********	**************	********
**	Setup BEACLS for AWS	**

[A. Use preinstalled image]

- 1. Launch an instance of the preinstalled image
 - Log in AWS
 - Request a spot instance
 - Select ami-3cbc082a0 as AMI image
 - Select p2.xlarge as instance types
 - Make and download a key to access the instance
 - Access to the P2 instance
 - Check the ip address of your instance in AWS console.
 - Log in the instance
 \$ ssh -i ~/path/yourprivatekey.pem ubuntu@[ipaddress]

GOTO step 5 in B scenario

[B. Make the environment from scratch]

- 1. Make AMI image for P2 instance
 - Log in AWS and launch a P2 instance
 - Select N. Virginia DC (cheaper than other locations)
 - Use Ubuntu AMI ami-09b3691f (Ubuntu 16.04 LTS hvm:ebs-ssd)
 - Select p2.xlarge instance
 - Make key to access (or use existing key) the instance
 - Select SSD as much as you want, such as root storage size (20GB) and additional SSD(100GB)
 - Access to the P2 instance
 - Check the ip address of your instance in AWS console.
 - Log in the instance
 \$ ssh -i ~/path/yourprivatekey.pem ubuntu@[ipaddress]
 - Disk format for the additional SSD (Optional)
 - Check disk name (/dev/xvdba in this case) and mount it
 - \$ sudo fdisk -I
 - \$ sudo mkfs -t ext4 /dev/xvdba
 - \$ sudo mount /dev/xvdba /home/ubuntu/simulation/
 - \$ sudo chown -R ubuntu:ubuntu simulation

2. Install CUDA

Install libraries for CUDA 8.0\$ sudo apt-get update

```
$ sudo apt-get upgrade
```

\$ wget

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pu b

- \$ cat 7fa2af80.pub | sudo apt-key add -
- \$ wget

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604 8.0.44-1 amd64.deb

- \$ sudo dpkg -i cuda-repo-ubuntu1604_8.0.44-1_amd64.deb
- \$ sudo apt-get update
- \$ sudo apt-get install linux-generic
- \$ waet

http://us.download.nvidia.com/XFree86/Linux-x86_64/352.99/NVIDIA-Linux-x86_64-352.99.r un

- \$ sudo chmod +x NVIDIA-Linux-x86_64-352.99.run
- \$ sudo ./NVIDIA-Linux-x86_64-352.99.run
- \$ sudo apt-get install cuda
- \$ sudo reboot
- \$ sudo apt-get remove linux-virtual
- \$ sudo apt-get autoremove
- Set variables to .bashrc

\$ vi ~/.bahsrc

export PATH="/usr/local/cuda-8.0/bin:\$PATH"

export LD LIBRARY PATH="/usr/local/cuda-8.0/lib64:\$LD LIBRARY PATH"

- Disable display manager

\$ vi /etc/devault/grub # L12

GRUB_CMDLINE_LINUX="systemd.unit=multi-user.target"

- \$ sudo update-grub
- \$ sudo reboot

3 GPU test

- Check
 - \$ nvidia-smi
- Performance test
 - \$ cd /usr/local/cuda-8.0/samples
 - \$ sudo make
 - \$ cd bin/x86 64/linux/release
 - \$ sudo ./bandwidthTest
- 4. Install libraries for BEACLS
 - Install zlib, boost, OpenCV and hdf5
 - \$ sudo apt-get update

```
$ sudo apt-get install libhdf5-dev libboost-dev libopencv-core-dev
libopency-highqui-dev
      $ sudo apt-get install libopency-dev
   - Make a patch for AWS
      $ vi ~/update_sources.sh
            ------update sources.sh------
#!/bin/sh
sdir=./beacls/sources
if [ "#${sdir}" = "#" ]; then
      echo "Source directory is not specified"
      exit
if [ ! -e ${sdir} ]; then
      echo "No such a directory: ${sdir}"
      exit
fi
cd ${sdir}
find ./ -type f -print | grep Makefile$ | xargs grep -l nvidia-361 | xargs sed -i
"s/nvidia-361/nvidia-375/g"
find ./ -type f -print | grep Makefile$ | xargs grep -l sm 52 | xargs sed -i "s/GPU ON =
N\r\n/GPU_ON = N\r\nGPU_SMS ?= 30 35 37 50 52 60\r\n/g"
find ./ -type f -print | grep Makefile$ | xargs grep -l sm_52 | xargs sed -i "s/NVCCFLAGS +=
-arch=sm 52 -maxrregcount=64/NVCCFLAGS += -maxrregcount=64\\r\\n\$(foreach
sm,\$(GPU SMS),\$(eval NVCCFLAGS += -gencode
arch=compute_\$(sm),code=sm_\$(sm)))/g"
find ./ -type f -print | grep Makefile$ | xargs grep -l sm_52 | xargs sed -i "s/NVLDFLAGS +=
-arch=sm 52 -maxrregcount=64/\NVLDFLAGS += -maxrregcount=64/g"
********* My AMI was made here (ami-3cbc082a0) through AWS console ***********
My AMI image does not include the additional SSD because it costs about $0.05/GB-month
to keep the AMI image
```

5. Execute BEACLS

Get and compile BEACLS sources
 \$ mkdir ~/BEACLS; cd ~/BEACLS

- \$ git clone https://github.com/HJReachability/beacls
- \$ ~/update sources.sh
- \$ cd beacls/sources
- \$ make GPU_ON=Y NVCC=/usr/local/cuda/bin/nvcc all
- Build and execute a sample
 - \$ cd samples/DubinsCar_RS
 - \$ make test
 - if you want to use GPU,
 - \$ make USE_CUDA=1 test

- Spot Instance Pricing

- SSD pricing

General Purpose SSD: \$0.12 (depends on region) per GB-month for storage you provision.

ex.) 100GB-SSD 2 hours everyday = \$0.8 per month

- Bandwidth Test Result

[CUDA Bandwidth Test] - Starting... Running on...

Device 0: Tesla K80 Quick Mode

Host to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 10877.6

Device to Host Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 12024.0

Device to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 156653.2

Result = PASS

- Single-precision Benchmark

\$./nbody -benchmark -numbodies=200000 -numdevices=1

> Compute 3.7 CUDA device: [Tesla K80]

Warning: "number of bodies" specified 200000 is not a multiple of 256.

Rounding up to the nearest multiple: 200192.

200192 bodies, total time for 10 iterations: 5232.908 ms

- = 76.586 billion interactions per second
- = 1531.723 single-precision GFLOP/s at 20 flops per interaction

- AWS GPU instance

G2 instance g2.2xlarge

1GPU(4GB Mem), 8vCPU, 15GiB Mem

Chip: NVIDIA Tesla K10 FLOPS: 45.8/0.19 TFLOPS

Price: \$0.12/hour spot instance, the price varies

\$0.65/hour for on-demand instance

P2 instance - new!

p2.xlarge

1GPU(12GB Mem), 4vCPU, 61GiB Mem

Chip: NVIDIA Tesla K80 FLOPS: 8.74/2.91 TFLOPS

Price: \$0.13/hour for spot instance, the price varies.

\$0.9/hour for on-demand instance

. . .

GPU of P2 instance is up to 16.

Development Memo

1. Git config

\$git config --global core.autoCRLF false