Lezione 10 Geometria

Federico De Sisti2024-03-21

1 Utilizzo del procedimento di Gram Schmidt

 $\{v_1,\ldots,v_n\}\subset V,\ V$ spazio euclideo $w_1=v_1$

$$w_{t+1} = v_{t+1} - \sum_{i=1, w_i \neq 0}^{t} \frac{\langle v_{t+1}, w_i \rangle}{\langle w_i, w_i \rangle} w_i$$

 $< w_1, \dots, w_n > \ = \ < v_1, , v_n >$ e i w_i sono a due a due ortogonali

Esercizio 1

Applicare il procedimento di G.S ai vettori di \mathbb{R}^4

$$v_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, v_4 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}.$$

Scrivere le corrispondente base ortonormale

Svolgimento

 $w_1 = v_1$

$$w_2 = v_2 - \frac{< v_2, v_1 >}{< v_1, v_1 >} v_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 1 \end{pmatrix} - \frac{< \begin{pmatrix} 2 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >}{< \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \frac{< \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >}{< \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} > \frac{< \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >}{< \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} > \frac{< \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >}{< \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} >$$

$$\begin{pmatrix} 2\\1\\0\\1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} = \begin{pmatrix} 2\\0\\0\\0 \end{pmatrix}$$

$$w_3 = v_3 - \frac{\langle v_3, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 - \frac{\langle v_3, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 =$$

$$= \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \frac{<\begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}>}{<\begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}>} - \frac{<\begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 0 \\ 1 \end{pmatrix}>}{<\begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}>} \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{-1}{2} \\ 0 \\ \frac{1}{2} \end{pmatrix}$$

Il procedimento è analogo e banale per w_4 . I vettori della alla fine dello svolgimento sono:

$$\left(\begin{pmatrix}0\\1\\0\\1\end{pmatrix},\begin{pmatrix}2\\0\\0\\0\end{pmatrix},\begin{pmatrix}0\\-\frac{1}{2}\\0\\\frac{1}{2}\end{pmatrix},\begin{pmatrix}0\\0\\1\\0\end{pmatrix}\right)$$

Vanno solo normalizzare (fatto dal professore ma non da me)

Eserczio 2

Ortogonalizzare la base standard di \mathbb{R}^4 rispetto al prodotto scalare

$$\langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} \rangle = 2x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2 + 2x_3y_3 + x_3y_4 + y_4x_3 + 2x_4y_4.$$

 ε base standard i \mathbb{R}^4

$$\langle \ , \ \rangle_{\varepsilon} = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}.$$

Svolgimento

Notare come a_{ij} sia il coefficiente di $x_i y_j$ $\mathbf{w}_1 = v_1$

Il procedimento continua, ma non è niente di che.

Foglio 2 Esercizio 2

$$p_1, \dots, p_n \in A, c_1, \dots, c_n \in \mathbb{K}, \sum_{i=1}^n c_i = 1.$$

Dimostrare che dato qualunque $q \in A$

$$p = q + \sum_{i=1}^{n} c_i \overrightarrow{op_i}.$$

non dipende da q

 $\sum_{i=1}^n c_i p_i$ combinazione baricentrica dei punti p_i con coefficienti c_i Dobbiamo dimostrare che se $q' \in A$

$$q + \sum_{i=1}^{n} c_i \overrightarrow{qp_i} = q' + \sum_{i=1}^{n} c_i \overrightarrow{q'p_i}.$$

$$q = q' + \overrightarrow{q'q}$$

$$q + \sum_{i=1}^{n} c_i \overrightarrow{qp'_i} = q' - \overrightarrow{q'q} + \sum_{i=1}^{n} c_i \overrightarrow{qp'_i} = q' - \sum_{i=1}^{n} c_i \overrightarrow{something}$$

non sono riuscito a finire l'esericizo in tempo pene pene pene TODO

Punto b dell'esercizio 3

$$f: A \to A', \varphi: V \to V' \text{ parte lineare}$$
Devo vedere che $f(\sum_{i=1}^{n} c_i p_i) = \sum_{i=1}^{n} c_i f(p_i)$ $\sum_{i=1}^{n} c_i = 1$

$$f(p_0 + \sum_{i=1}^{n} c_i \overrightarrow{p_0 p_i}) = f(p_i) + \sum_{i=1}^{n} c_i \varphi(\overrightarrow{p_0 p_i}) =$$

$$= f(p_0) + \sum_{i=1}^{n} c_i \overline{f(p_0) f(p_i)} = \sum_{i=1}^{n} c_i f(p_i)$$

$$= (1 - \sum_{i=1}^{n} c_i) f(p_0) + \sum_{i=1}^{n} c_i \overline{f(p_0) f(p_i)}$$

Dove nell'ultimo passaggio si spezza la somma

Viceversa supponiamo che $f:A\to A'$ rispetti le combinazioni baricentriche; verifichiamo che $\varphi:V\to V'$

$$p_0 \in A$$
 $\varphi(v) = \overline{f(p_0)f(p_0 + v)}.$

è lineare
$$v_1, v_2 \in V$$
 $\alpha_1, \alpha_2 \in \mathbb{K}$ $p_1 = p_0 + v_1$ $p_2 = p_0 + v_2$
$$v_1 = \overrightarrow{p_0 p_1} \quad v_2 = \overrightarrow{p_0 p_2}$$

$$\varphi(\alpha_1 v_1 + \alpha_2 v_2) = \overrightarrow{f(p_0) f(p_0 + \alpha_1 v_1 + \alpha_2 v_2)} = \overrightarrow{f(p_0) f(p_0 + \alpha_1 \overrightarrow{p_0 p_1} + \alpha_2 \overrightarrow{p_1 p_2})} = \overrightarrow{f(p_0) f(\alpha_0 p_0 + \alpha_1 p_1 + \alpha_2 p_2)} = = \alpha_0 \overrightarrow{f(p_0) f(p_0)} + \alpha_1 \overrightarrow{f(p_0) f(p_1)} + \alpha_2 \overrightarrow{f(p_0) f(p_2)} = \alpha_2 \varphi(v_1) + \alpha_2 \varphi(v_2)$$
 infatti $f(p_1) = f(p_0 + v_1), \overrightarrow{f(p_0) f(p_1)} = \overrightarrow{f(p_0) f(p_0 + v_1)} = \varphi(v_1)$