

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2021

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 24 pages. *Hierdie nasienriglyne bestaan uit 24 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

NOTA:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Om antwoorde/waardes te aanvaar om 'n probleem op te los, word NIE toegelaat NIE.

	GEOMETRY • MEETKUNDE					
C	A mark for a correct statement (A statement mark is independent of a reason)					
S	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)					
R	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)					
K	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)					
S/R	Award a mark if statement AND reason are both correct					
S/K	Ken 'n punt toe as die bewering EN rede beide korrek is					

NSC/NSS – Marking Guidelines/Nasienriglyne

3

10	11	13	14	14	15	16	18	18
19	19	20	21	35	35	37	40	41

1.1.1	$\bar{x} = \frac{396}{18}$ $\bar{x} = 22$ Answer only: Full marks Slegs antw: Volpunte	✓ 396 ✓ answer (2)
1.1.2	$\sigma = 10,1707 \approx 10,17$	✓ answer (1)
1.1.3	$\bar{x} + \sigma = 32,17$ $\therefore 5 \text{ days}$	✓ 32,17 ✓ 5 (2)
1.2	$22 \times 18 = 396$ ordered/bestel $20 \times 18 = 360$ sold/verkoop Total not sold/Totaal nie verkoop nie: 36 OR/OF	✓ $18\bar{x}_1$ and $18\bar{x}_2$ ✓ answer (2)
	$22-20 = 2 2 \times 18 = 36$	$\checkmark \ \overline{x}_1 - \overline{x}_2$ $\checkmark \text{ answer}$ (2)
1.3.1	Option B/Opsie B Any one of the following reasons/Enige een van die vlg redes: • Median/Mediaan = 18,5 • $Q_1 = 14$	✓ B ✓ reason
	 IQR = 21 Mean > Median, therefore the data is skewed to the right 	(2)
1.3.2	Data is positively skewed/skewed to the right Data is positief skeef/skeef na regs	✓ answer(1)[10]

Price of milk in rands per 5-litre container (x) Prys van melk in rand, per 5 liter-houer (x)	26	32	36	28	40	33	29	34	27	30
Number of 5-litre containers of milk sold (y) Aantal 5 liter-houers melk verkoop (y)	48	30	26	44	23	32	39	29	42	33

NSC/NSS – Marking Guidelines/Nasienriglyne

3.1.1	$m_{\rm BE} = m_{\rm CE} = \frac{0 - (-2)}{12 - 4}$	OR/OF $m_{\rm BE} = m_{\rm CE} = \frac{-2 - 0}{4 - 12}$	✓ substitution C & F	3
	$=\frac{1}{4}$	$=\frac{1}{4}$	✓ answer	(2)
3.1.2	$m_{AB} = \tan 81,87^{\circ}$ $m_{AB} = 7$	Answer only: Full marks Slegs antw: Volpunte	✓ substitution ✓ answer	(2)
3.2	$y = mx + c$ $0 = \frac{1}{4}(12) + c$ $c = -3$	$y - y_1 = m(x - x_1)$ $y - 0 = \frac{1}{4}(x - 12)$ $y = \frac{1}{4}x - 3$	✓ substitution of E	
	$c = -3$ $y = \frac{1}{4}x - 3$ OR/OF		✓ answer	(2)
	$y = mx + c$ $-2 = \frac{1}{4}(4) + c \qquad \text{or}$	$y - y_1 = m(x - x_1)$ $y - (-2) = \frac{1}{4}(x - 4)$	✓ substitution of C	
	$c = -3$ $y = \frac{1}{4}x - 3$	$y = \frac{1}{4}x - 3$	✓ answer	(2)

 $NSC/NSS-Marking\ Guidelines/Nasienriglyne$

3.3.1	$y = \frac{1}{4}x - 3$ $k = \frac{1}{4}k - 3$	✓ substitution
	$\frac{3}{4}k = -3$ $k = -4$ $\therefore B(-4; -4)$	✓ answer (2)
	OR/OF	
	$m_{\rm BE} = \frac{1}{4}$ OR/OF $m_{\rm BE} = \frac{1}{4}$ $\frac{0-k}{12-k} = \frac{1}{4}$ $\frac{k}{k-12} = \frac{1}{4}$	✓ substitution
		✓ answer (2)
	OR/OF	
	$m_{AB} = \tan 81,87^{\circ}$ $m_{AB} = 7$	
	$m_{AB} = \frac{10 - k}{-2 - k}$	✓ substitution
	$-2 - k$ $7(-2 - k) = 10 - k$ $-14 - 7k = 10 - k$ $-6k = 24$ $k = -4$ $\therefore B(-4; -4)$	✓ answer (2)
	OR/OF	
	EB: $y = \frac{1}{4}x - 3$ and AB: $y = 7x + 24$ $\frac{1}{4}x - 3 = 7x + 24$	✓ equating EB & AB
	$\frac{27}{4}x = -27$ $x = k = -4$ $\therefore B(-4; -4)$	✓ answer (2)

3.3.2	In ΔAFG:	
	$m_{AC} = \frac{10 - (-2)}{-2 - 4} = -2$	$\checkmark m_{AC} = -2$
	$\tan \theta = m_{AC} = -2$	$\sqrt{\tan \theta} = -2$
	$\theta = 180^{\circ} - 63,43^{\circ}$	tuii 0 2
	$\theta = 116,57^{\circ}$	✓ θ=116,57°
	$\therefore \hat{A} = 116,57^{\circ} - 81,87^{\circ} \text{ [ext } \angle \text{ of } \Delta \text{]}$	
	$\therefore \hat{A} = 34,70^{\circ}$	
	54,70	✓ answer (4)
	OR/OF	(4)
	In ΔABC:	
	$a = BC = 2\sqrt{17}; b = AC = 6\sqrt{5}; c = AB = 10\sqrt{2}$	✓ all 3 lengths
	$a^2 = b^2 + c^2 - 2bc \cdot \cos A$	
	$(2\sqrt{17})^2 = (6\sqrt{5})^2 + (10\sqrt{2})^2 - 2(6\sqrt{5})(10\sqrt{2}) \cdot \cos A$	✓ substitution into the
		correct cosine rule
	$\cos A = \frac{\left(6\sqrt{5}\right)^2 + \left(10\sqrt{2}\right)^2 - \left(2\sqrt{17}\right)^2}{2\left(6\sqrt{5}\right)\left(10\sqrt{2}\right)}$	
	$\cos A = \frac{\sqrt{(6\sqrt{5})(10\sqrt{2})}}{2(6\sqrt{5})(10\sqrt{2})}$	✓ cos A subject
	= 0,822	✓ answer
	∴ A = 34,7°	(4)
3.3.3	(12 (2) 10 (0))	,
3.3.3	$M\left(\frac{12+(-2)}{2};\frac{10+(0)}{2}\right)$	
	Diagonals intersect at the point (5; 5)	✓ <i>x</i> -value ✓ <i>y</i> -value
	Diagonals intersect at the point (5, 5)	(2)
3.4.1	BE = ET	
	$4\sqrt{17} = \sqrt{(12-p)^2 + (0-p)^2}$	✓ substitution of E & T
	$(4\sqrt{17})^2 = (\sqrt{(12-p)^2 + (0-p)^2})^2$	✓ equating
	$272 = 144 - 24p + p^2 + p^2$	
	$p^{2} - 12p - 64 = 0$ $(p - 16)(p + 4) = 0$	✓ standard form ✓ factors
	(p-16)(p+4) = 0 $\therefore p = 16$ or $p = -4$ (n.a.)	\checkmark factors \checkmark $p = 16$
	$\therefore p = 10$ or $p = -4$ (ii.a.) $\therefore T(16; 16)$	(5)
3.4.2a	$(x-12)^2 + y^2 = \left(4\sqrt{17}\right)^2 = 272$	✓ LHS ✓ RHS
J.4.2a	$(x-12) + y = (4\sqrt{17}) = 272$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
3.4.2b	1	
	$m_{\text{radius}} = \frac{1}{4}$	
	$m_{\text{tangent}} = -4$	$\sqrt{m_{\text{tangent}}}$
	$y = -4x + c -4 = -4(-4) + c c = -20$ OR/OF $y - y_1 = -4(x - x_1)$ $y - (-4) = -4(x - (-4))$ $y = -4x - 20$	✓ substitution of B
	-4 = -4(-4) + c y - (-4) = -4(x - (-4))	· Substitution of D
	$\begin{vmatrix} c = -20 \\ y = -4x - 20 \end{vmatrix}$ $y = -4x - 20$	✓ equation
	$y = -4\lambda = 20$	(3)
		[24]

4.1	Radius = 4 units/eenhede	✓ answer	
4.0.1			(1)
4.2.1	CD \(\text{CN} \)	/ 1 / 1	
	\therefore C(-1; 7)	$\checkmark x$ value $\checkmark y$ value	(2)
4.2.2	CD = 6 units		(2)
4.2.2	$\therefore D(5;7)$	$\checkmark x$ value $\checkmark y$ value	
		x value x y value	(2)
4.2.3	$\perp h = 5$ units	$\checkmark \perp h = 5 \text{ units}$	(2)
7.2.3	DC = 6 units	$\pm n = 3$ diffes	
		✓ substitution into	
	Area $\triangle BCD = \frac{1}{2}(6)(5)$	Area formula	
	$= 15 \text{ units}^2$		
	= 13 units	✓ answer	(2)
	OR/OF		(3)
	OR/OF		
	$\perp h = 5 \text{ units}$	$\checkmark \perp h = 5 \text{ units}$	
	DC = 6 units		
		(and ations in to	
	Area $\triangle BCD = \frac{1}{2} [Area \text{ of } \parallel^m]$	✓ substitution into Area formula	
	7	Alea lollilula	
	$=\frac{1}{2}[(5)(6)]$		
	$= 15 \text{ units}^2$	✓ answer	
	– 13 units		(3)

	OD/OF	
	OR / <i>OF</i> Let angle of inclination of BC = α	
	$\tan \alpha = \frac{5}{3}$	
	$\alpha = 59,036^{\circ}$	
	$\hat{BCD} = 180^{\circ} - \alpha$	
	$\hat{BCD} = 180^{\circ} - 59,036^{\circ}$	✓ BĈD=120,96°
	BĈD=120,96°	V DCD = 120,90
	202 120,00	✓ substitution into
	$\frac{1}{\sqrt{24}}$	Area rule
	Area $\triangle BCD = \frac{1}{2} (\sqrt{34})(6) \sin 120,96^{\circ}$	✓ answer
	$= 15 \text{ units}^2$	(3)
101		(1 275 ())
4.3.1	M(3; -1) [reflection of N(-1; 3) about the line $y = x$]	✓ coordinates of M (A)
	$\therefore MN = \sqrt{(3 - (-1))^2 + (-1 - 3)^2}$	✓ substitution of M&N
	$MN = \sqrt{32} = 4\sqrt{2} = 5,66 \text{ units}$	✓ answer
		(3)
4.3.2	M(3;-1)	
	$m_{\text{MN}} = \frac{3 - (-1)}{-1 - 3} = -1$	
	-1-3	
	MN: $-1 = -(3) + c$ or $y-3 = -1(x+1)$	
	c = 2 $y - 3 = -x - 1$	
	$\therefore y = -x + 2$ $y = -x + 2$ $y = -x + 2$	✓ equation of MN
	y = -x + 2	
	x = -x + 2	✓ equating AF & MN
	2x = 2	
	x = 1	
	y = 1	$\checkmark x$ value $\checkmark y$ value
	midpoint (1; 1)	(4)
	OR / OF N(1 · 3) E(3 · 3)	
	$N(-1;3) \qquad F(3;3)$	
	N(-1;3)	
	$y_{\rm F} = y_{\rm N} = 3$	
	Reflected about $y = x$	
	A(-1;-1)	
	$\therefore F(3;3)$	✓✓ coordinates of F
	(-1+3, -1+3)	
	midpoint $\left(\frac{-1+3}{2}; \frac{-1+3}{2}\right) = (1; 1)$	$\checkmark x$ value $\checkmark y$ value
		(4)
		1

5.1	$\sin 140^{\circ} \sin(260^{\circ} - v)$		
J.1	$\frac{\sin 140^{\circ} \cdot \sin(360^{\circ} - x)}{\cos 50^{\circ} \cdot \tan(-x)}$		
	$\cos 50^{\circ}$. $\tan(-x)$		
	$=\frac{\sin 40^{\circ}(-\sin x)}{\cos x}$	$\checkmark \sin 40^{\circ} \checkmark - \sin x$	
	$\sin 40^{\circ}(-\tan x)$	\checkmark co-ratio \checkmark – tan x	
	$=\frac{-\sin x}{x}$		
	$-\frac{\sin x}{\sin x}$	$\checkmark \tan x = \frac{\sin x}{\cos x}$	
	$-\frac{1}{\cos x}$	$\cos x$	
	$=\cos x$	✓ answer	
			(6)
5.2	LHS = $\frac{-2\sin^2 x + \cos x + 1}{1 - \cos(540^\circ - x)}$ RHS = $2\cos x - 1$		
	$-2(1-\cos^2 x) + \cos x + 1$	\checkmark identity i. t. o. $\cos x$	
	LHS = $\frac{-2(1-\cos^2 x) + \cos x + 1}{1 - (-\cos x)}$	$\checkmark \cos(540^{\circ} - x) = -\cos x$	
		205(510 37) 20537	
	LHS = $\frac{-2 + 2\cos^2 x + \cos x + 1}{1 + \cos x}$		
	$LHS = \frac{2\cos^2 x + \cos x - 1}{1 + \cos x}$	✓ standard form	
	$(2\cos x - 1)(\cos x + 1)$	(footows	
	$LHS = \frac{(2\cos x - 1)(\cos x + 1)}{1 + \cos x}$	✓ factors	
	$LHS = 2\cos x - 1$		
	∴LHS = RHS		
	LIII – KIII		(4)
5.3.1	$\sin 36^{\circ} = \sqrt{1 - p^2}$		
	$\tan 36^{\circ} = \frac{\sqrt{1-p^2}}{\sqrt{1-p^2}}$	✓ method	
	$\tan 36^\circ = \frac{1}{p}$		
	p	\checkmark value of p	
	OR/OF	✓ answer	(2)
			(3)
	$\cos^2 36^\circ = 1 - \sin^2 36^\circ$	✓ method	
	$\cos 36^{\circ} = \sqrt{1 - (1 - p^2)}$	inculou	
		$\checkmark \cos 36^\circ = p$	
	= p		
	sin 36°		
	$\tan 30^{\circ} \equiv \frac{\cos 30^{\circ}}{\sin 30^{\circ}}$		
	$=\frac{\sqrt{1-p^2}}{}$	√ answer	
	p		(3)
	$\tan 36^\circ = \frac{\sin 36^\circ}{\cos 36^\circ}$		
	_	✓ answer	(

5.3.2	cos108°	
	$=-\cos 72^{\circ}$	✓ reduction
	$=-\cos(2\times36^{\circ})$	✓ double angle
	$=-(2\cos^2 36^\circ -1)$	✓ expansion
	$=-2p^2+1$	\checkmark answer i. t. o. p (4)
	OR/OF	
	cos 108°	✓ reduction
	$=-\cos 72^{\circ}$	✓ reduction ✓ double angle
	$=-\cos(2\times36^{\circ})$	_
	$=-(1-2\sin^2 36^\circ)$	✓ expansion
	$=-1+2(\sqrt{1-p^2})^2$	\checkmark answer i. t. o. p
	$=-1+2(1-p^2)$	(4)
	$=-2p^2+1$	
	OR/OF	
	cos108°	
	$=-\cos 72^{\circ}$	✓ reduction
	$=-\cos(2\times36^{\circ})$	✓ double angle
	$= -(\cos^2 36^\circ - \sin^2 36^\circ)$	✓ expansion
	$=-\left(p^2-\left(\sqrt{1-p^2}\right)^2\right)$	
		\checkmark answer i. t. o. p
	$=-\left(p^2-(1-p^2)\right)$	(4)
	$=-2p^2+1$	
	OR/OF	
	cos108°	
	$=\cos(2\times54^{\circ})$	✓ double angle
	$=2\cos^2 54^\circ -1$	✓✓ expansion
	$=2(1-p^2)-1$	
	$=1-2p^2$	\checkmark answer i. t. o. p
	OR/OF	(4)
		,
	$\cos 108^\circ = \cos(72^\circ + 36^\circ)$	
	$= \cos 72^{\circ} \cos 36^{\circ} - \sin 72^{\circ} \sin 36^{\circ}$	(amanais
	$= (2\cos^2 36^\circ - 1)\cos 36^\circ - (2\sin 36^\circ \cos 36^\circ)\sin 36^\circ$	✓ expansion
	$= 2\cos^{3} 36^{\circ} - \cos 36^{\circ} - 2\cos 36^{\circ} \sin^{2} 36^{\circ}$	✓ both double angle identities
	$=2p^3-p-2p(\sqrt{1-p^2})^2$	
	· · · · · · · · · · · · · · · · · · ·	✓ value of sin 36°
	$=2p^{3}-p-2p+2p^{3}$	\checkmark answer i. t. o. p
	$=4p^3-3p$	(4)
		F4#3
		[17]

NSC/NSS – Marking Guidelines/Nasienriglyne

6.1.1	$\frac{\text{ION}/VRAAG}{\cos(\alpha + \beta)}$	
0.1.1	$\begin{vmatrix} \cos(\alpha + \beta) \\ = \cos(\alpha - (-\beta)) \end{vmatrix}$	$\sqrt{\cos(\alpha-(-\beta))}$
	$= \cos(\alpha - (-\beta))$ $= \cos \alpha \cos(-\beta) + \sin \alpha \sin(-\beta)$	✓ expansion
	$= \cos \alpha \cos(-\beta) + \sin \alpha \sin(-\beta)$ $= \cos \alpha \cos \beta + \sin \alpha (-\sin \beta)$	✓ reduction
	$= \cos \alpha \cos \beta + \sin \alpha \sin \beta$ $= \cos \alpha \cos \beta - \sin \alpha \sin \beta$	(3)
6.1.2	$2\cos 6x \cos 4x - \cos 10x + 2\sin^2 x$	
	$= 2 \cos 6x \cos 4x - \cos(6x + 4x) + 2\sin^2 x$	$\checkmark \cos 10x = \cos(6x + 4x)$
	$= 2 \cos 6x \cos 4x - (\cos 6x \cos 4x - \sin 6x \sin 4x) + 2 \sin^2 x$	\checkmark expansion of $\cos(6x + 4x)$
	$= \cos 6x \cos 4x + \sin 6x \sin 4x + 2\sin^2 x$	
	$=\cos 2x + 2\sin^2 x$	$\sqrt{\cos 2x}$
	$=1-2\sin^2 x + 2\sin^2 x$	$\sqrt{1-2\sin^2 x}$
	= 1	✓ answer (5)
6.2	$\tan x = 2\sin 2x$	
	$\frac{\sin x}{\cos x} = 2(2\sin x \cos x)$	
	$\frac{-1}{\cos x} = 2(2\sin x \cos x)$	quotient identity
	$\sin x = 4\sin x \cos^2 x$	✓ double angle identity
	$4\sin x \cos^2 x - \sin x = 0$	
	$\sin x(4\cos^2 x - 1) = 0$	✓ factors
	$\sin x = 0 \qquad \qquad \text{or} \qquad \cos^2 x = \frac{1}{4}$	
	T	✓ both equations
	$\cos x = -\frac{1}{2}$	
	_	$\checkmark x = 180^{\circ}$
	$x = 180^{\circ} + k.360^{\circ}; \ k \in \mathbb{Z}$ or $x = 120^{\circ} + k.360^{\circ}; \ k \in \mathbb{Z}$ $x = 240^{\circ} + k.360^{\circ}; \ k \in \mathbb{Z}$	$\checkmark x = 120^{\circ} \& 240^{\circ} \text{ OR/OF}$
	x - 240 + k.300 , k ∈ Z	$x = \pm 120^{\circ}$
	OR/OF	$\checkmark k.360^\circ; k \in \mathbb{Z}$
	$\tan x = 2\sin 2x$	(7)
	$\frac{\sin x}{\cos x} = 4\sin x \cos x$	✓ quotient identity
	COSA	1
	$\sin x = 4\sin x \cos^2 x$	
	$4\sin x \cos^2 x - \sin x = 0$	✓ identity
	$4\sin x(1-\sin^2 x)-\sin x=0$	•
	$3\sin x - 4\sin^3 x = 0$	
	$\sin x(3-4\sin^2 x)=0$	✓ factors
	$\sin x = 0 \qquad \text{or} \qquad \sin^2 x = \frac{3}{4}$	√ both aquations
	·	✓ both equations
	$\sin x = \frac{\sqrt{3}}{2}$ or $\sin x = -\frac{\sqrt{3}}{2}$	$\checkmark x = 180^{\circ}$
		$\checkmark x = 120^{\circ} \& 240^{\circ} \text{ OR/OF}$
	$x = 180^{\circ} + k.360^{\circ}, k \in \mathbb{Z} \text{ or } x = 120^{\circ} + k.360^{\circ}, k \in \mathbb{Z}$	$x = \pm 120^{\circ}$
	or $x = 240^{\circ} + k.360^{\circ}, k \in \mathbb{Z}$	$\checkmark k.360^{\circ}; k \in \mathbb{Z}$
		(7)
		[15]

8.1	In ΔSQR:	
	$\frac{QS}{\sin x} = \frac{QR}{\sin(90^\circ + x)}$	✓ correct use of sine rule
	$\frac{QS}{S} = \frac{5}{S}$	correct use of sine rule
	$\frac{1}{\sin x} = \frac{1}{\cos x}$	$\checkmark \sin(90^\circ + x) = \cos x$
	$\cos_{x} = 5\sin x$	$\checkmark QS = \frac{5\sin x}{}$
	$QS = \frac{5\sin x}{\cos x}$	$\sqrt{QS} = \frac{1}{\cos x}$
	$QS = 5 \tan x$	
		(3)
8.2	$\frac{QT}{\sin(180^\circ - 2x)} = \frac{TS}{\sin x}$	✓ correct use of sine rule
	$\sin(180^\circ - 2x) \sin x$	
	OT 54	
	$\frac{QT}{\sin 2x} = \frac{5\tan x}{\sin x}$	\checkmark TS = QS = $5 \tan x$
	$\sin 2x \sin x$	
	$QT = \frac{5\tan x \sin 2x}{1}$	5 ton rain 2 r
	$QT = {\sin x}$	$\checkmark QT = \frac{5 \tan x \sin 2x}{\sin x}$
	$s(\sin x)$	Silix
	$QT = \frac{5\left(\frac{\sin x}{\cos x}\right)(2\sin x \cos x)}{\sin x}$	$\sin x$
	$Q1 = \frac{1}{\sin x}$	$\sqrt{\tan x} = \frac{\sin x}{\cos x}$
	$QT = \frac{5\sin x (2\sin x)}{\sin x}$	$\sqrt{\sin 2x} = 2\sin x \cos x$
	$\frac{\sqrt{1-\frac{1}{\sin x}}}{\sin x}$	
	OT 10 '	(5)
	$QT = 10\sin x$	(5)

OR/OF	
$QT^{2} = QS^{2} + TS^{2} - 2QS.TS\cos Q\hat{S}T$ $QT^{2} = (5\tan x)^{2} + (5\tan x)^{2} - 2(5\tan x).(5\tan x)\cos(180^{\circ} - 2x)$	✓ correct use of cos rule ✓ $TS = QS = 5\tan x$
$QT^{2} = 50 \tan^{2} x - 50 \tan^{2} x (-\cos 2x)$ $QT^{2} = 50 \tan^{2} x (1 + \cos 2x)$ $QT^{2} = 50 \tan^{2} x (1 + 2\cos^{2} x - 1)$	
$QT^{2} = 50 \tan^{2} x (2 \cos^{2} x)$ $QT^{2} = 100 \frac{\sin^{2} x}{\cos^{2} x} (\cos^{2} x)$ $QT^{2} = 100 \sin^{2} x$	
$QT = 10\sin x$	(5)
OR/OF	
$TS^{2} = QS^{2} + TQ^{2} - 2QS.TQ.\cos x$ $(5 \tan x)^{2} = (5 \tan x)^{2} + TQ^{2} - 2(5 \tan x).TQ.\cos x$ $0 = TQ^{2} - 2(5 \tan x).TQ.\cos x$ $0 = TQ [TQ - 10 \tan x.\cos x]$	✓ correct use of cos rule ✓ TS = QS = 5tanx ✓ quadratic equation ito TQ
$TQ = 10 \tan x \cdot \cos x (TQ \neq 0)$ $= 10 \frac{\sin x}{\cos x} \cdot \cos x$ $= 10 \sin x$	$\checkmark TQ = 10\tan x \cdot \cos x$ $\checkmark \tan x = \frac{\sin x}{\cos x}$
0.2	(5)
Area of $\triangle TQR = \frac{1}{2} . TQ.QR \sin TQR$ $= \frac{1}{2} (10 \sin 25^{\circ})(5)(\sin 70^{\circ})$ $= 9.93 \text{ unit}^{2}$	✓ correct substitution into the area rule ✓ answer (2)
	[10]

9.1	tangents from same(cor	nmon) point/raaklyne vanaf dieselfde punt	✓ R	
	_			(1)
9.2.1	$\hat{S}_2 = S\hat{R}T$	[∠s opp equal sides/∠e teenoor gelyke sye]	✓ R	
	$\therefore \hat{\mathbf{S}}_2 = 51^{\circ}$	[sum of \angle s in \triangle /som van \angle e in \triangle]	✓ S	
				(2)
9.2.2	$\hat{\mathbf{S}}_2 + \hat{\mathbf{S}}_3 = 93^{\circ}$ $\hat{\mathbf{S}}_3 = 42^{\circ}$	[ext \angle of cyclic quad/buite \angle van koordevh]	✓ R	
	$\hat{S}_3 = 42^{\circ}$		✓ answer	
				(2)
	OR/OF			
	$\hat{\mathbf{S}}_1 = 87^{\circ}$	[opp \angle s of cyclic quad/teenoorst \angle e v kdvh]	✓ R	
	$\hat{S}_3 = 180^\circ - (87^\circ + 51^\circ)$			
	$\hat{\mathbf{S}}_3 = 42^{\circ}$	$[\angle s \text{ on a str line}/\angle e \text{ op reguitlyn}]$	✓ answer	
	3	1 0 7 1		(2)
				[5]

18

line from centre \perp to chord/lyn vanaf middelpunt \perp op koord	✓ R (1)
10.2 $\therefore \hat{A}_1 = 90^\circ - x$ [sum of \angle s in \triangle /som van \angle e in \triangle]	✓ S
$\therefore \hat{\mathbf{M}}_1 = 180^{\circ} - 2x \ [\angle \text{at centre} = 2 \times \text{at circumf/} midpts \angle = 2 \times \text{omtr}$	$reks \angle] \checkmark S \checkmark R $ (3)
10.3 $\hat{A}_2 = 90^\circ - (90^\circ - x)$ [\(\angle \text{in semi circle}/\angle \text{in halfsirkel}\)]	✓ S ✓ R
$\hat{\mathbf{A}}_2 = x$	✓ S
$\therefore \hat{A}_2 = \hat{C} = x$ $\therefore AD \text{ is a tangent} \qquad \text{[converse tan-chord theorem/omgek rkl-k]}$	
OR/OF $\hat{EMD} = 2x [adj suppl \angle s/aanligg suppl \angle e]$	(4) ✓ S
$\therefore \hat{A}_2 = x \qquad [\angle \text{at centre} = 2 \times \angle \text{ at circumf/midpts} \angle = 2 \times \text{omtre}$ $\therefore \hat{A}_2 = C = x$	
$\therefore A_2 = C = x$ $\therefore AD \text{ is a tangent} \text{[converse tan-chord theorem/omgek rkl-k]}$	✓ R
OR/OF	(4)
$\hat{\mathbf{M}}_3 = 180^{\circ} - 2x$ [vert. opp/regoorstaande $\angle e$]	
$\therefore \hat{A}_3 = 90^\circ - x [\angle \text{at centre} = 2 \times \angle \text{at circumf/midpts}]$	∠= 2
×omtreks∠]	✓ R
$BAE = 90^{\circ}$ [\angle in semi-circle/ \angle in halfsirkel]	✓ S
$\therefore \hat{\mathbf{A}}_2 = \mathbf{C} = x$	✓ R
∴ AD is a tangent [converse tan-chord theorem/omgek rkl-k] OR/OF	[d st.] (4)

		[13]
	AF = FE and BM = ME [given & radii] $\therefore FM = \frac{1}{2} AB = 12 \text{ units} \qquad [Midpt Theorem/middelpuntstelling}]$ $EM = MB = CM = 18 \text{ units} \qquad [radii]$ $\therefore FE^2 = (18)^2 - (12)^2 \qquad [Pythagoras]$ $FE = 6\sqrt{5}$ $AE = 12\sqrt{5} \qquad \text{or} \qquad 26,83 \text{ units}$	✓ FM = 12 ✓ R ✓ EM = 18 ✓ using Pyth correctly ✓ answer (5)
10.4	AF = FE and BM = ME [given & radii] $\therefore FM = \frac{1}{2} AB = 12 \text{ units} \qquad [Midpt Theorem/middelptstelling}]$ $EM = MB = CM = 18 \text{ units} \qquad [radii]$ $\therefore EB = 36 \text{ units} \qquad [diameter = 2 \text{ radius}]$ $\therefore AE^2 = (36)^2 - (24)^2 \qquad [Pythagoras]$ $AE = 12\sqrt{5} \text{or} 26,83 \text{ units}$ OR/OF	✓ FM = 12 ✓ R ✓ EB = 36 ✓ using Pyth correctly ✓ answer (5)
		✓ S ✓ R ✓ S ✓ R (4) ✓ S ✓ R ✓ S ✓ R ✓ S ✓ R ✓ (4)
	CD AB [midpt. Thm/ middelpuntst.] $\hat{BAE} = 90^{\circ}$ [\angle in semi-circle/ \angle in halfsirkel]	✓ S

11.1

Construction: Draw diameter BF and draw BE Konstruksie: Trek middellyn BF en verbind BE	√Constr
$\hat{BFK} = 90^{\circ} \text{ or } \hat{DFK} = 90^{\circ} - \hat{BFD}$ [radius \perp tangent/raaklyn]	✓ S ✓ R
BÊF= 90° [∠ in semi-circle/semi-sirkel]	✓ S
$\therefore \hat{DEF} = 90^{\circ} - \hat{BED}$	
= 90° −BFD [∠s same segment/∠e dieselfde segment]	✓ S/R
∴ DFK=DÊF	
	(5)

OR/OF

Construction: Draw radii DO and OF	✓ construction
Konstruksie: Trek radii DO en OF	
$\hat{OFK} = 90^{\circ} \text{ or } \hat{DFK} = 90^{\circ} - \hat{OFD} \text{ radius} \perp \text{tangent}/\text{raaklyn}$	✓ S ✓R
$O\hat{D}F = O\hat{F}D$ [\(\angle s \text{ opp} = \text{sides}/\angle e \text{ teenoor} = \text{sye}\)]	✓ S
$\therefore D\hat{O}F = 180^{\circ} - 2O\hat{F}D [\angle s \text{ of } \Delta / \angle e \text{ van } \Delta]$	
DÊF = 90° – OFD [\angle at centre = 2× \angle circumf/ midpts \angle = 2× omtreks \angle]	✓ S/R
∴ DFK=DÊF	(5)
	(3)

OR/OF

Construction: Draw diameter BF and join BD.	✓ construction
Konstruksie: Trek middellyn BF en verbind BD.	
$\hat{BFK} = 90^{\circ} \text{ or } \hat{DFK} = 90^{\circ} - \hat{BFD} \text{ [radius} \perp \text{tangent}/raaklyn]}$	✓ S ✓/R
$\hat{FDB} = 90^{\circ}$ [\angle in half circle/semi-sirkel]	✓ S
$\hat{\mathbf{B}} = 90^{\circ} - \hat{\mathbf{BFD}}$	
$\therefore D\hat{F}K = \hat{B}$	
but $\hat{B} = \hat{E}$ [$\angle s$ same segment/ $\angle e$ dieselfde segment]	✓ S/R
$\therefore D\hat{F}K = \hat{E}$	(5)

11.2.1(a)	$\begin{split} \hat{K}_4 &= \hat{S}_1 & \text{[tan chord theorem/} raaklynkoordstelling]} \\ \hat{M}_2 &+ \hat{M}_3 = \hat{S}_1 & \text{[corresp } \angle s; / ooreenk } \angle s; \text{MN} \parallel \text{KS]} \\ &\therefore \hat{K}_4 = \hat{M}_2 + \hat{M}_3 = \text{NML} \end{split}$	$\begin{array}{c} \checkmark \ S \ \checkmark \ R \\ \checkmark \ S \ \checkmark \ R \end{array} \tag{4}$)
11.2.1(b)	$\therefore \hat{\mathbf{K}}_4 = \hat{\mathbf{M}}_2 + \hat{\mathbf{M}}_3 = \mathbf{N}\hat{\mathbf{M}}\mathbf{L}$ $\therefore \mathbf{KLMN} \text{ is a cyclic quad } [\mathbf{ext} \angle \text{ of quad} = \mathbf{opp int } \angle /$ $buite \angle van \ vh = teenoorst \ binne \angle]$ $\mathbf{OR/OF}$	✓ R (1))
	$N_1 = \hat{K}_1 + \hat{K}_2 = N\hat{K}S$ [corresp $\angle s$; / ooreenk $\angle s$; MN KS] $N\hat{K}S = K\hat{L}S$ [tan chord theorem / raaklynkoordstelling] $\hat{N}_1 = K\hat{L}S$ \therefore KLMNis a cyclic quad [ext \angle of quad = opp int \angle / buite \angle van vh = teenoorst binne \angle] OR/OF	✓ R (1)	

24

	$NKL = 180^{\circ} - K_4$ [adj. suppl.]		
	- 0 11 -		
	: NKL = 180° – NML [proved]	√ R	
	∴ KLMN is a cyclic quad [opp.∠s supplementary]	V K	(1)
11.2.2	In ΔLKN ΔKSM:		
	$\hat{N}_3 = \hat{M}_3$ [\(\angle \sin \) in the same seg / \(\angle e \) in dieselfde sirkel segm]	✓ S ✓ R	
	$\hat{L}_1 = \hat{M}_2$ [\(\angle \text{s in the same seg}\) \(\angle \text{e in dieselfde sirkel segm}\)	✓ S	
	$= \hat{\mathbf{K}}_{2} \qquad [\text{alt } \angle \mathbf{s}; / \textit{verw} \angle e; \ \mathbf{MN} \mathbf{KS}]$	✓ S/R	
	$N\hat{K}L = M\hat{S}K [\angle s \text{ of } \Delta / \angle e \text{ van } \Delta]$	✓ S	(5)
	ΔLKN ΔKSM		(3)
	OR/OF In ΔLKN ΔKSM:		
	$\hat{N}_3 = \hat{M}_3$ [\(\sigma \) in the same seg / \(\sigma \) in dieselfde sirkel segm]	✓ S ✓ R	
	$\hat{NKL} = \hat{M}_1$ [ext \angle of cyclic quad/buite \angle van koordevh]	✓ S/R	
	$=\hat{S}_2$ [corresp \angle s/ooreenk \angle e; KS NM]	✓ S	
	ΔLKN ΔKSM [∠,∠,∠]	✓ R	
			(5)
	OR/OF In ΔLKN ΔKSM:		
	$\hat{N}_3 = \hat{M}_3$ [\(\angle \text{s in the same seg} / \(\angle \text{e in dieselfde sirkel segm}\)]		
		✓ S ✓ R	
	$\hat{K}_4 + N\hat{K}L = \hat{S}_1 + \hat{S}_2$ [\(\angle \text{s on straight line}/\(\angle e \) op reguitlyn]	✓ S/R	
	$\therefore N\hat{K}L = \hat{S}_2 [\hat{K}_4 = \hat{S}_1]$	✓ S	
	Δ LKN $\parallel \Delta$ KSM $[\angle, \angle, \angle]$	✓ R	
11.2.2	Y YZ YZYY		(5)
11.2.3	$\frac{LK}{KS} = \frac{KN}{SM} \qquad [\Delta LKN \Delta KSM]$	✓ S ✓ R	
	$\therefore \frac{12}{\text{KS}} = \frac{4}{3}$	✓ substitution	
	KS = 9 units	✓ answer	
		answei	(4)
11.2.4	4SM = 3KN		, ,
	$SM = \frac{3(8)}{4}$		
	SM = 6	✓ SM = 6	
	$\frac{LT}{LT} = \frac{LS}{\text{[line one side of } \Delta / lyn een sy v \Delta]}$	/ G / D	
	NL ML	✓ S ✓ R	
	$\frac{LT}{16} = \frac{13}{19}$		
	$LT = \frac{208}{19} = 10,95$	✓ answer	
	19		(4)
			[23]