ILIA KHEIRKHAH

524 Oak Ave, Linwood, NJ 08221 609-385-3313 •iliak@seas.upenn.edu

EDUCATION:

University of Pennsylvania, Philadelphia, PA

BSE in Mechanical Engineering (Expected Graduation Spring 2024) MSE in Mechanical Engineering (Expected Graduation Fall 2024)

GPA - 3.72

GPA - 4.00

Experience:

Naval Surface Warfare Center Philadelphia – Engineering Intern

June 2023 – August 2023

- Reduced Testing time by up to 30% by developing a model for predicting flow rate between two closed tanks accurate to 99% of predicted values.
- Designed and presented a poster about flow model that won Second Best Project Presentation out of ~30 other posters.
- Set up, executed, and processed Acoustic Flow Testing for various different shipboard parts.
- Helped Calibrate and organize ~100 Accelerometers, Hydrophones, and other Miscellaneous sensors.

M51 Space – Mechanical Team Lead

November 2021 - Present

- Designed and tested a function hybrid engine during the Summer of 2022.
- Created a critical design review (CDR) presentation to present to and get feedback from professionals from different industries.
- Using ANSYS FEA and CFD to verify designs and improve various parameters
- Plan to design and test a 25k ft Solid Engine rocket made to compete with the Friends of Amateur Rocketry in June '23
- Used Solidworks to create CAD Models and engineering drawings for various parts which were then machined in house.

Penn Aerospace Club – Balloon Team Mechanical Lead

Fall 2020 - Present

- Designing and testing High Altitude Balloons.
- Launching High Altitude Balloons throughout the semester to collect various forms of data using Arduinos.
- Analyzing received data to improve our systems and conduct various experiments.

Undergraduate Research Assistant

November 2021 – Present

- Used ANSYS and OpenFOAM to model fluid flow through kirigami fog collectors with Professor Arratia of the Complex Fluids Lab at the University of Pennsylvania
- Work with Graduate students to analyze simulation data and measure effectiveness of geometries

Projects:

Transient Lid Driven Cavity Flow Simulation

- Derived and implemented a Transient Lid Driven Cavity Flow Simulation in MATLAB
- Used Finite Volume Method (FVM) and SIMPLE algorithm for discretization and pressure-velocity coupling
- Evaluated at various Reynolds Numbers, documenting solve time and convergence rates.

Numeric Lifting Line Wing Analyzer

Applied Numeric Lifting Line techniques to predict Lift and Drag properties of any wing

Sterling Engine

- Designed and created engineering drawings for a Sterling Heat Engine
- Manufactured and tested the engine; operating speed of 1000 RPM

Other:

Secret Security Clearance