Tutorial-5

1. Three processes A, B and C each execute a loop of 100 iterations. In each iteration of the loop, a process performs a single computation that requires to CPU milliseconds and then initiates a single I/O operation that lasts for tio milliseconds. It is assumed that the computer where the processes execute has enough I/O devices and the OS of the computer assigns different I/O devices to each process. Also, the scheduling overhead of the OS is negligible. The processes have the following characteristics:

PID	tc	tio
A	100 ms	500 ms
В	350 ms	500 ms
С	200 ms	500 ms

The processes A, B, and C are started at times 0, 5 and 10 milliseconds respectively, in a pure time-sharing system (round robin scheduling) that uses a time slice of 50 milliseconds. The time in milliseconds at which process C would complete its first I/O operation is ______.

- a. 500
- b. 1000
- c. 2000
- d. 10000
- 2. Consider the set of 5 processes whose arrival time and burst time are given below-

PID	Arrival time	Burst time
P1	0	5
P2	1	3
P3	2	1
P4	3	2
P5	4	3

If the CPU scheduling policy is Round Robin with time quantum = 2 unit, calculate the average waiting time and average turn-around time.

3. Consider the 3 processes, P1, P2 and P3 with its arrival time and burst time shown in the table

PID	Arrival Time	Burst Time
P1	0	5
P2	1	7
P3	3	4

The completion order of the 3 processes under the policies FCFS and RR2 (round robin scheduling with CPU quantum of 2-time units) are

- 4. A uni-processor computer system only has two processes, both of which alternate 10ms CPU bursts with 90ms I/O bursts. Both the processes were created at nearly the same time. The I/O of both processes can proceed in parallel. Which of the following scheduling strategies will result in the least CPU utilization (over a long period of time) for this system?
 - a. First come first served scheduling

- b. Shortest remaining time first scheduling
- c. Static priority scheduling with different priorities for the two processes
- d. Round robin scheduling with a time quantum of 5 ms
- 5. A system uses the following preemptive priority scheduling algorithm (process with larger priority numbers have higher priority). Processes enter the system with a priority of 1. While waiting on the ready queue, a process's priority changes at rate α . While running, a process's priority changes at the rate β .
 - a) What is the algorithm that results from $\beta > \alpha > 1$?
 - b) What is the algorithm that results from $\alpha < \beta < 1$?
- 6. On a system using round-robin scheduling, let s represent the time needed to perform a process switch, q represent the round- robin time quantum, and r represent the average time a process runs before blocking on I/O. Give a formula for CPU efficiency given the following.
 - a) $q = \infty$
 - b) q = r
 - c) s < q < r
 - d) s = q < r