Bringing Old Photos Back to Life

Ziyu Wan^{1*}, Bo Zhang², Dongdong Chen³, Pan Zhang⁴, Dong Chen², Jing Liao^{1†}, Fang Wen²

¹City University of Hong Kong ²Microsoft Research Asia ³Microsoft Cloud + AI

⁴University of Science and Technology of China

CVPR 2020

Background

Data types

Hypothesis

- Synthetic data (Paired): Original image + ground truth Necessity during training
- Real data (Unpaired): Just original image For testing or daily using

Two data types with similar or the same distribution

Introduction

Artifacts in old photos

- Unstructured defects: noise and blur
- Image restoration

- Structured defects: scratch and blemish
- Image inpainting
- Challenge of supervised learning
 - The degradation of old photos is complex
 - Fail to generalize between synthetic and real photos

Motivation

Triplet domain transform

Insight: domain gap is closed in latent space

Training: $\mathcal{X} \to \mathcal{Y} = G_{\mathcal{V}} \circ T_{\mathcal{Z}} \circ E_{\mathcal{X}}(x)$

Testing: $\mathcal{R} \to \mathcal{Y} = G_{\mathcal{R}} \circ T_{\mathcal{Z}} \circ E_{\mathcal{X}}(r)$

Overview

Representation learning

Training VAE (x, y with a similar loss)

$$\mathcal{L}_{\text{VAE}_{1}}(r) = \text{KL}(E_{\mathcal{R},\mathcal{X}}(z_{r}|r)||\mathcal{N}(0,I)) \leftarrow \text{KL-divergence penalization}$$

$$+ \alpha \mathbb{E}_{z_{r} \sim E_{\mathcal{R},\mathcal{X}}(z_{r}|r)} \left[\|G_{\mathcal{R},\mathcal{X}}(r_{\mathcal{R} \to \mathcal{R}}|z_{r}) - r\|_{1} \right] \leftarrow \text{L1 loss}$$

$$+ \mathcal{L}_{\text{VAE}_{1},\text{GAN}}(r) \leftarrow \text{Address over-smooth issue}$$

Latent adversarial loss

$$\mathcal{L}_{\text{VAE}_{1},\text{GAN}}^{\text{latent}}(r,x) = \mathbb{E}_{x \sim \mathcal{X}}[D_{\mathcal{R},\mathcal{X}}(E_{\mathcal{R},\mathcal{X}}(x))^{2}] + \mathbb{E}_{r \sim \mathcal{R}}[(1 - D_{\mathcal{R},\mathcal{X}}(E_{\mathcal{R},\mathcal{X}}(r)))^{2}]$$

Latent mapping

Mapping in low-dimensional latent space is much easier to learn than in the high-dimensional image space

Training mapping fixed VAE

$$\mathcal{L}_{\mathcal{T}}(x,y) = \lambda_1 \mathcal{L}_{\mathcal{T},\ell_1} + \mathcal{L}_{\mathcal{T},GAN} + \lambda_2 \mathcal{L}_{FM}$$

Latent space loss

$$\mathcal{L}_{\mathcal{T},\ell_1} = \mathbb{E} \left\| \mathcal{T}(z_x) - z_y \right\|_1$$

Feature matching loss

$$\mathcal{L}_{FM} = \mathbb{E}\left[\sum_{i} \frac{1}{n_{D\tau}^{i}} \|\phi_{D\tau}^{i}(x_{\mathcal{X}\to\mathcal{Y}}) - \phi_{D\tau}^{i}(y_{\mathcal{Y}\to\mathcal{Y}})\|_{1} + \sum_{i} \frac{1}{n_{VGG}^{i}} \|\phi_{VGG}^{i}(x_{\mathcal{X}\to\mathcal{Y}}) - \phi_{VGG}^{i}(y_{\mathcal{Y}\to\mathcal{Y}})\|_{1}\right],$$

Partial nonlocal block

Pairwise affinity with Gaussian

$$f_{i,j} = \exp(\theta(F_i)^T \cdot \phi(F_j))$$

Correlation between two channel vector i, j

$$s_{i,j} = (1 - m_j) f_{i,j} / \sum_{\forall k} (1 - m_k) f_{i,k}$$

Outputs

$$O_i = \nu \left(\sum_{\forall j} s_{i,j} \mu(F_j) \right)$$

Result

Ablation study

Latent translation with VAEs

Partial nonlocal block

Limitation

Fail to handle complex shading artifacts

Thank you!