Inferring Maps from GPS Data

- 1. Why infer maps from GPS traces?
- 2. Biagioni/Eriksson algorithm
- 3. Evaluation metrics
- 4. Similar approaches: satellite images, map update
- 5. Lab 4

Map making

Uber is planning on investing \$500 million to map the world's roads

This will reduce Uber's reliance on Google Maps

by Andrew Liptak | @AndrewLiptak | Jul 31, 2016, 5:54pm EDT

Will Your Next New Car Help Build Maps for Self-Driving?

Mobileye will use cameras on a growing list of automakers' cars to build maps for self-driving vehicles.

Why Ford Motor Is Investing in 3D Mapping Startup Civil Maps

Tencent, partners invest in HERE's digital maps to get a leg up on self-driving cars

OpenStreetMap

- Licensed under Open Data Commons Open Database License
- Built using several data sources:
 - U.S. Census Bureau's TIGER data
 - GPS traces
 - Aerial images
- Humans process traces and images to update the map
- Decent coverage in large cities where there are many contributors, but often inaccurate or incomplete elsewhere

Opportunistic data collection

GPS traces, e.g., from smartphone apps, taxis, etc

Challenges

- GPS errors
- Sparsity of data
- Differential sampling rate (1s, 10s, 1m)
- Urban Canyons
- Complex intersections such as roundabouts, highway intersections

Map inference in the face of noise and disparity

Map inference in the face of noise and disparity

Map inference in the face of noise and disparity

- 1D Example
 - What does a density estimation based map-inference algorithm look like?
 - O What is the problem with it?

1D Example

1D Example

Histogram of GPS samples

1D Example

Histogram of GPS samples

• 1D Example

- 1D Example
 - What's the problem with this algorithm?

Single threshold doesn't work well

Single threshold doesn't work well

High Threshold

High Threshold

High Threshold

Low Threshold

Low Threshold

Density Estimation - Gray-scale Skeletonization

- Skeletonization with different thresholds, from high to low
- Remain the results from high thresholds
- Assign weights to each pixel

Map inference in the face of noise and disparity

The View of Traces from Density Estimation

More Information if You Consider the Whole Trace

Map Matching

Map Matching

Topology Refinement

Topology Refinement

Well-matched Traversal Goodness of fit

$$RMSD(\tau, e) = \sqrt{\frac{1}{|\tau|} \sum_{p \in \tau} dist(p, e)^2}$$

$$RMSD(\tau, e) < RMSD_{max}$$

Topology Refinement

Remove edges with less than two well-matched traversals

$$RMSD(\tau, e) = \sqrt{\frac{1}{|\tau|} \sum_{p \in \tau} dist(p, e)^2}$$

$$RMSD(\tau, e) < RMSD_{max}$$

Topology Refinement - Before Pruning

Topology Refinement - After Pruning

Topology Refinement - After Pruning

Topology Refinement - Pruning Again ...

