical Renaming (logical_weak.v - logical_agree_ren)

Lemma 11. If there is $\Gamma \vdash$, then there is logical-agree-ren(id, Γ, Γ) where id is the identity renaming.

```
Proof. (logical weak.v - logical agree ren refl)
```

By induction on the derivation of $\Gamma \vdash$. Due to the fact that all entries in Γ are well-typed, we can repeatedly apply the logical-agree-ren(ξ , Γ , Γ). As no renaming is actually carried out in this construction, ξ remains the identity renaming.

LEMMA 12. If there is logical-agree-ren (ξ, Γ, Γ') and x : A is an entry in Γ , then $\xi(x) : A[\xi]$ is an entry in Γ' .

Proof. (logical weak.v - logical agree ren has)

By induction on the derivation of *logical-agree-ren*(ξ , Γ , Γ'). The LOGICAL-AGREE-REN-CONS rule presents two cases where x: A is the new entry added by the rule or a previously existing entry.

- If x : A is the newly added entry to Γ , then $(\xi \cup \{x \mapsto x\})(x) : A[\xi \cup \{x \mapsto x\}]$ is equal to $x : A[\xi]$ which is exactly the entry added to Γ' .
- If x : A is a previously existing entry in Γ and assuming that the new entry added is y : B, then we need to show that (ξ ∪ {y ↦ y})(x) : A[ξ ∪ {y ↦ y}] is an entry in Γ', y : B[ξ]. We can simplify (ξ ∪ {y ↦ y})(x) : A[ξ ∪ {y ↦ y}] to ξ(x) : A[ξ] as x ≠ y and y does not occur in A. Finally, we know by induction that ξ(x) : A[ξ] is an entry in Γ' so it must also be an entry in Γ', y : B[ξ].

LEMMA 13. Given $\Gamma \vdash m : A$ and logical-agree-ren (ξ, Γ, Γ') , then $\Gamma' \vdash m[\xi] : A[\xi]$.

```
Proof. (logical_weak.v - logical_rename)
```

By mutual induction on the derivation of $\Gamma \vdash m : A$ and $\Gamma \vdash$. The interesting case is the variable case which is proven by applying Lemma 12.

```
LEMMA 14. Given \Gamma \vdash m : A and \Gamma \vdash B : s, then \Gamma, x : B \vdash m : A if x \notin \Gamma.
```

```
Proof. (logical_weak.v - logical_weaken)
```

Lemma 11 allows us to construct logical-agree- $ren(id, \Gamma, \Gamma)$ since Γ is a well-formed logical context. Applying logical-agree-ren($id, \Gamma, \Gamma, x : B$) which allows us to prove our initial goal using Lemma 13.

10.1.3 Substitution

We first prove a general lemma for simultaneous substitutions. To prove the general lemma, we define a relation $\Gamma_1 \vdash \sigma \dashv \Gamma_2$ that essentially applies substitution σ to context Γ_2 and obtains a new context Γ_1 . The formal rules for deriving this relation are presented in Figure 3.

$$\frac{\Gamma_1 \vdash \sigma \vdash \Gamma_2 \qquad \Gamma_2 \vdash A : s \qquad x \notin \Gamma_2}{\Gamma_1, x : A[\sigma] \vdash \sigma \cup \{x \mapsto x\} \vdash \Gamma_2, x : A} \text{(logical-agree-subst-ty)}$$

$$\frac{\Gamma_1 \vdash \sigma \vdash \Gamma_2 \qquad \Gamma_1 \vdash n : A[\sigma] \qquad x \notin \Gamma_2}{\Gamma_1 \vdash \sigma \cup \{x \mapsto n\} \vdash \Gamma_2, x : A} \text{(logical-agree-subst-wk)}$$

$$\frac{A \simeq B \qquad \Gamma_1 \vdash B[\sigma] : s \qquad \Gamma_2 \vdash B : s \qquad \Gamma_1 \vdash \sigma \vdash \Gamma_2, x : A}{\Gamma_1 \vdash \sigma \vdash \Gamma_2, x : B} \text{(logical-agree-subst-conv)}$$

Fig. 3. Agreement on Logical Substitution (logical_subst.v - logical_agree_subst)

LEMMA 15. If there is $\Gamma \vdash$, then there is $\Gamma \vdash$ ids $\dashv \Gamma$ where ids is the identity substitution.

Proof. (logical_subst.v - logical_agree_subst_refl)
By similar argument to Lemma 11.

LEMMA 16. If there is $\Gamma_1 \vdash \sigma \dashv \Gamma_2$ and $\Gamma_1 \vdash$ and x : A is an entry in Γ_2 , then $\Gamma_1 \vdash \sigma(x) : A[\sigma]$.

Proof. (logical_subst.v - logical_agree_subst_has)

By induction on the derivation of $\Gamma_1 \vdash \sigma \dashv \Gamma_2$. The LOGICAL-AGREE-SUBST-TY rule gives rise to the two interesting cases where x : A is the entry added by the rule or a previously existing entry.

- If x : A is newly added, we must show $\Gamma_1, x : A[\sigma] \vdash (\sigma \cup \{x \mapsto x\})(x) : A[\sigma \cup \{x \mapsto x\}]$. Due to the fact that $x \notin \Gamma_2$, we can simplify the goal to $\Gamma_1, x : A[\sigma] \vdash x : A[\sigma]$. This simplified goal is proven by the logical rule for variables.
- If x:A is previously existing, let y:B be the newly added entry to Γ_2 . We must show that $\Gamma_1, y:B[\sigma] \vdash (\sigma \cup \{y \mapsto y\})(x):A[\sigma \cup \{y \mapsto y\}]$. Due to $x \neq y$ and $y \notin \Gamma_2$ we can simplify our goal to $\Gamma_1, y:B[\sigma] \vdash \sigma(x):A[\sigma]$. We know by assumption that $\Gamma_1, y:B[\sigma] \vdash$ so there exists sort s such that $\Gamma_1 \vdash B[\sigma]:s$. Now we can weaken the induction hypothesis $\Gamma_1 \vdash \sigma(x):A[\sigma]$ with Lemma 14 and $\Gamma_1 \vdash B[\sigma]:s$ to prove our intended goal.

LEMMA 17. Given $\Gamma_2 \vdash m : A$ and $\Gamma_1 \vdash \sigma \dashv \Gamma_2$, there is $\Gamma_1 \vdash m[\sigma] : A[\sigma]$.

Proof. (logical subst.v - logical substitution)

By mutual induction over the derivation of $\Gamma_2 \vdash m : A$ and $\Gamma_2 \vdash$. The interesting case is the variable case which is proven by applying Lemma 16.

(logical_subst and logical_ctx_conv in file logical_subst.v)

LEMMA 18. Given $\Gamma, x : A \vdash m : B$ and $\Gamma \vdash n : A$, there is $\Gamma \vdash m[n/x] : B[n/x]$.

LEMMA 19. Given $\Gamma \vdash B : s$ and $\Gamma, x : A \vdash m : C$ and $B \simeq A$, there is $\Gamma, x : B \vdash m : C$.

10.1.4 Type Validity

In order to prove the type validity theorem, a collection of inversion lemmas for logical typing must be proven first.

LEMMA 20. Given $\Gamma \vdash \Pi_s\{x : A\}.B : C$, there exists sort t such that $\Gamma, x : A \vdash B : t$ and $C \simeq s$.

Proof. (logical_inv.v - logical_pi0_inv)

By induction on the derivation of $\Gamma \vdash \Pi_s\{x : A\}.B : C$.

LEMMA 21. Given $\Gamma \vdash \Pi_s(x:A).B:C$, there exists sort t such that $\Gamma, x:A \vdash B:t$ and $C \simeq s$.

PROOF. (logical inv.v - logical pi1 inv)

By induction on the derivation of $\Gamma \vdash \Pi_s(x:A).B:C$.

LEMMA 22. Given $\Gamma \vdash \Sigma_t \{x : A.B\} : C$, there exist sorts s and r such that $s \sqsubseteq t$ and $\Gamma \vdash A : s$ and $\Gamma, x : A \vdash B : r$ and $C \simeq t$.

Proof. (logical_inv.v - logical_sig0_inv)

By induction on the derivation of $\Gamma \vdash \Sigma_t \{x : A.B\} : C$.

LEMMA 23. Given $\Gamma \vdash \Sigma_t(x : A.B) : C$, there exist sorts s and r such that $s \sqsubseteq t$ and $r \sqsubseteq t$ and $\Gamma \vdash A : s$ and $\Gamma, x : A \vdash B : r$ and $C \simeq t$.

PROOF. (logical_inv.v - logical_sig1_inv)

By induction on the derivation of $\Gamma \vdash \Sigma_t(x : A.B) : C$.

Lemma 24. Given $\Gamma \vdash A \&_t B : C$, there exist sorts s and r such that $\Gamma \vdash A : s$ and $\Gamma \vdash B : r$ and $C \simeq t$.

Proof. (logical inv.v - logical with inv)

By induction on the derivation of $\Gamma \vdash A \&_t B : C$.

LEMMA 25. Given $\Gamma \vdash m =_A n : B$, there is $\Gamma \vdash m : A$ and $\Gamma \vdash n : A$ and $B \simeq U$.

Proof. (logical_inv.v - logical_id inv)

By induction on the derivation of $\Gamma \vdash m =_A n : B$.

Lemma 26. The judgments $\Gamma \vdash \lambda_{s_1}\{x:A_1\}.m:C$ and $C \simeq \Pi_{s_2}(x:A_2).B$ are contradictory.

PROOF. (logical_inv.v - logical_lam0_pi1_false)

By induction on the derivation of $\Gamma \vdash \lambda_{s_1}\{x:A_1\}.m:C$, term C must be convertible to a Π 0-type. However, Π 0-types and Π 1-types are inconvertible, so $C \simeq \Pi_{s_2}(x:A_2).B$ is a contradiction. \square

Lemma 27. The judgments $\Gamma \vdash \lambda_{s_1}(x:A_1).m:C$ and $C \simeq \prod_{s_2} \{x:A_2\}.B$ are contradictory.

Proof. (logcal_inv.v - logical_lam1_pi0_false)

By induction on the derivation of $\Gamma \vdash \lambda_{s_1}(x:A_1).m:C$, term C must be convertible to a Π 1-type. However, Π 1-types and Π 0-types are inconvertible, so $C \simeq \Pi_{s_2}\{x:A_2\}.B$ is a contradiction. \square

LEMMA 28. The judgments $\Gamma \vdash \{m_1, m_2\}_{s_1} : C \text{ and } C \simeq \Sigma_{s_2}(x : A.B)$ are contradictory.

Proof. (logical_inv.v - logical_pair0_sig1_false)

By induction on the derivation of $\Gamma \vdash \{m_1, m_2\}_{s_1} : C$, term C must be convertible to a Σ 0-type. However, Σ 0-types and Σ 1-types are inconvertible, so $C \simeq \Sigma_{s_2}(x : A.B)$ is a contradiction. \square

Lemma 29. The judgments $\Gamma \vdash \langle m_1, m_2 \rangle_{s_1} : C$ and $C \simeq \Sigma_{s_2} \{x : A.B\}$ are contradictory.

PROOF. (logical inv.v - logical pair1 sig0 false)

By induction on the derivation of $\Gamma \vdash \langle m_1, m_2 \rangle_{s_1} : C$, term C must be convertible to a Σ 1-type. However, Σ 1-types and Σ 0-types are inconvertible, so $C \simeq \Sigma_{s_2} \{x : A.B\}$ is a contradiction. \square

Theorem 2 (Type Validity). For any logical typing $\Gamma \vdash m : A$, there exists sort s such that $\Gamma \vdash A : s$ is derivable.

Proof. (logical valid.v - logical valid)

By induction on the derivation of $\Gamma \vdash m : A$. The interesting cases are due to dependent function application and dependent pair elimination.

- In the $\Pi 0$ application case, assuming that $\Gamma \vdash m : \Pi_s\{x : A\}.B$ and $\Gamma \vdash n : A$ we must show that there exists a sort t such that $\Gamma \vdash B[n/x] : t$. By induction we know that there exists sort r such that $\Gamma \vdash \Pi_s\{x : A\}.B : r$. Applying Lemma 20 here allows us to conclude that there exists t_0 such that $\Gamma, x : A \vdash B : t_0$. Lemma 18 allows us to substitute n for x in the context which results in $\Gamma \vdash B[n/x] : t_0$ and completes the proof for this case.
- The $\Pi 1$ application case is virtually identical to the $\Pi 0$ application case, but instead of applying Lemma 20, we apply Lemma 21 to invert the derivation of $\Gamma \vdash \Pi_s(x : A).B : r$.
- In the $\Sigma 0$ elimination case, assuming that $\Gamma, z : \Sigma_t \{x : A.B\} \vdash C : s$ and $\Gamma \vdash m : \Sigma_t \{x : A.B\}$ we must show that there exists a sort r such that $\Gamma \vdash C[m/z] : r$. It is obvious that r = s and substituting m for z in the context using Lemma 18 proves the goal.
- The $\Sigma 1$ elimination case follows exactly the same reasoning as the $\Sigma 0$ case.

We can proceed to prove more inversion lemmas for the logical level using type validity. Note that all of the following lemmas are proven by specializing a generalized version. As these generalized lemmas are not interesting nor useful later, we elide their statements and proofs.

```
Lemma 30. Given \Gamma \vdash \lambda_{s_2}\{x:A_2\}.m:\Pi_{s_1}\{x:A_1\}.B, then we have \Gamma, x:A_1 \vdash m:B.
```

Proof. (logical valid.v - logical lam0 inv)

By specialization of generalized $\lambda 0$ inversion lemma.

Lemma 31. Given $\Gamma \vdash \lambda_{s_2}(x:A_2).m:\Pi_{s_1}(x:A_1).B$, then we have $\Gamma, x:A_1 \vdash m:B$.

Proof. (logical valid.v - logical lam1 inv)

By specialization of generalized $\lambda 1$ inversion lemma.

LEMMA 32. Given $\Gamma \vdash \{m, n\}_s : \Sigma_r\{x : A.B\}$, then we have s = r and $\Gamma \vdash m : A$ and $\Gamma \vdash n : B[m/x]$.

PROOF. (logical valid.v - logical pair0 inv)

By specialization of generalized subset-pair inversion lemma.

LEMMA 33. Given $\Gamma \vdash \langle m, n \rangle_s : \Sigma_r(x : A.B)$, then we have s = r and $\Gamma \vdash m : A$ and $\Gamma \vdash n : B[m/x]$.

Proof. (logical valid.v - logical pair1 inv)

By specialization of generalized dependent-pair inversion lemma.

LEMMA 34. Given $\Gamma \vdash (m, n)_s : A \&_r B$, then we have s = r and $\Gamma \vdash m : A$ and $\Gamma \vdash n : B$.

PROOF. (logical_valid.v - logical_apair_inv)

By specialization of generalized additive-pair inversion lemma.

LEMMA 35. Given $\Gamma \vdash refl\ n : m_1 =_A m_2$, then there is $\Gamma \vdash n : A$ and $n \simeq m_1$ and $n \simeq m_2$.

PROOF. (logical_valid.v - logical_refl_inv)

By specialization of generalized refl inversion lemma.

10.1.5 Sort Uniqueness

In order to show sort uniqueness, we must generalize the uniqueness theorem for all types and not just sorts. This is done to obtain a sufficiently strong induction hypothesis. An initial attempt at stating this generalized theorem may be: If there are logical typings $\Gamma \vdash m : A$ and $\Gamma \vdash m : B$, then there is $A \simeq B$. If this theorem is true, then we can utilize $s \simeq t$ to prove s = t in the specialized sort case. Unfortunately, this theorem is false due to the fact that subset pairs do not possess unique types. We define a weaker similarity relation than definitional equality to make sort uniqueness provable. Our similarity relation is defined in two parts. First, a head-sim(A, B) relation is defined which asserts that the syntactic structure of terms A and B are similar. Next, a sim(m, n) relation is defined which asserts that m and n are convertible to terms x and y that are syntactically similar to each other. Notice in the head-sim case for $\Sigma 0$ -type and $\Sigma 1$ -type that the two types are in relation regardless of whether A_1 and A_2 or B_1 and B_2 are in relation or not. This allows sim to work for subset pairs without unique types but also makes it a much weaker relation than definitional equality.

$$\frac{head\text{-}sim(A_1, A_2) \quad head\text{-}sim(B_1, B_2)}{head\text{-}sim(A_1, A_2) \quad head\text{-}sim(B_1, B_2)} \frac{head\text{-}sim(A_1, A_2) \quad head\text{-}sim(B_1, B_2)}{head\text{-}sim(\Pi_s(x:A_1).B_1, \Pi_s(x:A_2).B_2)} \frac{head\text{-}sim(A_1, A_2) \quad head\text{-}sim(B_1, B_2)}{head\text{-}sim(\Pi_s(x:A_1).B_1, \Pi_s(x:A_2).B_2)} \frac{head\text{-}sim(\lambda_s(x:A).m, \lambda_s(x:A).m)}{head\text{-}sim(\lambda_s(x:A).m, \lambda_s(x:A).m)} \frac{head\text{-}sim(m n, m n)}{head\text{-}sim(\Sigma_{s_1}(x:A_1.B_1), \Sigma_{s_2}\{x:A_2.B_2\})} \frac{head\text{-}sim(\Sigma_{s_1}(x:A_1.B_1), \Sigma_{s_2}\{x:A_2.B_2\})}{head\text{-}sim(\Sigma_{s_1}(x:A_1.B_1), \Sigma_{s_2}(x:A_2.B_2))} \frac{head\text{-}sim(\{m, n\}_t, \{m, n\}_t)}{head\text{-}sim(A_1, A_2)} \frac{head\text{-}sim((m, n)_t, (m, n)_t)}{head\text{-}sim(A_1, A_2)} \frac{head\text{-}sim(B_1, B_2)}{head\text{-}sim((m, n)_s, (m, n)_s)} \frac{head\text{-}sim(\pi_1 m, \pi_1 m)}{head\text{-}sim(\pi_1 m, \pi_1 m)} \frac{head\text{-}sim(\pi_2 m, \pi_2 m)}{head\text{-}sim(\pi_2 m, \pi_2 m)} \frac{head\text{-}sim(A_1, A_2)}{head\text{-}sim(m = A_1, n, m = A_2, n)} \frac{head\text{-}sim(refl m, refl m)}{head\text{-}sim(x, y)} \frac{m \approx x \quad head\text{-}sim(x, y)}{sim(m, n)} \frac{y \approx n}{sim(m, n)}$$

Fig. 4. Head Similarity and Similarity (logical uniq.v - head sim - sim)

Lemma 36. For any term m, there is head-sim(m, m).

PROOF. (logical_uniq.v - head_sim_reflexive) By induction on the structure of m.

Lemma 37. Given head-sim(m, n), there is head-sim(n, m).

PROOF. (logical_uniq.v - head_sim_sym) By induction on the derivation of head-sim(m, n).

LEMMA 38. Given head-sim (m_1, m_2) and substitution σ , there is head-sim $(m_1[\sigma], m_2[\sigma])$.

Proof. (logical uniq.v - head sim subst)

By induction on the derivation of *head-sim*(m_1 , m_2).

LEMMA 39. For any term m, there is sim(m, m).

PROOF. (logical uniq.v - sim reflexive)

Immediate from Lemma 36.

LEMMA 40. Given sim(m, n), there is sim(n, m).

Proof. (logical_uniq.v - sim_sym)

Immediate from Lemma 37 and the fact that convertibility is an equivalence relation.

Although *head-sim* by itself is a transitive relation, *sim* does not enjoy transitivity due to the fact *head-sim* does not commute with conversion. Luckily, full transitivity for *sim* is not necessary to carry out the proof of sort uniqueness. We only need to prove the following weak-transitivity lemmas.

LEMMA 41. Given sim(x, y) and $y \simeq z$, then we have sim(x, z).

PROOF. (logical uniq.v - sim transL)

Unfold the definition of sim(x, y) and apply the transitivity property of conversion.

LEMMA 42. Given sim(x, y) and $z \simeq x$, then we have sim(z, y).

PROOF. (logical uniq.v - sim transR)

Unfold the definition of sim(x, y) and apply the transitivity property of conversion.

LEMMA 43. Given sim(x, y) and substitution σ , we have $sim(x[\sigma], y[\sigma])$.

Proof. (logical uniq.v - sim subst)

Unfold the definition of sim(x, y) and apply Lemma 38.

LEMMA 44. Given sim(s, t) where s and t are sorts, we have s = t.

PROOF. (logical_uniq.v - sim_sort)

By induction on the derivation of the *head-sim* relation used in the construction of sim(s, t).

LEMMA 45. Given $sim(\Pi_{s_1}\{x:A_1\}.B_1,\Pi_{s_2}\{x:A_2\}.B_2)$, we have $sim(A_1,A_2)$ and $sim(B_1,B_2)$ and $s_1=s_2$.

PROOF. (logical uniq.v - sim pi0 inj)

By induction on the *head-sim* used in the construction of $sim(\Pi_{s_1}\{x:A_1\},B_1,\Pi_{s_2}\{x:A_2\},B_2)$. \square

LEMMA 46. Given $sim(\Pi_{s_1}(x:A_1).B_1, \Pi_{s_2}(x:A_2).B_2)$, we have $sim(A_1, A_2)$ and $sim(B_1, B_2)$ and $s_1 = s_2$.

Proof. (logical uniq.v - sim pi1 inj)

By induction on the *head-sim* used in the construction of $sim(\Pi_{s_1}(x:A_1).B_1,\Pi_{s_2}(x:A_2).B_2)$.

LEMMA 47. Given $sim(A_1 \&_{s_1}B_1, A_2 \&_{s_2}B_2)$, we have $sim(A_1, A_2)$ and $sim(B_1, B_2)$ and $s_1 = s_2$.

Proof. (logical uniq.v - sim with inj)

By induction on the *head-sim* used in the construction of $sim(A_1 \&_{s_1} B_1, A_2 \&_{s_2} B_2)$.

LEMMA 48. Given $sim(m_1 =_{A_1} n_1, m_2 =_{A_2} n_2)$, we have $sim(A_1, A_2)$ and $m_1 \simeq m_2$ and $n_1 \simeq n_2$.

PROOF. (logical_uniq.v - sim_id_inj)

By induction on the *head-sim* used in the construction of $sim(m_1 =_{A_1} n_1, m_2 =_{A_2} n_2)$.

LEMMA 49. If there are logical typings $\Gamma \vdash m : A$ and $\Gamma \vdash m : B$, then sim(A, B).

Proof. (logical uniq.v - logical sim)

By induction on the derivation of $\Gamma \vdash m : A$. In each case, a separate induction can be carried on the derivation of $\Gamma \vdash m : B$. All individual cases can either be refuted or proven using Lemmas 41, 42 and 45 to 48.

Theorem 3 (Sort Uniqueness). If there are logical typings $\Gamma \vdash A : s$ and $\Gamma \vdash A : t$, then s = t.

Proof. (logical uniq.v - logical sort uniq)

We can conclude from Lemma 49 that there is sim(s, t). Applying Lemma 44 we have s = t.

10.1.6 Subject Reduction

Theorem 4 (Logical Subject Reduction). If there are logical typing $\Gamma \vdash m : A$ and reduction $m \rightsquigarrow n$, then $\Gamma \vdash n : A$ is derivable.

Proof. (logical_sr.v - logical_sr)

By induction on the derivation of $\Gamma \vdash m : A$. The cases are mostly standard. When reasoning about function application, Lemma 26 and Lemma 27 need to be applied to rule out contradictory typing judgments. Similarly, Lemma 28 and Lemma 29 need to be applied when reasoning about Σ -elimination to rule out absurd cases.

10.1.7 Strong Normalization

Strong normalization for the logical level of TLL is proven by constructing a model of TLL reductions in MLTT which is known to be strongly normalizing. Figure 5 presents the modeling procedure for the full TLL language. Basically, an MLTT model of logical TLL collapses the two sorts into one and inductively strips terms of their modality and relevancy annotations. The modeling procedure can be naturally extended to logical contexts as presented in Figure 6.

Lemma 50. For any term m and renaming ξ , we have $[m][\xi] = [m[\xi]]$.

Proof. (logical_sn.v - mode_ren_com) By induction on the structure of *m*.

DEFINITION 1. For a TLL substitution σ , we say that τ is a model-substitution of σ if for any variable x there is $[\![\sigma(x)]\!] = \tau(x)$.

LEMMA 51. If τ is a model-substitution of σ , then we have $\llbracket m[\sigma] \rrbracket = \llbracket m \rrbracket [\tau]$.

Proof. (logical_sn.v - model_subst_com)

By induction on the structure of *m*.

LEMMA 52 (LOGICAL REDUCTION MODEL). Given a TLL logical reduction $m \rightsquigarrow_{TLL} n$, the reduction $[\![m]\!] \rightsquigarrow_{MLTT} [\![n]\!]$ can be derived in Martin-Löf type theory.

Proof. (logical_sn.v - model_step)

By induction on the derivation of $m \sim_{TLL} n$ and applying Lemma 51 whenever substitution is required by reduction.

LEMMA 53. Given a TLL logical conversion $m \simeq_{TLL} n$, the conversion $[m] \simeq_{MLTT} [n]$ can be derived in Martin-Löf type theory.

PROOF. (logical_sn.v - model_conv) By induction on the derivation of $m \simeq_{TLL} n$ and applying Lemma 52.

```
[\![x]\!] = x
                                     [U] = Type
                                      [L] = Type
             [\![\Pi_t \{x : A\}.B]\!] = \Pi(x : [\![A]\!]).[\![B]\!]
             [\![\Pi_t(x:A).B]\!] = \Pi(x:[\![A]\!]).[\![B]\!]
              [\![\lambda_t \{x : A\}.B]\!] = \lambda(x : [\![A]\!]).[\![B]\!]
               [\![\lambda_t(x:A).B]\!] = \lambda(x:[\![A]\!]).[\![B]\!]
                                \llbracket m \ n \rrbracket = \llbracket m \rrbracket \ \llbracket n \rrbracket
              [\![ \Sigma_t \{ x : A.B \} ]\!] = \Sigma(x : [\![ A ]\!]).[\![ B ]\!]
              [\![ \Sigma_t(x:A.B) ]\!] = \Sigma(x:[\![A]\!]).[\![B]\!]
[\![R^{\Sigma}_{\lceil z \rceil A}(m,[x,y]n)]\!] = R^{\Sigma}_{\lceil z \rceil \lceil \lceil A \rceil\!]}([\![m]\!],[x,y][\![n]\!])
                          [\![A \&_t B]\!] = [\![A]\!] \times [\![B]\!]
                             [\![\pi_1 \ m]\!] = \pi_1 [\![m]\!]
                             \llbracket \pi_2 m \rrbracket = \pi_2 \llbracket m \rrbracket
                       \llbracket m =_A n \rrbracket = \llbracket m \rrbracket =_{\llbracket A \rrbracket} \llbracket n \rrbracket
                           \llbracket \operatorname{refl} m \rrbracket = \operatorname{refl} \llbracket m \rrbracket
        [\![\mathsf{R}^{=}_{\lceil x,p\rceil\![A]}(H,P)]\!] = \mathsf{R}^{=}_{\lceil x,p\rceil\![A]\!]}([\![H]\!],[\![P]\!])
```

Fig. 5. Logical TLL in Martin-Löf (logical sn.v - model)

$$\label{eq:epsilon} \left[\!\!\left[\epsilon\right]\!\!\right] = \epsilon$$

$$\label{eq:epsilon} \left[\!\!\left[\Gamma,x:A\right]\!\!\right] = \left[\!\!\left[\Gamma\right]\!\!\right], x: \left[\!\!\left[A\right]\!\!\right]$$

Fig. 6. Logical TLL contexts in Martin-Löf (logical sn.v - model ctx)

LEMMA 54 (LOGICAL TYPE MODEL). Given a TLL logical typing judgment $\Gamma \vdash_{TLL} m : A$, the judgment $\llbracket \Gamma \rrbracket \vdash_{MLTT} \llbracket m \rrbracket : \llbracket A \rrbracket$ can be derived in Martin-Löf type theory.

```
Proof. (logical_sn.v - logical_mltt_model)
```

By induction on the derivation of $\Gamma \vdash_{\text{TLL}} m : A$. In the function application and pair elimination cases, Lemma 51 is used to commute the modeling procedure and substitution. In the conversion case, Lemma 53 is used to transform TLL conversion $A \simeq_{\text{TLL}} B$ to MLTT conversion $A \simeq_{\text{TLL}} B$ in order to apply MLTT's conversion rule.

Theorem 5 (Logical Strong Normalization). For any TLL term m with logical typing $\Gamma \vdash m : A$, it is strongly normalizing.

```
Proof. (logical sn.v - logical sn)
```

Suppose there exists term m with logical typing $\Gamma \vdash m : A$ that is not strongly normalizing. Then there is an infinite reduction path starting from m. From Theorem 4 we know that all terms on

this infinite reduction path are also well-typed at the TLL logical level. Applying Lemma 54 and Lemma 52 we obtain an infinite reduction path in MLTT where each term on the path is also well-typed in MLTT. This is contradictory to the fact that MLTT is strongly normalizing so the logical level of TLL must be strongly normalizing.

10.1.8 Progress

We define judgment *m logical-val* in Figure 7 that asserts *m* to be a value at the logical level.

Fig. 7. Logical Values (logical step.v - logical val)

To prove the progress theorem for the logical level we must first prove a collection of canonical form lemmas.

LEMMA 55. Given $\epsilon \vdash m : C$ and $C \simeq \Pi_s\{x : A\}$. B and m logical-val there must exist terms A' and n such that $m = \lambda_s\{x : A'\}$.n.

```
PROOF. (logical_prog.v - logical_pi0_canonical) By induction on the derivation of \epsilon \vdash m : C.
```

LEMMA 56. Given $\epsilon \vdash m : C$ and $C \simeq \Pi_s(x : A).B$ and m logical-val there must exist terms A' and n such that $m = \lambda_s(x : A').n$.

```
PROOF. (logical_prog.v - logical_pi1_canonical) By induction on the derivation of \epsilon \vdash m : C.
```

LEMMA 57. Given $\epsilon \vdash m : C$ and $C \simeq \Sigma_s\{x : A.B\}$ and m logical-val there must exist terms m_1 and m_2 such that $m = \{m_1, m_2\}_s$.

```
PROOF. (logical_prog.v - logical_sig0_canonical) By induction on the derivation of \epsilon \vdash m : C.
```

LEMMA 58. Given $\epsilon \vdash m : C$ and $C \simeq \Sigma_s(x : A.B)$ and m logical-val there must exist terms m_1 and m_2 such that $m = \langle m_1, m_2 \rangle_s$.

```
PROOF. (logical_prog.v - logical_sig1_canonical) By induction on the derivation of \epsilon \vdash m : C.
```

LEMMA 59. Given $\epsilon \vdash m : C$ and $C \simeq A \&_s B$ and m logical-val there must exist terms m_1 and m_2 such that $m = (m_1, m_2)_s$.

```
PROOF. (logical_prog.v - logical_with_canonical) By induction on the derivation of \epsilon \vdash m : C.
```

LEMMA 60. Given $\epsilon \vdash m : C$ and $C \simeq x =_A y$ and m logical-val there must exist term n such that m = refl n.

```
Proof. (logical_prog.v - logical_id_canonical) By induction on the derivation of \epsilon \vdash m : C.
```

Theorem 6 (Logical Progress). Given logical typing $\epsilon \vdash m : A$, there is m logical-val or there exists term n such that $m \rightsquigarrow n$.

```
Proof. (logical_prog.v - logical_prog) By induction on the derivation of \epsilon \vdash m : A and applying Lemmas 55 to 60. \Box
```

Lemma 61. Given $\epsilon \vdash m : A$, there exists logical value v such that $m \leadsto^* v$.

```
Proof. (logical_prog.v - logical_vn) Consequence of Theorem 5 and Theorem 6.
```

10.2 Program Theories

10.2.1 Weakening

Weakening at the program is proven through a generalized renaming lemma. We first define relation $program-agree-ren(\xi, \Gamma, \Delta, \Gamma', \Delta')$ that essentially applies renaming ξ to contexts Γ and Δ and obtains new contexts Γ' and Δ' .

Fig. 8. Agreement on Program Renaming (program weak.v - program agree ren)

LEMMA 62. Given program-agree-ren $(\xi, \Gamma, \Delta, \Gamma', \Delta')$ then we have logical-agree-ren (ξ, Γ, Γ') .

PROOF. (program_weak.v - program_logical_agree_ren) By induction on the derivation of $program-agree-ren(\xi, \Gamma, \Delta, \Gamma', \Delta')$.

LEMMA 63. Given Γ ; $\Delta \vdash$ we have program-agree-ren(id, Γ , Δ , Γ , Δ) where id is the identity renaming.

Proof. (program_weak.v - program_agree_ren_refl)
Similar argument to Lemma 11.

Lemma 64. Given program-agree-ren $(\xi, \Gamma, \Delta, \Gamma', \Delta')$ and $\Delta \triangleright s$ we have $\Delta' \triangleright s$.

PROOF. (program_weak.v - program_agree_ren_key) By induction on the derivation of *program-agree-ren*(ξ , Γ , Δ , Γ' , Δ').

LEMMA 65. If there is program-agree-ren $(\xi, \Gamma, \Delta, \Gamma', \Delta')$ and $x :_s A$ is an entry in Δ then $\xi(x) :_s A[\xi]$ is an entry in Δ' .

Proof. (program_weak.v - program_agree_ren_has)
Similar argument to Lemma 12.

LEMMA 66. If there is program-agree-ren(ξ , Γ , Δ , Γ' , Δ') and $\Delta_1 \cup \Delta_2 = \Delta$, then there exists Δ'_1 and Δ'_2 such that $\Delta'_1 \cup \Delta'_2 = \Delta'$ and program-agree-ren(ξ , Γ , Δ_1 , Γ' , Δ'_1) and program-agree-ren(ξ , Γ , Δ_2 , Γ' , Δ'_2).

PROOF. (program_weak.v - program_agree_ren_merge) By induction on the derivation of $program-agree-ren(\xi, \Gamma, \Delta, \Gamma', \Delta')$.

LEMMA 67. If there is program typing Γ ; $\Delta \vdash m : A$ and program-agree-ren $(\xi, \Gamma, \Delta, \Gamma', \Delta')$ then there is Γ' ; $\Delta' \vdash m[\xi] : A[\xi]$.

Proof. (program weak.v - program rename)

By mutual induction on the derivation of Γ ; $\Delta \vdash m : A$ and Γ ; $\Delta \vdash$. The general proof steps are similar to Lemma 13. In cases such as the Π 1-application rule where there the overall program context Δ is the result of merging two sub-contexts Δ_1 and Δ_2 , Lemma 66 is applied to split apart assumed relation $program-agree-ren(\xi, \Gamma, \Delta, \Gamma', \Delta')$ into $program-agree-ren(\xi, \Gamma, \Delta_1, \Gamma', \Delta'_1)$ and $program-agree-ren(\xi, \Gamma, \Delta_2, \Gamma', \Delta'_2)$. These two agreement relations for the sub-contexts enable the application of the inductive hypothesis to both the function and the argument. \square

LEMMA 68. Given Γ ; $\Delta \vdash$ and program-agree-ren(ξ , Γ , Δ , Γ' , Δ'), there is Γ' ; $\Delta' \vdash$.

PROOF. (program_weak.v - program_rename_wf) By induction on the derivation of Γ ; $\Delta \vdash$ and Lemma 67.

LEMMA 69 (PROGRAM 0-WEAKENING). For valid program typing Γ ; $\Delta \vdash m : A$ and logical typing $\Gamma \vdash B : s$, the judgment $\Gamma, x : B$; $\Delta \vdash m : A$ is derivable for any $x \notin \Gamma$.

Proof. (program_weak.v - program_weaken0) Immediate from Lemma 67 and Lemma 63.

LEMMA 70 (PROGRAM 1-WEAKENING). For valid program typing Γ ; $\Delta \vdash m : A$ and logical typing $\Gamma \vdash B : U$, the judgment $\Gamma, x : B$; $\Delta, x :_U B \vdash m : A$ is derivable for any $x \notin \Gamma$.

Proof. (program_weak.v - program_weaken1) Immediate from Lemma 67 and Lemma 63.

10.2.2 Reflection

Theorem 7 (Program Reflection). For any program typing Γ ; $\Delta \vdash m : A$, logical typing $\Gamma \vdash m : A$ is derivable.

PROOF. (program_valid.v - program_logical_reflect) By induction on the derivation of Γ ; $\Delta \vdash m : A$.

LEMMA 71. For any program typing Γ ; $\Delta \vdash m : A$, there exists sort s such that $\Gamma \vdash A : s$.

Proof. (program_valid.v - program_valid) Immediate from Theorem 7 and Lemma 71.

10.2.3 Value Stability

Theorem 8 (Value Stability). If v is a value as defined by Section 6.1 with program typing Γ ; $\Delta \vdash v : A$ and $\Gamma \vdash A : s$, then $\Delta \triangleright s$.

Proof. (program sr.v - program val stability)

We begin the proof by case analysis on sort s. When s = L, the proof is trivial as $\Delta \triangleright L$ is true for any program context Δ . In the case where s = U, we proceed by induction on the derivation of Γ ; $\Delta \vdash v : A$. Most cases such as the introduction rule for $\lambda 1$ can be easily proven by applying Lemma 20 onto the assumption $\Gamma \vdash \Pi_t \{x : A\}.B : U$ and deriving the equality t = U. This allows us to conclude $\Delta \triangleright U$ from assumption $\Delta \triangleright t$. The interesting case is the conversion case. By assumption we know that $\Gamma \vdash B : U$ and $\Gamma \vdash A : r$ and $A \simeq B$. We need to show that $\Gamma \vdash A : U$ in order to apply the induction hypothesis. By definition of conversion, we know that there exists term C such that $A \rightsquigarrow^* C$ and $B \rightsquigarrow^* C$. Applying Theorem 4 we have $\Gamma \vdash C : U$ and $\Gamma \vdash C : r$. Now we can apply Theorem 3 to show that r = U which concludes the proof.

10.2.4 Substitution

We first prove a general lemma for simultaneous substitutions. To prove the general lemma, we define a relation Γ_1 ; $\Delta_1 \vdash \sigma \dashv \Gamma_2$; Δ_2 that essentially applies substitution σ to contexts Γ_2 and Δ_2 and obtains new contexts Γ_1 and Δ_1 . The formal rules for deriving this relation are presented in Figure 9.

$$\frac{\Gamma_1; \Delta_1 \vdash \sigma \dashv \Gamma_2; \Delta_2 \qquad \Gamma_2 \vdash A : s \qquad x \notin \Gamma_2}{\Gamma_1, x : A[\sigma]; \Delta_1, x :_s A[\sigma] \vdash \sigma \cup \{x \mapsto x\} \dashv \Gamma_2, x : A; \Delta_2, x :_s A}$$

$$\frac{\Gamma_1; \Delta_1 \vdash \sigma \dashv \Gamma_2; \Delta_2 \qquad \Gamma_2 \vdash A : s \qquad x \notin \Gamma_2}{\Gamma_1, x : A[\sigma]; \Delta_1 \vdash \sigma \cup \{x \mapsto x\} \dashv \Gamma_2, x : A; \Delta_2} \qquad \frac{\Gamma_1; \Delta_1 \vdash \sigma \dashv \Gamma_2; \Delta_2 \qquad \Gamma_1 \vdash n : A[\sigma] \qquad x \notin \Gamma_2}{\Gamma_1; \Delta_1 \vdash \sigma \cup \{x \mapsto n\} \dashv \Gamma_2, x : A; \Delta_2}$$

$$\frac{\Gamma_1; \Delta_1 \vdash \sigma \cup \{x \mapsto n\} \dashv \Gamma_2, x : A; \Delta_2}{\Gamma_1; \Delta_0 \cup \Delta_0 \vdash \sigma \cup \{x \mapsto n\} \dashv \Gamma_2, x : A; \Delta_2, x :_s A}$$

$$\frac{A \cong B \qquad \Gamma_1 \vdash B[\sigma] : s \qquad \Gamma_2 \vdash B : s \qquad \Gamma_1; \Delta_1 \vdash \sigma \dashv \Gamma_2, x : A; \Delta_2}{\Gamma_1; \Delta_1 \vdash \sigma \dashv \Gamma_2, x : B; \Delta_2}$$

$$\frac{A \cong B \qquad \Gamma_1 \vdash B[\sigma] : s \qquad \Gamma_2 \vdash B : s \qquad \Gamma_1; \Delta_1 \vdash \sigma \dashv \Gamma_2, x : A; \Delta_2, x :_s A}{\Gamma_1; \Delta_1 \vdash \sigma \dashv \Gamma_2, x : B; \Delta_2}$$

Fig. 9. Agreement on Program Substitution (program_subst.v - program_agree subst)

LEMMA 72. Given Γ_1 ; $\Delta_1 \vdash \sigma \dashv \Gamma_2$; Δ_2 and $\Delta_2 \triangleright s$ there is $\Delta_1 \triangleright s$.

Proof. (program_subst.v - program_agree_subst_key) By induction on the derivation of Γ_1 ; $\Delta_1 \vdash \sigma \dashv \Gamma_2$; Δ_2 .

LEMMA 73. Given Γ_1 ; $\Delta_1 \vdash \sigma \dashv \Gamma_2$; Δ_2 there is $\Gamma_1 \vdash \sigma \dashv \Gamma_2$.

PROOF. (program_subst.v - program_logical_agree_subst) By induction on the derivation of Γ_1 ; $\Delta_1 \vdash \sigma \dashv \Gamma_2$; Δ_2 .

LEMMA 74. Given Γ ; $\Delta \vdash$ there is Γ ; $\Delta \vdash$ ids $\dashv \Gamma$; Δ where ids is the identity substitution.

PROOF. (program_subst.v - program_agree_subst_refl) By induction on the structure of Γ .

LEMMA 75. Given judgments Γ_1 ; $\Delta_1 \vdash \sigma \dashv \Gamma_2$; Δ_2 and Γ_1 ; $\Delta_1 \vdash$, if $x :_s A$ is an entry in Δ_2 then there is Γ_1 ; $\Delta_1 \vdash \sigma(x) : A[\sigma]$.

PROOF. (program_subst.v - program_agree_subst_has) By induction on the derivation of Γ_1 ; $\Delta_1 \vdash \sigma \dashv \Gamma_2$; Δ_2 and Lemmas 4, 69, 70 and 72.

Lemma 76. Given Γ_1 ; $\Delta_1 \vdash \sigma \dashv \Gamma_2$; Δ_2 and $\Delta_a \cup \Delta_b = \Delta_2$ there must exist Δ_a' and Δ_b' such that $\Delta_a' \cup \Delta_b' = \Delta_1$ and Γ_1 ; $\Delta_a' \vdash \sigma \dashv \Gamma_2$; Δ_a and Γ_1 ; $\Delta_b' \vdash \sigma \dashv \Gamma_2$; Δ_b .

PROOF. (program_subst.v - program_agree_subst_merge) By induction on the derivation of Γ_1 ; $\Delta_1 \vdash \sigma \dashv \Gamma_2$; Δ_2 .

LEMMA 77. Given program typing Γ_2 ; $\Delta_2 \vdash m : A$ and Γ_1 ; $\Delta_1 \vdash \sigma \dashv \Gamma_2$; Δ_2 there is program typing Γ_1 ; $\Delta_1 \vdash m[\sigma] : A[\sigma]$.

Proof. (program_subst.v - program_substitution)

The proof proceeds similarly to Lemma 67. Lemma 76 is applied to split apart the assumed agreement relation and apply the inductive hypothesis for cases that merge together sub-contexts.

LEMMA 78. Given Γ_2 ; $\Delta_2 \vdash and \Gamma_1$; $\Delta_1 \vdash \sigma \dashv \Gamma_2$; Δ_2 , there is Γ_1 ; $\Delta_1 \vdash$.

PROOF. (program_subst.v - program_substitution_wf) By induction on the derivation of Γ_2 ; $\Delta_2 \vdash$ and Lemma 77.

LEMMA 79 (PROGRAM 0-SUBSTITUTION). If there are program typing Γ , x:A; $\Delta \vdash m:B$ and logical typing $\Gamma \vdash n:A$, then Γ ; $\Delta \vdash m[n/x]:B[n/x]$ is derivable.

Proof. (program_subst.v - program_subst0) Immediate from Lemma 77 and Lemma 74.

LEMMA 80 (PROGRAM 1-SUBSTITUTION). If there are program typings Γ , x:A; Δ_1 , $x:_sA \vdash m:B$ and Γ ; $\Delta_2 \vdash n:A$ and context constraint $\Delta_2 \triangleright s$, then Γ ; $\Delta_1 \cup \Delta_2 \vdash m[n/x]:B[n/x]$ is derivable.

Proof. (program_subst.v - program_subst1) Immediate from Lemma 77 and Lemma 74.

LEMMA 81. Given $B \simeq A$ and $\Gamma \vdash B : s$ and $\Gamma, x : A; \Delta \vdash m : C$, there is $\Gamma, x : B; \Delta \vdash m : C$.

Proof. (program_subst.v - program_ctx_conv0) Immediate from Lemmas 14, 74 and 77.

LEMMA 82. Given $B \simeq A$ and $\Gamma \vdash B : s$ and $\Gamma, x : A; \Delta \vdash m : C$, there is $\Gamma, x : B; \Delta \vdash m : C$.

Proof. (program_subst.v - program_ctx_conv1) Immediate from Lemmas 14, 74 and 77.

10.2.5 Subject Reduction

To prove the subject reduction theorem for the program level, we first proven a collection of inversion lemmas for program typing.

LEMMA 83. Given Γ ; $\Delta \vdash \lambda_{s_1}\{x : A_1\}$.m : C and $C \simeq \prod_{s_2}\{x : A_2\}$.B and Γ , $x : A_2 \vdash B : t$, there is Γ , $x : A_2$; $\Delta \vdash m : B$.

Proof. (program_inv.v - program_lam0_invX) By induction on the derivation of Γ ; $\Delta \vdash \lambda_{s_1} \{x : A_1\}.m : C$.

LEMMA 84. Given Γ ; $\Delta \vdash \lambda_{s_1}(x:A_1).m:C$ and $C \simeq \Pi_{s_2}(x:A_2).B$ and $\Gamma, x:A_2 \vdash B:t$, then there exists r such that $\Gamma, x:A_2$; $\Delta, x:_r A_2 \vdash m:B$ holds.

PROOF. (program_inv.v - program_lam1_invX) By induction on the derivation of Γ ; $\Delta \vdash \lambda_{s_1}(x:A_1).m:C$.

LEMMA 85. Given Γ ; $\Delta \vdash \lambda_{s_2}\{x : A_2\}.m : \Pi_{s_1}\{x : A_1\}.B$, then typing $\Gamma, x : A_1$; $\Delta \vdash m : B$ holds.

Proof. (program_inv.v - program_lam0_inv) Special case of Lemma 83.

LEMMA 86. Given Γ ; $\Delta \vdash \lambda_{s_2}(x : A_2).m : \Pi_{s_1}(x : A_1).B$, then there exists sort r such that typing $\Gamma, x : A_1; \Delta x :_r A_1 \vdash m : B$ holds.

Proof. (program_inv.v - program_lam1_inv) Special case of Lemma 84.

LEMMA 87. Given Γ ; $\Delta \vdash \{m, n\}_s : C$ and $C \simeq \Sigma_r\{x : A.B\}$ and $\Gamma \vdash \Sigma_r\{x : A.B\} : t$, then there are s = r and Γ ; $\Delta \vdash m : A$ and $\Gamma \vdash n : B[m/x]$.

PROOF. (program_inv.v - program_pair0_invX) By induction on the derivation of Γ ; $\Delta \vdash \{m, n\}_s : C$.

LEMMA 88. Given Γ ; $\Delta \vdash \langle m, n \rangle_s : C$ and $C \simeq \Sigma_r(x : A.B)$ and $\Gamma \vdash \Sigma_r(x : A.B) : t$, then there exist Δ_1 and Δ_2 such that $\Delta_1 \cup \Delta_2 = \Delta$ and S = r and Γ ; $\Delta_1 \vdash m : A$ and Γ ; $\Delta_2 \vdash n : B[m/x]$.

PROOF. (program_inv.v - program_pair1_invX) By induction on the derivation of Γ ; $\Delta \vdash \langle m, n \rangle_s : C$.

LEMMA 89. Given Γ ; $\Delta \vdash \{m, n\}_s : \Sigma_r\{x : A.B\}$, then there are s = r and Γ ; $\Delta \vdash m : A$ and $\Gamma \vdash n : B[m/x]$.

Proof. (program_inv.v - program_pair0_inv) Special case of Lemma 87.

LEMMA 90. Given Γ ; $\Delta \vdash \langle m, n \rangle_s : \Sigma_r(x : A.B)$, then there exists Δ_1 and Δ_2 such that $\Delta_1 \cup \Delta_2 = \Delta$ and S = r and S = r

PROOF. (program_inv.v - program_pair1_inv) Special case of Lemma 88.

LEMMA 91. Given Γ ; $\Delta \vdash (m, n)_s : C$ and $C \simeq A \&_r B$ and $\Gamma \vdash A \&_r B : t$, then there are s = r and Γ ; $\Delta \vdash m : A$ and Γ ; $\Delta \vdash n : B$.

PROOF. (program_inv.v - program_apair_invX) By induction on the derivation of Γ ; $\Delta \vdash (m, n)_s : C$.

LEMMA 92. Given Γ ; $\Delta \vdash (m, n)_s : A \&_r B$, there are s = r and Γ ; $\Delta \vdash m : A$ and Γ ; $\Delta \vdash n : B$.

Proof. (program_inv.v - program_apair_inv) Special case of Lemma 91.

In order to prove subject reduction for the arguments applied to $\lambda 1$ -programs, we must lift program reductions into logical reductions in order produce the necessary definitional equalities. However, this lifting cannot be done on for ill-typed terms. Notice that a discrepancy exists between the propositional equality elimination at the logical level and program level. The logical level reduction reduces the equality proof to refl m before elimination. Conversely, the program level does not reduce the proof term at all and immediately performs reduction. However, Lemma 61 allows us to show Lemma 93, basically asserting that these two reduction strategies can be reconciled for logically well-typed closed terms.

LEMMA 93. Given $\epsilon \vdash m : A$ and $m \rightsquigarrow n$ there is $m \rightsquigarrow^* n$.

PROOF. (program_sr.v - program_logical_step)

By induction on the derivation of $\epsilon \vdash m : A$. The only interesting case is the reduction rule for propositional equality elimination. From assumptions $\epsilon \vdash P : m =_A n$ and $\epsilon \vdash n_0 : B[m/x, \text{refl } m/p]$ and $x : A, p : m =_A x \vdash B : s$ we must show $R^=_{[x,p]B}(n_0,P) \rightsquigarrow^* n_0$. Applying Lemma 61 to $\epsilon \vdash P : m =_A n$ we know that there exists logical value P_0 such that $P \rightsquigarrow^* P_0$. By Theorem 4 there is $\epsilon \vdash P_0 : m =_A n$. Now we can apply Lemma 60 to show that there exists n_1 such that $P_0 = \text{refl } n_1$ which also means that $P \rightsquigarrow^* \text{refl } n_1$. Due to the fact the logical reduction is congruent over syntax, we know that $R^=_{[x,p]B}(n_0,P) \rightsquigarrow^* R^=_{[x,p]B}(n_0,\text{refl } n_1)$. Now that the equality proof is in

refl n_1 form, the logical reduction $R_{[x,p]B}^=(n_0, \text{refl } n_1) \rightsquigarrow n_0$ is available. Finally, the transitivity of iterated reductions allows us to conclude the proof.

Theorem 9 (Program Subject Reduction). For any program typing ϵ ; $\epsilon \vdash m : A$ and reduction $m \rightsquigarrow n$, there is ϵ ; $\epsilon \vdash n : A$.

```
Proof. (program sr.v - program sr)
```

By induction on the derivation of ϵ ; $\epsilon \vdash m : A$. Lemma 93 is used to lift program reductions into logical reductions to produce definitional equalities wherever its needed. The interesting case is the typing rule for propositional equality elimination. From assumptions $\epsilon \vdash P : m =_A n$ and ϵ ; $\epsilon \vdash n_0 : B[m/x, \text{refl } m/p]$ and $x : A, p : m =_A x \vdash B : s$ we must show ϵ ; $\epsilon \vdash n_0 : B[n/x, P/p]$. Applying Lemma 61 to $\epsilon \vdash P : m =_A n$ we know that there exists logical value P_0 such that $P \rightsquigarrow^* P_0$. By Lemma 60 there exists term m_0 such that $P_0 = \text{refl } m_0$. By Theorem 4 we obtain $\epsilon \vdash \text{refl } m_0 : m =_A n$. We can now apply Lemma 35 and obtain $\epsilon \vdash m_0 : A$ and $m_0 \simeq m$ and $m_0 \simeq n$. The transitivity of convertibility allows us to derive $m \simeq n$ and refl $m \simeq P$ and conclude the proof using the conversion rule.

10.2.6 Progress

To prove the progress theorem for the program level we must first prove a collection of canonical form lemmas.

LEMMA 94. Given ϵ ; $\epsilon \vdash m : C$ and $C \simeq \Pi_s\{x : A\}$. B and m value, then there exist A and n such that $m = \lambda_s\{x : A\}$.n.

```
Proof. (program_prog.v - program_pi0_canonical) By induction on the derivation of \epsilon; \epsilon \vdash m : C.
```

LEMMA 95. Given ϵ ; $\epsilon \vdash m : C$ and $C \simeq \Pi_s(x : A).B$ and m value, then there exist A and n such that $m = \lambda_s(x : A).n$.

```
PROOF. (program_prog.v - program_pi1_canonical) By induction on the derivation of \epsilon; \epsilon \vdash m : C.
```

LEMMA 96. Given ϵ ; $\epsilon \vdash m : C$ and $C \simeq \Sigma_s\{x : A.B\}$ and m value, then there exist m_1 and m_2 such that $m = \{m_1, m_2\}_s$.

```
PROOF. (program_prog.v - program_sig0_canonical) By induction on the derivation of \epsilon; \epsilon \vdash m : C.
```

LEMMA 97. Given ϵ ; $\epsilon \vdash m : C$ and $C \simeq \Sigma_s(x : A.B)$ and m value, then there exist m_1 and m_2 such that $m = \langle m_1, m_2 \rangle_s$.

```
Proof. (program_prog.v - program_sig1_canonical) By induction on the derivation of \epsilon; \epsilon \vdash m : C.
```

LEMMA 98. Given ϵ ; $\epsilon \vdash m : C$ and $C \simeq A \&_s B$ and m value, then there exist m_1 and m_2 such that $m = (m_1, m_2)_s$.

```
Proof. (program_prog.v - program_with_canonical) By induction on the derivation of \epsilon; \epsilon \vdash m : C.
```

Theorem 10 (Program Progress). If there is program typing ϵ ; $\epsilon \vdash m : A$, then m is either a value or there exists n such that $m \rightsquigarrow n$.

```
PROOF. (program_prog.v - program_prog)
By induction on the derivation of \epsilon; \epsilon \vdash m : A and Lemmas 94 to 98.
```

10.3 Erasure Theories

10.3.1 Existence

THEOREM 11 (ERASURE EXISTENCE). For any well typed program Γ ; $\Delta \vdash m : A$, there exists an extracted version of it m' such that the erasure relation Γ ; $\Delta \vdash m \sim m' : A$ is derivable.

П

PROOF. (erasure_type.v - program_erasure_exist) By induction on the derivation of Γ ; $\Delta \vdash m : A$.

10.3.2 Weakening

Weakening for the erasure relation is proven through a generalized renaming lemma. The renaming agreement relation defined in Section 10.2.1 suffices to strengthen induction for proving the generalized lemma.

LEMMA 99. Given Γ ; $\Delta \vdash m \sim m' : A$ and program-agree-ren $(\xi, \Gamma, \Delta, \Gamma', \Delta')$, there is relation Γ' ; $\Delta' \vdash m[\xi] \sim m'[\xi] : A[\xi]$.

Proof. (erasure_weak.v - erasure_rename) Similar argument to Lemma 67.

Lemma 100. For erasure relation Γ ; $\Delta \vdash m \sim m' : A$ and logical typing $\Gamma \vdash B : s$, the judgment $\Gamma, x : B$; $\Delta \vdash m \sim m' : A$ is derivable for any $x \notin \Gamma$.

Proof. (erasure_weak.v - erasure_weaken0) Immediate from Lemma 99 and Lemma 63.

LEMMA 101. For erasure relation Γ ; $\Delta \vdash m \sim m' : A$ and logical typing $\Gamma \vdash B : U$, the judgment $\Gamma, x : B$; $\Delta, x :_U B \vdash m \sim m' : A$ is derivable for any $x \notin \Gamma$.

Proof. (erasure_weak.v - erasure_weaken1) Immediate from Lemma 99 and Lemma 63.

10.3.3 Substitution

Substitution for the erasure relation is proven through a generalized lemma of simultaneous substitutions. Due to the fact that erased programs may contain \Box , the substitution agreement relation of Section 10.2.4 cannot be immediately reused. We define a new relation Γ_1 ; $\Delta_1 \vdash \sigma_1 \sim \sigma_2 \dashv \Gamma_2$; Δ_2 where σ_1 is substitution for original programs and σ_2 is substitution for erased programs. The rules for deriving this relation are presented in Figure 10.

LEMMA 102. Given Γ_1 ; $\Delta_1 \vdash \sigma_1 \sim \sigma_2 \dashv \Gamma_2$; Δ_2 and $\Delta_2 \triangleright s$ there is $\Delta_1 \triangleright s$.

PROOF. (erasure_subst.v - erasure_agree_subst_key) By induction on the derivation of Γ_1 ; $\Delta_1 \vdash \sigma_1 \sim \sigma_2 \dashv \Gamma_2$; Δ_2 .

LEMMA 103. Given Γ_1 ; $\Delta_1 \vdash \sigma_1 \sim \sigma_2 \dashv \Gamma_2$; Δ_2 there is Γ_1 ; $\Delta_1 \vdash \sigma_1 \dashv \Gamma_2$; Δ_2 .

PROOF. (erasure_subst.v - erasure_program_agree_subst) By induction on the derivation of Γ_1 ; $\Delta_1 \vdash \sigma_1 \sim \sigma_2 \dashv \Gamma_2$; Δ_2 .

LEMMA 104. Given Γ_1 ; $\Delta_1 \vdash \sigma_1 \sim \sigma_2 \dashv \Gamma_2$; Δ_2 there is $\Gamma_1 \vdash \sigma_1 \dashv \Gamma_2$.

Proof. (erasure_subst.v - erasure_logical_agree_subst) Immediate from Lemma 103 and Lemma 73.

$$\frac{\Gamma_1; \Delta_1 \vdash \sigma_1 \sim \sigma_2 + \Gamma_2; \Delta_2 \qquad \Gamma_2 \vdash A : s \qquad x \notin \Gamma_2 }{\Gamma_1, x : A[\sigma_1]; \Delta_1, x :_s A[\sigma_1] \vdash \sigma_1 \cup \{x \mapsto x\} \sim \sigma_2 \cup \{x \mapsto x\} + \Gamma_2, x :_A; \Delta_2, x :_s A }$$

$$\frac{\Gamma_1; \Delta_1 \vdash \sigma_1 \sim \sigma_2 + \Gamma_2; \Delta_2 \qquad \Gamma_2 \vdash A : s \qquad x \notin \Gamma_2 }{\Gamma_1, x :_A[\sigma_1]; \Delta_1 \vdash \sigma_1 \cup \{x \mapsto x\} \sim \sigma_2 \cup \{x \mapsto x\} + \Gamma_2, x :_A; \Delta_2 }$$

$$\frac{\Gamma_1; \Delta_1 \vdash \sigma_1 \sim \sigma_2 + \Gamma_2; \Delta_2 \qquad \Gamma_1 \vdash n :_A[\sigma_1] \qquad x \notin \Gamma_2 }{\Gamma_1; \Delta_1 \vdash \sigma_1 \cup \{x \mapsto n\} \sim \sigma_2 \cup \{x \mapsto n'\} + \Gamma_2, x :_A; \Delta_2 }$$

$$\frac{\Gamma_1; \Delta_a \vdash \sigma_1 \sim \sigma_2 + \Gamma_2; \Delta_2 \qquad \Gamma_1; \Delta_b \vdash n \sim n' :_A[\sigma_1] \qquad \Delta_b \trianglerighteq s \qquad \Delta_a \cup \Delta_b = \Delta_1 \qquad x \notin \Gamma_2 }{\Gamma_1; \Delta_1 \vdash \sigma_1 \cup \{x \mapsto n\} \sim \sigma_2 \cup \{x \mapsto n'\} + \Gamma_2, x :_A; \Delta_2, x :_s A }$$

$$\frac{A \simeq B \qquad \Gamma_1 \vdash B[\sigma_1] :_S \qquad \Gamma_2 \vdash B :_S \qquad \Gamma_1; \Delta_1 \vdash \sigma_1 \sim \sigma_2 + \Gamma_2, x :_A; \Delta_2 }{\Gamma_1; \Delta_1 \vdash \sigma_1 \sim \sigma_2 + \Gamma_2, x :_B; \Delta_2 }$$

$$\frac{A \simeq B \qquad \Gamma_1 \vdash B[\sigma_1] :_S \qquad \Gamma_2 \vdash B :_S \qquad \Gamma_1; \Delta_1 \vdash \sigma_1 \sim \sigma_2 + \Gamma_2, x :_A; \Delta_2, x :_s A }{\Gamma_1; \Delta_1 \vdash \sigma_1 \sim \sigma_2 \vdash \Gamma_2, x :_B; \Delta_2, x :_s B}$$

Fig. 10. Agreement on Erasure Substitution (erasure subst.v - erasure agree subst)

LEMMA 105. Given Γ ; $\Delta \vdash$ there is Γ ; $\Delta \vdash$ ids \sim ids \dashv Γ ; Δ where ids is the identity substitution.

PROOF. (erasure_subst.v - erasure_agree_subst_refl) By induction on the derivation of Γ ; $\Delta \vdash ids \sim ids \dashv \Gamma$; Δ .

LEMMA 106. Given Γ_1 ; $\Delta_1 \vdash \sigma_1 \sim \sigma_2 \dashv \Gamma_2$; Δ_2 and Γ_1 ; $\Delta_1 \vdash$ and if $x :_s A$ is an entry in Δ_2 , then there is Γ_1 ; $\Delta_1 \vdash \sigma_1(x) \sim \sigma_2(x) : A[\sigma_1]$.

PROOF. (erasure_subst.v - erasure_agree_subst_has) By induction on the derivation of Γ_1 ; $\Delta_1 \vdash \sigma_1 \sim \sigma_2 \dashv \Gamma_2$; Δ_2 and Lemmas 4 and 100 to 102.

LEMMA 107. Given Γ_1 ; $\Delta_1 \vdash \sigma_1 \sim \sigma_2 \dashv \Gamma_2$; Δ_2 and $\Delta_a \cup \Delta_b = \Delta_2$, there exist Δ_a' and Δ_b' such that $\Delta_a' \cup \Delta_b' = \Delta_1$ and Γ_1 ; $\Delta_a' \vdash \sigma_1 \sim \sigma_2 \dashv \Gamma_2$; Δ_a and Γ_1 ; $\Delta_b' \vdash \sigma_1 \sim \sigma_2 \dashv \Gamma_2$; Δ_b .

Proof. (erasure_subst.v - erasure_agree_subst_merge) By induction on the derivation of Γ_1 ; $\Delta_1 \vdash \sigma_1 \sim \sigma_2 \dashv \Gamma_2$; Δ_2 and Lemma 102.

LEMMA 108. Given erasure relation Γ_2 ; $\Delta_2 \vdash m \sim m' : A$ and relation Γ_1 ; $\Delta_1 \vdash \sigma_1 \sim \sigma_2 \dashv \Gamma_2$; Δ_2 , there is Γ_1 ; $\Delta_1 \vdash m[\sigma_1] \sim m'[\sigma_2] : A[\sigma_1]$.

Proof. (erasure subst.v - erasure substitution)

Similar argument to Lemma 77. Lemma 107 is applied to split apart the assumed agreement relation and apply the inductive hypothesis for cases that merge together sub-contexts.

LEMMA 109. Given erasure relation Γ , x : A; $\Delta \vdash m \sim m' : B$ and logical typing $\Gamma \vdash n : A$ there is Γ ; $\Delta \vdash m[n/x] \sim m'[\square/x] : B[n/x]$.

Proof. (erasure_subst.v - erasure_subst0) Immediate from Lemma 108 and Lemma 105.

Lemma 110. Given erasure relations $\Gamma, x : A; \Delta, x :_s A \vdash m \sim m' : B$ and $\Gamma; \Delta_2 \vdash n \sim n' : A$ and $\Delta_2 \triangleright s$ and $\Delta_1 \cup \Delta_2 = \Delta$, there is $\Gamma; \Delta \vdash m[n/x] \sim m'[n'/x] : B[n/x]$.

Proof. (erasure_subst.v - erasure_subst1) Immediate from Lemma 108 and Lemma 105.

Lemma 111. Given $B \simeq A$ and logical typing $\Gamma \vdash B : s$ and erasure relation $\Gamma, x : A; \Delta \vdash m \sim m' : C$ there is $\Gamma, x : B; \Delta \vdash m \sim m' : C$.

Proof. (erasure_subst.v - erasure_conv0) Immediate from Lemmas 14, 105 and 108.

Lemma 112. Given $B \simeq A$ and logical typing $\Gamma \vdash B : s$ and $\Gamma, x : A; \Delta, x :_s A \vdash m \sim m' : C$ there is $\Gamma, x : B; \Delta, x :_s B \vdash m \sim m' : C$.

Proof. (erasure_subst.v - erasure_conv1) Immediate from Lemmas 14, 105 and 108.

10.3.4 Subject Reduction

To prove the subject reduction theorem for the erased programs, we first proven a collection of inversion lemmas for the erasure relation.

Lemma 113. If there is Γ ; $\Delta \vdash m \sim x : B$, then there exists variable y such that m = y.

PROOF. (erasure_inv.v - erasure_var_form) By induction on the derivation of Γ ; $\Delta \vdash m \sim x : B$.

LEMMA 114. If there is Γ ; $\Delta \vdash m \sim \lambda_s\{x : A\}.n : B$, then there exist terms A' and n' such that $m = \lambda_s\{x : A'\}.n'$.

PROOF. (erasure_inv.v - erasure_lam0_form) By induction on the derivation of Γ ; $\Delta \vdash m \sim \lambda_s\{x:A\}.n:B$.

LEMMA 115. If there is Γ ; $\Delta \vdash m \sim \lambda_s(x : A).n : B$, then there exist terms A' and n' such that $m = \lambda_s(x : A').n'$.

PROOF. (erasure_inv.v - erasure_lam1_form) By induction on the derivation of Γ ; $\Delta \vdash m \sim \lambda_s(x:A).n:B$.

LEMMA 116. If there is Γ ; $\Delta \vdash m \sim \{m_1, m_2\}_s : A$, then there exist terms m'_1 and m'_2 such that $m = \{m'_1, m'_2\}_s$.

Proof. (erasure_inv.v - erasure_pair0_form) By induction on the derivation of Γ ; $\Delta \vdash m \sim \{m_1, m_2\}_s : A$.

LEMMA 117. If there is Γ ; $\Delta \vdash m \sim \langle m_1, m_2 \rangle_s : A$, then there exist terms m_1' and m_2' such that $m = \langle m_1', m_2' \rangle_s$.

PROOF. (erasure_inv.v - erasure_pair1_form) By induction on the derivation of Γ ; $\Delta \vdash m \sim \langle m_1, m_2 \rangle_s : A$.

LEMMA 118. If there is Γ ; $\Delta \vdash m \sim (m_1, m_2)_s : A$, then there exist terms m'_1 and m'_2 such that $m = (m'_1, m'_2)_s$.

PROOF. (erasure_inv.v - erasure_apair_form) By induction on the derivation of Γ ; $\Delta \vdash m \sim (m_1, m_2)_s : A$.

LEMMA 119. Γ ; $\Delta \vdash m \sim \square : A$ is not derivable.

PROOF. (erasure_inv.v - erasure_box_form) By induction on the derivation of Γ ; $\Delta \vdash m \sim \Box : A$.

LEMMA 120. Given erasure Γ ; $\Delta \vdash \lambda_{s_1}\{x:A_1\}.m_1 \sim \lambda_{s_1}\{x:A_2\}.m_2: C \text{ and } C \simeq \Pi_{s_2}\{x:A_3\}.B \text{ and logical typing } \Gamma, x:A_3 \vdash B: t \text{ there are } \Gamma, x:A_3; \Delta \vdash m_1 \sim m_2: B \text{ and } A_1 \simeq A_3.$

Proof. (erasure_inv.v - erasure_lam0_invX) By induction on the derivation of Γ ; $\Delta \vdash \lambda_{s_1} \{x : A_1\}.m_1 \sim \lambda_{s_1} \{x : A_2\}.m_2 : C$.

Lemma 121. Given erasure Γ ; $\Delta \vdash \lambda_{s_1}(x:A_1).m_1 \sim \lambda_{s_1}(x:A_2).m_2: C$ and $C \simeq \Pi_{s_2}(x:A_3).B$ and logical typing Γ , $x:A_3 \vdash B:t$, then there exists sort r such that Γ , $x:A_3$; $\Delta x:_r A_3 \vdash m_1 \sim m_2: B$ and $A_1 \simeq A_3$.

PROOF. (erasure_inv.v - erasure_lam1_invX) By induction on the derivation of Γ ; $\Delta \vdash \lambda_{s_1}(x:A_1).m_1 \sim \lambda_{s_1}(x:A_2).m_2:C$.

Lemma 122. Given erasure relation Γ ; $\Delta \vdash \lambda_{s_2}\{x:A_1\}.m \sim \lambda_{s_2}\{x:A_2\}.m':\Pi_{s_1}\{x:A_3\}.B$ there are Γ , $x:A_3$; $\Delta \vdash m \sim m':B$ and $A_1 \simeq A_3$.

Proof. (erasure_inv.v - erasure_lam0_inv) Special case of Lemma 120.

LEMMA 123. Given erasure relation Γ ; $\Delta \vdash \lambda_{s_2}(x:A_1).m \sim \lambda_{s_2}(x:A_2).m': \Pi_{s_1}(x:A_3).B$, then there exists sort r such that Γ , $x:A_3$; Δ , $x:_rA_3 \vdash m \sim m': B$ and $A_1 \simeq A_3$.

Proof. (erasure_inv.v - erasure_lam1_inv) Special case of Lemma 121.

LEMMA 124. Given erasure Γ ; $\Delta \vdash \{m, n\}_s \sim \{m', n'\}_s : C \text{ and } C \simeq \Sigma_r \{x : A.B\} \text{ and logical typing } \Gamma \vdash \Sigma_r \{x : A.B\} : t \text{ there are } s = r \text{ and } n' = \square \text{ and } \Gamma$; $\Delta \vdash m \sim m' : A \text{ and } \Gamma \vdash n : B[m/x]$.

PROOF. (erasure_inv.v - erasure_pair0_invX) By induction on the derivation of Γ ; $\Delta \vdash \{m, n\}_s \sim \{m', n'\}_s : C$.

LEMMA 125. Given erasure Γ ; $\Delta \vdash \langle m, n \rangle_s \sim \langle m', n' \rangle_s$: C and $C \simeq \Sigma_r(x : A.B)$ and logical typing $\Gamma \vdash \Sigma_r(x : A.B)$: t, then there exist Δ_1 and Δ_2 such that $\Delta_1 \cup \Delta_2 = \Delta$ and s = r and Γ ; $\Delta_1 \vdash m \sim m' : A$ and Γ ; $\Delta_2 \vdash n \sim n' : B[m/x]$.

Proof. (erasure_inv.v - erasure_pair1_invX) By induction on the derivation of Γ ; $\Delta \vdash \langle m, n \rangle_s \sim \langle m', n' \rangle_s : C$.

LEMMA 126. Given erasure relation Γ ; $\Delta \vdash \{m, n\}_s \sim \{m', n'\}_s : \Sigma_r\{x : A.B\}$ there are s = r and $n' = \square$ and Γ ; $\Delta \vdash m \sim m' : A$ and $\Gamma \vdash n : B[m/x]$.

Proof. (erasure_inv.v - erasure_pair0_inv) Special case of Lemma 124.

LEMMA 127. Given erasure relation Γ ; $\Delta \vdash \langle m, n \rangle_s \sim \langle m', n' \rangle_s : \Sigma_r(x : A.B)$, then there exist Δ_1 and Δ_2 such that $\Delta_1 \cup \Delta_2 = \Delta$ and s = r and Γ ; $\Delta_1 \vdash m \sim m' : A$ and Γ ; $\Delta_2 \vdash n \sim n' : B[m/x]$.

Proof. (erasure_inv.v - erasure_pair1_inv)
Special case of Lemma 125.

LEMMA 128. Given erasure relation Γ ; $\Delta \vdash (m, n)_s \sim (m', n')_s : C$ and $C \simeq A \&_r B$ and logical typing $\Gamma \vdash A \&_r B : t$ there are s = r and Γ ; $\Delta \vdash m \sim m' : A$ and Γ ; $\Delta \vdash n \sim n' : B$.

PROOF. (erasure_inv.v - erasure_apair_invX) By induction on the derivation of Γ ; $\Delta \vdash (m, n)_s \sim (m', n')_s : C$.

LEMMA 129. Given erasure relation Γ ; $\Delta \vdash (m, n)_s \sim (m', n')_s : A \&_r B$, then there are s = r and Γ ; $\Delta \vdash m \sim m' : A$ and Γ ; $\Delta \vdash n \sim n' : B$.

PROOF. (erasure_inv.v - erasure_apair_inv)

Special case of Lemma 128.

LEMMA 130. Given Γ ; $\Delta \vdash m \sim m'$: A and m' is a program value, then m must be a program value.

PROOF. (erasure_sr.v - erasure_program_val) By induction on the derivation of Γ ; $\Delta \vdash m \sim m' : A$.

THEOREM 12 (ERASURE SUBJECT REDUCTION). For any erasure relation ϵ ; $\epsilon \vdash m \sim m' : A$ and reduction $m' \rightsquigarrow n'$, there exists program n such that the following diagram commutes.

$$\epsilon; \epsilon \vdash m \sim m' : A$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad$$
 $\epsilon; \epsilon \vdash n \sim n' : A$

Proof. (erasure_sr.v - erasure_sr)

Similar argument to Theorem 9. The back simulated program reduction $m \rightsquigarrow n$ obtained from the induction hypothesis is lifted by Lemma 93 to form definitional equality whenever necessary. \Box

10.3.5 Progress

To prove the progress theorem for erased programs, we first prove a collection of canonical erasure lemmas. These lemmas show that the erasure procedure preserves the syntactic structure of programs.

LEMMA 131. If there is Γ ; $\Delta \vdash \lambda_s\{x : A\}$. $m \sim n : B$, then there exists m' such that $n = \lambda_s\{x : \Box\}$.m'.

PROOF. (erasure_prog.v - erasure_lam0_canonical) By induction on the derivation of Γ ; $\Delta \vdash \lambda_s\{x:A\}.m \sim n:B$.

LEMMA 132. If there is $\Gamma : \Delta \vdash \lambda_s(x : A).m \sim n : B$, then there exists m' such that $n = \lambda_s(x : \Box).m'$.

PROOF. (erasure_prog.v - erasure_lam1_canonical) By induction on the derivation of Γ ; $\Delta \vdash \lambda_s(x:A).m \sim n:B$.

LEMMA 133. If there is Γ ; $\Delta \vdash \{m_1, m_2\}_s \sim n : A$, then there exists m'_1 such that $n = \{m'_1, \square\}_s$.

PROOF. (erasure_prog.v - erasure_pair0_canonical) By induction on the derivation of Γ ; $\Delta \vdash \{m_1, m_2\}_s \sim n : A$.

LEMMA 134. If there is Γ ; $\Delta \vdash \langle m_1, m_2 \rangle_s \sim n : A$, then there exist m_1' and m_2' such that $n = \langle m_1', m_2' \rangle_s$.

PROOF. (erasure_prog.v - erasure_pair1_canonical) By induction on the derivation of Γ ; $\Delta \vdash \langle m_1, m_2 \rangle_s \sim n : A$.

LEMMA 135. If there is Γ ; $\Delta \vdash (m_1, m_2)_s \sim n : A$, then there exist m'_1 and m'_2 such that $n = (m'_1, m'_2)_s$.

PROOF. (erasure_prog.v - erasure_apair_canonical) By induction on the derivation of Γ ; $\Delta \vdash (m_1, m_2)_s \sim n : A$.

Theorem 13 (Erasure Progress). If there is erasure relation ϵ ; $\epsilon \vdash m \sim m' : A$, then m' is a value or there exists n' such that $m' \rightsquigarrow n'$.

Proof. (erasure prog.v - erasure prog)

By induction on the derivation of ϵ ; $\epsilon \vdash m \sim m' : A$. In each case, one of the program canonical form lemmas (Lemmas 94 to 98) is applied to fix the syntactic structure of the original program being erased. An appropriate erasure canonical form lemma (Lemmas 131 to 135) is then applied to fix the syntactic structure of the resulting program after erasure. This allows one to determine whether the erased program is a program value or can reduce.

10.4 Heap Theories

10.4.1 Resolution Stability

We first define a m resolved judgment in Figure 11 which asserts that erased program m does not contain pointers.

		m resolved		m resolved		m resolved		
$\overline{x resolved}$		$\lambda_s\{x:\square\}.m \ resolved$		$\overline{\lambda_s(x:\square).m \ resolved}$		$m \square resolved$		
m resolved	n resolved	m	resolved	m resolved	n resolved	m resolved	n resolved	
m n resolved		$\overline{\{m,\Box\}_t \ resolved}$		$\langle m, n \rangle_t$ resolved		$R_{\square}^{\Sigma}(m,[x,y]n)$ resolved		
m reso	m resolved n reso		m resolve	ed	m resolved		m resolved	
$(m,n)_t$ resolve		π_1 m resolved		$\overline{\pi_2 m resolved}$		$\overline{\mathrm{R}_{\square}^{=}(m,\square) \ resolved}$		

Fig. 11. Resolved (heap res.v - resolved)

The following lemma shows that the pointer resolution relation effectively resolves all pointers in a program.

Lemma 136. If there is H; $m \sim m'$, then there is m' resolved.

PROOF. (heap_res.v - heap_resolve_resolved) By induction on the derivation of $H; m \sim m'$.

The pointer resolution relation can be weakened akin to the erasure relation.

LEMMA 137. Given H; $m \sim m'$ there is $H \cup \{l \mapsto_U n\}$; $m \sim m'$ for any l such that $l \notin H$.

PROOF. (heap_res.v - resolve_wk1) By induction on the derivation of H; $m \sim m'$.

Lemma 138. Given Γ ; $\Delta \vdash m \sim n : A$ and $H \triangleright U$, there is H; $n \sim n$

PROOF. (heap_res.v - resolve_erasure_refl) By induction on the derivation of Γ ; $\Delta \vdash m \sim n : A$.

LEMMA 139. Given Γ ; $\Delta \vdash x \sim y : A$ and H; $y \sim z$, there is y = z.

PROOF. (heap_res.v - resolve_erasure_id) By induction on the derivation of Γ ; $\Delta \vdash x \sim y : A$.

LEMMA 140. If there are lookup (H_1, l, m, H_3) and $H_1 \cup H_2 = H$, then there exists H_4 such that lookup (H, l, m, H_4) and $H_3 \cup H_2 = H_4$.

PROOF. (heap_res.v - lookup_merge) By induction on the derivation of $lookup(H_1, l, m, H_3)$.

LEMMA 141. Given lookup(H, l, m, H') and $H \triangleright U$ there is $H' \triangleright U$.

PROOF. (heap_res.v - lookup_pure) By induction on the derivation of lookup(H, l, m, H').

LEMMA 142. Given lookup(H, l, m, H') and lookup (H_1, l, n, H'_1) and $H_1 \cup H_2 = H$, there are m = n and $H'_1 \cup H_2 = H'$.

Proof. (heap res.v - lookup subheap) By induction on the structure of H and inversion of $H_1 \cup H_2 = H$. Lemma 143. Given H_1 ; $m \sim m'$ and $H_1 \cup H_2 = H$ and $H_2 \triangleright U$ there is H; $m \sim m'$. Proof. (heap_res.v - resolve_merge_pure) By induction on the derivation of H_1 ; $m \sim m'$. LEMMA 144. Given lookup(H, l, m, H') and $H_1; *l \sim n$ and $H_1 \cup H_2 = H$, there exists H'_1 such that $H'_1 \cup H_2 = H' \text{ and } H'_1; m \sim n.$ Proof. (heap res.v - resolve lookup) By induction on the derivation of lookup(H, l, m, H'). LEMMA 145. Given lookup(H, l, m, H') and H wr-heap there is $FV(m) = \emptyset$. PROOF. (heap res.v - lookup wr nf) By induction on the derivation of lookup(H, l, m, H'). LEMMA 146. Given H_1 wr-heap and H_2 wr-heap and $H_1 \cup H_2 = H$, there is H wr-heap. Proof. (heap res.v - wr merge) By induction on the structure of H and inversion of $H_1 \cup H_2 = H$. Lemma 147. Given H wr-heap and $H_1 \cup H_2 = H$, there are H_1 wr-heap and H_2 wr-heap. PROOF. (heap res.v - wr merge inv) By induction on the structure of H and inversion of $H_1 \cup H_2 = H$. LEMMA 148. Given lookup(H, l, m, H') and H wr-heap there is H' wr-heap. PROOF. (heap res.v - lookup wr) By induction on the derivation of lookup(H, l, m, H'). LEMMA 149. If there is H wr-heap, then H; $m \sim \square$ is not derivable. Proof. (heap res.v - resolve wr box) Suppose H; $m \sim \square$ were true, \bot can be proven by induction on the derivation of H; $m \sim \square$. LEMMA 150. Given H; $m \sim m'$ and H wr-heap there is $FV(m) \subseteq FV(m')$. Proof. (heap_res.v - resolve_wr_nfi) By induction on the derivation of H; $m \sim m'$ and Lemmas 147 and 149. LEMMA 151. Given H; $m \sim m'$ and H wr-heap there is $FV(m') \subseteq FV(m)$. Proof. (heap res.v - resolve wr nfi') By induction on the derivation of H; $m \sim m'$ and Lemmas 145 and 147 to 149. LEMMA 152. Given H wr-heap then lookup(H, l, *l', H') is not derivable.

LEMMA 153. Given H wr-heap then lookup(H, l, x, H') is not derivable.

Assuming that lookup(H, l, *l', H') were true, then \bot can be proven by induction on the derivation

Proof. (heap res.v - lookup wr ptr)

of lookup(H, l, *l', H').

```
Proof. (heap res.v - lookup wr var)
Assuming that lookup(H, l, x, H') were true, then \perp can be proven by induction on the derivation
of lookup(H, l, x, H').
  LEMMA 154. Given lookup(H, l, \lambda_U \{x : A\}.m, H') and H wr-heap then H = H'.
  Proof. (heap res.v - lookup wr lam0)
By induction on the derivation of lookup(H, l, \lambda_{U}\{x : A\}.m, H').
                                                                                                     LEMMA 155. Given lookup(H, l, \lambda_U(x : A).m, H') and H wr-heap then H = H'.
  Proof. (heap res.v - lookup wr lam1)
By induction on the derivation of lookup(H, l, \lambda_U(x : A).m, H').
                                                                                                     LEMMA 156. Given lookup(H, l, \{m, n\}_U, H') and H wr-heap then H = H'.
  Proof. (heap res.v - lookup wr pair0)
By induction on the derivation of lookup(H, l, \{m, n\}_U, H').
                                                                                                     Lemma 157. Given lookup(H, l, \langle m, n \rangle_U, H') and H wr-heap then H = H'.
  Proof. (heap res.v - lookup wr pair1)
By induction on the derivation of lookup(H, l, \langle m, n \rangle_U, H').
                                                                                                     LEMMA 158. Given lookup(H, l, (m, n)_U, H') and H wr-heap then H = H'.
  Proof. (heap res.v - lookup wr apair)
By induction on the derivation of lookup(H, l, (m, n)_U, H').
                                                                                                     LEMMA 159. Given H wr-heap and H; m \sim x then H \triangleright U.
  Proof. (heap res.v - resolve var inv)
By induction on the derivation of H; m \sim x and Lemmas 152 and 153.
                                                                                                     LEMMA 160. Given H wr-heap and H; m \sim \lambda_s\{x : A\}.n there is H \triangleright s.
  Proof. (heap res.v - resolve lam0 inv)
By induction on the derivation of H; m \sim \lambda_s \{x : A\}.n and Lemmas 152 and 154.
                                                                                                     LEMMA 161. Given H wr-heap and H; m \sim \lambda_s(x : A).n there is H \triangleright s.
  Proof. (heap res.v - resolve lam1 inv)
By induction on the derivation of H; m \sim \lambda_s(x : A).n and Lemmas 152 and 155.
                                                                                                     LEMMA 162. Given H wr-heap and H; m \sim (n_1, n_2)_t there is H \triangleright t.
  Proof. (heap res.v - resolve apair inv)
By induction on the derivation of H; m \sim (n_1, n_2)_t and Lemmas 152 and 158.
                                                                                                     Theorem 14 (Resolution Stability). Given valid instances of well-resolved H \vdash a \sim b \sim c : A,
logical typing \epsilon \vdash A: s and H wr-heap, if b is a value then heap H can be upper bound by constraint
```

PROOF. (heap_res.v - resolution_stability) From the definition of well-resolved we know that $H \vdash a \sim b \sim c : A$ is comprised of ϵ ; $\epsilon \vdash a \sim b : A$ and H; $c \sim b$. We can then carry out induction on the derivation of ϵ ; $\epsilon \vdash a \sim b : A$ and prove the resulting cases by applying the various lemmas we have accumulated up to this point.

 $H \triangleright s$.

The following lemmas show that lookup and pointer resolution are always productive in wrheaps.

Lemma 163. If there are lookup(H, l, m, H') and H wr-heap, then m is a program value.

PROOF. (heap_res.v - wr_lookup_program_val) By induction on the derivation of lookup(H, l, m, H').

Lemma 164. If there are H; $m \sim n$ and m value and H wr-heap, then n is a program value.

Proof. (heap_res.v - resolve_program_val) By induction on the derivation of $H; m \sim n$.

LEMMA 165. If there are $H: *l \sim n$ and H wr-heap, then n is a program value.

Proof. (heap_res.v - wr_resolve_ptr) Immediate from Lemmas 148, 163 and 164.

10.4.2 Substitution

Substitution for the heap semantics is proven through a generalized lemma of simultaneous substitutions. We must define a suitable agreement relation to strengthen the induction hypothesis and also provide bookkeeping for resources held in the heap. The relation that we have designed for this task is presented in Figure 12. Unlike the other substitution relations that we have previously presented, $agree-resolve(\Delta, H, \sigma, \sigma', X)$ is not a morphism between contexts. Instead, this relation maintains that $\sigma(x)$ and $\sigma'(x)$ are always in resolution relation for any $x \in Vars(\Delta)$. The X in this relation is a set of variables such that $\sigma(x) = x$ and $\sigma'(x) = x$ for any $x \in X$.

$$\frac{H \triangleright \mathsf{U} \quad H \ wr-heap}{agree-resolve(\epsilon, H, ids, ids, \emptyset)} \qquad \frac{agree-resolve(\Delta, H, \sigma, \sigma', X) \quad x \notin \Delta}{agree-resolve((\Delta, x :_s A), H, \sigma \cup \{x \mapsto x\}, \sigma' \cup \{x \mapsto x\}, X \cup \{x\})}$$

$$\frac{H_1 \cup H_2 = H \quad H_2 \triangleright \mathsf{U} \quad H_2 \ wr-heap \quad H_2; m \sim m' \quad agree-resolve(\Delta, H_1, \sigma, \sigma', \emptyset) \quad x \notin \Delta}{agree-resolve((\Delta, x :_{\mathsf{U}} A), H, \sigma \cup \{x \mapsto m\}, \sigma' \cup \{x \mapsto m'\}, \emptyset)}$$

$$\frac{H_1 \cup H_2 = H \quad H_2 \ wr-heap \quad H_2; m \sim m' \quad agree-resolve(\Delta, H_1, \sigma, \sigma', \emptyset) \quad x \notin \Delta}{agree-resolve((\Delta, x :_{\mathsf{L}} A), H, \sigma \cup \{x \mapsto m\}, \sigma' \cup \{x \mapsto m'\}, \emptyset)}$$

$$\frac{agree-resolve(\Delta, H, \sigma, \sigma', \emptyset) \quad x \notin \Delta}{agree-resolve(\Delta, H, \sigma, \sigma', \emptyset) \quad x \notin \Delta}$$

Fig. 12. Agreement on Heap Substitution (heap_subst.v - agree_resolve)

LEMMA 166. Given agree-resolve(Δ , H, σ , σ' , X) and $\Delta \triangleright$ s there is $H \triangleright s$.

Proof. (heap_subst.v - agree_resolve_key) By induction on the derivation of agree-resolve($\Delta, H, \sigma, \sigma', X$).

LEMMA 167. Given agree-resolve $(\Delta, H, \sigma, \sigma', X)$ there is $\sigma(x) = x$ for any $x \in X$.

PROOF. (heap_subst.v - nf_agree_resolve_var) By induction on the derivation of agree-resolve($\Delta, H, \sigma, \sigma', X$).

Lemma 168. If there are $FV(m) \subseteq X$ and agree-resolve $(\Delta, H, \sigma, \sigma', X)$, then there is $m = m[\sigma]$.

Proof. (heap_subst.v - nf_agree_resolve) By induction on the structure of *m* and Lemma 167.

Lemma 169. Given agree-resolve $(\Delta, H, \sigma, \sigma', X)$ there is H wr-heap.

Proof. (heap_subst.v - agree_resolve_wr)

By induction on the derivation of *agree-resolve*(Δ , H, σ , σ' , X).

DEFINITION 2. A renaming ξ is an identity renaming relative to set X if $\xi(x) = x$ for any $x \in X$.

LEMMA 170. If ξ is an identity renaming relative to X and $FV(m) \subseteq X$, then $m = m[\xi]$.

Proof. (heap_subst.v - nf_id_ren) By induction on the structure of *m*.

LEMMA 171. If there is H; $m \sim m'$ and H wr-heap and ξ is an identity renaming relative to a set X, then there is H; $m[\xi] \sim m'[\xi]$.

Proof. (heap_subst.v - resolve_ren)

By induction on the derivation of $H; m \sim m'$. The interesting case is the pointer resolution case. From assumptions lookup(H, l, m, H') and $H'; m \sim m'$ and H wr-heap and that ξ is identity relative to X we must show $H; *l \sim m'[\xi]$. From Lemma 145 we know that $FV(m) = \emptyset$ and from Lemma 148 we know that H' wr-heap. Lemma 151 shows that $FV(m') \subseteq FV(m)$ which means that $FV(m') = \emptyset$ and consequently $FV(m') \subseteq X$. From Lemma 170 we know that $m' = m'[\xi]$. Our original proof goal can now be rewritten to $H'; *l \sim m'$ which is trivially proven by applying pointer resolution rule.

LEMMA 172. If there is agree-resolve $(\Delta, H, \sigma, \sigma', X)$ and $x :_S A$ is an entry in Δ , then $H; \sigma(x) \sim \sigma'(x)$.

Proof. (heap subst.v - agree resolve id)

By induction on the derivation of $agree-resolve(\Delta, H, \sigma, \sigma', X)$ and Lemmas 166, 169 and 171. \Box

LEMMA 173. If there is agree-resolve($\Delta, H, \sigma, \sigma', X$) and $\Delta_1 \cup \Delta_2 = \Delta$, then there exist H_1 and H_2 such that $H_1 \cup H_2 = H$ and agree-resolve($\Delta_1, H_1, \sigma, \sigma', X$) and agree-resolve($\Delta_2, H_2, \sigma, \sigma', X$).

PROOF. (heap_subst.v - agree_resolve_merge_inv) By induction on the derivation of agree-resolve($\Delta, H, \sigma, \sigma', X$) and Lemma 147.

LEMMA 174. Given Γ ; $\Delta \vdash m \sim n : A$ and $H_1 \cup H_2 = H$ and H_1 ; $n' \sim n$ and H_1 wr-heap and agree-resolve $(\Delta, H_2, \sigma, \sigma', X)$ there is H; $n'[\sigma] \sim n[\sigma']$.

Proof. (heap_subst.v - resolve_subst)

By induction on the derivation of Γ ; $\Delta \vdash m \sim n : A$ and applying the various lemmas accumulated up to this point.

10.4.3 Subject Reduction

To prove subject reduction for the heap semantics, we must first prove a generalized version of the theorem to account for sub-heaps untouched by reduction.

LEMMA 175. Given H_1 ; $a \sim b \sim c$: A and H wr-heap and $H_1 \cup H_2 = H$, then for heap reduction H; $c \rightsquigarrow H'$; c' there exist heap H'_1 and terms a' and b' such that H'_1 ; $a' \sim b' \sim c'$: A and H' wr-heap and $H'_1 \cup H_2 = H'$ and $a \rightsquigarrow^* a'$ and $b \rightsquigarrow^* b'$.

Proof. (heap_sr.v - heap_srX)

From the definition of well-resolved we know that H_1 ; $a \sim b \sim c : A$ is comprised of ϵ ; $\epsilon \vdash a \sim b : A$ and H_1 ; $c \sim b$. We can carry out induction on the derivation of ϵ ; $\epsilon \vdash a \sim b : A$ and prove the resulting cases by applying the various lemmas we have accumulated to this point.

Theorem 15 (Heap Subject Reduction). Given instances of well-resolved $H \vdash a \sim b \sim c : A$ and H wr-heap, then for heap reduction $H; c \rightsquigarrow H'; c'$ there exist a' and b' such that the following judgments $H' \vdash a' \sim b' \sim c' : A$, H' wr-heap, $a \rightsquigarrow^* a'$ and $b \rightsquigarrow^* b'$ all hold.

```
Proof. (heap sr.v - heap sr))
```

We begin by constructing a new heap H_0 which contains all non-linear entries in H. Notice that $H \cup H_0 = H$ and $H_0 \triangleright U$. Applying Lemma 175 we know that there exist heap H_1' and terms a' and b' such that H_1' ; $a' \sim b' \sim c'$: A and H' wr-heap and $H_1' \cup H_0 = H'$ and $A \sim A \sim A$ and $A \sim A \sim A$

10.4.4 Progress

The following lemma allows one to reframe a heap reduction conducted on sub-heap H_1 to a heap reduction conducted on the entire heap H.

LEMMA 176. If there is H_1 ; $m \rightsquigarrow H'_1$; n and $H_1 \cup H_2 = H$, then there exist H' and n' such that H; $m \rightsquigarrow H'$; n'.

```
PROOF. (heap_prog.v - heap_step_merge) By induction on the derivation of H_1; m \rightsquigarrow H'_1; n.
```

LEMMA 177. If there are H wr-heap and lookup $(H, l, \{m, n\}_t, H')$, then there exists l_m such that $m = *l_m$ and $n = \square$.

```
Proof. (heap_prog.v - lookup_pair0_canonical) By induction on the derivation of H wr-heap. \Box
```

LEMMA 178. If there are H wr-heap and lookup $(H, l, \langle m, n \rangle_t, H')$, then there exist l_m and l_n such that $m = *l_m$ and $n = *l_n$.

```
Proof. (heap_prog.v - lookup_pair1_canonical) By induction on the derivation of H wr-heap. \Box
```

Theorem 16 (Heap Progress). Given valid instances of well-resolved $H \vdash a \sim b \sim c : A$ and H wr-heap, then either there exist heap H' and program c' such that there is reduction $H; c \rightsquigarrow H'; c'$ or there exists a location l such that c = *l.

```
PROOF. (heap prog.v - heap prog)
```

From the definition of well-resolved we know that H; $a \sim b \sim c : A$ is comprised of ϵ ; $\epsilon \vdash a \sim b : A$ and H; $c \sim b$. We can carry out induction on the derivation of ϵ ; $\epsilon \vdash a \sim b : A$ and prove the resulting cases by applying the various lemmas we have accumulated up to this point.