Advanced Calculus II

Ji, Yong-hyeon

March 31, 2025

We cover the following topics in this note.

- Convergence of Sequences
- Inequality Rule for Absolute Values
- Limit Theorem (Algebraic Property of Limit of Sequence)

Sequence

Definition. Let $X \subseteq \mathbb{R}$. A **sequence** is a function

$$f: \mathbb{N} \to X \subseteq \mathbb{R}, \quad n \mapsto f(n) := a_n.$$

Instead of using function notation f(n), the values of the sequence are denoted by $\{a_n\}_{n=1}^{\infty}$, where $a_n = f(n)$ is called *n*-th term of the sequence.

Remark. A sequence in $X \subseteq \mathbb{R}$ is a function

$$a: \mathbb{N} \to X$$
, $n \mapsto a_n$,

where $a_n \in X$ for all $n \in \mathbb{N}$. We sometimes write

$$\{a_n\}$$
, $\{a_n\}_{n=1}^{\infty}$, $\{a_n\}_{n\in\mathbb{N}}$, $(a_n)_{n\in\mathbb{N}}$, or $\langle a_n\rangle_{n\in\mathbb{N}}$.

Convergence of Sequence

Definition. A real sequence $\{a_n\}_{n=1}^{\infty} (\subseteq \mathbb{R})$ is said to **converge** to $L \in \mathbb{R}$ if and only if

$$\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N} \text{ such that } \left[n \geq N_{\varepsilon} \implies |a_n - L| < \varepsilon \right].$$

Remark. The real number $L \in \mathbb{R}$ is called **the limit**¹. When a sequence $\{a_n\}_{n=1}^{\infty}$ has the limit L, we will use the notation

$$\lim_{n\to\infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty.$$

That is,

$$\lim_{n\to\infty} a_n = L \iff \forall \varepsilon > 0 : \exists N \in \mathbb{N} : \left[n \ge N \implies |a_n - L| < \varepsilon \right].$$

Note. If a sequence has a limit, we say that the sequence is **convergent**; if it has no limit, we say that the sequence is **divergent**.

Example. Consider the sequence defined by $a_n = 1/n$ for each $n \in \mathbb{N}$. Prove that

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{1}{n}=0.$$

Proof. Let $\varepsilon > 0$. By the Archimedean property, we obtain

$$\exists N_{\epsilon} \in \mathbb{N} \quad \text{s.t.} \quad 1 < \epsilon \cdot N_{\epsilon}, \text{ i.e., } \frac{1}{N_{\epsilon}} < \epsilon.$$

Assume that $n \ge N_{\varepsilon}$ then

$$|a_n - 0| = \left| \frac{1}{n} \right| = \frac{1}{n} \le \frac{1}{N_{\varepsilon}} < \varepsilon.$$

Hence
$$\lim_{n\to\infty} \frac{1}{n} = 0$$
.

¹The limit of a sequence is unique. See **Theorem 4**

Example. Consider the sequence defined by $b_n = 1 - (-1)^n$ for all $n \in \mathbb{N}$. Prove that b_n does not converge.

Proof.

Absolute Value in Reals

Definition. Let $x \in \mathbb{R}$. A **absolute value** |x| of x is defined by

$$|x| := \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Remark. For $x \in \mathbb{R}$,

$$|x| = \begin{cases} x & : x > 0 \\ 0 & : x = 0 \\ -x & : x < 0 \end{cases}$$

Proposition 1. *Let* $x, y \in \mathbb{R}$.

(1)
$$|x| = +\sqrt{x^2}$$

(2)
$$|x| \ge 0$$

(3)
$$|x| = 0 \Leftrightarrow x = 0$$

(4)
$$|x| = |-x|$$

$$(5) |xy| = |x||y|$$

(6) (Fundamental Theorem of Absolute Values) For $c \ge 0$, we have

$$|x| \le c \iff -c \le x \le c$$

$$(7) -|x| \le x \le |x|$$

Proof. (1) If $(x \ge 0)$ then $|x| = x = \sqrt{x^2}$. Similarly if x < 0 then $|x| = -x = \sqrt{x^2}$.

(2)
$$|x| = \begin{cases} x \ge 0 & : x \ge 0 \\ -x > 0 & : x < 0 \end{cases} \ge 0.$$

- (3) (\Leftarrow) If x = 0 then |x| = x = 0.
 - (\Rightarrow) Let |x| = 0. Suppose that $x \neq 0$.

(i)
$$x > 0 \implies |x| = x > 0 \frac{1}{7}$$

(ii)
$$x < 0 \implies |x| = -x > 0 \frac{1}{4}$$

Thus *x* must be zero.

$$(4) |-x| = \begin{cases} -x & : -x \ge 0 \text{ (i.e., } x \le 0) \\ -(-x) = x & : -x < 0 \text{ (i.e., } x > 0) \end{cases} = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases} = |x|.$$

(5)
$$|xy| = \begin{cases} xy = |x||y| & : x \ge 0, y \ge 0 \\ -xy = x(-y) = |x||y| & : x \ge 0, y < 0 \\ -xy = (-x)y = |x||y| & : x < 0, y \ge 0 \\ xy = (-x)(-y) = |x||y| & : x < 0, y < 0 \end{cases}$$

- (6) (\Rightarrow) Let $|x| \le c$.
 - (i) $x \ge 0 \implies x = |x| \le c$, i.e., $-c \le 0 \le x \le c$.
 - (ii) $x < 0 \implies -x = |x| \le c$, i.e., $-c \le x < 0 \le c$.

Thus, $-c \le x \le c$.

- (\Leftarrow) Let $-c \le x \le c$.
 - (i) $x \ge 0 \implies |x| = x \le c$.
 - (ii) $x < 0 \implies |x| = -x \le c$.

Thus, $|x| \le c$.

Key equivalence:

$$|x| \le c \iff -c \le x \le c$$

Absolute: $|x| \le c$

(7) Let c = |x|, where $c \ge 0$. By (6), thus, the result follows.

Proposition 2. *Let* x, $y \in \mathbb{R}$.

$$(1) |x+y| \le |x| + |y|$$

(2)
$$|x| - |y| \le |x - y|$$
.

Proof. (1) By (7) of **Proposition 1**, we have

$$-|x| \le x \le |x|$$
, $-|y| \le y \le |y|$.

Then

Thus, we have $|x + y| \le |x| + |y|$.

(2)

(i) Note that

$$|x| = |x - y + y|$$

 $\leq |x - y| + |y|$ by (1) of Proposition 2

Thus $|x| - |y| \le |x - y|$.

(ii) Note that

$$|y| = |x - (x - y)|$$

$$\leq |x| + |-(x - y)| \quad \text{by (1) of Proposition 2}$$

$$= |x| + |x - y| \quad \text{by (4) of Proposition 1}$$

Therefore $-|x-y| \le |x| - |y|$.

By (i) and (ii), we know

$$-|x-y| \le |x| - |y| \le |x-y|$$
, i.e., $|x| - |y| \le |x-y|$.

Boundedness of Sequence

Definition. Let $\{a_n\}_{n=1}^{\infty} (\subseteq \mathbb{R})$ is a sequence. $\{a_n\}$ is said to be **bounded** if

 $\exists M \in \mathbb{R} \text{ such that } \forall n \in \mathbb{N}, |a_n| \leq M.$

Proposition 3. A convergent sequence is bounded.

Proof.

Note. We have established that if the limit of a sequence a_n exists as n approaches infinity, then there exists a real number M such that $|a_n| \le M$ for all n:

$$\exists A \in \mathbb{R} \text{ s.t. } A = \lim_{n \to \infty} a_n \implies \exists M \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N}, \, |a_n| \leq M.$$

However, the converse is not necessarily true:

$$\exists A \in \mathbb{R} \text{ s.t. } A = \lim_{n \to \infty} a_n \iff \exists M \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N}, \, |a_n| \leq M.$$

To illustrate, consider the sequence $\{a_n\} = 1 - (-1)^n$. This sequence is bounded, yet it does not converge, serving as a counterexample. Furthermore, we note the following important theorems:

1. Monotone Convergence Theorem:

- (i) If a sequence $\{a_n\}$ is bounded above and monotone increasing, then it converges.
- (ii) If a sequence $\{a_n\}$ is bounded below and monotone decreasing, then it converges.
- 2. **Bolzano-Weierstrass Theorem**: Every bounded sequence of real numbers has a convergent subsequence. That is, if there exists a real number M such that $|a_n| < M$ for all n, then there exists a convergent subsequence $\{a_{n_k}\}$ of $\{a_n\}$.

Limit Theorem (Algebraic Property of Limit of Sequence)

Theorem. Let $\lim_{n\to\infty} a_n = \alpha$, $\lim_{n\to\infty} b_n = \beta$, and $k \in \mathbb{R}$. Then

- $(1) \lim_{n \to \infty} k a_n = k \alpha = k \lim_{n \to \infty} a_n.$
- (2) $\lim_{n\to\infty} a_n \pm b_n = \alpha \pm \beta = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n.$
- (3) $\lim_{n\to\infty} a_n b_n = \alpha \beta = \lim_{n\to\infty} a_n \lim_{n\to\infty} b_n$.
- (4) $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\alpha}{\beta} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$. (Here, $\beta \neq 0$ and $b_n \neq 0$)

Proof. Let $\varepsilon > 0$.

(1) If k = 0, it is trivial. Let $k \neq 0$. Since $\lim_{n \to \infty} a_n = \alpha$, we know

$$\exists N \in \mathbb{N} \text{ such that } \left[n \ge N \implies |a_n - \alpha| < \frac{\varepsilon}{|k|} \right]$$
 (*)

Thus, if $n \ge N$ then

$$|ka_n - k\alpha| = |k(a_n - \alpha)|$$

$$= |k||a_n - \alpha| \quad \because |xy| = |x||y|$$

$$< |k| \cdot \frac{\varepsilon}{|k|} \quad \text{by (*)}$$

$$= \varepsilon.$$

(2)

(3)

(4)

Uniqueness of Limits

Theorem 4. *The limit of a sequence is unique.*

Proof.