Identity Mappings in Deep Residual Networks

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Microsoft Research Asia (MSRA)

Highlights

- Novel pre-activation residual structure
- Improved results using 1001-layer ResNet on CIFAR-10 and 200-layer on ImageNet

Results on CIFAR

CIFAR-10	error (%)	CIFA
NIN [13]	8.81	NIN [
DSN [14]	8.22	DSN
FitNet [15]	8.39	FitNe
Highway [7]	7.72	Highv
ELU [12]	6.55	ELU
FitResNet, LSUV [16]	5.84	FitNe
ResNet-110 [1] (1.7M)	6.61	ResNe
ResNet-1202 [1] (19.4M)	7.93	ResNe
ResNet-164 [ours] (1.7M)	5.46	ResNe
ResNet-1001 [ours] (10.2M)	4.92 (4.89±0.14)	ResNo
ResNet-1001 [ours] (10.2M)†	4.62 (4.69+0.20)	

CIFAR-100	error (%)
NIN [13]	35.68
DSN [14]	34.57
FitNet [15]	35.04
Highway [7]	32.39
ELU [12]	24.28
FitNet, LSUV [16]	27.66
ResNet-164 [1] (1.7M)	25.16
ResNet-1001 [1] (10.2M)	27.82
ResNet-164 [ours] (1.7M)	24.33
ResNet-1001 [ours] (10.2M)	22.71 (22.68±0.22)

Results on ImageNet

method	train crop size	test crop size	top-1 (%)	top-5 (%)
ResNet-152, original Residual Unit [1]	224×224	224×224	23.0	6.7
ResNet-152, original Residual Unit [1]	224×224	320×320	21.3	5.5
ResNet-152, proposed Residual Unit	224×224	320×320	21.1	5.5
ResNet-200, original Residual Unit [1]	224×224	320×320	21.8	6.0
ResNet-200, proposed Residual Unit	224×224	320×320	20.7	5.3
Inception v3 [17]	299×299	299×299	21.2	5.6

Importance of Identity Skip Connections

· ResNet with Identity mapping

$$\mathbf{x}_L = \mathbf{x}_l + \sum_{i=l}^{L-1} \mathcal{F}(\mathbf{x}_i, \mathcal{W}_i), \qquad \qquad \frac{\partial \mathcal{E}}{\partial \mathbf{x}_l} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_L} \frac{\partial \mathbf{x}_L}{\partial \mathbf{x}_l} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_L} \left(1 + \frac{\partial}{\partial \mathbf{x}_l} \sum_{i=l}^{L-1} \mathcal{F}(\mathbf{x}_i, \mathcal{W}_i)\right)$$

• What if we break the identity shortcut?

· Various types of shortcut connections

case	rig.	on shortcut	On J	error (76)	remark
original [1]	Fig. 2(a)	1	1	6.61	
constant scaling		0	1	fail	This is a plain net
	Fig. 2(b)	0.5	1	fail	
		0.5	0.5	12.35	
exclusive gating		$1 - g(\mathbf{x})$	$g(\mathbf{x})$	fail	init b_g =0 to -5
	Fig. 2(c)	$1 - g(\mathbf{x})$	$g(\mathbf{x})$	8.70	init b_g =-6
		$1 - g(\mathbf{x})$	$g(\mathbf{x})$	9.81	init $b_g=-7$
shortcut-only gating Fig. 2(d)	$1 - g(\mathbf{x})$	1	12.86	init $b_g=0$	
	Fig. 2(a)	$1 - g(\mathbf{x})$	1	6.91	init $b_g=-6$
1×1 conv shortcut	Fig. 2(e)	1×1 conv	1	12.22	
dropout shortcut	Fig. 2(f)	dropout 0.5	1	fail	

Usage of Activation Function

· Post-activation to pre-activation

· Various usage of activation function

case	Fig.	ResNet-110	ResNet-164
original Residual Unit [1]	Fig. 4(a)	6.61	5.93
BN after addition	Fig. 4(b)	8.17	6.50
ReLU before addition	Fig. 4(c)	7.84	6.14
ReLU-only pre-activation	Fig. 4(d)	6.71	5.91
full pre-activation	Fig. 4(e)	6.37	5.46

Analysis of Pre-activation Structure

Ease of optimization

dataset	network	baseline unit	pre-activation unit
	ResNet-110(1layer)	9.90	8.91
CIFAR-10	ResNet-110	6.61	6.37
	ResNet-164	5.93	5.46
	ResNet-1001	7.61	4.92
CIFAR-100	ResNet-164	25.16	24.33
	ResNet-1001	27.82	22.71

· Reducing overfitting

Code available:

 Deep Residual Networks with 1K Layers: https://github.com/KaimingHe/resnet-1k-layers

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep Residual Learning for Image Recognition". IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016