注意機構 (attention mechanism)

概要

- 入力情報の中で特に注目すべき箇所を指定するための機能
 - 。 画像処理、文字列処理 etc で使用されている
- メリット:
 - 入力の系列情報の冒頭部分を伝播でき、モデルの性能がよくなる
 - 。 (特に画像処理で?) 特定の箇所に着目するので計算コストを抑えれる

種類

- ソフト注意機構
 - 。 入力情報の重み付き平均を用いる方法
- ハード注意機構
 - 入力情報のどれか一つを確率的に選択して用いる方法
- 自己注意機構 (self attention)
 - 。 Transformer 等で使用されている機構

ソフト注意機構

- 系列変換モデルを考える
- 入力系列 $\{x_1,...,x_I\}$ 、符号化されたベクトル $\{h_1^{(s)},..h_I^{(s)}\}$ として、各時刻の符号化層の隠れ状態ベクトルは

$$h_i^{(s)} = \Psi^{(s)}\left(x_i, h_{i-1}^{(s)}
ight)$$

- 入力初期の情報(ex. 文頭の情報)は復号化器に伝播するには $\Psi^{(s)}$ が I 回適用されて尚有用な情報として残っておく必要がある
 - もう少し直接的に復号化器に伝播する方法はないか?

- a_{ij} による重み付き平均を考える
 - 。 なぜ j を添えているか? <u>Issue #15</u>

$$ar{h}_j = \sum_{i=1}^I a_{ij} h_i^{(s)}$$

- 復号化器がj番目の単語の予測を行う際に $ar{h}_j$ を利用する
 - (旧版では連結がめちゃめちゃなので注意 Issue #5)

$$\hat{h}_{j}^{(s)} = anh \left(W^{(a)} egin{bmatrix} ar{h} \ h_{j}^{(t)} \end{bmatrix}
ight)$$

- 最初に与えた $\{a_1, ..., a_I\}$
 - ニューラルネットで計算する
- 関数 Ω で $h_i^{(s)}$ と $h_j^{(t)}$ の重みを計算する

$$\circ \; e_i = \Omega\left(h_i^{(s)}, h_j^{(t)}
ight)$$

- 。 softmax で 1 に規格化して確率化する
- 関数 Ω は複雑な関数、というわけでもなく(定義は自由)

o ...

ソフト注意機構 (一般化した定義)

- 復号化器の隠れ状態を $h_j^{(t)}$ とし、 参照したい符号化器の隠れ状態を $Y=\{y_1,...,y_N\}$ とする
- $h_j^{(t)}$ に対してどのYが重要化を $\left\{a_1,...,a_N
 ight\}$ で表す
 - 。 この重要度を計算するための情報を c_i とする

$$a_i = rac{\exp(\Omega(c_i))}{\sum_{k=1}^N \exp(\Omega(c_k))}$$

ullet 復号化器からの出力 $h_j^{(t)}$ と $\hat{y} = \sum_{i=1}^N a_i y_i$ を用いて最終的な情報を決定する

ハード注意機構

- N個の参照したい情報Yの重み(=確率)を a_i として、この確率に従ってYの値をただひとつに決定する
- 目的関数 $f(\hat{y})$ の最小化
 - 直接これを最小化できないので、期待値を最小化する

$$abla E[f(\hat{y})] =
abla^s um_{x=1}^N f(y_x) a_x$$

ullet いずれの項もxの取りうる全ての範囲1,...,Nに対して計算が必要

§4.2 記憶ネットワーク

- LSTMを始めとするRNNで、文の状態を記憶することができていた
 - しかし記憶の内容(隠れ状態ベクトル)は固定長で限定的だった
- より直接的に記憶の仕組みをモデル化する研究が行われている→記憶ネットワーク

モデル

- 入力情報変換
- 一般化
- 出力情報変換
- 応答

教師あり記憶ネットワーク

end-to-end 記憶ネットワーク

動的記憶ネットワーク

- Dynamic memory networks (DMN)
 - 。 入力
 - 。 意味記憶
 - 。 質問
 - エピソード記憶
 - 。 回答

§4.3 出力層の高速化