Vinícius de Barros Silva 10335913

a) Para a FSM Guru

1c) captura: imagem do Wave onde fique evidente os 3 estados de espera da FSM Guru e de suas relações com os sinais respectivos que os liberam 1t) texto: para cada evento acima, explicar o ocorrido de acordo com a interação do circuito com o ambiente externo.

START_WALKING - START STEP

(Imagem 1)

Após a inicialização do tabuleiro, a FSM_GURU recebe o sinal START_STEP = 1 isso faz com que a máquina mude para o estado RAND para receber o número aleatório para determinar a posição inicial do guru, para o usuário nada acontece, o tabuleiro está em branco nesse momento.

WAIT COUNT GURU - CNT GURU RDY

(Imagem 2)

Nesse estado a FSM_GURU aguarda o sinal CNT_GURU_RDY para poder dar um passo com o guru, quando CNT_GURU_RDY = 1, teremos a mudança para o estado INCR onde incrementamos o contador para mudar a posição do guru. Do ponto de vista do usuário, até esse momento o guru apareceu na posição aleatória determinada.

CHECK LAST - GO GURU e END GURU

(Imagem 3)

Aqui a FSM_GURU aguarda o sinal GO_GURU =1 para junto ao sinal END_GURU decidir qual o próximo estado, isto é, se escreve o guru na posição incrementada, se escreve duo caso haja encontro ou se o guru utrapassou a borda do tabuleiro e uma nova rodada deve iniciar. Do ponto de vista do usuário, essa transição de estado trata dos passos do guru, se ele andou uma casa, se encontrou o discípulo ou se passou do tabuleiro.

2c) captura: imagem dos eventos em SIM-2 e SIM-3 com os estados de finalização da iteração e o sinais que os determinam.

(Imagem 4)

Momento em que o GURU incrementa para 8 e assim END_GURU = 1 e a FSM GURU passa ao estado LAST indicando que houve overflow, isto é, o guru passou pela borda do tabuleiro sem o discípulo ter sido ativado e uma nova rodada deve iniciar.

(Imagem 5)

Momento em que END GURU = 1 e espera a FSM DISC chegar ao fim

(Imagem 6)

Momento em que END_DISC = 1 e a FSM_DISC chega ao fim da rodada após passar pela casa 4. Importante notar que nessa simulação o guru termina antes do discípulo, então o FSM_GURU aguarda o discípulo terminar para uma nova rodada.

2t) texto: Inclua o trecho do código VHDL da FSM Main onde estes eventos são determinados e explicar o ocorrido

Trecho de código que determina o término da rodada.

Para SIM-2, o guru termina e teremos (end_of_guru = '1') AND (en_disc = '0') AND (duo_formed = '0') assim para esse caso o próximo estado é CNT_PREPARE para uma nova rodada.

para SIM-3, o guru termina indicando END_GURU = 1 e a FSM_GURU aguarda enquanto o discípulo não termina,quando o discípulo envia o sinal de término END_DISC = 1 e DUO_FORMED =0 teremos (end_of_guru = '1') AND (end_of_disc = '1') AND (duo_formed = '0') AND (en_disc = '1'), assim a FSM MAIN troca do estado CHECK_END para CNT_PREPARE para nova rodada.

- b) Para a interação com o Circuit Disciple
- 3c) captura: imagem dos eventos em SIM-3 onde o sinal enable é ativado. Indicar o primeiro efeito que isto causa nos sinais provenientes do circuito do discípulo.
- 3t) Explique a correlação entre o enable e o sinal do discípulo.

(Imagem 7)

O sinal de Enable é ativo quando o botão é pressionado, isso indica que o jogador deu início ao funcionamento do discípulo. Junto ao sinal de enable o primeiro efeito é a alteração do valor do sinal de velocidade do discípulo , nesse caso BUTTON_SPEED = 1. Com o enable ativado e a velocidade definida, o sinal CNT_DISC_RDY pode ser disparado de acordo com a velocidade para computar os passos do discípulo, como também, o sinal go_disc agora entra em ação para o estado "CHECK_LAST" do discípulo tomar a decisão de próximo estado da máquina de estados do discípulo, junto ao sinal END_OF_DISC.

4c) captura: imagem do evento SIM-3, com a chegada do sinal end_of_disciple e a geração do end_of_guru. Identifique o valor dos respectivos endereços na memória que causaram a ativação destes sinais.

(Imagem 8)

O endereço de memória que causou o disparo de END GURU foi "8"

(Imagem 9)

o endereço de memória que causou o disparo de END DISC foi "80"

4t) Considerando o número aleatório da SIM-3 para o guru, faça um cálculo aproximado do instante da partida do discípulo (acionamento do enable e do definição do valor de sys_speed) para que haja o encontro entre o guru e o discípulo, e em que casa (endereço) isto ocorreria. Sugestão: aplique este cálculo no testbench para verificar o sinal de duo_formed.

Podemos disparar o discípulo junto ao disparo do guru em 94785 ns e utilizar a velocidade 4x para causar o encontro com o guru na casa 4, isso pode ser

observado no wave da simulação gerada com as devidas modificações no testbench.

(Imagem 10)

```
wait for 1.lus;
                      checkWC('0','1','1', 52-i*8, 60-i*8, 4, 52-i*8, 8); --
                     wait for CLK_PERIOD;
                      checkWC('0','1','1', 52-i*8, 60-i*8, 4, 60-i*8, 1); --
                     wait for CLK_PERIOD;
                      checkWC('0','1','0', 52-i*8, 60-i*8, 4, 60-i*8, 1); --
194
                  wait for 2.08us;
                  checkWC('0','1','0', 80, 4, 4, 80, 1); --
                  wait for 1.lus;
                  checkWC('0','1','1', 80, 4, 4, 4, 1); --
                  wait for CLK_PERIOD;
                  checkWC('0','1','0', 80, 4, 4, 4, 1); --
                  wait for 1.2us; --intervalo de tempo até o discipulo gerar o end_of_disc
                  checkWC('1','1','0', 80, 4, 4, 80, 1); --
                  wait for 2.lus;
                  checkWC('0','0','0', 0, 0, 0, 0, 0);
```