Universidade Federal Fluminense Instituto de Matemática e Estatística

Prova 2 - GAN140 - Álgebra Linear - Turmas A1 e M1 - 2024.01 Prof^a Cláudia Ossanai e Prof^a Míriam Abdon Todos os cálculos devem ser apresentados, fazem parte da avaliação.

03/06/2024

Nome:	Nota:

1. Seja $V=\mathbb{R}^4$, com as operações de adição de vetores e multiplicação por escalar usuais, e os subespaços vetoriais de V abaixo:

$$G = ger\{(2,1,3,1), (2,2,4,0), (3,2,5,1)\};$$

$$W = \{(x,2x,3x,-x) \in \mathbb{R}^4 \mid x \in \mathbb{R}\}.$$

- (a) Obter **explicitamente** o subespaço Soma S de G e W, S = G + W, uma base para S e sua dimensão (1,2 ponto)
- (b) Obter **explicitamente** o subespaço Interseção I de G e W, $I = G \cap W$, uma base para I e sua dimensão (1,2 ponto)
- (c) Obter **explicitamente** o complemento ortogonal G^{\perp} , uma base para G^{\perp} e sua dimensão (1,2 ponto)
- 2. Seja a transformação linear $T: \mathbb{R}^4 \to \mathbb{R}^3$:

$$T(x, y, z, t) = (2x + 4y + z + t, x + 2y + 2z - t, x + 2y + z + t)$$

- (a) Determine **explicitamente** o Núcleo de T, uma base e sua dimensão (1,2 pontos);
- (b) Determine **explicitamente** a Imagem de T, uma base e sua dimensão (1,2 pontos);
- (c) A transformação T é injetora? É sobrejetora? **Justifique** suas respostas (0,6 ponto).
- 3. Determine uma transformação linear T tal que:

$$T(1,1,1) = (0,2,2)$$
 $T(1,1,0) = (3,1,4)$ $T(0,1,1) = (-1,0,-1)$

Apresente as etapas do desenvolvimento (1,4 ponto).

4. Sejam as bases $\mathbf{A} = \{(3,1),(2,1)\}$ e $\mathbf{B} = \{(0,1),(1,2)\}$ de \mathbb{R}^2 e o operador linear $T: \mathbb{R}^2 \to \mathbb{R}^2$:

$$T(x,y) = (x+2y, 3x+4y)$$

- (a) **PROVE** que T(x,y) é um operador **linear** (1,0 ponto);
- (b) Determinar a matriz do operador T da base \mathbf{A} para \mathbf{B} , $[\mathbf{T}]_{\mathbf{B}}^{\mathbf{A}}$ (1,0 ponto).