

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO CURSO DE ENGENHARIA DE COMPUTAÇÃO

RELATÓRIO DA 1º UNIDADE

Introdução aos problemas de controle e obtenção experimental dos parâmetros de modelos

TURMA: 01 GRUPO 3

THIAGO THEIRY DE OLIVEIRA: 20210094287

GUILHERME PABLO DE SANTANA MACIEL: 20210094008

MAGNUS BRÍGIDO PAULO FREIRE: 20210094198

ENRICO LUIGI OLIVIERO: 20210073287

Natal-RN 2023

THIAGO THEIRY DE OLIVEIRA: 20210094287

GUILHERME PABLO DE SANTANA MACIEL: 20210094008

MAGNUS BRÍGIDO PAULO FREIRE: 20210094198

ENRICO LUIGI OLIVIERO: 20210073287

MODELAGEM DE SISTEMAS DINÂMICOS EM SISTEMAS DE TANQUES ACOPLADOS

Segundo Relatório Parcial apresentado à disciplina de Laboratório de Sistemas de Controle, correspondente à avaliação da 1º unidade do semestre 2023.1 do 7º período do curso de Engenharia de Computação e Automação da Universidade Federal do Rio Grande do Norte, sob orientação do **Prof. Fábio Meneghetti Ugulino de Araújo.**

Professor: Fábio Meneghetti Ugulino de Araújo.

Natal-RN 2023

RESUMO

Este relatório descreve o processo de estudo e análise de modelos matemáticos quantitativos

aplicados a sistemas para solucionar problemas de controle. O objetivo do estudo foi analisar a fer-

ramenta computacional matemática MATLAB, sua integração com o Simulink para modelagem e o

driver proprietário da fabricante Quanser para realizar medições em um sistema composto por dois

tanques, suas conexões, um reservatório preenchido com água e uma bomba. Inicialmente, a estabili-

dade do líquido foi verificada ao variar paulatinamente a tensão imposta na bomba, alterando assim o

nível de água. Em seguida, o tempo médio para atingir um nível de altura predefinido foi analisado ao

variar a tensão na bomba. Finalmente, com base nos resultados empíricos e nos cálculos dos modelos

matemáticos, foi concluído que os dados obtidos estão em concordância com a teoria..

Palavras-chave: Modelos Matemáticos. Sistemas. Análise. Estabilidade

Lista de Figuras

1	Janela para monitoramento da tensão no Simulink do experimento 1B	10
2	Janela para monitoramento da tensão no Simulink do experimento 1C	11
3	Valores de tensões	12
4	Média x Altura	13
5	Tabela com as tensões enviadas e os tempos médidos durante os experimentos	13
6	Tabela com os valores de Vazão obtidos	14
7	Tabela com os valores de Km obitidos	15

Sumário

1	INT	RODU	ÇAO	6				
2	REF	EREN	CIAL TEÓRICO	7				
	2.1	Métod	o dos Minimos Quadrados e Regressão Linear	7				
	2.2	Equaç	ão Diferencial Não-Linear	7				
3	ME'	TODOI	LOGIA	8				
	3.1	Ferran	nentas	8				
		3.1.1	Bancada Quanser	8				
		3.1.2	MatLab	8				
		3.1.3	Simulink	8				
		3.1.4	Google Planilhas e colab	8				
	3.2	Simula	ações	9				
		3.2.1	Simulção 1	9				
		3.2.2	Simulção 2	9				
		3.2.3	Simulção 3	10				
4	RES	RESULTADOS 11						
	4.1	Simul	ção 4.1	11				
		4.1.1	Gráfico de Dispersão	12				
	4.2	Simula	ação 4.2	13				
		4.2.1	O Valor de Km dado nossa vazão e tensão na bomba	13				
		4.2.2	Obtendo o modelo matemático para o sistema de 1ª ordem	16				
		4.2.3	Função de transferência	17				
5	CO	NCLUS	ÃO	18				
6	REF	ERÊN(CIAS	19				

1 INTRODUÇÃO

Sistemas de controle são conjuntos de componentes e processos que visam monitorar e regular o comportamento de sistemas físicos e tecnológicos, garantindo a estabilidade e eficiência das operações. Eles são utilizados desde os primórdios da civilização, mas foi somente no século 18 que eles passaram a ser amplamente utilizados na engenharia e matemática. Os sistemas de controle podem ser divididos em dois tipos: os físicos e os não físicos. Os sistemas físicos possuem, em sua maioria, comportamentos não-lineares. Devido a isso, eles podem ser modelados para atender às necessidades dos problemas ou projetados com características que os tornam lineares a partir de uma certa quantidade de condições operacionais.

A engenharia de sistemas de controle permite a utilização de um método estratégico para aprimorar os processos operacionais das máquinas, visando garantir uma maior produtividade das atividades.

2 REFERENCIAL TEÓRICO

A seguir são apresentadas as ferramentas e metodologias utilizadas na construção deste relatório e na coleta de dados durante os experimentos.

2.1 Método dos Minimos Quadrados e Regressão Linear

Sistemas lineares aparecem como modelos matemáticos de vários fenômenos e em várias situações. Acontece que alguns sistemas simplesmente não possuem soluções e ficamos sem saber como proceder. O método dos mínimos quadrados é uma técnica que nos permite, de forma aproximada, retirar alguma informação desses sistemas impossíveis. Ou seja, O Método dos Mínimos Quadrados (MMQ) é uma técnica de otimização matemática que procura encontrar o melhor ajuste para um conjunto de dados tentando minimizar a soma dos quadrados das diferenças entre o valor estimado e os dados observados.

2.2 Equação Diferencial Não-Linear

Uma equação diferencial não-linear é uma equação que envolve uma função desconhecida e suas derivadas não-linearmente. Em outras palavras, a função e suas derivadas aparecem como termos que incluem produtos, potências, funções trigonométricas, exponenciais, logarítmicas, entre outras, o que torna a equação mais complexa e difícil de resolver do que uma equação diferencial linear. Solucionar uma equação diferencial não-linear requer técnicas analíticas e/ou numéricas avançadas, dependendo da complexidade da equação e das condições iniciais e de contorno. As equações diferenciais não-lineares têm aplicações importantes em muitas áreas, especilamente na engenharia.

3 METODOLOGIA

A metodologia utilizada nos laboratórios de sistemas de controle envolve a utilização de equipamentos de medição e análise, visando sempre aprimorar a eficiência do controle e garantir o melhor desempenho do sistema.

3.1 Ferramentas

3.1.1 Bancada Quanser

A bancada consiste em um sistema de tanques acoplados da Quanser que possibilita a medição e controle de diferentes níveis de líquido. A bomba transporta a água da bacia inferior, que possui volume máximo de 2 litros, até o topo do sistema e conta com sensores de pressão para medir o nível de água conforme ele é alterado.

3.1.2 MatLab

Ele é uma linguagem de programação interativa que faz cálculos numéricos, tem seu próprio Integrated Development Environment (IDE) e um conjunto de bibliotecas (toolboxes). Estas, podem ser usadas em diversas áreas, desde equações diferenciais, até estatísticas, processamento de sinais, finanças e outros. Por causa de sua estrutura diferenciada, capacidade de expansão e flexibilidade, o software possui também as ferramentas de elementos finitos, inteligência artificial, depuração de processamento em tempo real e diversas outras soluções.

3.1.3 Simulink

Simulink, desenvolvido pela companhia MathWorks, é uma ferramenta para modelagem, simulação e análise de sistemas dinâmicos. Sua interface primária é uma ferramenta de diagramação gráfica por blocos e bibliotecas customizáveis de blocos. O software oferece alta integração com o resto do ambiente MATLAB. Simulink é amplamente usado em teoria de controle e processamento digital de sinais para projeto e simulação multi-domínios

3.1.4 Google Planilhas e colab

O Google Planilhas é um aplicativo que permite criar, editar e vincular colaboradores para trabalhar em um documento específico, a plataforma possui uma opção que possibilita manter qualquer arquivo criado ou compartilhado através dele na memória do dispositivo. Com isso, mesmo quando estiver offline, o usuário poderá trabalhar nos documentos e atualizar a versão online assim que estiver conectado a internet. No Google colab com poucas e pequenos trechos de codigos podemos gerar graficos e calculos de forma computacional de forma a assegurar que os valores obtidos estão corretos.

3.2 Simulações

3.2.1 Simulção 1

O objetivo do primeiro experimento consistiu em compreender o funcionamento do software MatLab, o qual será utilizado em conjunto com o Simulink e o QUARC. Para alcançar esse propósito, foram realizadas atividades visando a familiarização com alguns códigos do MatLab, tais como a plotagem de gráficos e a criação de matrizes com tamanhos variados. Além disso, foram explorados alguns blocos disponíveis no Simulink para construir diagramas e, por fim, foi utilizado o software QUARC para realizar uma simulação.

3.2.2 Simulção 2

Nesse experimento, foi selecionado apenas o tanque 1 como ponto de referência, com o objetivo de controlar o nível de água que flui do reservatório e é depositado diretamente nele. A altura do nível de água variou de 5cm a 25cm, em incrementos de 5cm. A quantidade de água depositada no tanque foi controlada por meio da alteração da tensão aplicada no motor, utilizando o software QUARC.

Foi elaborada uma tabela em uma planilha contendo os valores de tensão necessários para manter a estabilidade da água em diferentes alturas, de acordo com o incremento estabelecido. Durante a realização das medições do experimento, além de levar em conta o efeito de paralaxe, também foi observada a estabilização do gráfico de variação de tensão no Simulink, onde as tensões eram observadas através do display superior da figura 1. Podemos perceber que o equilibrio era mais facil de ser obitido com o tanque seco e aumentando o nível de água do que com o tanque cheio e diminuindo o nível de água.

Figura 1: Janela para monitoramento da tensão no Simulink do experimento 1B

3.2.3 Simulção 3

O terceiro experimento teve como objetivo obter o modelo matemático de 1ª ordem do sistema de tanques acoplados, considerando apenas o tanque 1. Este modelo tem a finalidade de controlar o nível de água no tanque por meio da tensão de alimentação da bomba. Para isso, foram entregues as equações que descrevem as vazões de entrada e saída, além das áreas de seção transversal do tanque e do orifício de saída. O modelo matemático de 1ª ordem será obtido a partir da manipulação dessas equações, e para isso, é necessário que não restem incógnitas além do nível do tanque (L1) e da tensão de alimentação (VP).

No entanto, como o fator de conversão (Km) que relaciona a tensão de alimentação com a vazão de entrada é desconhecido, foram realizadas várias medições que foram registradas em tabela para encontrá-lo. As medições foram feitas por meio do modelo de simulação apresentado na Figura abaixo. Com isso, foi possível obter o modelo não-linear do sistema, que pode ser linearizado por meio da expansão de Taylor.

Figura 2: Janela para monitoramento da tensão no Simulink do experimento 1C

4 RESULTADOS

Os resultados estão apresentados em forma de gráficos e tabelas, que mostram o comportamento do sistema ao longo do tempo, bem como as medições realizadas

4.1 Simulção **4.1**

Com os valores coletados e inseridos corretamente na tabela, procedeu-se ao cálculo da tensão média, levando em conta os valores de tensão em cada estágio. Como resultado, foram obtidos três valores médios de tensão, correspondentes a cada altura em que o nível da água se encontrava, conforme apresentado na tabela a seguir.

Após preencher a tabela e calcular as tensões médias, foi elaborado um gráfico de dispersão (Figura 4) e determinados os coeficientes angular e linear utilizando a regressão por mínimos quadrados. Essa abordagem permitiu obter uma equação linear que correlacionasse a altura com a tensão média, conforme apresentado a seguir.

Figura 3: Valores de tensões

Α	В	С	D	E	
	Tensão lida (volts)				
Altura H (cm)	Experimento 1	Experimento 2	Experimento 3	Média	
5,00	0,93	0,74	0,79	0,82	
10,00	1,77	1,53	1,54	1,61	
15,00	2,42	2,33	2,34	2,36	
20,00	3,23	3,13	3,14	3,17	
25,00	3,98	3,93	3,91	3,94	

4.1.1 Gráfico de Dispersão

$$h = a \cdot u + b$$

Na equação em questão, "h"representa a altura e "a"representa a tensão. Com base nesses parâmetros, foi obtido um coeficiente linear (ou interceptação) de aproximadamente (-0.2549), enquanto o coeficiente angular (ou inclinação) é de aproximadamente (6.4096).

Para calcular o coeficiente angular e linear a partir desses pontos, podemos utilizar as fórmulas:

$$u = (y2 - y1)/(x2 - x1)$$
$$b = y1 - m * x1$$

O coeficiente angular (u) representa a inclinação da reta e indica quanto a variável y varia em relação à variável x. Já o coeficiente linear (b) representa o ponto onde a reta intercepta o eixo y, ou seja, o valor de y quando x é igual a zero.

Figura 4: Média x Altura

4.2 Simulação 4.2

Os resultados apresentados a seguir foram obtidos variando a tensão aplicada à bomba responsável por encher o tanque 1. Durante os experimentos, a tensão enviada à bomba foi de 1V a 4V, com incrementos de 0,3V. Dado que o módulo de potência utilizado possui um multiplicador de 3 vezes, a tensão obtida na bomba variou entre 3V e 12V. Os tempos medidos após o tanque atingir o nível de líquido pré-definido durante os experimentos foram registrados e podem ser observados na figura 5.

Figura 5: Tabela com as tensões enviadas e os tempos médidos durante os experimentos

A	В	С	D	E	F	G	Н	1
	Tempo (Segundos)							
Tensão enviada (V)	Tensão na bomba (V)	Experimento 1	Experimento 2	Experimento 3	Experimento 4	Experimento 5	Experimento 6	Média
1,00	3,00	42,74	38,10	37,77	46,08	39,93	41,01	40,94
1,3	3,90	28,35	25,77	26,08	30,08	26,92	28,64	27,64
1,6	4,80	22,32	22,09	21,15	22,54	22,63	23,42	22,36
1,9	5,70	17,59	17,00	17,31	19,64	18,80	18,78	18,19
2,2	6,60	14,85	14,88	15,08	15,62	15,79	16,91	15,52
2,5	7,50	13,06	13,15	13,57	14,65	14,28	14,61	13,89
2,8	8,40	12,04	11,86	12,17	12,61	12,58	12,73	12,33
3,1	9,30	10,54	10,82	10,89	11,48	11,80	11,26	11,13
3,4	10,20	9,73	10,01	10,08	10,31	10,86	10,38	10,23
3,7	11,10	9,48	9,29	9,28	10,21	10,09	9,97	9,72
4,00	12,00	8,36	9,02	8,65	9,50	9,58	9,17	9,05

4.2.1 O Valor de Km dado nossa vazão e tensão na bomba

Para obter o valor de Km foi utilizado a formula dado no roteiro. Porém, para podermos chegar

nesse valor, foi necessario encontrar o volume do cilindro e sua vazão. As formulas para chegar no resultado estão abaixo.

$$V = \pi \cdot r^2 \cdot h$$

$$F_{in} = V \div t$$

Dessa forma obtemos a tabela a seguir:

Figura 6: Tabela com os valores de Vazão obtidos

Volume cm ³	Média (Segundos)	Vazão (cm³/s)
387,95	40,94	9,48
387,95	27,64	14,04
387,95	22,36	17,35
387,95	18,19	21,33
387,95	15,52	25,00
387,95	13,89	27,93
387,95	12,33	31,46
387,95	11,13	34,86
387,95	10,23	37,92
387,95	9,72	39,91
387,95	9,05	42,87

E por fim, utilizando a fórmula: $Fin = Km \times Vp \ cm^3/s$, obtemos a tabela de valores para o Km:

Figura 7: Tabela com os valores de Km obitidos

Tensão na bomba (volts)	Vazão (cm³/s)	km
3,00	9,48	3,16
3,90	14,04	3,60
4,80	17,35	3,61
5,70	21,33	3,74
6,60	25,00	3,79
7,50	27,93	3,72
8,40	31,46	3,75
9,30	34,86	3,75
10,20	37,92	3,72
11,10	39,91	3,60
12,00	42,87	3,57

4.2.2 Obtendo o modelo matemático para o sistema de 1ª ordem

É possivel chegar no modelo matemático para o sistema de 1ª ordem manipulando as equações e valores dados no roteiro que descrevem as vazões de entrada e saída do tanque, com todas as incógnitas resolvidas. As equações são as seguintes:

$$F_{in} = V \div t$$

$$V_{out} = \sqrt{2g \times L1} \tag{1}$$

$$F_{out} = a1 \times \sqrt{2g \times L} \tag{2}$$

$$a1 = 0.18cm^2$$

$$A1 = 15.52cm^2$$

Com todas as incógnitas resolvidas do item anterior 4.2.1 e usando a formula do circulo para achar a1 e A1, já é possível chegar a um modelo de 1ª ordem manipulando as equações até chegar à equação diferencial não-linear.

$$F_{in} - F_{out} = \frac{v}{t} = \frac{A1 \times L1}{t} \Rightarrow L1 = \frac{(F_{in} - F_{out})}{A1} \times t \tag{3}$$

$$\frac{dL_1}{dt} = \frac{F_{in} - F_{out}}{A1} = \frac{K_m \times V_p - a1 \times \sqrt{2g \times L_1}}{A1} \tag{4}$$

$$\frac{dL_1}{dt} = \frac{K_m \times V_p}{A_1} - \frac{a_1 \times \sqrt{2g} \times \sqrt{L_1}}{A_1} = \alpha \times V_p - \beta \times \sqrt{L_1}$$
 (5)

Podemos efetuar as substituições em α e β , uma vez que as variáveis que os compõem são valores conhecidos e podem ser calculados.

$$\alpha = \frac{|K_m|}{A1} = \frac{3.64}{15.52} = 0.23 \tag{6}$$

$$\beta = \frac{a1 \times \sqrt{2g}}{A1} = \frac{0.18 \times \sqrt{2 \times 980}}{15.52} = 0.51 \tag{7}$$

Assim, a partir dessas substituições, podemos chegar à equação diferencial não-linear, que descreve a dinâmica do nível do tanque 1 (L1(t)) em termos da tensão na bomba (VP(t)).

$$\frac{dL_1}{dt} = 0.23 \times V_p - 0.51 \times \sqrt{L_1}$$
 (8)

$$\frac{dL_1}{dt} + 0.51\sqrt{L_1} = 0.23V_p \tag{9}$$

4.2.3 Função de transferência

A fim de linearizar o sistema do item anterior 4.2.2, podemos utilizar a técnica de linearização por expansão em série de Taylor truncada. Embora isso possa resultar em alguma perda de precisão, é particularmente útil em situações em que a função original é difícil ou impossível de ser avaliada diretamente, mas as suas derivadas são conhecidas ou podem ser calculadas com mais facilidade permitindo que o modelo seja mantido simples. A equação resultante após a linearização deve ser semelhante a:

$$\frac{dL_1}{dt} = F(L_1, V_p) - F(L_0, V_0) = \left(\frac{-0.51}{2 \times \sqrt{L_0}}\right) (L_1 - L_0) + 0.24(V_p - V_0)$$
(10)

$$\frac{dL_1}{dt} = F(L_1, V_P) - F(L_0, V_0) = \left(\frac{-0.51}{2\sqrt{L_0}}\right) \frac{dL_1}{dt} + 0.24 \frac{dV_p}{dt}$$
(11)

$$(2\sqrt{L_0})\frac{dL_1}{dt} + 0.51\frac{dL_1}{dt} = (0.48\sqrt{L_0})\frac{dV_p}{dt}$$
(12)

Por fim, a função de transferência do sistema no domínio da frequência pode ser obtida por meio da aplicação da transformada de Laplace na equação e algumas manipulações algébricas para chegar ao resultado desejado.

$$G(s) = \frac{L_1}{V_p} = \frac{(0.48\sqrt{L_0})}{(2\sqrt{L_0})s + 0.51}$$
(13)

5 CONCLUSÃO

Utilizando o Matlab e os conceitos abordados em aula, foi possível analisar os sistemas apresentados, juntamente com suas características, o que possibilitou a realização de uma análise do resultado do experimento.

No experimento 1B concluiu-se que o método de regressão linear é suficiente para representar esse problema, já que ele é capaz de linearizar os dados obtidos a partir dos três experimentos realizados.

No experimento 1C, foram empregadas técnicas de modelagem matemática para descrever a dinâmica do experimento, que resultou em uma equação diferencial não-linear. Após a obtenção da equação diferencial não-linear, foi aplicada a técnica de linearização, que consiste em aproximar a equação não-linear por uma equação linear, facilitando sua análise e permitindo a obtenção da função de transferência do sistema.

6 REFERÊNCIAS

Método dos Mínimos Quadrados. **Departamento de Matemática, Instituto Superior Técnico da Universidade de Lisboa**, [1997?].

Disponível em: https://www.math.tecnico.ulisboa.pt/ calves/cursos/mmq.htm. Acesso em: 20 de Abril de 2023.

SIMON, Robert. Diferença entre equações diferenciais lineares e não lineares. **STREPHONSAYS**, 2021.

Disponível em: https://pt.strephonsays.com/linear-and-vs-nonlinear-differential-equations-14956. Acesso em: 26 de abril de 2023.

Métodos numéricos para o cálculo de sistemas de equações não lineares. **Universidade de São Paulo**, 2014. Disponível em: https://sistemas.eel.usp.br/docentes/arquivos/519033/LOM3026/ Metodos_numericos_calculo_sistemas_equações_nao_lineares.pdf. Acesso em: 28 de abril de 2023.

ANDRADE, L. Equações Ordinarias 1ªOrdem - Lineares. 2018. Disponível em:

http://docente.ifrn.edu.br/leonardoandrade/edo-equacoes-diferenciais-ordinarias/ edo-classificacao-e-equacoes-lineares-de-1aordem>. Acesso em: 28 de abril de 2023.