Exercises 4.17

Exercise 4.17.1

Let $f(x_1, x_2) = e^{x_1} \sin(x_2)$, with $(x_1, x_2) \in (0, 1) \times (0, \frac{\pi}{2})$.

- a. Show that f is a harmonic function;
- b. Find $\|\nabla f\|$;
- c. Show that the equation $\nabla f = 0$ does not have any solutions;
- d. Find the maxima and minima for the function f.

Exercise 4.17.2

Consider the quadratic function $Q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A\mathbf{x} - b\mathbf{x}$, with A nonsingular square matrix of order n.

- a. Find the gradient $\|\nabla Q\|$;
- b. Write the gradient descent iteration;
- c. Find the Hessian H_Q ;
- d. Write the iteration by Newton's formula and compute its limit.

Exercise 4.17.3

Let A be a nonsingular square matrix of order n and $b \in \mathbb{R}^n$ a given vector. Consider the linear system $A\mathbf{x} = b$. The solution can be approximated using the following steps:

- a. Associate the cost function $C(\mathbf{x}) = \frac{1}{2} ||A\mathbf{x} b||^2$. Find its gradient, $\nabla C(\mathbf{x})$, and Hessian $H_C(\mathbf{x})$;
- b. Write the gradient descent algorithm iteration which converges to the system solution \mathbf{x} with the inital value $\mathbf{x}^0 = 0$;
- c. Write Newton's iteration which converges to the system solution \mathbf{x} with the initial value $\mathbf{x}^0 = 0$.

Exercise 4.17.4

- a. Let $(a_n)_n$ be a sequence with $a_0 > 0$ satisfying the inequality $a_{n+1} \le \mu a_n + K$, $\forall n \ge 1$, with $\mu \in (0,1)$ and K > 0. Show that the sequence $(a_n)_n$ is bounded from above.
- b. Consider the momentum method equations (4.4.16) (4.4.17), and assume that the function f has a bounded gradient $\|\nabla f\| \le M$. Show that the sequence of velocities, $(v^n)_n$ is bounded.

Exercise 4.17.5

a. Let f and g two integrable functions. Verify that

$$\int (f \star g)(x)dx = \int f(x)dx \int g(x)dx$$

- b. Show that $||f \star g|| \le ||f||_1 ||g||_1$
- c. Let $f_{\sigma} := g \star G_{\sigma}$ where $G_{\sigma} = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$. Prove that $||f_{\sigma}||_1 \leq ||f||_1$ for $\sigma > 0$

Exercise 4.17.6

Show that the convolution of two Gaussians is also a Gaussian:

$$G_{\sigma_1} \star G_{\sigma_2} = G_{\sigma}$$
, where $\sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$.

Exercise 4.17.7

Show that the if n have the sum equal to s,

$$\sigma_1 + \ldots + \sigma_n = s,$$

then the numbers for which the sum of their squares, $\sum_{j=1}^{n} \sigma_j^2$, its minimum occurs for the case when all the numbers are equal to $\frac{s}{n}$.

SOLUTIONS

Exercise 4.17.1 (a)

By definition a function is harmonic when satisffies the condition $\nabla^2 f = 0$. Let's corroborate this is indeed fullfilled by the function $f(x_1, x_2) = e^{x_1} \sin(x_2)$. For $\frac{\partial^2}{\partial x_1^2} f$ and $\frac{\partial^2}{\partial x_2^2} f$ we have:

$$\frac{\partial^2}{\partial x_1^2} e^{x_1} \sin(x_2) = \sin(x_2) \frac{\partial^2}{\partial x_1^2} e^{x_1} = e^{x_1} \sin(x_2)$$
$$\frac{\partial^2}{\partial x_2^2} e^{x_1} \sin(x_2) = e^{x_1} \frac{\partial^2}{\partial x_2^2} \sin(x_2) = -e^{x_1} \sin(x_2)$$

From the latter follows $\nabla^2 f = \frac{\partial^2}{\partial x_1^2} f + \frac{\partial^2}{\partial x_2^2} f = 0$ i.e the function f is harmonic.

Exercise 4.17.1 (b)

By the pythagorean identity between the trigonometric functions sin and cos follows:

$$\|\nabla f\| = \sqrt{\nabla f \cdot \nabla f} = \sqrt{(e^{x_1} \cos(x_2))^2 + (e^{x_1} \sin x_2)^2} = e^{x_1}$$

Exercise 4.17.1 (c)

$$\nabla f = (e^{x_1}\cos(x_2), e^{x_1}\sin(x_2)) = 0 \iff e^{x_1} = 0$$

The equation $e^x = 0$ is known to not have a solution. Therefore, $\nabla f = 0$ is not solvable.

Exercise 4.17.1 (d)

Let's define the extension of f over the compact $K := [0,1] \times [0,\frac{\pi}{2}]$ with the same association rule as above. On this set f is also harmonic. Then, f reaches its minimum and maximum on the boundaries of the set K; note that both functions e^{x_1} and $\sin(x_2)$ are increasing, then the maxima is met at the point when both functions reach their maximum.

This means the maximum of the function f is met on the point $(1, \frac{\pi}{2})$. Likewise, the minimum is reached at the point (0,0).

Exercise 4.17.2 (a)

Computing the gradient we get: $\nabla Q = \frac{1}{2}(\mathbf{A} + \mathbf{A}^T)\mathbf{x} + b\mathbf{1}$.

Exercise 4.17.2 (b)

The equations that describe the iterations made in the GDA is the sequence of vectors $\mathbf{x}^n{}_{n\in\mathbb{N}}$ sattisfying the following recursion: $\mathbf{x}^{n+1} = \mathbf{x}^n - \eta \frac{\frac{1}{2}(\mathbf{A} + \mathbf{A}^T)\mathbf{x}^n + b\mathbf{1}}{\|\frac{1}{2}(\mathbf{A} + \mathbf{A}^T)\mathbf{x}^n + b\mathbf{1}\|}$

Exercise 4.17.2 (c)

From excercise 4.17.2.a we know that $\nabla Q = \frac{1}{2}(\mathbf{A} + \mathbf{A}^T)\mathbf{x} + b\mathbf{1}$. Note that taking the derivative of a vectorial function is indeed the same as computing its Hessian-matrix; By using the afore mentioned observation, we get:

$$H_Q(\mathbf{x}) = \frac{\partial}{\partial \mathbf{x}} \nabla Q = \frac{1}{2} (\mathbf{A} + \mathbf{A}^T).$$

Exercise 4.17.2 (d)

The sequence of iterations $\{\mathbf{x}^n\}_{n\in\mathbb{N}}$ using the Newton method areg given with following recurrence relationship:

$$\mathbf{x}^{n+1} = \mathbf{x}^n - (\frac{1}{2}(\mathbf{A} + \mathbf{A}^T))^{-1}(\frac{1}{2}(\mathbf{A} + \mathbf{A}^T)\mathbf{x}^n - b\mathbf{1})$$
$$= (\frac{1}{2}(\mathbf{A} + \mathbf{A}^T))^{-1}b\mathbf{1}.$$