

August 7, 2007

	Ordering Information	
Part Numbers	Description	Module Speed
SG572288FG8RWDB	128Mx72 (1GB), DDR2, 244-pin Mini-DIMM, Registered, ECC, 128Mx8 Based, DDR2-400-333, 30.00mm, Green Module (RoHS Compliant).	PC2-3200 @ CL 3.0
SG572288FG8RWDG	128Mx72 (1GB), DDR2, 244-pin Mini-DIMM, Registered, ECC, 128Mx8 Based, DDR2-533-444, 30.00mm, Green Module (RoHS Compliant).	PC2-4200 @ CL 4.0
SG572288FG8RWIL	128Mx72 (1GB), DDR2, 244-pin Mini-DIMM, Registered, ECC, 128Mx8 Based, DDR2-667-555, 30.00mm, Green Module (RoHS Compliant).	PC2-5300 @ CL 5.0
SG572288FG8RWIR	128Mx72 (1GB), DDR2, 244-pin Mini-DIMM, Registered, ECC, 128Mx8 Based, DDR2-800-555, 30.00mm, Green Module (RoHS Compliant).	PC2-6400 @ CL 5.0
SG572288FG8RWKF	128Mx72 (1GB), DDR2, 244-pin Mini-DIMM, Registered, ECC, 128Mx8 Based, DDR2-800-666, 30.00mm, Green Module (RoHS Compliant).	PC2-6400 @ CL 6.0

(All specifications of this module are subject to change without notice.)

August 7, 2007

Revision History

· August 7, 2007

Added SG572288FG8RWIR & SG572288FG8RWKF to the Ordering Information on page 1.

· January 6, 2006

Corrected OCD Program in the EMRS on page 14.

· September 26, 2005

Changed the Ambient Operating temperature to 0 to +65°C on page 16. Added the Case Operating temperature on page 16.

September 19, 2005

Changed datasheet part number from SG572288FG8RWDU to SG572288FG8RWUU because of the addition of new module speeds with different CAS Latencies.

Added SG572288FG8RWIL to the Ordering Information on page 1.

Corrected to the DLL Enable in the EMRS on page 14.

· May 6, 2005

Datasheet released.

1GByte (128Mx72) DDR2 SDRAM Module - 128Mx8 Based 244-pin Mini-DIMM, Registered, ECC

Features

Standard : JEDEC

Configuration : ECCCycle Time : 5.0ns (DDR2-400)

3.75ns (DDR2-533) 3.0ns (DDR2-667) 2.5ns (DDR2-800)

• CAS# Latency : 3.0, 4.0 (-DB/-DG) 4.0, 5.0 (-IL/-IR)

5.0, 6.0 (-KF)

Posted CAS#/Additive

Latency (AL) : 0, 1.0, 2.0, 3.0 & 4.0 Write Latency (WL) : Read (CAS#) Latency - 1

Burst Length : 4, 8

Burst Type : Sequential/Interleave

No. of Internal

Banks per SDRAM: 8
Operating Voltage: 1.8V
Refresh: 8K/64ms
Device Physicals: FBGA

Lead Finish : Gold

Length x Height : 82.00mm x 30.00mm

No. of sides : Double-sided

Mating Connector (Examples)

Vertical : Molex - 87782-2001 Horizontal : Molex - 87918-0001

DDR2 244-pin Mini-DIMM Pin List

Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin
No.	Name	No.	Name	No.	Name	No.	Name	No.	Name	No.	Name	No.	Name
1	V _{REF}	36	DQS3#	71	BA0	106	DQS6#	141	V_{SS}	176	A15 (NC)	211	V_{SS}
2	V_{SS}	37	DQS3	72	V_{DD}	107	DQS6	142	DQ14	177	A14 (NC)	212	DQ44
3	DQ0	38	V_{SS}	73	WE#	108	V_{SS}	143	DQ15	178	V_{DDQ}	213	DQ45
4	DQ1	39	DQ26	74	V_{DD}	109	DQ50	144	V_{SS}	179	A12	214	V_{SS}
5	V_{SS}	40	DQ27	75	CAS#	110	DQ51	145	DQ20	180	A9	215	DM5
6	DQS0#	41	V_{SS}	76	V_{DDQ}	111	V_{SS}	146	DQ21	181	V_{DD}	216	NC
7	DQS0	42	CB0	77	CS1# (NC)	112	DQ56	147	V_{SS}	182	A8	217	V_{SS}
8	V_{SS}	43	CB1	78	ODT1 (NC)	113	DQ57	148	DM2	183	A6	218	DQ46
9	DQ2	44	V_{SS}	79	V_{DDQ}	114	V_{SS}	149	NC	184	V_{DDQ}	219	DQ47
10	DQ3	45	DQS8#	80	NC	115	DQS7#	150	V_{SS}	185	A3	220	V_{SS}
11	V_{SS}	46	DQS8	81	V_{SS}	116	DQS7	151	DQ22	186	A1	221	DQ52
12	DQ8	47	V_{SS}	82	DQ32	117	V_{SS}	152	DQ23	187	V_{DD}	222	DQ53
13	DQ9	48	CB2	83	DQ33	118	DQ58	153	V _{SS}	188	CK0	223	V_{SS}
14	V_{SS}	49	CB3	84	V_{SS}	119	DQ59	154	DQ28	189	CK0#	224	DU
15	DQS1#	50	V_{SS}	85	DQS4#	120	V_{SS}	155	DQ29	190	V_{DD}	225	DU
16	DQS1	51	NC	86	DQS4	121	SA0	156	V_{SS}	191	A0	226	V_{SS}
17	V_{SS}	52	V_{DDQ}	87	V_{SS}	122	SA1	157	DM3	192	BA1	227	DM6
18	RESET#	53	CKE0	88	DQ34	123	V_{SS}	158	NC	193	V_{DD}	228	NC
19	NC	54	V_{DD}	89	DQ35	124	DQ4	159	V_{SS}	194	RAS#	229	V_{SS}
20	V _{SS}	55	BA2	90	V_{SS}	125	DQ5	160	DQ30	195	V_{DDQ}	230	DQ54

DDR2 244-pin Mini-DIMM Pin List (Contd.)

Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin
No.	Name	No.	Name	No.	Name	No.	Name	No.	Name	No.	Name	No.	Name
21	DQ10	56	NC	91	DQ40	126	V_{SS}	161	DQ31	196	CS0#	231	DQ55
22	DQ11	57	V_{DDQ}	92	DQ41	127	DM0	162	V_{SS}	197	V_{DDQ}	232	V_{SS}
23	V_{SS}	58	A11	93	V_{SS}	128	NC	163	CB4	198	ODT0	233	DQ60
24	DQ16	59	A7	94	DQS5#	129	V_{SS}	164	CB5	199	A13	234	DQ61
25	DQ17	60	V_{DD}	95	DQS5	130	DQ6	165	V_{SS}	200	V_{DD}	235	V_{SS}
26	V_{SS}	61	A5	96	V_{SS}	131	DQ7	166	DM8	201	NC	236	DM7
27	DQS2#	62	A4	97	DQ42	132	V_{SS}	167	NC	202	V_{SS}	237	NC
28	DQS2	63	V_{DDQ}	98	DQ43	133	DQ12	168	V_{SS}	203	DQ36	238	V_{SS}
29	V_{SS}	64	A2	99	V_{SS}	134	DQ13	169	CB6	204	DQ37	239	DQ62
30	DQ18	65	V_{DD}	100	DQ48	135	V_{SS}	170	CB7	205	V_{SS}	240	DQ63
31	DQ19	66	V_{SS}	101	DQ49	136	DM1	171	V_{SS}	206	DM4	241	V_{SS}
32	V_{SS}	67	V_{SS}	102	V_{SS}	137	NC	172	NC	207	NC	242	SDA
33	DQ24	68	NC	103	SA2	138	V_{SS}	173	V_{DDQ}	208	V_{SS}	243	SCL
34	DQ25	69	V_{DD}	104	NC	139	DU	174	CKE1 (NC)	209	DQ38	244	V _{DDSPD}
35	V _{SS}	70	A10/AP	105	V _{SS}	140	DU	175	V_{DD}	210	DQ39		

Pin Description Table

Symbol	Туре	Polarity	Function
СКО	SSTL_18	Positive Edge	Positive line of the differential pair of system clock inputs. (All DDR2 SDRAM address and control inputs are sampled on the rising edge of their associated clocks. Output data is referenced at the crossings of the clocks.)
CK0#	SSTL_18	Negative Edge	Negative line of the differential pair of system clock inputs.
ODT0	SSTL_18	Active High	On-Die Termination: ODT when high enables termination resistance internal to the DDR2 SDRAM. When enabled, ODT is only applied to each of the following pins: DQ, DQS, and DM. The ODT input will be ignored if disabled in Extended Mode Register (EMRS).
CKE0	SSTL_18	Active High	Activates the DDR2 SDRAM CLK signal when high and deactivates the CLK signal when low. By deactivating the clocks, CKE low initiates the Power Down mode, or the Self Refresh mode.
CS0#	SSTL_18	Active Low	Enables the associated DDR2 SDRAM command decoder when low and disables decoder when high. When decoder is disabled, new commands are ignored but previous operations continue.
RAS#, CAS#, WE#	SSTL_18	Active Low	When sampled at the positive rising edge of the clock, CAS#, RAS#, and WE# define the operations to be executed by the SDRAM.
BA0~BA2	SSTL_18	-	Bank Address define to which bank an Activate, Read, Write or Precharge command is being applied. Bank address also determines if the Mode Register or Extended Mode Register is to be accessed during a MRS or EMRS cycle.

Pin Description Table (Contd.)

Symbol	Туре	Polarity	Function
A0~A9, A10/AP, A11~A13	SSTL_18	-	During a Bank Activate command cycle, A0-A13 defines the row address (RA0-RA13) when sampled at the rising clock edge. During a Read or Write command cycle, A0-A9 defines the column address (CA0-CA9) when sampled at the rising clock edge. In addition to the column address, A10/AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is selected and BA0~BA2 defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a Precharge command cycle, A10/AP is used in conjunction with BA0~BA2 to control which bank(s) to precharge. If AP is high, all banks will be precharged regardless of the state of BA0~BA2. If AP is low, BA0~BA2 are used to define which bank to precharge. The address inputs also provide the op-code during Mode Register Set commands.
DQ0~DQ63 CB0~CB7	SSTL_18	-	Data and Check Bit Input/Output pins.
DQS0~DQS8	SSTL_18	Positive Edge	DDR2 SDRAM differential data strobe for input and output data.
DQS0#~DQS8#	SSTL_18	Negative Edge	DDR2 SDRAM differential data strobe for input and output data.
DM0~DM8	SSTL_18	Active High	DM is an input mask signal for write data. Input data is masked when DM is sampled high coincident with that input data during a write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches the DQ/DQS loading.
SA0~SA2	LVTTL	-	Slave Address Select for EEPROM. These pins are used to configure the presence-detect device.
SDA	LVTTL	-	Serial Bus Data Line for EEPROM. SDA is a bidirectional pin used to transfer addresses and data into and out of the presence-detect portion of the module. A resistor must be connected from the SDA bus line to $V_{\rm DD}$ to act as pull up on the system board.
SCL	LVTTL	-	Serial Bus Clock for EEPROM. SCL is used to synchronize the presence-detect data transfer to and from the module. A resistor may be connected from the SCL bus line to V_{DD} to act as pull up on the system board.
RESET#	LV-CMOS	Active Low	Register and PLL control pin. When low, all register outputs will be driven low and the PLL clocks to the DRAM and register will be set to low levels (the PLL will remain synchronized with the input clock, if within spec range).
V_{DD}	Supply	-	SDRAM positive power supply. 1.8V±0.1V
V _{SS}	Supply	-	Power supply return (ground).
V _{REF}	Supply	-	SDRAM I/O reference supply.
V_{DDQ}	Supply	-	SDRAM I/O Driver positive power supply. 1.8V±0.1V
V _{DDSPD}	Supply	-	Serial EEPROM positive power supply (wired to a separate power pin at the connector which supports operation from1.7V to 3.6V).
NC	-	-	No Connect.
DU	-	-	Do not use.

Block Diagram

Note: Unless otherwise noted, data resistor values are $22\Omega \pm 5\%$.

- 1. Data bits may be swapped within a device. However, DQ/DQS/DM relationship is maintained as shown.
- 2. Only one PLL output is shown above. Any additional PLL outputs will be wired in a similar manner.

Detail C

Physical Dimensions

244-pin Mini-DIMM Module

Front View 3.50 (max.) 82.00 -30.004.00 20.00 18.00 (min.) 33.60 -38.40 **Detail D** 3.20 3.60 3.20 1.00±0.10

Detail B

Detail A

(All dimensions are in millimeters with ±0.15mm tolerance unless specified otherwise.)

Serial Presence Detect Table

Byte No.	Byte Description	Speed	Value Supported	Value in Hex
0	# of bytes written into serial memory at mod- ule manufacturer	All	128 Bytes	80h
1	Total # of bytes of SPD memory device	All	256 Bytes	08h
2	Fundamental memory type	All	SDRAM DDR2	08h
3	# of row address on this assembly	All	14	0Eh
4	# of column address on this assembly	All	10	0Ah
5	# of Ranks, Package and Height	All	1, Planar, 30.00mm	60h
6	Data width of this assembly	All	72	48h
7	Reserved	All	-	00h
8	Voltage interface standard of this assembly	All	SSTL_18	05h
9	SDRAM cycle time @ CAS latency of X	-DB -DG -IL -KF/IR	5.0ns 3.75ns 3.0ns 2.5ns	50h 3Dh 30h 25h
10	SDRAM access time @ CAS latency of X	-DB -DG -IL -KF/IR	0.60ns 0.50ns 0.45ns 0.40ns	60h 50h 45h 40h
11	DIMM configuration type	All	ECC	02h
12	Refresh rate & type	All	SR, 7.8	82h
13	Primary SDRAM width	All	8	08h
14	Error checking SDRAM width	All	8	08h
15	Reserved	All	-	00h
16	SDRAM device attributes : Burst lengths supported	All	4, 8	0Ch
17	SDRAM device attributes : # of banks on SDRAM device	All	8	08h
18	SDRAM device attributes : CAS latency	-DB/DG -IL/IR -KF	3.0, 4.0 4.0, 5.0 5.0, 6.0	18h 30h 60h
19	DIMM mechanical characteristics	-DB/DG -IL/IR/KF	- 3.50mm	00h 01h
20	DIMM type information	All	Mini-RDIMM	10h
21	SDRAM module attributes	-DB/DG -IL/IR/KF	- 1 PLL, 1 Reg	00h 04h

Serial Presence Detect Table (Contd.)

Byte No.	Byte Description	Speed	Value Supported	Value in Hex
22	SDRAM device attributes : General	-DB/DG -IL/IR/KF	Weak Driver Weak Driver,50Ω ODT	01h 03h
23	SDRAM cycle time @ CAS latency of X-1	-DB/DG -IL/IR -KF	5.0ns 3.75ns 3.0ns	50h 3Dh 30h
24	SDRAM access time @ CAS latency of X-1	-DB -DG/IR -IL/KF	0.60ns 0.50ns 0.45ns	60h 50h 45h
25	SDRAM cycle time @ CAS latency of X-2	All	-	00h
26	SDRAM access time @ CAS latency of X-2	All	-	00h
27	Minimum row precharge time (=tRP)	-DB/DG -IL/KF -IR	15ns 15ns 12.5ns	3Ch 3Ch 32h
28	Minimum row active to row active delay (=tRRD)	All	7.5ns	1Eh
29	Minimum RAS to CAS delay (=tRCD)	-DB/DG -IL/KF -IR	15ns 15ns 12.5ns	3Ch 3Ch 32h
30	Minimum activate precharge time (=tRAS)	-DB -DG/IL -KF/IR	40ns 45ns 45ns	28h 2Dh 2Dh
31	Module row density	All	1GB	01h
32	Command and Address signal input setup time	-DB -DG -IL -KF/IR	0.35ns 0.25ns 0.20ns 0.17ns	35h 25h 20h 17h
33	Command and Address signal input hold time	-DB -DG -IL -KF/IR	0.47ns 0.37ns 0.27ns 0.25ns	47h 37h 27h 25h
34	Data signal input setup time	-DB -DG/IL -KF/IR	0.15ns 0.10ns 0.05ns	15h 10h 05h
35	Data signal input hold time	-DB -DG -IL -KF/IR	0.27ns 0.22ns 0.17ns 0.12ns	27h 22h 17h 12h

Serial Presence Detect Table (Contd.)

Byte No.	Byte Description	Speed	Value Supported	Value in Hex
36	Write recovery time (=tWR)	All	15ns	3Ch
37	Internal write to read command delay (=tWTR)	-DB -DG/IL -KF/IR	10ns 7.5ns 7.5ns	28h 1Eh 1Eh
38	Internal read to precharge delay (=tRTP)	All	7.5ns	1Eh
39	Memory Analysis Probe Characteristics	All	-	00h
40	Extension of tRC and tRFC	-DB/DG -IL/KF -IR	Extension of tRFC Extension of tRFC Ext. of tRC & tRFC	06h 06h 36h
41	Device Minimum activate/auto-refresh time (=tRC)	-DB -DG/IL/KF -IR	55ns 60ns 57.5ns	37h 3Ch 39h
42	Device Minimum auto-refresh to active/ auto-refresh time (=tRFC)	All	127.5ns	7Fh
43	Maximum device cycle time (=tCK max)	All	8ns	80h
44	Device DQS-DQ skew for DQS and associated DQ signals (=tDQSQ max)	-DB -DG -IL -KF/IR	0.35ns 0.30ns 0.24ns 0.20ns	23h 1Eh 18h 14h
45	Device read data hold skew factor (=tQHS)	-DB -DG -IL -KF/IR	0.45ns 0.40ns 0.34ns 0.30ns	2Dh 28h 22h 1Eh
46	PLL relock time	All	15ns	0Fh
47~61	Reserved	All	-	00h
62	SPD data revision code	-DB/DG -IL/IR/KF	1.0 1.2	10h 12h
63	Checksum for bytes 0~62	-DB -DG -IL -IR -KF		2Ah C3h 82h 73h 72h
64	Manufacturer JEDEC ID code	All	Continuation Code	7Fh
65	Manufacturer JEDEC ID code	All	SMART's ID	94h
66~71	Manufacturer JEDEC ID code	-DB/DG -IL/IR/KF	Not Used Not Used	FFh 00h

Serial Presence Detect Table (Contd.)

Byte No.	Byte Description	Speed	Value Supported	Value in Hex
72	Manufacturing location	All	See Note 2	01h
73~90	Manufacturer part #	-DB -DG -IL -IR -KF	SG572288FG8RWDB SG572288FG8RWDG SG572288FG8RWIL SG572288FG8RWIR SG572288FG8RWKF	Part No.
91	Revision Code	All	Rev. 0	00h
92	Revision Code	-DB/DG -IL/IR/KF	Not Used Not Used	FFh 00h
93	Manufacturing data (Year)	All	Date	Date
94	Manufacturing data (Week)	All	Date	Date
95~98	Assembly serial #	All	Serial Number	00h
99~125	Manufacturer specific data	All	SMART Modular Technologies	
126~255	Unused storage locations	-DB/DG -IL/IR/KF	Not Used Not Used	FFh 00h

Note:

1. X represents the maximum CAS Latency.

For DDR2-400-333, X = CL 4.0

For DDR2-533-444, X = CL 4.0

For DDR2-667-555, X = CL 5.0

For DDR2-800-555, X = CL 5.0

For DDR2-800-666, X = CL 6.0

2. Manufacturing Location:

00h - Undefined,

01h - Fremont, USA,

02h - Aguada, Puerto Rico,

03h - East Kilbride, Scotland,

04h - Penang, Malaysia,

05h - Bangalore, India,

06h - Sao Paulo, Brazil,

07h - Aguadilla, Puerto Rico,

08h - Mayaguez, Puerto Rico,

09h - Santo Domingo, Dominican Republic,

0Ah - Dongguan, China,

Mode Register Table Definition

The mode register stores the data for controlling the various operating modes of DDR2 SDRAM. It controls CAS latency, burst length, burst sequence, test mode, DLL reset, t_{WR} and various vendor specific options to make DDR2 SDRAM useful for various applications. The default value of the mode register is not defined, therefore the mode register must be written after power-up for proper operation. The mode register is written by asserting low on CS#, RAS#, CAS#, WE#, BAO and BA1, while controlling the state of address pins A0~A15. The DDR2 SDRAM should be in all bank precharge with CKE already high prior to writing into the mode register. The mode register set command cycle time (t_{MRD}) is required to complete the write operation to the mode register. The mode register contents can be changed using the same command and clock cycle requirements during normal operation as long as all banks are in the precharge state. The mode register is divided into various fields depending on functionality. Burst length is defined by A0~A2 with options of 4 and 8 bit burst lengths. The burst length decodes are compatible with DDR SDRAM. Burst address sequence type is defined by A3, CAS latency is defined by A4~A6. The DDR2 doesn't support half clock latency mode. A7 is used for test mode. A8 is used for DLL reset. A7 must be set to low for normal MRS operation. Write recovery time t_{WR} is defined by A9~A11.

- 1. A14~A15 are reserved for future use and must be programmed to 0 when setting the mode register.
- 2. WR min is determined by t_{CK} max and WR max is determined by t_{CK} min. WR in clock cycles is calculated by dividing t_{WR} (in ns) by t_{CK} (in ns) and rounding up to the next integer. The mode register must be programmed to this value.

August 7, 2007

Extended Mode Register Table Definition

The extended mode register controls functions beyond those controlled by the mode register; these additional functions are DLL enable/disable, output drive strength, ODT (R_{TT}), Posted CAS additive latency (AL), off-chip driver impedance calibration (OCD), DQS# enable/disable, RDQS/RDQS# enable/disable, and OUTPUT enable/disable. The extended mode register is programmed via the LOAD MODE (LM) command and will retain the stored information until it is programmed again or the device loses power. Reprogramming the extended mode register will not alter the contents of the memory array, provided it is performed correctly.

The extended mode register must be loaded when all banks are idle and no bursts are in progress, and the controller must wait the specified time t_{MRD} before initiating any subsequent operation. Violating either of these requirements could result in unspecified operation.

- 1. A14~A15 are reserved for future use and must be programmed to 0 when setting the mode register.
- 2. When the adjust mode of the OCD Calibration Program is issued, AL from previously set value must be applied.
- 3. After setting the OCD Calibration Program to default, OCD mode needs to be exited by setting A9-A7 to 000.
- Outputs disabled DQs, DQSs, DQS#s, RDQSs, RDQS#s. This feature is used in conjunction with DIMM IDD measurements when IDDQ is not desired to be included.
- 5. If RDQS is enabled, the DM function is disabled. RDQS is active for reads and don't care for writes.
- 6. Supported for DDR2-667 and DDR2-800 speeds only.

Extended Mode Register Table

August 7, 2007

Commands

The following Truth Tables provide a general reference of available commands. For a more detailed description please refer to the device data sheets.

Truth Table - Commands

	CKE						BA0~				
Function	Previous cycle	Current cycle	CS#	RAS#	CAS#	WE#	BAn ⁹	An ⁸ ~A11	A10	A9~A0	Notes
(Extended) Mode Register Set	Н	Н	L	L	L	L	ВА	OP Code			1, 2
Refresh	Н	Н	L	L	L	Н	Х	x x x		1	
Self Refresh Entry	Н	L	L	L	L	Н	Х	Х	Х	Х	1
Oalf Dafarah Fait			Н	Х	Х	Х	,	V	,,	V	4 -
Self Refresh Exit	L	Н	L	Н	Н	Н	X	Х	Х	Х	1, 7
Single Bank Precharge	Н	Н	L	L	Н	L	BA	Х	L	Х	1, 2
Precharge All Banks	Н	Н	L	L	Н	L	Х	Х	Н	Х	1
Bank Activate	Н	Н	L	L	Н	Н	ВА	Row Address		1, 2	
Write	Н	Н	L	Н	L	L	ВА	Column	L	Column	1, 2, 3
Write with Auto-Precharge	Н	Н	L	Н	L	L	BA	Column	Н	Column	1, 2, 3
Read	Н	Н	L	Н	L	Н	ВА	Column	L	Column	1, 2, 3
Read with Auto-Precharge	Н	Н	L	Н	L	Н	BA	Column	Н	Column	1, 2, 3
No Operation	Н	Х	L	Н	Н	Н	Х	Х	Х	Х	1
Device Deselect	Н	Х	Н	Х	Х	Х	Х	Х	Х	Х	1
Davier Davie Febru			Н	Х	Х	Х	V	V	v	V	
Power Down Entry	Н	L	L	Н	Н	Н	X	X	X	Х	1, 4
Power Down Exit			Н	Х	Х	Х	,	Х	Х	Х	
Power Down Exit	L	Н	L	Н	Н	Н	Х	Χ	X	X	1, 4

- 1. All DDR2 SDRAM commands are defined by states of CS#, RAS#, CAS#, WE# and CKE at the rising edge of the clock.
- 2. Bank addresses BA0, BA1, BA2 (BA) determine which bank is to be operated upon. For (E)MRS BA selects an (Extended) Mode Register.
- 3. Burst reads or writes at BL = 4 cannot be terminated or interrupted.
- 4. The Power Down Mode does not perform any refresh operations. The duration of power down is therefore limited by the refresh requirements.
- 5. The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.
- "X" means "H or L (but a defined logic level)".
- 7. Self Refresh Exit is asynchronous.
- 8. An = A12 for 256Mb, A13 for 512Mb & 1 Gb, A14 for 2Gb.
- 9. BAn = BA1 for up to 512Mb , BA2 for 1 Gb & 2Gb.

DC Characteristics

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	Notes
Voltage on V _{DD} relative to V _{SS}	V_{DD}	-1.0 ~ 2.3	V	
Voltage on V _{DDQ} relative to V _{SS}	V_{DDQ}	-0.5 ~ 2.3	V	
Voltage on any pin relative to V _{SS}	V _{IN,} V _{OUT}	-0.5 ~ 2.3	V	
Voltage on V _{DDSPD} relative to V _{SS}	V _{DDSPD}	1.7 ~ 3.6	V	
Operating Temperature (Ambient)	T _{OPR}	0 to +65	°C	
Operating Temperature (Case)	T _{CASE}	0 to +85	°C	1, 2
Storage Temperature	T _{STG}	-55 to +100	°C	

Notes:

- 1. It is possible to operate the DRAM above Case Temperature up to 95°C.
- 2. Above 85°C DRAM Case Temperature the Auto-Refresh command interval has to be reduced to $t_{REFI} = 3.9 \mu s$.

Recommended DC Operating Conditions $(T_A = 0 \text{ to } +65^{\circ}\text{C})$

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage	V_{DD}	1.7	1.8	1.9	V	
I/O Supply Voltage	V_{DDQ}	1.7	1.8	1.9	V	
I/O Reference Voltage	V _{REF}	0.49*V _{DDQ}	0.50*V _{DDQ}	0.51*V _{DDQ}	mV	1, 2
I/O Termination Voltage	V _{TT}	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04	V	3
SPD Voltage	V _{DDSPD}	1.7	-	3.6	V	
Input High Voltage	V _{IH(DC)}	V _{REF} + 0.125	-	V _{DDQ} + 0.3	V	
Input Low Voltage	V _{IL(DC)}	-0.3	-	V _{REF} - 0.125	V	
Input Voltage Level, CK/CK#	V _{IN(DC)}	-0.3	-	V _{DDQ} + 0.3	V	
Input Differential Voltage, CK/CK#	V _{ID(DC)}	0.25	-	V _{DDQ} + 0.6	V	
Ground	V _{SS}	0	0	0	V	

- V_{RFF} is expected to track variation in V_{DDQ}.
- Peak to peak noise (non-common mode) on V_{REF} may not exceed ±1% of the DC value. Peak to peak AC noise on V_{REF} may not exceed ±2% of V_{REF} (DC). This measurement is to be taken at the nearest V_{REF} bypass capacitor.
- 3. V_{TT} is not used on the module. It is the voltage used on the system board to terminate all the signals. However, this supply should track the variations in DC level of V_{RFF} .

August 7, 2007

Capacitance

 $(V_{DD} = 1.8V \pm 0.1V, T_{Case} = +25^{\circ}C)$

Parameter	Symbol	Min	Max	Unit
Input Capacitance (CKn, CKn#)	C _{CK}	2.0	3.0	pF
Input Capacitance delta (CKn, CKn#)	C _{DCK}	-	-	pF
Input Capacitance (all other input-only pins)	Cl	2.5	3.5	pF
Input Capacitance delta (all other input-only pins)	C _{DI}	-	-	pF
Input/Output Capacitance (DQ, DM, DQS, DQS#, CB)	C _{I01}	2.5	4.0	pF
Input/Output Capacitance (DQ, DM, DQS, DQS#, CB)	C ₁₀₂	2.5	3.5	pF
Input/Output Capacitance delta (DQ, DM, DQS, DQS#, CB)	C _{DI0}	-	0.5	pF

Notes:

- C_{IO1} is for DDR2-400 and DDR2-533.
- C_{IO2} is for DDR2-667 and DDR2-800.

AC Operating Conditions (V_{DD} = 1.8V±0.1V, V_{SS} = 0V)

Parameter	Symbol	Min	Max	Unit	Notes
Input High Logic Voltage	V _{IH(AC)}	V _{REF} + 0.250	-	٧	1, 2
Input Low Logic Voltage	V _{IL(AC)}	-	V _{REF} - 0.250	V	1, 2
Input differential voltage, CK and CK# inputs	V _{ID(AC)}	0.5	V _{DDQ} + 0.6	٧	1, 2, 3
Input crossing point voltage, CK and CK# inputs	V _{IX(AC)}	0.5*V _{DDQ} - 0.175	0.5*V _{DDQ} + 0.175	V	1, 2, 3
AC differential crossing point voltage	V _{OX(AC)}	0.5*V _{DDQ} - 0.125	0.5*V _{DDQ} + 0.125	٧	3

- 1. Input slew rate is 1V/ns.
- 2. Inputs are not recognized as valid until V_{REF} stabilizes.
- 3. V_{ID} is the magnitude of the difference between the input level on CK and the input level on CK#.
- 4. The value of V_{IX}/V_{OX} is expected to equal 0.5* V_{DDQ} of the transmitting device and must track variations in the DC level of the same.

ODT DC Electrical Characteristics

Parameter	Symbol	Min	Nom	Max	Unit	Notes
R_{TT} effective impedence value for 75Ω setting EMR (A6, A2) = 0, 1	R _{TT1(EFF)}	60	75	90	Ω	1
R_{TT} effective impedence value for 150 Ω setting EMR (A6, A2) = 1, 0	R _{TT2(EFF)}	120	150	180	Ω	1
R_{TT} effective impedence value for 50Ω setting EMR (A6, A2) = 1, 1	R _{TT3(EFF)}	40	50	60	Ω	1
Deviation of VM with respect to V _{DDQ} /2	ΔVM	-6		+6	%	2

Notes:

1. $R_{TT1(EFF)}$ and $R_{TT2(EFF)}$ are determined by applying $V_{IH(AC)}$ and $V_{IL(AC)}$ to pin under test separately, then measure current $I(V_{IH(AC)})$ and $I(V_{IL(AC)})$ respectively. $R_{TT(EFF)} = \frac{V_{IH(AC)} - V_{IL(AC)}}{I(V_{IH(AC)}) - I(V_{IL(AC)})}$

2. Measured voltage (VM) at tested pin with no load.

$$\Delta VM = \left(\frac{2 \times VM}{V_{DDQ}} - 1\right) \times 100 \%$$

Output DC Current Drive

Parameter	Symbol	Min	Max	Unit	Notes
Output Minimum Source DC Current	I _{OH}	-13.4	-	mA	1, 3, 4
Output Minimum Sink DC Current	l _{OL}	13.4	-	mA	2, 3, 4

- 1. For I_{OH} (DC); V_{DDQ} = 1.7V, V_{OUT} = 1420mV. (V_{OUT} V_{DDQ})/ I_{OH} must be less than 21 Ω for values of V_{OUT} between V_{DDQ} and V_{DDQ} 280mV.
- 2. For I_{OL} (DC); V_{DDQ} = 1.7V, V_{OUT} = 280mV. V_{OUT}/I_{OL} must be less than 21 Ω for values of V_{OUT} between 0V and 280mV.
- 3. The DC value of V_{REF} applied to the receiving device is set to V_{TT} .
- 4. The values of I_{OH} (DC) and I_{OL} (DC) are based on the conditions given in Notes 1 and 2. They are used to test device drive current capability to ensure V_{IH} min plus a noise margin and V_{IL} max minus a noise margin are delivered to an SSTL_18 receiver. The actual current values are derived by shifting the desired driver operating point along a 21Ω load line to define a convenient driver current for measurement.

August 7, 2007

OCD Default Output Characteristics (V_{DD} = 1.8V±0.1V, V_{SS} = 0V, T_A = 0 to +65°C)

Parameter	Symbol	Min	Nom	Max	Unit	Notes
Output Impedance		12.6	18	23.4	Ω	1, 2
Pull-up and Pull-down mismatch		0		4	Ω	1, 2, 3
Output Slew Rate	S _{OUT}	1.5		5	V/ns	1, 4, 5, 7
Output Step Size for Calibration		0		1.5	Ω	6

Notes:

- 1. Absolute specifications: $0^{\circ}C \le T_{case} \le +85^{\circ}C$; $V_{DDQ} = +1.8V \pm 0.1V$, $V_{DD} = +1.8V \pm 0.1V$.
- 2. Impedance measurement condition for output source DC current: $V_{DDQ} = 1.7V$; $V_{OUT} = 1420 \text{mV}$; $(V_{OUT} V_{DDQ})/I_{OH}$ must be less than 23.4 Ω for values of V_{OUT} between V_{DDQ} and $V_{DDQ} 280 \text{mV}$. Impedance measurement condition for output sink DC current: $V_{DDQ} = 1.7V$; $V_{OUT} = 280 \text{mV}$; V_{OUT}/I_{OL} must be less than 23.4 Ω for values of V_{OUT} between 0V and 280 mV.
- 3. Mismatch is absolute value between pull-up and pull-down, both are measured at same temperature and voltage.
- 4. Output slew rate for falling and rising edges is measured between V_{TT} 250mV and V_{TT} + 250mV for single ended signals. For differential signals output slew rate is measured between DQS DQS# = -500mV and DQS# DQS = +500mV. Output slew rate is guaranteed by design, but is not necessarily tested on each device.
- 5. The absolute value of the slew rate as measured from V_{IL} (DC) max to V_{IH} (DC) min is equal to or greater than the slew rate as measured from V_{IL} (AC) max to V_{IH} (AC) min. This is guaranteed by design and characterization.
- 6. This represents the step size when the OCD is near 18Ω at nominal conditions across all process and represent only the DRAM uncertainty.
- 7. Timing skew due to DRAM output slew rate mis-match between DQS/DQS# and associated DQs is included in t_{DQSQ} and t_{QHS} specification.

Output Slew Rate Load Diagram

August 7, 2007

IDD Specification Parameters and Test Conditions ($V_{DD} = 1.8V \pm 0.1V$, $V_{SS} = 0V$, $T_A = 0$ to +65°C)

Symbol	Parameter		5.0ns CL 3.0	3.75ns CL 4.0	3.0ns CL 5.0	2.5ns CL 5.0	2.5ns CL 6.0	Unit
IDD0	Operating one bank active–precharge current; $t_{CK} = t_{CK}$ $t_{RC(IDD)}$, $t_{RAS} = t_{RASmin(IDD)}$; CKE and CS# are HIGH between mands; Address bus inputs are SWITCHING; Data bus input ING	ween valid com-	1330	1330	1465	1510	1510	mA
IDD1	Operating one bank active–read–precharge current; I_{OU} CL = CL(IDD), AL = 0; $t_{CK} = t_{CK(IDD)}$, $t_{RC} = t_{RC(IDD)}$, t_{RAS} $t_{RCD} = t_{RCD(IDD)}$; CKE and CS# are HIGH between valid conditions bus inputs are SWITCHING; Data pattern is same and the same of the same and the	= t _{RASmin(IDD),} ommands;	1510	1555	1600	1690	1690	mA
IDD2P	Precharge power–down current; All banks idle; $t_{CK} = t_{CK}$ LOW; Other control and address bus inputs are STABLE; Da FLOATING	` ''	763	763	763	763	763	mA
IDD2Q	Precharge quiet standby current; All banks idle; t _{CK} = t _{CK} HIGH, CS# is HIGH; Other control and address bus inputs at bus inputs are FLOATING	· //	1015	1060	1060	1150	1150	mA
IDD2N	Precharge standby current; All banks idle; t _{CK} = t _{CK(IDD)} ; CS# is HIGH; Other control and address bus inputs are SW bus inputs are SWITCHING		1015	1060	1060	1150	1150	mA
IDD3P	Active power–down current; All banks open; t _{CK} = t _{CK(IDD)} ; CKE is LOW; Other control and address bus	Fast PDN Exit MRS(12) = 0	970	970	970	1060	1060	mA
	inputs are STABLE; Data bus inputs are FLOATING	Slow PDN Exit MRS(12) = 1	790	790	790	790	790	mA
IDD3N	Active standby current; All banks open; $t_{CK} = t_{CK(DD)}$, $t_{R} = t_{RP(DD)}$; CKE is HIGH, CS# is HIGH betwe mands; Other control and address bus inputs are SWITCHII inputs are SWITCHING	en valid com-	1060	1105	1195	1240	1240	mA
IDD4W	Operating burst write current; All banks open, Continuous = 4, CL = CL(IDD), AL = 0; t _{CK} = t _{CK(IDD)} , t _{RAS} = t _{RASmax(t_{RP(IDD)}} ; CKE is HIGH, CS# is HIGH between valid commar inputs are SWITCHING; Data bus inputs are SWITCHING	_{IDD),} t _{RP} =	1645	1825	1915	2140	2140	mA
IDD4R	Operating burst read current; All banks open, Continuous $I_{OUT} = 0$ mA; $BL = 4$, $CL = CL(IDD)$, $AL = 0$; $t_{CK} = t_{CK(IDD)}$, $max(IDD)$, $t_{RP} = t_{RP(IDD)}$; CKE is HIGH, CS# is HIGH betwee mands; Address bus inputs are SWITCHING; Data pattern i IDD4W	t _{RAS} = t _{RAS} - en valid com-	1510	1690	1915	2140	2140	mA
IDD5B	Burst refresh current; $t_{CK} = t_{CK(IDD)}$; Refresh command a interval; CKE is HIGH, CS# is HIGH between valid comman and address bus inputs are SWITCHING; Data bus inputs a	ds; Other control	2545	2590	2635	2815	2815	mA
IDD6	Self refresh current; CK and CK# at 0V; CKE ≤ 0.2V; Othe address bus inputs are FLOATING; Data bus inputs are FLOATING.		63	63	63	63	63	mA
IDD7	Operating bank interleave read current; All bank interleave = 0mA; BL = 4, CL = CL(IDD), AL = t _{RCD(IDD)} -1*t _{CK(IDD)} ; t _C = t _{RC(IDD)} , t _{RRD} = t _{RRD(IDD)} , t _{RCD} = 1*t _{CK(IDD)} ; CKE is HIC between valid commands; Address bus inputs are STABLE LECTs; Data pattern is same as IDD4R	3040	3130	3220	3715	3715	mA	

August 7, 2007

IDD Specification Parameters and Test Conditions (Contd.)

Notes:

- IDD specifications are tested after the device is properly initialized.
- 2. Input slew rate is specified by AC Parametric Test Condition.
- 3. IDD parameters are specified with ODT disabled.
- 4. Data bus consists of DQ, DM, DQS, DQS#. IDD values must be met with all combinations of ERMS bits 10 and 11.
- 5. Definitions for IDD

 $\begin{array}{lll} \text{LOW} & = & V_{\text{in}} \leq V_{\text{IL}(AC)}(\text{max}) \\ \text{HIGH} & = & V_{\text{in}} \geq V_{\text{IH}(AC)}(\text{min}) \end{array}$

STABLE = inputs stable at a HIGH or LOW level

FLOATING = inputs at $V_{REF} = V_{DDQ}/2$

SWITCHING = inputs changing between HIGH and LOW every other clock cycle (once per two clocks) for

address and control signals, and inputs between HIGH and LOW every other data transfer

(once per clock) for DQ signals not including masks of strobes.

IDD Testing Parameters

	DDR2-400	DDR2-533	DDR2-667	DDR2-800	DDR2-800	
Parameter	3-3-3	4-4-4	5-5-5	5-5-5	6-6-6	Units
CL(IDD)	3	4	5	5	6	t _{CK}
t _{RCD(IDD)}	15	15	15	12.5	15	ns
t _{RC(IDD)}	55	60	60	57.5	60	ns
t _{RRD(IDD)}	7.5	7.5	7.5	7.5	7.5	ns
t _{CK(IDD)}	5	3.75	3	2.5	2.5	ns
t _{RASmin(IDD)}	40	45	45	45	45	ns
t _{RASmax} (IDD)	70000	70000	70000	70000	70000	ns
t _{RP(IDD)}	15	15	15	12.5	15	ns
t _{RFC(IDD)}	127.5	127.5	127.5	127.5	127.5	ns

Device AC Operating Conditions

Parameter		Symbol		@ CL 3.0 -400-333		@ CL 4.0 -533-444		@ CL 5.0 -667-555		© CL 5.0 800-555			Unit	Notes
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
Clock cycle time	CL=6.0	t _{CK}	-	-	-	-	-	-	-	-	2500	8000	ps	12, 20
	CL=5.0		-	-	-	-	3000	8000	2500	8000	3000	8000	ps	12, 20
	CL=4.0		5000	8000	3750	8000	3750	8000	3750	8000	-	-	ps	12, 20
	CL=3.0		5000	8000	5000	8000	-	-	-	-	-	-	ps	12, 20
Clock high-level	width	t _{CH}	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	t _{CK}	14
Clock low-level w	<i>r</i> idth	t _{CL}	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	t _{CK}	14
Clock half period		t _{HP}	Min (t _{CL} , t _{CH})	-	Min (t _{CL} , t _{CH})	-	ps	15						
DQ output	CL=6.0	t _{AC}	-	-	-	-	-	-	-	-	-400	+400	ps	
access time from CK/CK#	CL=5.0		-	-	-	-	-450	+450	-400	+400	-450	+450	ps	
nom ordora,	CL=4.0		-600	+600	-500	+500	-450	+450	-500	+500	-	-	ps	
	CL=3.0		-600	+600	-500	+500	-	-	-	-	-	-	ps	
Data-out high-im window from CK/		^t HZ	-	t _{AC} (max)	-	t _{AC} (max)	-	t _{AC} (max)	-	t _{AC} (m ax)	-	t _{AC} (m ax)	ps	4, 5
Data-out low-imp window from CK/		t _{LZ}	t _{AC} (min)	t _{AC} (max)	t _{AC} (min)	t _{AC} (max)	t _{AC} (min)	t _{AC} (max)	t _{AC} (mi n)	t _{AC} (m ax)	t _{AC} (mi n)	t _{AC} (m ax)	ps	4, 6
DQ & DM input so relative to DQS	etup time	t _{DS}	150	-	100	-	100	=	50	-	50	-	ps	3, 11, 17
DQ & DM input h relative to DQS	old time	t _{DH}	275	-	225	-	175	=	125	-	125	-	ps	3, 11, 17
DQ & DM input p width (for each in		t _{DIPW}	0.35	-	0.35	-	0.35	=	0.35	-	0.35	-	t _{CK}	
Data hold skew fa	actor	t _{QHS}	-	450	-	400	-	340	-	300	-	300	ps	
DQ-DQS hold, D first DQ to go not per access		t _{QH}	t _{HP} - t _{QHS}	-	t _{HP} - t _{QHS}	-	t _{HP} - t _{QHS}	-	t _{HP} - t _{QHS}	_	t _{HP} - t _{QHS}	_	ps	11,13
DQS input high pwidth	ulse	t _{DQSH}	0.35	-	0.35	-	0.35	-	0.35	-	0.35	-	t _{CK}	
DQS input low pu	ulse width	t _{DQSL}	0.35	-	0.35	-	0.35	-	0.35	-	0.35	-	t _{CK}	
DQS output acce from CK/CK#	ess time	t _{DQSCK}	-500	+500	-450	+450	-400	+400	-350	+350	-350	+350	ps	
DQS falling edge rising - setup time		t _{DSS}	0.2	-	0.2	-	0.2	=	0.2	-	0.2	-	t _{CK}	
DQS falling edge rising - hold time		t _{DSH}	0.2	-	0.2	-	0.2	-	0.2	-	0.2	-	t _{CK}	
DQS-DQ skew, D last DQ valid, per per access		t _{DQSQ}	-	350	-	300	-	240	-	200	-	200	ps	11,13

Device AC Operating Conditions (Contd.)

Parameter	Symbol	5.0ns @ CL 3.0 DDR2-400-333		1	3.75ns @ CL 4.0 DDR2-533-444		@ CL 5.0 667-555	2.5ns @ CL 5.0 DDR2-800-555		2.5ns @ CL 5.0 DDR2-800-666		Unit	Notes
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
DQS read preamble	t _{RPRE}	0.9	1.1	0.9	1.1	0.9	1.1	0.9	1.1	0.9	1.1	t _{CK}	18
DQS read postamble	t _{RPST}	0.4	0.6	0.4	0.6	0.4	0.6	0.4	0.6	0.4	0.6	t _{CK}	
DQS write preamble setup time	twPRES	0	-	0	-	0	-	0	-	0	-	ps	8, 9
DQS write preamble	t _{WPRE}	0.25	-	0.25	-	0.35	-	0.35	-	0.35	-	t _{CK}	
DQS write postamble	t _{WPST}	0.4	0.6	0.4	0.6	0.4	0.6	0.4	0.6	0.4	0.6	t _{CK}	7
Write command to first DQS latching transition	t _{DQSS}	WL - 0.25	WL + 0.25	WL - 0.25	WL + 0.25	WL - 0.25	WL + 0.25	WL - 0.25	WL + 0.25	WL - 0.25	WL + 0.25	t _{CK}	
Address & control input pulse width for each input	t _{IPW}	0.6	-	0.6	-	0.6	=	0.6	-	0.6	-	t _{CK}	
Address and control input setup time	t _{IS}	350	=	250	-	200	=	175	=	175	=	ps	2, 17
Address and control input hold time	t _{IH}	475	-	375	-	275	-	250	-	250	-	ps	2, 17
CAS# to CAS# command delay	tCCD	2	-	2	-	2	-	2	-	2	-	t _{CK}	
OCD Drive mode delay	tOIT	0	12	0	12	0	12	0	12	0	12	ns	
CKE low to CK, CK# uncertainity	†DELAY	5.825	5.825	4.375	4.375	3.475	3.475	2.925	2.925	2.925	2.925	ns	24
ACTIVE to ACTIVE (same bank) command	t _{RC}	55	=	60	-	60	=	57.5	=	60	=	t _{CK}	
ACTIVE bank a to ACTIVE bank b command	t _{RRD}	7.5	=	7.5	-	7.5	=	7.5	=	7.5	=	t _{CK}	
ACTIVE to READ or WRITE delay	t _{RCD}	15	-	15	-	15	-	12.5	-	15	-	ps	11,13
ACTIVE to PRECHARGE command	t _{RAS}	40	70000	45	70000	45	70000	45	70000	45	70000	t _{CK}	18
Internal READ to pre- charge command delay	t _{RTP}	7.5	-	7.5	-	7.5	-	7.5	-	7.5	-	t _{CK}	
Write recovery time	t _{WR}	15	-	15	-	15	-	15	-	15	-	ps	8, 9
Auto precharge write recovery + Precharge time	t _{DAL}	t _{WR} +	-	t _{WR} + t _{RP}	-	t _{WR} +	-	t _{WR} + t _{RP}	-	t _{WR} + t _{RP}	-	^t CK	
Internal WRITE to READ command delay	t _{WTR}	10	-	7.5	-	7.5	-	7.5	-	7.5	-	t _{CK}	7
PRECHARGE command period	t _{RP}	15	-	15	-	15	-	12.5	-	15	-	t _{CK}	
LOAD MODE command cycle time	t _{MRD}	2	-	2	-	2	-	2	-	2	-	t _{CK}	

Device AC Operating Conditions (Contd.)

Parameter	Symbol		© CL 3.0 400-333		@ CL 4.0 533-444		© CL 5.0 667-555		© CL 5.0 800-555			Unit	Notes
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
REFRESH to REFRESH command interval	t _{RFC}	127.5	-	127.5	-	127.5	-	127.5	-	127.5	-	ps	2, 17
Average periodic refresh Interval	t _{REFI}	-	7.8	-	7.8	-	7.8	-	7.8	-	7.8	ps	2, 17
Exit self refresh to non- READ command	txsnr	t _{RFC} (min) + 10	-	t _{RFC} (min) + 10	-	t _{RFC} (min)+	-	t _{RFC} (min)+	-	t _{RFC} (min)+ 10	-	t _{CK}	
Exit self refresh to READ command	tXSRD	200	-	200	-	200	-	200	-	200	-	ns	
ODT turn-on delay	t _{AOND}	2	2	2	2	2	2	2	2	2	2	t _{CK}	
ODT turn-on	t _{AON}	t _{AC} (min)	t _{AC} (max) + 1000	t _{AC} (min)	t _{AC} (max) + 1000	t _{AC} (min)	t _{AC} (max) + 700	t _{AC} (min)	t _{AC} (max) + 700	t _{AC} (min)	t _{AC} (max) + 700	t _{CK}	
ODT turn-off delay	t _{AOFD}	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	ps	11,13
ODT turn-off	t _{AOF}	t _{AC} (min)	t _{AC} (max) + 600	t _{AC} (min)	t _{AC} (max) + 600	t _{AC} (min)	t _{AC} (max) + 600	t _{AC} (min)	t _{AC} (max) + 600	t _{AC} (min)	t _{AC} (max) + 600	t _{CK}	18
ODT turn-on (power-down mode)	t _{AONPD}	t _{AC} (min) + 2000	2*t _{CK} + t _{AC} (max) + 1000	t _{AC} (min) + 2000	2*t _{CK} + t _{AC} (max) + 1000	t _{AC} (min)+ 2000	2*t _{CK} + t _{AC} (max) + 1000	t _{AC} (min)+ 2000	2*t _{CK} + t _{AC} (max) + 1000	t _{AC} (min)+ 2000	2*t _{CK} + t _{AC} (max) + 1000	^t CK	
ODT turn-off (power-down mode)	t _{AOFPD}	t _{AC} (min) + 2000	2.5*t _C K + t _{AC} (max) + 1000	t _{AC} (min) + 2000	2.5*t _{CK} + t _{AC} (max) + 1000	t _{AC} (min) + 2000	2.5*t _C K + t _{AC} (max) + 1000	t _{AC} (min) + 2000	2.5*t _C K + t _{AC} (max) + 1000	t _{AC} (min)+ 2000	2.5*t _C K + t _{AC} (max) + 1000	ps	8, 9
ODT to power-down entry latency	t _{ANPD}	3	-	3	-	3	-	3	-	3	-	t _{CK}	
ODT power-down exit latency	t _{AXPD}	8	-	8	-	8	-	8	-	8	-	t _{CK}	7
Exit active power-down to READ command, MR[bit12=0]	^t XARD	2	-	2	-	2	-	2	-	2	-	t _{CK}	
Exit active power-down to READ command, MR[bit12=1]	t _{XARDS}	6 - AL	-	6 - AL	-	7 - AL	-	8 - AL	-	8 - AL	-	t _{CK}	
Exit precharge power down to any non-read command	t _{XP}	2	-	2	-	2	-	2	-	2	-	ps	2, 17
CKE minimum pulse width (high and low pulse width)	t _{CKE}	3	-	3	-	3	-	3	-	3	-	ps	2, 17

August 7, 2007

- The AC and DC input level specifications are as defined in the SSTL_18 standard (i.e., the receiver will effectively switch as a result of the signal crossing the AC input level and will remain in that state as long as the signal does not ring back above [below] the DC input LOW [HIGH] level.
- Command/Address minimum input slew rate = 1.0V/ns and is referenced to the crosspoint of CK/CK#. t_{IS} timing is referenced to V_{IH} (AC) for a rising signal and V_{IL} (AC) for a falling signal. t_{IH} timing is referenced to V_{IH} (DC) for a rising signal and V_{IL} (DC) for a falling signal. Derating values for Command/Address input signal slew rates < 1.0V/ns are TBD.
- 3. Data minimum input slew rate = 1.0V/ns and is referenced to the crosspoint of DQS/DQS# if differential strobe feature is enabled. t_{DS} timing is referenced to V_{IH} (AC) for a rising signal and V_{IL} (AC) for a falling signal. t_{DH} timing is referenced to V_{IH} (DC) for a rising signal and V_{IL} (DC) for a falling signal. Derating values for Data input signal slew rates < 1.0V/ns are TBD.
- 4. t_{HZ} and t_{LZ} transitions occur in the same access time windows as valid data transitions. These parameters are not referenced to a specific voltage level, but specify when the device output is no longer driving (t_{HZ}) or begins driving (t_{LZ}).
- 5. This maximum value is derived from the reference test load. $t_{HZ~(MAX)}$ will prevail over a $t_{DQSCK~(MAX)} + t_{RPST~(MAX)}$ condition.
- 6. t_{LZ (MIN)} will prevail over a t_{DQSCK (MIN)} + t_{RPRE (MAX)} condition.
- 7. The intent of the Don't Care state after completion of the postamble is the DQS driven signal should be high, low or high-Z and that any signal transition within the input switching region must follow valid input requirements. That is if DQS transitions high [above V_{IH DC} (MIN)] then it must not transition low (below V_{IH DC}) prior to t_{DQSH(min)}.
- 8. This is not a device limit. The device will operate with a negative value, but system performance could be degraded due to bus turnaround.
- It is recommended that DQS be valid (HIGH or LOW) on or before the WRITE command. The case shown (DQS going from High-Z to logic LOW) applies when no WRITEs were previously in progress on the bus. If a previous WRITE was in progress, DQS could be HIGH during his time depending on tDQSS.
- 10. The refresh period is 64ms. This equates to an average refresh rate of 7.8125 μ s. However, an REFRESH comand must be asserted at least once every 70.3 μ s or t_{RFC (MAX)}; issuing more than eight REFRESH commands back to back at t_{RFC (min)} is not allowed.
- 11. Each byte lane has a corresponding DQS.
- 12. CK and CK# input slew rate must be \geq 1 V/ns (\geq 2 V/ns if measured differentially).
- 13. The data valid window is derived by achieving other specifications: t_{HP}, (t_{CK}/2), t_{DQSQ}, and t_{QH} (t_{QH} = t_{HP} t_{QHS}). The data valid window derates in direct proportion to the clock duty cycle and a practical data valid window can be derived.
- 14. MIN (t_{CL} , t_{CH}) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for t_{CL} and t_{CH}).
- 15. $t_{HP\ (MIN)}$ is the lesser of t_{CL} minimum and t_{CH} minimum actually applied to the device CK and CK# inputs.
- 16. READs and WRITEs with no auto precharge are allowed to be issued before t_{RAS} (MIN) is satisfied since t_{RAS} lockout feature is supported in DDR2 SDRAM.
- 17. V_{IL}/V_{IH} DDR2 overshoot/undershoot. Refer to 256MB, 512MB, or 1GB DDR2 SDRAM component data sheet for more detailed information.
- 18. $t_{DAL} = (n_{WR}) + (t_{RP}/t_{CK})$: For each of the terms above, if not already an integer, round to the next highest integer. t_{CK} refers to the application clock period; n_{WR} refers to the t_{WR} parameter stored in the MR[11,10,9].
- 19. This is a minimum requirement. Minimum READ to internal PRECHARGE timing is AL + BL/2 providing the t_{RTP} and t_{RAS (MIN)} have been satisfied. The DDR2 SDRAM will automatically delay the internal PRECHARGE command until t_{RAS (MIN)} has been satisfied.
- 20. Operating frequency is only allowed to change during self refresh mode or precharge power-down mode. Anytime the operating frequency is changed, not including jitter, the DLL is required to be reset followed by 200 clock cycles.
- 21. ODT turn-on time t_{AON (MIN)} is when the device leaves high impedence and ODT resistance begins to turn-on. ODT turn-on time t_{AON (MAX)} is when the resistance is fully on. Both are measured from t_{AOND}.
- 22. ODT turn-off time t_{AOF (MIN)} is when the device starts to turn-off ODT resistance. ODT turn-off time t_{AOF (MAX)} is when the bus is in high impedence. Both are measured from t_{AOFD}.
- 23. This parameter has a two clock minimum requirement at any t_{CK}.
- 24. t_{DELAY} is calculated from t_{IS} + t_{CK} + t_{IH} so that CKE registration LOW is guaranteed prior to CK, CK# being removed in a system reset condition.

August 7, 2007

Part Number Decode

<u>G</u> <u>5</u> <u>72</u> <u>28</u> <u>8</u> <u>F</u> <u>G</u> <u>8</u> <u>R</u> <u>W</u>

- 1 **SMART Modular Technologies**
- 2 **Module Process Technology**

G: Green Module (RoHS Compliant)

3 **Product Category**

5: SDRAM DIMM

4 **Module Data Bus Width**

72: x72

5 **Module Address Depth**

28: 128M

6 **Device Data Width**

8: x8

7 **Special Device Feature**

F: Standard (8 Bank SDRAM) FBGA

8 Voltage/Mode

G: DDR2 SDRAM

9 Refresh/Power

8: 8K Refresh/Standard Power

10 **Module Configuration**

R: 244-pin Mini-DIMM Registered, ECC

11 **Device Physicals**

W: 1Gbit Device Based

12 **CAS Latency**

> D: 3.0, 4.0 I: 4.0, 5.0

K: 5.0, 6.0

13 Cycle Time (Clock Speed)

B: 5.0ns (200MHz, PC2-3200, DDR2-400-333)

G: 3.75ns (267MHz, PC2-4200, DDR2-533-444)

L: 3.0ns (333MHz, PC2-5300, DDR2-667-555)

R: 2.5ns (400MHz, PC2-6400, DDR2-800-555)

F: 2.5ns (400MHz, PC2-6400, DDR2-800-666)

Note: "U" in the part number should be replaced by user specified option.

August 7, 2007

Disclaimer:

No part of this document may be copied or reproduced in any form or by any means, or transferred to any third party, without the prior written consent of an authorized representative of SMART Modular Technologies, Inc. ("SMART"). The information in this document is subject to change without notice. SMART assumes no responsibility for any errors or omissions that may appear in this document, and disclaims responsibility for any consequences resulting from the use of the information set forth herein. SMART makes no commitments to update or to keep current information contained in this document. The products listed in this document are not suitable for use in applications such as, but not limited to, aircraft control systems, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. Moreover, SMART does not recommend or approve the use of any of its products in life support devices or systems or in any application where failure could result in injury or death. If a customer wishes to use SMART products in applications not intended by SMART, said customer must contact an authorized SMART representative to determine SMART's willingness to support a given application. The information set forth in this document does not convey any license under the copyrights, patent rights, trademarks or other intellectual property rights claimed and owned by SMART. The information set forth in this document is considered to be "Proprietary" and "Confidential" property owned by SMART.

ALL PRODUCTS SOLD BY SMART ARE COVERED BY THE PROVISIONS APPEARING IN SMART'S TERMS AND CONDITIONS OF SALE ONLY, INCLUDING THE LIMITATIONS OF LIABILITY, WARRANTY AND INFRINGEMENT PROVISIONS. SMART MAKES NO WARRANTIES OF ANY KIND, EXPRESS, STATUTORY, IMPLIED OR OTHERWISE, REGARDING INFORMATION SET FORTH HEREIN OR REGARDING THE FREEDOM OF THE DESCRIBED PRODUCTS FROM INTELLECTUAL PROPERTY INFRINGEMENT, AND EXPRESSLY DISCLAIMS ANY SUCH WARRANTIES INCLUDING WITHOUT LIMITATION ANY EXPRESS, STATUTORY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

©1996 SMART Modular Technologies, Inc. All rights reserved.