

6.2 散点图

- 散点图 (Scatter) : 是数据点在直角坐标系中的分布图
 - □ 数据分布规律

□ 数据变化趋势

□ 数据分组

0

Matplotblib数据可视化

□ scatter() 函数

scatter(x, y, scale, color, marker, label)

参数	说 明	默认值
Х	数据点的x坐标	不可省略
У	数据点的y坐标	不可省略
scale	数据点的大小	36
color	数据点的颜色	
marker	数据点的样式	'o' (圆点)
label	图例文字	

color参数——常用颜色

颜色	缩略字符	颜 色	缩略字符
blue	b	black	k
green	g	white	W
red	r	cyan	С
yellow	у	magenta	m

marker参数——数据点样式

取值	中文描述	取值	中文描述	取值	中文描述
-	实线	1	朝下的三角	V	朝下的三角形
	虚线	2	朝上的三角	٨	朝上的三角形
	点线	3	朝左的三角	<	朝左的三角形
:	点虚线	4	朝右的三角	>	朝右的三角形
	点	S	正方形	D	钻石形
,	像素	p	五角形	d	小版钻石形
0	圆形	*	星型		垂直线形
+	+ 号标 记	h	1号六角形	_	水平线行
X	x 号 标记	Н	2号六角形		

6 Matplotblib数据可视化

例: 绘制标准正态分布的散点图

□ 设置默认字体为中文黑体

plt.rcParams['font.sans-serif']="SimHei"

□ 标准正态分布的散点坐标

n=1024

x = np.random.normal(0,1,n)

y = np.random.normal(0,1,n)

□ 绘制散点图

plt.scatter(x, y, color="blue",marker='*')

□ 设置标题

plt.title("标准正态分布",fontsize=20)

□ 添加文字——text() 函数

text(x, y, s, fontsize,color)

参数	说 明	默认值
x	文字的x坐标	不可省略
У	文字的y坐标	不可省略
s	显示的文字	不可省略
fontsize	文字的大小	12
color	文字的颜色	黑色

□ 坐标轴设置

plt.rcParams["axes.unicode_minus"] = False

函数	说 明
xlabel(x, y, s, fontsize,color)	设置x轴标签
ylabel(x, y, s , fontsize,color)	设置y轴标签
xlim(xmin, xmax)	设置x轴坐标的范围
ylim(ymin, ymax)	设置y轴坐标的范围
tick_params(labelsize)	设置刻度文字的字号

6.2 散点图

例: 绘制标准正态分布的散点图

□ 设置文本

plt.text(2.5,2.5,"均 值: 0\n标准差: 1")

□ 设置坐标轴范围

plt.xlim(-4,4) plt.ylim(-4,4)

□ 设置坐标轴标签

plt.xlabel('横坐标x', fontsize=14) plt.ylabel('纵坐标y', fontsize=14)


```
import matplotlib.pyplot as plt
                                            # 导入numpy库
    import numpy as np
 3
                                            # 设置中文黑体为默认字体
 4
    plt.rcParams['font.sans-serif']="SimHei"
                                            # 正常显示负号
    plt.rcParams['axes.unicode minus']=False
 6
                                              随机点个数: 1024
    n = 1024
                                              生成数据点x坐标
8
    x = np.random.normal(0,1,n)
                                            # 生成数据点v坐标
    y = np.random.normal(0,1,n)
10
11
    plt.scatter(x, y, color="blue", marker='*')
                                                   # 绘制数据点
12
    plt.title("标准正态分布",fontsize=20)
13
                                                  #显示文本
    plt.text(2.5,2.5,"均 值: 0\n标准差: 1")
14
15
16
    plt.xlim(-4,4)
                                                   # x轴范围
    plt.ylim(-4,4)
17
18
19
    plt.xlabel('横坐标x', fontsize=14)
    plt.ylabel('纵坐标y', fontsize=14)
20
21
    plt.show()
                                                   #显示绘图
```


*** 正态分布 均匀分布

标准正态分布

横坐标x

例: 绘制标准正态分布、均匀分布的散点图

```
1  n =1024
2  x1 = np.random.normal(0,1,n)
3  y1 = np.random.normal(0,1,n)
4  x2=np.random.uniform(-4,4,(1,n))
6  y2=np.random.uniform(-4,4,(1,n))
7  plt.scatter(x1, y1, color="blue",marker='*')
9  plt.scatter(x2, y2, color="yellow",marker='o')
```


□ 增加图例

指定图例内容

scatter(x, y, scale, color, marker, <u>label</u>)

legend(loc, fontsize)

显示图例

loc参数——指定图例的位置

取值	图例位置	取值	图例位置
0	best	6	center left
1	upper right	7	center right
2	upper left	8	lower center
3	lower left	9	upper center
4	lower right	10	center
5	right		

6.2 散点图

```
import matplotlib.pyplot as plt
                                                            标准正态分布
     import numpy as np
                                                                           正态分布
                                                                           均匀分布
     plt.rcParams['font.sans-serif']="SimHei"
     plt.rcParams['axes.unicode minus']=False
 6
                                                纵坐标
     n = 1024
     x1 = np.random.normal(0,1,n)
9
     y1 = np.random.normal(0,1,n)
10
11
     x2=np.random.uniform(-4,4,(1,n))
     y2=np.random.uniform(-4,4,(1,n))
12
                                                               横坐标x
                                                                                 Matplotblib数据可视化
13
14
     plt.scatter(x1, y1, color="blue",marker='*',label=" 正态分布"
15
     plt.scatter(x2, y2, color="yellow", marker='o', label="均匀分布"
16
17
18
     plt.legend(
     plt.title("标准正态分布",fontsize=20)
19
20
```

plt.xlim(-4,4) plt.ylim(-4,4)