# **Linear Regression with Python**

This is mostly just code for reference. Please watch the video lecture for more info behind all of this code.

Your neighbor is a real estate agent and wants some help predicting housing prices for regions in the USA. It would be great if you could somehow create a model for her that allows her to put in a few features of a house and returns back an estimate of what the house would sell for.

She has asked you if you could help her out with your new data science skills. You say yes, and decide that Linear Regression might be a good path to solve this problem!

Your neighbor then gives you some information about a bunch of houses in regions of the United States, it is all in the data set: USA\_Housing.csv.

The data contains the following columns:

- 'Avg. Area Income': Avg. Income of residents of the city house is located in.
- 'Avg. Area House Age': Avg Age of Houses in same city
- 'Avg. Area Number of Rooms': Avg Number of Rooms for Houses in same city
- 'Avg. Area Number of Bedrooms': Avg Number of Bedrooms for Houses in same city
- · 'Area Population': Population of city house is located in
- · 'Price': Price that the house sold at
- · 'Address': Address for the house

#### Let's get started!

# Check out the data

We've been able to get some data from your neighbor for housing prices as a csv set, let's get our environment ready with the libraries we'll need and then import the data!

# Import Libraries

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

#### Check out the Data

```
In [2]: USAhousing = pd.read_csv('USA_Housing.csv')
```

In [3]: USAhousing.head()

### Out[3]:

|   | Avg. Area<br>Income | Avg.<br>Area<br>House<br>Age | Avg.<br>Area<br>Number<br>of<br>Rooms | Avg. Area<br>Number of<br>Bedrooms | Area<br>Population | Price        |                                          |
|---|---------------------|------------------------------|---------------------------------------|------------------------------------|--------------------|--------------|------------------------------------------|
| 0 | 79545.458574        | 5.682861                     | 7.009188                              | 4.09                               | 23086.800503       | 1.059034e+06 | 208 Michae<br>674\nLaura<br>3701         |
| 1 | 79248.642455        | 6.002900                     | 6.730821                              | 3.09                               | 40173.072174       | 1.505891e+06 | 188 Johnso<br>Suite 079\n<br>Kathleen, C |
| 2 | 61287.067179        | 5.865890                     | 8.512727                              | 5.13                               | 36882.159400       | 1.058988e+06 | 9127 Elizat<br>Stravenue\r<br>WI 06482   |
| 3 | 63345.240046        | 7.188236                     | 5.586729                              | 3.26                               | 34310.242831       | 1.260617e+06 | USS Barne<br>44820                       |
| 4 | 59982.197226        | 5.040555                     | 7.839388                              | 4.23                               | 26354.109472       | 6.309435e+05 | USNS Rayr<br>AE 09386                    |

# In [5]: USAhousing.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

Avg. Area Income 5000 non-null float64
Avg. Area House Age 5000 non-null float64
Avg. Area Number of Rooms 5000 non-null float64
Avg. Area Number of Bedrooms 5000 non-null float64
Area Population 5000 non-null float64
Price 5000 non-null float64
Address 5000 non-null object

dtypes: float64(6), object(1)
memory usage: 273.5+ KB

In [6]: USAhousing.describe()

Out[6]:

|       | Avg. Area<br>Income | Avg. Area<br>House Age | Avg. Area<br>Number of<br>Rooms | Avg. Area<br>Number of<br>Bedrooms | Area<br>Population | Pri        |
|-------|---------------------|------------------------|---------------------------------|------------------------------------|--------------------|------------|
| count | 5000.000000         | 5000.000000            | 5000.000000                     | 5000.000000                        | 5000.000000        | 5.000000e+ |
| mean  | 68583.108984        | 5.977222               | 6.987792                        | 3.981330                           | 36163.516039       | 1.232073e+ |
| std   | 10657.991214        | 0.991456               | 1.005833                        | 1.234137                           | 9925.650114        | 3.531176e+ |
| min   | 17796.631190        | 2.644304               | 3.236194                        | 2.000000                           | 172.610686         | 1.593866e+ |
| 25%   | 61480.562388        | 5.322283               | 6.299250                        | 3.140000                           | 29403.928702       | 9.975771e+ |
| 50%   | 68804.286404        | 5.970429               | 7.002902                        | 4.050000                           | 36199.406689       | 1.232669e+ |
| 75%   | 75783.338666        | 6.650808               | 7.665871                        | 4.490000                           | 42861.290769       | 1.471210e+ |
| max   | 107701.748378       | 9.519088               | 10.759588                       | 6.500000                           | 69621.713378       | 2.469066e+ |

# **Exploratory Data Analysis**

## In [8]: sns.pairplot(USAhousing)

Out[8]: <seaborn.axisgrid.PairGrid at 0xbfba438>



In [9]: sns.distplot(USAhousing['Price'])

Out[9]: <matplotlib.axes.\_subplots.AxesSubplot at 0xee20630>



In [12]: sns.heatmap(USAhousing.corr(), annot=True, cmap='viridis')

Out[12]: <matplotlib.axes.\_subplots.AxesSubplot at 0xe790da0>



# **Training a Linear Regression Model**

Let's now begin to train out regression model! We will need to first split up our data into an X array that contains the features to train on, and a y array with the target variable, in this case the Price column. We will toss out the Address column because it only has text info that the linear regression model can't use.

#### Training & Testing Data Set

## **Model Initialisation & Training**

```
In [16]: from sklearn.linear_model import LinearRegression
In [17]: lm = LinearRegression()
In [25]: lm.fit(X_train, y_train)
Out[25]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
```

### **Model Evaluation**

Using 'intercept' & 'coefficients'

In [29]: coeff\_df

Out[29]:

|                              | Coefficients  |
|------------------------------|---------------|
| Avg. Area Income             | 21.617635     |
| Avg. Area House Age          | 165221.119872 |
| Avg. Area Number of Rooms    | 121405.376596 |
| Avg. Area Number of Bedrooms | 1318.718783   |
| Area Population              | 15.225196     |

### Interpreting the coefficients:

- Holding all other features fixed, a 1 unit increase in Avg. Area Income is associated with an increase
  of \$21.52.
- Holding all other features fixed, a 1 unit increase in Avg. Area House Age is associated with an increase of \$164883.28.
- Holding all other features fixed, a 1 unit increase in Avg. Area Number of Rooms is associated with an increase of \$122368.67.
- Holding all other features fixed, a 1 unit increase in **Avg. Area Number of Bedrooms** is associated with an **increase of \$2233.80**.
- Holding all other features fixed, a 1 unit increase in Area Population is associated with an increase of \$15.15.

Does this make sense? Probably not because this is a made up this data.