Villamosmérnök alapszak Fizika1	F1	F2	F3	F4	М	E1	E2	E3	E4	E5	Összesen	Bónusz
3. vizsga, 2018. jan. 10.		9/6										
								NÉV:				
						Ne	otun	kód:				
								Elő	adó:	Márk	cus 🗆 / Sar	kadi 🗆
 Egy önegyensúlyozásra alkalmas k utasával együtt állandó nagyságú se kanyart. 										()		
 a) Mekkora az egyik, illetve a másik A-val, illetve C-vel jelölt középpont sebessége, ha tudjuk, hogy a B sebessége O-hoz képest ν₀.(1) 	jának										TKP	
SI - TUA TUO TUC		+					R			_		
0 4 6 6)						A		B	t Ir
$\Omega = \frac{V_o}{R} R_A = R - \frac{d}{L}$ $R_B = R + \frac{d}{L}$ $R_c = R + \frac{d}{L}$	SZ-F	2, =	R	(R	_ d		1	Vc=	n	· Rc	$\frac{d}{r} = \frac{U_0}{R} \left(R \right)$	2+2)
h) Makkora a különbeág a kát kerák for	dulats	záma	ı köz	ött? ((1)		L					
$\omega_{\lambda} = \frac{v_{\lambda}}{v}$			Ja Jc		21 JO	11 11	v. (R- 2TTA R+	2 2 2		$\begin{cases} Af = 0 \\ Af = \frac{1}{2} \end{cases}$	C-Ja=
7												
 c) Legalább mekkora tapadási súrlódás között, hogy az utas ne csússzon le a 												
Fes I Img Fes	FEL	l.	N	~ V	0 6	mo	jM.	-	>	M.	Fr=mag=	
 d) Az utasnak mekkora α szögben kel megőrizze a járművön? (1) 	l meg	dönt	enie	maga	at az	Ор	ont f	elé,	hogy	egy	ensúlýát bi	ztosan
TRP \overline{t}_{cf} T_{cf} T_{cf} T_{cf} T_{cf} $T_{g} = m_{g}$	ig	2 = ~	~ -	V6/R		V. gR	2			tge	$x = \frac{V_6^2}{9R}$	

a) Mennyi ideig tartózkodik az artista a levegőben, és

b) Mekkora az artista vízszintes irányú kezdősebessége, ha tudjuk, hogy az artista és a bohóc porondra vetített távolsága d? (1)

$$d = V_{ox} \cdot t_{lm}$$
 $V_{ox} = \frac{d}{t_{lm}} = d \sqrt{\frac{9}{2 l w}}$

c) Mekkora közös sebességgel mozog az artista és a bohóc közvetlenül azután, hogy megfogták egymás kezét? Az artista tömege m_A , a bohóc tömege m_B . Tekintsük öket pontszerűnek! (1)

d) Mekkora maximális Δh magasságig lendül ki a trapéz? (1)

e) Maximálisan mekkora α szögben lendül ki az l hosszúságú trapéz? (0,5)

3. Egy vízszintesen elhelyezett hangszóró membránjára kicsiny, m tömegű gyöngyöt helyezünk. A gyöngy alati területen a hangszórómembrán $x(t)=A \sin(\omega t)$ kitérés-idő függvénnyel jellemezhető mozgást végez.

a) Írja fel a membrán gyorsulás-idő függvényét! (1)

b) Az ábrán rajzolja fel a gyöngyre ható erőket, (0,5) valamint határozza meg a gyöngy által a membránra kifejtett súlyerőt az idő függvényében! (1)

$$\begin{split} & \in \vec{F} = m\vec{\alpha} \implies \vec{F}_{\xi} - mg = m\alpha_{\xi}) \implies \vec{F}_{\xi} = m\left(g + \alpha_{\xi}\right) \\ & = \vec{F}_{\xi} = m\left(g + \alpha_{\xi}\right) = m\left(g - 4\omega^{2}\sin\omega t\right) \geqslant 0 \end{split} \quad \underbrace{\vec{F}_{\xi} = m\left(g + \alpha_{\xi}\right)}_{\text{csal lifts}} = m\left(g - 4\omega^{2}\sin\omega t\right) \geqslant 0 \end{split} \quad \underbrace{\vec{F}_{\xi} = m\left(g + \alpha_{\xi}\right)}_{\text{csal lifts}} = m\left(g - 4\omega^{2}\sin\omega t\right) \geqslant 0 \end{split} \quad \underbrace{\vec{F}_{\xi} = m\left(g + \alpha_{\xi}\right)}_{\text{csal lifts}} = m\left(g - 4\omega^{2}\sin\omega t\right) \geqslant 0 \end{split} \quad \underbrace{\vec{F}_{\xi} = m\left(g + \alpha_{\xi}\right)}_{\text{csal lifts}} = m\left(g + \alpha_{\xi}\right) = m\left(g - 4\omega^{2}\sin\omega t\right) \geqslant 0 \end{split} \quad \underbrace{\vec{F}_{\xi} = m\left(g + \alpha_{\xi}\right)}_{\text{csal lifts}} = m\left(g + \alpha_{\xi}\right) = m\left(g - 4\omega^{2}\sin\omega t\right) \geqslant 0 \end{split} \quad \underbrace{\vec{F}_{\xi} = m\left(g + \alpha_{\xi}\right)}_{\text{csal lifts}} = m\left(g + \alpha_{\xi}\right) = m\left(g - 4\omega^{2}\sin\omega t\right) \geqslant 0 \end{split} \quad \underbrace{\vec{F}_{\xi} = m\left(g + \alpha_{\xi}\right)}_{\text{csal lifts}} = m\left(g + \alpha_{\xi}\right) = m\left(g - 4\omega^{2}\sin\omega t\right) \geqslant 0 \end{split} \quad \underbrace{\vec{F}_{\xi} = m\left(g + \alpha_{\xi}\right)}_{\text{csal lifts}} = m\left(g + \alpha_{\xi}\right) = m\left(g - 4\omega^{2}\sin\omega t\right) \geqslant 0 \end{split} \quad \underbrace{\vec{F}_{\xi} = m\left(g + \alpha_{\xi}\right)}_{\text{csal lifts}} = m\left(g + \alpha_{\xi}\right) = m\left(g - 4\omega^{2}\sin\omega t\right) \geqslant 0 \end{split} \quad \underbrace{\vec{F}_{\xi} = m\left(g + \alpha_{\xi}\right)}_{\text{csal lifts}} = m\left(g + \alpha_{\xi}\right) = m\left(g - 4\omega^{2}\sin\omega t\right) \geqslant 0$$
Ha Fs <0 a fenti arrofizzó finisailoz helztolen. Elben a eset len a test hily-

d) Ha adott ω körfrekvenciájú rezgés esetén fokozatosan, lassan növeljük az amplitúdót, a membrán melyik helyzetében (a rezgés melyik fázisában) fog legelőször elemelkedni a gyöngy? (0,5)

e) Egy A $-\omega$ diagramon ábrázolja azon pontok halmazát, melyekhez olyan amplitúdó és körfrekvencia értékek tartoznak, amelyek mellett a gyöngy mindvégig érintkezésben marad a membránnal! (1)

- Egy belsőégésű motor A keresztmetszetű hengerrel rendelkezik, melyben dugattyú mozog. A dugattyú csuklós rúddal csatlakozik egy r sugarú hajtókarhoz, mely az O pont körül forog. A dugattyú a legkülső helyzetében L távolságra van a henger zárt végétől.
- a) Határozza meg a dugattyú legkülső helyzetéhez tartozó Vo, valamint a legbelső helyzetéhez tartozó V₁ térfogatot! (0,5)

$$V_0 = L \cdot A$$
 $V_1 = (L - 2\nu) A$

b) A dugattyú kezdetben a legkülső helyzetben van, P_0 légköri nyomású, T_0 hőmérsékletű levegő és kis mennyiségű metángáz keverékével van töltve. Az elegyet tekintsük ideális gáznak. Fejezze ki a gáz n

$$P_6V_6 = NRT_0 \implies M = \frac{P_6V_6}{RT_0}$$

c) A dugattyú adiabatikusan összesűríti a gázt V_I térfogatúra. P_0 , V_0 , T_0 , V_I segítségével fejezze ki az összenyomott gázelegy P_l nyomását és T_l hőmérsékletét! (Használja ki, hogy adiabatikus állapotváltozás esetén PV^K =állandó, κ adott.) (1)

állapotváltozás esetén
$$PV^{K}$$
=állandó, κ adott.) (1)
$$P_{o}V_{o}^{K} = P_{1}V_{1}^{K} \qquad P_{e}V_{o} = P_{1}V_{1} \qquad \Rightarrow T_{1} = \frac{P_{1}V_{1}}{P_{0}V_{0}} \cdot T_{o} = \frac{P_{c}\left(\frac{V_{o}}{V_{1}}\right)^{K} \cdot V_{1}}{P_{c}V_{o}} \cdot T_{o} = \frac{P_{c}\left(\frac{V_{o}}{V_{$$

d) A gyújtógyertya hirtelen felrobbantja a gázelegyet, és a kémiai reakció Q hőt közöl a gázzal, mielőtt a dugattyú számottevően megmozdulhatott volna. Fejezze ki P_I , V_I , T_I segítségével a hengerben lévő gáz T_2 hőmérsékletét és P_2 nyomását a robbanás utáni pillanatban! A gáz c_v izochor fajhője adott. (1)

hocher:
$$Q = mC_v \Delta T$$
 $\Delta T = \frac{Q}{mC_v}$ $T_2 = T_1 + \Delta T = T_1 + \frac{Q}{mC_v}$

$$\frac{P_1}{T_1} = \frac{P_2}{T_2} \implies P_2 = \frac{T_2}{T_1} P_1 = \frac{T_1 + \frac{Q}{mC_v}}{T_1}$$

e) A robbanást követően a dugattyú újra kifelé mozog, a gáz pedig adiabatikusan tágul. Fejezze ki P2, V2

f) Vázlatosan ábrázolja a folyamatot P-V diagramon. (1)

Tömör, lényegre törő, vázlatszerű, fizikailag és matematikailag pontos válaszokat várunk. Ha szükséges, rajzoljon magyarázó ábrákat!

- 1. Fogalmazza meg egy-egy mondatban Newton I., II. és III. törvényét! (3)
- I. A testor mindaddig meganis mengisa'llapoturad (myngalombun maradual, vagy egypnes voned egypnletes morgast vegernes), amig mås testellel lilosonlatoisla som lipsel.
- II. Egy tenegpent gyoroula'sa aranjos a tenegponto hato ar"er eredajovel, an aranjossogi tempera a test tomege. (EF = ma)
- III. Ke't Selesouhat's test egymässe ngyanaklose nagysign, de ellentotes iringi erical hat. (az eres hatasvorala magaggaris) $\overline{F}_{12} = -\overline{F}_{21}$ \overline{f}_{12} \overline{f}_{21}
- 2. Definiálja egy tömegpontra ható erő adott O pontra vonatkoztatott forgatónyomatékát matematikai összefüggés, valamint szemléltető ábra segítségével. A bevezetett fizikai mennyiségeket nevezze meg. Definiálja a tömegpont O pontra vonatkoztatott impulzusmomentumát matematikai összefüggés, valamint szemléltető ábra segítségével! A bevezetett fizikai mennyiségeket nevezze meg! (1) Matematikai összefüggés felírásával adja meg, milyen kapcsolat van a fent definiált forgatónyomaték, valamint impulzusmomentum között! Az összefüggést fogalmazza meg egy mondatban! (1)

M: Forgatogomati's v: opentbøl ar er tamada's pontjalle matato velstor. F: a tomagportra hato exis

N: Importusmomentum

 $\bar{N} = \bar{N} \times \bar{I}$ \bar{I} : tonegport impulsion V: toneypontla untotal celtar.

M= N= lim at

Tonogpontra hato eros adot porta conathertatot forgato'mjonato'kainer örnege eggenle a tonagpour adot pontra vonatkor-tatott impulmementumande ide'egype'genle'nti megváltarása'tel. Fogalmazza meg egy mondatban Kepler III. törvényét, és írja fel matematikai összefüggés alakjában is! (1) Newton törvényeiből kiindulva számítsa ki az M tömegű nap körül körpályán keringő m tömegű bolygó kerületi sebességét a pályasugár függvényében! (1) A fenti eredmény felhasználásával igazolja (vezesse le) Kepler III. törvényét körpályán keringő bolygók esetére! (1)

A Nap keriele keningo bolygoh polyainak nagytangelyinde kébei inche animplanak egypnáshar, mind a leningeti idél migyretai. $\frac{a_1^3}{a_2^3} = \frac{T_1^2}{T_2^2}$ $\frac{1}{\sqrt{2}a_1}$ $\frac{1}{\sqrt{2}a_2}$ $\frac{1}{\sqrt{$ $T = \frac{2\pi\nu}{\sigma} \Rightarrow t^2 = \frac{4\pi^2 \nu^2}{8M} = \frac{4\pi^2}{8M} \cdot \nu^3 \Rightarrow T^2 \nu \nu^3$

4. Írja fel egy +x irányban terjedő egydimenziós hullám $y_I(x,t)$ kitérésének hely- és időfüggését! A bevezetett fizikai mennyiségeket nevezze meg! (1) Írja fel egy -x irányban terjedő hullám $y_2(x,t)$ kitérésének hely- és időfüggését! (0,5) A $\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$ trigonometrikus azonosság alkalmazásával vezesse le egy egydimenziós állóhullám y(x,t) kitérésének hely- és időfüggvényét! (1,5)

y(x,t) = A in (bx-wt) w: linfelucia

A: amplitudo × L= 2T : bullan nein (2 = hullan hern

 $\frac{\partial z}{\partial z} = \frac{\partial z}{\partial z} \left[\frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) \right] = \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial z}$ y(x,t)= 2A sin(2x) cos(wt)

5. Az egyatomos ideális gázok kinetikus gázmodellje milyennek feltételezi a gáz mikroszkopikus szerkezetét? (0,5) A gázmodell milyen kölcsönhatásokat feltételez a gázrészecskék között, valamint a gázrészecskék és az edény falai között? (0,5) A gázmodell hogyan értelmezi a gáz belső energiáját, (0,5) valamint a gáz nyomását! (0,5) Hány szabadsági fokú az egyatomos ideális gáz? (0,5) Az ideális gáz fent tárgyalt kinetikus modellje hogyan értelmezi a halmazállapot-változásokat? (0,5)

- Gaiz: kicking gjonbrimmetrisus rénessels sosasága

- Garrinecssel pillaned nemen, tole'ledesen nigalmason idlornel egymassal, es ar celeng fala'val.

- Belse erergia: a garretreeskelt mechanizai energiainals öttnessege.

- Nyomais: at eding falabel vithere renecisket impulsus-

- Latomos ideales gais maludsog: fola: 3

- Le idea lis gar fenti modellje nem se pas en telmenni a halmaza llegost valtora sossat.

(rénevsés sierti egyéb sólosémhatások beveretősével a modell alkalmassa tehető a halmozállapotváltorások lejássaka)

Kiegészítendő mondatok

Egészítse ki az alábbi hiányos mondatokat úgy a megfelelő szavakkal, szókapcsolatokkal, matematikai kifejezésekkel (skalár-vektor megkülönböztetés), hogy azok a Fizika1 tantárgy színvonalának megfelelő, fizikailag helyes állításokat fogalmazzanak meg!

1. A tehetetlenség törvénye							
2. Egy 2h magasságból ejtett testszer annyi ideig esik szabadon, mint egy h							
magasságból ejtett test.							
3. Newton törvényei értelmezhetők gyorsuló vonatkoztatási rendszerekben is, ha bevezetjük a							
4. Egy erőtérha a tér miden pontjában ugyanakkora erő hat.							
5. Pontrendszer tömegközéppontjának gyorsulását a pontrendszerben ébredő belső erők							
6. A tiszta gördülés kinematikai feltétele, hogy a kerék talajjal evintheső pentjazérus sebességű legyen.							
7. Billenő platójú teherautó rakománya akkor csúszik meg, amikor a rakományra ható nehézségi							
erőplato shejalval par huramos lamponere nagyobb, mint a tapadási							
súrlódási erő.							
8. Adott bolygó felszínén értelmezett I. kozmikus sebességre gyorsított test képes arra, hogy							
9. Matematikai inga hosszát megduplázzuk. A lengésidő							
2 - hervsehe változik.							
10. Az egydimenziós hullámegyenlet megoldása egyváltozós függvény.							
11. A rezonancia-frekvenciánál jóval alacsonyabb frekvenciával gerjesztett rendszer rezgésének							
fázisa, valamint a gerjesztő rezgés fázisa között							
van.							
12. Hőszivattyúkban lezajló körfolyamatok P-V diagramon ábrázolva olyan zárt görbéket							
alkotnak, melyek körüljárási iránya az óramutató járásával ellető tesz irányú.							
13.A Carnot-gép hatásfoka elvileg 100 % -hoz tart, ha a meleg hőtartály hőmérséklete							
14. Egy ideális gáz adiabatikus tágulása <u>alactoryalt</u> véghőmérsékletet							
eredményez, mintha ugyanazon gázt izoterm folyamat során tágítjuk ugyanakkora térfogatúra.							
15. A hőtan .m. s. chil. főtételéből következik, hogy két hőtartállyal rendelkező ciklikus							
nőerőgépek közül a Carnot-gép hatásfoka a legnagyobb.							