In the Claims

The status of claims in the case is as follows:

1. [Original] A method for workload planning, comprising the steps of:

determining for each of a plurality of prospective customers, a projected quantity of material for processing;

determining for each customer a complexity factor for processing said material, including dismantling prototype machines, identifying work content and resulting saleable, commodity, and trash items; and

responsive to said projected quantity and said complexity factor, determining staffing requirements and productivity targets for a demanufacturing enterprise for processing said material.

- 1 2. [Original] The method of claim 1, further comprising
- 2 the step of projecting said quantity by volume.

- 1 3. [Original] The method of claim 1, further comprising
- 2 the step of converting said volume to weight.
- 1 4. [Original] The method of claim 2, further comprising
- the steps of converting said volume to weight, and
- determining said complexity factor by prototyping.
- 1 5. [Original] The method of claim 4, said prototyping
- 2 including the step of disassembly prototyping.
- 1 6. [Original] The method of claim 5, said disassembly
- 2 prototyping step being applied to new material and further
- 3 comprising the step of accumulating historical data for
- 4 determining said complexity factor for previously
- 5 disassembled material.
- 7. [Original] The method of claim 2, said projecting step
- 2 further comprising the step of determining an expected
- 3 number of truckloads of said material.
- 1 8. [Original] The method of claim 5, said disassembly
- 2 prototyping further including the step of determining
- 3 salvageable and disposable content for said material of a
- 4 given equipment type.

- 9. [Original] The method of claim 1, further comprising
- the steps of applying said quantity projections and
- 3 complexity factors to workload planning model for
- 4 forecasting workload requirements for said processing; and
- 5 responsive to said workload requirements determining
- 6 staffing requirements and resource balancing between
- 7 projects.
- 1 10. [Original] The method of claim 9, further comprising
- the steps of adjusting said workload requirements for
- absenteeism, fatigue, breaks, and vacation pattern factors.
- 1 11. [Original] The method of claim 9, said workload
- 2 planning model being implemented as a computer spreadsheet.
- 1 12. [Original] The method of claim 11, further comprising
- the step of periodically updating said workload planning
- 3 model based upon actual and anticipated changes in quantity
- 4 projections and complexity factors.
- 1 13. [Original] The method of claim 10, further comprising
- 2 the step of calculating said productivity targets for a
- demanufacturing enterprise using said quantity projections

- 4 and complexity factors.
- 1 14. [Currently amended] A method for forecasting staffing
- 2 requirements for a demanufacturing enterprise, comprising
- 3 the steps of:
- 4 converting projected customer returns to weight,
- 5 multiplying said weight by a complexity factor
- 6 determined by disassembly prototyping to generate a
- 7 staff requirement for each of a plurality of customers,
- 8 <u>said disassembly prototyping including dismantling</u>
- 9 prototype machines, identifying work content and
- 10 <u>resulting saleable, commodity, and trash items;</u>
- generating a summation of said staff requirements for
- 12 all customers; and
- adjusting said staff requirements for all customers by
- an expected absenteeism factor, fatique factor, breaks
- requirements, and vacation patterns to generate said
- staffing requirements and productivity targets for said
- 17 demanufacturing enterprise.
- 1 15. [Original] The method of claim 14, further comprising

- the step of executing said converting, generating, and
- 3 adjusting steps in a spreadsheet model.
- 1 16. [Currently amended] System for workload planning,
- 2 comprising:
- a computer <u>implemented</u> model for determining for each
- 4 of a plurality of prospective customers, a projected
- 5 quantity of material for processing;
- a computer <u>implemented</u> model for determining for each
- 7 customer a complexity factor for processing said
- 8 material; and
- 9 a computer <u>implemented</u> model, responsive to said
- 10 projected quantity and said complexity factor, for
- determining staffing requirements and productivity
- 12 targets for processing said material.
 - 1 17. [Original] The system of claim 16, further comprising:
- a process tracking database for accumulating historical
- data, said data including actual and projected
- 4 complexity factors for materials for each of plurality

- of said customers.
- 1 18. [Currently amended] The system of claim 17, further
- comprising:
- 3 <u>computer implemented</u> model input for receiving customer
- 4 projections of said quantity of material and the
- 5 results of disassembly prototyping.
- 1 19. [Currently amended] A program storage device readable
- by a machine, tangibly embodying a program of instructions
- 3 executable by a machine to perform method steps for workload
- 4 planning, said method steps comprising:
- 5 determining for each of a plurality of prospective
- 6 customers, a projected quantity of material for
- 7 processing;
- 8 determining for each customer a complexity factor for
- 9 processing said material, including dismantling
- 10 prototype machines, identifying work content and
- resulting saleable, commodity, and trash items; and
- responsive to said projected quantity and said

- complexity factor, determining staffing requirements
- and productivity targets for processing said material.
 - 1 20. [Original] The program storage device of claim 19,
 - 2 said method steps further comprising the step of projecting
 - 3 said quantity by volume.
 - 1 21. [Original] The program storage device of claim 19,
 - 2 said method steps further comprising the step of converting
 - 3 said volume to weight.
 - 1 22. [Original] The program storage device of claim 20,
 - 2 said method steps further comprising the step of converting
 - 3 said volume to weight, and determining said complexity
 - 4 factor by prototyping.
 - 1 23. [Original] The program storage device of claim 22,
 - 2 said prototyping step including the step of disassembly
 - 3 prototyping.
 - 1 24. [Original] The program storage device of claim 23,
 - said disassembly prototyping step being applied to new
 - 3 material and further comprising the step of accumulating
 - 4 historical data for determining said complexity factor for

- 5 previously disassembled material.
- 1 25. [Original] The program storage device of claim 20,
- 2 said projecting step further comprising the step of
- determining an expected number of truckloads of said
- 4 material.
- 1 26. [Original] The program storage device of claim 23,
- 2 said disassembly prototyping further including the step of
- determining salvageable and disposable content for said
- 4 material of a given equipment type.
- 1 27. [Original] The program storage device of claim 19,
- 2 said method steps further comprising the steps of applying
- 3 said quantity projections and complexity factors to workload
- 4 planning model for forecasting workload requirements for
- said processing; and responsive to said workload
- 6 requirements determining staffing requirements and resource
- 7 balancing between projects.
- 1 28. [Original] The program storage device of claim 27,
- 2 said method steps further comprising the step of adjusting
- 3 said workload requirements for absenteeism, fatigue, breaks,
- 4 and vacation pattern factors.

- 1 29. [Original] The program storage device of claim 27,
- 2 said workload planning model being implemented as a computer
- 3 spreadsheet.
- 1 30. [Original] The program storage device of claim 29,
- 2 said method steps further comprising the step of
- 3 periodically updating said workload planning model based
- 4 upon actual and anticipated changes in quantity projections
- 5 and complexity factors.
- 1 31. [Original] The program storage device of claim 28,
- 2 said method steps further comprising the step of calculating
- 3 said productivity targets for a demanufacturing enterprise
- 4 using said quantity projections and complexity factors.
- 1 32. [Currently amended] A computer program product or
- 2 computer program element for forecasting staffing
- 3 requirements for a demanufacturing enterprise, according to
- 4 the steps of comprising:
- 5 <u>a computer readable medium;</u>
- 6 <u>first program instructions for</u> converting projected

7	customer returns to weight, multiplying said weight by
8	a complexity factor determined by disassembly
9	prototyping to generate a staff requirement for each of
10	a plurality of customers, said disassembly prototyping
11	including dismantling prototype machines, identifying
12	work content and resulting saleable, commodity, and
13	<pre>trash items;</pre>
14	second program instructions for generating a summation
15	of said staff requirements for all customers; and
16	third program instructions for adjusting said staff
17	requirements for all customers by an expected
18	absenteeism factor, fatigue factor, breaks
19	requirements, and vacation patterns to generate said
20	staffing requirements and productivity targets for said
21	demanufacturing enterprise; and wherein
22	said first, second, and third program instructions are
23	recorded on said computer readable medium.