Fuzzy Control: The Truck Backer-Upper Decision Support Methodologies (G53DSM)

School of Computer Science University of Nottingham

Outline

- Problem Statement
- Proposed Approach
- Testing the Controller

Problem Statement

Design a fuzzy control system that automatically back ups a truck to a given dock position in a 100 units wide and 100 units tall parking lot. The dock is located at the top-center of the parking lot.

(G53DSM) Fuzzy Control 3 / 14

Definition of inputs to the control system

Definition of outputs of the control system

Definition of inputs to the control system

1. Truck position

Definition of outputs of the control system

Definition of inputs to the control system

- 1. Truck position
- 2. Truck angle

Definition of outputs of the control system

Definition of inputs to the control system

- 1. Truck position
- 2. Truck angle

Definition of outputs of the control system

1. Steering angle

Definition of inputs to the control system

- 1. Truck position
- 2. Truck angle

Definition of outputs of the control system

1. Steering angle

Definition of Control Rules

1. Given certain linguistic values of the inputs then we compute the linguistic value for the output

Definition of inputs to the control system

Truck position

Truck's x-position on the graph. Let's divide the parking lot in five regions along the x-axis. These regions will be the linguistic values:

1. LE: Left

2. LC: Left Center

3. CE: Center

4. RC: Right Center

5. RI: Right.

Definition of inputs to the control system

Truck position

1. Change the default universal set to desired range, 0 to 100

```
SetOptions[FuzzySet,
    UniversalSpace -> {0, 100}];
```

2. Define Linguistic Variables

```
LE = FuzzyTrapezoid[0, 0, 10, 35];
LC = FuzzyTrapezoid[30, 40, 40, 50];
CE = FuzzyTrapezoid[45, 50, 50, 55];
RC = FuzzyTrapezoid[50, 60, 60, 70];
RI = FuzzyTrapezoid[65, 90, 100, 100];
```

```
TruckPos = {LE, LC, CE, RC, RI};
```

3. Plot the Membership Functions

Definition of inputs to the control system

Truck angle

Angle of the truck axis to the horizontal. The angles ranges from -90 to 270 degrees.

1. RB: Right Below

2. RU: Right Upper

3. RV: Right Vertical

4. VE: Vertical

5. LV: Left Vertical

6. LU: Left Upper

7. LB: Left Below

Definition of output of the control system

Steering angle

The output of our controller is a steering angle measured from the truck axis. The angle is limited to the range -30 to 30 degrees.

1. NB: Negative Big

2. NM: Negative Medium

3. NS: Negative Small

4. ZE: Zero

5. PS: Positive Small

6. PM: Positive Medium

7. PB: Positive Big

Definition of Control Rules

The rules are formed with linguistic terms, which follow human intuition. IF \times position is LC (Left Center) AND truck angle is LB (Left Below), THEN steering angle is ...

Definition of Control Rules

The rules are formed with linguistic terms, which follow human intuition. IF \times position is LC (Left Center) AND truck angle is LB (Left Below), THEN steering angle is ...

NB (Negative Big)

		Truck's x-position				
		LE-Left	LC-LeftCenter	CE-Center	RC-RightCenter	RI-Right
Truck Angle	LB-Left Below	NB	NB	NM	NM	NS
	LU-Left Upper	NB	NB	NM	NS	PS
	LV-Left Vertical	NB	NM	NS	PS	PM
	VE-Vertical	NM	NM	ZE	PM	PM
	RV-Right Vertical	NM	NS	PS	PM	РВ
	RU-Right Upper	NS	PS	PM	PB	РВ
	RB-Right Below	PS	PM	PM	PB	РВ

Testing the Controller

The controller

Control surface

3D graph showing the two-input/one-output relationship.

(G53DSM) Fuzzy Control 11 / 14

Testing the Controller

This first function models the fuzzy logic controller. phi and x represent the two inputs to the controller, the angle and truck position. The function will return a crisp output that corresponds to the steering angle.

```
Steer[phi_, x_] :=
CenterOfArea[RuleBasedInference[TruckPos, Angle, SteeringAngle, ControlRules, x, phi]]
```

Computing the trajectory

Given initial values of x, y, and angle of the truck, this function computes a list of configurations $\{x, y, \text{ truck's angle}\}$ giving a trajectory for the truck until it reaches a y value of at least 95.

```
simulateTruck[x0_, y0_, phi0_] :=
Module[{x = x0, y = y0, phi = phi0, newPhi, result = {}},
While[y <= 95,
    newPhi = phi + Steer[phi, x];
AppendTo[result, {x, y, phi} = N[{x + 4 Cos[newPhi Pi / 180], y + 4 Sin[newPhi Pi / 1];
    result]</pre>
```

Testing the Controller

Showing the truck

This function displays the position of the truck. It takes as inputs the triplet $\{x, y, \text{ truck's angle}\}$ and the length and width of the truck.

Showing the trajectory

We now map this function onto the list of configurations computed by simulateTruck

```
graph1 = (showTruck[#1, {10, 5}] &) /@ simlist
```

(G53DSM) Fuzzy Control 13 / 14

References

J. A. Freeman, Fuzzy systems for control applications: the truck backer-upper, The Mathematica Journal **4** (1994), 64–69.