

VT8605/86C370

66 / 100 / 133 MHz
Single-Chip Slot-1 / Socket-370 North Bridge
for Desktop PC Systems with
Integrated Savage4 AGP4X Graphics Core
plus Advanced Memory Controller
supporting PC100 / PC133 SDRAM,
Virtual Channel Memory (VCM), & ESDRAM

Preliminary Revision 0.7 September 8, 1999

VIA TECHNOLOGIES, INC.

S3 INC.

Copyright Notice:

© Copyright 1999 S3 Incorporated. All rights reserved. If you have received this document from S3 Incorporated in electronic form, you are permitted to make the following copies for business use related to products of S3 Incorporated: one copy onto your computer for the purpose of online viewing, and one printed copy. With respect to all documents, whether received in hard copy or electronic form, other use, copying or storage, in whole or in part, by any means electronic, mechanical, photocopying or otherwise, is not permitted without the prior written consent of S3 Incorporated, P.O. Box 58058., Santa Clara CA 95052-8058. S3, S3 ON BOARD, S3d (design and word), Trio and ViRGE are registered trademarks of S3 Incorporated. The S3 Corporate Logo, Sight. Sound. Speed., Trio64V2, Savage, Savage3D, Savage4/MX, S3TC, DuoView, and Streams Processor are trademarks of S3 Incorporated. Other trademarks referenced in this document are owned by their respective companies. The material in this document is for information only and is subject to change without notice. S3 Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Copyright © 1997, 1998, 1999 VIA Technologies Incorporated. Printed in the United States. ALL RIGHTS RESERVED.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated.

VT82C585, VT82C586B, VT82C587, VT82C590, VT82C595, VT82C596B, VT82C597, VT82C598, VT82C598, VT82C680, VT82C685, VT82C686A, VT82C687, VT82C596A, VT82C691, VT82C692, VT82C693, VT82C693A, VT82C694, VT82C694A, VT8605, VT8601, Mobile South, Super South, Apollo VP, Apollo VP2, Apollo VP3, Apollo MVP3, Apollo MVP4, Apollo P6, Apollo Pro, Apollo ProPlus, Apollo Pro133, and Apollo ProMedia may only be used to identify products of VIA Technologies.

PS/2TM is a registered trademark of International Business Machines Corp.

PentiumTM P54CTM P55CTM and MMXTM are registered trademarks of Intel Corp.

Cyrix6x86TM is a registered trademark of Cyrix Corp.

AMD5_K86TM AMD6_K86TM, AMD-K5TM and AMD-K6TM are registered trademarks of Advanced Micro Devices Corp.

Windows 95TM and Plug and PlayTM are registered trademarks of Microsoft Corp.

PCITM is a registered trademark of the PCI Special Interest Group.

VESATM is a trademark of the Video Electronics Standards Association.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

VIA USA Office: 1045 Mission Count Fremont, CA 94539 USA

Tel: 510-683-3300 FAX: 510-683-3301

Home Page: http://www.viatech.com

V/A Taiwan Office 8th Floor, No. 533 Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC Tel: 886-2-2218-5452 FAX: 886-2-2218-5453

Home page: http://www.via.com.tw

S3 Incorporated 2841 Mission College Boulevard Santa Clara, CA 95054-1838 USA

Tel: 408-588-8000 FAX: 408-980-5444

Home Page: http://www.s3.com

REVISION HISTORY

Document Release	Date	Revision	Initials
0.1	7/7/99	Initial internal release	EC
0.2	7/9/99	Fixed document formatting	DH
0.3	8/17/99	Added pinouts and pin descriptions; Updated mechanical spec to 552 pins.	DH
0.4	8/19/99	Added S3 logos and changed disclaimer to "VIA and S3 Confidential"	DH
		Updated feature bullets, overview, register summary tables, and register bits	
		Added Case Temperature spec	
0.5	8/24/99	Added "86C370" S3 part number	DH
		Fixed typos in feature bullets, overview, pin descriptions & func descriptions	
		Fixed TVOUT pinouts and INTA# pin description	
0.6	8/27/99	Updated feature bullets and overview text	DH
		Fixed typos in pin diagram and MD, MA, PANELD & GOP0 pin descriptions	
		Removed incorrect note under panel interface pin descriptions	
		Moved BISTON and DFTON in pin descriptions to group with test pins	
		Changed pin names to match S3 docs: RED, GRN, BLU => AR, AG, AB,	
		IRSET => RSET, SCL[2:1] => SPCLK[2:1], SDA[2:1] => SPDAT[2:1]	
		Changed CRAA to CRB1 (global change)	
		Fixed diagram formatting problem in Functional Description section	
		Changed Case Operating temperature to 110 degrees and AC conditions	
		temperature to 55 degrees	
		Added S3 logo to mechanical specification diagram	
0.7	9/8/99	Changed pinouts of GPOUT, GOP0, PWROK (and added 1 GND & removed	DH
		1 VSUS25) per latest engineering pinout document (rev 1.3, 9/8/99)	
		Fixed "VIA" capitalization in feature bullets	

TABLE OF CONTENTS

REVISION HISTORY	I
TABLE OF CONTENTS	II
LIST OF FIGURES	
LIST OF TABLES	IV
OVERVIEW	4
HIGH-PERFORMANCE 3D ACCELERATOR	
128-BIT 2D GRAPHICS ENGINE	5
DVD PLAYBACK AND VIDEO CONFERENCING	
FLAT PANEL DESKTOP MONITOR SUPPORT	6
HIGH SCREEN RESOLUTION CRT SUPPORT	6
PINOUTS	7
PIN DESCRIPTIONS	10
REGISTERS	20
REGISTER OVERVIEW	20
MISCELLANEOUS I/O.	
CONFIGURATION SPACE I/O	
DEVICE 0 REGISTER DESCRIPTIONS.	
Device 0 Header Registers - Host Bridge	24
Device 0 Configuration Registers - Host Bridge	25
DRAM Control	
PCI Bus Control	32
GART / Graphics Aperture Control	36
AGP Control	37
DEVICE 1 REGISTER DESCRIPTIONS	39
Device 1 Header Registers - PCI-to-PCI Bridge	39
Device 1 Configuration Registers - PCI-to-PCI Bridge	41
AGP Bus Control	41
FUNCTIONAL DESCRIPTION - INTEGRATED SAVAGE4 GRAPHICS	43
CONFIGURATION STRAPPING	43
PCI CONFIGURATION AND INTEGRATED AGP	43
PCI Configuration	43
PCI Subsystem ID	
Integrated AGP	44
DISPLAY MEMORY	44
INTERRUPT GENERATION	45
DISPLAY INTERFACES.	45
CRT Interface	
External TV Encoder Interface	
TFT Flat Panel TMDS Interface	
I2C Serial Communications Port	46

ELECTRICAL SPECIFICATIONS	47
ABSOLUTE MAXIMUM RATINGS	47
DC CHARACTERISTICS	47
AC TIMING SPECIFICATIONS	47
MECHANICAL SPECIFICATIONS	48

LIST OF FIGURES

FIGURE 1. VT8605 / 86C370 SYSTEM BLOCK DIAGRAM WITH VT8231 PCI-LPC SOUT	ГН BRIDGE4
FIGURE 2. VT8605 / 86C370 BALL DIAGRAM (TOP VIEW)	,
FIGURE 3. VT8605 / 86C370 PIN LIST (NUMERICAL ORDER)	
FIGURE 4. VT8605 / 86C370 PIN LIST (ALPHABETICAL ORDER)	
FIGURE 5. GRAPHICS APERTURE ADDRESS TRANSLATION	
FIGURE 6. EXTERNAL TV ENCODER INTERFACE	45
FIGURE 7. TMDS INTERFACE	
FIGURE 8 MECHANICAL SPECIFICATIONS 552 DIN BALL CRID APPAY DACKAC	

LIST OF TABLES

TABLE 1. VT8605 / 86C370 PIN DESCRIPTIONS	10
TABLE 2. VT8605 / 86C370 REGISTERS	20
TABLE 3. SYSTEM MEMORY MAP	27
TABLE 4. MEMORY ADDRESS MAPPING TABLE	27
TABLE 5. VGA/MDA MEMORY/IO REDIRECTION	
TABLE 6. DEFINITION OF STRAPPING BITS AT THE RISING EDGE OF THE RESET SIGNAL	43
TABLE 7. PCI SUBSYSTEM ID AND SUBSYSTEM VENDOR ID REGISTERS	4 4
TABLE 8. SUPPORTED FRAME BUFFER MEMORY CONFIGURATIONS	44
TABLE 9. EXTERNAL TV ENCODER OUTPUT DATA FORMATS	45
TABLE 10. ABSOLUTE MAXIMUM RATINGS	
TABLE 11. DC CHARACTERISTICS	47
TABLE 12. AC TIMING MIN / MAX CONDITIONS	47

VT8605 (VIA) 86C370 (S3)

66 / 100 /133 MHz
Single-Chip Slot-1 / Socket-370 North Bridge
for Desktop PC Systems with
Integrated Savage4 AGP 4X Graphics core
plus Advanced Memory Controller
supporting PC100 / PC133 SDRAM,
Virtual Channel Memory (VCM), and ESDRAM

Defines Integrated Solutions for Value PC Desktops

- High performance SMA North Bridge: Integrated VIA Apollo Pro133A and S3[®] Savage4™ in a single chip
- 64-bit Advanced Memory controller supporting PC100/PC133 SDRAM, VCM, and ESDRAM
- AGP Expansion Interface supporting AGP 4x, 2x, or 1x external AGP graphics card upgrade
- Combines with VIA VT8231 PCI-LPC South Bridge for state-of-the-art power management

• High Performance CPU Interface

- Slot 1 and Socket 370 support for Intel[®] Pentium[®] III, Pentium II, and Celeron[™] processors
- 66/100/133 MHz CPU Front Side Bus (FSB)
- Built-in Phase Lock Loop circuitry for optimal skew control within and between clocking regions
- Five outstanding transactions (four In-Order Queue (IOQ) plus one output latch)
- Dynamic deferred transaction support

• Advanced High-Performance DRAM Controller

- DRAM interface runs synchronous (66/66, 100/100, 133/133) mode or pseudo-synchronous (66/100, 100/66, 100/133, 133/100) mode with FSB
- Concurrent CPU, AGP, and PCI access
- Supports SDRAM, VCM SDRAM, and ESDRAM memory types
- Support 3 DIMMs or 6 banks for up to 1.5 GB of DRAM (256Mb DRAM technology)
- 64-bit data width
- Supports maximum 8-bank interleave (8 pages open simultaneously); banks are allocated based on LRU
- SDRAM X-1-1-1-1-1-1 back-to-back accesses

Accelerated Graphics Port (AGP) Controller

- AGP Specification Rev. 2.0 compliant
- Supports 266 MHz 4x mode for AD and SBA signaling
- Supports SideBand Addressing (SBA) mode (non-multiplexed address/data)
- Pipelined split-transaction long-burst transfers up to 1GB/sec
- Intelligent request reordering for maximum AGP bus utilization
- AGP Expansion graphics override the integrated graphics by default with no SMA frame buffer

• Integrated Savage4 2D/3D/Video Accelerator

- Optimized Shared Memory Architecture (SMA)
- 2 to 32 MB frame buffer using system memory
- Floating point triangle setup engine
- Single cycle 128-bit 3D architecture
- 8M triangles/second setup engine
- 140M pixels/second trilinear fill rate
- Full AGP 4x, including sideband addressing and execute mode
- S3 DX6 texture compression (S3TC)
- Next generation, 128-bit 2D graphics engine
- High quality DVD video playback
- Flat panel monitor support
- 2D/3D resolutions up to 1920x1440

• 3D Rendering Features

- Single-pass multiple textures
- Anisotropic filtering
- 8-bit stencil buffer
- 32-bit true color rendering
- Specular lighting and diffuse shading
- Alpha blending modes
- Massive 2K x 2K textures
- MPEG-2 video textures
- Vertex and table fog
- 16 or 24-bit Z-buffering
- Sprite anti-aliasing, reflection mapping, texture morphing, shadows, procedural textures and atmospheric effects

• 2D Hardware Acceleration Features

- ROP3 Ternary Raster Operation BitBLTs
- 8, 16, and 32 bpp mode acceleration

• Motion Video Architecture

- High quality up/down scaler
- Planar to packed format conversion
- Motion compensation for full speed DVD playback
- Hardware subpicture blending and highlights
- Multiple video windows for video conferencing
- Contrast, hue, saturation, brightness and gamma controls
- Digital port for NTSC/PAL TV encoders

Flat Panel Monitor Support

- 12-bit digital interface for Flat Panel encoders
- Auto-expansion and centering for VGA modes
- Support for all resolutions up to 1280x1024
- Digital Visual Interface (DVI) 1.0 compliant

• Concurrent PCI Bus Controller

- PCI 2.1 compliant, 32-bit 3.3V PCI interface with 5V tolerant inputs
- Supports up to 5 PCI masters
- PCI to system memory data streaming support
- Delay transaction from PCI master accessing DRAM
- Symmetric arbitration between Host/PCI bus for optimized system performance

• Advanced System Power Management Support

- Dynamic power down of SDRAM (CKE)
- Independent clock stop controls for CPU / SDRAM, AGP, and PCI bus
- PCI and AGP bus clock run and clock generator control
- VTT suspend power plane preserves memory data
- Suspend-to-DRAM and self-refresh power down
- Low-leakage I/O pads
- ACPI 1.0 and PCI Bus Power Management 1.1 compliant

• Full Software Support

- Drivers for major operating systems and APIs: [Windows[®] 9x, Windows NT 4.0, Windows 2000, Windows 3.x, OS/2[®] 2.1/3.0 (Warp™), Linux, Direct3D™, DirectDraw™ and DirectShow™, OpenGL™ ICD for Windows 9x, NT, and 2000]
- North Bridge/Chipset and Video BIOS support

• Additional Features

- 300 MHz RAMDAC with Gamma Correction
- I²C Serial Bus and DDC Monitor Communications
- 2.5V Core and Mixed 3.3V/5V Tolerant and GTL+I/O
- 35 x 35mm PBGA package with 552 balls

OVERVIEW

The VT8605 / 86C370 is a high performance, cost-effective and energy efficient SMA chip set for the implementation of AGP / PCI / LPC desktop personal computer systems with 66 MHz, 100 MHz and 133 MHz CPU host bus ("Front Side Bus") frequencies and based on 64-bit Socket-370 and Slot-1 (Intel Pentium III, Pentium-II and Celeron) super-scalar processors. VT8605 is the VIA part number and 86C370 is the S3 part number.

Figure 1. VT8605 / 86C370 System Block Diagram with VT8231 PCI-LPC South Bridge

The VT8605 / 86C370 integrates VIA's VT82C694X system controller and S3's Savage4 2D/3D graphics accelerator into a single 552 BGA package. The VT8605 / 86C370 SMA system controller provides superior performance between the CPU, DRAM, AGP bus, and PCI bus with pipelined, burst, and concurrent operation.

The VT8605 / 86C370 supports six banks of DRAMs up to 1.5Gbyte of system memory with 256Mbit DRAM technology. The DRAM controller supports standard Synchronous DRAM (SDRAM) and Virtual Channel SDRAM (VC SDRAM), in a flexible mix / match manner. The Synchronous DRAM interface allows zero wait state bursting between the DRAM and the data buffers at 66/100/133 MHz. The six banks of DRAM can be composed of an arbitrary mixture of 1M / 2M / 4M / 8M / 16M / 32MxN DRAMs. The DRAM controller can run at either the host CPU bus frequency (66/100/133 MHz) or pseudo-synchronous to the CPU bus frequency (66/100/133 MHz) with built-in PLL timing control.

The VT8605 / 86C370 system controller also supports full AGP v2.0 capability for maximum bus utilization including 1x/2x/4x mode transfers, SBA (SideBand Addressing), Flush/Fence commands, and pipelined grants. An eight level request queue plus a four level post-write request queue with thirty-two and sixteen quadwords of read and write data FIFO's respectively are included for deep pipelined and split AGP transactions. A single-level GART TLB with 16 full associative entries and flexible CPU / AGP / PCI remapping control is also provided for operation under protected mode operating environments. Both Windows-95 VXD

and Windows-98 / Windows 2000 miniport drivers are supported for interoperability with integrated Savage4 graphics, AGP Expansion graphics, and DVD-capable multimedia accelerators.

The VT8605 / 86C370 supports two 32-bit 3.3 / 5V system buses (one AGP and one PCI) that are synchronous / pseudo-synchronous to the CPU bus. The chip also contains a built-in bus-to-bus bridge to allow simultaneous concurrent operations on each bus. Five levels (doublewords) of post write buffers are included to allow for concurrent CPU and PCI operation. For PCI master operation, forty-eight levels (doublewords) of post write buffers and sixteen levels (doublewords) of prefetch buffers are included for concurrent PCI bus and DRAM/cache accesses. The chip also supports enhanced PCI bus commands such as Memory-Read-Line, Memory-Read-Multiple and Memory-Write-Invalid commands to minimize snoop overhead. In addition, advanced features are supported such as snoop ahead, snoop filtering, L1 write-back forward to PCI master, and L1 write-back merged with PCI post write buffers to minimize PCI master read latency and DRAM utilization. Delay transaction and read caching mechanisms are also implemented for further improvement of overall system performance.

The VT8605 / 86C370 also integrates S3[®]'s Savage4TM graphics accelerator into a single chip. The VT8605 / 86C370 brings mainstream graphics performance to the Value PC with leading-edge 2D, 3D and DVD video acceleration into a cost effective package. Based on its capabilities, the VT8605 / 86C370 is an ideal solution for the consumer, corporate desktop users and entry level professionals.

The industry's first integrated AGP 4X solution, the VT8605 / 86C370 combines AGP 4X with S3's DX6 texture compression (S3TC) and massive 2Kx2K textures to deliver unprecedented 3D performance and image quality for the Value PC desktop market

The 352-pin VT8231 BGA PCI-LPC bridge supports four levels (doublewords) of line buffers, type F DMA transfers and delay transaction to allow efficient PCI bus utilization and (PCI-2.1 compliant). The VT8231 also includes an integrated Super I/O, integrated DS12885 style real time clock with extended 256 byte CMOS RAM, integrated master mode enhanced IDE controller with full scatter / gather capability and extension to UltraDMA-33/66/100 for 33/66/100 MB/sec transfer rate, integrated four USB interface with root hub and two function ports with built-in physical layer transceivers, Distributed DMA support, integrated AC-97 link for basic audio and HSP based modem functions, integrated hardware monitoring and OnNow / ACPI compliant advanced configuration and power management interface. VT8231 also integrated MAC and 10Mbit PHY for LAN connection. It can bypass the internal PHY with external home PNA with a 1Mbit PHY or a 10/100Mbit PHY through the MII interface.

For sophisticated power management, the VT8605 / 86C370 provides independent clock stop control for the CPU / SDRAM, PCI, and AGP buses and Dynamic CKE control for powering down of the SDRAM. A separate suspend-well plane is implemented for the SDRAM control signals for Suspend-to-DRAM operation. Coupled with the VT8231 south bridge chip, a complete power conscious PC main board can be implemented with no external TTLs.

High-Performance 3D Accelerator

Featuring a new super-pipelined 128-bit engine, the VT8605 / 86C370 utilizes a single cycle architecture that provides high performance along with superior image quality. Several new features enhance the 3D architecture, including single-pass multitexturing, full scene anti-aliasing, anisotropic filtering, and an 8-bit stencil buffer. The VT8605 / 86C370 also offers the industry's only simultaneous usage of single-pass multitexturing and single-cycle trilinear filtering – enabling stunning image quality without performance loss. the VT8605 / 86C370 further enhances image quality with true 32-bit color rendering throughout the 3D pipeline to produce more vivid and realistic images. The VT8605 / 86C370's advanced triangle setup engine provides industry leading 3D performance for a realistic user experience in games and other interactive 3D applications. The 3D engine is optimized for AGP texturing from system memory.

128-bit 2D Graphics Engine

The VT8605 / 86C370's advanced 128-bit 2D graphics engine delivers high-speed 2D acceleration for productivity applications. Several enhancements have been made to the 2D architecture to optimize SMA performance and to provide acceleration in all color depths.

DVD Playback and Video Conferencing

The VT8605 / 86C370 provides the ideal architecture for high quality MPEG-2 based DVD applications and video conferencing. For DVD playback, the VT8605 / 86C370's video accelerator offloads the CPU by performing the planar to packed format conversion and motion compensation tasks, while its enhanced scaling algorithm delivers incredible full-screen video playback. For video conferencing, the VT8605 / 86C370's multiple video windows enable a cost effective solution.

Flat Panel Desktop Monitor Support

The VT8605 / 86C370 has the capability of displaying graphics on TFT flat panel desktop monitors using a 12-bit digital interface to an external encoder. The VT8605 / 86C370 also supports autoexpansion and centering of all VGA text and graphics modes to ensure that the entire flat panel display will be utilized. All resolutions are supported up to 1280×1024 . The solution is Digital Visual Interface 1.0 specification compliant.

High Screen Resolution CRT Support

	System Memory Frame Buffer Size (8MB Default)								
Resolutions Supported	4 MB	8 MB	16/32 MB						
640x480x8/16/32	~	V	V						
800x600x8/16/32	~	~	V 9						
1024x768x8/16/32	~	~	×						
1280x1024x8	~	~	V						
1280x1024x16	V	~	V						
1280x1024x32	1	~	V						
1600x1200x8	~	~	V						
1600x1200x16	V	-	~						
1600x1200x32		V	~						
1920x1440x8	V	V /	~						
1920x1440x16		V	- 1						

PINOUTS

Figure 2. VT8605 / 86C370 Ball Diagram (Top View)

Key	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
A	GND RGB	HD61	HD60	HD54	HD55	HD59	HD40	HD27	HD39	HD34	HD33	HD24	HD7	HD13	HD2	HD4	HA29	HA30	HA20	HA19	HA5	HA11	HA14	BNR#	BPRI#	DEFER#
В	GND DAC	AB	HD62	HD58	HD63	HD48	HD41	HD45	HD36	HD28	HD25	HD21	HD3	HD9	HD10	HD6	HD0	HA24	HA17	HA10	HA16	HA6	HA7	HREQ 0#	HREQ 2#	H LOCK#
C	VCC DAC	VCC RGB	GND	HD56	HD53	GND	HD52	HD44	GND	HD31	HD26	GND	HD20	HD14	GND	HD1	CPU PST#	GND	HA22	HA21	GND	HA9	HREQ 4#	GND	HREQ 3#	HT RDY#
D	GND	GND	AG	XIN	HD50	HD57	HD47	HD51	HD37	HD22	HD29	HD23	HD30	HD18	HD5	HD8	HA26	HA27	HA25	HA28	HA15	HA13	HREQ	RS1#	HIT#	RS0#
E	PLL2 VCC	PLL1 VCC	AR	DFT	XOUT	HD46	HD42	HD49	HD43	HD38	HD32	HD35	HD16	HD11	HD12	HD15	HA18	HA23	HA31	HA3	HA12	HA8	1# HITM#	DRDY#	DBSY#	RS2#
E	PLL2 H	V	RSET	ON SPDAT		VCC3	GND	GTL	VCC3	GND	HD19	VCC3	GND	GND	VCC3	HD17	GND	VCC3	GTL	GND	VCC3	HA4	BREQ	GND	ADS#	MD63
F	SYNC	SYNC SPDAT	GND	GP	2 PANEL		G7	REF 8	9	10		12			15		17	18	REF 19	G20	GND		0# PLL	C		
G	1	1 PANEL	BIST	OUT PANEL	VS	DE				10	11		13	14 D:	13	16	17	10	19		HCK	HCLK VCC	TEST	RESET	MD31	
H	DET	D0	ON	HS	D4	VCC3	Н	GFX			VCC	VCC	CPU	Pins	VCC	VCC				Н	GND	HCK	MD30	MD61	MD29	MD60
J	D1	D2 PANEL	GOP 0	PANEL D3	D5	GND	J	Pins	VCC3	VCC3	25	VCC 25	VCC3	VCC3	VCC 25	VCC 25	VCC3	VCC3		J	VCC3	MD28	MD59	GND	MD27	MD58
K	PANEI D6	D7	PANEL D8	PANEL D10	GNT 4#	PANEL CLK	K		VCC3	K10	11	12	13	14	15	16	K17	VCC3		K	VCC3	MD26	MD57	MD25	MD56	MD24
L	PANEI D9	PANEL D11	GND	GNT 3#	GNT 2#	VCC3	L		VCC 25	L	GND	GND	GND	GND	GND	GND	L	VCC 25		L	GND	MD55	MD23	MD54	MD22	MD53
M	GNT 1#	GNT 0#	REQ 0#	REQ 1#	PGNT#	GND	M	4	VCC 25	М	GND	GND	GND	GND	GND	GND	M	VCC 25		M	VCC3	MD21	MD52	GND	MD51	MD20
N	WSC#	REQ 4#	REQ 3#	VCC3	REQ 2#	PREQ#	N	PCI	VCC3	N	GND	GND	GND	GND	GND	GND	Ń	VCC3	DRAM	N	MD50	MD19	MD49	MD18	MD48	MD17
P	AD31	AD30	AD29	AD28	AD27	VCC3	P	Pins	VCC3	P	GND	GND	GND	GND	GND	GND	P	VCC3	Pins	P	GND MCK	VCC MCK	MCLK F	MD16	DQM 7	DQM 6
R	AD25	AD26	GND	AD24	CBE3#	GND	R		VCC 25	R	GND	GND	GND	GND	GND	GND	R	VCC3		R	VCC3	MCLK	DQM 2	DQM 3	CS 0#	CS 1#
Т	AD23	AD22	AD21	AD20	AD19	AD18	T		VCC 25	T	GND	GND	GND	GND	GND	GND	T	VCC 25		T	GND	CS 2#	VCC3	GND	CS 3#	CS 4#
U	AD17	AD16	CBE2#	FRM#	IRDY#	PCLK	U		VCC3	U10	11	12	13	14	15	16	U17	VCC 25		U	CS 5#	SRAS A#	CKE0 SRASB#	CKE1 SRASC#	SCAS A#	CKE2 SCASB
V	TRDY	DEV SEL#	STOP#	LOCK#	SERR#	VCC3	v		vccq	VCC 25	vccq	VCCQ	VCC 25	vccq	VCC 25	VCCQ	VCC3	VCC3		v	VCC3	SUST#	CKE3 SCASC#	SWE A#	CKE4 SWEB#	CKE5 SWEC#
W	PAR	CBE1#	GND	AD15	AD10	GND	w						AGP	Pins						w	VSUS 25	PWR OK	MA0	MA1#	MA2	MA3
Y	AD13	AD12	AD11	AD14	PCK RUN#	GND	Y7	8	9	10	11	12	13	14	15	16	17	18	19	Y20	GND	MA4	MA5	GND	MA6	MA7
AA	CBE0#	AD8	AD7	AD6	AD9	VCC3	VCCQ	GND	GD26	VCCQ	GND	VCCQ	GND	VCC GCK	VCCQ	GND	VCC QQ	VCCQ	GND	VCC3	VCC3	MA8	MA9	MA10	MA11	MA12
AB	AD5	AD2	GND	AD1	AD4	G PIPE#	SBA5	GD30	GD22	GD20	GBE2#	GD16	GD11	GCLK	GND GCK	GD12	GND OO	N COMP	MD2	MD36	MD38	MA13	MA14	DQM 0	DQM 1	DQM 4
AC	AD3	INT A#	AD0	RE SET#	VCCQ	SBA6	GD29	VCCQ	GD21	GD18	VCCQ	GD15	GFRM#	VCCQ	GCLK F	GD9	VCCQ	P COMP	MD33	MD4	MD6	MD40	DQM 5	MD47	MD15	MD46
AD	G REO#	G GNT#	ST0	SBA0	SBS	SBA4	GD31	GD24	GD23	GD17	GD SEL#	GT RDY#	GD13	GD10	GD8	GD5	GD4	GD1	MD1	MD35	GND	MD8	MD10	GND	MD14	MD45
AE	ST2	GND	SBA1	SBA2	GND	SBA7	GD27	GND	GDS1#	GD19	GND	G	GPAR GCKR#	GND	GDS0	GD7	GND	GD2	MD32	MD3	MD37	MD39	MD41	MD11	MD13	MD44
AF	ST1	G RBF#	G WBF#	SBA3	SBS#	GD28	GD25	GDS1	GBE3#	AGP REF	GI RDY#	GBE1#	GD14	GBE0#	GDS0#	GD6	GD3	GD0	MD0	MD34	MD5	MD7	MD9	MD42	MD43	MD12

Figure 3. VT8605 / 86C370 Pin List (Numerical Order)

Pin#		Pin Name	Pin #		Pin Name	Pin #		Pin Name	Pin#		Pin Name	Pin#		Pin Names	Pin#		Pin Name
A01 A02		GNDRGB HD61	D03 D04	O	AG XIN	G05 G06	0	PANELVS / TVVS PANELDE / TVCLK	P01 P02	IO IO	AD31 AD30	Y23 Y24	O P	MA05 / strap GND	AC25 AC26		MD15 MD46
A03	Ю	HD60	D05	Ю	HD50	G21	P	GNDHCK	P03	Ю	AD29	Y25	О	MA06 / strap	AD01	I	GREO#
A04 A05		HD54 HD55	D06 D07		HD57 HD47	G22 G23	I	HCLK PLLTEST	P04 P05	IO	AD28 AD27	Y26 AA01	O	MA07 / strap CBE0#	AD02 AD03	0	GGNT# ST0
A05 A06		HD59	D07		HD51	G23 G24	o	CRESET	P05 P06	P	VCC3	AA01 AA02	IO	AD08	AD03 AD04	Ĭ	SBA0
A07 A08		HD40 HD27	D09 D10		HD37 HD22	G25 G26	IO IO	MD31 MD62	P21 P22	P P	GNDMCK VCCMCK	AA03 AA04	IO IO	AD07 AD06	AD05 AD06	I I	SBS SBA4
A09		HD39	D10		HD29	H01	I	PANELDET / TVD11	P23	I	MCLKF	AA05	Ю	AD09	AD07	Ю	GD31
A10 A11		HD34 HD33	D12 D13		HD23 HD30	H02 H03	0	PANELD00 / TVD0 BISTON	P24 P25	OI O	MD16 DQM7 / CAS7#	AA06 AA07	P P	VCC3 VCCQ	AD08 AD09	IO IO	GD24 GD23
A11		HD33 HD24	D13	IO	HD30 HD18	H04	O	PANELHS / TVHS	P26	ő	DQM6 / CAS6#	AA08	P	GND	AD10	Ю	GD23 GD17
A13 A14		HD07 HD13	D15 D16	IO IO	HD05 HD08	H05 H06	O P	PANELD04 / TVD4 VCC3	R01 R02	IO IO	AD25 AD26	AA09 AA10	IO P	GD26 VCCQ	AD11 AD12	IO IO	GDSEL# GTRDY#
	Ю	HD02	D17	Ю	HA26	H21	P	GND	R03	P	GND	AA11	P	GND	AD13		GD13
A16 A17		HD04 HA29	D18 D19		HA27 HA25	H22 H23	P IO	VCCHCK MD30	R04 R05	IO	AD24 CBE3#	AA12 AA13	P P	VCCQ GND	AD14 AD15	IO IO	GD10 GD8
A18		HA30	D20		HA28	H24	IO	MD61	R06	P	GND	AA14	P	VCCGCK	AD16	-	GD5
A19 A20		HA20 HA19	D21 D22		HA15 HA13	H25 H26	IO IO	MD29 MD60	R21 R22	P	VCC3 MCLK	AA15 AA16	P P	VCCO GND	AD17 AD18	IO	GD4 GD1
A21	Ю	HA05	D23	Ю	HREO1#	J01	О	PANELD01 / TVD1	R23	O	DOM2 / CAS2#	AA17	P	vccoo	AD19	Ю	MD01
A22 A23		HA11 HA14	D24 D25		RS1# HIT#	J02 J03	0	PANELD02 / TVD2 GOP0	R24 R25	0	DQM3 / CAS3# CS0# / RAS0#	AA18 AA19	P P	VCCQ GND	AD20 AD21	IO P	MD35 GND
A24		BNR#	D26	Ю	RS0#	J04	ŏ	PANELD03 / TVD3	R26	O	CS1# / RAS1#	AA20	P	VCC3	AD22	Ю	
A25 A26		BPRI# DEFER#	E01 E02	P P	VCCPLL2 VCCPLL1	J05 J06	O P	PANELD05 / TVD5 GND	T01 T02	IO IO	AD23 AD22	AA21 AA22	P	VCC3 MA08 / strap	AD23 AD24	IO P	MD10 GND
B01	P	GNDDAC	E03	О	AR	J21	P	VCC3	T03	Ю	AD21	AA23	О	MA09 / strap	AD25	Ю	MD14
B02 B03		AB HD62	E04 E05	I O	DFTON XOUT	J22 J23	IO IO	MD28 MD59	T04 T05	IO	AD20 AD19	AA24 AA25	0	MA10 / strap MA11 / strap	AD26 AE01	O	MD45 ST2
B03 B04	Ю	HD58	E06	IO	HD46	J24	P	GND	T06	Ю	AD18	AA26	О	MA12 / strap	AE01	P	GND
B05 B06		HD63 HD48	E07 E08	IO IO	HD42 HD49	J25 J26	IO IO	MD27 MD58	T21 T22	P	GND CS2# / RAS2#	AB01 AB02	IO IO	AD05 AD02	AE03 AE04	I I	SBA1 SBA2
B07	Ю	HD41	E09	Ю	HD43	K01	0	PANELD06 / TVD6	T23	P	VCC3	AB03	P	GND	AE05	P	GND
B08 B09		HD45 HD36	E10 E11	IO IO	HD38 HD32	K02 K03	0	PANELD07 / TVD7 PANELD08 / TVD8	T24 T25	P	GND CS3# / RAS3#	AB04 AB05	IO IO	AD01 AD04	AE06 AE07	IO	SBA7 GD27
B10	Ю	HD28	E12	Ю	HD35	K04	- 4	PANELD10 / TVD10	T26	O	CS4# / RAS4#	AB06	I	GPIPE#	AE08	P	GND
B11 B12		HD25 HD21	E13 E14	IO IO	HD16 HD11	K05 K06	0	GNT4# PANELCLK / TVCKR	U01 U02	IO	AD17 AD16	AB07 AB08	I IO	SBA5 GD30	AE09 AE10	IO IO	GDS1# GD19
B13		HD03	E15	Ю	HD12	K21	P	VCC3	U03	Ю	CBE2#	AB09	Ю	GD22	AE11	P	GND
B14 B15		HD09 HD10	E16 E17		HD15 HA18	K22 K23	IO IO	MD26 MD57	U04 U05		FRAME# IRDY#	AB10 AB11	IO IO	GD20 GBE2#	AE12 AE13	IO IO	GSTOP# GPAR/GCKRUN#
B16	Ю	HD06	E18	Ю	HA23	K24	Ю	MD25	U06	I	PCLK	AB12	Ю	GD16	AE14	P	GND
B17 B18		HD00 HA24	E19 E20		HA31 HA03	K25 K26	IO IO	MD56 MD24	U21 U22	0	C\$5# / RAS5# SRASA#	AB13 AB14	IO O	GD11 GCLK	AE15 AE16	IO IO	GDS0 GD7
B19	Ю	HA17	E21	Ю	HA12	L01	О	PANELD09 / TVD9	U23	Ö	CKE0 / SRASB#	AB15	P	GNDGCK	AE17	P	GND
B20 B21		HA10 HA16	E22 E23	IO I	HA08 HITM#	L02 L03	O P	PANELD11 / TVBL# GND	U24 U25	0	CKE1 / SRASC# SCASA#	AB16 AB17	IO P	GD12 GNDQQ	AE18 AE19	IO	GD2 MD32
B22	Ю	HA06	E24	Ю	DRDY#	L04	0	GNT3#	U26	0	CKE2 / SCASB#	AB18	I	NCOMP	AE20	Ю	MD03
B23 B24		HA07 HREQ0#	E25 E26	IO IO	DBSY# RS2#	L05 L06	O P	GNT2# VCC3	V01 V02	IO	TRDY# DEVSEL#	AB19 AB20	IO IO	MD02 MD36	AE21 AE22	IO IO	MD37 MD39
B25	Ю	HREO2#	F01	0	HSYNC	L21	P	GND	V03	Ю	STOP#	AB21	Ю	MD38	AE23	Ю	MD41
B26 C01	I P	HLOCK# VCCDAC	F02 F03	O A	VSYNC RSET	L22 L23	IO IO	MD55 MD23	V04 V05		LOCK# SERR#	AB22 AB23	0	MA13 / strap MA14 / strap	AE24 AE25	IO	MD11 MD13
C02	P	VCCRGB	F04	Ю	SPDAT2	L24	Ю	MD54	V06	P	VCC3	AB24	O	DQM0 / CAS0#	AE26	Ю	MD44
C03 C04		GND HD56	F05 F06		SPCLK2 VCC3			MD22 MD53	V21 V22		VCC3 SUST#	AB25 AB26	0	DOM1 / CAS1# DQM4 / CAS4#	AF01 AF02	O	ST1 GRBF#
C05	Ю	HD53	F07	Ρ.	GND	M01	О	GNT1#	V23	0	CKE3 / SCASC#	AC01	Ю	AD03	AF03	I	GWBF#
C06 C07		GND HD52	F08 F09		GTLREF VCC3	M02 M03	O	GNT0# REQ0#	V24 V25	0	SWEA# CKE4 / SWEB#	AC02 AC03	O IO	INTA# AD00	AF04 AF05	I	SBA3 SBS#
C08	Ю	HD44	F10	P	GND	M04	I	REQ1#	V26	О	CKE5 / SWEC#	AC04	I	RESET#	AF06	Ю	GD28
C09 C10		GND HD31	F11 F12	IO P	HD19 VCC3	M05 M06	0 P	PGNT# GND	W01 W02		PAR CBE1#	AC05 AC06	P I	VCCO SBA6	AF07 AF08	IO IO	GD25 GDS1
C11	Ю	HD26	F13	P	GND	M21	P	VCC3	W03	P	GND	AC07	Ю	GD29	AF09	Ю	GBE3#
C12 C13		GND HD20	F14 F15		GND VCC3			MD21 MD52	W04 W05		AD15 AD10	AC08 AC09	P IO	VCCQ GD21	AF10 AF11	P IO	AGPREF GIRDY#
C14	Ю	HD14	F16	Ю	HD17	M24	P	GND	W06	P	GND	AC10	Ю	GD18	AF12	Ю	GBE1#
C15 C16		GND HD01	F17 F18	P P	GND VCC3		IO IO	MD51 MD20	W21 W22	P	VSUS25 PWROK	AC11 AC12	P IO	VCCO GD15	AF13 AF14		GD14 GBE0#
C17	О	CPURST#	F19	P	GTLREF	N01	О	WSC#	W23	О	MA00 / strap	AC13	Ю	GFRM#	AF15	Ю	GDS0#
C18 C19		GND HA22	F20 F21		GND VCC3	N02 N03	I I	REQ4# REQ3#	W24 W25	0	MA01 / strap MA02 / strap	AC14 AC15	P I	VCCQ GCLKF	AF16 AF17	IO	
C20	Ю	HA21	F22	Ю	HA04	N04	P	VCC3	W26	0	MA03 / strap	AC16	Ю	GD9	AF18	Ю	GD0
C21 C22		GND HA09	F23 F24	O P	BREQ0# GND	N05 N06	I I	REQ2# PREQ#	Y01 Y02	IO IO	AD13 AD12	AC17 AC18	P I	VCCQ PCOMP	AF19 AF20		MD00 MD34
C23	Ю	HREQ4#	F25	Ю	ADS#	N21	Ю	MD50	Y03	Ю	AD11	AC19	Ю	MD33	AF21	Ю	MD05
C24 C25		GND HREQ3#	F26 G01	IO	MD63 SPCLK1	N22 N23	IO IO	MD19 MD49	Y04 Y05		AD14 PCKRUN#	AC20 AC21	IO IO	MD04 MD06	AF22 AF23		MD07 MD09
C26	Ю	HTRDY#	G02	Ю	SPDAT1	N24	Ю	MD18	Y06	P	GND	AC22	Ю	MD40	AF24	Ю	MD42
D01 D02		GNDPLL2 GNDPLL1	G03 G04	P O	GND GPOUT		IO IO	MD48 MD17	Y21 Y22	P	GND MA04 / strap	AC23 AC24		DQM5 / CAS5# MD47	AF25 AF26		MD43 MD12

Center VCC3 Pins (16 pins): J9-10,13-14,17-18, K9,18, N9,18, P9,18, R18, U9, V17-18
Center GND Pins (36 pins): L11-16, M11-16, N11-16, P11-16, R11-16, T11-16

Center VCC25 Pins (15 pins): J11-12,15-16, L9,18, M9,18, R9, T9,18, U18, V10,13,15
Center VCCQ Pins (5 pins): V9,11-12,14,16

Figure 4. VT8605 / 86C370 Pin List (Alphabetical Order)

Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin #		Pin Name	Pin#		Pin Names	Pin#		Pin Name
B02	_	AB	AD18		GD1		P	GND	B12		HD21	AF22	Ю	MD07	G23	I	PLLTEST
AC03 AB04		AD00 AD01	AE18 AF17		GD2 GD3	AE08 AE11	P P	GND GND	D10 D12	IO IO	HD22 HD23	AD22 AF23	IO IO	MD08 MD09	N06 W22	I I	PREQ# PWROK
AB02	IO	AD02	AD17		GD4	AE14	P	GND	A12	Ю	HD24	AD23		MD10	M03	I	REQ0#
AC01		AD03		IO	GD5	AE17	P	GND	B11	IO	HD25	AE24	IO		M04	I	REQ1#
AB05 AB01		AD04 AD05	AF16 AE16		GD6 GD7	B01 AB15	P P	GNDDAC GNDGCK	C11 A08	IO IO	HD26 HD27	AF26 AE25	IO IO	MD12 MD13	N05 N03	I I	REQ2# REQ3#
AA04	Ю	AD06			GD8	G21	P	GNDHCK	B10	Ю	HD28	AD25	Ю	MD14	N02	Ì	REO4#
AA03			AC16			P21	P	GNDMCK	D11		HD29	AC25		MD15	AC04	I	RESET#
AA02 AA05			AD14 AB13		GD10 GD11	D02 D01	P P	GNDPLL1 GNDPLL2	D13 C10	IO IO	HD30 HD31	P24 N26		MD16 MD17	D26 D24	IO IO	RS0# RS1#
W05	Ю	AD10	AB16	Ю	GD12	AB17	P	GNDOO	E11	Ю	HD32	N24	Ю	MD18	E26	Ю	RS2#
Y03 Y02			AD13 AF13	IO IO	GD13 GD14	A01 M02	<u>Р</u>	GNDRGB GNT0#	A11 A10	IO IO	HD33 HD34	N22 M26		MD19 MD20	F03 AD04	A I	RSET SBA0
Y01					GD14 GD15	M01	ŏ	GNT1#	E12		HD35	M22	Ю	MD21	AE03	Ì	SBA1
Y04					GD16	L05 L04	0	GNT2#	B09		HD36	L25 L23		MD22 MD23	AE04	I	SBA2
W04 U02			AD10 AC10		GD17 GD18	K05	0	GNT3# GNT4#	D09 E10		HD37 HD38	K26		MD23 MD24	AF04 AD06	I I	SBA3 SBA4
U01	Ю	AD17	AE10	Ю	GD19	J03	О	GOP0	A09	Ю	HD39	K24	Ю	MD25	AB07	I	SBA5
T06 T05		AD18 AD19	AB10 AC09		GD20 GD21	AE13 AB06	IO	GPAR / GCKRUN# GPIPE#	A07 B07	IO	HD40 HD41	K22 J25		MD26 MD27	AC06 AE06	I I	SBA6 SBA7
T04		AD20			GD21 GD22	G04	O	GPOUT	E07		HD41 HD42	J23		MD28	AD05	I	SBS
T03	IO	AD21	AD09	Ю	GD23	AF02	I	GRBF#	E09	IO	HD43	H25	Ю	MD29	AF05	I	SBS#
T02 T01		AD22 AD23		IO IO	GD24 GD25	AD01 AE12	I	GREO# GSTOP#	C08 B08	IO IO	HD44 HD45	H23 G25		MD30 MD31	U25 V05	O IO	SCASA# SERR#
R04	Ю	AD24	AA09	Ю	GD26	F08	P	GTLREF	E06	Ю	HD46	AE19	Ю	MD32	G01	Ю	SPCLK1
R01 R02		AD25 AD26	AE07 AF06		GD27 GD28	F19 AD12	P IO	GTLREF GTRDY#	D07 B06		HD47 HD48	AC19 AF20	IO		F05 G02	IO	SPCLK2 SPDAT1
P05		AD27	AC07			AF03	I	GWBF#	E08		HD48 HD49			MD34 MD35	F04	Ю	SPDAT1
P04		AD28	AB08				IO	HA03	D05		HD50	AB20		MD36	U22	0	SRASA#
P03 P02		AD29 AD30	AD07 AE15	IO	GD31 GDS0	F22 A21	IO IO	HA04 HA05	D08 C07	IO IO	HD51 HD52	AE21 AB21	IO	MD37 MD38	AD03 AF01	0	ST0 ST1
P01	IO	AD31	AF15	Ю	GDS0#	B22	Ю	HA06	C05	IO	HD53	AE22	Ю	MD39	AE01	Ó	ST2
F25 D03	_	ADS# AG	AF08 AE09			B23 E22	IO IO	HA07 HA08	A04 A05		HD54 HD55	AC22 AE23		MD40 MD41	V03 V22	IO I	STOP# SUST#
AF10		AGPREF	AD11		GDSI# GDSEL#			HA09	C04		HD56	AF24		MD41 MD42	V24	o	SWEA#
E03	O				GFRM#		Ю	HA10	D06		HD57	AF25	IO	MD43	V01	IO	TRDY#
H03 A24		BISTON BNR#		O IO	GGNT# GIRDY#		IO	HA11 HA12	B04 A06		HD58 HD59	AE26 AD26		MD44 MD45	F06 F09	P P	VCC3 VCC3
A25	IO	BPRI#	C03	P	GND	D22	IO	HA13	A03	IO	HD60	AC26		MD46	F12	P	VCC3
F23 AA01		BREQ0# CBE0#	C06 C09		GND GND	A23 D21	IO	HA14 HA15	A02 B03	IO IO	HD61 HD62	AC24 N25		MD47 MD48	F15 F18	P P	VCC3 VCC3
W02	IO	CBE1#	C12	P	GND	B21	IO	HA16	B05	Ю	HD63	N23	Ю	MD49	F21	P	VCC3
U03 R05		CBE2# CBE3#	C15 C18	P P	GND GND	B19 E17		HA17 HA18	D25 E23	IO	HIT# HITM#	N21 M25		MD50 MD51	H06 J21	P P	VCC3 VCC3
U23	О	CKE0 / SRASB#	C21	P	GND	A20		HA19	B26	I	HLOCK#	M23	Ю	MD52	K21	P	VCC3
U24 U26		CKE1 / SRASC# CKE2 / SCASB#	C24 F07	P P	GND GND	A19 C20	IO IO	HA20 HA21	B24 D23		HREQ0# HREQ1#	L26 L24		MD53 MD54	L06 M21	P P	VCC3 VCC3
V23		CKE3 / SCASC#	F10		GND	C19		HA22	B25	Ю	HREQ2#	L22		MD55	N04	P	VCC3
V25		CKE4 / SWEB#	F13		GND	E18	IO	HA23	C25	IO	HREQ3#	K25		MD56 MD57	P06	P	VCC3
V26 C17		CKE5 / SWEC# CPURST#	F14 F17	P P	GND GND		IO	HA24 HA25	C23 F01	O	HREQ4# HSYNC	K23 J26		MD58	R21 T23	P P	VCC3 VCC3
G24	0	CRESET	F20	P	GND	D17	Ю	HA26	C26	Ю	HTRDY#	J23	Ю	MD59	V06	P	VCC3
R25 R26		CS0# / RAS0# CS1# / RAS1#	F24 G03		GND GND			HA27 HA28	AC02 U05		INTA# IRDY#	H26 H24		MD60 MD61	V21 AA06	P P	VCC3 VCC3
T22	О	CS2# / RAS2#	H21	P	GND	A17	Ю	HA29	V04	Ю	LOCK#	G26	Ю	MD62	AA20	P	VCC3
T25		CS3# / RAS3# CS4# / RAS4#	J06		GND			HA30 HA31	W23 W24		MA00 / strap MA01# / strap	F26	IO	MD63 NCOMP	AA21 C01		VCC3 VCCDAC
T26 U21		CS5# / RAS5#	J24 L03	P P	GND GND	E19 G22		HCLK	W24 W25	0	MA01# / strap MA02 / strap	AB18 K06	0	PANELCLK / TVCKR	AA14		VCCGCK
E25	Ю	DBSY#	L21	P	GND	B17		HD00	W26	О	MA03 / strap	H02	0	PANELD00 / TVD0	H22	P	VCCHCK
A26 V02		DEFER# DEVSEL#	M06 M24		GND GND			HD01 HD02	Y22 Y23	0	MA04 / strap MA05 / strap	J01 J02	0	PANELD01 / TVD1 PANELD02 / TVD2	P22 E02		VCCMCK VCCPLL1
E04	I	DFTON	R03	P	GND	B13	Ю	HD03	Y25	О	MA06 / strap	J04	О	PANELD03 / TVD3	E01	P	VCCPLL2
AB24 AB25		DQM0 / CAS0# DQM1 / CAS1#	R06 T21		GND GND	A16 D15		HD04 HD05	Y26 AA22	0	MA07 / strap MA08 / strap	H05 J05	0	PANELD04 / TVD4 PANELD05 / TVD5	AA07 AA10	P P	VCCQ VCCQ
R23	О	DQM2 / CAS2#	T24	P	GND	B16	Ю	HD06	AA23	О	MA09 / strap	K01	О	PANELD06 / TVD6	AA12	P	VCCQ
R24 AB26		DQM3 / CAS3# DQM4 / CAS4#	W03 W06		GND GND			HD07 HD08	AA24 AA25		MA10 / strap MA11 / strap	K02 K03	0	PANELD07 / TVD7 PANELD08 / TVD8	AA15 AA18	P P	VCCQ VCCQ
AC23		DQM4 / CAS4# DQM5 / CAS5#	Y06		GND		Ю	HD08 HD09	AA26		MA11 / strap MA12 / strap	L01	0	PANELD08 / TVD8 PANELD09 / TVD9	AC05		VCCQ
P26	O	DQM6 / CAS6#	Y21	P	GND	B15		HD10	AB22	О	MA13 / strap	K04	О	PANELD10 / TVD10	AC08	P	VCCQ
P25 E24		DQM7 / CAS7# DRDY#	Y24 AA08		GND GND		IO	HD11 HD12	AB23 P23		MA14 / strap MCLKF	L02 G06	0	PANELD11 / TVBL# PANELDE / TVCLK	AC11 AC14	P P	VCCQ VCCO
U04	IO	FRAME#	AA11	P	GND	A14	Ю	HD13	R22	Ō	MCLK	H01	I	PANELDET / TVD11	AC17	P	VCCQ
AF14 AF12		GBE0# GBE1#	AA13 AA16		GND GND	C14 E16	IO	HD14 HD15	AF19 AD19		MD00 MD01	H04 G05	0	PANELHS / TVHS PANELVS / TVVS	AA17 C02	P P	VCCQQ VCCRGB
AB11	Ю	GBE2#	AA19		GND	E13	Ю	HD16	AB19	Ю	MD02	W01	Ю	PAR	W21	P	VSUS25
AF09	IO	GBE3#	AB03	P	GND	F16	Ю	HD17	AE20	Ю	MD03	Y05		PCKRUN#	F02	0	VSYNC
AB14 AC15			AD21 AD24		GND GND			HD18 HD19	AC20 AF21		MD04 MD05	U06 AC18	I	PCLK PCOMP	N01 D04	I	WSC# XIN
AF18			AE02		GND	C13	Ю	HD20	AC21	Ю	MD06	M05	Ō		E05	Ó	XOUT

Center VCC3 Pins (16 pins): J9-10,13-14,17-18, K9,18, N9,18, P9,18, R18, U9, V17-18
Center GND Pins (36 pins): L11-16, M11-16, N11-16, P11-16, R11-16, T11-16

Center VCC25 Pins (15 pins): J11-12,15-16, L9,18, M9,18, R9, T9,18, U18, V10,13,15 Center VCCQ Pins (5 pins): V9,11-12,14,16

PIN DESCRIPTIONS

Table 1. VT8605 / 86C370 Pin Descriptions

			CPU Interface
Signal Name	Pin#	<u>I/O</u>	Signal Description
HA[31:3]#	(see pinout tables)	IO	Host Address Bus. HA[31:3] connect to the address bus of the host CPU. During CPU cycles HA[31:3] are inputs. These signals are driven by the VT8605 / 86C370 during cache snooping operations.
HD[63:0]#	(see pinout tables)	Ю	Host CPU Data. These signals are connected to the CPU data bus.
ADS#	F25	IO	Address Strobe. The CPU asserts ADS# in T1 of the CPU bus cycle.
BNR#	A24	IO	Block Next Request . Used to block the current request bus owner from issuing new requests. This signal is used to dynamically control the processor bus pipeline depth.
BPRI#	A25	IO	Priority Agent Bus Request . The owner of this signal will always be the next bus owner. This signal has priority over symmetric bus requests and causes the current symmetric owner to stop issuing new transactions unless the HLOCK# signal is asserted. The VT8605 / 86C370 drives this signal to gain control of the processor bus.
DBSY#	E25	IO	Data Bus Busy . Used by the data bus owner to hold the data bus for transfers requiring more than one cycle.
DEFER#	A26	Ю	Defer. The VT8605 / 86C370 uses a dynamic deferring policy to optimize system performance. The VT8605 / 86C370 also uses the DEFER# signal to indicate a processor retry response.
DRDY#	E24	IO	Data Ready. Asserted for each cycle that data is transferred.
HIT#	D25	Ю	Hit . Indicates that a cacheing agent holds an unmodified version of the requested line. Also driven in conjunction with HITM# by the target to extend the snoop window.
HITM#	E23	I	Hit Modified . Asserted by the CPU to indicate that the address presented with the last assertion of EADS# is modified in the L1 cache and needs to be written back.
HLOCK#	B26	I	Host Lock . All CPU cycles sampled with the assertion of HLOCK# and ADS# until the negation of HLOCK# must be atomic.
HREQ[4:0]#	C23, C25, B25, D23, B24	Ю	Request Command. Asserted during both clocks of the request phase. In the first clock, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second clock, the signals carry additional information to define the complete transaction type.
HTRDY#	C26	Ю	Host Target Ready . Indicates that the target of the processor transaction is able to enter the data transfer phase.
RS[2:0]#	E26, D24, D26	IO	Response Signals. Indicates the type of response per the table below:RS[2:0]#Response type000Idle State001Retry Response010Defer Response011Reserved100Hard Failure101Normal Without Data110Implicit Writeback111Normal With Data
CPURST#	C17	0	CPU Reset. Reset output to CPU
BREQ0#	F23	О	Bus Request 0. Bus request output to CPU.

Note: Clocking of the CPU interface is performed with HCLK. See the clock pin group at the end of the pin descriptions section for descriptions of the clock pins.

The pinouts were defined assuming the ATX PCB layout model shown below (and general pin layout shown) as a guide for PCB component placement. Other PCB layouts (AT, LPX, and NLX) were also considered and can typically follow the same general component placement.

]	DRAM Interface
Signal Name	<u> Pin #</u>	<u>I/O</u>	Signal Description
MD[63:0]	(see pinout tables)	IO	Memory Data. These signals are connected to the DRAM data bus.
MA14,	AB23,	O/I	Memory Address. DRAM address lines
MA13,	AB22,		·
MA12,	AA26,		
MA11,	AA25,		
MA10,	AA24,		
MA9,	AA23,		
MA8	AA22,		
MA7,	Y26,		
MA6,	Y25,		
MA5,	Y23,		
MA4,	Y22,		
MA3,	W26,		
MA2 / strap,	W25,		MA2 strap (see INTA# pin description)
MA1,	W24,		
MA0	W23		
CS[5:0]#	U21, T26, T25, T22,	О	Chip Select. Chip select of each bank.
	R26, R25		
DQM[7:0]	P25, P26, AC23, AB26,	0	Data Mask. Data mask of each byte lane
	R24, R23, AB25, AB24		
SRASA#	U22	0	Row Address Command Indicator.
SCASA#	U25	0	Column Address Command Indicator.
SWEA#	V24	О	Write Enable Command Indicator.
CKE0 / SRASB#,	U23,	О	Clock Enables. Clock enables for each DRAM bank for powering down
CKE1 / SRASC#,	U24,		the SDRAM or clock control for reducing power usage and for reducing
CKE2 / SCASB#,	U26,		heat / temperature in high-speed memory systems.
CKE3 / SCASC#,	V23,		
CKE4 / SWEB#,	V25,		
CKE5 / SWEC#	V26		

			PCI Bus Interface
Signal Name	Pin #	<u>I/O</u>	Signal Description
AD[31:0]	(see pinout tables)	IO	Address/Data Bus. The standard PCI address and data lines. The address is driven with FRAME# assertion and data is driven or received in following cycles.
CBE[3:0]#	R5, U3, W2, AA1	IO	Command/Byte Enable. Commands are driven with FRAME# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.
FRAME#	U4	IO	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.
IRDY#	U5	IO	Initiator Ready. Asserted when the initiator is ready for data transfer.
TRDY#	V1	IO	Target Ready. Asserted when the target is ready for data transfer.
STOP#	V3	IO	Stop. Asserted by the target to request the master to stop the current transaction.
DEVSEL#	V2	IO	Device Select. This signal is driven by the VT8605 / 86C370 when a PCI initiator is attempting to access main memory. It is an input when the VT8605 / 86C370 is acting as a PCI initiator.
PAR	W1	IO	Parity. A single parity bit is provided over AD[31:0] and C/BE[3:0].
SERR#	V5	IO	System Error. The VT8605 / 86C370 will pulse this signal when it detects a system error condition.
LOCK#	V4	IO	Lock. Used to establish, maintain, and release resource lock.
PREQ#	N6	I	South Bridge Request. This signal comes from the South Bridge. PREQ# is the South Bridge request for the PCI bus.
PGNT#	M5	O	South Bridge Grant. This signal driven by the VT8605 / 86C370 to grant PCI access to the South Bridge.
REQ[4:0]#	N2, N3, N5, M4, M3	I	PCI Master Request. PCI master requests for PCI.
GNT[4:0]#	K5, L4, L5, M1, M2	0	PCI Master Grant. Permission is given to the master to use PCI.
PCLK	U6	I	PCI Clock. From external clock generator.
PCKRUN#	Y5	IO	PCI Clock Run. May be used to stop PCI clock.
INTA#	AC2	O	PCI Interrupt Out. An asynchronous active low output used to signal an event that requires handling on behalf of the internal integrated graphics controller. If MA2 is strapped high at reset (clearing CR36[0]) no interrupt will be requested during PCI configuration. The default drive strength is 24 mA (other drive strengths may be selected via CR80[1-0]).
WSC#	NI	0	Write Snoop Complete. Sideband PCI signal (used on the planar only in multiprocessor configurations) asserted to indicate that all snoop activity on the CPU bus initiated by the last PCI-to-DRAM write is complete and that it is safe to send an APIC interrupt message. Basically this signal is always active except when PCI master write data is not flushed.

	AGP Bus Interface				
Signal Name	<u> Pin #</u>	<u>I/O</u>	Signal Description		
GD[31:0]	(see pinout tables)	Ю	Address/Data Bus. The standard AGP/PCI address and data lines. The address is driven with GDS0# and GDS1# assertion for AGP transfers and is driven with GFRM# assertion for PCI transfers.		
GDS0	AE15	Ю	Bus Strobe 0 (AGP transactions only). Provides timing for 2x data transfer mode on AD[15:0]. The agent that is providing the data drives this signal.		
GDS0#	AF15	Ю	Bus Strobe 0 complement and Bus Strobe 0 (AGP transactions only). Provides timing for 4x data transfer mode on AD[15:0]. The agent that is providing the data drives this signal.		
GDS1	AF8	Ю	Bus Strobe 1 (AGP transactions only). Provides timing for 2x data transfer mode on AD[31:16]. The agent that is providing the data drives this signal.		
GDS1#	AE9	Ю	Bus Strobe 1 complement and Bus Strobe 1 (AGP transactions only). Provides timing for 4x data transfer mode on AD[31:16]. The agent that is providing the data drives this signal.		
GBE[3:0]#	AF9, AB11, AF12, AF14	IO	Command/Byte Enable. AGP: These pins provide command information (different commands than for PCI) driven by the master (graphics controller) when requests are being enqueued using PIPE#. These pins provide valid byte information during AGP write transactions and are driven by the master. The target (this chip) drives these lines to "0000" during the return of AGP read data, but the state of these pins is ignored by the AGP master. PCI: Commands are driven with GFRM# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.		
GFRM#	AC13	IO	Frame (PCI transactions only). Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.		
GIRDY#	AF11	Ю	Initiator Ready AGP: For write operations, the assertion of this pin indicates that the master is ready to provide <i>all</i> write data for the current transaction. Once this pin is asserted, the master is not allowed to insert wait states. For read operations, the assertion of this pin indicates that the master is ready to transfer a subsequent block of read data. The master is <i>never</i> allowed to insert a wait state during the initial block of a read transaction. However, it may insert wait states after each block transfers. PCI: Asserted when the initiator is ready for data transfer.		
GTRDY#	AD12	IO	Target Ready: AGP: Indicates that the target is ready to provide read data for the entire transaction (when the transaction can complete within four clocks) or is ready to transfer a (initial or subsequent) block of data when the transfer requires more than four clocks to complete. The target is allowed to insert wait states after each block transfers on both read and write transactions. PCI: Asserted when the target is ready for data transfer.		
GSTOP#	AE12	IO	Stop (PCI transactions only). Asserted by the target to request the master to stop the current transaction.		
GDSEL#	AD11	Ю	Device Select (PCI transactions only). This signal is driven by the VT8605 / 86C370 when a PCI initiator is attempting to access main memory. It is an input when the VT8605 / 86C370 is acting as PCI initiator. Not used for AGP cycles.		

Note: Clocking of the AGP interface is performed with GCLK; see the clock pin group for descriptions of the clock pins.

Note: PCB Layout Guidelines (reference from AGP specification)

- 1. Total motherboard trace length 10" max, trace impedance = 65 ohms \pm 15 ohms, minimize signal crosstalk
- 2. Trace lengths within groups matched to within 2 inches or better

Groups are: a. GDS0#, GDS0, GD15-0, GBE1-0#

- b. GDS1#, GDS1, GD31-16, GBE3-2#
- c. SBS#, SBS, SBA7-0
- 3. Ground isolation should be provided around GDS0#, GDS0, GDS1# and GDS1 to prevent crosstalk with GD[31:0]. Ideally ground traces should be provided adjacent to GDSn# on the same signal layer, but at a minimum wider spaces should be provided on either side (e.g., 16 mil spaces on either side of GDSn# if GDSn# signal traces are 8 mil).

AGP Bus Interface (continued)				
Signal Name	Pin#	<u>10</u>	Signal Description	
GPIPE#	AB6	I	Pipelined Request. Asserted by the master (graphics controller) to indicate that a full-width request is to be enqueued by the target VT8605 / 86C370. The master enqueues one request each rising edge of GCLK while PIPE# is asserted. When PIPE# is deasserted no new requests are enqueued across the AD bus.	
GRBF#	AF2	I	Read Buffer Full. Indicates if the master (graphics controller) is ready to accept previously requested low priority read data. When RBF# is asserted, the VT8605 / 86C370 will not return low priority read data to the master.	
GWBF#	AF3	I	Write Buffer Full.	
SBA[7:0]	AE6, AC6, AB7, AD6, AF4, AE4, AE3, AD4	I	SideBand Address. Provides an additional bus to pass address and command information from the master (graphics controller) to the target (the VT8605 / 86C370). These pins are ignored until enabled.	
SBS	AD5	I	Sideband Strobe. Provides timing for SBA[7:0] (driven by the master)	
SBS#	AF5	I	Sideband Strobe complement and SBS . Provides timing for SBA[7:0] (driven by the master) when 4x timing is supported.	
ST[2:0]	AE1, AF1, AD3	0	 Status (AGP only). Provides information from the arbiter to a master to indicate what it may do. Only valid while GGNT# is asserted. 000 Indicates that previously requested low priority read or flush data is being returned to the master (graphics controller). 001 Indicates that previously requested high priority read data is being returned to the master. 010 Indicates that the master is to provide low priority write data for a previously enqueued write command. 011 Indicates that the master is to provide high priority write data for a previously enqueued write command. 100 Reserved. (arbiter must not issue, may be defined in the future). 101 Reserved. (arbiter must not issue, may be defined in the future). 110 Reserved. (arbiter must not issue, may be defined in the future). 111 Indicates that the master (graphics controller) has been given permission to start a bus transaction. The master may enqueue AGP requests by asserting PIPE# or start a PCI transaction by asserting GFRM#. ST[2:0] are always outputs from the VT8605 / 86C370 and inputs to the master. 	
GREQ#	AD1	I	Request. Master request for AGP.	
GGNT#	AD2	0	Grant. Permission is given to the master to use AGP.	
GPAR / GCKRUN#	AE13	Ю	Rx78[1]=0: AGP Parity. A single parity bit is provided over GD[31:0] and GBE[3:0]. Rx78[1]=1: AGP Clock Run. Used to stop the AGP bus clock to reduce bus power usage.	
GCLK	AB14	0	AGP Clock. Generated by on-chip clock logic.	
GCLKF	AC15	I	AGP Clock Feedback. Connect to GCLK.	

Note: For PCI operation on the AGP bus, the following pins are not required:

- PERR# (parity and error reporting not required on transient data devices such as graphics controllers)
- LOCK# (no lock requirement on AGP)
- IDSEL (internally connected to AD16 on AGP-compliant masters)

Note: Separate system interrupts are not provided for AGP. The AGP connector provides interrupts via PCI bus INTA-B#.

Note: The AGP bus supports only one master directly (REQ[3:0]# and GNT[3:0]# are not provided). External logic is required to implement additional master capability. Note that the arbitration mechanism on the AGP bus is different from the PCI bus.

Note: A separate reset is not required for the AGP bus (RESET# resets both PCI and AGP buses)

Note: Two mechanisms are provided by the AGP bus to enqueue master requests: GPIPE# (to send addresses multiplexed on the AD lines) and the SBA port (to send addresses unmultiplexed). AGP masters implement one or the other or select one at initialization time (they are not allowed to change during runtime). Therefore only one of the two will be used and the signals associated with the other will not be used. Therefore the VT8605 / 86C370 has an internal pullup on GRBF# to maintain it in the de-asserted state in case it is not implemented on the master device.

	TFT Flat Panel / External TV Encoder Interface				
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description		
PANELD[11] / TVBLANK#	L2	0	Multifunction Pins 1. Panel Data. Internally pulled down during reset. 8mA is the default. 16mA is selected via SR3D[6]=1. 2. TV Blanking Signal. Internally pulled down during reset.		
PANELD[10:0] / TVD[10:0]	K4, L1, K3, K2, K1, J5, H5, J4, J2, J1, H2	0	Multifunction Pins 1. Panel Data. Internally pulled down during reset. 8mA is the default. 16mA is selected via SR3D[6]=1. 2. TV Data. RGB data is output at one pixel/clock. Internally pulled down during reset.		
PANELVS / TVVS	G5	О	Aultifunction Pin . Panel VSYNC. Internally pulled down TV VSYNC. Internally pulled down during reset.		
PANELHS / TVHS	H4	0	Multifunction Pin 1. Panel HSYNC. Internally pulled down. 2. TV HSYNC. Internally pulled down during reset.		
PANELCLK / TVCLKR	K6	О	Multifunction Pin 1. Panel Clock. Internally pulled down. 8mA is the default. 16mA is selected via SR3D[6]=1. 2. TV Return Clock. Output clock to TV encoder. Internally pulled down.		
PANELDE / TVCLK	G6	0	Multifunction Pin 1. Panel Data Enable. Internally pulled down. 2. TV Clock. Input clock from TV encoder. Internally pulled down.		
PANELDET / TVD[11]	HI	I /0	 Multifunction Pin Panel Detect. If SR30[1]=0, SR30[2] will read 1 if a Flat Panel is appropriately connected. Must be tied to GND if not used. TV Data. RGB data is output at one pixel/clock. Internally pulled down during reset. 		
GPOUT GOP0	J3	0	General Purpose Output. This pin reflects the state of SRD[0]. General Output Port. When SR1A[4] is cleared, this pin reflects the state of CR5C[0].		

CRT Interface				
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description	
RSET	F3	A	Reference Resistor. Tie to GNDRGB through an external 140Ω resistor to control the RAMDAC full-scale current value.	
AR	E3	0	Analog Red. Analog red output to the CRT monitor.	
AB	B2	0	Analog Blue. Analog blue output to the CRT monitor.	
AG	D3	0	Analog Green. Analog green output to the CRT monitor.	
HSYNC	F1	0	Horizontal Sync. Output to CRT.	
VSYNC	F2	0	Vertical Sync. Output to CRT.	

	Miscellaneous Functions			
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description	
XIN	D4	I	Reference Frequency Input. An external 14.318 MHz crystal is connected between XOUT and this pin. Alternatively, an external oscillator can be connected.	
XOUT	E5	О	Crystal Output. This pin drives the crystal via an internal oscillator. If an external oscillator is connected to XIN, this pin can be left unconnected.	
SPCLK[2:1]	F5, G1	IO	Serial Port Clocks. These are the clocks for serial data transfer. SPCLK1 is typically used for I^2C communications. As an output, it is programmed via MMFF20[0] or CRA0[0]. As an input, its status is read via MMFF20[2] or CRA0[2]. In either case the serial port must be enabled by MMFF20[4] = 1 or CRA0[4] = 1. SPCLK2 is typically used for DDC monitor communications. As an output, it is programmed via CRB1[0]. As an input, its status is read via CRB1[2]. The port is enabled via CRB1[4] = 1.	
SPDAT[2:1]	F4, G2	IO	Serial Port Data. These are the data signals used for serial data transfer. SPDAT1 is typically used for I ² C communications. As an output, it is programmed via MMFF20[1] or CRA0[1]. As an input, its status is read via MMFF20[3] or CRA0[3]. In either case the serial port must be enabled by MMFF20[4] = 1 or CRA0[4] = 1. SPDATT2 is typically used for DDC monitor communications. As an output, it is programmed via CRB1[1]. As an input, its status is read via CRB1[3]. The port is enabled via CRB1[4] = 1.	

Clock / Reset Control						
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description			
HCLK	G22	I	Host Clock. This pin receives the host CPU clock ($66 / 100 / 133$ MHz). This clock is used by all VT8605 / 86C370 logic that is in the host CPU domain. The memory interface logic will also use this clock if selected (memory system timing can alternately be selected to use the AGP bus clock). The CPU clock must lead the AGP clock by 0.2 ± 0.5 nsec.			
PCLK	U6	I	CI Clock. This pin receives a buffered host clock divided-by-2, 3, or 4 to create 33 MHz. This clock is used by all of the VT8605 / 86C370 logic that is in the PCI clock omain. This clock input must be 33 MHz maximum to comply with PCI pecification requirements and must be synchronous with the host CPU clock, HCLK, with an HCLK:PCLK frequency ratio of 2:1, 3:1, or 4:1 as shown in the table below. The host CPU clock must lead the PCI clock by 1.5 ± 0.5 nsec.			
			Typical Clock Frequency Combinations Rx68[1:0] Mode Host Clock AGP Clock PCI Clock 00 2x 66 MHz 66 MHz 33 MHz 01 3x 100 MHz 66 MHz 33 MHz 10 4x 133 MHz 66 MHz 33 MHz 11 Reserved Reserved			
GCLK	AB14	O	AGP Clock. This pin drives the AGP bus clock (66 MHz). This clock is used by all VT8605 / 86C370 logic that is in the AGP clock domain. The AGP clock is synchronous / pseudo-synchronous to the host CPU clock (selectable as shown in the table above).			
GCLKF	AC15	I	AGP Clock Feedback. Connect to GCLK.			
MCLK	R22	0	DRAM Clock. Output from internal clock generator to the external clock buffer.			
MCLKF	P23	I	DRAM Clock Feedback. Input from MCLK via the external clock buffer.			
RESET#	AC4	I	Reset. Input from south bridge chip. When asserted, this signal resets the VT8605 / 86C370 and sets all register bits to the default value. The rising edge of this signal is used to sample all power-up strap options			
PWROK	W22	I	Power OK.			
CPURST#	C17	0	CPU Reset. GTL output level.			
CRESET	G24	0	System Reset. TTL output level.			
SUST#	V22	I	Suspend Status. For implementation of the Suspend-to-DRAM feature. Connect to an external pullup to disable.			

	Power, Ground, and Test				
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description		
VCC3	(see pin list)	P	Power for I/O Interface Logic (3.3V ±0.3V).		
VCC25	J11, J12, J15, J16, L9, L18,	P	Power for Internal Logic (2.5V ±0.3V).		
	M9, M18, R9, T9, T18,				
	U18, V10, V13, V15				
VSUS25	W21	P	Suspend Power (2.5V ± 0.3 V).		
GND	(see pin list)	P	Ground		
VCCHCK	H22	P	Host CPU Clock Power (3.3V ±0.3V). For Host CPU clock logic.		
GNDHCK	G21	P	Host CPU Clock Ground. Connect to main ground plane.		
VCCMCK	P22	P	DRAM Clock Power (3.3V ±0.3V). For DRAM clock deskew logic.		
GNDMCK	P21	P	DRAM Clock Ground. Connect to main ground plane.		
VCCGCK	AA14	P	AGP Clock Power (3.3V ±0.3V). For AGP clock deskew logic		
GNDGCK	AB15	P	AGP Clock Ground. Connect to main ground plane.		
VCCRGB	C2	P	RGB Output Power (3.3V ±0.3V). For analog RGB outputs.		
GNDRGB	A1	P	RGB Output Ground. Connect to main ground plane.		
VCCDAC	C1	P	DAC Power (3.3V ±0.3V). For internal RAMDAC logic		
GNDDAC	B1	P	DAC Ground. Connect to main ground plane.		
VCCPLL1	E2	P	PLL 1 Power (3.3V ±0.3V). For internal graphics clock 1 logic		
GNDPLL1	D2	P	LL 1 Ground. Connect to main ground plane.		
VCCPLL2	E1	P	PLL 2 Power (3.3V ±0.3V). For internal graphics clock 2 logic		
GNDPLL2	D1	P	PLL 2 Ground. Connect to main ground plane.		
VCCQ	V9, V11, V12, V14, V16,	P	AGP 1.5V Power.		
	AA7, AA10, AA12, AA15,				
	AA18, AC5, AC8, AC11,				
MCCOO	AC14, AC17	V D	ACD C : AD		
VCCQQ	AA17 AB17	P P	AGP Quiet Power.		
GNDQQ			AGP Quiet Ground.		
GTLREF	F8, F19	P	CPU Interface GTL+ Voltage Reference. 2/3 VTT ±2%		
AGPREF	AF10	P	AGP Voltage Reference. 0.39 VCC3 to 0.41 VCC3. Typical value is 1.32V (0.40 times 3.3V). This can be provided with a resistive divider on		
			VCC3 using 270 ohm and 180 ohm (2%) resistors.		
NCOMP	AB18	I	Compensation. Connect to VCCQ through a 60 ohm resistor.		
PCOMP	AC18	I	Compensation. Connect to GND through a 60 ohm resistor.		
PLLTEST BISTON	G23 H3	I	PLL Test Input. BIST On. This pin is used for testing and must be tied to GND on all		
DISTON	113	1	board designs.		
DFTON	E4	I	DFT On. This pin is used for testing and must be tied to GND on all		
	21		board designs.		
L					

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the VT8605 / 86C370. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions following these tables for details). All offset and default values are shown in hexadecimal unless otherwise indicated.

NOTE: The integrated Savage4 graphics registers are discussed in detail in a separate document, "VT8605 / 86C370 Savage4 Registers".

Table 2. VT8605 / 86C370 Registers

VT8605 / 86C370 I/O Ports

Port #	I/O Port	Default	Acc
22	PCI / AGP Arbiter Disable	00	RW
CFB-8	Configuration Address	0000 0000	RW
CFF-C	Configuration Data	0000 0000	RW

VT8605 / 86C370 Device 0 Registers - Host Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	TBD	RO
5-4	Command	0006	\mathbf{RW}
7-6	Status	0290	WC
8	Revision ID	4n	RO
9	Program Interface	00	RO
A	Sub Class Code	00	RO
В	Base Class Code	06	RO
C	-reserved-	00	
D	Latency Timer	00	\mathbf{RW}
Е	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Graphics Aperture Base	0000 0008	RW
14-2B	-reserved-	00	_
2D-2C	Subsystem Vendor ID	0000	W1
2F-2E	Subsystem ID	0000	W1
	-reserved-	00	
37-34	Capability Pointer	0000 00A0	RO
38-3F	-reserved-	00	

Device-Specific Registers

Host CPU Protocol Control	Default	Acc
Request Phase Control	-00	RW
Response Phase Control	00	RW
Dynamic Defer Timer	10	RW
Miscellaneous 1	03	RW
Miscellaneous 2	00	RW
-reserved-	00	
	Request Phase Control Response Phase Control Dynamic Defer Timer Miscellaneous 1 Miscellaneous 2	Request Phase Control 00 Response Phase Control 00 Dynamic Defer Timer 10 Miscellaneous 1 03 Miscellaneous 2 00

Official	DDAM Control	Dofol4	1 00
	DRAM Control	Default	Acc
	MA Map Type	0040	RW
5F-5A	DRAM Row Ending Address:		
5A	Bank 0 Ending (HA[31:24])	01	RW
5B	Bank 1 Ending (HA[31:24])	01	RW
5C	Bank 2 Ending (HA[31:24])	01	RW
5D	Bank 3 Ending (HA[31:24])	01	RW
5E	Bank 4 Ending (HA[31:24])	01	RW
5F -	Bank 5 Ending (HA[31:24])	01	RW
56	Bank 6 Ending (HA[31:24])	01	RW
57	Bank 7 Ending (HA[31:24])	01	RW
60	DRAM Type	00	RW
61	ROM Shadow Control C0000-CFFFF	00	RW
62	ROM Shadow Control D0000-DFFFF	00	RW
63	ROM Shadow Control E0000-FFFFF	00	RW
64	DRAM Timing for Banks 0,1	EC	RW
65	DRAM Timing for Banks 2,3	EC	RW
66	DRAM Timing for Banks 4,5	EC	RW
67	DRAM Timing for Banks 6,7	EC	RW
68	DRAM Control	00	RW
69	DRAM Clock Select	00	RW
6A	DRAM Refresh Counter	00	RW
6B	DRAM Arbitration Control	01	RW
6C	SDRAM Control	00	RW
6D	DRAM Control Drive Strength	00	RW
6E-6F	-reserved-	00	

Device-Specific Registers (continued)

Offset	PCI Bus Control	Default	Acc
70	PCI Buffer Control	00	RW
71	CPU to PCI Flow Control 1	00	RW
72	CPU to PCI Flow Control 2	00	RW
73	PCI Master Control 1	00	RW
74	PCI Master Control 2	00	RW
75	PCI Arbitration 1	00	RW
76	PCI Arbitration 2	00	RW
77	Chip Test (do not program)	00	RW
78	PMU Control	00	RW
79	PMU Control	00	RW
7A	Miscellaneous Control 1	00	RW
7B	Miscellaneous Control 2	02	RW
7C-7D	-reserved-	00	
7E-7F	PLL Test Mode (do not program)	00	RW

	Offset	GART/TLB Control	Default	Acc
I	83-80	GART/TLB Control	0000 0000	RW
l	84	Graphics Aperture Size	00	RW
I	85-87	-reserved-	00	
Į	8B-88	Gr. Aperture TLB Base Register Base	0000 0000	RW
	8C-9F	-reserved-	00	

	Offset	AGP Control	Default	Acc
	A0	AGP ID	02	RO
4	A1	AGP Next Item Pointer	00	RO
	A2	AGP Specification Revision	10	RO
_	A3	-reserved-	00	_
	A7-A4	AGP Status	0700 0203	RO
	AB-A8	AGP Command	0000 0000	\mathbf{RW}
	AC	AGP Control	08	\mathbf{RW}
	AD	AGP Latency Timer	02	RW
1	AE	AGP Miscellaneous Control	00	RW
1	AF	-reserved-	00	
	B0	AGP Compensation Control / Status	8x	RW
	B1	AGP Drive Strength	63	RW
	B2-BF	-reserved-	00	_

lt Acc
RW
RW
F F F

VT8605 / 86C370 Device 1 Registers - PCI-to-PCI Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	8598	RO
5-4	Command	0007	RW
7-6	Status	0220	WC
8	Revision ID	nn	RO
9	Program Interface	00	RO
Α	Sub Class Code	04	RO
В	Base Class Code	06	RO
C	-reserved-	00	
D	Latency Timer	00	RW
Е	Header Type	01	RO
F	Built In Self Test (BIST)	00	RO
10-17	-reserved-	00	
18	Primary Bus Number	00	RW
19	Secondary Bus Number	00	RW
1A	Subordinate Bus Number	00	RW
1B	Secondary Latency Timer	00	RO
1C	I/O Base	F0	RW
1D	I/O Limit	00	RW
1F-1E	Secondary Status	0000	RO
21-20	Memory Base	FFF0	RW
23-22	Memory Limit (Inclusive)	0000	RW
25-24	Prefetchable Memory Base	FFF0	RW
27-26	Prefetchable Memory Limit	0000	RW
28-3D	-reserved-	00	
3F-3E	PCI-to-PCI Bridge Control	00	RW

Device-Specific Registers

Offset	AGP Bus Control	Default	Acc
40	CPU-to-AGP Flow Control 1	00	RW
41	CPU-to-AGP Flow Control 2	00	RW
42	AGP Master Control	00	RW
43	AGP Master Latency Timer	00	RW
44	Back-Door Register Control	00	RW
45	Fast Write Control	72	RW
47-46	PCI-to-PCI Bridge Device ID	0000	RW
48-7F	-reserved-	00	_
80	Capability ID	01	RO
81	Next Pointer	00	RO
82	Power Management Capabilities 1	02	RO
83	Power Management Capabilities 2	00	RO
84	Power Management Control / Status	00	RW
85	Power Management Status	00	RO
86	PCI-PCI Bridge Support Extensions	00	RO
87	Power Management Data	00	RO
88-FF	-reserved-	00	_

Miscellaneous I/O

One I/O port is defined in the VT8605 / 86C370: Port 22.

Port 22 – PCI / AGP Arbiter DisableRW						
7-2	Reserved always reads 0					
1	AGP Arbiter Disable					
	0 Respond to GREQ# signaldefault					
	1 Do not respond to GREQ# signal					
0	PCI Arbiter Disable					
	0 Respond to all REQ# signalsdefault					
	1 Do not respond to any REQ# signals, including					
	PREQ#					

This port can be enabled for read/write access by setting bit-7 of Device 0 Configuration Register 78.

Configuration Space I/O

All registers in the VT8605 / 86C370 (listed above) are addressed via the following configuration mechanism:

Mechanism #1

These ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

Port CFB-CF8 - Configuration AddressRW						
31	Configuration Space Enable					
	0 Disableddefault					
	1 Convert configuration data port writes to					
	configuration cycles on the PCI bus					
30-24	Reserved always reads 0					
23-16	PCI Bus Number					
	Used to choose a specific PCI bus in the system					
15-11	Device Number					
	Used to choose a specific device in the system					
	(devices 0 and 1 are defined for the VT8605 /					
	86C370)					
10-8	Function Number					
	Used to choose a specific function if the selected					
	device supports multiple functions (only function 0 is					
	defined for the VT8605 / 86C370).					
7-2	Register Number (also called the "Offset")					
	Used to select a specific DWORD in the VT8605 /					
	86C370 configuration space					
1-0	Fixedalways reads 0					

Port CFF-CFC - Configuration Data.....RW

Refer to PCI Bus Specification Version 2.1 for further details on operation of the above configuration registers.

Device 0 Register Descriptions

Device 0 Header Registers - Host Bridge

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number, function number, and <u>device number</u> equal to <u>zero</u>.

de vice nameer equal to <u>zero</u> .						
Device	0 Offset 1-0 - Vendor ID (1106h)RO					
15-0	ID Code (reads 1106h to identify VIA Technologies)					
Device (0 Offset 3-2 - Device ID (TBDh)RO					
15-0	ID Code (reads TBDh to identify the VT8605 /					
13-0	86C370)					
D :	0.000 4.7.4.C 1(000Cl) DW					
	0 Offset 5-4 –Command (0006h)RW					
	Reserved always reads 0					
9	Fast Back-to-Back Cycle EnableRO					
	0 Fast back-to-back transactions only allowed to	1				
	the same agentdefault					
	1 Fast back-to-back transactions allowed to					
	different agents					
8	SERR# EnableRO					
	0 SERR# driver disableddefault					
	1 SERR# driver enabled					
	(SERR# is used to report parity errors if bit-6 is set).					
7	Address / Data SteppingRO					
	0 Device never does steppingdefault					
	1 Device always does stepping					
6	Parity Error ResponseRW					
	0 Ignore parity errors & continuedefault					
	1 Take normal action on detected parity errors					
5	VGA Palette SnoopRO					
	O Treat palette accesses normallydefault					
	1 Don't respond to palette accesses on PCI bus	_				
4	Memory Write and Invalidate CommandRO	Dev				
	0 Bus masters must use Mem Writedefault	7				
	1 Bus masters may generate Mem Write & Inval	Do				
3	Special Cycle MonitoringRO	Dev				
	O Does not monitor special cyclesdefault					
_	1 Monitors special cycles	Dev				
2	Bus MasterRO	7				
	0 Never behaves as a bus master					
	1 Can behave as a bus masterdefault	Dev				
1	Memory SpaceRO					
	O Does not respond to memory space					
_	1 Responds to memory spacedefault	Dev				
0	I/O Space RO	Spe				
	O Does not respond to I/O spacedefault	٠,				
	1 Responds to I/O space	2				
		4				

Device	0 Offset 7-6 – Status (0210h)RWC
15	Detected Parity Error
	0 No parity error detected default
	1 Error detected in either address or data phase.
	This bit is set even if error response is disabled
	(command register bit-6)write one to clear
14	Signaled System Error (SERR# Asserted)
	always reads 0
13	Signaled Master Abort
	0 No abort receiveddefault
	1 Transaction aborted by the master
	write one to clear
12	Received Target Abort
	0 No abort receiveddefault
	1 Transaction aborted by the target
	write one to clear
11	Signaled Target Abortalways reads 0
11	0 Target Abort never signaled
10-9	DEVSEL# Timing
10-7	00 Fast
	01 Mediumalways reads 01
,	10 Slow
	11 Reserved
8	Data Parity Error Detected
•	0 No data parity error detected default
	1 Error detected in data phase. Set only if error
	response enabled via command bit-6 = 1 and
	VT8605 / 86C370 was initiator of the
7	operation in which the error occurred write one to clear
7	Fast Back-to-Back Capablealways reads 0
6	User Definable Featuresalways reads 0
5	66MHz Capablealways reads 0
4	Supports New Capability listalways reads 1
3-0	Reservedalways reads 0
Device	0 Offset 8 - Revision ID (00h)RO
7-0	Chip Revision Code
7-0	Cinp Revision Code
Device	0 Offset 9 - Programming Interface (00h)RO
7-0	Interface Identifieralways reads 00
	<i>y</i>
	0 Offset A - Sub Class Code (00h) RO
7-0	Sub Class Codereads 00 to indicate Host Bridge
Device	0 Offset B - Base Class Code (06h)RO
7-0	Base Class Code reads 06 to indicate Bridge Device
	· ·
	0 Offset D - Latency Timer (00h)RW
•	es the latency timer value in PCI bus clocks.
7-3	Guaranteed Time Slice for CPUdefault=0
2-0	Reserved (fixed granularity of 8 clks) always read 0
	Bits 2-1 are writeable but read 0 for PCI specification
	compatibility. The programmed value may be read
	back in Offset 75 bits 5-4 (PCI Arbitration 1).

Device 0 Host Bridge Header Registers (continued)					
Device 0 Offset E - Header Type (00h)RO					
7-0	Header Type Coderea	ds 00:	single function		

Device 0 Offset F - Built In Self Test (BIST) (00h).....RO

7 BIST Supportedreads 0: no supported functions6-0 Reservedalways reads 0

<u>Device 0 Offset 13-10 - Graphics Aperture Base</u> (00000008h)RW

31-28 Upper Programmable Base Address Bits...... def=0
27-20 Lower Programmable Base Address Bits def=0
These bits behave as if hardwired to 0 if the corresponding Graphics Aperture Size register bit (Device 1 Offset 84h) is 0.

27	26	25	24	23	22	21	20	(This Register
<u>7</u>	<u>6</u>	<u>5</u>	<u>4</u>	<u>3</u>	<u>2</u>	1	0	(Gr Aper Size)
RW	RW	RW	RW	RW	RW	RW	RW	1M
RW	RW	RW	RW	RW	RW	RW	0	2M
RW	RW	RW	RW	RW	RW	0	0	4M
RW	RW	RW	RW	RW	0	0	0	8M
RW	RW	RW	RW	0	0	0	0	16M
RW	RW	RW	0	0	0	0	0	32M
RW	RW	0	0	0	0	0	0	64M
RW	0	0	0	0	0	0	0	128M
0	0	0	0	0	0	0	0	256M

register are prefetchable.

Device 0 Offset 2D-2C - Subsystem Vendor ID (0000h)R/W1

15-0 Subsystem Vendor ID default = 0 This register may be written once and is then read only.

Device 0 Offset 2F-2E - Subsystem ID (0000h)R/W1

15-0 Subsystem ID default = 0 This register may be written once and is then read only.

Device 0 Offset 37-34 - Capability Pointer (000000A0h) RO

Contains an offset from the start of configuration space.

31-0 AGP Capability List Pointeralways reads A0h

Device 0 Configuration Registers - Host Bridge

These registers are normally programmed once at system initialization time.

Host CPU Control

Device 0 Offset 50 – Request Phase Control (00h)........ RW 7 CPU Hardwired IOQ (In Order Queue) Size Default per strap on pin MAB11#During reset. This register can be written 0 to restrict the chip to one level of IOQ.

- 0 1-Level
- 1 4-Level
- 6 Read-Around-Write
 - 0 Disable default
 1 Enable
- 5 Reservedalways reads 0
- 4 Defer Retry When HLOCK Active
 - 0 Disable.....default
 - 1 Enable
 - Note: always set this bit to 1
- **3-1 Reserved**always reads 0
- 0 CPU/PCI Master Read DRAM Timing
 - O Start DRAM read after snoop complete...... def
 - 1 Start DRAM read before snoop complete

Device	0 Offset 51 – Response Phase Control (00h)RW	Devic	e 0 Offset 53 – Miscellaneous 1 (03h)RW
7	CPU Read DRAM 0ws for Back-to-Back Read	7	HREQ
•	Transactions	•	0 Disable default
	0 Disabledefault		1 Enable
	1 Enable	6	SDRAM Frequency Higher Than CPU Front Side
	Setting this bit enables maximum read performance	U	Bus Frequency
	by allowing continuous 0 wait state reads for		0 Disable default
	pipelined line reads. If this bit is not set, there will be		1 Enable
	at least 1T idle time between read transactions.		
	CPU Write DRAM 0ws for Back-to-Back Write		Setting this bit enables the DRAM subsystem to run at
6			a higher frequency than the CPU FSB frequency.
	Transactions 0 Disabledefault		When setting this bit, register bit Rx69[6] must also be
			set and only SDRAM type DIMM modules may be
	1 Enable	_	used.
	Setting this bit enables maximum write performance	5	PCI/AGP Master-to-CPU / CPU-to-PCI/AGP
	by allowing continuous 0 wait state writes for		Slave Concurrency
	pipelined line writes ands sustained 3T single writes.		0 Disable default
	If this bit is not set, there will be at least 1T idle time		1 Enable
_	between write transactions.	4	III III I direction
5	Reservedalways reads 0		0 Disabledefault
4	Fast Response (HIT/HITM sample 1T earlier)		1 Enable
	0 Disabledefault	3	P6Lock Function
	1 Enable		0 Disabledefault
3	Non-Posted IOW		1 Enable
	0 Disabledefault	2	
	1 Enable		Back Data
2	CPU Read DRAM Prefetch Buffer Depth		0 Disable default
	0 1-level prefetch bufferdefault		1 Enable
	1 4-level prefetch buffer	1	PCI Master Pipeline Access
1	CPU-to-DRAM Post-Write Buffer Depth		0 Disable
	0 1-level post-write bufferdefault		1 Enabledefault
	1 4-level post-write buffer	0	Initialization of Fast Write Address Selection
0	Concurrent PCI Master / Host Operation		0 Tail
	0 Disable – the CPU bus will be occupied (BPRI		1 Headdefault
	asserted) during the entire PCI operation def		
	1 Enable – the CPU bus is only requested before		
	ADS# assertion	Devic	e 0 Offset 54 – Miscellaneous 2 (00h)RW
	2		Reserved (Do Not Program)default = 0
Dovrigo	0 Offset 52 Dynamic Defear Times (10h) DW		`
	0 Offset 52 – Dynamic Defer Timer (10h)RW	5-2	
7	GTL I/O Buffer Pullup default = MAB6# Strap		Access
	0 Disable		0 Disabledefault
	1 Enable		1 Enable
	The default value of this bit is determined by a strap	0	1-1-1-1 PMRDY for PCI Master Access
	on the MAB6# pin during reset.	U	0 Disabledefault
6	RAW Write Retire Policy (After 2 Writes)		1 Enable
	0 Disabledefault		1 Ellable
_	1 Enable		
5	Quick Start Selectdefault = MAB10 Strap		
	0 Disabledefault		
	1 Enable		
	The default value of this bit is determined by a strap		
4.0	on the MAB10 pin during reset.		
4-0	Snoop Stall Count		
	00 Disable dynamic defer		
	01-1F Snoop stall count default = 10h		

DRAM Control

These registers are normally set at system initialization time and not accessed after that during normal system operation. Some of these registers, however, may need to be programmed using specific sequences during power-up initialization to properly detect the type and size of installed memory (refer to the VIA Technologies VT8605 / 86C370 BIOS porting guide for details).

Table 3. System Memory Map

Space Start	Size	Address Range	Comment						
DOS 0	640K	00000000-0009FFFF	Cacheable						
VGA 640K	128K	000A0000-000BFFFF	Used for SMM						
BIOS 768K	16K	000C0000-000C3FFF	Shadow Ctrl 1						
BIOS 784K	16K	000C4000-000C7FFF	Shadow Ctrl 1						
BIOS 800K	16K	000C8000-000CBFFF	Shadow Ctrl 1						
BIOS 816K	16K	000CC000-000CFFFF	Shadow Ctrl 1						
BIOS 832K	16K	000D0000-000D3FFF	Shadow Ctrl 2						
BIOS 848K	16K	000D4000-000D7FFF	Shadow Ctrl 2						
BIOS 864K	16K	000D8000-000DBFFF	Shadow Ctrl 2						
BIOS 880K	16K	000DC000-000DFFFF	Shadow Ctrl 2						
BIOS 896K	64K	000E0000-000EFFFF	Shadow Ctrl 3						
BIOS 960K	64K	000F0000-000FFFFF	Shadow Ctrl 3						
Sys 1MB	—	00100000-DRAM Top	Can have hole						
Bus D Top		DRAM Top-FFFEFFF							
Init 4G-64K	64K	FFFEFFFF-FFFFFFF	000Fxxxx alias						
D 0 Off-	Device 0 Offset 59-58 - DRAM MA Map Type (0000h).RW								
15-13 Bank 5/4 MA Map Type (see below)									
12 Bank	5/4 V1	rtual Channel Enable	det=0						
11 0 D			1.00						
11-8 Rese	rved		def=0						
7-5 Banl	- 0/1 M	A Map Type (SDRAM)							
		oit SDRAM							
001			derauit						
	-reser								
		oit / 128Mbit SDRAM	"						
100 04Mbit 7128Mbit SDRAW 101 256Mbit SDRAM x32									
		Ibit SDRAM x16							
		Ibit SDRAM x8 or x4							
		IDIL SDRAWI X6 01 X4	1.5.0						

Bank 1/0 Virtual Channel Enable......def=0

Bank 3/2 Virtual Channel Enable......def=0

Bank 3/2 MA Map Type (see above)

<u>Device 0 Offset 5F-5A – DRAM Row Ending Address:</u>

Note: BIOS is required to fill the ending address registers for all banks even if no memory is populated. The endings have to be in incremental order.

Device 0 Offset 60 – DRAM Type (3Fh).....RW

7-6	Reser	ved

5-4 DRAM Type for Bank 5/4

00 -reserved-01 -reserved-10 -reserved-

11 SDRAMdefault

3-2 DRAM Type for Bank 3/2.....default=SDRAM1-0 DRAM Type for Bank 1/0.....default=SDRAM

Table 4. Memory Address Mapping Table

SDRAM

MA:	<u>14</u>	<u>13</u>	<u>12</u>	11	10	9	8	7	6	<u>5</u>	<u>4</u>	3	2	1	0	
16Mb	1			11	22	21	20	19	18	17	16	15	14	13	12	11x10,
(0xx)				11	PC	24	23	10	9	8	7	6	5	4	3	11x9, 11x8
64/128Mb		24	13	12	22	21	20	19	18	17	16	15	14	11	23	x4: 14x10
(100)		27/	13	12	PC	26	25	10	9	8	7	6	5	4	3	x8: 14x9
2/4 bank		24														
256Mb	25	24	13	12	22	21	20	19	18	17	16	15	14	11	23	x32: 14x8
(101) 2/4B		28	13	12	PC	26	25	10	9	8	7	6	5	4	3	
256Mb	26	24	13	12	22	21	20	19	18	17	16	15	14	11	23	x16: 14x9
(110) 2/4B		28	13	12	PC	26	25	10	9	8	7	6	5	4	3	
256Mb	27	24	13	12	22	21	20	19	18	17	16	15	14	11	23	x8: 14x10
(111) 2/4B		28	13	12	PC	26	25	10	9	8	7	6	5	4	3	x4: 14x11

"PC" = "Precharge Control" (refer to SDRAM specifications)

3-1

0

Device	0 Offs	et 61 - Shadow RAM Control 1 (00h)RW	Devi	ce ()	Offs	et 63 - Shadow RAM Co	ontrol 3 (00h)	RW
7-6	· · · · · · · · · · · · · · · · · · ·				E000	0h-EFFFFh		
	00	Read/write disabledefault			00	Read/write disable	de	efault
	01	Write enable			01	Write enable		
	10	Read enable			10	Read enable		
	11	Read/write enable			11	Read/write enable		
5-4		0h-CBFFFh	5-4	4	F000	0h-FFFFFh		
	00	Read/write disabledefault			00	Read/write disable	de	fault
	01	Write enable			01	Write enable		
		Read enable			10	Read enable		
		Read/write enable			11	Read/write enable		
3-2		0h-C7FFFh	3-2	2	Mem	ory Hole		
	00	Read/write disabledefault				None	de	fault
	01	Write enable			01	512K-640K		
		Read enable			10	15M-16M (1M)		
	11	Read/write enable			11	14M-16M (2M)		
1-0	C000	0h-C3FFFh	1-0	0	SMI	Mapping Control		
	00	Read/write disabledefault				SMM	Non-SMM	
		Write enable				Code Data	Code Data	
		Read enable			00	DRAM DRAM	PCI PCI	
	11	Read/write enable			01	DRAM DRAM	DRAM DRAM	
D	0 Off	A CO Chalam DAM Chartan 12 (00h) DW			10	DRAM PCI	PCI PCI	
		et 62 - Shadow RAM Control 2 (00h)RW			11	DRAM DRAM	DRAM DRAM	
7-6		00h-DFFFFh		7				
		Read/write disabledefault						
		Write enable				4		
		Read enable						
		Read/write enable			41			
5-4		Oh-DBFFFh					7	
		Read/write disabledefault						
		Write enable						
		Read enable		4				
2.2		Read/write enable						
3-2		Oh-D7FFFh						
		Read/write disabledefault						
		Write enable Read enable						
1 0		Read/write enable						
1-0		0h-D3FFFh Read/write disabledefault						
	UI	Write enable						

10 Read enable

Read/write enable

Device 0 Offset 64 - DRAM Timing for Banks 0,1 (ECh)RW	Device 0 Offset 69 – DRAM Clock Select (00h)RW
Device 0 Offset 65 - DRAM Timing for Banks 2,3 (ECh)RW	7 CPU Operating Frequency Faster Than DRAM 0 CPU Same As or Equal to DRAMdefault
Device 0 Offset 66 - DRAM Timing for Banks 4,5 (ECh)RW	1 CPU Faster Than DRAM by 33 MHz
Device 0 Offset 67 - ReservedRW	6 DRAM Operating Frequency Faster Than CPU 0 DRAM Same As or Equal to CPU default 1 DRAM Faster Than CPU by 33 MHz
SDRAM Settings for Registers 66-64	1 DRAM Faster Than CPU by 33 MHz
7 Precharge Command to Active Command Period	Rx68[1-0] Rx69[7-6] CPU / DRAM
0 Trp = 2T	00 00 66 / 66 (def)
1 $TRP = 3T$ default	00 01 66 / 100†
6 Active Command to Precharge Command Period	
0 Tras = 5T	$\begin{array}{cccc} 01 & 10 & 100 / 66 \\ 01 & 00 & 100 / 100 \end{array}$
1 Tras = 6Tdefault	01 01 100 / 133†
5-4 CAS Latency	
00 1T	10 10 133 / 100
01 2T	10 00 133 / 133
10 3Tdefault	†Rx53[6] must also be set to 1 for DRAM > CPU
11 reserved 3 DIMM Type	
0 Standard	5 256Mbit DRAM Support
1 Registereddefault	0 Disable (pin AB22 is DCLKRD)default
2 ACTIVE Command to CMD Command Period	
0 2T	4 DRAM Controller Command Register Output 0 Disabledefault
1 3Tdefault	1 Enable
1-0 Bank Interleave	3 Fast DRAM Precharge for Different Bank
00 No Interleavedefault	0 Disabledefault
01 2-way	1 Enable
10 4-way	2 DRAM 4K Page Enable (for 64Mbit DRAM)
11 Reserved	0 Disabledefault
Device 0 Offset 68 - DRAM Control (00h)RW	1 Enable
	1 DIMM Type
7 SDRAM Open Page Control 0 Always precharge SDRAM banksdefault	0 Unbuferreddefault
1 SDRAM banks remain active	1 Registered
6 Bank Page Control	0 CPU/DRAM 66/133MHz support*
O Allow only pages of the same bank active def.	0 Disabledefault
1 Allow pages of different banks to be active	1 Enable
5 Reservedalways reads 0	†Rx53[6] must also be set to 1 for DRAM > CPU
4-3 Reservedalways reads 0	
2 Burst Refresh	
0 Disabledefault	
1 Enable (burst 4 times)	
1 System Frequency DividerRO	,
This bit is latched from MAB8# at the rising edge of	
RESET# (see table below).	
0 System Frequency DividerRO	
This bit is latched from MAB12# at the rising edge of RESET#.	
RESE 1#. 00 CPU Frequency = 66 MHz	
01 CPU Frequency = 100 MHz	
10 CPU Frequency = 133 MHz	
11 Reserved	
Note: See also Rx69[7-6] Note: MD0 is internally pulled up for EDO detection.	
Trote. Tribo is internally pulled up for EDO detection.	

Device	0 Offset 6A - Refresh Counter (00h)RW	Device	0 Offset 6C - SDRAM Control (00h)RW
7-0	Refresh Counter (in units of 16 CPUCLKs)	7-5	Reservedalways reads 0
	00 DRAM Refresh Disableddefault	4	CKE Configuration
	01 32 CPUCLKs		$0 \operatorname{Rx} 6B[4] = 0 \operatorname{CSA} = \operatorname{CSA}, \operatorname{CSB} = \operatorname{CSB},$
	02 48 CPUCLKs		CKE0=CKE0, CKE1 = CKE1
	03 64 CPUCLKs		x Rx6B[4]=1 CSA = CSA, CSB = Float,
	04 80 CPUCLKs		CSB = Float, MAB = Float,
	05 96 CPUCLKs		CKE0 = CKE0, CKE1 = CKE0
			1 $Rx6B[4]=0$ $CSA = CSA, CSB = CSB,$
			CKE3-2 = CSA7-6
	The programmed value is the desired number of 16-		CKE5-4 = CSB7-6
	CPUCLK units minus one.		CKE1 = GCKE (Global CKE)
			CKE0 = FENA (FET Enable)
		3	Fast TLB Lookup
	0 Offset 6B - DRAM Arbitration Control (01h).RW		0 Disable default
7-6	Arbitration Parking Policy		1 Enable
	00 Park at last bus ownerdefault	2-0	SDRAM Operation Mode Select
	01 Park at CPU side		000 Normal SDRAM Modedefault
	10 Park at AGP side		001 NOP Command Enable
	11 Reserved		010 All-Banks-Precharge Command Enable
5	Fast Read to Write turn-around		(CPU-to-DRAM cycles are converted
	0 Disabledefault		to All-Banks-Precharge commands).
	1 Enable		011 MSR Enable
4	Memory Module ConfigurationRO		CPU-to-DRAM cycles are converted to
	0 Normal Operationdefault		commands and the commands are driven on
	1 Unused Outputs Tristated (CSB#, DQMB,		MA[14:0]. The BIOS selects an appropriate
	CKE, MAB, DCLKO)		host address for each row of memory such that
	This bit is latched from MAB7# at the rising edge of		the right commands are generated on
	RESET#.		MA[14:0].
3	MD Bus Second Level Strength Control		100 CBR Cycle Enable (if this code is selected,
	0 Normal slew rate controldefault		CAS-before-RAS refresh is used; if it is not
	1 More slew rate control		selected, RAS-Only refresh is used)
2	CAS Bus Second Level Strength Control		101 Reserved
	0 Normal slew rate controldefault		11x Reserved
	1 More slew rate control		TTA TRESCT (CU
1	Virtual Channel-DRAM Enable		
	0 Disabledefault		
	1 Enable		
0	Multi-Page Open		
	0 Disable (page registers marked invalid and no		
	page register update which causes non page-		7
	mode operation)		
	1 Enabledefault		

Device 0 Offset 6D - DRAM Drive Strength (00h)RW **ESDRAM Memory Type** 0 Disabledefault 1 Enable Delay DRAM Read Latch 00 No Delaydefault 01 0.5 ns 10 1.0 ns 11 1.5 ns Memory Data Drive (MD, MECC) 0 6 mAdefault 1 8 mA **SDRAM Command Drive** (SRAS#, SCAS#, SWE#) 3 0 16mAdefault 1 24mA 2 Memory Address Drive (MA, WE#) 0 16mAdefault 24mA 1 **CAS# Drive** 0 8 mAdefault 1 12 mA **RAS# Drive** 0 16mA 1 24mA

PCI Bus Control

These registers are normally programmed once at system initialization time.

<u>evice</u>	0 Offs	et 70 - PCI Buffer Control (00h)RW
7	CPU	to PCI Post-Write
	0	Disabledefault
	1	Enable
6	PCI I	Master to DRAM Post-Write
	0	Disabledefault
	1	Enable
5	Reser	rvedalways reads 0
4	PCI I	Master to DRAM Prefetch
	0	Disabledefault
	1	Enable
3	Enha	nce CPU-to-PCI Write
	0	Normal operationdefault
	1	Reduce 1 cycle when the CPU-to-PCI buffer
		becomes available after being full (PCI and
		AGP buses)
2	PCI I	Master Read Caching
	0	Disabledefault
	1	Enable
1	Delay	y Transaction
	0	Disabledefault
	1	Enable
0	Slave	Device Stopped Idle Cycle Reduction
	0	Normal Operationdefault
	1	Reduce 1 PCI idle cycle when stopped by a
		slave device (PCI and AGP buses)

evice	<u>0 Offse</u>	<u>t 72 - CPU to PCI Flow Control 2 (00h) RWC</u>
7	Retry	Status
	0	No retry occurreddefault
	1	Retry occurredwrite 1 to clear
6	Retry	Timeout Action
	0	Retry Forever (record status only)default
	1	Flush buffer for write or return all 1s for read
5-4	Retry	Limit
	00	Retry 2 timesdefault
	01	Retry 16 times
	10	Retry 4 times
	11	Retry 64 times
3	Clear	Failed Data and Continue Retry
	0	Flush the entire post-write bufferdefault
	1	When data is posting and master (or target)
		abort fails, pop the failed data if any, and keep
		posting
2	CPU I	Backoff on PCI Read Retry Failure
	0	Disabledefault
	1	Backoff CPU when reading data from PCI and
		retry fails
1	Reduc	ce 1T for FRAME# Generation
	0	Disabledefault
	1	Enable
0	Reduc	ce 1T for CPU read PCI slave
	0	DisableDefault
	1	Enable

7	7 Resei	r ved always reads 0
(6 PCI	Master 1-Wait-State Write
	0	Zero wait state TRDY# response default
	1	One wait state TRDY# response
5	5 PCI	Master 1-Wait-State Read
	0	Zero wait state TRDY# response default
	1	One wait state TRDY# response
4	4 Reser	rvedalways reads 0
3	3 Assei	t STOP# after PCI Master Write Timeout
	0	Disable default
	1	Enable
2	2 Asser	rt STOP# after PCI Master Read Timeout
	0	Disable default
	1	Enable
1	LOC	K# Function
	0	Disabledefault
	1	Enable
() PCI I	Master Broken Timer Enable
	0	Disabledefault
	1	Enable. Force into arbitration when there is no
		FRAME# 16 PCICLK's after the grant.
		et 74 - PCI Master Control 2 (00h)RW
A	PCI I	Master Read Prefetch by Enhance Command
	0	
	1	Prefetch only if Enhance command
		rved (Do Not Program)default = 0
5		
- 4		my Request default = 0
		Delay Transaction Timeout
	0	Disabledefault
	1	Enable
2	2 Back	off CPU Immediately on CPU-to-AGP
	0	Disable default
	1	Enable
1.		PCI Master Latency Timer Control
		AGP master reloads MLT timer default
		AGP master falling edge reloads MLT timer
	10	€ €
		AGP master falling edge reloads MLT timer

11 Reserved (do not program)

Device 0 Offset 73 - PCI Master Control 1 (00h).....RW

Device	<u>0 Offset 75 - PCI Arbitration 1 (00h)RW</u>
7	Arbitration Mechanism
	0 PCI has prioritydefault
	1 Fair arbitration between PCI and CPU
6	Arbitration Mode
	0 REQ-based (arbitrate at end of REQ#)default
	1 Frame-based (arbitrate at FRAME# assertion)
5-4	Latency Timerread only, reads Rx0D bits 2:1
3-0	PCI Master Bus Time-Out
	(force into arbitration after a period of time)
	0000 Disabledefault
	0001 1x32 PCICLKs
	0010 2x32 PCICLKs
	0011 3x32 PCICLKs
	0100 4x32 PCICLKs
	1111 15x32 PCICLKs

Device	0 Offset 76 - PCI Arbitration 2 (00h)RW
7	PCI CPU-to-PCI Post-Write Retry Failed
	0 Continue retry attemptdefault
	1 Go to arbitration
6	CPU Latency Timer Bit-0RC
	0 CPU has at least 1 PCLK time slot when CPU
	has PCI bus
	1 CPU has no time slot
5-4	Master Priority Rotation Control
	0x Grant to CPU after every PCI master grant
	def=00
	10 Grant to CPU after every 2 PCI master grants
	11 Grant to CPU after every 3 PCI master grants
	Setting 0x: the CPU will always be granted access
	after the current bus master completes, no matter how
	many PCI masters are requesting.
	Setting 10: if other PCI masters are requesting during
	the current PCI master grant, the highest priority
	master will get the bus after the current master
	completes, but the CPU will be guaranteed to get the
,	bus after that master completes.
	Setting 11: if other PCI masters are requesting, the highest priority will get the bus next, then the next
	highest priority will get the bus, then the CPU will get
	the bus.
	In other words, with the above settings, even if
	multiple PCI masters are continuously requesting the
	bus, the CPU is guaranteed to get access after every
	master grant (01), after every other master grant (10)
	or after every third master grant (11).
3-2	Select REQn to RQ4 mappin
	00 REQ4
	01 REQ0
	10 REQ1
	11 REQ2

- 1 CPU-to-PCI QW High DW Read Access to PCI Slave Allowed to be Backed Off
 - 0 Disable.....default
 - 1 Enable

Enable RQ4 as High Priority Master

- 0 Disable......default
- 1 Enable

Device	0 Offset 77 - Chip Test Mode (00h)RW	Device	0 Offset 7A – Miscellaneous Control 1 (00h) RW
7	Reserved (no function) always reads 0	7	No Time-Out Arbitration for Consecutive Frame
6-0	Reserved (do not use)default=0		Accesses
			0 Enabledefault
			1 Disable
<u>Device</u>	0 Offset 78 - PMU Control I (00h)RW	6-5	Reserved always reads 0
7	I/O Port 22 Access	4	Invalidate PCI / AGP Buffered (Cached) Read
	0 CPU access to I/O address 22h is passed on to		Data for CPU to PCI / AGP Accesses
	the PCI busdefault		0 Enable default
	1 CPU access to I/O address 22h is processed		1 Disable
	internally	3	Background PCI-to-PCI Write Cycle Mode
6	Suspend Refresh Type 0 CBR Refreshdefault		0 Enabledefault
	0 CBR Refreshdefault 1 Self Refresh	2.1	1 Disable
5	Reserved always reads 0	2-1	Reserved
5 4	Dynamic Clock Control	0	South Bridge PCI Master Force Timeout When
-	0 Normal (clock is always running)default		PCI Master Occupancy Timer Is Up 0 Disabledefault
	1 Clock to various internal functional blocks is		1 Enable
	disabled when those blocks are not being used		1 Ellable
3	Reserved		
2	GSTOP# Assertion		
_	0 Disable (GSTOP# is always high)default	Device	0 Offset 7B – Miscellaneous Control 2 (02h) RW
	1 Enable (GSTOP# could be low)	7-2	Reserved always reads 0
1	Reserved always reads 0	1	PCI Master Access PMRDY Select
0	Memory Clock Enable (CKE) Function		0 Tail
	0 CKE Function Disabledefault		1 Headdefault
	1 CKE Function Enable	0	PCI Bus Operating Freqstrapped from MAB5#
			0 33 MHzdefault
			1 66 MHz
Device	0 Offset 79 - PMU Control 2 (00h)RW		
7	Cache Controller Module Clock Dynamic Stop	Device	0 Offset 7E – PLL Test Mode (00h) RW
•	0 Disable		Reserved (status)RO
	1 Enable	5-0	Reserved (do not use)default=0
6	DRAM Controller Module Clock Dynamic Stop		
	0 Disabledefault		0 Offset 7F – PLL Test Mode (00h)RW
	1 Enable	7-0	Reserved (do not use)default=0
5	AGP Controller Module Clock Dynamic Stop		
	0 Disabledefault		
	1 Enable		
4	PCI Controller Module Clock Dynamic Stop		r
	0 Disabledefault		
•	1 Enable		
3	Pseudo Power Good		
	0 Disabledefault		
2	1 Enable Indicate SIO Request to DRAM Controller		
2	Indicate SIO Request to DRAM Controller 0 Disabledefault		
	1 Enable		
1-0	Reservedalways reads 0		
1-0	ALSCI VEU aiways icaus U		

GART / Graphics Aperture Control

The function of the Graphics Address Relocation Table (GART) is to translate virtual 32-bit addresses issued by an AGP device into 4K-page based physical addresses for system memory access. In this translation, the upper 20 bits (A31-A12) are remapped, while the lower 12 address bits (A11-A0) are used unchanged.

A one-level fully associative lookup scheme is used to implement the address translation. In this scheme, the upper 20 bits of the virtual address are used to point to an entry in a page table located in system memory. Each page table entry contains the upper 20 bits of a physical address (a "physical page" address). For simplicity, each page table entry is 4 bytes. The total size of the page table depends on the GART range (called the "aperture size") which is programmable in the VT8605 / 86C370.

This scheme is shown in the figure below.

Figure 5. Graphics Aperture Address Translation

Since address translation using the above scheme requires an access to system memory, an on-chip cache (called a "Translation Lookaside Buffer" or TLB) is utilized to enhance performance. The TLB in the VT8605 / 86C370 contains 16 entries. Address "misses" in the TLB require an access of system memory to retrieve translation data. Entries in the TLB are replaced using an LRU (Least Recently Used) algorithm.

Addresses are translated only for accesses within the "Graphics Aperture" (GA). The Graphics Aperture can be any power of two in size from 1MB to 256MB (i.e., 1MB, 2MB, 4MB, 8MB, etc). The base of the Graphics Aperture can be anywhere in the system virtual address space on an address boundary determined by the aperture size (e.g., if the aperture size is 4MB, the base must be on a 4MB address boundary). The Graphics Aperture Base is defined in register offset 10 of device 0. The Graphics Aperture Size and TLB Table Base are defined in the following register group (offsets 84 and 88 respectively) along with various control bits.

Device (0 Offset 83-80 - GART/TLB Control (00000000h) RW
	Reservedalways reads 0
	Reserved (test mode status)RO
7	Flush Page TLB
•	0 Disabledefault
	1 Enable
6-4	Reserved (always program to 0)RW
3	PCI Master Address Translation for GA Access 0 Addresses generated by PCI Master accesses of the Graphics Aperture will not be translateddefault 1 PCI Master GA addresses will be translated
2	AGP Master Address Translation for GA Access
	O Addresses generated by AGP Master accesses
	of the Graphics Aperture will not be translated default
	1 AGP Master GA addresses <u>will</u> be translated
1	CPU Address Translation for GA Access
	0 Addresses generated by CPU accesses of the
	Graphics Aperture will not be translated def
	1 CPU GA addresses <u>will</u> be translated
0	AGP Address Translation for GA Access
	0 Addresses generated by AGP accesses of the
	Graphics Aperture will not be translated def
	1 AGP GA addresses <u>will</u> be translated
Note: F	For any master access to the Graphics Aperture range,
	rill not be performed.
blioop	an act of personal act
Device (O Offset 84 - Graphics Aperture Size (00h) RW
7-0	Graphics Aperture Size
	11111111 1M 1111000 16M
	11111110 2M 1110000 32M
	11111100 4M 11000000 64M
	11111000 8M 10000000 128M
	00000000 256M
,	00000000 20001
Offset 8	B-88 - GA Translation Table Base (00000000h) RW
31-12	Graphics Aperture Translation Table Base.
	Pointer to the base of the translation table in system
	memory used to map addresses in the aperture range
	(the pointer to the base of the "Directory" table).
11-3	Reservedalways reads 0
2	PCI Master Directly Accesses DRAM if in GART
	Range
	0 Disable default
	1 Enable
1	Graphics Aperture Enable
-	0 Disable default
	1 Enable
	Note: To disable the Graphics Aperture, set this bit
	to 0 and set all bits of the Graphics Aperture, set this bit
	0. To enable the Graphics Aperture, set this bit to 1
	and program the Graphics Aperture Size to the
	desired operture size

desired aperture size.

Reserved

.....always reads 0

AGP Control

TIGH COMPON		
Device (Offset A3-A0 - AGP Capability Identifier	
(002000		
	Reserved	
_	Major Specification Revision always reads 0010	
23-20	Major rev # of AGP spec that device conforms to	
10.17		
19-16	Minor Specification Revision always reads 0000	
150	Minor rev # of AGP spec that device conforms to	
15-8	Pointer to Next Item always reads 00 (last item)	
7-0	AGP ID (always reads 02 to indicate it is AGP)	
Device (Offset A7-A4 - AGP Status (07000203h)RO	
	Maximum AGP Requests always reads 07†	
31-24	Max # of AGP requests the device can manage (8)	
22 10	† See also RxFC[1] and RxFD[2-0]	
23-10	Reserved always reads 0s	
9	Supports SideBand Addressing always reads 1	
8-6	Reservedalways reads 0s	
5	4G Supported (can be written at RxAE[5]	
4	Fast Write Supported(can be written at RxAE[4]	
3	Reserved always reads 0s	
2	4X Rate Supported (can be written at RxAE[2])	
1	2X Rate Supported (can be written at RxAC[3])	
0	1X Rate Supported always reads 1	
Darria (Office AD AC ACD Commond (0000000b) DW	
	Offset AB-A8 - AGP Command (00000000h)RW	
	Request Depth (reserved for target)always reads 0s	
	Reservedalways reads 0s	
9	SideBand Addressing Enable	
	0 Disabledefault	
	1 Enable	
8	AGP Enable	
	0 Disabledefault	
	1 Enable	
7-6	Reservedalways reads 0s	
5	4G Enable	
	0 Disabledefault	
	1 Enable	
4	Fast Write Enable	
	0 Disabledefault	
	1 Enable	
3	Reservedalways reads 0s	
2	4X Mode Enable	
	0 Disabledefault	
	1 Enable	
1	2X Mode Enable	
	0 Disabledefault	
	1 Enable	
0	1X Mode Enable	
v	0 Disabledefault	
	1 Enable	
	2 214010	

7	AGP DisableRC
	0 Disabledefaul
	1 Enable
	This bit is latched from MAB9# at the rising edge o
	RESET#.
í	AGP Read Synchronization
	0 Disabledefaul
	1 Enable
5	AGP Read Snoop DRAM Post-Write Buffer
	0 Disabledefaul
	1 Enable
1	GREQ# Priority Becomes Higher When Arbiter is
	Parked at AGP Master
	0 Disabledefaul
	1 Enable
3_	2X Rate Supported (read also at RxA4[1])
	0 Not supporteddefaul
	1 Supported
2	LPR In-Order Access (Force Fence)
	0 Fence/Flush functions not guaranteed. AGI
	read requests (low/normal priority and high
	priority) may be executed before previously
	issued write requestsdefaul
	1 Force all requests to be executed in orde
	(automatically enables Fence/Flush functions)
	Low (i.e., normal) priority AGP read request will never be executed before previously
	issued writes. High priority AGP read request
	may still be executed prior to previously issued
	write requests as required.
1	AGP Arbitration Parking
	0 Disabledefaul
	1 Enable (GGNT# remains asserted until eithe
	GREQ# de-asserts or data phase ready)
0	AGP to PCI Master or CPU to PCI Turnaround
U ,	Cycle
	0 2T or 3T Timingdefaul
	1 1T Timing
	1 11 ming

Device	0 Offset AD – AGP Latency Timer (02h)RW	Device	0 Offset E0 – Miscellaneous Control (00h) RW
7-5	Reserved always reads 0	7-6	Reservedalways reads 0
4	Choose First or Last Ready of DRAM	5	Enable internal graphics and AGP/CPU-to-PCI2
	0 Last ready chosendefault		concurrent access
	1 First ready chosen		0 Disable default
3-0	AGP Data Phase Latency Timer default = 02h		1 Enable
		3-1	Indicate which bank that Frame Buffer is loacted
	<u>0 Offset AE – AGP Miscellaneous Control (00h)RW</u>		000 FB located in bank 0default
7-6	Reserved always reads 0		001 FB located in bank 1
5	4G Supported		010 FB located in bank 2
	0 4G not supporteddefault		011 FB located in bank 3
	1 4G supported		101 FB located in bank 4
4	Fast Write Supported		110 Reserved
	0 Fast Write not supporteddefault		111 Reserved
	1 Fast Write supported		
3	Reserved always reads 0	0	Latch DRAM Data Using
2	4x Rate Supported		0 Internal DRAM DCLK default
	0 4x Rate not supporteddefault		1 External Feedback DRAM DCLK
	1 4x Rate supported		
1-0	Reserved always reads 0		K ₃ /
		D	O OFFICE TO DIOC Constal Desistance Division
			0 Offset F7-F0 – BIOS Scratch Registers RW
Device	0 Offset B0 – AGP Pad Control / Status (8xh)RW	7-0	No hardware functiondefault = 0
	AGP 4x Strobe VREF Control	Device	0 Offset F8 – DRAM Arbitration Timer (00h) RW
7	0 STB VREF is STB# and vice yersa		AGP Timerdefault = 0
	1 STB VREF is STB# and vice versa 1 STB VREF is AGPREFdefault	3-0	Host CPU Timer default = 0
6	AGP 4x Strobe & GD Pad Drive Strength	3-0	Host CFU Timer default = 0
6	0 Drive strength set to compensation circuit	Device	0 Offset F9 – FB – Reserved
	defaultdefault		
	1 Drive strength controlled by RxB1[7-0]	Device	0 Offset FC - Back Door Control 1 (00h)RW
5-3	AGP Compensation Circuit N Control Output.RO	7-4	Priority Timer default = 0
2-0	AGP Compensation Circuit N Control Output.RO AGP Compensation Circuit P Control Output .RO	3-2	Reserved (Do Not Program)default = 0
2-0	AGI Compensation Circuit I Control Output .KO	1	Back-Door Max # of AGP Requestsdefault = 0
			0 Read of RxA7 always returns a value of 7 de
			1 Read of RxA7 returns the value programmed
Device	0 Offset B1 – AGP Drive Strength (63h)RW		in RxFD[2-0]
7-4	AGP Output Buffer Drive Strength N Ctrl def=6	0	
	AGP Output Buffer Drive Strength P Ctrl def=3		0 Use Rx3-2 value for Rx3-2 readback default
			1 Use RxFE-FF Back-Door Device ID for Rx3-2
			read
		7)	
		Device	0 Offset FD - Back-DoorControl 2 (00h)RW
		7-5	Reservedalways reads 0
		4-0	Max # of AGP Requestsdefault = 0
			(see also RxA7 and RxFC[1])
			/
			0 Offset FF-FE – Back-Door Device ID (0000h) RW
	,	15-0	Back-Door Device IDdefault=00

Device 1 Register Descriptions

<u>Device 1 Header Registers - PCI-to-PCI Bridge</u>

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number of 0 and function number equal to 0 and device number equal to one.

Device	1 Offs	et 1-0 - Vendor ID (1106h)RO
15-0	ID C	ode (reads 1106h to identify VIA Technologies)
Device	1 Offs	et 3-2 - Device ID (TBDh)RO
15-0		Code (reads TBDh to identify the VT8605 /
	86C3	70 PCI-to-PCI Bridge device)
Device	1 Offs	et 5-4 – Command (0007h)RW
15-10	Rese	rved always reads 0
9	Fast !	Back-to-Back Cycle EnableRO
	0	Fast back-to-back transactions only allowed to
		the same agentdefault
	1	Fast back-to-back transactions allowed to
		different agents
8		R# EnableRO
	0	SERR# driver disableddefault
	1	SERR# driver enabled
7		R# is used to report parity errors if bit-6 is set). ress / Data SteppingRO
7	Addi ()	Device never does steppingdefault
	1	Device always does stepping
6	_	y Error ResponseRW
Ů	0	Ignore parity errors & continuedefault
	1	Take normal action on detected parity errors
5	VGA	Palette Snoop (Not Supported)RO
	0	Treat palette accesses normallydefault
	1	Don't respond to palette writes on PCI bus
		(10-bit decode of I/O addresses 3C6-3C9 hex)
4	Mem	ory Write and Invalidate CommandRO
	0	Bus masters must use Mem Writedefault
	1	Bus masters may generate Mem Write & Inval
3	_	ial Cycle MonitoringRO
	0	Does not monitor special cyclesdefault
•	1	Monitors special cycles
2		MasterRW
	0 1	Never behaves as a bus master Enable to operate as a bus master on the
	1	primary interface on behalf of a master on the
		secondary interfacedefault
1	Mem	ory Space RW
•	0	Does not respond to memory space
	1	Enable memory space accessdefault
0	I/O S	
	0	Does not respond to I/O space
	1	Enable I/O space accessdefault

Device	1 Offset 7-6 - Status (Primary Bus) (0230h) RWC
15	Detected Parity Error always reads 0
14	Signaled System Error (SERR#) always reads 0
13	Signaled Master Abort
	0 No abort receiveddefault
	1 Transaction aborted by the master with
	Master-Abort (except Special Cycles)
	write 1 to clear
12	Received Target Abort
	0 No abort receiveddefault
	1 Transaction aborted by the target with Target-
	Abort write 1 to clear
11	Signaled Target Abortalways reads 0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumalways reads 01
	10 Slow
	11 Reserved
8	Data Parity Error Detectedalways reads 0
7	Fast Back-to-Back Capablealways reads 0
6	User Definable Featuresalways reads 0
5	66MHz Capable always reads 1
4 3-0	Supports New Capability listalways reads 1 Reserved always reads 0
3-0	Reserved always reads 0
Device	1 Offset 8 - Revision ID (00h)RO
7-0	VT8605 / 86C370 Chip Revision Code (00=First
	Silicon)
Davica	1 Offset 9 - Programming Interface (00h)RO
	gister is defined in different ways for each Base/Sub-
	ode value and is undefined for this type of device.
7-0	Interface Identifieralways reads 00
Device	1 Offset A - Sub Class Code (04h)RO
7-0	Sub Class Code .reads 04 to indicate PCI-PCI Bridge
ъ .	LOSS AD D. CL. C. L. (ACL.)
	1 Offset B - Base Class Code (06h)RO
7-0	Base Class Code reads 06 to indicate Bridge Device
Device 1	1 Offset D - Latency Timer (00h)RO
7-0	Reservedalways reads 0
	•
Device	1 Offset E - Header Type (01h)RO
7-0	Header Type Code reads 01: PCI-PCI Bridge
Device	1 Offset F - Built In Self Test (BIST) (00h) RO
7	BIST Supported reads 0: no supported functions
6	Start Test write 1 to start but writes ignored
5-4	
3-0	Response Code 0 = test completed successfully
5-4	Reserved always reads 0

Device 1 Offset 18 - Primary Bus Number (00h)RW	Device	1 Offset 3F-3E – I
7-0 Primary Bus Number default = 0	(0000h)	
This register is read write, but internally the chip always uses bus 0 as the primary.	15-4 3	Reserved VGA-Present on 0 Forward V
Device 1 Offset 19 - Secondary Bus Number (00h)RW		1 Forward V
7-0 Secondary Bus Number default = 0		Note: VGA add
Note: AGP must use these bits to convert Type 1 to Type 0.		and I/O addresse 3DFh (10-bit de
Device 1 Offset 1A - Subordinate Bus Number (00h)RW		B0000-B7FFFh a
7-0 Primary Bus Number default = 0		BFFFFh. Graphi
Note: AGP must use these bits to decide if Type 1 to Type 1		uses I/O addresse 3Cx-3Dxh. If ar
command passing is allowed.		use the 3Bxh I
D 1 1 000 (1D C) I ((001) DO		memory space;
Device 1 Offset 1B – Secondary Latency Timer (00h)RO		addresses to emul
7-0 Reserved always reads 0	2	Block / Forward
Device 1 Offset 1C - I/O Base (f0h)RW		0 Forward a
7-4 I/O Base AD[15:12]default = 1111b		they are in
3-0 I/O Addressing Capability default = 0		and I/O Lin
Device 1 Offset 1D - I/O Limit (00h)RW		1 Do not for
		that are in
7-4 I/O Limit AD[15:12]		they are in
3-0 I/O Addressing Capabilitydefault = 0		and I/O Lii
Device 1 Offset 1F-1E - Secondary Status (0000h)RO	1-0	Reserved
15-0 Reservedalways reads 0		
Device 1 Offset 21-20 - Memory Base (fff0h)RW		
15-4 Memory Base AD[31:20]default = FFFh		
3-0 Reservedalways reads 0		
Device 1 Offset 23-22 - Memory Limit (Inclusive) (0000h) RV	<u>v</u>	
15-4 Memory Limit AD[31:20] default = 0		
3-0 Reserved always reads 0		
Device 1 Offset 25-24 - Prefetchable Memory Base (fff0h) RV	<u>v</u>	4
15-4 Prefetchable Memory Base AD[31:20]default = FFFh		
3-0 Reserved always reads 0		
Device 1 Offset 27-26 - Prefetchable Memory Limit		
(0000h)RW		
15-4 Prefetchable Memory Limit AD[31:20]. default = 0		
3-0 Reserved		

vice	1 Offset 3F-3E – PCI-to-PCI Bridge Control
)00h)	RW
15-4	Reservedalways reads 0
3	VGA-Present on AGP
	0 Forward VGA accesses to PCI Bus default
	1 Forward VGA accesses to AGP Bus
	Note: VGA addresses are memory A0000-BFFFFh
	and I/O addresses 3B0-3BBh, 3C0-3CFh and 3D0-
	3DFh (10-bit decode). "Mono" text mode uses
	B0000-B7FFFh and "Color" Text Mode uses B8000-
	BFFFFh. Graphics modes use Axxxxh. Mono VGA
	uses I/O addresses 3Bx-3Cxh and Color VGA uses
	3Cx-3Dxh. If an MDA is present, a VGA will not
	use the 3Bxh I/O addresses and B0000-B7FFFh
	memory space; if not, the VGA will use those
	addresses to emulate MDA modes.
2	Block / Forward ISA I/O Addresses
	0 Forward all I/O accesses to the AGP bus if
	they are in the range defined by the I/O Base
	and I/O Limit registers (device 1 offset 1C-1D)
	default
	1 Do not forward I/O accesses to the AGP bus
	that are in the 100-3FFh address range even if
4	they are in the range defined by the I/O Base
	and I/O Limit registers.
1-0	Reserved always reads 0

<u>Device 1 Configuration Registers - PCI-to-PCI Bridge</u>

AGP Bus Control

Device	1 Offset 40 - CPU-to-AGP Flow Control 1 (00h)RW
7	CPU-AGP Post Write
	0 Disabledefault
	1 Enable
6	CPU-AGP Dynamic Burst
	0 Disabledefault
	1 Enable
5	CPU-AGP One Wait State Burst Write
	0 Disabledefault
	1 Enable
4	AGP to DRAM Prefetch
	0 Disabledefault
	1 Enable
3	CPU to AGP Post Write
	0 Disabledefault
	1 Enable
2	MDA Present on AGP
	0 Forward MDA accesses to AGPdefault
	1 Forward MDA accesses to PCI
	Note: Forward despite IO / Memory Base / Limit
	Note: MDA (Monochrome Display Adapter)
	addresses are memory addresses B0000h-B7FFFh
	and I/O addresses 3B4-3B5h, 3B8-3BAh, and 3BFh
	(10-bit decode). 3BC-3BE are reserved for printers.
	Note: If Rx3E bit-3 is 0, this bit is a don't care (MDA
	accesses are forwarded to the PCI bus).
1	AGP Master Read Caching
	0 Disabledefault
0	1 Enable
0	AGP Delay Transaction
	0 Disabledefault
	1 Enable

Table 5. VGA/MDA Memory/IO Redirection

3E[3]	40[2]	VGA	MDA	Axxxx,	B0000	3Cx,	
VGA	MDA	<u>is</u>	<u>is</u>	B8xxx	-B7FFF	3Dx	<u>3Bx</u>
Pres.	Pres.	<u>on</u>	<u>on</u>	Access	Access	<u>I/O</u>	<u>I/O</u>
0	-	PCI	PCI	PCI	PCI	PCI	PCI
1	0	AGP	AGP	AGP	AGP	AGP	AGP
1	1	AGP	PCI	AGP	PCI	AGP	PCI

Device	e 1 Offset 41 - CPU-to-AGP Flow Control 2 (00h) RW
7	Retry Status
	0 No retry occurreddefault
	1 Retry Occurredwrite 1 to clear
6	Retry Timeout Action
	0 No action taken except to record status def
	1 Flush buffer for write or return all 1s for read
5-4	Retry Count
	00 Retry 2, backoff CPUdefault
	01 Retry 4, backoff CPU
	10 Retry 16, backoff CPU
	11 Retry 64, backoff CPU
3	Post Write Data on Abort
	0 Flush entire post-write buffer on target-abort
	or master abort
	1 Pop one data output on target-abort or master-
	abort
2	CPU Backoff on AGP Read Retry Timeout
_	0 Disable default
	1 Enable
1-0	Reservedalways reads 0
1-0	Reservedarways reads o
Device	e 1 Offset 42 - AGP Master Control (00h)RW
7	Read Prefetch for Enhance Command
	0 Always Perform Prefetchdefault
	1 Prefetch only if Enhance Command
6	AGP Master One Wait State Write
	0 Disabledefault
	1 Enable
5	AGP Master One Wait State Read
	0 Disabledefault
	1 Enable
4	Extend AGP Internal Master for Efficient
	Handling of Dummy Request Cycles
	0 Disabledefault
	1 Enable
	This bit is normally set to 1.
3	AGP Delay Transaction Timeout
	0 Disabledefault
	1 Enable
2	Prefetch Disable when Delay Transaction Occured
	0 Normal operationdefault
	1 Disable prefetch when doing fast response to
	the previous delay transaction or doing read
	caching
1	Reservedalways reads 0
0	Shorten AGP Master to TRFCTL
•	0 Disable
	1 Enable

Device	1 Offset 43 - AGP Master Latency Timer (00h) RW	Rx45 CPU Write CPU Write
7-4	Host to AGP Time slot	Bits Address Address
	0 Disable (no timer)default	7-4 in Mem1 in Mem2 Fast Write Cycle Alignment
	1 16 GCLKs	x1xx QW aligned, burstable
	2 32 GCLKs	0000 DW aligned, nonburstable
		x010 0 0 n/a
	F 128 GCLKs	0010 0 1 DW aligned, non-burstable
3-0	AGP Master Time Slot	x010 1 - QW aligned, burstable
	0 Disable (no timer)default	x001 0 0 n/a
	1 16 GCLKs	x001 - 1 QW aligned, burstable
	2 32 GCLKs	0001 1 0 DW aligned, non-burstable x011 0 n/a
	 F. 100 CCL V	
	F 128 GCLKs	x011 1 - QW aligned, burstable x011 0 1 QW aligned, burstable
		1000 - QW aligned, non-burstable
Device	1 Offset 44 – Backdoor Register Control (00h).RW	1010 0 1 QW aligned, non-burstable
7-1	Reservedalways reads 0	1000 1 QW aligned, non-burstable 1001 1 QW aligned, non-burstable
0	Back Door Register	Q w anglied, non burstable
v	0 Disabledefault	
	1 Enable	
		<u>Device 1 Offset 47-46 – PCI-to-PCI Bridge Device ID RW</u>
	1000 117 7 177 11 6 1 1 (70)	15-0 PCI-to-PCI Bridge Device ID default = 0000
	1 Offset 45 – Fast Write Control (72h)RW	
7	Force Fast Write Cycle to be QW Aligned	
	(if Rx45[6] = 0)	Device 1 Offset 80 – Capability ID (01h)RO
	0 Disabledefault	7-0 Capability IDalways reads 01h
4	1 Enable Marga Multiple CDU Transactions Into One Foot	
6	Merge Multiple CPU Transactions Into One Fast Write Burst Transaction	Device 1 Offset 81 – Next Pointer (00h)RO
	0 Disable	7-0 Next Pointer: Nullalways reads 00h
	1 Enabledefault	
5	Merge Multiple CPU Write Cycles To Memory	
	Offset 23-20 Into Fast Write Burst Cycles	Device 1 Offset 82 – Power Mgmt Capabilities 1 (02h) RO
	(if $Rx45[6] = 0$)	7-0 Power Mgmt Capabilities
	0 Disable	7-0 1 over right capabilitiesarways reads 02ii
	1 Enabledefault	Device 1 Offset 83 – Power Mgmt Capabilities 2 (00h) RO
4	Merge Multiple CPU Write Cycles To	7-0 Power Mgmt Capabilities always reads 00h
	Prefetchable Memory Offset 27-24 Into Fast	
	Write Burst Cycles (if $Rx45[6] = 0$)	
	0 Disable	Device 1 Offset 84 – Power Mgmt Ctrl/Status (00h) RW
	1 Enabledefault	7-2 Reservedalways reads 0
3	Reservedalways reads 0	1-0 Power State
2	Fast Write Burst 4T Max (No Slave Flow Control)	00 D0default
	0 Disabledefault	01 -reserved-
1	1 Enable	10 -reserved-
1	Fast Write Fast Back to Back	11 D3 Hot
	0 Disable	11 23 1100
Δ	1 Enabledefault Fast Write Initial Block 1 Wait State	Device 1 Offset 85 – Power Mgmt Status (00h)RO
0	0 Disabledefault	7-0 Power Mgmt Statusdefault = 00
	1 Enable	D 1 1000 100 DADD C 15 1 (001) DO
	1 Dimote	Device 1 Offset 86 – P2P Br. Support Extensions (00h). RO
		7-0 P2P Bridge Support Extensionsdefault = 00
		Device 1 Offset 87 – Power Management Data (00h) RO
		7-0 Power Management Datadefault = 00

FUNCTIONAL DESCRIPTION - INTEGRATED SAVAGE4 GRAPHICS

Configuration Strapping

Certain VT8605 / 86C370 graphics functions have options that must be selected and fixed at reset (before the register bits controlling these functions can be programmed by software). This is accomplished via power-on configuration strapping.

The strapping pins are pulled low internally and can be individually pulled high through 10 KOhm resistors. These pull-ups and pull-downs do not affect normal operation of the pins, but they do force the pins to a definite state during reset. At the rising edge of the reset signal, this state is sampled, the result is inverted and the data loaded into the CR36, CR37 and CRB0 registers. The data is used for system configuration. The definitions of the strapping bits at the rising edge of the reset signal are shown in Table 6.

Pin Name	Pin#	CR Bit(s) Value	Description
MA2		CR36[0]	PCI Interrupt
			Disable INTA# claim (00H in PCI3D)
			Enable INTA# claim (01H in PCI3D)
MA3		CR36[4]	IO Disable
			Disable I/O access PCI04[0] ignored
			Enable I/O access via PCI04[0] = 1.
MA4		CRB0[7]	PCI Base Address Mapping
			Address Mapping 1 (varies by chip
			revision)
			Address Mapping 0 (PCI10, 14) (16M
			assigned to PCI0; 128M assigned to
			PCI14)

Table 6. Definition of Strapping Bits at the Rising Edge of the Reset Signal

Important Note: As described above, the signal levels on the strapping pins are inverted before being latched in the various strapping bit registers. Since the strapping pins all have internal pull-downs, the default values for each of the strapping bits is 1. The value latched at reset can be changed to 0 by adding an external pull-up to the appropriate pin. After reset, the strapping bits are written and read normally, i.e., there is no inversion of the register values.

PCI Configuration and Integrated AGP

PCI Configuration

The VT8605 / 86C370 graphics Vendor ID register (Index 00H) in the PCI Configuration space is hardwired to 5333H to specify S3 Incorporated as the vendor. The Device ID register is hardwired to 8A25H.

Bits 10-9 of the Status register (Index 06H) are hardwired to 01b to specify medium DEVSEL timing. The Class Code register (Index 08H) is hardwired to 30000xxH to specify that the VT8605 / 86C370 is a VGA compatible device.

There are two MMIO address mappings, as determined by the state of CRB0[7]. By default, CRB0[7] = 1, which selects Mapping 0. This uses the PCI base addresses specified by PCI10 and PCI14. 16 Mbytes of address space is claimed by PCI10 and 128 Mbytes of address space is claimed by PCI14. If the MA4 pin is strapped high at reset, a 0 is latched in CRB0[7] and selects Mapping 1. This uses base addresses PCI10 (same as Mapping 0), PCI14 (redefined from Mapping 0 to claim 16 Mbytes) and adds PCI18, PCI1C, PCI20 and PCI24, each claiming 16 Mbytes. Thus, Mapping 1 allows the address space claimed to be broken up into smaller blocks, as required by some operating systems. The Base Address 0 register (Index 10H) defaults to address 7000 0000H. This is the relocatable base address for memory-mapped I/O register accessing.

PCI04[4] is hardwired to 1 to indicate a capabilities list is available. PCI34[7-0] point to the PCI power management registers starting at offset DC. The basic power states (D0-D3) are supported as explained by the PCI Bus Power Management Interface Specification, Revision 1.0.

PCI Subsystem ID

The Subsystem ID and Subsystem Vendor ID are located in a 32-bit read only register at PCI Configuration Space Index 2C. These registers reflect the content of 4 read/write CR registers as follows:

	CR	PCI Configuration
Register	Space	Space
Subsystem Vendor ID Low Byte	CR81	Index 2CH
Subsystem Vendor ID High Byte	CR82	Index 2DH
Subsystem ID Low Byte	CR83	Index 2EH
Subsystem ID High Byte	CR84	Index 2FH

Table 7. PCI Subsystem ID and Subsystem Vendor ID Registers

These registers allow identification of particular vendors using the same graphics chip. The following design allows the subsystem identification to be handled by software (no hardwiring).

All VT8605 / 86C370 motherboard designs will incorporate the video BIOS into the system BIOS ROM. The system BIOS must load the subsystem ID information in the VT8605 / 86C370 before any ID scanning takes place. To do this, it must turn on the VT8605 / 86C370, enable I/O accesses in the PCI configuration space, unlock the CR registers, program the subsystem ID information in the registers described above, then turn off the VT8605 / 86C370.

Integrated AGP

VT8605 / 86C370 graphics conform with the requirements of Revision 2.0 of the AGP Interface Specification. Internal AGP VT8605 / 86C370 graphics are enabled by default (CR37[6] = 1) unless another AGP graphics device is located in the AGP4X Expansion Slot. In this case, the Expansion AGP graphics are enabled by default and the internal AGP VT8605 / 86C370 graphics are disabled. A System BIOS setting permits advanced users to override the default.

Major functions supported include:

- PIPE# and 1x/2x/4x side band addressing
- Data received at 1x/2x/4x clock rate
- Fast back to back data transfers
- Early grant
- Flow control of RBF# and throttling
- Up to 32 outstanding AGP requests
- Master read for 3D textures in system memory
- Command split function

For the most part, AGP configuration is identical to PCI configuration. PCI04[4] is hardwired to 1 to indicate that VT8605 / 86C370 graphics implements a list of capabilities. PCI34[7-0] point to the location of this list, which is at offset 80H. PCI80, PCI84 and PCI88 implement the register bits required by the AGP specification. PCI88[2-0] select the data

-44-

rate. PCI88[8] = 1 enables AGP bus master operations. PCI88[9] =1 enables sideband addressing. This is indicated by PCI84[9] (1 = sideband addressing supported). The state of PCI84[9] is determined by the state of CR70[7].

Display Memory

The VT8605 / 86C370 north bridge utilizes a Shared Memory Architecture (SMA) for Frame Buffer Memory. SMA allows system memory to be efficiently shared by the host CPU and the VT8605 / 86C370 north bridge graphics controller. By default, 8 Mbytes of system memory is allocated for the graphics frame buffer, but up to 32 Mbytes may be allocated depending on user preference, application requirements, and the total size of system memory. A System BIOS setting permits advanced users to override the default and select their preferred frame buffer size. When Expansion AGP graphics are enabled, the internal AGP VT8605 / 86C370 graphics are disabled and NO frame buffer memory is allocated.

Note: Frame buffer memory is allocated from system memory at bootup time. Changing the display settings to a resolution requiring additional frame buffer memory will require a system reboot to be performed.

Frame Buffer Size	CR36[7-5] Register Setting
0 Mbytes	000
2 Mbytes	001
4 Mbytes	010
8 Mbytes	011
16 Mbytes	100
32 Mbytes	101

Table 8. Supported Frame Buffer Memory Configurations

Interrupt Generation

Whatever the mode of operation (VGA or Enhanced), bit 4 of CR32 must be set to 1 to enable interrupt generation. When an enabled interrupt is generated, INTA# is pulled low unless CR36[0] = 0 (MA2 pulled high at reset), for which case no PCI interrupt line is claimed during PCI configuration.

When VT8605 / 86C370 graphics are being operated in VGA mode (CR66[0] = 0), only vertical retrace can generate an interrupt. This is enabled when CR11[5] = 0 and CR11[4] = 1. When an interrupt occurs, it is cleared by writing a 0 to CR11[4]. The interrupt must then be re-enabled by writing a 1 to the same bit. Note that the BIOS clears both bit 4 and bit 5 of CR11 during power-on, a mode set, or a reset. Thus, interrupt generation is disabled until bit 4 is set to 1.

In Enhanced mode (CR66[0] = 1 or 3D operation), interrupts can be generated by vertical retrace, command or bus FIFO overflow, command or bus FIFO empty, or by a BCI command. These interrupts are enabled and cleared and their status reported via MM8504. Serial port interrupts are controlled via MMFF08. If interrupts are used, they should be cleared before they are enabled.

Multiple interrupts can be enabled at the same time in Enhanced mode. The interrupt pin will remain asserted until all interrupt status bits are cleared.

Display Interfaces

CRT Interface

The VT8605 / 86C370 provides the following CRT interface signals:

- AR (analog red)
- AG (analog green)
- AB (analog blue)
- HSYNC (horizontal sync)
- VSYNC (vertical sync)

In addition, DDC2 monitor communications can be implemented via the serial communications port controlled by CRB1[4]-0. These bits control two-way communications over the SPCLK2 (clock) and SPDAT2 (data) lines. The operation is the same as described for the I²C serial communications port section except that interrupts and wait states are not supported.

External TV Encoder Interface

Figure 6 shows the interface to an external Bt868/869 TV encoder (or compatible device). The TV outputs are generated whenever the clock input from the decoder is present on the TVCLK pin and CRB0[4] = 0. The encoder is controlled via the I^2 C interface. TV monitor detection is also done via this interface. The TV encoder interface and the flat panel interface are multiplexed on common pins, so only one of the two (either the TV interface or the flat panel interface) can be enabled at any given time

Figure 6. External TV Encoder Interface

The VT8605 / 86C370 supports three output formats as shown in Table 9. As shown in Figure 6, P[11:0] on the encoder connect to TVD[11:0] on the VT8605 / 86C370. The CLKI pin on the encoder connects to the TVCLKR pin on the VT8605 / 86C370.

	SR35[5-4] = 00		SR35[5	-4] = 01	SR35[5-4] = 10	
	CLK1	CLKI	CLK1	CLKI	CLK1	CLKI
<u>Pin</u>	Rising	Falling	Rising	Falling	Rising	Falling
P11	G4	R7	B7	G3	R7	G3
P10	G3	R6	B6	G2	R6	G2
P9	G2	R5	B5	G1	R5	G1
P8	B7	R4	B4	G0	R4	G0
P7	B6	R3	В3	R7	R3	В7
P6	B5	G7	B2	R6	R2	В6
P5	B4	G6	B1	R5	R1	B5
P4	В3	G5	В0	R4	R0	B4
P3	G0	R2	G7	R3	G7	В3
P2	B2	R1	G6	R2	G6	B2
P1	B1	R0	G5	R1	G5	B1
P0	B0	G1	G4	R0	G4	В0

Table 9. External TV Encoder Output Data Formats

TFT Flat Panel TMDS Interface

Figure 7 shows the hardware connections to a receiver conforming to the DVI 1.0 or VESA TMDS standards. This interface allows the VT8605 / 86C370 to drive a TFT flat panel over considerable distance and is active when SR31[4] = 1 and CRB0[3] = 0. Panel power sequencing is controlled by the receiver components.

Figure 7. TMDS Interface

The VT8605 / 86C370 provides the following panel detection capability. If SR30[1] = 0 and the PANELDET pin is properly connected to a voltage source indicating the presence/absence of a panel, SR30[1] will reflect the high/low state of this input. A read of 1 indicates that a powered-up panel is connected.

For proper flat panel output with a standard VGA primary screen and the Streams Processor active, the following special register settings are required:

CR3A[4] = 1

CR67[3-2] = 01b (Streams Processor secondary and VGA primary

CR67[7-4] = desired bits/pixel mode

CR90[3] = 1 (CR0 must be programmed before this is set to 1. Setting this bit is not required for 8 bit/pixel modes)

CR90[6] = 1 (this bit must also be set to 1 for 8 bit/pixel modes)

MM8180 = 00000000H

These settings are required for correct automatic centering and expansion with Streams Processor operation.

I2C Serial Communications Port

One serial communications port is implemented in a register that can be accessed either via MMFF20 or CRA0. Bit 4 is set to 1 to enable the interface. The clock is written to bit 0 (= 0) and data to bit 1 (= 0), driving the SPCLK1 and SPDAT1 pins low respectively. The state of the SPCLK1 pin can be read via bit 2 and the state of the SPDAT1 pin can be read via bit 3. The SPCLK1 and SPDAT1 pins are tri-stated when their corresponding control bits are reset to 0, allowing other devices to drive the serial bus.

This serial port is typically used for I2C interfacing. When SPCLK1 and SPDAT1 are tri-stated, the VT8605 / 86C370 can detect an I2C start condition (SPDAT1 driven low while SPCLK1 is not driven low). This condition is generated by another I2C master that wants control of the I2C bus. If bit 19 of MMFF08 is set to 1, detection of a start condition generates an interrupt and sets bit 3 of MMFF08 to 1. If bit 24 of MMFF08 is set to 1, the VT8605 / 86C370 drives SPCLK1 low to generate I2C wait states until the Host can clear the interrupt and service the I2C bus.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Table 10. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
T_{A}	Ambient operating temperature	0	55	oC	1
$T_{\rm C}$	Case operating temperature	0	110	oC	1
T_{S}	Storage temperature	-55	125	oC	1
V _{IN}	Input voltage	-0.5	$V_{RAIL} + 10\%$	Volts	1, 2
V _{OUT}	Output voltage	-0.5	V _{RAIL} + 10%	Volts	1, 2

Note 1: Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

Note 2. V_{RAIL} is defined as the V_{CC} level of the respective rail. The CPU interface can be 3.3V or 2.5V. Memory can be 3.3V only. PCI can be 3.3V or 5.0V. Video can be 3.3V or 5.0V. Flat Panel can be 3.3V only.

DC Characteristics

 $\overline{T_A = 0-70^{\circ}\text{C}, V_{RAIL} = V_{CC}} + -5\%, V_{CORE} = 2.5V + -5\%, GND=0V$

Table 11. DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
$ m V_{IL}$	Input Low Voltage	-0.50	0.8	V	
V_{IH}	Input High Voltage	2.0	V _{CC} +0.5	V	
V_{OL}	Output Low Voltage	-	0.55	V	I_{OL} =4.0mA
V_{OH}	Output High Voltage	2.4	-	V	I_{OH} =-1.0mA
I_{IL}	Input Leakage Current	4-	+/-10	uA	$0 < V_{IN} < V_{CC}$
I_{OZ}	Tristate Leakage Current	-	+/-20	uA	$0.55 < V_{OUT} < V_{CC}$
I_{CC}	Power Supply Current	-		mA	

AC Timing Specifications

AC timing specifications provided are based on external zero-pf capacitance load. Min/max cases are based on the following table:

Table 12. AC Timing Min / Max Conditions

Parameter	Min	Max	Unit
5.0V Power	4.75	5.25	Volts
3.3V Power	3.135	3.465	Volts
2.5V Power	2.375	2.625	Volts
Temperature	0	55	оС

Drive strength for selected output pins is programmable. See Rx6D for details.

MECHANICAL SPECIFICATIONS

Figure 8. Mechanical Specifications - 552-Pin Ball Grid Array Package