- 16.3 Prove Theorem 16.3. You can follow the outline below.
 - 1. First observe that $r\bar{r}$ is a factorization of N(r) in $\mathbb{Z}[i]$ as a product of Gaussian integers. Use the unique factorization theorem to deduce that every factorization of N(r) in $\mathbb{Z}[i]$ as a product of irreducible Gaussian integers has two factors.

For
$$r = a + bi$$
, $N(r) = (a + bi)(a - bi) = r\bar{r}$

So for any $r \in \mathbb{Z}[i]$ of the form a + bi, it has conjugate $\bar{r} = a - bi$, such that $N(r) = r\bar{r}$ That is, N(r) is the product of irreducible Gaussian integers and has two factors

2. Observe that since r is not 0 or a unit in $\mathbb{Z}[i]$, its norm N(r) is an integer greater than 1. Introduce notiation for a prime factorization of N(r) in \mathbb{Z} , say $N(r) = p_1...p_t$. Be aware that the primes p_j may or may not be irreducible in $\mathbb{Z}[i]$; nothing is assumed about this. (Recall as an example that 2 is prime in \mathbb{Z} , but it is not irreducible in $\mathbb{Z}[i]$, since it factors as 2 = (1+i)(1-i)). In any case, each prime p_j is a Gaussian integer $(p_j = p_j + 0i)$, and therefore factors uniquely in $\mathbb{Z}[i]$ as a product of one or more Gaussian integers. Argue that there must exist a factorization of N(r) in $\mathbb{Z}[i]$ as a product of at least t irreducible Gaussian integers, and that therefore, by the first part, t equals 1 or 2.

r is anot a unit and is not 0, so N(r) > 1

N(r) is just an element in \mathbb{Z} , so we can find the prime factorization of it,

Say prime factorization $N(r) = p_1..p_t$ for $p_j \in \mathbb{Z}$

But we know that each p_j is a Gaussian integer, of the form $p_j = p_j + 0i$

So N(r) factors in $\mathbb{Z}[i]$ as a product of one or more Gaussian integers.

So there must exist a factorization of N(r) in $\mathbb{Z}[i]$ as a product of at least t irreducible Gaussian integers,

$$N(r) = (p_1 + 0i)..(p_t + 0i)$$

But by the first part, we know that t can be either 1 or 2.

3. Suppose that t=2. Then $N(r)=r\bar{r}=p_1p_2$. Using the unique factorization theorem, deduce that r differs from either p_1 or p_2 by multiplication by a unit of $\mathbb{Z}[i]$. Conclude that there is a prime number p in \mathbb{Z} such that r equals one of the four numbers p, -p, pi, -pi. Notice that in all four of these cases, $N(r)=p^2$

Suppose that t=2

Then
$$N(r) = r\bar{r} = p_1 p_2$$

Then by the unique factorization theorem, we have that r differs from either p_1 or p_2 by multiplication by a unit of $\mathbb{Z}[i]$

So there is a prime number p in \mathbb{Z} such that r equals one of the four numbers, p, -p, pi, -pi.

In each case, $N(r) = p^2$

4. Suppose that t = 1. To simplify notation, write p_1 simply as p. Thus, N(r) = p. Write r as a + bi, for integers a, b. Observe that if either a, b is 0, then N(r) cannot

be a prime number. Thus, a,b are both nonzero. Observe that $p=N(r)=r\bar{r}=(a+bi)(a-bi)=a^2+b^2$

Suppose that t = 1. Then say N(r) = p

Claim: for r = a + bi, for $a, b \in \mathbb{Z}$, then if either of a, b is 0, N(r) cannot be prime

case: a, b = 0: Then N(r) = (0 + 0i)(0 - 0i) = 0, then N(r) is not prime

case: $a = 0, b \neq 0$: Then $N(r) = (a + 0i)(a - 0i) = a^2$, then N(r) is the square of a, not prime

case: $b = 0, b \neq 0$: Then N(r) = (0 + i)(0 - i) = 1, then N(r) is not prime.

So a, b must both be nonzero.

Then for $p = N(r) = r\overline{r} = (a+bi)(a-bi) = a^2+b^2$

- 16.6 Let us examine the two smallest rings of the form $\mathbb{Z}_m[i]$
 - 1. According to the definitions, the ring $\mathbb{Z}_2[i]$ consists of all elements of the form a+bi, with $a,b\in\mathbb{Z}_2$. Deduce that $\mathbb{Z}_2[i]$ consists of four elements, 0,1,i,1+i

An element in $\mathbb{Z}_2[i]$ is of the form a + bi, for $a, b \in \mathbb{Z}_2$

Then $r \in \mathbb{Z}_2[i]$ is one of 0 + 0i, 1 + 0i, 0 + i, 1 + i

2. Using these four elements, make addition and multiplication tables for $\mathbb{Z}_2[i]$, the way we did for fruit rings in Section 6.3

X	0	1	i	1 + i
-	0	-	0	0
1	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	i	1 + i
i	0		1	1 + i
1 + i	0	1 + i	1 + i	0

- 3. Review the multiplication table and answer the following questions:
- a) Are there zero divisors in $\mathbb{Z}_2[i]$?

Yes, 1+i is a zero divisor in $\mathbb{Z}_2[i]$

b) Does every nonzero element of $\mathbb{Z}_2[i]$ have a multiplicative inverse?

No, 1+i does not have a multiplicative inverse

c) Is $\mathbb{Z}_2[i]$ a field?

No, since not all nonzero elements in $\mathbb{Z}_2[i]$ have multiplicative inverses

4. Perform a similar analysis for the ring $\mathbb{Z}_3[i]$, starting with the observation that it contains nine distinct elements. List these elements, do not bother with the addition table, but make a multiplication table for $\mathbb{Z}_3[i]$. Use hte table to answer the following questions:

X	0	1	2	i	1+i		2i	1+2i	2+2i
0	0	0	0	0	0	0	0	0	0
1	0	1	2	i	1+i	2+i	2i	1+2i	2+2i
2		2	1	2i	2+2i	1+2i	i	2+i	1+i
i	0	i	2i	2	2+i	2+2i	1	1+i	1+2i
1+i	0	1+i	2+2i	2+i	2i	1	1+2i	2	i
2+i	0	2+i	1+2i	2+2i	1	i	1+i	2i	2
2i	0	2i	i	1	1+2i	1+i	2	2+2i	2+i
1+2i	0	1+2i	2+i	1+i	2	2i	2+2i	i	1
2+2i	0	2+2i	1+i	1+2i	i	2	2+i	1	2i

a) Are there zero divisors in $\mathbb{Z}_3[i]$?

No

b) Does every nonzero element of $\mathbb{Z}_3[i]$ have a multiplicative inverse?

Yes

c) Is $\mathbb{Z}_3[i]$ a field?

Yes, since ever nonzero element has a multiplicative inverse

- 16.9 Prove theorem 16.9 by following the steps below:
 - 1. Review the construction of the polynomial congruence rings in order to observe that the ring $\mathbb{F}_p[x]_{x^2+1}$ consists of elements of the form $c+d\gamma$ where c,d are in \mathbb{F}_p , the element γ satisfies the rule $\gamma^2=-1$, and multiplication is given by the rule $(c+d\gamma)(e+f\gamma)=(ce-df)+(cf+de)\gamma$.
 - 2. Compare this to the defining description of the ring $\mathbb{F}_p[i]$ given above. Notice that the descriptions are the same, except that we use γ in one case and i in the other.
 - 3. Conclude that $\mathbb{F}_p[x]_{x^2+1}$ and $\mathbb{F}_p[i]$ are essentially the same rings; that is, they are identical except for a change in notation.

- 16.12 Theorem 16.15: Suppose p is a prime number satisfying $p \equiv 1 \pmod{4}$
 - 1. The equation $x^2 + y^2 = p$ has integer solutions, p factors nontrivially in $\mathbb{Z}[i]$, the polynomial $x^2 + 1$ factors nontrivially in $\mathbb{F}_p[x]$, and -1 is a square in \mathbb{F}_p
 - 2. There are eight solutions to the equation $x^2+y^2=p$. Each solution (a,b) corresponds to a pair of irreducible Gaussian integers a+bi and a-bi such that p=(a+bi)(a-bi)

Prove theorem 16.15

$$p \text{ prime}, p \equiv 1 \pmod{4}$$

Then by theorem 16.14, -1 is a square in \mathbb{F}_p

We know by theorem 16.13 that since p is a prime, it has one of two sets of properties

One set of properties requires that -1 not be a square in \mathbb{F}_p , and the other set of properties requires that -1 be a square in \mathbb{F}_p

But we know that -1 has a square in \mathbb{F}_p

Then the set of properties that must be true of p must be

- 1. The equation $x^2 + y^2 = p$ has integer solutions;
- 2. p factors nontrivially in $\mathbb{Z}[i]$;
- 3. $x^2 + 1$ factors nontrivially in $\mathbb{F}_p[x]$;
- 4. -1 is a square in \mathbb{F}_p

So we have shown the first part of theorem 16.15

So there are solutions to $x^2 + y^2 = p$ in $\mathbb{Z}[i]$

We know there exists at least one solution, call it (a, b), these correspond to a pair of irreducible Gaussian integers a + bi, a - bi such that $p = (a + bi)(a - bi) = a^2 + b^2$

We but we know that possible solutions for p would be pairs $(\pm a, \pm b)$ or $(\pm b, \pm a)$

Then there are 8 solutions total in $\mathbb{Z}[i]$