INTRODUCTION TO CALCULUS

DERIVATIVES OF EXPAND LOG FUNCTIONS

OUTLINE

RECALL WHEN WE LEARNED EXPONENTIAL AND LOGARITHMIC FUNCTIONS

THEOREM 3.14

Derivative of the Natural Exponential Function

Let $E(x) = e^x$ be the natural exponential function. Then

$$E'(x) = e^x.$$

In general,

$$\frac{d}{dx}\left(e^{g(x)}\right) = e^{g(x)}g'(x).$$

DERIVATIVE OF THE NATURAL EXPONENTIAL FUNCTIONS

EXERCISE ZERO

Uninhibited Growth: If a population increases according to The Law of Uninhibited Growth, the number of organisms N at time t is given by the formula

$$N(t) = N_0 e^{kt},$$

where $N(0) = N_0$ is the initial number of organisms and k > 0 is the constant of proportionality which satisfies the equation

(instantaneous rate of change of N(t) at time t) = kN(t).

Prove the equation above.

EXERCISE ZERO

Radioactive Decay: The amount of a radioactive element A at time t is given by the formula

$$A(t) = A_0 e^{kt},$$

where $A(0) = A_0$ is the initial amount of the element k < 0 is the constant of proportionality which satisfies the equation

(instantaneous rate of change of A(t) at time t)= kA(t).

Prove the equation above.

A Pattern of Exponential Gains

The history of Bitcoin is a history of steep price gains followed by declines and then stagnation. But as the pattern repeats, it takes the Bitcoin price to exponentially higher levels with each cycle.

EXERCISE ZERO

EXERCISE ONE

$$\frac{d}{dx}\left(e^{g(x)}\right) = e^{g(x)}g'(x).$$

Derivative of an Exponential Function

• Find the derivative of $f(x) = e^{\tan(2x)}$.

$$E'(x)=e^x.$$

$$\frac{d}{dx}\left(e^{g(x)}\right) = e^{g(x)}g'(x).$$

EXERCISE TWO

Combining Differentiation Rules

- Find the derivative of $f(x) = xe^{x^2}$.
- Find the derivative of $f(x) = \frac{e^{2x}}{x}$.

DERIVATIVE OF THE LOGARITHMIC FUNCTION

$$g'(x) = \frac{1}{f'(g(x))}.$$

Now that we have the derivative of the natural exponential function, we can use **implicit differentiation** to find the derivative of **its inverse**, the natural logarithmic function.

THEOREM 3.15

The Derivative of the Natural Logarithmic Function

If x > 0 and $y = \ln x$, then

$$\frac{dy}{dx} = \frac{1}{x}.$$

3.30

More generally, let g(x) be a differentiable function. For all values of x for which g'(x) > 0, the derivative of $h(x) = \ln(g(x))$ is given by

$$h'(x) = \frac{1}{g(x)}g'(x).$$

3.31

DERIVATIVE OF THE LOGARITHMIC FUNCTION

ANOTHER PROOF

If x > 0 and $y = \ln(x)$, then $e^y = x$.

Differentiating both sides of the equation results in the equation

$$e^{y}\frac{dy}{dx} = 1.$$

Solving for $\frac{dy}{dx}$ yields

$$\frac{dy}{dx} = \frac{1}{e^y}$$

Finally we substitute $x = e^y$ to obtain

$$\frac{dy}{dx} = \frac{1}{x}$$

DERIVATIVE OF THE LOGARITHMIC FUNCTION

EXERCISE ONE

Taking a Derivative of a Natural Logarithm

Find the derivative of $f(x) = \ln(2x^2 + 3x + 1)$.

EXERCISE TWO

Using Properties of Logarithms in a Derivative

Find the derivative of $f(x) = \ln(\frac{\sin(x)}{3x+2})$.

EXERCISE THREE

Find the derivative of $f(x) = [\ln(3x + 2)]^3$.

FROM NATURAL EXPONENTIAL AND NATURAL LOGARITHMIC FUNCTIONS TO ...

$$\frac{d}{dx}e^x = e^x$$

$$\frac{d}{dx}b^{x}=2$$

$$\frac{d}{dx}\log_b(x) = 2$$

$$\frac{d}{dx}b^{x} = b^{x}\ln(b)$$

$$\frac{d}{dx}\log_b(x) = \frac{1}{x\ln(b)}$$

Let b > 0, $b \ne 1$, and let g(x) be a differentiable function.

i. If, $y = \log_b x$, then

$$\frac{dy}{dx} = \frac{1}{x \ln b}.$$

More generally, if $h\left(x\right)=\log_{b}\left(g\left(x\right)\right)$, then for all values of x for which $g\left(x\right)>0$,

$$h'(x) = \frac{g'(x)}{g(x) \ln b}.$$

ii. If $y = b^x$, then

$$\frac{dy}{dx} = b^x \ln b.$$

More generally, if $h(x) = b^{g(x)}$, then

$$h'(x) = b^{g(x)}g'(x) \ln b.$$

DERIVATIVES OF GENERAL EXPONENTIAL AND LOGARITHMIC FUNCTIONS

CHANGE-OF-BASE FORMULAS

USING THIS CHANGE OF BASE, WE TYPICALLY WRITE A GIVEN EXPONENTIAL OR LOGARITHMIC FUNCTION IN TERMS OF THE NATURAL EXPONENTIAL AND NATURAL LOGARITHMIC FUNCTIONS.

RULE: CHANGE-OF-BASE FORMULAS

Let a > 0, b > 0, and $a \neq 1, b \neq 1$.

- 1. $a^x = b^{x \log_b a}$ for any real number x.
 - If b = e, this equation reduces to $a^x = e^{x \log_e a} = e^{x \ln a}$.
- 2. $\log_a x = \frac{\log_b x}{\log_b a}$ for any real number x > 0.
 - If b = e, this equation reduces to $\log_a x = \frac{\ln x}{\ln a}$.

DERIVATIVES OF GENERAL EXPONENTIAL FUNCTIONS

$$\frac{d}{dx}e^x = e^x$$

$$\frac{d}{dx}e^{g(x)} = e^{g(x)}\frac{d}{dx}g(x)$$

$$\frac{d}{dx}b^{x} = b^{x}\ln(b)$$

$$\frac{d}{dx}b^{g(x)} = b^{g(x)}\frac{d}{dx}g(x)\ln(b)$$

PROOF

$$\frac{d}{dx}e^x = e^x$$

$$\frac{d}{dx}e^{g(x)} = e^{g(x)}\frac{d}{dx}g(x)$$

$$b^x = e^{x \ln(b)}$$

$$\frac{d}{dx}b^x = b^x \ln(b)$$

$$\frac{d}{dx}b^{g(x)} = b^{g(x)}\frac{d}{dx}g(x)\ln(b)$$

DERIVATIVES OF GENERAL LOGARITHMIC FUNCTIONS

$$\frac{d}{dx}\ln(x) = \frac{1}{x}$$

$$\frac{d}{dx}\ln(\boldsymbol{g}(\boldsymbol{x})) = \frac{1}{\boldsymbol{g}(\boldsymbol{x})}\frac{d}{dx}\boldsymbol{g}(\boldsymbol{x})$$

$$\frac{d}{dx}\log_b(x) = \frac{1}{x\ln(b)}$$

$$\frac{d}{dx}\log_b(g(x)) = \frac{1}{g(x)\ln(b)}\frac{d}{dx}g(x)$$

PROOF

$$\frac{d}{dx}\ln(x) = \frac{1}{x}$$

$$\frac{d}{dx}\ln(\boldsymbol{g}(\boldsymbol{x})) = \frac{1}{\boldsymbol{g}(\boldsymbol{x})}\frac{d}{dx}\boldsymbol{g}(\boldsymbol{x})$$

$$\log_b(x) = \frac{\ln(x)}{\ln(b)}$$

$$\frac{d}{dx}\log_b(x) = \frac{1}{x\ln(b)}$$

$$\frac{d}{dx}\log_b(g(x)) = \frac{1}{g(x)\ln(b)}\frac{d}{dx}g(x)$$

Applying Derivative Formulas

Find the derivative of $h(x) = \frac{2^x}{2^{x}+2}$.

EXERCISE ONE

EXERCISE TWO

Finding the Slope of a Tangent Line

Find the slope of the line tangent to the graph of $y = \log(x^2 + 2x + 3)$ at x = 1.

LOGARITHMIC DIFFERENTIATION

A technique called **logarithmic differentiation** allows us to differentiate any function of the form

$$h(x) = g(x)^{f(x)}.$$

LOGARITHMIC DIFFERENTIATION

PROBLEM-SOLVING STRATEGY: USING LOGARITHMIC DIFFERENTIATION

- 1. To differentiate y = h(x) using logarithmic differentiation, take the natural logarithm of both sides of the equation to obtain $\ln y = \ln (h(x))$.
- 2. Use properties of logarithms to expand $\ln (h(x))$ as much as possible.
- 3. Differentiate both sides of the equation. On the left we will have $\frac{1}{y} \frac{dy}{dx}$.
- 4. Multiply both sides of the equation by y to solve for $\frac{dy}{dx}$.
- 5. Replace y by h(x).

EXERCISE ONE

Extending the Power Rule

Find the derivative of $y = x^r$ where r is an arbitrary real number.

EXERCISE THREE

Using Logarithmic Differentiation

• Find the derivative of $y = x^x$.

EXERCISE THREE

Using Logarithmic Differentiation

Find the derivative of $y = (2x^2 + 3x + 2)^{\sin(x)}$.

EXERCISE FOUR

Using Logarithmic Differentiation

• Find the derivative of y =

$$\frac{\sqrt{x}}{e^x \sin^2 x}$$