PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-144117

(43) Date of publication of application: 25.05.2001

(51)Int.CI.

H01L 21/56

(21)Application number: 2000-305183

(71)Applicant: TEXAS INSTR INC <TI>

(22)Date of filing:

04.10.2000

(72)Inventor: JOHN W OAKATTO

ANDREW STEVEN DOWA

TSUEN FWAN RIN

(30)Priority

Priority number: 1999 157560

Priority date: 04.10.1999

Priority country: US

(54) IMPROVED MEMS WAFER-LEVEL PACKAGE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a method for packaging micro electro-mechanical system(MEMS) which is built on a wafer on the smallest scale and under optimum conditions, by using current manufacturing technology before dividing it into individual chips. SOLUTION: Enclosed cavities are formed by bonding a silicon cap wafer 116 provided with cavities 115, in each of which MEMS can be housed by etching and a silicon wafer 111, on which active circuits 112 are built by a thin film 114 of glass and a cavity sidewall 125. A conductor 113 is formed of a minimum length and a bonding wire is connected to a contact pad 113a through a hole 118, when the conductor is divided and ultimately incorporated in the system.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-144117 (P2001-144117A)

(43)公開日 平成13年5月25日(2001.5.25)

(51) Int.Cl.7

H01L 21/56

識別記号

FI

テーマコート*(参考)

H01L 21/56

G

R

審査請求 未請求 請求項の数2 OL (全 10 頁)

(21) 出願番号 特願2000-305183(P2000-305183)

(22)出願日

平成12年10月4日(2000.10.4)

(31)優先権主張番号 157560

(32)優先日 平局

平成11年10月4日(1999.10.4)

(33)優先権主張国 米国(US)

(71)出願人 590000879

テキサス インスツルメンツ インコーポ

レイテツド

アメリカ合衆国テキサス州ダラス, ノース

セントラルエクスプレスウエイ 13500

(72)発明者 ジョン ダブリュ、オアカット

アメリカ合衆国 テキサス、リチャードソ ン、エヌ、チェイエン ドライブ 1800

(72)発明者 アンドリュー スチープン ドワ

アメリカ合衆国 テキサス、プラノ、カー

ディガン ドライブ 5829

(74)代理人 100066692

弁理士 浅村 皓 (外3名)

最終頁に続く

(54) 【発明の名称】 改良式MEMSウェハーレベル・パッケージ

(57)【要約】 (修正有)

【課題】現状の製造技術を用い個々のチップに切り別ける前にウェハ上に作り込んだマイクロ電気機械式装置を 最小、最適にパッケージする方法を提供する。

【解決手段】マイクロ電機装置を収納し得るキャビティ 115をエッチング加工により設けたシリコンキャップ ウェハー116と能動回路112を作り込んだシリコン ウェハー111を、薄膜ガラス114及びキャビティ側 壁部125で接着することにより密閉されたキャビティ が形成される。導体113は最小の長さに作られ、切り 別けられて最終的に装置に組込まれるときには、ワイヤボンドはホール118を通してコンタクトパッド113 aに接続される。

【特許請求の範囲】

【請求項1】 マイクロ電気機械式ウェハーレベル封止 装置において、

半導体基板ウェハー上に作り込んだ複数の装置と、

シリコンウェハーから形成したキャップウェハー、前記 基板ウェハー上の能動装置に対応するパターンにエッチ ングした所定高さのキャビティのアレイ、及びエッチン グされない領域を覆うガラスから成る薄膜と、

前記個別装置のおのおのが所定寸法のキャビティ中に封 止されるように接着剤として前記薄膜ガラスを使用して 10 前記キャップウェハーを前記半導体ウェハーに接着する ことによって形成したハーメチック・シールと、

前記半導体ウェハー上に作り込んだ各装置との電気的結 合をもたらす前記基板ウェハーの表面に形成した少なく とも1つの導体と、

前記キャビティの外部から前記導体のおのおのに対する アクセスをもたらす前記キャップウェハー中に作り込ん だホールのアレイと、を具備したことを特徴とするマイ クロ電気機械式装置。

【請求項2】 マイクロ電気機械式ウェハーレベル封止 20 装置を形成する方法において、

各装置と電気的に結合する表面に少なくとも1つの導体 を有する半導体基板ウェハー上に作り込んだ複数の装置 をもたらす段階と、

前記基板ウェハー上の能動装置に対応するパターンにエ ッチングした所定高さのキャビティのアレイを有するシ リコンウェハーから形成したキャップウェハー、エッチ ングされない領域を覆うガラスから成る薄膜、及び前記 導体のおのおのに対するアクセスをもたらす前記キャッ プ中に作り込んだ少なくとも1つのホールをもたらす段 30 階と、

前記基板ウェハー及びキャップウェハーを位置合せする 段階と、

各個別装置を所定寸法のキャビティ中に封止するように 前記薄膜ガラスを接着剤として使用して加熱によって前 記キャップウェハーを前記半導体ウェハーに接着する段

ウェハー集合体を個々のチップに切断する段階と、を具 備したことを特徴とする前記方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は一般に半導体パッケ ージングに関し、特にマイクロ電気機械式装置用のパッ ケージに関する。

[0002]

【従来の技術】マイクロ電気機械式装置(MEMS:M icro electromechanical de vices) は半導体ウェハーの表面に極めて微細なメ カニズムを形成するのに半導体技術を利用している。こ

エータ、及び他の型式のセンサ等、広範囲の使用を有し ている。それらのサイズに起因して、極めて微細なメカ ニズムは取扱いからのダメージ、微粒子、空気の流れ及 び湿気に対して極端に傷つけられ易く、このため、装置 のパッケージングは従来の集積回路に比してはるかに多 くの課題を提供している。多くの装置は装置を自由に動 かすようにすべく装置を囲むキャビティを必要とする可 動部を有しており、大部分に対して、各装置はキャビテ ィを有するセラミックまたは金属のパッケージ中にパッ ケージされている。しかしながら、これらのオプション は双方共、価格が高く、貧弱に自動化したプロセスであ り、ウェハー上の個々の装置を分離する際の切出しプロ セスから生じる微粒子の問題は解消していない。更に、 これらのオプションは装置の信頼性及び性能を必ずしも 最適化するものではない。

2

【0003】この問題をうまく処理する試みにおいて、 個々のチップに分離する前に、この種の装置はウェハー レベルで封止されていた。このことは分離及びパッケー ジングプロセスの際に生じる保護されていないメカニズ ムに対するダメージを回避する技術をもたらす。ウェハ ーレベルのパッケージングについての極めて初期の作業 では、最終的なウェハー処理段階の際に装置はシリコン 酸化物から成る厚膜層で覆われていた。このことは勿 論、可動部を有する装置にとって完全に不十分であっ た。

【0004】更に満足のいく解法は、参照によって本願 に組み込まれるヴィ. ジェー アダムス (V. J. Ad ams) 他による米国特許第5, 323, 051号に提 供されている。この特許はキャップを形成すべく基板に 第2のシリコンウェハーを固着した状態でシリコンウェ ハー基板にて能動装置を有するウェハーと、個々の装置 を取り囲むフリットガラスから形成したキャップ上の壁 部のパターンとを説明している。壁部は各装置を取り囲 むようにパターニングされて、ガラスを加熱することに よってキャップ及び基板を接着した後に、各ユニットの 周囲にハーメチックパッケージを形成できるようにして いる。キャップ中のホールは、フリットガラス壁部封止 を通り抜ける電極に対する電気的接続に対して設けられ る。2枚のウェハーの接着に続いて、各装置は切出しプ 40 ロセスから生じる異物に対して最小の関心を払った状態 で分離され、各装置はハーメチックキャビティ中に収め られる。シリコンウェハー基板及びキャップシリコンウ ェハー間の一致した熱膨張係数、各装置の保護、及び低 コストのプラスチックパッケージへの個々の装置のアセ ンブリに対する潜在的可能性を含め、この従来技術のア プローチには多くの利点がある。

【発明が解決しようとする課題】しかしながら、既存技 術に対する製造プロセスはウェハー製造の技術的現状及 れらの装置は、例えば加速度計、圧力センサ、アクチュ 50 び/又はプラスチックアセンブリの施設と両立できるも

処理される。

のではない。セラミックパッケージ及び基板の製造に以前は使用されていたが、現在の高容積半導体処理施設に関して不定型であるフリットガラス化合物をスクカーの表面にであるフリットガラスをパターニングすることに頼るプロセスは、各装置の能動領域へ容融したガラスを流し込むことまたは流出させることは勿論、スタイガラス膜が流出し得るということは、この種の問題を可とするのに大きな周囲が許容されることを必要とすることとなる。ガラスの流込の路及ではよって、所定の基板上にアセンブルすることができる装置の数を減少させることとなる。ガラスの流込の路及び接触パッド間の導体長さが長いことを必要とすることとなる。リードのインダクタンスが増大することとなる。

【0006】ウェハー製造からまたはプラスチックパッケージ・アセンブリから技術的現状の高容積製造技術を利用することによって、ウェハーを個々のチップに切り出す前に半導体ウェハー上に作り込んだマイクロ電気機械式装置をパッケージ化する方法に対する必要性が存在している。この方法は、マイクロ機械式部分が自由に動ける十分に制御したキャビティをもたらし、装置の熱的特性と近密に一致する熱的特性を有し、電気的接触のためのアクセスを可能にし、かつ装置性能に対して最適化する必要がある。

[0007]

【課題を解決するための手段】本発明は改良式ウェハー レベルの封止型マイクロ電気機械式装置及び半導体ウェ ハー上に作り込んだ装置の製造方法を提供する。各能動 装置はキャップの異方性エッチングによってパターン化 されるキャビティを有するキャップウェハーを接着する ことによってダイシングを行う前にウェハーレベルで封 止される。各キャビティは能動回路の位置に対応してお り、エッチングされない各部分はパターニングしたマス クを通してスパッタリングされたガラスから成る薄膜に よって頂を付けた壁部をもたらしている。キャップウェ ハーはガラス膜をリフローすると共に各能動回路の周囲 にハーメチックキャビティを形成することによって基板 に固着される。テストプローブ及びボンドワイヤ用の開 40 口部は、2枚のウェハーの位置合せ及びガラスのリフロ ーを行う前にキャップウェハーを通して設けられる。ア センブルされた各ウェハーは従来のテスト装置を用いた プルービング(probing)によってウェハー形態 のままで電気的にテストされる。テストされる各装置 は、自動化ソー (automated saw) を用い たダイシング、リードフレームへの各装置の固着、キャ ップ中の開口部を通したワイヤボンディング、及びプラ スチック成型化合物を用いた封止を含んだ従来のプラス チック成型パッケージアセンブリ技術を用いて引き続き 50

【0008】各ウェハーの薄膜ガラス封止で結合された、エッチング済みのキャビティ及び壁部の精度は能動領域へのガラスの流れ出しまたは流込みを最小化することによって、回路及びコンタクトを極めて近接して距離を保つことを可能にし、このことはウェハー上のより高密度の回路及びより低い抵抗率を有する短いコンタクトリードを支援するものである。

【0009】基板及び凹型キャップウェハーを接着する 代替的方法はガラスよりもむしろ半田のリフロー処理を 利用する。利点は低温処理、回路を取り囲むアースリン グに対するポテンシャル、及びエリアアレイパッケージ と半田コンタクトの両立性を含んでいる。

【0010】双方の実施例共に、ウェハー製造及びパッケージングアセンブリ・サイトの技術的現状での現在の生産において製造装置及びプロセスを利用している。

[0011]

【発明の実施の形態】図1は半導体装置112がウェハ ーレベルパッケージ121アセンブリ内のキャビティに 封止されているマイクロ電気機械式 (MEM:micr o-electromechanical) 装置の断面 図を示している。好ましい実施例では、装置112は容 量変化によって制御されるマイクロ電気機械式スイッチ を備えたRF回路である。装置112は、ウェハーが複 数の別個のチップに切り出される前のシリコンのウェハ ーを備えたシリコン基板ウェハー111上に作り込まれ ている。キャップウェハー116は所定位置でこのキャ ップウェハーを完全に突き抜けている複数のホール11 8を設けることによって準備される。エッチング済みキ ャビティ115のパターンは、その位置が基板ウェハー 上の装置112のパターンに対応している所定の寸法を 有する。ガラスから成る薄膜114はキャップウェハー の末取付け部分、即ち、キャビティ壁部124の頂12 5部分に被着されている。このパターンは、装置112 はキャビティ壁部124によって完全に取り囲まれてい るが、MEMの可動部分は全方向に移動するのに自由と なっているものである。

【0012】穴をあけるかまたは異方性エッチングによって形成したキャップウェハー116中の各ホール118によって、電気的に装置に結合した導体リード113から伸長するコンタクトパッド113aにアクセスできるようになっている。装置回路はキャップ中のホール18を通して位置決めしたテストプローブを用いることによって電気的にテストし得る。引き続き、各装置が最終パッケージ中にアセンブルされるときにワイヤボンドはホール118を通してコンタクトパッド113aに接続されることとなる。

【0013】キャップウェハー116は被着した薄膜ガラス114を接着剤として使用して半導体基板ウェハー111に接着される。接着は2枚のウェハーを位置合せ

することと、ガラスを有するキャップウェハー及び基板 ウェハーを十分に高い温度まで加熱してガラスを溶融す ることと、続いてガラスを固化すべく冷却することとを 含んでいる。このようにして、半導体ウェハーレベルの パッケージは、半導体基板、キャップウェハー及びガラ ス薄膜を有するキャビティ壁部の組合せによって形成し た所定寸法のキャビティ115中に気密封止した装置1 12を有するキャップ付きウェハー構造体の一部分とし て形成される。薄膜被着及びリフローに好適なガラスは 当業者にとって周知である。

【0014】比較のために、図2は半導体装置12がウ ェハーレベルのパッケージ21内に封止されている周知 技術の1装置の断面図を示している。装置12はウェハ 一が複数の別個のチップに切り出される前の半導体材料 から成るウェハーを備えた半導体基板ウェハー11上に 作り込まれている。キャップウェハー16はこのキャッ プウェハーを完全に突き抜けて伸長する複数のホール1 8を設けることによって準備される。所定寸法を有する 複数のフリットガラス壁部14はキャップウェハー16 上に配置されている。所定のパターンは、装置12がフ リットガラス壁部によって完全に取り囲まれることとな るといったものである。フリットガラス壁部14は有機 結合機及びフリットガラスの混合物のスラリーにパター ニングしたスクリーンを介してシルクスクリーニングを 施すことによって被着されており、この際、有機結合機 は焼失し、ガラスは2枚のウェハーの接着を可能にする 温度に加熱される。

【0015】周知技術の装置12が可動部分を有する電気機械式装置であれば、フリットガラス壁部14は装置の制限されない移動を可能にする十分な高さに維持されることが必要である。有機結合機の焼失及び過熱の際のガラスのスランプ化の双方に起因するフリットガラス壁部の高さの変化は各ウェハーの全表面に渡って均一に制御するのが困難である。更に、キャップウェハーの重量がフリットガラスの加熱の際にガラス壁部がつぶれる確率を大きくする。

【0016】重要な困難性は、能動装置12の領域及びキャビティ壁部を形成するのに必要なフリットガラスの容積を有する電気的コンタクト領域13に極端にガラスが流れたり流れ出したりすることから予期し得る。ガラスのリフロー及び流れ出しの特性は順次、フリットガラスによって形成する側壁部と能動及びコンタクト領域の間の空間がガラスの汚染を回避するのに比較的大きく、これによって増大した抵抗率を有する長い導体経路を押しやることを要求する。

【0017】図1に図示するように、シリコンのキャップウェハー116の異方性エッチングによって形成する本発明のキャビティ壁部124は、能動回路112及び 導体コンタクトパッド113aの双方と極めて近接して 一定の距離を保っている。装置製造の際にパターニング 50

した金属トレース113は装置に対する電気的結合をもたらすと共に、コンタクトパッド113aで終端している半導体基板ウェハー上の複数の電極を形成している。極めて短い導体長さの利点は、ウェハー当りの装置の数が増大することと、各導体の抵抗がより小さく、このため制御式電気パラメータに対する要求を維持することである。

【0018】シリコン基板111及びキャップ116双方は厚さが0.2から0.5mmの範囲にあり、理想的熱膨張及び引張り応力特性のために、封止ガラス上の応力は最小に保たれる。工業上周知の技術を用いて異方性エッチングされたキャビティ壁部は厚さが0.05から0.2mmの範囲にある。

【0019】図3は第1 125及び第2 135の主 面を有するキャップウェハー116の一部分の概略的断 面図を提供している。ホール118のアレイはシリコン ウェハー116を通して穿たれるかまたは完全にエッチ ングされている。所定寸法のキャビティ115のアレイ はシリコンウェハーの異方性エッチングによってパター ニングされて、正確な寸法の比較的薄いシリコン壁部1 24を残している。ガラス114の薄膜はキャビティ壁 部125の頂部面に対応するアパーチャのアレイを有す るマスクを通してスパッタリングを行うことにより被着 される。ガラス膜114は0.5から5.0μmの範囲 にある。ガラスのパターン解像度は、基板及びキャップ ウェハーの間に封止をもたらすために壁部124の頂部 面が覆われる限り余り重要ではない。各装置は一定の距 離を保って、アセンブルしたウェハーを引き続き個々の 装置に切り分けるためのスクライブストリート126の アレイをもたらすようになっている。 スパッタリングに よる封止ガラスの被着には、集積回路装置の製造におい て周知で認められる装置及びプロセスが利用される。

【0020】図3bはキャップウェハーの第2の面135の一部分の概略図を提供している。スクライブストリート126のアレイはアセンブルした装置を分離するために設けられている。ウェハーを突き通るホール118は各装置領域内に設けられている。破線127はキャビティ壁部の位置及び領域を表わしている。

【0021】2枚のウェハーは一般に、接着プロセスに 先立って位置合せピンが挿入される各ウェハーに形成し た位置決めホールを用いて位置合せされる。上部及び下 部装置を同時に検視するためのビジョンシステムはフリ ップチップ装置を位置合せするために一般に工業上使用 される。キャップ付きウェハーの集合体は、温度プロフ ァイリング及び加熱能力は勿論のこと、制御された環境 を有するチャンバ内に導かれる。制御された雰囲気中に ある間、キャップウェハー及び半導体ウェハーは加熱されて相互に接着して、半導体ウェハーレベルのパッケー ジを形成する。この接着によって、キャビティ内で制御 された雰囲気を捕えたキャップ付きウェハー構造体が気 密封止される。接合部上で最小応力を保証するために、 チャンパはガラス製造業者によって規定されたプログラムレートで冷却される。種々のガラスに対する処理温度 プロファイル及び所要の雰囲気はガラス供給業者によってもたらされ、工業上既知である。キャップ付きウェハー構造体は電気的にテストされ、次いでソーイング、即ち工業上周知の方法によって複数の個別チップに切り出される。電気的に良品の各装置は次いで、外部コンタクトを有する最終パッケージにアセンブルするために準備ができている。

【0022】図4aは低コスト高容積プラスチックパッケージ420として完全にアセンブルされた好ましい実施例の個別のMEM装置401の断面図を提供している。キャップウェハーに接着した能動シリコン基板を有するウェハーレベル封止MEM装置のアレイは、従来の自動化ダイシングソーを使用して切り出され、個々の電気的に良品の装置のおのおのは接着剤によってリードフレーム・ダイパッド421に固着される。ワイヤボンド424は装置キャップ中のホールを通してコンタクトパッド413aにつながれると共に、リードフレームのインナリード422に固着される。接着された装置は、周知で工業上の高容積生産に使用される射出成形技術を使用して高分子成形材料425によって封止される。

【0023】プラスチックアセンブリのための処理温度は、キャップ及び基板ウェハーを接着するのに使用する 封止ガラスのリフロー温度よりも十分低い。能動装置は 気密封止されて、化学的及び微粒子汚染から保護され る。

【0024】図4bは個々の装置に切り出され、ワイヤボンデングされ、かつプラスチックパッケージ420中に封止されるウェハーレベル封止MEM装置401の切取図を示している。全体の全ての導体は勿論、能動回路401及びコンタクトパッド413a間の短いオンチップ薄膜導体413、短いワイヤボンド424及びリード422の対称性によって、比較的低い抵抗率を有する容易に制御される電気的パラメータのための手段がもたらされる。

【0025】本発明の代替的実施例を図5の断面図に示す。この実施例は複数の別個のチップに切り出す前に半導体基板ウェハー511上に作り込まれたMEM501 40ウェハーレベル封止装置512を提供するものである。キャップウェハー516は、所定位置においてこのキャップウェハーを完全に突き抜けて伸長する複数のホール518を設けることによって準備される。エッチングしたキャビティ515のパターンその位置が基板ウェハー511上の装置512のパターンに対応する所定の寸法を有する。半田層544はキャップウェハーのエッチングされていない部分、即ちキャビティ壁部524の頂部面に被着される。このパターンは、装置512はキャビティ壁部524によって完全に取り囲まれているが、M50

EMの可動部分は全方向に自由に動けることとなるというものである。キャップウェハー516のホール518 は好ましい実施例にあったように設けられている。キャップウェハー516は半田を接着剤として使用して半導体基板ウェハーに接着されて、各ウェハーを固着すると共に、各キャビティを封止するようになっている。

【0026】図6a及び6bは半田シール式ウェハース ケール封止MEM装置のための金属及び絶縁体の各層の より詳細な構成を提供している。図6aにおいて、能動 回路611及びコンタクトパッド613aの間の導体6 13は、能動回路上にパッシベーションを設けるのと同 様の材料及び技術を使用して、SiO2、Si3N4また はその組合せから成る誘電体膜625を被着することに よって半田及び半田付け可能な金属から電気的に絶縁さ れている。膜625をパターニングしかつエッチングし て、コンタクトパッド613aを露出すると共に、ME M動作との如何なる干渉をも回避している。Auまたは Pd等の半田と両立可能な薄膜金属層630が、半田シ ールによって基板がキャップウェハーに接着されること となる領域に設けられている。この種の半田付け可能な 金属は絶縁物及び半田付け可能な金属との間に接着層 6 26を必要とする。一般に、工業上既知の接着層はC u、CrまたはTi/Wであり、半田付け可能な金属は Pd及びAuである。金属層626及び630は工業上 周知で、一般にフリップチップ及び基板処理に使用され る技術を用いてCVDまたはスパッタリング及びエッチ ングにより被着される。

【0027】図6bにおいて、好ましい実施例に対して説明したように半導体キャップウェハー616がパターニングされ、ホール618が設けられ、かつキャビティ615がエッチング形成される。図6bに示すように、ウェハー全体は二酸化シリコン、窒化物またはその組合せから成るブランケット層641を、所定寸法及び位置のキャビティ630のアレイとウェハーを完全に突きさけたホール618を有するウェハー上に被着することによって絶縁されている。接着層643及び半田付け可能な金属層642は、エッチングした壁部624の頂部に対応するマスクのアパーチャを通してCVDまたはスパッタ技術によって被着される。半田層644はパターニングした半田付け可能な金属上にマスクを通してスパッタリングを行うかまたは無電解めっきによって被着される。

【0028】半田は装置のリフロー温度特性及びα線放射率感度によって決定される正確な組成の選択において、鉛を含んでいる材料または鉛を含んでいない材料の何れであっても良い。装置を封止するのに有効な半田は極低温インジウム材料、Sn、Ag、Cu及びSbから成る鉛を含まない複合材料(鋳物:Castin)、または従来のSn/Pb半田の何れかであることができ

【0029】2枚のウェハーは光学的または機械的手段 によって位置合せされる。ウェハーの集合体は環境制御 式チャンバ中に導かれて、プログラムした温度で加熱し て半田をリフローさせると共に、個々の装置を封止す る。温度及び環境上の組成は選択された半田組成に依存 している。半田のリフロープロセスは工業上周知であ り、特定の条件は半田の製造業者によって提供される。 【0030】能動MEM装置を有する基板ウェハー、異 方性エッチングによって形成すると共に半田相容性金属 を有するキャビティ及び壁部のアレイを備えたキャップ ウェハー、及びキャビティ壁部の頂部面を覆う半田層を 備えたウェハー集合体、それに半田リフローによって接 着した各ウェハーは個々のチップへの切出し及び外部の 電気的コンタクトを有する最終アセンブリに対する準備 ができている。

【0031】一実施例において、半導体装置のコンタク トパッドは能動装置としてオンチップ・メタライゼーシ ョンのみを有する。絶縁または付加的金属は何ら設けら れておらず、それなりにこの装置はガラス封止の実施例 で前に説明したようにプラスチックパッケージへのアセ 20 ンブリに対する準備ができている。

【0032】図7に示すまた別の実施例において、コン タクトパッドは以下の金属層、即ち、オンチップ・メタ ライゼーションと同様の層713a、接着層726及び 半田付け可能な金属層730を備えている。接着及び半 田相容性層はCVDまたはスパッタリングによって被着 され、図6aで説明したと同じオペレーションでパター ニングされている。コンタクトパッド713a上のAu またはPdから成る半田付け可能な金属層730はワイ ヤボンディングと両立可能であり、または図7に示すよ 30 うに、例えばボールグリッドアレイ (BGA:ball grid array) またはチップスケールパッケ ージ (CSP: chip scalepackage) 等のエリアアレイパッケージングのために直接基板と接 合するように半田ボール750によってキャップ716 中のホール718を通してコンタクトすることができ

【0033】図8はキャップウェハーの第2の面835 の一部分の概略図を提供している。スクライブストリー ト826のアレイはアセンブルした装置を分離するため 40 に設けられている。ウェハーを通したホール818は各 装置領域内に設けられている。電気的導電性金属及び半 田844によって覆われている頂部面を有するキャビテ ィ壁部の位置及び領域は金属によって輪郭を描かれてい る。キャビティ壁部の導電性頂部面844は、前述した ように、誘電体膜によって能動装置から絶縁分離した電 気的導電性リングをもたらしている。また別の実施例で は、導電性リングは予め選択した位置で電気的にコンタ クトして、能動装置のアースリングを形成する。

比較した半田の幾つかの利点は、潜在的により低い温度 処理と、各装置の周囲のキャップ封止における電気的ア ースリングの有用性と、次のレベルの相互接続に対する 半田コンタクトを有するBGA及びCSP等のより新し い領域アレイパッケージと各装置が両立可能であるとい うことである。

10

【0035】シリコン基板及びキャップの中に包まれる 半導体チップを有するウェハーレベルのパッケージにつ いて好ましい実施例を説明したが、この方法はマルチチ ップ機能デバイスを形成するウェハーレベルパッケージ の各キャビティ内の多数のチップに応用可能であること を了知すべきである。

【0036】要約すると、改良式MEMウェハーレベル 封止装置と、ウェハーが個々の装置に切り出される前に 半導体基板上に作り込んだMEM装置の製造方法を示し てきた。各個々の装置は、キャビティの位置が基板ウェ ハー上の能動装置の位置に対応している第2のシリコン ウェハーに所定サイズにキャビティをエッチング形成す ることによってハーメチック・エンクロージャの中に封 止される。キャビティの頂部面はマスク中のアパーチャ を介してスパッタリングで被着したガラス膜で覆われて いる。2枚のウェハーは位置合せされ、ガラスをリフロ ーして、各能動装置の周囲にハーメチックシールを形成 する。キャップを通したホールは、能動回路に電気的に 接続した基板上のコンタクトパッドと位置合せしてい る。

【0037】薄いガラスはガラスの流れ出しを最小限に 抑え、狭いキャビティ壁部と結合し、能動回路及び露出 したコンタクトパッドの間の導体の長さを短く維持でき るようにすることによって、導体の抵抗を最小化してい る。このコンパクトな設計は更に、より大きな導体スペ ーシングを必要とするプロセスにおけるよりもウェハー 当りより多くの装置の製造を可能にする。プロセス及び 設備は高容積半導体生産におけるプロセス及び設備と矛 盾がない。

【0038】装置が半田のリフローによって封止され る、同一のエッチングしたキャップウェハー及び基板ウ ェハーを利用する代替的プロセスについて説明した。

【0039】以上、この発明の好ましい実施例及び幾つ かの代替的応用について説明したが、特許請求の範囲で 述べているこの発明の精神及び範囲から逸脱することな く本願で説明した特定の詳細事項から種々の修正を行い 得ることが了知される。

【0040】以上の説明に関して更に以下の項を開示す

【0041】 (1)マイクロ電気機械式ウェハーレベル 封止装置において、半導体基板ウェハー上に作り込んだ 複数の装置と、シリコンウェハーから形成したキャップ ウェハー、前記基板ウェハー上の能動装置に対応するパ 【0034】ウェハースケール封止装置のガラス封止と 50 ターンにエッチングした所定高さのキャビティのアレ

イ、及びエッチングされない領域を覆うガラスから成る 薄膜と、前記個別装置のおのおのが所定寸法のキャビテ ィ中に封止されるように接着剤として前記薄膜ガラスを 使用して前記キャップウェハーを前記半導体ウェハーに 接着することによって形成したハーメチック・シール と、前記半導体ウェハー上に作り込んだ各装置との電気 的結合をもたらす前記基板ウェハーの表面に形成した少 なくとも1つの導体と、前記キャビティの外部から前記 導体のおのおのに対するアクセスをもたらす前記キャッ プウェハー中に作り込んだホールのアレイと、を具備し 10 たことを特徴とするマイクロ電気機械式装置。

【0042】(2)第1項記載のマイクロ電気機械式装 置において、前記装置はRFはスイッチを備えたことを 特徴とする前記マイクロ電気機械式装置。

【0043】(3)第1項記載のマイクロ電気機械式装 置において、前記各導体は等しい長さと抵抗率を有する ことを特徴とする前記マイクロ電気機械式装置。

【0044】(4)第1項記載のマイクロ電気機械式装 置において、前記ガラスの厚さは0.5から5.0μm の範囲であることを特徴とする前記マイクロ電気機械式 20 装置。

【0045】(5)第1項記載のマイクロ電気機械式装 置において、前記キャビティの各壁部は厚さが0.05 から0.2mmの範囲にあるシリコンを備えたことを特 徴とする前記マイクロ電気機械式装置。

【0046】(6) RFスイッチマイクロ電気機械式ウ ェハーレベル封止装置において、半導体基板ウェハー上 に作り込んだ複数の装置と、前記基板ウェハー上の能動 装置のおのおのに対応するパターンにエッチングした所 定高さのキャビティのアレイを有するシリコンウェハー から形成したキャップウェハーであって、前記キャビテ ィの各壁部の厚さが0.05から0.2mmの範囲にあ り、かつエッチングされない領域を覆うガラスからなる 薄膜の厚さが 0.5から 5.0μmの範囲にある前記キ ャップウェハーと、各個別装置が所定寸法のキャビティ 中に封止されるように、前記薄膜ガラスを接着剤として 使用して前記半導体ウェハーに前記キャップウェハーを 接着することによって形成するハーメチック・シール と、前記基板ウェハー上に作り込んだ各装置に対する電 気的結合をもたらす前記基板ウェハーの表面に形成した 40 等しい長さ及び抵抗率の1つ以上の導体と、キャビティ の外部からの前記導体のおのおのに対するアクセスをも たらす前記キャップウェハー中に作り込んだボールのア レイと、を具備したことを特徴とする前記RFスイッチ マイクロ電気機械式ウェハーレベル封止装置。

【0047】 (7) 第1項記載のマイクロ電気機械式ウ ェハーレベル封止装置において、前記装置は多数のチッ プを備えたことを特徴とする前記マイクロ電気機械式ウ ェハーレベル封止装置。

械式装置において、シリコンキャップ中のキャビティ内 に封止される半導体装置であって、前記キャップがガラ スから成る薄膜によって装置基板に接着されてなる前記 半導体装置と、前記装置に電気的に結合すると共に、封 止したキャビティの外部に伸長し、かつおのおのが前記 キャップ中のホールによってアクセス可能である前記装 置基板上の1つ以上の導体と、前記導体のおのおの及び リードフレーム間の各ワイヤボンド接続部と、を具備 し、前記各装置がプラスチック成形材料中に封されるこ と、を特徴とする前記プラスチック封止型マイクロ電気 機械式装置。

12

【0049】(9)マイクロ電気機械式ウェハーレベル 封止装置を形成する方法において、各装置と電気的に結 合する表面に少なくとも1つの導体を有する半導体基板 ウェハー上に作り込んだ複数の装置をもたらす段階と、 前記基板ウェハー上の能動装置に対応するパターンにエ ッチングした所定高さのキャビティのアレイを有するシ リコンウェハーから形成したキャップウェハー、エッチ ングされない領域を覆うガラスから成る薄膜、及び前記 導体のおのおのに対するアクセスをもたらす前記キャッ プ中に作り込んだ少なくとも1つのホールをもたらす段 階と、前記基板ウェハー及びキャップウェハーを位置合 せする段階と、各個別装置を所定寸法のキャビティ中に 封止するように前記薄膜ガラスを接着剤として使用して 加熱によって前記キャップウェハーを前記半導体ウェハ ーに接着する段階と、ウェハー集合体を個々のチップに 切断する段階と、を具備したことを特徴とする前記方 法。

【0050】(10)第9項記載の方法において、前記 キャップウェハー中の各キャビティは、フォトリソグラ フィックパターンを通してシリコンを異方性エッチング することによって形成することを特徴とする前記方法。 【0051】(11)第9項記載の方法において、アパ ーチャの所定のパターンを有するマスクを通してスパッ タリングすることにより、ガラスを被着することを特徴

【0052】(12)第9項記載の方法において、前記 薄膜ガラスはフォトリソグラフィ及びエッチングを使用 してパターニング形成することを特徴とする前記方法。

とする前記方法。

【0053】(13)第9項記載の方法において、前記 キャップウェハー中の各ホールはフォトリソグラフィッ クパターンを通して異方性エッチングを行うことによっ て形成することを特徴とする前記方法。

【0054】(14)第9項記載の方法において、各装 置は前記キャップウェハー中の各ホールを介してプロー ブを位置決めすると共に、前記各導体とコンタクトする ことによってウェハーの状態で電気的にテストすること を特徴とする前記方法。

【0055】(15)マイクロ電気機械式ウェハーレベ 【0048】(8)プラスチック封止型マイクロ電気機 50 ル封止装置において、半導体基板ウェハー上に作り込ん

だ複数の装置と、前記基板ウェハー上の各能動装置に対 応するパターンにエッチングした所定高さの各キャビテ ィのアレイを有するシリコンウェハーから形成したキャ ップウェハー、及びエッチングされていない領域を覆う 半田相容性金属から成る層に接着した半田から成る膜 と、前記半導体ウェハー上に作り込んだ各装置に対する 電気的結合をもたらす前記基板ウェハーの表面上に形成 した少なくとも1つの導体であって、該導体は更に誘電 体膜及び半田相容性金属層によって覆われてなる前記導 体と、装置が所定寸法のキャビティ中に封止されるよう に、前記半田を接着剤として使用して前記半導体ウェハ ーに前記キャップウェハーを接着することによって生成 するハーメチック・シールと、キャビティの外部から前 記導体のおのおのに対するアクセスをもたらす前記キャ ップウェハー中に作り込んだホールのアレイと、を具備 したことを特徴とする前記マイクロ電気機械式装置。

【0056】(16)第15項記載のマイクロ電気機械 式装置において、前記キャップ中の前記各ホールを通し て各導体に固着される半田ボールを更に具備したことを 特徴とする前記マイクロ電気機械式装置。

【0057】(17)第15項記載のマイクロ電気機械 式装置において、前記キャップ上の各金属層によって生 成した各個別装置を取り囲む電気的アースリングを更に 具備したことを特徴とする前記マイクロ電気機械式装 置。

【0058】(18)マイクロ電気機械式ウェハーレベ ル封止装置を形成する方法において、各装置に電気的に 結合した表面上の少なくとも1つの導体を有する半導体 基板上に作り込んだ複数の装置をもたらす段階と、前記 基板ウェハー上の能動装置のおのおのに対応するパター ンにエッチングした所定高さのキャピティのアレイを有 する、シリコンウェハーから形成したキャップウェハ ー、エッチングされない領域を覆う半田相容性金属から 成る層及び半田から成る層、及び前記導体のおのおのに 対するアクセスをもたらす前記キャップ中に形成した1 つのホールのアレイをもたらす段階と、前記基板ウェハ 一及びキャップウェハーを位置合せする段階と、各個別 装置が所定寸法のキャビティ中に封止されるように、前 記半田及び各金属層を接着剤として使用して前記半導体 ウェハーに前記キャップウェハーを接着する段階と、ウ 40 ェハー集合体を個々の装置に切断する段階と、を具備し たことを特徴とする前記方法。

【0059】(19)第18項記載の方法において、前 記半田相容性金属及び半田はアパーチャの所定のパター ンを有するマスクを通してスパッタリングすることによ って被着することを特徴とする前記方法。

【0060】(20)第18項記載の方法において、前 記半田は無電解めっきによって被着することを特徴とす る前記方法。

【0061】(21)半導体ウェハー上に作り込んだ改 50

14

良式ウェハーレベル封止型マイクロ電気機械式装置及び 技術的現状のウェハー形成及びパッケージングを使用したその製造方法。この装置は、各装置を取り囲むキャビティを有するエッチングしたシリコンウェハーに能動回路を有するシリコンウェハーを接着すると共に、薄膜ガラス封止または半田封止の何れかによって2板のウェハーを接着することによって生成されるハーメチックキャビティ内に含まれる。エッチングしたウェハー及び薄によって各導体は最小の長さに保たれると共に、回路の改良式電気的制御にマッチする。更に、この装置は半田封止型装置のアースリングに対する能力を有する。各装置はワイヤボンド技術を用いてプラスチックパッケージ中にパッケージするか、またはエリアアレイ半田接続式パッケージに半田接続することができる。

【図面の簡単な説明】

【図1】エッチングしたキャップ及び薄膜ガラスボンディングを有するウェハーレベルのパッケージ内に封止した装置の断面図である。

【図2】フリットガラス壁部を有する半導体ウェハーレベルパッケージ内に封止した装置(従来技術)の斜視断面図である。

【図3】 a は基板への接着の前のキャップウェハーの断面図であり、 b はキャップウェハーの一部分の平面図である。

【図4】 a はウェハーレベルのパッケージ内に封止した装置を収めるプラスチックパッケージの断面図であり、b はウェハーレベルのパッケージ内に封止した装置を収めるプラスチックパッケージの切取り平面図である。

【図5】エッチングしたキャップ及びキャップと基板ウェハー間の半田封止を有するウェハーレベルパッケージ内に封止した装置の断面図である。

【図6】 a はキャップウェハーに対する半田封止の前の 基板ウェハー上の絶縁体及び金属層の断面図であり、 b はキャップウェハーに対する半田封止の前のキャップウ ェハー上の絶縁体及び金属層の断面図である。

【図7】エッチングしたキャップ及びキャップと基板間の半田封止を有すると共に、導体に固着する半田ボールを有するウェハーレベルのパッケージ内に封止した装置の断面図である。

【図8】アースリングをもたらすことができる金属リングを有するキャップウェハーの平面図である。

【符号の説明】

111,511 基板ウェハー

112 半導体装置

113 導体リード

113a, 613a, 713a コンタクトパッド

114 ガラス薄膜

115, 515, 615 キャピティ

116, 516, 616, 716 キャップウェハー

118, 518, 618, 718 ホール

16

- 121 ウェハーレベルパッケージ
- 124,524 キャビティ壁部
- 125 第1の主面(頂部)
- 126 スクライブストリート
- 135 第2の主面
- 501 MEM
- 512 ウェハーレベル封止装置
- 544,644 半田層

* 6 1 1 能動回路

- 6 1 3 導体
- 6 2 5 誘電体膜
- 626,643,726 接着層
- 630,730 金属層
- 750 半田ボール
- 844 電気的導電性リング

*

【図1】

【図2】

【図3】

【図4】

【図5】

(図 6)

a

630

630

631

633

6136

【図8】

フロントページの続き

(72)発明者 ツェン - フワン リン アメリカ合衆国 テキサス、ダラス、ベン チマーク ドライブ 18011