Chapter 10: Rotation

Rylan Polster

April 28, 2021

General

Quantities

 $s = \operatorname{arc} \operatorname{length}$

r = radius

 $\theta = \text{angular position}$

 $\omega = \text{angular velocity}$

 $\alpha = \text{angular acceleration}$

v = linear velocity

 $a_t = \text{tangential acceleration}$

 $a_r = \text{radial acceleration}$

K = kinetic energy

 $I = {
m rotational\ inertia}$

 $I_{\rm com} = {
m rotational}$ inertia about an axis at the center of mass

h = perpendicular distance between two axes

 $\tau = \text{torque}$

 $\phi =$ angle between the force and the lever arm

1 Rotational Variables

Angular Position

$$\theta = \frac{s}{r} \tag{1}$$

Angular Velocity

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt} \tag{2}$$

Angular Acceleration

$$\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt} \tag{3}$$

2 Rotation With Constant Angular Acceleration

$$\omega = \omega_0 + \alpha t \tag{4}$$

$$\theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2 \tag{5}$$

$$\omega^2 = \omega_0^2 + 2\alpha \left(\theta - \theta_0\right) \tag{6}$$

$$\theta - \theta_0 = \frac{1}{2} \left(\omega_0 + \omega \right) t \tag{7}$$

$$\theta - \theta_0 = \omega t - \frac{1}{2}\alpha t^2 \tag{8}$$

3 Relating the Linear and Angular Variables

Position

$$s = \theta r \tag{9}$$

Speed

$$v = \omega r \tag{10}$$

Tangential Acceleration

$$a_t = \alpha r \tag{11}$$

Radial Acceleration

$$a_r = \frac{v^2}{r} = \omega^2 r \tag{12}$$

Radial acceleration is directed toward the center

4 Kinetic Energy of Rotation

Rotation Inertia

$$I = \sum m_i r_i^2 \tag{13}$$

Rotational Kinetic Energy

$$K = \frac{1}{2}I\omega^2 \tag{14}$$

5 Calculating the Rotational Inertia

$$I = \int r^2 \, dm \tag{15}$$

Parallel-Axis Theorem

$$I = I_{\rm com} + Mh^2 \tag{16}$$

6 Torque

$$\tau = (r) (F \sin \phi) \tag{17}$$

There are two (equivalent) ways to calculate torque:

$$\tau = (r) \left(F \sin \phi \right) = r F_t \tag{18}$$

$$\tau = (r\sin\phi)(F) = r_{\perp}F\tag{19}$$