

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Informe: Laboratorio 2 - INF245

Lucas Ansieta M. — Bastián Garcés C. 27 de abril de 2025

Informe: Laboratorio 2

1. La lógica combinacional del problema

1.1. Tabla de verdad

En primer lugar, notemos que como tenemos exactamente 16 habitaciones, cada una de ellas representada por un paciente con un tratamiento en particular, podemos hacer uso de 4 variables en nuestra tabla de verdad para representar los estados del problema. Y como el diccionario de simbolos tiene 7 bits (distribuidos como [a, b, c, d, e, f, g] tal como se muestra en Figure 2. del enunciado), la tabla de verdad resultante quedaría tal que:

b_3	b_2	b_1	b_0	a	b	c	d	e	f	g
0	0	0	0	0	1	1	0	1	1	1
0	0	0	1	0	0	0	1	1	1	0
0	0	1	0	1	1	1	1	1	1	0
0	0	1	1	1	0	0	1	1	1	1
0	1	0	0	1	1	0	0	1	1	1
0	1	0	1	0	1	1	1	1	1	0
0	1	1	0	1	0	0	0	1	1	1
0	1	1	1	0	1	1	0	1	1	1
1	0	0	0	1	1	1	0	1	1	1
1	0	0	1	1	1	1	1	1	1	1
1	0	1	0	1	0	1	1	0	1	1
1	0	1	1	0	1	1	0	1	1	0
1	1	0	0	1	0	0	1	1	1	1
1	1	0	1	1	0	0	1	1	1	0
1	1	1	0	1	1	0	0	1	1	1
1	1	1	1	1	1	1	1	1	1	0

Tabla de verdad según el enunciado.

1.2. Mapas de Karnaugh

Se enlistan los Mapas de Karnaugh con las respectivas soluciones de las funciones algebráicas para [a,b,...,g] a continuación:

■ Para *a*:

 $\frac{b_1b_0}{b_3b_2}$ $\frac{b_1b_0}{b_3b_2}$ Grupos de 4 (mín términos):

Obtenemos $F_{g4}(a) = b_3\overline{b_0} + b_2\overline{b_0} + b_3b_2 + b_3\overline{b_1} + b_1\overline{b_0}$ Finalmente: $F(a) = F_{g4}(a) = b_3\overline{b_0} + b_2\overline{b_0} + b_3b_2 + b_3\overline{b_1} + b_1\overline{b_0}$

■ Para *b*:

Grupos de 2 (mín términos):

Obtenemos $F_{g2}(b) = \overline{b_3b_2b_0} + \overline{b_2b_1b_0} + \overline{b_3b_2}\overline{b_1} + b_3\overline{b_2}b_0 + b_2b_1b_0 + b_3b_2b_1$ Finalmente: $F(b) = F_{g2}(b) = \overline{b_3b_2b_0} + \overline{b_2b_1b_0} + \overline{b_3b_2}\overline{b_1} + b_3\overline{b_2}b_0 + b_2b_1b_0 + b_3b_2b_1$

Universidad Técnica Federico Santa María

Departamento de Informática - INF245

Informe: Laboratorio 2

	$\frac{b_1b_0}{b_3b_2}$	00	01	11	10
	00	1	0	0	1
lacksquare Para c :	01	0	1	1	0
	11	0	0	1	0
	10	1	1	1	1

 $\frac{b_1b_0}{b_3b_2}$ Grupos de 4 (mín términos):

Obtenemos $F_{g4}(c) = b_3\overline{b_2} + \overline{b_2b_0}$

 $\frac{b_1b_0}{b_3b_2}$ Grupos de 2 (mín términos):

Obtenemos $F_{g2}(c) = \overline{b_3}b_2b_0 + b_3b_1b_0$

Finalmente: $F(c) = F_{g4}(c) + F_{g2}(c) = b_3\overline{b_2} + \overline{b_2b_0} + \overline{b_3}b_2b_0 + b_3b_1b_0$

 $\frac{b_1b_0}{b_3b_2}$ lacktriangleq Para d:

 b_1b_0 Grupo de 4 (mín términos):

Obtenemos $F_{g4}(d) = \overline{b_1}b_0$

 $\frac{b_1b_0}{b_3b_2}$ Grupos de 2 (mín términos):

Obtenemos $F_{g2}(d) = \overline{b_3b_2}b_1 + \overline{b_2}b_1\overline{b_0} + b_3b_2\overline{b_1} + b_3b_2b_0$

Finalmente: $F(d) = F_{g4}(d) + F_{g2}(d) = F_{g4}(d) = \overline{b_1}b_0 + \overline{b_3}\overline{b_2}b_1 + \overline{b_2}b_1\overline{b_0} + b_3b_2\overline{b_1} + b_3b_2b_0$

Universidad Técnica Federico Santa María

Departamento de Informática - INF245

Informe: Laboratorio 2

lacksquare Para e:

Grupos de 8 (mín términos):

$\frac{b_1b_0}{b_3b_2}$	00	01	11	10
00	1	1	1	1
01	1	1	1	1
11	1	1	1	1
10	1	1	1	0

	$\frac{b_1b_0}{b_3b_2}$	00	01	11	10
	00	1	1	1	1
,	01	1	1	1	1
	11	1	1	1	1
	10	1	1	1	0

Obtenemos $F_{g8}(e) = \overline{b_1} + \overline{b_3} + b_0 + b_2$

Finalmente: $F(e) = F_{g8} = \overline{b_1} + \overline{b_3} + b_0 + b_2$

 $\frac{b_1b_0}{b_3b_2}$ \blacksquare Para f:

Grupo de 16 (mín términos):

	$\frac{b_1b_0}{b_3b_2}$	00	01	11	10
	00	1	1	1	1
:	01	1	1	1	1
	11	1	1	1	1
	10	1	1	1	1

Obtenemos $F_{g16}(f) = 1$

Finalmente: $F(f) = F_{g16}(f) = 1$, pues F(f) no depende de ninguna variable.

Universidad Técnica Federico Santa María

Departamento de Informática - INF245

Informe: Laboratorio 2

	$\frac{b_1b_0}{b_3b_2}$	00	01	11	10
	00	1	0	1	0
■ Para g :	01	1	0	1	1
	11	1	0	0	1
	10	1	1	0	1

	$\frac{b_1 b_0}{b_3 b_2}$	00	01	11	10
	00	1	0	1	0
Grupos de 4 (mín términos):	01	1	0	1	1
	11	1	0	0	1
	10	1	1	0	1

	$\frac{b_1 b_0}{b_3 b_2}$	00	01	11	10
	00	1	0	1	0
Grupos de 2 (mín términos):	01	1	0	1	1
	11	1	0	0	1
	10	1	1	0	1

Obtenemos
$$F_{g2}(g) = b_3 \overline{b_2 b_1} + \overline{b_3} b_1 b_0$$

Finalmente: $F(g) = F_{g4}(g) + F_{g2}(g) = \overline{b_1b_0} + b_2\overline{b_0} + b_3\overline{b_0} + b_3\overline{b_2b_1} + \overline{b_3}b_1b_0$