Algèbre 2 Anneaux

Question 1/27

Caractéristique de A

Réponse 1/27

$$n \text{ tel que } \mathbb{Z}/n\mathbb{Z} = \ker(\varphi)$$

$$\varphi : \mathbb{Z} \longrightarrow A$$

$$n \longmapsto n \cdot 1_A$$

Question 2/27

$$a \in A$$
 est diviseur de 0

Réponse 2/27

Il existe $b \in A^{\times}$ tel que ab = 0

Question 3/27

CNS pour $M \triangleleft A$ maximal

Réponse 3/27

A/M est un corps

Question 4/27

$$I + J$$

$$I \lhd A \text{ et } J \lhd A$$

Réponse 4/27

$$I + J = (I \cup J) \lhd A$$

Question 5/27

$$I \cdot J$$
 pour $I + J = A$

Réponse 5/27

$$I \cap J$$

Question 6/27

 $I \triangleleft A$ et $J \triangleleft A$ sont premiers entre eux

Réponse 6/27

$$I + J = A$$

Question 7/27

Corps des fractions

Réponse 7/27

Si A est intègre, le corps des fractions de A est

 $S^{-1}A$ pour $S = A^*$ $S^{-1}A$ est alors un corps

Question 8/27

Conservation de la primalité par morphisme

Réponse 8/27

$$f^{-1}(P)$$
 est premier
Si f est surjectif alors $f(A)$ est premier

Question 9/27

 $a \in A$ est nilpotent

Réponse 9/27

Il existe
$$n \in \mathbb{N}$$
 tel que $a^n = 0$

Question 10/27

Image d'un idéal par un morphisme d'anneaux

Réponse 10/27

$$f(I)$$
 est un idéal si f est surjectif

Question 11/27

S est une partie multiplicative

Réponse 11/27

$$1 \in S$$
$$\forall (a,b) \in S^2, ab \in S$$

Question 12/27

 $I \lhd A$

Réponse 12/27

$$(I,+) \leqslant (A,+) \text{ et } \forall a \in A, \forall i \in I, ai \in I$$

Question 13/27

CNS pour $P \triangleleft A$ premier

Réponse 13/27

A/P est intègre

Question 14/27

$$I \cdot J$$

$$I \lhd A \text{ et } J \lhd A$$

Réponse 14/27

$$I \cdot J = (i \times j, i \in I, j \in J) \triangleleft A$$

Question 15/27

Lemme de factorisation des morphismes d'anneaux

Réponse 15/27

Si $f: A \to B$ est un morphisme d'anneaux alors il existe un unique morphisme d'anneaux $\overline{f}: A/\ker(f) \to B$ tel que $f = \overline{f} \circ \pi$

Question 16/27

$$a \in A$$
 est irréductible

Réponse 16/27

$$a \notin A^{\times}, \ a \neq 0, \ a = bc \Rightarrow a \in A^{\times} \lor c \in A^{\times}$$

Question 17/27

Propriété de $G \leqslant A^{\times}$ fini

Réponse 17/27

Un tel G est cyclique

Question 18/27

PU du A-module A[X]

Réponse 18/27

Pour tout $f: A \to B$ et $b \in B$, il existe un unique $\operatorname{ev}_{f,b} \colon {}_{n} A[X] \longrightarrow B_{n}$

unique
$$\operatorname{ev}_{f,b} \colon A[X] \longrightarrow B$$

$$\sum_{i=1}^{n} a_{i}X^{i} \longmapsto \sum_{i=1}^{n} a_{i}b^{i}$$

i=0

Question 19/27

Théorème chinois

Réponse 19/27

Si $I_1, \dots, I_n \triangleleft A$ sont deux à deux premiers entre eux, alors on a un isomorphisme

d'anneaux $f:A/(I_1 \cdot \dots \cdot I_n) \to \prod_{i=1}^n A/I_i$

Question 20/27

 $p \in A$ est premier

Réponse 20/27

$$p \notin A^{\times}, p \neq 0, p \mid ab \Rightarrow p \mid a \vee p \mid b$$

Question 21/27

$$a \in A$$
 est idempotent

Réponse 21/27

$$a^2 = a$$

Question 22/27

 $a \mid b$

Réponse 22/27

$$\exists c \in A, b = ac$$

Question 23/27

Théorème de localisation

Réponse 23/27

Si S est une partie multiplicative de A, il existe un anneau $S^{-1}A$ et un morphisme $\varphi_S: S^{-1}A \to A$ tel que si B est un anneau et $f:A\to B$ est un morphisme tel que $f(s)\in A^{\times}$ pour tout $s \in S$ alors il existe un unique morphisme $f: S^{-1}A \to B$ tel que $f = f \circ \varphi_S$ et de plus, pour tout $s \in S$, $\varphi_S(s) \in (S^{-1}A)^{\times}$

Question 24/27

$$a \in A$$
 est racine de l'unité

Réponse 24/27

Il existe $n \in \mathbb{N}$ tel que $a^n = 1$

Question 25/27

A est intègre

Réponse 25/27

A ne possède pas de diviseurs de 0

Question 26/27

Lien entre premier et irréductible

Réponse 26/27

Si A est intègre et $x \in A$ est premier alors x est irréductible

Question 27/27

PU du produit d'anneaux

Réponse 27/27

Pour tout anneau B et tout morphisme $f: B \to A_i$ il existe un unique $f: B \to \prod_{i \in I} A_i$ tel que $\pi_i \circ f = f_i$