What is the main difference between passive reinforcement learning and evaluating a policy π by solving an MDP (Markov Decision Process) model?

There is no difference because passive reinforcement learning is also to evaluate a policy π .

In passive reinforcement learning, the transition model and the reward function are unknown.

Passive reinforcement learning can find the optimal

Passive reinforcement learning can learn the action-value function Q(s,a) while Policy Evaluation with MDP can learn the state-value function V(s).

2 of 10

Initialize: $V(s) \in \mathbb{R}, \text{ arbitrarily, for all } s \in \mathbb{S}$ $Returns(s) \leftarrow$ an empty list, for all $s \in S$ Loop forever (for each episode): Generate an episode following π : $S_0, A_0, R_1, S_1, A_1, R_2, \dots, S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$ Loop for each step of episode, t = T - 1, T - 2, ..., 0: $G \leftarrow \gamma G + R_{t+1}$ Unless S_t appears in $S_0, S_1, ..., S_{t-1}$: Append G to $Returns(S_t)$ $V(S_t) \leftarrow \text{average}(Returns(S_t))$ Q Zoom

What does the following algorithm do?

Estimating a state-value function for a policy π .

Estimating the optimal state-value function.

Estimating the optimal action-value function.

SUBMIT ANSWER

Initialize:

 $V(s) \in \mathbb{R}$, arbitrarily, for all $s \in \mathcal{S}$ $Returns(s) \leftarrow$ an empty list, for all $s \in S$

Loop forever (for each episode): Generate an episode following $\pi\colon S_0,A_0,R_1,S_1,A_1,R_2,\ldots,S_{T-1},A_{T-1},R_T$ Loop for each step of episode, $t=T-1,T-2,\dots,0$:

 $G \leftarrow \gamma G + R_{t+1}$ Unless S_t appears in $S_0, S_1, \ldots, S_{t-1}$:

Append G to $Returns(S_t)$ $V(S_t) \leftarrow \text{average}(Returns(S_t))$

Given the following environment with five states A, B, C, D, and E where A and D are two terminal states.

Let's consider the following policy π : $\pi(A)$ =exit, $\pi(B)$ =right, $\pi(C)$ =up, $\pi(D)$ =exit, $\pi(E)$ =up.

We use the **Monte Carlo Direct Evaluation** method to evaluate the policy π . We obtain **four episodes** as in the below picture.

Assuming the discount factor γ =1, compute the expected utility of the five states V(A)=?, V(B)=?, V(C)=?, V(D)=?, V(E)=?

- B V(A) = 8, V(B) = 6, V(C)=2.5, V(D) = -10, V(E) = -3
- C V(A) = 6, V(B) = 3, V(C)=2.5, V(D) = -2.5, V(E) = -1.5
- D) V(A) = 8, V(B) = 6, V(C)=2, V(D) = -10, V(E) = -6

SUBMIT ANSWER

4 of 10

What is the following algorithm?

A temporal difference learning algorithm to estimate the state-value function for a policy π .

SARSA algorithm for estimating the optimal state-value function.

D SARSA algorithm for estimating the optimal action-value function.

SUBMIT ANSWER

```
Algorithm parameter: step size \alpha \in (0,1]
Initialize V(s), for all s \in \mathbb{S}^+, arbitrarily except that V(terminal) = 0
Loop for each episode:
Initialize S
Loop for each step of episode:
A \leftarrow action given by \pi for S
Take action A, observe R, S'
V(S) \leftarrow V(S) + \alpha \left[R + \gamma V(S') - V(S)\right]
S \leftarrow S'
until S is terminal
```


Given the following environment with five states A, B, C, D, and E where A and D are two terminal states.

Let's consider the following

policy π : $\pi(A)$ =exit, $\pi(B)$ =right, $\pi(C)$ =right, $\pi(D)$ =exit, $\pi(E)$ =up.

We use the **Temporal Difference Learning** method to evaluate the policy $\boldsymbol{\pi}$.

We have two transitions as in the below picture. (B,right,C,-4) gives us a reward of -4. (C, right, D,-2) gives us a reward of -2.

Assuming the discount factor gamma=1, learning rate alpha=1/2, compute the expected utility of the five states after the two transitions V(A)=?, V(B)=?, V(C)=?, V(D)=?, V(E)=?

6 of 10

What is the key difference between passive reinforcement learning and active reinforcement learning?

SUBMIT ANSWER

```
\begin{split} &\text{Initialize:} \\ &V(s) \in \mathbb{R}, \text{ arbitrarily, for all } s \in \mathcal{S} \\ &Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S} \\ &\text{Loop forever (for each episode):} \\ &\text{Generate an episode following } \pi \colon S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T \\ &G \leftarrow 0 \\ &\text{Loop for each step of episode, } t = T-1, T-2, \ldots, 0 \colon \\ &G \leftarrow \gamma G + R_{t+1} \\ &\text{Unless } S_t \text{ appears in } S_0, S_1, \ldots, S_{t-1} \colon \\ &\text{Append } G \text{ to } Returns(S_t) \\ &V(S_t) \leftarrow \text{average}(Returns(S_t)) \end{split}
```

Initialize: $V(s) \in \mathbb{R}, \text{ arbitrarily, for all } s \in S \\ Returns(s) \leftarrow \text{an empty list, for all } s \in S \\ Loop forever (for each episode): \\ Generate an episode following <math>\pi\colon S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T \\ G \leftarrow 0 \\ Loop for each step of episode, <math>t = T-1, T-2, \ldots, 0$: $G \leftarrow \gamma G + R_{t+1} \\ \text{Unless } S_t \text{ appears in } S_0, S_1, \ldots, S_{t-1} \text{:} \\ \text{Append } G \text{ to } Returns(S_t) \\ V(S_t) \leftarrow \operatorname{average}(Returns(S_t))$

How should we change the following Reinforcement Learning algorithm so that we can estimate an optimal value function?

- A Estimating the action-value function $Q(S_t, A_t)$ instead of the state-value function $V(S_t)$.
- Performing one-step lookahead to improve the current estimated state-value function $V(S_t) \leftarrow \max P(S_{t+1}|S_t,A_t)[R(S_t,A_t,S_{t+1}) + \gamma V(S_{t+1})]$
- Performing policy improvement with respect to the current estimated action-value function, i.e., $\pi(S_t) \leftarrow \arg\max Q\left(S_t, a\right)$.
- Choose $S_0 \in S$, and $A_0 \in \mathrm{A}(S_0)$ randomly such that all pairs have probability >0 .

E A, B, and C need to be done.

A, C, and D need to be done.

G B and D need to be done.

 $\left(f{H}
ight)$ A, B, C, and D need to be done.

8 of 10

What is the Q(s,a) update rule in Q-Learning? α is the learning rate, γ is the discount factor.

 $\boxed{\textbf{C}} Q(s,a) \leftarrow \alpha(r + \gamma \max_{a'} Q(s',a') - Q(s,a))$

E All are correct.

SUBMIT ANSWER

A is the set of actions a's we can perform at each state $s \in S$. Let n = |A| be the number of actions.

An ε -greedy policy would choose a random action with probability ε .

Regarding an ε -greedy policy with respect to a action-value function Q(s,a), in each step of **Q-Learning** with ε -greedy exploration, what is the probability that the action with the maximum Q(s,a) value would be sampled?

SUBMIT ANSWER

We are using **Approximate Q-Learning** with linear Q-value approximation for a basic Pacman game with two features: the reciprocal distance to the nearest food dot f_{DOT} (with weight w_{DOT}) and the reciprocal distance to the nearest ghost f_{GST} (with weight w_{GST}).

Let's consider the current state s and action NORTH (going up) in the picture below. After Pacman performs the action NORTH, the blue ghost attacks Pacman, the obtained reward is -1000 in this transition, and the game ends.

Question: Using this transition, how the weights $\,w_{DOT}\,$ and $w_{GST}\,$ are updated?

Note: discount factor gamma γ =1, and learning rate alpha $\alpha=0.001$.

a = NORTHr = -1000

 $f_{GST}(s, NORTH) = 1.0$

Finished! Score: 9/10 Percent: 90%