ADT Set - Domain

Domain of the ADT Set:

 $S = \{s | s \text{ is a set with elements of the type TElem} \}$

ADT Set - Interface I

- init (s)
 - descr: creates a new empty set
 - pre: true
 - **post:** $s \in \mathcal{S}$, s is an empty set.

ADT Set - Interface II

- add(s, e)
 - descr: adds a new element into the set if it is not already in the set
 - pre: $s \in \mathcal{S}$, $e \in TElem$
 - **post**: $s' \in S$, $s' = s \cup \{e\}$ (e is added only if it is not in s yet. If s contains the element e already, no change is made). $add \leftarrow true$ if e was added to the set, false otherwise.

ADT Set - Interface III

- remove(s, e)
 - descr: removes an element from the set.
 - pre: $s \in \mathcal{S}$, $e \in TElem$
 - **post:** $s \in \mathcal{S}$, $s' = s \setminus \{e\}$ (if e is not in s, s is not changed). remove \leftarrow true, if e was removed, false otherwise

ADT Set - Interface IV

- search(s, e)
 - descr: verifies if an element is in the set.
 - pre: $s \in \mathcal{S}$, $e \in TElem$
 - post:

$$search \leftarrow \begin{cases} True, & \text{if } e \in s \\ False, & \text{otherwise} \end{cases}$$

ADT Set - Interface V

- size(s)
 - descr: returns the number of elements from a set
 - pre: $s \in \mathcal{S}$
 - **post:** size ← the number of elements from *s*

ADT Set - Interface VI

- isEmpty(s)
 - descr: verifies if the set is empty
 - pre: $s \in \mathcal{S}$
 - post:

$$isEmpty \leftarrow \begin{cases} True, & \text{if } s \text{ has no elements} \\ False, & \text{otherwise} \end{cases}$$

ADT Set - Interface VII

- iterator(s, it)
 - descr: returns an iterator for a set
 - pre: $s \in \mathcal{S}$
 - **post:** $it \in \mathcal{I}$, it is an iterator over the set s

ADT Set - Interface VIII

- destroy (s)
 - descr: destroys a set
 - pre: $s \in S$
 - **post:**the set *s* was destroyed.

ADT Set - Interface IX

- Other possible operations (characteristic for sets from mathematics):
 - reunion of two sets
 - intersection of two sets
 - difference of two sets (elements that are present in the first set, but not in the second one)