Единый государственный экзамен по МАТЕМАТИКЕ Вариант досрочного ЕГЭ 27.03.2023

Профильный уровень

Инструкция по выполнению работы

Экзаменационная работа состоит из двух частей, включающих в себя 18 заданий. Часть 1 содержит 11 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1–11 записываются по приведённому ниже образцу в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите их в бланк ответов № 1.

При выполнении заданий 12–18 требуется записать полное решение и ответ в бланке ответов № 2.

Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.

При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

После завершения работы проверьте, чтобы ответ на каждое задание в бланках ответов № 1 и № 2 был записан под правильным номером.

ЖЕЛАЕМ УСПЕХА!

Справочные материалы

$$\sin^{2}\alpha + \cos^{2}\alpha = 1$$

$$\sin 2\alpha = 2\sin\alpha\cos\alpha$$

$$\cos 2\alpha = \cos^{2}\alpha - \sin^{2}\alpha$$

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

Часть 1

Ответом к заданиям 1-11 является целое число или конечная десятичная дробь. Запишите число в поле ответа в тексте работы, затем перенесите его в БЛАНК ОТВЕТОВ №1 справа от номера соответствующего задания, начиная с первой клеточки. Каждую цифру, знак «минус» и запятую пишите в отдельной клеточке. Единицы измерения писать не нужно.

- **1.** Острые углы прямоугольного треугольника равны 24° и 66°. Найдите угол между биссектрисой и медианой, проведенными из вершины прямого угла. Ответ дайте в градусах.
- **2.** Найдите объем многогранника, вершинами которого являются точки A, D, A_1 , B, C, B_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$, у которого AB=3, AD=4, $AA_1=5$.
- **3.** Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Физик» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Физик» как минимум один раз начнёт игру первой.
- **4.** В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,35. Вероятность того, что кофе закончится в обоих автоматах, равна 0,16. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.
 - **5.** Найдите корень уравнения $\sqrt{34 + 2x} = 6$.

- **6.** Найдите значение выражения $4\sqrt{3}\cos^2\frac{23\pi}{12} 2\sqrt{3}$
- 7. На рисунке изображен график y = f'(x) производной функции f(x), определенной на интервале (-1;10). В какой точке отрезка [5;9] f(x) принимает наибольшее значение?

8. Находящийся в воде водолазный колокол, содержащий $\nu=2$ моля воздуха при давлении $p_1=1,5$ атмосферы, медленно опускают на дно водоёма. При этом происходит изотермическое сжатие воздуха. Работа, совершаемая водой при сжатии воздуха, определяется выражением $A=\alpha \nu T\log_2\frac{p_2}{p_1}$ (Дж), где $\alpha=5,75$ — постоянная, T=300 К — температура воздуха, p_1 (атм) — начальное давление, а p_2 (атм) — конечное давление воздуха в колоколе. До какого наибольшего давления p_2 можно

9. Даша и Маша пропалывают грядку за 12 минут, а одна Маша — за 20 минут. За сколько минут пропалывает грядку одна Даша?

сжать воздух в колоколе, если при сжатии воздуха совершается работа не более чем 6900 Дж? Ответ приведите в атмосферах.

10. На рисунке изображён график функции вида $f(x) = a^x$. Найдите значение f(3).

11. Найдите точку максимума функции $y = x^3 + 15x^2 + 17$

Не забудьте перенести все ответы в бланк ответов \mathfrak{N} 1 в соответствии с инструкцией по выполнению работы. Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания.

Часть 2

Для записи решений и ответов на задания 12-18 используйте БЛАНК ОТВЕТОВ №2. Запишите сначала номер выполняемого задания (12, 13 и т.д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

12. а) Решите уравнение

$$\log_4\left(2^{2x} - \sqrt{3}\cos x - \sin 2x\right) = x.$$

- б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\pi; \frac{7\pi}{2}\right]$.
- **13.** Дан тетраэдр ABCD. На ребре AC выбрана точка K так, что AK:KC=3:7. Также на рёбрах AD, BD и BC выбраны точки L, M и N соответственно так, что KLMN квадрат со стороной 3.
 - а) Докажите, что рёбра AB и DC перпендикулярны
- б) Найдите расстояние от точки B до плоскости KLMN, если объём тетраэдра ABCD равен 100.

14. Решите неравенство:

$$\frac{27^{x+\frac{1}{3}} - 10 \cdot 9^x + 10 \cdot 3^x - 5}{9^{x+\frac{1}{2}} - 10 \cdot 3^x + 3} \le 3^x + \frac{1}{3^x - 2} + \frac{1}{3^{x+1} - 1}$$

- **15.** В июле планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:
- каждый январь долг возрастает на 25% по сравнению с долгом на конец предыдущего года;
- с февраля по июнь необходимо выплатить часть долга одним платежом.

Известно, что сумма всех выплат составила 375 000 рублей. Сколько рублей было взято в банке, если известно, что кредит был полностью погашен четырьмя равными платежами?

- ${f 16.}$ Две окружности касаются внутренним образом в точке A, причём меньшая проходит через центр большей. Хорда BC большей окружности касается меньшей в точке P. Хорды AB и AC пересекают меньшую окружность в точках K и M соответственно.
 - а) Докажите, что прямые KM и BC параллельны.
- 6) Пусть L точка пересечения отрезков $K\!M$ и $A\!P$. Найдите $A\!L$, если радиус большей окружности равен 10, а $B\!C$ = 16.
- **17.** Найдите все значения параметра a, при каждом из которых уравнение

$$\frac{\left|4x\right|-x-3-a}{x^2-x-a}=0$$

имеет ровно два различных решения.

- **18.** Егор делит линейку на части. За одно действие он может отрезать от любого количества, линеек равные части, имеющие целую длину.
- а) Может ли Егор за 4 хода разделить линейку длиной в 16 см на части по 1 см?
- б) Может ли Егор за 5 ходов разделить линейку длиной в 100 см на части по 1 см?
- в) За какое наименьшее количество ходов Егор может разделить линейку длиной в 300 см на части по 1 см?

ОТВЕТЫ ДОСРОЧНОМУ ВАРИАНТУ ЕГЭ 27.03.2023

	1	21	12	
	2	1.00.1		a
4	Was	30	<	O.
				б
	3	0,875	13	4
	3	0,46		
4	5	1	14	(
	6	3	1	
	7	9	15	2
	8	6	16	٦
	9	30	17	(
4	10	8	<	C.
	11	- 10	18	a
		0.514		б
		* Op.		В

12	a) $\frac{\pi}{2} + \pi k$; $-\frac{2\pi}{3} + 2\pi k$; $-\frac{\pi}{3} + 2\pi k$; $k \in \mathbb{Z}$;	75
~		Wo
	6) $\frac{4\pi}{3}$; $\frac{3\pi}{2}$; $\frac{5\pi}{3}$; $\frac{5\pi}{2}$; $\frac{10\pi}{3}$; $\frac{7\pi}{2}$.	
13	4,2.	25
14	$(-\infty;-1)\cup(-1;0]\cup(\log_3 2;1).$	Wg.
15	221 400.	
16	$\sqrt{10}$.	
17	$(-3;0)\cup(0;2)\cup(2;6)\cup(6;12)\cup(12;\infty).$	mai
18	а) да;б) нет;в) 9.	