REPORT: Mehmet Can Gürbüz

Input File 1:

• Brute Force Method:

- Ant Colony Optimization Method:
- Constants:

 $MAX_ITERATIONS = 500$ $NUM_ANTS = 50$

 $ALPHA = 0.7 \qquad BETA = 2.5$

Pheromone Densities of inputfile01:

Input File 2:

• Brute Force Method:

• Ant Colony Optimization:

• Constants:

 $MAX_ITERATIONS = 500$ $NUM_ANTS = 50$

 $ALPHA = 0.7 \qquad BETA = 2.5$

Pheromone Densities of inputfile 02:

Input File 3:

• Brute Force Method :

• Ant Colony Optimization Method:

• Constants:

MAX_ITERATIONS = **500** *NUM_ANTS* = **50**

 $ALPHA = 0.7 \qquad BETA = 2.5$

Pheromone Densities of inputfile 03:

Input File 4:

• Brute Force Method:

• Ant Colony Optimization Method:

• Constants:

 $MAX_ITERATIONS = 500$ $NUM_ANTS = 50$

 $ALPHA = 0.7 \qquad BETA = 2.5$


```
MehmetCanGurbuz ×

C:\Users\mehme\.jdks\openjdk-21.0.2\bin\java.exe -Duser.language=us -Duser.country=US "-javaagent:C:\Program Files\JetBrains\IntelliJ IDEA Community Edition 2023.3.4\lib\idea_rt ...jar=57965:C:\Program Files\JetBrains\IntelliJ IDEA Community Edition 2023.3.4\l
```

Pheromone Densities of inputfile 04:

Input File 5:

• Brute Force Method:

Too long to compute.

• Ant Colony Optimization Method:

• Constants:

MAX_ITERATIONS = **500** *NUM_ANTS* = **50**

ALPHA = 0.7 BETA = 2.5

DEG = 0.6 Q = 0.0001

Pheromone Densities of inputfile 05:

Best Distances VS Iteration Graph For inputfile 05:

Method Comparison Table:

Input File	Number of Houses + Migros	Brute-Force Time (seconds)	Ant Colony Time (seconds)	Speed Up Factor ▼
Input01	11	1.092 (Distance = 1.7952913856772432)	0.948 (Distance = 1.7952913856772432)	1.151 times faster
Input02	12	3.624 (Distance = 2.935877143237598)	1.022 (Distance = 2.935877143237598)	3.545 times faster
Input03	13	37.618 (Distance = 3.802919361826042)	1.107 (Distance = 3.802919361826042)	33.981 times faster
Input04	14	524.099 (Distance = 3.710908906673479)	1.119 (Distance = 3.710908906673479)	468.363 times faster
Input05	30	Too long to compute	2.303 (Distance = 4.771005206672136)	Too much faster

Ant Colony Optimization Method:

Advantages:

• Provides faster and more effective results than brute force method.

• It can adapt to changing environments or problem instances by adjusting parameters such as pheromone degradation rate.

Disadvantages:

- If the number of iterations is not enough, we will get a result that is close to the real result but not accurate.
- Its performance can be sensitive to parameter settings such as the pheromone degradation rate, Alpha , Beta. Arranging these parameters for optimal performance can be challenging.

Sources that I used for learning algorithms and complete the project:

- geeksforgeek.org
- chat.openai.com
- boun empe lab github link

