Равномощность

- ullet Множество A равномощно множеству B, если существует биекция f:A o B
- \star Равномощность является отношением эквивалентности
 - тождественная функция биекция А на А (рефлексивность)
 - \bullet если $f:A\to B$ биекция, то $f^{-1}:B\to A$ биекция (симметричность)
 - ullet если f:A o B и g:B o C биекции, то $f\circ g:A o C$ биекция (транзитивность)
- ★ Таким образом, можно говорить о классах равномощных множеств
 - ⋆ такие классы называются мошностями
 - каждому классу сопоставляется уникальное обозначение (имя, ключ, метка...),
 которое называется кардинальным числом или кардиналом
 - ⋆ кардинальные числа обобщение обычных натуральных чисел с нулем
 - Примеры:
 - число 3 обозначает класс всех трехэлементных множеств
 - число 0 обозначает класс, состоящий из пустого множества
 - «число» \aleph_0 (алеф-ноль) обозначает класс, содержащий множество $\mathbb N$
 - ! Стоп. Если σ отношение равномощности, то $\sigma \subseteq U^2$ для некоторого множества U; что это за множество?
 - видимо, U множество всех множеств, поскольку для любой пары множеств (рассматриваемых как элементы U) либо биекция существует, либо нет
 - но со множеством всех множеств есть проблемы...

Парадокс Расселла

- ullet Пусть U- множество всех множеств
 - ullet Тогда $U\in U$
 - * Значит, некоторые множества содержат себя в качестве элемента
 - \star Назовем множество A нормальным, если A
 otin A и ненормальным, если $A \in A$

Пример: Пусть A- множество всех правильных 17-угольников, лежащих в заданной плоскости

- A непусто
- ullet A не является правильным 17-угольником $\Rightarrow A
 otin A$, A нормально

Рассмотрим дополнение A, т.е. множество $ar{A}$ всех сущностей, не являющихся правильными 17-угольниками

- Ā непусто
- ullet не является правильным 17-угольником $\Rightarrowar{A}\inar{A}$, $ar{A}$ ненормально
- \star Пусть R множество всех нормальных множеств; нормально ли R?
 - \star R нормально \Rightarrow ($R \in R$ по определению R) \Rightarrow R ненормально
 - \star R ненормально \Rightarrow (R
 otin R) по определению R) \Rightarrow R нормально
 - ой...
- ★ Вывод: не любая совокупность, которую можно задать свойствами элементов, подчиняется законам логики
 - ullet высказывание $R \in R$ не является ни истинным, ни ложным
- ★ Значит, надо определять, что такое множество, аксиоматически:
 - задать базовые множества (аксиомы)
 - задать способы конструирования множеств (правила вывода)

Понятие об аксиоматике ZFC

- ★ Опуская некоторые детали, можно сказать, что система аксиом ZFC
 - Zermelo-Fraenkel with Axiom of Choice

постулирует следующее:

- * Равными считаются множества, состоящие из одних и тех же элементов • кроме того, A=B означает, что $A\in C \Leftrightarrow B\in C$
- ★ Существуют пустое множество и множество натуральных чисел
- \star Для любых A,B существует неупорядоченная пара множество $\{A,B\}$
- взяв A = B, можно получить одноэлементное множество $\{A\}$ \star Можно взять объединение (любого множества) множеств
 - если A множество (множеств), то существует множество $C = \bigcup_{B \in A} B$
 - ullet Пример: если $A = \{\{1,2\},\{2,3,\{4\}\}\}$, то $C = \{1,2,3,\{4\}\}$
- * Образ множества при действии функции множество
 - функция записывается как предикат, средствами самой ZFC
 - в частности, все элементы множества, обладающие заданным свойством, образуют множество
- ⋆ Булеан множества множество
- \star He существует множеств, удовлетворяющих условию $A \in A$
 - или $A \in B_1 \in \cdots B_n \in A$
- ★ Если некоторую совокупность элементов нельзя получить указанными выше способами, то единственная причина, по которой она может быть множеством,
 - аксиома выбора, утверждающая, что
 - ullet для любого множества A существует функция f, определенная на A и такая, что $f(B) \in B$ для всех $B \in A$

Назад к равномощности

- Согласно ZFC, множество всех множеств не существует
- ⋆ Термином класс называют любую совокупность (множество или не-множество)
 - * отношение равномощности определено на классе всех множеств
 - \star мощность множества A это класс всех множеств, равномощных A
 - 🛨 мощность и соответствующее ей кардинальное число часто отождествляют
 - стандартное обозначение: |A| или card(A); еще бывает #A (для конечных A)
- Множество A конечно, если оно равномощно отрезку [1..n] множества $\mathbb N$ для некоторого n
- Множество А бесконечно, если оно не является конечным
- ullet Бесконечные множества, равномощные $\mathbb N$, называют счетными
- ullet Счетное множество A можно представить как последовательность $\{a_i\}_1^\infty$
 - ullet здесь $a_i=f(i)$ для некоторой биекции $f:\mathbb{N} o A$

Лемма о счетном подмножестве

В любом бесконечном множестве есть счетное подмножество.

- Пусть А бесконечное множество; выберем
- $a_1 \in A$; $a_2 \in A \setminus \{a_1\}$; ...; $a_{n+1} \in A \setminus \{a_1, \ldots, a_n\}$; ...
- \star все множества вида $A \setminus \{a_1, \ldots, a_n\}$ непусты (иначе A конечно по определению)
- \Rightarrow мы построили счетное подмножество $\{a_i\}_1^\infty \subseteq A$

Критерий бесконечности множества

ullet Подмножество $B\subseteq A$ называется собственным, если B
eq A

Теорема

Множество A бесконечно тогда и только тогда, когда оно равномощно некоторому своему собственному подмножеству.

- Не существует биекции n-элементного множества на m-элементное множество при n>m (принцип Дирихле)
- \Rightarrow если A равномощно собственному подмножеству A, то A бесконечно
- ullet Пусть A бесконечно, $a\in A$; построим биекцию A на его подмножество $Aackslash\{a\}$:
 - ullet по лемме о счетном подмножестве, выделим $\{a_i\}_1^\infty\subseteq A$, начав с $a_1=a$
 - определим функцию f: f(b) = b для всех $b \in A \setminus \{a_i\}_1^\infty$ $f(a_i) = a_{i+1}$ для всех $i \in \mathbb{N}$
 - ⇒ f искомая биекция
- ★ При работе с бесконечными множествами интуиция очень часто дает сбои
 - Мозг мыслит конечными величинами, поэтому тот факт, что натуральных чисел столько же, сколько степеней двойки среди них, контринтуитивен
 - Для тренировки мозга на подобные факты гуглите отель Гильберта
 - (не путайте с одноименным альбомом в стиле хэви-метал)

Сравнение мощностей. Теорема Бернштейна-Кантора

- ullet $|A|\leqslant |B|$, если существует инъекция f:A o B
 - \star f биекция A на f(A), т.е. A равномощно подмножеству в B
- \leqslant бинарное отношение на множестве кардинальных чисел ! Попробуйте доказать, что кардинальные числа образуют множество
- \leq отношение порядка:
 - рефлексивность (тождественная функция инъекция А в А)
 - транзитивность (суперпозиция инъекций инъекция)
 - антисимметричность =>>

Теорема Бернштейна-Кантора

Биекция между множествами A и B существует тогда и только тогда, когда существуют инъекции из A в B и из B в A.

- Доказательство:
 - необходимость очевидна, так как биекция частный случай инъекции
 - достаточность на следующем слайде
- ullet Пример: отрезок [0,1] и интервал (0,1) равномощны
 - ullet выберем lpha,eta так, что 0<lpha<eta<1
 - линейная функция $f(x) = \beta x + \alpha(1-x)$ биекция [0,1] на $[\alpha,\beta] \subseteq (0,1)$ и (0,1) на $(\alpha,\beta) \subset [0,1]$
 - биекцию между [0,1] и (0,1) построить немного сложнее; в частности, она не может быть непрерывной функцией (почему?)

Доказательство теоремы Бернштейна-Кантора

Пусть f:A o B и g:B o A — инъекции; обозначим $A_1=g(B)$, $A_2=g(f(A))$:

$$g$$
 — биекция B на A_1 $\phi = f \circ g$ — биекция A на A_2

Так как B равномощно A_1 , достаточно построить биекцию A на A_1

- ullet Положим $C_0=A_1ackslash A_2$, $C_n=\phi(C_{n-1})$ для всех $n\in\mathbb{N}$, $C=igcup_{n=0}^\infty C_i$
- ullet Определим функцию $\psi:A o A$ условием $\psi(a)=egin{cases} a,&a\in C\ \phi(a),&a
 otin C \end{cases}$
- ullet $\psi(A)\subseteq A_1$ по определениям A_2 , ϕ и C; докажем, что ψ биекция A на A_1
- ullet достаточно доказать, что любой элемент A_1 имеет единственный ψ -прообраз
 - ullet пусть $c\in C$; тогда c единственный ψ -прообраз c, принадлежащий C
 - если $a \notin C \psi$ -прообраз $c \Rightarrow a = \phi^{-1}(c) \Rightarrow c \in C_i$, $i \geqslant 1$
 - \Rightarrow $a \in \mathcal{C}_{i-1} \subseteq \mathcal{C} \Rightarrow$ противоречие \Rightarrow c единственный ψ -прообраз c
 - ullet пусть $c\in A_1ackslash C$; тогда у c нет ψ -прообразов в C
 - $oldsymbol{\epsilon} \in A_2$, т.е. имеет ψ -прообраз $\phi^{-1}(c)$ (единственный ввиду инъективности ϕ)

Еще о порядке на мощностях

Любые ли два множества можно сравнить по мощности?

- ullet Если отношение линейного порядка \preccurlyeq на множестве A удовлетворяет условию минимальности
 - 🛪 называется отношением полного порядка
 - (A, \leq) называется вполне упорядоченным множеством
- ⋆ на конечных множествах все линейные порядки полные
- \star (\mathbb{N},\leqslant) вполне упорядоченное множество, в отличие от (\mathbb{Z},\leqslant), (\mathbb{Q},\leqslant) и (\mathbb{R},\leqslant)

Теорема

Отношение ≤ на множестве кардинальных чисел является отношением полного порядка.

- Теорема утверждает, что
 - любые множества можно сравнить по мошности
 - по множеству кардиналов можно проводить индукцию (трансфинитная индукция)
- Доказательство потребовало бы отдельной лекции
 - через теорию вполне упорядоченных множеств
 - можно посмотреть в книге Баранский, Кабанов. Общая алгебра и ее приложения

Дискретная математика

Мощность булеана

Теорема Кантора о булеане

Для любого множества A выполнено неравенство $|A|<|2^A|$.

- ullet Пусть $f(a) = \{a\}$ для всех $a \in A$
 - f инъекция из A в 2^A ; значит, $|A| \leq |2^A|$
- В обратную сторону докажем от противного:
 - пусть $\phi: 2^A \to A$ инъекция
 - ullet для каждого подмножества $B\subseteq A$
 - назовем элемент $\phi(B)$ синим, если $\phi(B) \in B$
 - назовем элемент $\phi(B)$ красным, если $\phi(B) \notin B$
 - \Rightarrow так как ϕ инъекция, любой элемент A покрашен не более чем в один цвет
 - ullet рассмотрим множество R, состоящее из всех красных элементов A
 - ullet если $\phi(R) \in R$, то элемент $\phi(R)$ по определению синий $\Rightarrow \phi(R) \notin R$
 - ullet если $\phi(R)
 otin R$, то элемент $\phi(R)$ по определению красный $\Rightarrow \phi(R) \in R$
 - \Rightarrow противоречие; значит, ϕ не существует и $|2^A| \not \leq |A|$
- ★ Поскольку булеан любого множества является множеством,
 - существует бесконечно много бесконечных кардиналов
 - не существует максимального (наибольшего) кардинала
- ★ Если $|A| = \alpha$, то пишут $|2^A| = 2^{\alpha}$

Маленькие бесконечные кардиналы

★ Для всех практических и практически всех математических целей достаточно уметь различать две бесконечных мощности: мощность множества натуральных чисел и мощность множества действительных чисел

Теорема

$$|\mathbb{R}| = 2^{\aleph_0}$$
.

- \star $|\mathbb{R}|=|(0,1)|$: $f(x)=rac{1}{\pi}\operatorname{arctg} x+rac{1}{2}$ является биекцией \mathbb{R} на (0,1)
- \star 2^{\aleph 0} мошность множества 2 $^{\mathbb{N}}$
- \Rightarrow достаточно доказать равномощность (0,1) и $2^{\mathbb{N}}$
- ullet Любое $x\in(0,1)$ представимо двоичной дробью $x=0.x_1x_2\cdots x_n\cdots$
 - ullet положим $f(x) = \{n : x_n = 1\}$; тогда $f: (0,1) o 2^{\mathbb{N}}$ инъекция
- ullet Любое $A\subseteq\mathbb{N}$ имеет характеристическую функцию $\chi_A(n)=[n]$ принадлежит A
 - скобка Иверсона [высказывание] конвертирует ИСТИНА/ЛОЖЬ в 1/0
 - ullet положим g(A) равным числу x, имеющему троичную запись $x=0.x_1x_2\cdots x_n\cdots$, где $x_n = \chi_A(n)$ $\Rightarrow g: 2^{\mathbb{N}} \to (0,1)$ — инъекция
- \Rightarrow по теореме Бернштейна-Кантора $|(0,1)|=|2^{\mathbb{N}}|$

Маленькие бесконечные кардиналы (2)

- ullet Пусть A- множество множеств, I- множество индексов, f:A o I- биекция
 - \star f позволяет проиндексировать A: для каждого $B\in A$ найдется $i=f(B)\in I$, переобозначим $A_i=B$ и запишем $A=\{A_i\mid i\in I\}$

Теорема

Пусть $A = \{A_i \mid i \in I\}$, где мощность I и любого множества A_i не превосходит \aleph_0 . Тогда $|\bigcup_{i \in I} A_i| \leqslant \aleph_0$.

- ullet Запишем $A_i = \{a_{i1}, \ldots, a_{in}, \ldots\}$
- Выпишем элементы $\bigcup_{i \in I} A_i$ в последовательность, отсортировав все a_{ij} сначала по сумме индексов, а затем лексикографически
- ★ Верно ли, что не существует способа увеличить мощность бесконечного множества, кроме перехода к булеану?
 - ZFC позволяет построить декартово произведение двух множеств (через создание пар и объединение), но оно тоже не увеличивает мощность бесконечных множеств (доказательство аналогично приведенному)

Иерархия алефов и континуум-гипотеза

- Кантор предложил обозначать мощности бесконечных множеств буквой \aleph с индексами:
 - * $\aleph_0 = |\mathbb{N}|$ наименьший бесконечный кардинал (по лемме о счетном подмножестве) дальше идут $\aleph_1, \aleph_2, \dots, \aleph_{\aleph_0}, \dots$

Континуум-гипотеза Кантора

$$\aleph_1 = 2^{\aleph_0}$$
.

- ullet Иными словами, $|\mathbb{R}|$ покрывает $|\mathbb{N}|$ в ЧУМе кардиналов
- ★ Доказательство континуум-гипотезы Проблема 1 в списке Гильберта (1900)
- ★ Континуум-гипотезу нельзя опровергнуть в ZFC (Гёдель, 1940)
- ★ Континуум-гипотезу нельзя доказать в ZFC (Коэн, 1964)