State Space Reduction For Parity Automata

Andreas Tollkötter Supervisor: Dr. Christof Löding

January 10, 2019

Overview

We establish the notion of **merger functions**. Using that definition, we present three of our newly developed heuristic techniques to reduce the number of states in deterministic parity automata.

Overview

We establish the notion of **merger functions**. Using that definition, we present three of our newly developed heuristic techniques to reduce the number of states in deterministic parity automata.

- 1. Deterministic Parity Automata
- 2. Why do we need heuristic reduction?
- 3. Merger functions as a framework
- 4. Delayed Simulation
- 5. Congruence Path Refinement
- 6. Labeled SCC Filter

- Deterministic Parity Automata
- 2 Why do we need heuristic reduction?
- Merger functions as a framework
- 4 Delayed Simulation

ω -automata

 ω -words are words of one-sided infinite length: $\alpha \in \Sigma^{\omega} \Leftrightarrow \alpha : \mathbb{N} \to \Sigma$ a^{ω} , $aa(ba)^{\omega}$, $(abc)^{\omega}$

 ω -automata are finite transition structures that describe a language $L(\mathcal{A})\subseteq \Sigma^\omega$ $\{a^nb^\omega\mid n\in\mathbb{N}\}$

Deterministic parity automata (DPA):

- ► State set Q
- Alphabet Σ
- ▶ Transition function $\delta: Q \times \Sigma \rightarrow Q$
- ▶ Priority function $c: Q \rightarrow \mathbb{N}$

An ω -word α starting in a state $q_0 \in Q$ induces a run $q_0q_1q_2...$ The DPA accepts α iff the **smallest** priority that occurs infinitely often in the sequence $c(q_0)c(q_1)c(q_2)...$ is **even**.

- Deterministic Parity Automata
- 2 Why do we need heuristic reduction?
- Merger functions as a framework
- 4 Delayed Simulation

Why do we need heuristic reduction?

Goal: Reduce number of states in the automaton to ease run time of follow up algorithms.

Minimization Problem: Given an automaton \mathcal{A} , what is the smallest number of states required to recognize the same language as \mathcal{A} ? For deterministic finite automata (on finite words): Minimization is solvable in $\mathcal{O}(n \log n)$.

For DPAs: Minimization is NP-hard. []

Moore Minimization

A DPA can be interpreted as a Moore automaton with c being the output function.

Theorem.

Deterministic Moore automata can be minimized in log-linear time.

Idea: Compute equivalence \equiv_M with $p \equiv_M q$ iff

 $\forall w \in \Sigma^* : c(\delta^*(p, w)) = c(\delta^*(q, w))$. Build the quotient automaton w.r.t.

 \equiv_M .

The same algorithm can be used to reduce DPAs but will not give minimal DPAs in general.

- Deterministic Parity Automata
- 2 Why do we need heuristic reduction?
- Merger functions as a framework
- Delayed Simulation

Merger functions

Definition.

Let $\mathcal{A} = (Q, \Sigma, \delta, c)$ be a DPA. A **merger function** is a function $\mu: D \to 2^Q \setminus \{\emptyset\}$ such that

- all sets in D are pairwise disjoint
- ▶ for all $X \in D$, $\mu(X) \cap (U \setminus X) = \emptyset$, where $U = \bigcup D$

$$\mu(M) = C$$

Merge all states in $M \subseteq Q$ into any one representative of $C \subseteq Q$.

For a congruence relation \sim , the quotient automaton is defined by state set $Q_{\sim} = \{[q]_{\sim} \mid q \in Q\}$.

This is captured by the merger function $\mu_{\div}: Q_{\sim} \to 2^Q, \kappa \mapsto \kappa$.

- Deterministic Parity Automata
- 2 Why do we need heuristic reduction?
- Merger functions as a framework
- Delayed Simulation

Delayed Simulation

Definition.

 $p \equiv_{de} q$ iff for all $w \in \Sigma^*$, every run that starts in $\delta^*(p, w)$ or $\delta^*(q, w)$ eventually sees a priority of at most min $\{c(\delta^*(p, w)), c(\delta^*(q, w))\}$.

Definition.

Let $\mathfrak{C}_{de} = \{[q]_{\equiv_{de}} \mid q \in Q\}$ be the set of \equiv_{de} -equivalence classes. Define the **delayed simulation merger** as $\mu_{de} : \mathfrak{C}_{de} \to 2^Q, \kappa \mapsto c^{-1}(\min c(\kappa))$.

Theorem.

Merging states according to μ_{de} preserves language.

Computing Delayed Simulation

We define a deterministic Büchi automaton \mathcal{G}_{de} such that $p \equiv_{de} q$ iff both $L(\mathcal{G}_{de},q_{de}^0(p,q))$ and $L(\mathcal{G}_{de},q_{de}^0(q,p))$ are universal, i.e. Σ^ω . This automaton uses the state set $Q_{de}=Q\times Q\times (c(Q)\cup\{\checkmark\})$. Computing states of universal language in a DBA requires linear time.

Theorem.

 \equiv_{de} can be computed in $\mathcal{O}(n^2k)$.

Delayed Simulation Automaton

```
\mathcal{G}_{\mathsf{de}} = (Q_{\mathsf{de}}, \Sigma, \delta_{\mathsf{de}}, F_{\mathsf{de}})
States are Q_{\mathsf{de}} = Q \times Q \times (c(Q) \cup \{\checkmark\}).
```

The first two components are a "simulation" of the original DPA. The third component are the so called "obligations".

Transitions δ_{de} .

The first two components mimic the transitions of \mathcal{A} . The third component is defined by $\gamma: Q_{\mathsf{de}} \times \Sigma \to c(Q) \cup \{\checkmark\}$. (next slide) Accepting states are $F_{\mathsf{de}} = Q \times Q \times \{\checkmark\}$.

Delayed Simulation Automaton: γ

```
Let 0 \leq_{\checkmark} 1 \leq_{\checkmark} 2 \leq_{\checkmark} \cdots \leq_{\checkmark} \checkmark. For p, q \in Q, k \in c(Q) \cup \{\checkmark\}, a \in \Sigma, set \gamma((p, q, k), a) = \gamma'(\delta^*(p, a), \delta^*(q, a), k), where \gamma' is defined as follows: If any of the following is true, then \gamma'(i, j, k) = \checkmark.
```

- ightharpoonup i is odd, j is even, and $i \leq_{\checkmark} k$
- ightharpoonup i is odd, j is even, and $j \leq_{\checkmark} k$
- ▶ *i* is odd, *j* is odd, $j \ge i$, and $i \le_{\checkmark} k$
- ▶ *i* is even, *j* is even, $j \le i$, and $j \le_{\checkmark} k$

Otherwise,
$$\gamma'(i,j,k) = \min_{\leq_{\checkmark}} \{i,j,k\}.$$

 $q_{de}^{0}(p,q) = (p,q,\gamma'(c(p),c(q),\checkmark)).$

Delayed Simulation Automaton

A DPA with 5 states. We want to check whether $q_0 \equiv_{de} q_1$ is true.

Delayed Simulation Automaton

- Deterministic Parity Automata
- 2 Why do we need heuristic reduction?
- Merger functions as a framework
- Delayed Simulation

Congruence Path Refinement

Definition.

Let \sim be a congruence relation and let $\lambda \subseteq Q$ be an equivalence class of \sim . The **path refinement** equivalence $\equiv_{\mathsf{PR}}^{\lambda}$ is the smallest relation