CSE 241 Lecture 8

Adopted from the lecture slides of the book: $Absolute\ C++$ by Walter Savitch, Kenrick Mock

Learning Objectives

- Basic Operator Overloading
 - Unary operators
 - As member functions
- Friends and Automatic Type Conversion
 - Friend functions, friend classes
 - Constructors for automatic type conversion
- References and More Overloading
 - << and >>
 - Operators: = , [], ++, --

Operator Overloading Introduction

- Operators +, -, %, ==, etc.
 - Really just functions!
- Simply "called" with different syntax:
 - x + 7
 - "+" is binary operator with x & 7 as operands
 - We "like" this notation as humans
- Think of it as:
 - +(x, 7)
 - "+" is the function name
 - x, 7 are the arguments
 - Function "+" returns "sum" of it's arguments

Operator Overloading Perspective

- Built-in operators
 - -e.g., +, -, = , %, ==, /, *
 - Already work for C++ built-in types
 - In standard "binary" notation
- We can overload them!
 - To work with OUR types!
 - To add "Chair types", or "Money types"
 - As appropriate for our needs
 - In "notation" we're comfortable with
- Always overload with similar "actions"!

Overloading Basics

- Overloading operators
 - VERY similar to overloading functions
 - Operator itself is "name" of function
- Example Declaration:

```
const Money operator +(const Money& amount1, const Money& amount2);
```

- Overloads + for operands of type Money
- Uses constant reference parameters for efficiency
- Returned value is type Money
 - Allows addition of "Money" objects

Overloaded "+"

- Given previous example:
 - Note: overloaded "+" NOT member function
 - Definition is "more involved" than simple "add"
 - Requires issues of money type addition
 - Must handle negative/positive values
- Operator overload definitions generally very simple
 - Just perform "addition" particular to "your" type

Money "+" Definition: **Display 8.1** Operator Overloading

• Definition of "+" operator for Money class:

```
const Money operator +(const Money& amount1, const Money& amount2)
52
53
54
         int allCents1 = amount1.getCents( ) + amount1.getDollars( )*100;
55
        int allCents2 = amount2.getCents( ) + amount2.getDollars( )*100;
        int sumAllCents = allCents1 + allCents2:
56
        int absAllCents = abs(sumAllCents); //Money can be negative.
57
58
        int finalDollars = absAllCents/100;
        int finalCents = absAllCents%100;
59
                                                             If the return
        if (sumAllCents < 0)</pre>
60
                                                             statements
61
                                                             puzzle you, see
62
             finalDollars = -finalDollars;
                                                             the tip entitled
63
             finalCents = -finalCents;
                                                             A Constructor
64
                                                             Can Return an
                                                             Object.
         return Money(finalDollars, finalCents);
65
66
```

Overloaded "=="

- Equality operator, ==
 - Enables comparison of Money objects
 - - Returns bool type for true/false equality
 - Again, it's a non-member function (like "+" overload)

Overloaded "==" for Money: **Display 8.1** Operator Overloading

• Definition of "==" operator for Money class:

Constructors Returning Objects

- Constructor a "void" function?
 - We "think" that way, but no
 - A "special" function
 - With special properties
 - CAN return a value!
- Recall return statement in "+" overload for Money type:
 - return Money(finalDollars, finalCents);
 - Returns an "invocation" of Money class!
 - So constructor actually "returns" an object!
 - Called an "anonymous object"

Returning by const Value

- Consider "+" operator overload again: const Money operator +(const Money& amount1, const Money& amount2);
 - Returns a "constant object"?
 - **-** Why?
- Consider impact of returning "non-const" object to see... >

Returning by non-const Value

- Consider "no const" in declaration:
 Money operator +(const Money& amount1, const Money& amount2);
- Consider expression that calls: m1 + m2
 - Where m1 & m2 are Money objects
 - Object returned is Money object
 - We can "do things" with objects!
 - Like call member functions...

What to do with Non-const Object

- Can call member functions:
 - We could invoke member functions on object returned by expression m1+m2:
 - (m1+m2).output(); //Legal, right?
 - Not a problem: doesn't change anything
 - (m1+m2).input(); //Legal!
 - PROBLEM! //Legal, but MODIFIES!
 - Allows modification of "anonymous" object!
 - Can't allow that here!
- So we define the return object as const

Overloading Unary Operators

- C++ has unary operators:
 - Defined as taking one operand

```
- e.g., - (negation)
• x = -y;  // Sets x equal to negative of y
```

- Other unary operators:

```
• ++, --
```

• Unary operators can also be overloaded

Overload "-" for Money

- Overloaded "-" function declaration
 - Placed outside class definition: const Money operator -(const Money& amount);
 - Notice: only one argument
 - Since only 1 operand (unary)
- "-" operator is overloaded twice!
 - For two operands/arguments (binary)
 - For one operand/argument (unary)
 - Definitions must exist for both

Overloaded "-" Definition

- Overloaded "-" function definition:
 const Money operator -(const Money& amount)
 {
 return Money(-amount.getDollars(), -amount.getCents());
 }
- Applies "-" unary operator to built-in type
 - Operation is "known" for built-in types
- Returns anonymous object again

Overloaded "-" Usage

• Consider: amount1(10), Money amount2(6), amount3; amount3 = amount1 - amount2;• Calls binary "-" overload amount3.output(); //Displays \$4.00 amount3 = -amount1;• Calls unary "-" overload amount3.output() //Displays -\$10.00

Overloading as Member Functions

- Previous examples: standalone functions
 - Defined outside a class
- Can overload as "member operator"
 - Considered "member function" like others
- When operator is member function:
 - Only ONE parameter, not two!
 - Calling object serves as 1st parameter

Member Operator in Action

- Money cost(1, 50), tax(0, 15), total; total = cost + tax;
 - If "+" overloaded as member operator:
 - Variable/object cost is calling object
 - Object tax is single argument
 - Think of as: total = cost.+(tax);
- Declaration of "+" in class definition:
 - const Money operator +(const Money& amount);
 - Notice only ONE argument

const Functions

- When to make function const?
 - Constant functions not allowed to alter class member data
 - Constant objects can ONLY call constant member functions
- Good style dictates:
 - Any member function that will NOT modify data should be made const
- Use keyword const after function declaration and heading

Overloading Operators: Which Method?

- Object-Oriented-Programming
 - Principles suggest member operators
 - Many agree, to maintain "spirit" of OOP
- Member operators more efficient
 - No need to call accessor & mutator functions
- At least one significant disadvantage
 - (Later in chapter...)

Overloading Function Application ()

- Function call operator, ()
 - Must be overloaded as member function
 - Allows use of class object like a function
 - Can overload for all possible numbers of arguments
- Example:

```
Aclass anObject;
anObject(42);
```

• If () overloaded \rightarrow calls overload

Other Overloads

- &&, ||, and comma operator
 - Predefined versions work for bool types
 - Recall: use "short-circuit evaluation"
 - When overloaded no longer uses short-circuit
 - Uses "complete evaluation" instead
 - Contrary to expectations
- Generally should not overload these operators

Friend Functions

- Nonmember functions
 - Recall: operator overloads as nonmembers
 - They access data through accessor and mutator functions
 - Very inefficient (overhead of calls)
- Friends can directly access private class data
 - No overhead, more efficient
- So: best to make nonmember operator overloads friends!

Friend Functions

- Friend function of a class
 - Not a member function
 - Has direct access to private members
 - Just as member functions do
- Use keyword friend in front of function declaration
 - Specified IN class definition
 - But they're NOT member functions!

Friend Function Uses

- Operator Overloads
 - Most common use of friends
 - Improves efficiency
 - Avoids need to call accessor/mutator member functions
 - Operator must have access anyway
 - Might as well give full access as friend
- Friends can be any function

Friend Function Purity

- Friends not pure?
 - "Spirit" of OOP dictates all operators and functions be member functions
 - Many believe friends violate basic OOP principles
- Advantageous?
 - For operators: very!
 - Allows automatic type conversion
 - Still encapsulates: friend is in class definition
 - Improves efficiency

Friend Classes

- Entire classes can be friends
 - Similar to function being friend to class
 - Example:class F is friend of class C
 - All class F member functions are friends of C
 - NOT reciprocated
 - Friendship granted, not taken
- Syntax: friend class F
 - Goes inside class definition of "authorizing" class

References

- Reference defined:
 - Name of a storage location
 - Similar to "pointer"
- Example of stand alone reference:
 - int robert;
 int& bob = robert;
 - bob is reference to storage location for robert
 - Changes made to bob will affect robert
- Confusing?

References Usage

- Seemingly dangerous
- Useful in several cases:
- Call-by-reference
 - Often used to implement this mechanism
- Returning a reference
 - Allows operator overload implementations to be written more naturally
 - Think of as returning an "alias" to a variable

Returning Reference

- Syntax: double& sampleFunction(double& variable);
 - double and double are different
 - Must match in function declaration and heading
- Returned item must "have" a reference
 - Like a variable of that type
 - Cannot be expression like "x+5"
 - Has no place in memory to "refer to"

Returning Reference in Definition

- Example function definition:
 double& sampleFunction(double& variable)
 {
 return variable;
 }
- Trivial, useless example
- Shows concept only
- Major use:
 - Certain overloaded operators

Overloading >> and <<

- Enables input and output of our objects
 - Similar to other operator overloads
 - New subtleties
- Improves readability
 - Like all operator overloads do
 - Enables:
 cout << myObject;
 cin >> myObject;
 - Instead of need for:
 myObject.output(); ...

Overloading >>

- Insertion operator, <<
 - Used with cout
 - A binary operator
- Example:

```
cout << "Hello";</pre>
```

- Operator is <<
- 1st operand is predefined object cout
 - From library iostream
- 2nd operand is literal string "Hello"

Overloading >>

- Operands of >>
 - cout object, of class type ostream
 - Our class type
- Recall Money class
 - Used member function output()
 - Nicer if we can use >> operator:
 Money amount(100);
 cout << "I have " << amount << endl;
 instead of:
 cout << "I have ";
 amount.output();</pre>

Overloaded >> Return Value

- Money amount(100);
 cout << amount;
 << should return some value
 To allow cascades:
 cout << "I have " << amount;
 (cout << "I have ") << amount;
 Two are equivalent
- What to return?
 - cout object!
 - Returns its first argument type, ostream

Overloaded >> Example: **Display 8.5** Overloading << and >> (1 of 5)

Display 8.5 Overloading << and >>

```
#include <iostream>
    #include <cstdlib>
    #include <cmath>
    using namespace std;
    //Class for amounts of money in U.S. currency
    class Money
    public:
        Money( );
        Money(double amount);
10
        Money(int theDollars, int theCents);
11
12
        Money(int theDollars);
        double getAmount( ) const;
13
14
        int getDollars( ) const;
        int getCents( ) const;
15
16
        friend const Money operator +(const Money& amount1, const Money& amount2)
17
        friend const Money operator -(const Money& amount1, const Money& amount2)
        friend bool operator ==(const Money& amount1, const Money& amount2);
18
19
        friend const Money operator -(const Money& amount);
20
        friend ostream& operator <<(ostream& outputStream, const Money& amount);</pre>
21
        friend istream& operator >>(istream& inputStream, Money& amount);
    private:
        int dollars; //A negative amount is represented as negative dollars and
23
        int cents; //negative cents. Negative $4.50 is represented as -4 and -50.
24
```

Overloaded >> Example:

Display 8.5 Overloading \leftarrow and \rightarrow (2 of 5)

```
int dollarsPart(double amount) const;
25
26
         int centsPart(double amount) const;
         int round(double number) const;
27
28
    };
    int main( )
29
30
31
         Money yourAmount, myAmount(10, 9);
32
         cout << "Enter an amount of money: ";</pre>
33
         cin >> yourAmount;
34
         cout << "Your amount is " << yourAmount << endl;</pre>
35
         cout << "My amount is " << myAmount << endl;</pre>
36
37
         if (yourAmount == myAmount)
             cout << "We have the same amounts.\n";</pre>
38
39
         else
40
             cout << "One of us is richer.\n";</pre>
41
         Money ourAmount = yourAmount + myAmount;
```

Overloaded >> Example: **Display 8.5** Overloading << and >> (3 of 5)

```
Display 8.5 Overloading << and >>
                                                                Since << returns a
         cout << yourAmount << " + " << myAmount</pre>
42
                                                                reference, you can chain
43
               << " equals " << ourAmount << endl;</pre>
                                                                << like this.
                                                                You can chain >> in a
44
         Money diffAmount = yourAmount - myAmount;
                                                                similar way.
         cout << yourAmount << " - " << myAmount <
45
               << " equals " << diffAmount << endl;</pre>
46
47
         return 0:
48
    }
       <Definitions of other member functions are as in Display 8.1.</p>
       Definitions of other overloaded operators are as in Display 8.3.>
    ostream& operator <<(ostream& outputStream, const Money& amount)
50
    {
                                                           In the main function, cout is
         int absDollars = abs(amount.dollars);
51
                                                            plugged in for outputStream.
52
         int absCents = abs(amount.cents);
         if (amount.dollars < 0 || amount.cents < 0)</pre>
53
54
              //accounts for dollars == 0 or cents == 0
55
              outputStream << "$-";
56
         else
                                                         For an alternate input algorithm,
57
              outputStream << '$';</pre>
                                                         see Self-Test Exercise 3 in
         outputStream << absDollars;</pre>
58
                                                         Chapter 7.
```

Overloaded >> Example: **Display 8.5** Overloading << and >> (4 of 5)

```
if (absCents >= 10)
59
             outputStream << '.' << absCents;</pre>
60
61
         else
62
             outputStream << '.' << '0' << absCents;
                                                           Returns a reference
         return outputStream; <</pre>
63
64
65
     //Uses iostream and cstdlib:
66
     istream& operator >>(istream& inputStream, Money& amount)
68
         char dollarSign;
69
                                                            In the main function, cin is
         inputStream >> dollarSign; //hopefully
70
                                                            plugged in for inputStream.
         if (dollarSign != '$')
71
72
73
             cout << "No dollar sign in Money input.\n";</pre>
             exit(1);
74
                                                    Since this is not a member operator,
75
                                                    you need to specify a calling object
                                                    for member functions of Money.
76
         double amountAsDouble;
         inputStream >> amountAsDouble;
77
         amount.dollars = amount.dollarsPart(amountAsDouble);
78
```

Overloaded >> Example: **Display 8.5** Overloading << and >> (5 of 5)

Assignment Operator, =

- Must be overloaded as member operator
- Automatically overloaded
 - Default assignment operator:
 - Member-wise copy
 - Member variables from one object \rightarrow corresponding member variables from other
- Default OK for simple classes
 - But with pointers → must write our own!

Increment and Decrement

- Each operator has two versions
 - Prefix notation: ++x;
 - Postfix notation: x++;
- Must distinguish in overload
 - Standard overload method → Prefix
 - Add 2d parameter of type int → Postfix
 - Just a marker for compiler!
 - Specifies postfix is allowed

Overload Array Operator, []

- Can overload [] for your class
 - To be used with objects of your class
 - Operator must return a reference!
 - Operator [] must be a member function!

Summary 1

- C++ built-in operators can be overloaded
 - To work with objects of your class
- Operators are really just functions
- Friend functions have direct private member access
- Operators can be overloaded as member functions
 - 1st operand is calling object

Summary 2

- Friend functions add efficiency only
 - Not required if sufficient accessors/mutators available
- Reference "names" a variable with an alias
- Can overload <<, >>
 - Return type is a reference to stream type