Matrices and Vector Spaces

Daniel Long

December 29, 2020

Contents

	Vector Spaces1.1 Conditions for a Vector Space1.2 Vector Space Definitions	
2	Inner Product 2.1 Inner Product Definitions	2
1	Vector Spaces	
1	1 Conditions for a Vector Cross	

1.1 Conditions for a Vector Space

A set of vectors **a**,**b**,**c**,... form a linear vector space if:

- i. Set is closed under commutative and associative addition
- ii. Set is closed under distributative and associative multiplication by a scalar
- iii. Set contains a null vector
- iv. Set contains a unity vector
- v. A corresponding negative exists for all vectors

1.2 Vector Space Definitions

Span of a Set of Vectors

The set of all vectors that can be expressed as a linear sum of the original set

Linear Dependence

A set of vectors are linearly independent if there exists a linear combination equal to the null vector

Basis Vectors

In an N-dimensional vector space V any set of N linearly independent vectors form a set of basis vectors for V

2 Inner Product

The inner product is a generalisation of the dot or scalar product, it has the following properties:

i.
$$\langle \mathbf{a} | \mathbf{b} \rangle = \langle \mathbf{b} | \mathbf{a} \rangle^*$$

ii.
$$\langle \mathbf{a} | \lambda \mathbf{b} + \mu \mathbf{c} \rangle = \lambda \langle \mathbf{a} | \mathbf{b} \rangle + \mu \langle \mathbf{a} | \mathbf{c} \rangle$$

2.1 Inner Product Definitions

Orthogonality

Vectors are orthogonal if $\langle \mathbf{a} | \mathbf{b} \rangle = 0$

${\bf Vector}\,\,{\bf Norm}$

The norm of a vector is given by $|\mathbf{a}| = \langle \mathbf{a} | \mathbf{a} \rangle^{\frac{1}{2}}$

${\bf Orthonormality}$

A basis is orthonormal is $\langle \mathbf{e}_i | \mathbf{e}_j \rangle = \delta_{i,j}$