PCT

国際事務局

特許協力条約に基づいて公開された国際出願

A1

(51) 国際特許分類6

C07K-14/295,4C12N-15/31, 1/21, C12P 21/02, 21/08, C12Q 1/68, G01N 33/569 (11) 国際公開番号

W096/09320

(43) 国際公開日

1996年3月28日(28.03.96)

G021(6G06)		1
(21) 国際出順番号	PCT/JP95/01896	
(22) 国際出順日	1995年9月20日(20.09.95)	
(36) 優先権データ		
特顧平6/224711	1994年9月20日(20.09.94)	JP
特顧平7/106006	1995年4月28日(28.04.95)	JP
特顧平7/106008	1995年4月28日(28.04.95)	JР
特順平7/106009	1995年4月28日(28.04.95)	JР
特順平7/106010	1995年4月28日(28.04.95)	JP
特顯平7/106011	1995年4月28日(28.04.95)	JР
(71) 出顧人 (米国	を除くすべての指定国について	.)
日立化成工業株式	会社	
	CAL COMPANY, LTD.)[JP/JP]	
〒163-04 東京都新	宿区西新宿二丁目1番1号 Toky	o, (JP)
	••	

松本 明(MATSUMOTO, Akira)[JP/JP] 〒701-01 岡山県倉敷市庄新町8番2-4号 Okayama, (JP) (74) 代理人

弁理士 平木祐輔,外(HIRAKI, Yusuke et al.) 〒105 東京都港区虎ノ門二丁目7番7号 虎ノ門中田ピル2F Tokyo, (JP)

(81) 指定国

AU, CN, US, 欧州特許(AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告書

明細書とは別に、規則13の2に基づいて提出された数生物の寄託に 関する表示

国際事務局による受理の日付:

1995年10月9日(09.10.95)

(72) 発明者;および

(75) 発明者/出顧人(米閏についてのみ)

井筒 浩(IZUTSU, Hiroshi)[JP/JP]

〒300-32 茨城県つくば市前野1596-10 Ibaraki, (JP)

小原和彦(OBARA, Kazuhiko)[JP/JP]

〒300-32 茨城県つくば市花畑一丁目15-18

日立化成 紫蜂寮 Ibaraki, (JP)

(54) Title: ANTIGENIC POLYPEPTIDE OF CHLAMYDIA PNEUMONIAE

(54) 発明の名称 クラミジア・ニューモニエの抗原ポリペプチド

(57) Abstract

An antigenic polypeptide of Chlamydia pneumoniae comprising the polypeptide A containing the sequence of at least five consecutive amino acid residues in the polypeptide of SEQ ID NO: 1; a DNA coding for the polypeptide; a recombinant vector containing the DNA; a transformant containing the vector; a process for producing an anti-C. pneumoniae antibody by using the antigenic polypeptide as the antigen; methods for detecting and assaying the anti-C. pneumoniae antibody; the use of the antigenic polypeptide; a fused protein consisting of a dihydrofoliate reductase and an antigenic polypeptide C. pneumoniae, wherein the polypeptide of SEQ ID NO: 14 has bound to the polypeptide A containing the sequence of at least five consecutive amino acid residues in the polypeptide of SEQ ID NO: 1; a DNA coding for the fused protein; a recombinant vector containing the DNA; a transformant containing the vector; a process for producing an anti-C. pneumoniae antibody by using the fused protein as the antigen; methods for detecting and assaying the anti-C. pneumoniae antibody by using the fused protein as the antigen; the use of the fused protein; a probe and a primer for detecting and assaying C. pneumoniae genes; methods for detecting and assaying C. pneumoniae genes by using the probe or primer; and the use of the probe or primer.

(57) 要約

配列 号1のポリペプチドの中の連続した少なくとも5個のアミノ酸配列を含 むポリペプチドAからなる、クラミジア・ニューモニエ(以下「C.ニューモニ エ」という)の抗原ポリペプチド、該ポリペプチドをコードするDNA、該DN Aを含む組換えベクター、該組換えベクターを含む形質転換体、該抗原ポリペプ チドを抗原として用いることを特徴とする抗C.ニューモニエ抗体の製造方法、 抗C.ニューモニエ抗体の検出・測定方法及び該抗原ポリペプチドの用途、並び に配列番号14のポリペプチドに、配列番号1のポリペプチドの中の少なくとも 5個のアミノ酸配列を含むポリペプチドAが結合した、ジヒドロ葉酸還元酵素-C.ニューモニエの抗原ポリペプチド融合タンパク質、該融合タンパク質をコー ドするDNA、該DNAを含む組換えベクター、該組換えベクターを含む形質転 換体、該融合タンパク質を抗原として用いることを特徴とする抗C.ニューモニ 工抗体の製造方法、該融合タンパク質を抗原として用いることを特徴とする抗 C. ニューモニエ抗体の検出・測定方法、該合タンパク質の用途、C.ニューモニエ 遺伝子の検出・測定用プローブ及びプライマー、該プローブ又はプライマーを用 いるC.ニューモニエ遺伝子の検出・測定方法及び該プローブ又はプライマーの 用涂。

情報としての用途のみ

PCTに基づいて公開される国際出版をパンフレット第一頁にPCT加盟国を同定するために使用されるコード PTOUDESSIKNZD アルバニア アルメニア オーストリア オーストラリア アゼルバイジャン バルバドス デエスフフガイグギギハアアイ日ーニンラス スア ャリララークア ン ドリンン リジアシガルスリケ トリテラー ド ドド LRSTUVCDGK MK DEES I RABENRUE リレリルラモモママスマン・イリトアセヴュドガドヴィン・リトアセヴュドガドヴァー パスニィー パスニィー パスニィー スカアア カー国 ゴー国 AAAAABBBBBBBBCCCCCCCD ブルギナ・ファソ ブルガリア ブラジル ベラルーシ ML MN MR ESTP タジキスタン トルクメニスタン ~ , グ 中央アフリカ共和国 コンゴー MW MX NE NO NO P トルコ トリニダード・トバゴ ウクライナ ウガンダ TR スイス ÜĀ コート・ジカメルーン ・ト・ジポアール ッペック 米国 ウズベキスタン共和国 _/ ヴィェトナム 大幅民国 カザフスタン リヒテンシュタイン 中国 テロ チェッコ**共和国** ドイツ

明細

クラミジア・ニューモニエの抗原ポリペプチド、それを含む融合タンパク質、そのDNA、そのDNAを含む組換えベクター、その組換えベクターを含む形質 転換体、抗体の製造方法、抗体の検出・測定方法及び試薬、クラミジア・ニューモニエ感染の診断方法及び診断薬、クラミジア・ニューモニエ遺伝子の検出・測定用プローブ及びプライマー並びにクラミジア・ニューモニエ遺伝子の検出・測定方法及び試薬

技術分野

本発明は、クラミジア・ニューモニエの抗原ポリペプチド、それを含む融合タンパク質、そのDNA、そのDNAを含む組換えベクター、その組換えベクターを含む形質転換体、抗体の製造方法、抗体の検出・測定方法及び試薬、クラミジア・ニューモニエ遺伝子の検出・測定用プローブ及びプライマー並びにクラミジア・ニューモニエ遺伝子の検出・測定方法及び試薬に関する。本発明は、医薬品工業、特にクラミジア・ニューモニエ感染症の診断薬の製造において有効に利用される。

背景技術

クラミジア属の細菌は、クラミジア・トラコマチス(Chlamydia trachomatis)、クラミジア・シッタシ(Chlamydia psittaci)、クラミジア・ペコラム(Chlamydia pecorum)、クラミジア・ニューモニエ(Chlamydia pneumoniae)等の種 (Species) が知られている。クラミジア・トラコマチスは、トラコーマ、性病性リンパ肉芽腫、泌尿生殖器感染症、封入体結膜炎、新生児肺炎等を引き起こす原因菌であり、クラミジア・シッタシは、オウム病等の原因菌であり、またクラミジア・ニューモニエは、呼吸器感染症、異形肺炎等の原因菌である。

クラミジア・ニューモニエの引き起こす呼吸器感染症の症状は、マイコプラズマ・ニューモニエやインフルエンザウイルスが原因で起こる感染症の症状と類似しているので、しばしば誤診されやすい。そのため、クラミジア・ニューモニエの簡便な診断方法の開発が望まれていた。

感染症の診断は、通常、感染部位等における原因菌の存在の検出か、血清・その他の体液中における(原因菌に対する)抗体の存在の検出により確定的になされる。前者は抗原検査、後者は抗体検査と呼ばれ、いずれも臨床で重要な意義があり、クラミジア・ニューモニエの抗体検査としては、クラミジア・ニューモニエの基本小体を用いて抗体の存在を検出する方法が知られている。

しかし、クラミジア・ニューモニエの基本小体は、クラミジア・ニューモニエ 以外のクラミジア属細菌、すなわち、クラミジア・トラコマチス又はクラミジア ・シッタシにも共通に存在する抗原を含むため、この基本小体を抗原として用い る方法では特異性に欠ける難点があった。

一方、大腸菌においてタンパク質を大量に発現させることのできるプラスミドとして、pBBK10MMが知られている(特開平4-117284号公報)。このプラスミドは、DHFRと抗アレルギー性ペプチドとの融合タンパク質を発現させることができる。ここで得られる融合タンパク質にもDHFRの酵素活性も保持されているので、この融合タンパク質の精製はDHFRの特性と活性を利用して容易に行うことができる。

また、感染症の診断法としては遺伝子検査法もある。これは、核酸プロープ等 を用いて検体中に検出対象の微生物の遺伝子が存在するか否かを調べる方法であ る。

クラミジア・ニューモニエの遺伝子検査法としては、特表昭 6 4 - 5 0 0 0 8 3 号公報、米国特許第 5, 2 8 1, 5 1 8 号公報、及び国際公開公報 9 4 / 0 4 5 4 9 号公報に記載された方法が知られている。

しかし、特表昭64-500083号公報及び米国特許第5.281,518号公報には、クラミジア・ニューモニエ染色体DNAそのもの又は染色体DNAを制限酵素等で分解して得られるDNA断片をプローブとして用いることが記載されているだけであり、これらのDNAの塩基配列は明らかではなく、それゆえ、プローブの特異性が定かではなく、また反応条件の設定も困難である。

一方、国際公開公報 94/04549号公報に記載された方法は、リボソーム RNA又はそれをコードする DNAにハイブリダイズするプローブを用いるもの であるが、リボソーム RNAはすべての生物において比較的相同性が高いため、

このプローブの特異性も定かではない。

発明の開示

本発明は、クラミジア・トラコマチスやクラミジア・シッタシ等のクラミジア・ニューモニエ以外のクラミジア属細菌に対する抗体に反応せず、クラミジア・ニューモニエ特異的抗体とのみ反応し、これを検出するための抗原ポリペプチドを提供することを目的とする。

更には、本発明は、遺伝子組換え技術を用いてこの抗原ポリペプチドを大量に 合成する技術を提供することも目的とする。

更には、本発明は、この抗原ポリペプチドを利用する、抗クラミジア・ニューモニエ特異的抗体の製造方法、抗クラミジア・ニューモニエ特異的抗体の検出・測定方法及びその試薬、並びにクラミジア・ニューモニエ感染の診断薬を提供することも目的とする。 更には、本発明は、クラミジア・ニューモニエ遺伝子を特異的に検出・測定するためのプロープ及びプライマーを提供し、さらに、このプロープ又はプライマーを利用する、クラミジア・ニューモニエ遺伝子の検出・測定方法及び試薬、並びにクラミジア・ニューモニエ感染の診断薬を提供することも目的とする。

更には、本発明は、クラミジア・ニューモニエ、クラミジア・トラコマチス、 クラミジア・シッタシ等のクラミジア属細菌に共通に反応する抗体を検出するための抗原ポリペプチドを提供することも目的とする。

発明の概要

本発明は、下記(1)~(45)に関するものである。

- (1)配列番号1のポリペプチドの中の連続した少なくとも5個のアミノ酸配列を含むポリペプチド(以下、「ポリペプチドA」という)からなる、クラミジア・ニューモニエの抗原ポリペプチド。
- (2) ポリペプチドAが、配列番号1のポリペプチドからアミノ酸が欠落しているポリペプチドである、上記(1)記載の抗原ポリペプチド。
- (3) ポリペプチドAが、配列番号1のポリペプチドの中のアミノ酸が他のアミ

- ノ酸で置換されているか、又は配列番号1のポリペプチドの中にアミノ酸が挿入 されているポリペプチドである、上記(1)記載の抗原ポリペプチド。
- (4) ポリペプチドAが、配列番号1のポリペプチドの中の連続した少なくとも 5個のアミノ酸配列にアミノ酸若しくはペプチドが結合したポリペプチドである、 上記(1)記載の抗原ポリペプチド。
- (5) ポリペプチドAが配列番号1のアミノ酸配列からなるポリペプチドである、 上記(1)記載の抗原ポリペプチド。
- (6) ポリペプチドAが配列番号2のアミノ酸配列からなるポリペプチドである、 上記(1)記載の抗原ポリペプチド。
- (7)ポリペプチドAが配列番号5のアミノ酸配列からなるポリペプチドである、 上記(1)記載の抗原ポリペプチド。
- (8)上記(1)~(7)のいずれかに記載の抗原ポリペプチドをコードするDNA若しくはそれに相補的なDNA。
- (9) 塩基配列が配列番号3の塩基配列である、上配(8)記載のDNA。
- (10)塩基配列が配列番号4の塩基配列である、上配(8)記載のDNA。
- (11) 塩基配列が配列番号7の塩基配列である、上配(8) 記載のDNA。
- $(1\ 2)$ 上記 (8) ~ $(1\ 1)$ のいずれかに記載のDNAを含む組換えベクター。
- (13)組換えベクターが配列番号10の塩基配列を有する $pCPN533\alpha$ プラスミドである、上記(12)記載の組換えベクター。
- (14)上記(12)又は上記(13)記載の租換えベクターを含む形質転換体。
- (15)上記(1)~(7)のいずれかに記載の抗原ポリペプチドを抗原として 用いることを特徴とする、抗クラミジア・ニューモニエ抗体の製造方法。
- (16)上記(1)~(7)のいずれかに記載の抗原ポリペプチドを抗原として 用いることを特徴とする、抗クラミジア・ニューモニエ抗体の検出・測定方法。
- (17)上記(1)~(7)のいずれかに記載の抗原ポリペプチドを抗原として 含有してなる、抗クラミジア・ニューモニエ抗体の検出・測定用試薬。
- (18)上記(1)~(7)のいずれかに記載の抗原ポリペプチドを有効成分と する、クラミジア・ニューモニエ感染の診断薬。

- (19)配列番号14のポリペプチドに、直接に又は介在アミノ酸配列を介して、配列番号1のポリペプチドの中の連続した少なくとも5個のアミノ酸配列を含むポリペプチド(以下「ポリペプチドB」という)が結合した、ジヒドロ葉酸還元酵素-クラミジア・ニューモニエの抗原ポリペプチド融合タンパク質。
- (20) ポリペプチドBが、配列番号1のポリペプチドからアミノ酸が欠落しているポリペプチドである、上記(19)記載の融合タンパク質。
- (21)ポリペプチドBが、配列番号1のポリペプチドの中のアミノ酸が他のアミノ酸で置換されているか、又は配列番号1のポリペプチドの中にアミノ酸が挿入されているポリペプチドである、上記(19)記載の融合タンパク質。(22)融合タンパク質が配列番号15のアミノ酸配列からなるポリペプチドである、上記(19)記載の融合タンパク質。
- (23)融合タンパク質が配列番号16のアミノ酸配列からなるポリペプチドである、上記(19)記載の融合タンパク質。
- (24)上記(19)~(23)のいずれかに記載の融合タンパク質をコードするDNA若しくはそれに相補的なDNA。
- (25) 塩基配列が配列番号17の塩基配列である、上記(24) 記載のDNA。
- (26)塩基配列が配列番号18の塩基配列である、上記(24)記載のDNA。
- (27)上記(24)~(26)のいずれかに記載のDNAを含む組換えベクター。
- (28)組換えベクターがpCPN533Tプラスミドである上記(27)記載の組換えベクター。
- (29)上記(27)又は上記(28)記載の租換えベクターを含む形質転換体。
- (30)上記(19)~(23)のいずれかに記載の融合タンパク質を抗原として用いることを特徴とする、抗クラミジア・ニューモニエ抗体の製造方法。
- (31)上記(19)~(23)のいずれかに記載の融合タンパク質を抗原として用いることを特徴とする、抗クラミジア・ニューモニエ抗体の検出・測定方法。
- (32)上記(19)~(23)のいずれかに記載の融合タンパク質を抗原として含有してなる、抗クラミジア・ニューモニエ抗体の検出・測定用試薬。
- (33)上記(19)~(23)のいずれかに記載の融合タンパク質を有効成分

とする、クラミジア・ニューモニエ感染の診断薬。

- (34)(a)配列番号3のDNAの中の連続した少なくとも10塩基の塩基配列を有するDNA、
- (b) 上記(a)のDNAに相補的なDNA、又は
- (c)上記(a)若しくは(b)のDNAと90%以上の相同性を有するDNA、のいずれかを含有するDNAからなる、クラミジア・ニューモニエ遺伝子の検出・測定用プローブ。
- (35)塩基配列が配列番号19の塩基配列である、上記(34)記載のプロープ。
- (36)塩基配列が配列番号20の塩基配列である、上配(34)配載のプローブ。
- (37) 上記 $(34) \sim (36)$ のいずれかに記載のプローブを用いる、クラミジア・ニューモニエ遺伝子の検出・測定方法。
- (38)上記(34)~(36)のいずれかに記載のプローブを含有してなるクラミジア・ニューモニエ遺伝子の検出・測定用試薬。
- (39)上記(34)~(36)のいずれかに記載のプローブを有効成分とする、 クラミジア・ニューモニエ感染の診断薬。
- (40) (a) 配列番号3のDNAの中の連続した少なくとも10塩基の塩基配列を有するDNA、
- (b) 上記(a)のDNAに相補的なDNA、又は
- (c)上記(a)若しくは(b)のDNAと90%以上の相同性を有するDNA、のいずれかを含有するDNAからなる、クラミジア・ニューモニエ遺伝子の検出・測定用プライマー。
- (41)塩基配列が配列番号19の塩基配列である、上記(40)記載のプライマー。
- (42)塩基配列が配列番号20の塩基配列である、上記(40)記載のプライマー。
- (43)上記(40)~(42)のいずれかに記載のプライマーを用いる、クラミジア・ニューモニエ遺伝子の検出・測定方法。

- (44)上記(40)~(42)のいずれかに記載のプライマーを含有してなる クラミジア・ニューモニエ遺伝子の検出・測定用試薬。
- (45)上記(40)~(42)のいずれかに記載のプライマーを有効成分とする、クラミジア・ニューモニエ感染の診断薬。

また、本発明は、下記(46)~(52)に関するものでもある。

- (46)(a) 配列番号5のポリペプチド;
- (b) 配列番号5のポリペプチド中のアミノ酸の1又は2以上に欠落のあるポリペプチド;(c) 配列番号5のポリペプチド中のアミノ酸の1又は2以上が他のアミノ酸で置換されたポリペプチド;及び
- (d) 上記(a)~(c)のいずれかのポリペプチドに他のアミノ酸もしくはペプチドが 結合してなる融合ポリペプチド、

からなる群から選ばれるクラミジア・ニューモニエの抗原ポリペプチド。

- (47)(a) 配列番号6のポリペプチド;
- (b) 配列番号6のポリペプチド中のアミノ酸の1又は2以上に欠落のあるポリペプチド;(c) 配列番号6のポリペプチド中のアミノ酸の1又は2以上が他のアミノ酸で置換されたポリペプチド;及び
- (d) 上記(a)~(c)のいずれかのポリペプチドに他のアミノ酸もしくはペプチドが 結合してなる融合ポリペプチド、

からなる群から選ばれるクラミジア・ニューモニエの抗原ポリペプチド。

- (48) 上記 (46) のポリペプチドをコードするDNA、又はそれに相補的な DNA。
- (49)上記 (47)のポリペプチドをコードするDNA、又はそれに相補的な DNA。
- (50)上記(46).のポリペプチドをコードするDNAが配列番号7である、 上記(48)のDNA。
- (51)上記(47)のポリペプチドをコードするDNAが配列番号8である、 上記(49)のDNA。
- (52) 上記 (48) ~ (51) のいずれかのDNAを含む、粗換えベクター。

発明の詳細な説明

本明細書において、塩基の数が1のデオキシヌクレオチドはモノデオキシヌクレオチドといい、塩基の数が2以上のデオキシヌクレオチドは、特に断らない限り、DNAと総称した。

以下、本発明を詳細に説明する。

抗原ポリペプチド

本発明の抗原ポリペプチドは、ペプチドが抗原性を有する最小の大きさの観点から、配列番号1のポリペプチドの中の連続した少なくとも5個のアミノ酸配列を含むポリペプチド (以下「ポリペプチドA」という)からなるものである。

アミノ酸配列が長いほうが高感度の抗原抗体反応を期待できることから、ポリペプチドAとしては、望ましくは20個以上、より望ましくは100個以上、さらに望ましくは250個以上のアミノ酸からなるものがよい。

また、クラミジア・ニューモニエとしての抗原性を有していれば、ポリペプチドAとしては、配列番号1のポリペプチドからアミノ酸(例えば1~250個)が欠落しているものであってもよい。欠落するアミノ酸の個数が多すぎると、ポリペプチドAのクラミジア・ニューモニエとしての抗原性が損なわれる傾向がある。

欠落するアミノ酸の個数が多い場合(例えば5個以上)、クラミジア・ニューモニエとしての抗原性を保つ上から、ポリペプチドAは、アミノ酸が連続して(例えば5個以上)欠落しているものであることが好ましい。

また、クラミジア、ニューモニエとしての抗原性を有していれば、ポリペプチドAとしては、配列番号1のポリペプチドの中のアミノ酸(例えば1~100個)が他のアミノ酸で置換されているものであってもよいし、あるいは、配列番号1のポリペプチドの中にアミノ酸(例えば1~100個)が挿入されているものであってもよい。置換又は挿入されるアミノ酸の数が多すぎると、ポリペプチドAのクラミジア・ニューモニエとしての抗原性が損なわれる傾向がある。置換又は挿入されるアミノ酸の個数が多い場合(例えば5個以上)、クラミジア・ニ

ューモニエとしての抗原性を保つ上から、ポリペプチドAは、アミノ酸が連続して (例えば 5 個以上) 置換又は挿入されているものであることが好ましい。置換されるアミノ酸は類似の性質を有するものが好ましく、例えば、グリシンとアラニンの置換がある。

また、クラミジア・ニューモニエとしての抗原性を有していれば、ポリペプチドAとしては、配列番号1のポリペプチドの中の連続した少なくとも5個のアミノ酸配列に直接又は介在アミノ酸配列を介してアミノ酸若しくはペプチドが結合したポリペプチドであってもよい。

このようなペプチドは、クラミジア・ニューモニエとしての抗原性を保つ上から、1000個以下のアミノ酸配列からなるものが好ましく、500個以下のアミノ酸配列からなるものがより好ましく、200個以下のアミノ酸配列からなるものがさらに好ましい。

このようなアミノ酸若しくはペプチドとしては、例えば、ロイシン、ロイシン ーメチオニン、ジヒドロ葉酸還元酵素(DHFR)、βーガラクトシダーゼ等が ある。

ペプチドとしてDHFRやβーガラクトシダーゼ等を用いた場合のポリペプチドAとしては、例えば、DHFRークラミジア・ニューモニエ抗原ポリペプチド融合タンパク質やβーガラクトシダーゼークラミジア・ニューモニエ抗原ポリペプチド融合タンパク質がある。DHFRやβーガラクトシダーゼとクラミジア・ニューモニエ抗原ポリペプチドとは、直接結合してもよいし、介在アミノ酸配列を介してもよい。

ポリペプチドAの具体例としては、例えば、配列番号1、配列番号2、及び配列番号5のポリペプチドがある。

介在アミノ酸配列は特に限定されないが、例えば、ロイシン、ロイシンーメチ オニンのアミノ酸配列等がある。

本発明の融合タンパク質の具体例としては、配列番号15のアミノ酸配列からなるポリペプチドや配列番号16のアミノ酸配列からなるポリペプチドがある。

上記融合タンパク質の中では、クラミジア・ニューモニエの53KDaの抗原ポリペプチド全体を含む配列番号15のアミノ酸配列からなるポリペプチドが望

ましい。

本発明の抗原ポリペプチドを製造する方法としては、化学合成法や遺伝子組換え法がある。

本発明の配列番号1のポリペプチドは、配列表に示すとおり、488個のアミノ酸残基から成る抗原ポリペプチドである。

本発明の配列番号2のポリペプチドは、配列表に示すとおり、271個のアミノ酸残基から成る抗原ポリペプチドである。

本発明の配列番号5のポリペプチドは、配列表に示すとおり、259個のアミノ酸残差から成る抗原ポリペプチドである。

上記抗原ポリペプチドの中では、クラミジア・ニューモニエの53KDaの抗原ポリペプチド全体を含む配列番号1のポリペプチドが望ましい。

抗原ポリペプチドの製造方法

本発明の抗原ポリペプチドを製造する方法では、化学合成法や遺伝子組換え法がある。

化学合成法としては、例えば、マップ (Maltiple Antigen Poptide, MAP) 法があり、30個以下のアミノ酸配列からなるペプチドの合成に適しており、市販のペプチド合成機を使用して合成することができる。

遺伝子組換え法としては、例えば、本発明の抗原ポリペプチドをコードするDNAをベクターに挿入して組換えベクターを構築し、それを宿主に挿入して形質 転換体を作製し、その形質転換体から目的のペプチドを精製する方法がある。

本発明の抗原ポリペプチドをコードするDNAについては後述する。

ベクターとしては、例えば、プラスミドやファージ等がある。

宿主としては、例えば、大腸菌、枯草菌、酵母等がある。

以下、形質転換体の作製法と、その形質転換体を用いた目的のペプチドの精製法について詳しく説明する。

抗原ポリペプチドをコードするDNAを含む組換えベクターの作製、及びそれを含む形質転換体の作製

スクリーニングで取得した入ファージ自体(後述)も本発明のDNAを含む組換えベクターであるが、クラミジア・ニューモニエ抗原ポリペプチドをコードするDNA(後述)を常法で既存のプラスミドベクターやファージベクター等に挿入して、新たに組換えベクターを作製することもできる。その際、必要に応じ、リンカーを使用する。既存のプラスミドベクターとしては、例えばpBR322、pUC18、pUC19、pBBK10MM等を使用することができる。pBR322、pUC18、pUC19は市販されており、また、pBBK10MMについては特開平4-117284号公報に詳細に記載されている。また、ファージベクターとしては入gt11ファージ、入gt10ファージ等が利用できる。いずれも、用いた観ベクターに対応する組換えベクターが得られる。

本発明のDNAを含む組換えベクターとしては、後述するようにpCPN53 $3\alphaプラスミド、<math>53-3S\lambdaファージ等がある。$

得られた組換えベクターを宿主に入れ、形質転換体を作製する。大腸菌由来のプラスミドや入ファージを使用する場合は宿主としては大腸菌を使用することができ、例えば大腸菌HB101株を使用することができる。この宿主をコンピテントセルとなるように処理をする。大腸菌HB101株を処理して得たコンピテントセルは宝酒造から販売されている。上記連結の反応物を宿主に入れ、形質転換体を作製する方法は文献。モレキュラー・クローニング。に記載されている。

得られた形質転換体を培養してコロニーを形成させ、各コロニーからプラスミドDNAを取得し、適切な制限酵素で切断し、アガロースゲル電気泳動で分析し、 所望の組換えプラスミドをもつ形質転換体を選択する。このようにして作製され たプラスミドベクターとしては、例えば p C P N 5 3 3 α プラスミドがある。

このようにして作製された形質転換体をとしては、前述の組換えベクターpCPN533aが入った大腸菌HB101株がある。

DHFR-クラミジア・ニューモニエの抗原ポリペプチド融合タンパク質をコードするDNAを含む組換えベクターの作製、及びそれを含む形質転換体の作製

クラミジア・ニューモニエ抗原ポリペプチドをコードするDNA(後述)と、DHFRをコードするDNA(後述)とを、市販のキットを使用して連結する。その際、必要に応じ、リンカーを使用する。市販のキットとしては例えば、DNAライゲーションキット(宝酒造)を用いることができる。連結によって得られたDNAが複製起点をもたず、プラスミドとしては機能しない場合はこのDNAを新たなプラスミドベクターに挿入する。この新たなプラスミドベクターとしては、例えばpBR322、pUC18等を使用することができる。

上記連結の反応物を宿主に入れ、形質転換体を作製する。大腸菌由来のプラスミドを使用する場合は宿主としては大腸菌を使用することができ、例えば大腸菌HB101株を使用することができる。この宿主をコンピテントセルとなるように処理をする。大腸菌HB101株を処理して得たコンピテントセルは宝酒造から販売されている。上記連結の反応物を宿主に入れ、形質転換体を作製する方法は文献。モレキュラー・クローニング。に記載されている。

得られた形質転換体を培養してコロニーを形成させ、各コロニーからプラスミドDNAを取得し、適切な制限酵素で切断し、アガロースゲル電気泳動で分析し、所望の組換えプラスミドをもつ形質転換体を選択する。このようにして作製されたプラスミドベクターとしては、例えばpCPN533Tプラスミドがある。

このようにして作製された形質転換体をとしては、前述の組換えベクターpCPN533Tが入った大腸菌HB101株がある。

形質転換体の培養は、その形質転換体が成長しうる培地でこの抗原ポリペプチドが形質転換体内に十分蓄積されるまで適温で培養器を振とうする。形質転換体として前述の組換えベクターp C P N 5 3 3 a や p C P N 5 3 3 T が入った大腸菌HB101株を使用する場合は、アンピシリンを含むLB培地で37℃で一晩振とう培養し、その後、この培養液をアンピシリンを含むTB培地等に接種してさらに37℃で一晩振とう培養する。TB培地の調製方法は、文献"モレキュラー・クローニング"に記載されている。

培養した形質転換体を破砕する場合には、遠心分離で形質転換体を集め、緩衝 液に懸濁し、これに超音波を照射する。形質転換体が大腸菌の場合は、上記懸濁 WO 96/09320 PCT/JP95/01896

液にリゾチームを加え、SDSを含む緩衝液を加えることよって菌体を溶菌させてもよい。

一方、目的のポリペプチドが分泌性のものである場合は、培養液を遠心分離して上清を取得する。

形質転換体の破砕後、遠心分離して細胞残渣を除去し、上清を取得する。上記のいずれかの上清にストレプトマイシン硫酸塩を添加し、しばらく撹拌し、遠心分離することによって、核酸を沈殿物として除去し、上清を取得する。

この上清を硫安沈殿し、遠心分離する。通常、沈殿を取得するが、目的のペプチドが上清に含まれることもあり、サンプリングして目的のペプチドの有無を確認しておく。

この沈殿を少量の緩衝液に溶かしたものか、又は上記上清を液体クロマトグラフィーによって分画し、各画分に含まれる蛋白質について、前述のクラミジア・ニューモニエ特異的モノクローナル抗体を用い、ウェスタン・ブロット法行い、抗原ポリペプチドを含む画分を取得する。ポリペプチドAがDHFRとの融合タンパク質である場合は、液体クロマトグラフィー用カラムとして、メソトレキセートカラムが使用できる。細胞膜等の残渣の除去、ストレプトマイシン硫酸塩を添加するDNAの除去、硫酸アンモニウムを添加する蛋白質の取得、及びウェスタン・プロット法の具体的方法は、文献。モレキュラー・クローニング。に記載されている。

抗原ポリペプチドをコードするDNA

本発明において、配列番号1のポリペプチドをコードするDNAとは、配列番号1のポリペプチドをトリプレット暗号表(それぞれのアミノ酸に対して、1~6通りのヌクレオチド配列が割り当てられている)に従ってアミノ酸をヌクレオチド配列に読み替えた時のDNA群(この中には、配列番号3のDNAも含まれる)から選ばれるDNAのことである。

抗原ポリペプチドAをコードするDNAとは、ポリペプチドAをコードするDNAであり、このDNAは、ポリペプチドAのアミノ酸配列をトリプレット暗号 表に従ってアミノ酸をヌクレオチド配列に読み替えたDNA群から選ばれるDN Aのことである。

ポリペプチドAとしては、前記抗原ポリペプチドの項で説明したものが挙げられ、ポリペプチドAをコードするDNAもそれらのポリペプチドのアミノ酸配列に対応したヌクレオチド配列のものがある。

同様に、本発明において、配列番号2のポリペプチドをコードするDNAとは、 配列番号2のポリペプチドをトリプレット暗号表(それぞれのアミノ酸に対して、 1~6通りのヌクレオチド配列が割り当てられている)に従ってアミノ酸をヌク レオチド配列に読み替えた時のDNA群(この中には、配列番号4のDNAも含 まれる)から選ばれるDNAのことである。

また、配列番号5のポリペプチドをコードするDNAとは、配列番号5のポリペプチドをトリプレット暗号表に従ってアミノ酸をヌクレオチド配列に読み替えた時のDNA群(この中には、配列番号7のDNAも含まれる)から選ばれるDNAのことである。

また、配列番号6のポリペプチドをコードするDNAとは、配列番号6のポリペプチドをトリプレット暗号表に従ってアミノ酸をヌクレオチド配列に読み替えた時のDNA群(この中には、配列番号8のDNAも含まれる)から選ばれるDNAのことである。

融合タンパク質をコードするDNAは、融合タンパク質のアミノ酸配列に対応する遺伝暗号から構成されるものであれば特に限定されないが、例えば配列番号 17の塩基配列や配列番号 18の塩基配列がある。

配列番号17の塩基配列は、DHFRとクラミジア・ニューモニエ53kDa 抗原ポリペプチド全体との融合タンパク質をコードするDNAの塩基配列となっ ており、配列番号18の塩基配列は、DHFRとクラミジア・ニューモニエ53 kDa抗原ポリペプチド(一部)との融合タンパク質をコードするDNAの塩基 配列となっている。

これらのDNAは、化学合成法か遺伝子組換え法で作製することができる。 化学合成法としては、例えば、ホスホアミダイド法があり、全長が100塩基 以下の塩基配列からなるDNAの合成に適しており、市販のDNA合成機で化学 合成することができる。

遺伝子組換え法としては、例えば、前述したような方法でクラミジア・ニューモニエの基本小体からDNAをクローニングする方法や、既に取得したDNAを 鋳型にし、そのDNAの任意の位置の塩基配列を元にして作製したプライマーを 利用したPCR法等がある。遺伝子組換え法は、100塩基以上の長いDNAの 作製も可能である。

次に、クラミジア・ニューモニエの基本小体から抗原ポリペプチドをコードするDNAのクローニング方法について詳しく説明する。

クラミジア・ニューモニエの培養

培養したHL細胞から細胞浮遊液を調製し、培養上清を除去した後にクラミジア・ニューモニエの浮遊液を添加してこれを培養し、遠心分離してクラミジア・ニューモニエ感染HL細胞を取得する。クラミジア・ニューモニエとしては、例えばクラミジア・ニューモニエYK41株(金本ら:ミクロバイオロジカル・イムノロジー、37巻、495-498頁、1993年(Y. Kanamoto et al., Microbiol. Immuno 1., Vol. 37, p. 495-498, 1993))が使用できる。

クラミジア・ニューモニエの基本小体の精製

クラミジア・ニューモニエ感染 H L 細胞を破砕し、遠心分離し、上清を回収する。ウログラフィン (シェーリング社製) を用いた連続密度勾配液にこの上清を添加して遠心分離する。予備実験で黄色味がかかった白いバンドの中にクラミジア・ニューモニエの基本小体が含有されていることを電子顕微鏡で確認しているので、このバンドを回収する。

クラミジア・ニューモニエのゲノムDNAの調製

クラミジア・ニューモニエの基本小体を、1 mM エチレンジアミン四酢酸 (EDTA) を含む10 mMトリスー塩酸緩衝液 (pH8.0) (以下、TE緩衝液という。) に懸濁し、1%ドデシル硫酸ナトリウム (SDS) 水溶液及び1 mg /mlプロテイナーゼK水溶液を加えて保温し、基本小体を溶解させる。0.1 M

トリスー塩酸緩衝液(pH8.0)飽和フェノールを加えて撹拌し、遠心分離し、水層を回収する。さらにRNA分解酵素(RNase)処理をし、フェノール/クロロホルム/イソアミルアルコール処理とエタノール沈殿処理をし、クラミジア・ニューモニエのゲノムDNAを取得する。

ゲノムDNA発現ライブラリーの作製

ゲノムDNAを制限酵素Accl、HaellL及びAlulで消化し、フェノール/クロロホルム/イソアミルアルコール処理とエタノール沈殿処理をし、部分消化DNAを取得する。この部分消化DNAにリンカー、アデノシンー5′ーニリン酸(adenosine 5′-triphosphate、以下、ATPと略す。)及びT4リガーゼを添加して、部分消化DNAにリンカーを付加させる。

これを、0.1M NaCl及び1mM EDTA含有10mMトリスー塩酸 級衝液を移動相とするクロマ・スピン6000 (Chroma spin 6000) カラムにかけ、溶出液を分取し、1kbpから7kbpのDNA断片を含む分画を回収する。得られた分画にATP及びT4ポリヌクレオチドキナーゼを加えて反応させ、DNA断片の5′端をリン酸化する。反応液をフェノール/クロロホルム/イソアミルアルコール処理及びエタノール沈殿処理し、5′端がリン酸化されたDNA断片を取得する。

このDNA断片に、予め制限酵素 EcoRIで切断しておいた λ gt11DNA、ATP及びT4リガーゼを加えて反応させ、市販のパッケージングキットを用い、得られた組換え λ gt11DNAをパッケージングし、ゲノムDNA発現ライブラリーを作製する。

抗原ポリペプチドをコードするDNAのクローニング

大腸菌Y1090r-株の培養液に上記ゲノムDNA発現ライブラリーを感染させ、寒天培地上で培養し、イソプロピルチオ-β-D-ガラクトシド(IPTG)水溶液に浸漬したニトロセルロースフィルターを利用して、挿入DNAの発現により菌体内に産生されたタンパク質をニトロセルロースフィルターに付着させる。このフィルターを牛血清アルブミンを用いてブロッキング反応させ、洗浄

し、次いでフィルターをクラミジア・ニューモニエ特異的モノクローナル抗体と反応させる。クラミジア・ニューモニエ特異的モノクローナル抗体としては、例えば、AY6E2E8やSCP53を使用することができる。AY6E2E8を産生するハイブリドーマは工業技術院生命工学工業技術研究所に受託番号FERM BP-5154として寄託されている。また、SCP53を産生するハイブリドーマについてはジャーナル・オブ・クリニカル・ミクロバイオロジー、132巻、583-588頁(1994)(J. Clin. Microbiol.、Vol. 132、p. 583-588、1994)に記載されている。反応後、フィルターを洗浄し、パーオキシダーゼ等の酵素で標識された抗マウス1gG抗体を反応させる。反応後、フィルターを洗浄し、パーオキシダーを洗浄し、発色基質液を添加して反応させる。発色基質液としては、例えば、過酸化水素水溶液及び4-クロロ-1-ナフトールのメタノール溶液を含む液を利用することができる。反応後、フィルターを洗浄し、風乾させる。

フィルターの発色スポットに対応する寒天培地上のプラークを同定し、プラークに含まれる入ファージを取得する。プラークが全て上記モノクローナル抗体と反応するようになるまで前記操作を繰り返し、抗原ポリペプチドをコードするDNAをクローン化し、クラミジア・ニューモニエ特異的モノクローナル抗体反応性のクラミジア・ニューモニエ特異的抗原ポリペプチドを発現する入ファージを取得する。

クラミジア・ニューモニエ抗原ポリペプチドをコードするDNAの取得

取得した λ ファージを大腸菌 Y 1 0 9 0 r - 株に感染させ、培養し、 λ ファージを大量に生産する。市販のキットを用いて λ ファージから D N A を取得・精製する。この D N A にプライマー、タックポリメラーゼ(Taq Polymerase)及びデオキシヌクレオチド類を添加し、加熱、冷却、保温の工程を繰り返し、 λ gtllに挿入された D N A を増幅させる。プライマーとしては、例えば、 λ gtll・フォワード・プライマー (λ gtll forward primer)及び λ gtll・リバース・プライマー (λ gtll reverse primer) (いずれも宝酒造株式会社製)があり、タックポリメラーゼとしては、例えば、アンブリタック・D N A・ポリメラーゼ(AmpliTaq DNA Polymerase)がある。この D N A 増幅方法の一般的手法は P C R 法とし

WO 96/09320 PCT/JP95/01896

て知られており、詳細は「サムブロック他編集、モレキュラー・クローニング第2版(コールド・スプリング・ハーバー・ラボラトリー)(1989年)」(J. Samb look et al., Molecular Cloning 2nd ed., Cold Spring Harbor Laboratory Press (1989)、以下、本文献を文献。モレキュラー・クローニング。という)に記載されている。

増幅されたDNAを取得し、塩基配列を決定・解析する。DNAの取得には市販のキットを使用することができ、例えばウイザード・PCR・プレップキット (Wizard PCR Prep kit) (プロメガ (Promega) 社製品)を使用することができる。また、塩基配列を決定はタックポリメラーゼを用いた蛍光標識ターミネータサイクルシークエンス法で行うことができ、この方法を用いるには、パーキン・エルマー・ジャパン社から販売されているキットを使用することができる。また、分析にあたっては市販の機械、例えば373A型DNAシークエンサ (アプライドバイオシステムズ社)を利用することができる。

塩基配列の決定後、得られたDNA塩基配列を遺伝子配列分析ソフトで解析し、 編集、連結、アミノ酸翻訳領域の推定を行なう。遺伝子配列分析ソフトとしては、 「DNASIS」(日立ソフトウェアエンジニアリング社)を用いることができ る。

解析の結果、完全長の遺伝子が取得できていない場合は、既に取得されている DNAの前後のDNAをゲノムウォーキングによって取得する。ゲノムウォーキ ングを行うには、宝酒造(株)から販売されているキットを使用することができる。

DHFRをコードするDNAの調製

DHFRをコードするDNAは、そのDNAを含むプラスミドベクターから制限酵素を用いてそのDNAを切り出すか、あるいはそのDNAを有するプラスミドDNAやゲノムDNAを鋳型とし、適切なプライマーを用いてPCR法を行ってそのDNAを増幅することによって取得する。

前者の方法では、DHFRをコードするDNAを含むプラスミドベクターとして、例えばプラスミドベクターpBBK10MMや本発明の組換えベクターでもあるpCPN533Tを利用することができる。pCPN533Tを含む大腸菌、

pBBK10MMを含む大腸菌は、それぞれ、受託番号FERM BP-5222、FERM BP-2374として工業技術院生命工学工業技術研究所に寄託されている。この大腸菌(プラスミド保持菌)からプラスミドを取得するには、通常のプラスミドDNA取得方法に従えば良く、この方法は文献。モレキュラー・クローニング。に記載されている。プラスミドpBBK10MMを用いる場合は制限酵素としてBamHI及びとXhoiを使用し、約4.6KbpのDNA断片を切り出せばよい。

後者の方法では、プラスミドDNAとして例えば前述のDBBK10MMやDCPN533Tをそのまま利用することができ、ゲノムDNAとしては例えば枯草菌のゲノムDNAを使用することができる。ゲノムDNAを取得するには通常のゲノムDNA取得方法に従えば良く、この方法は文献。モレキュラー・クローニング。に記載されている。

後者の方法に使用するプライマーは、DHFRをコードするDNAの5、末端と3、末端にある塩基配列を考慮して設計・合成することができる。例えば配列番号5の塩基配列の1番目から20番目の配列を有するオリゴヌクレオチドと461番目から480番目の配列に相補的な配列を有するオリゴヌクレオチドを使用することができる。これらのオリゴヌクレオチドは市販のDNA合成機を用いて化学合成することができる。

上記抗原ポリペプチドの中では、クラミジア・ニューモニエの53KDaの抗原ポリペプチド全体を含む配列番号1のポリペプチドが望ましい。

抗原ポリペプチドを抗原として用いる抗クラミジア・ニューモニエ抗体の製造 方法

抗クラミジア・ニューモニエ抗体を製造するには、本発明の抗原ポリペプチドを抗原としてマウスを免疫し、そのひ臓細胞を骨髄腫細胞株と融合させてハイブリドーマを作製し、その中からクラミジア・ニューモニエの53KDaの抗原ポリペプチドを認識するハイブリドーマを選択し、これを培養することによって得ることができる。

骨髄腫細胞株としては、例えばP3X63Ag8. 653 (ATCC CRL

- 1580) やP3/NSI/1-Ag4-1 (ATCC TIB-18)を使用することができる。

抗原として本発明の抗原ポリペプチドを使用すること以外は、マウスを免疫して抗体を得る公知の一般的手法に従い、抗クラミジア・ニューモニエ抗体を製造する。

抗原ポリペプチドを抗原として用いる抗クラミジア・ニューモニエ抗体の検出 ・測定方法及び試薬、並びに抗原ポリペプチドを有効成分とするクラミジア・ニ ューモニエ感染の診断薬

抗クラミジア・ニューモニエ抗体を検出・測定するには、例えば、上記抗原ポリペプチドを担体に固定化し、検体を添加し、洗浄し、標識化された二次抗体を添加し、洗浄し、この標識を直接的又は間接的に検出・測定する。

担体としては、例えば、ラテックスの粒子やセルロースの糸、その他プラスチック製のアッセイプレートや粒子等を利用することができる。

上記抗原ポリペプチドを担体に固定化するには、例えば共有結合や物理吸着を 利用する。

検体としては、例えばヒトの血清等を使用する。なお、検体中の他の抗体等が 担体に非特異的に結合するのを防止するため、検体の添加前に牛血清アルブミン 等で担体の表面をブロッキングしておくことが望ましい。

洗浄は界面活性剤を含むリン酸緩衝液等を利用して行う。

標識化された二次抗体としては、例えば標識化された抗ヒトモノクローナル抗体がある。標識としては種々のものが利用でき、例えばアルカリフォスファターゼ(Alkaline phosphatase)、ルシフェラーゼ(Luciferase)、ペルオキシダーゼ(Peroxidase)、 β – ガラクトシダーゼ(β - galactosidase)等の酵素、フルオレセイン(Fluorescine)等の蛍光物質を利用することができる。また、抗体と標識物の間にビオチン(Biotin)、アビジン(Avidin)、ストレプトアビジン(Streptoavidin)、ディゴキシゲニン(Digoxigenin)等の化学物質を介在させてもよい。

標識を直接的又は間接的に検出・測定するには、例えば、その標識が酵素であ

る場合は基質を添加し、酵素の触媒作用により発生する光や発色を検出・測定するか吸光度の変化を測定する。また、標識が蛍光物質である場合は反応系に紫外線を照射し、発生する蛍光を検出・測定する。必要に応じ、増感剤を使用する。

上記抗原ポリペプチドを抗原として用いる抗クラミジア・ニューモニエ抗体の 検出・測定用試薬としては、例えば上記抗原ポリペプチドを担体に固定化したも のやさらに上記標識化された二次抗体や基質等が必要量同封されたものがある。

上記抗原ポリペプチドを有効成分とするクラミジア・ニューモニエ感染の診断 薬としては、例えば上記試薬をそのまま利用することができる。

クラミジア・ニューモニエ遺伝子の検出・測定用プローブ及びプライマー

クラミジア・ニューモニエに特異的である53KDa抗原ポリペプチドをコードするDNAは配列番号3の塩基配列を有する。

本発明のプローブ及びプライマーは、

- (a) 配列番号3のDNAの中の連続した少なくとも10塩基の塩基配列を有するDNA、
- (b) 上記 (a) のDNAに相補的なDNA、又は
- (c)上記(a)若しくは(b)のDNAと90%以上の相同性を有するDNA、のいずれかを含有するDNAからなる。

塩基配列の長さとしては、 $10\sim50$ 塩基が好ましく、より好ましくは $15\sim20$ 塩基である。

本発明のプローブ及びプライマーの具体例としては、例えば、配列番号19の 塩基配列からなるDNAや配列番号20の塩基配列からなるDNAがある。

本発明のプローブ及びプライマーは市販のDNA合成装置を使用して容易に合成することができる。DNA合成装置はアプライドバイオシステムズ(Applied Biosystems)社等で販売されている。また、予め短いDNA断片を化学合成し、これをプライマーとして後述のPCR法を行って長いDNA断片を作製すること

もできる。

本発明のプローブ及びプライマーには、上記DNAを標識物で標識されたものも含まれる。

標識物としては、例えば、ビオチン(Biotin)、アビジン(Avidin)、ストレプトアビジン(Streptoavidin)、ディゴキシゲニン(Digoxigenin)等の化学物質、アルカリフォスファターゼ(Alkaline phosphatase)、ルシフェラーゼ(Luciferase)、ペルオキシダーゼ(Peroxidase)、βーガラクトシダーゼ(β-galactosidase)等の酵素、フルオレセイン(Pluorescine)等の蛍光物質がある。プローブにビオチンを付加させるには、例えば、ターミナルトランスフェラーゼ(Terminal transferase)存在下で、プローブにビオチン化されたデオキシウリジンー5′ー三リン酸(deoxyuridine 5′-triphosphate)を添加する。ターミナルトランスフェラーゼやビオチン化されたデオキシウリジンー5′ー三リン酸はキットとしてベーリンガーマンハイム(Boehringer Mannheim)社から購入できる。ビオチン以外の標識物を付加する場合も市販のキットを使用することができ、このようなキットは宝酒造(株)や東洋紡(株)から購入できる。また、文献″モレキュラー・クローニング″に記載されている方法に従って標識物を付加させてもよい。

また、標識物としては放射性同位元素を利用することもでき、その場合は例えば、T4ポリヌクレオチドキナーゼ(T4 polynucleotide kinase)存在下、これに $(\gamma-32P)$ d A TP を添加する。放射性同位元素で標識する一般的手法は文献 "モレキュラー・クローニング"に記載されている。 T4 ポリヌクレオチドキナーゼは東洋紡(株)から、 $(\gamma-32P)$ d A TP は(株) T マシャムから購入できる。

なお、構成成分がDNAである本発明のプローブやプライマーの代わりに、本発明のプローブやプライマーの塩基配列に対応するRNA、即ち、塩基としてチミンがウラシルに置換され、糖としてデオキシリボースがリボースに置換された核酸、も本発明のプローブやプライマーとして使用でき、これらの構成成分がRNAであるプローブやプライマーも本発明の検出・測定方法や検出・測定用試薬に使用することができる。

クラミジア・ニューモニエ遺伝子の検出・測定方法

本発明のプローブを用いてクラミジア・ニューモニエ遺伝子を検出・測定するには、例えば、検体中のDNAを電気泳動して分子量で分離し、そのDNAをニトロセルロースフィルターやナイロンメンブレン等に移して固定し、標識化された本発明のプローブを添加し、標識を検出・測定する。この方法はサザンブロット法と呼ばれており、その一般的手法は文献。モレキュラー・クローニング。に記載されている。

本発明のプライマーを用いてクラミジア・ニューモニエ遺伝子を検出・測定するには、例えばPCR法を行う。PCR法については既に述べているが、本発明のプライマーを用いてPCR法を行うクラミジア・ニューモニエ遺伝子の検出・測定方法の具体的な工程は、下記の通りである。

- (ア) DNAを含む検体に、本発明のプライマー、DNAポリメラーゼ、dATP、dCTP、dGTP及びdTTPを含む緩衝液を添加し、加熱する。
- (イ)冷却し、保温し、加熱する。
- (ウ) (イ) の操作を繰返す。
- (工) 反応波に含まれるDNAを検出・測定する。

工程(ア)のDNAを含む検体としては、例えば、患者の咽頭部綿棒擦過材料等から核酸を抽出したものがある。

工程(イ)の冷却は例えば 4.5 \mathbb{C} ~ 6.5 \mathbb{C} \mathbb{C} 0. 5 ~ 5 分間静置し、保温は例えば 7.0 \mathbb{C} ~ 8.0 \mathbb{C} \mathbb{C} ~ 1.0 分間静置し、加熱は例えば 9.0 \mathbb{C} ~ 1.0 0 \mathbb{C} \mathbb{C} 0. 5 ~ 5 分間静置する。

工程(ア)の加熱操作や工程(イ)の冷却、保温及び加熱の操作は、DNAサーマルサイクラー(DNA thermal cycler)(登録商標)(パーキン-エルマー)シータス(Perkin-elmer Cetus)製)を使用して行うことができる。

工程(ウ)の繰返し回数は特に限定されないが、30回程度繰り返す。

工程(エ)の反応液に含まれるDNAを検出・測定するには、例えば、反応液を臭化エチジウム含有アガロースゲルを用いて電気泳動して反応液に含まれているDNAを分子量で分離し、紫外線を照射する。使用した本発明のプライマーが 標識物で標識されている場合はその標識を利用してDNAを検出・測定する。

なお、一度工程(ア)~工程(ウ)を行った後、添加する本発明のプライマーを別の塩基配列のものにし、再度工程(ア)~工程(ウ)を行ってから工程(エ)に入ってもよい。

クラミジア・ニューモニエ遺伝子の検出・測定用試薬

本発明のクラミジア・ニューモニエ遺伝子の検出・測定用試薬としては、例えば、本発明のプローブ又はプライマーを含む水溶液が凍結された状態でプラスチック製の容器に納められているものがある。

発明を実施するための最良の形態

以下、実施例により本発明を詳細に説明するが、本発明はこれにより何ら制限 されるものではない。

以下、クラミジア・ニューモニエの宿主細胞の培養から、クラミジア・ニューモニエの抗原ポリペプチドの遺伝子DNA配列/アミノ酸配列の決定まで、順を追って説明する。

実施例1 クラミジア・ニューモニエ特異的53K抗原ポリペプチドをコードするDNAの作製

(A)宿主細胞(HL細胞)の培養

予め、プラスチック製培養フラスコ(75cm²)の底面いっぱいに増殖させた HL細胞をリン酸緩衝化生理食塩液(以下、PBSという。)マグネシウム不含 (一)液5mlで洗浄し、0.1%(w/v)トリプシンを含むPBSを5ml加え て細胞表面全体に行き渡らせ、その液を捨てた後、37℃で10分間保温し、1 0%(v/v) 牛胎児血清を含むダルベッコMEM培地5mlを加え、ピペッテイ ングによりHL細胞を剝離して、細胞浮遊液を調製した。

75cm²のプラスチック製培養フラスコで培養するときは、培養フラスコに上 記細胞浮遊液1ml及び10%(v/v)牛胎児血清含有ダルベッコMEM培地1 5~20mlを加え、また、6ウェルプラスチック製培養容器で培養するときは、 上記細胞浮遊液8mlと10%牛胎児血清含有ダルベッコMEM培地292mlとの 混合液4mlずつを各ウェルに加え、5%(v/v)炭酸ガス雰囲気下で培養した。

(B) クラミジア・ニューモニエYK41の培養

6 ウェルプラスチック製培養容器(底面上)に増殖したHL細胞の培養上清を ピペットで取り除き、これにクラミジア・ニューモニエYK41株の浮遊液(Ka namoto et al., Microbiol. Immunol., Vol. 37, p. 495-498, 1993)〔クラミジ ア・ニューモニエYK41保存液を、1リットルあたり庶糖75g、リン酸一カ リウム 0. 52g、リン酸ニカリウム1. 22g及びグルタミン酸 0. 72gを 含む水溶液(以下、SPGという。)で12ないし24倍に希釈し、超音波で1 分間処理し、2, 000rpmで3分間遠心分離した上清〕を1ウェルあたり2ml 加えて、2, 000 rpmで1時間遠心吸着を行った。遠心吸着後、クラミジア・ニューモニエ浮遊液を除き、1 μ g/mlシクロヘキシミド及び10% (v/v) 牛胎児血清を含むダルベッコMEM培地をウェルあたり4 ml加え、5% (v/v) 炭酸ガス雰囲気下、36 $\mathbb C$ で3日間培養した。培養後、滅菌したシリコン片で細胞を剝離し、細胞を回収した。これを8, 000 rpmで30分間遠心分離して、沈殿をSPGに再懸濁し、-70 $\mathbb C$ で保存した。

(C) クラミジア・ニューモニエYK41の基本小体の精製

-70℃に保存しておいたクラミジア・ニューモニエYK41感染凍結HL細 胞浮遊液を融解し、テフロンホモジナイザーでホモジナイズした。2.500 гр mで10分間遠心分離し、上清を回収した。沈殿は再びSPGに懸濁し、同様の 操作を行い、上清を回収した。同様の操作を更に2回行い、得られた上清は集め て合わせた。

別途、遠心管に50%(w/v)底糖を含む0.03Mトリス-塩酸緩衝液(pH7.4)、次いで、ウログラフィン76%(シェーリング社製)3容量と0.03Mトリス-塩酸緩衝液(pH7.4)7容量との混合液を重層し、この上に先に回収した上清を注意深く重層し、8.000rpmで1時間遠心分離した。50%(w/v)底糖を含む0.03Mトリスー塩酸緩衝液(pH7.4)層及び沈殿を回収し、この回収液に同容量のSPGを加え、10.000rpmで30分間遠心分離した。上清を捨て、沈殿をSPGに懸濁した。遠心分離管に、ウログラフィン76%(シェーリング社製)と0.03Mトリスー塩酸緩衝液(pH7.4)の35%から50%(総量に対する前者の容量比)までの連続密度勾配液を作製し、この上に懸濁液を重層し、8000rpmで1時間遠心分離した。黄色味がかった白いバンドを少量摂取し、電子顕微鏡で観察した結果、クラミジア・ニューモニエの基本小体が含まれていた。そこでそのバンドを回収し、これをSPGで2倍に希釈し、10000rpmで30分間遠心分離した。得られた沈殿をSPGに懸濁し、タンパク質濃度を測定(バイオラッド社のタンパク測定キットを用い、牛血清アルブミンを標準とした)後、一70℃で保存した。

(D) クラミジア・ニューモニエYK-41株のゲノムDNAの調製

上記精製クラミジア・ニューモニエYK-41株の基本小体の懸濁液300μ1(タンパク質濃度:1.37mg/ml)を4℃、12.000rpmで5分間遠心分離した。沈殿に1mMEDTAを含む10mMトリス-塩酸緩衝液pH8.0(以下、TE緩衝液という)500μ1を加えて懸濁した。同様の遠心分離を再度行い、沈殿を300μ1のTE緩衝液に懸濁した。1%SDS水溶液30μ1及び1mg/mlプロテイナーゼK水溶液30μ1を加え、56℃で30分間インキュベートし、基本小体を溶解させた。0.1Mトリス-塩酸緩衝液(pH8.0)飽和フェノール350μ1を加え、ボルテックスミキサーでよく混合後、4℃、12、000rpmで5分間遠心分離し、水層を回収した(DNAの抽出)。この抽出操作はもう一度繰り返した。10mg/mlのRNase溶液を2μ1加え、37℃で2時間インキュベートし、RNAを分解した。0.1Mトリス-塩酸緩衝液(pH8.0)飽和フェノール、クロロホルム及びイソアミルアルコールの25:24:1(容量比)の混合液(以下、PCIという。)300μ1を加え、ボルテックスミキサーでよく混合し、4℃、12、000rpmで5分間遠心分離し、水層を回収した。この操作を合計5回繰り返した。

得られた液にその1/10容の10M酢酸アンモニウム水溶液及び2容のエタノールを加え、5分間放置し、DNAを析出させたのち、4 \mathbb{C} 、12.000rpmで5分間速心分離した。沈殿は70%エタノール水溶液600 μ 1を加え、混合し、4 \mathbb{C} 、12.000rpmで5分間速心分離する洗浄を2回繰り返した。速沈管のふたを開けたまま 15分間放置して沈殿を乾燥させ、これにTE200 μ 1を加えて溶かし、-20 \mathbb{C} に保存した。

(E) ゲノムDNA発現ライブラリーの作製

ゲノムDNA溶液100μ1に、制限酵素用M-buffer10μ1、制限酵素混合液(Accl、Haelli及び1/50希釈のAlul各0.4μ1とTE20μ1を混合)10μ1を加え、37℃で20分間反応させた。なお、上記20分の反応時間は、DNAが1kbp~7kbpの大きさの部分消化DNAに分解される時間で、予め少量のゲノムDNAを用いて試験した。上記反応液にPCIを

 $100\mu1$ 加え、ポルテックスミキサーでよく混ぜ、 $4\mathbb{C}$ 、12.000 rpmで5分間遠心分離し、水層を回収した。これに3 M 能酸ナトリウム水溶液 $10\mu1$ 及びエタノール $220\mu1$ を加え、 $-80\mathbb{C}$ に15分間静置し、部分消化DNAを析出させた。 $4\mathbb{C}$ 、12.000 rpmで5分間遠心分離し、上清液を捨てたのち、沈殿に70%エタノール水溶液 $500\mu1$ を加えて混ぜ、再び、12.000 rpmで5分間遠心分離した。上清液を捨て、沈殿を減圧下に乾燥した。

得られた部分消化DNAを精製水 20μ lに溶かし、その 19μ lをとり、これに下記塩基配列で示されるリンカー($20pmole/\mu$ l) 14μ l、10mM ATP4. 5μ l、50mM MgCl2、50mMジチオスレイトール及び 50μ g/ml牛血清アルプミン含有 0.2mHリスー塩酸緩衝液(pH7. 6、以下、10e 強度ライゲーション用緩衝液という) 4.5μ l、精製水 2μ l及びT4リガーゼ 1μ lを加え、16で4時間反応させ、リンカーを付加させた。

5' - AATTCGAACCCCTTCG-3'
3' - GCTTGGGGAAGCp-5'

リンカーを付加させた部分消化DNAを、0. 1 MNaC1及び1 mMEDT A含有10 mMトリスー塩酸緩衝液を移動相とするChroma spin 6000カラムにかけた。溶出液 2 適ずつを分取し、各分画の一部を 0. 8 %アガロースゲル電気泳動で分析して、1 k b p から 7 k b p の D N A 断片を含む分画を回収した。 得られた分画 1 4 4 μ 1 に、精製水 1 3 μ 1、10 m M A T P 2 0 μ 1、0. 1 M M g C 1 2、50 m M ジチオスレイトール、1 m M スペルミジン塩酸塩及び 1 m M E D T A 含有 0. 5 M トリスー塩酸緩衝液(pH 7. 6、以下、10倍濃度リン酸化反応用緩衝液という。) 2 0 μ 1、及び T 4 ポリヌクレオチドキナーゼ 3 μ 1を加え、37℃で30分間反応させ、D N A 断片の 5′端をリン酸化した。 P C I 2 0 0 μ 1を加えてよく振り混ぜた後、4℃、12、000 rpmで5分間遠心分離し、水圏を回収した。20 mg/mlグリコーゲン水溶液 1 μ 1、3 M m で か け ウム水溶液 2 0 μ 1 及びエタノール 4 0 0 μ 1を加えてヌクレオチドを折出させた。 4℃、12、000 rpmで10分間遠心分離し、上清を捨て、沈殿に70

WO 96/09320 PCT/JP95/01896

%エタノール 2 0 0 μ 1 を加え混ぜ、再び遠心分離し、上清を捨て、沈殿を風乾し、精製水 1 μ 1 を加え溶かした。

(F) クラミジア・ニューモニエ特異的モノクローナル抗体の作製

骨髄腫細胞株の培養及び継代

モノクローナル抗体の作製に用いた骨髄腫細胞株は、P3/NSI/1-Ag4-1(ATCC TIB-18)である。10%(v/v)牛胎児血清を含むRPMI1640培地で培養し、継代した。細胞融合に供する2週間前に、 $0.13mM08-rザグアニン、<math>0.5\mu g/m10MC-210$ (マイコプラズマ除去剤、大日本製薬(株)製)及び10%(v/v)牛胎児血清を含むRPMI1640培地で1週間培養し、その後の1週間は通常の培地で培養した。

マウスの免疫

タンパク質の濃度が 2.70μ g / m 1 の上記基本小体の懸濁液 2.00μ 1 を、 1.2000 r p m v 1.0 分間遠心分離し、沈殿に 2.00μ 1 の P B S を加え、再懸濁した。これに 2.00μ 1 の 7 ロイントコンプリートアジュバントを加え、エマルジョンとし、その 1.50μ 1 をマウスの背中の皮下に注射した(この日を 0 日目とする)。 1.4 日目、 3.4 日目及び 4.9 日目に、タンパク質の濃度が 2.70μ g / m 1 の精製基本小体の懸濁液 1.00μ 1 をマウスの腹腔内に注射した。更に、 6.9 日目に 9 ンパク質の濃度が 8.00μ g / m 1 の精製基本小体の懸濁液 5.00μ 1 、 9.2 日目に 同懸濁液 1.00μ 1 をマウスの腹腔内に注射し、 9.5 日目に 脾臓を取りだし、細胞融合に供した。

細胞融合

免疫したマウスの膵臓から得られた脾細胞108個に対して骨髄腫細胞107個を丸底ガラスチューブにとり、よく混合し、1400rpmで5分間速心分離し、上清を除去した後、細胞を更によく混合した。予め37℃に保温しておいた30%(w/v)ポリエチレングリコールを含むRPMI1640培地0.4m1を加え、30秒間放置した。700rpmで6分間速心分離した後、RPMI1640培地10m1を加え、ポリエチレングリコールがよく混ざるようにガラスチューブをゆっくり回転させ、1400rpmで5分間速心分離し、上清を完全に除去し、沈殿に5m1のHAT培地を加え、5分間放置した。更に10~20m1のHAT培地を加え、30分間放置した後、骨髄腫細胞濃度が3.3×105/m1となるようにHAT培地を加えて細胞を懸濁させ、パスツールピペットを用い96ウェルプラスチック製培養容器のウェルに2滴ずつ分注した。5%(v/v)炭酸ガス雰囲気下、36℃で培養し、1日後、7日後及び14日後にウェルにHAT培地を1~2滴加えた。

抗体生産細胞のスクリーニング

精製したクラミジアニューモニエYK41の基本小体を1%(w/v)SDSで可溶化し、0.02%アジ化ソーダ含有0.05M重炭酸ソーダ緩衝液(pH9.6)に対して透析したのち、タンパク質濃度が1~10μg/m1となるように希釈した液を、塩化ビニル製96ウェルEIA用プレートのウェルに50μ1とり、4℃で一晩放置し、抗原を吸着させた。上澄みを除去し、ウェルに0.02%(w/v)ツィーン20を含むPBS150μ1を加え、3分間放置し、その後除去・洗浄した。洗浄操作を更に1回行なった後、ウェルに1%(v/v)牛血清アルブミンを含むPBS100μ1を加え、4℃で一晩以上放置し、プロッキングを行なった。牛血清アルブミンを含むPBSを除いた後、0.02%(w/v)ツィーン20を含むPBSで同様に2回洗浄後、ウェルに融合細胞の培養上清を50μ1加え、室温で2時間放置した。0.02%(w/v)ツィーン20を含むPBSで同様に3回洗浄後、ウェルに25ng/m1のベルオキ

シダーゼ標識化ヤギ抗マウス I g G 抗体を 50μ 1 加え、室温で 2 時間放置した。 0.02% (w/v) ツィーン 20 を含む P B S で同様に 3 回洗浄後、ウェルに A B T S 溶液 (K P L 社製)を 50μ 1 加え、室温で 15 分~ 1 時間放置して発色反応させた後、 96 ウエル E I A プレート用光度計で 405nm の吸光度を測定した。

この結果、陽性のウエルが見出され、その培養上清中には基本小体と反応する 抗体が含まれていることが分かった。このウェル中の細胞をそれぞれパスツール ピペットで回収し、24ウェルプラスチック製培養容器に移し、HAT培地1~ 2mlを加え、同様に培養した。

限界希釈法によるクローニング

2 4 ウェルプラスチック製培養容器で増殖させた融合細胞の細胞濃度を測定し、細胞数が2 0 個/m 1 となるようそれぞれをHT培地で希釈した。別にHT培地に懸濁した4~6 週齢のマウス胸腺細胞を9 6 ウェルプラスチック製培養容器に2×105個/ウェルとり、これに上記の融合細胞(細胞濃度が20個/m1)を50μ1/ウェルずつ加え、5%(マ/マ)炭酸ガス雰囲気下、36℃で培養し、その1日後、7日後及び14日後にHT培地を1~2満/ウェル加えた。細胞の増殖が見られたウェルの培養上清を50μ1回収し、上記と同様の方法で抗体の生産を確認した。

ウェル中に単一の細胞コロニーしか存在せず、基本小体と反応する抗体を生産するもので、かつ増殖が早い細胞をウェルから回収し、引き続き24ウェルプラスチック製培養容器で増殖させた。更に、同様のクローニング操作を繰り返し、最終的にハイブリドーマ、AY6E2E8を得た。

モノクローナル抗体の生産

ハイブリドーマAY6E2E8を、10%(v/v)牛胎児血清含有RPMI1640培地20m1を入れた $75cm^2$ プラスチック製細胞培養用フラスコで増殖させ、 $3\sim4$ 日ごとにその培養液から $16\sim18m1$ を抜き取り、代わりに新鮮な10%(v/v)牛胎児血清含有RPMI1640培地を総量で20m1と

なるように補い、継代培養を続けた。抜き取って回収した細胞培養液は、120 0rpmで5分間遠心分離し、上清(モノクローナル抗体含有培養上清)を回収 した。

また、予め2週間前にプリスタン0.5mlを腹腔内に注射しておいたBalb/cマウスのその腹腔内に、 $1\sim5\times106$ 個/mlとなるようPBSで懸濁したハイブリドーマ株を1m1注射した。3週間後、balb/cマウスの腹水を回収し、<math>1200rpmで5分間遠心分離し、上清(モノクローナル抗体含有腹水)を回収した。

モノクローナル抗体のサブクラスの同定

ISOTYPE Ab-STAT (SangStatMedical社製)を 用い、モノクローナル抗体のサブクラスを同定した。その結果、ハイブリドーマ AY6E2E8が生産するモノクローナル抗体のサブクラスは1gG2bであった。

モノクローナル抗体の精製

ハイブリドーマAY6E2E8が生産するモノクローナル抗体は以下のようにして精製した。ハイブリドーマAY6E2E8をマウス腹腔内に注射して得られたモノクローナル抗体含有腹水1容に3容のPBSを加えて混合し、3000 rpmで10分間速心分離し、その上清をポアサイズ0.22 μ mのフィルタで遮透後、これをクロマトップスーパープロテインAカラム(径4.6 μ m×100 μ m、日本ガイシ(株)製)を用いるHPLCで精製した。カラムは予め、PBSで平衡化しておいた。

0. 22μmフィルタで濾過後のサンプル1mlをカラムに注入後、PBSを1ml/minで3分間流し、次いで、5ml/minで4分間流してカラムを洗浄した後、精製水1LにNaCl8. 77g、クエン酸(一水和物)16. 7g及びNa2HPO4・12H2Ol4. 72gを溶かした液を2ml/minで5分間流してモノクローナル抗体を溶出した。モノクローナル抗体の溶出画分を集め、TTBS溶液で希釈した。

クラミジア・ニューモニエの基本小体を溶解し、基本小体に含有されているペ

プチドを取得した。このペプチドと上記モノクローナル抗体を用いてウェスタン プロットを行い、取得したモノクローナル抗体の特異性を調べた。

その結果、取得したモノクローナル抗体はクラミジア・ニューモニエ53KD a抗原ポリペプチドを認識することがわかった。

ハイブリド→マAY6E2E8と同様にして、ハイブリドーマ70を取得した。 上記の方法と同様にしてハイブリドーマ70が産生するモノクローナル抗体の特 異性を調べた結果、このモノクローナル抗体はクラミジア・ニューモニエ73K Da抗原ポリペプチドを認識することがわかった。

また、上記の方法と同様にしてハイブリドーマ70が産生するモノクローナル 抗体のサブクラスを調べた結果、この抗体のサブクラスは1gGであった。

(G) 抗原ポリペプチドをコードするDNAのクローニング

大腸菌 Y 1 0 9 0 r - 株の一白金耳を1 0 m M M g S O 4 3 ml、0. 2 %マルトース及び5 0 μg/ml アンピシリン含有のL B (水1 L 中にNa C 1 5 g、ポリペプトン1 0 g 及び酵母エキス5 g を含む) 培地に接種し、3 7 ℃で一晩振とう培養したのち、これを2.000 rpmで1 0 分間遠心分離した。沈殿(大腸菌)に10 m M M g S O 4 水溶液 9 mlを加えて混ぜ、この大腸菌懸濁液の0.35 mlを採り、これに λ gt11 (D N A ライブラリー) 懸濁液を0.1~10 μ 1 加え、3 7 ℃で20分間インキューベートし、大腸菌に λ gt11を感染させた。予め47℃に保温した液状 L B 寒天培地2.5 mlに、上記 λ gt11を感染させた。予め47℃に保温した液状 L B 寒天培地2.5 mlに、上記 λ gt11を感染 大腸菌を加え、これを直ちに L B 寒天培地上に撒いた。上層寒天培地が固化した後、42℃で3~4時間培養し、プラークが観察された時点で10 m M 1 P T G 水溶液に浸漬したニトロセルロースフィルター(∮82 mm)を上層寒天培地に乗せ、37℃で12時間培養した。黒インクをつけた注射針で非対称に3ヵ所突き刺してフィルターに目印をつけた後、フィルターを寒天培地からとり出し、150 m M N a C 1 及び0.1%ツィーン20含有20 m M トリスー塩酸緩衝液(pH7.5)(以下、T T B S 緩衝液という)で3回洗浄した。寒天培地は冷蔵庫中に保存した。

フィルターを150mMNaCl含有20mMトリスー塩酸緩衝液(pH7.

5) (以下、TBS緩衝液という) の 0. 1%牛血清アルブミン含有液に浸し、

37℃で1時間振とうし、ブロッキング反応を行った。次いで、フィルターをTTBS級衝液で2回洗浄したのち、10μg/mlのクラミジア・ニューモニエ特異的モノクローナル抗体TTBS溶液に浸し、3.7℃、1時間振とうした。フィルターをTTBS級衝液で3回洗浄した後、パーオキシダーゼ標識の(50ng/ml)抗マウスIgG抗体溶液(TTBS級衝液)中、3.7℃で1時間振とうした。フィルターをTTBS級衝液で3回、及びTBS級衝液で3回洗浄した後、発色基質液(TBS級衝液100mlに30%過酸化水素水溶液60μlと0.3%4ークロロー、1ーナフトールのメタノール溶液20mlを加えて調製)に浸漬し、室温で約30分間放置した。十分発色した時点でフィルターをとり出し、精製水で洗浄し、風乾した。

フィルターの発色スポットに対応する寒天培地上のプラークを捜して同定し、この部分の寒天をパスツールピペットでつき刺し、プラークを回収した。回収したプラークはクロロホルム 1 満を加えた 0. 1 MN a C 1、8 m M 硫酸マグネシウム及び 0. 0 1 % ゼラチン含有 5 0 m M トリスー塩酸緩衝液(pH 7. 5)(以下、S M 緩衝液という)中に採り、4 ℃で一晩放置しプラーク中の λ ファージを抽出した。プラークが全て上記モノクローナル抗体と反応するようになるまで、前記操作を繰り返し、抗原ポリペプチドをコードする DNAをクローン化した。

このようにして、クラミジア・ニューモニエ特異的モノクローナル抗体反応性 のクラミジア・ニューモニエ特異的抗原ポリペプチドを発現する λファージが得 られ、これを 5 3 - 3 S λファージと命名した。

(H) 53-3S λファージの培養とDNA精製

前記(F)で述べた方法と同様にしてプラークを形成させ、一つのプラークを回収し、 100μ 1のSM級衝液に入れ、4Cで一晩放置し λ ファージを抽出した。LB培養液で一晩培養した大腸菌Y1090r一株 250μ 1に、 λ ファージを感染させた。予め37Cに温めておいた10mM硫酸マグネシウムを含むLB培地50m1に接種し、 λ ファージによる大腸菌の溶菌が起こるまで37Cで5C7時

間振とう培養した。 250μ 1のクロロホルムを加え、 3.000 rpmで 10分 間遠心分離し大腸菌細胞残渣を除き、 λ ファージ懸濁液を得た。 λ ファージ DN Aは、Wizard λ prepsキット(プロメガ社)を用いて精製した。

(1) クラミジア・ニューモニエ抗原ポリペプチドをコードするDNAの増幅 600μ1用のマイクロチューブに、精製水61.5μ1、10倍濃度 反応用級衝液(500mM KC1、15mM MgC12、0.01%ゼラチンを含むトリスー塩酸級衝液pH8.3)10μ1、20mM dNTP 1μ1、53-3SλファージDNA溶液0.1μ1、20mM λgtll forward primer (宝酒造株式会社)1μ1、20nM λgtll reverse primer (宝酒造株式会社)1μ1、20nM λgtll reverse primer (宝酒造株式会社)1μ1、30秒、55℃ 30秒、73℃ 2分のサイクルのインキュベーションを30回繰返し、DNAを増幅した。反応後、1.2% 低温融解アガロースゲル電気泳動を行い、増幅されたDNAを切り出して Wizard PCR Prepキット(プロメガ社)で精製した。

(J) DNA塩基配列分析

DNA塩基配列分析は、PCRで増幅したDNAを鋳型として、Taq DNA ポリメラーゼを用いた蛍光標識ターミネータサイクルシークエンス法でシークエンス反応を行い、373A型DNAシークエンサ(アプライドバイオシステムズ社)で分析を行った。得られたDNA塩基配列を遺伝子配列分析ソフト「DNASIS」(日立ソフトウェアエンジニアリング社)を用いて、編集、連結、アミノ酸翻訳領域の推定を行ない、配列番号9の配列を得た。

配列番号9の配列の解析結果から、53KDa抗原ポリペプチドについて、そのN末端からC末端に向けて約60%のアミノ酸配列が解明されたことが分かった。

上記クラミジア・ニューモニエ抗原ポリペプチドをコードするDNAは、クラミジア・ニューモニエに特異的で、かつ、53KDa抗原ポリペプチドを認識するモノクローナル抗体を利用してクローニングされたので、このDNAは、明ら

₩O 96/09320

かに 5 3 K D a 抗原ポリペプチドをコードしている。

配列番号9の塩基配列及びアミノ酸配列の相同性検索をGenBankデータベースで行なった結果、高い相同性を示す既知の配列は無かった。

実施例 2 クラミジア・ニューモニエの抗原ポリペプチドの一部を含むポリペプ チドをコードする DNA を含む組換えベクターの作製、及びそれを含む形質転換 体の作製

前述したように、取得したDNAが53KDa抗原ポリペプチドをコードしていることが明らかであるが、念のため、下記のようにして、取得したDNAを発現させ、上記抗体と反応するか否か調べた。

プラスミドpBBK10MMを制限酵素BamHiとXholで切断し、1.2%低温 融解アガロースゲル電気泳動を行い、約4.6KbpのDNA断片を切り出して 精製した。このDNA断片100ngに、配列番号11及び配列番号12の合成DN A各1ngを添加し、DNAライゲーションキット(宝酒造)を用いてこれらのD NAを連結した。この反応物を大腸菌HB101株コンピテントセル(宝酒造) に入れ、形質転換体を作製し、プラスミドを取得し、これをpADA431と名 付けた。このプラスミドを制限酵素Muniで切断した後、アルカリホスファターゼ 処理し5′リン酸基を除去した。

一方、53-3S λファージDNAを制限酵素BcoRlで切断し、このDNA断片 50 ngに、上記の制限酵素MunIで切断した pADA431プラスミドDNA100 ngを添加し、同様に連結し、形質転換体を作製し、53-3S λファージDNAの制限酵素EcoRl断片が組み込まれたプラスミドを取得し、これをpCPN533aと名付けた。このプラスミドは、配列番号10の塩基配列を有する約5.7kbpのDNAであり、53K抗原ポリペプチドの一部を含むポリペプチドを宿主大腸菌で発現させることができるものである。この53K抗原ポリペプチドをできるものである。この53K抗原ポリペプチドの一部を含むポリペプチドをコードするDNAの塩基配列は配列番号4のようになっており、この塩基配列から推定されるアミノ酸配列はを配列番号2のようになっていた。プラスミドpCPN533aをもつ大腸菌を同様に培養

WO 96/09320 PCT/JP95/01896

実施例3 クラミジア・ニューモニエの53KDa抗原ポリペプチド全体をコードするDNAの取得

配列番号9の塩基配列を元に、配列番号26及び27の塩基配列を有するDNAを、DNA合成機を用いて合成した。

実施例1で得たクラミジア・ニューモニエYK41株のゲノムDNAの水溶液 $10\mu1$ (DNA含有量:約 $1\mug$)に、 $10倍濃縮Κバッファ<math>5\mu1$ 、精製水 $35\mu1$ 及び制限酵業 $HindIII(19<math>U/\mu1$) $5\mu1$ を添加し、37で3時間保温した。

得られた反応液をフェノールで抽出し、エタノールを添加し、遠心分離して沈殿を取得した。この沈殿に、PCR in vitro Cloning Kit(宝酒造(株)製品名) 中のHindIIIカセットDNA(20ng/ μ 1)5 μ 1、ライゲーション溶液15 μ 1を添加し、16 ∇ で30分間保温した。

取得した反応液をフェノールで抽出し、エタノールを添加し、遠心分離して沈 殿を取得し、これを 10μ 1の精製水に溶解した。

PCR工程後の反応液 $1 \mu 1$ に、プライマーDNAとして、配列番号 27の塩基配列を有するDNA($20pmo1/\mu1$) $1 \mu 1$ 及び配列番号 29の塩基配列を有するDNA($20pmo1/\mu1$)(上記キットにおいて、プライマーC 2として同封されていたもの) $1 \mu 1$ を用い、再度PCR工程を行った。

2番目のPCR工程後の反応液を1.2%低融点アガロースゲル電気泳動させ、約1.4kbpの大きさのDNAが含有されているアガロースゲルを切り出した。DNAの精製には Wizard PCR Prepキット (プロメガ社)を用いた。即ち、切り出したアガロースゲルにキットに同封されている緩衝液を添加し、加熱してアガロースゲルを溶解し、キットに同封されている精製用樹脂を添加してDNAを樹脂に吸着させ、遠心分離して精製用樹脂を沈殿として取得した。沈殿をプロパノールで洗浄し、再度遠心分離して沈殿を取得した。沈殿に精製水を添加し、精製用樹脂からDNAを溶出して、遠心分離し、上清 (DNA水溶液)を得た。以上の工程をDNA精製工程という。

取得したDNA水溶液を用い、含まれるDNAを鋳型とするTaq DNA ポリメラーゼを用いた蛍光標識ターミネータサイクルシークエンス法でシークエンス反応を行い、373A型DNAシークエンサ(アプライドバイオシステムズ社)でそのDNAの塩基配列を分析した。得られたDNA塩基配列を遺伝子配列分析ソフト「DNASIS」(日立ソフトウェアエンジニアリング社)を用いて、編集、連結、アミノ酸翻訳領域の推定を行なった。以上の工程を塩基配列解析工程という。

取得したDNAの塩基配列を解析した結果、このDNAは実施例1で取得した クラミジア・ニューモニエの抗原ポリペプチドをコードするDNAの中の3'末端側の約50bpの塩基配列を有していた。さらに、その塩基配列の下流には、 終始コドンを含有する約0.7kbのコード領域が存在していることがわかった。

配列番号9の塩基配列を元に、クラミジア・ニューモニエの抗原ポリペプチドのをコードするDNAの上流部分に相当するプライマーとして、配列番号30の塩基配列を有するDNAを、また、上記の約0.7kbのコード領域を含む塩基配列を元に、クラミジア・ニューモニエの抗原ポリペプチドのをコードするDNAの下流部分に相当するプライマーとして、配列番号31の塩基配列を有するD

WO 96/09320 PCT/JP95/01896

NAを、それぞれ、DNA合成機を用いて合成した。

実施例1で得たクラミジア・ニューモニエYK41株のゲノムDNAの水溶液 $1\mu1$ を用い、プライマーDNAとして配列番号30の塩基配列を有するDNA($20pmo1/\mu1)1\mu1$ 及び配列番号31の塩基配列を有するDNA($20pmo1/\mu1)1\mu1$ を用いてPCR工程を行った。

3番目のPCR工程後の反応液を用い、上記DNA精製工程を行い、約1.5kbpのDNAを取得した。

取得したDNA水溶液を用い、上記塩基配列解析工程を行った。

取得したDNAの塩基配列を解析した結果、このDNAは配列番号3の塩基配列を有しており、配列番号1のアミノ酸配列をコードしていることがわかった。

実施例4 クラミジア・ニューモニエの53KDa抗原ポリペプチド全体をコードするDNAを含む組換えベクターの作製、及びそれを含む形質転換体の作製

クラミジア・ニューモニエ53KDa抗原ポリペプチド全体をコードするDNAを含む粗換えベクター及びそれを含む形質転換体は、以下のようにして作製することができる。

クラミジア・ニューモニエの53KDa抗原ポリペプチド全体をコードするDNAを用い、実施例2と同様にしてクラミジア・ニューモニエの53KDa抗原ポリペプチド全体をコードするDNAを含む粗換えベクターとそれを含む形質転換体を作製する。

実施例 5 クラミジア・ニューモニエの 7 3 K抗原ポリペプチドをコードする D N A の作製

ハイブリドーマAY6E2E8を得る方法と同様にして、ハイブリドーマ70

を取得した。ハイブリドーマ70を利用してマウスの腹水を取得し、その上清に含まれているモノクローナル抗体の性質を解析した結果、このモノクローナル抗体は、クラミジア・ニューモニエの73KDaの抗原ポリペプチドに特異的であることがわかった。

モノクローオル抗体AY6E2E8の代わりに、モノクローナル抗体70を使用し、実施例1と同様の手順で操作した。クローン70-2Sλファージが得られ、これから配列番号13の配列が得られた。

配列番号13の配列の解析結果から、クラミジア・ニューモニエの73K抗原 タンパク質については、そのN末端からC末端に向けて約90%のアミノ酸配列 が解明されたことが分かった。

配列番号13の塩基配列及びアミノ酸配列の相同性検索をGenBankデータベースで行なった結果、これはクラミジア・トラコマチスから単離された遺伝子塩基配列 (L.M. Sardinia et al: J. Bacteriol., Vol. 171, 335-341(1989)) と高い相同性を示すものであった。

実施例 6 クラミジア・ニューモニエの抗原ポリペプチドを抗原として用いる、 抗クラミジア・ニューモニエ抗体の製造

抗クラミジア・ニューモニエ抗体は、クラミジア・ニューモニエの抗原ポリペ プチドを用い、次のようにして製造することができる。

(A) 骨髄腫細胞株の培養及び継代

情髄腫細胞株はP3X63Ag8.653(ATCC CRL-1580)を10%(v/v) 牛胎児血清を含むRPMI1640培地で培養し、継代する。細胞融合に供する2週間前に、0.13mMの8-アザグアニン、0.5 μg/mlのMC-210(マイコプラズマ除去剤、大日本製薬(株)製)及び10%(v/v) 牛胎児血清を含むRPMI1640培地で1週間培養し、その後の1週間は通常の培地で培養する。

(B) マウスの免疫

 $タンパク質の濃度が270 \mu g/mlの上記抗原ポリペプチドの溶液200 \mu l に 200 \mu l のフロイントコンプリートアジュバントを加え、エマルジョンとし、その<math>150 \mu l$ をマウスの背中の皮下に注射する(この日を0日目とする)。 14日目、34日目及び49日目に、9ンパク質の濃度が $270 \mu g/mlの上記抗原ポリペプチドの懸濁液 <math>100 \mu l$ をマウスの腹腔内に注射し、更に、69日目に9ンパク質の濃度が $800 \mu g/mlの上記抗原ポリペプチドの懸濁液 <math>100 \mu l$ をマウスの腹腔内に注射し、95日目に脾臓を取り出し、細胞融合に供する。

(C)細胞融合

上記牌職から得られる牌細胞108個に対して骨髄腫細胞107個を丸底ガラスチューブにとり、よく混合し、1400rpmで5分間遠心分離し、上清を除去し、細胞を更によく混合する。予め37℃に保温してある30%(w/v)ポリエチレングリコールを含むRPMI1640培地0.4mlを加え、30秒間放置する。700rpmで6分間遠心分離した後、RPMI1640培地10mlを加え、ポリエチレングリコールがよく混ざるようにガラスチューブをゆっくり回転させ、1400rpmで5分間遠心分離し、上清を完全に除去し、沈殿に5mlのHAT培地を加え、30分間放置し、骨髄腫細胞濃度が3.3×105/mlとなるようにHAT培地を加えて細胞を懸濁させ、パスツールピペットを用い96ウェルプラスチック製培養容器のウェルに2滴ずつ分注する。5%(v/v)炭酸ガス雰囲気下、36℃で培養し、1日後、7日後及び14日後にウェルにHAT培地を1~2滴加える。

(D) 抗体生産細胞のスクリーニング

上記抗原ポリペプチドをタンパク質濃度が1~10μg/mlとなるように0.02%(w/v)アジ化ソーダ含有0.05M重炭酸ソーダ緩衝液(pH9.6)に懸濁し、0.02%アジ化ソーダ含有0.05M重炭酸ソーダ緩衝液(pH9.6)に対して透析し、その後、タンパク質濃度が1~10μg/mlとなるように希釈した液を、塩化ビニル製96ウェルEIA用プレートのウェルに50μ1とり、

4 ℃で一晩放置し、抗原を吸着させる。上澄みを除去し、ウェルに 0.02% (w/v) ツィーン 2 0 を含む PBS 150μ1を加え、3分間放置し、その後除去・洗浄する。洗浄操作を更に1回行なった後、ウェルに 1% (v/v) 牛血清アルブミンを含む PBS 100μ1を加え、4℃で一晩以上放置し、ブロッキングを行なう。牛血清アルブミンを含む PBSを除いた後、0.02% (w/v) ツィーン 2 0 を含む PBSで同様に 2 回洗浄後、ウェルに融合細胞の培養上清を 50μ1加え、室温で 2 時間放置する。0.02% (w/v) ツィーン 2 0 を含む PBSで同様に 3 回洗浄後、ウェルに 2 5 ng/m1のペルオキシダーゼ標識化ヤギ抗マウス 1 g G 抗体を 50μ1加え、室温で 2 時間放置する。0.02% (w/v) ツィーン 2 0 を含む PBSで同様に 3 回洗浄後、ウェルに ABTS

(w/v) ツィーン 20 を含む PBS で同様に 3 回洗浄後、ウェルに ABTS 溶液(KPL 社製)を 50 μ 1 加え、室温で 15 分~ 1 時間放置して発色反応させ、 96 ウエル E I A プレート 用光度計で 405 nm の吸光度を測定する。 そして 陽性のウエル中の細胞をそれぞれパスツールピペットで回収し、 24 ウェルプラスチック製培養容器に移し、 HAT 培地 $1\sim 2$ ml を加え、同様に培養する。

(E) 限界希釈法によるクローニング

24ウェルプラスチック製培養容器で増殖させた 2 株の融合細胞の細胞濃度を測定し、細胞数が 2 0 個/mlとなるようそれぞれをHT培地で希釈する。別にHT培地に懸濁した $4\sim6$ 週齢のマウス胸腺細胞を 9 6 ウェルプラスチック製培養容器に $1\sim2\times1$ 0 5 個/ウェルとり、これに上記の融合細胞(細胞濃度が 2 0 個/ml)を 5 0 μ 1/ウェルずつ加え、 5 % (v/v) 炭酸ガス雰囲気下、 3 6 % で培養し、その 1 日後、 7 日後及び 1 4 日後にHT培地を $1\sim2$ 滴/ウェル加える。細胞の増殖が見られたウェルの培養上清を 5 0 μ 1 回収し、上記(D)の「抗体生産細胞のスクリーニング」と同様の方法で抗体の生産を確認する。

ウェル中に単一の細胞コロニーしか存在せず、基本小体と反応する抗体を生産するもので、かつ増殖が早い細胞をウェルから回収し、引き続き24ウェルプラスチック製培養容器で増殖させる。更に、同様のクローニング操作を繰り返し、抗クラミジア・ニューモニエ抗体を産生するハイブリドーマを取得する。これを培養し、その培養上清から抗クラミジア・ニューモニエ抗体を製造する。

実施例? 抗原ポリペプチドを抗原として用いる抗クラミジア・ニューモニエ抗 体の検出・測定

抗クラミジア・ニューモニエ抗体は、本発明の抗原ポリペプチドを抗原として 用い、次のようにして検出・測定することができる。

抗原ポリペプチドとして、配列番号1のアミノ酸配列からなるポリペプチドを用い、これをマイクロタイタープレートに固定し、牛血清アルブミンを含むPBSを加え、4℃で一晩以上放置し、プロッキングを行なう。牛血清アルブミンを含むPBSを除いた後、0.02%(W/V)ツィーン20を含むPBSで同様に2回洗浄後、ウェルに患者の血清を加え、室温で2時間放置する。0.02%(W/V)ツィーン20を含むPBSで同様に3回洗浄後、ウェルにパーオキシダーゼ標識化マウス抗ヒト1gG抗体を加え、室温で2時間放置する。0.02%(W/V)ツィーン20を含むPBSで同様に3回洗浄後、ウェルにABTS溶液(KPL社製)を加え、室温で15分~1時間放置して発色反応させ、96ウエルEIAプレート用光度計で405mmの吸光度を測定する。

実施例 8 DHFRとクラミジア・ニューモニエの抗原ポリペプチドの一部を含むポリペプチドの融合タンパク質をコードするDNAを含む組換えベクターの作製、及びそれを含む形質転換体の作製

プラスミドpBBK10MMを制限酵素BamHIとXholで切断し、1.2%低温 融解アガロースゲル電気泳動を行い、約4.6KbpのDNA断片を切り出して精 製した。

一方、53-3S λファージDNAを制限酵素 BcoRIで切断し、同様に約1. 0 KbpのDNA 断片を精製した後、さらに制限酵素 AvaIIで切断し、同様に約0. 8 KbpのDNA 断片を精製した。上記の約4. 6 KbpのDNA 断片100 ngに上記の約0. 8 KbpのDNA 断片100 ng、配列番号21~24の合成DNA各1 ngを添加し、DNA ライゲーションキット(宝酒造)を用いてこれらのDNAを連 結した。この反応物を大腸菌HBl0l株コンピテントセル(宝酒造)に入れ、 形質転換体を作製した。

この形質転換体を、50mg/Lのアンピシリンを含むLB寒天培地に塗布し、37℃で24時間培養した。得られた大腸菌のコロニーを50mg/Lのアンピシリンを含むLB・培地3mlに接種し、37℃で一晩振とう培養した。アルカリ溶解法でプラスミドベクターを分離し、制限酵素Nrulで切断し、0.8%アガロースゲル電気泳動で分析し、616bpと4822bpのDNA断片が生じている組換えプラスミドベクターをもつ大腸菌を選択した。得られた組換えプラスミドベクターをもつ大腸菌を選択した。得られた組換えプラスミドベクターをもつ大腸菌を選択した。得られた組換えプラスミドベクターは、配列番号25の塩基配列を有する約5.4kbpのDNAであり、DHFRのC末端にクラミジア・ニューモニエの53KDa抗原ポリペプチドの一部を含むポリペプチドを連結した融合タンパク質を発現させるものである。この融合タンパク質を発現させるものである。この融合タンパク質を発現させるものである。この独合タンパク質を発現させるものである。この独合タンパク質を発現させるものである。この独合タンパク質を発現させるものである。この独自タンパク質を発現させるものである。この独自タンパク質を発現させるものである。この独自タンパク質を発現させるものである。この独自タンパク質を記入は配列は配列番号18のようになっていた。

実施例9 DHFRとクラミジア・ニューモニエの53KDa抗原ポリペプチドの一部を含むポリペプチドの融合タンパク質の確認

プラスミド p C P N 5 3 3 T を保持する大鵬薗 H B 1 0 1 株 1 白金耳を 5 0 mg /lのアンピシリンを含む L B 培地 3 mlに接種し、3 7 ℃で一晩振とう培養した。この大腸菌を含む培地 1 0 μ lに 1 0 μ lのローディング級衝液(0.01%プロモフェノールブルー、1 0 %メルカプトエタノール、2 0 %グリセロール、5 % S D S を含む 0.15 6 M トリス塩酸級衝液、pH 6.8)を加え、8 0 ℃で 5 分間加熱した後、反応液を 5 − 2 0 %ポリアクリルアミドグラジエントゲル電気泳動にかけた。セミドライブロッティング装置の陽極板上に、1 0 %メタノール、0.0 5 %ドデシル硫酸ナトリウムを含む 0.3 M トリス水溶液で湿らせたろ紙1枚、10 %メタノール、0.0 5 %ドデシル硫酸ナトリウムを含む 2 5 m M トリス水溶液で湿らせたろ紙1枚、10 %メタノール、0.0 5 %ドデシル硫酸ナトリウム、2 0 m M アミノカプロン酸を含む 2 5 m M トリス水溶液で湿らせたニトリウム、4 0 m M アミノカプロン酸を含む 2 5 m M トリス水溶液で湿らせたニトロセルロース膜1枚、上記電気泳動の終了したポリアクリルアミドゲル、4 0

mMアミノカプロン酸を含む25mMトリス水溶液で湿らせたろ紙2枚をこの順 序で重ね、陰極板をセットして2.5mA/cm²の電流密度で1時間電流を流し、ポ リアクリルアミドゲル中のタンパク質をニトロセルロース膜に転写した。このニ トロセルロース膜を0.1%牛血清アルプミンを含むTBS級衝液に入れ、室温 で1時間以上放置し、ブロッキングした。ニトロセルロース膜をTTBS級衝液 で2回洗浄した後、ハイブリドーマSCP53が生産するモノクローナル抗体溶 液(5~10 μg/ml TTBS級衝液中)中で37℃、1時間振とうした。ニト ロセルロース膜をTTBS緩衝液で3回洗浄した後、パーオキシダーゼ標識した 抗マウスIgG抗体溶液(50ng/ml TTBS緩衝液中)中で37℃1時間振と うした。ニトロセルロース膜をTTBS級衝液で3回洗浄した後、発色基質液 (100mlのTBS緩衝液に60μ1の30%過酸化水素水溶液と20mlの4-クロロー1ーナフトールメタノール溶液を混合する)に入れ、室温で30分間反 応させた。ニトロセルロース膜を取り出し、精製水で洗浄した後風乾した。この 結果、融合タンパク質の大きさに相当する位置に発色したバンドが観察され、プ ラスミドロCPN533Tをもつ大腸菌が、クラミジア・ニューモニエ特異的に 反応するモノクローナル抗体と反応することのできる 5 3 K D a 抗原を含む融合 タンパク質を発現していることが示された。

実施例10 クラミジア・ニューモニエの53KDa抗原ポリペプチド全体をコードするDNAの取得

実施例3で、クラミジア・ニューモニエの53KDa抗原ポリペプチド全体を コードするDNAを既に取得したが、別途、次のようにして、このDNAを取得 した。

ことがわかった。

実施例11 DHFRとクラミジア・ニューモニエの53KDa抗原ポリペプチド全体の融合タンパク質をコードするDNAを含む組換えベクターの作製、及びそれを含む形質転換体の作製

DHFRとクラミジア・ニューモニエの53KDa抗原ポリペプチド全体の融合タンパク質をコードするDNAを含む組換えベクターとそれを含む形質転換体は次のようにして作製することができる。

プラスミドpBBK10MMと前記クラミジア・ニューモニエの53KDa抗原ポリペプチド全体をコードするDNAを用い、実施例8と同様にしてDHFRとクラミジア・ニューモニエの53KDa抗原ポリペプチド全体の融合タンパク質をコードするDNAを含む組換えベクターとそれを含む形質転換体を作製する。この融合タンパク質をコードするDNAの塩基配列は配列番号17のようになっており、この塩基配列から推定されるアミノ酸配列はを配列番号15のようになっている。

実施例12 融合タンパク質を抗原として用いる、抗クラミジア・ニューモニエ 抗体の製造

抗クラミジア・ニューモニエ抗体は、本発明の融合タンパク質を抗原として用い、次のようにして製造することができる。

免疫に使用する抗原を上配融合タンパク質とする以外は、上記実施例 6 と同様にし、抗クラミジア・ニューモニエ抗体を産生するハイブリドーマを取得する。 これを培養し、その培養上清から抗クラミジア・ニューモニエ抗体を製造する。

実施例13 融合タンパク質を抗原として用いる抗クラミジア・ニューモニエ抗 体の検出・測定 WO 96/09320 PCT/JP95/01896

抗クラミジア・ニューモニエ抗体は、本発明の融合タンパク質を抗原として用い、次のようにして検出・測定することができる。

融合タンパク質として、配列番号15のアミノ酸配列からなるポリペプチドを用い、これをマイクロタイタープレートに固定し、牛血清アルブミンを含むPBSを加え、4℃で一晩以上放置し、ブロッキングを行なう。牛血清アルブミンを含むPBSを除いた後、0.02%(W/V)ツィーン20を含むPBSで同様に2回洗浄後、ウェルに患者の血清を加え、室温で2時間放置する。0.02%(W/V)ツィーン20を含むPBSで同様に3回洗浄後、ウェルにパーオキシダーゼ標識化マウス抗ヒトIgG抗体を加え、室温で2時間放置する。0.02%(W/V)ツィーン20を含むPBSで同様に3回洗浄後、ウェルにABTS溶液(KPL社製)を加え、室温で15分~1時間放置して発色反応させ、96ウエルEIAプレート用光度計で405mmの吸光度を測定する。

実施例14 PCR法によるクラミジア・ニューモニエ遺伝子の検出

配列番号19の塩基配列からなるDNAと配列番号20の塩基配列からなるDNAをアプライドバイオシステムズ社製のDNA合成機で化学合成し、それぞれプライマー53F2、プライマー53R2と名付けた。

クラミジア・ニューモニエYK41株、またはクラミジア・トラコマチスL2株、又はクラミジア・シッタシBugd. 17-SL株を感染させた細胞を遠心分離で回収し、KCl 50mM、MgCl22.5mM、ゼラチン 0.1mg/ml、ノニデットP40(Nonidet P40) 0.45%トゥイーン20(Tween 20) 0.45%、プロテイネースK 0.1mg/mlを含む50mMトリスー塩酸緩衝液(pH8.3) 0.1mlを加え、56℃で1時間保温した後、95℃で10分間加熱してプロテイネースKを失活させ、各クラミジアの遺伝子を含む試料とした。

各試料 1 μ 1 に、精製水 7 8. 5 μ 1、2. 5 mM d N T P 水溶液 8 μ 1、5 0 0 mM K C 1 及び 1 5 mM Mg C 1 2を含む 1 0 0 mM トリスー塩酸緩衝液 (pH 8. 3) 1 0 μ 1、3 0 μ M の上記プライマー 5 3 F 2 及びプライマー 5 3 R 2 の水溶液各 1 μ 1、並びに 5 U / μ 1 タックポリメラーゼ 0. 5 μ

反応終了後、反応液 $2 \mu 1$ を取得し、アガロースゲル電気泳動を行い、ゲルを $0.5 \mu / m 1$ の臭化エチジウムに浸し、紫外線照射下で DNA のバンドを観察した。

その結果、クラミジア・ニューモニエYK41株から得た試料について、配列番号3の塩基配列のうち、プライマー53F2の塩基配列とプライマー53R2の塩基配列に相補的な塩基配列で挟まれた領域に相当する360bpの大きさのDNAのバンドが観察された。しかし、他の株から得た試料についてはバンドが観察されなかった。

産業上の利用可能性

配列番号1のポリペプチドの中の連続した少なくとも5個のアミノ酸配列を含むポリペプチドAからなる本発明の抗原ポリペプチドは、クラミジア・ニューモニエの抗体検査等に利用できる。

ポリペプチドAが、配列番号1のポリペプチドからアミノ酸1~250個が欠落しているポリペプチドである本発明の抗原ポリペプチドは、アミノ酸配列の長さが短いため、担体等に固定化できる抗原ペプチドの数を多くすることができ、それにより、感度の高い診断薬の製造に利用できる。

ポリペプチドAが、配列番号1のポリペプチドの中のアミノ酸1~100個が他のアミノ酸で置換されているポリペプチドである本発明の抗原ポリペプチドは、タンパク質分解酵素による分解を受けにくい構造を作ることができるので、抗原として安定性に優れる。 ポリペプチドAが、配列番号1のポリペプチドの中の連続した少なくとも5個のアミノ酸配列にアミノ酸若しくは2~1000個のアミノ酸配列が結合したポリペプチドである本発明の抗原ポリペプチドは、アミノ酸若しくは2~1000個のアミノ酸配列を利用して担体等に固定化できるので、固定化による抗原性の低下又は喪失が生じにくい。

ポリペプチドAが、配列番号1のアミノ酸配列からなるポリペプチドである本 発明の抗原ポリペプチドは、クラミジア・ニューモニエに特異的な抗原ポリペプ チドの全体を有するので、抗体検査やクラミジア・ニューモニエ感染の正確な診断に極めて適切である。

ポリペプチドAが、配列番号2又は5のアミノ酸配列からなるポリペプチドである本発明の抗原ポリペプチドは、クラミジア・ニューモニエに特異的な抗原部分を有するので、抗体検査やクラミジア・ニューモニエ感染の正確な診断に極めて適切である。

上記のいずれかの抗原ポリペプチドをコードするDNA若しくはそれに相補的なDNAである本発明のDNAは、クラミジア・ニューモニエの抗体検査やクラミジア・ニューモニエ感染の診断等に好適な抗原ポリペプチドの製造に利用できる。

塩基配列が配列番号3の塩基配列である本発明のDNAは、クラミジア・ニューモニエに特異的な抗原ポリペプチドの全体をコードするので、クラミジア・ニューモニエの特異的抗体検査等に舒適な抗原ポリペプチドの製造に利用できる。

塩基配列が配列番号4又は7の塩基配列である本発明のDNAは、クラミジア・ニューモニエに特異的な抗原部分をコードするので、クラミジア・ニューモニエの特異的抗体検査等に好適な抗原ポリペプチドの製造に利用できる。

上記のいずれかのDNAを含む本発明の組換えベクターは、クラミジア・ニューモニエの抗体検査やクラミジア・ニューモニエの感染症の診断に好適な抗原ポリペプチドの製造に利用できる。

配列番号10の塩基配列を有するpCPN533aプラスミドである本発明の 粗換えベクターは、クラミジア・ニューモニエに特異的な抗原部分を有するポリペプチドを発現させることができるので、クラミジア・ニューモニエの特異的抗体検査等に極めて適切な抗原ポリペプチドの製造に利用できる。

上記のいずれかの組換えベクターを含む本発明の形質転換体は、クラミジア・ ニューモニエの特異的抗体検査等に好適な抗原ポリペプチドの製造に利用できる。

上記のいずれかの抗原ポリペプチドを抗原として用いることを特徴とする本発明の抗クラミジア・ニューモニエ抗体の製造方法は、クラミジア・ニューモニエ 感染の診断薬製造に利用できる。 上記のいずれかの抗原ポリペプチドを抗原として用いることを特徴とする本発明の抗クラミジア・ニューモニエ抗体の検出・測定方法は、クラミジア・ニューモニエ感染の診断に好適である。

特に、アミノ酸配列の長さが短い抗原ポリペプチドを利用する場合は、担体等 に固定化できる抗原ポリペプチドの数を多くすることができるので高感度である。

また、ポリペプチド中のアミノ酸が他のアミノ酸で置換されている抗原ポリペプチドを利用する場合は、抗原ポリペプチドがタンパク質分解酵素による分解を受けにくい構造を作ることができるので安定性に優れており、検出・測定結果の信頼性が高い。

さらに、他のアミノ酸配列が付加された抗原ポリペプチドを利用する場合は、 抗原として用いられるポリペプチドを、アミノ酸若しくは2~1000個のアミ ノ酸配列を利用して担体等に固定化できるので、固定化による抗原性の低下又は 喪失が生じにくく、クラミジア・ニューモニエ感染を診断する上で優れている。

また、配列番号1のアミノ酸配列からなる抗原ポリペプチドを利用する場合は、 抗原として用いられるポリペプチドがクラミジア・ニューモニエに特異的な抗原 ポリペプチド全体を有するので、抗体検査やクラミジア・ニューモニエ感染の正 確な診断に極めて適切である。

また、配列番号2又は5のアミノ酸配列からなる抗原ポリペプチドを利用する場合は、抗原として用いられるポリペプチドがクラミジア・ニューモニエに特異的な抗原部分を有するので、抗体検査やクラミジア・ニューモニエ感染の正確な診断に極めて適切である。

上記のいずれかの抗原ポリペプチドを抗原として含有してなる本発明の抗クラミジア・ニューモニエ抗体の検出・測定用試薬は、クラミジア・ニューモニエの 抗体検査やクラミジア・ニューモニエ感染の診断に好適である。

特に、アミノ酸配列の長さが短い抗原ポリペプチドを利用する場合は、担体等 に固定化できる抗原ポリペプチドの数を多くすることができるので高感度である。

また、ポリペプチド中のアミノ酸が他のアミノ酸で置換されている抗原ポリペプチドを利用する場合は、抗原ポリペプチドがタンパク質分解酵素による分解を

受けにくい構造を作ることができるので安定性に優れており、検出・測定結果の 信頼性が高い。

さらに、他のアミノ酸配列が付加された抗原ポリペプチドを利用する場合は、 抗原として用いられるポリペプチドを、アミノ酸若しくは2~1000個のアミ ノ酸配列を利用して担体等に固定化できるので、固定化による抗原性の低下又は 喪失が生じにくく、クラミジア・ニューモニエ感染を診断する上で優れている。

また、配列番号1のアミノ酸配列からなる抗原ポリペプチドを利用する場合は、 抗原として用いられるポリペプチドがクラミジア・ニューモニエに特異的な抗原 ポリペプチド全体を有するので、抗体検査やクラミジア・ニューモニエ感染の正 確な診断に極めて適切である。

また、配列番号2又は5のアミノ酸配列からなる抗原ポリペプチドを利用する場合は、抗原として用いられるポリペプチドがクラミジア・ニューモニエに特異的な抗原部分を有するので、抗体検査やクラミジア・ニューモニエ感染の正確な診断に極めて適切である。

上記のいずれかの抗原ポリペプチドを有効成分とする本発明のクラミジア・ニューモニエ感染の診断薬は、クラミジア・ニューモニエ感染の診断に好適である。

に、アミノ酸配列の長さが短い抗原ポリペプチドを利用する場合は、担体等 に固定化できる抗原ポリペプチドの数を多くすることができるので高感度である。

また、ポリペプチド中のアミノ酸が他のアミノ酸で置換されている抗原ポリペプチドを利用する場合は、抗原ポリペプチドがタンパク質分解酵素による分解を受けにくい構造を作ることができるので安定性に優れており、検出・測定結果の信頼性が高い。

さらに、他のアミノ酸配列が付加された抗原ポリペプチドを利用する場合は、 抗原として用いられるポリペプチドを、アミノ酸若しくは2~1000個のアミ ノ酸配列を利用して担体等に固定化できるので、固定化による抗原性の低下又は 喪失が生じにくく、クラミジア・ニューモニエ感染を診断する上で優れている。

また、配列番号1のアミノ酸配列からなる抗原ポリペプチドを利用する場合は、

抗原として用いられるポリペプチドがクラミジア・ニューモニエに特異的な抗原 ポリペプチド全体を有するので、抗体検査やクラミジア・ニューモニエ感染の正 確な診断に極めて適切である。

また、配列番号2又は5のアミノ酸配列からなる抗原ポリペプチドを利用する場合は、抗原として用いられるポリペプチドがクラミジア・ニューモニエに特異的な抗原部分を有するので、抗体検査やクラミジア・ニューモニエ感染の正確な診断に極めて適切である。

配列番号14のポリペプチドに、直接に又は介在アミノ酸配列を介して、配列番号1のポリペプチドの中の連続した少なくとも5個のアミノ酸配列を含むポリペプチドAが結合した本発明の融合タンパク質は、クラミジア・ニューモニエの抗体検査等に利用できる。

ポリペプチドAが、配列番号1のポリペプチドからアミノ酸1~250個が欠落しているポリペプチドである本発明の融合タンパク質は、アミノ酸配列の長さが短いため、担体等に固定化できる抗原ペプチドの数を多くすることができ、それにより、感度の高い診断薬の製造に利用できる。

ポリペプチドAが、配列番号1のポリペプチドの中のアミノ酸1~100個が他のアミノ酸で置換されているポリペプチドである本発明の融合タンパク質は、タンパク質分解酵素による分解を受けにくい構造を作ることができるので、抗原として安定性に優れる。

配列番号15のアミノ酸配列からなるポリペプチドである本発明の融合タンパク質は、クラミジア・ニューモニエに特異的な抗原ポリペプチドの全体を有するので、抗体検査やクラミジア・ニューモニエ感染の正確な診断に極めて適切である。

配列番号16のアミノ酸配列からなるポリペプチドである本発明の融合タンパク質は、クラミジア・ニューモニエに特異的な抗原部分を有するので、抗体検査やクラミジア・ニューモニエ感染の正確な診断に極めて適切である。

上記のいずれかの融合タンパク質をコードするDNA若しくはそれに相補的なDNAである本発明のDNAは、クラミジア・ニューモニエの抗体検査やクラミジア・ニューモニエ感染の診断等に好適な融合タンパク質の製造に利用できる。

塩基配列が配列番号17の塩基配列である本発明のDNAは、このDNAにコードされている融合タンパク質がクラミジア・ニューモニエに特異的な抗原ポリペプチドの全体を有するので、クラミジア・ニューモニエの特異的抗体検査等に 好適な融合タンパク質の製造に利用できる。

塩基配列が配列番号18の塩基配列である本発明のDNAは、このDNAにコードされている融合タンパク質がクラミジア・ニューモニエに特異的な抗原部分を有するので、クラミジア・ニューモニエの特異的抗体検査等に好適な融合タンパク質の製造に利用できる。

上記のいずれかのDNAを含む本発明の組換えベクターは、クラミジア・ニューモニエの抗体検査やクラミジア・ニューモニエの感染症の診断に好適な融合タンパク質の製造に利用できる。

pCPN533Tプラスミドである本発明の組換えベクターは、クラミジア・ ニューモニエに特異的な抗原部分を有する融合タンパク質を発現させることがで きるので、クラミジア・ニューモニエの特異的抗体検査等に極めて適切な融合タ ンパク質の製造に利用できる。

上記のいずれかの組換えベクターを含む本発明の形質転換体は、クラミジア・ ニューモニエの特異的抗体検査等に舒適な融合タンパク質の製造に利用できる。

上記のいずれかの融合タンパク質を抗原として用いることを特徴とする本発明 の抗クラミジア・ニューモニエ抗体の製造方法は、クラミジア・ニューモニエ感 染の診断薬製造に利用できる。

上記のいずれかに記載の融合タンパク質を抗原として用いることを特徴とする本発明の抗クラミジア・ニューモニエ抗体の検出・測定方法は、クラミジア・ニューモニエの抗体検査やクラミジア・ニューモニエ感染の診断に好適である。

特に、アミノ酸配列の長さが短い融合タンパク質を利用する場合は、担体等に 固定化できる抗原ポリペプチドの数を多くすることができるので高感度である。

また、ポリペプチド中のアミノ酸が他のアミノ酸で置換されている融合タンパク質を利用する場合は、融合タンパク質がタンパク質分解酵素による分解を受け にくい構造を作ることができるので安定性に優れており、検出・測定結果の信頼

性が高い。

また、配列 号15のアミノ酸配列からなる融合タンパク質を利用する場合は、 抗原として用いられる融合タンパク質がクラミジア・ニューモニエに特異的な抗 原ポリペプチド全体を有するので、抗体検査やクラミジア・ニューモニエ感染の 正確な診断に極めて適切である。

また、配列番号16のアミノ酸配列からなる融合タンパク質を利用する場合は、 抗原として用いられる融合タンパク質がクラミジア・ニューモニエに特異的な抗 原部分を有するので、抗体検査やクラミジア・ニューモニエ感染の正確な診断に 極めて適切である。

上記のいずれかの融合タンパク質を抗原として含有してなる本発明の抗クラミジア・ニューモニエ抗体の検出・測定用試薬は、クラミジア・ニューモニエの抗体を 体検査やクラミジア・ニューモニエ感染の診断に好適である。

特に、アミノ酸配列の長さが短い融合タンパク質を利用する場合は、担体等に 固定化できる抗原ポリペプチドの数を多くすることができるので高感度である。

また、ポリペプチド中のアミノ酸が他のアミノ酸で置換されている融合タンパク質を利用する場合は、融合タンパク質がタンパク質分解酵素による分解を受けにくい構造を作ることができるので安定性に優れており、検出・測定結果の信頼性が高い。

また、配列番号15のアミノ酸配列からなる融合タンパク質を利用する場合は、 抗原として用いられる融合タンパク質がクラミジア・ニューモニエに特異的な抗 原ポリペプチド全体を有するので、抗体検査やクラミジア・ニューモニエ感染の 正確な診断に極めて適切である。

また、配列番号16のアミノ酸配列からなる融合タンパク質を利用する場合は、 抗原として用いられる融合タンパク質がクラミジア・ニューモニエに特異的な抗 原部分を有するので、抗体検査やクラミジア・ニューモニエ感染の正確な診断に 極めて適切である。

上記のいずれかの融合タンパク質を有効成分とする本発明のクラミジア・ニューモニエ感染の診断薬は、クラミジア・ニューモニエの抗体検査やクラミジア・ニューモニエ感染の診断に好適である。

特に、アミノ酸配列の長さが短い融合タンパク質を利用する場合は、担体等に 固定化できる抗原ポリペプチドの数を多くすることができるので高感度である。

また、ポリペプチド中のアミノ酸が他のアミノ酸で置換されている融合タンパク質を利用する場合は、融合タンパク質がタンパク質分解酵素による分解を受けにくい構造を作ることができるので安定性に優れており、検出・測定結果の信頼性が高い。

また、配列番号15のアミノ酸配列からなる融合タンパク質を利用する場合は、 抗原として用いられる融合タンパク質がクラミジア・ニューモニエに特異的な抗 原ポリペプチド全体を有するので、抗体検査やクラミジア・ニューモニエ感染の 正確な診断に極めて適切である。

また、配列番号16のアミノ酸配列からなる融合タンパク質を利用する場合は、 抗原として用いられる融合タンパク質がクラミジア・ニューモニエに特異的な抗 原部分を有するので、抗体検査やクラミジア・ニューモニエ感染の正確な診断に 極めて適切である。

本発明のプローブ及びプライマーは、クラミジア・ニューモニエ遺伝子の検出 ・測定やクラミジア・ニューモニエ感染の診断に好適である。

特に、配列番号19又は20の塩基配列を有するプローブ及びプライマーは、 クラミジア・ニューモニエに特異的な塩基配列を有するので、クラミジア・ニュ ーモニエ感染の正確な診断に利用できる。

上記のいずれかのプロープ又はプライマーを用いる本発明のクラミジア・ニューモニエ遺伝子の検出・測定方法は、クラミジア・ニューモニエ感染の診断に好適である。

上記のいずれかのプロープ又はプライマーを含有してなる本発明のクラミジア・ニューモニエ遺伝子の検出・測定用試薬は、クラミジア・ニューモニエ感染の診断に好適である。

上記のいずれかのプロープ又はプライマーを有効成分とする本発明のクラミジア・ニューモニエ感染の診断薬は、クラミジア・ニューモニエ感染の診断に好適である。

配列表

配列	番号	: 1													
配列	の長	さ:	488												
配列	の型	: 7	ミノ	酸							•				
配列	の種	類:	ペナ	チド											
配列															
Met	Ser	I l e	Ser	Ser	Ser	Ser	Gly	Pro	Asp	Asn	Gln	Lys	azk	lle	Net
1				5					10					15	
Ser	Gln	Val	Leu	Thr	Ser	Thr	Pro	Gln	Gly	Va _i l	Pro	Gln	Gln	Asp	Lys
			20					25					30		
Leu	Ser	Gly	Asn	Glu	Thr	Lys	Gln	Ile	Gln	Gln	Thr	Arg	Gin	G 1 y	Lys
		35					40					45			
Asn	Thr	Glu	Met	Glu	Ser	Asp	Ala	Thr	He	Ala	Gly	Ala	Ser	Gly	Lys
	50					55					60				
Asp	Lys	Thr	Ser	Ser	Thr	Thr	Lys	Thr	Glu	Thr	Ala	Pro	Gln	Gln	Gly
65					70					7 5					80
Val	Ala	Ala	Gly	Lys	Glu	Ser	Ser	Glu	Ser	Gln	Lys	Ala	Gly	Ala	Asp
Val	Ala	Ala	Gly	Lys 85	Glu	Ser	Ser	Glu	Ser 90	Gln	Lys	Ala	Gly	Ala 95	Asp
				85					90	Gln				95	
Thr	Gly	Val	Ser 100	85 Gly	Ala	Ala	Ala	Thr	90 Thr	Ala	Ser	Asn	Thr 110	95 Ala	Thr
Thr	Gly	Val	Ser 100	85 Gly	Ala	Ala	Ala	Thr	90 Thr		Ser	Asn	Thr 110	95 Ala	Thr
Thr	Gly	Val Ala 115	Ser 100 Met	85 Gly Gln	Ala	Ala Ser	Ala Ile 120	Thr 105 Glu	90 Thr	Ala Ala	Ser Ser	Asn Lys 125	Thr 110 Ser	95 Ala Met	Thr
Thr	Gly	Val Ala 115	Ser 100 Met	85 Gly Gln	Ala	Ala Ser	Ala Ile 120	Thr 105 Glu	90 Thr	Ala	Ser Ser	Asn Lys 125	Thr 110 Ser	95 Ala Met	Thr
Thr Lys Ser	Gly lle Thr	Val Ala 115 Leu	Ser 100 Met	85 Gly Gln Ser	Ala Thr	Ala Ser Gin 135	Ala Ile 120 Ser	Thr 105 Glu Leu	90 Thr Glu Ser	Ala Ala	Ser Ser Ala	Asn Lys 125 Gln	Thr 110 Ser Met	95 Ala Met Lys	Thr Glu Glu
Thr Lys Ser	Gly lle Thr	Val Ala 115 Leu	Ser 100 Met	85 Gly Gln Ser	Ala Thr	Ala Ser Gin 135	Ala Ile 120 Ser	Thr 105 Glu Leu	90 Thr Glu Ser	Ala Ala	Ser Ser Ala	Asn Lys 125 Gln	Thr 110 Ser Met	95 Ala Met Lys	Thr Glu Glu Ser
Thr Lys Ser Val	Gly Ile Thr 130 Glu	Val Ala 115 Leu	Ser 100 Met Glu Val	85 Gly Gln Ser	Ala Thr Leu Val 150	Ala Ser Gln 135 Ala	Ala Ile 120 Ser	Thr 105 Glu Leu	90 Thr Glu Ser	Ala Ala	Ser Ser Ala 140 Lys	Asn Lys 125 Gln Ser	Thr 110 Ser Met	95 Ala Met Lys	Thr Glu Glu Ser 160

165

170

175

Ser	Glu	Val	He	Glu	He	Gly	Leu	Ala	Leu	Ala	Lys	Ala	Ile	Gln	Thr
			180					185					190		
Leu	Gly	Glu	Ala	Thr	Lys	Ser	Ala	Leu	Ser	Asn	Tyr	Ala	Ser	Thr	Gln
		195					200					205			
Ala	Gin	Ala	Asp	Gln	Thr	Asn	Lys	Leu	Gly	Leu	Glu	Lys	Gln	Ala	Ile
	210					215					220				
Lys	lle	Asp	Lys	Glu	Arg	Glu	Glu	Tyr	Gln	Glu	Met	Lys	Ala	Ala	Glu
225					230					235					240
Gin	Lys	Ser	Lys	Asp	Leu	Glu	Gly	Thr	Met	Asp	Thr	Val	Asn	Thr	Val
				245					2 50					255	
Met	Ιle	Ala	Vaj	Ser	Val	Ala	Ile	Thr	Val	lle	Ser	lle	Val	Ala	Ala
			260					265					270		
lle	Phe	Thr	Cys	Gly	Ala	Gly	Leu	Ala	Gly	Leu	Ala	Ala	Gly	Ala	Ala
		275					280					285			
Val	Gly	Ala	Ala	Ala	Ala	Gly	Gly	Ala	Ala	Gly	Ala	Ala	Ala	Ala	Thr
	290					295					300				
Thr	Val	Ala	Thr	Gln	lie	Thr	Val	Gln	Ala	Val	Val	Gln	Ala	Val	Lys
305					310					315					320
Gln	Ala	Val	lle	Thr	Ala	Val	Arg	Gln	Ala	lle	Thr	Ala	Ala	lle	Lys
				325					330					335	_
Ala	Ala	Val	Lys	Ser	Gly	lle	Lys	Ala	Phe	lle	Lys	Thr	Leu	Val	Lys
			340					345					350		
Ala	lle	Ala	Lys	Ala	lle	Ser	Lys	Gly	He	Ser	Lys	Val	Phe	Ala	Lys
		355					360					365			
Gly	Thr	Gln	Met	lle	Ala	Lys	Asn	Phe	Pro	Lys	Leu	Ser	Lys	Val	lle
	370					375					380				
Ser	Ser	Leu	Thr	Ser	Lys	Trp	Val	Thr	Val	Gly	Val	Gly	Val	Val	Val
385					390					395					400
412	Ala	Pro	Ala	l.eu	GIV	l.vs	Glv	He	Met	Gln	Met	Gln	Leu	Ser	Glu

WO 96/09320 PCT/JP95/01896

Met Gin Gin Asn Vai Ala Gin Phe Gin Lys Giu Val Giy Lys Leu Gin Ala Ala Ala Asp Met lie Ser Met Phe Thr Gin Phe Trp Gin Gin Ala Ser Lys Ile Ala Ser Lys Gln Thr Gly Glu Ser Asn Glu Met Thr Gln Lys Ala Thr Lys Leu Gly Ala Gin Ile Leu Lys Ala Tyr Ala Ala Ile Ser Gly Ala Ile Ala Gly Ala Ala 配列番号:2 配列の長さ:271 配列の型:アミノ酸 -配列の種類:ペプチド 配列 Met Ser lie Ser Ser Ser Gly Pro Asp Asn Gln Lys Asn ile Net Ser Gin Val Leu Thr Ser Thr Pro Gin Gly Val Pro Gin Asp Lys Leu Ser Gly Asn Glu Thr Lys Gin Ile Gin Gln Thr Arg Gin Gly Lys Asn Thr Glu Met Glu Ser Asp Ala Thr Ile Ala Gly Ala Ser Gly Lys Asp Lys Thr Ser Ser Thr Thr Lys Thr Glu Thr Ala Pro Gln Gln Gly Val Ala Ala Gly Lys Glu Ser Ser Glu Ser Gln Lys Ala Gly Ala Asp

Thr Gly Val Ser Gly Ala Ala Ala Thr Thr Ala Ser Asn Thr Ala Thr 110 105 100 Lys lie Ala Met Gin Thr Ser lie Glu Glu Ala Ser Lys Ser Met Glu 125 115 120 Ser Thr Leu Glu Ser Leu Gln Ser Leu Ser Ala Ala Gln Met Lys Glu 130 135 140 Val Glu Ala Val Val Val Ala Ala Leu Ser Gly Lys Ser Ser Gly Ser 155 160 145 150 Ala Lys Leu Glu Thr Pro Glu Leu Pro Lys Pro Gly Val Thr Pro Arg 170 175 165 Ser Glu Val lie Glu Ile Gly Leu Ala Leu Ala Lys Ala lie Gin Thr 185 190 180 Leu Gly Glu Ala Thr Lys Ser Ala Leu Ser Asn Tyr Ala Ser Thr Gin 200 205 195 Ala Gin Ala Asp Gin Thr Asn Lys Leu Gly Leu Glu Lys Gin Ala Ile 215. 220 Lys lie Asp Lys Glu Arg Glu Glu Tyr Gin Glu Met Lys Ala Ala Glu 225 235 240 230 Gin Lys Ser Lys Asp Leu Glu Gly Thr Met Asp Thr Val Asn Thr Val 245 250 Met lie Ala Lys Gly Phe Glu Leu Pro Trp Gly Pro Leu lle Asn 265 270 271 260

配列番号:3

配列の長さ:1464

配列の型:核酸

鎖の数:二本鎖

配列の種類:他の核酸 合成DNA

配列

ATG TCT ATT TCA TCT TCA GGA CCT GAC AAT CAA AAA AAT ATC ATG	48
Met Ser lie Ser Ser Ser Gly Pro Asp Asn Gln Lys Asn lie Met	
1 5 10 15	
TCT CAA GTT CTG ACA TCG ACA CCC CAG GGC GTG CCC CAA CAA GAT AAG	96
Ser Gln Val Leu Thr Ser Thr Pro Gln Gly Val Pro Gln Gln Asp Lys	
20 25 30	
CTG TCT GGC AAC GAA ACG AAG CAA ATA CAG CAA ACA CGT CAG GGT AAA	144
Leu Ser Gly Asn Glu Thr Lys Gin Ile Gin Gin Thr Arg Gin Gly Lys	
40. 45	
35	192
AAC ACT GAG ATG GAA AGC GAT GCC ACT ATT GCT GGT GCT TCT GGA AAA	
Asn Thr Glu Met Glu Ser Asp Ala Thr lie Ala Gly Ala Ser Gly Lys	
50 55 60	
GAC AAA ACT TCC TCG ACT ACA AAA ACA GAA ACA GCT CCA CAA CAG GGA	240
GAC AAA AGI 100 100 100 100 100	
Asp Lys Thr Ser Ser Thr Thr Lys Thr Glu Thr Ala Pro Gln Gin Gly	
65 70 75 80	
GTT GCT GCG AAA GAA TCC TCA GAA AGT CAA AAG GCA GGT GCT GAT	288
Val Ala Ala Gly Lys Glu Ser Ser Glu Ser Gln Lys Ala Gly Ala Asp	
90 95	
ACT GGA GTA TCA GGA GCG GCT GCT ACT ACA GCA TCA AAT ACT GCA ACA	336
Thr Gly Val Ser Gly Ala Ala Ala Thr Thr Ala Ser Asn Thr Ala Thr	
100 105 110	204
AAA ATT GCT ATG CAG ACC TCT ATT GAA GAG GCG AGC AAA AGT ATG GAG	384

Lys	Ile	Ala	Met	Gin	Thr	Ser	lle	Glu	Glu	Ala	Ser	Lys	Ser	Met	Glu -	
		115					120					125				
TCT	ACC	ATT	GAG	TCA	CTT	CAA	AGC	CTC	AGT	GCC	GCG	CAA	ATG	AAA	GAA	432
			***	•												
Ser	Thr	Leu	Glu	Ser	Leu	Gln	Ser	Leu	Ser	Ala	Ala	Gin	Met	Lys	Glu	
	130					135					140					
GTC	GAA	GCG	GTT	GTT	GTT	GCT	GCC	CTC	TCA	GGG	AAA	AGT	TCG	GGT	TCC	480
			• •													
Val	Glu	Ala	Val	Val	Vai	Ala	Ala	Leu	Ser	Gly	Lys	Ser	Ser	Gly	Ser	
145					150					155					160	
GCA	AAA	TTG	GAA	ACA	CCT	GAG	CTC	ccc	AAG	ccc	GGG	GTG	ACA	CCA	AGA	528
Ala	Lys	Leu	Glu	Thr	Pro	Glu	Leu	Pro	Lys	Pro	Gly	Val	Thr	Pro	Arg	
				165					170					175		
TCA	GAG	GTT	ATC	GAA	ATC	GGA	CTC	GCG	CTT	GCT	AAA	GCA	ATT	CAG	ACA	576
Ser	Glu	Val	He	Glu	Πle	Gly	Leu	Ala	Leu	Ala	Lys	Ala	He	Gln	Thr	
			180					185					190			
TTG	GGA	GAA	GCC	ACA	AAA	TCT	GCC	TTA	TCT	AAC	TAT	GCA	AGT	ACA	CAA	624
Leu	Gly	Glu	Ala	Thr	Lys	Ser	Ala	Leu	Ser	Asn	Tyr	Ala	Ser	Thr	Gln	
		195					200					205				
GCA	CAA	GCA	GAC	CAA	ACA	AAT	AAA	CTA	GGT	CTA	GAA	AAG	CAA	GCG	ATA	672
Ala	Gln	Ala	Asp	Gln	Thr	Asn	Lys	Leu	Gly	Leu	Glu	Lys	Gln	Ala	Ile	
	210					215					220					
AAA			AAA	GAA	CGA	GAA	GAA	TAC	CAA	GAG	ATG	AAG	GCT	GCC	GAA	720
		-														

l.vs	ile	Asp	Lys	Glu	Arg	Glu	Glu	Tyr	Gln	Glu	Met	Lys	Ala	Ala	Glu	
225		•			230					235					240	
	AAG	тст	AAA	GAT		GAA	GGA	ACA	ATG		ACT	GTC	AAT	ACT	GTG	768
CAU	ANU		иии	U 11.1	0.0											
C1-	1	Sar	Lys	Arn	l ou	Cla	Clv	Thr	Met	A s D	Thr	Val	Asn	Thr	Val	
GIII	LyS	361	LJS	245	Deu	010	01 ,	• • • •	250	,	-			255		
		000	GTT		ር ጥ ፕ	ccc	ATT	ACA		ATT	TCT	ATT	СТТ		GCT	816
AIG	AIC	ucu	GII	101	011		VI.I	NON	0,,				•••	•••		
			Val	C	W = 1	41-	110	The	Val	110	Sar	Ile	Val	Ala	Ala	
met	116	AIR		261	VAI	NIA	116	265	*41	116	U C.		270			
			260			004	0770		CCA	CTC	ССТ	ccc		ССТ	ССТ	864
ATT	TTT	ACA	TGC	GGA	GCT	GGA	CIC	661	UUA	CIC	GCI	UCU	UUA	001	UUI	004
								• • •	01	•	41-	415	C1	410	Alo	
lle	Phe		Cys	Gly	Ala	Gly		N18	GIA	rea	VIS			VIT	nia	
		275					280				0.05	285		CCA	100	912
GTA	GGT	GCA	GCG	GCA	GCT	GGA	GGT	GCA	GCA	GGA	GCT	GCT	GCC	GCA	AUU	912
					•											
Val	Gly	Ala	Ala	Ala	Ala	Gly	Gly	Ala	Ala	Gly			Ala	Ala	Inr	
	290					295					300					
ACG	GTA	GCA	ACA	CAA	TTA	ACA	GTT	CAA	GCT	GTT	GTC	CAA	GCG	GTG	٨٨٨	960
	٠															
Thr	Val	Ala	Thr	Gln	Ile	Thr	Val	Gln	Ala	Val	Val	Gln	Ala	Val	Lys	
305					310					315					320	
CAA	GCT	GTT	ATC	ACA	GCT	GTC	AGA	CAA	GCG	ATC	ACC	GCG	GCT	ATA	AAA	1008
•																
Gln	Ala	Val	lle	Thr	Ala	Val	Arg	Gln	Ala	He	Thr	Ala	Ala	lle	Lys	
				325					330					335		
GCG	GC1	r GT(AAA	TC1	GGA	ATA	AAA A	GC/	TTT	. VIC	. AAA	A ACT	TTA	CTC	AAA	1056
	•															
Ala	A 1 :	a Va	Lvs	. Sei	Gly	y Ile	e Lys	s Ala	a Phe	: 116	e Lys	s Thi	r Lei	ı Val	l Lys	
			_,-	-	_											

PCT/JP95/01896

			340					345					350			
GCG	TTA	GCC	AAA	GCC	TTA	TCT	AAA	GGA	ATC	TCT	AAG	GTT	TTC	GCT	AAG	1104
Ala	lle	Ala	Lys	Ala	lle	Ser	Lys	Gly	lle	Ser	Lys	Val	Phe	Ala	Lys	
		355					360					365				
GGA	ACT	CAA	ATG	ATT	GCĢ	AAG	AAC	TTC	CCC	AAG	CTC	TCG	AAA	GTC	ATC	1152
Gly	Thr	Gln	Net	Ile	Ala	Lys	Asn	Phe	Pro	Lys	Leu	Ser	Lys	Val	I 1 e	
	370					375					380					
TCG	TCT	CTT	ACC	AGT	AAA	TGG	GTC	ACG	GTT	GGG	GTT	GGG	GTT	GTA	GTT	1200
Ser	Ser	Leu	Thr	Ser	Lys	Trp	Val	Thr	Val	Gly	Val	Gly	Val	Val	Val	
385					390					395					400	
GCG	GCG	CCT	GCT	CTC	GGT	AAA	GGG	ATT	ATG	CAA	ATG	CAG	CTC	TCG	GAG	1248
Ala	Ala	Pro	Ala	Leu	Gly	Lys	Gly	Ile	Met	Gin	Met	Gln	Leu	Ser	Glu	
				405					410					415		
ATG	CAA	CAA	AAC	GTC	GCT	CAA	TTT	CAG	AAA	GAA	GTC	GGA	AAA	CTG	CAG	1296
Net	Gln	Gln	Asn	Val	Ala	Gln	Phe	Gln	Lys	Glu	Val	Gly	Lys	Leu	Glo	
			420					425					430			
GCT	GCG	GC1	GAT	ATG	ATT	TCT	ATG	TTC	ACT	CAA	TTT	TGG	CAA	CAG	GCA	1344
Ala	Ala	ı Ala	Asp	Met	lle	Ser	Met	Phe	Thr	Gln	Phe	Trp	Gln	Gln	Ala	
		435	j				440	}				445	j			
AGT	· AAA	AT1	CCC	TCA	AAA	CAA	ACA	GGC	GAG	TC1	CAA 1	GA/	ATG	ACT	CAA	1392
Ser	· Lys	s IIe	e Ala	. Sei	Lys	G I n	Thr	r Gly	Glu	s Sei	- Ası	Gli	ı Met	Thr	Gln	
	450)				455	;				460)				

AAA	GC	T	ACC	AA	G C	TG G	GC	GCT	CAA	ATC	CTI	Α 1	AA G	CG 1	AT G	CC G	CA A	TC	1440
1	A 1	_ •	Th.o	Ιυ	. 1	on (: I v	Ala	Gln	lle	Lei	u L	ys A	la 1	îyr A	la A	la l	lle	
LA2	V 1	8	1 111 1	L)	3 <i>L</i>				• • • •									180	
465						4	170					4	75				7		1404
AGC	GG	A	GCC	AT	C G	CT (GGC	GCA	GCA										1464
Ser	G	v	Ala	11	le A	la (Gly	Ala	Ala										
		•				185			488										
配多	列霍	号	: 4					٠											
配多	71] O	長	さ	: 8	13														
12. 7	51] <i>0</i> .	型(!:∤	女配	ž												•		
			=;																
						拉酸	. 4	成I	N C	A									
		7 €	1 7 174	. ,,	<u>.</u>	13× 14×													
								TCA	CC	י יירי	r C	A C	AAT	CAA	AAA	TAA	ATC	ATG	48
AT	G 7	'CT	AT"	rt	CA	TUI	101	104		, UU		n o		•					
													A	r1-	1 20	Aen	ile	Met	
Ne	t S	Ser	11	e S	er	Ser	Ser	Sei	r G1	y Pr			V2II	GIU	Lys	non.	110		
	1					5						10					15		20
T	T ·	CAA	GT	T (CTG	ACA	TC	AC.	A CC	C CA	G G	GC	GTG	CCC	CAA	CAA	GAT	AAG	96
S	p۳	G 1 :	ı Vs	1	Leu	Thr	Se	r Th	r Pr	o G1	n G	ly	Val	Pro	Gln	Gln	Asp	Lys	
		• • •			20						25					30			
								C AA	c c	LA A1	ra (CAG	CAA	ACA	CGT	CAG	GGT	AAA	144
C.	TG	TC.	T GU	iC	AAU	UAF	, AC	תת נט	u 0,		•••								
								_	_			c 1 =	Cla	The	. 4	Gln	Glv	Lvs	
L	eu	Se	r G	l y	Asn	Glu	y Th	r Ly			16 (uil	ų i fi	I II I			,	Lys	
				35						40					45				
	AC	AC	T G	AG	ATG	G G A	A AG	C G	AT G	CC A	CT	ATT	GCT	. GC.	r GC1	TCT	r GG/	A AAA	192

																_		
Asn	Thr	Gli	j)	let	Glu	Ser	Asp	Ala	Thr	Ile	Ala	Gly	Ala	Ser	Gly	L	ys.	
	50						55					60						
GAC	AAA	AC'	T :	TCC	TCG	ACT	ACA	AAA	ACA	GAA	ACA-	GCT	CCA	CAA	CAC	G (GGA	240
••																		
	•	æ⊾.		C	°	Th.	The	lve	Thr	Glu	Thr	Ala	Pro	Gin	Gli	n (Gly	
	LYS	10	r	961	361		1417	<i>D</i> , 3	•••	•••	75						80	
65						70			044	4.CT		AAC	GC A	CCT		T (GAT	288
GTT	GCT	GC	T	GGG	AAA	GAA	TCC	TCA	GAA	AGT	UNN	ANU	uon			•	•	
Va l	Ala	Al	a	Gly	Lys	Glu	Ser	Ser	Glu	Ser	Gln	Lys	Ala	Gly	, Al	8	ASP	
					8 5					90					9	5		•
ACT	GGA	\ G1	A.	TCA	GGA	GCG	GCT	GCT	ACT	ACA	GCA	TCA	. AA1	r AC1	r gc	A	ACA	336
TL	. C1	. V.	. 1	Sar	C I v	, A1s	Als	Ala	Thr	Thr	Ala	Ser	Ası	n Th	r Al	a	Thr	
IIII	UI	, ,	11						105					110				
				100				• A T T			e ccc	AGC	: AA			G.	GAG	384
AAA	AT'	T G	CT	ATG	CAU	i ACC	TU	Ali	UAA	GAG	ucu	not	, ,,,,,,		• •••			
												_	•	. 0-	Ma	. 4	C I n	
Lys	s I I	e A	la	Met	Gli	n Th	r Sei	r H	e Glu	ı Glu	Ala	Sei			I. We	et	GIU	
			15					120					12					
TC'	T AC	C T	T۸	GAC	G TC	A CT	T CA	A AG	C CT	C AGT	r GC(C GC	G CA	A AT	G A	AA	GAA	432
S.	r Ti	ir l	. P 11	Gli	u Se	r Le	u G1	n Se	r Le	u Sei	r Al	a Al	a Gl	n Me	t L	y s	Glu	
56			,		•		13					14						
	13				m 0**	m ሶፕ			ር ርፕ	C TC	A GG	G AA	A AC	T T	CG G	GT	TCC	480
GT	C G	AA (iCl	<i>i</i> 61	1 61	1 01	1 80	1 00	0.									
										•	C1	1		. r C	or G	1 v	Ser	
۷a	1 G	lu	Ala	a Va	i Va	ıl Va	11 A1	a Al	a Le	u Se			5 30	; J	C1 U	.,	Ser	
14	5				•	15					15						160	r00
G	CA A	AA '	TT	G GA	A AC	CA CO	CT G/	AG C1	c co	C AA	G CC	C GC	3G G.	rg A	CA C	CA	AGA	528
A	اوا	vc	م.(្រ ស	u Ti	hr P	ro G	iu L	eu Pi	ro Ly	s Pi	o G	ly V	al T	hr F	ro	Arg	
Λ		7 3			- • •													

				165					170					175		•
TCA	GAG	GTT	ATC	GAA	ATC	GGA	CTC	GCG	СТТ	GCT	AAA	GCA	ATT	CAG	ACA	576
Ser	Glu	Val	lle	Glu	lle	Gly	Leu	Ala	Leu	Ala	Lys	Ala	lle	Gln	Thr	
			180					185					190			
TTG	GGA	GAA	GCC	ACA	AAA	TCT	GCC	TTA	TCT	AAC	TAT	GCA	AGT	ACA	CAA	624
Leu	Gly	Glu	Ala	Thr	Lys	Ser	Ala	Leu	Ser	Asn	Tyr	λla	Ser	Thr	Gln	
		195					200					205				
GCA	CAA	GCA	GAC	CAA	ACA	AAT	AAA	CTA	GGT	CTA	GAA	AAG	CAA	GCG	ATA	672
Ala	Gin	Ala	Asp	Gln	Thr	Asn	Lys	Leu	Gly	Leu	Glu	Lys	Gln	Ala	lle	
	210					215					220					
AAA	ATC	GAT	AAA	GAA	CGA	GAA	GAA	TAC	CAA	GAG	ATG	AAG	GCT	GCC	GAA	720
Lys	lle	Asp	Lys	Glu	Arg	Glu	Glu	Tyr	Gln	Glu	Met	Lys	Ala	Ala	Glu	
225					230					235					240	
CAG	AAĞ	TCT	AAA	GAT	CTC	GAA	GGA	ACA	ATG	GAT	ACT	GTC	AAT	ACT	GTG	768
Gln	Lys	Ser	Lys	Asp	Leu	Glu	Gly	Thr	Met	Asp	Thr	Val	Asn	Thr	Val	
				245			•		250					255		
ATG	ATC	GCG	AAG	GGG	TTC	GAA	TTG	CCA	TGG	GGG	CCC	TTA	ATT	AAT		813
Met	lle	Ala	Lys	Gly	Phe	Glu	Leu	Pro	Trp	Gly	Pro	Leu				
			260)				265					270	271		

配列番号:5

配列の長さ:259

配列の型:アミノ酸

トポロジー:直鎖状 配列の種類:ペプチド

配列 Met Ser lie Ser Ser Ser Gly Pro Asp Asn Gln Lys Asn lie Met Ser Gln Val Leu Thr Ser Thr Pro Gln Gly Val Pro Gln Gin Asp Lys Leu Ser Gly Asn Glu Thr Lys Gln lle Gln Gln Thr Arg Gln Gly Lys Asn Thr Glu Met Glu Ser Asp Ala Thr Ile Ala Gly Ala Ser Gly Lys Asp Lys Thr Ser Ser Thr Thr Lys Thr Glu Thr Ala Pro Gln Gln Gly Val Ala Ala Gly Lys Glu Ser Ser Glu Ser Gln Lys Ala Gly Ala Asp Thr Gly Val Ser Gly Ala Ala Ala Thr Thr Ala Ser Asn Thr Ala Thr Lys lie Ala Met Gin Thr Ser lie Glu Glu Ala Ser Lys Ser Met Glu Ser Thr Leu Glu Ser Leu Gln Ser Leu Ser Ala Ala Gln Met Lys Glu Val Glu Ala Val Val Ala Ala Leu Ser Gly Lys Ser Ser Gly Ser Ala Lys Leu Glu Thr Pro Glu Leu Pro Lys Pro Gly Val Thr Pro Arg Ser Glu Val lle Glu lle Gly Leu Ala Leu Ala Lys Ala lle Gln Thr Leu Gly Glu Ala Thr Lys Ser Ala Leu Ser Asn Tyr Ala Ser Thr Gln

WO 96/09320 PCT/JP95/01896

Ala Gin Ala Asp Gin Thr Asn Lys Leu Gly Leu Giu Lys Gin Ala ile Lys lle Asp Lys Glu Arg Glu Glu Tyr Gln Glu Met Lys Ala Ala Glu Gin Lys Ser-Lys Asp Leu Glu Gly Thr Met Asp Thr Val Asn Thr Val Met lie Ala 配列番号:6 配列の長さ:571 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Met Pro Lys Gin Ala Giu Tyr Thr Trp Gly Ser Lys Lys lie Leu Asp Asn lle Glu Cys Leu Thr Glu Asp Val Ala Glu Phe Lys Asp Leu Leu Tyr Thr Ala His Arg lle Thr Ser Ser Glu Glu Glu Ser Asp Asn Glu lle Gln Pro Gly Ala ile Leu Lys Gly Thr Val Val Asp lle Asn Lys Asp Phe Val Val Asp Val Gly Leu Lys Ser Glu Gly Val Ile Pro Met Ser Glu Phe Ile Asp Ser Ser Glu Gly Leu Val Leu Gly Ala Glu Val Glu Val Tyr Leu Asp Gln Ala Glu Asp Glu Glu Gly Lys Val Val

Leu	Ser	Arg	Glu	Lys	Ala	Thr	Arg	Gln	Arg	Gln	Trp	Glu	Tyr	Ile	Leu
		115				•	120					125			
Ala	His	Cys	Glu	Glu	Gly	Ser	Ile	Val	Lys	Gly	Gln	lle	Thr	Arg	Lys
	130					135					140				
Val	Lys	Gly	Gly	Leu	He	Val	Asp	lle	Gly	Met	Glu	Ala	Phe	Leu	Pro
145					150					155					160
Gly	Ser	Gln	lle	Asp	Asn	Lys	Lys	lle	Lys	Asn	Leu	Asp	Asp	Tyr	Val
				165					170					175	
Gly	Lys	Val	Cys	Glu	Phe	Lys	Ile	Leu	Lys	lle	Asn	Val	Glu	Arg	Arg
			180					185					190		
Asn	lle	Val	Val	Ser	Arg	Arg	Glu	Leu	Leu	Glu	Ala	Glu	Arg	lle	Ser
		195					200					205			
Lys	Lys	Ala	Glu	Leu	lle	Glu	Gln	Ile	Ser	lle	Gly	Glu	Tyr	Arg	Lys
	210					215					220				
Gly	Val	Val	Lys	Asn	lle	Thr	Asp	Phe	Gly	Val	Phe	Leu	Asp	Leu	Asp
225					230					235					240
Gly	lle	Asp	Gly	Leu	Leu	His	lle	Thr	Asp	Met	Thr	Trp	Lys	Arg	He
				245	,				250					255	
Arg	His	Pro	Ser	Glu	Met	Val	Glu	Leu	Asn	Gln	Glu	Leu	Glu	Val	He
			260)				26 5	i				270		
116	Leu	Sei	Val	Asp	Lys	Glu	Lys	Gly	Arg	Val	Ala	Leu	Gly	Leu	Lys
		275					280					285			
Gln	Lys	Glu	His	s Ası	Pro	Trp	Glu	Asp	lle	Glu	Lys	Lys	Tyr	Pro	Pro
	290					295					300				
Gly	Lys	s Arı	g Val	Let	ı Gly	Lys	ille	. Val	Lys	Lei	Leu	Pro	Tyr	Gly	Ala
305					310					315					320
Pho	e 11e	e Gli	u Ile	e Gli	u Giu	ı Gly	, 116	Gli	ı Gly	Lei	ı Ile	His	ille	Ser	Glu
				32	5				330)				335	•
Ma		_ T-	n 1/ n	1 1 10	e Aei	n 114	. Vai	l Ası	o Pro	Sei	r Gli	ı Val	Val	Asn	Lys

			340					345					350		
Gly	Asp	Glu	Val	Glu	Ala	lle	Val	Leu	Ser	lle	Gln	Lys	Asp	Glu	Gly
		355					360					365			
Lys	lle	Ser	Leu	Giy	Leu	Lys	Gln	Thr	Glu	Arg	Asn	Pro	Trp	Asp	Asn
	370		•			375					380				
lle	G 1 u	G l u	Lys	Tyr	Pro	Ile	Gly	Leu	His	Val	Asn	Ala	Glu	I I e	Lys
380					385					390					395
Asn	Leu	Thr	Așn	Tyr	Gly	Ala	Phe	Val	Glu	Leu	Giu	Pro	Gly	lle	Glu
			•	400					405					410	
Gly	Leu	11e	His	lle	Ser	Asp	Met	Ser	Trp	lle	Lys	Lys	Val	Ser	His
			415					420					425		
Pro	Ser	Glu	Leu	Phe	Lys	Lys	Gly	Asn	Ser	Val	Glu	Ala	Val	lle	Leu
		430					435					440		•	
Ser	Val	Asp	Lys	Glu	Ser	Lys	Lys	Ile	Thr	Leu	Gly	Val	Lys	Gln	Leu
	445					450					455				
Ser	Ser	Asn	Pro	Trp	Asn	Glu	lle	Glu	Ala	Met	Phe	Pro	Ala	Gly	Thr
460					465					470					475
Val	lle	Ser	Gly	Val	Val	Thr	Lys	lle	Thr	Ala	Phe	Gly	Ala	Phe	Val
	•			480					485					490	
Glu	Leu	Gln	Asn	Gly	Ile	Glu	Gly	Leu	He	His	Val	Ser	Glu	Leu	Ser
			495					500					505		
Asp															
	Lys	Pro	Phe	Ala	Lys	lle	Glu	Asp	lle	lle	Ser	Ile	Gly	Glu	Asn
		510					515					520			
Val		510			Lys lle		515					520			
	Ser 525	510 Ala	Lys	Val	lle	Lys 530	515 Leu	Asp	Pro	Asp	His 535	520 Lys	Lys	Val	Ser
	Ser 525	510 Ala	Lys	Val		Lys 530	515 Leu	Asp	Pro	Asp	His 535	520 Lys	Lys	Val	Ser Ser
	Ser 525 Ser	510 Ala	Lys	Val	lle	Lys 530 Leu	515 Leu	Asp	Pro	Asp	His 535	520 Lys	Lys	Val	Ser
Leu 540	Ser 525 Ser	510 Ala Val	Lys Lys	Val	lle Tyr	Lys 530 Leu	515 Leu Ala	Asp	Pro	Asp Ala 550	His 535	520 Lys	Lys	Val	Ser Ser

PCT/JP95/01896 WO 96/09320

配列番号:7

配列の長さ:777

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類:Genomic DNA

配列	-00
ATGTCTATTT CATCTTCTTC AGGACCTGAC AATCAAAAA ATATCATGTC TCAAGTTCTG	60
ACATCGACAC CCCAGGGCGT GCCCCAACAA GATAAGCTGT CTGGCAACGA AACGAAGCAA	120
ATACAGCAAA CACGTCAGGG TAAAAACACT GAGATGGAAA GCGATGCCAC TATTGCTGGT	180
GCTTCTGGAA AAGACAAAAC TTCCTCGACT ACAAAAACAG AAACAGCTCC ACAACAGGGA	240
GTTGCTGCTG GGAAAGAATC CTCAGAAAGT CAAAAGGCAG GTGCTGATAC TGGAGTATCA	300
GGAGCGGCTG CTACTACAGC ATCAAATACT GCAACAAAAA TTGCTATGCA GACCTCTATT	360
GAAGAGGCGA GCAAAAGTAT GGAGTCTACC TTAGAGTCAC TTCAAAGCCT CAGTGCCGCG	420
CAAATGAAAG AAGTCGAAGC GGTTGTTGTT GCTGCCCTCT CAGGGAAAAG TTCGGGTTCC	480
GCAAAATTGG AAACACCTGA GCTCCCCAAG CCCGGGGTGA CACCAAGATC AGAGGTTATC	540
GAAATCGGAC TCGCGCTTGC TAAAGCAATT CAGACATTGG GAGAAGCCAC AAAATCTGCC	600
TTATCTAACT ATGCAAGTAC ACAAGCACAA GCAGACCAAA CAAATAAACT AGGTCTAGAA	660

AAGCAAGCGA	TAAAAATCGA	TAAAGAACGA	GAAGAATACC	AAGAGATGAA	GGCTGCCGAA	720
CAGAAGTCTA	AAGATCTCGA	AGGAACAATG	GATACTGTCA	ATACTGTGAT	GATCGCG	777

配列番号:8

配列の長さ:1712

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類:Genomic DNA

配列

ATGCCAAAAC	AAGCTGAATA	TACTTGGGGA	TCTAAAAAA	TTCTGGACAA	TATAGAATGC	60
CTCACAGAAG	ACGTTGCCGA	ATTTAAAGAT	TTGCTTTATA	CGGCACACAG	AATTACTTCG	120
AGCGAAGAAG	AATCTGATAA	CGAAATACAG	CCTGGCGCCA	TCCTAAAAGG	TACCGTAGTT	180
GATATTAATA	AAGACTTTGT	CGTAGTTGAT	GTTGGTCTGA	AGTCTGAGGG	AGTGATCCCT	240
ATGTCAGAGT	TCATAGACTC	TTCAGAAGGT	TTAGTGCTTG	GAGCTGAAGT	AGAAGTCTAT	300
CTCGACCAAG	CCGAAGACGA	AGAGGGCAAA	GTTGTCCTTT	CTAGAGAAAA	AGCCACACGA	360
CAACGTCAAT	GGGAATACAT	CTTAGCTCAT	TGTGAAGAAG	GTTCTATTGT	TAAAGGTCAA	420
ATT & C & C C T &	AAGTCAAAGG	CGGCCTTATT	GTAGATATTG	GAATGGAAGC	CTTCCTACCT	480

GGATCACAAA TTGACAACAA GAAAATCAAA AATTTAGATG ATTATGTCGG AAAAGTTTGT	540
GAATTCAAAA TTTTAAAAAT TAACGTTGAA CGTCGCAATA TTGTTGTCTC AAGAAGAGAA	600
CTCTTAGAAG CTGAGAGAAT CTCTAAGAAA GCCGAACTTA TTGAACAAAT TTCTATCGGA	660
GAATACCGCA AAGGAGTTGT TAAAAACATT ACTGACTTTG GTGTATTCTT AGATCTCGAT	720
GGTATTGACG GTCTTCTCCA CATTACCGAT ATGACCTGGA AGCGCATACG ACATCCTTCC	780
GAAATGGTCG AATTGAATCA AGAGTTGGAA GTAATTATTT TAAGCGTAGA TAAAGAAAAA	840
GGACGAGTTG CTCTAGGTCT CAAACAAAAA GAGCATAATC CTTGGGAAGA TATTGAGAAG	900
AAATACCCTC CTGGAAAACG AGTTCTTGGT AAAATTGTGA AGCTTCTCCC CTACGGAGCT	960
TTCATTGAAA TTGAAGAGGG CATTGAAGGT CTAATTCACA TTTCTGAAAT GTCTTGGGTG	1020
AAAAATATTG TAGATCCTAG TGAAGTCGTA AATAAAGGCG ATGAAGTTGA AGCCATTGTT	1080
CTATCTATTC AGAAGGACGA AGGAAAAATT TCTCTAGGAT TAAAGCAAAC AGAACGTAAT	1140
CCTTGGGACA ATATCGAAGA AAAATATCCT ATAGGTCTCC ATGTCAATGC TGAAATCAAG	1200
AACTTAACCA ATTACGGTGC TTTCGTTGAA TTAGAACCAG GAATTGAGGG TCTGATTCAT	1260
ATTTCTGACA TGAGTTGGAT TAAAAAAGTC TCTCACCCTT CAGAACTATT CAAAAAAGGA	1320
AATTCTGTAG AGGCTGTTAT TTTATCAGTA GACAAAGAAA GTAAAAAAAT TACTTTAGGA	1380

GTTAAGCAAT TAAGTTCTAA TCCTTGGAAT GAAATTGAAG CTATGTTCCC TGCTGGCACA	1440
GTAATTTCAG GAGTTGTGAC TAAAATCACT GCATTTGGAG CCTTTGTTGA GCTACAAAAC	1500
GGGATTGAAG GATTGATTCA CGTTTCAGAA CTTTCTGACA AGCCCTTTGC AAAAATTGAA	1560
GATATTATCT CCATTGGAGA AAATGTTTCT GCAAAAGTAA TTAAGCTAGA TCCAGATCAT	1620
AAAAAAGTTT CTCTTTCTGT AAAAGAATAC TTAGCTGACA ATGCTTATGA TCAAGACTCT	1680
ACCACTGAAT TAGATTTCAA GGATTCTCAA GG	1712

配列番号:9

配列の長さ:1048

配列の型:核酸

鎮の数:二本鎖

トポロジー:直鎖状

配列の種類:Genomic DNA

起源

生物名: C. ニューモニエ

株名:YK-41

直接の起源

クローン:53-38

配列の特徴

特徴を表す記号:CDS

存在位置: 236..1012

特徴を決定した方法:P

配列	,															
TCAG	TATC	GG (CGGAA	TTCG	A AC	CCCT	TCGC	GGC	TCTT	TCT	GGAA	CTCT	'AG A	ATCI	TTAC	N 60
TCTC	GAAG	AG :	TTAAC	TCAA	G GA	TATT	TCCC	TTC	TGCC	CAA	GAAG	ATGC	CA A	CTTC	GCAA	A 120
GGAG	TTAT	CT '	- TCAGT	AGTA	C AC	GGAT	AAAT	AAA	CCTA	ACC	ACTO	TAGT	TA /	\TAA/	CAAA	Г 180
GGTT	AAAG	GC (GCTGA	\GTAA	A GC	CCTI	TGCA	GAA	ATCA/	ACC	CCTI	AGGA	ATA (CAAAC	ATG	238
															Met	
															1	•
TCT	ATT	TCA	TCT	TCT	TCA	GGA	CCT	GAC	AAT	CAA	AAA	TAA	ATC	ATG	TCT	286
Ser	lle	Ser	Ser	Ser	Ser	Gly	Pro	Asp	Asp	Gln	Lys	Asn	lle	Met	Ser	
			5					10					15			
CAA	GTT	CTG	ACA	TCG	ACA	CCC	CAG	GGC	GTG	CCC	CAA	CAA	GAT	AAG	CTG	334
Gin	Val	Leu	Thr	Ser	Thr	Pro	Gin	Gly	Val	Pro	Gln	Gln	Asp	Lys	Leu	
		20					25					30				
TCT	GGC	AAC	GAA	ACG	AAG	CAA	ATA	CAG	CAA	ACA	CGT	CAG	GGT	AAA	AAC	382
Ser	Gly	Asn	Glu	Thr	Lys	Gln	lle	Gln	Gln	Thr	Arg	Gln	Gly	Lys	Asn	
	35					40					45					
ACT	GAG	ATG	GAA	AGC	GAT	GCC	ACT	ATT	GCT	GGT	GCT	TCT	GGA	AAA	GAC	430
Thr	Glu	Met	. Glu	Ser	Asp	Ala	Thr	lle	Ala	Gly	Ala	Ser	Gly	Lys	Asp	
50					55					60					65	
AAA	ACT	TC	TCG	ACT	ACA	AAA	ACA	GAA	ACA	GCT	CCA	CAA	CAG	GGA	GTT	478

																•	
Lvs	Thr	Se	r	Ser	Thr	Thr	Lys	Thr	Glu	Thr	Ala	Pro	Gin	Gln	Gly	Val	
2,0	-				70					75					80		
GCT	GCT	GC	G	AAA	GAA	TCC	TCA	GAA	AGT	CAA	AAG	GCA	GGT	GCT	GAT	ACT	526
Ala	Ala	G	l y	Lys	Glu	Ser	Ser	Glu	Ser	Gln	Lys	Ala	Gly	Ala	Asp	Thr	
				85					90					95			
GGA	GT	A T	CA	GGA	GCG	GCT	GCT	ACT	ACA	GCA	TCA	AAT	ACT	GCA	ACA	AAA	574
Gly	Va	i s	er	Gly	Ala	Ala	Ala	Thr	Thr	Ala	Ser	Asn			Thr	Lys	
			00					105					110				622
ATT	GC	T A	TG	CAG	ACC	TC1	TTA 1	GA/	GAG	GCG	AGC	AA/	AGT	ATG	GAU	TUI	022
													0	. Mai	C1.		
H	e Al	a b	iet	Gli	1 Th	r Sei	r Ile	e G11	u Gli	ı Ala	Sei			r mei	(())	1 261	
	11	5					120					12				A CT(670
AC	C T1	A7	GAG	TC	A CT	T CA	A AG	C CT	C AG	T GC	C GC	G CA	A AT	G AA	A UA	n uiv	, 010
								•	0 -	- A1	. A1	a G1	n W ø	t I.v	s G1	u Va	1
Th	r L	eu	Gli	ı Se	r Le		n Se	r Le	u se	T Ali	a ni 14		H #C	,	•	14	5
13	0				_	13			.c #0	. CC			T TC	G GG	T TC		
GA	A G	CG	GT'	T GT	'T GT	T GC	T GC	.0 01	ic ic	יט אי	תת עו	n nv					
					1 17.		la Al	a 1.	on Se	er Gl	v Ly	ıs Se	er Se	er Gl	y Se	r Al	a
G 1	lu A	la	۷a	1 V			ומ הו			15					16	60	
					11 12 A2	50 rt 6	AG C1	rc C	CC A			3G G'	TG A	CA CO	CA AC	GA TO	766 A
A	AA I	16	U A	M M	CA C	51 0 7		. •					•				
	w o l		C I	1 n T	hr P	ro G	lu L	eu P	ro L	ys P	ro G	ly V	al T	hr P	ro A	rg Se	er
L	ys I	LEU	J I		65					70			٠	1	75		
^	AC 1	ርምቸ	Δ'	ነ ጋፕ	AA A	TC G	GA C	TC G	CG C	TT G	CT A	AA G	CA A	TT C	AG A	CA T	TG 814
U	AU '	ull	Λ	, , ,	, 101 A	•							•				
c	1 in	Val	ı	le G	ilu l	le (iy L	eu <i>l</i>	la l	eu A	lal	ys A	la l	le G	in T	hr L	eu

180 185 190 862 GGA GAA GCC ACA AAA TCT GCC TTA TCT AAC TAT GCA AGT ACA CAA GCA Gly Glu Ala Thr Lys Ser Ala Leu Ser Asn Tyr Ala Ser Thr Gln Ala 200 205 195 CAA GCA GAC CAA ACA AAT AAA CTA GGT CTA GAA AAG CAA GCG ATA AAA 910 Gin Ala Asp Gin Thr Asn Lys Leu Gly Leu Glu Lys Gin Ala Ile Lys 225 210 215 220 ATC GAT AAA GAA CGA GAA GAA TAC CAA GAG ATG AAG GCT GCC GAA CAG 958 lle Asp Lys Glu Arg Glu Glu Tyr Gln Glu Met Lys Ala Ala Glu Gln 230 235 240 AAG TCT AAA GAT CTC GAA GGA ACA ATG GAT ACT GTC AAT ACT GTG ATG 1006 Lys Ser Lys Asp Leu Glu Gly Thr Met Asp Thr Val Asn Thr Val Met 250 255 245 ATC GCG AAGGGGTTCG AATTCCAGCT GAGCGCCGGT CGCTAC 1048 lle Ala

...

259

配列番号:10

配列の長さ:5702

配列の型:核酸

鎖の数:二本鎖

配列の種類:他の核酸 プラスミド

配列

ATCGATGTTA ACAGATCTAA GCTTAACTAA CTAACTCCGG AAAAGGAGGA ACTTCCATGA 60

TCAGTCTGAT TGCGGCGTTA GCGGTAGATC GCGTTATCGG CATGGAAAAC GCCATGCCGT	120
GGAACCTGCC TGCCGATCTC GCCTGGTTTA AACGCAACAC CTTAAATAAA CCCGTGATTA	180
TGGGCCGCCA TACCTGGGAA TCAATCGGTC GTCCGTTGCC AGGACGCAAA AATATTATCC	240
TCAGCAGTCA ACCGGGTACG GACGATCGCG TAACGTGGGT GAAGTCGGTG GATGAAGCCA	300
TCGCGGCGTG TGGTGACGTA CCAGAAATCA TGGTGATTGG CGGCGGTCGC GTTTATGAAC	360
AGTTCTTGCC AAAAGCGCAA AAACTGTATC TGACGCATAT CGACGCAGAA GTGGAAGGCG	420
ACACCCATTT CCCGGATTAC GAGCCGGATG ACTGGGAATC GGTATTCAGC GAATTCCACG	480
ATGCTGATGC GCAGAACTCT CACAGCTATG AGTTCGAAAT TCTGGAGCGG CGGATCCAAT	540
TCGAACCCCT TCGCGGCTCT TTCTGGAACT CTAGAATCTT TACATCTCGA AGAGTTAACT	600
CAAGGATTAT TCCCTTCTGC CCAAGAAGAT GCCAACTTCG CAAAGGAGTT ATCTTCAGTA	660
GTACACGGAT TAAAAAACCT AACCACTGTA GTTAATAAAC AAATGGTTAA AGGCGCTGAG	720
TAAAGCCCTT TGCAGAATCA AACCCCTTAG GATACAAACA TGTCTATTTC ATCTTCTTCA	780
GGACCTGACA ATCAAAAAA TATCATGTCT CAAGTTCTGA CATCGACACC CCAGGGCGTG	840
CCCCAACAAG ATAAGCTGTC TGGCAACGAA ACGAAGCAAA TACAGCAAAC ACGTCAGGGT	900

AAAAACACTG AGATGGAAAG CGATGCCACT ATTGCTGGTG CTTCTGGAAA AGACAAAACT	960
TCCTCGACTA CAAAAACAGA AACAGCTCCA CAACAGGGAG TTGCTGCTGG GAAAGAATCC	1020
TCAGAAAGTC AAAAGGCAGG TGCTGATACT GGAGTATCAG GAGCGGCTGC TACTACAGCA	1080
TCAAATACTG CAACAAAAT TGCTATGCAG ACCTCTATTG AAGAGGCGAG CAAAAGTATG	1140
GAGTCTACCT TAGAGTCACT TCAAAGCCTC AGTGCCGCGC AAATGAAAGA AGTCGAAGCG	1200
GTTGTTGTTG CTGCCCTCTC AGGGAAAAGT TCGGGTTCCG CAAAATTGGA AACACCTGAG	1260
CTCCCCAAGC CCGGGGTGAC ACCAAGATCA GAGGTTATCG AAATCGGACT CGCGCTTGCT	1320
AAAGCAATTC AGACATTGGG AGAAGCCACA AAATCTGCCT TATCTAACTA TGCAAGTACA	1380
CAAGCACAAG CAGACCAAAC AAATAAACTA GGTCTAGAAA AGCAAGCGAT AAAAATCGAT	1440
AAAGAACGAG AAGAATACCA AGAGATGAAG GCTGCCGAAC AGAAGTCTAA AGATCTCGAA	1500
GGAACAATGG ATACTGTCAA TACTGTGATG ATCGCGAAGG GGTTCGAATT GCCATGGGGG	1560
CCCTTAATTA ATTAACTCGA GAGATCCAGA TCTAATCGAT GATCCTCTAC GCCGGACGCA	1620
TCGTGGCCGG CATCACCGGC GCCACAGGTG CGGTTGCTGG CGCCTATATC GCCGACATCA	1680
CCGATGGGGA AGATCGGGCT CGCCACTTCG GGCTCATGAG CGCTTGTTTC GGCGTGGGTA	1740
TGGTGGCAGG CCCGTGGCCG GGGGACTGTT GGGCGCCATC TCCTTGCATG CACCATTCCT	1800

TGCGGCGGCG GTGCTCAACG GCCTCAACCT ACTACTGGGC TGCTTCCTAA TGCAGGAGTC	1860
GCATAAGGGA GAGCGTCGAC CGATGCCCTT GAGAGCCTTC AACCCAGTCA GCTCCTTCCG	1920
GTGGGCGCGG GGCATGACTA TCGTCGCCGC ACTTATGACT GTCTTCTTTA TCATGCAACT	1980
CGTAGGACAG GTGCCGGCAG CGCTCTGGGT CATTTTCGGC GAGGACCGCT TTCGCTGGAG	2040
CGCGACGATG ATCGGCCTGT CGCTTGCGGT ATTCGGAATC TTGCACGCCC TCGCTCAAGC	2100
CTTCGTCACT GGTCCCGCCA CCAAACGTTT CGGCGAGAAG CAGGCCATTA TCGCCGGCAT	2160
GGCGGCCGAC GCGCTGGGCT ACGTCTTGCT GGCGTTCGCG ACGCGAGGCT GGATGGCCTT	2220
CCCCATTATG ATTCTTCTCG CTTCCGGCGG CATCGGGATG CCCGCGTTGC AGGCCATGCT	2280
GTCCAGGCAG GTAGATGACG ACCATCAGGG ACAGCTTCAA GGATCGCTCG CGGCTCTTAC	2340
CAGCCTAACT TCGATCACTG GACCGCTGAT CGTCACGGCG ATTTATGCCG CCTCGGCGAG	2400
CACATGGAAC GGGTTGGCAT GGATTGTAGG CGCCGCCCTA TACCTTGTCT GCCTCCCCGC	2460
GTTGCGTCGC GGTGCATGGA GCCGGGCCAC CTCGACCTGA ATGGAAGCCG GCGGCACCTC	2520
GCTAACGGAT TCACCACTCC AAGAATTGGA GCCAATCAAT TCTTGCGGAG AACTGTGAAT	2580
GCGCAAACCA ACCCTTGGCA GAACATATCC ATCGCGTCCG CCATCTCCAG CAGCCGCACG	2640

CGGCGCATCT	CGGGCAGCGT	TGGGTCCTGG	CCACGGGTGC	GCATGATCGT	GCTCCTGTCG	2700
TTGAGGACCC	GGCTAGGCTG	GCGGGGTTGC	CTTACTGGTT	AGCAGAATGA	ATCACCGATA	2760
CGCGAGCGAA	CGTGAAGCGA	ствствствс	AAAACGTCTG	CGACCTGAGC	AACAACATGA	2820
ATGGTCTTCG	GTTTCCGTGT	TTCGTAAAGT	CTGGAAACGC	GGAAGTCAGC	GCCCTGCACC	2880
ATTATGTTCC	GGATCTGCAT	CGCAGGATGC	TGCTGGCTAC	CCTGTGGAAC	ACCTACATCT	2940
GTATTAACGA	AGCGCTGGCA	TTGACCCTGA	GTGATTTTTC	TCTGGTCCCG	CCGCATCCAT	3000
ACCGCCAGTT	GTTTACCCTC	ACAACGTTCC	AGTAACCGGG	CATGTTCATC	ATCAGTAACC	3060
CGTATCGTGA	GCATCCTCTC	TCGTTTCATC	GGTATCATTA	CCCCCATGAA	CAGAAATTC	3120
CCCCTTACAC	GGAGGCATCA	AGTGACCAAA	CAGGAAAAA	CCGCCCTTAA	CATGGCCCG	3180
CTTTATCAGA	AGCCAGACAT	TAACGCTTCT	GGAGAAACTC	AACGAGCTGG	ACGCGGATG	3240
AACAGGCAGA	CATCTGTGAA	TCGCTTCACG	ACCACGCTGA	TGAGCTTTAC	CGCAGCTGC	3300
СТССССССТТ	TCGGTGATGA	CGGTGAAAAC	CTCTGACACA	TGCAGCTCCC	GGAGACGGT	3360
CACAGCTTGT	CTGTAAGCGG	ATGCCGGGAG	CAGACAAGCC	CGTCAGGGCG	CGTCAGCGG	3420
GTGTTGGCGG	GTGTCGGGGC	GCAGCCATGA	CCCAGTCACG	TAGCGATAGC	GGAGTGTAT	3480
ACTGGCTTAA	CTATGCGGCA	TCAGAGCAGA	TTGTACTGAG	AGTGCACCAT	ATGCGGTGT	3540

GAAATACCGC A	CAGATGCGT	AAGGAGAAAA	TACCGCATCA	GGCGCTCTTC	CGCTTCCTC	3600
GCTCACTGAC T	CGCTGCGCT	CGGTCGTTCG	GCTGCGGCGA	GCGGTATCAG	CTCACTCAA	3660
AGGCGGTAAT A	CGGTTATCC	ACAGAATCAG	GGGATAACGC	AGGAAAGAAC	ATGTGAGCA	3720
AAAGGCCAGC A	AAAGGCCAG	GAACCGTAAA	AAGGCCGCGT	TGCTGGCGTT	TTTCCATAG	3780
GCTCCGCCCC (CCTGACGAGC	ATCACAAAAA	TCGACGCTCA	AGTCAGAGGT	GGCGAAACC	3840
CGACAGGACT	ATAAAGATAC	CAGGCGTTTC	CCCCTGGAAG	CTCCCTCGTG	CGCTCTCCT	3900
GTTCCGACCC '	TGCCGCTTAC	CGGATACCTG	TCCGCCTTTC	TCCCTTCGGG	AAGCGTGGC	3960
GCTTTCTCAA	TGCTCACGCT	GTAGGTATCT	CAGTTCGGTG	TAGGTCGTTC	GCTCCAAGC	4020
TEGECTETET	GCACGAACCC	CCCGTTCAGC	CCGACCGCTG	CGCCTTATCC	GGTAACTAT	4080
CGTCTTGAGT	CCAACCCGGT	AAGACACGAC	TTATCGCCAC	TGGCAGCAGC	CACTGGTAA	4140
CAGGATTAGC	AGAGCGAGGT	ATGTAGGCGG	G TGCTACAGAI	G TTCTTGAAG1	r ggtggccta	4200
ACTACGGCTA	CACTAGAAGG	ACAGTATTT	G GTATCTGCG	C TCTGCTGAA	G CCAGTTACC	4260
TTCGGAAAAA	GAGTTGGTAC	CTCTTGATC	C GGCAAACAA	A CCACCGCTG	G TAGCGGTGG	4320
TTTTTTTGTT	TGCAAGCAG	C AGAȚTACGC	G CAGAAAAA	A GGATCTCAA	G AAGATCCTT	4380

T	GATCTTTTC	TACGGGGTCT	GACGCTCAGT	GGAACGAAAA	CTCACGTTAA	GGGATTTTG	4440
G'	TCATGAGAT	TATCAAAAAG	GATCTTCACC	TAGATCCTTT	TAAATTAAAA	ATGAAGTTT	4500
T	AAATCAATC	TAAAGTATAT	ATGAGTAAAC	TTGGTCTGAC	AGTTACCAAT	GCTTAATCA	4560
Gʻ	TGAGGCACC	TATCTCAGCG	ATCTGTCTAT	TTCGTTCATC	CATAGTTGCC	TGACTCCCC	4620
G'	TCGTGTAGA	TAACTACGAT	ACGGGAGGGC	TTACCATCTG	GCCCCAGTGC	TGCAATGAT	4680
A	CCGCGAGAC	CCACGCTCAC	CGGCTCCAGA	TTTATCAGCA	ATAAACCAGC	CAGCCGGAA	4740
G	GGCCGAGCG	CAGAAGTGGT	CCTGCAACTT	TATCCGCCTC	CATCCAGTCT	ATTAATTGT	4800
T	GCCGGGAAG	CTAGAGTAAG	TAGTTCGCCA	GTTAATAGTT	TGCGCAACGT	TGTTGCCAT	4860
T	GCTGCAGGC	ATCGTGGTGT	CACGCTCGTC	GTTTGGTATG	GCTTCATTCA	GCTCCGGTT	4920
C	CCAACGATC	AAGGCGAGTT	ACATGATCCC	CCATGTTGTG	CAAAAAAGCG	GTTAGCTCC	4980
T	TCGGTCCTC	CGATCGTTGT	CAGAAGTAAG	TTGGCCGCAG	TGTTATCACT	CATGGTTAT	5040
G	GCAGCACTG	CATAATTCTC	TTACTGTCAT	GCCATCCGTA	AGATGCTTTT	CTGTGACTG	5100
G	TGAGTACTC	AACCAAGTCA	TTCTGAGAAT	AGTGTATGCG	GCGACCGAGT	тсстсттсс	5160
C	CGGCGTCAA	CACGGGATAA	TACCGCGCCA	CATAGCAGAA	CTTTAAAAGT	GCTCATCAT	5220
T	GGAAAACGT	TCTTCGGGGC	GAAAACTCTC	AAGGATCTTA	CCGCTGTTGA	GATCCAGTT	5280

CGATGTAACC	CACTCGTGCA	CCCAACTGAT	CTTCAGCATC	TTTTACTTTC	ACCAGCGTT	5340
TCTGGGTGAG	CAAAAACAGG	AAGGCAAAAT	GCCGCAAAAA	AGGGAATAAG	GGCGACACG	5400
GAAATGTTGA	ATACTCATAC	тсттсстттт	TCAATATTAT	TGAAGCATTT	ATCAGGGTT	5460
ATTGTCTCAT	GAGCGGATAC	ATATTTGAAT	GTATTTAGAA	AAATAAACAA	ATAGGGGTT	5520
CCGCGCACAT	TTCCCCGAAA	AGTGCCACCT	GACGTCTAAG	AAACCATTAT	TATCATGAC	5580
ATTAACCTAT	AAAAATAGGC	GTATCACGAG	GCCCTTTCGT	CTTCAAGAAT	TAATTGTTA	5640
TCCGCTCACA	ATTAATTCTT	GACAATTAGT	TAACTATTTG	TTATAATGTA	TTCATAAGC	5700
TT		,				5702

配列番号:11

配列の長さ:35

配列の型:核酸

鎖の数:一本鎖

配列の種類:他の核酸 合成DNA

配列

GATCCAATTG CCATGGGGGC CCTTAATTAA TTAAC

35

PCT/JP95/01896

WO 96/09320

配列番号:12

配列の長さ:35

配列の型:核酸

館の数:一本額

配列の種類:他の核酸 合成DNA

配列

TCGAGTTAAT TAATTAAGGG CCCCCATGGC AATTG

35

配列番号:13

配列の長さ:1954

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類: Genomic DNA

起源

生物名: C. ニューモニエ

株名: YK-41

直接の起源

クローン:70-28

配列の特徴

特徴を表す記号:-35 signal

存在位置:146..151

特徴を決定した方法:S

配列の特徴

特徴を表す記号:-10 signal

存在位置:169..174

特徴を決定した方法:S

配列の特徴

特徴を表す記号:RBS

存在位置:199205	
特徴を決定した方法:S	
配列の特徴	
特徴を表す記号:CDS	
存在位置:2151927	
特徽を決定した方法:S	
配列	
TTGACACCAG ACCAACTGGT AATGGTAGCG ACCGGCGCTC AGCTGGAATT CGAACCCCTT	60
•	
CGCCTTATAC ATCTCTAGAA CGGAAGTATA GGATTTTACG ATTAATTCGA TTATATAGAA	120
	100
CTAATCGTCT CCTGCAAGGG AGGTCTTGCC TTTTTTAAGG TTTATATTTA CACTGTCTTT	180
	005
TTTGACTTTG TAGTTTTTAG GAGAATAACA ATAA ATG CCA AAA CAA GCT GAA TAT	235
Met Pro Lys Gin Ala Glu'Tyr	
<u>i</u> 5	
ACT TGG GGA TCT AAA AAA ATT CTG GAC AAT ATA GAA TGC CTC ACA GAA	283
Thr Trp Gly Ser Lys Lys Ile Leu Asp Asn Ile Glu Cys Leu Thr Glu	
10 15 20	

Net Pro Lys Gin Ala Giu Tyr

1 5

ACT TGG GGA TCT AAA AAA ATT CTG GAC AAT ATA GAA TGC CTC ACA GAA 283

Thr Trp Gly Ser Lys Lys lie Leu Asp Asn lie Glu Cys Leu Thr Glu

10 15 20

GAC GTT GCC GAA TTT AAA GAT TTG CTT TAT ACG GCA CAC AGA ATT ACT 331

Asp Val Ala Glu Phe Lys Asp Leu Leu Tyr Thr Ala His Arg lie Thr

25 30 35

TCG AGC GAA GAA GAA TCT GAT AAC GAA ATA CAG CCT GGC GCC ATC CTA 379

Ser Ser Glu Glu Glu Ser Asp Asn Glu lie Gln Pro Gly Ala lie Leu

40 45 50 55

AAA	GGT	ACC	GTA	GTT	GAT	ATT	AAT	AAA	GAC	TTT	GTC	GTA	GTT	GAT	GTT	427
Lys	Gly	Thr	Vai		Asp	lle	Asn	Lys		Phe	Val	Val	Val		Val	
				60					65					70		
GGT	CTG	AAG	TCT	GAG	GGA	GTG	ATC	CCT	ATG	TCA	GAG	TTC	ATA	GAC	TCT	475
Gly	Leu	Lys	Ser	Glu	Gly	Val	lle	Pro	Net	Ser	Glu	Phe	lle	Asp	Ser	
			75					80					85			
TCA	GAA	GGT	TTA	GTG	CTT	GGA	GCT	GAA	GTA	GAA	GTC	TAT	CTC	GAC	CAA	523
Ser	Głu	Gly	Leu	Val	Leu	Gly	Ala	Glu	Val	Glu	Val	Tyr	Leu	Asp	Gln	
		90					95					100				
GCC	GAA	GAC	GAA	GAG	GGC	AAA	GTT	GTC	CTT	TCT	AGA	GŅĀ	۸۸۸	GCC	ACA	571
Ala	Glu	Asp	Glu	Glu	Gly	Lys	Val	Val	Leu	Ser	Arg	Glu	Lys	Ala	Thr	
	105					110					115					
CGA	CAA	CGT	CAA	TGG	GAA	TAC	ATC	TTA	GCT	CAT	TGT	GAA	GAA	GGT	TCT	619
Arg	Gln	Arg	Gln	Trp	Glu	Tyr	lle	Leu	Ala	His	Cys	Glu	Glu	Gly	Ser	
120					125					130					135	
ATT	GTT	AAA	GGT	CAA	ATT	ACA	CGT	AAA	GTC	AAA	GGC	GGC	CTT	ATT	GTA	667
lle	Val	Lys	Gly	Gln	lle	Thr	Arg	Lys	Val	Lys	Gly	Gly	Leu	lle	Val	
				140					145					150		
GAT	Ile	Gly	Met	Glu _.	Ala	Phe	Leu	Pro	Gly	Ser	Gln	lle	Asp	Asn	Lys	715
Asp	ATT	GGA	ATG	GAA	GCC	TTC	CTA	CCT	GGA	TCA	CAA	ATT	GAC	AAC	AAG	
			155					160					165			
Lys	ATC	AAA	AAT	TTA	GAT	GAT	TAT	GTC	GGA	AAA	GTT	TGT	GAA	TTC	AAA	763

444	110	lve	Asn	l.eu	Asp	Asp	Tyr	Val	Gly	Lys	Val	Cys	Glu	Phe	Lys	
AAA	116	170		200	,		175					180				
ATT	TTA			AAC	GTT	GAA		CGC	AAT	ATT	GTT	GTC	TCA	AGA	AGA .	811
			••								•		•	1	1	
ile	Leu	Lys	lle	Ast	'Val	Glu	Arg	Arg	Asn	lle			Ser	Arg	Arg	
	185					190					195					050
GAA	CTC	TTA	GA/	GC	r gag	AGA	ATC	TCT	AAG	AAA	GCC	GAA	CTT	ATT	GAA	859
Glu	Leu	Lei	ı Glı	a Ala	a Glu	ı Arg	, Ile	. Ser	Lys	: Lys	Ala	Glu	Leu	ile	Glu	
200					209		,			210					215	
CAA	AT	TC'	TA 1	C GG	A GA	A TA	CGG	C AA/	A GG!	GTT	GT1	AA 7	AAC	: ATT	ACT	907
C l s	. 11	o Se	r 11	e Gl	v Gi	u Ty	r Ar	g Ly:	s G1:	y Val	Va]	l Ly:	s Asn	ile	e Thr	
011	• • • •			22					22					230		
GA	C TT	T GG	T GT			'A GA	T CT	C GA	T GG	T AT	r ga	C GG	T CT	r ct	C CAC	955
As	o Ph	e G1	y Va	ıl Pl	ne Le	u As	p Le	u As	p G1	, y 11	e As	p Gl	y Le	u Le	u His	
			23					24					24		•	
AT	T AC	C G	AT A'	rg A	CC TO	GG A/	G CG	C AT	ra cg	A CA	T CC	T TC	C GA	A AT	G GTC	1003
11	e T	hr A	sp M	et T	hr T	rp L	ys Ai	rg 1	le Aı	rg Hi	s Pı	o Se	er Gl	u Me	t Val	
•			50					55					60			
G/	AA T	TG A	AT C	AA G	AG T	TG G	AA G	TA A'	TT A'	rt ti	A A	GC G	ΓA GA	AT A	A GAA	1051
G	lu L	eu A	sn C	iln (ilu L	eu G	lu V	al l	le l	le L	eu S	er V	al As	sp L	ys Glu	ı
	2	65				2	70				2	75				
A	AA G	GA (CGA (TT (CT (CTA G	GT C	TC A	AA C	AA A	AA G	AG C	AT A	AT C	CT TG(1099

Lys	Gly	Arg	Val	Ala	Leu	Gly	Leu	Lys	Gln	Lys	Glu	His	Asn	Pro	Trp	
280					285					290					295	
GAA	GAT	TTA	GAG	AAG	AAA	TAC	CCT	CCT	GGA	AAA	CGA	GTT	CTT	GGT	AAA	1147
Glu	Asp	I i e ·	-6 l u	Lys	Lys	Tyr	Pro	Pro	Gly	Lys	Arg	Val	Leu	Gly	Lys	
				300					305					310		
ATT	GTG	AAG	CTT	CTC	ccc	TAC	GGA	GCT	TTC	ATT	GAA	ATT	GAA	GAG	GGC	1195
Ile	Val	Lys	Leu	Leu	Pro	Tyr	Gly	Ala	Phe	lle	Glu	lle	Glu	Glu	Gly	
			315					320					325			
ATT	GAA	GGT	CTA	ATT	CAC	ATT	TCT	GAA	ATG	TCT	TGG	GTG	AAA	AAT	ATT	1243
lle	Glu	Gly	Leu	He	His	lle	Ser	Glu	Met	Ser	Trp	Val	Lys	Asn	Ile	
		330					335					340				
GTA	GAT	CCT	AGT	GAA	GTC	GTA	AAT	AAA	GGC	GAT	GAA	GTT	GAA	GCC	ATT	1291
																•
Val	Asp	Pro	Ser	Glu	Val	Val	Asn	Lys	Gly	Asp	Glu	Val	Giu	Ala	lle	
	345					350					355					
GTT	CTA	TCT	ATT	CAG	AAG	GAC	GAA	GGA	AAA	ATT	TCT	CTA	GGA	TTA	AAG	1339
Val	Leu	Ser	He	Gln	Lys	Asp	Glu	Gly	Lys	He	Ser	Leu	Gly	Leu	Lys	
360					365					370					375	
CAA	ACA	GAA	CGT	AAT	CCT	TGG	GAC	AAT	ATC	GAA	GAA	AAA	TAT	CCT	ATA	1387
Gin	Thr	Glu	Årg	Asn	Pro	Trp	Asp	Asn	l 1 e	Glu	Glu	Lys	Tyr	Pro	lle	
				380					385					390		
GGT	СТС	CAT	GTC	AAT	GCT	GAA	ATC	AAG	AAC	ATT	ACC	AAT	TAC	GGT	GCT	1435
Glv	Leu	His	Val	Asn	Ala	Glu	lle	Lys	Asn	Leu	Thr	Asn	Tyr	Gly	Ala	

			395					400					405			
TTC	GTT	GAA		GAA	CCA	GGA	ATT	GAG	GGT	CTG	ATT	CAT	ATT	TCT	GAC	1483
Phe	Val	Glu	Leu	Glu	Pro	Gly	lle	Glu	Gly	Leu	lle	His	lle	Ser	Asp	
		410					415					420				
ATG	AGT		ATT	AAA	AAA	GTC	TCT	CAC	CCT	TCA	GAA	CTA	TTC	AAA	AAA	1531
Net	Ser	Trp	lle	Lys	Lys	Val	Ser	His	Pro	Ser	Glu	Leu	Phe	Lys	Lys	
	425					430					435					
GGA	AAT	TCT	GTA	GAG	GCT	GTT	ATT	TTA	TCA	GTA	GAC	AAA	GAA	AGT	AAA	1579
Gly	Asn	Ser	Val	Glu	Ala	Val	lle	Leu	Ser	Val	Asp	Lys	Glu	Ser	Lys	
440					445					450					455	
AAA	ATT	ACT	TTA	GGA	GTT	AAG	CAA	TTA	AGT	TCT	AAT	CCT	TGG	AAT	GAA	1627
Lys	Ile	Thr	Leu	Gly	Va 1	Lys	Gìn	Leu	Ser	Ser	Asn	Pro	Trp	Asn	Glu	
				460					465					470		
ATT	GAA	GCT	ATG	TTC	CCT	GCT	GGC	ACA	GTA	ATT	TCA	GGA	GTT	GTO	ACT	1675
116	Gli	ı Ala	a Met	Phe	e Pro	Ala	G 1 y	Thr	Val	Ile	Ser	Gly			Thr	
			475					480					485			1700
AA	A AT	C AC	T GC/	A TTT	r GG#	GCC	TTT	GT1	GAC	CT/	CA/	AA(C GGC	; AT	r gaa	1723
Ly	s II	e Th	r Ala	a Ph	e Gly	, Ala	Phe	e Val	Gli	ı Lei	ı Glı			7 110	e Glu	
		49					495					50				1771
GG	A TT	G AT	T CA	C GT	T TC	A GA	CT1	r TC'	r GA	C AA	G CC	C TT	r GC	A AA	A ATT	1771
											_			_ •	_ 11_	
GI	y Le	u II	e Hi	s Va	1 Se	r Gl	u Lei	u Se	r As	p Ly			e Al	a Ly	s lle	
	50	5				51	0				51	5				

GAA GAT ATT ATC TCC ATT GGA GAA AAT GTT TCT GCA AAA GTA ATT AAG 1919 Glu Asp lie lie Ser lie Gly Glu Asn Val Ser Ala Lys Val lie Lys 525 530 535 520 CTA GAT CCA GAT CAT AAA AAA GTT TCT CTT TCT GTA AAA GAA TAC TTA 1867 Leu Asp Pro Asp His Lys Lys Val Ser Leu Ser Val Lys Glu Tyr Leu 540 545 550 GCT GAC AAT GCT TAT GAT CAA GAC TCT AGG ACT GAA TTA GAT TTC AAG 1915 Ala Asp Asn Ala Tyr Asp Gln Asp Ser Arg Thr Glu Leu Asp Phe Lys 555 560 565 GAT TCT CAA GGC GAA GGG GTT CGA ATT CCG CCG ATA CTG 1954 Asp Ser Gin Gly Glu Gly Val Arg Ile Pro Pro lie Leu 580 575 570 配列番号:14 配列の長さ:160 配列の型:アミノ酸 配列の種類:ペプチド 配列 Met lie Ser Leu lie Ala Ala Leu Ala Val Asp Arg Val lie Gly Met 10 5 1 Glu Asn Ala Met Pro Trp Asn Leu Pro Ala Asp Leu Ala Trp Phe Lys 30 25 20 Arg Asn Thr Leu Asn Lys Pro Val lle Met Gly Arg His Thr Trp Glu

40

Ser lle Gly Arg Pro Leu Pro Gly Arg Lys Asn lle lle Leu Ser Ser

35

45

	50			•		55					60				
Gin	Pro	G I y	Thr	Asp	Asp	Arg	Val	Thr	Trp	Val	Lys	Ser	Val	Asp	Glu
65					70					75					80
Ala	ŀle	Ala	Ala	Cys	Gly	Asp	Val	Pro	Glu	lle	Met	Val	I 1 e	Gly	Gly
				85					90					95	
Gly	Arg	Val	Tyr	Glu	Gln	Phe	Leu	Pro	Lys	Ala	Gln	Lys	Leu	Tyr	Leu
			100					105					110		
Thr	His	lle	Asp	Ala	G 1 u	Val	Glu	Gly	Asp	Thr	His	Phe	Pro.	Asp	Tyr
		115					120					125			
Glu	Pro	Asp	Asp	Trp	Glu	Ser	Val	Phe	Ser	Glu	Phe	His	Asp	Ala	Asp
	130					135					140				
Ala	Gln	Asn	Ser	His	Ser	Tyr	Glu	Phe	Glu	He	Leu	Glu	Arg	Arg	lle
145					150					155					160
				•											
配列	香气	} : 1	5												
配列	りの男	{ さ :	: 649												
配列	の雪	2:7	アミノ	酸											
配列	りの君	類	: ペ:	ナチ	K										
配列	ij														
Met	Ile	Sei	Let	116	Ala	Ala	Leu	Ala	Va!	l Asp	Arg	Va 1	Ile	Gly	Met
1				5					10					15	
Glu	Ası	Ala	a Met	Pro	Trp	Ast	Lei	ı Pro	Ala	a Asp	Leu	Ala	Trp	Phe	Lys
			20					2					30		
Arg	, Ası	Th	r Lei	ı Ası	n Lys	Pro) Va	1 11	e Me	t Giy	/ Arg	His	Thr	Trp	Glu
		3					40					45			
Sei	r II	e G1	y Ar	g Pr	o Lei	ı Pro	o Gl	y Ar	g Ly	s Ası	n ile	lle	Leu	Ser	Ser
	5					5					60				
G 1 1	n Pr	o Gl	y Th	r As	p As	p Ar	g Va	l Th	r Tr	p Va	l Ly:	s Sei	r Val	i Ası	Glu
6					7					7					80

Ala	lle	Ala	Ala	Cys	Gly	Asp	Val	Pro	Glu	lle	Met	Val	lle	Gly	Gly
				85		ė			90					95	
Gly	Arg	Va 1	Tyr	Glu	Gln	Phe	Leu	Pro	Lys	Ala.	Gln	Lys	Leu	Tyr	Leu
			100					105					110		
Thr	His	Ile-	-Asp	Ala	Glu	Val	Glu	Gly	Asp	Thr	His	Phe	Pro	Asp	Tyr
		115					120					125			
Glu	Pro	Asp	Asp	Trp	Glu	Ser	Val	Phe	Ser	Glu	Phe	His	Asp	Ala	Asp
	130					135					140				
Ala	Gln	Asn	Ser	His	Ser	Tyr	Glu	Phe	Glu	lle	Leu	Glu	Arg	Arg	lle
145					150					155					160
Leu	Net	Ser	lle	Ser	Ser	Ser	Ser	Gly	Pro	Asp	Asn	Gln	Lys	Asn	lle
				165					170					175	
Net	Ser	Gln	Val	Leu	Thr	Ser	Thr	Pro	Gin	Gly	Val	Pro	Gln	Gln	Asp
			180					185					190		
Lys	Leu	Ser	Gly	azA	Glu	Thr	Lys	Gln	ile	Gln	G 1 n	Thr	Arg	Gln	Gly
		195					200					205			
Lys	azA	Thr	Giu	Met	Glu	Ser	Asp	Ala	Thr	Ile	Ala	Gly	Ala	Ser	Gly
	210					215					220				
Lys	Asp	Lys	Thr	Ser	Ser	Thr	Thr	Lys	Thr	Glu	Thr	Ala	Pro	Gln	Gln
225					230					235					240
Gly	Val	Ala	Ala	Gly	Lys	Glu	Ser	Ser	Glu	Ser	Gln	Lys	Ala	Gly	Ala
				245					250					255	
Asp	Thr	Gly	Val	Ser	Gly	Ala	Ala	Ala	Thr	Thr	Ala	Ser	Asn	Thr	Ala
			260)				265	;		•		270	١	
Thr	Lys	ille	Ala	Met	Glo	Thr	Ser	lle	G Lu	Glu	Ala	Ser	Lys	Ser	Met
		275	5				280)				285	,		
Gli	ı Sei	r Thi	r Leu	Glu	ı Sei	Lei	Gli	Ser	Let	ı Sei	r Ala	Ala	Gln	Met	Lys
	290					295					300				
Gli	ı Va	1 61	u Ala	a Va	l Va	l Va	l Ala	a Ala	a Lei	ı Sei	r Gly	, Lys	s Ser	Ser	Gly

305					310					315					320
Ser	Ala	Lys	Leu	Glu	Thr	Pro	Glu	Leu	Pro	Lys	Pro	G 1 y	Val	Thr	Pro
				325					330					335	
Arg	Ser	Glu	Val	lle	Glu	He	Gly	Leu	Ala	Leu	Ala	Lys	Ala	lle	Gln
			340					345					350		
Thr	Leu	Gly	Glu	Ala	Thr	Lys	Ser	Ala	Leu	Ser	Asn	Tyr	Ala	Ser	Thr
		355				•	360					365			
Gin	Ala	Gln	Ala	Asp	Gln	Thr	Asn	Lys	Leu	Gly	Leu	Glu	Lys	Gln	Ala
	370					375					380				•
lle	Lys	lle	Asp	Lys	Glu	Arg	Glu	Glu	Tyr	Gln	Glu	Met	Lys	Ala	Ala
385					390					395					400
Glu	Gln	Lys	Ser	Lys	Asp	Leu	Glu	Gly	Thr	Met	Asp	Thr	Val	Asn	Thr
				405					410					415	
Val	Met	lle	Ala	Va l	Ser	Val	Ala	lle	Thr	Val	lle	Ser	lle	Val	Ala
			420					425					430		
Ala	He	Phe	Thr	Cys	Gly	Ala	Gly	Leu	Ala	Gly	Leu	Ala	Ala	Gly	Ala
		435					440					445			
Ala	Va l	Gly	Ala	Ala	Ala	Ala	Gly	Gly	Ala	Ala	Gly	Ala	Ala	Ala	Ala
	450					455					460		•		
Thr	Thr	Val	Ala	Thr	G 1 n	Ile	Thr	Val	Gla	Ala	Val	Val	Gin	Ala	Val
465					470					475					480
Lys	Gin	Ala	Vai	11e	Thr	Ala	Val	Arg	Gln	Ala	lle	Thr	Ala	Ala	lle
				485					490					495	
Lys	Ala	Ala	Val	Lys	Ser	Gly	Ile	Lys	Ala	Phe	lle	Lys	Thr	Leu	Val
			500					505					510		
Lys	Ala	lle	Ala	Lys	Ala	lle	Ser	Lys	Gly	ile	Ser	Lys	Val	Phe	Ala
		515					520					525			
Lys	Gly	Thr	Gln	Met	lle	Ala	Lys	Asn	Phe	Pro	Lys	Leu	Ser	Lys	Val
	530					535					540				

lle Ser Ser Leu Thr Ser Lys Trp Val Thr Val Gly Val Gly Val Val Val Ala Ala Pro Ala Leu Gly Lys Gly ile Met Gln Met Gln Leu Ser Glu Met Gln Gln Asn Val Ala Gln Phe Gln Lys Glu Val Gly Lys Leu Gin Ala Ala Asp Met lie Ser Met Phe Thr Gin Phe Trp Gin Gin Ala Ser Lys Ile Ala Ser Lys Gin Thr Gly Glu Ser Asn Glu Met Thr Gin Lys Ala Thr Lys Leu Gly Ala Gin Ile Leu Lys Ala Tyr Ala Ala lle Ser Gly Ala Ile Ala Gly Ala Ala

配列番号:16

配列の長さ:432

配列の型:アミノ酸

配列の種類:ペプチド

配列

Met lie Ser Leu lie Ala Ala Leu Ala Val Asp Arg Val lie Gly Met Glu Asn Ala Met Pro Trp Asn Leu Pro Ala Asp Leu Ala Trp Phe Lys Arg Asn Thr Leu Asn Lys Pro Val 11e Net Gly Arg His Thr Trp Glu Ser lie Gly Arg Pro Leu Pro Gly Arg Lys Asn lie lie Leu Ser Ser Gln Pro Gly Thr Asp Asp Arg Val Thr Trp Val Lys Ser Val Asp Glu

65					70					75					80
Ala	lle	Ala	Ala	Cys	Gly	Asp	Val	Pro	Glu	lle	Met	Val	lle	Gly	Gly
				85					90					95	
Gly	Arg	Val	Tyr	Glu	Gln	Phe	Leu	Pro	Lys	Ala	Gin	Lys	Leu	Tyr	Leu
			100					105					110		
Thr	His	ile	Asp	Ala	Glu	Val	Glu	Gly	Asp	Thr	His	Phe	Pro	Asp	Tyr
		115				•	120					125			
Glu	Pro	Asp	Asp	Trp	Glu	Ser	Val	Phe	Ser	Glu	Phe	His	Asp	Ala	Asp
	130					135					140				
Ala	Gln	Asn	Ser	His	Ser	Tyr	Glu	Phe	Glu	lle	Leu	Glu	Arg	Arg	Ile
145					150					155					160
Leu	Met	Ser	He	Ser	Ser	Ser	Ser	Gly	Pro	Asp	Asn	Gln	Lys	Asn	lle
				165					170					175	
Met	Ser	Gln	Val	Leu	Thr	Ser	Thr	Pro	Gln	Gly	Val	Pro	Gln	Gln	Asp
•			180					185					190		
Lys	Leu	Ser	Gly	Asn	Glu	Thr	Lys	Gln	Ile	Gln	Gin	Thr	Arg	Gln	Gly
		195	5				200	ł				205			
Lys	Ası	The	Glu	Met	Glu	Ser	Asp	Ala	Thr	lle	Ala	Gly	Ala	Ser	Gly
	210					215					220				
Lys	. Ası	p Ly:	s Thi	Sei	Sei	Thi	Thi	Lys	Thr	Glu	Thr	Ala	Pro	Gln	Gin
225					230					235					240
G1:	y Va	1 · A1:	a Ala	a Gly	y Ly:	s Gl	u Sei	r Sei	r Glu	ı Ser	Gln	Lys	Ala	Gly	Ala
				24					250					255	
As	p Th	r G1	y Va	1 Se	r G1:	y Ala	a Ala	a Ala	a Thi	r Thi	Ala	Ser	Asn	The	Ala
			26					26					270		
Th	r Ly	s 11	e Al	a Me	t G1	n Th	r Se	r II	e Gl	u Glu	ı Ala	Ser	Lys	s Se	Met
		27	5				28	0				285	•		
G I	u Se	r Th	r Le	u Gl	u Se	r Le	u Gl	n Se	r Le	u Se	r Ala	a Ala	Gli	n Me	t Lys
	29					29	5				300	0			

96

Glu Val Glu Ala Val Val Val Ala Ala Leu Ser Gly Lys Ser Ser Gly 315 310 305 Ser Ala Lys Leu Glu Thr Pro Glu Leu Pro Lys Pro Gly Val Thr Pro 330 325 Arg Ser Glu Val Ile Glu Ile Gly Leu Ala Leu Ala Lys Ala lle Gln 345 350 340 Thr Leu Gly Glu Ala Thr Lys Ser Ala Leu Ser Asn Tyr Ala Ser Thr 365 355 360 Gin Ala Gin Ala Asp Gin Thr Asn Lys Leu Gly Leu Giu Lys Gin Ala 375 380 370 lle Lys Ile Asp Lys Glu Arg Glu Glu Tyr Gln Glu Met Lys Ala Ala 395 400 390 385 Glu Gln Lys Ser Lys Asp Leu Glu Gly Thr Met Asp Thr Val Asn Thr 415 405 410 Val Met lie Ala Lys Gly Phe Glu Leu Pro Trp Gly Pro Leu Ile Asn 432 430 425 420

配列番号:17

配列の長さ:1947

配列の型:核酸

鎖の数:二本鎖

配列の種類:他の核酸 合成DNA

配列

ATG ATC AGT CTG ATT GCG GCG TTA GCG GTA GAT CGC GTT ATC GGC ATG 48

Met Ile Ser Leu Ile Ala Ala Leu Ala Val Asp Arg Val Ile Gly Met

1 5 10 15

GAA AAC GCC ATG CCG TGG AAC CTG CCT GCC GAT CTC GCC TGG TTT AAA

					_			_		A	1	41-	Т	Dha	Lue	
Glu	Asn	Ala	Met	Pro	Trp	Asn	Leu	Pro	Ala	ASP	Leu	BIA		rne	L y S	
			20					25					30			
CGC	AAC	ACC	ATT	TAA	AAA	CCC	GTG	TTA	ATG	GGC	CGC	CAT	ACC	TGG	GAA	144
L ro	A e n	Thr	Seu	Asn	Lvs	Pro	Val	Ile	Met	Gly	Arg	His	Thr	Trp	Glu	
ri B	nsu		200		-,0	•••	40					45				
		35				004	-	ccc		AAT	АТТ		стс	AGC	AGT	192
TCA	ATC	GGT	CGT	CCG	TTG	CCA	GUA	CGC	AAA	WWI	MII	AIU	010	AUU	7.01	100
Ser	l l e	Gly	Arg	Pro	Leu	Pro	Gly	Arg	Lys	Asn	lle	Ile	Leu	Ser	Ser	
	50					55					60					
CAA	CCG	GGT	ACG	GAC	GAT	CGC	GTA	ACG	TGG	GTG	AAG	TCG	GTG	GAT	GAA	240
	·															
Gln	Pro	Giv	Thr	Asp	Asp	Arg	Val	Thr	Trp	Val	Lys	Ser	Val	Asp	Glu	
	110	uly		,	70				·	75					80	
65							CTA	CCA	CAA			ርተር	ATT	. eec	GGC	288
GCC	ATC	GCG	GCG	761	661	GAC	GIV	UUN	VAA	AIV	nio	0.0	*** *			
													• •	.		
Ala	I l e	Ala	Ala	Cys	Gly	Asp	Val	Pro	Glu	lle	Met	. Val	116		Gly	
				85					90					95		
GG1	CGC	GT1	TAT	GAA	CAG	TTC	TTG	CCA	AAA	GCG	CAA	AAA /	CTO	TAT	CTG	336
						4										
Cla	, Arı	o Va	i Tvr	. G11	Gli	n Phe	Lei	Pro	Lys	Ala	Gli	ı Lys	Lei	ц Туі	r Leu	
UI)		5 14	100					105					110			
						. c#c				. V.L.	. CA.	T T T(T TAC	384
ACC	G CA	T AT	C GAC	GC/	A GA/	1 616	UA/	1 600	, unu	, AU	J ON					
															.	
Th	r Hi	s 11	e Ası	Ala	a Gli	y Val	Gli	u Gly	y Ası	Th	r Hi:	s Pho	e Pro	O AS	p Tyr	
		11	5				12	0				12	5			
GA	G CC	G GA	T GA	C TG	G GA	A TCC	GT.	A TT	C AG	C GA	A TT	C CA	C GA	T GC	T GAT	432
J. ,																
٥.	n		n A.	n ጥ∽	n (C)	n Sei	r Va	l Ph	e Se	r Gl	u Ph	e Hi	s As	p Al	a Asp	

	130					135					140			•		
GCG	CAG	AAC	TCT	CAC	AGC	TAT	GAG	TTC	GAA	ATT	CTG	GAG	CGG	CGG	ATC	480
Ala	Gln	Asn	Ser	His	Ser	Tyr	Glu	Phe	Glu	lle	Leu	Glu	Arg	Arg	Ile	
145					150					155					160	
CTG	ATG	TCT	ATT	TCA	TCT	TCT	TCA	GGA	CCT	GAC	AAT	CAA	AAA	AAT	ATC	528
Leu	Met	Ser	He		Ser	Ser	Ser	Gly		Asp	Asn	Gln	Lys		lle	
				165					170					175		
ATG	TCT	CAA	GTT	CTG	ACA	TCG	ACA	CCC	CAG	GGC	GTG	CCC	CAA	CAA	GAT	576
				-												
Met	Ser	Gln	Val	Leu	Thr	Ser	Thr	Pro	Gin	Gly	Val	Pro	Gln	Gln	Asp	
			180					185					190			
AAG	CTG	TCT	GGC	AAC	GAA	ACG	AAG	CAA	ATA	CAG	CAA	ACA	CGT	CAG	GGT	624
Lys	Leu	Ser	Gly	Asn	Glu	Thr	Lys	Gln	lle	Gln	Gln	Thr	Arg	Gin	Gly	
		195					200					205				
AAA	AAC	ACT	GAG	ATG	GAA	AGC	GAT	GCC	ACT	ATT	GCT	GGT	GCT	TCT	GGA	672
Lys	Asn	Thr	Glu	Net	Glu	Ser	Asp	Ala	Thr	lle	Ala	Gly	Ala	Ser	Gly	
	210					215					220					
AAA	GAC	AAA	ACT	TCC	TCG	ACT	ACA	AAA	ACA	GAA	ACA	GCT	CCA	CAA	CAG	720
Lys	Asp	Lys	Thr	Ser	Ser	Thr	Thr	Lys	Thr	Glu	Thr	Ala	Pro	Gln	Gln	
225					230					235					240	
GGA	GTT	GCT	GCT	GGG	AAA	GAA	TCC	TCA	GAA	AGT	CAA	AAG	GCA	GGT	GCT	768
Gly	Val	Ala	Ala	Gly	Lys	Glu	Ser	Ser	Glu	Ser	Gln	Lys	Ala		Ala	
				245					250					255		

							005	0.0 T	4 CT	ACA	CCA	TCA	ΑΑΤ	ACT	GCA	816
GAT	ACT	GGA	GTA	TCA	GGA	GCG	GCI	661	ACI	AUA	UCA	100			GCA	
		0.1	W - 1	C	Gly	410	Ala	A'l o	Thr	Thr	Ala	Ser	Asn	Thr	Ala	
Asp	Thr	GIY		Ser	GIY	VIG	VIG						270			
			260					265						107	ATC	864
ACA	AAA	ATT	-GCT	ATG	CAG	ACC	TCT	ATT	GAA	GAG	GCG	AGC	AAA	AUI	AIU	004
Thr	Lys	lle	Ala	Met	Gln	Thr	Ser	lle	Glu	Glu	Ala	Ser	Lys	Ser	Net	
		275					280					285				
GAG	TCT	ACC	TTA	GAG	TCA	CTT	CAA	AGC	CTC	AGT	GCC	GCG	CAA	ATG	AAA	912
G I n	Ser	Thr	i.eu	Glu	Ser	Leu	Gln	Ser	Leu	Ser	Ala	Ala	Gin	Met	Lys	
010	290					295					300					
- · ·				·	• ሶሞጥ			ccc	CTC	TCA	GGG	AAA	AGT	TCG	GGT	960
GAA	GTC	; GAA	666	, 611	GII	911	901	000	0.0							
				1		W - 1	A 1 -	. 410	Lou	Ser	- Glv	l.vs	Sei	r Sei	Gly	
Glu	Va!	Glu	ı Ala	a Val			VIS	ı wıa	LEU			5,0			Gly 320	
305					310					315			· c=	- AC		1008
TC	G GC	A AA	A TT	G GA	A ACA	CC1	GAG	CTC	CCC	; AA(<i>j</i> (()(, 666	910	J AC	A CCA	1000
															_	
Se	r Al	a Ly	s Le	u G1	u Thi	r Pro	Gli	ı Lei	ı Pro) Ly:	s Pro	o Gly	y Va		r Pro	
				32					330					33		
AG	A TC	A GA	G GT	T AT	C GA	A AT	C GG	A CT	C GC	G CT	T GC	T AA	A GC	A AT	T CAG	1056
					•											
År	e Se	r Gl	u Va	1 11	e Gl	u II	e G1	y Le	u Al	a Le	u Al	a Ly	s Al	a II	e Gln	
			34					34					35			
	. T	rc c(C AC	A AA	A TC	T GC	C TT	A TC	T AA	C TA	T GC	A AG	T ACA	1104
VC	AI	16 66	in ur	יא טי	, o no											
						1	- 6-	A1	a le	n Se	r As	n Ty	r Al	a Se	er Thr	
Tì	ır L	eu G	y G	lu A	ia in	ir by			u DC			36				
		3	55				36				·m			ነር ር	ላል ሮሮር	; 1152
C	AA G	CA C	AA G	CA G	AC C/	AA AC	CA A	AT A	A CT	A G	וט ונ	1 N G P	in Al	10 0/	AA GC(, 1132

								1	1	C1	1	C1	1	C1-	Alo	
GIn	Ala	GIn	Ala	ASP	Gln	Thr	ASN	Lys	Leu	GIY	reu	GIU	LÄZ	UID	AIB	
	370					375					380					
ATA	AAA	ATC	GAT	AAA	GAA	CGA	GAA	GAA	TAC	CAA	GAG	ATG	AAG	GCT	GCC	1200
lle	l.v.s	He	Asp	Lvs	Glu	Arg	Glu	Glu	Tyr	Gln	Glu	Met	Lys	Ala	Ala	
385	-,-		,	-,-	390				•	395					400	
						080	044	004	101		CAT	ACT	CTC	447		1248
GAA	CAG	AAG	TUT	AAA	GAT	CTC	GAA	GUA	AUA	AIG	GAI	AUI	GIC	VVI	ACI	1240
Glu	Gln	Lys	Ser	Lys	Asp	Leu	Glu	Gly	Thr	Met	Asp	Thr	Val	Asn	Thr	
				405					410					415		
GTG	ATG	ATC	GCG	GTT	TCT	GTT	GCC	ATT	ACA	GTT	ATT	TCT	ATT	GTT	GCT	1296
V = 1	Met	ماآ	Ala	Vel	Ser	Va 1	Ala	He	Thr	Val	lle	Ser	lle	Val	Ala	
•	MUL	110						425					430			
			420				004		00m	004	CTC	007		CCA	CCT	1344
GCT	ATT	TTT	ACA	TGC	GGA	GCT	GGA	CIC	GCI	GUA	616	6 01	GUU	GUA	GCI	1044
Ala	He	Phe	Thr	Cys	Gly	Ala	Gly	Leu	Ala	Gly	Leu	Ala	Ala	Gly	Ala	
		435					440					445				
GCT	GTA	GGT	GCA	GCG	GCA	GCT	GGA	GGT	GCA	GCA	GGA	GCT	GCT	GCC	GCA	1392
Ala	Val	Clv	Ala	Ala	Ala	Ala	Giv	Glv	Ala	Ala	Gly	Ala	Ala	Ala	Ala	
		0.,				455	,				460					
	450									0.00		000		ccc	ር ጥ ር	1.4.4.0
ACC	ACG	GTA	GCA	ACA	CAA	ATT	ACA	GTT	CAA	GCT	611	616	UAA	ucu	GTG	1440
Thr	Thr	Val	Ala	Thr	Gin	lle	Thr	Val	Gln	Ala	Val	Val	Gln	Ala	Val	
465					470					475					480	
	CAA	GCT	GTT	ATC	ACA	GCT	GTC	AGA	CAA	GCG	ATC	ACC	GCG	GCT	ATA	1488

Lys	Gln	Ala	Val	He	Thr	Ala	Val	Arg	Gln	Ala	lle	Thr	Ala	Ala	He	
				485					490					495		
AAA	GCG	GCT	GTC	AAA	TCT	GGA	ATA	AAA	GCA	TTT	ATC	AAA	ACT	TTA	GTC	1536
Lvs	Ala	Ala	Val	Lys	Ser	Gly	lle	Lys	Ala	Phe	lle	Lys	Thr	Leu	Val	
2,0			500					505					510			
A A A	ccc	ATT			GCC	ATT	TCT	AAA	GGA	ATC	TCT	AAG	GTT	TTC	GCT	1584
Ann	500			••••												
1	410	116	. 41.	. Ive	. Ala	He	Ser	Lvs	Gly	lle	Ser	Lys	Val	Phe	Ala	
LJS	Ala	515		,.	, ,,,,,		520		-			525		,		
440	CCA			A ATO	: ATT	, ece			TTC	CCC	AAG	CTC	TCG	AAA	GTC	1632
AAG	GUA	, AC	Uni		, 11.1			22.00	•••							
	C1.	. TL	- C1	. No	. ila	. Ala	l.vs	. Asn	Phe	Pro	Lys	Leu	Ser	Lys	Val	
Lys			GI	H #6		535					540					
	530		n 01	T 40	C 407			: ሮተር	ACG	CTT			GGG	GTT	GTA	1680
ATC	; TCI	, 10	1 (1) AC	C AU	. Ann	1 100	, 0.0	, ,,,,,	•••						
				.	- 0	1	. Tes	. Val	The	. Val	Glv	, Val	l GIv	/ Val	Val	
		r Se	r Le	מוט			, 111	y v a.		555				,	560	
545					55				- ATT			L ATI	C CAI	CTC		1728
GT'	T GC	G GC	G CC	T GC	T CT	C GG	[AA	A GG	ı VII	ni	, oni	, 11.1	. O.I.		TCG	. 3.22
								0.1		- No		. V a	+ 61	n Lei	Ser	
Va	1 A1	a Al	a Pi			u Gl	y Ly	S GI			L GI	и ме		n Lei 575		
				56					570				ה כר			1776
GA	G AT	G CA	AA C	AA AA	C GT	C GC	T CA	A TT	T CA	G AA.	A GA	A GI	C 66	A AA	CTG	1110
														I.w.		
G 1	u Me	et G	in G	ln As	sn Va	ıl Al	a Gl	n Ph	e Gl	n Ly	s G1	u Va			s Leu	
				80				58					59			1004
CA	G G	CT G	CG G	CT G	AT AT	ra Di	T TC	TA T	G TT	C AC	T CA	IT A	T TG	G CA	A CAG	1824
															•	
G	ln A	la A	la A	la A	sp M	et I	le Se	er Me	t Ph	e Th	r Gl	ln Pi	ie Tr	p Gl	n Gln	

595 600 605 GCA AGT AAA ATT GCC TCA AAA CAA ACA GGC GAG TCT AAT GAA ATG ACT 1872 Ala Ser Lys Ile Ala Ser Lys Gin Thr Gly Glu Ser Asn Glu Met Thr 610 615 620 CAA AAA GCT ACC AAG CTG GGC GCT CAA ATC CTT AAA GCG TAT GCC GCA 1920 Gin Lys Ala Thr Lys Leu Gly Ala Gin Ile Leu Lys Ala Tyr Ala Ala 625 630 635 640 ATC AGC GGA GCC ATC GCT GGC GCA GCA 1947 Ile Ser Gly Ala Ile Ala Gly Ala Ala 645 649

配列番号:18

配列の長さ:1296

配列の型:核酸

鎖の数:二本鎖

配列の種類:他の核酸 合成DNA

配列

ATG ATC AGT CTG ATT GCG GCG TTA GCG GTA GAT CGC GTT ATC GGC ATG 48

Met lie Ser Leu lie Ala Ala Leu Ala Val Asp Arg Val lie Gly Met

1 5 10 15

GAA AAC GCC ATG CCG TGG AAC CTG CCT GCC GAT CTC GCC TGG TTT AAA 96

Glu Asn Ala Met Pro Trp Asn Leu Pro Ala Asp Leu Ala Trp Phe Lys

20 25 30

CGC AAC ACC TTA AAT AAA CCC GTG ATT ATG GGC CGC CAT ACC TGG GAA 144

Arg	Asn	Thr	Leu	Asn	Lys	Pro	Val	lle	Met	Gly	Arg	His	Thr	Trp	Glu	
		35				•	40					45				
TCA	ATC	GGT	CGT	CCG	TTG	CCA	GGA	CGC	AAA	AAT	ATT	ATC	CTC	AGC	AGT	192
Ser	lle	Gly	Arg	Pro	Leu	Pro	Gly	Arg	Lys	Asn	lle	He	Leu	Ser	Ser	
	50					55					60					
CAA	CCG	GGT	ACG	GAC	GAT	CGC	GTA	ACG	TGG	GTG	AAG	TCG	GTG	GAT	GAA	240
Gln	Pro	Glv	Thr	Åsp	Asp	Arg	Val	Thr	Trp	Val	Lvs	Ser	Val	Åsp	Glu	
65					70				•	75		- •			80	
	ATC	CCC	crc	тст		GAC	CTA	CCA	CAA		ATC	CTC	ATT	ccc		288
ucc	AIC	000	400	101	001	UNU	· ·	VUN	UNN	nio	A I U		AL I		000	200
Ala	lle	Ala	Ala	Cys	Gly	Asp	Val	Pro	Glu	lle	Met	Val	lle	Gly	Gly	
				85					90					95		
GGT	CGC	GTT	TAT	GAA	CAG	TTC	TTG	CCA	ÄÄÄ	GCG	CAA	AAA	CTG	TAT	CTG	336
01	.	V- 1	T	£1	Cla	Dha	Lan	Des	1	415	C1-	l wa	l ou	Tur	l an	
GIA	Arg	ASI		610	VID	Phe	rea		Lys	A 18	GIR	Lys		171	LEU	
			100					105		400			110	0.45	m.a.c	004
ACG	CAT	ATC	GAC	GCA	GAA	GTG	GAA	GGC	GAC	ACC	CAT	TTC	CCG	GAT	TAC	384
Thr	His	lle	Asp	Ala	Glu	Val	Glu	Gly	Asp	Thr	His	Phe	Pro	Asp	Tyr	
		115					120					125				
GAG	CCG	GAT	GAC	TGG	GAA	TCG	GTA	TTC	AGC	GAA	TTC	CAC	GAT	GCT	GAT	432
Glu	Pro	Asp	Asp	Trp	Glu	Ser	Val	Phe	Ser	Glu	Phe	His	Asp	Ala	Asp	
	130					135					140					
GCG	CAG	AAC	TCT	CAC	AGC	TAT	GAG	TTC	GAA	ATT	CTG	GAG	CGG	CGG	ATC	480

Ala	Gln	Asn	Ser	His	Ser	Tyr	Glu	Phe	Glu	He	Leu	Glu	Arg	Arg	He	
145					150					155			•		160	
	ATG	TCT	ATT	TCA	тст	TCT	TCA	GGA	CCT	GAC	TAA	CAA	AAA	AAT	ATC	528
Leu	Met	Ser	lle	Ser	Ser	Ser	Ser	Gly	Pro	Asp	Asn	Gin	Lys	Asn	lle	
				165					170					175		
ATG	TCT	CAA	GTT		ACA	TCG	ACA	CCC	CAG	GGC	GTG	CCC	CAA	CAA	GAT	576
Met	Ser	Gln	Val	Leu	Thr	Ser	Thr	Pro	Gln	Gly	Vai	Pro	Gln	Gln	Asp	
			180					185					190			
AAG	CTG	TCT			GAA	ACG	AAG	CAA	ATA	CAG	CAA	ACA	CGT	CAG	GGT	624
Lys	Leu	Ser	Gly	. Asn	Glu	Thr	Lys	Gln	lle	Gln	Gin	Thr	Arg	Gln	Gly	
		195	•				200					205				
AAA	AAC			AT(G G A A	AGC	GAT	000	ACT	TTA	GCT	GGT	GC1	TCT	GGA	672
Lys	. Ası	a Thi	r Gli	ı Met	t Glu	Ser	. Ası	Ala	Thr	He	e Ala	Gly	, Ala	a Sei	Gly	
	210	0				215	5				220)				
AA	A GA	C AA	A AC'	T TC	C TC	G AC	r ac	A AA	A ACA	GA	A AC	A GC'	r cc.	A CA	A CAG	720
Ly	s As	p Ly	s Th	r Se	r Se	r Th	r Th	r Ly	s Thi	r Gl	u Th	r Al	a Pr	o G1:	n Gln	
22	5				23	0				23	5				240	
GG	A GT	T GC	T GC	T GG	G AA	A GA	A TC	с тс	A GA	A AG	T CA	A AA	G GC	A GG	T GCT	768
G 1	y Va	1 Al	a Al	a Gl	y Ly	s G I	u Se	r Se	r Gl	u Se	r Gl	n Ly	s Al	a Gl	y Ala	
				24					25					25		
GA	T AC	CT GG	A G1	TA TO	CA GG	A GC	G GC	T GC	T AC	T AC	A GC	A TO	A AA	T AC	T GCA	816
As	n Tl	hr Gl	Iv Va	al So	er G1	y Al	la Al	la Al	a Th	r Th	ır Al	a Se	er As	sn Th	ır Ala	

			260					265					270			
ACA	AAA	ATT	GCT	ATG	CAG	ACC	TCT	ATT	GAA	GAG	GCG	AGC	AAA	AGT	ATG	864
													•	•	10 - 1	
Thr	Lys	lle	Ala	Met	Gin	Thr	Ser	He	Glu	Glu	Ala		Lys	Ser _.	met	
		275					280					285				
GAG	TCT	ACC	ATT	GAG	TCA	CTT	CAA	AGC	CTC	AGT	GCC	GCG	CAA	ATG	AAA	912
Glu	Ser	Thr	Leu	Glu	Ser	Leu	Gln	Ser	Leu	Ser	Ala	Ala	Gln	Met	Lys	
	290					295					300					
GAA	GTC	GAA	GCG	CTT	GTT	GTT	GCT	GCC	CTC	TCA	GGG	AAA	AGT	TCG	GGT	960
Glu	Val	Glu	Ala	Val	Val	Val	Ala	Ala	Leu	Ser	Gly	Lys	Ser	Ser	Gly	
305					310					315					320	
TCC	GCA	AAA	TTG	GAA	ACA	ССТ	GAG	СТС	CCC	AAG	CCC	GGG	GTG	ACA	CCA	1008
Ser	Ala	Lys	Leu	Glu	Thr	Pro	Glu	Leu	Pro	Lys	Pro	Gly	Val	Thr	Pro	
				325					330					335		
AGA	TCA	GAG	GTT	ATC	GAA	ATC	GGA	CTC	GCG	CTT	GCT	AAA	GCA	ATT	CAG	1056
	•															
Årø	Ser	Glu	Val	ile	Glu	ile	Gly	Leu	Ala	Leu	Ala	Lys	Ala	Ile	Gln	
6			340				•	345					350			
ACA	TTC	CCA			ACA	AAA	TCT	GCC	TTA	тст	AAC	TAT	GCA	AGT	ACA	1104
non	110	007	• • • • • • • • • • • • • • • • • • • •													
Th	Lau	. Clu	. Clu	Ala	Thr	l.vs	Ser	Ala	Leu	Ser	Asn	Tyr	Ala	Ser	Thr	
1 11 1	Leu			ліа	••••	2,0	360					365				
		355				A C A			ርፕል	เถา	CTA			CAA	GCG	1152
CAA	GCA	CAA	A GCA	GAC	CAR	, ACA	ANI	AAA	. UIN		0111	01171				
										. C1-	. 1	C 1 ··	. 1	. (C1=	Ala	
G 1 n	Ala	Gli	n Ala	Asp	Gln			Lys	Leu	1 6 I)			LYS	וונט	Ala	
	370)				375)				380	1		. •		

WO 96/09320 PCT/JP95/01896

ATA AAA ATC GAT AAA GAA CGA GAA GAA TAC CAA GAG ATG AAG GCT GCC

1200

lle Lys Ile Asp Lys Glu Arg Glu Glu Tyr Gln Glu Met Lys Ala Ala

385 390 395 400

GAA CAG AAT TCT AAA GAT CTC GAA GGA ACA ATG GAT ACT GTC AAT ACT 1248

Glu Gln Lys Ser Lys Asp Leu Glu Gly Thr Met Asp Thr Val Asn Thr

405 410 415

GTG ATG ATC GCG AAG GGG TTC GAA TTG CCA TGG GGG CCC TTA ATT AAT 1296

Val Met lie Ala Lys Gly Phe Glu Leu Pro Trp Gly Pro Leu Ile Asn 420 425 430 432

配列番号:19

配列の長さ:20

配列の型:核酸

鎖の数:一本鎖

配列の種類:他の核酸 合成DNA

配列

AGCTGTCTGG CAACGAAACG

20

配列番号:20

配列の長さ:20

配列の型:核酸

鎖の数:一本鎖

配列の種類:他の核酸 合成DNA

配列

GCAGCAACAA CAACCGCTTC

PCT/JP95/01896

W 96/09320

配列番号:21

配列の長さ:29

配列の型:核酸

鎖の数:一本鎖

配列の種類:他の核酸 合成DNA

配列

GATCCTGATG TCTATTTCAT CTTCTTCAG

29

配列番号:22

配列の長さ:28

配列の型:核酸

鎖の数:一本鎖

配列の種類:他の核酸 合成DNA

配列

GTCCTGAAGA AGATGAAATA GACATCAG

28

配列番号:23

配列の長さ:30

配列の型:核酸

鎖の数:一本鎖

配列の種類:他の核酸 合成DNA

配列

AATTGCCATG GGGGCCCTTA ATTAATTAAC

PCT/JP95/01896

W 96/09320

配列番号:24

配列の長さ:30

配列の型:核酸

鎖の数:一本鎖

配列の種類:他の核酸 合成DNA

配列

TCGAGTTAAT TAATTAAGGG CCCCCATGGC

30

420

配列番号:25

配列の長さ:5438

配列の型:核酸

鎖の数:二本額

配列の種類:他の核酸 プラスミド

配列

ATCGATGTTA ACAGATCTAA GCTTAACTAA CTAACTCCGG AAAAGGAGGA ACTTCCATGA 60

TCAGTCTGAT TGCGGCGTTA GCGGTAGATC GCGTTATCGG CATGGAAAAC GCCATGCCGT 120

GGAACCTGCC TGCCGATCTC GCCTGGTTTA AACGCAACAC CTTAAATAAA CCCGTGATTA 180

TGGGCCGCGA TACCTGGGAA TCAATCGGTC GTCCGTTGCC AGGACGCAAA AATATTATCC 240

TCAGCAGTCA ACCGGGTACG GACGATCGCG TAACGTGGGT GAAGTCGGTG GATGAAGCCA 300

TCGCGGGCGTG TGGTGACGTA CCAGAAATCA TGGTGATTGG CGGCGGTCGC GTTTATGAAC 360

AGTTCTTGCC AAAAGCGCAA AAACTGTATC TGACGCATAT CGACGCAGAA GTGGAAGGCG

ACACCCATTT CCCGGATTAC GAGCCGGATG ACTGGGAATC GGTATTCAGC GAATTCCACG	480
ATGCTGATGC GCAGAACTCT CACAGCTATG AGTTCGAAAT TCTGGAGCGG CGGATCCTGA	540
TGTCTATTTC ATCTTCTTCA GGACCTGACA ATCAAAAAA TATCATGTCT CAAGTTCTGA	600
CATCGACACC CCAGGGCGTG CCCCAACAAG ATAAGCTGTC TGGCAACGAA ACGAAGCAAA	660
TACAGCANAC ACGTCAGGGT AAAAACACTG AGATGGAAAG CGATGCCACT ATTGCTGGTG	720
CTTCTGGAAA AGACAAAACT TCCTCGACTA CAAAAACAGA AACAGCTCCA CAACAGGGAG	780
TTGCTGCTGG GAAAGAATCC TCAGAAAGTC AAAAGGCAGG TGCTGATACT GGAGTATCAG	840
GAGCGGCTGC TACTACAGCA TCAAATACTG CAACAAAAAT TGCTATGCAG ACCTCTATTG	900
AAGAGGCGAG CAAAAGTATG GAGTCTACCT TAGAGTCACT TCAAAGCCTC AGTGCCGCGC	960
AAATGAAAGA AGTCGAAGCG GTTGTTGTTG CTGCCCTCTC AGGGAAAAGT TCGGGTTCCG	1020
CAAAATTGGA AACACCTGAG CTCCCCAAGC CCGGGGTGAC ACCAAGATCA GAGGTTATCG	1080
AAATCGGACT CGCGCTTGCT AAAGCAATTC AGACATTGGG AGAAGCCACA AAATCTGCCT	1140
TATCTAACTA TGCAAGTACA CAAGCACAAG CAGACCAAAC AAATAAACTA GGTCTAGAAA	1200
AGCAAGCGAT AAAAATCGAT AAAGAACGAG AAGAATACCA AGAGATGAAG GCTGCCGAAC	1260
AGAAGTCTAA AGATCTCGAA GGAACAATGG ATACTGTCAA TACTGTGATG ATCGCGAAGG	1320

GGTTCGAATT	GCCATGGGGG	CCCTTAATTA	ATTAACTCGA	GAGATCCAGA	TCTAATCGAT	1380
GATCCTCTAC	GCCGGACGCA	TCGTGGCCGG	CATCACCGGC	GCCACAGGTG	CGGTTGCTGG	1440
CGCCTATATC	GCCGACATCA	CCGATGGGGA	AGATCGGGCT	CGCCACTTCG	GGCTCATGAG	1500
CGCTTGTTTC	GGCGTGGGTA	TGGTGGCAGG	CCCGTGGCCG	GGGGACTGTT	GGGCGCCATC	1560
TCCTTGCATG	CACCATTCCT	TGCGGCGGCG	GTGCTCAACG	GCCTCAACCT	ACTACTGGGC	1620
TGCTTCCTAA	TGCAGGAGTC	GCATAAGGGA	GAGCGTCGAC	CGATGCCCTT	GAGAGCCTTC	1680
AACCCAGTCA	GCTCCTTCCG	GTGGGCGCGG	GGCATGACTA	TCGTCGCCGC	ACTTATGACT	1740
GTCTTCTTTA	TCATGCAACT	CGTAGGACAG	GTGCCGGCAG	CGCTCTGGGT	CATTTTCGGC	1800
GAGGACCGCT	TTCGCTGGAG	CGCGACGATG	ATCGGCCTGT	CGCTTGCGGT	ATTCGGAATC	1860
TTGCACGCCC	TCGCTCAAGC	CTTCGTCACT	GGTCCCGCCA	CCAAACGTTT	CGGCGAGAAG	1920
CAGGCCATTA	TCGCCGGCAT	GGCGGCCGAC	GCGCTGGGCT	ACGTCTTGCT	GGCGTTCGCG	1980
ACGCGAGGCT	GGATGGCCTT	CCCCATTATG	ATTCTTCTCG	CTTCCGGCGG	CATCGGGATG	2040
CCCGCGTTGC	AGGCCATGCT	GTCCAGGCAG	GTAGATGACG	ACCATCAGGG	ACAGCTTCAA	2100
GGATCGCTCG	CGGCTCTTAC	CAGCCTAACT	TCGATCACTG	GACCGCTGAT	CGTCACGGCG	2160

ATTTATGCCG CCTCGGCGAG CACATGGAAC GGGTTGGCAT GGATTGTAGG CGCCGCCCTA	2220
TACCTTGTCT GCCTCCCCGC GTTGCGTCGC GGTGCATGGA GCCGGGCCAC CTCGACCTGA	2280
ATGGAAGCCG GCGGCACCTC GCTAACGGAT TCACCACTCC AAGAATTGGA GCCAATCAAT	2340
TCTTGCGGAG AACTGTGAAT GCGCAAACCA ACCCTTGGCA GAACATATCC ATCGCGTCCG	2400
CCATCTCCAG CAGCCGCACG CGGCGCATCT CGGGCAGCGT TGGGTCCTGG CCACGGGTGC	2460
GCATGATCGT GCTCCTGTCG TTGAGGACCC GGCTAGGCTG GCGGGGTTGC CTTACTGGTT	2520
AGCAGAATGA ATCACCGATA CGCGAGCGAA CGTGAAGCGA CTGCTGCTGC AAAACGTCTG	2580
CGACCTGAGC AACAACATGA ATGGTCTTCG GTTTCCGTGT TTCGTAAAGT CTGGAAACGC	2640
GGAAGTCAGC GCCCTGCACC ATTATGTTCC GGATCTGCAT CGCAGGATGC TGCTGGCTAC	2700
CCTGTGGAAC ACCTACATCT GTATTAACGA AGCGCTGGCA TTGACCCTGA GTGATTTTTC	2760
TCTGGTCCCG CCGCATCCAT ACCGCCAGTT GTTTACCCTC ACAACGTTCC AGTAACCGGG	2820
CATGTTCATC ATCAGTAACC CGTATCGTGA GCATCCTCTC TCGTTTCATC GGTATCATTA	2880
CCCCCATGAA CAGAAATTCC CCCTTACACG GAGGCATCAA GTGACCAAAC AGGAAAAAAC	2940
CGCCCTTAAC ATGGCCCGCT TTATCAGAAG CCAGACATTA ACGCTTCTGG AGAAACTCAA	3000
CGAGCTGGAC GCGGATGAAC AGGCAGACAT CTGTGAATCG CTTCACGACC ACGCTGATGA	3060

GCTTTACCGC	AGCTGCCTCG	CGCGTTTCGG	TGATGACGGT	GAAAACCTCT	GACACATGCA	3120
GCTCCCGGAG	ACGGTCACAG	CTTGTCTGTA	AGCGGATGCC	GGGAGCAGAC	AAGCCCGTCA	3180
GGGCGCGTCA	GCGGGTGTTG	GCGGGTGTCG	GGGCGCAGCC	ATGACCCAGT	CACGTAGCGA	3240
TAGCGGAGTG	TATACTGGCT	TAACTATGCG	GCATCAGAGC	AGATTGTACT	GAGAGTGCAC	3300
CATATGCGGT	GTGAAATACC	GCACAGATGC	GTAAGGAGAA	AATACCGCAT	CAGGCGCTCT	3360
TCCGCTTCCT	CGCTCACTGA	СТСССТСССС	TCGGTCGTTC	GGCTGCGGCG	AGCGGTATCA	3420
GCTCACTCAA	AGGCGGTAAT	ACGGTTATCC	ACAGAATCAG	GGGATAACGC	AGGAAAGAAC	3480
ATGTGAGCAA	AAGGCCAGCA	AAAGGCCAGG	AACCGTAAAA	AGGCCGCGTT	GCTGGCGTTT	3540
TTCCATAGGC	TCCGCCCCCC	TGACGAGCAT	CACAAAAATC	GACGCTCAAG	TCAGAGGTGG	3600
CGAAACCCGA	CAGGACTATA	AAGATACCAG	GCGTTTCCCC	CTGGAAGCTC	CCTCGTGCGC	3660
тстсствттс	CGACCCTGCC	GCTTACCGGA	TACCTGTCCG	CCTTTCTCCC	TTCGGGAAGC	3720
стсссс стт т	CTCAATGCTC	ACGCTGTAGG	TATCTCAGTT	CGGTGTAGGT	CGTTCGCTCC	3780
AAGCTGGGCT	GTGTGCACGA	ACCCCCCGTT	CAGCCCGACC	GCTGCGCCTT	ATCCGGTAAC	3840
TATCGTCTTG	AGTCCAACCC	GGTAAGACAC	GACTTATCGC	CACTGGCAGC	AGCCACTGGT	3900

AACAGGATTA GCAGAGCGA	AG GTATGTAGGC	GGTGCTACAG	AGTTCTTGAA	GTGGTGGCCT	3960
AACTACGGCT ACACTAGA/	AG GACAGTATTT	GGTATCTGCG	CTCTGCTGAA	GCCAGTTACC	4020
TTCGGAAAAA °6AGTTGGT/	AG CTCTTGATCC	GGCAAACAAA	CCACCGCTGG	TAGCGGTGGT	4080
TTTTTTGTTT GCAAGCAG	CA GATTACGCGC	AGAAAAAAG	GATCTCAAGA	AGATCCTTTG	4140
ATCTTTTCTA CGGGGTCT	GA CGCTCAGTGG	AACGAAAACT	CACGTTAAGG	GATTTTGGTC	4200
ATGAGATTAT CAAAAAGG	AT CTTCACCTAG	ATCCTTTTAA	ATTAAAAATG	AAGTTTTAAA	4260
TCAATCTAAA GTATATAT	GA GTAAACTTGG	TCTGACAGTT	ACCAATGCTT	AATCAGTGAG	4320
GCACCTATCT CAGCGATC	TG TCTATTTCGT	TCATCCATAG	TTGCCTGACT	CCCCGTCGTG	4380
TAGATAACTA CGATACGG	GA GGGCTTACCA	TCTGGCCCCA	A GTGCTGCAAT	GATACCGCGA	4440
GACCCACGCT CACCGGCT	CC AGATTTATC	A GCAATAAACG	CAGCCAGCCGG	AAGGGCCGAG	4500
CGCAGAAGTG GTCCTGC	AAC TTTATCCGC	C TCCATCCAG	T CTATTAATTO	TTGCCGGGAA	4560
GCTAGAGTAA GTAGTTC	GÇC AGTTAATAG	T TTGCGCAAC	G TTGTTGCCAT	TGCTGCAGGC	4620
ATCGTGGTGT CACGCTC	GTC GTTTGGTAT	G GCTTCATTC	A GCTCCGGTT(CCAACGATCA	4680
AGGCGAGTTA CATGATC	CCC CATGTTGTG	C AAAAAAGCG	G TTAGCTCCT	T CGGTCCTCCG	4740
ATCGTTGTCA GAAGTAA	GTT GGCCGCAGT	G TTATCACTC	A TGGTTATGG	C AGCACTGCAT	4800

AATTCTCTTA CTGTCATGCC ATCCGTAAGA TGCTTTTCTG TGACTGGTGA GTACTCAACC 4860 AAGTCATTCT GAGAATAGTG TATGCGGCGA CCGAGTTGCT CTTGCCCGGC GTCAACACGG 4920 GATAATACCG CGCCACATAG CAGAACTTTA AAAGTGCTCA TCATTGGAAA ACGTTCTTCG 4980 GGGCGAAAAC TCTCAAGGAT CTTACCGCTG TTGAGATCCA GTTCGATGTA ACCCACTCGT 5040 5100 GCACCCAACT GATCTTCAGC ATCTTTTACT TTCACCAGCG TTTCTGGGTG AGCAAAAACA GGAAGGCAAA ATGCCGCAAA AAAGGGAATA AGGGCGACAC GGAAATGTTG AATACTCATA 5160 CTCTTCCTTT TTCAATATTA TTGAAGCATT TATCAGGGTT ATTGTCTCAT GAGCGGATAC 5220 ATATTTGAAT GTATTTAGAA AAATAAACAA ATAGGGGTTC CGCGCACATT TCCCCGAAAA 5280 GTGCCACCTG ACGTCTAAGA AACCATTATT ATCATGACAT TAACCTATAA AAATAGGCGT 5340 ATCACGAGGC CCTTTCGTCT TCAAGAATTA ATTGTTATCC GCTCACAATT AATTCTTGAC 5400 5438 AATTAGTTAA CTATTTGTTA TAATGTATTC ATAAGCTT

配列番号:26

配列の長さ:20

配列の型:核酸

鎖の数:一本鎖

配列の種類:他の核酸 合成DNA

WO 96/09320 PCT/JP95/01896

配列

GCTGCCGAAC AGAAGTCTAA

20

配列番号:27~

配列の長さ:20

配列の型:核酸

鎖の数:一本額

配列の種類:他の核酸 合成DNA

配列

CTCGAAGGAA CAATGGATAC

20

配列番号:28

配列の長さ:23

配列の型:核酸

鎖の数:一本鎖

配列の種類:他の核酸 合成DNA

配列

GTACATATTG TCGTTAGAAC GCG

23

配列番号:29

配列の長さ:23

配列の型:核酸

鎖の数:一本鎖

配列の種類:他の核酸 合成DNA

配列

TAATACGACT CACTATAGGG AGA

WO 96/09320 PCT/JP95/01896

配列番号:30

配列の長さ:28

配列の型: 核酸

鎖の数:一本鎖

配列の種類:他の核酸 合成DNA

配列

GCGGATCCTG ATGTCTATTT CATCTTCT

28

配列番号:31

配列の長さ:30

配列の型:核酸

鎖の数:一本鎖

配列の種類:他の核酸 合成DNA

配列

ATCTCGAGTT TTATGCTGCT GCGCCAGCGA

特許請求の範囲

- 1. 配列番号1のポリペプチドの中の連続した少なくとも5個のアミノ酸配列を含むポリペプチドAからなる、クラミジア・ニューモニエの抗原ポリペプチド。
- 2. ポリペプチドAが、配列番号1のポリペプチドからアミノ酸が欠落しているポリペプチドである、請求項1記載の抗原ポリペプチド。
- 3. ポリペプチドAが、配列番号1のポリペプチドの中のアミノ酸が他のアミノ酸で置換されているか、又は配列番号1のポリペプチドの中にアミノ酸が挿入されているポリペプチドである、請求項1記載の抗原ポリペプチド。
- 4. ポリペプチドAが、配列番号1のポリペプチドの中の連続した少なくとも5個のアミノ酸配列にアミノ酸若しくはペプチドが結合したポリペプチドである、 請求項1記載の抗原ポリペプチド。
- 5. ポリペプチドAが配列番号1のアミノ酸配列からなるポリペプチドである、 請求項1記載の抗原ポリペプチド。
- 6. ポリペプチドAが配列番号2のアミノ酸配列からなるポリペプチドである、 請求項1記載の抗原ポリペプチド。
- 7. ポリペプチドAが配列番号5のアミノ酸配列からなるポリペプチドである、 請求項1記載の抗原ポリペプチド。
- 8. 請求項 $1 \sim 7$ のいずれかに記載の抗原ポリペプチドをコードするDNA若しくはそれに相補的なDNA。
- 9. 塩基配列が配列番号3の塩基配列である、請求項8記載のDNA。
- 10. 塩基配列が配列番号4の塩基配列である、請求項8記載のDNA。
- 11. 塩基配列が配列番号7の塩基配列である、請求項8記載のDNA。
- 12. 請求項8~11のいずれかに記載のDNAを含む組換えベクター。
- 13. 組換えベクターが配列番号10の塩基配列を有するpCPN533αプラスミドである、請求項12記載の組換えベクター。
- 14. 請求項12又は請求項13記載の組換えベクターを含む形質転換体。
- 15.請求項1~7のいずれかに記載の抗原ポリペプチドを抗原として用いることを特徴とする、抗クラミジア・ニューモニエ抗体の製造方法。

- 16. 請求項1~7のいずれかに記載の抗原ポリペプチドを抗原として用いることを特徴とする、抗クラミジア・ニューモニエ抗体の検出・測定方法。
- 17. 請求項1~7のいずれかに記載の抗原ポリペプチドを抗原として含有してなる、抗クラミジア・ニューモニエ抗体の検出・測定用試薬。
- 18. 請求項1~7のいずれかに記載の抗原ポリペプチドを有効成分とする、クラミジア・ニューモニエ感染の診断薬。
- 19. 配列番号14のポリペプチドに、直接に又は介在アミノ酸配列を介して、 配列番号1のポリペプチドの中の連続した少なくとも5個のアミノ酸配列を含む ポリペプチドBが結合した、ジヒドロ葉酸還元酵素-クラミジア・ニューモニエ の抗原ポリペプチド融合タンパク質。
- 20、ポリペプチドBが、配列番号1のポリペプチドからアミノ酸が欠落しているポリペプチドである、請求項19記載の融合タンパク質。
- 21. ポリペプチドBが、配列番号1のポリペプチドの中のアミノ酸が他のアミノ酸で置換されているか、又は配列番号1のポリペプチドの中にアミノ酸が挿入されているポリペプチドである、請求項19記載の融合タンパク質。
- 2 2. 融合タンパク質が配列番号15のアミノ酸配列からなるポリペプチドである、請求項19記載の融合タンパク質。
- 23. 融合タンパク質が配列番号16のアミノ酸配列からなるポリペプチドである、請求項19記載の融合タンパク質。
- 24. 請求項19~23のいずれかに記載の融合タンパク質をコードするDNA 若しくはそれに相補的なDNA。
- 25. 塩基配列が配列番号17の塩基配列である、請求項24記載のDNA。
- 26. 塩基配列が配列番号18の塩基配列である、請求項24記載のDNA。
- 27. 請求項24~26のいずれかに記載のDNAを含む組換えベクター。
- 28. 粗換えベクターが p C P N 5 3 3 T プラスミドである請求項 2 7 記載の組換えベクター。
- 29. 請求項27又は請求項28記載の租換えベクターを含む形質転換体。
- 30. 請求項19~23のいずれかに記載の融合タンパク質を抗原として用いる ことを特徴とする、抗クラミジア・ニューモニエ抗体の製造方法。

- 31. 請求項19~23のいずれかに記載の融合タンパク質を抗原として用いることを特徴とする、抗クラミジア・ニューモニエ抗体の検出・測定方法。
- 32. 請求項19~23のいずれかに記載の融合タンパク質を抗原として含有してなる、抗クラミジア・ニューモニエ抗体の検出・測定用試薬。
- 33.請求項19~23のいずれかに記載の融合タンパク質を有効成分とする、 クラミジア・ニューモニエ感染の診断薬。
- 34. (a) 配列番号3のDNAの中の連続した少なくとも10塩基の塩基配列を有するDNA、
- (b)上記(a)のDNAに相補的なDNA、又は
- (c)上記(a)若しくは(b)のDNAと90%以上の相同性を有するDNA、のいずれかを含有するDNAからなる、クラミジア・ニューモニエ遺伝子の検出・測定用プローブ。
- 35. 塩基配列が配列番号19の塩基配列である、請求項34記載のプローブ。
- 36. 塩基配列が配列番号20の塩基配列である、請求項34記載のプローブ。
- 37. 請求項34~36のいずれかに記載のプローブを用いる、クラミジア・ニューモニエ遺伝子の検出・測定方法。
- 38. 請求項34~36のいずれかに記載のプローブを含有してなるクラミジア・ニューモニ工遺伝子の検出・測定用試薬。
- 39. 請求項34~36のいずれかに記載のプローブを有効成分とする、クラミジア・ニューモニエ感染の診断薬。
- 40. (a)配列番号3のDNAの中の連続した少なくとも10塩基の塩基配列を有するDNA、
- (b) 上記(a)のDNAに相補的なDNA、又は
- (c)上記(a)若しくは(b)のDNAと90%以上の相同性を有するDNA、のいずれかを含有するDNAからなる、クラミジア・ニューモニエ遺伝子の検出・測定用プライマー。
- 41. 塩基配列が配列番号19の塩基配列である、請求項40記載のプライマー。
- 42. 塩基配列が配列番号20の塩基配列である、請求項40記載のプライマー。
- 43. 請求項40~42のいずれかに記載のプライマーを用いる、クラミジア・

ニューモニエ遺伝子の検出・測定方法。

44. 請求項40~42のいずれかに記載のプライマーを含有してなるクラミジア・ニューモニエ遺伝子の検出・測定用試薬。・

4 5. 請求項 4 0 ~ 4 2 のいずれかに記載のプライマーを有効成分とする、クラミジア・ニューモニエ感染の診断薬。

要約

. 配列番号1のポリペプチドの中の連続した少なくとも5個のアミノ酸配列を含 むポリペプチドAからなる、クラミジア・ニューモニエ(以下「C.ニューモニ エ」という)の抗原ポリペプチド、該ポリペプチドをコードするDNA、該DN Aを含む組換えベクター、該組換えベクターを含む形質転換体、該抗原ポリペプ チドを抗原として用いることを特徴とする抗C.ニューモニエ抗体の製造方法、 抗C.ニューモニエ抗体の検出・測定方法及び該抗原ポリペプチドの用途、並び に配列番号14のポリペプチドに、配列番号1のポリペプチドの中の少なくとも 5個のアミノ酸配列を含むポリペプチドAが結合した、ジヒドロ葉酸還元酵素-C. ニューモニエの抗原ポリペプチド融合タンパク質、該融合タンパク質をコー ドするDNA、該DNAを含む組換えベクター、該組換えベクターを含む形質転 換体、該融合タンパク質を抗原として用いることを特徴とする抗C.ニューモニ 工抗体の製造方法、該融合タンパク質を抗原として用いることを特徴とする抗 C. ニューモニエ抗体の検出・測定方法、該合タンパク質の用途、C. ニューモニエ 遺伝子の検出・測定用プロープ及びプライマー、該プロープ又はプライマーを用 いるC.ニューモニエ遺伝子の検出・測定方法及び該プローブ又はプライマーの 用途。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP95/01896

CLASSIFICATION OF SUBJECT MATTER Int. Cl6 C07K14/295, C12N15/31, C12N1/21, C12P21/02, C12P21/08, C12Q1/68, G01N33/569 According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int. Cl⁶ C07K14/295, C12N15/31, C12N1/21, C12P21/02, C12P21/08, C12Q1/68, G01N33/569Documentation searched other than misiguum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (asme of data base and, where practicable, search terms used) CAS ONLINE, WPI, WPI/L, BIOSIS PREVIEWS C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category Relevant to claim No. KIKUTA L. C. et al., "Isolation and Sequence A 1 - 15Analysis of the Chlamydia pneumoniae GroE 1.9' - 30Operon INFECTION AND IMMUNITY, Dec. 1991, Vol. 59, No. 12, pages 4665-4669 KORNAK J. M. et al., "Sequence Analysis of the 1 - 14,A Gene Encoding the Chlamydia pneumoniae DnaK 19 - 29 Protein Homolog* INFECTION AND IMMUNITY, Feb. 1991, Vol. 59, No. 2, pages 721-725 MELGOSA M. P. et al., "Sequence Analysis of 1 - 14,A 19 - 29the Major Outer membrane Protein Gene of Chlamydia pneumoniae" INFECTION AND IMMUNITY, Jun. 1991, Vol. 59, No. 6, pages 2195-2199. JP, 4-297871, A (Hitachi Chemical Co., Ltd.), 16 - 18,A 31 - 33October 21, 1992 (21. 10. 92) & EP, 456524, A1 & US, 5318892, A .34 - 45A JP, 5-317097, A (Fuso Pharmaceutical Co., Ltd.), X Further documents are listed in the continuation of Box C. See patent family annex. later document published after the international filing date or priority Special categories of cited documents: date and not in conflict with the application but cited to understand "A" document defining the general state of the art which is not considered to be of particular relevance the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination sent referring to an eral disclosure, use, exhibition or other being obvious to a person skilled in the art document published prior to the international (iling date but inter than the priority date claimed "A" document member of the same natest family Date of mailing of the international search report Date of the actual completion of the international search December 26, 1995 (26. 12. 95) December 8, 1995 (08. 12. 95) Authorized officer Name and mailing address of the ISA/ Japanese Pat nt Office Telephone No. Facsimile No.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP95/01896

Continu	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
egory	Citation of document, with indication, where appropriate, of the relevant passages	
	December 3, 1993 (03. 12. 93) & EP, 402993, A1 & CA, 2017520, A & FI, 9002990, A & US, 5085986, A & KR, 9209424, B1	

国際出職者号 PCT/JP

95/01896

発明の異な	Aの子Aの子 /所定的性の句(「PC))		
	†5分野の分類(国際特許分類(! PC)) 【 at. CL⁶ CO7K14/295 。	C12N15/31. C12	N1/21.
	C12P21/02,	C12P21/08, C12Q	1/ 40 ,
	G01N33/569		
調査を行	った分野		
を行った最	小根資料 (国際特許分類 (IPC)) Int. C.C CO7K14/295	C19N15/81. C12	N1/21.
	Int. C. CO7K14/295	C12P21/08, C12Q	1/68.
	G01N33/569		
小模實料以外	の資料で調査を行った分野に含まれるもの		
藤調査で使用	した電子データベース (データベースの名称、調査に CAS ONLINE, WPI, WPI/	使用した用語) 'L.BIOSIS PREVIEWS	
、関連する	と認められる文献		
用文献の テゴリー*	引用文献名 及び一部の箇所が間違する	ときは、その間連する箇所の表示	関連する 請求の範囲の書号
	KIKUTA L. C. et al Analysis of the Chlamydi Operen INFECTION AND Vol. 59 . No. 12 . pages 4	a preumoniae Gross D IMMUNITY. Dec. 1991	
		- A -11-	1-14,
A	KORNAK J. M. et al " of the Gene Encoding the Dnak Protein Homolog" II IMMUNITY. Feb. 1991, V 721-725	NECTION AND	19-29
	of the Gene Encoding the DnaK Protein Homoleg" II IMMUNITY, Feb. 1991, V 721-725	NECTION AND	19-29
「A」特に関文 「A」特に関文 「E」先行文 「L」優先権 (の」ロ頭に 「P」国際出	of the Gene Encoding the DnaK Protein Homoleg "Il IMMUNITY. Feb. 1991.	NFECTION AND	19-29 を学票。 た文献であって出版。 又は理論の理解のため 文献のみで発明の新りの 文献のみで発明の新りの 文献と他の1以上の
「A」特に関文 「A」特に関文 「E」先行文 「L」優先復 (日 (日) 日間 (日) 日 (日) 日間 (日) 日間 (日) 日 (日) 日 (of the Gene Encoding the DnaK Protein Homoleg II IMMUNITY。Feb. 1991。 721-725 まにも文献が列挙されている。 のカテゴリー 連のある文献ではなく、一般的技術水準を示すもの 献ではあるが、国際出頭日以後に公表されたもの 主張に凝集を提起する文献又は他の文献の発行日 は他の特別な理由を確立するために引用する文献 を付す) よる関示、使用、展示等に言及する文献 説明育で、かつ優先権の主張の基礎となる出願の日 公表された文献	「CRIAMY GIA PROGRAM NFECTION AND Fol. 59 No. 2 , pages 「T」関係出版日文は優先日後に公表され 矛盾するものではなく、発明の原理 に引用するもの 「X」特に関連のある文献であって、当該 性又は進少性がないと考えられるも 「Y」特に関連のある文献であって、当該 がないと考えられるもの	19-29 を参照。 た文献であって出職。 又は理論の悪解のたけ 文献のみで発明の新りの 文献と他の1以上の 組合せによって進歩

国際出版書号 PCT/JP

95/01896

C (##8).	開連す と間められる文献	
引用文献の カテゴリーキ	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請 の範囲の背号
A	MELGOSA M. P. et al., "Sequence Analysis of the Major Outer Membrane Protein Gene of Chlamydia pneumoniae" INFECTION AND IMMUNITY, Jun. 1991, Vol. 59, No. 6, pages 2195-2199	1-14, 19-29
A	JP,4-297871,A(日立化成工業株式会社)。 21.10月.1992(21.10.92) &EP,456524,A1&US,5318892,A	16-18. 31-33
A	JP,5-317097,A(扶棄集品工業株式会社), 3.12月.1993(03.12.93) &EP,402993,A1&CA,2017520,A &FI9002990,A&US,5085986,A &KR,9209424,B1	34-45
·	·	