SYMMETRY KERNELS FOR GRAPH CLASSIFICATION

Yannick Kuhar

July 11, 2024

INTRODUCTION

- data naturally appears as graphs in many domains
- ▶ the size of the graphs can pose computational issues
- ▶ for some algorithms to work efficiently, we must reduce them

GRAPH REDUCTION TECHNIQUES

- ► Graph Compression
- combining nodes, also known as Graph Coarsening
- removing redundant edges, also known as Graph Sparsification

GRAPH REDUCTION TECHNIQUES

- ► 4 methods
- Graphlet-based compression
- Graph reduction with spectral and cut guarantees
- ▶ Principle of Relevant Information (PRI) for Graph Sparsification
- Graph Coarsening with Machine Learning

GRAPHLET-BASED COMPRESSION

- ▶ list of small graph, i.e., graphlets that exhibit symmetry compressibility
- algorithm identifies the maximal set of subgraphs isomorphic to each graphlet
- all such subgraphs are removed
- only the non-redundant parts of the graphs are kept

GRAPH REDUCTION WITH SPECTRAL AND CUT GUARANTEES

- ightharpoonup graph Laplacian: L = D A
- ▶ *D* is the diagonal matrix of node degrees, and *A* is the adjacency matrix
- ▶ reduction scheme: $L_l = P_l^{\pm} L_{l-1} P_l^{+}$ and $x_l = P_l x_{l-1}$
- $ightharpoonup L_0 = L$, P is the reduction matrix and \mp denotes the pseudoinverse
- this reduces the graph while keeping all its properties

PRI FOR GRAPH SPARSIFICATION

- traditionally, this was done by using the Information bottleneck formula
- Yu et al. explored the use of the principle of relevant information
- ▶ this reduces the number of random variables
- the resulting equations are solved by a gradient descent algorithm

GRAPH COARSENING WITH MACHINE LEARNING

- node merging candidate sets determined by KNN
- this is done on an attribute matrix of the nodes, not the graph structure
- algorithm then calculates the feature vector for the super nodes

RESULTS

Algorithm	V	E	Reduction rate $ V $	Reduction rate $ E $
Original	25	39	0.00%	0.00%
Cytocoarsening	30	88	20.00%	125.64%
Graph-coarsening-1.1	10	13	-60.00%	-66.67%
Symmetry compression	17	12	-32.00%	-69.23%
GraphPRI-0-0	19	17	-24.00%	-56.41%
GraphPRI-0-2	16	27	-36.00%	-30.77%
GraphPRI-0-3	17	29	-32.00%	-25.64%
GraphPRI-0-4	14	25	-44.00%	-35.90%
GraphPRI-0-5	30	66	20.00%	69.23%
GraphPRI-0-1000	32	73	28.00%	87.18%
GraphPRI-0.001-2	27	60	8.00%	53.85%
GraphPRI-0.001-1000	32	74	28.00%	89.74%

CONCLUSIONS

- graphlet compression has reduced the graph to three components
- coarsening with ML inflated the graph due to a lack of attribute matrix
- praph reduction with spectral and cut guarantees yields a reduction that could be useful
- GraphPRI yielded the two most promising reductions
- test neural network-based reductions