ASSIGNMENT 6

Xinhao Luo

Tuesday $12^{\rm th}$ May, 2020

- a) 26^{5}
- b) $\frac{26!}{21!}$
- c) 26^2
- d) $26^2 * 2$
- e) $26^2 * 2 1$

- a) $\frac{10!}{4!6!} = 210$
- b) $\frac{10!}{(10-4)!} = 5040$
- c) $\binom{14-1}{10-1} = \frac{13!}{9!4!} = 715$
- d) 10^4

- a) $\binom{10-1}{4-1} = 84$
- b) $\binom{10+4-1}{4-1} = 286$
- c) $\binom{12+4-1}{4-1} = 455$

4 Problem 13.51(a)

- 1. The number of all possible combination of 20-bit binary string is 2^{20}
- 2. Set Q(n) as the number of 20-bit binary string does not contain "00"
- 3. Base case:
 - (a) Q(0) = 0
 - (b) Q(1) = 2
 - (c) Q(2) = 3
 - (d) Q(3) = 5
- 4. For $n \geq 4$, we have two cases:
 - (a) String start from "1" So we have "1" +Q(n-1)
 - (b) String start from "0" The second digit must be "1" So we have "01" +Q(n-2)
- 5. In conclusion,

$$Q(n) = Q(n-1) + Q(n-2)$$
(1)

- 6. The result will then be $2^{20} Q(20)$, Q(20) = 17711
- 7.

 $a=2x,\,b=\sqrt{x},\,n=10$

$${10 \choose k} (2x)^k (\sqrt{x})^{10-k} = {10 \choose k} 2^k x^k x^{5+\frac{k}{2}}$$

$$= {10 \choose k} 2^k x^{5+\frac{k}{2}}$$
(2)

 x^3 5 + $\frac{k}{2}$ = 3, k = -4, coefficient is 0 (section not exist)

 x^4 5 + $\frac{k}{2}$ = 4, k = -2, coefficient is 0 (section not exist)

 x^5 $5+\frac{k}{2}=5,$ k=0, $\binom{10}{0}2^0x^5=x^5,$ the coefficient is 1

 x^6 5 + $\frac{k}{2}$ = 6, k = 2, $\binom{10}{2} 2^2 x^6$ = 180 x^6 , the coefficient is 180

 x^7 5 + $\frac{k}{2}$ = 7, k = 4, $\binom{10}{4}2^4x^7$ = 3360 x^5 , the coefficient is 3360

- a) $\binom{10+4-1}{4-1} = \frac{13!}{10!3!} = 286$
- b) $\frac{15!}{5!5!5!}$
- c) $\binom{10+10-1}{10-1}$
- d) $\frac{9!}{3!3!3!}$

- a) $\binom{10}{6} + \binom{10}{7} + \binom{10}{8} + \binom{10}{9} + \binom{10}{10}$
- b) $2^5 + 2^4 * 5$
- c) $2^5 + 2^4 * 5$
- d) $(2^5 + 2^4 * 5) * 2 2$