Visualization (EDA)

Graphic Displays of Basic Statistical Descriptions of Data

- Graphic displays of basic statistical descriptions. These include
 - Line Plots
 - scatter plots.
 - Histograms,
 - quantile plots,
 - quantile—quantile plots,
- Helpful for the visual inspection of data, which is useful for data preprocessing.
 - scatter plots show bivariate distributions (i.e., involving two attributes).
- A quantile plot is a simple and effective way to have a first look at a univariate data distribution.
 - First, it displays all of the data for the given attribute (allowing the user to assess both the overall behavior and unusual occurrences).
 - Second, it plots quantile information.

Line Plots

Line graphs are among the most common visualizations and are often used to study chronological trends and patterns.

Visualizing Categorical Distributions

- Data come in many forms that are not numerical.
- Data can be pieces of music, or places on a map.
- They can also be categories into which you can place individuals.
 Here are some examples of categorical variables.
 - The individuals are cartons of ice-cream, and the <u>variable is the</u> flavor in the carton.
 - The individuals are professional basketball players, and the variable is the player's team.
 - The individuals are years, and variable is movies of the year.

Bar Chart

- The bar chart is a familiar way of visualizing categorical distributions. It displays a bar for each category.
- The bars are equally spaced and equally wide. The length of each bar is proportional to the frequency of the corresponding category.
- We draw bar charts with horizontal bars because it's easier to label the bars that way.

Bar Chart

- Fundamental distinction between bar charts and the scatter plot and the line plot
 - Scatter/ Line plots display two numerical variables the variables on both axes are numerical.
- In contrast, the bar chart has categories on one axis and numerical frequencies on the other.
- The width of each bar and the space between consecutive bars is entirely up to the person who is producing the graph
- Most importantly, the bars can be drawn in any order. The categories "chocolate," "vanilla," and "strawberry" have no universal rank order,
- This means that we can draw a bar chart that is easier to interpret, by rearranging the bars in decreasing order.

Histogram Analysis

- Graph displays of basic statistical class descriptions
 - Frequency histograms
 - A univariate graphical method
 - Consists of a set of rectangles that reflect the counts or frequencies of the classes present in the given data

• A relative frequency histogram uses the same information as a frequency histogram but compares each class interval to the total number of items

Histogram Analysis

There are 200 movies in the dataset. The [300, 400) bin contains 81 movies. That is 40.5% of all the movies:

bin	Count	Percent	Height
300	81	40.5	0.405
400	52	26	0.26
500	28	14	0.14
600	16	8	0.08
700	7	3.5	0.035
800	5	2.5	0.025
900	3	1.5	0.015
1000	1	0.5	0.005
1100	3	1.5	0.015
1200	2	1	0.01

$$\mathrm{Percent} = \frac{81}{200} \cdot 100 = 40.5$$

The width of the [300, 400) bin is 400 - 300 = 100. So

$$\text{Height} = \frac{40.5}{100} = 0.405$$

Differences Between Bar Charts and Histograms

- Bar charts display one quantity per category. They are often used to display the <u>distributions of categorical variables</u>.
- Histograms display the <u>distributions of quantitative variables</u>.
- All the bars in a bar chart have the same width, and there is an equal amount of space between consecutive bars.
- The bars of a histogram can have different widths, and they are contiguous.
- The lengths (or heights, if the bars are drawn vertically) of the bars in a bar chart are proportional to the value for each category.
- The heights of bars in a histogram measure densities; the areas of bars in a histogram are proportional to the numbers of entries in the bins.

Stem-and-leaf plots

```
6 23

6 55689

7 001112234444566777899

7 001112234444

7 566777899

8 0123
```

Stem-and-leaf plots display data in a structured list.

Presenting data in a table or an ordered list does not readily convey information about how the data are distributed, as is the case with histograms.

Eg: Use of Stem chart while grading

Measuring the Dispersion of Data Boxplots, and Outliers

Boxplots are a popular way of visualizing a distribution. A boxplot incorporates the five-number summary as follows:

- The ends of the box are at the quartiles so that the box length is the IQR.
- The median is marked by a line within the box.
- Two lines (called whiskers) outside the box extend to the smallest (Minimum) and largest (Maximum) observations.
- For branch 1, we see that the median price of items sold is \$80, Q1 is \$60, and Q3 is \$100. Notice that two outlying observations for this branch were plotted individually, as their values of 175 and 202 are more than 1.5 times the IQR here of 40.

Visualization of Data Dispersion: Boxplot Analysis

Properties of Normal Distribution Curve

- The normal (distribution) curve
 - From μ – σ to μ + σ : contains about 68% of the measurements (μ : mean, σ : standard deviation)
 - From μ –2 σ to μ +2 σ : contains about 95% of it
 - From μ –3 σ to μ +3 σ : contains about 99.7% of it

Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
 - For a data x_i data sorted in increasing order, f_i indicates that approximately 100 f_i % of the data are below or equal to the value x_i

Unit price		
(\$)	ce	
40		
43		
47		
_		
74		
75		
78		
_		
115		
117		
120		

Quantile Plot

- Simple way -1st look at a univariate data distribution.
- Displays the given attribute to assess both
 - the overall behavior and
 - unusual occurrences.
- It plots quantile information.
 - Let x_i , for i = 1 to N, be the data sorted in increasing order
 - x₁ is the smallest observation and
 - x_N is the largest for some attribute X.
- Each observation, x_i , is paired with a percentage, f_i , which => approx f_i 100% of the data are below the value, x_i
- Note: 0.25 percentile corresponds to quartile Q1, the 0.50 percentile is the median, and the 0.75 percentile is Q3.

Quantile Plot

Let

$$f_i = \frac{i - 0.5}{N}.$$

These numbers increase in equal steps of 1/N, ranging from $\frac{1}{2N}$ (which is slightly above 0) to $1 - \frac{1}{2N}$ (which is slightly below 1). On a quantile plot, x_i is graphed against f_i . This allows us to compare different distributions based on their quantiles. For example, given the quantile plots of sales data for two different time periods, we can compare their Q_1 , median, Q_3 , and other f_i values at a glance.

Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution Vs corresponding quantiles of another
- Allows the user to view whether there is a shift in going from one distribution to another

Quantile-Quantile (Q-Q) Plot

- Each point corresponds to the same quantile for each data set and shows the unit price of items sold at branch 1 Vs 2 for that quantile.
- For comparison, the straight line represents => for each given quantile, the unit price at each branch is the same.
- The darker points data for Q1, the median, and Q3.
- At Q1, the unit price of items sold at branch 1 < at branch 2. ie, 25% of items sold at branch 1 were <= \$60, Vs 25% of items at branch 2 <= \$64.
- At Q2, the 50th percentile (marked by the median), 50% of items sold at branch $1 \le 575$, Vs branch $2 \le 585$.
- In general, a shift in the distribution of branch 1 Vs 2 in that the unit prices of items sold at branch 1 < at branch 2.

Positively and Negatively Correlated Data

Positively correlated

Negatively correlated

Not Correlated Data

Exploring Bivariate Data

Scatter plot

- A scatter plot effective graphical methods for determining if there appears to be a relationship/ pattern/ or trend <u>between two numeric attributes.</u>
- Provides a first look at bivariate data to see clusters of points, outliers, etc.
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Scatter plot

- Formally, we say that the plot shows an association between the variables.
- The association is
 - <u>Positive</u>: high values of one variable tend to be associated with high values of the other, and
 - Negative: low values of one with low values of the other.

Surface Plots

 If data that represents a function defined over a bivariate domain,

$$z = f(x,y)$$

then view values for z as a surface.

Contour Plots

- Use contour plots to view surface.
- Contour plots show lines of constant surface values, similar to topographical maps

Summary: Graphic Displays of Basic Statistical Descriptions

- Histogram
- Boxplot
- Quantile plot: each value x_i is paired with f_i indicating that approximately 100 f_i % of data are $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane
- Loess (local regression) curve: add a smooth curve to a scatter plot to provide better perception of the pattern of dependence

Thank You