"Introduction to Models of Computation" Solutions

Yanyan Jiang

Spring, 2012

1 Chapter 1

1.1 Prove: for any fixed k, unary number theoretic function $x + k \in \mathcal{BF}$.

Proof. We have
$$+_0 = P_1^1$$
 and $+_k = \underbrace{S \circ S \circ \ldots \circ S}_{k-1 \text{ times}} \in \mathcal{BF}$ for all $k \geq 1$. \square

1.2 Prove: for any $k \in \mathbb{N}^+$, $f : \mathbb{N}^k \to \mathbb{N}$, there always exists h satisfying $f(\mathbf{x}) < ||\mathbf{x}|| + h$ if $f \in \mathcal{BF}$.

Proof. We perform a structural induction on the constructive length ℓ of basic function f.

When $\ell = 0$, $f \in \mathcal{IF}$. Thus $f(x) \leq S(x) < x + 2$ for all x. Let $h_0 = 2$. We assume when $0 \leq \ell \leq n$, all functions f with constructive length no longer than ℓ satisfy $f(\mathbf{x}) < ||\mathbf{x}|| + h_n$.

In the case of $\ell = n+1$, assume that f is constructed by sequence f_0, f_1, \ldots, f_n, f . If $f \in \mathcal{IF}$, it is trivial that $f(x) \leq S(x) < \|\mathbf{x}\| + 2h_n$. Elsewise, $f = \text{Comp}_k^m[f_{i_0}, f_{i_1}, \ldots, f_{i_k}]$. By inductive hypothesis we have $f_{i_j} < h_n$ for all j, thus $f(\mathbf{x}) < \max\{f_{i_j}(\mathbf{x})\} + h_n < \|\mathbf{x}\| + 2h_n$. Therefore, by letting $h = 2^{\ell+1}$, $f(\mathbf{x}) < \|\mathbf{x}\| + h$ always holds.

1.3 Prove: binary number theoretic function $x + y \notin \mathcal{BF}$.

Proof. We have already proved that for any $k \in \mathbb{N}^+$, $f : \mathbb{N}^k \to \mathbb{N}$, there always exists h satisfying $f(\mathbf{x}) < ||\mathbf{x}|| + h$ if $f \in \mathcal{BF}$.

If $x + y \in \mathcal{BF}$, there is h such that $x + x = 2x = 2||\mathbf{x}|| < ||\mathbf{x}|| + h$, which implies x < h, leading to contradiction.

1.4 Prove: binary number theoretic function $x - y \notin \mathcal{BF}$.

Proof. Since pred = $\operatorname{Comp}_2^1[P_1^1, S \circ Z]$, proving pred $\notin \mathcal{BF}$ is enough to show $x - y \notin \mathcal{BF}$. Assume there exists shortest construction procedure f_0, f_1, \ldots, f_n , pred. There are two cases:

Case 1. $f_n \in \{S, Z, P\}$ is not the case.

Case 2. f_n is a composition of S, Z or P. f_n cannot be composition of S because S(x) > 0 for all x, and pred(1) = 0. Also, f_n cannot be composition of Z because pred(x) can be arbitrarily large. Finally, f_n cannot be composition of P because this contradicts the shortest construction assumption.

1.5 Let $pg(x,y) = 2^x(2y+1) - 1$. Prove that there exists elementary function K(x) and L(x) such that K(pg(x,y)) = x, L(pg(x,y)) = y and pg(K(z),L(z)) = z.

Proof. Let
$$K(x) = \exp_0(x+1), L(x) = \frac{1}{2} \left(\frac{x+1}{2^{K(x)}} - 1 \right)$$
, we have
$$\operatorname{pg}(K(z), L(z)) = 2^{\operatorname{ep}_0(z+1)} \left(\frac{z+1}{2^{\operatorname{ep}_0(z+1)}} \right) - 1 = z.$$

1.6 Let $f: \mathbb{N} \to \mathbb{N}$. Prove that f could be left function in a pairing function if and only if $|\{x \in \mathbb{N} : f(x) = i\}| = \aleph_0$ for all $i \in \mathbb{N}$.

Proof. The necessity is trivial by a simple contradiction. For the sufficiency, $|\{x \in \mathbb{N} : f(x) = i\}| = \aleph_0$ implies that there exists onto mapping $f_i : N_i \to \mathbb{N}$ such that $N_i = \{x \mid f(x) = i\}$ for all i, which implies that f_i^{-1} exists for all i. By letting $pg(x, y) = f_x^{-1}(y)$, we have $K(z) = f(f_x^{-1}(z)) = x$ and $L(z) = f_x(z) = f_x(f_x^{-1}(y)) = y$.

1.7 Prove that all elementary function can be generated by applying composition and $\prod_{i=n}^{m} [\cdot]$ operator.

Proof. We first build some function by the conditioning ability of Π :

$$N(x) = \prod_{i=1}^{x} Z(i), N^{2}(x) = \prod_{i=1}^{N(x)} Z(i)$$
$$leq(x, y) = \prod_{i=x}^{y} Z(i), geq(x, y) = \prod_{i=y}^{x} Z(i)$$
$$gt(x, y) = N(leq(x, y)), lt(x, y) = N(geq(x, y)).$$

Then, we can conjunct and disjunct between predicates by

$$\wedge(x,y) = \prod_{i=1}^{N(x)} y, \forall (x,y) = N(N(x) \wedge N(y)),$$

therefore $eq(x, y) = N(gt(x, y)) \wedge N(lt(x, y)).$

On the other hand, we construct Σ operator in the following way:

$$pow(x,k) = \prod_{i=1}^{k} P_2^2(i,x),$$
$$\log(x) = \prod_{i=0}^{m} i^{N(eq(2^i,x))},$$
$$\sum_{i=n}^{m} f(i,\mathbf{x}) = \log \prod_{i=n}^{m} 2^{f(i,\mathbf{x})},$$

and the rest of our proof is trivial: $x \times y = \sum_{i=1}^{x} y$, $x + y = \log(2^{x} \times 2^{y})$,

$$x - y = \sum_{i=0}^{x} N(\operatorname{eq}(i+y, x)) \times i \text{ and } |x - y| = \operatorname{gt}(x, y) \times (x - y) + \operatorname{lt}(x, y) \times (y - x).$$

1.8 Let M(x) be M(M(x+11)) when $x \le 100$ and x-10 when x > 100. Prove M(x) = 91 when $x \le 100$.

Proof. The basic case is M(99) = M(M(110)) = M(100) = M(M(111)) = M(101) = 91, and M(x) = M(M(x)) = M(x+1) when $90 \le x \le 100$. An induction on x shows M(x) = 91 for all $0 \le x \le 100$.

1.9 Prove: $\min x \le n.[f(x, y)] = n - \max x \le n.[f(n - x, y)],$ and $\max x \le n.[f(x, y)] = n - \min x \le n.[f(n - x, y)].$

Proof. For simplicity, let $m = \min x \le n.[f(x, \mathbf{y})]$ and $M = \max x \le n.[f(n - x, \mathbf{y})].$

If there is no $0 \le x \le n$ satisfying $f(x, \mathbf{y}) = 0$, we have m = n and M = 0, hence m + M = n. Otherwise, let a be the minimum root of $f(x, \mathbf{y})$, thus $f(x, \mathbf{y}) \ne 0$ for all x < a, and $f(n - x, \mathbf{y}) \ne 0$ for all x > n - a. By definition, we can easily see that m + M = n. Since both m and M will not exceed n, m + M = n yields m = n - M and M = n - m.

The another case is trivial by symmetry.

1.10 Prove: \mathcal{EF} is closed under the bounded max operator.

Proof. For any $f \in \mathcal{EF}$,

$$\max x \le n.[f(x, \mathbf{y})] = \sum_{i=0}^{n} \left[\left\lfloor \left(\sum_{x=0}^{i} N(x, \mathbf{y}) \right) / \left(\sum_{x=0}^{n} N(x, \mathbf{y}) \right) \right\rfloor \times i \right]. \quad \Box$$

1.11 Prove: Euler's totient function $\varphi \in \mathcal{EF}$.

Proof.
$$\varphi(x) = \left\{ \sum_{y=0}^{n} N \left[\left(\sum_{d=0}^{x+y} \left| \operatorname{rs}(x,d) - \operatorname{rs}(y,d) \right| \right) - 2 \right] \right\} - 1$$
.

1.12 Let h(x) be subscript of the greatest prime factor. Assume that h(0) = h(1) = 0, prove that $h \in \mathcal{EF}$.

Proof.
$$h(x) = \max i \le x$$
. $\left\{ N^2 \left| \sum_{j=0}^i [N(\text{rs}(i,j))] - 2 \right| + N^2[\text{rs}(x,i)] \right\}$. \square

1.13 Prove that the Fibonacci sequence f(0) = f(1) = 1, $f(x + 2) = f(x) + f(x + 1) \in \mathcal{EF}$ and \mathcal{PRF} .

Proof. Let $\{pg, K, L\}$ be any paring function in \mathcal{PRF} . Let

$$F(0) = pg(1,0)$$

$$F(x+1) = pg(K(F(x)) + L(f(x)), K(F(x))),$$

we have F is in \mathcal{PRF} and K(F(x)) = f(x), therefore $f \in \mathcal{PRF}$.

On the other hand, f(x) is the number of binary strings of length x-1 without successive 1s. Therefore

$$f(x) = \sum_{i=0}^{2^{n-1}} \sum_{j=0}^{n-2} N\left(\operatorname{eq}(\operatorname{rs}(i, 2^j), \operatorname{rs}(i, 2^{j+1}))\right) \times \operatorname{eq}\left(\operatorname{rs}(i, 2^j), 0\right) \in \mathcal{EF}. \quad \Box$$

1.14 Prove that the number theoretic function $Q(x, y, z, v) \equiv p(\langle x, y, z \rangle) \mid v$ is elementary.

Proof. We have already seen that $p(n) \in \mathcal{EF}$ and $\langle x, y, z \rangle = 2^x \cdot 3^y \cdot 5^z \in \mathcal{EF}$. Therefore $Q(x, y, z) = \operatorname{eq}(\operatorname{rs}(v, p(\langle x, y, z \rangle)), 0) \in \mathcal{EF}$.

1.15 Let $f: \mathbb{N} \to \mathbb{N}$, f(0) = 1, f(1) = 4, f(2) = 6, $f(x+3) = f(x) + f^2(x+1) + f^3(x+2)$. Prove that $f \in \mathcal{PRF}$.

Proof. Let $G(0) = \langle 1, 4, 6 \rangle$ and

$$G(x+1) = \langle ep_1(G(x)), ep_2(G(x)), ep_0(G(x)) + ep_1^2(G(x)) + ep_2^3(G(x)) \rangle,$$

we have
$$ep_0(G(x)) = f(x)$$
.

1.16 Let $f(n) = n^{n \cdot \cdot \cdot n}$, prove that $f \in \mathcal{PRF} - \mathcal{EF}$.

Proof. Let g(n,0) = 0 and $g(n,x+1) = n^{g(n,x)}$. Thus $g \in \mathcal{PRF}$ and g(n,n) = f(n), therefore $f \in \mathcal{PRF}$. On the other hand, $G(k,x) = 2^{2^{\dots^x}}$ is one among the control functions of \mathcal{EF} . If $f \in EF$, there exists k such that G(k,n) > f(n) for all n. However, this is impossible because f(k+2) is always greater than G(k,k).

1.17 Let $g: \mathbb{N} \to \mathbb{N} \in \mathcal{PRF}, f: \mathbb{N}^2 \to \mathbb{N}$ satisfies that $f(x,0) = g(x), \ f(x,y+1) = f(f(\dots f(f(x,y),y-1),\dots),0)$. Prove that $f \in \mathcal{PRF}$.

Proof. Let G(x,0) = x and G(x,y+1) = g(G(x,y)), F(0) = 1, $F(x+1) = F(x) + \sum_{i=0}^{x} F(x)$. it is obvious that $G \in \mathcal{PRF}$, and $F(x) = Fib(2x) \in \mathcal{PRF}$.

We now prove that f(x,y) = G(x,F(y)). The basis is f(x,0) = G(x,1) = g(x), and we assume that $f(x,y^*) = G(x,F(y^*))$ For all $y^* \leq y$. Therefore,

$$f(x, y + 1) = \underbrace{g(g(\dots g(f(x, y)) \dots))}_{\sum_{i=0}^{y} F(i) \text{ times}}$$

$$= \underbrace{g(g(\dots g(f(x, y)) \dots))}_{F(y) + \sum_{i=0}^{y} F(i) \text{ times}}$$

$$= G(x, F(y + 1)),$$

which means $f(x,y) = G(x,F(y)) \in \mathcal{PRF}$.

1.18 If $f, g : \mathbb{N} \to \mathbb{N}$ differs for only finitely many values. Prove that $f \in \mathcal{RF}$ if and only if $g \in \mathcal{RF}$.

Proof. For the necessity, we have $g \in \mathcal{RF}$ and $S = \{s_0, s_1, \dots, s_k\}$ satisfies that for all $x \in \mathbb{N} \setminus S$, f(x) = g(x).

Let
$$F(x) = \sum_{i=0}^{k} g(s_i) \cdot N(\operatorname{eq}(s_i, x)) + N\left(\sum_{i=0}^{k} N\left(\operatorname{eq}(s_i, x)\right)\right) g(x)$$
, because the Σ in F is walked through finitely many of values, F is in \mathcal{RF} , and $f(x) = F(x)$ for all x , thus $f \in \mathcal{RF}$. Also, the sufficiency case is trivial by symmetry.

1.19 Prove that $\left\lfloor \left(\frac{\sqrt{5}+1}{2}\right)n\right\rfloor \in \mathcal{EF}.$

Proof. Let $\varphi = \frac{\sqrt{5}+1}{2}$, we can rewrite the solution of $y = \lfloor \varphi n \rfloor$ by

$$y = \max_{x \in \mathbb{N}} x$$

s.t. $\varphi n \le x$,

therefore
$$y = \sum_{i=0}^{2n} i \times N \left\{ \operatorname{eq} \left[\sum_{j=i}^{2n} N \left(\operatorname{eq}(i^2 - in - n^2, 0) \right), 1 \right] \right\}.$$

1.20 Prove that $Ack(4, n) \in \mathcal{PRF} - \mathcal{RF}$.

Proof. Let f(0) = 1, $f(n+1) = 2^{f(n)}$, we immediately have $f \in \mathcal{PRF}$, therefore $Ack(4, n) = f(n+3) - 3 \in \mathcal{PRF}$.

 $G(k,x) = 2^{2\cdots^x}$ is the control function of \mathcal{EF} . Assume that $\operatorname{Ack}(4,n) \in \mathcal{EF}$, thus $G'(k,x) = \operatorname{Ack}(4,x+k) + 3 \in \mathcal{EF}$. However, G(k,x) < G'(k,x) contradicts the assumption, yielding $\operatorname{Ack}(4,n) \in \mathcal{PRF} - \mathcal{EF}$.

- $1.21 \quad 1.21$
- $1.22 \quad 1.22$
- $1.23 \quad 1.23$
- **1.24** Define $g: \mathbb{N} \to \mathbb{N}$ by g(0) = 0, g(1) = 1, g(n+2) = rs((2002g(n+1) + 2003g(n)), 2005). Find g(2006).

Proof. We have $g(n) = \operatorname{rs}\left(\frac{(-1)^{n+1} + 2003^n}{2004}, 2005\right)$ and $2005 = 5 \cdot 401$, therefore

$$g(2006) \mod 2005 = \left((2003^{2006} - 1) \times 2004^{-1} \right) \mod 2005$$

= $\left((2^{2006} - 1) \times 2004 \right) \mod 2005$.

Since $a^{p-1} \equiv 1 \mod p$ for all prime p, $2^{2006} \equiv 2^2 \equiv 4 \mod 5$, $2^{2006} \equiv 2^6 \equiv 64 \mod 401$. According to the Chinese remainder theorem, $2^{2006} \equiv 64 \mod 2005$. Therefore, $q(2006) \equiv 63 \times 2004 \equiv 1942 \mod 2005$.

$1.25 \quad 1.25$