강사소개

구선생 로보틱스

박형묵

터틀봇자율주행

Chapter 1. 시뮬레이션 환경에서 자율주행

구선생 로보틱스

강의 자료 다운로드

터틀봇 자율주행 강의 노트

https://github.com/DoveSensei/TurtlebotNote

ROS란무엇인가?

ROS란 무엇인가?

개요

- Robot Operating System의 약자
- 로봇 소프트웨어를 구축하는데 도움이 되는 라이브러리

Hardware

Device Driver

Algorithm

Software Development Tool

ROS란 무엇인가?

왜 ROS를 사용해야 하는가?

- 모듈화의 이점
- 개방 및 유지보수 시간 단축
- SLAM 및 Navigation 등 다양한 오픈소스 제공

위의 기능을 모듈형태로 오픈소스로 제공하고 있어 쉽게 적용 가능

Gazebo 란?

Gazebo

Robot 시뮬레이션을 위한 틀, ROS를 지원한다

상세 내용은 아래 위키 참고

https://classic.gazebosim.org/tutorials?tut=ros_overview

터틀봇 시뮬레이션 설치

1) 레포지토리 업데이트

\$ sudo apt-get update

2) 종속성 패키지 설치

\$ sudo apt-get install ros-noetic-joy

\$ sudo apt-get install ros-noetic-teleop-twist-joy

\$ sudo apt-get install ros-noetic-teleop-twist-keyboard

\$ sudo apt-get install ros-noetic-laser-proc

\$ sudo apt-get install ros-noetic-rgbd-launch

\$ sudo apt-get install ros-noetic-rosserial-arduino

\$ sudo apt-get install ros-noetic-rosserial-python

\$ sudo apt-get install ros-noetic-rosserial-client

터틀봇 시뮬레이션 설치

```
$ sudo apt-get install ros-noetic-rosserial-msgs
$ sudo apt-get install ros-noetic-amcl
$ sudo apt-get install ros-noetic-map-server
$ sudo apt-get install ros-noetic-move-base
$ sudo apt-get install ros-noetic-urdf
$ sudo apt-get install ros-noetic-xacro
$ sudo apt-get install ros-noetic-compressed-image-transport
$ sudo apt-get install ros-noetic-rqt*
$ sudo apt-get install ros-noetic-rviz
$ sudo apt-get install ros-noetic-gmapping
$ sudo apt-get install ros-noetic-navigation
$ sudo apt-get install ros-noetic-interactive-markers
```

ROS시뮺레이션

터틀봇 시뮬레이션 설치

3) 터틀봇 시뮬레이션 패키지 설치

```
$ git clone https://github.com/ROBOTIS-GIT/turtlebot3.git
```

- \$ git clone https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git
- \$ git clone https://github.com/ROBOTIS-GIT/turtlebot3_simulations.git

터틀봇 시뮬레이션 실행

터틀봇 시뮬레이션 실행 명령어

\$ export TURTLEBOT3_MODEL=burger

\$ roslaunch turtlebot3_gazebo turtlebot3_world.launch

SLAM 및 Navigaion

SLAM 및 Navigation

터틀봇 시뮬레이션을 이용하여 SLAM

1) Turtlebot Gazebo 실행

\$ export TURTLEBOT3_MODEL=burger

\$ roslaunch turtlebot3_gazebo turtlebot3_world.launch

2) Turtlebot SLAM 실행

\$ export TURTLEBOT3_MODEL=burger

\$ roslaunch turtlebot3_slam turtlebot3_slam.launch slam_methods:=gmapping

3) Turtlebot 조종

\$ export TURTLEBOT3_MODEL=burger

\$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

SLAM 및 Navigation

터틀봇 시뮬레이션을 이용하여 SLAM

4) Map 저장

\$rosrun map_server map_saver -f ~/map

SLAM 및 Navigation

터틀봇시뮬레이션을 이용하여 Navigation

1) Turtlebot Gazebo 실행

\$ export TURTLEBOT3_MODEL=burger

\$roslaunch turtlebot3_gazebo turtlebot3_world.launch

2) Turtlebot Navigation 실행

\$ export TURTLEBOT3_MODEL=burger

\$ roslaunch turtlebot3_navigation turtlebot3_navigation.launch map_file:=\$HOME/map.yaml