Kombinatorika

Bor Bregant

Zgled. Na koliko načinov lahko za ravno mizo sedi sedem povabljencev?

Osnovni izrek kombinatorike ali pravilo produkta: Če neki proces lahko razdelimo na k zaporednih faz in je prva od faz izvedljiva na n_1 načinov, druga na n_2 načinov, tretja na n_3 načinov, ... in k-ta na n_k načinov (kjer so izbori med sabo neodvisni), je celotni proces izvedljiv na $n = n_1 \cdot \ldots \cdot n_k$ načinov.

Zgled. Na koliko načinov se lahko oblečemo, če imamo na razpolago dva para čevljev, pet srajc, troje hlač in štiri kravate?

Na koliko načinov lahko damo nase pokrivalo, če imamo na voljo 3 klobuke in dve čepici (nezdružljivost).

Pravilo vsote: Če izbiramo med n_1 možnostmi iz prve množice izborov ali n_2 možnostmi iz druge množice naborov in tako naprej (kjer so izbori med sabo neodvisni in nezdružljivi) do k-tega nabora, potem je vseh izborov $M = n_1 + \dots n_k$.

Zgled. Do ŠKG lahko pridemo z avtobusi številk 3 ali 5, kjer v obeh primerih naprej prestopimo na 1, 8 ali 25, lahko pa gremo s kolesom ali z avtom. Na koliko različnih način lahko pridemo do šole?

Zgled. Koliko je vseh različnih metov, če petkrat zapored vržemo kovanec. Predstavi s kombinatoričnim drevesom.

Zgled. Imamo 25 črk, 5 samoglasnikov. Koliko načinov, če različne črke, če ponavljajo ali pa če morajo biti na prvem mestu soglasniki.

Zgled. Na razpolago lahko dobimo 5 modelov mercedesa v 3 barvah in 4 modele BMW v 2 barvah. Med koliko možnostmi izbiramo?

Naloga 1. DN 232a, 248, 254

Zgled. Na koliko načinov lahko na polico damo 5 leposlovnih, 3 slovarje in 9 strokovnih knjig, če ni omejitev ali pa če isti tipi morajo iti skupaj.

Naloga 2. DN 232a, 248, 254

1 Permutacije

Razporeditve n različnih elementov na n mest, kjer je vrstni red pomemben imenujemo permutacije n elementov. Teh možnosti je $P_n = n! = n(n-1)(n-2) \cdot \ldots \cdot 2 \cdot 1$.

Zgled. Izračunaj 4! in $\frac{n!}{(n-1)!}$.

Zgled. Koliko besed lahko sestavimo iz črk ABCDE, če:

Ni omejitev?

Besede se morajo začeti na D

Besede se ne začnejo niti na A niti na E

Besede se ne končajo na DA

Zgled. Sestčlanska družina gre v kino. Na koliko načinov se lahko usede v vrsto, če sedita starša skupaj in otroci skupaj. Kaj pa če starša sedita na obeh koncih, otroci pa med njima.

Zgled. Sedem otrok stoji v vrsti. Na koliko načinov jih lahko prestavimo, če trije najbolj živahni ne smejo biti vsi skupaj.

Zgled. Preštejmo vse permutacije črk besede ANANAS.

Permutacij n elementov, kjer se en ponavlja k_1 -krat, drugi k_2 -krat in tako naprej, je $P_n^{k_1,\dots k_r} = \frac{n!}{k_1!\dots k_r!}$

Zgled. Koliko besed iz črk BOMBAZ se ne začne s črko A.

Zgled. Koliko številk iz nabora 5, 6, 7, 8, 9 če brez omejitev ali pa število večje od 70000? 3 · 4!

Zgled. Koliko načinov, da 4 dekleta, 5 fantov v vrsto, če dekleta skupaj, fantje brez omejitev? 4! · 5! · 6 ali pa zlepek dodaten fant torej 4! · 6! Kaj če morajo stati izmenično?

Naloga 1. DN 262, 263, 273, 267, 281, 292.

2 Variacije

n elementov razporejamo na r mest (r < n).

Zgled. Na koliko načinov lahko razporedimo 10 dijakov za mizo za 4 osebe.

Variacije brez ponavljanja:

$$V_n^r = N(n-1)(n-2)\cdots(n-r+1) = \frac{n!}{(n-r)!}$$

Zgled. Koliko trimestnih števil lahko sestavimo s števkami 1,2,5,8, če se števke ne smejo ponavljati. Kaj pa će dodamo 0.

Zgled. Ponavljanje

Variacije s ponavljanjem