CS 254: Computability and Complexity

Problem Set #09

Anonymous submission

November 12, 2019

2. ISO = $\{\langle G, H \rangle | G \text{ and } H \text{ are graphs isomorphic to one another.} \}$ Show that ISO $\in NP$.

Lets assume there is a TM M for ISO

- M = "on input (G, H) where G and H are undirected graphs.
 - 1. Nondeterministically select a permutation of nodes
 - 2. for each pair of nodes x and y check to see if (x,y) is an edge in G
 - 3. If there is an edge, check for an edge (x, y) in H. If not reject.
 - 4. accept.
- step 1 All we are doing is selecting elements which runs in NP.
- Step 2 in NP because we will do O(n²) work checking every node against every other node.

Step 3 is based on step two, and step 3 runs in $O(n^2)$ so it would be $c * O(n^2) * O(n^2)$ which is still polynomial therefore \in NP.

Step 4 accepts in O(1).

Therefore our highest order is \in NP so this construction must be \in NP.

This construction is correct because we will check that every single edge from G is in H ensuring that every node leads to the proper node in both of the graphs, and through the above proof we know we can do this is polynomial time with a nondeterminism.