WHAT IS CLAIMED IS:

1.

1

2 method comprising the steps of: 3 retrieving a first data block from a memory; (a) 4 (b) initially seeding the random number generator using said 5 first data block as a seed; 6 (c) retrieving a number generated by the random number 7 generator; 8 (d) mapping said number to a memory address in said 9 memory using a mathematical function; 10 retrieving a successive data block from said memory (e) 11 address; and 12 (f) successively seeding the random number generator with a 13 combination of said seed and said successive data block such that said 14 combination of said seed and said successive data block becomes a resulting 15 seed. 1 2. The method recited in claim 1, further comprising the 2 further step of: 3 (e') after each performance of (e), testing for satisfaction of at least one criterion and if said at least one criterion is not satisfied, repeating (c), 4

A method for seeding a random number generator, the

5 (d), (e), and (e'). 1 3. The method recited in claim 2, wherein a criterion of said 2 at least one criterion is an absence of a string of identical bits in said successive 3 data block longer than a specified number of bits. 1 4. The method recited in claim 3, wherein said specified 2 number is equal to the number of bits in said successive data block. 1 5. The method recited in claim 2, further comprising the 2 further step of: 3 (e") after each performance of (e'), checking the number of 4 repetitions of (c), (d), (e), and (e') due to failure to satisfy said at least one 5 criterion and stopping said repetitions when a specified number of said 6 repetitions have been performed. 6. 1 The method recited in claim 5, wherein said specified 2 number of said repetitions is two. 1 7. The method recited in claim 1, wherein said first data

block includes an identifier unique to a specified computer device.

2

- 1 8. The method recited in claim 1, wherein said first data
- 2 block includes previously saved data.
- 1 9. The method of claim 1, wherein said mathematical
- 2 function used in said mapping is:
- $3 f(x) = x \pmod{m} + b for x < b;$
- 4 f(x) = x for $b \le x \le b + m$; and
- $f(x) = x \pmod{m} + b \qquad \text{for } x > b + m;$
- wherein f(x) = said memory address to which said generated
- 7 number is mapped;
- x = retrieved number generated by random number generator;
- 9 b = base memory address; and
- m = memory size.
- 1 10. The method recited in claim 1, wherein said combination
- 2 of said seed and said successive data block is accomplished by hashing said
- 3 seed and said successive data block.
- 1 11. An apparatus for seeding a random number generator, the
- 2 apparatus comprising:

3	a memory; and		
4	a pro	cessor	operatively coupled to said memory, wherein said
5	processor is programmed to:		
6		(a)	retrieve a first data block from said memory;
7		(b)	initially seed the random number generator using
8			said first data block as a seed;
9		(c)	retrieve a number generated by the random number
10			generator;
11		(d)	map said number to a memory address in said
12			memory using a mathematical function;
13		(e)	retrieve a successive data block from said memory
14			address; and
15		(f)	successively seed the random number generator
16			with a combination of said seed and said successive
17			data. block such that said combination of said seed
18			and said successive data block becomes a resulting
19			seed.
1	12.	The a	pparatus recited in claim 11, wherein said processor
2	is further programmed to:		
3	(e')	after	each performance of (e), test for satisfaction of at

4	least one criterion and if said at least one criterion is not satisfied, repeat (c)				
5	(d), (e), and (e').				
1	13.	The apparatus recited in claim 12, wherein said processor			
2	is further programmed to:				
3	(e")	after each performance of (e'), check the number of			
4	repetitions of (c), (d), (e), and (e') due to failure to satisfy said at least one				
5	criterion and stop said repetitions when a specified number of said repetitions				
6	have been performed.				
1	14.	An apparatus for seeding a random number generator, the			
2	apparatus comprising:				
3	(a)	means for retrieving a first data block from a memory;			
4	(b)	means for initially seeding the random number generator			
5	using said first data block as a seed;				
6	(c)	means for retrieving a number generated by the random			
7	number generator;				
8	(d)	means for mapping said number to a memory address in			
9	said memory using a mathematical function;				
10	(e)	means for retrieving a successive data block from said			
11	memory address; and				

- 12 (f) means for successively seeding the random number 13 generator with a combination of said seed and said successive data block such 14 that said combination of said seed and said successive data block becomes a 15 resulting seed.
- 1 15. The apparatus recited in claim 14, further comprising:
- 2 (e') means for testing for satisfaction of at least one criterion 3 after each use of said means for said retrieving said successive data block of 4 (e), and if said at least one criterion is not satisfied, repeating (c), (d), (e), and 5 (e').
- 1 16. The apparatus recited in claim 15, further comprising:
- 2 (e") means for checking the number of repetitions of (c), (d),
- 3 (e), and (e') due to failure to satisfy said at least one criterion after each use of
- 4 said means for said testing and repeating of (e'), and stopping said repeating
- 5 when a specified number of said repetitions have been performed.

- 1 17. A computer-readable medium having computer-readable
- 2 instructions for performing a method of accessing a database of interest, the
- 3 method comprising the steps of:
- 4 (a) retrieving a first data block from a memory;
- 5 (b) initially seeding the random number generator using said
- 6 first data block as a seed;
- 7 (c) retrieving a number generated by the random number
- 8 generator;
- 9 (d) mapping said number to a memory address in said
- 10 memory using a mathematical function;
- (e) retrieving a successive data block from said memory
- 12 address; and
- 13 (f) successively seeding the random number generator with a
- 14 combination of said seed and said successive data block such that said
- 15 combination of said seed and said successive data block becomes a resulting
- 16 seed.
- 1 18. The computer-readable medium recited in claim 17,
- 2 wherein said method further comprises the further step of:
- 3 (e') after each performance of (e), testing for satisfaction of at

- 4 least one criterion and if said at least one criterion is not satisfied, repeating (c),
- 5 (d), (e), and (e').
- 1 19. The computer-readable medium recited in claim 18,
- 2 wherein said method further comprises the further step of:
- 3 (e") after each performance of (e'), checking the number of
- 4 repetitions of (c), (d), (e), and (e') due to failure to satisfy said at least one
- 5 criterion and stopping said repetitions when a specified number of said
- 6 repetitions have been performed.