# Adapting to Heat Extremes with Unequal Access to Cooling: Evidence from India

#### Filippo Pavanello<sup>1,2,3</sup> Ian Sue Wing<sup>4</sup>

Preliminary Version. Please do not cite.

 $<sup>^{\</sup>mathrm{1}}\mathrm{Department}$  of Economics, University of Bologna

 $<sup>^2</sup>$ ECIP Division, Euro-Mediterranean Center on Climate Change (CMCC)

<sup>&</sup>lt;sup>3</sup>Department of Economics, Ca' Foscari University of Venice

<sup>&</sup>lt;sup>4</sup>Department of Earth & Environment, Boston of University

Introduction

ullet Global warming  $\Rightarrow$  more frequent and intense hot extremes

- Global warming ⇒ more frequent and intense hot extremes
- Large evidence about the welfare costs of extreme heat Literature



• Global warming ⇒ more frequent and intense hot extremes

• Large evidence about the welfare costs of extreme heat Literature



Agents shield themselves ⇒ air-conditioning

- Global warming ⇒ more frequent and intense hot extremes
- Large evidence about the welfare costs of extreme heat Literature

- Agents shield themselves ⇒ air-conditioning
- Evidence of the protective effects of air conditioners
  - (Barreca et al. 2016, JPE)

- Global warming ⇒ more frequent and intense hot extremes
- Large evidence about the welfare costs of extreme heat Literature
- Agents shield themselves ⇒ air-conditioning
- Evidence of the protective effects of air conditioners
  - ← e.g., 80% reduction in heat-related mortality in US Graph
     (Barreca et al. 2016, JPE)
- Problem: access to air conditioning is unequally distributed

```
(Davis et al. 2021, GEC; Pavanello et al. 2021, NC; Romitti et al. 2022, PNAS Nexus)
```

- ⇔ especially in developing economies
- $\hookrightarrow$  air conditioners are too **expensive**  $\Rightarrow$  high operational and capital costs

Are there any alternative cooling appliances affordable for poorer households?

Air conditioner



Evaporative cooler



Air conditioner



Evaporative cooler



- Policymakers promote evaporative coolers as a sustainable and cheap option
- ullet Evaporative coolers  $\Rightarrow$  low upfront and operational costs

Air conditioner



Evaporative cooler



- Policymakers promote evaporative coolers as a sustainable and cheap option
- Evaporative coolers ⇒ low upfront and operational costs
- They can reduce indoor temperature

Air conditioner



Evaporative cooler



- Policymakers promote evaporative coolers as a sustainable and cheap option
- Evaporative coolers ⇒ low upfront and operational costs
- They can reduce indoor temperature

Air conditioner



Evaporative cooler



- Policymakers **promote evaporative coolers** as a sustainable and cheap option
- $\bullet~$  Evaporative coolers  $\Rightarrow$  low upfront and operational costs
- They can reduce indoor temperature

 $\hookrightarrow$  Trade-off (?)  $\Rightarrow$  cost and accessibility — health protection effectiveness

#### This Project

- Examine the differential technological responses to heat extremes of households
  - Household (> 200k) panel data from India
  - Information on technology and electricity consumption

#### This Project

- Examine the differential technological responses to heat extremes of households
  - Household (> 200k) panel data from India
  - Information on technology and electricity consumption
- Test whether the choice of the technology determines the level of protection from extreme heat
  - District-level annual mortality data

#### This Project

- Examine the differential technological responses to heat extremes of households
  - Household (> 200k) panel data from India
  - Information on technology and electricity consumption
- Test whether the choice of the technology determines the level of protection from extreme heat
  - District-level annual mortality data
- 3. Determine the consequences of **technological inequality** in heat adaptation
  - Number of prevented deaths
  - Implications for policy

• Majority of households has no access to any form of cooling

- Majority of households has no access to any form of cooling
- When they do:

- Majority of households has no access to any form of cooling
- When they do:
  - $\hookrightarrow$  Poor and middle-income households  $\Rightarrow$  evaporative coolers

- Majority of households has no access to any form of cooling
- When they do:
  - $\hookrightarrow$  Poor and middle-income households  $\Rightarrow$  evaporative coolers
  - $\hookrightarrow$  High-income urban families  $\Rightarrow$  air conditioners

- Majority of households has no access to any form of cooling
- When they do:
  - $\hookrightarrow$  Poor and middle-income households  $\Rightarrow$  evaporative coolers
- This implies large disparities in electricity consumption during hot days

- Majority of households has no access to any form of cooling
- When they do:
  - → Poor and middle-income households ⇒ evaporative coolers
- This implies large disparities in electricity consumption during hot days
- $\bullet$  An additional day  $\geq$  35  $^{\circ}\text{C}$   $\Rightarrow$  mortality rates  $\Uparrow$  1%

- Majority of households has no access to any form of cooling
- When they do:
  - → Poor and middle-income households ⇒ evaporative coolers
- This implies large disparities in electricity consumption during hot days
- An additional day  $\geq$  35  $^{\circ}$ C  $\Rightarrow$  mortality rates  $\uparrow$  1%
  - $\hookrightarrow$  larger effects for rural and poorer population

- Majority of households has no access to any form of cooling
- When they do:
  - $\hookrightarrow$  Poor and middle-income households  $\Rightarrow$  evaporative coolers
- This implies large disparities in electricity consumption during hot days
- An additional day  $\geq$  35  $^{\circ}$ C  $\Rightarrow$  mortality rates  $\uparrow$  1%
  - $\hookrightarrow$  larger effects for rural and poorer population
- Coolers are more than two times less effective against extreme heat

- Majority of households has no access to any form of cooling
- When they do:
  - → Poor and middle-income households ⇒ evaporative coolers
- This implies large disparities in electricity consumption during hot days
- An additional day  $\geq$  35  $^{\circ}$ C  $\Rightarrow$  mortality rates  $\uparrow$  1%
  - $\hookrightarrow$  larger effects for rural and poorer population
- Coolers are more than two times less effective against extreme heat

- Majority of households has no access to any form of cooling
- When they do:
  - → Poor and middle-income households ⇒ evaporative coolers
- This implies large disparities in electricity consumption during hot days
- $\bullet$  An additional day  $\geq$  35  $^{\circ}\text{C}$   $\Rightarrow$  mortality rates  $\uparrow$  1%
  - $\hookrightarrow$  larger effects for rural and poorer population
- Coolers are more than two times less effective against extreme heat

  - → At the same rate air conditioners would have prevented 46% of heat-related deaths

1. Air-conditioning adoption, temperature and income

(Davis and Gertler 2015, PNAS; Davis et al. 2021, GEC; Pavanello 2021, NC; Randazzo et al. 2023, JEEM)

1. Air-conditioning adoption, temperature and income

(Davis and Gertler 2015, PNAS; Davis et al. 2021, GEC; Pavanello 2021, NC; Randazzo et al. 2023, JEEM)

2. Residential electricity consumption and temperature

(Deschenes and Greenstone 2011, AEJ; Davis and Gertler 2015, PNAS; Auffhammer 2022, JEEM)

1. Air-conditioning adoption, temperature and income

(Davis and Gertler 2015, PNAS; Davis et al. 2021, GEC; Pavanello 2021, NC; Randazzo et al. 2023, JEEM)

2. Residential electricity consumption and temperature

(Deschenes and Greenstone 2011, AEJ; Davis and Gertler 2015, PNAS; Auffhammer 2022, JEEM)

3. Mortality and extreme heat

(Deschenes and Greenstone 2011, AEJ; Burgess et al. 2017; Carleton et al. 2022, QJE)

1. Air-conditioning adoption, temperature and income

(Davis and Gertler 2015, PNAS; Davis et al. 2021, GEC; Pavanello 2021, NC; Randazzo et al. 2023, JEEM)

2. Residential electricity consumption and temperature

(Deschenes and Greenstone 2011, AEJ; Davis and Gertler 2015, PNAS; Auffhammer 2022, JEEM)

3. Mortality and extreme heat

(Deschenes and Greenstone 2011, AEJ; Burgess et al. 2017; Carleton et al. 2022, QJE)

4. Mediator effect of cooling

(Barreca et al 2016, JPE; Park et al. 2020, AEJ; Somanathan et al. 2021, JPE; Hua et al. 2022, JPopE)

→ Main contribution: add the technological dimension

#### India

#### • Extreme heat:

- ullet Between March and May 2022: temperature reached 51°C
- In a  $+2^{\circ}$ C scenario: 2-20 times more likely and 0.5-1.5°C hotter relative to 2022 (Zachariah et al. 2022)

#### India

#### • Extreme heat:

- ullet Between March and May 2022: temperature reached 51°C
- In a  $+2^{\circ}$ C scenario: 2-20 times more likely and 0.5-1.5°C hotter relative to 2022 (Zachariah et al. 2022)

#### • Consequences of extreme heat:

- <u>Historical</u>: about 4-6 deaths per 100k people per year
- <u>Future</u>: 10-60 deaths per 100k people per year by 2100 (Carleton et al. 2022, QJE)

#### India

#### • Extreme heat:

- Between March and May 2022: temperature reached 51°C
- In a +2°C scenario: 2-20 times more likely and 0.5-1.5°C hotter relative to 2022 (Zachariah et al. 2022)

#### • Consequences of extreme heat:

- <u>Historical</u>: about 4-6 deaths per 100k people per year
- <u>Future</u>: 10-60 deaths per 100k people per year by 2100 (Carleton et al. 2022, QJE)

#### Cooling adaptation:

- Rising incomes and temperatures ⇒ boost in cooling demand (IEA, 2018)
- Demand for cooler raising even in remote areas
- Air-conditioning spread is still low (9%, in 2019)
   (Davis et al. 2021; Pavanello et al. 2021, NC)
- One of the first countries to develop a Cooling Action Plan (2019)

**Theoretical Framework** 

#### Set-up

A representative household maximises its utility function:

$$\max_{q_S,q_N,k,x} u = D\left[T,a,q_S,k\right] \cdot z\left[q_N,x\right] \quad \text{s.t. } y \ge p\left[q_S + q_N\right] + rk + x$$

- $\hookrightarrow$  Assumption: (1)  $\partial u/\partial D < 0$  (2)  $\partial u/\partial z > 0$ 
  - $\bullet$  T = ambient temperature
  - $q_S$  = electricity for cooling
  - k = space conditioning capital (total capacity)
  - p = electricity price, r = discounted capital cost
  - $y = \text{income}, q_N = \text{electricity for other uses}, x = \text{numeraire good}$
  - a = loss of effectiveness

#### **Damage Function**

The damage function is defined as follows:

ullet Higher-than-optimal indoor temperatures  $T^*$  incur a linear utility penalty D with marginal disutility coefficient  $\delta$ 

$$D = 1 - \delta \left( \frac{1}{A[q_S, k]} T - T^* \right)$$

where we assume that  $\mathit{A}^{(-1)}\mathit{T} \geq \mathit{T}^*$ 

• For simplicity, let A being a Leontieff function

$$A = a^{(-1)} \min \left[ q_S, k \right]$$

## Solution

#### Solve the model:

• Closed-form solution for electricity consumption and cooling capital

$$q_S^*, \overline{k}, q_S^* = k^* \propto \sqrt{T} \sqrt{Y}$$

- $\hookrightarrow$  diminishing returns to adaptation
- Income inequality ⇒ how much a household can adapt
- Current assumption: no technological differences

## **Technology**

- ullet Assume that there exists two type of technologies  $heta\Rightarrow$  conditional utility
- The two technologies only differ in loss of effectiveness a and cost r
- The optimal disutility due to temperature becomes:

$$D_{ heta}^* \propto \sqrt{r_{ heta}}, \sqrt{a_{ heta}}$$

- Coolers are cheaper than air conditioners ( $r_C < r_{AC}$ )
- If coolers are less effective at bringing thermal comfort  $(a_{AC} < a_C)$

# Moving to Empirical Analysis

Our empirical analysis:

- 1. Identify how Indian households are adapting and through which technology

- 2. Estimate the marginal disutility  $\partial D/\partial T$

- 3. Determine differences at reducing thermal discomfort  $a_{\theta}$

**Cooling Adaptation** 

#### Data

- Household panel data: Consumer Pyramid Dx survey (2014-2019):
  - Four-month air-conditioning and coolers ownership
  - Monthly electricity expenditure
  - Households' socio-economic and demographic characteristics

- Actualised electricity prices: 2011 National Socio-Economic Survey
  - Aggregated at the district-urban/rural level

- Population-weighted climate data from ERA5 (0.25° × 0.25° cells):
  - Daily average temperature
  - Daily total precipitation

# The Choice of the Heat Adaptation Technology

- Our data feature allows to look at both ownership and adoption of cooling appliances
- The investment decision is a slow adjustment process ⇒ long lifetimes of cooling appliances
- Households invest based on expectations about climatic conditions ⇒ average weather over long periods
   (Cohen et al. 2017)
- Adoption in short period of time ⇒ driven only by economic development but conditional on climatic conditions Trend State
- How we model unobserved heterogeneity determines the dimension of study

## **Empirical Framework**

Estimating the impact of temperature and income on the ownership and adoption of the cooling appliances:

$$C_{ciw} = \gamma_0 + \beta_1 \overline{CDD}_{d(i)w} + \beta_2 I_{iw} + \gamma_2 g(P_{d(i)w}) + \lambda X_{iw} + \mu_k + \delta_w + \theta_{s(i)} y + \theta_{s(i)}^2 y^2 + \zeta_{iw}$$

- $C_{ciw}$ : dummy if household i in wave w has a cooling appliance c
- $\overline{CDD}_{d(i)w}$ : 10-year moving average of quarterly CDD in the previous decade
- Iiw: natural logarithm of quarterly income of household i
- Controls: second-degree polynomial of precipitation and household characteristics
- $\mu_k$ : unobserved heterogeneity (state or household FE)
- Additional fixed-effects: wave FE, quadratic state-year trend
- All regressions are weighted using survey weights that also correct for attrition

# **Ownership**

Evaporative coolers are climate sensitive, air conditioners respond only to income

|                                     | Both Appliances | Air Conditioner | Evaporative Cooler |  |
|-------------------------------------|-----------------|-----------------|--------------------|--|
|                                     | (1)             | (2)             | (3)                |  |
| CDD (100s)                          | 0.0146***       | 0.0000542       | 0.0145***          |  |
|                                     | (0.002)         | (0.001)         | (0.003)            |  |
| Log(Income)                         | 0.0861***       | 0.0607***       | 0.0597***          |  |
|                                     | (0.007)         | (0.006)         | (0.010)            |  |
| Precipitations Controls             | Yes             | Yes             | Yes                |  |
| Household Controls                  | Yes             | Yes             | Yes                |  |
| State FE, Wave FE                   | Yes             | Yes             | Yes                |  |
| Quadratic State $\times$ Year Trend | Yes             | Yes             | Yes                |  |
| $R^2$                               | 0.51            | 0.21            | 0.51               |  |
| Observations                        | 2442730         | 2442730         | 2442730            |  |
|                                     |                 |                 |                    |  |

**Notes**: (1)-(3) clustered standard errors at district level in parentheses. \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01. All regressions are conducted using survey weights.

## Additional Drivers

#### Air conditioners:

- Living in an urban area (介介)
- Hours of power availability during the day and ownership of generators (↑)
- Education level  $(\uparrow\uparrow)$ , female head  $(\downarrow\downarrow)$ , house materials  $(\uparrow\uparrow)$ , head age  $(\downarrow\downarrow)$

#### Coolers:

- Hours of power availability during the day and ownership of generators (↑↑)
- Education level  $(\uparrow)$ , female head  $(\downarrow)$ , house materials  $(\uparrow)$ , head age  $(\uparrow)$

## Adoption

Adoption is a matter of economic development

|                                | Both Appliances | Air-conditioning | Evaporative Cooler |  |
|--------------------------------|-----------------|------------------|--------------------|--|
|                                | (1)             | (2)              | (3)                |  |
| CDD (100s)                     | -0.000666       | 0.000216         | -0.000764*         |  |
|                                | (0.000)         | (0.000)          | (0.000)            |  |
| Log(Income)                    | 0.0410***       | 0.0135***        | 0.0344***          |  |
|                                | (0.003)         | (0.001)          | (0.003)            |  |
| Precipitations Controls        | Yes             | Yes              | Yes                |  |
| Household Controls             | Yes             | Yes              | Yes                |  |
| Household FE, Wave FE          | Yes             | Yes              | Yes                |  |
| Quadratic Trend $\times$ State | Yes             | Yes              | Yes                |  |
| $R^2$                          | 0.05            | 0.02             | 0.06               |  |
| Observations                   | 2432366         | 2432366          | 2432366            |  |

**Notes**: (1)-(6) clustered standard errors at district level in parentheses. \* p < 0.10, \*\*\* p < 0.05, \*\*\* p < 0.01. All regressions are conducted using survey weights..

## Robustness

Our results remain robust to alternative specifications:

- Alternative time and time-invarying fixed-effects
- Clustering standard errors at state level
- Changing CDD thresholds
- Specifying temperature up to degree 3 polynomials
- GLDAS rather than ERA5 climate data

## **Electricity Consumption**

- Consumption electricity in response to temperature is a short-term decision
- Technology modulates household response
- Using the monthly information we observe the causal effect of short-term response to temperature
- Heterogeneity in the response should be confirmatory of the distribution of the technologies

# **Empirical Framework**

Estimating the impact of temperature on electricity quantity:

$$Q_{imy} = \alpha + \sum_{i=1}^{k} \theta_j T_{d(i)my}^j + \beta_2 f(P_{d(i)my}) + \beta_3 I_{imy} + \mu_i + \delta_{my} + \epsilon_{imy}$$

- $Q_{imv}$ : natural logarithm of electricity quantity of household i in month m and year y
- $T_{d(i)my}$ : 3°C bins of daily average temperature in district d (17-20 as reference category)
- Controls: second-degree polynomial of total precipitation and natural logarithm of monthly income
- ullet Fixed-effects: household FE  $(\mu_i)$  and month-year FE  $(\delta_{\it my})$
- All regressions are weighted using survey weights that also correct for attrition

# Temperature-electricity



An additional day  $\geq$  35  $^{\circ}\text{C}$  (wrt 17 - 20) increases electricity consumption by 0.46%

## Heterogeneity

We test the heterogeneity of the response across different sub-samples

|                | Rural            |            |            | Urban      |            |            |  |
|----------------|------------------|------------|------------|------------|------------|------------|--|
|                | Poor Middle Rich |            | Poor       | Middle     | Rich       |            |  |
|                | (1)              | (2)        | (3)        | (4)        | (5)        | (6)        |  |
| ≥ 35           | 0.00345***       | 0.00271*** | 0.00422*** | 0.00566*** | 0.00748*** | 0.00779*** |  |
|                | (0.001)          | (0.001)    | (0.001)    | (0.001)    | (0.001)    | (0.002)    |  |
| Controls       | Yes              | Yes        | Yes        | Yes        | Yes        | Yes        |  |
| Household FE   | Yes              | Yes        | Yes        | Yes        | Yes        | Yes        |  |
| Month-Year FE  | Yes              | Yes        | Yes        | Yes        | Yes        | Yes        |  |
| $\mathbb{R}^2$ | 0.02             | 0.01       | 0.01       | 0.04       | 0.04       | 0.09       |  |
| Observations   | 791899           | 1293061    | 236447     | 854902     | 2698269    | 1297719    |  |
| Avg. kWh       | 69.35            | 103.86     | 171.59     | 83.37      | 117.99     | 195.08     |  |
| $\Delta(kWh)$  | +0.24            | +0.28      | +0.72      | +0.47      | +0.88      | +1.51      |  |

**Notes**: (1) to (6) clustered standard errors at district level in parentheses. \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01. All regressions are conducted using survey weights.



## Robustness

Our results remain robust to alternative specifications:

- Alternative time and time-invarying fixed-effects
- Electricity quantity in levels
- Clustering standard errors at state level
- Specifying temperature as 5-degree bins, up to degree 3 polynomials, as Cooling Degree Days (CDD)
- CRU rather than ERA5 climate data

**Health and Extreme Heat** 

## Data

- District-level annual mortality data: Civil Registration System (2009-2019)
  - Digitalise the reports
  - All-age and all-causes
  - Distinction between total, urban and rural deaths

- District-level data on heat adaptation: Consumer Pyramid Dx survey (2014-2019)
  - District and state-level penetration rates of air conditioners and evaporative coolers

- Population-weighted climate data from ERA5 (0.25° × 0.25° cells):
  - Daily average temperature
  - Daily total precipitation
  - Daily specific humidity

# **Empirical Framework**

Estimating the impact of temperature on mortality:

$$M_{dt} = \alpha_0 + \sum_{i=1}^{8} \theta_i T_{dt} + \sum_{r} \delta_r \{ P_{dt} \in tercile \, r \} + \mu_d + \rho_t + \lambda_{r(d)} t + \lambda_{r(d)}^2 t^2 + \epsilon_{dt}$$

- $M_{dt}$ : natural logarithm of mortality rate in district d and year y
- $T_{d(i)my}$ : 5°C bins of daily average temperature in district d (15-20 as reference category)
- Fixed-effects: district FE  $(\mu_d)$ , year FE  $(\rho_t)$
- ullet Trend: climatic region imes quadratic trend  $(\lambda_{s(d)}t + \lambda_{s(d)}^2t^2)$
- Square root of district population used as weight for the regression (Barreca et al. 2016, JPE; Burgess et al. 2017)
- Additional regressions: (1) bins of humidity, (2) interaction warmest × most humid bin

# The Role of Cooling

#### Estimate an augmented regression model:

$$\begin{split} M_{dt} &= \alpha_0 + \sum_{j=1}^8 \theta_j T_{dt} + \sum_{j=1}^8 \sum_{l=1}^2 \gamma_j T_{dt} \times \frac{C_{dtl}}{t} + \sum_{l=1}^2 \phi_l C_{dtl} + \\ &+ \sum_r \delta_r \{ P_{dt} \in \textit{tercile } r \} + \mu_d + \rho_t + \lambda_{r(d)} t + \lambda_{r(d)}^2 t^2 + \epsilon_{dt} \end{split}$$

- C<sub>dtl</sub>: penetration rate in district d of technology I
- Additional regressions: interactions with (1) bins of humidity, (2) warmest × most humid bin
- Drawback: no quasi-experimental design
  - $\hookrightarrow$  the two shares do not have to correlate with other drivers of mortality

# **Temperature-mortality**



An additional day  $\geq$  35  $^{\circ}$ C (wrt 15 - 20) increases mortality rates by 1%

# **Controlling for Humidity**

|                                       | FE         | FE        | FE         | FE          |
|---------------------------------------|------------|-----------|------------|-------------|
|                                       | (1)        | (2)       | (3)        | (4)         |
| T (≥ 35)                              | 0.00943*** |           | 0.00996*** | 0.000320    |
|                                       | (0.002)    |           | (0.002)    | (0.003)     |
| H(0-3)                                |            | 0.000660  | -0.000505  | -0.000102   |
|                                       |            | (0.003)   | (0.003)    | (0.003)     |
| H (≥ 18)                              |            | -0.000102 | 0.000756   | 0.000110    |
|                                       |            | (0.001)   | (0.001)    | (0.001)     |
| T ( $\geq$ 35) $	imes$ H ( $\geq$ 18) |            |           |            | 0.000123*** |
|                                       |            |           |            | (0.000)     |
| District FE                           | Yes        | Yes       | Yes        | Yes         |
| Year FE                               | Yes        | Yes       | Yes        | Yes         |
| Quadratic Trend $\times$ Region       | Yes        | Yes       | Yes        | Yes         |
| $R^2$                                 | 0.03       | 0.02      | 0.03       | 0.04        |
| Observations                          | 3908       | 3908      | 3908       | 3908        |

**Notes**: (1)-(4) clustered standard errors at district level in parentheses. \* p < 0.10, \*\*\* p < 0.05, \*\*\*\* p < 0.01. All regressions are weighted by the square root of district population.

# Heterogeneity I

Heat-related deaths mostly occur in rural areas

|                                       | R         | ural       | Urban    |           |  |
|---------------------------------------|-----------|------------|----------|-----------|--|
|                                       | (1)       | (2)        | (3)      | (4)       |  |
| T (≥ 35)                              | 0.00909** | -0.00191   | 0.00549* | 0.00229   |  |
|                                       | (0.004)   | (0.005)    | (0.003)  | (0.004)   |  |
| T ( $\geq$ 35) $	imes$ H ( $\geq$ 18) |           | 0.000153** |          | 0.0000533 |  |
|                                       |           | (0.000)    |          | (0.000)   |  |
| District FE                           | Yes       | Yes        | Yes      | Yes       |  |
| Year FE                               | Yes       | Yes        | Yes      | Yes       |  |
| Quadratic Trend $\times$ Region       | Yes       | Yes        | Yes      | Yes       |  |
| $R^2$                                 | 0.03      | 0.04       | 0.02     | 0.02      |  |
| Observations                          | 2520      | 2520       | 1549     | 1549      |  |

**Notes**: (1)-(4) clustered standard errors at district level in parentheses. \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01. All regressions are weighted by the square root of district rural and urban population.

## Heterogeneity II

Heat-related deaths mostly occur in district with a higher share of poor individuals

|                                       | Below    | Median    | Above Median |            |  |
|---------------------------------------|----------|-----------|--------------|------------|--|
|                                       | (1)      | (2)       | (3)          | (4)        |  |
| T (≥ 35)                              | 0.00430* | 0.00410   | 0.0173***    | 0.00147    |  |
|                                       | (0.003)  | (0.003)   | (0.004)      | (0.006)    |  |
| T ( $\geq$ 35) $	imes$ H ( $\geq$ 18) |          | 0.0000199 |              | 0.000168** |  |
|                                       |          | (0.000)   |              | (0.000)    |  |
| District FE                           | Yes      | Yes       | Yes          | Yes        |  |
| Year FE                               | Yes      | Yes       | Yes          | Yes        |  |
| Quadratic Trend $\times$ Region       | Yes      | Yes       | Yes          | Yes        |  |
| $R^2$                                 | 0.04     | 0.04      | 0.06         | 0.07       |  |
| Observations                          | 1369     | 1369      | 1384         | 1384       |  |

**Notes**: (1)-(4) clustered standard errors at district level in parentheses. \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01. All regressions are weighted by the square root of district population.

# **Evaporative Cooler vs Air conditioner**

### Evaporative coolers are more than two times less effective than air conditioners

|                              | Temperature     |           | Humidity   |                 |          | Temperature X Humidity |                 |             |                                        |
|------------------------------|-----------------|-----------|------------|-----------------|----------|------------------------|-----------------|-------------|----------------------------------------|
|                              | Air conditioner | Cooler    | Both       | Air conditioner | Cooler   | Both                   | Air conditioner | Cooler      | Both                                   |
|                              | (1)             | (2)       | (3)        | (4)             | (5)      | (6)                    | (7)             | (8)         | (9)                                    |
| AC × T (> 35)                | -0.0302***      |           | -0.0268*** |                 |          |                        |                 |             |                                        |
| / (=/                        | (0.009)         |           | (0.009)    |                 |          |                        |                 |             |                                        |
| Cooler × T (> 35)            | (0.003)         | -0.0132** | -0.0123**  |                 |          |                        |                 |             |                                        |
| / · ( <u> </u>               |                 | (0.005)   | (0.005)    |                 |          |                        |                 |             |                                        |
| AC × H (> 18)                |                 | (0.000)   | (*****)    | -0.000661       |          | -0.000685              |                 |             |                                        |
| / (=/                        |                 |           |            | (0.002)         |          | (0.002)                |                 |             |                                        |
| Cooler × H (> 18)            |                 |           |            | (0.002)         | 0.000506 | 0.000538               |                 |             |                                        |
| ( <u> </u>                   |                 |           |            |                 | (0.001)  | (0.001)                |                 |             |                                        |
| AC × T (> 35) × H (> 18)     |                 |           |            |                 | ()       | ()                     | -0.000436***    |             | -0.000368***                           |
| (= 17, 11 (= 17              |                 |           |            |                 |          |                        | (0.000)         |             | (0.000)                                |
| Cooler × T (> 35) × H (> 18) |                 |           |            |                 |          |                        | ()              | -0.000131** | -0.000113**                            |
| (= 1, 11 (= 1,               |                 |           |            |                 |          |                        |                 | (0.000)     | (0.000)                                |
|                              |                 |           |            |                 |          |                        |                 | ()          | (* * * * * * * * * * * * * * * * * * * |
| District FE                  | Yes             | Yes       | Yes        | Yes             | Yes      | Yes                    | Yes             | Yes         | Yes                                    |
| Year FE                      | Yes             | Yes       | Yes        | Yes             | Yes      | Yes                    | Yes             | Yes         | Yes                                    |
| Quadratic Trend X Region     | Yes             | Yes       | Yes        | Yes             | Yes      | Yes                    | Yes             | Yes         | Yes                                    |
| $R^2$                        | 0.05            | 0.05      | 0.05       | 0.05            | 0.05     | 0.05                   | 0.06            | 0.06        | 0.06                                   |
| Observations                 | 2753            | 2753      | 2753       | 2753            | 2753     | 2753                   | 2753            | 2753        | 2753                                   |

Notes: (1)-(9) clustered standard errors at district level in parentheses. \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01. All regressions are weighted by the square root of district population.

# Discussion



Let's make an example:

Let's make an example:

• Delhi:

 $\hookrightarrow$  income = 42183 rupees, CDD = 465 degree-days

#### Let's make an example:

#### • Delhi:

- $\hookrightarrow$  income = 42183 rupees, CDD = 465 degree-days
- $\hookrightarrow\,$  increase by 30% p.p. in air-conditioning penetration rate (25% to 55%)

#### Let's make an example:

#### • Delhi:

- $\hookrightarrow$  income = 42183 rupees, CDD = 465 degree-days
- $\hookrightarrow$  increase by 30% p.p. in air-conditioning penetration rate (25% to 55%)
- $\hookrightarrow$  heat-related mortality from extreme heat reduced by 36%

#### Let's make an example:

#### • Delhi:

- $\hookrightarrow$  income = 42183 rupees, CDD = 465 degree-days
- $\hookrightarrow$  increase by 30% p.p. in air-conditioning penetration rate (25% to 55%)
- $\hookrightarrow$  heat-related mortality from extreme heat reduced by 36%

#### • Uttar Pradesh:

 $\hookrightarrow$  income = 14844 rupees, CDD = 454 degree-days

## Let's make an example:

#### • Delhi:

- $\hookrightarrow$  income = 42183 rupees, CDD = 465 degree-days
- $\hookrightarrow$  increase by 30% p.p. in air-conditioning penetration rate (25% to 55%)
- $\hookrightarrow$  heat-related mortality from extreme heat reduced by 36%

#### Uttar Pradesh:

- $\hookrightarrow$  income = 14844 rupees, CDD = 454 degree-days
- $\hookrightarrow$  increase by 30% p.p. in evaporative cooler penetration rate (25% to 55%)

#### Let's make an example:

#### • Delhi:

- $\hookrightarrow$  income = 42183 rupees, CDD = 465 degree-days
- $\hookrightarrow$  increase by 30% p.p. in air-conditioning penetration rate (25% to 55%)
- $\hookrightarrow$  heat-related mortality from extreme heat reduced by 36%

#### Uttar Pradesh:

- $\hookrightarrow$  income = 14844 rupees, CDD = 454 degree-days
- $\hookrightarrow$  increase by 30% p.p. in evaporative cooler penetration rate (25% to 55%)
- $\hookrightarrow$  heat-related mortality from extreme heat reduced by 19%

## **Avoided Deaths**

Without adaptation  $\Rightarrow$  1.01 million people excess deaths due to extreme heat

## **Avoided Deaths**

Without adaptation  $\Rightarrow$  1.01 million people excess deaths due to extreme heat

• Percentage of avoided deaths in the period 2014-2019:

### **Avoided Deaths**

Without adaptation  $\Rightarrow$  1.01 million people excess deaths due to extreme heat

• Percentage of avoided deaths in the period 2014-2019:

```
\hookrightarrow \ \underline{\text{with heat adaptation}} \Rightarrow 30\%
```

### **Avoided Deaths**

### Without adaptation $\Rightarrow$ 1.01 million people excess deaths due to extreme heat

- Percentage of avoided deaths in the period 2014-2019:
  - $\hookrightarrow$  with heat adaptation  $\Rightarrow$  30%
- Gross welfare gains from heat adaptation in the period 2014-2019
  - $\hookrightarrow$  1.05  $\times$  30%  $\times$  *VSL*  $\Rightarrow$  55 billion \$
  - $\hookrightarrow$  yearly: 9 billion \$  $\Rightarrow$  0.34% of the annual GDP

### **Avoided Deaths**

### Without adaptation $\Rightarrow$ 1.01 million people excess deaths due to extreme heat

- Percentage of avoided deaths in the period 2014-2019:
  - $\hookrightarrow$  with heat adaptation  $\Rightarrow$  30%
- Gross welfare gains from heat adaptation in the period 2014-2019
  - $\hookrightarrow$  1.05  $\times$  30%  $\times$  *VSL*  $\Rightarrow$  55 billion \$
  - $\hookrightarrow$  yearly: 9 billion \$  $\Rightarrow$  0.34% of the annual GDP
- What would have happened if air conditioners were as spread as evaporative cooler?
  - air-conditioning alone ⇒ 46%
  - $\hookrightarrow$  gross welfare gains  $\Rightarrow$  14 billion \$  $\Rightarrow$  0.46% of the annual GDP

# Implications for Policy

- Subsidise air conditioners may be a very expensive policy
  - $\hookrightarrow$  the annualised cost is around 3083 rupees (37 \$)
  - $\hookrightarrow$  100% subsidy for having same rate of coolers  $\Rightarrow$  252 billion rupees (3 billion \$)
- Evaporative coolers seems a stop-gap solution
  - better an evaporative cooler than no cooling
- Air conditioners are likely the solution in the long-term
  - ⇔ extreme heat will become more intense and frequent

  - → need for investment in innovation United States

# Conclusion

### Conclusion

- There exists a trade-off between accessibility to cooling and health protection
- Technology layer in the heat adaptation inequality for low- and middle-income households
- Only rich urban households adopt and use the most effective technology
- Trade-off also for policy makers
- Future research agenda:
  - $\hookrightarrow$  **projections**  $\Rightarrow$  how will the situation evolve in the next 30 years?
  - $\hookrightarrow$  is there a trade-off between adaptation and mitigation?
  - $\hookrightarrow$  is the technological gap specific of India?

Thank you for your attention! Any questions?

### Welfare Costs of Extreme Heat

### Examples of evidence about the welfare costs of extreme heat:

Mortality and morbidity
(Deschenes and Greenstone 2011, AEJ; Barreca et al. 2016, JPE; Burgess et al. 2017; Heutel et al. 2021, RESTAT; Carleton et al. 2022, OJE)

Learning
 (Park et al. 2020, AEJ; Zivin et al. 2020, JEEM; Park 2022, JHR)

 Mental health and mood (Noelke et al. 2016, ER; Baylis 2020, JPubE; Hua et al. 2022, JPopE)

Labour productivity
 (Dasgupta et al. 2021, Lancet; Somanathan et al. 2021, JPE)

 Aggressive behaviour and crime (Ranson et al. 2015, JEEM; Baysan et al. 2019; JEBO; Blakeslee et al. 2021; JEBO)



# Mediating Effects of Air-conditioning

### Mortality

(Barreca et al. 2016, JPE)



Further evidence: learning achievements, labour productivity and mental health

(Park et al. 2020, AEJ; Somanathan et al. 2021, JPE; Hua et al. 2022, JPopE)



# Trends in Ownership Rates by Income and Climate





### Trends in Ownership Rates by States









# **Zooming In**

### United States (1900-2004)



### Delhi (2014-2019)







## Electricity - Heterogeneity II

### Heterogeneity based on technology

|                         | Air Conditioner | Evaporative Cooler |
|-------------------------|-----------------|--------------------|
|                         | (1)             | (2)                |
| ≥ 35                    | 0.00726***      | 0.00429***         |
|                         | (0.002)         | (0.001)            |
| Precipitations Controls | Yes             | Yes                |
| Household FE            | Yes             | Yes                |
| Month-Year FE           | Yes             | Yes                |
| $R^2$                   | 0.04            | 0.01               |
| Observations            | 724127          | 3648335            |

**Notes**: (1) and (2) clustered standard errors at district level in parentheses. \* p < 0.10, \*\*\* p < 0.05, \*\*\* p < 0.01. All regressions are conducted using survey weights.

## **Electricity - Heterogeneity III**

#### Focusing on high-income families

|                         | Air Conditioner | Evaporative Cooler |
|-------------------------|-----------------|--------------------|
|                         | (1)             | (2)                |
| ≥ 35                    | 0.00939***      | 0.00677***         |
|                         | (0.002)         | (0.001)            |
| Precipitations Controls | Yes             | Yes                |
| Household FE            | Yes             | Yes                |
| Month-Year FE           | Yes             | Yes                |
| Within R <sup>2</sup>   | 0.05            | 0.02               |
| Observations            | 490613          | 995301             |

**Notes**: (1) and (2) clustered standard errors at district level in parentheses. \* p < 0.10, \*\*\* p < 0.05, \*\*\* p < 0.01. All regressions are conducted using survey weights.

### **Innovation in the United States**

Rapson (2014, JEEM)

