Collecting FAIR Data for Biomedical Research

Dr Katy Wolstencroft LIACS, Leiden University LUMC Biosemantics

FAIR Initiatives

FAIR by design and FAIR by increment

FAIRifying Existing Data

Hebon

Onderzoek naar erfelijke borst- en eierstokkanker

Who Benefits from FAIR Data?

- More work for the scientists making FAIR data
 - Not seen as part of the scientific process
- Others can reuse data and benefit straight away
 - Time and cost of generating data must be 'worth it'

Need incentives for individual scientists and for projects → Data citation and credit for further funding

- My data is privacy sensitive, I can't share
 - Are there benefits from integrating public knowledge
 - Do you need to collaborate to make it useful?

FAIR by Increment and by Design FAIRDOM Systems Biology

Findable Accessible Interoperable Reusable

Data Operations Models

- Model simulations predict behaviour in different conditions
- Experimental measurements for enzyme reaction rates, metabolite concentrations, expression of enzymes etc
- ODE, PDEs, agent models, stochastic models Matlab, R, Mathematica

Challenges For Systems Biology: Heterogeneous data and other Research Assets

- Multiple omics
 - genomics, transcriptomics
 - proteomics, metabolomics
 - fluxomics, reactomics
- Images
- Molecular biology
- Reaction Kinetics
- Models
 - Metabolic, gene network, kinetic
- Relationships between data sets/experiments
 - Procedures, experiments, data, results and models
- Analysis of data

Systems Biology Experiments and Data Repositories

Systems Biology Experiments and Data Repositories

Aims of the FAIRDOM Platform

- Share and exchange data, models and other research assets
 - Systems biology, synthetic biology
- Share in the context of the whole experiment
 - Linking and integrating datasets
 - Linking models and data
 - Understanding the relationships between them
- Provide a stewardship environment for research assets
 - Support project whilst they run, not just as a repository afterwards

Making Results Reusable

- Common standards
 - Identifiers, metadata descriptions, exchange formats, vocabularies
- Common repositories
 - Enables search, aggregation and meta-analysis
- Promote good practices
- Infrastructure and tools
 - Lowers the barrier for participation

Systems Biology Standards landscape

Minimal Information Models checklists

Standard **Formats** markup

Ontologies Controlled vocabularies meaning

Data

Models

Simulation

Results

MAGE-TAB

SBRML

Values in the Type of What was **Biological** datasets data/model measured sample and treatments applied Units, time series, Gene expression, OD, Microarray, repeats... metabolite growth curve, enzyme activity... concentration... Common elements

Enzyme reactions

reactions catalyzed, substrates, products, inhibitions

CheBI ids

Microarray

QC methods normalisation

MGED/EFO

Proteomics

instruments

PSI-MS

Data type specific elements

Just Enough Results Model – Application Ontology and annotation vocabulary for FAIRDOM Metadata

Based on MIMs and ISA

Aggregating Experiments: ISA

Semantic Annotation by Stealth

FAIRDOMHub.org: Facilitating FAIR Collaboration and Sharing in Systems Biology

Project Commons Organise > Share > Disseminate

FAIRDOMHub, Local FAIRDOM instances, as a component in the ELIXIR Converge toolkit

WorkflowHub

Leiden FAIR Cell Observatory:

No Reinvention
Common Standards
Open Microscopy
Environment

Aim to provide top-level distributed advanced microscopy infrastructure for life sciences research in the Netherlands Part of EU Bioimaging

National Roll-Out

DM Pilot@ UL and Beyond

ELIXIR

Workflows for IDR/Bioimage
Archive Deposit

EU ESFRI RESOURCES

BBMRI

Faculty wide roll out
Nov 2020

- Serves 4 institutes
- 50 microscopes and 150 users
- Links to ELNs

- Data management
- Metadata standards
- Image analysis methods
- Image analysis processes

"National" node @ LIACS

NEMI/NL-BI Team

Benefits

- Images from all vendors
- FAIRer Data
- Data management cheaper
- Data archiving easier
 - OMERO worldwide dev community > 3000 instances

OMERO SHELL

FAIR by Increment Requires:

- No reinvention
- Fitting in with common standards
- Fitting in with common practice
- Respecting the requirements of individual scientists as well as PIs/consortia – scientists remain in control
- Incremental development solution now and innovate with pioneers
- Ensure data complies with new requirements for sharing and archiving data

Iterations

FAIRification of Existing Data: Changing Practices → FAIR by Design

FAIRification of Existing Data

A Generic Workflow for the Data FAIRification Process, Jacobsen et al, 2020 Data Intelligence 2 (1-2): 56–65

- Rare disease registries
- Rare disease datasets
- Covid data integration

FAIRifying Existing Data

HEBON: Prof Peter Devilee LUMC, Tushar Mandloi Leiden Centre for Computational Oncology

- Hereditary Breast and Ovarian Cancer research Netherlands
- Nationwide survey of families where breast and ovarian cancer is common.

HEBON FAIRification Objectives

- Data collected and managed in different nodes
- Research projects request access to integrated data sets, which are hard for HEBON network to generate
- Data has been collected over decades
- Data needs to be compared to current knowledge and updated
- Genomic Association of BRCA mutation-status with pedigree information and risk factors, and to compute polygenic risk scores

HEBON Databases

Genomic Association of BRCA mutation-status with pedigree information and risk factors, and to compute polygenic risk scores

Hebon FAIR Semantic Model Variants

Tushar Mandloi MSc bioinformatics thesis 2021

HEBON DNA @LUMC

^{*} For overall breast cancer in Europeans (Lower for ER-negative disease, early onset disease, and breast cancer in non-Europeans)

- 25 years of research
- New genes
- New pathogenic variants
- New risk variants

- 1 = Carrier of one single pathogenic BRCA1-variant
- 2 = Carrier of two or more pathogenic variants in BRCA1
- 3 = Carrier of VUS in BRCA1 and not a pathogenic BRCA1-variant
- 4 = Non-carrier of the pathogenic BRCA1-variant segregating in the family
- 5 = Non-carrier of the BRCA1-VUS segregating in the family
- 9 = No class IARC3-5 variants known

HEBON Data can now query public resources

FAIR HEBON Databases

Genomic Association of BRCA mutation-status and other variations with pedigree information and risk factors, and to compute polygenic risk scores

Promoting and Enabling FAIR Data

- Have clear FAIRification goals
- Make it as easy as possible
- Make sure there are incentives for individuals, Pis and institutions
- Added value of FAIR data is a large incentive

Acknowledgements

- FAIRDOM Consortium
 - Carole Goble, Stuart Owen
- Cell Observatory OMERO team
 - Rohola Hosseini
- Benefit Consortium
 - Linda Breeman
 - Erik Flikkenschild
- HEBON Network
 - Peter Devilee, Tushar Mandloi
- LIACS semantic systems bioinformatics
- Biosemantics group