

CSE251

Electronic Devices and Circuits

Exp-04: Study of MOSFET I-V Characteristics and Implementation of Logic Gates <u>Using MOSFETs</u>

Submitted By:

Name: FAHAD MOHAMMAD REJWANUL ISLAM

ID: 20101443

Software simulation generated By:

Name: Fardeen Bin Ibrahim

ID: 20201066

Group-05

Semester: Fall22

Cooperated by:

ID: 21301610

ID: 2130161

Date of Performance: 24/10/22

Date of Submission: 31/10/22

2. Circuit Diagrams:

circuit 1: NIAND gate using MostET

circuit 2: Logical function f= 78+2

Circuit 3: circuit for measurement of IV charameristics (Ins Vs Vos) of Mosfet.

3.Signed Datasheet:

Student IDs: 202010.66, 20101443, 21301610, 21301611

Task-01: Logic Gate and Logical Function Implementation using MOSFET

1. NAND Gate

Input Voltage, V_x (volt)	Input Voltage, V_y (volt)	State of LED (On/Off)	Boolean Output (0 or 1)
0V	0V	NA	1
0V	5V	014	
5V	OV	017	
5V	5V	011	
01	.) V	DEF	0

2. Logical Function, $f = \overline{xy + z}$

Input Voltage, V_z (volt)	Input Voltage, V_y (volt)	Input Voltage, V_z (volt)	State of LED (On/Off)	Boolean Output (0 or 1)
0V	0V	6.7	Chi	(0 01 1)
0V	0V	5V	170	2
0V	5V	0V	ON	0
θV	5V	5V	ON	1
5V	0V	0V	941	,
5V	0V	δV	ON.	15
5V	5V	0V	OF1.	- 6
5V	5V	5V	017	0

Task-02: I-V Characteristics of a MOSFET Equivalent Resistance, Req (using Multimeter) = $k\Omega$ I-V Characteristics Data for $V_{cs} = 2.9 \text{ V}$ I-V Characteristics Data for $V_{cs} = 2.85 \text{ V}$

V_{DD} (volt)	(volt)	V _R (volt)	$I_{DS} = V_R/R_{eq}$ (mA)
0	0	0	0
	5:3mV	0.837	1.1497
2	1.95mV	1.821	2.5426
- 5	18.3301	3.114	4.2++
4	26.7mV	3,991	5.4821
6	SO SON	6.01	909917
7	33mV	6.93	0.1860
8	115.6mV	7.80	10.314.9
8.5	142 cm	8.32	11.4285
9	437.5K	8.81	12.1016
9.5	6.42V	9.09	12.4862
10	8.91	9.43	12.9532
12	6.69V	9.61	13.2005
14	10.CDA	9.63	13.2280

V_{DD} (volt)	V _{DS} (volt)	V_R (volt)	$I_{DS} = V_R/R_{eq}$
. A	(1011)	(voit)	(mA)
1	8.530V	1 0111	1 3011
2	4.1	1.RUT	2.50%
3	32.3m		4.19.18
3.5	42.2ml		1.110
ч	4.01	4.004	4.8063
4.5	732mV	4.44	6.0989
5	111.8mV	5.34	T RAFT
3.5	253.8m	145.34	3.39 11
6	5.18	5.30	7.2809
8	5.23	5:39	7.3763
10	5.26	5.50	7.5549
12	5.32	5.57	7.6510
6			
		6	

For, V_GS=2.895 v And R= 0.728 k ohm

I_DS (mA) vs V_DS(volt) for V_GS=2. 895 volt

And for, V_GS=2.85 v And R= 0.728 k ohm

I_DS (mA) vs. V_DS(volt) for V_GS=2.85 volt

4.

Simulation part:

Disucussion:

For the datasheet of V_GS=2.895 volt, we can notice that the graph presents, for the same value of V_DS, I_DS has higher value for higher value of V_GS. Moreover, we can see that V_DS is increasing from top to bottom. But for the datasheet of V_GS=2.85 volt, we can see that, the graph doesnt represent the increase of V_DS from top to bottom. So, there is something error in the datasheet 2. It is because some wrong values of V_DS while the experiment or because of equipment error and also we get less time for the experiment.