Interpretable Machine Learning

Explainable Boosting Machines (EBM) Interpretable Models 1

Learning goals

- Understand link between GAM and EBM
- Learn univariate EBMs
 GAM + boosting + shallow bagged trees
- Extend to GA2M: GAMs with selected pairwise interactions
- Detect interactions efficiently using FAST algorithm

RECAP: SPLIT SELECTION DECISION TREE

• **Impurity** (**Regression**): Variance of target *Y* in a node:

$$Var(Y) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \bar{y})^2 = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)})^2 - \bar{y}^2$$

• Sum of squared errors (SSE) = residual sum of squares (RSS):

RSS =
$$n \cdot \text{Var}(Y) = \sum_{i=1}^{n} (y^{(i)} - \bar{y})^2 = \dots = \sum_{i=1}^{n} (y^{(i)})^2 - \frac{1}{n} \left(\sum_{i=1}^{n} y^{(i)}\right)^2$$

Hence:
$$RSS = SS_n - \frac{S_n^2}{n}$$
 with $S_n = \sum_{i=1}^n y^{(i)}$, $SS_n = \sum_{i=1}^n (y^{(i)})^2$

- Split criterion:
 - Minimize post-split RSS: $RSS_{split} = RSS_L + RSS_R$
 - Maximize reduction in RSS: $\triangle RSS = RSS_{parent} (RSS_L + RSS_R)$

NAIVE SPLIT SELECTION: EXPLICIT COMPUT.

- For a given feature X_j , sort the pairs $(x_i^{(i)}, y^{(i)})$ by increasing $x_i^{(i)}$.
- For each of the n-1 potential split points at $s_k = \frac{1}{2}(x_j^{(k)} + x_j^{(k+1)})$:
 - Define partitions: $\mathcal{I}_L = \{i : x^{(i)} \leq s_k\}, \quad \mathcal{I}_R = \{i : x^{(i)} > s_k\}$
 - Compute group means and counts after splitting at s_k :

$$ar{y}_L = rac{1}{N_L} \sum_{i \in \mathcal{I}_L} y^{(i)}, \quad ar{y}_R = rac{1}{N_R} \sum_{i \in \mathcal{I}_R} y^{(i)}, \text{ with } N_L = |\mathcal{I}_L|, \quad N_R = |\mathcal{I}_R|$$

Compute RSS after splitting at s_k:

$$\text{RSS}_{\text{split}}(s_k) = \text{RSS}_L(s_k) + \text{RSS}_R(s_k) = \sum_{i \in \mathcal{I}_L} (y^{(i)} - \bar{y}_L)^2 + \sum_{i \in \mathcal{I}_R} (y^{(i)} - \bar{y}_R)^2$$

- Select split point s_k that minimizes $RSS_{split}(s_k)$
- Compute cost: $O(n^2)$ per feat. (recompute mean & RSS at each split)

EFFICIENT SPLIT SELECTION

- **Setup:** For feature X_j , sort the data $(x_i^{(i)}, y^{(i)})_{i=1}^n$ by increasing $x_i^{(i)}$
- Define group statistics (cumulative sums) after split at s_k :

$$S_L = \sum_{i \in \mathcal{I}_L} y^{(i)}, \qquad SS_L = \sum_{i \in \mathcal{I}_L} (y^{(i)})^2, \qquad N_L = |\mathcal{I}_L|$$

 $S_R = S_n - S_L, \qquad SS_R = SS_n - SS_L, \qquad N_R = n - N_L$

$$\mathsf{RSS}_{\mathit{L}}(s_{\mathit{k}}) = \mathit{SS}_{\mathit{L}} - rac{S_{\mathit{L}}^2}{N_{\mathit{L}}}, \mathsf{RSS}_{\mathit{R}}(s_{\mathit{k}}) = \mathit{SS}_{\mathit{R}} - rac{S_{\mathit{R}}^2}{N_{\mathit{R}}}, \mathsf{RSS}_{\mathsf{parent}} = \mathit{SS}_{\mathit{L}} + \mathit{SS}_{\mathit{R}} - rac{S_{\mathit{n}}^2}{n}$$

EFFICIENT SPLIT SELECTION

- **Setup:** For feature X_j , sort the data $(x_i^{(i)}, y^{(i)})_{i=1}^n$ by increasing $x_i^{(i)}$
- Define group statistics (cumulative sums) after split at s_k :

$$S_L = \sum_{i \in \mathcal{I}_L} y^{(i)}, \qquad SS_L = \sum_{i \in \mathcal{I}_L} (y^{(i)})^2, \qquad N_L = |\mathcal{I}_L|$$

 $S_R = S_n - S_L, \qquad SS_R = SS_n - SS_L, \qquad N_R = n - N_L$

$$\mathsf{RSS}_{\mathit{L}}(s_{\mathit{k}}) = \mathit{SS}_{\mathit{L}} - rac{S_{\mathit{L}}^2}{N_{\mathit{L}}}, \mathsf{RSS}_{\mathit{R}}(s_{\mathit{k}}) = \mathit{SS}_{\mathit{R}} - rac{S_{\mathit{R}}^2}{N_{\mathit{R}}}, \mathsf{RSS}_{\mathsf{parent}} = \mathit{SS}_{\mathit{L}} + \mathit{SS}_{\mathit{R}} - rac{S_{\mathit{n}}^2}{n}$$

• Reduction in RSS:

$$\Delta ext{RSS}(s_k) = ext{RSS}_{ ext{parent}} - (ext{RSS}_L + ext{RSS}_R) = rac{S_L^2}{N_l} + rac{S_R^2}{N_R} - rac{S_n^2}{n}$$

All squared-target terms SS_L, SS_R cancel. Only first-order sums needed.

- Search: Choose best split $s_k^{\star} = \arg\max_{s_k} \Delta \mathsf{RSS}(s_k)$
- Complexity per feature: $O(n \log n)$ (sorting) + O(n) (cumulative sums and scan)

EFFICIENT SPLIT SELECTION - EXAMPLE

$$y^{(1)} = 1.2, \ y^{(2)} = 2.0, \ y^{(3)} = 1.5, \ y^{(4)} = 3.2, \ y^{(5)} = 2.8, \ y^{(6)} = 4.1$$
 $(x_j^{(1)} \le \cdots \le x_j^{(6)})$

- G(k) omits $-S_n^2/n$ (identical for all splits \Rightarrow does not affect arg max).
- Only cumulative sums S_k are required, no SS_k is stored or updated.
- $\mathcal{O}(1)$ per split $\Rightarrow \mathcal{O}(n)$ per feature.

EXPLAINABLE BOOSTING MACHINES (EBM)

Recall GAM:

$$g(\mathbb{E}[y \mid \mathbf{x}]) = \theta_0 + f_1(x_1) + f_2(x_2) + \ldots + f_p(x_p),$$

- One shape function f_j per feature x_j
 → Feature-level interpretability
- Captures non-linear univariate effects
 Better performance / more flexible than GLMs

EBM idea: GAMs train with gradient boosting over shallow bagged trees

- **GAMs** feature-wise interpretability via separate shape functions $f_j(x_j)$ \rightsquigarrow Potentially include pairwise interactions manually
- Gradient Boosting incrementally fits residuals to improve predictive performance while retaining additivity
- Shallow Bagged Trees low-depth trees (2–4 leaves) reduce variance and create interpretable shape functions

EBM - TWO-STAGE MODEL CONSTRUCTION

- Stage 1: Fit Main Effects (Univariate Terms) → Lou 2012
 - Train EBM using only feature-wise shape functions $f_i(x_i)$
 - Freeze the univariate model after convergence
- Stage 2: Add Selected Pairwise Interactions ► Lou 2013

 - Apply **FAST** to rank all $O(p^2)$ feat pairs by potential reduction in RSS
 - Select top K pairwise interactions and store them in K
 - Use boosting to fit pairwise interaction terms $f_{ii}(x_i, x_i)$ on residuals
 - Final model: $\hat{f}() = \sum_{i=1}^{p} f_i(x_i) + \sum_{(i,j) \in \mathcal{K}} f_{ij}(x_i, x_j)$

UNIVARIATE EBM - INITIALIZATION

• Set all shape functions to zero:

$$f_j^{[0]}(x_j) = 0$$
 for all $j = 1, ..., p$

Compute initial model prediction:

$$\hat{y}^{[0]} = \sum_{j=1}^{p} f_j^{[0]}(x_j) = 0$$

• Compute initial pseudo-residuals (e.g., for squared loss):

$$\tilde{r}^{[0]} = -\frac{\partial L}{\partial \hat{y}} = y - \hat{y}^{[0]} = y$$

UNIVARIATE EBM FIRST FEATURE UPDATE

- Fit shallow bagged tree $T_1^{[1]}$ (2–4 leaves) to training data $\left\{\left(x_1, \tilde{r}^{[0]}\right)^{(i)}\right\}_{i=1}^n$ \rightarrow Use only feature x_1 as input and $\tilde{r}^{[0]}$ as target
- Update first shape function with learning rate η :

$$f_1^{[1]}(x_1) = f_1^{[0]}(x_1) + \eta \cdot T_1^{[1]}(x_1)$$

• Update prediction:

$$\hat{y}^{[1]} = \sum_{i=1}^{p} f_{j}^{[1]}(x_{j})$$

• Recompute pseudo-residuals:

$$\tilde{r}^{[1]} = -\frac{\partial L}{\partial \hat{\mathbf{y}}} = \mathbf{y} - \hat{\mathbf{y}}^{[1]}$$

UNIVARIATE EBM CYCLE THROUGH FEATURES

- 1st boosting iteration:
 Cycle through each feature j = 2,...,p:
 - Fit shallow bagged tree $T_j^{[1]}$ using feature x_j and previous residual $\tilde{r}^{[j-1]}$
 - Update f_j : $f_j^{[1]}(x_j) = f_j^{[0]}(x_j) + \eta \cdot T_j^{[1]}(x_j)$
 - Recompute \hat{y} and residuals: $\tilde{r}^{[j]} = y \hat{y}^{[j]}$
- After one full pass over features, we complete one boosting iteration

UNIVARIATE EBM ITERATE BOOSTING PROCESS

Iteration	$feat_1$		$feat_2$		$feat_3$		$feat_p$	
1	*	$\stackrel{res.}{\longrightarrow}$	\Rightarrow	$\stackrel{res.}{\longrightarrow}$	<u>res.</u> →	$\stackrel{res.}{\longrightarrow}$	*	res.
2	*	res.	*	res.	res.	res.	*	res.
3	*	res.	*	res.	res.	res.	*	res.
: M	*	_res.	*	_res.	$ \stackrel{\text{res.}}{\longrightarrow} $	res,	*	res.

- Repeat feature-wise updates for M boosting iterations (e.g., M = 10000)
- In each boosting iteration:
 - Cycle over all features j = 1, ..., p individually
 - Update only one f_i at a time using residuals from previous state
- ullet Use small learning rate η to ensure smooth updates and order-invariance

UNIVARIATE EBM - PREDICTION & INTERPRETABILITY

• Final model consists of *M* shallow trees per feature:

EBM Model =
$$\sum_{j=1}^{p} \sum_{m=1}^{M} \eta \cdot T_{j}^{[m]}(x_{j})$$

$$\hat{f}_j(x_j) = \sum_{m=1}^M \eta \cdot T_j^{[m]}(x_j)$$

- Plot $\hat{f}_i(x_i)$ vs. $x_i \rightsquigarrow$ Shows univariate marginal effect of feature j
- One plot per feature → Model is fully explainable via *p* additive plots

EBM WITH PAIRWISE INTERACTIONS

Generalized Additive Models plus Interactions (GA2M):

$$g(\mathbb{E}[y\mid]) = \theta_0 + \sum_{j=1}^p f_j(x_j) + \sum_{i < j} f_{ij}(x_i, x_j)$$

- Motivation: Univariate EBM does not model interactions
- Challenge: $O(p^2)$ potential pairwise interactions \rightsquigarrow often infeasible
- Solution FAST algorithm ► Lou 2013 :
 - Efficiently estimates importance of all feature pairs
 - Ranks pairs by reduction in residual sum of squares (RSS)
 - Avoids fitting EBM with each pairwise interaction
- Result:

Add only top-ranked interactions f_{ij} via asecond-stage boosting step \rightsquigarrow Performed after the univariate EBM has been trained

• Interpretability preserved: Each $f_{ij}(x_i, x_i)$ visualized as a 2D heatmap

FAST: PAIR-WISE INTERACTION STRENGTH

We evaluate a 4-leaf, axis-aligned tree T_{ij} over the 2D feature projection (x_i, x_j) .

tree T_{ii} with 4 leaves

Discretize: Map each axis to $b \le 256$ ordered bins (quantile or equal-width).

FAST: PAIR-WISE INTERACTION STRENGTH

We evaluate a 4-leaf, axis-aligned tree T_{ii} over the 2D feature projection $(x_i,x_i).$

$$\Rightarrow \begin{array}{c|c} \hat{y}_A & \hat{y}_B \\ \hat{y}_C & \hat{y}_D \end{array}$$

2 Iterate over b^2 candidate cuts (c_i, c_i) .

$$S_2$$
 $\hat{y}_r = r$

Fit: For each cut, assign a constant \Rightarrow RSS₂ $\hat{y}_r = \text{mean}(y \in r) \text{ to } r \in \{A, B, C, D\}.$

Compute RSS summed over all regions:

$$\vdots \qquad \mathsf{RSS}(c_i, c_j) = \sum_r \sum_{(x,y) \in r} (y - \hat{y}_r)^2$$

$$\begin{array}{|c|c|}
\hline
A & B \\
\hline
C & D
\end{array}
\Rightarrow
\begin{array}{|c|c|}
\hline
J$$

$$\Rightarrow$$
 RSS $_{b^2}$

$$=\sum_{r}\left(\sum_{(x,y)\in r}y^2-\frac{1}{n_r}\left(\sum_{(x,y)\in r}y\right)^2\right)$$

- **Select**: Keep the split with minimal RSS.
 - → largest RSS drop = strongest interaction.

FAST: USE RSS DROP

To evaluate a cut pair (c_i, c_j) , we use precomputed per-region statistics:

• For each region $r \in \{A, B, C, D\}$, compute:

$$S_r = \sum_{(x,y) \in r} y, \quad n_r = |\{(x,y) \in r\}|, \quad \hat{y}_r = S_r/n_r$$

• Plug into RSS summed over all regions:

$$RSS(c_i, c_j) = \sum_r \left(\sum_{(x,y) \in r} y^2 - \frac{1}{n_r} \left(\sum_{(x,y) \in r} y \right)^2 \right) = \sum_r \sum_{(x,y) \in r} y^2 + \sum_r \frac{S_r^2}{n_r}$$

• For a candidate cut, compute **RSS drop**:

$$\Delta RSS(c_i, c_j) = RSS_{parent} - RSS(c_i, c_j)$$

$$= \left(\sum_{i=1}^n \left(y^{(i)}\right)^2 - \frac{S_n^2}{n}\right) - \sum_r \sum_{(x,y)\in r} y^2 + \sum_r \frac{S_r^2}{n_r}$$

FAST: USE RSS DROP

Because $\sum_{i=1}^{n} (y^{(i)})^2 = \sum_{r} \sum_{(x,y) \in r} y^2$, all squared target terms cancel:

$$\Delta RSS(c_i, c_j) = \sum_r \frac{S_r^2}{n_r} - \frac{S_n^2}{n}$$

The parent term S_n^2/n is constant across all cuts. Hence

Why is this efficient?

- Precompute cummulative sums of y and counts across the binned grid
- Enables fast lookup of region statistics S_r , n_r for any cut
- No additional data scan or recomputation needed across the b² candidate cuts
- For the best cut: Compare and select the largest $\Delta RSS(c_i, c_i)$.

EBM - BOOSTING PAIRWISE INTERACTIONS

Iteration	$egin{aligned} ext{Pair}_1 \ f_{ij} \end{aligned}$		f_{ab}		$egin{aligned} ext{Pair}_3 \ f_{cd} \end{aligned}$			$\Pr_{f_{pq}}$	
1		$\xrightarrow{\text{res.}}$	9 0000	res.	9 8000	$\xrightarrow{\text{res.}}$	$\xrightarrow{\text{res.}}$	9000 0000	res.
2	9 0000	res.	9 8 8 8 8	res.	9 8000	res.	$\xrightarrow{\text{res.}}$	300b	res.
: M	, 5000 , 5000	res.	9000 0000	$\xrightarrow{res.}$	9000	res.	res.	9 0000	res.

- **Goal:** Fit each selected interaction $f_{ij}(x_i, x_j)$ on residuals from main effects
- Use tree-like predictor, inspired by FAST
 - Use two axis-aligned cuts (c_i, c_i)
 - Plus one refinement cut to increase flexibility while keeping interpretability
- Reuse region-wise sums from FAST lookup tables
- Greedy search for cut config minimizing RSS

EBM - PREDICTION WITH PAIRWISE INTERACTIONS

- Each selected pair (x_i, x_j) is modeled by M boosted predictors trained on their residual interaction
- These are aggregated into a single bivariate function $f_{ij}(x_i, x_j)$
- The function is visualized as a 2D heatmap:
 - Axes: feature values of x_i and x_j
 - Color: contribution to the final prediction
 - Preserves human interpretability
- One heatmap is generated per selected pairwise interaction

EBM - FINAL MODEL STRUCTURE

- Main effects: One shape function f_j(x_j) per feature (visualized as 1D plots)
- Pairwise interactions: Selected functions $f_{ij}(x_i, x_j)$ added for top K pairs (visualized as 2D heatmaps)
- Prediction: Additive sum of all univariate and selected bivariate contributions

Base learner

- **EBM**: bagged 2–4-leaf trees, *one feature* per tree \Rightarrow step-function shape f_i Lou 2012
- **MB-boost**: user chooses component-wise learner (linear term, P-spline, tree, random effect, ...) Hothorn 2007

Base learner

- **EBM**: bagged 2–4-leaf trees, *one feature* per tree \Rightarrow step-function shape f_i Lou 2012
- **MB-boost**: user chooses component-wise learner (linear term, P-spline, tree, random effect, ...) Hothorn 2007

Iteration policy

- **EBM**: round-robin $(\forall j)$ each boosting pass; tiny learning rate $\eta \approx 0.01$.
- **MB-boost**: greedy; update the *single* component that yields the largest loss reduction.

Base learner

- **EBM**: bagged 2–4-leaf trees, *one feature* per tree \Rightarrow step-function shape f_i Lou 2012
- MB-boost: user chooses component-wise learner (linear term, P-spline, tree, random effect, ...)

Iteration policy

- **EBM**: round-robin $(\forall j)$ each boosting pass; tiny learning rate $\eta \approx 0.01$.
- MB-boost: greedy; update the single component that yields the largest loss reduction.

Regularisation

- **EBM**: many iterations *M* (5–10k); early stopping via *internal* CV on out-of-bag samples; bagging further lowers variance.
- **MB-boost**: shrinkage $\nu \in (0, 1]$; early stop by CV/AIC; component selection acts like an L_0/L_1 penalty \rightarrow sparsity.

Interactions

- EBM: FAST ranks and selects top-K interaction pairs, fitted as bivariate trees ⇒ GA2M ► Lou 2013
- MB-boost: interactions are modelled only when the user supplies dedicated interaction base learners; no automatic pairwise search

Interactions

- MB-boost: interactions are modelled only when the user supplies dedicated interaction base learners; no automatic pairwise search

- EBM:
 - one 1-D step plot for each f_i
 - small number of 2-D heat-maps for selected fij
- **MB-boost**: depends on selected learner: linear coefficients, smooth splines, random-effect curves, etc.

Interactions

- EBM: FAST ranks and selects top-K interaction pairs, fitted as bivariate trees ⇒ GA2M ► Lou 2013
- MB-boost: interactions are modelled only when the user supplies dedicated interaction base learners; no automatic pairwise search

- EBM:
 - one 1-D step plot for each f_i
 - small number of 2-D heat-maps for selected fij
- MB-boost: depends on selected learner: linear coefficients, smooth splines, random-effect curves, etc.

Take-away

- EBM provides fast, interpretable, and interaction-sparse models
- MB-boost offers flexible stat modeling with built-in variable selection

