

Discrete Time Models

SYS-611: Simulation and Modeling

Paul T. Grogan, Ph.D.
Assistant Professor
School of Systems and Enterprises

Agenda

- Discrete Time Simulation
- Cellular Automata
- 3. Switching Automata

Reading: B.P. Zeigler, H. Praehofer, and T.G. Kim, "Modeling Formalisms and Their Simulators," Ch. 3 in *Theory of Modeling and Simulation*, Academic Press, 2000, pp. 37-49.

H. Sayama, "Discrete-Time Models I: Modeling" Ch. 4 and "Cellular Automata I: Modeling," Ch. 11 in *Introduction to Modeling and Analysis of Complex Systems*, Open SUNY Textbooks, 2015. (Free eBook online)

Discrete Time Simulation

Discrete Time Models

- Discrete or continuous state spaces (variables)
- Dynamic: time advances in discrete steps
 - Integer multiples of some base: 1 second, 1 hour, 1 day, 1 month, 1 year
 - No temporal unit fractions
- Applications:
 - Digital systems (clock cycle)
 - Abstract systems

Discrete Time Notation

- q(t): state trajectory, time history of states
- x(t): input trajectory, time history of inputs
- y(t): output trajectory, time history of outputs
- Next state determined by state transition function

$$\delta(q, x) = q(t+1)$$

 Outputs determined by output function

$$\lambda(q, x) = y(t)$$

Example: Delay System

Transition/output functions:

$$\lambda(q, x) = x$$
$$\delta(q, x) = x$$

Transition/output (truth) table:

Current Input $x(t)$	Current State $q(t)$	Current Output $\lambda(q,x) = y(t)$	Next State $\delta(q,x) = q(t+1)$
0	0	0	0
1	0	1	1
0	1	0	0
1	1	1	1

Example: Binary Counter

Transition/output functions:

$$\delta(q, x) = q \operatorname{xor} x$$

 $\lambda(q, x) = q \operatorname{and} x$

Transition/output (truth) table:

Current Input $x(t)$	Current State $q(t)$	Current Output $\lambda(q,x) = y(t)$	Next State $\delta(q,x) = q(t+1)$
0	0	0	0
1	0	0	1
0	1	0	1
1	1	1	0

Discrete Time Simulation

 Initialize time and state variables

$$t = 0, \qquad q(0) = q_0$$

- While terminal conditions not met:
 - Record output values

$$y(t) = \lambda(y, x)$$

Compute next state

$$q(t+1) = \delta(q, x)$$

Increment time

$$t = t + 1$$

Implementing a Binary Counter


```
\delta(q, x) = q \operatorname{xor} x, \qquad \lambda(q, x) = q \operatorname{and} x
def delta(q, x):
  return q != x
def lambda(q, x):
  return q and x
\mathbf{x} = [1,1,0,0,1,0,0,0,1]
y = [0,0,0,0,0,0,0,0,0]
q = [0,0,0,0,0,0,0,0,0,0]
t = 0
q[0] = 0
while t \le 8:
  y[t] = lambda(q[t],x[t])
  q[t+1] = delta(q[t],x[t])
  t. += 1
```


Modeling Dice Fighters

Initial conditions

$$t = 0$$
, $R_0 = 20$, $B_0 = 10$

Terminal condition

$$R_t \le 0 \text{ or } B_t \le 0$$

Record outputs

$$W = \begin{cases} 2 & \text{if } R_f > 0 \\ 1 & \text{if } B_f > 0 \\ 0 & \text{otherwise} \end{cases}$$

State transition/change

$$R_{t+1} = R_t - h_B, \qquad B_{t+1} = B_t - h_R$$

$$t = t+1$$

Cellular Automata

Cellular Automaton

- Cellular automaton: idealized physical phenomenon with discrete space and time
 - Cells: components with identical state transitions
 - Local influence in a neighborhood of cells
 - Idealization of biological self-production

1-D Cellular Automata

Transition/output (truth) table

Current	Current	Current	Next	
Left	Center	Right	State	
Input	State	Input	$\delta_i(q,x) = 0$	
$q_{i-1}(t)$	$q_i(t)$	$q_{i+1}(t)$	$q_i(t+1)$	
0	0	0	0	
0	0	1	1	
1	0	0	1	
1	0	1	1	
0	1	0	1	
0	1	1	1	
1	1	0	1	
1	1	1	0	

Rule #126 from Wolfram
 rule 126

 Claim a column and compute the next states: goo.gl/6Yw3AQ

http://mathworld.wolfram.com/ElementaryCellularAutomaton.html

Conway's Game of Life

- Two-dimensional cellular automata:
 - A live cell remains alive if it has between 2 and 3 live cells in its neighborhood
 - A live cell will die of overcrowding if there are more than 3 live cells in its neighborhood
 - A live cell will die of isolation if it has fewer than 2 live neighbors
 - A dead cell will become alive if it has exactly 3 alive neighbors

"Beehive"

"Toad"

"Glider"

Example: Beehive

Derived state variable: Neighbors

$$N(i,j) = q_{i-1,j-1} + q_{i-1,j} + q_{i-i,j+1} + q_{i,j-1} + q_{i,j+1} + q_{i+i,j-1} + q_{i+1,j} + q_{i+1,j+1}$$

State transition function:

$$\delta(q_{i,j}) = \begin{cases} 1 \text{ if } N(i,j) = 3 \text{ or } (q_{i,j} = 1 \text{ and } N(i,j) = 2) \\ 0 \text{ otherwise} \end{cases}$$

0	1	2	2	1	0
1	2	2	2	2	1
1	2	5	5	2	1
1	2	2	2	2	1
0	1	2	2	1	0

Example: Toad

Derived state variable: Neighbors

$$N(i,j) = q_{i-1,j-1} + q_{i-1,j} + q_{i-i,j+1} + q_{i,j-1} + q_{i,j+1} + q_{i+i,j-1} + q_{i+1,j} + q_{i+1,j+1}$$

State transition function:

$$\delta(q_{i,j}) = \begin{cases} 1 \text{ if } N(i,j) = 3 \text{ or } (q_{i,j} = 1 \text{ and } N(i,j) = 2) \\ 0 \text{ otherwise} \end{cases}$$

0	0	0	0	0	0
0	1	2	3	2	1
1	3	4	4	2	1
1	2	4	4	3	1
1	2	3	2	1	0
0	0	0	0	0	0

Conway's Game of Life

Transition/output (truth) table

Current Input (Neighbors) $x_{ij}(t) = N(i,j)$	Current State $q_{ij}(t)$	Next State $\delta(q_{ij}, x_{ij}) = q_{ij}(t+1)$
0	0	0
1	0	0
2	0	0
3	0	1
4	0	0
5	0	0
6	0	0
7	0	0
8	0	0

Transition/output (truth) table

Current Input (Neighbors) $x_{ij}(t) = N(i,j)$	Current State $q_{ij}(t)$	Next State $\delta(q_{ij}, x_{ij}) = q_{ij}(t+1)$
0	1	0
1	1	0
2	1	1
3	1	1
4	1	0
5	1	0
6	1	0
7	1	0
8	1	0

Switching Automata

Elementary Boolean Functions

not

Input $x(t)$	Output $y(t)$
1	0
0	1

and

Input 1 $x_1(t)$	Input 2 $x_2(t)$	Output $y(t)$
0	0	0
0	1	0
1	0	0
1	1	1

or

Input 1 $x_1(t)$	Input 2 $x_2(t)$	Output $y(t)$
0	0	0
0	1	1
1	0	1
1	1	1

xor

Input 1 $x_1(t)$	Input 2 $x_2(t)$	Output $y(t)$
0	0	0
0	1	1
1	0	1
1	1	0

Mealy and Moore Machines

Mealy Machine

 Outputs are determined by its current state and inputs:

$$y(t) = \lambda(q, x)$$

 Inputs can propagate throughout a network of components in zero time

Moore Machine

 Outputs are determined solely by its current state:

$$y(t) = \lambda(q)$$

- Inherent delay between inputs and outputs (1 tick)
- Realistic model

Delay Flip-Flop

Transition/output functions:

$$\delta(q, x) = x$$
$$\lambda(q) = q$$

• Transition/output (truth) table:

Current	Current	Current	Next	
Input	State	Output	State	
x(t)	q(t)	$\lambda(q) =$	$\delta(q,x) = 0$	
		y(t)	q(t+1)	
0	0	0	0	
1	0	0	1	
0	1	1	0	
1	1	1	1	

Linear Moore Network

t	0	1	2	3	4
$q_1(t)$	1	-g	g^2	$-g^3$	g^4
$q_2(t)$	1	g	$-g^2$	g^3	$-g^4$

$$x_1(t) = -g \cdot y_2(t)$$

$$x_2(t) = g \cdot y_1(t)$$

Linear Moore Network


```
def delta(q, x):
  return x
def lambda(q):
  return q
q 1 = [0,0,0,0,0,0,0,0,0,0]
q 2 = [0,0,0,0,0,0,0,0,0,0]
qain = 0.8
t = 0
q 1[0] = 0
q 2[0] = 0
while t <= 8:
  q 1[t+1] = delta(q 1[t],
    -gain* lambda(q 2[t]))
  q[t+1] = _delta(q_2[t],
    gain*_lambda(q_1[t]))
  t. += 1
```

