Gradient Descent in Hilbert Space

Carson James

December 8, 2021

Outline

Banach Spaces
Bounded Linear Maps
Frechet Differentiation

Calculus

Tools

Results

Hilbert Spaces

Riesz Representation Theorem

Convex Analysis

Results

Reproducing Kernel Hilbert Spaces

RKHS's

Applications to Gaussian Processes

References

Banach Spaces

Definition

Let X be a normed vector space. Then X is said to be a **Banach** space if X is complete.

Banach Spaces

Definition

Let X be a normed vector space. Then X is said to be a **Banach** space if X is complete.

Definition

Let X, Y be a normed vector spaces and $T: X \to Y$ a linear map. Then T is said to be **bounded** if there exists $C \ge 0$ such that for each $x \in X$,

$$||Tx|| \leq C||x||$$

We define

$$L(X, Y) = \{T : X \rightarrow Y : T \text{ is linear and bounded}\}$$

Let X_1, \ldots, X_n and Y be a normed vector spaces and

$$T:\prod_{j=1}^n X_j o Y$$
 a multilinear linear map. Then T is said to be

bounded if there exists $C \ge 0$ such that for each $(x_j)_{j=1}^n \in \prod_{j=1}^n X_j$,

$$||T(x_1,...,x_n)|| \leq C||x_1||...||x_n||$$

We define

$$L^n(X_1,\ldots,X_n;Y)=\{T:X\to Y:T \text{ is multilinear and bounded}\}$$

If
$$X_1, \ldots, X_n = X$$
, we write $L^n(X, Y)$ in place of $L^n(X, \ldots, X; Y)$.

Remark

Let X and Y be normed vector spaces. We may identify $L(X,L(X,\ldots,L(X,Y))\ldots)$ and $L^n(X,Y)$ via the isometric isomorphism given by $\phi\mapsto\psi_\phi$ where

$$\psi_{\phi}(x_1,x_2,\ldots,x_n)=\phi(x_1)(x_2)\ldots(x_n)$$

Remark

Let X and Y be normed vector spaces. We may identify $L(X,L(X,\ldots,L(X,Y))\ldots)$ and $L^n(X,Y)$ via the isometric isomorphism given by $\phi\mapsto\psi_\phi$ where

$$\psi_{\phi}(x_1,x_2,\ldots,x_n)=\phi(x_1)(x_2)\ldots(x_n)$$

Definition

Let X be a normed vector space over \mathbb{R} . We define the **dual space** of X, denoted X^* , by $X^* = L(X, \mathbb{R})$. Let $T: X \to \mathbb{R}$. Then T is said to be a **bounded linear functional on** X if $T \in X^*$.

Let X, Y be a banach spaces, $A \subset X$ open, $f : A \to Y$ and $x_0 \in A$. Then f is said to be (1-st order) Frechet differentiable at x_0 if there exists $Df(x_0) \in L(X, Y)$ such that,

$$f(x_0 + h) = f(x_0) + Df(x_0)(h) + o(||h||)$$
 as $h \to 0$

If f is Frechet differentiable at x_0 , we define the **Frechet** derivative of f at x_0 to be $Df(x_0)$. We say that f is (1-st order) **Frechet differentiable** if for each $x_0 \in A$, f is Frechet differentiable at x_0 .

If f is Frechet differentiable, we define the **Frechet derivative** of f, denoted $Df: A \rightarrow L(X, Y)$, by

$$x \mapsto Df(x)$$

Continuing inductively, if f is (n-1)-th order Frechet differentiable, f is said to be n-th order Frechet differentiable at x_0 if $D^{n-1}f$ is Frechet differentiable at x_0 . We define $D^nf(x_0)=D(D^{n-1}f)(x_0)$.

Remark

Note that $D^n f(x_0) \in L^n(X, Y)$.

Remark

The tools used to obtain the following results:

Remark

Note that $D^n f(x_0) \in L^n(X, Y)$.

Remark

The tools used to obtain the following results:

► Frechet Derivative

Remark

Note that $D^n f(x_0) \in L^n(X, Y)$.

Remark

The tools used to obtain the following results:

- Frechet Derivative
- Bochner Integral

Remark

Note that $D^n f(x_0) \in L^n(X, Y)$.

Remark

The tools used to obtain the following results:

- ► Frechet Derivative
- Bochner Integral
- Hahn-Banach Theorem

Let X, Y be Banach spaces and $f \in L(X, Y)$. Then f is Frechet differentiable and for each $x_0 \in X$, $Df(x_0) = f$.

Let X, Y be Banach spaces and $f \in L(X, Y)$. Then f is Frechet differentiable and for each $x_0 \in X$, $Df(x_0) = f$.

Result

Let X, Y, Z be Banach spaces, $f: X \to Y$, $g: Y \to Z$ and $x_0 \in X$. If f is Frechet differentiable at x_0 and g is Frechet differentiable at $f(x_0)$, then $g \circ f$ is Frechet differentiable at x_0 and

$$D(g \circ f)(x_0) = Dg(f(x_0)) \circ Df(x_0)$$

Let X, Y be Banach spaces and $f \in L(X, Y)$. Then f is Frechet differentiable and for each $x_0 \in X$, $Df(x_0) = f$.

Result

Let X, Y, Z be Banach spaces, $f: X \to Y$, $g: Y \to Z$ and $x_0 \in X$. If f is Frechet differentiable at x_0 and g is Frechet differentiable at $f(x_0)$, then $g \circ f$ is Frechet differentiable at x_0 and

$$D(g \circ f)(x_0) = Dg(f(x_0)) \circ Df(x_0)$$

Result

Let X, Y be a Banach spaces, $A \subset X$ open and convex and $f: A \to Y$. If f is Frechet differentiable, then for each $x, y \in A$, there exists $t \in (0,1)$ such that

$$||f(x) - f(y)|| \le ||Df(tx + (1-t)y)|| ||x - y||$$

Let X, Y be Banach spaces and $f \in L(X, Y)$. Then f is Frechet differentiable and for each $x_0 \in X$, $Df(x_0) = f$.

Result

Let X, Y, Z be Banach spaces, $f: X \to Y$, $g: Y \to Z$ and $x_0 \in X$. If f is Frechet differentiable at x_0 and g is Frechet differentiable at $f(x_0)$, then $g \circ f$ is Frechet differentiable at x_0 and

$$D(g \circ f)(x_0) = Dg(f(x_0)) \circ Df(x_0)$$

Result

Let X, Y be a Banach spaces, $A \subset X$ open and convex and $f: A \to Y$. If f is Frechet differentiable, then for each $x, y \in A$, there exists $t \in (0,1)$ such that

$$||f(x) - f(y)|| \le ||Df(tx + (1-t)y)|| ||x - y||$$

Let X, Y be a Banach spaces, $A \subset X$ open and convex and $f: A \to Y$. Suppose that f is Frechet differentiable. If for each $x \in A$, Df(x) = 0, then f is constant.

Let X, Y be a Banach spaces, $A \subset X$ open and convex and $f: A \to Y$. Suppose that f is Frechet differentiable. If for each $x \in A$, Df(x) = 0, then f is constant.

Result

Let X, Y be a Banach spaces, $A \subset X$ open and convex and $f, g: A \to Y$. Suppose that f and g are Frechet differentiable. If Df = Dg, then there exists $c \in Y$ such that f = g + c.

Let X, Y be a Banach spaces, $A \subset X$ open and convex and $f: A \to Y$. Suppose that f is Frechet differentiable. If for each $x \in A$, Df(x) = 0, then f is constant.

Result

Let X, Y be a Banach spaces, $A \subset X$ open and convex and $f, g: A \to Y$. Suppose that f and g are Frechet differentiable. If Df = Dg, then there exists $c \in Y$ such that f = g + c.

Result

Let X be a Banach spaces, $A \subset X$ open, $f : A \to \mathbb{R}$ and $x_0 \in A$. Suppose that f is Frechet differentiable at x_0 . If f has a local minimum at x_0 , then $Df(x_0) = 0$.

Let Y be a separable Banach space and $f \in C^1_Y(a,b)$. Then for each $x, x_0 \in (a,b)$, $x_0 < x$ implies that

- 1. f' is Bochner integrable on $(x_0, x]$
- 2.

$$f(x) - f(x_0) = \int_{(x_0, x]} f' dm$$

Let Y be a separable Banach space and $f \in C^1_Y(a, b)$. Then for each $x, x_0 \in (a, b)$, $x_0 < x$ implies that

- 1. f' is Bochner integrable on $(x_0, x]$
- 2.

$$f(x) - f(x_0) = \int_{(x_0, x]} f' dm$$

Result

Let Y be a separable Banach space, $A \subset X$ open and convex, $f \in C^n_Y(A)$ and $x_0 \in A$. Then

$$f(x_0 + h) = \sum_{k=0}^{n} \frac{1}{k!} D^k f(x_0)(h, \dots, h) + o(\|h\|^n)$$
 as $h \to 0$

Hilbert Spaces

Definition

Let H be an inner product space. Then H is said to be a **Hilbert space** if H is complete with respect to the norm induced by the inner product.

Hilbert Spaces

Definition

Let H be an inner product space. Then H is said to be a **Hilbert space** if H is complete with respect to the norm induced by the inner product.

Remark

We will be assuming the Hilbert space is real.

Hilbert Spaces

Definition

Let H be an inner product space. Then H is said to be a **Hilbert space** if H is complete with respect to the norm induced by the inner product.

Remark

We will be assuming the Hilbert space is real.

Result

Let H be an inner product space. Then for each $x, y \in H$, $|\langle x, y \rangle| \le ||x|| ||y||$ with equality iff $x \in \text{span}(y)$.

Let H be a Hilbert space. Define $\phi: H \to H^*$ by $x \mapsto x^*$ where

$$x^*y = \langle x, y \rangle$$

Let H be a Hilbert space. Define $\phi: H \to H^*$ by $x \mapsto x^*$ where

$$x^*y = \langle x, y \rangle$$

Result

Let H be a Hilbert space. Then $\phi: H \to H^*$ defined above is an isometric isomorphism.

Let H be a Hilbert space, $f: H \to \mathbb{R}$ and $x_0 \in H$. Suppose that f is Frechet differentiable at x_0 so that $Df(x_0) \in H^*$. We define the **gradient of** f **at** x_0 , denoted $\nabla f(x_0) \in H$, by

$$\nabla f(x_0) = \phi^{-1} D f(x_0)$$

That is, $\nabla f(x_0)$ is the unique element of H such that for each $y \in H$,

$$\langle \nabla f(x_0), y \rangle = Df(x_0)(y)$$

Let H be a Hilbert space, $f: H \to \mathbb{R}$ and $x_0 \in H$. Suppose that f is Frechet differentiable at x_0 so that $Df(x_0) \in H^*$. We define the **gradient of** f **at** x_0 , denoted $\nabla f(x_0) \in H$, by

$$\nabla f(x_0) = \phi^{-1} Df(x_0)$$

That is, $\nabla f(x_0)$ is the unique element of H such that for each $y \in H$,

$$\langle \nabla f(x_0), y \rangle = Df(x_0)(y)$$

Result

Let H be a Hilbert space, $f: H \to \mathbb{R}$ and $x_0 \in H$. If f is Frechet differentiable at x_0 , then

$$\underset{\|h\| \le 1}{\arg \min} \, Df(x_0)(h) = -\|\nabla f(x_0)\|^{-1} \nabla f(x_0)$$

Remark

In the context of Hilbert spaces, the gradient allows us generalize the gradient descent method for minimization.

The idea is as follows. If $f: H \to \mathbb{R}$ is Frechet differentiable. Then

$$f(x_0 + h) \approx f(x_0) + \langle \nabla f(x_0), h \rangle$$

for h near 0. Taking $h = -\eta \nabla f(x_0)$ for some small $\eta > 0$ insures that h is close to 0 and h is in the direction of steepest descent of $Df(x_0)(v)$ which causes $f(x_0 + h) < f(x_0)$.

Result

Let X be a vector space, $A \subset X$ convex, $f : A \to \mathbb{R}$ convex and $x_0 \in A$. Then f has a local minimum at x_0 iff f has a global minimum at x_0 .

Result

Let X be a vector space, $A \subset X$ convex, $f : A \to \mathbb{R}$ convex and $x_0 \in A$. Then f has a local minimum at x_0 iff f has a global minimum at x_0 .

Result

Let X be a vector space, $A \subset X$ convex and $f : A \to \mathbb{R}$ strictly convex. If f has a local minimum, then there exists a unique $x_0 \in A$ such that $f(x_0) = \min_{x \in A} f(x)$.

Result

Let X be a vector space, $A \subset X$ convex, $f : A \to \mathbb{R}$ convex and $x_0 \in A$. Then f has a local minimum at x_0 iff f has a global minimum at x_0 .

Result

Let X be a vector space, $A \subset X$ convex and $f : A \to \mathbb{R}$ strictly convex. If f has a local minimum, then there exists a unique $x_0 \in A$ such that $f(x_0) = \min_{x \in A} f(x)$.

Result

Let X be a Banach space, $A \subset X$ open and convex, $f: A \to \mathbb{R}$ convex, $x_0 \in A$. Suppose that f is 2nd order Frechet differentiable. If for each $x_0 \in A$, $D^2f(x_0) \in L^2(X,\mathbb{R})$ is positive semi definite (resp. pos. def.), then f is convex (resp. strictly convex).

Result

Let X be a vector space, $A \subset X$ convex, $f : A \to \mathbb{R}$ convex and $x_0 \in A$. Then f has a local minimum at x_0 iff f has a global minimum at x_0 .

Result

Let X be a vector space, $A \subset X$ convex and $f : A \to \mathbb{R}$ strictly convex. If f has a local minimum, then there exists a unique $x_0 \in A$ such that $f(x_0) = \min_{x \in A} f(x)$.

Result

Let X be a Banach space, $A \subset X$ open and convex, $f: A \to \mathbb{R}$ convex, $x_0 \in A$. Suppose that f is 2nd order Frechet differentiable. If for each $x_0 \in A$, $D^2 f(x_0) \in L^2(X, \mathbb{R})$ is positive semi definite (resp. pos. def.), then f is convex (resp. strictly convex).

Remark

By positive definite, we mean $D^2f(x_0)(h,h)>0$ for $h\neq 0$.

Reproducing Kernel Hilbert Spaces

Definition

Let T be a set and $H \subset \mathbb{R}^T$ a hilbert space. For $t \in T$, we define the **evauluation functional at** t, denoted $L_t : H \to \mathbb{R}$, by

$$L_t(f)=f(t)$$

Reproducing Kernel Hilbert Spaces

Definition

Let T be a set and $H \subset \mathbb{R}^T$ a hilbert space. For $t \in T$, we define the **evauluation functional at** t, denoted $L_t : H \to \mathbb{R}$, by

$$L_t(f) = f(t)$$

The space H is said to be a **reproducing kernel Hilbert space** (**RKHS**) if for each $t \in T$, $L_t \in H^*$ (i.e. L_t is bounded).

Reproducing Kernel Hilbert Spaces

Definition

Let T be a set and $H \subset \mathbb{R}^T$ a hilbert space. For $t \in T$, we define the **evauluation functional at** t, denoted $L_t : H \to \mathbb{R}$, by

$$L_t(f) = f(t)$$

The space H is said to be a **reproducing kernel Hilbert space** (**RKHS**) if for each $t \in T$, $L_t \in H^*$ (i.e. L_t is bounded). If H is an RKHS, the Riesz representation theorem implies that for each $t \in T$, there exists $K_t \in H$ such that for each $f \in H$, $\langle K_t, f \rangle = f(t)$.

Reproducing Kernel Hilbert Spaces

Definition

Let T be a set and $H \subset \mathbb{R}^T$ a hilbert space. For $t \in T$, we define the **evauluation functional at** t, denoted $L_t : H \to \mathbb{R}$, by

$$L_t(f) = f(t)$$

The space H is said to be a **reproducing kernel Hilbert space** (**RKHS**) if for each $t \in T$, $L_t \in H^*$ (i.e. L_t is bounded). If H is an RKHS, the Riesz representation theorem implies that for each $t \in T$, there exists $K_t \in H$ such that for each $f \in H$, $\langle K_t, f \rangle = f(t)$.

If H is an RKHS, we define the **reproducing kernel** associated to H, denoted $K_H: T^2 \to \mathbb{R}$, by

$$K_H(s,t) = \langle K_s, K_t \rangle$$

Let T be a set and $K: T^2 \to \mathbb{R}$. If K is symmetric and positive definite, then there exists a unique reproducing kernel Hilbert space $H \subset \mathbb{R}^T$ such that $K_H = K$.

Let T be a set, $K: T^2 \to \mathbb{R}$ a symmetric, postivie definite kernel on T, $H \subset \mathbb{R}^T$ the corresponding RKHS, $t = (t_j)_{j=1}^n \subset T$ and $y = (y_j)_{j=1}^n \subset \mathbb{R}$.

Let T be a set, $K: T^2 \to \mathbb{R}$ a symmetric, postivie definite kernel on T, $H \subset \mathbb{R}^T$ the corresponding RKHS, $t = (t_j)_{j=1}^n \subset T$ and $y = (y_j)_{j=1}^n \subset \mathbb{R}$. Define $L: H \to \mathbb{R}$ by

$$L(f) = \sum_{j=1}^{n} (y_j - f(t_j))^2 + \lambda ||f||^2$$

Let T be a set, $K: T^2 \to \mathbb{R}$ a symmetric, postivie definite kernel on T, $H \subset \mathbb{R}^T$ the corresponding RKHS, $t = (t_j)_{j=1}^n \subset T$ and $y = (y_j)_{j=1}^n \subset \mathbb{R}$. Define $L: H \to \mathbb{R}$ by

$$L(f) = \sum_{j=1}^{n} (y_j - f(t_j))^2 + \lambda ||f||^2$$

Put
$$\hat{f} = \arg\min_{f \in H} L(f)$$
.

Let T be a set, $K: T^2 \to \mathbb{R}$ a symmetric, postivie definite kernel on T, $H \subset \mathbb{R}^T$ the corresponding RKHS, $t = (t_j)_{j=1}^n \subset T$ and $y = (y_j)_{j=1}^n \subset \mathbb{R}$. Define $L: H \to \mathbb{R}$ by

$$L(f) = \sum_{i=1}^{n} (y_j - f(t_j))^2 + \lambda ||f||^2$$

Put $\hat{f} = \arg\min_{f \in H} L(f)$.

Then there exist $(\hat{\alpha}_j)_{i=1}^n \subset \mathbb{R}$ such that

$$\hat{f}(t) = \sum_{j=1}^{n} \hat{\alpha}_{j} K(t, t_{j})$$

Define $A \in \mathbb{R}^{n \times n}$ by $A_{i,j} = K(t_i, t_j)$. Some regular calculus shows that $\hat{\alpha} = (A + \lambda I)^{-1} y$

Define $A \in \mathbb{R}^{n \times n}$ by $A_{i,j} = K(t_i, t_j)$. Some regular calculus shows that $\hat{\alpha} = (A + \lambda I)^{-1} y$

Question

What if $(A + \lambda I)^{-1}$ is hard to compute?

Define $A \in \mathbb{R}^{n \times n}$ by $A_{i,j} = K(t_i, t_j)$. Some regular calculus shows that $\hat{\alpha} = (A + \lambda I)^{-1} y$

Question

What if $(A + \lambda I)^{-1}$ is hard to compute?

Answer

gradient descent

Define $Q: H \to \mathbb{R}$ by

$$Q(f) = \sum_{j=1}^{n} (y_j - f(t_j))^2$$

Define $Q: H \to \mathbb{R}$ by

$$Q(f) = \sum_{j=1}^{n} (y_j - f(t_j))^2$$

We can write rewrite Q(f) as

$$Q(f) = ||L_t(f) - y||_2^2$$

where $L_t \in L(H, \mathbb{R}^n)$ is given by

$$L_t(f) = (f(t_j))_{j=1}^n$$

Writing this out, we see that

$$Q(f_0 + h) = ||L_t(f_0) - y||_2^2 + 2(L_t(f_0) - y)^T L_t(h) + ||L_t(h)||_2^2$$

= $Q(f_0) + [\text{lin funct of } h] + [\text{bilin funct of } (h, h)]$

Writing this out, we see that

$$Q(f_0 + h) = ||L_t(f_0) - y||_2^2 + 2(L_t(f_0) - y)^T L_t(h) + ||L_t(h)||_2^2$$

= $Q(f_0) + [\text{lin funct of } h] + [\text{bilin funct of } (h, h)]$

Equating terms from Taylors theorem, we see that $D^2Q(f_0)(h,h)=2\|L_t(h)\|_2^2$, which is p.s.d. So Q is convex. Since norms are convex and $\lambda\geq 0$, L is convex.

Similar to before, writing out $L(f_0 + h)$, we get

$$L(f_0 + h) = L(f_0) + 2(L_t(f_0) - y)^T L_t(h) + 2\lambda \langle f_0, h \rangle + o(\|h\|^2)$$

Similar to before, writing out $L(f_0 + h)$, we get

$$L(f_0 + h) = L(f_0) + 2(L_t(f_0) - y)^T L_t(h) + 2\lambda \langle f_0, h \rangle + o(\|h\|^2)$$

So

$$DL(f_0)(h) = 2(L_t(f_0) - y)^T L_t(h) + 2\lambda \langle f_0, h \rangle$$

$$= 2\sum_{j=1}^n (f_0(t_j) - y_j) \langle K_{t_j}, h \rangle + 2\lambda \langle f_0, h \rangle$$

$$= \left\langle 2 \left[\sum_{j=1}^n (f_0(t_j) - y_j) K_{t_j} + \lambda f_0 \right], h \right\rangle$$

Similar to before, writing out $L(f_0 + h)$, we get

$$L(f_0 + h) = L(f_0) + 2(L_t(f_0) - y)^T L_t(h) + 2\lambda \langle f_0, h \rangle + o(\|h\|^2)$$

So

$$DL(f_0)(h) = 2(L_t(f_0) - y)^T L_t(h) + 2\lambda \langle f_0, h \rangle$$

$$= 2\sum_{j=1}^n (f_0(t_j) - y_j) \langle K_{t_j}, h \rangle + 2\lambda \langle f_0, h \rangle$$

$$= \left\langle 2 \left[\sum_{j=1}^n (f_0(t_j) - y_j) K_{t_j} + \lambda f_0 \right], h \right\rangle$$

Hence

$$\nabla L(f_0) = 2 \left[\sum_{i=1}^{n} (f_0(t_i) - y_j) K_{t_j} + \lambda f_0 \right]$$

Therefore the gradient descent update reads as follows:

$$f_{t+1} = f_t - \eta \nabla L(f_t)$$

= $(1 - 2\eta \lambda) f_t - 2\eta \left[\sum_{i=1}^n (f_0(t_i) - y_i) K_{t_i} \right]$

Applications to Gaussian Processes

Remark

Let T be a set and $x=(x_j)_{j=1}^n\in T^n$, $y=(y_j)_{j=1}^n\in \mathbb{R}^n$. Recall that if

$$y_i = f(x_i) + \epsilon_i$$

 $\epsilon_i \sim N(0, \sigma^2)$
 $f \sim GP(0, c)$

Then

$$f|x, y \sim GP(\tilde{\mu}, \tilde{c})$$

where

$$\tilde{\mu}(t) = c(t, x)[c(x, x) + \sigma^2 I]^{-1} y$$

and

$$\tilde{c}(s,t) = c(s,t) - c(s,x)[c(x,x) + \sigma^2 I]^{-1}c(x,t)$$

If $(c(x,x) + \sigma^2 I)^{-1}$ is too expensive to compute, we may set up the following convex optimization problems to approximate the posterior mean and posterior covariance functions via our gradient descent algorithm:

$$\tilde{\mu}(t) = \operatorname*{arg\,min}_{f \in H} \sum_{j=1}^{n} (y_j - f(t_j))^2 + \sigma^2 \|h\|_H$$

▶ Fixing $t \in T$,

$$\hat{c}(\cdot,t) = \arg\min_{f \in H} \sum_{j=1}^{n} (c(x_{j},t) - f(t_{j}))^{2} + \sigma^{2} ||h||_{H}$$

where H is the RKHS corresponding to the p.d. kernel c.

The first optimization problem lets us approximate $\tilde{\mu}$ directly by gradient descent and the second optimization problem lets us approximate $\tilde{c}(t)$ by finding $\hat{c}(\cdot,t)$ via gradient descent and the computing $\tilde{c}(s,t)=c(s,t)-\hat{c}(s,t)$.

References

- analysis notes
- ► integration notes
- ► RKHS's
- ► Representer Theorem