School of Mathematical and Computational Sciences Abstract Algebra

Prof. Pablo Rosero & Christian Chávez Problem Set 3

Cyclic Groups, Normality, Quotients and the Isomorphism Theorems

(Lessons 6, 7, and 8)

- **1.** Prove that if *A* is a subset of *B* then $\langle A \rangle \leq \langle B \rangle$. Give an example where $A \subseteq B$ with $A \neq B$ but $\langle A \rangle = \langle B \rangle$.
- **2.** Prove that the subgroup generated by any two distinct elements of order 2 in S_3 is all of S_3 .
- **3.** Prove that the subgroup of S_4 generated by (12) and (12)(3 4) is a noncyclic group of order 4.
- **4.** A group *H* is called finitely generated if there is a finite set *A* such that $H = \langle A \rangle$.
 - (i) Prove that every finite group is finitely generated.
 - (ii) Prove that \mathbb{Z} is finitely generated.
 - (iii) Prove that every finitely generated subgroup of the additive group \mathbb{Q} is cyclic. (If H is a finitely generated subgroup of \mathbb{Q} , show that $H \leq \left\langle \frac{1}{k} \right\rangle$, where k is the product of all the denominators which appear in a set of generators for H.)
 - (iv) Prove that Q is not finitely generated.
- **5.** Let $\varphi : G \to H$ be a homomorphism and let E be a subgroup of H. Prove that $\varphi^{-1}(E) \leq G$ (i.e., the pullback of a subgroup under a homomorphism is a subgroup). If $E \unlhd H$ prove that $\varphi^{-1}(E) \unlhd G$. Deduce that $\ker \varphi \unlhd G$.
- **6.** Prove that if $N \subseteq G$ and H is any subgroup of G then $N \cap H \subseteq H$.
- 7. Let *N* be a *finite* subgroup of a group *G* and assume $N = \langle S \rangle$ for some subset *S* of *G*. Prove that an element $g \in G$ normalizes *N* if and only if $gSg^{-1} \subseteq N$.
- **8.** Prove that if G/Z(G) is cyclic then G is abelian. (Hint: If G/Z(G) is cyclic with generator xZ(G), show that every element of G can be written in the form x^az for some integer $a \in \mathbb{Z}$ and some element $z \in Z(G)$.)
- **9.** Let *A* and *B* be groups. Show that $\{(a,1) \mid a \in A\}$ is a normal subgroup of $A \times B$ and the quotient of $A \times B$ by this subgroup is isomorphic to *B*.
- **10.** Let *A* be an abelian group and let *D* be the (diagonal) subgroup $\{(a, a) \mid a \in A\}$ of $A \times A$. Prove that *D* is a normal subgroup of $A \times A$ and $(A \times A)/D \cong A$.
- **11.** Suppose *A* is the non-abelian group S_3 and *D* is the diagonal subgroup $\{(a, a) \mid a \in A\}$ of $A \times A$. Prove that *D* is not normal in $A \times A$.

- **12.** Let G be a group, let N be a normal subgroup of G and let $\overline{G} = G/N$. Prove that \overline{x} and \overline{y} commute in \overline{G} if and only if $x^{-1}y^{-1}xy \in N$. (The element $x^{-1}y^{-1}xy$ is called the *commutator* of x and y and is denoted by [x, y].)
- **13.** Let *G* be a group. Prove that $N = \langle x^{-1}y^{-1}xy \mid x,y \in G \rangle$ is a normal subgroup of *G* and G/N is abelian (*N* is called the *commutator subgroup* of *G*).
- **14.** Show that if |G| = pq for some primes p and q (not necessarily distinct) then either G is abelian or Z(G) = 1.
- **15.** Prove that if H and K are finite subgroups of G whose orders are relatively prime then $H \cap K = 1$.
- **16.** Suppose H and K are subgroups of finite index in the (possibly infinite) group G with |G:H|=m and |G:K|=n. Prove that l.c.m. $(m,n) \leq |G:H\cap K| \leq mn$. Deduce that if m and n are relatively prime then $|G:H\cap K|=|G:H|\cdot |G:K|$.
- **17.** Use Lagrange's Theorem in the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ to prove *Fermat's Little Theorem*: if p is a prime then $a^p \equiv a \pmod{p}$ for all $a \in \mathbb{Z}$.
- **18.** Let p be a prime and let n be a positive integer. Find the order of \overline{p} in $(\mathbb{Z}/(p^n-1)\mathbb{Z})^{\times}$ and deduce that $n \mid \varphi(p^n-1)$ (here φ is Euler's function).
- **19.** Let *G* be a finite group, let *H* be a subgroup of *G* and let $N \subseteq G$. Prove that if |H| and |G:N| are relatively prime then $H \subseteq N$.
- **20.** Prove that if N is a normal subgroup of the finite group G and (|N|, |G:N|) = 1 then N is the unique subgroup of G of order |N|.
- **21.** If *A* is an abelian group with $A \subseteq G$ and *B* is any subgroup of *G* prove that $A \cap B \subseteq AB$.
- **22.** Use Lagrange's Theorem in the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ to prove *Euler's Theorem*: $a^{\varphi(n)} \equiv 1 \pmod{n}$ for every integer a relatively prime to n, where φ denotes Euler's φ -function.
- **23.** Prove that if *H* is a normal subgroup of *G* of prime index *p* then for all $K \leq G$ either
 - (i) $K \leq H$ or
 - (ii) G = HK and $|K : K \cap H| = p$.
- **24.** Let *C* be a normal subgroup of the group *A* and let *D* be a normal subgroup of the group *B*. Prove that $(C \times D) \subseteq (A \times B)$ and $(A \times B)/(C \times D) \cong (A/C) \times (B/D)$.
- **25.** Let M and N be normal subgroups of G such that G = MN. Prove that $G/(M \cap N) \cong (G/M) \times (G/N)$.
- **26.** Let p be a prime and let G be a group of order $p^a m$, where p does not divide m. Assume P is a subgroup of G of order p^a and N is a normal subgroup of G of order $p^b n$, where p does not divide n. Prove that $|P \cap N| = p^b$ and $|PN/N| = p^{a-b}$. (The subgroup P of G is called a Sylow p-subgroup of G. This exercise shows that the intersection of any Sylow p-subgroup of G with a normal subgroup G is a Sylow G-subgroup of G.)

- 27. Prove that there are only two distinct groups of order 4 (up to isomorphism), namely \mathbb{Z}_4 and $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. (*Hint*: By Lagrange's Theorem, a group of order 4 that is not cyclic must consist of an identity and three elements of order 2.)
- **28.** Let H, K be subgroups of a group G. Then HK is a subgroup of G if and only if HK = KH.
- **29.** Let $H \leq G$. Prove aHa^{-1} is a subgroup for each $a \in G$, and $H \cong aHa^{-1}$.
- **30.** Let *G* be a finite group and *H* a subgroup of *G* of order *n*. If *H* is the only subgroup of *G* of order *n*, then *H* is normal in *G*.
- **31.** If *H* is a cyclic subgroup of a group *G* and *H* is normal in *G*, then every subgroup of *H* is normal in *G*.
- **32.** If *H* is a normal subgroup of a group *G* such that *H* and *G/H* are finitely generated, then so is *G*.
- **33.** Let $N \subseteq G$ and $K \subseteq G$. If $N \cap K = \langle e \rangle$ and $N \vee K = G$, then $G/N \cong K$.
- **34.** If $f: G \to H$ is a homomorphism, H is abelian and N is a subgroup of G containing Ker f, then N is normal in G.
- **35.** If $N \subseteq G$, [G:N] finite, $H \subseteq G$, |H| finite, and [G:N] and |H| are relatively prime, then $H \subseteq N$.