$$n=30 \qquad (y_1,...,y_{10},y_{11},...,y_{30})$$

$$xi = \begin{cases} 1 & i = 1,...,10 \\ 0 & i = 41,...,30 \end{cases}$$

a)
$$P(y_i; \pi_i) = \pi_i^{y_i} (4 - \pi_i)^{4 - y_i}$$

 $P(y_1,...,y_3 \circ i \subseteq) = \prod_{i=1}^{n} \pi_i^{y_i} (4 - \pi_i)^{4 - y_i}$

excelled function
$$L(\pi) = \prod_{i=1}^{n} \pi_i^{y_i} (1-\pi_i)^{1-y_i} \rightarrow L(\beta) = \prod_{i=1}^{n} \left(\frac{e^{\beta_i + \beta_2 x_i}}{1+e^{\beta_i + \beta_2 x_i}}\right)^{y_i} \left(\frac{1}{1+e^{\beta_i + \beta_2 x_i}}\right)^{1-y_i}$$

log. likelihood function

$$e(\underline{\pi}) = \log L(\underline{\pi})$$

$$= \sum_{i=1}^{n} y_i e_{ij} \underline{\pi} + (1-y_i) e_{ij}(1-\underline{\pi})$$

$$= \sum_{i=1}^{n} y_i e_{ij} \underline{\pi} + (1-y_i) e_{ij}(1-\underline{\pi})$$

$$= \exp(1) - \exp(1+e^{\beta_1 + \beta_2 x_i})$$

$$= \exp(1) - \exp(1+e^{\beta_1 + \beta_2 x_i})$$

hence
$$e(\beta) = \sum_{i=1}^{n} y_i (\beta_i + \beta_2 x_i) - y_i e_{i}(A + e^{\beta_1 + \beta_2 x_i}) - e_{i}(A + e^{\beta_1 + \beta_2 x_i}) + y_i e_{i}(A + e^{\beta_1 + \beta_2 x_i})$$

$$= \sum_{i=1}^{n} \left\{ y_i (\beta_i + \beta_2 x_i) - e_{i}(A + e^{\beta_1 + \beta_2 x_i}) \right\}$$

$$= \beta_2 \sum_{i=1}^{n} y_i + \beta_2 \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} e_{i}(A + e^{\beta_1 + \beta_2 x_i})$$

finally, the score function is

$$e_{x}(\beta) = \frac{\Im e(\beta)}{\Im \beta_{j}} \qquad j = 1, 2$$

$$= \begin{cases} \frac{\Im e(\beta)}{\Im \beta_{i}} = \frac{\Sigma}{i \approx i} \Im i - \frac{\Sigma}{i \approx i} \frac{1}{1 + e^{\beta_{i} + \beta_{k} \times i}} \cdot e^{\beta_{i} + \beta_{k} \times i} \\ \frac{\Im e(\beta)}{\Im \beta_{i}} = \frac{\Sigma}{i \approx i} \times \Im i - \frac{\Sigma}{i \approx i} \frac{1}{1 + e^{\beta_{i} + \beta_{k} \times i}} \cdot e^{\beta_{i} + \beta_{k} \times i} \cdot x_{i} \end{cases}$$

The fitted model is

b) $\hat{\pi}_{i}$ when $\hat{x}_{i=0}$ is $\hat{\beta}_{2}$ $\hat{\beta}_{3}$ = 0.800

This when
$$x = 1$$
 is $\hat{\beta}_1 + \hat{\beta}_2$

$$P(x = 1 | x = 1) = \frac{\hat{\beta}_1 + \hat{\beta}_2}{1 + \hat{\beta}_1 + \hat{\beta}_2} = 0.333$$

when
$$x_i=0$$
 the odds one

prob. success $|x_{i=0}|$

prob. failure $|x_{i=0}|$
 $P(Y_i=1|x_{i=0})$
 $P(Y_i=0|x_{i=0})$

$$\frac{e^{\hat{\beta}_2}}{1+e^{\hat{\beta}_2}}$$
 $=\frac{0.900}{0.209}=4.00 (=e^{\hat{\beta}_2})$

odds. 100 = 400 = number of expected recesses every 100 faitures

when
$$x_{i}=1$$
 the odds one prob. success $|x_{i}=1|$ $P(Y_{i}=1|X_{i}=1)$ $=\frac{\left(\frac{\hat{\beta}_{1}+\hat{\beta}_{2}}{1+e^{\hat{\beta}_{2}+\hat{\beta}_{2}}}\right)}{P(Y_{i}=0|X_{i}=1)}$ $=\frac{\left(\frac{e^{\hat{\beta}_{1}+\hat{\beta}_{2}}}{1+e^{\hat{\beta}_{2}+\hat{\beta}_{2}}}\right)}{\left(\frac{1}{1+e^{\hat{\beta}_{1}+\hat{\beta}_{2}}}\right)}$ $=\frac{0.333}{0.666}=0.500$ $(=e^{\hat{\beta}_{1}+\hat{\beta}_{2}})$

- when x=1, 1 expect 50 successes every 100 failures

Finally, the adds ratio is
$$\frac{\left(\frac{\pi i}{1-\pi i} \mid x_i=1\right)}{\left(\frac{\pi i}{1-\pi i} \mid x_i=0\right)} = \frac{e^{\hat{\beta}_1 + \hat{\beta}_2}}{e^{\hat{\beta}_1}} = e^{\hat{\beta}_2} = 0.1250$$

The odds for the group xi=0 one multiplied by 0.1250 to obtain the odds at xi=1

c)
$$\begin{cases} H_0: \beta_2 = -1 \\ H_1: \beta_2 < -1 \end{cases}$$

The test statistic
$$\lambda = \frac{\hat{\beta}_2 - (-1)}{\sqrt{[\hat{\beta}]^{-1}_{2}}} \stackrel{\text{tho}}{\sim} N(0,1)$$

From the summory
$$\sqrt{[j(\hat{\beta})]_{212}^{-1}} = 0.4826$$
 $\hat{\beta}_2 = -2.0494$

 $2^{obs} = \frac{-2.0794 + 1}{0.2926} = -4.3792$

The reject region here is for negative values
$$R$$

Using a significance level α_1 | reject the if 2^{ab} < 2α
 $\alpha = 5$ % $2\alpha = 20.05 = -20.95 = -1.64$ | do not reject the at 5 % level $\alpha = 10$ %. $2\alpha = 20.10 = -20.90 = -1.28$ | reject to at a 10% level

d) The residual deviance is the lik. makin Dest between the saturated model and the proposed model:

with n parameters,

and
$$\hat{E}(model)$$
 is the maximum of the eq-likelihood under the current model. The null decience is

D(nue) = 2 j E(saturated) - E(nue) } where E(null) is the maximum of the eg-likelihood under a model with a single parameter to