Rajalakshmi Engineering College

Name: Jothika k

Email: 241801110@rajalakshmi.edu.in

Roll no: 241801110 Phone: 8015818072

Branch: REC

Department: I AI & DS FB

Batch: 2028

Degree: B.E - AI & DS

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 4

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John, a computer science student, is learning about binary search trees (BST) and their properties. He decides to write a program to create a BST, display it in post-order traversal, and find the minimum value present in the tree.

Help him by implementing the program.

Input Format

The first line of input consists of an integer N, representing the number of elements to insert into the BST.

The second line consists of N space-separated integers data, which is the data to be inserted into the BST.

Output Format

The first line of output prints the space-separated elements of the BST in postorder traversal.

The second line prints the minimum value found in the BST.

Refer to the sample output for formatting specifications.

```
Sample Test Case
```

```
Input: 3
    5 10 15
   Output: 15 10 5
    The minimum value in the BST is: 5
    Answer
    #include <stdio.h>
    #include <stdlib.h>
    struct Node {
      int data:
      struct Node* left;
      struct Node* right;
    }; <sub>^</sub>0
   struct Node* createNode(int data) {
      struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
      newNode->data = data;
      newNode->left = newNode->right = NULL;
      return newNode;
    }
    struct Node* insert(struct Node* root, int data) {
      if (root == NULL) {
        return createNode(data);
      if (data < root->data) {
        root->left = insert(root->left, data);
else {
        root->right = insert(root->right, data);
```

```
241801110
return root;
    void displayTreePostOrder(struct Node* root) {
       if (root == NULL) return;
       displayTreePostOrder(root->left);
       displayTreePostOrder(root->right);
       printf("%d ", root->data);
    }
     int findMinValue(struct Node* root) {
       if (root == NULL) {
         printf("Tree is empty!\n");
         return -1;
       while (root->left != NULL) {
         root = root->left;
       }
       return root->data;
    }
    void freeTree(struct Node* root) {
       if (root == NULL) return;
       freeTree(root->left);
free(root);
       freeTree(root->right);
     int main() {
       struct Node* root = NULL;
       int n, data;
       scanf("%d", &n);
       for (int i = 0; i < n; i++) {
         scanf("%d", &data);
                                                                                  241801110
                                                      241801110
         root = insert(root, data);
       displayTreePostOrder(root);
```

```
241801110
         printf("\n");
        int minValue = findMinValue(root);
printf("The minimum value in the BST is: %d", minValue);
         return 0;
      }
                                                                                       Marks: 10/10
      Status: Correct
                                24,801,10
241801110
```

241801110

241801110

24,180,110

24,180,110

241801110

241801110

24,80,110

24,80,1,10