# COMP20005 Workshop Week 9

### **Preparation:**

- open grok, jEdit, and minGW (or Terminal if yours is a Mac)
- download this slide set (ws9.pdf) from github.com/anhvir/c205 if you like
- 1 Discussion 1: Representation of integer
- 2 Discussion 2: Representation of float
- Discussion 3: Numerical computation, root finding, bisection method,

Ex 9.5

### LAB

#### Exercises in:

- number representation,
- root-finding,
- arrays.

Note: most of today's exercises are not in grok

### **Numeral Systems**

| 214.39   | 2                 | 1                   | 1                   |     | 3                    | 9                    |
|----------|-------------------|---------------------|---------------------|-----|----------------------|----------------------|
| Position | 2                 | 1                   | 0                   | Dot | -1                   | -2                   |
| Value    | $2 \times 10^{2}$ | 1 x 10 <sup>1</sup> | 4 x 10 <sup>0</sup> |     | 3 x 10 <sup>-1</sup> | 9 x 10 <sup>-2</sup> |

$$\rightarrow$$
 base = 10 (decimal)

Other bases: binary (base= 2), octal (base= 8), hexadecimal (16)

$$21.3_{(10)} = 2 \times 10^{1} + 1 \times 10^{0} + 3 \times 10^{-1}$$

$$1001_{(2)} = 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 9_{(10)}$$

$$5B_{(16)} = 5 \times 16^{1} + 11 \times 16^{0} = 91_{(10)}$$

Note: hexadecimal uses 6 additional digits: A, B, C, D, E, F with the values 10-15

## Converting between bases 2 and 16 is easy!

Because 1 hexadecimal digit is equivalent to 4 binary digits.

AFB5 
$$\rightarrow$$

## Converting Binary → Decimal

*Just expand using the base=2:* 

Examples: 1101 
$$\rightarrow$$
 1.011  $\rightarrow$ 

Practical advise: remember

$$128 \ 64 \ 32 \ 16 \ 8 \ 4 \ 2 \ 1 \ 0.5 \ 0.25 \ 0.125$$
  $2^7 \ 2^6 \ 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0 \ 2^{-1} \ 2^{-2} \ 2^{-3}$ 

### Decimal → Binary: Integer Part

Changing integer x to binary: Just divide x and the subsequent quotients by 2 until getting zero. The sequence of remainders, in reverse order of appearance, is the binary form of x.

Example: 23

| operation | quotoion | remainder |  |  |
|-----------|----------|-----------|--|--|
| 23 :2     | 11       | 1 1       |  |  |
| 11:2      | 5        | 1         |  |  |
| 5:2       | 2        | 1         |  |  |
| 2:2       | 1        | 0         |  |  |
| 1:2       | 0        | 1         |  |  |

So: 
$$23 = 10111_{(2)}$$
  $11 = _{(2)}$   $46 = _{(2)}$ 

### Decimal → Binary: Fraction Part

Fraction: Multiply it, and subsequent fractions, by 2 until getting zero. Result= sequence of integer parts of results, in appearance order. Examples:

| 0.375     |     |          | 0.1       |     |          |
|-----------|-----|----------|-----------|-----|----------|
| operation | int | fraction | operation | int | fraction |
| .375 x 2  | 0   | .75      | .1 x 2    | 0   | .2       |
| .75 x 2   | 1   | .5       | .2 x 2    | 0   | .4       |
| .5 x 2    | 1   | .0       | .4 x 2    | 0   | .8       |
|           |     |          | .8 x 2    | 1   | .6       |
|           |     |          | .6 x 2    | 1   | .2       |

So:  $0.375 = 0.011_{(2)}$   $0.1 = 0.00011(0011)_{(2)}$ 

Now try convert: 6.875 to binary

## Exercise: Converting Decimal->Binary

```
• 7_{(10)} = ?_{(2)} = ?_{(16)}
```

- 130<sub>(10)</sub> =
- $6.375_{(10)} =$
- 9.2<sub>(10)</sub> =

•

### Representation of integers (in computers) using w bits

- Note that we use a fixed amount of bits w
- Make difference between unsigned and signed integers (unsigned int and int in C)

### unsigned integers:

- Range: 0.. 2<sup>w</sup>-1
- Representation: Just convert to binary, then add 0 to the front to have enough w bits.

### Representation of integers (in computers) using w bits

- signed integer range:  $-2^{W}$  to  $2^{W}-1$
- To represent signed integers x:
  - Positive numbers: a 0-bit, followed by the binary representation of x in w-1 bits.
  - Negative numbers: using twos-complement of x in w bit. The first bit will always be 1.

# Finding twos-complement representation in w bits for negative numbers in 3 step

Suppose that we need to find the twos-complement representation of -x, where x is positive, in w=16 bits. Do it in 3 steps:

- 1) Write binary representation of |x| in w bits
- 2) Find the rightmost one-bit
- 3) Inverse (ie. flip 1 to 0, 0 to 1) all bits on the left of that rightmost one-bit

| find the 2-comp repr of -40  | Bit sequence |      |      |      |
|------------------------------|--------------|------|------|------|
| 1) bin repr of 40 in 16 bits | 0000         | 0000 | 0010 | 1000 |
| 2) find the rightmost 1      | 0000         | 0000 | 0010 | 1000 |
| 3) inverse its left          | 1111         | 1111 | 1101 | 1000 |

### Exercise: 2-complement representation in w=16 bits

Q: What are 17, –17, 34, and –34 as 16-bit twos-complement binary numbers, when written as (a) binary digits, and (b) hexadecimal digits?

| Decimal | 2-complement in binary digita | 2-cmplement in hexadecimal digits |
|---------|-------------------------------|-----------------------------------|
| 17      |                               |                                   |
| -17     |                               |                                   |
| 34      |                               |                                   |
| -34     |                               |                                   |

### Representation of floats

- We learnt 2 different formats:
- one as described in numericA.pdf and in the text book
- another is an IEEE standard, which is:
  - employed in most of modern computers,
  - demonstrated in the lecture, and
  - you can find/experiment with using the program floatbits.c (numericA.pdf p.27).

### Representation of floats (as described in numericA.pdf)

 $\bullet$  sign e m1 bit  $w_e$  bits  $w_m$  bits

representation of first n bits of mantissa m

• Convert |x| to binary form, and transform so that:

$$/x/= 0.b_0b_1b_2... \times 2^e \text{ where } b_0= 1$$

two-compl of e

sign

- e is called exponent,  $m = b_0b_1b_2...$  is called mantissa
- x is represented as the triple (sign, e, m) as shown in the diagram.

### Representation of 32-bit float: (IEEE 754, as in floatbits.c)

- Sign ---- e+127 b<sub>1</sub> b<sub>2</sub> b<sub>22</sub>b<sub>23</sub>
- That is:
- The sign bit is 0 or 1 as in the previous case
- e is represented in excess-127 format, which means e is represented as the unsigned value e+127 in  $w_e$  bits
- The first bit of the mantissa is omitted from the representation, and the mantissa is just  $b_1b_2...b_{23}$
- Note: Valid e is -126 → +127, corresponding to values 1 → 254. Value 0 used for representing 0.0, value 255 used to represent infinity. And, zero is all 32 zero-bit, and infinity is all 32 one-bit.

### Representation of 32-bit float: (IEEE 754, as in floatbits.c)

• 
$$w_s = 1, w_e = 8, w_m = 23$$
  $/x/= 1.b_1b_2... x 2^e$ 

- Example: x= 3.5
- In binary: x= 11.1= 1.11 x 2<sup>1</sup>
- → sign bit: 0
- → e=1 is represented as e+127= 128 in 8 bits
- → e is represented as 1000 0000
- → mantissa: 110 0000 0000 0000 0000 0000
- → Final representation:
- or 4 0 6 0 0 0 0 0 <sub>(16)</sub>

### **Numerical Computations**

int, float, double all have some range:

- int 32 bits: about  $-2x10^9$  ..  $2x10^9$
- int 64 bits:
- float  $(w_s=1, w_e=8, w_m=23)$
- double  $(w_s=1, w_e=11, w_m=52)$

computation on float/double is imprecise, so

- use if (fabs(x) < EPS) instead of if (x==0)
- if (fabs(a-b) < EPS) instead of if(a==b)
- avoid adding a very large value to a very small value

Root finding: see from p.27 of numericA.pdf for methods such as: bisection, false position, fix-point iteration, Newton-Raphson, secant

### Roof Finding for f(x)=0 using the bisection method



### Roof Finding for f(x)=0: bisection method

**Ex. 9.5**: The square root of Z is the of equation  $f(x) = x^2 - z$ . Evaluate the bisection method by hand (well, you can use calculators), start with a= 1 and b= 3. Stop when the length of the interval is 0.1 or less.



### Lab: representation, root finding, arrays

- Number representation:
  - Exercises 13.1, 13.2 (provided in next page)
  - Understanding IEEE float representation (pp. 14-15 this document), playing with floatbits.c (link provided in p. 27 ← numericA.pdf ← LMS.Module.Week9)
- 2. Bisection method: exercise 9.5 (see previous page)
- 3. Re-examine the cube\_root() function on page 77 of the textbook, croot.c (you can copy it from a link provided in LMS.Module.Week9). What method does it use? Explore what happens if: (a) very large numbers are provided as input; (b) very small (close to zero) numbers are provided; and (c) CUBE\_ITERATIONS is made larger or smaller.
- 4. Implement not-yet-done exercises from grok W7X, W8X
- **5. Ex. 9.8:** Suppose you have to write a function to return the k-th largest value in an array of n integers. What problem solving techniques might be used? Sketch, for each of the possible techniques, an algorithm for determining an answer to the problem.

### Exercises 13.1, 13.2

- **13.1**: Suppose that a computer uses w = 6 bits to represent integers. Calculate the two-complement representations for 0, 4, 19, -1, -8, and -31; Verify that 19-8 = 11;
- **13.2:** Suppose  $w_s = 1$ ,  $w_e = 3$ ,  $w_m = 12$ , what's the representation of 2.0, -2.5, 7.875 ?

## Function cube root in croot.c

```
#define CUBE LOWER 1e-6
#define CUBE UPPER 1e+6
#define CUBE ITERATIONS 25
double cube root(double v) {
   double next=1.0;
   int i;
   if (fabs(v) < CUBE LOWER | fabs(v) > CUBE UPPER) {
      printf("Warning: cube root may be inaccurate\n");
   for (i=0; i<CUBE ITERATIONS; i++) {</pre>
      next = (2*next + v/(next*next))/3;
   return next;
```

What method does it use? Explore what happens if: (a) very large numbers are provided as input; (b) very small (close to zero) numbers are provided; and (c) CUBE\_ITERATIONS is made larger or smaller.