Project - 2 : Pick and Place

Arda Kaya

Udacity Robotics Nanodegree

ardakayaa@gmail.com

Modified DH-Parameters

Here is the diagram with reference frames being define to follow DH method to find the parameters for the transformation matrices:

To define the homogeneous transformation between joints in this robot arm, I applied the Denavit-Hartenberg method with the convention as follow:

- $lpha_{i-1}$ (twist angle) = angle between \hat{Z}_{i-1} and \hat{Z}_i measured about \hat{X}_{i-1} in a right-hand sense.
- a_{i-1} (link length) = distance from \hat{Z}_{i-1} to \hat{Z}_i measured along \hat{X}_{i-1} where \hat{X}_{i-1} is perpendicular to both \hat{Z}_{i-1} to \hat{Z}_i
- d_i (link offset) = signed distance from \hat{X}_{i-1} to \hat{X}_i measured along \hat{Z}_i . Note that this quantity will be a variable in the case of prismatic joints.
- θ_i (joint angle) = angle between \hat{X}_{i-1} to \hat{X}_i measured about \hat{Z}_i in a right-hand sense. Note that this quantity will be a variable in the case of a revolute joint.

This table is the result of all the parameters being define according to the DH convention above:

i	alpha [i - 1]	a[i-1]	d[i]	theta [i]
1	0	0	0.75	q1
2	- pi / 2	0,35	0	q2 - pi / 2
3	0	1,25	0	q3
4	- pi / 2	-0,54	1,50	q4
5	pi / 2	0	0	q5
6	- pi / 2	0	0	q6
g	0	0	0,303	0

TRANSFORMATION MATRICES ABOUT EACH JOINT

T01

cos(q1)	- sin(q1)	0	0
sin(q1)	cos(q1)	0	0
0	0	1	0.75
0	0	0	1

T12

sin(q2)	cos(q2)	0	0.35
0	0	1	0
cos(q2)	- sin(q2)	0	0
0	0	0	1

T23

cos(q3)	- sin(q3)	0.0	1.25
sin(q3)	cos(q3)	0	0
0	0	1	0
0	0	0	1

T34

cos(q4)	- sin(q4)	0	- 0.054
0	0	1	1.5
-sin(q4)	- cos(q4)	0	0
0	0	0	1

T45

cos(q5)	- sin(q5)	0	0
0	0	- 1	0
sin(q5)	cos(q5)	0	0
0	0	0	1

T56

cos(q6)	- sin(q6)	0	0	
0	0	1	0	
-sin(q6)	- cos(q6)	0	0	
0	0	0	1	

T6g

1	0	0	0
0	1	0	0
0	0	1	0.303
0	0	0	1

Note: I have used following code to get these matrices.

```
DH_Table = {alpha0: 0., a0: 0., d1: 0.75, q1: q1, alpha1:-pi/2., a1: 0.35, d2: 0., q2:-pi/2. + q2, alpha2: 0., a2: 1.25, d3: 0., q3: q3,
                     alpha3:-pi/2., a3:-0.054, d4: 1.50, q4: q4, alpha4: pi/2., a4: 0., d5: 0., q5: q5, alpha5:-pi/2., a5: 0., d6: 0., q6: q6, alpha6: 0., a6: 0., d7: 0.303, q7: 0.}
# Define Transformation Matrix
        def TF_Matrix(alpha, a, d ,q):
             TF = Matrix([[
                                                cos(q),
                                                                       -sin(q),
                              [sin(q)*cos(alpha),cos(q)*cos(alpha),-sin(alpha),-sin(alpha)*d],
[sin(q)*sin(alpha),cos(q)*sin(alpha), cos(alpha), cos(alpha)*d],
                                                0,
             return TF
        # Create individual transformations Matrixis
        TO_1 = TF_Matrix(alpha0, a0, d1, q1).subs(DH_Table)
        T1_2 = TF_Matrix(alpha1, a1, d2, q2).subs(DH_Table)
T2_3 = TF_Matrix(alpha2, a2, d3, q3).subs(DH_Table)
T3_4 = TF_Matrix(alpha3, a3, d4, q4).subs(DH_Table)
        T4_5 = TF_Matrix(alpha4, a4, d5, q5).subs(DH_Table)
T5_6 = TF_Matrix(alpha5, a5, d6, q6).subs(DH_Table)
        T6_EE = TF_Matrix(alpha6, a6, d7, q7).subs(DH_Table)
        TO_EE = TO_1 * T1_2 * T2_3 * T3_4 * T4_5 * T5_6 * T6_EE
```

I have multiplied individual matrices to create transformation matrix from base link to aripper.

THE TRANSFORMATION MATRIX BETWEEN THE GRIPPER FRAME AND THE BASE FRAME GIVEN THE POSITION AND ORIENTATION OF THE GRIPPER

Rotation X

Matrix([[1 0], 0, , cos(r), -sin(r)], [0 , sin(r), cos(r)]])

Rotation Y

Rotation Z

```
Matrix([[cos(y), -sin(y),
                            0],
        [\sin(y), \cos(y),
                            0],
                   0,
        [ 0,
                          1]])
```

Note: I have used following code to get these matrices.

```
# Extract end-effector position and orientation from request px,py,pz = end-effector
         # position, roll, pitch, yaw = end-effector orientation
         px = req.poses[x].position.x
         py = req.poses[x].position.y
         pz = req.poses[x].position.z
         (roll, pitch, yaw) = tf.transformations.euler_from_quaternion(
         [req.poses[x].orientation.x, req.poses[x].orientation.y, req.poses[x].orientation.z,
         req.poses[x].orientation.w])
         # Find EE rotation Matrix
         # Define RPY rotation matrices
         # http://planning.cs.uiuc.edu/node102.html
         r, p, y = symbols('r p y')
         ROT_x = Matrix([[1
                     [0 , cos(r), -sin(r)],
[0 , sin(r), cos(r)]]) #roll
         ROT_y = Matrix([[cos(p), 0, sin(p)], [0, 1, 0],
                     [0 , 1, 0],
[-sin(p), 0, cos(p)]]) #pitch
                                                                                                              its rotation matrix.
         ROT_z = Matrix([[cos(y), -sin(y), [sin(y), cos(y), 0],
                     [ 0, 0, 1]]) #yaw
         ROT_EE = ROT_z * ROT_y * ROT_x
         # More Information can be found in KR210 FK section
Rot_Error = ROT_z.subs(y, radians(180)) * ROT_y.subs(p, radians(-90))
         ROT_EE = ROT_EE * Rot_Error
         ROT_EE = ROT_EE.subs({'r' : roll, 'p' : pitch, 'y' : yaw})
         EE = Matrix([[px],
                  [py],
[pz]])
         WC = EE - (0.303) * ROT_EE[:,2]
```

I have multiplied gripper's roll, pitch and yaw matrices to get

To get the wrist center I have used this equation.

CALCULATING THE INDIVIDUAL JOINT ANGLES

Solving for theta_1, theta_2 and theta_3

The easiest angle was theta 1, as I already have the wrist center position.

theta1 = atan2(WC[1], WC[0])

side_c angle_b side_b theta2 angle_a

To calculate theta2 and theta3, I used a triangle that you can see on the right. Length of side_a and side_c are already given, but I had to find length of side_b.

To calculate the length of side_b I have used wrist center position and The Pythagoras Triplets.

angle_a

wc[0]

wc[1]

I have used the code below to calculate side_b.

 $side_b = sqrt(pow((sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35), 2) + pow((WC[2] - 0.75), 2))$

After calculating side_a, side_b and side_c, I have used the Cousine Rule to get angle_a, angle_b and angle_c.

```
angle_a = acos((side_b * side_b + side_c * side_c - side_a * side_a) / (2 * side_b * side_c))
angle_b = acos((side_a * side_a + side_c * side_c - side_b * side_b) / (2 * side_a * side_c))
angle_c = acos((side_a * side_a + side_b * side_b - side_c * side_c) / (2 * side_a * side_b))
```

Then, I subtracted the angles from pi/2 to get theta2 and theta3.

```
theta2 = pi / 2 - angle_a - atan2(WC[2] - 0.75, sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35) theta3 = pi / 2 - (angle_b + 0.036)
```

You can find the full code to calculate theta_2 and theta_3 in below.

```
# SSS triangle for theta2 and theta3
side_a = 1.501
side_b = sqrt(pow((sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35), 2) + pow((WC[2] - 0.75), 2))
side_c = 1.25

angle_a = acos((side_b * side_b + side_c * side_c - side_a * side_a) / (2 * side_b * side_c))
angle_b = acos((side_a * side_a + side_c * side_c - side_b * side_b) / (2 * side_a * side_c))
angle_c = acos((side_a * side_a + side_b * side_b - side_c * side_c) / (2 * side_a * side_b))

theta2 = pi / 2 - angle_a - atan2(WC[2] - 0.75, sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35)
theta3 = pi / 2 - (angle_b + 0.036)
```

Solving for theta_4, theta_5 and theta_6

In this second part of the decouple problem, I can define the rotation between joint_3 and the end effector as following:

```
RO_3 = TO_1[0:3,0:3] * T1_2[0:3,0:3] * T2_3[0:3,0:3]
RO_3 = RO_3.evalf(subs={q1: theta1, q2: theta2, q3: theta3})
R3_6 = RO_3.inv("LU") * ROT_EE
```

And the last three joints can be solved as following:

```
# EULER angles from rotation Matrix
theta4 = atan2(R3_6[2,2], -R3_6[0,2])
theta5 = atan2(sqrt(R3_6[0,2] * R3_6[0,2] + R3_6[2,2] * R3_6[2,2]), R3_6[1,2])
theta6 = atan2(-R3_6[1,1], R3_6[1,0])
```

Conclusion

The arm successfully calculate and pick up the object closely the the reference trajectory in Rviz. These are my results from IK_debug.py in test_case_number = 1.

Total run time to calculate joint angles from pose is 0.8585 seconds

Wrist error for x position is: 0.00000046 Wrist error for y position is: 0.00000032 Wrist error for z position is: 0.00000545 Overall wrist offset is: 0.00000548 units

Theta 1 error is: 0.00093770 Theta 2 error is: 0.00181024 Theta 3 error is: 0.00205031 Theta 4 error is: 0.00172067 Theta 5 error is: 0.00197873 Theta 6 error is: 0.00251871

End effector error for x position is: 0.00002010 End effector error for y position is: 0.00001531 End effector error for z position is: 0.00002660 Overall end effector offset is: 0.00003668 units