$\begin{array}{c} \textbf{Projeto Mathematical Ramblings} \\ \textbf{mathematical ramblings.} \ \textbf{blogspot.com} \end{array}$

Desigualdade de Minkowski ou Desigualdade Triangular.

Sejam $u \in v$ vetores do \mathbb{R}^n , $||u+v|| \le ||u|| + ||v||$.

Como ||u+v|| e (||u||+||v||) são não negativos, basta mostrar que $||u+v||^2 \leq (||u||+||v||)^2$.

$$||u+v||^2 = \langle u,u \rangle + \langle v,v \rangle + 2\langle u,v \rangle$$

$$(||u|| + ||v||)^2 = \langle u, u \rangle + \langle v, v \rangle + 2||u||||v||$$

Pela Desigualdade de Cauchy-Schwarz, $\langle u,v \rangle \leq ||u||||v||.$

 $Quod\ Erat\ Demonstrandum.$

Documento compilado em Monday 20th September, 2021, 11:17, tempo no servidor.

Última versão do documento (podem haver correções e/ou aprimoramentos): "bit.ly/mathematicalramblings_public".

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

 ${\it Atribuição-Não Comercial-Compartilha Igual~(CC~BY-NC-SA)}.$