Lecture 16, Oct. 19

Thursday \rightarrow Lecture

Friday → Tutorial

Basic Fact about Limits For $\lim_{n\to a} f(x)$ to exist f(x) must be defined in some open interval I containing x=a, except possibly at x=a.

Sequential Characterization of Limits

16.1 Theorem. Let f(x) be defined in an open interval I containing a, except possibly at x = a. Then the following are equivalent.

1.

$$\lim_{x \to a} f(x) = L$$

2. Whenever $\{x_n\}$ is such that $x_n \to a \ (x_n \neq a)$ we have $f(x) \to L$

Proof. Assume that $\lim_{x\to a} f(x) = L$. Let $\{x_n\}$ be such that $x_n \to a$, $x_n \ne a$. Let $\epsilon > 0$. Then there exists a $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$. Since $x_n \to a$, we can find a $N_0 \in \mathbb{N}$ so that if $n \ge N_0$, then $0 < |x_n - a| < \delta \Rightarrow |f(x_n) - L| < \epsilon$

Conversely, (prove by contrapositive) assume that L is not the limit. Then there exists $e_0 > 0$ such that for any $\delta > 0$, there exists $x_\delta \in (a - \delta, a + \delta)$, $x_\delta \neq a$ and $|f(x_\delta) - L| \geq e_0$. In particular, for each $n \in \mathbb{N}$, there exists $x_n \in (a - \frac{1}{n}, a + \frac{1}{n})$, $x_n \neq a$, such that $|f(x) - L| \geq e_0$. Hence $x_n \to a$, $x_n \neq a$, but $\{f(x_n)\}$ does not converge to L.

16.2 Theorem. Arithmetic Rules for Limits Assume that $\lim_{x\to a} f(x) = L$, $\lim_{x\to a} g(x) = M$ then

- 1. $\lim_{x\to a}(cf)(x)=cL$
- 2. $\lim_{x\to a} (f+g)(x) = L + M$
- 3. $\lim_{x\to a} (fg)(x) = L \cdot M$
- 4. $\lim_{x\to a} (f/g)(x) = L/M$ if $M\neq 0$

16.3 Theorem. Squeeze Theorem for Limits Assume that on some open interval I containing x = a that

$$f(x) \le g(x) \le h(x)$$

for all $x \in I$, except posibly at x = a. If $\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x)$ then

$$\lim_{x \to a} g(x) = L$$

Remark. 1. Let $p(x) = a_0 + a_1 x + a_2 x^2 + \cdots$ then

$$\lim_{x \to a} p(x) = p(a)$$

2. Let f(x) = p(x)/q(x) where p(x), q(x) are polynomials, then

$$\lim_{x \to a} f(x) = \frac{\lim_{x \to a} p(x)}{\lim_{x \to a} q(x)} = \frac{p(a)}{q(a)} = f(a)$$

if $q(a) \neq 0$.

Note. If $\lim_{x\to a} f(x)/g(x) = L$ exists and $\lim_{x\to a} g(x) = 0$ then

$$\lim_{x \to a} f(x) = 0$$

For f(x) = p(x)/q(x) if q(a) = 0 and $p(a) \neq 0$ then $\lim_{x\to a} f(x)$ does not exist.

If f(x) = p(x)/q(x), p(x) = q(x) = 0,

$$p(x) = (x - a)^n p_1(x) \qquad p_1(a) \neq 0$$

$$q(x) = (x - a)^m q_1(x) \qquad q_1(a) \neq 0$$

$$\lim_{x \to a} \frac{p(x)}{q(x)} = \begin{cases} \frac{p_1(a)}{p_2(a)} & \text{if } n = m \\ 0 & \text{if } n > m \\ \text{does not exist} & \text{if } n < m \end{cases}$$

16.4 Example.

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

16.5 Example.

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ -1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Let $a \in \mathbb{R}$. What can we say about $\lim_{x\to a} f(x)$? Exists a sequence in \mathbb{Q} that converge to 1, and exists a sequence in $\mathbb{R}\setminus\mathbb{Q}$ that converge to -1. Thus the limit does not exist.