

Insulation

- Thermal insulations are materials or combinations of materials that are used primarily to provide resistance to heat flow
- Most insulations are heterogeneous materials made of low thermal conductivity materials, and they involve air (low k and cheap) pockets
- Payback period < 1year.

Benefits of insulation

- Reduces overall energy consumption by reducing heat loss/gain
- Personal safety (OSHA, any surface should be T<60°C)
- Reducing temperature fluctuations
- Avoiding condensation and thereby corrosion and mold prevention
- Provides fire protection
- Absorbs noise and vibration

Types and materials

- Low (<90°C), Medium (90-325°C) and High (>325°C)
- Blanket flexible fibers comes in the form of batts or rolls mineral (rock and slag) wool, plastic fibers, and natural fibers, such as cotton and sheep's wool
- Foam closed-cell and open-cell cells are filled with air
- Sprayed foam isocyanate and polyol resin 30-60 times its liquid volume Air pockets

Fiberglass

Polyurethane foam

Sprayed foam

Types and materials

- Loose fill small particles of fiber, foam, or other materials, lower initial cost
- Radiant barriers incorporates reflective surfaces typically aluminum foil- over conventional insulation material
- Structural insulation

Loose fill

Radiant barriers

EN 410/607 Energy Management

Structural insulation

Commonly used insulations

What is the thermal conductivity of air?

Subgroup	Insulation Material	Temperature °C	Thermal conductivity W / (m.K)
Fibrous	Glass wool	-100-500	0.03-0.045
	Rock wool	-100-750	0.033-0.045
Cellular	Calcium silicate	300	0.045-0.065
	Cellular glass	-260-430	0.04-0.06
	Vermiculite	700-1600	0.046-0.07
	Ceramic	N.A.	0.03-0.07
Foamed	EPS	-80-80	0.035-0.04
	XPS	-60-75	0.03 0.04
	PUR	-50-120	0.024-0.03
	PIR	-20-100	0.018-0.028
Foamed, expanded	Cork	110-120	0.037-0.050
	Melamine foam	N.A.	0.035
	Phenolic foam	150	0.022-0.04
	Polyethylene foam	-40-105	0.033
Fibrous	Fiberglass	-4-305	0.033-0.04
	Sheep wool	130-150	0.04-0.045
	Cotton	100	0.035-0.06
	Cellulose fibers	60	0.04 0.045
	Jute	N.A.	0.038 0.055
	Rice straw	24	0.046-0.056
	Hemp	100-120	0.04-0.05
	Bagasse	160-200	0.046-0.055
	Coconut	180-220	0.04-0.05
	Flax	N.A.	0.03-0.045
Boards	Gypsum foam	N.A.	0.045
	Wood wool	110-180	0.09
	Wood fibers	110	0.04-0.09
· 8	VIPS	N.A.	0.002-0.008
	Aerogel	N.A.	0.013-0.014

EN 410/607 Energ

Super-insulators

- Superinsulators are commonly used in space applications and cryogenics (temperatures below 100 K (-173°C))
- Is vacuum a good insulation?
- Insulation against radiation heat transfer between two surfaces is achieved by placing highly reflective thin metal sheets
- Space between the layers is evacuated to form a vacuum pressure to minimize conduction or convection heat transfer through the air space between the layers
- Thermal conductivity $< 2 \times 10^{-5}$ W/m·°C, < air or other insulation by 1000 times.

Heat Transfer

- Conduction (Fourier's Law): $Q = k A (\Delta T / \Delta x)$
- Convection (Newton's Law): $Q = h A \Delta T$
 - | Electrical resistance = Voltage difference/Current
 - Thermal resistance = Temperature difference/Heat
 - I Thermal resistance ($\Delta T/Q$)
 - Conduction in slab = $\Delta x/k$ A
 - Convection = 1/h A

Plane Wall

$$\dot{Q} = \frac{T_{\infty 1} - T_{\infty 2}}{R_{\text{total}}}$$

$$\dot{Q} = \frac{T_{\infty 1} - T_1}{R_{\text{conv},1}}$$

$$\dot{Q} = \frac{T_{\infty 1} - T_2}{R_{\text{conv},1} + R_{\text{wall},1}}$$

$$Q = \frac{T_3 - T_{\infty 2}}{R_{\text{conv},2}}$$

Cylindrical pipes

$$\dot{Q} = \frac{T_{\infty 1} - T_{\infty 2}}{R_{\text{total}}}$$

$$A_1 = 2 \pi r_1 L$$
 and $A_4 = 2 \pi r_4 L$

$$\begin{split} R_{\text{total}} &= R_{\text{conv},1} + R_{\text{cyl},1} + R_{\text{cyl},2} + R_{\text{cyl},3} + R_{\text{conv},2} \\ &= \frac{1}{h_1 A_1} + \frac{\ln(r_2 / r_1)}{2\pi L k_1} + \frac{\ln(r_3 / r_2)}{2\pi L k_2} + \frac{\ln(r_4 / r_3)}{2\pi L k_3} + \frac{1}{h_2 A_4} \end{split}$$

Spherical tanks

$$\dot{Q} = \frac{T_{\infty 1} - T_{\infty 2}}{R_{\text{total}}}$$

$$A_1 = 4\pi r_1^2$$
 and $A_2 = 4\pi r_2^2$

$$R_{\text{total}} = R_{\text{conv},1} + R_{\text{sph},1} + R_{\text{sph},2} + R_{\text{sph},3} + R_{\text{conv},2}$$

$$= \frac{1}{h_1 A_1} + \frac{r_2 - r_1}{4 \pi r_1 r_2 k_1} + \frac{r_3 - r_2}{4 \pi r_2 r_3 k_2} + \frac{r_4 - r_3}{4 \pi r_3 r_4 k_3} + \frac{1}{h_2 A_4}$$

Critical insulation

$$\dot{Q} = \frac{T_1 - T_{\infty}}{R_{\text{ins}} + R_{\text{conv}}} = \frac{T_1 - T_{\infty}}{\frac{\ln(r_2/r_1)}{2\pi Lk} + \frac{1}{h(2\pi r_2 L)}}$$

$$r_{\text{cr, max}} = \frac{k_{\text{max, insulation}}}{h_{\text{min}}} \approx \frac{0.05 \text{ W/m} \cdot \text{K}}{5 \text{ W/m}^2 \cdot \text{K}} = 0.01 \text{ m} = 1 \text{ cm}$$

Optimum thickness of insulation

EN 410/007 Energy Management

13

Insulation of a LNG tank

When the transportation of natural gas is not possible in a pipeline for economic reason, it is liquified ($\rho = 425 \text{ kg/m}^3$, Cp = 3.475 kJ/kg.K) at about -160°C and then transported in insulated tanks in ships.

- o Tank diameter is 4 m
- Ambient temperature = 24°C
- Ambient air heat transfer coefficient = 22 W/m².K
- Tank is insulated with 5 cm thick super-insulator with k= 0.00008 W/m.K
- Estimate how long it take it to rise to -158°C

$$\dot{Q} = \frac{T_{\infty 1} - T_{\infty 2}}{R_{\text{total}}}$$

$$A_1 = 4\pi r_1^2$$
 and $A_2 = 4\pi r_2^2$

$$\begin{split} R_{\text{total}} &= R_{\text{conv},1} + R_{\text{sph},1} + R_{\text{sph},2} + R_{\text{sph},3} + R_{\text{conv},2} \\ &= \frac{1}{h_1 A_1} + \frac{r_2 - r_1}{4 \pi r_1 r_2 k_1} + \frac{r_3 - r_2}{4 \pi r_2 r_3 k_2} + \frac{r_4 - r_3}{4 \pi r_3 r_4 k_3} + \frac{1}{h_2 A_4} \end{split}$$

References

- https://www.energy.gov/energysaver/types-insulation#batts
- https://www.nogapinsulation.com.au/comparing-insulation-batts-vs-rolls-which-is-better/
- https://www.indiamart.com/proddetail/high-density-polyurethane-foam-12593989848.html
- https://www.powerblanket.com/blog/spray-foam-insulation-properties-and-benefits/
- https://www.daviddarling.info/encyclopedia/L/AE_loose_fill_insulation.html
- https://rfoil.com/insulation-product/2200-reflective-insulation/
- https://www.sips.org/what-are-sips
- https://www.mdpi.com/2075-4701/12/4/561