

Projektowanie Efektywnych Algorytmów		
Kierunek		Termin
	Informatyka	Czwartek 17:25
Temat		Problem
	Algorytmy populacyjne	TSP
Skład grupy		Nr grupy
	241406 Krzysztof Jopek	-
Prowadzący		data
	Mgr inż. Radosław Idzikowski	28 stycznia 2020

1 Opis problemu

Problem komiwojażera jest problemem optymalizacyjnym, polegającym na odnalezieniu minimalnego cyklu Hamiltona w grafie pełnym ważonym. Nazwa pochodzi od typowej ilustracji problemu: dane jest n miast, które muszą zostać odwiedzone przez komiwojażera oraz odległości między nimi. Zadaniem jest znalezienie najkrótszej drogi przechodzącej przez wszystkie miasta oraz wracającej do miasta początkowego. Problem komiwojażera jest klasy NP-trudny. W realizacji trzeciego etapu projektu został wykorzystany algorytm genetyczny.

2 Metoda rozwiązania

2.1 Algorytm genetyczny

Algorytm genetyczny należy do klasy algorytmów probabilistycznych. Są w nim stosowane mechanizmy selekcji, reprodukcji oraz mutacji, których inspiracją jest biologiczny proces ewolucji. W opisywanym algorytmie zachodzą procesy wzorowane na tych z biologii – tylko najlepiej przystosowane osobniki, o najlepszych genach, mają szansę przetrwać i mieć potomstwo, które będzie lepsze od nich samych. W algorytmie stosowana jest selekcja wstępna rodziców na podstawie selekcji proporcjonalnej, a następnie, ze stałym prawdopodobieństwem [0.9] tworzone są dzieci poprzez krzyżowanie Ox oraz również z ustalonym prawdopodobieństwem [0.1] poprzez jedną z trzech mutacji (swap, invert, scramble). Każdy cykl wiąże się z pełną wymianą pokoleń, czyli wyprodukowaniem takiej samej ilości potomków co początkowa populacja.

W procesie optymalizacji przeszukiwane są przestrzenie potencjalnych rozwiązań dla danego problemu w celu znalezienia najlepszego rozwiązania. Wcześniej wspomniana mutacja polega na tym, że zależnie od wartości prawdopodobieństwa może dojść do losowych zmian wartości w kodzie. Im większa wartość parametru tym więcej mutacji.

Listing 1: Algorytm genetyczny - mutacja invert

```
//Funkcja pomocnicza do mutacji invert
 1
 2
    void Genetic::invert(int i, int j, vector<int>& wektor) {
 3
        int tempi;
 4
        for (; i < j; i++, j--) {
 5
            tempi = wektor[i];
 6
            wektor[i] = wektor[j];
 7
            wektor[j] = tempi;
 8
        }
9
   }
10
    void Genetic::inversionMutation(vector<int>& wektor) {
11
        int i, j;
12
        do {
13
            i = rand() % size;
14
            j = rand() \% size;
15
        \} while (i == j);
16
        if (i \le j) 
17
            invert(i, j, wektor);
18
        }
19
        else {
20
            invert(j, i, wektor);
21
        }
22
```

```
1
   void Genetic::scrambleMutation(vector<int>& wektor) {
2
        vector < int > pozycje (wektor.size());
3
        int 1 = pozycje.size();
4
        //kopiowanie osobnika do mutacji
5
        for (int i = 0; i < wektor.size(); i++) {
6
            pozycje[i] = wektor[i];
7
        for (int k = 0; k < 5; k++) {
8
9
            int r1 = rand() % size;
10
            int r2 = rand() \% size;
            //upewniamy sie, ze r1 jest wieksze od r2
11
            while (r1 >= r2)\{ r1 = rand() \% \text{ size}; r2 = rand() \% \text{ size}; \}
12
13
            // scrambling
14
            for (int i = 0; i < 10; i++) {
15
                int i1 = rand() % (r2 + 1 - r1 + 1) + r1;
                int i2 = rand() \% (r2 + 1 - r1 + 1) + r1;
16
17
                int a = pozycje[i1];
                pozycje[i1] = pozycje[i2];
18
19
                pozycje[i2] = a;
20
            }
21
22
        // przepisywanie do osobnika zmutowanej wersji
23
        for (int i = 0; i < wektor.size(); i++) {
24
            wektor[i] = pozycje[i];
25
        }
26
```

Krzyżowanie polega z kolei na wymianie fragmentów kodu pomiędzy rodzicami. W wyniku tego procesu tworzy się potomstwo. Zastosowano krzyżowanie Ox, gdzie przedział dziedziczonej części w pierwszym etapie jest generowany losowo.

Listing 3: Algorytm genetyczny - krzyżowanie Ox

```
vector < int > Genetic :: krzyzowanieOx (vector < int > pierwszyWektor,
2
   vector < int > drugiWector) {
3
        int odkad = rand() % size;
4
        int dokad = rand() % size;
5
        vector < int > wynik(size);
6
        vector < int > czyBylo(size);
7
        for (int i = 0; i < size; i++) {
8
            czyBylo[i] = 0;
9
        }
10
        for (int i = odkad; i != dokad; i = (i + 1) \% size) {
11
12
            wynik[i] = pierwszyWektor[i];
            czyBylo[pierwszyWektor[i]] = 1; // wpisuje wartosc
13
            //1 w miejsce numerow genow, kt re wzialem z pierwszego wektora
14
15
        int gdzie = (dokad) % size;
16
17
        for (int i = 0; i < size; i++) {
18
            if (czyBylo[drugiWector[(dokad + i) % size]] == 0) {
```

```
//tam gdzie jest zero przepisuje wartości z drugiego wektora
wynik[gdzie] = drugiWector[(dokad + i) % size];
gdzie = (gdzie + 1) % size;

}

return wynik;
```

W zaimplementowanym algorytmie reprodukcja polega na wybraniu najlepszych rozwiązań ze zbioru rozwiązań potomnych i aktualnych. Ilość tych rozwiązań jest równa początkowej wielkości populacji. Wykorzystywana jest tutaj funkcja przystosowania (f(x)). Aby zabezpieczyć przed utratą różnorodności genetycznej populacji zastosowano mutacje wywołujące sporadyczne zmiany w chromosomach osobników.

2.1.1 Schemat działania oraz kod głównej funkcji algorytmu

Schemat działania algorytmu:

- 1. Numer populacji t=0.
- 2. Wygeneruj początkową populację P(t).
- 3. Dla każdego osobnika populacji wylicz wartość f(x).
- 4. Wybierz osobniki o najlepszych wskaźnikach f(x).
- 5. Utwórz nową populację P(t+1) na podstawie mutacji i krzyżowania wybranych osobników z prawdopodobieństwem Pm oraz Pk.
- 6. Idź do punktu nr 3, dopóki nie spełniony jest warunek stopu.

Listing 4: Algorytm genetyczny - główna funkcja

```
vector < int > Genetic :: genetic Alg (int liczba Osobnikow,
   int liczbaNajlepszychOsobnik w ,float jakCzestoMutacja,
   float jakCzestoKrzyzowanie, int mutation) {
4
5
        vector < int > * osobniki;
6
        osobniki = new vector < int > [liczbaOsobnikow];
7
        vector < int >* noweOsobniki;
8
        noweOsobniki = new vector < int > [liczbaOsobnikow];
9
        vector < int > najlepszyOsobnik;
10
        // przygotowanie macierzy - pierwszy losowy zbior populacji
11
        for (int i = 0; i < liczbaOsobnikow; i++) {</pre>
12
13
14
            osobniki[i].resize(size);
15
            noweOsobniki[i].resize(size);
16
            randomPerm(osobniki[i]);
17
       }
        // tworzymy struktur
                                pary, kt ra wskazuje funckj celu
18
        // osobnika oraz jego indeks
19
        pair <double , int >* rozwiazanie;
20
21
        rozwiazanie = new pair <double, int >[liczbaOsobnikow];
22
23
        int pokolenie = 10; //liczba pokolen po ktorych zakonczy sie algorytm
        double ostatni = INT_MAX;
24
25
26
       // g wna p tla
```

```
27
        while (pokolenie > 0) {
28
29
            //przypisywanie kosztu i numeru danego osobnika
            for (int i = 0; i < liczbaOsobnikow; i++) {</pre>
30
                rozwiazanie[i]. first = road(osobniki[i]);
31
32
                rozwiazanie[i].second = i;
33
            }
34
35
            //sortowanie rosn ce
36
            sort(rozwiazanie, rozwiazanie + liczbaOsobnikow);
37
            // warunek stopu
38
39
            if (ostatni > rozwiazanie[0].first) {
                ostatni = rozwiazanie[0]. first;
40
                pokolenie = 10;
41
                // przypisanie najlepszego osobnika o najni szym koszcie
42
43
                najlepszyOsobnik = osobniki[rozwiazanie[0].second];
44
            }
            else {
45
46
                pokolenie --;
47
            }
48
            // krzyzowanie i mutowanie osobnikow
49
            for (int i = 0; i < liczbaOsobnikow; <math>i++) {
50
51
                // je eli prawdopodobienstwo jest dobre,
52
                //to nastepuje krzyzowanie
                if (float(rand()) / RAND_MAX < jakCzestoKrzyzowanie) {</pre>
53
54
                     // wybranie dw ch najlepszych osobnik w do krzy owania
55
                     noweOsobniki[i] =
                     krzyzowanieOx (osobniki [rozwiazanie
56
57
                     [rand() % liczbaNajlepszychOsobnik w]. second],
58
                     osobniki [rozwiazanie [rand() %
59
                     liczbaNajlepszychOsobnik w].second]);
60
                }
61
                else {
62
                     noweOsobniki[i] = osobniki[i];
63
                // je eli prawdopodobie stwo jest dobre, to nastepuje mutacja
64
65
                if (float(rand()) / RAND_MAX < jakCzestoMutacja) {</pre>
                     if (mutation = 1) {
66
                         swapMutation(noweOsobniki[i]);
67
68
                     if (mutation == 2) {
69
70
                         inversionMutation(noweOsobniki[i]);
71
72
                     if (mutation == 3) {
73
                         scrambleMutation(noweOsobniki[i]);
74
75
                }
76
            }
```

```
77
             vector <int>* temp = osobniki;
78
             osobniki = noweOsobniki; //wrzucenie nowego pokolenia
79
             //po zmianach genetycznych
80
             noweOsobniki = temp;
81
        if (testy == true) {
   cout << "Koszt: " << rozwiazanie[0].first << endl;</pre>
82
83
84
85
        delete[] osobniki;
        delete[] noweOsobniki;
86
87
        delete[] rozwiazanie;
88
        return najlepszyOsobnik;
89
   }
```

3 Eksperymenty obliczeniowe

Obliczenia zastały wykonane na laptopie z procesorem i7-6700HQ, kartą graficzną NVIDIA GeForce GTX 960M, 8GB RAM i DYSK SSD. Jako miarę jakości algorytmu przyjęto średnie procentowe odchylenie (Percentage Relative Deviation, PRD) najlepszego otrzymanego rozwiązania π względem rozwiązania referencyjnego π^{ref} :

$$PRD(\pi) = 100\% (C_{max}(\pi) - C_{max}(\pi^{ref})) / C_{max}(\pi^{ref})$$
(1)

Wszystkie wyniki oraz wykresy zebrano i przedstawiono na rysunkach na końcu sprawozdania, gdzie:

- $PRD_{GA}(\%)$ średnie procentowe odchylenie dla algorytmu genetycznego,
- π najlepsze możliwe rozwiązanie (optimum) dla algorytmu genetycznego,
- π^{ref} rozwiązanie referencyjne dla algorytmu genetycznego,
- n rozmiar instancji,
- t czas wykonywania algorytmu,
- $P_k = 0.9$ prawdopodobieństwo krzyżowania,
- $P_m = 0.1$ prawdopodobieństwo mutacji,
- p = 10 liczba populacji

4 Wnioski

Zaimplementowany algorytm genetyczny, którego wyniki są zaprezentowane poniżej, cechuje się szybkim czasem działania dla stosunkowo małej wielkości populacji początkowej. Czas działania algorytmu uzależniony jest w dużym stopniu uzależniony od wielkości instancji jaka została użyta do testów oraz liczby potomków w populacji. Im większa instancja oraz większa populacja tym dłuszy czas wykonywania algorytmu.

Podczas testów zauważono znaczący wzrost jakości algorytmu, gdy podwyższono liczbę osobników o drugą potęgę rozmiaru instancji (n^2) . Widać również poprawę jakości, gdy zwiększono procent wybranych najlepszych osobników. Wynik niestety jest jednak czasami dosyć trudny do przewidzenia ze względu na to, że dużą wagę w wyborze parametrów odgrywa w nim prawdopodobieństwo, co wpływa na pewną losowość zaprezentowanego problemu.

Literatura

- [1] 4. klasyczny algorytm genetyczny. https://www.math.uni.lodz.pl/ marta/ $2012_2013_z/zz/gen.pdf$. Accessed: 2019-01-26.
- [2] Algorytmy genetyczne (ag). http://www.zio.iiar.pwr.wroc.pl/pea/w $9_g a_t sp.pdf$. Accessed: 2019 12 19.
- [3] Algorytmy genetyczne dla problemu komiwojażera. http://aragorn.pb.bialystok.pl/ wkwedlo/EA5.pdf. Accessed: 2019-01-26.

Mutacja Swap	π = 39		
% najlepszych	1%	10%	30%
I. osobników		t	
n	0,39	0,36	0,34
n ²	3,56	3,93	6,69
4*n ²	14,24	19,36	22,86
	π ^{ref}		
n	52,00	44,00	42,00
n ²	39,00	39,00	39,00
4*n ²	39,00	39,00	39,00
	PRD _{GA} [%]		
n	33,33	12,82	7,69
n ²	0,00	0,00	0,00
4*n ²	0.00	0.00	0.00

Rysunek 1: Pomiary dla pliku br17.atsp

Rysunek 2: Wykres czasu dla pliku br17.atsp

Rysunek 3: Wykres błędu dla pliku br17.atsp

Mutacja Swap		$\pi = 1608$	
% najlepszych	1%	10%	30%
I. osobników		t	
n	13,27	10,64	9,23
n ²	310,57	417,94	1077,19
4*n²	942,73	1665,21	5205,55
	π ^{ref}		
n	3428,00	3330,00	2903,00
n ²	1770,00	1657,00	1674,00
4*n ²	1651,00	1628,00	1670,00
	PRD _{GA} [%]		
n	113,18	107,09	80,53
n ²	10,07	3,05	4,10
4*n²	2,67	1,24	3,86

Rysunek 4: Pomiary dla pliku ftv55.atsp

Rysunek 5: Wykres czasu dla pliku ftv55.atsp

Rysunek 6: Wykres błędu dla pliku ftv55.atsp

Mutacja Scramble	$\pi = 25395$		
% najlepszych	1%	10%	30%
I. osobników	t		
n	19,91	14,39	13,82
n ²	317,88	559,00	1153,91
4*n ²	1250,56	1823,42	5790,44
	π ^{ref}		
n	43243,00	43446,00	32225,00
n ²	26054,00	25445,00	25395,00
4*n ²	25813,00	25395,00	25445,00
	PRD _{GA} [%]		
n	70,28	71,08	26,90
n ²	2,59	0,20	0,00
4*n ²	1,65	0,00	0,20

Rysunek 7: Pomiary dla pliku brazil58.tsp

Rysunek 8: Wykres czasu dla pliku brazil58.tsp

Rysunek 9: Wykres błędu dla pliku brazil58.tsp

Mutacja Invert	π = 1950		
% najlepszych	1%	10%	30%
I. osobników		t	
n	21,48	17,25	14,08
n ²	671,68	1180,83	2044,01
4*n ²	2326,40	4488,14	10089,70
	π^{ref}		
n	4449,00	3912,00	3467,00
n ²	2345,00	2096,00	2141,00
4*n ²	2037,00	1968,00	2082,00
	PRD _{GA} [%]		
n	128,15	100,62	77,79
n ²	20,26	7,49	9,79
4*n²	4,46	0,92	6,77

Rysunek 10: Pomiary dla pliku ftv70.atsp

Rysunek 11: Wykres czasu dla pliku ftv70.atsp

Rysunek 12: Wykres błędu dla pliku ftv70.atsp

Mutacja Swap		π = 36230	
wutacja swap			
% najlepszych	1%	10%	30%
I. osobników		t	
n	42,48	40,78	50,89
n ²	2344,41	2975,94	4841,70
4*n ²	6157,90	12021,71	38209,11
	π ^{ref}		
n	72039,00	67652,00	57367,00
n ²	40201,00	37499,00	38681,00
4*n ²	38368,00	36604,00	36734,00
	PRD _{GA} [%]		
n	98,84	86,73	58,34
n ²	10,96	3,50	6,77
4*n ²	5,90	1,03	1,39

Rysunek 13: Pomiary dla pliku kro124p.atsp

Rysunek 14: Wykres czasu dla pliku kro124p.atsp

Rysunek 15: Wykres błędu dla pliku kro124p.atsp

Mutacja Swap		$\pi = 2755$	
% najlepszych	1%	10%	30%
I. osobników		t	
n	132,46	136,17	215,51
n ²	13819,40	29510,62	36789,75
4*n ²	48572,12	122296,40	197126,42
		π^{ref}	
n	9742,00	8412,00	7847,00
n ²	3782,00	3334,00	3042,00
4*n²	3428,00	3026,00	3011,00
	PRD _{GA} [%]		
n	253,61	205,34	184,83
n ²	37,28	21,02	10,42
4*n ²	24,43	9,84	9,29

Rysunek 16: Pomiary dla pliku ftv170.atsp

Rysunek 17: Wykres czasu dla pliku ftv170.atsp

Rysunek 18: Wykres błędu dla pliku ftv170.atsp

Porównanie wyników dla selekcji = 10% i l. osobników = n

Rysunek 19: Porównanie czasu wykonania algorytmu dla różnych instacji przy selekcji najlepszych osobników = 10% oraz liczbie osobników = n