Step-1

A permutation is nothing but a bijective function.

So, we follow that $P^2 = P \circ P$ which is the composition of functions.

Given that *P* takes (1,2,3,4,5) to (5,4,1,2,3)

$$P = \begin{bmatrix} & & & & 1 \\ & & & 1 \\ 1 & & & \\ & 1 & & \\ & & 1 & & \end{bmatrix}$$

This can be interpreted as

That means $1 \rightarrow 5, 2 \rightarrow 4, 3 \rightarrow 1, 4 \rightarrow 2, 5 \rightarrow 3$

Step-2

When composition with P itself is considered, the resultant can be seen as

$$1 \rightarrow 5 \rightarrow 3, 2 \rightarrow 4 \rightarrow 2, 3 \rightarrow 1 \rightarrow 5, 4 \rightarrow 2 \rightarrow 4, 5 \rightarrow 3 \rightarrow 1$$

Or, this can simply be understood as $1 \rightarrow 3, 2 \rightarrow 2, 3 \rightarrow 5, 4 \rightarrow 4, 5 \rightarrow 1$

In other words, P^2 takes (1,2,3,4,5) to (3,2,5,4,1).

$$P^2 = \begin{bmatrix} & 1 & & \\ & 1 & & \\ & & & 1 \\ & & & 1 \\ 1 & & & \end{bmatrix}$$

Step-3

Similarly, considering P as $1 \rightarrow 5, 2 \rightarrow 4, 3 \rightarrow 1, 4 \rightarrow 2, 5 \rightarrow 3$, we can reverse them as

$$1 \rightarrow 3, 2 \rightarrow 4, 3 \rightarrow 5, 4 \rightarrow 2, 5 \rightarrow 1$$

This is nothing but P^{-1} .

So, P^{-1} takes (1,2,3,4,5) to (3,4,5,2,1).