Stata Lecture Notes Class 4

The following show the example of propensity scores shown in the Class 4 Lecture Notes. These notes make use of the dataset found in the Stata file nmes_pro2.dta After opening this dataset, run the following command to make sure that variables are stored as numeric values rather than string values:

- . destring, replace
- 1. Example similar to Section 2 of the Lecture Notes: Estimating the log(OR) of MSCD, comparing smokers to non-smokers, while controlling for income. (We are controlling for income here, rather than controlling for poverty status as done in the lectures notes.)

There are 5 different values for the income variable:

. tab income 1-poor,2-ne

ar poor,3-low income,4-mi ddle income.5-hi

gh income	Freq.	Percent	Cum.
1	1,547	11.38	11.38
2	727	5.35	16.73
3	2,027	14.91	31.64
4	4,198	30.89	62.53
5	5,093	37.47	100.00
	+		

Total | 13,592 100.00

We can estimate the log(OR) of MSCD, comparing smokers to non-smokers separately in each of these income groups (strata). We also get the standard error of the estimate from this logistic regression:

. logit mscd eversmk if income==1

Logistic regression

Number of obs = LR chi2(1) = 18.60 Prob > chi2 = 0.0000 Pseudo R2 = 0.0200

Pseudo R2

Log likelihood = -456.08275

mscd					[95% Conf.	
eversmk	.7770725	.1863209	4.17	0.000	.4118902 -2.751073	1.142255

. logit mscd eversmk if income==2

Logistic regression

Number of obs = LR chi2(1) = 595 5.83

© Johns Hopkins University Department of Biostatistics

01/28/18

Log likelihood	i = -255.00946	5		Prob > chi2 Pseudo R2	= =		
mscd	Coef.	Std. Err.	z	P> z [95	% Conf.	Interval]	
eversmk _cons	.5529128 -1.993728	.231917 .1801735	2.38 -11.07	0.017 .09 0.000 -2.3	 83638 46861	1.007462 -1.640594	
. logit mscd e	eversmk if <mark>inc</mark>	come==3					
Logistic regre	ession			Number of obs LR chi2(1) Prob > chi2		1,664 31.10 0.0000	
Log likelihood	1 = -672.74659)		Pseudo R2			
mscd	Coef.	Std. Err.	z	P> z [95	% Conf.	Interval]	
eversmk _cons		.1526641 .1272643		0.000 .5 0.000 -2.5	20601 38695 	1.119033 -2.039828	
. logit mscd e	eversmk if <mark>inc</mark>	come==4					
Logistic regre	ession			Number of obs LR chi2(1) Prob > chi2	=	11.96	
Log likelihood	d = -1292.6444	1		Pseudo R2		0.0046	
mscd	Coef.	Std. Err.	z	P> z [95	% Conf.	Interval]	
eversmk _cons	.3704381 -2.262048	.1085268 .0869631	3.41 -26.01	0.001 .15 0.000 -2.4	77294 32493 	.5831468 -2.091604	
. logit mscd eversmk if income==5							
Logistic regre	ession			Number of obs LR chi2(1)		-	
Log likelihood	d = -1368.3422	2		Prob > chi2 Pseudo R2	=		
mscd	Coef.	Std. Err.	z	P> z [95	% Conf.	Interval]	
eversmk cons	.3965334 -2.5424	.1091236 .088411	3.63 -28.76	0.000 .18 0.000 -2.7	 26552 15683	.6104117 -2.369118	

We can use these values to fill in the table below and calculate the pooled estimate using Woolf's Method for pooling odds ratio estimates:

Income level (stratum)	logOR	SE	$1/var = 1/SE^2$	Weight	Weight*logOR
1	.777	.186	28.91	.112	.087
2	.553	.232	18.58	.072	.040
3	.820	.153	42.72	.166	.136

4	.370	.109	84.17	.327	.121
5	.397	.110	82.64	.322	.128
Pooled			257.02	~ 1.00	<u>.512</u>

So our estimate of this log(OR), pooling across the income strata, is 0.512. The standard error for this estimate is sqrt(1/257.02) = .062. We can see that this matches the results from a logistic regression for predicting MSCD from eversmk while controlling for the indicators of the income strata:

. logit mscd eversmk i.income

·							
Logistic regre	ession			Number o	of obs	=	11,645
				LR chi2	(5)	=	121.21
				Prob > 0	chi2	=	0.0000
Log likelihood	1 = -4049.371	1		Pseudo 1	R2	=	0.0147
mscd	Coef.	Std. Err.	z	P> z	 [95%	Conf.	Interval]
	+						
eversmk	.5166411	.0621103	8.32	0.000	.3949	072	.6383751
income							
2	.3067016	.1426604	2.15	0.032	.0270	924	.5863109
3	.1925588	.1112764	1.73	0.084	025	539	.4106566
4	0791885	.1010522	-0.78	0.433	2772	472	.1188703
5	3439344	.1009508	-3.41	0.001	5417	943	1460745
·							
_cons	-2.278649	.0951062	-23.96	0.000	-2.465	053	-2.092244

2. Example from to Section 3 of the Lecture Notes: Estimating the log(OR) of MSCD, comparing smokers to non-smokers, while controlling for the propensity score for smoking:

First, we need to calculate the propensity scores. We do this by fitting a logistic regression mode to predict the probability of (propensity for) being a smoker (eversmk) from the other covariates of interest. In this case we control for the covariates of male, age (using splines), income, and education level, while including an interaction term between age and male.

- . mkspline newage 65 newage_sp65= age, marginal
- . gen male_newage=male*newage
- . gen male_newage_sp65=male*newage_sp65
- . logit eversmk male newage newage_sp65 male_newage male_newage_sp65 i.income i.educate

Logistic regression	Number of obs	=	11,645
	LR chi2(12)	=	1280.62
	Prob > chi2	=	0.0000
Log likelihood = -7328.5935	Pseudo R2	=	0.0804

eversmk	•				[95% Conf.	
	•				-1.045431	
newage	0027621	.0034017	-0.81	0.417	0094292	.003905
newage sp65	0568172	.0078003	-7.28	0.000	0721055	0415289

male_newage	.0296449	.0054042	5.49	0.000	.0190529	.0402368
male_newage_sp65	0190136	.012415	-1.53	0.126	0433466	.0053193
income						
2	1286167	.1065875	-1.21	0.228	3375243	.0802909
3	0486653	.0802896	-0.61	0.544	20603	.1086994
4	1630927	.0717029	-2.27	0.023	3036277	0225577
5	1950945	.0728702	-2.68	0.007	3379174	0522715
educate						
2	.4716228	.0746741	6.32	0.000	.3252642	.6179814
3	.4566217	.06203	7.36	0.000	.3350451	.5781984
4	.1599544	.0741713	2.16	0.031	.0145812	.3053275
_cons	0686404	.2019025	-0.34	0.734	464362	.3270812

Next, we use this logistic regression model to predict the probability of being a smoker for each person in the dataset. This probability is the propensity score:

. predict PrC

We then create groups (strata) based on these propensity scores. In this case, we use the quintiles of the propensity scores to create 5 groups where individuals within each group have similar risk of being a smoker based on the other covariates:

. centile PrC, centile(20(20)100)

Variable	Obs	Percentile	Centile	Binom. 1 [95% Conf.	•
PrC	13,592	20	.4184538	.4132604	.4225965
	İ	40	.5153694	.5143821	.5161662
	İ	60	.6099819	.5971178	.6192712
	İ	80	.7361238	.7333673	.7393156
	İ	100	.8407061	.8407061	.8407061*

* Lower (upper) confidence limit held at minimum (maximum) of sample

We call this new grouping variable group and can look at the breakdown of MSCD within each group for both the smoking and non-smoking group:

| row percentage |

group	msc 0	d 1	Total
1	1,251	203	1,454
	86.04	13.96	100.00
2	1,150	97	1,247
	92.22	7.78	100.00
3	1,118	35	1,153
	96.96	3.04	100.00
4	606	48	654
	92.66	7.34	100.00
5	492	50	542
	90.77	9.23	100.00
Total	4,617	433	5,050
	91.43	8.57	100.00

. tab group mscd if eversmk==1, row

Key	-+
	- ļ
frequency	ļ
row percentage	ı
+	-+

	msc	ed	
group	0	1	Total
1	633	150	783
	80.84	19.16	100.00
2	928	129	1,057
	87.80	12.20	100.00
3	1,196	89	1,285
	93.07	6.93	100.00
4	1,467	183	1,650
	88.91	11.09	100.00
5	1,487	333	1,820
	81.70	18.30	100.00
Total	5,711	884	6,595
	86.60	13.40	100.00

We could estimate the log(OR) of MSCD, comparing smokers to non-smokers separately in each of these propensity score groups (strata). We could also get the standard error of the estimate from this logistic regression and then combine these strata-specific estimates using Woolf's Method for pooling odds ratio estimates. Or, we can simply include the indicators for these propensity score groups in our logistic regression model:

. logit mscd eversmk i.group

of obs = 11	,645
.2(5) = 28	6.96
chi2 = 0.	0000
R2 = 0.	0349
	12(5) = 28 $26 + chi = 0$

mscd	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
eversmk	.5496893	.0664281	8.27	0.000	.4194926	.679886
group						
2	6101314	.0917195	-6.65	0.000	7898982	4303645
3	-1.35853	.1100753	-12.34	0.000	-1.574274	-1.142787
4	7203958	.093844	-7.68	0.000	9043266	536465
5	1923965	.0849841	-2.26	0.024	3589623	0258307
_cons	-1.890916	.0651202	-29.04	0.000	-2.01855	-1.763283

Our estimate of this log(OR), pooling across the income strata, is 0.550. We can compare this estimated log(OR) to what we would get if we individually controlled for all of the same covariates in a multiple logistic regression model:

. logit mscd eversmk male newage newage_sp65 male_newage male_newage_sp65 i.income i.educate $\,$

```
Iteration 0: log likelihood = -4109.977
Iteration 1: log likelihood = -3723.0194
Iteration 2: log likelihood = -3646.5678
Iteration 3: log likelihood = -3645.3432
Iteration 4: log likelihood = -3645.339
Iteration 5: log likelihood = -3645.339
```

Logistic regression	Number of obs	=	11,645
	LR chi2(13)	=	929.28
	Prob > chi2	=	0.0000
Log likelihood = -3645.339	Pseudo R2	=	0.1131

mscd	Coef.	Std. Err.	z	P> z	[95% Conf.	. Interval]
eversmk	.6543806	.0693947	9.43	0.000	.5183696	.7903916
male	6277045	.715148	-0.88	0.380	-2.029369	.7739597
newage	.0911537	.0085118	10.71	0.000	.0744708	.1078365
newage_sp65	0378389	.0130328	-2.90	0.004	0633827	012295
male_newage	.0165958	.0119243	1.39	0.164	0067755	.039967
male_newage_sp65	0388879	.018824	-2.07	0.039	0757823	0019936
income						
2	.1177465	.1480643	0.80	0.426	1724542	.4079471
3	.0224403	.1161032	0.19	0.847	2051178	.2499984
4	113896	.1078534	-1.06	0.291	3252848	.0974928
5	2286938	.1117192	-2.05	0.041	4476595	0097281
educate						
2	.2836474	.1249633	2.27	0.023	.0387238	.528571
3	.1354226	.1066018	1.27	0.204	073513	.3443582
4	148143	.1194866	-1.24	0.215	3823324	.0860463
_cons	-8.253345	.5284758	-15.62	0.000	-9.289139	-7.217551