BTS-VI	R/S)-	06-23-	1812	Reg. No.
~ - ~ , -,	,	~~		*****

								ι.	
					ı				
					i			ι.	
1				1	1				
						1			
				1					

B. Tech. Degree VI Regular/Supplementary Examination June 2023

CS 19-202-0604 DATA MINING

(2019 Scheme)

Time: 3 Hours Maximum Marks: 60

Course Outcome

On successful completion of the course, the students will be able to:

- CO1: Analyse various types of data, its collection and cleaning.
- CO2: Illustrate and analyse various applications of data mining.
- CO3: Analyse and compare various classification models in data mining.
- CO4: Understand developments in big data technologies.
- CO5: Familiarize the concepts of machine learning using R/Python.
- CO6: Analyse and make use of deep learning using R/Python.

Bloom's Taxonomy Levels (BL): L1 – Remember, L2 – Understand, L3 – Apply, L4 – Analyze, L5 – Evaluate, L6 – Create

PO - Programme Outcome

PART A

		(Answer ALL questions)				
		$(8 \times 3 = 24)$	Marks	BL	CO	PO
I.	(a)	Demonstrate the working of different types of binning in data preprocessing working for the following set of data (2, 4, 9, 11, 13, 15, 22, 24, 26, 35, 37, 39)	3	L3	1	4
	(b)	Consider the following data mining tasks. Classify them as one among classification, clustering and preprocessing. Justify your reasonings for each data mining task (i) Remove all outliers from the data and use only data within a range of [0,1]. (ii) Group the data with a trained model. (iii) Group the data without a model.	3	L2	2	2
	(0)	· · ·	3	LI	2	1
	(c)	Elucidate on the basic idea behind apriori algorithm.	3	L2	3	2
	(d)	Compare Neural Networks and SVMs.	3	Ll	5	1
	(e)	Explain time-series mining.				
	(f)	Compare clustering and classification.	3	L2	5	2
	(g)	List the three V's of big data.	3	Ll	4	1
•	(h)	CNNs are preferred over ANNs for image data. Justify.	3	L2	6	2
		PART B				
		$(4 \times 12 = 48)$				
II.	(a)	Discuss the different schemas for multidimensional databases with examples.	6	L2	1	1
	(b)	Discuss the major issues to consider during data integration. OR	6	L2	1	2
III.	(a)	Discuss the different stages in data mining.	6	L2	1	1
	(b)	Explain the techniques in data cleaning.	6	L2	1	1
		Explain the techniques in data cleaning.			(P.	T.O.)

Marks

BL CO PO

IV.			e Bayes Classifi		ino Davies e	Joseifier on the	12	L3	3	3
		detect to pre	following datasedict whether the	et. Apply Na	cricket or t	not for the tuple				
		X = (outloo)	k: sunny, tempe	erature: mild.	humidity:	normal, windy:				
		false)								
		Outlook	Temperature	Humidity	Windy	Play?				
		Sunny	Hot	High	False	No				
		Sunny	Hot	High	True	No				
		Overcast	Hot	High	False	Yes .				
		Rainy	Mild	High	False	Yes				
		Rainy	Cool	Normal	False	Yes				
		Rainy	Cool	Normal	True	No				
		Overcast	Cool	Normal	True	Yes				
		Sunny	Mild	High	False	No				
		Sunny	Cool	Normal	False	Yes				
		Rainy	Mild	Normal	False	Yes				
		Sunny	Mild	Normal	True	Yes				
		Overcast	Mild	High	True	Yes				
		Overcast	Hot	Normal	False	Yes				
		Rainy	Mild	High	True	No				
		Rainy		OR	ــــــــــــــــــــــــــــــــــــــ	<u></u>				
٧.		Explain the	decision tree al		an example	e dataset. Make	12	L1	3	1
		your own ass								
			200 100 20		4) D4(5 0)	DE (7 E) D((6	12	L3	5	3
VI.		Assume points P1(2, 10), P2(2, 5), P3(8, 4), P4(5, 8), P5(7, 5), P6(6,						L3	J	3
		4), P7(1, 2), P8(4, 9). Cluster the following eight points into 3 clusters using K-Means Clustering. Explain the working of the algorithm and								
			s limitations too.		orking or u	io digoritimi ana				
		Chamerate it	5 mmutations too.	OR						
VII.		Consider the following two scenarios. Justify which type of clustering					12	L3	5	2
		is used in each case by defining and reasoning the type of clustering								
		with detailed examples. (i) There are 30 data points about warehouse locations. We have								
		(i) The								
		to find a tree of city warehouses such as to find shortest paths for transportation of goods.								
		(ii) We have a set of 30 points with few thick regions and few								
		outliers. We have to group them according to minimum								
		num	ber of points in	a group and	minimum o	listance within a				
		· grou		U .						
VIII.	(a)	Explain Had	loop architecture	and ecosyster	m.		8	Li	4	1
* ***	(b)		adoop and Spark			ıms.	4	L2	4	2
		OR				_	rο	Л	3	
IX.	(a)	framework to write summary of a text book with many chapters.				6	L2	4	3	
	(1.3					6	L2	4	1	
	(b)	Explain clot	uu-compumg an	u its services.			J	1,11	•	•
Bloom	ıs's Ta	axonomy Leve	els							

Blooms's Taxonomy Levels L1 – 25%, L2 – 55%, L3 – 20%.