Алгебра. Продвинутый уровень. Векторные пространства

IX. Подпространства и линейные многообразия

1. Решите С Λ АУ над \mathbb{R} , найдите Φ СР соответствующей ей однородной С Λ АУ:

a)
$$\left\{egin{array}{ll} x_1-x_2+x_3-x_4&=&4;\ x_1+x_2+2x_3+3x_4&=&8;\ 2x_1+4x_2+5x_3+10x_4&=&20;\ 2x_1-4x_2+x_3-6x_4&=&4; \end{array}
ight.$$
 6) $\left\{egin{array}{ll} 2x_1+2x_2+x_3&=&2;\ x_1+2x_2-x_3&=&7;\ x_1+x_2+5x_3&=&-7;\ 2x_1+3x_2-3x_3&=&14; \end{array}
ight.$

$$\left\{egin{array}{lll} 2x_1+2x_2+x_3&=&2;\ x_1+2x_2-x_3&=&7;\ x_1+x_2+5x_3&=&-7;\ 2x_1+3x_2-3x_3&=&14; \end{array}
ight.$$

$$\left\{egin{array}{lll} x_1+x_2-3x_3&=&-1;\ 2x_1+x_2-2x_3&=&1;\ x_1+x_2+x_3&=&3;\ x_1+2x_2-3x_3&=&1; \end{array}
ight.$$

$$\Gamma) \left\{ egin{array}{lll} x_1-2x_2+x_3+x_4&=&4;\ 3x_1+x_2-x_3+2x_4&=&-2;\ x_1+5x_2-3x_3&=&10; \end{array}
ight.$$

д)
$$\left\{egin{array}{lll} 2x_1+x_2-x_3&=&1;\ x_1-3x_2+4x_3&=&2;\ 11x_1-12x_2+17x_3&=&3; \end{array}
ight.$$

e)
$$\left\{egin{array}{lll} 2x_1-x_2+3x_3-7x_4&=&5;\ 6x_1-3x_2+x_3-4x_4&=&7;\ 4x_1-2x_2+14x_3-31x_4&=&18. \end{array}
ight.$$

2. При каких значениях λ С Λ АУ над $\mathbb R$

a)
$$\left\{egin{array}{lll} \lambda x_1 + x_2 + x_3 &=& 1; \ x_1 + \lambda x_2 + x_3 &=& 1; \ x_1 + x_2 + \lambda x_3 &=& 1; \end{array}
ight.$$
 $\left\{egin{array}{lll} (3-2\lambda)x_1 + (2-\lambda)x_2 + x_3 &=& \lambda; \ (2-\lambda)x_1 + (2-\lambda)x_2 + x_3 &=& 1; \ x_1 + x_2 + (2-\lambda)x_3 &=& 1; \end{array}
ight.$

- а) имеет единственное решение;
- б) имеет бесконечно много решений;
- в) имеет ровно 2 решения;
- г) несовместна?

3. Составьте С Λ АУ над \mathbb{R} , задающую линейную оболочку системы векторов:

- a) $(1, 1, 1)^T$, $(1, 2, 3)^T$;
- 6) $(1, 1, 1, 1)^T$, $(1, 2, 1, 3)^T$;
- в) $(1, 1, 2, 2)^T$;
- Γ) $(1, 1, 1, 1)^T$, $(1, 2, 1, 3)^T$, $(1, 1, 2, 2)^T$, $(1, 1, 1, 3)^T$;
- Δ) $(0,0,0,0)^T$;

4. Найдите С Λ АУ над \mathbb{R} , задающую линейное многообразие

$$L=\left(egin{array}{c}1\1\1\1\end{array}
ight)+\left\langle\left(egin{array}{c}1\-1\1\0\end{array}
ight),\left(egin{array}{c}1\1\0\1\end{array}
ight),\left(egin{array}{c}2\0\1\1\end{array}
ight)
ight>.$$

5. Решите С Λ АУ над полями \mathbb{Z}_5 и \mathbb{Z}_7 :

a)
$$\left\{ egin{array}{lll} 3x+y+2z&=&1; \ x+2y+3z&=&1; \ 4x+3y+2z&=&1; \end{array}
ight.$$
 6) $\left\{ egin{array}{lll} 3x+2y&=&1; \ 3x+2y+z&=&2; \ x+3y+4z&=&2. \end{array}
ight.$

6. Решите СЛАУ над полем \mathbb{F}_4 (элементы: 0, 1, α , α + 1):

a)
$$\begin{cases} x + \alpha y &= \alpha + 1; \\ \alpha x + (\alpha + 1)y &= 1; \end{cases}$$
 6) $\begin{cases} \alpha x + y &= \alpha; \\ (\alpha + 1)x + y &= \alpha + 1. \end{cases}$

7* Имеется С Λ АУ над $\mathbb R$

$$\left\{ \begin{array}{lll} \ldots x + \ldots y + \ldots z & = & 0; \\ \ldots x + \ldots y + \ldots z & = & 0; \\ \ldots x + \ldots y + \ldots z & = & 0. \end{array} \right.$$

Матроскин и Шарик поочерёдно вписывают вместо многоточий числа. Матроскин ходит первым. Докажите, что он всегда может добиться существования у этой $C\Lambda AY$ ненулевого целочисленного решения.

8. При каких значениях λ вещественная матрица имеет наименьший ранг:

a)
$$\begin{pmatrix} 2 & 1 & -2 & 3 \\ -3 & 1 & \lambda & 0 \\ 1 & 3 & -2 & 6 \end{pmatrix}$$
 6) $\begin{pmatrix} 3 & 3 & 1 & 5 \\ 4 & 0 & 3 & 2 \\ -1 & \lambda & -2 & 3 \end{pmatrix}$?

- 9. A и B квадратные матрицы одинакового размера. Обязательно ли ${\rm rk}(AB)={\rm rk}(BA)$?
- 10. Может ли при элементарных преобразованиях матрицы A измениться ранг матрицы A^2 ?
- $11.^*$ Пусть $a_{ij}=(i-j)^2$. Найдите ранг матрицы $A=(a_{ij})$ порядка $n\geqslant 3$.
- 12* Найдите наименьший возможный ранг вещественной квадратной матрицы nго порядка, у которой все диагональные элементы равны нулю, а все остальные элементы положительны.