

Suppose we get longitude
$$d_1^*m_1's_1''$$
 and latitude $d_2^*m_2's_2''$, plus a NS and an EW bit. If NS > 0, then $\Theta \in (0, \frac{\pi}{2})$ — otherwise, $\Theta \in (\frac{\pi}{2}, \frac{\pi}{2})$ If EW > 0, then $\Phi \in (0, \pi)$ — otherwise, $\Phi \in (0, -\pi)$

Fraxis Convert $d_1^{\circ}m_1^{\prime}s_1^{\prime\prime}$ to radians: θ° Green with Convert $d_2^{\circ}m_2^{\prime}s_2^{\circ}$ to radians: ϕ° Vs of Equator If NS>0, then $\theta = \frac{1}{2} - \theta^{\circ}$.

If EW>0, then $\phi = \phi^{\circ}$ Therefore $\phi = 2\pi - \phi^{\circ}$ Therefore $\phi = 2\pi - \phi^{\circ}$

Note that for the program, we set r=R+h, since the vehicle has an altitude component.

$$\theta = \cos^{-1} \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

$$\phi = \tan^{-1} \frac{y}{x}$$