Identifying Pneumonia From X-Rays

Using Convolutional Neural Networks

Jose Ramirez

Yasir Karim

Overview

- Pneumonia is a serious lung infection that disproportionately affects the young, the elderly, and the immunocompromised.
- It is the leading cause of death among children under the age of 5.
- USA has shown negligible improvements in decreasing the death rate from pneumonia over the last half century even as antibiotics have become much more prevalent.

Problems to solve

How accurately can we predict pneumonia in patients from a simple X-ray scan?

Can our model be a better and more convenient predictor than medical tests?

What are the most common signs in an X-ray scan that indicate possible presence of pneumonia?

Using our predictive model, can we decrease the number of pneumonia related fatalities?

The Data

5,865 Images

colab

Normal

Pneumonia

Class Imbalance

- Our data was highly imbalanced with a ratio of 1:3
- Contrary to a real-world scenario, our majority class was the patients with pneumonia
- We need to keep this in mind for our evaluation metrics.

EDA

Modelling Process

Model #	Convolution & Max Pooling Layers	Dropout Layers	Data Augmentation	Optimizers
One	1	0	No	Sgd
Four	4	2	No	Adam
Seven	4	3	Yes	Adam
Final	3	0	Yes	AdamW

Evaluation Metric

- We used **Recall** as our target evaluation metric.
- We wanted to correctly classify the maximum number of patients who end up with pneumonia.
- We also looked at Accuracy
 because we had a high imbalance
 towards the positive, which meant
 we could easily have 100% recall
 without having good accuracy
 overall.

Confidential Customized for **Lorem Ipsum LLC** Version 1.

Evaluation (continued)

\equiv

Analyzing Incorrect Predictions

=

Continued - Analyzing Incorrect Predictions

Future Work:

- In reality, X-ray scans are not ideal for detecting pneumonia. We can use CT scan images as the data next time.
- We were limited by our system in constructing the architecture of the models. Using a faster runtime, we can increase epochs, batch sizes and other parameters to get more complex models.

• We can implement transfer learning as our following measure.

• We can visualize the activation and intermediate layers of our models to see how it may be recognizing patterns.

Thank you.

