

成 绩 _____

深度学习与自然语言处理第 3 次作业 LDA 主题模型进行文本分类

院(系)名称				自动化科学与电气工程学院		
专	业	名	称	自动化		
学			号	ZY2103809		
姓			名	王海腾		
指	두	教	师	秦曾昌		

2022年5月6日

一、任务描述

从给定的语料库中均匀抽取 200 个段落(每个段落大于 500 个词),每个段落的标签就是对应段落所属的小说。利用 LDA 模型对于文本建模,并把每个段落表示为主题分布后进行分类。验证与分析分类结果。

二、实验原理

1. LDA(Latent Dirichlet Allocation)模型

LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题、和文档三层结构。所谓生成模型,我们认为一篇文章的每一个词都是通过"文章以一定的概率选择了某一主题,并从这个主题中以一定的概率选择某一词语"这个过程得到。LDA模型假设生成某个文档的过程如下:

- 1) 按照先验概率 $p(d_i)$ 选择一篇文档 d_i ;
- 2) 从超参数为 α 的 Dirichlet 分布中取样生成文档 d_i 的主题分布 θ_i ;
- 3) 从主题 θ_i 的多项式分布中取样生成文档 d_i 的第j个词的主题 $z_{i,i}$;
- 4) 从超参数为 β 的 Dirichlet 分布中取样生成主题 $z_{i,j}$ 对应的词语分布 $\phi_{z_{i,j}}$;
- 5) 从词语的多项式分布 $\phi_{z_{i,i}}$ 中采样最终生成词语 $\omega_{i,j}$ 。

2. 利用 LDA 主题模型进行文本分类

本文采用以下步骤/思路对金庸的小说集进行文本分类:

- 1)从给定的 16 本金庸小说数据集中,随机、均匀地抽取k个段落,每个段落的标签为对应小说的小说名,对上述语料库进行 jieba 分词,并添加通用停用词和金庸小说专用停用词每个段落包含n个词($n \geq 500$),每个段落作为一个样本;
 - 2)指定主题数为d,利用上述 k_1 个训练样本训练 LDA 模型;
- 3)利用训练好的 LDA 模型得到上述 k_1 个训练样本的主题分布。由于主题数为d,因此每个训练样本得到的主题分布为一个 $1 \times d$ 的向量;所有训练样本的主题分布则为一个 $k_1 \times d$ 的特征向量;
- 4) 利用上述训练样本的 $k_1 \times d$ 的特征向量以及对应的 k_1 个标签训练一个线性 SVM 分类器;
- 5)上述训练样本的 $k_1 \times d$ 的特征向量通过训练好的 SVM 分类器,得到训练样本的预测标签,与真实的标签进行比较,计算训练样本文本分类准确率;

6)利用训练好的 LDA 模型得到 k_2 个测试样本的主题分布。同理,由于主题数为d,因此每个测试样本得到的主题分布为一个 $1 \times d$ 的向量;所有测试样本的主题分布则为一个 $k_2 \times d$ 的特征向量;该特征向量通过训练好的 SVM 分类器,得到测试样本的预测标签,与真实的标签进行比较,计算测试样本文本分类准确率。

三、实验结果

本次实验测试了不同的段落(文档)数、每个段落的字数、不同主题数对文本分类准确率的影响。

(1) 实验结果如下表所示。

实验		段落(文档)	每段话字数	训练集文	测试集文
序号	主题数	数数		本分类准	本分类准
小 与		纵		确率(%)	确率(%)
1	20	200	500	30.72	5.128
2	50	200	500	42.48	5.128
3	100	200	500	56.21	12.8
4	200	200	500	70.59	17.95
5	500	200	500	80.39	2.601
6	50	1000	500	38.21	26.13
7	50	200	5000	40.52	5.126
8	200	1000	500	55.36	32.66

从实验结果可以看出:

- (1) 对比 1、2、3、4 的实验结果,可以看出,增加 LDA 模型的主题数,可以有助于增加训练集和测试集文本分类准确率
- (2)对比 4 和 5 的结果,可以看出,LDA 模型的主题数增加过多时,虽然训练集文本分类准确率提高,但是测试集文本分类准确率降低,这可能是由于过拟合导致。
- (3) 对比 2 和 6 的结果,增加抽取的段落(文档)数,可以显著提高测试集文本分类准确率,但训练集文本分类准确率有所降低,可能是因为训练样本(段落数)太少的时候,训练集上容易引起过拟合导致;
- (4) 对比 3 和 5, 或 4 和 6 的结果,可以看出,增加抽取段落的每段话字数,可以显著增加训练集和测试集上的文本分类准确率;

(2) 主题个数为10时的主题分布结果图

```
[(0,
 '0.003*"心中" + 0.002*"众人" + 0.002*"师父" + 0.002*"武功" + 0.002*"韦小宝" + '
 '0.002*"心想" + 0.002*"弟子" + 0.002*"李文秀" + 0.002*"陈家洛" + 0.002*"之中"'),
(1,
 '0.003*"心中" + 0.003*"武功" + 0.002*"之中" + 0.002*"李文秀" + 0.002*"长剑" + '
 '0.002*"张无忌" + 0.002*"众人" + 0.002*"心想" + 0.001*"二人" + 0.001*"两个"'),
 '0.003*"李文秀" + 0.003*"心中" + 0.003*"武功" + 0.002*"师父" + 0.002*"心想" + '
 '0.002*"之中" + 0.002*"袁承志" + 0.002*"苏普" + 0.002*"陈达海" + 0.002*"少女"'),
 '0.003*"心中" + 0.003*"师父" + 0.002*"韦小宝" + 0.002*"袁承志" + 0.002*"二人" + '
 '0.002*"武功" + 0.002*"剑士" + 0.002*"范蠡" + 0.002*"之中" + 0.002*"胡斐"'),
 "0.004*"范蠡" + 0.003*"心中" + 0.003*"武功" + 0.002*"师父" + 0.002*"心想" + 0.002*"之中" '
 '+ 0.002*"剑士" + 0.002*"阿青" + 0.002*"众人" + 0.002*"二人"'),
 '0.003*"剑士" + 0.002*"心中" + 0.002*"范蠡" + 0.002*"李文秀" + 0.002*"二人" + '
 '0.002*"之中" + 0.002*"袁承志" + 0.002*"武功" + 0.002*"令狐冲" + 0.002*"少女"'),
 "0.002*"师父" + 0.002*"武功" + 0.002*"李文秀" + 0.002*"心中" + 0.002*"心想" + "
 '0.002*"脸上" + 0.002*"之中" + 0.002*"众人" + 0.002*"手中" + 0.001*"眼见"'),
 "0.004*"韦小宝" + 0.003*"武功" + 0.003*"袁承志" + 0.002*"之中" + 0.002*"心想" + "
 '0.002*"众人" + 0.002*"心中" + 0.002*"陈家洛" + 0.001*"小人" + 0.001*"勾践"'),
 '0.002*"众人" + 0.002*"爹爹" + 0.002*"武功" + 0.002*"师父" + 0.002*"二人"'),
(9,
  '0.005*"韦小宝" + 0.003*"心中" + 0.003*"武功" + 0.002*"心想" + 0.002*"二人" + '
 '0.002*"师父" + 0.002*"姑娘" + 0.002*"众人" + 0.002*"之中" + 0.002*"胡斐"')]
```