Resilient Reachability for Linear Systems

Jean-Baptiste Bouvier 1 and Melkior Ornik 1,2

Department of Aerospace Engineering, University of Illinois at Urbana-Champaign

² Coordinated Science Laboratory, University of Illinois at Urbana-Champaign

Motivation

We consider systems enduring loss of control authority over their actuators. We investigate whether the desired target set for a linear system remains reachable even after such a malfunction, characterized by undesirable inputs of magnitude similar as the control inputs.

Our Contributions

- We describe the problem of resilient reachability and derive an analytical condition for linear systems.
- We establish necessary and sufficient conditions for driftless systems to be resilient to the loss of actuator authority.

Notation

- The unit sphere in \mathbb{R}^n is $\mathbb{U} = \{x \in \mathbb{R}^n : ||x|| = 1\}$.
- The space of square integrable functions is \mathcal{L}_2 .
- The dual space of X is $X^* = \mathcal{L}(X, \mathbb{R})$. For $S \in \mathcal{L}(X, Y)$, $S^* \in \mathcal{L}(Y^*, X^*)$ is the dual linear map. The norm of $f \in X^*$ is $||f^*||_{X^*} = \sup_{\|x\|=1} \{|f^*(x)|\}$.

Problem Statement

A system loses control authority over some of its actuators. The controlled inputs are u, the undesirable ones are w while the state x follows the LTI dynamics:

$$\dot{x}(t) = Ax(t) + Bu(t) + Cw(t), \qquad x(0) = x_0 \in \mathbb{R}^n. \quad (1)$$
The goal set is $G = \left\{ x \in \mathbb{R}^n : ||x - x_{goal}||_{\mathbb{R}^n} \le \varepsilon \right\}.$

Definition

G is resiliently reachable from x_0 at time T if, for any undesirable inputs $w \in W$, there exists a control law $u_w \in U$ driving the system from x_0 to G in time T, i.e. $x_0 \in X_0^T = \{x_0 \in \mathbb{R}^n : \forall w \in W, \exists u_w \in U : x(T) \in G\}.$

Preliminaries

The solution of (1) can be written in integral form and becomes x(T) = s + Su + Rw, state equation in [1].

Proposition 1 (Delfour)

G is resiliently reachable from x_0 at time T iff $\sup_{\|x^*\|=1} \left\{ x^*(s - x_{goal}) - \|S^*x^*\| + \|R^*x^*\| - \varepsilon \right\} \le 0.$

General Result

Proposition 1 is too abstract and impractical to use because of the dual terms.

So, we use the Riesz representation theorem to simplify x^* into a scalar product with a certain $h \in \mathbb{U}$, representing a direction. We also express the dual map as $S^*x^* = x^* \circ S$.

Theorem 1

G is resiliently reachable from x_0 at time T iff

$$\max_{h \in \mathbb{U}} \left\{ \langle h, e^{AT} x_0 - x_{goal} \rangle - \sup_{\|u\|_{\mathcal{L}_2 = 1}} \left\{ \left| \langle h, \int_0^T e^{A(T - \tau)} Bu(\tau) d\tau \rangle \right| \right\} + \sup_{\|w\|_{\mathcal{L}_2 = 1}} \left\{ \left| \langle h, \int_0^T e^{A(T - \tau)} Cw(\tau) d\tau \rangle \right| \right\} - \varepsilon \right\} \le 0.$$

Theorem 1 is more direct than Proposition 1, as it does not use any dual element. Yet, computing the two supremums is complicated because of the infinite dimension of \mathcal{L}_2 .

Driftless Systems

Consider a system without drift term, so that (1) becomes:

$$\dot{x}(t) = Bu(t) + Cw(t). \tag{2}$$

Using the equality case of the Cauchy-Schwarz inequality we calculate the value of the supremums of Theorem 1.

Theorem 2

G is resiliently reachable at time T from x_0 iff

$$\max_{h \in \mathbb{U}} \left\{ \langle h, x_0 - x_{goal} \rangle - \sqrt{T} \left\| B^T h \right\| + \sqrt{T} \left\| C^T h \right\| \right\} \le \varepsilon.$$

Time Evolution of Reachability

To simplify let $d = x_0 - x_{qoal}$ and define

$$J:(h, t) \mapsto \langle h, d \rangle + \sqrt{t} (\|C^T h\| - \|B^T h\|),$$

so G is resiliently reachable from x_0 by time T if and only if

$$\min_{t \in [0,T]} \left\{ \max_{h \in \mathbb{U}} \left\{ J(h,t) \right\} \right\} \le \varepsilon.$$

Hence the reachability by time T can be described as a minimax problem with a DC (Difference of Convex) cost function. As time grows, \sqrt{t} becomes the leading term in J, with its sign determined by

$$g: h \mapsto ||C^T h|| - ||B^T h||.$$

Intuitions

Call h^* the argument of the max in Theorems 1 and 2.

- h^* is driving the system away from x_{qoal} .
- h^* is the travel direction giving the most strength to the undesirable inputs over the controls.
- So h^* is the worst direction for resilient reachability.
- Along direction h, g(h) quantifies the difference of strength between undesirable inputs and controls.
- sign(max g(h)) tells which input is the strongest.

Theorem 3

- If $\max \{g(h)\} > 0$, G is only resiliently reachable up to a certain time,
- If $\max \{g(h)\} = 0$, G can be either always resiliently reachable, never resiliently reachable, or its resilient reachability depends on time,
- If $\max \{g(h)\} < 0$, G is resiliently reachable from some time onwards.

Underwater Robot

An underwater robot is propelled by three engines in a 2D plane. The main thruster u_1 has a small bias in the y direction. The system dynamics are:

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} 10 & 1 & 1 \\ 0.2 & -1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

Figure: A model of an underwater robot with three actuators.

When losing control of u_3 , $B = \begin{bmatrix} 10 & 1 \\ 0.2 & -1 \end{bmatrix}$, while $C = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. We take $h = [h_1, h_2]^T \in \mathbb{U}$, and compute $\max g(h) = -0.02$ for $h_1 \approx 0$. Thus, according to Theorem 3, any target set can be reached in finite time.

Uncontrolled actuator $\max \left\{g(h)\right\}$ Resilient Reachability u_2 or u_3 -0.02 < 0Yes u_2 and u_3 1.4 > 0No u_1 8.6 > 0No

Table: Resilient reachability for loss of control of different actuators

Theorem 4

Let
$$F = BB^T - CC^T$$
.

- If F is positive definite, then G is resiliently reachable.
- If F is not positive semi-definite, then G is not resiliently reachable.

We compute F for the different cases. When losing control of u_3 , $F = \begin{bmatrix} 100 & 0 \\ 0 & 0.04 \end{bmatrix} \succ 0$. But, $F = \pm \begin{bmatrix} 98 & 2 \\ 2 & -1.96 \end{bmatrix}$ for the two other cases, which is not positive semi-definite. So, the robot is only resilient to the loss of one of its side engines.

Conclusions and Future Work

- We described the problem of resilient reachability for a system losing control authority over some of its actuators.
- We derived resilient reachability conditions for linear and driftless systems.
- Our next focus is to design control matrices resilient to the loss of any actuator.

Main References

- [1] M. C. Delfour and S. K. Mitter, "Reachability of perturbed systems and min sup problems," *SIAM Journal on Control and Optimization*, vol. 7, pp. 521 533, November 1969.
- [2] J. Bouvier and M. Ornik, "Resilient reachability for linear systems," in 21st IFAC World Congress, submitted.

${\bf Acknowledgement}$

This work was supported by NASA's Space Technology Research Grants program for Early Stage Innovations.

Get In Touch

- bouvier3@illinois.edu Jean-Baptiste Bouvier
- mornik@illinois.edu Melkior Ornik

Aerospace Engineering