Spectral Theory of Positive Operators January 17, 2025

Worksheet 4 Ultraproducts II

There are moments when everything works out for us. No need to be frightened: it will pass.

(Jules Renard)

Ultraproducts of C*- and W*-Algebras

This is a first draft that needs to be elaborated. Perhaps someone is interested in this.

Ultraproducts of C*- and W*-Algebras

1. For C[⋆]-algebras we have

Proposition 1 If \mathfrak{A}_{ω} is the ultraproduct of a C^* -algebra \mathfrak{A} , then:

- (i) If a is self-adjoint in \mathfrak{A}_{ω} , then there exists a sequence (a_i) in \mathfrak{A}_h with $a = (a_i)_{\omega}$.
- (ii) If a is positive in \mathfrak{A}_{ω} , then there exists a sequence (a_i) in \mathfrak{A}_+ with $a = (a_i)_{\omega}$.
- (iii) If p is a projection in \mathfrak{A}_{ω} , then there exists a sequence (p_j) of projections in \mathfrak{A} with $p = (p_j)_{\omega}$.
- (iv) If u is unitary in \mathfrak{A}_{ω} , then there exists a sequence (u_j) of unitary elements in \mathfrak{A} with $u = (u_j)_{\omega}$.
- (v) If $p = (p_j)_{\omega}$ and $q = (q_j)_{\omega}$ are projections in \mathfrak{A}_{ω} and v is a partial isometry with $v^*v = p$, $vv^* = q$, then there exist v_j in \mathfrak{A} with

$$v_j^* v_j = p_j$$
 and $v_j v_j^* = q_j$

along ω .

(vi) If $p = (p_j)_{\omega}$ is a projection, $p \leq q$ for some projection q, then there exist projections q_j in $\mathfrak A$ with

$$p_j \leq q_j$$
 and $q = (q_j)_{\omega}$

Proof: Literature citation

2. If $E=L^1$, then E is the predual of a W*-algebra and the ultraproduct of E is again an L^1 and thus again a predual. This also holds for general W*-algebras (see Groh [1]). If $\mathfrak M$ is a W*-algebra, then its ultraproduct is in general not a W*-algebra, since the kernel of the seminorm p_{ω} need not be a σ^* -closed ideal in the W*-algebra $\ell^{\infty}(\mathfrak M)$. However, we have:

Proposition 2 The ultraproduct of the predual of a W^* -algebra is the predual of a W^* -algebra.

Let $\mathfrak M$ be a W*-algebra with predual $\mathfrak M_*$, then the mapping

$$\tau : (\mathfrak{M}_*)_{\omega} \mapsto (\mathfrak{M}_{\omega})'$$

with

$$<\tau(\varphi_{\omega}), x_{\omega}> = \lim_{\omega} \varphi_j(x_j)$$

for $(x_j) \in x_\omega$ and $(\varphi_j) \in \varphi_\omega$ is an isometry. Let $M(\mathfrak{A})$ be the closed subspace $\tau((\mathfrak{M}_*)_\omega)$.

Show: This subspace is invariant under multiplication from the right and from the left with elements of \mathfrak{M}_{ω} and \mathfrak{M}''_{ω} . Here one only needs to note that for $\varphi \in \mathfrak{M}_*$ and $x \in \mathfrak{M}$ we always have $x.\varphi$ and $\varphi.x$ are again elements of the predual. Thus the polar of $M(\mathfrak{A})$ in \mathfrak{M}''_{ω} is a σ^* -closed ideal and there exists a central

projection z in \mathfrak{M}''_{ω} with

$$\mathsf{M}(\hat{\mathfrak{A}}) = \mathfrak{M}'_{\omega}.z = [(\mathfrak{M}_{\omega})''.z]_*$$
.

Proposition 3 For the mapping τ defined above, we have for all $\varphi_{\omega} \in (\mathfrak{M}_*)_{\omega}$

$$\tau(|\varphi_{\omega}|) = |\tau(\varphi_{\omega})|$$
.

The proof is based on Takesaki [2, III.4.10] and remains as Exercise .

Example 4 Example where \mathfrak{M}_{ω} is not a W*-algebra ->

Compatibility with Positive Maps

- 3. We have:
 - (i) T is positive if and only if \hat{T} is positive.

- (ii) T is a Schwarz operator if and only if \hat{T} is a Schwarz operator.
- (iii) T is an n-positive operator if and only if \hat{T} is an n-positive operator.

For the proof of the last claim one must show that we always have

$$M_n(A)_{\omega} = M_n(A_{\omega})$$

References

- [1] U. GROH: *Uniformly ergodic theorems for identity preserving Schwarz maps on W*-algebras.* J. Operat. Theor. **11** (1984), 395–404. (Cited on p. 1).
- [2] M. TAKESAKI: *Theory of Operator Algebras I.* Springer (1979) (cited on p. 2).