SE102:Multivariable Calculus

Hyosang Kang¹

¹Division of Mathematics School of Interdisciplinary Studies DGIST

Lecture 04 Minima and Maxima

Theorem (Clairaut)

If the partial derivatives f_{xy} , f_{yx} are continuous at (x_0, y_0) , then

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$$

Definition

Suppose that f(x, y) has continuous second partial derivatives at (x_0, y_0) . Then the polynomial

$$Q(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0)$$

$$+ f_y(x_0, y_0)(y - y_0) + \frac{1}{2}f_{xx}(x_0, y_0)(x - x_0)^2$$

$$+ f_{xy}(x_0, y_0)(x - x_0)(y - y_0)$$

$$+ \frac{1}{2}f_{yy}(x_0, y_0)(y - y_0)^2$$

is called the **Taylor polynomial of second degree** of f at (x_0, y_0) .

Remark

If all *n*-th order partial derivatives of a function f(x,y) are continuous, then

- \triangleright f is differentiable, and
- ▶ the formulae of *n*-order partial derivatives does not depend on the order of partial derivatives.

Remark

Let

$$\Delta \mathbf{x} = (\Delta x, \Delta y) = (x - x_0, y - y_0)$$

and denote the gradient operator ∇ in vector notation:

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$$

Let us define the ${\it multiplication}$ of differential operators as follows:

$$\left(\frac{\partial}{\partial x}\frac{\partial}{\partial x}\right)f = \frac{\partial^2 f}{\partial x^2}, \quad \left(\frac{\partial}{\partial x}\frac{\partial}{\partial y}\right)f = \frac{\partial^2 f}{\partial x \partial y}$$

By the assumption in the definition of Taylor polynomial, we have $f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$. Thus we can write

$$Q(x,y) = \sum_{n=0}^{2} \frac{1}{n!} (\Delta \mathbf{x} \cdot \nabla)^n f(x_0, y_0)$$

We can generalize this to the k-th order Taylor polynomial.

$$P_k f(\mathbf{x}) = \sum_{n=0}^{k} \frac{1}{n!} (\Delta \mathbf{x} \cdot \nabla)^n f(\mathbf{x}_0)$$

This is a generalization of the Taylor polynomial for single variable function: since $(\Delta x \cdot \nabla)^n f(x_0) = \Delta x^n \nabla^n f(x_0)$,

$$P_k(x) = \sum_{n=0}^k \frac{f^{(n)}(x_0)\Delta x^n}{n!}$$

Theorem (Taylor)

Let f(x,y) is a function whose third partial derivatives $f_{xxx}, f_{xyx}, \dots, f_{yyy}$ are all continuous on a rectangular region

$$D = \{(x, y) \mid |x - x_0|, |y - y_0| \le \epsilon\}$$

Then for each $(x,y) \in D$, there exists a constant $0 \le c \le 1$ satisfying

$$f(x,y) = Q(x,y) + R_2(x,y)$$

where

$$R_2(x,y) = \frac{1}{3!} (\Delta \mathbf{x} \cdot \nabla)^3 f(\mathbf{x}_0 + c\Delta \mathbf{x})$$

Remark

This theorem generalizes the Taylor theorem for single-variable function:

Let f be a C^{k+1} -function on an interval $I = (x_0 - \epsilon, x_0 + \epsilon)$. Then for $x, c \in I$, there exists a constant ξ between x and c such that

$$f(x) = P_k(x) + \frac{f^{(k+1)}(\xi)}{(k+1)!}(x-c)^{k+1}$$

Here $x = x_0 + \Delta x$ and $\xi = x_0 + c\Delta x$ for some $0 \le c \le 1$. Note that the choice of c depends on the choice of x, x_0 . We can approximate any function by $Q_2(x, y)$ if it has partial derivatives upto 3rd order. If (x, y) is sufficiently close to (x_0, y_0) , the error $|R_n(x, y)|$ decreases to zero.

Example

Find $Q_2(x,y)$ at (0,0) for

- $f(x,y) = xy x^2 5y^2 + y 1$
- $f(x,y) = \cos x \cos y$

and compare the graphs of Q_2 and f near (1,0)

Definition

Let f(x,y) be a function f(x,y) defined on a region D.

- A point (x_0, y_0) is said to be **local maximal** (**minimal**, respectively) at $\mathbf{x}_0 = (x_0, y_0)$ if there exists a (sufficiently small) $\epsilon > 0$ such that for all $\mathbf{x} = (x, y)$ satisfying $\|\mathbf{x} \mathbf{x}_0\| < \epsilon$, we have $f(x_0, y_0) \ge f(x, y)$ ($f(x_0, y_0) \le f(x, y)$, respectively). A local maximal / minimal is often called an **extremal**.
- A point (x_0, y_0) is called a **critical point** if it satisfies one of the following.
 - 1. $f_x(x_0, y_0) = f_y(x_0, y_0) = 0;$
 - 2. f_x or f_y does not exist at (x_0, y_0) ;
 - 3. f is discontinuous at (x_0, y_0) .

A critical point which is *not* an extremal is called a **saddle point**.

Example

Find the critical points of

$$f(x,y) = xy - x^2y - xy^2$$

and classify them. Also, find $Q_2(x,y)$ at each critical points and compare their graphs.

Remark

- 1. Let f(x, y) is differentiable at (x_0, y_0) . Suppose that (x_0, y_0) is a critical point f(x, y) of the type 1 in the definition. Then the linear approximation (x_0, y_0) is the plane $z = f(x_0, y_0)$.
- 2. Suppose that (x_0, y_0) is a saddle point. Then there exists a curve $c: (-\epsilon, \epsilon) \to \mathbf{R}^2$, $c(0) = (x_0, y_0)$ such that composition $F(t) = (f \circ c)(t)$ is a inflection point.

Definition

Let $R \subset \mathbf{R}^2$ be a domain of f(x, y) and $(x_0, y_0) \in R$. Suppose that all second partial derivatives of f(x, y) are continuous on a region R. Then

$$\Delta_f = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}(x_0, y_0)^2$$

is called the **discriminant** of f.

Example

Graph the following function at (0,0) and compare their discriminants.

$$z = -x^2 - y^2$$
, $z = x^2 + y^2$, $z = x^2 - y^2$

Theorem (Hesse)

Let (x_0, y_0) be a critical point of the type 1 of f(x, y).

- ▶ If $\Delta > 0$ and $f_{xx}(x_0, y_0) > 0$, then (x_0, y_0) is a local minimum point.
- If $\Delta > 0$ and $f_{xx}(x_0, y_0) < 0$, then (x_0, y_0) is a local maximum point.
- ▶ If $\Delta < 0$, then $f(x_0, y_0)$ is a saddle point.
- If $\Delta = 0$, then we cannot determine local extremity by this method.

Remark

Let $\Delta x = x - x_0$, $\Delta y = y - y_0$. The degree-2 summands of Q(x,y) can be written as

$$\frac{1}{2} \begin{bmatrix} \Delta x & \Delta y \end{bmatrix} \underbrace{ \begin{bmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{xy}(x_0, y_0) & f_{yy}(x_0, y_0) \end{bmatrix}}_{=A} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

Note that $\Delta_f = \det A$. Using linear transformation of x, y, we can coorrespond the matrix A to one of three matrices below, wihout changing the classifications of extremals.

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \pm 1 & 0 \\ 0 & \mp 1 \end{bmatrix}$$

Example (Least square method)

Suppose that a set of data is given by

$$(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)$$

We want to find a line y = mx + b which approximates these data. If there are values m_0, b_0 such that the sum of squares of vertical distances between data and the line $y = m_0x + b_0$ is the minimum among all possible lines, then we say that $y = m_0x + b_0$ best approximates the data. In other words, we want to find m, b such that

$$d(m,b) = \sum_{i=1}^{n} (y_i - (mx_i + b))^2$$

is minimum.

Consider d(m, b) as two-variable function on m, b. The critical point is

$$m_0 = \frac{n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}$$

$$b_0 = \frac{\sum_{i=1}^n x_i^2 \sum_{i=1}^n y_i - \sum_{i=1}^n x_i \sum_{i=1}^n x_i y_i}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}$$

The Hessian of
$$d(m, b)$$
 at (m_0, b_0) is
$$\begin{bmatrix} 2\sum_{i=1}^{n} x_i^2 & 2\sum_{i=1}^{n} x_i \\ 2\sum_{i=1}^{n} x_i & 2n \end{bmatrix}$$

Since the discriminant of f is

$$\Delta_f(m_0, b_0) = 4n \sum_{i=1}^n x_i^2 - 4\left(\sum_{i=1}^n x_i\right)^2 > 0$$

The point (m_0, b_0) is a local minimum point. (in fact a global minimum point, why?)

Theorem

Let (x_0, y_0, z_0) be a critical point of f(x, y, z) where f_x, f_y, f_z are all zero. Let H be the 3×3 matrix defined by

$$\begin{bmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{bmatrix}$$

Let d_1, d_2, d_3 be the determinants of the 1×1 , 2×2 , 3×3 sub-matrices on the left-top corner of H.

- ▶ If $d_i > 0$ for all i, then (x_0, y_0, z_0) is a local minimum point.
- if $d_1, d_3 < 0$ and $d_2 > 0$, then (x_0, y_0, z_0) is a local maximal point.
- ▶ In all other cases, (x_0, y_0, z_0) is a saddle point.

Proposition

Let $L_c(f)$ be the level curve at $c = f(x_0, y_0)$. on the xy-plane. Then the gradient vector $\nabla f(x_0, y_0)$ is perpendicular to the curve $L_c(f)$ at (x_0, y_0)

Theorem (Lagrange multiplier)

Let g(x,y), f(x,y) be differentiable functions. Let $L_c(g)$ be a level curve at c. Let us retrict the domain of f onto $L_c(g)$. If (x_0, y_0) is an extremal point of f and $\nabla g(x_0, y_0) \neq \mathbf{0}$, there exists λ such that

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$$

Example

The Lagrange multiplier finds the maxima or minima of a **target** function f(x, y) under the **constraint** g(x, y) = c. Find the point on the circle $x^2 + y^2 = 10$ where the function f(x, y) = 3x + y attains maximal or minimal.

Corollary

The gradient vector $\nabla f(x_0, y_0)$ has the direction where the value of function f(x, y) increases the most from (x_0, y_0) .

Example

Let

$$f(x,y) = 100 + \frac{100}{x^2 + 2y^2 + 9}$$

be a function whose graph represent the contour of a mountain. Suppose that a water flow from the point (1,0,110) down the valley in the steepest direction. Find the trajectory of the water path.

Theorem

Let g(x, y, z), f(x, y, z) be differentiable functions. Suppose that (x_0, y_0, z_0) is a local extremal of f(x, y, z) restricted the level set $L_c(g)$. If $\nabla g(x_0, y_0) \neq \mathbf{0}$, then there exists λ such that

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0)$$

Example

Find the minimal and maximal value of $f(x, y, z) = x^3 + y^3 + z^3$ on the sphere $x^2 + y^2 + z^2 = 1$ on the first octant.

Find all critical points and classify them

1.
$$f(x,y) = xy + \frac{2}{x} + \frac{2}{y}$$

2.
$$e^y(x^2+y^2-z^2)$$

Find all local extremes of f(x,y) with the give contraints.

1.
$$f(x,y) = 2x + y^2 + x^2, 2x^2 + y^2 = 2$$

2.
$$f(x, y, z) = xy + yz, x^2 + y^2 = 1, yz = 1$$

Find the local extremes of $f(x,y) = x^2 + xy + y^2$ on the disk $D = \{(x,y) \mid x^2 + y^2 \le 1\}.$

Find the point on the graph $xy^2z^3=2$ which is the closest to the origin.