第九周

- 教学计划
 - 马可夫模型(上次课)
 - 隐式马可夫模型 (这次课)
- 任务
 - 家作4: 5/10提交
 - 项目4: 捉鬼记, 5/10提交, 口令: tracking

人工智能入门

Hidden Markov Models

基于UC Berkeley, CS188课程 --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Pacman – Sonar (P4)

Video of Demo Pacman – Sonar (no beliefs)

Probability Recap

Conditional probability

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Product rule

$$P(x,y) = P(x|y)P(y)$$

Chain rule

$$P(X_1, X_2, \dots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$$
$$= \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$$

- X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

Hidden Markov Models

Hidden Markov Models

- Markov chains not so useful for most agents
 - Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe outputs (effects) at each time step

Example: Weather HMM

An HMM is defined by:

• Initial distribution: $P(X_1)$

■ Transitions: $P(X_t \mid X_{t-1})$

• Emissions: $P(E_t \mid X_t)$

R_{t}	R _{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R_{t}	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Example: Ghostbusters HMM

- $P(X_1) = uniform$
- P(X|X') = usually move clockwise, but sometimes move in a random direction or stay in place
- $P(R_{ij}|X)$ = same sensor model as before: red means close, green means far away.

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

 $P(X_1)$

1/6	16	1/2
0	1/6	0
0	0	0

P(X | X' = <1,2>)

Video of Demo Ghostbusters – Circular Dynamics -- HMM

Joint Distribution of an HMM

Joint distribution:

$$P(X_1, E_1, X_2, E_2, X_3, E_3) = P(X_1)P(E_1|X_1)P(X_2|X_1)P(E_2|X_2)P(X_3|X_2)P(E_3|X_3)$$

More generally:

$$P(X_1, E_1, \dots, X_T, E_T) = P(X_1)P(E_1|X_1)\prod_{t=2}^{T} P(X_t|X_{t-1})P(E_t|X_t)$$

- Questions to be resolved:
 - Does this indeed define a joint distribution?
 - Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?

Chain Rule and HMMs

• From the chain rule, *every* joint distribution over $X_1, E_1, X_2, E_2, X_3, E_3$ can be written as:

$$P(X_1, E_1, X_2, E_2, X_3, E_3) = P(X_1)P(E_1|X_1)P(X_2|X_1, E_1)P(E_2|X_1, E_1, X_2)$$

$$P(X_3|X_1, E_1, X_2, E_2)P(E_3|X_1, E_1, X_2, E_2, X_3)$$

Assuming that

$$X_2 \perp\!\!\!\perp E_1 \mid X_1, \quad E_2 \perp\!\!\!\perp X_1, E_1 \mid X_2, \quad X_3 \perp\!\!\!\perp X_1, E_1, E_2 \mid X_2, \quad E_3 \perp\!\!\!\perp X_1, E_1, X_2, E_2 \mid X_3$$

gives us the expression posited on the previous slide:

$$P(X_1, E_1, X_2, E_2, X_3, E_3) = P(X_1)P(E_1|X_1)P(X_2|X_1)P(E_2|X_2)P(X_3|X_2)P(E_3|X_3)$$

Chain Rule and HMMs

• From the chain rule, every joint distribution over $X_1, E_1, \dots, X_T, E_T$ can be written as:

$$P(X_1, E_1, \dots, X_T, E_T) = P(X_1)P(E_1|X_1) \prod_{t=2}^{T} P(X_t|X_1, E_1, \dots, X_{t-1}, E_{t-1})P(E_t|X_1, E_1, \dots, X_{t-1}, E_{t-1}, X_t)$$

- Assuming that for all t:
 - State independent of all past states and all past evidence given the previous state, i.e.:

$$X_t \perp \!\!\! \perp X_1, E_1, \ldots, X_{t-2}, E_{t-2}, E_{t-1} \mid X_{t-1}$$

■ Evidence is independent of all past states and all past evidence given the current state, i.e.:

$$E_t \perp \!\!\! \perp X_1, E_1, \ldots, X_{t-2}, E_{t-2}, X_{t-1}, E_{t-1} \mid X_t$$

gives us the expression posited on the earlier slide:

$$P(X_1, E_1, \dots, X_T, E_T) = P(X_1)P(E_1|X_1)\prod_{t=2}^{T} P(X_t|X_{t-1})P(E_t|X_t)$$

Implied Conditional Independencies

Many implied conditional independencies, e.g.,

$$E_1 \perp \!\!\! \perp X_2, E_2, X_3, E_3 \mid X_1$$

- To prove them
 - Approach 1: follow similar (algebraic) approach to what we did in the Markov models lecture
 - Approach 2: directly from the graph structure (3 lectures from now)
 - lacktriangle Intuition: If path between U and V goes through W, then $U \perp\!\!\!\!\perp V \mid W$ [Some fineprint later]

HMMs Recap

- Explicit assumption for all $t: X_t \perp \!\!\! \perp X_1, \ldots, X_{t-2} \mid X_{t-1}$
- Consequence, joint distribution can be written as:

$$P(X_1, X_2, \dots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1})$$

$$= P(X_1)\prod_{t=2}^{T} P(X_t|X_{t-1})$$

- Implied conditional independencies:
 - Past variables independent of future variables given the present

i.e., if
$$t_1 < t_2 < t_3$$
 or $t_1 > t_2 > t_3$ then: $X_{t_1} \perp \!\!\! \perp X_{t_3} \mid X_{t_2}$

• Additional explicit assumption: $P(X_t \mid X_{t-1})$ is the same for all t

Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process: future depends on past via the present
 - Current observation independent of all else given current state

- Quiz: does this mean that evidence variables are guaranteed to be independent?
 - [No, they tend to correlated by the hidden state]

Real HMM Examples

- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options
- Robot tracking:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution $B_t(X) = P_t(X_t \mid e_1, ..., e_t)$ (the belief state) over time
- We start with $B_1(X)$ in an initial setting, usually uniform
- As time passes, or we get observations, we update B(X)
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

Sensor model: can read in which directions there is a wall, never more than 1 mistake

Motion model: may not execute action with small prob.

Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

Prob 0 1

t=4

Prob

Inference: Base Cases

$$P(X_1|e_1)$$

$$P(x_1|e_1) = P(x_1, e_1)/P(e_1)$$

$$\propto_{X_1} P(x_1, e_1)$$

$$= P(x_1)P(e_1|x_1)$$

$$P(X_2)$$

$$P(x_2) = \sum_{x_1} P(x_1, x_2)$$

$$= \sum_{x_1} P(x_1) P(x_2 | x_1)$$

Passage of Time

Assume we have current belief P(X | evidence to date)

$$B(X_t) = P(X_t|e_{1:t})$$

Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$

Or compactly:

$$B'(X_{t+1}) = \sum_{x_t} P(X'|x_t)B(x_t)$$

- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

As time passes, uncertainty "accumulates"

$$T = 1$$

T = 2

(Transition model: ghosts usually go clockwise)

Observation

Assume we have current belief P(X | previous evidence):

$$B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$$

Then, after evidence comes in:

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}, e_{t+1}|e_{1:t})/P(e_{t+1}|e_{1:t})$$

$$\propto_{X_{t+1}} P(X_{t+1}, e_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

Or, compactly:

$$B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

 $B(X) \propto P(e|X)B'(X)$

Example: Weather HMM

R _t	R_{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R_{t}	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

The Forward Algorithm

We are given evidence at each time and want to know

$$B_t(X) = P(X_t|e_{1:t})$$

We can derive the following updates

$$P(x_{t}|e_{1:t}) \propto_{X} P(x_{t}, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, x_{t}, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1}) P(x_{t}|x_{t-1}) P(e_{t}|x_{t})$$

$$= P(e_{t}|x_{t}) \sum_{x_{t-1}} P(x_{t}|x_{t-1}) P(x_{t-1}, e_{1:t-1})$$

We can normalize as we go if we want to have P(x|e) at each time step, or just once at the end...

Online Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

We update for evidence:

$$P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

The forward algorithm does both at once (and doesn't normalize)

Pacman – Sonar (P4)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]

Video of Demo Pacman – Sonar (with beliefs)

