Social Network Analysis

Master Sociology 2014-15 University of Amsterdam

Programme for today

Session 1: Monday, Jan 12, REC-H 2.01 (computer lab)

- Methods 1: Introduction to graph theory
- Methods 2: Cohesion

Session 2: Wednesday, Jan 14, REC-H 2.01 (computer lab)

- Methods 3: Cohesion / Centrality
- Methods 4: Centrality

Session 3: Thursday, Jan 15, REC-G S.09

Theory 2: QAP correlations and regression

Session 4: Friday, Jan 16, 13-15, REC-G S.14

Test 2

UCInet basics

- We learn the program by doing SNA;
 mechanics of the program are not the focus of this class
- Quick start guide to UCInet
 - https://sites.google.com/site/ucinetsoftware/docume
 nt
- Working directory
 C:/Program Files (x86)/Analytic Technologies/Datafiles
- In this lab, the files we produce will be stored in C:/Temp

UCInet basics

- UCInet datasets
 - Each dataset consists of two files
 - Extension ##d are the actual data
 - Extension ##h contain information about the data
 - Many datasets are already stored in the folder Datafiles
- Import data
 - UCInet spreadsheet (manually or cut and paste)
 - From Excel
 - Data load format (DL)
 - See tutorials on the web

Basic Concepts of Graph Theory

Graph

- Graph G(V,E) consists of
 - Vertices V representing actors
 - Edges E representing ties
- Edge
 - Unordered pair of nodes (u,v)
 - Nodes u and v are adjacent if (u,v) ∈ E
 - E is a subset of all pairs of nodes (those which are tied)

Directed graph

- Digraph D(V,E) consists of
 - Vertices V representing actors
 - Arcs E representing ties
- Arc
 - Ordered pair of nodes (u,v)
 - (u,v) ∈ E means that u sends arc to v
 - (u,v) ∈ E does not imply that (v,u) ∈ E

Multiple relations

Relatio	ip at	Relation 2	Relation 3
Friendsh		Friendship at	Lives
Beginn		End	Near
<allison, <allison,="" <drew,="" <eliot,="" <keith,="" <ross,="" <sarah,="" d="" i="" i<="" s="" sa="" th=""><th>Ross> arah> Eliot> Orew> Ross> arah></th><th><allison, <allison,="" <drew,="" drew:="" ross:="" sarah=""> <drew, eliot=""> <drew, ross=""> <eliot, ross=""> <keith, drew=""> <keith, ross=""> <ross, keith=""> <ross, sarah=""> <sarah, drew=""></sarah,></ross,></ross,></keith,></keith,></eliot,></drew,></drew,></allison,></th><th>(Allison, Sarah (Drew, Eliot) (Keith, Ross) (Keith, Sarah) (Ross, Sarah)</th></allison,>	Ross> arah> Eliot> Orew> Ross> arah>	<allison, <allison,="" <drew,="" drew:="" ross:="" sarah=""> <drew, eliot=""> <drew, ross=""> <eliot, ross=""> <keith, drew=""> <keith, ross=""> <ross, keith=""> <ross, sarah=""> <sarah, drew=""></sarah,></ross,></ross,></keith,></keith,></eliot,></drew,></drew,></allison,>	(Allison, Sarah (Drew, Eliot) (Keith, Ross) (Keith, Sarah) (Ross, Sarah)

Sociometric notation

Friendship at Beginning of Year		Friendship	at	Beginning	of	Year
---------------------------------	--	------------	----	-----------	----	------

	Allison	Drew	Eliot	Keith	Ross	Sarah	
Allison	-	1	0	0	1	0	
Drew	0	_	1	0	0	1	
Eliot	0	1	-	0	0	0	
Keith	0	0	0	-	1	0	
Ross	0	0	0	0	-	1	
Sarah	0	1	0	0	0	-	

Friendship at End of Year

	Allison	Drew		Keith	Ross	Sarah
Allison	-	1	0	0	1	0
Drew	0	-	1	0	1	1
Eliot	0	0	-	0	1	0
Keith	0	1	0	-	1	0
Ross	0	0	0	1	-	1
Sarah	0	1	0	0	0	-

Lives Near

	Allison Drew Eliot Keith Ross Sar					
	Allison	Drew	Ellot	Keith	Ross	Sarah
Allison	-	0	0	0	1	1
Drew	0	-	1	0	0	0
Eliot	0	1	-	0	0	0
Keith	0	0	0	-	1	1
Ross	1	0	0	1	-	1
Sarah	1	0	0	1	1	-

Valued ties

- We can assign values to ties
 - Strength of affective relationship
 - Frequency of contact
 - Amount of money
 - Probability of passing on information
- These are called valued graphs

Adjacency matrices for binary and valued ties

Friendship

	Jim	Jill	Jen	Joe
Jim	ı	1	0	1
Jill	1	ı	1	0
Jen	0	1	1	1
Joe	1	0	1	-

Proximity

 Jim
 Jill
 Jen
 Joe

 Jim
 3
 9
 2

 Jill
 3
 1
 15

 Jen
 9
 1
 3

 Joe
 2
 15
 3

Degree

 The number of edges indicent upon a node

Walks, trails, and paths

- Walk: Unrestricted
 - The most general kind of sequence
 - 1-2-3-1-2-7-1-2
- Trail: Cannot repeat edge
 - Walk in which all edges are distinct
 - 1-2-3-1-7-8-10
- Path: Cannot repeat node
 - Walk in which all nodes and edges are distinct
 - 1-2-3-4-5-6-7-8

Walks, trails, and paths

- Walk: Unrestricted
 - The most general kind of sequence
 - 1-2-3-1-2-7-1-2
 - Example: ?
- Trail: Cannot repeat edge
 - Walk in which all edges are distinct
 - 1-2-3-1-7-8-10
 - Example: ?
- Path: Cannot repeat node
 - Walk in which all nodes and edges are distinct
 - 1-2-3-4-5-6-7-8
 - Example: ?

Walks, trails, and paths

- Walk: Unrestricted
 - The most general kind of sequence
 - 1-2-3-1-2-7-1-2
 - Example: Dollar bill
- Trail: Cannot repeat edge
 - Walk in which all edges are distinct
 - 1-2-3-1-7-8-10
 - Example: Gossip
- Path: Cannot repeat node
 - Walk in which all nodes and edges are distinct
 - 1-2-3-4-5-6-7-8
 - Example: Virus

- This applies to directed graphs only
- Indegree: Arcs that terminate at node
- Outdegree: Arcs that originate at node
- Average Indegree = Average Outdegree

- This applies to directed graphs only
- Indegree: Arcs that terminate at node
- Outdegree: Arcs that originate at node
- Average Indegree = Average Outdegree

- This applies to directed graphs only
- Indegree: Arcs that terminate at node
- Outdegree: Arcs that originate at node
- Average Indegree = Average Outdegree

Component

Component

- Maximal set of nodes in which every node can reach every other node (no matter how long the path)
- If something flows through a certain type of line, it cannot flow between components
- Connected graph: One component
- Weak component: Every node reaches the other, ignoring direction
- Beware: Components do not define networks

Bridge

Bridge

 A tie that would increase the number of components if removed

Local bridge of degree k

 A tie that connects nodes that would otherwise be at least k steps apart

Local bridge of degree k

 A tie that connects nodes that would otherwise be at least k steps apart

Cohesion

What is cohesion?

- Generally: How strongly connected a network is
- Why this that relevant? What happens in cohesive clusters?

What is cohesion?

- Generally: How strongly connected a network is
- Why this that relevant? What happens in cohesive clusters?
- Cohesive clusters
 - Enforce behavioral norms
 - Share and make sense of information
 - Develop an identity, ingroup-outgroup
 - Can coordinate for collective action
 - Share a common fate

Why care about cohesion?

- Why do some communities, organizations, families perform certain functions better than others?
- How does a community's, family's, organization's internal structure affect its functions?
- Examples:
 - Charlestown resisting the urban renewal plan
 - Failure to establish a work council
 - Performance of R & D teams

Investigating cohesion: A family of measures

- Distance
- Density
- Reciprocity
- Transitivity
- (Non-)Fragmentation
- •

- The shortest path between two nodes is the geodesic distance
- The longest shortest path in a network in the diameter
- Remember: Six degrees of separation
- → Geodesic distance is a measure of this

- The shortest path between two nodes is the geodesic distance
- The longest shortest path in a network in the diameter
- Remember: Six degrees of separation
- → Geodesic distance is a measure of this

- The shortest path between two nodes is the geodesic distance
- The longest shortest path in a network in the diameter
- Remember: Six degrees of separation
- → Geodesic distance is a measure of this

- The shortest path between two nodes is the geodesic distance
- The longest shortest path in a network in the diameter
- Remember: Six degrees of separation
- → Geodesic distance is a measure of this

Geodesic distance matrix

Geodesic distance matrix

Geodesic distance matrix

Geodesic versus adjacency matrix

	а	b	С	d	е	f	g
а	0	1	2	თ	2	თ	4
b	1	0	1	2	1	2	3
С	2	1	0	1	1	2	3
d	3	2	1	0	2	3	4
е	2	1	1	2	0	1	2
f	3	2	2	3	1	0	1
g	4	3	3	4	2	1	0

	а	b	С	d	е	f	g
а	0	1	0	0	0	0	0
b	1	0	1	0	1	0	0
С	0	1	0	1	1	0	0
d	0	0	1	0	0	0	0
е	0	1	1	0	0	1	0
f	0	0	0	0	1	0	1
g	0	0	0	0	0	1	0

Average distance

Average geodesic distance between all pairs of nodes

Core/Periphery c/p fit = 0.97, avg. dist. = 1.9

Clique structure c/p fit = 0.33, avg. dist. = 2.4

Distance in UCInet

- A measure for the connectedness of a network
- The sum of ties divided by the sum of possible ties
- Undirected graph: Number of possible ties = n*(n-1) / 2
 - The relationship A to B is the same as the relationship B to A
- Digraph: twice as many possible edges: n*(n-1)
 - The relationship A to B is not the same as the relationship B to A

- A measure for the connectedness of a network
- The sum of ties divided by the sum of possible ties
- Undirected graph: Number of possible ties = n*(n-1) / 2
 - The relationship A to B is the same as the relationship B to A
- Digraph: twice as many possible edges: n*(n-1)
 - The relationship A to B is not the same as the relationship B to A

Density = ?

Density = ?

- A measure for the connectedness of a network
- The sum of ties divided by the sum of possible ties
- Undirected graph: Number of possible ties = n*(n-1) / 2
 - The relationship A to B is the same as the relationship B to A
- Digraph: twice as many possible edges: n*(n-1)
 - The relationship A to B is not the same as the relationship B to A

Density =
$$5/6 = 0.83$$

Density =
$$5/12 = 0.42$$

Density in reflexive and non-reflexive ties

	Reflexive	Non-Reflexive
Undirected	$=\frac{T}{n^2/2}$	$=\frac{T}{n(n-1)/2}$
Directed	$=\frac{T}{n^2}$	$=\frac{T}{n(n-1)}$

What does it mean socially if a network is dense?

- What does it mean socially if a network is dense?
 - High level of social capital
 - High degree of social control
 - High speed of information flow

Density in UCInet