Prof. Dr. Marcus Zibrowius Jan Hennig

07.06.2024

Homologische Algebra Blatt 9

1 | Stegreiffragen: Tensorprodukt

Alle Fragen sollten lediglich eine kurze Antwort benötigen:

- (a) Wahr oder falsch: Für $A \to B \to C$ exakt, ist auch $A \otimes_R M \to B \otimes_R M \to C \otimes_R M$ exakt.
- (b) Wahr oder falsch: Tensorpordukte vertauschen mit Produkten.

2 | R-biadditiv $\neq R$ -bilinear

Sei $R = \{m + n\sigma \mid m, n \in \mathbb{Z}, \sigma^2 = 1\}$. Sei $A = B = \mathbb{Z}$, mit der R-Modulstruktur gegeben durch $(m + n\sigma)x = (m - n)x$ wobei $x \in \mathbb{Z}$. Sei $G = \mathbb{Z}$, mit der R-Modulstruktur gegeben durch $(m + n\sigma)x = (m + n)x$. Definiere $f: A \times B \to G$ durch die Multiplikation $(a, b) \mapsto ab$.

- (a) Zeigen Sie, dass die obigen Definitionen für A, B und G wirklich R-Modulstrukturen definieren.
- (b) Zeigen Sie, dass f R-biadditiv ist.
- (c) Zeigen Sie, dass f nicht R-bilinear ist.

3 | Tensorvielfache endlich-erzeugter Moduln verschwinden nicht

Sei $M \neq 0$ ein endlich-erzeugter R-Modul.

- (a) Zeigen Sie, dass $M^{\otimes k} \neq 0$ für k > 0,
- (b) Finden Sie ein Beipiel für $M^{\otimes k} = M$.

Warum ist das kein Widerspruch zu einer voherigen Aussage?

4 | Invarianten und Koinvarianten

Sei G eine Gruppe und A ein links $\mathbb{Z}[G]$ -Modul. Definiere die \mathbb{Z} -Moduln

- (i) Invarianten von A: $A^G = \{a \in A \mid g \cdot a = a \ \forall g \in G\},$
- (ii) Koinvarianten von A: $A_G = A/\langle g \cdot a a \mid g \in G, a \in A \rangle$.

Fasse \mathbb{Z} als links $\mathbb{Z}[G]$ -Modul mittels trivialer Wirkung auf $((g,n) \mapsto n)$ und sei $\tau(A)$ das zu A gehörige rechts $\mathbb{Z}[G]$ -Modul $((a,g) \mapsto g^{-1} \cdot a)$

- (a) Zeigen Sie, dass $A^G \to \operatorname{Hom}_{\mathbb{Z}[G]-\mathbf{Mod}}(\mathbb{Z}, A)$, $a \mapsto (\varphi_a \colon n \mapsto n \cdot a)$ einen natürlichen Isomorphismus definiert.
- (b) Zeigen Sie, dass $A_G \to \tau(A) \otimes_{\mathbb{Z}[G]} \mathbb{Z}$, $[a] \mapsto a \otimes 1$ einen natürlichen Isomorphismus definiert.
- (c) Zeigen Sie für G endlich, dass $(\mathbb{Z}[G])^G \cong_{\mathbb{Z}} \mathbb{Z}$.
- (d) Zeigen Sie für G unendlich, dass $(\mathbb{Z}[G])^G \cong_{\mathbb{Z}} 0$.
- (e) Zeigen Sie, dass $(\mathbb{Z}[G])_G \cong_{\mathbb{Z}} \mathbb{Z}$.