MEGR 3090/7090/8090: Advanced Optimal Control

$$V_n\left(\mathbf{x}_n\right) = \min_{\left\{\mathbf{u}_n, \mathbf{u}_{n+1}, \cdots, \mathbf{u}_{N-1}\right\}} \left[\frac{1}{2} \sum_{k=n}^{N-1} \left(\mathbf{x}_k^T \mathbf{Q}_k \mathbf{x}_k + \mathbf{u}_k^T \mathbf{R} \mathbf{u}_k\right) + \frac{1}{2} \mathbf{x}_N^T \mathbf{Q}_N \mathbf{x}_N \right]$$

$$\begin{aligned} V_{n}(\mathbf{x}_{n}) &= \min_{\left[\mathbf{u}_{n}, \mathbf{u}_{n+1}, \cdots, \mathbf{u}_{N-1}\right]} \left[\frac{1}{2} \sum_{k=n}^{N-1} \left(\mathbf{x}_{k}^{T} \mathbf{Q}_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k} \right) + \frac{1}{2} \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \mathbf{x}_{N} \right] \\ &= \min_{\mathbf{u}_{n}} \left[\frac{1}{2} \left(\mathbf{x}_{n}^{T} \mathbf{Q}_{n} \mathbf{x}_{n} + \mathbf{u}_{n}^{T} \mathbf{R} \mathbf{u}_{n} \right) + \min_{\left[\mathbf{u}_{n+1}, \cdots, \mathbf{u}_{N-1}\right]} \left[\frac{1}{2} \sum_{k=n+1}^{N-1} \left(\mathbf{x}_{k}^{T} \mathbf{Q}_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k} \right) + \frac{1}{2} \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \mathbf{x}_{N} \right] \right] \\ &= \min_{\mathbf{u}_{n}} \left[\frac{1}{2} \left(\mathbf{x}_{n}^{T} \mathbf{Q}_{n} \mathbf{x}_{n} + \mathbf{u}_{n}^{T} \mathbf{R} \mathbf{u}_{n} \right) + V_{n+1} \left(\mathbf{x}_{n+1} \right) \right] \end{aligned}$$

$$V_{n}\left(\mathbf{x}_{n}\right) = \min_{\mathbf{u}_{n}} \left[\frac{1}{2} \left(\mathbf{x}_{n}^{T} \mathbf{Q}_{n} \mathbf{x}_{n} + \mathbf{u}_{n}^{T} \mathbf{R} \mathbf{u}_{n} \right) + V_{n+1} \left(\mathbf{x}_{n+1} \right) \right]$$

Lecture 5 September 5, 2017

Design Optimization vs. Optimal Control - Reminder

UNC CHARLOTTE

Design optimization framework:

$$\mathbf{p}^* = \arg\min_{\mathbf{p}} J(\mathbf{p})$$
 where $p = \text{vector of design parameters and } J \text{ is a static function of those design parameters}$

Subject to: $\mathbf{p} \in P$

Control optimization framework:

$$\mathbf{u}^* = \arg\min_{\mathbf{u}} J(\mathbf{u}; \mathbf{x}(0)) \quad \text{where} \quad J(\mathbf{u}; \mathbf{x}(0)) = \sum_{i=0}^{N-1} g(\mathbf{x}(i), u(i)) + h(\mathbf{x}(N))$$

Subject to:
$$\mathbf{x}(i+1) = f(\mathbf{x}(i), \mathbf{u}(i))$$

 $\mathbf{u}(i) \in U, i = 0 ... N-1$
 $\mathbf{x}(i) \in X, i = 0 ... N-1$
 $\mathbf{x}(N) \in X_f$

Key point: The Papalambros textbook *only* addresses design optimization – however, we have shown that the discrete-time, finite horizon (finite N) control optimization is *equivalent* to the design optimization problem

Roadmap for Finite-horizon, Discrete-time Optimal Control

Unconstrained optimization fundamentals (today):

- Existence/
- uniqueness of minima
- Convexity

Unconstrained convex optimization tools:

- Gradient descent
- Newton's method

Constrained convex optimization fundamentals:

- Convex sets
- KKT conditions
- Lagrange multipliers

Constrained convex optimization tools:

- Linear and quadratic programming
- Sequential quadratic programming (SQP)

Non-convex optimization through dynamic programming:

- Bellman's principle of optimality
- State and control quantization ("meshing")

Papalambros Chapter 4

Papalambros
Chapter 5

Papalambros
Chapter 5 & 7

Kirk Chapter 3

Unconstrained Optimization - Setup

Design optimization framework:

$$\mathbf{p}^* = \arg\min_{\mathbf{p}} J(\mathbf{p})$$
 where $\mathbf{p} = \text{vector of design parameters and } J \text{ is a static function of those design parameters}$ Subject to: $\mathbf{p} \in \mathbb{R}^{\dim(\mathbf{p})}$

Control optimization framework:

$$\mathbf{u}^* = \arg\min_{\mathbf{u}} J(\mathbf{u}; \mathbf{x}(0)) \quad \text{where} \quad J(\mathbf{u}; \mathbf{x}(0)) = \sum_{i=0}^{N-1} g(\mathbf{x}(i), \mathbf{u}(i)) + h(\mathbf{x}(N))$$
Subject to:
$$\mathbf{u}(i) \in \mathbb{R}^{\dim(\mathbf{u})}, i = 0 \dots N - 1$$

$$\mathbf{x}(k+1) = f(\mathbf{x}(k), u(k))$$

Key point: The parameter vector (in the case of design optimization) and control input vector at each step (in the case of control optimization) can be **any vector of real numbers**

Unconstrained Optimization - Setup

in our notes, regardless of whether we are faced with a design optimization or optimal control problem.

Note: Papalambros likes to use x for the decision variable, but it will be clear from context.

Global vs. Local Optima

Consider a continuous function, $J(\mathbf{u})$, where $\mathbf{u} \in \mathbb{R}^p$ and $J(\mathbf{u}) \in \mathbb{R}$:

• \mathbf{u}^* is said to be a **local optimum** (and $J(\mathbf{u}^*)$ is the corresponding **local minimum**) if and only if there exists a scalar $\delta > 0$ such that $J(\mathbf{u}) \geq J(\mathbf{u}^*)$ whenever $\|\mathbf{u} - \mathbf{u}^*\| \leq \delta$ and $\mathbf{u} \neq \mathbf{u}^*$. Note that \mathbf{u}^* could also be referred to as a **local minimizer**.

• \mathbf{u}^* is said to be a **global optimum** (and $J(\mathbf{u}^*)$ is the corresponding **global minimum**) if and only $J(\mathbf{u}) \geq J(\mathbf{u}^*)$ whenever $\mathbf{u} \neq \mathbf{u}^*$. Note that \mathbf{u}^* could also be referred to as a **global minimizer**.

Global vs. Local Optima

First-Order Necessity Condition for Local and Global Optima

Suppose that a continuous function, $J(\mathbf{u})$, possesses a local minimum denoted by J^* , at \mathbf{u}^* (i.e., $J^* \triangleq J(\mathbf{u}^*)$). Then it **must** be true that $\nabla J(\mathbf{u}^*) = \mathbf{0}$, where $\nabla J(\mathbf{u}^*) = \begin{bmatrix} \frac{\partial J}{\partial u_1} & \dots & \frac{\partial J}{\partial u_p} \end{bmatrix}_{\mathbf{u}^*}$

$$\nabla J(\mathbf{u}^*) = \mathbf{0}$$
, where $\nabla J(\mathbf{u}^*) = \begin{bmatrix} \frac{\partial J}{\partial u_1} & \dots & \frac{\partial J}{\partial u_p} \end{bmatrix}_{\mathbf{u}^*}$

Key points:

- $\nabla I(\mathbf{u}^*)$ is a **row vector** whose dimension is equal to that of \mathbf{u} .
- When u is a scalar, $\nabla J(\mathbf{u}^*) = \frac{dJ}{du}\Big|_{u^*}$, leading to the familiar necessity condition from calculus 1: $\frac{dJ}{du}\Big|_{u^*} = 0$ at an optimum.
- For unconstrained optimizations, any finite global optimum is also a local optimum.

First-Order Necessity Condition – Simple Examples

For the systems below, determine the **possible optima** based on the first-order necessity condition:

Example 1: $J(u) = (u - 7)^2$... Hopefully a review from calc 1!

Example 2: $J(\mathbf{u}) = 2u_1^2 + 3u_2^2 + 3u_1u_2 + 4u_1$

First-Order Necessity Condition – Simple Examples

First-Order Necessity Condition – Optimal Control Example

Consider the following discrete-time system model: x(k+1) = x(k) + u(k)

Objective: Minimize
$$J(\mathbf{u}; x(0)) = \sum_{i=0}^{2} [x(i)^2 + u(i)^2]$$

Given: x(0) = 10

Tasks:

- Compute $\nabla J(u)$
- Given the first-order necessity condition, compute the **possible** value(s) of \mathbf{u}^* (i.e., compute the possible optimal control trajectories)

First-Order Necessity Condition – Optimal Control Example

Ex:
$$J(u; x(0)) = \sum_{i=0}^{2} \left[x(i)^{2} + u(i)^{2} \right]$$

Given $x(0) = 10$ where $x(k+1) = x(k) + u(k)$
 $x(1) = x(0) + u(0)$
 $x(2) = x(1) + u(1) = x(0) + u(0) + u(1)$
=) $J(u; x(0)) = x(0)^{2} + u(0)^{2} + \left[x(0) + u(0) \right]^{2} + u(1)^{2} + \left[x(0) + u(0) \right]^{2} + u(2)^{2}$
 $= 100 + u(1)^{2} + u(2)^{2} + u(0)^{2} + \left[10 + u(0) \right]^{2} + \left[10 + u(0) + u(1) \right]^{2}$

First-Order Necessity Condition – Optimal Control Example

$$\nabla J = \begin{cases} 2u(0) + 2[10 + u(0)] + 2[10 + u(0) + u(1)] \\ 2u(1) + 2[10 + u(0) + u(1)] \end{cases}$$

$$= 2u(0) + 2[10 + u(0)] + 2[10 + u(0) + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + 2[10 + u(0) + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1)] = 0$$

$$2u(1) + 2[10 + u(0)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)] + u(1) = 0$$

$$2u(1) + 2[10 + u(1)]$$

=> u* = [-6 -2 O]T maybe

Second-Order Sufficiency Conditions for Local and Global Optima

Suppose that $\nabla J(\mathbf{u}^*) = \mathbf{0}$. Then:

- \mathbf{u}^* is a local optimum (i.e., a local minimizer) if $J(\mathbf{u})$ is **locally convex** around \mathbf{u}^*
- \mathbf{u}^* is a global optimum (i.e., a global minimizer) if $J(\mathbf{u})$ is globally convex

Definitions of convexity (graphical interpretations to follow):

- A function $J(\mathbf{u})$ is **locally convex around \mathbf{u}^*** if there exists a scalar $\delta>0$ such that $J(\lambda \mathbf{u}_1+(1-\lambda)\mathbf{u}_2)\leq \lambda J(\mathbf{u}_1)+(1-\lambda)J(\mathbf{u}_2)$ for all $\mathbf{u}_1,\mathbf{u}_2,\lambda$ satisfying $\|\mathbf{u}_1-\mathbf{u}^*\|\leq \delta,\|\mathbf{u}_2-\mathbf{u}^*\|\leq \delta,0<\lambda<1$. $J(\mathbf{u})$ is said to be **locally strictly convex around \mathbf{u}^*** if $J(\lambda \mathbf{u}_1+(1-\lambda)\mathbf{u}_2)<\lambda J(\mathbf{u}_1)+(1-\lambda)J(\mathbf{u}_2)$ for the same set of conditions on $\mathbf{u}_1,\mathbf{u}_2,\lambda$.
- A function $J(\mathbf{u})$ is **globally convex** if $J(\lambda \mathbf{u_1} + (1 \lambda)\mathbf{u_2}) \leq \lambda J(\mathbf{u_1}) + (1 \lambda)J(\mathbf{u_2})$ for all $\mathbf{u_1}, \mathbf{u_2}$, and for all λ satisfying $0 < \lambda < 1$. $J(\mathbf{u})$ is said to be **locally strictly convex** if $J(\lambda \mathbf{u_1} + (1 \lambda)J(\mathbf{u_2}))$

Convexity of Functions – Scalar Graphical Interpretation

Reminder: For convexity, we want $J(\lambda u_1 + (1 - \lambda)u_2) \le \lambda J(u_1) + (1 - \lambda)J(u_2)$, $0 < \lambda < 1$

Example **globally** (as far as we can tell) convex function:

Example **locally** convex function around u^* :

Second-Order Sufficiency Conditions for Local and Global Optima – Reminder and More Details UNC CHA

Suppose that $\nabla J(\mathbf{u}^*) = \mathbf{0}$. Then:

- \mathbf{u}^* is a local optimum (i.e., a local minimizer) if $J(\mathbf{u})$ is **locally convex** around \mathbf{u}^*
- \mathbf{u}^* is a global optimum (i.e., a global minimizer) if $J(\mathbf{u})$ is globally convex
- The above optima are unique if $J(\mathbf{u})$ is strictly locally/globally convex

Convexity – Illustrations from Class

Non-strict, global Convexity (as far as we can tell)

Testing for Convexity - Scalar Case

First, consider a special case...Suppose that u is a scalar. Then J(u) is locally convex around u^* if and only if $\frac{d^2J}{du^2}\Big|_{u^*} \geq 0$. It is locally **strictly** convex if $\frac{d^2J}{du^2}\Big|_{u^*} > 0$. If these inequalities hold everywhere, then J(u) is **globally** convex (or strictly convex).

Simple example: Consider $J(u) = (u - 7)^2$. Evaluate the convexity of J(u) globally and locally around $u^* = 7$.

Testing for Convexity - Scalar Case

Testing for Convexity - Vector Case

When \mathbf{u} is a vector, we can test for convexity by examining the *Hessian* of $J(\mathbf{u})$, which is defined as follows:

$$H(\mathbf{u}) = \begin{bmatrix} \frac{\partial^2 J}{\partial u_1^2} & \dots & \frac{\partial^2 J}{\partial u_1 \partial u_p} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 J}{\partial u_p \partial u_1} & \dots & \frac{\partial^2 J}{\partial u_p^2} \end{bmatrix}$$

- If $H(\mathbf{u}^*)$ is **positive semidefinite**, then $J(\mathbf{u})$ is **locally convex** around \mathbf{u}^* . If $H(\mathbf{u}^*)$ is **positive definite**, then $J(\mathbf{u})$ is **locally strictly convex** around \mathbf{u}^* .
- If $H(\mathbf{u})$ is positive semidefinite for all \mathbf{u} , then $J(\mathbf{u})$ is globally convex. If $H(\mathbf{u})$ is positive definite for all \mathbf{u} , then $J(\mathbf{u})$ is globally convex.

Testing for Convexity - Vector Example

Consider the function $J(\mathbf{u}) = 2u_1^2 + 3u_2^2 + 3u_1u_2 + 4u_1$.

• Denoting the *candidate* optimal point you identified earlier as \mathbf{u}^* , assess the local convexity around $J(\mathbf{u})$. What does this say about the candidate optimum?

• Is $J(\mathbf{u})$ globally convex? What does this say about the candidate optimum?

Testing for Convexity - Vector Example

Note: The hessian won't always be a matrix of constant values! In cases where it is not a matrix of constant values (i.e., when it depends on elements of \mathbf{u}):

- Substitute $u = u^*$ to evaluate local convexity
- The hessian must be positive (semi-)definite for all values of \mathbf{u} to guarantee global convexity.

Testing for Convexity – Optimal Control Example – 5 Bonus Points on Exam 1

Consider the following discrete-time system model: x(k+1) = x(k) + u(k)

Objective: Minimize
$$J(\mathbf{u}; x(0)) = \sum_{i=0}^{2} [x(i)^2 + u(i)^2]$$

Given: x(0) = 10

Tasks:

- Evaluate the Hessian, and assess local convexity (around the previously-determined candidate optimum) and global convexity
- What does this imply about the previously-determined candidate optimal trajectory?

Summary

Given an **unconstrained** optimization problem (minimize $J(\mathbf{u})$ subject to $\mathbf{u} \in \mathbb{R}^{\dim(\mathbf{u})}$), a **finite optimum** (minimizer) can be determined through the following procedure:

- Compute $\nabla J(\mathbf{u})$, and determine \mathbf{u}^* for which $\nabla J(\mathbf{u}^*) = 0$
- Compute the Hessian to determine whether candidate \mathbf{u}^* values are indeed local or global minimizers

Potential complication: Finding \mathbf{u}^* for which $\nabla J(\mathbf{u}^*) = 0$ often leads to a system of nonlinear equations for which a solution is hard to obtain. In the coming lectures, we will learn about efficient numerical techniques for converging to \mathbf{u}^*

Preview of next lecture (and beyond)

Topics for lecture 6-7:

- Gradient-based methods for unconstrained convex optimization
- Newton's method for unconstrained convex optimization

Beyond lectures 6-7, we will examine several different techniques for constrained convex optimization

- Linear and quadratic programming
- Sequential quadratic programming (SQP)
- Dynamic programming for global optimization