MATLAB functions

黄世強 (Sai-Keung Wong)

National Chiao Tung University, Taiwan

Help

- In the command window, type help
- A list of topics is shown, e.g.,

HELP topics:

Documents\MATLAB

matlab\datafun

matlab\datatypes

matlab\elfun

- (No table of contents file)

- Data analysis and Fourier transforms.

- Data types and structures.

- Elementary math functions.

MATLAB Help (0:33)

Built-in functions

A built-in function is part of the MATLAB executable.

Most built-in functions have a .m file associated with them.

The file supplies the help documentation for the function.

Functions

- A function is a group of statements that perform a task.
- It takes one or more input values and produces output.
- A functions has 3 components:
 - 1) input, 2) output, and 3) name

```
b = tan(x) % in radians
```

- > x: the input, or argument(s)
- \succ tan(x): tan(x) returns an output and we assign it to b.
- tan: the tangent function name

MATLAB functions

A function call:

```
variable = function(argument list)
```

argument list := numbers or variables

The following items are required for a function:

- >The function name
- >the input values
- >the function purpose
- >the outputs
- For example,

$$x = \sin(t)$$

HELP

- Matlab has many built-in functions.
- Type
 help functionName
 to show the details of the function

Demo (2:23) Type some functions to see how to use them

Help: Examples

round

fix

floor

ceil

How to learn them?

round

fix

floor

ceil

How to learn them?

help round

help fix

help floor

help ceil

Function	Description
round(X)	rounds each element of X to the nearest integer.
fix(X)	rounds the elements of X to the nearest integers towards zero.
floor(X)	rounds the elements of X to the nearest integers towards minus infinity.
ceil(X)	rounds the elements of X to the nearest integers towards infinity.

```
A = [-2:0.4:2];
A = -2 - 1.6 - 1.2 - 0.8 - 0.4 0 0.4 0.8 1.2 1.6 2
round(A) =
 -2 -2 -1 -1 0 0 0 1 1 2 2
fix(A) =
 -2 -1 -1 0 0 0 0 0 1 1 2
floor(A) =
```

$$ceil(A) =$$
-2 -1 -1 0 0 0 1 1 2 2 2

$$A = [-2:0.4:2];$$

 $A = -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2$

round(A) =
$$-2 -2 -1 -1 0 0 0 1 1 2 2$$

$$fix(A) = %towards zero$$

-2 -1 -1 0 0 0 0 1 1 2

floor(A) =
$$-2 -2 -2 -1 -1 0 0 0 1 1 2$$

$$ceil(A) =$$
-2 -1 -1 0 0 0 1 1 2 2 2

Discrete-mathematics functions

Function	Description
factor(N)	returns a vector containing the prime factors of N.
rats(X,LEN)	uses RAT to display rational approximations to the elements of X.
factorial(N)	factorial(N) for scalar N, is the product of all the integers from 1 to N, i.e. prod(1:N).
gcd(A,B)	G = gcd(A,B) is the greatest common divisor of corresponding elements of A and B.
lcm(A,B)	Icm(A,B) is the least common multiple of corresponding elements of A and B.

Discrete-mathematics functions

Function	Description
factor(N)	factor(24) %the prime factors ans = 2 2 2 3
rats(X, LEN)	rats(3.5122, 14) % rational approximations ans = ' 17561/5000 '
factorial(N)	factorial(5) % 1*2**5 ans = 120
gcd(A,B)	gcd(15, 24) %the greatest common divisor ans = 3
lcm(A,B)	lcm(15,24) %least common multiple ans = 120

Trigonometric functions

Trigonometric functions accept angles in radians.

Conversion formula: 180 degrees = π radians

- Example: 8 degrees = 8*(pi/180) radians
- **pi** is a built-in constant
- sin, cos, tan, acos, asin, atan

Hyperbolic functions

Hyperbolic sine: the odd part of the exponential function, that is

$$\sinh x = rac{e^x - e^{-x}}{2} = rac{e^{2x} - 1}{2e^x} = rac{1 - e^{-2x}}{2e^{-x}}.$$

Hyperbolic cosine: the even part of the exponential function, that is

$$\cosh x = \frac{e^x + e^{-x}}{2} = \frac{e^{2x} + 1}{2e^x} = \frac{1 + e^{-2x}}{2e^{-x}}.$$

Hyperbolic tangent:

$$tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}.$$

• Hyperbolic cotangent: for $x \neq 0$,

$$\coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}} = \frac{e^{2x} + 1}{e^{2x} - 1}.$$

· Hyperbolic secant:

$$\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}} = \frac{2e^x}{e^{2x} + 1}.$$

• Hyperbolic cosecant: for $x \neq 0$,

$$\operatorname{csch} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}} = \frac{2e^x}{e^{2x} - 1}.$$

Hyperbolic functions Plot all the functions.

Hyperbolic sine: the odd part of the exponential function, that is

$$\sinh x = rac{e^x - e^{-x}}{2} = rac{e^{2x} - 1}{2e^x} = rac{1 - e^{-2x}}{2e^{-x}}.$$

Hyperbolic cosine: the even part of the exponential function, that is

$$\cosh x = rac{e^x + e^{-x}}{2} = rac{e^{2x} + 1}{2e^x} = rac{1 + e^{-2x}}{2e^{-x}}.$$

· Hyperbolic tangent:

$$tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}.$$

• Hyperbolic cotangent: for $x \neq 0$,

$$\coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}} = \frac{e^{2x} + 1}{e^{2x} - 1}.$$

Hyperbolic secant:

$$\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}} = \frac{2e^x}{e^{2x} + 1}.$$

• Hyperbolic cosecant: for $x \neq 0$,

$$\operatorname{csch} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}} = \frac{2e^x}{e^{2x} - 1}.$$

Hyperbolic functions Plot all the functions.

Hyperbolic sine: the odd part of the exponential function, that is

$$\sinh x = rac{e^x - e^{-x}}{2} = rac{e^{2x} - 1}{2e^x} = rac{1 - e^{-2x}}{2e^{-x}}.$$

Hyperbolic cosine: the even part of the exponential function, that is

$$\cosh x = rac{e^x + e^{-x}}{2} = rac{e^{2x} + 1}{2e^x} = rac{1 + e^{-2x}}{2e^{-x}}.$$

Hyperbolic tangent:

$$tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}.$$

Hyperbolic functions Plot all the functions.

Hyperbolic sine: the odd part of the exponential function, that is

$$\sinh x = rac{e^x - e^{-x}}{2} = rac{e^{2x} - 1}{2e^x} = rac{1 - e^{-2x}}{2e^{-x}}.$$

sinh x = - sinh -x

Hyperbolic cosine: the even part of the exponential function, that is

$$\cosh x = rac{e^x + e^{-x}}{2} = rac{e^{2x} + 1}{2e^x} = rac{1 + e^{-2x}}{2e^{-x}}.$$

cosh x = cosh -x

Hyperbolic tangent:

$$tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}.$$

tanh x = - tanh -x

Data analysis functions

- Analyze data statistically.
- MATLAB has many statistical functions:

max() sum() size()

min() prod() length()

mean() sort() std()

median sortrows var()

Demo (2:59) Data analysis functions


```
A =

1 2 3

1 1 5

5 1 1

1 5 5
```

```
sortrows (A)
ans =
```

1	1	5
1	2	3
1	5	5
5	1	1

help sortrows

B = sortrows(A) sorts the rows of matrix A in ascending order as a group. B has the same size and type as A. A must be a 2-D matrix.


```
A =

1 2 3

1 1 5

5 1 1

1 5

5 5
```

```
>> sortrows (A,2)
```

```
ans =

1 1 5

5 1 1

1 2 3

1 5 5
```

B = sortrows(A,COL) sorts the matrix according to the columns specified by the vector COL.


```
A =

1 2 3

1 1 5

5 1 1

1 5

5 5
```

```
>> sortrows(A,-2)
ans =
```

1	5	5
1	2	3
1	1	5
5	1	1

B = sortrows(A,COL) sorts the matrix according to the columns specified by the vector COL.


```
A =
             5
                    5
>> sortrows(A, [-2 3])
ans
      5
```

B = sortrows(A,COL) sorts the matrix according to the columns specified by the vector COL.


```
A
            5
>> sortrows(A, [-2 -3])
ans
     5
```

B = sortrows(A,COL) sorts the matrix according to the columns specified by the vector COL.

$$v = [4321654]$$

- 1. Find the size of v.
- 2. Sort v in ascending order.
- 3. Sort v in descending order.
- 4. Find the mean of v.
- 5. Find the median of v.
- 6. Find the standard deviation of v.
- 7. Find the cumulative product of v.

$$v = [4321654]$$

- 1. Find the size of v.
- 2. Sort v in ascending order.
- 3. Sort v in descending order.
- 4. Find the mean of v.
- 5. Find the median of v.
- 6. Find the standard deviation of v.
- 7. Find the cumulative product of v.

```
size(v)
ans =
1 7
```


$$v = [4321654]$$

- 1. Find the size of v.
- 2. Sort v in ascending order.
- 3. Sort v in descending order.
- 4. Find the mean of v.
- 5. Find the median of v.
- 6. Find the standard deviation of v.
- 7. Find the cumulative product of v.

$$V = [4321654]$$

help sort

B = sort(A,DIRECTION) and B = sort(A,DIM,DIRECTION) also specify the sort direction. DIRECTION must be: 'ascend' - (default) Sorts in ascending order.

'descend' - Sorts in descending order.

- 1. Find the size of v.
- 2. Sort v in ascending order.
- 3. Sort v in descending order.
- 4. Find the mean of v.
- 5. Find the median of v.
- 6. Find the standard deviation of v.
- 7. Find the cumulative product of v.

```
sort(v, 'descend')
ans =
6 5 4 4 3 2 1
```


$$V = [4321654]$$

- 1. Find the size of v.
- 2. Sort v in ascending order.
- 3. Sort v in descending order.
- 4. Find the mean of v.
- 5. Find the median of v.
- 6. Find the standard deviation of v.
- 7. Find the cumulative product of v.

mean(v)

median(v)

std(v)

prod(v)

V =

4 4

3 3

2 2

1 1

6 2

5 8

4 9

Sort the rows of x based on the 2^{nd} column in ascending order..

Sort the rows of x based on the first column in descending order.

Compute the average of each row.

Compute the average of each column.


```
V =
  6
  5 8
```

Sort the rows of x based on the 2^{nd} column in ascending order..

sortrows(v,2)

ans =


```
V =
  6
  5 8
```

Sort the rows of x based on the first column in descending order.

```
sortrows(v,-1)
```

ans =

Compute the average of each row.

mean(v,2)

ans =

4.0000

3.0000

2.0000

1.0000

4.0000

6.5000

6.5000

mean(X,DIM) takes the mean along the dimension DIM of X.

V =

4 4

3 3

2 2

1 1

6 2

5 8

4 9

Compute the average of each column.

mean(v,1)

ans =

3.5714 4.1429

mean(X,DIM) takes the mean along the dimension DIM of X.


```
Compute the average of v.
V =
   4
                          mean(v) % same as mean(v,1)
   3 3
                          ans =
                            3.5714 4.1429
                          >> mean(mean(v))
   6
                          ans =
   5 8
                            3.8571
```



```
v = [ 4 3 7 5 4 9 2; 4 5 3 9 7 5 1; (7:-1:1)]
v = ?
```



```
v = [ 4 3 7 5 4 9 2; 4 5 3 9 7 5 1; (7:-1:1)]
v =

4     3     7     5     4     9     2
4     5     3     9     7     5     1
7     6     5     4     3     2     1
>> sort(v)
ans = ?
```



```
v = [4375492; 4539751; (7:-1:1)]
v =
 4 3 7 5 4 9 2
 4 5 3 9 7 5 1
 7 6 5 4 3 2 1
>> sort(v)
ans =
 4 3 3 4 3 2 1
 4 5 5 5 4 5 1
    6 7 9
            7 9 2
```



```
v =
4   3   7   5   4   9   2
4   5   3   9   7   5   1
7   6   5   4   3   2   1
```

```
>> prod(v)
ans = ?
```



```
v =
4   3   7   5   4   9   2
4   5   3   9   7   5   1
7   6   5   4   3   2   1
```

```
>> prod(v)
ans =
112 90 105 180 84 90
```

S = prod(X) is the product of the elements of the vector X.

If X is a matrix, S is a row vector with the product over each column.

For N-D arrays, prod(X) operates on the first non-singleton dimension.


```
v =

4 3 7 5 4 9 2

4 5 3 9 7 5 1

7 6 5 4 3 2 1

>> prod(v)
```

90 105 180 84 90 2

```
S = prod(X) is the product of the elements of the vector X.
```

If X is a matrix, S is a row vector with the product over each column.

For N-D arrays, prod(X) operates on the first non-singleton dimension.

```
prod(prod(v))
ans =
2.8805e+12
```

ans =

Probability is the <u>measure</u> of the <u>likelihood</u> that an <u>event</u> will occur.

Probability quantifies as a number between 0 and 1, where, loosely speaking,

0 indicates impossibility and

1 indicates certainty.

A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable (which could be written as 0.5 or 50%).

https://en.wikipedia.org/wiki/Probability

Example:

Throw a fair dice with six sides twice.

What is the probability that we have

- A) the two numbers are: 1 and 2 (can be in any order)?
- B) the sum of the two numbers is smaller than or equal to 4?

Example:

Throw a fair dice with six sides twice.

What is the probability that we have

- A) the two numbers are: 1 and 2 (can be in any order)?
- B) the sum of the two numbers is smaller than or equal to 4?

- (1,1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)
- (1,2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2)
- (1,3), (2,3), (3,3), (4,3), (5,3), (6,3)
- (1,4), (2,4), (3,4), (4,4), (5,4), (6,4)
- (1,5), (2,5), (3,5), (4,5), (5,5), (6,5)
- (1,6), (2,6), (3,6), (4,6), (5,6), (6,6)

Example:

Throw a fair dice with six sides twice.

What is the probability that we have

- A) the two numbers are: 1 and 2 (can be in any order)?
- B) the sum of the two numbers is smaller than or equal to 4?

```
(1,1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)

(1,2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2)

(1,3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3)

(1,4), (2, 4), (3, 4), (4, 4), (5, 4), (6, 4)

(1,5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5)

(1,6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6)
```

Example:

Throw a fair dice with six sides twice.

What is the probability that we have

- A) the two numbers are: 1 and 2 (can be in any order)?
- B) the sum of the two numbers is smaller than or equal to 4?

- (1,1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)
- (1,2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2)
- (1,3), (2,3), (3,3), (4,3), (5,3), (6,3)
- (1,4), (2,4), (3,4), (4,4), (5,4), (6,4)
- (1,5), (2,5), (3,5), (4,5), (5,5), (6,5)
- (1,6), (2,6), (3,6), (4,6), (5,6), (6,6)

Example:

Throw a fair dice with six sides twice.

What is the probability that we have

- A) the two numbers are: 1 and 2 (can be in any order)?
- B) the sum of the two numbers, i and j, is smaller than or equal to 4?

$$P(i+j <= 4)$$

Example:

Throw a fair dice with six sides twice.

What is the probability that we have

C) the sum of the two numbers is: 4 or 8

```
(1,1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)
(1,2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2)
(1,3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3)
(1,4), (2, 4), (3, 4), (4, 4), (5, 4), (6, 4)
(1,5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5)
(1,6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6)
```


Example:

Throw a fair dice with six sides twice.

What is the probability that we have

C) the sum of the two numbers is: 4 or 8

```
(1,1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)
```

$$(1,4), (2,4), (3,4), (4,4), (5,4), (6,4)$$

$$(1,5), (2,5), (3,5), (4,5), (5,5), (6,5)$$

$$(1,6), (2,6), (3,6), (4,6), (5,6), (6,6)$$

Example:

Throw a fair dice with six sides twice.

What is the probability that we have

C) the sum of the two numbers is: 4 or 8

$$P(i+j = 4 \text{ or } i+j = 8)$$

= $P(i+j = 4)$
+ $P(i+j=8)$

Example:

Throw a fair dice with six sides twice. What is the probability that we have

C) the sum of the two numbers is: 4 or 8

List all the possible outcomes:

$$P(i+j = 4 \text{ or } i+j = 8)$$

= $P(i+j = 4)$
+ $P(i+j=8)$

P(A or B) =

P(A) + P(B)

Independent events

Example:

Throw a fair dice with six sides twice.

What is the probability that we have

D) the product of the two numbers is: >= 8 or their sum is >= 8

- (1,1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)
- (1,2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2)
- (1,3), (2,3), (3,3), (4,3), (5,3), (6,3)
- (1,4), (2,4), (3,4), (4,4), (5,4), (6,4)
- (1,5), (2,5), (3,5), (4,5), (5,5), (6,5)
- (1,6), (2,6), (3,6), (4,6), (5,6), (6,6)

Example:

Throw a fair dice with six sides twice.

What is the probability that we have

D) the product of the two numbers is: >= 8 or their sum is >= 8

P(
$$i+j >= 8$$
 or $i*j >= 8$)
= P($i+j >= 8$)
+ P($i*j >= 8$) ??

Example:

Throw a fair dice with six sides twice.

What is the probability that we have

D) the product of the two numbers is: >= 8 or their sum is >= 8

List all the possible outcomes:

Dependent events

Example:

Throw a fair dice with six sides twice.

What is the probability that we have

D) the product of the two numbers is: >= 8 or their sum is >= 8

List all the possible outcomes:

$$P(i+j >= 8 \text{ or } i*j >= 8)$$

=
$$P(i+j >= 8)$$

+ $P(i*j>=8)$

%wrong

Dependent

Example:

Throw a fair dice with six sides twice.

What is the probability that we have

D) the product of the two numbers is: >= 8 or their sum is >= 8

List all the possible outcomes:

$$P(i+j >= 8 \text{ or } i*j >= 8)$$

$$= 22/36 = 11/18$$

Dependent

Example:

Throw a fair dice with six sides twice.

What is the probability that we have

D) the product of the two numbers is: >= 8 or their sum is >= 8

List all the possible outcomes:

$$P(i+j >= 8 \text{ or } i*j >= 8)$$

P(A) + P(B) - P(A and B)

P(A or B) =

=
$$P(i+j >= 8)$$

+ $P(i*j >= 8)$
- $P(i+j >= 8 \text{ and } i*j >= 8)$

Dependent events

Random numbers

A numeric <u>sequence</u> is said to be statistically random when it contains no recognizable <u>patterns</u> or regularities; sequences such as the results of an ideal <u>dice roll</u> or the digits of $\underline{\pi}$ exhibit statistical randomness.

```
e.g., for a dice, we have:1, 1, 1, (the next number?)
```

https://en.wikipedia.org/wiki/Statistical_randomness

Tests for randomness

Kendall and Smith's original four tests were
 hypothesis tests
 , which took as their null
 hypothesis
 the idea that each number in a given random sequence had an equal chance of occurring, and that various other patterns in the data should be also distributed equiprobably.

https://en.wikipedia.org/wiki/Statistical_randomness

Kendall and Smith's original four tests

- The **frequency test**: check to make sure that there were roughly the same number of 0s, 1s, 2s, 3s, etc.
- The **serial test: check** for sequences of two digits at a time (00, 01, 02, etc.), comparing their observed frequencies with their hypothetical predictions were they equally distributed.
- The **poker test**, tested for certain sequences of five numbers at a time (AAAAA, AAAAB, AAABB, etc.) based on hands in the game poker.
- The **gap test**, looked at the distances between zeroes (00 would be a distance of 0, 030 would be a distance of 1, 02250 would be a distance of 3, etc.).

https://en.wikipedia.org/wiki/Statistical_randomness

1/2 1/3 1/6

Probability density function

Probability density function

Probability density function

Density

Gaussian Probability Density Function

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Normal (or Gaussian) Probability Density Function

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

parameters

 μ : Mean

 σ : Standard deviation


```
rng('default') % for reproducibility
r = normrnd(0,1)
```

% Save the current state of the random number generator.

```
s = rng;
```

r = normrnd(0,1)

%Restore the state of the random number generator to s rng(s);

r = normrnd(0,1) % same set of numbers are generated

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

parameters

 μ : Mean

 σ : Standard deviation

- rand(n) produces an n×n matrix of random numbers from 0 to 1.
- rand(n,m) produces an n×m matrix of random numbers between 0 and 1.

Produce a random number between 0 and 30, do the following:

```
w = 30.*rand(1)
```


There are three letters which are inside a box. We pick one letter from the box.

How can we use a uniform random number generator to produce a letter?

The probability that a letter is picked.

1/2 1/3 1/6

```
x = rand(1)

if ( x < 1/6) then C

if ( 1/6 <=x < 1/6+1/3) then B

if (1/6+1/3 <= x ) then A</pre>
```


1/2 1/3 1/6

```
x = rand(1)
if (x < 1/6) then C
if (1/6 \le x \le 1/6+1/3) then B
if (1/6+1/3 \le x) then A
Cumulative probability:
The value of a random variable
falls within a range.
```



```
x = rand(1)

if ( x < 1/6) then C

if ( 1/6 <=x < 3/6) then B

if ( 1/2 <= x ) then A</pre>
```


> Normal random numbers

$$f(x; \sigma, c) = e^{\frac{-(x-c)^2}{2\sigma^2}}$$

- r = normrnd(c, sigma)
- Generates a random number from the normal distribution
- > c: mean; sigma: standard deviation parameter sigma.

Normal random numbers

```
% create a new 1-by-n vector
% of random numbers
                               probability density
                               function (pdf)
n = 50;
y = zeros(1,n);
c = 0;
sigma = 2;
r = normrnd(c, sigma, [1,n]);
plot(r,y,'o')
```


Normal random numbers

0

```
probability density
y = zeros(1,n);
                              function (pdf)
c = 1; % mean
sigma = 2;
   = normrnd(c, sigma, [1,n]);
plot(r,y,'o')
                                                n = 10
                                                Mean
                                                0.4906
                                                n = 100
                                                Mean
                                                1.2677
                                                n=10000
```

Gaussian curve membership function

gaussmf

```
y = gaussmf(x,[sig c])
```

$$f(x; \sigma, c) = e^{\frac{-(x-c)^2}{2\sigma^2}}$$

```
x = -5:0.1:5
sig = 1; c = 0;
y = gaussmf(x, [sig c]);
plot(x,y)
```


Complex numbers

- Complex numbers: a + b i:
 - a is the real part
 - b is the imaginary part where i = sqrt(-1).

 Complex numbers can be assigned in MATLAB on command lines as follows:

Complex numbers

real(c): real component of a complex number

imag(c): imaginary component of a complex number

abs(c): absolute value or modulus of a complex number. c = a + bi. $abs(c) = sqrt(a^2+b^2)$

angle(c): angle or argument expressed in radians of a complex number imaginary

Other useful functions

- clock: produces an array that tells year, month, day, hour, min, sec.
- date: tells date
- pi: the number pi (3.141592653589.....)
- i: imaginary number % i = sqrt(-1)
- j: imaginary number % j = sqrt(-1)

clock

clock

```
ans =
1.0e+03 *
```

2.0190 0.0030 0.0130 0.0200 0.0440 0.0507

clock

clock

ans = 1.0e+03 *

2.0190 0.0030 0.0130 0.0200 0.0440 0.0507

clock Current date and time as date vector.

C = clock returns a six element date vector containing the current time and date in decimal form:

[year month day hour minute seconds]

clock

clock

```
ans =
1.0e+03 *
```

2.0190 0.0030 0.0130 0.0200 0.0440 0.0507

[year month day hour minute seconds]

clock Current date and time as date vector.

C = clock returns a six element date vector containing the current time and date in decimal form:

[year month day hour minute seconds]

