

TABLE OF CONTENTS

O1
Motivation &
Context

O2 Conceptual Overview O3
Detailed
Walkthrough

04Generalizations

O1 Motivation & Context

Objective

Count number of Triangulations

Algorithm runs in $O(n^22^n)$ time and $O(n2^n)$ space

First algorithm to be provably faster than enumeration $O(2.43^n)$

Can also compute optimal Triangulation, and generate Triangulations uniformly at random

Context

Paper published in 2013 by Victor Alvarez and Raimund Seidel

Was the first algorithm to achieve counting number of triangulations faster then enumeration

Dániel Marx and Tillmann Miltzow since achieved counting triangulations subexponentially in $O(n^{(11+O(1))\sqrt{n}})$, 2016

It's unlikely that a polynomial time counting method will be found because related problems are NP-hard $\underline{1}$, $\underline{2}$

Related Work: <u>Counting triangulations and other crossing-free structures approximately,</u>
<u>Victor Alvarez, Karl Bringmann, Saurabh Ray, Raimund Seidel,</u> 2014

Applications

Computer Graphics, Geo-information-Systems, etc.

O2 Conceptual Overview

Idea

1) Create an Isomorphism from triangulations to source sink paths in a DAG

2) Count number of source-sink paths and thus triangulations and hope that we'll accomplish resource bounds

O3 Detailed Walkthrough

Setup

We consider a set of n points in the plane $S = \{p_1, p_1, ..., p_n\}$

Assumptions

No 3 points in S lie on a straight line

No 2 points lie on a common vertical line ——— Points in S can be sorted by x-coordinate

Monotone Chain

Definition

A monotone chain C for S is a polygonal chain that connects p_1 with p_n , contains only points of S as vertices and intersects every vertical line at most once

Monotone Chain

Definition

A monotone chain C for S is a polygonal chain that connects p_1 with p_n , contains only points of S as vertices and intersects every vertical line at most once

Advancing Monotone Chain

Definition

We call a triangle *T* an advance for the monotone chain *C* if it touches *C* from above and if we add *T* to the set of triangles below *C* we get a new monotone chain

Advancing Monotone Chain

Definition

We call a triangle T an advance for the monotone chain C if it touches C from above and if we add T to the set of triangles below C we get a new monotone chain

Advancing Monotone Chain

Can you always advance?

There always is an advance unless C contains only upper hull edges

Can you always advance?

sub-chain containing no upper hull edges

Unique Leftmost Advance

Every montone chain has a unique leftmost advance

Unique Leftmost Advance

Every montone chain has a unique leftmost advance

Leftmost sweeping Advance

There is a unique sequence $C_0,...,C_M$ for each triangulation

Idea Revisited

1) Create an Isomorphism from triangulations to source sink paths in a DAG

2) Count number of source-sink paths and thus triangulations and hope that we'll accomplish resource bounds

Constructing the DAG

Nodes

are marked monotone chains (C,k) where C is a monotone chain with its kth edge marked

Edges

next, we define the successor relation on the marked monotone chains

Successor Relation

Case 1

Advancing increases length by 1

Successor Relation

Case 2

Advancing decreases length by 1

Successor Relation Another Example (C',4)

Successor Relation Another Example (C',4)(C",3)

Idea

1) Create an Isomorphism from triangulations to source sink paths in a DAG

2) Count number of source-sink paths and thus triangulations and hope that we'll accomplish resource bounds

Counting Triangulations

Set (B,1) as source

Where B is the lower hull chain

Create Node T set it as sink

Connect T to every Node (U,k), where U is the upper hull chain and k is any number

Idea

1) Create an Isomorphism from triangulations to source sink paths in a DAG

2) Count number of source-sink paths and thus triangulations and hope that we'll accomplish resource bounds

Resource bounds

Time

The time is proportional to the number of edges in the Graph

Space

We must store a counter for each node

Why do we not need to store edges?

Resource bounds

Number of Nodes

there can be no more than 2^n monotone chains each monotone chain can have at most n-1 markings

O(n2ⁿ) number of Nodes

Number of edges

each node can have at most n successors

O(n²2ⁿ) number of edges

Objective Revisited

Count number of Triangulations

Algorithm runs in $O(n^22^n)$ time and $O(n2^n)$ space

First algorithm to be provably faster than enumeration $O(2.43^n)$

Can also compute optimal Triangulation, and generate Triangulations uniformly at random

04

Generalizations

Algorithm

compute the Graph

remove nodes unreachable from source or sink

choose a random number r between 1 and number of triangulations

Algorithm

compute the Graph

remove nodes unreachable from source or sink

choose a random number r between 1 and number of triangulations

Algorithm

compute the Graph

remove nodes unreachable from source or sink

choose a random number *r* between 1 and number of triangulations

Algorithm

compute the Graph

remove nodes unreachable from source or sink

choose a random number *r* between 1 and number of triangulations

Algorithm

compute the Graph

remove nodes unreachable from source or sink

choose a random number *r* between 1 and number of triangulations

Algorithm

compute the Graph

remove nodes unreachable from source or sink

choose a random number *r* between 1 and number of triangulations

Algorithm

compute the Graph

remove nodes unreachable from source or sink

choose a random number r between 1 and number of triangulations

Algorithm

compute the Graph

remove nodes unreachable from source or sink

choose a random number *r* between 1 and number of triangulations

Algorithm

compute the Graph

remove nodes unreachable from source or sink

choose a random number *r* between 1 and number of triangulations

Algorithm

compute the Graph

remove nodes unreachable from source or sink

choose a random number *r* between 1 and number of triangulations

Find triangulation that fulfils specific optimality criteria

Limitations

let f be the function to be optimized. Let D be a set of points and t be a triangle. Then the optimum f over D U t must be obtained from the optimum of D and t

Example – minimize triangle weights

When traversing the Graph choose advance that minimally increases triangle weights

THANKS!

Slides in PDF format https://bruol.me/other/agp-presentation.pdf

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon** and infographics & images by **Freepik**

