1 LDDMM Algorithm

Algorithm 1. Let $\Omega \in \mathbb{R}^3$ be the background space. Let $I_0: \Omega \to \mathbb{R}$ be a template image which will be deformed to match target image $I_1: \Omega \to \mathbb{R}$. Let $\varphi_{t0} = \int_t^0 v(t, \varphi_{t0}) dt$ be the forward mapping, $\varphi_{t1} = \int_t^1 v(t, \varphi_{t1}) dt$ be the reverse maping where $v(t): \Omega \to \mathbb{R}^3$ denotes the velocity of the flow. Thus $I(t) = I_0 \circ \varphi_{t0}$ is the forward deformed template image. Furthermore let K_V be the kernel used to smooth velocity fields. We discretize time domain [0,1] so that $t_0 = 0$ and $t_{J-1} = 1$ where J is the number of time steps. The optimal flow v^* is estimated using a gradient descent algorithm below.

```
v=0, v_{old}=0, E_{old}=\infty, \varepsilon= SMALL, \varepsilon_{min}= SMALLER
while k < \text{MAX\_ITERATIONS}
      // Calculate energy gradient.
      foreach j \in \{0, \dots, J-1\}
            p(t_i) = -\frac{1}{\sigma^2} \left( I_0 \circ \varphi_{t_i 0} - I_1 \circ \varphi_{t_i 1} \right) |D\varphi_{t_i 1}|
             I(t_i) = I_0 \circ \varphi_{t_i 0}
      \nabla_v E = v + \mathbf{K}_V[p\nabla I]
      // Update velocity using energy gradient.
      while True
             v = v - \varepsilon \nabla_v E // Take a step.
             E(v) = \frac{1}{2} \int_0^1 \|v(t)\|_V^2 dt + \frac{1}{2\sigma^2} \|I(1) - I_1\|_{L_2}^2
             if E(v) < E_{old} // If energy decreased...
                   \varepsilon = \varepsilon * 1.05 // ...increase step size...
                   (v_{old}, E_{old}) = (v, E(v)) // ...and save old values.
                   BREAK
             else // If energy increased...
                   v = v_{old} // ...restore old velocity...
                   \varepsilon = \varepsilon * 0.5 // ...and decrease step size...
                   if \varepsilon < \varepsilon_{min} // ...but stop if min step size reached.
                          v^* = v
                          STOP
```