Solution to 6.4.5.

Demand $x_a = x_b = d_a(1, p_b, w) = \frac{w}{1+p_b}$. Solving profit maximization problem $p_b\sqrt{-y_a-1}+y_a$ we get: supply $(y_a,y_b)=s(1,p_b)=(-\frac{p_b^2}{4}-1,\frac{p_b}{2})$ for any price $p_b\geq 4$ and profit $\pi(1,p_b)=\frac{p_b^2}{4}-1$. If $p_b<4$ then $(y_a,y_b)=(0,0)$ and $\pi()=0$. Case 1. Assume interior solution $p_b\geq 4$, then $w=3+p_b+\pi(1,p_b)=2+p_b+\frac{p_b^2}{4}$ Hence by market clearing $(x_a,x_b)=(e_a,e_b)+(y_a,y_b)$

$$\left(\frac{2+p_b+\frac{p_b^2}{4}}{1+p_b}, \frac{2+p_b+\frac{p_b^2}{4}}{1+p_b}\right) = (3,1) + \left(-\frac{p_b^2}{4} - 1, \frac{p_b}{2}\right)$$

This implies a.o. $2 + p_b + \frac{p_b^2}{4} = (1 + p_b)(1 + \frac{p_b}{2})$ hence $2 + p_b + \frac{p_b^2}{4} = 1 + \frac{3}{2}p_b + \frac{p_b^2}{2}$ and $\frac{p_b^2}{4} + \frac{p_b}{2} - 1 = 0$. This equation has no solution.

Case 2. Assume corner solution $p_b < 4$. Then $w = 3 + p_b + \pi(1, p_b) = 3 + p_b$ Hence by market clearing $(x_a, x_b) = (e_a, e_b) + (y_a, y_b)$

$$(\frac{3+p_b}{1+p_b}, \frac{3+p_b}{1+p_b}) = (3,1) + (0,0).$$

Hence there is no solution as well.

The reason we have non existence of WE results from non-convexity of the production set.