Abalone Classification Neural

2023-04-24

Neste trabalho analiso os dados de https://archive.ics.uci.edu/ml/datasets/abalone.

O abalone é um molusco gastrópode pertencente à família Haliotidae e é encontrado sob a forma de diversas espécies em águas costeiras de quase todo o mundo. Por causa de seu uso como jóia e alimento,há duas espécies de abalone que se encontram em risco de extinção.

Neste projeto, irei prever a idade do abalone baseada em fatores físicos.

A idade do abalone é determinada cortando a concha através do cone, manchando-a e contando o número de anéis através de um microscópio. Outras medidas, mais fáceis de obter, são usadas para prever a idade.

Nome	Tipo de Dado	Unidade de Medida	Descrição
Sex (Sexo)	nominal	_	M, F e I (infantil)
Length (Comprimento)	contínuo	mm	Medição mais longa da concha
Diameter (Diâmetro)	contínuo	mm	Perpendicular ao comprimento
Height (Altura)	contínuo	mm	Com carne na concha
Whole weight (Peso total)	contínuo	gramas	Abalone inteiro
Shucked weight (Peso da carne)	contínuo	gramas	Peso da carne
Viscera weight (Peso das vísceras)	contínuo	gramas	Peso do intestino (após sangria)
Shell weight (Peso da concha)	contínuo	gramas	Depois de seco
Rings (Anéis)	inteiro	_	+1,5 dá a idade em anos

Limpando o ambiente de execução

```
rm(list = ls())
```

Setando o Local de trabalho

```
setwd("C:/Users/karin/OneDrive/Desktop/Mestrado/Mineração")
```

Bibliotecas

```
#install.packages("tidyverse")
#install.packages("ggplot2")
#install.packages("GGally")
#install.packages("ggcorrplot")
#install.packages("DataExplorer")
#install.packages("caret")
#install.packages("VIM")
#install.packages("rattle")
```

```
#install.packages("RColorBrewer")
#install.packages("neuralnet")
#install.packages("sampling")
#install.packages("knitr")
```

Chamada das Bibliotecas

Carregando pacotes exigidos: rpart

```
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.1 v readr
                                   2.1.4
## v forcats 1.0.0 v stringr 1.5.0
## v ggplot2 3.4.2 v tibble
                                   3.2.1
## v lubridate 1.9.2
                        v tidyr
                                    1.3.0
              1.0.1
## v purrr
## -- Conflicts -----
                                           ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(ggplot2)
library(GGally)
## Registered S3 method overwritten by 'GGally':
##
    method from
##
    +.gg
          ggplot2
library(ggcorrplot)
library(readr)
library(DataExplorer)
library(caret)
## Carregando pacotes exigidos: lattice
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
      lift
library(rattle)
## Carregando pacotes exigidos: bitops
## Rattle: A free graphical interface for data science with R.
## Version 5.5.1 Copyright (c) 2006-2021 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(rpart.plot)
```

```
library(RColorBrewer)
library(VIM)
## Carregando pacotes exigidos: colorspace
## Carregando pacotes exigidos: grid
## VIM is ready to use.
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
## Attaching package: 'VIM'
## The following object is masked from 'package:rattle':
##
##
       wine
##
## The following object is masked from 'package:datasets':
##
##
       sleep
library(neuralnet)
##
## Attaching package: 'neuralnet'
## The following object is masked from 'package:dplyr':
##
##
       compute
library(sampling)
##
## Attaching package: 'sampling'
## The following object is masked from 'package:caret':
##
##
       cluster
library(knitr)
Visualização Geral do DataFrame
options(scipen = 999) #visualização dos dados sem a notação científica
abalone <- read_csv("abalone.csv", show_col_types = FALSE)</pre>
abalone <- as_tibble(abalone)</pre>
abalone
## # A tibble: 4,177 x 9
   Sex Length Diameter Height 'Whole weight' 'Shucked weight' 'Viscera weight'
##
```

<dbl>

<dbl>

<dbl>

##

<chr> <dbl> <dbl> <dbl>

```
##
    1 M
             0.455
                      0.365 0.095
                                             0.514
                                                              0.224
                                                                               0.101
##
    2 M
             0.35
                      0.265 0.09
                                             0.226
                                                              0.0995
                                                                               0.0485
##
   3 F
             0.53
                      0.42
                              0.135
                                             0.677
                                                              0.256
                                                                               0.142
   4 M
             0.44
                      0.365 0.125
                                             0.516
                                                              0.216
                                                                               0.114
##
##
    5 I
             0.33
                      0.255 0.08
                                             0.205
                                                              0.0895
                                                                               0.0395
   6 I
##
             0.425
                      0.3
                             0.095
                                             0.352
                                                              0.141
                                                                               0.0775
   7 F
##
             0.53
                      0.415 0.15
                                             0.778
                                                              0.237
                                                                               0.142
                      0.425 0.125
##
   8 F
             0.545
                                             0.768
                                                              0.294
                                                                               0.150
## 9 M
             0.475
                      0.37
                              0.125
                                             0.509
                                                              0.216
                                                                               0.112
             0.55
## 10 F
                      0.44
                             0.15
                                             0.894
                                                              0.314
                                                                               0.151
## # i 4,167 more rows
## # i 2 more variables: 'Shell weight' <dbl>, Rings <dbl>
```

O dataset possui 9 atributos e 4177 instâncias

```
#Atributos
ncol(abalone)
```

[1] 9

```
#Instâncias
nrow(abalone)
```

[1] 4177

Dos 9 atributos, 8 são do tipo num e 1 do tipo chr.

```
str(abalone)
```

```
## tibble [4,177 x 9] (S3: tbl_df/tbl/data.frame)
                    : chr [1:4177] "M" "M" "F" "M" ...
## $ Sex
## $ Length
                    : num [1:4177] 0.455 0.35 0.53 0.44 0.33 0.425 0.53 0.545 0.475 0.55 ...
## $ Diameter
                    : num [1:4177] 0.365 0.265 0.42 0.365 0.255 0.3 0.415 0.425 0.37 0.44 ...
##
   $ Height
                   : num [1:4177] 0.095 0.09 0.135 0.125 0.08 0.095 0.15 0.125 0.125 0.15 ...
## $ Whole weight : num [1:4177] 0.514 0.226 0.677 0.516 0.205 ...
## $ Shucked weight: num [1:4177] 0.2245 0.0995 0.2565 0.2155 0.0895 ...
## $ Viscera weight: num [1:4177] 0.101 0.0485 0.1415 0.114 0.0395 ...
##
   $ Shell weight : num [1:4177] 0.15 0.07 0.21 0.155 0.055 0.12 0.33 0.26 0.165 0.32 ...
## $ Rings
                    : num [1:4177] 15 7 9 10 7 8 20 16 9 19 ...
```

Aqui estão presentes o máximo, mínimo, média e mediana dos atributos númericos.*

```
summary(abalone)
```

```
Diameter
##
        Sex
                           Length
                                                              Height
   Length: 4177
                       Min.
                               :0.075
                                        Min.
                                               :0.0550
                                                         Min.
                                                                 :0.0000
##
   Class : character
                       1st Qu.:0.450
                                        1st Qu.:0.3500
                                                         1st Qu.:0.1150
   Mode :character
                       Median :0.545
                                        Median :0.4250
                                                         Median :0.1400
##
##
                       Mean
                               :0.524
                                        Mean
                                               :0.4079
                                                         Mean
                                                                 :0.1395
##
                       3rd Qu.:0.615
                                        3rd Qu.:0.4800
                                                          3rd Qu.:0.1650
##
                       Max.
                               :0.815
                                        Max.
                                               :0.6500
                                                                 :1.1300
                                                         Max.
```

```
##
     Whole weight
                      Shucked weight
                                        Viscera weight
                                                           Shell weight
##
    Min.
           :0.0020
                      Min.
                             :0.0010
                                        Min.
                                               :0.0005
                                                          Min.
                                                                 :0.0015
##
    1st Qu.:0.4415
                      1st Qu.:0.1860
                                        1st Qu.:0.0935
                                                          1st Qu.:0.1300
    Median :0.7995
                      Median :0.3360
                                        Median :0.1710
                                                          Median :0.2340
##
##
    Mean
           :0.8287
                      Mean
                             :0.3594
                                        Mean
                                               :0.1806
                                                          Mean
                                                                 :0.2388
    3rd Qu.:1.1530
                      3rd Qu.:0.5020
                                        3rd Qu.:0.2530
                                                          3rd Qu.:0.3290
##
##
    Max.
           :2.8255
                             :1.4880
                                        Max.
                                               :0.7600
                                                                 :1.0050
                      Max.
                                                          Max.
##
        Rings
##
    Min.
           : 1.000
    1st Qu.: 8.000
##
##
    Median : 9.000
##
           : 9.934
    Mean
    3rd Qu.:11.000
##
    Max.
           :29.000
##
```

Verificação de dados Missing

```
ppData <- abalone
missPlotData <- aggr(ppData, numbers = TRUE, sortvars = TRUE, labels = names(ppData), cex.axis = 0.4, g</pre>
```


Categorização da variável Rings em Old, Adult e Young

```
plot_density(abalone$Rings)
```



```
abalone_class <- abalone %>%
  mutate(Age=case_when(
   Rings %in% 1:5 ~ "young",
   Rings %in% 6:13 ~ "adult",
   Rings %in% 14:30 ~ "old"
))

#converte AGE em factor
abalone_class$Age <- as.factor(abalone_class$Age)
str(abalone_class)</pre>
```

```
## tibble [4,177 x 10] (S3: tbl_df/tbl/data.frame)
                    : chr [1:4177] "M" "M" "F" "M" ...
##
   $ Sex
##
   $ Length
                    : num [1:4177] 0.455 0.35 0.53 0.44 0.33 0.425 0.53 0.545 0.475 0.55 ...
  $ Diameter
                    : num [1:4177] 0.365 0.265 0.42 0.365 0.255 0.3 0.415 0.425 0.37 0.44 ...
##
                    : num [1:4177] 0.095 0.09 0.135 0.125 0.08 0.095 0.15 0.125 0.125 0.15 ...
  $ Height
   $ Whole weight : num [1:4177] 0.514 0.226 0.677 0.516 0.205 ...
##
   $ Shucked weight: num [1:4177] 0.2245 0.0995 0.2565 0.2155 0.0895 ...
##
## $ Viscera weight: num [1:4177] 0.101 0.0485 0.1415 0.114 0.0395 ...
  $ Shell weight : num [1:4177] 0.15 0.07 0.21 0.155 0.055 0.12 0.33 0.26 0.165 0.32 ...
                    : num [1:4177] 15 7 9 10 7 8 20 16 9 19 ...
##
   $ Rings
                    : Factor w/ 3 levels "adult", "old", ...: 2 1 1 1 1 1 2 2 1 2 ...
   $ Age
```

Retirada da coluna Rings

```
myvars <- names(abalone_class) %in% c("Rings")</pre>
abalone_class <- abalone_class[!myvars]</pre>
str(abalone_class)
## tibble [4,177 x 9] (S3: tbl df/tbl/data.frame)
                    : chr [1:4177] "M" "M" "F" "M" ...
## $ Sex
## $ Length
                    : num [1:4177] 0.455 0.35 0.53 0.44 0.33 0.425 0.53 0.545 0.475 0.55 ...
## $ Diameter
                    : num [1:4177] 0.365 0.265 0.42 0.365 0.255 0.3 0.415 0.425 0.37 0.44 ...
## $ Height
                    : num [1:4177] 0.095 0.09 0.135 0.125 0.08 0.095 0.15 0.125 0.125 0.15 ...
## $ Whole weight : num [1:4177] 0.514 0.226 0.677 0.516 0.205 ...
## $ Shucked weight: num [1:4177] 0.2245 0.0995 0.2565 0.2155 0.0895 ...
## $ Viscera weight: num [1:4177] 0.101 0.0485 0.1415 0.114 0.0395 ...
## $ Shell weight : num [1:4177] 0.15 0.07 0.21 0.155 0.055 0.12 0.33 0.26 0.165 0.32 ...
                    : Factor w/ 3 levels "adult", "old", ...: 2 1 1 1 1 1 2 2 1 2 ...
## $ Age
```

Renomeei os atributos para evitar algum problema com o espaço presente nos nomes

abalone_class <- rename(abalone_class, WholeWeight = `Whole weight`, ShuckedWeight = `Shucked weight`, abalone_class

```
## # A tibble: 4,177 x 9
           Length Diameter Height WholeWeight ShuckedWeight VisceraWeight
##
      Sex
##
      <chr>
           <dbl>
                      <dbl>
                            <dbl>
                                         <dbl>
                                                       <dbl>
                                                                     <dbl>
            0.455
                      0.365 0.095
                                         0.514
                                                      0.224
                                                                    0.101
##
   1 M
   2 M
            0.35
                     0.265 0.09
                                         0.226
                                                      0.0995
                                                                    0.0485
##
##
  3 F
            0.53
                     0.42
                            0.135
                                         0.677
                                                      0.256
                                                                    0.142
## 4 M
            0.44
                     0.365 0.125
                                         0.516
                                                      0.216
                                                                    0.114
## 5 I
            0.33
                     0.255 0.08
                                         0.205
                                                      0.0895
                                                                    0.0395
## 6 I
            0.425
                     0.3
                            0.095
                                         0.352
                                                      0.141
                                                                    0.0775
## 7 F
            0.53
                     0.415 0.15
                                                     0.237
                                                                    0.142
                                         0.778
## 8 F
            0.545
                     0.425 0.125
                                         0.768
                                                      0.294
                                                                    0.150
## 9 M
            0.475
                      0.37
                            0.125
                                         0.509
                                                      0.216
                                                                    0.112
## 10 F
            0.55
                      0.44
                            0.15
                                         0.894
                                                      0.314
                                                                    0.151
## # i 4,167 more rows
## # i 2 more variables: ShellWeight <dbl>, Age <fct>
```

Verificando o balanceamento das classes

```
barplot(table(abalone_class$Age), col = "blue")
```


Verificação da quantidade de instâncias em cada classe

```
contagem <- table(abalone_class$Age)
contagem</pre>
```

```
## adult old young
## 3498 490 189
```

${\bf Amostragem}$

```
id2 <- strata(abalone_class, stratanames="Age", size=c(189,189,189), method="srswor")
abalone_class_amos <- abalone_class %>% slice(id2$ID_unit)
summary(abalone_class_amos)
```

##	Sex	Length	Diameter	Height
##	Length:567	Min. :0.0750	Min. :0.0550	Min. :0.0100
##	Class :character	1st Qu.:0.2975	1st Qu.:0.2175	1st Qu.:0.0750
##	Mode :character	Median :0.5000	Median :0.4000	Median :0.1350
##		Mean :0.4615	Mean :0.3584	Mean :0.1245
##		3rd Qu.:0.6000	3rd Qu.:0.4700	3rd Qu.:0.1650
##		Max. :0.8150	Max. :0.6500	Max. :0.2500
##	WholeWeight	ShuckedWeight	VisceraWeight	ShellWeight
##	Min. :0.0020	Min. :0.0010	Min. :0.00050	Min. :0.0015
##	1st Qu.:0.1242	1st Qu.:0.0560	1st Qu.:0.02675	1st Qu.:0.0375

```
## Median :0.6605
                   Median :0.2660
                                   Median :0.14400
                                                     Median :0.2000
                                          :0.15245
## Mean
         :0.7045
                   Mean
                         :0.2891 Mean
                                                     Mean
                                                           :0.2134
                   3rd Qu.:0.4600
                                                     3rd Qu.:0.3275
## 3rd Qu.:1.0962
                                   3rd Qu.:0.24225
                   Max.
                                          :0.52350
                                                           :0.8970
## Max.
          :2.8255
                         :1.1465
                                   Max.
                                                     Max.
##
      Age
##
  adult:189
  old :189
   young:189
##
##
##
##
```

Separação entre treino e teste

```
set.seed(123)
partition <- createDataPartition(abalone_class_amos$Age, p=0.75, list = FALSE)

train.set <- abalone_class_amos[partition,]
test.set <- abalone_class_amos[-partition,]

#test.set
train.set</pre>
```

```
## # A tibble: 426 x 9
##
           Length Diameter Height WholeWeight ShuckedWeight VisceraWeight
     Sex
      <chr> <dbl>
                                        <dbl>
##
                     <dbl> <dbl>
                                                      <dbl>
                                                                    <dbl>
## 1 F
            0.545
                     0.425 0.125
                                        0.768
                                                      0.294
                                                                    0.150
## 2 F
            0.55
                     0.44 0.15
                                        0.894
                                                      0.314
                                                                    0.151
## 3 F
            0.525
                     0.38
                           0.14
                                        0.606
                                                      0.194
                                                                    0.148
## 4 F
            0.68
                     0.56
                            0.165
                                        1.64
                                                      0.606
                                                                    0.280
## 5 M
            0.665
                     0.525 0.165
                                                                    0.358
                                        1.34
                                                      0.552
## 6 F
                     0.425 0.165
            0.52
                                        0.988
                                                      0.396
                                                                    0.225
                     0.475 0.16
## 7 M
            0.595
                                        1.32
                                                      0.408
                                                                    0.234
                     0.535 0.195
## 8 M
            0.665
                                        1.61
                                                      0.576
                                                                    0.388
## 9 M
            0.55
                     0.435 0.145
                                        0.843
                                                      0.328
                                                                    0.192
## 10 M
            0.53
                     0.435 0.16
                                        0.883
                                                      0.316
                                                                    0.164
## # i 416 more rows
## # i 2 more variables: ShellWeight <dbl>, Age <fct>
```

Modelo e plot da Rede Neural

```
threshold = 0.7,
    stepmax = 1e+05,
    learningrate=0.01,
    algorithm = "backprop",
    linear.output = FALSE)

pred2 <- predict(Abalone_Neural_Net, test.set)</pre>
```

Predições e Matriz de Confusão

```
a<-apply(pred2, 1, which.max)
a[a==1]<-"young"
a[a==2]<-"adult"
a[a==3]<-"old"

a<-factor(a,levels = c("adult","old","young"))
result2<-table(test.set$Age,a)

cm <- confusionMatrix(result2, mode = "everything")
cm</pre>
```

```
## Confusion Matrix and Statistics
##
##
##
           adult old young
##
     adult
               6 37
##
                  45
     old
               1
                         1
##
     young
                        46
##
## Overall Statistics
##
##
                  Accuracy : 0.6879
                    95% CI : (0.6045, 0.7633)
##
##
       No Information Rate: 0.5816
       P-Value [Acc > NIR] : 0.006067
##
##
##
                     Kappa: 0.5319
##
##
   Mcnemar's Test P-Value: 0.00000004819
##
## Statistics by Class:
##
##
                        Class: adult Class: old Class: young
## Sensitivity
                            0.75000
                                         0.5488
                                                       0.9020
## Specificity
                             0.69173
                                          0.9661
                                                       0.9889
## Pos Pred Value
                             0.12766
                                         0.9574
                                                       0.9787
## Neg Pred Value
                             0.97872
                                         0.6064
                                                       0.9468
## Precision
                             0.12766
                                                       0.9787
                                         0.9574
## Recall
                             0.75000
                                         0.5488
                                                       0.9020
## F1
                            0.21818
                                         0.6977
                                                       0.9388
## Prevalence
                             0.05674
                                         0.5816
                                                       0.3617
## Detection Rate
                             0.04255
                                         0.3191
                                                       0.3262
```

Detection Prevalence 0.3333 0.333 0.3333 ## Balanced Accuracy 0.72086 0.7574 0.9454

plot(Abalone_Neural_Net,rep = "best")

Error: 80.204208 Steps: 171

Utilizando todo o dataset, o modelo prediz que todas as instâncias são da classe "adult". Comportamento este esperado tendo em vista o desbalanceamento. Com a amostragem, embora a acurácia tenha dimunído, o modelo acertou mais de cada classe. Assim optei por utilizar a amostragem

```
Confusion Matrix and Statistics
       adult old young
          10 29
 adult
                     8
 old
           1 46
                     0
           1 0
                    46
 young
Overall Statistics
              Accuracy: 0.7234
                95% CI: (0.6418, 0.7953)
   No Information Rate: 0.5319
   P-Value [Acc > NIR] : 0.000002517
                 Kappa: 0.5851
Mcnemar's Test P-Value: NA
Statistics by Class:
```

Figure 1: Teste da Rede Neural com a Amostragem

```
Confusion Matrix and Statistics
        adult old young
  adult
          874
               0
  old
         122
               0
                      0
              0
                      0
          47
  young
Overall Statistics
               Accuracy: 0.838
                 95% CI: (0.8142, 0.8598)
   No Information Rate: 1
    P-Value [Acc > NIR] : 1
                  Kappa: 0
Mcnemar's Test P-Value: NA
Statistics by Class:
                     Class: adult Class: old Class: young
Sensitivity
```

Figure 2: Teste da Rede Neural Com Todos os Dados