

POLYTECHNIQUE Montréal

Solutionnaire

Contrôle périodique 2

LOG2810

Sigle du cours

Sigle et titre du cours		Groupe		Trimestre
LOG2810 Structures discrètes		Tous		Automne 2022
Professeur		Local		Téléphone
Aurel Randolph, Chargé de cours Lévis Thériault, Coordonnateur				
Jour	Date		Durée	Heures
Samedi	5 novembre 2022		1h	10h30-11h30
Documentation		Calculatrice		
Aucune		Aucune		Les appareils électroniques personnels sont interdits.
☐ Toute		☐ Toutes		

Question 1 (5 points)

On définit sur $\mathbf{E} = \mathbf{Z} \times \mathbf{N}^*$ la relation \mathbf{R} par :

(a, b) \mathbf{R} (s, t) si et seulement si $\mathbf{at} = \mathbf{bs}$

R est-elle une relation d'équivalence ? Justifiez votre réponse.

Réponse:

R est-elle une relation d'équivalence si elle est réflexive, symétrique et transitive.

Réflexivité

```
Soit (a, b) \in \mathbf{E}. On a ab = ab, alors (a, b) \mathbf{R} (a, b). \mathbf{R} est donc réflexive.
```

Symétrie

```
Soit (a, b) \in \mathbf{E} et (s t) \in \mathbf{E} tel que (a, b) \mathbf{R} (s, t).

(a, b) \mathbf{R} (s, t), alors at = bs

at = bs alors ta = sb, soit sb = ta.

On a donc (s, t) \mathbf{R} (a, b).

\mathbf{R} est symétrique.
```

Transitivité

```
Soit (a, b) \in E, (c, d) \in E et (s, t) \in E tel que (a, b) \cap (c, d) et (c, d) \cap (s, t). (a, b) \cap (c, d) alors, ad = bc (c, d) \cap (s, t) alors, ct = ds (ad = bc) et (ct = ds), alors (adt = bct) et (bct = bds) (adt = bct) et (bct = bds), alors (adt = bds) (adt = bds) et d \in \cap (alors (at = bs)) Ainsi (ad = bc) et (ct = ds), alors (at = bs) On a donc (a, b) \cap (s, t). \cap R est transitive.
```

Question 2 (2.5 points)

Donnez une définition récursive de l'ensemble des entiers qui ne sont pas divisibles par 7. **Réponse :**

Solution 1

Sot **S** l'ensemble des entiers qui ne sont pas divisibles par 7. La définition récursive de **S** est :

```
1 \in S, 2 \in S, 3 \in S, 4 \in S, 5 \in S, 6 \in S
\forall x \in S, (x + 7) \in S
```

• Solution 2 (moins élégante, mais admise)

Sot S l'ensemble des entiers qui ne sont pas divisibles par 7. La définition récursive de S est :

```
1 \in S, 2 \in S, 3 \in S, 4 \in S, 5 \in S, 6 \in S
\forall x \in S, 7x+1 \in S, 7x+2 \in S, 7x+3 \in S, 7x+4 \in S, 7x+5 \in S, 7x+6 \in S
```

Question 3 (4.5 points)

On considère la clé publique RSA (e = 11, n = 319).

Note: Les calculs suivants vous sont fournis.

- 319 = 11 x 29
- $10^{11} \equiv 263 \pmod{319}$
- $2^9 \equiv 193 \pmod{319}$
- $263^2 = 216 \times 319 + 265$
- $772 = 2 \times 319 + 134$
- 134 x 265 = 111 x 319 + 101
- a. (1.5 point) Quel est le message C chiffré à partir du message M = 200 ?

Réponse :

```
C = M^e = 200^{11} = (2.100)^{11} = 2^{11} \times 100^{11} = 2^{11} \times (10^{11})^2

D'après l'énoncé 10^{11} \equiv 263 \pmod{319}, alors (10^{11})^2 \equiv 263^2 \pmod{319}

263^2 = 216 \times 319 + 265 \text{ alors } 263^2 \equiv 265 \pmod{319}. Donc (10^{11})^2 \equiv 265 \pmod{319}

2^{11} = 2^9 \times 2^2 = 4 \times 2^9, alors 2^{11} \equiv 4 \times 193 \pmod{319}

2^{11} \equiv 772 \pmod{319}

2^{11} \equiv 134 \pmod{319}

2^{11} \times (10^{11})^2 \equiv 134 \times 265 \pmod{319}

2^{11} \times (10^{11})^2 \equiv 101 \pmod{319}

D'où C = 101.
```

b. (**3 points**) En utilisant l'algorithme d'Euclide étendu, déterminez la clé privée **d** correspondant à la clé publique. Vous devez présenter toutes les étapes de votre calcul.

Réponse:

```
On a e \times d \equiv 1 \pmod{i} avec i = ppcm(10, 28) = 140. 
Il faut donc résoudre 11d \equiv 1 \pmod{140} soit 11d + 140z = 1
Pour l'algorithme d'Euclide étendu on considère les vecteurs [11, 1, 0][140, 0, 1]. Ce qui donne [11, 1, 0][8, -12, 1] [3, 13, -1][8, -12, 1] [3, 13, -1][2, -38, 3] [1, 51, -4][2, -38, 3] [1, 51, -4][1, -89, 7] 
On peut prendre d = 51.
```

Question 4 (5 points)

En utilisant l'induction mathématique, montrez que pour tout entier naturel n, $11 \text{ divise } 2^{6n+3} + 3^{2n+1}$

```
Réponse :
Soit P(n): 2^{6n+3} + 3^{2n+1}est divisible par 11.
Étape de base
    Pour n=0, on a:
    2^{6n+3} + 3^{2n+1} = 2^3 + 3^1 = 8 + 3 = 11
    11 est divisible par 11.
    P(0) est donc vrai.
Étape inductive
    Supposons pour un certain n ≥ 0 que P(n) est vrai et montrons que P(n+1) est vrai, c'est-à-dire que
    2^{6(n+1)+3} + 3^{2(n+1)+1} est divisible par 11.
    2^{6(n+1)+3} + 3^{2(n+1)+1} = 2^6 \cdot 2^{6n+3} + 3^2 \cdot 3^{2n+1}
    Par hypothèse d'induction, 2^{6n+3} + 3^{2n+1} est divisible par 11. Posons 2^{6n+3} + 3^{2n+1} = 11k, avec k entier.
    On a : 2^{6n+3} = 11k - 3^{2n+1}. Remplaçons cette expression dans 2^{6} \cdot 2^{6n+3} + 3^{2} \cdot 3^{2n+1}.
    2^{6(n+1)+3} + 3^{2(n+1)+1} = 2^6 \cdot 2^{6n+3} + 3^2 \cdot 3^{2n+1} devient successivement :
    2^{6(n+1)+3} + 3^{2(n+1)+1} = 2^6 \cdot (11k - 3^{2n+1}) + 3^2 \cdot 3^{2n+1}
    2^{6(n+1)+3} + 3^{2(n+1)+1} = 2^6.11k - 3^{2n+1}(2^6 - 3^2)
    2^{6(n+1)+3} + 3^{2(n+1)+1} = 2^6.11k - 55.3^{2n+1}
    2^{6(n+1)+3} + 3^{2(n+1)+1} = 11(2^6 \cdot k - 5 \cdot 3^{2n+1})
    2^{6(n+1)+3} + 3^{2(n+1)+1} est donc divisible par 11.
    Il s'en suit que P(n+1) est vrai et que P(n) \rightarrow P(n+1) est vrai.
```

Conclusion

P(0) est vrai et $\forall n \ge 0$ $P(n) \rightarrow P(n+1)$ est vrai

On peut alors conclure que pour tout entier naturel n, $n^5 - n2^{6n+3} + 3^{2n+1}$ est divisible par 11.

Question 5 (3 points)

Donnez une évaluation de la complexité en Grand-O de $(n^3 + 3^n)(2^n + n^2)$. Justifiez votre réponse.

Réponse :

Plusieurs évaluations sont possibles.

• Exemple d'évaluation :

```
n^3 + 3^n est O(3^n) et 2^n + n^2 est O(2^n), alors (n^3 + 3^n)(2^n + n^2) est O(3^n, 2^n), soit O(6^n).
```