Given a computing system with the following specifications: m=3, $e_{min}=-1$, $e_{max}=3$, $\frac{Note}{2}$:

how does the system represent $x_1=5.875$ and $x_2=6.35$? $e_{min} \le e \le e_{max}$: $e \in 77$

· Normalized Form

System (I.d.d.d.) × 2 m=3

$$x_1 = 5.875 = (|0|.1||)_{2}^{2}$$

Notice that we can not represent all the 5 bits after the radix since m=3.

Denormalized Form

(0.1d,d2d3) × 2°

$$x_1 = 5.875 = (|01.111)_2 \times 2^0$$

(Bring to denormalized form
 $x_1 = (0.101111)_2 \times 2^3$

Again, we can't represent all The bits after the radix.

- · Figure it out.
- · Decimat to Binary Conversion by hand if required.

Tutorial by an Indian gentleman.

$$(0.|01||1)_{2} \times 2^{3} \longrightarrow (0.|100)_{2} \times 2^{3} = \{l(x_{i})\}$$

$$\in \mathbb{F}_{p}$$

representable by the system. in the de Normalized form.

· Do the same for x2.

in Denormalized form.

• After representing x_1 and x_2 in the system, compute x_1^2 , and find its representation $f(x_1^2)$. $x_1 = 5.875$ and we found that $f(x_1) = (0.1100)_2 \times 2^3 = 0.75 \times 2^3 = 6$

Now, $f((x^2) = f((x_1) \cdot f((x_1)) \rightarrow 6 \times 6 = 36$ $36 = (100100.0) \times 2^0 = (0.100100)_2 \times 2^6 \notin F_B$ Here, we see that the exponent e = 6. $e > e_{max}$: $f((x_1^2))$ is not representable ever though we can perfectly represent the fractional part $(0.1001)_2$.

Note that after any computation such as $f(x^2)$, $f(x+x_1)$, $f(x,x_2)$, we have to represent the result according to the system representation.