English Abstract attacked Page 1 of 1

(corresponds to Examined Patent publication 561-46866)

(9 日本国特許庁 (JP)

①特許出願公開

⑩公開特許公報(A)

昭57-158609

©Int. Cl.* G 02 B 13/04 識別記号

庁内整理番号 7529-21H 函公開 昭和57年(1982)9月30日

発明の数 1 審査請求 未請求

(全 6 頁)

❷広角レンズ

顾 昭56-42407

②出 .

囟特

顧 昭56(1981)3月25日

仍発 明 者 池森敬二

川崎市高津区下野毛770番地车

ヤノン株式会社玉川事業所内

- 卯出 - 願 - 人 - キヤノン株式会社

東京都大田区下丸子3丁目30番

2 号

四代 理 人 弁理士 日比谷征彦

朔 翻 署

1.强卵の名称

広角レンズ

2. 検許額水の範囲

1. 遊望速型レンズに於いて、絞りより前方の 前群の最終レンズ型は像側に凸面を向け、絞りよ り後方の保存は物体側から脈に像側に凸面を向け た正又は気のメニスカスレンズ、負レンズ、及び 正レンズ部を配し、1を総合焦点距離とするとき、 前記メニスカスレンズの焦点距離の必数のが、

(1) -0.07/1 < Ø < 0.05/1 たる条件を演足することを特徴とする広角シンズ。

2. 後期のメニスカスレンズは物体側に凸の貼り合せ面を備え、その負レンズに低分散、エレン

る 前野は敷りの直前に少なくとも2枚の正り ンメを配し、前野の焦点距職を有とするとき、

(2) 0.88f < f1 < f

なる条件を適足する特許勝家の範囲部1項配載の 広角レンズ。

4. 前群はそれぞれ2枚ずつから成る物体例に 凸のメニスカス会レンズ及び正レンズを備え、そ の数方に物体側より順に物体倒に凸のメニスカス 負レンズ及び2枚の正レンズを備える特許調求の 範囲第1項記載の広角レンズ。

5. 前野の最終レンズ面の曲率半径をRaとし、 この逆距遠型レンズの開放アナンバーをFNと するとき、

(B) 5< (| B_a | × PN) / f < 1.4 、 B_a<0 なる条件を調及する物許請求の範囲第1項記載の

特開昭57~1588

るものである。

近年、るちもり一根レフレックスカメラ用交換 レンスの中で、特に広角レンズは小型化の傾向が 綴纂であり、その多くは逆蘊濃型のレンズが居い られている。然しとのタイプは長いパックフォー カスが得られる利点に対し、レンズ系が非対称と ∵ たるので収逸補正に函数な点がある。遊望進盤の 収益構正では、発散性の物体側レンズ部で発生す る登曲収益の補正が最も重要な課題となるが、と の歪曲収差の独正のために発射等の前方又は中間 部に正シンダが配されている。然しながらことに 近シンスを配するためには、発散部内の食レンズ の風折を強めたければならず、そのためとの部所 からサジチルフレアが多く発生し、この現象は画 角が増すに従い意数に思われる。又、柚外光盤が この正レンスで強く屈折されるので倍率色収差の 悪化及び前玉銭が増大する傾向がある。従つてこ の鎧のシンズの小型化を図つた場合、サジタルフ レナの増加及び中間固角の歪曲収度の増加等が生 じ、高性能化は低めて困難となる。

なる条件を消足するものである。

更に、前野 i は扱り3の直前に少なくとも2枚の正レンズ (LとL) を配し、前野 i の焦点距離 ホイトマストカ

本発明の目的は、従来国難とされていた を保持しながら、象面の予報性を維持して のフレア取分を少なくし、無理のない混合 補正を可能とした広角レンズを提供すると る。

次に本発明を第1回、第2回及び第3回 第1実施例、第2実施例及び第3実施例の 構成図を書に詳細に提明する。例、図面に 1、 L、・・・Lutレンスを示し、物体側 に供母を付している。

本発明に係るレンズは、逆遠遠型レンズで、校り 5 より前方の前弾 I の最終レンズンズ L₁の依備菌)は体側に凸面を向け、放り後方の核弾 4 はメエスカスレンズ (L₁)、 及び正レンズ 即 (第1 実はL₁)を置し、1を組合無点距離とするとまメニスカスレンズ (L₁)、 L₁) の焦点距離のが、

(1) -0.07/f < P < 0.05/f

ンズ(#1及び#2実動例では近とし、単例では近とし、単例では近とし、)を備え、その様方に無体倒に動かメニスカス負レンズ(し、)レンズ(し、とし、)を備えることが好ましい。 更に的難1の母終レンズ面(近の体制面

更に前野1の意味レンズ面(Mの登場面 本半種をBaとし、その逆望波型レンズの路 ンパーを TWとするとき、

 $(D - 5 < (|Ra| \times FN) < 1.4 、<math>Ba < x$ なる条件を満足することが望ましい。

次にこれらの条件を考える理由についてる。 袋師 I を物体健から順に像似に凸のはオーカルなメニスカメレンズ (Li, Li, Li, Li, Li, Li, Li, Li, O 組の 故にするとをにより、メニスカスレン Li, の数りの個の面及び負レンズ (Li,)の

初開昭57-156609 (3)

 ンズ(L) 化离分散の荷種を、定レンス群は逆の組合せ、つまり負レンズ(L) 又はLin)に成分散の荷種を用いるとない。これは 3 糖の俗 本色収差を、中間 は プラ とない。これは 3 糖の俗 本色収差を、中間 は プラ とない。これは 3 糖の俗 本色収差を、中間 は プラ では、 最大 当 の は り 合 せ な で な が し な で し な し な し な し な し な と し た よ り、 パック マ オ ーカ な そ 長 く 維 持 し、 市 点 収 盤 を プラ ス 倒 に 市 る こ と が で き る。

後、後方のレンズ(L。)に低分散の硝種を用いる ことにより、信事色収差、色の非点収差、色のコ マ収度を極めて良好に得正することができる。こ とで説評1の常点距離でが条件式②の上、下限値 を超えると球面収差の補正不足、ペプクフォーカ スの短縮、脱いはサジタンフレアの増大、得望歪 歯収差の増加が生じ、コンパクト・高性能化が固 船となる。

一方、前鮮 [の最終レンズ面の曲率半無に関する条件式(5)の上級盤を増えるとサジタルフレアの 正が不十分になり、下級値を超えると球面収集 を素直に補正することが難しくなる。 角、式(4)を るよりも小さく、 2 よりも大きな範囲に 一特する ならば、サジタルフレアと球面収度を共に極めて 発好に補正し得る。 メニスカス負レンズ(Ly、Ly又はLy、Ly)と正レンズ(Ly、Ly又はLy、Ly)を備え、その後方に物体倒に凸のメニスカス負レンズ(Ly)を備えることが好遇である。

次に前述の際条件を演足する実施例1、実施例2及び実施例3の数値例を記載する。数無例中、 別は物体候から数えた第1番目のレンズ面の意象 単征、以は第1番目のレンズの軸上脚又は空気間 鑑、NIと μi はそれぞれ第1番目のレンズのも避に 対するガラスの風折率とアブペ数である。

特開昭57-15860

	灰 槍	例 1			実 始	A 2	
F-10	0 FNo	-1:35 26	×91°	¥=10	D PNo	= 1 t 3.5, 2w=9	
$B_x = 195.05$	D, -1866	N ₄ = 160311	P = 687	B, - 18837	D1 -1696	N ₃ +160311 .	
B ₂ = 36305	$D_{\tau} = 0.53$			R ₂ - 39221	$D_1 = 0.52$		
R _s = 15651	$D_{\bullet} = 202$	N ₂ = 1.63408	*2 -37.2	$R_* - 15202$	D ₂ - 200	N ₂ = 1.83400	
B ₆ = 67.41	D1672			B 6692	D ₄ = 1570		
$\mathbf{B}_{\mathbf{F}} = 11313$	$D_0 = 526$	$N_1 = 1.80618$	× 2 - 4 C9	B 11464	$D_{\tau} = 525$	N ₂ = 1.80610	
B ₊ = 6553	D1628			B 6459	$D_6 = 1526$		
$R_{\uparrow} = 150.35$	D2095	N1.68893	P. = 511	R, - 16516	D ₄ = 2094	N ₄ - 168893 .	
B _s = 5084.85	D ₀ = 5.96			B 7127.24	D 6.95		
R, - 14129	D. ~ 3.51	N178590	× - 442	$R_{\rm b} = 145.57$	$D_{\bullet} = 550$	Na = 1.78590 i	
R ₁₀ = 49.75	$D_{10} = 15.17$			R ₁₀ = 51.80	$D_{\mu} = 1844$		
$R_{\rm H} = 121.77$	D ₁₁ = 7.70	N. ~1.80518	¥. ≈ 254	B ₂₃ = 12035	D., - 252	N _e = 1.80516	
R _{s2} = -951.52	D ₁₂ = 1.1.2			B ₁₂ = -1 5 6 0.7 7	$D_{22}-105$		
A ₁₅ 1164.35	D ₁₀ = 3986	$N_{y} = 1.71300$	Py = 558	R ₁₃ - 108373	D# ~ 3876	Ny = 1.74300 i	
B ₁₄ 7707	$D_{14} = 11.05$			B _H 8011	$D_{44} = 11.02$		
R ₁₁ 9695	Du = 393	N ₄ = 1.69680	* - 55 5	R ₁₀ 99.31	D ₁₉ = 3.92	No = 1.69680	
$\mathbf{P}_{m} = 217.24$	D ₁₀ = 1 0.61	N _● =1.79154	× = 412	Bu- 14009	D ₁₈ = 10.79	N _s ~1.79154 ;	
B,,10127	D ₂₇ = 3.05			Bur10413	D ₁₇ - 316		
$B_{10} = -101.59$	D ₁₀ - 421	N ₁₀ = 1.84666	V 10 = 239	R ₁₄ 18463	$D_{18} = 4.22$	N ₃₀ =1.68893 1	
B ₁₀ = 20554	$D_{16} = 363$			$B_{m} = 531.24$	D ₁₈ = 1.81		
B ₁₀ = -26268	D ₁₀ = 11.18	$N_{21} = 1.74300$	* 11 = 538	R _m 48981	D ₁₄ - 3.85	N ₁₁ = 1.84666	
$R_{10} = -71.59$	D ₂₁ = 0.53			84 - 11835	D ₂₁ = 1859	N ₁₂ =1.48749 3	
R ₂₅ = -81 231	D ₂₂ = 351	N at = 1.83400	F 12 - 57.2	Ru72.64	D ₂₂ = 0.52		
$R_{\rm p} = 171.02$	D ₂₆ = 19.57	N _B =1.60311	v 39 = 60.7	B ₄₀ = -71799	Da-1207	N ₁₉ -171300 ;	
B ₌ 9296				B ₂₄ = −10951			
$R_{10} \sim R_{17} = 0.0194/1$				$R_{ij} \sim R_{ij} \Phi = 0.0129 / f$			

		奥 施	9 6	3	
	P=10	30	FNo -1 :	3.5	20-91*
B, =	114A2	$\mathbf{B}_1 = 8.$	77 N,	- 16 9680	×, -555
R	7846	Dr =12	24		
Re m	11640	$D_{\bullet} = 7$	92 N.	-169680	× , ~ \$5.5
R	74.90	D23.	65		
B	2507.42	$D_4 = 10.$	39 N,	-165844	× , = 509
B	-35238	$D_{\bullet} = 0$	53		
Rr =	487.40	$D_{\pi} = 143$	76 N.	- 1.62299	v ₄ = 582
B	564059	$D_{+} = 53$	96		
B	12226	$D_0 = 5.$	51 N.	- 1.8 0610	$\nu_{\phi} = 409$
P-20 =	4682	D se + 1 82	97		
B _H =	13098	D24 - 8	33 N.	- 1.6 0518	
R12 = -	-511360	D ₁₂ - 1.5	54		
R ₁₀ =	64118	D ₂₆ = 394	86 N,	- 1.65844	v = 509
R _{sa} -	-71.53	Du-11	05		
R	-89.82	$D_{B}=3$	95 N.	- 1.69680	≥
R	19059	$D_{10}=103$	81 N,	~ 1.70154	× -412
B ₁₇ =	-10589	D ₁₇ = 3	05		
R11-	-12622	$D_{m}=43$	21 N.,	-1.68893	31.1 س. بر

実施例1、実施例2及び実施例3の階収! それぞれ第4階、第5図及び締6図に示す。 ロマ収登図の機能は、中心光度の90%の5 (入射艦上でのメリディオナル断面)を表1 いる。又、図面中の見はメリディオナル無1 はサジタル無線を示している。

4.図画の想単な脱斑

第1回、第2因及び第3因は本発明に係る レンスの実施例1、実施例2及び実施例36 図、第4回、第5回及び終6回は実施例1、 例2及び実施例3の収费図である。

図面中、「は割許、Iは発剤、Bは扱り、 レンズ、Slはシンズ面、Diは輸上準又は望ま である。

指開設57-158609 (5)

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

57-158609

(43)Date of:publication of application: 30.09.1982

(51)Int.CI.

G02B 13/04

(21)Application number: 56-042407

(71)Applicant: **CANON INC**

(22)Date of filing:

25.03.1981

(72)Inventor: **IKEMORI KEIJI**

(54) WIDE-ANGLE LENS

(57) Abstract:

PURPOSE: To obtain a small-sized wide-angle lens which has a back facus of 1.5 times as long as its focal distance with the compensated aberration. by forming an optical system with a front group of 7 lenses and a rear group of 6 lenses and selecting the optical beam properties to satisfy the prescribed conditions.

CONSTITUTION: A retro-telephoto optical system is formed with a frond group of 7 lenses and a rear group of 6 lenses. The front group includes a positive lens L1, the negative meniscus lenses L2 and L3, a positive lens L4, a negative meniscus lens L5 plus positive lenses L6 and L7 which are set at the front side of diaphragm S; while the rear group includes the meniscus lenses L8 and L9, a negative lens L10 plus the positive lenses L11, L12 and L13 set at the back side of the diaphragm S respectively. Then the general focal distance 5, the F number, etc. are selected so as to satisfy the conditions of equations (1)W(3) respectively, and at the same time the lenses L8 and L9 are made of the nitric materials having a low and high degrees of dispersion respectively. As a result, the sagittal flare and various aberrations are satisfactorily compensated for a small-sized wide-angle lens. (f1: the focal distance of the front group; ϕ: a reciprocal number of focal distances of lenses L8 and L9; Ra: the curvature radius of the rear surface of the lens L7)

- 007//1 < 0 < 005/2

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

(Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office