

Modellbildung und Simulation Kapitel 7: Systeme mit verteilten Parametern

Balázs Pritz pritz@kit.edu

Fachgebiet Strömungsmaschinen

Übersicht

7 Systeme mit verteilten Parametern

7.3 Numerische Lösungsverfahren für PDGLen

7.3.3 Finite Differenzen

Poolübung zur FDM

- Ziele:
 - Erfahrung mit Implementieren (Debugging)
 - Typisches Lösungsverfahren für stationäre Strömungen
 - Parameter f
 ür eine effektive Simulation richtig w
 ählen
 - Zeitliche und räumliche Auflösung
 - Stabilitätsgrenze
 - UDS ↔ CDS
 - Was kosten Erweiterungen?
 - Abbruchkriterium
 - Streckung im Netz
 - Modellreduktion: 1D ↔ 2D

Navier-Stokes Gleichungen

3D, instationär, kompressibel

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = 0$$

$$T_{ij} = \mu \left(\frac{\partial \rho u_i u_j}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} \right) = -\frac{\partial \rho}{\partial x_i} + \frac{\partial T_{ij}}{\partial x_j} + g_i \qquad T_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \delta_{ij} \frac{\partial u_k}{\partial x_k} \right)$$

$$\delta_{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\frac{\partial \rho E}{\partial t} + \frac{\partial \rho u_i E}{\partial x_i} = \frac{\partial (q_i - p u_i)}{\partial x_i} + \frac{\partial u_i T_{ij}}{\partial x_i} + u_i g_i$$

$$q_i = \lambda \frac{\partial T}{\partial x_i}$$
 $E = \frac{1}{2}u_iu_i + e$ $e = \frac{p}{\rho(\gamma - 1)} = c_vT$ $p = \rho RT$

Navier-Stokes Gleichungen

- Transportgleichung in allgemeiner Form
 - lacktriangle ϕ ist jetzt ein passiver Skalar

$$\frac{\partial \rho \phi}{\partial t} + \frac{\partial \rho u_i \phi}{\partial x_i} = \Gamma \frac{\partial^2 \phi}{\partial x_i^2} + q_{\phi}$$

$$\frac{\partial u_i \phi}{\partial x_i} = \frac{\Gamma}{\rho} \frac{\partial^2 \phi}{\partial x_i^2}$$

Γ=konst.

inkomp., instat., keine Quelle

FDM – Beispielformeln (9. VL)

Beispiel für einfache Differenzenformeln:

$$\left(\frac{\partial \phi}{\partial x}\right)_{i} = \frac{\phi_{i} - \phi_{i-1}}{x_{i} - x_{i-1}} + \varepsilon$$

(BDS: backward-difference scheme)

UDS: upwind difference scheme

$$\left(\frac{\partial \phi}{\partial x}\right)_{i} = \frac{\phi_{i+1} - \phi_{i}}{x_{i+1} - x_{i}} + \varepsilon$$

Vorwärtsdifferenz

(FDS: forward-difference scheme)

$$\left(\frac{\partial \phi}{\partial x}\right)_{i} = \frac{\phi_{i+1} - \phi_{i-1}}{x_{i+1} - x_{i-1}} + \varepsilon$$

Zentraldifferenz

(CDS: central-difference scheme)

Estellt den Abbruchfehler dar

FDM - Randbedingungen (10. VL)

Formulierung von Randbedingungen nach Dirichlet oder Neumann

$$\phi_1 = Const. \Rightarrow Dirichlet - RB$$

$$\left(\frac{\partial \phi}{\partial x}\right)_1 = Const. \Rightarrow Neumann - RB$$

$$\left(\frac{\partial \phi}{\partial x}\right)_1 = 0 \Longrightarrow \frac{\phi_2 - \phi_1}{x_2 - x_1} = 0 \Longrightarrow \phi_1 = \phi_2$$

Vorwärtsdifferenz 1.Ord

$$\left(\frac{\partial \phi}{\partial x}\right)_{1} = \frac{-\phi_{3} + 4\phi_{2} - 3\phi_{1}}{2\Delta x} + O((\Delta x)^{2})$$

Vorwärtsdifferenz 2.Ord

$$\left(\frac{\partial \phi}{\partial x}\right)_1 = \frac{2\phi_4 - 9\phi_3 + 18\phi_2 - 11\phi_1}{6\Delta x} + O\left((\Delta x)^3\right)$$
 Vorwärtsdifferenz 3.Ord

Iteratives Lösungsverfahren (11. VL)

Integration in der Zeit

$$\frac{\partial \phi}{\partial t} + \frac{\partial u_i \phi}{\partial x_i} = \frac{\Gamma}{\rho} \frac{\partial^2 \phi}{\partial x_i^2}$$
$$\frac{\partial \phi}{\partial t} = RHS$$

$$\frac{{\phi_i}^{n+1} - {\phi_i}^n}{t^{n+1} - t^n} = RHS$$

$$\phi_i^{n+1} = \Delta t \cdot RHS^n + \phi_i^n$$

Einschränkungen für den Zeitschritt:

konstanter Zeitschritt, explizite Euler-Methode

$$D = \frac{\Gamma \Delta t}{\rho \Delta x^2} \qquad CFL = \frac{u \Delta t}{\Delta x}$$

1D ⇒ 2D

Wirbelströmung im rechteckigen Gebiet (lid driven cavity)

Quelle: DOI: 10.4208/cicp.300514.160115a

