Homework 6 Solutions

Ch 18: 17, 30, 33, 36, 37, 38, 41, 42

17. Show in $\mathbb{Z}[i]$ that 3 is irreducible, hence prime, since $\mathbb{Z}[i]$ is a PID, and hence UFD, but 2 and 5 are not irreducible.

$$2 = (1 - i)(1 + i)$$

and

$$5 = (1 - 2i)(1 + 2i)$$

Consider $N(z) = |z|^2 = z\bar{z}$. It is clear that $N : \mathbb{Z}[i] \to \mathbb{N}$ and it preserves products $N(z_1z_2) = N(z_1)N(z_2)$. (N is called a **norm** on $\mathbb{Z}[i]$ in number theory.) Note $N(a+bi) = a^2 + b^2$.

Assume 3 is reducible, so 3=(a+bi)(c+di), then $N(3)=9=(a^2+b^2)(c^2+d^2)$, so either $(a^2+b^2)=3=(c^2+d^2)$ or $(a^2+b^2)=9$ and $(c^2+d^2)=1$. Both options are impossible since if a^2+b^2 is odd, then $(a^2+b^2)\equiv 1 \mod 4$. (See the claim below.) We have a contradiction, so $3\neq (a+bi)(c+di)$.

Claim: If $n = a^2 + b^2$ is odd, then $n \equiv 1 \mod 4$.

Since n is odd, we may assume a^2 is even and b^2 is odd. In htis case, a=2a' and so $a^2=4(a')^2\equiv 0 \mod 4$. Similarly, b=2b'+1 and so $b^2=4(b')^2+4b'+1\equiv 1 \mod 4$. Thus $n\equiv 1 \mod 4$.

29. Show that if $p \mid n$, then p is prime in \mathbb{Z}_n .

If $p \mid a \cdot b$ in \mathbb{Z}_n , then $a \cdot b = p \cdot m \mod n$ so in \mathbb{Z} $n \mid a \cdot b - p \cdot m$, that is $a \cdot b - p \cdot m = n \cdot q$ and so $p \cdot m = a \cdot b - n \cdot q$ and since $p \mid n$ and $p \mid a \cdot b$ in \mathbb{Z} . But then $p \mid a$ or $p \mid b$ in \mathbb{Z} and hence also in \mathbb{Z}_n .

So p is a prime in \mathbb{Z}_n .

30. You might think that since all primes are irreducible, we are done from #29. But this was only true in an integral domain. So we must argue the point.

If $p^2 \nmid n$, then n/p and p are relatively prime, so there are s and t such that sp + t(n/p) = 1, but then p = p(sp) + tn and thus $p = p(sp) \mod n$ witnesses that p is reducible since p and sp are zero-divisors, and hence, not units, in \mathbb{Z}_n .

Conversely, if $p^2 \mid n$ and $p = ab \pmod{n}$, then p - ab = mn so $p \mid ab$ and hence $p \mid b$ or $p \mid a$. Say $p \mid b$ so that 1 - ab/p = 1 - ab' = m(n/p) = mn', in \mathbb{Z} . In \mathbb{Z} we have now 1 = ab' + mn' and so $1 = \gcd(a, n')$ in particular $p \nmid a$, so $1 = \gcd(a, pn') = \gcd(a, n)$ and so a is a unit in \mathbb{Z}_n .

- **33.** This is a trivial induction. Suppose for all m < n is $p \mid a_1 \cdots a_{m-1}$, then $p \mid a_i$ for some i < m. Then if $p \mid a_1 \ldots a_{m-1}$ we have $p \mid a_1 \cdots a_{m-2}$ or $p \mid a_{m-1}$. In the latter case, we are done. In the first case, we apply the induction hypothesis to m = n 1.
- **36.** Show that every integral domain with the descending chain condition is a field. First, we may assume |R| is infinite since we already know that any finite integral domain is a field.

If R is not a field, let $r \neq 0$ be a non-unit of R. If $(r^2) = (r)$, then $r = r^2t$ for some t, but then $r - r^2t = r(1 - rt) = 0$, so either r = 0 or r is a unit. Either is a contradiction. So $(r^2) \subset (r)$. Continuing, we get $(r^3) = (r^2)$ implies $r^2 = r^3t$ so $r^2(1 - rt) = 0$ and either $r^2 = 0$ or r is a unit. Again, neither can be true so $(r^3) \subset (r^2)$. We can continue thus to get $(r^{n+1}) \subset (r^n)$ for all n. This contradicts the descending chain condition. So it must be that R is a field.

37. Show that R satisfies ACC iff every ideal is finitely generated.

Suppose R satisfies ACC. Fix an ideal I. Take $a_1 \in I$, if $(a_1) \neq I$, then take $a_2 \in I - (a_1)$. If $(a_1, a_2) \neq I$, take $a_3 \in I - (a_1, a_2)$, etc. Since R satisfies ACC, we must reach some k so that $(a_1, a_2, \ldots, a_k) = I$.

Suppose every ideal is finitely generated. Let $I_1 \subset I_2 \subset \cdots$ be proper ideals. Let $I = \bigcup_i I_i$. I is finitely generated so get k such that $(a_1, \ldots, a_k) = I$. Take n so that $a_i \in I_n$ for $i = 1, 2, \ldots, k$. Then $I_n = I$ and we have ACC.

- **38.** It is not true that a subdomain of a Euclidean domain needs be Euclidean as $\mathbb{Z}[x] \subset \mathbb{Q}[x]$ demonstrates. Both are domains, but $\mathbb{Z}[x]$ is not Euclidean.
- **41.** In $\mathbb{Z}[-7]$, clearly $N(6+2\sqrt{-7})=6^2+7\cdot 2^2=36+28=1+63=1^2+3^2\cdot 7=N(1+3\sqrt{-7})$. Also, if $u\in U(\mathbb{Z}[\sqrt{-7}])$, then $N(u)=1=a^2+7b^2$ where $a,b\in\mathbb{Z}$. The only option here is $u=\pm 1$, that is $U(\mathbb{Z}[\sqrt{-7}])=\{1,-1\}$. Clearly, $6+2\sqrt{-7}\neq \pm (1+3\sqrt{-7})$ so $6+2\sqrt{-7}$ and $1+3\sqrt{-7}$ are not associates.
- **42.** Let $R = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \cdots = \sum_{i \in \mathbb{N}} \mathbb{Z}$. Let $r_i = (1, 1, 1, \dots, 1, 0, 0, \dots) \in R$ so that r_i has i many 1's followed by 0's. Clearly $(r_i) \subset (r_{i+1})$, basically,

$$(r_i) = R^i \times \{0\} \times \{0\} \times \dots \subset R^{i+1} \times \{0\} \times \{0\} \times \dots = (r_{i+1}).$$

Ch 19: 1-3, 14-16, 20, 22, 24, 25, 36, 37, 43, 44, 47

1. Describe $\mathbb{Q}(\sqrt[3]{5})$.

 $\mathbb{Q}(\sqrt[3]{5}) = \mathbb{Q}[x]/\langle x^3 - 5 \rangle$ so one description is as the set of all elements $q(x) + \langle x^3 - 5 \rangle$, where $q(x) = a_0 + a_1 c + a_2 x^2$ (by Euclidean algorithm). Letting $\alpha = x + \langle x^3 - 5 \rangle$, or if you like, let $\sqrt[3]{5} = x + \langle x^3 - 5 \rangle$, then the elements of $\mathbb{Q}[x]/\langle x^3 - 5 \rangle$ are of the form $a_0 + a_1 \alpha + a_2 \alpha^2$ so that

$$\mathbb{Q}(\sqrt[3]{5}) = \{a_0 + a_1(5^{1/3}) + a_2(5^{2/3}) \mid a_0, a_1, a_2 \in \mathbb{Q}\}\$$

Another less useful description is $\mathbb{Q}(\sqrt[3]{5})$ is the smallest field containing \mathbb{Q} as a subfield with a root of $x^3 - 5$.

2. Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Clearly, $\sqrt{2} + \sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$ so to get equality, we just need $\sqrt{2}, \sqrt{3} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Notice, $(\sqrt{2} + \sqrt{3})(\sqrt{2} + \sqrt{3}) = 2 + 2\sqrt{6} + 3 \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$, then clearly, $\sqrt{6} \in \mathbb{Q}(\sqrt{3} + \sqrt{2})$ and so $\sqrt{6}(\sqrt{2} + \sqrt{3}) = 3\sqrt{2} + 2\sqrt{3} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Thus $3\sqrt{2} + 2\sqrt{3} - 2(\sqrt{2} + \sqrt{3}) = \sqrt{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$. It is then simple to get $\sqrt{3} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$.

- **3.** Find the splitting field of $x^3 1$. Let $\omega = e^{i\frac{2\pi}{3}}$ be the principle cubic root unity. Then $x^3 1$ has roots $1, \omega, \omega^2$ and so $\mathbb{Q}(\omega)$ is the splitting field.
- **14.** Find all ring automorphisms of $\mathbb{Q}(\sqrt{5})$ and of $\mathbb{Q}(\sqrt[3]{5})$.

The automorphisms must take roots of the irreducible polynomial to each other. So for $x^2 - 5$ the roots are $\pm\sqrt{5}$, and thus there are two automorphisms, the identity, and $\sqrt{5} \mapsto -\sqrt{5}$.

For x^3-5 the roots are $\sqrt[3]{5}\omega^m$ for m=0,1,2 where $\omega=e^{i\frac{2\pi}{3}}$. Since any automorphism of $\mathbb{Q}(\sqrt[3]{5})$ must send $\sqrt[3]{5}$ to one of $\sqrt[3]{5}\omega^m$ for m=0,1,2, there is only one possibility. Namely, $\sqrt[3]{5}$ must be fixed, and hence there is only the identity automorphism.

Note This is a different question, than understanding the automorphisms of the splitting field $\mathbb{Q}(\sqrt[3]{5},\omega)$, i.e., $\mathrm{Gal}(x^3-5)$.

15. Let F be a field of characteristic p and let $f(x) = x^p - a$ show that f either splits or is irreducible over F.

Let α be a root of f(x) in a field $F \subseteq E$ (possibly E = F), since E is also of characteristic p we have $\alpha^p - a = 0$ so $a = \alpha^p$ and $f(x) = x^p - \alpha^p = (x - \alpha)^p$. If $\alpha \in F$, then f(x) splits over F.

If $\alpha \notin F$ let g(x) be an irreducible factor of f(x). We know, in E, that $g(x) = (x - \alpha)^k$ for some 1 < k < p since $f(x) = (x - \alpha)^p$, but then $g(x) = h(x^p)$ (Theorem 19.6) and so it must be that k = p, hence f(x) = g(x), that is, f(x) is irreducible.

16. Suppose β is a zero of $f(x) = x^4 + x + 1$ in some field extension E of \mathbb{Z}_2 . Write f(x) as a product of linear factors in E[x].

We can perform polynomial division:

$$x - \beta \frac{x^3 + \beta x^2 + \beta^2 x + (1 + \beta^3)}{x^4 + x + 1}$$

$$\frac{x^4 - \beta x^3}{\beta x^3}$$

$$\frac{\beta x^3 - \beta^2 x^2}{\beta^2 x^2 + x}$$

$$\frac{\beta^2 x^2 - \beta^3 x}{(1 + \beta^3)x + 1}$$

$$\frac{(1 + \beta^3)x - \beta(1 + \beta^3)}{\beta^4 + \beta + 1} = 0$$

Now

$$x^{3} + \beta x^{2} + \beta^{2} x + \beta^{3} + 1 = x^{2}(\beta + x) + \beta^{2}(\beta + x) + 1$$

$$= (x^{2} + \beta^{2})(x + \beta) + 1 = (x + \beta)^{2}(x + \beta) + 1 = (x + \beta)^{3} + 1$$

$$= (x + \beta)^{3} - 1$$

$$= (x + \beta - 1)((x + \beta)^{2} + (x + \beta) + 1)$$

Now

$$(x+\beta)^2 + (x+\beta) + 1 = x^2 + \beta^2 + x + \beta + 1$$

$$= x^2 + \beta^2 + x + \beta^4 \qquad \text{(since } \beta^4 = -(1+\beta) = 1+\beta\text{)}$$

$$= (x+\beta^2)(x+\beta^2 + 1)$$

So

$$x^{4} + x + 1 = (x - \beta)(x + \beta - 1)(x + \beta^{2})(x + \beta^{2} + 1)$$

20. Find p(x) in $\mathbb{Q}[x]$ so that $\mathbb{Q}\left(\sqrt{1+\sqrt{5}}\right) = \mathbb{Q}[x]/\langle p(x)\rangle$

$$x^{2} = 1 + \sqrt{5}$$

$$x^{2} - 1 = \sqrt{5}$$

$$(x^{2} - 1)^{2} = 5$$

$$x^{4} - 2x^{2} - 4 = 0$$

We cannot use Theorem 17.4 (Eisenstein's Criteria) to see that $p(x) = x^4 - 2x^2 - 4$ is irreducible. If p(x) were reducible, then $x^4 - 2x^2 - 4 = (x^2 + ax + b)(x^2 + cx + d)$ with $a, b \in \mathbb{Z}$. Since $ax^3 + cx^3 = 0$ we have c = -a and hence we have $x^4 - 2x^2 - 4 = (x^2 + ax + b)(x^2 - ax + d)$. Now we have adx - abx = 0, so either a = 0 or b = d. b = d is not possible since $b^2 \neq -4$ and a = 0 is also not possible since then $x^4 - 2x^2 - 4 = (x^2 + b)(x^2 + d) = x^4 + (b + d)x + bd$ with b + d = -2 and bd = -4, hence b = -2 - d and $(-2 - d)d = -2d + d^2 = -4$ or $d^2 - 2d + 4 = 0$ for an integer d. With some effort, we have shown that p(x) is irreducible.

22. Suppose f(x) and g(x) are relatively prime in F[x] and K is an extension field of F, then f(x) and g(x) remain relatively prime in K[x].

If f(x) and g(x) are relatively prime in F[x], this means that there are h(x) and k(x) in F[x] so that h(x)f(x)+k(x)g(x)=1. (Recall f(x) and g(x) are relatively prime if there is l(x) a non-unit with $l(x) \mid f(x), g(x)$.) But since F[x] is a PID, this means that (f(x)) + (g(x)) = F[X] and this, in turn, means that the desired h(x) and k(x) exist.

But then, h(x)f(x)+k(x)g(x)=1 continues to hold in K[x] so f(x) and g(x) remain relatively prime.

24. Describe the elements of $\mathbb{Q}(\sqrt[4]{2})$ over $\mathbb{Q}(\sqrt{2})$.

$$\mathbb{Q}[x]/\langle x^4-2\rangle=\mathbb{Q}(\sqrt{2})[x]/\langle x^2-\sqrt{2}\rangle=\mathbb{Q}(\sqrt[4]{2})$$
 and so

$$\mathbb{Q}(\sqrt[4]{2}) = \{a + b\sqrt[4]{2} \ \middle| \ a, b \in \mathbb{Q}(\sqrt{2})\} = \{a + b\,2^{1/4} + c\,2^{1/2} + d\,2^{3/2} \ \middle| \ a, b, c, d \in \mathbb{Q}\}$$

25. What can you say about the order of the splitting field of $x^5 + x^4 + 1 = (x^2 + x + 1)(x^3 + x + 1)$ over \mathbb{Z}_2 ?

Let α be a root of $x^2 + x + 1$, that is, $\alpha = x + \langle x^2 + x + 1 \rangle$ in $\mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle$. So

$$\mathbb{Z}_2(\alpha) = \{a + b\alpha \mid a, b \in \mathbb{Z}_2\} = \{0, 1, \alpha, 1 + \alpha\}$$

and the multiplication table is

$$\begin{array}{c|cc} & \alpha & 1+\alpha \\ \hline \alpha & 1+\alpha & 1 \\ 1+\alpha & 1 & \alpha \end{array}$$

Here is how you get this, $\alpha^2 = x^2 + \langle x^2 + x + 1 \rangle$, $(\alpha + 1)^2 = \alpha^2 + 1$ (Recall that $(a+b)^2 = a^2 + b^2$ here.), and $\alpha(1+\alpha) = \alpha^2 + \alpha$. First we compute α^2 :

$$\begin{array}{r}
\frac{1}{x^2 \cdot x^2 + x + 1} \\
\frac{x^2}{x + 1}
\end{array}$$

So $x^2 = x + 1 \pmod{x^2 + x + 1}$ so $\alpha^2 = \alpha + 1$. Hence $(\alpha + 1)^2 = \alpha^2 + 1 = \alpha + 2 = \alpha$ and $\alpha(\alpha + 1) = \alpha^2 + \alpha = 2\alpha + 1 = 1$.

We know that if $g(x) = x^3 + x + 1$ factored in $\mathbb{Z}_2(\alpha)$, then there must be one linear factor and hence a root in $\mathbb{Z}_2(\alpha)$, but we can check that this is not the case.

$$g(\alpha) = \alpha^3 + \alpha + 1 = \alpha^2 \alpha + \alpha^2 = \alpha^2 (\alpha + 1) = (\alpha + 1)^2 = \alpha \neq 0$$

and

$$g(\alpha + 1) = (\alpha + 1)^3 + (\alpha + 1) + 1 = (\alpha + 1)^2(\alpha + 1) + \alpha = \alpha(\alpha + 1) + \alpha = 1 + \alpha \neq 0$$

We already know that g(0) and g(1) are not 0. So g(x) is irreducible over $\mathbb{Z}_2(\alpha)$.

Let β be a root of g(x), that is, $\beta = x + \langle g(x) \rangle$ in $\mathbb{Z}_2(\alpha)$. Then $[\mathbb{Z}_2(\alpha, \beta) : \mathbb{Z}_2(\alpha)] = 3$ and hence $|\mathbb{Z}_2(\alpha, \beta)| = 4^3 = 64$. Notice $[\mathbb{Z}_2(\alpha, \beta) : \mathbb{Z}_2] = [\mathbb{Z}_2(\alpha, \beta) : \mathbb{Z}_2(\alpha)][\mathbb{Z}_2(\alpha) : \mathbb{Z}_2] = 3 \cdot 2 = 6$ and so $\mathbb{Z}_2(\alpha, \beta) = 2^6 = 64$.

Now $\mathbb{Z}_2(\alpha, \beta) = \mathbb{Z}_2(\alpha)(\beta) = \mathbb{Z}_2(\alpha)(\beta)$ and

$$\mathbb{Z}_2(\alpha)(\beta) = \{a_0 + a_1\beta + a_2\beta^2 \mid a_i \in \mathbb{Z}_2(\alpha)\}\$$

whereas

$$\mathbb{Z}_2(\beta)(\alpha) = \{a_0 + a_1 \alpha \mid a_i \in \mathbb{Z}_2(\beta)\}\$$

In either case, we have that a typical element of $\mathbb{Z}_2(\alpha,\beta)$ has the form

$$(a_0 + a_1\beta + a_2\beta^2) + (b_0 + b_1\beta + b_2\beta^2)\alpha = a_0 + b_0\alpha + a_1\beta + b_1\beta\alpha + a_2\beta^2 + b_2\alpha\beta^2$$
$$= c_0 + c_1\alpha + c_2\beta + c_3\alpha\beta + c_4\beta^2 + c_5\alpha\beta^2$$

where $c_i \in \mathbb{Z}_2$.

We still want to know if $x^3 + x + 1$ splits over $\mathbb{Z}_2(\alpha)(\beta)$, there are 64 - 5 = 59 elements to check! If we divide $x^3 + x + 1$ by $x - \beta$ we get $x^3 + x + 1 = (x - \beta)(x^2 + \beta x + \beta^2 + 1)$.

We need to see if there are any roots of $x^2 + \beta x + \beta^2 + 1$. Let's check β^2 , we have

$$\beta^4 + \beta^3 + (\beta + 1)^2 = (\beta + 1)(\beta^3 + \beta + 1) = 0$$

So $x^2 + \beta x + \beta^2 + 1$ does have a root in $\mathbb{Z}_2(\alpha)(\beta)$ and hence splits there. So $\mathbb{Z}_2(\alpha)(\beta)$ is the splitting field of $x^5 + x^4 + 1 = (x^2 + x + 1)(x^3 + x + 1)$ over \mathbb{Z}_2 .

Here is some **Sage code** to help with such computations. Here is additional documentation for the code.

36. Find the splitting field for $x^4 + 1 = (x^2 + x + 2)(x^2 + 2x + 2)$ over \mathbb{Z}_3 .

Let α be a root for $x^2 + x + 2$, the elements of $\mathbb{Z}_3(\alpha)$ are of the form $a_0 + a_1\alpha$ and these are

$$0, 1, 2, \alpha, 2\alpha, 1 + \alpha, 1 + 2\alpha, 2 + \alpha, 2 + 2\alpha$$

Note that we know that $x^2 + x + 2$ splits $\mathbb{Z}_3(\alpha)$, since $x^2 + x + 2 = (x - \alpha)(x - \beta)$ by the Euclidean Division Algorithm in $\mathbb{Z}_3(\alpha)$.

Also, note that $\alpha^2 = -\alpha - 2 = 2\alpha + 1$ with this, we can compute all other multiples. Let's check the status of $g(x) = x^2 + 2x + 2$

$$g(\alpha) = \alpha^2 + 2\alpha + 2 = 2\alpha + 1 + 2\alpha + 2 = 4\alpha + 3 = \alpha$$

$$g(2\alpha) = (2\alpha)^2 + 2(2\alpha) + 2 = 4\alpha^2 + 4\alpha + 2 = \alpha^2 + \alpha + 2 = 0$$

So 2α is a root of g(x) in $\mathbb{Z}_3(\alpha)$, and as above g(x) also splits. Thus $x^4 + 1$ splits in $\mathbb{Z}_3(\alpha)$. So far, we have roots α and 2α . We can do long division:

$$x - \alpha \frac{x + (\alpha + 1)}{x^2 + x + 2}$$

$$\frac{x^2 - \alpha x}{(\alpha + 1)x + 2}$$

$$\frac{(\alpha + 1)x + \alpha(\alpha + 1)}{0}$$

Since $\alpha(\alpha+1)=\alpha^2+\alpha=-2$. So $x^2+x+2=(x-\alpha)(x+(\alpha+1))$. Now we do this again

$$\begin{array}{r}
 x + 2(\alpha + 1) \\
 x - 2\alpha \overline{\smash)x^2 + 2x + 2} \\
 \underline{x^2 - 2\alpha x} \\
 2(\alpha + 1)x + 2 \\
 \underline{2(\alpha + 1)x + 4\alpha(\alpha + 1)} \\
 0
 \end{array}$$

Since $4\alpha(\alpha+1) = \alpha(\alpha+1) = -2$. Thus we have

$$x^{4} + 1 = (x - \alpha)(x + (\alpha + 1))((x - 2\alpha)(x + 2(\alpha + 1)))$$
$$= (x^{2} - \alpha^{2})(x^{2} - (\alpha + 1)^{2})$$

So $\mathbb{Z}_3(\alpha)$ is the splitting field and α and $\alpha + 1$ are the roots, each repeated twice.

Note (25) and (36) indicate the different sorts of situations that can arise in iterated extensions; what happens depends on whether the roots from one extension are already roots of a future extension.

37. This is sort of stated poorly. Obviously, if there is smallest field containing F and a_1, \ldots, a_n , then

$$\bigcap \{E \mid F \subseteq E \text{ and } \{a_1, \dots, a_n\} \subset E\}$$

must be this smallest field, by definition of "smallest":)

The point is that the intersection of fields is a field; this is easy.

43. Let $F = \mathbb{Z}_p(t)$ and $f(x) = x^p - t$. Show that f(x) is irreducible and has multiple roots.

 $f'(x) = px^{p-1} = 0$ since F has characteristic p. Thus f(x) and f'(x) do have a common factor in F[x], namely f(x). Thus f(x) has repeated roots.

By exercise (15) above, f(x) is irreducible unless it splits in F. It f(x) splits over F, then $t = \alpha^p = (p(t)/q(t))^p$ for some $p(t), q(t) \in \mathbb{Z}_p[t]$ with $q(t) \neq 0$ and

$$t(a_0 + a_1t + \dots + a_nt^n)^p = (b_0 + b_1t + \dots + b_mt^m)^p$$

hence deg(LHS) = np + 1 = mp = deg(RHS), which absurd. So f(x) is irreducible over F.

44. Let f(x) be an irreducible polynomial over a field F. Prove that the number of distinct zeros of f(x) in a splitting field divides deg f(x).

If the characteristic of F is 0, then there are $\deg(f(x))$ distinct roots. If $\operatorname{char}(F) = p$, then $f(x) = (x - a_1)^m \cdots (x - a_k)^m$ where $km = \deg(f)$. This follows from the corollary to Theorem 19.9

47. What is the splitting field of $f(x) = x^3 - 2$ over $\mathbb{Q}(\sqrt[3]{2})$? What is the splitting field over $\mathbb{Q}(\sqrt{3}i)$?

We know that the splitting field of f(x) is $E = \mathbb{Q}(\sqrt[3]{2}, \omega)$ where $\omega = e^{i\frac{2\pi}{3}} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. So

$$E = \mathbb{Q}(\sqrt[3]{2})(\omega) = \mathbb{Q}(\sqrt[3]{2})(\sqrt{3}i) = \mathbb{Q}(\sqrt{3}i)(\sqrt[3]{2})$$