Ideation Phase Literature Survey

Date	19 September 2022	
Team ID	PNT2022TMID09332	
Project Name	Real-Time Communication System Powered by	
	AI for Specially Abled	

Literature Survey:

S.No.	Reference Paper	Abstract
1. 2.	Vogler, C., and D. Handshapes Metaxas. "Movements: MultipleChannel American Sign Language Recognition." Gesture-Based Communication in Human-Computer Interaction. Lecture Notes in Computer Science: 247-258. Pavlovic, V, Sharma, R., &Huang T., "Visual Interpretation of Hand Gestures for Human-Computer Interaction (HCI): A Review",	Abstract In this paper, American Sign Language acknowledge is done using Parallel Hidden Markov models (PaHMMs). They expressed that phoneme can be utilized rather than unabridged signs for a constant identification system. This paper analyses about the ocular translation of hand signs for HCI (Human - Computer Interaction). The paper published in 1997 underlines the three- dimensional model of the human hand or a picture aspect model of the human hand utilization. 3D models offered a strategy for more
	IEEE TOPAMI, VOL. 19, NO. 7, 1999.	intricate demonstrating of hand gestures, at the time this paper was published. But this led to computational obstacles that had not been conquered given the constant necessities of HCI.
3.	T. Bohra, S. Sompura, K. Parekh and P. Raut, "Real-Time Two-Way Communication System for Speech and Hearing Impaired Using Computer Vision and Deep Learning" International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 734- 739, 2019.	The author has implemented the speech conversion through Python language. The phrase that needs to be converted is inputted which is parsed for tagging through NLP libraries. The sign equivalent to the tagged phrase is fetched from the database for display. Today's technological advancement in Computer Vision through Deep Learning

		has progressed way about the
		has progressed way ahead by
		automating speech to sign
		conversion.
		The process of discourse to
		sign was executed based on
		the adaptive rate processing.
		The algorithm used for the
		project was Mel frequency
	Saed Mian Qaisar, Sarah	cepstral coefficients also
	Niyazi, Abdulhamit Subasi,	known as MFCC. The result
	"Efficient Isolated Speech to	achieved was the conversion
4.	Sign Conversion Based on the	of speech into the text which
	Adaptive Rate Processing";	in turn converts to sign
	Procedia Computer Science,	language. This system had
	Vol. 163, PP. 35–40, 2019.	some issues, speech was
		converted into individual
		alphabets instead of
		sentences. Thus, phrases were
		difficult to decipher due to
		individual alphabet cluttering
		This paper introduced as
		contribution to the Statistical
		Markov Model for a
		concurrent framework
		intended to recognize CSL
	Ma, Jiyong, Wen Gao, Jiangqin	(Chinese Sign Language).
	Wu, and Chunli Wang. "A	Information from two
5. Langu In P Inter Auto	continuous Chinese Sign	DataGloves and a three-
	Language recognition system."	dimensional tracer is
	In Proceedings Fourth IEEE	assembled. To section the
	International Conference on	training sentence into
	Automatic Face and Gesture Recognition (Cat. No. PR00580), pp. 428-433. IEEE, 2000.	essential components,
		Dynamic Programming (DP)
		method was utilized. Assessing
		was finished by the Welch-
		Baum algorithm. Experiment
		outcomes utilizing 80
		sentences showed 94.7%
		acknowledge rates.