## TP 6.2 – La réfraction de la lumière

### Objectifs de la séance :

- **>** Comprendre comment décrire le phénomène de réfraction.
- Découvrir la loi de Snell-Descartes.

**Contexte** : La lumière se propage en ligne droite dans un même milieu transparent. Lorsque la lumière passe d'un milieu à un autre sa direction de propagation change : c'est le phénomène de **réfraction**.

En arrivant avec certains angles, la lumière peut aussi être **réfléchie**, c'est le phénomène de **réflexion**.

ightharpoonup Comment décrire mathématiquement le phénomène de réfraction et de réflexion ?

### Document 1 - Indice de réfraction

Quand la lumière se propage dans un milieu, sa vitesse est réduite.

La capacité d'un milieu à réduire la vitesse de la lumière est mesurée par un nombre que l'on appelle l'indice de réfraction et que l'on note  $n_{\text{milieu}}$ .

Dans le milieu, la vitesse de la lumière est

$$c_{\mathrm{milieu}} = \frac{c}{n_{\mathrm{milieu}}}$$

- $\rightarrow$  Exemples:
  - L'air a un indice de réfraction  $n_{\rm air} = 1,00$  et donc  $c_{\rm air} = c = 3,00 \times 10^8 {\rm m \cdot s^{-1}}$ .
  - L'eau a un indice de réfraction  $n_{\rm eau} = 1{,}33$  et donc  $c_{\rm eau} = 2{,}26 \times 10^8 {\rm m \cdot s^{-1}}$ .

# Document 2 - Mesure de l'indice de réfraction

### Matériel utilisé:

- 1 source de lumière alimentée en 12 V continu;
- 1 demi-cylindre de plexiglas sur son disque-support gradué en degrés.

Votre professeur préféré a réalisé les mesures suivantes avec ce dispositif expérimental :



Angle d'incidence  $i_1$ 20 30 50 60 10 15 40 70 80 90 Angle de réfraction  $i_2$ 3.3 6.7 9.9 13.2 19.5 25.4 30.7 35.3 38.8 41.0 41.8

► Ouvrir le programme python refraction\_1.py et le lire en entier.

 $\mathcal{F} \triangle$  Dans le programme python refraction\_1.py, repérer les lignes correspondant aux angles  $i_1$  et  $i_2$  mesurés. Les remplir avec les valeurs du document 2 et lancer le programme.

## Document 3 – La proportionnalité

Deux grandeurs a et b sont **proportionnelles** si le graphique représentant la grandeur a en fonction de la grandeur b est une droite passant par l'origine du repère. Ces deux grandeurs a et b sont alors reliées par l'égalité

$$a = k \times b$$

Dans cette égalité k est une constante. k est le **coefficient directeur** de la droite.

| 1 — Est-ce que l'on a une relation de proportionnalité entre $i_1$ et $i_2$ ? Justifier à partir du graphic obtenu.                                                                                                                                                                                              | que |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Ouvrir le programme python refraction_2.py et repérer les lignes correspondant aux ang $i_1$ et $i_2$ . Les remplir en les copiant depuis refraction_1.py et lancer le programme.  2 - Est-ce que l'on a une relation de proportionnalité entre $\sin(i_1)$ et $\sin(i_2)$ ? Justifier à pardu graphique obtenu. |     |
| Document 4 – Loi de Snell-Descartes                                                                                                                                                                                                                                                                              | —   |
| Lorsque la lumière passe d'un milieu d'indice $n_1$ à un milieu d'indice $n_2$ , alors  • le rayon incident, le rayon réfracté et la normale sont  • La relation entre l'angle d'incidence $i_1$ et l'angle de réfraction $i_2$ s'appelle la loi de Snell-Descartes.                                             |     |
| On retrouve bien la relation de proportionnalité mesurée : $\sin(i_2) = \frac{n_1}{n_2} \times \sin(i_1)$                                                                                                                                                                                                        |     |
| $3$ — En utilisant la valeur du coefficient directeur $k=n_{\rm air}/n_{\rm plexiglas}$ calculée par le second program python, calculer la valeur de l'indice de réfraction $n_{\rm plexiglas}$ .                                                                                                                |     |