Comprobación del mantenimiento de las identidades matemáticas en una máquina de cómputo

Técnicas Experimentales Práctica de Laboratorio #8

12 de abril de 2013

Resumen

El objetivo de esta práctica es entregar un módulo escrito en Python. Con el programa se comprobará el mantenimiento de las identidades matemáticas en una máquina de cómputo.

1. Motivación y Objetivos

Debido a los errores de redondeo, puede suceder que una regla matemática como $(ab)^3 = a^3b^3$ no se mantenga en un ordenador.

El objetivo de esta práctica de laboratorio es generar una gran cantidad de números de forma aleatoria y comprobar con ellos tales identidades.

Los números aleatorios se generan en Python utilizando el módulo Random:

```
import random
a = random.uniform(A, B)
b = random.uniform(A, B)
```

En este caso, a y b serán números aleatorios mayores o iguales que A y menores que B.

2. Ejercicios propuestos

Escriba un programa que reciba como entrada el número de test que se van a realizar desde la línea de comandos.

En Python la lista sys.argv[1:] contiene todos los argumentos de la línea de comandos que se le pasan al programa. Todos los elementos en sys.argv son cadenas. sys.argv[0] contiene el nombre del programa. Una forma general de uso es la siguiente:

```
parametro1 = float(sys.argv[1])
parametro2 = float(sys.argv[2])
parametro3 = sys.argv[3]
```

Establecer los valores de $A \vee B$ para que sean fijos (por ejemplo de -100 a 100).

Realizar la prueba en un bucle. Dentro del bucle, generar dos números aleatorios a y b y comprobar si las dos expresiones matemáticas (a*b)**3 y a**3*b**3 son equivalentes.

Contar el número de fallos de equivalencia y mostrar como salida el porcentaje de fallos.

2.1. Entregable

En la tarea habilitada para esta práctica en el Aula Virtual, se subirá el fichero con el fuente Python desarrollado.

3. Para saber más...

Comprobar también la identidad matemática $\frac{a}{b} = \frac{1}{\frac{b}{a}}$

Referencias

[1] Tutorial de Python. http://docs.python.org/2/tutorial/