Blanco (x): evalua a "Verdadero" si solo si el objeto X es blan

predicado

(blanco1)

Igual (x,y): evalua a "Verdadero" si solo si el objeto x es igual al objeto y.

predicado

igual²)

LOGICA DE PRINER ORDEN

FUNCTION (REFERENCIA A OBJETO)

Operación

INPUT: lista de términos

ουτρυτ: referencia a otro <u>término</u>.

Ej: mejor Amigo De 1

EVALUACIÓN: mejor Amigo De (Ana)

ELACION

PREDICADO (BOOLEANO)

Operación

input: lista de términos

DUTPUT: valor de verdad (V° 0 "F")

Ej: Hijo2

EVALUACION: Hijo (Marcos, Ana)

("V" si solo si Marcos es hijo de Ana).

FUNCIÓN

padre De : función cuya evaluación nos devuelve una referencia al objeto que es padre de su único argumento.

ej: padre De (x) es una referencia al objeto que es padre de x.

Término Sariable

Fraluación
de función

ATOMO -> Evaluación de un predicado

ERROR GRAVE UTILITAR UN PREDICADO DENTRO DE LA LISTA DE ARGUMENTOS DE UNA FUNCIÓN.

```
∀x Yy Loves (x,y) → "Todos aman a todos"
 \exists x \exists y \ Loves(x_iy) \rightarrow "Alguien ama a alguien"
Vx Jy Loves (x,y) -> "Todos aman a alguien" (que podría ser distinto para
Ix by Loves (gix) __ "Existe (al menos) una persona a la que todos aman'i
                            "Existe alguien a quien todos aman".
Vx Fy Loves (y,x) > "Para malquier persona, hay alguien que lo ama".
Jx Vy Loves (x,y) -> "Existe alquien que ama a todos".
 = Amarillo (O1) 1 Amarillo (O2) 1 Amarillo (O3)
  · Cuantificador existencial (F) > "OR MÚLTIPLE"
         Ix Amarillo (x)
           x € 101,02,034
         = Amarillo (O1) v Amarillo (O2) v Amarillo (O3)
```

```
Para todo (Y) => (implica)

ej: "todos los que están en la UAM son inteligentes"

(Yx) [En(x,UAM) => inteligente(x)]

Existe (F) (and)

ej: "hay gente en la UAM"

(Fx) [En(x,UAM) \( \) Inteligente(x)]
```


Nombre: mod

Tipo: entero.

Resto de la división entera %

mod (n, 6)

Def. recursiva
$$\begin{cases} 0! = 1 & (caso base) \\ n! = n & (n-1)! \end{cases}$$

 $3! = 3.2! = 6 \Leftrightarrow$
 $2 \cdot 1! = 2 \Leftrightarrow$
 $2 \cdot 1 \cdot 0! = 1$
 $4 \cdot 1 \cdot 0! = 1$

"Nubes": Hay nubes "Llueve": Está lleviendo

"Solo Blueve cuando hay nubes" Llueve => Nubes

EXERCISE EDyL 2016-2017

2016/10/14

Formalization in predicate logic: Specify the constants, variables, functions and predicates and explain their meaning.

"The sum of the angles of a triangle is π "

	Name	Туре
cts	π	real
je		
ob		

SI	Name	Туре
les	p ₁ , p ₂ ,	points
/ariab	$\theta_1, \theta_2, \dots$	angles
/ar	S ₁ , S ₂ ,	segments
	х, у,	objects

_				
	Name	Arity	Description (including the	Type of the result
-			types of the arguments)	of its evaluation
	t	3	$t(p_1, p_2, p_3)$: triangle formed	triangle
S			by the points p_1 , p_2 , p_3	
Functions	а	2	$a(s_1, s_2)$: angle formed by	angle
'ਚ			segments s_1 , s_2	•
	S	2	$s(p_1, p_2)$: segment formed by	segment
.			points p ₁ , p ₂	
-	sum	2	sum(θ_1 , θ_2): measure of the	Radians
,			angle that is the result of	i.e. Real in $[0,2\pi)$
	, ,		summing angles θ_1 , θ_2	

Sum On De Do

	Name	Arity	Description (including the types of the
			arguments)
Predicates	NonZeroLength	1	NonZeroLength(s): Segment s has non-zero length
	Triangle	3	Triangle(s_1 , s_2 , s_3): Segments s_1 , s_2 , s_3 form a triangle
	Equal	` 2	Equal(x,y) : x is equal to y

Equal (Sum (sum (θ_1, θ_2)), θ_3), π

Equal (seal Enter 6) (A)

"There is no life in a planet unless its atmosphere contains oxygen"

	Name	Туре	
Sts	Oxygen	gas	
<u>je</u>	Life	abstract ob	ect
9		1	
_,			

S	Name	Type		
iables	P. Pa, P2	planets		
<u>a</u>		1		
/ar				

	Name	Arity	Description (including the types of the arguments)	Type of the result of its evaluation
suc				
ınction				•

(0)	Name	Arity	Description (including the types of the		
tes			arguments)		
ו סו	Managhar et	1	Atmosphere - contains X-02446811		
edic	梅				
2	To Have (x,1	1) 2	X has y		
	Atmosphere (×14) 2	Atmosphere of x has y		

Vp {ToHave(p, Life) => Atmosphere(p, Dxygen)}

HOJA DE EJERCICIOS 2: Lógica de predicados EDvL 2016-2017

[Fecha de publicación: 2016/10/04]

[Fecha de entrega: 2016/10/11, 09:001

[Resolución en clase: 2016/10/11]

NOTA: Incluye explicaciones para tus respuestas. Un ejercicio cuya respuesta es correcta, pero que no incluye explicaciones podrá ser valorado como incompleto.

EJERCICIO 1:

Utilizando los predicados

P(x): "x es un paciente"

T(x,y): "x tiene y
C(x): "x es un corazon"
A(x): "x es un ataque al corazon"
R(x,z): "x está expuesto al riesgo z'
I(x): "x es un nivel de colesterol"
"" es normal" "x está expuesto al riesgo z"

E(x): V(x): "x es elevado" "x es un ventrículo"

I(x,y): "x es igual a y"

formaliza las siguientes sentencias como FBFs de la lógica de predicados

Algunos pacientes que tienen niveles elevados de colesterol tienen ataques al corazón (i) JX, R, R P(x) A L(n) A E(n) A T(X,n) A A(R) A T(X,R)

Todos los pacientes que tienen niveles altos de colesterol están expuestos al riesgo de un ataque al corazón Hejor la primera > Vx [In (P(x) / L(n) / E(n) / T(x,n)) >> Iz (A(z) / R(x,z))

(Vx,n) [(P(x) , L(n) , E(n) , T(x,n)) => Jz (A(z) , R(x,z)]

(iii) Todos los corazones normales tienen dos ventrículos

 $\forall x \left\{ \left[C(x) \wedge N(x) \right] \Rightarrow \left[\exists y, \neq \left[V(y) \wedge V(\neq) \wedge T(x,y) \wedge T(x,\neq) \wedge \left(\forall d \left(V(d) \wedge T(x,d) \right) \Rightarrow A \uparrow I(y, \neq) \right) \right] \right\}$

 $\forall x \left[P(x) \Rightarrow \left[\left(\exists n \left(L(n) \wedge E(n) \wedge T(x,n) \right) \right) \Rightarrow \left(\exists z \ A(z) \wedge \ R(x,z) \right) \right]$ Tambieu estaria bieu (bastante)

EJERCICIO 2:

Utilizando los predicados

H(x): "x es una persona"

P(x,y): "x es progenitor (padre o madre) de y"

A(x,y): "x es un ancestro de y"

S(x,y): "x es hermano o hermana de y"

I(x,y): "x es igual a y"

formaliza las siguientes sentencias como FBFs de la lógica de predicados

(i) Todas las personas tienen dos progenitores
$$\forall x \left\{ H(x) \implies \left[\exists y, z \left(P(y, x) \land P(z, x) \right) \right] \right\}$$

(ii) Dos personas son hermanos si tienen algún progenitor común.

$$\forall x,y,z \left\{ \left[P(x,y) \wedge P(x,z) \right] \Rightarrow S(y,z) \right\}$$

(iii) Un ancestro de alguien es o bien un progenitor de esa persona, o el ancestro del progenitor de esa persona.

ancestro dei progenitor de esa persona.

$$\forall y \exists x_{i} \in \{ [A(x_{i}y) \Rightarrow P(x_{i}y)] \lor A(x_{i} P(z_{i}y)) \}$$

$$\forall x \left[H(x) \Rightarrow \exists y, z \left[P(y, x) \wedge P(z, x) \wedge 7 I(y, z) \wedge \forall w \left(P(w, x) \Rightarrow \left(I(w, y) \vee I(w, z) \right) \right) \right]$$

$$(ii)$$

$$\forall x \left[H(x) \Rightarrow \exists y, z \left[P(y, x) \wedge P(z, x) \wedge 7 I(y, z) \wedge \forall w \left(P(w, x) \Rightarrow \left(I(w, y) \vee I(w, z) \right) \right) \right]$$

$$\forall x,y \left[\left(H(x) \wedge H(y) \right) \Rightarrow \left[S(x,y) \iff \left(\neg I(x,y) \wedge \exists z \left(P(z,x) \wedge P(z,y) \right) \right) \right] \right]$$

(iii)

$$\forall x \left[H(x) \Rightarrow \forall y \left[A(y_1x) \iff \left(P(y_1x) \lor \exists u \left(A(y_1u) \land P(u_1x)\right)\right)\right]\right]$$

EJERCICIO 3:

Consideremos las variables x,y,z,...

V(x):

x es un votante

C(x):

x es un candidato

G(x,y):

A x le gusta y

F(x,y):

x vota a favor de y

Formaliza como FBF's en lógica de predicados las siguientes frases en lenguaje natural, de manera lo más literal posible.

a) "A algunos votantes les gustan todos los candidatos"

b) "No a todos los votantes les gustan todos los candidatos"

$$\forall x \{ V(x) \Rightarrow [\forall y (C(y) \land G(x,y))] \}$$

c) "Los votantes solo votan a favor de los candidatos que les gustan"

$$\forall x,y \left[V(x) \Rightarrow F(x,G(x,y)) \right] \quad \forall x,y \left(V(x) \land C(y) \right) \Rightarrow \left(F(x,y) \Rightarrow G(x,y) \right)$$

d) "Los votantes no votan a favor de un candidato, a menos que les guste (en cuyo caso, puede que voten a favor del candidato o no)"

$$\forall x \forall y \left\{ V(x) \Rightarrow \left[\forall F(x,y) \lor F(x,G(x,y)) \right] \right\}$$

$$\forall x,y \left\{ \left(V(x) \land ((y)) \Rightarrow \left(F(x,y) \Rightarrow G(x,y) \right) \right\} \right\}$$

EJERCICIO 4:

Escribe las siguientes frases en lógica de predicados utilizando:

Constantes:

PT: Planeta Tatooine

R: arco iris U: paraguas

Variables:

 $0,0_1,0_2,...$: objeto $p,p_1,p_2,...$: lugar $s,s_1,s_2,...$: situación $x,x_1,x_2,...$: persona

Predicados:

Rains(s):

Llueve en la situación s

Snows(s):

Nieva en la situación s

Freezes(s):

La temperatura está debajo de cero en la situación s

Sunny(s):

El sol brilla en la situación s

Cloudy(s):

Está nublado en la situación s

In(x,s):

x está en la situación s.

Sees(x,o,s):

x ve el objeto o en la situación s x está el lugar p en la situación s

L(x,p,s): Wet(x,s):

x está mojado en la situación s

Carries(x,o,s):

x lleva el objeto o en la situación s.

a) "Uno se moja cuando llueve" [Ejemplo]

 $\forall x,s [In(x,s)\land Rains(s) \Rightarrow Wet(x,s)]$

b) "Cuando llueve, solo se mojan los que no llevan paraguas"

Hx,5 {[Rains (s) A (Carries (x, U, s)] =>7 Wet (x,s)}

c) "Solo se puede ver el arco iris cuando llueve y hace sol"

HSTX (Sees (x, R, s) > [Rains (s) ∧ Sunny (s)] } HST (Tx Sees (x, R, s)) = (Rains (s) ∧ Sunny (s))

d) "En el planeta Tatooine, cuando llueve y brilla el sol, todos ven el arco iris"

$$\forall x_1 s \left\{ \left[L(x_1 P T, s) \land Rains(s) \land Sunny(s) \right] \Rightarrow Sees(x_1 R, s) \right\}$$

$$\boxed{In(x_1 S)}$$

e) "No nieva a menos que haya nubes y la temperatura esté debajo de los cero grados"

EJERCICIO 5 [Adaptación de "Introducción a la Lógica Formal", A. Deaño, ej. 81]:

Escribe las siguientes frases sobre geometría plana como FBFs utilizando las siguientes variables, funciones y predicados:

Variables:

p,q,...

[puntos]

r,s,t,u...

[rectas]

θ, φ...

[ángulos en radianes]

Predicados:

Paralelas(<recta-1>,<recta-2>): <recta-1> y <recta-2> son

paralelas.

Perpendiculares(<recta-1>,<recta-2>): <recta-1> y <recta-

2> son perpendiculares.

Pertenece(<punto>,<recta>): <punto> pertenece a <recta>

Recto(<ángulo>): El ángulo cuyo valor es <ángulo> es recto

Cero(<ángulo>): El ángulo cuyo valor es <ángulo> es cero

Función:

ángulo(<recta-1>,<recta-2>):

evalúa al ángulo que forman las rectas < recta-1>, < recta-2>

No se puede utilizar el predicado de igualdad No olvides utilizar paréntesis para delimitar el ámbito de las variables.

a) "Dos rectas son paralelas cuando no se cruzan en ningún punto" [Ejemplo]

 $\forall r,s [Paralelas(r,s) \Leftrightarrow [\neg \exists p (Pertenece(p,r) \land Pertenece(p,s))]]$

b) Dos rectas son perpendiculares cuando el ángulo que forman es recto $(\pi/2)$

∀r,s [Perpendiculares (r,s) ⇒ Recto (angulo (r,s))]

c) "Dos rectas que formen un ángulo cero o bien son coincidentes, o bien son paralelas"

Vris {(ero(angulo(ris)) ←> [Paralelas(ris) V [Vp(Pertenece(pir)⇔Pertenece(pis))]]}

EJERCICIO 6 [Adaptación de "Introducción a la Lógica Formal", A. Deaño, ej. 81]:

Escribe las siguientes frases sobre geometría plana como FBFs utilizando las siguientes variables, funciones y predicados:

Variables:

p,q,...

[puntos]

r,s,t,u...

[rectas]

Predicados:

Paralelas(<recta-1>,<recta-2>): <recta-1> y <recta-2> son

paralelas.

Pertenece(<punto>,<recta>): <punto> pertenece a <recta>

Función:

perpendicular(<recta>,<punto>):

evalúa a la recta perpendicular a <recta> que contiene a

<punto>

Se pueden utilizar los predicados de igualdad (=) y desigualdad (\neq) . No olvides utilizar paréntesis para delimitar el ámbito de las variables.

a) "Dos rectas son paralelas cuando no se cruzan en ningún punto" [Ejemplo]

 $\forall r,s \ [Paralelas(r,s) \Leftrightarrow [\neg \exists p \ (Pertenece(p,r) \land Pertenece(p,s)) \]]$

b) "Dos rectas no paralelas y diferentes entre sí se cruzan un único punto"

Vris (7 Paralelas (ris) ⇒ [Fp (Pertenece (pir) A Pertenece (pis) 1 1 174 [p+4 A Pertenece (qir) A Pertenece (qis)]]

c) "Dos rectas perpendiculares a dos rectas paralelas dadas, de forma que las perpendiculares sean distintas entre sí, son paralelas"

∀r,s,p d Paralelas(r,s) ⇒ [Paralelas (Perpendicular (r,p), Perpendicular (s, τρ)]]

b) $\forall r_{1}s \int (\neg Paralela (r_{1}s) \wedge (r_{2}s)) \iff \exists p \left[Pertenece(p,r) \wedge Pertenece(p_{1}s) \wedge \forall q \right]$ $\forall q \left[(Pertenece(q_{1}s) \wedge Pertenece(q_{1}s)) \implies (q=p) \right] b$