

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 2月 5日

出 願 番 号 Application Number:

特願2003-028806

[ST. 10/C]:

[JP2003-028806]

出 願 Applicant(s):

松下電器產業株式会社

2004年 1月14日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】 特許願

【整理番号】 2022040310

【提出日】 平成15年 2月 5日

【あて先】 特許庁長官殿

【国際特許分類】 H02M 3/28

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 吉田 幸司

【特許出願人】

【識別番号】 000005821

【住所又は居所】 大阪府門真市大字門真1006番地

【氏名又は名称】 松下電器産業株式会社

【代理人】

【識別番号】 100062926

【弁理士】

【氏名又は名称】 東島 隆治

【選任した代理人】

【識別番号】 100113479

【弁理士】

【氏名又は名称】 大平 覺

【手数料の表示】

【予納台帳番号】 031691

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 0217288

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 スイッチング電源装置及びその制御方法

【特許請求の範囲】

【請求項1】 入力側が直列に接続されて出力側が並列に接続され、複数のスイッチング手段と変圧手段と整流手段とによりそれぞれが構成されて単一出力直流電圧を出力する複数のコンバータ、

前記コンバータから出力された単一出力直流電圧と基準電圧とを比較して第1 の誤差信号を形成し、増幅する第1の誤差増幅器、

前記複数のコンバータにおける前記整流手段後の電流を加算して単一出力電流 信号を形成する演算器、

前記演算器の単一出力電流信号と前記第1の誤差増幅器の出力とを比較して第2の誤差信号を形成し、増幅する第2の誤差増幅器、及び

前記第2の誤差増幅器の出力信号を基にPWM信号を形成し、前記複数のスイッチング手段のそれぞれをPWM制御する複数のPWM信号発生器、

を有することを特徴とするスイッチング電源装置。

【請求項2】 PWM信号発生器のそれぞれが、基準三角波を形成する三角 波発生器と、前記三角波発生器の基準三角波と第2の誤差増幅器の出力信号とを 比較するコンパレータと、前記コンパレータの比較結果に基づき PWM信号を形成し、対応するスイッチング手段を PWM制御する分配器とを有する請求項1に 記載のスイッチング電源装置。

【請求項3】 Q個のコンバータのそれぞれが入力端子間に直列接続された複数のコンデンサを有し、それぞれの前記コンデンサが異なるスイッチング手段に接続されており、Q個のPWM信号発生器の三角波発生器が互いにπ/Qの位相差を有する基準三角波を出力し、前記基準三角波と第2の誤差増幅器の出力信号とを用いて前記PWM信号発生器が各コンバータに対してスイッチングのタイミングを変化させるよう構成された請求項2に記載のスイッチング電源装置。

【請求項4】 演算器が加算器で構成された請求項1乃至3のいずれかに記載のスイッチング電源装置。

【請求項5】 コンバータがハーフブリッジコンバータで構成された請求項

2/

1乃至4のいずれかに記載のスイッチング電源装置。

【請求項6】 PWM信号発生器において形成するPWM信号が、実質的に 等間隔で位相シフトするよう構成された請求項1乃至5のいずれかに記載のスイ ッチング電源装置。

【請求項7】 入力側が直列に接続されて出力側が並列に接続され、複数のスイッチング手段と変圧手段と整流手段とによりそれぞれが構成されて単一出力直流電圧を出力する複数のコンバータ、を有するスイッチング電源装置において

前記単一出力直流電圧と基準電圧とを比較して第1の誤差信号を形成し、増幅 するステップと、

前記複数のコンバータにおける前記整流手段後の電流を加算して単一出力電流 信号を形成するステップと、

前記単一出力電流信号と増幅された前記第1の誤差信号とを比較して第2の誤 差信号を形成し、増幅するステップと、

増幅された前記第2の誤差信号を基にPWM信号を形成し、前記複数のスイッチング手段のそれぞれをPWM制御するステップと、

を有することを特徴とするスイッチング電源装置の制御方法。

【請求項8】 スイッチング手段のそれぞれをPWM制御するステップにおいて、三角波発生器が基準三角波を出力し、コンパレータが前記基準三角波と増幅された第2の誤差信号とを比較し、分配器が前記コンパレータの比較結果に基づきPWM信号を形成し、対応するスイッチング手段をPWM制御する請求項7に記載のスイッチング電源装置の制御方法。

【請求項9】 Q個のコンバータのそれぞれが入力端子間に直列接続された複数のコンデンサを有し、それぞれの前記コンデンサが異なるスイッチング手段に接続されたスイッチング電源装置において、Q個のPWM信号発生器の三角波発生器が互いにπ/Qの位相差を有する基準三角波を出力し、前記基準三角波を用いてPWM信号を形成し、各コンバータに対してスイッチングのタイミングを変化させる請求項8に記載のスイッチング電源装置の制御方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は産業用や民生用の電子機器に直流安定化電圧を供給するスイッチング 電源装置及びその制御方法に関し、特に複数のスイッチング電源回路により構成 されたスイッチング電源装置の安定性の改善に関する。

[0002]

【従来の技術】

近年、電子機器の低価格化・小型化・高性能化・省エネルギー化に伴い、このような電子機器に用いられる電源装置としても、低価格で小型で出力が安定した、高効率なスイッチング電源装置が強く求められている。スイッチング電源装置におけるスイッチング電源回路では、オンオフ動作を繰り返すスイッチング素子により矩形波状の交流電圧を形成し、高周波のトランスを用いて所望の交流電圧に変更した後に、整流回路と平滑回路により直流電圧に変換している。このスイッチング電源装置において用いられるトランスは、磁性体にトランスの1次巻線と2次巻線を複数回巻装した構成であり、巻線に印加する電圧や誘起される電圧がその巻数を調整することにより変更される構成である。一般的に、スイッチング電源回路においては、トランスにより大まかな電圧の変更を行い、電圧の微調整はスイッチング素子のオンオフ比をPWM制御により行っている。トランスの1次巻線や2次巻線の巻数は、主に印加される電圧によって決定され、電圧が高いほど必要な巻数は多くなる。トランスの巻数が多くなると、巻線間を絶縁するために必要な巻分の体積が増加し、その結果トランスの外形が大きくなるという問題があった。

[0003]

スイッチング電源回路におけるスイッチング素子には、入力電圧にほぼ比例した電圧が印加され、入力電圧が高い場合には高い電圧が印加される。スイッチング素子としては主に半導体素子が用いられており、オフ時に印加される電圧が高い半導体素子の場合には、オン時の抵抗や電圧降下が大きくなるのが一般的である。この結果、半導体素子における損失が大きくなり、この損失に伴う熱を放散させるための放熱手段が大きくなり、装置の小型化の達成が困難であった。この

問題を解決するために、複数のスイッチング電源回路の入力側を直列に接続して 、各スイッチング素子に印加される電圧を低くする構成が考えられる。

[0004]

従来スイッチング電源装置における複数のスイッチング電源回路の入力側直列 接続方式は特開昭62-138061号公報に記載されたものが知られている。 - 図4は複数のスイッチング電源回路が入力側直列接続された従来のスイッチン グ電源回装置の構成例を示す回路図である。図4において、入力直流電源201 からの入力直流電圧は、入力端子202a,202bに供給されており、入力端 子202a, 202bには複数のコンデンサ203, 204, 205, 206の 直列回路が接続されており、各コンデンサ203,204,205,206によ り入力端子202a.202bに印加された入力直流電圧を分割している。以下 の説明において、入力端子202a.202bに接続された複数のコンデンサ2 03, 204, 205, 206のそれぞれを第1のコンデンサ203、第2のコ ンデンサ204、第3のコンデンサ205、第4のコンデンサ206と称す。第 1のコンデンサ203と第2のコンデンサ204の直列回路の両端には第1のス イッチング素子207と第2のスイッチング素子208の直列回路が接続され、 第3のコンデンサ205と第4のコンデンサ206の直列回路の両端には第3の スイッチング素子209と第4のスイッチング素子210の直列回路が接続され ている。

[0005]

第1のトランス211は、1次巻線211aと第1の2次巻線211bと第2の2次巻線211cとを有している。1次巻線211aの一端は第1のコンデンサ203と第2のコンデンサ204の接続点に接続されており、1次巻線211aの他端は第1のスイッチング素子207と第2のスイッチング素子208の接続点に接続されている。第1の2次巻線211bと第2の2次巻線211cは直列接続である。

第2のトランス212は、1次巻線212aと第1の2次巻線212bと第2の2次巻線212cとを有している。1次巻線212aの一端は第3のコンデンサ205と第4のコンデンサ206の接続点に接続されており、1次巻線212

aの他端は第3のスイッチング素子209と第4のスイッチング素子210の接続点に接続されている。第1の2次巻線212bと第2の2次巻線212cは直列接続である。

[0006]

第1のトランス211の第1の2次巻線211bには第1の整流ダイオード213のアノードが接続されており、第2の2次巻線211cには第2の整流ダイオード214のアノードが接続されている。第1の整流ダイオード213と第2の整流ダイオード214のそれぞれのカソードは互いに接続されている。このように、第1の整流ダイオード213と第2の整流ダイオード214が第1のトランス211に接続されており、第1の2次巻線211bと第2の2次巻線211cに発生する電圧を整流している。

図4に示すように、第1のチョークコイル215と平滑コンデンサ216の直列回路の一端は、第1の2次巻線211bと第2の2次巻線211cとの接続点に接続されており、この直列回路の他端は第1の整流ダイオード213と第2の整流ダイオード214の接続点(カソード)に接続されている。

[0007]

第2のトランス212の第1の2次巻線212bには第3の整流ダイオード217のアノードが接続されており、第2の2次巻線212cには第4の整流ダイオード218のアノードが接続されている。第3の整流ダイオード217と第4の整流ダイオード218のそれぞれのカソードは互いに接続されている。このように、第3の整流ダイオード217と第4の整流ダイオード218が第2のトランス212に接続されており、第1の2次巻線212bと第2の2次巻線212cに発生する電圧を整流している。

第2のチョークコイル219の一端は第3の整流ダイオード217と第4の整流ダイオード218の接続点(カソード)に接続されており、他端は平滑コンデンサ216の一端に接続されている。平滑コンデンサ216の両端は出力端子220a,220bに接続されており、出力端子220a,220bに接続された負荷221により電力が消費される。

[0008]

図4に示すように、正極側の出力端子220aに生じた電圧は誤差増幅器223の一方に入力され、誤差増幅器223の他方には基準電源222からの基準電圧が入力される。誤差増幅器223は、出力端子220a,200bの出力電圧と基準電源222の基準電圧とを比較し、その誤差を増幅する。

三角波発生回路224は、第1のスイッチング素子207から第4のスイッチング素子210のそれぞれに供給するPWM信号を形成するための基準となる基準三角波を形成する。形成された基準三角波はコンパレータ225の一方に入力される。コンパレータ225では基準三角波と誤差増幅器223の出力とを比較し、PWM信号を形成する。コンパレータ225において形成されたPWM信号は分配器226において、2つの出力端子に交互に分配されて、第1のスイッチング素子207から第4のスイッチング素子210のそれぞれを駆動する。

[0009]

以上のように構成された従来のスイッチング電源装置について図5の動作波形 図を参照してその動作を説明する。

図5において、(a)の波形Aは誤差増幅器223からの出力信号波形であり、(a)の波形Bは三角波発生回路224からの出力信号波形である。図5の(b)はコンパレータ225の出力信号波形である。図5の(c)は、第1のスイッチング素子207と第3のスイッチング素子209の駆動波形を示しており、

(d) は第2のスイッチング素子209と第4のスイッチング素子210の駆動 波形を示している。図5の(e) は第1のスイッチング素子207の印加電圧波形を示しており、(f) は第2のスイッチング素子208の印加電圧波形を示している。図5の(g) は第1のトランス211の1次巻線211a及び第2のトランス212の1次巻線212aの印加電圧波形を示しており、(h) は第1のチョークコイル215及び第2のチョークコイル219の電流波形を示している

[0010]

図5の(c)及び(d)に示すように、第1のスイッチング素子207と第2のスイッチング素子208は、分配器226からの駆動信号により互いに180度の位相差で動作し、ほぼ同じデューティ比で同時にオンしないようオンオフ動

7/

作する。

第1のスイッチング素子207がオン状態の時、第1のコンデンサ203の電圧が第1のトランス211の1次巻線211aに印加され、第2のスイッチング素子208がオン状態の時、第2のコンデンサ204の電圧が第1のトランス211の1次巻線211aに印加される。また、第1のスイッチング素子207がオン状態の時、第2のスイッチング素子208には第1のコンデンサ203の電圧と第2のコンデンサ204の電圧とを加算した電圧が印加され(図5の(f)参照)、第2のスイッチング素子208がオン状態の時、第1のスイッチング素子207には第1のコンデンサ203の電圧と第2のコンデンサ204の電圧とを加算した電圧が印加される(図5の(e)参照)。

[0011]

第1のスイッチング素子207と第2のスイッチング素子208が共にオフの時はそれぞれに第1のコンデンサ203の電圧及び第2のコンデンサ204の電圧が印加される。

第3のスイッチング素子209と第4のスイッチング素子210のオンオフ動作における印加電圧の推移に関しては、上記の第1のスイッチング素子207と第2のスイッチング素子208のオンオフ動作における印加電圧の推移と同様である。

$[0\ 0\ 1\ 2]$

第1のスイッチング素子207から第4のスイッチング素子210のデューティ比を略同じとすると、第1のコンデンサ203から第4のコンデンサ206のそれぞれの印加電圧は略同じになり、それぞれが入力直流電圧の1/4になる。したがって、各スイッチング素子207,208,209,210に対しては、入力直流電圧の半分の電圧しか印加されない。また、各トランス211,212の1次巻線211a,212aにも入力直流電圧の1/4の電圧しか印加されない。

第1のトランス211の2次巻線211b,211c及び第2のトランス21 2の2次巻線212b,212cで発生した電圧は、第1から第4の整流ダイオード213,214,217,218により整流され、第1のチョークコイル2

8/

15と第2のチョークコイル219、及び平滑コンデンサ216により平滑される。

[0013]

第1から第4のスイッチング素子207,208,209,210のオン期間のみ第1のトランス211の2次巻線211b,211c及び第2のトランス212の2次巻線212b,212cには、(1/4)・(Ns/Np)・Vinで示される電圧が発生する。ここで、Npは第1のトランス211の1次巻線211aと第2のトランス212の1次巻線212aの巻数であり、Nsは第1のトランス211の2次巻線211b,211cと第2のトランス212の2次巻線212b,212cの巻数である。また、Vinは入力直流電圧値を示す。したがって、第1から第4のスイッチング素子207,208,209,210のオン期間を調整することにより、第1のチョークコイル215と第2のチョークコイル219に印加される電圧と時間の積を変化させることにより、平滑後の出力電圧値を調整可能となる。

$[0\ 0\ 1\ 4]$

出力電圧は基準電源222の基準電圧と誤差増幅器223において比較され、その誤差は増幅されてコンパレータ225において基準三角波と比較されて、PWM信号にフィードバックされる。このように、図4に示した従来のスイッチング電源装置においては、出力電圧がフィードバックされて出力の安定が図られている。

上記のように入力側直流接続方式を用いた従来のスイッチング電源装置では、スイッチング素子に印加される電圧が入力電圧の半分であり、かつトランスの1次巻線に印加される電圧が入力電圧の1/4であるため、ハーフブリッジコンバータにおけるスイッチング素子の印加電圧とトランスの1次巻線の印加電圧を約半分に低減できる。この結果、従来のスイッチング電源装置では、低耐圧のスイッチング素子の使用とトランスの巻線数の低減が可能であった。

[0015]

次に、従来のスイッチング電源装置における制御方法として用いられているカレントモード制御について説明する。

図6はカレントモード制御を降圧コンバータのスイッチング電源装置に適用した場合を示す回路図である。図6において、入力直流電源201からの入力直流電圧が入力端子202a,202bに供給されており、入力端子202a,202bの間にはコンデンサ227が接続されている。コンデンサ227には第1のスイッチング素子228と第2のスイッチング素子229の直列体が接続されており、第1のスイッチング素子228と第2のスイッチング素子229は交互にオンオフ動作を繰り返すよう構成されている。

図6に示すように、第1のスイッチング素子228と第2のスイッチング素子229の接続点にはチョークコイル230の一端が接続されており、チョークコイル230の他端には平滑コンデンサ231が接続されている。チョークコイル230と平滑コンデンサ231は直列に接続されており、平滑コンデンサ231の両端が出力端子232a,232bに接続されて)。出力端子232a,232bに接続された負荷233により電力が消費されている。

[0016]

上記のように構成された従来のスイッチング電源装置において、第1のスイッチング素子228がオン状態の時、入力電圧はチョークコイル230と平滑コンデンサ231の直列回路に印加される。第2のスイッチング素子229がオン状態の時、チョークコイル230と平滑コンデンサ231の直列回路は短絡される

[0017]

図6に示すように、正極側の出力端子232aに生じた電圧は第1の誤差増幅器235の一方に入力され、第1の誤差増幅器235の他方には基準電源234からの基準電圧が入力される。第1の誤差増幅器235は、出力端子232a,232bの出力電圧と基準電源222の基準電圧とを比較し、その誤差を増幅して第2の誤差増幅器237に出力する。電流検出器236は、チョークコイル230に流れる電流を検出して、第2の誤差増幅器237へ出力する。第2の誤差増幅器237では、第1の誤差増幅器235の出力と電流検出器236の出力とを比較し、その誤差を増幅してコンパレータ239へ出力する。コンパレータ239において、三角波発生器238からの基準三角波と第2の誤差増幅器237

の出力とを比較し、PWM信号を形成する。このPWM信号により第1のスイッチング素子228のオン期間が決定され、第1のスイッチング素子228が駆動される。インバータ240は、コンパレータ239からのPWM信号を反転し、第2のスイッチング素子229を駆動する。

[0018]

次に、図6に示した構成の従来のスイッチング電源装置における動作について 説明する。

【数1】

$$\frac{di_L}{dt} = -\frac{1}{L}v_{out} + \frac{V_{in}}{L}\delta \qquad ---- (1)$$

[0020]

【数2】

$$\frac{dv_{out}}{dt} = -\frac{1}{CR}v_{out} + \frac{1}{C}i_L \qquad \qquad ---- \qquad (2)$$

[0021]

【数3】

$$s\binom{I}{V} = \begin{pmatrix} 0 & -\frac{1}{L} \\ \frac{1}{C} & -\frac{1}{CR} \end{pmatrix} \binom{I}{V} + \binom{\frac{V_{in}}{L}}{0} \delta \qquad ---- (3)$$

[0022]

なお、Iは式(4)で示され、Vは式(5)で示される。

[0023]

【数4】

$$I = \frac{\left(s + \frac{1}{CR}\right)}{s\left(s + \frac{1}{CR}\right) + \frac{1}{LC}} \cdot \frac{V_{in}}{L} \cdot \delta \qquad ---- (4)$$

【数5】

$$V = \frac{\frac{1}{C}}{s\left(s + \frac{1}{CR}\right) + \frac{1}{LC}} \cdot \frac{V_{in}}{L} \cdot \delta \qquad ---- (5)$$

[0025]

式(5)に示すように、出力電圧に対しては2次遅れとなり位相が最大180度遅れる。しかしながら、式(4)に示すように、出力電流であるチョーク電流に関しては、共振点で多少位相遅れが生じるが、分子が1次であるため、ほぼ90度の位相遅れとなる。したがって、チョーク電流のPWM制御は出力電圧のPWM制御に比べて大幅に安定することが分かる。図6に示した従来のスイッチング電源装置におけるカレントモード制御は、チョークコイル230の電流制御をPWMにより行い、その際用いる基準信号として、出力電圧と基準電圧との誤差信号を増幅して用いている。チョークコイル電流と出力電圧の関係は、次式(6)のように示される。

[0026]

【数6】

$$V = \frac{\frac{1}{C}}{s + \frac{1}{CR}} \cdot I \qquad ---- (6)$$

[0027]

このように構成されたカレントモード制御における電流制御ループは、位相遅れが小さく安定であり、利得を大きく設定できるという特徴を有する。この電流制御ループは、基本的に1次遅れ系を構成しているので広帯域化しても位相遅れによる発振現象が生じないという特徴を持つ。このようにカレントモード制御で

構成することにより、基準信号から出力電流であるチョークコイル電流までの伝達特性がほとんど遅れ無しとなるため、電圧制御系のループゲインは一般的なP I 制御により安定な制御系を構築できる。

[0028]

【特許文献1】

特開昭62-138061号公報(第2-3頁、第1図)

[0029]

【発明が解決しようとする課題】

以上のように、従来のスイッチング電源装置においては、複数のスイッチング 電源回路の入力側直列接続方式では低耐圧のスイッチング素子の使用とトランス の巻線数の低減が可能であるが、出力電圧の安定性の点で問題があり、カレント モード制御方式では出力は安定するが入力電圧に応じた耐圧を有するスイッチン グ素子を使用しなければならないという問題があった。

しかしながら、スイッチング電源装置の分野においては、出力電圧の高安定性の要求とともに、複数のスイッチング電源回路の入力側直列接続方式とカレントモード制御方式とを同時に実施する要求が高まってきている。複数のスイッチング電源回路の直列接続とカレントモード制御を同時に実施しようとすると、コンバータであるそれぞれのスイッチング電源回路の電流値を、出力電圧と基準電圧との誤差信号を電流の基準値に対応するよう制御しなければならない。ここで、各コンバータのデューティ比に差が生じた場合の各コンバータ間の電流バランスの変化について考察する。即ち、入力側直列接続された2つのコンバータをそれぞれA、Bとして、各デューティ比をDa、Dbとする。また、各コンバータA、Bのチョークコイルを流れる電流によって決定され、それぞれのスイッチング素子に流れる電流(1次電流)をIsaとIsbとする。2つのコンバータA、Bが直列接続されているので、安定状態では次式(7)が成り立つ。

[0030]

【数7】

 $Da \times Isa = Db \times Isb$

---- (7)

[0031]

したがって、一方のコンバータのデューティ比が他方のコンバータのデューティ比に対して相対的に大きくなると一方のコンバータの1次電流が小さくなることで、平衡が保たれる。即ち、デューティ比が大きくなると、そのコンバータの1次電流が小さくなるという動作になる。この動作はコンバータ全体から見ると、出力電流を増加させるためには、デューティ比を大きくしなければならず矛盾が生じる。結果的には、個別の電流制御が正帰還になるため、バランスが取れなくなり、複数のコンバータを直列接続した時の電圧のバランスがくずれ、一方のコンバータにおいて過大な電圧が印加されるとおいう重大な問題が生じる。

[0032]

したがって、従来のスイッチング電源装置においては、複数のスイッチング電源回路の入力側直列接続方式に対して、カレントモード制御方式を適用しようとした場合、コンバータ間の電流電圧のバランスが取れなくなるという問題が有り、スイッチング電源回路の入力側直列接続方式とカレントモード制御方式とを一つの装置内で同時に実施するという課題は達成できなかった。

本発明は、スイッチング電源回路の入力側直列接続方式とカレントモード制御 方式とを一つの装置内で同時に実施するという課題を達成し、複数のスイッチン グ電源回路を直列に接続しても、従来のカレントモード制御の特性を損なうこと がなく、電流のバランスも良好に保つことのできる高安定で小型高効率なスイッ チング電源装置を提供することを目的とする。

[0033]

【発明を解決するための手段】

上記の目的を達成するために本発明のスイッチング電源装置は、

入力側が直列に接続されて出力側が並列に接続され、複数のスイッチング手段と変圧手段と整流手段とによりそれぞれが構成されて単一出力直流電圧を出力する複数のコンバータ、

前記コンバータから出力された単一出力直流電圧と基準電圧とを比較して第1 の誤差信号を形成し、増幅する第1の誤差増幅器、

前記複数のコンバータにおける前記整流手段後の電流を加算して単一出力電流 信号を形成する演算器、

前記演算器の単一出力電流信号と前記第1の誤差増幅器の出力とを比較して第2の誤差信号を形成し、増幅する第2の誤差増幅器、及び

前記第2の誤差増幅器の出力信号を基にPWM信号を形成し、前記複数のスイッチング手段のそれぞれをPWM制御する複数のPWM信号発生器、を有する。このように構成された本発明のスイッチング電源装置は、複数のコンバータを入力側直列に接続しても、カレントモード制御の特性を損なうことがなく、電流のバランスを良好に保つことのできる高安定で小型高効率な電源装置を提供することができる。

[0034]

本発明のスイッチング電源装置の制御方法は、

入力側が直列に接続されて出力側が並列に接続され、複数のスイッチング手段と変圧手段と整流手段とによりそれぞれが構成されて単一出力直流電圧を出力する複数のコンバータ、を有するスイッチング電源装置において、

前記単一出力直流電圧と基準電圧とを比較して第1の誤差信号を形成し、増幅 するステップと、

前記複数のコンバータにおける前記整流手段後の電流を加算して単一出力電流 信号を形成するステップと、

前記単一出力電流信号と増幅された前記第1の誤差信号とを比較して第2の誤差信号を形成し、増幅するステップと、

増幅された前記第2の誤差信号を基にPWM信号を形成し、前記複数のスイッチング手段のそれぞれをPWM制御するステップと、を有する。このようなステップを有する本発明のスイッチング電源装置の制御方法は、複数のコンバータを入力側直列に接続しても、カレントモード制御の特性を損なうことがなく、高安定で電流のバランスを良好に保つことができる。

[0035]

【発明の実施の形態】

以下、本発明に係るスイッチング電源装置及びその制御方法を示す好適な実施の形態について添付の図面を参照しつつ説明する。

[0036]

《実施の形態1》

図1は本発明に係る実施の形態1のスイッチング電源装置の構成を示す回路図である。図1において、入力直流電源1からの入力直流電圧は、入力端子2a,2bに供給されており、入力端子2a,2bには複数のコンデンサ3,4,5,6の直列回路が接続されており、各コンデンサ3,4,5,6により入力端子2a,2bに印加された入力直流電圧を分割している。以下の説明において、入力端子2a,2bに接続された複数のコンデンサ3,4,5,6のそれぞれを第1のコンデンサ3、第2のコンデンサ4、第3のコンデンサ5、第4のコンデンサ6と称す。第1のコンデンサ3と第2のコンデンサ4の直列回路の両端には第1のスイッチング素子7と第2のスイッチング素子8の直列回路が接続され、第3のコンデンサ5と第4のコンデンサ6の直列回路の両端には第3のスイッチング素子9と第4のスイッチング素子10の直列回路が接続されている。

[0037]

第1のトランス11は、1次巻線11aと第1の2次巻線11bと第2の2次 巻線11cとを有している。1次巻線11aの一端は第1のコンデンサ3と第2 のコンデンサ4の接続点に接続されており、1次巻線11aの他端は第1のスイッチング素子7と第2のスイッチング素子8の接続点に接続されている。第1の 2次巻線11bと第2の2次巻線11cは直列接続である。

第2のトランス12は、1次巻線12aと第1の2次巻線12bと第2の2次 巻線12cとを有している。1次巻線12aの一端は第3のコンデンサ5と第4 のコンデンサ6の接続点に接続されており、1次巻線12aの他端は第3のスイッチング素子9と第4のスイッチング素子10の接続点に接続されている。第1 の2次巻線12bと第2の2次巻線12cは直列接続である。

[0038]

第1のトランス11の第1の2次巻線11bには第1の整流ダイオード13の

アノードが接続されており、第2の2次巻線11cには第2の整流ダイオード14のアノードが接続されている。第1の整流ダイオード13と第2の整流ダイオード14のそれぞれのカソードは互いに接続されている。このように、第1の整流ダイオード13と第2の整流ダイオード14が第1のトランス11に接続されており、第1の2次巻線11bと第2の2次巻線11cに発生する電圧を整流している。

図1に示すように、第1のチョークコイル15と平滑コンデンサ16の直列回路の一端は、第1の2次巻線11bと第2の2次巻線11cとの接続点に接続されており、この直列回路の他端は第1の整流ダイオード13と第2の整流ダイオード14の接続点(カソード)に接続されている。

[0039]

第2のトランス12の第1の2次巻線12bには第3の整流ダイオード17のアノードが接続されており、第2の2次巻線12cには第4の整流ダイオード18のアノードが接続されている。第3の整流ダイオード17と第4の整流ダイオード18のそれぞれのカソードは互いに接続されている。このように、第3の整流ダイオード17と第4の整流ダイオード18が第2のトランス12に接続されており、第1の2次巻線12bと第2の2次巻線12cに発生する電圧を整流している。

第2のチョークコイル19の一端は第3の整流ダイオード17と第4の整流ダイオード18の接続点(カソード)に接続されており、他端は平滑コンデンサ16の一端に接続されている。平滑コンデンサ16の両端は出力端子20a,20bに接続されており、出力端子20a,20bに接続された負荷21により電力が消費される。

[0040]

図1に示すように、正極側の出力端子20aに生じた電圧は第1の誤差増幅器23の一方に入力され、第1の誤差増幅器23の他方には基準電源22からの基準電圧が入力される。第1の誤差増幅器23は、出力端子20a,20bの出力電圧と基準電源22の基準電圧とを比較し、その誤差を増幅する。

第1の電流検出器24は第1のチョークコイル15に流れる電流を検出し、第

2の電流検出器25は第2のチョークコイル19に流れる電流を検出する。演算器である加算器26は、第1の電流検出器24の出力と第2の電流検出器25の出力とを加算して単一電流信号を形成し、第2の誤差増幅器27へ出力する。第2の誤差増幅器27では第1の誤差増幅器23の出力と加算器26の出力とを比較し、その誤差を増幅する。

[0041]

第1の三角波発生器28は、第1のスイッチング素子7と第2のスイッチング素子8のそれぞれに供給する第1のPWM信号を形成するための基準となる第1の基準三角波信号を生成する。第1の三角波発生器28からの第1の基準三角波信号は第1のコンパレータ30の一方の入力端子に供給される。第1のコンパレータ30では第1の基準三角波信号と第2の誤差増幅器27からの出力信号とを比較して第1のPWM信号を形成する。第1のコンパレータ30において形成された第1のPWM信号は第1の分配器31において、2つの出力端子に交互に分配されて、第1のスイッチング素子7と第2のスイッチング素子8のそれぞれを駆動する。

[0042]

第2の三角波発生器29は、第3のスイッチング素子9と第4のスイッチング素子10のそれぞれに供給する第2のPWM信号を形成するための基準となる第2の基準三角波信号を生成する。第2の三角波発生器29からの第2の基準三角波信号は第2のコンパレータ32の一方の入力端子に供給される。第2のコンパレータ32では第2の基準三角波信号と第2の誤差増幅器27からの出力信号とを比較して第2のPWM信号を形成する。第2のコンパレータ32において形成された第2のPWM信号は第2の分配器33において、2つの出力端子に交互に分配されて、第3のスイッチング素子9と第4のスイッチング素子10のそれぞれを駆動する。

[0043]

実施の形態1のスイッチング電源装置において、第1のコンデンサ3、第2のコンデンサ4、第1のスイッチング素子7、第2のスイッチング素子8、第1のトランス11、第1の整流ダイオード13、第2の整流ダイオード14、第1の

チョークコイル15、及び平滑コンデンサ16により第1のハーフブリッジコンバータ100が構成されている。

また、実施の形態1のスイッチング電源装置においては、第3のコンデンサ5、第4のコンデンサ6、第3のスイッチング素子9、第4のスイッチング素子10、第2のトランス12、第3の整流ダイオード17、第4の整流ダイオード18、第2のチョークコイル19、及び平滑コンデンサ16により第2のハーフブリッジコンバータ101が構成されている。図1に示した実施の形態1のスイッチング電源装置においては、平滑コンデンサ16が第1のハーフブリッジコンバータ100と第2のハーフブリッジコンバータ101に共有されている。

[0044]

実施の形態1のスイッチング電源装置においては、第1のハーフブリッジコンバータ100と第2のハーフブリッジコンバータ101は制御部により駆動制御されており、制御部は第1の誤差増幅器23、第1の電流検出器24、第2の電流検出器25、加算器26、第2の誤差増幅器27、第1のPWM信号発生器103、及び第2のPWM信号発生器104により構成されている。ここで、第1のPWM信号発生器103は第1の三角波発生器28、第1のコンパレータ30、及び第1の分配器31により構成されており、第2のPWM信号発生器104は第2の三角波発生器29、第2のコンパレータ32、及び第2の分配器33により構成されている。

$[0\ 0\ 4\ 5]$

以上のように構成された実施の形態1のスイッチング電源装置における動作について図2を参照して説明する。図2は実施の形態1のスイッチング電源装置における各部の信号波形図である。

図2において、(a)の波形Aは第2の誤差増幅器27からの出力信号波形であり、(a)の波形Bは第2の三角波発振器29からの出力信号波形であり、(b)の波形Cは第2の誤差増幅器27からの出力信号波形であり、(b)の波形Dは第1の三角波発振器28の出力信号波形である。図2の(c)は第1のスイッチング素子7の駆動波形を示しており、(d)は第2のスイッチング素子8の駆動波形を示している。図2の(e)は第3のスイッチング素子9の駆動波形を

示しており、(f)は第4のスイッチング素子10の駆動波形を示している。図 2の(g)は第1のトランス11の1次巻線11aの印加電圧波形を示しており、(h)は第2のトランス12の1次巻線12aの印加電圧波形を示している。 図2の(i)は第1のチョークコイル15の電流波形を示しており、(j)は第 2のチョークコイル19の電流波形を示している。図2の(k)は加算器26から出力された電圧波形を示している。

[0046]

図2において、時刻T0で第1のスイッチング素子7がオン状態になると、第1のコンデンサ3の保持している電圧が第1のトランス11の1次巻線11aに印加される。この時、第1のトランス11の第1の2次巻線11bに巻数比に応じた電圧が発生し、第1の整流ダイオード13をオン状態とする。このため、第1のチョークコイル15に電圧が印加され、第1のチョークコイル15の電流は増加していく。

時刻T3で第1のスイッチング素子7がオフ状態になると、第1のトランス11の1次巻線11aは開放状態となり電流はゼロになる。これにより、第1のトランス11の第1の2次巻線11bと第2の2次巻線11cには、第1のチョークコイル15の電流が分割して流れるため、第1の整流ダイオード13と第2の整流ダイオード14はオン状態となり、第1のトランス11の1次巻線11aと第1の2次巻線11bと第2の2次巻線11cに発生する電圧はゼロになる。したがって、第1のチョークコイル15と平滑コンデンサ16の直列回路の印加電圧は0Vになるため、第1のチョークコイル15の電圧は減少する。

$[0\ 0\ 4\ 7]$

時刻T4で第2のスイッチング素子8がオン状態となると、第1のトランス11の1次巻線11aには第2のコンデンサ4の電圧が印加される。この時の電圧は時刻T0~T3の時とは逆向きの電圧になる。したがって、トランス11の第1の2次巻線11bと第2の2次巻線11cにも逆向きの電圧が発生し、第1の整流ダイオード13をオフ状態にする。この時、第1のチョークコイル15にはオン状態である第2の整流ダイオード14を介して第1のトランス11の巻数比に応じた電圧が誘起され、第1のチョークコイル15を流れる電流は増加する。

時刻T7で第2のスイッチング素子8がオフ状態となると、第1のトランス11の1次巻線11aは開放状態となり、電流はゼロになる。第1のチョークコイル15の電流は第1のトランス11の第1の2次巻線11bと第2の2次巻線11cを分割して流れるため、第1の整流ダイオード13と第2の整流ダイオード14をオン状態とする。この時、第1のトランス11の全ての巻線に印加される電圧はゼロになる。この時、第1のチョークコイル15と平滑コンデンサ16の直列回路には0Vが印加されるので第1のチョークコイル15の電流は減少する

[0048]

以上のように、実施の形態1のスイッチング電源装置の第1のハーフブリッジコンバータ100は動作しており、同様な動作を、第3のコンデンサ5、第4のコンデンサ6、第3のスイッチング素子9、第4のスイッチング素子10、第2のトランス12、第3の整流ダイオード17、第4の整流ダイオード18、第2のチョークコイル19、平滑コンデンサ16で構成された第2のハーフブリッジコンバータ101において行われる。したがって、第2のハーフブリッジコンバータ101の詳細動作説明は省略する。但し、第1のハーフブリッジコンバータ100と第2のハーフブリッジコンバータ101は同期して動作しており、さらに、それぞれにおける基準信号である第1の三角波発振器28と第2の三角波発振器29からの基準三角波信号は、互いに180度の位相差を有している。したがって、実施の形態1のスイッチング電源装置の第1のハーフブリッジコンバータ100と第2のハーフブリッジコンバータ101の2次側においても、180度の位相差を有して動作し、第1のチョークコイル15を流れる電流と第2のチョークコイル19を流れる電流が加算されて出力される構成であるため、それぞれにおいて生じるリップルは相殺され小さくなる。

[0049]

次に、実施の形態1のスイッチング電源装置の制御部について説明する。制御部は第1のハーフブリッジコンバータ100と第2のハーフブリッジコンバータ101とを駆動制御する部分であり、第1の誤差増幅器23、第1の電流検出器24、第2の電流検出器25、加算器26、第2の誤差増幅器27、第1のPW

M信号発生器103、及び第2のPWM信号発生器104により構成されている。

[0050]

実施の形態1のスイッチング電源装置においては、第1のチョークコイル15に流れる電流と第2のチョークコイル19に流れる電流は加算され、平滑コンデンサ16により平滑されて単一の出力電流となる構成である。また、実施の形態1においては、加算器26により第1の電流検出器24により検出した電流と第2の電流検出器25により検出した電流が加算されている。したがって、加算器26の出力は平滑コンデンサ16の充電電流を示している。第1の誤差増幅器23においては、出力端子20a,20bの出力電圧と基準電源22の基準電圧とを比較して、その誤差を増幅し、電流基準信号としている。この電流基準信号と加算器26からの出力信号とを第2の誤差増幅器27において比較して、その誤差を増幅し、その差が小さくなるようPWM制御を行っている。PWM制御の基準となる基準三角波信号は、第1の三角波発生器30及び第2の三角波発生器32から互いに180度の位相差を有して出力され、各スイッチング素子のオンオフのタイミングを変化させ、出力端でリップル電流をキャンセルするよう設定されている。

$[0\ 0\ 5\ 1]$

第1の三角波発振器28の出力と第2の誤差増幅器27の出力とを比較して得られた第1のPWM信号は、第1の分配器31によって2つに分配される。第1の分配器31は分配された第1のPWM信号により第1のスイッチング素子7と第2のスイッチング素子8を駆動する。このように、第1のスイッチング素子7と第2のスイッチング素子8は、第1の分配器31により第1のPWM信号を分配して駆動する構成であるため、第1のスイッチング素子7と第2のスイッチング素子8が同時にオン状態となることがない。

同様に、第2の三角波発振器29の出力と第2の誤差増幅器27の出力とを比較して得られた第2のPWM信号は、第2の分配器33によって2つに分配される。第2の分配器33は分配された第2のPWM信号により第3のスイッチング素子9と第4のスイッチング素子10を駆動する。このように、第3のスイッチ

ング素子9と第4のスイッチング素子10は、第2の分配器33により第2のPWM信号を分配して駆動する構成であるため、第3のスイッチング素子9と第4のスイッチング素子10が同時にオン状態となることがない。

[0052]

上記のように、実施の形態1のスイッチング電源装置においては、第1のハーフブリッジコンバータ100と第2のハーフブリッジコンバータ101のそれぞれの出力電流の和に対して、電流基準信号に対応するよう制御する構成である。このため、実施の形態1のスイッチング電源装置は、第1のハーフブリッジコンバータ100と第2のハーフブリッジコンバータ101のそれぞれを個別に電流基準信号に合わせる制御とはなっていない。したがって、実施の形態1においては、前述の従来技術の欄で説明した従来のスイッチング電源装置において、各コンバータのそれぞれを個別に制御した場合、デューティ比が変化した時に電流がそれに応じて変化する、例えばデューティ比が増加(減少)した時に電流が減少(増加)するという現象は発生しない。これにより、実施の形態1のスイッチング電源装置は、常に安定した出力電流が形成され、出力電流の制御が可能となる

[0053]

なお、実施の形態1のスイッチング電源装置においては、第1の電流検出器24と第2の電流検出器25の各出力が加算器26によって加算され、その加算結果が第2の誤差増幅器27に入力される構成であるが、本発明において用いる加算器としては厳密な意味の加算回路である必要はなく、加算器26や第2の誤差増幅器27の動作点の確保に必要なオフセットを有しているものであってもスイッチング制御動作に影響は与えない。また、加算器の代わりに積算器等のおのおのの入力に対して対称で単調増加もしくは単調減少の関数である非線形の演算器を用いても、各コンバータを個別に電流制御する構成ではないため、出力が不安定にならないという本発明の効果は保たれる。

例えば、2つのコンバータにより構成されたスイッチング電源装置において、 2つのコンバータからの出力(x1, x2)が演算器に入力される場合、演算器 の出力が式(8)で示されるとすると、本発明における演算器は式(9)で示す 条件を有する。

[0054]

【数8】

$$y = f(x_1, x_2)$$
 ---- (8)

[0055]

【数9】

$$y = f(x_1, x_2) = f(x_2, x_1)$$
 ---- (9)

[0056]

即ち、本発明における演算器は、2つのコンバータからの出力(x1, x2)が入れ代わって演算器に入力されても、演算器の出力が同じとなるという条件と、全ての入力に対して単調減少または単調増加であるという条件を満たしている。

[0057]

【数10】

$$\frac{dy}{dx_n} \le 0$$
 $\sharp \mathcal{E} \mathcal{U}$ $\frac{dy}{dx_n} \ge 0$ $(n = 1, 2)$ ---- (10)

[0058]

そして、演算器が式(10)で示す条件を満たす関数であれば、前述の発明の効果は保たれる。同様に演算器に対して3つ以上の入力がある場合には、入力値の組み合わせが同じときに出力が同じとなる条件と、全ての入力に対して単調増加または単調減少になる条件を満たせばよい。特に、演算器として加算器を用いた場合には、平滑コンデンサの充電電流が加算器の出力である加算結果に比例するので、安定動作に加えて、加算電流に対して出力電圧が1次遅れになり、位相遅れが少なくなるというカレントモード制御の優位性を保持することができる。

[0059]

以上、実施の形態1においては、コンバータとしてハーフブリッジコンバータ

を例にとって説明したが、本発明はこのような構成に限定されるものではなく、他のフォワード形やブリッジ形、プッシュプル形に代表されるスイッチングコンバータを用いて、入力側(1次側)を直列接続し、出力側(2次側)を並列接続した時にも同様な制御系の構成が可能であり、安定な動作が可能となる。特に、コンバータとしてハーフブリッジコンバータを用いた場合には、入力側直列接続方式によるトランスの1次巻線の低減に加えて、ハーフブリッジコンバータはトランスの1次巻線に印加される電圧が小さくなるので、トランスの小型化に特に効果がある。

[0060]

《実施の形態2》

図3は本発明に係る実施の形態2のスイッチング電源装置の構成を示す回路図である。実施の形態2のスイッチング電源装置において、実施の形態1のスイッチング電源装置と異なる点は、コンバータとして用いているハーフブリッジコンバータの構成数である。実施の形態1においては2つのハーフブリッジコンバータにより構成されており、実施の形態2においては3つのハーフブリッジコンバータにより構成されている。各コンバータの動作は前述の実施の形態1で説明した動作と同じであり重複するので省略する。

$[0\ 0\ 6\ 1]$

図3において、入力直流電源1からの入力直流電圧は、入力端子2a,2bに供給されており、入力端子2a,2bには第1のハーフブリッジコンバータ300、第2のハーフブリッジコンバータ303、及び第3のハーフブリッジコンバータ306の各入力側が直列に接続されている。第1から第3のハーフブリッジコンバータ300、303,306のそれぞれには、前述の実施の形態1におけるハーフブリッジコンバータ100,101と同様に、コンデンサ、スイッチング素子、トランス、整流ダイオード、チョークコイル、電流検出器、及び平滑コンデンサが設けられている。

平滑コンデンサ16は、第1のハーフブリッジコンバータ300と第2のハーフブリッジコンバータ303と第3のハーフブリッジコンバータ306の各出力電流を加算した後、平滑しリップル電流を吸収する。平滑コンデンサ16の両端

は出力端子20a, 20bに接続されており、出力端子20a, 20bに接続された負荷21により電力が消費される。

[0062]

図3に示すように、正極側の出力端子20aに生じた電圧は第1の誤差増幅器23の一方に入力され、第1の誤差増幅器23の他方には基準電源22からの基準電圧が入力される。第1の誤差増幅器23は、出力端子20a,20bの出力電圧と基準電源22の基準電圧とを比較し、その誤差を増幅する。

第1の電流検出器302は第1のチョークコイル301に流れる電流を検出し、第2の電流検出器305は第2のチョークコイル304に流れる電流を検出し、第3の電流検出器308は第3のチョークコイル307に流れる電流を検出する。演算器である加算器309は、第1の電流検出器302と第2の電流検出器305と第3の電流検出器308の各出力を加算して単一電流信号を形成し、第2の誤差増幅器27へ出力する。第2の誤差増幅器27では第1の誤差増幅器23の出力と加算器309の出力とを比較し、その誤差を増幅する。

[0063]

第1の三角波発生器310からの第1の基準三角波信号は第1のコンパレータ313の一方の入力端子に供給される。第1のコンパレータ313では第1の基準三角波信号と第2の誤差増幅器27からの出力信号とを比較して第1のPWM信号を形成する。第1のコンパレータ313において形成された第1のPWM信号は第1の分配器314において、2つの出力端子に交互に分配されて、第1のハーフブリッジコンバータ300の2つのスイッチング素子のそれぞれを駆動する。

[0064]

第2の三角波発生器311からの第2の基準三角波信号は第2のコンパレータ315の一方の入力端子に供給される。第2のコンパレータ315では第2の基準三角波信号と第2の誤差増幅器27からの出力信号とを比較して第2のPWM信号を形成する。第2のコンパレータ315において形成された第2のPWM信号は第2の分配器316において、2つの出力端子に交互に分配されて、第2のハーフブリッジコンバータ303の2つのスイッチング素子のそれぞれを駆動す

る。

[0065]

第3の三角波発生器312からの第3の基準三角波信号は第3のコンパレータ317の一方の入力端子に供給される。第3のコンパレータ317では第3の基準三角波信号と第2の誤差増幅器27からの出力信号とを比較して第3のPWM信号を形成する。第3のコンパレータ317において形成された第3のPWM信号は第3の分配器318において、2つの出力端子に交互に分配されて、第3のハーフブリッジコンバータ306の2つのスイッチング素子のそれぞれを駆動する。

第1~第3の三角波発振器310,311,312から出力される第1~第3の基準三角波信号は互いに120度の位相差を有しており、第1~第3のハーフブリッジコンバータ300,303,306の出力端においてリップル電流が相殺され小さくされている。

[0066]

以上のように構成された実施の形態2のスイッチング電源装置における動作に ついて説明する。

実施の形態2のスイッチング電源装置における動作において、前述の実施の形態1と異なる点は、ハーフブリッジコンバータの構成数が3つである点である。第1~第3のハーフブリッジコンバータ300,303,306の出力電流は、位相が120度ずれた3相で動作しており、それぞれの出力電流は加算されて、リップル電流が互いにキャンセルされている。

実施の形態2のスイッチング電源装置においては、それぞれのハーフブリッジコンバータに対する入力電圧はさらに小さくなり、各スイッチング素子に印加される電圧は入力電圧の1/3、即ち(1/3)Vinになり、トランスの1次巻線に印加される電圧は入力電圧の1/6、即ち(1/6)Vinになる。したがって、実施の形態2の構成によれば、スイッチング電源装置の高効率化とトランスの小型化に有利であり、さらに、出力リップルが単独動作の3倍の周波数で動作するため、少ない平滑コンデンサで安定化ができるという優れた効果を奏する。

[0067]

実施の形態2のスイッチング電源装置の制御部は、第1~第3のハーフブリッジコンバータ300,303,306を駆動制御する部分であり、第1の誤差増幅器23、第2の誤差増幅器27、第1~第3の電流検出器302,305,308、加算器309、第1~第3の三角波発振器310,311,312、第1~第3のコンパレータ313,315,317、及び第1~第3の分配器314,316,318により構成されている。

[0068]

制御部においては、第1~第3のハーフブリッジコンバータ300,303,305における第1~第3の電流検出器301,305,308の出力は、加算器309によって全て加算され、第2の誤差増幅器27に入力されている。また、第2の誤差増幅器27には、第1の誤差増幅器23によって得られた電流基準信号が入力され、各出力電流の和が電流基準信号に対応するよう制御されている。このため、各ハーフブリッジコンバータの出力電流を個別に制御する構成ではないので、不安定性の要因がなく、安定な動作となる。

[0069]

また、実施の形態2のスイッチング電源装置においては、第1の電流検出器302と第2の電流検出器305と第3の電流検出器308の各出力が加算器309によって加算され、第2の誤差増幅器27に入力される構成であるが、本発明において用いる加算器としては厳密な意味の加算回路である必要はなく、加算器309や第2の誤差増幅器27の動作点の確保に必要なオフセットを有しているものであってもスイッチング制御動作に影響は与えない。

また、加算器の代わりに積算器等のおのおのの入力に対して対称で単調増加もしくは単調減少の関数である非線形の演算器を用いても、各コンバータを個別に電流制御する構成ではないため、出力が不安定にならないという本発明の効果は保たれる。特に、加算器を用いた場合、平滑コンデンサの充電電流は、加算器の出力である加算結果に比例するので、安定動作に加えて、加算電流に対して出力電圧が1次遅れになり、位相遅れが少なくなるというカレントモード制御の優位性を保持することができる。

[0070]

実施の形態2のスイッチング電源装置においては、3つのコンバータを例にとって説明したが、4つ以上のコンバータを用いる場合でも、各コンバータの電流を検出し、それらを加算して和を求め、その和に対して制御を行うよう構成することにより、実施の形態2と同様の効果を得られるのは言うまでもない。

また、実施の形態2においては、ハーフブリッジコンバータを例にとって説明 したが、他のフォワード形コンバータ、ブリッジ形コンバータ、またはプッシュ プル形コンバータでも同様の効果が得られる。

[0071]

【発明の効果】

以上、実施の形態について詳細に説明したところから明らかなように、本発明 は次の効果を有する。

本発明においては、スイッチング電源回路の入力側直列接続方式とカレントモード制御方式とを一つの装置内で同時に実施するという課題を達成し、複数のスイッチング電源回路を直列に接続しても、従来のカレントモード制御の特性を損なうことがなく、電流のバランスも良好に保つことのできる高安定で小型高効率なスイッチング電源装置及びその制御方法を提供することができる。

本発明のスイッチング電源装置は、複数のスイッチング電源回路の入力側を直列に接続し、出力側を並列に接続して、制御部によりカレントモード制御を行っても、不安定な動作にならず安定な制御が可能であるという優れた効果を奏する

本発明のスイッチング電源装置の制御方法は、複数のコンバータを直列に接続 しても、カレントモード制御の特性を損なうことがなく、高安定で電流のバラン スを良好に保つことができるという優れた効果を奏する。

【図面の簡単な説明】

図1

本発明に係る実施の形態1のスイッチング電源装置の構成を示す回路図である

【図2】

本発明に係る実施の形態1のスイッチング電源装置における動作を示す波形図

である。

【図3】

本発明に係る実施の形態2のスイッチング電源装置の構成を示す回路図である

【図4】

従来のスイッチング電源装置の構成を示す回路図である。

【図5】

図4に示した従来のスイッチング電源装置における動作を示す波形図である。

図6

従来のスイッチング電源装置の構成を示す回路図である。

【符号の説明】

- 1 入力直流電源
- 2 a 入力端子
- 2 b 入力端子
- 3 第1のコンデンサ
- 4 第2のコンデンサ
- 5 第3のコンデンサー
- 6 第4のコンデンサ
- 7 第1のスイッチング素子
- 8 第2のスイッチング素子
- 9 第3のスイッチング素子
- 10 第4のスイッチング素子
- 11 第1のトランス
- 12 第2のトランス
- 13 第1の整流ダイオード
- 14 第2の整流ダイオード
- 15 第1のチョークコイル
- 16 平滑コンデンサ
- 17 第3の整流ダイオード

- 18 第4の整流ダイオード
- 19 第2のチョークコイル
- 20a 出力端子
- 20b 出力端子
- 2 1 負荷
- 22 基準電圧
- 23 第1の誤差増幅器
- 24 第1の電流検出器
- 25 第2の電流検出器
- 26 加算器
- 27 第2の誤差増幅器
- 28 第1の三角波発振器
- 29 第2の三角波発振器
- 30 第1のコンパレータ
- 31 第1の分配器
- 32 第2のコンパレータ
- 33 第2の分配器
- 100 第1のハーフブリッジコンバータ
- 101 第2のハーフブリッジコンバータ

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【書類名】 要約書

【要約】

【課題】 各種電子機器に使用されるスイッチング電源装置おいて、複数のスイッチング電源回路であるコンバータを入力側直列接続しても、カレントモード制御の特性を損なうことがなく、電流のバランスも良好に保つことのできる高安定で小型高効率な装置及びその制御方法を提供すること。

【解決手段】 本発明のスイッチング電源装置は、第1の誤差増幅器が複数のコンバータの出力電圧と基準電圧とを比較して第1の誤差信号を形成し、演算器が複数のコンバータにおける整流手段後の電流を加算して単一出力信号を形成し、第2の誤差増幅器が単一出力信号と第1の誤差増幅器の出力とを比較して第2の誤差信号を形成し、PWM信号発生器が第2の誤差増幅器の出力信号を基にPWM信号を形成して、複数のスイッチング素子のそれぞれをPWM制御している。

【選択図】 図1

特願2003-028806

出願人履歴情報

識別番号

[000005821]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録

住 所

大阪府門真市大字門真1006番地

氏 名

松下電器産業株式会社