Speaker Recognition with X-vectors and Keras

Research Questions

- 1. To what extent can speaker recognition be modelled using high-level instructions?
- 2. Which characteristics of Dialogue (Speech) can be used to recognise individual agents?
- 3. What is the accuracy of model?
- 4. How does the model compare to existing methods?
 - 1. How do we compare models

Keras

- High level framework
 - Describes model, layers, etc.
 - Less code
 - Scalable
 - Portable
- Baseline: 1D covnet as baseline
 - 98% test accuracy, score to beat

Deep learning development: layers, models, optimizers, losses, metrics...

Tensor manipulation infrastructure: tensors, variables, automatic differentiation, distribution...

Hardware: execution

Speaker Recognition Tasks

- Verification security
- Identification
 - Personalised Responses
- Informational Retrieval

Approaches to Speaker Recognition

- Gaussian Mixture Models
- Adapted GMM-Universal Background Model

- i-vectors
- X-vectors

I-vector and x-vector Pipeline

X-vector

- Map hi-dim utterances -> fixed length vectors
- Frame level layers are TDNN (temporal context)

Metrics

- Equal Error Rate (EER)
 - Single metric for comparing biometric algorithms
 - Point where FAR & FRR are euqal

Data

- Evaluated Spotify Podcasts
- Prominent Leader Speeches
 - 9,000 (1 second samples)
 - 6 unique speakers
 - Noise Samples for data augmentation
- Possible Choices
 - SITW Core
 - Vox Celeb

Results

 Data from X-VECTORS: ROBUST DNN EMBEDDINGS FOR SPEAKER RECOGNITION, 2018

Speaker in the Wild SRE16 Trained on EER & VoxCeleb2 (Lower is Better) 7.45 9.23 i-vector 4.16 **5.71** x-vector

Findings

- x-vector outperform i-vector models
- x-vectors can leverage larger datasets
 - Data augmentation also improves performance
- Commonality of feature extraction between I/x-vector pipelines allow direct comparison

Conclusion

- 1. To what extent can speaker recognition be modelled using high-level instructions?
 - Keras has robust API, full TF access
- 2. Which characteristics of Dialogue (Speech) can be used to recognise individual agents?
- 3. What is the accuracy of model?
 - Ongoing (desk research reports results around 98% accuracy)
- 4. How does the model compare to existing methods?
 - 1. How do we compare models
 - EER %
 - 2. X-vectors are higher performant than other common methods
 - 3. Can use larger datasets

Thank you

Questions?

