Exponential and Logarithmic Functions

4.1 Exponential Functions

A function that has a variable in an exponent, such as $f(x) = 2^x$, is called an exponential function. The number being raised to the power is called the base.

$$f(x) = 2^x$$
 Exponent

Base

The table below shows some values of the exponential function $f(x) = 2^x$, and its graph (based on these points) is shown on the right.

- $x y=2^x$
- -3 $2^{-3} = \frac{1}{8}$
- -2 $2^{-2} = \frac{1}{2}$
- -1 $2^{-1} = \frac{1}{2}$
- $0 2^0 = 1$
- $1 2^1 = 2$
- $2 2^2 = 4$
- $3 2^3 = 8$

Compound Interest

For P dollars invested at annual interest rate r compounded m times a year for t years,

$$\binom{\text{Value after}}{\text{t years}} = P \cdot \left(1 + \frac{r}{m}\right)^{mt}$$

For example, for monthly compounding we would use m = 12 and for daily compounding m = 365 (the number of days in the year).

Example 1. FINDING A VALUE UNDER COMPOUND INTEREST

Find the value of \$4000 invested for 2 years at 12% compounded quarterly.

< solution >

$$4000 \cdot \left(1 + \frac{0.12}{4}\right)^{4 \cdot 2} \approx 5067.08$$

The value after 2 years will be \$5067.08.

PRESENT VALUE

For a future payment of P dollars at annual interest rate r compounded m times a year to be paid in t years,

$$\binom{Present}{Value} = \frac{P}{\left(1 + \frac{r}{m}\right)^{mt}}$$

Example 2. FIDING PRESENT VALUE

Find the present value of \$5000 to be paid 8 years from now at 10% interest compounded semiannually.

< solution >

For semiannual compounding (m = 2), the formula gives

$$\frac{P}{\left(1 + \frac{r}{m}\right)^{mt}} = \frac{5000}{\left(1 + \frac{0.10}{2}\right)^{2 \cdot 8}} \approx 2290.56$$

Therefore, the present value of the \$5000 is just \$2290.56.

Continuous Compounding

For P dollars invested at annual interest rate $\, \mathscr{V} \,$ compounded continuously for $\, \mathscr{t} \,$ years,

$$\binom{Value\ after}{t\ years} = Pe^{rt}$$

Example 3. FINDING VALUE WITH CONTINUOUS COMPOUNDING

Find the value of \$1000 at 8% interest compounded continuously for 20 years.

< solution >

We use the formula Pe^{rt} with P = 1000, r = 0.08, and t = 20. $Pe^{rt} = 1000 \cdot e^{0.08 \cdot 20} \approx 4953.03

Present Value with Continuous Compounding

For a future payment of P dollars at annual interest rate r compounded continuously to be paid in t years,

$$\binom{Present}{Value} = \frac{P}{e^{rt}} = Pe^{-rt}$$

Example 4. FINDING PRESENT VALUE WITH CONTINUOUS COMPOUNDING

The present value of \$5000 to be paid in 10 years at 7% interest compounded continuously is ?

< solution >

$$\frac{5000}{e^{0.07 \cdot 10}} = \frac{5000}{e^{0.7}} \approx $2482.93$$

4.2 Logarithmic Function

$$%log_a x = y \leftrightarrow a^y = x$$

The natural logarithm:

$$y = log_e x = lnx \leftrightarrow e^y = x$$
 (for x>0)
Graph = p290

EXAMPLE

$$log_{10} \frac{1}{10} = y \leftrightarrow 10^y = \frac{1}{10}$$

$$\rightarrow log_{10} \frac{1}{10} = -1$$

$$log_9 3 = y \leftrightarrow 9^y = 3 \leftrightarrow log_9 3 = \frac{1}{2}$$

Properties of natural loganthms

- 1. ln1 = 0
- $2. \quad lne = 1$
- 3. $\ln e^x = x$
- 4. $e^{lnx} = x$
- 5. $ln(M \cdot N) = lnM + lnN$
- 6. $\ln(\frac{M}{N}) = \ln M \ln N$
- 7. $\ln(\frac{1}{N}) = -\ln N$
- 8. $ln(M^N) = NlnM$

Example 9.

A sum is invested at 12% interest camponnded quarterly.

How soon will it double in value?

< solution >

$$r = \frac{1}{4} \cdot 12\% = 0.03$$

$$p(1 + 0.03)^n = 2p$$

$$1.03^n = 2$$

$$ln(1.03)^n = ln2$$

$$nln=(1.03) = ln2$$

$$n = \frac{\ln{(1.03)}}{\ln{2}} \approx 23.4$$

$$\frac{23.4}{4} \approx 5.9$$
 years

Example 10.

A sum is invested at 15% compounded continuously. How soon will it triple?

< solution >

$$Pe^{0.15n} = 3P$$

$$e^{0.015n} = 3$$

$$\ln(e^{0.015n}) = \ln 3$$

$$n = \frac{\ln 3}{0.15} = 7.3 \text{ years}$$

4.3 Differentiation of Logarithmic and

Exponential Functions

1.
$$\frac{d}{dx} \ln x = \frac{1}{x}$$
 (for x>0)

< solution >

$$\underline{\mathrm{pf}}: \frac{\mathrm{d}}{\mathrm{d}x} \ln x = \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h}$$

$$=\lim_{h\to 0}\frac{1}{h}\ln(\frac{x+h}{x})$$

$$=\lim_{h\to 0}\frac{1}{x}\frac{1}{h}\ln(1+\frac{h}{x})$$

$$= \lim_{h\to 0} \frac{1}{x} \ln(1+\frac{h}{x})^{\frac{x}{h}}$$

Let $\frac{\mathbf{x}}{\mathbf{h}} = n$, as $\mathbf{h} = 0^+$, we have $\mathbf{n} \to \infty$

$$(*) = \lim_{h \to 0} \frac{1}{x} \ln(1 + \frac{1}{h})^n$$
$$= \frac{1}{x} \cdot lne = \frac{1}{x}$$

$$2. \frac{\mathrm{d}}{\mathrm{d}x} \ln f(x) = \frac{f'(x)}{f(x)}$$

Example 2.

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln(x^2+1)=?$$

< solution >

$$\frac{d}{dx}\ln(x^2+1) = \frac{1}{x^2+1} \cdot 2x = \frac{2x}{x^2+1}$$

3.
$$\frac{\mathrm{d}}{\mathrm{d}x}e^x = e^x$$

< solution >

$$\underline{pf}$$
: $\ln e^x = x$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\ln e^x) = \frac{\mathrm{d}}{\mathrm{d}x}x$$

$$\frac{\frac{d}{dx}e^x}{e^x} = 1$$

$$\rightarrow \frac{\mathrm{d}}{\mathrm{d}x} e^x = e^x$$

$$4. \frac{\mathrm{d}}{\mathrm{d}x} e^{f(x)} = ?$$

< solution >

$$\frac{\mathrm{d}}{\mathrm{d}x}e^{f(x)} = e^{f(x)} \cdot f'(x)$$

Example 4.

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{e^x}{x}\right) = ?$$

< solution >

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{e^x}{x} \right) = \frac{x \cdot e^x - 1 \cdot e^x}{x^2} = \frac{x \cdot e^x - e^x}{x^2}$$

5.
$$\frac{\mathrm{d}}{\mathrm{d}x}a^x = ?$$

< solution >

$$\frac{\mathrm{d}}{\mathrm{d}x}a^{x} = \frac{\mathrm{d}}{\mathrm{d}x}e^{\ln ax} = \frac{\mathrm{d}}{\mathrm{d}x}e^{x\ln a} = e^{x\ln a} \cdot \ln a = \ln a \cdot (a^{x})$$

6.
$$\frac{\mathrm{d}}{\mathrm{d}x}a^{f(x)} = ?$$

< solution >

$$\frac{\mathrm{d}}{\mathrm{d}x}a^{f(x)} = (\ln a) \cdot a^{f(x)} \cdot f'(x)$$

ex.

$$\frac{\mathrm{d}}{\mathrm{d}x} 2^x = (\ln 2) \ 2^x$$

$$\frac{d}{dx} 5^{3x^{x}+1} = (\ln 5) 5^{3x^{2}+1} \cdot 6x$$

$$= (\ln 5)6x \cdot 5^{3x^2+1}$$

7.
$$\frac{d}{dx}\log_a x = \frac{d}{dx} \left(\frac{\ln x}{\ln a}\right) = \frac{1}{\ln a} \frac{d}{dx} \ln x = \frac{1}{(\ln a) \cdot x}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\log_a f(x) = \frac{f'(x)}{(\ln a) \cdot f(x)}$$

ex.

$$\frac{\mathrm{d}}{\mathrm{d}x}\log_5 x = \frac{1}{(\ln 5) \cdot x}$$

$$\frac{\mathrm{d}}{dx}\log_2(x^3+1) = \frac{3x^2}{(\ln 2)(x^3+1)}$$

4.4 Two Applications to Economics: Relative

Rates and Elasticity of Demand

- absolute rate of change : f'(x)
- relative rate or change : $\frac{d}{dx} lnf(x) = \frac{f'(x)}{f(x)}$

Example 1. $G(t)=8.2e^{\sqrt{t}}$

$$G(t)=8.2e^{\sqrt{t}}$$

 $\ln G(t) = \ln 8.2e^{\sqrt{t}}$

$$= \ln 8.2 + t^{-\frac{1}{2}}$$

$$\frac{d}{dt}(\ln 8.2 + t^{-\frac{1}{2}}) = \frac{1}{2}t^{-\frac{1}{2}}$$

at t=25

$$\frac{\mathrm{d}}{\mathrm{d}t}\ln\mathrm{G}(t) = \frac{1}{2} \cdot \frac{1}{\sqrt{25}} = 0.1$$

 \rightarrow in 25 years the G(t) will be increasing at the relatire rate of 0.1 per year.

Demaid function

x=D(p) gives the quantity x of an The demand function item that will be demanded by consumers if the price is p.

For a demand function D(p), let us calcutate the relatire rate of change of demand dirided by the relatire rate of change of price.

* the relatire rate of change of demand the relatire rate of change of price

$$= \frac{\frac{\frac{d}{dp}lnD(p)}{\frac{d}{dp}lnp}}{\frac{\frac{D'(p)}{D(p)}}{\frac{1}{p}}}$$

$$= \frac{\frac{pD'(p)}{D(p)}}{\frac{D(p)}{D(p)}} \qquad \text{(sornetimes, } D'(p) < 0)$$

• Elasticity of Demand

For a demand function D(p), the elasticity of demand is

$$E(p) = \frac{-pD'(p)}{D(p)}$$

Demand is elastic if E(p) > 1 and inelastic if E(p) < 1.

Example 2

D(p)=81-
$$p^2$$
 (0 \le p \le 9)
E(p)= $\frac{-pD'(p)}{D(p)} = \frac{-p(-2p)}{81-p^2}$
= $\frac{2p^2}{81-p^2}$

(a) Evaluating at p = 3 gives

$$E(3) = \frac{2 \cdot 3^2}{81 - 3^2} = \frac{1}{4} < 1$$

→Interpretation: The elasticity is less than 1, so demand for tickets is inelastic at a price of \$3. This means that a small price change (up or down from this level) will cause only a slight change in demand. More precisely, elasticity of means that a 1% price change will cause only about a % change in demand.

(b) At the price of \$6, the elasticity of demand is E(6)=1.6>1

→Interpretation: The elasticity is greater than 1, so demand is elastic at a price of \$6. This means that a small change in price (up or down from this level) will cause a relatively large change in demand. In particular, elasticity of 1.6 means that a price change of 1% will cause about a 1.6% change in demand.

• Using Elasticity to Increase Revenue

$$R=P \cdot x$$

$$= P \cdot D(p)$$

$$R'(p)=D(p)+PD'(p)$$

$$=D(p)\left[1 + \frac{PD'(p)}{D(p)}\right]$$

$$=D(p)\left[1 - \frac{-PD'(p)}{D(p)}\right]$$

$$=D(p)\left[1 - E(p)\right]$$

E(p)	< 1	=1	>1
R'(p)	>0	=0	< 0
R(p)	1	max	↓

• To increase revenue:

If demand is elastic (E > 1), you should lower prices. If demand is inelastic (E < 1), you should raise prices.