FSK III Buzzer Tutorial (v1.2B)

Authors: 기술지원팀 김민석 팀장

Libertron Co., Ltd

본 설명서를 ㈜리버트론의 허락 없이 복제하는 행위는 금지되어 있습니다.

1. 개요

- 부저 (Piezo Buzzer)는 피에조 효과 또는 압전 효과의 원리를 이용하여 소리를 만들어 내는 소자 이다.

부저에 전기신호를 인가하면 물질의 변형 및 공기 입자가 힘을 받아 압력 차이가 발생 되면서 음파를 생성하는데, 이 음파의 주파수를 조절 하여 음계를 만들수 있다.

이 매뉴얼은 FSK III 의 Dip Switch의 On/Off 를 활용해 Piezo Buzzer 의 동작확인을 기술한다.

(압전 효과 : 수정이나 세라믹과 같은 물질에 압력을 주면 전기적 신호가 발생 or 전기적 신호를 가하면 물질이 힘을 받아 변형이 오는 효과)

1) Piezo Buzzer

2) Piezo Buzzer 의 응용 회로

2. 상세 설명

2.1 준비 사항 및 테스트 환경

2.1.1 준비사항

- FPGA Starter Kit III (Ver 1.2B)
- Power Adapter
- USB B Type Cable (FPGA 다운로드 용)

2.1.2. 테스트 환경

● Windows 10 / Vivado 2018.2 (상/하위 버전 관계 없음)

2.2 프로젝트 세부 설명

2.2.1 디자인 동작 방향

● 본 자료에서는 FSK III 에 있는 100Mhz의 Clock 입력을 받아서 분주한다.

"001" **→** 도(32.7032),

"010" → 레(36.7081),

"011" **→** □|(41.2032)

"100" **→** 파(43.6535)

"101" → **솔**(48.9994)

"110" → 라(55.0000)

"111" → 시(61.7354)

까지 음계에 맞게 분주 및 출력하여 주파수에 맞는 음계를 표현 한다. 하기의 표와 같이 피에조 부저의 음계 주파수를 확인할 수 있으며, 검색 사이트에서 쉽게 확인 가능 하다.

욱타브 음계	1	2	3	4	5	6
C(도)	32.7032	65.4064	130.8128	261.6256	523.2511	1046.5020
C#	34.6478	69.2957	138.5913	277.1826	554.3653	1108.7310
D(레)	36.7081	73.4162	146.8324	293.6648	587.3295	1174.6590
D#	38.8909	77.7817	155.5635	311.1270	622.2540	1244.5080
E(0)	41.2034	82.4069	164.8138	329.6276	659.2551	1318.5100
F(파)	43.6535	87.3071	174.6141	349.2282	698.4565	1396.9130
F#	46.2493	92.4986	184.9972	369.9944	739.9888	1479.9780
G(<u>솔</u>)	48.9994	97.9989	195.9977	391.9954	783.9909	1567.9820
G#	51.9130	103.8262	207.6523	415.3047	830.6094	1661.2190
A(라)	55.0000	110.0000	220.0000	440.0000	880.0000	1760.0000
A#	58.2705	116.5409	233.0819	466.1638	932.3275	1864.6550
B(시)	61.7354	123.4708	246.9417	493.8833	987.9666	1975.5330

2.2.2 디자인 동작 블록도

● 상기 그림과 같이 FSK III 에서 들어오는 100MHz의 Clock 및 출력 주파수를 선택하는 로직을 구성한다. Tone_sel (Dip Switch)의 값에 따라 buzzer out 에 출력하여 Buzzer 의 동작을 확인한다.

2.2.3 Vivado 디자인 구성

- 1) Vivado New Project 실행
 - * Project 작업 경로 및 폴더에 특수문자 및 한글의 인식이 안되므로, 영어만 사용할 것

2) 상기 그림에서 다음과 같이 진행 한다.

Create Project → Create a New Vivado Project 에서 Next 클릭

- → Project Name 란에 "Buzzer" 입력 후 Next 클릭
- → RTL Project 선택 후 Next 클릭
- → Default Part 란에서 하기와 같이 선택 (하기 그림 참조)

Family	Artix-7	
Package	Fgg484	
Speed	-1	
Full Part Name	XC7A75TFGG484-1	

3) 상기 작업 후 New Project Summary 창이 나타나면 Finish 클릭 작업이 완료 되면 하기와 같이 Vivado 초기 프로젝트 화면이 나타난다.

2.2.4 Vivado New Design Create

1) 하기의 그림과 같이 Project Manager 창에 있는 Add Source 를 클릭
→ Add or create design sources 선택 및 Next 클릭

2) Add Sources 창에서 Create File → File Name 란에 Buzzer_Test 입력 후 Ok 버튼 클릭 및 Finish 클릭

3) Define Module 창에서 하기와 같이 입력하고 OK 클릭

Port Name	Direction	Bus	MSB	LSB
clk	input			
rstb	input			
tone_sel	Input	✓	2	
buzzer_out	output			

* 작업이 완료 되면 하기와 같이 Vivado 창이 나타난다.

2.2.6 Design 요약 설명 (코드 내 주석)

**
**/

▶ Prameter Definition

- 음계의 주파수를 생성하기 위한 분주 값을 파라미터로 미리 정해 놓은 부분

▶ Reg Definition

- 분주를 하기 위해 필요한 Register 를 정의하는 부분

```
/***************

** Musical Scale Select

*************/
```

▶ Musical Scale Select

- Dis Switch 의 입력 값에 따라 case 문으로 각 음계의 주파수를 출력에 연결시켜 주는 부분

/*************************************
** Generate Tone Pulse

▶ Generate Tone Pulse

- Counter 로 Clock 을 분주 후, 원하는 음계의 주파수를 만들어 Buzzer 출력부로 내보내는 부분

2.2.7 Vivado Design Pin 정보 (XDC) 입력 작업

- 1) 하기의 그림과 같이 PROJECT MANAGER 창에서 Add Sources 클릭
 - → Add or create constraints 선택 후 Next 클릭

- 2) Add or Create Constraints 창에서 Create File 클릭
 - → File name 란에 "buzzer_test" 라고 입력한 후 OK 클릭
 - → 그리고 다시 Add or Create Constraints 창이 나타나면 Finish 클릭

3) 하기의 그림과 같이 Sources 창에서 buzzer_test.xdc 가 나타난 것을 확인할 수 있으며, buzzer_test.xdc 파일을 더블 클릭하면 Vivado 우측창에 XDC를 편집할 수 있는 에디터 창이 나타난다. 이곳에 하기의 핀 정보를 입력 한다.

set_property -dict {PACKAGE_PINR4IOSTANDARD LVCMOS33} [get_ports clk]set_property -dict {PACKAGE_PINU7IOSTANDARD LVCMOS33} [get_ports rstb]set_property -dict {PACKAGE_PINJ4IOSTANDARD LVCMOS15} [get_ports {tone_sel[0]}]set_property -dict {PACKAGE_PINL3IOSTANDARD LVCMOS15} [get_ports {tone_sel[1]}]set_property -dict {PACKAGE_PINK3IOSTANDARD LVCMOS15} [get_ports {tone_sel[2]}]set_property -dict {PACKAGE_PINP20IOSTANDARD LVCMOS33} [get_ports buzzer_out]

2.2.8 Vivado 디자인 다운로드 파일(bit) 생성

1) 지금까지의 작업으로 디자인 소스와 핀 정보(XDC) 파일 생성이 완료되었으며, FSK III 에 Design Download 를 위해 bit 파일을 생성한다.

하기 그림과 같이 PROJECT MANAGER 창에 있는 Generate Bitstream 클릭후 다른 창이 나타나면 OK를 눌러 진행한다.

작업이 완료 되면 프로젝트 폴더에서 Bit 파일이 생성됨을 확인할 수 있다. (프로젝트 폴더 → buzzer.runs 폴더 → impl_1 폴더 → buzzer_test.bit)

2.2.7 FSK III 에 Design (bit file) Download 진행

- 1) FSK III 보드를 JTAG Cable (Micro 5pin)을 통해 PC와 연결하고 전원을 켠다. 하기 그림과 같이 PROJECT MANAGER → PROGRAM AND DEBUG
 - → Open Hardware Manager → Open Target → Auto Connect 를 선택

Page 17 / 20

2) Hardware 탭에 xc7a75t_0(1) 이 나타나면 우클릭 후 Program Device 선택
→ Program Device 창에서 Program 을 클릭하여 FPGA (FSK III)에
다운로드를 진행 한다.

하기 그림의 좌측에 있는 Dip Switch 3개를 위아래로 움직이면 (001~111 값) 오른쪽에 있는 피에조 부저에서 값에 맞는 소리가 출력 된다.

2.2.9 임의의 음계 출력 디자인 구성 방법

● 상기 Design 은 3개의 Dip Switch 로 음계를 구성하였다. (Mute, Do, Re, Mi, Pa, Sol, Ra, Si 총 8개의 음계)

따라서, 사용자가 원하는 다른 음계를 출력하고자 하는 경우 하기와 같은 블록의 Design 을 수정하면 된다.

1) 하기의 dip_sw(tone_sel) 의 입력 개수를 늘려, 표현할 수 있는 경우의 수를 8개에서 그 이상 원하는 개수의 비트로 수정 한다.

2) 하기의 음계에 대한 분주 값의 파라미터를 원하는 음계로 표현될 수 있도록 음계 표에 맞게 수정 한다.

3) 하기와 같이 dip_sw(tone_sel) 의 입력에 대한 개수를 원하는 비트로 늘리고, 출력하고자 하는 음계를 추가로 정의 한다.

감사합니다.

Revision History

Ver	Date	Revision
1.2	2020-09-21	Initial Document Release.

