Semester 1 2012 Lecturer: Michael Stewart

Tutorial Week 6

1. Suppose that for some positive integer n, X has the discrete uniform distribution on $0, 1, \ldots, n$; that is,

$$P(X = x) = \begin{cases} \frac{1}{n+1} & \text{for } x = 0, 1, \dots, n, \\ 0 & \text{otherwise.} \end{cases}$$

(a) It can be shown (inductively) that

$$\sum_{x=1}^{n} x = \frac{n(n+1)}{2} \quad \text{and} \quad \sum_{x=1}^{n} x^{2} = \frac{n(n+1)(2n+1)}{6} \, .$$

Use these formulae to deduce $\mu = E(X)$, $E(X^2)$ and hence Var(X).

(b) Use Chebyshev's inequality to obtain an upper bound for

$$P\left(|X - \mu| \ge \frac{n}{2}\right) \tag{*}$$

as a function of n.

- (c) Compute the probability (*) above exactly as a function of n (Lecture 17 may prove useful here). Write out a table comparing the Chebyshev bound and the exact probability for n = 1, 2, ..., 8.
- (d) Evaluate the limiting value of both the exact probability (*) and the Chebyshev upper bound for it as $n \to \infty$.
- 2. [Note: parts (d), (e) and (f) are quite difficult] Suppose that for some unknown 0 are independent binomial <math>(2, p) random variables. Define

$$I_i = \begin{cases} 1 \text{ if } X_i = 0 \\ 0 \text{ otherwise} \end{cases}$$
 and $J_i = \begin{cases} 1 \text{ if } X_i = 2 \\ 0 \text{ otherwise.} \end{cases}$

So a sequence of these would look something like this:

X_i	0	1	1	0	2	2	0	1	1	2	
I_i	1	0	0	1	0	0	1	0	0	0	• • •
J_i	0	0	0	0	1	1	0	0	0	1	

- (a) Each I_i and each J_i are also binomial random variables. Write down their respective distributions.
- (b) Each of the averages \bar{X} , \bar{I} and \bar{J} converge in probability to their expected value.
 - i. Write down the three expected values μ_X , μ_I and μ_J as functions of p.
 - ii. By applying the appropriate *inverse* function to each average, write down three estimators \hat{p}_X , \hat{p}_I and \hat{p}_J which all converge in probability to p (remember if $\bar{X} \stackrel{P}{\to} \mu_X$ and $g(\cdot)$ is continuous at μ_X then $g(\bar{X}) \stackrel{P}{\to} g(\mu_X)$).
- (c) It turns out \hat{p}_X is a linear function of \bar{X} . Write down the variance of \bar{X} and hence the mean-squared error (MSE) of \hat{p}_X as an estimator of p:

$$MSE(\hat{p}_X) = E\left[\left(\hat{p}_X - p\right)^2\right].$$

(This will be a function of n and p).

- (d) It turns out that \hat{p}_I is a non-linear but nonetheless differentiable function of \bar{I} . Using a result from lectures, write $\hat{p}_I p$ as the product of the difference $\bar{I} \mu_I$ and another random variable that converges in probability to some constant c. Hence write down the large-sample approximation to $\text{MSE}(\hat{p}_I) = E\left[(\hat{p}_I p)^2\right]$ given by $E\left[c^2(\bar{I} \mu_I)^2\right] = c^2 \text{Var}(\bar{I})$ (as a function of n and p).
- (e) Use the same method as in the previous part to derive the large-sample approximation to $MSE(\hat{p}_J)$ (as a function of n and p).
- (f) Sketch the graphs of $n\text{MSE}(\hat{p}_X)$ and n times the large-sample approximations to $\text{MSE}(\hat{p}_I)$ and $\text{MSE}(\hat{p}_J)$, all on the same set of axes. Which estimator seems better and why?