Fundamentos de lenguajes de programación Semántica de los Conceptos Fundamentales de Lenguajes de Programación

Facultad de Ingeniería. Universidad del Valle

- 1 Procedimientos
 - Sintaxis de los procedimientos
 - Semántica de los procedimientos
 - Ejemplos

- 1 Procedimientos
 - Sintaxis de los procedimientos
 - Semántica de los procedimientos
 - Ejemplos
- 2 Procedimientos Recursivos
 - Introducción
 - Sintaxis de los procedimientos recursivos
 - Semántica de los procedimientos recursivos
 - Ejemplos

1 Procedimientos

- Sintaxis de los procedimientos
- Semántica de los procedimientos
- Ejemplos

2 Procedimientos Recursivos

- Introducción
- Sintaxis de los procedimientos recursivos
- Semántica de los procedimientos recursivos
- Ejemplos

- 1 Procedimientos
 - Sintaxis de los procedimientos
 - Semántica de los procedimientos
 - Ejemplos
- 2 Procedimientos Recursivos
 - Introducción
 - Sintaxis de los procedimientos recursivos
 - Semántica de los procedimientos recursivos
 - Ejemplos

Procedimientos

- Nuestro lenguaje será extendido para incorporar creación y aplicación de procedimientos.
- El lenguaje consistirá de las expresiones especificadas anteriormente y de expresiones para creación de procedimientos proc(...) ... y de aplicación de procedimientos (...)...
- Para este lenguaje se extiende el conjunto de valores expresados y denotados de la siguiente manera:

```
Valor\ Expresado = Número + Booleano + ProcVal Valor\ Denotado = Número + Booleano + ProcVal
```


Procedimientos Gramática

Se añaden las siguientes producciones a la gramática:

Procedimientos

Se deben añadir las siguientes producciones a la especificación de la gramática:

```
(expression ("proc" "(" (separated-list identifier ",")

")"

expression ("<a href="mailto:proc-exp">proc-exp</a>)

(expression ("(" expression (arbno expression) ")")

app-exp)
```


Procedimientos

De esta manera se puedan crear programas como:

- 1 Procedimientos
 - Sintaxis de los procedimientos
 - Semántica de los procedimientos
 - Ejemplos
- 2 Procedimientos Recursivos
 - Introducción
 - Sintaxis de los procedimientos recursivos
 - Semántica de los procedimientos recursivos
 - Ejemplos

- El valor de una expresión correspondiente a la creación de un procedimiento (proc (ids) body) es la representación interna del tipo de dato procedimiento.
- Para determinar el valor de una expresión de aplicación de un procedimiento ((proc-exp exp1 exp2 ... expn)) se debe evaluar la expresion proc-exp (correspondiente al procedimiento a aplicar) y las expresiones exp1 exp2 ... expn (correspondientes a los argumentos).

- Posteriormente, debe crearse un nuevo ambiente que extiende el ambiente empaquetado en el procedimiento con la ligadura de los parámetros formales del procedimiento a los argumentos de la aplicación (valores de las expresiones exp1 exp2 ... expn).
- Finalmente, se evalúa el cuerpo del procedimiento en el nuevo ambiente extendido.

Se tiene el siguiente programa:

```
let x = 5
in let f = proc (y, z) +(y, -(z, x))
x = 28
in (f 2 x)
```


Se tiene el siguiente programa:

```
let x = 5
in let f = proc (y, z) + (y, -(z, x))
x = 28
in (f 2 x)
```

- Cuando se llama a f, su cuerpo debe ser evaluado en un ambiente que liga y a 2, z a 28 y x a 5.
- x es ligado a 5 ya que el alcance de la declaración interna no incluye la declaración del procedimiento.
- Las variables que ocurren libres en el procedimiento se evalúan en el ambiente que envuelve al procedimiento.
- El valor de la expresión (f 2 x) es 25.

- El valor de las expresiones que contemplan procedimientos depende en gran medida del ambiente en el cual son evaluadas.
- Por esta razón, un procedimiento debe empaquetar los parámetros formales de la función, la expresión correspondiente al cuerpo de la función y el ambiente en el que es creado el procedimiento.
- Este paquete es denominado *clausura* (*closure*) y corresponde al conjunto de valores *ProcVal*.

- La interfase del tipo de dato closure consiste de un procedimiento constructor y del procedimiento observador apply-procedure que determina como aplicar un valor de tipo procedimiento.
- La definición de este tipo de dato es la siguente:

```
(define-datatype procval procval?
  (closure
    (ids (list-of symbol?))
    (body expression?)
    (env environment?)))
```


La definición del procedimiento apply-procedure es la siguiente:

```
(define apply-procedure
  (lambda (proc args)
   (cases procval proc
   (closure (ids body eny)
        (eval-expression body (extend-env ids args env))))))
```


El comportamiento de las expresiones de creación y aplicación de procedimientos, se obtiene agregando las siguientes clausulas en el procedimiento eval-expression:

- 1 Procedimientos
 - Sintaxis de los procedimientos
 - Semántica de los procedimientos
 - Ejemplos
- 2 Procedimientos Recursivos
 - Introducción
 - Sintaxis de los procedimientos recursivos
 - Semántica de los procedimientos recursivos
 - Ejemplos

■ Sea el ambiente env_0 con símbolos $(x \ y \ z)$ y valores $(4 \ 2 \ 5)$ el ambiente inicial de computación.

Se quiere evaluar la expresión:

La expresión anterior corresponde a un let con la declaración de una variable f que es ligada a un procedimiento y con la aplicación de ese procedimiento como cuerpo del let.

- La expresión anterior corresponde a un let con la declaración de una variable f que es ligada a un procedimiento y con la aplicación de ese procedimiento como cuerpo del let.
- Dada la semántica de las expresiones let se debe evaluar inicialmente la expresión proc(x) *(x x).

- La expresión anterior corresponde a un let con la declaración de una variable f que es ligada a un procedimiento y con la aplicación de ese procedimiento como cuerpo del let.
- Dada la semántica de las expresiones let se debe evaluar inicialmente la expresión proc(x) *(x x).
- La expresión de creación de procedimiento proc(x) *(x x) es evaluada y el resultado es la creación de la clausura closure('(x) *(x x) env₀).

- La expresión anterior corresponde a un let con la declaración de una variable f que es ligada a un procedimiento y con la aplicación de ese procedimiento como cuerpo del let.
- Dada la semántica de las expresiones let se debe evaluar inicialmente la expresión proc(x) *(x x).
- La expresión de creación de procedimiento proc(x) *(x x) es evaluada y el resultado es la creación de la clausura closure('(x) *(x x) env₀).
- Posteriormente se crea un nuevo ambiente env_1 que extiende el ambiente env_0 con la variable f y el valor closure('(x) *(x x) env_0).

Luego, debe evaluarse el cuerpo del let (la expresión (f z)) en el ambiente env_1 .

- Luego, debe evaluarse el cuerpo del let (la expresión (f z)) en el ambiente env_1 .
- Como esta expresión corresponde a una expresión de aplicación de procedimiento, se debe evaluar la subexpresión f para determinar cual procedimiento se debe ejecutar y la subexpresión z para saber con cuales argumentos.

- Luego, debe evaluarse el cuerpo del 1et (la expresión (f z)) en el ambiente env_1 .
- Como esta expresión corresponde a una expresión de aplicación de procedimiento, se debe evaluar la subexpresión f para determinar cual procedimiento se debe ejecutar y la subexpresión z para saber con cuales argumentos.
- All evaluar estas subexpresiones en el ambiente env_1 se obtienen los valores closure('(x) *(x x) env_0) y 5.

■ Dada la semántica de la aplicación de procedimientos, se debe evaluar el cuerpo del procedimiento que corresponde a la expresión *(x x) en un ambiente nuevo que extiende el ambiente interno del procedimiento (env₀) con la variable x y el valor de 5.

- Dada la semántica de la aplicación de procedimientos, se debe evaluar el cuerpo del procedimiento que corresponde a la expresión *(x x) en un ambiente nuevo que extiende el ambiente interno del procedimiento (env₀) con la variable x y el valor de 5.
- Finalmente, el valor de esta expresión y de la expresión original es 25.

Los ambientes creados en la evaluación de la expresión anterior se pueden visualizar así:

Sea el ambiente env_0 con símbolos $(x \ y \ z \ f)$ y valores $(4\ 2\ 5\ (closure, (y) \ *(y, sub1(y)) \ empty-env))$ el ambiente inicial de computación. Evaluar:

```
let
    g = proc(x) +(y, (f x))
    m = 6
in
    let
        g = proc(x y) *(x, (g y))
        h = proc() (g m)
        q = 7
in
    -((h), q)
```

■ Dada la semántica de las expresiones let se debe evaluar inicialmente la parte derecha de las declaraciones que corresponden a las expresiones proc(x) +(y, (f x)) y 6.

- Dada la semántica de las expresiones let se debe evaluar inicialmente la parte derecha de las declaraciones que corresponden a las expresiones proc(x) +(y, (f x)) y 6.
- La expresión de creación de procedimiento proc(x) +(y, f(x)) es evaluada y el resultado es la creación de la clausura (closure '(x) +(y, (f x)) env₀).

■ Posteriormente se crea un nuevo ambiente env_1 que extiende el ambiente env_0 con las variables g y m y los valores (closure '(x) +(y, (f x)) env_0) y 6 respectivamente.

- Posteriormente se crea un nuevo ambiente env_1 que extiende el ambiente env_0 con las variables g y m y los valores (closure '(x) +(y, (f x)) env_0) y 6 respectivamente.
- Luego debe evaluarse la expresión

```
let
  g = proc(x y) *(x, (g y))
  h = proc() (g m)
  q = 7
in
  -((h) q)
```

en el ambiente env₁.

Nuevamente se evalúan las expresiones de la parte derecha de las declaraciones del let, pero esta vez en el ambiente env_1 .

- Nuevamente se evalúan las expresiones de la parte derecha de las declaraciones del let, pero esta vez en el ambiente env_1 .
- La expresión de creación de procedimiento proc(x) *(x, (g y)) es evaluada y el resultado es la creación de la clausura (closure '(x) *(x, (g y)) env₁).

- Nuevamente se evalúan las expresiones de la parte derecha de las declaraciones del 1et, pero esta vez en el ambiente env_1 .
- La expresión de creación de procedimiento proc(x) *(x, (g y)) es evaluada y el resultado es la creación de la clausura (closure '(x) *(x, (g y)) env₁).
- La expresión de creación de procedimiento proc() (g m) es evaluada y el resultado es la creación de la clausura (closure '() (g m) env₁).

■ Luego se crea un nuevo ambiente env_2 que extiende el ambiente env_1 con las variables g, h y q y los valores (closure '(x) *(x, g(y)) env_1), (closure '() (g m) env_1) y 7 respectivamente.

- Luego se crea un nuevo ambiente env_2 que extiende el ambiente env_1 con las variables g, h y q y los valores (closure '(x) *(x, g(y)) env_1), (closure '() (g m) env_1) y 7 respectivamente.
- Posteriormente debe evaluarse la expresión ((h) q) en el ambiente *env*₂.

- Luego se crea un nuevo ambiente env₂ que extiende el ambiente env₁ con las variables g, h y q y los valores (closure '(x) *(x, g(y)) env₁), (closure '() (g m) env₁) y 7 respectivamente.
- Posteriormente debe evaluarse la expresión ((h) q) en el ambiente *env*₂.
- Esta expresión corresponde a una expresión de aplicación de primitiva, por esta razon se deben evaluar los argumentos en el ambiente actual (env_2) .

■ El valor de la expresión q en el ambiente env_2 es 7.

- El valor de la expresión q en el ambiente env_2 es 7.
- La expresión (h) corresponde a una expresión de aplicación de procedimiento, en este caso sin argumentos.

- El valor de la expresión q en el ambiente env_2 es 7.
- La expresión (h) corresponde a una expresión de aplicación de procedimiento, en este caso sin argumentos.
- Se debe evaluar la subexpresión h para determinar cual procedimiento se debe ejecutar.

- El valor de la expresión q en el ambiente env_2 es 7.
- La expresión (h) corresponde a una expresión de aplicación de procedimiento, en este caso sin argumentos.
- Se debe evaluar la subexpresión h para determinar cual procedimiento se debe ejecutar.
- Al evaluar esta subexpresión en el ambiente *env*₂ se obtiene el valor (closure '() (g m) *env*₁).

■ Dada la semántica de la aplicación de procedimientos, se debe evaluar el cuerpo del procedimiento que corresponde a la expresión (g m) en un ambiente nuevo env_proch que extiende el ambiente interno del procedimiento (env₁) sin añadir ninguna variable.

- Dada la semántica de la aplicación de procedimientos, se debe evaluar el cuerpo del procedimiento que corresponde a la expresión (g m) en un ambiente nuevo env_proch que extiende el ambiente interno del procedimiento (env1) sin añadir ninguna variable.
- Para evaluar la expresión (g m), se deben evaluar las subexpresiones g y m en el ambiente env_proch.
- Los valores de estas expresiones son los valores (closure '(x) +(y, (f x)) env₀) y 6.

Nuevamente, debido a la semántica de la aplicación de procedimientos, se debe evaluar la expresión +(y, (f x)) en un ambiente nuevo env_procg que extiende el ambiente envo con la variables x y el valor 6.

- Nuevamente, debido a la semántica de la aplicación de procedimientos, se debe evaluar la expresión +(y, (f x)) en un ambiente nuevo env_procg que extiende el ambiente envo con la variables x y el valor 6.
- La expresión +(y, (f x)) corresponde a una expresión de aplicación de una primitiva, por lo que se deben evaluar cada uno de sus argumentos en el ambiente env_proc_g.
- El valor de la expresión y en este ambiente es 2.

- Para evaluar la expresión (f x), se deben evaluar las subexpresiones f y x en el ambiente env_proc_g .
- Los valores de estas expresiones son los valores (closure '(y) *(y, sub1(y)) empty-env) y 6.
- Posteriormente, se debe evaluar la expresión *(y, sub1(y)) en un ambiente nuevo env_proc_f que extiende el ambiente empty-env con la variable y y el valor 6.
- Luego, el valor de esta expresión y de la expresión (f x) es 30.

- Luego el valor de la expresión +(y, (f x)) es 32, dado que y vale 2 y (f x) vale 30.
- Finalmente, dado la evaluación en cadena de las expresiones el valor de la expresión original es 25.

Los ambientes creados en la evaluación de la expresión anterior se pueden visualizar así:

- Para evaluar una expresión, se puede hacer uso de una especificación que utiliza ecuaciones y las reglas definidas para cada tipo de expresión.
- << exp>>> denota el árbol de sintaxis abstracta a asociado a la expresión exp.
- Se escribe [x = a, y = b]env en lugar de (extend-env '(x y) '(a b) env)).
- Evaluar la expresión del ejemplo anterior.


```
 = \begin{array}{lll} & (\ eval-expression \\ & <<-((h)\ ,\ q)>> \\ & [g=(\ closure\ '(x\ y)\ <<\ *(x,\ (g,y))\ >> \\ & [g=(\ closure\ '(x)\ <<\ +(y,\ (f\ x))\ >> \\ & env0\ ),\ m=6]env0\ ), \\ & h=(\ closure\ '()\ <<\ (g\ m)\ >> \\ & [g=(\ closure\ '(x)\ <<\ +(y,\ (f\ x))\ >> \\ & env0\ ),\ m=6]env0\ ), \\ & q=7]\ [g=(\ closure\ '(x)\ <<\ +(y,\ (f\ x))\ >>\ env0\ ),\ m=6] \\ & env0\ ) \end{array}
```

```
(eval-expression
  <<(h)>>
   [g=(closure '(x y) << *(x, (g,y)) >>
            [g=(closure '(x) << +(y, (f x)) >> env0),
                m=6lenv0).
   h=(closure '() << (g m) >>
           [g=(closure '(x) << +(y, (f x)) >> env0),
              m=6lenv0).
   q=7] [g=(closure '(x) << +(y, (f x)) >> env0), m
       =6lenv0)
(eval-expression
  <<a>>>
   [g=(closure '(x y) << *(x, (g,y)) >>
          [g=(closure '(x) << +(y, (f x)) >> env0), m
              =6]env0),
   h=(closure '() << (g m) >>
          [g=(closure '(x) << +(y, (f x)) >> env0), m
              =6lenv0).
   q=7] [g=(closure '(x) << +(y, (f x)) >> env0), m
       =6lenv0))
```



```
= (-
	(eval-expression
	<< +(y, (f x)) >>
	[x=6]env0)
7)
```



```
= (-

(+

2

(apply-procedure

(closure '(y) *(y, sub1(y)) empty-env)

'(6))

7)
```

```
= (-
(+
2
(eval-expression
<< *(y, sub1(y)) >>
[y=6]empty-env)
7)
```

```
= (-
(+
2
(* 6 5))
7)
```



```
= (-
(+
2
(* 6 5))
7)
```

```
= (-
(+ 2 30)
7)
```



```
= (-
(+
2
(* 6 5))
7)
```



```
= (-
(+
2
(* 6 5))
7)
```

```
Dibujar los ambientes de la siguiente expresión.

Dada con ambiente inicial (x y z) (1 2 3)

let

a = +(x,y)

x = \operatorname{proc}(p) + (p,x)

b = \operatorname{proc}(c) | let a = 3 in +(a,c)

in

let

c = \operatorname{proc}(t) if -(a,t) then \operatorname{proc}(c) if -(y,z) then
```


Contenido

1 Procedimientos

- Sintaxis de los procedimientos
- Semántica de los procedimientos
- Ejemplos

- Introducción
- Sintaxis de los procedimientos recursivos
- Semántica de los procedimientos recursivos
- Ejemplos

Contenido

- 1 Procedimientos
 - Sintaxis de los procedimientos
 - Semántica de los procedimientos
 - Ejemplos
- 2 Procedimientos Recursivos
 - Introducción
 - Sintaxis de los procedimientos recursivos
 - Semántica de los procedimientos recursivos
 - Ejemplos

- Los procedimientos que pueden ser definidos en nuestro lenguaje hasta este punto, pueden tener invocaciones a otros procedimientos definidos en ambientes superiores a su propio ambiente.
- No obstante, estos procedimientos no pueden ser recursivos, esto es, no pueden invocarse a sí mismos en su definición.

■ Para ilustrar esto, evaluar la siguiente expresión:

```
let
fact = proc(\hat{x}) if x then *(x, (fact sub1(x))) else 1
in
(fact 6)
```

Ejecutandose en el ambiente vacío empty-env.

Tenemos

Tenemos

■ La expresión (fact sub1(x)) debe ser evaluada en el ambiente extendido con los argumentos del procedimiento.

- La expresión (fact sub1(x)) debe ser evaluada en el ambiente extendido con los argumentos del procedimiento.
- No obstante, en ese ambiente no se encuentra un procedimiento con el nombre fact (el mismo nombre de la función).
- Por esta razon, no es posible definir procedimientos que se invoquen a si mismos dado que el ambiente en el que se ejecutan no los contiene.

Contenido

- 1 Procedimientos
 - Sintaxis de los procedimientos
 - Semántica de los procedimientos
 - Ejemplos
- 2 Procedimientos Recursivos
 - Introducción
 - Sintaxis de los procedimientos recursivos
 - Semántica de los procedimientos recursivos
 - Ejemplos

- Para añadir recursión a nuestro lenguaje, este será extendido con algunas características.
- El lenguaje consistirá de las expresiones especificadas anteriormente y de un nuevo tipo de expresión letrec.
- Esta expresión permitirá la creación de procedimientos recursivos.
- El tipo de dato ambiente será extendido para contemplar ambientes que faciliten la creación de procedimientos recursivos.

Se añadirá la siguiente producción a la gramática:

```
\begin{split} \langle \mathsf{expresi\'on} \rangle ::= & \mathsf{letrec} \\ & \{ \langle \mathsf{identificador} \rangle \; (\{ \langle \mathsf{identificador} \rangle \}^{*(,)}) = \langle \mathsf{expresi\'on} \rangle \}^* \\ & \mathsf{in} \; \langle \mathsf{expresi\'on} \rangle \\ & \boxed{ \; \mathsf{letrec-exp} \; (\mathsf{proc-names} \; \mathsf{idss} \; \mathsf{bodies} \; \mathsf{letrec-body}) \end{split} }
```

$$(x + 2 + 3)$$

Se deben añadir las siguientes producciones a la especificación de la gramática:

De esta manera se puedan crear programas como:

```
letrec fact (x) = if \times then *(x, (fact) sub1(x))) else 1

letrec double (x) = if \times then -((double sub1(x)), -2) else 0

(double 4)
```

Contenido

- 1 Procedimientos
 - Sintaxis de los procedimientos
 - Semántica de los procedimientos
 - Ejemplos
- 2 Procedimientos Recursivos
 - Introducción
 - Sintaxis de los procedimientos recursivos
 - Semántica de los procedimientos recursivos
 - Ejemplos

- Para determinar el valor de una expresión letrec, es necesario crear un ambiente que extiende el ambiente original en el que se almacenen los nombres, parámetros y cuerpos de las declaraciones de procedimientos recursivos en la expresión.
- Posteriormente, se evalúa el cuerpo de la expresión en ese nuevo ambiente.

El tipo de dato ambiente es modificado para admitir una nueva variante:

El comportamiento de <u>(apply-env e' name)</u> para la nueva variante del tipo ambiente es el siguiente:

Sea e'= (extend-env-recursively proc-names idss bodies e), entonces

1 Si name es uno de los nombres en proc-names, se debe producir una clausura con los parámetros y cuerpo almacenados en e' para ese procedimiento. Así mismo esta clausura debe contener un ambiente en el cual name está ligado a este procedimiento. Este ambiente corresponde a e'.

De esta manera (apply-env e' name) = (closure ids body e') donde ids y body corresponden a los parámetros y al cuerpo del procedimiento almacenados en e'.

2 En caso contrario, (apply-env e' name) = (apply-env e name).

La definición del procedimiento apply-env es modificada de la siguiente manera:

```
(define apply-env
   (lambda (env sym)
      (cases environment env
         (empty-env-record ()
             (eopl:error 'empty-env "No binding for "s" sym)
         (extended-env-record (syms vals old-env)
             (let ((pos (list-find-position sym syms)))
                (if (number? pos)
                    (list-ref vals pos)
                    (apply-env old-env sym))))
         (recursively-extended-env-record (proc-names idss
             bodies old-env)
             (let ((pos (list-find-position sym proc-names))
                (if (number pos)
                    (closure (list-ref idss pos)
                              (list-ref bodies pos)
                    (apply-env old-env sym)))))))
```


El comportamiento de la expresión de creación de procedimientos recursivos se obtiene agregando la siguiente clausula en el procedimiento eval-expression:

Contenido

- 1 Procedimientos
 - Sintaxis de los procedimientos
 - Semántica de los procedimientos
 - Ejemplos
- 2 Procedimientos Recursivos
 - Introducción
 - Sintaxis de los procedimientos recursivos
 - Semántica de los procedimientos recursivos
 - Ejemplos

- Sea el ambiente env_0 con símbolos $(x \ y \ z)$ y valores $(4 \ 2 \ 5)$ el ambiente inicial de computación.
- Se quiere evaluar la expresión:

```
letrec fact(x) = if(x) then (x, (fact sub1(x))) else 1
```


■ Para determinar el valor de la expresión anterior, se debe crear un nuevo ambiente env₁ (con la variante recursively-extended-env-record) que extiende el original con el nombre de procedimiento fact, el argumento x y el cuerpo if x then *(x, (fact sub1(x))) else 1.

- Para determinar el valor de la expresión anterior, se debe crear un nuevo ambiente env₁ (con la variante recursively-extended-env-record) que extiende el original con el nombre de procedimiento fact, el argumento x y el cuerpo if x then *(x, (fact sub1(x))) else 1.
- Posteriormente se debe evaluar la expresión (fact 6) en el ambiente env₁. Para ello se deben evaluar las subexpresiones fact y 6.

■ Dada la semántica de los ambientes como env_1 , al evaluar la expresión fact se produce la clausura (closure '(x) if x then +(x, (fact sub1(x))) else 1 env_1).

- Dada la semántica de los ambientes como env_1 , al evaluar la expresión fact se produce la clausura (closure '(x) if x then +(x, (fact sub1(x))) else 1 env_1).
- Luego, se debe evaluar el cuerpo del procedimiento (la expresión if x then +(x, (fact sub1(x))) else 1) en un nuevo ambiente env_fact₀ que extiende a env₁ con la variable x y el valor 6.

- Dada la semántica de los ambientes como env_1 , al evaluar la expresión fact se produce la clausura (closure '(x) if x then +(x, (fact sub1(x))) else 1 env_1).
- Luego, se debe evaluar el cuerpo del procedimiento (la expresión if x then +(x, (fact sub1(x))) else 1) en un nuevo ambiente env_fact₀ que extiende a env₁ con la variable x y el valor 6.
- Dado que x = 6, se debe evaluar la expresión +(x, (fact sub1(x))) en el ambiente env_fact_0 .

■ El valor de la expresión x es 6.

- El valor de la expresión x es 6.
- Nuevamente, al evaluar la expresión (fact 5), se debe evaluar la subexpresión fact. Esta evaluación produce la clausura (closure '(x) if x then +(x, (fact sub1(x))) else 1 env₁).

- El valor de la expresión x es 6.
- Nuevamente, al evaluar la expresión (fact 5), se debe evaluar la subexpresión fact. Esta evaluación produce la clausura (closure '(x) if x then +(x, (fact sub1(x))) else 1 env₁).
- Posteriormente se evalúa el cuerpo de esta clausura de la misma forma en que se hizo anteriormente en un nuevo ambiente *env_fact*₁ que extiende a *env*₁ con la variable x y el valor 5.

- El valor de la expresión x es 6.
- Nuevamente, al evaluar la expresión (fact 5), se debe evaluar la subexpresión fact. Esta evaluación produce la clausura (closure '(x) if x then +(x, (fact sub1(x))) else 1 env₁).
- Posteriormente se evalúa el cuerpo de esta clausura de la misma forma en que se hizo anteriormente en un nuevo ambiente env_fact1 que extiende a env1 con la variable x y el valor 5.
- En algún momento, al evaluar el cuerpo del procedimiento (la expresión if x then +(x, (fact sub1(x))) else 1), se evalúa la expresión 1 y se llega al final del cálculo obteniendo el valor 720.

Los ambientes creados en la evaluación de la expresión anterior se pueden visualizar así:

- Sea el ambiente env_0 con símbolos $(x \ y \ z)$ y valores $(4 \ 2 \ 5)$ el ambiente inicial de computación.
- Se quiere evaluar la expresión:

```
letrec double(x) = if x then -((double sub1(x)), -2) else 0 in (double(3))
```


Tenemos


```
= (eval-expression

<< (double 3) >>

['(double) '((x))

'(<< if x then -((double sub1(x)), -2) else 0 >>)]

env0)
```



```
= (apply-procedure
    (closure '(x) << if x then -((double sub1(x)), -2)
    else 0 >>
        ['(double) '((x))
        '(<< if x then -((double sub1(x)), -2)
        else 0 >>) ]env0))
3)
```



```
= (apply-procedure
  (closure '(x) << if x then -((double sub1(x)), -2)
  else 0 >>
        ['(double) '((x))
        '(<< if x then -((double sub1(x)), -2)
        else 0 >>) ]env0))
3)
```

```
= (eval-expression

<< if x then -((double sub1(x)), -2) else 0 >>

[x=3]

['(double) '((x))

'(<< if x then -((double sub1(x)), -2)

else 0 >>) ]env0)
```



```
= (if
    (eval-expression
        << x >>
        [x=3]
         ['(double)'((x))
          (<< if x then -((double sub1(x)), -2)
          else 0 \gg lenv0)
    (eval-expression
        << -((double sub1(x)), -2) >>
        [x=3]
         ['(double)'((x))
          (<< if x then -((double sub1(x)), -2)
          else 0 \gg lenv0)
    (eval-expression
        << 0 >>
        [x=3]
         ['(double)'((x))
          (<< if x then -((double sub1(x)), -2)
          else 0 >>) |env0))
```

```
= (eval-expression

<< -((double sub1(x)), -2) >>

[x=3]

['(double) '((x))

'(<< if x then -((double sub1(x)), -2) else 0 >>)]

env0)
```



```
= (eval-expression

<< -((double sub1(x)), -2) >>

[x=3]

['(double) '((x))

'(<< if x then -((double sub1(x)), -2) else 0 >>)]

env0)
```



```
= (-
    (eval-expression
    << (double sub1(x)) >>
    [x=3]
    ['(double) '((x))
    '(<< if x then -((double sub1(x)), -2) else 0 >>) ]env0)
-2)
```



```
(apply-procedure
   (eval-expression
      << double >>
      [x=3]
      ['(double)'((x))
     '(\ll if \times then -((double sub1(x)), -2) else 0 >>) ]env0
   (eval-expression
     << sub1(x) >>
      [x=3]
      ['(double)'((x))
     (<< if x then -((double sub1(x)), -2) else 0 >>) ]env0
-2)
```



```
= (-
	(eval-expression
	<< if x then -((double sub1(x)), -2) else 0 >>
	[x=2]
	['(double) '((x))
	'(<< if x then -((double sub1(x)), -2) else 0 >>) ]env0)
-2)
```

```
= (- (if
 (eval-expression
  << x >>
  [x=2]
   ['(double)'((x))
  (<< if x then -((double sub1(x)), -2) else 0 >>) else 0 >>) else 0 >>) | env0)
 (eval-expression
    << -((double sub1(x)), -2) >>
   [x=2]
   (double) '((x))
   (<< if x then -((double sub1(x)), -2) else 0 >>) lenv0)
 (eval-expression
     << 0 >>
     [x=2]
     ['(double)'((x))
    (<< if x then -((double sub1(x)), -2) else 0 >>) ]env0)
```



```
(eval-expression
    << (double sub1(x)) >>
     [x=2]
    ['(double)'((x))
    '(\ll if \times then -((double sub1(x)), -2) else 0 >>) ]env0
   (eval-expression
    << -2 >>
   [x=2]
    ['(double)'((x))
   (<< if x then -((double sub1(x)), -2) else 0 >>) [env0)
-2)
```

```
(apply-procedure
 (eval-expression
   << double >>
   [x=2]
   ['(double)'((x))
 (<< if x then -((double sub1(x)), -2) else 0 >>)
     env0)
 (eval-expression
   << sub1(x) >>
   [x=2]
   ['(double)'((x))
    (<< if x then -((double sub1(x)), -2) else 0 >>)
       env0))
```

```
...
= (-
(-
(- 0 -2)
-2)
-2)
```


$$= (- \begin{pmatrix} - & 0 & -2 \\ & (- & 0 & -2) \\ & & -2 \end{pmatrix}$$

$$= (- (-2 -2) \\ -2)$$

$$= (- \\ (- \\ (-0 -2) \\ -2) \\ -2)$$

$$= (- (-2 -2) \\ -2)$$

$$= (- (-2 -2) \\ -2)$$


```
Dado el ambiente ambiente inicial env\theta con iden-
tificadores (a b c f) y valores (1 2 3 (closure'(x
y z) + (x,*(y z)) empty-env))
let
a = (f \ a \ b \ c)
 b = (f \ 5 \ b \ 4)
 c = proc(x \ y) + (x, *(y, 2))
 in
  letrec
  \begin{cases} f(x,y) = if & x & then +(-(x,y), (f & sub1(x) & y)) \\ else & y \end{cases}
    in
       let
         in
            +(x,y)
```

```
let
  x = proc(a b) if a then b else +(2,b)
  y = \operatorname{proc}(x) if -(x,1) then +(x,2) else *(x
       , 2)
  in
      letrec
           p(a,b) = if a then
                          (p -(a,1) (y b))
                          else +( (x a b), (x (y
                                a) (y b)))
           q(c,d) = if c then
                      (\,\mathbf{q}\ -(\mathbf{c}\,,\!1\,)\ *(\,2\,,\!(\,\mathbf{y}\ d\,)\,)\,)
                       else -((y c), (x c d))
      in
          let
              f = proc(x y) + ((q x y), (p y x)
              in
                (f 4 5)
                         (696)(61)
```

mode procedure dom' authoritate dindrat' valero.

Preguntas

?

Próxima sesión

■ Semántica de la asignación de variables.

