4-Bit-Addierer Dokumentation

Beschreibung

Der 4-Bit-Addierer addiert die Bits a1-a8 mit b1-b8 und zeigt die Summe im dualen Zahlensystem mit den LEDs S1-S16 an. Die Beschriftung der Schalter und LEDs resultiert aus der Wertigkeit der Schalter und der LEDs.

Schalter	Wertigkeit binär	Wertigkeit dezimal
a1	2 ⁰	1
a2	2 ¹	2
a4	2 ²	4
a8	2 ³	8

Schalter	Wertigkeit	Wertigkeit
	binär	dezimal
b1	20	1
b2	2 ¹	2
b4	2 ²	4
b8	2 ³	8

LED	Wertigkeit	Wertigkeit
Summe	binär	dezimal
S1	2 ⁰	1
S2	2 ¹	2
S4	2 ²	4
S8	2 ³	8
S16	2 ⁴	16

Schalterstellung unten = 0, Schalterstellung oben = 1

Der 4-Bitt-Addierer besteht aus vier Volladdierer:

Ün	а	b	Summe	Ün+1
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Funktionstabelle eines Volladdierers

Der 4-Bit-Addierer wurde mit zehn TTL (Transistor-Transistor-Logik) ICs SN74LS00N aufgebaut:

Datasheet SN74LS00N - 4 NAND-Gatter

Eingang 1	Eingang 2	Ausgang
0	0	1
0	1	1
0	0	1
1	1	0

Funktionstabelle NAND SN74LS00N

Damit die Bits a1-a8 mit den Bits b1-b8 addiert werden können, benötigt man vier Volladdierer.

Schaltplan des 4-Bit-Addierers

Bestehend aus vier Volladdierer

Hinweis: TTL-Bausteine haben die Eigenschaft, einen offenen Eingang als logisch 1 zu erkennen. Deshalb muss der Übertrag Un1 des ersten Addierers mit logisch 0 beschalten werden. Dies erfolgte auf der Platine mit einer Drahtbrücke.

Drahtbrücke Un1->GND

4-Bit-Addier-Platine

Die Platine wurde so konzipiert, dass die vier Halbaddierer auch einzeln verwendet werden können.

4-Bit-Addierer mit Gehäuse und 5V-Netzteil

Zur Frontplatte wurden von der Platine nur die Lötpunkte a1-a8, b1-b8, S1-S16 und Ün+4 (S16) zu den Schaltern und den LEDs verdrahtet.

Ün1 ist mit GND auf der Platine verbunden

Ün+1 ist mit Ün2 auf der Platine verbunden

Ün+2 ist mit Ün3 auf der Platine verbunden

Ün+3 ist mit Ün4 auf der Platine verbunden

Das 5V-Steckenetzteil ist direkt mit der Platine Vcc und GND verbunden. Der Anschluss des Steckernetzteils ist mit einer PNG-Verschraubung und einer Zugentlastung nach außen geführt.

Erweiterung zum Subtrahierer positiver Zahlen

Der 4-Bit-Addierer wurde mit einem Kippschalter und einer EXOR-Eingangsbeschaltung zum Subtrahierer erweitert. Ist der Kippschalter Add in der Position oben funktioniert die Schaltung wie beschrieben als 4-Bit-Adierer. Die Bits a1 – a8 werden mit den Bits b1 – b8 addiert und die Summe mit den LEDs S1 – S16 angezeigt.

Wird der Kippschalter Add nach unten geschalten, funktioniert die Schaltung als Subtrahierer positiver Zahlen. Die Bits b1 – b8 werden von den Bits a1 – a8 subtrahiert und das Ergebnis mit den LEDs S1 – S16 angezeigt.

Der Subtraktion von Dualzahlen liegt eine Addition zugrunde. Dabei wird beim Subtrahend (b1 – b8) der Kehrwert gebildet und mit dem Minuend (a1 – a8) addiert. Diesen Vorgang nennt man "Einerkompliment bilden". Im Anschluss wird dem Ergebnis eine 1 addiert.

Beispiel:

Subtraktion	Wertigkeit	16	8	4	2	1
12	12	0	1	1	0	0
-7	7	0	0	1	1	1
Einerkomplement		1	1	0	0	0
Addition		0	0	1	0	0
+1						1
	Ergebnis	0	0	1	0	1
17	17	1	0	0	0	1
-9	-9	0	1	0	0	1
Einerkomplement		1	0	1	1	0
Addition		0	0	1	1	1
+1						1
	Ergebnis	0	1	0	0	0
15	15	0	1	1	1	1
-10	10	0	1	0	1	0
Einerkomplement		1	0	1	0	1
Addition		0	0	1	0	0
+1						1
	Ergebnis	0	0	1	0	1

Die Negation der Minuenden wurde schaltungstechnisch mit einem EXOR an den Eingängen von b1 – b8 realisiert. Die +1 Addition erfolgt beim ersten Volladdierer am Eingang Un1. Dieser Eingang wird bei einer Subtraktion mit logisch 1 beschalten.

Schaltplan des 4-Bit-Addierers mit der Eingangsbeschaltung für die Subtrahierer-Funktion

Die Platine ist mit dem Open Source Programm KiCad erstellt worden.

Link: https://kicad.org/download/

Die Frontplatte wurde mit dem Open Source Programm Inkscape erstellt.

Link: https://inkscape.org/de/release/inkscape-1.0.1/

Der Link für den download der Dateien: https://github.com/frankyhub/4Bit-Addierer

Der 4-Bitt-Addierer wurde erstell im

FabLab Oberland e.V.

Tölzer Str. 3A,

83703 Gmund am Tegernsee

Lizenz:

