ALGEBRA 1B, Lista 10

Niech R i S będą pierścieniami przemiennymi z 1 oraz $n \in \mathbb{N}_{>0}$.

- 1. Załóżmy, że R jest pierścieniem Boole'a, czyli że dla każdego $r \in R$ mamy $r^2 = r$.
 - (a) Udowodnić, że dla każdego $r \in R$ mamy r + r = 0.
 - (b) Dla dowolnego zbioru X znaleźć strukturę pierścienia Boole'a na zbiorze wszystkich podzbiorów X.
- 2. Znaleźć monomorfizm grup $R^* \to \operatorname{Aut}(R,+)$. Zbadać, czy dla następujących pierścieni ten monomorfizm jest izomorfizmem:
 - (a) $R = \mathbb{Z}_n$,
 - (b) $R = \mathbb{Z}$,
 - (c) $R = \mathbb{C}$.
- 3. Udowodnić, że R[X] z działaniami podanymi na wykładzie jest pierścieniem przemiennym z 1 i że R[X] jest podpierścieniem R[X].
- 4. Udowodnić, że jeśli R jest dziedziną, to $R[\![X]\!]$ jest dziedziną.
- 5. Niech $F = \sum a_i X^i \in R[\![X]\!]$. Udowodnić, że $F \in R[\![X]\!]^*$ wtedy i tylko wtedy, gdy $a_0 \in R^*$.
- 6. Niech R będzie dziedziną i $P = a_0 + a_1 X + \ldots + a_n X^n \in R[X]$. Udowodnić, że $P \in R[X]^*$ wtedy i tylko wtedy, gdy $a_1 = \ldots = a_n = 0$ i $a_0 \in R^*$.
- 7. Znaleźć pierścień R oraz $a \in R \setminus \{0\}$ takie, że $1 + aX \in R[X]^*$.
- 8. Niech $f: R \to S$ będzie homomorfizmem pierścieni i załóżmy, że S jest dziedziną. Udowodnić, że jeśli istnieje $r \in R$ taki, że $f(r) \neq 0$, to $f(1_R) = 1_S$.
- 9. Udowodnić, że jeśli R jest skończony, to R jest ciałem wtedy i tylko wtedy, gdy R jest dziedziną.
- 10. Podać przykład ciała, które ma 4 elementy.