Lecture 1: Introduction to complex numbers

Math 660—Jim Fowler

Monday, June 20, 2011

Syllabus

Syllabus Math 660

Summer 2011

Jim Fowler

This is a beginning graduate course in complex analysis; as such, we study analysis (e.g., the rigorous foundations of calculus) as it applies to functions of a complex variable. The resulting theory is strikingly beautiful.

Resources

We present 5 resources to help you to learn complex analysis.

Professor's office hours

If you have questions, want to work through problems, or just talk about mathematics, please attend office hours.

Name: Jim Fowler

Office: MW658 Mathematics Tower Office Hours: Monday 3:30-5:00P.M.
Phone: (773) 809-5659 Wednesday 3:30-5:00P.M.
Email: fowler@math.osu.edu and by appointment

Website: http://www.math.osu.edu/~fowler/

Please email me with any concerns you have; the success of this course depends on open communication.

Today's Goal

Chapter 1 of Complex Analysis

We're going to move fast—some details won't be justified entirely for a while.

 $i^2 =$

 $i^2 = -1$

*i*2

$\sqrt{-1}$

 $-1 \qquad (-i)^2 =$

 $i^2 = -1$ $(-i)^2 = -1$

$a + bi \in$

 $a,b\in\mathbb{R}$

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

 $(a + bi) - (c + di) = (a - c) + (b - d)i$

$$(a + bi) + (c + di) = (a + c) + (b + d) i$$

 $(a + bi) - (c + di) = (a - c) + (b - d) i$
 $(a + bi) \cdot (c + di) = (ac - bd) + (ad + bc) i$

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

$$(a+bi) - (c+di) = (a-c) + (b-d)i$$

$$(a+bi) \cdot (c+di) = (ac-bd) + (ad+bc)i$$

$$\frac{a+bi}{c+di} = \left(\frac{ac+bd}{c^2+d^2}\right) + \left(\frac{bc-ad}{c^2+d^2}\right)i$$

Dividing Complex Numbers

$$\frac{a+bi}{c+di} =$$

If i > 0, then $i^2 > 0$, meaning -1 > 0.

If i > 0, then $i^2 > 0$, meaning -1 > 0. If i < 0, then $i^2 > 0$, meaning -1 > 0.

If i > 0, then $i^2 > 0$, meaning -1 > 0. If i < 0, then $i^2 > 0$, meaning -1 > 0.

Something is wrong...

If i > 0, then $i^2 > 0$, meaning -1 > 0. If i < 0, then $i^2 > 0$, meaning -1 > 0.

Something is wrong...

The complex numbers aren't ordered.

Why write *i*? Why not $\sqrt{-1}$?

$$\sqrt{a}\sqrt{b} = \sqrt{ab}$$

Why write *i*? Why not $\sqrt{-1}$?

$$\sqrt{a}\sqrt{b}=\sqrt{ab}$$

But what if
$$a = -1$$
 and $b = -1...$?

Why write *i*? Why not $\sqrt{-1}$?

$$\sqrt{a}\,\sqrt{b}=\sqrt{ab}$$

But what if a = -1 and b = -1...?

$$\sqrt{-1}\sqrt{-1} = -\sqrt{(-1)\cdot(-1)}$$

There are two square roots. This is confusing. Choose one of them, and call it i.

Complex Conjugation

Definition

Define
$$\overline{a + bi} = a - bi$$
.

$$\overline{\overline{z}} = z$$
. $\overline{a+b} = \overline{a} + \overline{b}$.

 $\overline{ab} = \overline{a} \cdot \overline{b}$.

Complex Conjugation

Definition

Define
$$\overline{a+bi} = a-bi$$
.
 $\overline{\overline{z}} = z$. $\overline{a+b} = \overline{a}+\overline{b}$.

$$\overline{ab} = \overline{a} \cdot \overline{b}.$$

Could you tell the difference between a world in which i was replaced by -i?

Definition $|z|^2 = z \cdot \overline{z}$.

Definition $|z|^2 = z \cdot \overline{z}$.

▶ $|z| \ge 0$, where |z| = 0 iff z = 0.

Definition

 $|z|^2 = z \cdot \overline{z}.$

- ▶ $|z| \ge 0$, where |z| = 0 iff z = 0.
- ▶ $|z + w| \le |z| + |w|$.

Definition

$$|z|^2 = z \cdot \overline{z}$$
.

- ▶ $|z| \ge 0$, where |z| = 0 iff z = 0.
- ▶ $|z + w| \le |z| + |w|$.
- $|z \cdot w| = |z| \cdot |w|.$

Definition $|z|^2 = z \cdot \overline{z}$.

- ▶ $|z| \ge 0$, where |z| = 0 iff z = 0.
- ▶ $|z + w| \le |z| + |w|$.
- $|z \cdot w| = |z| \cdot |w|.$

By Pythagoras' theorem, $|a + bi| = \sqrt{a^2 + b^2}$

Argument

Theorem $arg(z_1z_2) \equiv arg z_1 + arg z_2 \mod 2\pi$.

Absolute value and argument

$$z = |z| \cdot (\cos \arg z + i \sin \arg z)$$
.

Absolute value and argument

$$z = |z| \cdot (\cos \arg z + i \sin \arg z)$$
.

$$zw = |z| \cdot |w| \cdot ((\cos \arg z \cos \arg w - \sin \arg z \sin \arg w) + (\cos \arg z \sin \arg w + \sin \arg z \cos \arg w)i).$$

$$zw = |z| \cdot |w| \cdot (\cos(\arg z + \arg w) + i \sin(\arg z + \arg w))$$

$$z = r(\cos\theta + i\sin\theta).$$

$$z = r(\cos \theta + i \sin \theta).$$

$$z^{n} = r^{n} (\cos(n\theta) + i \sin(n\theta))$$

$$z = r(\cos \theta + i \sin \theta).$$

$$z^{n} = r^{n} (\cos(n\theta) + i \sin(n\theta))$$

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\theta}{n} + i \sin \frac{\theta}{n}\right)$$

$$z = r(\cos\theta + i\sin\theta).$$

$$z^{n} = r^{n} (\cos(n\theta) + i\sin(n\theta))$$

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos\frac{\theta}{n} + i\sin\frac{\theta}{n}\right)$$

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos\frac{\theta + k \cdot 2\pi}{n} + i\sin\frac{\theta + k \cdot 2\pi}{n}\right),$$
for $k \in \{0, \dots, n-1\}.$

$$z = r(\cos\theta + i\sin\theta).$$

$$z^{n} = r^{n} (\cos(n\theta) + i\sin(n\theta))$$

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos\frac{\theta}{n} + i\sin\frac{\theta}{n}\right)$$

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos\frac{\theta + k \cdot 2\pi}{n} + i\sin\frac{\theta + k \cdot 2\pi}{n}\right),$$
for $k \in \{0, \dots, n-1\}.$

So n^{th} roots exist; they form vertices of a regular polygon.

Powers of a complex number

We can now compute $z^{p/q}$. By continuity, we could define z^x for $x \in \mathbb{R}$.

What about, say, z^{i} ? This will have to wait.

Stereographic projection

Extend \mathbb{C} to $\mathbb{C} \cup \{\infty\}$.

Consider
$$S^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : \sum_i x_i^2 = 1\}$$
,

Define $f: S^2 \to \mathbb{C} \cup \{\infty\}$ by

$$z = x + iy = f(x_1, x_2, x_3) = \frac{x_1 + ix_2}{1 - x_3}$$

The points (0, 0, 1), (x, y, 0), and (x_1, x_2, x_3) are collinear.

Powers on the Riemann sphere