日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年 9月21日

出 願 番 号

Application Number:

特願2000-291952

出 願 人 Applicant(s):

株式会社日立製作所

日立電子エンジニアリング株式会社

2001年 8月31日

特許庁長官 Commissioner, Japan Patent Office

【書類名】 特許願

【整理番号】 D00007041A

【提出日】 平成12年 9月21日

【あて先】 特許庁長官殿

【国際特許分類】 H01L 21/66

【発明の名称】 異物または欠陥の検査方法およびその装置

【請求項の数】 22

【発明者】

【住所又は居所】 神奈川県横浜市戸塚区吉田町292番地 株式会社日立

製作所生產技術研究所內

【氏名】 西山 英利

【発明者】

【住所又は居所】 神奈川県横浜市戸塚区吉田町292番地 株式会社日立

製作所生産技術研究所内

【氏名】 野口 稔

【発明者】

【住所又は居所】 神奈川県横浜市戸塚区吉田町292番地 株式会社日立

製作所生産技術研究所内

【氏名】 大島 良正

【発明者】

【住所又は居所】 神奈川県横浜市戸塚区吉田町292番地 株式会社日立

製作所生産技術研究所内

【発明者】

【住所又は居所】 東京都小平市上水本町五丁目20番1号 株式会社日立

製作所半導体グループ内

【氏名】 渡辺 健二

【発明者】

【住所又は居所】 東京都渋谷区東3丁目16番3号 日立電子エンジニア

リング株式会社内

【氏名】

渡▲邉▼ 哲也

【発明者】

【住所又は居所】 東京都渋谷区東3丁目16番3号 日立電子エンジニア

リング株式会社内

【氏名】

神宮 孝広

【特許出願人】

【識別番号】

000005108

【氏名又は名称】 株式会社 日立製作所

【特許出願人】

【識別番号】 000233480

【氏名又は名称】 日立電子エンジニアリング 株式会社

【代理人】

【識別番号】 100075096

【弁理士】

【氏名又は名称】 作田 康夫

【手数料の表示】

【予納台帳番号】 013088

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】異物または欠陥の検査方法およびその装置

【特許請求の範囲】

【請求項1】

被検査対象物を光学的手法によって測定し、異物や欠陥を検出する異物または 欠陥の検査装置であって、

前記被検査対象物に光を照射する照明手段と、

前記被検査対象物からの反射光または散乱光を検出する光検出手段と、

その光検出手段によって検出された信号に基づいて、異物または欠陥を検出する検出手段と、

その光検出手段によって検出された信号に基づいて、信号処理をし、異物また は欠陥の大きさを測定する寸法測定手段と、

検査の結果を処理するデータ処理手段と、

検査の結果情報を表示する手段と

を備え、異物または欠陥の大きさと不良原因を関連させて、前記データ処理手段 で、検査の結果の統計処理から不良原因を指摘し、前記検査の結果情報を表示す る手段に表示することを特徴とする異物または欠陥の検査装置。

【請求項2】

被検査対象物を光学的手法によって測定し、異物や欠陥を検出する異物または 欠陥の検査装置であって、

前記被検査対象物に光を照射する照明手段と、

前記被検査対象物からの反射光または散乱光を検出する光検出手段と、

その光検出手段によって検出された信号に基づいて、異物または欠陥を検出する検出手段と、

その光検出手段によって検出された信号に基づいて、信号処理をし、異物または欠陥の大きさを測定する寸法測定手段と、

検査の結果を処理するデータ処理手段と、

検査の結果情報を表示する手段と

を備え、前記検査の結果情報を表示する手段に、前記寸法測定手段によって得ら

れた異物または欠陥の大きさの頻度分布表示をおこなうことを特徴とする異物ま たは欠陥の検査装置。

【請求項3】

被検査対象物を光学的手法によって測定し、異物や欠陥を検出する異物または 欠陥の検査装置において、

前記被検査対象物に光を照射する照明手段と、

前記被検査対象物からの反射光または散乱光を検出する光検出手段と、

その光検出手段によって検出された信号に基づいて、異物または欠陥を検出する検出手段と、

その光検出手段によって検出された信号に基づいて、信号処理をし、異物または欠陥の大きさを測定する寸法測定手段と、

検査の結果を処理するデータ処理手段と、

検査の結果情報を表示する手段と

を備え、前記検査の結果情報を表示する手段に、特定の大きさの異物または欠陥 を他の異物または欠陥と弁別して表示することを特徴とする異物または欠陥の検 査装置。

【請求項4】

被検査対象物を光学的手法によって測定し、異物や欠陥を検出する異物または 欠陥の検査装置であって、

前記被検査対象物に光を照射する照明手段と、

前記被検査対象物からの反射光または散乱光を検出する光検出手段と、

その光検出手段によって検出された信号に基づいて、異物または欠陥を検出する検出手段と、

その光検出手段によって検出された信号に基づいて、信号処理をし、異物また は欠陥の大きさを測定する寸法測定手段と、

検査の結果を処理するデータ処理手段と、

検査の結果情報を表示する手段と

を備え、被検査対象物の領域毎に管理情報を設け、その管理情報とその領域から 検出された異物または欠陥の大きさを比較して、被検査対象物の領域毎の品質の 良・不良を評価することによって、領域毎に不良解析を行うことを特徴とする異物または欠陥の検査装置。

【請求項5】

前記評価の結果に基づいて、前記領域毎に特定の大きさの異物または欠陥を他の異物または欠陥と弁別して表示することを特徴とする請求項4記載の異物または欠陥の検査装置。

【請求項6】

被検査対象物を光学的手法によって測定し、異物や欠陥を検出する異物または 欠陥の検査装置であって、

前記被検査対象物に光を照射する照明手段と、

前記被検査対象物からの反射光または散乱光を検出する光検出手段と、

その光検出手段によって検出された信号に基づいて、異物または欠陥を検出する検出手段と、

その光検出手段によって検出された信号に基づいて、信号処理をし、異物または欠陥の大きさを測定する寸法測定手段と、

検査の結果を処理するデータ処理手段と、

検査の結果情報を表示する手段と

を備え、前記被検査対象物は領域毎に管理されていて、前記検査の結果情報を表示する手段として、前記寸法測定手段によって得られた異物または欠陥の大きさの頻度分布表示を、領域毎におこなうことを特徴とする異物または欠陥の検査装置。

【請求項7】

被検査対象物を光学的手法によって測定し、異物や欠陥を検出する異物または 欠陥の検査装置であって、

前記被検査対象物に光を照射する照明手段と、

前記被検査対象物からの反射光または散乱光を検出する光検出手段と、

その光検出手段によって検出された信号に基づいて、異物または欠陥を検出する検出手段と、

その光検出手段によって検出された信号に基づいて、信号処理をし、異物また

は欠陥の大きさを測定する寸法測定手段と、

検査の結果を処理するデータ処理手段と、

検査の結果情報を表示する手段と

を備え、前記検査の結果情報を表示する手段として、前記寸法測定手段によって 得られた異物または欠陥の大きさと、前記被検査物の電気検査による良・不良の 情報を突き合わせることにより、異物または欠陥の歩留まりへの影響を算出し、 前記算出結果を表示することを特徴とする異物または欠陥の検査装置。

【請求項8】

前記照明手段において、異物または欠陥を検出するための光源と、異物または 欠陥の大きさを測定するために光源とが同一の光源であることを特徴とする請求 項1ないし7の何れかに記載の異物または欠陥の検査装置。

【請求項9】

前記照明手段からの照明光源にレーザ光を用い、さらに、この異物または欠陥 の検査装置は、照明された被検査対象物からの散乱光を集光する集光手段を有し 、前記光検出手段は、その集光手段により集光された散乱光を検出するものであ って、前記寸法測定手段により異物または欠陥の大きさを測定するのに、前記光 検出手段により検出された信号値の積分値を用いることを特徴とする請求項1な いし7の何れかに記載の異物または欠陥の検査装置。

【請求項10】

前記照明手段からの照明光源にレーザ光を用い、さらに、この異物または欠陥 の検査装置は、照明された被検査対象物からの散乱光を集光する集光手段を有し 、前記光検出手段は、その集光手段により集光された散乱光を検出するものであ って、前記寸法測定手段により異物または欠陥の大きさを測定するのに、前記光 検出手段により検出された信号値の最大値を用いることを特徴とする請求項1な いし7の何れかに記載の異物または欠陥の検査装置。

【請求項11】

前記照明手段からの照明光源に白色光を用いることを特徴とする請求項1ない し7の何れかに記載の異物または欠陥の検査装置。

【請求項12】

被検査対象物を光学的手法によって測定し、異物や欠陥を検出する異物または 欠陥の検査方法であって、

前記被検査対象物に光を照射する手順と、

前記被検査対象物からの反射光または散乱光を検出する手順と、

検出された信号に基づいて、異物または欠陥を検出する手順と、

検出された信号に基づいて、信号処理をし、異物または欠陥の大きさを測定する手順と、

検査の結果を処理するデータ処理手順と、

検査の結果情報を表示する手順と

を行い、異物または欠陥の大きさと不良原因を関連させて、前記データ処理手順 で、検査の結果の統計処理から不良原因を指摘し、前記検査の結果情報を表示す ることを特徴とする異物または欠陥の検査方法。

【請求項13】

被検査対象物を光学的手法によって測定し、異物や欠陥を検出する異物または 欠陥の検査方法であって、

前記被検査対象物に光を照射する手順と、

前記被検査対象物からの反射光または散乱光を検出する手順と、

検出された信号に基づいて、異物または欠陥を検出する手順と、

検出された信号に基づいて、信号処理をし、異物または欠陥の大きさを測定する手順と、

検査の結果を処理するデータ処理手順と、

検査の結果情報を表示する手順と

を行い、前記検査の結果情報を表示するときに、前記寸法を測定する手順によって得られた異物または欠陥の大きさの頻度分布表示をおこなうことを特徴とする 異物または欠陥の検査方法。

【請求項14】

被検査対象物を光学的手法によって測定し、異物や欠陥を検出する異物または 欠陥の検査方法であって、 前記被検査対象物に光を照射する手順と、

前記被検査対象物からの反射光または散乱光を検出する手順と、

検出された信号に基づいて、異物または欠陥を検出する手順と、

検出された信号に基づいて、信号処理をし、異物または欠陥の大きさを測定する手順と、

検査の結果を処理するデータ処理手順と、

検査の結果情報を表示する手順と

を行い、前記検査の結果情報を表示するときに、特定の大きさの異物または欠陥 を他の異物または欠陥と弁別して表示することを特徴とする異物または欠陥の検 査方法。

【請求項15】

被検査対象物を光学的手法によって測定し、異物や欠陥を検出する異物または 欠陥の検査方法であって、

前記被検査対象物に光を照射する手順と、

前記被検査対象物からの反射光または散乱光を検出する手順と、

検出された信号に基づいて、異物または欠陥を検出する手順と、

検出された信号に基づいて、信号処理をし、異物または欠陥の大きさを測定する手順と、

検査の結果を処理するデータ処理手順と、

検査の結果情報を表示する手順と

を行い、被検査対象物の領域毎に管理情報を設け、その管理情報とその領域から 検出された異物または欠陥の大きさを比較して、被検査対象物の領域毎の品質の 良・不良を評価することによって、領域毎に不良解析をおこなえることを特徴と する異物または欠陥の検査方法。

【請求項16】

前記評価の結果に基づいて、前記領域毎に特定の大きさの異物または欠陥を他の異物または欠陥と弁別して表示することを特徴とする請求項12記載の異物または欠陥の検査方法。

【請求項17】

被検査対象物を光学的手法によって測定し、異物や欠陥を検出する異物または 欠陥の検査方法において、

前記被検査対象物に光を照射する手順と、

前記被検査対象物からの反射光または散乱光を検出する手順と、

検出された信号に基づいて、異物または欠陥を検出する手順と、

検出された信号に基づいて、信号処理をし、異物または欠陥の大きさを測定する手順と、

検査の結果を処理するデータ処理手順と、

検査の結果情報を表示する手順と

を行い、前記被検査対象物は領域毎に管理されていて、前記検査の結果情報を表示するときに、その領域毎に前記寸法を測定する手順によって得られた異物または欠陥の大きさの頻度分布表示を、領域毎におこなうことを特徴とする異物または欠陥の検査方法。

【請求項18】

被検査対象物を光学的手法によって測定し、異物や欠陥を検出する異物または 欠陥の検査方法であって、

前記被検査対象物に光を照射する手順と、

該光の照射による前記被検査対象物からの反射光または散乱光を検出する手順 と、

該散乱光を検出した信号に基づいて異物または欠陥を検出する手順と、

該検出した異物または欠陥の大きさを求める手順と、

前記検出した異物または欠陥の信号を処理する手順と、

該信号を処理した結果の情報を表示する手順と

を備え、前記信号を処理した結果の情報を表示する手順において、前記異物または欠陥の大きさを求める手順において得られた異物または欠陥の大きさの情報を、前記被検査物を別途電気検査して得られる良・不良の情報と突き合わせることにより、異物または欠陥の歩留まりへの影響を算出し、該算出した結果を表示することを特徴とする異物または欠陥の検査方法。

【請求項19】

前記照明する手順において、異物または欠陥を検出するための光源と、異物または欠陥の大きさを測定するために光源とに同一の光源を用いることを特徴とする請求項12ないし18の何れかに記載の異物または欠陥の検査方法。

【請求項20】

前記照明する手順の照明光源にレーザ光を用い、照明された被検査対象物からの散乱光を集光する集光手順をおこなって、被検査対象物からの光検出は、その 集光手段により集光された散乱光を検出するものであって、前記異物または欠陥 の大きさを求めるのに、光検出時に検出された信号値の積分値を用いることを特 徴とする請求項12ないし18記載の何れかに記載の異物または欠陥の検査方法

【請求項21】

前記被検査対象物の照明にレーザ光を用い、該レーザ光により照明された被検 査対象物からの散乱光を集光手段を介して集光し、該集光手段により集光された 散乱光の検出信号の最大値を用いて異物または欠陥の大きさを測定することを特 徴とする請求項12ないし18の何れかに記載の異物または欠陥の検査方法。

【請求項22】

前記被検査対象物に照射する光が白色光であることを特徴とする請求項12ないし18の何れかに記載の異物または欠陥の検査方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、異物または欠陥の検査装置、および、異物または欠陥の検査方法に係り、半導体チップや液晶製品を製造する際の薄膜基板や半導体基板やフォトマスク等に存在する異物やそのパターンに生じるパターン欠陥の検査とその不良原因の解析にあたって、その検査結果をユーザに分析しやすい形式で表示し、その不良原因を迅速に究明できる異物または欠陥の検査装置、および、異物または欠陥の検査方法に関する。

[0002]

【従来の技術】

従来、半導体基板上等の欠陥を光学的測定手段により検出する技術は広く知られている。例えば、特開昭62-89336号公報に記載の「半導体ウェハ検査装置」では、半導体基板上にレーザを照射して半導体基板上に異物が付着している場合に発生する異物からの散乱光を検出し、直前に検査した同一品種半導体基板の検査結果と比較することにより、異物または欠陥の検査を可能にする技術が開示されている。

[0003]

また、特開平5-273110号公報に記載の「粒子または欠陥の大きさ情報 の測定方法および装置」に記載されているように、レーザビームを被検物体に照 射し、その被検物体の粒子または結晶欠陥からの散乱光を受光して画像処理する ことにより粒子または結晶欠陥の大きさを測定する方法が開示されている。

[0004]

また、1997年のSEMICON関西におけるULSI技術セミナー予稿集の $4-42\sim4-47$ 記載の「Yield Monitoring and Analysis in Semiconduct or Manufacturing」では、半導体ウェハ上ので検出された異物による歩留まり解析手法が開示されている。

[0005]

【発明が解決しようとする課題】

従来、半導体基板や薄膜基板等の製造ラインにおいて、製品の製造プロセス管理をおこなう手法の一つとして、基板上の異物や欠陥をモニタリングする管理手法が用いられている。このようなモニタリングをする方法の一つとしては、基板上の異物やパターン欠陥を検査する異物または欠陥の検査装置を用いて検査し、その異物または欠陥の検査装置からの検出個数の推移を監視する方法が用いられており、検出個数が多い基板に対しその基板上の異物・欠陥に対して不良解析をおこなっていた。

[0006]

しかしながら、この従来技術の手法では、不良解析に要する時間は「検出個数

×一つの異物・欠陥に対する不良解析時間」になってしまう、特に、異物欠陥検査装置での検出個数が多い場合には不良解析に膨大な時間がかかってしまい、基板の製造が滞ってしまうという問題がある。

[0007]

本発明は、上記従来技術を解決するためになされたもので、その目的は、半導体ウェハや薄膜基板の製造過程の検査や不良解析をおこなうにあたり、異物の大きさやパターン欠陥の大きさ、また、被検査物の領域の特性に応じた検査をおこなうことにより迅速な不良対策をおこなうことのできる異物または欠陥の検査装置、ならびに、異物または欠陥の検査方法を提供することにある。

[0008]

【課題を解決するための手段】

上記目的を達成するために、本発明による異物または欠陥の検査装置では、被検査対象物を光学的手法によって測定し、異物や欠陥を検出する異物または欠陥の検査装置において、前記被検査対象物に光を照射する照明手段と、前記被検査対象物からの反射光または散乱光を検出する光検出手段と、その光検出手段によって検出された信号に基づいて、異物または欠陥を検出する検出手段と、その光検出手段によって検出された信号に基づいて、信号処理をし、異物または欠陥の大きさを測定する寸法測定手段と、検査の結果を処理するデータ処理手段と、検査の結果情報を表示する手段とを備え、異物または欠陥の大きさと不良原因を関連させて、前記データ処理手段で、検査の結果の統計処理から不良原因を関連させて、前記データ処理手段で、検査の結果の統計処理から不良原因を掲摘し、前記検査の結果情報を表示する手段に表示するようにした。

[0009]

また、上記目的を達成するために、本発明による異物または欠陥の検査方法では、被検査対象物を光学的手法によって測定し、異物や欠陥を検出する異物または欠陥の検査方法において、前記被検査対象物に光を照射する手順と、前記被検査対象物からの反射光または散乱光を検出する手順と、検出された信号に基づいて、異物または欠陥を検出する手順と、検出された信号に基づいて、信号処理をし、異物または欠陥の大きさを測定する手順と、検査の結果を処理するデータ処理手順と、検査の結果情報を表示する手順とをこの順におこなって、異物または

欠陥の大きさと不良原因を関連させて、前記データ処理手順で、検査の結果の統 計処理から不良原因を指摘し、前記検査の結果情報を表示するようにした。

[0010]

【発明の実施の形態】

以下、本発明に係る各実施形態を説明する。

[0011]

[本発明に係る異物または欠陥の検査装置の構成と動作]

先ず、図1および図2を用いて本発明に係る異物または欠陥の検査装置の構成 と動作について説明する。

[0012]

図1は、本発明に係る異物または欠陥の検査装置の構成を示す図である。

[0013]

図2は、本発明に係る異物または欠陥の検査装置をシステムとして動作させる ときのブロック図である。

[0014]

以下、実施の形態では、半導体ウェハ上の異物を検査する場合を例に採り説明するが、本発明は、異物以外のパターン欠陥を検査する装置でも適用が可能である。また、半導体ウェハに限らず、薄膜基板やフォトマスク、TFT、PDP等にも適用可能である。

[0015]

本発明に係る異物または欠陥の検査装置は、照明光学系101、検出光学系103、光検出部104、信号処理回路105、データ表示部106、ステージ部107、オートフォーカス照明部108、オートフォーカス受光部109から構成されている。

[0016]

検査をおこなうときには、被検査物102をステージ部107に載せ、照明光 学系101で被検査物102を照射し、被検査物102からの散乱光を検出光学 系103で集光する。そして、光検出部104で被検査物102からの散乱光を 検出する。光検出部104で検出された散乱光は光電変換等を施され、信号処理 回路105で信号処理することにより、異物が検出され、その大きさが測定される。

[0017]

また、ステージ部107により、被検査物102を水平方向に移動させ、さらに、オートフォーカス照明部108、オートフォーカス受光部109で被検査物102が検出光学系103の焦点位置にくるように垂直方向に移動させることによって、被検査物102の全領域における異物の検出とその大きさの測定が可能となる。そして、その検出結果は、データ表示部106に表示される。

[0018]

ここで、照明光学系101は、例えば、Arレーザや半導体レーザ、YAGレーザ、UVレーザ等のレーザ光源やXeランプやHgランプ等の白色光源をビームエキスパンダやコリメータレンズ、シリンドリカルレンズ等を用いて被検査物102上に光を照射するように構成されたものであり、検出光学系103の焦点位置に光が照射されるように調整されている。

ここで、光源の選択手法としては、異物の検出感度を向上させる場合は、照明 光源として波長が短い光源を使うほうが良いため、YAGレーザやArレーザ、 UVレーザが適している。また、小形で安価な装置にする場合は、半導体レーザ が適している。さらに、被検査物上に形成された光透過形の薄膜による干渉を低 減したい場合は、照明光源として白色光源が適している。

[0019]

また、照射光の形状は円形状の照明や直線状の照明で照射すれば良い。また、 照明光は平行光でも良いし、平行光でなくても良く、被検査物上での単位面積当 たりの光量を多くしたい場合は、照明光源の出力を多くするか、照明光を高NA で照明すれば良い。

[0020]

次に、検出光学系103は、照明光学系101によって照射された光のうち、 被検査物102からの散乱光を光検出部104に集光させるように光学レンズが 構成されている。また、この検出光学系103は、その散乱光に対する光学処理 、例えば、偏光板や空間フィルタによる光学特性の変更・調整等もおこなえるよ うになっている。

[0021]

ここで、光学処理として偏光板を用いる場合、S偏光を照射した場合はP偏光を透過する方向に偏光板を設定し、P偏光を照射した場合は、S偏光を透過する方向に偏光板を設定したほうが良い。また、空間フィルタを用いる場合、照明光として平行光を用いるほうが異物の検出性能が向上する。

[0022]

光検出部104は、検出光学系103によって集光された散乱光を受光し、光電変換するために用いるものであり、例えば、TVカメラやCCDリニアセンサやTDIセンサやアンチブルーミングTDIセンサやフォトマルである。

[0023]

ここで、光検出部104の選択方法しては、微小な光を検出する場合はフォトマルを用いると良い。また、2次元の像を高速に得る為にはTVカメラが良く、検出光学系103が結像系の場合は、TVカメラやCCDリニアセンサやTDIセンサやアンチブルーミングTDIセンサが良く、検出光学系103が集光系の場合は、フォトマルでも良い。また、光検出部104で受光する光のダイナミックレンジが大きい場合、つまり、センサが飽和する光が入射する場合は、アンチブルーミング機能の付随したセンサが良い。

[0024]

次に、信号処理回路105は、異物を検出する部分と異物の大きさを測定する部分から構成されている。この信号処理回路105によって、異物を検出するときには、例えば、入力信号を2値化し、2値化しきい値以上の信号を異物と判定して出力する。また、この信号処理回路105では、異物の大きさも測定するがその処理については後に詳述するものとする。さらに、ステージ部107は、例えば、被検査物102を水平・垂直方向に移動させたり、被検査物102を回転させたりする機構を備えたものである。また、オートフォーカス照明部108は、例えば、Hgランプ等の白色光源やHe-Ne等のレーザ光源から照射された光を被検査物102上に集光させる。ここで、オートフォーカス照明部108に用いる光源の波長は、照明光学系101で用いた光源の波長とは違う波長の光源

を用いるほうが良い。

[0025]

次に、オートフォーカス受光部109は、オートフォーカス照明部108から 照射された光のうち、被検査物102から反射された光を受光する部分であり、 例えば、ポジションセンサのような光の位置を検出できるものを用いる。 さらに、オートフォーカス受光部109で得られた情報は、ステージ部107に送られステージの制御に用いられる。 なお、図1で示している例では、照明光学系101は、被検査物102に対し、1方向から照明する場合の例を示しているが、2つ以上の方向から照明する構成でも良い。 さらに、図1の例では、検出光学系103および検出部104がそれぞれ1つであり、被検査物102に対して1方向で検出しているが、これらを2つ以上持ち、2つ以上の方向で検出する構成でも良い。

[0026]

次に、本発明に係る異物または欠陥の検査装置を用いてシステムを構成すると図2に示されるようになる。すなわち、このシステムは、本発明の異物検査装置1301、データサーバ1302、レビュー装置1303、電気テスト装置1304、分析装置1305、各装置を接続するネットワーク1306から構成されている。ここで、レビュー装置1303は、例えば、測長SEMであり、また、電気テスト装置1304は、テスターであり、分析装置1305は、EDXのような異物の成分を分析する装置である。また、データサーバ1302は、異物検査装置1301の検査データやレビュー装置1303のレビュー結果、また、電気テスト装置1304のテスト結果、分析装置1305の分析結果を収集、蓄積可能なコンピュータであり、ネットワーク1306は、例えば、イーサネットによる通信ネットワークである。

[0027]

次に、異物または欠陥の検査装置を用いたシステムの動作について説明する。 異物検査装置1301で検査がおこなわれた後に、上記で説明したような方法で 対策が必要な異物を選択する。異物検査装置1301の検査結果、例えば、検出 異物の検出時の通し番号や異物の位置情報や異物の大きさ情報に対し、選択され た異物の情報を付加してデータサーバ1302にネットワーク1306を介して送信する。ここで、選択された異物の情報の付加方法としては、例えば、前記検査結果に対策の要否のフラグを付加してやれば良い。そして、異物検査装置1301で検出された異物をさらに詳しく調べるために、被検査物をレビュー装置1303に移動させる。この移動は、手搬送でも良いし、機械搬送でもかまわない

[0028]

被検査物をレビュー装置1303に移動させた後、レビュー装置1303からデータサーバ1302にアクセスし、ネットワーク1306を介してデータサーバ1302から検査結果を受信する。そして、この検査結果を用いてレビューを開始する。この時、異物検査装置1301により付加された情報を用いて、対策が必要な異物を優先的にレビューすることにより、不良原因となる異物の解析を迅速におこなうことが可能となる。また、同様に、分析装置1305においても異物検査装置1301により付加された情報により、対策が必要な異物を優先的に分析ができ、不良原因の解析を迅速に進めることができる。

[0029]

これらのレビューデータや解析結果は、データサーバ1302に蓄積しておき、電気テスト装置1304でのテスト結果と突き合わせることにより、最終的に不良になるか否かを確認することができる。もし、最終的に不良とならない場合には、データサーバ1302から異物検査装置1301に対して対策が必要な異物を選択する基準を変更するデータを送信し、異物検査装置1301の対策要否の基準を変更することによって、対策が必要な異物を、より高精度に選択することが可能となり、半導体製造における不良対策をより迅速におこなうことが可能となる。

[0030]

なお、以上の説明はネットワークを介してデータの送受信をおこなうことを例に とって説明したが、必ずしもネットワークを介しておこなう必要は無く、取り外 し可能な記憶媒体やプリントアウトされた紙によるデータの受け渡しをおこなっ ても良い。

[0031]

さらに、本発明による異物検査装置1301とレビュー装置1303を組み合わせた別の使い方を説明する。図16は図13の一部分を抜き出して示した図である。図16において、1601は検査装置、例えば、本発明の異物または欠陥の検査装置である。また、1602は被検査物上の異物・欠陥のレビュー装置であり、例えば、測長SEMである。さらに、1603は前記検査装置1601とレビュー装置1602を間でデータの送受信を行うためのネットワークで、例えばイーサネットで接続されたシステムである。次に動作について説明する。ただし、以下では異物を例に採って説明する。

[0032]

まず、検査装置1601で被検査物上の異物の検査を行い、その検査結果、例え ば検出異物の検出時の通し番号や異物の位置情報や異物の大きさ情報を付加し、 ネットワーク1603を介してレビュー装置1602に検査データを送信する。 被検査物をレビュー装置1602に移動させた後、レビュー装置1602で異物 のレビュー作業を行う。この時、検査装置1601で測定された異物の大きさ情 報に合わせて、レビュー装置1602でのレビュー時の倍率を変えることにより 効率の良いレビューが可能となる。つまり、検査装置1601から得られた異物 の大きさ情報が小さい異物を示している場合は、レビュー時に高い倍率でレビュ ーを行うことにより、小さい異物の詳細をすばやく観察することが可能となる。 また、前記異物の大きさ情報が大きい異物を示している場合は、レビュー時に低 い倍率でレビューを行うことによって、異物が大きい場合でもレビュー画面から 異物がはみ出すことなくレビューが可能となり、異物の全体像をすばやく観察す ることができる。例えば、検査装置1601から送信した検査データの異物の大 きさが 0. 1 μ mの場合は、レビュー装置 1 6 0 2 でのレビュー倍率を視野が 1 μ mになるように設定してレビューを行い、また、異物の大きさが 10μ mの場 合は、レビュー装置1602でのレビュー倍率を視野が100 μ mになるように 設定してレビューを行うわけである。これにより、小さい異物から大きい異物ま で効率良くレビューすることができ、検出異物の解析を迅速に行うことが可能と なる。

[0033]

なお、本例では、検査装置1601から異物の大きさ情報を出力し、その大きさに応じてレビュー装置の倍率を変える例を説明したが、他の方法として、レビュー装置1602でのレビュー倍率やレビュー視野の情報を検査装置1601の検査データに付け加えても良い。また、本例ではレビュー装置1602のレビュー倍率として、異物の大きさに対し、10倍の視野になる倍率でレビューする例を説明したが、他の倍率でも良く、また、検査装置1601での異物の位置情報の精度がわかっている場合は、異物の大きさ情報による倍率と位置情報の精度を加味した倍率でレビューしても良い。

[0034]

また、本例では、異物のレビューをレビュー装置1602で行う例で説明したが 、異物のレビューを本発明の異物および欠陥検査装置で行う場合も、本手法を適 用することが可能である。

[0035]

[異物の大きさの測定]

次に、本発明による異物または欠陥の検査方法及びその装置を用いて異物の大きさを測定する処理について説明する。

[0036]

図3は、異物が存在するときの画像データを示す図と、異物データを測定した ときの信号強度の分布を示す図である。

[0037]

図4は、二種類の信号強度の分布を対比した図と、信号強度の最大値を求める ための説明図である。

[0038]

図3 (a) は、異物が存在する場合に、信号処理回路105で処理される画像の一例を示したものであり、画像の中央部に異物データ201が存在している。 異物データ201は、光検出部104から出力され、信号処理回路105によって濃淡値を持ったデータとして捉えられる。図3 (b) は、図3 (a) を3次元的に表現したもので、x、y軸は画像内での位置を定めるための座標軸あり、z 軸はその位置での信号強度をプロットし、線で結んだものである。この図3(b)で、波形202が異物データ201の波形データを示している。この波形202は、照明光学系101、検出光学系103の性質からガウス分布に近似可能な波形となり、被検査物102上の異物の大きさによって、このガウス分布の幅や高さが変化する。さらに、該分布の幅や高さは照明光学系101で用いたレーザ照明の照度によっても変化する。したがって、分布の形状や特徴量を本発明の装置構成で各種の標準粒子に対して事前に測定しておき、その測定結果と検出した波形202とを比較すれば、検出異物の大きさ情報を得ることができる。

[0039]

ここで、標準粒子の波形と異物の波形202を比較する方法としては、異物データ201部分の信号強度の総和(積分値)、すなわち、波形202の容積データを測定しておき、標準粒子での容積データと異物データ201の容積データを比較すればよい。ただし、これらのデータの測定時に照明光学系101の照度の違いがある場合は、それぞれの容積データをそれぞれ用いた照明光学系101の照度で除算することによって正規化するか、照度の比を異物データ201または標準粒子の容積データに掛け合わせることによって容積データの補正をおこなう

[0040]

また、波形を比較する別の方法として、波形202の信号強度の最大値、また は波形202の幅を比較しても良い。

[0041]

信号強度の最大値を求める方法について図4を用いて説明する。図4は、波形202と同様に、異物データの波形データの例を示しており、図4(a)は、光検出部104によって得られた異物データの信号波形が、ピークを持つ山形の波形になっている例であり、これは、信号が光検出部104の飽和領域に達していないことを示している。また、図4(b)は、異物データの信号波形が、頂上で台地のような波形になっている例であり、これは信号が光検出部104の飽和領域に達しており、飽和領域以上のデータが存在しないことを示している。

[0042]

信号強度の最大値は、図4(a)のような信号波形を描く場合には、波形の各画素の信号強度を比較し最大となった値、すなわち、ピーク点信号強度301を信号強度の最大値とする。また、図4(b)のような信号波形を描く場合には、以下に示すような計算をおこなって、信号強度の最大値を求める。

[0043]

先ず、飽和領域302において、x、y方向に対し、飽和している領域の最大長を求める。図4(c)に示されているのは、その最大長部分による図4(b)の断面である。この図4(c)において、横軸は最大長部分の画素位置を示す座標軸であり、縦軸は信号強度を示す座標軸である。また、信号強度303は、光検出部104の飽和レベルを示している。この断面に対し、飽和していない信号304を3点以上選択する。ここでは、3点選択するものとして説明しよう。選択する点として、この断面部の飽和していない信号を信号強度の大きいものから3点選択する。選んだ3点のデータに対し、それぞれの座標をx1、x2、x3、また、それぞれの信号強度をz1、z2、z3とすると、未知数k、σ、uを用いて

$$z 1 = k / \sigma \times e \times p (-(x 1 - u)^2 / (2 \times \sigma^2))$$

$$z = k / \sigma \times e \times p (-(x 2 - u)^2 2 / (2 \times \sigma^2))$$

$$z 3 = k / \sigma \times e \times p (- (x 3 - u)^2 / (2 \times \sigma^2))$$

のガウス分布の式が得られる。未知数 k 、 σ 、 u は、前記 3 式を連立させることにより求めることができる。そして、求めた k 、 σ の値を用いると、図 3 (b)の信号強度の最大値は、

k/σ

として計算できる。

[0044]

なお、ここでは、未知数 u を用いて計算した例を示したが、必ずしも未知数 u を用いなくても良い。その場合、前記信号304を2点選択する。選択する点として、該断面部の飽和していない信号を信号強度の大きいものから2点選択する。該2点のデータに対し、それぞれの座標をx1、x2、また、それぞれの信号

強度をz1、z2とすると、未知数k、σを用いて

 $z 1 = k / \sigma \times e \times p (-(x 1)^2 / (2 \times \sigma^2))$

 $z = k / \sigma \times e \times p (-(x 2)^2 / (2 \times \sigma^2))$

のガウス分布の式が得られる。未知数k、 σ は、前記2式を連立させることにより求めることができるため、該k、 σ の値を用いると図3(b)の信号強度の最大値は

 k / σ

として計算できる。

[0045]

以上の計算によって得られる信号強度の最大値を標準粒子の値と、検出した異物の値とで比較することにより、異物の大きさを測定することができる。

[0046]

次に、信号強度の最大値を計算する時の別の実施例を図17で説明する。

[0047]

図17は、図4(b)と同様に異物データの信号波形が、頂上で台地のような波形になっている飽和した信号分布を示す図と、前記飽和した信号部分の形状を示した図と、信号強度の最大値を求めるための説明図である。図17(a)は信号波形1701と頂上部1702の関係を示しており、信号波形1701のうち、光検出部104の飽和領域に達しているために、飽和領域以上のデータが存在しない部分が頂上部1702である。また、図17(b)は信号波形1701の断面波形を示したものであり、縦軸が信号強度を、横軸が信号の画素位置を示している。同図において、飽和レベル1703は光検出部104の飽和レベルを示しており、信号幅1704は前記頂上部1702の幅を示している。また、信号強度1705は、光検出部104に用いる検出器として飽和しない検出器を用いたときに得られる信号強度の最大値である。

[0048]

次に飽和した信号波形1701から信号強度の最大値1705を計算する方法を説明する。飽和レベル1703をSL、信号幅1704をSW、信号強度1705をPLとおき、ガウス分布に近似すると、

 $SL = k/\sigma \times e \times p \left(-(-SW/2)^2/(2\times\sigma^2)\right)$

 $PL = k / \sigma$

が得られる。ここで、 k は係数であり、 σ は本発明の異物および欠陥検査装置に おける光学系の構成から計算される値である。

[0049]

従って、前記2式より、PLは

 $PL = SL/exp(-(-SW/2)^2/(2\times\sigma^2))$

として計算される。ここで、SLは光検出部104の飽和時の出力であるので、例えば、光検出部104のADコンバータが8ビットの場合は255階調である。また、σは光学系の構成より0~1の値で与えられる。次に、SWの計算方法について説明する。図17(c)は、前記頂上部1702の形状を示している。つまり、光検出部104が飽和している領域である。同図は、飽和領域1706と信号幅1704で構成されている。ここで、信号波形1701はガウス分布と考えられるので、飽和領域1706は円と仮定できる。従って、信号幅1704をSW、飽和領域1706をSAとすると、

 $SW = 2 \times \sqrt{(SA/\pi)}$

で計算できる。なお、√(A)はAの平方根を計算することを意味しており、πは円周率である。また、飽和領域1706は光検出部104が飽和している画素の数を飽和領域とすれば良い。ここで、飽和している画素とは、光検出部104のADコンバータによる出力の最大値を用いれば良く、光検出部104の電気的なノイズを考慮して設定すれば良い。例えば、ADコンバータが8ビットの場合は、出力の最大値は255階調であるが、電気的なノイズが10階調ある場合は、245階調以上を飽和していると考えても良い。

[0050]

また、信号波形1701が飽和していない場合は、飽和レベル1703として 信号波形1701の最大値を用いて同様の計算をすれば良い。

[0051]

以上の計算により、信号強度の最大値を計算することができるので、標準粒子 で計算した値と、検出した異物で検出した値を比較することにより、異物の大き さを測定することができる。

[0052]

なお、以上の説明では、信号強度の最大値を例に採って説明したが、信号強度の最大値の代りに、異物の信号強度の積分値を用いても良い。この場合、異物の信号強度の積分値を算出する方法としては、検出された異物信号の各画素の濃淡値を加算した値を用いれば良い。また、本説明では8ビットのADコンバータで説明したが、10ビットやそれ以上のビット数のADコンバータを用いても良い。また、本例では、信号幅1704を円の直径として算出する例で説明したが、直径の代りに飽和領域の最大長となる幅や最小長となる幅を用いても良い。

[0053]

なお、本実施形態では、上記の装置構成の説明時に、照明光学系101はレーザ 光を用いる例を挙げたが、レーザ光の代りに白色光を用いても良い。また、被検 査物が繰り返し性を有する回路パターンの場合は、その繰り返しパターン上に異 物の存在しない画像と異物の存在する画像との差分をとった後に上記の大きさ測 定処理をしても良い。また、繰り返し性の有無にかかわらず、回路パターン上や 膜上、例えば酸化膜や金属膜上の異物において、事前に回路パターンや膜からの 散乱光データや反射率データが得られる場合には、そのデータを用いて異物の大 きさデータを補正しても良い。さらに、異物の大きさを測定するために、本例で は標準粒子の大きさと比較する場合について説明したが、標準粒子の代りに大き さが既知の異物と比較しても良い。

[0054]

次に、大きさが既知の異物のデータを用いた場合の、前記信号強度の最大値から異物の大きさを算出する方法の一例を図15で説明する。図15は横軸に本発明の異物および欠陥検査装置で得られた、異物の信号強度の最大値を設定し、縦軸に異物の大きさを設定したグラフである。ここで、異物の信号強度の最大値は上記の方法で算出した値であり、また、異物の大きさは測長SEM等のレビュー装置で異物の横方向の大きさと縦方向の大きさを測定し、前記横方向の大きさと縦方向の大きさを乗算した値の平方根の値である。図15において、プロット点1501は一つの異物に対するデータを示しており、図15は複数の異物のデー

タを表示している状態である。また、近似曲線1502は前記プロット点150 1のデータを元に最小二乗法で計算した近似曲線である。この時、前記グラフの 横軸をx、縦軸をyとしたときに、前記近似曲線式はy=a×x+bと表すこと が出来る。ここで、aおよびbは最小二乗法で求めた値である。

[0055]

信号強度の最大値から異物の大きさを算出する方法は、前記信号強度の最大値 と異物の大きさとの関係式を求め、前記関係式を用いて信号強度の最大値から異 物の大きさを算出すれば良い。

[0056]

次に動作を説明する。まず、上記の方法にて事前に近似曲線式1502を算出しておく。次に、本発明の異物および欠陥検査装置で被検査物を検査する。そして、前記検査時に上記で説明した異物の信号強度の最大値を算出する。この時、前記近似曲線式を用い、近似曲線式のxに信号強度の最大値を代入することによって計算されたyを異物の大きさとすれば良い。

[0057]

上述の方法にて算出した結果の一例を図30と図31に示す。図30は、横軸に本発明の異物または欠陥の検査装置の信号出力から算出した異物の大きさを、縦軸に測長SEMで測定した異物の大きさを配した図であり、プロット点3101は1つの異物の情報に対応している。また、直線3102はプロット点3101の各点を最小二乗近似したときの近似直線であり、数値3103はプロット点3101の相関値を示したものである。

[0058]

さらに、図30(a)は1層パターン付きウェハ上で検出された異物の大きさの 測定結果を示しており、図30(b)は多層パターン付きウェハ上で検出された 異物の大きさの測定結果を示した例である。

[0059]

図31は図30と同様に横軸に本発明の異物または欠陥の検査装置の信号出力から算出した異物の大きさを、縦軸に測長SEMで測定した異物の大きさを配した図に加えて、用いた異物のSEM写真を併記した例である。

[0060]

なお、本例では縦方向の大きさと横方向の大きさの平方根を計算したが、異物の 大きさとしては、異物の縦方向の大きさと横方向の大きさの大きい方の値を異物 の大きさとしても良いし、縦方向の大きさと横方向の大きさの平均値を異物の大 きさとしても良い。また、異物の長径を用いても良いし、短径を用いても良い。 さらに、近似曲線としては、1次の曲線つまり直線に近似しても良いし、高次の 曲線や対数関数の曲線、または、指数関数の曲線でも良いし、複数の曲線を組み 合わせても良い。

[0061]

また、異物の形状別に近似曲線を変えた場合に、上記のように計算した異物の大きさと、測長SEMで測定した異物の大きさとの相関が良くなる場合は、異物の形状別に近似曲線を変えても良い。ここで、異物の形状の違いとは、異物の上方から測定した大きさと側方から測定した大きさの比率が違う場合、例えば、球状の異物と平たい板状の異物との違いや、異物とキズとの違いである。

[0062]

ここで、異物とキズの区別の方法について図18を用いて説明する。図18は異物とキズを判別するための構成を示した図と、判別の方法を示した図である。図18(a)は、基板1801、異物1802、落射照明光1803、斜方照明光1804、光検出器1805、記憶回路1806、比較回路1807で構成されている。ここで、落射照明光1803は基板1801の面の垂線方向に近い角度で基板1801に照射されている光であり、斜方照明光1804は基板1801の水平方向に近い角度で基板1801に照射されている光であり、光源としては例えばArレーザやYAGレーザ等である。また、光検出器1805はTVカメラやCCDリニアセンサ、TDIセンサやフォトマルである。

[0063]

次に動作を説明する。まず、異物またはキズに落射照明光1803を照射し、異物またはキズからの散乱光を光検出器1805で検出し、散乱光量を記憶回路1806に記憶しておく。次に、落射照明光1803の照射を止め、斜方照明光1804を照射し、異物またはキズからの散乱光を光検出器1805で検出し、散

乱光量を記憶回路1806に記憶しておく。次に記憶回路1806の前記光強度を比較回路1807で比較する。この比較回路1807では、落射照明光1803を照射したときの散乱光量と斜方照明光1804を照射したときの散乱光量との比を計算し、事前に決めたしきい値と比較し、異物かキズかを判定する。ここで、判定の方法は、図18(b)に示すように、異物の場合は散乱光量の比が小さく、キズの場合は散乱光量の比が大きいことを利用して判定すれば良い。

[0064]

次に、複数の近似曲線を持つ場合の異物の大きさの算出方法について図19を 用いて説明する。図19は検出信号の最大値の記憶部1901、異物とキズの判 別部1902、変換曲線の選択部1903、異物の大きさの算出部1904から 構成されている。

[0065]

次に動作を説明する。まず、本発明の異物または欠陥の検査装置にて、上述した方法にて信号強度の最大値から異物の大きさを算出するための変換式を、異物とキズに対して作成し、変換曲線の選択部1903に格納しておく。次に、前記検査装置にてウェハの検査を行う。このとき、検出物の信号強度の最大値を記憶部1901に記憶しておく。次に、上述した方法で前記の検出物に対して異物かキズかの判別を判別部1902で行う。この判定により、変換曲線の選択部1903から変換曲線を選択し、前記選択した変換曲線と前記記憶部1901に記憶した信号強度の最大値を異物の大きさの算出部1904に入力し、異物の大きさを算出すれば良い。

[0066]

以上、本実施例では異物や欠陥の形状別に変換曲線を設定する例を説明したが、 他にも、非検査物に対する異物の検出位置別、例えば、回路パターン上の異物で あるか、パターン無し部の異物であるかにより、近似曲線を変えても良い。また 、非検査物の表面状態、例えば、表面がアルミニウム膜であるか、タングステン 膜であるかによって近似曲線を変えても良い。

[0067]

[測定した異物の大きさの校正方法]

次に、本発明の異物および欠陥検査装置で測定した異物の大きさを校正する方法 を説明する。この校正は、本発明の異物および欠陥検査装置において、照明光学 系101が劣化等で照明光量が変動したとき等に用いる。

[0068]

校正方法の一例を説明する。まず、校正用のウェハとして、大きさが既知の標準 粒子を付着させた鏡面ウェハを用意する。標準粒子の種類は、2種類以上用意することが望ましい。例えば、0.2μmの標準粒子と0.6μmの標準粒子を付着させた鏡面ウェハである。次にこれらのウェハを本発明の異物および欠陥検査装置で検査し、検出した異物の大きさを表示させる。この時、検査装置に問題がなければ、0.2μmと0.6μmの部分にヒストグラムのピークが発生する。例えば、図26は縦軸に異物の検出個数、横軸に検出した異物の大きさを設定したグラフであるが、図26のように0.2μmの部分と0.6μmの部分で検出数が多くなっている状態である。図26の状態に対し、図27は照明光学系101で用いたレーザ光源が劣化し、照明光量が1/2に減少してしまった場合の例を示しており、0.1μmと0.3μmの部分で検出数が多くなっている。つまり、照明光量が少なくなってしまったため、散乱光量も少なくなり、異物の大きさが正しい値よりも小さく測定されてしまった例である。

[0069]

次に、検査装置を校正するための校正係数を求める方法を説明する。まず、上記で検査した標準粒子の大きさをSS、本発明の検査装置で測定した異物の大きさをISとする。このとき、照明光量の低下分は前記SSとISとの比で求められるので、校正係数をVRとすると、

VR = SS/IS

で算出できるので、校正方法としては照明光量をVR倍するか、散乱光量から異物の大きさを算出するときの変換式をVR倍すれば良い。つまり、上述の例の場合、標準粒子の大きさSSを $0.2 \mu m$ 、検査装置で測定した異物の大きさISを $0.1 \mu m$ とすると、校正係数VRは、

VR = 2

となるので、照明光量を2倍すれば良いわけである。

[0070]

なお、ここでは、校正用ウェハとして、大きさが既知の標準粒子を付着させた ウェハを用いた例を説明したが、校正用ウェハとしては、異物・欠陥の大きさが 既知であれば良いので、大きさが既知の欠陥を意図的に作りこんだウェハを用い ても良い。

[0071]

次に図2を用いて、別の校正方法について説明する。これは、異物の大きさとしてレビュー装置で測定した値を用いる方法である。まず、異物検査装置1301でウェハの検査を行い、その検査結果、すなわち、検出異物の検出時の通し番号や異物の位置情報や異物の大きさ情報を付加してデータサーバ1302にネットワーク1306を介して送信する。ウェハをレビュー装置1303に移動させた後、レビュー装置1303でレビュー作業を行い、そこで測定した異物の大きさ情報を前記検査結果に付加する。ここで、異物の大きさ情報は例えば、レビュー装置1303として測長SEMを用いたときには、前記測長SEMで異物の横方向の大きさと縦方向の大きさを測定し、前記横方向の大きさと縦方向の大きさを乗算した値の平方根を異物の大きさ情報とすれば良い。次に、前記検査結果に付加した情報をデータサーバ1302に送信し、前記付加した情報を異物検査装置1303で受信し、大きさ情報に基づき、異物検査装置1303で出力する異物の大きさ情報を校正する。

[0072]

校正方法について図28を用いて説明する。図28は異物検査装置1301で測定した各異物の大きさ情報を横軸に、前記レビュー装置1303で測定した大きさ情報を縦軸に設定したグラフである。図28において、プロット点2901は同一異物の大きさ情報であり、図28は複数の異物の情報をプロットしている状態を示している。ここで、異物の大きさが正しく測定されている場合は、プロット点2901は直線2902付近にプロットされる。校正方法としては、まず、プロット点2901のデータを最小二乗法等で近似直線を求める。この近似直線が直線2903であり、ここでは

 $y = a \times x + b$

で表す。ただし、xは横軸である検査装置1301で測定した異物の大きさ、y は縦軸であるレビュー装置1303で測定した異物の大きさである。また、a および b は前記の最小二乗法で算出された値である。次に、本発明の異物または欠陥の検査装置で検査し、異物の大きさを測定し、測定した大きさを前記の式の x に代入することにより、得られた y を校正後の異物の大きさとすれば良い。

[0073]

なお、ここでは、校正する方法として直線に近似した説明したが、これは高次の曲線や対数関数、または、指数関数でも良いし、複数の曲線を組み合わせた式にしても良い。また、異物の大きさの校正に用いるウェハは1枚には限らず、複数枚のウェハを用いても良い。

[0074]

以上の説明では、散乱光により異物検査をおこなってきた。この方法のメリットとしては、異物の発見が能率的におこなえることがある。また、上で述べた方法によって、異物の大きさを求めることにすれば、大きさを測定するための特別な光源を必要とせず、異物を発見することと、その大きさを測定することが、同一の散乱光による光源でおこなえると言うメリットがある。

[0075]

[不良原因の解析と結果表示]

次に、本発明の異物または欠陥の検査装置により、異物の大きさを測定したと きに、不良原因を解析する手順と結果をユーザに表示する手順について説明する

[0076]

図5は、不良原因によって、異物の大きさと発生個数の関係が変わることを示 した図である。

[0077]

図6は、異物の検出個数と異物の大きさを折れ線グラフで示した図である。

[0078]

図7は、異物の検出個数と異物の大きさをヒストグラムで示した図である。

[0079]

図8は、ウェハ上の特定の大きさの異物を明示的に示した模式図である。

[0080]

図9は、時系列で、特定の異物の大きさ毎の検出個数の推移を示したグラフで ある。

[0081]

図10は、ユーザに異物の発生した不良原因を表示する画面の図である。

[0082]

図20は、複数のウェハの異物の検出個数と異物の大きさをヒストグラムで示 した図である。

[0083]

図21は、ウェハ上の検出物を異物とキズに分けて大きさ別のヒストグラムで 示した図である。

[0084]

本発明の重要なアイデアの一つとして、異物の大きさ情報を不良原因の解析の ために用いることがある。以下、異物の大きさ情報を不良原因の解析のために用 いることの有効性を説明しよう。

[0085]

ここで、半導体製造装置、例えば、エッチング装置にかけたウェハから異物が 検出され、異物の大きさと発生個数の関係が、図5に示されるようになったとす る。図5(a)における領域401は、エッチング装置のプロセス中に定常的に 発生する異物の分布を示している。この場合には、異物の大きさはa~bの部分 に集中していて、異物の大きさに従って、なだらかな山が一つできている。

[0086]

これに対して、図5(b)は、装置異常時の異物発生分布の一例を示したものであり、この場合には、領域401に示す定常状態での異物に加えて、領域402に示すような大きい異物(大きさc以上の部分)が多発している。この原因として、エッチング処理中にエッチング装置の内側壁面に堆積した堆積物が壁面から剥がれ落ちたことが考えられる。また、図5(c)も異常時の発生異物分布の

一例を示している。この場合、定常状態での異物に加えて、異物の大きさが d ~ e の部分に集中していることを示している。この原因としては、エッチング処置中に特定パターンが剥がれ飛んだことが考えられる。

[0087]

このように、半導体等の製造装置においては、発生する異物の大きさと異物の 発生原因に関連があり、特定の大きさの異物発生状況を管理することにより、製 造装置での異物の発生原因を迅速に知ることができる。すなわち、異物の大きさ とその発生個数の関係を調べることにより、不良原因を究明することができる。

[0088]

なお、当然のことながら、前記 a ~ e 等の値は製造装置・製造プロセス等により変化する値であり、また、他の原因で発生した異物では、異なった大きさの分布を示す場合があるので、発生原因毎の異物の大きさ分布に合わせたデータを用いる方が良い。また、本例では二つの範囲で異物の発生の原因を特定しようとしたが、二つ以上の領域に分割しても良い。

[0089]

次に、具体的に不良原因を解析する機能について説明する。

[0090]

先ず、データ表示部106で異物の大きさと検出個数の表示について説明する。データ表示部106では、前述したような異物の大きさ分布のグラフ、つまり、異物の大きさとその異物の検出個数の関係が分かるようなグラフを表示する。

[0091]

図5は横軸に異物の大きさを、縦軸に検出した異物の個数を配したグラフである。点501は、大きさ別の検出個数を示しており、このグラフの例では、0.1 μm単位のデータを示している。また、グラフ502は、点501を直線で結んだ線である。本例のようなグラフを表示することにより、被検査物102から検出された異物の分布がどのようになっているかを迅速に見て取ることができる。

[0092]

ここで、横軸の最小値は、例えば、異物検査装置の最小検出寸法か、半導体製造ラインで管理したい異物の大きさにすれば良い。また、目盛りはこのグラフの

様に対数表示しても良いし、線形にしても良く、目盛りの単位を可変にしても良い。さらに、各軸の表示範囲は固定していても良いし、可変にしても良く、例えば、特定の大きさだけ表示させることによって、特定の発生原因の異物だけを表示させても良い。また、縦軸と横軸に配する内容を入れ替えても良く、検出異物数の代わりに異物の密度で表現しても良い。さらに、本例ではグラフを表示したが、グラフの他にグラフの平均値やグラフの標準偏差値または分散値も表示しても良い。また、本例ではウェハ1枚分の異物データを1枚のグラフとして表示しているが、必ずしも1枚分である必要は無く、複数枚のウェハの異物データの平均値や標準偏差値や分散値を表示しても良く、また、複数枚のウェハの異物データをそれぞれ並べて表示しても良い。

[0093]

また、グラフの表示は、図7や図32に示したようなヒストグラムでおこなっても良い。これらの図のグラフは、図6と同様に横軸に異物の大きさを、縦軸に検出した異物の個数を配したグラフである。このグラフでは、横軸を異物の大きさをある区間毎に区分けして表示しており、図7はデータ区間を0.2μm単位にした場合を示している。また、図32はデータ区間を0.1μm単位にし、5μm以上の異物のデータは棒グラフ3301の部分でカウントし、さらに、1.1μm未満の異物のヒストグラムと1.1μm以上の異物のヒストグラムとで表示色を変えた例を示している。さらに、棒グラフを選択すると選択された部分の検出異物の位置情報を表示する機能を付加しても良く、また、選択した部分の検出異物のレビュー像を表示しても良い。

[0094]

さらに、図34にグラフ表示の別の例を示す。図34は横軸に異物の大きさを 、縦軸に異物の累積個数を設定した例である。ここで、累積個数とは、ある異物 の大きさ以上の異物が何個検出されているかを示している。

[0095]

さらに、図35にグラフ表示の別の例を示す。図35は横軸に異物の大きさを 、縦軸に異物の検出個数を設定し、検出異物数の曲線3601と検出異物数の曲 線3601の式3602を併記した例を示している。なお、式3601は異物の 大きさをx、検出異物数をyとして表示しており、各異物の大きさにおける異物 検出数から求めた近似式である。また、曲線3601は式3602のグラフを表 示した例である。

[0096]

また、図20にグラフ表示の別の例を示す。図7の例ではウェハ1枚分のデータを表示しているが、図20に示すように複数枚のウェハのデータを並べて表示しても良い。なお、図20は3つの座標軸の内、一軸に検出異物数を、別の一軸に異物サイズを、また、別の一軸にウェハの番号を設定した例である。なお、本例では、異物サイズのデータ区間を0から1μmまでは、0.1μm単位に設定し、1μm以上はすべて同じ棒グラフでカウントし、さらに、検出異物数の総数も表示した例である。また、この場合も図6の場合と同様に、複数枚分の異物データの平均値や標準偏差値や分散値を表示しても良い。

[0097]

さらに、図21にグラフ表示の別の例を示す。図21は表示データを異物とキズに分けて表示した例である。図21は異物とキズ別に、さらに異物・欠陥サイズ別に表示した例である。

[0098]

この検出した異物の位置情報を表示する機能について説明する。図8(a)は、異物検査によって検出された全検出異物の位置情報を表示している。

[0099]

この図では、例えば、8インチの半導体ウェハの外形701上に、検出された 異物702が存在することを示している。このとき、図7における棒グラフ60 1をクリック、あるいは、ダブルクリックすると、棒グラフ601の区間、すな わち、2.8μm~3.0μmの異物703の表示を図8(b)のように変える 機能を設ける。これにより、特定の大きさの異物の被検査物102上での位置が 迅速に把握可能となる。

[0100]

図22に異物検査後の検査結果を表示した例を示す。図22は、異物の検出位置を示した検査マップ2201、検出した異物の大きさのヒストグラム2202

、レビューボタン2203、検出した異物のレビュー像2204、異物2205、レビューする異物の大きさのデータ区間2206で構成されており、レビュー像2204は異物2205を中心とした像を表示したものである。また、本例ではデータ区間2206として、大きさが2.8μmから3.0μmの異物を選択している例である。

[0101]

動作としては、まず、本発明の異物または欠陥の検査装置で異物を検査した後、異物の位置情報として検査マップ2201と異物の大きさ情報としてヒストグラム2202を表示する。そして、レビューしたい異物の大きさとしてデータ区間2206を選択し、レビューボタン2203を押すことにより、本発明の異物または欠陥の検査装置で得られるレビュー像2204を表示する。ここで、レビュー像2204はレーザ散乱光による画像でも良いし、顕微鏡による像でも良い

[0102]

次に、図9により特定の異物の大きさを時系列で統計を取ったときの管理手法 について説明する。

[0103]

ここで、図9(a)は、同一製造装置で処理された同一プロセスのウェハについて、異物検出装置で検出された大きさを問わないあらゆる異物の総和の時系列毎の推移を表示したもの、図9(c)は、図7の例に示した異物の大きさの2.8~3.0[μm]の大きさの異物の総和の時系列毎の推移を表示したものであり、また、図9(b)は、それ以外の大きさの異物の総和の時系列毎の推移を表示したものであるとする。

[0104]

また、しきい値1001、1002、1003はそれぞれの異物数の管理基準値を示しており、これらのしきい値よりも多くの異物を検出した場合は、そのウェハが異常であると診断することを示している。すなわち、図9(a)は、検査時点Aのあたりのピーク値1004が異常を示していると判断される。

[0105]

ところが、図9(a)での統計だけでは、なんらかの異常が出ていることは推 測されるが、その原因究明まではおこないがたい。

[0106]

一方、本発明の検査手法により、大きさ別に異物の大きさを管理すると、図9 (c)のA時点で著しいピーク1005が見られ、この時点で検査されたロットに2.8~3.0 [μm]の大きさの異物が特に集中していることがわかる。したがって、図10(b)ではしきい値を超えた部分がなく、図10(c)ではピーク値1005が検知されていて、図5に示した理由によって、ユーザは、エッチング処置中にウェハ上のこの大きさのパターンが剥がれ飛んだことが異物が特に多くなった要因だと推測でき、エッチング装置を点検するなどの有効な不良対策を迅速におこなうことが可能になる。

[0107]

次に、図11により不良原因をユーザに表示する例を説明する。

[0108]

本発明に係る異物または欠陥の検査装置は、異物の大きさと異物の検出個数を解析して、不良原因をユーザに表示する機能を有する。

[0109]

例えば、図5 (c) に挙げた不良原因をモデルに採って、図7の示されるグラフのような結果が検査の結果が得られたとする。そして、図5のd~eの区間が図7の2.8 μ m~3.0 μ mに対応しているものとする。したがって、図7に示された検査結果が得られた場合には、図9に示される画面を表示して、ユーザに不良原因の解析結果を明示する。

[0110]

次に、異物の大きさを用いた管理手法の別の例を説明する。検査装置で検出した異物には、不良原因となる異物と不良原因とならない異物がある。つまり、ウェハ上に作られた配線パターンの配線幅や配線間のスペースに対して、異物が小さい場合、その異物は不良原因にならない場合が多い。従って、検出した異物の大きさに対し、ある大きさ以上の異物を不良原因となる異物として管理すれば良

٧١.

[0111]

次に、管理すべき異物の大きさを算出する方法の一例を説明する。図23はウェハ上の配線幅がW1の配線パターン2401と配線幅がW2の配線パターン2402、配線幅がW3の配線パターン2403および異物2404の関係を示している。この異物2404が導電性の異物である場合、この異物2404が例えば配線パターン2401と配線パターン2402を跨ぐ位置2405に存在すると、配線パターン2401と配線パターン2402は異物2404を介してショートしてしまい、このチップは不良となる。従って、配線パターン2401と配線パターン2402との間の距離をS1、配線パターン2402と配線パターン2403との間の距離をS2とすると、配線パターン2402と他の配線をショートさせる可能性の有る異物2404の大きさは、S1またはS2以上大きさの異物であり、特に、(S1+W2+S2)以上の大きさの異物は100%の確率で配線をショートさせる。

[0112]

従って、配線パターン幅および配線間の距離が前述した大きさの場合は、不良 原因となる異物の大きさは、

MIN (S1, S2)

で与えられる大きさ以上の異物である。ここで、MIN(A、B)はAとBとを 比較した場合の小さい方の値であることを示している。

[0113]

ただし、ここでは管理する上で最も厳しい条件を算出する例を示したが、もっとゆるい条件で管理する場合はもっと大きい異物を管理しても良い。

[0114]

上記のような計算により、各製造プロセスで管理すべき異物の大きさを決定し、管理すべき大きさ以上の異物の検出個数の変動を監視することにより、不良の発生をいち早く察知することが可能となる。ここで、監視の方法としては、例えば、数枚から数十枚のウェハでの検出された、管理すべき異物の個数の平均値と標準偏差を算出しておき、

監視しきい値=平均値+k×標準偏差

で算出される監視しきい値で異物の個数を監視し、監視しきい値を超えたウェハ に対しては、不良原因の解析および対策を施せば良い。ここで、kは定数であり 、例えば、不良解析を行うウェハを全ウェハの0.3%程度にしたい場合は、

k = 3

として算出すれば良い。

[0115]

次に、管理すべき異物の大きさを算出する別の方法を説明する。これは、1枚のウェハ上で検出された異物の有無と前記異物が検出されたチップの良品・不良品から、異物がもたらすウェハの歩留まりへの影響を算出し、その算出値が最大になる異物の大きさで管理する方法である。

[0116]

歩留まりへの影響の算出方法について図29を用いて説明する。図29はウェハ上のチップに対し、異物の有無とチップの良品・不良品のカテゴリ分けを示した図であり、異物が検出されていないチップであり、かつ、良品であったチップ3001(以下ではGnと記す)、異物が検出されていないチップであり、かつ、不良品であったチップ3002(以下ではBnと記す)、異物が検出されたチップであり、かつ、良品であったチップ3003(以下ではGpと記す)、異物が検出されたチップであり、かつ、不良品であったチップ3004(以下ではBpと記す)で構成されている。ここで、あるチップで異物が検出されているか否かは、例えば、本発明の異物または欠陥の検査装置での検査結果における位置情報を基に判定すれば良く、また、あるチップが良品であるか否かの判定は、例えば、電気検査の結果を用いれば良い。

[0117]

まず、あるウェハの歩留まりをY、異物が検出されなかったチップの歩留まりをYnとしたときに、検出された異物がもたらすウェハの歩留まりへの影響 d Y を

dY = Y n - Y

と定義する。Yはウェハの歩留まりであるから、異物が検出されたチップの歩留

まりをΥp、全チップ数に対する異物が検出されたチップの割合をγ (以下では、異物発生頻度と呼ぶ)とすると、

$$Y = Y n \times (1 - \gamma) + Y p \times \gamma$$

と表すことができる。

[0118]

ここで、上述したGn、Bn、Gp、Bpを用いると、それぞれ、

$$Y = (Gn+Gp) / (Gn+Bn+Gp+Bp)$$

$$Y n = G n / (G n + B n)$$

$$Y p = G p / (G p + B p)$$

$$\gamma = (Gp + Bp) / (Gn + Bn + Gp + Bp)$$

と表すことができる。

[0119]

従って、dYは

$$dY = Yn - Y$$

$$= Y n - (Y n \times (1 - \gamma) + Y p \times \gamma)$$

$$= (Y n - Y p) \times \gamma$$

$$= Y n \times (1 - Y p / Y n) \times \gamma$$

と表すことができる。ここで、異物によってチップが不良になる確率をF(以下では致命率と呼ぶ)とすると、

$$Y p = Y n \times (1 - F)$$

と表すことができるので、書きかえると、

$$F = 1 - Y p / Y n$$

であるから、

$$dY = Yn \times F \times \gamma$$

と表すことができる。

[0120]

ここで、異物発生率γは、異物の検出感度が高いほど大きな値になり、検出感度が低いほど小さな値になる。これは、検出感度が高いほうが異物を多く検出するからである。また、致命率Fは、異物の検出感度が高いほど小さな値になり、

検出感度が低いほど大きな値になる。これは、検出感度が高いほど微小な異物を 検出するが、上述しているように、配線パターン間の距離より異物が小さい場合 はショート等の不良にならないためである。

[0121]

従って、歩留まりへの影響 d Y の算出をするときに、算出に用いる異物の大きさを限定して算出を行い、歩留まりへの影響 d Y が最大になる異物の大きさが、管理すべき最小の異物の大きさである。ここで、異物の大きさを限定するというのは、ある大きさ以上の異物のデータを使うことを示している。

[0122]

歩留まりへの影響 d Y を算出した結果の例を図24に示す。図24は縦軸に歩留まりへの影響 d Y、横軸に歩留まりへの影響 d Y を算出した時に用いた異物の大きさを示している。例えば、図24において点2501は0.1μm以上の異物のデータを用いて計算した結果、歩留まりへの影響 d Y は0.1であることを示しており、また、点2502は0.4μm以上の異物のデータを用いて計算した結果、歩留まりへの影響 d Y は0.8であることを示している。ここで、0.1μm以上の異物のデータを用いるというのは、検出した異物のうち、0.1μm以上の異物が検出されたチップを異物が存在するチップとし、0.1μm未満の異物が検出されるか、または、異物が検出されなかったチップを異物が存在しないチップとして計算することを示している。従って、図24により、0.4μm以上の異物のデータを用いて算出した場合が最も歩留まりへの影響 d Y が大きく算出されているので、0.4μm以上の異物で管理すれば良いということである。

[0123]

ただし、本例では異物の大きさを 0. 1 μ m 単位で変化させた例を示したが、他にも 0. 2 μ m 単位でも良いし、それ以外の数値でも良い。また、本実施例では管理する異物の大きさの決定方法として、歩留まりへの影響 d Y が最大になる大きさに決定する例を説明したが、必ずしも最大になる異物の大きさでなくても良く、歩留まりへの影響 d Y の最大値に近い値、概ね最大値× 0. 9 以上の値になる異物の大きさであれば良い。

[0124]

図33に算出結果の別の例を示す。図33は、歩留まりへの影響 d Yの算出結果と、その時の異物検出マップを示している。図33(a)は、歩留まりへの影響 d Yの算出するに当たり、約0.07μm単位で算出し、縦軸の値をパーセント表示にした例である。また、図33(b)は本発明の異物または欠陥の検査装置で検出した異物を全て表示した異物検出マップであり、図33(c)は1.1μm以上の大きさの異物を抽出した異物検出マップである。この1.1μmという値は、図33(a)において歩留まりへの影響 d Yが最大になる値である。従って、異物の管理は図33(c)の異物検出マップを基に行えば良いということである。

[0125]

次に、上述した歩留まりへの影響 d Y を用いたときの、半導体デバイス製造プロセスの管理手法について述べる。図25は縦軸に上述した歩留まりへの影響 d Y を設定し、横軸に半導体の製造プロセスを設定したグラフである。なお、横軸は本発明の異物および欠陥検査装置で検査したプロセスを示している。

[0126]

次に動作を説明する。まず、同一ウェハを用いて横軸に示す各プロセスで検査を行う。次に前記ウェハの各チップが良品か不良品かが判明した時点で、上述した歩留まりへの影響 d Y を各プロセスについて算出する。図25は各プロセスで歩留まりへの影響 d Y を算出した例であり、例えば、点2601は工程4というプロセスにおいて検出された異物で算出した歩留まりへの影響 d Y は0.8であったことを示している。このように、各プロセスで歩留まりへの影響 d Y を算出し、歩留まりへの影響 d Y の値が大きいプロセスから優先的に対策することによって、半導体製造プロセスの中で歩留まりへの影響が大きい、つまり、不良原因となっている可能性の高いプロセスから対策を行うことができる。

[0127]

なお、以上の例では、各プロセスで検出された異物のデータをすべて用いた場合について説明したが、違うプロセスで発生していることがわかっている異物については、その異物のデータを除いた残りのデータで歩留まりへの影響 d Y を算

出しても良い。データを除く方法としては、例えば、図25において工程1で検 出された異物の位置情報と、工程2で検出された異物の位置情報を比較し、工程 1で既に検出されている異物については、工程2の異物のデータから削除すれば 良い。

[0128]

また、以上の例では、歩留まりへの影響dYとして

 $d Y = Y n \times F \times \gamma$

を用いた評価方法について説明したが、他にも、プロセス起因の不良の作りこみが無くなった場合の評価を行う場合は、上記のYn=1とし、

 $dY = F \times \gamma$

を用いても良いし、他にも異物の影響を算出する指標であれば本手法を適用でき、例えば、DRAM等のメモリ製品では、各異物が何ビット不良にしているかを 指標としても良い。

[0129]

また、上記の実施例において、図23を用いて説明した例は半導体デバイスの配線パターンの幅とスペースの幅の情報があれば良いので、半導体デバイスの設計が決まった時点で、管理すべき異物の大きさを決めることができるというメリットがある。それに対し、図29を用いて説明した例は、異物の幅だけでなく異物の高さによる配線ショート等の情報を加味した指標であり、実際のデバイスの状態を表しているというメリットがある。

[0130]

[領域別の異物の検査と不良原因の解析]

次に、本発明の異物または欠陥の検査装置で、ウェハ上の領域別に異物データ を管理し、不良対策をおこなう例について説明する。

[0131]

図11は、半導体ウェハの領域を模式的に示した図である。

[0132]

図12は、領域別に異物データを管理している場合に、ウェハ上の特定の大き さの異物を明示的に示した模式図である。

[0133]

図13と図14は、領域別の異物の大きさ別の検出個数を表示したグラフを示す図である。

[0134]

一般に、半導体ウェハにチップのパターンを形成する場合に、必ずしも一様に パターンが形成されるわけではなく、パターンの形成密度が高いところもあり、 低いところもある。例えば、図11に示されるチップがマイクロプロセッサのも のであるとすると、例えば、領域1101はメモリセル回路部分、領域1102 はデータの入出力回路部分、領域1103は回路パターンの存在しない部分と分 れている。通常、これらの領域1101、1102、1103では回路パターン の集積度が異なる。したがって、その帰結として、それぞれの領域において不良 原因となる異物の大きさも異なることになる。すなわち、チップ内の領域により 、管理・解析すべき異物の大きさが異なる訳である。具体的に言うと、例えば、 領域1101では、大きさα以上の異物があると不良となり、領域1102では 、大きさβ以上の異物、また、領域1103では大きさγ以上の異物があると不 良となる場合に、これらの領域情報と不良となる異物の大きさ情報を、管理デー タとして予め検査装置に持たせておく。領域情報や不良となる異物の大きさ情報 の入力方法は、検査装置に座標値や異物の大きさを入力する画面を設けて直接入 力しても良いし、ウェハの光学像をTVカメラ等で入力した画像から領域を選択 するようにしても良い。また、上位システムからデータをダウンロードしても良 いし、取り外し可能な記憶媒体、例えば、フロッピーディスクから検査装置にデ ータを読み込ませても良い。

[0135]

上記のように検査装置に領域と不良となる判定される異物の大きさ情報を持たせて、被検査物の検査をおこなう。そして、検査装置での検出異物の位置情報により領域を判定し、検出異物の大きさ情報と該不良となる異物の大きさ情報とを比較して不良原因となるか否かを判定する。

[0136]

その結果、不良原因となると判定した異物と不良原因とならないと判定した異

物の出力表示形態を変えることにより、不良原因となる異物をユーザに明示する ことにより、ユーザが不良原因となる異物をすぐに見て取ることができる。

[0137]

この手法を図12を用いて具体的に示すと以下のようになる。

[0138]

図12に示すウェハ1201には、検出異物1202の位置が示され出力されている。従来は、図12(a)に示すような検出結果であったため、不良原因の解析には、適当に異物を選択して、その異物の分析をおこなっていた。したがって、真に分析すべき異物を選択できる確率が低く、不良原因の解析に時間を要していた。しかしながら、前の判定を用いて図12(b)に示す様に、不良原因となると判定した異物、すなわち、分析すべき異物1203の表示を変えることによって、検出した異物の中から分析すべき異物1203を選択することが容易となり、分析すべき異物を選択できる確率が上がり、不良原因の解析を迅速におこなうことが可能となる。なお、図11では表示を変える方法として、表示パターンを変えて示しているが、他にも、表示パターンの色や大きさを変えても良い。

[0139]

また、不良原因となる異物のみの表示でも良い。さらに、本実施例では領域分け としてチップ内での領域分けをおこなったが、これをウェハ面内での領域分け、 例えば、ウェハ中心からウェハエッジまでの距離に応じて領域分けをおこなって 、管理する異物の大きさを変えても良い。また、ウェハの形状1201に半導体 チップのレイアウトも表示しても良い。

[0140]

次に、図13および図14により領域別に異物の検出個数を把握して、不良対 策をおこなう手法について説明する。

[0141]

この例では、一つのウェハ内を三つの領域にカテゴリー分けするものとする。

[0142]

仮に、その領域を領域A、領域B、領域Cとし、その領域別に異物の個数を検出する。そして、その結果を領域別にグラフとしてユーザに表示する。

[0143]

例えば、図13に示されるように横軸に異物の大きさを取り、縦軸に異物の検 出個数を取って、領域A、領域B、領域C毎に色分けをして、異物の大きさのカ テゴリー毎に横に並べるようにしてグラフに表示する。

[0144]

また、図14に示されるように、異物の大きさのカテゴリー毎に縦に並べるようにしてグラフに表示しても良い。

[0145]

三つの領域とは、具体的には、例えば、半導体ウェハの場合には、メモリセル 回路部とメモリセル回路以外の回路部分と回路パターンの無い部分の3つの領域 である。これらの図13や図14のように表示することにより、領域別の異物の 管理が容易となる。ここで、領域情報の入力方法は、検査装置に座標値や異物の 大きさを入力する画面を設けて直接入力しても良いし、ウェハの光学像をTVカメラ等で入力した画像から領域を選択するようにしても良い。また、上位システムからデータをダウンロードしても良いし、取り外し可能な記憶媒体、例えばフロッピーディスクから検査装置にデータを読み込ませても良い。

[0146]

さて、領域別に、異物の大きさ毎の検出個数をカウントして、不良品を見つけ 出す手法について説明する。

[0147]

前述のように、領域毎にその異物があると不良と判定される異物の大きさは異なっている。ある領域では、あまり微細な回路ではないので比較的大きな異物がついても、不良とはみなされないであろうし、ある領域では、微細な回路であり、比較的微小な異物でも支障が出る場合もある。このように領域別の警告を出すしきい値を、領域Α、領域Β、領域С毎に、α、β、γとし、

例えば、図13、図14に示される例で、

 $\alpha = 1.0 [\mu m]$

 $\beta = 1.6 [\mu m]$

 $\gamma = 2.0 [\mu m]$

4 3

であるとする。

[0148]

これによると、領域毎のしきい値を越える大きさの異物で検出された個数の総 和は、以下のようになる。

[0149]

領域A…24個

領域B…3個

領域 C…1個

したがって、見かけ上は、領域Cで検出された異物は、非常に多くなっているもののそれらは、製品の品質にはあまり影響しないものであり、一方の領域Aは、領域C程には、異物の個数は大きくないものの、製品の品質に影響する可能性が大きいため、領域Aに付着した異物のために不良品と判定される蓋然性が高いと言える。このように領域別に異物の不良とみなされるしきい値を設けて、それらを超える異物の検出個数の総和を求めて、被検査対象物の良、不良を判定し、ユーザにそのことを表示することにより、領域の特性に応じた合理的な検査をおこなうことができる。

[0150]

[異物または欠陥の検査装置の光学系について]

以上、本発明の記述では、異物または欠陥の検査装置の光学系については、散 乱光を用いて、異物を検出し、その大きさを測定するものについて説明してきた が、本発明の手法は、光学系が反射光で、異物や欠陥を検出し、その大きさを測 定するものであっても適用可能である。一般に、散乱光を用いるものは検査の能 率は良いが、測定精度に難があり、反射光を用いるものは、その逆で、検査の能 率は悪いが、測定精度は優れている。本発明の手法は、どちらについても適用可 能ということである。

[0151]

【発明の効果】

本発明によれば、半導体ウェハや薄膜基板の製造過程の検査や不良解析をおこなうにあたり、異物やパターンの特性、また、被検査物の領域の特性に応じた検

査と不良解析をおこなうことにより迅速な不良対策をおこなうことのできる異物 または欠陥の検査装置、ならびに、異物または欠陥の検査方法を提供することが できる。

【図面の簡単な説明】

【図1】

本発明に係る異物または欠陥の検査装置の概略構成を示すブロック図である。

【図2】

本発明に係る異物または欠陥の検査装置をシステムとして動作させるときのブロック図である。

【図3】

(a) は、異物があるときの画像データを示す図、及び(b) は、異物データ を測定したときの信号強度の分布を示す3次元のグラフである。

【図4】

(a) 及び(b) は、二種類の信号強度の分布を対比した3次元のグラフであり、(c) は、信号強度を最大値の求め方を説明するグラフである。

【図5】

(a)~(c)は、不良原因によって、異物の大きさと発生個数の関係を示す グラフである。

【図6】

異物の検出個数と異物の大きさの関係を示すグラフである。

【図7】

異物の検出個数と異物の大きさの関係を示すヒストグラムである。

【図8】

(a) 及び(b) は、ウェハ上の特定の大きさの異物を明示的に示した模式図である。

【図9】

(a)~(c)は、時系列で、特定の異物の大きさ毎の検出個数の推移を示したグラフである。

【図10】

ユーザに異物の発生した不良原因を表示する画面の正面図である。

【図11】

半導体ウェハの領域を模式的に示した平面図である。

【図12】

(a) 及び(b) は、領域別に異物データを管理している場合に、ウェハ上の特定の大きさの異物を明示的に示したウェハの平面図である。

【図13】

領域別の異物の大きさと検出個数との関係を示したグラフである(その一)。

【図14】

領域別の異物の大きさと検出個数との関係を示したグラフである(その二)。

【図15】

本発明に係る異物または欠陥の検査装置の信号強度の最大値と異物の大きさの関係を説明するグラフである。

【図16】

本発明に係る異物または欠陥の検査装置とレビュー装置とをシステムとして動作させる状態を示すブロック図である。

【図17】

(a)は、飽和した信号強度の分布を示す3次元のグラフ、(b)は、信号強度の最大値の求め方を説明するグラフ、(c)は、異物の長径と短径を示す異物の平面図である。

【図18】

(a) 異物とキズとを判定する機能を備えた検査装置の概略構成を示すブロック図、(b) 異物とキズとの判定方法を説明する図である。

【図19】

異物とキズとの判定を用いたときの異物の大きさを算出する方法を示すブロック 図である。

【図20】

異物の検出個数と異物の大きさの関係を複数の被検査物に対して示したヒスト

グラムである。

【図21】

異物の検出個数と異物の大きさの関係を異物とキズに分けて示したヒストグラムである。

【図22】

本発明に係る異物または欠陥の検査装置において、検出した特定の大きさの異物を画面上に表示する方法を示したディスプレイの正面図である。

【図23】

配線パターンと異物の大きさとの関係を説明した配線パターンの平面図である

【図24】

本発明に係る異物または欠陥の検査装置を用いた場合の検出感度と検出異物の 歩留まりとの関係を示すグラフである。

【図25】

歩留まりへの影響を製造プロセス毎に算出した例を示したグラフである。

【図26】

本発明に係る異物または欠陥の検査装置により標準粒子を測定した場合の異物の大きさと検出個数の関係を示したグラフである。

【図27】

本発明に係る異物または欠陥の検査装置の検出異物の大きさの感度を校正する前の状態の異物の大きさと検出個数の関係を示したグラフである。

【図28】

本発明に係る異物または欠陥の検査装置の検出異物の大きさの感度を校正する場合に用いる、本発明による検査装置で測定した異物のサイズとSEMで測長したサイズとの関係を示すグラフである。

【図29】

異物の有無から歩留まりへの影響を算出する方法を説明するウェハの平面図である。

【図30】

本発明に係る異物または欠陥の検査装置で測定した異物の大きさとSEMで測長したサイズとの相関を示したグラフであり、(a)は、1層パターン付きウェハ上で測定した異物の大きさとSEMサイズとの相関を示したグラフ、(b)は、多層パターン付きウェハ上で測定した異物の大きさとSEMサイズとの相関を示したグラフである。

【図31】

本発明に係る異物または欠陥の検査装置で測定した異物の大きさとSEMで測 長したサイズとの相関を示したグラフと検出した異物のSEM写真である。

【図32】

本発明に係る異物または欠陥の検査装置により測定した異物の大きさと個数の 関係を示すヒストグラムである。

【図33】

(a) は、本発明に係る異物または欠陥の検査装置で測定した異物の大きさと 歩留まりとの関係を示すグラフ、(b) および(c) は、検出された異物のウェ ハ上の分布を示すウェハの平面図である。

【図34】

本発明に係る異物または欠陥の検査装置で異物の大きさ別の累積数を表示する例を示したグラフである。

【図35】

本発明に係る異物または欠陥の検査装置で異物の検出分布を併記した例を示したグラフである。

【符号の説明】

101…照明光学系 102…被検査物 103…検出光学系 104…光検出部 105…信号処理回路 106…データ表示部 107…ステージ部 108…オートフォーカス照明部 109…オートフォーカス受光部 201…異物データ 401・402・403…異物の分布領域 701…半導体ウェハの外形702…検出された異物 703…特定の大きさの異物 1001・1002・1003…管理しきい値 1

 004・1005…管理しきい値を越えた異常
 1101・1102・11

 03…チップ内の領域
 1201…半導体ウェハ
 1202…検出された

 異物
 1201…検出結果上の分析すべき異物
 1301…異物検査装置

 1302…データサーバ
 1303…レビュー装置
 1304…電

 気テスト装置
 1305…分析装置
 1306…各装置を接続するネット

 ワーク
 1601…検査装置
 1602…レビュー装置
 1603

 …各装置を接続するネットワーク
 1801…基板
 1802…異物

 1803…落射照明光
 1804…斜方照明光
 1805…光検出器

 1806…記憶回路
 1807…比較回路
 1901…信号強度の

 記憶部
 1902…異物とキズの判別部
 1903…変換曲線の選択部

 1904…異物の大きさの算出部
 2201…検査マップ
 2203

 ルレビューボタン
 2204…検出した異物のレビュー像
 2205…異物

 2404…異物

【書類名】図面

【図1】

【図2】

【図3】

図3

【図4】

【図5】

図5

(b)

(c)

【図6】

【図7】

【図8】

【図9】

【図10】

図10

【図11】

図 1 1

【図12】

図12

【図13】

図13

【図14】

【図15】

信号強度の最大値

【図16】

図16

【図17】

図17

【図18】

基板

図18

(a)

1806 記憶回路 1807 比較回路 光検出器 落射照明 1803 1804 斜方照明

(b)

	照明方向による 散乱光量の違い		散乱光量比
	落射照明	斜方照明	(落射/斜方)
異物	散乱 光量:多	散乱 光量:多	小
キズ	散乱 光量:多	散乱 光量:少	大

【図19】

図19

【図20】

図20

【図21】

【図22】

図22

【図23】

2401 2404 2405 S 1 S 2

【図24】

検出感度[μm]

【図25】

2501

【図26】

【図27】

【図28】

【図29】

図29

[図30]

図30

【図31】

図31

【図32】

図32

【図33】

2 1

【図34】

【図35】

【書類名】要約書

【要約】

【課題】

従来は異物欠陥検査装置の検出結果として総検出個数を出力している。一方、 製造プロセスの不良対策は、該検査装置で検出された異物・欠陥を分析すること により行われている。しかしながら、該検査装置での検出個数が多い場合、検出 された異物の分析を行うのに膨大な時間がかかってしまい、製造プロセスの不良 対策が遅れてしまう。

【解決手段】

光学的系により検査する異物または欠陥の検査装置において、その結果において、異物または欠陥の大きさと不良原因を関連させて、データ処理手段で、検査の結果の統計から不良原因を指摘し、前記検査の結果情報を表示する。 また、半導体ウェハなどの領域別に不良となるしきい値を設け、異物を統計的に評価することにより、不良解析をおこなう。

【選択図】 図10

出願人履歴情報

識別番号

[000005108]

1. 変更年月日

1990年 8月31日

[変更理由] 新規登録

住 所

東京都千代田区神田駿河台4丁目6番地

氏 名

株式会社日立製作所

出願人履歴情報

識別番号

[000233480]

1. 変更年月日 1994年 9月20日

[変更理由] 住所変更

住 所 東京都渋谷区東3丁目16番3号

氏 名 日立電子エンジニアリング株式会社