If ideal, what method = how to calculate K value x, P, * = y, P = K, = 4, /x, = P, */P 8, x, P, * = y, p = K, = y,/x; = 8, p,* x, Q = y, Q = K = Qi//Qi $Y_i \times_i P_i \stackrel{\bullet}{\leftarrow} = \overline{Q_i^* P_i}$ $X_i \times_i P_i \stackrel{\bullet}{\leftarrow} = \overline{Q_i^* P_i}$ Z = X [+ K (1 - L)] Z = X 2 L + K 2 K 2 (1 - L) Y1 + X7 : 10 y1+ yz = 1.0 f. 1 = f. L, X, , X, : X, = 2, L+ K, (1- L) $f_{\nu}^{l} = \overline{f}_{2}^{\nu}$ x2P2 = y2p K2=P2/p $X_1 + X_2 = (.0)$. y. 1 + y 2 = 1.0 Z = x, L + Y, V L+ K; (1-c) = Kizi. $Z_2 = X_2 L + Y_2 V$ 1. + Ki((-L) X 1+ X2 = 1:0 · (· [- K ; ·) y, + y2:1.0 L+K; (1-L)

The pump hecter
$$X_1, X_2$$
 X_1, X_2 X_2 X_1, X_2 X_2 X_1, X_2 X_2 X_1 X_2 X_2 X_3 X_4 X_4 X_4 X_5 X_4 X_5 X_5 X_6 X_7 X_8 X_8 X_8 X_8 X_8 X_9 X_9

Bubble pt feed

V=0 L

Assignment & 1	08/30
From Thermo 2, solve flash problem	use Aspen.
V, L · Size vessel · Din ~ vapor traffic Gives us molar max vapor velocity flow rate	
Can determine u (max velocity) in the drone.	
$u = K_{drum} \sqrt{\frac{P - Pv}{Pv}}$ (ft/s) Sempirically determine	
Kdrum = exp [A+Dln $F_{1v}+C$ (In F_{1v}) $^{2}+D$ (In F_{1v}) $^{3}+E$ (In	n Fiv) 4
Five wi New Mass flow rate	
gives ~ 5% entraintment (carries over liqu	id)
Use rebuty $u(f^{\dagger}/s_{ec})$ and $V(f^{\dagger}/s_{ec})$	
V(fli/s) U= ft/s heigh	rom vap vel t??
$D = \int \underline{u} dx$	
[Typical L/D ~ 4-5.]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m foot .
check YD if it's 4-5	

Workout Ex 2-4 Pg Use ASPEN! Watch some tutorials ASPEN HW 1) Calc L, V from L= mole/hr => ft^3/s V= mole/hr => ft^3/s 3) calc area of drum = V(f+3/sec) = area
U(f+/sec) hr=3' + 1/2 Din hf=1' + 1/2 Din hj=from liquid b of drum - up

09/01 D= distillate product comtant , stribbing COP OU BE bottom product

- Feed conditions ex: satália, satá vap reflux to (condition: usually satis)

reflux amt, so - χ_o, χ_β

- economic analysis

- at the optimum tray (contin

Then, calculate D, B, Qc, Qb, N, Nfeed column diamete

To simulate, specify - N . .

- Feed plate

- Feed location

.- Column diameter

. - duty Qc, Qb - Specify XD or XB

- carc Lo/D to set XD

- check L/D => V

09/08

```
3.4 External Column Balance
       boundary
                               Mass Balance
      H<sub>i</sub>y<sub>i</sub>V<sub>i</sub>
                                                    (overall MB)
                                    F = D + B
                               The more volatile component mass balance
 FZ (TF)
                            7F = F_2 = B_{XR} + D_{XD}
                                D = \left(\frac{2 - \gamma_B}{\chi_{D} - \chi_B}\right) F
       Vk 1k+ Lk-1
                                \beta : F - D : \left(\frac{\chi_D - \overline{t}}{\chi_D - \chi_D}\right) F
                                 specified D, XD, satá; TD, Q
 Energy Balance:
  laround the entire column
   Fhr + Qc + QR = Dho + Bho
        unknowns
     Condenser
     9, = x 0 = X0
    Condenser MB =
     4D specified ... Lo
       V.H. + Qc = (D + lo) ho
               Q: 1 ( hp = Hi)
 Example 3-1 Ext balances for
  Calc DiB, Qc, QR
                                                \vec{D} = k' \left( \frac{4 - \kappa \sigma}{4 - \kappa^2} \right) = 10^{6} 000' \left[ \frac{4 \cdot 2 - 0 \cdot 62}{6 \cdot 3 - 0 \cdot 62} \right] = 3^{3} 33
     F = D + B
    0.3 F = 0.800 +0.05B
    D: 3333 B=6667
                                                B = 1000 - 3333 = 6667
  hf (7=0-3,40°c)=30
  ho a 0.8 Sata lig = 60 Kcal/kg
  ha a 0.05 satália = 90 Kcal/kg
  h. (y.= x0= 0.8, satcl vap) = 330 kcal/kg
  Qc = (1+ Lo D D (hp - h, ) = (1+3)(3333 Kb ) (60 - 330) Kcal
       = -3,559,640 Kcal/hr
  Total energy balance
                                        QR = Dho + Bh3 - Fh - Qc
   QR: 4099 650 Kcal/hr
                                            -(3333)(60) + 6667(90) -1000(30) - (-3559640)
                                            = 4099 650 Kcal/hr
```

Satilliq hr . 80 kcal/hr Qc=-3559, 640 kcal/hr QR = 3599 650 kcal/hr	Sata vapor 09/10 hr = 375 Kcai/hr Qr = -3559 640 Kcai/hr QR = 649,650 Kcai/hr														
Internal Stage by Stage Balanc		Chapter 4													
Stage 1	Overall mass balance = V1 = L1 + D														
	more volatile component mass	balance:													
O Lo	$L_1 \chi_1 + D \chi_D = V_1 Y_2$														
	Energy balance (well-insulated,	adiabatic column)													
V ₂ L ₁	Villitaci														
	Degrees of freedom f:	* Assume that each stage													
	f = C+2-P	is at eqm.													
	= 2 + 1 - 7	→ lig, vap leaving the stage													
	= .5	are at eqm													
	it bilatu til														
	satá ovhá product														
	f = 0 calc everything														


```
he, ho, hB, H from clata
```

 $h(x_i)$ $H(y_i)$

y = K (x,)

Internal Column Balance

.. f = 2 (degrees.of. freedom)

6 h = h(x,) @ H = H (A')

Stage 7 EB

V.3 = . L1 . + D

V3 4 3 = L1 x1 + Px0. Qc + V3 H3 = L2 h2 + Dho $h_1 = h(x_1)$

y = K (X1) H3: H(43)

Vite - Li+D $Y_{j+1}Y_{j+1} = L_j x_j + Dx_0$ Hj+1= Hj+1 (9j+1).

j down to feed stage when conditions "match" stage jti

a) Feed Stage, new mat'l balance

new energy balance eqns

balance / energy balance change

Stripping section

VHz = [k-1hk-1 - Bhg + Qk

L = nearly constant (1) Column is adiabatic

(6) Heat of vaporization is constant

$$\bar{V}$$
 = constant motal overflow (CMO) \cdots V_{j+1} V_{j+1} = $L_j x_j + (V_{j+1} - L_j) x_D$

.9j+1 = . L xj + (1- L) x0

 $y_{\kappa} = \frac{\overline{L}_{\kappa-1}}{\overline{V}_{\kappa}} x_{\kappa-1} - \left(\frac{\overline{L}_{\kappa-1}}{\overline{V}_{\kappa}} - 1\right) x_{\delta}$ W/ .CMO. Year $\left(\frac{\bar{L}_{.}}{\bar{V}}\right)_{XK=1}$. $-\left(\frac{\bar{L}_{.}}{\bar{V}}-L\right)_{X_{\bar{G}}}$

$$\frac{V}{V} = \frac{385.7}{380.9} = 0.75$$

$$y_{j+1} = \frac{L}{V} \chi_j + \left(1 - \frac{L}{V}\right) \chi_\beta$$

$$= \frac{380}{285} \chi_{j} + \left(1 - \frac{380}{285}\right) \chi_{B}$$

$$\frac{285}{380} \chi_{1} + \left(1 - \frac{23}{380}\right) \chi_{3}$$

1: L+F ... V=V. = 285+453.9

 $y_{\kappa} = \left(\frac{1}{\sqrt{\kappa}}\right) \chi_{\kappa-1} - \left(\frac{1}{\sqrt{\kappa}} - 1\right) \chi_{D}$

=739.6

Safd lig.

-0942XB

ĵ	()) }	To	P V 1	of = X	C0 0=	lu O Wa	m !	و ا س	a.lí	Ну	= 0	. Y																					
	Ü			. (J 7). γ	5	X	(t () - 7	-5	_	X _{IČ}))	=	6	4	· 5_	3				Ir X	on 2	 cu O	eel • 1	ا را ا			
	(3	· /		y	3						· 2		. (C) .	9.	-{ Z	, ,	X	B			. R	53	· = '	Κc	07						
		٠					0	. (9.	5																							
		٠	٠			٠			٠	٠																							
		٠				٠			٠																								
		٠			٠	٠			٠																								
		٠	٠		٠																												

09/17

Lewis Method

y= K(x)

Ethano! Water F : (000 kg <u>mol</u>

(subcooled)

N stages?

Feed subcooled h= = 25 B+4/16 H : 880 BF4 / 16 · h = 125 · Btu/16

880-125

· Top operating line

 $\chi = 0$ y = 0.3

 $A_{A} = \frac{1}{2} A_{A} - \left(\frac{1}{2} A_{A} - \frac{1}{2}\right) X^{B}$

y = (x+ (1- 4)x0

Zfeed = 0.2

Find Feecl Plate location!

(MO, adiabahi

y = 5x + (1- 5)x0

Hw 3 Example 5-1 P9.164 using Radfrac/Peng Robinson D, X, , XZ, X - calculate D and B - Specify Lo - Calc mat'l balance condens er - Stage 1, calc - Stage 2, calc > B, x, x, x, x3, x4 Can't specify Xdishillate anymore Typically specify key component in light key (most volatile) - light key (least volable) - heavy key -light nonkey - if a nonkey is more volable (lighter) than the light key. - heavy non key - if it is less volatile (heavier) than the heavy key. Example .99.4°/0.64 > D, xprxby xpen xklex F= 2000 Kgmo) Ly (0.9940)(2000)(0.321) = 638.5 (-5 · (-0-00-3)(2000)(0.487)= 2.89 Zprop=0.056 C3 (2000) (0.056) = 117 (6 : O. Z. pent = 0.48? Zhex= 0.141 C3=117 mol Bottom (3) = 0 (3) = 0 (5) = 9(0)Cy = 642 C5 = 964 C.6 = 282 C6 = 282. 12.50

			٠		٠		٠																															
									٠		•		٠					٠	٠	٠			٠										٠		٠	٠		
	٠		٠		٠		٠	٠			٠	٠		٠		٠	٠	٠			٠	٠				٠		٠		٠		٠	٠	٠	٠	٠		
	٠	•	٠	٠	٠	٠	٠	٠	•			٠	•	٠	•	٠	٠	٠	•	٠	٠	٠	•	•	٠	•	•	٠	٠	٠		٠	٠	٠		٠	•	•
•	٠		٠	٠	٠	٠	٠	•	•			٠	•	٠	•	٠		٠	•		٠	٠	•	•	٠	٠		•	٠	٠			٠	٠		٠	•	
			٠		٠		٠	٠			•	٠		٠		٠	٠	٠			٠	٠						٠				٠	٠	٠		٠		
												٠		٠				٠		٠	٠	٠											٠		٠	٠		
									٠		•		٠					٠	٠	٠			٠										٠		٠	٠		
•		•	٠		٠		٠			•	•									٠						•	•				•							
	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	٠	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	•	٠	٠	•	
			•	•	•	•	•	•								•	•							•	•	•		•	•			•		•				
			٠	٠	٠	٠	٠																		٠				٠									
			٠	٠	٠	٠	٠													٠					٠				٠									
		•	٠	٠	٠	٠	٠		•	•	•		•						•				•		٠	•	•		٠		•							
•	٠		٠	•	٠	•	٠	•	•		•	•	•	•		•	•	•	•	•	•	•	•		•			•	•	٠		•	•	•	•	•		
	•		•	•	•	•	•	•		•	•					•				٠					•	•		•	•	•	•			•	٠			•
												٠		٠				٠		٠	٠	٠											٠		٠	٠		
										٠								٠								٠				٠	٠		٠			٠	٠	٠
			٠	٠	٠	٠	٠	٠								٠		٠		٠					٠			٠	٠				٠	٠				
	•	•	٠	•							•																		•									
•	•	•	•																					•														
	•		•	•																				•														
	•		٠																																		•	