FAO workshop – Santa Marta (Colombia), July 2024

Riskmaps for carbon credit certification

Ghislain VIEILLEDENT¹ Thomas ARSOUZE¹ FAO team²

[1] Cirad UMR AMAP, [2] FAO Rome and Latin America

- Introduction
 - Improving certification methodologies
 - Allocating deforestation to projects
- Methodology Verra for risk maps
 - VT0007 tool
 - Benchmark model
 - Alternative models and validation
 - Verra/UClark software

- Software for modelling deforestation
 - Existing software
 - Limitations
- Conclusion
 - A not so simple methodology
 - Need for an integrative tool : deforisk QGIS plugin

Outline

- Introduction
 - Improving certification methodologies
 - Allocating deforestation to projects
- - VT0007 tool
 - Benchmark model
 - Alternative models and
 - Verra/UClark software

- - Existing software
 - Limitations
- - A not so simple methodology
 - Need for an integrative tool :

Several criticisms

Several criticisms were addressed to previous REDD+ methodologies for carbon credit certification accusing them to oversell credits.

- Non-additionnality: Emissions reductions would have happened anyway. Inflated project-level baselines. Jurisdictional reference levels are reasonably good predictors of future trends.
- **Leakage**: The larger the area covered by a REDD+ initiative, the lower the leakage risk.
- Reversal: Jurisdictions are less likely than projects to have their forest carbon stocks decimated by a disturbance event.

Frances Seymour (WRI): 4 Reasons Why a Jurisdictional Approach for REDD+ Crediting Is Superior to a Project-Based Approach.

New jurisdictional approach

Deforestation intensity

- Baseline activity data or Forest Reference Emission Level at the jurisdictional level
- Amount of deforestation.
- Deforestation "quantity" or "intensity".

Spatial deforestation risk

- Map of the deforestation risk at the jurisdictional level.
- Spatial relative probability of deforestation.
- Deforestation "location".

Risk map at the jurisdictional level

Objectives

- Identifying hot-spots/cold-spots of deforestation.
- Classifying forest pixels by risk of being deforested.
- One unique model for the whole jurisdiction (no methodological discrepancies between projects).
- Use this map to allocate deforestation (estimated for the jurisdiction) per project.

Software for modelling deforestation

Figure – Map of the deforestation risk for Perou.

Green: low, Red/Black: high.

Allocating deforestation to projects

- Jurisdictional risk map: a map with class of deforestation risk.
- Obtaining a deforestation density map:
 Class of defor. risk [1, 2, ..., I] → Defor. density (ha/yr/pixel).
- Can be used to allocate deforestation per project.

Figure – Allocating deforestation to projects within the jurisdiction.

Outline

- - Improving certification
 - Allocating deforestation to
- Methodology Verra for risk maps
 - VT0007 tool
 - Benchmark model
 - Alternative models and validation
 - Verra/UClark software

- - Existing software
 - Limitations
- - A not so simple methodology
 - Need for an integrative tool :

- Developed by Clark University (J. R. Eastman and R. G. Pontius Jr.) for Verra.
- Aim: Obtaining the best risk map possible at the jurisdictional level.

Basic steps

- Use a reasonably good reference model to map the deforestation risk.
- Let the user propose alternative maps from alternative models.
- Validation step: check that alternative models are better than the benchmark model.
- Use the best alternative map to allocate deforestation.

Modelling periods

- Three dates : t1, t2, t3.
- Four periods: calibration, validation, historical, (baseline validity period).
- Why different periods : model predictions must be compared with **independent data** (validation period).
- To forecast after t3, we want to use as much data as possible (historical period).

Benchmark model

- Benchmark model or reference model.
- A reasonably good deforestation model (better than a null model).
- Assuming a decrease of deforestation with distance to forest edge (commonly admitted).
- And a different model between subjurisdictions (regional variability).

Figure – Subjurisdictions in Martinique (MTQ)

Distance threshold

- Identify the distance to forest edge below which 99.5% of the deforestation occur.
- Use this distance to define the first class of risk (class 1).

Distances below the threshold are transformed into classes of

deforestation risk.A geometric series is used for that, ensuring that classes have a

Software for modelling deforestation

- wider range for bigger distances.

 We define 29 additional classes of risk from 2 to 30 (class 1 has
- We define 29 additional classes of risk from 2 to 30 (class 1 has already been defined).

Classes from subjurisdictions

- Each subjurisdiction get a number from 1 to (potentially) 999.
- We combine classes derived from distance with subjurisdictions in the following way: **DD**SSS, with **DD** the distance class and SSS the subjurisdiction number.
- We obtain classes going from 01001 to potentially 30999 if there are 999 subjurisdictions.
- So for 10 subjurisdictions, we obtain ~300 classes (but some distance classes might be missing).

Classes from subjurisdictions

- Following these steps, we obtain a map at the jurisdictional level where each forest pixel belongs to a given class of deforestation risk.
- Area in dark green: classes 1SSS, beyond the deforestation threshold.

Deforestation density

- Each class i has an associated **deforestation probability**: $\theta_{m,i} = d_i/n_i$ (unitless), with d_i the number of deforested pixels during the period, and n_i the number of forest pixels at the beginning of the period.
- Quantity adjustment $\rho: \theta_{a,i} = \rho \theta_{m,i}$, so that total predicted deforestation = observed (or expected) deforestation. For the benchmark model for the calibration and historical periods, $\rho = 1$.
- Deforestation density (in ha/yr per pixel) computed as $\delta_i = \theta_{a,i} \times A/T$. A: pixel area (in ha), T: time-interval of the period (in yr).
- The deforestation density is used to predict the amount of deforestation for each pixel belonging to a given class of deforestation risk.

Deforestation density

Table – Deforestation rates for each class of deforestation risk (numbers truncated to three decimal digits).

cat	n _i	d_i	$\theta_{m,i}$	$ heta_{a,i}$	T	Α	δ_i
1001	33433	0	0.0	0.0	10	0.09	0.0
1002	12965	0	0.0	0.0	10	0.09	0.0
1003	91686	19	2.072e-04	2.072e-04	10	0.09	1.865e-06
1004	82279	5	6.076e-05	6.076e-05	10	0.09	5.469e-07
2001	1373	0	0.0	0.0	10	0.09	0.0

Deforestation density (in ha/yr per pixel) computed as

$$\delta_i = \theta_{a,i} \times A/T$$

17 / 28

Deforestation density

- The deforestation density is used to predict the amount of deforestation for each pixel belonging to a given class of deforestation risk.
- Can be used to allocate deforestation to projects within a jurisdiction.

Alternative models

Validation procedure

Verra/UClark software

https://github.com/ClarkCGA/UDef-ARP/tree/v2.09

- User must provide fcc, distance to forest edge raster, subjurisdictional borders.
- Benchmark model.
- Validation.

Limitations

- Not tool to help prepare the data.
- No tool to develop the alternative model.
- Windows only.
- Require a computer with high RAM for large jurisdiction: all raster inputs are stored in RAM during processing. Therefore, large jurisdictions will require substantial RAM allocations (e.g., 64Gb).
- Several remarks :

Outline

- - Improving certification
 - Allocating deforestation to
- - VT0007 tool
 - Benchmark model
 - Alternative models and
 - Verra/UClark software

- Software for modelling deforestation
 - Existing software
 - Limitations
- - A not so simple methodology
 - Need for an integrative tool :

Existing software

• Dinamica EGO, CLUE, TerraSet (Clark U.).

Software for modelling deforestation

Limitations

- All are not open source (transparency).
- Difficulty to reproduce the results (transparency, reproducibility).
- Large rasters on large jurisdiction?
- No scripting: not well adapted to repeat computation.

Outline

- - Improving certification
 - Allocating deforestation to
- - VT0007 tool
 - Benchmark model
 - Alternative models and
 - Verra/UClark software

- - Existing software
 - Limitations
- Conclusion
 - A not so simple methodology
 - Need for an integrative tool : deforisk QGIS plugin

A not so simple methodology

Need for an integrative tool : the deforisk QGIS plugin

