Chapitre 26

Étude métrique des courbes planes

Objectifs

- Calculs de longueur de courbes.
- Notion d'abscisse curviligne.
- Rayon de courbure et de centre de courbure.

Sommaire

I)	Longueur d'une courbe		
	1)) Définition	
	2)	Calcul de la longueur d'une courbe	
	3)	Abscisse curviligne	
II)	Repère de Frenet, courbure		
	1)	Définitions	
	2)	Calcul d'un rayon de courbure	
	3)	Calcul d'un centre de courbure	
III)	Exer	cices	

 ${\mathcal P}$ désigne un plan affine muni d'un repère orthonormal direct ${\mathcal R}=(O,\overrightarrow{\iota},\overrightarrow{J}).$

I) Longueur d'une courbe

1) Définition

Soit $C = ([a; b], f, \Gamma)$ une courbe de classe \mathscr{C}^k avec $k \ge 1$. On note S l'ensemble des subdivisions de l'intervalle [a; b]. Soit $\sigma = (t_0, \dots, t_n) \in S$, on pose pour $i \in [0..n]$, $M_i = M(t_i)$.

Remarque: Il découle de l'inégalité triangulaire que si $\sigma' \in S$ est plus fine que $\sigma \in S$, alors $L_{\sigma}(C) \leq L_{\sigma'}(C)$.

DÉFINITION 26.2

Lorsque l'ensemble $\{L_{\sigma}(C) \mid \sigma \in S\}$ est majoré dans \mathbb{R} , on dit que la courbe C est **rectifiable**, et on appelle longueur de la courbe le réel noté $L_{[a;b]}(C)$ défini par $L_{[a;b]}(C) = \sup L_{\sigma}(C)$. Sinon, on dit que C est de longueur infinie.

Exemple: Soient $A(x_A, y_A)$ et $B(x_B, y_B)$ deux points distincts, le segment [A, B] peut être paramétré par :

$$\begin{cases} x(t) = tx_A + 1(-t)x_B \\ y(t) = ty_A + (1-t)y_B \end{cases}$$

avec $t \in [0,1]$, pour toute subdivision σ de [0,1], il est facile de voir que $L_{\sigma}(C) = ||\overrightarrow{AB}|| = AB$, la courbe est donc rectifiable et de longueur AB.

Si $C = ([a;b], f, \Gamma)$ est de classe \mathscr{C}^1 , alors elle est rectifiable et on a l'encadrement :

$$||f(b)-f(a)|| \le L_{[a;b]}(C) \le \int_a^b ||f'(t)|| dt.$$

Preuve: Soit $\sigma = (t_0, \dots, t_n) \in S$, $i \in [0..n-1]$, $||f(t_{i+1}) - f(t_i)|| = ||\int_{t_i}^{t_{i+1}} f'(u) du \leq \int_{t_i}^{t_{i+1}} ||f'(u)|| du$, l'inégalité de droite en découle, et celle-ci entraîne que C est rectifiable. Quant à l'inégalité de gauche, on l'obtient en considérant la subdivision $\sigma = (a, b)$.

Calcul de la longueur d'une courbe

-THÉORÈME **26.2**

Si $C = ([a;b], f, \Gamma)$ est de classe \mathscr{C}^1 , alors : $L_{[a,b]}(C) = \int_a^b ||f'(u)|| du$.

Preuve: Soit $S:[a;b] \to \mathbb{R}$ la fonction définie par $S(t) = L_{[a;t]}(C)$, il est facile de vérifier que S est une fonction

croissante, que si h > 0, alors $S(t+h) = S(t) + L_{[t,t+h]}(C)$, et que si h < 0, alors $S(t+h) = S(t) - L_{[t+h;t]}(C)$. Supposons h > 0, alors $\|\frac{f(t+h)-f(t)}{h}\| \le \frac{S(t+h)-S(t)}{h} \le \frac{1}{h} \int_t^{t+h} \|f'(u)\| du$. En faisant tendre h vers 0^+ , le théorème des gendarmes s'applique et donne $\lim_{h\to 0^+} \frac{S(t+h)-S(t)}{h} = \|f'(t)\|$, donc la fonction S est dérivable à droite en t et $S'_d(t) = ||f'(t)||.$

Supposons h < 0, alors $\|\frac{f(t)-f(t+h)}{-h}\| \le \frac{S(t)-S(t+h)}{-h} \le \frac{1}{-h} \int_{t+h}^{t} \|f'(u)\| du = \frac{1}{h} \int_{t}^{t+h} \|f'(u)\| du$. En faisant tendre h vers 0^- , le théorème des gendarmes s'applique et donne $\lim_{h \to 0^-} \frac{S(t+h)-S(t)}{h} = \|f'(t)\|$, donc la fonction S est dérivable à gauche en t et $S'_{\sigma}(t) = ||f'(t)||$.

Par conséquent la fonction S est dérivable sur [a;b] et $S'(t)=\|f'(t)\|$, or $L_{[a;b]}(C)=S(b)=S(b)-S(a)=S(b)$ $\int_a^b \|f'(t)\| \, dt.$

Applications:

- Pour une courbe paramétrée par x(t) et y(t) sur $[a;b]: L_{[a;b]}(C) = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} dt$.
- Pour une courbe polaire paramétrée par $\rho(t)$ sur [a;b], le vecteur vitesse étant $\rho'(t)\overrightarrow{u}(t) + \rho(t)\overrightarrow{v}(t)$, on a :
- $L_{[a;b]}(C) = \int_a^b \sqrt{\rho(t)^2 + \rho'(t)^2} \, dt.$ Pour une courbe cartésienne d'équation y = f(x) sur l'intervalle [a;b], on peut prendre le paramétrage : x(t) = t et y(t) = f(t), ce qui donne : $L_{[a;b]}(C) = \int_a^b \sqrt{1 + f'(t)^2} \, dt$.

Exemples:

- Le périmètre du cercle de centre O et de rayon R > 0: on peut prendre le paramétrage polaire $\rho(t) = R$ avec
- $t \in [0; 2\pi]$, ce qui donne : $\int_0^{2\pi} \sqrt{R^2} \, dt = 2\pi R$. Longueur d'une arche de cycloïde : on a le paramétrage $x(t) = R(t \sin(t))$ et $y(t) = R(1 \cos(t))$ avec $t \in [0; 2\pi]$, ce qui donne : $\int_0^{2\pi} R\sqrt{2 2\cos(t)} \, dt = 2R \int_0^{2\pi} \sin(\frac{t}{2}) \, dt = 8R$.

🚜 Définition 26.3

Soit $C = (I, f, \Gamma)$ une courbe de classe \mathscr{C}^k $(k \ge 1)$, soit J un intervalle de \mathbb{R} et soit $\theta : J \to I$ une **bijection de classe** \mathscr{C}^k **telle que** θ' **ne s'annule pas**, alors on a $C = (J, f \circ \theta, \Gamma)$, donc $(J, f \circ \theta)$ est un autre paramétrage de C, on dit que ce paramétrage est admissible.

THÉORÈME 26.3

La notion de longueur de courbe est une notion géométrique, c'est à dire indépendante du paramétrage admissible choisi.

Preuve: Soit $C = ([a; b], f, \Gamma)$ une courbe \mathscr{C}^1 , soit $\theta : J \to I = [a; b]$ un changement admissible de paramétrage (i.e. θ est une bijection de même classe que f et θ' ne s'annule pas), en considérant les cas $\theta' > 0$ et $\theta' < 0$, il est facile de voir que $\int_{T} \|\theta'(u)f' \circ \theta(u)\| du = \int_{T} \|f'(t)\| dt$, en effectuant le changement de variable $t = \theta(u)$.

3) Abscisse curviligne

Soit $C = (I, f, \Gamma)$ une courbe de classe \mathscr{C}^1 , soit $t_0 \in I$, l'application $S : I \to \mathbb{R}$ définie par S(t) = $\int_{t_0}^t \|f'(u)\| du$ est appelée abscisse curviligne d'origine t_0 sur la courbe C orientée dans le sens des t croissants, lorsque $t > t_0$, S(t) représente la longueur de la courbe de $M(t_0)$ à M(t), lorsque $t < t_0$, S(t)est l'opposé de la longueur de la courbe de M(t) à $M(t_0)$, on remarquera qu'il n'y a pas qu'une abscisse curviligne (choix de l'origine).

Exemple: Sur un cercle de centre O et de rayon R > 0, paramétré par $\rho(t) = R$, l'abscisse curviligne d'origine 0 est la fonction $S: t \mapsto \int_0^t R du = Rt$.

Si la courbe $C = (I, f, \Gamma)$ est **régulière** (i.e. $\forall t \in I, f'(t) \neq 0$), soit S l'abscisse curviligne d'origine $t_0 \in I$, alors $\forall t \in I, S'(t) = ||f'(t)|| > 0$, donc la fonction S induit une bijection de classe \mathscr{C}^1 de I sur J=S< I>, par conséquent $(J,\varphi=f\circ S^{-1})$ est un paramétrage admissible de C.

DÉFINITION 26.4

Le paramétrage admissible $(J, \varphi = f \circ S^{-1})$ est appelé **paramétrage normal de** C.

Soit $s \in J$, on pose $t = S^{-1}(s)$, pour le paramétrage normal, le vecteur vitesse est :

$$\frac{d\varphi}{ds}(s) = [S^{-1}]'(s) \times f'(S^{-1}(s)) = \frac{f'(t)}{\|f'(t)\|}.$$

On voit donc que le vecteur vitesse est **unitaire**, on pose par définition :

$$\frac{d\varphi}{ds}(s) = \frac{f'(t)}{\|f'(t)\|} = \overrightarrow{T}(s)$$
 c'est le vecteur unitaire tangent, avec $t = S^{-1}(s)$.

Exemple: En reprenant l'exemple ci-dessus du cercle, on a $S:[0;2\pi] \to [0;2\pi R]$ définie par S(t)=Rt, d'où $S^{-1}: [0; 2\pi R] \to [0; 2\pi]$ est définie par $S^{-1}(s) = \frac{s}{R}$, donc $\varphi(s) = R\cos(\frac{s}{R})\overrightarrow{\iota} + R\sin(\frac{s}{R})\overrightarrow{\jmath}$ d'affixe $Re^{i\frac{s}{R}}$, et $\overrightarrow{T}(s) = \frac{s}{R}$ $\frac{d\varphi}{ds}(s) = -\sin(\frac{s}{R})\overrightarrow{\iota} + \cos(\frac{s}{R})\overrightarrow{\jmath}$ d'affixe $ie^{i\frac{s}{R}}$.

Repère de Frenet, courbure II)

1) **Définitions**

Soit $C = (I, f, \Gamma)$ une courbe régulière de classe \mathscr{C}^k avec $k \ge 2$.

Définition 26.5

Soit M le point de paramètre $t \in I$, on appelle **repère de Frenet** 1 **au point** M, le repère $(M, \overrightarrow{T}, \overrightarrow{N})$ où \overrightarrow{T} est le vecteur unitaire tangent au point M, et \overrightarrow{N} le vecteur normal au point M, celui-ci se déduit de \overrightarrow{T} par la rotation vectorielle d'angle $\pi/2$.

Soit $S:I\to J$ une abscisse curviligne sur C, et $(J,\varphi=f\circ S^{-1})$ le paramétrage normal, on a pour $s \in J$, $(\overrightarrow{T}(s)|\overrightarrow{T}(s)) = 1$, d'où en dérivant, $(\overrightarrow{T}(s)|\frac{d\overrightarrow{T}}{ds}(s)) = 0$, ce qui prouve que $\frac{d\overrightarrow{T}}{ds}(s)$ est colinéaire au vecteur $\overrightarrow{N}(s)$, il existe donc un scalaire c(s) tel que $\frac{d\overrightarrow{T}}{ds}(s) = c(s)\overrightarrow{N}(s)$.

ØDéfinition 26.6

Le scalaire c(s) est appelé **courbure algébrique au point** M(t) (avec $t = S^{-1}(s)$). On a alors la relation $\frac{d\overrightarrow{T}}{ds}(s) = c(s)\overrightarrow{N}(s)$, c'est la **première formule de Frenet**.

Puisque \overrightarrow{T} est une fonction de classe \mathscr{C}^{k-1} de J vers \mathbb{U} , d'après le théorème de relèvement, il existe une fonction $\theta: J \to \mathbb{R}$ de classe \mathscr{C}^{k-1} telle que $\forall s \in J, \overrightarrow{T}(s) = \cos(\theta(s))\overrightarrow{\iota} + \sin(\theta(s))\overrightarrow{\jmath}$, on a alors $\theta(s) = (\overrightarrow{\iota}, \overrightarrow{T}(s))$, c'est le **paramètre angulaire**. Si on dérive par rapport à s, on obtient alors : $\frac{d\overrightarrow{T}}{ds}(s) = \frac{d\theta}{ds} \left[-\sin(\theta) \overrightarrow{t} + \cos(\theta) \overrightarrow{J} \right] = \frac{d\theta}{ds} \overrightarrow{N}(s). \text{ Par conséquent, on a la relation : } c(s) = \frac{d\theta}{ds}.$

De même, $\frac{d\overrightarrow{N}}{ds}(s) = -\frac{d\theta}{ds}\overrightarrow{T}(s)$, c'est à dire : $\left|\frac{d\overrightarrow{N}}{ds}(s) = -c(s)\overrightarrow{T}(s)\right|$ c'est la deuxième formule de *Frenet*.

7-THÉORÈME 26.4

En un point birégulier, la courbure algébrique est non nulle.

Preuve: Avec le paramétrage normal, dire que M(t) est birégulier revient à dire que $(\overrightarrow{T}(s), c(s)\overrightarrow{N}(s))$ est une famille libre. Le déterminant de cette famille dans la base de Frenet vaut : c(s), donc $c(s) \neq 0$.

Définition 26.7

En un point birégulier M(t), on appelle :

- rayon de courbure algébrique : le réel $R(s) = \frac{1}{c(s)}$, où $t = S^{-1}(s)$.
- centre de courbure : le point I(s) défini par la relation $\overrightarrow{M(t)I(s)} = R(s)\overrightarrow{N}(s).$
- le cercle de courbure : le cercle de centre I(s) et de rayon |R(s)|.

^{1.} FRENET Frédéric Jean (1816 – 1900) : mathématicien français spécialisé en géométrie différentielle.

Exemple: En reprenant l'exemple du cercle de centre O et de rayon R > 0, un paramétrage normal est $\varphi(s)$ d'affixe $Re^{i\frac{s}{R}}$, donc $\overrightarrow{T}(s)$ a pour affixe $ie^{i\frac{s}{R}} = e^{i(\frac{s}{R} + \pi/2)}$, on en déduit que $\theta(s) = \frac{s}{R} + \pi/2 \pmod{2\pi}$, et donc la courbure algébrique est $c(s) = \frac{d\theta}{ds} = \frac{1}{R}$, par conséquent le rayon de courbure est R(s) = R, le rayon du cercle. Le centre de courbure est défini par la relation $\overrightarrow{M(t)I(s)} = \overrightarrow{RN}(s)$ d'affixe $-Re^{i\frac{s}{R}}$ et donc $\overrightarrow{M(t)I(s)} = -\overrightarrow{OM(t)}$, d'où I(s) = O, le centre du cercle. On voit donc sur cet exemple que les définitions sont cohérentes.

Lien avec la cinématique: On pose v = S'(t) = ||f'(t)||: c'est la vitesse algébrique. Le vecteur vitesse s'écrit alors: $f'(t) = v\overrightarrow{T}(s)$ (s = S(t)), en dérivant par rapport à t, on obtient le vecteur accélération: $f''(t) = \frac{dv}{dt}\overrightarrow{T} + vS'(t)c(s)\overrightarrow{N}(s)$, c'est à dire: $f''(t) = \frac{dv}{dt}\overrightarrow{T} + \frac{v^2}{R}\overrightarrow{N}$. La composante sur \overrightarrow{N} est appelée **accélération normale**, et la composante sur \overrightarrow{T} est appelée **accélération tangentielle**.

2) Calcul d'un rayon de courbure

- Méthode 1 : les bases $(\overrightarrow{\iota}, \overrightarrow{J})$ et la base de *Frenet* en un point de la courbe sont deux b.o.n.d, donc $\det_{(\overrightarrow{\iota}, \overrightarrow{J})} = \det_{(\overrightarrow{T}, \overrightarrow{N})}$, par conséquent le produit mixte entre le vecteur vitesse, f'(t), et le vecteur accélération, f''(t), est égal à : $x'y'' - x''y' = \frac{v^3}{R}$, on en déduit que :

$$R = \frac{\|f'(t)\|^3}{[f'(t), f''(t)]} = \frac{\|f'(t)\|^3}{x'y'' - x''y'}.$$

- Méthode 2 : On a $\overrightarrow{T} = \frac{f'(t)}{\|f'(t)\|} = \frac{dx}{ds} \overrightarrow{t} + \frac{dy}{ds} \overrightarrow{f}$, on en déduit que $\cos(\theta) = \frac{dx}{ds} = \frac{x'(t)}{\|f'(t)\|}$, et $\sin(\theta) = \frac{dy}{ds} = \frac{y'(t)}{\|f'(t)\|}$. Lorsque $x'(t) \neq 0$, on a $\tan(\theta) = \frac{y'(t)}{x'(t)}$, en dérivant par rapport à t, on obtient (en écrivant que $\theta(s) = \theta(S(t))$) : $v \frac{d\theta}{ds} [1 + \tan(\theta)^2] = \frac{x'y'' - x''y'}{x'^2}$, d'où $c(s) = \frac{d\theta}{ds} = \frac{x'y'' - x''y'}{\|f'(t)\|^3}$, en prenant l'inverse, on retrouve R. Lorsque x'(t) est nul, on part de $\cot(\theta)$.

Remarque: si les expressions de $\cos(\theta)$ ou $\sin(\theta)$ sont simples, on peut dans le meilleur des cas en déduire directement θ , sinon, on peut aussi calculer $\frac{d\theta}{ds}$ en dérivant l'une ou l'autre de ces expressions.

3) Calcul d'un centre de courbure

Le centre de courbure I(s), est défini par la relation $\overline{M(t)I(s)} = R\overrightarrow{N}(s)$, d'où $x_I = x - R\sin(\theta) = x - R\frac{y'}{\|f'(t)\|}$, et $y_I = y + R\cos(\theta) = y + R\frac{x'}{\|f'(t)\|}$, ce qui donne :

$$x_{I} = x(t) - \frac{y'(t)\|f'(t)\|^{2}}{x'(t)y''(t) - x''(t)y'(t)} \text{ et } y_{I} = y(t) + \frac{x'(t)\|f'(t)\|^{2}}{x'(t)y''(t) - x''(t)y'(t)}.$$

Remarque: En un point M(t) birégulier le centre de courbure I est déterminé par le système d'équations :

$$\begin{cases} (\overrightarrow{MI} \mid \overrightarrow{v}) = 0\\ (\overrightarrow{MI} \mid \overrightarrow{a}) = v^2 \end{cases}$$

Exercice: Déterminer le lieu des centres de courbure de la courbe paramétrée par :

$$\begin{cases} x(t) &= t + \sin(t) - 4\sin(t/2) \\ y(t) &= 3 + \cos(t) - 4\cos(t/2) \end{cases}.$$

Réponse: On a $x'=2\cos(t/2)[\cos(t/2)-1]$, $y'=2\sin(t/2)[1-\cos(t/2)]$, et $v=\|f'(t)\|=2[1-\cos(t/2)]$. On en déduit que $\cos(\theta)=-\cos(t/2)$, et $\sin(\theta)=\sin(t/2)$, par conséquent, on peut prendre $\theta=\pi-\frac{t}{2}$. D'où $\theta'=-1/2$ et donc $\frac{d\theta}{ds}=\frac{-1}{2\nu}=\frac{-1}{4[1-\cos(t/2)]}$, donc le rayon de courbure vaut $R=4[\cos(t/2)-1]$. Les coordonnées du centre de courbure sont donc :

$$\begin{cases} x_I = x - R \frac{y'}{v} = t - \sin(t) \\ y_I = y + R \frac{x'}{v} = 1 - \cos(t) \end{cases}$$

Le lieu recherché est donc une cycloïde.

III) Exercices

★Exercice 26.1

Soit *C* une courbe birégulière, on suppose que le rayon de courbure est constant. Montrer que *C* est un arc de cercle.

★Exercice 26.2

- a) Étudier la courbe paramétrée par : $x(t) = \cos(t)^3$ et $y(t) = \sin(t)^3$ (astroïde). Calculer la longueur. Calculer l'aire de la partie du plan délimitée par cette courbe.
- b) Même question avec la courbe polaire $\rho(\theta) = 1 + \cos(\theta)$ (cardioïde).

★Exercice 26.3

Un cercle roule sans glisser sur l'axe Ox, on fixe un point M sur ce cercle. Étudier la trajectoire du point M. Calculer la longueur et l'aire d'une arche.

★Exercice 26.4

Pour les courbes suivantes, calculer la longueur de la courbe, déterminer le repère de Frenet au point M(t), et déterminer le centre de courbure :

a)
$$x(t) = a[2\cos(t) - \cos(2t)]$$
 et $y(t) = a[2\sin(t) - \sin(2t)]$ avec $a > 0$.

b)
$$x(t) = 3\cos(t) + 3\cos(2t) + \cos(3t)$$
 et $y(t) = 3\sin(t) + 3\sin(2t) + \sin(3t)$.

c)
$$x(t) = 2a \frac{1 - t^2}{(1 + t^2)^2}$$
 et $y(t) = 2a \frac{2t}{(1 + t^2)^2}$.

★Exercice 26.5

Étudier le lieu des centres de courbure de l'ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, avec b < a.

★Exercice 26.6

Soit $f: I \to \mathbb{C}^*$ une fonction de classe \mathscr{C}^n sur l'intervalle I, avec $n \ge 1$.

a) On suppose que pour tout t dans l'intervalle I, |f(t)| = 1. Soit $t_0 \in I$ et $\theta_0 = \text{Arg}(f(t_0))$. On pose :

$$\theta(t) = \theta_0 - i \int_{t_0}^{t} \frac{f'u}{f(u)} du$$

- i) Quelle est la classe de la fonction θ ? Soit $g = e^{i\theta}$, montrer que fg' = f'g.
- ii) En déduire que $\forall t \in I$, $f(t) = e^{i\theta(t)}$.
- b) On ne suppose plus que |f(t)| = 1. Montrer qu'il existe une fonction $\varphi : I \to \mathbb{R}$ de classe \mathscr{C}^n telle que :

$$\forall t \in I, \ f(t) = |f(t)|e^{i\varphi(t)}$$