алгем 27.02.2023

Неприводимость над \mathbb{R}

Лемма. Пусть $f(x) \in \mathbb{R}[x]$. Если число $z \in \mathbb{C}$ является корнем f(x), то и сопряжённое ему число \overline{z} тоже является корнем f(x).

Доказательство. $f(x) = a_n x^n + ... + a_0, a_i \in \mathbb{R}$ z - корень $\Rightarrow f(z) = a_n z^n + ... + a_1 z + a_0 = 0$. Возьмём комплексное сопряжённое от обеих частей. Получим $\overline{f(z)} = \overline{a_n z^n + ... + a_1 z + a_0} = \overline{0}$ $\overline{a_n}(\overline{z^n}) + (\overline{a_{n-1}})(\overline{z^{n-1}}) + ... + \overline{a_1 z} + \overline{a_0} = 0$ $a_i \in \mathbb{R}$ $a_n(\overline{z^n}) + a_{n-1}(\overline{z^{n-1}}) + ... + a_1\overline{z} + a_0 = 0 \Rightarrow f(\overline{z}) = 0$ чтд.

Теорема. Над \mathbb{R} неразложимимы являются многочлены только первой и второй степени (с отрицательным дискриминантом)

Доказательство.

 $\mathbb{R}\subseteq\mathbb{C}\Rightarrow f(x)\in\mathbb{R}[x]$ имеет в точности n корней над полем $\mathbb{C}.$

Множество корней можно разбить на два типа:

- 1. $a_1, ..., a_k$ вещественные корни
- 2. $z_1, \overline{z_1}, z_2, \overline{z_2}, ..., z_m$ комплексные корни, у каждого из которых есть сопряженная пара (смотри предыдущую лемму)

n - степень $f(x) \Rightarrow k+2m=n$ $f(x)=(x-a_1)...(x-a_k)(x-z_1)(x-\overline{z_1})...(x-z_m)(x-\overline{z_m})$ Перемножим пары скобок, которые содержат сопряжённые числа. $(x-z_i)(x-\overline{z_i})=x^2-x(z_i+\overline{z_i})+z_i\overline{z_i}=x^2-2c_i+(x_i^2+d_i^2), (z_i=c_i+id_i,z_i+\overline{z_i}=2c_i,z_i\overline{z_i}=c_i^2+d_i^2$ Для каждого i=1,...,m получаем многочлен второй степени $f_i(x)=x^2-2c_i+(x_i^2+d_i^2)$

Следствие. Любой многочлен над \mathbb{R} , имеющий нечётную степень, имеет вещественный корень.

Разложение многочленов над $\mathbb Q$ и $\mathbb Z$

Теорема. Пусть $f(x) \in \mathbb{Z}[x]$. Многочлен разложим над $\mathbb{Z}[x] \Leftrightarrow$ он разложим над $\mathbb{Q}[x]$.

Доказательство. Пусть $f(x) \in \mathbb{Z}[x]$.

Пусть f(x) разложим над $\mathbb{Q}[x]$.

$$f(x) = a_n x^n + ... + a_1 x + a_0, a_i \in \mathbb{Z}, i = 0, ..., n$$

$$f(x) = g(x)h(x), g(x), h(x) \in \mathbb{Q}[x]$$

Рассмотрим g(x)h(x).

$$g(x) = \frac{c_1}{b_1} g_1(x)$$

$$h(x) = \frac{c_2}{b_2} h_1(x)$$

 b_1 - общий знаменатель, c_1 - общий множитель в числителе.

Определение. Многочлен называется **примитивным**, если НОД его коэффициентов равен 1.

 $g_1(x)$ и $h_1(x) \in \mathbb{Z}[x]$ (примитивные)

алгем 27.02.2023

$$f(x) = a_n x^n + \dots + a_1 x + a_0 = g(x)h(x) = \frac{c_1 c_2}{b_1 b_2} (g_1(x)h_1(x))$$

 $g_1(x)h_1(x)$ - примитивный многочлен с целыми коэффициентами.

Если $\frac{\hat{c}_1 c_2}{b_1 b_2} = \frac{\hat{p}}{q}$, то $\frac{p}{q} f_1(x)$ - многочлен, в котором есть рациональная дробь (поскольку он примитивный, то НОД коэффициентов равен 1 и при $q \neq 1$ остаётся коэффициент, не являющийся целым числом)

Лемма Гаусса. Произведение примитивных многочленов является примитивным многочленом.

Доказательство. Пусть $g(x) = b_k x^k + ... + b_1 x + b_0 (b_i \in \mathbb{Z}), h(x) = c_m x^m + ... + c_1 x + c_0 (c_i \in \mathbb{Z}) \in \mathbb{Z}[x]$ являются примитивными.

$$f(x) = a_n x^n + \dots + a_1 x + a_0 = (b_k x^k + \dots + b_1 x + b_0)(c_m x^m + \dots + c_1 x + c_0)$$

 $a_n = c_m b_{n-m}$

$$a_{n-1} = c_{m-1}b_{n-m-1} + c_{m-1}b_{n-m}$$

...

$$a_i = c_0 b_i + c_1 b_{i-1} + \dots + c_i b_{k-i}$$

Пусть f(x) непримитивный $\Rightarrow \exists d \neq 1$ такое, что d делит любой коэффициент f(x) (будем считать, что d - простое).

Возьмём наименьший индекс i_0 такой, что c_{i_0} не делится на d (если все коэффициенты h(x) делятся на d, то h(x) непримитивный)

Возьмём наименьший индекс j_0 такой, что b_{j_0} не делится на d (если все коэффициенты h(x) делятся на d, то h(x) непримитивный)

Рассмотрим коэффициент $a_{i_0+j_0}$ при степени $x^{i_0+j_0}$:

$$a_{i_0+j_0} = c_0 b_{i_0+j_0} + c_1 b_{i_0+j_0-1} + \dots + c_{i_0} b_{j_0} + c_{i_0+1} b_{j_0-1} + \dots + c_{i_0+j_0} b_0$$

Все члены до и после $c_{i_0}b_{j_0}$ делятся на d, а $c_{i_0}b_{j_0}$ на d не делится. Пришли к противоречию. чтд

Теорема (Критерий Эйзенштейна. Пусть $f(x) \in \mathbb{Z}[x], f(x) = a_n x^n + ... + a x_1 + a_0$. Если существует простое число p такое, что

- 1. p не делит a_n
- 2. p делит все остальные $a_i (i = 0, ..., n 1)$
- 3. p^2 не делит a_0

Тогда многочлен f(x) неприводим над \mathbb{Q}

Доказательство. $f(x) \in \mathbb{Z}[x]$ и пусть выполняется условия критерия Эйзенштейна, то есть существует p, для которого выполняются условия 1) - 3) и при этом $f(x) = g(x)h(x), (f(x), g(x) \in \mathbb{Z}[x])$

$$g(x) = b_k x^k + \dots + b_1 x + b_0 (b_i \in \mathbb{Z}), h(x) = c_m x^m + \dots + c_1 x + c_0 (c_i \in \mathbb{Z}) \in \mathbb{Z}[x]$$

 $a_0 = b_0 c_0$

 p^2 не делит $a_0 \Rightarrow$ либо $p|b_0$ b p не делит c_0 либо наоборот.

Пусть $p|c_0$ и p не делит b_0 (второй случай рассматривается аналогично).

 $a_1 = b_1 c_0 + c_1 b_0$. Отсюда получаем, что так как $p|a_1$, то $p|c_1$.

 $a_2 = b_2 c_0 + c_1 b_1 + c_2 b_0$. Отсюда получаем, что $p|c_2$

• • •

$$a_m = b_m c_0 + \dots + b_0 c_m \Rightarrow p | c_m$$

Берём старший коэффициент $a_n = b_k c_m$

 $p|c_m$ а значит $p|a_n$. Противоречие.

алгем 27.02.2023

Теорема (о виде рациональных корней многочлена над \mathbb{Z} . Если $\frac{p}{q}$ является корнем многочлена $f(x) = a)nx^n + ... + a_1x + a_0$, то $q|a_n$ и $p|a_0$.

Доказательство. Пусть $\frac{p}{q}$ является корнем, p и q взаимно просты. Просто подставляем: $f(\frac{p}{q}) = a_n(\frac{p}{q})^n + ... + a_q(\frac{p}{q}) + a_0 = 0$ $a_n p^n + a_{n-1} p^{n-1} q + ... + a_1 p q^{n-1} + a_0 q^n = 0$ $a_n p^n = -a_{n-1} p^{n-1} q - ... - a_1 p q^{n-1} - a_0 q^n$ $q|(a_n p^n) \Rightarrow q|a_n$ $a_n p^n + a_{n-1} p^{n-1} q + ... + a_1 p q^{n-1} = -a_0 q^n \Rightarrow p|a_0$ Противоречие. Чтд.