Rheology and Polymer Characterization

Asst Prof Anongnat Somwangthanaroj

Anongnat.s@chula.ac.th

20 Sep 2010

http://pioneer.netserv.chula.ac.th/~sanongn1/course.html

Fundamentals:

- Why Rheology?
- Fundamental Rheology Concepts and Parameters
- Fundamental Rheometry Concepts
- Viscosity, Viscoelasticiy and the Storage Modulus
- The Linear Viscoelastic Region (LVR)

AGENDA

- Why Rheology?
- Fundamental Rheology Concepts and Parameters
- Fundamental Rheometry Concepts
- Viscosity, Viscoelasticiy and the Storage Modulus
- The Linear Viscoelastic Region (LVR)

A Rheological Paradox

BECAUSE ...

If a material is pumped, sprayed, extended, extruded, molded, coated, mixed, chewed, swallowed, rubbed, transported, stored, heated, cooled, aged ...

RHEOLOGY is important!!

AGENDA

- Why Rheology?
- Fundamental Rheology Concepts and Parameters
- Fundamental Rheometry Concepts
- Viscosity, Viscoelasticiy and the Storage Modulus
- The Linear Viscoelastic Region (LVR)

" $\pi\alpha \nu \tau\alpha \rho \epsilon \iota$ " (everything flows ...)

- Heraclito de Samos (500 A.C.)

Time Scale in Rheology

Deborah Number
$$De = \lambda / t_{exp}$$

Judges 5:5

Definition of Rheology

Rheology is the science of

? and ?

of matter under controlled testing conditions.

- flow
- deformation

Definition of Rheology

Rheology is the science of <u>deformation</u> and <u>flow</u> of matter under controlled testing conditions.

- Flow is a special case of deformation
- Deformation is a special case of flow

Simple Shear Deformation and Shear Flow

Shear Deformation

Strain,
$$\gamma = \frac{x(t)}{y_0}$$

Strain Rate,
$$\dot{\gamma} = \frac{\mathbf{V}}{\mathbf{y}_0} = \frac{1}{\mathbf{d}} \frac{\mathbf{d}}{\mathbf{x}(t)}$$

Viscosity,
$$\eta = \frac{\tau}{\dot{\gamma}}$$

$$\dot{\dot{\gamma}} = \frac{\Delta \gamma}{\Delta t}$$

Shear Modulus,
$$G = \frac{\tau}{\gamma}$$

Range of Rheological Material Behavior

Rheology: The study of deformation and flow of matter at specified conditions.

Classical Extremes: Elasticity

- - "The power of any spring is in the same proportion with the tension thereof."
 - ightharpoonup Hooke's Law: $\tau = G \gamma$ or (Stress = G x Strain)

where G is the RIGIDITY MODULUS

Linear and Non-Linear Stress-Strain Behavior of Solids

Classical Extremes: Viscosity

- ⇒ 1687: Isaac Newton addresses liquids and steady simple shearing flow in his "Principia"
 - For the resistance which arises from the lack of slipperiness of the parts of the liquid, other things being equal, is proportional to the velocity with which the parts of the liquid are separated from one another."
 - \triangleright Newton's Law: $\tau = \eta \dot{\gamma}$

where η is the Coefficient of Viscosity

Newtonian and Non-Newtonian Behavior of Fluids

PARAMETERS for Rheological Properties

Classical Extremes

Ideal Solid

-- [External Force] --

Ideal Fluid

STEEL

Strong Structure

Rigidity

Deformation

Retains/recovers form

Stores Energy

(Purely Elastic – R. Hooke, 1678)

ELASTICITY

Storage Modulus

WATER

Weak Structure

Fluidity

<u>Flow</u>

Losses form

Dissipates Energy

(Purely Viscous – I. Newton, 1687)

VISCOSITY

Loss Modulus

REAL Behavior

[Energy]

Apparent Solid

[Energy + time]

Apparent Fluid

- viscoelastic materials -

Types of non-Newtonian fluids

- Deformation rate dependent viscosity
- Yield Stress (plasticity)
- Elasticity
- Thixotropy
- Transient behaviour

Stress-strain rate curve

Dilatancy (shear thickening)
Plastic and Pseudoplastic (shear thinning)

apparent viscosity as a function of time

AGENDA

- Why Rheology?
- Fundamental Rheology Concepts and Parameters
- Fundamental Rheometry Concepts
- Viscosity, Viscoelasticiy and the Storage Modulus
- The Linear Viscoelastic Region (LVR)

Viscometer vs. Rheometer

- Viscometer: instrument that measures the viscosity of a fluid over a limited shear rate range
- Rheometer: instrument that measures:
 - Viscosity over a wide range of shear rates, and...
 - Viscoelasticity of fluids, semi-solids and solids

Frame of Reference...

- Recognize that a rheometer is a highly sensitive device used to quantify viscoelastic properties of the <u>molecular structure</u> of materials.
- A rheometer can not always mimic the conditions of a process, application or use.
- Rheometers determine apparent properties under a wide range of testing conditions.
 - The apparent behavior can be used as a "finger print" or "benchmark" of the material.

Constitutive Relations

$$\frac{Stress}{Strain} = Modulus$$

$$\frac{Stress}{Shear\ rate} = Viscosity$$

Measuring Systems - Geometries

AGENDA

- Why Rheology?
- Fundamental Rheology Concepts and Parameters
- Fundamental Rheometry Concepts
- Viscosity, Viscoelasticiy and the Storage Modulus
- The Linear Viscoelastic Region (LVR)

Dynamic Testing

- An oscillatory (sinusoidal) deformation (stress or strain) is applied to a sample.
- The material response (strain or stress) is measured.
- The phase angle δ , or phase shift, between the deformation and response is measured.

Dynamic Viscoelastic Material Response

Viscoelastic Parameters

The Complex Modulus: Measure of materials overall resistance to deformation.

$$G^* = G' + iG''$$

The Elastic (Storage) Modulus:
Measure of elasticity of material. The ability of the material to store energy.

$$G' = (stress*/strain)cos\Theta$$

The Viscous (loss) Modulus:

The ability of the material to dissipate energy. Energy lost as heat.

$$G'' = (stress*/strain)sin\Theta$$

Tan Delta:

Measure of material damping - such as vibration or sound damping.

Tan
$$\sigma$$
= G"/G'

Dynamic Time Sweep (Time Ramp)

 The material response is monitored at a constant frequency, amplitude and temperature.

- USES
- >Time dependent Thixotropy
- **▶** Cure Studies
- Stability against thermal degradation
- Solvent evaporation/drying

AGENDA

- Why Rheology?
- Fundamental Rheology Concepts and Parameters
- Fundamental Rheometry Concepts
- Viscosity, Viscoelasticiy and the Storage Modulus
- The Linear Viscoelastic Region (LVR)

Dynamic Stress or Strain Sweep (Torque Ramp)

 The material response to increasing deformation amplitude (stress or strain) is monitored at a constant frequency and temperature.

- USES
- ▶Identify Linear Viscoelastic Region
- Strength of dispersion structure settling stability
- ▶ Resilience

Dynamic Strain Sweep: Material Response

Frequency Sweep

 The material response to increasing frequency (rate of deformation) is monitored at a constant amplitude (stress or strain) and temperature.

•USES

- Viscosity Information Zero Shear η, shear thinning
- Elasticity (reversible deformation) in materials
- > MW & MWD differences Polymer Melts and Polymer solutions.
- Finding Yield in gelled dispersions
- ▶ High and Low Rate (short and long time) modulus properties.
- Extend time or frequency range with TTS

Time Sweep on Latex

Dynamic Strain Sweep: Material Response

Oscillation Model Fitting for Classic Polymer Data [Polyacrylamide Soln.]

Defining Shear Rate Ranges

Situation	Shear Rate Range	Examples
Sedimentation of fine powders in liquids	10 ⁻⁶ to 10 ⁻³	Medicines, Paints, Salad Dressing
Leveling due to surface tension	10 ⁻² to 10 ⁻¹	Paints, Printing inks
Draining off surfaces under gravity	10 ⁻¹ to 10 ¹	Toilet bleaches, paints, coatings
Extruders	10^0 to 10^2	Polymers, foods
Chewing and Swallowing	10 ¹ to 10 ²	Foods
Dip coating	10^1 to 10^2	Confectionery, paints
Mixing and stirring	10 ¹ to 10 ³	Liquids manufacturing
Pipe Flow	10° to 10³	Pumping liquids, blood flow
Brushing	10^3 to 10^4	Painting
Rubbing	10 ⁴ to 10 ⁵	Skin creams, lotions
High-speed coating	10 ⁴ to 10 ⁶	Paper manufacture
Spraying	10^5 to 10^6	Atomization, spray drying
Lubrication	10^3 to 10^7	Bearings, engines

Stress Relaxation Experiment

Response of Classical Extremes

Stress Relaxation Experiment (cont'd)

Response of Viscoelastic Material

Stress decreases with time starting at some high value and decreasing to zero.

- For small deformations (strains within the linear region) the ratio of stress to strain is a function of time only.
 - •This function is a material property known as the STRESS RELAXATION MODULUS, G(t) $G(t) = s(t)/\gamma$

Creep Recovery Experiment

Response of Classical Extremes

Elastic

- Stain for t>t1 is constant
- Strain for t >t2 is 0

t₁ time t₂

Viscous

- Stain rate for t>t1 is constant
- Strain for t>t1 increase with time

Creep Recovery Experiment: Response of Viscoelastic Material

Polyethylene Rheology @ 150 C

Polydimethylsiloxane - Cox-Merz Data

Dynamic Temperature Ramp or Step and Hold: Material Response

Molecular Structure - Effect of Molecular Weight

Effect of Heating Rate on Temperature of Cold Crystallization in PET

PET Bottle Resin – Cold Crystallization

PET Bottle Resin – Before and After DMA Scan

PET Bottle Resin - Repeat Run After Cold Crystallization

PET Bottle Resin - Comparison of G'

Temperature

Quantitative Description of Consistency (structure)?

BECAUSE ...

• Thermal Analysis describes thermal transitions

NEED to quantify ...

- Physical Properties of Structure
- Strength or weakness of the Structure

and because ...

Rheology can do these; therefore, it is much more informative tool

Shear

Flexure

Tension

Compression

Creep

Acknowledgements

Abel Gaspar-Rosas, Ph.D.

TA Instruments – Waters, Inc

For graphs and figures