END TERM EXAMINATION		
Paper Code: ETMA	101 Subject	Applied Mathematics-I
Time: 3 Hours Note: Attempt an	(Batch 2013 Onwards) y five questions including Q no. Select one question from each	Maximum Marks: 75 1 which is compulsory. unit.
	the possibility of expansion prove $\theta = \frac{1}{\sqrt{2}} \left[1 + \theta - \frac{\theta^2}{2!} - \frac{\theta^3}{3!} + \dots \right]$	(2.5)
	e convergence of the series	(2.5)
Les Find the as	symptotes of the curve	(2.5)
	$\int_{2}^{3} (x \log x)^{3} dx = \frac{-3}{128},$	(2.5)
(e) Evaluate	$(1-x^{1/n})^{m-1}dx \qquad .$	(2.5)
(1) Show that	the matrix $A = \frac{1}{2} \begin{bmatrix} 1+i & -1+i \\ 1-i & 1-i \end{bmatrix}$ is a un	nitary matrix (2.5)
(g) Test wheth linearly de	pendent or not. If dependent, fi	3 41 and (2, 0, 1,1)
(i) Show that	$\frac{-2mxy^{2}}{dx}\frac{dx+2mx^{2}ydy}{dx^{2}}=0$ $\frac{d}{dx}\left\{J_{n}^{2}(x)\right\}=\frac{x}{2n}\left\{J_{n-1}^{2}(x)-J_{n+1}^{2}(x)\right\}$	(2.5)
(j) Find the ra	ank of the matrix $\begin{bmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{bmatrix}$ by	reducing it in its normal
form.	[-3 1 2]	(2.5)
	UNIT-I	(6)
Q2 (a) If $y = x^{x} \log x$ (i) $y_{n+1} = \frac{n!}{x}$	x prove that (ii) $y_n = ny_{n-1} + (n-1)!$	(0)
(b) Test the co	nvergence of the series $\sum_{1}^{\infty} \left(1 + \frac{1}{\sqrt{n}} \right)$	(6.5)
$\sqrt{1+x+2}$	arin's theorem to show that $2x^2 = 1 + \frac{x}{2} + \frac{7}{8}x^2 - \frac{7}{16}x^3 + \dots$	(6)
(b) Test the fol	lowing series for convergence and	absolute convergence.
$1 - \frac{3}{2} + \frac{5}{4}$	$-\frac{7}{8} + \frac{9}{16} \dots$	(6.5) P.T.O.

(6.5)P.T.O.

UNIT-II

Q4 (a) If $I_n = \int_0^{\pi} \sin^{2n} x \, dx$, show that

$$I_n = \left(1 - \frac{1}{2n}\right) I_{n-1} - \frac{1}{n \cdot 2^{n+1}}$$

(b) Find the radius of curvature at any point on the curve (6.5) $x = a\cos^3 t$, $y = a\sin^3 t$.

(6)

(6) Trace the curve $a^2x^2 = y^3(2a - y)$. Prove that the length of an arc of the curve $y^2 = x \left(1 - \frac{x}{3}\right)^2$ from the origin (6.5)to the point (x, y) is given by $l^2 = y^2 + \frac{4}{3}x^2$.

UNIT-III

Q67 (a) Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ -2 & -1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ by reducing it to echelon

(6) (b) Find the modal matrix of $A = \begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{bmatrix}$ and diagonalize it. (6.5)

(a) Use Caley-Hamilton theorem for the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & -1 \end{bmatrix}$ to find A^{-1} . (6) Q7

(b) Investigate whether the set of equations (6.5)2x - y - z = 2

x+2y+z=2

4x - 7y - 5z = 2

is consistent or not; if consistent, solve it.

UNIT-IV

Jay Solve $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = x \sin x$. (6)

Solve $\frac{d^2y}{dx^2} + y = -\cot x$ by the method of variation of parameters. (6.5)

(a) Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = \frac{x^3}{1 + x^2}$ Q9 (6)

(b) Prove that $\int_{1}^{1} (x^2 - 1) P_{n+1} P'_{n} dx = \frac{2n(n+1)}{(2n+1)(2n+3)}$ (6.5)
