Exerice 2

• Symétrie: Soit $X, Y \in \mathbb{R}^n$

$$\langle X|Y \rangle = \sum_{k=1}^{n} x_k y_k = \sum_{k=1}^{n} y_k x_k = \langle Y|X \rangle$$

• Bilinéarité: Soit $\alpha, \beta \in \mathbb{R}$ et $X, Y, Z \in \mathbb{R}^n$

$$\langle \alpha X + \beta Y | Z \rangle = \sum_{k=1}^{n} (\alpha x_k + \beta y_k) * z_k$$

$$= \sum_{k=1}^{n} \alpha x_k z_k + \beta y_k z_k$$

$$= \sum_{k=1}^{n} \alpha x_k z_k + \sum_{k=1}^{n} \beta y_k z_k$$

$$= \alpha \sum_{k=1}^{n} x_k z_k + \beta \sum_{k=1}^{n} y_k z_k$$

$$= \alpha \langle X | Z \rangle + \beta \langle Y | Z \rangle$$

Comme on a prouvé la symétrie on a que

$$< X|\alpha Y + \beta Z> = <\alpha Y + \beta Z|X>$$

Ce qui termine la preuve de la bilinéarité

• Défini positif: Soit $X \in \mathbb{R}^n$

$$< X|X> = \sum_{k=1}^n x_k x_k$$

= $\sum_{k=1}^n (x_k)^2$ Or comme $x_k \in \mathbb{R}, (x_k)^2 \ge 0$
 ≥ 0

Si on a $\langle X|X \rangle = 0$ alors:

$$< X|X> = 0 \Leftrightarrow \sum_{k=1}^{n} (x_k)^2 = 0$$

 $\Leftrightarrow (x_k)^2 = 0 \; \forall 1 \le k \le n$
 $\Leftrightarrow x_k = 0 \; \forall 1 \le k \le n$
 $\Leftrightarrow X = 0$

$$\begin{split} ||X+Y||^2 &= < X+Y|X+Y> \\ &= < X|X> + < Y|Y> + 2 < X|Y> \\ &= ||X||^2 + ||Y||^2 + 2 < X|Y> \\ &\leq ||X||^2 + ||Y||^2 + 2| < X|Y> | \\ &\leq ||X||^2 + ||Y||^2 + 2(||X||.||Y||) \text{ Inégalité de Cauchy-Schwarz} \\ &= (||X|| + ||Y||)^2 \end{split}$$

Or comme $||X + Y||^2 \ge 0$ et $(||X|| + ||Y||)^2 \ge 0$

On a que $||X + Y|| \le ||X|| + ||Y||$ Montrons que $||x||_2$ est une norme:

• $||x||_2 = \sqrt{\langle x|x \rangle}$ or $\langle x|x \rangle$ est défini positif donc on a bien:

$$\mathbb{R}^n \to \mathbb{R}_+$$
$$X \longmapsto ||X||_2$$

• Soit $\alpha \in \mathbb{R}$ et $X \in \mathbb{R}^n$

$$||\alpha X|| = \sqrt{\langle \alpha X | \alpha X \rangle}$$

$$= \sqrt{\alpha^2 \langle X | X \rangle} (*)$$

$$= |\alpha| \sqrt{\langle x | x \rangle}$$

$$= |\alpha| ||x||_2$$

- (*) Grâce à la bilinéarité du produit sclaire
- \bullet On a montré à la question précendente l'inégalité triangulaire \bullet $SoitX \in \mathbb{R}^n$

$$||X||_2 = 0 \Leftrightarrow \sqrt{\langle X|X \rangle} = 0$$

 $\Leftrightarrow \langle X|X \rangle = 0$
 $\Leftrightarrow X = 0_E (**)$

(**) Car le produit sclaire est défini positif