

Sequential logic II

MC. Martin González Pérez

Agenda

- Finite State Machines
- Sequential building blocks

Finite State Machines

Finite State Machines

A sequential logic circuit is composed of combinational circuits and registers. The outputs of the registers represent the current state (\mathbf{Q}), while the inputs of the registers (\mathbf{D}) represent the next state. A system that includes **n registers** can be in one of a finite number of **states** ($\mathbf{2}^n$), which is why these sequential systems are called Finite State Machines (**FSMs**).

FSM Classification

FSM provides a systematic method to design synchronous sequential circuits. There are 2 types of FSM.

Moore FSM: Output depend only on current state.

Input Compute next state CLK

Next state D Q Actual state Compute output

 Mealy FSM: output depend on current state and input.

FSM design

A procedure for designing circuits using state machines consists of four steps.

- Draw a state transition diagram.
- Create a state table.
- Obtain state equation.
- Create sequential circuit.

State Diagram

In a state diagram, each possible state is represented as a circle and transitions from one state to another is represented as an arrow.

Moore FSM Mealy FSM

Exercise

Design a Moore machine based in the state diagram using D flip-flop.

State table

State diagram can be represented as state table.

State		Input	Next	State
Q1	Q0	A	Q1′	Q 0′
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

State table

State diagram can be represented as state table.

State		Input	Next	State
Q1	Q0	A	Q1'	Q0'
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	1
1	1	1	0	0

By using state tables, we can deduce Boolean equations for flip flop inputs.

Sta	State		Next	Next State		nput
Q1	Q0	Α	Q1′	Q0'	D1	D0
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	1	0	1
0	1	1	1	0	1	0
1	0	0	1	1	1	1
1	0	1	0	1	0	1
1	1	0	0	1	0	1
1	1	1	0	0	0	0

For D Flip Flop D=Q'

By using state tables, we can deduce Boolean equations for flip flop inputs.

Sta	State		Next	Next State		nput
Q1	Q0	A	Q1′	Q0'	D1	D0
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	1	0	1
0	1	1	1	0	1	0
1	0	0	1	1	1	1
1	0	1	0	1	0	1
1	1	0	0	1	0	1
1	1	1	0	0	0	0

For D Flip Flop D=Q'

Q1Q0 A	00	01	11	10
0	0		1	1
1	1	0	0	1

$$D0 = Q0\overline{A} + Q1\overline{Q0} + \overline{Q0}A$$

$$D1 = \overline{Q1}Q0A + Q1\overline{Q0}\overline{A}$$

Since Moore state machines only depend on the current state, we can obtain the output through a truth table that only involves the states.

Q1	Q0	Υ
0	0	0
0	1	1
1	0	0
1	1	1

$$Y = Q0\overline{Q1} + Q0Q1 = Q0$$

Creating schematic

$$D1 = \overline{Q1Q0A} + Q1\overline{Q0}\overline{A}$$

$$D0 = Q0\overline{A} + Q1\overline{Q0} + \overline{Q0}A$$

$$Y = Q0$$

Exercise

Design a Mealy machine based in the state diagram using JK flip-flop.

By using state tables, we can deduce Boolean equations for flip flop inputs.

Sta	ate	Input	Next	State	Output	FF ir	nput
Q1	Q0	Α	Q1′	Q0'	Y	D1	D0
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

By using state tables, we can deduce Boolean equations for flip flop inputs.

Sta	ate	Input	Next	Next State		FF in	nput
Q1	Q0	Α	Q1′	Q0′	Y	D1	D0
0	0	0	0	0	0	0	0
0	0	1	0	1	1	0	1
0	1	0	0	1	1	0	1
0	1	1	1	0	0	1	0
1	0	0	1	1	1	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	0	1
1	1	1	0	0	0	0	0

By using state tables, we can deduce Boolean equations for flip flop inputs.

St	ate	Input	Next	Next State		FF ir	nput
Q1	Q0	Α	Q1′	Q0'	Y	D1	D0
0	0	0	0	0	0	0	0
0	0	1	0	1	1	0	1
0	1	0	0	1	1	0	1
0	1	1	1	0	0	1	0
1	0	0	1	1	1	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	0	1
1	1	1	0	0	0	0	0

$$Y = D0 = Q0\overline{A} + Q1\overline{Q0} + \overline{Q0}A$$

$$D1 = \overline{Q1}Q0A + Q1\overline{Q0}\overline{A}$$

Q1Q0 A	00	01	11	10
0	0	1	1	1
1	1	0	0	1
1	1	0	0	1

Q1Q0 A	00	01	11	10
0	0	0	0	
1	0	(1)	0	0
•	0			

D0	Q1Q0 A	00	01	11	10
DU	0	0	1	1	1
	1	1	0	0	1

Creating schematic

$$D1 = \overline{Q1}Q0A + Q1\overline{Q0}\overline{A}$$

$$Y = D0 = Q0\overline{A} + Q1\overline{Q0} + \overline{Q0}A$$

Sequential building blocks

Counter


```
if (en)
  Q = Q + 1;
else
  Q = Q;
```


Counter with preset


```
if (en) {
    if (Q==preset) {
        Q = 0;
    }
    else
        Q = Q + 1;
    }
else
    Q = Q;
```


Shift register

Registers with load and hold

$$Q = D \circ Load + Q \circ \overline{Load}$$

Shift with load

