

Автоматизация индексирования базы данных на основе истории запросов

Кульбако Артемий Юрьевич, Р34112 Гаврилов Антон Валерьевич, преподаватель ПИиКТ

Проблема

базы данных Старые МОГУТ содержать очень сложные и непонятные запросы, скорость выполнения которых необходимо увеличить. Ручная оптимизации займёт МНОГО времени и напрямую зависит от опыта работы сотрудника с даталогической данной моделью.

Пример запроса к БД из рабочего проекта на 200+ строк, который тут даже не разглядеть.

Задачи и цели

Цели:

- Минимизировать время на оптимизацию БД пользователем
- Максимально увеличить скорость выполнения запросов к БД

Задачи:

- Обзор существующих решений
- Разработка требований, предъявляемых к создаваемому приложению
- Выбор средств реализации
- Проектирование и создание тестовой базы данных
- СОЗДАНИЕ ПРИЛОЖЕНИЯ АВТОИНДЕКСИРОВАНИЯ БАЗЫ ДАННЫХ
- Тестирование приложения
- Анализ полученных результатов

Обзор аналогов

8 из 10 самых популярных* СУБД подобной функциональности не имеют.

Май 2022	Рейтин Апрель 2022	Г Май 2021	СУБД	Модель данных		Счёт Апрель 2022	Май 2021
1.	1.	1.	Oracle	Реляционная, Мультимодельная	1262.82	+8.00	-7.12
2.	2.	2.	MySQL	Реляционная, Мультимодельная	1202.10	-2.06	-34.28
3.	3.	3.	Microsoft SQL Server	Реляционная, Мультимодельная	941.20	+2.74	-51.46
4.	4.	4.	PostgreSQL	Реляционная, Мультимодельная	615.29	+0.83	+56.04
5.	5.	5.	MongoDB	Документная, Мультимодельная	478.24	-5.14	-2.78
6.	6.	↑ 7.	Redis	Ключ-значение, Мультимодельная	179.02	+1.41	+16.85
7.	1 8.	4 6.	IBM Db2	Реляционная, Мультимодельная	160.32	-0.13	-6.34
8.	4 7.	8.	Elasticsearch	Поисковой движок, Мультимодельная	157.69	-3.14	+2.34
9.	9.	1 0.	Microsoft Access	Реляционная	143.44	+0.66	+28.04
10.	10.	4 9.	SQLite	Реляционная	134.73	+1.94	+8.04

Oracle Database и Microsoft SQLServer имеют функцию автоиндексирования, но это дорогие коммерческие продукты, а сам процесс представляет собой «черный ящик».

Нельзя официально приобрести в России.

Преимущества моего решения:

- Поддержка любой БД с JDBC-драйвером
- Контролируемые процесс (формирование отчётов)
- Открытый исходный код.

Рабочий конвейер

Алгоритм формирования индексов

Программа создаёт для каждого уникального SQL-запроса из истории все возможные комбинации:

«Таблица-поле-тип индекса»

Интеграция СУБД

За трансформацию выражений из ANSI SQL в специфичный для СУБД SQL отвечает модуль конвертации.

Для добавления поддержки новой СУБД необходимо переопределить ОДИН метод:

private fun formIndexesQueries():
List<IndexQueryStatement>

Графический интерфейс

Приложение для автоматизации индексирования БД

Результаты

Запрос:

SELECT emp_id FROM employee JOIN position USING (pos_id) JOIN missions_emp USING (emp_id) JOIN mission USING (miss_id) WHERE rank !~~ '' ORDER BY is_married DESC, end_date_and_time DESC, hiring_date DESCLIMIT 20;

Отчёт:

	indexStatement	diff	timeTaken
1	CREATE INDEX Is_marriedEmployeeHASH ON employee USING HASH(is_married);	173166	4956042
2	CREATE INDEX Is_marriedHiring_dateEmployeeBTREE ON employee USING BTREE(is_married, hiring_date);	123791	5005417
3	CREATE INDEX End_date_and_timeMissionBTREE ON mission USING BTREE(end_date_and_time);	78250	5050958
4	CREATE INDEX Emp_idIs_marriedHiring_dateEmployeeBTREE ON employee USING BTREE(emp_id, is_married, hiring_date);	71375	5057833
5	CREATE INDEX RankPositionHASH ON position USING HASH(rank);	45833	5083375

университет итмо

Выводы

- Приложение выполняет поставленные задачи
 - Минимизирует время, затрачиваемое на оптимизацию базы пользователем (программа выполняет индексацию автоматически)
 - Ускоряет запросы к базе данных
- Расширяемая архитектура позволяет легко добавлять новые СУБД
- Мои навыки и компетенции были улучшены

Спасибо за внимание! Готов к вашим вопросам.

www.ifmo.ru

