

Facultad de Ingeniería y Ciencias Agropecuarias Ingeniería en Biotecnología IBT741-Biotecnología Vegetal

Período 2016-1

1. Identificación

Número de sesiones: 60 Número total de horas de aprendizaje: 160 Créditos – malla actual: 6

Profesor: Ing. Fernando Rivas, M.Sc.

Correo electrónico del docente (Udlanet): f.rivas@udlanet.ec Coordinador: Vivian Morera, Ph.D.

Campus: Sede Queri Pre-requisito: IAI310/IBT504/IBT301 Co-requisito:

Paralelo: 1 y 2 Tipo de asignatura:

Optativa	
Obligatoria	X
Práctica	

Organización curricular:

Unidad 1: Formación Básica	
Unidad 2: Formación Profesional	X
Unidad 3: Titulación	

Campo de formación:

Campo de formación					
Fundamentos teóricos	Praxis profesional	Epistemología y metodología de la investigación	Integración de saberes, contextos y cultura	Comunicación y lenguajes	
	X		X		

2. Descripción del curso

La Biotecnología Vegetal es la rama de la Biotecnología que se encarga de la aplicación tecnológica de organismos vegetales, sus derivados o procesos fisiológicos para obtener o modificar productos o procedimientos específicos que sean de beneficio tanto para la agricultura como para la industria.

3. Objetivo del curso

Desarrollar en el estudiante la comprensión de las técnicas básicas utilizadas en el campo de la Biotecnología vegetal, así como sus aplicaciones en el contexto del desarrollo sostenible en el campo agrícola, industrial y social.

4. Resultados de aprendizaje deseados al finalizar el curso

Resultados de aprendizaje (RdA)	RdA perfil de egreso de carrera	Nivel de desarrollo (carrera)
Integra técnicas y estrategias biotecnológicas que le permiten modificar diferentes tipos de plantas	Investiga, innova, crea productos y procedimientos enfocados en su aplicación, con pensamiento crítico, a través del uso de herramientas multidisciplinarias biotecnológicas.	Inicial () Medio (X) Final ()
2. Aplica en el laboratorio herramientas y principios de la biología molecular para el análisis y modificación de plantas	4. Aplica técnicas de laboratorio para análisis, diagnóstico e investigación	
3. Propone estrategias de modificación genética de plantas enfocadas a proyectos biotecnológicos	6. Elabora, evalúa y gestiona proyectos de investigación y experimentación biotecnológicos con beneficios sociales y productivos enfocados a la realidad nacional e internacional.	

5. Sistema de evaluación

De acuerdo al Modelo Educativo de la UDLA la evaluación busca evidenciar el logro de los resultados de aprendizaje (RdA) enunciados en cada carrera y asignatura, a través de mecanismos de evaluación (MdE). Por lo tanto la evaluación debe ser continua, formativa y sumativa. La UDLA estipula la siguiente distribución porcentual para los reportes de evaluaciones previstas en cada semestre de acuerdo al calendario académico:

Reporte de progreso 1	35%
Resumen de lecturas adicionales Controles de lectura Asistencia e informes de laboratorio y salidas de campo	4% 4% 7%
Examen Parcial	10%
Proyecto	10 %
Reporte de progreso 2	35%
Resumen de lecturas adicionales Controles de lectura Juego de Roles y Vinculación con la Comunidad Asistencia e informes de laboratorio y salidas de campo	2% 2% 4% 7%

Examen Parcial 10%

Proyecto 10 %

Evaluación final 30%

Exposición y defensa del Proyecto 10%

Examen final 20%

Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Recordar que para rendir el **EXAMEN DE RECUPERACIÓN**, es requisito que el estudiante haya asistido **por lo menos al 80%** <u>del total</u> de las sesiones <u>programadas</u> de la materia. No se podrá sustituir la nota de un examen previo en el que el estudiante haya sido sancionado por una falta grave, como copia o deshonestidad académica.

6. Metodología del curso y de mecanismos de evaluación

Las metodologías y mecanismos de evaluación deben explicarse en los siguientes escenarios de aprendizaje:

6.1. Escenario de aprendizaje presencial

Principalmente se trabajará con clases magistrales con participación de los estudiantes. Se realizarán laboratorios con los estudiantes para que se familiaricen con las técnicas de Biotecnología Vegetal y se complementará esto con salidas de campo, con sus respectivos informes, tanto de las prácticas como de las salidas.

6.2. Escenario de aprendizaje virtual

Los controles de lectura se harán online mediante pruebas en el aula virtual que se abrirán en una fecha y hora determinada (Por lo general en las noches). Las presentaciones y el material docente se subirán al aula virtual como complemento a las charlas magistrales. Además el trabajo autónomo será subido al aula virtual. Están prohibidas las entregas impresas.

6.3. Escenario de aprendizaje autónomo

El estudiante hará lecturas complementarias de los temas vistos en clase y entregarán los resúmenes, los cuales serán evaluados y tendrán su control de lectura. Haremos un trabajo de juego de roles y vinculación con la comunidad sobre la tecnología de transgénicos y su aplicación en nuestro país. Finalmente, los estudiantes entregarán un proyecto final teórico que agrupe toda la temática vista en clase.

7. Temas y subtemas del curso

RdA	Temas	Subtemas
1. Integra técnicas y estrategias	1. Introducción a la	1.1. Introducción a la
biotecnológicas que le permiten	Biotecnología Vegetal	Biotecnología Vegetal
modificar diferentes tipos de plantas	Biotechologia vegetai	1.2. Generalidades de
modifical differences tipos de plantas		Mejora vegetal clásica,
		Técnicas de mejora
		clásica
		1.3. Generalidades de
		Mejora Biotecnológica,
		Técnicas de Mejora
		Biotecnológica
		2.1. Cultivo de tejidos
	2. Cultivo de tejidos vegetales	vegetales, conceptos
	, ,	generales
		2.2. Micropropagación:
		sistemas, asepsia, etapas
		2.3. Morfogénesis: tipos,
		Organogénesis directa e
		indirecta, Embriogénesis
		somática, directa e
		indirecta.
		2.4. Técnicas de
		fitomejoramiento a
		través de cultivo in vitro
		3.1. Conceptos generales
	2 Fitamaiaramianta v	de Transgénesis 3.2. Métodos de
	3. Fitomejoramiento y transgénesis	transformación en
	transgenesis	plantas: Biolística y
		Agrobacterium
		tumefaciens
		3.3. Fitomejoramiento e
		Ingeniería Genética
		3.4. Las Plantas como
		biofactorías (Molecular
		farming)
		4.2. Bioética y
		Bioseguridad aplicada a la
		Biotecnología vegetal:
	4. Impacto de la Biotecnología	Ecuador y el Mundo
	Vvegetal en la agricultura y la	4.3. Legislación Nacional
	industria	e Internacional aplicada a
		la Biotecnología
2. Aplica en el laboratorio	1. Prácticas de Laboratorio	1.1. Preparación de
herramientas y principios de la		medios de cultivo
biología molecular para el análisis y		1.2. Desinfección de
modificación de plantas		material vegetal y trabajo
		en cabina: Organogénesis
		Directa

		1.3. Micropropagación de yemas axilares 1.4. Organogénesis indirecta: Generación de callos organogénicos
3. Propone estrategias de modificación genética de plantas enfocadas a proyectos biotecnológicos	1. Desarrollo del proyecto de investigación	1.1. Desarrollo y defensa de un proyecto de investigación

8. Planificación secuencial del curso

	Semana 1-7				
RdA	Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
	1.Introducción a	1.1. Introducción a	1.1 Clase Magistral	1.1 Resumen de lectura 1: Mejora	1.1. Resúmenes de las lecturas
1,2,3	la Biotecnología	la Biotecnología		Clásica y Mejora Biotecnología 1.1.	adicionales (Rúbrica)
, ,	Vegetal	Vegetal	1.2. Prácticas de	Lectura adicional: Benítez Burraco, A.	
			Laboratorio	(2005), Avances recientes en	Fecha entrega:
		1.2. Generalidades	(Rúbrica)	biotecnología vegetal e ingeniería	R1: Semana 1
		de Mejora vegetal		genética de plantas, España. Editorial	R2: Semana 1
		clásica, Técnicas de	1.3. Salida de	Reverté. Pg: 9-16	R3: Semana 2
		mejora clásica	campo		R4: Semana 2
				1.2 Resumen de lectura 2: Introducción	R5: Semana 3
		1.3. Generalidades		Cubero, José Ignacio (2008),	R6: Semana 3
		de Mejora		Introducción a la Mejora Genética	R7: Semana 4
		Biotecnológica,		Vegetal, 2da Edición, España, Editorial	R8: Semana 5
		Técnicas de Mejora Biotecnológica		Mundi-Prensa, pg: 3-29	R9: Semana 6
				1.3 Resumen de lectura 3: El cultivo de	
		2.1. Cultivo de		tejidos en la mejora	1.2. Control de lectura:
		tejidos vegetales,		Cubero, José Ignacio (2008),	R1: Semana 2
		conceptos		Introducción a la Mejora Genética	R2: Semana 2
		generales		Vegetal, 2da Edición, España, Editorial	R3: Semana 3
				Mundi-Prensa, pg: 353-363	R4: Semana 3
		2.2.			R5: Semana 4
		Micropropagación:		1.4 Resumen de lectura 4: Cultivo de	R6: Semana 4
		sistemas, asepsia,		Tejidos: La manipulación del desarrollo	R7: Semana 5
		etapas		de la planta:	R8: Semana 6
				Cardoza, V., (2008). <i>Chapter 5: Tissue</i>	R9: Semana 6
		2.3. Morfogénesis:		<u>Culture: The manipulation of Plant</u>	

tinos	Development. En Stewart, C, N.,Plant	1.3. Asistencia a laboratorio e informes
tipos,		
Organogénesis	Biotechnology and Genetics: Principles,	de las prácticas de laboratorio (Rúbrica)
directa e indirecta,	Techniques and Applications, Hoboke,	
Embriogénesis	New Jersey, Estados Unidos: Editorial	Fecha entrega:
somática, directa e	Wiley. Pg: 113-120	I1: Semana 3
indirecta.		I2: Semana 5
	1.5 Resumen de lectura 5: Historia del	
	cultivo de Tejidos:	1.4. Examen Parcial Progreso 1
	Thorpe, T., (2012). History of Plant Cell	Fecha entrega:
	Culture. En Smith, R., (2013). Plant	Semana 6
	Tissue Culture Techniques and	
	Experiments. Amsterdam, Holanda:	Avance Proyecto Progreso 1
	•	, ,
	Elsevier Academic Press. Pg: 1-12	Fecha entrega
		Semana 7
	1.6 Resumen de lectura 6: Ingredientes	Jennana ,
	de un medio de cultivo y sus funciones:	
	Ponmurugan, P., KumarSuresh K.	
	(2012). Aplications of Plant Tissue	
	Culture. Daryaganj, India: Ed. New Age	
	International.Pg: 31-42	
	1.7 Resumen de lectura 7:	
	Micropropagación:	
	Ponmurugan, P., KumarSuresh K.	
	(2012). Aplications of Plant Tissue	
	Culture. Daryaganj, India: Ed. New Age	
	International.Pg: 61-67	
	1.8 Resumen de lectura 8:	

				Regeneración adventicia:	
				George, E., Hall, M., Jan de Klerk, G.,	
				(2008)Plant propagation by tissue	
				culture. / Volume 1, The Background.	
				3ra Edición. Dordrecht, Holanda:	
				Springer. Pg: 355-372	
				1.9 Resumen de lectura 9:	
				Embriogénesis somática:	
				George, E., Hall, M., Jan de Klerk, G.,	
				(2008)Plant propagation by tissue	
				culture. / Volume 1, The Background.	
				3ra Edición. Dordrecht, Holanda:	
				Springer. Pg: 342-350	
				1.10 Práctica de Laboratorio 1:	
				Preparación de medios de cultivo	
				1.11 Práctica de Laboratorio 2:	
				Desinfección del material vegetal y	
				trabajo en cabina: Organogénesis	
				directa en Violeta (Saintpaulia spp)	
				,	
				1.14. Entrega Avance 1 Proyecto	
	Semana 8-14	1			
#	Tema	Sub tema	Actividad/	Tarea/	MdE/Producto/
RdA			metodología/clase	trabajo autónomo	fecha de entrega

1,2,	1.1. Técnicas de	1.1 Uso de	1.1 Clase Magistral	1.1 Resumen de lectura 10: Plantas	1.1. Resúmenes de las lecturas
3	fitomejoramiento	Haploides:		Haploides: Androgénesis y	adicionales (Rúbrica)
	a través de	Androgénesis y	1.2 Exposiciones	Ginogénesis:	
	cultivo in vitro	Ginogénesis;	cortas Individuales	George, E., Hall, M., Jan de Klerk, G.,	Fecha entrega:
		Método	sobre temas	(2008)Plant propagation by tissue	R10: Semana 8
		haplodiploide	puntuales	culture. / Volume 1, The Background.	R11: Semana 9
				3ra Edición. Dordrecht, Holanda:	R12: Semana 9
		1.2. Selección	1.3 Prácticas e	Springer. Pg: 22,23	R13: Semana 10
		celular in vitro	informes de	5p8c 8. 22)23	R14: Semana 11
			laboratorio	Roca, W. M., Mroginski, L., A. Cultivo de	R15: Semana 11
		1.3. Selección		tejidos en la Agricultura. Colombia: Ed.	R16: Semana 11
		somaclonal	1.4 Juego de roles y	Centro Internacional de Agricultura	R17: Semana 13
		4 4 100 11 17	vinculación con la	Tropical pp. 272-283, 287-290	R18: Semana 14
		1.4. Hibridación	comunidad		
		interespecífica y		Roca, W. M., Mroginski, L., A. Cultivo de	
		rescate de embriones		tejidos en la Agricultura Colombia: Ed.	1.2. Control de lectura:
		embriones		Centro Internacional de Agricultura	R10: Semana 9
		1.5. Aislamiento y		Tropical. pp. 300-302.	R11: Semana 10
		cultivo de			R12: Semana 10
		protoplastos		1.2 Resumen de lectura 11: Selección in	R13: Semana 11
		protopiastos		vitro de plantas resistentes al stress:	R14: Semana 12
		1.6. Hibridación		Rai, M, Kalia, R, Singh, R, Gangola, M,	R15: Semana 12
		somática: Fusión		Dhawan, A., (2011). <u>Developing stress</u>	R16: Semana 12
		de protoplastos.		tolerant plants through in vitro	R17: Semana 14
		h h		selection—An overview of the recent	R18: Semana 14
		1.7. Semilla		progress. Environmental and	
		artificial		Experimental Botany, Vol 71, Pg. 89-98	1.3. Asistencia a laboratorio e informes
				1.2. Passuman da lantuma 12. Venita di fu	de las prácticas de laboratorio (Rúbrica)
		1.8. Conceptos		1.3. Resumen de lectura 12: Variación	, ,
		generales de		Somaclonal y su aplicación al	Fecha entrega:

Transgénesis	mejoramiento de cultivos:	I3: Semana 9
Transgenesis	Tabarés, E, Pachón, J, Roca, W.,	I4: Semana 12
3.2. Métodos de	Variación Somaclonal y su aplicación al	
transformación en	mejoramiento de cultivos. En Roca, W.	1.4. Juego de roles y vinculación con la
plantas: Biolística y	M., Mroginski, L., A. (1991). <i>Cultivo de</i>	comunidad
Agrobacterium	tejidos en la Agricultura. Colombia: Ed.	
tumefaciens	Centro Internacional de Agricultura	Fecha entrega
	Tropical. pp. 340-343.	Semana 14
3.4. Las Plantas	' ''	
como biofactorías	1.4. Resumen de lectura 13: Rescate de	1.4. Examen Parcial Progreso 2
(Molecular	embriones híbridos en el desarrollo de	· ·
farming)	cultivos:	Fecha entrega:
	Sahijram, L, Rao, B., Hybrid Embryo	Semana 13
	Rescue in Crop	
	Improvement. En Bahadur, B, Rajam, M,	
	Sahijram L, Krishnamurthy, K., (2015),	
	Plant Biology and Biotechnology:	
	Volume II: Plant Genomics and	Avance Proyecto Progreso 2
	Biotechnology, New Delhi, India:	
	Springer. Pag: 363-381	Fecha entrega
		Semana 14
	1.5. Resumen de lectura 14: Cultivo de	
	suspensiones celulares:	
	George, E., Hall, M., Jan de Klerk, G.,	
	(2008). Plant propagation by tissue	
	culture. / Volume 1, The Background.	
	3ra Edición. Dordrecht, Holanda:	
	Springer. Pg: 14-20	
	1.6. Resumen de lectura 15: El	

		T
	potencial de la hibridación somática en	
	el mejoramiento de cultivos:	
	Waara, S, Glimelius, K., (1995). <u>The</u>	
	potential of somatic hybridization in	
	crop breeding, Euphytica 85: 217-233	
	1.7. Resumen de lectura 16: El	
	potencial de la hibridación somática en	
	el mejoramiento de cultivos:	
	Redenbaugh, K., (1990). Application of	
	Artificial Seed to Tropical Crops,	
	HortScience, Vol 25 No. 3. Pp: 251-255	
	1.8. Resumen de lectura 17: Cultivos	
	genéticamente modificados:	
	Nandeshwar, S., Genetically Modifi ed	
	Crops. En Bahadur, B, Rajam, M,	
	Sahijram L, Krishnamurthy, K., (2015),	
	Plant Biology and Biotechnology:	
	Volume II: Plant Genomics and	
	Biotechnology, New Delhi, India:	
	Springer. Pag: 527-547	
	1.9. Resumen de lectura 18: Ingeniería	
	de plantas para la producción de	
	productos de importancia comercial:	
	Abdel-Ganhy, S, Golovkin, M, Reddy, A.,	
	Engineering of Plants for the Production	
	of Commercially Important Products:	
	Approaches and Accomplishments. En	
	Bahadur, B, Rajam, M, Sahijram L,	

		Krishnamurthy, K., (2015), Plant Biology	1
		and Biotechnology: Volume II: Plant	
		Genomics and Biotechnology, New	
		Delhi, India: Springer. Pag: 551-570	
		1 10 Duástico do Lobovotovio 1.	
		1.10 Práctica de Laboratorio 1:	
		Organogénesis indirecta en zanahoria	
		1.11 Práctica de Laboratorio 2:	
		Micropropagación de yemas axilares	
		1.12 Entrega del video de juego de	
		roles y vinculación con la comunidad	
		1.13 Entrega Avance 2 Proyecto	
		,	

Semana 15-16

#	Tema	Sub tema	Actividad/	Tarea/	MdE/Producto/
RdA			metodología/clase	trabajo autónomo	fecha de entrega
1,3	Impacto de la Biotecnología	1.1. Bioética y Bioseguridad	1.1 Clase Magistral	1.1 Entrega Proyecto final: Exposición y monografía	1.1 Proyecto Final (Monografía)
	vegetal en la agricultura y la industria	aplicada a la Biotecnología vegetal: Ecuador y			Fecha entrega Semana 16
		el Mundo 1.2. Legislación			1.2 Exposición monografía

Nacional e	Fecha entrega
Internacional	Semana de retroalimentación
aplicada a la	
Biotecnología	1.3. Examen final
	Fecha de entrega
	Semana de exámenes

Normas y procedimientos para el aula

Bajo ninguna circunstancia se aceptará la entrega de informes o trabajos fuera del plazo acordado y previamente publicado por el profesor. Las Rúbricas de evaluación de los trabajos serán entregadas al estudiante con anterioridad a la entrega del trabajo por parte del profesor. Los trabajos y proyectos serán revisados con el programa *Turnitin* y cualquier copia de más del 10% invalidará el trabajo sin opción de apelación y serán reportados a las autoridades competentes.

Los exámenes son individuales y cualquier intento de fraude académico será sancionado con la retirada del examen, la invalidación del mismo y el reporte a las autoridades competentes.

No se permitirá el ingreso de personas después de 10 minutos de la hora de inicio de las clases <u>bajo ninguna circunstancia</u>. El uso de laptops, celulares y tablets está estrictamente prohibido durante el transcurso de la clase con excepción de algunas clases puntuales, donde será permitido el uso de tablets o laptops por parte de los alumnos con fines únicamente académicos.

Para tener acceso al laboratorio, los estudiantes deben rendir un examen de conocimientos teórico-prácticos que avalen que el estudiante está mínimamente capacitado para el trabajo en laboratorio. En el caso de que el estudiante no alcance el puntaje mínimo, deberá seguir un curso de capacitación que será dictado en el mismo laboratorio para rendir nuevamente el examen y aprobar.

Para el trabajo en el laboratorio, los estudiantes tienen la obligación de dejar el laboratorio limpio, el material lavado y ordenado y los reactivos y soluciones ordenados así como debidamente etiquetados. El no cumplimiento de la disposición acarreará la pérdida de <u>3</u> (tres) puntos en el informe o proyecto que esté desarrollando. La pérdida de puntos será para todo el curso (en el caso de una práctica de laboratorio) y para todo el grupo en el caso de un proyecto. La reincidencia de la falta acarreará la pérdida completa del puntaje del informe o proyecto y la suspensión de la entrada al laboratorio

9. Referencias bibliográficas

9.1. **Principales.**

Stewart, C. N. (2008), *Plant Biotechnology and Genetics: Principles, Techniques and Aplications*. Hoboken, New Jersey. Estados Unidos: Wiley.

Bahadur, B. Rajam, M. Sahijram L. Krishnamurthy, K. (2015), *Plant Biology and Biotechnology: Volume II: Plant Genomics and Biotechnology*, New Delhi, India: Springer

George, E., Hall, M., Jan de Klerk, G., (2008). *Plant propagation by tissue culture.* / *Volume 1, The Background*. 3ra Edición. Dordrecht, Holanda: Springer

9.2. Referencias complementarias.

Benítez Burraco, A. (2005), Avances recientes en biotecnología vegetal e ingeniería genética de plantas, España. Editorial Reverté.

Davey, M, Anthony, P., (2010). Plant Cell Culture: Essential Methods. West Sussex, Reino Unido: Wiley-Blackwell

Cubero, José Ignacio (2008), *Introducción a la Mejora Genética Vegetal*, 2da Edición, España, Editorial Mundi-Prensa.

Roca, W. M., Mroginski, L., A. (1991). *Cultivo de tejidos en la Agricultura*. Colombia: Ed. Centro Internacional de Agricultura Tropical

Ponmurugan, P., Kumar Suresh K. (2012). *Aplications of Plant Tissue Culture*. Daryaganj, India: Ed. New Age International.

Smith, R., (2013). *Plant Tissue Culture Techniques and Experiments*. Amsterdam, Holanda: Elsevier Academic Press

Bárcena, A, Katz, J, Morales, C, Schaper, M., (2004). Los transgénicos en América Latina y el Caribe: Un debate abierto. Chile: Editorial CEPAL

Nuez, F., Carrillo, J., Perez de la Vega, M., (2004). Resistencia Genética a Patógenos Vegetales. Valencia, España: Editorial UniversitatPolitècnica de València.

Nuez, F., Carrillo, J., (2000). Los marcadores genética en la Mejora Vegetal. Valencia, España: Editorial Universitat Politècnica de València.

Mishra, R., (2010). PlantBiotechnology. Jaipur, India: Editorial Global Media

Zaid, A., Hughes, H., Porceddu, E., (1999), *Glossary of Biotechnology and Genetic engineering*.Roma, Italia: Editorial Food&Agriculture Organization of the United Nations.

10. Perfil del docente

Nombre del docente: Fernando Rivas Romero

Maestría en Biotecnología Molecular y Celular de Plantas por la Universidad Politécnica de Valencia, España, Ingeniero en Biotecnología por la Universidad de las Fuerzas Armadas-ESPE. Experiencia en el campo de investigación y educación universitaria.

Contacto: <u>f.rivas@udlanet.ec</u> No. Teléfono 3981000 ext. 601.

Horario de atención al estudiante: por determinar