9 EXTENDED APPENDIX

9.1 REDS performance on DNN and CNN architectures

In addition to the results on DS-CNN reported in the main paper, we show in Table 5 and Table 6 REDS performance on DNN and CNN architectures (with full fine-tuning) and compare to training model of each capacity from scratch and training REDS from scratch. Despite full fine-tuning, the results for S architecture show superior performance of the BU heuristic over TD.

MACs	Small (S) - Accuracy 83.82				Large (L) - Accuracy 86.87			
	Scratch	Knapsack BU	Knapsack TD	REDS training	Scratch	Knapsack BU	Knapsack TD	REDS training
100%	84.30 ±0.11	83.52 ±0.07	82.80 ±0.16	82.13 ±0.20	86.54 ±0.24	86.46 ±0.34	86.25±0.19	85.06 ±0.19
75%	83.77 ±0.23	82.29 ± 0.35	81.88 ± 0.30	81.23 ± 0.21	85.96 ±0.13	86.38 ± 0.65	86.09 ± 0.03	84.93 ± 0.20
50%	80.91 ±0.11	78.36 ± 1.40	78.59 ± 0.24	77.05 ± 0.34	85.24 ±0.35	85.62 ± 0.24	85.58 ± 0.35	84.08 ± 0.22
25%	69.77 ±0.67	64.42 ± 1.99	61.43 ± 3.35	63.69 ± 3.26	84.22 ±0.13	82.61 ± 0.61	83.00 ± 0.62	82.03 ± 0.59

Table 5: Test set accuracy [%] of training S and L fully-connected (DNN) architectures taken from [53]: training a network of each size from scratch ("Scratch"), conversion from a pre-trained network using two knapsack versions ("Knapsack BU" and "Knapsack TD"), and training REDS structure from scratch ("REDS training"). Reported results from three independent runs. The accuracy of each 100 % network reported in [53] is listed in the header row.

MACs	Small (S) - Accuracy 92.24				Large (L) - Accuracy 93.24			
	Scratch	Knapsack BU	Knapsack TD	REDS training	Scratch	Knapsack BU	Knapsack TD	REDS training
100%	91.10±0.23	91.60±0.39	91.20 ±0.35	88.89 ±0.26	92.94±0.20	92.83±0.26	92.97±0.15	90.97 ±0.21
75%	90.40±0.27	90.63±0.19	90.20 ± 0.13	87.64 ± 0.46	92.74±0.12	92.74 ± 0.23	92.54 ± 0.07	90.67 ± 0.09
50%	89.07±0.24	88.39 ± 0.31	88.39 ± 0.52	85.99 ± 0.19	92.44±0.30	91.95 ± 0.22	91.93 ± 0.28	90.36 ± 0.30
25%	82.57±0.41	79.52 ± 0.67	79.28 ± 0.54	79.25 ± 0.40	90.98±0.60	90.24 ± 0.35	90.31 ± 0.03	88.25 ± 0.66

Table 6: The same as in Table 5 for S and L convolutional architectures (CNN) from [53].

Fig. 10 shows the impact of the architecture on REDS structure found by the knapsack BU solver. We present the results for DNN S, L and CNN S, L from left to right, respectively.

Figure 10: Analysis of the subnetwork architecture obtained by the knapsack BU heuristics. From left to right: DNN S, DNN L, CNN S and CNN L on GOOGLE SPEECH COMMANDS. The patterns as to which computational units constitute a child subnetwork are architecture-specific.

9.2 REDS performance with 10 nested subnetworks

Table 7 and Fig. 11 show the performance of DNN, CNN and DS-CNN on Google Speech Commands, when REDS structure comprises 10 subnetworks, compared to 4 subnetworks in the main paper. A larger number of subnetworks does not degrade model accuracy.

MACs	DNN		CN	NN	DS-CNN	
	Small	Large	Small	Large	Small	Large
100%	83.07 ±0.35	86.19 ±0.26	91.16 ±0.45	93.1 ±0.1	93.5 ±0.15	94.34 ±0.07
90%	82.93 ± 0.4	86.17 ± 0.36	90.4 ±0.47	92.84 ± 0.27	93.33 ± 0.11	94.32 ± 0.1
80%	82.67 ±0.53	86.1 ± 0.08	90.1 ±0.07	92.77 ± 0.06	92.84 ± 0.15	94.31 ± 0.1
70%	81.67 ±0.53	85.78 ± 0.11	89.43 ±0.41	92.25 ± 0.47	92.64 ± 0.24	94.21 ± 0.14
60%	80.37 ± 0.57	85.66 ± 0.25	88.84 ± 0.25	92.28 ± 0.11	92.27 ± 0.31	94.08 ± 0.03
50%	78.26 ± 0.53	85.33 ± 0.09	88.4 ± 0.2	92.03 ± 0.23	91.04 ± 0.51	93.97 ± 0.04
40%	75.37 ±1.26	84.8 ± 0.45	85.76 ±0.18	91.78 ± 0.04	89.42 ± 0.66	93.83 ± 0.22
30%	67.76 ±1.59	82.66 ± 0.18	81.92 ±0.49	90.52 ± 0.54	87.63 ± 1.03	93.59 ± 0.14
20%	52.36 ±6.99	80.19 ± 0.39	73.74 ±0.04	88.61 ± 0.51	84.14 ±2.57	93.35 ± 0.15
10%	23.93 ±5.88	50.7 ± 7.5	58.87 ±5.27	81.15 ± 1.39	58.46 ±3.35	90.38 ± 0.17

Table 7: Test set accuracy [%] from Small (S) and Large (L) pretrained fully-connected (DNN), convolutional (CNN), and depth-wise separable convolutional (DS-CNN) networks taken from [53]. For each pre-trained architecture, REDS can support ten subnetworks obtained from the Knapsack BU formulation. The accuracies of the DS-CNN and CNN subnetworks do not degrade drastically until the lowest percentage of MACs considered. In contrast, the accuracies in the DNN subnetworks show a more pronounced drop from 30% MACs.

Figure 11: REDS size S (top row) and L (bottom row) architectures analysis finetuned on Google Speech Commands [50] with ten subnetworks. The plots from left to right show the subnetworks size, the subnetworks accuracy and the subnetworks inference time as a function of MAC percentage.

Figure 12: REDS fine-tuning. The parameters $\pi_{i_{i=1}}^N$ ensure the contribution of individual models to the loss aligns with the fraction of the shared weights.

9.3 REDS on FASHION-MNIST and CIFAR10

The results in Table 8 and Table 9 show REDS performance using DS-CNN architecture of size S on Fashion-MNIST and CIFAR10. BU heuristic was used to obtain the results. REDS supports a different data domain without degrading the accuracy of the pre-trained model, reported in the header row. Compared to the state-of-the-art such as μ NAS [33], REDS demonstrates a faster architecture search time for both Fashion-MNIST and CIFAR10. In the former, REDS takes 19 minutes as opposed to 3 days; in the latter, REDS takes 90 minutes as opposed to 39 days while requiring less memory for model storage for both datasets. After finding and freezing the 25% MACs subnetwork architecture, the BU heuristic takes only a few seconds to find the other 50% and 75% MACs subnetworks architectures.

MACs	Acc (%) - Pre-trained 90.59	Model Size (Kb)	Time Taken (m)
100%	91.6 ± 0.2	128.54	_
75%	91.51 ±0.28	107.73	1.58 [s]
50%	90.75 ± 0.32	87.4	5.83 [s]
25%	89.22 ± 0.45	66.63	19 [m]

Table 8: Analysis of the BU knapsack subnetworks obtained from a depth-wise separable convolutional (DS-CNN) S network, pre-trained on FASHION-MNIST [51]. REDS supports a different data domain without degrading the accuracy of the pre-trained model, reported in the header row.

MACs	Acc (%) - Pre-trained 79.36	Model Size (Kb)	Time Taken
100%	81.07 ±0.71	128.54	_
75%	80.17 ±0.69	109.41	2.89 [s]
50%	76.72 ±1.37	88.01	10.59 [s]
25%	68.66 ±1.65	69.63	90 [m]

Table 9: The same evaluation as in Table 8 for CIFAR10 [30].