Раздел 3, задание 1

Оценивание параметров

В этом задании требуется построить оценку по методу максимального правдоподобия или по методу моментов, и применить полученную оценку для предоставляемых выборочных данных. По вопросам построения оценок максимального правдоподобия и оценок по методу моментов см. [1], задания 13–14, с. 84–89, и [2], ч. 2, §3–§4, с. 196–218. Свойства оценок см. в [1], п. 4.

У задания присутствуют несколько вариантов, список см. ниже.

1 Что нужно сделать

Для заданной модели (заданной функции плотности):

- \bullet построить оценку максимального правдоподобия или оценку по методу моментов (в зависимости от варианта) для произвольного объёма выборки n;
- применить полученную оценку к прилагаемым к заданию данным.

2 Содержание отчёта (минимальное):

Вид оценки (для произвольного объёма выборки n) и её значение, вычисленное на прилагаемых к заданию данных. В зависимости от варианта, это включает:

- Для оценки максимального правдоподобия:
 - 1. полученная функция правдоподобия (либо логарифм функции правдоподобия) для выборки объёма n;
 - 2. полученная оценка для параметра;
 - 3. значение оценки, вычисленное на прилагаемых данных.
- Для оценки по методу моментов:
 - 1. система уравнений моментов, исходя из которой находятся оценки по методу моментов;
 - 2. полученная оценка для параметра;
 - 3. значение оценки, вычисленное на прилагаемых данных.

3 Варианты

Во всех вариантах подразумевается, что ξ — это исследуемая случайная величина. Сокращения: МП — максимальное правдоподобие, ММ — метод моментов.

Вариант МLЕ 1

В ходе эксперимента была n раз подброшена монета, и было подсчитано число выпадений орла. Предполагается, что вероятность выпадения орла p у монеты имеет значение $0.4,\ 0.5$ или 0.6. Найдите оценку МП для p.

Вариант МLЕ 2

Пусть дана выборка объёма n из дискретного распределения с параметром θ ($\theta=0$ или $\theta=1$), заданное таблицей вероятностей:

	$\xi = 0$	$\xi = 1$	$\xi = 2$	$\xi = 3$
$\theta = 0$	0.1	0.3	0.3	0.3
$\theta = 1$	0.2	0.4	0.3	0.1

Найдите оценку МП для θ .

Вариант МLЕ 3

Пусть дана выборка объёма n из распределения с функцией плотности

$$f(x|\alpha) = (2\alpha + 1)x^{2\alpha}, \quad 0 \le x \le 1,$$

где $\alpha > -0.5$ — параметр распределения. Найдите оценку МП для α .

Вариант МLЕ 4

Пусть дана выборка объёма n из дискретного распределения с функцией плотности

$$f(x|\theta) = \theta(1-\theta)^{x-1}, \quad x = 1, 2, 3, \dots$$

где $0 < \theta < 1$ — параметр распределения. Найдите оценку МП для θ .

Вариант МLЕ 5

Пусть дана выборка объёма n из дискретного распределения с параметром θ ($0 \le \theta \le 1$), заданного таблицей вероятностей:

Найдите оценку МП для θ .

Вариант МLЕ 6

Пусть дана выборка объёма n из непрерывного распределения с функцией плотности

$$f(x|\sigma) = \frac{1}{2\sigma} \exp\left(-\frac{|x|}{\sigma}\right),$$

где $\sigma>0$ — параметр распределения. Найдите оценку МП для σ .

Вариант МLЕ 7

Пусть дана выборка объёма n из непрерывного распределения с функцией плотности

$$f(x|\lambda) = \lambda^2 x e^{-\lambda x}, \quad 0 \le x < \infty,$$

где $\lambda > 0$ — параметр распределения. Найдите оценку МП для λ .

Вариант МLЕ 8

Пусть дана выборка объёма n из непрерывного распределения с функцией плотности

$$f(x|\theta) = e^{\theta - x}, \quad x \ge \theta,$$

где θ — параметр распределения. Найдите оценку МП для θ .

Вариант МОМЕ 1

Пусть дана выборка объёма n из дискретного распределения с параметром θ ($0 \le \theta \le 1$), заданного таблицей вероятностей:

$$\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \xi & 0 & 1 & 2 & 3 \\\hline \mathbb{P} & 2\theta/3 & \theta/3 & 2(1-\theta)/3 & (1-\theta)/3 \end{array}$$

Найдите оценку по ММ для θ .

Вариант МОМЕ 2

Пусть дана выборка объёма n из непрерывного распределения с функцией плотности

$$f(x|\sigma) = \frac{1}{2\sigma} \exp\left(-\frac{|x|}{\sigma}\right),$$

где $\sigma > 0$ — параметр распределения. Найдите оценку по ММ для σ .

Вариант МОМЕ 3

Пусть дана выборка объёма n из непрерывного распределения с функцией плотности

$$f(x|x_0,\theta) = \theta x_0^{\theta} x^{-\theta-1}, \quad x \ge x_0,$$

где $x_0 > 0$, $\theta > 2$ — параметры распределения. Найдите оценку по ММ для x_0 и θ .

Вариант МОМЕ 4

Пусть дана выборка объёма n из непрерывного распределения с функцией плотности

$$f(x|\theta) = \frac{2}{\theta^2}(\theta - x), \quad 0 \le x \le \theta,$$

где $\theta > 0$ — параметр распределения. Найдите оценку по ММ для θ .

Вариант МОМЕ 5

Пусть дана выборка объёма n из непрерывного распределения с функцией плотности

$$f(t|\alpha) = \frac{1}{2\pi}(1 + \alpha\cos t), \quad 0 \le t \le 2\pi,$$

где $\alpha \in [-1/3, 1/3]$ — параметр распределения. Найдите оценку по ММ для α .

Вариант МОМЕ 6

Пусть дана выборка объёма n из непрерывного распределения с функцией плотности

$$f(t|a,h) = \frac{1}{h}, \quad x \in [a,a+h],$$

где a и h > 0 — параметры распределения. Найдите оценку по ММ для пары a и h.

Вариант МОМЕ 7

Пусть дана выборка объёма n из непрерывного распределения с функцией плотности

$$f(x|\theta) = (\theta + 1)x^{\theta}, \quad 0 < x < 1,$$

где $\theta > -1$ — параметры распределения. Найдите оценку по ММ для θ .

4 Литература:

- 1. Симушкин С.В и др. Теоретические основы выполнения курсовой работы по математической статистике. Казань: 2019. (п. 4; задания 13–14)
- 2. Володин И.Н. Лекции по теории вероятностей и математической статистике. Казань: 2006.