SISTEMAS DIGITALES AVANZADOS

Clave del curso: TE-2030

Nombre del Profesor: Juan M. Hinojosa Olivares

Nombre del alumno: Edison Altamirano

Matricula: A00825234

Fecha de elaboración: 15/04/2020

- ¿Cuáles son los tres niveles en los que se puede describir un sistema en VHDL? (5)
 Dataflow, Behavioral y Structural.
- Escriba el código VHDL para crear el siguiente circuito. Cada compuerta tiene un delay de 1ns. (15)


```
library ieee;
use ieee.numeric bit.all;
use IEEE.Std_logic_1164.all;
entity circuit is
    port(A,B,C,D: in bit;
        X,Y: out bit);
    end circuit:
architecture test of circuit is
    signal R,E1,F1:bit;
    begin
        R <= A and B after 1 ns;
        E1 <= not C after 1 ns;
        F1 <= (B nand A) nand D after 1 ns;
        X <= (E1 or R) or F1 after 1 ns;
        Y <= F1;
    end test;
```

Para el circuito del problema 2, obtenga R, X, Y para las entradas dadas. (20)

4. Usando contadores sincrónicos de 4 bits, diseñe un circuito contador módulo 50. (15)

 Diseñe un circuito mínimo que genere una frecuencia de 200KHz y de 25KHz a partir de una señal de 10MHz. Dispone de FF JK y contadores módulo 10 con CLR. (20)

10,000,000/10 = 1,000,000

1,000,000/5 = 200,000

200,000/8 = 25,000

 Escriba el estatuto concurrente y los de definición de las señales involucradas para realizar la siguiente función sobre A para obtener B, ambas BUS de 4 bits. (5)

```
library ieee;
use ieee.numeric_bit.all;
use IEEE.Std_logic_1164.all;
entity circuit is
    port(A:in bit_vector(3 downto 0);
        B:in bit_vector(3 downto 0));
end circuit;
architecture test of circuit is
    begin
        B <= not A;
end test;</pre>
```

 Implemente el siguiente diagrama de estados usando flip-flops "D". Dibuje la tabla de estados y el diagrama lógico. (20)

A	В	W	X	A_1	B_1	DA	DB	M	N	R
0	0	0	0	1	0	1	0	1	0	0
0	0	0	1	0	1	0	1	1	0	0
0	0	1	0	1	0	1	0	1	0	0
0	0	1	1	0	1	0	1	1	0	0
0	1	0	0	1	0	1	0	0	0	1
0	1	0	1	1	0	1	0	0	0	1
0	1	1	0	1	0	1	0	0	0	1
0	1	1	1	1	0	1	0	0	0	1
1	0	0	0	1	1	1	1	0	0	0
1	0	0	1	1	1	1	1	0	0	0
1	0	1	0	1	1	1	1	0	0	0
1	0	1	1	1	1	1	1	0	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	0	1	0	0	0	0	0	1	0
1	1	1	0	1	1	1	1	0	1	0
1	1	1	1	1	1	1	1	0	1	0

ESTADO INICIAL		ENTRA	DAS	SALIDAS			
	W0	W1	X0	X 1	M	N	R
S0	-	-	S2	S1	1	0	0
S1	S2	S2	S2	S2	0	0	1
S2	S3	S3	S3	S3	0	0	0
S3	SO.	S3	-	-	0	1	0

