Sequential Nondeterminism

CS 536: Science of Programming, Fall 2022

A. Why

- Nondeterminism can help us avoid unnecessary determinism.
- Nondeterminism can help us develop programs without worrying about overlapping cases.

B. Objectives

At the end of these practice questions you should

• Be able to evaluate nondeterministic conditionals and loops.

C. Nondeterminism

- 1. Let $IF = if B_1 \rightarrow S_1 \square B_2 \rightarrow S_2 \square ... \square B_n \rightarrow S_n fi$ and $BB = B_1 \vee B_2 \vee ... B_n$.
 - a. What property does BB have to have for us to avoid a runtime error when executing IF?
 - b. Does it matter if we reorder the guarded commands? (I.e., if we swap $B_1 \rightarrow S_1$ and $B_2 \rightarrow S_2$?)
- 2. Let $U_1 = if B_1 \rightarrow S_1 \square B_2 \rightarrow S_2 fi$ and $U_2 = if B_1$ then S_1 else if B_2 then $S_2 fifi$.
 - a. Fill in the table below to describe what happens for each combination of B_1 and B_2 being true or false.

If σ ⊨	U_1	U_2
$B_1 \wedge B_2$	Executes S ₁ or S ₂	
$B_1 \wedge \neg B_2$		
$\neg B_1 \wedge B_2$		
$\neg B_1 \wedge \neg B_2$.		

- b. For what kinds of states σ can statements U_1 and U_2 behave differently?
- 3. Let $DO = do\ B_1 \rightarrow S_1 \square B_2 \rightarrow S_2 \square ... \square B_n \rightarrow S_n\ od$ and $BB = B_1 \vee B_2 \vee ... B_n$. What property does BB have to have for us to avoid an infinite loop when executing DO?

- 4. Consider the loop i := 0; **do** $i < 1000 \rightarrow S_1$; $i := i+1 \square i < 1000 \rightarrow S_2$; i := i+1 **od** (where neither S_1 nor S_2 modifies i). What, if anything, do we know anything about how many times we will execute S_1 vs S_2 ? Similarly, do we know anything about in what pattern we will execute S_1 vs S_2 ?
- 5. Consider the loop x := 1; **do** $x \ge 1 \rightarrow x := x+1 \square x \ge 2 \rightarrow x := x-2$ **od**. Can running it lead to an infinite loop?
- 6. What are the reasons mentioned in the notes for why using nondeterminism might be helpful?
- 7. What is $M(S, \{x = 0\})$ where $S = do x < 11 \rightarrow x := x + 2 \square x < 11 \rightarrow x := x + 3 od$? (This requires some experimentation with arithmetic.)
- 8. For the Array Value Matching problem in the notes, take Example 10c and rewrite it so that it uses three inner loops instead of the 3-armed *if-else if* statement.

Example 10c:

```
while b0[k0] \neq b1[k1] \lor b1[k1] \neq b2[k2])

do if b0[k0] < b1[k1] then k0 := k0+1

else if b1[k1] < b2[k2] then k1 := k1+1

else if b2[k2] < b0[k0] then k2 := k2+1 fi fi fi od
```

Solution to Practice 7 (Nondeterministic Sequential Programs)

- 1. (Basic properties of nondeterministic if)
 - a. We need $\sigma \vDash BB$, because if $\sigma \vDash \neg BB$, then $M(IF, \sigma) = \{\bot_e\}$. (In English: At least one guard must be true; if none of them are true, we get a runtime error.)
 - b. The order of the guarded commands doesn't matter: If more than one guard is true, we nondeterministically choose one element from the set of corresponding statements, and in a set, the elements aren't ordered.
- 2. (Deterministic vs nondeterministic conditionals) Recall $U_1 = if B_1 \rightarrow S_1 \square B_2 \rightarrow S_2 fi$ and $U_2 = if B_1$ then S_1 else if B_2 then $S_2 fi$.
 - a. Execution of U_1 and U_2 :
 - b. U_1 and U_2 behave the same when one of B_1 and B_2 is true and the other is false. When both are true, U_2 always executes S_1 but U_1 will execute S_1 or S_2 . When both of B_1 and B_2 are false, U_1 yields a runtime error but U_2 does nothing.
- 3. The nondeterministic *do-od* loop halts if *BB* is false at the top of the loop; an infinite loop occurs when *BB* is always true at the top of the loop.
- 4. Say S_1 is run m times and S_2 is run n times. We know $0 \le m$, $n \le 1000$ and m+n = 1000, but that's all. At each iteration, the choice is nondeterministic (i.e., unpredictable). The choice does not have to be random (like with a coin flip), and the sequence of choices don't have to follow a pattern or distribution or be fair, etc. We can't even assign a probability to any particular sequence of choices (like "always choose S_1 ").
- 5. It's possible that the loop could run forever. There's no guaranteed fairness in nondeterministic choice, so we could increment *x* by 1 many more times than we decrement it by 2.
- 6. Reason 1: Nondeterminism Makes It Easy to Combine Partial Solutions. Reason 2: Nondeterminism Makes it Easy to Ignore Overlapping Cases
- 7. We have $S = do \ x < 11 \rightarrow x := x + 2 \ \Box \ x < 11 \rightarrow x := x + 3 \ od$ and want $M(S, \{x = 0\})$. Each iteration increases x by either 2 or 3, so every x equals 2*n + 3*m for some m and n. We're looking for such x where x < 11 but x + 2 or $x + 3 \ge 11$. Some arithmetic tells us x = 8 = 4*2 + 0*3, or y = 0*2 + 3*3, or y = 0*2 + 3*3, or y = 0*2 + 3*3, or y = 0*3, and adding y = 0*3 gives us y = 0*3. So y = 0*3 gives us y = 0*3.
- 8. while $b0[k0] \neq b1[k1] \lor b1[k1] \neq b2[k2]$)

 do while b0[k0] < b1[k1] do k0 := k0+1 od;

 while b1[k1] < b2[k2] do k1 := k1+1 od;

 while b2[k2] < b0[k0] do k2 := k2+1 od

 od