Section 1.2 Convergence

Sequence: List of numbers

Think of a sequence as a function on the integers

Example:
$$S(n) = \frac{1}{n}$$
, $n = 1, 2, 3, 4, ...$

We usually use subscripts, though instead of the functional form:

$$S_n = \frac{1}{n}, \quad n = 1, 2, 3$$

What we are of ten interested in is how fast a sequence converges.

Examples:

$$S_{n} = \frac{1}{\log_{2}(n)}$$
 $S_{n} = \frac{1}{N}$, $S_{n} = \frac{1}{N^{2}}$, $S_{n} = \frac{1}{2}$

all converge to 0, but how fast?

Définition: himit

Définition: A sequence converges to the Finite value L provided:

 $lim S_n = L < \infty$

 $\frac{1}{1} \frac{1}{1} \frac{1}$

If the sequence doesn't converge to a finite value, it is soid to diverge.

Example $S_n = \frac{5n-2}{3n^2+n-1}$

 $\lim_{N\to\infty} S_n = \frac{5}{3}$

Definition: Rate of convergence Let [Sn] be a sequence that converges to a number h. If there exists a sequence [bn] that converges to zero and a positive constant λ , independent of n, such that $|S_n-L| \leq \lambda |\beta_n|$ for sufficiently long values of n, the Ssif is said to converge to L with "rate of convergence"

Example:
$$|S_n-L|=$$
 $\left|\frac{5n^2-2}{3n^2+n-1}-\frac{5}{3}\right|=\frac{5n+1}{3(3n^2+n-1)}$
 $\left|\frac{5n}{3(3n^2+n-1)}-\frac{5}{3(3n^2+n-1)}-\frac{1}{3(3n^2+n-1)}-\frac{1}{3(3n^2+n-1)}-\frac{1}{3(3n^2+n-1)}\right|$
 $\left|\frac{5n}{9n^2}+\frac{1}{9n^2}\right|\frac{1}{9n^2}$
 $\left|\frac{5n}{9n^2}+\frac{1}{9n^2}\right|\frac{1}{9n^2}$
 $\left|\frac{5n}{9n^2}+\frac{1}{9n^2}\right|\frac{1}{9n^2}$
 $\left|\frac{5n}{9n^2}+\frac{1}{9n^2}\right|\frac{1}{9n^2}$

For large n , the terms look like

 $\left|\frac{5n}{5n^2}\right|<\frac{3}{3}$

Rate of convergine: $\left|\frac{5n}{n}\right|$

hotation.

to finding vote of convergence Steps of a sequence: 1 Find limiting value L: $lim S_n = L$ $n \rightarrow \infty$ 2 Compute and algebraically manipulate $S_n - L$ 3 Find a sequence 3- and a constant 2 80 that

 $|S_n-L|<\lambda\beta_n$

where Bis some function of n.
that goes to O and I is a constant.

$$\lim_{n\to\infty} S_n = \infty - \infty \quad \text{(i)}$$

Rationalize:

$$\frac{(\ln n + \ln n)}{(\ln n + \ln n)} = \frac{n + 1 - n}{(\ln n + \ln n)} = \frac{1}{(\ln n + \ln n)}$$

$$\frac{1}{(\ln n + \ln n)} = \frac{1}{(\ln n + \ln n)}$$

$$\frac{1}{(\ln n + \ln n)} = \frac{1}{(\ln n + \ln n)}$$

$$\frac{1}{(\ln n + \ln n)} = \frac{1}{(\ln n + \ln n)}$$

$$\frac{1}{3}$$

$$\frac{1}{5n+1} + 5n$$

$$\frac{1}{25n}$$

$$\frac{1}{5n} + \frac{1}{5n}$$

rate of convergence is $O(\bar{m})$

Rate of convergence for functions

Definition

Let f be defined on an interval (G/6) that contains X=0, and suppose $\lim_{x\to 0} f(x) = L$. If there exists a function g(x) for which $\lim_{x\to 0} f(x) = g(x)$ and positive constant K, such they 1 F(x) - L | < K | g(x) | then f(x) converges to h with rate of convergence of $\theta(g(x))$.

$$f(x) = \frac{\cos(x) - 1}{x^2}$$

$$\lim_{x\to 0} \frac{\cos(x)-1}{x^2}$$

Recall:

$$f(x) = f(\delta) + f'(\delta)x + f''(\delta)x^{2} + f''(\delta)x^{3}$$

$$= \sum_{n=0}^{\infty} f^{(n)}(s)x^{n}$$

$$= \sum_{n=0}^{\infty} h!$$

Anown.

$$= \sum_{n=0}^{\infty} f^{(n)}(i) \times i$$

Remainder Theorem

$$f(x) = \sum_{N=0}^{N} f(n)(0)x + \frac{f(N+1)!}{f(N+1)!}$$

 $R_{\Lambda}(x)$

$$cos(x) = 1 - \frac{x^{2}}{2!} + 0 + \frac{E^{(4)}(3(x))}{4!} x^{4}$$

Where
$$F(\overline{3}(x)) = COS(\overline{3}(x))$$

Let
$$f(x) = \frac{\cos(x)-1}{x^2}$$

$$= \lim_{x \to 0} -\frac{1}{2!} + \frac{1}{3!} \cos(3(x)) = -\frac{1}{2!}$$

Find K,
$$g(x)$$
 so that $|f(x) - L| \le K|g(x)|$

$$\left| \frac{1}{4!} \cos \left(\frac{\pi}{3} (x) \right) \right| \leq \frac{1}{4!} x^{2}, \text{ Since}$$

$$\left| \cos \left(\frac{\pi}{3} (x) \right) \right| \leq \left| \cos \left(\frac{\pi}{3} (x) \right) \right|$$

$$rea = 0$$
.

Don't confuse two ideas: " con verying to something" and " converging like something" Converges to $\lim_{N \to \infty} \frac{3n+2}{n} = \lim_{N \to \infty} 3 + \frac{2}{n} = 3$ $\lim_{N \to \infty} S_n \text{ converges to } h = 3$ "Converges like" $\left|\frac{3n+2}{n}-3\right|=\left|\frac{2}{n}\right|\leq 2\frac{1}{n}$ " converges like " n ~ O(h)
" rate of converge" = "converges like

Asymptotie order of convergence Recall: Rate of convergence Sn-Ll < A Bril ayimptotic env constant error rate Rate: Sequence B. -> O. This tells us something about how the error behaves as $n \rightarrow \infty$. $8(\sqrt{n})$, $8(n^2)$ S(n), $7(n^2)$ Define the error as: $e_n = S_n - L$ The error behaves as: $\theta(\frac{1}{5n}), \theta(\frac{1}{n}), \theta(\frac{1}{n^2})$

In many cases, we can choose $Q_n = |S_{n-1} - L|$ Example: Sn = In $\lim_{n \to \infty} S_n = 0 = L$ $|S_{n+1}-L|=\frac{1}{n+1}<\frac{1}{n}=\beta_n$ Define Cnt = Snt - L

Cn = Sn - L What is the ratio $\lim_{n\to\infty} \frac{|C_{n+1}|}{|C_n|} = \lim_{n\to\infty} \frac{n}{n+1} = 1$

This could tell is how quickly terms converge.

Définition: Order of Convergence

Definition: let [Sn] be a segvence that converges to a number L. let en = Sn-L for n Z O. If there exists positive constants a and I such that $\lim_{n\to\infty} \frac{|S_{nn}-L|}{|S_n-L|} = \lim_{n\to\infty} \frac{|e_{nn}|}{|e_n|} = 1$ then { s,] is soid to converge to L with "order of convergence" 2. $|e_{n+1}| \approx \lambda |e_n|^2$

types of convergence;

Typically Lis on integer, 1, 2, 3, ...

$$\lim_{n\to\infty} \frac{|e_{n+1}|}{|e_n|^{\alpha}} = 1$$

2: order of consvergence λ: asymptotic error constant

λ=1: Sublinear convergence

0<λ<1: linear convergence

λ=0: Super linear convergence.

 $\lambda = \lambda$ $\lambda > 0$ quadratic convergence

$$\lambda = 3$$
 $\lambda > 0$: Cubic convergence.

$$S_{n+1} = \sqrt{n+2} - \sqrt{n+1}$$
, $L = 0$

$$C_{n+1} = S_{n+1} = I_{n+2} - I_{n+1} = I_{n+2}$$

$$C_{n+1} = \frac{1}{\sqrt{n+2} + \sqrt{n+1}}$$

$$|e_{n+1}| < |e_n|$$

and

$$\lim_{n\to\infty} \frac{|C_{nt1}|}{|C_n|} = \lim_{n\to\infty} \frac{\sqrt{n+1} + \sqrt{n+1}}{\sqrt{n+1}} = 1$$

$$2 = 1$$

$$\lambda = 1$$

" Sublinear convergence (quite 5100!)

order of convergence from numerical

 C_{l}

P

0.5

Mhear Quadratic

0.5 0.5 0.125 -3

Cobic

8100

Verify

$$\frac{e_3}{c_2} = .5$$

$$\frac{e_1}{e_1} = .5$$

$$\frac{e_3}{e_2} = .5$$

cubic

$$\frac{\mathcal{Q}_2}{\mathcal{Q}_1^3} = .5$$

$$\frac{\mathcal{C}_3}{\mathcal{C}_2} = .5$$

We can view the order of convergence as a way to sec how many oligits of accuracy we can expect in each step. enti = λe_n Suppose en = 10 Linear Corresponde Chail = 2 Ch, Ch = 10

Chail = 2 10

Might get one digit move of accuracy with each step, Depends on 817e of 1. Convergence depends
on value of λ .

Quadratic Convergence

$$C_{n+1} = 10^{-3}$$

$$C_{n+1} = 10$$

double number of accurate digits.

Cubic Con revence

$$e_{h} = 10^{-3}$$
 $e_{h} = 10^{-3}$

triple number of accurate Olgit!

Computing the order of convergence Example

Computing $\int_{a}^{a} \left(x_{n} + \frac{a}{x_{n}} \right)$ $C_{nt1} = \chi_{nt1} - \sqrt{a} = \frac{1}{2} \left(\chi_n + \frac{q}{\chi_n} \right) - \sqrt{a}$ Ten hard that $= \frac{1}{2} \left(\frac{x_n - 2 \sqrt{a} x_n + a}{x_n} \right)$ $= \frac{1}{2} \left(\frac{x_n - 2 \sqrt{a} x_n + a}{x_n} \right)$ $= \frac{1}{2} \left(\frac{x_n - \sqrt{a}}{x_n} \right) = \frac{e_n}{2x}$ $=\frac{1}{2}\left(\frac{x_{n}-\sqrt{a}}{x_{n}}\right)^{2}=\frac{C_{n}^{2}}{2x_{n}}$ $\lim_{N \to \infty} \frac{|e_{nti}|}{|e_n|^2} = \lim_{N \to \infty} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \int_{a}^{b} \frac{1}{2} \frac{1}$ Quadratic convergence with constant $2\sqrt{a}$ d=2 $\lambda=2\sqrt{a}$ Example: Numerically approximating the order of convergence.

Co 3.7 x 10^{-4} errors

C1 1.2 x 10^{-15} errors

C2 1.5 x 10^{-60}

ancess: hook at # of digits is increasing by factor of 4 each time. -4, -15, -40

Numerically: $e_{n+1} = \lambda e_n$ $e_{n+1} = \lambda \log(e_n) + \log(\lambda)$

Find slope and intercept through

 $(\log(e_i), \log(e_i) + (\log(e_i), \log(e_2))$

 $2 \approx 3.90834$ = 0.031034

Pos	sible	Sov	1CC	of	conti	· SI DO:)
Many	Source	ces	ose	the	e teri	m "	ote
of	Conver	genci	۲	10	ter i	the	-
1	valne	· ί	h a	a li	nearly	conver	rgent
Segu	ence				V		
				$\lambda \mid \epsilon$	2		
	1			X_	Sor	ne so	ource
						this	

2 Other sources may (incorrectly) refer to the rote as the volue of

Definition of order is more restrictive and in some sense not very discerning. For example, $n \cdot n^2 \cdot n^3 \cdot 2^n \cdot \log(\kappa)$ all converge with order 1 (although they have different asymptotic constants. So we will stick with our definition of rate: $|S_n-L|<\lambda|\beta_n|$ rate of convergence O(B) the end.