Theorem Every tree with $p \ge 1$ vertices has exactly p-1 edges.

Proof By induction on p.

Base Case p = 1: The only tree (in fact graph) on 1 vertex is a single vertex.... which has no edges i.e. p - 1 = 0.

Inductive Hypothesis Assume $p \ge 2$ and that every tree with $1 \le p' < p$ vertices has exactly p' - 1 edges.

Let T be a tree with p vertices. Since $p \ge 2$ and T is connected, it has some edge e = xy.

Then since T has no cycles, the edge e is a bridge of T then by our earlier lemma T - e has exactly two components. T_x continus x and T_y contains y.

Since T_x and T_y are components, both are connencted. Neither T_x nor T_y contains a cycle, since other wise T would have a cycle.

Let p_x be the number of vertices of T_x and p_y be the number of vertices of T_y .

Then $1 \le p_x < p$ since $x \in V(T_x)$ and $y \notin V(T_y)$.

Similarly, $1 \le p_y < p$.

Hence by Inductive Hypothesis, we find that T_x has exactly $p_x - 1$ edges and T_y has exactly $p_y - 1$ edges.

So
$$|E(T)| = (p_x - 1) + (p_y - 1) + 1 = p_x + p_y - 1 = p - 1$$

Therefore by induction the theorem is proved \square (\odot)

 $\star\star\star$ **NOTE** $\star\star\star$ When using induction in graph theory, in the induction step you must consider a **general** graph (with the given properties) and do something to obtain a **smaller** graph in which you apply the inductive hypothesis!

Definition A vertex x of degree 1 in a tree T is called a *leaf*.

Then every tree with at least two vertices has a leaf. Since:

- $\sum_{v \in T} deg(v) = 2|E(T)|$
- we proved that every vertex has degree ≥ 2 then the graph contains a cycle!

Theorem Suppose $p \ge 2$. Let T be a tree with p vertices, and let n_i denote the number of vertices of T of degree i for $1 \le i \le p$. Then the number of the leaves of T satisfies:

$$n_1 = 2 + n_3 + 2n_4 + \dots + (p-2)n_p$$

Proof We know that $|E(T)| = \frac{1}{2} \sum_{v \in V(T)} deg(v) = p - 1$ from the earlier previous lemma and the Handshake (degree-sum) lemma.

But by grouping the vertices of T into groups according to their degree we find:

$$\sum_{v \in V(T)} deg(v) = |n_1 + 2n_2 + 3n_3 + \dots + pn_p|$$

But $n_1 + ... + n_p = p$ (1) So $2p = 2n_1 + 2n_2 + 2n_3 + ... + 2n_p$ (2) and $2p - 2 = n_1 + 2n_2 + 3n_3 + ... + pn_p$ (3)

Then (2) - (3) \implies 2 = $n_1 - n_3 - 2n_4 \dots - (p-2)n_p$ and rearranging we get:

 $n_1 = 2 + n_3 + 2n_4 + ... + (p-2)n_p$ as required \Box

Example What is the smallest possible number of leaves in a tree with 4 vertices of degree 3, 2 vertices of degree 4, and 2 vertices of degree 5?

By formula:

$$n_1 = 2 + 4 + 2(2) + \dots \ge 16$$

Theorem Every tree is bipartite.

Proof By induction, we prove that every tree with p vertices is bipartite.

Base case p = 1. This is bipartite. Label the one vertex to be of set A and we're done.

Inductive Hypothesis Assume $p \ge 2$ and every tree with p-1 vertices is bipartite.

Let T be a tree on p vertices. Let x be a leaf of T (by our lemma, such x exists). Then the graph T-x obtained by removing x is connected, since each vertex is joined by a path to y where xy is the unique edge incident to x. So T-x is a tree, which by Inductive Hypothesis is bipartite with vertex classes A and B

Say without loss of generality $y \in A$ then put $x \in B$ to show T is bipartite \square .