1.
$$0.9 \times 9$$

- 2. Forme développée et réduite de (x+1)(x+5)
- **3.** Médiane de la série : 14;22;2;20;8
- **4.** Signe de $(-3)^{-5}$ \square Positif \square Négatif
- **5.** Factoriser $x^2 4$.
- **6.** $9.6 \text{ h} = 9 \text{ h} \dots \text{min}$
- 7. La moyenne de 6, 9, 14 et d'un nombre inconnu n est égale à 11. $n=\dots$
- 8. José a couru 2 km en 15 minutes, sa vitesse moyenne est de ... km/h
- 9. Soit $f: x \longmapsto \frac{1}{x^3}$ $f'(x) = \dots$

- **10.** Solution(s) de l'équation $x^2 8100 = 0$
- **11.** $700 \cos(22\pi)$

	x_i	-1	0	1	2
12.	$P(X=x_i)$	$\frac{2}{7}$	$\frac{2}{7}$	$\frac{2}{7}$	

$$P(X=2)=\dots$$

- 13. S est l'ensemble des solutions de l'inéquation $2\,025(x+2\,025)^2 < 0$. $S = \dots$
- **14.** $A(3\,040\,;\,-10)$ et $B(10\,;\,3\,060)$ Déterminer les coordonnées de M, milieu de [AB]. $M(\ldots;\ldots)$
- 15. $f(x)=x^2-9x+6$ La représentation graphique \mathcal{C}_f de la fonction f a pour axe de symétrie la droite d'équation $x=\dots$

Score:/ 15

1^{ère}spe

1.
$$0.9 \times 9 = 8.1$$

2.
$$(x+1)(x+5) = x^2 + 5x + x + 5$$

= $x^2 + 6x + 5$

Le terme en x^2 vient de $x \times x = x^2$.

Le terme en x vient de la somme de $x \times 5$ et de $1 \times x$.

Le terme constant vient de $1 \times 5 = 5$.

- 3. On ordonne la série : 2;8;14;20;22. La série comporte 5 valeurs donc la médiane est la troisième valeur : 14.
- 4. $(-3)^{-5} = \frac{1}{(-3)^5}$ Comme $(-3)^5$ est négatif (puissance impaire d'un nombnre négatif), on en déduit que $\frac{1}{(-3)^5}$ est négatif. Ainsi, $(-3)^{-5}$ est négatif.
- 5. On utilise l'égalité remarquable $a^2-b^2=(a-b)(a+b)$ avec a=x et b=2. $x^2-4=\underbrace{x^2-2^2}_{a^2-b^2}$ $=\underbrace{(x-2)(x+2)}_{(a-b)(a+b)}$ Une expression factorisée de x^2-4 est (x-2)(x+2).

6.
$$9.6 = 9 \text{ h} + 0.6 \times 60 \text{ min} = 9 \text{ h} \frac{36}{36} \text{ min}$$

- 7. Puisque la moyenne de ces quatre nombres est 11, la somme de ces quatre nombres est $4 \times 11 = 44$. La valeur de n est donnée par : 44 6 9 14 = 15.
- 8. $15 \times 4 = 60 \text{ min} = 1 \text{ h}$ José court 4 fois plus de km en 1 heure. $2 \times 4 = 8$ José court à 8 km/h.
- 9. D'après le cours, si $f = \frac{1}{u}$ alors $f' = \frac{-u'}{u^2}$. $f'(x) = \frac{-3x^2}{x^6} = -\frac{3}{x^4}$.
- **10.** Puisque 8100>0, l'équation a deux solutions : $-\sqrt{8100}$ et $\sqrt{8100}$, soit -90 et 90. Ainsi, $S=\{-90; 90\}$.
- **11.** Si n est pair $\cos(n\pi) = 1$ et si n est impair, $\cos(n\pi) = -1$. $700 \cos(22\pi) = 700 1 = 699$
- 12. La somme des probabilités doit être égale à 1. Ainsi, $P(X=2)=1-\frac{2}{7}-\frac{2}{7}-\frac{2}{7}=\frac{1}{7}.$
- 13. Pour tout réel x, $2025(x+2025)^2$ est positif et s'annule en -2025. Ainsi, l'ensemble S des solutions de l'inéquation est \emptyset .
- 14. Les coordonnées du milieu sont données par la moyenne des abscisses et la moyenne des ordonnées : $3040+10 \qquad -10+3060$

$$x_M = \frac{3040 + 10}{2} = 1525$$
 et $y_M = \frac{-10 + 3060}{2} = 1525$. Ainsi, $M(1525; 1525)$.

15. f est une fonction polynôme du second degré écrite sous forme développée ax^2+bx+c . Le sommet de la parabole a pour abscisse $-\frac{b}{2a}$.

L'axe de symétrie a donc pour équation $x=-\frac{b}{2a}$. On obtient alors $x=-\frac{-9}{2\times 1}$, soit $x=\frac{9}{2}$ ou encore x=4,5.