1/1 points
1.
Recall the derivation of EM algorithm. In our notation, X is observable data, Z is latent variable and θ is a vector of model parameters. We introduced $q(Z)$ — an arbitrary distribution over the latent variable. Choose the correct expressions for the marginal log-likelihood $\log p(X\mid\theta)$:
Correct $\int q(Z) \log \frac{p(X,Z \theta)}{q(Z)} dZ + \int q(Z) \log \frac{q(Z)}{p(Z X,\theta)} dZ =$
$\int q(Z) \log p(X,Z heta) dZ - \int q(Z) \log q(Z) dZ +$
$+\int q(Z)\log q(Z)dZ - \int q(Z)\log p(Z X, heta)dZ =$
$=\int q(Z)\lograc{p(X,Z heta)}{p(Z X, heta}dZ=\int q(Z)\log p(X heta)dZ=\log p(X heta)$
$\log \int p(X,Z heta)dZ$
$\log \int p(\Lambda, B) dB$
Correct Z is integrated out:
$\log \int p(X,Z heta)dZ = \log p(X heta)$
$igsqcup \mathbb{E}_{q(Z)} \log p(X,Z heta) - \mathbb{E}_{q(Z)} \log p(Z X, heta)$
Correct
$\mathbb{E}_{q(Z)} \log p(X,Z heta) - \mathbb{E}_{q(Z)} \log p(Z X, heta) =$
$= \mathbb{E}_{q(Z)} \log \frac{p(X,Z \theta)}{p(Z X,\theta)} = \mathbb{E}_{q(Z)} \log p(X \theta) = \log p(X \theta)$
$\bigcap \int q(Z) \log p(X heta) dZ$
] q(2) wgp/1. v u2
Correct
$\log p(X heta)$ does not depend on Z.
$\int q(Z) \log p(X heta) dZ = \log p(X heta)$
1/1 points
2.
In EM algorithm, we maximize variational lower bound $\mathcal{L}(q,\theta) = \log p(X \theta) - \mathrm{KL}(q p)$ with respect to q (E-step) and θ (M-step) iteratively. Why is the maximization of lower bound or E-step equivalent to minimization of KL divergence?

https://www.coursera.org/learn/bayesian-methods-in-machine-learning/exam/ilYsc/em-algorithm

 $\bigcirc \quad \text{Because uncomplete likelihood does not depend on } q(Z)$

Correct

Revise E-step details video

0	Because we cannot maximize lower bound w.r.t. $q(Z)$
0	Because posterior becomes tractable
0	Because of Jensen's inequality
~	1/1 points
Select	correct statements about EM algorithm:
	E-step can always be performed analytically
Un-	selected is correct
	M-step can always be performed analytically
Un-	selected is correct
Cor	EM algorithm always converges rect
	se M-step details video
	Complete likelihood is always a convex function as a function of parameters
Un-	selected is correct
	EM algorithm always converges to a global optimum
Un-	selected is correct
~	1/1 points
4.	
	$\operatorname{der} p(x) = \mathcal{N}(\mu, \sigma_1)$ and $q(x) = \mathcal{N}(\mu, \sigma_2)$. Calculate KL divergence between these two gaussians KL $(p q)$ (hint: note that KL divergence is an expectation):
0	$\log rac{\sigma_2}{\sigma_1} = rac{1}{2} + rac{\sigma_1^2}{2\sigma_2^2}$
	rect
KL	$(p q) = \mathbb{E}_p \log \frac{\mathcal{N}(x \mu,\sigma_1^2)}{\mathcal{N}(x \mu,\sigma_2^2)} = \mathbb{E}_p \log \frac{\left(\sqrt{2\pi\sigma_1^2}\right)^{-1} \exp\left(-\frac{(x-\mu)^2}{2\sigma_1^2}\right)}{\left(\sqrt{2\pi\sigma_2^2}\right)^{-1} \exp\left(-\frac{(x-\mu)^2}{2\sigma_2^2}\right)} = \frac{\left(\sqrt{2\pi\sigma_2^2}\right)^{-1} \exp\left(-\frac{(x-\mu)^2}{2\sigma_2^2}\right)}{\left(\sqrt{2\pi\sigma_2^2}\right)^{-1} \exp\left(-\frac{(x-\mu)^2}{2\sigma_2^2}\right)} = \frac{1}{2\pi\sigma_1^2}$
$=\mathbb{F}$	$\mathbb{E}_p\left[\log\frac{\sigma_2}{\sigma_1} + \log\frac{\exp\left(-\frac{(x-\mu)^2}{2\sigma_1^2}\right)}{\exp\left(-\frac{(x-\mu)^2}{2\sigma_2^2}\right)}\right] = \mathbb{E}_p\left[\log\frac{\sigma_2}{\sigma_1} - \frac{(x-\mu)^2}{2\sigma_1^2} + \frac{(x-\mu)^2}{2\sigma_2^2}\right] = 0$

$= \log \frac{\sigma_2}{\sigma_1}$	$\frac{\mathbb{E}_p(x-\mu)^2}{2\sigma_1^2} + \frac{\mathbb{E}_p(x-\mu)^2}{2\sigma_2^2} = \log \frac{\sigma_2}{\sigma_1}$	$\frac{\sigma_1^2}{2r^2} + \frac{\sigma_1^2}{2r^2} = \log \frac{\sigma_2}{\sigma_1}$	$\frac{1}{2} + \frac{\sigma_1^2}{2\sigma_2^2}$		
01	201 202 01	201 202 01	2 202		
$\log \frac{\sigma_1}{\sigma_2}$	$+\frac{\sigma_1^2-\sigma_2^2}{\sigma_1^2+\sigma_2^2}$				
$\log \frac{\sigma_1}{\sigma_2}$	$+\frac{\sigma_2^2}{\sigma_1^2}$				
$\log \frac{\sigma_2^2}{\sigma_1^2}$	$\frac{\sigma_1^2}{2\sigma_2^2}$				

rg p