

Lecture 15: Motion
Pyramids for large motion

Juan Carlos Niebles and Jiajun Wu
CS131 Computer Vision: Foundations and Applications

What will we learn today?

- Pyramids for large motion
 - Motivation
 - Method
 - Results

Recap

Key assumptions (Errors in Lucas-Kanade)

- Small motion: points do not move very far
- **Brightness constancy:** projection of the same point looks the same in every frame
- Spatial coherence: points move like their neighbors

Revisiting the small motion assumption

- Is this motion small enough?
 - Probably not—it's much larger than one pixel (2nd order terms dominate)
 - How might we solve this problem?

Pyramids for large motion

Reduce the resolution!

Coarse-to-fine optical flow estimation

Coarse-to-fine optical flow estimation

Optical Flow Results

Optical Flow Results

Summary

- Pyramids for large motion
 - Motivation
 - Method
 - Results