

PROBLEM STATEMENT

- An education company named X Education sells online courses to industry professionals.
- They get a lot of leads through various sources, but their lead conversion rate is very poor, for e.g., in 100 only 30 leads get converted
- To make this process more efficient, the company wishes to identify the most potential leads
- If they successfully identify this set of potential leads their sales team will only focus on these instead of wasting time in calling everyone

BUSINESS OBJECTIVE

- X education wants to know most Promising leads
- They want to build the model that will identify the Promising leads
- And they want to deploy the model for future use

DATA PREP.	Check and Handle Duplicate data, Check and Handle Missing data, Drop Unnecessary Columns, Imputation of values
DATA VISUALIZATION AND EDA	Check and Handle Outlier
	Univariate Data analysis
	Bivariate Data
	analysis
CONVERSION	Feature Scaling, dummy variables and encoding of data
	Test and train split
MODEL BUILDING	Building the Logistic Model
	Drop the columns
	according to p- value and rebuild the model
	Finalize the model
VALIDATION OI MODEI	Plotting the ROC Curve
	Making predictions on the test set

SOLUTION METHODOLOGY

DATA VISUALIZATION

Total time spent on website

Leads spending more time on
the Website are more likely
to be converted.

Total Visit

Nothing can be concluded based on Total Visits

EDA

Lead Origin

API and Landing page submission has a smaller number of conversion rate, but they have a greater number of leads

Lead Source

Google and Direct traffic has maximum number of leads.

EDA

Last Activity

Most of Leads have their last activity Email opened

SMS sent last activity has good conversion rate

Country

We can observe that most of the values belong to India and hence can be dropped

DATA CONVERSION

Numerical Variables Normalized

Dummy Variables created for Object data type

MODEL BUILDING Data Split into Test and Train Set with 70:30 Ratio

Use RFE Feature Scaling

Running RFE Feature Scaling with 15 Variables

Model Building and removing Variable with high p-value and high VIF

Predictions on test Set

ROC CURVE

Classifiers that give curves closer to the top-left corner indicate a better performance.

The optimum cut off value in ROC curve is used to find the accuracy, sensitivity and specificity which came to be around >90% each.

CONCLUSION

Prediction:

2023

Prediction was done on the test data frame and with an optimum cut off as 0.5 with accuracy, sensitivity of 90% and specificity of 96%

Precision – Recall:

This method was also used to recheck and a cut off 0.5 was found with Precision around 94% and recall around 90% on the test data frame.