- 1. An LTI system is represented by $h[n] = \delta[n-n_0] + \alpha \, \delta[n-n_1]$ with $n_1 > n_0$. The plot below shows the magnitude of the H(z) when evaluated on the unit circle, i.e |z| = 1, or $z = e^{j\omega}$ where $\omega = \frac{2\pi}{T}$ is the angular frequency.
 - a. Assume $\alpha < 1$ and sketch h[n]. Find the system function H(z).
 - b. Justify the oscillatory pattern in $|H(e^{J\omega})|$ by evaluating H(z) on the unit circle. Relate the variables α , n_0 , n_1 in h[n] to the oscillations. If $n_0=0$, find n_1 and α .
 - c. Draw the block diagram of this system.

Bonus question (3 points): what real life problem can be modeled by this system? Explain clearly.

2. Consider the system below.

- a. Find the impulse response h[n] and system function of this system. Plot the poles and zeros on the z-plane.
- b. Specify the condition on α , β and the relation between them required for
 - i. h[n] to be of finite duration
 - ii. System to be stable
 - iii. System to be causal

You can if required, give the answer 'not possible'.

c. If $\alpha = \beta = 1$, describe the signal processing function done by this system.

3. An LTI system initially at rest is described by the difference equation:

$$y[n] + 2y[n-1] = x[n] + 2x[n-2].$$

- a. What is the impulse response of this system?
- b. If x[n] is as shown below, find the output of this system using convolution.

- 4. Let $x[n] = \delta(n+3) \delta(n+1) + 2\delta(n) + 3\delta(n-2)$ with DTFT as $X(e^{j\omega}) = X_R(e^{j\omega}) + jX_I(e^{j\omega})$ then
 - a. Compute $X_R(e^{j\omega})$ and $\int_{-\pi}^{\pi} X_I(e^{j\omega}) d\omega$
 - b. DTFT $(y[n]) = X_R(e^{j\omega})e^{j2\omega} + jX_I(e^{j\omega})$, find y[n] without explicitly considering DTFT?
 - c. Find $X_R(k)$; 0 < k < N, which is discretized $X_R(e^{j\omega})$ at $\omega = \frac{2\pi k}{N}$ for N = 5
 - d. Compute $x_1[n] = IDFT$ of $X_R(k)$ and find the relation between x[n] and $x_1[n]$.