

Morfologia em Processamento de imagem

V Vasconcelos

Processamento de Imagem Médica

M Introdução

Morfologia lida com a forma e estrutura de animais e plantas.

Morfologia Matemática lida com a teoria dos conjuntos (set theory).

Conjuntos em Morfologia Matemática representam objectos numa imagem.

Como representar imagens como conjuntos ?

Para imagens binárias é um espaço 2-D onde conjuntos representam pixels pretos (pixels brancos).

Como representar imagens como conjuntos ?

Imagens de Níveis de Cinzento são representadas como um espaço 3-D onde o eixo Z representa o valor do nível de cinzento.

Operadores Básicos de Conjuntos

Operadores de Conjuntos	Notação
A sub-conjunto de B	$A \subseteq B$
União de A e B	C= A ∪ B
Intersecção de A e B	$C = A \cap B$
Complemento de A	$\mathbf{A}^{\mathbf{c}} = \{ \mathbf{w} \mid \mathbf{w} \not\in \mathbf{A} \}$
Diferença de A e B	$A-B = \{w \mid w \in A, w \notin B \}$
Reflexão de A	$\hat{A} = \{ w \mid w = -a \text{ for } a \in A \}$
Translacção do conjunto A por $z(z_1,z_2)$	$(A)_z = \{ c \mid c = a + z, \text{ for } a \in A \}$

🌃 Translação

A é um conjunto de pixels numa imagem binária e w=(x,y) são as coordenadas de um ponto. A_w é o conjunto de pontos translacionados na direção (x,y).

$$A_{w} = \{(a,b) + (x,y) : (a,b) \in A\}$$

Reflexão

Se um conjunto de pixels A é reflectido então

$$\hat{A} = \{(-x, -y) : (x, y) \in A\}$$

7

Operadores Básicos de Morfologia

- Dilatação
- Erosão
- Abertura (Opening)
- Fecho (Closing)

Componentes Básicas em Morfologia

Cada operação tem dois elementos :

- 1) Imagem de Entrada
- 2) Elemento Estruturante

Os resultados das operações dependem do elemento estruturante que foi escolhido.

Dilatação

Dilatação de A por B

$$A \oplus B = \{(x, y) + (u, v) : (x, y) \in A, (u, v) \in B\}$$

$$A \oplus B = B \oplus A$$

Consideremos o elemento estruturante

$$B = \{(0,0), (1,1), (-1,1), (1,-1), (-1,-1)\}$$

11

Dilatação

 $A \oplus B$ pode ser obtida substituindo cada ponto (x,y) de A com uma cópia de B, colocando o ponto (0,0) de B em (x,y).

De modo equivalente, podemos substituir cada ponto (u,v) de B por uma cópia de A.

Dilatação tem o efeito de **aumentar** o tamanho do objecto. No entanto, não é necessariamente verdade que o objecto original A se encontre dentro da área correspondente à sua dilação.

12

Dilatação

E se o elemento estruturante for uma matriz unitária 7x7

Dilatação Exemplo (preenchendo buracos)

1 - Leia a imagem 'textGaps.tif' im=imread('textGaps.tif');figure (1), imshow(im), title('Original');

2 – Crie o elemento estruturante (EE)

ee = strel('diamond',1);

- 3 Proceda à dilatação dil=imdilate(im,ee); imshow(im), title('Original');
- 4 Analise o resultado
- 5 E se aumentar a dimensão do EE?

18

Erosão

Erosão de A por B

$$A\Theta B = \{w : B_w \subseteq A\}$$

Consiste em todos os pontos w = (x,y) para os quais B_w se encontra em A.

Movemos *B* sobre *A* para procurar todos os pontos onde B se encontra completamente incluído em A.

O conjunto de todos esses pontos constitui o resultado da erosão.

Processamento de Imagem Médica

21

11


```
Erosão Exemplo (remover componentes na imagem)

name='wirebond.tif';
image=imread(name);
figure(1), imshow(image), title ('Original')
image=im2bw(image);
se=strel('square',11)
imgEroded = imerode(image,se);
figure(2), imgEroded ,[]);
```


Aplicações - A importância da escolha da OM e EE

Imagem Resultante

EE: círculo com tamanho entre o círculo menor e o maior

Abertura

O que acontece quando se efectua uma erosão seguida de dilatação?

Suaviza contornos de um objecto; Quebra istmos de pequena largura; Elimina protuberâncias.

Processamento de Imagem Médica

Fecho

O que acontece quando se efectua uma dilatação seguida de erosão?

Suaviza contornos de um objecto;

Funde quebras;

Elimina pequenos buracos;

Preenche buracos no contorno.

Processamento de Imagem Médica

Extração da Fronteira Através de Morfologia

A fronteira do conjunto A designada por $\beta(A)$ é definida como

$$\beta(A) = A - (A \Theta B)$$

Sendo B o elemento estruturante apropriado.

$\beta(A)$ obtém-se:

- 1. Fazendo a erosão de A por B e
- 2. Efetuando a diferença de conjuntos entre A e a sua erosão.

Transformação Hit-or-Miss para Detecção da Forma

A transformada morfológica *hit-or-miss* é uma ferramenta básica para a deteção de **formas** em uma imagem.

Essa transformada combina erosão e dilatação para produzir um operador capaz de indicar a posição de um determinado padrão:

- 1. O padrão procurado é o elemento estruturante B;
- A transformada somente é capaz de encontrar elementos sem ruídos.

Transformação Hit-or-Miss para Detecção da Forma

Objetivo: localizar o padrão Y.

- · Seja A uma imagem que consiste em três padrões X, Y, Z.
- A origem de cada forma corresponde ao seu centro de massa.

- Calcular o complemento de A: A^C
- Se envolvermos Y com uma janela W, o "fundo local" de Y relativamente a W será o conjunto diferença (W-Y).

Transformação Hit-or-Miss para Detecção da Forma

- 1. Proceder à erosão de A por Y.
- 2. Aplicar a erosão do A^C pelo conjunto "fundo local" (W-Y).

 A intersecção da erosão de A por Y com a erosão de A^C por (W-Y) permite obter a posição do padrão Y.

Referências Bibliográficas

- R. C. Gonzalez, R. E. Woods, Digital image processing, Pearson/Prentice Hall, Third Edition, 2008.
- 2. G. Dougherty, Digital Image Processing for Medical Applications, Cambridge University Press, 2009.
- 3. L. G. Shapiro, G. C. Stockman, Computer Vision, Prentice Hall, 2001.
- 4. K. Najarian, R. Splinter, Biomedical Signal and Image Processing, CRC Press, 2005.

Nota: As imagens que constam dos diapositivos são retiradas das referências bibliográficas.

42

Processamento de Imagem Médica