

Real and Functional Analysis

Professor: Gianmaria Verzini

Last updated: December 30, 2024

This document is intended for educational purposes only. These are unreviewed notes and may contain errors.

Made by Roberto Benatuil Valera

Contents

1	Set	Theory	4			
	1.1	Basic notions	4			
	1.2	Families of subsets	5			
	1.3	Characteristic functions	7			
	1.4	Equivalence relations and Quotient sets	7			
2	Mea	asure Spaces	9			
	2.1	Measurable spaces	9			
	2.2	Generation of a σ -algebra	10			
	2.3	Borel sets	11			
	2.4	Measures	12			
		2.4.1 Properties of measures	13			
	2.5	Sets of measure zero, negligible sets, complete measures	16			
	2.6	Towards the Lebesgue measure	17			
		2.6.1 Carathéodory's criterion	19			
	2.7	Lebesgue measure	21			
3	Measurable functions 27					
	3.1	Operations on measurable functions	29			
	3.2	Properties holding almost everywhere	31			
	3.3	Simple functions	32			
4	Leb	esgue integral	34			
	4.1	Integral of non-negative simple functions	34			
	4.2	Integral of non-negative measurable functions	37			
	4.3	Integral of real-valued measurable functions	43			
	4.4	Comparison between Riemann and Lebesgue integrals	48			
	4.5	Spaces of integrable functions	48			
5	Tvr	pes of convergence	52			

	5.1 a.e. convergence and convergence in measure	53		
	5.2 Convergence in L^1 and convergence in measure	54		
	5.3 Convergence in L^1 and a.e. convergence	54		
6	Absolutely continuous functions and Functions of bounded variations			
	6.1 Fundamental theorems of calculus	55		
	6.1.1 1st Fundamental Theorem of Calculus	56		
	6.1.2 2nd Fundamental Theorem of Calculus	59		
	6.2 AC functions and weak derivatives	6		
7	Derivatives of measures	64		
	7.1 The Radon-Nikodym Theorem	6		
8	Banach spaces	6		
	8.1 Normed and Banach spaces	6		
	8.2 Equivalent/non equivalent norms	6		
9	Lebesgue spaces $L^p(X)$	7		
	9.1 Definition of $L^p(X)$	7		
	9.2 L^p -spaces are vector spaces	7		
	9.3 $(L^p(X), \ \cdot\ _p)$ are normed spaces	7		
	9.3.1 Inclusion of L^p spaces	7		
	9.3.2 Minkowski's inequality	7		
	9.4 Completeness of L^p -spaces	7		
10	Compactness, Density and Separability	7		
	10.1 Compactness	7		
	10.2 Compactness in $C([a,b])$	8		
	10.3 Density, separability	8		
	10.3.1 Dense subspaces	8		
11	Linear operators	8		
	11.1 Uniform boundedness (Banach-Steinhaus theorem)	9		
	11.2 Open mapping and closed graph theorems	9		
12	Dual spaces	97		
_	1			

Chapter 1

Set Theory

1.1 Basic notions

Definition 1.1.1. Let X, Y be sets. We say:

- X, Y are equipotent if there exists a bijection $f: X \to Y$.
- X has a cardinality greater or equal to Y if there exists an surjection f: $X \to Y$.
- X is **finite** if it is equipotent to $\{1, 2, ..., n\}$ for some $n \in \mathbb{N}$. X is infinite otherwise.

Remark: X is infinite \iff it is equipotent to a proper subset of itself.

E.g.: The set of natural numbers \mathbb{N} is infinite. In fact, the set of even natural numbers $E = \{2, 4, 6, \ldots\} \subset \mathbb{N}$ is equipotent to \mathbb{N} , as we can define the bijection $f : \mathbb{N} \to E$ as f(n) = 2n.

Definition 1.1.2. Let X be an infinite set. We say X is **countable** if it is equipotent to \mathbb{N} . X is **uncountable** otherwise, in which case it is **more than countable**.

Definition 1.1.3. X has the **cardinality of the continuum** if it is equipotent to $[0,1] \subset \mathbb{R}$. Any such set is uncountable.

E.g.: We have that:

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are countable.
- $\mathbb{R}, \mathbb{R}^n, (0,1), [0,1]$ are uncountable.
- Countable union of countable sets is countable.

1.2 Families of subsets

Let X be a set. The "Power set" of X is the set of all subsets of X, denoted by $\mathcal{P}(X)$.

$$\mathcal{P}(X) = \{E : E \subseteq X\}$$

Note that $\mathcal{P}(X)$ has always a cardinality greater than X. For example, if $X = \mathbb{N}$, then $\mathcal{P}(X)$ has the cardinality of the continuum.

Definition 1.2.1. Let X be a set. A family of subsets of X is a set E such that:

$$E \subseteq \mathcal{P}(X)$$

We usually denote $E = \{E_i\}_{i \in I}$, where I is an index set.

Definition 1.2.2. Let $E = \{E_i\}_{i \in I}$ be a family of subsets of X. We define:

• The union of E as:

$$\bigcup_{i \in I} E_i = \{ x \in X : x \in E_i \text{ for some } i \in I \}$$

• The intersection of E as:

$$\bigcap_{i \in I} E_i = \{ x \in X : x \in E_i \text{ for all } i \in I \}$$

Definition 1.2.3. Let $E = \{E_i\}_{i \in I}$ be a family of subsets of X. We say F is **pairwise** disjoint if:

$$E_i \cap E_j = \emptyset \ \forall i, j \in I, i \neq j$$

Definition 1.2.4. We say that the family $E = \{E_i\}_{i \in I}$ of subsets of X is a **covering** of X if:

$$X = \bigcup_{i \in I} E_i$$

Any subfamily of $E, E' = \{E_i\}_{i \in I'}$ is a **subcovering** of X if it is a covering of X itself.

E.g.: Let $X = \mathbb{R}$. We define:

$$\mathcal{T} = \{ E \subset X : E \text{ is open} \}$$

We say that \mathcal{T} is the standard topology of X. More generally, this can be done in

"metric spaces" (X, d).

Properties of \mathcal{T} (open sets):

- $\emptyset, X \in \mathcal{T}$.
- Finite intersection of elements in \mathcal{T} is in \mathcal{T} .
- Arbitrary union of elements in \mathcal{T} is in \mathcal{T} .

We can also define **sequences of sets**. Let X be a set. A sequence of sets in X is a family of sets $\{E_n\}_{n\in\mathbb{N}}$.

Definition 1.2.5. Let X be a set. A sequence of sets $\{E_n\}_{n\in\mathbb{N}}$ is said to be:

• Increasing if:

$$E_n \subseteq E_{n+1} \ \forall n \in \mathbb{N}$$

It is denoted by $\{E_n\} \uparrow$.

• Decreasing if:

$$E_n \supseteq E_{n+1} \ \forall n \in \mathbb{N}$$

It is denoted by $\{E_n\} \downarrow$.

Let now $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{P}(X)$ be a sequence of sets in X:

Definition 1.2.6. We define the following:

• The **limit superior** of $\{E_n\}$ as:

$$\limsup_{n \to \infty} E_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k > n} E_k$$

• The **limit inferior** of $\{E_n\}$ as:

$$\liminf_{n \to \infty} E_n = \bigcup_{n \in \mathbb{N}} \bigcap_{k \ge n} E_k$$

• If the limit superior and limit inferior are equal, we say that

$$\lim_{n\to\infty} E_n = \limsup_{n\to\infty} E_n = \liminf_{n\to\infty} E_n$$

Exercise: Let X be a set and $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{P}(X)$ be a sequence of sets in X. Prove that:

(i)
$$\{E_n\} \uparrow \Rightarrow \lim_{n \to \infty} E_n = \bigcup_{n \in \mathbb{N}} E_n$$
 (ii) $\{E_n\} \downarrow \Rightarrow \lim_{n \to \infty} E_n = \bigcap_{n \in \mathbb{N}} E_n$

1.3 Characteristic functions

Definition 1.3.1. Let X be a set and $E \subseteq X$. The characteristic function of E is the function $\mathbb{1}_E: X \to \{0,1\}$ defined as:

$$\mathbb{1}_E(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}$$

This function is also called the **indicator function** of E.

Remark: Let $E, F \subseteq X$. We have that:

- $\mathbb{1}_{E \cap F} = \mathbb{1}_E \cdot \mathbb{1}_F$.
- $\mathbb{1}_{E \cup F} = \mathbb{1}_E + \mathbb{1}_F \mathbb{1}_{E \cap F}$.
- $\mathbb{1}_{E^c} = 1 \mathbb{1}_E$.

Equivalence relations and Quotient sets 1.4

Definition 1.4.1. A relation R on a set X is a subset of $X \times X$. For any $x, y \in X$, we say that x is related to y if $(x, y) \in R$. We denote this as xRy.

Definition 1.4.2. A relation R on a set X is an equivalence relation if it satisfies:

• Reflexivity:

$$xRx \ \forall x \in X$$

• Symmetry:

$$xRy \Rightarrow yRx \ \forall x,y \in X$$

• Transitivity:

$$xRy, yRz \Rightarrow xRz \ \forall x, y, z \in X$$

Every equivalence relation on X induces a partition of X. We define the equivalence class of $x \in X$ as:

$$[x] = \{ y \in X : xRy \}$$

The set of all equivalence classes is called the **quotient set** of X by R, denoted by X/R.

$$X/R = \{ [x] : x \in X \}$$

E.g.: Let $X = \mathbb{Z} \times \mathbb{Z}_0$ such that $\mathbb{Z}_0 = \mathbb{Z} \setminus \{0\}$. We define the relation R on X as:

$$(a,b)R(c,d) \iff ad = bc$$

We can prove that R is an equivalence relation. The equivalence classes are:

$$[(a,b)] = \{(c,d) \in X : ad = bc\}$$

Notice that:

$$[(a,b)] = \{(a,b), (2a,2b), (3a,3b), \ldots\}$$

If we denote a class [(a,b)] as [a/b], then we have that:

$$X/R = \{ [a/b] : a, b \in \mathbb{Z}_0 \} = \mathbb{Q}$$

Chapter 2

Measure Spaces

2.1 Measurable spaces

Definition 2.1.1. Let X be a non-empty set. A family $\mathcal{M} \subseteq \mathcal{P}(X)$ is a σ -algebra if:

- (i) $\emptyset \in \mathcal{M}$.
- (ii) $E \in \mathcal{M} \implies E^c \in \mathcal{M}$.
- (iii) $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{M}\implies\bigcup_{n\in\mathbb{N}}E_n\in\mathcal{M}.$

If instead of (iii) we have that $E_1, E_2 \in \mathcal{M} \implies \mathbb{E}_1 \cup E_2 \in \mathcal{M}$, then \mathcal{M} is called an **algebra**.

Remark: If \mathcal{M} is a σ -algebra, then we say that (X, \mathcal{M}) is a measurable space. Any set $E \in \mathcal{M}$ is called a measurable set.

E.g.: Let $X \neq \emptyset$. Then:

- $\mathcal{P}(X)$ is a σ -algebra.
- $\{\emptyset, X\}$ is a σ -algebra.
- $\{\emptyset, E, E^c, X\}$ is a σ -algebra for any $E \subseteq X$.
- $X = \mathbb{R}$, $\mathcal{M} = \{E \subseteq \mathbb{R} : E \text{ is open}\}\$ is NOT a σ -algebra.

Properties 2.1.1. Let (X, \mathcal{M}) be a measurable space. Then:

- (i) $X = \emptyset^c \in \mathcal{M}$
- (ii) \mathcal{M} is also an algebra. Indeed, if $\{E_1, E_2\} \subseteq \mathcal{M}$, $E_n = \emptyset \ \forall n \geq 3$, then $E_1 \cup E_2 = \bigcup_{n \in \mathbb{N}} E_n \in \mathcal{M}$.
- (iii) $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{M} \implies \bigcap_n E_n\in\mathcal{M}.$
- (iv) $E, F \in \mathcal{M} \implies E \setminus F \in \mathcal{M}$
- (v) $\Omega \subseteq X$. Then, the **restriction** of \mathcal{M} to Ω is:

$$\mathcal{M}|_{\Omega} := \{ F \subseteq \Omega : F = E \cap \Omega, E \in \mathcal{M} \}$$

Then, $(\Omega, \mathcal{M}|_{\Omega})$ is a measurable space.

2.2 Generation of a σ -algebra

Theorem 2.2.1. Take any family $A \subseteq \mathcal{P}(X)$. Then, it is well-defined the σ -algebra generated by A, denoted by $\sigma_0(A)$, as the smallest σ -algebra containing A. It is characterized by:

- (i) $\sigma_0(\mathcal{A})$ is a σ -algebra.
- (ii) $A \subseteq \sigma_0(A)$.
- (iii) If \mathcal{M} is a σ -algebra and $\mathcal{A} \subseteq \mathcal{M}$, then $\sigma_0(\mathcal{A}) \subseteq \mathcal{M}$.

Sketch of proof. Define $V = \{ \mathcal{M} \subseteq \mathcal{P}(X) : \mathcal{M} \text{ is } \sigma\text{-algebra}, \mathcal{A} \subseteq \mathcal{M} \}$. Notice that $V \neq \emptyset$ because $\mathcal{P}(X) \in V$. Then, define:

$$\sigma_0(\mathcal{A}) = \bigcap_{\mathcal{M} \in V} \mathcal{M}$$

Then, $\sigma_0(\mathcal{A})$ is a σ -algebra as it satisfies the properties of a σ -algebra, denoted in definition 2.1.1.

Remark: This is relevant. Often, to check that a σ -algebra has certain properties, it is enough to check the property on a set of generators.

2.3 Borel sets

Take (X, d) as a metric space, so that open sets are defined. Recall that:

$$\mathcal{T} = \{ E \subseteq X : E \text{ is open} \}$$

Definition 2.3.1. The σ -algebra generated by \mathcal{T} is called the **Borel** σ -algebra of X, denoted by:

$$\mathcal{B}(X) := \sigma_0(\mathcal{T})$$

Any set $E \in \mathcal{B}(X)$ is a **Borel set**.

Remark: The following are Borel sets:

- Open sets
- Closed sets
- Countable intersections of open sets $(G_{\delta}$ -sets)
- Countable unions of closed sets $(F_{\sigma}\text{-sets})$

We will deal with:

$$X = \mathbb{R} = (-\infty, \infty)$$

but also:

$$X=\overline{\mathbb{R}}=[-\infty,\infty]=\mathbb{R}\cup\{-\infty,\infty\}$$

Let us define the arithmetic operations on $\overline{\mathbb{R}}$. Let $a \in \mathbb{R}$:

- $a \pm \infty = \pm \infty$
- $a > 0 : a \cdot \pm \infty = \pm \infty$
- $a < 0 : a \cdot \pm \infty = \mp \infty$
- $a=0:0\cdot\pm\infty=0$
- $\infty \infty$, ∞/∞ , 0/0 are not defined.

Also, the open intervals in $\overline{\mathbb{R}}$ are the following:

- (a,b), with $a,b \in \mathbb{R}$
- $[-\infty, b)$
- $(a, \infty]$

Remark: We have that:

$$\mathcal{B}(\mathbb{R}) := \sigma_0(\{\text{open sets}\})$$

$$= \sigma_0(\{(a, b) : a < b\})$$

$$= \sigma_0(\{[a, b] : a < b\})$$

$$= \sigma_0(\{(a, \infty) : a \in \mathbb{R}\})$$

$$\mathcal{B}(\overline{\mathbb{R}}) := \sigma_0(\{\text{open sets}\})$$
$$= \sigma_0(\{(a, \infty] : a \in \mathbb{R}\})$$

$$\mathcal{B}(\mathbb{R}^N) = \sigma_0(\{\text{open rectangles}\})$$

2.4 Measures

Let (X, \mathcal{M}) be a measurable space.

Definition 2.4.1. A function $\mu: \mathcal{M} \to [0, \infty]$ is a (positive) **measure** on \mathcal{M} if:

- (i) $\mu(\emptyset) = 0$
- (ii) $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{M}$, disjoint $\implies \mu\left(\bigcup_{n\in\mathbb{N}}E_n\right)=\sum_{n\in\mathbb{N}}\mu(E_n)$

Note: To avoid nonsenses, we always assume that $\exists E \in \mathcal{M} \ s.t. \ \mu(E) < \infty$

Terminology: Let X, \mathcal{M}, μ defined as above:

- (X, \mathcal{M}, μ) is a measure space.
- If $\mu(X) = 1$, then (X, \mathcal{M}, μ) is a **probability space** and μ is a **probability measure**.

Definition 2.4.2. A measure μ is:

- 1. Finite if $\mu(X) < \infty$
- 2. σ -finite if $\exists \{E_n\}_{n\in\mathbb{N}} \subseteq \mathcal{M}$ s.t.

$$\mu(E_n) < \infty \ \forall n \in \mathbb{N} \quad \land \quad X = \bigcup_{n \in \mathbb{N}} E_n$$

E.g.: Some examples of measures are:

- 1. (Trivial measure): For any (X, \mathcal{M}) , define μ as $\mu(E) = 0 \ \forall E \in \mathcal{M}$
- 2. (Counting measure): For any (X, \mathcal{M}) , typically $\mathcal{M} = \mathcal{P}(X)$, define $\mu_{\#}$ as:

$$\mu_{\#}(E) = \begin{cases} \#\{\text{elements of } E\} & E \text{ finite} \\ \infty & \text{otherwise} \end{cases}$$

3. (Dirac measure): For any (X, \mathcal{M}) , pick $x_0 \in X$. Then, define δ_{x_0} as:

$$\delta_{x_0}(E) = \begin{cases} 1 & x_0 \in E \\ 0 & x_0 \notin E \end{cases}$$

2.4.1 Properties of measures

Theorem 2.4.1 (Basic properties). Let (X, \mathcal{M}, μ) be a measure space. Then:

- (i) μ is finitely additive: $E, F \in \mathcal{M}, E \cap F = \emptyset \implies \mu(E \cup F) = \mu(E) + \mu(F)$
- (ii) (Monotonicity): $E, F \in \mathcal{M}, E \subseteq F \implies \mu(E) \leq \mu(F)$
- (iii) (Excision property): $E, F \in \mathcal{M}, E \subseteq F, \mu(E) < \infty \implies \mu(F \setminus E) = \mu(F) \mu(E)$

Proof. The proof is straightforward:

(i) Let $E, F \in \mathcal{M}, E \cap F = \emptyset$. Then:

$$\mu(E \cup F) = \mu(E) + \mu(F)$$

Proof. Obvious, using $E_n = \emptyset$ for $n \ge 3$.

(ii) Let $E, F \in \mathcal{M}, E \subseteq F$. Then:

$$\mu(E) \le \mu(F)$$

Proof. Let $F = E \cup (F \setminus E)$. Then:

$$\mu(F) = \mu(E) + \mu(F \setminus E) \ge \mu(E)$$

(iii) Let $E, F \in \mathcal{M}, E \subseteq F, \mu(E) < \infty$. Then:

$$\mu(F \setminus E) = \mu(F) - \mu(E)$$

Proof. Let $F = E \cup (F \setminus E)$. Then:

$$\mu(F) = \mu(E) + \mu(F \setminus E)$$

This concludes the proof.

Theorem 2.4.2 (Continuity among monotone sequences). Let (X, \mathcal{M}, μ) be a measure space. Let $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{M}$ be a sequence of measurable sets. Then:

(i) If $\{E_n\} \uparrow$, $E := \lim_n E_n = \bigcup_n E_n$, then:

$$\mu(E) = \lim_{n} \mu(E_n)$$

(ii) If $\{E_n\} \downarrow$, $E := \lim_n E_n = \bigcap_n E_n$, and $\mu(E_1) < \infty$, then:

$$\mu(E) = \lim_{n} \mu(E_n)$$

Proof. The proof goes as follows:

- (i) If $\mu(E_n) = \infty$ for some n, then the proof is trivial. Otherwise, let $F_1 = E_1$ and $F_n = E_n \setminus E_{n-1}$ for $n \ge 2$. Then, we can check that:
 - $F_n \in \mathcal{M}, \forall n \in \mathbb{N}$
 - $\{F_n\}$ is a disjoint sequence.
 - $E_n = \bigcup_{k=1}^n F_k$
 - Because of the disjointness, we have that:

$$\mu(E_n) = \sum_{k=1}^n \mu(F_k)$$

Then, we have that:

$$\mu(E) = \mu\left(\lim_{n} E_{n}\right) = \mu\left(\bigcup_{n=1}^{\infty} E_{n}\right) =$$

$$= \mu\left(\bigcup_{n=1}^{\infty} F_{n}\right) = \sum_{n=1}^{\infty} \mu(F_{n}) =$$

$$= \sum_{n=1}^{\infty} (\mu(E_{n}) - \mu(E_{n-1})) = \lim_{n} \mu(E_{n})$$

- (ii) Define $G_n = E_1 \setminus E_n$. Then, check that:
 - $G_n \in \mathcal{M}, \forall n \in \mathbb{N}$
 - $\{G_n\} \uparrow$

By the previous result, we have that:

$$\mu\left(\bigcup_{n=1}^{\infty} G_n\right) = \lim_{n} \mu(G_n)$$

Then, on the right-hand side:

$$\lim_{n} \mu(G_n) = \lim_{n} \mu(E_1 \setminus E_n) =$$
$$= \mu(E_1) - \lim_{n} \mu(E_n)$$

On the left-hand side:

$$\mu\left(\bigcup_{n=1}^{\infty} G_n\right) = \mu\left(\bigcup_{n=1}^{\infty} (E_1 \setminus E_n)\right) =$$

$$= \mu\left(E_1 \setminus \bigcap_{n=1}^{\infty} E_n\right) =$$

$$= \mu(E_1) - \mu(E)$$

Finally, we have that:

$$\mu(E_1) - \mu(E) = \mu(E_1) - \lim_{n} \mu(E_n)$$

And because $\mu(E_1) < \infty$, we have that:

$$\mu(E) = \lim_{n} \mu(E_n)$$

Remark: In (ii), the condition $\mu(E_1) < \infty$ is essential. Consider $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu_{\#})$. Then, define the following sequence:

$$E_n = \{n, n+1, n+2, \ldots\}$$

Note that $E_n \subseteq E_{n-1}$. Also, note that for any $n \in \mathbb{N}$, we have that:

$$\mu_{\#}(E_n) = \infty$$

Then, we have that:

$$\mu_{\#}\left(\bigcap_{n} E_{n}\right) = \mu_{\#}(\emptyset) = 0$$

But:

$$\lim_{n} \mu_{\#}(E_n) = \infty$$

This shows that the condition $\mu(E_1) < \infty$ is essential.

Theorem 2.4.3 (σ -subadditivity). Let (X, \mathcal{M}, μ) be a measure space. Let $\{E_n\}_{n \in \mathbb{N}} \subseteq \mathcal{M}$ be a sequence of measurable sets. Then:

$$\mu\left(\bigcup_{n} E_{n}\right) \leq \sum_{n} \mu(E_{n})$$

Proof. Let $F_1 = E_1$ and $F_n = E_n \setminus \left(\bigcup_{k=1}^{n-1} E_k\right)$ for $n \geq 2$. Then, we have that:

- $F_n \in \mathcal{M}, \forall n \in \mathbb{N}$
- $F_n \subseteq E_n, \forall n \in \mathbb{N}$
- $\{F_n\}$ is a disjoint sequence.
- $\bigcup_n E_n = \bigcup_n F_n$

Then, we have that:

$$\mu\left(\bigcup_{n} E_{n}\right) = \mu\left(\bigcup_{n} F_{n}\right) =$$

$$= \sum_{n} \mu(F_{n}) \leq \sum_{n} \mu(E_{n})$$

2.5 Sets of measure zero, negligible sets, complete measures

Definition 2.5.1. Let (X, \mathcal{M}, μ) be a measure space. Then:

- 1. A set $E \in \mathcal{M}$ is a **set of measure zero** if $\mu(E) = 0$.
- 2. A set $F \in X$ (not necessarily measurable) is a **negligible set** if $\exists E \in \mathcal{M}$ s.t. $F \subseteq E$ and E is a set of measure zero.

Definition 2.5.2. Let (X, \mathcal{M}, μ) be a measure space. Then, we say that μ is a **complete measure** (alternatively, that (X, \mathcal{M}, μ) is a **complete measure space**) all negligible sets are measurable.

Remark (Completion of a measure space): A measure space (X, \mathcal{M}, μ) may not be complete. However, we can define the following:

$$\overline{\mathcal{M}} = \{ E \subseteq X : \exists F_1, F_2 \in \mathcal{M} : F_1 \subseteq E \subseteq F_2, \mu(F_2 \setminus F_1) = 0 \}$$

One can show that $\overline{\mathcal{M}}$ is a σ -algebra, and that $\mathcal{M} \subseteq \overline{\mathcal{M}}$. Moreover, if E, F_1, F_2 are as above, define:

$$\overline{\mu}(E) = \mu(F_1) = \mu(F_2)$$

One can check that $(X, \overline{\mathcal{M}}, \overline{\mu})$ is a complete measure space.

2.6 Towards the Lebesgue measure

We would like to define a measure λ with $X = \mathbb{R}$ (or $X = \mathbb{R}^N$) s.t. $\forall a < b$:

- $\lambda((a,b)) = b a$ (length of the interval)
- $\forall E, \lambda(E+x) = \lambda(E)$ (translation invariance)

In principle, we would like to define it in $\mathcal{P}(\mathbb{R})$. Such a measure should satisfy $\lambda(\{a\}) = 0$.

Theorem 2.6.1 (Ulam). The only measure on $\mathcal{P}(\mathbb{R})$ that satisfies $\lambda(\{a\}) = 0 \ \forall a \in \mathbb{R}$ is the trivial measure.

Therefore, we need to choose an $\mathcal{M} \subseteq \mathcal{P}(\mathbb{R})$. We can construct one as follows:

- Starting family with a "measure", e.g., $\mathcal{T} = \{(a,b) : a < b\}$ and f((a,b)) = b a.
- Construct an "outer measure" μ^* on $\mathcal{P}(\mathbb{R})$.
- Restrict μ^* to a well-chosen σ -algebra $\mathcal{M} \subsetneq \mathcal{P}(\mathbb{R})$.

Definition 2.6.1. Let X be a set. An **outer measure** μ^* on X is a function

$$\mu^*: \mathcal{P}(X) \to [0, \infty]$$

such that:

- 1. $\mu^*(\emptyset) = 0$
- 2. (Monotonicity) $E \subseteq F \subseteq X \implies \mu^*(E) \le \mu^*(F)$
- 3. (σ -subadditivity) $\{E_n\}_{n\in\mathbb{N}}\subseteq \mathcal{P}(X) \implies \mu^*\left(\bigcup_{n\in\mathbb{N}}E_n\right)\leq \sum_{n\in\mathbb{N}}\mu^*(E_n)$

Remark: Any measure μ is an outer measure. However, the converse is not true.

Proposition 2.6.2. Let $\mathcal{E} \subseteq \mathcal{P}(X)$, $f: \mathcal{E} \to [0, \infty]$. Assume that $\emptyset, X \in \mathcal{E}$, $f(\emptyset) = 0$. Then, $\forall E \subseteq X$ define:

$$\mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} f(A_n) : A_n \in \mathcal{E}, E \subseteq \bigcup_n A_n \right\}$$

Then, μ^* is an outer measure.

Proof. The proof is omitted.

Remark: In this generality, if $E \in \mathcal{E}$, then f(E) and $\mu^*(E)$ may not be equal. We can only guarantee that $\mu^*(E) \leq f(E)$.

E.g.: There are some important examples:

• $X = \mathbb{R}, \mathcal{E} = \{(a, b) : a, b \in \overline{\mathbb{R}}, a \leq b\}$

$$f((a,b)) = length((a,b)) = b - a$$

• $X = \mathbb{R}^N$, $\mathcal{E} = \{(a_1, b_1) \times \ldots \times (a_N, b_N) : a_i, b_i \in \overline{\mathbb{R}}, a_i \leq b_i\}$

$$f((\underline{a}, \underline{b})) = \text{volume}((\underline{a}, \underline{b})) = \prod_{i=1}^{N} (b_i - a_i)$$

In both cases, the outer measure μ^* is called the **Lebesgue outer measure**. We will denote it by λ^* (or λ_N^* in the second case). Note that in this case, $\lambda^*(E) = f(E)$ for any $E \in \mathcal{E}$.

Remark: Any μ measure on $\mathcal{P}(X)$ is an outer measure. However, the converse is not true. In particular, $\exists A, B \subseteq \mathbb{R}$ s.t. $A \cap B = \emptyset$ and $\lambda^*(A \cup B) < \lambda^*(A) + \lambda^*(B)$.

2.6.1 Carathéodory's criterion

Definition 2.6.2 (Carathéodory's condition). Let μ^* be an outer measure on $\mathcal{P}(X)$. A ser $E \subseteq X$ is μ^* -measurable if $\forall A \subseteq X$:

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Lemma 2.6.3 (Equivalence of Carathéodory's condition). *E* is μ^* -measurable $\iff \forall A \subseteq X, \ \mu^*(A) < \infty$:

$$\mu^*(A) \ge \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Proof. The proof is as follows:

 (\Rightarrow) : Trivial

 (\Leftarrow) : Let $A \subseteq X$, such that $\mu^*(A) < \infty$ and:

$$\mu^*(A) \ge \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Then, notice that $\{A \cap E, A \cap E^c\}$ is a covering of A. By subadditivity:

$$\mu^*(A) < \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Therefore, we have that:

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Meaning that E is μ^* -measurable. This concludes the proof.

Theorem 2.6.4 (Carathéodory). Let μ^* be an outer measure on $\mathcal{P}(X)$. The family:

$$\mathcal{M} = \{ E \subseteq X : E \text{ is } \mu^*\text{-measurable} \}$$

is a σ -algebra, and μ^* restricted to \mathcal{M} (denoted $\mu = \mu^*|_{\mathcal{M}}$) is a complete measure.

Remark: (X, \mathcal{M}, μ) as in the above theorem is sometimes called the "abstract Lebesgue measure space". We will only prove the completeness of μ .

Lemma 2.6.5. Let (X, \mathcal{M}, μ) be the measure space as in Carathéodory's theorem. Then, any $N \subseteq X$ s.t. $\mu^*(N) = 0$ is μ -measurable, i.e., $N \in \mathcal{M}$, and $\mu(N) = 0$.

Proof. We have to show that N satisfies Carathéodory's condition, or equivalently, that it satisfies the lemma 2.6.3. Let $A \subseteq X$ be arbitrary. Then, notice that:

$$\mu^*(A \cap N) \le \mu^*(N) = 0$$

Also, notice that:

$$\mu^*(A \cap N^c) \le \mu^*(A)$$

Therefore, we have that:

$$\mu^*(A \cap N) + \mu^*(A \cap N^c) \le 0 + \mu^*(A) = \mu^*(A)$$

By lemma 2.6.3, we have that N is μ^* -measurable. By Carathéodory's theorem, we have that N is μ -measurable. Finally, we have that $\mu(N) = \mu^*(N) = 0$.

Corollary 2.6.5.1. μ as in Carathéodory's theorem is a complete measure.

Proof. Let $N \subseteq E$, and $\mu(E) = 0$ $(E \in \mathcal{M})$. Then, we have that:

$$\mu(E) = 0 \implies \mu^*(E) = 0$$

By monotonicity, we have that:

$$\mu^*(N) \le \mu^*(E) = 0$$

Then, $\mu(N) = \mu^*(N) = 0$, thus $N \in \mathcal{M}$. This concludes the proof.

2.7 Lebesgue measure

Definition 2.7.1. Let $\mathcal{E} = \{(a, b) : a, b \in \overline{\mathbb{R}}, a \leq b\}$. Define:

$$\lambda^*((a,b)) = b - a$$

Then, λ^* is the **Lebesgue outer measure** on \mathbb{R} .

Theorem 2.7.1. Let λ^* be the Lebesgue outer measure on $\mathcal{E} = \{(a,b) : a,b \in \overline{\mathbb{R}}, a \leq b\}$. Then, by Carathéodory's theorem, the family:

$$\mathcal{L}(\mathbb{R}) = \{ E \subseteq \mathbb{R} : E \text{ is } \lambda^* \text{-measurable} \}$$

is a σ -algebra, called the **Lebesgue** σ -algebra, and λ^* restricted to $\mathcal{L}(\mathbb{R})$ (denoted $\lambda = \lambda^*|_{\mathcal{L}(\mathbb{R})}$) is a complete measure, called the **Lebesgue measure**.

Proof. The proof is omitted.

Remark: The measure space $(\mathbb{R}, \mathcal{L}(\mathbb{R}), \lambda)$ is called the **Lebesgue measure space**.

Proposition 2.7.2. Let λ be the Lebesque measure on \mathbb{R} . Then:

- (i) $a \in \mathbb{R} \implies \{a\} \in \mathcal{L}(\mathbb{R}) \text{ and } \lambda(\{a\}) = 0$
- (ii) $E \subset \mathbb{R}$ at most countable $\Longrightarrow E \in \mathcal{L}(\mathbb{R})$ and $\lambda(E) = 0$

Proof. The proof is as follows:

(i) Let $a \in \mathbb{R}$. Then, we have that, for any $\varepsilon > 0$:

$$E_1 = (a - \varepsilon, a + \varepsilon), \quad , E_2 = E_3 = \dots = \emptyset$$

is a covering of $\{a\}$. Then, by definition of λ^* :

$$0 \le \lambda^*(\{a\}) \le \sum_{n=1}^{\infty} f(E_n) = 2\varepsilon$$

As ε is arbitrary, we have that $\lambda^*(\{a\}) = 0$. By Lemma 2.6.5, we then have that $\{a\} \in \mathcal{L}(\mathbb{R})$ and $\lambda(\{a\}) = 0$.

(ii) Let $E \subseteq \mathbb{R}$ be at most countable. Then, we have that:

$$E = \bigcup_{a \in E} \{a\}$$

Because $\{a\} \in \mathcal{L}(\mathbb{R})$ and $\lambda(\{a\}) = 0$, we have that $E \in \mathcal{L}(\mathbb{R})$ and:

$$\lambda(E) = \lambda\left(\bigcup_{a \in E} \{a\}\right) = \sum_{a \in E} \lambda(\{a\}) = 0$$

Remark: We can point out 2 important consequences of the above proposition:

1. Arguing as in (i), we can show that the Lebesgue measure is translation invariant. That is, $\forall E \in \mathcal{L}(\mathbb{R}), \forall x \in \mathbb{R}$:

$$\lambda(E+x) = \lambda(E)$$

2. In particular, since \mathbb{Q} is countable, we have that $\mathbb{Q} \in \mathcal{L}(\mathbb{R})$ and $\lambda(\mathbb{Q}) = 0$. In the measure sense, \mathbb{Q} has very few elements with respect to \mathbb{R} . On the other hand, \mathbb{Q} is dense in \mathbb{R} . In the topology sense, \mathbb{Q} has a lot of points.

Proposition 2.7.3. We have that: $\mathcal{B}(\mathbb{R}) \subset \mathcal{L}(\mathbb{R})$

Proof. Since $\mathcal{B}(\mathbb{R}) = \sigma_0(\{(a, \infty) : a \in \mathbb{R}\})$, if we show that $(a, \infty) \in \mathcal{L}(\mathbb{R})$, $\forall a \in \mathbb{R}$, then the prop. follows.

Take $A \subset \mathbb{R}$, s.t. $\lambda^*(A) < \infty$. Then, we must show that:

$$\lambda^*(A) \geq \lambda^*(A \cap (a,\infty)) + \lambda^*(A \cap (-\infty,a])$$

Moreover, by a previous remark, one can assume that $a \notin A$. Then, take any countable covering of A by open intervals:

$$A \subseteq \bigcup_{n} I_n$$

Then, let us define $A_{left} = A \cap (-\infty, a]$ and $I_{n,left} = I_n \cap (-\infty, a]$. Then, we notice that $\{I_{n,left}\}$ is a covering of A_{left} .

In the same way, we define $A_{right} = A \cap (a, \infty)$ and $I_{n,right} = I_n \cap (a, \infty)$. Then, we notice that $\{I_{n,right}\}$ is a covering of A_{right} .

Then, we have that:

$$\lambda^*(A_{left}) \le \sum_n \lambda^*(I_{n,left})$$

$$\lambda^*(A_{right}) \le \sum_n \lambda^*(I_{n,right})$$

Summing both inequalities, we have that:

$$\lambda^*(A_{left}) + \lambda^*(A_{right}) \le \sum_n \lambda^*(I_{n,left}) + \sum_n \lambda^*(I_{n,right})$$
$$= \sum_n \lambda^*(I_n)$$

Taking the infimum over all countable coverings of A, we have that:

$$\lambda^*(A_{left}) + \lambda^*(A_{right}) \le \lambda^*(A)$$

Remark: In particular, we have that $\forall (a, b) \subset \mathbb{R}$:

$$(a,b) \in \mathcal{L}(\mathbb{R}), \quad \lambda((a,b)) = b - a$$

We know that:

$$\mathcal{B}(\mathbb{R}) \subset \mathcal{L}(\mathbb{R}) \subset \mathcal{P}(\mathbb{R})$$

Are these inclusions strict? We already know that $\mathcal{L}(\mathbb{R}) \neq \mathcal{P}(\mathbb{R})$, by Ulam's theorem. In particular, $\exists E \subset \mathbb{R}$ not Lebesgue measurable (**Vitali sets**). More precisely:

$$\forall E \in \mathcal{L}(\mathbb{R}), \text{ s.t } \lambda(E) > 0, \exists V \subset E, \text{ s.t } V \notin \mathcal{L}(\mathbb{R})$$

The relation between $\mathcal{B}(\mathbb{R})$ and $\mathcal{L}(\mathbb{R})$ is more subtle. It is clarified by the following proposition:

Proposition 2.7.4 (Regularity of the Lebesgue measure). Let $E \in \mathbb{R}$. Then, the following are equivalent:

- (i) $E \in \mathcal{B}(\mathbb{R})$
- (ii) $\forall \varepsilon > 0, \exists A \subset \mathbb{R} \text{ open set s.t.}$

$$E \subset A$$
 and $\lambda^*(A \setminus E) < \varepsilon$

(iii) $\forall \varepsilon > 0, \exists G \subset \mathbb{R} \text{ of class } G_{\delta} \text{ s.t.}$

$$E \subset G$$
 and $\lambda^*(G \setminus E) = 0$

(iv) $\forall \varepsilon > 0, \exists C \subset \mathbb{R} \ closed \ set \ s.t.$

$$C \subset E$$
 and $\lambda^*(E \setminus C) < \varepsilon$

(v) $\forall \varepsilon > 0, \exists F \subset \mathbb{R} \text{ of class } F_{\sigma} \text{ s.t.}$

$$F \subset E$$
 and $\lambda^*(E \setminus F) = 0$

We get as a consequence the following:

Corollary 2.7.4.1. $\forall E \in \mathcal{L}(\mathbb{R}), \exists F, G \in \mathcal{B}(\mathbb{R}) \text{ s.t. } F \subset E \subset G \text{ and }$

$$\lambda(G \setminus F) = \lambda(G \setminus E) + \lambda(E \setminus F) = 0$$

In other words:

$$\mathcal{L}(\mathbb{R}) = \overline{\mathcal{B}(\mathbb{R})}$$

(But $\mathcal{L}(\mathbb{R}) \neq \mathcal{B}(\mathbb{R})$).

Proof. (Regularity of the Lebesgue measure). The proof goes as follows:

 $(i) \Rightarrow (ii)$:

Let $E \in \mathcal{B}(\mathbb{R})$. Note that, since $A \in \mathcal{L}(\mathbb{R})$ for all A open, we have that:

$$\lambda^*(A \setminus E) = \lambda(A \setminus E)$$

By definition of λ^* , we have that $\forall \varepsilon > 0$, $\exists \{I_n\}_{n \in \mathbb{N}}$ s.t.

$$E \subset \bigcup_{n} I_n$$
 and $\sum_{n} \lambda(I_n) < \lambda^*(E) + \varepsilon$

Then, set $A = \bigcup_n I_n$. We have that A is open, $E \subset A$ and:

$$\lambda(A) \le \sum_{n} \lambda(I_n) < \lambda(E) + \varepsilon$$

$$\implies \lambda(A \setminus E) = \lambda(A) - \lambda(E) < \varepsilon$$

 $(ii) \Rightarrow (iii) :$

Assume $\forall \varepsilon > 0$, $\exists A_{\varepsilon}$ open s.t. $E \subset A_{\varepsilon}$ and $\lambda(A_{\varepsilon} \setminus E) < \varepsilon$. Then, set $\varepsilon = 1/n$, $n \ge 1$ (for ease of notation, $A_n = A_{1/n}$) and define:

$$G = \bigcap_{n} A_n$$

Then, G is a G_{δ} set, $E \subset G$ and:

$$0 \le \lambda^*(G \setminus E) \le \lambda^*(A_n \setminus E) < 1/n$$

Taking the limit, we have that $\lambda(G \setminus E) = 0$.

 $(iii) \Rightarrow (i) :$

We know that $E \subset G$, $G \in \mathcal{L}(\mathbb{R})$ with $\lambda(G \setminus E) = 0$. Then, we have that:

$$E = G \setminus (G \setminus E) \in \mathcal{L}(\mathbb{R})$$

since $G \in \mathcal{L}(\mathbb{R})$ and $G \setminus E \in \mathcal{L}(\mathbb{R})$. The last is because it is a negligible set and λ is complete.

E.g. (Cantor set): Let $T_0 = [0, 1]$. Then, construct T_{n+1} from T_n (recursively) by removing the inner third part of every interval in T_n :

$$T_0 = [0, 1],$$

$$T_1 = [0, 1/3] \cup [2/3, 1],$$

$$T_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1], \dots$$

Then, define the **Cantor set** as:

$$C = \bigcap_{n} T_n$$

It can be proven that:

- ullet C has the cardinality of $\mathbb R$
- $\lambda(C) = 0$
- \bullet C is compact
- C is nowhere dense (has no interior points), i.e., $\operatorname{int}(C) = \emptyset$
- $\exists E \subset C \text{ s.t. } E \in \mathcal{L}(\mathbb{R}) \text{ but } E \notin \mathcal{B}(\mathbb{R})$

Chapter 3

Measurable functions

Definition 3.0.1. Given $f: X \to Y$, it is well-defined the **preimage** (or counterimage) of f as:

$$f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X), \quad f^{-1}(E) = \{x \in X : f(x) \in E\}$$

Remark: Preimages work well with set operations:

- $f^{-1}(E \cup F) = f^{-1}(E) \cup f^{-1}(F)$
- $f^{-1}(E \cap F) = f^{-1}(E) \cap f^{-1}(F)$
- $f^{-1}(E \setminus F) = f^{-1}(E) \setminus f^{-1}(F)$

Note this is not true for images.

Definition 3.0.2. Let (X, \mathcal{M}) and (Y, \mathcal{N}) be measurable spaces. A function $f: X \to Y$ is **measurable** if $\forall E \in \mathcal{N}$, we have that $f^{-1}(E) \in \mathcal{M}$. We also say that f is $(\mathcal{M}, \mathcal{N})$ -measurable.

Proposition 3.0.1. Let (X, \mathcal{M}) and (Y, \mathcal{N}) be measurable spaces, and $\rho \subset \mathcal{N}$ s.t. $\mathcal{N} = \sigma_0(\rho)$. Then, $f: X \to Y$ is measurable $\iff \forall E \in \rho$, we have that $f^{-1}(E) \in \mathcal{M}$.

Proof. The proofs goes as follows:

- (\Rightarrow) : Trivial
- (\Leftarrow) : Define $\Sigma := \{E \subset Y : f^{-1}(E) \in \mathcal{M}\}$. We have:
 - $\rho \subset \Sigma$ as a consecuence of $(\forall E \in \rho, f^{-1}(E) \in \mathcal{M})$

• Σ is a σ -algebra (check as an exercise)

Then, we have that $\mathcal{N} = \sigma_0(\rho) \subset \Sigma$. Therefore, f is measurable.

Definition 3.0.3. Suppose that $\mathcal{M} \supseteq \mathcal{B}(X)$ and $\mathcal{N} = \mathcal{B}(Y)$. We say that $f: X \to Y$ is:

- Borel measurable if f is $(\mathcal{B}(X), \mathcal{B}(Y))$ -measurable.
- Lebesgue measurable if it is $(\mathcal{M}, \mathcal{B}(Y))$ -measurable.

Remark: If $f: X \to Y$ is Borel measurable, then it is Lebesgue measurable. The converse is not true.

Also, we never deal with $\mathcal{L}(Y)$.

Corollary 3.0.1.1. f is Borel measurable \iff $f^{-1}(E) \in \mathcal{B}(X), \ \forall E \in Y$ open. Also, f is Lebesgue measurable \iff $f^{-1}(E) \in \mathcal{M}, \ \forall E \in Y$ open.

Proof. It follows from the previous proposition, since $\mathcal{B}(Y) = \sigma_0(\{E \subset Y : E \text{ open}\}).$

Definition 3.0.4. We say that f is **continuous** \iff $f^{-1}(E) \subset X$ is open $\forall E \subset Y$ open.

Proposition 3.0.2. If $f: X \to Y$ is continuous, then f is Borel measurable (and thus Lebesgue measurable).

Proof. Let $E \subset Y$ be open. By continuity of f, we have that $f^{-1}(E)$ is open. Then $f^{-1}(E) \in \mathcal{B}(X)$, and thus f is Borel measurable.

Note that the proposition is false when $\mathcal{N} \supseteq \mathcal{B}(Y)$.

3.1 Operations on measurable functions

Proposition 3.1.1. Let $f: X \to Y$ be Lebesgue measurable, and $g: Y \to Z$ be continuous. Then:

$$g \circ f: X \to Z$$
 is Lebesgue measurable

Corollary 3.1.1.1. Let $f: X \to Y$ be Lebesgue measurable. Then:

- $f^+(x) = \max\{f(x), 0\}$ is Lebesgue measurable
- $f^-(x) = \max\{-f(x), 0\}$ is Lebesgue measurable
- $|f(x)| = f^+(x) + f^-(x)$ is Lebesgue measurable

Proof. Let f be Lebesgue measurable, and $g: \mathbb{R} \to \mathbb{R}$ be continuous. Then, take $E \subset Z$ open. We have that:

$$(g \circ f)^{-1}(E) = f^{-1}(g^{-1}(E))$$

Since g is continuous, $g^{-1}(E)$ is open. Then, $f^{-1}(g^{-1}(E)) \in \mathcal{M}$

Proposition 3.1.2. Let $f, g: X \to \mathbb{R}$ be Lebesgue measurable, and $\Phi: \mathbb{R}^2 \to \mathbb{R}$ be continuous. Then, $h(x) = \Phi(f(x), g(x))$ is Lebesgue measurable.

Proof. Let $h(x) = \Phi(f(x), g(x)) = (\Phi \circ \Psi)(x)$, where $\Psi: X \to \mathbb{R}^2$ is defined as

$$\Psi(x) = (f(x), g(x))$$

Then, we should prove that Ψ is Lebesgue measurable for applying the previous proposition. For this, we have to show that $\forall (a,b) \times (c,d) \subset \mathbb{R}^2$, we have that:

$$\Psi^{-1}((a,b)\times (c,d)) = \{x\in X: f(x)\in (a,b), g(x)\in (c,d)\}\in \mathcal{M}$$

This can be done using the fact that f and g are Lebesgue measurable.

Corollary 3.1.2.1. Let $f, g: X \to \mathbb{R}$ be Lebesgue measurable. Then:

- \bullet f + g is Lebesgue measurable
- \bullet $f \cdot g$ is Lebesgue measurable

Proposition 3.1.3. Let (X, \mathcal{M}) be a measurable space (with $\mathcal{M} \supseteq \mathcal{B}(X)$), and $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of Lebesgue measurable functions $f_n: X \to \mathbb{R}$. Then, the following functions are Lebesgue measurable:

- 1. $\sup_n f_n$
- 2. $\inf_n f_n$
- 3. $\limsup_{n} f_n$
- 4. $\liminf_n f_n$

In particular, if $\lim_n f_n$ exists, then it is Lebesgue measurable.

Proof. The proof goes as follows:

1. Since $\mathcal{B}(\mathbb{R}) = \sigma_0(\{(a, \infty) : a \in \mathbb{R}\})$, it is enough to show that $\forall a \in \mathbb{R}$, we have that:

$$(\sup_{n} f_n)^{-1}((a,\infty)) = \{x \in X : \sup_{n} f_n(x) > a\} \in \mathcal{M}$$

This can be done by using the fact that f_n is Lebesgue measurable. Indeed, we have that:

$$\{x \in X : \sup_{n} f_n(x) > a\} = \bigcup_{n} \{x \in X : f_n(x) > a\}$$
$$= \bigcup_{n} f_n^{-1}((a, \infty)) \in \mathcal{M}$$

because $f_n^{-1}((a,\infty)) \in \mathcal{M}$ for all n.

2. The proof is analogous to the previous case, taking that:

$$\inf_{n} f_n = -\sup_{n} (-f_n)$$

3. We have that:

$$\limsup_{n} f_n = \inf_{n} \sup_{k \ge n} f_k$$

4. We have that:

$$\liminf_{n} f_n = \sup_{n} \inf_{k \ge n} f_k$$

3.2 Properties holding almost everywhere

Definition 3.2.1. Let (X, \mathcal{M}, μ) be a complete measure space. We say that a property P(x) holds μ -almost everywhere (a.e) if:

$$\mu(\lbrace x \in X : P(x) \text{ is false} \rbrace) = 0$$

In other words, P(x) holds μ -almost everywhere if it holds everywhere except for a set of measure zero.

E.g.: Let $f(x) = x^2$. Is it true that f(x) > 0 a.e.?

We have that $\{x : x^2 \le 0\} = \{0\}$

- In $(\mathbb{R}, \mathcal{L}(\mathbb{R}), \lambda)$, the property is true a.e., since $\lambda(\{0\}) = 0$
- In $(\mathbb{R}, \mathcal{P}(\mathbb{R}), \mu_{\#})$ (counting measure), the property is false a.e., since $\mu_{\#}(\{0\}) = 1$

Proposition 3.2.1. Let (X, \mathcal{M}, μ) be a measure space:

- 1. $f: X \to \overline{\mathbb{R}}$ s.t. f = g a.e, with g measurable $\Longrightarrow f$ is measurable
- 2. $\{f_n\}_{n\in\mathbb{N}}$ a sequence of measurable functions s.t. $f_n\to f$ a.e., then f is measurable.

3.3 Simple functions

Definition 3.3.1. Let (X, \mathcal{M}) be a measurable space. A function $s: X \to \overline{\mathbb{R}}$ is measurable and **simple** if s is measurable and s(X) is a finite set:

$$s(X) = \{a_1, a_2, ..., a_k\}$$

where $a_i \in \mathbb{R} \ \forall i$, with $a_i \neq a_j$ for $i \neq j$. Then, s can be written as:

$$s(x) = \sum_{i=1}^{k} a_i \cdot \chi_{A_i}(x)$$

where $A_i = s^{-1}(\{a_i\}), A_i \cap A_j = \emptyset$ for $i \neq j, \bigcup_{i=1}^k A_i = X$ and $A_i \in \mathcal{M}, \forall i$.

Particular case:

If $X = \mathbb{R}$ (or $(a, b) \subset \mathbb{R}$) and A_i is an interval $\forall i$, then s is called a **step function**.

On the other hand, $\chi_{\mathbb{Q}}$ is a simple function, but not a step function:

$$\chi_{\mathbb{Q}}(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

Remark: One may define simple functions without measurability requirements.

Goal:

Approximate any measurable function $f: X \to \overline{\mathbb{R}}$ with (measurable and) simple functions.

Theorem 3.3.1 (Simple approximation theorem (SAT)). Take (X, \mathcal{M}) measurable space and $f: X \to [0, \infty]$, measurable. Then $\exists \{s_n\}_{n \in \mathbb{N}}$ a sequence of measurable, simple functions s.t. $s_1 \leq s_2 \leq ... \leq f$ pointwise (i.e., $\forall x \in X$) and:

$$\lim_{n \to \infty} s_n(x) = f(x) \quad \forall x \in X$$

Moreover, if f is bounded, the convergence is uniform:

$$\lim_{n \to \infty} \sup_{x \in X} |s_n(x) - f(x)| = 0$$

Proof. In case f is bounded, say $0 \le f < 1$.

For any $n \geq 1$, divide [0,1) into 2^n intervals of length 2^{-n} , and define:

$$A_n^{(i)} = \{ x \in X : \frac{i}{2^n} \le f(x) < \frac{i+1}{2^n} \}$$

and:

$$s_n(x) = \sum_{n=0}^{2^n - 1} \frac{i}{2^n} \cdot \chi_{A_n^{(i)}}(x)$$

One can show that such a sequence has the required properties

Chapter 4

Lebesgue integral

- First, we will define the integral for non-negative simple (measurable) functions.
- Second, we will extend the definition to non-negative measurable functions.
- Finally, we will define the integral for general measurable functions.

4.1 Integral of non-negative simple functions

Definition 4.1.1. Let $s: X \to [0, \infty]$ be a measurable and simple function:

$$s = \sum_{i=1}^{k} a_i \cdot \chi_{A_i}$$

where $a_i \geq 0$ and $A_i \in \mathcal{M}$. Let $E \in \mathcal{M}$. Then, we define the **(Lebesgue) integral** of s over E as:

$$\int_{E} s \, d\mu = \sum_{i=1}^{k} a_{i} \cdot \mu(A_{i} \cap E)$$

Remark: There are some remarks:

- 1. $s:[a,b]\to [0,\infty), \, \mu,\mu=\lambda$ (Lebesgue measure) Then, $\int_{[a,b]} s\,d\mu=$ area under the graph of s in [a,b]
- 2. We are already using $0 \cdot \infty = 0$ in the definition. In particular,

$$a_i \cdot \mu(A_i \cap E) = \begin{cases} 0 & a_i = 0 \\ \infty & a_i > 0 \end{cases}$$

if
$$\mu(A_i \cap E) = \infty$$
.

3. $D \in \mathcal{M}$, then χ_D is a simple function, and:

$$\int_{E} \chi_{D} \, d\mu = \mu(D \cap E)$$

4. More generally, s simple and measurable, $E \in \mathcal{M}$, then:

$$\int_E s \, d\mu = \int_X s \cdot \chi_E \, d\mu$$

Properties 4.1.1 (Basic properties). Let $N, E, F \in \mathcal{M}, s_1, s_2 : X \to [0, \infty)$ simple and measurable functions. Then:

(i) If $\mu(N) = 0$, then:

$$\int_{\mathcal{N}} s_1 \, d\mu = 0$$

(ii) If $0 \le c \le \infty$, then:

$$\int_{E} c \cdot s_1 \, d\mu = c \cdot \int_{E} s_1 \, d\mu$$

(iii) $\int_E (s_1 + s_2) d\mu = \int_E s_1 d\mu + \int_E s_2 d\mu$

(iv) If $s_1 \leq s_2$, then:

$$\int_E s_1 \, d\mu \le \int_E s_2 \, d\mu$$

(v) if $E \subset F$, then:

$$\int_{E} s_1 \, d\mu \le \int_{E} s_1 \, d\mu$$

The properties (ii) and (iii) are called **linearity** of the integral. The properties (iv) and (v) are called **monotonicity** of the integral.

Proposition 4.1.1. Let $s: X \to [0, \infty)$ be a simple measurable function. Then, the function:

$$\phi(E) := \int_{E} s \, d\mu : \mathcal{M} \to [0, \infty]$$

is a measure on (X, \mathcal{M}) .

Proof. Let $s = \sum_{i=1}^k a_i \cdot \chi_{A_i}$, $0 \le a_i \le \infty$. We have to show that:

- 1. $\phi: \mathcal{M} \to [0, \infty]$?: Yes, since $s \ge 0$, $\phi(E) \ge 0$, $\forall E \in \mathcal{M}$.
- 2. $\phi(\emptyset) = 0$?: Yes, since $\int_{\emptyset} s \, d\mu = 0$, as $\mu(\emptyset) = 0$.
- 3. σ -additivity?: Let $\{E_n\}_{n\in\mathbb{N}}$ be a sequence of pairwise disjoint sets in \mathcal{M} , and $E = \bigcup_n E_n$. Then, we have that:

$$\phi(E) = \int_{E} s \, d\mu = \int_{X} s \cdot \chi_{E} \, d\mu = \sum_{i=1}^{k} a_{i} \cdot \mu(A_{i} \cap E)$$
$$= \sum_{i=1}^{k} a_{i} \cdot \mu\left(\bigcup_{n} A_{i} \cap E_{n}\right)$$

Since μ is σ -additive, we have that:

$$= \sum_{i=1}^{k} a_i \sum_{n} \cdot \mu(A_i \cap E_n)$$
$$= \sum_{n} \sum_{i=1}^{k} a_i \cdot \mu(A_i \cap E_n)$$
$$= \sum_{n} \int_{E_n} s \, d\mu = \sum_{n} \phi(E_n)$$

4.2 Integral of non-negative measurable functions

Definition 4.2.1. Let $f: X \to [0, \infty]$ be a measurable function, $E \in \mathcal{M}$. Then, we define the (**Lebesgue**) integral of f over E as:

$$\int_E f \, d\mu = \sup \left\{ \int_E s \, d\mu : s \text{ simple, measurable and } 0 \le s \le f \right\}$$

Remark: There are some remarks:

- 1. If f is simple, then the definition coincides with the previous one.
- 2. $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu_{\#})$. Then $f : \mathbb{N} \to [0, \infty]$ is a sequence. Indeed, if we name $f_n = f(n)$, then:

$$\int_{\mathbb{N}} f \, d\mu_{\#} = \sum_{n} f_{n}$$

3. All the basic properties of the integral for simple functions above hold for this new definition.

Note: The following propositions assume that (X, \mathcal{M}, μ) is a complete measure space (needed for a.e. properties).

Proposition 4.2.1 (Chebychev's inequality). Let $f: X \to [0, \infty]$ be a measurable function, and $0 < c < \infty$. Then:

$$\mu(\{f \ge c\}) \le \frac{1}{c} \int_{\{f > c\}} f \, d\mu \le \frac{1}{c} \int_X f \, d\mu$$

where $\{f \ge c\} = \{x \in X : f(x) \ge c\}.$

Proof.

$$\int_X f \, d\mu \ge \int_{\{f < c\}} f \, d\mu \ge \int_{\{f < c\}} c \, d\mu = c \cdot \mu(\{f < c\})$$

Now we just divide by c.

Note: We have as a consequence the following lemmas:

Lemma 4.2.2 (Vanishing lemma). Let $f: X \to [0, \infty]$ be a measurable function, $E \in \mathcal{M}$:

$$\int_{E} f \, d\mu = 0 \iff f = 0 \text{ a.e. on } E$$

Proof. The proof goes as follows:

 (\Leftarrow) : Trivial

 (\Rightarrow) : We have to show that:

$$\mu(\{x \in E : f(x) > 0\}) = 0$$

Let us define $F = \{x : f(x) > 0\} = \bigcup_n F_n$, where $F_n = \{x : f(x) \ge 1/n\}$. Then, we have that:

$$F_n \subset F_{n+1} \quad \forall n$$

so $F_n \uparrow F$. Then, we have that:

$$\mu(F_n) \to \mu(F)$$

and:

$$0 \le \mu(F_n) = \mu(\{f \ge \frac{1}{n}\}) \le \frac{1}{1/n} \int_E f \, d\mu = 0$$

Then, $\mu(F) = 0$.

Remark: The vanishing lemma applies to **every f** once $\mu(E) = 0$, indeed, every property is true a.e. on negligible sets. "The Lebesgue integral does not see negligible sets".

Lemma 4.2.3. Let $f: X \to [0, \infty]$ be a measurable function. Then:

$$\int_X f \, d\mu < \infty \implies \mu(\{f = \infty\}) = 0$$

Proof. Exercise. (Hint: $\{f = \infty\} = \bigcap_n \{f \ge n\}$)

Theorem 4.2.4 (Monotone Convergence Theorem (MCT)). Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of measurable functions $f_n: X \to [0,\infty]$. Assume that:

(i)
$$f_n \leq f_{n+1} \quad \forall n$$

(ii)
$$\lim_{n\to\infty} f_n(x) = f(x)$$
 for $a.e.x \in X$

Then, we have that:

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu$$

Remark: All assumptions are essential

Proof. The proof goes as follows:

Part 1:

Assume that assumptions (i) and (ii) hold $\forall x \in X$. We have some basic facts:

- $f(x) = \lim_{n \to \infty} f_n(x) \implies f(x) \ge 0$ and measurable.
- $\int_X f_n d\mu \le \int_X f_{n+1} d\mu$. Then, if we define:

$$\alpha_n = \int_X f_n \, d\mu, \quad \alpha = \lim_{n \to \infty} \alpha_n$$

we have that $\alpha_n \leq \alpha_{n+1}$, so $\alpha_n \uparrow \alpha$. Moreover, we have that:

$$f_n(x) \le f(x) \implies \int_X f_n d\mu \le \int_X f d\mu$$

 $\implies \alpha \le \int_X f d\mu$

So, to complete part 1, we have to show that $\alpha \geq \int_X f d\mu$.

We use the definition of $\int_X f d\mu$:

Take any $s: X \to [0, \infty)$ simple, measurable and $0 \le s \le f$. Take also $0 \le c < 1$. Then, we have that:

$$0 < c \cdot s \le f$$

Take $f_n(x) \uparrow f(x) \ \forall x \in X$. Consider $E_n = \{x \in X : f_n(x) \ge c \cdot s(x)\} \in \mathcal{M}$. Then, we have that:

- (a) $E_n \subset E_{n+1}$: indeed, $x \in E_n \iff f_n(x) \ge c \cdot s(x) \implies f_{n+1}(x) \ge c \cdot s(x) \iff x \in E_{n+1}$
- (b) $\bigcup_n E_n = X$: indeed, either $f(x) = 0 \implies x \in E_n \ \forall n \ \text{or} \ f(x) > 0 \ \text{and} \ c \cdot s(x) < f(x)$. Since $f_n(x) \uparrow f(x)$, we have that $\exists N_0 \text{ s.t. } f_{N_0}(x) \geq c \cdot s(x)$. Then $x \in E_{N_0}$.

Then, we have that:

$$\alpha \ge \alpha_n = \int_X f_n \, d\mu \ge \int_{E_n} c \cdot s \, d\mu = c \cdot \int_{E_n} s \, d\mu$$
$$= c \cdot \phi(E_n)$$

(where $\phi(E) = \int_E s \, d\mu$ is a measure). Then, notice that $E_n \uparrow X$, so $\phi(E_n) \to \phi(X)$.

Then, we have that:

$$\alpha \ge c \cdot \phi(X) = c \cdot \int_X s \, d\mu$$

Then, $\forall c < 1, \forall s$:

$$\alpha \ge c \int_X s \, d\mu$$

If we take the limit $c \to 1$, we have that $\alpha \ge \int_X s \, d\mu$. And if we take the supremum over all s, we have that:

$$\alpha \geq \int_X f \, d\mu$$

<u>Part 2:</u>

Now, we have to show that the result holds for a.e. $x \in X$. Define

$$F = \{x \in X : \text{either } (i) \text{ or } (ii) \text{ fails} \}$$

Then we have that $\mu(F) = 0$, and $E = X \setminus F$. For any g (non-negative, measurable), we have that:

$$g - \chi_E \cdot g = 0$$
 a.e. on X

Then, we use the vanishing lemma to show that:

$$\int_{X} (g - \chi_{E} \cdot g) \, d\mu = 0$$

$$\iff \int_{X} g \, d\mu = \int_{E} g \, d\mu$$

Finally:

$$\int_X f \, d\mu = \int_E f \, d\mu = \lim_{n \to \infty} \int_E f_n \, d\mu = \lim_{n \to \infty} \int_X f_n \, d\mu$$

Remark: Note that we now have 2 ways to compute the integral of a non-negative measurable function:

- $\int_X f \, d\mu = \sup \left\{ \int_X s \, d\mu : s \text{ simple, measurable and } 0 \le s \le f \right\}$
- $\int_X f d\mu = \lim_{n\to\infty} \int_X f_n d\mu$ where $f_n \uparrow f$ simple and measurable functions.

Corollary 4.2.4.1 (Monotone convergence for series). Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of measurable functions $f_n: X \to [0,\infty]$. Then, we have that:

$$\int_X \sum_n f_n \, d\mu = \sum_n \int_X f_n \, d\mu$$

Proposition 4.2.5. Take $\Phi: X \to [0, \infty]$ measurable, $E \in \mathcal{M}$. Define:

$$\nu(E) = \int_E \Phi \, d\mu$$

Then, ν is a measure on (X, \mathcal{M}) . Moreover, for $f: X \to [0, \infty]$ measurable:

$$\int_X f \, d\nu = \int_X f \cdot \Phi \, d\mu$$

Proof. The proof goes as follows:

- $\nu: \mathcal{M} \to [0, \infty]$: Trivial
- $\nu(\emptyset) = 0$: Trivial
- σ -additivity: Let $\{E_n\}_{n\in\mathbb{N}}$ be a sequence of pairwise disjoint sets in \mathcal{M} , and $E = \bigcup_n E_n$. Then, we have that:

$$\nu(E) = \int_{E} \Phi \, d\mu = \int_{X} \Phi \cdot \chi_{E} \, d\mu = \sum_{n} \int_{X} \Phi \cdot \chi_{E_{n}} \, d\mu$$
$$= \sum_{n} \int_{E_{n}} \Phi \, d\mu = \sum_{n} \nu(E_{n})$$

Lemma 4.2.6 (Fatou). Let (X, \mathcal{M}, μ) be a complete measure space, and $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of measurable functions. Then:

$$\int_{X} \liminf_{n} f_n \, d\mu \le \liminf_{n} \int_{X} f_n \, d\mu$$

Proof. Recall that:

$$\liminf_{n} f_n = \lim_{n \to \infty} \left(\inf_{k \ge n} f_k \right)$$

$$= \sup_{n} \left(\inf_{k \ge n} f_k \right)$$

Then, we define:

$$g_n = \inf_{k \ge n} f_k$$

We have the following properties $\forall n$:

- g_n is measurable.
- $g_n \ge 0$
- $\bullet \ g_n \le g_{n+1}$
- $g_n \leq f_n$

Then, by the MCT, we have that:

$$\int_{X} \liminf_{n} f_{n} d\mu = \int_{X} \lim_{n} g_{n} d\mu = \lim_{n} \int_{X} g_{n} d\mu$$
$$= \liminf_{n} \int_{X} g_{n} d\mu \le \liminf_{n} \int_{X} f_{n} d\mu$$

4.3 Integral of real-valued measurable functions

Let $f: X \to \mathbb{R}$ be a measurable function. Then, we can write $f = f^+ - f^-$, where:

$$f^+(x) = \max\{f(x), 0\}$$
 $f^-(x) = \max\{-f(x), 0\}$

Notice that $f^+, f^- \ge 0$ are measurable functions. Then, we define:

$$|f| = f^+ + f^-$$

We also notice that $|f| = f^+ + f^- \ge 0$ is measurable.

Definition 4.3.1. We say $f: X \to \mathbb{R}$ is **integrable** on X if it is measurable and:

$$\int_{Y} |f| \, d\mu < \infty$$

We define the set of **integrable functions** as:

$$\mathcal{L}^1(X, \mathcal{M}, \mu) = \{ f : X \to \mathbb{R} : f \text{ is integrable} \}$$

For $f \in \mathcal{L}^1(X, \mathcal{M}, \mu)$, and $E \in \mathcal{M}$, we define:

$$\int_E f \, d\mu = \int_E f^+ \, d\mu - \int_E f^- \, d\mu$$

Proposition 4.3.1. Let $f: X \to \mathbb{R}$ be a measurable function. Then:

- (i) $f \in \mathcal{L}^1 \iff |f| \in \mathcal{L}^1 \iff (f^+ \in \mathcal{L}^1 \text{ and } f^- \in \mathcal{L}^1)$
- (ii) (Triangular inequality):

$$\left| \int_{E} f \, d\mu \right| \le \int_{E} |f| \, d\mu$$

Proof. The proof goes as follows:

- (i) Trivial (but see next remark)
- (ii) We have that:

$$\left| \int_{E} f \, d\mu \right| = \left| \int_{E} f^{+} \, d\mu - \int_{E} f^{-} \, d\mu \right|$$

$$\leq \left| \int_{E} f^{+} \, d\mu \right| + \left| \int_{E} f^{-} \, d\mu \right| = \int_{E} f^{+} \, d\mu + \int_{E} f^{-} \, d\mu$$

$$= \int_{E} f^{+} + f^{-} \, d\mu = \int_{E} |f| \, d\mu$$

Remark: In general, it is not true that |f| measurable $\implies f$ measurable. Take $F \subset X, F \notin \mathcal{M}$ and:

$$f(x) = \chi_F(x) - \chi_{X \setminus F}(x)$$

Then, |f| = 1 is measurable, but f is not.

Proposition 4.3.2. We propose two properties:

- (i) $\mathcal{L}^1(X, \mathcal{M}, \mu)$ is a (real) vector space.
- (ii) The functional

$$I(\cdot) := \int_{X} \cdot d\mu : \mathcal{L}^{1}(X, \mathcal{M}, \mu) \to \mathbb{R}$$

is a linear functional.

Proof. The proof sketch goes as follows:

Let $u, v \in \mathcal{L}^1(X, \mathcal{M}, \mu), \alpha, \beta \in \mathbb{R}$. We should show that:

$$\alpha u + \beta v \in \mathcal{L}^1(X, \mathcal{M}, \mu)$$

since:

$$|\alpha u + \beta v| \le |\alpha u| + |\beta v|$$

Then:

$$\int_X (\alpha u + \beta v) \, d\mu \le \int_X |\alpha u + \beta v| \, d\mu \le \int_X |\alpha u| \, d\mu + \int_X |\beta v| \, d\mu < \infty$$

since $|\alpha u|, |\beta v| \in \mathcal{L}^1(X, \mathcal{M}, \mu)$. Then, we have that $\alpha u + \beta v \in \mathcal{L}^1(X, \mathcal{M}, \mu)$.

For the second property, we have that:

$$I(\alpha u + \beta v) = \int_X (\alpha u + \beta v) d\mu = \alpha \int_X u d\mu + \beta \int_X v d\mu = \alpha I(u) + \beta I(v)$$

Remark: All the other basic properties of the integral of non-negative functions can be extended to the integral of real-valued functions.

Theorem 4.3.3 (Vanishing lemma). Let (X, \mathcal{M}, μ) be a complete measure space, and $f, g \in \mathcal{L}^1(X, \mathcal{M}, \mu)$. Then:

$$f = g \ a.e. \iff \int_X |f - g| \, d\mu = 0 \iff \int_E (f - g) \, d\mu = 0 \ \forall E \in \mathcal{M}$$

Proof. The "difficult" part of the proof is:

$$\int_{E} (f - g) d\mu, \quad \forall E \in \mathcal{M} \implies f = g \text{ a.e.}$$

The proof goes as follows:

Let $E_1 = \{f \geq g\}$, and $E_2 = X \setminus E_1$. Then, we have that:

$$0 = \int_{E_1} (f - g) d\mu = \int_{E_1} (f - g)^+ d\mu$$
$$0 = \int_{E_2} (f - g) d\mu = -\int_{E_2} (f - g)^- d\mu$$

Then, we have that:

$$(f-q)^+ = 0$$
 and $(f-q)^- = 0$ a.e. on X

Remark: In particular, for $u \in \mathcal{L}^1$:

$$\int_{E} u \, d\mu = 0 \, \forall E \in \mathcal{M} \implies u = 0 \text{ a.e.}$$

This is the same as:

$$\int_X u\varphi \,d\mu = 0 \quad \forall \varphi \text{ characteristic function } \Longrightarrow u = 0 \text{ a.e.}$$

This can be true also replacing φ by "something else". For instance, in the case of $u \in \mathcal{L}^1(\mathbb{R}, \mathcal{L}(\mathbb{R}), \lambda)$:

$$\int_{\mathbb{R}} u\varphi \, d\lambda = 0 \quad \forall \varphi \in V \implies u = 0 \text{ a.e.}$$

where $V = \{C_0^{\infty}(\mathbb{R})\}$, or $V = \{C_0^0(\mathbb{R})\}$.

This is the "fundamental lemma of calculus of variations".

Theorem 4.3.4 (Dominated convergence theorem (DCT)). Let $(X, \mathcal{M}.\mu)$ be a complete measure space and $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of measurable functions $f_n: X \to \mathbb{R}$, and $f: X \to \mathbb{R}$. Assume that:

- (i) $|f_n| \leq g$ a.e. on X, $\forall n \in \mathbb{N}$, where $g \in \mathcal{L}^1(X, \mathcal{M}, \mu)$
- (ii) $\lim_{n\to\infty} f_n(x) = f(x)$ for a.e. $x \in X$

Then, $f \in \mathcal{L}^1(X, \mathcal{M}, \mu)$, and:

$$\lim_{n \to \infty} \int_E |f_n - f| \, d\mu = 0$$

In particular:

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu$$

Proof. First, we have 2 basic facts:

- 1. $|f_n| \leq g$ a.e. on $X, \forall n \in \mathbb{N} \implies f_n \in \mathcal{L}^1(X, \mathcal{M}, \mu)$
- 2. $|f| \leq g$ a.e. on $X \implies f \in \mathcal{L}^1(X, \mathcal{M}, \mu)$

Then, consider the sequence $h_n = 2g - |f_n - f|$. We have that:

- h_n is measurable.
- $h_n \le 2g$

• $h_n \ge 0$. Indeed:

$$|f_n - f| \le |f_n| + |f| \le 2g \implies 2g - |f_n - f| \ge 0$$

We now apply the Fatou's lemma to the sequence h_n :

$$\int_{X} (\liminf_{n} h_{n}) d\mu \le \liminf_{n} \int_{X} h_{n} d\mu$$
$$= \int_{X} 2g d\mu - \limsup_{n} \int_{X} |f_{n} - f| d\mu$$

Also, notice that:

$$\liminf_{n} h_n = 2g$$

Then, we have that:

$$\int_{X} 2g \, d\mu \le \int_{X} 2g \, d\mu - \limsup_{n} \int_{X} |f_{n} - f| \, d\mu$$

$$\implies \lim \sup_{n} \int_{X} |f_{n} - f| \, d\mu \le 0$$

Then, we have that:

$$\limsup_{n} \int_{X} |f_{n} - f| d\mu \ge \liminf_{n} \int_{X} |f_{n} - f| d\mu \ge 0$$

In the end:

$$\lim_{n} \int_{X} |f_n - f| \, d\mu = 0$$

Remark: If $\mu(X) < \infty$, then the constants are integrable. Then, if $|f_n(x)| \leq M$ a.e, for some $M \in \mathbb{R}$, then:

$$\lim_{n \to \infty} \int_{X} f_n \, d\mu = \int_{X} \lim_{n \to \infty} f_n \, d\mu$$

(We are using the DCT with g = M)

Corollary 4.3.4.1 (Dominated Convergence for series). Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of measurable functions $f_n: X \to \mathbb{R}$, s.t $f_n \in \mathcal{L}^1(X, \mathcal{M}, \mu)$. If $\sum_n \int_X |f_n| d\mu < \infty$, then:

$$\int_X \sum_n f_n \, d\mu = \sum_n \int_X f_n \, d\mu$$

4.4 Comparison between Riemann and Lebesgue integrals

Theorem 4.4.1. Let $I = [a,b] \subset \mathbb{R}$ be a closed interval, and $f : I \to \mathbb{R}$. If f is **Riemann integrable** on I, then f is **Lebesgue integrable** on I, i.e., $f \in \mathcal{L}^1(I,\mathcal{L}(I),\lambda)$, and the two integrals coincide:

$$\int_{I} f \, d\lambda = \int_{a}^{b} f(x) \, dx$$

Theorem 4.4.2. Let $I = (\alpha, \beta)$, such that $-\infty \le \alpha < \beta \le \infty$. If |f| is **Riemann** integrable on I (in the generalized sense), then f is **Lebesgue** integrable on I:

$$\int_{I} f \, d\lambda = \int_{\alpha}^{\beta} f(x) \, dx$$

Remark: If the generalized Riemann integral of |f| diverges, then:

$$\int_{I} |f| \, d\lambda = \infty$$

but $\int_I f d\lambda$ is not defined (unless $f = \pm |f|$) and:

$$\int_{\alpha}^{\beta} f(x) dx$$
 and $\int_{I} f d\lambda$

are not related.

4.5 Spaces of integrable functions

For a (X, \mathcal{M}, μ) complete measure space, we already know that $\mathcal{L}^1(X, \mathcal{M}, \mu)$ is a vector space. We can also define a distance in this space:

$$d(f,g) = \int_X |f - g| \, d\mu$$

Immediately, we have that:

• Symmetry: d(f,g) = d(g,f)

• Triangle inequality: $d(f,g) \le d(f,h) + d(h,g)$

• Non-negativity: $d(f,g) \ge 0$

But notice that d(f,g) = 0 does not imply f = g (only a.e.). This means that d(f,g) is a **pseudo-distance**.

To solve this, we can define an equivalence relation:

$$f \sim q \iff f = q \text{ a.e.}$$

With this equivalence relation, we can define the following space:

Definition 4.5.1. We define the space $L^1(X, \mathcal{M}, \mu)$ as:

$$L^{1}(X, \mathcal{M}, \mu) = \{ [f] : f \in \mathcal{L}^{1}(X, \mathcal{M}, \mu) \}$$

where [f] is the equivalence class of f defined as:

$$[f] = \{g : g = f \text{ a.e.}\}$$

Remark: We can define the distance in $L^1(X, \mathcal{M}, \mu)$ as:

$$d([f], [g]) = \int_X |f - g| d\mu$$

This distance is well-defined, and it is a true distance. Then, $(L^1(X), d)$ is a metric space.

Note: We understand that elements of L^1 are functions: instead of [u], we work with a representant u, and we can **only** use operations/properties that are **independent of the representant**.

E.g.: X = (0,1), we work on $(X, \mathcal{L}(X), \lambda)$. If we take $u \in L^1(X)$, we have the following:

• $u \ge 0$ in X: **NOT** well-defined

• $u \ge 0$ a.e. on X: **GOOD**

• u(1/2): **NOT** well-defined

• $\int_{[0,1/2]} u \, d\lambda$: **GOOD**

Definition 4.5.2. Let $f: X \to \mathbb{R}$ be a measurable function. We say it is **essentially bounded** if:

$$\exists M \in \mathbb{R} : |f(x)| \leq M \text{ a.e. on } X$$

i.e.:

$$\mu(\{x \in X : |f(x)| > M\}) = 0$$

E.g.: Two examples:

$$f(x) = \begin{cases} \infty & \text{if } x = 0\\ 0 & \text{if } x \in (0, 1] \end{cases}$$
 is essentially bounded

$$g(x) = \begin{cases} 0 & \text{if } x = 0\\ 1/x & \text{if } x \in (0, 1] \end{cases}$$
 is not essentially bounded

Definition 4.5.3. If $f: X \to \mathbb{R}$ is essentially bounded, we define the **essential** supremum of f as:

$$\operatorname{ess\,sup} f := \inf\{M \in \mathbb{R} : \mu(\{f > M\}) = 0\}$$

Definition 4.5.4. We define the space $\mathcal{L}^{\infty}(X, \mathcal{M}, \mu)$ as:

$$\mathcal{L}^{\infty}(X, \mathcal{M}, \mu) = \{ f : X \to \mathbb{R} : f \text{ is essentially bounded} \}$$

We can also define the space $L^{\infty}(X, \mathcal{M}, \mu)$ as:

$$L^{\infty}(X, \mathcal{M}, \mu) = \{ [f] : f \in \mathcal{L}^{\infty}(X, \mathcal{M}, \mu) \}$$

where [f] is the equivalence class of f defined as:

$$[f] = \{g : g = f \text{ a.e.}\}$$

Remark: One can prove that $L^{\infty}(X, \mathcal{M}, \mu)$ is a vector space, with the distance:

$$d([f], [g]) = \operatorname{ess\,sup} |f - g|$$

Chapter 5

Types of convergence

We have various types of convergence for sequences of measurable functions:

Definition 5.0.1. Let $f_n: X \to \overline{\mathbb{R}}$ be a sequence of measurable functions, that converges to a function $f: X \to \overline{\mathbb{R}}$. We say that the convergence is a:

• Pointwise convergence:

$$f_n(x) \to f(x) \quad \forall x \in X$$

• Uniform convergence:

$$\sup_{x \in X} |f_n(x) - f(x)| \to 0$$

• Convergence a.e.:

$$f_n(x) \to f(x)$$
 a.e. $x \in X$

• L^1 -convergence:

$$\int_{X} |f_n - f| \, d\mu \to 0$$

• L^{∞} -convergence:

$$\operatorname{ess\,sup}_X |f_n - f| \to 0$$

• Convergence in measure:

$$\mu(\lbrace x \in X : |f_n(x) - f(x)| \ge \epsilon \rbrace) \to 0 \quad \forall \epsilon > 0$$

Remark: Basic relations:

Uniform convergence \Rightarrow Pointwise convergence \Rightarrow Convergence a.e.

Uniform convergence $\Rightarrow L^{\infty}$ -convergence

Exercise: Let $([0,1],\mathcal{L}([0,1]),\lambda)$ be the Lebesgue measure space. Let:

$$f_n(x) = e^{-nx}$$
 $0 < x < 1$

$$g(x) = \begin{cases} 1 & x = 0 \\ 0 & x \in (0, 1] \end{cases}$$

$$f(x) = 0 \quad 0 \le x \le 1$$

Show that:

- $f_n \to f$ a.e. $f_n \nrightarrow f$ pointwise $f_n \to g$ pointwise $f_n \nrightarrow g$ uniformly

5.1 a.e. convergence and convergence in measure

Theorem 5.1.1. Let $\mu(X) < \infty$, f_n , f measurable functions, a.e. finite in X. If $f_n \to f$ a.e., then $f_n \to f$ in measure.

Remark: if $\mu(X) = \infty$, then the theorem may not hold. For instance, consider $X = \mathbb{R}$, with the Lebesgue measure, and:

$$f_n(x) = \chi_{[n,\infty)}(x) = \begin{cases} 1 & x \ge n \\ 0 & x < n \end{cases}$$

We can show that $f_n(x) \to 0$ a.e., but $\lambda(\{f_n \ge 1/2\}) = \infty \ \forall n$ and thus $f_n \nrightarrow 0$ in measure.

Also notice that convergence in measure does not imply convergence a.e., even if $\mu(X) < \infty$. For instance, consider the "typewriter sequence".

Theorem 5.1.2. Let f_n, f be measurable functions, a.e. finite in X. If $f_n \to f$ in measure, then there exists a subsequence f_{n_k} that converges to f a.e.

5.2 Convergence in L^1 and convergence in measure

Theorem 5.2.1. Let f_n , f be measurable functions in $L^1(X, \mathcal{M}, \mu)$. If $f_n \to f$ in L^1 , then $f_n \to f$ in measure.

Proof. Assume by contradiction that $f_n \to f$ in measure. Then $\exists \alpha > 0$ s.t.:

$$\mu(\{x \in X : |f_n(x) - f(x)| \ge \alpha\}) \nrightarrow 0$$

I.e., $\exists \epsilon > 0$ and a subsequence f_{n_k} s.t.:

$$\mu(\{x \in X : |f_{n_k}(x) - f(x)| \ge \alpha\}) \ge \epsilon \quad \forall k$$

Let us call $E_k = \{x \in X : |f_{n_k}(x) - f(x)| \ge \alpha\}$. On the other hand, by assumption, $f_{n_k} \to f$ in L^1 . But notice that:

$$\int_{X} |f_{n_k} - f| \, d\mu \ge \int_{E_k} |f_{n_k} - f| \, d\mu \ge \alpha \mu(E_k) \ge \alpha \epsilon > 0$$

Since $f_{n_k} \to f$ in L^1 , we have that $\int_X |f_{n_k} - f| d\mu \to 0$. But we have just shown that $\int_X |f_{n_k} - f| d\mu \ge \alpha \epsilon > 0$. This is a contradiction, and thus $f_n \to f$ in measure.

Remark: In general, convergence in measure does not imply convergence in L^1 . For instance, consider X = [0,1], $\mathcal{M} = \mathcal{L}([0,1])$, μ the Lebesgue measure, and $f_n(x) = n\chi_{[0,1/n]}(x)$. We can show that $f_n \to 0$ in measure, but $\int_X |f_n - 0| d\mu = 1 \, \forall n$.

5.3 Convergence in L^1 and a.e. convergence

In general, they are not related. But we have 2 main results: **Dominating convergence** theorem that we already saw, and the "Reverse Dominating Convergence Theorem", that states:

Theorem 5.3.1. Let $f_n \to f$ in $L^1(X, \mathcal{M}, \mu)$, then there exists a subsequence f_{n_k} that converges to f a.e., and there exists a function $g \in L^1(X, \mathcal{M}, \mu)$ s.t. $|f_{n_k}| \leq g$ a.e. $\forall k$.

Chapter 6

Absolutely continuous functions and Functions of bounded variations

6.1 Fundamental theorems of calculus

Let $(X, \mathcal{L}(X), \lambda)$ be a complete measure space, such that $X = \mathbb{R}$ or $X = I \subset \mathbb{R}$ an interval. Take $f \in L^1(a, b)$. We can define the **integral function**:

$$F(x) = \int_{a}^{b} a(x) f d\mu = \int_{a}^{x} f(t) dt$$

If $f \in C([a, b])$, then:

- $F \in C^1([a, b])$
- $\bullet \ F'(x) = f(x)$
- $F(x) F(y) = \int_y^x f(t) dt$

What if only $f \in L^1(a, b)$?

6.1.1 1st Fundamental Theorem of Calculus

Theorem 6.1.1 (1st Fundamental Theorem of Calculus). Let $f \in L^1(a,b)$. If we define:

$$F(x) = \int_{a}^{x} f(t) dt$$

then:

- ullet F is differentiable at a.e. $x \in [a,b]$
- F'(x) = f(x) a.e. $x \in [a, b]$

E.g.: Take [a, b] = [-1, 1] and:

$$f(x) = \mathcal{H}(x) = \begin{cases} 0 & x \le 0\\ 1 & x > 0 \end{cases}$$

This is the Heaviside function. Notice that $\mathcal{H} \in L^1(-1,1)$. Now:

$$F(x) = \int_{-1}^{x} \mathcal{H}(t) dt = \begin{cases} 0 & x \le 0 \\ x & x > 0 \end{cases}$$

Also, if we define:

$$f(x) = \begin{cases} \mathcal{H}(x) & x \notin \mathbb{Q} \\ \infty & x \in \mathbb{Q} \end{cases}$$

we get the same F.

Note: For the proof, we need a deep result due to Lebesgue. We go back to $\mathcal{L}^1([a,b])$.

Definition 6.1.1. Let $f \in \mathcal{L}^1([a,b])$. we say $x \in [a,b]$ is a **Lebesgue point** for f if:

$$\lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} |f(t) - f(x)| \, dt = 0$$

Note that if x=a then $h\to 0^+$ and if x=b, then $h\to 0^-$.

Remark: If x is a LP, then:

$$0 = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} |f(t) - f(x)| dt$$
$$\geq \lim_{h \to 0} \left| \frac{1}{h} \int_{x}^{x+h} (f(t) - f(x)) dt \right|$$
$$= \left| \left(\lim_{h \to 0} \int_{x}^{x+h} f(t) dt \right) - f(x) \right|$$

i.e., LP is related with the validity of a local mean value theorem at x

Remark: We have the following:

- f is continuos $\implies x$ is a LP.
- $f \in C([a,b]) \implies \text{every } x \in [a,b] \text{ is a LP.}$
- Take $\mathcal{H}(x)$, then x = 0 is not a LP.

Theorem 6.1.2 (Lebesgue). Let $f \in \mathcal{L}^1([a,b])$. Then, a.e. $x \in [a,b]$ is a Lebesgue point.

Remark: By consequence of the theorem, it makes sense to consider Lebesgue points in L^1 . Indeed, changing the representative of the function class in L^1 maintains the same set of Lebesgue points up to a negligible set.

Note: To prove the 1st fund. thm., we will show that:

- F is differentiable at x.
- \bullet F'(x) = f(x)

for all x Lebesgue points for f.

Proof: (1st fund. thm.) Take $x \in [a, b]$ a LP of f. Then:

$$0 \le \left| \frac{F(x+h) - F(x)}{h} - f(x) \right|$$
$$= \left| \frac{\int_a^{x+h} f(t) dt - \int_a^x f(t) dt}{h} - f(x) \right|$$

$$= \left| \frac{1}{h} \int_{x}^{x+h} f(t) dt - \frac{1}{h} \int_{x}^{x+h} f(x) dt \right|$$

$$\leq \frac{1}{h} \int_{x}^{x+h} |f(t) - f(x)| dt \to 0 \quad \text{as } h \to 0$$

because x is a LP.

Remark: Let us try to reverse the point of view: take $g : [a, b] \to \mathbb{R}$, and assume that g is differentiable a.e. in [a, b], and that $g' \in L^1([a, b])$. Is g related with $\int_a^x g'(t) dt$?. The answer is **NO!**

E.g.: $\mathcal{H}: [-1,1] \to \mathbb{R}$ and notice that:

$$\mathcal{H}'(x)0 \begin{cases} \nexists & x = 0 \\ 0 & x \neq \end{cases}$$

We have that $\mathcal{H}' = 0$ a.e. in [-1, 1], and $0 \in L^1([-1, 1])$. But:

$$\mathcal{H}(1) - \mathcal{H}(0) = 1 - 0 = 1 \neq 0 = \int_{-1}^{1} 0 \, dt = \int_{-1}^{1} \mathcal{H}'(t) \, dt$$

Other example with the Cantor-Vitali function:

g(x) = v(x), s.t. v(0) = 0, v(1) = 1 and constant outside the Cantor set

Then, v is differentiable and v'(x) = 0 a.e., but we can notice that the same thing as before happens.

Definition 6.1.2. Let I be an interval. We say that $f: I \to \mathbb{R}$ is an **absolutely continuous function**, $f \in AC(I)$, if:

 $\forall \varepsilon > 0, \exists \delta \text{ s.t.}, \forall n \in \mathbb{N}, \forall \text{ family of } n \text{ disjoint subintervals of } I, \text{ i.e., } (a_i, b_i) \subset I \text{ s.t.}$... $b_{i-1} \leq a_i < b_i \leq a_{i+1} < ... \text{ we have that:}$

$$\lambda\left(\bigcup_{i=1}^{n}(a_i,b_i)\right)<\delta\implies\sum_{i=1}^{n}|f(b_i)-f(a_i)|\leq\varepsilon$$

Remark: Recall that f is uniformly continuous (UC) if:

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } \forall x, y \in I$$

 $|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$

(The choice of δ is independent of x, y)

Then:

$$UC(I) \supset AC(I)$$

Recall that f is Lipschitz continuous if $\exists L > 0$ s.t.:

$$\forall x, y \in I, |f(x) - f(y)| \le L|x - y|$$

Then:

$$Lip(I) \subset AC(I)$$

We will see that:

$$Lip(I) \subsetneq AC(I) \subsetneq UC(I)$$

We will also see that, as $g' \in C \iff g \in C^1$, we have that:

$$g' \in L^1 \iff g \in AC$$

6.1.2 2nd Fundamental Theorem of Calculus

Theorem 6.1.3 (2nd Fundamental Theorem of Calculus). Let $g:[a,b] \to \mathbb{R}$. The following are equivalent:

- (i) $g \in AC([a,b])$
- (ii) g is differentiable a.e. in [a,b], $g' \in L^1([a,b])$ and:

$$g(x) - g(y) = \int_{y}^{x} g'(t) dt \quad \forall x, y \in [a, b]$$

Corollary 6.1.3.1.
$$f \in L^1([a,b]) \implies F(x) = \int_a^x f(t) dt \in AC([a,b])$$

Note: To prove one implication of the theorem, we will need some few extra results.

Theorem 6.1.4 (Absolute continuity of the integral function). Let $f \in L^1([a,b])$. Then, $\forall \varepsilon > 0, \ \exists \delta > 0 \ s.t.$:

$$\begin{cases} E \in \mathcal{M} \\ \mu(E) < \delta \end{cases} \implies \int_{E} |f| \, d\mu < \varepsilon$$

Proof. By contradiction: assume that $\exists \varepsilon > 0$ s.t. $\forall \delta > 0$, $\exists E \in \mathcal{M}$ s.t. $\mu(E) < \delta$ and $\int_{E} |f| d\mu \geq \varepsilon$.

In particular, $\delta = 1/2^n \to 0$, $E_n = E_{\delta_n}$ and:

$$F_n = \bigcup_{k=n}^{\infty} E_n = E_n \cup F_{n+1}, \quad F = \lim_{n \to \infty} F_n$$

Then:

1.

$$(F_{n+1} \subset F_n) \implies \{F_n\} \downarrow F$$

2.

$$\forall n, \quad \mu(F_n) \le \sum_{k=n}^{\infty} \mu(E_k) \le \sum_{k=n}^{\infty} \delta_k = \sum_{k=n}^{\infty} \frac{1}{2^k} = 2^{-n+1}$$

3.

$$\nu(F_n) = \int_{F_n} |f| \, d\mu \ge \int_{E_n} |f| \, d\mu \ge \epsilon \quad \forall n$$

Moreover:

$$\nu(F_1) = \int_{F_1} |f| \, d\mu \le \int_X |f| \, d\mu < \infty$$

Use continuity of measures:

$$(1) + (2) \implies \nu(F) = \lim_{n \to \infty} \nu(F_n) = 0$$

$$(1) + (3) \implies \nu(F) = \lim_{n \to \infty} \nu(F_n) \ge \varepsilon > 0$$

Contradiction, since $\nu(F) = 0$.

Remark: As a consequence, we have:

$$f \in L^1([a,b]) \implies F(x) = \int_a^x f(t) dt \in AC([a,b])$$

Proof. Take $\varepsilon > 0$, and $\delta = \delta(\varepsilon)$ as in the theorem. I know:

$$\begin{cases} \forall E \in \mathcal{L}([a,b]) \\ \lambda(E) < \delta \end{cases} \implies \int_{E} |f| \, d\lambda < \varepsilon$$

Take $E = \bigcup_{i=1}^{n} (a_i, b_i)$, s.t (a_i, b_i) disjoint intervals. Then:

$$\sum_{i=1}^{n} |F(b_i) - F(a_i)| = \sum_{i=1}^{n} \left| \int_{a_i}^{b_i} f(t) dt \right| \le \sum_{i=1}^{n} \int_{a_i}^{b_i} |f| dt$$
$$= \int_{\bigcup_{i=1}^{n} (a_i, b_i)} |f| dt < \varepsilon$$

E.g. ((AC \Rightarrow Lip)): Consider $g(x) = \sqrt{x}$ in [0, 1]. Then:

$$\sqrt{x} = \int_0^x \frac{1}{2\sqrt{t}} \, dt$$

and $g \in AC([0,1])$. But notice that $g \notin Lip([0,1])$.

$$\left| \frac{\sqrt{x} - \sqrt{0}}{x - 0} \right| \nleq C$$

for any C > 0, as $x \to 0$.

E.g. $((UC \Rightarrow AC))$: Consider:

$$f(x) = \begin{cases} x \sin(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$$

It is continuous in $[0,1] \implies f \in UC([0,1])$. But notice that $f \notin AC([0,1])$. Indeed:

$$f'(x) = \sin(1/x) - \frac{1}{x}\cos(1/x)$$

and $1/x\cos(1/x)$ is not integrable in [0,1], i.e., $f' \notin L^1([0,1])$.

6.2 AC functions and weak derivatives

Proposition 6.2.1 (Integration by parts in AC). Let $u:[a,b] \to \mathbb{R}$. Then, $u \in AC([a,b])$ if and only if:

- $u \in C([a,b])$
- u is differentiable a.e. in [a, b]
- $u' \in L^1([a,b])$

•

$$\int_{a}^{b} u'\varphi dx = -\int_{a}^{b} u\varphi' dx \quad \forall \varphi \in C_{0}^{\infty}([a,b])$$

Definition 6.2.1 (Weak derivative). Let $u \in L^1(a,b)$. We say that $u \in W^{1,1}(a,b) \iff \exists w \in L^1(a,b) \text{ s.t.}$:

$$\int_{a}^{b} u\varphi' dx = -\int_{a}^{b} w\varphi dx \quad \forall \varphi \in C_{0}^{\infty}(a,b)$$

Such w is called the **weak derivative** of u.

Remark: Both u and w = u' are equivalence classes of functions, i.e., $u \sim v \iff u = v$ a.e. Properties should be independent of the representative.

Remark: If such a w exists, it is unique (up to a.e. equivalence). Indeed, assume that w_1, w_2 are weak derivatives of u. Then:

$$\int_{a}^{b} (w_1 - w_2) \varphi dx = 0 \quad \forall \varphi \in C_0^{\infty}(a, b)$$

$$\implies w_1 - w_2 = 0 \text{ a.e.}$$

Remark: In principle, the pointwise and weak derivatives are different objects, and the notation u' may be misleading. But we know that if $u \in AC([a, b])$ they coincide.

Remark: In principle, the definition of weak derivatives can be extended (measures, distributions). Take:

$$\mathcal{H}(x) = \begin{cases} 0 & x \le 0\\ 1 & x > 0 \end{cases}$$

Then:

$$-\int_{-1}^{1} \mathcal{H}(x)\varphi'(x) dx = -\int_{0}^{1} \varphi'(x) dx = \varphi(0) - \varphi(1)$$
$$= \varphi(0) = \int_{[-1,1]} \varphi(x) d\delta_{0}$$

where δ_0 is the Dirac delta function. This suggest that:

$$\mathcal{H}' = \delta_0$$
 weakly $\mathcal{H}' = 0$ pointwise

Theorem 6.2.2.
$$u \in AC([a,b]) \iff u \in W^{1,1}(a,b)$$

Proof. The proof goes as follows:

- (\Rightarrow) Already proved.
- (\Leftarrow) Assume that u' weak derivative of $u, u' \in L^1(a, b)$. Then:

$$z(x) = \int_{a}^{x} u'(t) dt, \quad z \in AC$$

We can show that u = z + c for some constant c.

Chapter 7

Derivatives of measures

Let (X, \mathcal{M}, μ) be a complete measure space. We know that, given $\Phi: X \to [0, \infty]$ measurable, the function:

$$\nu_{\Phi}(E) := \int_{E} \Phi d\mu = \int_{E} d\nu_{\Phi}$$

is a measure on (X, \mathcal{M}) . Given μ, ν measures on (X, \mathcal{M}) , is it true that there exists Φ such that

$$\nu(E) = \int_{E} \Phi d\mu \quad \forall E \in \mathcal{M}$$

We will study this question in this chapter.

Definition 7.0.1. Let μ, ν measures on (X, \mathcal{M}) . If $\exists \Phi$ s.t

$$\nu(E) = \int_{E} \Phi d\mu \quad \forall E \in \mathcal{M}$$

then Φ is the **Radon-Nikodym derivative** of ν with respect to μ and we write:

$$\Phi = \frac{d\nu}{d\mu}$$

Definition 7.0.2. Let μ, ν measures on (X, \mathcal{M}) . Then ν is absolutely continuous with respect to μ (" $\nu << \mu$ ") if:

$$\forall E \in \mathcal{M}, \quad \mu(E) = 0 \Rightarrow \nu(E) = 0$$

Lemma 7.0.1 (Necessary condition). Let μ, ν measures on (X, \mathcal{M}) . If ν has a Radon-Nikodym derivative with respect to μ , then ν is absolutely continuous with respect to μ .

Proof. Assume ν has a Radon-Nikodym derivative with respect to μ . Then:

$$\nu(E) = \int_{E} \Phi d\mu = 0$$

Exercise: Take $(X, \mathcal{M}) = (\mathbb{R}, \mathcal{L}(\mathbb{R}))$, $\mu = \lambda$ the Lebesgue measure and $\nu = \delta_0$ the Dirac measure at 0. Show that

$$\nexists \frac{d\nu}{d\mu}$$

7.1 The Radon-Nikodym Theorem

Theorem 7.1.1 (Radon-Nikodym Theorem). Let (X, \mathcal{M}) be a measurable space, μ, ν measures and μ is σ -finite. Then:

$$\nu << \mu \iff \exists \frac{d\nu}{d\mu}$$

Corollary 7.1.1.1. Let ν be a measure on $(\mathbb{R}^N, \mathcal{L}(\mathbb{R}^N))$ and $\mu << \lambda$. Then:

$$\exists \Phi := \frac{d\nu}{d\mu} : \quad \nu(E) = \int_{E} \Phi \, d\lambda \quad \forall E \in \mathcal{L}(\mathbb{R}^{N})$$

(Indeed, λ is σ -finite)

Chapter 8

Banach spaces

8.1 Normed and Banach spaces

Definition 8.1.1. Let X be a (real) vector space. A **norm** on X is a function $\|\cdot\|: X \to \mathbb{R}$ such that:

- (i) ||x|| > 0 for all $x \in X$ and $||x|| = 0 \iff x = 0$.
- (ii) $\|\alpha x\| = |\alpha| \|x\|$ for all $x \in X$ and $\alpha \in \mathbb{R}$.
- (iii) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.

Then $(X, \|\cdot\|)$ is called a **normed space**.

Proposition 8.1.1. Let $(X, \|\cdot\|)$ be a normed space. Then:

$$d(x,y) = ||x - y||$$

is a metric on X, i.e., (X,d) is a metric space.

Proposition 8.1.2. Let $\{x_n\}_n$ be a sequence in a normed space $(X, \|\cdot\|)$. Then:

- (i) We say $x_n \to x$ if $||x_n x|| \to 0$ as $n \to \infty$.
- (ii) For $f:X\to Y$, $(X,Y\ normed\ spaces)$, we say f is continuous at $x\in X$ \iff :

$$\forall \{x_n\}_n : x_n \to x \in X \implies f(x_n) \to f(x) \in Y$$

Exercise: Show that:

- (i) $|||x|| ||y||| \le ||x y||$
- (ii) $\|\cdot\|: X \to \mathbb{R}$ is continuous in X.

Definition 8.1.2. We say $\{x_n\}_n$ is a Cauchy sequence (or fundamental sequence) if $||x_n - x_m|| \to 0$ as $n, m \to \infty$. I.e., :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : n, m \ge N \implies ||x_n - x_m|| < \varepsilon$$

Remark: If $\{x_n\}_n$ converges, then it is a Cauchy sequence. The converse is not true in general.

Definition 8.1.3. A normed vector space $(X, \|\cdot\|)$ is called a **Banach space** if it is complete, i.e., every Cauchy sequence in X converges to a point in X.

E.g.: The following are examples of Banach spaces:

- (i) $X = \mathbb{R}^n$ with $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $1 \le p < \infty$., $||x||_{\infty} = \max_i |x_i|$, are Banach spaces.
- (ii) X = C([a, b]) with $||u|| = \max_{x \in [a, b]} |u(x)|$ is a Banach space.
- (iii) $X = C^k([a, b])$ with $||u|| = \sum_{i=0}^k \max_{x \in [a, b]} |u^{(i)}(x)|$ is a Banach space.

Remark: Let $(X, \|\cdot\|)$ normed vector space, $\{x_n\}_n \subset X$. We can deal with series:

$$\sum_{n=1}^{\infty} x_n = y \iff s_k = \sum_{n=1}^{k} x_n, \quad s_k \to y \text{ as } k \to \infty$$

For numerical series, $\{a_n\}_n \subset \mathbb{R}$, we have:

$$\sum_{n=1}^{\infty} |a_n| < \infty \implies \sum_{n=1}^{\infty} a_n \text{ converges}$$

This is not true in general for series in normed spaces.

Proposition 8.1.3. $(X, \|\cdot\|)$ is a Banach space \iff every absolutely convergent series in X converges. I.e., if:

$$\forall \{x_n\}_n \subset X : \sum_{n=1}^{\infty} \|x_n\| < \infty \implies \sum_{n=1}^{\infty} x_n \ converges$$

8.2 Equivalent/non equivalent norms

Definition 8.2.1. Let X be a vector space, and $\|\cdot\|_a$, $\|\cdot\|_b$ be two norms on X. We say $\|\cdot\|_a$ and $\|\cdot\|_b$ are **equivalent** if there exist $0 < c_1 \le c_2 < \infty$ such that:

$$c_1 \|x\|_a \le \|x\|_b \le c_2 \|x\|_a \quad \forall x \in X$$

In particular, we say that they induce the same topology on X.

Theorem 8.2.1. Let X be a vector space, such that $dim X < \infty$. Then all norms on X are equivalent.

Proof. Notice that it is enough to prove that any norm $\|\cdot\|$ on X is equivalent to the Euclidean norm $\|\cdot\|_2$.

Moreover, it is enough to prove that $\exists c_1, c_2 > 0$ such that:

$$c_1 \le ||x|| \le c_2 \quad \forall x \in X, ||x||_2 = 1$$

Indeed, if we have this, then:

$$y \in \mathbb{R}^N \setminus \{0\} \implies \left\| \frac{y}{\|y\|_2} \right\|_2 = 1$$

Then, we have:

$$c_1 \le \left\| \frac{y}{\|y\|_2} \right\| \le c_2 \implies c_1 \|y\|_2 \le \|y\| \le c_2 \|y\|_2$$

Which is what we wanted to prove.

To prove this, let f(x) = ||x||. We will show that f is continuous with respect to the Euclidean norm, i.e.:

$$||x_n - x||_2 \to 0 \implies f(x_n - x) \to 0 \iff ||x_n - x|| \to 0$$

Indeed, for $y \in X$, and $\{e_1, ..., e_N\}$ basis of X, we have:

$$||y|| = \left\| \sum_{i=1}^{N} y_i e_i \right\| \le \sum_{i=1}^{N} ||y_i e_i||$$

$$\le \sum_{i=1}^{N} |y_i| ||e_i|| \le \left(\max_i |y_i| \right) \sum_{i=1}^{N} ||e_i||$$

$$\le C ||y||_{\infty} \le C ||y||_{2}$$

Where $C = \sum_{i=1}^{N} ||e_i||$. Then, we have:

$$0 < ||x_n - x|| \le C ||x_n - x||_2 \to 0 \implies ||x_n - x|| \to 0$$

Finally, consider:

$$\min_{\|x\|_2=1} f(x) \quad \max_{\|x\|_2=1} f(x)$$

Since f is continuous, and $S = \{x \in X : ||x||_2 = 1\}$ is compact, we have that f attains its minimum and maximum in S. Let $x_m = \arg\min_{||x||_2 = 1} f(x)$, and $x_M = \arg\max_{||x||_2 = 1} f(x)$. Then, we have:

$$0 < ||x_m|| \le f(x) \le ||x_M|| \quad \forall x \in X, ||x||_2 = 1$$

$$\implies 0 < ||x_m|| \le ||x|| \le ||x_M|| \quad \forall x \in X, ||x||_2 = 1$$

Note: We postpone more general properties of Banach spaces (in paricular, that in infinite dimension, the theorem above is not true), and we anticipate the Lebesgue spaces.

Chapter 9

Lebesgue spaces $L^p(X)$

9.1 Definition of $L^p(X)$

Definition 9.1.1. Let (X, \mathcal{M}, μ) be a complete measure space, and $p \in [1, \infty]$. We define the following:

1.
$$\mathcal{L}^p(X, \mathcal{M}, \mu) := \{ f : X \to \mathbb{R} \mid f \text{ is } \mathcal{M}\text{-measurable and } \int_X |f|^p d\mu < \infty \}.$$

2.
$$u, v \in \mathcal{L}^p(X, \mathcal{M}, \mu), u \sim v \iff u = v \text{ a.e.}$$

3.
$$[f]_p := \{ g \in \mathcal{L}^p(X, \mathcal{M}, \mu) \mid f \sim g \}.$$

Finally, we define the L^p -space as follows:

$$L^p(X,\mathcal{M},\mu) := \mathcal{L}^p(X,\mathcal{M},\mu)/\sim = \{[f]_p \mid f \in \mathcal{L}^p(X,\mathcal{M},\mu)\}$$

where \sim is the equivalence relation defined above. We also define the norm as follows:

$$||f||_{L^p} = ||f||_p = \begin{cases} \left(\int_X |f|^p \, d\mu \right)^{1/p} & \text{if } 1 \le p < \infty \\ \operatorname{ess\,sup}_{x \in X} |f(x)| & \text{if } p = \infty \end{cases}$$

and $d_p(f,g) = ||f - g||_p$.

E.g.: Notice that if $(X, \mathcal{M}, \mu) = (\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu_{\#})$, then:

$$L^p(\mathbb{N}, \mathcal{P}(\mathbb{N}), \#) = \ell^p$$

For $1 \le p < \infty$, we have:

$$\ell^p = \left\{ (a_n)_{n \in \mathbb{N}} \mid \sum_{n \in \mathbb{N}} |a_n|^p < \infty \right\}$$

with norm:

$$\|(a_n)\|_p = \left(\sum_{n \in \mathbb{N}} |a_n|^p\right)^{1/p}$$

For $p = \infty$, we have:

$$\ell^{\infty} = \left\{ (a_n)_{n \in \mathbb{N}} \mid \sup_{n \in \mathbb{N}} |a_n| < \infty \right\}$$

with norm:

$$||(a_n)||_{\infty} = \sup_{n \in \mathbb{N}} |a_n|$$

Note: Our plan is to show that $L^p(X, \mathcal{M}, \mu)$ is a Banach space, i.e.:

- 1. $L^p(X, \mathcal{M}, \mu)$ is a vector space.
- 2. $\|\cdot\|_p$ is a norm.
- 3. $L^p(X, \mathcal{M}, \mu)$ is complete.

9.2 L^p -spaces are vector spaces

Lemma 9.2.1. Let $p \in [1, \infty)$, $a, b \in \mathbb{R}$, $a, b \leq 0$. Then:

$$(a+b)^p \le 2^{p-1}(a^p + b^p)$$

Proof (exercise). For $a \neq 0$, t = b/a, we have to show that:

$$\frac{(1+t)^p}{1+t^p} \le 2^{p-1} \quad \forall t \le 0$$

Theorem 9.2.2. Let $p \in [1, \infty)$, then $L^p(X)$ is a vector space

Proof. Given $u, v \in L^p(X), \alpha \in \mathbb{R}$, we have to show that:

1.
$$u+v \in L^p(X)$$

2.
$$\alpha u \in L^p(X)$$

1. We have:

$$\int_X |u + v|^p \, d\mu \le \int_X (|u| + |v|)^p \, d\mu \le 2^{p-1} \left(\int_X |u|^p \, d\mu + \int_X |v|^p \, d\mu \right) < \infty$$

2. We have:

$$\int_X |\alpha u|^p d\mu = \int_X |\alpha|^p |u|^p d\mu = |\alpha|^p \int_X |u|^p d\mu < \infty$$

9.3 $(L^p(X), \|\cdot\|_p)$ are normed spaces

Definition 9.3.1 (Conjugated exponent). For every $1 \le p \le \infty$, the **conjugated** exponent of p, denoted by $q \in [1, \infty]$, satisfies:

$$\frac{1}{p} + \frac{1}{q} = 1$$

Lemma 9.3.1 (Young's inequality). Let $p, q \in (1, \infty)$ be conjugated exponents. Then, for every $a, b \geq 0$:

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

Proof. Notice that ln(x) is a concave function. Then:

$$\ln(\frac{a^p}{p} + \frac{b^q}{q}) \ge \frac{1}{p}\ln(a^p) + \frac{1}{q}\ln(b^q)$$
$$= \ln((a^p)^{1/p}) + \ln((b^q)^{1/q}) = \ln(a) + \ln(b) = \ln(ab)$$

Note: As a consequence of Young's inequality, we have the following inequality:

Lemma 9.3.2 (Hölder's inequality). Let $p, q \in [1, \infty]$ be conjugated exponents, (X, \mathcal{M}, μ) be a complete measure space, and u, v measurable functions. Then:

$$||uv||_1 \le ||u||_p ||v||_q$$

Proof. We will prove it for $p, q \in (1, \infty)$. For $p = 1, q = \infty$, it is left as an exercise.

We separate in cases:

• If $||u||_p = 0$, then u = 0 a.e., and uv = 0 a.e., meaning that

$$||uv||_1 = 0$$

(The same applies if $||v||_q = 0$)

- If $||u||_p \cdot ||v||_q = \infty$, then the inequality is trivial.
- For $0 < \|u\|_p$, $\|v\|_q < \infty$, we apply the Young inequality for:

$$a = \frac{|u(x)|}{\|u\|_p}, \quad b = \frac{|v(x)|}{\|v\|_q}$$

We have:

$$\frac{|u(x)| \cdot |v(x)|}{\|u\|_p \|v\|_q} = ab \le \frac{1}{p} \frac{|u(x)|^p}{\|u\|_p^p} + \frac{1}{q} \frac{|v(x)|^q}{\|v\|_q^q}$$

We integrate to get:

$$\frac{\|uv\|_1}{\|u\|_p\|v\|_q} \le \frac{1}{p} \frac{\|u\|_p^p}{\|u\|_p^p} + \frac{1}{q} \frac{\|v\|_q^q}{\|v\|_q^q} = 1$$

$$\implies \|uv\|_1 \le \|u\|_p \|v\|_q$$

9.3.1 Inclusion of L^p spaces

Theorem 9.3.3. Let $\mu(X) < \infty$, $1 \le p \le q \le \infty$. Then:

$$L^q(X) \subset L^p(X)$$

More precisely, $\exists C > 0 \text{ s.t.}$:

$$\|u\|_p \le C \|u\|_q$$

Theorem 9.3.4 (Interpolation). Let $1 \le p < q \le \infty$. Then:

$$L^r(X) \subset L^p(X) \cap L^q(X), \quad \forall p \le r \le q$$

9.3.2 Minkowski's inequality

Theorem 9.3.5 (Minkowski's inequality). Let $p \in [1, \infty]$, (X, \mathcal{M}, μ) be a complete measure space, and $u, v \in L^p(X)$. Then:

$$||u+v||_p \le ||u||_p + ||v||_p$$

Proof. We will prove it for $p \in (1, \infty)$. For $p = 1, p = \infty$, it is left as an exercise.

We have:

$$||u+v||_p^p = \int_X |u+v|^p d\mu = \int_X |u+v||u+v|^{p-1} d\mu$$

$$\leq \int_X |u||u+v|^{p-1} d\mu + \int_X |v||u+v|^{p-1} d\mu$$

For the first term, we have:

$$\int_{X} |u| |u + v|^{p-1} d\mu \le ||u||_{p} \left(\int_{X} |u + v|^{(p-1)q} d\mu \right)^{1/q}$$

$$\le ||u||_{p} ||u + v||_{p}^{p/q} = ||u||_{p} ||u + v||_{p}^{p-1}$$

Analogously, for the second term, we have:

$$\int_X |v| |u+v|^{p-1} d\mu \le \|v\|_p \|u+v\|_p^{p-1}$$

and finally, we substitute back to get:

$$||u+v||_p^p \le ||u||_p ||u+v||_p^{p-1} + ||v||_p ||u+v||_p^{p-1}$$

and we divide by $||u+v||_p^{p-1}$ to get:

$$||u+v||_p \le ||u||_p + ||v||_p$$

Corollary 9.3.5.1. $(L^p(X), \|\cdot\|_p)$ is a normed space for $p \in [1, \infty]$

9.4 Completeness of L^p -spaces

Theorem 9.4.1 (Riesz-Fischer). Let $p \in [1, \infty]$, (X, \mathcal{M}, μ) be a complete measure space. Then:

$$L^p(X)$$
 is a Banach space

Proof. The only thing left to show is that $L^p(X)$ is complete. We will use the characterization of Banach spaces in terms of absolutely convergent series.

Let us suppose that $\{f_n\}_n \subset L^p(X)$ is an absolutely convergent series, i.e.:

$$\sum_{n=1}^{\infty} \|f_n\|_p = M < \infty$$

Introduce $g_k(x) = \sum_{n=1}^k |f_n(x)|$. We have that, for every $x \in X$, $\{g_k(x)\}_{k \in \mathbb{N}}$ is a non-decreasing sequence. Then:

$$g(x) = \lim_{k \to \infty} g_k(x) = \sum_{n=1}^{\infty} |f_n(x)|$$

is well-defined for every $x \in X$. We have to show that $g \in L^p(X)$.

Notice that:

$$||g_k||_p = \left\| \sum_{n=1}^k |f_n| \right\|_p \le \sum_{n=1}^k ||f_n||_p \le$$

$$\le \sum_{n=1}^\infty ||f_n||_p = M$$

where M is a constant (since the series is absolutely convergent). Then, $g_k \in L^p(X)$ for every $k \in \mathbb{N}$.

Then, by the monotone convergence theorem, we have:

$$\int_X g^p d\mu = \int_X \left(\lim_{k \to \infty} g_k\right)^p d\mu = \lim_{k \to \infty} \int_X g_k^p d\mu$$
$$= \lim_{k \to \infty} \|g_k\|_p^p \le M^p < \infty$$

Then, $g \in L^p(X)$, meaning that $g(x) \leq \infty$ a.e., which implies that:

$$\sum_{n=1}^{\infty} |f_n(x)| < \infty \quad \text{a.e.}$$

Since X is complete, we have that $\sum_{n=1}^{\infty} f_n(x)$ converges a.e. Then:

$$s(x) = \sum_{n=1}^{\infty} f_n(x)$$

is well-defined for every $x \in X$. And we proved that $s_k(x) \to s(x)$ for a.e $x \in X$.

To conclude, we apply the dominated convergence theorem:

•
$$|s_k(x) - s(x)| \to 0$$
 a.e.

•

$$|s_k - s|^p = \left| \sum_{n=k+1}^{\infty} f_n \right|^p \le \left(\sum_{n=k+1}^{\infty} |f_n| \right)^p$$

$$\le (g)^p \in L^1$$

These conditions imply that:

$$\int_X |s_k - s|^p \, d\mu \to 0$$

that is, convergence in L^p .

E.g.: We know that the following are Banach spaces:

- 1. $(\mathbb{R}^N, \text{any norm})$
- 2. $(C([a,b]), \|\cdot\|_{\infty})$
- 3. $(L^p(X), \|\cdot\|_p)$
- 4. $(L^{\infty}, \|\cdot\|_{\infty})$

E.g.: Let X = C([-1,1]), $||u||_1 = \int_{-1}^1 |u(x)| dx$. Then, let u_n :

$$u_n(x) = \begin{cases} 0 & \text{if } x \in [-1, 0) \\ nx & \text{if } x \in [0, 1/n] \\ 1 & \text{if } x \in [1/n, 1] \end{cases}$$

We have that $\{u_n\}_n \subset X$ is a Cauchy sequence with respect to the norm $\|\cdot\|_1$. On the other hand:

$$||u_n - u_m||_{\infty} = \max_{-1 \le x \le 1} |u_n(x) - u_m(x)| = 1 - \frac{n}{m} \to 0$$

Moreover, we have that $\{u_n\}_n \subset L^1([-1,1])$, s.t. $u_n \to \mathcal{H}$, which is not in C([-1,1]).

Consequences:

- 1. $\|\cdot\|_1$ is not equivalent to $\|\cdot\|_{\infty}$ in C([-1,1]).
- 2. $(C([-1,1]), \left\| \cdot \right\|_1)$ is not a Banach space.
- 3. C([-1,1]) is a vector subspace of $L^1([-1,1])$, but it is not closed, since the sequence $\{u_n\}_n \subset C([-1,1])$ converges to a function that is not in C([-1,1]).

Chapter 10

Compactness, Density and Separability

10.1 Compactness

We say that (X, d) is a metric space.

Definition 10.1.1. $E \subset X$ is **compact** if from any open covering $\{A_i\}_{i\in I}$ $(A_i$ open $\forall i \in I, E \subset \bigcup_{i\in I} A_i)$ we can extract a finite subcovering.

Typically, we define it as follows:

Take E, fix r > 0 and consider $\{B_r(x)\}_{x \in E}$, the open balls of radius r centered at $x \in E$.

Then, E is compact if there exists $x_1, ..., x_k \in E$ s.t.

$$E \subset \bigcup_{i=1}^k B_r(x_i)$$

Definition 10.1.2. E is **sequentially compact** if $\forall \{x_n\}_{n\in\mathbb{N}}\subset E$, there exists a subsequence $\{x_{n_k}\}_{k\in\mathbb{N}}$ that converges to some $x\in E$.

Remark: The two definitions are equivalent in metric spaces.

Definition 10.1.3. $E \subset X$ is **relatively compact** if \overline{E} is compact.

Theorem 10.1.1 (Heine-Borel). Let $(X, \|\cdot\|)$ be a normed vector space. If $dim(X) < \infty$, then $E \subset X$ is compact \iff E is closed and bounded.

Remark: The theorem is not true in infinite-dimensional spaces. In particular, if $E \subset X$ is compact, then E is closed and bounded, but the converse is not true.

Theorem 10.1.2 (Riesz). Let $(X, \|\cdot\|)$ be a normed vector space. Then:

$$\overline{B_1(0)}$$
 is compact \iff $dim(X) < \infty$

Proof. (\Leftarrow) Exercise.

 (\Rightarrow) Suppose $\overline{B_1(0)} = \{x \in X : ||x|| \le 1\}$ is compact.

Consider $\{B_{1/2}(x)\}_{x\in\overline{B_1(0)}}$. Then:

$$\overline{B_1(0)} \subset \bigcup_{x \in \overline{B_1(0)}} B_{1/2}(x)$$

By compactness, $\exists x_1, ..., x_k \in \overline{B_1(0)}$ s.t.

$$\overline{B_1(0)} \subset \bigcup_{i=1}^k B_{1/2}(x_i)$$

$$\subset \bigcup_{i=1}^k \overline{B_{1/2}(x_i)}$$

This means that $\forall x \in \overline{B_1(0)}, \exists i \in \{1, ..., k\}, \text{ s.t.}$

$$x = x_i + z$$
 for some $||z|| \le 1/2$

Define $V = span\{x_1, ..., x_k\}$. Then, $V \subset X$ is a vector subspace and $dimV \leq k < \infty$.

We can then rewrite the previous implication as: $\forall x \in \overline{B_1(0)}, \exists v \in V \text{ s.t.}$

$$x = v + z$$
 for some $||z|| \le 1/2$

Now, take $y \in X$, s.t. $y \neq 0$. Then, notice that:

$$\frac{y}{\|y\|} \in \overline{B_1(0)}$$

So there exists $v \in V$ and $z : ||z|| \le 1/2$ s.t.

$$\frac{y}{\|y\|} = v + z$$

Then, y = ||y|| v + ||y|| z. We rewrite this as:

$$y = v' + z'$$

where $v' = ||y|| v \in V$ and $||z'|| \le ||y|| / 2$.

Then, take any $x \in X$ and apply the previous result to y = x:

$$x = v_1 + z_1, \quad v_1 \in V, \quad ||z_1|| \le ||x||/2$$

Then, apply it again to $y = z_1$:

$$x = v_1 + v' + z_2, \quad v_1, v' \in V, \quad ||z_2|| \le ||z_1|| / 2 \le ||x|| / 4$$

Notice that, because V is a vector space, $v_1 + v' \in V$. Then, we rewrite the previous equation as:

$$x = v_2 + z_2, \quad v_2 \in V, \quad ||z_2|| \le ||x||/4$$

By induction:

$$x = v_n + z_n, \quad v_n \in V, \quad ||z_n|| \le ||x||/2^n$$

Notice that $z_n \to 0$ as $n \to \infty$. Then:

$$v_n = x - z_n \to x \text{ as } n \to \infty$$

Meaning that the sequence $\{v_n\}_n \subset V$ converges to $x \in X$, and because V is a finite-dimensional vector subspace, it is closed, so $x \in V$.

With this, we have shown that X = V, and therefore, $dim X \leq k < \infty$.

10.2 Compactness in C([a,b])

Note: We always deal with $(C([a,b]), \|\cdot\|_{\infty})$, which is Banach

Definition 10.2.1. Let $\{u_n\}_n \subset C([a,b])$ a sequence of continuous functions. Then, we say that it is **uniformly equicontinuous** if $\forall \varepsilon > 0, \exists \delta > 0$ s.t.,

$$|x-y| < \delta \implies |u_n(x) - u_n(y)| < \varepsilon, \quad \forall x, y \in [a, b], \forall n \in \mathbb{N}$$

(The value of δ only depends on ε)

Theorem 10.2.1 (Ascoli-Arzelà). Take $\{u_n\}_n \subset C([a,b])$. Assume that:

(i) $\{u_n\}_{n\in\mathbb{N}}$ is uniformly bounded, i.e.:

$$\exists 0 < M < \infty, \quad \|u_n\|_{\infty} \leq M \quad \forall n \in \mathbb{N}$$

(ii) $\{u_n\}_n$ is uniformly equicontinuous.

Then, there exists a subsequence $\{u_{n_k}\}_{k\in\mathbb{N}}$ and $u\in C([a,b])$ s.t. $u_{n_k}\to u$ as $k\to\infty$

E.g.: Let $\{u_n\}_n \subset C^1([a,b]) \subset C([a,b])$. Assume that:

- 1. $||u_n|| \leq M. \forall n$
- 2. $||u_n'||_n \leq L, \ \forall n$

Then, the theorem applies. Indeed: 1) \Longrightarrow (i) in Ascoli-Arzelà. To check equicontinuity: $\forall x,y \in [a,b], x \neq y$:

$$|u_n(x) - u_n(y)| = |u'_n(\zeta) \cdot (x - y)|$$
 (Mean Value Thm.)

$$\implies |u_n(x) - u_n(y)| \le |u'_n(\zeta)| \cdot |x - y|$$

$$\le ||u'_n||_{\infty} \cdot |x - y|$$

$$\le L|x - y|, \quad \forall n \in \mathbb{N}$$

$$\implies$$
 equicontinuity (take $\delta = \frac{\varepsilon}{L}$)

Roughly, the thm. implies that "boundedness in $C^1 \implies$ compactness in C^0 ".

Remark: The same is true for Lipschitz continuos functions with uniformly bounded Lipschitz constant.

Also, there are similar theorems in L^p with:

$$W^{1,p} = \{L^p \text{ functions having } L^p \text{ weak derivatives}\}$$

and "boundedness in $W^{1,p} \implies$ compactness in L^p ".

10.3 Density, separability

Definition 10.3.1. We say that $D \subset X$ is **dense** if $\overline{D} = X$, i.e.:

$$\forall x \in X, \ \exists \{y_n\}_n \subset D: \ y_n \to x \in X$$

Definition 10.3.2. X is separable if $\exists D \subset X$, s.t. D is countable and dense

Remark: Typically, one uses dense subsets because "continuous properties, true on D, are also true on X". When D is separable, you have few elements to check the property.

E.g.: $\mathbb{R}, \mathbb{R}^N, \Omega \subset \mathbb{R}^N$ are all separable: $\overline{\mathbb{Q}} = \mathbb{R}$ and \mathbb{Q} is countable.

Theorem 10.3.1. The following spaces are separable:

- $\bullet \ (C([a,b]),\|\cdot\|_{\infty})$
- $(L^p(\mathbb{R}), \|\cdot\|_p)$ for $1 \le p < \infty$

and $(L^{\infty}(\mathbb{R}), \|\cdot\|_{\infty})$ is **NOT** separable.

10.3.1 Dense subspaces

For continuous functions, we have the following result:

Theorem 10.3.2 (Stone-Weierstrass). Polynomials are dense in C([a,b]), i.e.:

$$\forall f \in C([a,b]), \ \forall \varepsilon > 0, \ \exists P(x) \ polynomial \ s.t.$$
$$\|f - P\|_{\infty} < \varepsilon$$

Note that polynomials with coefficients in \mathbb{Q} are countable.

For L^p spaces, we have the following dense subspaces:

- Simple functions
- Continuous (or more regular) functions

Note (Recall): $s: \mathbb{R} \to \mathbb{R}$ is (measurable and) simple if:

$$s = \sum_{i=1}^{k} \alpha_i \mathbb{1}_{A_i}$$

where $\alpha_i \in \mathbb{R}$ and $A_i \in \mathcal{L}(\mathbb{R})$ are disjoint sets, s.t.:

$$\bigcup_{i=1}^k A_i = \mathbb{R}$$

We know that s simple $\implies sin L^{\infty}(\mathbb{R})$. Does s simple $\implies s \in L^{p}(\mathbb{R})$? For $p \in [1, \infty)$, we have that:

$$s \in L^p(\mathbb{R}) \iff \lambda(\{x : s(x) \neq 0\}) < \infty$$

Definition 10.3.3. We define $\tilde{\rho}(\mathbb{R})$ as the set of simple functions on \mathbb{R} , such that $\lambda(\{x:s(x)\neq 0\})<\infty$:

$$\tilde{\rho}(\mathbb{R}) = \{s : \mathbb{R} \to \mathbb{R} \text{ simple } | \ \lambda(\{x : s(x) \neq 0\}) < \infty\}$$

Theorem 10.3.3. $\tilde{\rho}(\mathbb{R})$ is dense in $L^p(\mathbb{R})$ for $1 \leq p < \infty$.

Definition 10.3.4. We define the following concepts:

1. $u: \mathbb{R} \to \mathbb{R}$. The **support** of u is defined as:

$$supp(u) = \overline{\{x : u(x) \neq 0\}}$$

- 2. $C_c(\mathbb{R}) = \{ u \in C(\mathbb{R}) : supp(u) \text{ is compact} \}$
- 3. $C_c^{\infty}(\mathbb{R}) = \{u \in C_c(\mathbb{R}) : u \text{ is infinitely differentiable}\} = \mathbb{C}_0^{\infty}(\mathbb{R}) = \mathcal{D}(\mathbb{R})$

Theorem 10.3.4. $C_c^{\infty}(\mathbb{R})$ is dense in $L^p(\mathbb{R})$ for $1 \leq p < \infty$.

Corollary 10.3.4.1. $C_c(\mathbb{R})$ is dense in $L^p(\mathbb{R})$ for $1 \leq p < \infty$.

 $(D \subset X \ dense, \ D \subset E \subset X \implies E \ dense \ in \ X)$

Remark: $C_c^{(\mathbb{R})}$ is not dense in $L^{\infty}(\mathbb{R})$. Indeed, take

$$\mathcal{H}(x) = \begin{cases} 1 & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

Then, $\mathcal{H} \in L^{\infty}(\mathbb{R})$, but now suppose that we have a function $g \in C_c(\mathbb{R})$ s.t.:

$$\|\mathcal{H} - g\|_{\infty} \le 1/3$$

Then:

$$|\mathcal{H}(x) - g(x)| \le 1/3$$
, a.e. $x \in \mathbb{R}$
 $\implies \mathcal{H}(x) - 1/3 \le g(x) \le \mathcal{H}(x) + 1/3$

This implies that g cannot be continuous in x=0. Contradiction.

Note: Let us see that $L^{\infty}(\mathbb{R})$ is not separable.

Lemma 10.3.5. Take X Banach. Assume that $\{A_i\}_{i\in I}$ is s.t.:

- (a) $\forall i \in I, A_i \subset X$ is open and non-empty
- (b) $\forall i \neq j \in I, \ A_i \cap A_j = \emptyset$
- (c) I is more than countable. Then, X is not separable.

Proof. By contradiction. Assume that X is separable. Then, $\exists \{x_n\}_{n\in\mathbb{N}} \subset X$ s.t.:

$$X = \overline{\bigcup_{n \in \mathbb{N}} \{x_n\}}$$

Then, $\forall A_i, \exists x_{n_i} \in A_i$. This is because A_i is non-empty, then $\exists z_i \in A_i$, and because $\{x_n\}_n$ dense, $\exists \{x_{n_k}\}_{k \in \mathbb{N}}$ s.t. $x_{n_k} \to z_i$ as $k \to \infty$. Notice that $A_i \subset X$ is open, so the sequence $\{x_{n_k}\}_k$ is eventually in A_i .

Since $A_i \cap A_j = \emptyset$, $x_{n_i} \neq x_{n_j}$, i.e., $n_i \neq n_j$.

Then, we have a map $i \to n_i$ that is injective, so I is at most countable. Contradiction.

Theorem 10.3.6. $L^{\infty}(\mathbb{R})$ is not separable.

Proof. We use the previous lemma. $\forall \alpha \in \mathbb{R}^+ = (0, \infty)$, we define:

$$g_{\alpha}(x) = \chi_{[-\alpha,\alpha]}(x) = \begin{cases} 1 & \text{if } |x| \leq \alpha \\ 0 & \text{otherwise} \end{cases}$$

Notice that, if $\alpha_1 \neq \alpha_2$, then $||g_{\alpha_1} - g_{\alpha_2}||_{\infty} = 1$.

$$\implies B_{1/2}(g_{\alpha_1}) \cap B_{1/2}(g_{\alpha_2}) = \emptyset$$

Indeed, $\forall f \in L^{\infty}(\mathbb{R})$, we have that:

$$1 = \|g_{\alpha_1} - g_{\alpha_2}\|_{\infty} \le \|g_{\alpha_1} - f\|_{\infty} + \|f - g_{\alpha_2}\|_{\infty}$$

 \implies at least one of the norms is greater than 1/2

Then, we have a family of open sets $\{B_{1/2}(g_{\alpha})\}_{\alpha\in\mathbb{R}^+}$ that satisfies the conditions of the lemma.

Then, $L^{\infty}(\mathbb{R})$ is not separable.

Chapter 11

Linear operators

Note: We will work with $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ normed (Banach) spaces.

Definition 11.0.1. We say that $T: X \to Y$ is a **linear operator** if:

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$$

 $\forall x, y \in X \text{ and } \forall \alpha, \beta \in \mathbb{R}.$

(If $Y = \mathbb{R}$, we say that T is a **linear functional**).

<u>Notation:</u> For T linear, T(u) = Tu.

E.g.: Let $X = \mathbb{R}^n$ and $Y = \mathbb{R}^m$. Then, $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear if:

$$T(x) = Ax$$

where $A \in \mathbb{R}^{m \times n}$.

Remark: T is linear $\implies T(0) = 0$.

Definition 11.0.2. We say that $T: X \to Y$ is **bounded** if $\exists M > 0$ such that:

$$\left\|Tx\right\|_{Y} \leq M \left\|x\right\|_{X} \quad \forall x \in X$$

Note (Recall): We have that:

- T is Lipschitz if $\exists L > 0$ such that $||Tx Ty||_Y \le L \, ||x y||_X$.
- T is continuous in $x \in X$ if $\forall x_n \to x$ in X, we have that $Tx_n \to Tx$ in Y.

Remark: $T: \mathbb{R}^n \to \mathbb{R}^m$ linear $\Longrightarrow T$ is continuous and bounded. But notice that if X, Y are infinite-dimensional, then the previous statement is not true.

Theorem 11.0.1. $T: X \to Y$ linear. Then, the following are equivalent:

- 1) T is bounded.
- 2) T is Lipschitz.
- 3) T is continuous at any $x_0 \in X$
- 4) T is continuous at 0.

Proof. The proof goes as follows:

 $(1 \implies 2)$ We know that T is bounded, i.e.:

$$\|Tx\|_Y \leq M \, \|x\|_X \,, \quad \forall x \in X$$

Take x = u - v. Then:

$$||Tu - Tv||_Y = ||T(u - v)||_Y \le M ||x - y||_X$$

Then, T is Lipschitz with L = M.

 $(2 \implies 3)$ Let L > 0 be the Lipschitz constant for T. Let $x_n \to x_0$ for some $x_0 \in X$. We have:

$$0 \le \|Tx_n - Tx_0\|_Y \le L \|x_n - x_0\|_X \to 0$$

- $(3 \implies 4)$ Trivial
- $(4 \implies 1)$ By contradiction, assume that T is not bounded:

$$\forall n \in N, \ \exists x_n \in X: \ \|Tx\|_Y \ge n \|x_n\|_X$$

Let $z_n = \frac{1}{n} \frac{x_n}{\|x_n\|_X}$. Then $\|z_n\|_X = 1/n \to 0$ as $n \to \infty$. Since T is continuous at 0, then:

$$Tz_n \to T0 = 0$$

But:

$$||Tz_n||_Y = \left| \left| T \left(\frac{1}{n} \frac{x_n}{||x_n||} \right) \right| \right|_Y$$
$$= \frac{1}{n ||x_n||_Y} ||Tx_n||_Y \ge 1 \to 0$$

This is a contradiction.

Definition 11.0.3. We define the set $\mathcal{L}(X,Y)$ as:

$$\mathcal{L}(X,Y) := \{T : X \to Y \text{ s.t. } T \text{ linear and bounded}\}$$

If X = Y, we write $\mathcal{L}(X)$. If $Y = \mathbb{R}$, then we say that $\mathcal{L}(X, \mathbb{R})$ is the **dual** of X, noted as $X' = X^*$.

Remark: $\mathcal{L}(X,Y)$ is a vector space, i.e., $\forall T, L \in \mathcal{L}(X,Y), \alpha, \beta \in \mathbb{R}$:

$$(\alpha T + \beta L) \in \mathcal{L}(X, Y)$$

 $((\alpha T + \beta L)(x) := \alpha Tx + \beta Lx)$

Definition 11.0.4. We define a norm on $\mathcal{L}(X,Y)$, called the **operator norm**, as:

$$||T||_{\mathcal{L}(X,Y)} := \sup_{||x|| \le 1} ||Tx||_Y$$

Proposition 11.0.2. For the operator norm, we have the following equivalences:

$$\|T\|_{\mathcal{L}(X,Y)} = \sup_{\|x\|=1} \|Tx\|_Y = \sup_{x \neq 0} \frac{\|Tx\|_Y}{\|x\|_X} = \inf\{M > 0: \|Tx\|_Y \leq M \, \|x\|_X \, \, \forall x \in X\}$$

Proof. We know that:

$$\sup_{\|x\| \le 1} \|Tx\|_Y \ge \sup_{\|x\| = 1} \|Tx\|_Y$$

The other inequality:

$$\forall x \neq 0, \ \|Tx\|_{Y} = \|x\|_{X} \cdot \left\| T\left(\frac{x}{\|x\|_{X}}\right) \right\|_{Y}$$

Then, if $z = x / ||x||_X$:

$$\left\|Tx\right\|_{Y} \leq \left\|Tz\right\|_{Y}, \quad \text{with } \left\|z\right\|_{X} = 1$$

obtaining the inequality, so:

$$\|T\|_{\mathcal{L}(X,Y)} = \sup_{\|x\| \le 1} \|Tx\|_Y = \sup_{\|x\| = 1} \|Tx\|_Y$$

For the others, we have:

$$\begin{split} \forall x \neq 0, \quad & \|Tx\|_Y \leq M \, \|x\|_X \iff M \geq \frac{\|Tx\|_Y}{\|x\|_X} \\ \iff & M \geq \|Tz\|_Y \,, \quad \text{with} \ \|z\|_X = 1 \end{split}$$

So:

$$\sup_{x \neq 0} \frac{\|Tx\|_{Y}}{\|x\|_{X}} = \inf\{M > 0 : \|Tx\|_{Y} \le M \|x\|_{X} \ \forall x \in X\}$$

And:

$$\inf(M) \ge \sup_{\|x\|=1} \|Tx\|_Y$$

Theorem 11.0.3. If X is a normed space, and Y is a Banach space, then $\mathcal{L}(X,Y)$ is a Banach space.

Proof. Omitted.

Definition 11.0.5. Let $T: X \to Y$ linear. We define the following:

- Kernel: $Ker(T) = \{x \in X : Tx = 0\} \subset X$
- Range: $R(T) = \{y \in Y : \exists x \in X, Tx = y\} \subset Y$
- T is **injective** if $Ker(T) = \{0\}$
- T is surjective if R(T) = Y
- T is **bijective** if T is injective and surjective

Also, if T is bijective, we define the **inverse** of T as $T^{-1}: Y \to X$, s.t. $TT^{-1} = I_Y$ and $T^{-1}T = I_X$. Notice that T^{-1} is linear.

Remark: Let $T: X \to Y$ linear. Then, $Ker(T) \subset X$ and $R(T) \subset Y$ are vector subspaces. Also, if $T \in \mathcal{L}(X,Y)$, then Ker(T) is closed in X. The R(T) may or may not be closed in Y.

Definition 11.0.6 (Isomorphism). We say that X, Y are **isomorphic** if $\exists T \in \mathcal{L}(X, Y)$ bijective and $T^{-1} \in \mathcal{L}(Y, X)$.

In this case, we write $X \cong Y$.

Definition 11.0.7. We say that $T \in \mathcal{L}(X,Y)$ is an **isometry** if:

$$\left\|Tx\right\|_{Y}=\left\|x\right\|_{X}, \quad \forall x \in X$$

Definition 11.0.8 (Continuous embedding). Let $X \subset Y$ be a vector subspace. We define the "inclusion" operator $J: X \to Y$ as Jx = x. Then, if $J \in \mathcal{L}(X,Y)$, i.e., if:

$$||x||_Y \le M ||x||_X, \quad \forall x \in X$$

Then, we say that X is **continuously embedded** in Y, and we write $X \hookrightarrow Y$.

More generally, if X, Y Banach and $T \in \mathcal{L}(X, Y)$, T injective and $T^{-1} \in \mathcal{L}(R(T), X)$, then we say that X is **continuously embedded** in Y. We call T the **embedding operator**.

E.g.: We have already prove that, for (X, \mathcal{M}, μ) a measure space, $\mu(X) < \infty$, $1 \le p < q \le \infty$, then:

$$L^p(X, \mathcal{M}, \mu) \hookrightarrow L^q(X, \mathcal{M}, \mu)$$

11.1 Uniform boundedness (Banach-Steinhaus theorem)

Theorem 11.1.1 (Uniform boundedness (Banach-Steinhaus theorem)). Let X, Y Banach spaces, and $\mathcal{T} \subset \mathcal{L}(X,Y)$ be a set of linear operators. Suppose that \mathcal{T} is pointwise bounded, i.e., $\forall x \in X, \exists M_x > 0$ such that:

$$||Tx||_Y \le M_x, \quad \forall T \in \mathcal{T}$$

Then, \mathcal{T} is uniformly bounded, i.e., $\exists M > 0$ such that:

$$||T||_{\mathcal{L}(X,Y)} \le M, \quad \forall T \in \mathcal{T}$$

Note: The proof is based on Baire's topological lemma.

Lemma 11.1.2 (Baire's topological lemma). Let X be a complete metric space, $\{C_n\}_{n\in\mathbb{N}}$ s.t. $C_n\subset X$ is closed and:

$$X = \bigcup_{n \in \mathbb{N}} C_n$$

Then, $\exists n_0 \in \mathbb{N}$ such that C_{n_0} has non-empty interior.

$$(\exists r > 0, x_0 \in C_{n_0} : \overline{B_r(x_0)} \subset C_{n_0})$$

Uniform boundedness. Define, $\forall n \in \mathbb{N}$,

$$C_n = \{ x \in X : ||Tx||_Y \le n, \ \forall T \in \mathcal{T} \}$$

We want to apply Baire's lemma to $\{C_n\}_{n\in\mathbb{N}}$. We have:

• (C_n is closed): Indeed, take $\{x_k\}_{k\in\mathbb{N}}\subset C_n$ s.t. $x_k\to \bar x\in X$. We have to show that $\bar x\in C_n$. We know that $\forall T\in\mathcal{T}$:

$$||Tx_k||_Y \le n, \quad \forall k \in \mathbb{N}$$

Since T is continuous, then $Tx_k \to Tx$ as $k \to \infty$. Then:

$$||Tx||_{Y} \le n, \quad \forall T \in \mathcal{T}$$

So, $\bar{x} \in C_n$.

• $(X = \bigcup_{n \in \mathbb{N}} C_n)$: Indeed, take any $x \in X$. Since \mathcal{T} is pointwise bounded, then $\exists M_x > 0$ such that:

$$||Tx||_Y \le M_x, \quad \forall T \in \mathcal{T}$$

Then, $x \in C_n \ \forall n \geq M_x$.

Baire implies that: $\exists n_0 \in \mathbb{N}, r > 0$ and $x_0 \in X$ such that:

$$\overline{B_r(x_0)} \subset C_{n_0}$$

Then, we have:

$$||T(x_0 + rz)||_Y \le n_0, \quad \forall T \in \mathcal{T}, \ \forall ||z||_X \le 1$$

And notice that:

$$r \|Tz\|_{Y} - \|Tx_0\|_{Y} \le \|T(x_0 + rz)\|_{Y} \le n_0$$

Then, we have:

$$||Tz||_Y \le \frac{n_0 + ||Tx_0||_Y}{r}, \quad \forall T \in \mathcal{T}, \ \forall \, ||z||_X \le 1$$

Taking the supremum over $||z||_X \le 1$, we obtain:

$$||T||_{\mathcal{L}(X,Y)} \le \frac{n_0 + ||Tx_0||_Y}{r} =: M$$

Corollary 11.1.2.1. Let X, Y Banach spaces, and $\{T_n\}_{n \in \mathbb{N}} \subset \mathcal{L}(X, Y)$. Assume that $\forall x \in X, \{T_n x\}_{n \in \mathbb{N}} \subset Y$ is a converging sequence. We have:

$$T(x) := \lim_{n \to \infty} T_n x$$

Then, $T \in \mathcal{L}(X,Y)$.

Proof. The proof goes as follows:

• T is linear: $\forall n \in \mathbb{N}$, we have:

$$T_n(\alpha x + \beta y) = \alpha T_n x + \beta T_n y$$

Since T_n is continuous:

$$T(\alpha x + \beta y) = \alpha Tx + \beta Ty$$

• T is bounded: Since $\{T_n x\}_{n \in \mathbb{N}}$ converges, then it is bounded. Then, $\exists M_x > 0$ such that:

$$||T_n x||_Y \le M_x, \quad \forall n \in \mathbb{N}$$

Then, $\{T_n\}_{n\in\mathbb{N}}$ is pointwise bounded. By the uniform boundedness theorem, we have that $\{T_n\}_{n\in\mathbb{N}}$ is uniformly bounded, i.e., $\exists M>0$ such that:

$$||T_n||_{\mathcal{L}(X,Y)} \le M, \quad \forall n \in \mathbb{N}$$

I.e.:

$$||T_n z|| \le M \quad \forall n \in \mathbb{N}, \ \forall \, ||z||_X \le 1$$

Then, we have:

$$||Tz||_Y = \lim_{n \to \infty} ||T_n z||_Y \le M, \quad \forall \, ||z||_X \le 1$$

Then, T is bounded.

11.2 Open mapping and closed graph theorems

Definition 11.2.1. We say that $T: X \to Y$ is an **open** if:

$$\forall A \subset X \text{ open, } T(A) \subset Y \text{ is open}$$

Remark: Remember that T is continuous if $T^{-1}(V)$ is open $\forall V \subset Y$ open.

E.g.: Let $f: \mathbb{R} \to \mathbb{R}$, s.t. $f(x) = 0, \forall x \in \mathbb{R}$. Then, f is continuous but not open.

Theorem 11.2.1 (Open mapping theorem). Let X, Y Banach spaces. Then:

$$T \in \mathcal{L}(X,Y)$$
 surjective $\implies T$ is open

Proof. Omitted, based on the uniform boundedness theorem and Baire.

Corollary 11.2.1.1. Let X, Y be Banach spaces, $T \in \mathcal{L}(X, Y)$ bijective. Then

$$T^{-1} \in \mathcal{L}(Y, X)$$

and $X \cong Y$. Also, if T is injective, then:

T is embedding, i.e., $X \hookrightarrow Y$

Corollary 11.2.1.2. Let $(X, \|\cdot\|_a)$ and $(X, \|\cdot\|_b)$ be Banach spaces, and assume that $\exists c_1 > 0 \text{ s.t. } \|x\|_b \leq c_1 \|x\|_a$. Then,

$$\exists c_2 > 0 \ s.t. \ \|x\|_a \le c_2 \|x\|_b$$

Proof. Apply previous corollary to $J:(X,\|\cdot\|_a)\to (X,\|\cdot\|_b)$ such that J(x)=x.

Definition 11.2.2. We say that $T: X \to Y$ is **closed** if the graph of T is closed in $X \times Y$:

$$\begin{cases} x_n \to x \text{ in } X \\ Tx_n \to y \text{ in } Y \end{cases} \implies y = Tx$$

Theorem 11.2.2 (Closed graph). Let X,Y be Banach spaces, $T:X\to Y$ linear. Then:

$$T \text{ is closed } \iff T \in \mathcal{L}(X,Y)$$

Proof. Apply previous corollary to $\|x\|_a = \|x\|_X + \|Tx\|_Y$, $\|x\|_b = \|x\|_X$.

Chapter 12

Dual spaces