# **Isaac Physics Skills**

# Linking concepts in pre-university physics

Lisa Jardine-Wright, Keith Dalby, Robin Hughes, Nicki Humphry-Baker, Anton Machacek, Ingrid Murray and Lee Phillips Isaac Physics Project



### 18 Conical pendulum

A particle of mass *m* at the end of a light string fixed to a point can be set in motion so that it moves in a horizontal circle centred below the point of suspension.

Example context: Fairground rides, mechanical speed controllers; examples are closely related to those on smooth banked tracks, as the normal reaction force of the track is replaced by tension in a string or rod. In the diagram, the tension in the string and the weight are not aligned, so the object is not in equilibrium. A resultant force of constant magnitude is directed horizontally towards the centre of the circle, so the forces should be resolved horizontally and vertically.



(the view from above)  $s = r\theta \qquad \frac{s}{t} = r\frac{\theta}{t} = r\omega$ 

Quantities:

T tension in the string (N) r radius of orbit (m)  $\phi$  angle to vertical (°)  $\ell$  length of string (m) v speed of object (m s<sup>-1</sup>)

 $\begin{array}{l} \omega \ \ \text{angular velocity (rad s}^{-1}) \\ f \ \ \text{frequency (s}^{-1}, \text{Hz}) \\ t_{\text{p}} \ \ \text{period (s)} \\ \theta \ \ \text{angle of rotation (rad s}^{-1}) \end{array}$ 

a acceleration inwards  $(m s^{-2})$ 

**Equations:** 

$$F=ma$$
  $a_{
m centripetal}=r\omega^2$   $v=r\omega$   $\omega=2\pi f$   $t_{
m p}=rac{1}{f}$ 

- 18.1 A metal ball of mass m is attached to a light string of length  $\ell$  and moves in a horizontal circular path at an angular velocity  $\omega$ . Use diagrams to write down expressions for
  - a) the angular velocity  $\omega$  of the ball in terms of  $\phi$ , r and g,
  - b) the period of orbit,  $t_p$ , in terms of  $\phi$ , r and g,
  - c) the [horizontal] acceleration of the ball, a in terms of  $\phi$  and g,
  - d) the acceleration of the ball, a, in terms of m, T and  $\phi$ ,
  - e) the tension in the string, T, in terms of m, g, r and  $\omega$ ,
  - f)  $\cos \phi$  in terms of  $\ell$  and r,
  - g) the angular velocity  $\omega$  in terms of g,  $\ell$  and r,
  - h)  $\cos \phi$  in terms of g, r and  $\omega$ ,
  - i) v in terms of  $\phi$ , r and g,
  - j)  $t_p$  in terms of v and a.

**Example** – A small ball of mass  $0.60 \, kg$  is suspended at the end of a light string of length  $0.80 \, m$  attached to the ceiling. The ball travels in a horizontal circle about a vertical axis  $1.3 \, times$  per second. How far below the ceiling is the ball? Resolving the forces on the sphere H and V, we obtain the two equations



$$T\sin\phi = mr\omega^2$$
 and  $T\cos\phi = mg$   
Dividing,  $\tan\phi = \frac{r\omega^2}{g} = \frac{r}{g}4\pi^2f^2$   
But also,  $\tan\phi = \frac{r}{h} = \frac{r}{g}4\pi^2f^2$   
Hence,  $h = \frac{9.81}{4\pi^2 \times 1.3^2} = 0.15 \,\mathrm{m}$ 

- 18.2 A small sphere of mass 2.0 kg, attached to the end of a light string of length 90 cm at  $24^{\circ}$  to the vertical, moves in a horizontal circle. Calculate
  - a) the tension T in the string, and
  - b) the height h by which the mass is raised above its position at rest.
- 18.3 A lead ball of mass 45 g is attached to the end of an 80 cm long light string and swung around in a horizontal circle at high speed. If the string snaps at a tension of 195 N, what is the maximum frequency of rotation f possible?
- 18.4 A fairground ride consists of several small carriages (c) each supported at its centre of mass by a light cable of length  $\ell=2.20$  m with its upper end attached to a supporting ring of radius R=3.40 m from the axis of rotation. What is the period when the carriages are rotating so that the cables are inclined at  $\phi=30.0^\circ$  to the vertical?
- 18.5 A mechanical governor consists of a narrow central axle to which are hinged to two light rods of length  $\ell$ , each attached to the centres of spherical masses of radius r. At what angular velocity  $\omega$ , in terms of g,  $\ell$  and r, will the spheres lose contact with the axle?



- 18.6 A conical pendulum on Earth produces a period of  $0.34~\rm s$  for a  $30^\circ$  semiangle of the cone. When the same pendulum is used on the Moon where  $g=1.6~\rm m\,s^{-2}$ , what would be the period for double the semi-angle?
- 18.7 An aircraft travelling at 160 knots maintains its altitude during a circular banked "rate one turn", which is a  $3.0^{\circ}$  s<sup>-1</sup> turning rate. At what angle to the horizontal are the wings of the plane? (1 knot = 0.514 m s<sup>-1</sup>)

#### Vertical circles 19

It is helpful to calculate the forces on an object travelling in a vertical circle.

Example context: we can calculate the speed you would have to drive over a hump-back bridge in order to leave the ground, we can also calculate the minimum speed a roller coaster car requires in order to loop-the-loop.

u speed at bottom (m s<sup>-1</sup>) m mass (kg) Quantities:

v speed at top (m s $^{-1}$ ) N normal reaction (N) + means  $\uparrow$  W weight (N) a centripetal acceleration (m s $^{-2}$ ) F resultant force (N)

Equations: 
$$F=ma \quad W=mg \quad a_{\rm top}=\frac{v^2}{r} \quad a_{\rm bottom}=\frac{u^2}{r}$$
 Gain in  $E_{\rm GP}=$  Loss in  $E_{\rm K}$ , so  $mg\times 2r=\frac{1}{2}mu^2-\frac{1}{2}mv^2$ 

- For an object travelling in a vertical circle (where upwards N are positive) 19.1 write equations for
  - a) N for the mass at the bottom using W, m and a,
  - b) N for the mass at the bottom using m, r, g and u,
  - c) N for the mass at the top using W, m and a,
  - d) N for the mass at the top using m, r, g and v,
  - e) N for the mass at the top using m, r, g and u,
  - f) the speed v needed at the top if N=0,
  - g) the speed u needed at the bottom if N=0 at the top.

**Example** – Calculate the normal reaction when a 1200 kg car is half way over a hump back bridge if it is travelling at  $13 \,\mathrm{m}\ \mathrm{s}^{-1}$ . The radius of the bridge's arc is 23 m.

Acceleration is downwards, so 
$$W-N=ma$$
.
$$N=W-ma=mg-\frac{mv^2}{r}=m\left(g-\frac{v^2}{r}\right)$$

$$N=1200\times\left(9.81-\frac{13^2}{23}\right)=3000 \text{ N to 2sf.}$$

Calculate the normal reaction for the car in the Example at a speed of  $8.0 \,\mathrm{m \ s^{-1}}$ . 19.2

- 19.3 For the car in the Example, calculate the speed at which the wheels would just leave the ground at the top of the bridge.
- 19.4 A 850 kg roller-coaster train goes over the top of a loop at  $9.5 \text{ m s}^{-1}$ . The loop has a radius of 4.5 m. Calculate the reaction force on the train. Use a negative number if the force is downwards.
- 19.5 Fill in the missing entries in the table below for a  $70 \, \text{kg}$  person riding a loop-the-loop roller-coaster. Give N and a as negative if they point downwards.

| Top or Bottom | <i>r</i> / m | Speed $/ \mathrm{m}\mathrm{s}^{-1}$ | $a \ / \ {\rm m \ s^{-2}}$ | N/N |
|---------------|--------------|-------------------------------------|----------------------------|-----|
| Тор           | 7.5          | 6.0                                 | (a)                        | (b) |
| Bottom        | 7.5          | 6.0                                 | (c)                        | (d) |
| Тор           | 7.5          | 12.0                                | (e)                        | (f) |
| Bottom        | (g)          | 15                                  | 30                         | (h) |

- 19.6 A person feels weightless when N=0. Calculate the speed a roller-coaster car would have to be travelling at the top of an r=4.5 m loop in order for the riders to experience weightlessness at the top.
- 19.7 An  $850\,\mathrm{g}$  radio-controlled car is driven in circles around the inside of a large (empty) pipe with a radius of  $90\,\mathrm{cm}$ . It travels at a steady  $4.0\,\mathrm{m}\,\mathrm{s}^{-1}$ .
  - a) Is the car going quickly enough not to fall off the pipe's surface?
  - b) Calculate the normal reaction as the car passes the top.
  - c) Calculate the normal reaction as the car passes the bottom.
- 19.8 When roller-coaster riders describe their rides, they call the ratio N/mg the g-force (this is not a scientific term). In this formula, N is taken as positive if it is directed upwards through the rider's body towards their head. A roller-coaster is designed to give N/mg=2.5 at both the top and the bottom of the ride. The loop is not circular. The rider sits in a train which runs around the inside of the loop. The top of the loop is curved with a 7.6 m radius.
  - a) State the value of N/mg for a rider sitting at rest in the train.
  - b) Calculate the speed of the train at the top of the loop.
  - c) If there is no friction, and the top of the loop is 21 m above the bottom, how fast will the train travel at the bottom of the loop?
  - d) Calculate the radius of the loop at the bottom of the track.

(d) Force diag. & Pythag.: 
$$N=\sqrt{(mg)^2+\left(\frac{mv^2}{r}\right)^2}=mg\sqrt{1+\frac{v^4}{r^2g^2}}$$

(e) 
$$a = \frac{v^2}{r}$$
 and  $v = r\omega$ , so that  $a = \frac{v(r\omega)}{r} = v\omega$ 

(f) Resolving forces (H) and (V),  $N\sin\theta=mr\omega^2$  and  $N\cos\theta=mg$ . Dividing,  $\tan\theta=\frac{r\omega^2}{g}$ . Hence,  $\omega=\sqrt{\frac{g}{r}\tan\theta}$ 

#### 18 Conical pendulum

- (a) Resolve (H):  $T\sin\phi=mr\omega^2$  and (V):  $T\cos\phi=mg$ . Divide the equations,  $\frac{T\sin\phi}{T\cos\phi}=\frac{mr\omega^2}{mg}. \quad \text{So,} \quad \tan\phi=\frac{r\omega^2}{g}. \quad \omega=\sqrt{\frac{g}{r}\tan\phi}$
- (b)  $t_{p} = \frac{2\pi r}{v} = \frac{2\pi}{\omega}$ . So,  $t_{p} = 2\pi \sqrt{\frac{r}{g \tan \phi}}$
- (c) Resolving,  $T \sin \phi = ma$  and  $T \cos \phi = mg$ . Then  $a = g \tan \phi$
- (d) From (c), the resolving horizontally equation,  $a = \frac{T \sin \phi}{m}$
- (e) From the resolving equations in (a), squaring and adding,  $(T\cos\phi)^2+(T\sin\phi)^2=T^2(\cos^2\phi+\sin^2\phi)=T^2=(mg)^2+(mr\omega)^2.$  Then,  $T=mg\sqrt{1+\frac{r^2\omega^4}{g^2}}$
- (f) A sketch and using Pythagoras,  $\cos\phi=rac{\mathsf{adj}}{\mathsf{hyp}}=rac{\sqrt{\ell^2-r^2}}{\ell}=\sqrt{1-rac{r^2}{\ell^2}}$
- (g)  $\tan \phi = \frac{r\omega^2}{g}$  and also  $\tan \phi = \frac{r}{\sqrt{\ell^2 r^2}}$ . Equating,  $\omega = \sqrt{\frac{g}{\sqrt{\ell^2 r^2}}}$
- (h) Same variables as (g), so  $\tan\phi=\frac{\sin\phi}{\cos\phi}=\sqrt{\frac{1-\cos^2\phi}{\cos^2\phi}}=\sqrt{\frac{1}{\cos^2\phi-1}}$  Thus,  $\cos\phi=\frac{1}{1+\tan^2\phi}$  and with  $\tan\phi=\frac{r\omega^2}{g}$ , then  $\cos\phi=\frac{1}{\sqrt{1+\frac{r^2\omega^4}{g^2}}}$

(i) Resolving (H) and (V), and dividing 
$$\frac{T\sin\phi}{T\cos\phi}=\frac{v^2}{r}.\frac{1}{g}=\tan\phi=\frac{v^2}{rg}$$
 and so,  $v=\sqrt{rg\tan\phi}$ 

(j) 
$$a = \frac{v^2}{a}$$
, so  $r = \frac{v^2}{a}$ . Hence  $t_p = \frac{2\pi r}{v} = \frac{2\pi v^2}{v} = \frac{2\pi v^2}{a}$ 

#### 19 Vertical circles

(a) Acceleration is  $\uparrow$  towards centre. N-W=ma, so N=W+ma

(b) 
$$N = W + ma = mg + \frac{mu^2}{r} = m\left(g + \frac{u^2}{r}\right)$$

(c) Acceleration is  $\downarrow$  towards centre. W-N=ma, so N=W-ma

(d) 
$$N = W - ma = mg - \frac{mv^2}{r} = m\left(g - \frac{v^2}{r}\right)$$

(e) 
$$N = mg - \frac{mv^2}{r}$$
, but  $\frac{1}{2}mv^2 = \frac{1}{2}mu^2 - 2mgr$ , so  $mv^2 = mu^2 - 4gr$   
 $N = mg - \frac{mu^2 - 4mgr}{r} = mg - \left(\frac{mu^2}{r} - 4mg\right) = 5mg - \frac{mu^2}{r}$ 

(f) Using (d) with 
$$N=0$$
,  $mg=\frac{mv^2}{r}$ , so  $v^2=gr$  and  $v=\sqrt{gr}$ 

(g) Using (e) with 
$$N=0$$
,  $5mg=\frac{mu^2}{r}$ , so  $u^2=5gr$  and  $u=\sqrt{5gr}$ 

# 20 Simple pendulum

(a)  $x = l\theta$  From the definition of the radian.

(b) 
$$60^{\circ} = 60 \times \frac{2\pi}{360} = 1.047 \, \text{rad So}, x = l\theta = 30 \, \text{cm} \times 1.047 = 31.4 \, \text{cm}$$

- (c) Component of weight in direction of  $x = mg \sin \theta$
- (d)  $ma = -mg \sin \theta$  so  $a = -g \sin \theta$
- (e)  $a = -g\sin\theta \approx -g\theta$

(f) 
$$\theta = \frac{x}{l} \text{ so } a \approx -g\theta = -\frac{gx}{l}$$

(g) 
$$a = -\frac{g}{l}x$$
 so if  $a = -\omega^2 x$  then  $\omega^2 = \frac{g}{l}$ 

# TABLE OF PHYSICAL CONSTANTS

| Quantity & Symbol                     | Magnitude          | Unit                   |                          |
|---------------------------------------|--------------------|------------------------|--------------------------|
| Permittivity of free space            | $\epsilon_0$       | $8.85 \times 10^{-12}$ | ${\sf F}{\sf m}^{-1}$    |
| Electrostatic force constant          | $1/4\pi\epsilon_0$ | $8.99 \times 10^{9}$   | N m $^2$ C $^{-2}$       |
| Speed of light in vacuum              | С                  | $3.00 \times 10^{8}$   | ${\sf m}{\sf s}^{-1}$    |
| Specific heat capacity of water       | $c_{water}$        | 4180                   | $ m Jkg^{-1}K^{-1}$      |
| Charge of proton                      | е                  | $1.60 \times 10^{-19}$ | С                        |
| Gravitational field strength on Earth | 8                  | 9.81                   | N ${ m kg}^{-1}$         |
| Universal gravitational constant      | G                  | $6.67 \times 10^{-11}$ | N $\mathrm{m^2~kg^{-2}}$ |
| Planck constant                       | h                  | $6.63 \times 10^{-34}$ | Js                       |
| Boltzmann constant                    | $k_{B}$            | $1.38 \times 10^{-23}$ | $ m JK^{-1}$             |
| Mass of electron                      | $m_{e}$            | $9.11 \times 10^{-31}$ | kg                       |
| Mass of neutron                       | $m_{n}$            | $1.67 \times 10^{-27}$ | kg                       |
| Mass of proton                        | $m_{p}$            | $1.67 \times 10^{-27}$ | kg                       |
| Mass of Earth                         | $M_{Earth}$        | $5.97 \times 10^{24}$  | kg                       |
| Mass of Sun                           | $M_{Sun}$          | $2.00 \times 10^{30}$  | kg                       |
| Avogadro constant                     | $N_{A}$            | $6.02 \times 10^{23}$  | $mol^{-1}$               |
| Gas constant                          | R                  | 8.31                   | $\rm J~mol^{-1}~K^{-1}$  |
| Radius of Earth                       | $R_{Earth}$        | $6.37 \times 10^{6}$   | m                        |

### OTHER INFORMATION YOU MAY FIND USEFUL

| Electron volt     | $1\mathrm{eV}$ | = | $1.60 \times 10^{-19}  J$         |
|-------------------|----------------|---|-----------------------------------|
| Unified mass unit | 1 u            | = | $1.66 	imes 10^{-27}~\mathrm{kg}$ |
| Absolute zero     | 0 K            | = | −273 °C                           |
| Year              | 1 yr           | = | $3.16 	imes 10^7  \mathrm{s}$     |
| Light year        | 1 ly           | = | $9.46\times10^{15}~\text{m}$      |
| Parsec            | 1 pc           | = | $3.09\times10^{16}~\text{m}$      |

# **PREFIXES**

| 1 km = 1000 m    | $1 \text{ Mm} = 10^6 \text{ m}$       | $1  \text{Gm} = 10^9  \text{m}$    | $1 \text{ Tm} = 10^{12} \text{ m}$  |
|------------------|---------------------------------------|------------------------------------|-------------------------------------|
| 1  mm = 0.001  m | $1  \mu \text{m} = 10^{-6}  \text{m}$ | $1 \text{ nm} = 10^{-9} \text{ m}$ | $1 \text{ pm} = 10^{-12} \text{ m}$ |