Practical 1

Analysis

1. What is the role of the learning rate?

The learning rate determines the rate of change for the bias and weights. A larger learning rate will cause the bias and weights to increase/decrease more quickly and a smaller learning rate will cause the bias and weights to increase/decrease less quickly.

2. How many passes over the data do you need to complete?

The logistic regression accuracy is above 60 even at 0 epochs. The models are trained on 80% of the 768 examples which is 614 examples.

3. What features are the best predictors of each class? How (mathematically) did you find them?

The best predictors are 2-hour serum insulin, plasma glucose concentration, and diastolic blood pressure. I found these by finding which 3 features had the greatest weights.

4. What features are the poorest predictors of each class? How (mathematically) did you find them?

The poorest predictors are diabetes pedigree function, number of times pregnant, and body mass index. I found these by finding which 3 features had the smallest weights.

5. What is an advantage of the perceptron algorithm compared to logistic regression?

The perceptron algorithm is simple to understand and easy to train.

Extra Credit

1. Explain why the normalize_dataframe function would be useful.

This would be useful so that the models will be trained in a way that is independent of the relative scales of the features.

2. The effect of using a schedule to update the learning rate.

When I train the models using 1000 epochs, I am able to achieve accuracies of 72.089 and 67.532 for the logistic regression model and perceptron model respectively. However, when I use a decay rate of 0.001, I am able to achieve accuracies of 74.675 and 74.026.