we also have

$$\rho(2\alpha - \rho \|C\|_2^2) \|u^k - u\|^2 \le \|\lambda^k - \lambda\|^2 - \|\lambda^{k+1} - \lambda\|^2.$$

So if

$$0 < \rho < \frac{2\alpha}{\|C\|_2^2},$$

then $\rho(2\alpha - \rho ||C||_2^2) > 0$, and we conclude that

$$\lim_{k \to \infty} \left\| u^k - u \right\| = 0,$$

that is, the sequence $(u^k)_{k>0}$ converges to u.

Step 5. Convergence of the sequence $(\lambda^k)_{k\geq 0}$ to λ if C has rank m.

Since the sequence $(\|\lambda^k - \lambda\|)_{k\geq 0}$ is nonincreasing, the sequence $(\lambda^k)_{k\geq 0}$ is bounded, and thus it has a convergent subsequence $(\lambda^{i(k)})_{i\geq 0}$ whose limit is some $\lambda' \in \mathbb{R}_+^m$. Since J' is continuous, by (\dagger_2) we have

$$\nabla J_u + C^{\mathsf{T}} \lambda' = \lim_{i \to \infty} (\nabla J_{u^{i(k)}} + C^{\mathsf{T}} \lambda^{i(k)}) = 0. \tag{*_6}$$

If C has rank m, then $\text{Im}(C) = \mathbb{R}^m$, which is equivalent to $\text{Ker}(C^{\top}) = (0)$, so C^{\top} is injective and since by (\dagger_1) we also have $\nabla J_u + C^{\top} \lambda = 0$, we conclude that $\lambda' = \lambda$. The above reasoning applies to any subsequence of $(\lambda^k)_{k>0}$, so $(\lambda^k)_{k>0}$ converges to λ .

In the special case where J is an elliptic quadratic functional

$$J(v) = \frac{1}{2} \langle Av, v \rangle - \langle b, v \rangle,$$

where A is symmetric positive definite, by (\dagger_2) an iteration of Uzawa's method gives

$$Au^{k} - b + C^{\top} \lambda^{k} = 0$$

$$\lambda_{i}^{k+1} = \max\{(\lambda^{k} + \rho(Cu^{k} - d))_{i}, 0\}, \quad 1 \le i \le m.$$

Theorem 50.21 implies that Uzawa's method converges if

$$0 < \rho < \frac{2\lambda_1}{\|C\|_2^2},$$

where λ_1 is the smallest eigenvalue of A.

If we solve for u^k using the first equation, we get

$$\lambda^{k+1} = p_{+}(\lambda^{k} + \rho(-CA^{-1}C^{\top}\lambda^{k} + CA^{-1}b - d)). \tag{*7}$$

In Example 50.7 we showed that the gradient of the dual function G is given by

$$\nabla G_{\mu} = Cu_{\mu} - d = -CA^{-1}C^{\top}\mu + CA^{-1}b - d,$$

so $(*_7)$ can be written as

$$\lambda^{k+1} = p_+(\lambda^k + \rho \nabla G_{\lambda^k});$$

this shows that Uzawa's method is indeed the gradient method with fixed stepsize applied to the dual program.