

UNISONIC TECHNOLOGIES CO., LTD

CXA1191

LINEAR INTEGRATED CIRCUIT

FM/AM Radio

DESCRIPTION

The UTC CXA1191 is a one-chip FM/AM radio IC designed for radio-cassette tape recorders and headphone tape recorders.

FEATURES

*Small number of peripheral components

*Low current consumption (Vcc=3V)

-FM: I_D=5.3mA (Typ.)

-AM: I_D=3.4mA (Typ.)

*Built-in FM/AM select switch

*Large current of AF amplifier

FUNCTIONS

FM section

RF amplifier, Mixer and OSC

(incorporating AFC variable capacitor)

IF amplifier

Quadrature detection

Tuning LED driver

AM section

RF amplifier, Mixer and OSC (with RF AGC)

IF amplifier (with IF AGC)

Detector

Tuning LED driver

AF section

Electronic volume control

FM muting

Structure

Bipolar silicon monolithic IC

ORDERING INFORMATION

	Package	Packing		
Normal	Lead Free Plating	Halogen Free	Fackage	Facking
CXA1191-D28-T	CXA1191L-D28-T	CXA1191G-D28-T	DIP-28	Tube
CXA1191-S28-R	CXA1191L-S28-R	CXA1191G-S28-R	SOP-28	Tape Reel
CXA1191-S28-T	CXA1191L-S28-T	CXA1191G-S28-T	SOP-28	Tube

Lead-free: CXA1191L Halogen-free: CXA1191G

■ PIN CONFIGURATIONS

				VOLTA	AGE(V)			
PIN	DESCRIPTION	SYMBOL	Vcc	=3V	Vcc	=6V	EQUIVALENT CIRCUIT	
			FM	AM	FM	AM		
1		MUTE	0	0	0	0		
2	Phase-shift circuit, Connect ceramic discriminator.	FM DISCRI	2.18	2.7	4.88	5.43	2 1K 2K	
3	Negative feedback pin	NF	1.5	1.5	3.0	3.0	──── Vcc	
27	Power amplifier output pin	AF OUT	1.5	1.5	3.0	3.0	X100 X100 GND	
4	Connect variable resistor for electronic volume control.	VOL CONT	1.25	1.25	1.25	1.25	20K 80K GND	
5	AM local oscillation circuit	AM OSC	1.25	1.25	1.25	1.25	3.6K	
6	AFC variable capacitor pin	AFC	1.25	Note	1.25	Note	(8)	
8	Regulator pin 1.25V (Typ.)	REG OUT	1.25	1.25	1.25	1.25	6 1.25V REG	
7	FM local oscillation circuit	FM OSC	1.25	1.25	1.25	1.25	7	
9	Connect FM RF tuning coil.	FM RF	1.25	1.25	1.25	1.25	9	
12	FM RF input pin	FM RF IN	0.3	0	0.3	0	12 — WW-1.25V BK	
10	AM RF input	AM RF IN	1.25	1.25	1.25	1.25	Vcc — T	
11		NC	0	0	0	0		
13		GND (FE GND)	0	0	0	0		

■ PIN CONFIGURATIONS(Cont.)

			VOLTA	AGE(V)				
PIN	PIN DESCRIPTION		V _{CC}	=3V	V _{CC}	=6V	EQUIVALENT CIRCUIT	
			FM	AM	FM	AM		
14	IF output pin of FM and AM, Connect IF filter	FM/AM FE OUT	0.36	0.2	0.36	0.2	AM FM	
15	FM and AM bands selection switch pin. During GND it becomes AM and during open it becomes FM.	BAND SELECT	0.84	0	0.88	0	Vcc 10K 10K 10K 10K	
16	Input pin of AM IF	AM IF IN	0	0	0	0	(16) ★ 2K ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★	
17	Input pin of FM IF	FM IF IN	0.34	0	0.88	0	10 360 \$ \$24K \$ 24K \$5.6K GND	
18		NC	0	0	0	0		
19	Meter drive circuit (For tuning indicator)	METER	1.6	1.6	4.5	4.5	1.25V (19)	
20		GND	0	0	0	0		
21	AFC pin of W band. During AM, it determines time constant of AGC.	AFC/AGC	1.25	1.49	1.25	1.49	22 ***********************************	
22	AFC pin of J band. During AM, it determines time constant of AGC.	AFC/AGC	1.25	1.25	1.25	1.25	21	
23	Detection output pin	DET OUT	1.25	1.0	1.25	1.0	<u>→</u> → → F GND	
24	Power amplifier input pin	AF IN	0	0	0	0	24 11K GND	
25	Ripple filter	RIPPLE FILTER	2.71	2.71	5.4	5.4	25	

■ PIN CONFIGURATIONS(Cont.)

				VOLTA	AGE(V)			
PIN	DESCRIPTION	SYMBOL	V _{CC}	V _{CC} =3V		=6V	EQUIVALENT CIRCUIT	
			FM	AM	FM	AM		
6	Power supply pin	V _{CC}	3.0	3.0	6.0	6.0		
28	Power GND	GND	0	0	0	0		

Note: The pin voltage of pin 6 during AM, it is the same pin voltage of pin22 (23) during J BAND and is the same pin voltage of pin 21 (22) during W BAND.

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS (T_a =25°C)

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		V_{CC}	9	V
Power Dissipation	DIP-28	P_D	1000	mW
Power Dissipation	SOP-28	PD	700	mW
Junction Temperature		T_J	+150	°C
Operating Temperature		T_{OPR}	0 ~ +70	°C
Storage Temperature	_	T _{STG}	-40 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS

	PARAMETER	SYMBOL	RATINGS	UNIT
O h \ / alta ma	DIP-28	\ /	2 ~ 8.5	V
Supply Voltage	SOP-28	VCC	2 ~ 7.5	V

■ ELECTRICAL CHARACTERISTICS (Ta=25°C, Vcc=6V)

				S	W			TEST	, , , , ,				
PARAMETER	SYMBOL						NS 6	POINT	CONDITIONS	MIN	TYP	MAX	UNIT
AM Circuit Current	I_{D1}			_	_	_	Α	IΑ	No signal, AM	-	3.5	10.0	mA
FM Circuit Current	I _{D2}						Α	I _A	No signal, FM	-	7.0	14.0	mΑ
FM Front End Voltage Gain	G _{V1}						Α	VA	V _{IN1} =40dBµV,100MH _Z	32	39	46	dB
FM Detection Output Level	V _{D1}	Α	-	-	Α	В	Α	V_D	V _{IN3} =90dBµV,10.7 MHz (1 kHz,22.5kHz DEV)	39	77.5	155	Vrms
FM IF Knee Level	V _{D2}	Α	1	-	Α	В	Α	V_D	V_{IN3} level at a point 3 dB down from V_{IN3} =90dB μ V,10.7 MH $_Z$ (1 kHz,22.5kHz DEV)	-	24	32	dΒμV
FM Detection Output Distortion Factor	THD1	Α	-	-	Α	В	Α	V_D	V_{IN3} =90dB μ V,10.7 MH $_Z$ (1 kHz,75kHz DEV)	-	0.3	2.0	%
FM Meter Current	I _{B1}	Α	•	-	Α	В	Α	I _M	V_{IN3} =60dB μ V,10.7 MH $_Z$	1.8	3.5	7.0	mΑ
AM Front End Voltage Gain	G _{V2}	Α	Α	Α	Α	Α	Α	V_{B}	V _{IN3} =60dBµV,1660 kH _Z	15	22	29	dB
AM IF Voltage Gain	G _{V3}	Α	Α	-	Α	Α	Α	V_D	V _{IN3} when 455kHz (1kHz, 30% MOD) output is – 34dBm	14	20	27	dΒμV
AM Detection Output Level	V _{D3}	Α	Α	-	Α	Α	Α	V _D	V _{IN3} =85dBµV,455kH _Z (1kHz, 30% MOD)	39	77.5	155	Vrms
AM Meter Current	I _{B2}	Α	Α	-	Α	Α	Α	I _M	V _{IN3} =85dBµV,455kH _Z (1kHz, 30% MOD)	1.3	3.0	7.0	mA
AM Detection Output Distortion Factor	THD2	Α	Α	В	В	Α	Α	V_D	V _{IN2} =60dBµV,1660kH _Z (1kHz, 30% MOD),Vcc=7,8V	-	0.6	2.0	%
Audio Voltage Gain	G _{V4}	Α	-	-	-	-	В	V_{E}	V_{IN3} =60dB μ V,10.7MH $_Z$ V $_{IN4}$ =-30dB μ V,1kH $_Z$	27	31.5	36	dB
Audio Distortion Factor	THD3	Α	-	-	-	-	В	V _E	Distortion factor for output of 50mVV V_{IN3} =60dB μ V,10.7MH $_Z$ V_{IN4} =-20dB μ m,1kH $_Z$	-	0.3	2.5	%
Muting Level	V _{D4}	Α		-	-	-	В	VE	Muting level for 50 mW output V_{IN4} =-20dBm,1kHz V_{IN3} OFF	8	15	22	dB

0dBμV=1μV

■ APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.