Healthcare Data Analytics

Einführung

Dr. Michael Strobel, Smart Reporting GmbH

21.03.2022

Organisatorisches

Zeit

Vorlesung: Montag, 10-12 Uhr

Übung: Montag, 12-14

Sprechzeiten: nach der Übung und nach Vereinbarung (m.strobel@posteo.de)

Klausur

Datum: N.N.

Form: wenn möglich mündlich, sonst schriftlich 90 min

Kurzes Intro zu mir

- Aktuell: Vice President Engineering bei der SmartReporting GmbH
- Stationen davor:
 - Principal Software Engineer
 - Freelance Consultant Computer Vision
 - Doktor in Mathematik (Geometrie und Visualisierung) an der TU München
 - Lead Developer einer MINT Visualisierungssoftware: CindyJS
- Geboren und aufgewachsen im Allgäu

Inhalt des Vorlesung

Lernziele

- Methoden der Datenanalyse verstehen und anwenden können
- Einsatzmöglichkeiten von Healthcare Data Analytics im klinischen Umfeld
- Generelle Vorgehensweisen bei Data Analytics und Machine Learning Projekten

Lerninhalte

- Daten verstehen und in Datenstrukturen überführen
- Aufbau von Data Pipelines
- Machine Learning verstehen und anwenden
 - Visualisierung
 - Klassifikation / Regressions / Clustering
 - Decision Trees / Neuronale Netze
 - Training von Modellen
- Anwendungen aus der Praxis
 - Datenstandards
 - Computer Vision
 - Differential Privacy
 - Big Data Tools

Healthcare Data Analytics – Übersicht

freshidea, stock.adobe.com

Datenanalyse und Machine learning in der Praxis

- Erkennung von Mustern in Patientenkohorten
- Interaktive Dashboards zur Informationsgewinnung
- Automatische Diagnose: Erkennung von Tumoren in CT-Scans
- Vorschläge für Therapiemaßnahmen
- Spracherkennung und Sprachsteuerung
- Vorhersage von benötigten Behandungskapazitäten
- ...

Ablauf einen typischen Healthcare Data Analytics Projekts

Definition: Ablauf einen Healthcare Data Analytics (HDA) Projekts

- 1. Übersicht verschaffen
- 2. Daten beschaffen und maschinell lesbar machen
- 3. Daten statistisch auswerten und visualisieren
- 4. Vorbereitung der Daten für algorithmische Auswertung
- 5. Selektion der Modelle und Training
- 6. Beurteilung der Qualität des Modells und Fine Tuning
- 7. Präsentation der Ergebnisse
- 8. Deployment, Monitoring und Wartung des Systems

Beispiel: Erkennung von Herzkrankheiten

- Als einführendes Beispiel möchte ich mit Ihnen heute ein Machine Learning Projekt durchführen
- Wir erkennen ob ein Patient-in an einer Herzkrankheit leidet oder nicht
- Vorgehen richtet sich nach dem beschriebenen Muster eines HDA Projekts

Analyse der Patientendaten und Feature Auswahl – Feature Übersicht

Übersicht verschaffen: ca. 900 Datensätze

	Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	ExerciseAngina	Oldpeak	ST_Slope	HeartDisease
0	40	М	ATA	140	289	0	Normal	172	N	0.0	Up	0
1	49	F	NAP	160	180	0	Normal	156	N	1.0	Flat	1
2	37	M	ATA	130	283	0	ST	98	N	0.0	Up	0
3	48	F	ASY	138	214	0	Normal	108	Υ	1.5	Flat	1
4	54	M	NAP	150	195	0	Normal	122	N	0.0	Up	0

Einige (nicht offensichtliche) Charakteristiken unseres Datensatzes

Feature	Beschreibung	Einheit / Wertebereich			
ChestPainType	Art der Brustschmerzen	{TA, ATA, NAP, ASY}			
RestingBP	Ruheblutdruck	[mm Hg]			
RestingECG	Ruhe-EKG	$\{Normal, ST, LVH\}$			
ExerciseAngina	Angina bei Belastung	{Y, N}			
ST_Slope	Steigung im ST Wert	{Up, Flat, Down}			
OldPeak	Abweichung im ST Wert	[-10, 10]			
HeartDisease	Output	{1, 0}			

Analyse der Patientendaten und Feature Auswahl – ST Wert

Schematische Darstellung eines EKG

Daten statistisch auswerten und visualisieren

Daten statistisch auswerten und visualisieren

Analyse der Patientendaten und Feature Auswahl – Korrelation Herzkrankheit

Korrelation zwischen Herzkrankheit und einigen Features

Nach der Auswahl von relevanten Features können die Datapipelines gebaut werden.

Eine **Datapipeline** ermöglicht es, den Prozess der Datengewinnung, -bereinigung und Transformation zu automatisieren. - Bereinigung der Daten - Umwandlung von Daten (z.B. von Kategorischen Daten in Numerische Daten) - Skalierung von Daten z.B. zwischen 0 und 1

Auswahl des Modells

Es gibt eine Vielzahl von Modellen: Decision Trees, Random Forests, Support Vector Machines, . . .

Klassifikatoren visualisiert

- Eine Auswahl auf einem kleinen repräsentativen Datensatz stattfinden.
- Wir schauen uns heute die Ergebnisse eines künstlichen neuronalen Netzes an.

Künstliches Neuronales Netz

Künstliches Neuronales Netz

- Trainingsschritt mit Hilfe von Trainingsdaten und einem Optimierungsalgorithmus wird Vorhersageleistung des Netzes verbessert.
- Netzwerkgestaltung und Optimierungsalgorithmen sind aktuelle Forschungsthemen.

Qualität von Ergebnissen von Machine Learning Modellen

Mögliche Ergebnisse einer Binären Klassifikation

- Richtig positiv (TP): Der Patient ist krank, und der Test hat dies richtig angezeigt.
- Falsch negativ (FN): Der Patient ist krank, aber der Test hat ihn fälschlicherweise als gesund eingestuft.
- Falsch positiv (FP): Der Patient ist gesund, aber der Test hat ihn fälschlicherweise als krank eingestuft.
- Richtig negativ (TN): Der Patient ist gesund, und der Test hat dies richtig angezeigt.

Künstliches Neuronales Netz - Ergebnisse

- Wir haben 158 (59 TP + 98 TN) Personen richtig vorhergesagt.
- ullet Bei 27 (18 FP + 9 FN) Vorhersagen lagen wir falsch.

 $Quell code: \ https://github.com/strobelm/heart-failure-prediction$

Software Eco System

deeperanalytics.be

Unser Fokus: Python, TensorFlow, scikit-learn und pandas -> Übungen

Quellen

- Kardash, M., Elamin, M. S., Mary, D. A. S. G., Whitaker, W., Smith, D. R., Boyle, R., . . . & Linden, R. J. (1982). The slope of ST segment/heart rate relationship during exercise in the prediction of severity of coronary artery disease. European heart journal, 3(5), 449-458.
- Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media.
- Bishop, C. M. (2006). Pattern recognition. Machine learning.
- fedesoriano. (September 2021). Heart Failure Prediction Dataset.

https://www.kaggle.com/fedesoriano/heart-failure-prediction.