CORONA VIRUS ANALYSIS

COVID-19 DATASET ANALYSIS

USING SQL BY

PREM NIMJE

CONTENTS

INTRODUCTION

- The CORONA VIRUS pandemic has had a significant impact on public health and has created an urgent
- need for data-driven insights to understand the spread of the virus. As a data analyst, you have been
- tasked with analyzing a CORONA VIRUS dataset to derive meaningful insights and present your findings.

DATASET VIEW

DATA ANALYSIS OF THE DATASET

Loading the Dataset

Cleaning Dataset

Analyzing the questions and answers

Loading the dataset

SELECT * FROM corona_data.`corona virus dataset`;

Result Grid		Export: Wrap Cell Content: 1A Fetch rows:						
	Province	Country/Region	Latitude	Longitude	Date	Confirmed	Deaths	Recovered
•	Afghanistan	Afghanistan	33.93911	67.709953	22-01-2020	0	0	0
	Afghanistan	Afghanistan	33.93911	67.709953	23-01-2020	0	0	0
	Afghanistan	Afghanistan	33.93911	67.709953	24-01-2020	0	0	0
	Afghanistan	Afghanistan	33.93911	67.709953	25-01-2020	0	0	0
	Afghanistan	Afghanistan	33.93911	67.709953	26-01-2020	0	0	0
rus	dataset 1 x							

Cleaning the Dataset

Checking for missing value/Null Value

Result 3 ×

Output

IF NULL VALUES ARE PRESENT, UPDATE THEM WITH ZEROS FOR ALL COLUMNS

The output for NULL values being present is zero, meaning there are no NULL values in any of the columns.

```
-- Q2. If NULL values are present, update them with zeros for all columns.

UPDATE corona_data.`corona virus dataset`

SET

Province = COALESCE(Province, 0),

`Country/Region` = COALESCE(`Country/Region`, 0),

Latitude = COALESCE(`Latitude`, 0),

Longtitude = COALESCE(`Longtitude`, 0),

Date = COALESCE(`Date`, 0),

Confirmed = COALESCE(Confirmed, 0),

Deaths = COALESCE(Deaths, 0),

Recovered = COALESCE(Recovered, 0);
```

Analyzing the questions and answers

```
-- Q3. check total number of rows

USE corona_data;

SELECT COUNT(*) AS total_number_of_rows

FROM corona_data.`corona virus dataset`;

-- Anwer: The total number of rows is 78386
```


Check what is start_date and end_date

```
USE corona_data;
  SELECT
      MIN(STR TO DATE(Date, '%d-%m-%Y')) AS start date,
       MAX(STR_TO_DATE(Date, '%d-%m-%Y')) AS end_date
  FROM
       corona data. corona virus dataset;
     Anwer: The start_date is '2020-01-22' and the end_date is '2021-06-13'
                           Export: Wrap Cell Content: TA
Result Grid
        Filter Rows:
        end_date
  start date
 2020-01-22
        2021-06-13
```

Result Grid

Number of month present in dataset

```
USE corona_data;
SELECT COUNT(DISTINCT MONTH(STR_TO_DATE(Date, '%d-%m-%Y'))) AS num_of_months
FROM corona_data.`corona virus dataset`;
-- Anwer: Number of month present is 12
```


Find monthly average for confirmed, deaths, recovered

```
USE corona_data;
SELECT
    MONTH(STR_TO_DATE(Date, '%d-%m-%Y')) AS month,
    AVG(Confirmed) AS avg_confirmed,
    AVG(Deaths) AS avg_deaths,
    AVG(Recovered) AS avg_recovered
FROM corona_data.`corona virus dataset`
GROUP BY MONTH(STR_TO_DATE(Date, '%d-%m-%Y'))
ORDER BY MONTH;
```

				1	##L 1	_			
Res	sult Grid	🔢 🙌 Filter I	Rows:	Export	Wrap Cell Content	<u>‡A</u>			
	month	avg_confirmed	avg_deaths	avg_recovered					
•	1	2958.2814	63.6812	1451.4555					Resul Grid
	2	1203.1187	34.2777	769.1034					_
	3	1538.9638	33.9302	840.0799					Ē
	4	2602.5778	59.9805	1623.2136					Form
	5	2290.0519	53.5306	2162.9021					Edito
	6	1357.8852	40.8357	1220.1533					
	7	1432.3611	35.1096	983.0582					E
	8	1611.8429	37.5367	1299.2947					
	9	1784.5874	34.7773	1438.9067					Field Type
	10	2412.1996	36.7583	1420.6431					
	11	3592.1944	56.7634	1985.3446					
	12	4050.4397	71.2183	2497.8850			А	ctivate Windows	V

Find most frequent value for confirmed, deaths, recovered each month

most_frequent_recovered

USE corona data;

most_frequent_confirmed

most_frequent_deaths

```
SELECT
     MONTH(STR TO DATE(Date, '%d-%m-%Y')) AS month,
     MAX(Confirmed) AS most frequent confirmed,
     MAX(Deaths) AS most frequent deaths,
     MAX(Recovered) AS most_frequent_recovered

→ FROM (
     SELECT
         Date,
         Confirmed,
         Deaths,
         Recovered,
         COUNT(*) AS frequency
     FROM corona data. corona virus dataset
     GROUP BY Date, Confirmed, Deaths,
       subquery
             MONTH(STR TO DATE(Date, '%d-%m-%Y'))
            MONTH:
Export: Wrap Cell Content: TA
```

Find minimum values for confirmed, deaths, recovered per year

```
USE corona_data;
SELECT
   YEAR(STR_TO_DATE(Date, '%d-%m-%Y')) As year,
    MIN(Confirmed) AS min confirmed,
    MIN(Deaths) AS min_deaths,
    MIN(Recovered) AS min recovered
FROM
 'corona virus dataset'
GROUP BY
    YEAR(STR TO DATE(Date, '%d-%m-%Y'))
ORDER BY YEAR;
```

Result Grid				Export:		Wrap Cell Content:	‡A
	year	min_confirmed	min_deaths	min_recovered			
٨	2020	0	0	0			
	2021	0	0	0			

Find maximum values of confirmed, deaths, recovered per year

```
USE corona_data;

SELECT

YEAR(STR_TO_DATE(Date, '%d-%m-%Y')) AS year,

MAX(Confirmed) AS max_confirmed,

MAX(Deaths) AS max_deaths,

MAX(Recovered) AS max_recovered

FROM

'corona virus dataset'

GROUP BY

YEAR(STR_TO_DATE(Date, '%d-%m-%Y'))

ORDER BY

YEAR;

-- Anwer: :Run the code to see the maximum values for confirmed, deaths, and recovered cases per year.
```


Result Grid

The total number of case of confirmed, deaths, recovered each month

```
USE corona_data;

SELECT

MONTH(STR_TO_DATE(Date, '%d-%m-%Y')) AS month,

SUM(Confirmed) AS total_confirmed_cases,

SUM(Deaths) AS total_death_cases,

SUM(Recovered) AS total_recovered_cases

FROM

'corona virus dataset'

GROUP BY

MONTH(STR_TO_DATE(Date, '%d-%m-%Y'))

ORDER BY

MONTH;
```

Re	sult Grid	Filter Rows:		Export: 📳 Wrap Cell Cor
	month	total_confirmed_cases	total_death_cases	total_recovered_cases
•	1	18678589	402083	9164490
	2	10560976	300890	6751190
	3	14694026	323966	8021083
	4	24047819	554220	14998494
	5	21865416	511110	20651389
	6	8991916	270414	8079855
	7	6838092	167613	4693120
	8	7694938	179200	6202833
	9	8244794	160671	6647749
	10	11515841	175484	6782150
	11	16595938	262247	9172292

Check how corona virus spread out with respect to confirmed case

total_confirmed_cases | average_confirmed_cases | variance_confirmed_cases | stddev_confirmed_cases

157288925.07796532

2156.8283

12541,488152446875

Check how corona virus spread out with respect to death case per month

Export: Wrap Cell Content: TA

```
-- Q12. Check how corona virus spread out with respect to death case per month
-- (Eg.: total confirmed cases, their average, variance & STDEV )

USE corona_data;

SELECT

MONTH(STR_TO_DATE(Date, '%d-%m-%Y')) AS month,

SUM(Deaths) AS total_death_cases,

AVG(Deaths) AS average_death_cases,

VARIANCE(Deaths) AS variance_death_cases,

STDDEV(Deaths) AS stddev_death_cases

FROM

`corona virus dataset`

GROUP BY

MONTH(STR_TO_DATE(Date, '%d-%m-%Y'))

ORDER BY

MONTH;
```

month	total_death_cases	average_death_cases	variance_death_cases	stddev_death_cases
1	402083	63.6812	78999.5307609659	281.0685517110833
2	300890	34.2777	34848.64785490521	186.67792546229245
3	323966	33.9302	29781.93292256146	172.57442719754704
4	554220	59.9805	67898.57559453539	260.5735512183372
5	511110	53.5306	76767.73838185583	277.06991605343194
6	270414	40.8357	46243.20314719306	215.04232873365433
7	167613	35.1096	21140.154944373826	145.39654378414167
8	179200	37.5367	23272.99645685882	152.55489653517785
9	160671	34.7773	20102.7692237308	141.78423475030925
10	175484	36.7583	17580.07101972725	132.589860169348
11	262247	56.7634	27773.793596962234	166.6547136955995
40	220005	74 2402	CE24E 20220124001	255 6274020720277

Result Grid Filter Rows:

Check how corona virus spread out with respect to recovered case-- (Eg.: total confirmed cases, their average, variance & STDEV)USE corona_data;

```
USE corona_data;

SELECT

SUM(Recovered) AS total_recovered_cases,

AVG(Recovered) AS average_recovered_cases,

VARIANCE(Recovered) AS variance_recovered_cases,

STDDEV(Recovered) AS stddev_recovered_cases

FROM

`corona virus dataset`;
```

Re	esult Grid 📳 🙌 Filter	r Rows:	Export: Wrap Cell Content: TA			
	total_recovered_cases	average_recovered_cases	variance_recovered_cases	stddev_recovered_cases		
*	113089548	1442.7264	107029523.26229636	10345.507395110999		

Find Country having highest number of the Confirmed case

Find Country having lowest number of the death case

```
USE corona_data;
SELECT
     `Country/Region`,
     MIN(Deaths) AS lowest_death_cases
FROM
     `corona virus dataset`
GROUP BY
     `Country/Region`
ORDER BY
     lowest_death_cases ASC
LIMIT 1;
-- Anwer: The country with the lowest number of death case is 'Afghanistan'
                           Export: Wrap Cell Content: A Fetch rows:
Result Grid
         Filter Rows:
  Country/Region lowest_death_cases
  Afghanistan
```

Find top 5 countries having highest recovered case

INSIGHT

Highest and Lowest Averages:

The average number of recovered cases is highest in the 12th month and lowest in the second month.

Highest and Lowest Frequencies:

- ▶ The 6th month sees the highest frequency of deaths, while the 8th month has the lowest.
- ▶ The 12th month has the highest frequency of recoveries, with the 1st month having the lowest.

Highest Total Cases:

- ▶ The 4th month records the highest confirmed cases, while the 7th month has the lowest.
- ▶ The 4th month also records the highest number of deaths, with the 9th month having the lowest.
- ▶ The 5th month sees the highest total recovered cases, with the 7th month having the lowest.

Year-wise Observations:

▶ 2020 records the highest values for confirmed and recovered cases, while 2021 records the highest for deaths.

Overall Statistics:

- ▶ The total spread of COVID-19 is substantial, with over 169 million confirmed cases.
- ▶ The average confirmed cases variance and standard deviation indicate significant variability in spread.

Country-specific Observations:

- Turkey has the highest confirmed cases, while Afghanistan has the lowest number of deaths.
- India, Brazil, the United States, Turkey, and Russia are the countries with the highest reported cases.

CONCLUSION

The insights drawn from the data suggest a dynamic and varied pattern of COVID-19 spread across different time periods and regions. While some months and years have seen peaks in confirmed cases, deaths, and recoveries, others have experienced relatively lower numbers. The data also highlights the disparities among countries in terms of the severity of the pandemic. Understanding these patterns is crucial for formulating effective public health policies and interventions to mitigate the impact of the virus. Further analysis could delve into factors influencing these variations, such as government responses, healthcare infrastructure, and population demographics.