Missing Data Basics Utrecht University Winter School: Missing Data in R

Kyle M. Lang

Department of Methodology & Statistics Utrecht University

2022-02-03

Introduction

- 1. What's your name?
- 2. Where are you from/where do you work?
- 3. What type of research do you do?
- 4. What type of missing data problems do you encounter in your research?
- 5. What statistical software do you use/do you have programming experience?
- 6. What's your math background?

Outline

Missing Data Descriptives

Missing Data Mechanisms

Missing Data Treatments

A Little Notation

 $Y := An N \times P$ Matrix of Arbitrary Data

 $Y_{mis} := \text{The } missing \text{ part of } Y$

 $Y_{obs} := \text{The } observed \text{ part of } Y$

 $R := An N \times P$ pattern matrix encoding nonresponse

What are Missing Data?

Missing data are empty cells in a dataset where there should be observed values.

• The missing cells correspond to true population values, but we haven't observed those values.

What are Missing Data?

Missing data are empty cells in a dataset where there should be observed values.

 The missing cells correspond to true population values, but we haven't observed those values.

Not every empty cell is a missing datum.

- Quality-of-life ratings for dead patients in a mortality study
- Firm profitability after the company goes out of business
- Self-reported severity of menstrual cramping for men
- Empty blocks of data following "gateway" items

Missing Data Descriptives

Missing Data Pattern

Missing data (or response) patterns represent unique combinations of observed and missing items.

• P items $\Rightarrow 2^P$ possible patterns.

	Χ	Υ
1	Х	у
2	Χ	
3		У
4		

Patterns for P = 2

	Χ	Υ	Z
1	Х	у	Z
2	Χ	У	
3	Χ		Z
4		У	Z
5	Χ		
6			Z
7		У	
8	•	<u>.</u>	

Patterns for P = 3

Missing Data Pattern

The concept of a "missing data pattern" can also be used to classify the spatial arrangement of missing cells on a data set.

- Univariate
 - Missing data occur on only one variable
- Monotone
 - The proportion of complete elements, in both rows and columns, decreases when traversing the data set.
 - The observed cells can be arranged into a "staircase" pattern.
- Arbitrary
 - Missing values are "randomly" scattered throughout the data set.

Example Missing Data Patterns

	Χ	Υ	Z		Χ	Υ	Z			Χ	Υ	
1	Х	У	Z	1	Х	У	Z		1	Х		
2	Χ	У	Z	2	Χ	У	Z		2	Χ	У	
3	Χ	У	Z	3	Χ	У	Z		3	Χ	У	
4	Χ	У	Z	4	Χ	У			4	Χ		
5		У		5	Χ	У			5	Χ	У	
6	Χ			6	Χ	У			6	Χ		
7	Χ		Z	7	Χ				7		У	
8	Χ		Z	8	Χ				8	Χ	У	
9	Χ		Z	9	Χ				9	Χ		
10	Χ		Z	10					10	Χ	У	

Monotone Pattern

Arbitrary Pattern

Univariate Pattern

Nonresponse Rates

PERCENT/PROPORTION MISSING

- The proportion of cells containing missing data
- Good early screening measure
- Should be computed for each variable, not for the entire dataset

ATTRITION RATE

 The proportion of participants that drop-out of a study at each measurement occasion

PERCENT/PROPORTION OF COMPLETE CASES

- The proportion of observations with no missing data
- Often reported but nearly useless quantity

Nonresponse Rates

COVARIANCE COVERAGE

- The proportion of cases available to estimate a given pairwise relationship (e.g., a covariance between two variables)
- Very important to have adequate coverage of the parameters you want to estimate

FRACTION OF MISSING INFORMATION

- Associated with an estimated parameter, not with an incomplete variable
- Like an \mathbb{R}^2 for the missing data
- Most important diagnostic value for missing data problems
- Can only be computed after treating the missing data

Nonresponse Rates

INFLUX

Foo

OUTFLUX

Bar

Covariance Coverage Examples

- What is the coverage for cov(X, Y)?
- What is the coverage for cov(W, Y)?
- What about cov(X, Z)?

	W	Χ	Υ	Z
1	W	Х	У	
2	W	Χ	У	
3	W	Χ	У	
4	W	Χ	У	
5	W	Χ	У	
6	W		У	Z
7	W		У	Z
8	W		У	Z
9	W		У	Z
10	W		У	Z

Nonresponse Rate Examples

- What is the percent missing at Time 2?
- What is the attrition rate at Time 3?

	T1	T2	Т3	T4
1	x1	x2	х3	x4
2	x1	x2	х3	x4
3	x1	x2	х3	x4
4	x1	x2	х3	
5	x1	x2	х3	
6	x1	x2		
7	x1	x2		•
8	x1			
9	x1			
10	x1	•	•	•

Missing Data Mechanisms

Missing Data Mechanisms

MCAR:

$$P(R|Y_{mis}, Y_{obs}) = P(R)$$

MAR:

$$P(R|Y_{mis}, Y_{obs}) = P(R|Y_{obs})$$

MNAR:

$$P(R|Y_{mis}, Y_{obs}) \neq P(R|Y_{obs})$$

Simulate Some Toy Data

```
nObs <- 5000 # Sample Size
pm <- 0.3 # Proportion Missing
sigma \leftarrow matrix(c(1.0, 0.5, 0.0,
                   0.5. 1.0. 0.3.
                   0.0. 0.3. 1.0).
                 ncol = 3
simDat \leftarrow as.data.frame(rmvnorm(nObs, c(0, 0, 0), sigma))
colnames(simDat) <- c("y", "x", "z")</pre>
x \le simDat$x
y <- simDat$y
z <- simDat$z
cor(y, x) # Check correlation between X and Y
[1] 0.5031885
```

MCAR Example

```
## Simulate MCAR Missingness:
rVec1 <- sample(1 : length(y), size = pm * length(y))

y2 <- y
y2[rVec1] <- NA

cor(y2, x, use = "pairwise") # Look at correlation

[1] 0.5229792</pre>
```

MCAR Example

MAR Example

```
## Simulate MAR Missingness:
rVec2 <- x < quantile(x, probs = pm)
mean(rVec2)

[1] 0.3

y3 <- y
y3[rVec2] <- NA

cor(y3, x, use = "pairwise") # Not looking so good :(

[1] 0.3870092</pre>
```

MAR Example

MNAR Example

```
## Simulate MNAR Missingness:
rVec3 <- y < quantile(y, probs = pm)
mean(rVec3)

[1] 0.3

y4 <- y
y4[rVec3] <- NA

cor(y4, x, use = "pairwise") # Hmm...looks pretty bad.

[1] 0.3873756</pre>
```

MNAR Example

In our previous MAR example, ignoring the predictor of missingness actually produces *Indirect MNAR*.

In our previous MAR example, ignoring the predictor of missingness actually produces *Indirect MNAR*.

QUESTION: What happens if we ignore the predictor of missingness, but that predictor is independent of our study variables?

In our previous MAR example, ignoring the predictor of missingness actually produces *Indirect MNAR*.

QUESTION: What happens if we ignore the predictor of missingness, but that predictor is independent of our study variables?

ANSWER: We get back to MCAR:)

The missing data mechanisms are not simply characteristics of an incomplete dataset; we also need to account for the analysis.

Testing the Missing Data Mechanism

We cannot test for MAR or MNAR.

• To do so would require knowing the values of the missing data.

We can test for MCAR (sort of).

- With MCAR, the missing data and the observed data should have the same distribution.
- We can test for MCAR by testing the distributions of *auxiliary* variables, Z.
 - Use a t-test to compare the subset of Z that corresponds to Y_{mis} to the subset corresponding to Y_{obs} .

Little's MCAR Test

Missing Data Treatments

Listwise Deletion (Complete Case Analysis)

- Use only complete observations for the analysis
 - Very wasteful (can throw out lots of useful data)
 - Loss of statistical power

Pairwise Deletion (Available Case Analysis)

- Use only complete pairs of observations for analysis
 - Different samples sizes for different parameter estimates
 - Can cause computational issues

(Unconditional) Mean Substitution

- Replace Y_{mis} with \bar{Y}_{obs}
 - Negatively biases regression slopes and correlations
 - Attenuates measures of linear association

```
Error in imposeMissData(data =
dat1, targets = list(mar =
c("ldl", "glu"), : could not
find function "imposeMissData"
Error in eval(expr, envir,
enclos): object 'dat2' not found
Error in eval(expr, envir,
enclos): object 'dat2' not found
```



```
Error in FUN(X[[i]], ...):
object 'dat2' not found
```

(Unconditional) Mean Substitution

- Replace Y_{mis} with \bar{Y}_{obs}
 - Negatively biases regression slopes and correlations
 - Attenuates measures of linear association

(Unconditional) Mean Substitution

- Replace Y_{mis} with \bar{Y}_{obs}
 - Negatively biases regression slopes and correlations
 - Attenuates measures of linear association

```
Error in check.dataform(data):
object 'dat3' not found
Error in complete(miceM, 1):
object 'miceM' not found
Error in datM[!rVec, ] <- NA:
object 'datM' not found
Error in FUN(X[[i]], ...):
object 'dat2' not found
```

Deterministic Regression Imputation (Conditional Mean Substitution)

- Replace Y_{mis} with \widehat{Y}_{mis} from some regression equation
 - Positively biases regression slopes and correlations
 - Inflates measures of linear association

```
Error in check.dataform(data):
object 'dat3' not found
Error in complete(miceD, 1):
object 'miceD' not found
Error in datD[!rVec, ] <- NA:
object 'datD' not found
Error in FUN(X[[i]], ...):
object 'dat2' not found
```

Bad Methods (These almost never work)

Deterministic Regression Imputation (Conditional Mean Substitution)

- Replace Y_{mis} with \widehat{Y}_{mis} from some regression equation
 - Positively biases regression slopes and correlations
 - Inflates measures of linear association

```
Error in check.dataform(data):
object 'dat2' not found
Error in complete(miceD, 1):
object 'miceD' not found
Error in datD[!rVec, ] <- NA:
object 'datD' not found
Error in FUN(X[[i]], ...):
object 'dat2' not found
```

Bad Methods (These almost never work)

General Issues with Deletion-Based Methods

- Biased parameter estimates unless data are MCAR
- Generalizability issues

General Issues with Simple Single Imputation Methods

- Biased parameter estimates even when data are MCAR
- Attenuates variability in any treated variables

Bad Methods (These almost never work)

Averaging Available Items (Person-Mean Imputation)

- Compute aggregate scores using only available values
 - Missing data must be MCAR
 - Each item must contributes equally to the aggregate score

Last Observation Carried Forward (LOCF)

- Replace post-dropout values with the most recent observed value
 - Assume that dropouts would maintain their last known values
 - Attenuates estimates of growth/development

LOCF Viz

OK Methods (These work in some situations)

Stochastic Regression Imputation

- Fill Y_{mis} with \widehat{Y}_{mis} plus some random noise.
 - Produces unbiased parameter estimates and predictions
 - Computationally efficient
 - Attenuates standard errors
 - Makes Cls and prediction

```
Error in check.dataform(data):
object 'dat3' not found
Error in complete(miceS, 1):
object 'miceS' not found
Error in dats[!rVec, ] <- NA:
object 'dats' not found
Error in FUN(X[[i]], ...):
object 'dat2' not found
```

OK Methods (These work in some situations)

Nonresponse Weighting

- Weight the observed cases to correct for nonresponse bias
 - Popular in survey research and official statistics
 - Only worth considering with Unit Nonresponse
 - Doesn't make any sense with Item Nonresponse

Expectation Maximization

Multiple Imputation (MI)

- Replace the missing values with *M* plausible estimates
 - Essentially, a repeated application of stochastic regression imputation (with a particular type of regression model)
 - Produces unbiased parameter estimates and predictions
 - Produces "correct" standard errors, CIs, and prediction intervals
 - Very, very flexible
 - Computationally expensive

What happens when we apply MI to our previous MAR example?

The MI-based parameter estimate looks good.

 MI produces unbiased estimates of the parameter when data are MAR.

What about applying MI to our MNAR example?

The MI-based parameter estimate is still biased.

 MI cannot correct bias in parameter estimates when data are MNAR.

Bayesian Modeling

- Treat missing values as just another parameter to be estimated
 - Models can be directly estimated in the presence of missing data
 - Essentially, runs MI behind-the-scenes during model estimation
 - The predictors of nonresponse must be included in the model, somehow
 - Computationally expensive

Full Information Maximum Likelihood (FIML)

- Adjust the objective function to only consider the observed parts of the data
 - Models are directly estimated in the presence of missing data
 - The predictors of nonresponse must be included in the model, somehow
 - Unless you write your own optimization program, FIML is only available for certain types of models
 - In linear regression models, FIML cannot treat missing data on predictors (if the predictors are taken as fixed)

References

