Тема:

Комбинаторные задачи

Сергей Витальевич Рыбин svrybin@etu.ru

СПбГЭТУ «ЛЭТИ», кафедра «Алгоритмической математики»

21 января 2023 г.

Пример 1

Пример 1

3адача: определить количество нечетных чисел, меньших 2^{15} , двоичная запись которых имеет 11 единиц. Ответ записать в виде числа сочетаний.

Пример 1

3адача: определить количество нечетных чисел, меньших 2^{15} , двоичная запись которых имеет 11 единиц. Ответ записать в виде числа сочетаний.

Решение: из условия задачи получаем, что число двоичных разрядов равно 15. При этом в силу нечетности, в последнем разряде стоит 1. Имеем 14 разрядов для постановки 10 единиц.

Пример 1

3адача: определить количество нечетных чисел, меньших 2^{15} , двоичная запись которых имеет 11 единиц. Ответ записать в виде числа сочетаний.

Решение: из условия задачи получаем, что число двоичных разрядов равно 15. При этом в силу нечетности, в последнем разряде стоит 1. Имеем 14 разрядов для постановки 10 единиц.

Ответ: C^{10}_{14} .

Пример 1

3адача: определить количество нечетных чисел, меньших 2^{15} , двоичная запись которых имеет 11 единиц. Ответ записать в виде числа сочетаний.

Решение: из условия задачи получаем, что число двоичных разрядов равно 15. При этом в силу нечетности, в последнем разряде стоит 1. Имеем 14 разрядов для постановки 10 единиц.

Ответ: C^{10}_{14} .

Пример 2

Пример 1

3адача: определить количество нечетных чисел, меньших 2^{15} , двоичная запись которых имеет 11 единиц. Ответ записать в виде числа сочетаний.

Решение: из условия задачи получаем, что число двоичных разрядов равно 15. При этом в силу нечетности, в последнем разряде стоит 1. Имеем 14 разрядов для постановки 10 единиц.

Ответ: C_{14}^{10} .

Пример 2

Задача: определить количество четных чисел, меньших 2^{13} , двоичная запись которых имеет 8 нулей. Ответ записать в виде числа сочетаний.

Пример 1

3адача: определить количество нечетных чисел, меньших 2^{15} , двоичная запись которых имеет 11 единиц. Ответ записать в виде числа сочетаний.

Решение: из условия задачи получаем, что число двоичных разрядов равно 15. При этом в силу нечетности, в последнем разряде стоит 1. Имеем 14 разрядов для постановки 10 единиц.

Ответ: C_{14}^{10} .

Пример 2

3адача: определить количество четных чисел, меньших 2^{13} , двоичная запись которых имеет 8 нулей. Ответ записать в виде числа сочетаний.

Решение: из условия задачи получаем, что число двоичных разрядов равно 13. При этом в силу четности, в последнем разряде стоит 0. Имеем 12 разрядов для постановки 7 нулей.

Пример 1

3адача: определить количество нечетных чисел, меньших 2^{15} , двоичная запись которых имеет 11 единиц. Ответ записать в виде числа сочетаний.

Решение: из условия задачи получаем, что число двоичных разрядов равно 15. При этом в силу нечетности, в последнем разряде стоит 1. Имеем 14 разрядов для постановки 10 единиц.

Ответ: C_{14}^{10} .

Пример 2

3адача: определить количество четных чисел, меньших 2^{13} , двоичная запись которых имеет 8 нулей. Ответ записать в виде числа сочетаний.

Решение: из условия задачи получаем, что число двоичных разрядов равно 13. При этом в силу четности, в последнем разряде стоит 0. Имеем 12 разрядов для постановки 7 нулей.

Ответ: C_{12}^7 .

Пример 1

3адача: определить количество нечетных чисел, меньших 2^{15} , двоичная запись которых имеет 11 единиц. Ответ записать в виде числа сочетаний.

Решение: из условия задачи получаем, что число двоичных разрядов равно 15. При этом в силу нечетности, в последнем разряде стоит 1. Имеем 14 разрядов для постановки 10 единиц.

Ответ: C_{14}^{10} .

Пример 2

 ${f 3}$ адача: определить количество четных чисел, меньших ${f 2}^{13}$, двоичная запись которых имеет ${f 8}$ нулей. Ответ записать в виде числа сочетаний.

Решение: из условия задачи получаем, что число двоичных разрядов равно 13. При этом в силу четности, в последнем разряде стоит 0. Имеем 12 разрядов для постановки 7 нулей.

Ответ: C_{12}^7 .

Задачи для самостоятельного решения

Пример 1

3адача: определить количество нечетных чисел, меньших 2^{15} , двоичная запись которых имеет 11 единиц. Ответ записать в виде числа сочетаний.

Решение: из условия задачи получаем, что число двоичных разрядов равно 15. При этом в силу нечетности, в последнем разряде стоит 1. Имеем 14 разрядов для постановки 10 единиц.

Ответ: C_{14}^{10} .

Пример 2

3адача: определить количество четных чисел, меньших 2^{13} , двоичная запись которых имеет 8 нулей. Ответ записать в виде числа сочетаний.

Решение: из условия задачи получаем, что число двоичных разрядов равно 13. При этом в силу четности, в последнем разряде стоит 0. Имеем 12 разрядов для постановки 7 нулей.

Ответ: C_{12}^7 .

Задачи для самостоятельного решения

🚺 Определить количество четных чисел, меньших 2^{22} , двоичная запись которых имеет 18 единиц. Ответ записать в виде числа сочетаний.

Пример 1

Задача: определить количество нечетных чисел, меньших 2^{15} , двоичная запись которых имеет 11 единиц. Ответ записать в виде числа сочетаний.

Решение: из условия задачи получаем, что число двоичных разрядов равно 15. При этом в силу нечетности, в последнем разряде стоит 1. Имеем 14 разрядов для постановки 10 единиц.

Ответ: C_{14}^{10} .

Пример 2

Задача: определить количество четных чисел, меньших 2^{13} , двоичная запись которых имеет 8 нулей. Ответ записать в виде числа сочетаний.

Решение: из условия задачи получаем, что число двоичных разрядов равно 13. При этом в силу четности, в последнем разряде стоит 0. Имеем 12 разрядов для постановки 7 нулей.

Ответ: C_{12}^7 .

Задачи для самостоятельного решения

- 🕦 Определить количество четных чисел, меньших 2^{22} , двоичная запись которых имеет 18 единиц. Ответ записать в виде числа сочетаний.
- Определить количество нечетных чисел, меньших 2¹³, двоичная запись которых имеет 8 нулей. Ответ записать в виде числа сочетаний.

ример	

Пример

Задача: сколько существует решений уравнения

$$x_1 + x_2 + \dots + x_{35} = 105$$

в целых числах, где $x_i \geqslant -3$?

Пример

Задача: сколько существует решений уравнения

$$x_1 + x_2 + \dots + x_{35} = 105$$

в целых числах, где $x_i \geqslant -3$?

Решение.

Пример

Задача: сколько существует решений уравнения

$$x_1 + x_2 + \dots + x_{35} = 105$$

в целых числах, где $x_i \geqslant -3$?

Решение.

 $oldsymbol{1}$ сделаем замену переменной $y_i = x_i + 4$ и подставим в исходное уравнение. Имеем:

$$\begin{split} &(y_1-4)+(y_2-4)+\cdots+(y_{35}-4)=105, \quad y_i\geqslant 1,\\ &y_1+y_2+\cdots+y_{35}=245. \end{split}$$

Пример

Задача: сколько существует решений уравнения

$$x_1 + x_2 + \dots + x_{35} = 105$$

в целых числах, где $x_i \geqslant -3$?

Решение.

 $oldsymbol{1}$ сделаем замену переменной $y_i = x_i + 4$ и подставим в исходное уравнение. Имеем:

$$\begin{split} &(y_1-4)+(y_2-4)+\dots+(y_{35}-4)=105, \quad y_i\geqslant 1,\\ &y_1+y_2+\dots+y_{35}=245. \end{split}$$

(2) Объединим y_i , $i \in 1:35$ в группы (по числу единиц в представлении каждого y_i), а между ними поставим разделители.

Пример

Задача: сколько существует решений уравнения

$$x_1 + x_2 + \dots + x_{35} = 105$$

в целых числах, где $x_i \geqslant -3$?

Решение.

1 сделаем замену переменной $y_i = x_i + 4$ и подставим в исходное уравнение. Имеем:

$$\begin{aligned} &(y_1-4)+(y_2-4)+\cdots+(y_{35}-4)=105, \quad y_i\geqslant 1,\\ &y_1+y_2+\cdots+y_{35}=245. \end{aligned}$$

- 2) Объединим y_i , $i \in 1:35$ в группы (по числу единиц в представлении каждого y_i), а между ними поставим разделители.
- $oxed{3}$ В силу проведенного преобразования между любыми двумя разделителями присутствует хотя бы один элемент $(y_i>0,\ i=1,2,\dots,35).$

$$\underbrace{1,1,\dots,1}_{y_1}|\underbrace{1,1,\dots,1}_{y_2}|\cdots\cdots|\underbrace{1,1,\dots,1}_{y_n}. \tag{1}$$

Пример

Задача: сколько существует решений уравнения

$$x_1 + x_2 + \dots + x_{35} = 105$$

в целых числах, где $x_i \geqslant -3$?

Решение.

1 сделаем замену переменной $y_i = x_i + 4$ и подставим в исходное уравнение. Имеем:

$$\begin{aligned} &(y_1-4)+(y_2-4)+\cdots+(y_{35}-4)=105, \quad y_i\geqslant 1,\\ &y_1+y_2+\cdots+y_{35}=245. \end{aligned}$$

- (2) Объединим y_i , $i \in 1:35$ в группы (по числу единиц в представлении каждого y_i), а между ними поставим разделители.
- $oxed{3}$ В силу проведенного преобразования между любыми двумя разделителями присутствует хотя бы один элемент $(y_i>0,\ i=1,2,\dots,35).$

$$\underbrace{1,1,\dots,1}_{y_1}|\underbrace{1,1,\dots,1}_{y_2}|\cdots\cdots|\underbrace{1,1,\dots,1}_{y_n}. \tag{1}$$

4 Разделителей между группами в (1) всего 34. Мест для их размещения всего 244 (после последней единицы не ставим). Очевидно, что есть взаимно однозначное соответствие между произвольным исходным сочетанием и взаиморасположением разделителей в (1).

Пример

Задача: сколько существует решений уравнения

$$x_1 + x_2 + \dots + x_{35} = 105$$

в целых числах, где $x_i \geqslant -3$?

Решение.

 ${f 1}$ сделаем замену переменной $y_i = x_i + 4$ и подставим в исходное уравнение. Имеем:

$$\begin{split} &(y_1-4)+(y_2-4)+\dots+(y_{35}-4)=105, \quad y_i\geqslant 1\,,\\ &y_1+y_2+\dots+y_{35}=245\,. \end{split}$$

- ② Объединим y_i , $i \in 1:35$ в группы (по числу единиц в представлении каждого y_i), а между ними поставим разделители.
- $oxed{3}$ В силу проведенного преобразования между любыми двумя разделителями присутствует хотя бы один элемент $(y_i>0,\ i=1,2,\dots,35).$

$$\underbrace{1,1,\dots,1}_{y_1}|\underbrace{1,1,\dots,1}_{y_2}|\cdots\cdots|\underbrace{1,1,\dots,1}_{y_n}. \tag{1}$$

4 Разделителей между группами в (1) всего 34. Мест для их размещения всего 244 (после последней единицы не ставим). Очевидно, что есть взаимно однозначное соответствие между произвольным исходным сочетанием и взаиморасположением разделителей в (1).

Ответ: C^{34}_{244} .

Пример

Задача: сколько существует решений уравнения

$$x_1 + x_2 + \dots + x_{35} = 105$$

в целых числах, где $x_i \geqslant -3$?

Решение.

 $oldsymbol{1}$ сделаем замену переменной $y_i = x_i + 4$ и подставим в исходное уравнение. Имеем:

$$\begin{aligned} &(y_1-4)+(y_2-4)+\cdots+(y_{35}-4)=105, \quad y_i\geqslant 1,\\ &y_1+y_2+\cdots+y_{35}=245. \end{aligned}$$

- 2) Объединим y_i , $i \in 1:35$ в группы (по числу единиц в представлении каждого y_i), а между ними поставим разделители.
- $oxed{3}$ В силу проведенного преобразования между любыми двумя разделителями присутствует хотя бы один элемент $(y_i>0,\ i=1,2,\dots,35).$

$$\underbrace{1,1,\dots,1}_{y_1}|\underbrace{1,1,\dots,1}_{y_2}|\cdots\cdots|\underbrace{1,1,\dots,1}_{y_n}. \tag{1}$$

4 Разделителей между группами в (1) всего 34. Мест для их размещения всего 244 (после последней единицы не ставим). Очевидно, что есть взаимно однозначное соответствие между произвольным исходным сочетанием и взаиморасположением разделителей в (1).

Ответ: C^{34}_{244} .

Задачи для самостоятельного решения

Пример

Задача: сколько существует решений уравнения

$$x_1 + x_2 + \dots + x_{35} = 105$$

в целых числах, где $x_i \geqslant -3$?

Решение.

 $oldsymbol{1}$ сделаем замену переменной $y_i = x_i + 4$ и подставим в исходное уравнение. Имеем:

$$\begin{aligned} &(y_1-4)+(y_2-4)+\cdots+(y_{35}-4)=105, \quad y_i\geqslant 1,\\ &y_1+y_2+\cdots+y_{35}=245. \end{aligned}$$

- $oldsymbol{2}$ Объединим y_i , $i \in 1:35$ в группы (по числу единиц в представлении каждого y_i), а между ними поставим разделители.
- $oxed{3}$ В силу проведенного преобразования между любыми двумя разделителями присутствует хотя бы один элемент $(y_i>0,\ i=1,2,\dots,35).$

$$\underbrace{1,1,\dots,1}_{y_1}|\underbrace{1,1,\dots,1}_{y_2}|\cdots\cdots|\underbrace{1,1,\dots,1}_{y_n}. \tag{1}$$

4 Разделителей между группами в (1) всего 34. Мест для их размещения всего 244 (после последней единицы не ставим). Очевидно, что есть взаимно однозначное соответствие между произвольным исходным сочетанием и взаиморасположением разделителей в (1).

Ответ: C^{34}_{244} .

Задачи для самостоятельного решения

Пояснение: заменой $x \to y$ нужно добиться чтобы $y_i > 0$.

Пример

Задача: сколько существует решений уравнения

$$x_1 + x_2 + \dots + x_{35} = 105$$

в целых числах, где $x_i \geqslant -3$?

Решение.

 $oldsymbol{1}$ сделаем замену переменной $y_i = x_i + 4$ и подставим в исходное уравнение. Имеем:

$$\begin{aligned} &(y_1-4)+(y_2-4)+\cdots+(y_{35}-4)=105, \quad y_i\geqslant 1,\\ &y_1+y_2+\cdots+y_{35}=245. \end{aligned}$$

- ② Объединим $y_i, i \in 1:35$ в группы (по числу единиц в представлении каждого y_i), а между ними поставим разделители.
- $oxed{3}$ В силу проведенного преобразования между любыми двумя разделителями присутствует хотя бы один элемент $(y_i>0,\ i=1,2,\dots,35).$

$$\underbrace{1,1,\dots,1}_{y_1}|\underbrace{1,1,\dots,1}_{y_2}|\cdots\cdots|\underbrace{1,1,\dots,1}_{y_n}. \tag{1}$$

4 Разделителей между группами в (1) всего 34. Мест для их размещения всего 244 (после последней единицы не ставим). Очевидно, что есть взаимно однозначное соответствие между произвольным исходным сочетанием и взаиморасположением разделителей в (1).

Ответ: C^{34}_{244} .

Задачи для самостоятельного решения

Пояснение: заменой $x \to y$ нужно добиться чтобы $y_i > 0$.

 $oxed{1}$ Сколько существует решений уравнения $x_1 + \dots + x_{85} = 95$ в целых числах, где $x_i > -1$?

Пример

Задача: сколько существует решений уравнения

$$x_1 + x_2 + \dots + x_{35} = 105$$

в целых числах, где $x_i \geqslant -3$?

Решение.

 $oldsymbol{1}$ сделаем замену переменной $y_i = x_i + 4$ и подставим в исходное уравнение. Имеем:

$$\begin{aligned} &(y_1-4)+(y_2-4)+\cdots+(y_{35}-4)=105, \quad y_i\geqslant 1,\\ &y_1+y_2+\cdots+y_{35}=245. \end{aligned}$$

- (2) Объединим $y_i, i \in 1:35$ в группы (по числу единиц в представлении каждого y_i), а между ними поставим разделители.
- $oxed{3}$ В силу проведенного преобразования между любыми двумя разделителями присутствует хотя бы один элемент $(y_i>0,\ i=1,2,\dots,35).$

$$\underbrace{1,1,\dots,1}_{y_1}|\underbrace{1,1,\dots,1}_{y_2}|\cdots\cdots|\underbrace{1,1,\dots,1}_{y_n}. \tag{1}$$

4 Разделителей между группами в (1) всего 34. Мест для их размещения всего 244 (после последней единицы не ставим). Очевидно, что есть взаимно однозначное соответствие между произвольным исходным сочетанием и взаиморасположением разделителей в (1).

Ответ: C^{34}_{244} .

Задачи для самостоятельного решения

Пояснение: заменой x o y нужно добиться чтобы $y_i > 0$.

- 1 Сколько существует решений уравнения $x_1 + \cdots + x_{85} = 95$ в целых числах, где $x_i > -1$?
- 2 Сколько существует решений уравнения $x_1+\cdots+x_{10}=40$ в целых числах, где $x_i>1$?

Литература

Литература

Литература

- С. В. Рыбин. Дискретная математика и информатика. Лань, 2022.
- С. Н. Поздияков, С. В. Рыбин. Дискретная математика. Издательский центр «Академия», 2008.