Statistique Inférentielle

S. Achchab

École Nationale Supérieure d'Informatique et d'Analyse des Systèmes (ENSIAS)

2007-2008

- Introduction
 - Statistique
 - La démarche statistique
 - Définitions et notations
- Inférence statistique échantillonnage
 - statistique
 - propriétés élémentaires
 - Cas des grands échantillons
 - Cas des petits échantillons
- Estimation : Estimation ponctuelle
 - Introduction
 - Qualité d'un estimateur
 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

- Statistique
- La démarche statistique
- Définitions et notations
- 2 Inférence statistique échantillonnage
 - statistique
 - propriétés élémentaires
 - Cas des grands échantillons
 - Cas des petits échantillons
- Estimation : Estimation ponctuelle
 - Introduction
 - Qualité d'un estimateur
 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

- Statistique
- La démarche statistique
- Définitions et notations
- 2 Inférence statistique échantillonnage
 - statistique
 - propriétés élémentaires
 - Cas des grands échantillons
 - Cas des petits échantillons
- 3 Estimation : Estimation ponctuelle
 - Introduction
 - Qualité d'un estimateur
 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

Statistiques?

Définition

Statistiques?

Définition

• Statistiques : Ensemble de données.

Définition

- Statistiques : Ensemble de données.
- Statistique : Science qui consiste à collecter, analyser et interpréter des données.

Définition

- Statistiques : Ensemble de données.
- Statistique : Science qui consiste à collecter, analyser et interpréter des données.
- Statistique : Fonction de variables aléatoires.

- Statistique
- La démarche statistique
- Définitions et notations
- 2 Inférence statistique échantillonnage
 - statistique
 - propriétés élémentaires
 - Cas des grands échantillons
 - Cas des petits échantillons
- Estimation : Estimation ponctuelle
 - Introduction
 - Qualité d'un estimateur
 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

Introduction Inférence statistique - échantillonnage Estimation Statistique La démarche statistique Définitions et notations

Démarche statistique

Démarche statistique

Comporte deux grands aspects:

Démarche statistique

Démarche statistique

Comporte deux grands aspects :

Aspect descriptif ou exploratoire

Démarche statistique

Démarche statistique

Comporte deux grands aspects :

- Aspect descriptif ou exploratoire
- Aspect inférentiel ou décisionnel

- Statistique
- La démarche statistique
- Définitions et notations
- 2 Inférence statistique échantillonnage
 - statistique
 - propriétés élémentaires
 - Cas des grands échantillons
 - Cas des petits échantillons
- Estimation : Estimation ponctuelle
 - Introduction
 - Qualité d'un estimateur
 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- 4 Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

Définition

Unité statistique (ou individus) :

On appelle unité statistique l'élément de base de l'ensemble que l'on veut étudier.

Exemple

Exemple

 Si l'on s'intéresse à l'ensemble des petites et moyennes entreprises (PME). Une PME est considérée comme unité statistique.

Exemple

- Si l'on s'intéresse à l'ensemble des petites et moyennes entreprises (PME). Une PME est considérée comme unité statistique.
- Si l'on s'intéresse au revenu mensuel des ménages marocains, une famille est considérée comme unité statistique.

Définition

Population:

On appelle population l'ensemble des unités statistiques.

Introduction Inférence statistique - échantillonnage Estimation Statistique La démarche statistique Définitions et notations

Définitions et notations

Exemple

Exemple

 Si l'on s'intéresse aux salariés d'une entreprise, alors l'ensemble des salariés forme la population.

Exemple

- Si l'on s'intéresse aux salariés d'une entreprise, alors l'ensemble des salariés forme la population.
- Si l'on s'intéresse au parc automobile marocain, ce parc est considéré comme population

Définition

On appelle modalité, l'aspect du caractère retenu dans le cadre de l'analyse.

Exemple

Définition

On appelle modalité, l'aspect du caractère retenu dans le cadre de l'analyse.

Exemple

• Pour une personne : la couleur des cheveux, la taille ...

Définition

On appelle modalité, l'aspect du caractère retenu dans le cadre de l'analyse.

Exemple

- Pour une personne : la couleur des cheveux, la taille ...
- Pour un ménage : le revenue mensuel, le nombre d'enfants

Définition

Définition

Caractère qualitatif :

C'est un caractère qui ne peut pas être mesuré, ni être repéré.

Définition

- Caractère qualitatif :
 - C'est un caractère qui ne peut pas être mesuré, ni être repéré.
- Caractère quantitatif :

Le caractère quantitatif peut être repérable ou mesurable, c'est-à-dire susceptible d'être soumise à une mesure donnant une valeur numérique.

Introduction Inférence statistique - échantillonnage Estimation Statistique La démarche statistique Définitions et notations

Définitions et notations

Exemples	_	

Exemples

 Caractère qualitatif: situation familiale: célibataire, marié, veuf...

Exemples

- Caractère qualitatif : situation familiale : célibataire, marié, veuf...
- Caractère quantitatif: Le revenu des ménages est mesurable en Dirhams, Taille d'un individu, poids ...

Introduction Inférence statistique - échantillonnage Estimation Statistique La démarche statistique Définitions et notations

Définitions et notations

Définition

Variable statistique : C'est l'expression numérique ou littéraire retenue dans le cadre de l'analyse. On la note X_i .

Exemples

Définition

Variable statistique : C'est l'expression numérique ou littéraire retenue dans le cadre de l'analyse. On la note X_i .

Exemples

 Taille d'une entreprise : la variable exprimera les différentes tailles d'une entreprise : petite, moyenne, grande

Définition

Variable statistique : C'est l'expression numérique ou littéraire retenue dans le cadre de l'analyse. On la note X_i .

Exemples

- Taille d'une entreprise : la variable exprimera les différentes tailles d'une entreprise : petite, moyenne, grande
- Nombre d'enfants à charge des familles : la variable sera numérique : 0, 1, 2, ..., n enfants à charge.

Définition

Exemples

Dans une classe de 20 étudiants : 7 sont redoublants et 13 ne le sont pas.

$$n_1 = 7$$
 et $n_2 = 13$.

Définition

• **Effectif**: C'est le nombre d'individus pouvant être rattachés à une variable. On le note n_i .

Exemples

Dans une classe de 20 étudiants : 7 sont redoublants et 13 ne le sont pas.

$$n_1 = 7$$
 et $n_2 = 13$.

Définition

- Effectif: C'est le nombre d'individus pouvant être rattachés à une variable. On le note n_i .
- Fréquence : Elle peut être de deux types : soit absolue (c'est l'effectif lui-même n_i), soit relative (rapport d'un effectif à l'effectif total). On note la fréquence relative :

$$f = \frac{n_i}{N}$$
 où $N = \sum_{i=1}^{p} n_i$

Exemples

Dans une classe de 20 étudiants : 7 sont redoublants et 13 ne le sont pas.

$$n_1 = 7$$
 et $n_2 = 13$.

Introduction Inférence statistique - échantillonnage Estimation Statistique La démarche statistique Définitions et notations

Nature d'une variable : Variable quantitative

Introduction Inférence statistique - échantillonnage Estimation Statistique La démarche statistique Définitions et notations

Nature d'une variable : Variable quantitative

Définition

Variable discrète :

Lorsque la variable ne peut prendre qu'une valeur numérique, on parle de variable discrète.

Nature d'une variable : Variable quantitative

Définition

Variable discrète :

Lorsque la variable ne peut prendre qu'une valeur numérique, on parle de variable discrète.

Variable continue :

On parle de variable continue lorsque celle-ci peut prendre plusieurs valeurs dans un intervalle donné. L'intervalle des valeurs possibles est divisé en n petits intervalles.

$$[\alpha, \beta] = [A_0, A_1[\cup [A_1, A_2[\cup ... \cup [A_{n-1}, A_n],$$

où
$$A_0 = \alpha < A_1 < \ldots < A_{n-1} < A_n = \beta$$

Introduction Inférence statistique - échantillonnage Estimation Statistique La démarche statistique Définitions et notations

Nature d'une variable : variable quntitative

Introduction Inférence statistique - échantillonnage Estimation Statistique La démarche statistique Définitions et notations

Nature d'une variable : variable quntitative

Exemples

 Variable discrète : Nombre d'automobiles possédées par les ménages.

Nature d'une variable : variable quntitative

Exemples

- Variable discrète : Nombre d'automobiles possédées par les ménages.
- Variable continue : Durée d'une conversation téléphonique, la variable pourrait être la suivante pour un effectif de 34 personnes :

Temps Ecoulés (en mn) X _i	Effectifs n _i	
[0, 5[10	
[5, 15[9	
[15, 30[15	
Total	34	

Nature d'une variable : Variable qualitative

Définition

Une variable qualitative peut être nominale ou ordinale.

Elle est nominale lorsque l'ensemble des modalités ne possède pas de structure particulière.

Une variable est ordinale lorsque l'ensemble des modalités est ordonné.

Définitions et notations

Exemples			

Définitions et notations

Exemples

 Variable nominale: Dans un sondage, on s'intéresse à l'avis des consommateurs envers un produit: la variable X prend les modalités suivantes: "satisfait"; "non satisfaits "et" ne sait pas ".

Définitions et notations

Exemples

- Variable nominale : Dans un sondage, on s'intéresse à l'avis des consommateurs envers un produit : la variable X prend les modalités suivantes : " satisfait " ; " non satisfaits " et " ne sait pas ".
- Variable ordinale :Si on prend la variable X " État des voitures ", X prend les modalités : " Neuf ", " Moyen " et " Médiocre ". X est une variable ordinale.

Plan

- Introduction
 - Statistique
 - La démarche statistique
 - Définitions et notations
- 2 Inférence statistique échantillonnage
 - statistique
 - propriétés élémentaires
 - Cas des grands échantillons
 - Cas des petits échantillons
- Estimation : Estimation ponctuelle
 - Introduction
 - Qualité d'un estimateur
 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

Plan

1 Introduction

- Statistique
- La démarche statistique
- Définitions et notations
- Inférence statistique échantillonnage
 - statistique
 - propriétés élémentaires
 - Cas des grands échantillons
 - Cas des petits échantillons
- Estimation : Estimation ponctuelle
 - Introduction
 - Qualité d'un estimateur
 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

Statistique

Soit X_i la variable aléatoire égale à la valeur du caractère X pour le i^{eme} individu, on peut définir une deuxième fois un n-échantillon par toute suite (X_1, X_2, \ldots, X_n) de variables aléatoires indépendantes et identiquement distribuées. La théorie de l'échantillonnage se propose d'étudier les propriétés du n-uple (X_1, X_2, \ldots, X_n) et les caractéristiques le résumant.

Définition

Une statistique T est une variable aléatoire fonction de (X_1, X_2, \dots, X_n)

$$T = f(X_1, X_2, \ldots, X_n)$$

Statistique

Définition

La moyenne empirique

Elle est notée \overline{X} et elle est définie par :

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

C'est la moyenne arithmétique des variables aléatoires de l'échantillon.

Définition

La fréquence empirique

Soit un caractère qualitatif à deux modalités A et B que l'on peut coder par 0 et 1. On note p la proportion dans la population des individus qui possèdent la modalité A. Le nombre aléatoire Y_n d'individus de l'échantillon qui ont la modalité A, s'écrit :

$$Y_n = \sum_{i=1}^n X_i,$$

où les v.a X_i sont des v.a de Bernoulli de paramètre p. On pose $F_n = \frac{Y_n}{n}$ appelée fréquence empirique.

Définition

La variance empirique

La variance empirique du caractère X dans l'échantillon est définie par :

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \overline{X}^{2}$$

Par ailleurs, une autre statistique utile en estimation est la variance empirique corrigée S^{*2} définie par :

$$S^{*2} = \frac{n}{n-1}S^2 = \frac{1}{n}\sum_{i=1}^n (X_i - \overline{X})^2$$

Plan

- 1 Introduction
 - Statistique
 - La démarche statistique
 - Définitions et notations
- Inférence statistique échantillonnage
 - statistique
 - propriétés élémentaires
 - Cas des grands échantillons
 - Cas des petits échantillons
- Estimation : Estimation ponctuelle
 - Introduction
 - Qualité d'un estimateur
 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

On note $m_r = E[X^r]$ le moment d'ordre r de la variable aléatoire X, $r = E[(X - m)^r]$ le moment centré correspondant et $\sigma^2 = \mu_2$ la variance de X. Un premier résultat donne l'espérance et la variance de la moyenne empirique \overline{X} .

Proposition

Soit $(X_1, X_2, ..., X_n)$ un n-échantillon de la v.a. X. Si $E[X_2]$ existe, alors pour tout entier n, n > 1, la moyenne empirique \overline{X} vérifie :

$$E(\overline{X})=m$$

$$Var(\overline{X}) = \frac{\sigma^2}{n}$$

Dans le cas particulier d'une fréquence empirique, on obtient :

$$E(F_n)=p$$

$$Var(F_n) = \frac{p(1-p)}{p}$$
;

Proposition

Introduction

Soit X une variable aléatoire telle que $m_4 = E[X^4]$ existe. Alors, pour tout entier n > 1,

$$E(S^2) = \frac{n-1}{n}\sigma^2$$

$$E(S^{*2}) = \sigma^2$$
.

En outre, $Var[S^2]$ et $Var[S^{*2}]$ sont majorées par une expression de la forme $\frac{c}{n}$, où c est une constante dépendant de m_4 .

Plan

- **Introduction**
 - Statistique
 - La démarche statistique
 - Définitions et notations
- Inférence statistique échantillonnage
 - statistique
 - propriétés élémentaires
 - Cas des grands échantillons
 - Cas des petits échantillons
- Estimation : Estimation ponctuelle
 - Introduction
 - Qualité d'un estimateur
 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

Définition

La suite infinie $(Y_n)_n$ de variables aléatoires converge en probabilité vers la v.a. Y si, pour tout $\epsilon > 0$,

$$Y_n \xrightarrow{P} Y \Leftrightarrow \lim_{n} p[|Y_n - Y| < \epsilon] = 1$$

Cas des grands échantillons

Théorème : (Lois des grands nombres)

Soit X une v.a. de moyenne m finie, alors pour toute suite infinie $(X_n)_n$ de v.a. deux à deux indépendantes et de même loi que X, la suite des v.a.

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Converge en probabilité vers m lorsque n tend vers l'infini.

Cas des grands échantillons

Application

Grâce à la loi des grands nombres, on peut montrer que :

$$S_n^2 \xrightarrow{P} \sigma^2$$
,

de même

$$S_n^{*2} \xrightarrow{P} \sigma^2$$
,

Quand *n* tend vers l'infini et à condition que $E(X^2)$ existe.

Théorème central limite

Soit X une v.a. de moment $E[X^2]$ fini, alors pour toute suite infinie $(X_n)_n$ de v.a. indépendantes et de même loi que X, la suite des v.a.

$$U_n=\frac{\overline{X}_n-m}{\sigma/\sqrt{n}},$$

tend en loi vers la loi normale centrée réduite N(0,1) lorsque n tend vers l'infini.

Cas des grands échantillons

Application : Cas d'une fréquence empirique

On prélève indépendamment et avec remise n individus d'une population séparée en deux sous-populations et de proportions p et (1-p) (pièces défectueuses ou correctes dans une production industrielle par exemple). Soit F_n la fréquence empirique. On a

$$E[F_n] = p$$

 $Var[F_n] = \frac{p(1-p)}{n}$.

Et si n est grand,

$$F_n pprox N\left(p, \sqrt{rac{p(1-p)}{n}}
ight).$$

Exemple

Pour un échantillon de 400 pièces issues d'une fabrication où 10% sont défectueuses. On peut s'attendre à trouver dans 95% des cas un pourcentage de pièces défectueuses dans

l'échantillon comprise entre :
$$10\% \pm 1.96\sqrt{\frac{0.1 \times 0.9}{400}}$$
 soit $9.7\% < F < 10.3\%$

Cas des grands échantillons

Corollaire

Soit X une v.a. de moment $E[X^2]$ fini, alors pour toute suite infinie $(X_n)_n$ de v.a indépendantes et de même loi que X, la moyenne empirique \overline{X}_n tend vers la loi normale $N\left(m, \frac{\sigma}{\sqrt{n}}\right)$

Introduction Inférence statistique - échantillonnage Estimation statistique propriétés élémentaires Cas des grands échantillon

Cas des grands échantillons

Exemple

Soit un lot de 500 chocolats. Le poids d'un chocolat est une v.a. telle que m=5g et $\sigma=0.5g$. Quelle est la probabilité qu'une boite de 50 chocolats issus de ce lot ait un poids total supérieur à 260g?

Cas des grands échantillons

Proposition

Si X est une v.a. d'espérance m et d'écart-type σ , si g est une fonction numérique dérivable au voisinage de *m* et vérifiant $g'(m) \neq 0$, si enfin \overline{X}_n désigne la moyenne empirique d'un n-échantillon de X, alors la suite des v.a.

$$g'(m)\frac{g(\overline{X}_n)-g(m)}{\sigma/\sqrt{n}},$$

tend en loi vers la loi normale N(0,1) lorsque n tend vers l'infini.

Plan

- 1 Introduction
 - Statistique
 - La démarche statistique
 - Définitions et notations
- Inférence statistique échantillonnage
 - statistique
 - propriétés élémentaires
 - Cas des grands échantillons
 - Cas des petits échantillons
- Estimation : Estimation ponctuelle
 - Introduction
 - Qualité d'un estimateur
 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

Cas des petits échantillons

Définition

Soit X une v .a. normale d'espérance m et d'écart-type σ . La densité associées est définie pour tout réel x par :

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2\right].$$

De plus, on appelle échantillon normal tout échantillon de la v.a. X. Le résultat suivant sur la stabilité de la loi normale affirme que la somme de v.a. normales indépendantes est encore une v.a. normale.

Cas des petits échantillons

Proposition

Si X_1, X_2, \ldots, X_n sont des v.a. indépendantes de lois respectives $N(m_i, \sigma_i^2)$, alors la variable aléatoire $Y = X_1 + \ldots + X_n$ suit la loi normale d'espérance mathématique $m = m_1 + \ldots + m_n$ et d'écart-type $\sigma = \sqrt{\sigma_1^2 + \ldots + \sigma_n^2}$.

Plan

- Statistique
- La démarche statistique
- Définitions et notations
- 2 Inférence statistique échantillonnage
 - statistique
 - propriétés élémentaires
 - Cas des grands échantillons
 - Cas des petits échantillons
- Estimation : Estimation ponctuelle
 - Introduction
 - Qualité d'un estimateur
 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

Plan

- Statistique
- La démarche statistique
- Définitions et notations
- 2 Inférence statistique échantillonnage
 - statistique
 - propriétés élémentaires
 - Cas des grands échantillons
 - Cas des petits échantillons
- Estimation : Estimation ponctuelle
 - Introduction
 - Qualité d'un estimateur
 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- 4 Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

Estimation

Définition

L'estimation consiste à donner des valeurs approchées aux paramètres d'une population $(m, \sigma, etc.)$ à l'aide d'un échantillon de n observations issues de cette population. On suppose vérifiée l'hypothèse d'échantillonnage aléatoire simple.

Exemple

D'après la loi des grands nombres :

$$\overline{X}_n \stackrel{P}{\longrightarrow} m$$
,

de même

$$S_n^2 \xrightarrow{P} \sigma^2$$
,

et

$$F_n \stackrel{P}{\longrightarrow} p$$
,

Les variables aléatoires \overline{X}_n , S_n^2 et F_n sont appelées alors estimateurs de m, σ^2 et p respectivement.

Plan

- Statistique
- La démarche statistique
- Définitions et notations
- 2 Inférence statistique échantillonnage
 - statistique
 - propriétés élémentaires
 - Cas des grands échantillons
 - Cas des petits échantillons
- Estimation : Estimation ponctuelle
 - Introduction
 - Qualité d'un estimateur
 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- 4 Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

Qualité d'un estimateur

Soit θ le paramètre à estimer et T_n un estimateur, c'est-à-dire une fonction des X_i à valeurs dans un domaine acceptable pour θ

Qualité d'un estimateur

Soit θ le paramètre à estimer et T_n un estimateur, c'est-à-dire une fonction des X_i à valeurs dans un domaine acceptable pour θ

Convergence

Qualité d'un estimateur

Soit θ le paramètre à estimer et T_n un estimateur, c'est-à-dire une fonction des X_i à valeurs dans un domaine acceptable pour θ

- Convergence
- Biais

Qualité d'un estimateur

Soit θ le paramètre à estimer et T_n un estimateur, c'est-à-dire une fonction des X_i à valeurs dans un domaine acceptable pour θ

- Convergence
- Biais
- Précision

Introduction Inférence statistique - échantillonnage Estimation Introduction Qualité d'un estimateur Estimation ponctuelle des

Estimation

Convergence

Il est souhaitable que si $n \longrightarrow \infty$, $T_n \longrightarrow \theta$

Biais

L'erreur d'estimation $T_n - \theta$ qui est une variable aléatoire se décompose de façon élémentaire en :

$$T_n - \theta = \underbrace{T_n - E(T_n)}_{(1)} + \underbrace{E(T_n) - \theta}_{(2)}$$

Biais

L'erreur d'estimation $T_n - \theta$ qui est une variable aléatoire se décompose de façon élémentaire en :

$$T_n - \theta = \underbrace{T_n - E(T_n)}_{(1)} + \underbrace{E(T_n) - \theta}_{(2)}$$

 (1) représente les fluctuations aléatoires de T_n autour de sa valeur moyenne

Biais

L'erreur d'estimation $T_n - \theta$ qui est une variable aléatoire se décompose de facon élémentaire en :

$$T_n - \theta = \underbrace{T_n - E(T_n)}_{(1)} + \underbrace{E(T_n) - \theta}_{(2)}$$

- (1) représente les fluctuations aléatoires de T_n autour de sa valeur moyenne
- (2) biais

Biais

Il est souhaitable d'utiliser des estimateurs sans biais tels que

$$E(T_n) = \theta$$

Exemple

Introduction Inférence statistique - échantillonnage Estimation Introduction Qualité d'un estimateur Estimation ponctuelle des

Estimation

Exemple

• \overline{X}_n est un estimateur sans biais de m

Exemple

- \overline{X}_n est un estimateur sans biais de m
- S_n^2 est un estimateur avec biais de σ^2

Exemple

- \overline{X}_n est un estimateur sans biais de m
- S_n^2 est un estimateur avec biais de σ^2
- $S_n^{*2} = \frac{n}{n-1} S_n^2$ est un estimateur sans biais de σ^2

Précision

On mesure généralement la précision d'un estimateur T_n par l'erreur quadratique moyenne :

$$E[(T_n-\theta)^2].$$

On peut démontrer que :

$$E[(T_n-\theta)^2]=V(T_n)+[E(T_n)-\theta]^2.$$

De deux estimateurs sans biais, le plus précis est donc celui de variance minimale.

Exemple

Montrer que si m est connu, l'estimateur $T_n = \frac{1}{n} \sum_{i=1}^{n} (X_i - m)^2$ est meilleur que S^{*2} .

Définition

L'estimateur T_n est dit asymptotiquement sans biais si :

$$\lim_{n\to+\infty}E(T_n)=0.$$

Exemple
$$S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 \text{ est un estimateur asymptotiquement sans biais de } \sigma^2.$$

Définition

Un estimateur T_n du paramètre θ est dit convergent en movenne quadratique (m.g) s'il vérifie :

$$\lim_{n\to+\infty} E[(T_n-\theta)^2]=0.$$

Rappelons que la convergence en moyenne quadratique entraîne la convergence en probabilité, mais que la réciproque est fausse en général. En pratique, pour montrer le caractère convergent d'un estimateur, on essaie le plus souvent de montrer la convergence en moyenne quadratique.

Proposition

Un estimateur T_n du paramètre θ est convergent en moyenne quadratique si et seulement si, il est asymptotiquement sans biais et si sa variance tend vers 0 lorsque *n* tend vers l'infini.

Preuve

Il suffit de voir :

$$E[(T_n - \theta)^2] = V(T_n) + [E(T_n) - \theta]^2.$$

Exemple

Pour estimer la moyenne théorique $\theta = m$ d'une variable aléatoire X, on peut prendre $T_n = \overline{X}_n$. Cet estimateur est sans biais, si de plus sa variance Var(X) est finie, la relation $Var(\overline{X}_n) = \frac{Var(X)}{n}$ montre que $Var(\overline{X}_n)$ tend vers 0 lorsque ntend vers l'infini. La proposition précédente permet alors d'affirmer que \overline{X}_n est un estimateur convergent en moyenne quadratique de m = E(X).

Le critère de convergence en moyenne quadratique donné dans la proposition précédente suppose le calcul de l'espérance mathématique et la variance de l'estimateur T_n . Comme, en pratique ce calcul n'est pas toujours aisé, on propose une méthode permettant dans certains cas, de démontrer la convergence en probabilité de T vers .

Proposition

Soit $(Y_n)_{n\geq 1}$ une suite infinie de v.a. qui converge en probabilité vers la v.a. Y et si g est une fonction d'une variable réelle, continue sur l'ensemble des valeurs possibles de Y et des Y_n , alors la suite des v.a. $g(Y_n)_{n\geq 1}$ converge en probabilité vers g(Y) lorsque *n* tend vers l'infini, soit :

$$g(Y) = \lim_{n \to +\infty} g(Y).$$

Exemple

L'estimateur S^2 (et aussi S^{*2}) est convergent en moyenne quadratique vers σ^2 . Il est donc convergent en probabilité, or la fonction g définie par $g(u) = \sqrt{u}$ est continue sur \mathbb{R} . D'après la proposition précédente, $S = \sqrt{S^2}$ tend donc en probabilité vers σ lorsque *n* tend vers l'infini. *S* est donc un estimateur convergent du paramètre σ .

Définition			

Définition

• Soit T_n et T'_n deux estimateurs sans biais de θ . T_n et dit plus efficace que T'_n si :

$$Var(T_n) \leq Var(T'_n)$$

Définition

• Soit T_n et T'_n deux estimateurs sans biais de θ . T_n et dit plus efficace que T'_n si :

$$Var(T_n) \leq Var(T'_n)$$

 L'estimateur sans biais et de convergence minimale est appelé estimateur efficace.

Plan

- Statistique
- La démarche statistique
- Définitions et notations
- 2 Inférence statistique échantillonnage
 - statistique
 - propriétés élémentaires
 - Cas des grands échantillons
 - Cas des petits échantillons
- Estimation : Estimation ponctuelle
 - Introduction
 - Qualité d'un estimateur
 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

Estimation de la moyenne

Proposition

Soit X_n une variable aléatoire dont on veut estimer la moyenne (ou espérance) $\mu = E(X)$ à partir d'un n-échantillon (X_1, X_2, \dots, X_n) de X.

On ne suppose rien sur la loi de X.

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n$$
, la moyenne empirique est un estimateur efficace de μ .

Estimation de la moyenne

Preuve

 \overline{X}_n est sans biais de μ , car $E(\overline{X}_n) = \mu$. De plus, à partir de $Var(\overline{X}_n) = \frac{Var(X)}{n} \xrightarrow{n \to +\infty} 0$, on démontre que

 $\forall T$, un autre estimateur de μ , $Var(T_n) > Var(\overline{X}_n)$

Estimation de la variance d'une population Gaussienne

Estimation de la variance d'une population Gaussienne

Proposition

Si μ est connu

$$T_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$$

est un estimateur efficace de σ^2

Estimation de la variance d'une population Gaussienne

Proposition

Si μ est connu

$$T_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$$

est un estimateur efficace de σ^2

Si μ est inconnu

$$T_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

est un estimateur biaisé de σ^2 , mais asymptotiquement sans biais.

Plan

- Statistique
- La démarche statistique
- Définitions et notations
- 2 Inférence statistique échantillonnage
 - statistique
 - propriétés élémentaires
 - Cas des grands échantillons
 - Cas des petits échantillons
- Estimation : Estimation ponctuelle
 - Introduction
 - Qualité d'un estimateur
 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

Méthode du maximum de vraisemblance

Définition

La vraisemblance d'un échantillon $(X_1, X_2, ..., X_n)$ de la v.a. X est la fonction L de n+1 variables définie par :

$$L(x_1,x_2,\ldots,x_n,\theta)=f(x_1,\theta)f(x_2,\theta)\ldots f(x_n,\theta),$$

où x_1, x_2, \ldots, x_n sont des réalisations possibles de X, θ est le paramètre inconnu. On rappelle que $f(x, \theta)$ définie la loi de la v.a. X par la formule :

$$f(x, \theta) = \begin{cases} p[X = x], & \text{si } X \text{ est une v.a. discrète }; \\ f_X(x), & \text{si } X \text{ est une v.a. continue.} \end{cases}$$

Méthode du maximum de vraisemblance

Remarque

Compte tenu de l'indépendance des v.a. X_1, X_2, \ldots, X_n , la vraisemblance $L(x_1, x_2, \ldots, x_n, \theta)$ n'est autre que la probabilité de réalisation de la suite des valeurs x_1, x_2, \ldots, x_n lorsque le paramètre inconnu vaut θ .

Méthode du maximum de vraisemblance

Principe de la méthode

Étant donné un échantillon x_1, x_2, \ldots, x_n à prendre comme estimation de θ la valeur de θ qui rend maximale la vraisemblance $L(x_1, x_2, \ldots, x_n, \theta)$. Il s'agit là d'un problème d'optimisation : on cherche une valeur θ_0 de θ qui maximise la fonction $L(x_1, x_2, \ldots, x_n, \theta)$.

La fonction de vraisemblance étant positive, on peut aussi se borner à rechercher le maximum sur l'ensemble des θ où cette fonction est strictement positive. Sur cet ensemble, il est alors commode et équivalent de chercher le maximum de la fonction :

Principe de la méthode

$$\log L(x_1, x_2, \ldots, x_n, \theta) = \sum_{i=1}^n \log f(x_i, \theta),$$

une condition nécessaire sur θ est que

$$\frac{\partial \log L(x_1, x_2, \dots, x_n, \theta)}{\partial \theta} = 0,$$

pour $\theta = \theta_0$.

Et si elle remplie, une condition suffisante pour θ_0 , alors on :

$$\frac{\partial^2 \log L(x_1, x_2, \dots, x_n, \theta)}{\partial^2 \theta} < 0,$$

pour $\theta = \theta_0$.

Méthode du maximum de vraisemblance

Principe de la méthode

L'estimateur du maximum de vraisemblance étant alors :

$$\widehat{\theta}_n = \theta_0(X_1, X_2, \dots, X_n).$$

Dans ce cas:

$$X \rightsquigarrow N(m, \sigma^2)$$

 $\theta = (\theta_1, \theta_2),$

où $\theta_1 = m$ et $\theta_2 = \sigma^2$. De plus :

$$f(x,\theta) = f(x,m,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp \left[-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2\right].$$

La vraisemblance de l'échantillon s'écrit :

$$L(x_1, x_2, \dots, x_n, \theta) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n \exp\left[-\frac{1}{2}\sum_{i=1}^n \left(\frac{x_i - m}{\sigma}\right)^2\right],$$

et le logarithme népérien est

$$\log L(x_1, x_2, \dots, x_n, \theta) = n \log \left(\frac{1}{\sqrt{2\pi}}\right) - \frac{1}{2} \sum_{i=1}^n \left(\frac{x_i - m}{\sigma}\right)^2 - n \log \sigma.$$

Les conditions nécessaires consistent en l'annulation des dérivées partielles premières par rapport à m et σ^2 . Elles s'écrivent respectivement :

$$\begin{cases} \frac{\partial \log L}{\partial m} = -\frac{1}{\sigma^2} \sum_{i=1}^n (x_i - m) = 0, \\ \frac{\partial^2 \log L}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - m)^2 = 0. \end{cases}$$

De ces deux relations, on conclut

$$\begin{cases} m_0 = \overline{x}, \\ \sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2. \end{cases}$$

Plan

- - Statistique
 - La démarche statistique
- - propriétés élémentaires
- - Introduction

 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

Plan

- - Statistique
 - La démarche statistique
- - propriétés élémentaires
- - Introduction

 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

Définition

Il est souvent plus réaliste et plus intéressant de fournir un renseignement du type $a < \theta < b$ plutôt que d'écrire sèchement $\hat{\theta} = c$.

Fournir un tel intervalle [a, b] s'appelle donner une estimation par intervalle de confiance de θ .

Principe de la méthode

La méthode des intervalles de confiance est la suivante : Soit T un estimateur de θ , dont on connaît la loi de probabilité pour chaque valeur de θ .

Étant donné une valeur θ_0 de θ , on peut déterminer un intervalle de probabilité de niveau $1 - \alpha$ pour T, c'est-à-dire deux bornes t_1 et t_2 telles que

$$p[t_1 < T < t_2] = 1 - \alpha,$$

pour $\theta_0 = \theta$.

Ces bornes dépendent évidemment de θ_0 .

On choisira dans la plus parts des cas un intervalle de probabilité à risque symétrique $\frac{\alpha}{2}$ et $\frac{\alpha}{2}$.

Principe de la méthode

On adopte alors la règle de décision suivante :

Soit t la valeur observée de T:

- si t appartient à l'intervalle $[t_1, t_2]$, on conserve θ_0 comme valeur possible de θ :
- si t n'appartient pas à l'intervalle $[t_1, t_2]$, on élimine θ_0 .

On répète cette opération pour toutes les valeurs de θ .

Plan

- - Statistique
 - La démarche statistique
- - propriétés élémentaires
- - Introduction

 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance

 - Estimation de la moyenne d'une variable de Laplace

L'écart-type σ est connu

 \overline{X}_n est le meilleur estimateur de m et \overline{X}_n suit une loi $N\left(m, \frac{\sigma}{\sqrt{n}}\right)$. L'intervalle de probabilité de \overline{X}_n à 1 – α est :

$$m - u_{\alpha} \frac{\sigma}{\sqrt{n}} < \overline{X}_n < m + u_{\alpha} \frac{\sigma}{\sqrt{n}},$$

d'où l'intervalle de confiance :

$$\overline{x}_n - u_\alpha \frac{\sigma}{\sqrt{n}} < m < \overline{x}_n + u_\alpha \frac{\sigma}{\sqrt{n}}.$$

Si 1 – α = 0.95, on a u_{α} = 1.96

L'écart-type σ est inconnu

On utilise le fait que $T = \frac{\overline{X}_n - m}{S_n^* / \sqrt{n}} = \frac{\overline{X}_n - m}{S_n / \sqrt{n-1}}$ suit une loi de student à n-1 degrés de liberté.

L'intervalle de probabilité pour t est

$$-t_{\alpha}<\frac{\overline{X}_{n}-m}{S}\sqrt{n-1}< t_{\alpha}.$$

D'où l'intervalle de confiance :

$$\overline{x}_n - t_\alpha \frac{S}{\sqrt{n-1}} < m < \overline{x}_n + t_\alpha \frac{S}{\sqrt{n-1}},$$

L'écart-type σ est inconnu

où bien

$$\overline{x}_n - t_\alpha \frac{S^*}{\sqrt{n}} < m < \overline{x}_n + t_\alpha \frac{S^*}{\sqrt{n}}.$$

Le théorème central-limite a pour conséquence que les intervalles précédents sont valables pour estimer la moyenne théorique *m* d'une loi quelconque à condition que *n* soit assez grand.

Plan

- Statistique
- La démarche statistique
- Définitions et notations
- 2 Inférence statistique échantillonnage
 - statistique
 - propriétés élémentaires
 - Cas des grands échantillons
 - Cas des petits échantillons
- Estimation : Estimation ponctuelle
 - Introduction
 - Qualité d'un estimateur
 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

m est connu

 $T = \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2$ est le meilleur estimateur de σ^2 et $\frac{nT}{\sigma^2}$ suit

la loi χ_n^2 (chi deux à n degrés de liberté) comme somme de n carrés de loi N(0,1) indépendantes.

Soient k_1 et k_2 les bornes de l'intervalle de probabilité d'une variable χ_n^2 :

$$\rho\left[k_1 < \frac{nT}{\sigma^2} < k_2\right] = 1 - \alpha$$

L'intervalle de confiance est :

$$\frac{nt}{k_1} < \sigma^2 < \frac{nt}{k_2},$$

où *t* est la valeur prise par *T*.

Estimation par intervalle de confiance de σ^2

m est inconnu

On utilise
$$S^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{X})^2$$
 et on sait que $\frac{nS^2}{\sigma^2}$ suit la loi

$$\chi_{n-1}^{2}$$
.

Soit l₁ et l₂ les bornes de l'intervalle de probabilité;

$$\rho\left[l_1<\frac{nS^2}{\sigma^2}< l_2\right]=1-\alpha,$$

on a alors:

$$\frac{\mathit{ns}^2}{\mathit{l}_1} < \sigma^2 < \frac{\mathit{ns}^2}{\mathit{l}_2},$$

Plan

- Statistique
- La démarche statistique
- Définitions et notations
- 2 Inférence statistique échantillonnage
 - statistique
 - propriétés élémentaires
 - Cas des grands échantillons
 - Cas des petits échantillons
- Estimation : Estimation ponctuelle
 - Introduction
 - Qualité d'un estimateur
 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

Estimation du paramètre d'une loi binomiale

C'est le problème connu sous le nom d'intervalle de confiance pour une proportion p inconnu. Etant donnée une population infinie (ou fini si le tirage s'effectue avec remise) où une proportion p des individus possédant un certain caractère. Il s'agit de trouver un intervalle de confiance pour p à partir de f, proportion trouvée sur un échantillon de taille n.

Estimation du paramètre d'une loi binomiale

On sait que nF suit une loi binomiale B(n, p); et si n est assez grand, on sait que :

$$nF \rightsquigarrow N(np, \sqrt{np(1-p)}),$$

donc que

$$F \rightsquigarrow N\left(p, \sqrt{\frac{p(1-p)}{n}}\right).$$

L'intervalle de probabilité symétrique est :

$$p - u_\alpha \sqrt{\frac{p(1-p)}{n}} < F < p + u_\alpha \sqrt{\frac{p(1-p)}{n}}.$$

Estimation du paramètre d'une loi binomiale

Posons u = k pour simplifier les notations.

Les bornes de l'intervalle de probabilité sont données par :

$$y=p\pm k\sqrt{\frac{p(1-p)}{n}}.$$

Soit

$$(y-p)^2 = \frac{k^2p(1-p)}{n},$$

ou

$$y^{2} + p^{2}\left(1 + \frac{k^{2}}{n}\right) - 2py - \frac{k^{2}}{n}p = 0,$$

Estimation du paramètre d'une loi binomiale

Étant donné une valeur f observée, l'intervalle de confiance s'obtient en résolvant en p l'équation :

$$f^2 + p^2 \left(1 + \frac{k^2}{n}\right) - 2pf - \frac{k^2}{n}p = 0,$$

ou

$$p^2\left(1+\frac{k^2}{n}\right)-p\left(\frac{k^2}{n}+2f\right)+f^2=0$$

Estimation du paramètre d'une loi binomiale

$$\Delta = p\left(\frac{k^2}{n} + 2f\right)^2 - 4\left(1 + \frac{k^2}{n}\right)f$$
$$= \frac{k^4}{n^2} + 4f\frac{k^2}{n} - 4f^2\frac{k^2}{n}.$$

D'où

$$p = \frac{\left(2f + \frac{k^2}{n}\right) \pm \sqrt{\frac{k^4}{n^2} + 4f\frac{k^2}{n} - 4f^2\frac{k^2}{n}}}{2\left(1 + \frac{k^2}{n}\right)}.$$

Estimation du paramètre d'une loi binomiale

Formule encombrante, mais dont on peut trouver une approximation en considérant que n est grand et en faisant un développement limité au premier ordre en $(\frac{1}{n})$; le premier terme

$$\frac{\left(2f+\frac{k^2}{n}\right)}{2\left(1+\frac{k^2}{n}\right)}\approx f+o\left(\frac{1}{n^2}\right),$$

le second terme se réduit en simplifiant par n^2 :

$$\sqrt{\frac{k^2+4fnk^2-4f^2nk^2}{4(n+k^2)^2}}=\sqrt{\frac{k^2+4fnk^2-4f^2nk^2}{4n^2+8k^2n+4k^4}}.$$

Estimation du paramètre d'une loi binomiale

Ce radical est équivalent au suivant (en écrivant que chaque terme est équivalent à celui de plus haut degré en *n*)

$$\sqrt{\frac{fnk^2 - f^2nk^2}{n^2}} = k\sqrt{\frac{f(1-f)}{n}}.$$

Donc, on a si *n* est grand, l'expression approchée suivante pour l'intervalle de confiance :

$$f - u_{\alpha} \sqrt{\frac{f(1-f)}{n}}$$

- - Statistique
 - La démarche statistique
- - propriétés élémentaires
- - Introduction

 - Méthodes du maximum de vraisemblance
- Estimation par intervalle de confiance
 - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

L'estimateur Jack-Knife

Cette technique a été proposé pour diminuer le biais d'un estimateur

Définition

Soit T un estimateur calculé sur un échantillon de taille n. On note T_{-i} l'estimateur calculé sur le (n-1)-échantillon obtenu en enlevant l'observation i. On appelle pseudo-valeur T_i^* :

$$T_i^* = nT - (n-1)T_{-i}$$
.

L'estimateur Jack-knife est alors la moyenne des pseudo-valeurs:

$$T_J = \frac{1}{n} \sum_{i=1}^n T_i^*,$$

L'estimateur Jack-Knife

Définition

ce qui donne

$$T_J = T - (n-1)\frac{1}{n}\sum_{i=1}^n (T_i - T).$$

La variance de l'estimateur de Jack-knife est alors donnée par :

$$S_J^2 = \frac{1}{n} \sum_{i=1}^n \frac{(T_i^* - T_J)^2}{n-1}$$

L'estimateur de Jack-knife

Réduction du biais

Supposons que $E(T) = \theta + \frac{a}{r}$, alors $E(T_J) = \theta$. En effet:

$$E(T_{J}) = E(T) - (n-1)[E(T_{-i}) - E(T)]$$

$$= \theta + \frac{a}{n} - (n-1)[\theta + \frac{a}{n-1} - \theta - \frac{a}{n}]$$

$$= \theta + \frac{a}{n} - a + \frac{n-1}{n}a = \theta$$

L'estimateur de Jack-knife

Exercice:

A titre d'exercice, on peut vérifier que la méthode de Jack-knife appliquée à la variance S^2 donne l'estimateur S^{*2} et que appliquée à \overline{X} , on retrouve \overline{X} . Le calcul de Jack-knife est surtout utile pour des statistiques biaisées dont le biais est très difficile à calculé (coefficient de corrélation par exemple).

Plan

- - Statistique
 - La démarche statistique
- - statistique
 - propriétés élémentaires

 - Cas des petits échantillons
- - Introduction

 - Estimation ponctuelle des paramètres usuels
 - Méthodes du maximum de vraisemblance
- - Principe de le méthode
 - Estimation de la moyenne d'une variable de Laplace

Et c'est facile.

