Annex 60 Bouncing Ball Exercise

Filip Jorissen, KU Leuven

Introduction

The aim of this exercise is to become familiar with the Modelica text editor. You will need to write your own model equations in this exercise.

Assignment

Create a model of a bouncing ball in two dimensions. The ball has an initial position (x_0, y_0) , initial velocity $(v_{x,0}, v_{y,0})$ where $x_0 = 0$, $y_0 = 1$, $v_{x,0} = 0.1$ and $v_{y,0} = -0.3$ are parameters. The vertical component of the velocity is influenced such that

$$\frac{\mathrm{d}\,v_y}{\mathrm{d}\,t} = -g$$

where $g = 9.81 \text{ m/(s}^2)$. Whenever the ball hits the ground it bounces back up but it looses 20 % of its kinetic energy $(v_y^2/2)$.

Tips

You'll need the following Modelica concepts:

- 1. Initial equation section
- 2. when-clause
- 3. reinit(\cdot , \cdot) function

Result

Figure 1 shows the result of this exercise. Think about why the ball falls through the ground.

Figure 1: Result of the exercise: y-position as a function of time.