TRIGONOMETRY

ADVISORY

1. Sean α y θ las medidas de dos ángulos cuadrantales positivos y menores a una vuelta, tal que se cumple sen α - tan θ = -1

Efectué:

$$E = \frac{\tan\left(\frac{\alpha}{6}\right) + \cos\left(\frac{\theta}{3}\right)}{\operatorname{sen}(\alpha - \theta)}$$

RESOLUCIÓN

Como $0^{\circ} < \alpha y \theta < 360^{\circ} y$

Reemplazando en E:

$$E = \frac{\tan 45^{\circ} + \cos 60^{\circ}}{\text{sen }90^{\circ}}$$

$$E = \frac{1 + \frac{1}{2}}{1}$$

$$\frac{1}{1} = \frac{1}{0} = -1$$

$$\alpha = 270^{\circ}$$

$$\therefore E = \frac{3}{2}$$

2. Si para un ángulo α en posición normal se cumple $\tan \alpha \sqrt{\sec n\alpha} < 0$, indique el signo de $M = \sec \alpha + \csc \alpha$ y $N = \cos \alpha \cdot \cot \alpha$.

RESOLUCIÓN

tanα√senα⟨0

Si tan $\alpha < 0$ $\alpha \in IIC \lor \alpha \in IVC$

Si sen $\alpha > 0$ \Rightarrow $\alpha \in IC \lor \alpha \in IIC$ por lo tanto: $\alpha \in IIC$

Nos piden el signo:

$$M = \operatorname{sen}\alpha + \operatorname{csc}\alpha \qquad M = (+)$$

$$(+) \qquad (+)$$

$$N = \operatorname{cos}\alpha \cdot \operatorname{cot}\alpha \qquad N = (+)$$

3. Si sen $\phi = -5/13$, además $\phi \in \langle 270^{\circ}; 360^{\circ} \rangle$, halle el valor de $P = \csc\phi + \cot\phi$

RESOLUCIÓN

 $\phi \in \langle 270^{\circ}; 360^{\circ} \rangle$

$$\phi \in IVC \Rightarrow x(+), y(-), r(+)$$

Además:

$$\operatorname{sen}\phi = \frac{-5}{13} = \frac{y}{r}$$

Luego: $y = -5 \ y \ r = 13$

Sabemos: $r = \sqrt{x^2 + y^2}$

$$13 = \sqrt{(x)^2 + (-5)^2} \implies x = 12$$

Piden: P = cscø + cotø

$$P = \frac{13}{-5} + \frac{12}{-5}$$

4. A Juan se le entregó S/x como incentivo por sus buenas calificaciones. Resolviendo la siguiente ecuación podrá averiguar con cuanto se le premió.

$$8\csc(-30^{\circ}) - x.\cot(-45^{\circ}) = 15\cos(-37^{\circ})$$

RESOLUCIÓN

Resolviendo la ecuación:

$$8(-\csc 30^{\circ}) - x (-\cot 45^{\circ}) = 15 (\cos 37^{\circ})$$

$$-2 \qquad -1 \qquad 4/5$$

$$-16 + x = 12 \qquad x = 28$$

$$cos(-\alpha) = cos \alpha$$
 $cot(-\alpha) = -cot \alpha$
 $csc(-\alpha) = -csc$
 α

Juan recibió S/ 28 de incentivo

5. Si:
$$x - y = \pi / 2$$
, reduzca: $E = \frac{3\cos x}{\sin y} - \frac{\cot x}{\tan y}$

RESOLUCIÓN

Despejamos x, luego reemplazar en E:

$$E = \frac{3(-\text{serry})}{\text{serry}} - \frac{-\text{tany}}{\text{tarry}} \rightarrow E = -3 + 1$$

6. Si $\theta \in IIC$, además, $\cos \theta = -\frac{\sqrt{5}}{3}$, reduzca: $Q = \frac{\sqrt{5}\cot(270^\circ + \theta)}{\csc(180^\circ - \theta)}$

RESOLUCIÓN

$$Q = \frac{IVC}{\sqrt{5}\cot(270^{\circ} + \theta)}$$

$$csc(180^{\circ} - \theta)$$

$$IIC$$

$$Q = \frac{\sqrt{5}(-\tan\theta)}{\csc\theta}$$

$$Q = -\frac{\sqrt{5} \tan \theta}{\csc \theta} \dots (*)$$

Dato:

$$\cos\theta = \frac{-\sqrt{5}}{3} = \frac{x}{r}$$

$$r = \sqrt{x^2 + y^2}$$

$$3 = \sqrt{(-\sqrt{5})^2 + y^2} \to y = 2$$

Reemplazando en (*):

$$Q = -\frac{\sqrt{5}\tan\theta}{\csc\theta} = -\sqrt{5}\frac{\frac{y}{x}}{\frac{r}{y}} = -\sqrt{5}\frac{\frac{2}{-\sqrt{5}}}{\frac{3}{2}}$$

$$Q = \sqrt{5} \left(\frac{4}{3\sqrt{5}} \right)$$

$$\therefore Q = \frac{4}{3}$$

7. Simplifique la expresión: $E = \frac{\cos(3\pi + x) \cdot \sin(4\pi - x)}{2}$ $\operatorname{sen}\left(\frac{9\pi}{2} + x\right)$

RESOLUCIÓN

$$E = \frac{\cos(3\pi + x) \cdot \sin(4\pi - x)}{\sin(\frac{9\pi}{2} + x)}$$

$$E = \frac{\cos(3\pi + x) \cdot \sin(4\pi - x)}{\sin(\frac{9\pi}{2} + x)}$$

$$E = \frac{(-\cos x) \cdot (-\sin x)}{\cos x}$$

$$\therefore$$
E = senx

8. Siendo y – x = 1350°; reduzca: $M = \frac{\text{seny}}{\text{cosx}} + \text{tanx.tany}$

RESOLUCIÓN

Reemplazando "y" en términos de "x": $y = 1350^{\circ} + x$

$$M = \frac{\text{sen}(1350^{\circ} + x)}{\text{cosx}} + \tan x. \tan(1350^{\circ} + x)$$

$$M = \frac{\frac{3}{4+3}}{\cos x} + \tan x \cdot \tan(15(90^\circ) + x)$$

$$M = \frac{IVC}{\text{sen}(15(90^\circ) + \text{x})} + \tan \text{x.tan}(15(90^\circ) + \text{x})$$

$$M = -1 - 1$$

$$\therefore M = -2$$

HELICO | PRACTICE

9.Se cumple que cot($8\pi + x$) = 3.

Efectúe:

$$K=sen\left(\frac{15\pi}{2}+x\right).csc(21\pi+x)$$

si x es un ángulo agudo.

RESOLUCIÓN

$$K = sen \left(\frac{4+3}{15 \frac{\pi}{2}} + x \right) \cdot \csc(21\pi - x)$$

$$K = \underbrace{sen\left(15\frac{\pi}{2} + x\right)}_{-\cos x} \cdot \underbrace{\csc\left(21\pi - x\right)}_{-\cos x}$$

$$K = -\cos x \cdot \csc x \cdot \cdot \cdot (*)$$

Del dato:

$$\cot(8\pi + x) = 3$$

$$\cot(8\pi + x) = 3$$

$$\cot(8\pi + x) = 3$$

$$\cot(x + x) = 3$$

Reemplazando

$$K = -\cos x \cdot \csc x$$

$$K = -\frac{3}{\sqrt{10}} \cdot \frac{\sqrt{10}}{1}$$

$$\therefore K = -3$$

HELICO | PRACTICE

10. Con la información dada en la figura, calcule el valor de $M = \sec\theta + \tan\theta - 2$

RESOLUCIÓN

Por radio vector:

$$r = \sqrt{x^2 + y^2}$$

Del dato:

$$5 = \sqrt{a^2 + 4^2}$$

Como: $P \in IIC$

$$\rightarrow a = -3$$

Del grafico:

$$\alpha + \theta = 270^{\circ}$$

$$\theta = 270^{\circ} - \alpha \begin{vmatrix} \tan\theta = \cot\alpha \\ \tan\theta = -\frac{3}{2} \end{vmatrix}$$

IIIC

$$sec\theta = sec(270^{\circ} - \alpha)$$
 $M = sec\theta + tan\theta - 2$

 $sec\theta = -csc\alpha$

$$sec\theta = -\frac{5}{4}$$

Del grafico:
$$\alpha + \theta = 270^{\circ} \tan \theta = \tan(270^{\circ} - \alpha)$$

$$\tan \theta = \cot \alpha$$

$$tan\theta = -\frac{3}{4}$$

Reemplazando:

$$M = \sec\theta + \tan\theta - 2$$

$$M = \left(-\frac{5}{4}\right) + \left(-\frac{3}{4}\right) - 2$$

$$\therefore M = -4$$