Machine learning 08

Byung Chang Chung

Gyeongsang National University

bcchung@gnu.ac.kr

Contents

- Convolutional neural network (CNN)
 - basic intuition
 - convolutional layer
 - pooling layer
 - entire structure
 - implementation

Bio-inspired structure

- Vision of human
 - lots of local receptive field
 - some neurons are activated by horizontal line, some neurons are activated by vertical line, and so on

Bio-inspired structure

- Vision of human
 - some neurons are activated by the combination of lowlevel pattern (horizonal, vertical, and so on)
 - high-level neurons are activated by the output of lowlevel neurons

- Core part of CNN
 - the neurons in the first convolutional layer
 do not connect to all the pixels in the input image, but
 only to the pixels in the local receptable field

- Single convolutional layer
 - same convolution kernel moves by its strides
 - for edge, zero padding is used

Convolution

• convolution is a mathematical operation on two functions (f and g) that produces a third function $(f^{\circ}g)$ that expresses how the shape of one is modified by the other

- Convolution
 - visualization

Visualization of convolution kernel (filter)

- Convolution kernel (filter)
 - a set of weights based on convolution calculation

Effects of convolution in image

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Effects of convolution in image

-1	-1	-1	
2	2	2	
-1	-1	-1	

		l
rizontal	lines	

-1	-1	2
-1	2	-1
2	-1	-1

45 degree lines

1				
-1	2	-1		
-1	2	-1		
-1	2	-1		

Vertical lines

2	-1	-1	
-1	2	-1	
-1	-1	2	

135 degree lines

Effects of convolution in image

-1	-1	-1
-1	8	-1
-1	-1	-1

- Accumulation of convolutional layer
 - like the vision of human

- Making subsampling image
 - reduce the number of parameter
 - for time and computing complexity
 - can expect the avoidance of overfitting

- Max pooling layer
 - pooling operation that calculates the maximum value for patches of a feature map, and uses it to create a downsampled (pooled) feature map

- Average pooling layer
 - pooling operation that calculates the average value for patches of a feature map

- Learning invariance
 - can make invariance of input data
 - maintaining robustness with a little change

- Learning invariance
 - a convolution for rotational transformation
 - after pooling, it can be generalized to the image rotation

- General CNN structure
 - few layers of convolution each with ReLU activation
 - pooling layers
 - few layers of convolution each with ReLU activation
 - pooling layers
 - fully connected layers

- General CNN structure
 - visualization

- Famous CNN structure
 - LeNet-5 in 1998 (for MNIST data)

충	종류	특성 맵	크기	커널 크기	스트라이드	활성화 함수
출력	완전 연결	-	10	-	-	RBF
F6	완전 연결	-	84	-	-	tanh
C5	합성곱	120	1×1	5×5	1	tanh
S4	평균 풀링	16	5×5	2×2	2	tanh
C3	합성곱	16	10×10	5×5	1	tanh
S2	평균 풀링	6	14×14	2×2	2	tanh
C1	합성곱	6	28×28	5×5	1	tanh
입력	입력	1	32×32	-	_	_

- Famous CNN structure
 - AlexNet in 2012 (in ILSVRC ImageNet)

층	종류	특성맵	크기	커널 크기	스트라이드	패딩	활성화 함수
출력	완전 연결	-	1,000	-	-	-	Softmax
F10	완전 연결	-	4,096	-	-	-	ReLU
F9	완전 연결	-	4,096	-	-	-	ReLU
F8	최대 풀링	256	6×6	3×3	2	valid	-
C7	합성곱	256	13×13	3×3	1	same	ReLU
C6	합성곱	384	13×13	3×3	1	same	ReLU
C5	합성곱	384	13×13	3×3	1	same	ReLU
S4	최대 풀링	256	13×13	3×3	2	valid	-
C3	합성곱	256	27×27	5×5	1	same	ReLU
S2	최대 풀링	96	27×27	3×3	2	valid	-
C1	합성곱	96	55×55	11×11	4	valid	ReLU
입력	입력	3 (RGB)	227×227	-	-	-	-

Implementation

- Padding strategy
 - valid vs same vs full padding

Implementation

Fashion MNIST with CNN

```
from functools import partial
DefaultConv2D = partial(keras.layers.Conv2D,
                       kernel size=3, activation='relu', padding="SAME")
model = keras.models.Sequential([
    DefaultConv2D(filters=64, kernel size=7, input shape=[28, 28, 1]).
    keras.layers.MaxPooling2D(pool_size=2),
   DefaultConv2D(filters=128).
   DefaultConv2D(filters=128)
    keras.lavers.MaxPooling2D(pool size=2).
   DefaultConv2D(filters=256).
   DefaultConv2D(filters=256).
    keras.layers.MaxPooling2D(pool_size=2),
    keras.lavers.Flatten().
    keras.layers.Dense(units=128, activation='relu'),
    keras.lavers.Dropout(0.5).
    keras.layers.Dense(units=64, activation='relu'),
    keras.layers.Dropout(0.5),
    keras.lavers.Dense(units=10, activation='softmax').
model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam", metrics=["accuracy"])
history = model.fit(X train, v train, epochs=10, validation data=(X valid, v valid))
score = model.evaluate(X_test, y_test)
X new = X test[:10] # 새로운 이미지처럼 사용합니다
y_pred = model.predict(X_new)
```


Feel free to question

Through e-mail & LMS

본 자료의 연습문제는 수업의 본교재인 한빛미디어, Hands on Machine Learning(2판)에서 주로 발췌함