American Computer Science League

Contest #3

Elementary Division Solutions

1. Boolean Algebra

NOT (15 + 3 > 23 - 7) OR (14 / 7 \geq 1 ^ 2 AND 7 * 4 < 3 * 10) NOT (18 > 16) OR (2 \geq 1 AND 28 < 30) NOT TRUE OR (TRUE AND TRUE) = FALSE OR TRUE TRUE

1. TRUE

2. Boolean Algebra

NOT (A OR NOT B) OR (NOT B AND A)

- = (NOT A AND NOT (NOT B)) OR (NOT B AND A)
- = (NOT A AND B) OR (NOT B AND A)

This is TRUE if A and B are different which is (0,1) and (1,0).

2. (0,1) and (1,0)

3. Boolean Algebra

1	2	3	4	5	6	7	8
Α	В	~A	~B	~A*~B	~(~A*~B)	A*B	6+7
0	0	1	1	1	0	0	0
0	1	1	0	0	1	0	1
1	0	0	1	0	1	0	1
1	1	0	0	0	1	1	1

3. 1

4. Boolean Algebra

$$\sim$$
(A * \sim B) + \sim (\sim A * B) = \sim A + \sim (\sim B) + \sim (\sim A) + \sim B = \sim A + B + A + \sim B = 1

By regrouping, $(\sim A + A)$ and $(\sim B + B)$ are both 1 and 1 + 1 = 1 in Boolean Algebra (not 2 as in regular arithmetic). This is always TRUE so it is a tautology.

4. 1

5. Boolean Algebra

- A. $\sim(\sim B) + \sim(\sim A) = B \text{ OR A which is TRUE for } (1,1), (1,0), (0,1).$
- B. A + B is TRUE if A = 1 or B = 0 which is (1,1), (1,0), and (0,0).
- C. $A * \sim B$ is only TRUE if A = 1 and B = 0 which is (1,0).
- D. \sim (A * B) = \sim A + \sim B is TRUE A = 0 or B = 0 which is (0,1), (0,0), (1,0).

Therefore, A, B, and D are all TRUE 3 times and FALSE once.

5. A, B, D