PhD 426 Household Finance

Demand Asset Pricing

Paul Huebner

Stockholm School of Economics

Fall 2023

Outline

- Intermediary Asset Pricing
- Idea of Demand Asset Pricing
- Koijen and Yogo (2019, JPE)
 - (Partially) Replicating KY in R
- Haddad, Huebner and Loualiche (2023, WP)
- More Examples of Demand Systems
- Topics and Homework

Resources

- Reading: Slides from KY on Demand System Asset Pricing https://www.koijen.net/
- R Code: estimate_demandsystem.R.

0. Intermediary Asset Pricing

Who matters for asset prices?

- Classic View: Intermediares do not matter for asset prices
 - Intermediaries are a "veil" between households and assets
 - \rightarrow households either hold assets directly or indirectly through intermediaries

Who matters for asset prices?

- Classic View: Intermediares do not matter for asset prices
 - Intermediaries are a "veil" between households and assets
 - ightarrow households either hold assets directly or indirectly through intermediaries
- Modern View: Intermediaries matters!
 - In a segmented world, investors who move freely between assets matter a lot for asset prices
 - Financial intermediaries are the *marginal investor* in many asset classes
 - \rightarrow When you trade a currency, you trade with a bank, not another individual
 - A "healthy" intermediary sector is able to move capital more freely
 - → The health of the intermediary sector matters for asset prices

Who matters for asset prices?

- Classic View: Intermediares do not matter for asset prices
 - Intermediaries are a "veil" between households and assets
 - ightarrow households either hold assets directly or indirectly through intermediaries
- Modern View: Intermediaries matters!
 - In a segmented world, investors who move freely between assets matter a lot for asset prices
 - Financial intermediaries are the *marginal investor* in many asset classes
 - \rightarrow When you trade a currency, you trade with a bank, not another individual
 - A "healthy" intermediary sector is able to move capital more freely
 - ightarrow The health of the intermediary sector matters for asset prices

It's not that households don't matter, but that intermediaries do as well!

Intermediary CAPM¹

Figure 1. Agents in the Economy and Their Investment Opportunities

Without friction: intermediaries are a veil

¹He and Krishnamurthy, "Intermediary Asset Pricing", American Economic Review 2013

Intermediary CAPM¹

Figure 1. Agents in the Economy and Their Investment Opportunities

- Without friction: intermediaries are a veil
- Friction: equity capital constraint

¹He and Krishnamurthy, "Intermediary Asset Pricing", American Economic Review 2013

Intermediary CAPM

$$\mathbb{E}_{t}[r_{i,t+1}^{e}] = \mathbb{C}ov_{t}\left(\frac{W_{I,t+1} - W_{I,t}}{W_{I,t}}, r_{i,t+1}^{e}\right)$$

- $W_{I,t}$: Wealth (or health) of the intermediary sector
- This looks like the CAPM, but replaces aggregate wealth ("the market") with the wealth of the *marginal* investor (intermediaries)
- Asset command high risk premium if correlated with intermediary health
- Asset with high r when intermediaries do badly \Rightarrow hedges intermediary risk \rightarrow low expected return in equilibrium

Intermediaries across Asset Classes²

Panel A. Response to aggregate risk aversion shock under null $\,$

Panel B. Response to intermediary risk aversion shock

²Haddad, Muir, "Do Intermediaries Matter for Aggregate Asset Prices", Journal of Finance 2021

Intermediaries across Asset Classes

• More intermediated AC \Rightarrow strong link intermediary health & excess returns \rightarrow higher b_i in $r_{i,t+1}^e = a_i + b_i \tilde{\gamma}_{I,t} + \epsilon_{i,t+1}$

Price pressure: Russell Reconstitution

- Let's start by looking at evidence of price pressure moving markets
- When a stock drops from Russell 1000 to 2000 index, it changes from being a tiny part of a large cap index, to large part of a mid cap index

Price pressure: Russell Reconstitution

- Let's start by looking at evidence of price pressure moving markets
- When a stock drops from Russell 1000 to 2000 index, it changes from being a tiny part of a large cap index, to large part of a mid cap index

- Prediction: index trackers (passive funds) will buy when stock drops from Russell 1000 to 2000 (despite more capital benchmarked to Russell 1000)
- Will this move up prices, or is someone else a motivated seller?

More on price pressure: Russell Reconstitution³

Table 4 Returns fuzzy RD

Addition effect

	May	Jun	Jul	Aug	Sep
D	-0.003 (-0.14)	0.050** (2.65)	-0.003 (-0.11)	0.035 (1.59)	-0.021 (-0.89)
N	1055	1057	1053	1052	1047
Deletion	effect				
	May	Jun	Jul	Aug	Sep

0.054** D 0.005 -0.019-0.0020.011 (0.32)(3.00)(-0.96)(-0.09)(0.53)N 1546 1545 1533 1526 1519

The table reports the results of a fuzzy RD design. The following equation is estimated.

$$Y_{it} = \beta_{0l} + \beta_{1l}(r_{it} - c) + D_{it} [\beta_{0r} + \beta_{1r}(r_{it} - c)] + \epsilon_{it}.$$

The outcome variable is monthly stock returns and the independent variable D is an indicator for membership in the Russell 2000 index. An indicator for whether ranking r_{it} is above the cutoff c is used as an instrument for D. We show coefficient estimates of β_{0p} , and t-statistics are reported in parentheses. The bandwidth is 100. The regression identifying the addition effect only uses firms that were in the Russell 1000 at the end of May. The regression identifying the deletion effect only uses those that were members of the Russell 2000 at the end of May. The sample period is 1996-2012. *p < 0.05. **p < 0.01. ***p < 0.001.

³Chan, Hong, Liskovich, "Regression Discontinuity and the Price Effects of Stock Market Indexing", Review of Financial Studies 2015

More on price pressure: Russell Reconstitution

- How big is the price pressure relative to the size of the demand shock?
 - Extra demand of around 7.3% of market cap
 - Price Multiplier $\mathcal{M} = 5\%/7.3\% \approx 0.68$
 - Interpretation: An extra \$ of demand moves up prices by 0.68\$⁴

⁴For the aggregate market, the multiplier is around 5. See Gabaix and Koijen, "In Search of the Origins of Financial Fluctuations: The Inelastic Markets Hypothesis", 2022 WP

More on price pressure: Russell Reconstitution

- How big is the price pressure relative to the size of the demand shock?
 - Extra demand of around 7.3% of market cap
 - Price Multiplier $\mathcal{M} = 5\%/7.3\% \approx 0.68$
 - Interpretation: An extra \$ of demand moves up prices by 0.68\$⁴
- Is this a lot? Yes! Under frictionless benchmark (think MV investor), $\mathcal{M} \approx 0$
 - Why? rational investor has very elastic demand because similar stocks exist
- Who are the investors that are driving this?
 - \rightarrow ETFs, passive mutual funds are natural, but also active mutual funds have benchmarks

⁴For the aggregate market, the multiplier is around 5. See Gabaix and Koijen, "In Search of the Origins of Financial Fluctuations: The Inelastic Markets Hypothesis", 2022 WP

More on price pressure: Russell Reconstitution

- How big is the price pressure relative to the size of the demand shock?
 - Extra demand of around 7.3% of market cap
 - Price Multiplier $\mathcal{M} = 5\%/7.3\% \approx 0.68$
 - Interpretation: An extra \$ of demand moves up prices by 0.68\$⁴
- Is this a lot? Yes! Under frictionless benchmark (think MV investor), $\mathcal{M} \approx 0$
 - Why? rational investor has very elastic demand because similar stocks exist
- Who are the investors that are driving this?
 - \rightarrow ETFs, passive mutual funds are natural, but also active mutual funds have benchmarks
- Takeaway: institutional demand matter for prices!

⁴For the aggregate market, the multiplier is around 5. See Gabaix and Koijen, "In Search of the Origins of Financial Fluctuations: The Inelastic Markets Hypothesis", 2022 WP

1. Idea of Demand Asset Pricing⁵

 $^{^{5}\}mathrm{Based}$ on the keynote by Valentin Haddad at the 2023 Tilburg LTAM Conference

Finance with Financial Markets

- Classic quantitative models: start from investor preferences and derive, through optimal portfolio decisions, equilibrium asset prices
 - Match observed asset prices (mostly yes)
 - Obtain realistic portfolio decisions ???
 - Ask counterfactual questions ???

Finance with Financial Markets

- Classic quantitative models: start from investor preferences and derive, through optimal portfolio decisions, equilibrium asset prices
 - Match observed asset prices (mostly yes)
 - Obtain realistic portfolio decisions ???
 - Ask counterfactual questions ???

- An alternative path: acknowledge the richness of financial markets, institutions and individual investors
 - Challenge 1: need more data
 - Challenge 2: need more micro understanding (e.g. institutional frictions)
 - Challenge 3: need tools for dealing with large heterogeneity that can account for equilibrium

Finance with Financial Markets

- Classic quantitative models: start from investor preferences and derive, through optimal portfolio decisions, equilibrium asset prices
 - Match observed asset prices (mostly yes)
 - Obtain realistic portfolio decisions ???
 - Ask counterfactual questions ???

- An alternative path: acknowledge the richness of financial markets, institutions and individual investors
 - Challenge 1: need more data
 - Challenge 2: need more micro understanding (e.g. institutional frictions)
 - Challenge 3: need tools for dealing with large heterogeneity that can account for equilibrium
 - → All of this is available today!

"This approach lacks microfoundations! The Lucas critique proves it wrong!"

 Tradeoff: lose some (intertemporal hedging, sophisticated stochastic processes, portfolio optimization), gain some (rich heterogeneity, realistic frictions, ability to fit the data).

- Tradeoff: lose some (intertemporal hedging, sophisticated stochastic processes, portfolio optimization), gain some (rich heterogeneity, realistic frictions, ability to fit the data).
 - → Would you rather be rigorously wrong or approximately right?

- Tradeoff: lose some (intertemporal hedging, sophisticated stochastic processes, portfolio optimization), gain some (rich heterogeneity, realistic frictions, ability to fit the data).
 - → Would you rather be rigorously wrong or approximately right?

- Two guiding lights:
 - Empirical: Which features of the data are likely to influence equilibrium outcomes?
 - Theoretical: Which economic forces are likely to shape answer to important counterfactual questions?

- Tradeoff: lose some (intertemporal hedging, sophisticated stochastic processes, portfolio optimization), gain some (rich heterogeneity, realistic frictions, ability to fit the data).
 - → Would you rather be rigorously wrong or approximately right?

- Two guiding lights:
 - Empirical: Which features of the data are likely to influence equilibrium outcomes?
 - Theoretical: Which economic forces are likely to shape answer to important counterfactual questions?
 - \rightarrow Dissatisfaction with current frameworks should drive progress, not giving up

The idea of demand asset pricing

- Reminder: How to derive the CAPM?
 - Derive the optimal risky portfolio of a mean-variance investor (the tangency portfolio)
 - 2 Impose market clearing, i.e. supply = demand (the equilibrium argument)

The idea of demand asset pricing

- Reminder: How to derive the CAPM?
 - Derive the optimal risky portfolio of a mean-variance investor (the tangency portfolio)
 - 2 Impose market clearing, i.e. supply = demand (the equilibrium argument)
- Investor holdings don't look like mean-variance demand
 - ightarrow Does that mean the logic of the CAPM is completely wrong?

The idea of demand asset pricing

- Reminder: How to derive the CAPM?
 - Derive the optimal risky portfolio of a mean-variance investor (the tangency portfolio)
 - 2 Impose market clearing, i.e. supply = demand (the equilibrium argument)
- Investor holdings don't look like mean-variance demand
 - ightarrow Does that mean the logic of the CAPM is completely wrong?
- No! We can still use market clearing to derive asset prices!
 - → All we need is a **better description of how investors choose portfolios**

But how can we do that for the U.S. stock market?

The reader should not assume that the information is accounted and complete.	
UNITED STATE SECURITY AND EXCHANGE CORRESPON WITHOUTH STATE SECURITY AND EXCHANGE CORRESPON FORE OF	OME APPROVIC. (201-108)
Reart in to Carelon that in these Point \$1.000. No Condition State of Carelon State of Car	
Institutional Invasinent Manager Filing this Seport:	
New Suize Steere is 1	
The installational investment manager filing this import on the present by when it is agained being virgorised that it is agained being it in the present product in a statistical of in short it, that if inhoration continued being in the specific and in the present product in	
Priors Bying to made of bedief Properties places: See: See: See: See: See: See: See: S	
Sandara, Viece, and Orlin of Springs	
Nan Di Randong Prigrature Consis, 32 Pris, Stand El-1-2221 Princip	
Bpert Terr Citate city may	
THE OFFICE AND	
Form 11F Summary Page	
Name Contract Assured of the contract For of Contract Entract For of Contract Entract For of Contract F	
Lad of Other Northolded Minagem	
Provide a numbered int of the number is and Form 19F the number is and institutional investment managers with respect to which this report is filed other than the manager filing this report.	
There are no enters in this last, state "ACM" and one the column headings and last enters! Furn 16 File No. C4D hs. (if postpade) SSC File You (is postpade) CM	
Studiolise Hallaring Namentale Sanzane Co. 21,2224	
2 Bedoker Bisharop Life Insurance Co of Vehenias 23.00%	
7 MFFrance LC 214/089 6 Bullet Vision S 21/56	
4 Made Name K 2001 5 Colonia James Co 2001	
6 Open Description 3 2000	
900 Om 2440	
9 Medical Projective Comp 23,23021	
10 National Florida Materia Resource Co. 21-1006	
National Selection Co 24-29	
12 National Landstop & The Instrument Co 25 (2006)	
D Newsoftware No. 20122	
13 Newskin Francische 314222 14 Oktober Corp 25222	

		Visionia PC	S AND EXCHANGE COMMISSION DIA DE 2008) SEM 12F FORMATION TABLE					ORS Namber Schmidt ammag harber frank per reported	ONE APPROVAL	100.000
COLUMN 1	COLUMN 2 TITLE OF GLASS	COLUMN 2 CUSP PO	COLLARS 4 WALLE (to the regret dollar)	COLLANS SHIS OR SH PENANT PEN	PUTI	COLLANG INVESTMENT DISCRETION		COLUMN 7 OTHER MANAGER	COLU VOTINO AL SOLE	NOME
ACTIVITION BLIZZARD INC	COM	000075000	81,019,000	772,000 506		DEND	45		112,000	
ACTIVISION BLIZZARD INC	100	0007508	96.465.000	134662.98		DEND	4.10		1144672	
ACTIVISION BUZZARD DIC	COM	0007508	1,891,399,221	12,872,470 88		DESD	4.0		32,672,479	
ACTIVISION BLIZZARD INC	1004	00075188	5,814,900	65,619.58		DEND	434		48,979	
ALLY FOIL DIC	1001	0000000	345,036,022	12719,615 598		DEND	4		12,719,675	
ALLY TOURS.	100	COMPANI	71,732,664	2,803,815 596		DEND	2411		2,805,879	
ALLY FOIL DIC	1004	000070.00	114,308,662	4,228,300 88		DEND	43		4,238,290	
ALLY FINE DIC	100	0000000	84,790,979	3,37,000 SE		DEND	400		3,137,000	
ALLY FINE INC	COM	00000000	190627,113	4,636,250 685		DEND	439		4896200	
ALLYTPLIPE	COM	000000	9441799	1,273,000 88		DESD	400		1275000	
ALEKZON CODE DIC	COM	960012620	1,076,729,000	8,275,000 SW		DEND	4		9,215,000	
AMAZON COM DIC	1000	025020006	39,693,00	2,276,000 SE		DEND	400		2,276,000	
AMERICAN EXPRESS CO	COM	02363608	201,719.899	1,14040 88		DESID	4		1,149,942	
MERICAN EXPRESS CO	100	001818088	25,986,494,009	100,000,005 SEE		DEND	4.0		180,000,000	
AGRICAN ESPRESS CO	100	02581608	243,600,005	1,000,719 506		DEND	4.0		1,899,713	
MEDIC	100	0750000	196.961.288	1,021,036 (08)		DEND	4		1,025,856	
PERIO	COM	087900080	744,844,800	1,840,000 996		DEND	1240		3,840,000	
PERDO	100	07100000	4712,07,100	24294,000 SE		DEND	2801		34,294,000	
PREDC	COM	0750000	12,294,090,000	65,236,534 BE		DESD	43		63,236,334	
PERDO	1004	01769000	526,876,260	2,724,600 SW		DEND	4.6		2,726,000	
PERDO	1004	01760000	12,612,696,727	65,75,609 566		DEND	400		61,178,63	
MEDIC	100	0790000	2,357,125,440	12352000 SE		DEND	459		12.152.000	
WEEDC	COM	087900000	9,211,911,040	47,832,000 886		DESID	430		41,832,000	
URLEDIC	100	979999	129,644,730,949	68,71,66 58		DEND	4.0		660,375,366	
WELL DIC	COM	0750000	236,046,640	2702000 98		DEND	4.12		2.712.000	
PREDC	COM	0790000	702,490,729	3,776,000 895		DESD	434		3,779,000	
APREDIC	COM	Q87800080	3,961,661,022	29,424,207 996		DEND	4,15		20,424,297	
BANK AMERICORP	100	9000004	112,464,000	1825.000 SE		DEND	4		3,920,000	 99
NAME AND RECORD	COM	00000004	341.411.000	11,900,000 88		DESD	1240		11,900,000	
NOW ALSO COMP	1004	06000004	581,771,925	17,652,500 556		DEND	2,011		17,882,588	
NOW ALSO COMP	1004	06000004	4,004,000,000	140,000,000 SE		DEND	1,4,5		540,000,000	
NAME AND RECORD	0004	06000004	RIX,108,829	31,478,000 585		DIND	45		31,476,000	
SANK ALBERTORP	COM	98000084	60,349,000	2,180,000 896		DESD	4.6		2,300,000	
ANE ALER CORP	100	06000004	8,944,968,200	211,790,000 SW		DEND	400		311,790,000	
ADE ADER CORP	1000	06000004	3423130	11,998,000 895		DEND	439		11,999,000	
ANE ALER CORP	2004	00000004	1,08(211,75)	19,675,000 SW		DEND	430		34,475,000	
IOE ALER CORP	COM	060000004	15,500,401,981	201,966,206 SSE		DEND	4.00		401,666,336	
ANK AMERICORP	1000	06000004	80,0000	25,000,000 SE		DEND	4.12		25,000,000	
ANK ANDRECORP	COM	98000004	281,162,000	9,800,000 895		0890	434		5,800,000	
NOW ALSO COMP	100	06000004	603,797,666	22,751,400 SW		DEND	435		22,751,600	

- Every institutional with at least \$100mn in AUM holding U.S. stocks has to file a 13F with the SEC as of the end of each quarter
- The 13F includes all the stocks they hold, as well as the number of shares
 - Note that the data is on the institution-level (e.g., Vanguard), not fund level

- ullet Every institutional with at least \$100mn in AUM holding U.S. stocks has to file a 13F with the SEC as of the end of each quarter
- The 13F includes all the stocks they hold, as well as the number of shares
 - Note that the data is on the institution-level (e.g., Vanguard), not fund level
- 13F filings give us quarterly snapshots of equity holdings of all institutional investors, adding up to about 70% of total U.S. market cap
- Reporting exceptions:
 - Short positions are not reported
 - Hedge Funds try to hide their "secret sauce" by entering total return swaps
 - Another way to hide positions: window-dressing around quarter-ends
 - Small institutions with low AUM are not required to file 13Fs
 - And of course, no households!

- ullet Every institutional with at least \$100mn in AUM holding U.S. stocks has to file a 13F with the SEC as of the end of each quarter
- The 13F includes all the stocks they hold, as well as the number of shares
 - Note that the data is on the institution-level (e.g., Vanguard), not fund level
- 13F filings give us quarterly snapshots of equity holdings of all institutional investors, adding up to about 70% of total U.S. market cap
- Reporting exceptions:
 - Short positions are not reported
 - Hedge Funds try to hide their "secret sauce" by entering total return swaps
 - Another way to hide positions: window-dressing around quarter-ends
 - Small institutions with low AUM are not required to file 13Fs
 - And of course, no households!

How to get your hands on the data

- Most common is Thomson Reuters: s34 (13F institutional ownership) and s12 (MF ownership)
- Alternative for MF ownership: WRDS mutual fund database has holdings
- FactSet Ownership (Koijen and Yogo use it in more recent work, potentially expensive)
- Backus, Conlon, Sinkinson: https://sites.google.com/view/msinkinson/research/common-ownership-data
 - they deal with some parsing issues that persist in the TR data
 - plus this data is free
 - so this is what I use
 - ends in 2017, then self-scraped filings + their parsing method
- Martin Schmalz: https://corporateownershipdata.com/
 - seems to be only in development now, not sure if it will continue

2. Koijen and Yogo (2019, JPE)

Investor Demand

- For every institution, every quarter, estimate a logit "demand curve"
 - How much of a stock does the investor want to hold as a function of the stock price p(n) and K other stock characteristics $X_k(n)$?

$$\frac{w_i(n)}{w_i(0)} = \exp\left(\beta_{i0}p(n) + \sum_k \beta_{ik}X_k(n)\right)\epsilon_i(n)$$

- $w_i(n)/w_i(0)$ is the relative portfolio weight investor i has in asset n relative to her weight in an outside asset 0
 - Why relative weights? The logit functional form ensures $w_i(0) + \sum_n w_i(n) = 1$
 - Based on finance theory, the risk-free asset would be a good choice
 - KY use stocks with missing stock characteristics and some CRSP share codes
- ullet eta_{i0} (coefficient on price) is the central parameter in demand systems
 - $1-eta_{i0}$ is (approximately) the elasticity of investor i's demand to stock price
- β_{ik} captures investor i's preference for stock characteristics k
 - · KY use book equity, profitability, investment, dividend yield and market beta
- $\epsilon_i(n)$ is the unobserved latent demand level
 - Stock-specific investor preferences, noise trading, private information, ...
- (time subscripts on everything omitted for brevity)

Microfoundations?

- Logit demand systems are related to IO, but there are conceptual differences (probabilities vs portfolio weights)
 - Later today: cross-elasticities implied by logit might be problematic for finance

⁶Koijen, Richmond, Yogo, "Which Investors Matter for Equity Valuations and Expected Returns?", Forthcoming ReStud

Microfoundations?

- Logit demand systems are related to IO, but there are conceptual differences (probabilities vs portfolio weights)
 - Later today: cross-elasticities implied by logit might be problematic for finance
- Both KY and KRY⁶ offer finance-based microfoundations...
 - ... but both are imperfect so we will skip them
- Especially the logit functional form is not the result of typical finance models (later we'll see that CARA-normal ⇒ linear (not isoelatic) demand curves)

⁶Koijen, Richmond, Yogo, "Which Investors Matter for Equity Valuations and Expected Returns?", Forthcoming ReStud

Microfoundations?

- Logit demand systems are related to IO, but there are conceptual differences (probabilities vs portfolio weights)
 - Later today: cross-elasticities implied by logit might be problematic for finance
- Both KY and KRY⁶ offer finance-based microfoundations...
 - ... but both are imperfect so we will skip them
- Especially the logit functional form is not the result of typical finance models (later we'll see that CARA-normal ⇒ linear (not isoelatic) demand curves)
- My view: demand systems are a semi-structural approach: functional forms
 are chosen to fit the data, but from there we impose equilibrium to get prices

⁶Koijen, Richmond, Yogo, "Which Investors Matter for Equity Valuations and Expected Returns?", Forthcoming ReStud

Market Clearing

ullet Asset prices are determined through market clearing, i.e. supply = demand:

$$p(n) + s(n) = \log \left(\sum_{i=1}^{I} w_i(n) A_i \right), \quad \forall n$$

- portfolio weights $w_i(n)$ are decreasing in price p(n) \rightarrow the more expensive the stock, the less of it do investors want to hold
- Ihs increasing in p(n), Ihs decreasing in $p(n) \Rightarrow$ unique solution for p(n)
 - Comes from a constraint that demand elasticities are non-negative, $\beta_{i0} \leq 1$

Market Clearing

ullet Asset prices are determined through market clearing, i.e. supply = demand:

$$p(n) + s(n) = \log \left(\sum_{i=1}^{I} w_i(n) A_i \right), \quad \forall n$$

- portfolio weights $w_i(n)$ are decreasing in price p(n) \rightarrow the more expensive the stock, the less of it do investors want to hold
- Ihs increasing in p(n), Ihs decreasing in $p(n) \Rightarrow$ unique solution for p(n)
 - Comes from a constraint that demand elasticities are non-negative, $eta_{i0} \leq 1$
- How about the on average 30% of ownership not covered by 13Fs?
 - Assumed to be the "aggregate household sector" modeled as a single investor
 - Many potential problems: aggregate short interest, small institutions that don't file, missing heterogeneity, ...

Market Clearing

ullet Asset prices are determined through market clearing, i.e. supply = demand:

$$p(n) + s(n) = \log \left(\sum_{i=1}^{I} w_i(n) A_i \right), \quad \forall n$$

- portfolio weights $w_i(n)$ are decreasing in price p(n) \rightarrow the more expensive the stock, the less of it do investors want to hold
- Ihs increasing in p(n), Ihs decreasing in $p(n) \Rightarrow$ unique solution for p(n)
 - Comes from a constraint that demand elasticities are non-negative, $eta_{i0} \leq 1$
- How about the on average 30% of ownership not covered by 13Fs?
 - Assumed to be the "aggregate household sector" modeled as a single investor
 - Many potential problems: aggregate short interest, small institutions that don't file, missing heterogeneity, ...
- Alvin develops taste for Tesla (i.e. $\epsilon_t^{Alvin}(Tesla) > 0$)
- Identification problem: $cov(\epsilon_t^{Alvin}(Tesla), p_t(Tesla)) > 0$
 - $\epsilon_t^{Alvin}(Tesla)$ enters market clearing \Rightarrow Need an instrument!

Specification

• Given instrument $\widehat{p}_i(n)$, the model can be estimated via:

Nonlinear GMM:

$$\mathbb{E}\left[\epsilon_i(n)|\widehat{p}_i(n), x(n)\right] = 1$$

2 Linear IV:

$$\mathbb{E}\left[\log \epsilon_i(n)|\widehat{p}_i(n), x(n)\right] = 0$$

Instrument

$$\widehat{p}_i(n) \equiv \log \left(\sum_{j \neq i} A_j \frac{1_j(n)}{1 + \sum_{m=1}^N 1_j(m)} \right)$$

- $1_i(n)$ is the stocks that are part of the investment universe of investor i
 - The instrument is the counterfactual price if each investor (excluding i) held an equal-weighted portfolio
- It replaces endogenous portfolio weights with an "exogenous" portfolio allocation rule
- Variation comes from how many large investors have a stock in their investment universe
 - Measurement of investment universe: stock that has been held at least once in the past 3 years

Instrument

$$\widehat{p}_i(n) \equiv \log \left(\sum_{j \neq i} A_j \frac{1_j(n)}{1 + \sum_{m=1}^N 1_j(m)} \right)$$

- $1_i(n)$ is the stocks that are part of the investment universe of investor i
 - The instrument is the counterfactual price if each investor (excluding i) held an equal-weighted portfolio
- It replaces endogenous portfolio weights with an "exogenous" portfolio allocation rule
- Variation comes from how many large investors have a stock in their investment universe
 - Measurement of investment universe: stock that has been held at least once in the past 3 years
- Assumptions:
 - Investment universe is exogenous... is it?
 - A_i is exogenous to $\epsilon_i(n)$... is it?

Estimates

Estimates

Estimates from Literature⁸

In a frictionless world, elasticities should be on the order of 5,000 and above⁷

⁷Petajisto, "Why do demand curves for stocks slope down?", 2009 JFQA

⁸Gabaix and Koijen, "In Search of the Origins of Financial Fluctuations: The Inelastic Markets Hypothesis", 2022 WP

Application 1: Liquidity & Price Impact

• What is the price impact of a 1% increase in demand?

Application 1: Liquidity & Price Impact

- What is the price impact of a 1% increase in demand?
- We often call this the price multiplier $\mathcal{M}(n)$:

$$\mathcal{M}(n) = \left(1 - \sum_{i=1}^{I} \frac{A_i w_i(n)}{\sum_{j=1}^{I} A_j w_j(n)} \beta_{i,0}\right)^{-1} = \mathcal{E}_{agg}^{-1}(n)$$

- Inelastic demand ⇒ demand shocks move prices a lot!
 - Why? Investors are unwilling to absorb shocks unless prices move a lot
 - Inelastic demand is related to illiquid markets, high price impact, and high (non-fundamental) volatility

Application 2: Decomposing stock returns

$$r_{t+1} = \underbrace{p_{t+1} - p_t}_{\text{capital gains}} + \underbrace{\log(1 + \exp(d_{t+1} - p_{t+1}))}_{\text{dividend yield}}$$

and

$$p_{t+1} - p_t = \Delta p_{t+1}(s) + \Delta p_{t+1}(x) + \Delta p_{t+1}(A) + \Delta p_{t+1}(\beta) + \Delta p_{t+1}(\epsilon)$$

Define the market-clearing equilibrium price as

$$p_t \equiv g(s_t, x_t, A_t, \beta_t, \epsilon_t)$$

Then

$$\Delta p_{t+1}(s) = g(s_{t+1}, x_t, A_t, \beta_t, \epsilon_t) - g(s_t, x_t, A_t, \beta_t, \epsilon_t)$$

$$\Delta p_{t+1}(x) = g(s_{t+1}, x_{t+1}, A_t, \beta_t, \epsilon_t) - g(s_{t+1}, x_t, A_t, \beta_t, \epsilon_t)$$

$$\Delta p_{t+1}(A) = g(s_{t+1}, x_{t+1}, A_{t+1}, \beta_t, \epsilon_t) - g(s_{t+1}, x_{t+1}, A_t, \beta_t, \epsilon_t)$$

$$\Delta p_{t+1}(\beta) = g(s_{t+1}, x_{t+1}, A_{t+1}, \beta_{t+1}, \epsilon_t) - g(s_{t+1}, x_{t+1}, A_{t+1}, \beta_t, \epsilon_t)$$

$$\Delta p_{t+1}(\epsilon) = g(s_{t+1}, x_{t+1}, A_{t+1}, \beta_{t+1}, \epsilon_{t+1}) - g(s_{t+1}, x_{t+1}, A_{t+1}, \beta_{t+1}, \epsilon_t)$$

Application 2: Decomposing stock returns

$$Var(r_{t+1}) = Cov(\Delta p_{t+1}(s), r_{t+1}) + Cov(\Delta p_{t+1}(x), r_{t+1}) + Cov(v_{t+1}, r_{t+1}) + Cov(\Delta p_{t+1}(A), r_{t+1}) + Cov(\Delta p_{t+1}(\beta), r_{t+1}) + Cov(\Delta p_{t+1}(\epsilon), r_{t+1})$$

 ${\bf TABLE~3} \\ {\bf Variance~Decomposition~of~Stock~Returns}$

	% of Variance
Supply:	
Shares outstanding	2.1
_	(.2)
Stock characteristics	9.7
	(.3)
Dividend yield	.4
	(0.)
Demand:	
Assets under management	2.3
_	(.1)
Coefficients on characteristics	4.7
	(.2)
Latent demand: extensive margin	23.3
	(.3)
Latent demand: intensive margin	57.5
	(.4)
Observations	134,328

Counterfactuals

- The decomposition involved forming counterfactual prices
 - For example, $g(s_{t+1}, x_t, A_t, \beta_t, \epsilon_t)$ gives the vector of counterfactual prices if the number of shares outstanding is as of t+1, but everything else is as of t
 - While $g(s_t, x_t, A_t, \beta_t, \epsilon_t)$ and $g(s_{t+1}, x_{t+1}, A_{t+1}, \beta_{t+1}, \epsilon_{t+1})$ are "correct" by construction (observed prices), others are model-implied counterfactual prices

Counterfactuals

- The decomposition involved forming counterfactual prices
 - For example, $g(s_{t+1}, x_t, A_t, \beta_t, \epsilon_t)$ gives the vector of counterfactual prices if the number of shares outstanding is as of t+1, but everything else is as of t
 - While $g(s_t, x_t, A_t, \beta_t, \epsilon_t)$ and $g(s_{t+1}, x_{t+1}, A_{t+1}, \beta_{t+1}, \epsilon_{t+1})$ are "correct" by construction (observed prices), others are model-implied counterfactual prices

- Even in this innocuous decomposition, we needed to make (implicit) assumptions...
 - ... Did you notice the ordering of the terms in the decomposition? it matters!
 - More on the dangers of counterfactuals in a bit

Computing Counterfactuals

- Solving for prices requires solving high-dimensional nonlinear systems
- Start from market clearing:

$$p = f(p) = \log\left(\sum_{i=1}^{I} A_i w_i(p)\right) - s$$

Computing Counterfactuals

- Solving for prices requires solving high-dimensional nonlinear systems
- Start from market clearing:

$$p = f(p) = \log\left(\sum_{i=1}^{I} A_i w_i(p)\right) - s$$

Newton method update:

$$p_{h+1} = p_h + \left(I - \frac{\partial f(p_h)}{\partial p'}\right)^{-1} \left(f(p_h) - p_h\right)$$

Computing Counterfactuals

- Solving for prices requires solving high-dimensional nonlinear systems
- Start from market clearing:

$$p = f(p) = \log\left(\sum_{i=1}^{I} A_i w_i(p)\right) - s$$

Newton method update:

$$p_{h+1} = p_h + \left(I - \frac{\partial f(p_h)}{\partial p'}\right)^{-1} (f(p_h) - p_h)$$

ullet Evaluating the Jacobian computationally intense \Rightarrow approximate diagonally

$$\begin{split} & \frac{\partial f(p_h)}{\partial p'} \approx \operatorname{diag}\left(\min\left\{\frac{\partial f(p_h)}{\partial p(n)}, 0\right\}\right) \\ & \frac{\partial f(p_h)}{\partial p(n)} = \frac{\sum_{i=I} \beta_{i,0} A_i w_i(p_h; n) (1 - w_i(p_h; n))}{\sum_{i=I} A_i w_i(p_h; n)} \end{split}$$

Typically converges in < 100 iterations

3. Haddad, Huebner and Loualiche (2023, WP)

The Rise of Passive Investing

Active and passive (+ ETF) mutual funds as fraction of US total market cap. (source: ICI)

Passive investing in a demand system

- Passive investing is price-inelastic ⇒ they hold market irrespective of prices
- One way of thinking of passive investing: Compare...
 - ... asset prices given current wealth distribution across institutions
 - ... with counterfactual asset prices: every institution keeps their current estimated demand curves, but the wealth distribution is "pre-passive" investing
- KRY do this (as a small part of an important paper)

Lucas critique

Given that the structure of an econometric model consists of optimal decision rules of economic agents, and that optimal decision rules vary systematically with changes in the structure of series relevant to the decision maker, it follows that any change in policy will systematically alter the structure of econometric models.

Lucas, "Econometric Policy Evaluation: A Critique", 1976

Lucas critique

Given that the structure of an econometric model consists of optimal decision rules of economic agents, and that optimal decision rules vary systematically with changes in the structure of series relevant to the decision maker, it follows that any change in policy will systematically alter the structure of econometric models.

Lucas, "Econometric Policy Evaluation: A Critique", 1976

- Lucas critique: if we change the market structure, optimal investor behavior will change as well!
 - \rightarrow Estimated demand functions of investors might change in the counterfactual world!
- Imagine some investor stops looking for 20\$ bills on the floor (passive)
 - ightarrow Can we directly use the demand system to see the impact of the change?

Lucas critique

Given that the structure of an econometric model consists of optimal decision rules of economic agents, and that optimal decision rules vary systematically with changes in the structure of series relevant to the decision maker, it follows that any change in policy will systematically alter the structure of econometric models.

Lucas, "Econometric Policy Evaluation: A Critique", 1976

- Lucas critique: if we change the market structure, optimal investor behavior will change as well!
 - \rightarrow Estimated demand functions of investors might change in the counterfactual world!
- Imagine some investor stops looking for 20\$ bills on the floor (passive)
 - ightarrow Can we directly use the demand system to see the impact of the change?

• The rise of passive investing

• The rise of passive investing

• The rise of passive investing

The rise of passive investing

- The rise of passive investing
- Regulated financial intermediaries trading more conservatively
- An "arbitrageur" (e.g. Melvin Capital) going bust

Investor Competition Framework: 2-Layer Equilibrium

	Individual Decision	Equilibrium Condition
Competition for the asset	$d_i = d_i - \mathcal{E}_i \times (n - \bar{n})$	$\int_{S} D_{i}(p) \equiv S$

Investor Competition Framework: 2-Layer Equilibrium

	Individual Decision	Equilibrium Condition
Competition for the asset	$d_i = \underline{d}_i - \mathcal{E}_i \times (p - \bar{p})$	$\int_{i} D_{i}(p) = S$
Competition in strategies	$\mathcal{E}_i = \underline{\mathcal{E}}_i - \chi \times \mathcal{E}_{agg}$	$\int_{i} \mathcal{E}_{i} D_{i} / S = \mathcal{E}_{agg}$

Investor Competition Framework: 2-Layer Equilibrium

	Individual Decision	Equilibrium Condition
Competition for the asset	$d_i = \underline{d}_i - \mathcal{E}_i imes (p - \overline{p})$	$\int_{i} D_{i}(p) = S$
Competition in strategies	$\mathcal{E}_i = \underline{\mathcal{E}}_i - \chi imes \mathcal{E}_{agg}$	$\int_{i} \mathcal{E}_{i} D_{i} / S = \mathcal{E}_{agg}$

- Degree of strategic response χ
 - $\chi = 0$, no response: each investor follows independent strategies
 - $\chi \to \infty$, "financial markets are competitive": any change completely counteracted by investor reaction

Investor Competition Framework: 2-Layer Equilibrium

	Individual Decision	Equilibrium Condition
Competition for the asset	$d_i = \underline{d}_i - \mathcal{E}_i imes (p - \overline{p})$	$\int_{i} D_{i}(p) = S$
Competition in strategies	$\mathcal{E}_i = \underline{\mathcal{E}}_i - \chi imes \mathcal{E}_{agg}$	$\int_{i} \mathcal{E}_{i} D_{i} / S = \mathcal{E}_{agg}$

• Degree of strategic response χ

- $\chi = 0$, no response: each investor follows independent strategies
- $\chi \to \infty$, "financial markets are competitive": any change completely counteracted by investor reaction
- $\chi > 0$, some substitution: more on why in a few slides
- $\chi < 0$, amplification

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - No strategic response ($\chi = 0$): proportional reduction, $\mathcal{E}_{NEW} = \alpha \mathcal{E}_0 = 70\% \times \mathcal{E}_0$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - No strategic response ($\chi = 0$): proportional reduction, $\mathcal{E}_{NEW} = \alpha \mathcal{E}_0 = 70\% \times \mathcal{E}_0$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - No strategic response ($\chi = 0$): proportional reduction, $\mathcal{E}_{NEW} = \alpha \mathcal{E}_0 = 70\% \times \mathcal{E}_0$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - No strategic response ($\chi = 0$): proportional reduction, $\mathcal{E}_{NEW} = \alpha \mathcal{E}_0 = 70\% \times \mathcal{E}_0$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - No strategic response ($\chi = 0$): proportional reduction, $\mathcal{E}_{NEW} = \alpha \mathcal{E}_0 = 70\% \times \mathcal{E}_0$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - No strategic response ($\chi = 0$): proportional reduction, $\mathcal{E}_{NEW} = \alpha \mathcal{E}_0 = 70\% \times \mathcal{E}_0$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - No strategic response ($\chi = 0$): proportional reduction, $\mathcal{E}_{NEW} = \alpha \mathcal{E}_0 = 70\% \times \mathcal{E}_0$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - No strategic response ($\chi=0$): proportional reduction, $\mathcal{E}_{NEW}=\alpha\mathcal{E}_0=70\%\times\mathcal{E}_0$
 - "Perfectly competitive financial markets" $(\chi \to \infty)$: nothing happens, $\mathcal{E}_{NEW} = \alpha \mathcal{E}_0 + (1 \alpha) \mathcal{E}_0 = \mathcal{E}_0$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - Identify the *constant* degree of strategic response using the cross-section

$$\rightarrow \chi = 2$$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - Identify the *constant* degree of strategic response using the cross-section $\rightarrow \gamma = 2$
 - \Rightarrow $\mathcal{E}_{NEW}=87.5\% \times \mathcal{E}_0$ (vs 100% with full response and 70% without strategic response)

What Determines the degree of Strategic Response?

Limits to the ability to have a strategic response (why is χ not ∞ ?)

- Costly information acquisition (Grossman Stiglitz 1980)
- Endogenous risk
- Investment mandates
- Imperfect knowledge of others' behavior
- Partial equilibrium thinking (Eyster Rabin 2005, Greenwood Hanson 2014)
- Complementarity ($\chi < 0$): Liquidity (Kyle 1989), peer effects (Hong Kubik Stein 2004, Reddit)

What Determines the degree of Strategic Response?

Limits to the ability to have a strategic response (why is χ not ∞ ?)

- Costly information acquisition (Grossman Stiglitz 1980)
- Endogenous risk
- Investment mandates
- Imperfect knowledge of others' behavior
- Partial equilibrium thinking (Eyster Rabin 2005, Greenwood Hanson 2014)
- Complementarity ($\chi < 0$): Liquidity (Kyle 1989), peer effects (Hong Kubik Stein 2004, Reddit)

An Information-Based Foundation

A standard model where investors can acquire information about an asset and trade (like Grossman Stiglitz 1980 or Veldkamp 2011)

- A potential justification for our investor competition framework
- Information choice ⇔ elasticity choice
- Highlight that equilibrium response in terms of strategy can be expressed in terms of demand elasticity
- ullet Relation between information costs and strategic response χ

Setup

- ullet One period, one asset paying off f (unknown), risk free rate normalized to 1
- Risky supply $\bar{x} + x$ with $x \sim \mathcal{N}(0, \sigma_x^2)$ (noise traders)
- ullet Continuum of agents indexed by $i\in I$, CARA utility with risk aversion γ_i
 - Prior information: free signal $\mu_i \sim \mathcal{N}(f, \sigma_i^2)$
 - Can acquire signal $\eta_i \sim \mathcal{N}(f, \sigma_{i,\eta}^2)$ at cost $c(\sigma_i^{-2} + \sigma_{i,\eta}^{-2})$ increasing convex

Setup

- ullet One period, one asset paying off f (unknown), risk free rate normalized to 1
- Risky supply $\bar{x} + x$ with $x \sim \mathcal{N}(0, \sigma_x^2)$ (noise traders)
- ullet Continuum of agents indexed by $i\in I$, CARA utility with risk aversion γ_i
 - Prior information: free signal $\mu_i \sim \mathcal{N}(f, \sigma_i^2)$
 - Can acquire signal $\eta_i \sim \mathcal{N}(f, \sigma_{i,\eta}^2)$ at cost $c(\sigma_i^{-2} + \sigma_{i,\eta}^{-2})$ increasing convex
- Linear rational expectation equilibrium
 - Each agent posts a demand curve before seeing the price:

$$d_i(p) = \underline{d}_i - \mathcal{E}_i \times p$$

• Price set to clear the market: p = A + Bf + Cx

Setup

- ullet One period, one asset paying off f (unknown), risk free rate normalized to 1
- Risky supply $\bar{x} + x$ with $x \sim \mathcal{N}(0, \sigma_x^2)$ (noise traders)
- ullet Continuum of agents indexed by $i\in I$, CARA utility with risk aversion γ_i
 - Prior information: free signal $\mu_i \sim \mathcal{N}(f, \sigma_i^2)$
 - Can acquire signal $\eta_i \sim \mathcal{N}(f,\sigma_{i,\eta}^2)$ at cost $c(\sigma_i^{-2}+\sigma_{i,\eta}^{-2})$ increasing convex
- Linear rational expectation equilibrium
 - Each agent posts a demand curve before seeing the price:

$$d_i(p) = \underline{d}_i - \mathcal{E}_i \times p$$

- Price set to clear the market: p = A + Bf + Cx
- Result: price responds to fundamental 1-to-1: B = 1

Elasticity = Information

• Optimal demand:

$$d_i(p) = \frac{1}{\gamma_i} \frac{\mathbf{E}[f|\mu_i, \eta_i, \mathbf{p}] - \mathbf{p}}{var(f|\mu_i, \eta_i, p)}$$

Elasticity = Information

Optimal demand:

$$d_i(p) = \frac{1}{\gamma_i} \frac{\mathbf{E}[f|\mu_i, \eta_i, p] - p}{var(f|\mu_i, \eta_i, p)}$$

• More information \rightarrow asset appears less risky \rightarrow more aggressive trading

$$\mathcal{E}_i = -\frac{dq_i}{dp} = \frac{1}{\gamma_i} \underbrace{\left(\sigma_i^{-2} + \sigma_{i,\eta}^{-2}\right)}_{\text{information from private signals}}$$

Implications of Aggregate Elasticity

 Elasticity: how aggressively investors trade against abnormal price movements → controls impact of noise trading

$$p = A + f - \left(\underbrace{\int_{I} \mathcal{E}_{i} di}_{\mathcal{E}_{agg}}\right)^{-1} x$$

Implications of Aggregate Elasticity

 Elasticity: how aggressively investors trade against abnormal price movements → controls impact of noise trading

$$p = A + f - \left(\underbrace{\int_{I} \mathcal{E}_{i} di}_{\mathcal{E}_{agg}}\right)^{-1} x$$

- Variance of returns: $\mathcal{E}_{aqq}^{-2}\sigma_x^2$
- Absolute price informativeness $var(f|p)^{-1} = \mathcal{E}_{aqq}^2 \sigma_x^{-2}$
- Relative price informativeness also increasing in \mathcal{E}_{agg}

Optimal Information = Optimal Elasticity

Optimal information: utility gain of added precision relative to monetary cost

$$\max_{\sigma_{i\eta}^{-2}} \frac{1}{2} \log \left(\frac{\sigma_i^{-2} + \sigma_{i\eta}^{-2} + \sigma_p^{-2}}{\sigma_i^{-2} + \sigma_p^{-2}} \right) - \gamma_i c_i (\sigma_i^{-2} + \sigma_{i\eta}^{-2})$$

Optimal Information = Optimal Elasticity

Optimal information: utility gain of added precision relative to monetary cost

$$\max_{\sigma_{i\eta}^{-2}} \frac{1}{2} \log \left(\frac{\sigma_i^{-2} + \sigma_{i\eta}^{-2} + \sigma_p^{-2}}{\sigma_i^{-2} + \sigma_p^{-2}} \right) - \gamma_i c_i (\sigma_i^{-2} + \sigma_{i\eta}^{-2})$$

$$\Leftrightarrow \max_{\mathcal{E}_i} \frac{1}{2} \log \left(\gamma_i \mathcal{E}_i + \mathcal{E}_{agg}^2 \sigma_x^{-2} \right) - \gamma_i c_i (\gamma_i \mathcal{E}_i)$$

Optimal Information = Optimal Elasticity

Optimal information: utility gain of added precision relative to monetary cost

$$\begin{aligned} & \max_{\sigma_{i\eta}^{-2}} \frac{1}{2} \log \left(\frac{\sigma_i^{-2} + \sigma_{i\eta}^{-2} + \sigma_p^{-2}}{\sigma_i^{-2} + \sigma_p^{-2}} \right) - \gamma_i c_i (\sigma_i^{-2} + \sigma_{i\eta}^{-2}) \\ & \Leftrightarrow \max_{\mathcal{E}_i} \frac{1}{2} \log \left(\gamma_i \mathcal{E}_i + \mathcal{E}_{agg}^2 \sigma_x^{-2} \right) - \gamma_i c_i (\gamma_i \mathcal{E}_i) \end{aligned}$$

→ Individual elasticity depends on aggregate elasticity

Information Costs and Degree of Strategic Response χ

- Strategic response $\chi \approx -\ d\mathcal{E}_i/d\mathcal{E}_{agg}$
- Individual elasticity decreasing in aggregate elasticity, $\chi > 0$
 - Others trade more aggressively → price more informative → marginal value of extra information is lower → no need to be aggressive
- Strategic response stronger when it is easier to adjust information choices
 - Sensitivity of individual to aggregate decreasing in "curvature" of information cost $c_i''/c_i'^2$
- A closed-form two-parameter family of cost functions maps to linear response

$$\left| \mathcal{E}_i = \underline{\mathcal{E}}_i - \chi \times \mathcal{E}_{agg} \right|$$

Quantitative Model

ullet Portfolio choice represented by logit portfolio shares w_{ik}

$$\frac{\log \frac{w_{ik}}{w_{i0}} - p_k}{\text{relative demand}} = \underbrace{-\mathcal{E}_{ik}}_{\text{price elasticity}} \underbrace{p_k}_{\text{baseline demand}} + \underbrace{d_{0i} + \underline{d}'_{1i}X_k + \epsilon_{ik}}_{\text{baseline elasticity}}$$

$$\frac{\mathcal{E}_{ik}}{\text{baseline elasticity}} = \underbrace{\mathcal{E}_{0i} + \mathcal{E}'_{1i}X_k}_{\text{strategic response}} - \underbrace{\chi \mathcal{E}_{agg,k}}_{\text{strategic response}}$$

- Baseline demand \underline{d}_i
 - Investor-specific function of characteristics $\underline{d}_{0i} + \underline{d}'_{1i}X_k$
 - ullet Residual demand unobservable residual ϵ_{ikt} (private signal, noise trading)
- Baseline elasticity $\underline{\mathcal{E}}_i$
 - Standard price theory: investor-specific response to stock characteristics $\underline{\mathcal{E}}_{0i} + \underline{\mathcal{E}}'_{1i} X_k$
 - Embeds Koijen Yogo 2019, who assume no competition: $\underline{\mathcal{E}}'_{1i} = 0$, $\chi = 0$
- Passive investors: $\mathcal{E}_i = 0$ (includes index investing, identified using KY elasticity)

Three Challenges for Estimation

Reflection problem (Manski 1993)

$$\mathcal{E}_{ik} = \underline{\mathcal{E}}_{0i} + \underline{\mathcal{E}}'_{1i} X_k - \chi \mathcal{E}_{agg,k}$$

$$\mathcal{E}_{agg,k} = \sum_i \frac{w_{ik} A_i}{\sum_j w_{jk} A_j} \mathcal{E}_{ik}$$

- Endogeneity in demand estimation
 - Koijen-Yogo (2019) price instrument + model-based instruments for aggregate elasticity
- Implementation
 - An efficient algorithm to run large dimensional regressions and solve all the equilibria simultaneously

The Reflection Problem

- Does Paolo trade GameStop agressively because ...
 - he is an agressive trader: high $\underline{\mathcal{E}}_i$
 - of influence of others: $\chi < 0$

The Reflection Problem

- Does Paolo trade GameStop agressively because ...
 - he is an agressive trader: high $\underline{\mathcal{E}}_i$
 - of influence of others: $\chi < 0$
- → Paolo faces a *different* mix of other investors for different stocks

The Reflection Problem

- Does Paolo trade GameStop agressively because ...
 - he is an agressive trader: high $\underline{\mathcal{E}}_i$
 - of influence of others: $\chi < 0$
- ightarrow Paolo faces a *different* mix of other investors for different stocks

Theorem 1

Unique decomposition between $\underline{\mathcal{E}}_i$ and χ if:

- Graph G of investor-stock links is connected
- **2** Average individual elasticities $\sum_{i} \underline{\mathcal{E}}_{ik} w_{ik} A_i/p_k$ vary across stocks

Implementation I

Algorithm E.1: Numerical procedure solving for a fixed point of (χ, ξ) .

```
begin
 1
             Initialize starting values (\chi^{(0)}, \xi^{(0)})
 3
            h ← 0
             while (||F(\chi^{(h-1)}, \xi^{(h-1)})|| > \text{tol}) or (h = 0)
 4
                Initialize \{\mathcal{E}_{agg,k}^{(0)}\}_k at \{\mathcal{E}_{fixed,k}\}_k
 5
 6
                    Update investor-specific parameters conditional on \{\mathcal{E}_{agg,k}^{(n-1)}\}_k and (\chi^{(h)}, \xi^{(h)}) (Step 1).
 7
                    Aggregate to determine \{\mathcal{E}_{agg,k}^{(n)}\}_k conditional on (\chi^{(h)},\xi^{(h)}) (Step 2).
 8
                end
 9
                Determine f(\chi^{(h)}, \xi^{(h)}), i.e. estimate (\chi, \xi) conditional on \{\mathcal{E}_{agg,k}^{(N)}\}_k (Step 3).
10
                F(y^{(h)}, \xi^{(h)}) \leftarrow f(y^{(h)}, \xi^{(h)}) - (y^{(h)}, \xi^{(h)})
11
                \hat{J}(\chi^{(h)}, \xi^{(h)}) \leftarrow \frac{1}{\epsilon} (F(\chi^{(h)} + \epsilon, \xi^{(h)}) - F(\chi^{(h)}, \xi^{(h)}), F(\chi^{(h)}, \xi^{(h)} + \epsilon) - F(\chi^{(h)}, \xi^{(h)}))
12
                (\chi^{(h+1)}, \xi^{(h+1)}) \leftarrow (\chi^{(h)}, \xi^{(h)}) - \hat{J}^{-1}(\chi^{(h)}, \xi^{(h)}) F(\chi^{(h)}, \xi^{(h)}) (Step 4)
13
                h \leftarrow h + 1
14
15
             end
            return (\chi^{(h)}, \xi^{(h)})
16
        end
```

- Newton method to estimate common χ (on $\mathcal{E}_{aqq,k} \times p_k$) and θ (on $\mathcal{E}_{aqq,k}$)
- Step 1 & 2: At each iteration (h), given $\chi^{(h)}$ and θ^h , solve for $\{\mathcal{E}_{aqq,k}\}^h$
- Step 3: Estimate (χ, θ) conditional on $\{\mathcal{E}_{aqq,k}\}^h$ and call it $f(\chi^{(h)}, \theta^h)$
- Step 4: Use Newton updates to find the root of the fixed-point function F

Implementation II

- Step 3: Estimate (χ, θ) conditional on $\{\mathcal{E}_{agg,k}\}^h$ and call it $f(\chi^{(h)}, \theta^h)$
 - Conceptually easy! Run a "big" regression of relative demand on $\{\mathcal{E}_{agg,k}\}^h$ and $\{\mathcal{E}_{agg,k}\}^h \times p_k$, and many parameters estimated on investor-time level
 - Think some stock characteristics interacted with institution-time fixed effects
 - Either very slow (estimated each quarter) or infeasible (pooled across time)

Implementation II

- Step 3: Estimate (χ,θ) conditional on $\{\mathcal{E}_{agg,k}\}^h$ and call it $f(\chi^{(h)},\theta^h)$
 - Conceptually easy! Run a "big" regression of relative demand on $\{\mathcal{E}_{agg,k}\}^h$ and $\{\mathcal{E}_{agg,k}\}^h \times p_k$, and many parameters estimated on investor-time level
 - Think some stock characteristics interacted with institution-time fixed effects
 - Either very slow (estimated each quarter) or infeasible (pooled across time)
- Solution: Use the Frisch-Waugh-Lovell theorem for the "big" regression
 - ullet All parameters other than χ and heta are estimated at the institution-time level
 - For each institution-time group, regress three things on stock characteristics:
 - Relative demand
 - $\mathcal{E}_{agg,k} \times p_k$
 - $\mathcal{E}_{agg,k}$
 - For each institution-time group, save the residuals of the three regressions
 - Then estimate χ and θ in one bigger regression of the relative demand residuals on the other two residuals
 - This is again a regression with many data points, but only two parameters!
 - Reduced one regression with much data & many parameters (slow) to
 - many regressions with few data points and few parameters (fast!)
 - one regression with many data points but few parameters (fast!)

Estimates of Strategic Response χ

• Estimate of strategic response stable over time, $\chi = 2.15$

- **Substantial individual response**: The same investor responds less to price movements for assets with more aggressive investors
 - If all other investors are more elastic by 1, lower my elasticity by 2.15

- Far from "competitive financial markets", $\chi \ll \infty$
 - In simple calculation, needed $\chi>18$ to compensate 90% of direct effect

Estimates of Aggregate Elasticity by Stock

- Elasticities are low ≈ 0.4 : consistent with previous studies
- Size effect: less willing to adjustpositions with large weights
- Less cross-sectional variation: important to account for the elasticity equilibrium
 - If an active investor shows up in one stock, others become more passive

The Rise of Passive Investing

What does the model predict about the effect of this trend?

The Rise of Passive Investing

What does the model predict about the effect of this trend?

Aggregate elasticity equilibrium:

$$\mathcal{E}_{agg,k} = \underbrace{|A_k|}_{\text{fraction active}} \times \underbrace{\mathbf{E}\left(\underline{\mathcal{E}}_{ik}|i \in A_k\right)}_{\text{avg. active elasticity}} \times \underbrace{\frac{1}{1+\chi|A_k|}}_{\text{general equilibrium}}$$

- Effect of change in active share:
 - Assuming random investors switch:

$$\frac{d \log \mathcal{E}_{agg}}{d \log |A|} = \frac{1}{1 + \underbrace{\chi}_{2.15} \underbrace{|A|}_{68\%}} = 40.6\%$$

The Rise of Passive Investing

What does the model predict about the effect of this trend?

Aggregate elasticity equilibrium:

$$\mathcal{E}_{agg,k} = \underbrace{|A_k|}_{\text{fraction active}} \times \underbrace{\mathbf{E}\left(\underline{\mathcal{E}}_{ik}|i \in A_k\right)}_{\text{avg. active elasticity}} \times \underbrace{\frac{1}{1+\chi|A_k|}}_{\text{general equilibrium}}$$

- Effect of change in active share:
 - Assuming random investors switch:

$$\frac{d \log \mathcal{E}_{agg}}{d \log |A|} = \frac{1}{1 + \underbrace{\chi}_{2.15} \underbrace{|A|}_{68\%}} = 40.6\%$$

Elasticities drop by $40.6\% \times 32\% = 13\%$

What if...

 \dots we ignored the how investors respond to one another when assessing the impact of the rise of passive investing?

Broader Lesson I - Counterfactuals

 Demand systems can be very useful for creating counterfactuals to understand the impact of changes in the market structure

Broader Lesson I - Counterfactuals

- Demand systems can be very useful for creating counterfactuals to understand the impact of changes in the market structure
- But: Be careful about the implicit assumptions you are making for what is a deep structural parameter!
 - That should not discourage you from using demand systems; counterfactuals are difficult

Broader Lesson I - Counterfactuals

- Demand systems can be very useful for creating counterfactuals to understand the impact of changes in the market structure
- But: Be careful about the implicit assumptions you are making for what is a deep structural parameter!
 - That should not discourage you from using demand systems; counterfactuals are difficult

4. More Examples of Demand Systems

Example 1: Misspecification and Corporate Bonds

- Bretscher et al. 9 are the first to apply KY in corporate bonds:
 - They use holdings data from Thomson Reuters eMAXX
- Findings:
 - Very inelastic demand for corporate bonds!
 - This translates into large price impact in counterfactuals:
 - impact of bond fire sales on corporate bond prices
 - impact of monetary policy tightening of interest rates on corporate bond prices

⁹Bretscher, Schmid, Sen, Sharma, "Institutional Corporate Bond Pricing", WP 2022

Example 1: Misspecification and Corporate Bonds

- Bretscher et al. 9 are the first to apply KY in corporate bonds:
 - They use holdings data from Thomson Reuters eMAXX
- Findings:
 - · Very inelastic demand for corporate bonds!
 - This translates into large price impact in counterfactuals:
 - impact of bond fire sales on corporate bond prices
 - impact of monetary policy tightening of interest rates on corporate bond prices

• Is the demand for corporate bonds really that inelastic?

⁹Bretscher, Schmid, Sen, Sharma, "Institutional Corporate Bond Pricing", WP 2022

KY-Implied Substitution Patterns

$$w_{ik} = \frac{\exp(\ldots + \beta_i p_k + \ldots) \epsilon_{ik}}{1 + \sum_l \exp(\ldots + \beta_i p_l + \ldots) \epsilon_{il}}$$

Own-price elasticity:

$$\frac{\partial \log w_{ik}}{\partial p_k} = \beta_i \left(1 - w_{ik} \right) \approx \beta_i$$

Cross-price elasticity:

$$\frac{\partial \log w_{ik}}{\partial p_l} = -\beta_i w_{il}$$

- This is proportional substitution:
 - If the price of stock k goes up 1%, my portfolio weight goes up $\approx \beta_i\%$
 - Where does that come from? Proportionally lower weights in other stocks

KY-Implied Substitution Patterns

$$w_{ik} = \frac{\exp(\ldots + \beta_i p_k + \ldots) \epsilon_{ik}}{1 + \sum_l \exp(\ldots + \beta_i p_l + \ldots) \epsilon_{il}}$$

Own-price elasticity:

$$\frac{\partial \log w_{ik}}{\partial p_k} = \beta_i \left(1 - w_{ik} \right) \approx \beta_i$$

Cross-price elasticity:

$$\frac{\partial \log w_{ik}}{\partial p_l} = -\beta_i w_{il}$$

- This is proportional substitution:
 - If the price of stock k goes up 1%, my portfolio weight goes up $\approx \beta_i$ %
 - Where does that come from? Proportionally lower weights in other stocks
- Does that seem like a reasonable substitution pattern in finance?
 - How does (statistical) arbitrage work? How would you trade on a mispricing?

- IO of corporate bond markets:
 - Very strong segmentation by credit rating and duration

- IO of corporate bond markets:
 - Very strong segmentation by credit rating and duration
 - Within each segment, corporate bonds are very close substitutes!

- IO of corporate bond markets:
 - Very strong segmentation by credit rating and duration
 - Within each segment, corporate bonds are very close substitutes!
- Alternative approach to demand systems in corporate bonds:
 - Estimate elasticities within segments, for different levels of aggregation
 - Controlling for characteristics is not enough to capture rich substitution!

- IO of corporate bond markets:
 - Very strong segmentation by credit rating and duration
 - Within each segment, corporate bonds are very close substitutes!
- Alternative approach to demand systems in corporate bonds:
 - Estimate elasticities within segments, for different levels of aggregation
 - Controlling for characteristics is not enough to capture rich substitution!

- Remember: lower elasticities mean higher price multipliers, and higher impact of any kind of demand shock!
- → Bretscher et al. might overestimate price impacts in their counterfactuals

Alternatives

There are different ways of getting richer substitution patterns:

- Nested logit demand systems (Koijen and Yogo $(2020)^{10}$)
 - investors choose asset class (outer nest) and country (inner nest)
 - more suited for clean-cut segmentation (good for bonds, bad for equities)

¹⁰Koijen, Yogo, "Exchange Rates and Asset Prices in a Global Demand System", 2020 WP

Alternatives

There are different ways of getting richer substitution patterns:

- Nested logit demand systems (Koijen and Yogo $(2020)^{10}$)
 - investors choose asset class (outer nest) and country (inner nest)
 - more suited for clean-cut segmentation (good for bonds, bad for equities)
- Structural (from CARA-normal)

$$q_i = \frac{1}{\gamma_i} \Sigma_i^{-1} (\mu_i - p) \quad \Rightarrow \quad \frac{dq_i}{dp} = -\frac{1}{\gamma_i} \Sigma_i^{-1}$$

- ullet The "cross-elasticity" matrix is proportional to the inverse of Σ
- With a multi-factor model, we can express $\Sigma_i = v_i v_i' + \sigma_i^2 I$, where v_i is a $N_i \times K_i$ matrix with factor exposures. Then

$$\frac{dq_i}{dp} = \frac{1}{\gamma_i \sigma_i^2} \left(v_i \left(\sigma_i^2 I + v_i' v_i \right)^{-1} v_i' - I \right)$$

• I'm not fully sure how to use this though...

¹⁰Koijen, Yogo, "Exchange Rates and Asset Prices in a Global Demand System", 2020 WP

Broader Lesson II - Model Specification

- Some economic forces will be more important in some settings than in others
 - Considering strategic interactions between investors is particularly important when evaluating the impact of passive investing
 - → Why? Because it potentially changes equilibrium elasticities a lot!
 - Accounting for segmentation and rich cross-elasticities is more important for corporate bonds than equities
 - → Why? There is less segmentation (maybe industries, but less clear)

Broader Lesson II - Model Specification

- Some economic forces will be more important in some settings than in others
 - Considering strategic interactions between investors is particularly important when evaluating the impact of passive investing
 - → Why? Because it potentially changes equilibrium elasticities a lot!
 - Accounting for segmentation and rich cross-elasticities is more important for corporate bonds than equities
 - → Why? There is less segmentation (maybe industries, but less clear)
- You need to ask yourself:
 - What are the most important economic forces in my setting?
 - Which features of the data are likely to influence equilibrium outcomes?
 - Does my empirical specification capture these forces & features of the data?

Example 2: Type of Demand Shocks and Instruments

• Rewrite a (simplified) KY demand system:

$$q_{it} = \mathcal{E}_i \times p_t + \epsilon_{it}$$

= $\mathcal{E}_i \times (\Delta p_t + \Delta p_{t-1} + \dots) + \epsilon_{it}$

Example 2: Type of Demand Shocks and Instruments

Rewrite a (simplified) KY demand system:

$$q_{it} = \mathcal{E}_i \times p_t + \epsilon_{it}$$

= $\mathcal{E}_i \times (\Delta p_t + \Delta p_{t-1} + \dots) + \epsilon_{it}$

 In my JMP, I allow investors to have different elasticities to price changes at different horizons:

$$q_{it} = \mathcal{E}_{i, \text{recent}} \Delta p_t + \mathcal{E}_{i, \text{long-term}} \left(\sum_{j \geq 1}^4 \Delta p_{t-j} \right) + \epsilon_{it}$$

 I use this to study momentum → the "term-structure of elasticities" has implications for the dynamic evolution of asset prices, and hence momentum

Example 2: Type of Demand Shocks and Instruments

Rewrite a (simplified) KY demand system:

$$q_{it} = \mathcal{E}_i \times p_t + \epsilon_{it}$$

= $\mathcal{E}_i \times (\Delta p_t + \Delta p_{t-1} + \dots) + \epsilon_{it}$

 In my JMP, I allow investors to have different elasticities to price changes at different horizons:

$$q_{it} = \mathcal{E}_{i, \text{recent}} \Delta p_t + \mathcal{E}_{i, \text{long-term}} \left(\sum_{j \geq 1}^4 \Delta p_{t-j} \right) + \epsilon_{it}$$

- I use this to study momentum → the "term-structure of elasticities" has implications for the dynamic evolution of asset prices, and hence momentum
- This requires separate instruments for recent and long-term price changes

Flow-induced trading

Flow-induced trading (Lou, 2012):

$$FIT_{tk} \equiv \sum_{j} o_{jk,t-1} f_{jt}$$

 Idea: Fund receives redemption ⇒ needs to sell stock holdings to meet redemptions ⇒ downward price-pressure on stocks the fund holds a lot of

Flow-induced trading

Flow-induced trading (Lou, 2012):

$$FIT_{tk} \equiv \sum_{j} o_{jk,t-1} f_{jt}$$

- Idea: Fund receives redemption ⇒ needs to sell stock holdings to meet redemptions ⇒ downward price-pressure on stocks the fund holds a lot of
- Shift-share instrument for price changes:
 - Shifts: use variation from mutual fund flows f_{jt}
 - Shares: fund flows are attributed based on past ownership weights $o_{jk,t-1}$

Flow-induced trading

Flow-induced trading (Lou, 2012):

$$FIT_{tk} \equiv \sum_{j} o_{jk,t-1} f_{jt}$$

- Idea: Fund receives redemption ⇒ needs to sell stock holdings to meet redemptions ⇒ downward price-pressure on stocks the fund holds a lot of
- Shift-share instrument for price changes:
 - Shifts: use variation from mutual fund flows f_{jt}
 - Shares: fund flows are attributed based on past ownership weights $o_{jk,t-1}$
- Flows (shifter) potentially correlated with past shares (portfolio weights)?
 - Flow-performance relationship: more flows to funds with high past returns
 - Solution: Orthogonalize flows to mutual fund w.r.t. its past fund flows and past fund returns
- Instrument for past price changes: past flow-induced trading

Broader Lesson III - Instruments

- Possibly not every demand shock is the same \rightarrow investors might respond differentially to different types of shocks!
 - For example, variation from heterogeneity in investment universes of investors (like KY) is low-frequency variation
 - Elasticities estimated this way are appropriate for low-frequency phenomena (e.g., passive investing) but bad for higher-frequency (e.g., momentum)
 - Naturally elasticities from low-frequency variation (like KY) are particularly low
 → Why? How would you trade against variation in prices from investment
 universes? Need to hold for long time ⇒ limit to arbitrage

Broader Lesson III - Instruments

- ullet Possibly not every demand shock is the same o investors might respond differentially to different types of shocks!
 - For example, variation from heterogeneity in investment universes of investors (like KY) is low-frequency variation
 - Elasticities estimated this way are appropriate for low-frequency phenomena (e.g., passive investing) but bad for higher-frequency (e.g., momentum)
 - Naturally elasticities from low-frequency variation (like KY) are particularly low
 → Why? How would you trade against variation in prices from investment
 universes? Need to hold for long time ⇒ limit to arbitrage
- You want to be careful about what kind of demand shock you use, as it defines the kind of elasticity you estimate
 - This goes beyond the standard relevance/ exclusion restriction criterion that delivers a LATE
 - Instead it is more about external validity in the context of counterfactuals
 - The nature of the shock used for identification should be similar to the nature of variation in a counterfactual

Broader Lesson III - Instruments

- Possibly not every demand shock is the same → investors might respond differentially to different types of shocks!
 - For example, variation from heterogeneity in investment universes of investors (like KY) is low-frequency variation
 - Elasticities estimated this way are appropriate for low-frequency phenomena (e.g., passive investing) but bad for higher-frequency (e.g., momentum)
 - Naturally elasticities from low-frequency variation (like KY) are particularly low
 → Why? How would you trade against variation in prices from investment
 universes? Need to hold for long time ⇒ limit to arbitrage
- You want to be careful about what kind of demand shock you use, as it defines the kind of elasticity you estimate
 - This goes beyond the standard relevance/ exclusion restriction criterion that delivers a LATE
 - Instead it is more about external validity in the context of counterfactuals
 - The nature of the shock used for identification should be similar to the nature of variation in a counterfactual
- These broader lessons are all variations of a Lucas critique (in a broad sense)

Summary

- Demand systems provide a new tool that
 - is estimable from data on portfolio holdings
 - incorporates a large degree of heterogeneity in investor behavior
 - aggregates to equilibrium

Summary

- Demand systems provide a new tool that
 - is estimable from data on portfolio holdings
 - incorporates a large degree of heterogeneity in investor behavior
 - aggregates to equilibrium
- This enables
 - Empirical models matching both asset prices AND portfolio holdings
 - Making quantitative statements
 - Answers to counterfactual questions

Summary

- Demand systems provide a new tool that
 - is estimable from data on portfolio holdings
 - incorporates a large degree of heterogeneity in investor behavior
 - aggregates to equilibrium
- This enables
 - Empirical models matching both asset prices AND portfolio holdings
 - Making quantitative statements
 - Answers to counterfactual questions
- But there are dangers in applications
 - Misspecified demand systems will lead to wrong conclusions
 - I believe it's dangerous to think of demand systems as an off-the-shelf tool to be used without thinking!