Аттеншен, Трансформеры и улица Сезам (CMMO, 2020)

Руслан Хайдуров

Майнор ИАД ниу вшэ

December 10, 2020

Ради чего мы собрались?

- Recap: RNN+Attention;
- Трансформеры: месть полносвязных;
- ELMO, BERT и прочие персонажи «Улицы Сезам»;
- Практические советы по использованию перечисленного.

2 / 25

Section 1

Что делать с «забыванием» контекста?

3 / 25

В чём проблема?

- B rnn-based способах решения seq2seq задач предложение произвольной длины кодируется в вектор фиксированного размера;
- В длинных предложениях теряется контекст.

Mexaнизм внимания (attention)

- При ручном переводе человек смотрит лишь на релевантный контекст каждого слова;
- Идея: научить нейросеть смотреть в нужные места исходной последовательности;
- Подавать на вход декодеру не итоговый hidden state, а все hidden state'ы.

Attention: explained

• Коэффициенты α_{ii} вычисляются по формуле

$$\alpha_{ij} = \frac{\exp(\operatorname{sim}(h_i, s_{j-1}))}{\sum_{k=1}^{T} \exp(\operatorname{sim}(h_k, s_{j-1}))}$$

6 / 25

Attention: explained

• Коэффициенты α_{ij} вычисляются по формуле

$$\alpha_{ij} = \frac{\exp(\operatorname{sim}(h_i, s_{j-1}))}{\sum_{k=1}^{T} \exp(\operatorname{sim}(h_k, s_{j-1}))}$$

• Дополнительный вход декодеру вычисляется по формуле:

$$c_j = \sum_{i=1}^T \alpha_{ij} h_i$$

• Скрытое состояние после декодинга и аутпут зависят от c_j , s_j и \hat{y}_{j-1} , то есть это некая функция $g(\hat{y}_{j-1},s_j,c_j)$.

□ ▶ ◆ ② ▶ ◆ ② ▶ ◆ ③ ▶ ○ ② ○ ○ 7/25

7 / 25

Как выбрать функцию sim

- Смысл функции sim похожесть слов;
- Dot product:

$$sim(h,s) = h^T s$$

• Additive attention:

$$sim(h,s) = w^T tanh(W_h h + W_s s)$$

Multiplicative attention:

$$sim(h, s) = h^T W s$$

 W, W_s, W_h — обучаемые параметры.

8 / 25

Section 2

Как сделать seq2seq быстрее без потерь качества?

9 / 25

Attention is All You Need! (Waswani, et al., 2017)

- Transformer нейросетевая архитектура для задач seq2seq, основанная исключительно на полносвязных слоях;
- Превзошла существовавшие seq2seq архитектуры как по качеству, так и по скорости работы;
- Основной элемент multi-head self-attention.

10 / 25

Transformer

Верхнеуровнево это просто энкодер-декодер

□ ▶ ◆□ ▶ ◆ Ē ▶ ◆ Ē ▶ □ ♥ ♀○ 11/25

Transformer

Энкодер и декодер состоят из одинаковых блоков; веса во всех блоках разные

Transformer

В энкодере происходят две вещи: сначала вход прогоняется через self-attention, а затем — через полносвязный слой. В декодере помимо обычного self-attention есть ещ \ddot{e} и attention из энкодера.

Руслан Хайдуров Advanced NLP December 10, 2020 13 / 25

Self-attention

Для каждого входного слова считаются три вектора: Query, Key и Value (матрицы W^Q, W^K, W^V обучаются вместе с моделью).

Input	Thinking	Machines	
Embedding	X ₁	X ₂	
Queries	q 1	q ₂	Wa
Keys	k ₁	k ₂	Wĸ

14 / 25

Self-attention

Цель этого слоя — сложить Value с некоторыми весами, образующими выпуклую комбинацию.

Multi-head Attention

Несколько голов обеспечивают разное внимание

Positional Encoding

Для учёта позиции слова в предложении входные эмбеддинги преобразуются по следующему правилу

Руслан Хайдуров Advanced NLP December 10, 2020

Ещё несколько хитростей

- Выходы последнего слоя энкодера подаются на вход всех промежуточных слоёв декодера (в encoder-decoder attention) в качестве Key и Value;
- В качестве Query уже сгенерированные слова.

18/25

Transformer: модификации.

К настоящему времени человечество достигло следующего:

- Большие объёмы неразмеченных данных в интернете в разных доменах (книги, новости, википедия, иные тексты из интернет-страниц);
- Размеченных данных мало. Качественная разметка дорогая и долгая;
- Много вычислительных ресурсов, GPU, TPU, фреймворки распределённх вычислений.

Можем ли мы как-то заиспользовать имеющиеся ресурсы?

19 / 25

Transformer: модификации.

Да, можем! Использовать будем semi-supervised learning.

- Обучаем большой трансформер на какой-нибудь unsupervised задаче на очень больших данных (очень долго, порядка нескольких недель на 64 гпу);
- ② Дообучаем трансформер на малом корпусе размеченных данных (очень быстро, порядка 1 часа на одной ГПУ).

20 / 25

BERT (Devlin, et al., 2018)

Идея Берта: предобучать энкодер из трансформера на задаче Masked Language Modeling.

Руслан Хайдуров Advanced NLP December 10, 2020

BERT (Devlin, et al., 2018)

а также на задаче Next Sentence Prediction:

Input

[CLS] the man [MASK] to the store [SEP] penguin [MASK] are flightless birds [SEP]

BERT (Devlin, et al., 2018)

После обучения unsupervised обучения на больших данных дообучить в supervised-режиме:

OpenAl GPT

Предобучение на большом корпусе текстов задаче Language Modeling

Полезности

- Трансформер и его слои встроены в pytorch;
- https://pytorch.org/tutorials/beginner/transformer_tutorial.html официальный гайд по трансформеру от создателей pytorch;
- https://transformer.huggingface.co/ поболтать с трансформером;
- Библиотеки: allennlp, fairseq, transformers, tensorflow-text множествореализованных методов для трансформеров методов NLP.

25 / 25