Universidade Federal da Paraíba

CENTRO DE INFORMÁTICA

Disciplina: Análise e Projeto de Algoritmos (2019.1)

Professor: Bruno Petrato Bruck

Projeto Final

O projeto final deve ser realizado em **dupla** e vale 10 pontos. Cada grupo deve desenvolver um algoritmo meta-heurístico eficiente para a resolução do **Problema de Roteamento de Veículos Capacitados** (do inglês The *Capacitated Vehicle Routing Problem - CVRP*). Nesse problema, uma frota de veículos é utilizada para visitar um conjunto de clientes realizando entregas de produtos. Cada veículo possui a mesma capacidade e cada cliente requer uma certa quantidade de produtos. O objetivo é criar um conjunto de rotas (uma para cada veículo) onde cada cliente é visitado exatamente uma vez, todas as demandas são atendidas sem exceder a capacidade dos veículos, e o custo de transporte é minimizado. Note que tal custo é dado pela distância total percorrida. Cada veículo deve iniciar e terminar sua rota em um mesmo ponto, chamado de depósito.

Cada grupo também deverá participar da CVRP Cup (https://laser.ci.ufpb.br/cvrp-cup/). Essa competição é uma atividade que faz parte do Projeto Final e visa estimular e motivar os estudantes a desenvolver o melhor algoritmo possível para a resolução de instâncias (cenários) difíceis do CVRP. Nessa competição participarão todos os grupos das duas turmas de Análise e Projeto de Algoritmos. Grupos que não participarem da atividade perderão pontos na nota relativa ao projeto final.

Esse projeto é dividido em duas etapas com os seguintes entregáveis:

Entregáveis da Etapa 1:

- Implementação de ao menos uma heurística de construção
- Implementação dos movimentos de vizinhança (Mínimo 3)
- Implementação do algoritmo de busca local chamado VND (Variable Neighborhood Descent)

Entregáveis da Etapa 2:

- Implementação de uma meta-heurística
- Resultados computacionais: **criar uma tabela** que contenha os resultados obtidos pela(s) heurística(s) construtiva(s) e pela meta-heurística, e que compare tais resultados com a solução ótima de cada instância. Essa tabela deverá conter os seguintes dados para cada heurística construtiva e para a meta-heurística:
 - Média do valor da solução (em no mínimo 10 execuções para cada instância)
 - Melhor solução encontrada

- Média do tempo gasto pelo respectivo algoritmo
- GAP para a solução ótima
- OBS: A tabela deve ser entregue no dia da apresentação do trabalho.

Calendário de entregáveis

Entregável	Data de entrega				
Etapa 1	03 de Setembro de 2019				
Etapa 2	23 de Setembro de 2019				

Avaliação

Cada grupo deverá apresentar seu projeto presencialmente em uma data a ser combinada com o professor entre os dias 24 e 26 de Setembro/2019. A nota do projeto é individual e leva em consideração diversos critérios, como por exemplo, conhecimento do código implementado, qualidade do código, eficiência dos algoritmos implementados, qualidade dos resultados obtidos, dentre outros.

Dicas

Como calcular o valor da medida GAP: Suponha que desejamos calcular o valor GAP para o resultado da heurística construtiva para a instância chamada $nome_instancia$. Supondo que o valor encontrado pela heurística para essa instância é dado por $valor_{heuristica}$ e o valor ótimo para essa instância é $valor_{otimo}$, o cálculo do GAP é realizado da seguinte forma:

$$gap = \left(\frac{valor_{heuristica} - valor_{otimo}}{valor_{otimo}}\right) \times 100$$

Note que o valor do gap é dado em percentagem (%) e indica a "distância" da solução, no caso, da heurística construtiva para o valor ótimo.

Para calcular o GAP dos resultados obtidos pela meta-heurística basta substituir $valor_{heuristica}$ pelo valor encontrado pela meta-heurística.

Exemplo de tabela de resultados:

		Heurística construtiva			Meta-heurística				
	ótimo	média solução	melhor solução	média tempo	gap	média solução	melhor solução	média tempo	gap
instancia1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
instancia2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
instancia3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
instancia4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0