2D Transformations

- There are 3 types of transformations that are essential.
 - Translation
 - Moving an object to a new position by adding to the object x and y coordinates.
 - Scaling
 - Changing the size of the object.
 This can be uniform where both dimensions are resized by the same factor, or non-uniform.
 - Rotation
 - Object is rotated around the origin by a specified angle.

2D Translation – Approach A

- We want to move a point p at (x,y) to a new position p' at (x', y') where
 x'= x + d_x and y' = y + d_y
- We can represent the points and the translation as column vectors.

$$p = \begin{bmatrix} x \\ y \end{bmatrix}, p' = \begin{bmatrix} x' \\ y' \end{bmatrix}, T = \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

The translation can be expressed as.

$$p' = p + T$$

 A line or shape can be translated by translating its vertices and redrawing the line or shape.

2D Scaling – Approach A

 Scaling refers to rescaling along an axis. A point can be scaled along the x-axis or the y-axis, or both.

$$x' = s_x \cdot x$$
 $y' = s_y \cdot y$

In matrix form this is:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

or

$$p' = S.p$$

where S is the scaling matrix

2D Rotation – Approach A

 Points are rotated around the origin by an angle θ.

$$x' = x.cos(\theta) - y.sin(\theta)$$
, $y' = x.sin(\theta) + y.cos(\theta)$

In matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

or

$$p' = R.p$$

Homogeneous Coordinates

- The problem with Approach A is that different transformations are handled differently.
 - -p'=p+T
 - -p'=S.p
 - -p'=R.p
- The solution is to use homogeneous coordinates.
- Each point (x, y) is represent as a triple (x, y, W).
 - Two points are the same if one is a multiple of the other.
 - (1,2,3) and (3,6,9) represent the same point.
 - Each 2D point is now a line in a 3D space.
 The W = 1 plane is our 2D space and the intersection of the line with this plane gives us the point.
- In a homogeneous coordinate system translation, scaling and rotation are matrix multiplications.

Homogeneous Transformations

Translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homogeneous Transforms (contd.)

 The general form the 2D transformation matrix is:

$$\begin{bmatrix} r_{11} & r_{12} & d_x \\ r_{21} & r_{22} & d_y \\ 0 & 0 & 1 \end{bmatrix}$$

- Multiplying a set of transformation matrices is equivalent to applying a sequence of transformations one after another.
 - The order is very important.
 - If you want to apply transformation A then B and finally C, you can pre-calculate the combined effect as

C.B.A

- The resulting transformation is an affine transformation.
 - Preserves parallel lines, but not lengths or angles

An Example

 Suppose we wish to reduce the square in the following image to half its size and rotate it by 45° about point P.

- We need to remember that that scaling and rotation takes place with respect to the origin.
 - Translate square so that the point around which the rotation is to occur is at the origin.
 - Scale
 - Rotate
 - Translate origin back to position P.

An Example (contd.)

Efficiency

 Because of the particular structure of the last row of the 2D homogeneous transformation matrix the number of operations can be reduced from 9 multiplications and 6 additions to 4 multiplications and 4 additions.

$$x' = x.r_{11} + y.r_{12} + t_x$$

 $y' = x.r_{21} + y.r_{22} + t_y$

 If a model is being incrementally rotated by a small angle θ, then by noting that cosθ is very close to 1 for small values of θ then

$$x' = x - y.\sin\theta$$

 $y' = x.\sin\theta + y$

just 2 multiplications and 2 additions.

- This is just an approximation and as the errors accumulate the image will become unrecognisable.
- A better approximations is

$$x' = x - y.\sin\theta$$

 $y' = x'.\sin\theta + y = (x - y.\sin\theta).\sin\theta + y$
 $= x.\sin\theta + y(1-\sin^2\theta)$

 The corresponding 2x2 matrix has a determinant of 1 and hence preserves areas.

3D Homogeneous Transformations

Translation

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Scaling

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rotation about z axis

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

3D Homogeneous Transformations (contd.)

Rotation about x axis

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) & 0 \\ 0 & \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rotation about y axis

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

 General form of a composition of transformations

$$egin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \ r_{21} & r_{22} & r_{23} & t_y \ r_{31} & r_{32} & r_{33} & t_z \ 0 & 0 & 0 & 1 \ \end{bmatrix}$$

Composing 3D Homogeneous Transforms

- Same approach as when composing 2D homogeneous transformations.
- Rather than composing each rotation around the x, y, and z axis separately we can sometimes make use of the vector cross product and the following feature of a composite matrix.
- The composite rotation matrix applied to the unit vector along the x, y and z axes are:

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} r_{11} \\ r_{21} \\ r_{31} \\ 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} r_{12} \\ r_{22} \\ r_{32} \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} r_{13} \\ r_{23} \\ r_{33} \\ 0 \end{bmatrix}$$

Composing 3D Rotations

 The first, second and third columns of the upper-left 3x3 submatrix are the rotated x-axis, rotated y-axis and rotated z-axis respectively.

$$\begin{bmatrix} R_x & R_y & R_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Two non colinear vectors define a plane.
- The vector cross product v₁ x v₂ is a vector at right angle to the plane defined by v₁ and v₂.
- If either R_x, R_y or R_z is known and some relationship between an element of the rotated object and the x, y or z axis, then the computation of the composed rotation matrix can be simplified.

Example

 We want to position the following plane at location P with a specified direction of flight (DOF) and no bank angle (wings parallel x-z plane).

- z_p is transformed to z_t = DOF.
- $x_t = y \times z_t$ no bank angle
- $y_t = z_t \mathbf{x} \ x_t = \text{DOF} \ \mathbf{x} \ (y \mathbf{x} \ \text{DOF})$

Example (contd.)

$$R = \begin{bmatrix} (y \times D\vec{O}F) & (D\vec{O}F \times (y \times D\vec{O}F)) & D\vec{O}F & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- This general approach has limitations. In this case if the DOF is colinear with the y axis, the (y x DOF) is zero.
- This general approach can be used when instantiating models (specified in a model coordinate system) in our world coordinate system.

The inverse of a Rotation Matrix

- Suppose we wish to undo a rotation
- e.g. suppose we wish to rotate the aeroplane in the previous example back to its original orientation along the x,y and z axes
- We need to find the inverse of the previous rotation matrix

Inverse of a Rotation Matrix

- The inverse of a rotation matrix is just its transpose
- You get the transpose by flipping the matrix about the leading diagonal
- In other words you interchange the rows and columns

Summary of Rotation Matrices

- If you want to rotate an object from axes x,y,z to orientation u,v,n you use the matrix on the right
- If you want to rotate an object from orientation u,v,n back to axes x,y,z you use the matrix on the left

$$\begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ n_x & n_y & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_x & v_x & n_x & 0 \\ u_y & v_y & n_y & 0 \\ u_z & v_z & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$