CS & IT

ENGINERING

THEORY OF COMPUTATION

Regular Expressions

Lecture No.- 02

Recap of Previous Lecture

Topic ??????

MFA to DFA Conversion

Subset Construction NFA = DFA Expressive power of Automata No. of Languages accepted by Automata Every NFA is Converted into DFA

NFA-DFA

$$\frac{1}{\sqrt{2}} = \frac{10}{2}$$

$$\frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}}$$

Topics to be Covered

Topic: Theory of Computation

NOTE: Construction of ∈ - NFA is easy than NFA

$$\{Q, \Sigma, q_0, F, \delta\}$$

Finite number of states (set of state)

Input alphabet

initial state q_0

-> any no. of final states Set of final states —

transition function δ

$$\delta: \mathbb{Q} \times \Sigma \cup \{\epsilon\} \to 2^{\mathbb{Q}}$$

 $L = \{a^n b^m c^k/n, m, k \ge 0\}$ construct \in -NFA for L

While converting \in -NFA into NFA (without \in) the following are the possibilities

- No. of states are same
- Initial state is same
 - Final state may changes) -> final states may increase
 - Transitions may changes

Topic : Conversion from ∈-NFA to NFA

- Number of states in (∈-NFA) is same of NFA
 - 2. / Initial state of ∈- NFA is same as NFA
- In NFA make states as final where ∈-closure of that state contains a final state of ∈-NFA.

Topic: Conversion from ∈-NFA to NFA

 \in -closure (q) = set of all states which are reachable from state q by reading only \in .

#Q. Construct an equivalent NFA for the following E-NFA

$$a \in a$$

#Q. Construct an equivalent NFA for the following E-NFA

E.E.E.E-E

$$\frac{1}{\sqrt{q_0}} = \frac{1}{\sqrt{q_1}} = \frac{1}{\sqrt{q_2}}$$

$$\frac{1}{\sqrt{q_0}} = \frac{1}{\sqrt{q_0}} = \frac{1}{\sqrt{q_2}}$$

$$\frac{1}{\sqrt{q_0}} = \frac{1}{\sqrt{q_0}} = \frac{1}{\sqrt{q_0}}$$

$$\frac{1}{\sqrt{q_0}} = \frac{1}{\sqrt{q_0}}$$

Construct an equivalent NFA for the following E-NFA #Q.

E-NFA
$$\epsilon \cdot 0 = 0$$

$$(A, 0) = C$$

$$(B, 0) = C$$

$$(B, 0) = C$$

$$(C, 1) = C$$

Construct an equivalent NFA for the following E-NFA #Q.

ving E-NFA 9
$$\left(20, 9\right) = \left(20, 9\right)$$

$$(9,1)$$
 $(9,1)$ $(9,1$

Q

What is the complement of the language accepted by the NFA shown below? Assume $\Sigma = \{a\}$ and ϵ is the empty string.

[2012: 1 Mark]

THANK - YOU