Real Analysis - Assignment 8

Philip Warton

December 8, 2020

A sequence of real valued functions $f_n: X \to \mathbb{R}$ is uniformly continuous if and only if it is uniformly Cauchy.

Proof. We must show the bi-conditional by showing that the implication holds in both directions.

 \implies Assume that f_n is uniformly convergent. Then $||f_n - f||_{\infty} \to 0$. Equivalently, we say that $\sup_{x \in X} |f_n(x) - f(x)| \to 0$. Thus we say that for every $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \geqslant N \sup_{x \in X} |f_n(x) - f(x)| < \epsilon$.

Choose some $\epsilon'>0$ arbitrarily. Then $\exists N_{\epsilon'/2}\in\mathbb{N}$ such that $\forall n\geqslant N_{\epsilon'/2},\ ||f_n-f||_{\infty}<\epsilon'/2$. Then choose $m,n\geqslant N_{\epsilon'/2}$ and it follows that

$$\sup_{x \in X} |f_n(x) - f_m(x)| = \sup_{x \in X} |f_n(x) - f(x)| + f(x) - f_m(x)| \le \sup_{x \in X} |f_n(x) - f(x)| + \sup_{x \in X} |f_m(x) - f(x)| \le 2\epsilon'/2 = \epsilon'$$

 \Leftarrow Assume that f_n is uniformly Cauchy. Then it must be the case that f_n is pointwise Cauchy, and therefore pointwise convergent. Thus $f_n \to f$ pointwise. Suppose that this convergence is not uniform. Then $\exists \epsilon > 0$ such that $||f_n - f||_{\infty} \geqslant \epsilon \ \forall n$. Choose some $\epsilon > \delta > 0$ arbitrarily. Then $\exists x \in X$ such that $|f_n(x) - f(x)| > \epsilon - \delta > 0 \forall n$. Therefore f_n is not pointwise convergent at some x (contradiction). Finally f_n must be uniformly convergent.

Let $(X,d), (Y,\rho)$ be metric spaces. Let $f, f_n: X \to Y$ and let f_n converge uniformly to f on X. Show that $D(f) \subset \bigcup_{n=1}^{\infty} D(f_n)$.

Proof. Let $x \in X$ such that $x \notin D(f_n)$ for every natural number n. If x is some isolated point, then f(x) must be continuous trivially. Otherwise, we say that $x_n \to x \Longrightarrow f_k(x_n) \to f_k(x)$ for every natural number k. Choose $\frac{\epsilon}{3} > 0$ to be arbitrary. Then $\exists N_1$ such that $\forall n \geqslant N_1, \rho(f_k(x_n), f_k(x)) < \frac{\epsilon}{3}$ since f_k is continuous at x. Since $f_k \to f$ uniformly, $\exists N_2$ such that $\forall k \geqslant N_2, \rho(f_k(x), f(x)) < \frac{\epsilon}{3}$ for every point $x \in X$. Choose $N = \max\{N_1, N_2\}$. Then it follows that for $k, n \geqslant N$

$$\rho(f(x_n), f(x)) \leqslant \rho(f(x_n), f_k(x_n)) + \rho(f_k(x_n), f(x)) \leqslant \rho(f(x_n), f_k(x_n)) + \rho(f_k(x_n), f_k(x)) + \rho(f_k(x), f(x)) \leqslant \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

Therefore $x_n \to x \Longrightarrow f(x_n) \to f(x)$ so f is continuous at x. Thus $x \notin \bigcup_{\mathbb{N}} D(f_n)$ implies $x \notin D(f)$.

Let $f, f_n \in C[0,1]$ where f_n converges uniformly to f. Then $\int_0^{1-1/n} f_n \to \int_0^1 f$.

Proof.

$$\left| \int_{0}^{1-1/n} f_{n} - \int_{0}^{1} f \right| = \left| \int_{0}^{1} f_{n} - f - \int_{1-1/n}^{1} f_{n} \right| \leqslant$$

Yikes idk how to do this