General principles of modern physics. Energy minimum. Absolute speed (speed of light). Linear and angular momentum. Spin of the particle. Pauli exclusion principle. Entropy.

11.09.2020

Topics

Speed of light and its importance

- Energy of a system
- Energy minimum principle
- Energy barriers and metastability
- Spin of a particle
- Pauli exclusion principle and how matter is formed
- Entropy

Speed of light

Speed of light – important facts

- 1. Speed of light is 3*10⁸ m/s
- 2. Nothing (even information) can travel faster than the speed of light
- 3. Speed of light is independent from the frame of reference
- 4. Time is relative

1. Speed of light

- 300 000 km/s equals to:
- 300 000 / 40 000 = 7,5 roundtrips around the earth in 1 s.
- ~130 ms response (ping) time over internet when visiting a page in New-Zealand;)
- Sun -> Earth distance at light speed is 8 minutes
- Nearest star is at distance of 4.3 light years (distance travelled by light in one year). How many km-s is it?
- Most distant visible place in the universe is ~13 billion light years away

Nothing can go faster

Time is relative – speed changes the preceived time

Hewitt, Conceptual Physics, Ninth Edition.

Copyright © 2002 Pearson Education, Inc., publishing as Addison Wesley. All rights reserved.

$$t = \frac{t_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \qquad \gamma \equiv \frac{1}{\sqrt{1 - v^2/c^2}}$$

Time and space distortions

0 m/s speed 300 000 m/s

Energy levels

System energy levels: classical and quantum

Energy minimum

• for a <u>closed system</u>, with constant external parameters and <u>entropy</u>, the internal energy will decrease and approach a minimum value at equilibrium.

Energy barriers

Meta-stabiliy

Very small disturbances can cause state to transition into stable state.

Energy levels of an atom – not a classical case

Pauli exclusion principle

Linear momentum <--> Angular momentum

$$p = m \cdot v \left[\frac{kg \cdot m}{s}\right]$$

$$L = l \quad x \quad \omega$$

$$L = l \quad x \quad v$$

Spin of a particle

- Gives rise to magnetic moment, bigger than possible by approximation with a spinning object
- Can only take discrete values and orientations.
- Every fermion(electron) has a spinn of 1/2!
- Gives rise to Pauli explusion principle

Spin 1

Spin ½

Pauli exclusion principle

 Only maximum of two fermions with opposite spin states can occupy one energy state

If the particles represent gas molecules at normal temperatures inside a closed container, which of the illustrated configurations came first?

If you tossed bricks off a truck, which kind of pile of bricks would you more likely produce?

Entropy

Entropy increase by mixing substances

$$S = k \cdot \ln(W)$$

- Bolzmann constant $k=1.38065 \times 10^{-23}$ J/K.
- W = number of possible microstates
- Natural processes move in the direction of entropy increase.
- System tries to find Macrostate with most number of Microstates

