Johnson Millil

Data Management

January 13, 2025

Relational Database Design for Ecomart Report

Part 1: Design Document

A1. Business Problem

EcoMart, an eco-conscious online marketplace, faces challenges in managing and analyzing its data effectively (Elmasri & Navathe, 2016; United Nations, 2015). As the platform grows, the company struggles to:

- Track product sales and revenue efficiently across different regions.
- Identify high-performing eco-friendly products based on sustainability certifications.
- Analyze customer reviews to assess product performance and improve satisfaction.
- Maintain scalability to handle increasing data volumes and user traffic.

A well-designed relational database can centralize data, enable advanced querying, and support informed decision-making to address these challenges.

A2. Data Structure

The proposed relational database structure includes the following key tables (PostgreSQL Global Development Group, n.d.):

1. Products Table:

 Captures product details, including sustainability certifications and ecoimpact ratings.

2. Orders Table:

 Tracks sales information, such as order IDs, regions, quantities sold, and revenue.

3. Reviews Table:

Stores user feedback to analyze sentiment and improve product offerings.

Relationships:

- Each product can appear in multiple orders (one-to-many relationship between Products and Orders).
- Each product can have multiple reviews (one-to-many relationship between Products and Reviews).

A3. Database Justification

A relational database offers:

- Data Organization: Centralizes product, sales, and review data in structured tables,
 making it easier to manage and retrieve.
- Advanced Querying: Enables complex queries to analyze trends, track revenue, and assess customer feedback (Elmasri & Navathe, 2016).
- Scalability: Supports increasing data volumes with indexing, partitioning, and optimization techniques (Stonebraker & Hellerstein, 2005).
- Integration: Allows seamless integration with business analytics tools for real-time insights and reporting.

A4. Data Usage

The database will support the following use cases (Pang & Lee, 2008; Elmasri & Navathe, 2016):

- 1. Product Performance Analysis:
 - o Identify top-selling products in specific regions.
 - Compare sales trends across categories (Elmasri & Navathe, 2016;
 PostgreSQL Global Development Group, n.d.).
- 2. Customer Feedback Assessment:
 - o Analyze reviews to determine customer satisfaction.
 - o Identify products requiring improvement (Pang & Lee, 2008).
- 3. Sustainability Reporting:
 - Generate reports on eco-friendly product performance based on sustainability certifications and ratings.
- 4. Decision Support:

0	Inform inventory management and marketing strategies based on data insights.

B. Logical data model for storing data in the database solution

C. Description of Database Objects and Storage with File Attributes

Database Objects:

1. Tables:

Products: Stores product details.

o Orders: Tracks sales data.

o Reviews: Holds customer feedback.

2. Indexes:

 Created on frequently queried fields (Product_ID, Region) to optimize performance.

3. Foreign Keys:

o Ensure relational integrity between Products, Orders, and Reviews.

File Attributes:

1. Products:

- o Product_Name (String): Maximum length of 255 characters.
- Category (String): Maximum length of 100 characters.
- Sustainability_Certification (String): Maximum length of 100 characters.
- Eco_Impact_Rating (Integer): Range 1–5.

2. Orders:

- o Region (String): Maximum length of 100 characters.
- Units_Sold (Integer): Positive values only.
- o Revenue (Decimal): Two decimal places for monetary values.

3. Reviews:

- o Rating (Integer): Range 1–5.
- Review_Text (Text): Unlimited length.

D. Scalability Strategies

Normalization:

 The database is normalized to 3NF (Third Normal Form), reducing redundancy and improving data consistency (Stonebraker & Hellerstein, 2005).

Indexing:

 Frequently queried fields (Product_ID, Region) are indexed to enhance query performance (PostgreSQL Global Development Group, n.d.).

Partitioning:

 Large tables like Orders can be partitioned by region or date for efficient parallel processing.

Horizontal and Vertical Scaling:

 Supports horizontal scaling (distributing data across servers) and vertical scaling (adding resources to the database server).

Caching:

 Frequently accessed data, such as top-selling products, can be cached for quicker retrieval.

E. Privacy and Security Measures

Data Privacy:

- 1. Encryption:
 - o Encrypt sensitive fields (e.g., review text) to protect user data.
 - o Use SSL/TLS for secure communication between clients and the database.

2. Anonymization:

o Replace user-identifiable information (e.g., User_ID) with anonymized IDs.

Access Control:

- 1. Role-Based Permissions:
 - Grant access to tables and queries based on user roles (e.g., admin, analyst)
 (PostgreSQL Global Development Group, n.d.).
- 2. Least Privilege Principle:
 - o Limit user access to only the data they need.

Security Measures:

- 1. Auditing and Logging:
 - Maintain logs of database changes to track unauthorized access or modifications.
- 2. Authentication:
 - Enforce strong password policies and multi-factor authentication for admin accounts.

Backup and Recovery:

- 1. Automated Backups:
 - Schedule regular backups of the database.
- 2. Disaster Recovery:
 - o Implement failover servers for high availability in case of system failure.

Part 2: Implementation

F1. Create a Database Instance

F2. Create tables & Import Data

A. Create Tables

```
/ Will mygregates
                             v 👼
        > A Collations
                               ■ 🔒 ∨ 🖍 🔻 ∨ No limit 🔻 🔳 🕨 ∨ 🖪 🛍 ∨ 👼 👼
        > 🏠 Domains
        > 🖟 FTS Configurations
                               Query Query History
        > [ FTS Dictionaries
                               1 CREATE TABLE Products (
        > Aa FTS Parsers
                                      Product_ID INT PRIMARY KEY,
        > @ FTS Templates
                                      Proudct_Name VARCHAR(255),
        > 🖷 Foreign Tables
                                      Category VARCHAR(100),
Sustainability_Certification VARCHAR(100),
        > (ii) Functions
                                      Eco_Impact_rateing INT
        > @ Materialized Views
                               7);
        > 🕾 Operators
        > (() Procedures
                               9 CREATE TABLE Orders (
                                      Order_ID INT PRIMARY KEY,
        > 1.3 Sequences
                               11
                                      Product_ID INT NOT NULL,

√ I Tables (3)

                           12
                                      Region VARCHAR(100),
          > 🖽 orders
                               13
                                      Units_Sold INT,
          > == products
                                      Revenue DECIMAL(10, 2),
          > 🛗 reviews
                               15
                                      FOREIGN KEY (Product_ID) REFERENCES Products(Product_ID)
                            16 );
        > ( Trigger Functions
> 🗎 products
> == reviews
                     18 CREATE TABLE Reviews (
                     19
                            Review_ID SERIAL PRIMARY KEY,
( Trigger Functions
                     20
                            Product_ID INT NOT NULL,
Types
                     21
                            User_ID INT,
Views
                     22
                             Rating INT,
ubscriptions
                    23
                             Review_Text TEXT,
                     24
tares
                            FOREIGN KEY (Product_ID) REFERENCES Products(Product_ID)
                   25 );
Group Roles
```

```
> == products
                    ■ B ∨ ✓ ▼ ∨ No limit ▼

→ I reviews

                    Ouery Ouery History
   > 🗎 Columns
   > M Constraints
                    1 CREATE TABLE SalesRecords (
                           Region VARCHAR(255),
   > A Indexes
                           Country VARCHAR(255),
   > 🔓 RLS Policies
                           ItemType VARCHAR(255),
   > @ Rules
                           SalesChannel VARCHAR(255),
   > 🗱 Triggers
                           OrderPriority CHAR(1),
  salesrecords
                           OrderDate DATE.
                           OrderID INT,
   > 🗎 Columns
                           ShipDate DATE.
   > M Constraints
                   10
                           UnitsSold INT,
   > A Indexes
                           UnitPrice DECIMAL(10, 2),
                   11
   > 🔓 RLS Policies
                   12
                           UnitCost DECIMAL(10, 2),
   > 🥅 Rules
                    13
                           TotalRevenue DECIMAL(15, 2),
                    14
                           TotalCost DECIMAL(15, 2),
   > 🛟 Triggers
                   15
                           TotalProfit DECIMAL(15, 2)
> ( Trigger Functions
                   16 );
> Types
```

B. Import Data into the Sales Records Table

```
D597 Task 1=# \COPY SalesRecords(Region, Country
, ItemType, SalesChannel, OrderPriority, OrderDa
te, OrderID, ShipDate, UnitsSold, UnitPrice, Uni
tCost, TotalRevenue, TotalCost, TotalProfit) FRO
M 'C:\\Users\\student\\Desktop\\Sales Records.cs
v' DELIMITER ',' CSV HEADER;
COPY 100000
D597 Task 1=# SELECT * FROM SalesRecords LIMIT 1
                                                  | itemtype | saleschannel | orderpriority | orderdate | order
            region
                                      country
id | shipdate | unitssold | unitprice | unitcost | totalrevenue | totalcost | totalprofit
               | 2014-10-08 | 535113
Middle East and North Africa
                              Azerbaijan
                                                   Snacks
                                                                  Online
                                                  142509.72 | 91008.96 | 51500.76
                            152.58 |
                                      97.44 |
847 | 2014-10-23 |
                     934 |
                                                                                             | 2015-02-22 | 874708
Central America and the Caribbean | Panama
                                                   | Cosmetics | Offline
                                                                            L
                   4551 | 437.20 | 263.33 | 1989697.20 | 1198414.83 | 791282.37
545 | 2015-02-27 |
Sub-Saharan Africa
                              | Sao Tome and Principe | Fruits
                                                 93169.38 | 69103.12 |
                                                                 Offline
                                                                               l M
                                                                                             | 2015-12-09 | 854349
                                                                          24066.26
                   9986 |
935 | 2016-01-18 |
                               9.33
                                       6.92
Sub-Saharan Africa
                              | Sao Tome an-- More
```

C. Populate Products, Orders, and Reviews Tables

F3. Write Queries for Business Insights

Query 1: Top-Selling Products by Region

Query 2: Eco-Friendly Products with High Sales

Query 3: Top-Rated Products

F4.) Optimization of Scripts and Data Validation

a. Optimization Scripts

Pre-indexing

Query 1

Query 2

Query 3

Indexing

Post-indexing

Query 1

Query 2

Query 3

b. Final Data Validation

```
Dist of relations

Schema | Name | Type | Owner

public | orders | table | postgres
public | products | table | postgres
public | reviews | table | postgres
public | salesrecords | table | postgres
(4 rows)
```


References

- Elmasri, R., & Navathe, S. B. (2016). *Fundamentals of Database Systems*. Pearson Education.
- Pang, B., & Lee, L. (2008). *Opinion Mining and Sentiment Analysis*. Foundations and Trends in Information Retrieval.
- PostgreSQL Global Development Group. (n.d.). *PostgreSQL Documentation*. Retrieved from https://www.postgresql.org/docs/
- Stonebraker, M., & Hellerstein, J. M. (2005). *What Goes Around Comes Around*.

 Communications of the ACM, 48(5), 67–72.
- United Nations. (2015). *Transforming our world: The 2030 agenda for sustainable development*. Retrieved from https://sdgs.un.org/2030agenda