UNIVERSIDADE FEDERAL DE ALAGOAS

Lista N° 2 Espaços Vetoriais (Base, Dimensão, Posto, Mudança de Base)

1. Seja $V = \{a_0 + a_1t + a_2\cos 2t + a_3 e^{3t} / a_i \in \mathbb{R}, t \in \mathbb{R} \}$ Demonstrar que as funções: $f_1(t) = 2t - 1$ $f_2(t) = t + \cos 2t$ $f_3(t) = 3 - e^{3t}$ $f_4(t) = -t + e^{3t}$

Conformam uma base de V.

- 2. Seja $W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 / x_1 + x_2 + x_3 + x_4 = 0\}$ Demonstrar que os vetores: (2, 0, 0, -2), (2, 0, -2, 0) e (8, -2, -4, -2) conformam uma base de W.
- 3. Dados os subespaços de \mathbb{R}^3 $S_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 - 2x_2 + 3x_3 = 0 \}$ $S_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 - x_2 + x_3 = 0 \}$ Calcule: $dim(S_1 + S_2)$ [Dica: $dim(U + V) = dim(U) + dim(V) - dim(U \cap V)$]
- 4. Sejam:

$$V = \{(x, y, z, t) \in \mathbb{R}^4 / x - y + z - t = 0 \}$$

$$U = \{(x, y, z, t) \in \mathbb{R}^4 / 2x + y + 2z + t = 0 \}$$
Calcule a dimensão dos subespaços: $U \cap V$, $U + V$,
$$\frac{U \cap V}{U + V}$$
[Dica: $dim\left(\frac{U}{V}\right) = dim\left(V\right) - dim\left(U\right)$]

- 5. Mostre que $A = \begin{pmatrix} 1 & 3 & 5 \\ 1 & 4 & 3 \\ 1 & 1 & 9 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 2 & 3 \\ -2 & -3 & -4 \\ 7 & 12 & 17 \end{pmatrix}$, tem o mesmo espaço coluna.
- 6. Dadas as matrizes $A = \begin{pmatrix} -2 & 4 & 2 & -2 \\ -1 & -1 & 1 & 0 \\ -2 & 1 & 2 & -1 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 1 & 0 \\ -2 & -1 & 3 \\ -1 & 4 & -2 \end{pmatrix}$,

Calcule: pos(A) + pos(B), nul(A) e nul(B)

- 7. Suponha que os eixos x e y no plano \mathbb{R}^2 sejam rotacionados em 45° no sentido anti-horário, de tal forma que o novo eixo x' se encontre na reta x = y e o novo eixo y' na reta x = -y. Calcule:
 - a) A matriz de mudança de base *P*;
 - b) As novas coordenadas do ponto *A*(5, 6) após a rotação indicada.
- 8. Sejam as bases $S = \{1, j\}$ e $S' = \{1 + j, 1 + 2j\}$ nos complexos $\mathbb C$ sobre os reais $\mathbb R$. Calcule:
 - a) A matriz de mudança de base P da base S para S';
 - b) A matriz de mudança de base Q da base S' para S.