Midterm Solution

Question 1

- This ERD assumes a Match is a weak entity set. But another option is to give it a unique ID and make it a strong entity set.
- "Sub" relationship refers to two players who played in the match. This is a better design than making the relationship to reference the "Player" entity set, because now you allow for referencing players who did not play in the match.

Question 2

Team (ID, name, stadium);

Player (<u>num</u>, DoB, name, shirtNum, startYear, TeamID)
Player.TeamID references Team.ID

Match(hostTeamID, guestTeamID, date, host-score, guest-score)

Match.hostTeamID references Team.ID Match.guestTeamID references Team.ID

Match-Player(ID, PlayerNum, hostTeamID, guestTeamID, date, numGoals, SubID, subTime)
Match-Player.SubID references Match-Player.ID
Match-player.(hostTeamID, guestTeamID, date) references Match. hostTeamID, guestTeamID, date

Question 3

Α	В	С
1	10	а
2	20	а
3	30	х
4	20	Х

S

Α	Х	Z
2	18	Mike
2	20	John
5	30	Wang
7	40	JohnSmith

Q1: $\gamma_{A, SumX \leftarrow sum(X)}(S)$

Α	SumX
2	38
5	30
7	40

Q2: $\delta(\pi_B(R)) \bowtie_{B>X} \pi_{A,X}(S)$

В	Α	х
20	2	18
30	2	18
30	2	20

Q3: $\gamma_{A,CNT\leftarrow count(*)}(\pi_A(S) \cup_{bag\ semantics} \pi_{A\leftarrow (A+1)}(R))$

Α	CNT
2	3
3	1
4	1
5	2
7	1

[20 Points] Question 4 (Relational Algebra):

Given the following relations from a university registration system:

Department(ID, name, address)short name D
Faculty(ID, deptID, firstName, lastName, joinYear) short name F
Course(ID, deptID, name, numOfCredits) short name C
Student(ID, deptID, firstName, LastName, joinYear) short name S
Teaching(FacultyID, courseID, Year) short name T
Registration(studentID, courseID, Year, grade) short name R

The primary key in each relation is underlined. Each faculty member and each course belong to exactly one department (The deptID in the F and C relations). Each student also belongs to one department (The deptID in S relation). A student can take courses inside or outside his/her department (The R relation). Each faculty can teach many courses each year.

Write the algebraic expression for the following queries (Use the short name for the relations):

ID, First Now., Past Name (5 join/ear = 2010 (F))

Q2: Select the courses (name and number of credits) offered by a department named 'Computer Science'

C. name, c. numos Credits (C) nom= Computer Science! (D)

Department(ID, name, address)s	short name D
Faculty(ID, deptID, firstName, lastName, joinYear)	short name F
Course(ID, deptID, name, numOfCredits)	short name C
Student(ID, deptID, firstName, LastName, joinYear)	short name S
Teaching(FacultyID, courseID, Year)	short name T
Registration(studentID, courseID, Year, grade)	short name R

Q3: Select the faculty Ids who have taught courses neither in year 2010 nor 2011 (That is, did not offer courses in 2010 and 2011).

Q4: Select the student lds who have taken in year 2010 exactly two courses outside their departments (That is, the student's deptID does not equal the course's deptID).

$$R_{1} \leftarrow \sigma_{\text{Year}=2010}(R)$$

$$R_{1} \cdot \text{StudentID} = \sum_{S.ID} R_{1} \cdot \text{CourseID} = \sum_{S.ID} C.ID$$

$$S_{CNT=2} \cdot \text{StudentID}, Count(*) = C.ID$$

$$S. deptID < R_{2}$$