Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	18 October 2022		
Team ID	PNT2022TMID18385		
Project Name	Project –Car resale value prediction		
Maximum Marks	8 Marks		

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Dataset reading and Pre-processing	USN-1	Cleaning the dataset and splitting to dependent and independent variables	2	High	Kiruthiga N
Sprint-2	Building the model	USN-2	Choosing the appropriate model for building and saving the model as pickle file	1	High	Sarukiruthiga M
Sprint-3	Application building	USN-3	Using flask deploying the ML model	2	Medium	Jothi lakshmi G
Sprint-4	Train the model in IBM	USN-4	Finally train the model on IBM cloud and deploy the application	2	Medium	Jeya ranjani R

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Sprint 1: 1 user stories x 20 story points = 20

Sprint 2: 1 user stories x 20 story points = 20

Sprint 3: 1 user stories x 20 story points = 20

Sprint 4: 1 user stories x 20 story points = 20

Total = 80

Average sprint velocity is $80 \div 4 = 20$.

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

