Name:

Tutorial day and time:

Select one *completed* problem for feedback:

1. Consider the vectors $\vec{w} = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$, $\vec{v}_1 = \begin{bmatrix} -4 \\ 0 \\ 3 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$. Recall that the question "Does \vec{w} belong to the span of $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$?" is the same as the

question "Are there scalars x_1, x_2, x_3 such that $\vec{w} = x_1 \vec{v}_1 + x_2 \vec{v}_2 + x_3 \vec{v}_3$?"

Show that this question is, in turn, equivalent to the question of whether or not there is a solution to the following system of equations:

(You do not have to solve the system.)

2. Let
$$U = \left\{ \begin{bmatrix} 2x - y \\ x + 3y \\ 4y - x \end{bmatrix} \middle| x, y \in \mathbb{R} \right\}$$
. Find vectors \vec{a} and \vec{b} such that $U = \text{span}\{\vec{a}, \vec{b}\}$.

3. Determine if the following subsets of \mathbb{R}^2 are subspaces. Explain your answer.

(a)
$$U = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| 3x - 2y = 0 \right\}$$

(b)
$$V = \left\{ \begin{bmatrix} 2x - 1 \\ x + 2 \end{bmatrix} \middle| x \in \mathbb{R} \right\}$$

- 4. Using only the vector space properties of \mathbb{R}^n (Theorem 19 in Section 4.2), show the following:
 - (a) $0\vec{v} = \vec{0}$ for any vector $\vec{v} \in \mathbb{R}^n$. (Hint: use property 10 and the fact that 0 + 0 = 0.)

(b) If $c\vec{v} = \vec{0}$ for some scalar c and vector \vec{v} , then either c = 0 or $\vec{v} = \vec{0}$. (Hint: there are two cases – either c equals zero, or it doesn't.)