# An Implementation of Sin and Cos Using Gal's Accurate Tables

Pascal Leroy (phl)

2025-02-02

This document describes the implementation of functions Sin and Cos in Principia. The goals of that implementation are to be portable (including to machines that do not have a fused multiply-add instruction), achieve good performance, and ensure correct rounding.

#### Overview

The implementation follows the ideas described by [GB91] and uses accurate tables produced by the method presented in [SZ05]. It guarantees correct rounding with a high probability. In circumstances where it cannot guarantee correct rounding, it falls back to the (slower but correct) implementation provided by the CORE-MATH project [SZG22] [ZSG+24]. More precisely, the algorithm proceeds through the following steps:

- perform argument reduction using Cody and Waite's algorithm in double precision (see [Mul+10, p. 379]);
- if argument reduction loses too many bits (i.e., the argument is close to a multiple of  $\frac{\pi}{2}$ ), fall back to cr\_sin or cr\_cos;
- otherwise, uses accurate tables and a polynomial approximation to compute
   Sin or Cos with extra accuracy;
- if the result has a "dangerous rounding configuration" (as defined by [GB91]), fall back to cr\_sin or cr\_cos;
- otherwise return the rounded result of the preceding computation.

### **Notation and Accuracy Model**

In this document we assume a base-2 floating-point number system with M significand bits<sup>1</sup> similar to the IEEE formats. We define a real function  $\mathfrak{m}$  and an integer function  $\mathfrak{e}$  denoting the *significand* and *exponent* of a real number, respectively:

$$x = \pm m(x) \times 2^{e(x)}$$
 with  $2^{M-1} \le m(x) \le 2^M - 1$ 

Note that this representation is unique. Furthermore, if x is a floating-point number,  $\mathfrak{m}(x)$  is an integer.

The *unit of the last place* of x is defined as:

$$\mathfrak{u}(x) \coloneqq 2^{\mathfrak{e}(x)}$$

In particular,  $u(1) = 2^{1-M}$  and:

$$\frac{|x|}{2^{M}} < \frac{|x|}{2^{M} - 1} \le \mathfrak{u}(x) \le \frac{|x|}{2^{M - 1}} \tag{1}$$

We ignore the exponent bias, overflow and underflow as they play no role in this discussion.

Finally, for error analysis we use the accuracy model of [Higo2], equation (2.4): everywhere they appear, the quantities  $\delta_i$  represent a roundoff factor such that  $\delta_i < u = 2^{-M}$  (see pages 37 and 38). We also use  $\theta_n$  and  $\gamma_n$  with the same meaning as in [Higo2], lemma 3.1.

 $<sup>^{1}</sup>$ In binary64, M = 53.

## Approximation of $\frac{\pi}{2}$

To perform argument reduction, we need to build approximations of  $\frac{\pi}{2}$  with extra accuracy and analyse the circumstances under which they may be used and the errors that they entail on the reduced argument.

Let zge0. We start by defining the truncation function  $Tr(\kappa, z)$  which clears the last  $\kappa$  bits of the significand of z:

$$\operatorname{Tr}(\kappa, z) := |2^{-\kappa} \operatorname{m}(z)| 2^{\kappa} \operatorname{\mathfrak{u}}(z)$$

We have:

$$z - \text{Tr}(\kappa, z) = (2^{-\kappa} \, \text{m}(z) - |2^{-\kappa} \, \text{m}(z)|) \, 2^{\kappa} \, \mathfrak{u}(z)$$

The definition of the floor function implies that the quantity in parentheses is in [0, 1[ and therefore:

$$0 \le z - \operatorname{Tr}(\kappa, z) < 2^{\kappa} \mathfrak{u}(z)$$

Furthermore if the bits that are being truncated start with exactly k zeros we have the stricter inequality:

$$2^{\kappa'-1}\mathfrak{u}(z) \le z - \operatorname{Tr}(\kappa, z) < 2^{\kappa'}\mathfrak{u}(z) \quad \text{with} \quad \kappa' = \kappa - k \tag{2}$$

This leads to the following upper bound for the unit of the last place of the truncation error:

$$\mathfrak{u}(z - \operatorname{Tr}(\kappa, z)) < 2^{\kappa' - M + 1} \mathfrak{u}(z)$$

which can be made more precise by noting that the function  $\mathfrak u$  is always a power of 2:

$$\mathfrak{u}(z - \operatorname{Tr}(\kappa, z)) = 2^{\kappa' - M} \mathfrak{u}(z) \tag{3}$$

#### **Two-Term Approximation**

In this scheme we approximate  $\frac{\pi}{2}$  as the sum of two floating-point numbers:

$$\frac{\pi}{2} \simeq C_1 + \delta C_1$$

which are defined as:

$$\begin{cases} C_1 & \coloneqq \operatorname{Tr}\left(\kappa_1, \frac{\pi}{2}\right) \\ \delta C_1 & \coloneqq \left[ \left[ \frac{\pi}{2} - C_1 \right] \right] \end{cases}$$

Equation (2) applied to the definition of  $C_1$  yields:

$$2^{\kappa'_1-1} \mathfrak{u}\left(\frac{\pi}{2}\right) \le \frac{\pi}{2} - C_1 < 2^{\kappa'_1} \mathfrak{u}\left(\frac{\pi}{2}\right)$$

where  $\kappa'_1 \leq \kappa_1$  accounts for any leading zeroes in the bits of  $\frac{\pi}{2}$  that are being truncated. Accordingly equation (3) yields, for the unit of the last place:

$$\mathfrak{u}\left(\frac{\pi}{2}-C_1\right)=2^{\kappa_1'-M}\,\mathfrak{u}\left(\frac{\pi}{2}\right)$$

Noting that the absolute error on the rounding that appears in the definition of  $\delta C_1$  is bounded by  $\frac{1}{2} \operatorname{u} \left( \frac{\pi}{2} - C_1 \right)$ , we obtain the absolute error on the two-term approximation:

$$\left| \frac{\pi}{2} - C_1 - \delta C_1 \right| \le \frac{1}{2} \, \mathfrak{u} \left( \frac{\pi}{2} - C_1 \right) = 2^{\kappa_1' - M - 1} \, \mathfrak{u} \left( \frac{\pi}{2} \right) \tag{4}$$

and the following upper bound for  $\delta C_1$ :

$$|\delta C_1| < \frac{\pi}{2} - C_1 + \frac{1}{2} \mathfrak{u} \left( \frac{\pi}{2} - C_1 \right)$$

$$< 2^{\kappa'_1} \mathfrak{u} \left( \frac{\pi}{2} \right) + 2^{\kappa'_1 - M - 1} \mathfrak{u} \left( \frac{\pi}{2} \right) = 2^{\kappa'_1} (1 + 2^{-M - 1}) \mathfrak{u} \left( \frac{\pi}{2} \right)$$
(5)

This scheme gives a representation with a significand that has effectively  $2M - \kappa_1'$  bits and is such that multiplying  $C_1$  by an integer less than or equal to  $2^{\kappa_1}$  is exact.

#### Three-Term Approximation

In this scheme we approximate  $\frac{\pi}{2}$  as the sum of three floating-point numbers:

$$\frac{\pi}{2} \simeq C_2 + C_2' + \delta C_2$$

which are defined as:

$$\begin{cases} C_2 & \coloneqq \operatorname{Tr}\left(\kappa_2, \frac{\pi}{2}\right) \\ C_2' & \coloneqq \operatorname{Tr}\left(\kappa_2, \frac{\pi}{2} - C_2\right) \\ \delta C_2 & \coloneqq \left[\left[\frac{\pi}{2} - C_2 - C_2'\right]\right] \end{cases}$$

Equation (2) applied to the definition of  $C_2$  yields:

$$2^{\kappa_2'-1} \, \mathfrak{u}\left(\frac{\pi}{2}\right) \le \frac{\pi}{2} - C_2 < 2^{\kappa_2'} \, \mathfrak{u}\left(\frac{\pi}{2}\right) \tag{6}$$

where  $\kappa_2' \le \kappa_2$  accounts for any leading zeroes in the bits of  $\frac{\pi}{2}$  that are being truncated. Accordingly equation (3) yields, for the unit of the last place:

$$\mathfrak{u}\left(\frac{\pi}{2}-C_2\right)=2^{\kappa_2'-M}\,\mathfrak{u}\left(\frac{\pi}{2}\right)$$

Similarly, equation (2) applied to the definition of  $C'_2$  yields:

$$\begin{split} 2^{\kappa_2''-1} \, \mathfrak{u} \bigg( \frac{\pi}{2} - C_2 \bigg) & \leq \frac{\pi}{2} - C_2 - C_2' < 2^{\kappa_2''} \, \mathfrak{u} \bigg( \frac{\pi}{2} - C_2 \bigg) \\ 2^{\kappa_2' + \kappa_2'' - M - 1} \, \mathfrak{u} \bigg( \frac{\pi}{2} \bigg) & \leq \\ & < 2^{\kappa_2' + \kappa_2'' - M} \, \mathfrak{u} \bigg( \frac{\pi}{2} \bigg) \end{split}$$

where  $\kappa_2'' \leq \kappa_2$  accounts for any leading zeroes in the bits of  $\frac{\pi}{2} - C_2$  that are being truncated. Note that normalization of the significand of  $\frac{\pi}{2} - C_2$  effectively drops the zeroes at positions  $\kappa_2$  to  $\kappa_2'$  and therefore the computation of  $C_2'$  applies to a significand aligned on position  $\kappa_2'$ .

It is straightforward to transform these inequalities using (6) to obtain bounds on  $C_2'$ :

$$2^{\kappa_2'} \bigg(\frac{1}{2} - 2^{\kappa_2'' - M}\bigg) \mathfrak{u}\bigg(\frac{\pi}{2}\bigg) < C_2' < 2^{\kappa_2'} (1 - 2^{\kappa_2'' - M - 1}) \, \mathfrak{u}\bigg(\frac{\pi}{2}\bigg)$$

Equation (3) applied to the definition of  $C'_2$  yields, for the unit of the last place:

$$\begin{split} \mathbf{u} \Big( \frac{\pi}{2} - C_2 - C_2' \Big) &= 2^{\kappa_2'' - M} \, \mathbf{u} \Big( \frac{\pi}{2} - C_2 \Big) \\ &= 2^{\kappa_2' + \kappa_2'' - 2M} \, \mathbf{u} \Big( \frac{\pi}{2} \Big) \end{split}$$

Noting that the absolute error on the rounding that appears in the definition of  $\delta C_2$  is bounded by  $\frac{1}{2} \mathfrak{u} \left( \frac{\pi}{2} - C_2 - C_2' \right)$ , we obtain the absolute error on the three-term approximation:

$$\left| \frac{\pi}{2} - C_2 - C_2' - \delta C_2 \right| \le \frac{1}{2} \mathfrak{u} \left( \frac{\pi}{2} - C_2 - C_2' \right) = 2^{\kappa_2' + \kappa_2'' - 2M - 1} \mathfrak{u} \left( \frac{\pi}{2} \right) \tag{7}$$

and the following upper bound for  $\delta C_2$ :

$$|\delta C_2| < 2^{\kappa_2' + \kappa_2'' - M} (1 + 2^{-M-1}) \mathfrak{u}\left(\frac{\pi}{2}\right)$$
 (8)

This scheme gives a representation with a significand that has effectively  $3M - \kappa_2' - \kappa_2''$  bits and is such that multiplying  $C_2$  and  $C_2'$  by an integer less than or equal to  $2^{\kappa_2}$  is exact.

#### **Argument Reduction**

Given an argument x, the purpose of argument reduction is to compute a pair of floating-point numbers  $(\hat{x}, \delta \hat{x})$  such that:

$$\begin{cases} \hat{x} + \delta \hat{x} \cong x \pmod{\frac{\pi}{2}} \\ \hat{x} \text{ is approximately in } \left[ -\frac{\pi}{4}, \frac{\pi}{4} \right] \\ |\delta \hat{x}| \leq \frac{1}{2} \mathfrak{u}(\hat{x}) \end{cases}$$

#### **Argument Reduction for Small Angles**

If 
$$|x| < \left[\frac{\pi}{4}\right]$$
 then  $\hat{x} = x$  and  $\delta \hat{x} = 0$ .

#### **Argument Reduction Using the Two-Term Approximation**

If  $|x| \le 2^{\kappa_1} \left[ \left[ \frac{\pi}{2} \right] \right]$  we compute:

$$\begin{cases} n &= \left[ \left[ x \left[ \frac{2}{\pi} \right] \right] \right] \\ y &= x - n \ C_1 \\ \delta y &= \left[ n \ \delta C_1 \right] \\ (\hat{x}, \delta \hat{x}) &= \text{TwoDifference}(y, \delta y) \end{cases}$$

Let's first show that  $|n| \le 2^{\kappa_1}$ .:

$$|x| \le 2^{\kappa_1} \frac{\pi}{2} (1 + \delta_1)$$

$$|n| \le \left[ 2^{\kappa_1} \frac{\pi}{2} (1 + \delta_1) \frac{2}{\pi} (1 + \delta_2) (1 + \delta_3) \right]$$

$$\le \left[ 2^{\kappa_1} (1 + \gamma_3) \right]$$

As long as  $2^{\kappa_1}\gamma_3$  is small enough (less that 1/2), the rounding cannot cause n to exceed  $2^{\kappa_1}$ . In practice we choose a relatively small value for  $\kappa_1$ , so this condition is met.

The product n  $C_1$  is exact thanks to the  $\kappa_1$  trailing zeroes of  $C_1$ . The subtraction x - n  $C_1$  is exact by Sterbenz's Lemma. Finally, the last step performs an exact addition<sup>2</sup> using algorithm 4 of [HLBo8].

To compute the overall error on argument reduction, first remember that, from equation (4), we have:

$$C_1 + \delta C_1 = \frac{\pi}{2} + \zeta$$
 with  $\left| \zeta \right| \le 2^{\kappa'_1 - M - 1} \mathfrak{u} \left( \frac{\pi}{2} \right)$ 

$$|\delta y| \geq n \ 2^{\kappa_1'-1} \, \mathfrak{u}\left(\frac{\pi}{2}\right) \geq 2^{\kappa_1'+M-2} \, \mathfrak{u}\left(\frac{\pi}{2}\right) \mathfrak{u}(n)$$

where we used the bound given by equation (1). Now the computation of n can result in a value that is either in the same binade or in the binade below that of x. Therefore  $\mathfrak{u}(n) \geq \frac{1}{2} \mathfrak{u}(x)$  and the above inequality becomes:

$$|\delta y| \ge 2^{\kappa_1' + M - 3} \operatorname{u}\left(\frac{\pi}{2}\right) \operatorname{u}(x)$$

plugging  $u\left(\frac{\pi}{2}\right) = 2^{1-M}$  we find:

$$|\delta y| \ge 2^{\kappa_1' - 2} \, \mathfrak{u}(x)$$

Therefore, as long as  $\kappa_1' > 2$ , there exist arguments x for which  $|\delta y| > |y|$ .

<sup>&</sup>lt;sup>2</sup>The more efficient QuickTwoDifference is not usable here. First, note that |y| is an integral multiple of  $\mathfrak{u}(x)$  and therefore, when not zero, may be as small as  $\mathfrak{u}(x)$ ; that bound is reached if x is the successor or the predecessor of  $nC_1$  for any n. Ignoring rounding errors we have:

The error computation proceeds as follows:

$$y - \delta y = x - n C_1 - n \delta C_1 (1 + \delta_4)$$
  
=  $x - n(C_1 + \delta C_1) - n \delta C_1 \delta_4$   
=  $x - n\frac{\pi}{2} - n(\zeta + \delta C_1 \delta_4)$ 

from which we deduce an upper bound on the absolute error of the reduction:

$$\begin{split} \left| y - \delta y - \left( x - n \frac{\pi}{2} \right) \right| &\leq 2^{\kappa_1} 2^{\kappa_1'} (2^{-M-1} + 2^{-M} + 2^{-2M-1}) \, \mathfrak{u} \left( \frac{\pi}{2} \right) \\ &= 2^{\kappa_1 + \kappa_1' - M} \left( \frac{3}{2} + 2^{-M-1} \right) \mathfrak{u} \left( \frac{\pi}{2} \right) \\ &< 2^{\kappa_1 + \kappa_1' - M + 1} \, \mathfrak{u} \left( \frac{\pi}{2} \right) \end{split}$$

where we have used the upper bound for  $\delta C_1$  given by equation (5).

If we want  $\hat{x} + \delta \hat{x}$  to be correctly rounded with  $\kappa_3$  extra bits of accuracy, the error must be less than  $2^{\kappa_3}$  half-units of the last place of the result:

$$2^{\kappa_1 + \kappa_1' - M + 1} \, \mathfrak{u}\left(\frac{\pi}{2}\right) \le 2^{-\kappa_3 - 1} |\mathfrak{u}(\hat{x})| \le 2^{-\kappa_3 - M} |\hat{x}|$$

which leads to the following condition on the reduced angle:

$$|\hat{x}| \ge 2^{\kappa_1 + \kappa_1' + \kappa_3 + 1} \, \mathfrak{u}\left(\frac{\pi}{2}\right) = 2^{\kappa_1 + \kappa_1' + \kappa_3 - M + 2}$$

The rest of the implementation assumes that  $\kappa_3 = 18$  to achieve correct rounding most of the time and detect cases of dangerous rounding. If we choose  $\kappa_1 = 8$  we find that  $\kappa_1' = 5$  (because there are three consecutive zeroes at this location in the significand of  $\frac{\pi}{2}$ ) and the desired accuracy is obtained as long as  $|\hat{x}| \ge 2^{-20} \simeq 9.5 \times 10^{-7}$ .

#### **Argument Reduction Using the Three-Term Approximation**

If  $|x| \le 2^{\kappa_2} \left[ \frac{\pi}{2} \right]$  we compute:

$$\begin{cases} n &= \left[ \left[ x \left[ \frac{2}{\pi} \right] \right] \right] \\ y &= x - n C_2 \\ y' &= n C'_2 \\ \delta y &= \left[ n \delta C_2 \right] \right] \\ (z, \delta z) &= \text{QuickTwoSum}(y', \delta y) \\ (\hat{x}, \delta \hat{x}) &= \text{LongSub}(y, (z, \delta z)) \end{cases}$$

The products n  $C_2$  and n  $C_2'$  are exact thanks to the  $\kappa_2$  trailing zeroes of  $C_2$  and  $C_2'$ . The subtraction x-n  $C_2$  is exact by Sterbenz's Lemma. QuickTwoSum performs an exact addition using algorithm 3 of [HLBo8]; it is usable in this case because clearly  $|\delta z| < |z|$ . LongSub is the obvious adaptation of the algorithm LongAdd presented in section 5 of [Lin81], which implements precise (but not exact) double-precision arithmetic.

It is straightforward to show, like we did in the preceding section, that:

$$|n| \leq \left[2^{\kappa_2}(1+\gamma_3)\right]$$

and therefore that  $|n| \le 2^{\kappa_2}$  as long as  $2^{\kappa_2} \gamma_3 < 1/2$ .

To compute the overall error on argument reduction, first remember that, from equation (7), we have:

$$C_2 + C_2' + \delta C_2 = \frac{\pi}{2} + \zeta_1 \quad \text{with} \quad \left| \zeta_1 \right| \le 2^{\kappa_2' + \kappa_2'' - 2M - 1} \, \mathfrak{u} \left( \frac{\pi}{2} \right)$$

Let  $\zeta_2$  be the relative error introduced by LongAdd. Table 1 of [Lin81] indicates that  $|\zeta_2| < 2^{2-2M}$ . The error computation proceeds as follows:

$$y - y' - \delta y = (x - n C_2 - n C_2' - n \delta C_2 (1 + \delta_4)) (1 + \zeta_2)$$

$$= \left(x - n \frac{\pi}{2} - n(\zeta_1 + \delta C_2 \delta_4)\right) (1 + \zeta_2)$$

$$= x - n \frac{\pi}{2} - n(\zeta_1 + \delta C_2 \delta_4) (1 + \zeta_2) + \left(x - n \frac{\pi}{2}\right) \zeta_2$$

from which we deduce an upper bound on the absolute error of the reduction:

$$\begin{split} \left| y - y' - \delta y - \left( x - n \frac{\pi}{2} \right) \right| \\ & \leq 2^{\kappa_2 + \kappa_2' + \kappa_2''} (2^{-2M - 1} + 2^{-2M} + 2^{-3M - 1}) (1 + 2^{2 - 2M}) \, \mathfrak{u} \left( \frac{\pi}{2} \right) + 2^{2 - 2M} \frac{\pi}{4} \\ & = 2^{\kappa_2 + \kappa_2' + \kappa_2'' - 2M} \left( \frac{3}{2} + 2^{-M - 1} \right) (1 + 2^{2 - 2M}) \, \mathfrak{u} \left( \frac{\pi}{2} \right) + 2^{-2M} \, \pi \\ & < 2^{\kappa_2 + \kappa_2' + \kappa_2'' - 2M + 1} \, \mathfrak{u} \left( \frac{\pi}{2} \right) + 2^{-2M} \, \pi \end{split}$$

A sufficient condition for the reduction to guarantee  $\kappa_3$  extra bits of accuracy is for this error to be less than  $2^{-\kappa_3-1}|\mathfrak{u}(\hat{x})|$  which itself is less than  $2^{-\kappa_3-M}|\hat{x}|$ . Therefore we want:

$$|\hat{x}| \ge 2^{\kappa_3 - M} \left( 2^{\kappa_2 + \kappa_2' + \kappa_2'' + 1} \, \mathfrak{u} \left( \frac{\pi}{2} \right) + \pi \right)$$

$$= 2^{\kappa_3 - M} \left( 2^{\kappa_2 + \kappa_2' + \kappa_2'' - M + 2} + \pi \right)$$

and it is therefore sufficient to have:

$$|\hat{x}| \ge 2^{\kappa_3 - M} (2^{\kappa_2 + \kappa_2' + \kappa_2'' - M + 2} + 4)$$

If we choose  $\kappa_3 = 18$  as above, and  $\kappa_2 = 18$  we find that  $\kappa_2' = 13$  and  $\kappa_2'' = 14$ . Therefore, the desired accuracy is obtained as long as  $|\hat{x}| \ge 257 \times 2^{-42} \simeq 1.2 \times 10^{-10}$ .

#### **Fallback**

If any of the conditions above is not met, we fall back on the CORE-MATH implementation.

#### Accurate Tables and Their Generation

#### Computation of the Functions

#### Sin

#### Near Zero

For  $\hat{x}$  near zero we evaluate:

$$\begin{split} \widehat{x^2} &= [ \hat{x}^2 ] = \hat{x}^2 (1 + \delta_1) \\ \widehat{x^3} &= [ \hat{x} \ \widehat{x^2} ] = \hat{x}^3 (1 + \delta_1) (1 + \delta_2) \\ \widehat{p} &= [ a \widehat{x^2} + b ] = (a \hat{x}^2 (1 + \delta_1) + b) (1 + \delta_3) \\ s(x) &\coloneqq \widehat{x} + [ [ \widehat{x^3} \widehat{p} ] + \delta \widehat{x} ] \\ &= \widehat{x} + (\hat{x}^3 (1 + \delta_1) (1 + \delta_2) (a \hat{x}^2 (1 + \delta_1) + b) (1 + \delta_3) (1 + \delta_4) + \delta \widehat{x}) (1 + \delta_5) \\ &= \widehat{x} + a \hat{x}^3 (1 + \theta_5) + b \hat{x}^5 (1 + \theta_4) + \delta \hat{x} (1 + \delta_5) \end{split}$$

#### References

- [GB91] S. Gal and B. Bachelis. "An Accurate Elementary Mathematical Library for the IEEE Floating Point Standard". In: *ACM Transactions on Mathematical Software* 17.1 (Mar. 1991), pp. 26–45.
- [Higo2] N. J. Higham. *Accuracy and Stability of Numerical Algorithms*. Society for Industrial and Applied Mathematics, 2002.
- [HLBo8] Y. Hida, X. S. Li, and D. H. Bailey. "Library for Double-Double and Quad-Double Arithmetic". Preprint at https://www.davidhbailey.com/dhbpapers/qd.pdf. May 8, 2008.
- [Lin81] S. Linnainmaa. "Software for Doubled-Precision Floating-Point Computations". In: *ACM Transactions on Mathematical Software* 7.3 (Sept. 1981), pp. 272–283.

  DOI: 10.1145/355958.355960.
- [Mul+10] J.-M. Muller, N. Brisebarre, F. De Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres. *Handbook of Floating-Point Arithmetic*. Birkhäuser, 2010.
- [SZo5] D. Stehlé and P. Zimmermann. "Gal's accurate tables method revisited". In: 17th IEEE Symposium on Computer Arithmetic (ARITH'05) (Cape Cod, MA, USA, June 27–29, 2005). Ed. by P. Montuschi and E. Schwarz. IEEE Computer Society, June 2005, pp. 257–264. DOI: 10.1109/ARITH.2005.24.
- [SZG22] A. Sibidanov, P. Zimmermann, and S. Glondu. "The CORE-MATH Project". In: 2022 IEEE 29th Symposium on Computer Arithmetic (ARITH). IEEE, Sept. 2022, pp. 26-34. DOI: 10.1109/ARITH54963.2022.00014. eprint: https://inria.hal.science/hal-03721525v3/file/coremath-final.pdf.
- [ZSG+24] P. Zimmermann, A. Sibidanov, S. Glondu, et al. *The CORE-MATH Project*. Software. Apr. 2024.