دورة سنة 2008 الاكمالية الاستثنائية	امتحانات الشهادة الثانوية العامة الفرع: علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة أربع ساعات	عدد المسائل: ست

إرشادات عامة :- يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I- (2 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner, **en justifiant**, la réponse qui lui correspond.

N	Questions	Réponses		
11		a	b	c
1	Soit $f(x) = \arctan\left(\frac{2x}{1-x^2}\right) \text{ pour}$ $x \in]-\infty; -1[, \text{ on a :}$	$f(x) = \pi + 2 \arctan(x)$	$f(x) = -2\arctan(x)$	$f(x) = \pi - 2\arctan(x)$
2	$f(x) = \ln(x)$ définie sur $]0;+\infty[$; la dérivée d'ordre n de f est donnée par :	$f^{(n)}(x) = \frac{(-1)^n n!}{x^n}$	$f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{x^n}$	$f^{(n)}(x) = \frac{1}{x^n}$
3	Le nombre de rectangles dans cette figure est :	60	12	20
4	L'équation $e^{2x} + 2x - 1 = 0$, admet dans l'ensemble <i>IR</i> :	2 racines distinctes	aucune racine	une seule racine
5	Si $z = e^{i\frac{\pi}{2}} + e^{-i\frac{\pi}{6}}$ alors:	$\arg(z) = \frac{\pi}{2} - \frac{\pi}{6}$	$\arg(z) = \frac{\pi}{2} + \frac{\pi}{6}$	$\arg(z) = \frac{\pi}{6}.$

II- (2 points)

L'espace est rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$.

On considère le point A(2; -3; 5) et les plans (P) et (Q) d'équations:

(P):
$$2x - 2y - z + 4 = 0$$

(Q):
$$2x + y + 2z + 1 = 0$$

- A-1) Démontrer que les deux plans (P) et (Q) sont perpendiculaires.
 - 2) Montrer que la droite (D) définie par $\begin{cases} x = t \\ y = 2t + 3 \\ z = -2t 2 \end{cases}$ (t est un paramètre réel),

est l'intersection de (P) et (Q).

- 3) Calculer les coordonnées du point H projeté orthogonal du point A sur la droite (D).
- **B-** On désigne par (R) le plan passant par le point W(1; 4; 1) et parallèle au plan (Q). On considère dans (R) le cercle (C) de centre W et de rayon 3.
 - 1) Trouver une équation de (R).
 - 2) Prouver que B (3; 2; 0) est un point de (C).
 - 3) Ecrire un système d'équations paramétriques de la tangente (T) en B à (C).

III- (3 points)

Le plan complexe est rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

Soit f la transformation qui, à tout point M d'affixe z, associe le point M d'affixe z' telle que $z' = (\overline{z} - 2)(\overline{z} + 1)$ où \overline{z} est le conjugué de z.

On désigne par (x ; y) les coordonnées de M et par (x ' ; y ') celles de M ' .

- 1) Calculer x ' et y ' en fonction de x et y et montrer que lorsque M ' varie sur l'axe des ordonnées, M varie sur la courbe (C) d'équation: $x^2 y^2 x 2 = 0$.
- 2) a- Prouver que (C) est une hyperbole dont on déterminera le centre, les sommets et les foyers. b- Tracer (C).
- 3) Soit E le point de (C) d'abscisse 3 et d'ordonnée positive.
 - a-Ecrire une équation de la tangente (t) en E à (C).
 - b- La droite (t) coupe les asymptotes de (C) en P et Q. Prouver que E est le milieu de [PQ].

2

4) On désigne par (D) le domaine limité par (C) et la droite d'équation x = 3. Calculer le volume engendré par la rotation de (D) autour de l'axe des abscisses.

IV- (3 points)

Une urne contient n + 10 boules ($n \ge 2$): n boules blanches, 6 boules rouges et 4 boules noires. **A-** On tire simultanément et au hasard 2 boules de l'urne.

- 1) Calculer la probabilité q(n) de tirer deux boules blanches.
- 2) On note p(n) la probabilité de tirer deux boules de même couleur.

a- Montrer que p(n) =
$$\frac{n^2 - n + 42}{(n+10)(n+9)}$$
.

b- Vérifier que
$$\lim_{n\to +\infty} p(n) = \lim_{n\to +\infty} q(n)$$
. Interpréter ce résultat.
c- Existe-t-il un cas où $p(n) = \frac{31}{105}$?

c- Existe-t-il un cas où
$$p(n) = \frac{31}{105}$$

B- On suppose dans cette partie que n = 3.

Un jeu consiste à tirer simultanément et au hasard 2 boules de l'urne.

Si les 2 boules tirées sont de même couleur, le joueur marque + 4 points ; sinon, il marque -1 point. Le joueur répète le jeu deux fois en remettant, après le premier jeu, les boules tirées dans l'urne. Soit X la variable aléatoire égale à la somme des points marqués par le joueur.

- 1) Justifier que les valeurs de X sont : -2; 3 et 8.
- 2) Déterminer la loi de probabilité de X.
- 3) Calculer l'espérance mathématique E(X).

V- (3 points)

Dans un plan orienté on donne un hexagone régulier direct

ABCDEF de centre O, tel que (
$$\overrightarrow{OA}$$
; \overrightarrow{OB}) = $\frac{\pi}{3}$ (2 π).

(C) est le cercle circonscrit à cet hexagone.

I et J sont les milieux respectifs de [OA] et [OB].

Soit S la similitude qui transforme A en B et B en J.

b- Démontrer que
$$S(D) = A$$
. Trouver $S(O)$ et vérifier que $S(C) = I$.

- 2) Le cercle (C') est l'image de (C) par S. Déterminer le centre et le rapport de chacune des deux homothéties qui transforme (C) en (C').
- 3) G est le milieu de l'arc BC sur le cercle (C).

Le plan est rapporté au repère orthonormé (O; OA, OG).

a-Trouver l'affixe de chacun des points B, C, E et F.

b- Écrire la forme complexe de S et déduire l'affixe de son centre W.

c- H est le point de rencontre de [AJ] et [BI]. Déterminer le point H' image de H par S.

3

VI- (7 points)

Soit f la fonction définie sur $I =]0; +\infty[$ par $f(x) = x^2 + \ln x$ et (C) sa courbe représentative dans un repère orthonormé $(C; \vec{i}, \vec{j})$.

- **A-** 1) Calculer f'(x) et déterminer le sens de variations de f sur $]0;+\infty[$.
 - 2) a- Calculer $\lim_{x\to 0} f(x)$ et déduire une asymptote à (C).
 - b- Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$.
 - c- Dresser le tableau de variations de f.
 - d- Déduire que l'équation $x^2 + \ln x = 0$, admet une solution unique α et que $0, 6 < \alpha < 0, 7$. Etudier le signe de f(x) suivant les valeurs de x.
 - 3) a- Démontrer que (C) admet un point d'inflexion dont on déterminera l'abscisse.
 - b- Tracer (C).
 - 4) a- Démontrer que f admet sur I, une fonction réciproque f⁻¹ dont on déterminera le domaine de définition.
 - b- Soit (C') la courbe représentative de f^{-1} . Prouver que le point A(1;1) est commun à (C) et (C') et tracer (C') dans le repère $\left(O; \vec{i}, \vec{j}\right)$.
 - c- Ecrire une équation de la tangente en A à (C').
 - d- Soit $S(\alpha)$ l'aire du domaine limité par (C), (C'), l'axe des abscisses et l'axe des ordonnées. Calculer $S(\alpha)$.
- **B-** Soit (T) la courbe représentative de la fonction h définie sur $I = [0; +\infty)$ par $h(x) = \ln x$.
 - 1) Etudier la position relative de (C) et (T) et tracer (T) dans le même repère que (C).
 - 2) Soit g la fonction définie sur I par $g(x) = x^2 + (\ln x)^2$.
 - a- Calculer g'(x) et vérifier que $g'(x) = \frac{2}{x}f(x)$.
 - b- En déduire le sens de variations de g sur I.
 - 3) Soit M_0 le point de (T) d'abscisse α et M un point quelconque de (T) d'abscisse x.

4

- a- Calculer OM_0^2 en fonction de α et OM^2 en fonction de x.
- b- Prouver que $OM_0 \le OM$ pour tout x de I.
- c- Démontrer que la tangente en M_0 à (T) est perpendiculaire à (OM_0) .