Fraternities and Labor Market Outcomes

Sergey V. Popov Dan Bernhardt

Department of Economics University of Illinois

7 Jan 2011

- We study the situation where productivity irrelevant activity is job market relevant.
- Fraternity membership is more than "club good":
 - too expensive;
 - many people mention them on resumes.

- In an empirically relevant equilibrium some people would be accepted but do not apply.
- Fraternity screens out low-ability people, therefore low-ability people earn the most from the outcome.
- High-ability people self-select themselves out of fraternity.
- Biggest losers are lowest types who are not admitted.

- New labor market participants are students, mass 1.
- Each student can be represented as a pair $(\theta, \mu) \sim h(\cdot) > 0$.
 - \bullet θ is student's potential productivity after employment.
 - \bullet μ is student's socializing value.
 - \bullet θ and μ are independent.
- Students like money and socializing.
- In the representative traternity likes students with high μ and students with high expected wage; has limited capacity.
- Firms offer competitive wages:
 - firms observe club membership and a signal about productivity $\widetilde{\theta} \sim f_{\widetilde{\theta}}(\cdot|\theta)$;
 - wage is equal to expected θ conditional on observables.

- New labor market participants are students, mass 1.
- Each student can be represented as a pair $(\theta, \mu) \sim h(\cdot) > 0$.
 - ullet heta is student's potential productivity after employment.
 - ullet μ is student's socializing value.
 - ullet θ and μ are independent.
- Students like money and socializing.
- The representative fraternity likes students with high μ and students with high expected wage; has limited capacity.
- Firms offer competitive wages:
 - firms observe club membership and a signal about productivity $\widetilde{\theta} \sim f_{\widetilde{\theta}}(\cdot|\theta)$;
 - wage is equal to expected θ conditional on observables.

- New labor market participants are students, mass 1.
- Each student can be represented as a pair $(\theta, \mu) \sim h(\cdot) > 0$.
 - ullet is student's potential productivity after employment.
 - \bullet μ is student's socializing value.
 - ullet θ and μ are independent.
- Students like money and socializing.
- The representative fraternity likes students with high μ and students with high expected wage; has limited capacity.
- Firms offer competitive wages:
 - firms observe club membership and a signal about productivity $\widetilde{\theta} \sim f_{\widetilde{\theta}}(\cdot|\theta)$;
 - wage is equal to expected θ conditional on observables.

Game Timing

- The fraternity, having beliefs about set of applicants, picks an admittance rule.
- Some students become fraternity members; values of productivity signals are realized.
- Firms, having beliefs membership of students in fraternity, assign wages to combinations of \(\tilde{\theta} \) and membership status.

In a rational expectations equilibrium, everyone's beliefs are consistent with actions of everyone.

Firm's Problem

Each firm observes a continuum of students with pdf $h(\theta, \mu)$, has a common knowledge of signaling technology $f_{\widetilde{a}}(\widetilde{\theta}|\theta)$, and knows the distribution of students in (and out of) the fraternity

$$C(\theta, \mu) = I((\theta, \mu))$$
 is in the club)

$$W_C\left(\widetilde{\theta}\right) = E[\theta|\widetilde{\theta}, C(\cdot, \cdot)]$$

Each firm observes a continuum of students with pdf $h(\theta,\mu)$, has a common knowledge of signaling technology $f_{\widetilde{\theta}}(\widetilde{\theta}|\theta)$, and knows the distribution of students in (and out of) the fraternity

$$C(\theta, \mu) = I((\theta, \mu))$$
 is in the club)

Then the wage offered to a frat member with signal heta is

$$w_{C}\left(\widetilde{\theta}\right) = E[\theta | \widetilde{\theta}, C(\cdot, \cdot)]$$

Students anticipate wages offered by firms, and possess a common knowledge about signaling technology $f_{\widetilde{a}}(\widetilde{\theta}|\theta)$.

Student (θ, μ) 's utility outside the fraternity is

$$U_{\bar{C}} = E_{\widetilde{\theta}} \left[w_{\bar{C}}(\widetilde{\theta}) | \theta \right]$$

Student $(heta,\mu)$'s utility inside the fraternity is

$$U_C = E_{\widetilde{\theta}} \left[w_C(\widetilde{\theta}) | \theta \right] + n\mu - C$$

Students' solution is:

$$a(\theta, \mu) = I(U_C \ge U_{\bar{C}}|\theta, \mu)$$
 $A = ((\theta, \mu)|a(\theta, \mu) = 1)$

Students anticipate wages offered by firms, and possess a common knowledge about signaling technology $f_{\widetilde{\theta}}(\widetilde{\theta}|\theta)$. Student (θ,μ) 's utility outside the fraternity is

$$U_{\bar{C}} = E_{\widetilde{\theta}} \left[w_{\bar{C}}(\widetilde{\theta}) | \theta \right]$$

Student (θ, μ) 's utility inside the fraternity is

$$U_{C} = E_{\widetilde{\theta}} \left[w_{C}(\widetilde{\theta}) | \theta \right] + n\mu - c$$

Students' solution is:

$$a(\theta, \mu) = I(U_C \ge U_{\bar{C}}|\theta, \mu)$$
 $A = ((\theta, \mu)|a(\theta, \mu) = 1)$

Student's Problem

Students anticipate wages offered by firms, and possess a common knowledge about signaling technology $f_{\widetilde{\theta}}(\widetilde{\theta}|\theta)$. Student (θ, μ) 's utility outside the fraternity is

$$U_{\bar{C}} = E_{\widetilde{\theta}} \left[w_{\bar{C}}(\widetilde{\theta}) | \theta \right]$$

Student (θ, μ) 's utility inside the fraternity is

$$U_{C} = E_{\widetilde{\theta}} \left[w_{C}(\widetilde{\theta}) | \theta \right] + n\mu - c$$

Students' solution is:

$$a(\theta, \mu) = I(U_C \ge U_{\bar{C}}|\theta, \mu)$$
 $A = ((\theta, \mu)|a(\theta, \mu) = 1)$

The Fraternity's Problem

Theory

The fraternity observes set A and anticipates same wage functions as students do, and picks set B of admitted people. Club's utility function is assumed to be

$$W(B) = W_1 \int_{A \cap B} E_{\widetilde{\theta}} w_C(\widetilde{\theta}|\theta) dH(\theta, \mu) + W_2 \int_{A \cap B} \mu dH(\theta, \mu)$$

s.t.
$$\int_{A \cap B} h(\theta, \mu) d\mu d\theta \leq \Gamma$$

Here Γ is a fraternity's capacity constraint. Intersection of sets of wishing students A and admitted students B is the set C — fraternity members.

Cutoff Rules

Proposition

There is a cutoff $\mu_A(\theta)$ such that people with μ bigger than that pledge.

Proposition

There is a cutoff $\mu_B(\theta)$ such that people with μ bigger than that are admitted.

Proposition

If signaling technology has a MLRP property, $\mu_B(\theta)$ is decreasing in θ .

Cutoff Rules

Proposition

There is a cutoff $\mu_A(\theta)$ such that people with μ bigger than that pledge.

Proposition

There is a cutoff $\mu_B(\theta)$ such that people with μ bigger than that are admitted.

Proposition

If signaling technology has a MLRP property, $\mu_B(\theta)$ is decreasing in θ .

Fraternity's Cutoff Rule

Application-Constrained Equilibrium

Single-Peaked Equilibria

Assumption

Either the support for signals $\tilde{\theta}$ is finite, or the support of $f_{\tilde{\theta}}(\tilde{\theta}|\bar{\theta})$ is non-trivial.

Assumption

The cost c of joining the fraternity satisfies $n\underline{\mu} + \overline{\theta} - E[\theta] < c < n\overline{\mu} + \overline{\theta} - E[\theta]$.

Proposition

Suppose that Assumptions 1 and 2 hold, and the fraternity is small enough, the equilibrium is single-peaked.

Estimation

Structural Estimation

Parameters

Parameter	Estimate	95% confidence
n	0.2771	(0.1193, 0.5312)
С	0.2281	(0.0895, 0.4449)
c/n	0.8234	(0.7141, 0.8147)
W_1/W_2	0.2227	(0.0565, 0.3346)
Γ	0.1563	(0.1546, 0.1577)

Welfare Implications

Conclusion

- There is a "single-peaked" equilibrium which one cannot get with signalling, screening or networks.
- Single-peaked equilibrium exists very generally.
- We get single-peaked fraternity in estimates.
- "Single-peaked" effect is damaging for highly-able member students...
- ... damaging for low-able non-members...
- ... beneficial for low-type members.