Contents

1 7	iangle	1
1.1	Vectors]
1.2	Median]
1.3	Altitude	1

Chapter 1

Triangle

Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \, \mathbf{B} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}, \, \mathbf{c} = \begin{pmatrix} -4 \\ 0 \end{pmatrix}, \tag{1.1}$$

1.1. Vectors

1.2. Median

1.3. Altitude

1.3.1. \mathbf{D}_1 is a point on BC such that

$$AD_1 \perp BC \tag{1.3.1.1}$$

and AD_1 is defined to be the altitude. Find the normal vector of AD_1 .

Solution: Given

$$\mathbf{A} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{1.3.1.2}$$

$$\mathbf{A} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{1.3.1.2}$$

$$\mathbf{B} = \begin{pmatrix} 5 \\ 4 \end{pmatrix} \tag{1.3.1.3}$$

$$\mathbf{C} = \begin{pmatrix} -4\\0 \end{pmatrix} \tag{1.3.1.4}$$

The normal vector of AD_1 is orthogonal to AD_1 and hence parallel to BC

Direction vector $\mathbf{m}_{\mathbf{BC}}$

$$= \mathbf{C} - \mathbf{B} \tag{1.3.1.5}$$

$$= \begin{pmatrix} -4\\0 \end{pmatrix} - \begin{pmatrix} 5\\4 \end{pmatrix} \tag{1.3.1.6}$$

$$m_{BC} = \begin{pmatrix} 9\\4 \end{pmatrix} \tag{1.3.1.7}$$

Normal vector of AD_1 is

$$\mathbf{n} = \begin{pmatrix} 9 \\ 4 \end{pmatrix} \tag{1.3.1.8}$$

1.3.2. Find the equation of AD_1 .

Solution: from (1.3.1.8)

$$\mathbf{n} = \begin{pmatrix} 9 \\ 4 \end{pmatrix} \tag{1.3.2.1}$$

The equation of AD_1 is

$$\mathbf{n}^{\mathsf{T}}(\mathbf{x} - \mathbf{A}) = 0 \tag{1.3.2.2}$$

$$\implies \left(9 \quad 4\right)\mathbf{x} = \left(9 \quad 4\right) \begin{pmatrix} 1\\0 \end{pmatrix} \tag{1.3.2.3}$$

$$\begin{pmatrix} 9 & 4 \end{pmatrix} \mathbf{x} = 9 \tag{1.3.2.4}$$

see Fig. 1.1

Figure 1.1: Line AD

1.3.3. Find the equations of the altitudes BE_1 and CF_1 to the sides AC and AB respectively.

Solution: Given

$$\mathbf{A} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{1.3.3.1}$$

$$\mathbf{B} = \begin{pmatrix} 5\\4 \end{pmatrix} \tag{1.3.3.2}$$

$$\mathbf{C} = \begin{pmatrix} -4\\0 \end{pmatrix} \tag{1.3.3.3}$$

Direction vector

$$\mathbf{m_{AB}} = \mathbf{B} - \mathbf{A} \tag{1.3.3.4}$$

$$= \begin{pmatrix} 5\\4 \end{pmatrix} - \begin{pmatrix} 1\\0 \end{pmatrix} \tag{1.3.3.5}$$

$$= \begin{pmatrix} -4 \\ -4 \end{pmatrix} \tag{1.3.3.6}$$

$$\mathbf{m_{AC}} = \mathbf{C} - \mathbf{A} \tag{1.3.3.7}$$

$$= \begin{pmatrix} -4\\0 \end{pmatrix} - \begin{pmatrix} 1\\0 \end{pmatrix} \tag{1.3.3.8}$$

$$= \begin{pmatrix} -5\\0 \end{pmatrix} \tag{1.3.3.9}$$

(1.3.3.10)

Normal vector of BE_1 is orthogonal to BE_1 and hence parallel to AC

and normal vector of CF_1 is orthogonal to CF_1 and hence parallel to AB

$$\mathbf{n_{BE_1}} = \mathbf{m_{AC}} \tag{1.3.3.11}$$

$$= \begin{pmatrix} -4\\ -4 \end{pmatrix} \tag{1.3.3.12}$$

$$\mathbf{n_{CF_1}} = \mathbf{m_{AB}} \tag{1.3.3.13}$$

$$= \begin{pmatrix} -5\\0 \end{pmatrix} \tag{1.3.3.14}$$

(1.3.3.15)

Equation of line is represented by:

$$\mathbf{n}^{\top} \left(\mathbf{x} - \mathbf{p} \right) = 0 \tag{1.3.3.16}$$

(a) The equation of line CF_1

$$\mathbf{n}_{CF_1}^{\top} \left(\mathbf{x} - \mathbf{C} \right) = 0 \tag{1.3.3.17}$$

$$\mathbf{n}^{\top} C F_1 \mathbf{x} = \mathbf{n}^{\top} C F_1 \mathbf{C} \tag{1.3.3.18}$$

$$\begin{pmatrix} -5 \\ 0 \end{pmatrix}^{\top} \mathbf{x} = \begin{pmatrix} -5 \\ 0 \end{pmatrix}^{\top} \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$
 (1.3.3.19)

$$\begin{pmatrix} -5 & 0 \end{pmatrix} \mathbf{x} = -25 \tag{1.3.3.20}$$

(b) The equation of line BE_1

$$\mathbf{n}_{BE_1}^{\top} \left(\mathbf{x} - \mathbf{B} \right) = 0 \tag{1.3.3.21}$$

$$\mathbf{n}^{\top} C F_1 \mathbf{x} = \mathbf{n}^{\top} B E_1 \mathbf{B} \tag{1.3.3.22}$$

$$\begin{pmatrix} -4 \\ -4 \end{pmatrix}^{\top} \mathbf{x} = \begin{pmatrix} -4 \\ -4 \end{pmatrix}^{\top} \begin{pmatrix} -4 \\ 0 \end{pmatrix}$$
 (1.3.3.23)

$$\begin{pmatrix} -4 & -4 \end{pmatrix} \mathbf{x} = 16 \tag{1.3.3.24}$$

Figure 1.2: Lines $\mathbf{BE_1}$ and $\mathbf{CF_1}$

1.3.4. Find the intersection **H** of BE_1 and CF_1 .

Solution: Equation of $\mathbf{BE_1}$

$$\begin{pmatrix} -5 & 0 \end{pmatrix} \mathbf{x} = -25 \tag{1.3.4.1}$$

Equation of $\mathbf{CF_1}$

$$\begin{pmatrix} -4 & -4 \end{pmatrix} \mathbf{x} = 16 \tag{1.3.4.2}$$

Therefore ,we need to solve the following equation to get \mathbf{H} :

$$\begin{pmatrix} -5 & 0 \\ -4 & -4 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -25 \\ 16 \end{pmatrix} \tag{1.3.4.3}$$

which can be solved as

$$\begin{pmatrix} -5 & 0 & -25 \\ -4 & -4 & 16 \end{pmatrix} \xrightarrow{R_1 \leftarrow -R_1/5} \begin{pmatrix} 1 & 0 & 5 \\ -4 & -4 & 16 \end{pmatrix}$$
 (1.3.4.4)

$$\stackrel{R_2 \leftarrow R_2 + 4R_1}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 5 \\ 0 & -4 & 36 \end{pmatrix}$$
(1.3.4.5)

$$\stackrel{R_2 \leftarrow -R_2/4}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & -9 \end{pmatrix}$$
(1.3.4.6)

yielding

$$\mathbf{H} = \begin{pmatrix} 5 \\ -9 \end{pmatrix}, \tag{1.3.4.7}$$

See Fig. 1.3

Figure 1.3: Intersection point ${\bf H}$ of altitudes ${\bf B}E_1$ and ${\bf C}F_1$ plotted using python

1.3.5. Verify that

$$(\mathbf{A} - \mathbf{H})^{\mathsf{T}} (\mathbf{B} - \mathbf{C}) = 0 \tag{1.3.5.1}$$

Solution:

$$\mathbf{A} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{1.3.5.2}$$

$$\mathbf{B} = \begin{pmatrix} 5 \\ 4 \end{pmatrix} \tag{1.3.5.3}$$

$$\mathbf{C} = \begin{pmatrix} -4\\0 \end{pmatrix} \tag{1.3.5.4}$$

$$\mathbf{H} = \begin{pmatrix} 5 \\ -9 \end{pmatrix} \tag{1.3.5.5}$$

$$\mathbf{A} - \mathbf{H} = \begin{pmatrix} -4\\9 \end{pmatrix}, \ \mathbf{B} - \mathbf{C} = \begin{pmatrix} 9\\4 \end{pmatrix} \tag{1.3.5.6}$$

$$\implies (\mathbf{A} - \mathbf{H})^{\top} (\mathbf{B} - \mathbf{C}) = \begin{pmatrix} -4 & 9 \end{pmatrix} \begin{pmatrix} 9 \\ 4 \end{pmatrix} = 0 \qquad (1.3.5.7)$$

see Fig. 1.4

Figure 1.4: Plot of points A,B,C and H $\,$