Seminar 2 Integrale improprii

1 Recapitulare — Integrale Riemann

Calculați:

(a)
$$\int \frac{2x+1}{\sqrt{x^2-16}} dx, x > 4;$$

(b)
$$\int \frac{2x-5}{x^2-5x+7} dx;$$

(c)
$$\int \frac{x-1}{3x^2-6x+11} dx$$
;

(d)
$$\int \frac{2x}{x^4-1} dx, x \in (-1,1);$$

(e)
$$\int \arcsin x dx$$
;

Indicații:

•
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + c;$$

$$\bullet \left[\frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + c; \right]$$

$$\bullet \int \frac{\mathrm{d}x}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2}) + c;$$

$$\bullet \int \frac{\mathrm{d}x}{\sqrt{x^2 - a^2}} = \ln|x + \sqrt{x^2 - a^2}| + c;$$

$$\bullet \int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + c;$$

$$\bullet \int \frac{-\mathrm{d}x}{\sqrt{\alpha^2 - x^2}} = \arccos \frac{x}{\alpha} + c;$$

2 Integrale improprii. Criterii de convergență

Integralele improprii reprezintă cazul în care funcția care se integrează nu este mărginită la cel puțin unul dintre capetele domeniului de integrare.

Fie $a, b \in \mathbb{R}$ și $f : [a, b) \to \mathbb{R}$ o funcție *local integrabilă* (i.e. integrabilă pe orice interval compact $[u, v] \subseteq [a, b)$).

Integrala improprie (în b) $\int_{a}^{b} f(x)dx$ se numește *convergentă* dacă limita:

$$\lim_{t \to b} \int_{a}^{t} f(x) dx$$

(g)
$$\int_{1}^{e} \sin(\ln x) dx;$$

(h)
$$\int_0^{\frac{1}{\sqrt{2}}} \frac{3-2x}{2x^2+1} dx;$$

(i)
$$\int_{1}^{e} \frac{\ln x}{x(2+\ln x)} dx;$$

există și este finită. Valoarea limitei este valoarea integralei. În caz contrar, integrala se numește divergentă.

Dacă $f:[a,\infty)\to\mathbb{R}$ este local integrabilă, atunci integrala improprie (la ∞) $\int_a^\infty f(x)dx$ se numește *convergentă* dacă limita:

$$\lim_{t\to\infty}\int_{a}^{t}f(x)dx$$

există și este finită. Valoarea limitei este egală cu valoarea integralei.

Integrala improprie $\int_a^b f(x)dx$ se numește *absolut convergentă* dacă integrala $\int_a^b |f(x)|dx$ este convergentă.

Criteriile de convergență pentru integralele improprii sînt foarte asemănătoare cu cele pentru serii (amintiți-vă, că, de fapt, integralele definite se construiesc cu ajutorul sumelor infinite, adică serii, v. sumele Riemann).

Aşadar, avem:

Criteriul lui Cauchy (general): Fie $f:[a,b)\to\mathbb{R}$ local integrabilă. Atunci integrala $\int_a^b f(t)dt$ este convergentă dacă și numai dacă:

$$\forall \varepsilon > 0, \exists b_{\varepsilon} \in [a, b) \text{ a.i. } \forall x, y \in (b_{\varepsilon}, b), \left| \int_{x}^{y} f(t) dt \right| < \varepsilon.$$

 $\textbf{Criteriul de comparație} \text{ (,,termen cu termen''): Fie } f,g:[\mathfrak{a},\mathfrak{b}) \to \mathbb{R} \text{ astfel încît } 0 \leqslant f \leqslant g.$

- Dacă $\int_a^b g(x)dx$ este convergentă, atunci și integrala $\int_a^b f(x)dx$ este convergentă;
- Dacă integrala $\int_a^b f(x)dx$ este divergentă, atunci și integrala $\int_a^b g(x)dx$ este divergentă.

Criteriul de comparație la limită: Fie f, g : $[a,b) \rightarrow [0,\infty)$, astfel încît să existe limita:

$$\ell = \lim_{x \to b} \frac{f(x)}{g(x)}.$$

- Dacă $\ell \in [0,\infty)$, iar $\int_a^b g(x)dx$ este convergentă, atunci $\int_a^b f(x)dx$ este convergentă;
- Dacă $\ell \in (0, \infty)$ sau $\ell = \infty$, iar $\int_a^b g(x) dx$ este divergentă, atunci și $\int_a^b f(x) dx$ este divergentă.

Criteriul de comparație cu $\frac{1}{x^{\alpha}}$: Fie $\alpha \in \mathbb{R}$ și $f : [\alpha, \infty) \to [0, \infty)$ local integrabilă, astfel încît să existe:

$$\ell = \lim_{x \to \infty} x^{\alpha} f(x)$$

- Dacă $\alpha>1$ și $0\leqslant \ell<\infty$, atunci $\int_{\alpha}^{\infty}f(x)dx$ este convergentă;
- Dacă $\alpha \leqslant 1$, iar $0 < \ell \leqslant \infty$, atunci $\int_{\alpha}^{\infty} f(x) dx$ este divergentă.

Criteriul de comparație cu $\frac{1}{(b-x)^{\alpha}}$: Fie $\alpha < b$ și $f : [a,b) \to [0,\infty)$, local integrabilă, astfel încît să existe:

$$\ell = \lim_{x \to b} (b - x)^{\alpha} f(x).$$

- Dacă $\alpha < 1$ și $0 \le \ell < \infty$, atunci $\int_a^b f(x) dx$ este convergentă;
- Dacă $\alpha\geqslant 1$ și $0<\ell\leqslant\infty$, atunci $\int_a^b f(x)dx$ este divergentă.

Criteriul lui Abel: Fie f, g : $[a, \infty) \to \mathbb{R}$, cu proprietățile:

- f este de clasă \mathcal{C}^1 , $\lim_{x \to \infty} f(x) = 0$, iar $\int_{0}^{\infty} f'(x) dx$ este absolut convergentă;
- g este continuă, iar $G(x) = \int_{a}^{x} f(t)dt$ este mărginită pe $[a, \infty)$.

Atunci integrala $\int_{a}^{\infty} f(x)g(x)dx$ este convergentă.

3 Pe scurt — Convergența integralelor improprii

Fie f, g : $[a,b) \to \mathbb{R}$, cu $b \in \overline{\mathbb{R}}$, funcții local integrabile, pozitive, cu $0 \leqslant f(x) \leqslant g(x)$, $\forall x$. Criteriul de comparație cu inegalități:

- (a) Dacă $\int_a^b g(x)dx$ este convergentă $\Rightarrow \int_a^b f(x)dx$ este convergentă;
- (b) Dacă $\int_a^b g(x)dx$ este divergentă $\Rightarrow \int_a^b f(x)dx$ este divergentă.

Criteriul de comparație la limită: Dacă există limita:

$$\lim_{x \nearrow b} \frac{f(x)}{g(x)} = L,$$

atunci:

- (a) Dacă $L \in [0, \infty)$ și $\int_a^b g(x)dx$ este convergentă, atunci $\int_a^b f(x)dx$ este convergentă;
- (b) Dacă $L \in (0, \infty]$ și $\int_a^b g(x)dx$ este divergentă, atunci $\int_a^b f(x)dx$ este divergentă.

Cum alegem funcția g?

- Pentru $[a, \infty)$, luăm $g(x) = \frac{1}{x^{\alpha}}$;
- Pentru $(-\infty, a]$, luăm $g(x) = \frac{1}{(-x)^{\alpha}}$

 $\int_a^b g(x) dx \text{ convergentă pentru } \alpha > 1 \text{ și divergentă pentru } \alpha \leqslant 1;$

- Pentru [a, b), luăm $g(x) = \frac{1}{(b-x)^{\alpha}}$;
- Pentru (a, b], luăm $g(x) = \frac{1}{(x-a)^{\alpha}}$;

$$\int_{\alpha}^{b}g(x)dx \text{ convergentă pentru }\alpha<1 \text{ și divergentă pentru }\alpha\geqslant1;$$

• Pentru $(-\infty, \infty)$, descompunem integrala după $a \in \mathbb{R}$ fixat și lucrăm pe $(-\infty, a]$, apoi pe $[a, \infty)$.

4 Integrale cu parametri

Fie $A \neq \emptyset$ și $[a, b] \subseteq \mathbb{R}$ un interval compact. Considerăm funcția $f : [a, b] \times A \to \mathbb{R}$, astfel încît, pentru orice $y \in A$, funcția $[a, b] \ni x \mapsto f(x, y) \in \mathbb{R}$ să fie integrabilă Riemann.

Funcția definită prin:

$$F: A \to \mathbb{R}, \quad F(y) = \int_{0}^{b} f(x, y) dx$$

se numește integrală cu parametru.

Proprietățile pe care le vom utiliza sînt cele de mai jos.

Continuitate: Dacă $f : [a, b] \times A \to \mathbb{R}$ este continuă, atunci integrala cu parametru F(y) definită mai sus este funcție continuă.

Formula de derivare (Leibniz): Fie $f:[a,b]\times(c,d)\to\mathbb{R}$ o funcție continuă, astfel încît derivata parțială $\frac{\partial f}{\partial y}$ există și este continuă pe $[a,b]\times(c,d)$. Atunci integrala cu parametru F(y) definită mai sus este derivabilă și are loc:

$$F'(y) = \int_a^b \frac{\partial f}{\partial y}(x, y) dx, \forall y \in (c, d).$$

Formula generală de derivare: Dacă $f:[a,b]\times(c,d)\to\mathbb{R}$ este o funcție continuă, astfel încît derivata parțială $\frac{\partial f}{\partial y}$ să existe și să fie continuă pe $[a,b]\times(c,d)$, definim $\phi,\psi:(c,d)\to[a,b)$ două funcții de clasă \mathcal{C}^1 .

Atunci funcția $G(y) = \int_{\varphi(y)}^{\psi(y)} f(x,y) dx$ este derivabilă și are loc formula de derivare:

$$G'(y) = \int_{\varphi(y)}^{\psi(y)} \frac{\partial f}{\partial y}(x,y) dx + f(\varphi(y),y) \psi'(y) - f(\varphi(y),y) \varphi'(y), \forall y \in (c,d).$$

Schimbarea ordinii de integrare: Dacă $f:[a,b]\times[c,d]\to\mathbb{R}$ este o funcție continuă, atunci are loc:

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy.$$

5 Integrale improprii cu parametri

Putem considera acum integrale improprii, definite cu parametri, astfel. Luăm o funcție $f:[a,b)\times A\to\mathbb{R}$, astfel încît pentru orice $y\in A$, aplicația $[a,b)\ni x\mapsto f(x,y)\in\mathbb{R}$ este local integrabilă și integrala $\int_a^b f(x,y)dx$ converge. Atunci putem defini funcția:

$$F(x,y) = \int_{a}^{b} f(x,y) dx,$$

care se numește integrală improprie cu parametru.

Definiție 5.1: Integrala F(x,y) de mai sus se numește *uniform convergentă* (UC) (în raport cu y) pe multimea A dacă:

$$\forall \varepsilon > 0, \exists b_{\varepsilon} \in (\alpha, b) \text{ a.î. } \left| \int_{t}^{b} f(x, y) dx \right| < \varepsilon, \forall t \in (b_{\varepsilon}, b), \forall y \in A.$$

Pentru aceste integrale, se pot adapta proprietățile integralelor cu parametri din secțiunea anterioară:

Continuitate: Dacă $f : [a,b) \times A \to \mathbb{R}$ este continuă, iar integrala $\int_a^b f(x,y) dx$ este UC pe A, atunci funcția F(x,y) definită mai sus este continuă.

Derivare: Fie $f:[a,b)\times(c,d)\to\mathbb{R}$ o funcție continuă, astfel încît derivata parțială $\frac{\partial f}{\partial y}$ există și este continuă pe $[a,b)\times(c,d)$ și pentru orice $y\in(c,d)$ fixat, integrala $F(y)=\int_a^b f(x,y)dx$ este convergentă.

Dacă integrala $\int_a^b \frac{\partial f}{\partial y}(x,y)dx$ este UC pe (c,d), atunci integrala improprie cu parametru F(y) de mai sus este derivabilă si are loc:

$$F'(y) = \int_a^b \frac{\partial f}{\partial y}(x, y) dx, \forall y \in (c, d).$$

Schimbarea ordinii de integrare: Dacă $f:[a,b)\times[c,d]\to\mathbb{R}$ este continuă și integrala $F(y)=\int_a^b f(x,y)dx$ este UC pe (c,d), atunci are loc:

$$\int_{c}^{d} \left(\int_{a}^{b} f(x,y) dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) dy \right) dx.$$

Criteriul de comparație pentru UC: Fie $f:[a,b)\times A\to \mathbb{R}$ o funcție cu proprietatea că, pentru orice $y\in A$, aplicația $[a,b)\ni x\mapsto f(x,y)\in \mathbb{R}$ este local integrabilă. Fie $g:[a,b)\to \mathbb{R}$, astfel încît $|f(x,y)|\leqslant g(x), \forall x\in [a,b), \forall y\in A$.

Dacă integrala $\int_a^b g(x)dx$ este convergentă, atunci integrala $\int_a^b f(x,y)dx$ este UC.

5.1 Funcțiile lui Euler

Următoarele integrale improprii cu parametri se numesc funcțiile lui Euler:

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx, \alpha > 0$$

$$B(p, q) = \int_0^1 x^{p - 1} (1 - x)^{q - 1} dx, p > 0, q > 0.$$

Proprietățile lor, pe care le vom utiliza în calcule, sînt:

- B(p,q) = B(q,p);
- $B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)};$
- $B(p,q) = \int_0^\infty \frac{y^{p-1}}{(1+y)^{p+q}} dy;$
- $\Gamma(1) = 1$;
- $\Gamma(\alpha+1) = \alpha \cdot \Gamma(\alpha)$;

- $\Gamma(n) = (n-1)!, \forall n \in \mathbb{N};$
- $\Gamma(\frac{1}{2}) = \sqrt{\pi}$;
- $\Gamma(n+\frac{1}{2})=(2n-1)!!\cdot 2^{-n}\cdot \sqrt{\pi}, \forall n\in\mathbb{N};$
- $\Gamma(\alpha)\Gamma(1-\alpha) = \frac{\pi}{\sin(\alpha\pi)}, \forall \alpha \in (0,1).$

6 Exercitii

1. Folosind criteriile de comparație, să se studieze natura integralelor improprii:

(a)
$$\int_{1}^{\infty} \frac{\mathrm{d}x}{\sqrt{x^2 + 1}}$$
 (D);

(b)
$$\int_{0}^{1} \frac{x^2}{\sqrt{1-x^2}} dx$$
 (C);

(c)
$$\int_0^1 \frac{\sin x}{1 - x^2} dx$$
 (D);

(d)
$$\int_{1}^{\infty} \frac{x}{\sqrt{x^3 - 1}} dx$$
 (C $x = 1, D x \to \infty \Rightarrow D$);

(e)
$$\int_{1}^{\infty} \frac{dx}{x\sqrt{x}-1}$$
 (C $x \to \infty$, D $x \to 1$);

(f)
$$\int_{1}^{\infty} \frac{\ln x}{\sqrt{x^3 - 1}} dx$$
 (C);

2. Să se arate că integrala $\int_0^\infty \frac{\sin x}{x} dx$ este convergentă, dar nu este absolut convergentă.

Indicație: Pentru $x \to \infty$, convergența rezultă din criteriul lui Abel. Pentru x = 0, putem prelungi funcția prin continuitate, deoarece limita sa este finită.

Pentru AC, se aplică criteriul de comparație.

3. Să se calculeze integralele, folosind derivarea sub integrală:

(a)
$$I(m) = \int_0^{\frac{\pi}{2}} \ln(\cos^2 x + m^2 \sin^2 x) dx, m > 0;$$

(b)
$$I(\alpha) = \int_0^{\frac{\pi}{2}} \frac{\ln(1 + \alpha \cos x)}{\cos x} dx$$
, $|\alpha| < 1$;

Soluție (a): Dacă considerăm funcția:

$$f(x, m) = \ln(\cos^2 x + m^2 \sin^2 x),$$

observăm că este continuă și admite o derivată parțială continuă în raport cu m.

Atunci obținem:

$$\frac{\partial f}{\partial m} = I'(m) = 2m \int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{\cos^2 x + m^2 \sin^2 x} dx$$

Pentru a calcula integrala, facem schimbarea de variabilă $\tan x = t$ și atunci:

$$dt = \frac{1}{\cos^2 x} dx.$$

Integrala inițială se poate prelucra:

$$I'(m) = 2m \int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{\cos^2 x (1 + m^2 \tan^2 x)} dx.$$

Așadar, pentru a obține $\sin^2 x$ în funcție de t calculăm:

$$\frac{\sin^2 x}{1-\sin^2 x}=t^2\Rightarrow \sin^2 x=\frac{t^2}{1+t^2}.$$

În fine, integrala devine:

$$I'(m) = 2m \int_0^\infty \frac{t^2}{(1+m^2t^2)(1+t^2)} dt.$$

Făcînd descompunerea în fracții simple, obținem:

$$\frac{t^2}{(1+m^2t^2)(1+t^2)} = \frac{1}{m^2-1} \Big(\frac{1}{t^2+1} - \frac{1}{m^2t^2+1}\Big).$$

și calculăm în fine integrala $I'(\mathfrak{m})=\frac{\pi}{\mathfrak{m}+1}$. Integrăm și găsim $I(\mathfrak{m})=\pi \ln(\mathfrak{m}+1)+c$. Deoarece I(1)=0, rezultă $c=-\pi \ln 2$ și, în fine:

$$I(\mathfrak{m}) = \pi \ln \frac{\mathfrak{m} + 1}{2}.$$

Indicație (b): Derivăm în raport cu a sub integrală și apoi integrăm cu schimbarea de variabilă $\tan \frac{x}{2} = t$.

4. Să se calculeze, folosind funcțiile Γ și B, integralele:

(a)
$$\int_0^\infty e^{-x^p} dx, p > 0;$$

(b)
$$\int_{0}^{\infty} \frac{x^{\frac{1}{4}}}{(x+1)^2} dx;$$

(c)
$$\int_0^\infty \frac{\mathrm{d}x}{x^3 + 1} \mathrm{d}x;$$

(d)
$$\int_0^{\frac{\pi}{2}} \sin^p x \cos^q x dx, p > -1, q > -1;$$

(e)
$$\int_0^1 x^{p+1} (1-x^m)^{q-1} dx, p, q, m > 0;$$

(f)
$$\int_0^\infty x^p e^{-x^q} dx, p > -1, q > 0;$$

(g)
$$\int_0^1 \ln^p x^{-1} dx, p > -1;$$

$$\text{(h) } \int_0^1 \frac{dx}{(1-x^n)^{\frac{1}{n}}}, n \in \mathbb{N}.$$

Indicații:

- (a) Facem schimbarea de variabilă $x^p=y$ și obținem $\Gamma\Big(\frac{1}{p}+1\Big)$;
- (b) Folosind proprietățile, obținem $B\left(\frac{5}{4},\frac{3}{4}\right)$, pe care îl scriem în funcție de Γ. Răspuns: $\frac{\pi\sqrt{2}}{4}$;
- (c) Facem schimbarea de variabilă $x^3 = y$ și găsim $\frac{1}{3}B\left(\frac{1}{3},\frac{2}{3}\right)$;
- (d) Facem schimbarea de variabilă $\sin^2 x = y$ și scriem în funcție de B;
- (e) $x^m = y$ și scriem în funcție de B
- (f) $x^q = y$ și scriem în funcție de Γ ;
- (g) $\ln x^{-1} = y$ și scriem în funcție de Γ ;
- (h) $x^n = y$ și scriem în funcție de B.