AC 自动机 & Manacher

唐懿宸

清华大学致理书院

AC自动机引入

给定n个模式串 T_1, \dots, T_n 和一个文本串S

求每个模式串 T_i 在 T 中出现的次数。

比KMP更多的匹配。

$$1\leqslant n\leqslant 2 imes 10^5,\;\;\sum |T_i|\leqslant 2 imes 10^5,\;\;|S|\leqslant 2 imes 10^6$$

AC 自动机

AC 自动机是一种支持多模式串匹配的数据结构

所谓多模式串匹配,就是用O(|S|)的时间求出若干模式串 T_1, T_2, \dots, T_n 在S中出现了几次,出现在哪儿等等

比 KMP 遥遥领先! 就是空间复杂度略大一点

直接做 KMP 的复杂度是 O(n|S|) 的,不能接受

AC 自动机

在 KMP 中,每当我们失配,我们将从 nxt[p] 处重新开始匹配,更具体地,是从 **最长的与后缀相同的前缀** 开始继续匹配

同时我们也知道,Trie是一种很好的加载多个字符串的数据结构

如果我们给 Trie 上的每个结点加上一个指针,指向最长的与后缀相同的前缀,是不是就能像 KMP 一样匹配?

我们设 str(p) 表示 p 代表的字符串, len(p) 表示 p 代表的字符串的长度

我们设一个节点 p 的 $\operatorname{nxt}[p]$ 是在 Trie 树上满足 $\operatorname{str}(r)[1,\operatorname{len}(r)] = \operatorname{str}(p)[\operatorname{len}(p) - \operatorname{len}(r) + 1,\operatorname{len}(p)]$ 中 $\operatorname{len}(r)$ 最大的那个

看着很复杂,其实意思就是 p 的 nxt[p] 就是串 str(p) 的最长的、在 AC 自动机中后缀,所对应的结点。

显然 str(p) 的每一个后缀 suffix(i),若存在 r 满足 str(r) = suffix(i),那么 r 是唯一的。

因此 nxt[p] 也是唯一的,因为我们想要最长的满足条件的后缀。

举个例子

假设 $\operatorname{str}(p)=$ aabbeedd, 有 $\operatorname{str}(r_1)=$ beedd, $\operatorname{str}(r_2)=$ cedd, $\operatorname{str}(r_3)=$ cdd, 可以发现 r_1,r_2,r_3 都满足上述条件

但 $nxt[p] = r_1$,因为 $len(r_1)$ 最大

在 AC 自动机中,我们一般把 KMP 的 nxt 数组称为 fail 数组,表示失配后跳转的位置。

怎么求?

和 KMP 的 nxt 数组一样,我们可以用类似跳法求出 fail 数组。

只是从序列上跳变成了从 Trie 树上跳,都是跳。

考虑一个节点 p, 现在要算 fail[p]。 p 的父亲为 f, str[p] = str[f] + c, 并且此时所有 len(s) < len(p) 的结点 s 的 fail[s] 都已经求出

现在我们考虑 fail[f], 如果存在 son[fail[f]][c], 那么有 fail[p] = son[fail[f]][c]

否则我们令 q = fail[f] 继续沿着 fail 向上跳,直到达到根或者存在 son[q][c],此时将 fail[p] 设置为 son[q][c]。

证明类似 KMP

回到原问题

用 O(|S|) 的时间求出若干模式串 T_1, T_2, \dots, T_n 在 S 中出现了几次,出现在哪儿。

现在求出来了fail数组,怎么匹配呢?

AC自动机上匹配

类似 KMP 的匹配思路

若在一个节点 p 没有找到出边 S_i ,我们就跳回 fail[p] 继续尝试找出边 S_i ,直到跳回根

如果走到一个被标记为末尾的节点,记录一个匹配

这样就完了吗?

AC自动机上匹配

当你走到一个 str(p) = aabb 的点时,需要注意的是,此时若 Trie 树上也存在一个点 q 使得 str(q) = abb 并且 q 是终止节点,那么这个终止节点不会被标记

因为你走到p的路上是不会经过q的。

AC自动机上匹配

但是,注意到p不断跳fail(p)一定能到达这类q

所以可以在维护 fail 数组时,就进行结束标记下传:如果 fail(p) 是终止节点,那么 p 也是终止节点(伪终止结点)。

AC自动机上匹配复杂度

类似 KMP

考虑将整个 Trie 树分层,跳 fail 相当于是将整个 Trie 在匹配串 S 上向右移动。

否则向右匹配一位相当于是挪动 S 串上的指针

因此时间复杂度为 O(|S|)

够快吗?

注意,我们说这里 O(|S|) 的时间复杂度是基于"每次匹配,都只会耗去O(1) 的时间"

如果说有大量的 a 和一个 aaaa..aaa 是模式串,给定 aaaa..aaa 去匹配。

那么每个 a 都会将所有的 a 匹配一遍,给出现次数 +1,该次移动就会产生 O(a 的个数) 次计算。

瓶颈是需要优化遍历末尾标记的次数。

优化

每一个点只有一个 fail 指针,根代表空串没有 fail (或者说根的 fail 就是自己)

那么如果我们给每个点都建一条从 fail 到自己的边,最后会构成一棵树。

就叫 fail 树。

优化

那么就很简单了,我们知道如果一个点被匹配到了,那么它在 fail 树上的所有祖先都会被匹配到。

我们记录每个点被经过的次数(被匹配到的次数),然后在 fail 树上 DFS 一遍,统计每个点子数经过次数和,就是这个点被匹配到的次数。

优化

在实际的应用中,我们常常将 fail 树上祖先的儿子合并到当前节点上, 具体来说:

如果结点p不存在边c,那么son[p][c]会被记为son[fail[p]][c]。

此时我们建立的 AC 自动机是可以做到:

- 1. 任何一个串都可以在这个 AC 自动机上走一遍
- 2. 如果给定的串中包含模式串,那么会在遍历时走到一个终止节点/能通过跳 fail 到终止节点的点上

KMP 练习题

对于字符串S,对S的前i个字符构成的子串,既是它的后缀又是它的前缀的字符串中(它本身除外),最长的长度记为 $\operatorname{nxt}[i]$

现在想要求一个 num 数组,对于 S 的前 i 个字符构成的子串,满足

- 1. 既是它的后缀同时又是它的前缀,
- 2. 该后缀与该前缀不重叠

这种字符串的数量纪录为 num[i]

$$|S| \leqslant 2 \times 10^6$$

根据 nxt 数组的性质,我们可以发现,对于一个串 str[1:i],nxt[i] 是他的前缀=后缀,nxt[nxt[i]],nxt[nxt[i]] 也是他的前缀=后缀。

所以 num[i] 本质就是 str[1:i] 能跳 i 几次 nxt。

为了保证前缀和后缀不重叠,暴力的方法是先跳到一个长度小于一半的 nxt ,取这个的 $\operatorname{num}[i]$

但是全 a 串会非常非常慢

因此我们在跳的时候可以控制它只能在1/2之前

```
int tmp = 0;
for (int i = 0; i < len; i++)</pre>
   while (tmp >= 0 && str[i] != str[tmp])
        tmp = nxt[tmp];
    tmp++;
   while (tmp * 2 > i + 1) // 其实这里 tmp 最多只会跳一次 nxt
       tmp = nxt[tmp];
    // 这里算一下答案
printf("%lld\n", ans);
```

AC自动机练习题-1

如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的。现在委员会已经找出了所有的病毒代码段,试问,是否存在一个无限长的安全的二进制代码。

例如如果 $\{011,11,00000\}$ 为病毒代码段,那么一个可能的无限长安全代码就是 $010101\cdots$;如果 $\{01,11,000000\}$ 为病毒代码段,那么就不存在一个无限长的安全代码。

现在给出所有的病毒代码段,判断是否存在无限长的安全代码。

病毒代码个数 $n \leq 2000$, 所有病毒代码的长度和不超过 3×10^4

建立 AC 自动机,目标就是能够在 AC 自动机上一直走,但是不能走到一个终止结点。

注意,对于AC自动机上的一个结点,如果他的 fail 链上存在一个终止结点,那么它也被视为终止结点。

这样的 AC 自动机就可以开始匹配了,从根出发,判断是否存在一个没有终止结点的环就好了。

AC自动机练习题-2

阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机。打字机上只有 28 个按键,分别印有 26 个小写英文字母和 B 、 P 两个字母。经阿狸研究发现,这个打字机是这样工作的:

- 输入小写字母,打字机的一个凹槽中会加入这个字母(这个字母加在凹槽的最后)。
- 按一下印有 B 的按键, 打字机凹槽中最后一个字母会消失。
- 按一下印有 P 的按键,打字机会在纸上打印出凹槽中现有的所有字母并换行,但凹槽中的字母不会消失。

例如,阿狸输入 aPaPBbP ,纸上被打印的字符如下:

a aa ab

我们把纸上打印出来的字符串从 1 开始顺序编号,一直到 n。

m 个询问,每次给定 $x,y(1 \le x,y \le n)$,求第 x 个打印的字符串在第 y 个打印的字符串中出现了多少次。

 $1 \le n \le 10^5$, $1 \le m \le 10^5$, 输入给打印机的总长度小于等于 10^5 。

字符串重叠很多,暴力找出来所有的字符串是不太可行的。

看看能不能建立 Trie 树:可以发现,B 就是回到父亲结点,从父亲结点 开始往下;P 是给当前结点加终止标记。

这样就快速的将所有的字符串建立了 Trie 树,也就可以建立 AC 自动机来匹配了。

问题是想要求串x在串y中出现了几次。

如果 y 串中有结点可以通过 fail 指针走到 x 的终止结点,那么 x 就在 y 中出现过。

如果 y 在 Trie 树上的链有 n 个结点可以通过 fail 走到 x 的终止结点,那么 x 就在 y 中出现过 n 次。

问题就变成了,在x 的终止结点的 fail 树的子树中,有多少个y 这条链上的点。

问题的瓶颈是,要标记 Trie 树上 y 对应的链,然后找他们有多少个在 fail 树的 x 终止结点子树内。

这是两棵树, 不能直接做树链剖分。

离线。

还是利用 dfs 序,fail 树上 x 终止结点的子数是一个区间。用线段树,线段树区间就是 fail 树上 dfs 序区间。

我们在 Trie 树上 dfs,每走到一个点就做标记,离开了就去掉它的标记,也就是在线段树上这个点对应的节点 +1/-1。

走到 y 的终止节点的时候,考虑所有 $(x_1, y), (x_2, y), \cdots$ 的询问,在线段树上查这些询问的区间和就好了。

线段树上操作就是单点修改区间求和。可以改成树状数组。

时间复杂度:

- 建立 AC 自动机 O(|S|)
- 对 fail 树求 dfs 序 O(|S|)
- 遍历 Trie 树并查询 $O(|S|\log |S|)$

总时间复杂度 $O(|S| \log |S|)$, 空间复杂度 O(|S|)

AC自动机练习题-3

文本生成器可以随机生成一些文章——总是生成一篇长度固定且完全随机的文章。生成的文章中每个字符都是完全随机的。

如果一篇文章中至少包含使用者们了解的一个单词,那么我们说这篇文章是可读的。

给定 n 个认识的单词,生成文章的长度 m,求所有可能生成的文章中有多少个文章是可读的。

 $n \leq 60, m \leq 100$,单词长度 ≤ 100 ,所有字符串只包含大写字母。

「存在至少一个」单词是认识的

等价于

所有字符串数量 m^{26} - 「一个单词都不包含」的数量

这种思路叫「正难则反」,很常用。

「一个单词都不包含」的数量显然是会更好做的。

将所有认识的单词建立AC自动机。

如果我们在AC自动机上跑,什么意味着「一个单词都不包含」?

对于一个结点,如果他跳 fail 能到一个终止结点,那么他也被视为终止结点。

所以「一个单词都不包含」等价于: 从根出发, 不能走到一个终止结点。

令 $dp_{len,p}$ 表示当前串长度为 len,目前走到 AC 自动机上的结点 p,并且当前没有经过任何一个终止节点(也就意味着生成的串中不包含任何一个单词),有多少种走法。

转移时枚举p的所有儿子son[p][c]:

$$dp_{len+1,son[p][c]}+=dp_{len,p}$$

要求 p 和 son[p][c] 都不是终止节点。

时间复杂度 O(m imes |S| imes 26)。

空间复杂度 $O(m \times |S|)$ 。

AC自动机 / KMP 练习题

给定 m 个不吉利的数字 $a_1, \dots, a_m (0 \leqslant a_i \leqslant 9)$

n 位数字 $x_1, \dots, x_n (0 \le x_i \le 9)$ 中如果没有长度为 m 的一段恰好等于 a_1, \dots, a_m ,就称这个 x_1, \dots, x_n 是吉利的。

求所有的n位数字中有多少个是吉利的。

注意 $n \leqslant 10^9, m \leqslant 20$ 。

使用 KMP/AC 自动机建图

然后跑矩阵乘法。

Manacher

问题定义:

给定一个长度为n的字符串S,请找到所有对(i,j)使得子串S[i...j]为一个回文串。

Manacher 是一种在 O(n) 的时间复杂度内找到一个串所有回文子串的算法。

Manacher

理论上回文子串最多有 n^2 个。

但是关于回文串的信息可用一种更紧凑的方式表达:对于每个位置 i=0...n-1,用 $d_1[i]$ 和 $d_2[i]$ 分别表示以位置 i 为中心的长度为奇数和长度为偶数的回文串个数。

对于这个 $d_1[i]$,实际上意味着,所有以 i 为中心的,向左向右延伸 $1, 2, 3, \ldots, d_1[i] - 1$ 个字符,都会构成回文串。

插入特殊字符

偶数回文串我们不太喜欢,因为中心在两个字符之间。

我们在每个字符之间插入一个特殊字符,比如 \$, 这样所有长度为偶数的字符串变成了以 \$ 为中心的奇数回文串。

为了防止越界,我们在字符串的开头和结尾也插入一个特殊字符。但是我一般的习惯会再在开头插入一个#,反正不和任何字符匹配。

综上,如果我们原本的字符串是 aba ,那么我们处理后的字符串变成了 #a\$b\$a\$,长度是 2n+2 。

此时,对于我们实际上存在的回文串:

- 如果长度是奇数,那么会以原本的字符为中心,如果中心是 i,那么会属于 $d_1[i]$ 。
- 如果长度是偶数,那么会以特殊字符为中心,如果中心是j,那么会属于 $d_1[j]$ 。

这样就只要记录 d_i 了: d_i 表示以第 i 个字符(包括特殊字符)为中心,有多少个长度为奇数的回文串。

换句话, d_i 也表示以第 i 个字符为中心,向左向右延伸 $1, 2, 3, \ldots, d_i - 1$ 个字符,都会构成回文串。但是延伸 d_i 个字符后不会构成回文串。

得到 d_i

现在假设我们要对下一个i计算 d_i ,而 d_1, d_2, \dots, d_{i-1} 已计算完毕。

对于前面的 d_1, d_2, \dots, d_{i-1} , 我们记 mid 和 r 表示目前所有的回文串中,能达到最右的回文串的中心和最右边的字符的位置。

现在要算 d_i ,我们有两种情况:

• 如果 i > r,那么我们暴力以 i 为中心向左向右扩展,直到不能扩展为止,这个时候 d_i 就是扩展的长度。

• 如果 $i \leq r$,说明 i 此时在以 mid 为中心的一个回文串内,我们可以利用这个信息:

i 关于 mid 的对称点是 $2 \times mid - i$,记录为 p,我们之前已经算出来以 p 为中心的回文串的长度 d_p

以回文的性质,此时的 d_p 等价于以 i 为中心的回文串

但是,以i为中心扩展 d_p 个字符后,可能会超过r

所以实际上,我们能通过mid,r的信息,得到 d_i 的一个下界:

$$d_i = \min(d_{2 imes mid-i}, r-i)$$

在这个基础上,我们再暴力扩展 d_i ,直到不能扩展为止。

```
void manacher()
    int r = 0, mid = 0;
    for (int i = 1; i < n; i++)
        if (i < r)
            d[i] = min(d[(mid << 1) - i], r - i);
        else
            d[i] = 1;
        while (1 \le i - d[i] \&\& i + d[i] \le n \&\& s[i - d[i]] == s[i + d[i]])
            d[i]++;
        if (i + d[i] > r)
            r = i + d[i], mid = i;
```

时间复杂度

事实上我们可以发现

- 如果 $d_i < r i$,那么其实不会暴力扩展
- 如果 $d_i = r i$,那么每一次暴力扩展都会使 r 增加 1

r 在整个算法运行过程中从不减小,最多增加n次,所以总时间复杂度是O(n)。

Manacher 基础题

给定一个只有小写字母组成的字符串 S,求 S 中的最长回文子串的长度。

$$|S| \leqslant 10^7$$

你已经知道了 d_i 怎么算,那么答案怎么表示?

答案是 $\max d_i$,这里 i 可以是原有字符串的位置,也可以是插入的特殊字符的位置。

Manacher 应用

给定字符串 S,求 S 的最长双回文串 T,即 T 可以分成两部分 X 和 Y ,均不为空串,且 X 和 Y 都是回文串。

$$|S|\leqslant 10^5$$

在求出来 d 后,我们可以进一步求出 l[i]、r[i] 分别表示以 i 为左端点和右端点的最长回文串的长度。

需要注意,如果 l[1] = 7,那么其实以 3 为左端点的回文串长度至少为 7 - 2 = 5,但是我们用 d 求出来的 l[3] 可能不够大,所以需要递推更新一下 l (r 同理)。

为了保证不重叠,我们选择 \$ 的位置作为 X 和 Y 的分割点,答案就是 $\max_{S[i]=\$} l[i] + r[i]$

谢谢!