

Adversarial Erasing Framework via Triplet with Gated Pyramid Pooling Layer for Weakly Supervised Semantic Segmentation

Sung-Hoon Yoon*, Hyeokjun Kweon*, Jegyeong Cho, Shinjeong Kim, and Kuk-Jin Yoon (*equal contribution) Visual intelligence Lab., Dept. Mechanical Eng., KAIST, Korea

Motivation

- WSSS aims to learn SS with weak yet inexpensive labels (e.g. class tags) only.
- Most of WSSS methods exploits Class Activation Maps (CAMs) to localize the object in the image.
- However, from the perspective of SS, there are two main issues in CAMs: Impreciseness & Sparseness.

Impreciseness (Not fit with the object boundary)

- Most WSSS methods use Global Average Pooling (GAP) to aggregate the region-level feature maps into the image-level class prediction.
- However, the GAP layer aggressively averages all the features even on the object-irrelevant regions.

Sparseness (Highlight most discriminative regions only)

- Adversarial Erasing (AE) methods effectively address the sparseness problem by iteratively erasing-andfinding the most discriminative regions.
- However, AE methods suffer from over-expansion problem due to the rigid classification loss.

Gated Pyramid Pooling (GPP) layer

- GPP sets different pooling weight for each feature.
- The weighting factors are acquired at multi-scale, which is crucial to handle the impreciseness.
- We incorporate the **gating mechanism** to aggregate the feature pyramid into a single multi-scale-aware prediction, in a coarse-to-fine manner.
- Further, we devise a sign-preserving attention and make GPP to amplify both pos. and neg. directions.
 - Positive prediction: Existence of the class
 - Negative prediction: Non-existence of the class

Adversarial Erasing Framework via Triplet (AEFT)

- AEFT aims understand the concept of erasing, in a more flexible manner compared to rigid classification.
- We define the triplet as follows:
 - Anchor image I_A (original input image)
 - Positive image I_P (masked image)
 - Negative image I_N (image with no overlapped class)
- For anchor-negative pair, we erase the highly activated region and make the repelling more difficult.
- AEFT could use the CAMs as its metric space directly, but using GPP feature space is much more effective.

Ablation Studies

- The left table shows that the **GPP layer outperforms the GAP layer**.
- The pyramid pooling of the features at multiple scales provides complementary benefits.
- Our coarse-to-fine fusion approach is much better than naïve averaging or inverse direction.
- The right table shows that the **AEFT** effectively handles the over-expansion problem.
 - Compared to the *rigid* one, our *soft* approach enables higher recall without losing precision.
- Also, using negative samples (repel) further increases the precision by a large margin.

2x2	4x4	8x8	16x16	Aggregation	mIoU (%)
√				-	49.9
	√			-	51.6
		\checkmark		-	52.9
			√	-	53.1
\checkmark	\checkmark	\checkmark	√	\mathcal{A}	53.3
\checkmark	\checkmark	\checkmark	√	\mathcal{G}_I	51.3
\checkmark	√	\checkmark	√	\mathcal{G}	54.2

	Precision(%)	Recall(%)	mIoU(%)
GPP only	66.5	75.6	54.2
Attract (Rigid)	65.1 (-1.4)	76.1 (+0.5)	53.4 (-0.8)
Attract (Soft)	66.6 (+0.1)	77.2 (+1.6)	55.0 (+0.8)
$Atrract\ (Soft) + Repel$	68.4 (+1.9)	76.3 (+0.7)	56.0 (+1.8)

- * Attract (Rigid): uses rigid classification labels for the masked image.
- * Attract (Soft): minimizes the distance between the anchor and positive
- * Attract (Soft)+Repel: uses repelling loss along with Attract (Soft)

Results

Methods	Backbone	VOC val	VOC test	COCO val	
AffinityNet $[2]_{CVPR18}$	ResNet38	61.7	63.7	-	
$ICD [15]_{CVPR20}$	ResNet101	64.1	64.3	-	
IRNet $[1]_{CVPR19}$	ResNet50	63.5	64.8	32.6	
$SSDD [43]_{ICCV19}$	ResNet38	64.9	65.5	-	
SEAM $[50]_{CVPR20}$	ResNet38	64.5	65.7	31.9	<u></u>
Sub-category $[7]_{CVPR20}$	ResNet101	66.1	65.9	-	Test mloU (%)
CONTA $[57]_{NIPS20}$	ResNet38	66.1	66.7	33.4	n
RRM $[56]_{AAAI20}$	ResNet101	66.3	66.5	-	Fest
BES $[10]_{ECCV20}$	ResNet101	65.7	66.6	-	Ċ
$CDA [44]_{ICCV21}$	ResNet38	66.1	66.8	-	
ECS $[46]_{ICCV21}$	ResNet38	66.6	67.6	-	
$AdvCAM [30]_{CVPR21}$	ResNet101	68.1	68.0	-	
$OC\text{-}CSE[27]_{ICCV21}$	ResNet38	68.4	68.2	36.4	
$CPN [58]_{ICCV21}$	ResNet38	67.8	68.5	-	
RIB $[28]_{NeurIPS21}$	ResNet101	68.3	68.6	43.8	
$PMM [35]_{ICCV21}$	ResNet38	68.5	69.0	36.7	
Ours	ResNet38	70.9	71.7	44.8	

