The Johns Hopkins University JHU Engineering for Professionals Program NEURAL NETWORKS: 625-438/605-447

Solutions to Problem Set #3

3.1 Determine a standard perceptron solution (*i.e.*, a set of weights w_{11} , w_{12} , and w_{13} = bias) which represents the Logical OR function.

Input		Output
x_1	x_2	
0	0	0
0	1	1
1	0	1
1	1	1

Ans:

input (OR) Traget network output
$$x$$
, x_1 (OR) Traget x_1 network output x_1 x_2 network output x_1 x_2 network output x_1 x_2 x_3 x_4 x_4 x_4 x_5 x_5 x_5 x_5 x_6 x_6 x_6 x_6 x_7 x_8 x_8

OR solve the following equation:

$$w_{11} \cdot 0 + w_{12} \cdot 0 + w_{13} < 0$$
 $w_{11} \cdot 0 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 0 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} > 0$
 $w_{12} \cdot 1 + w_{13} \cdot 2 \cdot 0$
 $w_{13} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{12} \cdot 1 + w_{13} \cdot 2 \cdot 0$
 $w_{13} \cdot 1 + w_{13} \cdot 2 \cdot 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{11} \cdot 1 + w_{12} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{12} \cdot 1 + w_{13} \cdot 2 \cdot 0$
 $w_{13} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{11} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{12} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{13} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{11} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{12} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{13} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{11} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{12} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{13} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{13} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{11} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{12} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{13} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{13} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{13} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{13} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{13} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{13} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{13} \cdot 1 + w_{13} \cdot 3 \cdot 0$
 $w_{13} \cdot 1 + w_{13} \cdot 3$

3.2 Consider a standard perceptron as illustrated above except with a threshold value of 0.6, *i.e.*, a function such that

$$f(x) \ge 0.6 \rightarrow 1$$
$$f(x) < 0.6 \rightarrow 0$$

(a) Show that if we don't allow a bias term there doesn't exist a solution (i.e., w_{11} and w_{12}) for the following truth table:

Input		Output
x_1	x_2	
0	0	1
0	1	0
1	0	1
1	1	0

Ans:

(b) Now allow a bias term and show that the problem is now solvable by providing a solution for each of the weights

Ans:

3.3 Design (determine weights and bias) of a first-order perceptron that models the implication statement: $x_1 \Rightarrow x_2$.

Ans: The truth table looks like this:

Input		Output
x_1	x_2	$x_1 \Rightarrow x_2$
0	0	1
0	1	1
1	0	0
1	1	1

We can plot the points on a graph as shown below where the equation of the dotted line is $x_1 - x_2 - \frac{1}{2} = A$ and the activation function is defined by $f(A) = \begin{cases} 1 & A > 0 \\ 0 & A \le 0 \end{cases}$. Thus, the weights are $w_1 = 1$, $w_2 = -1$ and the bias $\theta = -1/2$.

3.4 Find fixed points (i.e., x = f(x)) for the equation $f(x) = \ln(1 + ax)$ where a = 3. Indicate the two fixed point solutions.

Ans: Starting with 5, thru the 30th iterate are:

Thus, the two fixed point solutions are x = 0 and 1.90381369.