Big M and Two-Phase Methods for Non-Standard form of LPP

Non-Standard form of LPP

Simplex method is suitable for LPP in standard form

i.e. Maximization type objective functional constraints ≤ type non-negativity constraints and RHS non-negative

How to deal with the LPP in other (Non-standard) forms

- LPP with "≥" and "=" type constraints.
- Negative RHS

Difficulty: In identifying initial BFS

• Example:

Maximize
$$Z = 4x_1 + x_2$$

Subject to $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$

 x_{2} $3x_{1} + x_{2} = 3$ (3/5, 6/5) $x_{1} + 2x_{2} \le 4$ $x_{1} + 3x_{2} \ge 6$

Identify feasible region?

Approach for Non-Standard form of LPP

Augmented form

maximize
$$Z = 4x_1 + x_2$$

Subject to $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 - x_3 = 6$
 $x_1 + 2x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 \ge 0$

 x_3 : surplus variable, and x_4 : slack variable

But, the initial BFS is not available.

- Artificial-Variable Techniques
 - 1. Big-M method
 - 2. Two-phase method

Big M-method

- ➤ Introduce artificial variable to get initial BFS.
- **➤ Modified problem**

Maximize
$$Z = 4x_1 + x_2 - M\bar{x}_5 - M\bar{x}_6$$

Subject to $3x_1 + x_2 + \bar{x}_5 = 3$
 $4x_1 + 3x_2 - x_3 + \bar{x}_6 = 6$
 $x_1 + 2x_2 + x_4 = 4$
 $x_1, \dots, x_4 \ge 0$ and $\bar{x}_5, \bar{x}_6 \ge 0$

- For each artificial variable \bar{x}_j subtract $M\bar{x}_j$ from objective function (add for minimum type problem), where M is a Large positive number
- In order to get rid of the artificial variables in the final optimal solution, we assign a very large penalty in the objective function

Apply the procedure of Simplex method

	Basis	x_1	x_2	X ₃	X ₄	\overline{X}_5	\overline{x}_6	RHS	Ratio	
Iteration 0	\bar{x}_5	3	1	0	0	1	0	3	1	
	\bar{x}_6	4	3	-1	0	0	1	6	3/2	Z row in not in proper form (coefficient of basic variable must be zero)
	x_4	1	2	0	1	0	0	4	4	
	Z	-4	-1	0	0	M	M	0		
	Z	-4-7M	-1-4M	M	0	0	0	-9M		$R_0 \to R_0 - MR_1 - MR_2$
Iteration 1	\boldsymbol{x}_1	1	1/3	0	0	1/3	0	1	3	
	\bar{x}_6	0	5/3	-1	0	-4/3	1	2	6/5	
	x_4	0	5/3	0	1	-1/3	0	3	9/5	
	Z	0	(1-5M)/3	M	0	(4+7M)/3	0	4-2M		
Iteration 2	\boldsymbol{x}_1	1	0	1/5	0	3/5	-1/5	3/5		
	\boldsymbol{x}_2	0	1	-3/5	0	-4/5	3/5	6/5		
	x_4	0	0	1	1	1	-1	1		
	Z	0	0	1/5	0	(5M+8)/5	(5M-1)/5	18/5		

Optimal solution: $\left(x_1 = \frac{3}{5}, x_2 = \frac{6}{5}\right)$, Z = 18/5

Path traced by Big M

Note:

If the optimality condition is satisfied and

- No artificial variable remains in the basis => current solution is optimal
- At least one artificial variable appears in basis at zero level \improx current solution is optimal but degenerate solution
- At least one artificial variable in basis at non-zero level
 the problem has no feasible solution