Lecture 3, Sept. 16

Well Ordering Property

3.1 Theorem. If $S \in \mathbb{N}$ and $S \neq \emptyset$, then S contains a least element.

The following are equivalent

- 1. Principle of Mathematical Induction
- 2. Strong Induction
- 3. Well Ordering Principle

Note. A function f such that $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ can be defined by $f((m, n)) = 7^n 13^m$

Properties of $\ensuremath{\mathbb{R}}$

Interval

3.2 Theorem. A set $I \in \mathbb{R}$ is an interval if for each $x, y \in I$ with $x \leq y$ and $z \in I$ with $x \leq y \leq z$, we have $z \in I$

3.3 Question. 1. Is \emptyset an interval? Yes

2. Is {3} an interval? Yes

Other Intervals

1. $[a, b] = x \in \mathbb{R} \mid a \le x \le b \to \text{Closed Interval}$

2. $(a, b) = x \in \mathbb{R} \mid a < x < b \rightarrow \text{Open Interval}$

3. $[a, b) = x \in \mathbb{R} \mid a \le x < b \rightarrow \mathsf{Half}$ Open Half Closed Interval

4. $[a, \infty) = x \in \mathbb{R} \mid a \le x \to \text{Closed Ray}$

5. $(\infty, b] = x \in \mathbb{R} \mid x \le b \to \text{Closed Ray}$

6. $(0, \infty)$

7. $(-\infty, b)$

8. $(-\infty, \infty) = \mathbb{R}$