1 Last Class

Given PM μ on $S_1 \times S_2$:

- Exists PM μ_1 on S_1
- ullet if S_2 Borel space, then there exists kernel Q from S_1 to S_2 such that (BR1)-(BR3) hold.

Interpretation: If $\mu = \text{dist}(X, Y)$ then $\mu_1 = \text{dist}(X)$, $Q(x, B) = P(Y \in B \mid X = x)$.

2 Product Measure

Given PM μ_1 on (S_1, S_1) , μ_2 on (S_2, S_2) , there exists a *product measure* $\mu = \mu_1 \otimes \mu_2$ on $S_1 \times S_2$ such that

(a)
$$\mu(A \times B) = \mu_1(A) \times \mu_2(B)$$
 for all $A \in \mathcal{S}_1$, $B \in \mathcal{S}_2$

(b)
$$D \in S_1 \otimes S_2$$
, $\mu(D) = \int \mu_2(D_{s_1}) \mu_1(ds_1)$

Product measures also satisfy:

Theorem 2.1 (Fubini). *For measurable* $h: S_1 \times S_2 \rightarrow \mathbb{R}$

$$\int h(s_1, s_2) \mu(ds) = \int_{S_1} \int_{S_2} h(s_1, s_2) \mu_2(ds_2) \mu_1(ds_1)$$
 (2.1)

provided $h \ge 0$ or |h| is μ -integrable.

 $\operatorname{dist}(X,Y) = \mu_1 \otimes \mu_2 \iff X \text{ and } Y \text{ are independent, } \operatorname{dist}(X) = \mu_1 \text{ and } \operatorname{dist}(Y) = \mu_2.$ Remark 2.2. Fubini's theorem works for σ -finite measures. If $\lambda = \text{Lebesgue measure on } \mathbb{R}^1$, then Fubini's theorem reads

$$\mathbb{E}h(X_1, X_2) = \mathbb{E}h_1(X_1) \text{ where } h_1(x_1) = \mathbb{E}h(x_1, X_2)$$
 (2.2)

The general identity is (usually) best viewed as calculating the same quantity in 2 different ways.

Example 2.3. If
$$X \ge 0$$
 then $\mathbb{E}X = \int_0^\infty P(X \ge t) dt$. $D = \{(x,t) : x \ge t\}$, $\mu = \mathrm{dist}(X)$

 $\lambda(D_x) = x$. $D_t = (t, \infty)$. By Fubini

$$(\mu \times \lambda)(D) = \int \underbrace{\lambda(D_x)}_{=x} \mu(dx) = \mathbb{E}X$$
 (2.3)

$$(\mu \times \lambda)(D) = \int \underbrace{\mu(t, \infty)}_{=P(X \ge t)} \lambda(dt)$$
 (2.4)

Example 2.4. $j = 1, 2. X_1, X_2$ independent. $\mu_i = \text{dist}(X_i)$.

 $\phi_j(t) = \mathbb{E} \exp(itX_j)$ for $t \in \mathbb{R}$ the *characteristic function* (probabilists) or *Fourier transform* (everyone else).

Parseval's identity refers to

$$\int \phi_2(t)\mu_1(dt) = \int \phi_1(t)\mu_2(dt)$$
 (2.5)

To show this

$$\mathbb{E}\exp(iX_1X_2) = \mathbb{E}h_1(X_1) \tag{2.6}$$

$$h_1(x_1) = \mathbb{E} \exp(ix_1 X_2) = \phi_2(x_1)$$
 (2.7)

$$\implies \mathbb{E} \exp(iX_1X_2) = \mathbb{E}\phi_2(X_1) = \int \phi_2(t)\mu_1(dt)$$
 (2.8)

Similarly

$$\mathbb{E}\exp(iX_1X_2) = \mathbb{E}h_2(X_2) \tag{2.9}$$

$$h_2(x_2) = \mathbb{E} \exp(iX_1x_2) = \phi_1(x_2)$$
 (2.10)

$$\implies \mathbb{E} \exp(iX_1X_2) = \mathbb{E}\phi_1(X_2) = \int \phi_1(t)\mu_2(dt)$$
 (2.11)

Example 2.5 (Convolution formula (Undergrad)). Suppose X and Y independent densities f_X , f_Y , distribution functions F_X , F_Y .

Then S = X + Y has density $f(s) = \int_{-\infty}^{\infty} f_Y(s - x) f_X(x) dx$.

Example 2.6. No regularity assumptions.

$$P(S \le s) = \mu_x \otimes \mu_y(A) = \int \underbrace{F_Y(s-x)}_{=\mu_y(D_x)} \mu_x(d\mu)$$
 (2.12)

Suppose μ_X has density $f_X \implies P(S \le s) = \int F_Y(s-x) f_X(x) dx$. Formally, $\frac{d}{dx}$ provided μ_Y has a density f_Y .

"change of variable" $\int (\cdot) \mu_X(dx) = \int (\cdot) f_X(x) dx$

2.1 Justifying identities involving differentiation by checking integral form

How to justify (?):

$$f_S(s) \stackrel{(?)}{=} \int f_Y(s-x) f_X(x) dx \tag{2.13}$$

Need to show

$$\int_{-\infty}^{s_0} \left(\int_{-\infty}^{\infty} f_Y(s-x) f_X(x) dx \right) ds = P(S \le s_0)$$
(2.14)

$$= \int \left(\int_{-\infty}^{s_0} f_Y(s-x) ds \right) \mu_X(dx) \tag{2.15}$$

$$= \int F_Y(s_0 - x) \mu(dx) \stackrel{(**)}{=} P(S \le s_0)$$
 (2.16)

Example 2.7. Suppose (X, Y) has joint density f(x, y), marginal $f_1(x)$.

Define $f(y | x) = f(x,y)/f_1(x)$.

Define a kernel Q by $Q(x, \cdot)$ is the PM with density $y \mapsto f(y \mid x)$.

Then this *Q* is the kernel in general theorem about $\mu = \text{dist}(X, Y)$.

Need to verify (BR1):

$$P(X \in A, Y \in B) = \int_{A} Q(x, B) \mu_X(dx)$$
 (2.17)

Left =
$$\int \int 1_{x \in A} 1_{y \in B} f(x, y) dx dy$$
 (2.18)

$$\stackrel{f(y|x)=f(x,y)/f_1(x)}{=} \int \int 1_{x \in A} 1_{y \in B} f(y \mid x) f_1(x) dx dy \qquad (2.19)$$

Fubini
$$= \int \int 1_{x \in A} \left(\int 1_{y \in B} f(y \mid x) dy \right) f_1(x) dx$$
 (2.20)

$$= Right (2.21)$$

3 RVs and PMs

Know: $X = (\Omega, \mathcal{F}, P) \to (S, \mathcal{S})$ has distribution $\mu = \text{dist}(X)$ a PM on (S, \mathcal{S}) . "given μ_1 , is there an X with $\text{dist}(X) = \mu$?" Non-trivial "yes" answer.

Know: \exists RV *U* with uniform distribution [0, 1]

Know: For any PM μ on \mathbb{R} , the RV $X = F_{\mu}^{-1}(U)$ has dist $(X) = \mu$

Know: Binary expansion $U = 0.b_1(U)b_2(U)b_3(u) \cdots$ gives infinite sequence of RBs $(b_i(U))_i$ independent $P(b_1(U) = 0) = 1/2$, $P(b_1(U) = 1) = 1/2$.

Definition 3.1. (S, S) is a *Borel space* if there exists a Borel-measurable $A \subset \mathbb{R}$ and a bijection $\phi : A \to S$ such that ϕ and ϕ^{-1} are measurable.

Remark 3.2. ϕ identity map on (S_0, S_1) to (S_0, S_2) is measurable iff $S_2 \subset cS_1$. Same for ϕ^{-1} iff $S_1 \subset S_2$.

Both ϕ and ϕ^{-1} measurable $\iff \mathcal{S}_1 = \mathcal{S}_2$.

Outsource to analysis:

Theorem 3.3. Every complete separable metric space is a Borel space.

Consider a PM ν on a Borel space (S, S). Let μ be the PM on A, the push-forward of ν under ϕ^{-1} .

 $X = F^{-1}(U)$ is a RV with dist $= \mu$. ν is the push-forward of ν under ϕ

$$\implies \phi(F_{\mu}^{-1}(U))$$
 has distribution ν (3.1)

Have proved:

Lemma 3.4. Given a PM ν on a Borel space (S, S), there exists measurable $h : [0,1] \to S$ such that H(U) has distribution ν .

Remark 3.5. $\pi_k = k$ th prime number.

$$I^{(k)} = \{ \pi_k, \pi_k^2, \dots \} \text{ infinite set } I^{(1)}, I^{(2)}, \dots \text{ disjoint}$$
 (3.2)

Given sequence μ_k of PMs on \mathbb{R} , define $U_k = \sum_{i=1}^{\infty} 2^{-i} b_{\pi_k^i}(U)$. Then $U_k \sim \text{Uniform}[0,1]$, independent as k varies.