Problema 1

Suponga los siguientes conjuntos de datos:

$$x = \{x_1, ..., x_9\}, \quad y = \{y_1, ..., y_9\}$$

Los cuales corresponden a concentraciones de dos minerales en cierto depósito. Se obtuvo que $\bar{x} = 5$, $\bar{y} = 3$, $\sum_{i=1}^{9} (x_i - \bar{x})^2 = 350$, y $\sum_{i=1}^{9} (y_i - \bar{y})^2 = 248$.

- Obtenga el coeficiente de correlación entre x y y.
- Mediante R, obtenga todos los estadísticos mencionados en el problema sabiendo que los datos vienen dados por:

 $\mathbf{x} = \{0, 5, 0, 10, 0, 15, 0, 15, 0\}, \quad \mathbf{y} = \{0, 0, 0, 10, 0, 15, 0, 2, 0\}$

Solución:

Recuerdo:

$$Cov(\vec{x}, \vec{Y})$$
; $\vec{x}, \vec{y} \in \mathbb{R}^n$; $x_1, ..., x_n$ dates

$$\operatorname{Cov}(\vec{x},\vec{\gamma}) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) \quad \operatorname{Cov}.$$
mustral

Cov(...) chine un producto interno.

$$(X+Y) \bullet Z = X \bullet Z + Y \bullet Z$$

$$Cov (\alpha X + Y, Z); \alpha \in \mathbb{R}$$

$$= \alpha Cov(X, Z) + cov(Y, Z)$$

$$Cov(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$Cov(X,Y) = \frac{1}{n-1} S_{XY}$$

$$S_{XX} = \sum_{i=1}^{n} (x_i - \overline{x})^2 ; S_X^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$5_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 ; s_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2$$

$$Cor(X'_{\lambda}) = \frac{1}{\sqrt{\sum (x'_{1}-x)^{2} \cdot \sum (\lambda'_{1}-\lambda)^{2}}} \sum_{x} (\lambda'_{1}-\lambda'_{2})^{2}$$

$$= \frac{CDV(X,Y)}{\sqrt{S_x^2 \cdot S_y^2}}$$

$$\sum_{i=4}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=4}^{n} x_i y_i - x_i \overline{y} - \overline{x} y_i + \overline{x} \overline{y}$$

$$\bar{x} = \frac{1}{N} \sum x_i = n \bar{x}$$

$$= \sum_{i=1}^{N} x_i y_i - n \bar{x} \bar{y} - n \bar{x} \bar{y}$$

$$= \sum_{i=1}^{N} x_i y_i - n \bar{x} \bar{y}$$

$$= \sum_{i=1}^{N} x_i y_i - n \bar{x} \bar{y}$$

$$= \sum_{i=1}^{N} x_i y_i - n \bar{x} \bar{y} - n \bar{x} \bar{y}$$

= \(\times x \times i - n \(\overline{x} \) \(\overline{y} \)

$$\overline{X} = \cdots$$

$$\sum (x_i - \cdots$$

Problema 2

En un esfuerzo por obtener el máximo rendimiento en una reacción química, un experto analiza los valores de las siguientes variables:

- T: Temperatura (en °C)
- P: Porcentaje de material convertido al producto deseado.

Los datos, para una muestra de tamaño 020, se resumen en la siguiente tabla:

	T/P	40-50	50-60	60-70	70-80	Total
165	160-170	3	1	0	0	4
175	170 - 180	0	3	5	0	8
185	180-190	0	2	3	3	8
	Total	3	6	8	3	20

- Calcule los promedios y varianzas marginales de cada variable. ¿Cuál variable es más homogénea?
- Calcule el porcentaje promedio de material convertido, dado que la temperatura es superior a 170°C.
- 3. ¿Existe evidencia de asociación lineal entre las variables?

Temp.	mcT:	f ;_
	165	4
	175	8
	185	В
	•	

Pac.	mcP	<u>f:</u>
	45	3
	55	6
	65	క
	75	3

mean (Temp) =
$$\frac{1}{20} \sum_{i=1}^{3} \text{mcT}_{i} \cdot f_{i}$$

= $\frac{1}{20} \left\{ 164.4 + 175.8 + 185.8 \right\}$

Teamp.	McT:∣	f;	Pac.	mcP	f;	
11	165	4	1.0.0	45	3	
	175	8		55	6	
	185	В		65	క	
				75	3	

$$V_{or}(T_{emp}) = \frac{1}{n-1} \sum_{i=1}^{3} (x_i - \overline{x})^2 \cdot f_i$$

$$= \frac{1}{19} ((11s - \overline{x})^2 \cdot 4 + (17s - \overline{x})^2 \cdot 8 + (18s - \overline{x})^2 \cdot 8)$$

$$= \cdot \cdot \cdot \cdot$$

Viendo los datos en color amarillo tenemos que esos son los que nos sirven, por tanto:

WEL	t ;	_		
45	O			
55	5	\wedge	Medi	-63.75
65	8			
7-5	3			

=> Relación Linean

inversa a la par

3. Cor

Problema 3

Los meteoritos se pueden clasificar de acuerdo a su composición y procedencia; de ahí es que existen aquéllos denominados Condritas (C), Acondritas (A), Metálicos (M) y Siderolíticos (S). Se seleccionó al azar 22 caídas de meteoritos documentadas en el norte chileno y argentino para estudiarlos en detalle, observando en ellos: tipo de meteorito, diámetro (cms.), pero (kg.) y número de fragmentos recuperados: Información adicional; considere D_i , P_i y F_i como el diametro, el peso y cantidad de fragmentos de l *i*-ésimo

Tipo	C	A	A	C	S	C	A	S	S	M	A
Diámetro	22,44	19,85	17,66	21,25	40,55	33,25	23,15	26,55	36,55	23,65	14,95
Peso	11,6	16,8	14,4	12,3	2,1	6,1	13,5	9,1	3,8	14	18
Fragmentos	2	3	3	2	1	2	2	2	1	1	2
Tipo	Α	M	C	M	C	A	A	C	S	M	A
Tipo Diámetro	A 22,9	M 30,95	C 24,7	M 32,15	C 24,95	A 29,05	A 22,95	C 28,35	S 36,55	M 27,45	A 24,1
	22,9 9,1						22,95 8,9				24,1 10

meteorito, respectivamente. Luego

$$\sum_{i=1}^{22} D_i = 583,95 \qquad \sum_{i=1}^{22} \left(D_i - \bar{D} \right)^2 = 863,6107 \qquad \sum_{i=1}^{22} \left(D_i - \bar{D} \right) \left(P_i - \bar{P} \right) = -526,6715$$

$$\sum_{i=1}^{22} P_i = 201 \qquad \sum_{i=1}^{22} \left(P_i - \bar{P} \right)^2 = 394,4709 \qquad \sum_{i=1}^{22} \left(D_i - \bar{D} \right) \left(F_i - \bar{F} \right) = -54,67409$$

$$\sum_{i=1}^{22} F_i = 39 \qquad \sum_{i=1}^{22} \left(F_i - \bar{F} \right)^2 = 11,86364 \qquad \sum_{i=1}^{22} \left(F_i - \bar{F} \right) \left(P_i - \bar{P} \right) = 37,48182$$

- 1. Para cada una de las variables entregadas, clasifique si son cualitativas o cuantitativas, y discretas o continuas según corresponda.
- 2. Para la variable 'tipo de meteorito' construya la tabla de frecuencias (con todas las frecuencias admisibles). Calcule una medida de centralidad para la misma variable. ¿Qué se puede decir respecto a la simetría de la distribución de frecuencias construidas?
- 3. Construya la gráfica boxplot para el Diámetro de los meteoritos y comente la forma de la distribución del Diámetro en base a la gráfica obtenida.
- 4. Analice la veracidad del siguiente comentario: El Peso de los meteoritos es relativamente menos variable que el Diámetro de los meteoritos. Fundamente su respuesta mediante un indicador apropiado.

	ipo	ji	 	fri	Topi
_	C	6	6	6/22	6/22
	A	В	7	8/22	14/22
	М	J	18	4/22	18hz
_	S	4	22	4/22	1

$$Cvdism = \frac{Sx}{clian}$$

Medido de contralidad.

La moda es

> quantile(diam)

25% 50% 75% 100% 14.9500 22.9125 24.8250 30.4750 40.5500

