Module 3 Quiz

Quiz, 10 questions

1 point

1.

Based on the network below, what is the degree centrality of node D?

- 0.67
- 0.50
- 0.42
- 0.57

Module 3 Quiz point

Quiz, 10 questions

2.

Based on the network below, what is the closeness centrality of node G?

- 0.75
- 0.875
- 0.6
- 0.7

$Module\ 3\ QuiZ_{\text{ntrality}}^{\text{Based on the network below, what is the normalized betweenness}}$

Quiz, 10 questions

- 0.24
- 0.67
- 0.33
- 0.47

4

$Module~3~Quiz \\ \text{hout normalization of edge (G,F)?}$

Quiz, 10 questions

- () 4
- () ;
- (**1**)
- \bigcirc 7

1 point

5.

Select all True statements.

- The node with highest betwenness centrality in a network also has the highest closeness centrality.
- The assumption of degree centrality is that important nodes have more connections.
- The closeness centrality of a node describes how far the node is from others.

Module 3 Qu Quiz, 10 questions	uiz ✓	In directed networks, in-degree and out-degree centrality of a node are always the same. We can use subsets of node-pairs to approximate betweenness centrality.	
	1 point		
		all True statements about Page Rank (PR) and HITS in ed networks.	
	✓	Nodes with high in-degree centrality have higher PRs than nodes with low in-degree centrality.	
	\checkmark	Nodes that have outgoing edges to good hubs are good authorities, and nodes that have incoming edges from good authorities are good hubs.	
		Adding out-links of a node will always decrease its PR.	
	\checkmark	Adding in-links of a node will never decrease its PR.	
	✓	The authority and hub score of each node is obtained by computing multiple iterations of HITS algorithm and both scores of most networks are convergent.	
	1 point		

Module 3 Quiz, 10 questions Given the network below, which value of alpha (damping Parameter) listed below in the NetworkX function pagerank maximizes the PageRank of node D?

- 0.95
- 0.5
- 0.9
- 0.8

$Module \ 3 \ Quite_{p \ k \ = \ 1?}^{Based \ on \ the \ network \ below, \ what \ is \ the \ basic \ PR \ of \ node \ C \ at }$

Quiz, 10 questions

- 0.125
- 0.625
- 0.5
- 0.375
- 0.25

 $\begin{tabular}{ll} Module 3 & QuiZ \\ Quiz, 10 \\ Questions \end{tabular} \begin{tabular}{ll} Based on the network below, what are the corresponding value of the corresponding value$

- 0.57, 0.09
- 0.4, 0.4
- 0.33, 0.33
- 0.8, 0.2

Module~3~Quereck~all~that~apply.

Quiz, 10 questions

	Node D's basic PR at step k ($k>=1$) is always 0.
✓	At each step, the sum of all nodes' basic PR is always 1.
	At step k ($k \ge 1$), node A's basic PR is always the same as node C's basic PR at step k-1.
✓	Node D's authority and hub score after k iterations (k>=1) are always 0.
✓	I, Varun Varun , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code
	Submit Quiz

Module 3 Quiz

Quiz, 10 questions