CODEFORCES Sponsored by TON

GROUPS RATING EDU API CALENDAR HELP HOME TOP CATALOG CONTESTS GYM PROBLEMSET

SUBMIT STATUS STANDINGS CUSTOM TEST **PROBLEMS**

B. Cat, Fox and the Lonely Array

time limit per test: 2 seconds memory limit per test: 256 megabytes

Today, Cat and Fox found an array a consisting of n non-negative integers.

Define the *loneliness* of a as the **smallest** positive integer k ($1 \le k \le n$) such that for any two positive integers iand j ($1 \le i, j \le n - k + 1$), the following holds:

$$a_i | a_{i+1} | \dots | a_{i+k-1} = a_j | a_{j+1} | \dots | a_{j+k-1},$$

where x|y denotes the bitwise OR of x and y. In other words, for every k consecutive elements, their bitwise OR should be the same. Note that the loneliness of a is well-defined, because for k=n the condition is satisfied.

Cat and Fox want to know how lonely the array a is. Help them calculate the loneliness of the found array.

Input

Each test consists of multiple test cases. The first line contains a single integer t ($1 \le t \le 10^4$) — the number of test cases. The description of the test cases follows.

The first line of each test case contains one integer n ($1 \le n \le 10^5$) — the length of the array a.

The second line of each test case contains n integers a_1, a_2, \ldots, a_n ($0 \le a_i < 2^{20}$) — the elements of the array.

It is guaranteed that the sum of n over all test cases doesn't exceed 10^5 .

Output

For each test case, print one integer — the loneliness of the given array.

Example

input	Сору
7	
1	
0	
3	
2 2 2	
3	
1 0 2	
5	
3 0 1 4 2	
5	
2 0 4 0 2	
7	
0 0 0 0 1 2 4	
8	
0 1 3 2 2 1 0 3	
output	Сору
1	
1	
3	
4	

Note

4

7

In the first example, the loneliness of an array with a single element is always 1, so the answer is 1.

In the second example, the OR of each subarray of length k=1 is 2, so the loneliness of the whole array is 1.

In the seventh example, it's true that (0|1|3) = (1|3|2) = (3|2|2) = (2|2|1) = (2|1|0) = (1|0|3) = 3, so the condition is satisfied for k=3. We can verify that the condition is not true for any smaller k, so the answer is indeed 3.

Codeforces Round 945 (Div. 2)

Finished

Practice

→ Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you solve this problem in the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

→ Clone Contest to Mashup

You can clone this contest to a mashup.

Clone Contest

→ Submit?

Choose

Language: GNU G++20 13.2 (64 bit, win **∨**

Choose File No file chosen

Submit

→ Last submissions **Time** Verdict Submission Jul/20/2024 271443677 **Accepted** 02:22 Jul/20/2024 271443334 **Accepted** 02:13 Jul/20/2024 271443084 **Accepted**

02:07

→ Problem tags

binary search | bitmasks | data structures greedy | math | two pointers | *1300

No tag edit access

 \times

×

ightarrow Contest materials

- Announcement (en)
- Tutorial (en)