Homework 13 Section 3.3

Mark Petersen

Exercises 2,3,5,6,7,8

07/08/2020

Exercise 1. (Q2): Let

$$A = \left\{ (-1)^n + \frac{2}{n} : n = 1, 2, 3, \dots \right\}$$

and

$$B = \{ x \in \mathbb{Q} : 0 < x < 1 \}.$$

Answer the following for each set.

- a) What are the limit points.
 - a) The limit points for the set A are -1 and 1 since given an $\epsilon > 0$, there exists an $N = \frac{2}{\epsilon}$, such that whenever $n \in \mathbb{N} > N$, $(-1)^n + \frac{2}{n} \in V_{\epsilon}(1)$ when n is even, else $(-1)^n + \frac{2}{n} \in V_{\epsilon}(-1)$. b) The limit points for the set B is the closed interval S = [0, 1]. This follows from the density of the real
- b) Is the set open? Closed?
 - a) The set A is not open since there are gaps in the set, and it is not closed since it doesn't contain all of it's
 - b) The set B is not open, since it doesn't contain any of the irrational numbers, thus there are holes in the set. The set B is not closed since it doesn't contain all of it's limit points.
- c) Does the set contain any isolated points?
 - a) All of the elements of A are isolated points since none of them are limit points.
 - b) There are no isolated points in B since all of the elements are limit points.
- d) Find the closure of the set.
 - a) The closure of set A is $A \cup \{1, -1\}$.
 - b) The closure of the set B is the closed interval [0, 1].

Exercise 2. (Q3): Decide whether the following sets are open, closed, or neither. If a set is not open, find a point in the set for which there is no ϵ -neighborhood contained in the set. If a set is not closed, find a limit point that is not contained in the set.

- a) Q
 - a) The rational number is neither closed or open. Given any rational number q and ϵ -neighborhood $V_{\epsilon}(q)$, there is an irrational number $i \in V_{\epsilon}(q)$ due to the density of \mathbb{R} . Thus $V_{\epsilon}(q) \not\subseteq \mathbb{Q}$, and hence \mathbb{Q} is not open. Given any irrational number i and ϵ -neighborhood $V_{\epsilon}(i)$, there is a rational number $q \in V_{\epsilon}(i)$. Therefore, all the irrational numbers are limit points of \mathbb{Q} . Thus \mathbb{Q} is not closed.
- b) N
 - a) The natural number is not open but it is closed. Given any rational number n and ϵ -neighborhood $V_{\epsilon}(n)$, there is an irrational number $i \in V_{\epsilon}(n)$ due to the density of \mathbb{R} . Thus $V_{\epsilon}(n) \not\subseteq \mathbb{N}$, and hence \mathbb{N} is not open. Since there are no limit points of \mathbb{N} , \mathbb{N} is closed vacuously.
- c) $\{x \in \mathbb{R} : x \neq 0\}$
 - a) The set is open, but not closed since the limit point 0 is not contained in the set.
- d) $A = \left\{1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} : n \in \mathbb{N}\right\}$
 - a) The set A is neither open or closed. To show that it isn't open, take any element in A with any ϵ -neighborhood. Since there will be at least one irrational number in the neighborhood, the neighborhood is not a

subset of A, and thus A is not open. The set A is not closed, since the limit $\sum_{k=1}^{\infty} \frac{1}{k^2}$ is not an element of A.

- e) $A = \left\{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} : n \in \mathbb{N}\right\}$
 - a) The set A is not open but it is closed. To show that it isn't open, take any element in A with any ϵ -neighborhood. Since there will be at least one irrational number in the neighborhood, the neighborhood is not a subset of A, and thus A is not open. Since there is not limit point of A, the set is closed.

Exercise 3. (Q5): Prove Theorem 3.2.8.

Proof: We want to prove that a set $F \subseteq \mathbb{R}$ is closed if and only if every Cauchy sequence contained in F has a limit that is also an element of F. This is a biconditional statement so we must prove both ways.

- (\Longrightarrow) : We assume directly that F is closed, then it contains all of it's limit points. According to theorem 3.2.5, every possible sequence (a_n) contained in F must have a limit in F. Since every convergent sequence is a Cauchy sequence, every Cauchy sequence contained in F has it's limit in F.
- (\Leftarrow) : We assume directly that every Cauchy sequence contained in F has a limit that is also an element of F. According to theorem 3.2.5, a point is a limit point if and only if it is the limit of some sequence contained in F. Thus every limit point is contained in F; therefore, F is closed.

Since we have proven both implications, the biconditional statement is true.

Exercise 4. (Q6): Decide whether the following statements are true or false. Provide counterexamples for those that are false, and supply proofs for those that are true.

- a) An open set that contains every rational number must necessarily be all of \mathbb{R} . Disproof: Let A be the open set that contains every rational number defined by $\mathbb{R} - \{\sqrt{2}\}$. Given any element $a \in A$, there exists a neighborhood $V_{\epsilon}(a)$ contained in A due to the density of the set. For example, let $\epsilon = \frac{\left|a - \sqrt{2}\right|}{2}$, then $V_{\epsilon}(a) \subseteq A$ for all $a \in A$. Thus, this counterexample contradicts the original statement.
- b) The Nested Interval Property remains true if the term "closed interval" is replaced by "closed set". *Disproof:* The empty set is a closed set. Any intersection of sets including the empty set results in the empty set, which is empty. Thus, this property doesn't remain true for any nested closed sets.
- c) Every nonempty open set contains a rational number. Proof: Let A be an arbitrary nonempty open set, there there exists an $a \in A$ and an open neighborhood $V_{\epsilon}(a)$ such that $V_{\epsilon}(a) \subseteq A$. Thus the open interval $(a - \epsilon, a + \epsilon)$ is a subset of A. Since there is a rational number between any two real numbers, there must be a rational number q that is an element of $(a - \epsilon, a + \epsilon)$, and thus an element of A. Therefore, the statement is true.
- d) Every bounded infinite closed set contains a rational number. Disproof: We will disprove the statement with a counter example. Consider the set $A = \left\{\sqrt{2} + \frac{\sqrt{2}}{n} : n \in \mathbb{N}\right\} \cup \left\{\sqrt{2}\right\}$. The set A doesn't contain any rational number, it is bounded between $\sqrt{2}$ and $2\sqrt{2}$, it is infinite since the natural numbers is an infinite set, and it is closed since the limit point $\sqrt{2}$ is contained in A.
- e) The Cantor set is closed.

 Proof: The Cantor set is constructed from the infinite intersection of closed sets. According to Theorem 3.2.14, the Cantor set must be closed.

Exercise 5. (Q7): Given $A \subseteq \mathbb{R}$, let L be the set of all limit points of A.

- a) Show that the set L is closed.
 - *Proof:* We assume directly that L is the set of all limit points of A. Let x be a limit point of L, then given an ϵ_1 -neighborhood $V_{\epsilon_1}(x)$, there exists an $\ell \in V_{\epsilon_1}(x) \cap L$ such that $\ell \neq x$. Since ℓ is a limit point of A, then given an ϵ_2 -neighborhood, there exists an $a \in V_{\epsilon_2}(\ell) \cap A$ such that $a \neq \ell$. Let $\epsilon = \epsilon_1 + \epsilon_2$, then $a \in V_{\epsilon}(x) \cap A$ such that $a \neq x$. Thus x is also a limit point of A and must be in A. Therefore, all of the limit points of A are contained in A, which means that A is closed.
- b) Argue that if x is a limit point of $A \cup L$, then x is a limit point of A. Use this observation to furnish a proof for Theorem 3.2.12.
 - *Proof:* We assume directly that L is the set containing all of the limit point of A, and is therefore closed according to part a). Since L is closed, it contains all of it's limit points which must also be a limit point of A. Thus if x is a limit point of $\overline{A} = A \cup L$, it must be a limit point of A. This means that all of the limit points of \overline{A} are contained in \overline{A} . Now to show that \overline{A} is the smallest closed set containing A, suppose, by

contradiction, that \overline{B} is a smaller closed set that contains A, i.e. $\overline{B} \subsetneq \overline{A}$, then there is an element $x \in L$ that is not in \overline{B} , thus \overline{B} doesn't contain all of the limit points of A and cannot be closed. This is a contradiction, thus there exists no smaller closed set that contains A.

Exercise 6. (Q8): Assume A is an open set and B is a closed set. Determine if the following sets are definitely open, definitely closed, both, or neither.

- a) $\overline{A \cup B}$
 - a) Definitely closed. By definition, the closure of a set is closed.
- b) $A \setminus B = \{x \in A : x \notin B\}$
 - a) Definitely open. The set $A \setminus B$ is equivalent to the set $A \cap B^c$. Since B is closed, B^c is open. The intersection of two open sets is open. Thus $A \setminus B$ is always open.
- c) $(A^c \cup B)^c$
 - a) Definitely open. Since A is open, A^c is closed, thus $A^c \cup B$ is closed. The complement of a closed set is open. Therefore, $(A^c \cup B)^c$ is open.
- d) $(A \cap B) \cup (A^c \cap B)$
 - a) Definitely closed. The set $(A \cap B) \cup (A^c \cap B)$ is equivalent to $B \cap (A \cup A^c)$, which is just B. Thus it is closed.
- e) $\overline{A}^c \cap \overline{A^c}$
 - a) Definitely open. This is because $\overline{A}^c \subseteq \overline{A^c}$, then $\overline{A}^c \cap \overline{A^c} = \overline{A}^c$. Since \overline{A}^c is open, the set is open. To show that $\overline{A}^c \subseteq \overline{A^c}$, let $x \in \overline{A}^c$, then $x \notin \overline{A}$. In other words, $x \notin A \cup L$, with L being the set containing all the limit points of A. This means that $x \in A^c \cap L^c$. Since $x \in A^c$, it must be in $\overline{A^c}$. Therefore, $\overline{A}^c \subseteq \overline{A^c}$.