Homoclinic Bifurcation Theorem 6.1 (Andronov & Leontovich [1939])

Consider a two-dimensional system

$$\dot{x} = f(x, \alpha), \quad x \in \mathbb{R}^2, \quad \alpha \in \mathbb{R},$$
 (1)

with smooth f, having at $\alpha=0$ a saddle equilibrium point $x_0=0$ with eigenvalues $\lambda_1(0)<0<\lambda_2(0)$ and a homoclinic orbit Γ_0 . Assume the following genericity conditions hold:

(H.1)
$$\sigma_0 = \lambda_1(0) + \lambda_2(0) \neq 0$$
;

(H.2) $\beta'(0) \neq 0$, where $\beta(\alpha)$ is the previously defined split function.

Then, for all sufficiently small $|\alpha|$, there exists a neighborhood U_0 of $\Gamma_0 \cup x_0$ in which a unique limit cycle L_β bifurcates from Γ_0 . Moreover, the cycle is stable and exists for $\beta>0$ if $\sigma_0<0$, and is unstable and exists for $\beta<0$ if $\sigma_0>0$.

Homoclinic Bifurcation Analysis

FIGURE 6.7. Homoclinic bifurcation on the plane ($\sigma_0 < 0$).

FIGURE 6.8. Homoclinic bifurcation on the plane $(\sigma_0 > 0)$.

Summary: The sign of σ_0 determines the direction of bifurcation and stability of L_{β}

- If $\sigma_0 < 0$, the homoclinic orbit at $\beta = 0$ is stable from the inside. By theorem, we know that there exists $L_{\beta} \subset U_0$ for $\beta > 0$, but no periodic orbits in U_0 for $\beta < 0$ (L_{β} stable limit cycle).
- If $\sigma_0 > 0$, the homoclinic orbit at $\beta = 0$ is unstable from the inside. By theorem, we know that there exists $L_\beta \subset U_0$ for $\beta < 0$, but no periodic orbits in U_0 for $\beta > 0$ (L_β unstable limit cycle).

Definitions of Homoclinic and Heteroclinic Orbits

Def 1.1 Homoclinic Orbit:

An orbit Γ starting at a point $x \in \mathbb{R}^n$ is called *homoclinic* to the equilibrium point x_0 of system (1) if $\phi^t x \to x_0$ as $t \to \pm \infty$.

Def 1.2 Heteroclinic Orbit:

An orbit Γ starting at a point $x \in \mathbb{R}^n$ is called *heteroclinic* to the equilibrium points $x^{(1)}$ and $x^{(2)}$ of system (1) if $\phi^t x \to x^{(1)}$ as $t \to -\infty$ and $\phi^t x \to x^{(2)}$ as $t \to +\infty$.

- Homoclinic orbits connect an equilibrium point to itself, creating a loop in the phase space.
- Heteroclinic orbits connect two different equilibrium points, forming a path between them in the phase space.

Examples and Connection with $W^{(u,s)}$

FIGURE 6.1. (a) Homoclinic and (b) heteroclinic orbits on the plane.

 \mbox{FIGURE} 6.2. (a) Homoclinic and (b) heteroclinic orbits in three-dimensional space.

Examples and Connection with $W^{(u,s)}$

- It is clear that a homoclinic orbit Γ₀ to the equilibrium x₀ belongs to the intersection of its unstable and stable manifolds (i.e. Γ₀ ⊆ W^u(x₀) ∩ W^s(x₀)).
- Similarly, a heteroclinic orbit Γ_0 to the equilibria $x^{(1)}$ and $x^{(2)}$ satisfies $\Gamma_0 \subseteq W^u(x^{(1)}) \cap W^s(x^{(2)})$.

Remark:

Definitions 1.1 and 1.2 do not require the equilibria to be hyperbolic. Homoclinic orbit to a saddle-node point with an eigenvalue $\lambda_1=0$.

Motivation for Lemma 1.3:

Orbits homoclinic to hyperbolic equilibria can result in structural instability while the equilibria themselves are structurally stable.

Lemma 1.3

FIGURE 6.3. Homoclinic orbit Γ_0 to a saddle-node equilibrium.

Lemma 1.3: A homoclinic orbit to a hyperbolic equilbrium is structually unstable.

Proof to Lemma 1.3

Definiation 1.4: Two smooth manifolds $M,N \subset \mathbb{R}^n$ intersect transversally if there exist n linearly independent vectors that are tangent to at least one of these manifolds at any intersection point

Remark: Since we are most interest in 2d system, the hyperbolic equilibrum is saddle. Stable manifold and Unstable manifold are smooth invariant manifolds

Proof to Lemma 1.3

Proof of Lemma 1.3:

Suppose that system has a hyperbolic equilibrium x_0 with a eigenvalues having positive real parts and b eigenvalues having negative real parts, a + b = n (dimension of the system). Assume that the corresponding stable and unstable manifolds $W^u(x_0)$ and $W^s(x_0)$ intersect along a homoclinic orbit. We shall show that the intersection cannot be transversal. Since at any point x of this homoclinic orbit, the vector f(x) is tangent to both manifolds $W^u(x_0)$ and $W^s(x_0)$. Therefore, we can find no more than a + b - 1 = n - 1 independent tangent vectors to these manifolds, and intersect transversally requires n vectors.(contridiction) Moreover, we can find *split function* splits the manifolds in that remaining

Moreover, we can find *split function* splits the manifolds in that remaining direction and they do not intersect anymore near Γ_0 .

Split function

The manifolds split either "down" or "up" and the force preventing W^u come back to the saddle is a quantity denoted by ξ^u , the ξ value of the intersection of W^u with Σ .(Σ denoted as cross-section to W^s near saddle) And we may define the scalar $\beta = \xi^u$ a split function.

Example of Homoclinic Bifurcation theorem

Consider the following system:

$$\begin{cases} \dot{x} = -x + 2y + x^2 \\ \dot{y} = (2 - \alpha)x - y - 3x^2 + (3/2)xy^2 \end{cases}$$

The origin (0,0) is clearly a saddle for $|\alpha|$ sufficient small.

To use our theorem, we need to check the required 3 conditions in this example!

Condition Check

At a=0,

$$Df = \begin{bmatrix} -1 + x & 2 \\ 2 - 3x + 3y^2 & -1 + \frac{3}{2}xy \end{bmatrix} \Rightarrow Df(0, 0) = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$$

then, this saddle has eigenvalues

$$(-1-\lambda)^2-4=0 \Rightarrow \lambda^2+2\lambda-3=0 \Rightarrow \lambda_1=1, \lambda_2=-3.$$

with $\sigma_0 = -2 < 0$ implies that (H.1) check.

Condition Check

Step 2: We need to show that there exist a homoclinic orbit to the origin (0,0). Equivalently, we can introduce Cartesian leaf:

 $H(x,y) \equiv x^2(1-x) - y^2 = 0$, consisting of one of the orbit, which is homoclinic to (0,0) and show that vector field at a=0:

$$V(x,y) = [-x + 2y + x^2, 2x - y - 3x^2 + 3/2xy]^{\top}.$$

is tangent to the curve H(x, y) = 0 at all nonequilibrum point

$$(\nabla H)(x,y) = (2x - 3x^2, -2y)^T \text{ "Normal Vector of } H$$

$$\langle V \cdot \nabla H \rangle = (2x - 3x^2) \cdot (-x + 2y + x^2) + (-2y) \cdot (2x - y - 3x^2 + \frac{3}{2}xy)$$

= $-2x^2 + 4xy + 2x^3 + 3x^3 - 6x^2y - 3x^4 - 4xy + 2y^2 + 6x^2y - 3xy^2$
= $-2x^2 + 5x^3 - 3x^4 + 2y^2 - 3xy^2$

plug info (0,0) and (1,0), we get $\langle V, \nabla H \rangle = 0$ along H(x,y) = 0.

(2)

Graph of Step 2

FIGURE 6.18. The homoclinic orbit of (6.8) at $\alpha = 0$.

Condition Check

Step 3: we need to check H.2: $\beta' \neq 0$ at a=0 to use our theorem. This is equivalent to show, known as "Melnikov integral",

$$\mathit{Ma}(0) = \int_{-\infty}^{\infty} \exp\left[-\int_{0}^{t} \left(\frac{\partial f_{1}}{\partial x_{1}} + \frac{\partial f_{2}}{\partial x_{2}}\right) \partial \tau\right] \left(f_{1} \frac{\partial f_{2}}{\partial a} - f_{2} \frac{\partial f_{1}}{\partial a}\right) \partial t \neq 0$$

Check Condition

Now, given

$$f_1 = -x + 2y + x^2$$
 and $f_2 = (2 - \alpha)x - y - 3x^2 + 3xy$.

The divergence divf is given by

$$\operatorname{div} f = \frac{\partial (-x + 2y + x^2)}{\partial x} + \frac{\partial ((2 - \alpha)x - y - 3x^2 + 3xy)}{\partial y}$$

$$= (-1 + 2x) + (-1 + 3x) = 2x - 2.$$

The partial derivatives of f with respect to α are

$$\frac{\partial f_1}{\partial \alpha} = 0$$
 and $\frac{\partial f_2}{\partial \alpha} = -x$.

We have the Melnikov integral $M_{\alpha}(0)$ as

$$M_{\alpha}(0) = \int_{-\infty}^{+\infty} \exp\left(-\int_{0}^{t} (2x(\tau) - 2)d\tau\right) \cdot f_{2}(x(t), y(t)) \cdot x(t)dt.$$

Check condition

The remaining unknown is time t, and we have the system

$$\begin{cases} \frac{dx}{dt} = -x + 2y + x^2, \\ \frac{dy}{dt} = 2x - y - 3x^2 + 3xy, \end{cases}$$

which implies

$$\frac{dy}{dx} = \frac{2x - y - 3x^2 + 3xy}{-x + 2y + x^2} \Rightarrow y = \frac{3x - 2}{3x - 1} \cdot x \quad \text{(numerical result)}.$$

Then, t(x) is given by

$$t(x) = \int \frac{dx}{-x + 2g(x) + x^2}$$
 where $g(x) := \frac{3x - 2}{3x - 1} - x$.

We may compute the $M_{\alpha}(0)$ numerically with the result.

Conclusion

Melnikov integral result: 0.1284727278352124 Estimated error: 1.0808023516821339e-08

Hence, we can see that integral is not equal to 0. Equivalently, H.2 condition checked. Thus, by Homoclinic Bifurcation Theorem, we would have the following graph corresponding to figure 6.7:

FIGURE 6.19. Homoclinic bifurcation in (6.8): A stable limit cycle exists for small $\alpha > 0$.

Introduction to the Proof of Homoclinic Bifurcation Theorem

The intuition of the proof is to introduce two local cross section near the saddle equilibrium (Σ, Π) , that is transversal to the local stable and unstable manifold.

FIGURE 6.11. Poincaré map for homoclinic bifurcation on the plane.

Then construct two mapping $\Delta: \Sigma^+ \to \Pi$ and $Q: \pi \to \Sigma$,

Introduction to the Proof of Homoclinic Bifurcation Theorem

We can derive that with the transformed dynamic $(\dot{\xi}, \dot{\eta}) = (\lambda_1 \xi, \lambda_2 \eta)$ We have

$$\Delta: \xi = \eta^{\frac{-\lambda_1}{\lambda_2}}$$
, $Q: \eta = \beta + a\xi + o(\xi^2)$

Then we can define a poincare map P on a half-section Σ^+ which is

$$P = Q \circ \Delta, \qquad P : \Sigma^+ \to \Sigma$$

And it is clear that the fix point of P is corresponding to a trajectory of limit cycle. and we can analyse the existence and uniqueness of the fix point of P easily with the derived equation for P easily around neighborhood of small $|\beta|$

Step 1: Introduction of eigenbasis coordinates

Without loss of generality, we consider the system in eigenbasis coordinates where we move the saddle equilibrium to the origin and write f(x) = Ax + g(x) as usual, where g is smooth and $O(||x^2||)$.

Let the EVD of A be $A = PJP^{-1}$ Thus by transforming $y = P^{-1}x$, we get:

$$\dot{y} = Jy + P^{-1}g(Py)$$

Step 1: Introduction of eigenbasis coordinates

Thus, We can express the original system as:

$$\begin{cases} \dot{x}_1 = \lambda_1 x_1 + g_1(x_1, x_2), \\ \dot{x}_2 = \lambda_2 x_2 + g_2(x_1, x_2), \end{cases}$$

where g_1, g_2 are smooth functions. where, $x = (x_1, x_2)^T$ and g1,g2 are $O(||x^2||)$. Note that this transformation is smooth and invertible.

According to the Local Stable Manifold Theorem, the stable and unstable manifolds W^s and W^u can be represented as:

$$W^s: x_2 = S(x_1), \quad S(0) = S'(0) = 0,$$

 $W^u: x_1 = U(x_2), \quad U(0) = U'(0) = 0,$

where S and U are smooth functions.

We can then introduce new variables $y = (y_1, y_2)^T$ in the neighbor of the saddle.

$$\begin{cases} y_1 = x_1 - U(x_2), \\ y_2 = x_2 - S(x_1) \end{cases}$$

This change of coordinate is smooth and invertible in the neighborhood of the saddle since U and S are smooth and invertible locally by the local stable manifold theorem.

Additionally we can assume this neighborhood contains a unit square $\Omega = \{y: -1 < y_1, y_2 < 1\}$ by adding an additional linear transform scaller to the eigenbasis system in step 1 such as $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$

The system found in part 1 can be written as below, by substituting the coordinate change.

$$\begin{cases} \dot{y}_1 = \lambda_1 y_1 + y_1 h_1(y_1, y_2), \\ \dot{y}_2 = \lambda_2 y_2 + y_2 h_2(y_1, y_2), \end{cases}$$

And that $h_1, h_2 = O(||y||)$, we can always factor out a y_1 and y_2 in the derivative because $y_1, y_2 = 0$ are on the local unstable/stable manifold.

Note that this system is now a nonlinear smooth system still with a saddle at the origin but its invariant manifold now is exactly the coordinate axis within the unit square Ω .

And this coordinate from x to y basically pushed the local manifolds to the coordinate axis within the unit square Ω where the local manifold are smooth and invertible.