

Local-first software

Local-First Software: Collaborative Spreadsheet Editing

Sandro Gössi & Fabian Gubler Supervisors: George Zakhour & Dr. Pascal Weisenburger

Autumn Semester 2023: Integrative Master's Projects – Programming Group

Our Team

Sandro GössiMaster of Computer Science *University of St. Gallen*

Fabian GublerMaster of Computer Science *University of St. Gallen*

Our Supervisors

George Zakhour

PhD Student, Programming Group

University of St. Gallen

Alumni of EPFL and AUB

Dr. Pascal WeisenburgerPostdoc, Programming Group

University of St. Gallen
Alumni of TU Darmstadt

Table Of Contents

- Motivation
- 2. Project Description
- 3. Introduction to Local-First
- 4. Problem Statement
- 5. Methodological Approach
- 6. Progress & Findings
- 7. Project Goals, Roadmap & Milestones

Motivation

Why Local-First Software?

Platform Capitalism: «Enshittification»

Haven't you noticed, lately, as belts tighten across Silicon Valley, that your own personal internet feels less abundant than before?

That certain things are getting a little more expensive, or a little less convenient?

THERE IS NO (LOUD) IT'S JUST SOMEONE ELSE'S COMPUTER.

The Cloud Is A Prison

Data Privacy Concerns

Network And Platform Dependencies

Loss of Control & Cost Implications

Cut Out The Middleman

The Cloud

Local-First

Project Description

What Is Our Project About?

Status Quo: Real-Time Collaboration In The Cloud

Collaborative Local-First Spreadsheet?

Introduction to Local-First

indiodaction to Local inst

What Is Local-First Software?

Definition: Local-First Software

- ✓ design approach / set of principles
- ✓ Prioritizing the user's <u>local device</u>.
- ✓ Enables both <u>collaboration</u> and <u>local data ownership</u>.
- ✓ Prioritizes the use of <u>local storage</u> and <u>local</u> <u>networks</u> over servers in remote data centers or the cloud.

Seven Principles/Ideals for Local-First Software (1)

1. Speed: Near-Instant Response Time

2. Synchronization: Multi- And Cross-Device Sync

3. Offline First: The Network Is Optional

4. Collaboration: Seamless Collaboration

Seven Principles/Ideals for Local-First Software (2)

5. Longevity: The Long Now

6. Decentralization: <u>Security</u> And <u>Privacy</u> By Avoiding Centralized Cloud Databases

7. Data Ownership: Retain Ultimate Ownership And Control Over Your Data

Various Technologies Analyzed By Local-First Ideals

- √ means the technology meets the ideal,
- means it partially meets the ideal,
- means it does not meet the ideal.

Various Technologies Analyzed By Local-First Ideals

- √ means the technology meets the ideal,
- means it partially meets the ideal,
- means it does not meet the ideal.

Various Technologies Analyzed By Local-First Ideals

diagy	A. Fast O. Multi-device Collaboration Collaboration Tongevity T. User control								
Technology		1.Fast	2. Mill	3. Off	w. Col.	s. Lon	b b. Prin	1. User	
Applications employed by end u	isers								
Files + email attachments		\checkmark	_	✓	•	\checkmark	_	\checkmark	
Google Docs		_	\checkmark	_	\checkmark	_	•	_	
Git + GitHub		\checkmark	_	/	_	\checkmark	_	\checkmark	

- √ means the technology meets the ideal,
- means it partially meets the ideal,
- means it does not meet the ideal.

Technologies Powering Local-First Software

CRDTs (Conflict-free Replicated Data Types)

Data structure that allows multiple replicas to be updated independently without coordination and later be merged without conflicts, ensuring consistent data across devices.

PROJECT FOCUS

P2P Protocols

Communication methods that allow software applications to interact directly with each other without the need for a central server, facilitating decentralized data exchange and collaboration.

Local Databases And Storage Solutions

Systems that store and manage data directly on a user's device, providing fast access and operations without relying on remote servers.

Synchronization And Merging Techniques

Algorithms and methods that ensure data consistency across devices by resolving differences and merging changes made in different locations or times.

PROJECT FOCUS

Problem Statement

What Is The Concrete Problem We Want To Solve?

Collaboration: Merging Two Excel Formulas

Collaboration: Result After Merging

Methodological Approach

How Do We Plan To Solve The Problem?

Basic Text Merging Does NOT Work!

- Loss of Formula Structure: Merging text directly can disrupt the inherent structure of Excel formulas.
- Syntax Errors: Direct text concatenation risks creating syntactically incorrect formulas
- Nesting Issues: Text merging can disrupt nested functions, leading to broken formulas.
- No Semantic Understanding: Basic merging lacks a deep understanding of formula logic, potentially resulting in logic errors.
- Redundancy and Duplication: Simple text concatenation can introduce redundant or duplicate functions and operations.

String Concatenate

Abstract Syntax Tree (AST)

CRDTs For Abstract Syntax Tree (AST)

CRDTs (Conflict-free Replicated Data Types)

Data structure that allows multiple replicas to be updated independently without coordination and later be **merged without conflicts**, ensuring **consistent data** across devices.

- ✓ Commutative
- ✓ Idempotent
- ✓ Associative

Why CRDTs? – Popularity In Academia & Industry

CRDTs solve distributed data consistency challenges

I was wrong. CRDTs are the future

CRDT — Collaboration Protocol of the future!

Two Types of CRDTs

Operation-Based CRDTs

Operation-based CRDTs are also called commutative replicated data types, or CmRDTs. CmRDT replicas propagate state by transmitting only the update operation.

The operations are <u>commutative</u>. However, they are not necessarily idempotent.

Example: For example, a CmRDT of a single integer might broadcast the operations (+10) or (-20). Replicas receive the updates and apply them locally.

State-Based CRDTs

State-based CRDTs are called convergent replicated data types, or CvRDTs. In contrast to CmRDTs, CvRDTs send their full local state to other replicas.

The states are merged by a function which must be <u>commutative</u>, <u>associative</u>, and <u>idempotent</u>.

Example: Instead of broadcasting operations like "add item A" or "remove item B", it shares its entire state (i.e., the whole set) with other replicas.

Examples Of Known CRDTs

Different CRDTs

- G-Counter (Grow-only Counter)
- PN-Counter (Positive-Negative Counter)
- G-Set (Grow-only Set)
- 2P-Set (Two-Phase Set)
- LWW-Element-Set (Last-Write-Wins-Element-Set)
- OR-Set (Observed-Remove Set)
- Vector Clocks

Example 1: G-Counter

```
Node A Counter: {A: 3, B: 4}

Node B Counter: {A: 5, B: 2}

After merging: {A: 5, B: 4}
```

Merge: Max of corresponding elements A: 5, B: 4.

TotalValue: Sum of all elements

5 + 4 = 9

Example 2: LWW-Register

```
Node A Register: ("apple", timestampA)
Node B Register: ("banana", timestampB)

If timestampA > timestampB:
Merged Register: ("apple", timestampA)
Else if timestampA < timestampB:
Merged Register: ("banana", timestampB)
Else:
Merged Register: Depends on tie-breaker
```

LWW-Register: Keeps the latest write in case of concurrent writes based on timestamps.

Progress & Findings

What Have We Done So Far?

Progress Integrative Masters Project 2023

Understand the concept of Local-First Software by studying recent publications, papers, and lectures.

Research different types of CRDTs and understand their operation and mechanisms.

Analyze why we cannot use textbased CRDTs and must use **Syntax Tree** abstract syntax trees (AST) instead.

Existing Code

Examine existing implemented CRDTs and GitHub repositories to understand their functionality.

GitHub

Create GitHub Repository and readme files for project collaboration.

Example **CRDTs**

Code Basic CRDTs

- **GCounter**
- **PNCOunter**
- **LWWRegister**

Operation vs. State-based CRDTs

- Build Foundation and Understanding

Planning

Create the roadmap, schedule, and milestones for our project to keep us on track.

Create a logo and brand name for our application for marketing purposes.

Creation of the slide document for the IMP progress presentation to properly communicate our project.

Cellster: Empowering Offline Collaboration In Spreadsheets

Empowering Offline Collaboration in Spreadsheets

Break free from the chains of constant connectivity with the power of local-first software. Dive into a revolutionary way of collaboratively editing spreadsheet formulas without the need for real-time online presence. Experience seamless merges using CRDTs and witness the power of structured conflict resolution.

Project Goal, Roadmap & Milestones

What Are The Next Steps?

Project Goal & Additional Milestones

Milestone 1 (Project Goal): "Excel formula CRDT" – Building CRDT for Merging an AST

Milestone 2: "Spreadsheet Grid CRDT" – Building an CRDT for Spreadsheets (i.e. Grid with Cells)

Milestone 3: "Cellster" - Collaborative Spreadsheet Application

Planned Roadmap & Timeline (1)

Semester Break

Week 6

FOURTH

• Learning & **Implementation** Phase: Start Learning about CRDTs for AST Parse Excel Formulas and convert to AST Trees. Start Writing Code and **Implementing** CRDTs for AST.

Week 4

Week 3

START

 Proiect Idea Development: Develop Project Idea and set Project Goals.

FIRST

 Learning & Research Phase: Learn about CRDTs & Local-First Software. Read Papers, Watch Lectures

SECOND

CRDT

Week 5

Programming + PPT Slides: Experiment and Implement First CRDTs. Create Slides for IMP Mid-Term **Progress** Presentation.

THIRD

• IMP Mid-Term **Progress** Presentation: Finish Slides for Presentation. Practice and hold **IMP** Progress Presentation at the Square Arena.

Planned Roadmap & Timeline (2)

Week 7 - 8

FIFTH

 Implementation Phase: Writing Code and Implementing CRDTs for AST. Week 9 -10

SIXTH

Further
 Implementation +
 Slides: Continue
 Coding + Create
 Draft Slides for
 IMP Final
 Presentation.

Week 11

SEVENTH

 Final Presentation and Booth: Finish Slides for the final Presentation.
 Prepare Booth.
 Practice and hold the Final
 Presentation. Week 12

EIGHTH

Project

 Finalization: Get
 the last Feedback
 before the End of
 the Semester.
 Finalize Project
 Code. Define
 Future Work and
 the next Steps to
 do during
 Christmas Break.

Post-Semester

END

Project Report
 Writing: Writing
 the Project
 Report.
 Optimization
 Future Work...

Thank You For Your Attention!

Q&A: Any Questions?

Summary

Local-First

Data Privacy Concerns

Network And Platform Dependencies

Loss of Control & Cost Implications

Local First Principles

1. Fast

Local-First

- 2. Multi-Device
- 3. Offline
- 4. Collaboration
- 5. Longevity
- 6. Privacy
- 7. User Control

Problem & Solution

Project Goals

Milestone 1 (Project Goal): "Excel formula CRDT" – Building CRDT for Merging an AST

List of References & Resources

- Barber, G. (2023). The cloud is a prison. Can the Local-First Software movement set us free? WIRED. https://www.wired.com/story/the-cloud-is-a-prison-can-the-local-first-software-movement-set-us-free/
- Channel. (2021). CRDT vs OT. Channel.io. https://channel.io/ko/blog/crdt vs ot
- Colyer, A. (2019). *Local-first software: you own your data, in spite of the cloud.* The Morning Paper. https://blog.acolyer.org/2019/11/20/local-first-software/
- Gentle, J. (2020). I was wrong. CRDTs are the future. Seph. https://josephg.com/blog/crdts-are-the-future/
- HyperFormula. (2022). Key Concepts | HyperFormula (V2.6.0). https://hyperformula.handsontable.com/guide/key-concepts.html#high-level-design-diagram
- Kleppmann, M., Wiggins, A., Van Hardenberg, P. & McGranaghan, M. (2019). Local-first software: you own your data, in spite of the cloud. Onward! https://doi.org/10.1145/3359591.3359737
- Porwal, P. (2023). CRDT Collaboration Protocol of the Future! Piyush Porwal medium. <u>Medium</u>. <u>https://medium.com/@ppiyush/crdt-collaboration-protocol-of-the-future-c9990c1db748</u>
- Preguiça, N. (2018). Conflict-free Replicated Data types: an overview. arXiv.org. https://arxiv.org/abs/1806.10254
- Stichbury, J. (2022). CRDTs solve distributed data consistency challenges. *Ably Realtime*. https://ably.com/blog/crdts-distributed-data-consistency-challenges
- Thoughtworks. (2022). Local-First Application. https://www.thoughtworks.com/radar/techniques/local-first-application
 - prs. (2023). Conflict-free replicated data type. Wikipedia. https://en.wikipedia.org/wiki/Conflict-free replicated data type

Code Example CRDTs

```
class LWWRegister:
   def init (self):
       self.value = None
        self.timestamp = {} # node -> timestamp
   def write(self, node, value, timestamp):
        if node not in self.timestamp or timestamp > self.timestamp[node]:
            self.value = value
           self.timestamp[node] = timestamp
   def read(self):
       return self.value
   def current timestamp(self):
       return max(self.timestamp.values()) if self.timestamp else None
   def merge(self, other):
        for node, timestamp in other.timestamp.items():
            if node not in self.timestamp or timestamp > self.timestamp[node]:
                self.value = other.value
                self.timestamp[node] = timestamp
```

