Projet 2 - MATH04 Suites numériques pour la résolution numérique d'équations

Nathan Soufflet

 $9~\mathrm{juin}~2018$

1 La méthode par dichotomie

1.1 Principe

Soit f(x) une fonction à valeurs réelles continue sur [a,b] telle que f(a)f(b) < 0. Ainsi, $f(a) \le 0 \le f(b)$ donc d'après le théorème des valeurs intermédiaires :

$$\exists x_* \in [a, b] \mid f(x_*) = 0$$

Soit maintenant $c = \frac{a+b}{2}$, on a deux possibilités :

$$\begin{cases} c \ge x_* \Rightarrow f(c) \ge 0 \Rightarrow f(a)f(c) \le 0 \Rightarrow x_* \in [a, c] \\ c < x_* \Rightarrow f(c) < 0 \Rightarrow f(a)f(c) > 0 \Rightarrow x_* \in [c, b] \end{cases}$$

En remarquant que $sgn(f(a)) \neq sgn(f(b)) \Rightarrow f(a)f(b) \leq 0$

1.2 Exemple

Soit $f(x) = x^3 - 10x + 2$, il s'agit d'un polynôme, f(x) est donc continue, son tableau de variation donne :

Avec
$$x_1 = 2 + \sqrt{\frac{4000}{27}}$$
 et $x_2 = 2 - \sqrt{\frac{4000}{27}}$

On en déduit que f(x) est monotone (continue) sur $]-\infty,x_1]$, $[x_1,x_2]$ et $[x_2,+\infty[$, de plus $-\infty < 0 < x_1, x_2 < 0 < x_1$ et $x_2 < 0 < +\infty$, ainsi en appliquant le théorème des valeurs intermédiaires pour ces trois intervalles, on obtient trois réels t_1 , t_2 et t_3 tels que $f(t_1) = f(t_2) = f(t_3) = 0$ et $t_1 < t_2 < t_3$. f(x) admet donc trois racines réelles distinctes.

En executant 20 itérations de l'algorithme de dichotomie avec $a=-\sqrt{\frac{10}{3}}$ et $b=\sqrt{\frac{10}{3}}$, on obtient : $t_2\approx 0.200808342479295\pm\epsilon$ où $\epsilon=\frac{2\sqrt{\frac{10}{3}}}{2^n}=\frac{\sqrt{\frac{10}{3}}}{2^{19}}<10^5$

1.3 Convergence

Soient les suites

$$a_{n+1} = \begin{cases} c_n, & \text{si } f(b_n)f(c_n) \le 0 \\ a_n, & \text{sinon} \end{cases}$$
$$b_{n+1} = \begin{cases} c_n, & \text{si } f(a_n)f(c_n) \le 0 \\ b_n, & \text{sinon} \end{cases}$$
$$c_n = \frac{a_n + b_n}{2}$$

- Ainsi, pour tout entier naturel k, $[a_{k+1}, b_{k+1}] = [a_k, c_k]$ ou $[a_{k+1}, b_{k+1}] = [c_k, b_k]$, la longueur de l'intervalle est donc divisée par deux à chaque itération :

$$|b_{k+1} - a_{k+1}| = \left| \frac{b_k - a_k}{2} \right|$$

- Comme $\exists ! x = x_* \in [a_k, b_k] \mid f(x) = 0$ et $[a_k, c_k] \cap [c_k, b_k] = \{c_k\}$, il y a trois possibilités :

$$\begin{cases} c_k > x_* \Rightarrow f(c) > 0 \Rightarrow f(a_k)f(c_k) < 0 \Rightarrow x_* \in [a_k, c_k] \\ c_k < x_* \Rightarrow f(c_k) < 0 \Rightarrow f(a_k)f(c_k) > 0 \Rightarrow x_* \in [c_k, b_k] \\ c_k = x_* \Rightarrow \left[x_* \in [a_k, c_k] \land x_* \in [c_k, b_k] \right] \end{cases}$$

Ainsi, $\forall k \in \mathbb{N}, x_* \in [a_k, b_k].$

- Or $c_k \in [a_k, b_k]$ d'où (pour $k \ge 1$) :

$$|c_k - x_*| \le \max_{x,y \in [a_k,b_k]} |x - y| = |b_k - a_k| = \left| \frac{b - a}{2^k} \right|$$

La quantité $|c_k - x_*|$ est donc bornée par une suite géométrique de raison $-1 < q = \frac{1}{2} < 1$ et de terme général $|b_k - a_k| = |\frac{b-a}{2^k}|$ on en déduit :

$$\lim_{n \to \infty} |c_n - x_*| \le \lim_{n \to \infty} \left| \frac{b - a}{2^n} \right| = 0 \Rightarrow \lim_{n \to \infty} c_n = x_*$$

La suite (c_n) converge donc vers x_* en $+\infty$.

 $-\forall \epsilon \in \mathbb{R}^+_*$

$$\left| \frac{b-a}{2^n} \right| < \epsilon \Rightarrow |c_n - x_*| < \epsilon$$

d'où:

$$\log_2(|b-a|) - n < \log_2(\epsilon) \Rightarrow \log_2\left(\frac{|b-a|}{\epsilon}\right) < n$$

Il faut donc au moins $n = \lceil \log_2(\frac{|b-a|}{\epsilon}) \rceil$ itérations pour obtenir une valeur approchée de x_* à plus ou moins ϵ .

- En appliquant cette formule à la recherche de la racine t_2 précédente avec $\epsilon=10^{-10},$ on obtient :

$$n = \left\lceil \log_2 \left(2\sqrt{\frac{10}{3}} \cdot 10^{10} \right) \right\rceil = 36$$

2 La méthode de Newton

2.1 Principe

Soit f(x) une fonction à valeurs réelles de classe C^2 , l'algorithme de Newton peut s'exprimer par la suite (x_n) :

$$\begin{cases} x_0 \text{ donn\'e} \\ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \end{cases}$$

2.2 Exemple

2.2.1

- Soit $f(x) = x^3 - 10x + 2$, on a alors :

$$\begin{cases} x_0 \text{ donn\'e} \\ x_{n+1} = x_n - \frac{x^3 - 10x + 2}{3x^2 - 10} = x_n - \frac{x}{3} + \frac{\frac{20}{3}x - 2}{3x^2 - 10} \end{cases}$$

- On observe numériquement que certaines zones dans l'intervalle [-5,5] convergent vers une même racine. Cependant, $f'(x)=3x^2-10$ admet deux racines dans $\mathbb{R}: x_{\pm}=\pm\sqrt{\frac{10}{3}}$, la méthode de newton ne converge donc pas pour ces deux valeurs.

En associant la couleur rouge à t_1 , bleue à t_2 et verte à t_3 , on obtient l'image suivante en appliquant la méthode de Newton sur l'intervalle [-5,5]:

FIGURE 1 – Bassins d'attraction de
$$f(x)$$
 sur $[-5, 5]$

On observe ainsi que les bassins d'attraction vers une racine donnée ne sont pas connexes.

2.2.2

- Soit $g(x) = \sqrt{|x|}$, on a :

$$g(x) = \begin{cases} \sqrt{x} & \text{si } x \ge 0\\ \sqrt{-x} & \text{si } x < 0 \end{cases}$$

et

$$g'(x) = \begin{cases} \frac{1}{2\sqrt{x}} & \text{si } x > 0\\ \frac{-1}{2\sqrt{-x}} & \text{si } x < 0 \end{cases}$$

d'où:

$$\forall n \in \mathbb{N}^+, \ x_{n+1} = x_n - 2x_n = -x_n$$

La suite (x_n) dispose donc de deux valeurs d'adhérence : $\{-x_0, x_0\}$ (sauf pour $x_0 = 0$ qui résulte en une division par zero lors du calcul de x_1) et ne converge donc pas.

 $g(x) = ((x \mapsto |x|) \circ (x \mapsto \sqrt{x}))(x)$, or la fonction valeur absolue n'est pas continue sur \mathbb{R} , g(x) n'est par conséquent pas de classe C^2 , la méthode de Newton ne peut donc pas s'appliquer.

2.2.3

- Soit $f(z) = z^3 - 10z + 2$, les points d'affixes -4.48 + 1.12i et 2 - 0.84i ont pour racines respectives t_1 et t_3 .

2.2.4

Soit $P(z) = z^7 - 2z^3 + 5$, si z est racine de P, alors :

$$z^7 - 2z^3 + 5 = 0 \Rightarrow z^7 = 2z^3 - 5 \Rightarrow |z|^7 = |2z^3 - 5|$$

Par inégalité triangulaire on déduit :

$$|z|^7 \le 2|z|^3 + 5$$

Etudions alors les variations de $h(r) = r^7 - 2r^3 - 5$ pour $r \in \mathbb{R}^+$:

 $h'(r) = 7r^6 - 6r^2$ est positive sur $[2, +\infty[$

Le minimum de h(r) sur cet intervalle est donc atteint en 2, or h(2) = 107 > 0, on en déduit :

$$\forall r \in [2, +\infty[, r^7 > 2r^3 + 5]$$

Ce qui implique :

$$\forall z \in \mathbb{C}: |z| > 2 \Rightarrow |z|^7 > 2|z|^3 + 5$$

Donc:

$$\forall z \in \mathbb{C}, \ P(z) = 0 \Rightarrow |z| \le 2$$

En diminuant la borne inférieure de l'intervalle d'étude, on peut majorer |z| par $r_* < 1.4$, unique racine réelle de h(r)

- Démonstration que P(z) admet au moins une racine réelle :

Soit $x \in \mathbb{R}$, P etant de degré impair, on a :

$$\begin{cases} \lim_{x \to -\infty} P(x) = -\infty \\ \lim_{x \to +\infty} P(x) = +\infty \end{cases}$$

Par continuité de P(x) et d'après le théorème des valeurs intermédiaires :

$$\exists c \in]-\infty, +\infty[=\mathbb{R}:P(c)=0$$

Racines de P(z) (parties réelles et imaginaires arrondies à 4 décimales) :

 $\{-1.3987,\ -0.6591 - 0.9201i,\ 0.1932 - 1.3414i,\ 1.1652 - 0.4022i,\ 1.1652 + 0.4022i,\ 0.1932 + 1.3414i,\ -0.6591 + 0.9201i\}$

2.3 Convergence

2.3.1

$$g = id - \frac{f}{f'}$$
 et $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ d'où :

$$x_{n+1} = q(x_n)$$

2.3.2

On a:

$$g(x_*) = x_* - \frac{f(x_*)}{f'(x_*)} = x_*$$

2.3.3

$$g' = 1 - \frac{f'^2 - ff''}{f'^2} = 1 - \left(1 - \frac{ff''}{f'^2}\right) = \frac{ff''}{f'^2}$$

Ainsi,

$$g'(x_*) = \frac{f(x_*)f''(x_*)}{f'(x_*)^2} = 0$$

car $f(x_*) = 0$, $f'(x_*) \neq 0$ et $f \in C^2$

2.3.4

Par définition de la continuité de g'(z) en x_* , on a :

$$\forall z \in \Omega, \ \forall \epsilon > 0, \ \exists \alpha > 0, \ \left[|z - x_*| < \alpha \Rightarrow |g'(z) - g'(x_*)| < \epsilon \right]$$

Or

$$\begin{cases} |z - x_*| < \alpha \Rightarrow z \in V \\ g'(x_*) = 0 \end{cases}$$

Donc en particulier :

$$\forall \epsilon < 1, \ \left[z \in V \Rightarrow |g'(z)| < \epsilon \right]$$

2.3.5

D'après le théorème des valeurs intermédiaires :

$$\forall x, y \in V, \ \exists c \in [x, y] : \frac{g(x) - g(y)}{x - y} = g'(c)$$

d'où, par passage au module et en utilisant l'inégalité de la question précédente :

$$\forall x, y \in V, \ \frac{|g(x) - g(y)|}{|x - y|} < \epsilon \Rightarrow |g(x) - g(y)| < \epsilon |x - y|$$

2.3.6

Soit V le cercle fermé de centre x_* et de rayon $\alpha > 0$. D'après la condition de Lipschitz :

$$\forall z \in V, |q(z) - q(x_*)| < \epsilon |z - x_*|$$

car $x_* \in V$, or :

$$\begin{cases} z \in V \Rightarrow |z - x_*| \le \alpha \\ \epsilon < 1 \\ g(x_*) = x_* \end{cases}$$

On en déduit :

$$\forall z \in V, |g(z) - x_*| < \alpha \Rightarrow g(z) \in V$$

2.3.7

Notons g^n la composée nième de g par elle même : $\forall n \in \mathbb{N}^*, \ g^n = \underbrace{g \circ \ldots \circ g}_{n \text{ fois}}$

D'après l'algorithme de Newton, $x_{n+1} = g(x_n)$ avec x_0 donné, on a donc :

$$\forall n \in \mathbb{N}, \ x_n = g^n(x_0)$$

or d'après la question précédente : $\forall z \in V, \ g(z) \in V$, ainsi :

$$\forall x_0 \in V, \ \forall n \in \mathbb{N}, \ x_n \in V$$

2.3.8

Soit $x_0 \in V$ et la proposition $P(n): |x_n - x_*| \le \epsilon^n |x_0 - x_*|$, montrons que $\forall n \in \mathbb{N}^*, P(n)$

Initialisation. (n = 1)

D'après la condition de Lipschitz, on a $|g(x_0) - g(x_*)| = |x_1 - x_*| < \epsilon |x_0 - x_*|$ or la proposition au rang n = 1 s'écrit : $|x_1 - x_*| \le \epsilon |x_0 - x_*|$.

La proposition est donc vraie au rang 1.

Hérédité.

Montrons que si $|x_n - x_*| \le \epsilon^n |x_0 - x_*|$, alors $|x_{n+1} - x_*| \le \epsilon^{n+1} |x_0 - x_*|$:

En utilisant la condition de Lipschitz : $|g(x_n) - g(x_*)| = |x_{n+1} - x_*| \le \epsilon |x_n - x_*|$

Or d'après l'hypothèse de récurrence : $|x_n - x_*| \le \epsilon^n |x_0 - x_*|$

Par substitution du second membre, on obtient : $|x_{n+1} - x_*| \le \epsilon^{n+1} |x_0 - x_*|$

P(n) est donc héréditaire, c'est à dire $P(n) \Rightarrow P(n+1)$

Conclusion.

D'après l'axiome de récurrence :

$$\left[P(1) \wedge \left[P(n) \Rightarrow P(n+1)\right]\right] \Rightarrow \left[\forall n \in \mathbb{N}^*, \ P(n)\right]$$

2.3.9

La démonstration précédente montre que la suite $|x_n - x_*|$ est bornée par la suite géométrique $v_n = \epsilon^n |x_0 - x_*|$ de raison $|\epsilon| < 1$ pour $x_0 \in V$, on a donc :

$$\lim_{n \to \infty} |x_n - x_*| \le \lim_{n \to \infty} \epsilon^n |x_0 - x_*| = 0 \Rightarrow \lim_{n \to \infty} x_n = x_*$$

La suite (x_n) converge donc vers x_* en $+\infty$ si $x_0 \in V$.