1 Semantic Tableaux

a) From the open leaves of the tableau we see that there are the following models that satisfy the formula $(p \to q) \to r$: {

$$\begin{split} & \{ (p \to F), (q, \to F), (r \to T) \}, \\ & \{ (p \to F), (q, \to T), (r \to T) \}, \\ & \{ (p \to T), (q, \to F), (r \to F) \}, \\ & \{ (p \to T), (q, \to F), (r \to T) \}, \\ & \{ (p \to T), (q, \to T), (r \to T) \} \end{split}$$

}. In the set of propositions $P = \{p,q,r\}$, the formula $(\neg p \to r) \land (q \to r)$ has the same models $M((p \to q) \to r) = M((\neg p \to r) \land (q \to r))$. Therefore, we conclude that $(p \to q) \to r$ and $(\neg p \to r) \land (q \to r)$ are logically equivalent.

Figure 1: Left-hand side

Figure 2: Right-hand side

b) To show that $(((p \to (q \land r)) \lor ((q \land r) \to p)) \to p)$ is falsifiable, we must show that there exist models for the inverse, namely $\neg(((p \to (q \land r)) \lor ((q \land r) \to p)) \to p)$. The semantic tableaux of the inverse can be found in Figure 3. Two examples of interpretations which yield false are: $\{\{(p \to F), (q \to T), (r \to T)\}, \{(p \to F), (q \to F), (r \to F)\}\}$

Figure 3: Semantic Tableaux for $\neg(((p \to (q \land r)) \lor ((q \land r) \to p)) \to p)$

2 Logical Equivalence

a)

```
We prove by induction:
basis n = 1: p_1 \equiv p_1
induction n > 1
Assumption: \neg(p_1 \land ... \land p_{n-1}) \equiv \neg p_1 \lor ... \lor \neg p_{n-1}
To prove: \neg (p_1 \land ... \land p_{n-1} \land p_n) \equiv \neg p_1 \lor ... \lor \neg p_{n-1} \lor \neg p_n
Deduction:
\neg p1 \lor \dots \lor \neg p_{n-1} \lor \neg p_n
\equiv (\neg p1 \lor \dots \lor \neg p_{n-1}) \lor \neg p_n
\equiv \neg (p_1 \wedge ... \wedge p_{n-1}) \vee \neg p_n \text{ (substitute assumption)}
\equiv \neg((p_1 \wedge ... \wedge p_{n-1}) \wedge p_n) (De Morgen's law)
\equiv \neg (p_1 \wedge ... \wedge p_{n-1} \wedge p_n)
Conclusion: \neg (p_n \land ... \land p_0) \equiv \neg p_n \lor ... \lor \neg p_1
We again prove by induction.
Basis n = 1: p_1 \rightarrow p_0 \equiv p_1 \rightarrow p_1
Induction n > 1:
Assumption: p_{n-1} \to (\dots \to (p_1 \to p_0)\dots) \equiv (p_{n-1} \wedge \dots \wedge p_1) \to p_0
To prove: p_n \to (p_{n-1} \to (\dots \to (p_1 \to p_0)\dots)) \equiv (p_n \land p_{n-1} \land \dots \land p_1) \to p_0
Deduction:
p_n \to (p_{n-1} \to (\dots \to (p_1 \to p_0)\dots))
p_n \to ((p_{n-1} \wedge ... \wedge p_1) \to p_0) (substitute assumption)
\neg p_n \lor ((p_{n-1} \land \dots \land p_1) \to p_0)
```

$$\neg p_n \lor \neg (p_{n-1} \land \dots \land p_1) \lor p_0
\neg (p_n \land (p_{n-1} \land \dots \land p_1) \lor p_0 \text{ (De Morgan's law)}
\neg (p_n \land p_{n-1} \land \dots \land p_1) \lor p_0
(p_n \land p_{n-1} \land \dots \land p_1) \to p_0$$

Conclusion: $p_n \to (p_{n-1} \to (\dots \to (p_1 \to p_0)\dots)) \equiv (p_n \land p_{n-1} \land \dots \land p_1) \to p_0$

3 Gentzen

The Gentzen rules for L_{\leftrightarrow} and R_{\leftrightarrow} are:

$$\frac{\Gamma, \phi \to \psi, \psi \to \phi \vdash \Delta}{\Gamma, \phi \leftrightarrow \psi \vdash \Delta} \ (L_{\leftrightarrow})$$

$$\frac{\Gamma \vdash \Delta, \phi \rightarrow \psi \quad \Gamma \vdash \Delta, \psi \rightarrow \phi}{\Gamma \vdash \Delta, \phi \leftrightarrow \psi} \ (R_{\leftrightarrow})$$

They are derived by substituting $\phi \leftrightarrow \psi$ with $\phi \rightarrow \psi \land \psi \rightarrow \phi$ and subsequently applying the L_{\land} and R_{\land} Gentzen rules to obtain the L_{\leftrightarrow} and R_{\leftrightarrow} rules respectively. The proof for Exercise 3 is presented in Figure 4.

4 Hilbert

5 Clausal From

We will first need to convert the formulas to CNF:

- $\phi_1 = (s \to t) \to (q \to (p \lor r)) = \neg(\neg s \lor t) \lor (\neg q \lor (p \lor r))$ = $(\neg \neg s \land \neg t) \lor (\neg q \lor (p \lor r)) = (s \land \neg t) \lor (\neg q \lor (p \lor r))$ = $(s \lor (\neg q \lor (p \lor r))) \land (\neg t \lor (\neg q \lor (p \lor r)))$
- $\phi_2 = (\neg q \to \neg t) \land \neg (p \land q) = (\neg \neg q \lor \neg t) \land \neg (p \land q) = (\neg \neg q \lor \neg t) \land (\neg p \lor \neg q) = (q \lor \neg t) \land (\neg p \lor \neg q)$
- $\bullet \ \phi_3 = \neg s \vee \neg q$
- $\phi_4 = q \vee t$
- $\phi_5 = (p \to t) \land (\neg r \lor p) = (\neg p \lor t) \land (\neg r \lor p)$

If we convert these formulas to clausal form we get:

- $\phi_1 = \{p\bar{q}rs, p\bar{q}r\bar{t}\}$
- $\bullet \ \phi_2 = \{q\bar{t}, \bar{p}\bar{q}\}$
- $\bullet \ \phi_3 = \{\bar{q}\bar{s}\}$
- $\bullet \ \phi_4 = \{qt\}$
- $\bullet \ \phi_5 = \{\bar{p}t, p\bar{r}\}$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} p, (p \rightarrow q), (q \rightarrow p), (q \rightarrow r), (r \rightarrow q) \vdash r \\ (p \rightarrow q), (q \rightarrow p), (q \rightarrow r), (r \rightarrow q) \vdash (p \rightarrow r) \end{array} \xrightarrow{R \rightarrow}$. π.÷.	
$r,(p \rightarrow q),(q \rightarrow r) \vdash p,q r,q,p,(p \rightarrow q),(q \rightarrow r) \vdash p \\ r,q,(p \rightarrow q),(q \rightarrow r) \vdash p \\ r,q,(p \rightarrow q),(q \rightarrow r) \vdash p \\ r,p p,(q \rightarrow p),(q \rightarrow r),(r \rightarrow q) \vdash r,p \\ r,q,(p \rightarrow q),(q \rightarrow r) \vdash p \\ r,q,(p \rightarrow q),(p \rightarrow q),(q \rightarrow r) \vdash p \\ r,q,(p \rightarrow r) \vdash p \\ r,q,$	$\frac{r,(p \to q),(q \to p),(q \to r),(r \to q) \vdash p}{(p \to q),(q \to r),(r \to q) \vdash (r \to p)} \xrightarrow{R \to q} \frac{p}{(p \to q),(q \to r),(r \to q) \vdash (r \to p)}$		$\frac{(p \leftrightarrow q), (q \leftrightarrow r) \vdash (r \leftrightarrow p)}{((p \leftrightarrow q) \land (q \leftrightarrow r)) \vdash (r \leftrightarrow p)} \xrightarrow{L \land} \frac{L \land}{\vdash ((p \leftrightarrow q) \land (q \leftrightarrow r)) \rightarrow (r \leftrightarrow p)} \xrightarrow{R \rightarrow}$

Figure 4: Proof for $\vdash ((p \leftrightarrow q) \land (q \leftrightarrow r)) \rightarrow (r \leftrightarrow p)$ in G

•
$$\{\phi_1, \phi_2, \phi_3, \phi_4, \phi_5\} = \{p\bar{q}rs, p\bar{q}r\bar{t}, q\bar{t}, \bar{p}\bar{q}, \bar{q}\bar{s}, qt, \bar{p}t, p\bar{r} \}$$

The resolution refutation is represented as a tree in Figure 5

Figure 5: Resolution refutation tree for $\{\phi_1, \phi_2, \phi_3, \phi_4, \phi_5\}$

6 BDDs

When we use the Apply algorithm on the sub-BDD for subformula $p \wedge q$, combined with the sub-BDD for the formula r using the \rightarrow operator, we get the BDD for $(p \wedge q) \rightarrow r$:

When we apply the Reduce algorithm on this result we get:

We will now use the Apply algorithm on the sub-BDD for subformula p, combined with the sub-BDD for the formula $q \to r$ using the \to operator, to get the BDD for $p \to (q \to r)$:

When we apply the Reduce algorithm on this result we (again) get:

If we now use the Apply algorithm using the previously obtained sub-BDDs and the \rightarrow operator, we get the BDD for $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \land q) \rightarrow r)$:

When we apply the Reduce algorithm on this result we get which means that $\models (p \to (q \to r)) \to ((p \land q) \to r)$ holds, since it yields True for all values of p, q and r.

7

The Lady, or the Tiger?

Let's start with defining the necessary propositions:

 L_1 : there is a lady in room 1 L_2 : there is a lady in room 2

 T_1 : there is a tiger in room 1

 T_2 : there is a tiger in room 2

We now that the following must hold due to the facts on the signs:

 $T_1 \oplus L_2$ (Either a tiger is in this room, or a lady is in the other room) $\wedge L_1$ (A lady is in the other room)

We also now that a room will open up to a lady or a tiger, not both, which means the following must also hold:

$$(T_1 \oplus L_1) \wedge (T_2 \oplus L_2)$$

Since we know L_1 is true, we can conclude that T_1 must be false, since there are not both a tiger and a lady in room 1. From this we can derive that L_2 must be true, since $T_1 \oplus L_2$ must hold. Lastly we can conclude that T_2 must also be false, since there are not both a tiger and a lady in room 2. This gives us the (only) model $\{(L_1 \to T), (T_1 \to F), (L_2 \to T), (T_2 \to F)\}$ for the formula $(T_1 \oplus L_1) \wedge (T_2 \oplus L_2) \wedge (T_1 \oplus L_2) \wedge L_1$.

The solution to the puzzle is thus that there is a lady in both room 1 and room 2.