Fibonacci Heap

- This is an advanced data structure. It is used when we want all operations (except deletion) to be very fast, eg. O(1) time!
- For eg. in Dijkstra's algorithm we do n Extract-min & m (>>n) Decrease-key operations.

Trees take O(mlgn) time while Fibonaci heaps will take only O(m+nlgn).

- The heap is a collection of (rooted) trees with relaxed conditions; but each node stores a lot of pointers!
 - · Each node a contains a pointer p[x] to its parent & to a single child[x].

· All the children of a are linked in a
circular doubly linked list (cdll):
Each child y (of n) has pointers
left[y] & right[y]. If y is the only child
then these pointers equal y.
, ,

· Number of children is stored in deg [22].

· A special flag mark[x] indicates

Whether x lost a child since x was

made a child of p[x]. (False)

Newly created nodes have mark = F.

A Fibonacci heap H is accessed by the points to the root of a tree with min. key.

· The number of nodes in H is n[H].

· The roots are also in a coll.

· Key of x < Key of any descendant of x.

· Let t[H]:= # trees, m[H]:= # marked nodes & d(H):= max deg of a node in H.

- Amortized analysis of heap operations: Define (DCH):= t[H]+2.m[H]. When a sequence of operations change the heap as \$ =: Ho -> Hy -> -- -> He with & being the actual cost in the i-th step, we define the amortized cost as overestimates (This may be negative for some i.) D Jotal amortized cost = $\sum_{i=1}^{\infty} \hat{c}_{i}$ = $(\sum_{i}) + \Phi(H_{e}) - \Phi(H_{o})$. i=1> \(\frac{1}{2} \circ \frac{1 D'Alus, (upper) bounding the amortized cost also bounds the actual cost. There is not much structure in H after the insert & decrease-key operations. This keeps them O(1) time.

	However, after extract-min an
	expensive step is done to consolidate the
	heap - in each row of siblings the degrees
-	are distinct (almost!).
-	cost in this case 24-12-23 21-39 41
	The amortized 7
	(the way Consolidate works)
Lemma:	: Assuming the above / d(H) = O(Gn),
	where n=n(H).
Proof:	
	· Let x be a node in H with degree
	d(x)=:k.
	· Let y,, y be the children of x in the order in which they were linked, consolidate,
	· deg[y] 20. For i 22, when yo was linked to x,
dee[x] =	deg[yi], so we must have had deg[yi]=i-1; if yi
1980	hild its degly;]=i-2. Thus, deg[y;] > i-2, Vi>2.
	· Let of denote the min. possible size of the
	, ,

		tree rooted at x with dep[n] = k.
_		$\Rightarrow \lambda_k \geq 2 + \lambda_1 + \lambda_{k2}$
		· It can be shown by induction that
		Sk = Fk+2 [Fibonacci numbers Fo := 0,
		$\overline{F_{i}} = 1, \ \overline{F_{i+1}} = \overline{F_{i+1}} + \overline{F_{i}}, $
		Est can be shown that Fx+2 > pt, where
		φ:= (45)/2,]
-		$\Rightarrow n[H] \geq s_k \geq \phi^k$.
_		$\Rightarrow k = O(\hat{y}_n).$
	-	Let us now sketch the operations of
tred	man	Let us now sketch the operations of Insert, Decrease-Key & Extract-Min.
k Ta	rjan 1985)	
1	ا حواد	Insert (H,x) {
_		Create a node with key x;
		Add it in the root list,
		Update min[H) if required;
		{ t(H) m(H)
	0	Amortized cost = O(1)+(t+1+2m)-(t+2m)=0(1)

- Suppose in H we want to decrease the key of x to k. (key [x] > k) Let y = parent of x.
 - of key [y] > k then x is cut & added to the root list. [Cut(H, x,y).]
 - · This requires a special process on the ancestors, called <u>Cascading-cut</u>: · If y is unmarked then mark it. Else cut y <u>Cut(H,y,z=ply)</u> <u>L Cascade</u> on z.
- D Suppose Cascade-Gut is called c times. Then the amortized cost of Decrease-key is: $O(c) + \beta (H') - \beta (H)$ justifies the O(c) + (t+c) + 2(m-(c-1)+1) - [t+2m]Choice of C = O(c) + c+2(2-c) = O(c) - c

By scaling up \$ we make the above O(1). - Gost gets reduced by the negative potential change |

- Finally, we describe the most complicated operation - Extract-Min (H).

It is here that the structure of the Fibonacci heap is secured.

- The min [H] root is removed & its children are added to the root list.

- Next, Consolidate (H) is called to link
the roots that have the same degree.
At the end, each sibling (in a row)
has a distinct degree.

Consolidate (H) {

for i = 0 to d(H)

A[i] ← null;

for w in the root list of H {

x←w; d←deg[n];

While A[d] ≠ null {

y←A[d]; 11 x ky have equal degree

if key[x] > key [y] then swap x,y; x /---(d+1) y Make y a child of x; Increment deg[x], Mark[y] < False; A[d] < null; d < d+1; 3 //end while A[d] (-n; 3 Hend for Update min [H), - Amortized cost of Extract-Min (H): d(H)=(H))- The roots are d(H)+t(H) many to as other begin with. (I in the end they're (d+1 many) operations, Each while-iteration links two of them. preserve it. Thus, the actual cost is O(d(H)+t(H)). The amortized one is $O(d+t)+\phi(H')-\phi(H)$ = O(d(H)+t(H))+[(d(H)+1)+2m(H)] -[t(H)+2m(H)] = O(d(H))(By scaling up & (H) function) = 0 (lg n[H]).

Exercise: In each set of siblings (in the end),

Exercise: In each set of siblings (in the end),
the degrees are <u>distinct</u> among unmarked.

(Hint: Insert & Decrease-Key don't
affect the deg of unmarked.)