Forecasting Lyme Disease Exploring Google Trends

Jeremy Ling Alexis Rivera

San Francisco State University

Spring 2018

Table of Contents

Initial Observations Plots ACF/PACF Stationairty

Univariate Modeling Simple Methods Seasonal Linear Model ARIMA Models

Multivariate Modeling Simple Linear Model VAR

•000 Plots

Initial Plots

Plots

Seasonal Plots

Seasonailty for google searches for 'Lyme's Disease'

Polar Plots

Confirmed Cases in Wisconsin

Month

Google Searches

Plots

Subseries Plots

00

ACF and PACF

Reports Stationarity

```
> adf.test(x = lyme.ts)
Augmented Dickey-Fuller Test

data: lyme.ts
Dickey-Fuller = -7.8019, Lag order = 4, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(x = lyme.ts) : p-value smaller than printed p-value
> ndiffs(lyme.ts)
[1] 0
```

Google Trends Stationarity

> adf.test(x = Searches.ts)

```
Augmented Dickey-Fuller Test

data: Searches.ts
Dickey-Fuller = -7.0788, Lag order = 4, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(x = Searches.ts) : p-value smaller than printed p-value > ndiffs(Searches.ts)

[1] 0
```

Fitting Simple Methods

Mean Residuals

Simple Methods

Naive Residuals

Simple Methods

Seasonal Naive Residuals

Simple Methods

Random Walk Residuals

Seasonal Linear Model

Fitting Seasonal Linear Model

Seasonal Linear Model

Seasonal Linear Model Residuals

Ling, Rivera

Fitting AR(1)

ARIMA Models

AR(1) Residuals

ARIMA Models

Fitting AR(2)

AR(2) Residuals

Residuals from ARIMA(2,0,0) with non-zero mean

residuals

Fitting Auto ARIMA

ARIMA Models

Auto ARIMA Residuals

Auto ARIMA Forecast

Simple Linear Model

Data Overlay

Simple Linear Model

Linear Plot

Summary Output

```
Call:
tslm(formula = Reports ~ Trend, data = master.ts)
Residuals:
    Min
            10 Median
                                      Max
                               30
-1.53066 -0.49533 -0.02761 0.54224 1.54912
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.8727 0.5944 -6.516 3.56e-09 ***
Trend
           2.2013 0.1600 13.755 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.7178 on 94 degrees of freedom
Multiple R-squared: 0.6681, Adjusted R-squared: 0.6646
F-statistic: 189.2 on 1 and 94 DF, p-value: < 2.2e-16
```


Simple Linear Model

Linear Residuals

Fitting VAR

Ling, Rivera

VAR Residuals

IRF Trends

Orthogonal Impulse Response from Trend

IRF Reports

Orthogonal Impulse Response from Reports

VAR

FEVD

FEVD for Reports

