Student ID: CW Exam1

10th October 2019 COMP 2611

1. Draw NFAs for the following languages over $\Sigma=\{0,1\}$:

(a)
$$\{0^n 1^m 0^p \mid n, m \ge 0 \land p > 1\}$$

(b)
$$\{s \mid s \in \Sigma^*, \text{ contains an even number of 1s or an odd number of } 0s\}$$
 [2]

(c)
$$\{0w0 \mid w \in \Sigma^*\}$$

2. Derive regular expressions that would accept the following languages:

(a)
$$\{(ab)^n \mid n \ge 0\}$$

(b)
$$\{a^n \mid n \text{ is even}\}$$

(c)
$$\{a^n \mid n \text{ is even}\} \cup \{a^b \mid n \text{ is odd}\}$$
 [2]

3. Suppose that you have two regular languages L_1 and L_2 that are recognized by NFAs N_1 and N_2 respectively. Explain, but not prove, how you can construct a machine N_3 that recognize $L_1 \cup L_2$ [3]

Student ID: CW Exam1 10th October 2019

COMP 2611

4. Consider the following strings over $\{0,1\}$. Draw DFAs that recognize said languages. After drawing them, formally define their DFAs

(a) $\{(01)^n \mid n \text{ is even}\}$

(b) $\{1(0)^n \mid n \text{ is divisible by } 3\}$

5. Suppose that below NFA recognizes language L. Give the NFA that recognizes \overline{L} [5]

Figure 1: NFA1

6. Convert the following NFA to a regular expression

Figure 2: NFA1

[5]