Theories Covered

Valence Bond Theory (Hybridization) Topics

Concept Video

Formation of covalent bonds (single bonds/ sigma bonds)

Formation of covalent bonds (multiple bonds/ sigma and pi bonds)

Concept Video

Hybridization of orbitals 1

Concept Video

Hybridization of orbitals 2

Limitations of Valence Bond Theory

How can valence bond theory predict bond angles?

Valence bond theory cannot predict the geometry for all molecules

Combining Valence Bond Theory

Valence bond theory can predict orbitals involved but cannot predict the geometry for all molecules – How are the bond angles in CH₄ 109.5?

VSEPR theory can predict the geometry for molecules but not the orbitals involved in bonding Which orbitals are involved in formation of CH₄ molecule?

Combining VSEPR and Valence Bond Theory

Linear Geometry (AX₂)

2 electron groups: 2 bonding groups (no lone pairs)

Bond Angle (XAX): 180°

- 1. Need the electrons to be unpaired to share with the unpaired electron in CI atoms
- 2. The bond lengths are equal this implies that the orbitals forming the sigma bonds are equivalent.

- 1. Need the electrons to be unpaired to share with the unpaired electron in Cl atoms excite an electron from 2s orbital of Be
- 2. The bond lengths are equal this implies that the orbitals forming the sigma bonds are equivalent.

Mix <u>two</u> valence orbitals to get two equivalent orbitals

- 1. Need the electrons to be unpaired to share with the unpaired electron in Cl atoms excite an electron from 2s orbital of Be
- 2. The bond lengths are equal this implies that the orbitals forming the sigma bonds are equivalent.

Mix <u>two</u> valence orbitals to get two equivalent orbitals

- 1. Need the electrons to be unpaired to share with the unpaired electron in Cl atoms excite an electron from 2s orbital of Be
- 2. The bond lengths are equal this implies that the orbitals forming the sigma bonds are equivalent.

Hybridization

Mixing of valence orbitals in an element to obtain orbitals with appropriate geometry

Atomic Be Valence Orbitals:

Be atoms in BeCl₂ Valence

Orbitals:

Hybridization

Mixing of valence orbitals in an element to obtain orbitals with appropriate geometry

Number of electron groups = number of hybrid orbitals

Electron groups

2

3

4

Hybrid Orbitals

2

3

4

What about hybridization when there are multiple bonds?

Linear Geometry

2 electron groups: 2 bonding groups (no lone pairs)

Bond Angle (XAX): 180°

e.g. C₂H₂ (ethyne)

Number of electron groups = number of hybrid orbitals

2 hybrid orbitals: sp hybridization

Depicting orbitals for C₂H₂ (ethyne)

 $H-C \equiv C-H$

 $C 1s^2 2s^2 2p^2$

4p

Obtain two new atomic hybrid orbitals!

C-H bonds in ethyne (sigma bond)

Hydrogen atom

Carbon atom

1s 1

ONE C-H Single Bond:

sp-s σ-bond

C-C bonds in ethyne (sigma bond)

Carbon atom

ONE C-C Single Bond:

sp-sp σ-bond

C-C bonds in ethyne (pi bond)

Carbon atom

2p <u>†</u> † z

Carbon atom

sp ↑ ↑ y z

ONE C-C π Bond:

 p_y - p_y π -bond

C-C bonds in ethyne (pi bond)

Carbon atom

Carbon atom

ONE C-C π Bond:

 $p_z-p_z \pi$ -bond

Depicting orbitals for C₂H₂

 $H-C\equiv C-H$

TWO σ-bonds per C sp-s (between C and H), sp-sp (between C and C)

TWO π bonds total p-p (between C and C)

Trigonal Planar Geometry

Trigonal Planar Geometry (AX₃)

3 electron groups: 3 bonding groups (no lone pairs)

Bond Angle (XAX): 120°

Hybridization for 3 electron groups

e.g. BF₃

Mix <u>three</u> valence orbitals to get <u>three</u> equivalent hybrid orbitals

Orbital Energy

Hybridization for 3 electron groups

Mix <u>three</u> valence orbitals to get <u>three</u> equivalent hybrid orbitals

$$(s:p = 1:2 = "sp^2")$$

Orbital Energy

Hybridization

Mixing of valence orbitals in an element to obtain orbitals with appropriate geometry

Atomic B Valence Orbitals:

B atoms in BF₃ Valence Orbitals:

Depicting bond formation with hybrid orbitals

Boron atom

Fluorine atom

THREE IDENTICAL "sp²-p" σ-bonds

ONE B-F sp²-p σ -bond:

What about sp² hybridization when there are multiple bonds?

Trigonal Planar Geometry

3 electron groups: 3 bonding groups (no lone pairs)

Bond Angle (XAX): 120°

e.g. C₂H₄ (ethine)

Number of electron groups = number of hybrid orbitals

3 hybrid orbitals: sp² hybridization

C-H bonds in C₂H₄ (ethene): Sigma bond

Hydrogen atom

Carbon atom

$$sp^{2} \uparrow \uparrow \uparrow z$$

sp²-s σ-bond

C-C bonds in C₂H₄ (ethene): Sigma bond

Carbon atom

$sp^{2} \uparrow \uparrow \uparrow z$

Carbon atom

ONE C-C σ Bond:

sp²-sp² σ-bond

C-C bonds in C₂H₄ (ethene): Pi bond

Carbon atom

Carbon atom

ONE C-C π Bond:

p-p π-bond

Structure of Ethene

THREE σ -bonds per C sp²-s (x2), sp²-sp²

