Computing Pythagorean Triples

A **Pythagorean triple** (a, b, c) is a triple of positive integers that satisfy the equation $a^2 + b^2 = c^2$.

Goal: Describe all possible Pythagorean triples.

- 1. Give three examples of Pythagorean triples.
- 2. Show that if you have a Pythagorean triple (a, b, c), then (ka, kb, kc) is also a Pythagorean triple for $k \geq 1$.

Plato is usually known for philosophy, but philosophy also includes astronomy and mathematics! A formula ascribed to Plato for generating Pythagorean triples is the following:

$$x = n^2 - 1$$
, $y = 2n$, $z = n^2 + 1$, for $n \ge 2$.

3. Show that every (x, y, z) produced by Plato's formula is a Pythagorean triple.

- 4. Can you find a Pythagorean triple that was not on your previous list?
- 5. Find a Pythagorean triple that does not follow this formula.

Since it's possible to retrieve a Pythagorean triple from a different Pythagorean triple by considering common factors, we start to focus on *primitive Pythagorean triples*.

A primitive Pythagorean triple is a triple (a, b, c) such that they have no common factors, e.g. 2, 3, 5 is primitive, while 4, 6, 10 is not.

Theorem 1 (Euclid's Theorem). Let a, b, c positive integers. The a, b, c is a primitive Pythagorean triple if and only if there exist relatively prime integers r, s such that $r \not\equiv s$ in $\mathbb{Z}/2\mathbb{Z}$ and $a = r^2 - s^2$, b = 2rs, $c = r^2 + s^2$.

To establish why this works, we look to the rational points of the unit circle.

A rational point is a point (x, y) where both $x, y \in \mathbb{Q}$. Recall that the unit circle equation is $x^2 + y^2 = 1$.

- 6. (Triples to Rationals on Circle) Let a, b, c be a Pythagorean triple and let ℓ be a line from the origin to (a, b). Why must ℓ pass through a rational point on the unit circle?
- 7. (Rationals on Circle to Triples) Let $t \in \mathbb{Q}^+$ and let ℓ be the line passing through the point (-1,0) and (0,t).
 - (a) Explain why the line ℓ has the equation $\ell : y = t(x+1)$.
 - (b) Let $Q=(x_Q,y_Q)$ be a point on ℓ and on the unit circle. Show that the y-intercept of ℓ is at $(0,\frac{y_Q}{x_Q+1})$.
 - (c) Show that the x-coordinate of Q is given by $x_Q = \frac{1-t^2}{1+t^2}$.
 - (d) Explain why the y-coordinate of Q is given by $y_Q = \frac{2t}{1+t^2}$. We've found that the point Q is given by the equation

$$Q = \left(\frac{1 - t^2}{1 + t^2}, \frac{2t}{1 + t^2}\right)$$

- (e) Writing t = r/s, show that $Q = (\frac{r^2 s^2}{r^2 + s^2}, \frac{2rs}{r^2 + s^2})$ for $r, s \in \mathbb{Z}$.
- (f) Let $a = r^2 s^2$, b = 2rs, and $c = r^2 + s^2$. Confirm that (a, b, c) is a Pythagorean triple.

Parametrization of the Circle

Exercises 6 and 7 is an example of a technique called *stereographic projection*, which gives us a parametrization of the circle that does not use trigonometry, and only uses the rational numbers \mathbb{Q} . We see that if we pick x_Q, y_Q to be rational points on the circle, then

$$x_Q = \frac{1 - t^2}{1 + t^2}$$
, $y_Q = \frac{2t}{1 + t^2}$, and $t = \frac{y_Q}{x_Q + 1}$

so $t \in \mathbb{Q}$ if and only if both $x_Q, y_Q \in \mathbb{Q}$ as well.

However, we are familiar with trigonometric parametrization of the circle: $x = \cos(\theta)$ and $y = \sin(\theta)$ so whenever these output rationals, we get the equations

$$\cos(\theta) = \frac{1 - t^2}{1 + t^2}, \quad \sin(\theta) = \frac{2t}{1 + t^2}, \quad \text{and} \quad t = \frac{\sin(\theta)}{1 + \cos(\theta)}.$$

- 8. Prove that $\alpha = \frac{\theta}{2}$ where θ is the angle from (0,0) to $Q = (x_Q, y_Q)$ and α is the angle formed by the line from (-1,0) to Q.
- 9. Explain why the slope t can be determined by the equation $t = \tan(\theta/2)$.
- 10. (Calculus required) Show that $d\theta = \frac{2}{1+t^2} dt$

This allows one to compute integrals of the form involving trigonometric functions into rational ones by substitution:

$$\int f(\cos(\theta), \sin(\theta)) d\theta = \int f(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}) \frac{2}{1+t^2} dt.$$

Tree of Pythagorean Triples

In 1934, the mathematician Berggren discovered that all of the primitive Pythagorean triples formed a rooted ternary tree (shown below):

The Dutch mathematician F.J.M. Barning proved in 1963 that if you consider the matrices

$$A = \begin{bmatrix} 1 & -2 & 2 \\ 2 & -1 & 2 \\ 2 & -2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} -1 & 2 & 2 \\ -2 & 1 & 2 \\ -2 & 2 & 3 \end{bmatrix}, \quad v = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix}$$

where (x_0, y_0, z_0) are a Pythagorean triple, then the matrix products Av, Bv and Cv all produce Pythagorean triples. Moreover, if (x_0, y_0, z_0) are a primitive Pythagorean triple, then so are Av, Bv, Cv!