图像处理实验报告

郭一隆 (2013011189)

August 24, 2015

Contents

1	基础知识	3
2	图像压缩编码	5

List of Figures

1.1	在大礼堂中心绘制红圆
1.2	国际象棋蒙版
2.1	左右置零-小块图像测试结果
2.2	左右置零-整体图像测试结果
List	of Tables
1.1	图像处理工具箱函数概览 (部分)
2.1	WinRar 压缩文本文件
2.2	JpegCoeff.mat 中所含数据
2.3	亮度直流分量预测误差的 Category 及其 Huffman 编码
2.4	亮度 AC 分量的 Run/Size 及其 Huffman 编码 (部分)
List	of Source Codes
1.1	draw_circle.m
1.2	chess_mask.m
2.1	mse.m 1
2.2	mydct2.m 1
2.3	<pre>imdct.m</pre>
2.4	imidct m 1

1 基础知识

在 MATLAB 中,像素值用 uint8 类型表示,参与浮点数运算前需要转成 double 型。Section 1 中"测试图像"指的是hall.mat中的**彩色图像**。

1. MATLAB 提供了图像处理工具箱,在命令窗口输入 help images 可查看该工具箱内的所有函数。请阅读并大致了解这些函数的基本功能。

Table 1.1: 图像处理工具箱函数概览 (部分)

函数名	功能
imshow	在 figure 中显示图像
rgb2gray	将彩色图像转换为灰度值图像
imwrite	将图像矩阵写入文件

- 2. 利用 MATLAB 提供的 Image file I/O 函数分别完成以下处理:
 - (a) 以测试图像的中心为圆心,图像的长和宽中较小值的一半为半径画 一个红颜色的圆;

思路:利用 meshgrid 函数生成行列索引矩阵 I, J, 将圆内部的像素点标为**逻辑 1**, 再利用逻辑索引将测试图像圆内的部分替换为<mark>红色像素点</mark>。

```
1 %% Load images
   load('resource/hall.mat');
    imwrite(hall_color,'images/hall_color.png');
    hall_color = double(hall_color);
    %% Draw red circle
    [height,width,~] = size(hall_color);
    center = [(1+height)/2, (1+width)/2];
    radius = min(height, width)/2;
   [J,I] = meshgrid(1:width,1:height);
    % \leftarrow 1: I(x,y) = 1
    % <height-by-width matrix> J: J(x,y) equals y
    area = ((I-center(1)).^2 + (J-center(2)).^2 <= radius^2);</pre>
    % area equals 1 @ point inside circle
14
16
    cell = mat2cell(hall_color,ones(1,height),ones(1,width),3);
    cell(area) = {reshape([255,0,0],1,1,3)};
    hall_color_red_circle = cell2mat(cell);
18
19
20
    %% Write image
   hall_color_red_circle = uint8(hall_color_red_circle);
   imwrite(hall_color_red_circle, 'images/hall_color_red_circle.png');
```

Listing 1.1: draw_circle.m

(a) 处理前

(b) 处理后

Figure 1.1: 在大礼堂中心绘制红圆

(b) 将测试图像涂成国际象棋状的"黑白格"的样子, 其中"黑"即黑色, "白"则意味着**保留原图**。

思路: chess_mask 函数提供棋盘行列数接口,计算出每块的大小,同样利用 meshgrid 函数确定出 black_mask 的位置,将图像对应位置赋为黑色。

```
function masked_image = chess_mask(image,Nrow,Ncol)
    image = double(image);
    [height, width, ~] = size(image);
    grid_size = [ceil(height/Nrow),ceil(width/Ncol)];
    [J,I] = meshgrid(1:width,1:height);
    black_mask = (xor(mod(ceil(I/grid_size(1)),2),...
                      mod(ceil(J/grid_size(2)),2))==0);
10
    cell = mat2cell(image,ones(1,height),ones(1,width),3);
11
    cell(black_mask) = {reshape([0,0,0],1,1,3)};
12
    masked_image = cell2mat(cell);
13
14
    masked_image = uint8(masked_image);
^{15}
16
    end
17
```

Listing 1.2: chess_mask.m

按如下代码生成 64 格和 32 格棋盘蒙版

```
1 >> imwrite(chess_mask(hall_color,8,8),'images/hall_color_masked_8_8.png')
2 >> imwrite(chess_mask(hall_color,4,8),'images/hall_color_masked_4_8.png')
```


(a) 8×8 蒙版

(b) 4×8 蒙版

Figure 1.2: 国际象棋蒙版

用看图软件浏览上述生成图片, 预览效果如图1.1和图1.2, 达到预期效果。

2 图像压缩编码

熵编码压缩比:

根据经验,对于文本文件,重复性越高,则压缩比越高,测试如下表

Table 2.1: WinRar 压缩文本文件

文件名	文本内容 (matlab 写入文件)	压缩前大小	压缩后大小	压缩比
high.txt	repmat(['1'],1,10000)	10000bytes	101bytes	99.01
normal.txt	int2str(2^1000)	302bytes	106bytes	2.85
low.txt	'ghjkl;'	6bytes	77bytes	0.08

本章练习题所用数据均可由"JpegCoeff.mat"导入,其内容如表2.2所示。本章练习题中"测试图像"指的是hall.mat中的**灰度图像**。

Table 2.2: JpegCoeff.mat 中所含数据

变量名	含义	说明
QTAB	DCT 系数的量化 步长矩阵,式 (2.1)	
DCTAB	DC 系数预测误差 的 Category 码本, 表2.3	每行对应一个 Category, 第一列对应 Huffman 编码的长度 L, 随后 L 列对应该码字, 再后全零为填充物
ACTAB	AC 系数的 (Run/Size) 的码本,完整的表2.4	每行对应一个 (Run/Size),第一列表示 Run,第二列表示 Size,第三列表示该 (Run/Size) 对应的 Huffman编码的长度 L,随后 L 列对应该码字,再后全零为填充物

$$Q = \begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}$$
 (2.1)

Table 2.3: 亮度直流分量预测误差的 Category 及其 Huffman 编码

预测误差	Category	Huffman 编码
0	0	00
-1, 1	1	010
-3, -2, 2, 3	2	011
$-7, \cdots, -4, 4, \cdots, 7$	3	100
$-15, \dots, -8, 8, \dots, 15$	4	101
$-31, \cdots, -16, 16, \cdots, 31$	5	110
$-63, \cdots, -32, 32, \cdots, 63$	6	1110
$-127, \cdots, -64, 64, \cdots, 127$	7	11110
$-255, \cdots, -128, 128, \cdots, 255$	8	111110
$-511, \dots, -256, 256, \dots, 511$	9	1111110
$-1023, \cdots, -512, 512, \cdots, 1023$	10	11111110
$-2047, \dots, -1024, 1024, \dots, 2047$	11	111111110

Table 2.4: 亮度 AC 分量的 Run/Size 及其 Huffman 编码 (部分)

Run/Size	码长	码字	Run/Size	码长	码字
0/0(EOB)	4	1010			
0/1	2	00	4/1	6	111011
0/2	2	01	4/2	10	1111111000
0/3	3	100	4/3	16	111111111100101111
0/4	4	1011	4/4	16	11111111110011000
0/5	5	11010	4/5	16	11111111110011001
0/6	6	111000	4/6	16	11111111110011010
0/7	7	1111000	4/7	16	11111111110011011
0/8	10	1111110110	4/8	16	11111111110011100
0/9	16	11111111110000010	4/9	16	11111111110011101
0/A	16	11111111110000011	4/A	16	111111111100111110
1/1	4	1100	8/1	8	11111010
1/2	6	111001	8/2	15	1111111111000000
1/3	7	1111001	8/3	16	11111111110110111
1/4	9	111110110	8/4	16	11111111110111000
1/5	11	11111110110	8/5	16	11111111110111001
1/6	16	11111111110000100	8/6	16	11111111110111010
1/7	16	11111111110000101	8/7	16	11111111110111011
1/8	16	11111111110000110	8/8	16	11111111110111100
1/9	16	111111111100001111	8/9	16	11111111110111101
1/A	16	11111111110001000	8/A	16	111111111101111110
			F/0(ZRL)	11	11111111001
2/1	5	11011	F/1	16	11111111111110101
2/2	8	11111000	F/2	16	11111111111110110
2/3	10	1111110111	F/3	16	111111111111111111111111111111111111111
2/4	16	11111111110001001	F/4	16	11111111111111000
2/5	16	11111111110001010	F/5	16	11111111111111001
2/6	16	11111111110001011	F/6	16	11111111111111010
2/7	16	11111111110001100	F/7	16	1111111111111111111111
2/8	16	11111111110001101	F/8	16	11111111111111100
2/9	16	111111111100011110	F/9	16	111111111111111111111111111111111111111
2/A	16	111111111100011111	F/A	16	11111111111111111

1. 图像的预处理是将每个像素灰度值减去 128, 这个步骤是否可以在变换域 进行?

变换域与时域 (或空域) 的对应关系为

$$\mathbf{C} = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} P_{x,y} \mathbf{D}^{(2)}(x,y)$$
 (2.2)

其中 $\mathbf{D}^{(2)}(x,y)$ 表示二维 DCT 的第 (x,y) 个基矩阵, 其第 (i,j) 个分量为

$$\mathbf{D}_{i,j}^{(2)}(x,y) = \alpha_i \alpha_j \cos \frac{i(2x+1)\pi}{2N} \cos \frac{j(2y+1)\pi}{2N}$$
 (2.3)

对原图像进行预处理:

$$\bar{P}_{x,y} = P_{x,y} - 128$$

则有

$$\bar{\mathbf{C}} = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} \bar{P}_{x,y} \mathbf{D}^{(2)}(x,y)$$
$$= \mathbf{C} - 128 \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} \mathbf{D}^{(2)}(x,y)$$

而

$$\sum_{x=0}^{N-1} \sum_{y=0}^{N-1} \mathbf{D}_{i,j}^{(2)}(x,y) = \alpha_i \alpha_j \sum_{x=0}^{N-1} \cos \frac{i(2x+1)\pi}{2N} \sum_{y=0}^{N-1} \cos \frac{j(2y+1)\pi}{2N}$$

$$= \begin{cases} \alpha_i \alpha_j N^2 = N, & i = j = 0\\ 0, & elsewhere \end{cases}$$

若要在变换域进行预处理,则对应关系为

$$\bar{\mathbf{C}}_{i,j} = \mathbf{C}_{i,j} - 128N, i = j = 0$$

$$\bar{\mathbf{C}}_{i,j} = \mathbf{C}_{i,j}, \qquad elsewhere$$

因此,这个步骤可以在变换域进行,只需把变换域直流分量减去 128N 即可,取 $hall_gray$ 左上角 8×8 验证如下:

```
5 >> mse(Y1,Y2)
6
7 ans =
8
9 5.5804e-27
```

其中 mse 为自定义函数,用于计算两个矩阵的均方误差:

Listing 2.1: mse.m

由运行代码??中得到的 mse 结果可知,在变换域减去一定直流分量与预处理原图像是**等价**的。

2. 根据下式2.4自行编程实现二维 DCT:

$$\mathbf{C} = \mathbf{D}\mathbf{P}\mathbf{D}^T \tag{2.4}$$

其中

$$\mathbf{D} = \sqrt{\frac{2}{N}} \begin{bmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & \cdots & \sqrt{\frac{1}{2}} \\ \cos \frac{\pi}{2N} & \cos \frac{3\pi}{2N} & \cdots & \cos \frac{(2N-1)\pi}{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \cos \frac{(N-1)\pi}{2N} & \cos \frac{(N-1)3\pi}{2N} & \cdots & \cos \frac{(N-1)(2N-1)\pi}{2N} \end{bmatrix}$$

Listing 2.2: mydct2.m

仍取左上角 8×8 色块进行测试:

```
1  >> A = hall_gray(1:8,1:8);
2  >> mse(mydct2(A),dct2(A))
3
4  ans =
5
6  2.6817e-26
```

说明 mydct2 与 dct2 计算结果相同。

3. 如果将 DCT 系数矩阵中右侧四列 (或左侧四列) 的系数全部置零, 逆变换 后的图像会发生什么变化?

DCT 矩阵的右侧主要是横向高频分量系数,即影响横向纹理的清晰度,右侧四列置零会使得横向纹理变模糊;左侧四列包含了左上角的全部低频分量,以及左下角的纵向高频分量,左侧四列置零会使得整个图像变黑,无法辨认,仅残留少量横向纹理。

为了便于图像处理,自定义函数 imdct 以及 imidct, 实现分块 (8×8) 应用 DCT 或 IDCT 并进行整合的功能,imdct 接受**函数句柄**作为参数,方便后续的各种处理方式。

```
function C = imdct(A, varargin)
1
    % 2-dimension DCT for image A
    A = double(A);
    [height, width] = size(A);
    % make height, width of A multiples of 8
    A(height+1:8*ceil(height/8),:) = repmat(A(height,:),8*ceil(height/8)-height,1);
    A(:,width+1:8*ceil(width/8)) = repmat(A(:,width),1,8*ceil(width/8)-width);
10
    if nargin == 2
11
         procfun = varargin{1};
12
    else
13
        procfun = @(x)(x);  % doing nothing
14
15
16
    for i = 1:ceil(height/8)
17
        for j = 1:ceil(width/8)
18
             C((i-1)*8+1:i*8,(j-1)*8+1:j*8) = procfun(dct2(A((i-1)*8+1:i*8,(j-1)*8+1:j*8)));
19
         end
20
    \quad \text{end} \quad
^{21}
22
    end
```

Listing 2.3: imdct.m

Listing 2.4: imidct.m

选取一小块 8×8 图像验证:

(a) 测试 block

(b) 右四列置零

(c) 左四列置零

Figure 2.1: 左右置零-小块图像测试结果

再测试整体效果:

```
1 >> imwrite(hall_gray,'images\hall_gray.png');
2 >> I = imidct(imdct(hall_gray,rightzero));
3 >> imwrite(I,'images\hall_gray_rightzero.png');
4 >> I = imidct(imdct(hall_gray,leftzero));
5 >> imwrite(I,'images\hall_gray_leftzero.png');
```

图像处理结果如图2.2,可见右四列置零后横向纹理变弱(树的部分较明显),左四列置零后仅剩余少量横向高频分量(轮廓),符合预期。

(a) hall_gray

(b) 右四列置零

(c) 左四列置零

Figure 2.2: 左右置零-整体图像测试结果