

Definition

Consider an eigenvalue λ of an $n \times n$ matrix A. Then the kernel of the matrix $A - \lambda I_n$ is called the eigenspace associated with λ , denoted by E_{λ} :

$$E_{\lambda} = \ker(A - \lambda I_n) = \{ \vec{v} \in \mathbb{R}^n : A\vec{v} = \lambda \vec{v} \}$$

№ Problem

Find the eigenspaces of the matrix $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$. Diagonalize matrix A if you can..

Problem

Which of the following statements are true?..(Explain why)

- (S1) Every 2×2 matrix has an eigenvector
- (S2) if A and B are two $n \times n$ matrices such that AB = BA, and if u is an eigenvector of B, then Au is an eigenvector of B as well
- (S3) if u and v are the eigenvectors of a 2×2 matrix A, then u v is also an eigenvector of A