

Московский Физико-Технический Институт (национальный исследовательский университет)

Отчет по эксперименту

Эффект Джоуля-Томсона

Paбoma~ Ne2.1.6;~ дата:~06.05.22

Семестр: 2

1. Аннотация

Цель работы:

- 1) Определение изменения температуры углекисло- го газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры;
- 2) Вычисление по результатам опытов коэффициентов Ван-дер-Ваальса а и b.

Схема установки:

Рис. 1: Схема установки

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой (Рис. 1). Трубка 1 хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки 2 в область с атмосферным давлением P_2 . Перепад давления $\Delta P = P_2 - P_1$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля—Томсона определяется по разности температуры газа до и после перегородки.

В работе используются:

трубка с пористой перегородкой, труба Дьюара, термостат, термометры, дифференциальная термопара, микровольтметр, балластный баллон, манометр.

2. Теоретические сведения

Рассмотрим стационарный поток газа между произвольными сечениями I и II трубки (до перегородки и после нее). Пусть, для определенности, через трубку прошел 1 моль углекислого газа; μ – его молярная масса. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1 , P_1 , U_1 и V_2 , P_2 , U_2 . Для того чтобы ввести в трубку объем V_1 , над газом нужно совершить работу $A_1 = P_1V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2V_2$. Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то:

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right) \tag{1}$$

В уравнении (1) учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в (1) написанные выражения для A_1 и A_2 и перегруппировывая члены, найдем

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu (v_1^2 - v_2^2)$$
 (2)

Сделаем несколько замечаний. Прежде всего отметим, что в процессе Джоуля—Томсона газ испытывает в пористой перегородке существенное трение, приводящее к ее нагреву. Потери энергии на нагрев трубки в начале процесса могут быть очень существенными и сильно искажают ход явления. После того как температура трубки установится и газ станет уносить с собой все выделенное им в пробке тепло, формула (1) становится точной, если, конечно, теплоизоляция трубки достаточно хороша и не происходит утечек тепла наружу через ее стенки.

Второе замечание связано с правой частью (2). Процесс Джоуля—Томсона в чистом виде осуществляется лишь в том случае, если правой частью можно пренебречь, т. е. если макроскопическая скорость газа с обеих сторон трубки достаточно мала. У нас сейчас нет критерия, который позволил бы установить, когда это можно сделать. Поэтому мы отложим на некоторое время обсуждение вопроса о правой части (2), а пока будем считать, что энтальпия газа не меняется.

$$\mu_{\text{\tiny JI-T}} = \frac{\Delta T}{\Delta P} \approx \frac{2a/RT - b}{C_p} \tag{3}$$

Из формулы (3) видно, что эффект Джоуля—Томсона для не очень плотного газа зависит от соотношения величин a и b, которые оказывают противоположное влияние на знак эффекта. Если силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий a, и

$$\frac{\Delta T}{\Delta P} > 0$$

т. е. газ при расширении охлаждается ($\Delta T < 0$, так как всегда $\Delta P < 0$). В обратном случае (малые a)

$$\frac{\Delta T}{\Delta P} < 0$$

т. е. газ нагревается ($\Delta T > 0$, так как по-прежнему $\Delta P < 0$). Этот результат нетрудно понять из энергетических соображений. Как мы уже знаем, у идеального газа эффект Джоуля–Томсона отсутствует. Идеальный газ отличается от реального тем, что в нем можно пренебречь потенциальной энергией взаимодействия молекул. Наличие этой энергии приводит к охлаждению или нагреванию реальных газов при расширении. При больших a велика энергия притяжения молекул. Это означает, что потенциальная энергия молекул при их сближении уменьшается, а при удалении — при расширении газа — возрастает. Возрастание потенциальной энергии молекул происходит за счет их кинетической энергии — температура газа при расширении падает. Аналогичные рассуждения позволяют понять, почему расширяющийся газ нагревается при больших значениях b.

При температуре T_{inv} эффект Джоуля–Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu_{\text{д-т}} > 0$, газ охлаждается), выше T_{inv} эффект отрицателен ($\mu_{\text{д-т}} < 0$, газ нагревается).

3. Проведение эксперимента

Измерение коэффициента Джоуля-Томсона

Представим в табличном виде зависимость $\Delta T(\Delta P)$, сразу пересчитав через таблицу чувствительности термопары ΔU в ΔT .

T=291~ m K							
ΔP , atm	3.00 ± 0.05	2.60 ± 0.05	2.20 ± 0.05	1.80 ± 0.05	1.40 ± 0.05	1.00 ± 0.05	
$U-U_0$, мкВ	138 ± 2	120 ± 2	102 ± 2	85 ± 2	68 ± 2	55 ± 2	
ΔT , K	3.47 ± 0.05	3.02 ± 0.05	2.56 ± 0.05	2.14 ± 0.05	1.71 ± 0.05	1.38 ± 0.05	
$T=308~\mathrm{K}$							
ΔP , atm	3.00 ± 0.05	2.60 ± 0.05	2.20 ± 0.05	1.80 ± 0.05	1.40 ± 0.05	1.00 ± 0.05	
$U-U_0$, мкВ	115 ± 2	98 ± 2	82 ± 2	66 ± 2	51 ± 2	40 ± 2	
ΔT , K	2.76 ± 0.05	2.36 ± 0.05	1.97 ± 0.05	1.59 ± 0.05	1.23 ± 0.05	0.96 ± 0.05	
T=333~ m K							
ΔP , atm	3.00 ± 0.05	2.60 ± 0.05	2.20 ± 0.05	1.80 ± 0.05	1.40 ± 0.05	1.00 ± 0.05	
$U-U_0$, мкВ	91 ± 2	80 ± 2	68 ± 2	55 ± 2	41 ± 2	28 ± 2	
ΔT , K	2.10 ± 0.05	1.85 ± 0.05	1.57 ± 0.05	1.27 ± 0.05	0.95 ± 0.05	0.65 ± 0.05	

Табл. 1: Измерение коэффициента Джоуля-Томсона

Построим графики зависимостей для данных температур.

Рис. 2: График зависимости $\Delta T(\Delta P)$ при $T=291~\mathrm{K}$

Рис. 3: График зависимости $\Delta T(\Delta P)$ при $T=308~\mathrm{K}$

Рис. 4: График зависимости $\Delta T(\Delta P)$ при $T=333~\mathrm{K}$

Теперь рассчитаем соответствующие коэффициенты Джоуля-Томсона и занесем их в таблицу:

T, K	291	308	333
$\mu_{\text{д-т}}, \text{ K/atm}$	1.06 ± 0.03	0.91 ± 0.02	$.73 \pm 0.01$

Рассчет коэффициентов Ван-дер-Ваальса

По данным таблицы 2 построим график зависимости $\mu_{\text{д--}}(1/T)$ и рассчитаем необходимые значения.

Рис. 5: График зависимости $\mu_{\text{д-т}}(1/T)$

Отсюда получаем параметры нашего графика slope = $(75\pm2)\cdot10^{-4}~{\rm K}^2/\Pi$ a, intercept = $(-1.52\pm0.06)\cdot10^{-5}~1/{\rm K}$.

$$a = \frac{\text{slope} \cdot RC_p}{2} = 1.28 \pm 0.03 \ \frac{\text{H} \cdot \text{м}^4}{\text{моль}^2}$$

$$b = -\text{intercept} \cdot C_p = (6.2 \pm 0.2) \cdot 10^{-4} \frac{\text{M}^3}{\text{MOJIB}}$$

$$T_{\rm inv} = \frac{2a}{Rb} = 497 \pm 19 \text{ K}$$

4. Выводы

1) В результате работы определены коэффициенты Ван-дер-Ваальса для углекислого газа:

$$a = \frac{\text{slope} \cdot RC_p}{2} = 1.28 \pm 0.03 \, \frac{\text{H} \cdot \text{M}^4}{\text{MOJIb}^2}$$

$$b = -\text{intercept} \cdot C_p = (6.2 \pm 0.2) \cdot 10^{-4} \frac{\text{M}^3}{\text{MOJIb}}$$

2) Получено значение инверсной температуры Джоуля-Томсона для углекислого газа:

$$T_{\rm inv} = \frac{2a}{Rb} = 497 \pm 19 \text{ K}$$

При этом табличное значение $T_{\text{inv }0} = 2027 \text{K}$.

Таким образом, можно сделать вывод, что уравнение Ван-дер-Ваальса дает хорошую качественную модель реального газа, но конкретные численные значения коэффициентов верны лишь в узком диапазоне температур.