	Ulech
Name:	
Roll No.:	To Design (of Exemple) and Explana
Invigilator's Signature :	

CS/B.TECH/ECE/PWE/NEW/SEM-4/PH-401/2013 2013

PHYSICS-II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

- i) If the constraint relations can be made independent of velocity, then the constraints are called
 - a) Sclerenomic
- b) Bilateral
- c) Holonomic
- d) Conservative.
- ii) If a system had f degrees of freedom, then the number of Lagrange's equation for the system is
 - a) 3

b) *f*

c) 2f

d) f/2.

4105 Turn over

CS/B.TECH/ECE/PWE/NEW/SEM-4/PH-401/2013

- vi) Ampere's circuital law is applicable when the current density is
 - a) constant over space
 - time independent b)
 - solenoidal c)
 - irrotational. d)
- The waves representing a free particle in three dimensions are
 - standing waves a)
- b) progressive waves
- c) transverse waves
- d) polarized waves.

- viii) In an electromagnetic wave in free space, the electric and magnetic fields are
 - a) parallel to each other
 - b) perpendicular to each other
 - c) inclined at an angle
 - d) inclined at an obtuse angle.
- ix) A moving charge produces
 - a) electric field only
 - b) magnetic field only
 - c) both of them
 - d) static electric field only.
- x) When the Hamiltonian operator operates on a wave function ψ (r), then the corresponding eigenvalue is
 - a) potential energy of the system
 - b) kinetic energy of the system
 - c) total energy of the system
 - d) none of these.
- xi) The value of probability of an event cannot be
 - a) 1

b) negative

c) zero

d) positive.

xii) If a wave packet is described by

 $\varphi (x) = A \exp \left(-\frac{x^2}{2\sigma^2}\right)$ then the normalization

constant is

a) 2σ

b) σ

c) $\frac{\pi c}{2}$

d) none of these.

xiii) He ³ and muon are

- a) Fermions
- b) Bosons
- c) Fermions & Bosons respectively
- d) classical particles.

xiv) The spin angular momentum of photon is

a) h

b) h/8

c) 0

d) 2 h.

xv) The maximum energy that can be occupied by an electron at T = 0 K is known as

- a) band gap energy
- b) Fermi energy
- c) radiation energy
- d) potential energy.

GROUP - B

(Short Answer Type Questions)

 $3 \times 5 = 15$

- 2. a) If the vectors A and B be irrotational, then show that the vector $A \times B$ is solenoidal.
 - b) Prove that

$$i \times (j \times k) = j \times (k \times i) = k \times (i \times j) = 0.$$

 $2\frac{1}{2} + 2\frac{1}{2}$

3. a) Write down Laplace's equation. Show that the potential function $x^2 - y^2 + z$ satisfies Laplace's equation.

1 + 2

- b) Show that when a dielectric is placed in an electric field, the field within the dielectric becomes weaker than the original field.
- 4. a) Calculate the magnetic field along the axis of the current carrying circular coil.
 - b) What is the value of magnetic field at the centre of the coil?
- 5. a) What do you mean by commutator? Prove that

$$\left[\begin{array}{c} x, P_x \end{array}\right] = i\hbar . \qquad 1+2$$

- b) Write the basic postulates of wave mechanics.
- 6. a) Show that the average energy of an electron in a metal at 0 K is given by 3/5 E_F , where E_F is the Fermi energy.
 - b) Show that both *FD* and *BE* statistics approach *MB* statistics at a certain limit. When does that happen? 2

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) If in a region of space electric field is always in the *x*-direction then prove that
 - i) the potential is independent of y and z coordinates and
 - ii) if the field is constant, there is no free charge in that region. 2 + 1
 - b) Write down the differential form of Gauss' law. Suppose that electric field in some region is found to be $\vec{E} = \alpha r^3 \hat{r}$ in spherical coordinates (α is a constant). Find the electric charge density. 1 + 3
 - c) A very long cylindrical object carries charge distribution proportional to the distance from the axis (r). If the cylinder is of radius a, then find the electric field both at r > a and r < a, by the application of Gauss' law in electrostatics.
 - d) What is Electric Displacement vector? Establish the relation $\overrightarrow{D} = \varepsilon_0 \overrightarrow{E} + \overrightarrow{P}$ where symbols have their usual meanings. 1+3
- 8. a) State Biot-Savart's law and obtain the magnetic field induction due to a wire carrying current I at a point P situated at a distance R from it. 2+3
 - b) Find the magnetic field at a point (1, 1, 1) if vector potential at that position is

$$\vec{A} = (10x^2 + y^2 - z^2) \hat{j}.$$

c) Obtain the magnetic field induction \vec{B} at a point on the axis of a current circular conductor (loop) with n turns.

A Annual of Exercising and Exercision 2

- c) A conducting wire in the shape of an equilateral triangle of each side *a* carries a current *I*. Calculate the magnetic field at its centroid.
- d) If ϕ is a scalar potential associated with the electric field \overrightarrow{E} and \overrightarrow{A} is the vector potential associated with the magnetic induction \overrightarrow{B} , show that they must satisfy the equation $\nabla^2 \phi + \frac{\partial}{\partial t} (\overrightarrow{\nabla} \cdot \overrightarrow{A}) = -\frac{\rho}{\epsilon_0}$.
- e) A long solenoid of 40 cm length has 300 turns. If the solenoid carries a current of 3.5 A, find the magnetic field at one end of the solenoid.
- 10. a) Calculate total number of particles in a Fermionic gas in terms of the Fermi level at absolute zero temperature. 4
 - b) Apply *B-E* statistics to a photon and deduce Planck's law of spectral energy density of black body radiation. 3
 - c) Define Microstates and Macrostates with suitable examples.
 - d) A box contains 5 red balls and 3 white balls. The balls except their colours, are identical. What is the probability that, on two independent draws, 1 ball is red and 1 ball is white?
 - e) What do you mean by Macro-canonical and Micro-canonical ensemble?

CS/B.TECH/ECE/PWE/NEW/SEM-4/PH-401/2013

- 11. a) If a system has two eigenstates ψ_1 and ψ_2 with eigenvalues E_1 and E_2 , under what condition will linear combination $\left(\psi = a \psi_1 + b \psi_2\right)$ be also an eigenstate?
 - b) If the wave function ψ (x) of quantum mechanical particle is given by

$$\psi(x) = a \sin\left(\frac{\pi x}{L}\right) \text{ for } 0 \le x \le L$$

= 0, otherwise,

then determine the value of a. Also determine the value of x where probability of finding the particle is maximum.

- c) Write down Schrödinger equation for one-dimensional motion of a free particle in a one-dimensional potential box. Find its eigenfunction and eigenenergy.
- d) Prove that the first excited energy state of a free particle in a cubical box has three fold degeneracy. 3