

Independent Testing Laboratory
Accredited by ACCREDIA according to UNI CEI EN ISO/IEC 17025 cert. nr. 0168

TEST REPORT nr. R18277401 Federal Communication Commission (FCC)

Test item

Description...... CARD READER

Trademark...... SCHINDLER

Model/Type PCR-TWN4LF

FCC ID XFIPCRTWN4LF

Test Specification

Standard...... FCC Rules & Regulations, Title 47:2017

Part 15 paragraph(s): 203, 204, 205, 207 and 209

Client's name TECNOLAB del Lago Maggiore S.r.l.

Address Via dell'Industria, 20 – 28924 Verbania (VB) – ITALY

Manufacturer's name: SCHINDLER ELEVATOR Ltd

Address Via della Pace, 22 – 6600 Locarno (CH) – SWITZERLAND

Report

Tested by A. Bertezzolo

This test report shall not be reproduced except in full without the written approval of CMC.

The test results presented in this report relate only to the item tested.

page 1 of 30

Test report R18277401 Rev. 1.0 Order M182774 page 1 of 30

Index

1.	SUMMARY	3
2.	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	4
	2.1 Test Site	
3.	TESTING AND SAMPLING	4
4.	OPERATIVE CONDITIONS	4
5.	PHOTOGRAPH(S) OF EUT	5
	5.1 Photograph(s) of EUT	5
6.		
7.	MEASUREMENT UNCERTAINTY	7
8.	REFERENCE DOCUMENTS	9
9.	DEVIATION FROM TEST SPECIFICATION	10
10	TEST CASE VERDICTS	10
11		
	11.1 Conducted emissions	

1. Summary

Standard:

FCC Rules & Regulations, Title 47:2017

Part 15 paragraph(s): 203, 204, 205, 207 and 209

Test specifications	Environmental Phenomena	Tests sequence	Result
Part 15.207	Conducted emissions	1	Complies
Part 15.209	Radiated emissions	2	Complies

The Test Report was given to the Client representatives for necessary documentation of ratification of the tested equipment and it is valid for the FCC certification

2. Description of Equipment under test (EUT)

Power supply: 5 Vdc

Serial Number....: --

Type of equipment: ☑ Transmitter Unit

☑ Receiver Unit

Type of station.....: ☑ Fixed station

Portable station

Mobile station

Nominal frequency....: 125 kHz

2.1 Test Site

Company: CMC Centro Misure Compatibilità S.r.l.

Address: Via dell'Elettronica, 12/C

36016 Thiene (VI) – ITALY

Test site facility's FCC registration number: 182474

3. Testing and sampling

Date of receipt of test item: 03.12.18

Testing start date: 18.01.19

Testing end date: 01.04.19

Samples tested nr.....: 1

Sampling procedure. Equipment used for testing was picked up by the

manufacturer, at the end of the production

process with random criterion

4. Operative conditions

EUT exercising: EUT supplied with USB signal floating, continuous

transmission @125 kHz frequency

5. Photograph(s) of EUT

5.1 Photograph(s) of EUT

6. Equipment list

ld. number	Manufacturer	Model	Description	Serial number	Last calibration	Due date calibration
CMC \$127	Schaffner	HLA6120	Loop Antenna	1191	March '17	March '20
CMC \$164	Rohde & Schwarz	ESU26	EMC receiver	100052	January '19	January '20
CMC \$010	Rohde & Schwarz	ESH3-Z2	Impulses Limiting Device		January '19	January '20
CMC \$200	Schwarzbeck	NSLK 8128	V-LISN	8128-273	January '19	January '20
CMC \$206	Rohde & Schwarz	ESCI 7	EMC Receiver 9KHz-7GHz	100781	January '19	January '20
CMC \$271	Schwarzbeck	BBA 9106 + VHBB 9124	Biconical Antenna (30- 300MHz)	831	June '16	June '19
CMC \$287	Schwarzbeck	VUSLP 9111B	Broadband Antenna	9111B-203	June '16	June '19

7. Measurement uncertainty

Test	Test Setup	Expanded uncertainty	Note
Conducted emission CISPR 16 LISN 50uH 0,009-0,0150MHz	PE001_01	3,4 dB	1
Conducted emission CISPR 16 LISN 50uH 0,150-30,0MHz	PE001_01	3,0 dB	1
Conducted emission CISPR 16 Voltage Probe 0,15-30MHz	PE001_02	2,9 dB	1
Conducted emission CISPR 16 Current Probe 0,15-30MHz	PE001_03	2,6 dB	1
Conducted emission CISPR 16 ISN 0,15-30MHz	PE001_04	4,7 dB	1
Clic CISPR 16 LISN 50uH 0,150-30,0MHz	PE001_05	3,1 dB	1
Disturbance Power 30-300 MHz	PE002_01	3,6 dB	1
Radiated Emission LAS 0,15-30MHz	PE003_01	2,0 dB	1
Radiated Emission CISPR 16 Loop Ant. 0,15-30MHz	PE004_01	4,0 dB	1
Radiated Emission CISPR 16 Bicon. Ant. 30-300MHz	PE004_02	3,9 dB	1
Radiated Emission CISPR 16 LogP. Ant. 300-1000MHz	PE004_03	3,8 dB	1
Radiated Emission CISPR 16 Horn Ant. 1-18GHz	PE004_04	4,2 dB	1
Human Exposure to electromagnetic fields	PE005_01	23,6 %	1
Harmonic current emissions test	PE006_01	10 mA + 2,6 %	1
Voltage fluctuation and flicker test	PE007_01	4,8 %	1
Radiated Immunity 80MHz-6GHz	PE102_XX	2,1 dB 0,82 V/m a 3V/m	1
Conducted Immunity 0,15-230MHz	PE105_XX	1,2 dB 0,44 V a 3V	1
AC Magnetic field	PE106_01	1,55 % 0,15 A/m a 10A/m	1
Pulse Magnetic field	PE107_01	6,25 % 18,7 A/m a 300A/m	1
Dumped Magnetic field	PE108_01	6,25 % 1,87 A/m a 30A/m	1
Common mode conducted immunity	PE112_01	2,21 % 0,22 V a 10V	1

Test	Test Setup	Expanded uncertainty	Note
Power/Spurious 9kHz-30MHz	PR001_01	4,0 dB	1
Power/Spurious ERP 30-1000MHz d=10m	PR001_02+03	4,7 dB	1
Misura della potenza EiRP 1-18GHz d=3m	PR001_04	4,7 dB	1
Misura della potenza EiRP 18-40GHz d=3m	PR001_05	5,4 dB	1
Frequency error	PR002_01+02	< 1x10-7	1
Timing zero span (1001pts.)	PR002_01+02	0,2 % SWT	1
Modulation bandwidth	PR002_01+02	< 1x10-7	1
Conducted RF power and spurious emission	PR002_01+02	1,1 dB	1
Adjacent channel power	PR002_01+02	1,1 dB	1
Blocking	PR002_01+02	1,1 dB	1

Test	Test Setup	Expanded uncertainty	Note
Electrostatic discharge immunity test	PE101_0X		2
Electrical fast transients / burst immunity test	PE103_0X		2
Surge immunity test	PE104_0X		2
Short interruption immunity test	PE109_01		2
Rev_19_01 date 14/01/2019			

Note 1:

The expanded uncertainty reported according to the document EA-4-02 is based on a standard uncertainty multiplied by a coverage factor of K=2, providing a level of confidence of p=95%

Note 2:

It has been demonstrated that the used test equipment meets the specified requirements in the standard with at least a 95% confidence, covering factor k = 2

8. Reference documents

Reference no.	Description
FCC Rules and Regulation Title 47 part 15:2017	
ANSI C63.4:2014	American National Standard for Methods of Measuring of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz – 40 GHz
ANSI C63.10:2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
Internal Procedure PM001 rev. 3.0 (Quality Manual)	Measure Procedure
Internal procedure INC, Mirey, 9.1 (Quality Manual)	Measurement uncertainty calculation

9. Deviation from test specification

None

10. Test case verdicts

Test case does not apply to the test object: N.A.

Test item does meet the requirement.....: Complies

Test item does not meet the requirement.....: Does not comply

Test not performed: N.E.

11. Results

In this clause tests results are reported.

Measurement uncertainty is in accordance with document CMC INC_M rev. 9.1.

Judgement of compliance:

In agreement with ILAC-G8: 03/2009 Guidelines on the Reporting of Compliance with Specification.

11.1 **Conducted emissions**

Test set-up and execution

- FCC Rules and Regulation; Titles 47 Part 15.207
- Internal procedure PM001
- See clause 4 of this test report

EUT exercising

See clause 4 of this test report

Test specification

Port: Main port

Frequency range: 150 kHz - 30 MHz

Environmental conditions

Temperature	Atmospheric pressure	Relative humidity
(°C)	(kPa)	(%)
22	101	45

Acceptance limits

7.000 pranto minio					
Frequency range (MHz)	dB(μV) Quasi-peak	dB(μV) Average			
0,15 to 0,50	66 to 56	56 to 46			
0,50 to 5	56	46			
5 to 30	60	50			

Test configuration and test method

Test site:

Shielded chamber

Auxiliary equipment:

See clause 4 of this test report

Test equipment used

CMC \$010, CMC \$200, CMC \$206

Measurement uncertainty: See clause 7 of this

test report

Setup

Result

	Line	Graphs	Remarks	Result
	Ν	G18277408		Complies
	L1	G18277409		Complies
Remarks:	Tests perform	ned on 120 Vac side of PC		/

Graphs Legend

PK: Peak; QP [1s] (quasi-peak at 1 second) values are marked with a + AV: Average; AV [1s] (average at 1 second) values are marked with a X

Graphs

'ra	ce1:	B-QP		
'ra	ce2:	B-AV		
ra	ce3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT di
1	Quasi Peak	338 kHz	10.79	-48.45
2	Average	358 kHz	7.22	-41.55
2	Average	602 kHz	6.96	-39.03
1	Quasi Peak	822 kHz	10.09	-45.90
2	Average	934 kHz	6.93	-39.06
1	Quasi Peak	982 kHz	10.59	-45.40
1	Quasi Peak	4.998 MHz	25.56	-30.43
2	Average	4.998 MHz	25.01	-20.99
1	Quasi Peak	11.934 MHz	25.00	-35.00
2	Average	11.934 MHz	15.23	-34.76
1	Quasi Peak	24.998 MHz	46.26	-13.73
2	Average	24.998 MHz	46.39	-3.60

Гrа	ce1:	T PEAK LIST (Fina B-OP		
Гrа	ce2:	B-AV		
Гrа	ce3:	:		
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT di
1	Quasi Peak	330 kHz	10.38	-49.06
2	Average	338 kHz	6.89	-42.35
1	Quasi Peak	562 kHz	9.87	-46.12
2	Average	798 kHz	6.48	-39.51
2	Average	1.634 MHz	6.62	-39.38
1	Quasi Peak	1.718 MHz	9.56	-46.43
1	Quasi Peak	4.998 MHz	26.22	-29.77
2	Average	4.998 MHz	25.64	-20.35
1	Quasi Peak	11.934 MHz	23.73	-36.26
2	Average	11.934 MHz	15.13	-34.86
1	Quasi Peak	24.998 MHz	46.46	-13.53
2	Average	24.998 MHz	46.60	-3.39

Bertezzolo 18277409

Result: The requirements are met

11.2 Radiated emissions

Test set-up and execution

- FCC Rules and Regulation; Titles 47 Part.
 15.209
- Internal procedure PM001
- See clause 4 of this test report

EUT exercising

See clause 4 of this test report

Test specification

Port: Enclosure

Frequency range: 0,009 MHz – 300 MHz

Antenna polarization: Horizontal (H) – Vertical (V)

EUT – Antenna distance: 10 m EUT height about the floor: 80 cm

Test configuration and test method

Test site:

Semi-anechoic chamber

Auxiliary equipment:

See clause 4 of this test report

Test equipment used

CMC \$127, CMC \$164, CMC \$271, CMC \$287 Measurement uncertainty: See clause 7 of this test report

Environmental conditions

(%)
100 45
(

Acceptance limits

Frequency range (MHz)	Test distance (m)	Limits [dB(μV/m)]	
0,009 to 0,490	300	48,5 to 13,8	
0,490 to 1,705	30	33,8 to 22,9	
1,705 to 30	30	29,5	
30 to 88	3	40	
88 to 216	3	43,5	
216 to 960	3	46,0	
Above 960	3	53,9	
	Test distance (m)	Linear average detector [dB(µV/m)]	Peak detector [dB(µV/m)]
Above 1000	3	53,9	73,9

Remarks: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Setup

Result

Polarization	Frequency Range (MHz)	Graphs	Remarks	Result
Loop	0,009 – 30	G18277403		Complies
Н	30 – 300	G18277404		Complies
V	30 – 300	G18277405		Complies
V	300 – 1000	G18277406		Complies
Н	300 – 1000	G18277407		Complies

Remarks: Measurements have been performed with an EUT – antenna distance of 10 m.

Measured values have been corrected with different conversion factors, based on the

measuring distance provided by the standard.

Checks carried out in the open field area show that the values measured in the semi-

anechoic chamber are worse in the frequency range 0,009 - 30 MHz

Graphs Legend

PK: Peak; QP [1s] (quasi-peak at 1 second) values are marked with a + AV: Average; AV [1s] (average at 1 second) values are marked with a x

Graphs

P ac co	cel:	FCC209A	Measurement Result	5)
	ce2:	FCCZO3A		
	cez: .ce3:			
LLd		PDECHENGY	TENTET -ID-AT/	DELEN TAKE JE
7	TRACE	FREQUENCY 125 kHz	LEVEL dBµV/m	DELTA LIMIT dE
1	Quasi Peak		-15.30	
1	Quasi Peak	514 kHz	8.43	-24.95
1	Quasi Peak	726 kHz	7.51	-22.86
1	Quasi Peak	1.51 MHz	6.68	-17.34
1	Quasi Peak	2.174 MHz	6.78	-22.75
1	Quasi Peak	4.01 MHz	6.65	-22.88
1	Quasi Peak	6.114 MHz	7.19	-22.34
1	Quasi Peak	9.898 MHz	7.90	-21.64
1	Quasi Peak	16.206 MHz	8.28	-21.25
1	Quasi Peak	22.234 MHz	7.11	-22.42
1	Quasi Peak	29.822 MHz	6.23	-23.30

		DIT PEAK LIST (Final	Measurement Result	
Tra	cel:	FCC209B		
Tra	ce2:			
Tra	ce3:			
	TRACE	FREQUENCY	LEVEL dBµV/m	DELTA LIMIT dB
1	Quasi Peak	30.08 MHz	22.56	-17.43
1	Quasi Peak	44.04 MHz	19.42	-20.57
1	Quasi Peak	62.64 MHz	18.16	-21.83
1	Quasi Peak	80.6 MHz	17.81	-22.18
1	Quasi Peak	151.04 MHz	22.10	-21.42
1	Quasi Peak	214.04 MHz	25.15	-18.37
1	Quasi Peak	297.28 MHz	29.48	-16.54

LEVEL dBμV/m 28.96 24.97 25.38 31.86	DELTA LIMIT dB -11.03 -15.02 -14.61
28.96 24.97 25.38	-11.03 -15.02
28.96 24.97 25.38	-11.03 -15.02
24.97 25.38	-15.02
25.38	
	-14.61
31.86	
	-11.65
32.98	-10.53
33.76	-9.75
39.09	-4.43
37.21	-6.30
39.19	-4.32
32.04	-11.47
29.47	-14.04
z 27.79	-15.72
z 27.00	-19.02
36.28	-9.73
z 35.78	-10.23
	39.09 37.21 39.19 32.04 29.47 2 27.79 2 27.00 2 36.28

		Measurement Results	
	CC209B		
race2:			
'race3: -			
TRACE	FREQUENCY	LEVEL dBµV/m	DELTA LIMIT di
The state of the s	311.88 MHz	30.20	-15.82
	339 MHz	32.74	-13.27
1 Quasi Peak 3	360 MHz	31.41	-14.60
1 Quasi Peak 3	366.16 MHz	32.53	-13.48
1 Quasi Peak 3	393.24 MHz	35.98	-10.03
1 Quasi Peak 4	120.36 MHz	39.59	-6.42
1 Quasi Peak 4	147.48 MHz	38.04	-7.97
1 Quasi Peak 4	174.6 MHz	35.78	-10.23
1 Quasi Peak 5	89.08 MHz	31.15	-14.86
1 Quasi Peak 6	514.04 MHz	32.41	-13.61
1 Quasi Peak 7	98.4 MHz	34.05	-11.96
1 Quasi Peak	57.76 MHz	35.81	-10.20

Tra	cel:	FCC209B	. Measurement Result	
Tra	ce2:			
Tra	ce3:			
	TRACE	FREQUENCY	LEVEL dBµV/m	DELTA LIMIT de
1	Quasi Peak	342.88 MHz	25.42	-20.59
1	Quasi Peak	364.28 MHz	25.86	-20.15
1	Quasi Peak	434.44 MHz	27.23	-18.78
1	Quasi Peak	447.6 MHz	27.61	-18.40
1	Quasi Peak	498.44 MHz	29.31	-16.70
1	Quasi Peak	591.56 MHz	31.32	-14.69
1	Quasi Peak	599 MHz	31.59	-14.42
1	Quasi Peak	602 MHz	32.21	-13.80
1	Quasi Peak	691.6 MHz	32.88	-13.14
1	Quasi Peak	738.16 MHz	33.38	-12.63
1	Quasi Peak	786.48 MHz	33.92	-12.09
1	Quasi Peak	882.24 MHz	35.49	-10.52
1	Quasi Peak	953.36 MHz	35.75	-10.26

Bertezzolo 18277407

Result: The requirements are met