Out of Sample Extension (OOSE)

Kevin Moon (kevin.moon@usu.edu)
STAT 6655

PCA and OOSE

- Suppose we have data $D = \{x_1, ..., x_n\} \in \mathbb{R}^d$ with covariance matrix C
 - Assume the data are mean-centered
- Apply PCA to this data
 - Let $U_m = [\boldsymbol{u}_1, ..., \boldsymbol{u}_m]$ with \boldsymbol{u}_i the *i*th eigenvector of C
 - PCA representation of x_j is $\theta_j = U_m^T x_j \in \mathbb{R}^m$
- How can we apply this embedding to a new point x?
 - Project the point onto the space spanned by U_m
 - $\boldsymbol{\theta} = U_m^T \boldsymbol{x}$
 - Referred to as out of sample extension (OOSE)

Manifold Learning and OOSE

USU

- Many manifold learning methods are based on an eigendecomposition of a kernel matrix
 - E.g. MDS (classical), Laplacian eigenmaps, diffusion maps, Isomap, spectral clustering
- These methods do not learn a general embedding function that can be applied to new points
- Nonlinear, so a linear projection is not appropriate
- Other approaches are required for out of sample extension (OOSE)

Nystrom Extension

- Two things needed: 1) eigendecomposition of a kernel matrix and 2) kernel similarities between training points and the new point
- The new representation consists of a linear combination of the kernel similarities
- Let's go over this in detail...

Nystrom Extension: Framework

Consider methods that have the following steps given a dataset $D = \{x_1, \dots, x_n\}$

- Construct a similarity matrix M with $M_{ij} = K_D(x_i, x_i)$
- (Optional) Transform M to obtain a normalized matrix \widetilde{M} . Equivalent to generating \widetilde{M} from \widetilde{K}_D
- 3. Compute the m largest positive eigenvalues λ_k and eigenvectors \boldsymbol{v}_k of \widetilde{M}
- 4. Embed each example x_i as a vector y_i with y_{ik} as the ith element of $oldsymbol{v}_k$
 - For MDS or Isomap, the embedding is e_i with $e_{ik} = \sqrt{\lambda_k} y_{ik}$

OOSE

Framework: MDS (classical)

- Let $S_i = \sum_j M_{ij}$
- Classical MDS uses an eigendecomposition of the doublecentered distance or affinity matrix
 - Double-centering converts distances to dot products

$$\widetilde{M}_{ij} = -\frac{1}{2} \left(M_{ij} - \frac{1}{n} S_i - \frac{1}{n} S_j + \frac{1}{n^2} \sum_k S_k \right)$$

• Embedding of \boldsymbol{x}_i is $e_{ik} = \sqrt{\lambda_k} v_{ki}$, $k=1,\ldots,m$

Framework: Spectral Clustering

- Let $S_i = \sum_j M_{ij}$
- Several normalization steps proposed
- One approach:

$$\widetilde{M}_{ij} = \frac{M_{ij}}{\sqrt{S_i S_j}}$$

- \bullet For m clusters, apply k-means to the first m eigenvectors of $\widetilde{M}_{i\,i}$
- Similar ideas for Laplacian eigenmaps

Framework: Isomap and Diffusion Maps

<u>Isomap</u>

- Compute pairwise geodesic distances along the k-NN graph to get M
- Obtain \widetilde{M} via double centering as in MDS

Diffusion Maps

• \widetilde{M} = the powered diffusion operator

From Eigenvectors to Eigenfunctions

- Heaviest computation in most of these methods is the eigendecomposition
- Nystrom method initially invented to speed up computation
 - Eigendecompose a subset of the data and then extend
 - Can use it for general OOSE
- Intuitively, we need to add a new column to \widetilde{M} through a kernel function \widetilde{K}_D that depends on the training data
- We'll use RKHS theory to do the extension

From Eigenvectors to Eigenfunctions

• Consider a Hilbert space \mathcal{H}_p of functions with inner product and probability density p:

$$\langle f, g \rangle_p = \int f(\mathbf{x}) g(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

• Given a kernel function, consider this linear operator:

$$(K_p f)(\mathbf{x}) = \int K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) p(\mathbf{y}) d\mathbf{y}$$

- In practice, p is unknown \Rightarrow approximate it with empirical distribution \hat{p}
 - New Hilbert space $\mathcal{H}_{\widehat{p}}$
- The eigenfunction associated with the linear operator above gives the OOSE (next slide)

STAT 6655 (Kevin Moon) OOSE USU

Nystrom Extension

Let $\widetilde{K}(\boldsymbol{a},\boldsymbol{b})$ be a kernel function with a symmetric matrix $\widetilde{M}_{ij} = \widetilde{K}(\boldsymbol{x}_i,\boldsymbol{x}_j)$ on a dataset $D = \{\boldsymbol{x}_1,\dots,\boldsymbol{x}_n\}$. Let $(\boldsymbol{v}_k,\lambda_k)$ solve the eigenvector equation $\widetilde{M}\boldsymbol{v}_k = \lambda_k\boldsymbol{v}_k$. Let (f_k,λ_k') solve the eigenfunction equation $(K_{\widehat{p}}f_k)(\boldsymbol{x}) = \lambda_k'f_k(\boldsymbol{x})$ for any \boldsymbol{x} with \widehat{p} the empirical distribution over D. Let $e_k(\boldsymbol{x}) = y_k(\boldsymbol{x})\sqrt{\lambda_k}$ or $y_k(\boldsymbol{x})$ denote the OOSE for \boldsymbol{x} . Then:

$$\lambda'_{k} = \frac{1}{n} \lambda_{k}, \qquad f_{k}(\mathbf{x}) = \frac{\sqrt{n}}{\lambda_{k}} \sum_{i=1}^{n} v_{ki} \widetilde{K}(\mathbf{x}, \mathbf{x}_{i})$$
$$f_{k}(\mathbf{x}_{i}) = \sqrt{n} \mathbf{v}_{ki}, \qquad y_{k}(\mathbf{x}) = \frac{f_{k}(\mathbf{x})}{\sqrt{n}}$$

Nystrom Extension

$$f_k(\mathbf{x}) = \frac{\sqrt{n}}{\lambda_k} \sum_{i=1}^n v_{ki} \widetilde{K}(\mathbf{x}, \mathbf{x}_i), \qquad y_k(\mathbf{x}) = \frac{f_k(\mathbf{x})}{\sqrt{n}}$$

Procedure

- 1. Compute \widetilde{M} for training data
- 2. Solve the eigenvector equations $\widetilde{M}oldsymbol{v}_k=\lambda_koldsymbol{v}_k$
- 3. For each new point x and for each k, compute $f_k(x)$
- 4. Create new embedding $y_k(x)$ for k = 1, ..., m
- Justification: In the limit of more data, the eigenvector $m{v}_k$ converges to the eigenfunction f_k

STAT 6655 (Kevin Moon) OOSE USU

Extending MDS

- Only need to define \widetilde{K} as we defined \widetilde{M} previously
- <u>MDS</u>

$$\widetilde{K}(\boldsymbol{a}, \boldsymbol{b}) = -\frac{1}{2} \left(d^{2}(\boldsymbol{a}, \boldsymbol{b}) - \sum_{i=1}^{n} d^{2}(\boldsymbol{x}_{i}, \boldsymbol{a}) - \sum_{i=1}^{n} d^{2}(\boldsymbol{x}_{i}, \boldsymbol{b}) + \sum_{i,j=1}^{n} d^{2}(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) \right)$$

Extending Laplacian Eigenmaps

- An initial kernel K is used (e.g. Gaussian)
- Normalized kernel:

$$\widetilde{K}(\boldsymbol{a}, \boldsymbol{b}) = \frac{1}{n} \frac{K(\boldsymbol{a}, \boldsymbol{b})}{\sqrt{\sum_{i=1}^{n} K(\boldsymbol{a}, \boldsymbol{x}_i) \sum_{j=1}^{n} K(\boldsymbol{b}, \boldsymbol{x}_j)}}$$

Extending Isomap and Diffusion Maps

<u>Isomap</u>

- Compute the geodesic distances for the new points using only the training points
- Use the double centered kernel in MDS

Diffusion Maps

- More complicated
- See https://arxiv.org/abs/1802.08762 for one approach
- The compressed diffusion approach in PHATE also works
- Can try to use a different kernel for the extension than the one used for eigendecomposition
 - Requires more parameter tuning

Nystrom Summary

- Other variations on Nystrom exist (e.g. geometric harmonics)
- Nystrom methods work decently
- Weakness 1: nonparametric
 - Requires storing the training points
- Weakness 2: performance degrades pretty quickly in areas with sparse training data
- Weakness 3: selecting the extension kernel isn't always straightforward
 - Heavy tuning may be needed
- GRAE (a neural network approach) tends to do better at both and does not require careful selection of the kernel function
 - Although neural network tuning is required

Geometry Regularized Autoencoders (GRAE)

- We combined kernel methods with AEs to obtain the advantages of both
 - Called it GRAE (Duque et al, 2022)
- **Example**: Rotated teapot dataset (400 images of a teapot from different angles)
- PHATE applied to the data:

Geometry Regularized Autoencoders (GRAE)

- We combined kernel methods with AEs to obtain the advantages of both
 - Called it GRAE (Duque et al, 2022)
- **Example**: Rotated teapot dataset (400 images of a teapot from different angles)
- Standard AE applied to the data:

Geometry Regularized Autoencoders (GRAE)

 GRAE applied to the data with PHATE regularizing the bottleneck

GRAE Results – Rotated Digits

- Three MNIST digits with a full rotation
- GRAE preserves the rotation manifold and separates the 3 digits
- Other methods fail

GRAE Results – Rotated Digits

- Three MNIST digits with a full rotation
- MSE reconstruction error
- \mathbb{R}^2 linear regression predicting ground truth factors with the latent representation as input
- Acc. classification accuracy with logistic regression on latent representation

		Metrics		
Dataset	Model	MSE	R^2	Acc.
Rotated Digits	GRAE (PHATE)	0.0002 (1)	0.6726 (2)	1.0000 (1)
	GRAE (UMAP)	0.0004(2)	0.7042(1)	1.0000 (1)
	AE	0.0021 (3)	0.1860 (5)	0.5309 (5)
	EAER-Margin	0.0045 (5)	0.3058 (3)	0.9222 (4)
	TAE	0.0034 (4)	0.2402 (4)	0.4679 (6)
	Diffusion Nets	0.0626 (6)	0.0442 (6)	0.9352 (3)

GRAE Results – Toroidal Helices

- A set of nonintersecting helices on the surface of a torus
- Again, the GRAE embeddings better represent the topology

		Metrics		
Dataset	Model	MSE	R^2	Acc.
Toroidal Helices	GRAE (PHATE)	0.0002 (1)	0.9845 (2)	0.9777 (2)
	GRAE (UMAP)	0.0002(1)	0.7469 (5)	0.9998 (1)
	AE	0.0013 (3)	0.8159 (4)	0.5083 (4)
	EAER-Margin	0.0031 (5)	0.9199 (3)	0.5178 (3)
	TAE	0.0023 (4)	0.9984(1)	0.5029 (5)
	Diffusion Nets	2.7309 (6)	0.1856 (6)	0.4918 (6)

GRAE on big data

- Applied GRAE to iPSC data (Zunder et al, 2015)
 - 220,000+ cells w/ 40+ markers
- Created multiple PHATE embeddings aligned with Procrustes
- Landmark PHATE: 3894 seconds
- GRAE: 850 seconds

STAT 6655 (Kevin Moon) OOSE USU

Further reading

- Bengio et al, "Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering," NeurIPS, 2003
- Geometric harmonics: <u>https://www.sciencedirect.com/science/article/pii/S1063</u>
 520306000522
- GRAE: https://doi.org/10.1109/TPAMI.2022.3222104