7.1 Discrete-Time Control Systems

Discrete-systems: There is one or more impulse series or digital signals in the system.

Sampled-Data System: a system that is continuous except for one or more sampling operations.

A/D: analog to digital converter

D/A: digital to analog converter

A/D process

- Sampling Time sampled
- Quantization Value quantized

D/A process

Computer Controlled Systems

7.2 Signal Sampling and Shannon Theorem

3. Unit Impulse Sequence (Unit Impulse Train)

Unit Impulse sequence

4. Sampling Signal
$$e^{*}(t) = \sum_{k=-\infty}^{\infty} e(t)\delta(t-kT)$$

$$E^{*}(s) = L\left[e^{*}(t)\right] = \sum_{k=0}^{\infty} e(kT) \cdot e^{-kTs}$$

$$E^{*}(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} E\left[j(\omega + k\omega_{s})\right]$$

Shannon Sampling Theorem—

The Necessary Condition for signal recovery

Example Consider $e(t)=e^{-t}$, determine the sampling frequency ω_s according to Shannon Sampling Theorem.

Solution: L-Transform of e(t) is:
$$E(s) = \frac{1}{s+1}$$

Frequency characteristic $E(j\omega) = \frac{1}{j\omega + 1}$

thus

$$|E(j\omega)| = \frac{1}{\sqrt{\omega^2 + 1}}$$

Take
$$|E(j\omega)| = 0.05|E(0)|$$
,
 $\frac{1}{\sqrt{\omega_h^2 + 1}} = 0.05$, $\omega_h = 20 rad / s = \omega_{max}$

 $\omega_{\rm s} \ge 2\omega_{\rm max} = 40 rad/s$

7.3 Signal Recovery and Zero-Order Hold

7.3.1 Signal recovery

The ideal filter is illustrated as the dotted line in the figure.

0

Computer Control System

7.3.2 Zero-Order Hold

$$k(t) = 1(t) - 1(t - T)$$

$$X_h(t) = \sum_{k=0}^{\infty} x(kT)(1(t - kT) - 1(t - kT - T))$$

Using L-Transform, we get

$$x_{h}(s) = \sum_{k=0}^{\infty} x(kT)e^{-kTs} \left[\frac{1}{s} - \frac{1}{s}e^{-Ts} \right]$$

$$\frac{x_{h}(s)}{x^{*}(s)} = \frac{1 - e^{-Ts}}{s} = G_{h}(s)$$

Effect of zero-order holder on the system

$$G_h(s) = \frac{1 - e^{-Ts}}{s}$$

$$\approx e^{-Ts/2}$$

Frequency characteristics:

$$G_{h}(j\omega) = \frac{1 - e^{-j\omega T}}{j\omega} = \frac{e^{-\frac{1}{2}j\omega T}(e^{j\frac{1}{2}\omega T} - e^{-j\frac{1}{2}\omega T})}{j\omega} = \frac{2e^{-\frac{1}{2}j\omega T}\sin(\frac{1}{2}\omega T)}{\omega}$$

$$G_{h}(j\omega) = T\frac{\sin(\frac{\omega T}{2})}{\frac{\omega T}{2}}e^{-\frac{1}{2}j\omega T}$$

$$: T = \frac{2\pi}{\omega_s}$$

setting
$$S_a(x) = \sin x/x$$

so the

$$G_h(j\omega) = \frac{2\pi}{\omega_s} \cdot S_a(\pi\omega/\omega_s) \cdot e^{-j\frac{\pi\omega}{\omega_s}}$$

the amplitude
$$|G_h(j\omega)| = \frac{2\pi}{\omega_s} \cdot |S_a(\pi\omega/\omega_s)|$$

phase angle
$$\angle G_h(j\omega) = -\frac{\pi\omega}{\omega_s} + \angle S_a(\pi\omega/\omega_s)$$

where
$$\angle S_a(\pi\omega/\omega_s) = \begin{cases} 0, & 2n\omega_s < \omega < (2n+1)\omega_s \\ \pi, & (2n+1)\omega_s < \omega < (2n+2)\omega_s \end{cases}$$

Chapter 7 Analysis and Design of Linear Discrete-Time System (Sampled-data System)

- 7.1 Introduction
- 7.2 The Sampling Process and Sampling Theorem
- 7.3 Signal Recovery and Zero-Order Hold
- 7.4 Z-Transform and Inverse Z Transform
- 7.5 Mathematical Models of Discrete-Time Systems
- 7.6 Performance Analysis of Discrete-Time Systems
- 7.7 Digital Control Design for Discrete-Time Systems

7.4 Z-Transform and Inverse Z Transform

7.4.1. Z-transform

Definition:

$$: E^*(s) = \sum_{k=0}^{+\infty} e^{-kTs}$$

Set

$$z = e^{Ts} \qquad s = \frac{1}{T} \ln z$$

$$E(z) = \sum_{k=0}^{\infty} e(kT) \cdot z^{-k}$$

$$E(z) = E^*(s) \big|_{z=e^{Ts}}$$

$$E^{*}(s) = \sum_{k=0}^{\infty} e(kT) \cdot e^{-kTs}$$
 $z^{-1} = e^{-Ts}$

$$E^{*}(s) = \sum_{k=0}^{\infty} e(kT) \cdot e^{-kTs}$$

$$z^{-1} = e^{-Ts}$$

$$E(z) = Z[e^{*}(t)] = E^{*}(s) \Big|_{z=e^{Ts}} = \sum_{n=0}^{\infty} e(kT) \cdot z^{-k}$$

Rmk:
$$E(z) = Z[e^*(t)] = Z[E(s)] = Z[E^*(s)] = Z[e(t)]$$
The z-transform is only for discrete signal.

E(z) is only mapping to a unique e*(t), but not a unique e(t).

7.4.2 Methods of z-Transform

By the definition.

Partial fraction expansion.

1. By the Definition

Example 1
$$x_1(t) = I(t)$$
 and $x_2(t) = \sum_{k=0}^{\infty} \delta(t - kT)$, obtain $X_1(z)$ and $X_2(z)$.

Solution:

$$X_{1}(z) = \sum_{k=0}^{\infty} x_{1}(kT)z^{-k} = 1 + z^{-1} + z^{-2} + \dots = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}$$

$$X_{2}(z) = \sum_{k=0}^{\infty} x_{2}(kT)z^{-k} = 1 + z^{-1} + z^{-2} + \dots = \frac{z}{z - 1}$$

Tips: Though $x_1(t)$ and $x_2(t)$ are not same, they may have the same Z-transform.

$$E(z) = \sum_{k=0}^{\infty} e(kT) \cdot z^{-k}$$

Example 2
$$e(t) = \sin \omega t = \frac{1}{2j} \left[e^{j\omega t} - e^{-j\omega t} \right]$$

$$E(z) = \sum_{k=0}^{\infty} \frac{1}{2j} \left[e^{j\omega kT} - e^{-j\omega kT} \right] \cdot z^{-k} = \frac{1}{2j} \sum_{k=0}^{\infty} \left[(e^{j\omega T} z^{-1})^k - (e^{-j\omega T} z^{-1})^k \right]$$

$$= \frac{1}{2j} \left[\frac{1}{1 - e^{j\omega T} z^{-1}} - \frac{1}{1 - e^{-j\omega T} z^{-1}} \right] = \frac{1}{2j} \left[\frac{z}{z - e^{j\omega T}} - \frac{z}{z - e^{-j\omega T}} \right]$$

$$= \frac{1}{2j} \cdot \frac{z(e^{j\omega T} - e^{-j\omega T})}{z^2 - (e^{j\omega T} + e^{-j\omega T})z + 1} = \frac{z\sin \omega T}{z^2 - 2\cos \omega T \cdot z + 1}$$

$$E(z) = \sum_{k=0}^{\infty} e(kT) \cdot z^{-k}$$

Example 3 e(t) = t

Solution.
$$E(z) = \sum_{k=0}^{\infty} kT \cdot z^{-k} = T \left[z^{-1} + 2z^{-2} + 3z^{-3} + \cdots \right]$$

$$= Tz \left[z^{-2} + 2z^{-3} + 3z^{-4} + \cdots \right]$$

$$= -Tz \left[\frac{d}{dz} z^{-1} + \frac{d}{dz} z^{-2} + \frac{d}{dz} z^{-3} + \cdots \right]$$

$$= -Tz \frac{d}{dz} \left[z^{-1} + z^{-2} + z^{-3} + \cdots \right]$$

$$= -Tz \frac{d}{dz} z^{-1} \left[1 + z^{-1} + z^{-2} + \cdots \right]$$

$$= -Tz \frac{d}{dz} \left[\frac{1}{z} \cdot \frac{1}{1 - z^{-1}} \right] = -Tz \frac{d}{dz} \left[\frac{1}{z - 1} \right] = \frac{Tz}{(z - 1)^2}$$

$$E(z) = \sum_{k=0}^{\infty} e(kT) \cdot z^{-k}$$

2. Partial Fraction Expansion

Example 4
$$E(s) = \frac{1}{(s+a)(s+b)}$$
 Obtain $E(z)=?$

Solution:

$$E(s) = \frac{1}{a-b} \cdot \frac{(s+a)-(s+b)}{(s+a)(s+b)} = \frac{1}{a-b} \left[\frac{1}{s+b} - \frac{1}{s+a} \right]$$

$$e(t) = \frac{1}{a-b} \left[e^{-bt} - e^{-at} \right]$$

$$E(z) = \frac{1}{a - b} \sum_{k=0}^{\infty} \left[e^{-bkT} - e^{-akT} \right] \cdot z^{-k}$$

$$= \frac{1}{a-b} \left[\sum_{k=0}^{\infty} (e^{-bT} \cdot z^{-1})^k - \sum_{k=0}^{\infty} (e^{-aT} \cdot z^{-1})^k \right]$$

$$= \frac{1}{a-b} \left[\frac{1}{1-e^{-bT}z^{-1}} - \frac{1}{1-e^{-aT}z^{-1}} \right] = \frac{1}{a-b} \left[\frac{z}{z-e^{-bT}} - \frac{z}{z-e^{-aT}} \right]$$

The z-transform of typical functions

f(t)	F(s)	F(z)
ð(t)	1	1
f(t)	<u>1</u> s	$\frac{z}{z-1}$
t	$-\frac{1}{s^2}$	$\frac{zT}{(z-1)^2}$
t ² /2	1 8	$\frac{z(z+1)T^{2}}{2(z-1)^{8}}$

e ^{-at}	$\frac{1}{s+a}$	$\frac{z}{z-e^{-aT}}$
te-at	$\frac{1}{(s+a)^2}$	$\frac{zTe^{-aT}}{(z-e^{-aT})^2}$
at /T	$\frac{1}{s - (1/T) \ln a}$	$\frac{z}{z-a} (a>0)$
sin@t	$\frac{\omega}{s^2 + \omega^2}$	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$
cos@t	$\frac{s}{s^2 + \omega^2}$	$\frac{z^2 - z \cos_{\omega} T}{z^2 - 2z \cos_{\omega} T + 1}$
$1-e^{-at}$	$\frac{a}{s(s+a)}$	$\frac{z(1-e^{-aT})}{(z-1)(z-e^{-aT})}$
e ^{-at} sinot	$\frac{\omega}{(s+a)^2+\omega^2}$	$\frac{ze^{-at}\sin\omega T}{z^2 - 2ze^{-at}\cos\omega T + e^{-2aT}}$
e ^{-at} cos@t	$\frac{s+a}{(s+a)^2+\omega^2}$	$\frac{z(z-e^{-aT}\cos\omega T)}{z^2-2ze^{-aT}\cos\omega T+e^{-2aT}}$

7.4.3 Properties of z-Transform

- 1. linear property $Z\left[a\cdot e_1^*(t)\pm b\cdot e_2^*(t)\right]=a\cdot E_1(z)\pm b\cdot E_2(z)$
- 2. Real shifting theorem 实位移定理

2. Real shifting theorem 实位移定理

$$Z[e(t+nT)] = z^n \left[E(z) - \sum_{k=0}^{n-1} e(kT) \cdot z^{-k} \right]$$

LHS =
$$\sum_{k=0}^{\infty} e(kT + nT) \cdot z^{-k} = z^n \sum_{k=0}^{\infty} e(kT + nT) \cdot z^{-(k+n)}$$

 $j = k + n$
 $= z^n \sum_{j=n}^{\infty} e(jT) \cdot z^{-j} = z^n \left[\sum_{j=0}^{\infty} e(jT) \cdot z^{-j} - \sum_{j=0}^{n-1} e(jT) \cdot z^{-j} \right]$
 $= z^n \left[E(z) - \sum_{k=0}^{n-1} e(kT) \cdot z^{-k} \right] = \text{RHS}$

$$Z[e(t+nT)] = z^n \left[E(z) - \sum_{k=0}^{n-1} e(kT) \cdot z^{-k} \right]$$

Example 5 e(t) = t - T

$$E(z) = Z[t-T] = z^{-1}Z[t] = z^{-1}\frac{Tz}{(z-1)^2} = \frac{T}{(z-1)^2}$$

Example 6 e(t) = t + 2T

$$E(z) = Z[t + 2T]$$

$$= z^{2} \left\{ Z[t] - \sum_{k=0}^{1} kT \cdot z^{-k} \right\}$$

$$= z^{2} \left[\frac{Tz}{(z-1)^{2}} - 0 - Tz^{-1} \right]$$

3. Complex shifting theorem 复位移定理

$$Z[e(t)\cdot e^{\mp at}] = E(z\cdot e^{\pm aT})$$

Proof.
$$LHS = \sum_{k=0}^{\infty} e(kT) \cdot e^{\mp akT} z^{-k} = \sum_{k=0}^{\infty} e(kT) \cdot \left(z \cdot e^{\pm aT}\right)^{-k}$$

$$z_1 = z \cdot e^{\pm aT}$$

$$= \sum_{k=0}^{\infty} e(kT) \cdot \left(z \cdot e^{\pm aT}\right)^{-k} = E(z) = E(z \cdot e^{\pm akT}) = RHS$$

$$= \sum_{k=0}^{\infty} e(kT) \cdot \left(z \cdot e^{\pm aT}\right)^{-k} = E(z_1) = E\left(z \cdot e^{\pm akT}\right) = RHS$$

Example 7 $e(t) = t \cdot e^{-at}$

$$E(z_1) = Z[t]_{z_1 = z \cdot e^{aT}} = \frac{Tz_1}{(z_1 - 1)^2} = \frac{T(z \cdot e^{aT})}{(z \cdot e^{aT} - 1)^2} = \frac{Tz \cdot e^{-aT}}{(z - e^{-aT})^2}$$

4. Initial-value Theorem

$$\lim_{n\to 0} e(nT) = \lim_{z\to \infty} E(z)$$

Proof:

$$E(z) = \sum_{n=0}^{\infty} e(nT) \cdot z^{-n}$$

$$= \left[e(0) + e(1) \cdot z^{-1} + e(2) \cdot z^{-2} + e(3) \cdot z^{-3} + \cdots \right]$$

$$\lim E(z) = e(0)$$

$$\lim_{z\to\infty} L(z) - e(0)$$

Example 8
$$E(z) = \frac{0.792 \cdot z^2}{(z-1)[z^2 - 0.416z + 0.208]}$$

$$e(0) = \lim_{z \to \infty} E(z) = 0$$

$$Z[e(t+nT)] = z^n \left[E(z) - \sum_{k=0}^{n-1} e(kT) \cdot z^{-k} \right]$$

5. Final value theorem $\lim_{n\to\infty} e(nT) = \lim_{z\to 1} (z-1) \cdot E(z)$

Proof:
$$Z[e(t+T)-e(t)] = z[E(z)-e(0)]-E(z)$$

$$= (z-1)E(z) - z \cdot e(0)$$

$$(z-1)E(z) = z \cdot e(0) + Z[e(t+T) - e(t)]$$

$$\lim_{z \to 1} (z - 1)E(z) = \lim_{z \to 1} \left\{ z \cdot e(0) + \sum_{n=0}^{\infty} \left[e[(n+1)T] - e(nT) \right] \cdot z^{-n} \right\}$$

$$= e(0) + \left[e(1) - e(0) \right] + \left[e(2) - e(1) \right] + \left[e(3) - e(2) \right] + \cdots$$

$$= e(\infty T)$$

Example 9
$$E(z) = \frac{0.792 \cdot z^2}{(z-1)[z^2 - 0.416z + 0.208]}$$

 $e(\infty T) = \lim_{z \to 1} (z-1)E(z) = \lim_{z \to 1} \frac{0.792 \cdot z^2}{[z^2 - 0.416z + 0.208]} = 1$

6. Convolution theorem

If
$$c^*(t) = e^*(t) * g^*(t) = \sum_{k=0}^{\infty} e(kT) \cdot g[(n-k)T]$$

We have:
$$C(z) = E(z) \cdot G(z)$$

(See the text book for proof)

Properties of z-Transform

$$Z[a \cdot e_1^*(t) \pm b \cdot e_2^*(t)] = a \cdot E_1(z) \pm b \cdot E_2(z)$$

2. Real shifting theorem

$$\begin{cases} \text{Lag } Z[e(t-nT)] = z^{-n}E(z) \\ \text{Lead } Z[e(t+nT)] = z^{n} \left[E(z) - \sum_{k=0}^{n-1} e(kT) \cdot z^{-k} \right] \end{cases}$$

3. Complex shifting theorem

$$Z[e(t)\cdot e^{\mp at}] = E(z\cdot e^{\pm aT})$$

4. Initial-value theorem

$$\lim_{n\to 0} e(nT) = \lim_{z\to \infty} E(z)$$

5. Final-value theorem

$$\lim_{n\to\infty}e(nT)=\lim_{z\to 1}(z-1)\cdot E(z)$$

6. Convolution theorem

$$c^*(t) = e^*(t) * g^*(t) \Rightarrow C(z) = E(z) \cdot G(z)$$

7.4.4 Inverse z-Transform

$$Z^{-1}[X(z)] = x(nT)$$

Tips: Inverse Z-transform can only provide discrete-time signal $x^*(t)$, instead of continuous signal x(t).

Long Division(长除法)
Partial-Fraction expansion Expansion of
$$\frac{E(z)}{z}$$
Residue(留数法) $e(nT) = \sum Res[E(z) \cdot z^{n-1}]$

1. Long Division(长除法)

$$E(z) = \frac{b_0 z^m + b_1 z^{m-1} + \dots + b_m}{a_0 z^n + a_1 z^{n-1} + \dots + a_n}$$

Numerator is divided by denominator, we get

$$E(z) = c_0 + c_1 z^{-1} + \dots + c_k z^{-k} + \dots = \sum_{k=0}^{\infty} c_k z^{-k} = \sum_{k=0}^{\infty} e(kT) z^{-k}$$

$$e^*(t) = c_0 \delta(t) + c_1 \delta(t - T) + \dots + c_k \delta(t - kT) + \dots$$

Example 10
$$F(z) = \frac{z}{(z-2)(z-3)}$$
, obtain f*(t).

Solution:

Because
$$F(z) = \frac{z}{z^2 - 5z + 6} = \frac{z^{-1}}{1 - 5z^{-1} + 6z^{-2}}$$

By long-division, we get that

$$F(z) = z^{-1} + 5z^{-2} + 19z^{-3} + 65z^{-4} + \cdots$$

Thus

$$f(0) = 0$$
, $f(T) = 1$, $f(2T) = 5$, $f(3T) = 19$, $f(4T) = 65$,...

Then
$$f^*(t) = \delta(t-T) + 5\delta(t-2T) + 19\delta(t-3T) + 65\delta(t-4T) + \cdots$$

2. Partial fraction expansion

Note: here, we expand $\frac{X(z)}{z}$, instead of z_{\circ}

$$\frac{X(z)}{z} = \sum_{i=1}^{n} \frac{A_i}{z - z_i}$$

Consider

Then

$$X(z) = \frac{b_0 z^m + b_1 z^{m-1} + \dots + b_{m-1} z + b_m}{a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n}$$

$$X(z) = \frac{b_0 z^m + b_1 z^{m-1} + \dots + b_{m-1} z + b_m}{a_0 \prod_{i=1}^{n} (z - z_i)}$$

If there is no repeated root for the denominator, it generates

$$X(z) = z(\frac{A_1}{z - z_1} + \frac{A_2}{z - z_2} + \dots + \frac{A_n}{z - z_n})$$

其中系数4,可由式决定:

$$A_{i} = \left[(z - z_{i}) \frac{X(z)}{z} \right]_{z=z_{i}}$$

Example 12
$$E(z) = \frac{z^2}{(z - 0.8)(z - 0.1)}$$
 Obtain e*(t). (PFE & Residue)

PFE:
$$\frac{E(z)}{z} = \frac{z}{(z - 0.8)(z - 0.1)} = \frac{C_1}{(z - 0.8)} + \frac{C_2}{(z - 0.1)}$$

$$\begin{vmatrix} C_1 = \lim_{z \to 0.8} \frac{z}{(z - 0.1)} = \frac{8}{7} & C_2 = \lim_{z \to 0.1} \frac{z}{(z - 0.8)} = \frac{-1}{7} \\ = \frac{8/7}{(z - 0.8)} - \frac{1/7}{(z - 0.1)}$$

$$E(z) = \frac{8}{7} \cdot \frac{z}{(z - 0.8)} - \frac{1}{7} \cdot \frac{z}{(z - 0.1)}$$

$$a(t) = (8 \times 0.8^{\frac{t}{T}} - 0.1^{\frac{t}{T}}) / 7 \qquad a(t, T) = (8 \times 0.8^{n} - 0.1^{n})$$

$$e(t) = (8 \times 0.8^{\frac{t}{T}} - 0.1^{\frac{t}{T}})/7$$
 $e(nT) = (8 \times 0.8^{n} - 0.1^{n})/7$

$$e^{*}(t) = \sum_{n=0}^{\infty} \left[(8 \times 0.8^{n} - 0.1^{n}) / 7 \right] \cdot \delta(t - nT)$$

Example 13 Consider

$$F(z) = \frac{z}{(z-1)(z-e^{-T})}$$
Obtain f*(t).

Solution:

$$\frac{F(z)}{z} = \frac{K_1}{z - 1} + \frac{K_2}{z - e^{-T}} \qquad K_1 = \lim_{z \to 1} \left(\frac{z - 1}{z}\right) F(z) = \frac{1}{1 - e^{-T}}$$

$$F(z) = \frac{1}{1 - e^{-T}} \left(\frac{z}{z - 1} - \frac{z}{z - e^{-T}}\right) \qquad K_2 = \lim_{z \to e^{-T}} \left(\frac{z - e^{-T}}{z}\right) F(z) = -\frac{1}{1 - e^{-T}}$$

$$f(nT) = \frac{1}{1 - e^{-T}} \left(1 - e^{-nT}\right)$$

$$f^*(t) = \frac{1}{1 - e^{-T}} \sum_{k=0}^{+\infty} (1 - e^{-kT}) \delta(t - kT)$$

Residue(留数法)

$$F(z) = \sum_{k=0}^{+\infty} f(kT)z^{-k}$$

$$F(z)z^{m-1} = \sum_{k=0}^{+\infty} f(kT)z^{m-k-1}$$

$$\int_{\Gamma} F(z)z^{m-1} dz = \int_{\Gamma} \left[\sum_{k=0}^{+\infty} f(kT)z^{m-k-1} \right] dz$$

$$\oint_{\Gamma} F(z)z^{m-1}dz = \sum_{k=0}^{+\infty} f(kT) \oint_{\Gamma} z^{m-k-1}dz$$

poles of $F(z)z^{k-1}$

$$f(kT) = \sum_{i=1}^{n} res[F(z)z^{k-1}, z_i]$$

 $z_i, i = 1, 2, \dots, n$ are all the poles of $F(z)z^{k-1}$

$$Res\left[z^{(k-1)}x(z)\right] = \lim_{z \to z_i} \frac{1}{(r-1)!} \frac{d^{r-1}}{dz^{r-1}} \left[(z-z_i)^r z^{k-1} x(z) \right]$$

其中Res[]表示函数的留数。

Example 14 For

$$F(z) = \frac{10z}{(z-1)(z-2)}$$

Obtain its inverse z-transform by residue Method.

Solution:
$$F(z)z^{k-1} = \frac{10z^k}{(z-1)(z-2)}$$

Poles $z_1 = 1$ and $z_2 = 2$, and

$$res[F(z)z^{k-1},1] = \lim_{z \to 1} (z-1)F(z)z^{k-1} = -10$$

$$res[F(z)z^{k-1},2] = \lim_{z \to 2} (z-2)F(z)z^{k-1} = 10 \cdot 2^{k}$$

Then
$$f(kT) = 10(2^k - 1)$$
 $(k = 0,1,2,\cdots)$

Example 15
$$E(z) = \frac{5}{(z-a)^2}$$
 Obtain e*(t). (Residue)

Solution.

$$e(nT) = \sum_{z=a}^{\infty} \text{Res} \left[E(z) \cdot z^{n-1} \right] = \text{Res} \left[\frac{5}{(z-a)^2} \cdot z^{n-1} \right]$$

$$e(nT) = \frac{1}{(2-1)!} \lim_{z \to a} \frac{d}{dz} \left[(z-a)^2 \frac{5 \cdot z^{n-1}}{(z-a)^2} \right]$$

$$= \lim_{z \to a} \frac{d}{dz} \left[5 \cdot z^{n-1} \right]$$

$$= 5 \cdot \lim_{z \to a} \left[(n-1) \cdot z^{n-2} \right]$$

$$= 5 \cdot (n-1) \cdot a^{n-2}$$

$$\stackrel{*}{=} (n-1) \cdot a^{n-2}$$

$$e^{*}(t) = \sum_{n=0}^{\infty} \left(5(n-1) \cdot a^{n-2} \right) \cdot \delta(t-nT)$$

7.4.5 Limitations of z-Transform

- (1) only shows the information of samples;
- (2) In some cases, the continuous signal may jump on the sampling point.

