Laboratory of electric drives

KARIM LAITI

0000902683

Motor Data Nominal voltage V 12 1.1 1.2 No load speed Rpm 6920 1.3 No load current mA 241 1.4 6370 Nominal speed rpm 1.5 Nominal torque 95 mNm 1.6 Nominal current 6.000 Α 1.7 Stall torque mNm 1680 1.8 Starting current Α 102 1.9 Ohm 0.12 Winding resistance 1.10 mΗ 0.245 Winding inductance 1.11 Torque constant mNm/A 16.7 Speed constant Rpm/V 1.12 581 gcm² 1.13 Rotor inertia 139

Project data

LOAD DATA				
2.1	torque type		proportional to speed	
2.2	load torque slope	Nm.s	6,409E-05	
2.3	Load inertia	gcm ²	174	

SUPPLY SYSTEM			
3.1	Туре		battery
3.2	Supply voltage	V	18
3.3	source internal resistance	Ohm	0,18
3.4	source internal inductance	mH	0,18

CONVERTER			
4.1	Туре		4 Quad DC/DC
4.2	max. output current	А	12,0

EXPECTED PERFORMANCE

5.1.	Output current ripple at high frequency in steady state operation I _{pk-pk} /I _{OUT_nominal}	<10%
5.2	Input current ripple at high frequency in steady state operation I _{pk-pk} /I _{SOURCE_mean}	<1%
5.3	Speed range of stable operation -125% to 125% of non	ninal speed
5.4	Load current lower than the converter max output current in any operating condition	
5.5	Speed overshoot with the step references of Fig.1	< 1%
5.6	Rise time with the step references of Fig. 1	<100ms
5.7	Steady state speed error with the step references of Fig. 1	< 1%

MOTOR

• Kt=16.7*10^(-3)

LOAD

- rotor_inertia = 139; [g·cm2]
- load_inertia = 174; % [g·cm2] %
- total_inertia = (rotor_inertia + load_inertia) * 10^(-7);

PI CURRENT REGULATOR

PI SPEED REGULATOR

HOW I SETTED THE PI REGULATORS

As PI calibration method I used the experimental **tuning method**

First I calibrated the KP value then I calibrated the KI value I tried different values until I found the ones that give me a correct response from the system

4 QUADRANT CONVERTER

PWM MODULATION

SIMSCAPE

SATURATION BLOCK

1/Kt current saturation

EXCPECTED PERFORMANCE

5.1. Output current ripple at high frequency in steady state operation $I_{pkpk}/I_{OUT_nominal}$ <10%

5.2 Input current ripple at high frequency in steady state operation $I_{pk-pk}/I_{SOURCE_mean}$ <1

5.3 Speed range of stable operation -125% to 125% of nominal speed

5.4 Load current lower than the converter max output current in any operating condition

5.5 Speed overshoot with the step references of Fig.1 < 1%

5.6 Rise time with the step references of Fig. 1 <100ms

5.7 Steady state speed error with the step references of Fig. 1 < 1%

RMS MOTOR TORQUE

RMS MOTOR CURRENT

AVARAGE OUTPUT POWER

