NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Lee Yung Hei, Joseph Nah

Fundamental Concepts of Mathematics

AY 2007/2008 Sem 1

Question 1

Let P(n) be the proposition that $1+2+\cdots+(3n-2)=\frac{n(3n-1)}{2}$.

Consider P(1):

LHS: (3n - 2) = (3 - 2) = 1. RHS: $\frac{n(3n-1)}{2} = \frac{1(3-1)}{2} = 1$.

So, P(1) is true.

Assume P(k) is true, consider P(k+1).

LHS: $1+2+\cdots+(3k-2)+(3(k+1)-2)=\frac{k(3k-1)}{2}+(3(k+1)-2)=\frac{3k^2-k}{2}+3k+1=\frac{3k^2+5k+2}{2}$.

RHS: $\frac{(k+1)(3(k+1)-1)}{2}=\frac{(k+1)(3k+2)}{2}=\frac{3k^2+5k+2}{2}$.

Therefore, P(k+1) is true whenever P(k) is true.

By Mathematical Induction, P(n) is true for all $n \in \mathbb{Z}^+$.

Question 2

(a) \mathbb{Z}_4 has 4 equivalence classes [0], [1], [2] and [3].

Considering by cases:

 $[0]^2 = [0],$

 $[1]^2 = [1],$

 $[2]^2 = [4] = [0],$

 $[3]^2 = [9] = [1].$

Therefore, given $[x]^2 = [0]$, we have [x] = [0] or [x] = [2].

(b) $([2] \otimes [x]) \oplus [3] = [1]$ in \mathbb{Z}_6 gives us $[2] \otimes [x] = [1] \oplus [-3] = [-2] = [4]$.

Considering by cases:

 $[2] \otimes [0] = [0],$

 $[2] \otimes [1] = [2],$

 $[2] \otimes [2] = [4],$

 $[2] \otimes [3] = [6] = [0],$

 $[2] \otimes [4] = [8] = [2],$

 $[2] \otimes [5] = [10] = [4].$

Therefore, given $([2] \otimes [x]) \oplus [3] = [1]$, we have [x] = [2] or [x] = [5].

(c) $[4] \otimes [x] = [3]$ in \mathbb{Z}_8 .

Considering by cases:

 $[4] \otimes [0] = [0],$

 $[4] \otimes [1] = [4],$

 $[4] \otimes [2] = [8] = [0],$

 $[4] \otimes [3] = [12] = [4],$

 $[4] \otimes [4] = [16] = [0],$

 $[4] \otimes [5] = [20] = [4],$

 $[4] \otimes [6] = [24] = [0],$

 $[4] \otimes [7] = [28] = [4].$

Therefore, given $[4] \otimes [x] = [3]$, there is not solution.

Question 3

(a) Let gcd(a, a + 9) = k, then k|a and k|a + 9.

So there exists $m, n \in \mathbb{Z}$ such that km = a and kn = a + 9.

It thus follows that kn = km + 9 and k(n - m) = 9.

So k|9 and so k can only be 1, 3 or 9.

By checking a = 1, gcd(a, a + 9) = 1; a = 3, gcd(a, a + 9) = 3; a = 9, gcd(a, a + 9) = 9.

(b) Let $a \in \{3k \mid k \in \mathbb{Z}\}$. Then $3 \mid a$. Together with $3 \mid 9$, we have $3 \mid a+9$. Thus $3 \mid \gcd(a, a+9)$. Therefore we have $\gcd(a, a+9) \neq 1$.

Let $a \in \mathbb{Z} - \{3k \mid k \in \mathbb{Z}\}$ instead. Then $3 \nmid a$, which implies that $3 \nmid \gcd(a, a + 9)$. Therefore together with result from (3a.), we have $\gcd(a, a + 9) = 1$.

So $\mathbb{Z} - \{3k \mid k \in \mathbb{Z}\}$ contains all the possible values of a such that a and a+9 are relatively prime.

Question 4

We have $4 \nmid 1 + 1$, i.e. $1 \not\sim 1$. So \sim is not reflexive.

Since $4 \mid a+b$ implies $4 \mid b+a$, $a \sim b$ implies $b \sim a$, i.e. \sim is symmetric.

We have $4 \mid 1 + 3 \text{ and } 4 \mid 3 + 1$, i.e. $1 \sim 3 \text{ and } 3 \sim 1$.

However $1 \not\sim 1$ as shown, which give us \sim to not be transitive.

Question 5

(a) Let $x_1, x_2 \in \left[\frac{1}{2}, \infty\right)$ be such that $f(x_1) = f(x_2)$. This give us,

$$(2x_1 - 1)^2 = (2x_2 - 1)^2$$
$$(2x_1 - 1)^2 - (2x_2 - 1)^2 = 0$$
$$(2x_1 - 1 + 2x_2 - 1)(2x_1 - 1 - 2x_2 + 1) = 0$$
$$(2x_1 + 2x_2 - 2)(2x_1 - 2x_2) = 0.$$

So, $2x_1 + 2x_2 - 2 = 0$ or $x_1 - x_2 = 0$.

If $2x_1 - 2x_2 = 0$, then $x_1 = x_2$.

If $2x_1 + 2x_2 - 2 = 0$, then $x_1 + x_2 = 1$.

Since $x_1 \ge \frac{1}{2}$ and $x_2 \ge \frac{1}{2}$, these give us $x_1 = \frac{1}{2} = x_2$.

So, f is injective.

(b) f is not a surjection.

We have -1 is inside the co-domain.

However $\forall x \in \left[\frac{1}{2}, \infty\right)$, we have $f(x) \ge 0 > -1$, and so $f(x) \ne -1$.

Question 6

(a) Assume on the contrary that $(A - B) \cap (A - C) \neq \emptyset$.

Then, there exists $x \in (A - B) \cap (A - C)$.

So, $x \in (A - B)$ and $x \in (A - C)$.

This give us $x \in A$, $x \notin B$ and $x \notin C$.

However, since $x \in A$ and $A \subseteq B \cup C$, we have $x \in B \cup C$.

This implies that $x \in B$ or $x \in C$, a contradiction with $x \notin B$ and $x \notin C$.

(b) Consider $A = \{1\}$ and $B = C = \emptyset$, then $(A - B) \cap (A - C) = \{1\} \cap \{1\} = \{1\} \neq \emptyset$. So, the conclusion does not hold.

Question 7

(i) $(P \wedge Q) \wedge \neg R$ can only be false.

Assume on the contrary that $(P \wedge Q) \wedge \neg R$ is true. Then $P \wedge Q$ is true, i.e. P and Q are true.

Since $P \to (Q \to R)$ is given to be true, and P is true, we have $Q \to R$ to be true.

Together with Q to be true, we have R to be true.

However $(P \wedge Q) \wedge \neg R$ is true implies R is false, a contradiction.

Note: You could also deduce that the statement is false by observing that $(P \cap Q)$ and $\neg R$ is the negation of $P \to (Q \to R)$.

(ii) $(P \to Q) \to R$ can be true or false.

Let P, Q and R be true.

This case give us $P \to (Q \to R)$ to be true, while $(P \to Q) \to R$ is true.

Let P and R be false, but Q is true.

Since P is false, we have $P \to (Q \to R)$ to be true.

Since P is false and Q is true, we have $P \to Q$ is true.

Together with R is false, we have $(P \to Q) \to R$ to be false.

Question 8

(a) 657 = 2(306) + 45, 306 = 6(45) + 36, 45 = 36 + 9, 36 = 4(9). gcd(657, 306) = 9.

$$9 = 45 - 36 = 45 - (306 - 6(45)) = 7(45) - 306 = 7(657 - 2(306)) - 306 = 7(657) - 15(306).$$

$$657(7 + \frac{306}{9}k) + 306(-15 - \frac{657}{9}k) = 9$$

$$657(7 + 34k) + 306(-15 - 73k) = 9$$

Therefore, all integers solutions of the linear equation is y = 7 + 34k and x = -15 - 73k, $k \in \mathbb{Z}$.

(b) Since $gcd(c, b) \mid c$, we have $gcd(c, b) \mid ac$. Together with $gcd(c, b) \mid b$, we have $gcd(c, b) \mid gcd(ac, b)$.

Since gcd(a, b) = 1, there exists $x, y \in \mathbb{Z}$ such that ax + by = 1.

Also, there exists $x', y' \in \mathbb{Z}$ such that $cx' + by' = \gcd(c, b)$.

This give us gcd(c, b) = cx' + by' = cx'(ax + by) + by' = ac(xx') + b(cx'y + y').

This give us gcd(c, b) to be a linear combination of ac and b over \mathbb{Z} , and so $gcd(ac, b) \mid gcd(c, b)$.

Therefore gcd(ac, b) = gcd(c, b).

Question 9

(a) False. We have $\sqrt{2}, \sqrt{2}, -2 \cdot \sqrt{2} \in \mathbb{R} - \mathbb{O}$ but $\sqrt{2} + \sqrt{2} - 2 \cdot \sqrt{2} = 0 \in \mathbb{O}$.

- (b) False. Let x = 5, 6(5) + 15y = 3. So, 15y = 3 - 30 = -27 and $y = \frac{-27}{15} = -\frac{9}{5} \notin \mathbb{Z}$.
- (c) True.

Let $x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$.

This give us $(f \circ f)(x_1) = (f \circ f)(x_2)$, and since $f \circ f$ is injective, we have $x_1 = x_2$.

Let $a \in A$. Since $f \circ f$ is surjective, there exists $x \in A$, such that $(f \circ f)(x) = a$.

This give us f(x) to be a pre-image of a.

Therefore f is bijective.

(d) True.

For n = 1, $n^3 - 1 = 0$. For n = 2, $n^3 - 1 = 7$ which is prime.

For $n \ge 3$, $n^3 - 1 = (n - 1)(n^2 + n + 1)$.

Since $n-1 \ge 2$ and $n^2+n+1 \ge 2$, for $n \ge 3$, n^3-1 is not prime.

Therefore, $n^3 - 1$ is prime only when n = 2, giving us the prime number 7.

(e) False.

Counterexample: Let $A = \mathbb{Z}^+ \cup \{0\}$ and $B = \mathbb{Z}^+ \cup \{-1\}$.

Then, both A and B are countably infinite.

Also, $0 \in A$ and $0 \notin B$, so $A \nsubseteq B$.

Also, $-1 \in B$ and $-1 \notin A$, so $B \nsubseteq A$.

 $A \cap B = \mathbb{Z}^+$ which is countably infinite.

However, $A - B = \{0\}$ which is finite.

Question 10

(a) Assume on the contrary that f is not injective.

Then there exists $t \in T$ such that there is $s_1, s_2 \in S$ with $s_1 \neq s_2$ but $f(s_1) = t = f(s_2)$.

Then we have $\{s_1\} = f^{-1}[f[\{s_1\}]] = f^{-1}[\{t\}] = \{s_1, s_2\}$, a contradiction.

Therefore f is injective.

(b) Let $Q = \{g^{-1}[C] \mid C \in P\}$. Since P is a partition of T, C is non-empty.

So, there exists $a \in P \subseteq T$, it follows that since g is surjective, there exists $b \in S$ such that g(b) = a.

So, $b \in Q$ and Q is not empty.

Assume on the contrary that elements in Q are not mutually exclusive.

Then there exists $s \in S$, $C_1, C_2 \in P$ such that $s \in g^{-1}[C_1]$ and $s \in g^{-1}[C_2]$.

This implies that $g(s) \in C_1$ and $g(s) \in C_2$.

So, $C_1 \cap C_2 \neq \emptyset$, a contradiction to P being a partition of T.

Let $s' \in S$. Then we have $g(s') \in T$.

Since P is a partition of T, there exists $C \in P$ such that $g(s') \in C$.

This give us $s' \in g^{-1}[C]$, i.e. every element of S lies in an element of Q.

Therefore Q is a partition of S.