PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-220423

(43) Date of publication of application: 26.08.1997

(51)Int.CI.

B01D 46/00 BO1D 39/14 B01D 39/20 B01D 53/86 B01D 53/94 B01J 23/40 F01N 3/02

(21)Application number: 08-028069

(71)Applicant: NIPPON SOKEN INC

DENSO CORP

(22)Date of filing:

15.02.1996

(72)Inventor: NAKAYAMA YOSHINORI

NAKANISHI TOMOHIKO KAGEYAMA TERUTAKA KONDO TOSHIHARU

(54) DIESEL EXHAUST GAS PURIFYING FILTER AND PRODUCTION THEREOF (57)Abstract:

PROBLEM TO BE SOLVED: To provide a diesel exhaust gas purifying filter low in pressure loss and having material with a large surface area such as an activated alumina, depasited on the surface and the inside part of a honeycomb cell side wall,

SOLUTION: The filter has a porous ceramic filter constituted so as to collect particulates contained in the exhaust gas on the surface and the inside part of the cell side wall 2 by alternately sealing both ends of the cell opening part of a ceramic honeycomb structural body to make the exhaust gas to flow to the adjacent cell through pores of the cell side wall 2 of the honeycomb. In such a case, the cell wall of the honeycomb structural body has 40-60% porosity and 5-35µm average pore diameter and is coated with a slurry containing the activated alumina having smaller particle diameter than the average pore diameter.

LEGAL STATUS

[Date of request for examination]

30.05.2002

[Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than. the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]
[Dat of registration]
[Number of appeal against examiner's decision of r jection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-220423

(43)公開日 平成9年(1997)8月26日

(=1)1 . (51.1				n .				·
(51)Int.Cl.		識別記号	庁内整理番号	FΙ	77.			技術表示箇所
B01D 4	46/00	302		B01D	46/00		302	
3	39/14				39/14		В	
:	39/20				39/20			
	53/86	ZAB		B01J	23/40		Α	
!	53/94			FOIN	3/02		301B	
	,		客查請求	4.5		OL		最終頁に続く
(21)出願番号		特願平8-28069		(71) 出頭	人 000004	1695		
					株式会	本日生	自勁車部品給	合研究所
(22)出顧日		平成8年(1996)2	月15日		愛知県	西尾市	下羽角町岩谷	14番地
				(71) 出算	人 000004			
						社デン	y_	
		•			***		昭和町1丁目	1 番地
				(72)発明		-	-ы	- ш-о
			•	(10)			下四角町岩公	14番地 株式会
				i			部品総合研究	
				(50) 54 55				ביות
		•		(72) 発明				
		•		Į.	-		下羽角町岩谷	
					社日本	自動車	部品総合研究	.所内
				(74)代理	人 弁理士	石田	数 (外3	名)
			最終頁に					
				1				

(54) 【発明の名称】 ディーゼル排ガス浄化フィルタおよびその製造方法

(57) 【要約】

【課題】 圧損失が低く、ハニカムセル側壁の表面及び セル側壁内部に活性アルミナ等の高表面材料を担持させ ているディーゼル排ガス浄化フィルタを提供する。

【解決手段】 セラミックハニカム構造体のセル開口部の両端を交互に目封じすることによりハニカムのセル側壁の気孔を通過して排ガスを隣接するセルに流し、排ガスに含まれるパティキュレートをセル側壁の表面及び内部で捕集するようにした多孔質セラミックフィルタを有するディーゼル排ガス浄化フィルタにおいて、上記ハニカム構造体が、セル壁にて、気孔率 $40\sim60\%$ で、平均細孔径 $5\sim35\mu$ mであり、その平均細孔よりも小さな粒径の活性アルミナを含むスラリーでコーティングしたものである。

(特許請求の範囲)

【請求項1】 セラミックハニカム構造体のセル開口部の両端を交互に目封じすることによりハニカムのセル側壁の気孔を通過して排ガスを隣接するセルに流し、排ガスに含まれるパティキュレートのみをセル側壁の表面および内部で捕集するようにした多孔質セラミックフィルタを有し、前記パティキュレートを燃焼する触媒金属を前記側壁表面及び内部に担持したディーゼル排ガス浄化フィルタにおいて、前記セラミックハニカム構造体が、そのセル側壁の気孔率が40~65%で、平均細孔径が、その中均細孔径よりも小さい粒径のものが90g%以上を占める高比表面積材料を担持していることを特徴とするディーゼル排ガス浄化フィルタ。

【請求項2】 少なくとも一種類の白金族元素からなる 触媒金属が担持されている請求項1記載のフィルタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ディーゼルエンジン等の内燃機関から排出されるガスに含まれている物質のうち少なくともパティキュレートを除去し、排気ガス中の炭化水素(HC)、一酸化炭素を浄化するために用いられるパティキュレート捕集用のフィルタに関する。 【0002】

【従来の技術】ディーゼルエンジン等の内燃機関から排 出されるパティキュレートには、人体に有害な物質が含 まれており、これを除去することが環境上の課題となっ ている。このため、従来では、ディーゼルエンジンの排 気系に設けたフィルタでパティキュレートを捕集し、一 定量捕集した後パティキュレートを電気ヒータやバーナ 等で燃焼除去する方法が行われている。また、フィルタ に担持した白金族金属触媒でパティキュレートの燃焼温 度を下げ、捕集したパティキュレートを連続的に燃焼さ せる方法もある。前者の捕集したパティキュレートを電 気ヒータやパーナ等で燃焼除去する方法の場合、パティ キュレートの捕集量が多いほど燃焼時のフィルタ最高温 度が上昇し、フィルタにかかる熱応力でフィルタが破損 することがあり、パティキュレートの捕集量制御が重要 であり、完全に捕集量を制御するには至っていない。後 者の触媒による燃焼の場合、燃焼温度が比較的低くなり フィルタにかかる熱応力が小さくなるため、耐熱性に優 れている。

【0003】上記の方法において、パティキュレートの捕集にはおもに、セラミックのハニカム構造体を用いることが多く、その材質としては、低熱膨張性をしめずコーディエライトが一般的に用いられる。

【0004】本発明の対象とするディーゼル排ガス浄化フィルタは、ハニカム構造のセラミックモノリスの片端のセル開口部、例えばガス入口側のセル開口部は一個おきに目封じしてあり、ガス出口側のセル開口部は入口側

の開口部が目封じしていないセルについてのみ目封じする。したがって、排気ガスはセル側壁の細孔を通過し、 排気ガスとともに流れるパティキュレートはこのセル則 壁の表面およびセル則壁の細孔内部で捕集される。

[0005]

【発明が解決しようとする課題】ハニカム構造の多孔質 セラミックフィルタは前記のようにモノリスハニカムの 両端を交互に目封じすることにより、ガスはセル壁の数 μm~数十μmの気孔を通過して隣接するセルに流れる 構造のため、パティキュレートの捕集効率が他の構造の フィルタよりも高い利点がある。このフィルタに触媒を 担持するため、その担体として活性アルミナ等の高比表 面積材料をセル側壁表面およびセル側壁の細孔内部にコ ーティングする場合、高比表面積材料がセル側壁の細孔 を閉塞してしまい、コーティングしてないフィルタに比 ベ圧力損失が高くなるという問題がある。フィルタの圧 力損失が高いとエンジン出力の低下につながるため、圧 力損失はできるだけ低いほうがよい。しかし、圧力損失 を低くするため、フィルタの気孔率、気孔径を大きくし すぎるとパティキュレートの捕集効率を低下させてしま う恐れがある。

【0006】ハニカム構造のセラミック担体に活性アル ミナ等の高比表面積材料をコーティングする場合、活性 アルミナの粒径を規定したものがいくつか公知となって いる。特公昭55-1818号公報では、活性アルミナ 粒径を0.1~100μmであると規定しているが、ペ ーマイト等の無定形アルミナと混合することが前提であ り、これにより活性アルミナコーティング層の接着強度 が向上するとしている。また、特公平4-80736号 公報では、活性アルミナの平均粒径を20μm以下であ ると規定することにより、活性アルミナスラリーの安定 した分散性を確保するのに有効であり、活性アルミナコ ーティング層の接着強度が向上するとしている。しか し、いずれも、ハニカム構造のセラミック担体に活性ア ルミナをコーティングしたとき、コーティング層の剥離 を防止するために接着強度を向上させることを目的とし ている。そしてこれらはフロースルー型排ガス浄化装置 であって、排ガスがハニカムの壁の中を通過せず、その 壁で形成された管状通路を通過する形式のもので、フィ ルタと呼べるものではなく、壁の強度を強くするためー 般に壁の気孔率は低く気孔径は小さいものである。

【0007】本発明は、ハニカム構造の多孔質モノリスハニカムの両端を交互に目封じすることにより、ガスがセル壁の気孔を通過して隣接するセルに流れる構造の多孔質ハニカムフィルタにおいて、活性アルミナ等の高表面材料をセル側壁の表面だけでなく、セル側壁の細孔内部にも均一にコーティングし、しかも圧損失が高いという問題を生じないものを提供することを目的とするものである。

[0008]

【課題を解決するための手段】請求項1記載の発明によれば、多礼質セラミックハニカム構造体を有するディーゼル排ガス浄化フィルタにおいて、このハニカム構造体のセル側壁の気孔率が $40\sim65\%$ で、平均細孔径が $5\sim35\mu$ mであり、これに担持される高比表面積材料の90wl%以上が上記ハニカム構造体セル側壁の平均細孔径よりも小さくすることによって、本発明の高比表面材料のコーティングを有するディーゼル排ガス浄化フィルタを圧力損失の低いものとすることができる。

[0009]

. . .

【発明の実施の形態】本発明のディーゼル排ガス浄化フィルタは、セラミックモノリスハニカム構造体のセル側壁表面及びセル側壁内部細孔表面に活性アルミナ等の高比表面積材料を被覆し、その上に触媒金属を被覆し、次いで得られたハニカムのセル開口部の両端を交互に目封じすることにより作られる。

【0011】一方、前記ハニカム構造体にコーティング する活性アルミナ等の高比表面積材料の粒径は、その9 Owl%以上、好ましくは95wl%以上が前記ハニカム構 造体の平均細孔径よりも小さな粒径であることが望まし い。高比表而積材料の粒径が前記ハニカム構成体の平均 細孔径よりも大きいものが10wl%より多い場合、高比 表面材料は前記ハニカム構造体のセル側壁内部の細孔に 入らず、セル側壁表面を覆う高比表面積材料が相対的に 増加し、コーティング層の膜厚が厚くなり圧損上昇が大 きくなるので好ましくない。また、高比表面積材料の9 0wt%以上のものの粒径が前記ハニカム構造体の平均細 孔径よりも小さい場合、セル側壁内部の細孔に入る高比 表面積材料が増加する。このときエアープローまたは、 クリーナによる吸引を十分行ない余分な高表面材料スラ リーを収り除き、細孔内を閉塞させることなく均一に分 散させてコーティングすることで、圧損の上昇を抑える ことができる。圧損は、フィルタの入口側よりフィルタ 内にエアーを流入させ、フィルタの出口側よりフィルタ 外へエアーを流出させたとき、入口側と出口側のエアー の差であり、入口側より流入させるエアー量は2000 L/分 (線速度1. 8cm/秒) の条件で測定して、45 mmAq(水柱)以下であることが望ましい。

【0012】本発明のディーゼル排ガス浄化フィルタは、ディーゼルエンジンの排ガス中に含まれるパティキュレートを捕集するための構造として入口側のセルから流入したガスは出口側のセルは目封じされているため、

セル側壁を通り抜け隣接するセルの出口から排出される。セル壁を通り抜けるとき排ガス中のパティキュレートのみが捕集される。このとき、フィルタを構成する活性アルミナ被覆前のハニカムの気孔率と平均細孔径が前記の範囲より小さい場合、パティキュレートの捕集効率が向上するが、フィルタの圧力損失が高くなりエンジン出力が低下するので好ましくない。また、この範囲より大きいとパティキュレートの捕集効率が低下するので好ましくない。

【0013】また、活性アルミナ等の高比表面積材料の 粒子径が前記のような範囲である理由は、高比表面積材 料が前記ハニカム構造体のセル側壁の細孔内部に侵入す る必要があるためである。従来、高比表面積材料をハニ カム型モノリス担体にコーティングするのはセル側壁の 表面のみであったが、排ガスがセル側壁の細孔内部を通 過するような構造のハニカム型フィルタの場合、排ガス に含まれるパティキュレートがフィルタのセル側壁の表 面上およびセル側壁の細孔内部に留まるので、このと き、パティキュレートはこの高比表面積材料と細孔内部 で接触することが、触媒作用を受けるために必要であ る。したがって、高比表面積材料は前記の粒径が必要で ある。また、前記高比表面積材料のコート量(担持量) は20~75g/しが好ましい。コート量が20g/し よりも少ない場合、排ガスの浄化能力が低く好ましくな い。また75g/Lよりも大きい場合、フィルタの圧損 が高くなってエンジン出力が低下するため好ましくな

【0014】本発明における高比表面積材料としては活性アルミナの他シリカ、ジルコニア、チタニア、又はこれらの内の2種以上を含むものを使用することができる。

【0015】本発明のディーゼル排ガス浄化フィルタは、少なくともディーゼルエンジンの排ガスに含まれているパティキュレートを捕集し、燃焼除去させるものである。活性アルミナ等の高比表面積物質をフィルタにコーティングするのは、好ましくは白金族触媒金属をコーティングさせるための担体にするためである。一般に白金族触媒金属はパティキュレートの燃焼温度を下げる触媒として用いられ、さらに一酸化炭素や炭化水素の酸化触媒として用いられている。本発明のフィルタは、好ましくは少なくとも一種類の白金族元素からなる金属触媒を担持してあるフィルタである。

【0016】次に、本発明のディーゼル排ガス浄化フィルタについて図1~3をもって具体的に説明する。図1のように、このハニカム構造の多孔質セラミックフィルタはモノリスハニカムの両端の目封じ材1で交互に目封じすることにより、ハニカム型フィルタのセル側壁2に活性アルミナ粒子3からなるコーティング層4を形成している。図1のA部を拡大した図2のようにフィルタの平均細孔径よりも小さな粒径の活性アルミナを用いれ

ば、セル側壁の細孔5の内部を閉塞することなくコーティングされるのでフィルタの圧損上昇が少ない。しかし、図1のA部を拡大した図3のようにフィルタの平均細孔径よりも大きな粒径の活性アルミナを用いた場合、セル壁の細孔を閉塞させるので、フィルタの圧損は大幅に上昇する。また、活性アルミナのコーティング部分に白金族触媒金属を担持することで、セル壁内部で捕集されたパティキュレートおよび他の排ガス成分(HC, CO等)の浄化効率を高めている。尚、これらの図面において触媒金属層の記載は省略している。

【0017】パティキュレートを含むディーゼル排ガスは、セル入口側6からセル内に進入し、セル壁2を通過してセル出口側7から出ていく。このとき、パティキュレートはセル壁表面および内部の細孔で捕集される。白金族触媒金属は、通常活性アルミナをコーティングした後にあらためてコーティングするが、活性アルミナと混合した容液でコーティングすることも可能である。

[0018]

【実施例】以上のような材料を用いてコーティングしたフィルタは、低圧損のディーゼルバティキュレートフィルタとして好適に用いることができる。以下に、その実施例と比較例を示す。

【0019】 (実施例1) 主原料にシリカ、水酸化アルミニウム、タルクを用い、コーディエライト (2 MgO・2 Al2 O3・5 SiO2) 組成になるように調整し、つぎに多孔質にするためのカーボンをこれら主原料に対して 20 Wl %添加して、公知の押し出し製法でセラミックハニカム構造体を作製し、1350 \mathbb{C} ~1450 \mathbb{C} の最高温度、5 \mathbb{C} ~200 \mathbb{C} の界温速度、2~20時間の保持時間で焼成して、気孔率が55%、平均細孔径28 μ mの細孔特性を持ち、セル側壁厚さ0.45 \mathbb{C} m、1平方インチあたりのセル数が150個の直径140 \mathbb{C} m、長さ130 \mathbb{C} mの多孔質コーディエライトハニカム構造体を得た。

【0020】一方、高比表面積材料として、中心粒径 5μ mで、粒径が 28μ mより大きい粒子が 5ν l %以下の活性アルミナ(住友化学製) 670gとアルミナゾル(日産化学製) 330gを水4リッターとともに混合し、攪拌して活性アルミナスラリーを作製した。

【0021】前記の多孔質コーディエライトハニカム構造体を活性アルミナスラリーに完全に浸した(ウォッシュコート)。その後、エアークリーナーおよび圧縮エアーで余分に付着したスラリーをできるだけ完全に取り除いた。コーティングを繰り返してコート量の異なる5種類のハニカムを作製した。さらにその後、120℃で2時間乾燥し、800℃で焼成した。単位体積当たりのコート量はウォッシュコート前後のハニカム重量差から算出した〈コート量〔g/L〕=(コート前重量ーコート後重量)/ハニカム体積)>。この後、0.1mol/Lの塩化白金酸水溶液中に30分浸し、120℃で2時間

乾燥させた後、800℃で焼成して白金を担持させた。 白金の担持量は約2g/Lであった。

【0022】白金を担持させたハニカム構造体のガス入口側のセル開口部を一個おきに目封じし、ガス出口側では入口側で目封じしてないセルについてのみ目封じした。目封じ材はコーディエライト、アルミナ、ジルコニアなどの1000で以上の耐熱性のあるセラミック材料であれば特に限定せず、セラミック製の接着剤でもよい。この実施例においてはコーディエライトを用いた。このようにして、活性アルミナコート量の異なる触媒担体付きフィルタを作製した(担体A-1~担体A-4)。

【0023】 〔実施例2〕 実施例1で用いた多孔質コーディエライトハニカムフィルタと同様のフィルタを同様の方法で作製し、高比表面積材料として、中心粒径2 μ mで、28 μ mより大きな粒子が5%以下の活性アルミナ(住友化学製)670gをアルミナゾル(日産化学製)330g及び水4リッターとともに混合し、攪拌した活性アルミナスラリーに前記フィルタをウォッシュコートした。コーティングを繰り返してコート量の異なる5種類のフィルタを作製した。その後、エアークリーをで1分に対策が上で、カリーをで2時間を繰し、800℃で焼成した。コート量を調べた後、塩化白金酸水溶液中に30分浸し、120℃で2時間 塩化白金酸水溶液中に30分浸し、120℃で2時間 塩化白金酸水溶液中に30分浸し、120℃で2時間 塩化白金酸水溶液中に30分浸し、120℃で2時間 塩化白金酸水溶液中に30分浸し、120℃で2時間 塩化白金酸水溶液中に30分浸し、120℃で2時間 塩化白金酸水溶液中に30分浸し、120℃で2時 電の担持量は約2g/Lであった。

【0024】その後、コーディエライトを用いて、白金を担持させたハニカム構造体のガス入口側のセル開口部を一個おきに目封じし、ガス出口側では入口側で目封じしてないセルについてのみ目封じし、触媒担体付きフィルタを作製した(担体B-1~担体B-5)。

【0025】〔比較例1〕実施例1で用いた多孔質コーディエライトハニカムフィルタと同様のフィルタを同りの方法で作製し、高比表面積材料として、中心粒径50μmの活性アルミナ(住友化学製)670gをアルミナゾル(日産化学製)330g及び水4リッターとともに混合し、攪拌した活性アルミナスラリーに前記フィルタをウォッシュコートした。その後、エアークリーナーおよび圧縮エアーで余分に付着したスラリーをできるトとび圧縮エアーで余分に付着したスラリーをできるトとで全に取り除いた。コーティングを繰り返してコートをの異なる3種類のフィルタを作製した。さらにその後、120℃で2時間乾燥し、800℃で焼成した。コート量を算出した後、0.1mol/Lの塩化白金酸水溶中に30分浸し、120℃で2時間乾燥させた後、800℃で焼成して白金を担持させた。白金の担持量は2g/Lであった。

【0026】その後、コーディエライトを用いて、白金を担持させたハニカム構造体のガス入口側のセル開口部を一個おきに目封じし、ガス出口側では入口側で目封じ

してないセルについてのみ目封じし、触媒担体付きフィルタを作製した(担体C-1~担体C-3)。

[0027] 〔比較例2〕実施例1で用いた多孔質コーディエライトハニカムフィルタと同様のフィルタを同様のカ法で作製し、高比表面積材料として、中心粒径約25 μ mで、28 μ mより大きな粒子を45 ν l%合む活性アルミナ(住友化学製)670gをアルミナゾル(日産化学製)330g及び水4リッターとともに混合し、攪拌した活性アルミナスラリーに前記フィルタをウォッシュコートした。その後、エアークリーナーおよび圧縮取り除いた。コーティングを繰り返してコート量の異なる4種類のフィルタを作製した。さらにその後、120 ν Cで2時間乾燥し、800 ν Cで焼成した。コート量を算出した後、0.1 ν Cの塩化白金酸水溶液中に30分とで焼成した。120 ν Cで2時間乾燥させた後、800 ν Cで焼成した。白金の担持量は約2g/Lであった

【0028】その後、コーディエライトを用いて、白金を担持させたハニカム構造体のガス入口側のセル開口部を一個おきに目封じし、ガス出口側では入口側で目封じしてないセルについてのみ目封じし、触媒担体付きフィルタを作製した(担体D-1~担体D-4)。

【0029】 〔比較例3〕 実施例1で用いた多孔質コーディエライトハニカムフィルタと同様のフィルタを同様の方法で作製し、活性アルミナによるコーティングをせずに白金を同様にして約2g/L担持させ、ハニカム構造体のガス入口側のセル開口部を一個おきに目封じし、ガス出口側では入口側で目封じしてないセルについてのみ目封じし、触媒担体付きフィルタを作製した(担体 E)。

【0030】表1に実施例および比較例で作製した担体のコート量を記載する。

[0031]

【表1】

活性アルミナ 中心粒径(μm)			j		2				
担体の種類	A - 1	A - 2	A - 3	A – 4	B - 1	B - 2	B - 3	B - 4	B - 5
: 活性アルミナの コート量 (g/L)	3 0	6 1	8.8	118	3 3	6 5	8.8	115	145
活性アルミナ 中心拉径(μm)	5 0			2 5				なし	
担体の種類	C-1	C - 2	C - 3	D - 1	D - 2	D - 3	D - 4	E	
活性アルミナの コート量 (g/L)	2 9	5 8	8 9	3 0	6 4	9 2	1 2 3	0	

[0032] (触媒担体付きフィルタの圧力損失の測定) 実施例1,2、比較例1,2、3により得られた担体A~担体Eのすべてのフィルタについて、フィルタの入口側から圧縮エアーを流し、入口側と出口側の差圧を測定した。圧力損失の測定結果を図4に示す。この結果より、本発明品はコーティングを施した比較例1,2よりも圧損が低いことがわかる。

【0033】(フィルタの細孔分布測定)実施例1, 2、比較例1,2,3により得られた担体A~担体Eの すべてのフィルタについて、細孔分布を測定した。担体 の平均細孔径と活性アルミナのコート量の関係を図5に 示す。コート量が増加していくと担体の平均細孔径は小 さくなっていく。低圧損のディーゼル浄化用フィルタとして有利な平均細孔径は 5μ m~ 35μ mである。

【図面の簡単な説明】

【図1】本発明の1例の又は比較例のディーゼル排ガス 浄化フィルタの横断面図。

【図2】図1のA部拡大図。

【図3】図1のA部拡大図。

【図4】実施例、比較例のフィルタの圧力損失の測定結 果を示すグラフ。

【図5】実施例、比較例のフィルタにおける担体の平均 細孔径と活性アルミナのコート量の関係を示すグラフ。

フロントページの続き

 (51) Int. Cl. 6
 識別記号
 庁內整理番号
 FI
 技術表示箇所

 B 0 1 J 23/40 F 0 1 N 3/02
 B 0 1 D 53/36
 Z A B 1 0 4 B

(72) 発明者 影山 照高 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内

(72) 発明者 近藤 寿治 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内