

Selection of Antibodies in Older People

Tihomir Dodev RUC 14th October 2015

Deborah Dunn-Walters Lab

The Older Population

- In the UK over-65s expected to rise from 16% in 2008 to nearly 30% by 2050
- Older people are less able to respond effectively to vaccination
- Pneumococcal vaccines: reduce the incidence of pneumonia by 10% in old, compared with 40–50% in younger patients

The Efficacy of the Immune System Decreases with Age

- Immunosenescence: Natural deterioration of the immune system occurring with age, resulting in dysregulation and failure to function efficiently:
 - An increased susceptibly to infections
 - > An increased prevalence of inflammatory diseases
 - > An increased morbidity and mortality

The Efficacy of the Immune System Decreases with Age

Aging Cell (2009) 8, pp18-25

B-cell diversity decreases in old age and is correlated with poor health status

Kate L. Gibson, ¹ Yu-Chang Wu, ¹ Yvonne Barnett, ² Orla Duggan, ² Robert Vaughan, ³ Elli Kondeatis, ³ Bengt-Olof Nilsson, ^{4,5} Anders Wikby, ⁶ David Kipling ⁷ and Deborah K. Dunn-Walters ¹

Aging Cell (2011) 10, pp922-930

Vaccination-induced changes in human B-cell repertoire and pneumococcal IgM and IgA antibody at different ages

Alexander Ademokun, ¹ Yu-Chang Wu, ¹ Victoria Martin, ¹ Rajive Mitra, ² Ulrich Sack, ³ Helen Baxendale, ⁴ David Kipling ⁵ and Deborah K. Dunn-Walters ¹

Confirmed loss of diversity in age group (65 to 86)

B Cell Repertoire Shaping

Our Aims

- Identify immunoglobulin genes that are differentially represented in the B cell repertoire of older people
- Define the characteristics of the antibody genes that are overexpressed in B cell development of older people
- Determine whether the age-related B cell immunoglobulin genes are more likely to bind self antigen or be polyspecific

Single Cell Sequencing

Physiological state of Antibody

Matched Heavy and Light Chains Data

High-Throughput Sequencing

Single Cell Sequencing

- 76 years old man
- Sorted single plasmablasts (CD19+ CD38++)

lsotype?	Percentage?
Ig G ?	23%?
IgA?	63%?
IgM?	14%?

150 Matched Heavy and Light Chain Sequences Identified

Single Cell Sequencing Data

Sequence I D	Class	V፼ene	Jæene	Digene	CDR-H35size
006HA08H	lgA2	IGHV1-18	IGHJ4	IGHD2-21	11
006НН02Н	lgA2	IGHV1-18	IGHJ4	IGHD6-6	11
006IA08H	lgA2	IGHV1-18	IGHJ4	IGHD6-6	11
006IE02H	lgA2	IGHV1-18	IGHJ4	IGHD6-6	11
006JE10H	lgA2	IGHV1-18	IGHJ4	IGHD6-6	11
006JG04H	lgA2	IGHV1-18	IGHJ4	IGHD6-6	11
006KB03H	lgA2	IGHV1-18	IGHJ4	IGHD6-6	11
006KC11H	lgA2	IGHV1-18	IGHJ4	IGHD6-6	11
006HD10H	lgA2	IGHV1-46	IGHJ3	IGHD2-21	9
006IB01H	IgA2	IGHV1-46	IGHJ3	IGHD2-21	9
006HD04H	lgA2	IGHV1-3	IGHJ4	IGHD6-13	13
006JD03H	IgA2	IGHV1-3	IGHJ4	IGHD6-25	13
006LA10H	lgA2	IGHV1-3	IGHJ4	IGHD6-13	13
006LD04H	IgA2	IGHV1-3	IGHJ4	IGHD6-13	13
006HB02H	lgA1	IGHV1-3	IGHJ5	IGHD3-10	19
006KD06H	IgA2	IGHV1-46	IGHJ4	IGHD5-12	13
006NF07H	IgA2	IGHV1-46	IGHJ4	IGHD5-12	13
006HD01H	lgA2	IGHV1-3	IGHJ5	IGHD4-17	9
006HE04H	IgA2	IGHV1-3	IGHJ5	IGHD4-17	9
006HE06H	lgA1	IGHV1-3	IGHJ6	IGHD3-22	22
006HB01H	IgG2	IGHV1-3	IGHJ4	IGHD2-2	13
006JC05H	IgG2	IGHV1-3	IGHJ4	IGHD2-2	13
006IC01H	lgG1	IGHV1-3	IGHJ3	IGHD2-21	21
006LA08H	lgG1	IGHV1-18	IGHJ2	IGHD1-7	19
006JC06H	IgM	IGHV1-18	IGHJ6	IGHD4-11	16
006LA06H	IgM	IGHV1-2	IGHJ4	IGHD6-19	17
006ID09H	IgA2	IGHV3-23	IGHJ5	IGHD3-10	20
006JF01H	IgA2	IGHV3-23	IGHJ5	IGHD2-2	20
006JH04H	IgA2	IGHV3-23	IGHJ5	IGHD3-10	20
006LH08H	IgA2	IGHV3-23	IGHJ5	IGHD2-2	20
006JG01H	IgA2	IGHV3-15	IGHJ4	IGHD3-22	14
006KD02H1	IgA2	IGHV3-15	IGHJ4	IGHD4-23	13
006HD11H	lgA1	IGHV3-48	IGHJ6	IGHD2-2	17
006JF05H	lgA1	IGHV3-48	IGHJ6	IGHD2-2	17
006ID11H	IgA2	IGHV3-23	IGHJ4	IGHD2-2	16
006JD09H	lgA1	IGHV3-15	IGHJ4	IGHD4-11	14
006NE03H	IgA2	IGHV3-15	IGHJ4	IGHD4-11	14
006IF03H	IgM	IGHV3-7	IGHJ4	IGHD2-15	12

Heavy Chain: CDR-H3

Pneumococcal and Flu Vaccines

CDR-H3 Length

Quantitative ELISA of 55 Cloned and Expressed Antibodies

Antibody Expression

Autoreactivity/Polyreactivity ELISA

High-Throughput Sequencing

Bone marrow and matching peripheral blood lymphocytes from 12 patients aged 24 to 86

Lymphocyte sorting strategy

Type of B cell	Distinguishing surface markers
preB cell	CD19+ lgk- lgl- lgM+ CD38+
Immature B cell	CD19+ (lgk+ or lgl+) lgM+ CD38+ lgD- CD10+
Mature Transitional B cell	CD19+ (lgk+ or lgl+) lgM+ CD38+ CD27- lgD+ CD10+
Mature Naïve B cell	CD19+ (lgk+ or lgl+) lgM+ CD38+ CD27-lgD+ CD10-

Ig High-Throughput Sequencing Data Generation

Age	Variable	Variable preB Immature		Transi	itional	Naïve		Grand		
Group	Sequences	Clones	Total	Clones	Total	Clones	Total	Clones	Total	Total
Voung	Heavy	10817	35536	3758	7621	1864	3983	3603	6680	53820
Young	Light	-	-	6802	32877	7235	52655	7006	26925	157162
Old	Heavy	6248	15764	5025	12129	2522	5689	5801	9191	42773
Old	Light	-	-	10681	6 7 969	4956	29429	6508	23154	149806

Increased Gene Usage in Old

Cell Type	CDR-H3		Vgene		Dfamily			Dgene				
	Length	p≤0.05	Use in Old	Gene	p≤0.05	Use in Old	Family	p≤0.05	Use in Old	Gene	p≤0.05	Use in Old
Naïve	17	0.022	Increased	IGHV4-39	0.039	Increased						
Naïve	17	0.022	Increased				IGHD2	0.040	Decreased			
Naïve	17	0.022	Increased				IGHD4	0.049	Increased			
Naïve	17	0.022	Increased							IGHD2-15	0.038	Increased
Naïve	17	0.022	Increased							IGHD5-24	0.041	Increased
Naïve	20	0.040	Increased							IGHD2-21	0.043	Increased
Naïve	24	0.019	Increased							IGHD2-15	0.043	Increased
Transitional	17	0.043	Increased				IGHD1	0.042	Decreased			
Transitional	17	0.043	Increased				IGHD3	0.042	Increased			
Transitional	17	0.043	Increased							IGHD3-3	0.032	Increased
Transitional	20	0.013	Increased								·	
Transitional	21	0.044	Increased							IGHD4-17	0.041	Increased

Quantitative ELISA

Antibody Expression

Autoreactivity/Polyreactivity ELISA

Autoreactivity/Polyreactivity ELISA

Polyreactivity ELISA

Construct 1D		Heavy 	LightI Chain			
Construction	Vgene	Dgene	Jfamily	CDR-H3	Vgene	J family
GF1	IGHV3-30	IGHD2-15	IGHJ2	17	IGKV1-37	IGKJ5
GF12_GF1K	IGHV3-30	IGHD2-15	IGHJ2	21	IGKV1-37	IGKJ5
GF13_GF1K	IGHV3-30	IGHD2-15	IGHJ2	16	IGKV1-37	IGKJ5

	1.5 =		
OD (492nm)	1.0 =		
	0.5 =		
	0.0	(*)	□器中国□ □器中国□

Autoreactivity/Polyreactivity ELISA

Polyreactivity ELISA

Construct 1D		Heavy 	LightChain			
Constructied	Vgene	Dgene	Jfamily	CDR-H3	Vgene	Jfamily
GF7	IGHV3-33	IGHD3-3	IGHJ6	17	IGKV1D-12	IGKJ2
GF16_GF7K	IGHV3-33	IGHD3-3	IGHJ6	28	IGKV1D-12	IGKJ2
GF17_GF7K	IGHV3-33	IGHD3-3	IGHJ6	22	IGKV1D-12	IGKJ2

^ L						
(492nm)	1.0=					
ם ס		ĺ Ďø.	_自向			-
	0.5	800000000000000000000000000000000000000				
	0.0				<u> 18</u> q	圓
		ĢŔ	۱ د د د د د د د د د د د د د د د د د د د	H.GF14	JA GETH	

Conclusions

- Isolated low autoreactive antibodies using matched heavy and light chains from the single sorted plasmablasts
- Identified polyspecific antibodies using statistical analysis of the HTS data from old vs young cell populations
- Our data suggest the variable heavy chain region contributes most to the antibody binding characteristics

Future Work

- Identify more age-related B cell Ig genes
- Expand library of cloned antibodies identified from the HTS data (using what we know of pairing from our library to match the most likely heavy/light chains)
- Testing the expressed antibodies for binding specificity in ELISAs: Including DNA, LPS, Insulin, Hep2 etc
- Liaise with collaborators in modelling structure of cloned polyreactive antibodies

Acknowledgements

Deborah Dunn-Walters

Victoria Martin

Joselli Silva

Catherine Townsend

Franca Fraternali

Anthonius Coolen

Grace Lu

Alexander Mozeika

David Kipling

Yuan Zhao

Romeeza Tahir

Manu Shankar-Hari

The DUNHILL MEDICAL TRUST