Assignment 1

Q1. (10%) Simplify $\frac{2\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}$ such that the denominator consists of an integer only.

Solution:

$$\frac{2\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}} = \frac{\left(2\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)} = \frac{14-3\sqrt{35}+5}{7-5} = \frac{19-3\sqrt{35}}{2}$$

Q2. (30%) $A = \{red, green, blue\}, B = \{red, yellow, orange\},$

 $C = \{red, orange, yellow, green, blue, purple\}$. Find the following:

- a. $(10\%) A \cup B$
- b. (10%) $A \cap B$
- c. (10%) $A^{C} \cap C$

Solution:

- a. $A \cup B = \{red, green, blue, yellow, orange\}$
- b. $A \cap B = \{red\}$
- c. $A^C \cap C = \{orange, yellow, purple\}$

Q3. (10%) Suppose $H = \{cat, dog, rabbit, mouse\}$, $F = \{dog, cow, duck, pig, rabbit\}$, $W = \{duck, rabbit, deer, frog, mouse\}$. Use Venn diagram to illustrate $(H \cap F)^C \cap W$.

Solution:

$(H\cap F)^C\cap W$

Q4. (10%) Set cartesian product: $A = \{cow, horse\}$, $B = \{egg, juice\}$. Find $A \times B$.

Solution:

	egg	jucie
cow	(cow,egg)	(cow, jucie)
horse	(horse, egg)	(horse, juice)

$$A \times B = \{(cow, egg), (horse, juice), (cow, jucie), (horse, egg)\}$$

Q5.

a. (10%) Write the following sets in the set-builder form:

$$A = \{3,15,35,63,99,143,195,255\}$$

Solution:

$$A = \{(2x)^2 - 1 | x \in \mathbf{Z}, 1 \le x \le 8\}$$

Z is the set of Integer

b. (10%) Find the set $A, A = \{x \in \mathbf{R} | x = x^2\}.$

Solution:

$$A = \{0,1\}$$

c. (10%) Write the following sets in the set-builder form:

$$A = \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{7}{8}, \frac{9}{9}, \frac{9}{10}\}$$

Solution:

$$A = \{ \frac{x}{x+1} | x \in \mathbf{Z}, 1 \le x \le 9 \}$$

 \boldsymbol{Z} is the set of integers.

d. (10%) Write the following sets in the set-builder form:

$$A = \{-21, -19, \cdots, -1, 1, 3, \cdots, 21\}$$

Solution:

$$A = \{2x + 1 \mid x \in \mathbf{Z}, -11 \le x \le 10\}$$

Z is the set of integers.