Problem 1 Consider the function $f(x) = 5x^5 + 2x^6 + 8x^4 + 5x^4$. According to the Fundamental Theorem of Algebra, how many (possibly complex-valued) zeros are there for $f(x)$? 7
Feedback(attempt): The Fundamental Theorem of Algebra says that the number of zeros is exactly equal to the degree of the polynomial.
Problem 1.1 There are (at least/exactly/at most \checkmark) $\boxed{7}$ real-valued solutions.
Feedback(correct): Although we know there are exactly the same number of solutions as the degree of the polynomial, some of them might be complex-valued. So we only know that at most there are 7 real-valued solutions (since they may all be real) but some could be complex, so we don't know exactly how many real-valued solutions there are; at least not without doing a bunch more work.
Problem 1.1.1 This means there could be (more than/exactly/less than ✓) 7 real-valued zeros.
Feedback(correct): Remember that this means there definitely could be a lower number of real valued solutions than complex valued solutions. In particular, if there are irreducible quadratic factors; but we will cover this more later!
Problem 1.2 What is the leading term in this polynomial? $5x^7$
Feedback(attempt): Remember that you may need to simplify (combine like terms) the polynomial to get the correct leading term.
Problem 1.3 What is the leading coefficient in this polynomial? 5
Feedback(attempt): Remember that you may need to simplify (combine like terms) the polynomial to get the correct leading coefficient.

Problem 2 Consider the function $f(x) = 5x^{10} + 6x^{10} + 3x^{7} + 7x^{5}$. According to the Fundamental Theorem of Algebra, how many (possibly complex-valued) zeros are there for $f(x)$? 10
Feedback(attempt): The Fundamental Theorem of Algebra says that the number of zeros is exactly equal to the degree of the polynomial.
Problem 2.1 There are (at least/exactly/ at most \checkmark) 10 real-valued solutions.
Feedback(correct): Although we know there are exactly the same number of solutions as the degree of the polynomial, some of them might be complex-valued. So we only know that at most there are 10 real-valued solutions (since they may all be real) but some could be complex, so we don't know exactly how many real-valued solutions there are; at least not without doing a bunch more work.
Problem 2.1.1 This means there could be (more than/exactly/less than \checkmark) 10 real-valued zeros.
Feedback (correct): Remember that this means there definitely could be a lower number of real valued solutions than complex valued solutions. In particular, if there are irreducible quadratic factors; but we will cover this more later!
Problem 2.2 What is the leading term in this polynomial? $11 x^{10}$
Feedback(attempt): Remember that you may need to simplify (combine like terms) the polynomial to get the correct leading term.
Problem 2.3 What is the leading coefficient in this polynomial? 11
Feedback(attempt): Remember that you may need to simplify (combine like terms) the polynomial to get the correct leading coefficient.

Problem 3 Consider the function $f(x) = 7x^7 + 6x + 10x^5 + 2x^8$. According to the Fundamental Theorem of Algebra, how many (possibly complex-valued) zeros are there for $f(x)$?
Feedback(attempt): The Fundamental Theorem of Algebra says that the number of zeros is exactly equal to the degree of the polynomial.
Problem 3.1 There are (at least/exactly/at most \checkmark) $\boxed{8}$ real-valued solutions.
Feedback(correct): Although we know there are exactly the same number of solutions as the degree of the polynomial, some of them might be complex-valued. So we only know that at most there are 8 real-valued solutions (since they may all be real) but some could be complex, so we don't know exactly how many real-valued solutions there are; at least not without doing a bunch more work.
Problem 3.1.1 This means there could be (more than/exactly/less than \checkmark) 8 real-valued zeros.
Feedback(correct): Remember that this means there definitely could be a lower number of real valued solutions than complex valued solutions. In particular, if there are irreducible quadratic factors; but we will cover this more later!
Problem 3.2 What is the leading term in this polynomial? $2x^8$
Feedback(attempt): Remember that you may need to simplify (combine like terms) the polynomial to get the correct leading term.
Problem 3.3 What is the leading coefficient in this polynomial? 2
Feedback(attempt): Remember that you may need to simplify (combine like terms) the polynomial to get the correct leading coefficient.