

COMP90014

Algorithms for Bioinformatics

Week 10A: Unsupervised Learning - Clustering I

Machine learning: clustering

- 1. Machine learning
 - 2. Clustering
- 3. Distance metrics
- 4. Partitional clustering: *k*-means

Learning

Learning is any process by which a system improves performance from experience.

- Herbert Simon

- we want computers to learn when the problem is too difficult or too expensive to program
- get the computer to program itself by showing examples of inputs and outputs.

Machine learning

Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed.

- Arthur Samuel, 1959.

Machine Learning is the study of algorithms that:

- Improve their performance P
- at some task T
- with experience E.

A well-defined learning task is given by $\langle P, T, E \rangle$

- Tom Mitchell, 1998.

Machine learning

Supervised: Infers a mapping function from labelled training data

Unsupervised: Finds implicit/hidden patterns in data without pre-existing labels

Machine Learning

Unsupervised learning

- Algorithms operate on unlabelled examples
- Related to data description
- Task: Clustering

Supervised learning

- Algorithms are trained on labelled examples
- Related to function approximation
- Tasks: Classification & Regression

Machine learning: clustering

- 1. Machine learning
 - 2. Clustering
- 3. Distance metrics
- 4. Partitional clustering: *k*-means

What is clustering?

Cluster: a collection of items which

are 'similar', and 'dissimilar'

to items in other clusters

Clustering: organization of unlabeled data into similarity groups.

does not require labels

 good for discovering patterns or structure in the data

Applications

- phylogenetic tree reconstruction (agglomerative clustering)
- clustering gene expression data
- exploratory analysis and data visualization
- data compression
- recommender systems

Images: Robert Bear via Khan Academy; Tothill et al., 2008 (10.1158/1078-0432.CCR-08-0196); Peter Cock via warwick.ac.uk; Amy Ma via rpubs.com; Sanket Doshi via towardsdatascience.com.

Ingredients for clustering

- 1. similarity metric
 - e.g. Euclidean distance
- 2. a function to evaluate the quality of the clusters
- 3. clustering algorithm
- clustering is subjective e.g. how many clusters?
 - fixed *k* clusters
 - find the best *k* to optimize a function

Clustering is subjective

How would you cluster this set of objects?

Simpsons family vs. school employees

Male and female characters

Clustering approaches

Exclusive

Data points belong to only one cluster

Overlapping

Data points may belong to many clusters

Hierarchical

- Assign points to "nested" clusters
- Get all possible clusters for given metric

Partitional

- Split points into "flat" independent clusters
- How many?

Machine learning: clustering

- 1. Machine learning
 - 2. Clustering
- 3. Distance metrics
- 4. Partitional clustering: k-means

Ingredients for clustering: Distances

Distance matrix:

$$D(x_i, x_j) = \begin{pmatrix} 0 & 1.1 & 7.6 & 3.4 \\ 1.1 & 0 & 3.2 & 2.1 \\ 7.6 & 3.2 & 0 & 4.5 \\ 3.4 & 2.1 & 4.5 & 0 \end{pmatrix}$$

Many hierarchical and partitional clustering use pairwise similarity/dissimilarity

Formally, a distance metric satisfies the following properties:

Non-negativity: $d(a,b) \ge 0$

Identity: d(a, a) = 0

Symmetry: d(a,b) = d(b,a)

Triangle inequality: $d(a,c) \le d(a,b) + d(b,c)$

Clustering depend on the distance metric

Euclidean distance

- The 'ordinary' distance used in Euclidean space.
- d: dimensions
- x: data point in d-dimensional space

$$d(x_i, x_j) = \sqrt{\sum_{k=1}^{d} (x_{i,k} - x_{j,k})^2}$$

Manhattan distance

City-block distance or taxicab distance

$$d(x_i, x_j) = \sum_{k=1}^{d} |x_{i,k} - x_{j,k}|$$

Edit distance

Hamming distance

(single-letter substitutions)

Levenshtein distance

(single-letter insertions, deletions or substitutions)

Longest common substring (LCS) distance

(single-letter insertions or deletions)

Machine learning: clustering

- 1. Machine learning
 - 2. Clustering
- 3. Distance metrics
- 4. Partitional clustering: k-means

Clustering approaches

Exclusive

Data points belong to only one cluster

Overlapping

Data points may belong to many clusters

Hierarchical

- Assign points to "nested" clusters
- Get all possible clusters for given metric

Partitional

- Split points into "flat" independent clusters
- How many?

变平的独立的类

Partitional clustering

- nonhierarchical
- each item is placed in exactly one of K non-overlapping clusters
- we have to decide the desired number of clusters K in advance
- 1. similarity metric
- 2. a function to evaluate the quality of the clusters
- 3. clustering algorithm

k-means algorithm

Input:

- data in a Euclidean space (Euclidean distance)
- parameter K (number of clusters)
- the algorithm starts with <u>randomly</u> located cluster <u>centers</u> (centroids)

The algorithm alternates between two steps

- assignment:
 - · assign each datapoint to the closest cluster
- refitting:
 - move each centroid to the center of gravity of the data assigned to it
- stopping criteria:
 - minimize an objective function
 - when no point-cluster assignments change

$$L = \sum_i \left\| x_i - \mu_{z_i} \right\|^2$$

k-means algorithm (k = 2)

k-means algorithm (k = 2)

k-means algorithm (k = 2)

More *k*-means visualisations

naftaliharris.com

k-means algorithm

D: itemsK: number of clustersε: stopping criteria

Billy Yang via slideshare

K-means (D, k, ε)

t = 0

Randomly initialize k centroids: $\mu_1^t, \mu_2^t, ..., \mu_k^t \in \mathbb{R}^d$

Repeat until ε

For
$$d = 1$$
 to D do
$$z_d \leftarrow \operatorname{Argmin}_k ||\mu_k - x_d||$$
end for

For k = 1 to K do $\mu_k \leftarrow Mean(\{x_d: z_d = k\})$ end for

Return z

criteria - centroids don't move

assign data points to nearest centroid

recalculate centroids

mean(data points) for given cluster

return cluster assignments

k-means is a heuristic

- assigning points to the closest centroid
- the algorithm is guaranteed to converge,but it may not converge to the optimal solution
- may reach a local minimum instead
- depends on initialisation of centroid

k-means

Time complexity: O(tkn)

- n is the number of data points
- k is thenumber of clusters
- t is the number of iterations
- Strengths
 - relatively efficient
 - simple and widely used
- Limitations
 - need to specify *k* in advance
 - applicable only when mean is defined
 - sensitive to outliers
 - not suitable for clusters with non-convex shapes

k-means

How do we choose the number of clusters *k*?

- choose the k where objective function starts to sharply increase/decrease
- external validation set

How do we know whether we've found the global optimum, or some local minimum?

- run k-means multiple times
- check for stable convergence

- Clusters of different densities
- Clusters of different sizes
- Non-convex clusters

(b) Three K-means clusters.

- Clusters of different densities
- Clusters of different sizes
- Non-convex clusters

(a) Original points.

(b) Three K-means clusters.

- Clusters of different densities
- Clusters of different sizes
- Non-convex clusters

(a) Original points.

(b) Two K-means clusters.

- Clusters of different densities
- Clusters of different sizes
- Non-convex clusters

) I wo K-means clusters.

然而,当面对下列情况时,k均值聚类可能会失败: 不同密度的簇:k均值假设每个簇的密度是相似的,因此它可能无法正确区 分密度不同的簇。

不同大小的簇: k均值也假定所有簇的大小大致相同,因此对于大小差异较大的簇,它可能无法正确分配聚类。

非凸形状的簇:k均值算法通常只能识别凸形状的簇。如果数据集中包含非 凸形状的簇,如环形或弯曲的形状,k均值就可能无法正确地将这些簇分开

k-medoids

Improvement to *k*-means:

- instead of the mean of the points, use the most central data point as the centroid
- \bullet we are optimising the same objective function as k-means

At each iterative step:

- assign points to the nearest centroid as for k-means
- update centroids by choosing the most central point (medoid)

k-medoids:

- less sensitive to outliers than k-means
- requires extra calculation to find the most central point

Other clustering approaches

Density based

- points are part of same cluster if they are close and in a dense region
- finds non-convex, arbitrarily-shaped clusters
- uses distance between points

Probabilistic

- each cluster represented by a parametric distribution e.g. Gaussian
- Gaussian mixture models
- overlapping clusters

Network-based

- instead of distances we use a graph, with edges connecting nodes
- find clusters that are densely connected

Thank you!

Today: Unsupervised Learning - Clustering I

Next time: Unsupervised Learning - Clustering II