Problem 1 (1.1.21).

Proof. Let $x \in G$ have order odd 2n+1. Then $x^{2n+1}=e$ and if we multiply by x on both sides we get $x^{2n+2}=x^{2(n+1)}=x$.

Therefore if x has odd order then it $x^{2k} = x$ for some $k \in \mathbb{Z}_{>0}$.

Problem 2 (1.1.25).

Proof. Suppose that G is a group such that for all $x \in G$ that $x^2 = 1$. This implies that for any element $x^{-1} = x$. Then we have $xy = (xy)^{-1} = y^{-1}x^{-1} = yx$ which shows that G is commutative.

Problem 3 (1.1.35).

Proof. Let $x \in G$ have order n. Then consider x^m . Using the division algorithm with m and n we can rewrite m as qn + d where $0 \le d < n$. This implies that

$$x^{m} = x^{qn+d} = x^{qn}x^{d} = (x^{n})^{q}x^{d} = e^{q}x^{d} = x^{d}$$

As such $x \in \{e, x^1, \dots, x^{n-1}\}.$

Problem 4 (1.3.6).

- $(1\ 2\ 3\ 4) = (1\ 4)(1\ 3)(1\ 2)$
- \bullet (1 3 4 2) = (1 2)(1 4)(1 3)
- \bullet (1 4 3 2) = (1 2)(1 3)(1 4)
- $(4\ 3\ 2\ 1) = (4\ 1)(4\ 2)(4\ 3)$
- $(2\ 4\ 3\ 1) = (2\ 1)(2\ 3)(2\ 4)$
- $(3\ 2\ 4\ 1) = (3\ 1)(3\ 4)(3\ 2)$

Problem 5 (1.3.9).

- a) 1 + 12k, 5 + 12k, 7 + 12k, 11 + 12k for $k \in \mathbb{Z}$.
- b) 1 + 8k, 3 + 8k, 5 + 8k, 7 + 8k for $k \in \mathbb{Z}$.
- c) 1 + 14k, 3 + 14k, 5 + 14k, 9 + 14k, 11 + 14k, 13 + 14k for $k \in \mathbb{Z}$.

Problem 6 (1.3.13).

Proof. Suppose that $g \in S_n$ is of the form $g = \prod_{i=1}^m (a_i \ b_i)$ where each transposition commutes. Then

$$g^{2} = \left(\prod_{i=1}^{m} (a_{i} \ b_{i})\right)^{2} = \prod_{i=1}^{m} ((a_{i} \ b_{i})^{2} = e) = e$$

which implies that g is of order 2.

Next suppose that $g \in S_n$ is of order 2. We can write g as a product of disjoint cycles $\prod_{i=1}^m \sigma_i$. Since the cycles are disjoint we can write g^2 as

$$g^2 = \left(\prod_{i=1}^m \sigma_i\right)^2 = \prod_{i=1}^m \sigma_i^2 = e$$

Then for a given σ_i rewrite the above to

$$\prod_{i\in\{1...m\}-j}\sigma_i^2=\sigma_j^{-2}$$

However since each σ_i is disjoint this implies that $\sigma_j^{-2} = e = \sigma_j^2$. Since this is for an arbitrary σ_i we have that σ_i^2 for all i.

Therefore a permutation is of order two if and only if it is the product of disjoint 2-cycles. \Box

Problem 7 (1.5.2).

 \square