Towards efficient nonlinear option pricing with GPU computing Student Computational Finance Day 2016

Shih-Hau Tan, Kevin Parrott, Choi-Hong Lai

University of Greenwich

May. 23, 2016

Outline

- 1 Motivation
- 2 Newton-based solver
- **3** GPU computing implementation
- **4** Conclusion

Incomplete Market

Nonlinear Option Pricing

- Advantages
 - More reasonable and accurate option price
 - Easier to do model calibration
 - Can be used to design better hedging strategies
- Types of problems
 - Nonlinear Black-Scholes Equation
 - Hamilton-Jacobi-Bellman (HJB) Equation
 - Backward Stochastic Differential Equation
- Challenge
 - Complicated to solve a single problem

Nonlinear Black-Scholes Equation

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0, \ S > 0, \ t \in [0, T)$$

with

- $\sigma = \sigma_0 (1 + Le \, sign(V_{SS}))^{1/2}$ (Leland model (1985))
- $\sigma = \phi(x)$ (Barles and Soner model (1998))
- $\sigma = \sigma_0 (1 \rho S V_{SS})^{-1}$ (Frey-Patie model (2002))
- $\sigma \in [\sigma_{min}, \sigma_{max}]$ (Uncertain volatility model (1995))

where

$$V_{SS} = \frac{\partial^2 V}{\partial S^2}$$

Large-Scale Problems

Apple Inc. (AAPL) * Watchlist

105.19 -0.48 (0.45%) NASDAQ - As of 4:00PM EDT

After Hours: 105.00 \$-0.19 (-0.18%) 6:46AM EDT

pril 1, 2	016 ~	In The Money		_				Lis	st Straddle	Lookup Option	-
			Calls						Puts		
	Last	Change	%Change	Volume	Open Interest	Strike * Filter	Last	Change	%Change	Volume	Open Interes
~	0.00	0.00	0.00%	0	0	65.00	0.04	0.00	0.00%	0	5
~	0.00	0.00	0.00%	0	0	70.00	0.06	0.00	0.00%	0	123
~	30.90	0.00	0.00%	18	18	75.00	0.03	0.00	0.00%	0	21
~	26.85	4.54	20.35%	10	7	80.00	0.01	0.00	0.00%	3	227
~	13.24	0.00	0.00%	0	1	85.00	0.01	-0.01	-50.00%	9	529
~	0.00	0.00	0.00%	0	0	85.50	0.01	-0.09	-90.00%	1	54
~	11.00	0.00	0.00%	0	13	86.00	0.01	-0.08	-88.89%	1	48
~	10.36	0.00	0.00%	0	2	86.50	0.04	0.00	0.00%	25	48
~	19.09	0.00	0.00%	1	1	87.00	0.05	0.00	0.00%	10	690
~	18.20	0.00	0.00%	150	96	87.50	0.01	0.00	0.00%	17	72
~	11.90	0.00	0.00%	0	3	88.00	0.01	0.00	0.00%	1	46
~	0.00	0.00	0.00%	0	0	88.50	0.01	0.00	0.00%	60	409
~	16.50	2.25	15.79%	1	10	89.00	0.02	-0.01	-33.33%	1	288

Objective

• Single nonlinear option pricing problem

Large-scale nonlinear option pricing problems

ITN *STRIK€

Finite Difference Method

$$\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0, S > 0, t \in [0, T)$$
 (1)

with $\sigma = \sigma(V_t, V_S, V_{SS}, V)$.

Apply finite difference implicit scheme on equation (1)

$$\frac{V_i^{n+1} - V_i^n}{\Delta t} + \frac{1}{2} \frac{(\sigma_i^{n+1})^2 S_i^2 \frac{V_{i+1}^{n+1} - 2V_i^{n+1} + V_{i-1}^{n+1}}{(\Delta S)^2} + rS_i \frac{V_{i+1}^{n+1} - V_{i-1}^{n+1}}{2\Delta S} - rV_i^{n+1} = 0,$$

which can be simplified as

$$a_i V_{i-1}^{n+1} + b_i V_i^{n+1} + c_i V_{i+1}^{n+1} = V_i^n,$$
(2)

where i represents the spatial discretization and n represents the temporal discretization.

May. 23, 2016

Root-finding Problem

Equation (2) can be simplified as

$$H(V^{n+1})V^{n+1} = V^n,$$

where H is a tridiagonal matrix. Introduce

$$G(V^{n+1}) = H(V^{n+1})V^{n+1} - V^n = 0,$$

then the problem becomes to use Newton's method to solve the root-finding problem of the function G.

Algorithm (NM)

Given initial guess V^* , tolerance tol, and terminal condition $V^N = V(S, t = T)$

For n = N-1 to 1

- 1. Calculate a_i, b_i, c_i to construct H
- 2. Calculate G

If
$$||G(V^*)|| < tol$$
, stop and $V^n = V^*$;

else
$$V^* = V^* - (Jac(G))^{-1}G$$
 and go back to 1.

end

Newton's iteration

Features

- Can be applied to different cases with different schemes
- Complexity = #iterations×(linear model) + evaluation of Jacobian matrix
- Quadratic convergent rate

Complexity Analysis

$$G(V^{n+1})=H(V^{n+1})V^{n+1}-V^n=0$$

14%
16%

19%

Construct matrix

Jacobian matrix

others

- Evaluate a_i, b_i, c_i for H at each iteration and time step
- Consider $H(V^{n+1}) = \Sigma^{n+1}H_1 + H_2$, $\Sigma^{n+1} = Diag((\sigma_i^{n+1})^2)$, then

$$Jac(G(V^{n+1})) = \frac{\partial [H(V^{n+1})V^{n+1}]}{\partial V^{n+1}} = H(V^{n+1}) + Diag(H_1V^{n+1})\nabla(\Sigma^{n+1})$$

• Tridiagonal solver for $(Jac(G))^{-1}$

Parallel Computing

At each time step, we have the Newton's iteration as:

Batch Operation

• Different option pricing problems such as different r, T, K, σ_0

$$\begin{pmatrix}b_1&c_1\\&\cdots\\&a_M&b_M\end{pmatrix}\quad \longrightarrow\quad \begin{pmatrix}b_1^1&c_1^1\\&\cdots\\&a_M^1&b_M^1\end{pmatrix}\quad \cdots\quad \begin{pmatrix}b_1^k&c_1^k\\&\cdots\\&a_M^k&b_M^k\end{pmatrix}$$

• Combine all problems together

GPU Computing

Implementation

- OpenACC
 - · easier to start
 - #pragma acc kernels
 {
 code to be parallelised
 }
 - · need to be careful on data movement
- CUDA library
 - cusparseSgtsv for tridiagonal solver
 - enable users to get good performance without writing too many codes
- Kernel functions
 - evaluate a[i], b[i], c[i]
 - Jacobian matrix
 - $Jac(G(V^{n+1})) = H(V^{n+1}) + Diag(H_1V^{n+1})\nabla(\Sigma^{n+1})$
 - contains 2 matrix constructions and 2 level-2 function evaluations

May. 23, 2016

Numerical Experiment

Consider Frey-Patie model with nonlinear volatility $\sigma = \sigma_0 (1 - \rho S V_{SS})^{-1}$. Parameters are chosen to be

$$S \in [0,300], \; K = 100, \; T = 1/12, \sigma_0 = 0.4, \; \rho = 0.01, \; r = 0.03,$$

and tolerance for Newton's iteration is $tol=10^{-8}$ for double precision. The grid points for space and time are M=N=1000. We calculate 64,128,256 option pricing problems.

System information:

Processor: Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz

Memory: 4096MB RAM

Compiler: gcc 4.7, CUDA 7.0, PGI 15.9

Graphic card : Quadro K2100M (Kepler microarchitecture, compute

capability 3.0)

Computation Time

Table: Computation time (s) for double precision.

#Options	CPU	OpenACC	Library	Kernel
n = 64	24.8	13.5	10.2	10.9
n = 128	49.7	25.5	14.7	13.0
n = 256	122	66.5	23.9	17.0

Table: Speed-up for double precision.

#Options	CPU	OpenACC	Library	Kernel
n = 64	1.0x	1.8x	2.4x	2.2x
n = 128	1.0×	1.9×	3.3x	3.8x
n = 256	1.0x	1.8x	5.1x	7.2x

Speed-up

Further Improvement

Theoretical GFLOP/s

Multi-GPU Computing

Split the work

Use OpenMP

```
#pragma omp parallel for
for (int i=0;i<Num_GPU;i++){
    cudaSetDevice(i);
    main code;
}</pre>
```


Multi-GPU Computing

System information:

Graphic cards: GTX Titan Black (Kepler microarchitecture, compute capability 3.5)

Memory: 6143MB RAM

Numerical result

Summarize

- Newton-based solver for nonlinear option pricing
- Batch operation for dealing with large-scale problems
- Comparison of different implementations of doing GPU computing
- Work in progress
 - Multi-asset problems with Alternating Direction Implicit (ADI) method
 - Asian option pricing problem with semi-Lagrangian scheme

Reference

- [1] M. Ehrhardt (edt): **Nonlinear Models in Mathematical Finance**, Nova Science Publishers, Inc. New York, 2008.
- [2] J. Guyon, P. Henry-Labordère, Nonlinear Option Pricing, CRC Press, 2013.
- [3] M.B. Giles, E. Laszlo, I. Reguly, J. Appleyard, J. Demouth, GPU implementation of finite difference solvers, Seventh Workshop on High Performance Computational Finance (WHPCF'14), IEEE, 2014.
- Acknowledgement Special thanks to
 - Mr. Lung-Sheng Chien, NVIDIA, USA.
 - Mr. Alvaro Leitao, CWI, the Netherlands.
 - Prof. Carlos Vázquez Cendón and Prof. Jose Antonio García Rodríguez, Universidade da Coruña, Spain.

Shih-Hau Tan

email: shihhau.tan@gmail.com

web: http://staffweb.cms.gre.ac.uk/~ts73/

Thank you very much!

