Function Variation

Created by Miłosz Ratajczyk

0. Function

$$f(x) = 2x^3 - 3x^2 - 2x + 3$$

1. Domain of a function ($\mathbb X$)

 $x \in \mathbb{R}$

2. Zero of a function (x_0)

$$f(x) = 0 \ 2x^3 - 3x^2 - 2x + 3 = 0 \ dots \ (2x - 3)(x - 1)(x + 1) = 0 \ x_0 = -1 \ \lor \ x_0 = 1 \ \lor \ x_0 = rac{3}{2}$$

3. Intersection of OY axis (y_0)

$$f(0) = y_0 \ f(0) = 2(0)^3 - 3(0)^2 - 2(0) + 3 \ y_0 = 3$$

4. Even or odd function

4.1 Even function

$$\forall_{x \in \mathbb{X}} f(x) \neq f(-x)$$
Not even

4.2 Odd function

$$orall_{x \in \mathbb{X}} \ -f(x)
eq f(-x)$$
Not odd

5. Limits of a function

5.1 Limit in $-\infty$

$$\lim_{x o -\infty}f(x)=\lim_{x o -\infty}x^3(2-rac{3}{x}-rac{2}{x^2}+rac{3}{x^3})=-\infty$$

5.2 Limit in ∞

$$\lim_{x o\infty}f(x)=\lim_{x o\infty}x^3(2-rac{3}{x}-rac{2}{x^2}+rac{3}{x^3})=\infty$$

6. Asymptotes of a functions

6.1 Vertical asymptote

Does not exist

6.2 Horizontal asymptote

Does not exist

6.3 Oblique asymptote

Does not exist

7. Monotonicity, maxima and minima of a function

7.1 Zero of a derivative

$$f'(x) = 6x^2 - 6x - 2$$

 $f'(x) = 0$
 $6x^2 - 6x - 2 = 0$
 $2(3x^2 - 3x - 1) = 0$

$$x = rac{1 - \sqrt{rac{7}{3}}}{2} pprox -0.26 \ ee x = rac{1 + \sqrt{rac{7}{3}}}{2} pprox 1.26$$

7.2 Sign of derivative

$$f'(x)>0\,,\quad x\in(-\infty,rac{1-\sqrt{rac{7}{3}}}{2})\cup(rac{1+\sqrt{rac{7}{3}}}{2},+\infty)$$
 $f'(x)=0\,,\quad x\in\{rac{1-\sqrt{rac{7}{3}}}{2},rac{1+\sqrt{rac{7}{3}}}{2}\}$ $f'(x)<0\,,\quad x\in(rac{1-\sqrt{rac{7}{3}}}{2},rac{1+\sqrt{rac{7}{3}}}{2})$

7.3 Monotonicity of a function

$$f \nearrow, \quad x \in (-\infty, rac{1-\sqrt{rac{7}{3}}}{2}
angle, \langle rac{1+\sqrt{rac{7}{3}}}{2}, +\infty)$$
 $f \searrow, \quad x \in \langle rac{1-\sqrt{rac{7}{3}}}{2}, rac{1+\sqrt{rac{7}{3}}}{2}
angle$

7.4 Maxima and minima of a function

$$f''(x)=12x-6$$
 $f''(rac{1-\sqrt{rac{7}{3}}}{2})pprox -9.12 < 0 \Rightarrow ext{Maxima}$ $f''(rac{1+\sqrt{rac{7}{3}}}{2})pprox 9.12 > 0 \Rightarrow ext{Minima}$

8. Concave or convex of a function

8.1 Zero of a second derivative

$$f''(x) = 12x - 6$$

$$f''(x) = 0$$
$$12x - 6 = 0$$
$$x = \frac{1}{2}$$

8.2 Sign of a second derivative

$$f''(x) < 0 \,, \quad x \in (-\infty, \frac{1}{2})$$
 $f''(x) = 0 \,, \quad x = \frac{1}{2}$ $f''(x) > 0 \,, \quad x \in (\frac{1}{2}, -\infty)$

8.3 Concave or convex of a function

$$x\in(-\infty,rac{1}{2})\Rightarrow ext{Concave function} \ x\in(rac{1}{2},\infty)\Rightarrow ext{Convex function}$$

8.4 Inflection point

$$f''(\frac{1}{2}) = 0 \Rightarrow \text{Inflection point in } \frac{1}{2}$$

9. Table

x	$-\infty$	$(-\infty, -1)$	-1	$(-1,rac{1-\sqrt{rac{7}{3}}}{2})$	$\frac{1-\sqrt{\frac{7}{3}}}{2}$	$(rac{1-\sqrt{rac{7}{3}}}{2},1)$	1	$(1,rac{1}{2})$
f(x)	$-\infty$	$\uparrow \!\! \to$	0	$\uparrow \!\! \to$	maxima	$\rightarrow\downarrow$	0	$\rightarrow \downarrow$
f'(x)		+	+	+	0	_	_	_
f''(x)		_	_	_	_	_	_	_

x	$\frac{1}{2}$	$(rac{1}{2},rac{1+\sqrt{rac{7}{3}}}{2})$	$\frac{1+\sqrt{\frac{7}{3}}}{2}$	$(rac{1+\sqrt{rac{7}{3}}}{2},rac{3}{2})$	$\frac{3}{2}$	$(rac{3}{2},+\infty)$	$+\infty$
f(x)	inflection point	$\downarrow \rightarrow$	minima	$\rightarrow \uparrow$	0	$\rightarrow \uparrow$	∞
f'(x)	_	_	0	+	+	+	
f''(x)	0	+	+	+	+	+	

10. Plot

