**Exercise 1** (2.3.3). By finding some parallels and similar triangles in Figure 2.5, show that the diagonal x of the regular pentagon of side 1 satisfies x/1 = 1/(x-1).



Figure 2.5: The regular pentagon

**Exercise 2** (2.3.4). Deduce from Exercise 2.3.3 that the diagonal of the pentagon is  $(1 + \sqrt{5})/2$  and hence that the regular pentagon is constructible.

**Exercise 3** (2.4.2). By introducing suitable coordinate axes, show that a curve with the above "constant sum" property indeed has an equation of the form

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

(It is a good idea to start with the two square root terms, representing the distances  $F_1P$  and  $F_2P$ , on opposite sides of the equation.) Show also that any equation of this form is obtainable by suitable choice of  $F_1$ ,  $F_2$ , and  $F_1P + F_2P$ .

Another interesting property of the lines from the foci to a point P on the ellipse is that they make equal angles with the tangent at P. It follows that a light ray from  $F_1$  to P is reflected through  $F_2$ .

A simple proof of this can be based on the shortest-path property of reflection, shown in Figure 2.7 and discovered by the Greek scientist Heron around 100 ce.



Figure 2.7: The shortest-path property

**Shortest-path property.** The path  $F_1PF_2$  of reflection in the line L from  $F_1$  to  $F_2$  is shorter than any other path  $F_1P'F_2$  from  $F_1$  to L to  $F_2$ .

**Exercise 4** (2.4.3). Prove the shortest-path property, by considering the two paths  $F_1PF_2$  and  $F_1P'F_2$ , where  $\overline{F_2}$  is the reflection of the point  $F_2$  in the line L.

Thus to prove that the lines  $F_1P$  and  $F_2P$  make equal angles with the tangent, it is enough to show that  $F_1PF_2$  is shorter than  $F_1P'F_2$  for any other point P' on the tangent at P.

**Exercise 5** (2.4.4). *Prove this, using the fact that*  $F_1PF_2$  *has the same length for all points P on the ellipse.*