

Proba de Avaliación do Bacharelato Código: 23 para o Acceso á Universidade

XUÑO 2018

FÍSICA

Puntuación máxima: Cuestiones 4 puntos (1 cada cuestión, teórica o práctica). Problemas 6 puntos (1 cada apartado). No se valorará la simple anotación de un ítem cómo solución a las cuestiones. Las respuestas han de ser razonadas. El/la alumno/a elegirá una de las dos opciones.

OPCIÓN A

- <u>C.1.</u> Para las ondas sonoras, ¿cuál de las siguientes afirmaciones es cierta?: A) Se propagan en el vacío. B) No se pueden polarizar. C) No se pueden reflejar.
- C.2. Si la masa de un planeta es el doble de la masa de la Tierra y el radio es cuatro veces mayor que el de la Tierra, la aceleración de la gravedad en ese planeta con respecto a la de la Tierra es: A) 1/4. B) 1/8. C) 1/16.
- C.3. Si una partícula cargada de masa despreciable penetra en un campo magnético uniforme con una velocidad que forma un ángulo de 180° con las líneas del campo, la trayectoria que describe la partícula es: A) Rectilínea. B) Circular. C) Parabólica.
- <u>C.4.</u> Haz un esquema del montaje experimental necesario para medir la longitud de onda de una luz monocromática y describe el procedimiento. Explica qué sucede si cambias la red de difracción por otra con el doble número de líneas por milímetro.
- P.1. Una esfera conductora de radio 4 cm tiene una carga de +8 μ C en equilibrio electrostático. Calcula cuánto valen en puntos que distan 0, 2 y 6 cm del centro de la esfera: a) El módulo de la intensidad del campo electrostático. b) El potencial electrostático. c) Representa las magnitudes anteriores en función de la distancia al centro de la esfera. DATO: $K = 9 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$.
- P.2. El ¹³¹I es un isótopo radiactivo que se utiliza en medicina para el tratamiento del hipertiroidismo. Su periodo de semidesintegración es de 8 días. Si inicialmente se dispone de una muestra de 20 mg de ¹³¹I: a) Calcula la masa que queda sin desintegrar después de estar almacenada en un hospital 50 días. b) Representa en una gráfica, de forma cualitativa, la variación de la masa en función del tiempo. c) ¿Cuál es la actividad inicial de 2 mg de ¹³¹I? DATO: $N_A = 6,022 \times 10^{23}$ mol⁻¹.

OPCIÓN B

- <u>C.1.</u> Si aplicamos el teorema de Gauss al campo electrostático, el flujo del campo a través de una superficie cerrada depende: A) De la localización de las cargas dentro de la superficie gaussiana. B) De la carga neta encerrada por la superficie gaussiana. C) De la carga neta situada tanto dentro como fuera de la superficie gaussiana.
- C.2. Un satélite describe una órbita elíptica alrededor de la Tierra. Considerando su posición en dos puntos de la órbita, se cumple: A) La velocidad orbital del satélite es la misma en ambos puntos. B) La energía mecánica del satélite es la misma en ambos puntos. C) El momento angular del satélite respecto al centro de la Tierra es distinto en ambos puntos.
- <u>C.3.</u> Una onda incide sobre la superficie de separación de dos medios. Las velocidades de propagación de la onda en el primer y segundo medio son, respectivamente, 1750 m·s⁻¹ y 2300 m·s⁻¹. Si el ángulo de reflexión es 45°, el de refracción será: A) 68°. B) 22°. C) 45°. DATO: $c = 3 \times 10^8 \text{ m·s}^{-1}$.
- <u>C.4.</u> Se midieron en el laboratorio los siguientes valores para las distancias objeto e imagen de una lente convergente:

Determina el valor de la potencia de la lente. Estima su incertidumbre.

N.° exp,	1	2	3	4
s(cm)	33,9	39,0	41,9	49,3
s'(cm)	84,7	64,3	58,6	48,0

- P.1. Una radiación monocromática que tiene una longitud de onda de 600 nm penetra en una célula fotoeléctrica de cátodo de cesio cuyo trabajo de extracción es 3.2×10^{-19} J. Calcula: a) La longitud de onda umbral para el cesio. b) La energía cinética máxima de los electrones emitidos. c) El potencial de frenado. DATOS: $h = 6.62 \times 10^{-34}$ J·s; $c = 3 \times 10^8$ m·s⁻¹; $q_e = -1.6 \times 10^{-19}$ C; 1 nm = 10^{-9} m
- P.2. Dos hilos conductores muy largos, rectilíneos y paralelos, se disponen verticalmente separados 8 cm. Por el conductor situado a la izquierda circula una corriente de intensidad 30 A, y por el situado a la derecha, otra de 20 A, ambas hacia arriba. Calcula: a) El campo de inducción magnética en el punto medio entre los dos conductores; b) La fuerza por unidad de longitud ejercida sobre un tercer conductor vertical situado entre los dos conductores iniciales, a 3 cm del conductor de la izquierda, por el que circula una corriente de 10 A dirigida hacia abajo. c) ¿Es conservativo el campo magnético creado por el conductor? Justifícalo. DATO: $\mu_0 = 4 \pi \times 10^{-7} \text{ T·m·A}^{-1}$.

Soluciones

OPCIÓN A

C.1. Para las ondas sonoras, ¿cuál de las siguientes afirmaciones es cierta?:

- A) Se propagan en el vacío.
- B) No se pueden polarizar.
- C) No se pueden reflejar.

(A.B.A.U. ord. 18)

Solución: B

Las ondas sonoras son longitudinales porque la dirección en la que se propaga el sonido es la misma que la dirección en la que oscilan las partículas del medio.

Si pensamos en el sonido producido por una superficie plana (la piel de un tambor, la pantalla de un altavoz), la vibración de la superficie empuja a las partículas del medio (moléculas de aire) que se desplazan hasta chocar con otras vecinas y rebotar, en la dirección en la que oscila la superficie y en la que se desplaza el sonido.

La polarización es una característica de las ondas transversales. Una onda es transversal cuando la dirección de oscilación es perpendicular a la dirección de propagación de la onda. La polarización consiste en que la oscilación de la onda ocurre en un único plano.

Las ondas sonoras, al ser longitudinales y no transversales, no pueden polarizarse.

Las otras opciones:

A. Falsa. No se propagan en el vacío. Un dispositivo que lo confirma es un despertador colocado dentro de un recipiente en el que se hace el vacío. Se hace sonar y va haciéndose el vacío en el recipiente. Se ve como el timbre del despertador sigue golpeando la campana, pero el sonido se va haciendo más débil hasta desaparecer.

C. Falsa. Un ejemplo es el eco, que consiste en el sonido que oímos con retraso respecto al emitido, porque las ondas sonoras se ha reflejado en una pared o muro.

- C.2. Si la masa de un planeta es el doble de la masa de la Tierra y el radio es cuatro veces mayor que el de la Tierra, la aceleración de la gravedad en ese planeta con respecto a la de la Tierra es:
 - A) 1/4
 - B) 1/8
 - C) 1/16.

(A.B.A.U. ord. 18)

Solución: B

La fuerza gravitatoria, \overline{F}_G , que ejerce un astro de masa M y radio R, sobre un objeto de masa m en su superficie, se rige por la ley de Newton de la gravitación universal:

$$\vec{F}_{G} = -G \frac{M \cdot m}{R^{2}} \vec{u}_{r}$$

En esta expresión, G es la constante de la gravitación universal, y $\overline{\boldsymbol{u}}_{r}$, el vector unitario en la dirección de la línea que une el objeto con el centro del planeta.

La aceleración de la gravedad es la fuerza sobre la unidad de masa:

$$g = \frac{F_G}{m} = \frac{G\frac{Mm}{R^2}}{m} = G\frac{M}{R^2}$$

Si la masa de un planeta es el doble de la masa de la Tierra y el radio es cuatro veces mayor que el de la Tierra, la aceleración, g, de la gravedad en su superficie será la octava parte de la gravedad en la Tierra.

$$g_{P} = G \frac{M_{P}}{R_{P}^{2}} = G \frac{2 \cdot M_{T}}{(4 \cdot R_{T})^{2}} = \frac{2}{16} G \frac{M_{T}}{R_{T}^{2}} = \frac{g_{T}}{8}$$

- C.3. Si una partícula cargada de masa despreciable penetra en un campo magnético uniforme con una velocidad que forma un ángulo de 180° con las líneas del campo, la trayectoria que describe la partícula A) Rectilínea.

- B) Circular. C) Parabólica.

(A.B.A.U. ord. 18)

Solución: A

La fuerza magnética, \overline{F}_B , sobre una carga, q, que se desplaza en el interior de un campo magnético, \overline{B} , con una velocidad, $\overline{\nu}$, viene dada por la lev de Lorentz:

$$\overline{F}_B = q (\overline{v} \times \overline{B})$$

El módulo del producto vectorial de los vectores velocidad e inducción magnética es:

$$|\overline{\boldsymbol{v}} \times \overline{\boldsymbol{B}}| = |\overline{\boldsymbol{v}}| \cdot |\overline{\boldsymbol{B}}| \cdot \operatorname{sen} \varphi$$

Donde φ es el ángulo que forman esos vectores. Si φ = 180°, entonces sen φ = 0 y la fuerza es nula, por lo que la partícula no se desvía. La trayectoria será rectilínea.

- C.4. Haz un esquema del montaje experimental necesario para medir la longitud de onda de una luz monocromática y describe el procedimiento. Explica qué sucede si cambias la red de difracción por otra con el doble número de líneas por milímetro.
 - (A.B.A.U. ord. 18)

Solución:

INTERFERENCIA E DIFRACCIÓN en Prácticas: Orientacións xerais del Grupo de Traballo. La separación entre máximos se hace el doble.

- P.1. Una esfera conductora de radio 4 cm tiene una carga de +8 μC en equilibrio electrostático. Calcula cuánto valen en puntos que distan 0, 2 y 6 cm del centro de la esfera:
 - a) El módulo de la intensidad del campo electrostático.
 - b) El potencial electrostático.
 - c) Representa las magnitudes anteriores en función de la distancia al centro de la esfera.

Dato: $K = 9.10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$. (A.B.A.U. ord. 18)

Rta.: a) $|\overline{E}_1| = |\overline{E}_2| = 0$; $|\overline{E}_3| = 2,00 \cdot 10^7 \text{ N/C}$; b) $V_1 = V_2 = 1,80 \cdot 10^6 \text{ V}$; $V_3 = 1,20 \cdot 10^6 \text{ V}$.

Datos Carga de la esfera		Cifras significativas: 3 $Q = 8.00 \mu\text{C} = 8.00 \cdot 10^{-6} \text{C}$
Radio de la esfera		R = 4.00 cm = 0.0400 m
Distancias al centro de la esfera:	punto interior 1	$r_1 = 0 \text{ cm} = 0 \text{ m}$
	punto interior 2	$r_2 = 2,00 \text{ cm} = 0,0200 \text{ m}$
	punto exterior	$r_3 = 6,00 \text{ cm} = 0,0600 \text{ m}$
Constante de Coulomb	$K = 9,00 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$	
Incógnitas		
Intensidad del campo eléctrico en los	$\overline{E}_{\scriptscriptstyle 1}, \overline{E}_{\scriptscriptstyle 2}, \overline{E}_{\scriptscriptstyle 3}$	
Potencial eléctrico en los puntos 1, 2	V_1, V_2, V_3	
Ecuaciones		

 $\vec{E} = K \frac{Q}{r^2} \vec{u}_r$ Campo eléctrico en un punto a una distancia, r, de una carga puntual, Q

Potencial eléctrico en un punto a una distancia, r, de una carga puntual, $\mathcal Q$

Solución:

a) El módulo de la intensidad del campo eléctrico en los puntos 1 y 2, que se encuentran en el interior a 0 y 2 cm del centro de la esfera, es nulo porque el conductor se encuentra en equilibrio y todas las cargas se encuentran en la superficie de la esfera.

El módulo de la intensidad del campo eléctrico en el punto 3, a 6 cm del centro de la esfera, es el mismo que si la carga fuera puntual.

La fuerza eléctrica entre dos cargas puntuales, Q y q, separadas por una distancia, r, viene dada por la ley de Coulomb, en la que K es la constante de Coulomb y $\overline{\boldsymbol{u}}_{r}$ el vector unitario en la línea que une las cargas.

$$\vec{F}_E = K \frac{Q \cdot q}{r^2} \vec{u}_r$$

El campo eléctrico en un punto situado a una distancia, r, de una carga puntual, Q, es la fuerza sobre la unidad de carga positiva situada en ese punto:

$$\vec{E} = \frac{\vec{F}_E}{q} = \frac{K \frac{Q \cdot q}{r^2} \vec{u}_r}{\frac{q}{r}} = K \frac{Q}{r^2} \vec{u}_r$$

$$|\vec{E}_3| = 9,00 \cdot 10^9 [\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2}] \frac{8,00 \cdot 10^{-6} [\text{C}]}{(0,0600 [\text{m}])^2} = 2,00 \cdot 10^7 \text{ N/C}$$

b) El potencial eléctrico en los puntos 1 y 2 es el mismo que el potencial en la superficie de la esfera, que vale lo mismo que el creado por una carga puntual, Q, situada en el centro de la esfera: La ecuación del potencial eléctrico en un punto situado a una distancia, r, de una carga puntual, Q, es:

$$V = K \frac{Q}{r}$$

K es la constante de Coulomb.

$$V_1 = V_2 = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{8,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0400 \left[\text{m} \right])} = 1,80 \cdot 10^6 \text{ V}$$

El potencial eléctrico en el punto 3 es el mismo que si la carga fuera puntual.

$$V_3 = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{8,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0600 \left[\text{m} \right])} = 1,20 \cdot 10^6 \text{ V}$$

c) La gráfica de la izquierda representa la variación del valor campo eléctrico con la distancia al centro de la esfera. El campo vale cero para distancias inferiores al radio de la esfera, es máxima para el radio, y disminuye de forma inversamente proporcional al cuadrado de la distancia para valores mayores.

La gráfica de la derecha representa la variación del potencial eléctrico con la distancia al centro de la esfera. El potencial es constante para distancias inferiores o iguales al radio de la esfera y disminuye de forma inversamente proporcional a la distancia para valores mayores.

P.2. El ¹³¹I es un isótopo radiactivo que se utiliza en medicina para el tratamiento del hipertiroidismo. Su periodo de semidesintegración es de 8 días. Si inicialmente se dispone de una muestra de 20 mg de ¹³¹I:

c) ¿Cuál es la actividad inicial de 2 mg de 1311?

DATO: $N_A = 6,022 \cdot 10^{23} \text{ mol}^{-1}$.

Rta.: a) m = 0.263 mg; c) $A = 9.22 \cdot 10^{12}$ Bq.

(A.B.A.U. ord. 18)

Cifras significativas: 3

 $T_{\frac{1}{2}} = 8,00 \text{ días} = 6,91 \cdot 10^5 \text{ s}$ $m_0 = 20,0 \text{ mg} = 2,00 \cdot 10^{-5} \text{ kg}$

 $N_{\rm A} = 6.02 \cdot 10^{23} \, \rm mol^{-1}$

M = 131 g/mol

 $t = 50 \text{ días} = 4.32 \cdot 10^6 \text{ s}$

Incógnitas

Datos

Masa que queda sin desintegrar después de 50 días

Actividad inicial de 2 mg de 131I

Período de semidesintegración

Otros símbolos

Masa de la muestra

Número de Avogadro

Tiempo transcurrido

Masa atómica del yodo

Constante de desintegración radiactiva

Ecuaciones

Ley de la desintegración radiactiva

Cuando $t = T_{\frac{1}{2}}$, $N = N_0 / 2$ Actividad radiactiva

$m \\ A$

λ

$$N = N_0 \cdot e^{-\lambda \cdot t}$$

$$\lambda = \ln (N_0 / N) / t$$

$$T_{\frac{1}{2}} = \ln 2 / \lambda$$

$$A = -d N / d t = \lambda \cdot N$$

Solución:

a) Se calcula la constante radiactiva a partir del período de semidesintegración

$$T_{1/2} = \frac{\ln 2}{\lambda} \Rightarrow \lambda = \frac{\ln 2}{T_{1/2}} = \frac{0.693}{6.91 \cdot 10^5 \,[\text{s}]} = 1.00 \cdot 10^{-6} \,\text{s}^{-1}$$

La ley de desintegración radiactiva, $N = N_0 \cdot e^{-\lambda \cdot t}$, puede escribirse en función de la masa porque el número de átomos de un elemento es proporcional a su masa.

La constante de proporcionalidad es: N_A / M , el número de átomos que hay en la unidad de masa de ese elemento, donde N_A es el número de Avogadro y M es la masa atómica del elemento.

$$N = m \cdot N_A / M$$

$$m\frac{N_{\overline{A}}}{M} = m_0 \frac{N_{\overline{A}}}{M} e^{-\lambda t}$$

$$m = m_0 e^{-\lambda t} = 20,0 \text{ [mg]} \cdot e^{-1,00 \cdot 10^{-6} [s^{-1}] \cdot 4,32 \cdot 10^{6} [s]} = 0,263 \text{ mg}$$

b) La gráfica es una función exponencial decreciente.

c) Para calcular la actividad se calcula primero el número de átomos que hay en 2 mg de 131 I.

$$N = 2,00 \cdot 10^{-3} \text{ g}^{-131} \text{I} \frac{1 \text{ mol}^{-131} \text{I}}{131 \text{ g}^{-131} \text{I}} \frac{6,02 \cdot 10^{23} \text{ átomos}^{-131} \text{I}}{1 \text{ mol}^{-131} \text{I}} \frac{1 \text{ núcleo}^{-131} \text{I}}{1 \text{ átomo}^{-131} \text{I}} = 9,19 \cdot 10^{18} \text{ núcleos}^{-131} \text{I}$$

$$A = \lambda \cdot N = 1,00 \cdot 10^{-6} [s^{-1}] \cdot 9,19 \cdot 10^{18} [núcleos] = 9,22 \cdot 10^{12} Bq$$

OPCIÓN B

- C.1. Si aplicamos el teorema de Gauss al campo electrostático, el flujo del campo a través de una superficie cerrada depende:
 - A) De la localización de las cargas dentro de la superficie gaussiana.
 - B) De la carga neta encerrada por la superficie gaussiana.
 - C) De la carga neta situada tanto dentro como fuera de la superficie gaussiana.

(A.B.A.U. ord. 18)

Solución: B

El flujo del vector campo eléctrico, $\overline{\boldsymbol{E}}$, que atraviesa una superficie cerrada es:

$$\Phi = \oiint_{S} \vec{E} \cdot d\vec{S}$$

El teorema de Gauss dice que el flujo del campo a través de una superficie cerrada es proporcional a la carga encerrada:

$$\Phi = \frac{Q_{\text{encerrada}}}{\varepsilon_0} = \frac{Q}{\varepsilon_0}$$

- C.2. Un satélite describe una órbita elíptica alrededor de la Tierra. Considerando su posición en dos puntos de la órbita, se cumple:
 - A) La velocidad orbital del satélite es la misma en ambos puntos.
 - B) La energía mecánica del satélite es la misma en ambos puntos.
 - C) El momento angular del satélite respecto al centro de la Tierra es distinto en ambos puntos.

(A.B.A.U. ord. 18)

Solución: B

El campo gravitatorio es un campo de fuerzas conservativo. El trabajo de la fuerza gravitatoria, cuando una masa se desplaza de un punto 1 a un punto 2, es independiente del camino seguido y solo depende de los puntos inicial y final. Se define una magnitud llamada energía potencial, E_p , de forma que el trabajo, W, de la fuerza gravitatoria es igual a la variación (cambiada de signo) de la energía potencial.

$$W_{1\rightarrow 2} = E_{p1} - E_{p2} = -\Delta E_{p}$$

Como el trabajo de la fuerza resultante es, por el principio de la energía cinética, igual a la variación de energía cinética:

$$W(\text{resultante}) = E_{c2} - E_{c1} = \Delta E_{c}$$

Si la única fuerza que realiza trabajo es la fuerza gravitatoria, ambos trabajos son iguales:

$$W_{1\rightarrow 2} = W(\text{resultante})$$

$$E_{p1} - E_{p2} = E_{c2} - E_{c1}$$

$$E_{p1} + E_{c1} = E_{p2} + E_{c2}$$

La energía mecánica (suma de la energía cinética y potencial) se conserva.

Las otras opciones:

A y C. Falsas. El momento angular del satélite respecto a la Tierra es constante.

Si el momento angular es constante, al variar la distancia, \bar{r} , del satélite a la Tierra, también variará su velocidad, \bar{v} .

C.3. Una onda incide sobre la superficie de separación de dos medios. Las velocidades de propagación de la onda en el primer y segundo medio son, respectivamente, 1750 m·s⁻¹ y 2300 m·s⁻¹. Si el ángulo de reflexión es 45°, el de refracción será:

- A) 68°
- B) 22°
- C) 45°

DATO: $c = 3 \times 10^8 \text{ m} \cdot \text{s}^{-1}$.

(A.B.A.U. ord. 18)

Solución: A

Datos

Velocidad de la onda en el primer medio Velocidad de la onda en el segundo medio Ángulo de reflexión

Incógnitas

Ángulo de refracción

Ecuaciones

Índice de refracción de un medio i en el que la luz se desplaza a la velocidad v_i $n_i = \frac{c}{v_i}$

Ley de Snell de la refracción

$$n_i \cdot \text{sen } \theta_i = n_r \cdot \text{sen } \theta_r$$

Cifras significativas: 3

 $v_1 = 1750 \text{ m} \cdot \text{s}^{-1}$

 $v_2 = 2300 \text{ m} \cdot \text{s}^{-1}$

 $\theta_{\rm rx} = 45.0^{\circ}$

 $\theta_{\rm r}$

Solución:

Para calcular el ángulo de refracción habrá que aplicar la ley de Snell de la refracción:

$$n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$$

Como los datos son las velocidades de propagación de la onda en ambos medios, reescribimos esta ecuación en función de la velocidades, teniendo en cuenta que:

$$n_{\rm i} = \frac{c}{v_{\rm i}}$$

$$\frac{\operatorname{sen}\theta_1}{v_1} = \frac{\operatorname{sen}\theta_2}{v_2}$$

La ley de Snell de la reflexión dice que los ángulos de incidencia y de reflexión son iguales. Por tanto el ángulo de incidencia vale θ_i = 45,0°.

La ecuación anterior queda:

$$\frac{\sin 45.0^{\circ}}{1750} = \frac{\sin \theta_2}{2300}$$

sen
$$\theta_r = 0.929$$

$$\theta_{\rm i} = {\rm arcsen} \ 0.929 = 68.3^{\circ}$$

C.4. Se midieron en el laboratorio los siguientes valores para las distancias objeto e imagen de una lente convergente:

Determina el valor de la potencia de la lente. Estima su incertidumbre.

:	N.° exp,	1	2	3	4
	<i>s</i> (cm)	33,9	39,0	41,9	49,3
٠.	<i>s</i> '(cm)	84,7	64,3	58,6	48,0

Solución:

Se sustituyen los valores de s y s' en la ecuación de las lentes

$$\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'}$$

Se calcula el inverso de la distancia focal (potencia) y el valor de la distancia focal para cada par de datos.

s (cm) s' (cm)	s (m) s' (m)	$1/s (m^{-1}) 1/s' (m^{-1})$	$1/f(\mathrm{m}^{-1})$ $f(\mathrm{m})$
----------------	--------------	------------------------------	--

-33,9	84,7	-0,339	0,847	-2,95	1,18	4,13	0,242
-33,9	04,7	-0,339	0,047	-2,93	1,10	4,13	0,242
-39,0	64,3	-0,390	0,643	-2,56	1,56	4,12	0,243
-41,9	58,6	-0,419	0,586	-2,39	1,71	4,09	0,244
-49,3	48,0	-0,493	0,480	-2,03	2,08	4,11	0,243

El valor medio de la potencia es: $P = 1 / f = 4,11 \text{ m}^{-1} = 4,11 \text{ dioptrías}.$

La estimación de las incertidumbres se limita al uso apropiado de las cifras significativas.

$$P = (4.11 \pm 0.01)$$
 dioptrías.

- P.1. Una radiación monocromática que tiene una longitud de onda de 600 nm penetra en una célula fotoe- léctrica de cátodo de cesio cuyo trabajo de extracción es 3,2×10⁻¹⁹ J. Calcula:
 - a) La longitud de onda umbral para el cesio.
 - b) La energía cinética máxima de los electrones emitidos.
 - c) El potencial de frenado.

DATOS: $h = 6,62 \times 10^{-34} \text{ J·s}$; $c = 3 \times 10^8 \text{ m·s}^{-1}$; $q_e = -1,6 \times 10^{-19} \text{ C}$; 1 nm = 10^{-9} m. (A.B.A.U. ord. 18) **Rta.:** a) $\lambda_0 = 621 \text{ nm}$; b) $E_c = 1,1 \cdot 10^{-20} \text{ J}$; c) V = 0,069 V.

Datos Longitud de onda de la radiación Trabajo de extracción del metal Constante de Planck Velocidad de la luz en el vacío Carga del electrón	Cifras significativas: 3 $\lambda = 600 \text{ nm} = 6,00 \cdot 10^{-7} \text{ m}$ $W_e = 3,20 \cdot 10^{-19} \text{ J}$ $h = 6,62 \cdot 10^{-34} \text{ J} \cdot \text{s}$ $c = 3,00 \cdot 10^8 \text{ m/s}$ $q_e = -1,60 \cdot 10^{-19} \text{ C}$
Incógnitas	
Longitud de onda umbral	λο
Energía cinética máxima con la que son emitidos los electrones	$E_{\mathbf{c}}$
Potencial de frenado	V
Ecuaciones	
Ecuación de Planck (energía del fotón)	$E_{\rm f} = h \cdot f$
Ecuación de Einstein del efecto fotoeléctrico	$E_{\rm f} = W_{\rm e} + E_{\rm c}$
Relación entre la frecuencia de una onda luminosa y la longitud de onda	$f = c / \lambda$
Energía cinética	$E_{\rm c} = \frac{1}{2} m \cdot v^2$
Relación entre la energía cinética de los electrones y el potencial de frenado	$E_{\rm c} = e \cdot V$

Solución:

a) La longitud de onda umbral corresponde a una radiación con la energía mínima para provocar el efecto fotoeléctrico. Combinando las ecuaciones de Planck y Einstein, se obtiene la frecuencia umbral:

$$W_{\rm e} = h \cdot f_{\rm o}$$

$$f_0 = \frac{W_e}{h} = \frac{3,20 \cdot 10^{-19} \text{ J}}{6.62 \cdot 10^{-24} \text{ J} \cdot \text{s}} = 4,83 \cdot 10^{14} \text{ s}^{-1}$$

La longitud de onda umbral:

$$\lambda_0 = \frac{c}{f_0} = \frac{3,00 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}}{4,83 \cdot 10^{14} \text{ s}^{-1}} = 6,21 \cdot 10^{-7} \text{ m} = 621 \text{ nm}$$

c) La energía cinética máxima de los electrones emitidos se calcula a partir de la ecuación de Einstein del efecto fotoeléctrico:

$$E_{\rm c} = E_{\rm f} - W_{\rm e}$$

La energía de los fotones, después de sustituir la frecuencia por su expresión en función de la longitud de onda, es:

$$E_{\rm f} = h \cdot f = \frac{h \cdot c}{\lambda} = \frac{6.62 \cdot 10^{-34} \,[\,\text{J} \cdot \text{s}\,] \cdot 3.00 \cdot 10^8 \,[\,\text{m} \cdot \text{s}^{-1}\,]}{6.00 \cdot 10^{-7} \,[\,\text{m}\,]} = 3.31 \cdot 10^{-19} \,\text{J}$$

La energía cinética máxima de los electrones emitidos vale:

$$E_{\rm c} = 3.31 \cdot 10^{-19} \, [\rm J] - 3.20 \cdot 10^{-19} \, [\rm J] = 1.1 \cdot 10^{-20} \, \rm J$$

b) Se calcula el potencial de frenado en la ecuación que lo relaciona con la energía cinética:

$$E_{c} = |e| \cdot V \Longrightarrow V = \frac{E_{c}}{|e|} = \frac{1.1 \cdot 10^{-20} [J]}{1.60 \cdot 10^{-19} [C]} = 0.069 \text{ V}$$

P.2. Dos hilos conductores muy largos, rectilíneos y paralelos, se disponen verticalmente separados 8 cm. Por el conductor situado a la izquierda circula una corriente de intensidad 30 A, y por el situado a la derecha, otra de 20 A, ambas hacia arriba. Calcula:

- a) El campo de inducción magnética en el punto medio entre los dos conductores.
- b) La fuerza por unidad de longitud ejercida sobre un tercer conductor vertical situado entre los dos conductores iniciales, a 3 cm del conductor de la izquierda, por el que circula una corriente de 10 A dirigida hacia abajo.
- c) ¿Es conservativo el campo magnético creado por el conductor? Justifícalo.

(A.B.A.U. ord. 18)

DATO: $\mu_0 = 4 \pi \times 10^{-7} \text{ T·m·A}^{-1}$. **Rta.:** a) $\overline{\bf{B}}| = 5,00 \cdot 10^{-5} \text{ T}$; b) $\overline{\bf{F}}/l = 1,2 \cdot 10^{-3} \text{ N/m}$ hacia el 2° conductor.

Intensidad de corriente por el conductor 1 Intensidad de corriente por el conductor 2 Distancia entre los conductores Permeabilidad magnética del vacío Intensidad de corriente por el conductor 3 Distancia del conductor 3 al conductor 1

Cifras significativas: 3

 $I_1 = 30.0 \text{ A}$ $I_2 = 20,0 \text{ A}$ d = 8,00 cm = 0,0800 m $\mu_0 = 4 \pi \cdot 10^{-7} \text{ T} \cdot \text{m} \cdot \text{A}^{-1}$ $I_{\rm C} = 10,0 {\rm A}$ $d_{31} = 3,00 \text{ cm} = 0,0300 \text{ m}$

Campo magnético en el punto medio entre los dos conductores Fuerza por unidad de longitud ejercida sobre un conductor 3 a 3 cm del 1

Ecuaciones

Ley de Biot-Savart: campo magnético \overline{B} creado a una distancia r por un conductor recto por el que circula una intensidad de corriente I

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$
$$\overline{B} = \Sigma \overline{B}_i$$

Principio de superposición:

Ley de Laplace: fuerza magnética que ejerce un campo magnético, \overline{B} , sobre un $\overline{F}_B = I(\overline{l} \times \overline{B})$ tramo, l, de conductor recto por el que circula una intensidad de corriente, I

$$\overline{\boldsymbol{F}}_{B} = I(\overline{\boldsymbol{l}} \times \overline{\boldsymbol{B}})$$

Solución:

a) El valor del campo magnético, \overline{B} , creado a una distancia, r, por un conductor recto por lo que circula una intensidad de corriente, I, viene dado por la ley de Biot-Savart:

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

tores en el punto medio 4. El campo magnético creado por el conductor 1 en el punto 4 equidistante de ambos conductores es:

$$\vec{B}_{1\to 4} = \frac{\mu_0 \cdot I_1}{2\pi \cdot r_{14}} \left(-\vec{\mathbf{k}} \right) = \frac{4\pi \cdot 10^{-7} \left[\text{T} \cdot \text{m} \cdot \text{A}^{-1} \right] \cdot 30,0 \left[\text{A} \right]}{2\pi \cdot 0,0400 \left[\text{m} \right]} \left(-\vec{\mathbf{k}} \right) = -1,50 \cdot 10^{-4} \vec{\mathbf{k}} \text{ T}$$

El campo magnético creado por el conductor 2 en el punto 4 equidistante de ambos conductores es:

$$\vec{B}_{2\to4} = \frac{\mu_0 \cdot I_B}{2\pi \cdot r_{24}} \vec{k} = \frac{4\pi \cdot 10^{-7} [\text{T} \cdot \text{m} \cdot \text{A}^{-1}] \cdot 20,0 [\text{A}]}{2\pi \cdot 0,0400 [\text{m}]} \vec{k} = 1,00 \cdot 10^{-4} \vec{k} \text{ T}$$

El campo magnético resultante es la suma vectorial de ambos:

$$\overline{B} = \overline{B}_{1 \to 4} + \overline{B}_{2 \to 4} = -1,50 \cdot 10^{-4} \, \overline{k} \, [T] + 1,00 \cdot 10^{-4} \, \overline{k} \, [T] = -5,00 \cdot 10^{-5} \, \overline{k} \, T$$

b) En el diagrama se dibujan los campos magnéticos \overline{B}_1 y \overline{B}_2 creados por ambos conductores en el punto 5, situado a 3 cm del conductor de la izquierda.

El campo magnético creado por el conductor 1 en el punto 5 a 3 cm de él es:

$$\vec{\boldsymbol{B}}_{1 \to 5} = \frac{\mu_0 \cdot I_1}{2\pi \cdot r_{15}} (-\vec{\mathbf{k}}) = \frac{4\pi \cdot 10^{-7} [\text{T} \cdot \text{m} \cdot \text{A}^{-1}] \cdot 30,0 [\text{A}]}{2\pi \cdot 0,0300 [\text{m}]} (-\vec{\mathbf{k}}) = -2,00 \cdot 10^{-4} \vec{\mathbf{k}} \text{ T}$$

El campo magnético creado por el conductor 2 en el punto 5, a 5 cm de él es:

$$\vec{B}_{2\to 5} = \frac{\mu_0 \cdot I_B}{2\pi \cdot r_{25}} \vec{k} = \frac{4\pi \cdot 10^{-7} [\text{T·m·A}^{-1}] \cdot 20,0 [\text{A}]}{2\pi \cdot 0,0500 [\text{m}]} \vec{k} = 8,00 \cdot 10^{-5} \vec{k} \text{ T}$$

El campo magnético resultante es la suma vectorial de ambos:

$$\overline{B}_5 = \overline{B}_{1 \to 5} + \overline{B}_{2 \to 5} = -2,00 \cdot 10^{-4} \, \overline{k} \, [T] + 8,00 \cdot 10^{-5} \, \overline{k} \, [T] = -1,20 \cdot 10^{-4} \, \overline{k} \, T$$

La fuerza por unidad de longitud que se ejerce sobre un conductor 3, situado en el punto 5, es:

$$\frac{\vec{\boldsymbol{F}}}{l} = \frac{I(\vec{\boldsymbol{l}} \times \vec{\boldsymbol{B}}_5)}{l} = I(\vec{\boldsymbol{u}}_l \times \vec{\boldsymbol{B}}_5) = 10,0 [A](-\vec{\boldsymbol{j}} \times (-1,2 \cdot 10^{-4} \ \vec{\boldsymbol{k}} [T])) = 1,2 \cdot 10^{-3} \ \vec{\boldsymbol{i}} \ \text{N/m}$$

Está dirigida hacia el conductor 2, porque el sentido de la corriente es el contrario al de los otros conductores.

Análisis: Los conductores que transportan la corriente en el mismo sentido se atraen y en sentido opuesto se repelen. Aunque sufre la repulsión de ambos conductores, la fuerza mayor es la del conductor por el que circula mayor intensidad y se encuentra más cerca, o sea el 1.

c) No. Para que un campo vectorial sea conservativo, la circulación del campo a lo largo de una línea cerrada debe ser nula, lo que es equivalente a decir que la circulación entre dos puntos A y B es independiente del camino seguido, solo dependería de los puntos A y B.

El campo magnético \overline{B} no es conservativo. La circulación del vector \overline{B} a lo largo de una línea l cerrada no es nula. Por la ley de Ampère.

$$\oint \vec{B} d\vec{l} = \mu_0 \sum_i I$$

Cuestiones y problemas de las <u>Pruebas de evaluación de Bachillerato para el acceso a la Universidad</u> (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.

Algunos cálculos se hicieron con una hoja de cálculo de LibreOffice u OpenOffice del mismo autor.

Algunas ecuaciones y las fórmulas orgánicas se construyeron con la extensión CLC09 de Charles Lalanne-Cassou.

La traducción al/desde el gallego se realizó con la ayuda de traducindote, de Óscar Hermida López.

Se procuró seguir las <u>recomendaciones</u> del Centro Español de Metrología (CEM).

Se consultó el chat de Bing y se usaron algunas respuestas en las cuestiones.

Actualizado: 30/07/23

