

Procedimentos

em-vindo ao estudo sobre Procedimentos! Essa aula ajudará na compreensão de alguns conceitos que são importantes no contexto de programação. Vamos conhecer melhor esses conceitos?

Modularização é a divisão de tarefas. Isso significa que o programa é dividido em partes ou módulos. Estes módulos são blocos de instruções que realizam tarefas específicas. Uma vez carregado, o módulo pode ser executado quantas vezes for necessário. Além disso, pode ser usado para economizar espaço e tempo de programação, já que pode ser chamado em várias partes de um mesmo programa (MANZANO; OLIVEIRA, 2012).

Cada módulo, além de ter acesso às variáveis do programa (variáveis globais), pode ter suas próprias variáveis (variáveis locais), que existem apenas durante sua chamada (RIBEIRO, 2019).

Algumas vantagens na utilização de módulos

- Dividir e estruturar um algoritmo em partes logicamente coerentes;
- Facilidade de testar os trechos em separado;
- Evitar repetição do código-fonte;

Maior legibilidade de um algoritmo.

Tipos de subprogramas: Procedimentos e Funções

Neste módulo será mostrado o subprograma Procedimento.

Procedimento

Procedimentos são estruturas que agrupam um conjunto de comandos, que são executados quando chamados no decorrer do algoritmo (MANZANO; OLIVEIRA, 2012).

Como um exemplo prático, em VisuAlg, procedimento pode ser definido como subprograma que não retorna nenhum valor. Sua declaração geralmente está no começo do algoritmo e sua sintaxe está descrita abaixo.

Estrutura

procedimento <nome-de-procedimento> [(<sequência-de-declaraçõesde-parâmetros>)]

// Seção de Declarações de Variáveis Internas

inicio

// Seção de Comandos

fimprocedimento

Exemplo

PROCEDIMENTO olaMundo

VAR

INICIO

ESCREVA ("Olá mundo do procedimento!")

FIMPROCEDIMENTO

Exemplo Completo (Figura 1)

```
ESCREVAL ("Mensagem do procedimento:
```

Figura 1: Exemplo Completo - Procedimento

Exemplo Prático

pseudocódigo utilize o Visualg. No ambiente executar o disponibilizado pela Faculdade Descomplica, basta acessar o ícone do Visualg (Figura 2).

Figura 2: Ambiente de Programação da Faculdade Descomplica

Escreva o algoritmo em pseudocódigo, mostrado na Figura 3, na Área de Algoritmos da ferramenta.

```
Algoritmo "ProcedimentoExemplo"
procedimento soma
var
aux: inteiro
inicio
aux <- n + m
res <- aux
fimprocedimento
res, n, m: inteiro
Inicio
n <- 4
m <- -9
escreva (res)
Fimalgoritmo
```

Figura 3: Algoritmo Procedimento Exemplo

Para executar o algoritmo, clique no ícone "Executar", mostrado na Figura 4, ou F9 do seu teclado.

Figura 4: Executar Algoritmo

Na Figura 5 vemos a tela de resultado.

Figura 5: Resultado do Algoritmo

Atividade extra

Assista ao filme "Piratas da Informática" Parcialmente baseado no livro "Fire in the Valley: The Making of the Personal Computer", escrito por Paul Feiberger e Michael Swaine, o filme de Martyn Burke narra a ascensão da Apple e Microsoft, mostrando a conflituosa relação de Steve Jobs (Noah Wyle) e Bill Gates (Anthony Michael Hall) nos bastidores.

Referência Bibliográfica

- GUEDES, S. (Org.). Lógica de programação algorítmica. Pearson: 2014.
- MANZANO, J. A. N. G.; OLIVEIRA, J. F. Estudo Dirigido de Algoritmos. 15. ed. São Paulo: Érica, 2012
- PUGA, S.; RISSETTI, G. Lógica de programação e estruturas de dados, com aplicações em Java. Pearson: 2016.
- RIBEIRO, J. A. Introdução à programação e aos algoritmos. 1. ed. Rio de Janeiro: LTC, 2019

Atividade Prática – Aula 9

Título da Prática: Multiplicação como uso de Procedimento

Aulas Envolvidas nesta Prática: Procedimentos

Objetivos: Praticar lógica de programação e desenvolvimento de algoritmos.

> Materiais, Métodos e Ferramentas: Para realizar este exercício, vamos utilizar Visualg para testar o algoritmo proposto no desenvolvin da prática em questão.

Atividade Prática

Com os conhecimentos adquiridos até agora, desenvolva um algoritmo em pseudocódigo que multiplique 2 números digitados pelo usuário. Mostre o resultado na tela. (Use procedimento para o cálculo)

Após desenvolver seu código conforme a descrição acima, copie e cole na caixa de texto (a resposta da Atividade Prática sempre será em código (pseudocódigo)).

Gabarito Atividade Prática

```
Algoritmo "Multi2"
procedimento multi
var
aux: inteiro
inicio
 aux <- n * m
res <- aux
fimprocedimento
Var
res, n, m: inteiro
Escreva ("Digite um número: ")
Escreva ("Digite outro número: ")
Leia (m)
multi
escreva (res)
Fimalgoritmo
```


Ir para questão

