C3A - Display Technology

Peter Raynes

Lecture Course Content

- 1. Introduction to displays and LCDs
- 2. LC materials/physical properties/switching principles
- 3. Theory (switching mechanisms/optics)
- 4. Twisted Nematic LCD/passive addressing
- 5. Supertwisted Nematic LCD/TFTs
- 6. Advanced LCDs
- 7. Optical films for LCDs
- 8. Other displays

Purpose of a Display

 To convert <u>electrical</u> information into <u>visual</u> information for benefit of operator/viewer

- Examples
 - Battery charge indicator
 - MP3 player
 - Calculator
 - Mobile phone
 - Computer monitor
 - TV screen

History of Displays

- Years around 1970 were a watershed
 - Before ~1970 is ancient history
 - Lamps
 - Incandescent lamps
 - Gas-discharge lamps
 - Cathode Ray Tubes (CRTs)
 - Light Emitting Diodes (LEDs)
 - After ~1970 saw start of modern displays
 - Two key driving forces from solid state electronics
 - Flat panels
 - Low power/low voltage

Gas-discharge Lamp - 1970

Nixie Tube

- Gas discharge tube introduced in 1920s
- Multiple cathodes shaped of characters (eg 0 to 9)
- Filled with neon + mercury and/or argon
- Cold cathode (no heating)
- Gas glows red-orange with
 - ~ 100 Volts DC
 - Few mA

Dekatron

Cathode Ray Tube (CRT)

- Invented in 1897 by Braun (and J J Thompson)
- Commercial product by 1922
- Source of electrons
 - Hot cathode
- Accelerated by anode
- Focused by coil
- Deflected by coils
- Phosphor screen

Colour - Shadow Mask Tube

- 3 electron guns and 3 phosphors (RGB)
- Correct electron beam to correct phosphor

- Achieved using shadow mask
- Several types

Use of CRTs

- Widespread use in
 - TVs
 - Computer monitors
 - Oscilloscopes
 - Radar sets
 - etc
- Dominant till recently
- High voltage (up to 30kV) and 50W for 21" colour CRT
- Large vacuum envelope ⇒ bulky and heavy

Light Emitting Diodes (LEDs)

- p-n junction can emit light with photon energy of band gap
- Colour depends on semiconductor material
- Low voltage (1.5-3V)
- Reasonably low current (10s mA)
- Efficient source of light
- Long life

Use of LEDs

- ~1970 as a display device before LCDs
 - Portable devices
 - Short battery life
- Since 1970
 - Indicator lamps
 - Source of light
- Recently re-emerged as displays using organic semiconductors

1970 - Display Requirements

- Two clear requirements driven by:
 - Emergence of integrated circuits
 - Desire for portable equipment
 - Flat panel displays
 - Space
 - Weight
 - Battery driven equipment
 - Low voltage
 - Low power

1970 - New Display Technologies

- Existing display technologies
 - CRT
 - Large
 - High voltage, large power
 - Nixie tubes
 - Lack of flexibility
 - High voltage
- Liquid Crystal Displays
 - Considerable promise
 - Flat panel display
 - Low voltage, low power
 - But considerable number of problems

Introduction to Liquid Crystals

Centenaries

■ LC discovery (1888)

 First commercial LC material (1904)

LCDs - Progress

- **1973**
 - Original LCD calculator
 - Electro-hydrodynamic mode
 - Interesting science
 - Poor performance
 - Soon obsolete
- **2007**
 - Billions of LCDs made
 - Worth 10sB£
 - 46" HD TV at Dixons

First Generation of LCDs

- 1970: lack of suitable
 - LC device
 - LC material
- 1971: Twisted Nematic LCD invented
- 1972: First stable room temperature LC material
- 1975-1980: Widespread adoption of LC watches and calculators

11-02-08

Second Generation of LCDs

- 1980: lack of high information content LCD for
 - Computer monitors
 - TVs
 - Range of domestic, automotive and office equipment
 - (Mobile phone)
- 1980: amorphous silicon TFTs (Dundee Un.)
- 1982: Supertwisted Nematic (STN) LCD (MoD)

Third Generation of LCDs

- 1990: lack of high contrast ratio, fast switching for TV
- 1995: two 'old' LCDs revisited, both with TFTs
 - In-plane-switching (IPS)
 - Vertically aligned nematic (VAN)
- TV market split now between these two technologies

Substrate Size

Evolution of size

Now generation 8: > 2m × 2m

LCD Market

(Ignores small/medium size displays)

Units (M)

Area (1000m²)

Liquid Crystal Life Before Displays

- 1888: LC phase discovered (identified)
- **1905**
 - Alignment on surfaces
 - Twisted nematic optics
- **1935**
 - Alignment in fields
 - Field re-alignment of aligned layers
- **1955**
 - Application of continuum mechanics to LCs
- **1965**
 - Chemical principles for forming LC phases

Next Lecture

- LC materials
 - Various LC phases
 - Range of chemical structures
- Physical properties
 - Spontaneous ordering present
 - Anisotropic properties
 - Refractive indices
 - Dielectric constants
 - Viscosities
- Switching principles
 - Surface alignment
 - Field alignment
 - Competition between the two