

ECE Lyon - ING 2 - Année 2023/2024

Cours de mathématiques

ALGEBRE: Chapitre 2 - Applications linéaires

Définition 2.1

Définition. Soient E et F deux \mathbb{K} -espaces vectoriels. Une application linéaire (ou morphisme) de E dans F est une application :

$$\begin{array}{ccc} f: E & \to & F \\ u & \to & f(u) \end{array}$$

telle que:

Si F = E, f est un **endomorphisme**.

Si f est bijective, f est un **isomorphisme**.

Si f est à la fois un endormorhpisme et un isomorphisme, on dit que f est un **automorphisme**.

– Exemple –

Soit

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$

$$(x, y, z) \to (3x - 4y + 2z, 2x - 3y - z)$$

Soient
$$(x, y, z), (x', y', z') \in \mathbb{R}^3$$

 $f((x, y, z) + (x', y', z')) = f((x + x', y + y', z + z'))$
 $= (3(x + x') - 4(y + y') + 2(z + z'), 2(x + x') - 3(y + y') - (z + z'))$
 $= (3x - 4y + 2z + 3x' - 4y' + 2'z, 2x - 3y - z + 2x' - 3y' - z')$
 $= (3x - 4y + 2z, 2x - 3y - z) + (3x' - 4y' + 2'z, 2x' - 3y' - z')$
 $= f(x, y, z) + f(x', y', z')$

- Suite Exemple

Soient
$$(x, y, z) \in \mathbb{R}^3$$
 et $\lambda \in \mathbb{R}$

$$f(\lambda(x, y, z)) = (3\lambda x - 4\lambda y + 2\lambda z), (2\lambda x - 3\lambda y - \lambda z)$$

$$= (\lambda(3x - 4y + 2z), \lambda(2x - 3y - z))$$

$$= \lambda(3x - 4y + 2z, 2x - 3y - z)$$

$$= \lambda f(x, y, z)$$

Donc f est une application linéaire.

Propriétés. Soient E, F, G trois \mathbb{K} -espaces vectoriels.

Soient $f: E \to F, g: E \to F, h: F \to G$ trois applications linéaires et $\lambda \in \mathbb{K}$.

— $f+g: E \to F$ est une application linéaire,

— $\lambda f: E \to F$ est une application linéaire,

— $h \circ f: E \to G$ est une application linéaire.

Noyau, image et rang d'une application linéaire 2.2

2.2.1 Noyau

Définition. Soient E et F deux K-espaces vectoriels et $f: E \to F$ une application linéaire. Le **noyau** de f est l'ensemble des vecteurs de E dont l'image est nulle. Cet ensemble se note $\mathbf{Ker}(f)$.

$$Ker(f) = \{ u \in E, f(u) = 0_F \}$$

- Exemple –

Soit l'application linéaire :

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
$$(x, y, z) \to (2x + y + z, y - z, x + y)$$

Pour déterminer
$$\operatorname{Ker}(f)$$
, on cherche $(x,y,z) \in \mathbb{R}^3$, tels que $(2x+y+z,y-z,x+y) = (0,0,0)$ $(2x+y+z,y-z,x+y) = (0,0,0) \iff \begin{cases} 2x+y+z &= 0 \\ y-z &= 0 \\ x+y &= 0 \end{cases} \iff \begin{cases} x &= -z \\ y &= z \end{cases}$

Si on pose z = t, on a $Ker(f) = \{(-t, t, t) \in \mathbb{R}^3, t \in \mathbb{R}\}$ Donc $Ker(f) = Vect\{(-1, 1, 1)\}$

Propriété. Soient E et F deux \mathbb{K} -espaces vectoriels et $f: E \to F$ une application linéaire. Ker(f) est un sous-espace vectoriel de E.

Propriété. Soient E et F deux \mathbb{K} -espaces vectoriels et $f: E \to F$ une application linéaire.

$$f$$
 injective $\iff \operatorname{Ker}(f) = \{0\}$

2.2.2 Image

Définition. Soient E et F deux \mathbb{K} -espaces vectoriels et $f: E \to F$ une application linéaire. L' **image** de f est l'ensemble des vecteurs de F qui ont un antécédent dans E. Cet ensemble se note $\mathbf{Im}(f)$.

$$Im(f) = \{ f(u) \in F, u \in E \}$$

Propriété. Soient E et F deux \mathbb{K} -espaces vectoriels et $f: E \to F$ une application linéaire. Soit $\mathcal{B} = \{e_1, e_2, ..., e_n\}$, une base de E.

$$Im(f) = Vect\{f(e_1), f(e_2), ..., f(e_n)\}$$

Exemple -

Soit l'application linéaire :

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

$$(x, y, z) \to (2x + y + z, y - z, x + y)$$

 $\mathcal{B} = \{(1,0,0), (0,1,0), (0,0,1)\}$ est une base de \mathbb{R}^3 .

Pour déterminer Im(f), on cherche f((1,0,0)), f((0,1,0)), f((0,0,1)).

$$f((1,0,0)) = (2,0,1),$$

$$f((0,1,0)) = (1,1,1),$$

$$f((0,0,1)) = (1,-1,0).$$

On remarque que (1, 1, 1) est une combinaison linéaire de (2, 0, 1) et (1, -1, 0).

Donc
$$Im(f) = Vect\{(2,0,1), (1,-1,0)\}$$

Propriété. Soient E et F deux \mathbb{K} -espaces vectoriels et $f: E \to F$ une application linéaire. Im(f) est un sous-espace vectoriel de F.

2.2.3 Rang d'une application linéaire

Définition. Soient E et F deux \mathbb{K} -espaces vectoriels avec E de dimension finie et $f: E \to F$ une application linéaire.

Alors Im(f) est de dimension finie et dim(Im(f)) s'appelle le **rang** de f.

$$rg(f) = \dim(Im(f))$$

Théorème. Théorème du rang.

Soient E et F deux \mathbb{K} -espaces vectoriels avec E de dimension finie et $f:E\to F$ une application linéaire.

$$\dim(E) = \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f))$$

Autrement dit:

$$dim(E) = dim(Ker(f)) + rg(f)$$

- Exemple -

Soit l'application linéaire :

$$f: \mathbb{R}^3 \rightarrow \mathbb{R}^3$$

 $(x, y, z) \rightarrow (2x + y + z, y - z, x + y)$

On a : $Ker(f) = Vect\{(-1, 1, 1)\}$. Donc Dim(Ker(f)) = 1

On a : $Im(f) = Vect\{(2,0,1), (1,-1,0)\}$. Donc Dim(Im(f)) = 2

On a : $Dim(\mathbb{R}^3) = 3$

On a donc bien : $\dim(\mathbb{R}^3) = \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f))$

Remarque. Dans la pratique, le théorème du rang servira à déterminer la dimension du noyau connaissant le rang ou le rang connaissant la dimension du noyau.

2.3 Isomorphismes et automorphismes en dimension finie

2.3.1 Isomorphismes et automorphismes d'un espace vectoriel

Définition.

Soient E et F deux \mathbb{K} -espaces vectoriels et $f: E \to F$ une application linéaire. Quand f est **bijective**, on dit que f est un **isomorphisme** de E dans F.

Soient E un \mathbb{K} -espace vectoriel et $f: E \to E$ une application linéaire (c'est à dire un **endomorphisme**).

Quand f est bijective, on dit que f est un automorphisme de E.

Remarque. Dit autrement, un isomorphisme de E dans F est une application linéaire bijective de E dans F. Un automorphisme de E est une application linéaire bijective de E dans E, ou encore un endomorphisme bijectif.

2.3.2 Caractérisation des isomorphismes en dimension finie

Théorème. Théorème du rang

Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie tels que

$$\dim(E) = \dim(F)$$

et $f:E\to F$ une application linéaire. On a :

$$f$$
 bijective $\iff f$ injective $\iff f$ surjective,

ou dit autrement, en utilisant le vocabulaire introduit précédemment :

f est un isomorphisme \iff f injective \iff f surjective.

Corollaire. cas des endomorphismes.

Soit E un \mathbb{K} -espace-vectoriel de dimension finie et $f: E \to E$ une application linéaire (c'est à dire un endomorphisme), on a :

$$f$$
 bijective $\iff f$ injective $\iff f$ surjective,

ou dit autrement, en utilisant le vocabulaire introduit précédemment :

f est un automorphisme $\iff f$ injective $\iff f$ surjective.

Remarque. Sans les hypothèses de dimension finie des espaces vectoriels, l'équivalence entre l'injectivité et la surjectivité n'est plus toujours vraie. Par exemple, l'application suivante :

$$f: \mathbb{R}[X] \to \mathbb{R}[X]$$

$$P \to P'$$

est une application linéaire de l'espace vectoriel des polynômes qui est de dimension infinie. Or dans ce cas, il est possible de montrer qu'elle est surjective mais pas injective...

 ${\bf Th\'{e}or\`{e}me}$. Soit E et F deux espaces vectoriels de dimensions finies telles que :

$$\dim(E) < \dim(F)$$

 $\dim(\mathbf{E})<\dim(\mathbf{F}),$ alors une application linéaire $f:E\to F$ n'est jamais surjective.

 ${\bf Th\'{e}or\`{e}me}$. Soit E et F deux espaces vectoriels de dimensions finies telles que :

$$\dim(E) > \dim(F)$$

 $\dim(\mathbf{E}) > \dim(\mathbf{F}),$ alors une application linéaire $f: E \to F$ n'est jamais injective.