CS 240 Online Fall 2020

Lin Xuntian

September 2020

Contents

1	Introduction and Asymptotic Analysis		
	1.1	Asymptotic Notation	2
	1.2	Analysis of Algorithms	3
		1.2.1 Complexity of Algorithms	3
	Priority Queues		
	2.1	Binary Heaps	4

1 Introduction and Asymptotic Analysis

1.1 Asymptotic Notation

Definition

O-notation: $f(n) \in O(g(n))$ if there exists constants c > 0 and $n_0 > 0$ such that $|f(n)| \le c|g(n)|$ for all $n \ge n_0$.

Example 1

Prove
$$(n+1)^5$$
 is $O(n^5)$.

Solution: Clearly, g(n) will never dominates f(n).

Observe,

$$n+1 \le 2n$$
 for $n \le 1$
 $(n+1)^5 \le (2n)^5 = 2^5 n^5 = 32n^5 \quad \forall n \le 1$

From First Principles means explicitly find c and n_0 . Sometimes, we just want to prove they exist.

Example 2

Properties: Assume $f(n) \leq 0$, $g(n) \leq 0$ for all $n \leq 0$.

- 1. af(n) is O(f(n)) for all constants a > 0
- 2. If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) is O(h(n)).
- 3. $\max(f(n), g(n))$ is O(f(n) + g(n))
- 4. $a_0 + a_1 n + \cdots + a_k n^k$ is $O(n^k)$, $a_i > 0$
- 5. $n^x \in O(a^n), x > 0, a > 1$
- 6. $(\log n)^x \in O(n^y) \ x, y > 0$

Proof:

- 1. c = a, $n_0 = 1$
- 2.

$$f(n) \le c_1 g(n) \quad \forall n \ge n_1$$

 $g(n) \le c_2 h(n) \quad \forall n \ge n_2$
 $f(n) \le c_1 c_2 h(n) \quad \forall n \ge \max(n_1, n_2)$

Then, $f(n) \leqslant ch(n) \quad \forall n \geqslant n_0 \text{ where } c = c_1c_2 \text{ and } n_0 = \max(n_1, n_2)$

Definition

Ω-notation: $f(n) \in \Omega(g(n))$ if there exists constants c > 0 and $n_0 > 0$ such that $c|g(n)| \le |f(n)|$ for all $n \ge n_0$.

Definition

 Θ -notation: $f(n) \in \Theta(g(n))$ if there exists constants $c_1, c_2 > 0$ and $n_0 > 0$ such that $c|g(n)| \leq |f(n)|$ for all $n \geq n_0$.

Show $n^2 + n \log n + n \in O(n^2)$.

Since $\log n \leq n \ \forall n \geq 1$, then

$$n^2 + \log n + n \le n^2 + n^2 + n^2 \quad \forall n \ge 1$$

= $3n^2 \quad \forall n \ge 1$

Example 4

Show $n^3 \log n \in \Omega(n^3)$.

$$1n^3 \leqslant n^3 \log n \quad \forall n \geqslant 1$$

Definition

o-notation: $f(n) \in o(g(n))$ if for all constants c > 0, there exists a constant $n_0 > 0$ such that $|f(n)| \le c|g(n)|$ for all $n \ge n_0$.

Example 5

Show $2020n^2 + 1388n \in o(n^3)$.

Proof: Let c > 0 be given, 0 < c < 1 is possible.

$$2020n^{2} + 1388n < 5000n^{2} \quad \forall n \geqslant 1$$
$$= \frac{5000}{n}n^{3}$$
$$\leqslant cn^{3}$$

Note:
$$\frac{5000}{n} \leqslant c, \forall n \geqslant \frac{5000}{c}$$

 n_0 may depend on given c, can go out as far as required. So for any c, choose $n_0 = \frac{5000}{c}$.

1.2 Analysis of Algorithms

1.2.1 Complexity of Algorithms

Definition

The worst-case complexity of an algorithm \mathcal{A} is a function $f: \mathbb{Z}^+ \to \mathbb{R}$ mapping n (the input size) to the longest running time for any input instance of size n:

$$T_{\mathcal{A}(n)} = \max\{T_{\mathcal{A}}(I) : \operatorname{Size}(I) = n\}.$$

2 Priority Queues

2.1 Binary Heaps

Definition

A heap A heap is a binary tree with the following two properties:

- 1. **Structural Property:** All the levels of a heap are completely filled, except (possibly) for the last level. The filled items in the last level are left-justified.
- 2. **Heap-order Property:** For any node i, the key of the parent of i is larger than or equal to key of i.

The full name for this is max-oriented binary heap.