TECHNISCHE UNIVERSITÄT BERLIN

WiSe 2018/19

Fakultät II - Mathematik und Naturwissenschaften

Institut für Mathematik

Dozent: W. König

Assistent: A. Schmeding Abgabe: 19.11.-23.11.2018

5. Übung Analysis III für Mathematiker(innen)

((adjungierte) lineare Differentialoperatoren, Koordinatentransformation)

Themen der großen Übung am 12.11.

Wir zeigen, dass für einen linearen Differentialoperator L gilt $(L^*)^* = L$. Außerdem berechnen wir $\left(\sum_{i,j=1}^d a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^d b_i \frac{\partial}{\partial x_i} + c\right)^*$. Dann beschäftigen wir uns mit dem Kommutator $[\cdot,\cdot]$ und beweisen

$$[M, L_1 \circ L_2] = [M, L_1] \circ L_2 + L_1 \circ [M, L_2]$$

$$\left[a \frac{\partial}{\partial x_i}, b \frac{\partial}{\partial x_j} \right] = a \left(\frac{\partial}{\partial x_i} b \right) \frac{\partial}{\partial x_j} - b \left(\frac{\partial}{\partial x_j} a \right) \frac{\partial}{\partial x_i} \text{ für alle glatten Funktionen } a, b$$

Daraus werden wir folgern, dass für lineare Differentialoperatoren L_1 und L_2 der Ordnung n_1 bzw. n_2 der Kommutator $[L_1, L_2]$ von der Ordnung $\leq n_1 + n_2 - 1$ ist.

Nachtrag aus der Analysis II: (Injektivitätskriterium) Ist $U \subseteq \mathbb{R}^n$ offen und konvex, sowie $F: U \to \mathbb{R}^n$ eine stetig differenzierbare Funktion deren Jacobi-Matrix $D_x F$ positiv definit ist, d.h. $y^{\top}D_x Fy > 0$ für jedes $x \in U, y \in \mathbb{R}^n \setminus \{0\}$, dann ist F injektiv auf U.

Tutoriumsvorschläge

12. Aufgabe

Erinnern Sie sich an die in der Übung 4 eingeführten Zylinderkoordinaten

$$\operatorname{Zyl}(r, \varphi, h) := \begin{pmatrix} r \cos(\varphi) \\ r \sin(\varphi) \\ h \end{pmatrix}.$$

Berechnen Sie den Laplace-Operator Δ^{Zyl} in Zylinderkoordinaten. Erinnern Sie sich an die Divergenz div $F = \sum_{i=1}^{3} \frac{\partial}{\partial x_i} f_i$ einer Funktion $F = (f_1, f_2, f_3) \colon \mathbb{R}^3 \to \mathbb{R}^3$ und drücken Sie auch diese in Zylinderkoordinaten aus.

13. Aufgabe

Sei $U \subseteq \mathbb{R}^n$ eine offene Menge und $\mathcal{C}^{\infty}(U,\mathbb{R}^d)$ der Vektorraum der glatten Funktionen $U \to \mathbb{R}^d$. Im Fall d = 1 schreiben wir $\mathcal{C}^{\infty}(U)$ statt $\mathcal{C}^{\infty}(U,\mathbb{R})$. Zeigen Sie:

(i) Für $f = (f_1, \ldots, f_n) \in \mathcal{C}^{\infty}(U, \mathbb{R}^n)$ definiert

$$\nabla_f \colon \mathcal{C}^{\infty}(U) \to \mathcal{C}^{\infty}(U), \qquad g \mapsto \sum_{i=1}^n f_i \frac{\partial}{\partial x_i} g,$$

einen linearen Differentialoperator.

(ii) Ist $\mathrm{LDer}(\mathcal{C}^{\infty}(U))$ der Vektorraum der linearen Differentialoperatoren, definiert auf $\mathcal{C}^{\infty}(U)$, so definiert

$$\nabla : \mathcal{C}^{\infty}(U) \to \mathrm{LDer}(\mathcal{C}^{\infty}(U)), \qquad f \mapsto \nabla_f,$$

eine injektive lineare Abbildung. Beschreiben Sie das Bild von ∇ .

(iii) Zeigen Sie, dass für $F, G \in \mathcal{C}^{\infty}(U, \mathbb{R}^n)$ durch die Gleichung $\nabla[F, G] = [\nabla(F), \nabla(F)]$ eine bilineare Abbildung $[\cdot, \cdot]$ (tatsächlich sogar eine Lie-Klammer, siehe Hausaufgabe 16) von Vektorfeldern definiert wird.

14. Aufgabe

Bestimmen Sie die Masse der Hohlkugel, die durch die Sphären $\{(x,y,z)\in\mathbb{R}^3\colon x^2+y^2+z^2=4\}$ und $\{(x,y,z)\in\mathbb{R}^3\colon x^2+y^2+z^2=16\}$ begrenzt wird, wenn für die Dichte ρ der Hohlkugel gilt:

$$\rho(x, y, z) = \frac{1}{4\sqrt{x^2 + y^2 + z^2}}.$$

Hausaufgaben

15. Aufgabe (5 Punkte)

Es sei $B := \{(x,y) \in \mathbb{R}^2 : ||(x,y)|| < 1\}$ die offene Einheitskugel in \mathbb{R}^2 , sowie

$$f \colon B \setminus ([0,1) \times \{0\}) \to \mathbb{R}, \qquad f(x,y) := \frac{1}{1+x^2+y^2} - \frac{1}{2}.$$

Zeigen Sie, dass f zu einer Funktion $\tilde{f} \in \mathcal{C}_{c}(\mathbb{R}^{2} \setminus ([0,\infty) \times \{0\}))$ fortgesetzt werden kann, und berechnen Sie $\int_{\mathbb{R}^{2} \setminus ([0,\infty) \times \{0\})} \tilde{f}(x,y) dx dy$.

16. Aufgabe (5 Punkte)

Es seien $U \subseteq \mathbb{R}^n$ eine offene Menge und $\mathrm{LDer}(\mathcal{C}^\infty(U))$ der Raum der linearen Differentialoperatoren auf der Menge der glatten Funktionen auf U. Zeigen Sie, dass der Kommutator $[L_1, L_2] := L_1 \circ L_2 - L_2 \circ L_1$ eine Lie-Klammer auf dem Raum der Differentialoperatoren definiert, d.h. zeigen Sie, dass gelten:

- (i) $[\cdot,\cdot]$: $\mathrm{LDer}(\mathcal{C}^{\infty}(U)) \times \mathrm{LDer}(\mathcal{C}^{\infty}(U)) \to \mathrm{LDer}(\mathcal{C}^{\infty}(U))$ ist bilinear mit [L,L]=0 für alle linearen Differentialoperatoren L.
- (ii) Die Jacobi-Identität $[[L_1, L_2], L_3] + [[L_2, L_3], L_1] + [[L_3, L_1], L_2] = 0$ gilt für alle solchen Operatoren L_1, L_2 und L_3 .

17. Aufgabe (3 Punkte)

Betrachten Sie das nte Legendre-Polynom

$$P_n(t) := \frac{1}{n!2^n} \left(\frac{\mathrm{d}}{\mathrm{d}t}\right)^n (t^2 - 1)^n, \quad t \in \mathbb{R}, n \in \mathbb{N}_0.$$

Berechnen Sie $\Delta^{\Phi} f$ für die (von φ unabhängigen!) Funktionen $f(r, \theta, \varphi) = r^n P_n(\cos(\theta))$, wobei Δ^{Φ} der Laplace-Operator bezüglich Kugelkoordinaten (Beispiel 1.4.4) ist.

Hinweis: Sie dürfen benutzen, dass die Legendre-Polynome Lösungen der *Legendre-Differentialgleichung* $(1-t^2)P_n''(t) - 2tP_n'(t) + n(n+1)P_n(t) = 0$ sind.

18. Aufgabe (7 Punkte)

Ebene elliptische Koordinaten. Betrachten Sie die Abbildungsvorschrift

$$\Phi(u,v) := \begin{pmatrix} \cosh(u)\cos(v) \\ \sinh(u)\sin(v) \end{pmatrix}.$$

- (i) Beschreiben Sie die Transformation für festes u bzw. festes v mittels Skizzen.
- (ii) Geben Sie einen möglichst großen Bereich der (u, v)-Ebene an, in dem Φ injektiv ist, und bestimmen Sie das Bild dieses Bereiches unter Φ . Eine Argumentation mit Ihrer Skizze aus (i) ist für die Identifikation des Bildes ausreichend. Ist Φ dort \mathcal{C}^1 -invertierbar?
- (iii) Drücken Sie den Laplace-Operator in Φ-Koordinaten aus.

Gesamtpunktzahl: 20