Differential Equations

Ikhan Choi

May 7, 2022

Contents

Ι	Linear ordinary differential equations	3
1	Constant coefficient equations	4
	1.1 Characteristic equations	. 4
	1.2 Complex roots	. 4
	1.3 Repeated roots	. 4
2	Variable coefficient equations	5
	2.1 Series solution	. 5
	2.2 Fuch's theorem	. 5
	2.3 Orthogonal polynomials	. 5
	2.4 Sturm-Liouville theory	. 5
	2.5 The Frobenius method	. 5
3	Inhomogeneous equations	6
	3.1 Method of undetermined coefficients	. 6
	3.2 Variation of parameters	. 6
	3.3 Damped oscillation	. 6
	3.4 The Laplace transform	. 6
II	Nonlinear ordinary differential equations	7
4	Nonlinear ordinary differential equations	8
	4.1 The Picard-Lindelöf theorem	. 8
	4.2 Integrating factors	. 8
5	Dynamical systems	9
	5.1 Equillibria	. 9
	5.2 Planar dynamical systems	. 9
6	Chaos	10
II	I Linear partial differential equations	11
7	Laplace's equation	12
	7.1 Harmonic functions	. 12
	7.2 Poisson equation	. 12
	7.3 Helmholtz equation	. 13

8	Heat equation	14
	8.1 Heat kernel	. 14
	8.2 Duhamel's principle	. 14
	8.3 Separation of variables	. 14
9	Wave equation	15
	9.1 First order partial differential equations	. 15
	9.2 Initial value problems	. 15
	9.3 Boundary value problems	. 15
IV	Nonlinear partial differential equations	16
10	Fluid dynamics	17
	10.1 Burger's equation	. 17
	10.2 Euler's equation	
	10.3 Navier-Stokes equation	. 17
11	Integrable field equations	18
	11.1 Korteweg-de Vries equation	. 18
	11.2 Boussinesq equation	. 18
	11.3 Kadomtsev-Petviashvili equation	. 18
12	Nonlinear waves and diffusion	19
	12.1 Nonlinear wave equation	. 19
	12.2 Nonlinear diffusion equation	. 19

Part I Linear ordinary differential equations

Constant coefficient equations

- 1.1 Characteristic equations
- 1.2 Complex roots
- 1.3 Repeated roots

Variable coefficient equations

- 2.1 Series solution
- 2.2 Fuch's theorem
- 2.3 Orthogonal polynomials
- 2.4 Sturm-Liouville theory
- 2.5 The Frobenius method

Fuch's theorem

Inhomogeneous equations

- 3.1 Method of undetermined coefficients
- 3.2 Variation of parameters
- 3.3 Damped oscillation
- 3.4 The Laplace transform

discontinuous data gluing

Part II

Nonlinear ordinary differential equations

Nonlinear ordinary differential equations

- 4.1 The Picard-Lindelöf theorem
- 4.2 Integrating factors

Dynamical systems

5.1 Equillibria

Bifurcations Stability theory Hamiltonian systems

5.2 Planar dynamical systems

Examples from ecology, electrical engineerings Poincaré-Bendixon

Chaos

Attractors

Part III Linear partial differential

equations

Laplace's equation

7.1 Harmonic functions

- 7.1 (Mean value property).
- 7.2 (Maximum principle).
- 7.3 (Newtonian potential).
- 7.4 (Dirichlet problem for half space).
- 7.5 (Dirichlet problem for open ball).

7.2 Poisson equation

- 7.6 (Weak derivative).
- 7.7 (Dirac delta function). Let Ω be an open subset of \mathbb{R}^d . The *Dirac delta function* is a linear functional $\delta: C_c^\infty(\Omega) \to \mathbb{R}$ defined by $\delta(\varphi) := \varphi(0)$. We conventionally use the function-like notation $\delta(x)$ to denote $\varphi(0)$ by

$$\int \delta(x)\varphi(x)dx.$$

7.8 (Fundamental solution of the Laplace equation). Let $d \ge 2$. The *Fundamental solution* of the Laplace equation is a function $\Phi : \mathbb{R}^d \setminus \{0\} \to \mathbb{R}$ that solves the boundary value problem

$$\begin{cases} -\Delta \Phi(x) = \delta(x) & \text{in } \mathbb{R}^d, \\ \Phi(x) \to 0 & \text{as } |x| \to \infty. \end{cases}$$

(a) The funcdamental solution is given by

$$\Phi(x) := \begin{cases} -\frac{1}{2\pi} \log |x| & \text{if } d = 2\\ \frac{1}{(d-2)\omega_d} \frac{1}{|x|^{d-2}} & \text{if } d \ge 3 \end{cases}.$$

In particular, Φ and $\nabla\Phi$ are locally integrable on \mathbb{R}^d but $\nabla^2\Phi$ is not.

(b) For
$$u \in C_0^2(\mathbb{R}^d)$$
,

$$u(x) = -\int \Phi(x - y) \Delta u(y) \, dy.$$

Proof. Note that $\nabla \Phi(y) \cdot \nabla u(x-y)$ is integrable in y. Then,

$$-\int \Phi(y)\Delta u(x-y)\,dy = -\int \nabla \Phi(y) \cdot \nabla u(x-y)\,dy$$
$$= -\lim_{\varepsilon \to \infty} \int_{|y| \ge \varepsilon} \nabla \Phi(y) \cdot \nabla u(x-y)\,dy$$
$$= -\lim_{\varepsilon \to \infty} \int_{|y| = \varepsilon} \nabla \Phi(y)u(x-y) \cdot v\,dS.$$

Since

$$\nabla \Phi(x) = -\frac{1}{\omega_d} \frac{x}{|x|^d}, \quad v = \frac{x}{|x|},$$

we get

$$-\int \Phi(y)\Delta u(x-y)\,dy = \lim_{\varepsilon \to \infty} \frac{1}{\omega_d \varepsilon^{d-1}} \int_{|y|=\varepsilon} u(x-y)\,dS_y = u(x).$$

7.9 (Green's function of the Poisson equation). Let Ω be a bounded open subset of \mathbb{R}^d for $d \geq 2$. *Green's function of the Poisson equation* is a function $G: \Omega^2 \setminus \{(x,x) \in \Omega\} \to \mathbb{R}$ that solves the boundary value problem

$$\begin{cases} -\Delta_y G(x, y) = \delta(x - y) & \text{in } y \in \Omega \setminus \{x\}, \\ G(x, y) = 0 & \text{on } y \in \partial \Omega. \end{cases}$$

for each $x \in \Omega$.

Define $\phi:\Omega^2\to\mathbb{R}$ to be a function that solves the boundary value problem

$$\begin{cases} -\Delta_y \phi(x, y) = 0 & \text{in } y \in \Omega, \\ \phi(x, y) = \Phi(x - y) & \text{on } y \in \partial \Omega. \end{cases}$$

for each $x \in \Omega$. Assume for the domain Ω that there exists a unique ϕ .

(a) Green's function is given by

$$G(x, y) = \Phi(x - y) - \phi(x, y),$$

where Φ is the fundamental solution of the Laplace equation. Physically, $y \mapsto -\phi(x,y)$ has a meaning of the electric potential generated by the induced surface charge of a grounded conductor provided a point charge is at x.

(b) The *Green representation formula* holds: for $u \in C^2(\Omega) \cap C(\overline{\Omega})$,

$$u(x) = -\int_{\Omega} G(x, y) \Delta u(y) \, dy - \int_{\partial \Omega} u(y) \nabla_{y} G(x, y) \cdot v \, dS_{y}.$$

7.10 (Existence and uniqueness of Poisson equation). representation formulas describe the solution assuming

7.3 Helmholtz equation

13

Heat equation

- 8.1 Heat kernel
- 8.2 Duhamel's principle
- 8.3 Separation of variables

Wave equation

- 9.1 First order partial differential equations
- 9.2 Initial value problems

d'Alambert Kirchhoff odd reflection

9.3 Boundary value problems

Part IV

Nonlinear partial differential equations

Fluid dynamics

- 10.1 Burger's equation
- 10.2 Euler's equation
- 10.3 Navier-Stokes equation

Integrable field equations

- 11.1 Korteweg-de Vries equation
- 11.2 Boussinesq equation
- 11.3 Kadomtsev-Petviashvili equation

sine-Gordon equation nonlinear Schrodinger equatoin

Nonlinear waves and diffusion

- 12.1 Nonlinear wave equation
- 12.2 Nonlinear diffusion equation