姓名: 张三 学号: BA00000000

习题 1.2.28. 研究下列域的无穷素位:
1. 二次域 $\mathbb{Q}(\sqrt{d})$, 其中 $d \neq 0, 1$ 为无平方因子整数.
2. 分圆域 $\mathbb{Q}(\zeta)$, 其中 $\zeta = e^{2\pi i/n}$, n 为正整数.
$3. 三次域 \mathbb{Q}(\gamma).$
解答.
习题 1.3.7. 设 a, b 为 O 的分式理想.
(1) $\mathfrak{ab} = \left\{ \sum_{i=1}^{n} a_i b_i \mid a_i \in \mathfrak{a}, b_i \in \mathfrak{b} \right\}$ 是一个分式理想.
(2) $\mathfrak{a}^{-1} = \{x \in K \mid x\mathfrak{a} \subseteq \mathcal{O}\}$ 是一个分式理想.
证明.
习题 1.3.10. 分式理想全体构成一个交换群 \mathcal{J}_K , 幺元为 $(1) = \mathcal{O}_K$.
证明.
习题 1.3.12. 设 $d \neq 0,1$ 是平方自由的整数, $K = \mathbb{Q}(\sqrt{d})$. 对于素数 $p \nmid 2d$, $p\mathcal{O}_K$ 是素理想当且仅当 $x^2 \equiv d \bmod p$ 无解.
证明.
习题 1.3.13. 自选 [Neu] 习题 1.3.4 至 1.3.10 的若干题.
证明.
习题 1.4.3. $\operatorname{vol}(\Gamma) = \sqrt{ \det\langle v_i, v_j \rangle }$ 且不依赖于基的选取.
证明.