

First Semester 2022 - 2023 Course Handout (Part II)

Date: 29-8-2022

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : PHY F341

Course Title : Solid State Physics Instructor-in-charge : P.K.Thiruvikraman

Scope and Objective:

This is an introductory course on Solid State Physics. It aims at providing physical as well as mathematical understanding of a wide range of phenomena associated with crystalline matter. Its objective is to lay the foundation for a working understanding of solids through fundamental theoretical concepts.

Learning outcomes: At the end of the course students must gain knowledge on the following points -

- ➤ Differentiating between different types of solid materials; their structure and the structure determination
- ➤ Applying the vibrations and waves (learnt from Mechanics, Oscillations and Waves course) in understanding the lattice waves and Brillouin zones
- ➤ Different models of thermal and electrical transport.
- ➤ Explaining the electrical properties such as conductivity and Hall Effect using the classical and quantum models
- ➤ How the energy bands are formed and understanding density of states
- ➤ Theory and applications of some important materials (semiconductors, magnetic materials and superconductors) in use today

Text Book:

Introduction to Solid State Physics, C. Kittel, 7th ed., Wiley (1997)

Reference Book:

Solid State Physics, N W Ashcroft and N D Mermin, 1st ed., Thomson (1976)

Course Plan:

	Learning Objectives	Topics to be covered	Chapter in
Lecture			Text book
s			

1-5	Crystal Structure	Bravais Lattices, Miller Indices	Chapter 1
6-9	Diffraction of waves by crystals	Bragg Law, Reciprocal Lattice, Laue Equations, Brillouin Zones	Chapter 2
10-11	Crystal binding	Van der waals bond, ionic bond, metallic, and covalent bond	Chapter 3
12-14	Crystal Vibrations	Monatomic and Diatomic Crystals	Chapter4
15-18	Thermal Properties	Einstein and Debye Models of Heat Capacity	Chapter 5
19-23	Free Electron Fermi Gas	Density of States, Heat Capacity, Electrical Conductivity, Hall Effect	Chapter 6
24-28	Nearly free electron Model	Energy Bands, Bloch Functions, Kronig- Penney Model, Boltzmann Transport Equation	Chapter 7 and Appendix F
29-32	Semiconductors and their applications	Intrinsic Carrier Concentration, Mobility, Donor and Acceptor States, p-n junctions and conductivity	Chapter 8 and Chapter 19
33-37	Superconductivity	Meissner Effect, London Equation, Type I and Type II superconductors, Theory of Superconductivity Chapter 1	
38-40	Magnetism	Diamagnetism, Paramagnetism, Ferromagnetism and Anti- ferromagnetism	Chapter 15

Evaluation Scheme:

Component	Duration	Weightage	Date & Time	Nature
		(%)		
Mid-Sem	90 min	30	31/10 3.30 -	Open Book
			5.00PM	
Quiz *	50 min	15		Closed Book
Assignment		15		Open book
Comprehensive Examination	180 min	40	19/12 AN	Closed Book

*Note: Two quizzes will be conducted and the best one will be considered while assigning the final grade. There will no make up for the quizzes.

Chamber Consultation Hour: To be announced in the class **Notices:** Notices and solutions will be displayed only on CMS.

Make-up Policy: Make-up will be given only in genuine cases with **prior permission** from the IC.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge PHY F341

