

Hafta 4

Dijital Görüntü İşleme

Dr. Öğr. Üyesi Süleyman Gökhan TAŞKIN gokhan@bandirma.edu.tr

Kaynak

 https://www.researchgate.ne t/publication/333856607_Digi tal_Image_Processing_Second Edition

Intensity Transformations

• Yoğunluk dönüşümleri

Basit Yoğunluk Dönüşümleri

- Yoğunluk Dönüşümleri kolay diyebileceğimiz görüntü işleme tekniklerinden biridir. Bu yöntemler giriş fotoğrafındaki piksel değerlerini (r), bir tane «Dönüşüm Fonksiyonu» ile çıkış fotoğrafındaki piksel değerlerine (s) dönüştürür.
- Genelde 8 bit fotoğraflarla uğraştığımız için giriş fotoğrafındaki piksel değerleri 0 ile 255 arasındadır.
- Dönüşüm fonksiyonu, bu değerleri yine 0-255 arasında olacak şekilde belirli bir düzene göre değiştirir.

- Bu dönüşümler genellikle fotoğrafların insan gözüne daha iyi gözükmesi amacı ile yapılır.
- Bu dönüşümlerin 3 çeşidi yoğun bir şekilde günümüzde kullanılıyor.
 - Lineer dönüşümler,
 - Logaritmik (ters logaritmik) dönüşümler,
 - Kuvvet dönüşümleri

•
$$s = T(r)$$

FIGURE 3.3 Some basic gray-level transformation functions used for image enhancement.

Log Transformations

- Log dönüşümü dar aralıktaki düşük yoğunluk değerlerini daha geniş bir aralığa dağıtır.
 Aynı zamanda yüksek yoğunluk değerlerini ise daha dar bir aralığa sıkıştırır.
- $\bullet s = c \log(1 + r)$

a b

FIGURE 3.5

(a) Fourier spectrum. (b) Result of applying the log transformation given in Eq. (3.2-2) with c = 1.

