1 Tuned parameters

Table 1: Candidate models for $\mathrm{NH_3N}$ forecasting 1 .

Machine learning techniques	Model names
Ensemble learning	RF
Deep learning	CNN
Deep learning	DNN
Deep learning	RNN
Deep learning	GRU
Deep learning	LSTM

¹All the hyper-parameters are set to be the same. Hidden layer = 10, output layer = 3, learning rate = 5e-05, epoch = 100, experiment times = 3, and scheduler is used for regularization (patience=10, factor=0.5).

Table 2: Configurations for NH₃N forecasting.

Parameter	Values	Pre-processing methods	Parameters
Input	24 hours	SG 1	span=5
Output	3 hours	SG 2	span=7
Train	12/23/21 to 1/09/22	SG 3	span=9
Valid	1/10/22 to 1/15/22	EWMA 1	span=2
Test	1/16/22 to 1/22/22	EWMA 2	span=3
		EWMA 3	span=4
		OR^2	-

²Number 3 stands for the number of features.

2 **Reuslt 1 (Exp-1)**

2.1 test and val loss comparison

- First time showing the results in decending order of test loss.
- LSTM and GRU have lower test loss than RNN, DNN, and RF.
- ullet The lowest test loss of NH $_3$ N forecasting approach has higher validation loss than several approaches.

Table 3: Evaluation of each baseline approach for $\mathrm{NH_3N}$ forecasting.

Rank	Model-Dataset	Test loss*	valid loss
1	GRU-sg7	0.0383 ± 0.0007	1.2508 ±0.0458
2	GRU-sg5	$0.0385 \pm\! 0.0001$	1.2644 ± 0.0081
3	LSTM-ew3	$0.0388 \pm\! 0.0006$	$1.0796 \pm 0.0112(1)$
4	LSTM-sg7	$0.0388 \pm\! 0.0003$	1.1804 ± 0.0296
5	LSTM-sg5	$0.0388 \pm\! 0.0003$	$1.2346\ {\pm}0.0520$
6	GRU-ew2	$0.0389 \pm\! 0.0004$	1.1891 ± 0.0307
7	GRU-ew4	$0.0391 \pm \! 0.0004$	$1.2390 \pm\! 0.0557$
8	LSTM-ew2	$0.0392 \pm\! 0.0006$	$1.0969 \pm 0.0159(2)$
9	GRU-ew3	0.0392 ± 0.0002	1.2199 ± 0.0137
10	LSTM-ew4	$0.0395 \pm\! 0.0010$	$1.1219 \pm 0.0079(3)$
11	GRU-sg9	$0.0396 \pm\! 0.0003$	1.3097 ± 0.0175
12	LSTM-or	$0.0398 \pm\! 0.0003$	1.2612 ± 0.0269
13	LSTM-obs	$0.0405 \pm\! 0.0004$	$1.2366 \pm\! 0.0150$
14	GRU-or	$0.0405 \pm\! 0.0002$	1.3993 ± 0.0532
15	LSTM-sg9	$0.0410 \pm\! 0.0005$	$1.3076\ {\pm}0.0214$
16	GRU-obs	$0.0414 \pm\! 0.0005$	$1.3638 \pm\! 0.0359$
17	RNN-sg5	$0.0415 \pm\! 0.0001$	$1.5088 \pm\! 0.0336$
18	RNN-ew2	$0.0421\ \pm0.0007$	1.5425 ± 0.0566
19	RNN-sg7	$0.0423 \pm\! 0.0008$	$1.6267\ \pm0.0065$
20	RNN-ew4	$0.0432 \pm \! 0.0003$	1.5992 ± 0.0300

2.2 Point out the top forecasting approach of the test loss didn't have the lowest validation loss.

• Test dataset from 1/16 to 1/22 performed differently on the same forecasting approach compared to validation loss.

Table 4: Comparison of $\mathrm{NH_{3}N}$ val/test loss from 1/16 to 1/22.

GRU	Test loss*	Val loss	LSTM	Test loss*	Val loss
sg7	0.0383±0.0007	1.2508±0.0458	ew3	0.0388±0.0006	1.0796±0.0112(1)
sg5	0.0385 ± 0.0001	1.2644 ± 0.0081	sg7	0.0388 ± 0.0003	1.1804±0.0296
ew2	0.0389 ± 0.0004	1.1891±0.0307(1)	sg5	0.0388 ± 0.0003	1.2346 ± 0.0520
ew4	0.0391 ± 0.0004	1.2390±0.0557(3)	ew2	0.0392 ± 0.0006	1.0969±0.0159(2)
ew3	0.0392 ± 0.0002	1.2199±0.0137(2)	ew4	0.0395 ± 0.0010	1.1219±0.0079(3)
sg9	0.0396 ± 0.0003	1.3097±0.0175	or	0.0398 ± 0.0003	1.2612±0.0269
or	0.0405 ± 0.0002	1.3993 ± 0.0532	obs	0.0405 ± 0.0004	1.2366 ± 0.0150
obs	0.0414 ± 0.0005	1.3638 ± 0.0359	sg9	0.0410 ± 0.0005	1.3076 ± 0.0214

2.3 Test dataset from 10/10 to 10/16 performed similar on the same forecasting approach compared to validation loss.

Table 5: Val/test loss of NH_3N from 10/10 to 10/16.

	Test loss	Val loss	LSTM	Test loss	Val loss
ew3	0.0167±0.0000	1.2199±0.0137(2)	ew3	0.0158±0.0004	1.0796±0.0112(1)
ew4	0.0169 ± 0.0001	1.2390±0.0557(3)	ew2	0.0161 ± 0.0000	1.0969±0.0159(2)
ew2	0.0170 ± 0.0004	1.1891±0.0307(1)	ew4	0.0163 ± 0.0003	1.1219±0.0079(3)
sg9	0.0174 ± 0.0002	1.3097 ± 0.0175	sg5	0.0166 ± 0.0001	1.2346 ± 0.0520
sg5	0.0178 ± 0.0004	1.2644 ± 0.0081	obs	0.0175 ± 0.0001	1.2366 ± 0.0150
sg7	0.0180 ± 0.0005	1.2508 ± 0.0458	or	0.0177 ± 0.0002	1.2612±0.0269
or	0.0187 ± 0.0002	1.3993 ± 0.0532	sg7	0.0180 ± 0.0002	1.1804 ± 0.0296
obs	0.0189 ± 0.0002	1.3638 ± 0.0359	sg9	0.0188 ± 0.0002	1.3076 ± 0.0214

2.4 The influence of each pre-processing method on model training is different.

Table 6: Evaluation of pre-processing methods on LSTM and GRU.

Rank	GRU ³	LSTM ³	GRU ⁴	LSTM ⁴
1	sg7	ew3	ew3	ew3
2	sg5	sg7	ew4	ew2
3	ew2	sg5	ew2	ew4
4	ew4	ew2	sg9	sg5
5	ew3	ew4	sg5	obs
6	sg9	or	sg7	or
7	or	obs	or	sg7
8	obs	sg9	obs	sg9

³Number 3 stands for the number of features.

⁴Number 3 stands for the number of features.

3 Result 2 (Exp-2)

Table 7: Evaluation of LSTM trained with positional encoding.

LSTM	Test loss	LSTM-3 ⁵	Test loss
ew3	0.0158±0.0004	ew3	0.0149±0.0001
ew2	0.0161 ± 0.0000	ew2	0.0150 ± 0.0003
ew4	0.0163 ± 0.0003	ew4	0.0152 ± 0.0002
sg5	0.0166 ± 0.0001	sg7	0.0155 ± 0.0003
obs	0.0175 ± 0.0001	sg5	0.0156 ± 0.0001
or	0.0177 ± 0.0002	or	0.0156 ± 0.0002
sg7	0.0180 ± 0.0002	sg9	0.0160 ± 0.0005
sg9	0.0188 ± 0.0002	obs	0.0164 ± 0.0003

 $^{^5}$ Number 3 stands for the number of features.

4 **Result 3 (Exp-3)**

4.1 Colour in baseline performance

Table 8: Evaluation of each baseline approach for colour forecasting.

Rank	Model-Dataset	Test loss*	valid loss
1	LSTM-ew4	0.0136±0.0003	0.7515±0.0310(3)
2	LSTM-ew3	0.0138 ± 0.0001	0.7547 ± 0.0057
3	LSTM-ew2	0.0138 ± 0.0001	0.8011 ± 0.0131
4	GRU-ew3	0.0140 ± 0.0003	0.8068 ± 0.0070
5	GRU-ew2	0.0142 ± 0.0001	0.8330 ± 0.0104
6	LSTM-sg9	0.0143 ± 0.0005	0.7137±0.0216 (1)
7	GRU-ew4	0.0143 ± 0.0001	0.7694 ± 0.0071
8	RNN-ew3	0.0144 ± 0.0002	0.8492 ± 0.0371
9	RNN-sg9	0.0147 ± 0.0003	0.8363 ± 0.0125
10	RNN-ew4	0.0147 ± 0.0001	0.8476 ± 0.0238
11	LSTM-obs	0.0148 ± 0.0003	0.9744 ± 0.0124
12	GRU-obs	0.0149 ± 0.0003	0.9927 ± 0.0076
13	RNN-ew2	0.0150 ± 0.0002	0.9083 ± 0.0202
14	GRU-sg9	0.0151 ± 0.0001	0.7575 ± 0.0253
15	RNN-sg7	0.0158 ± 0.0001	0.8755 ± 0.0249
16	RNN-sg5	0.0158 ± 0.0001	0.8846 ± 0.0180
17	GRU-sg7	0.0159 ± 0.0005	0.7791 ± 0.0152
18	GRU-sg5	0.0160 ± 0.0004	0.8080 ± 0.0210
19	RNN-obs	0.0160 ± 0.0001	1.0623 ± 0.0394
20	LSTM-sg7	0.0161 ± 0.0003	0.7439±0.0364 (2)

Table 9: Evaluation of LSTM trained with positional encoding.

LSTM	Test loss	Val loss	LSTM-3 ⁶	Test loss	Val loss
ew4	0.0136 ± 0.0003	0.7515±0.0310	sg9	0.0120 ± 0.0007	0.5752±0.0147
ew3	0.0138 ± 0.0001	0.7547 ± 0.0057	ew2	0.0132 ± 0.0004	0.6585 ± 0.0035
ew2	0.0138 ± 0.0001	0.8011 ± 0.0131	ew3	0.0134 ± 0.0004	0.6479 ± 0.0076
sg9	0.0143 ± 0.0005	0.7137±0.0216	ew4	0.0135 ± 0.0003	0.6534 ± 0.0196
obs	0.0148 ± 0.0003	0.9744 ± 0.0124	obs	0.0135 ± 0.0001	0.7525 ± 0.0407
sg7	0.0161 ± 0.0003	0.7439 ± 0.0364	sg7	0.0143 ± 0.0003	0.6152 ± 0.0114
sg5	0.0168 ± 0.0005	0.8355 ± 0.0287	sg5	0.0144 ± 0.0002	0.6285 ± 0.0143

⁶Number 3 stands for the number of features.

5 Conclusion

Table 10: Influence of pre-processing on $\mathrm{NH_{3}N}$ and colour forecasting models.

Rank	$\mathrm{NH_{3}N}$	Test loss	Colour	Test loss
1	ew3	0.0149±0.0001	sg9	0.0120±0.0007
2	ew2	0.0150 ± 0.0003	ew2	0.0132 ± 0.0004
3	ew4	0.0152 ± 0.0002	ew3	0.0134 ± 0.0004
4	sg7	0.0155 ± 0.0003	ew4	0.0135 ± 0.0003
5	sg5	0.0156 ± 0.0001	obs	0.0135 ± 0.0001
6	or	0.0156 ± 0.0002	sg7	0.0143 ± 0.0003
7	sg9	0.0160 ± 0.0005	sg5	0.0144 ± 0.0002
8	obs	0.0164 ± 0.0003		