Mémoire de Stage de M2

Phase Géométrique de Signal Multivarié et puis c'est déjà pas mal

Grégoire Doat

Encadré par Nicolas Le Bihan, Pierre-Olivier Amblard, Julien Flamant & Michel Berthier

Master Mix – Université de La Rochelle 2024-2025

TABLES DES MATRIÈRES

		des notations
	PA	ARTIE I — PHASE ET FRÉQUENCE INSTANTANÉE D'UN SIGNAL
I	— 1.1	Introduction de la phase géométrique
	PA	ARTIE II — DESCRIPTION DE LA PHASE GÉOMÉTRIQUE
Ι	— 1.1	Etude du cas pseudo-cyclique
II	2.1 2.2 2.3	Prérequis mathématique — send to appendixe
III	3.1	Interprétation des trois phases dans ce cadre
	PA	ARTIE III— NOTES 'N' THOUGHTS
I	1.3	Notes sur l'approche Géométrique 1 Notes sur l'approche à avoir 1 La vision de Bohm [1, fig. 4.3] 1 La vision Mukunda & Simon [10, 9] 1 Fisher (man, 42 Wallaby way, Sydney) 1
II		Réflexion autour du produit hermitien
111	3.1 3.2 3.3 3.4	Description des signaux AM-FM-PM1Bivarié1Trivarié1Généralisation de ces formules au cas n -varié1Plus de note (très OSEF)23.4.1 Bivarié23.4.2 Trivarié2Mon blabla2
IV	4.1 4.2	Vrac

Introduction

La phase géométrique fait partie de ces concepts qui apparaissent régulièrement en physique, mais qui demande beaucoup de contexte pour être expliqué. Pour l'introduire rapidement, la phase géométrique à l'instant t d'un signal complexe ψ est donné par :

$$\Phi_{\text{geo}}(\psi, t_0, t) = \arg \langle \psi(t), \psi(t_0) \rangle \Im m \int_{t_0}^t \frac{\langle \dot{\psi}(s), \psi(s) \rangle}{\|\psi(s)\|^2} ds$$

Ce qui rend cette phase si intéressante c'est qu'elle est invariante par transformation de jauge, c'est-à-dire invariante par toute transformation du type :

$$\psi(t) \rightsquigarrow \psi'(t) = e^{i\alpha(t)}\psi(t)$$

Cette propriété rend la phase $\Phi_{\rm geo}$ intrinsèquement liée à la trajectoire que prend la projection de ψ dans l'espace projectif complexe ${\rm P}\mathbb{C}^{n-1}$ et par conséquence, à la géométrie de ce dernier, d'où son nom.

Ceci à largement été étudié dans le carde de système dynamique régis par EDP [2, 8], notamment en mécanique quantique avec l'équation Schrödinger [1, 10, 11]. Ce n'est que récemment que Le Bihan, Flamant et Amblard se sont intéresser à son application en traitement du signal dans le cas de signaux bivariés à bande fine [4, 5].

L'objectif de ce mémoire est alors de résumer les résultats et interprétations de la phase géométrique mais du point de vue du traitement du signal.

INDEXE DES NOTATIONS

Objet/fonction	NOTATION
Conjugué complexe	\overline{x}
Transposée (resp. adjoint) de la matrice A	tA (resp. A^{\dagger})
Distribution de Dirac	δ
Indicatrice de E	$\mathbb{1}_E$
Fonction signe	sign(x)
Transformée de Fourier	$\mathcal{F}[x], \hat{x}$
Transformée en SA	A[x]
Transformée de Hilbert	$\mathcal{H}\left[x\right]$
Produit hermitien	$\langle \cdot, \cdot \rangle$
Espérance et variance de f suivant ρ	$\mathbb{E}_{\rho}[f(t)], \mathbb{V}_{\rho}[f(t)]$
Espace des fonctions p.p. de puissance p^{eme} intégrable à valeur de E dans F	$L^p(E,F)$
Support d'une fonction f	$\operatorname{supp} f = \{ x \in \mathbb{R} \mid f(x) \neq 0 \}$
Matrice de rotation de paramètre Θ (resp. d'angle θ en dimension 2)	R_{Θ} (resp. R_{θ})
Ensemble des matrices symétriques (resp. anti-symétriques) de taille n	$S_n(\mathbb{R})$ (resp. $A_n(\mathbb{R})$)
Ensemble des matrices hermitiennes (resp. anti-hermitiennes) de taille n	$S_n(\mathbb{C})$ (resp. $A_n(\mathbb{C})$)

Objectif du mémoire :

- Décrire la phase géométrie pour les signaux
- \bullet Généralisation des signaux AM-FM (-PM)
- Interprétation de ses paramètres
- calcul de leur phases

PARTIE	Ι	
--------	---	--

Phase et Fréquence instantanée d'un Signal

1 — Introduction de la phase géométrique

- En analyse temps-fréquence, il est utile de définir une notion de fréquence instantanée (même si ca peut pas avoir de sens) [?] et elle est donnée par la dérivée à 2π près de l'argument. La phase vient alors comme primitive de la fréquence instantanée. Autrement dit, c'est l'argument à un choix de phase initiale près.
- Comme nous on étudie l'évolution d'une phase au cours du temps, c'est l'analyse temps-fréquence est précisément le cadre qu'il nous faut et c'est au regard de cette dernière que nous allons interpréter les phase totale, dynamique et géométrique.

1.1 — Fréquence instantanée

1.2 — Phase totale

- petit blabla sur le produit hermitien (convention, interprétation par rapport au produit scalaire)
- interprétation de la phase totale comme angle entre vecteur (dans \mathbb{C}^1 puis généralisé)
- jsp

1.3 — Phases dynamique (via fréquence instantanée)

- Généralisation de la condition de Bedrosian
- en plus ca colle la phase instant dans le cas univariée
- (annexes : les arguments pour l'appellation "phase instantanée")

1.4 — Phase Géométrique

- cas univarié : égalité des deux fréquences
- arrivée de la phase géométrique
- invariance par transformation de jauge
- son calcul pour les AM-FM-PM

2 — Cas particulier de signal

2.1 — Signal AM-FM-PM bivarié

- la formule avec un peu d'explication sur d'où ca vient
- les hypothèses sur la décompositions via Bedrosian
- interprétation géométrique
- projection sur la sphère avec Stokes et tout

2.2 — Calcul de la phase géom dans ce cas

2.3 — Généralisation au plus haute dimension

- Un mot sur le cas trivarié par Lilly [7].
- Lefevre à discuter des généralisations [6, sec. I.3] avec des expo et algèbre Clifford : trop de contrainte sur les dimensions des signaux.

- Généralisation par rotation du plan de polar : boff parce que pas calculable en générale et mais surtout on manque le plus important, ca savoir....
- La phase géo est invariante par transfo de jauge, donc il faut faire apparaître \mathbb{PC}^{n-1} dans la décomposition.
- Remarque : c'est le cas en bivarié car $P\mathbb{C}^1 \cong S^2$!
- S'il faut vraiment se pencher sur \mathbb{PC}^{n-1} , allons-y (transition partie suivante)

I — Introduction de la phase géométrique

La formule phase géométrique telle que donné en introduction possède deux composantes appelées phase totale et phase dynamique :

$$\Phi_{\text{tot}} = \arg \langle \boldsymbol{x}(t), \boldsymbol{x}(t_0) \rangle \tag{1.1}$$

$$\Phi_{\text{dyn}} = \Im m \int_{t_0}^t \frac{\langle \dot{\boldsymbol{x}}(s), \boldsymbol{x}(s) \rangle}{\|\boldsymbol{x}(s)\|^2} ds$$
(1.2)

De sorte que :

$$\Phi_{\text{geo}} = \Phi_{\text{tot}} - \Phi_{\text{dyn}} = \arg \langle \boldsymbol{x}(t), \boldsymbol{x}(t_0) \rangle - \Im m \int_{t_0}^{t} \frac{\langle \dot{\boldsymbol{x}}(s), \boldsymbol{x}(s) \rangle}{\|\boldsymbol{x}(s)\|^2} ds$$
(1.3)

Pour comprendre d'où vient cette formule, dans cette partie seront d'abord expliquées les phases totale (sec. 1.1) et dynamique (sec. ??) avant de revenir sur la phase géométrique (sec. ??).

1.1 Phase totale d'un signal

En analyse temps-fréquence, la phase instantanée d'un signal complexe $x:\mathbb{R}\longrightarrow\mathbb{C}$ par son argument, modulo un choix de phase initial. En clair x s'écrit $x(t)=a(t)e^{i\phi(t)}$, alors :

$$\Phi_{\text{inst}}(x, t_0, t) = \phi(t) - \phi(t_0) \tag{1.4}$$

Phase qui peut encore s'écrire :

$$\Phi_{\text{inst}}(x, t_0, t) = \arg x(t) \overline{x(t_0)}$$

La phase totale peut-être vu comme une généralisation de cette formule au signaux multivarié, *i.e.* à valeur dans \mathbb{C}^n .

$$\forall t \in \mathbb{R}, \quad \boldsymbol{x}(t) = a(t)e^{i\varphi(t)}R_{\theta(t)}\begin{pmatrix} \cos \chi(t) \\ -i\sin \chi(t) \end{pmatrix}$$
(1.5)

Partie II

DESCRIPTION DE LA PHASE GÉOMÉTRIQUE

- 1 Cas des signaux pseudo-cyclique
 - Le dessin de Bohm :
 - phase dyn = signal horizontal lift
 - phase geo = horizontal lift cyclique lift (<- indé du signal !)
 - phase tot = cumul des deux
- 2 Généralisation du cas pseudo-cyclique (ou comment s'y ramener)
 - Géodésique et généralisation du cas pseudo-cyclique
 - Bargmann
 - Phase géo comme 2-forme vs phase dyn comme 1-forme
- 3 La phase géo dans l'espace projectif
 - \bullet Bonnet-Gauss & Stokes : phase géo comme calcul d'air
 - Comme partie imaginaire de la métrique (+ lien avec Fisher)

Pour étudier la phase géométrique d'un signal ψ , il nous faut projeter ψ sur \mathbb{PC}^n , et ceux, tout en gardant une trace de sa phase puisque c'est le lien entre les deux qui nous intéresse. Il nous faut donc envoyer ψ dans le produit :

$$U(1) \times P\mathbb{C}^n$$
 (ou $\mathbb{C}^{n-1*}/\mathbb{C}^*$)

Garder le lien entre cet espace et celui d'origine mène à se placer dans le cadre avec d'un variété fibrée (ou simplement fibré). Plus précisément, comme U(1) est un groupe de lie, ce sera un fibré principal noté $S^{2n-1}(U(1), P\mathbb{C}^n)$.

Comme son nom l'indique, $S^{2n-1}(U(1), P\mathbb{C}^n)$ à une structure de variété différentielle et le lien entre les U(1) et $P\mathbb{C}^n$ va se faire par le biais d'une connexion. L'on verra alors que cette connexion est intrinsèquement lié à la phase dynamique du signal, et il sera discuté de la signification de ce résultat.

La phase géométrique, quand à elle, sera liée avec la métrique hermitienne associée aux l'espaces projectifs complexes.

Tout cela va demander quelques prérequis qui seront détaillés dans les annexes.

I — Etude du cas pseudo-cyclique

1.1 S^n vu comme variété fibrée principale

•

II — Prérequis mathématique — send to appendixe

2.1 Variété différentielle complexe, tiré de [11]

Pour mémoire, une variété différentielle de classe C^k $(k \in \mathbb{N} \cup \{\infty\})$ de dimension n est un espace topologique M (ou M^n) munie d'un atlas $(\phi_i, U_i)_{i \in I}$, c'est-à-dire un ensemble finie de pair d'ouvert $U_i \subset M$ et d'application $\phi_i : U_i \longrightarrow \mathbb{R}^n$ telle que :

- les U_i forme un recouvrement de la variété : $\bigcup_{i \in I} \phi_i(U_i) = \mathcal{M}$
- les ϕ_i sont des homéomorphismes sur leur image $\phi_i(U_i) \subset \mathbb{R}^4$.
- si l'intersection $U_i \cap U_j$ est non vide, alors $\phi_j \circ {\phi_i}^{-1}{}_{|\phi_i^{-1}(U_i \cap U_j)}$ est un C^k difféomorphisme sur son image.

 \mathcal{M} sera une variété différentielle complexe si elle satisfait les propriétés ci-dessus où \mathbb{R}^n est remplacé par \mathbb{C}^n et où la condition de difféomorphisme est remplacé par la condition d'holomorphisme.

Une application $f:\mathbb{C}^n\longrightarrow\mathbb{C}^n$ étant holomorphe si chacune de ses composantes vérifie l'équation de Cauchy-Riemann :

$$\forall x, y \in \mathbb{R}^n, \ \forall \mu, \qquad \frac{\partial f}{\partial y^{\mu}}(x+iy) = i \frac{\partial f}{\partial x^{\mu}}(x+iy)$$

Les fonctions holomorphes étant automatiquement C^{∞} , les variétés différentielles complexes sont toujours lisse, c'est-à-dire C^{∞} . Aussi, \mathcal{M} est dite de dimension complexe n et dimension (réel) 2n, notés :

$$\dim_{\mathbb{C}}(\mathcal{M}) := n \qquad \qquad \dim_{\mathbb{R}}(\mathcal{M}) := \dim(\mathcal{M}) = 2n \qquad (2.1)$$

Ensuite, pour le dire rapidement, la structure complexe de \mathcal{M} permet de séparer les espaces tangents en deux sous espaces. Pour ce faire, on commence par noter qu'en tout point $p \in \mathcal{M}$ de coordonnée $z^{\nu} = x^{\nu} + iy^{\nu}$, l'espace tangent $T_p \mathcal{M}$, vu comme variété réelle, admet une base :

$$T_p \mathcal{M} = \text{Vec}\left\{\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^n}, \frac{\partial}{\partial y^1}, \cdots, \frac{\partial}{\partial y^n}\right\}$$
 (2.2)

Plus tôt que de se basé sur les x^{μ} et y^{μ} pour séparer les $T_p \mathcal{M}$, on définit sur ces derniers un tenseur J_p de type (1,1) tel que :

$$J_{p}\frac{\partial}{\partial x^{\mu}} = \frac{\partial}{\partial y^{\mu}} \qquad \qquad J_{p}\frac{\partial}{\partial y^{\mu}} = -\frac{\partial}{\partial x^{\mu}} \qquad (2.3)$$

Ce tenseur est l'équivalent de la multiplication par $\pm i$ et le fait que \mathcal{M} soit complexe assure qu'il soit défini globalement, *i.e.* sur $T\mathcal{M}$. Il est diagonaliseable dans la base :

$$\partial_{\mu} = \frac{\partial}{\partial z^{\mu}} := \frac{1}{2} \left(\frac{\partial}{\partial x^{\mu}} - i \frac{\partial}{\partial y^{\mu}} \right) \qquad \qquad \partial_{\bar{\mu}} = \frac{\partial}{\partial \bar{z}^{\mu}} := \frac{1}{2} \left(\frac{\partial}{\partial x^{\mu}} + i \frac{\partial}{\partial y^{\mu}} \right)$$
 (2.4)

Ainsi en fonction de la base ((2.1) ou (2.4)), J_p va s'écrire :

$$J_p = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} \qquad J_p = \begin{pmatrix} iI_n & 0 \\ 0 & -iI_n \end{pmatrix}$$
 (2.5)

Finalement, T \mathcal{M} peut être séparé en deux sous-espaces engendré respectivement par les ∂_{μ} et $\partial_{\bar{\nu}}$. On parle de vecteur holomorphe et anti-holomorphe et on note :

$$T_{p}\mathcal{M}^{+} = \operatorname{Vec}\left\{\partial_{\mu} \mid 1 \leqslant \mu \leqslant n\right\}$$

$$T_{p}\mathcal{M}^{-} = \operatorname{Vec}\left\{\partial_{\bar{\mu}} \mid 1 \leqslant \mu \leqslant n\right\}$$
 (2.6)

La topologie de M doit vérifier des propriétés type séparable, dénombrable à l'infinie, etc., qui seront toutes admises dans la suite, voir par exemple [3, chap. 2]

2.2 Variété fibrée principale

2.2.1 Définition

DÉFINITION 1 (VARIÉTÉ FIBRÉE) — Étant donnée deux variétés différentielles P et B de même classe, une fibration de base B et d'espace total P et une application $\pi: P \longrightarrow B$ telle qu'en tout point $x \in B$ de la base, il existe un voisinage $U_x \subset B$ et une variété différentielle F_x telle que $U_x \times F_x$ soit difféomorphe à $\pi^{-1}(U_x)$.

On dit de P que c'est une variété fibrée, un espace fibré ou tout simplement un fibré et $P_x := \pi^{-1}(U_x)$ est appelé fibre de P au (dessus du) point x. Si de plus B est connexe, alors les fibres F_x sont toutes difféomorphes à un même F et on parle de fibre type de P.

L'idée derrière cette définition est de formaliser l'idée des espaces qui, comme le ruban de Modiüs, "ressemble" à un produit $F \times B$ (d'où la notation P) sans vraiment en être un : P est localement difféomorphe à une variété produit $U \times_F$ (voir fig. 2.1, ci-dessous).

DÉFINITION 2 (VARIÉTÉ FIBRÉE PRINCIPALE) — Un fibré P sera de plus dit principal (VFP) si sa fibre type est un groupe de Lie G agissant sur P. Plus précisément, une variété fibré principale P (VFP, ou fibré principal) doit vérifier les propriétés suivantes :

ullet Le groupe de Lie G opère différentiellement à droite (ou à gauche) sur P via :

$$\phi : \begin{array}{ccc} P \times G & \longrightarrow & P \\ (p,g) & \longmapsto & \phi(p,g) := pg \end{array} \tag{2.7}$$

• Il existe une surjection différentiable $\pi: P \longrightarrow B$ telle que :

$$\forall p \in P, \quad \pi^{-1}(\pi(p)) = pG \tag{2.8}$$

• P est munie d'un ensemble de paire (U_i, h_i) tel que les U_i forment un recouvrement de B et que les h_i soient des difféomorphismes à valeur de $G \times U_i$ dans $\pi^{-1}(U_i) \subset P$ vérifiant :

$$\forall a, b \in G, \ \forall x \in B, \qquad h_i(ab, x) = h_i(a, x)b \qquad \text{et} \qquad \pi \circ h_i(a, x) = x$$

On dit alors que B est la base de la VFP, que G est son groupe structural et pG est la fibre de P passant par p et au dessus de $\pi(p) \in B$. Une telle variété est notée $P(\phi, G, \pi, B)$ ou plus simplement P(G, B).

L'ensemble $\{(U_i, h_i)\}_i$ est l'équivalent d'un atlas pour les variétés différentielles classiques mais adapter pour tenir compte de la structure fibré de P et de l'action de G. Explicité les changements de cartes dans P, ce fait comme suit.

D'abord, P étant localement difféomorphe à un produit $G \times U_i$, on peut y tracer des graphes appelés sections locales, comme sur la figure 2.2 ci-dessous. Formellement, ce sont des applications $\sigma: U_i \subset B \longrightarrow P$ vérifiant :

$$\pi \circ \sigma = Id_{II}$$

Ensuite, les hypothèses sur P(G,B) sont telles que G agit transitivement et librement (ou sans point fixe) sur P. C'est-à-dire que, sur une même fibre, tout point peut être atteint par tout autre via l'action de G (transitivité) :

$$\forall x \in B, \quad \forall p, q \in P_x, \ \exists t(p,q) \in G \mid p = qt(p,q)$$

et que le seul moyen laisse les points invariants par cette même action est de passer par l'élément neutre e (libre):

$$\forall (p,g) \in P \times G, \quad p = pg \implies g = e$$

fig. 2.2 — Section local d'un fibré principal

L'action de G sur P(G, B) est telle que toute section locale σ sur U_i , peut s'écrire à partir d'une même section local σ_i via la formule :

$$\forall x \in B, \qquad \sigma(x) = \sigma_i(x)t(\sigma_i(x), \sigma(x))$$

et grâce à l'action de G, il existe un choix canonique de section σ_i par rapport à la carte U_i . Elle est donnée par :

$$h_i(x,e) = \sigma_i(x)$$

DÉFINITION 3 (CARTES LOCALES DE VFP) — L'intersection de deux cartes est noté $U_{ij}=U_i\cap U_j$ et le passage d'une section local canonique est donné par :

$$\forall x \in U_{ij}, \qquad \sigma_j(x) = \sigma_i(x)t(\sigma_i(x), \sigma_j(x))$$

L'élément de G, $t(\sigma_i, \sigma_j)$, est alors appelé fonction de transition et est noté φ_{ij} . Elle fait effectivement la transition entre deux cartes dans le sens où :

$$\forall (g, x) \in G \times U_{ij}, \qquad {h_i}^{-1} \circ h_j(g, x) = (\varphi_{ij}(x)g, x)$$

En particulier que x est invariant par changement de carte, ce qui est tout à fait normal compte tenu du fait que les $h_i(g,\cdot)$ sont tous définie sur un ensemble commun B. Autrement dit x est invariant par changement de carte car il n'y a pas de raison à changer de coordonnée. **pas vrai, mais y'a un truc quand-même, faudra revenir dessus**

 $\it fig.~2.3~-$ Digrame surement osef des jeux de projections entre $\it P$ est les cartes locales

Pour interpréter géométriquement les phases géométrique et dynamique, il nous faut munir P(G, B) d'une connexion. Pour cela, commençons par noter que, B étant une variété **blbblbblbblbbll**

2.2.2 Espace horizontaux et connexion

- espace tangent
- séparation en vertical \oplus horizontal
- pourquoi la découpe est pas canonique

- reformulation en terme de 1-forme
- connexion en coordo local
- toujours pas canonique tho

PROPOSITION 1 — Une 1-forme de connexion \mathcal{A} , noté \mathcal{A}_i en coordonnée local sur la carte U_i , doit vérifier le changement de coordonnée :

$$\varphi_{ij}\mathcal{A}_j = \mathcal{A}_i\varphi_{ij} + \mathrm{d}\varphi_{ij}$$

2.3 Espaces projectifs complexes

Les espaces projectifs complexes se construisent ainsi. On se place dans $\mathbb{C}^{n+1^*} = \mathbb{C}^{n+1} \setminus \{0_{\mathbb{C}^{n+1}}\}$ avec la relation d'équivalence, $\forall x, y \in \mathbb{C}^{n+1^*}$:

$$x \sim y \iff \exists \lambda \in \mathbb{C}^* \mid x = \lambda y$$

L'espace projectif complexe, noté ${\bf P}\mathbb{C}^n$ est l'espace quotient :

$$\mathbb{P}\mathbb{C}^{n-1} = \mathbb{C}^{n+1^*}/\mathbb{C}^* = \mathbb{C}^{n+1^*}/\sim$$

En notant [z] la classe de \mathbb{PC}^n du représentant $z=(z^i)_{0\leqslant i\leqslant n}\in\mathbb{C}^{n+1^*}$, on définit les ensembles et cartes, $\forall i\in [0,n]$:

$$U_{i} = \left\{ [z] \in \mathbb{PC}^{n} \mid z^{i} \neq 0 \right\}$$

$$U_{i} \longrightarrow \mathbb{C}^{i} \times \{1\} \times \mathbb{C}^{n-i} \cong \mathbb{C}^{n}$$

$$\phi_{i} : \frac{1}{z^{i}} (z_{0}, \dots, 1, \dots, z_{n})$$

$$(2.9)$$

L'ensemble d'arrivé $\phi_i(U_i)$ est de dimension n et s'assimile à \mathbb{C}^n mais, par souci de comodité, on restera dans \mathbb{C}^{n+1} . Cela permet d'écrire plus simplement les formules de changement de carte en évitant de devoir enlever et rajouter des coefficients :

$$\forall [z] \in U_i \cap U_j, \qquad \phi_i \circ \phi_j^{-1}(z) = \frac{z^j}{z^i} z \qquad (z^{i,j} \neq 0)$$

Les (U_i, ϕ_i) forme un atlas holomorphe sur l'espace projectif complexe, faisant de \mathbb{PC}^n une variété complexe de dimension $\dim_{\mathbb{C}} = n$ (voir annexe ?? pour plus de détail).

PROPOSITION 2 — La 2n+1-sphère S^{2n+1} est un espace fibré de base $P\mathbb{C}^n$ est de fibre type S^1 , ou U(1). La fibration étant la projection canonique :

$$\pi : \begin{array}{ccc} \operatorname{S}^{2n+1} & \longrightarrow & \operatorname{P}\mathbb{C}^n \\ x & \longmapsto & [x] \end{array}$$

Voir [3] pour la démo

PROPOSITION 3 — $\mathbb{P}\mathbb{C}^n$ admet une métrique hermitienne induite par la métrique de \mathbb{S}^{2n+1} , elle même induite du produit scalaire sur \mathbb{R}^{2n+1} . Elle est appelé métrique de Fubini-Study et est donnée par le formule :

III — Interprétation des trois phases dans ce cadre

3.1 Cas pseudo-cyclique

	PARTIE	III	
No	TES 'N' TH	HOUGHTS	

I — Notes sur l'approche Géométrique

1.1 Notes sur l'approche à avoir

- Quel espace? Pour la gauge invariance, c'est du $U(1) \times X$ mais qui est X?
 - les xx^{\dagger} sont plus calculable mais isomorphe à l'esapce projectif complexe $P\mathbb{C}^n$, lequel des deux choisir ? (les deux sont équivalent, 1^{er} théorème d'isomorphisme -ish)
 - Y'a aussi les Grassmanniennes $G_{n,k}(\mathbb{K})$, mais $G_{n,1}(\mathbb{C}) \cong \mathbb{PC}^n$
 - En somme, sûrement que $X = \mathbb{PC}^n$ (à voir comment faire les changements d'espaces)
 - $-\mathbb{C}^{n*}/(1)$ sounds good mais n'a pas de structure complexe (aucune, dim impaire)
- Ensuite, comme on a un produit(-ish), on veut un côté fibré (sûrement principale)
 A ce sujet, Wikipédia dit : "La théorie des fibrés principaux recouvre la théorie des fibrés vectoriels, de leurs orientations, de leurs structures riemanniennes, de leurs structures symplectiques, etc. " (sounds reaaaally good)
- Puis une métrique pour l'espace :
 - vu que c'est complexe j'y connais R
 - mettre la bonne connexion (A-A mais y'a aussi Fubini-Study)
 - si la connexion du fibré est équivalente à la connexion d'une variété, qu'est-ce qu'il se passe du côté de cette variété ? est-ce qu'on peut en déduire des choses ? (sûrement que non parce que U(1) est pas un e.v.)
- Phase géo \cong transport parallèle ? Réponse : holonomie
- refs de GPT pour la connexion sur fibré :
 - Kobayashi & Nomizu Foundations of Differential Geometry (vol. 1 & 2)
 C'est la bible sur les connexions et fibrés principaux! Chapitres sur les connexions dans les fibrés principaux et leur relation avec les connexions dans les fibrés vectoriels associés.
 - J. M. Lee Introduction to Smooth Manifolds (Chapitre sur les connexions et les fibrés principaux).
 Accessible et bien expliqué, en particulier sur le lien entre les connexions dans les fibrés vectoriels et les fibrés principaux.
 - S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces
 Approche plus avancée et lie bien la géométrie différentielle à la théorie des groupes de Lie.

Pour la géometrie projectives complexe :

 Kobayashi, Differential Geometry of Complex Vector Bundles
 Introduction aux connexions sur les fibrés vectoriels complexes, crucial pour comprendre les métriques de Fubini-Study et les structures kählériennes.

- Huybrechts, Complex Geometry: An Introduction
 Introduction aux variétés complexes et kählériennes, avec des applications aux espaces projectifs complexes.
- Gunning, Introduction to Complex Analysis and Geometry Bon compromis entre analyse complexe et géométrie différentielle.
- Wells, Differential Analysis on Complex Manifolds
 Bon livre pour le lien entre la géométrie différentielle et la géométrie projective
- Ballmann, Introduction to Kähler Geometry
 Très bon pour comprendre l'aspect kählérien des variétés projectives.
- Voisin, Hodge Theory and Complex Algebraic Geometry (vol. 1 & 2)
 Référence avancée, mais incontournable si tu veux plonger dans la topologie des variétés projectives complexes.
- Improbable mais on sait jamais :
 - Spin-strucure? (c'est que $P\mathbb{C}^n$ + pas sur que ca ait de l'intérêt parce que ca existe qu'en dimension impair)
 - Espace de Siegel ? (ellipse vs ellipsoïde tout ca tout ca)
- Autour de U(n): Classif de U(n)

1.2 La vision de Bohm [1, fig. 4.3]

Dans cette section, ψ sera toujours supposée pseudo-cyclique :

DÉFINITION 4 — Un signal ψ sera dit cyclique si à l'instant t, ψ reprend les même valeurs qu'en t_0 :

$$\psi(t) = \psi(t_0)$$

Et ψ sera dit pseudo-cyclique s'il est cylique à une transformation de gauge près :

$$\exists \theta : \mathbb{R} \longrightarrow \mathbb{R} \mid \psi(t) = e^{i\theta(t)} \psi(t_0) \text{ et } \theta(t_0) = 0$$

On note \mathcal{C} le trajet effectué par ψ et \mathfrak{C} le projeté de se trajet sur la base $P\mathbb{C}^n$. On note également $\tilde{\mathcal{C}}$ (resp. \mathcal{C}_c) le lift horizontal (resp. un lift cylique) de \mathfrak{C} , et on lui associe la paramétrisation $\tilde{\psi}$ (resp. ϕ). En clair :

$$\mathcal{C} = \left\{ \psi(t) \in \mathbb{C}^n \mid t \in \mathbb{R} \right\}$$

$$\mathfrak{C} = \left\{ \psi(t)\psi(t)^{\dagger} \in \mathbb{P}\mathbb{C}^n \mid t \in \mathbb{R} \right\}$$

$$\tilde{\mathcal{C}} = \left\{ \tilde{\psi}(t) \in \mathbb{C}^n \mid t \in \mathbb{R} \right\}$$

$$\tilde{\psi} \text{ horizontal lift}$$

$$\mathcal{C}_c = \left\{ \phi(t) \in \mathbb{C}^n \mid t \in \mathbb{R} \right\}$$

$$\phi \text{ cyclique}$$

Quand on dit que $\tilde{\psi}$ est l'horizontal lift, on sous entend que le fibré est munie d'une connexion. Suivant l'approche quantique, elle est de la forme :

$$\forall \eta \in \Gamma(\mathcal{M}), \quad \mathcal{A} := \int_{\gamma} \langle \eta, h(\eta) \rangle$$

où h est l'Hamiltonien de l'équation de Schrödinger (dont ψ est supposé solution) :

$$i\frac{d}{dt}\psi(t) = h(\psi(t)) \tag{3.1}$$

Mais on a le choix de h. En particulier, si on veut pas de contrainte, on peut toujours poser :

$$h = i\frac{d}{dt}$$

fig. 3.1 — Schéma de Bohm [1] sur les trois phases

Est-ce qu'on a le droit ? (je vois pas pourquoi on pourrait pas) Et si on le fait, qu'est-ce que ca dit du point de vue mécha Hamiltonienne ? (a priori rien vue l'EDP)

Aussi, du pvd calculatoire / de la phase g, qu'est-ce qu'il se passe ? Typiquement, est-ce que y'a $\tilde{\psi}$ devient un ϕ ?

Aussi, chose remarquable, le fait que la phase géométrique soit invariante par gauge transfo réapprait dans le fait que ϕ ne soit pas définie à gauge transfo près (sauf au bord). Par contre c'est étrange que

1.3 La vision Mukunda & Simon [10, 9]

• Mukunda & Simon[10, p. 10] partent des matrices de corrélation $\rho = \psi \psi^{\dagger}$ vérifiant (cas normé, p.50 pour le cas générale) :

$$\rho = \rho^{\dagger} \geqslant 0 \qquad \qquad \rho^2 = \rho \qquad \qquad \operatorname{tr}(\rho) = 1 (= \|\rho\|^2)$$

et pose l'Hamiltonien (resp. l'énergie kiné) :

$$H = i(\dot{\psi}\psi^{\dagger} - \psi\dot{\psi}^{\dagger} - \langle\psi,\dot{\psi}\rangle) \qquad \text{resp. } K = \frac{d}{dt}(\psi\psi^{\dagger}) = \dot{\rho}$$

qui donne:

$$\frac{d}{dt}\psi = -iH\psi = \left(K + \langle \psi, \dot{\psi} \rangle\right)$$

K est "mieux" dans le sens où il est invariant par gauge-t. Aussi, comme c'est une dérivée d'une hermitienne elle est... hermitienne ? (mmmh).

Anyway, on peut poser avec la bonne gauge:

$$\frac{d}{dt}\tilde{\psi} = K\tilde{\psi}$$

- \bullet Voir page 20 pour passer de $\Phi_{\rm geo}$ au Birgmann invar
- La phase totale $\Phi_{\rm tot}(\psi,t_0,t)$ est la phase dyn de la géodésique reliant $\psi(t)$ à $\psi(t_0)$ (ca commute ? surement pas)

En somme, la phase totale est complètement indépendante du chemin ψ , ce qui est rassurant puisque c'est ce qu'on attend la phase totale : qu'elle ne compare que les états $\psi(t_0)$ et $\psi(t)$.

- L'invariant de Birgmann à des propriétés sommatoires similaires à un calcul de volume... transition parfaite vers la formule de Stokes !!!
- Là où $\Phi_{\rm dyn}$ est associée à une 1—forme sur $P,\,\Phi_{\rm geo}$ elle est associé à une 2—forme sur P/G !
- SUPER IMPORTANT : [10, (8.6),p.51] pour l'originie/choix de $\Phi_{\rm geo}$!

1.4 Fisher (man, 42 Wallaby way, Sydney)

Pour mémoire, étant donné une distribution de paramètre $\Theta = (\theta_i)_{1 \leq i \leq n}$, la métrique de Fisher est la donnée par :

$$\mathfrak{f}_{ij}(\rho_{\theta}) = -\mathbb{E}_{\rho_{\theta}} \left[\frac{\partial^2}{\partial \theta^i \partial \theta^j} \ln(\rho_{\theta}) \right]$$
(3.2)

À côté de ça, la ??, donnait la formule (??):

$$\mathbb{V}_{\varrho}\left[\nu\right] = \frac{1}{4\pi^{2}} \mathbb{V}_{\rho}\left[\left(\ln a\right)'\right] + \frac{1}{4\pi^{2}} \mathbb{V}_{\rho}\left[\phi'\right]$$

Ce qui ressemble vachement à la variance $(\ln x)'$:

$$\mathbb{V}_{\rho}\left[\left(\ln x\right)'\right] = \mathbb{V}_{\rho}\left[\left(\ln a\right)'\right] - \mathbb{V}_{\rho}\left[\phi'\right] + 2i\operatorname{Cov}\left(\left(\ln a\right)', \phi'\right)$$
(3.3)

Dans tout les cas, $\mathbb{V}_{\rho}\left[(\ln x)'\right]$ peut pas être lié à l'information de Fisher parce qu'on a pas de paramètre. Mais admettons que ça corresponde quand-même à une information sur x. Si on fait le même calcul que pour un signal x multivarié, alors avec les notations de la ??, on a :

II — Réflexion autour du produit hermitien

Soit $x, y \in \mathbb{C}^n$ des vecteurs complexes et $X, Y \in \mathbb{R}^{2 \times n}$ leur versions réelles. On note x^j sa j^{eme} composante complèxe et x_1 (resp. x_2) le vecteur composé de ses parties réelles (resp. imaginaires):

$$x = (x^{j})_{j} = x_{1} + ix_{2} = (x_{1}^{j})_{j} + i(x_{2}^{j})_{j}$$

On a deux façon d'écrire le produit hermitien (canonique) de x avec y. La première :

$$\langle x, y \rangle = \langle x_1 + ix_2, y_1 + iy_2 \rangle = \langle x_1, y_1 \rangle - i\langle x_1, y_2 \rangle + i\langle x_2, y_1 \rangle + \langle x_2, y_2 \rangle$$

$$= \langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle + i\langle \langle x_2, y_1 \rangle - \langle x_1, y_2 \rangle)$$

$$= \sum_j x_1^j y_1^j + x_2^j y_2^j + i \left(\sum_j x_2^j y_1^j - x_1^j y_2^j \right)$$

$$= \left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle + i \left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} -y_2 \\ y_1 \end{pmatrix} \right\rangle$$

$$= \left\langle X, Y \right\rangle + i \left\langle X, \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle$$

$$= \left\langle X, Y \right\rangle - i \left\langle X, \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} Y \right\rangle$$

Cette formule peut s'interpréter en disant que le produit hermitien encode le produit scalaire entre X et

Y et le produit scalaire de X avec les vecteurs $y^j = (y_1^j, y_2^j)$ auquel on aurait applique une rotation de 90° (rotation qui, par ailleurs, correspond à la multiplication par i dans le plan complexe). Moralement, $\langle x,y\rangle = 0$ demande une orthogonalité de X à un plan, ce qui fait sens puisque cela tient compte du fait que les x^j, y^j sont complexes (donc de dimension 2 en tant que \mathbb{R} -e.v.).

Pour les connaisseurs, on retrouve l'égalité "produit hermitien = produit scalaire -i forme symplectique" !! Voir plan proj complexe et variété kählérienne

On a aussi l'écriture (quand-même moins clair) :

$$\langle x, y \rangle = \langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle + i \left(\langle x_2, y_1 \rangle - \langle x_1, y_2 \rangle \right)$$

$$= \sum_j x_1^j y_1^j + x_2^j y_2^j + i \sum_j \left(x_2^j y_1^j - x_1^j y_2^j \right)$$

$$= \sum_j \left\langle X^j, Y^j \right\rangle - i \sum_j \det(X^j, Y^j)$$

Cette formule dit que les parties reélles et imaginaires du produit $\langle x,y \rangle$ encodent respectivement "l'orthogonalité moyenne" et la "linéarité moyenne "entre les familles de vecteurs $X^j \in \mathbb{R}^2$ et $Y^j \in \mathbb{R}^2$. L'orthogonalité d'une part parce que le produit scalaire s'annule en cas d'orthogonalité (no shit), la linéarité d'autre part car le déterminant s'annule en cas de colinéarité et moyenne car se sont des sommes sur j. $\langle x,y \rangle = 0$ ne dit pas que les le vecteurs sont à la fois colinéaire et orthogonaux parce que ce sont des valeurs moyennes (*i.e.* annuler une somme ne veut pas dire que chacun des termes sont nuls).

Si maintenant on s'intéresse au cas y = x, on a $\forall h \in \mathbb{C}^n$:

$$\langle x + h, x + h \rangle = \langle x, x \rangle + \langle x, h \rangle + \langle h, x \rangle + \langle h, h \rangle = \langle x, x \rangle + \langle x, h \rangle + \overline{\langle x, h \rangle} + \langle h, h \rangle$$

$$= \langle x, x \rangle + 2 \Re e \langle x, h \rangle + \langle h, h \rangle$$

Donc si $x \in \mathbb{C}^n$ est fonction d'un paramètre t, l'égalité $\langle x, \dot{x} \rangle = \frac{1}{2} \partial_t \langle x, x \rangle$ du cas réel devient :

$$\langle x \mid \dot{x} \rangle = \frac{1}{2} \partial_t \langle x \mid x \rangle + i \left\langle X \mid \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix} \dot{X} \right\rangle$$
 (3.4)

En particulier, quand bien-même x serait de norme constante, on aurait toujours un degré de liberté pour $\langle x, \dot{x} \rangle$:

$$||x|| = c \implies \langle x, \dot{x} \rangle = i \left\langle X, \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix} \dot{X} \right\rangle$$

III — Description des signaux AM-FM-PM

3.1 Bivarié

PROPOSITION 4 (PHASES DE SIGNAL AM-FM-PM) — Étant donné un signal bivarié AM-FM-PM $\boldsymbol{x},\ i.e.$ de la forme :

$$\mathbf{x} = ae^{i\varphi}R_{\theta} \begin{pmatrix} \cos\chi\\ -i\sin\chi \end{pmatrix} = a(t)e^{i\varphi} \begin{pmatrix} \cos\theta\cos\chi + i\sin\theta\sin\chi\\ \sin\theta\cos\chi - i\cos\theta\sin\chi \end{pmatrix}$$
(3.5)

la phase dynamique de \boldsymbol{x} est donnée par :

$$\Phi_{\text{dyn}}(\boldsymbol{x}, t_0, t) = \int_{t_0}^{t} \dot{\varphi}(s) + \dot{\theta}(s) \sin 2\chi(s) ds = \varphi(t) - \varphi(t_0) + \int_{t_0}^{t} \dot{\theta}(s) \sin 2\chi(s) ds$$
 (3.6)

Soit une différence de phase φ mais avec un terme en plus. Donc φ ne doit (doit?) pas être interpréter

comme la phase instantanée du signal, où du moins pas au sens donnée dans la ??. La phase totale, elle, s'écrit :

$$\Phi_{\text{tot}}(\boldsymbol{x}, t_0, t) = \arg \langle \boldsymbol{x}(t), \boldsymbol{x}(t_0) \rangle = \varphi(t) - \varphi(t_0) + \arg \left(\cos \Delta \theta \cos \Delta \chi + i \sin \Delta \theta \sin \left(\chi(t_0) + \chi(t) \right) \right)$$

$$= \varphi(t) - \varphi(t_0) + \arctan \left(\tan \Delta \theta \frac{\tan \chi(t_0) + \tan \chi(t)}{1 + \tan \chi(t_0) \tan \chi(t)} \right)$$
where $\Delta y = y(t) - y(t_0)$ pour $y = \varphi, \theta, \chi$. (adapte signe démo)

Démonstration de la proposition 4

Par souci de lisibilité, on note $\mathcal{U} = R_{\theta} \begin{pmatrix} \cos \chi \\ -i \sin \chi \end{pmatrix}$ de sorte que la dérivée de \boldsymbol{x} s'écrive :

$$\begin{split} \dot{\boldsymbol{x}} &= \dot{a}e^{i\varphi}\mathcal{U} + ia\dot{\varphi}e^{i\varphi}\mathcal{U} + ae^{i\varphi}\dot{\theta} \begin{pmatrix} -\sin\theta\cos\chi + i\cos\theta\sin\chi \\ \cos\theta\cos\chi + i\sin\theta\sin\chi \end{pmatrix} + ae^{i\varphi}\dot{\chi} \begin{pmatrix} -\cos\theta\sin\chi + i\sin\theta\cos\chi \\ -\sin\theta\sin\chi - i\cos\theta\cos\chi \end{pmatrix} \\ &= \dot{a}e^{i\varphi}\mathcal{U} + ia\dot{\varphi}e^{i\varphi}\mathcal{U} + ae^{i\varphi}\dot{\theta} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathcal{U} + ae^{i\varphi}\dot{\chi} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \overline{\mathcal{U}} \end{split}$$

Le produit hermitien $\langle \boldsymbol{x}, \dot{\boldsymbol{x}} \rangle$ s'écrit alors :

$$\begin{split} \langle \boldsymbol{x}, \dot{\boldsymbol{x}} \rangle &= \left\langle a e^{i\varphi} \mathcal{U}, \dot{a} e^{i\varphi} \mathcal{U} + i a \dot{\varphi} e^{i\varphi} \mathcal{U} + a e^{i\varphi} \dot{\theta} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathcal{U} + a e^{i\varphi} \dot{\chi} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \overline{\mathcal{U}} \right\rangle \\ &= \left\langle a \mathcal{U}, \dot{a} \mathcal{U} + i a \dot{\varphi} \mathcal{U} + a \dot{\theta} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathcal{U} + a \dot{\chi} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \overline{\mathcal{U}} \right\rangle \\ &= a \dot{a} \langle \mathcal{U}, \mathcal{U} \rangle - i a^2 \dot{\varphi} \langle \mathcal{U}, \mathcal{U} \rangle + a^2 \dot{\theta} \left\langle \mathcal{U}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathcal{U} \right\rangle + i a^2 \dot{\chi} \left\langle \mathcal{U}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \overline{\mathcal{U}} \right\rangle \end{split}$$

où les deux derniers produits hermitiens donnent :

$$\left\langle \mathcal{U}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathcal{U} \right\rangle = -\mathcal{U}_1 \overline{\mathcal{U}_2} + \mathcal{U}_2 \overline{\mathcal{U}_1}$$

$$= 2i \Im m (\overline{\mathcal{U}_1} \mathcal{U}_2)$$

$$= 2i \Im m (\cos \theta \cos \chi - i \sin \theta \sin \chi) (\sin \theta \cos \chi - i \cos \theta \sin \chi)$$

$$= 2i (-\cos^2 \theta \cos \chi \sin \chi - \sin^2 \theta \sin \chi \cos \chi)$$

$$= -2i (\cos \chi \sin \chi + \sin \chi \cos \chi)$$

$$= -i \sin 2\chi$$

$$\left\langle \mathcal{U}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \overline{\mathcal{U}} \right\rangle = -\mathcal{U}_1 \mathcal{U}_2 + \mathcal{U}_2 \mathcal{U}_1 = 0$$

D'où, sachant que $\|x\|^2 = a^2$ et $\|\mathcal{U}\| = 1$, la formule :

$$-\frac{\Im m\langle \boldsymbol{x}, \dot{\boldsymbol{x}}\rangle}{\|\boldsymbol{x}\|^2} = -\frac{1}{a^2} \Im m\Big(a\dot{a}\langle \mathcal{U}, \mathcal{U}\rangle - ia^2\dot{\varphi}\langle \mathcal{U}, \mathcal{U}\rangle - ia^2\dot{\theta}\sin 2\chi\Big)$$
$$= \frac{1}{a^2} \Big(a^2\dot{\varphi}\|\mathcal{U}\|^2 + a^2\dot{\theta}\sin 2\chi\Big)$$
$$= \dot{\varphi} + \dot{\theta}\sin 2\chi$$

Pour la phase totale, on note cette fois $\mathcal{V} = \begin{pmatrix} \cos \chi \\ -i \sin \chi \end{pmatrix}$ et on a :

$$\langle \boldsymbol{x}(t_0), \boldsymbol{x}(t) \rangle = \left\langle a(t_0) e^{i\varphi(t_0)} R_{\theta(t_0)} \mathcal{V}(t_0), a(t) e^{i\varphi(t)} R_{\theta(t)} \mathcal{V}(t) \right\rangle$$

$$= a(t_0) e^{i\varphi(t_0)} a(t) e^{-i\varphi(t)} \left\langle R_{\theta(t_0)} \mathcal{V}(t_0), R_{\theta(t)} \mathcal{V}(t) \right\rangle$$

$$= a(t_0) a(t) e^{i(\varphi(t_0) - \varphi(t))} \left\langle \mathcal{V}(t_0), R_{\theta(t) - \theta(t_0)} \mathcal{V}(t) \right\rangle$$

Pour alléger les notations, on note $\Delta y = y(t) - y(t_0)$, $y_1 = y(t_0)$ et $y_2 = (t)$ pour $y = \varphi, \theta, \chi$. Le produit hermitien à droite s'écrit alors :

$$\langle \mathcal{V}(t_0), R_{\Delta\theta} \mathcal{V}(t) \rangle = \begin{pmatrix} \cos \chi_1 & -i \sin \chi_1 \end{pmatrix} \begin{pmatrix} \cos \Delta\theta \cos \chi_2 - i \sin \Delta\theta \sin \chi_2 \\ \sin \Delta\theta \cos \chi_2 + i \cos \Delta\theta \sin \chi_2 \end{pmatrix}$$

$$= \cos \chi_1 \Big(\cos \Delta\theta \cos \chi_2 - i \sin \Delta\theta \sin \chi_2 \Big) - i \sin \chi_1 \Big(\sin \Delta\theta \cos \chi_2 + i \cos \Delta\theta \sin \chi_2 \Big)$$

$$= \cos \Delta\theta \Big(\cos \chi_1 \cos \chi_2 + \sin \chi_1 \sin \chi_2 \Big) - i \sin \Delta\theta \Big(\cos \chi_1 \sin \chi_2 + \sin \chi_1 \cos \chi_2 \Big)$$

$$= \cos \Delta\theta \cos \Delta\chi - i \sin \Delta\theta \sin(\chi_1 + \chi_2)$$

3.2 Trivarié

• Version de Lilly [7]

 $\mathbf{x}_{+}(t) = e^{i\phi(t)} R_{1}(\alpha(t)) R_{3}(\beta(t)) R_{1}(\theta(t)) \begin{pmatrix} a(t) \\ -ib(t) \\ 0 \end{pmatrix}$ $= a(t) e^{i\phi(t)} R_{1}(\alpha(t)) R_{3}(\beta(t)) R_{1}(\theta(t)) \begin{pmatrix} \cos \chi(t) \\ -i\sin \chi(t) \\ 0 \end{pmatrix}$ (3.8)

avec: $R_1(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \qquad R_3(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Donc une amplitude / phase instantanée A / ϕ et une polarisation instantanée d'ellipse paramétrée par χ et orientée par la rotation $R_1R_3R_1$.

• On note d'abord que (Lefevre [6]) :

$$\begin{pmatrix} \cos \chi(t) \\ -i\sin \chi(t) \\ 0 \end{pmatrix} = \begin{pmatrix} \cos \chi(t) & i\sin \chi(t) & 0 \\ -i\sin \chi(t) & \cos \chi(t) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Ce qui, en terme de matrice de Gall-man (λ_i) (généralisation de la base de Pauli à U(3)), devient :

$$\mathbf{x}_{+}(t) = a(t)e^{i\phi(t)}R_{1}(\alpha(t)) R_{3}(\beta(t)) R_{1}(\theta(t)) \begin{pmatrix} \cos\chi(t) \\ -i\sin\chi(t) \\ 0 \end{pmatrix}$$
$$= a(t)e^{i\phi(t)}e^{i\alpha\lambda_{7}}e^{i\beta\lambda_{3}}e^{i\theta\lambda_{7}}e^{-i\chi\lambda_{1}} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

3.3 Généralisation de ces formules au cas n-varié

PROPOSITION 5 (PHASE DE SIGNAL AM-FM-PM n-VARIÉ) — La formule (3.6) de la proposition 4 ce généralise très bien à plus haute dimension. En écrivant x sous la forme :

$$\boldsymbol{x}(t) = a(t)e^{i\varphi}R_{\Theta(t)}\mathcal{V}(t) \qquad \text{où } R_{\Theta(t)} \in SO_n(\mathbb{R}) \text{ et } \mathcal{V}(t) = \begin{pmatrix} \cos\chi(t) \\ -i\sin\chi(t) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
(3.9)

la phase dynamique de \boldsymbol{x} est donnée par :

$$\Phi_{\text{dyn}}(\boldsymbol{x}, t_0, t) = \int_{t_0}^{t} \dot{\varphi}(s) + \sin 2\chi \langle \tilde{R}_{\Theta(s)} e_1, e_2 \rangle ds$$

$$= \varphi(t) - \varphi(t_0) + \int_{t_0}^{t} \sin 2\chi \langle \tilde{R}_{\Theta(s)} e_1, e_2 \rangle ds$$
(3.10)

où $e_j = \delta^i_j \in \mathbb{R}^n$ et $\tilde{R}_{\Theta(t)}$ est la matrice anti-symétrique :

$$\tilde{R}_{\Theta(t)} = {}^{t}R_{\Theta(t)}\dot{R}_{\Theta(t)} \in \mathcal{A}_{n}(\mathbb{R})$$

En récrivant R_{Θ} comme composition d'une rotation R_{Λ} et d'une rotation R_{θ} de l'ellipse dans son plan, i.e.:

$$R_{\Theta} = R_{\Lambda} R_{\theta} = R_{\Lambda} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

$$\mathbb{O}_{n-2}$$

lors la phase dynamique ce réécrit encore :

alors la phase dynamique ce réécrit encore :
$$\Phi_{\rm dyn}(\boldsymbol{x},t_0,t) = \varphi(t) - \varphi(t_0) + \int_{t_0}^t \dot{\theta}(s) \sin 2\chi(s) ds + \int_{t_0}^t \sin 2\chi(s) \left\langle \tilde{R}_{\Lambda(s)} \tilde{e}_1(s), \tilde{e}_2(s) \right\rangle ds \qquad (3.11)$$
en cette fois \tilde{e}_1 (resp. \tilde{e}_2) depue la direction du demi grand (resp. petit) ave de l'ellipse peramétrée

où cette fois \tilde{e}_1 (resp. \tilde{e}_1) donne la direction du demi-grand (resp. -petit) axe de l'ellipse paramétrée par χ :

$$\tilde{e}_1 = R_\theta e_1 \qquad \qquad \tilde{e}_2 = R_\theta e_2$$

Démonstration

D'abord, on a la différentielle :

$$\dot{x} = \frac{d}{dt} \left(a e^{i\varphi} R_{\Theta} \mathcal{V} \right) = \dot{a} e^{i\varphi} R_{\Theta} \mathcal{V} + i a \dot{\varphi} e^{i\varphi} R_{\Theta} \mathcal{V} + a e^{i\varphi} \dot{R}_{\Theta} \mathcal{V} + a e^{i\varphi} R_{\Theta} \dot{\mathcal{V}}$$

$$= \left(\dot{a} + i a \dot{\varphi} \right) e^{i\varphi} R_{\Theta} \mathcal{V} + a e^{i\varphi} \left(\dot{R}_{\Theta} \mathcal{V} + R_{\Theta} \dot{\mathcal{V}} \right)$$

où le vecteur $\dot{\mathcal{V}}$ se réécrit :

$$\dot{\mathcal{V}} = \frac{d}{dt} \begin{pmatrix} \cos \chi \\ -i \sin \chi \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \dot{\chi} \begin{pmatrix} -\sin \chi(t) \\ -i \cos \chi \\ 0 \\ \vdots \\ 0 \end{pmatrix} = i\dot{\chi} \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ & \mathbb{O}_{n-2} \end{pmatrix} \begin{pmatrix} \cos \chi \\ -i \sin \chi \\ 0 \\ \vdots \\ 0 \end{pmatrix} := i\dot{\chi}J\mathcal{V}$$

On en déduit alors :

$$-\frac{\Im m\langle \boldsymbol{x}, \dot{\boldsymbol{x}}\rangle}{\|\boldsymbol{x}\|^{2}} = -\frac{1}{\|\boldsymbol{x}\|^{2}} \Im m \left\langle ae^{i\varphi}R_{\Theta}\mathcal{V}, \left(\dot{a} + ia\dot{\varphi}\right)e^{i\varphi}R_{\Theta}\mathcal{V} + ae^{i\varphi}\left(\dot{R}_{\Theta}\mathcal{V} + i\dot{\chi}R_{\Theta}J\mathcal{V}\right)\right\rangle$$
$$= \dot{\varphi} + \Im m \left\langle R_{\Theta}\mathcal{V}, \dot{R}_{\Theta}\mathcal{V}\right\rangle + \Im m \left(i\dot{\chi}\langle R_{\Theta}\mathcal{V}, R_{\Theta}J\mathcal{V}\rangle\right)$$
$$= \dot{\varphi} + \Im m \left\langle R_{\Theta}\mathcal{V}, \dot{R}_{\Theta}\mathcal{V}\right\rangle + \dot{\chi}\Re e\langle \mathcal{V}, J\mathcal{V}\rangle$$

On montre, avec un calcul similaire à la démonstration de la proposition 4, que le dernier terme est nul. Le deuxième terme, lui, ce réécrit en fonction de la base canonique (e_i) de \mathbb{R}^n :

$$\langle R_{\Theta} \mathcal{V}, \dot{R}_{\Theta} \mathcal{V} \rangle = \langle R_{\Theta}(\cos \chi e_1 - i \sin \chi e_2), \dot{R}_{\Theta}(\cos \chi e_1 - i \sin \chi e_2) \rangle$$

$$= \cos^2 \chi \langle R_{\Theta} e_1, \dot{R}_{\Theta} e_1 \rangle + \sin^2 \chi \langle R_{\Theta} e_2, \dot{R}_{\Theta} e_2 \rangle - i \cos \chi \sin \chi \left(\langle R_{\Theta} e_1, \dot{R}_{\Theta} e_2 \rangle - \langle R_{\Theta} e_2, \dot{R}_{\Theta} e_1 \rangle \right)$$

Notons à présent que comme $R_{\Theta(t)} \in SO_n(\mathbb{R})$, la différentielle \dot{R}_{Θ} est à valeur dans le fibré tangent $\mathrm{TSO}_n(\mathbb{R})$. Sachant que $\mathrm{T}_{\Theta(t)}\mathrm{SO}_n(\mathbb{R}) = R_{\Theta(t)}\mathcal{A}_n()$, la différentielle \dot{R}_Θ s'écrit :

$$\forall t \in \mathbb{R}, \quad \dot{R}_{\Theta(t)} \in \mathcal{T}_{\Theta(t)} SO_n(\mathbb{R}) \iff \exists \tilde{R}_{\Theta(t)} \in \mathcal{A}_n(\) | \ \dot{R}_{\Theta(t)} = R_{\Theta(t)} \tilde{R}_{\Theta(t)}$$

Cela permet d'écrire :

$$-\frac{\Im m \langle \boldsymbol{x}, \dot{\boldsymbol{x}} \rangle}{\|\boldsymbol{x}\|^{2}} = \dot{\varphi} + \Im m \left\langle R_{\Theta} \mathcal{V}, \dot{R}_{\Theta} \mathcal{V} \right\rangle = \dot{\varphi} - \cos \chi \sin \chi \left(\left\langle R_{\Theta} e_{1}, \dot{R}_{\Theta} e_{2} \right\rangle - \left\langle R_{\Theta} e_{2}, \dot{R}_{\Theta} e_{1} \right\rangle \right)$$

$$= \dot{\varphi} - \frac{1}{2} \sin 2\chi \left(\left\langle e_{1}, \tilde{R}_{\Theta} e_{2} \right\rangle - \left\langle {}^{t} \tilde{R}_{\Theta} e_{2}, e_{1} \right\rangle \right)$$

$$= \dot{\varphi} - \sin 2\chi \left\langle e_{1}, \tilde{R}_{\Theta} e_{2} \right\rangle$$

$$= \dot{\varphi} + \sin 2\chi \left\langle \tilde{R}_{\Theta} e_{1}, e_{2} \right\rangle$$

- Les quaternions ça ce généralise trop mal (au dessus c'est les octinions, c'est un calvaire et ca va pas plus loin)
- Ca peut s'écrire en terme d'algèbre de Cliffor (Lefevre [6])... pas dingue non plus (pb de dimension principalement)
- Les bases de U(n) parait être le meilleur choix mais on a pas de "bonne base" pour de plus haute dimension.
- question : est-ce qu'on en a besoin pour la phase géométrique ? (transi vers une formulation géo diff-like ?)

3.4 Plus de note (très OSEF)

3.4.1 Bivarié

• Avec la transformation :

$$\boldsymbol{x} \leadsto \left(e^{i\phi}, \boldsymbol{x} \boldsymbol{x}^{\dagger}\right) \in \mathrm{U}(1) \times \mathrm{P}\mathbb{C}^1 - ish$$

On a:

$$m{x}m{x}^{\dagger} = rac{1}{2} \sum_{n=1}^{3} S_i(t) \sigma_i \ egin{array}{l} S_0(t) = {}^t m{x} \overline{m{x}} = \|m{x}\|^2 \ S_1(t) = S_0(t) \cos 2\chi(t) \cos 2\theta(t) \ S_2(t) = S_0(t) \cos 2\chi(t) \sin 2\theta(t) \ S_3(t) = S_0(t) \sin 2\chi(t) \end{array}$$

• En version quaternion (j fait office de i) [6]:

$$\mathbf{x}_{+} = a(t)e^{i\theta}e^{-\mathbf{k}\chi}e^{j\phi} \tag{3.12}$$

Et les Stokes parameters sont donnée par :

$$\boldsymbol{x}_{+}\boldsymbol{j}\overline{\boldsymbol{x}_{+}} = S_0 + \boldsymbol{i}S_3 + \boldsymbol{j}S_1 + \boldsymbol{k}S_2$$

Et le lien avec les σ_i se fait via (mais du coup les notations colles par :/) :

$$(\sigma_0, \sigma_1, \sigma_2, \sigma_3) \sim (1, \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k})$$

• Et en version matrice de Pauli :

$$x_{+} = a(t)e^{i\phi}e^{i\theta\sigma_{2}}e^{-i\chi\sigma_{1}}\begin{pmatrix}1\\0\end{pmatrix}$$
(3.13)

Plus de détail:

On a un signal bivarié x(t) = (x(t), y(t)) qu'on transforme (voir ??) soit la forme :

$$\boldsymbol{x}_{+}(t) = \begin{pmatrix} x_{+}(t) \\ y_{+}(t) \end{pmatrix} = \begin{pmatrix} a_{x}(t)e^{i\phi_{x}(t)} \\ a_{y}(t)e^{i\phi_{y}(t)} \end{pmatrix} \in \mathbb{C}^{2}$$

À côté de ça, on a les ellipses modulées :

$$z(t) = e^{i\theta} \left(a(t)\cos\phi(t) + ib(t)\sin\phi(t) \right) = a(t)e^{i\theta} \left(\sin\chi(t)\cos\phi(t) + i\sin\chi(t)\sin\phi(t) \right) \in \mathbb{C}$$

Qui sous forme vectoriel se réécrit (pourquoi ???):

$$z(t) = e^{i\phi(t)} R_{\theta(t)} \begin{pmatrix} a(t) \\ -ib(t) \end{pmatrix} = a(t)e^{i\phi(t)} R_{\theta(t)} \begin{pmatrix} \cos \chi(t) \\ -i\sin \chi(t) \end{pmatrix} \in \mathbb{C}^2, \qquad R_{\theta} \in SO_2(\mathbb{R})$$
(3.14)

Pour avoir la désinscription de x en terme d'ellipse, il suffit donc de poser : ²

$$x_{+}(t) = z(t) \iff \begin{pmatrix} a_{x}(t)e^{i\phi_{x}(t)} \\ a_{y}(t)e^{i\phi_{y}(t)} \end{pmatrix} = A(t)e^{i\phi}R_{\theta(t)} \begin{pmatrix} \cos\chi(t) \\ -i\sin\chi(t) \end{pmatrix}$$

Ensuite, on pose:

$$\begin{pmatrix} z_+ \\ z_- \end{pmatrix} = \begin{pmatrix} a_+ e^{i\phi_+} \\ a_- e^{i\phi_-} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} x_+ + iy_+ \\ x_+ - iy_+ \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix} \begin{pmatrix} x_+ \\ y_+ \end{pmatrix}$$

Et on a:

$$2\phi = \phi_{+} + \phi_{-}$$
 $a = A\cos\chi = a_{+} + a_{-}$
 $2\theta = \phi_{+} - \phi_{-}$ $b = A\sin\chi = a_{+} - a_{-}$

et on en déduit :

$$A = \sqrt{(a_{+} + a_{-})^{2} + (a_{+} - a_{-})^{2}}$$

$$\cos \chi = \frac{a_{+} + a_{-}}{\sqrt{(a_{+} + a_{-})^{2} + (a_{+} - a_{-})^{2}}}$$

$$\sin \chi = \frac{a_{+} - a_{-}}{\sqrt{(a_{+} + a_{-})^{2} + (a_{+} - a_{-})^{2}}}$$

Ce qui donne in fine(super osef):

$$\begin{pmatrix} x_+ \\ y_+ \end{pmatrix} = e^{i\frac{\phi_+ + \phi_-}{2}} R_{\frac{\phi_+ - \phi_-}{2}} \begin{pmatrix} a_+ + a_- \\ -i(a_+ - a_-) \end{pmatrix}$$

L'équation (3.5) ce généralise très bien, il suffit d'augmenter la taille de $R_{\theta} \in SO_n(\mathbb{R})$ et de lui donner le vecteur étendu :³

$$z_x(t) = \begin{pmatrix} x_{1+}(t) \\ \vdots \\ x_{n+}(t) \end{pmatrix} = e^{i\phi} R_{\theta(t)} \begin{pmatrix} a(t) \\ -ib(t) \\ 0 \\ \vdots \\ 0 \end{pmatrix} = A(t)e^{i\phi} R_{\theta(t)} \begin{pmatrix} \cos \chi(t) \\ -i\sin \chi(t) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

²C'est la version analytique du la version vectorielle de l'ellipse!

³ Sachant que le vecteur contenant a et b est principalement nul, on peut réécrire le produit ne considérant que les deux premières colonnes de R_{θ} .

Maintenant, la question est de savoir comment généraliser la transformation en (z_+, z_-) pour obtenir les paramètres $(A, \phi, R_\theta, \chi)$ dans ce cas...

Pour généraliser le procédé, on peut noter que :

$$\begin{pmatrix} z_+ \\ z_- \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix} \begin{pmatrix} x_+ \\ y_+ \end{pmatrix} = \frac{1}{\sqrt{2}} U \begin{pmatrix} x_+ \\ y_+ \end{pmatrix} \quad \text{avec} \quad U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix} \in U(2)$$

Ce qui ramène à se demander comment généraliser U à $\mathrm{U}(n)$. Le problème est que U est indépendant de tout les paramètres (A,ϕ,R_θ,χ) et sa généralisation est vraiment pas évidente sachant qu'on que le formule avec n=2... et pour n=3 ca devient déjà chaud (pour rappelle $\mathrm{dim}\mathrm{SO}_n(\mathbb{R})=\frac{n(n-1)}{2}$ et donc $\theta\in\mathbb{R}^n$, ce qui rend le problème de pire en pire à mesure qu'on augmente n).

3.4.2 Trivarié

• Version de Lilly [7]

$$\mathbf{x}_{+}(t) = e^{i\phi(t)} R_{1}(\alpha(t)) R_{3}(\beta(t)) R_{1}(\theta(t)) \begin{pmatrix} a(t) \\ -ib(t) \\ 0 \end{pmatrix}$$

$$= a(t) e^{i\phi(t)} R_{1}(\alpha(t)) R_{3}(\beta(t)) R_{1}(\theta(t)) \begin{pmatrix} \cos \chi(t) \\ -i\sin \chi(t) \\ 0 \end{pmatrix}$$
(3.15)

avec:
$$R_1(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \qquad R_3(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Donc une amplitude / phase instantanée A / ϕ et une polarisation instantanée d'ellipse paramétrée par χ et orientée par la rotation $R_1R_3R_1$.

• On note d'abord que (Lefevre [6]) :

$$\begin{pmatrix} \cos \chi(t) \\ -i\sin \chi(t) \\ 0 \end{pmatrix} = \begin{pmatrix} \cos \chi(t) & i\sin \chi(t) & 0 \\ -i\sin \chi(t) & \cos \chi(t) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Ce qui, en terme de matrice de Gall-man (λ_i) (généralisation de la base de Pauli à U(3)), devient :

$$\mathbf{x}_{+}(t) = a(t)e^{i\phi(t)}R_{1}(\alpha(t)) R_{3}(\beta(t)) R_{1}(\theta(t)) \begin{pmatrix} \cos\chi(t) \\ -i\sin\chi(t) \\ 0 \end{pmatrix}$$
$$= a(t)e^{i\phi(t)}e^{i\alpha\lambda_{7}}e^{i\beta\lambda_{3}}e^{i\theta\lambda_{7}}e^{-i\chi\lambda_{1}} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

3.5 Mon blabla

PROPOSITION 6 — Les signaux bivariés se décrivent très simplement à l'aide des quaternions. En considérant $\{1, i, j, k\}$ la base canonique des quaternions \mathbb{H} , on peut voir ψ comme étant à valeur dans \mathbb{C}_{j}^{n} ($\mathbb{C}_{j} := \mathbb{R} \times j\mathbb{R}$), de sorte que :

$$\forall \psi \in L^2(\mathbb{R}, \mathbb{H}), \ \exists a, \theta, \chi, \varphi \in \mathcal{C}(\mathbb{R}) \ | \quad \psi(t) = a(t)e^{i\theta(t)}e^{-k\chi(t)}e^{j\varphi(t)}$$

Sous cette forme, les paramètres a et φ s'interprètent respectivement comme l'amplitude et la phase instantanée du signal. Les deux paramètres restant contrôle l'ellipticité (χ) et l'orientation (θ) de l'ellipse de polarisation instantanée. C'est-à-dire l'ellipse que suit la signal à l'instant t.

Dit autrement, à tout instant t, $\psi(t)$ est vu comme une point d'une ellipse dont la taille est caractériser par a(t), l'ellipticité par $\chi(t)$ et l'orientation par $\theta(t)$. $\phi(t)$ permet lui de situer $\varphi(t)$ sur cette ellipse.

Le problème de cette représentation est qu'elle se généralise mal aux signaux plus que 2-variés et, à notre connaissant, il n'existe pas d'extensions des quaternions à de plus haute dimension. voir propositions 7 et 8, ?????????

Il est évident que cette représentation est présent bien plus de paramètre que nécessaire, puisse que deux devrait suffire. Pour autant, elle permet de mieux **je sais quoi mais c'est sur qu'il y'a une raison**. Si cette représentation se généralise mal parce qu'elle demanderait d'avoir une extension de \mathbb{H} , sont interprétations graphique, elle, se généralise très bien. Par exemple, en dimension 3, alors l'ellipse devient une ellipsoïde. L'amplitude reste de dimension 1 parce qu'elle ne fait que contrôler la taille de cet ellipsoïde, mais les autres paramètres eux doivent être de dimension 2. L'ellipsoïde à besoin de deux angles pour être orienté, possède deux degrés d'ellipticité et ces points sont déterminés par deux angles.

Proposition 7 — Plus généralement, tout signal multivarié ψ est (devrait être) caractérisé par quatre paramètres (donc $1+(n-1)(\frac{n}{2}-2)$ scalaires) :

$$a \in \mathcal{C}(\mathbb{R}, \mathbb{R}^+) \qquad \theta \in \mathcal{C}(\mathbb{R}, [-\pi/2, \pi/2]^{\frac{n(n-1)}{2}}) \qquad \chi \in \mathcal{C}(\mathbb{R}, [-\pi/4, \pi/4]^{n-1}) \qquad \varphi \in \mathcal{C}(\mathbb{R}, [-\pi, \pi]^{n-1})$$

À bien y réfléchir, décrire un ellipsoïde dans l'espace, c'est exactement de que font les matrices symétriques définies positives. Donc on pourrait tout à fait remplacer les informations (a, θ, χ) par une matrice symétrique positive de dimension n. Il ne resterait alors plus que φ qui, de toute façon ne devrait pas trop être lié aux autres paramètres.

Enfin, surement que si parce que y'a un monde pour $\varphi = 0_{\mathbb{R}}^n$ et c'est le reste des paramètres qui fait le travail. Mais clairement c'est pas intéressant comme description. L'idée serait plutôt décrire le signal ψ en minimisant les variations de (a, θ, χ) . Ca appelle clairement à chercher que dans l'espace de Siegel mais pas seulement, parce que c'est pas juste des chemins chez Siegel qui nous intéresse.

Ou alors c'est le jeu de gauge qui fait qu'on tue φ ? auquel cas tout les jours Siegel.

BTW, les quaternions c'est fait pour décrire les rotations et c'est (quasiment) ce qu'on fait avec, donc aller chercher dans un espace de matrices pour généraliser le principe c'est pas déconnant.

D'ailleurs, vu que c'est pas exactement ce qu'on fait avec, dans quelle mesure c'est pas le cas et est-ce qu'on exploite vraiment la structure des quaternions?

PROPOSITION 8 — Autre approche : un signal multivarié étant moralement un chemin de \mathbb{R}^n , son graphe est une variété (plongée) de dimenion 1. Sachant cela, si en chaque instant on veut définir l'ellipsoïde sur laquelle elle repose à un insant t, il est morale que cette ellipsoïde soit en fait une ellipse puisque c'est elle-même une variété de dimension 1.

Partant de là, on aurait toujours a, χ et ϕ pour la décrire et seulement θ gagnerait en dimension pour pouvoir orienter l'ellipse dans les n axes. ψ serait alors la données de $3 + \frac{n(n-1)}{2}$ paramètres :

$$a \in \mathcal{C}(\mathbb{R}, \mathbb{R}^+)$$
 $\theta \in \mathcal{C}(\mathbb{R}, [-\pi, \pi]^{\frac{n(n-1)}{2}})$ $\chi \in \mathcal{C}(\mathbb{R}, [-\pi/4, \pi/4])$ $\varphi \in \mathcal{C}(\mathbb{R}, [-\pi, \pi])$

On aurait beaucoup moins de paramètre et c'est quand-même bien. En même temps ca parait plus contraignant comme modèle. Pour comparer les deux, il faudrait voir comment les deux se décomposant

dans le cas d'un signal qui ne varierait sur une ellipsoïde fixe. *i.e.*dans un cas où θ, χ de la proposition 7 varie pas alors que ceux de la proposition 8 si.

IV — Vrac

4.1 Random stuff ready pour rédac (+labeled)

DÉFINITION 5 (SIGNAL MULTIVARIÉ) — Un signal multivarié, ou n-varié, est un vecteur composé de $n \in \mathbb{N}^*$ signaux x_i . Si n=2, alors on parle de signal bivarié.

Dans la continuité de ce qui à été dit dans la \ref{la} , dans le cas des signaux réels, on s'intéressera au vecteur composé des transformées en SA (eq. \ref{la} , déf. \ref{la}) des x_i . Au moins dans toute cette \ref{la} , un tel signal sera noté :

$$\begin{array}{ccc}
\mathbb{R} & \longrightarrow & \mathbb{C}^n \\
 & & & \\
x_+(t) & : & & \\
t & \longmapsto & \begin{pmatrix}
\mathcal{A}[x_1] \\
\mathcal{A}[x_2] \\
\vdots \\
\mathcal{A}[x_n]
\end{pmatrix}$$

On supposera que chaque composante x_i de x aura autant de régularité et de condition d'intégrabilité que nécessaire (il vaudra préciser lesquelles à un moment).

DÉFINITION 6 — Ainsi, il reste tout un degré de liberté au produit $\langle x, \dot{x} \rangle$ même si $x \in S^{2n}$. En intégrant ce degré de liberté supplémentaire, c'est-à-dire en tenant compte de son évolution sur la période $[t_0, t]$, l'on obtient ce qui est appeller le *phase dynamique*:

$$\Phi_{\rm dyn} := \Phi_{\rm dyn}(t_0, t) = \int_{t_0}^t \Im m \langle \psi(s) | \dot{\psi}(s) \rangle ds$$

Elle dynamique en cela qu'elle est propre au variation de ψ et qu'elle considère tout l'évolution de ψ : ça dynamique.

DÉFINITION 7 (CONNEXION DE BERRY) — On appelle connexion de Berry le champ de forme linéaire :

$$\forall \psi \in \mathcal{M}, \quad A_{\psi} : \begin{array}{ccc} T_{\psi} \mathcal{M} & \longrightarrow & \mathbb{R} \\ \phi & \longmapsto & \Im m \langle \psi(s) \, | \, \phi(s) \rangle \end{array}$$
 (3.16)

Elle a rien d'une connexion par contre :/

4.2 Bilan des formules

• (conservative) Équation Schrödinger et de Liouville-Von Neumann (h(R): Hamiltonien des paramètres R, W: opérateurs statistique) [1, p.6]:

$$i\frac{dW(t)}{dt} = [h(R), W(t)]$$
 $[\cdot, \cdot] = \text{commutateur}$? (3.17)

• Moment angulaire (viteuf) $\forall z \in \mathbb{C}$:

$$M(t) = \Re e(iz\overline{z}') = -\Im mz\overline{z}'$$
 thoughts? (3.18)

- code notebook - qui est quelle phase - mail à berthier pour les contraintes rapport

TABLE DES FIGURES

2.1	Fibration du ruban de Mobiüs.	10
2.2	Section local d'un fibré principal	10
2.3	Digrame surement osef des jeux de projections entre P est les cartes locales \dots	1
3.1	Schéma de Bohm [1] sur les trois phases	1

TABLE DES CODES

RÉFÉRENCES

- [1] A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, and J. Zwanziger, *The Geometric Phase in Quantum Systems*, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.
- [2] F. FAURE, Introduction à la géométrie et la topologie des espaces fibrés en physique, (2022).
- [3] J. LAFONTAINE, An Introduction to Differential Manifolds, Springer International Publishing, Cham, 2015.
- [4] N. LE BIHAN, J. FLAMANT, AND P.-O. AMBLARD, Modèles physiques à deux états pour les signaux bivariés: modulation de polarisation et phase géométrique, in GRETSI 2023 XXIXème Colloque Francophone de Traitement du Signal et des Images, Grenoble, France, Aug. 2023, GRETSI Groupe de Recherche en Traitement du Signal et des Images.
- [5] ——, The Geometric Phase of Bivariate Signals, in 2024 32nd European Signal Processing Conference (EUSIPCO), Lyon, France, Aug. 2024, IEEE, pp. 2562–2566.
- [6] J. Lefevre, *Polarization analysis and optimization geometry*, phdthesis, Université Grenoble Alpes [2020-....]; University of Melbourne, Dec. 2021.
- [7] J. M. Lilly, Modulated Oscillations in Three Dimensions, IEEE Transactions on Signal Processing, 59 (2011), pp. 5930–5943.
- [8] J. E. MARSDEN AND T. S. RATIU, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, vol. 17 of Texts in Applied Mathematics, Springer New York, New York, NY, 1999.
- [9] N. MUKUNDA AND R. SIMON, Quantum Kinematic Approach to the Geometric Phase. I. General Formalism, Annals of Physics, 228 (1993), pp. 205–268.
- [10] —, Quantum Kinematic Approach to the Geometric Phase. II. The Case of Unitary Group Representations, Annals of Physics, 228 (1993), pp. 269–340.
- [11] M. NAKAHARA, Geometry, Topology and Physics, Second Edition, Taylor & Egyptism, Francis, June 2003.