Adversarial Neural Cryptography

Artificial Intelligence 2018/2019

Lorenzo Veronese, 852058

Tuesday 04/02/2020

Università Ca' Foscari Venezia

Learning Symmetric Encryption

System Organization

Figure 1: Alice, Bob, and Eve, with a symmetric cryptosystem.

Eve

• Reconstruct P accurately (minimize $d(P_{eve}, P)$)

Alice / Bob

- Communicate clearly (minimize $d(P_{bob}, P)$)
- Hide communication from Eve
- Differently from the common objectives of the adversaries of GANs, is not a goal for Eve to distinguish C from a random value drawn from some distribution.
- We want to train Alice and Bob jointly to communicate successfully and defeat Eve without a pre-specified notion of what cryptosystem they might discover for this purpose.
- We want Alice and Bob to defeat the best possible version of Eve, rather than a fixed one.

$$A(\theta_A, P, K)$$
 $B(\theta_B, C, K)$ $E(\theta_E, C)$

$$L_{E}(\theta_{A}, \theta_{E}, P, K) = d(P, E(\theta_{E}, A(\theta_{A}, P, K)))$$

$$L_{E}(\theta_{A}, \theta_{E}) = \mathbb{E}_{P,K}(d(P, E(\theta_{E}, A(\theta_{A}, P, K))))$$

$$C_{E}(\theta_{A}) = argmin_{\theta_{E}}(L_{E}(\theta_{A}, \theta_{E}))$$

$$L_{B}(\theta_{A}, \theta_{B}, P, K) = d(P, B(\theta_{B}, A(\theta_{A}, P, K), K))$$

$$L_{B}(\theta_{A}, \theta_{B}, P, K) = d(P, B(\theta_{B}, A(\theta_{A}, P, K), K))$$

$$L_{B}(\theta_{A}, \theta_{B}, P, K) = d(P, B(\theta_{B}, A(\theta_{A}, P, K), K))$$

• Alice and Bob want to minimize Bob's reconstruction error and to maximize the reconstruction error of the "optimal Eve".

$$L_{AB}(\theta_A, \theta_B) = L_B(\theta_A, \theta_B) - L_E(\theta_A, O_E(\theta_A))$$
$$(O_A, O_B) = argmin_{\theta_A, \theta_B}(L_{AB}(\theta_A, \theta_B))$$

"In practice [...] our training method cuts a few corners and incorporates a few improvements with respect to the high-level description of the objectives."

- "optimal Eve" is approximated by alternating Eve and Alice and Bob training.
- In the training of Alice and Bob, we do not maximize Eve's error.
 - If we did, and made Eve completely wrong, then Eve could be completely right in the next iteration by simply flipping all output bits!
 - Generally, the goal is to minimize the mutual information between Eve's guess and the real plaintext.
 - Make Eve produce answers indistinguishable from a random guess.

$$L_{AB} = \text{Bob L1 error} + \frac{(N/2 - \text{Eve L1 error})^2}{(N/2)^2}$$

"In practice [...] our training method cuts a few corners and incorporates a few improvements with respect to the high-level description of the objectives."

- "optimal Eve" is approximated by alternating Eve and Alice and Bob training.
- In the training of Alice and Bob, we do not maximize Eve's error.
 - If we did, and made Eve completely wrong, then Eve could be completely right in the next iteration by simply flipping all output bits!
 - Generally, the goal is to minimize the mutual information between Eve's guess and the real plaintext.
 - Make Eve produce answ This is minimized when half of the bits are wrong and half are right

$$L_{AB} = \text{Bob L1 error} + \frac{(N/2 - \text{Eve L1 error})^2}{(N/2)^2}$$

Network Architecture

- "mix & transform" architecture
- Architecture that is succificient to learn functions such as XOR
- FC layer enables mixing between P and K
- Conv layers lean functions on groups of bits
 - learn which bits to combine

Experimental Evaluation

 N_{bits} 16 Mini-batch Size 4096 Training Rounds 1 A/B for every 2 of E

- A training is successful if the networks cross an accuracy threshold
 - 0.05 bits of reconstruction error for Alice ad Bob
 - 1-2 bits more than random guessing for Eve
- After successful training of the networks we reset Eve and train it from scratch 5 times, recording the best result achieved by any Eve.
 - If the retrained Eve obtains substantial advantage the solution is non-robust.

Effects of Different Loss Functions

"The best formulation [of the loss function] remains an open question"

• Define a per-bit loss function for Alice/Bob and Eve

$$L_n = \frac{1}{N} \sum_{i}^{N} |P_{ni} - P_i|$$
 $0 \le L_n \le 2$ $0 \le L_n \le 2$ minimized when half of the bits are wrong

 In my experiments, the training is less unstable and the rate of convergence is improved.

7

Alice/Bob Error (bits)	Best Eve Error (bits)	
0.0	6.6313	
0.0	6.4697	
0.0	6.6042	
0.0	6.5017	
0.0	6.2236	
0.0	6.6181	
0.0	6.625	
0.2507	6.9565	
0.0	6.6950	
0.4936	7.0966	

Table 1: Alice/Bob and Best Eve reconstruction error

Alice-Bob Error

3

Notes on Neural "Encryption"

Notes on Neural "Encryption"

- The ciphertext is plaintext and key dependent
- Changing a single bit of the key changes multiple outputs
- Outputs are floating point numbers, so the learned algorithm is not XOR but some mapping between the two spaces
- We are training against an adversary that is strictly less complex that A/B.
 Moreover A and B know which algorithm E is using.

Improving Eve (Eve++)

- > What happens if you substantially increase the complexity of Eve [...]? There are several reasonable options for trying to make Eve stronger.¹
- Eve++Layers has two additional convolutional layers.
- Eve++RandomKey has exactly the same shape and size as Bob, but receives random inputs instead of key material.

 $^{{}^{1}}https://openreview.net/forum?id=S1HEBe_Jl\¬eId=rkyzxEDQe$

Best Eve Performance

Training	Validation	Alice/Bob Error (bits)	Best Eve Error (bits)
Eve	Eve++Layers	0.0	6.6704
		0.0	6.6086
Eve++Layers	Eve++Layers	0.0000	6.5488
		0.0002	6.7205
Eve Eve++RandomK	Fire to Develope Ver	0.0000	6.5842
	Eve++RandomKey	0.4819	6.8489
Eve++RandomKey	Eve++RandomKey	0.0000	6.2371
		0.0000	6.4241

Table 2: Alice/Bob and Best Eve loss and reconstruction error

Best Eve Performance

		· /
Eve Eve++Layers	0.0	6.6704
	0.0	6.6086
Frank III arrana	0.0000	6.5488
++Layers	0.0000	6.7005
	++Layers ++Layers	++Layers 0.0 ++Layers

Eve Eve Eve++RandomKey Eve

Table 2: A

- The retrained more capable Eve is not more effective than the old version, reaching a 6.23/16 best error.
- It seems that there is no difference in training with the improved Eve
- The extra inputs given to Eve++Random did not give her substantial advantage

Asymmetric Encryption

System Organization

 $Figure\ 5:\ Alice,\ Bob,\ and\ Eve,\ with\ an\ asymmetric\ cryptosystem.$

References

[AA16] Martín Abadi, David G. Andresen (Google Brain)

Learning to Protect Communications with Adversarial Neural Cryptography

https://arxiv.org/abs/1610.06918