Definition:

· This dataset provides a detailed view of the product catalog and pricing structure of Zepto, a fast-growing 10-minute grocery delivery platform. The data captures essential attributes for over 3,000+ SKUs (Stock Keeping Units) across various categories like Fruits & Vegetables, Dairy, Packaged Foods, Beverages, and more

The data is structured to support various types of retail analysis, including:

- · Discount trends by category
- · Inventory availability and stock-outs
- · Price distribution and pricing strategy
- Product naming patterns (suitable for word cloud or NLP tasks)

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import plotly.express as px
        from wordcloud import wordcloud
```

```
In [2]:
        df=pd.read_csv('zepto_v2.csv',encoding="ISO-8859-1")
        df.head()
```

Out[2]:	Category		name	mrp	discountPercent	availableQuantity	discountedSellingPrice
	0	Fruits & Vegetables	Onion	2500	16	3	2100
	1	Fruits & Vegetables	Tomato Hybrid	4200	16	3	3500
	2	Fruits & Vegetables	Tender Coconut	5100	15	3	4300
	3	Fruits & Vegetables	Coriander Leaves	2000	15	3	1700
	1	Fruits &	Ladies	1400	1.4	2	1200

14

1200

Data preprocessing

Vegetables

```
df.info()
In [3]:
```

1400

Finger

```
RangeIndex: 3732 entries, 0 to 3731
       Data columns (total 9 columns):
           Column
                                   Non-Null Count Dtype
       --- -----
                                   _____
          Category
        0
                                   3732 non-null object
                                   3732 non-null object
        1
            name
        2 mrp
                                   3732 non-null int64
        3 discountPercent
                                  3732 non-null int64
        4 availableQuantity
                                  3732 non-null int64
        5 discountedSellingPrice 3732 non-null int64
        6 weightInGms
                                   3732 non-null int64
        7
            out0fStock
                                   3732 non-null bool
                                   3732 non-null int64
        8
            quantity
       dtypes: bool(1), int64(6), object(2)
       memory usage: 237.0+ KB
In [4]:
        df.shape
Out[4]: (3732, 9)
In [5]: df.duplicated().sum()
Out[5]: 2
        df.isna().sum()
In [6]:
                                  0
Out[6]: Category
                                  0
         name
                                  0
         mrp
         discountPercent
                                  0
         availableQuantity
                                  0
                                  0
         discountedSellingPrice
         weightInGms
                                  0
                                  0
         out0fStock
                                  0
         quantity
         dtype: int64
        plt.figure(figsize=(12,10))
In [15]:
        sns.countplot(x='Category',
                     data=df,
                     width=0.4,
                     palette='dark:#5A9_r')
        plt.title('Zepto food category')
        plt.xticks(rotation='vertical');
       C:\Users\ashif\AppData\Local\Temp\ipykernel_13332\128187932.py:2: FutureWa
       rning:
       Passing `palette` without assigning `hue` is deprecated and will be remove
       d in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for
       the same effect.
         sns.countplot(x='Category',
```

<class 'pandas.core.frame.DataFrame'>

C:\Users\ashif\AppData\Local\Temp\ipykernel_13332\322488579.py:2: FutureWa
rning:

Passing `palette` without assigning `hue` is deprecated and will be remove d in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(x='availableQuantity',

 $C: \Users\ashif\AppData\Local\Temp\ipykernel_13332\1871124277.py: 2: Future Warning: \\$

Passing `palette` without assigning `hue` is deprecated and will be remove d in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(x='outOfStock',

C:\Users\ashif\AppData\Local\Temp\ipykernel_13332\1871124277.py:6: UserWar ning: No artists with labels found to put in legend. Note that artists wh ose label start with an underscore are ignored when legend() is called wit h no argument.

plt.legend()

In [10]: df.head() discountPercent availableQuantity discountedSellingPrice Out[10]: Category name mrp Fruits & Onion 2500 16 3 2100 Vegetables Fruits & Tomato 4200 16 3 3500 Hybrid Vegetables Fruits & Tender 5100 3 15 4300 Vegetables Coconut Fruits & Coriander 3 2000 15 3 1700 Vegetables Leaves Fruits & Ladies 1400 3 14 1200 Vegetables Finger In [18]: Out_of_stock_items=df[df["outOfStock"]==True] Out_of_stock_items[["name","quantity"]].sort_values(["quantity"],ascendin

Out[18]:

606	Everest Saffron Kesar	0
1120	Everest Saffron Kesar	0
1110	24 Mantra Organic Whole Wheat Atta	1
3625	Gala No Dust Broom	1
3623	Chakaachak Super Steel Scrubber	1
•••		
3076	Dettol Original Liquid Handwash Refill	750
3629	Comfort After Wash Fabric Conditioner Lily Fresh	860
2141	Del Monte Original Blend Tomato Ketchup Pouch	950
1753	Del Monte Original Blend Tomato Ketchup Pouch	950
2529	Del Monte Original Blend Tomato Ketchup Pouch	950

name quantity

453 rows × 2 columns


```
In [27]: d=df.select_dtypes(include='number')
for col in d:
    plt.figure(figsize=(15,7))
    sns.histplot(data=d,
        x=col,
        kde=True,
        bins=20,
        color='#7a5195')
    plt.title(f'Distribution of {col}')
    plt.xticks(rotation=90)
    plt.show()
```


In [31]: df.head()

Out[31]:		Category	name	mrp	discountPercent	availableQuantity	discountedSellingPrice
	0	Fruits & Vegetables	Onion	2500	16	3	2100
	1	Fruits & Vegetables	Tomato Hybrid	4200	16	3	3500
	2	Fruits & Vegetables	Tender Coconut	5100	15	3	4300
	3	Fruits & Vegetables	Coriander Leaves	2000	15	3	1700
	4	Fruits & Vegetables	Ladies Finger	1400	14	3	1200

In [33]: Top_dicount_percentage=df.sort_values(["discountPercent"],ascending=False
 Top_dicount_percentage[["Category","name","mrp","discountPercent","discountPercent"]

Out[33]:		Category	name	mrp	discountPercent discountedSellingPrice	
	2608	Biscuits	Dukes Waffy Chocolate Wafers	4500	51	2200
	2615	Biscuits	Dukes Waffy Orange Wafers	4500	51	2200
	2619	Biscuits	Dukes Waffy Strawberry Wafers	4500	51	2200
	2219	Chocolates & Candies	Chef's Basket Durum Wheat Fusilli Pasta	16000	50	8000
	1431	Packaged Food	Chef's Basket Durum Wheat Elbow Pasta	16000	50	8000
	•••					
	2723	Biscuits	Britannia Marie Gold Biscuit	2800	0	2800
	2722	Biscuits	Britannia Milk Bikis Milky Sandwich	2500	0	2500
	1349	Beverages	Yoga Bar Peanut Butter Dark Chocolate Jar	24900	0	24900
	2719	Biscuits	Britannia Milk Bikis Cream Biscuit	4500	0	4500
	3731	Health & Hygiene	Dettol Antiseptic Liquid	3000	0	3000

3732 rows × 5 columns

Out[39]: Text(0.5, 1.0, 'Discount Percent Price')

Qunatity selling

```
In [40]: Top_quantity=df.sort_values(['quantity'])
Top_quantity[['Category','quantity','availableQuantity']]
```

Out[40]:		Category	quantity	availableQuantity
	3273	Paan Corner	0	3
	2929	Personal Care	0	3
	606	Cooking Essentials	0	0
	3184	Paan Corner	0	2
	2840	Personal Care	0	2
	•••			
	2320	Chocolates & Candies	1200	6
	1544	Packaged Food	1200	6
	1932	Ice Cream & Desserts	1200	6
	3161	Paan Corner	1500	6
	2817	Personal Care	1500	6

3732 rows × 3 columns

C:\Users\ashif\AppData\Local\Temp\ipykernel_13332\1466617710.py:3: FutureW
arning:

Setting a gradient palette using color= is deprecated and will be removed in v0.14.0. Set `palette='dark:teal'` for the same effect.

sns.barplot(data=Top_quantity,

Correlation Map

Applying in ANN model

Feature engineering

```
In [47]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 3732 entries, 0 to 3731
        Data columns (total 9 columns):
             Column
                                     Non-Null Count Dtype
             _____
                                     -----
         0
                                     3732 non-null object
           Category
         1
            name
                                     3732 non-null object
         2 mrp
                                     3732 non-null int64
         3 discountPercent
                                     3732 non-null int64
            availableQuantity 3732 non-null int64
         5
            discountedSellingPrice 3732 non-null int64
         6 weightInGms
                                    3732 non-null int64
         7
            out0fStock
                                    3732 non-null bool
         8
             quantity
                                     3732 non-null
                                                    int64
        dtypes: bool(1), int64(6), object(2)
        memory usage: 237.0+ KB
In [54]: label=['Category', 'name', 'outOfStock']
         from sklearn.preprocessing import LabelEncoder
In [55]: le=LabelEncoder()
In [56]: for feature in label:
             df[feature]=le.fit_transform(df[feature])
In [58]: df.head()
                           mrp discountPercent availableQuantity discountedSellingPrice
Out[58]:
            Category name
                                                                               weig
         0
                  5
                    1046 2500
                                          16
                                                         3
                                                                         2100
         1
                  5
                    1551 4200
                                          16
                                                         3
                                                                          3500
         2
                                                                         4300
                  5 1500 5100
                                          15
                                                         3
         3
                     351 2000
                                          15
                                                         3
                                                                          1700
                  5
         4
                     835 1400
                                          14
                                                         3
                                                                          1200
                  5
         ANN Section (Artificial intelligence network)
In [60]: from sklearn.model_selection import train_test_split
         from sklearn.metrics import accuracy_score,recall_score,precision_score,f
In [61]: import tensorflow as tf
In [63]: ! pip install shap
```

```
Collecting shap
         Downloading shap-0.48.0-cp312-cp312-win amd64.whl.metadata (25 kB)
        Requirement already satisfied: numpy in c:\users\ashif\anaconda3\lib\site-
        packages (from shap) (1.26.4)
        Requirement already satisfied: scipy in c:\users\ashif\anaconda3\lib\site-
        packages (from shap) (1.13.1)
        Requirement already satisfied: scikit-learn in c:\users\ashif\anaconda3\li
        b\site-packages (from shap) (1.5.1)
        Requirement already satisfied: pandas in c:\users\ashif\anaconda3\lib\site
        -packages (from shap) (2.2.3)
        Requirement already satisfied: tqdm>=4.27.0 in c:\users\ashif\anaconda3\li
        b\site-packages (from shap) (4.66.5)
        Requirement already satisfied: packaging>20.9 in c:\users\ashif\anaconda3
        \lib\site-packages (from shap) (24.1)
       Collecting slicer==0.0.8 (from shap)
          Downloading slicer-0.0.8-py3-none-any.whl.metadata (4.0 kB)
        Requirement already satisfied: numba>=0.54 in c:\users\ashif\anaconda3\lib
        \site-packages (from shap) (0.60.0)
        Requirement already satisfied: cloudpickle in c:\users\ashif\anaconda3\lib
        \site-packages (from shap) (3.0.0)
        Requirement already satisfied: typing-extensions in c:\users\ashif\anacond
        a3\lib\site-packages (from shap) (4.11.0)
        Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in c:\users\ashi
        f\anaconda3\lib\site-packages (from numba>=0.54->shap) (0.43.0)
        Requirement already satisfied: colorama in c:\users\ashif\anaconda3\lib\si
        te-packages (from tqdm>=4.27.0->shap) (0.4.6)
        Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\ashif\an
        aconda3\lib\site-packages (from pandas->shap) (2.9.0.post0)
        Requirement already satisfied: pytz>=2020.1 in c:\users\ashif\anaconda3\li
        b\site-packages (from pandas->shap) (2024.1)
        Requirement already satisfied: tzdata>=2022.7 in c:\users\ashif\anaconda3
        \lib\site-packages (from pandas->shap) (2023.3)
        Requirement already satisfied: joblib>=1.2.0 in c:\users\ashif\anaconda3\l
        ib\site-packages (from scikit-learn->shap) (1.4.2)
        Requirement already satisfied: threadpoolctl>=3.1.0 in c:\users\ashif\anac
        onda3\lib\site-packages (from scikit-learn->shap) (3.5.0)
        Requirement already satisfied: six>=1.5 in c:\users\ashif\anaconda3\lib\si
        te-packages (from python-dateutil>=2.8.2->pandas->shap) (1.16.0)
        Downloading shap-0.48.0-cp312-cp312-win_amd64.whl (545 kB)
           ----- 0.0/545.3 kB ? eta -:--:-
           ----- 545.3/545.3 kB 6.0 MB/s eta 0:
        00:00
       Downloading slicer-0.0.8-py3-none-any.whl (15 kB)
        Installing collected packages: slicer, shap
        Successfully installed shap-0.48.0 slicer-0.0.8
        from tensorflow.keras.models import Sequential
In [64]:
         from tensorflow.keras.layers import Dense,Input
         from sklearn.preprocessing import StandardScaler
         from tensorflow.keras.optimizers import Adam
         import shap
In [70]: X = df.drop(df.columns[-2],axis=1)
         y = df.iloc[:,-2]
In [75]: X_train,X_test,y_train,y_test=train_test_split(X,
                                                       У,
                                                       test_size=0.2,
                                                       random_state=42)
```

```
In [82]: scaler = StandardScaler()
         X_train_scaled = scaler.fit_transform(X_train)
         X_test_scaled = scaler.transform(X_test)
In [83]: model=Sequential([
             Input(shape=(X_train_scaled.shape[1],)),
             Dense(128,activation='relu'),
             Dense(64,activation='relu'),
             Dense(1)
         ])
In [86]: model.compile(optimizer=Adam(),
                       loss='mean_squared_error',
                       metrics=['mse'])
         model.fit(X_train_scaled,
                   y_train,epochs=100,
                   batch_size=32,
                   validation_split=0.1)
```

```
Epoch 1/100
                  ______ 1s 4ms/step - loss: 0.0046 - mse: 0.0046 -
84/84 -----
val_loss: 0.0030 - val_mse: 0.0030
Epoch 2/100
                     Os 2ms/step - loss: 0.0021 - mse: 0.0021 -
84/84 ---
val_loss: 0.0021 - val_mse: 0.0021
Epoch 3/100
                     Os 2ms/step - loss: 0.0017 - mse: 0.0017 -
84/84 -
val_loss: 0.0015 - val_mse: 0.0015
Epoch 4/100
                  Os 2ms/step - loss: 0.0018 - mse: 0.0018 -
84/84 -
val loss: 0.0021 - val mse: 0.0021
Epoch 5/100
84/84 -----
                 Os 2ms/step - loss: 0.0021 - mse: 0.0021 -
val_loss: 0.0012 - val_mse: 0.0012
Epoch 6/100
                      Os 2ms/step - loss: 0.0010 - mse: 0.0010 -
val_loss: 8.3732e-04 - val_mse: 8.3732e-04
Epoch 7/100
                         — Os 2ms/step - loss: 7.3045e-04 - mse: 7.304
84/84 -
5e-04 - val_loss: 9.2200e-04 - val_mse: 9.2200e-04
Epoch 8/100

8/1/8/4 — Os 2ms/step - loss: 9.1120e-04 - mse: 9.112
0e-04 - val_loss: 0.0010 - val_mse: 0.0010
Epoch 9/100
                   Os 2ms/step - loss: 5.9457e-04 - mse: 5.945
7e-04 - val_loss: 0.0010 - val_mse: 0.0010
Epoch 10/100
84/84 -
                     Os 2ms/step - loss: 6.3691e-04 - mse: 6.369
1e-04 - val_loss: 7.6235e-04 - val_mse: 7.6235e-04
Epoch 11/100
84/84 -
                        --- Os 2ms/step - loss: 4.9928e-04 - mse: 4.992
8e-04 - val_loss: 6.3912e-04 - val_mse: 6.3912e-04
Epoch 12/100
84/84 -----
              Os 2ms/step - loss: 3.9446e-04 - mse: 3.944
6e-04 - val_loss: 5.4683e-04 - val_mse: 5.4683e-04
Epoch 13/100
                        Os 3ms/step - loss: 4.9065e-04 - mse: 4.906
5e-04 - val_loss: 7.1757e-04 - val_mse: 7.1757e-04
Epoch 14/100
                   Os 2ms/step - loss: 5.3326e-04 - mse: 5.332
84/84 -
6e-04 - val_loss: 5.2001e-04 - val_mse: 5.2001e-04
Epoch 15/100
84/84 -----
             Os 2ms/step - loss: 2.8861e-04 - mse: 2.886
1e-04 - val_loss: 7.3625e-04 - val_mse: 7.3625e-04
Epoch 16/100
                   Os 2ms/step - loss: 0.0018 - mse: 0.0018 -
84/84 -
val_loss: 0.0015 - val_mse: 0.0015
Epoch 17/100
                     Os 2ms/step - loss: 8.8839e-04 - mse: 8.883
84/84 -
9e-04 - val_loss: 4.6048e-04 - val_mse: 4.6048e-04
Epoch 18/100
                        Os 2ms/step - loss: 4.9846e-04 - mse: 4.984
84/84 -
6e-04 - val_loss: 8.3501e-04 - val_mse: 8.3501e-04
Epoch 19/100
                Os 2ms/step - loss: 4.7885e-04 - mse: 4.788
84/84 -----
5e-04 - val_loss: 6.3975e-04 - val_mse: 6.3975e-04
Epoch 20/100
84/84 ----
                   Os 2ms/step - loss: 3.3272e-04 - mse: 3.327
2e-04 - val_loss: 3.8675e-04 - val_mse: 3.8675e-04
```

```
Epoch 21/100
                  Os 2ms/step - loss: 2.9285e-04 - mse: 2.928
84/84 -----
5e-04 - val_loss: 3.3543e-04 - val_mse: 3.3543e-04
Epoch 22/100
                     Os 2ms/step - loss: 2.5958e-04 - mse: 2.595
8e-04 - val_loss: 5.6141e-04 - val_mse: 5.6141e-04
Epoch 23/100
                    Os 2ms/step - loss: 4.2862e-04 - mse: 4.286
84/84 -
2e-04 - val loss: 5.0637e-04 - val mse: 5.0637e-04
Epoch 24/100
84/84 -
                        Os 3ms/step - loss: 2.8760e-04 - mse: 2.876
0e-04 - val loss: 0.0016 - val mse: 0.0016
Epoch 25/100
84/84 -----
               Os 2ms/step - loss: 8.8997e-04 - mse: 8.899
7e-04 - val_loss: 5.4797e-04 - val_mse: 5.4797e-04
Epoch 26/100
                        Os 2ms/step - loss: 5.5122e-04 - mse: 5.512
2e-04 - val_loss: 4.2937e-04 - val_mse: 4.2937e-04
Epoch 27/100
                          - Os 2ms/step - loss: 3.7826e-04 - mse: 3.782
84/84 -
6e-04 - val_loss: 8.7348e-04 - val_mse: 8.7348e-04
Epoch 28/100

84/84 — Os 2ms/step - loss: 4.6969e-04 - mse: 4.696
9e-04 - val_loss: 8.8197e-04 - val_mse: 8.8197e-04
Epoch 29/100
                   Os 2ms/step - loss: 7.3658e-04 - mse: 7.365
8e-04 - val_loss: 5.7461e-04 - val_mse: 5.7461e-04
Epoch 30/100
84/84 -
                        --- Os 2ms/step - loss: 5.7704e-04 - mse: 5.770
4e-04 - val_loss: 6.5893e-04 - val_mse: 6.5893e-04
Epoch 31/100
84/84 -
                        --- Os 2ms/step - loss: 4.9467e-04 - mse: 4.946
7e-04 - val_loss: 5.4343e-04 - val_mse: 5.4343e-04
Epoch 32/100
              Os 2ms/step - loss: 3.2725e-04 - mse: 3.272
84/84 -----
5e-04 - val_loss: 3.8524e-04 - val_mse: 3.8524e-04
Epoch 33/100
                        --- Os 2ms/step - loss: 1.8227e-04 - mse: 1.822
7e-04 - val_loss: 3.0552e-04 - val_mse: 3.0552e-04
Epoch 34/100
                   Os 2ms/step - loss: 2.0664e-04 - mse: 2.066
84/84 -
4e-04 - val_loss: 2.7737e-04 - val_mse: 2.7737e-04
Epoch 35/100
84/84 -----
             Os 2ms/step - loss: 1.8089e-04 - mse: 1.808
9e-04 - val_loss: 1.6250e-04 - val_mse: 1.6250e-04
Epoch 36/100
                   Os 2ms/step - loss: 1.0679e-04 - mse: 1.067
9e-04 - val_loss: 3.6486e-04 - val_mse: 3.6486e-04
Epoch 37/100
                        Os 2ms/step - loss: 1.5951e-04 - mse: 1.595
84/84 -
1e-04 - val_loss: 9.6381e-04 - val_mse: 9.6381e-04
Epoch 38/100
                        Os 2ms/step - loss: 6.5370e-04 - mse: 6.537
84/84 -
0e-04 - val_loss: 3.0382e-04 - val_mse: 3.0382e-04
Epoch 39/100
84/84 -----
                Os 2ms/step - loss: 7.5670e-04 - mse: 7.567
0e-04 - val_loss: 2.5439e-04 - val_mse: 2.5439e-04
Epoch 40/100
84/84 -----
                   Os 3ms/step - loss: 1.2392e-04 - mse: 1.239
2e-04 - val_loss: 3.7029e-04 - val_mse: 3.7029e-04
```

```
Epoch 41/100
                  Os 2ms/step - loss: 1.7307e-04 - mse: 1.730
84/84 -----
7e-04 - val_loss: 3.4336e-04 - val_mse: 3.4336e-04
Epoch 42/100
                     Os 2ms/step - loss: 3.2646e-04 - mse: 3.264
84/84 -----
6e-04 - val loss: 2.2832e-04 - val mse: 2.2832e-04
Epoch 43/100
                     Os 2ms/step - loss: 2.0150e-04 - mse: 2.015
84/84 -
0e-04 - val loss: 3.2426e-04 - val mse: 3.2426e-04
Epoch 44/100
84/84 -
                        --- Os 2ms/step - loss: 2.7754e-04 - mse: 2.775
4e-04 - val loss: 1.6434e-04 - val mse: 1.6434e-04
Epoch 45/100
84/84 -----
               Os 2ms/step - loss: 1.9279e-04 - mse: 1.927
9e-04 - val_loss: 6.4458e-04 - val_mse: 6.4458e-04
Epoch 46/100
                        Os 2ms/step - loss: 4.5137e-04 - mse: 4.513
7e-04 - val_loss: 6.6478e-04 - val_mse: 6.6478e-04
Epoch 47/100
84/84 -
                          - Os 2ms/step - loss: 2.9063e-04 - mse: 2.906
3e-04 - val_loss: 6.4317e-04 - val_mse: 6.4317e-04
Epoch 48/100

84/84 — Os 2ms/step - loss: 5.4536e-04 - mse: 5.453
6e-04 - val_loss: 9.8531e-04 - val_mse: 9.8531e-04
Epoch 49/100
                    Os 2ms/step - loss: 0.0011 - mse: 0.0011 -
val_loss: 2.5147e-04 - val_mse: 2.5147e-04
Epoch 50/100
                     Os 2ms/step - loss: 1.8629e-04 - mse: 1.862
84/84 -
9e-04 - val_loss: 7.5062e-04 - val_mse: 7.5062e-04
Epoch 51/100
84/84 -
                        Os 2ms/step - loss: 3.5871e-04 - mse: 3.587
1e-04 - val_loss: 1.3777e-04 - val_mse: 1.3777e-04
Epoch 52/100
              Os 2ms/step - loss: 1.7069e-04 - mse: 1.706
84/84 -----
9e-04 - val_loss: 2.0620e-04 - val_mse: 2.0620e-04
Epoch 53/100
                        Os 2ms/step - loss: 1.1897e-04 - mse: 1.189
7e-04 - val_loss: 1.8816e-04 - val_mse: 1.8816e-04
Epoch 54/100
                   Os 2ms/step - loss: 1.8092e-04 - mse: 1.809
84/84 -
2e-04 - val_loss: 2.2791e-04 - val_mse: 2.2791e-04
Epoch 55/100
84/84 -----
             Os 2ms/step - loss: 2.9251e-04 - mse: 2.925
1e-04 - val_loss: 2.3388e-04 - val_mse: 2.3388e-04
Epoch 56/100
                   Os 2ms/step - loss: 2.2887e-04 - mse: 2.288
84/84 -
7e-04 - val_loss: 7.5892e-04 - val_mse: 7.5892e-04
Epoch 57/100
                        Os 2ms/step - loss: 4.8976e-04 - mse: 4.897
84/84 -
6e-04 - val_loss: 1.8976e-04 - val_mse: 1.8976e-04
Epoch 58/100
                        Os 2ms/step - loss: 1.1326e-04 - mse: 1.132
84/84 -
6e-04 - val_loss: 1.9471e-04 - val_mse: 1.9471e-04
Epoch 59/100
             Os 2ms/step - loss: 1.1549e-04 - mse: 1.154
84/84 -----
9e-04 - val_loss: 3.2531e-04 - val_mse: 3.2531e-04
Epoch 60/100
84/84 -----
                   Os 2ms/step - loss: 9.4978e-05 - mse: 9.497
8e-05 - val_loss: 2.7650e-04 - val_mse: 2.7650e-04
```

```
Epoch 61/100
                  Os 2ms/step - loss: 2.4203e-04 - mse: 2.420
84/84 -----
3e-04 - val_loss: 2.2948e-04 - val_mse: 2.2948e-04
Epoch 62/100
                      Os 2ms/step - loss: 1.4826e-04 - mse: 1.482
84/84 -----
6e-04 - val loss: 4.8371e-04 - val mse: 4.8371e-04
Epoch 63/100
                        Os 2ms/step - loss: 2.7365e-04 - mse: 2.736
84/84 -
5e-04 - val loss: 1.4029e-04 - val mse: 1.4029e-04
Epoch 64/100
84/84 -
                        Os 2ms/step - loss: 7.7230e-05 - mse: 7.723
0e-05 - val_loss: 1.8268e-04 - val_mse: 1.8268e-04
Epoch 65/100
                Os 2ms/step - loss: 6.2853e-05 - mse: 6.285
84/84 -----
3e-05 - val_loss: 2.0831e-04 - val_mse: 2.0831e-04
Epoch 66/100
                        Os 2ms/step - loss: 2.3778e-04 - mse: 2.377
8e-04 - val_loss: 1.5975e-04 - val_mse: 1.5975e-04
Epoch 67/100
                          - Os 2ms/step - loss: 1.1240e-04 - mse: 1.124
84/84 -
0e-04 - val_loss: 1.3893e-04 - val_mse: 1.3893e-04
Epoch 68/100

84/84 — Os 2ms/step - loss: 8.3955e-05 - mse: 8.395
5e-05 - val_loss: 2.5568e-04 - val_mse: 2.5568e-04
Epoch 69/100
                   Os 2ms/step - loss: 1.0388e-04 - mse: 1.038
8e-04 - val_loss: 3.3471e-04 - val_mse: 3.3471e-04
Epoch 70/100
84/84 -
                        Os 2ms/step - loss: 3.5332e-04 - mse: 3.533
2e-04 - val_loss: 2.6968e-04 - val_mse: 2.6968e-04
Epoch 71/100
84/84 -
                        Os 2ms/step - loss: 2.6177e-04 - mse: 2.617
7e-04 - val_loss: 1.6623e-04 - val_mse: 1.6623e-04
Epoch 72/100
              Os 2ms/step - loss: 1.1748e-04 - mse: 1.174
84/84 -----
8e-04 - val_loss: 2.1731e-04 - val_mse: 2.1731e-04
Epoch 73/100
                        --- Os 3ms/step - loss: 1.8857e-04 - mse: 1.885
7e-04 - val_loss: 6.7454e-04 - val_mse: 6.7454e-04
Epoch 74/100
                   Os 3ms/step - loss: 2.6078e-04 - mse: 2.607
84/84 -
8e-04 - val_loss: 2.5877e-04 - val_mse: 2.5877e-04
Epoch 75/100
84/84 -----
             Os 3ms/step - loss: 4.2363e-04 - mse: 4.236
3e-04 - val_loss: 3.9799e-04 - val_mse: 3.9799e-04
Epoch 76/100
                   Os 3ms/step - loss: 4.5179e-04 - mse: 4.517
9e-04 - val_loss: 5.5317e-04 - val_mse: 5.5317e-04
Epoch 77/100
                        Os 4ms/step - loss: 3.3746e-04 - mse: 3.374
84/84 -
6e-04 - val_loss: 4.2767e-04 - val_mse: 4.2767e-04
Epoch 78/100
                        Os 3ms/step - loss: 1.7937e-04 - mse: 1.793
84/84 -
7e-04 - val_loss: 2.4753e-04 - val_mse: 2.4753e-04
Epoch 79/100
             Os 3ms/step - loss: 2.6018e-04 - mse: 2.601
84/84 -----
8e-04 - val_loss: 1.8837e-04 - val_mse: 1.8837e-04
Epoch 80/100
84/84 ----
                    Os 3ms/step - loss: 9.4656e-05 - mse: 9.465
6e-05 - val_loss: 6.4708e-05 - val_mse: 6.4708e-05
```

```
Epoch 81/100
                  Os 3ms/step - loss: 6.5077e-05 - mse: 6.507
84/84 -----
7e-05 - val_loss: 4.8466e-05 - val_mse: 4.8466e-05
Epoch 82/100
                      Os 4ms/step - loss: 4.5573e-05 - mse: 4.557
3e-05 - val loss: 1.2191e-04 - val mse: 1.2191e-04
Epoch 83/100
                        Os 3ms/step - loss: 6.7483e-05 - mse: 6.748
84/84 -
3e-05 - val loss: 4.5132e-05 - val mse: 4.5132e-05
Epoch 84/100
84/84 -
                        --- Os 3ms/step - loss: 4.3571e-05 - mse: 4.357
1e-05 - val_loss: 9.3072e-05 - val_mse: 9.3072e-05
Epoch 85/100
                Os 2ms/step - loss: 6.6859e-05 - mse: 6.685
84/84 -----
9e-05 - val_loss: 1.4494e-04 - val_mse: 1.4494e-04
Epoch 86/100
                        Os 2ms/step - loss: 9.7507e-05 - mse: 9.750
7e-05 - val_loss: 1.3516e-04 - val_mse: 1.3516e-04
Epoch 87/100
                          - Os 2ms/step - loss: 1.3500e-04 - mse: 1.350
84/84 -
0e-04 - val_loss: 5.9554e-05 - val_mse: 5.9554e-05
Epoch 88/100

84/84 — Os 2ms/step - loss: 8.1853e-05 - mse: 8.185
3e-05 - val_loss: 1.1984e-04 - val_mse: 1.1984e-04
Epoch 89/100
                   Os 3ms/step - loss: 9.4043e-05 - mse: 9.404
3e-05 - val_loss: 1.3820e-04 - val_mse: 1.3820e-04
Epoch 90/100
84/84 -
                        --- Os 3ms/step - loss: 1.2542e-04 - mse: 1.254
2e-04 - val_loss: 1.9397e-04 - val_mse: 1.9397e-04
Epoch 91/100
                        Os 4ms/step - loss: 1.9652e-04 - mse: 1.965
84/84 -
2e-04 - val_loss: 1.8354e-04 - val_mse: 1.8354e-04
Epoch 92/100
              Os 2ms/step - loss: 8.2534e-05 - mse: 8.253
84/84 -----
4e-05 - val_loss: 2.3352e-04 - val_mse: 2.3352e-04
Epoch 93/100
                      Os 2ms/step - loss: 2.2416e-04 - mse: 2.241
6e-04 - val_loss: 0.0019 - val_mse: 0.0019
Epoch 94/100
                        Os 3ms/step - loss: 0.0013 - mse: 0.0013 -
84/84 -
val_loss: 7.2335e-04 - val_mse: 7.2335e-04
Epoch 95/100

84/84 — Os 2ms/step - loss: 7.0522e-04 - mse: 7.052
2e-04 - val_loss: 4.7542e-04 - val_mse: 4.7542e-04
Epoch 96/100
                   Os 2ms/step - loss: 2.7387e-04 - mse: 2.738
84/84 -
7e-04 - val_loss: 2.1938e-04 - val_mse: 2.1938e-04
Epoch 97/100
                        Os 2ms/step - loss: 1.1216e-04 - mse: 1.121
84/84 -
6e-04 - val_loss: 3.8655e-04 - val_mse: 3.8655e-04
Epoch 98/100
                        Os 2ms/step - loss: 2.0430e-04 - mse: 2.043
84/84 -
0e-04 - val_loss: 1.5194e-04 - val_mse: 1.5194e-04
Epoch 99/100
                Os 2ms/step - loss: 9.5175e-05 - mse: 9.517
84/84 -----
5e-05 - val_loss: 1.6619e-04 - val_mse: 1.6619e-04
Epoch 100/100
84/84 ----
                    Os 2ms/step - loss: 1.0510e-04 - mse: 1.051
0e-04 - val_loss: 8.1086e-05 - val_mse: 8.1086e-05
```

```
Out[86]: <keras.src.callbacks.history.History at 0x1db75a78bf0>
In [87]: y_pred = model.predict(X_test_scaled)
         y_pred_labels = (y_pred > 0.5).astype(int).flatten()
        24/24 -
                            Os 3ms/step
In [88]: print(classification_report(y_test,y_pred_labels))
                                  recall f1-score
                     precision
                                                     support
                  0
                          1.00
                                    1.00
                                              1.00
                                                         648
                          1.00
                                    1.00
                                              1.00
                   1
                                                          99
                                              1.00
                                                         747
            accuracy
                          1.00
                                    1.00
                                              1.00
                                                         747
           macro avg
        weighted avg
                         1.00
                                    1.00
                                              1.00
                                                         747
In [90]: # Convert probabilities to class labels
         y_train_pred = model.predict(X_train)
         y_test_pred = model.predict(X_test)
         # Convert probabilities to class labels
         y_train_pred_labels = (y_train_pred > 0.5).astype(int)
         y_test_pred_labels = (y_test_pred > 0.5).astype(int)
         # Evaluate
         from sklearn.metrics import classification_report
         print("Train Report:")
         print(classification_report(y_train, y_train_pred_labels))
         print("Test Report:")
         print(classification_report(y_test, y_test_pred_labels))
        94/94 -
                                    - 0s 1ms/step
        24/24 -
                                    - Os 1ms/step
        Train Report:
                     precision recall f1-score support
                  0
                          0.00
                                    0.00
                                              0.00
                                                        2631
                   1
                          0.12
                                    1.00
                                              0.21
                                                         354
                                              0.12
                                                        2985
            accuracy
           macro avg
                          0.06
                                    0.50
                                              0.11
                                                        2985
        weighted avg
                          0.01
                                    0.12
                                              0.03
                                                        2985
        Test Report:
                     precision recall f1-score support
                  0
                          0.00
                                    0.00
                                              0.00
                                                         648
                                    1.00
                  1
                          0.13
                                              0.23
                                                          99
                                              0.13
            accuracy
                                                         747
                          0.07
                                    0.50
                                                         747
           macro avg
                                              0.12
```

weighted avg

0.02

0.13

0.03

747

C:\Users\ashif\anaconda3\Lib\site-packages\sklearn\metrics_classificatio n.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) C:\Users\ashif\anaconda3\Lib\site-packages\sklearn\metrics_classificatio n.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) C:\Users\ashif\anaconda3\Lib\site-packages\sklearn\metrics_classificatio n.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) C:\Users\ashif\anaconda3\Lib\site-packages\sklearn\metrics_classificatio n.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) C:\Users\ashif\anaconda3\Lib\site-packages\sklearn\metrics_classificatio n.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) C:\Users\ashif\anaconda3\Lib\site-packages\sklearn\metrics_classificatio n.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

Conclusion:

- Current ANN is severely underperforming and overfitting to the minority class.
- You should address class imbalance and retrain with class_weight, SMOTE, or both.
- After fixing, re-run the classification report to see improvements in both recall and precision across both classes.