```
# importing required packages
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings(action = 'ignore')

def heading(info):
    print("\n\n#### {} ####".format(info))

# read the dataset
dataSet = pd.read_csv('Banglore_traffic_Dataset.csv', encoding = 'unicode_escape
```

print info about the data dataSet.info() heading("Sample data points from the dataset") dataSet.head(5)

</pre RangeIndex: 8936 entries, 0 to 8935 Data columns (total 16 columns):

#	Column	Non-l	Null Count	Dtype
0	Date	8936	non-null	object
1	Area Name	8936	non-null	object
2	Road/Intersection Name	8936	non-null	object
3	Traffic Volume	8936	non-null	int64
4	Average Speed	8936	non-null	float64
5	Travel Time Index	8936	non-null	float64
6	Congestion Level	8936	non-null	float64
7	Road Capacity Utilization	8936	non-null	float64
8	Incident Reports	8936	non-null	int64
9	Environmental Impact	8936	non-null	float64
10	Public Transport Usage	8936	non-null	float64
11	Traffic Signal Compliance	8936	non-null	float64
12	Parking Usage	8936	non-null	float64
13	Pedestrian and Cyclist Count	8936	non-null	int64
14	Weather Conditions	8936	non-null	object
15	Roadwork and Construction Activity	8936	non-null	object
dtyp	es: float64(8), int64(3), object(5)			
memo	ry usage: 1.1+ MB			

memory usage: 1.1+ MB

Sample data points from the dataset

	Date	Area Name	Road/Intersection Name	Traffic Volume	Average Speed	Travel Time Index	Congestic Lev∈
0	2022- 01-01	Indiranagar	100 Feet Road	50590	50.230299	1.500000	100.00000
1	2022- 01-01	Indiranagar	CMH Road	30825	29.377125	1.500000	100.00000
2	2022- 01-01	Whitefield	Marathahalli Bridge	7399	54.474398	1.039069	28.34799
3	2022- 01-01	Koramangala	Sony World Junction	60874	43.817610	1.500000	100.00000
4	2022- 01-01	Koramangala	Sarjapur Road	57292	41.116763	1.500000	100.00000

lets find the individual column statistics
heading("Stats about non-numeric values")
print(dataSet.describe(include = "object"))

heading("Stats about numeric values")
print(dataSet.describe(include = "number"))

#####	$C + \gamma + \gamma$	~h~!!+	non-numeric	V211126	#####
#####	אומו א	about	non-numer ic	values	#####

	Date	Area Name	Road/Intersection	Name Weather	Conditions
count	8936	8936		8936	8936
unique	952	8		16	5
top	2023-01-24	Indiranagar	100 Feet	Road	Clear
freq	15	1720		860	5426

Roadwork and Construction Activity

count	8936
unique	2
top	No
freq	8054

Stats about numeric values

	Traffic Volume	Average Speed	Travel Time Index	Congestion Level
count	8936.000000	8936.000000	8936.000000	8936.000000
mean	29236.048120	39.447427	1.375554	80.818041
std	13001.808801	10.707244	0.165319	23.533182
min	4233.000000	20.000000	1.000039	5.160279
25%	19413.000000	31.775825	1.242459	64.292905
50%	27600.000000	39.199368	1.500000	92.389018
75%	38058.500000	46.644517	1.500000	100.000000
max	72039.000000	89.790843	1.500000	100.000000

	Road Capacity	Utilization	Incident Reports	Environmental Impact	\
count		8936.000000	8936.000000	8936.000000	
mean		92.029215	1.570389	108.472096	
std		16.583341	1.420047	26.003618	
min		18.739771	0.000000	58.466000	
25%		97.354990	0.000000	88.826000	
50%		100.000000	1.000000	105.200000	
75%		100.000000	2.000000	126.117000	
max		100.000000	10.000000	194.078000	

	Public Transport Usage	Traffic Signal Compliance	Parking Usage \
count	8936.000000	8936.000000	8936.000000
mean	45.086651	79.950243	75.155597
std	20.208460	11.585006	14.409394
min	10.006853	60.003933	50.020411
25%	27.341191	69.828270	62.545895
50%	45.170684	79.992773	75.317610
75%	62.426485	89.957358	87.518589

max 79.979744 99.993652 99.995049

	Pedestrian	and	Cyclist Count
count			8936.000000
mean			114.533348
std			36.812573
min			66.000000
25%			94.000000
50%			102.000000
75%			111.000000
max			243.000000

lets first verify how to target variable is distributed
heading("Target variable \"Traffic volume\" distribution")
sns.histplot(data = dataSet, x = "Traffic Volume")

Target variable "Traffic volume" distribution
<Axes: xlabel='Traffic Volume', ylabel='Count'>


```
# lets convert the categorical values to numeric
def convert_categorical_to_numeric(dataframe, categorical_cols):
    for col in categorical cols:
        if col in dataframe.columns:
            # create a mapping for the unique values in the column
            unique values = dataframe[col].unique()
            value_mapping = {label: idx for idx, label in enumerate(unique_value)
            # apply the mapping to convert to numeric
            dataframe[col] = [value_mapping[val] for val in dataframe[col]]
    return dataframe
# leaving date column as of now and converting other columns
# we will backup the original dataset
originalDataset = dataSet.copy()
# select the relevant columns and convert them
columnsToConvert = ["Roadwork and Construction Activity", "Weather Conditions", "
dataSet = convert categorical to numeric(dataSet, columnsToConvert)
heading("After conversion to numeric values")
print(dataSet[columnsToConvert].head())
\rightarrow
    ##### After conversion to numeric values #####
       Roadwork and Construction Activity
                                             Weather Conditions Area Name
    0
    1
                                          0
                                                               0
                                                                          0
    2
                                          0
                                                                          1
                                                               0
    3
                                          0
                                                                          2
    4
                                                                          2
       Road/Intersection Name
    0
                             0
    1
                             1
    2
                             2
    3
                             3
    4
```

drop unrequired columns based on corelation matrix
dropThem = ["Public Transport Usage", "Traffic Signal Compliance", "Parking UsadataSet = dataSet.drop(columns=dropThem)

heading("Final dataset columns")
print(dataSet.head())

##	##### Final dataset columns #####						
	Area Name Road/I	ntersection Name Tr	affic Volume	Average Speed \			
0	0	0	50590	50.230299			
1	0	1	30825	29.377125			
2	1	2	7399	54.474398			
3	2	3	60874	43.817610			
4	2	4	57292	41.116763			
	Travel Time Index	Congestion Level	Road Capacity	Utilization \			
0	1.500000	100.000000		100.000000			
1	1.500000	100.000000		100.000000			
2	1.039069	28.347994		36.396525			
3	1.500000	100.000000		100.000000			
4	1.500000	100.000000		100.000000			
	Incident Reports	Environmental Impac	t Pedestrian	and Cyclist Count			
0	0	151.18	80	111			
1	1	111.650 100					
2	0	64.798 189					
3	1	171.748 111					
4	3	164.58	34	104			

```
# seperate the input and target columns into numpy arrays
if isinstance(dataSet, pd.DataFrame):
    dataSet = dataSet.to_numpy()

# print(dataset)

X = dataSet[:, [0, 1, 3, 4,5,6,7,8,9]]

Y = dataSet[:, 2]

# adding extra column for intercepts

X = np.hstack((np.ones((X.shape[0], 1)), X))
heading("Printing X and Y variables for the model")
print(X[:5])
print(Y[:5])
```

$\overline{\Sigma}$

```
##### Printing X and Y variables for the model #####
[[ 1.
                  0.
                                 0.
                                              50.23029856
                                                             1.5
  100.
                                                                        ]
                100.
                                 0.
                                             151.18
                                                           111.
 1.
                  0.
                                 1.
                                              29.37712471
                                                             1.5
  100.
                100.
                                 1.
                                             111.65
                                                           100.
                                                                        1
                                                             1.03906885
 1.
                  1.
                                 2.
                                              54.47439821
   28.34799386
                36.39652494
                                 0.
                                              64.798
                                                           189.
                                                                        1
                                 3.
                                              43.81761039
                                                             1.5
   1.
                  2.
  100.
                100.
                                                                        ]
                                 1.
                                             171.748
                                                           111.
                                                             1.5
 [ 1.
                  2.
                                4.
                                              41.11676289
  100.
                100.
                                             164.584
                                                           104.
                                                                        ]]
                                 3.
[50590. 30825. 7399. 60874. 57292.]
```

```
# shuffle the datasets
indices = np.arange(X.shape[0])
np.random.shuffle(indices)
X_shuffled = X[indices]
Y_shuffled = Y[indices]
# split the dataset into 80:20
split_ratio = 0.2
split_index = int(len(X_shuffled) * split_ratio)
X train = X shuffled[:split index]
Y_train = Y_shuffled[:split_index]
X test = X shuffled[split index:]
Y_test = Y_shuffled[split_index:]
print("Training set samples: ", X_train.shape[0])
print("Testing set samples: ", X_test.shape[0])
→ Training set samples: 1787
    Testing set samples: 7149
def kmeans(X, k, n_iters=100):
    # Randomly initialize centroids
    np.random.seed(0)
    random_indices = np.random.choice(X.shape[0], k, replace=False)
    centroids = X[random_indices]
    for _ in range(n_iters):
        # Assign clusters
        distances = np.linalg.norm(X[:, np.newaxis] - centroids, axis=2) # Cal
        labels = np.argmin(distances, axis=1) # Assign clusters
        # Update centroids
        new centroids = np.array([X[labels == i].mean(axis=0) for i in range(k)
        # Check for convergence
        if np.all(centroids == new_centroids):
            break
        centroids = new_centroids
    # Calculate inertia
    inertia = np.sum((X - centroids[labels])**2)
    return labels, centroids, inertia
```

```
# Calculate inertia for different k values
inertia = []
k_vals = range(1, 11)
# Testing k from 1 to 10
for k in range(1, 11):
    _, _, inertia_value = kmeans(X_train, k)
    inertia.append(inertia_value)
# Plot elbow graph
plt.figure(figsize=(10, 6))
plt.plot(k_vals, inertia, marker='o')
plt.title('Elbow Method for Optimal k')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Inertia')
plt.xticks(k_vals)
plt.grid()
plt.show()
```



```
def addClusters(X,k=3):
    labels, _, _ = kmeans(X,k)
    labels_v = labels[:,np.newaxis]
    return np.hstack((X,labels_v))
```

Choosing 3 clusters

```
k_count = 3
X_train_clustered = addClusters(X_train,k_count)
print(X_train[:10])
```

```
[[ 1.
                                 1.
                                              37.37103217
                                                              1.5
 100.
                100.
                                 5.
                                             138.108
                                                             96.
                                10.
                                              29.35105081
                                                              1.22083068
  1.
                  5.
   26.56832984
                 50.91059572
                                 0.
                                              68.428
                                                            167.
 [ 1.
                  3.
                                 5.
                                              22.71256237
                                                              1.5
 100.
                                 2.
                100.
                                             131,066
                                                             96.
                                13.
                                              56.7650234
                                                              1.37401091
  1.
                  1.
   75.60291193 100.
                                 3.
                                              92.832
                                                            100.
                                              59.52684493
                                 2.
                                                              1.12717384
   66.01944166 100.
                                 0.
                                              92.748
                                                             93.
                                              25.92739549
                                 1.
                                                              1.5
   99.69170703 100.
                                             104.68
                                 1.
                                                            106.
                                 5.
                                              47.65180139
                                                              1.3423462
  1.
   89.44946886 100.
                                 2.
                                              98.53
                                                            108.
                                                                         1
 1.
                  2.
                                 4.
                                              24.43964816
                                                              1.5
 100.
                100.
                                 5.
                                             170.822
                                                            104.
 [ 1.
                  7.
                                15.
                                              30.51524769
                                                              1.5
  100.
                                             111.576
                                                            120.
                100.
                                 2.
 1.
                                11.
                                              47.80546602
                                                              1.06341905
   76.70233696 100.
                                                                         ]]
                                 3.
                                              95.082
                                                            104.
```

```
# for computing gradient descent, we use the the firmula new_weights = old_weights
\# dJ/dW = -2X^T Y + 2X^T XW = 2X^T(XW-Y)
def gradient_descent(X, Y, learning_rate=0.01, iterations=1000):
    n_samples, n_features = X.shape
    # initialize weights to 0
    weights = np.zeros(n_features)
    # List to store cost at each iteration for plotting convergence
    cost_history = []
    for i in range(iterations):
        # Y_pred -> XW
        Y_pred = X @ weights
        # compute the error -> XW-Y
        error = Y_pred - Y
        # compute gradient -> dJ/dW
        gradient = (2 / n_samples) * (X.T @ error)
        # Update weights
        weights -= learning_rate * gradient
        # Compute Mean Squared Error (Cost Function)
        cost = (1 / n_samples) * np.sum(error ** 2)
        # (Optional) Print cost at intervals
        if i % 50 == 0:
            print(f"Iteration {i+1}: Cost {cost}")
            cost_history.append(cost)
```

return weights, cost_history

we solve the least squares problem using the gradient descent algorithm weights, cost_history = gradient_descent(X_train_clustered,Y_train,0.00002,1500 heading("Training on linear regression with given dataset for 10 iterations") print(weights[:5])

```
Iteration 1: Cost 1030863311.8203694
Iteration 51: Cost 19209790.29673657
Iteration 101: Cost 10397071.409513244
Iteration 151: Cost 6208426,660506265
Iteration 201: Cost 4160200.239947096
Iteration 251: Cost 3123234.7223804705
Iteration 301: Cost 2576722.522288622
Iteration 351: Cost 2276031.3479443653
Iteration 401: Cost 2103414.146862621
Iteration 451: Cost 2000404.7585536845
Iteration 501: Cost 1936868,659267455
Iteration 551: Cost 1896614.8750633015
Iteration 601: Cost 1870564.926955068
Iteration 651: Cost 1853419.0142903784
Iteration 701: Cost 1841972.4034256407
Iteration 751: Cost 1834230.8211609973
Iteration 801: Cost 1828925.4912570387
Iteration 851: Cost 1825235.8847671105
Iteration 901: Cost 1822625.0647027805
Iteration 951: Cost 1820738.707754144
Iteration 1001: Cost 1819341.583840606
Iteration 1051: Cost 1818276.8278582876
Iteration 1101: Cost 1817439.4618013941
Iteration 1151: Cost 1816759,0127123976
Iteration 1201: Cost 1816188.0246262492
Iteration 1251: Cost 1815694.430766824
Iteration 1301: Cost 1815256.4727904287
Iteration 1351: Cost 1814859.3091331674
Iteration 1401: Cost 1814492.747360092
Iteration 1451: Cost 1814149.7262153195
```

Training on linear regression with given dataset for 10 iterations ## [-5.50793759 -28.35978491 -62.70057154 -35.48559764 -5.17234129]

```
# Plotting the cost history using seaborn
print(len(cost_history))
plt.figure(figsize=(10,6))
sns.lineplot(x=range(len(cost_history)), y=cost_history, color='blue')
plt.xlabel('Iterations')
plt.ylabel('Cost (MSE)')
plt.title('Cost Reduction over Iterations')
plt.show()
```

→ 30

Predicting values with K means clustering over test dataset
X_test_clustered = addClusters(X_test,k_count)

Y_pred = X_test_clustered @ weights

we will use mean absolute percentage error to calculate the error percentage $MAPE = np.mean(np.abs((Y_test - Y_pred) / Y_test)) * 100$

heading("Printing the MAPE and first 10 predictions with actual values")
print("MAPE: {} %".format(MAPE))

for i in range(10):

print("\nPredicted value: {0} \t Actual value: {1}".format(Y_pred[i], Y_tes

Printing the MAPE and first 10 predictions with actual values ##### MAPE: 5.554205761949023 %

Predicted value: 20796.347250916715 Actual value: 20350.0

Predicted value: 37827.473477525935 Actual value: 37045.0