Tests paramétriques à un échantillon

	ques a un cenantmon					
Paramètre	$\mu \ (\sigma^2 \ {\rm connue})$	μ (σ^2 inconnue)	σ^2	p		
$H_0: \theta = \theta_0$	$\mu = \mu_0$	$\mu = \mu_0$	$\sigma^2 = \sigma_0^2$	$p = p_0$		
Statistique	$Z_0 = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$	$T_0 = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$	$W_0^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$Z_0 = \frac{\bar{X} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \text{ si } n \text{ est grand.}$		
Décision	On rejette H_0 si :					
$H_1: \theta \neq \theta_0$	$ Z_0 > z_{\alpha/2}$	$ T_0 > t_{\alpha/2, n-1}$	$W_0^2 > \chi_{\alpha/2, n-1}^2$ ou $W_0^2 < \chi_{1-\alpha/2, n-1}^2$	$ Z_0 > z_{\alpha/2}$		
$H_1: \theta > \theta_0$	$Z_0 > z_{\alpha}$	$T_0 > t_{\alpha,n-1}$	$W_0^2 > \chi_{\alpha,n-1}^2$	$Z_0 > z_{\alpha}$		
$H_1: \theta < \theta_0$	$Z_0 < -z_{\alpha}$	$T_0 < -t_{\alpha, n-1}$	$W_0^2 < \chi_{1-\alpha, n-1}^2$	$Z_0 < -z_{\alpha}$		
Erreur 2 ^e type*	$\beta(\Delta)$ avec $\Delta = \mu - \mu_0$	$\beta(\Delta)$ avec $\Delta = \mu - \mu_0$	$\beta(\lambda)$ avec $\lambda = \sigma_0^2/\sigma^2$	$\beta(p)$		
$H_1: \theta \neq \theta_0$	$\Phi\left(z_{\alpha/2} - \frac{\Delta\sqrt{n}}{\sigma}\right)$	$\Phi\left(z_{\alpha/2} - \frac{\Delta\sqrt{n}}{S}\right)$	$\Phi\left(\frac{\lambda}{\sqrt{2n-2}}\chi^2_{\alpha/2,n-1} - \sqrt{\frac{n-1}{2}}\right)$	$\Phi\left(\frac{\sqrt{n(p_0-p)+z_{\alpha/2}}\sqrt{p_0(1-p_0)}}{\sqrt{p(1-p)}}\right)$		
	$-\Phi\left(-z_{\alpha/2}-\frac{\Delta\sqrt{n}}{\sigma}\right)$	$-\Phi\left(-z_{\alpha/2} - \frac{\Delta\sqrt{n}}{S}\right)$	$-\Phi\left(\frac{\lambda}{\sqrt{2n-2}}\chi^2_{1-\alpha/2,n-1}-\sqrt{\frac{n-1}{2}}\right)$	$-\Phi\left(\frac{\sqrt{n(p_0-p)-z_{\alpha/2}}\sqrt{p_0(1-p_0)}}{\sqrt{p(1-p)}}\right)$		
$H_1: \theta > \theta_0$	On remplace le second terme de la formule du test bilatéral par 0, et on remplace $\alpha/2$ par α .					
$H_1: heta < heta_0$	On remplace le premier terme de la formule du test bilatéral par 1, et on remplace $\alpha/2$ par α .					
Taille d'éch.*	Les formules ci-dessous sont valides pour le test bilatéral. Dans le cas unilatéral, on remplace $\alpha/2$ par α .					
n =	$\frac{(z_{\alpha/2} + z_{\beta})^2 \sigma^2}{\Delta^2}$	$\frac{(z_{\alpha/2} + z_{\beta})^2 S^2}{\Delta^2}$	$\frac{3}{2} + \frac{1}{2} \left(\frac{\sigma_0 z_{\alpha/2} + \sigma z_{\beta}}{\sigma - \sigma_0} \right)^2$	$\left(\frac{z_{\alpha/2}\sqrt{p_0(1-p_0)}+z_{\beta}\sqrt{p(1-p)}}{p-p_0}\right)^2$		

^{*} Les symboles μ , σ^2 et p représentent la vraie valeur du paramètre inconnu pour laquelle on désire calculer β ou n. À l'exception du test sur la moyenne avec variance connue, les formules pour β et n ne sont valides que si n est grand.

Tests paramétriques à un échantillon

Paramètre	$\mu \ (\sigma^2 \ \text{connue})$	μ (σ^2 inconnue)	σ^2	p	
$H_0: \theta = \theta_0$	$\mu = \mu_0$	$\mu = \mu_0$	$\sigma^2=\sigma_0^2$	$p = p_0$	
Statistique	$Z_0 = \frac{X - \mu_0}{\sigma / \sqrt{n}}$	$T_0 = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$	$W_0^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$Z_0 = \frac{X - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \text{ si } n \text{ est grand.}$	
Décision	On rejette H_0 si :				
$H_1: \theta \neq \theta_0$	$ Z_0 > z_{\alpha/2}$	$ T_0 > t_{\alpha/2, n-1}$	$W_0^2 > \chi_{\alpha/2,n-1}^2$ ou $W_0^2 < \chi_{1-\alpha/2,n-1}^2$	$ Z_0 > z_{\alpha/2}$	
$H_1: \theta > \theta_0$	$Z_0 > z_{\alpha}$	$T_0 > t_{\alpha,n-1}$	$W_0^2 > \chi_{\alpha,n-1}^2$	$Z_0 > z_{\alpha}$	
$H_1: \theta < \theta_0$	$Z_0 < -z_{\alpha}$	$T_0 < -t_{\alpha, n-1}$	$W_0^2 < \chi_{1-\alpha, n-1}^2$	$Z_0 < -z_{\alpha}$	
Erreur 2 ^e type*	$\beta(\Delta)$ avec $\Delta = \mu - \mu_0$	$\beta(\Delta)$ avec $\Delta = \mu - \mu_0$	$\beta(\lambda)$ avec $\lambda = \sigma_0^2/\sigma^2$	$\beta(p)$	
$H_1: \theta \neq \theta_0$	$\Phi\left(z_{\alpha/2} - \frac{\Delta\sqrt{n}}{\sigma}\right)$	$\Phi\left(z_{\alpha/2} - \frac{\Delta\sqrt{n}}{S}\right)$	$\Phi\left(\frac{\lambda}{\sqrt{2n-2}}\chi^2_{\alpha/2,n-1}-\sqrt{\frac{n-1}{2}}\right)$	$\Phi\left(\frac{\sqrt{n}(p_0-p)+z_{\alpha/2}\sqrt{p_0(1-p_0)}}{\sqrt{p(1-p)}}\right)$	
	$-\Phi\left(-z_{\alpha/2}-\frac{\Delta\sqrt{n}}{\sigma}\right)$	$-\Phi\left(-z_{\alpha/2}-\frac{\Delta\sqrt{n}}{S}\right)$	$-\Phi\left(\frac{\lambda}{\sqrt{2n-2}}\chi^2_{1-\alpha/2,n-1}-\sqrt{\frac{n-1}{2}}\right)$	$-\Phi\left(\frac{\sqrt{n}(p_0-p)-z_{\alpha/2}\sqrt{p_0(1-p_0)}}{\sqrt{p(1-p)}}\right)$	
$H_1: \theta > \theta_0$	On remplace le second terme de la formule du test bilatéral par 0, et on remplace $\alpha/2$ par α .				
$H_1: \theta < \theta_0$	On remplace le premier terme de la formule du test bilatéral par 1, et on remplace $\alpha/2$ par α .				
Taille d'éch.*	Les formules ci-dessous sont valides pour le test bilatéral. Dans le cas unilatéral, on remplace $\alpha/2$ par α .				
n =	$\frac{(z_{\alpha/2} + z_{\beta})^2 \sigma^2}{\Delta^2}$	$\frac{(z_{\alpha/2} + z_{\beta})^2 S^2}{\Delta^2}$	$\frac{3}{2} + \frac{1}{2} \left(\frac{\sigma_0 z_{\alpha/2} + \sigma z_{\beta}}{\sigma - \sigma_0} \right)^2$	$\frac{z_{\alpha/2}\sqrt{p_0(1-p_0)}+z_{\beta}\sqrt{p(1-p)}}{(p-p_0)^2}$	

^{*} Les symboles μ , σ^2 et p représentent la vraie valeur du paramètre inconnu pour laquelle on désire calculer β ou n. À l'exception du test sur la moyenne avec variance connue, les formules pour β et n ne sont valides que si n est grand.