The Structure of Mathematical Expressions

An ARXIV Case Study

Deyan Ginev and Bruce R. Miller

National Institute of Standards and Techonology

May 4, 2012

Contents

\mathbf{C}	ontents	2
1	Introduction	3
	1.1 Motivation	. 3
	1.2 Related Resources	. 3
2	Methods	5
	2.1 Training Corpus	. 5
	2.2 Structural Annotation	. 5
	2.3 Annotation Vocabulary	. 5
3	A Study of Mathematical Syntax	9
	3.1 Basics	. 9
	3.2 Discrete math	. 9
	3.3 Continuous math	. 11
	3.4 Other fields	. 18
4	Discussion	19
5	Conclusion	21

Introduction

In this study, we survey the notational diversity of present-day mathematical expressions, in order to uncover their linguistic phenomena. A practical motivation for this study is to provide a foundation for determining the boundary between syntactic and semantic phenomena in said expressions, from the perspective of language modeling. The ultimate goal of this project is to construct a grammar of mathematical expressions, which captures all relevant syntactic properties established in this study, and allows for the semantic analysis necessary to model and observe the semantic relationships.

1.1 Motivation

We want to enable machine-reading of formulas, in order to provide a variety of user-assistance services, such as semantic search, text-to-speech synthesis, semantic interactions (definition lookup), as well as computer algebra support ("evaluate subexpressions on demand") and ultimately computer verification ("does that proof step really hold?").¹

EdN:1

1.2 Related Resources

Notation census, beginnings of study are in Deyan's thesis, Naproche and FMathL have examples, but no real systematic study.² EdN:2

¹EDNOTE: expand

²EDNOTE: expand

Methods

2.1 Training Corpus

The primary corpus on which we base this investigation is the Cornel pre-print archive "ARXIV"³, consisting of over 700,000 articles in 37 scientific subfields.

EdN:3

arXiv Sandbox

L

EdN:4

As a secondary resource, we we will also consult entry-level literature on highschool mathematics, in order to exhibit basic phenomena, as well as to demonstrate phenomena apriori known to the authors.⁵

EdN:5

2.2 Structural Annotation

As one of the goals of our study is to establish a first guess of an underspecified operator tree⁶, EdN:6 any annotation must at its core mark up the applicative logical structure of the mathematical expression. This process will build up a formula tree, the collection of which can later be used as a gold standard for developing a grammatical model of the language of symbolic mathematics.

7 8

EdN:7 EdN:8

2.3 Annotation Vocabulary

Another core goal is to discover and describe interesting linguistic phenomena that occur naturally in our corpus. Examples of what we consider "interesting" are phenomena that

³EdNote: cite here

 $^{^4\}mathrm{EdNote}$: Say that, on the <code>ARXIV</code> front, we first start with the train sandbox from Deyan's thesis

⁵EDNOTE: Wikipedia? PEMDAS?

 $^{^6\}mathrm{EdNote}\colon$ make sure the concepts are introduced and/or rephrase

 $^{^{7}\}mathrm{EDNote}$: I'm currently thinking of rendering the annotations as trees (tikz,pstricks...custom tree drawing package?), so that the annotator can proofread the annotations in an intuitive manner.

 $^{^8\}mathrm{EdNote}$: In the XHTML, I'm thinking of ContentMML+SVG rendering, all of this figured out by the binding, maybe a custom stylesheet?

Train1	Differential Geometry
	http://arxmliv.kwarc.info/files/9609/dg-ga.9609012
Train2	Quantum Physics
	http://arxmliv.kwarc.info/files/0910/0910.5733/
Train3	High Energy Physics - Theory
	http://arxmliv.kwarc.info/files/9407/hep-th.9407125/
Train4	Commutative Algebra
	http://arxmliv.kwarc.info/files/0809/0809.4873/
Train5	Statistics Theory
	http://arxmliv.kwarc.info/files/0905/0905.1486/
Train6	General Relativity and Quantum Cosmology
	http://arxmliv.kwarc.info/files/0807/0807.2507/
Train7	Cosmology and Extragalactic Astrophysics
	http://arxmliv.kwarc.info/files/0908/0908.2548
Train8	Exactly Solvable and Integrable Systems
	http://arxmliv.kwarc.info/files/0905/0905.2033
Train9	Geometric Topology
	http://arxmliv.kwarc.info/files/0809/0809.4477
Train10	Algebraic Geometry
	http://arxmliv.kwarc.info/files/0704/0704.0537

Table 2.1: Sandbox of Ten Random ARXIV Papers from Diverse Scientific Subfields

induce ambiguity, or legitimize what would typically be ungrammatical fragments. Cases of ambiguity are well-known to follow from semantic overloading of symbols, implicit argument scopes of operations or eliding syntax, leaving the reader with the task of guessing the "invisible" dynamics. Use of custom shorthands, however, as well as custom notations in general, expands the grammar of symbolic mathematics, often in completely non-standard ways that can only be grasped through a deep understanding of the document at hand.

As multiple interesting observations can be made for a single large mathematical formula, it is natural to annotate multiple relevant subexpressions. More concretely, for each phenomenon of interest, we annotate the greatest common subtree (GCT) of all participating subtrees. In case we find a long-range relationship in a large formula, the annotation would hence be placed on the formula root.

The annotations can be utilized for different purposes - browsing by specific phenomena, syntactic feature or lemma, training a classifier, etc. Thus, we take a compositional, standardized approach to providing labels from a fixed vocabulary for the relevant ontological classes of structural properties.

9

EdN:9

⁹EDNOTE: Additional tokens: super, sub, fenced

Property	Keywords
Fixity	over, under, prefix, infix, postfix, superfix, subfix, circumfix, transfix, nofix ¹
Role (Symbols)	separator, modifier, relation, operator, metarelation, binder
Role (Objects)	factor, term, statement, variable, constant, modified
Role (Structure)	tuple, sequence, expression, shorthand, template, language
Composition	invisible, atom, complex, chained
Shallow Semantics	type, function, constructor, other
Linguistic	ellipsis, metonymy, ambiguity, vagueness, anaphora
Math Practices	framing

Table 2.2: Keyword Vocabulary for Syntactic Properties

Chapter \mathcal{J}

A Study of Mathematical Syntax

3.1

Basics

Foundations	
10 11 12	EdN:10 EdN:11
High School	EdN:12
13 14	EdN:13 EdN:14
3.2 Discrete math	
Set Theoretic Notations	
15 16	EdN:15 EdN:16
Logical Operators	
17	EdN:17
Combinatorics	
18 19	EdN:18 EdN:19
$^{10}{ m EDNOTE}$: arithmetic, grouping fences and equality $^{11}{ m EDNOTE}$: basic relations and orderings $^{12}{ m EDNOTE}$: arithmetic and algebraic sequences?	
$^{13}{ m EdNote}$: geometry here, otherwise a separate geometry subsection $^{14}{ m EdNote}$: trigonometry, complex and rational numbers	
$^{15}{ m EDNote}$: elementhood, inclusions, set constructors, overloaded arith ops $^{16}{ m EDNote}$: also maps : domains - ι codomains, xRy notations $^{17}{ m EDNote}$: classic logic, HOL, type theories	
EDNOTE: classic logic, HOL, type theories 18 EDNOTE: Infinite sums 19 EDNOTE: binomials, combinations, permutations,	

	Expression	Denotation	Annotation
1.	$W \in \mathcal{P} \cap \mathcal{Z}$	set membership	€
			W n
	Discussion: set operators precede set relation	ns. [Train1]	ĎŽ
2.	$ u: \overset{n}{ imes} \mathbb{V} o \mathbb{R}$	a map	:
			ν \rightarrow
			$\overline{ ext{super}}$ \mathbb{R}
			$\stackrel{n}{\sim}$
	Discussion: <i>n</i> -ary cross-product, [Train1]		₩
3.	$\mathcal{Z}^* = \{ X \in \mathcal{V} \mid \omega(X, W) \in \mathbb{Z}, \text{ for all } W \in \mathcal{Z} \}$	definition to set	=
			super set
			Ź *
			į,
			$X \mathcal{V}$ for all
			ω \mathbb{Z} \in
		m 1	$(\widehat{X} \setminus \widehat{W}) = (\widehat{W} \setminus \widehat{Z})$
	Discussion: NL mixins, quantified relation, [<u> </u>	
4.	$\operatorname{span}_{\mathbb{R}}\{W_1,\ldots,W_g\}$	span of a set	sub
			$\operatorname{span} \ \ \mathbb{R}$
			 fenced
			, ,
			sub sub
			\widehat{W} 1 \widehat{W} \widehat{g}
	Discussion: set operators can take fenced yet	t not simply grouped a	_

Table 3.1: Set Theory Notations, Part 1

Number Theory	
20 21 22 23	EdN:20
	EdN:21
	EdN:22
Graph Theory	EdN:23
24 25 26	
	EdN:24
	EdN:25
Algebra	EdN:26
27 28 29 30	E 137.05
21 20 29 30	EdN:27
	EdN:28
Functions Theory	EdN:29
•	EdN:30
31	EdN:31
3.3 Continuous math	
Calculus	
20	
32	EdN:32
Probability	
33 34	D 1M 00
	EdN:33
	EdN:34
Interval Notation and Arithmetic	
35	E 137.0*
	EdN:35
Topology	
36	EdN:36
	Edi 1.00
²⁰ EDNote: modulo modifiers	
²¹ EdNote: tuples	
22 EDNOTE: divisibility notations $a \mid b$ and b/a	
²³ EDNOTE: DLMF sneaky notations	
$^{24}{ m EdNOTE}$: edge and vertex notations $^{25}{ m EdNOTE}$: incidence and adjacency notations	
EDNOTE: Incidence and adjacency notations 26 EDNOTE: Wiki is very nice: http://en.wikipedia.org/wiki/Glossary_of_graph_theory	
²⁷ EDNOTE: vectors	
²⁸ EDNOTE: maps and complements	
²⁹ EDNOTE: groups	
³⁰ EDNOTE: lattices	
³¹ EdNote: talk about associativity of application and composition, ";" and "o" as notation variants, discuss	
complex examples	
³² EdNote: differentials, integrals, limits, remember brownian motion integral notations!	
³³ EDNOTE: Bayes formula with multiple denotations of P	
³⁴ EdNote: Various conditional and joint probability notations	
$^{35}{ m EdNote}$: introduce interval notations, then move to interval arithmetic $^{36}{ m EdNote}$: manifold constructors and notations	
EDITOTE. Mamiou constructors and Motations	

Differential Geometry

Some intro text?

37 EdN:37 38 EdN:38

 $^{^{37}{\}rm EdNote}$: more on \pmod{x} notations $^{38}{\rm EdNote}$: Complex named entity: "U(1) Chern-Simons gauge theory."

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Expression	Denotation	Annotation
2. \mathcal{Z} self-dual lattice atom Discussion: [Train1] 3. (V, ω) symplectic vector space circumfix constructor Discussion: [Train1] 4. $Lag(V)$ Lagrangian Grassmannian circumfix constructor Discussion: [Train1] 5. $Lag_4(V)$ 4-fold covering space prefix constructor Discussion: [Train1] 6. \mathcal{M}_{Σ} moduli space subfix constructor Discussion: [Train1] 7. Σ Riemann surface atom variable Discussion: [Train1] 8. $H^1(\Sigma; \mathbb{R})$ chomology space transfix constructor Discussion: [Train1] 9. $H^1(\Sigma; \mathbb{R})/H^1(\Sigma; \mathbb{Z})$ torus infix operator Discussion: [Train1] 10. (M, ω) symplectic manifold circumfix constructor Discussion: [Train1] 11. $f \in \mathcal{C}^{\infty}(M)$ smooth function atom modified Discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] 13. \bot interior product complex infix operator Discussion: Formed via \mathop in T\text{EX}, [Train1] 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple	1.	$(\mathcal{V}/\mathcal{Z},k\omega)$	symplectic torus	Fenced
2. \mathcal{Z} self-dual lattice atom Discussion: [Train1] 3. (V, ω) symplectic vector space circumfix constructor Discussion: [Train1] 4. $Lag(V)$ Lagrangian Grassmannian circumfix constructor Discussion: [Train1] 5. $Lag_4(V)$ 4-fold covering space prefix constructor Discussion: [Train1] 6. \mathcal{M}_{Σ} moduli space subfix constructor Discussion: [Train1] 7. Σ Riemann surface atom variable Discussion: [Train1] 8. $H^1(\Sigma; \mathbb{R})$ chomology space transfix constructor Discussion: [Train1] 9. $H^1(\Sigma; \mathbb{R})/H^1(\Sigma; \mathbb{Z})$ torus infix operator Discussion: [Train1] 10. (M, ω) symplectic manifold circumfix constructor Discussion: [Train1] 11. $f \in \mathcal{C}^{\infty}(M)$ smooth function atom modified Discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] 13. \bot interior product complex infix operator Discussion: Formed via \mathop in T\text{EX}, [Train1] 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple				
2. \mathcal{Z} self-dual lattice atom Discussion: [Train1] 3. (V, ω) symplectic vector space circumfix constructor Discussion: [Train1] 4. $Lag(V)$ Lagrangian Grassmannian circumfix constructor Discussion: [Train1] 5. $Lag_4(V)$ 4-fold covering space prefix constructor Discussion: [Train1] 6. \mathcal{M}_{Σ} moduli space subfix constructor Discussion: [Train1] 7. Σ Riemann surface atom variable Discussion: [Train1] 8. $H^1(\Sigma; \mathbb{R})$ chomology space transfix constructor Discussion: [Train1] 9. $H^1(\Sigma; \mathbb{R})/H^1(\Sigma; \mathbb{Z})$ torus infix operator Discussion: [Train1] 10. (M, ω) symplectic manifold circumfix constructor Discussion: [Train1] 11. $f \in \mathcal{C}^{\infty}(M)$ smooth function atom modified Discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] 13. \bot interior product complex infix operator Discussion: Formed via \mathop in T\text{EX}, [Train1] 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple				×
2. \mathcal{Z} self-dual lattice atom Discussion: [Train1] 3. (V, ω) symplectic vector space circumfix constructor Discussion: [Train1] 4. $Lag(V)$ Lagrangian Grassmannian circumfix constructor Discussion: [Train1] 5. $Lag_4(V)$ 4-fold covering space prefix constructor Discussion: [Train1] 6. \mathcal{M}_{Σ} moduli space subfix constructor Discussion: [Train1] 7. Σ Riemann surface atom variable Discussion: [Train1] 8. $H^1(\Sigma; \mathbb{R})$ chomology space transfix constructor Discussion: [Train1] 9. $H^1(\Sigma; \mathbb{R})/H^1(\Sigma; \mathbb{Z})$ torus infix operator Discussion: [Train1] 10. (M, ω) symplectic manifold circumfix constructor Discussion: [Train1] 11. $f \in \mathcal{C}^{\infty}(M)$ smooth function atom modified Discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] 13. \bot interior product complex infix operator Discussion: Formed via \mathop in T\text{EX}, [Train1] 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple				
Discussion: [Train1] 3. (V, ω) symplectic vector space circumfix constructor Discussion: [Train1] Lagrangian Grassmannian circumfix constructor 5. $Lag_4(V)$ 4-fold covering space prefix constructor Discussion: [Train1] moduli space subfix constructor 6. \mathcal{M}_{Σ} moduli space atom variable Discussion: [Train1] Train1 atom variable 8. $H^1(\Sigma; \mathbb{R})$ chomology space transfix constructor Discussion: [Train1] trunsfix constructor 9. $H^1(\Sigma; \mathbb{R})/H^1(\Sigma; \mathbb{Z})$ torus infix operator Discussion: [Train1] symplectic manifold circumfix constructor Discussion: [Train1] smooth function atom modified 11. $f \in C^{\infty}(M)$ smooth function atom modified Discussion: [Train1] subfix constructor 12. X_f field subfix constructor Discussion: [Train1] complex infix operator 13. J interior product complex variable modified Discussion: [Train1] complex variable modified 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class co		Discussion: [Train1]		$V \not\succeq \kappa \omega$
3. (\mathcal{V}, ω) symplectic vector space circumfix constructor Discussion: [Train1] 4. $Lag(\mathcal{V})$ Lagrangian Grassmannian circumfix constructor Discussion: [Train1] 5. $Lag_4(\mathcal{V})$ 4-fold covering space prefix constructor Discussion: [Train1] 6. \mathcal{M}_{Σ} moduli space subfix constructor Discussion: [Train1] 7. Σ Riemann surface atom variable Discussion: [Train1] 8. $H^1(\Sigma; \mathbb{R})$ chomology space transfix constructor Discussion: [Train1] 9. $H^1(\Sigma; \mathbb{R})/H^1(\Sigma; \mathbb{Z})$ torus infix operator Discussion: [Train1] 10. (M, ω) symplectic manifold circumfix constructor Discussion: [Train1] 11. $f \in \mathcal{C}^{\infty}(M)$ smooth function atom modified Discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] 13. \bot interior product complex infix operator Discussion: Formed via \mathemathemathemathemathemathemathemathe	2.	\mathcal{Z}	self-dual lattice	atom
Discussion: [Train1] 4. $Lag(\mathcal{V})$ Lagrangian Grassmannian circumfix constructor Discussion: [Train1] 5. $Lag_4(\mathcal{V})$ 4-fold covering space prefix constructor Discussion: [Train1] 6. \mathcal{M}_{Σ} moduli space subfix constructor Discussion: [Train1] 7. Σ Riemann surface atom variable Discussion: [Train1] 8. $H^1(\Sigma; \mathbb{R})$ chomology space transfix constructor Discussion: [Train1] 9. $H^1(\Sigma; \mathbb{R})/H^1(\Sigma; \mathbb{Z})$ torus infix operator Discussion: [Train1] 10. (M, ω) symplectic manifold circumfix constructor Discussion: [Train1] 11. $f \in \mathcal{C}^{\infty}(M)$ smooth function atom modified Discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] 13. \bot interior product complex infix operator Discussion: Formed via \mathop in T_{EX}, [Train1] 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple		Discussion: [Train1]		
4. $Lag(\mathcal{V})$ Lagrangian Grassmannian circumfix constructor Discussion: [Train1] 5. $Lag_4(\mathcal{V})$ 4-fold covering space prefix constructor Discussion: [Train1] 6. \mathcal{M}_{Σ} moduli space subfix constructor Discussion: [Train1] 7. Σ Riemann surface atom variable Discussion: [Train1] 8. $H^1(\Sigma; \mathbb{R})$ chomology space transfix constructor Discussion: [Train1] 9. $H^1(\Sigma; \mathbb{R})/H^1(\Sigma; \mathbb{Z})$ torus infix operator Discussion: [Train1] 10. (M, ω) symplectic manifold circumfix constructor Discussion: [Train1] 11. $f \in C^{\infty}(M)$ smooth function atom modified Discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] 13. \bot interior product complex infix operator Discussion: Formed via \mathcal{mathop} in Textor [Train1] 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple	3.	(\mathcal{V},ω)	symplectic vector space	circumfix constructor
Discussion: [Train1] 4-fold covering space prefix constructor Discussion: [Train1] 5. $Lag_4(\mathcal{V})$ 4-fold covering space prefix constructor Discussion: [Train1] 7. Σ Riemann surface atom variable Discussion: [Train1] 8. $H^1(\Sigma;\mathbb{R})$ Chomology space transfix constructor Discussion: [Train1] 9. $H^1(\Sigma;\mathbb{R})/H^1(\Sigma;\mathbb{Z})$ torus infix operator Discussion: [Train1] 10. (M,ω) symplectic manifold circumfix constructor Discussion: [Train1] 11. $f \in \mathcal{C}^{\infty}(M)$ smooth function atom modified Discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] 13. \bot interior product complex infix operator Discussion: Formed via \mathcal{mathop} in T\text{TeX}, [Train1] 14. $[\omega] \in H^2(M;\mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple		Discussion: [Train1]		
5. $Lag_4(\mathcal{V})$ 4-fold covering space prefix constructor Discussion: [Train1] 6. \mathcal{M}_{Σ} moduli space subfix constructor Discussion: [Train1] 7. Σ Riemann surface atom variable Discussion: [Train1] 8. $H^1(\Sigma;\mathbb{R})$ chomology space transfix constructor Discussion: [Train1] 9. $H^1(\Sigma;\mathbb{R})/H^1(\Sigma;\mathbb{Z})$ torus infix operator Discussion: [Train1] 10. (\mathcal{M},ω) symplectic manifold circumfix constructor Discussion: [Train1] 11. $f \in \mathcal{C}^{\infty}(M)$ smooth function atom modified Discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] 13. \bot interior product complex infix operator Discussion: Formed via \mathop in TeX, [Train1] 14. $[\omega] \in H^2(\mathcal{M};\mathbb{R})$ cohomology class complex variable modified Discussion: [Train1]	4.	$Lag(\mathcal{V})$	Lagrangian Grassmannian	circumfix constructor
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Discussion: [Train1]		
6. \mathcal{M}_{Σ} moduli space subfix constructor $\mathbf{Discussion:}$ [Train1] 7. Σ Riemann surface atom variable $\mathbf{Discussion:}$ [Train1] 8. $H^1(\Sigma;\mathbb{R})$ chomology space transfix constructor $\mathbf{Discussion:}$ [Train1] 9. $H^1(\Sigma;\mathbb{R})/H^1(\Sigma;\mathbb{Z})$ torus infix operator $\mathbf{Discussion:}$ [Train1] 10. (M,ω) symplectic manifold circumfix constructor $\mathbf{Discussion:}$ [Train1] 11. $f \in \mathcal{C}^{\infty}(M)$ smooth function atom modified $\mathbf{Discussion:}$ [Train1] 12. X_f field subfix constructor $\mathbf{Discussion:}$ [Train1] 13. \bot interior product complex infix operator $\mathbf{Discussion:}$ Formed via \mathop in Tex. [Train1] 14. $[\omega] \in H^2(M;\mathbb{R})$ cohomology class complex variable modified $\mathbf{Discussion:}$ [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple	5.	$Lag_4(\mathcal{V})$	4-fold covering space	prefix constructor
Discussion: [Train1] 7. Σ Discussion: [Train1] Riemann surface atom variable atom variable biscussion: [Train1] 8. $H^1(\Sigma; \mathbb{R})$ chomology space Discussion: [Train1] transfix constructor infix operator biscussion: [Train1] 9. $H^1(\Sigma; \mathbb{R})/H^1(\Sigma; \mathbb{Z})$ torus infix operator Discussion: [Train1] circumfix constructor infix constructor discussion: [Train1] 10. (M, ω) symplectic manifold circumfix constructor Discussion: [Train1] smooth function atom modified subfix constructor discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] complex infix operator discussion: Formed via \mathop in TEX, [Train1] 13. A interior product piscussion: Formed via \mathop in TEX, [Train1] complex variable modified discussion: [Train1] 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple		Discussion: [Train1]		
7. Σ Riemann surface atom variable Discussion: [Train1] 8. $H^1(\Sigma; \mathbb{R})$ chomology space transfix constructor Discussion: [Train1] 9. $H^1(\Sigma; \mathbb{R})/H^1(\Sigma; \mathbb{Z})$ torus infix operator Discussion: [Train1] 10. (M, ω) symplectic manifold circumfix constructor Discussion: [Train1] 11. $f \in \mathcal{C}^{\infty}(M)$ smooth function atom modified Discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] 13. \square interior product complex infix operator Discussion: Formed via \mathop in T\(\mathbb{T}\)\text{X}, [Train1] 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple	6.	\mathcal{M}_{Σ}	moduli space	subfix constructor
Discussion: [Train1] 8. $H^1(\Sigma; \mathbb{R})$ chomology space place		Discussion: [Train1]		
8. $H^1(\Sigma;\mathbb{R})$ chomology space transfix constructor Discussion: [Train1] 9. $H^1(\Sigma;\mathbb{R})/H^1(\Sigma;\mathbb{Z})$ torus infix operator Discussion: [Train1] 10. (M,ω) symplectic manifold circumfix constructor Discussion: [Train1] 11. $f \in \mathcal{C}^{\infty}(M)$ smooth function atom modified Discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] 13. \bot interior product complex infix operator Discussion: Formed via \mathop in TEX, [Train1] 14. $[\omega] \in H^2(M;\mathbb{R})$ cohomology class complex variable modified Discussion: [Train1]	7.	Σ	Riemann surface	atom variable
Discussion: [Train1] 9. $H^1(\Sigma; \mathbb{R})/H^1(\Sigma; \mathbb{Z})$ torus infix operator Discussion: [Train1] 10. (M, ω) symplectic manifold circumfix constructor Discussion: [Train1] 11. $f \in \mathcal{C}^{\infty}(M)$ smooth function atom modified Discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] 13. \bot interior product complex infix operator Discussion: Formed via \mathop in Tex, [Train1] 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class complex variable modified Discussion: [Train1]		Discussion: [Train1]		
9. $H^1(\Sigma;\mathbb{R})/H^1(\Sigma;\mathbb{Z})$ torus infix operator Discussion: [Train1] 10. (M,ω) symplectic manifold circumfix constructor Discussion: [Train1] 11. $f \in C^{\infty}(M)$ smooth function atom modified Discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] 13. \bot interior product complex infix operator Discussion: Formed via \mathop in TEX, [Train1] 14. $[\omega] \in H^2(M;\mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple	8.	$H^1(\Sigma;\mathbb{R})$	chomology space	transfix constructor
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Discussion: [Train1]		
10. (M, ω) symplectic manifold circumfix constructor Discussion: [Train1] 11. $f \in C^{\infty}(M)$ smooth function atom modified Discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] 13. \Box interior product complex infix operator Discussion: Formed via \mathop in Tex, [Train1] 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple	9.	$H^1(\Sigma;\mathbb{R})/H^1(\Sigma;\mathbb{Z})$	torus	infix operator
Discussion: [Train1] 11. $f \in \mathcal{C}^{\infty}(M)$ smooth function atom modified Discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] 13. \bot interior product complex infix operator Discussion: Formed via \mathop in TEX, [Train1] 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple		Discussion: [Train1]		
11. $f \in \mathcal{C}^{\infty}(M)$ smooth function atom modified Discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] 13. \bot interior product complex infix operator Discussion: Formed via \mathop in Tex, [Train1] 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple	10.	(M,ω)	symplectic manifold	circumfix constructor
Discussion: [Train1] 12. X_f field subfix constructor Discussion: [Train1] 13. \square interior product complex infix operator Discussion: Formed via \mathop in Tex, [Train1] 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple		Discussion: [Train1]		
12. X_f field subfix constructor Discussion: [Train1] 13. \square interior product complex infix operator Discussion: Formed via \mathop in TeX, [Train1] 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple	11.	$f \in \mathcal{C}^{\infty}(M)$	smooth function	atom modified
Discussion: [Train1] 13. \square interior product complex infix operator Discussion: Formed via \mathop in TEX, [Train1] 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple		Discussion: [Train1]		
13. \sqcup interior product complex infix operator Discussion: Formed via \mathop in TEX, [Train1] 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple	12.	X_f	field	subfix constructor
Discussion: Formed via \mathop in TeX, [Train1] 14. $[\omega] \in H^2(M; \mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple		Discussion: [Train1]		
14. $[\omega] \in H^2(M;\mathbb{R})$ cohomology class complex variable modified Discussion: [Train1] 15. (\cdot, \cdot) template, hermitian metric template tuple	13.		interior product	complex infix operator
Discussion: [Train1] $15. (\cdot, \cdot) \qquad \qquad \text{template, hermitian metric} \text{template tuple}$		Discussion: Formed via	\mathop in TEX, [Train1]	
15. (\cdot, \cdot) template, hermitian metric template tuple	14.	$[\omega] \in H^2(M;\mathbb{R})$	cohomology class	complex variable modified
• •		Discussion: [Train1]		
Discussion: [Train1]	15.	(\cdot,\cdot)	template, hermitian metric	template tuple
		Discussion: [Train1]		

Table 3.2: Differential Geometry Notations, Part $\boldsymbol{1}$

	Expression	Denotation	Annotation
16.	$-2\pi\mathrm{i}\omega$	complex number	invisible prefix infix operator expression
	Discussion: [Train1]		
17.	$(\mathcal{L}, abla)$	prequantum line bundle	circumfix constructor
	Discussion: [Train1]		
18.	$U \subset M$	open subset	modified atom
	Discussion: [Train1]		
19.	$\mathcal{L} _{U}$	restricted line bundle	modified atom
	Discussion: postfix restriction via " $ _{U}$	", [Train1]	
20.	$s \in \Gamma(U; \mathcal{L})$	nonzero section	modified atom
	Discussion: [Train1]		
21.	$\nabla s = -2\pi \mathrm{i}\thetas$	equation	relation
	Discussion: [Train1]		
22.	$\omega _U = d\theta$	equation	relation
	Discussion: [Train1]		
23.	T_xM	bundle	metonymy infix invisible constructor
Discussion: metonymy for tangent bundle, concat is a space-constructor, [Train1]			
24.	$\omega _{\mathcal{P}_x} \equiv 0$	equivalence	relation
	Discussion: [Train1]		
25.	$\dim \mathcal{P}_x = \frac{1}{2} \dim T_x M$	equality	relation
	Discussion: dim has lower precedence	e than invisible bundle-formation,	[Train1]
26.	$[X,Y] \in \mathcal{X}_{\mathcal{P}}(M)$	commutator is in set	relation
	Discussion: used as verb phrase in se	ntence, [Train1]	
27.	$ abla^{\mathcal{P}}$	covariant differentiation	scripted prefix op
	Discussion: big op?, [Train1]		
28.	$\nabla^{\mathcal{P}}: \mathcal{X}_{\mathcal{P}}(M) \times \mathcal{X}_{\mathcal{P}}(M) \longrightarrow \mathcal{X}_{\mathcal{P}}(M)$ $(X, Y) \longmapsto \nabla_{X}^{\mathcal{P}} Y,$	domain specification	type modifier
	Discussion: alignment splits type state		
29.	$(\nabla_X^{\mathcal{P}} Y) \perp \omega = X \perp d(Y \perp \omega).$	definitional assignment	infix relation
	Discussion: trailing dot, [Train1]		
30.	$\Pi_{\mathcal{P}}: M \to M/\mathcal{P}$	canonical projection map	type modifier
	Discussion: [Train1]		

Table 3.3: Differential Geometry Notations, Part 2 $\,$

	Expression	Denotation	Annotation			
31.	T^g	g-dimensional torus	complex object			
	Discussion: script means dimensionality[Train1]					
32.	q_1,\ldots,q_g	coordinate functions	enumerative sequence			
	Discussion: [Train1]					
33.	X_{q_1},\ldots,X_{q_g}	Hamiltonian vector fields	enumerative sequence			
	Discussion: [Train1]					
34.	$q_1 \circ \Pi_{\mathcal{P}}, \dots, q_g \circ \Pi_{\mathcal{P}}$	functions	enumerative sequence			
	Discussion: sequence elements are applicative of	bjects, [Train1]				
35.	$\gamma_1(\Lambda),\ldots,\gamma_g(\Lambda)$	basis for a homology group	enumerative sequence			
	Discussion: [Train1]					
36.	$j_i(y) = \int \theta$, where $y = \Pi_{\mathcal{P}}(\Lambda)$,	definitional assignment	infix relation			
	$\gamma_i(\Lambda)$ Discussion: integral has no binder, nat. lang. modifier, punctuation, [Train1]					
37.	$\operatorname{Det} \mathbb{V} = \overset{n}{\wedge} \mathbb{V}$	definitional assignment	infix relation			
	Discussion: n -ary wedge?, hidden binder on \mathbb{V} , [Train1]					
38.	$\kappa\left(X_{j_1}\big _{\Lambda},\ldots,X_{j_g}\big _{\Lambda}\right)=1.$	canonically defined density	infix relation			
	Discussion: bars as postfix, within a sequence [Train1]					
39.	$(\nabla_W^{\mathcal{P}} \nu)(X_1^*, \dots, X_g^*) = W(\nu(X_1^*, \dots, X_g^*)),$	definitional assignment ¹	infix relation			
	Discussion: applied function is fenced, [Train1]					
40.	$0 \longrightarrow \Omega^0_{\mathcal{P}}(\mathcal{L}_{\mathcal{P}}) \xrightarrow{\nabla^{\mathcal{P}}} \Omega^1_{\mathcal{P}}(\mathcal{L}_{\mathcal{P}}) \xrightarrow{\nabla^{\mathcal{P}}} \cdots \xrightarrow{\nabla^{\mathcal{P}}} \Omega^g_{\mathcal{P}}(\mathcal{L}_{\mathcal{P}}) \longrightarrow 0$	complex	type?			
	Discussion: arrows as transitions, ellipsis, [Train1]					
41.	$\overset{k}{\wedge}\mathcal{P}^*\otimes\mathcal{L}_{\mathcal{P}}$	line bundle	applicative constructor?			
	Discussion: which operator binds first?,[Train1]					
42.	$c_{\Lambda} = \int_{\Lambda} f_{\Lambda} \hat{\kappa}$	definitional assignment	infix relation			
	Discussion: bound variable in integral subscript[Train1]					
43.	$H^g(M; \mathcal{P}, \mathcal{L}_{\mathcal{P}}) \cong \bigoplus_{\Lambda \subset \mathcal{BS}_{\mathcal{P}}} S_{\Lambda}$	natural isomorphism	infix relation			
	Discussion: n -ary \oplus , congruence, [Train1]					
44.	(s,s')	function on Λ	circumfix constructor			
	Discussion: shorthand constructor for a function, [Train1]					
45.	$\int (s, s') \mu * \mu'$	integral application	prefix application			
	Λ Discussion: binder in subscript, infix operator '	'y" hinds stronger than invisible an	nly [Train1]			

Table 3.4: Differential Geometry Notations, Part 3 $\,$

46. $\langle \langle \cdot, \cdot \rangle \rangle : \mathcal{H}_{\mathcal{P}_2} \times \mathcal{H}_{\mathcal{P}_1} \to \mathbb{C}$ sesquilinear pairing pattern type	modifier			
Discussion: operator pattern, along with operator type [Train1]				
47. $\omega = \sum_{i=1}^{g} dp^{i} \wedge dq^{i}$ symplectic form infix	relation			
Discussion: sum over wedge applications, [Train1]				
48. $p^i = \text{constant}$				
Discussion: bad text/math modality, RHS outside of math[Train1]				
49. $W \cdot (X, \lambda) = (X + W, \epsilon(W) e^{\pi i k \omega(W, X)} \lambda),$ Z-action definition infix	relation			
Discussion: defines operator ·, arguments quantified via NL following the math expression,[To	rain1]			
50. $l (l \le g)$ dimension modified	fied object			
Discussion: invisible modifier, using fenced relation,[Train1]				
51. $(W_1, \dots, W_g; W_1^{\perp}, \dots, W_g^{\perp})$ symplectic basis circum	mfix constructor			
Discussion: distinction between commas and semicolon, [Train1]				
52. $i = 1, \dots, g$ definitional range infix	relation			
Discussion: defined to be a sequence? or modifying restriction over a range?, [Train1]				
53. $X \in \mathcal{V}, W \in \mathcal{P}$ conjunction of statements seque	ence of relations			
Discussion: comma denotes NL "and" between two relational statements,[Train1]				
54. $k \omega(W_i, X) \in \mathbb{Z}, i = 1, \dots, g,$ statement modifies	fied relation			
Discussion: four scopes of commas, also hinted by spacing, [Train1]				
55. $q_i \pmod{k}$ modulo invisi	ble modifier			
Discussion: fenced modifier argument, prefix mod?,[Train1]	Discussion: fenced modifier argument, prefix mod?,[Train1]			
56. $\Lambda_{\mathbf{q}=(q_1,\ldots,q_g)}: k\omega(W_i,X) = q_i \pmod{k}, i=1,\ldots,g.$ orbit description infix	relation			
Discussion: complex expression, rich in phenomena,[Train1]				
57. $\hat{\Lambda}_{\mathbf{q},\mathbf{l}} = \{X \in \mathcal{V} \mid k \omega(W_i, X) = q_i + kl_i, i = 1, \dots, g\}.$ definitional assignment infix	relation			
Discussion: modified relation!,[Train1]				
58. $\{\sigma_{\mathbf{q}} = s_{\mathbf{q}} \otimes \delta_{\mathbf{q}}\}_{\mathbf{q} \in (\mathbb{Z}/k\mathbb{Z})^g}$ standard unitary basis if $\mathcal{H}_{\mathcal{P}}$ set co	onstructor			
Discussion: relational modifier to set constructor argument, subscripted set range, [Train1]				
59. $k\omega(W_i, T_j) = \delta_{ij}$ $i, j = h + 1, \dots, g$ statement infix	relation			
Discussion: spaces determine equality scopes, act as conjunctions; equality on sequence and r	range[Train1]			
60. $[\mathbf{l}] = [(l_1, \dots, l_g)] \in \mathbb{Z}^g / \omega(2, 1) \mathbb{Z}^g$ equivalence class doubted	ly modified object			
Discussion: two relations modify [1], chained modifying? or nested modifying?[Train1]				

Table 3.5: Differential Geometry Notations, Part 4 $\,$

atom					
perator apply					
oly					
51y					
110					
odifier					
Discussion: × is weaker than invisible application, when in a typing context?, [Train1] 55. $L_1, L_2, L_3, L_4 \in Lag(V)$ set membership infix relation					
ation					
Discussion: multirelation? membership holds for each of the sequence entries on LHS, [Train1] $r \equiv \pmod{q}$ equivalence infix relation					
ation					
Discussion: second-order relation, r is used as a superscript notation for modulo apply, [Train1]					
odifier					
x constructor					
ansition					
nt arrow interplay [Train1]					

Table 3.6: Differential Geometry Notations, Part 5

EdN:39 EdN:40 39 40

3.4 Other fields

Quantum Physics

EdN:41

41 42 :

EdN:42

 $^{^{39}{\}rm EDNOTE}$: Scripts give you new names or new objects $^{40}{\rm EDNOTE}$: Prime scripts can be used for both naming and operating $^{41}{\rm EDNOTE}$: Bra-ket notation $^{42}{\rm EDNOTE}$: computer science, biology, chemistry...

Discussion

Conclusion