CS118 – Programming Fundamentals

Lecture # 03 Wednesday, August 21, 2019 FALL 2019 FAST – NUCES, Faisalabad Campus

Zain Iqbal

14

CS 118- FALL 2019 27-Aug-19

Algorithms

- A concept that pervades all areas of computer science
- Algorithm is a process that a computer could carry out to complete a well defined task within finite time and resources
- The objective of computer science is to solve problems by developing, analyzing, and implementing algorithmic solutions

Al-Khwarizimi Principle

- All complex problems can be broken into simpler sub-problems
- Solve a complex problem by breaking it down into smaller sub-problems and then solve them (in a specified order), one at a time
- When all the steps are solved, the original problem itself has also been solved
- This process is called <u>Algorithm</u>

CS 118- FALL 2019

Divide and Conquer

CS 118- FALL 2019

Steps in Problem Solving

- First produce a general algorithm (one can use pseudocode)
- Refine the algorithm successively to get step by step detailed algorithm that is very close to a computer language
- Pseudocode is an artificial and informal language that helps programmers develop algorithms
 - Pseudocode is very similar to everyday English

Algorithms & Pseudocode

 A typical programming task can be divided into two phases

Problem Solving phase:

- Produce an ordered sequence of steps that describe solution of problem
- This sequence of steps is called an algorithm

Implementation phase:

Implement the program in some programming language

Sample problem

Compare two numbers given by the user and tell which one is greater?

Pseudocode – Format

- 1. start
- 2. declare n1, n2
- 3. input n1,n2
- 4. if (n1 > n2)
 - 4.1 print "n1 is greater"
- 5. else if (n2 > n1)
 - 5.1 print "n2 is greater"
- 6. else
 - 6.1 print "they are equal"
- 7. end

Algorithms and Pseudocode

Example 1: Write an algorithm to determine a student's final grade and indicate whether he is passing or failing. The final grade is calculated as the average of four marks.

Algorithms and Pseudocode

Algorithm:

- Input a set of four marks
- Calculate their average by summing and dividing the sum by 4
- If average is above 50
 - Print: "Pass"

else

Print "FAIL"

Algorithms and Pseudocode

Pseudocode:

```
Step 1: Input M1, M2, M3, M4
Step 2: Grade = (M1+ M2+ M3+ M4) / 4
Step 3: if (Grade > 50) then
Print "PASS"
else
Print "FAIL"
endif
```

Pseudo-Code: Decision Making

- If-then
- General form:

```
if (condition is met) then statement(s)
```

Example:

```
if temperature < 0 then wear a jacket
```

Pseudo-Code: Decision Making

```
If-then-else
General form:
   if (condition is met) then
      statement(s)
   else
      statements(s)
Example:
   if (at work) then
      Dress formally
   else
      Dress casually
```

Pseudo-Code: Fast Food Example

- Use pseudo-code to specify the algorithm for a person who is ordering food at a fast food restaurant
- At the food counter, the person can either order or not order the following items:
 - a burger
 - fries and a drink
 - After placing her order the person then goes to the cashier

Pseudo-Code: Fast Food Example

- 1. Approach counter
- 2. if want burger then
 - 2.1. order burger
- 3. if want fries then
 - 3.1. order fries
- 4. if want drink then
 - 4.1 order drink
- 5. Pay cashier

Pseudo-Code: Fast Food Example 31 (Computer)

- 1. Approach counter
- 2. Output 'Do you want to order burger?'
- 3. Input order_burger
- 4. if order_burger = yes then
 - 4.1. order_burger
- 5. Output 'Do you want to order fries?'
- 6. Input order_fries
- 7. if order_fries = yes then
 - 7.1. order fries
- 8. Output 'Do you want to order drink?'
- 9. Input order_drink
- 10. If order_drink = yes then
 - 10.1. order drink
- 11. Pay cashier

Elowchart: Fast Food Example

32

CS 118- FALL 2019

Flowchart: Fast Food Example

Computer) (Approach console 'Order Burger?' Order_b urger Order_ Order burger = 'yes' burger Ν

CS 118- FALL 2019

27-Aug-19

Flowchart: Fast Food Example Computer 2)

Flowchart: Fast Food Example

Pseudo-Code: ATM Example

Use pseudo-code to specify the algorithm for an ATM bank machine. The bank machine has four options:

- 1) Show current balance
- 2) Deposit money
- 3) Withdraw money
- 4) Quit

After an option has been selected, the ATM will continue displaying the four options to the person until he selects the option to quit the ATM

Pseudo-Code: ATM Example

Approach ATM
Repeat
Output 'Select option'
Output '1) Make withdrawal'
Output '2) Make deposit'
Output '3) Show balance'
Output '4) Quit'
Input option

```
If option = deposit then
    Output 'Enter amount to
    deposit'
    Input amount
    balance ← balance + amount
 If option = withdrawal then
    Output 'Enter amount to
   withdraw'
    Input amount
    balance ← balance – amount
 If option = 'Show Balance'
    Output 'Balance is 'balance
Until option = quit
Stop
```

Flow Charts

38

CS 118- FALL 2019 27-Aug-19

Flow Chart Symbols

Name	Symbol	Use in flowchart
Oval		Denotes the beginning or end of the program
Parallelogram		Denotes an input
Rectangle		Denotes a process to be carried out (e.g. addition, subtraction etc.)
Diamond		Denotes a decision (or branch) to be made. The program should continue along one of two routes. (e.g. IF/THEN/ELSE)
Hybrid		Denotes and output operation
Flow Line	-	Denotes the direction of logic flow in the program

The Flowchart

- Dictionary Definition: A schematic representation of a sequence of operation, as in a manufacturing process or computer program
- Technical Definition: A graphical representation of the sequence of operations in an information system or program
 - Information system flowcharts: show how data flows from source documents through the computer to final distribution to the users
 - Program flowcharts: show the sequence of instructions in a single program or subroutine
- Different symbols are used to draw each type of flowchart

The Flowchart

- A flowchart
 - Shows logic of an algorithm
 - Emphasizes individual steps and their interconnections
 - E.g. control flow from one action to another

CS 118- FALL 2019

if Selection Structure

Selection structure

Choose among alternative courses of action

Pseudocode example:

If student's grade is greater than or equal to 50 Print "Passed"

- If the condition is **true**
 - Print statement executed, program continues to next statement
- If the condition is **false**
 - Print statement ignored, program continues
- Indenting makes programs easier to read

if Selection Structure

Translation into Algorithm

If student's grade is greater than or equal to 60 Print "Passed"

```
if ( grade >= 50 )
    print "Passed";
```

- Diamond symbol (decision symbol)
 - Indicates decision is to be made
 - Contains an expression that can be true or false
 - Test condition, follow path
- if structure
 - Single-entry/single-exit

if Selection Structure

■ Flowchart of pseudocode statement

A decision can be made on any expression.

zero - false

nonzero - true

Example:

3 - 4 is true

if/else Selection Structure

- **■** if
 - Performs action if condition true
- if/else
 - Different actions if conditions true or false

Pseudocode

```
if student's grade is greater than or equal to 40
    print "Passed"
else
    print "Failed"

if ( grade >= 50 )
    Print "Passed";
else
    Print "Failed";
```

if/else Selection Structure

46 false true grade >= 50 print print "Passed" "Failed"

Example

Step 1: Input M1,M2,M3,M4

Step 2: GRADE \leftarrow (M1+M2+M3+M4)/4

Step 3: if (GRADE <50) then

Print "FAIL"

else

Print "PASS"

endif

Questions

CS 118- FALL 2019 27-Aug-19