1.	(000048)	填空题
	(1) 	3 -

(1) 若
$$x^3 = 5$$
, 则 $x = _____$; 若 $3^x = 5$, 则 $x = _____$.

(2) 将
$$\sqrt[4]{a\sqrt[3]{a}}$$
 ($a > 0$) 化成有理数指数幂的形式为_____.

(3) 若
$$\log_8 x = -\frac{2}{3}$$
, 则 $x =$ _____.

(4) 若
$$\log_a b \cdot \log_5 a = 3(a > 0$$
 且 $a \neq 1$), 则 $b =$ _____.

2. (000049) 选择题:

(1) 若 lg a 与 lg b 互为相反数,则有(

A.
$$a + b = 0$$

$$B. ab = 1$$

$$C. \frac{a}{b} = 1$$

D. 以上答案均不对

(2) 设 a>0, 下列计算中正确的是 (

A.
$$a^{\frac{2}{3}} \cdot a^{\frac{3}{2}} = a$$

B.
$$a^{\frac{2}{3}} \div a^{\frac{3}{2}} = a$$

C.
$$a^{-4} \cdot a^4 = 0$$

D.
$$(a^{\frac{2}{3}})^{\frac{3}{2}} = a$$

 $3.~_{(001287)}$ 已知 m,n 是有理数,则以下各说法中,正确的有_____.

(1) 对一切
$$m, n$$
 均成立 $2^m 2^n = 2^{m+n}$

(2) 存在
$$m, n$$
 使得 $2^m 2^n = 2^{mn}$

(3) 存在
$$m, n$$
 使得 $2^m + 2^n = 2^{m+n}$

(4) 存在
$$m, n$$
 使得 $(2^m)^n = 2^{m^n}$

4.
$$(003662)$$
 已知常数 $a>0$,函数 $f(x)=\frac{2^x}{2^x+ax}$ 的图像经过点 $P\left(p,\frac{6}{5}\right)$, $Q\left(q,-\frac{1}{5}\right)$. 若 $2^{p+q}=36pq$,则 $a=$ ______.

5. (005621) 若 $x = t^{\frac{1}{t-1}}$, $y = t^{\frac{t}{t-1}}(t > 0, t \neq 1)$, 则 x, y 之间的关系是 (

A.
$$y^x = x^{\frac{1}{y}}$$

B.
$$y^{\frac{1}{x}} = x^y$$

C.
$$y^x = x^y$$
 D. $x^x = y^y$

D.
$$x^x = y^y$$

6. (000053) 已知
$$m = \log_2 10$$
, 求 $2^m - m \lg 2 - 4$ 的值.

7. (000054) 填空题:

(1)
$$4^x = 2^{-\frac{1}{2}}, 4^y = \sqrt[3]{32},$$
 $M $2x - 3y =$ ______.$

(2) 若
$$\log_3(\log_4 x) = 1$$
, 则 $x =$ ______.

(3) 若
$$3^a = 7^b = 63$$
, 则 $\frac{2}{a} + \frac{1}{b}$ 的值为_____.

8. (000074)log₂ 3 是有理数吗?请证明你的结论.

9. (005650) 已知不相等的两个正数
$$a, b$$
 满足 $a^{\lg ax} = b^{\lg bx}$, 求 $(ab)^{\lg abx}$ 的值.

10. (001300) 用不含对数的式子表示:

(1) 若
$$\log_7 2 = a$$
, 则 $\log_7 14 =$ ______, $\log_7 \sqrt{3.5} =$ _____.

(2) 若
$$\log_3 2 = a$$
, 则 $\log_3 4 =$ ______, $\log_3 \frac{2}{3} =$ ______.

(3) 若
$$\lg 2 = a$$
, 则 $\lg 25 =$ ______

11. (003828) 已知正数
$$x, y$$
 满足 $\ln x + \ln y = \ln(x + y)$, 则 $2x + y$ 的最小值是______

12. (001308)[证明对数的换底公式] 若 $a, b, N > 0, a \neq 1, b \neq 1, 则$

$$\log_a N = \frac{\log_b N}{\log_b a}.$$

- 13. (000060) 已知 a、b 及 c 是不为 1 的正数,且 $\lg a + \lg b + \lg c = 0$. 求证: $a^{\frac{1}{\lg b} + \frac{1}{\lg c}} \cdot b^{\frac{1}{\lg c} + \frac{1}{\lg a}} \cdot c^{\frac{1}{\lg a} + \frac{1}{\lg b}} = \frac{1}{1000}$
- 14. (001312) 计算下列各式 (要有必要的过程):
 - $(1) \log_3 5 \cdot \log_5 7 \cdot \log_7 9;$
 - $(2) (\log_4 3 + \log_8 3)(\log_3 2 + \log_9 2);$

(3)
$$2\log_{100} 5 - \sqrt{1 - 2\lg 2 + \lg^2 2}$$
;

$$(4) \frac{\log_5 \sqrt{2} \cdot \log_7 9}{\log_5 \frac{1}{3} \cdot \log_7 \sqrt[3]{4}} ;$$

$$(5)2^{\log_4(\sqrt{3}-2)^2} + 3^{\log_9(\sqrt{3}+2)^2};$$

$$(6)\frac{\log_{36} 4}{\log_{18} 6} + \log_6^2 3.$$

- 15. (001314) 若 $2^a = 5^b = 100$, 求 $\frac{a+b}{ab}$ 的值.
- 16. (001316) 若 $\log_2 3 = a$, $\log_3 7 = b$, 试用 a, b 表示 $\log_{42} 56$.
- 17. (005013) 若 $0 < a < 1, 0 < b < 1, 则 <math>\log_a b + \log_b a$ 的最小值为______.
- 18. (005016) 若 a, b, c 均大于 1, 且 $\log_a c \cdot \log_b c = 4$, 则下列各式中, 一定正确的是 ().

A.
$$ac \geq b$$

B.
$$ab \geq a$$

C.
$$bc \geq a$$

D.
$$ab \leq c$$

- 19. $\frac{\sqrt{3\sqrt{3\sqrt{3\sqrt{\frac{1}{3}}}}}}{\sqrt{27\sqrt{\frac{1}{3}}}}$ 用 3 的有理数指数幂表示为______.
- 20. (001292) 已知 a,b 是实数, 函数 $f(x)=a\cdot b^x$, 且 $f(4)=648,\,f(5)=1944,\,$ 求 f(9/2).
- 21. (010110) 用有理数指数幂的形式表示下列各式 (其中 a > 0, b > 0):
 - (1) $a^{\frac{1}{3}}a^{\frac{1}{4}}$;
 - (2) $\sqrt[3]{a\sqrt{a}}$;
 - $(3) (a^{\frac{1}{4}}b^{-\frac{3}{8}})^8;$
 - $(4) \left(\frac{a^{-3}b^4}{\sqrt{b}}\right)^{-\frac{1}{3}}.$
- 22. (000058) 已知 $a>1,\,b>0$. 求证: 对任意给定的实数 $k,\,a^{2b+k}-a^{b+k}>a^{b+k}-a^k$.
- 23. (010114) 设 a > b > 0, 求证: $a^a b^b > (ab)^{\frac{a+b}{2}}$.

- 24. $\log_2 0.5 =$ _______, $\log_9 27 =$ ________, $3^{1+\log_3 5} =$ ______.
- 25. (005610) 已知 $x = a^{\frac{1}{1 \log_a y}}, y = a^{\frac{1}{1 \log_a z}}$ 求证: $z = a^{\frac{1}{1 \log_a x}}$.
- 26. (001353) 解方程: $x^{\log_2 x} = 32x^4$.
- 27. (001305) 计算下列各式 (要有必要的过程):

$$(1) \ \frac{1}{2} \log_{20} 45 - \log_{20} 30;$$

(2)
$$\frac{\lg 3 + \frac{2}{5}\lg 9 + \frac{3}{5}\lg\sqrt{27} - \lg\sqrt{3}}{\lg 81 - \lg 27};$$

- (3) $\lg^2 2 + \lg^2 5 + 2 \lg 2 \lg 5$;
- (4) $\lg^3 2 + \lg^3 5 + 3 \lg 2 \lg 5$;
- (5) $\lg 4 + 2\sqrt{\lg^2 6 \lg 6^2 + 1} + \lg 9$.
- 28. (001307) 已知 $a = \log_3 36$, $b = \log_4 36$. 求 $\frac{2}{a} + \frac{1}{b}$.(提示: 你学过实数指数幂的运算律的)
- 29. $_{(010125)}$ 科学家以里氏震级来度量地震的强度,若设 I 为地震时所散发出来的相对能量程度,则里氏震级度量 r 可定义为 $r=\frac{2}{3} \lg I+2$. 求 7.8 级地震和 6.9 级地震的相对能量比值. (结果精确到个位)
- 30. (001309)(1) 若 $\lg 3 = a$, $\lg 2 = b$, 则 $\log_6 12 =$ _____.
 - (2) 若 $\log_{\sqrt{3}} 2 = a$, 则 $\log_{12} 3 =$ ______.
- 31. (005014) 若 a > 1, 0 < b < 1, 则 $\log_a b + \log_b a$ 的最大值为_____.
- 32. (005123) 已知 a > 1 且 $a^{\lg b} = \sqrt[4]{2}$, 求 $\log_2(ab)$ 的最小值.
- 33. (005678) 已知 $a^2 + b^2 = c^2$, 求证 $\log_{(c+b)} a + \log_{(c-b)} a = 2\log_{(c+b)} a \cdot \log_{(c-b)} a$.