GWStrainPlotsSNR

April 11, 2018

1 Calculate the GW modes for each exoplanet that has the needed parameters in the dbase.

2 References

P. Amaro-Seoane et al. "Triplets of supermassive black holes: astrophysics, gravitational waves and detection," MNRAS 402 2308-2320 (2010).

P. C. Peters and J. Mathews, "Gravitational Radiation from Point Masses in a Keplerian Orbit," Phys. Rev. 131 (1963) 435-440.

Michele Maggiore, "Gravitational Waves. Volume 1: Theory and Experiments," Oxford Univ. Press, 2008.

Shane Larson, "Sensitivity Curves for ..." http://www.srl.caltech.edu/~shane/sensitivity/ Neil Cornish and Travis Robson, "The construction and use of LISA sensitivy curves," https://arxiv.org/abs/1803.01944

```
In [2]: import sys, os
    import numpy as np
    import urllib as ul
    import pandas as pd
    import gwTools as gwt
    import matplotlib.pyplot as plt
    %matplotlib inline
    import scipy as sp
    import scipy.interpolate as spint
```

3 CalTech Exop Database (from ExopDBase notebook)

3.1 Update or not from the CalTech database. Directories for the dbase and to save plots.

3.2 Search string, might want RA and DEC also.

```
In [4]: # The search URL and search string/request.
    exopURL = \
        "https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-\
        nstedAPI?";

#searchString = \
    #"table=exoplanets&select=pl_hostname,ra,dec&order=dec&format=CSV";*)

# The Below does NOT have right ascension and declination. Will likely want them for fur # Can add later in its own Panda dataframe and/or merge into the main one in GWStrainPlate # variables come from NASA Exoplanet Archive, the keywords are defined here:
    #https://exoplanetarchive.ipac.caltech.edu/docs/API_exoplanet_columns.html
    searchString = \
        "table=exoplanets&select=pl_hostname,pl_letter,pl_discmethod,pl_\
        orbper,pl_orbsmax,pl_orbeccen,pl_bmassj,st_dist,st_mass,rowupdate,st_\
        plx&order=dec&format=CSV";
```

3.3 Flags for fresh import and for saving the CSV file.

```
In [5]: # Set to True to re-read the EXop Dbase from Caltech. False to use csvFname below.
        newImport = False;
        #newImport = False;
        saveFile = True; # Future work, when we do NOT want an intermediate file here would set t
        #saveFile = False:
In [6]: # csv file below was downloaded earlier with code below. newImport = False to use it.
        # created. This takes a few seconds.
        csvFileName = csvDir + 'exopP_20180408_141319.csv'
        if newImport and saveFile:
            myDateTimeStamp = gwt.dateTimeStamp() # See the gwtools.py file with this and other
            csvFileName = csvDir + 'exopP_' + myDateTimeStamp + '.csv'
            ofile = open(csvFname, 'w')
            with ul.request.urlopen(exopURL + searchString) as response:
                for aline in response:
                    ofile.write( aline.decode('utf-8') ) # byte-string needs to be decoded. utf
            ofile.close()
            print('Saved database file ' + csvFileName)
```

3.4 Read the CSV file and drop the rows/exops with NaN in the important fields. See ExopDBase.ipynb and re-run it for updating the dbase.

```
In [7]: print('Using database file ' + csvFileName)
    with open(csvFileName, 'r') as ifile:
        print(ifile.readline(), '\n', ifile.readline()) #Print a couple of lines and reset
    ifile.seek(0);
```

```
dbData = pd.read_csv(ifile) # Read in the whole file to a Panda Dataframe, handles
#ifile.close() # Should close when you leave the "with."
```

Using database file /home/gabella/Documents/astro/exop/exoplanetsMath/python/../dbases/exopP_201pl_hostname,pl_letter,pl_discmethod,pl_orbper,pl_orbsmax,pl_orbeccen,pl_bmassj,st_dist,st_mass,r

HD 142022 A,b, Radial Velocity, 1928.00000000, 3.030000, 0.530000, 5.10000, 35.87, 0.99, 2014-05-14, 27.

In [8]: dbData.head(10) # NaN's show up when the field has no data. Need both masses, eccentri # and distance.

```
Out[8]:
           pl_hostname pl_letter
                                     pl_discmethod
                                                      pl_orbper pl_orbsmax
           HD 142022 A
                                b Radial Velocity 1928.000000
                                                                      3.0300
                                b Radial Velocity 2151.000000
        1
              HD 39091
                                                                      3.3800
        2
           HD 137388 A
                                b Radial Velocity
                                                    330.000000
                                                                      0.8900
        3
                                b Radial Velocity
               GJ 3021
                                                    133.710000
                                                                      0.4900
        4
              HD 63454
                                b Radial Velocity
                                                       2.818049
                                                                      0.0368
        5
             HD 212301
                                   Radial Velocity
                                                        2.245715
                                b
                                                                      0.0360
        6
               CHXR 73
                                b
                                           Imaging
                                                             {\tt NaN}
                                                                    210.0000
        7
                CT Cha
                                b
                                           Imaging
                                                             NaN
                                                                    440.0000
        8
             HD 196067
                                b Radial Velocity
                                                    3638.000000
                                                                      5.0200
        9
              HD 68402
                                  Radial Velocity
                                                    1103.000000
                                                                      2.1800
           pl_orbeccen pl_bmassj
                                    st_dist st_mass
                                                       rowupdate
                                                                   st_plx
        0
                0.5300
                             5.100
                                      35.87
                                                0.99
                                                      2014-05-14
                                                                    27.88
        1
                            10.270
                                      18.21
                                                1.10 2014-07-23
                                                                    54.92
                0.6405
        2
                0.3600
                            0.223
                                      38.45
                                                0.86 2014-05-14
                                                                    26.01
        3
                                      17.62
                                                0.90 2014-05-14
                                                                    56.76
                0.5110
                            3.370
        4
                0.0000
                            0.398
                                      35.80
                                              0.84 2015-03-26
                                                                    27.93
        5
                0.0000
                            0.450
                                      52.72
                                                1.27 2014-05-14
                                                                    18.97
        6
                                        {\tt NaN}
                                                0.35 2014-05-14
                                                                      NaN
                   {\tt NaN}
                            12.569
        7
                   NaN
                            17.000
                                     165.00
                                                 NaN 2014-05-14
                                                                      \mathtt{NaN}
        8
                0.6600
                            6.900
                                      43.57
                                                1.29 2014-05-14
                                                                    22.95
        9
                0.0300
                             3.070
                                      78.00
                                                1.12 2016-11-10
                                                                    12.82
```

- 3.5 Drop the exops/rows with NaN (missing values) in the following fields:
- 3.5.1 pl_orbeccen (eccentricity), pl_orbper (orbital period), pl_obsmax (semimajor axis), pl_bmassj (planet mass), st_dist (distance to host star), st_mass (stellar mass)

```
aData = aData.dropna(axis = 0, how = 'any', subset = ['pl_orbper'])
        print('Length with pl_orbper\t', len(aData) )
        aData = aData.dropna(axis = 0, how = 'any', subset = ['pl_orbsmax'])
        print('Length with pl_orbsmax\t', len(aData) )
        aData = aData.dropna(axis = 0, how = 'any', subset = ['pl_bmassj'])
        print('Length with pl_bmassj\t', len(aData) )
        aData = aData.dropna(axis = 0, how = 'any', subset = ['st_dist'])
        print('Length with st_dist\t', len(aData) )
        aData = aData.dropna(axis = 0, how = 'any', subset = ['st_mass'])
        print('Length with st_mass\t', len(aData) )
Length all data, dbData 3711
Length with pl_orbeccen
                                1172
Length with pl_orbper
                              1172
Length with pl_orbsmax
                               1107
Length with pl_bmassj
                              1027
Length with st_dist
                            920
Length with st_mass
                            910
```

- 3.6 So aData is the working exoplanet data frame after filtering, as a Panda DataFrame. Later should consider filling in missing data with Kepler or other calculations.
- 3.7 Physical Constants, made explicit here. The CalTech exop dbase has an FAQ on the units they use for each parameter. General URL https://exoplanetarchive.ipac.caltech.edu/ and the one for units under Support>Documentation>Table Column Definitions> Confirmed Planets https://exoplanetarchive.ipac.caltech.edu/applications/DocSet/index.html?doctree=/docs/docme

```
In [10]: # Some scipy.constants for comparison mostly.
    from scipy.constants import speed_of_light, gravitational_constant, c, G, pi

massSun = 1.989e30; #(*kg *)
    massJ = 1.898e27; #(* kg *)
    massE = 5.972e24; #(* kg *)
    massJe = massJ/massE; #(* Jupiter mass is 317.9 earth masses *)
    massJs = massJ/massSun; #(* relative to the sun's mass *)

pc = 30.86e15; #(* meters, parsec *)
    au = 149.6e9; #(* meters, astron unit *)

cee = 299792458.0; #(* meters/s, speed of light *)
    print('Compare my cee ', cee, ' and scipy.constants ', speed_of_light)
```