

Peter Willendrup, DTU Physics + ESS DMSC

Sources and Monitors part 2.

Sources: Source model overview

Mathematical:

- > Source_simple.comp
- > Source_div.comp

Pulsed sources:

- > ESS_butterfly.comp
- > ESS_moderator.comp
- Moderator.comp
- > SNS_source.comp (*)
- > SNS_source_analytic (*)
- ViewModISIS (*)
- ISIS_moderator.comp (*)

Reactors:

- > Source_Maxwell_3.comp
- Source_gen.comp
- Source_gen4.comp
- Source_multi_surfaces.comp (*)

- I/O mechanisms:
- MCPL_input/output.comp
 - > Virtual_input/output.comp
 - > Virtual_mcnp_ss_input/output.comp
 - > Virtual_tripoli4_input/output.comp
 - > Vitess_input/output.comp


```
COMPONENT source = Source_Maxwell_3(yheight=0.156, xwidth=0.126,

Lmin=0.1, Lmax=9.0, dist=1.5, focus_xw = 0.025, focus_yh = 0.12,

T1=150.42, I1=3.67E11, T2=38.74, I2=3.64E11, T3=14.84, I3=0.95E11)
```

Parameters from the PSI cold source

```
Initial position and direction: as for Source_simple
```



```
COMPONENT source = Source_Maxwell_3(yheight=0.156, xwidth=0.126,

Lmin=0.1, Lmax=9.0, dist=1.5, focus_xw = 0.025, focus_yh = 0.12,

T1=150.42, I1=3.67E11, T2=38.74, I2=3.64E11, T3=14.84, I3=0.95E11)
```

Parameters from the PSI cold source

Intensity at a given wavelength drawn from a sum of (up to) 3 normalized Maxwellian distributions:

$$I(\lambda) = \sum I_i M(\lambda, T_i); \qquad M(\lambda, T_i) = 2\alpha^2 exp\left(\frac{-\alpha}{\lambda^2}\right)/\lambda^5;$$

$$\alpha = 949.0KAA^2/T_i$$

COMPONENT source = Source Maxwell
Lmin=0.1, Lmax=9

T1=150.42, I1=3

Just for fun – let's see what happens if we remove the fast peak...

Input parameters

Parameters in ${\bf boldface}$ are required; the others are optional.

Name	Unit	Description	Default
size	m	Edge of cube shaped source (for backward compatibility)	0
yheight	m	Height of rectangular source	0
xwidth	m	Width of rectangular source	0
Lmin	AA	Lower edge of lambda distribution	
Lmax	AA	Upper edge of lambda distribution	
dist	m	Distance from source to focusing rectangle; at (0,0,dist)	
focus_xw	m	Width of focusing rectangle	
focus_yh	m	Height of focusing rectangle	
T1	K	1st temperature of thermal distribution	
T2	K	2nd temperature of thermal distribution	300
T3	K	3nd temperature of	300
I1	1/(cm**2*st)	flux, 1 (in flux units, see above)	
I2	1/(cm**2*st)	flux, 2 (in flux units, see above)	0
I3	1/(cm**2*st)	flux, 3	0
target_index	1	relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.	+1
lambda0	AA	Mean wavelength of neutrons.	0
dlambda	AA	Wavelength spread of neutrons.	0

Peter Willendrup, DTU Physics and ESS DMSC

Sources: Source_gen (Source_gen4)

```
COMPONENT source = Source_gen(yheight=0.156, xwidth=0.126,

Lmin=0.1, Lmax=9.0, dist=1.5, focus_xw = 0.025, focus_yh = 0.12,

T1=150.42, I1=3.67E11, T2=38.74, I2=3.64E11, T3=14.84, I3=0.95E11)
```

Almost the same as Source_Maxwell_3: but with optional flux-files as input.

MCPL_input/output

Reads/writes events directly from MCPL-format files:

"T. Kittelmann et. al., "", J. Phys. Comp., 2017

MCPL_input/output

Can include an Implicit Translation:

MCPL_output.comp

MCPL_input/output

Can include an Implicit Translation:

MCPL_output.comp

MCPL_input.comp

Pulsed sources:

```
Simplest case:
         Use a continuous source!
         Model a source with given wavelength and spatial distribution
         and
       ___... an infinitely short pulse length. I.e. t = 0 for all neutron rays.
     COMPONENT src = Source simple(
              radius=0.05, lambda0=2.5, dlambda=1.5,
              focus_xw=0.1, focus_yh=0.1, dist=5 )
     AT(0,0,0) RELATIVE origin
```


Pulsed sources:

```
Simplest case:
         Use a continuous source!
         Model a source with given wavelength and spatial distribution
         and
           an infinitely short pulse length. I.e. t = 0 for all neutron rays.
        COMPONENT src = Source simple(
                 radius=0.05, lambda0=2.5, dlambda=1.5,
                 focus_xw=0.1, focus_yh=0.1, dist=5 )
        AT(0,0,0) RELATIVE origin
        EXTEND
        용 {
                 t=0;
```


Pulsed sources:

Simplest case: Use a continuous source! Model a source with given wavelength and spatial distribution and Or: Use a chopper (see later) an infinit tron rays. COMPONENT dlambda=1.5, rad focus_yh=0.1, dist=5) focu AT(0,0,0) RELATIVE origin **EXTEND** 응 { t=0;

Pulsed Sources: Moderator

A flat pulsed source with uniform energy spectrum:

$$x \in U\left[-\frac{xwidth}{2}, \frac{xwidth}{2}\right] y \in U\left[-\frac{yheight}{2}, \frac{yheight}{2}\right]$$

$$|v| = f(\lambda); \lambda \in U\left[L_{min}L_{max}\right]$$

Time structure is given by energy dependent probability density function:

$$f_{t} = \frac{1}{\tau} exp\left(-\frac{t}{\tau}\right)$$

$$\tau = \begin{cases} t_{0}; & E < E_{c} \\ t_{0}\left(\frac{1}{1 + \frac{(E - E_{c})}{\gamma}}\right); & E \ge Ec \end{cases}$$

Pulsed Sources: ViewModISIS

- Samples directly from tallies coming from e.g. MCNP target+moderator calculations.
- Data file supplied for each beam port at ISIS.

Pulsed Sources: ViewModISIS

Peter Willendrup, DTU Physics and ESS DMSC

Pulsed Sources: SNS_source

- Samples directly from tallies coming from e.g. MCNP target+moderator calculations.
- Originally from SNS but also used extensively at J-PARC
- Can be used (with the proper input files) to model CSNS, and likely also ISIS.

Pulsed Sources: SNS_source_analytic

- Samples from fits of Padé-functions to tallies from SNS_source.
- Requires a complex fitting campaign
- + Much faster than SNS_source
 - + "Cleaner" distributions where statistics are sketchy
- Can be used (with the proper input files) to model CSNS-source.

Monitors (some)

- \clubsuit L_monitor $\rightarrow I(\lambda)$
- \Rightarrow TOF_monitor $\rightarrow I(t)$
- \Rightarrow Hdiv_monitor $\rightarrow I(div_x)$
- \Rightarrow MeanPolLambda $\rightarrow \langle \bar{P} \rangle (\lambda)$
- \clubsuit E_monitor $\rightarrow I(E)$

2D

- \bigcirc PSD_monitor \rightarrow I(x,y)
- \bigcirc PSD_monitor_4PI \rightarrow $I(\theta, \phi)$
- \bigcirc PolLambda_monitor $\rightarrow I(\bar{P}, \lambda)$
- \bigcirc Divergence_monitor $\rightarrow I(\text{div.}_x, \text{div.}_y)$
- \bigcirc DivPos_monitor $\rightarrow I(\text{div.}_x, x)$

nD

$$\bigcap$$
 Monitor_nD \rightarrow $I(X)$

or

I(X, Y) or

Z(X, Y, Z)

or ...

Monitors: Quick examples

```
COMPONENT my_L_monitor = L_monitor(xwidth=0.2, yheight=0.2,

nL=20, filename="Output.L", Lmin=2, Lmax=10)
```


In a histogram sense

?Imagine a histogram, e.g. $\mathbf{I}(\lambda)$

In bin i, N events each carrying a fractional intensity p_j so that

The RMS variance over that set becomes our statistical error bar **E**

From "Virtual experiments - the ultimate aim of neutron ray-tracing simulations", K. Lefmann et al., Journal of Neutron Research 16, 97-111 (2008)

Let n be the number of neutron rays reaching the detector, and let the rays have (different) weights, w_i . The simulated intensity is then given by

$$I = \sum_{i=1}^{n} w_i. \tag{1}$$

The estimate of the error on this number is calculated in the McStas manual [1], and the standard deviation is approximated by

$$\sigma^2(I) = \sum_{i=1}^n w_i^2. \tag{2}$$

In real experiments, $w_i = 1$, whence we reach I = n and $\sigma(I) = \sqrt{I}$ as expected (for counts exceeding 10). Let the virtual time be denoted by t. The simulated counts during this time becomes

$$C = tI, (3)$$

From "Virtual experiments - the ultimate aim of neutron ray-tracing simulations", K. Lefmann et al., Journal of Neutron Research 16, 97-111 (2008)

and its error bar estimate is

$$\sigma^2(C) = t^2 \sigma^2(I). \tag{4}$$

However, to simulate a realistic counting statistics, we must fulfill

$$\sigma_{\rm VE}(C_{\rm VE}) = \sqrt{C_{\rm VE}}.\tag{5}$$

This is obtained by adding to (3) a Gaussian noise $E(\Sigma)$ of mean value zero and standard deviation Σ :

$$C_{\rm VE} = tI + E(\Sigma). \tag{6}$$

The standard deviation for the VE becomes

$$\sigma_{VE}^2(C) = t^2 \sigma^2(I) + \Sigma^2. \tag{7}$$

Now, the requirement (5) allows us to determine Σ :

$$\Sigma^2 = tI - t^2 \sigma^2(I). \tag{8}$$

Since Σ^2 must remain positive, we reach an upper limit on t

$$t_{\text{max}} = \frac{I}{\sigma^2(I)}.$$
(9)

Sketch of an algorithm...

- 1. On a given McStas histogram
- 2. For the non-zero bins, calculate

$$t_{\max} = \frac{I}{\sigma^2(I)}.$$

The smallest t_{\max} defines the "maximal counting time" allowed by your statistics

3. Preferably a "background" should be added - use a "known experimental value" or an estimate...

Monitor_nD

The all-in-one, swiss-army-knife of monitors

Monitor_nD can have almost any shape, and record

any requested standard quantities

Monitor_nD

Examples

Monitor_nD

... or monitor just about anything:

```
COMPONENT MyMon = Monitor_nD(xwidth = 0.1, yheight = 0.1,
    user1=age, username1="Age of the Captain [years]",
    options="user1, auto")
```


Exercise 2:

Head over to the github site and continue the exercise we started before:

https://github.com/McStasMcXtrace/Schools/tree/master/ISIS_April_2021/ Tuesday_April_13th/2_Component_Basics/Exercise/

