Specials (matha/mathb)

- | \notsign
- / \varnotsign
- · \cdotp

Usual binary operators (matha)

- + -
- × \times
- · \cdot
- o \circ
- * *
- * \ast
- * \asterisk
- * \coasterisk
- \pm \pm
- \mp \mp
- \bowtie \ltimes
- ♦ \diamond
- \bullet
- * \star
- * \varstar
- Σ \ssum
- П \sprod
- ∐ \amalg

Unusual binary operators (mathb)

- ∔ \dotplus
- $\dot{\times}$ \dottimes
- \cdot \divdot
- · \udot
- □ \square
- * \Asterisk
- * \bigast
- * \coAsterisk
- * \bigcoast
- $\mathring{+}$ \circplus
- † \pluscirc
- * \convolution
- * \divideontimes
- ♦ \blackdiamond
- \sqbullet
- ★ \bigstar
- **★** \bigvarstar

Usual relations (matha)

- = =
- = \equiv
- \sim \sim
- ≈ \approx
- \simeq \simeq
- ≅ \cong
- | \divides
- ≠ \neq
- \neq \notequiv
- $\not\sim$ \nsim
- $\not\simeq$ \nsimeq
- ≇ \ncong
- ≠ \notasymp
- / \notdivides

Unusual relations (mathb)

- ≐ \topdoteq
- → \botdoteq

- = \fallingdotseq
- ≔ \coloneq
- ⇒ \eqcolon
- = \equiv eqbumped
- ⇒ \Bumpedeq
- ≗ \circeq
- = \eqcirc
- ≜ \triangleq

Miscellaneous (matha)

- \neg \neg
- ≪ \11
- ≫ \gg
- # \hash
- ⊢ \vdash
- ⊢ \dashv
- ⊬ \nvdash
- √ \ndashv
- ⊨ \vDash
- ⇒ \Dashv
- ⊭ \nvDash
- ≠ \nDashv
- ⊩ \Vdash
- ⊣ \dashV
- ⊮ \nVdash
- √ \ndashV
- o \degree
- / \prime
- // \second
- /// \third
- /// \tnira
 //// \fourth
- //// \fourt
 b \flat
- t \natural
- # \sharp
- ∞ \infty
- ∝ \propto
- † \dagger
- ‡ \ddagger

Mis	cellaneous (mathb)		
Ŏ	\between		
\smile	\smile		
$\overline{}$	\frown		
#	\varhash		
\rightarrow	\leftthreetimes		
/	\rightthreetimes		
ф	\pitchfork		
\bowtie	\bowtie		
⊫	\VDash		
=	\DashV		
⊯	\nVDash		
≠l	\nDashV		
\parallel	\Vvdash		
$\exists \parallel$	\dashVv		
IJ⊬	\nVvash		
 (1	\ndashVv		
<i>:</i> .	\therefore		
• •	\because		
\check{X}	\ring		
\dot{X}	\dot		
\ddot{X}	\ddot		
\ddot{X}	\dddot		
\dot{X} \dot{X} \dot{X} \ddot{X} \ddot{X} \ddot{X} \ddot{X} \ddot{X}	\ddddot		
_	\angle		
4	\measuredangle		
*	\sphericalangle		
‡	\rip		
Delimiters as symbols (matha)			
((
)		
ſ	[
ì]		
7	\setminus		
) [] \ /	/		
/	, 		
i	\mid		

Delimiters as symbols (mathb)

- [\lcorners
- '\rcorners
- ulcorner \
- \urcorner
- \llcorner
- \lrcorner

Astronomical symbols (mathb)

- ⊙ \Sun
- ♥ \Mercury
- ♀ \Venus
- \oplus \Earth
- ♂ \Mars
- // Jupiter
- ზ \Saturn
- ð \Uranus
- $\Psi \quad \texttt{\ensuremath{\tt Neptune}}$
- Pluto
- Ō \varEarth
- ${\tt (leftmoon }$
- D \rightmoon
- O \fullmoon
- \newmoon
- Υ \Aries
- **∀** ∖Taurus
- Ⅱ \Gemini
- Ω \Leo
- Ω \Libra
- \mathbb{M} \Scorpio

Letter like symbols (matha)

- ∀ \forall
- C \complement
- ∂ \partial
- ∃ \exists
- ∃ \Finv
- ∂ \Game
- \emptyset \emptyset
- Ø \diameter
- \top \top
- ⊥ \bot
- ⊥ \perp
- ₹ \nottop

- ∧ \curlywedge
- ∨ \curlyvee
- \in \in
- ∋ \owns

- ♦ \varnotin
- \$ \varnotowner
- ē \barin
- ∩ \cap
- ⊎ \uplus
- □ \sqcap
- ⊔ \sqcup
- ∧ \wedge
- ∨ \vee

Letter like symbols (mathb)

- ∨ \veebar
- $\overline{\pi}$ \doublebarwedge
- \cap \doublecap
- □ \sqdoublecap
- □ \sqdoublecup

Subset's and superset's signs (matha)

- \subset \subset
- ⊃ \supset
- \d \nsubset
- \Rightarrow \nsupset
- \subseteq \subseteq
- \supseteq \supseteq
- $\$ \nsubseteq
- \subsetneq \subsetneq
- \supseteq \supsetneq
- \subsetneq \varsubsetneq
- ⊆ \subseteqq
- \supseteq \supseteqq
- \P \nsubseteqq
- \subsetneq \subsetneqq
- \supseteq \supsetneqq
- \subseteq \varsubsetneqq
- \supseteq \varsupsetneqq
- \subseteq \Subset
- $\$ \nSubset
- ⇒ \nSupset

Square subset's and superset's signs (mathb)

- □ \sqsupset
- # \nsqsubset
- \Rightarrow \nsqsupset
- □ \sqsupseteq
- ↓ \nsqsubseteq

- \(\sqsubsetneqq \)

- ∃ \sqSupset
- ⇒ \nsqSupset

Triangles as relations (matha)

- \triangleleft

- ▷ \vartriangleright
- h \ntriangleright
- \leqslant \trianglelefteq

Triangles as binary operators (mathb)

- △ \smalltriangleup
- √ \smalltriangledown
- √ \smalltriangleleft
- ▷ \smalltriangleright
- ▲ \blacktriangleup
- ▼ \blacktriangledown
- √ blacktriangleleft
- \blacktriangleright

Inequalities (matha)

- < <
- > >
- * \n
- \Rightarrow \ngtr
- \leq \leq
- \geqslant \geq
- \$ \nleq
- \geqslant \ngeq
- \leq \varleq
- \geq \vargeq
- ≰ \nvarleq
- \geq \nvargeq
- ≨ \lneq
- ≥ \gneq
- ≦ \leqq
- \geqq \geqq
- ≰ \nleqq
- ≱
- \ngeqq
- ≨ \lneqq
- ≩ \gneqq
- ≨ \lvertneqq
- ≩ \gvertneqq
- $\verb|\eqslantless|$ \leq
- ≽ \eqslantgtr
- \negstantless
- $\verb|\neqslantgtr|$
- \lessgtr
- \gtrless
- \lesseqgtr
- \gtreqless
- $\label{lesseqqgtr}$
- \gtreqqless
- \lesssim
- \gtrsim
- $\verb|\nlesssim|$
- \ngtrsim
- \label{lnsim}
- \gnsim
- \lessapprox
- \gtrapprox
- \nlessapprox
- \ngtrapprox
- \lnapprox
- \gnapprox
- < $\label{lessdot}$
- \gtrdot ⊳
- \ll \111
- \gg \ggg
- \precdot <
- \succdot

Inequalities (mathb)

- \prec \prec
- \succ
- \downarrow \nprec
- *\nsucc
- \leq \preccurlyeq
- \succcurlyeq ≽
- ≰ \npreccurlyeq
- rt\nsucccurlyeq
- \preceq \leq
- \geq \succeq
- ≰ \npreceq
- \geq \nsucceq
- \precneq ⋨
- \succneq ≽
- \curlyeqprec eq
- ≽ \curlyeqsucc
- * \ncurlyeqprec
- * \ncurlyeqsucc
- ≾ \precsim
- \succsim
- \nprecsim
- $\verb|\nsuccsim|$
- \precnsim
- \succnsim
- \precapprox
- \succapprox
- \nprecapprox
- \nsuccapprox
- \precnapprox
- \succnapprox
- \ll \llcurly
- \ggcurly

Arrows and harppons (matha)

- ← \leftarrow
- \rightarrow \rightarrow
- \\nwarrow
- ✓ \nearrow
- / \swarrow
- \ \searrow
- → \leftrightarrow
- ← \nleftarrow
- → \nrightarrow
- ⟨→ \nleftrightarrow
- − \relbar
- \mapstochar
- \mapsfromchar
- ← \leftharpoonup
- → \rightharpoonup
- ← \leftharpoondown
- → \rightharpoondown
- 1 \upharpoonleft
- \\downharpoonleft
- \upharpoonright
- \restriction
- \downharpoonright
- ⇒ \leftrightharpoons
- \Rightarrow \rightleftharpoons
- \updownharpoons
- ← \Leftarrow
- ⇒ \Rightarrow
- ⇔ \Leftrightarrow
- ⟨

 ⟨

 ⟨

 nLeftarrow
- ⇒ \nRightarrow
- ⇔ \nLeftrightarrow
- = \Relbar
- \Mapstochar
- \Mapsfromchar

Arrows and harpoons (mathb)

- \Leftarrow \leftleftarrows
- ⇒ \rightrightarrows
- ↑↑ \upuparrows
- ↓↓ \downdownarrows
- ≒ \leftrightarrows
- ↑↓ \updownarrows
- ↓↑ \downuparrows
- $\gets \qquad \texttt{\leftleftharpoons}$
- ⇒ \rightrightharpoons
- ↑ \upupharpoons
- ↓ \downdownharpoons
- ← \leftbarharpoon
- ⇒ \rightbarharpoon
- ⇒ \barleftharpoon
- ⇒ \barrightharpoon
- ← \leftrightharpoon
- > \rhook
- \lhook
- / \diagup
- \ \diagdown
- ← \Lsh
- → \Rsh
- √ dlsh
- ← \looparrowleft
- → \looparrowright
- \leftarrow \looparrowdownleft
- → \looparrowdownright
- └─ \curvearrowleft

- → \curvearrowbotright

- ☼ \circlearrowright
- \leftsquigarrow
- √ \rightsquigarrow
- \leftrightsquigarrow
- ⟨ \righttoleftarrow
- () \uptodownarrow
- () \downtouparrow

\oplus	\oplus	
\ominus	\ominus	
\otimes	\otimes	
\oplus	\odiv	
\odot	\odot	
0	\ocirc	
*	\oasterisk	
*	\ocoasterisk	
\oplus	\oleft	
\oplus	\oright	
\oplus	\otop	
\oplus	\obot	
\oplus	\ovoid	
\oslash	\oslash	
\Diamond	\obackslash	
	\otriangleup	
Boxe	es (mathb)	
+	\boxplus	
	\boxminus	
\times	\boxtimes	
\div	\boxdiv	
•	\boxdot	
0	\boxcirc	
*	\boxasterisk	
*	\boxcoasterisk	
\blacksquare	\boxleft	
\Box	\boxright	
	\boxtop	
	\boxbot	
	\boxvoid	
	\Box	
	\boxslash	
	\boxbackslash	
Δ	\boxtriangleup	
Large operators (mathx)		

Circles (matha)

 $\sum \prod \prod \iiint \{\#+\times \mathbb{C} \cap \mathbb{C} \cap \mathbb{C} \setminus \mathbb{C} \setminus \mathbb{C} \cap \mathbb$ \prod \coprod \intop \iintop \iiintop \ointop \oiintop \bigplus \bigtimes \bigcomplementop \bigcap \bigcup \biguplus \bigsqcap \bigsqcup \bigsquplus \bigwedge \bigvee \bigcurlywedge \bigcurlyvee Big circles (mathx) $\oplus \bigcirc \otimes \bigcirc \bigcirc \otimes \otimes \oplus \ominus \ominus \ominus \ominus \bigcirc \otimes \otimes \ominus \ominus \ominus$ \bigoplus \bigominus \bigotimes \bigodiv \bigodot \bigocirc \bigoasterisk \bigocoasterisk \bigoleft

\sum

Big boxes (mathx)

\bigoright \bigotop \bigobot \bigovoid \bigoslash \bigobackslash \bigotriangleup

+	\bigboxplus
	\bigboxminus
\times	\bigboxtimes
× :: • • • *	\bigboxdiv
<u> </u>	\bigboxdot
0	\bigboxcirc
*	\bigboxasterisk
*	\bigboxcoasterisk
$\overline{\mathbb{H}}$	\bigboxleft
$\overline{\mathbb{H}}$	\bigboxright
\Box	\bigboxtop
\equiv	\bigboxbot
	\bigboxvoid
	\bigboxslash
	\bigboxbackslash
	\bigboxtriangleup
Deli	miters (matha/mathx)
((
() [] { } [] < > \ /)
[
]]
{	\lbrace
}	\rbrace
	\ldbrack
	\rdbrack
<	\langle
\rangle	\rangle
\	\backslash
/	/
	\vert
	1
	\Vert
	\vvvert
↑	\uparrow
\downarrow	\downarrow
1	\updownarrow
\uparrow	\Uparrow
\downarrow	\Downarrow
\$	\Updownarrow

Delimiters (mathb/mathx)

```
\lgroup
     \rgroup
     \c 
     \rceil
     \lfloor
     \rfloor
     \thickvert
Delimiters (mathx/mathx)
     \fill 	ext{lfilet}
     \rfilet
Pieces for over-under-braces and such (mathx)
                  \braceld
                  \bracemd
                  \bracerd
                  \bracexd
                  \bracelu
                  \bracemu
                  \braceru
                  \bracexu
 \overrightarrow{ABC} \dots \overrightarrow{XYZ}
                  \overbrace
 ABC \dots XYZ
                  \underbrace
 ABC \dots XYZ
```

\overgroup

\undergroup

Extensible accents (mathx)

 $ABC \dots XYZ$

\widehat{ABCXYZ}	\widehat
$\overrightarrow{ABC \dots XYZ}$	\widecheck
$\widetilde{ABC \dots XYZ}$	\widetilde
$ABC \dots XYZ$	\widebar
$\overrightarrow{ABC} \cdot \cdot \cdot \overrightarrow{X}YZ$	\widearrow
$ABC \dots XYZ$	\wideparen
$\overrightarrow{ABC \dots XYZ}$	\widering
$\overrightarrow{ABC \dots XYZ}$	\widedot
$\overrightarrow{ABC \dots XYZ}$	\wideddot
\overrightarrow{ABC} $\overrightarrow{X}YZ$	\widedddot
$\overrightarrow{ABC \dots XYZ}$	\wideddddot
$\overrightarrow{ABC} \dots \overrightarrow{XYZ}$	\overrightarrow
$\overline{ABC \dots XYZ}$	\overleftarrow
$\overrightarrow{ABC} \dots \overrightarrow{XYZ}$	$\oldsymbol{\colored}$
$ABC \dots XYZ$	\underrightarrow
$ABC \dots XYZ$	\underleftarrow
$ABC \dots XYZ$	\underleftrightarrow
$\overrightarrow{ABC} \dots \overrightarrow{XYZ}$	\overRightarrow
$\overline{ABC \dots XYZ}$	\overLeftarrow
$\overrightarrow{ABC} \dots \overrightarrow{XYZ}$	\overLeftRightarrow
$\underline{ABC \dots XYZ}$	\underRightarrow
$\underline{ABC \dots XYZ}$	\underLeftarrow
$\overline{ABC \dots XYZ}$	\underLeftRightarrow