# $12a_{0158} \ (K12a_{0158})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$I_1^u = \langle -4.37013 \times 10^{32} u^{60} + 1.07931 \times 10^{33} u^{59} + \dots + 2.13053 \times 10^{33} b + 2.55159 \times 10^{32}, \\ -1.77317 \times 10^{32} u^{60} + 4.83859 \times 10^{32} u^{59} + \dots + 1.06527 \times 10^{33} a + 3.22263 \times 10^{33}, \ u^{61} - u^{60} + \dots + 8u + 2u^{60} u^{60} + 2u^{60} u^{60} + 2u^{60} u^{60} + 2u^{60} u^{60} u^{60} + 2u^{60} u^{60} u^{60$$

$$I_1^v = \langle a, b + v + 1, v^2 + v - 1 \rangle$$

\* 2 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 63 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -4.37 \times 10^{32} u^{60} + 1.08 \times 10^{33} u^{59} + \dots + 2.13 \times 10^{33} b + 2.55 \times 10^{32}, \ -1.77 \times 10^{32} u^{60} + 4.84 \times 10^{32} u^{59} + \dots + 1.07 \times 10^{33} a + 3.22 \times 10^{33}, \ u^{61} - u^{60} + \dots + 8u + 4 \rangle$ 

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.166453u^{60} - 0.454214u^{59} + \cdots - 5.04302u - 3.02519 \\ 0.205119u^{60} - 0.506592u^{59} + \cdots + 1.80715u - 0.119763 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.0499331u^{60} - 0.0191878u^{59} + \cdots + 4.34689u + 1.61382 \\ 0.531140u^{60} - 0.796906u^{59} + \cdots + 4.86494u + 0.379014 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.308153u^{60} - 0.583793u^{59} + \cdots + 4.74082u - 3.17923 \\ 0.351153u^{60} - 0.680255u^{59} + \cdots + 1.44558u - 0.322290 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.152571u^{60} - 0.191082u^{59} + \cdots + 5.21389u + 1.75438 \\ 0.319024u^{60} - 0.645296u^{59} + \cdots + 0.170875u - 1.27081 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.394171u^{60} - 0.666399u^{59} + \cdots - 4.85797u - 3.23772 \\ 0.323761u^{60} - 0.610161u^{59} + \cdots - 0.328448u - 1.25482 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.711527u^{60} + 0.890795u^{59} + \cdots - 2.81563u - 0.209751 \\ -0.127525u^{60} + 0.512045u^{59} + \cdots - 3.76247u - 1.00960 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =  $-1.26579u^{60} + 1.94808u^{59} + \cdots + 11.8662u - 2.65853$ 

#### (iv) u-Polynomials at the component

| Crossings                   | u-Polynomials at each crossing              |
|-----------------------------|---------------------------------------------|
| $c_1$                       | $u^{61} + 35u^{60} + \dots + 40u + 1$       |
| $c_2, c_4$                  | $u^{61} - 3u^{60} + \dots + 2u + 1$         |
| $c_3, c_8$                  | $u^{61} - u^{60} + \dots + 8u + 4$          |
| $c_5, c_6, c_{11}$ $c_{12}$ | $u^{61} + 2u^{60} + \dots + u + 1$          |
| $c_{7}, c_{9}$              | $u^{61} - 15u^{60} + \dots - 88u + 16$      |
| $c_{10}$                    | $u^{61} - 20u^{60} + \dots - 33811u + 6497$ |

#### (v) Riley Polynomials at the component

| Crossings                   | Riley Polynomials at each crossing                  |
|-----------------------------|-----------------------------------------------------|
| $c_1$                       | $y^{61} - 15y^{60} + \dots + 992y - 1$              |
| $c_2, c_4$                  | $y^{61} - 35y^{60} + \dots + 40y - 1$               |
| $c_3, c_8$                  | $y^{61} + 15y^{60} + \dots - 88y - 16$              |
| $c_5, c_6, c_{11}$ $c_{12}$ | $y^{61} - 72y^{60} + \dots + 13y - 1$               |
| $c_7, c_9$                  | $y^{61} + 59y^{60} + \dots + 9760y - 256$           |
| $c_{10}$                    | $y^{61} - 36y^{60} + \dots - 229814295y - 42211009$ |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$        | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|-----------------------------|---------------------------------------|---------------------|
| u = -0.238487 + 0.953197I   |                                       |                     |
| a = -0.003755 + 0.877090I   | 2.09116 + 2.27253I                    | -4.25062 - 5.15678I |
| b = -0.178706 + 0.107732I   |                                       |                     |
| u = -0.238487 - 0.953197I   |                                       |                     |
| a = -0.003755 - 0.877090I   | 2.09116 - 2.27253I                    | -4.25062 + 5.15678I |
| b = -0.178706 - 0.107732I   |                                       |                     |
| u = -0.307970 + 0.970251I   |                                       |                     |
| a =  0.0336117 - 0.1292320I | 1.65969 + 3.31321I                    | -4.58003 - 3.95738I |
| b = 0.942071 + 0.219289I    |                                       |                     |
| u = -0.307970 - 0.970251I   |                                       |                     |
| a = 0.0336117 + 0.1292320I  | 1.65969 - 3.31321I                    | -4.58003 + 3.95738I |
| b = 0.942071 - 0.219289I    |                                       |                     |
| u = -0.877601 + 0.378203I   |                                       |                     |
| a = 0.207288 - 0.357685I    | -9.07110 - 3.90521I                   | -14.6512 + 4.5873I  |
| b = 0.447467 + 0.371493I    |                                       |                     |
| u = -0.877601 - 0.378203I   |                                       |                     |
| a = 0.207288 + 0.357685I    | -9.07110 + 3.90521I                   | -14.6512 - 4.5873I  |
| b = 0.447467 - 0.371493I    |                                       |                     |
| u = 0.084785 + 0.946752I    |                                       |                     |
| a = -0.080363 + 0.669261I   | 2.57667 + 0.91135I                    | -2.15381 - 4.08068I |
| b = 0.531909 + 0.161258I    |                                       |                     |
| u = 0.084785 - 0.946752I    |                                       |                     |
| a = -0.080363 - 0.669261I   | 2.57667 - 0.91135I                    | -2.15381 + 4.08068I |
| b = 0.531909 - 0.161258I    |                                       |                     |
| u = 0.077209 + 1.056450I    |                                       |                     |
| a = 0.297681 + 0.382384I    | -3.28717 - 2.31394I                   | -7.12059 + 3.62918I |
| b = -0.928442 + 0.127233I   |                                       |                     |
| u = 0.077209 - 1.056450I    |                                       |                     |
| a = 0.297681 - 0.382384I    | -3.28717 + 2.31394I                   | -7.12059 - 3.62918I |
| b = -0.928442 - 0.127233I   |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = 0.359746 + 1.016880I  |                                       |                      |
| a = 0.062599 + 1.101460I  | -4.85916 - 4.06193I                   | -8.00000 + 3.62400I  |
| b = -0.217088 + 0.019866I |                                       |                      |
| u = 0.359746 - 1.016880I  |                                       |                      |
| a = 0.062599 - 1.101460I  | -4.85916 + 4.06193I                   | -8.00000 - 3.62400I  |
| b = -0.217088 - 0.019866I |                                       |                      |
| u = 0.410008 + 1.014890I  |                                       |                      |
| a = -0.012002 - 0.459759I | 0.62509 - 6.72372I                    | -8.00000 + 10.31873I |
| b = -0.721661 + 0.144626I |                                       |                      |
| u = 0.410008 - 1.014890I  |                                       |                      |
| a = -0.012002 + 0.459759I | 0.62509 + 6.72372I                    | -8.00000 - 10.31873I |
| b = -0.721661 - 0.144626I |                                       |                      |
| u = 0.808032 + 0.816831I  |                                       |                      |
| a = 1.00805 + 1.02708I    | -4.47605 + 0.47564I                   | 0                    |
| b = 0.03711 + 1.94913I    |                                       |                      |
| u = 0.808032 - 0.816831I  |                                       |                      |
| a = 1.00805 - 1.02708I    | -4.47605 - 0.47564I                   | 0                    |
| b = 0.03711 - 1.94913I    |                                       |                      |
| u = -0.749510 + 0.886201I |                                       |                      |
| a = -0.87056 + 1.16887I   | -1.90394 + 2.84541I                   | 0                    |
| b = 0.43430 + 1.70385I    |                                       |                      |
| u = -0.749510 - 0.886201I |                                       |                      |
| a = -0.87056 - 1.16887I   | -1.90394 - 2.84541I                   | 0                    |
| b = 0.43430 - 1.70385I    |                                       |                      |
| u = -0.316577 + 0.775281I |                                       |                      |
| a = 0.34310 - 2.42404I    | -9.89951 + 1.70824I                   | -13.49720 - 3.89995I |
| b = -0.749506 + 0.387164I |                                       |                      |
| u = -0.316577 - 0.775281I |                                       |                      |
| a = 0.34310 + 2.42404I    | -9.89951 - 1.70824I                   | -13.49720 + 3.89995I |
| b = -0.749506 - 0.387164I |                                       |                      |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = -0.489410 + 1.059940I |                                       |                    |
| a = -0.038865 - 0.755001I | -6.69274 + 8.82294I                   | 0                  |
| b = 0.369249 + 0.129881I  |                                       |                    |
| u = -0.489410 - 1.059940I |                                       |                    |
| a = -0.038865 + 0.755001I | -6.69274 - 8.82294I                   | 0                  |
| b = 0.369249 - 0.129881I  |                                       |                    |
| u = 0.849526 + 0.813861I  |                                       |                    |
| a = -1.44747 - 1.16596I   | -5.74001 + 1.43814I                   | 0                  |
| b = -0.11881 - 1.83683I   |                                       |                    |
| u = 0.849526 - 0.813861I  |                                       |                    |
| a = -1.44747 + 1.16596I   | -5.74001 - 1.43814I                   | 0                  |
| b = -0.11881 + 1.83683I   |                                       |                    |
| u = 0.757519 + 0.305031I  |                                       |                    |
| a = 0.149859 - 0.548164I  | -1.78875 + 2.52359I                   | -12.4907 - 7.4949I |
| b = -0.040871 + 0.285650I |                                       |                    |
| u = 0.757519 - 0.305031I  |                                       |                    |
| a = 0.149859 + 0.548164I  | -1.78875 - 2.52359I                   | -12.4907 + 7.4949I |
| b = -0.040871 - 0.285650I |                                       |                    |
| u = -0.874218 + 0.804569I |                                       |                    |
| a = -1.15410 + 0.99565I   | -12.87930 - 2.42278I                  | 0                  |
| b = -0.28100 + 2.30195I   |                                       |                    |
| u = -0.874218 - 0.804569I |                                       |                    |
| a = -1.15410 - 0.99565I   | -12.87930 + 2.42278I                  | 0                  |
| b = -0.28100 - 2.30195I   |                                       |                    |
| u = -0.821847 + 0.871851I |                                       |                    |
| a = 1.56651 - 1.37568I    | -8.17948 + 2.03351I                   | 0                  |
| b = -0.35452 - 2.07289I   |                                       |                    |
| u = -0.821847 - 0.871851I |                                       |                    |
| a = 1.56651 + 1.37568I    | -8.17948 - 2.03351I                   | 0                  |
| b = -0.35452 + 2.07289I   |                                       |                    |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = 0.241710 + 0.747099I  |                                       |                      |
| a = -0.465874 + 0.305697I | -1.94835 - 1.41549I                   | -11.33185 + 4.43113I |
| b = -1.270210 + 0.529709I |                                       |                      |
| u = 0.241710 - 0.747099I  |                                       |                      |
| a = -0.465874 - 0.305697I | -1.94835 + 1.41549I                   | -11.33185 - 4.43113I |
| b = -1.270210 - 0.529709I |                                       |                      |
| u = 0.772724 + 0.137846I  |                                       |                      |
| a = 0.672930 + 0.110054I  | -7.72551 + 0.23364I                   | -12.50787 + 1.31729I |
| b = 0.895434 - 0.127416I  |                                       |                      |
| u = 0.772724 - 0.137846I  |                                       |                      |
| a = 0.672930 - 0.110054I  | -7.72551 - 0.23364I                   | -12.50787 - 1.31729I |
| b = 0.895434 + 0.127416I  |                                       |                      |
| u = -0.909481 + 0.809234I |                                       |                      |
| a = 1.55609 - 0.96630I    | -8.07107 - 4.97454I                   | 0                    |
| b = 0.57813 - 2.04844I    |                                       |                      |
| u = -0.909481 - 0.809234I |                                       |                      |
| a = 1.55609 + 0.96630I    | -8.07107 + 4.97454I                   | 0                    |
| b = 0.57813 + 2.04844I    |                                       |                      |
| u = 0.836848 + 0.884467I  |                                       |                      |
| a = -1.10413 - 1.59303I   | -16.6735 - 2.0703I                    | 0                    |
| b = -0.05000 - 2.92120I   |                                       |                      |
| u = 0.836848 - 0.884467I  |                                       |                      |
| a = -1.10413 + 1.59303I   | -16.6735 + 2.0703I                    | 0                    |
| b = -0.05000 + 2.92120I   |                                       |                      |
| u = -0.805476 + 0.918966I |                                       |                      |
| a = 0.92783 - 1.56312I    | -8.03154 + 4.05119I                   | 0                    |
| b = -0.19783 - 2.45697I   |                                       |                      |
| u = -0.805476 - 0.918966I |                                       |                      |
| a = 0.92783 + 1.56312I    | -8.03154 - 4.05119I                   | 0                    |
| b = -0.19783 + 2.45697I   |                                       |                      |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = 0.776141 + 0.950673I  |                                       |            |
| a = 0.90967 + 1.32399I    | -4.06730 - 6.42529I                   | 0          |
| b = -0.83918 + 1.88849I   |                                       |            |
| u = 0.776141 - 0.950673I  |                                       |            |
| a = 0.90967 - 1.32399I    | -4.06730 + 6.42529I                   | 0          |
| b = -0.83918 - 1.88849I   |                                       |            |
| u = 0.824923 + 0.918769I  |                                       |            |
| a = -1.71708 - 1.47330I   | -16.5663 - 4.1225I                    | 0          |
| b = 0.63383 - 2.39142I    |                                       |            |
| u = 0.824923 - 0.918769I  |                                       |            |
| a = -1.71708 + 1.47330I   | -16.5663 + 4.1225I                    | 0          |
| b = 0.63383 + 2.39142I    |                                       |            |
| u = 0.797214 + 0.969907I  |                                       |            |
| a = -0.74216 - 1.63736I   | -5.25621 - 7.57674I                   | 0          |
| b = 0.66652 - 2.12988I    |                                       |            |
| u = 0.797214 - 0.969907I  |                                       |            |
| a = -0.74216 + 1.63736I   | -5.25621 + 7.57674I                   | 0          |
| b = 0.66652 + 2.12988I    |                                       |            |
| u = 0.949600 + 0.823547I  |                                       |            |
| a = -1.68518 - 0.86336I   | -16.4115 + 7.1396I                    | 0          |
| b = -0.86700 - 2.32515I   |                                       |            |
| u = 0.949600 - 0.823547I  |                                       |            |
| a = -1.68518 + 0.86336I   | -16.4115 - 7.1396I                    | 0          |
| b = -0.86700 + 2.32515I   |                                       |            |
| u = -0.806362 + 0.985930I |                                       |            |
| a = -0.96958 + 1.42164I   | -12.3142 + 8.6618I                    | 0          |
| b = 1.10553 + 2.10803I    |                                       |            |
| u = -0.806362 - 0.985930I |                                       |            |
| a = -0.96958 - 1.42164I   | -12.3142 - 8.6618I                    | 0          |
| b = 1.10553 - 2.10803I    |                                       |            |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = -0.823074 + 1.001050I |                                       |                      |
| a = 0.68683 - 1.78798I    | -7.46084 + 11.37220I                  | 0                    |
| b = -1.13111 - 2.20407I   |                                       |                      |
| u = -0.823074 - 1.001050I |                                       |                      |
| a = 0.68683 + 1.78798I    | -7.46084 - 11.37220I                  | 0                    |
| b = -1.13111 + 2.20407I   |                                       |                      |
| u = 0.848261 + 1.018330I  |                                       |                      |
| a = -0.67747 - 1.91157I   | -15.7786 - 13.7453I                   | 0                    |
| b = 1.48348 - 2.35344I    |                                       |                      |
| u = 0.848261 - 1.018330I  |                                       |                      |
| a = -0.67747 + 1.91157I   | -15.7786 + 13.7453I                   | 0                    |
| b = 1.48348 + 2.35344I    |                                       |                      |
| u = -0.308299 + 0.596152I |                                       |                      |
| a = 0.945489 + 0.457470I  | -10.52170 + 0.86189I                  | -12.7781 - 7.9081I   |
| b = 2.00842 + 0.79172I    |                                       |                      |
| u = -0.308299 - 0.596152I |                                       |                      |
| a = 0.945489 - 0.457470I  | -10.52170 - 0.86189I                  | -12.7781 + 7.9081I   |
| b = 2.00842 - 0.79172I    |                                       |                      |
| u = 0.254491 + 0.574517I  |                                       |                      |
| a = 0.11821 - 2.36867I    | -2.54655 - 0.75490I                   | -10.56290 + 9.15741I |
| b = 0.311978 + 0.275962I  |                                       |                      |
| u = 0.254491 - 0.574517I  |                                       |                      |
| a = 0.11821 + 2.36867I    | -2.54655 + 0.75490I                   | -10.56290 - 9.15741I |
| b = 0.311978 - 0.275962I  |                                       |                      |
| u = -0.612829 + 0.106029I |                                       |                      |
| a = -0.809358 - 0.377022I | -1.002850 - 0.150257I                 | -9.43253 - 1.75186I  |
| b = -0.294046 + 0.149479I |                                       |                      |
| u = -0.612829 - 0.106029I |                                       |                      |
| a = -0.809358 + 0.377022I | -1.002850 + 0.150257I                 | -9.43253 + 1.75186I  |
| b = -0.294046 - 0.149479I |                                       |                      |

| Solutions to $I_1^u$ | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|----------------------|---------------------------------------|------------|
| u = -0.415187        |                                       |            |
| a = -0.415618        | -0.737929                             | -13.3140   |
| b = -0.410931        |                                       |            |

II. 
$$I_1^v = \langle a, \ b+v+1, \ v^2+v-1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -v - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ v+2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} v \\ -v - 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ v+1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -v - 1 \\ -v - 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -v - 1 \\ -v - 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -15

#### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing |
|-----------------------|--------------------------------|
| $c_1, c_2$            | $(u-1)^2$                      |
| $c_3,c_7,c_8 \ c_9$   | $u^2$                          |
| <i>C</i> <sub>4</sub> | $(u+1)^2$                      |
| $c_5, c_6, c_{10}$    | $u^2 + u - 1$                  |
| $c_{11}, c_{12}$      | $u^2 - u - 1$                  |

## (v) Riley Polynomials at the component

| Crossings                            | Riley Polynomials at each crossing |
|--------------------------------------|------------------------------------|
| $c_1, c_2, c_4$                      | $(y-1)^2$                          |
| $c_3,c_7,c_8$ $c_9$                  | $y^2$                              |
| $c_5, c_6, c_{10} \\ c_{11}, c_{12}$ | $y^2 - 3y + 1$                     |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^v$ | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|----------------------|---------------------------------------|------------|
| v = 0.618034         |                                       |            |
| a = 0                | -10.5276                              | -15.0000   |
| b = -1.61803         |                                       |            |
| v = -1.61803         |                                       |            |
| a = 0                | -2.63189                              | -15.0000   |
| b = 0.618034         |                                       |            |

III. u-Polynomials

| Crossings        | u-Polynomials at each crossing                             |
|------------------|------------------------------------------------------------|
| $c_1$            | $((u-1)^2)(u^{61}+35u^{60}+\cdots+40u+1)$                  |
| $c_2$            | $((u-1)^2)(u^{61} - 3u^{60} + \dots + 2u + 1)$             |
| $c_3, c_8$       | $u^2(u^{61} - u^{60} + \dots + 8u + 4)$                    |
| C4               | $((u+1)^2)(u^{61}-3u^{60}+\cdots+2u+1)$                    |
| $c_5, c_6$       | $(u^2 + u - 1)(u^{61} + 2u^{60} + \dots + u + 1)$          |
| $c_7, c_9$       | $u^2(u^{61} - 15u^{60} + \dots - 88u + 16)$                |
| $c_{10}$         | $(u^2 + u - 1)(u^{61} - 20u^{60} + \dots - 33811u + 6497)$ |
| $c_{11}, c_{12}$ | $(u^2 - u - 1)(u^{61} + 2u^{60} + \dots + u + 1)$          |

IV. Riley Polynomials

| Crossings                   | Riley Polynomials at each crossing                                                        |
|-----------------------------|-------------------------------------------------------------------------------------------|
| $c_1$                       | $((y-1)^2)(y^{61}-15y^{60}+\cdots+992y-1)$                                                |
| $c_{2}, c_{4}$              | $((y-1)^2)(y^{61}-35y^{60}+\cdots+40y-1)$                                                 |
| $c_3, c_8$                  | $y^2(y^{61} + 15y^{60} + \dots - 88y - 16)$                                               |
| $c_5, c_6, c_{11}$ $c_{12}$ | $(y^2 - 3y + 1)(y^{61} - 72y^{60} + \dots + 13y - 1)$                                     |
| $c_7, c_9$                  | $y^2(y^{61} + 59y^{60} + \dots + 9760y - 256)$                                            |
| $c_{10}$                    | $(y^2 - 3y + 1)(y^{61} - 36y^{60} + \dots - 2.29814 \times 10^8 y - 4.22110 \times 10^7)$ |