FASINEX (FRONTAL AIR-SEA INTERACTION EXPERIMENT)
JANUARY-JUNE 1986 SUMMAR (U) MOODS HOLE OCEANGGRAPHIC
INSTITUTION MA N J PENNINGTON ET AL OCT 86 MHOI-86-35
N88814-84-C-8134

F/G 8/18 AD-A177 835 1/3 NL UNCLASSIFIED

MICROCOPY RESOLUTION TEST CHART
NATIONAL HUREAU OF STANDARDS 1962 A

WHOI Technical Report 86-35

FASINEX

(Frontal Air-Sea Interaction Experiment)

Summaries for FASINEX Mooring Cruises

Phase One: R/V Knorr 119
Phase Three: R/V Knorr 123

Nancy J. Pennington Robert A. Weller

October 1986

FASINEX Technical Report #13

WHOI-86-35

F A S I N E X Frontal Air-Sea Interaction Experiment (January - June 1986)

Summaries for FASINEX Mooring Cruises

Phase One: R/V KNORR Cruise 119
Phase Three: R/V KNORR Cruise 123

by

Nancy J. Pennington Robert A. Weller

Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543

October 1986

FASINEX Technical Report #13

Funding was provided by the Office of Naval Research under contract No. N00014-84-C-0134, NR 083-400.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as:
Woods Hole Oceanog. Inst. Tech. Rept. WHOI-86-35.

Approved for publication; distribution unlimited.

Approved for Distribution:

Probert C. Beardsley, Chairman

Department of Physical Oceanography

Abstract

The Frontal Air-Sea Interaction Experiment (FASINEX) was a study of the response of the upper ocean to atmospheric forcing in the vicinity of an oceanic front in the subtropical convergence zone southwest of Bermuda, the response of the lower atmosphere in that vicinity to the oceanic front, and the associated two-way interaction between ocean and atmosphere. FASINEX began in the winter (January 1986), concluded in the early summer (June 1986) and included an intensive period in February and March. The experiment took place in the vicinity of 270N, 700W where sea-surface-temperature fronts are climatologically common.

Measurements were made from buoys, ships, aircraft, and spacecraft. This report summarizes the mooring deployment and recovery cruises. FASINEX Phase One, the deployment cruise, located a frontal feature, mapped it and set an array of surface and Profiling Current Meters moorings across the front. Phase Three, the recovery cruise returned to the FASINEX area to retrieve the instrumentation that had been on station for six months. Additional measurements were made in the frontal region during these cruises. The activities carried out and the underway data collected on these two cruises, details of the moored array and a preliminary statement of the data return from the array, and the data telemetered from the moored array via ARGOS are summarized in this report.

STATE STATES STATES STATES STATES

Accesion For

NTIS CRA&I
DTIC TAB
Unannoused []
Justification

By
Dist ibution/

Availability Codes

Dist
Avail and/or
Special

Table of Contents

STATES THE PROPERTY OF THE PRO

		Page
ı.	Introduction	7
II.	Cruise Narratives a. KNORR 119 - Deployment Cruise 1. Summary 2. Schedule overview and list of science party	12
	 Chronological log KNORR 123 - Recovery Cruise Summary Schedule overview and list of science party Chronological log 	19
III.	FASINEX Moored Array	26
IV.	XBT Surveys	35
v.	Underway Sampling a. Oceanographic b. Meteorological	89 98
VI.	CTD Surveys	129
VII.	Vertical Current Meter Data	197
viii.	Real Time Profiler Data	207
IX.	AVHRR Data	212
x.	ARGOS Telemetry Data	220
Acknowle	edgements	235
	x A. Year-Day Conversion Table x B. Mooring Designations	237 239

I. Introduction

CONTROL MEGICL DIVINI CONTROL SINGER SINGER MINUSE MINUSE DESIGNATION

Frontal Air-Sea Interaction Experiment (FASINEX)(see Stage and Bulletin of the American Met. Soc, Vol 66, No. 12, 1985 and Vol 67, Weller, No. 1, 1986 for further detail on the background, scientific objectives, and experimental plan of FASINEX) was planned to investigate local air-sea interaction processes at an oceanic front. North of about 250N in the mid-Atlantic Ocean the prevailing westerly winds tend to carry the surface water to the south. South of about 250N the trade winds carry surface water to the north. In the region southwest of Bermuda the cooler water from the north meets the warmer water from the south, and a series of oceanic fronts The fronts are marked at the surface by abrupt changes in sea are formed. surface temperature. The surface temperature may change by as much as 3°C in less than a kilometer. Associated with these fronts are surface currents with speeds of approximately 1.5 knots.

The FASINEX field experiment began on January 7, 1986 when R/V KNORR sailed on cruise 119. This was designated FASINEX Phase One, the mooring deployment cruise. Once a sea surface temperature front was located with satellite imagery and an extensive XBT survey, mooring instrumentation was and telemetering data. began recording Meteorological and oceanographic logs were maintained. Phase Two immediately followed the one month deployment cruise. R/V OCEANUS and R/V ENDEAVOR returned to the FASINEX area to make oceanographic and meteorological measurements for approximately another month. During this time period, six aircraft including the NRL P3, NASA C-130, NCAR Electra, NASA P3, NOAA P3, and NASA Electra completed 41 flights measuring atmospheric and oceanic conditions. Phase Three, the mooring recovery cruise, KNORR 123, returned to the FASINEX area in early June The instrumentation that recorded data on station for the six month period was retrieved. Additional meteorological and oceanographic logs were The field program ended on June 25 when the ship returned again maintained. The two mooring cruises are summarized in this report. A to Woods Hole. summary of Phase Two is WHOI Report #86-36 (FASINEX Document #14). Figure 1 shows an artist's concept of the mooring array bracketing a frontal region and the joint work of the ships and aircraft during the one month of intensive scientific measurements.

The overall goals of the ship and aircraft scientists during FASINEX were:

- 1. To describe the horizontal and vertical structures of the oceanic and atmospheric boundary layers in the region in and around an oceanic front.
- 2. To investigate the relation between structures found on each side of the air-sea interface.
- 3. To study the physical processes associated with air-sea interaction in the vicinity of an oceanic front.

Phases One and Three involved the setting of the instrumentation which would obtain a long running view of the front from a small number of fixed locations. These instruments would observe a variety of environments (in the front, out of the front; under various meteorological conditions) as well as during the transition from winter, when SST jumps are large, to summer, when the SST signal associated with the front fades.

The specific goals of KNORR 119 were to first find a frontal feature in the target area $(25-30^{\circ}N 68-72^{\circ}W)$, then set an array of nine moorings across the front and survey the area around the moorings. Meteorological data were gathered during the cruise, for comparison with oceanic front crossing data. During the first two days of transit, the frontal feature was identified by the ongoing AVHRR (Advanced Very High Resolution Radiometer) surveillance conducted by Peter Cornillon, Univ. of Rhode Island. The location of the front was confirmed by an XBT survey in the area before the moorings were set. The central array consisted of nine moorings, five surface moorings with 3 m diameter meteorologically instrumented discus buoys (designated F2, F4, F6, F8 four near-surface Profiling Current Meter (PCM) moorings (designated F3, F5, F7 and F9). Two long term subsurface moorings (designated F1 and F12) set by Ken Brink, WHOI, in October 1984 completed the FASINEX These two moorings were located 80 km north and 160 km south of the central array. After the moorings were set, task three, which consisted of a Vertical Current Meter (VCM) tracking experiment, was conducted in conjunction with a series of Real Time Profiler (RTP) and CTD profiles along lines perpendicular to the front in the vicinity of and north of the array, before returning to Bermuda to meet OCEANUS and ENDEAVOR for Phase 2 of the field program.

KNORR 123 was the final cruise of the FASINEX field program. The goals of this cruise were to recover all the FASINEX moorings and briefly survey the area to identify any frontal features still visible in temperature and/or salinity Once again, shipboard meteorological data was gathered for comparison with the oceanic conditions. The cruise was successful in locating one of the surface buoys that broke free and traveled recovering approximately 215 n.m. in 27 days. All four other surface buoys were recovered Three of the four PCM moorings and the two Brink moorings were on station. The final PCM (F9) did not respond to interrogation of the acoustic A depth recorder survey looking for the 20m float showed nothing. Besides being a heavy traffic shipping area, long line fishing is prevalent. The final conclusion was that F9 have been dragged from its anchor might position by a long liner. The survey work consisted of several XBT lines run during the cruise, CTD stations taken by the PCM moorings, Brink moorings and in the central array area and a short dual VCM experiment.

This data report reviews the work done during both KNORR 119 and KNORR 123 including the deployment of the moorings and the preliminary survey work; the recovery of the moorings and final survey; summaries of the data that were telemetered from the moorings and utilized during the months while ashore; and presents preliminary analyses of the various data sets. One purpose of this report is also to describe and characterize the oceanic front that was initially chosen as the site of the moored array. This document summarizes all the data available from Phases One and Three.

The FASINEX area was designated to be a four by five degree box southwest of Bermuda. The coordinates are 25° to 30° North and 72° to 68° West. Two charts are used in this data report. FASINEX Total Area (Figure 2) includes the East Coast and Bermuda to identify the area of the western Atlantic. Area 1 (Figure 3) is an expanded scale of one section of the Total Area chosen to include all the oceanographic and meteorological sampling done by the ships involved in all three phases of FASINEX. A small solid square identifies the central mooring array location, at approximately 27°N, 70°W.

Figure 1. Artist's conception of frontal region during Phase One, the mooring work (lower), and Phase Two, the intensive scientific measurement period (upper).

FASINEX Total Area

Figure 2

FASINEX Expanded Scale Area 1

Figure 3

IIa. Cruise Narrative - KNORR 119

1. Summary - Mooring Deployment Cruise

The KNORR sailed on January 7, 1986 at 1600 UTC (all times are given in UTC throughout this report) from Woods Hole to begin the FASINEX field program. mooring deployment cruise was designated Phase One. The ship carried all the gear required to set five (5) surface moorings and four (4) PCM moorings. Additional mooring gear was onboard to set a test mooring at Site D (east of New Jersey) at 39⁰24.14N 70⁰31.59W. Other scientific equipment aboard were a Real Time Profiler (RTP), Vertical Current Meters (VCM) and a Neil Brown internally On board to process the AVHRR (satellite imagery) data recording CTD. transmitted from University of Rhode Island via the Applied Technology Satellite (ATS) system, was a NEARSS(Northeastern Area Remote Sensing System) computer One IBM AT was used to process and log the LORAN C position data received from an Internav 408 and another AT logged meteorological data from sensors located on a bow mast. Apple IIe computers were used to log underway towed fish and Precision Radiometric Thermistor (PRT) data, to process Serial ASCII Interface Loop (SAIL) underway data and to in eract with the ATS system for use in communicating with other FASINEX participants with telemail for Phase Two planning purposes. A HP85 was aboard to process XBT and CTD data.

The KNORR arrived at the test mooring site at 0800 January 8. An acoustic release was tested and the mooring was set in a snow squall. The mooring work was completed at 1500, at which time the KNORR continued underway heading toward At 1700 when the ship reached 70°W and headed south, XBT's were Oceanographic data were logged every 15 minutes. This taken every hour. underway log included time, LORAN C latitude and longitude, bucket sea surface temperature (SST), SAIL SST, PRT SST, and a towed fish sensor SST, XBT surface temperature and depth of the XBT 200 isotherm. 40m temperature, XBT Meteorological data were recorded every hour in addition to the 1 minute logging of the meteorological sensors mounted on the mast on the bow to the IBM AT. The hourly meteorological log included wet and dry bulb, wind speed and direction, barometric pressure, wave height and direction, and cloud cover and type. Also during this day Peter Cornillon received the first AVHRR satellite image showing a strong frontal feature at 26°50'N 70°W.

Beginning at $29^{\circ}N$, still heading south down $70^{\circ}N$, XBTs were taken every half hour. After 2200 XBTs were taken every 15 minutes to locate the northeast to southwest frontal feature seen in the AVHRR images. After crossing the front and continuing south to almost $25^{\circ}N$, a radiator pattern consisting of 450 15 minute XBTs confirmed the location of the front. This survey took 82 hours during which time the front was crossed 6 times along a 100 n.m. line running southwest to northeast. AVHRR images continued to be received during this time period reconfirming the position of the front.

The first surface mooring was so on January 15. This was planned as the northernmost outlying mooring, designated F2. This was set on the cold side of the front. During the deployment the ship was set to the southwest at about 1.5 kts. The weather was pleasant while setting the mooring, but a line of clouds appeared to be directly over the front to the southeast. Mooring F4 was set on

January 16. It was positioned at the front, approximately 7 n.m. slightly southeast of F2. This position would have been under a GEOSAT overpass on February 12, 1986. A meteorological comparison between the buoys and the ship sensors was conducted through the night of the 16th. On January 17, the first PCM mooring (F3) was set. RTP profiles were completed. AVHRR showed that the front persisted and continued off to the northeast along a straight line from the array toward Bermuda. Variability of the frontal location on scales of days or less was noted. Large vertical shears were measured near the front. Again, the ship was set during the F3 mooring deployment by a change in surface current observed when crossing surface temperature jumps. The second PCM mooring (F5) was set on January 18. Both PCM moorings were set on the warm side of the front, F3 ten miles to the east of F4 and F5 ten miles south of F4. RTP profiling in the area showed surface water on the warm side moving ENE at 50-70 cm s⁻¹ relative to the water below the seasonal thermocline. CTD stations were taken at both of the PCM moorings before departing for Bermuda to allow for repositioning of mooring equipment on the deck of the KNORR. Outside the mooring array, an XBT survey was carried on from $27^{\circ}10$ 'N $69^{\circ}30$ 'W towards Bermuda.

The KNORR tied up in St. Georges, Bermuda at 1300 on January 21. While in port the three remaining surface buoys and mooring hardware were repositioned on deck. Charlie Eriksen finalized plans with the Bermuda Biological Station and Naval Air Station for the upcoming Phase 2, the intensive aircraft and shipboard measurement phase of FASINEX. A meeting was held on board the KNORR with Cmdr. Frank Bub, the Air Station Meteorological Officer who supplied the weather forecasts for Phase 2 for the ships and aircraft. Bill Cross, the ONR program manager, attended the meeting and was informed of the work completed on Leg 1 and the plans for Leg 2.

Leg 2 of KNORR 119 left Bermuda enroute to the FASINEX area on January 23 at 1500. The underway meteorological and oceanographic watch began at 1200 on January 24. Acoustic releases for the five remaining moorings were tested outside the central array area on January 25. AVHRR images from January 21-23 showed that a large linear front extending from the the northeast to the southwest still existed but had moved northwest of the original position. A decision was made to continue with the array design in the area around $27^{\circ}N$ $70^{\circ}W$.

Four of the remaining five moorings were set, one a day for the next four days, F6-Surface(Jan 26), F8-Surface(Jan 27), F7-PCM(Jan 28), and F9-PCM(Jan 29). During these nights, CTD stations by F7, F3 and F9 were completed. A meteorological sensor comparison was done by surface moorings F6 and F8. An 11 hour RTP was taken while drifting through a frontal feature. A GPS survey was completed to pinpoint anchor positions. With eight moorings inside a box bounded by $26^{\circ}50^{\circ}$ to $27^{\circ}20^{\circ}N$ and $70^{\circ}10^{\circ}$ to $69^{\circ}50^{\circ}W$, the telemetered sea temperature over the 30 mile spread showed a difference of 1.5° C. A survey to relocate the front and help decide the position of the final surface mooring began on January 30 and continued through 0400 February 1. On January 31, a sharp front was crossed, marked by large rafts of Sargassum and a temperature jump of $2^{\circ}C$ from 23.8° to 21.8°.

Vertical Current Meter work was started on the January 26. A VCM was deployed and tracked until contact was lost abruptly. A search pattern was run for six hours until it was considered lost. On January 30-31, two VCMs were deployed for tests, while the frontal survey continued.

The final surface mooring F10 was set on February 1 positioned as north as the northernmost mooring F2 and as east as the southernmost mooring F8 to form a right triangle. This location provided a greater variety of spatial lags and more of a view of along-front variability than positioning F10 as a southern outlier as originally planned (that is until it broke free about May 14). Following the deployment a meteorological sensor comparison was begun.

For the remaining five days, RTP, VCM and CTD survey work was done. Two VCMs were deployed to 150m and 175m on February 2. They were tracked until February 5. On February 5, with low winds the front contained sargassum and captured computer cards thrown over as surface drifters. A CTD survey (stations running from the northeast to the southwest 1000m) was completed perpendicular to the existing front in the area. At the middle of the section, at the front, a RTP profile was taken. The ship returned to locate the VCMs and then 6 more RTPs were taken in and around the front. The final task was a CTD survey that ran south to north, during which time the VCMs were picked up. At 0400 on January 6, the KNORR headed to Bermuda. A ship report was received that a drifting red circular buoy was spotted at 26°02.0N 67°48.5W. Contact with ARGOS was established which verified that it was not one of the FASINEX surface buoys. The KNORR tied up in St. Georges, Bermuda at 1748 on February 7.

VCM tracking; RTP, CTD profiles

2. Ship Schedule Overview and Science Party

Leg 1 January 7, 1986 Depart Woods Hole January 10-15 Survey site January 15-18 Set moorings January 19 Depart for Bermuda January 21-22 Bermuda Leq 2 January 23 Depart Bermuda Survey site January 25 January 26-Feb 1 Set remaining moorings

February 6 Depart for Bermuda

February 7-10 Bermuda

February 2-5

February 10 Depart for Woods Hole February 13 Arrive Woods Hole

- 1. Weller, Robert, Co-chief Scientist, WHOI
- 2. Eriksen, Charles, Co-chief Scientist, MIT
- 3. Trask, Richard, Buoy Group, Research Associate, WHOI
- 4. Dean, Jerome, Research Specialist, WHOI
- 5. Pennington, Nancy, Sr. Research Assistant, WHOI
- 6. Light, Christina, Research Assistant, WHOI
- 7. Payne, Richard, Research Associate, WHOI
- 8. Pomer, John, Research Assistant, WHOI
- 9. Marquette, Craig, Buoy Group, Research Assistant, WHOI
- 10. Simoneau, R. David, Buoy Group, Sr. Research Assistant, WHOI
- 11. Ostrom, William, Buoy Group, Research Assistant, WHOI
- 12. Worrilow, Scott, Buoy Group, Research Assistant, WHOI
- 13. Poirier, Joseph, Buoy Group, Sr. Research Assistant, WHOI
- 14. Reese, John, Buoy Group, Research Assistant, WHOI
- 15. Littlefield, Brian, Buoy Group, Research Assistant, WHOI
- 16. Bouchard, Paul, Buoy Group, Research Assistant, WHOI
- 17. Reid, Robert, Draper Lab, MIT
- 18. Donnelly, Peter, Draper Lab, MIT
- 19. Cornillon, Peter, Satellite imagery, URI

Leg 1 Leg 2

20. Fucile, Paul, WHOI 20. Trizna, Dennis, NRL 21. Olsen, Egil, OCEANOR

WHOI Woods Hole Oceanographic Institution
MIT Massachusetts Institute of Technology

URI University of Rhode Island NRL Naval Research Laboratory

OCEANOR Oceanographic Company of Norway

3. Chronological Log for KNORR 119

25

Acoustic Release Tests

VCM Deployment

Jan 7 Depart Woods Hole for FASINEX area 8 Deploy VMCM Test Mooring #833 (39.5N 70.5W)/ continue to FASINEX area Begin underway oceanographic and meteorological watches 9 Begin 15 minute XBT pattern to locate front 10 11 12 13 14 Acoustic Release Tests RTP #1 15 Deploy F2 VCM Tests Met. Comparison at F2 16 RTP #2 Deploy F4 Met. Comparison at F4 17 Deploy F3 RTP #3-#4 CTD #1 18 Deploy F5 RTP #5-#6 CTD #2-#3 19 RTP #7 Head to Bermuda 20 21 St. Georges, Bermuda Reposition mooring gear on fantail 22 23 Depart St. Georges for FASINEX area 24

Figure II-l

IIb. Cruise Narrative - KNORR 123

1. Summary - Mooring Recovery Cruise

The KNORR sailed at 1500 UTC on June 5,1986 to begin FASINEX Phase Three, the final cruise of the field program. The first task was to locate and recover one of the surface buoys that had broken free around May 14. All the buoys had ARGOS telemetering systems on board to transmit not only position but meteorological parameters. The positions and sea surface temperature were closely monitored during the six month mooring duration. With this system, the buoy was tracked from the day it moved off station until June 10 when it was recovered. The position of the buoy at the departure time of the KNORR was approximately $25^{\circ}N$ $73^{\circ}W$, which was slightly more than 4 days transit time from Woods Hole. Every day the buoy's position was updated so the ship continued to head directly for the buoy.

A science meeting was held the first day to discuss the purpose and activities of the cruise. Scientific equipment on board were the RTP, VCMs and a CTD. One IBM AT was used to process and log the LORAN C position data received from an Internav 408 and the other logged meteorological data from sensors mounted on a bow mast. Apple IIe computers were used to log underway towed fish data, to process SAIL data and to interface with the ATS system. An HP 85 was on board to process XBT and CTD data. An underway meteorological and oceanographic watch was started on June 6 at 2200. The hourly meteorological log contained time, LORAN C latitude and longitude, wind speed and direction, sea temperature, barometric pressure, cloud cover and type, wave height, wave direction and swell height. The 15 minute oceanographic log contained time, LORAN C latitude and longitude and three measurements of sea temperature. On June 6, a survey began with XBTs being taken every 2 hours.

On June 10, 0000 the drifting buoy was located. The onboard ARGOS receiver picked up a transmission at 14 miles and the light was seen at 9 miles. A check was made to see if the acoustic release was attached, there was no response. If the release was attached, it would have meant the whole mooring was connected under the buoy. The buoy was hooked and brought aboard at 0545. The majority of the mooring instrumentation, consisting of the 8 current meters (6 VMCMs and 2 VACMs) and all the wire rope, was recovered. The bitter end of the mooring showed that the 13/16" nylon had rubbed the cotter pin on the shackle at the bottom of the last shot of wire rope. During the four months the mooring remained on station, the nylon was slowly worn through.

The ship then began heading east to the next mooring site, but a medical emergency sent the ship to Nassau drop off the radio operator and pick up a replacement. The travel time required was approximately 70 hours.

The ship arrived on site to pick up the southern Brink subsurface mooring at 1315 on June 12. The mooring was successfully recovered. A 5000m CTD station was taken at that location.

The ship headed north back to the central array to begin the mooring F2's release would not respond. The decision was made after firing it to haul the mooring, figuring the Pengo rehaul winch was capable of handling the tension of recovery of a still anchored mooring. All the instrumentation to at least 700m could have been recovered before the tension became too great. Once the recovery began, the backup recovery system was sighted on the surface. The whole mooring was successfully recovered. The ship moved to F9 for a shallow CTD station. The interrogation of the acoustic release resulted in no response. The release was fired. The ship stayed on station for three hours watching for the mooring. It was not sighted. The ship then moved to F6 and successfully recovered that surface mooring. A meteorological comparison was conducted at 2300 at F8 for three hours. The ship moved back to F4 and another meteorological comparison was conducted. On June 15, F8 was recovered in the morning and F4 recovered later that day.

With all the surface moorings aboard, the recovery of the PCM moorings Two shallow CTD stations were taken near F3. The acoustic release could not be heard to confirm release. The release was fired and floats were sighted and the mooring was recovered on June 16. Two CTD stations were then taken by The acoustic release was interrogated and again the release did not F5. The release was fired. The surface floats were sighted and recovery began. The recovery was complicated because the guideline was wuzzled with the lower syntactic foam float and the wire rope beneath the lower float. As the winch continued to pull the mooring line in, the weight of the PCM snapped the quideline. The PCM dropped back into the water and disappeared. A watch began immediately to locate the PCM when it came to the surface. Approximately 40 minutes later Larry Costello, the KNORR Day Man spotted the blue float just below the surface 1000m from the ship. The Bosun, Jerry Cotter, launched a zodiac to retrieve the instrument. (The instrument is negatively buoyant during 3 hours of its 4 hour cycle. At a specific time, it changes its buoyancy to The fear was it would go into its descend cycle while totally free of profile. the guideline.) Within 19 minutes of the sighting, the zodiac was moved from an upper deck, prepped, and deployed with Scott Worrilow, Buoy Group and Roger Hunt, KNORR A.B., and, even with outboard motor troubles, reached the PCM, which was grabbed and secured and returned to the KNORR to be swung aboard in a cargo The rest of the mooring was then recovered. After that excitement, the easy task of recovering the backup recovery system of F10 was scheduled. The remainder of that mooring, including all the nylon, backup floatation system and acoustic release was recovered, verifying the fact that the nylon had been chafed by shackle cotter pin.

The final task that remained in the central array was to attempt to locate and recover F9. A Depth Recorder survey was carried on throughout the night with the hopes of seeing the 20m float on the Raytheon strip chart. Nothing was sighted. A decision was made to made to pick up Brink's northern mooring. On June 18, the subsurface mooring was recovered. It was fouled with long lines, which damaged two of the current meters. A deep 5000m CTD station was completed in the area.

Upon arrival back in the central array area, a deep CTD station was taken. A dual VCM experiment was begun. Alternating with tracking the floats, a spatial pattern of acoustic interrogations was made to listen for F9, in case it had moved from its original anchor position. A brief RTP and CTD intercomparison

was done to 200m on June 19. The two VCMs were recovered on June 20, completing a data set of approximately 30 hours.

Two drags for F9 were completed on June 21. All hands stood watch for the PCM or the floats in case the mooring line was cut by the trawl wire and the mooring surfaced. After two attempts there was nothing sighted and no noticeable increase in tension had been recorded on the trawl wire during the drags suggesting that nothing had been grabbed or encountered. At 1716, KNORR headed to Woods Hole. The ship arrived at 0851 on June 25 completing the final phase of FASINEX.

2. Ship Schedule Overview and Science Party

June 5, 1986

Depart Woods Hole

June 10

Start Mooring recoveries

June 21

Begin Transit to Woods Hole

June 25

Arrive Woods Hole

- l. Weller, Robert, Chief Scientist, WHOI
- 2. Trask, Richard, Buoy Group, Research Associate, WHOI
- 3. Dean, Jerome, Research Specialist, WHOI
- 4. Pennington, Nancy, Sr. Research Assistant, WHOI
- 5. Light, Christina, Research Assistant, WHOI
- 6. Payne, Richard, Research Associate, WHOI
- 7. Ostrom, William, Buoy Group, Research Assistant, WHOI
- 8. Worrilow, Scott, Buoy Group, Research Assistant, WHOI
- 9. Poirier, Joseph, Buoy Group, Sr. Research Assistant, WHOI
- 10. Bouchard, Paul, Buoy Group, Research Assistant, WHOI
- 11. Marquette, Craig, Buoy Group, Research Assistant, WHOI
- 12. Reid, Robert, Draper Labs, MIT
- 13. Donnelly, Peter, Draper Labs, MIT
- 14. Schudlich, Rebecca, Joint Program Student, WHOI
- 15. Pierce, Stephen, Joint Program Student, WHOI
- 16. Gnanadesikan, Anand, Summer Student, WHOI
- 17. Howell, James, Summer Student, WHOI

WHOI Woods Hole Oceanographic Institution
MIT Massachusetts Institute of Technology

3. Chronological Log for KNORR 123

SECULAR DESCRIPTION OF THE PROPERTY OF THE PRO

```
Depart Woods Hole heading toward drifting buoy D
Jun 5
    6
    7
    8
    9
            Located and retrieved Buoy D
    10
            Medical emergency heading to Nassau
            Nassau/ heading back to FASINEX area
    11
   12
   13
            Recover Mooring 830
            CTD #1 to 5000m
   14
            Recover F2 (845)
            Search for F9 (PCM)
            Recover F6 (847)
            Met. Comparison at F8
   15
            Met. Comparison at F4
            Recover F8
            Recover F4
   16
            CTD #4
            CTD #5
            Recover F3
            CTD #6
            CTD #7
            Recover F5
   17
            CTD #8
            CTD #9
            Recover F7
            Recover F10 backup recovery system
            Start survey for F9
   18
            End F9 survey
            Head to northern Brink Mooring
            Recover Mooring 829
            CTD #10 5000m
```

19	CTD #11 FASINEX Central Array Area 5000m VCM #2 and #4 launched Search for F9
	CTD and RTP intercomparison
	Tracking VCMs and watch for F9
20	Recover VCMs 2200
21	Two drags for F9
	Transit to Woods Hole
22	
23	
24	
25	Arrive Woods Hole

SESSIO BEZGESCO, MANAGESCO, MANAG

Figure II-2

III. FASINEX Moored Array

The 6-month array was composed of surface moorings and PCM moorings. The longer duration moorings set by Brink in October 1984 were subsurface moorings.

The oceanic front is a three-dimensional feature with temporal as well as spatial variability. In contrast to the aircraft and ship operations, which provided high resolution views over a limited time, the moored array used self-contained surface and subsurface instruments to obtain a longer running view from a small number of fixed locations. Over the 6-month period the fronts moved through the center of the moored array so that moored instruments returned observations from a variety of environments (in the front, out of the front; under various meteorological conditions) as well as during the transition from winter, when the SST jump is large, to summer, when the SST signal associated with the front fades.

Telemetered mooring data using the ARGOS system are presented in Section \boldsymbol{X} of this document.

The data from the moored array will be presented in a later data report.

Figure III-l	Meteorologically Instrumented FASINEX Surface Buoy
Figure III-2	FASINEX Mooring Schematics
Figure III-3	Anchor Positions of Moorings
Table III-1	GPS/LORAN C Positions of Anchors
Table III-2	Buoy Meteorological Sensor Types and Descriptions
Table III-3	Meteorological Sensor Heights on Buoys
Table III-4	Mooring Deployment, Recovery and Duration Times
Table III-5	FACINEY Data Poturn

FASINEX Surface Buoy

Figure III-1. Meteorologically Instrumented FASINEX Surface Buoy

FASINEX

Figure III-2. FASINEX Mooring Schematics

FASINEX Mooring Anchor Positions

Figure III-3

Table III-1: GPS/LORAN C Positions of Anchors

FASINEX	Visible		WHOI
Designation	Identifier	Lat/Lon	Mooring #
F2	A	27°18.95'N	845
		70°05.86'W	
F3		27°05.34'N	PCM-1
		69°42.75'W	
F4	С	27°05.35'N	846
		69°50.30'W	
F5		26°58.58'N	PCM-2
		69°50.40'W	
F6	В	27°12.59'N	847
	_	69°58.48'W	
F7		27°12.53'N	PCH-3
-7		69°51.03'W	
F8	E	26°58.66'N	848
		69°43.19'W	
F9		27°05.45'N	PCM-4
		69°58.33'W	
F10	D	27°19.63'N	849
		69°42.52'W	
Ken Brink's	two year subsui	face moorings (LORAN	C positions)
F1		27°58.90'N	829
		69°58.80'W	
F12		25°29.10'N	830
		70°00.70'W	

Table III-2: Buoy Meteorological Sensor Types and Descriptions

VAWR (Vector Averaging Wind Recorder) (450 second recording rate)

Parameter	Sensor	Range	Accuracy	Height (cm)	Comments
Wind Speed	Gill 3-cup Anemometer R. M. Young Model 6301	0-60 m s ⁻¹	0.1 m s ⁻¹ above threshold of 0.5 m s ⁻¹	356	Vector- averaging
Wind	Integral vane w/ vane follower WHOI / EGGG	0-360*	<5.6* (2 bits)	327	Vector- averaging
Insolation	Pyranometer Eppley Model 8-48	00-1500 watts m ⁻²	<pre>3% sensor 5% (off level)</pre>	352	Average system
Relative Humidity	Variable Dielectric Conductor Vaisala Humicap 1518HM	0-100%	5 % RH	294	3.5 sec sample
Barometric Pressure	Quartz crystal Digiquarts Parascientific Model 215	0-1034 mb	0.1 sensor 0.5 mb system	218	2.6 sec sample Note 1.
Temperature Sea	Thermistor Thermometrics 4 K @ 25°C	±30° C	.005° c	-100	1/2 time average Note 2.
Temperature Air	Thermistor Yellow Springs #44034	±35° C	±.1° sensor ±.4° system	259	1/2 time average Note 3.

- Burst samples are taken at halfway point of averaging (recording) interval.
 Sea temperature is measured during first half of recording interval.
 Air temperature is measured during the second half of the recording interval.

MR	(Meteorological	Recorder	(450 second	recording	rate)

Parameter	Sensor	Range	Accuracy	Height (cm)	Comments
Wind Speed	Propellor/vane Anemometer R. M. Young Model 5103	0-42.2 m s ⁻¹	+0.2 m s ⁻¹ above threshold of 0.5 m s ⁻¹	333	Vector Average
Wind Direction	•	0-360*	+2*	333	*
Solar Irradiance	Pyranometer Eppley 8-48	0-1500 Watts m ⁻²	5%	354	Average of 64 samples per 450 sec
Relative Humidity	Vaisala Humicap in R. M. Young radiation shield	0-100 % RH	5 % RH	264	n
Barometric Pressure	Digital barometer AIR DB	800-1050 mb	.5 m _a b	200	average of 100 samples in 105 once per record int
Water Temperature	Thermistor YSI44032	-10° to 50° deg C	±.01°	-100	average of 64 samples per 450 sec
Air Temperature	Thermistor YSI44032 in R. M. Young multiplate radiation shield	-10° to 50°	2.3*	264	•

FASINEX METEOROLOGICAL SENSOR HEIGHTS ABOVE BUOY WATERLINE

Table III-3

	F2 Mooring 845 Buoy A	F6 Mooring 847 Buoy B	F4 Mooring 846 Buoy C	F10 Mooring 849 Buoy D	F8 Mooring 848 Buoy E
VAWR AIR T	2.56	2.57	2.56	2.56	2.58
VAWR RH	2.91	2.93	2.91	2.86	2.96
VAWR BP	2.17	2.15	2.13	2.15	2.16
VAWR SOLAR	3.56	3.56	3.55	3.51	3.60
VAWR WIND*	3.55	3.55	3.54	3.50	3.59
MR AIR T	2.66	2.64	2.63	2.65	2.67
MR RH	2.66	2.64	2.64	2.65	2.66
MR BP	2.00	2.02	2.00	2.01	2.02
MR SOLAR	3.56	3.56	3.55	3.51	3.60
MR WIND	3.39	3.39	3.39	3.34	3.44

Units = Meters above waterline.

Waterline location per Peter Clay (41 cm below deck).

^{*} Measurement to centerline of cups.

⁺ Measurement to Mid-shield.

Table III-4: Mooring Deployment, Recovery and Duration Times

Mooring I.D.	Deployment Time (UTC)		Recovery Time (UTC)	Duration (days)
F2	15 January '86	2020	14 June '86 0950) 150
F4	16 January	1947	15 June 2133	3 150
F6	26 January	1715	14 June 215]	139
F8	27 January	1748	15 June 1333	3 139
F10	1 February	1801	10 June 0545	103 on station 129 total
F 3	17 January	1811	16 June 1352	2 150
F5	18 January	1840	16 June 2011	149
F7	28 January	1852	17 June 1108	3 140
F 9	29 January	1806	Lost	
F1	28 October '84	2238	18 June '86 1721	L 598
F12	29 October '84	1724	13 June '86 1957	7 592

Table III-5

FASINEX Preliminary Data Return Table (September 1986)

Number of Days of Good Data

Weller Surface Moorings	orings						Eriksen PCM Moorings	rings			
	72	74	P6	88	F 10			F 3	PS	F.7	2
Met Data Wind	148	148	138	136	126			150	149	140	٥
Sea Temp	148	148	۲	136	126						
Air Temp	148	148	138	136	126						
Baropres	148	148	138	136	126		Brink Subsurface Moorings	e Moorings			
Rel Hum.	~ 97.	148	138	136	0 %.			ō	5		
INFOTACION	0	140	138	7.70	971		sundan	7	F12		
Payne Met							225	597	4 165		
Wind	s	25	02	136	17			597	F 165		
Sea Temp	121	148	138	136	95						
Air Temp	121	148	138	136	95		325	169	ر 2		
Baropres	٠ ;	148	٠ ،	136	95			597	57 1		
Rel Hum.	19	٠,	٠,	72	95						
Insolation	121	148	138	136	S.		066	597 597	591		
Depths 10m	148	148	138	136		Velocity 7	625	597	ج 591		
	148	148	138	136	126 1	Temperature J		597	291		
20m	148	148	138	136	126]		700	142	591 7		
) !	<u> </u>			•						
30₽	148 148	148	138	136 136	126]		1100	597 551	591 7		
* 0	148	148	86	136	126 م		4100	597	266 1		
	148	148	138	136	126 J			597			
08	148	148	138 138	136 136							
120	0 148	148 148	138	30 136	126						
160	148	143	138	136 136	126]						
700	148	148	138	136 136	16]						
1000		148 148		136 136	$\overline{}$						
4000		148 148		136 136							

IV. FASINEX XBT Data

SEES PRODUCE SUSPENDED BROKES PRODUCE PRODUCES COCCOS PROCESSIVERS REPORTED IN

Phase One - KNORR 119

Expendable bathythermographs (XBTs) were used to verify the location of a front seen in AVHRR imagery during KNORR 119 before mooring deployment began in the FASINEX area. Several surveys using Sippican T7 XBTs (depth range 0-760m) were made during Phase One of FASINEX. The first survey was run south down 70 W starting every hour. When 30 N was crossed, XBTs were taken every 30 minutes. In order to close in on the satellite image location of the front, XBTs were taken every 15 minutes starting at 29 N. The survey continued south to 25 N. The front was crossed at 26 50 N 70 W. To identify the orientation of the front, a radiator pattern was completed, this being considered Section 2. The sampling rate for this pattern was 15 minutes which at 10 kts was approximately a 2.5 mile separation between profiles. 450 XBTs made up the survey. During the remainder of Leg 1 and Leg 2 several small scale sections were completed.

The data were plotted on a strip chart recorder and stored to a Bathysystem Recorder cassette. The strip chart data were digitized in real time and sections were hand drawn thoughout the survey.

Contour plots IV-11 and IV-12 were drawn based on the initial radiator pattern (Section 2) and served to locate the moored array relative to the front.

Figure IV-1	Total Pattern of XBTs taken during KN119
Figure IV-2	XBT Section 1 WHOI south to 28°, Station Locations
Figure IV-3	XBT Section 2 15 minute Radiator, Station Locations
Figure IV-4-9	XBT Sections 3 to 8, Station Locations
Figure IV-10	Plot of XBT Section and Bucket Temperature by Section
Figure IV-11	Contours of 40m Temperatures Across Front
Figure IV-12	Contours of 20 °C Isotherm
Table IV-1	XBT Time and Position

Phase Three - KNORR 123

During the FASINEX mooring recovery cruise, three XBT patterns were completed. The first survey was a northeast to south-southwest line (36 $^{\circ}$ N 71 W, 25 N 78 W) while tracking F10. The second survey ran west to east along approximately 26 N. The third survey ran south to north. The final survey was taken on the homeward transit along 70 W up to 30 N. Data were logged in the same manner as on KNORR 119.

Figure IV-13	Total XBT Pattern
Figure IV-14	XBT Section 1 Woods Hole to F10 Capture, Station Locations
Figure IV-15	XBT Section 2 West to East at 25 N, Station Locations
Figure IV-16	XBT Section 3 North up 70 W, Station Locations
Figure IV-17	XBT Section 4 Heading back to Woods Hole
Figure IV-18	Plot of XBT Section and Bucket Temperatures by Section
Table IV-2	XBT Time and Position

FASINEX Knorr 119 XBT Total Pattern

Figure IV-l

Figure IV-2

Figure IV-3

Figure IV-4

Figure IV-5

Figure IV-6

Figure IV-7

Figure IV-8

Figure IV-9

STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD

SASSISA (1) BASSAS CIRCUMATE PROVINCIA (1) BASSASSA (1) DO

Figure IV-10a. XBT Section 1. (KNORR 119)

Figure IV-10b. XBT Section 2a (refer to Fig. IV-3). (KNORR 119)

Figure IV-10c. XBT Section 2b (refer to Fig. IV-3). (KNORR 119)

Figure IV-10d. XBT Section 2c (refer to Fig. IV-3). (KNORR 119)

Figure IV-10e. XBT Section 2d (refer to Fig. IV-3). (KNORR 119)

WAS CREEKED WARRED SHOWS ARRANGO BASSESS

Figure IV-10f. XBT Section 2e (refer to Fig. IV-3). (KNORR 119)

Figure IV-10g. XBT Section 2f (refer to Fig. IV-3). (KNORR 119)

ACCOM REPRESENT CONTRACT AND THE STREET WHICH SERVICES

CONTROL BESSELD BESSELD BESSELD BESSELD BESSELD BESSELD BESSELDE B

Figure IV-10h. XBT Section 2g (refer to Fig. IV-3). (KNORR 119)

Figure IV-10i. XBT Section 3. (KNORR 119)

Figure IV-10j. XBT Section 4. (KNORR 119)

Figure IV-10k. XBT Section 5. (KNORR 119)

Figure IV-101. XBT Section 5. (KNORR 119)

CHARLES SECTIONS OF THE PARTIES. SECTIONS OF THE PARTIES.

Figure IV-10m. XBT Section 7a (refer to Fig. IV-8). (KNORR 119)

Figure IV-10n. XBT Section 7b (refer to Fig. IV-8). (KNORR 119)

See Transport Constraint Constraint Constraint

Figure IV-10o. XBT Section 8. (KNORR 119)

Figure IV-11

Figure IV-12

esses Assessed Sessessed Patriagna Assessed Editiones

Table IV-1: KNORR CRUISE 119 XBT LOG

XBT#	TIME (GMT)	DAY/MONTH	LATITUDE	LONGITUDE
1	1705	8 Jan	38°20.56	70°02.53
2	1800	8 Jan	38°13.74	70°00.16
3 4	Bad Probe 1900	0 7	38°03.99	70900 00
4 5	2000	8 Jan 8 Jan	38°00.67	70°00.00 70°03.66
5 6	2100	8 Jan	37°50.62	70°03.00
7	2200	8 Jan	37°41.38	70°00.90
8	2300	8 Jan	37°28.77	69°56.25
9	0000	9 Jan	37°19.91	69°54.47
10	0100	9 Jan	37°10.79	69°50.84
11	0200	9 Jan	36°59.78	69°45.18
12	0300	9 Jan	36°50.13	69°41.16
13	0400	9 Jan	36°40.37	69°38.75
14	0500	9 Jan	36°31.36	69°37.19
15	0600	9 Jan	36°22.03	69°36.00
16	0700	9 Jan	36°13.01	69°37.24
17	0800	9 Jan	36°04.75	69°39.00
18	0900	9 Jan	35°55.69	69°41.34
19	1000	9 Jan	35°46.84	69°42.39
20 21	1100 Bad Probe	9 Jan	35°37.44	69°43.19
22	1209	9 Jan	35°26.87	69°44.90
23	1300	9 Jan	35°18.75	69°46.45
24	1400	9 Jan	35°09.18	69°48.40
25	1500	9 Jan	34°59.96	69°50.31
26	1600	9 Jan	34°50.41	69°51.87
27	1700	9 Jan	34°41.00	69°53.62
28	1800	9 Jan	34°31.94	69°55.57
29	1900	9 Jan	34°22.34	69°58.06
30	2000	9 Jan	34°13.00	69°58.46
31	2100	9 Jan	34°02.95	69°59.44
32	2200	9 Jan	33°53.50	70°00.28
33	2300	9 Jan	33°43.55	69°59.54
34	0000	10 Jan	33°34.10	69°58.46
35	0100	10 Jan	33°24.08	69°57.76
36 37	0200	10 Jan	33°15.92	69°58.45 69°56.95
37 38	0300 0400	10 Jan 10 Jan	33°04.84 32°55.34	69°56.98
39	0500	10 Jan 10 Jan	32°46.39	69°56.71
40	0600	10 Jan	32°37.15	69°56.83
41	0700	10 Jan	32°27.24	69°56.70
42	0800	10 Jan	32°17.34	69°55.05
43	0900	10 Jan	32°07.00	69°54.14
44	1000	10 Jan	31°56.1°	69°53.62
45	1100	10 Jan	31°45.82	69°53.16
46	1200	10 Jan	31°35.75	69°52.60
47	1300	10 Jan	31°24.91	69°52.28
48	1400	10 Jan	31°14.62	69°52.38
49	1500	10 Jan	31°04.07	69°52.19
50	1600	10 Jan	30°53.61	69°52.52

Table IV-1 (continued)

XBT#	T IME	DAY/MONTH	LATITUDE	LONGITUDE
51	1700	10 Jan	30°44.44	69°52.98
52	1730	10 Jan	30°39.16	69°53.33
53	1800	10 Jan	30°35.10	69°53.68
54	1830	10 Jan	30°31.21	69°54.26
55	1900	10 Jan	30°27.21	69°54.42
56	1930	10 Jan	30°21.68	69°54.64
57	2000	10 Jan	30°16.90	69°52.25
58	2030	10 Jan	30°11.74	69°55.73
59	2100	10 Jan	30°06.30	69°56.24
60	2130	10 Jan	30°01.50	69°56.70
61	2200	10 Jan	29°56.50	69°57.42
62	2215	10 Jan	29°54.10	69°57.85
63	2230	10 Jan	29°51.50 29°49.88	69°58.20
64	2245	10 Jan 10 Jan	29°49.88 29°48.53	69°57.35 69°57.53
65 66	2300 2315	10 Jan 10 Jan	29°45.38	69°57.68
67	2313	10 Jan 10 Jan	29°43.34	69°57.93
68	2345	10 Jan	29°41.66	69°58.26
69	0000	10 Jan	29°39.40	69°58.48
70	0015	10 Jan 11 Jan	29°37.18	69°58.15
70 71	0030	11 Jan	29°35.06	69°58.38
72	0045	11 Jan	29°33.00	69°58.23
73	0100	11 Jan	29°30.94	69°58.00
74	0115	11 Jan	29°28.71	69°57.77
75	0130	11 Jan	29°26.73	69°57.87
76	0145	11 Jan	29°24.76	69°57.54
77	0200	11 Jan	29°22.80	69°57.41
78	0215	11 Jan	29°20.85	69°57.49
79	0230	11 Jan	29°18.87	69°57.44
80	0245	11 Jan	29°17.15	69°57.85
81	0300	11 Jan	29°15.21	69°58.11
82	0315	11 Jan	29°13.30	69°57.62
83	0330	11 Jan	29°11.47	69°57.84
84	0345	11 Jan	29°09.43	69°57.62
85	0400	11 Jan	29°07.42	69°57.45
86	0415	11 Jan	29°05.63	69°57.35
87	0430	11 Jan	29°05.28	69°58.49
88	0504	11 Jan	29°03.87	69°57.87
89	0508	11 Jan	29°02.09	69°57.98
90	0515	11 Jan	29°02.24	69°57.93
91	0530	11 Jan	28°59.62	69°57.10
92	0547	11 Jan	28°58.49	69°58.26
93	0600	11 Jan	28°56.52	69°57.89
94	0614	11 Jan	28°54.12	69°57.85
95	0630	11 Jan	28°52.91	69°58.21
96	0645	11 Jan	28°50.92	69°57.67
97	0700	11 Jan	28°49.02	69°57.57
98	0715	11 Jan	28°47.16	69°57.34 69°57.16
99	0730 074.5	11 Jan	28°45.22	
100	0745	11 Jan	28°43.36	69°57.14

Table IV-1 (continued)

XBT#	TIME	DAY/MONTH	LATITUDE	LONGITUDE
101	0800	11 Jan	28°41.43	69°57 . 16
102	0815	11 Jan	28°39.42	69°57.09
103	0830	11 Jan	28°37.55	69°57.12
104	0845	11 Jan	28°35.33	69°56.40
105	0900	11 Jan	28°33.49	69°56.96
106	0915	11 Jan	28°31.55	69°56.80
107	0930	11 Jan	28°29.87	69°57.40
108	0945	11 Jan	28°28.30	69°57.99
109	1000	11 Jan	28°26.73	69°58.59
110	1015	11 Jan	28°24.74	69°58.34
111	1030	11 Jan	28°23.04	69°58.12
112	1045	11 Jan	28°21.16	69°57.92
113	1100	11 Jan	28°19.19	69°57.79
114	1115	11 Jan 11 Jan	28°14.23 28°15.00	69°57.67 69°57.51
115 116	1130 1145	11 Jan 11 Jan	28°13.34	69°57.46
117	1200	11 Jan 11 Jan	28°11.45	69°57.28
118	1215	11 Jan	28°09.51	69°57.19
119	1230	11 Jan	28°07.52	69°57.03
120	1245	11 Jan	28°05.84	69°56.85
121	1300	11 Jan	28°03.79	69°56.69
122	1315	11 Jan	28°01.92	69°56.67
123	1330	11 Jan	28°00.30	69°56.67
124	1345	11 Jan	27°58.20	69°56.69
125	1400	11 Jan	27°56.73	69°56.76
126	1415	11 Jan	27°55.02	69°56.70
127	1430	11 Jan	27°52.63	69°56.69
128	1445	11 Jan	27°50.99	69°55.98
129	1500	ll Jan	27°49.15	69°54.89
130	1515	ll Jan	27°46.05	69°53.43
131	1530	11 Jan	27°44.15	69°53.46
132	Bad Probe			
133	1545	11 Jan	27°41.64	69°53.32
134	1600	11 Jan	27°40.46	69°53.33
135	1615	11 Jan	27°38.62	69°53.07
136	1630	11 Jan	27°36.68	69°52.96
137	1645	11 Jan	27°34.79	69°52.81
138	1700	11 Jan	27°33.34	69°52.74
139	1715	11 Jan	27°31.74	69°52.71
140 141	1730 1745	11 Jan	27°30.18	69°52.56
141	1800	11 Jan 11 Jan	27°28.55 27°26.84	69°52.45 69°52.34
143	1815	11 Jan	27°25.16	69°52.28
144	1830	11 Jan	27°23.48	69°52.14
145	1845	11 Jan 11 Jan	27°21.75	69°52.03
146	1900	11 Jan	27°20.21	69°51.96
147	1915	11 Jan 11 Jan	27°18.43	69°51.98
148	1930	11 Jan	27°16.75	69°51.78
149	1945	11 Jan	27°15.18	69°51.33
150	2000	11 Jan	27°13.18	69°51.39
			-, 13,32	1, 32,07

Table IV-1 (continued)

XBT#	TIME	DAY/MONTH	LATITUDE	LONGITUDE
151	2015	11 Jan	27°11.91	69°51.63
152	2030	ll Jan	27°10.14	69°51.85
153	2045	11 Jan	27°08.43	69°52.21
154	2100	11 Jan	27°06.72	69°52.51
155	2115	11 Jan	27°04.95	69°52.58
156	2130	11 Jan	27°03.18	69°52.79
157	2145	ll Jan	27°01.46	69°52.92
158	2200	11 Jan	26°59.75	69°53.14
159	2215	ll Jan	26°58.12	69°53.40
160	2230	11 Jan	26°56.34	69°53.39
161	2245	ll Jan	26°54.52	69°53.44
162	2300	ll Jan	26°52.80	69°53.82
163	2315	ll Jan	26°51.19	69°54.18
164	2330	11 Jan	26°49.48	69°54.37
165	2345	11 Jan	26°47.77	69°54.59
166	0000	12 Jan	26°45.85	69°54.80
167	0015	12 Jan	26°44.29	69°55.03
168	0030	12 Jan	26°42.60	69°55.26
169	0045	12 Jan	26°40.79	69°55.54
170	0100	12 Jan	26°38.90	69°55.84
171	0115	12 Jan	26°37.28	69°55.77
172	0130	12 Jan	26°35.51	69°55.67
173	Bad Probe	12 001	20 33.31	07 33.07
174	0150	12 Jan	26°32.50	69°55.43
175	0200	12 Jan	26°31.81	69°55.40
176	0215	12 Jan 12 Jan	26°30.04	69°55.67
177	0230	12 Jan 12 Jan	26°28.17	69°55.71
178	0245	12 Jan	26°26.37	69°55.76
179	0300	12 Jan 12 Jan	26°24.60	69°55 . 80
180	0300	12 Jan 12 Jan	26°22.47	69°55.76
181	0330	12 Jan	26°20.00	69°56.00
182	Bad Probe	12 Jan	20 20,00	09 30.00
183	0349	12 Jan	26°17.76	69°55.63
184	0400	12 Jan	26°16.49	69°56.11
185	0415	12 Jan 12 Jan	26°14.38	69°55.95
186	0430	12 Jan	26°12.42	69°55 . 98
187	0445		26°10.22	69°56.02
188		12 Jan	26°07.71	69°55.97
189	0500	12 Jan	26°06.16	69°56.29
	0515	12 Jan		69°55.95
190	0530	12 Jan	26°04.02	
191	0545	12 Jan	26°02.03	69°56.10
192	0600	12 Jan	25°59.92	69°55.98
193	0615	12 Jan	25°57.96	69°56.17
194	0630	12 Jan	25°55.71	69°55.81
195	0645	12 Jan	25°53.79	69°56.22
196	0700	12 Jan	25°51.82	69°56.39
197	0715	12 Jan	25°50.05	69°56.77
198	0730	12 Jan	25°48.05	69°56.74
199	0745	12 Jan	25°46.04	69°56.84
200	0800	12 Jan	25°43.76	69°56.55

Table IV-1 (continued)

XBT#	TIME	DAY/MONTH	LATITUDE	LONGITUDE
201	0815	12 Jan	25°41.65	69°56.77
202	0830	12 Jan	25°39.43	69°56.85
203	0845	12 Jan	25°37.23	69°56.89
204	0900	12 Jan	25°34.99	69°57.03
205	0915	12 Jan	25°32.85	69°57.19
206	0930	12 Jan	25°30.38	69°56.82
207	0945	12 Jan	25°29.47	69°57.58
208	1000	12 Jan	25°31.14	69°59.48
209	1015	12 Jan	25°32.54	70°01.47
210	1020	12 Jan	25°34.88	70°03.66
211	1045	12 Jan	25°36.63	70°05.49
212	1100	12 Jan	25°38.36	70°07.50
213	1115	12 Jan	25°40.03	70°09.46
214	1130	12 Jan	25°41.82	70°11.47
215	1145	12 Jan	25°43.35	70°13.18
216	1200	12 Jan	25°45.50	70°14.50
217	1215	12 Jan	25°47.10	70°17.75 70°19.55
21.8	1230	12 Jan	25°48.67	70°21.41
219	1245	12 Jan	25°50.17	70°23.41
2 20	1300	12 Jan	25°51.68	70°25.60
221	1315	12 Jan	25°53.24	70°27.33
222	1330	12 Jan	25°54.57 25°56.16	70°29.38
223	1345	12 Jan 12 Jan	25°57.83	70°31.40
224	1400 1415	12 Jan 12 Jan	25°59.50	70°33.28
225	1415	12 Jan 12 Jan	26°01.12	70°35.28
226	1445	12 Jan 12 Jan	26°02.82	70°36.89
227 228	1500	12 Jan 12 Jan	26°04.54	70°38.62
	1515	12 Jan	26°06.15	70°40.30
229 230	1530	12 Jan 12 Jan	26°07.75	70°42.08
231	1545	12 Jan	26°09.38	70°43.97
232	1600	12 Jan	26°11.01	70°45.82
233	1615	12 Jan	26°12.62	70°47.61
234	1630	12 Jan	26°14.25	70°49.37
235	1645	12 Jan	26°15.97	70°51.18
236	1700	12 Jan	26°17.60	70°52.87
237	1715	12 Jan	26°19.25	70°53.78
238	1730	12 Jan	26°20.89	70°52.11
239	1745	12 Jan	26°22.67	70°50.48
240	1800	12 Jan	26°24.31	70°49.67
241	1815	12 Jan	26°25.97	70°47.01
242	1830	12 Jan	26°27.58	70°45.30
243	1845	12 Jan	26°29.24	70°43.60
244	1900	12 Jan	26°29.15	70°41.69
245	1915	12 Jan	26°27.57	70°39.82
246	1930	12 Jan	26°25.98	70°37.97
247	1945	12 Jan	26°24.39	70°36.19
248	2000	12 Jan	26°22.80	70°34.43
249	2015	12 Jan	26°21.21	70°32.68
250	2030	12 Jan	26°19.66	70°30.94
230		7= 00H	-4 -7100	

Table IV-1 (continued)

XBT#	TIME	DAY/MONTH	LATITUDE	LONGITUDE
251	2045	12 Jan	26°18.02	70°29.13
252	2100	12 Jan	26°16.39	70°27.32
253	2115	12 Jan	26°14.77	70°25.54
254	2130	12 Jan	26°13.15	70°23.76
255	2145	12 Jan	26°11.53	70°21.87
256	2200	12 Jan	26°10.01	70°20.33
257	2215	12 Jan	26°08.95	70°18.33
258	2230	12 Jan	26°06.98	70°16.40
259	2245	12 Jan	26°05.36	70°14.42
260	2300	12 Jan	26°03.85	70°12.73
261	2315	12 Jan	26°02.36	70°11.07
262	2330	12 Jan	26°00.82	70°09.30
263	2345	12 Jan	25°59.25	70°07.59
264	0000	13 Jan	25°57.79	70°05.93
265	0015	13 Jan	25°56.21	70°03.87
266	0030	13 Jan	25°54.95	70°02.23
267	0045	13 Jan	25°53.46	70°00.48
268	0100	13 Jan	25°52.09	69°58.91
269	0115	13 Jan	25°50.60	69°57.04
270	0130	13 Jan	25°49.03	69°55.01
271	0145	13 Jan	25°47.76	69°53.52
272	0200	13 Jan	25°46.22	69°51.57
273	0215	13 Jan	25°44.88	69°50.16
274	0230	13 Jan	25°43.14	69°47.99
275	0245	13 Jan	25°41.70	69°46.37
276	0300	13 Jan	25°40.41	69°45.13
277	0315	13 Jan	25°38.76	69°43.27
278	0330	13 Jan	25°37.12	69°41.59
279	0345	13 Jan	25°37.59	69°40.88
280	0400	13 Jan	25°40.16	69°41.38
281	0415	13 Jan	25°42.44	69°41.22
282	Bad Probe			
283	0435	13 Jan	25°43.87	69°41.20
284	0445	13 Jan	25°47.21	69°41.17
285	0500	13 Jan	25°49.62	69°41.36
286	0515	13 Jan	25°51.88	69°41.14
287	0530	13 Jan	25°54.30	69°41.12
288	0545	13 Jan	25°56.65	69°41.25
289	0600	13 Jan	25°58.91	69°41.23
290	0615	13 Jan	26°00.91	69°42.42
291	0630	13 Jan	26°02.52	69°44.08
292	0645	13 Jan	26°04.15	69°45.91
293	0700	13 Jan	26°05.61	69°47.24
294	0715	13 Jan	26°07.23	69°48.89
295	0730	13 Jan	26°09.00	69°50.72
296	0745	13 Jan	26°10.65	69°52.25
297	0800	13 Jan	26°12.17	69°53.75
298	0815	13 Jan	26°13.98	69°55.77
299	0830	13 Jan	26°15.51	69°57.30
300	0845	13 Jan	26°17.24	69°59.02
	- · -	·	· -·-·	·

Table IV-1 (continued)

XBT#	TIME	DAY/MONTH	LATITUDE	LONGITUDE
301	0900	13 Jan	26°18.81	70°00.92
302	0915	13 Jan	26°20.39	70°02.71
303	0930	13 Jan	26°22.02	70°04.51
304	0945	13 Jan	26°23.64	70°06.26
305	1000	13 Jan	26°25.35	70°08.07
306	1015	13 Jan	26°27.03	70°09.73
307	1030	13 Jan	26°28.78	70°11.58
308	1045	13 Jan	26°30.45	70°13.41
309	1100	13 Jan	26°32.13	70°15.35
310	1115	13 Jan	26°33.70	70°16.97
311	1130	13 Jan	26°35.42	70°18.91
312	1145	13 Jan	26°36.94	70°20.58
313	1200	13 Jan	26°38.65	70°22.67
314	1215	13 Jan	26°40.43	70°24.80
315	1230	13 Jan	26°42.09	70°26.61
316	1245	13 Jan	26°43.72	70°28.31
317	1300	13 Jan	26°45.36	70°30.03
318	1315	13 Jan	26°47.08	70°31.82
319	1330	13 Jan	26°48.80	70°33.58
320	1345	13 Jan	26°50.48	70°35.44
321	1400	13 Jan	26°52.18	70°37.29
322	1415	13 Jan	26°53.88	70°39.13
323	1430	13 Jan	26°55.55	70°41.00
324	1445	13 Jan	26°57.18	70°42.78
325	1500	13 Jan	26°58.81	70°44.58
326	1515	13 Jan	26°59.72	70°44.17
327	1530	13 Jan	26°59.85	70°41.49
328	1545	13 Jan	26°59.99	70°38.73
329	1600	13 Jan	27°00.21	70°35 . 94
330	1615	13 Jan	27°00.50	70°33.03
331	1633	13 Jan	27°00.81	70°30.00
332	1645	13 Jan	27°00.97	70°27.64
333	1700	13 Jan	27°01.17	70°24.86
334	1715	13 Jan	27°01.36	70°22.07
335	1730	13 Jan	27°01.61	70°19.26
336	1745	13 Jan	27°01.76	70°16.42
337	1800	13 Jan	27°00.66	70°14.22
338	1815	13 Jan	26°59.12	70°12.17
339	1830	13 Jan	26°57.52	70°10.04
340	1845	13 Jan	26°55.90	70°07.98
341	1900	13 Jan	26°54.32	70°05 . 96
342	1915	13 Jan	26°52.61	70°04.01
343	1930	13 Jan	26°50.92	70°02.17
344	1945	13 Jan	26°49.24	70°00.21
345	2000	13 Jan	26°47.59	69°58.14
346	2015	13 Jan	26°45.83	69°56.01
347	2030	13 Jan	26°44.04	69°53.93
348	2045	13 Jan	26°42.24	69°51.97
349	2100	13 Jan	26°40.36	69°49.80
350	2115	13 Jan	26°38.84	69°47.90

Table IV-1 (continued)

XBT#	TIME	DAY/MONTH	LATITUDE	LONGITUDE
351	2130	13 Jan	26°37.21	69°45.96
352	2145	13 Jan	26°35.47	69°44.03
353	2200	13 Jan	26°33.74	69°42.24
354	2215	13 Jan	26°32.12	69°40.61
355	2230	13 Jan	26°30.32	69°38.69
356	2245	13 Jan	26°28.39	69°36.53
357	2300	13 Jan	26°26.62	69°34.43
358	Bad Probe		•	
359	2322	13 Jan	26°24.41	69°32.07
360	2330	13 Jan	26°23.78	69°31.30
361	2345	13 Jan	26°22.48	69°30.00
362	0000	14 Jan	26°20.90	69°28.00
363	0015	14 Jan	26°19.12	69°26.19
364	0030	14 Jan	26°18.71	69°24.16
365	0045	14 Jan	26°20.20	69°22.18
366	0100	14 Jan	26°21.66	69°20.44
367	0115	14 Jan	26°23.09	69°18.54 69°16.50
368 369	0130 0145	14 Jan	26°24.23 26°25.20	
370	0200	14 Jan 14 Jan	26°27.72	69°14.50 69°12.94
370 371	0200	14 Jan 14 Jan	26°29.18	69°10.85
372	0213	14 Jan 14 Jan	26°30.76	69°08.99
373	0245	14 Jan	26°32.10	69°09.41
374	0300	14 Jan	26°34.03	69°11.95
375	0315	14 Jan	26°35.55	69°13.64
376	0330	14 Jan	26°36.88	69°15.04
377	0345	14 Jan	26°38.30	69°16.73
378	Bad Probe			•• = ••
379	0405	14 Jan	26°40.40	69°19.46
380	0415	14 Jan	26°41.25	69°20.23
381	0430	14 Jan	26°43.17	69°22.65
382	0445	14 Jan	26°44.65	69°24.12
383	0500	14 Jan	26°46.56	69°26.65
384	0515	14 Jan	26°48.11	69°28.02
385	0530	14 Jan	26°49.73	69°29.72
386	Bad Probe			
387	0550	14 Jan	26°51.80	69°31.58
388	0600	14 Jan	26°53.14	69°33.14
389	0615	14 Jan	26°54.89	69°35.02
390	0630	14 Jan	26°56.53	69°36.34
391	0645	14 Jan	26°58.32	69°38.33
392	0700	14 Jan	26°59.93	69°39.85
393	0715	14 Jan	27°01.54	69°41.36
394	0730	14 Jan	27°03.11	69°42.94
395	0745	14 Jan	27°04.74	69°44.51
396	0800	14 Jan	27°06.35	69°46.27
397	0815	14 Jan	27°08.62	69°49.67
398	0830	14 Jan	27°10.99	69°53.06
399	0845	14 Jan	27°12.76	69°54.86
400	0900	14 Jan	27°14.14	69°56.22

Table IV-1 (continued)

XBT#	TIME	DAY/MONTH	LATITUDE	LONGITUDE
401	Bad Probe			
402	0920	14 Jan	27°15.82	69°57.87
403	0930	14 Jan	27°17.48	69°58.22
404	0945	14 Jan	27°19.23	69°56.19
405	1000	14 Jan	27°20.93	69°54.06
406	1015	14 Jan	27°22.39	69°52.13
407	1030	14 Jan	27°23.81	69°50.27
408	1045	14 Jan	27°25.56	69°48.17
409	1100	14 Jan	27°27.28	69°46.10
410	1115	14 Jan	27°28.76	69°44.26
411	1130	14 Jan	27°30.52	69°42.13
412	1145	14 Jan	27°29.83	69°40.23
413	1200	14 Jan	27°28.34	69°38.42
414	1215	14 Jan	27°26.70	69°36.36
415	1230	14 Jan	27°24.96	69°34.15
416	1245	14 Jan	27°23.50	69°32.78
417	1300	14 Jan	27°21.83	69°30.18
418	1315	14 Jan	27°20.24	69°28.30
419	1330	14 Jan	27°18.60	69°26.37
420	1345	14 Jan	27°16.92	69°24.43
421	1400	14 Jan	27°15.28	69°22.44
422	1415	14 Jan	27°13.72	69°20.69
423	1430	14 Jan	27°12.30	69°19.10
424	1445	14 Jan	27°09.40	69°13.41
425 426	1500	14 Jan	27°07.84	69°11.50
426	1515	14 Jan	27°06.19	69°09.59
427 428	1530 1545	14 Jan	27°04.52 27°02.66	69°07.80
429	1545 1600	14 Jan	27°02.66 27°01.13	69°05.83 69°04.26
430	1615	14 Jan 14 Jan	26°59.38	69°02.56
431	1630	14 Jan	26°57.50	69°00.66
432	1645	14 Jan	26°55.74	68°58.99
433	1700	14 Jan	26°53.90	68°57.66
434	1715	14 Jan	26°53.43	68°58.50
435	1730	14 Jan	26°53.55	69°01.56
436	1745	14 Jan	26°53.69	69°03.21
437	1800	14 Jan	26°53.82	69°05.74
438	1815	14 Jan	26°53.96	69°08.16
439	1830	14 Jan	26°54.13	69°10.41
440	1845	14 Jan	26°54.18	69°12.60
441	1900	14 Jan	26°54.27	69°14.09
442	0415	15 Jan	26°55.33	69°15.12
443	0445	15 Jan	26°55.21	69°18.56
444	0515	15 Jan	26°57.11	69°20.30
445	0545	15 Jan	26°57.23	69°24.53
446	0615	15 Jan	26°57.39	69°28.82
447	0645	15 Jan	26°58.51	69°33.90
448	0700	15 Jan	26°59.03	69°38.99
449	0715	15 Jan	26°59.07	69°41.06
450	0745	15 Jan	26°59.37	69°44.96

Table IV-1 (continued)

XBT#	TIME	DAY/MONTH	LATITUDE	LONGITUDE
451	0815	15 Jan	26°59.48	69°48.69
452	0845	15 Jan	26°59.73	69°52.47
453	0915	15 Jan	27°03.32	69°53.80
454	0945	15 Jan	27°06.53	69°55.40
455	1015	15 Jan	27°11.64	69°57.94
456	1045	15 Jan	27°13.03	69°58.66
457	1115	15 Jan	27°16.17	70°00.58
458	1145	15 Jan	27°18.54	70°03.06
459	1250	16 Jan	27°03.59	69°47.01
460	1307	16 Jan	27°04.96	69°48.48
461	1315	16 Jan	27°05.80	69°49.54
462	1330	16 Jan	27°07.14	69°51.25
463	1345	16 Jan	27°08.54	69°52.97
464	1700	19 Jan	27°12.70	69°32.45
465	1715	19 Jan	27°14.56	69°30.83
466	1730	19 Jan	27°16.30	69°29.17
467	1745	19 Jan	27°18.08	69°27.51
468	1800	19 Jan	27°19.87	69°25.81
469	1815	19 Jan	27°21.68	69°24.11
470	1830	19 Jan	27°23.58	69°22.46
471 472	1845	19 Jan	27°25.34	69°20.79
472	1900	19 Jan	27°27.18	69°19.19
473 474	1915	19 Jan	27°28.97	69°17.42
	1930	19 Jan	27°30.75 27°27.18	69°15.67 69°13.93
475 476	1945 2000	19 Jan 19 Jan	27 27.16 27°34.27	69°12.14
477	2015	19 Jan	27°34.27 27°36.05	69°10.54
477	2013	19 Jan	27°37.87	69°08.65
479	2045	19 Jan	27°39.64	69°06.81
480	2100	19 Jan	27°41.33	69°05.19
481	2130	19 Jan	27°45.17	69°01.17
482	2200	19 Jan	27°48.91	68°57.59
483	2230	19 Jan	27°53.09	68°54.33
484	2300	19 Jan	27°56.91	68°50.24
485	2330	19 Jan	28°01.04	68°46.93
486	1220	24 Jan	30°02.49	66°45.26
487	1245	24 Jan	29°59.90	66°46.62
488	1315	24 Jan	29°56.34	66°49.16
489	1345	24 Jan	29°52.50	66°52.47
490	1415	24 Jan	29°48.40	66°55.69
491	1445	24 Jan	29°44.48	66°58.88
492	1515	24 Jan	29°40.56	67°01.90
493	1545	24 Jan	29°36.49	67°04.87
494	1615	24 Jan	29°32.24	67°08.25
495	1645	24 Jan	29°28.71	67°10.99
496	1715	24 Jan	29°24.82	67°13.55
497	1745	24 Jan	29°21.88	67°16.74
498	1815	24 Jan	29°18.56	67°19.96
499	1845	24 Jan	29°14.96	67°22.96
500	1915	24 Jan	29°11.29	67°26.12

Table IV-1 (continued)

1888 CHROSEN, BERNEKE GROSESS KRIEGE CHROSEKER

XBT#	TIME	DAY/MONTH	LATITUDE	LONGITUDE
501	1945	24 Jan	29°07.60	67°29.17
502	2015	24 Jan	29°03.92	67°32.34
503	2045	24 Jan	29°00.22	67°35.41
504	2115	24 Jan	28° 56. 54	67°38.18
505	2145	24 Jan	28°52.87	67°41.25
50 6	2215	24 Jan	28°49.26	67°44.71
507	2245	24 Jan	28°45.54	67°47.58
508	2315	24 Jan	28°41.67	67°50.19
509	2345	24 Jan	28°37.89	67°53.68
510	0015	25 Jan	28°34.18	67°56.99
511	0045	25 Jan	28°30.40	68°00.27
512	0115	25 Jan	28°26.66	68°03.76
513	0145	25 Jan	28°22.84	68°07.27
514	0215	25 Jan	28°18.83	68°10.28
515	0245	25 Jan	28°14.97	68°13.83
516	Bad Probe			
517	0320	25 Jan	28°10.30	68°17.30
518	0345	25 Jan	28°06.71	68°19.74
519	0415	25 Jan	28°02.84	68°22.97
520	0445	25 Jan	27°58.79	68°25.75
521	0515	25 Jan	27°55.03	68°28.86
522	0545	25 Jan	27°51.68	68°32.33
523	0615	25 Jan	27°48.55	68°36.39
524	0645	25 Jan	27°45.29	68°40.03
525	0715	25 Jan	27°42.19	68°43.76
526	0745	25 Jan	27°39.03	68°47.58
527	0815	25 Jan	27°35.60	68°50.70
528	0845	25 Jan	27°31.81	68°53.51
529	0915	25 Jan	27°28.57	68°56.96
530	0945	25 Jan	27°26.32	69°01.42
531	1015	25 Jan	27°24.22	69°05.95
532	1045	25 Jan	27°22.04	69°10.02
533	1115	25 Jan	27°19.83	69°14.35
534	1720	30 Jan	26°38.11	69°26.64
535	1720	30 Jan	26°37.07	69°25.63
536	1745	30 Jan	26°35.33	69°23.64
537	1800	30 Jan	26°33.59	69°21.79
538	1815	30 Jan	26°31.85	69°20.01
539	1830	30 Jan	26°30.19	69°18.22
540	1845	30 Jan	26°28.52	69°16.49
541	1900			69°14.74
542		30 Jan	26°26.84	
	1915	30 Jan	26°25.15	69°13.04
543	1930	30 Jan	26°23.44	69°11.37
544	1945	30 Jan	26°21.69	69°09.61
545	2000	30 Jan	26°20.08	69°07.90
546	2015	30 Jan	26°18.30	69°06. 03
547	2030	30 Jan	26°16.56	69°04.13
548	2045	30 Jan	26°14.72	69°02.26
549	21 00	30 Jan	26°13.11	69°00.41
550	2115	30 Jan	26°11.71	68°58.66

Table IV-1 (continued)

XBT#	TIME	DAY/MONTH	LATITUDE	LONGITUDE
551	2130	30 Jan	26°10.07	68°56.65
552	2145	30 Jan	26°08.51	68°54.88
553	2200	30 Jan	26°07.02	68°53.23
554	2215	30 Jan	26°05.35	68°51.62
555	2230	30 Jan	26°03.60	68°49.48
556	2245	30 Jan	26°01.62	68°47.33
557	2300	30 Jan	25°59.78	68°45.68
558	231.5	30 Jan	25°59.14	68°43.70
559	2330	30 Jan	25°59.07	68°41.50
560	2345	30 Jan	25°59.07	68°39.66
561	0000	31 Jan	25°59.14	68°36.86
562	0015	31 Jan	25°59.09	68°34.25
563	0030	31 Jan	25°59.17	68°31.78
564	0045	31 Jan	25°59.33	68°29.38
565	0100	31 Jan	25°59.38	68°26.89
566	0115	31 Jan	25°59.55	68°24.27
567	0130	31 Jan	25°59.69	68°21.89
568	0145	31 Jan	25°59.92	68°19.75
569	0200	31 Jan	26°01.55	68°21.59
570	0215	31 Jan	26°03.14	68°23.61
571	0230	31 Jan	26°04.91	68°25.56
572	0245	31 Jan	26°06.41	68°27.62
573	0300	31 Jan	26°07.97	68°29.74
574	0315	31 Jan	26°09.55	68°31.78
575	0330	31 Jan	26°10.94	68°33.73
576	0345	31 Jan	26°12.55	68°35.74
577 570	0400	31 Jan	26°14.00	68°37.77
578	0415	31 Jan	26°15.58	68°39.69
579	0430	31 Jan	26°15.19	68°41.41
580	0447	31 Jan	26°18.94	68°43.52
581	0502	31 Jan	26°20.03	68°45.84
582	0517	31 Jan	26°20.21	68°47.91
583 584	0531	31 Jan	26°23.56 26°25.55	68°49.62 68°51.37
	0548 0601	31 Jan	26°27.27	68°53.14
585 586		31 Jan		68°54.86
586 587	0616 0631	31 Jan 31 Jan	26°28.98 26°30.46	68°57.04
588	0649	31 Jan	26°32.10	68°59.24
589	0659	31 Jan	26°33.72	69°01.43
590	0713	31 Jan	26°35.29	69°03.78
591	0731	31 Jan	26°36.87	69°05.86
592	0731	31 Jan	26°38.42	69°07.91
593	0759	31 Jan	26°40.90	69°10.14
594	0814	31 Jan	26°41.61	69°12.31
595	0829	31 Jan	26°43.11	69°14.27
5 96	0846	31 Jan	26°44.73	69°16.35
597	0859	31 Jan	26°46.37	69°18.65
598	Bad Probe	Ja vau	40 70137	V/ 20103
599	0430	6 Feb	28°15.62	70°07.40
600	0530	6 Feb	28°22.98	69°59.04
U UU	0,50	O LED	20 22.70	U) J).U4

Table IV-1 (continued)

XBT#	TIME	DAY/MONTH	LATITUDE	LONGITUDE
601	0629	6 Feb	28°29.81	69°50.30
602	0730	6 Feb	28°36.86	69°41.46
603	0830	6 Feb	28°42.02	69°32.20
604	0930	6 Feb	28°50.63	69°23.41
605	1030	6 Feb	28°57.63	69°13.99
606	1130	6 Feb	29°04.68	69°04.62
607	1230	6 Feb	29°12.62	68°51.39

FASINEX Knorr 123 XBT Total Pattern

Figure IV-13

FASINEX Knorr 123 XBT Section 1

Figure IV-14

FASINEX Knorr 123 XBT Section 2

Figure IV-15

FASINEX Knorr 123 XBT Section 3

Figure IV-16

Figure IV-17

Figure IV-18a. XBT Section 1. (KNORR 123)

THE PROPERTY OF THE PROPERTY O

Figure IV-18b. XBT Section 2. (KNORR 123)

Figure IV-18c. XBT Section 3. (KNORR 123)

WARE Received 1888 1888 - Property Constitution Property

Figure IV-18d. XBT Section 4. (KNORR 123)

Table IV-2: KNORR CRUISE 123 XBT LOG

XBT #	TIME (GMT)	DAY/MONTH	LATITUDE	LONGITUDE
4	2330	6 Jun	36°26.29	71°05.17
5	0130	7 Jun	36°09.27	71°10.04
6	0330	7 Jun	35°52.38	71°14.15
7	0530	7 Jun	35°36.04	71°19.27
8	0630	7 Jun	35°27.16	71°20.96
9	0730	7 Jun	35°18.54	71°22.49
10	0930	7 Jun	35°02.26	71°26.71
11	1130	7 Jun	34°45.33	71°32.27
12	1330	7 Jun	34°26.03	71°35.91
13	1530	7 Jun	34°07.79	71°39.73
14	1730	7 Jun	33°52.01	71°43.41
15 16	1930 2130	7 Jun	33°39.09	71°47.38
	2130	Bad Probe	22907 / 2	71951 / 0
17 18	2330	7 Jun 7 Jun	33°27.43 33°17.12	71°51.42 71°54.61
19	0130	7 Jun 8 Jun	33°07.39	71°56.81
20	0330	8 Jun	32°55.98	71°58.26
21	0530		32°43.59	71 36.26 72°00.66
22	0730	8 Jun 8 Jun	32°29.02	72°04.33
23	0930	8 Jun	32°12.98	72°09.84
24	1130	8 Jun	31°54.48	72°11.61
25	1230	8 Jun	31°44.31	72°13.22
26	1330	8 Jun	31°34.49	72°15.05
27	1430	8 Jun	31°25.53	72°17.13
28	1530	8 Jun	31°15.76	72°19.56
29	1630	8 Jun	31°06.65	72°21.39
30	1730	8 Jun	30°59.70	72°22.03
31	1830	8 Jun	30°51.08	72°23.05
32	1930	8 Jun	30°41.92	72°24.18
33	2030	8 Jun	30°32.74	72°25.51
34	21 30	8 Jun	30°23.59	72°26.94
35	2230	8 Jun	30°14.02	72°28.80
36	2330	8 Jun	30°04.27	72°31.02
37	0030	9 Jun	29°54.43	72°33.32
38	0130	9 Jun	29°43.97	72°35.77
39	0230	9 Jun	29°33.74	72°37.62
40	0330	9 Jun	29°23.51	72°44.71
41	0430	9 Jun	29°13.46	72°46.35
42	0530	9 Jun	29°03.95	72°48.11
43	0630	9 Jun	28°54.41	72°49.94
44	0730	9 Jun	28°44.80	72°51.55
45	0830	9 Jun	28°35.01	72°52.97
46	0930	9 Jun	28°25.26	72°53.99
47	1030	9 Jun	28°15.05	72°54.93
48	1130	9 Jun	28°04.46	72°56.26
49	1230	9 Jun	27°54.62	72°54.32
50	1330	9 Jun	27°44.21	73°01.55

Table IV-2 (continued)

XBT #	TIME (GMT)	DAY/MONTH	LATITUDE	LONGITUDE
51	1430	9 Jun	27°34,21	73°04.16
52	1530	9 Jun	27°24.25	73°07.14
53	1630	9 Jun	27°14.38	73°10.60
54	1730	9 Jun	27°04.71	73°13.71
55	1830	9 Jun	26°55,27	73°16.55
56	1930	9 Jun	26°45.78	73°19.20
57	2030	9 Jun	26°36.10	73°21.56
58	2130	9 Jun	26°26.69	73°23.90
59	2230	9 Jun	26°17.54	73°26.11
60	2330	9 Jun	26°08.02	73°28.42
61	0030	10 Jun	25°57.52	73°30.96
62	0130	10 Jun	25°47.01	73°32.68
63	0230	Bad Probe		
64	0230	10 Jun	25°36.20	73°33.99
65	0330	10 Jun	25°25.39	73°35.40
66	0430	10 Jun	25°14.72	73°37.14
67	0830	10 Jun	25°09.93	73°27.03
68	0930	10 Jun	25°11.00	73°16.78
69	1030	10 Jun	25°12.31	73°07.01
70	1130	10 Jun	25°13.59	72°56.86
71	1230	10 Jun	25°15.05	72°46.29
72	1330	10 Jun	25°16.36	72°36.94
73	1930	11 Jun	25°03.94	77°18.43
74	2030	11 Jun	25°17.33	77°14.35
75	2130	11 Jun	25°28.00	77°09.95
76	2230	11 Jun	25°38.12	77°04.35
77	2330	11 Jun	25°42.44	76°54.21 76°42.38
78 70	0030	12 Jun	25°42.55 25°42.07	76°30.54
79 80	0130 0230	12 Jun 12 Jun	25°42.10	76°19.06
80 81	0330	12 Jun 12 Jun	25°41.70	7 6° 07.75
82	0430	12 Jun	25°40.97	75°56.94
83	0530	12 Jun 12 Jun	25°39.76	75°45.62
84	0630	12 Jun	25°38.72	75°34.25
85	0730	12 Jun	35°37.54	75°22.54
86	0830	12 Jun	25°36.98	75°11.55
87	0930	12 Jun	25°36.48	75°00.23
88	1030	12 Jun	25°35.81	74°48.97
89	1130	12 Jun	25°35.13	74°37.76
90	1230	12 Jun	25°34.41	74°26.27
91	1330	12 Jun	25°33.89	74°15.57
92	1430	12 Jun	25°33.57	74°04.40
+3	1530	12 Jun	25°33.98	73°53.95
94	1630	12 Jun	25°33.28	73°43.49
15	1730	12 Jun	25°33.38	73°33.39
+6	1830	12 Jun	25°33.84	73°23.29
- 7	1930	12 Jun	25°33.63	73°13.23
* rt	2030	12 Jun	25°33.37	73°03.35
• •	21 30	12 Jun	25°33.23	72°53.46
	2230	12 Jun	25°33.11	72°43.88
		• • ===	-	= = = =

Taile IVel - ratinged

XBT #	TIME (GMT)	DAY/MONTH	LATITUDE	JONGITT DE
101	2330	12 Jun	25° 12.76	S. Storage
102	0030	13 Jun	25731.80	12 . 1.
103	91.30	13 Jun	25° 11.08	1.11
104	9230	i) Jun	25"3 1.65	12.733.4
105	0330	13 Jun	25730.27	11/10/2014
106	()430 223	Bad Probe	,	7 · 5 · 4 · 44
107)435	13 Jun	25° 392.24 35° 24.34	71 742.44 71 737.34
108 109	0530 1630	13 Jun 13 Jun		
110	1977 1130	Bad Probe		
111) * 3 5	13 Jun	237.14.23	1,7.1.4
112) H 30	13 Jun	3° . 4. 1	6.1
113	1930	13 Jun	25724.41	2 4 4 4
114	1 230	13 Jun	28°28.36	100 14.
115	1130	13 Jun	25°28.58	* 67.3.
Lib	.235	i t Jun	25726.29	100 13 14 . 4 ts
117	21 · H)	13 Jun	25*28.12	200 12.74
118	2115	13 Jun	25730.54	10003.10
119	21.30	13 Jun	25*33.98	19203.28
120	21.45	13 Jun	25* (5.80	20003.36
121	2200	13 Jun	25°38.22	70003.51
122	7215	13 Jun	25740.87	70203.7.
123	2230	13 Jun	25 43.45	70203.78
124	2245	13 Jun	25246.11	70°03.94
125	2.3(8)	13 Jun	25°48.78	70204.02
126	2315	13 Jun	25*51.32	70*03.93
127	2330	13 Jun	25°53.98	70*03.94
128	2345	13 Jun	25*56.67	70°04.03
129	9000	Bad Probe	_	
130	9015	14 Jun	26*()2.24	70°03.37
131	9930	14 Jun	26°04.62	70°03.77
132	0045	14 Jun	26°07.71	70°04.00
133	0100	14 Jun	26°10.84	70°03 .9 0 70°03 . 76
134 135	0130 0.45	lá Jun	26*16.23 26*18.81	70°03.71
	0200	14 Jun 14 Jun	26°22.67	70°03.68
136 137	0215	14 Jun 14 Jun	26*24.26	70°03.34
138	0230	14 Jun	26°27.25	70°03.45
139	0245	14 Jun	26°30.11	70°03.48
140	0300	14 Jun	26°32.71	70°03.48
141	0315	14 Jun	26°35.36	70°03.11
142	0330	14 Jun	26°38.79	70°03.11
143	0345	14 Jun	26°40.91	70°03.71
144	0400	14 Jun	26°43.53	70°03.31
145	0415	14 Jun	26°46.29	70°03.39
146	0430	14 Jun	26°49.01	70°03.49
147	0445	14 Jun	26°51.80	70°03.49
148	0500	14 Jun	26°54.54	70°03.34
149	0515	14 Jun	26°57.26	70°03.13
150	0530	14 Jun	27°00.01	70°02.97
- / 4	0,50	2. 0411	2, 00001	

Table IV-2 (continued)

KBT ≠	T # TIME DAY/MONTH (GMT)		LATITUDE	LONGITUDE		
1 - 1	0545	14 Jun	27°02.85	70°02.95		
1 1	0600	14 Jun	27°05.43	70°02.64		
1 3	0615	14 Jun	27°08.47	70°02.43		
4 1-4	0630	14 Jun	27°11.27	70°92.08		
: 3	0645	14 Jun	27°13.98	70°01.59		
1.16	1346	15 Jun	26°56.72	69°40.03		
1 1	1730	15 Jun	27°03.68	69°39.02		
1 4	2118	21 Jun	27°06.50	69°54.44		
1.50	2130	21 Jun	27°08.96	69°54.58		
· Far j	2145	21 Jun	27°11.70	69°54.63		
161	2.200	21 Jun	27°14.17	69°54.74		
163	2215	21 Jun	27°18.16	69°58.39 GPS		
104	2230	21 Jun	27°20.40	69°58.42 GPS		
165	2245	21 Jun	27°23.40	69°58.43 GPS		
lhh	2300	21 Jun	27°26.51	69°58.42 GPS		
167	2315	21 Jun	27°28.69	69°58.40 GPS		
168	2330	21 Jun	27°31.31	69°58.36 GPS		
104	2345	21 Jun	27°33.90	69°58.33 GPS		
170	0000	22 Jun	27°37.20	69°58.28 GPS		
171	0015	22 Jun	27°39.12	69°58.29 GPS		
171A	0030	22 Jun	27°42.73	69°58.32 GPS		
1/2	0045	22 Jun	27°44.36	69°58.34 GPS		
173	0100	22 Jun	27°46.94	69°58.45 GPS		
174	0120	22 Jun	27°49.53	69°58.63 GPS		
175	0130	22 Jun	27°52.14	69°58.81 GPS		
176	0145	22 Jun	27°54.70	69°59.00 GPS		
177	0200	22 Jun	27°57.26	69°59.27 GPS		
178	0220	22 Jun	27°59.87	69°59.60 GPS		
179	0230	22 Jun	28°02.49	69°59.92 GPS		
180	0245	22 Jun	28°05.12	70°00.25 GPS		
181	0315	22 Jun	28°10.57	70°00.95 GPS		
182	0330	22 Jun	28°13.02	70°01.29 GPS		
183	0415	22 Jun	28°20.31	69°59.45		
184	0430	22 Jun	28°22.87	69°59.90		
185	0445	22 Jun	28°25.72	70°00.51		
186	0500	22 Jun	28°28.56	70°00.79		
187	0515	22 Jun	28°31.20	70°01.28		
188	0530	Bad Probe	•	_		
189	0545	22 Jun	28°36.64	70°02.32		
190	0600	22 Jun	28°38.93	70°02.37		
191	0615	22 Jun	28°42.00	70°03.06		
192	0630	22 Jun	28°44.77	70°03.26		
193	0645	22 Jun	28°47.48	70°03.87		
194	0700	22 Jun	28°50.04	70°04.46		
195	0715	22 Jun	28°53.06	70°04.51		
196	0730	22 Jun	28°56.06	70°05.12		
197	0745	22 Jun	28°58.67	70°05.37		
198	0800	22 Jun	29°01.34	70°05.76		
199	0815	22 Jun	29°04.12	70°06.29		

Table IV-2 (continued)

XBT #	TIME (GMT)	DAY/MONTH	LATITUDE	LONGITUDE
201	0830	22 Jun	29°06.79	70°06.69
202	0845	22 Jun	29°04.48	70°06.92
203	0900	22 Jun	29°12.17	70°07.31
204	0915	22 Jun	29°15.33	70°07.80
205	0945	22 Jun	29°20.39	70°08.21
206	1000	22 Jun	29°23.09	70°08.19
207	1015	22 Jun	29°25.81	70°08.71
208	1030	22 Jun	29°28.43	70°09.00
209	1045	22 Jun	29°31.02	70°09.14
210	1100	22 Jun	29°33.55	70°09.26
211	1115	22 Jun	29°36.09	70°09.41
212	1130	22 Jun	29°38.67	70°09.61
21.3	1145	22 Jun	29°41.27	70°09.86
214	1200	22 Jun	29°43.71	70°10.02
21.5	1215	22 Jun	29°46.47	70°10.15
216	1230	22 Jun	29°49.18	70°10.18
21.7	1245	22 Jun	29°51,59	70°10,48

V. FASINEX Underway Sampling

a. Oceanographic Log

Phase One - KNORR 119

An oceanographic log was recorded at 15 minute intervals on KNORR 119 from 10-20 January for Leg 1 and 24 January-6 February 1986 for Leg 2. The variables logged were time, LORAN C latitude and longitude, sea surface temperature from buckets, SAIL, PRT, towed fish sensor, when available, XBT surface temperature, XBT 40m temperature and depth of XBT 20 C isotherm. The LORAN C data were stored to an IBM AT using floppy disks. The SAIL, PRT, and towed fish data were stored every minute on an Apple IIe using floppy disks. Two different underway towed sensors were used. Both sensors were modified XBT probes. See Figure Va-5. One sensor plotted directly to a strip chart. The other was logged to one of the Apple IIes in the main lab. The XBT data was displayed on a strip chart and stored to Bathysystem cassette.

Bucket temperatures taken very 15 minutes during the XBT radiator pattern (Section 2) were used for Figure Va-1 contours. Water samples were taken hourly during Section 2. The salinity contours are shown in Figure Va-2.

During the intensive XBT survey, whole and half degree isotherms were read from the strip chart and hand plotted.

Figure Va-1 Contoured Bucket Temperatures Across the Front

Figure Va-2 Contoured Salinity Across the Front

Figure Va-3 Bucket Temperatures by Time Figure Va-4 Towed Fish Sensor Photograph

Figure Va-5 Towed Fish Data

Table Va-1 Example of 15 Minute Oceanographic Log

Phase Three - KNORR 123

An underway oceanographic log was maintained during KNORR 123. It contains the same information as the KNORR 119 log, except that there was no PRT and a brief salinity survey was run while logging the SAIL salinity.

Figure Va-6 Bucket Temperatures

Table Va-2 Example of 15 Minute Oceanographic Log

Figure Va-1. Contoured Bucket Temperatures Across the Front. (KNORR 119)

Figure Va-2. Contoured Salinity Across the Front. (KNORR 119)

KNORR 119

Leg 1

Leg 2

Figure Va-3. Bucket Temperatures from KNORR 119 Underway Oceanographic Log.

Figure Va-5. Bucket and Towed Fish Data

Table Va-1: Example of KNORR 119 Underway (15 minute) Oceanographic Log

Month Day	Time	Lati tude	Longitude	Towed Fish SST	Bucket SST	SAIL SST	SAIL Salinity	40 m.	Mixed Layer Depth	20° Isotherm Depth
0110	2230	29°53.03	69°56.76	23.0	22.2					130
0110	2245	29° 50.57	69°56.51	23.0	22.0			22.2	33	113
0110	2 300	29°48.53	69°57.53	22.8	22.0			22.2	75	108
0110	2315	29°46.11	69°57.91	22.7	22.0			22.2	68	108
0110	2330	29°43.87	69°57.93	22.7	22.1	22.14		22.0	70	108
0110	2345	29°41.66	69°58.26	22.8	21.7			22.1		
0110	2400	29°39.40	69°58.48	22.6	21.7	21.98		21.8	90	
0111	0015	29°37.18	69°58.37	22.5	21.8	22.0		21.8	90	117
0111	0030	29°35.06	69°58.38	22.5	21.8	22.0		21.8	100	115
0111	0045	29°33.00	69°58.23		22.7	22.8	36.44	22.0	100	113
0111	01 00	29°30.94	69°58.00		22.6	22.9	36.46	22.6	39	111
0111	0115	29°28.71	69°57.77		22.6	22.9	36.31	22.7	54	112
0111	01 30	29°26.73	69°57.87		22.5	22.8	36.41	22.7	78	118
0111	0145	29°24.76	69°57.54		22.6	22.7	36.15	22.6	94	1 21
0111	0200	29°22.80	69°57.41		22.6	22.8	36.33	22.1	90	120
0111	0215	29°20.85	69°57.49	23.1	22.6	22.8	36.52	22.4	90	118
0111	0230	29°18.87	69°57.44	23.1	22.5	22.8	35.21	22.5	100	125
0112	0100	26°38.90	69°55.84	25.0	24.0	24.4	35.55	24.2	50	145
0112	0115	26°37.28	69°55.77	25.4	24.7	24.9	35.79	24.6	50	150
0112	0130	26°35.51	69°55.67	25.7	24.7	25.1	35.86	24.9	60	150
0112	0145	26°33.73	69°55.56	25.7	24.8	25.2	35.84	24.9	72	1 54
0112	0154	26°32.5 0	69°55.43							
0112	0200	26°31.81	69°55.44	25.8	24.9	25.3	35.82	25.0	66	1 50
0112	0215	26°30.04	69°55.67	25.9	25.0	25.3	35.05	25.0	74	158
0112	0230	26°28.17	69°55.71	25.9	25.0	25.4	35.56	25.1	70	157
0112	0245	26°26.3 7	69°55.76	26.0	25.0	25.4	35.31	25.1	70	170
0112	0300	26°24.60	69°55.80	26.0	25.0	25.4	33.43	25.0	60	172
0112	0315	26°22.47	69°55.76	26.0	25.1	25.5	35.66	25.2	72	182
0112	0330	26°20.00	69°56.00	26.0	25.0	25.4	35.95	25.1	80	180
0112	0345	26°18.59	69°55.77	25.9	25.0	25.3	35.99	25.1	60	160
0112	0400	26°16.49	69°56.11	26.0	25.0	25.4	36.10	25.1	68	160
0112	0415	26°14.38	69°55.95	25.9	25.0	25.4	36.13	25.1	71	165
0112	0430	26°12.42	69°55.98	26.0	25.0	25.4	36.13	25.1	88	172
0112	0445	26°10.22	69°56.02	26.0	25.0	25.4	36.19	25.1	88	186
0112	0500	26°07.71	69°55.97	25.9	24.9	25.3	36.20	25.0	86	186

KNORR 123

Figure Va-6. Bucket Temperatures from KNORR 123 Underway Oceanographic Log.

Tarly Va-. Example : EN 85 1.3 Underway . minute - earchrait. Der

Jate	ដី∶កា⊖	.atitode	Longitude	Bucket	SAIL	Fish	SALL	. : 20
· · · · ·				SST	SST			
) k h	14.43			
14 Jun	1140			26.8 26.8	26.63			
			69 51.72	26.8	26.63			
	2145 2150		09 11.12	26.8	26.66			
		64	64 51.66	_	20.00			
	2200	1 11.6.			26.63			
		. 11.64						
	4245		69 53.69		20.66			
			69.11.69	26.	26.60			
	45		64 73.80	26.	20.00			
	. 3		69 53.87	. 6.	.6.60			
	. 3. 5			26.	20.57			
	. 130	4.5	69 13.10	26.7	. 6 . 6 <i>3</i>			
	. 345		69 53.65	26.	26.57			
.o Jun		2 .4.63	69 51.6	26.	26.54			
	10.5		69 53.4.	26.	26.54			
	JU3U	4	64 73.38	.6.				
	3345	27 13.00	69 53.56					
		ون. و ټار ته	69 53.43	_				
	U 1 1 5	27 12.83	69 53.06		26.47			
	1110	27 12.69	69 12.73		26.4			
	0145	27 12.35	69 52.53	26.6	26.44	26.		
	0200	27 10.86	69 51.21	26.5	26.44	26.7		
	0215	27 39.10	69 50.12	26.6	26.47	26.8		
	3230	27 06.83	69 48.68	26.6	26.47	26.8		
	0245	27 04.71	69 47.43	26.5	26.38	26.7		
	0300	27 02.28	69 45.87	26.5	26.34	26.7		
	0315	27 00.48	69 44.11	26.4	26.25	26.6		
	0330	26 58.59	69 42.37	26.5	26.41	26.7		
	0345	26 56.87	69 40.98	26.7	26.47	26.8		
	0400	26 56.43	69 40.10	26.6	26.44	26.8		
	0415	26 56.35	69 40.03	26.5	26.47	26.7		
	0420	26 56.35	69 39.88	26.55	26.44	26.8		
	0425	26 56.30	69 39.77	26.5	26.44			
	0430	26 56.34	69 39.85	26.55	26.41	26.8		
	0435	26 56.38	69 39.99	26.55	26.31	26.8		
	0440	26 56.36	69 39.91	26.6	26.44	26.8		
	0445	26 56.31	69 39.79	26.6	26.44	26.8		
	0450	26 56.33	69 39.84	26.5	26.41	26.8		
	0455	26 56.26	69 39.62	26.6	26.44	26.8		
	0500	26 56.28	69 39.69	26.6	26.47	26.8		
	0505	26 56.34	69 39.87	26.6	26.47	26.8		
	0510	26 56.36	69 39.91	26.6	26.38	26.8		
	0515	26 56.38	69 39.95	26.6	26.44	26.8		
	0520	26 56.44	69 39.83	26.55	26.44	26.8		
	0525	26 56.29	69 39.77	26.6	26.41	26.8		
	0530	26 56.37	69 39.96	26.3	26.44	26.8		
	0545	26 56.32	69 39.80	26.55	26.47	26.8		

Section Sections and Section Beneficies Ceresters

V. FASINEX Underway Sampling

t. Meteorological Log

Phase One - KNORR 119

A brief summary by Dick Payne states that during KNORR 119, wind speed carried between nearly calm and 15 ms $^{-1}$ while wind direction tended to rotate in kwise, consistent with the movement of major weather systems. Passing 30° N, beaded south for the first time, the air temperature and humidity increased markedly and barometric pressure decreased, just as markedly. No such marked ranges were apparent on later crossings.

The crossing of the fronts appeared as abrupt $1\text{--}2^{\circ}\text{C}$ changes in bucket temperature on the plots. (We were curious as to whether effects of the front would appear in any of the meteorological parameters recorded.) During the first day of mooring work there was a cloud pattern which persisted all day. To the south of the front the sky was overcast with fairly low clouds while to the north it was clear. The edge of the clouds seemed to follow the front. The clouds started to break up toward the end of the day with the edge taking on a lary appearance by sunset. This event was not repeated. From January 12-16, there appears to be a negative correlation between change in bucket temperature and wind speed. Leg 2 had few front crossings.

An hourly meteorological log was recorded on KNORR 119 from January 10-1 tor Leg 1 and January 24- February 6, 1986 for Leg 2. The variables logged were time, LORAN C latitude and longitude, wind speed and direction, wet and dry toll temperatures, barometric pressure, wave height and direction, cloud cover are type.

Meteorological sensors mounted on a mast at the bow transmitted data : ...

IBM AT for display and storage. The anemometer was at 13.5m, air and design sensors were at 12.5m and the barometric pressure sensor was at 7.5 variables output every minute included time, LORAN C latitude and 1.5 wind speed and direction, air temperature, relative humidity, and sol; and speed.

Figure Vb-1 Payne's Meteorological Plot for KNORF 1. Figure Vb-2 Davidson 3-Day Expanded Meteorological Figure Vb-2 From Payne's Data to Match OCEANUS 13* For (see WHOI report 86-36 or FASINEX 14) For Table Vb-1 Hourly Meteorological Log

Phase Three - KNORR 123

An hourly meteorological log was also \rightarrow contained the same variables as the KNCFR 114 log

Bow mounted sensors were again used to the total the This data was displayed and stored on an IRM AT

Figure Vb-3 Payne's Meter:
Figure Vb-4 Davidson Glasses Stable Vb-2 Hourly Meter:

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1964 A

Figure Vb-1. KNORR 119 Underway Meteorological Log Plot

Figure Vb-2. KNORR 119 Expanded Scale Meteorological Plots.

Figure Vb-2 (continued)

Figure Vb-2 (continued)

CONTRACTOR DESCRIPTION OF THE PROPERTY OF THE

Figure Vb-2 (continued)

Figure Vb-2 (continued)

Table Vb-1: KNORR 119, Leg 1, Manual Hourly Meteorological Observations

BEGIN 1400 JAN 8, 1986 0000 JAN 21, 1986

NOTES ON PARAMETERS:

- Date Month/day
- Time UTC, hrmin LAT, LONG Positions are from Internav LORAN receiver.
- WS,WD True wind speed and direction derived from apparent windspeed and direction and ship course and speed. Direction is direction from which, meteorological convention.

 ATI - Dry bulb air temperature from Assman psychrometer, thermometer divisions are 0.2 C.
- ATE Air temperature from EG&G Model 220 on jack staff.
- RH Relative humidity computed from wet and dry bulb temperature from Assman by equations and constants in Smithsonian Meteorological Tables.
- ABS HUM Absolute humidity in kg/m3
- SST Sea surface temperature from bucket.
- BP Barometric pressure (mb) from bridge barometer.
- CLOUD Cloud observations. The four digits are: total octants covered, cloud type for low, medium, and high clouds.
- WAVES The four two digit numbers are: sea wave period and height, predominant swell direction and height. Heights are in half meters, directions in 10s of degrees
- SC. SS Ship's course and speed (knts) from gyro and ship's speed log.

AD, AS - Apparent wind direction and speed from bridge readout of ship's anemometer. Speed in knots, direction in 10s of degrees. Logged by bridge. TW - Wet bulb temperature (C).

FORMAT (I3,1X,12,15,13,F6.2,14,F6.2,F6.1,14,4F5.1,E10.3,F5.1,F7.1,1X,A4,A12,2*14,13),F5.1)

DATE TIME LAT LONG WS WD AT1 AT2 RH ABS HUM CLOUD WAVES SC SS AWD AWS TW 0.0 66.2 0.389E-02 15.6 1028.4 7 0.0 79.2 0.478E-02 15.5 1029.2 7 1/ 8 1400 38 3.49 70 2.02 12.9 334 2.8 2 34 315 0 20 25 1/ 8 1500 38 0.67 3.66 3.2 6.4 116 2 32 170 10 330 20 1.8 1/ 8 1600 37 50.62 70 15.4 318 3.2 0.0 62.3 0.376E-02 15.5 1029.4 1 32 170 10 135 22 0.7 1/ 8 1700 37 44.38 70 0.90 15.2 336 3.4 0.0 62.6 0.383E-02 14.2 1030.5 69 56.25 69 54.47 69 50.84 15.2 336 4.5 14.1 343 4.8 12.6 344 5.4 1/ 8 1800 37 28.77 0.0 60.2 0.396E-02 14.2 1031.0 3 32 170 10 160 20 0.0 59.3 0.398E-02 14.7 1031.5 0.0 64.5 0.450E-02 16.6 1031.5 0.0 59.7 0.428E-02 22.4 1031.2 1/ 8 1900 37 19.91 180 10 155 18 180 10 155 15 1.9 2 32 8 2000 37 10.79 2 32 2100 36 59.78 69 45.18 13.7 348 5.8 2 32 180 11 160 16 8 2200 36 50.13 69 41.16 11.3 359 6.2 0.0 63.0 0.463E-02 21.9 1031.4 7.4 2 33 8 2300 36 40.37 69 38.75 13.6 344 0.0 54.9 0.436E-02 20.9 1031.3 180 10 155 17 11.6 345 12.3 354 9.5 354 0.0 54.2 0.49E-02 21.5 1030.9 0.0 60.5 0.493E-02 21.3 1030.9 0.0 61.8 0.530E-02 21.0 1031.2 500 36 29.70 600 36 22.03 700 36 13.10 7.7 7.8 8.6 69 37.14 69 36.00 2 33 180 10 155 13 180 10 170 14 190 9 150 10 69 37.24 2 34 800 36 4.75 69 39.00 10.7 358 7.6 0.0 77.9 0.6278-02 20.8 1030.7 900 35 55.61 69 41.34 9.3 9.8 0.0 59.0 0.546E-02 20.6 1030.7 2 34 190 8 180 10 13.8 347 10.2 0.0 56.3 0.535E-02 20.7 1030.5 12.3 348 11.1 0.0 54.6 0.548E-02 22.0 1030.7 8.4 334 11.3 0.0 56.0 0.569E-02 21.7 1030.7 11.3 338 11.8 0.0 53.7 0.563E-02 21.7 1031.3 1/ 9 1000 35 46.84 1/ 9 1100 35 37.44 69 42.39 190 10 145 18 6.3 69 43.19 69 44.90 190 10 145 15 190 10 110 10 190 9 130 15 6.9 9 1200 35 26.87 2 34 2 32 7.2 1300 35 18.75 69 46.45 9 1400 35 9.18 9 1500 34 59.96 69 48.40 10.1 329 11.4 0.0 70.1 0.717E-02 21.6 1031.5 9 115 14 69 50.31 12.9 334 11.6 0.0 66.0 0.683E-02 21.7 1031.7 2 35 190 10 125 18 9 1600 34 50.41 69 51.81 10.8 334 13.4 0.0 54.4 0.628E-02 21.6 1031.5 2 35 190 10 120 14 10.6 309 13.0 6.9 304 13.6 4.9 315 14.0 0.0 47.9 0.540E-02 21.8 1030.9 0.0 50.9 0.595E-02 21.6 1029.7 0.0 47.9 0.573E-02 21.1 1029.6 9 1700 34 41.00 69 53.62 69 55.57 2 31 2 190 10 90 18 7.8 9 1800 34 31.94 70 13 1 32 190 10 8.6 1900 34 22.34 69 58.06 1 31 190 10 60 8.6 6.6 297 13.6 7.3 303 13.8 70 12 2000 34 13.00 69 58.46 0.0 52.8 0.618E-02 21.1 1029.5 180 10 8.8 2100 34 2.96 69 59.44 0.0 49.4 0.584E-02 20.7 1029.4 1 32 180 10 80 12 7.1 300 14.1 7.7 312 14.1 3.7 282 14.2 6.3 260 14.8 0.0 49.0 0.590E-02 20.5 1029.2 5 0.0 49.0 0.590E-02 20.7 1029.1 5 0.0 49.1 0.596E-02 20.8 1029.5 0.0 49.3 0.619E-02 20.9 1029.5 2200 33 53.50 2300 33 43.55 0 33 34.10 70 0.28 69 59.54 69 58.46 1 32 180 80 12 1 32 2 180 10 90 11 8.8 1 31 1 31 1/10 1 180 10 40 11 8.9 100 33 24.08 69 57.76 180 10 1/10 45 17 9.4 0.0 51.6 0.660E-02 21.2 1029.3 0.0 49.2 0.638E-02 21.2 1029.0 200 33 15.92 69 58.45 5.9 263 15.1 1 31 180 10 9.9 300 33 4.84 400 32 55.34 69 56.95 4.6 255 15.3 1 31 180 10 35 15 5.5 266 15.8 6.3 260 15.1 4.9 283 15.6 5.0 261 15.8 0.0 47.5 0.634E-02 21.3 1028.5 1/10 69 56.98 1 31 180 10 45 15 10.0 0.0 47.1 0.603E-02 21.0 1028.0 0.0 52.4 0.691E-02 20.8 1027.4 0.0 49.2 0.657E-02 21.0 1027.4 0.0 52.7 0.704E-02 21.2 1026.7 500 32 46.39 600 32 37.15 69 56.71 69 56.83 45 17 9.4 50 12 10.4 1/10 1 32 1 180 10 1/10 180 10 1/10 700 32 27.47 69 56.70 180 10 40 15 10.2 800 32 17.34 69 55.05 2.3 212 15.8 180 10 900 32 7.00 69 54.14 1.9 141 14.5 0.0 67.7 0.836E-02 21.1 1026.0 180 10 350 13 11.1 1.0 179 16.4 2.2 107 16.9 6.0 226 17.6 7.9 196 18.0 0.0 58.1 0.803E-02 21.0 1025.6 0.0 62.3 0.887E-02 21.4 1025.5 0.0 51.3 0.762E-02 21.7 1025.3 0.0 47.9 0.727E-02 21.3 1026.0 1/10 1000 31 56.10 69 53.62 180 10 0 12 11.7 1/10 1100 31 45.82 1/10 1200 31 35.75 69 53.16 69 52.60 180 10 340 12 12.6 180 10 25 20 11.9 180 10 10 25 11.8 1 35 1 1/10 1300 31 24.91 69 52.28 1 35 1/10 1400 31 14.62 69 52.38 5.5 152 19.0 0.0 49.5 0.796E-02 21.5 1026.2 182 10 345 20 12.8 1 08 1/10 1500 31 4.07 69 52.19 4.3 159 18.8 0.0 46.0 0.732E-02 21.5 1026.4 182 10 350 18 12.2 1.6 102 19.2 0.0 42.1 0.686E-02 21.6 1025.7 2.6 136 18.9 19.8 49.3 0.789E-02 21.7 1024.5 1/10 1600 30 53.61 69 52.52 1 05 1 182 11 345 12 12.0 1/10 1700 30 39.16 69 53.33 1 05 182 10 345 14 12.7 1/10 1800 30 35.10 69 53.68 5.5 124 19.0 20.3 55.9 0.899E-02 21.6 1022.7 7 8.1 117 19.4 0.0 67.9 0.112E-01 21.6 1022.2 7 1 03 182 5 320 14 13.6 1/10 1900 30 27.21 69 54.42 8.1 117 19.4 10.0 122 19.6 1 03 182 10 320 22 15.4 69 52.25 1/10 2000 30 16.90 0.0 64.8 0.108E-01 21.5 1020.6 182 10 320 26 15.2 1 14 1/10 2100 30 1.50 1/10 2200 29 56.50 0.0 67.6 0.115E-01 21.5 1020.2 8 10.0 122 19.9 69 56.70 1 13 182 10 320 26 15.8 69 57.42 8.8 134 20.3 0.0 75.6 0.131E-01 21.7 1019.5 182 10 330 25 17.1

9.8 136 20.4 0.0 79.1 0.138E-01 22.0 1019.0 7

182 10 330 27 17.6

Table Vb-1 (Leg 1, continued)

DATE	TLME	LAT	LONG	elS enD	ATI	AT2	KH	ABS HUM	SST	BP	CTOAD	WAVES		SC SS	AWD A	WS	TW
1/11		29 39.43	69 58.48	11.3 131				0.151E-01				2 13	2	175 10			
1/11		29 30.94 29 22.80	69 58.00 69 57.41	14.0 1-1 13.8 1-8				0.166E-01 0.176E-01				2 .	2	-	335 3 340 3		
1/11	300 400	29 15.21 29 7.42	69 58.11 69 57.45	16. i 156 13.5 161				0.178E-01 0.179E-01				_	2		345 3 350 3		
1/11	500	29 2.24	69 39.93	15.5 187	21.6	0.0	95.0	0.177E-01	22.6	1013.0		2 18	3	175 8	10	38 2	0.5
1/11		28 56.52 28 49.02	69 57.89 69 57.57	14.0 187				0.177E-01 0.180E-01					3	175 8 180 8	10 3		
1/11	800	28 41.43	69 57.16	14.0 192	21.4	0.0	96.7	0.178E-01	22.3	1012.1		3 19	4	180 8	10 3	35 2	0.5
1/11 1/11		28 33.49 28 26.73	69 56.96 69 58.59	13.0 193				0.190E-01 0.189E-01					4 3	180 8 180 8	10 3		
		28 19.09 28 11.45	69 57.79 69 57.28	14.0 192				0.185E-01 0.193E-01			8 5	2 35 3 19	4	180 8 180 8	10 3		
1/11	1300	28 3.79	69 56.69	12.5 199	23.0	0.0	94.9	0.191E-01	22.6	1012.5	7	3 19	4	180 8	15 3	32 2	1.8
		27 53.73 27 49.15	69 56.76 69 56.89	12.5 203				0.188E-01 0.190E-01			5 5		4	184 8 184 8	15 1		
		27 40.46 27 33.34	69 53.13 69 52.74	11.5 204	23.8	21.8	91.9	0.1942-01	23.0	1012.9	5	6 19	4	184 8	15	30 2	2.2
		27 26.84	69 52.34	14.7 208	23.8	21.9	91.9	0.176E-01 0.194E-01	23.5	1010.8	5 4		4	184 7	15 20		
		27 20.21 27 13.52	69 51.96 69 51.39					0.196E-01 0.196E-01			4		4	184 7 184 7	20	32 2 30 2	
1/11	21.00	27 6.72	69 52.51	11.9 208	23.5	22.2	97.8	0.203E-01	23.5	1011.9	7	3 18	4	195 7	10	30 2	22.6
		26 59.75 26 52.80	69 53.14 69 53.82					0.200E-01 0.202E-01			7		4	194 7 194 7	15		22.8
1/12 1/12		26 45.85 26 38.90	69 54.80 69 55.84					0.199E-01 0.205E-01					4	194 7 194 7	15 I		
1/12		26 31.81	69 55.44	6.2 284	24.4	22.8	93.9	0.205E-01	24.9	1013.5			4	187 27			23.0
1/12 1/12		26 24.60 26 16.94	69 55.80 69 56.11					0.199E-01 0.202E-01					4	187 7 187 8		30 2 27 2	
1/12	500	26 7.71	69 55.97	8.6 244	23.6	21.3	91.7	0.191E-01	24.9	1013.6		2	4	187 8	40	22 2	22.0
1/12 1/12		25 59.92 25 51.82	69 55.98 69 56.39					0.197E-01 0.191E-01				2	3	187 8 187 8			22.6
1/12	800	25 43.76	69 56.55	9.2 253	24.0	22.2	90.3	0.193E-01	25.0	1013.7		2		184 8	50	22 2	22.2
		25 34.99 25 31.14	69 57.03 69 59.48					0.196E-01 0.184E-01				1		182 9 315 10			
1/12	1100	25 38.36	70 7.50					0.181E-01			7	1		315 10	350	22 2	21.4
		25 46.50 25 57.68	70 14.50 70 23.41					0.175E-01 0.179E-01			5 5	2 2	2	315 10 315 10	10 45		20.9
1/12	1400 2	25 57.83	70 31.40					0.166E-01			5	2	2	315 10			20.2
		26 4.54 26 11.01	70 38.62 20 46.82					0.160E-01 0.163E-01			5 7	2 2	2	317 10 320 9			19.6 19.6
		26 17.60 26 24.31	70 52.87 70 48.67					0.162E-01 0.152E-01			7 7	2 35 2 35	3	320 9 45 9			19.8 19.4
		26 29.15	70 41.69	8.8 63	22.8	20.1	77.1	0.154E-01	24.1	1015.0	6	1 35	3	135 8	310	21	19.5
		26 22.80 26 16.39	70 34.43 70 27.32					0.156E-01 0.161E-01			8	1 00	3	135 9 135 9			
1/12	2200	26 10.01	70 20.13	9.9 50	22.5	20.2	91.1	0.179E-01	24.6	1015.3		2 34	3	135 9	300	22	20.9
1/12 1/13		26 3.85 25 57.79	70 12.73 70 5.93					0.178E-01 0.176E-01				2 34 2	3	135 9 135 9	320 320		
1/13		25 52.09 25 46.22	69 58.91 69 51.57					0.174E-01 0.169E-01				2 1		135 9 137 9	325 340		
1/13 1/13	300	25 40.41	69 45.13	3.8 114	23.4	21.2	86.5	0.179E-01	25.1	1015.4		1		137 9	350	16	21.2
1/13 1/13		25 40.16 25 49.62	69 41.38 69 41.36					0.183E-01 0.176E-01				1		0 9			21.4
1/13	600	25 58.91	69 41.23	0.0	23.4	21.3	84.9	0.175E-01	25.2	1014.5		1 33	2	0 9	0	9	21.0
1/13	700 : 800 :	26 9.00 26 12.17	69 50.72 69 53.75	7.2 235	23.2	21.3	86.4	0.176E-01 0.176E-01	25.0	1013.5		1 34 1 34	2	315 9	310 310	18	21.0
1/13	900	26 18.81	70 0.92	4.3 231	. 23.1	20.9	85.5	0.1732-01	25.0	1013.5		1 34	3	315 9			
		26 25.35 26 32.13	70 8.07 70 15.35					0.170E-01 0.176E-01				1 1 00	3	315 9 315 9			
		26 38.65 26 45.36	70 22.67 70 30.03					0.181E-01 0.165E-01				1 00 1 10	3	315 10 315 9			
		26 52.18	70 30.03	10.2 194	23.4	21.3	81.6	0.168E-01	23.0	1013.3	4869	1 02	3	315 10	270	17	20.6
1/13 1/13		26 58.81 27 0.21	70 44.58 70 35.94					0.161E-01 0.165E-01				2 00	3	315 9 90 10			
1/13	1700	27 1.17	70 24.86	10.3 299	22.7	19.8	80.3	0.159E-01	23.3	1012.0	527	2	2	90 9	230	13	19.8
1/13		27 0.66 26 54.32	70 14.22 70 5.96					0.149E-01 0.156E-01				2 26 2 22		135 10 135 10			
1/13	2000	26 47.59	69 58.14	10.4 268	22.2	20.3	83.2	0.161E-01	24.0	1011.2	86	1 22	2	139 10	100	16	19.7
		26 40.36 26 33.74	69 49.80 69 42.24					0.175E-01 0.175E-01						139 10 139 10			
1/13	2300	26 26.62	69 34.43	11.8 31	8 20.9	19.3	98.3	0.176E-01	. 24.0	1013.2	:	2 2		139 10 139 10			
1/14 1/14			69 28.00 69 26.44	12.8 33	5 20.6	17.4	91.7	0.162E-01	. 24.0	5 1014.6	j .	2		45 10	310	30	19.2
1/14	200	26 27.72 26 34.03	69 12.94	7.7 34	7 20.4	18.7	88.0	0.153E-01 0.145E-01	24. 24.	5 1014.7 7 1014.9	,	2		45 10 315 9			
1/14	400	26 39.89	69 18.79	1.0 25	20.4	17.7	77.5	0.135E-01	24.	7 1014.5	•	2		315 9	350	10	17.4
1/14 1/14		26 46.56 26 53.14	69 26.65 69 33.14	7.3 18	5 21.0 2 21.0) 19.1) 20.4	76.3 71.3	0.138E-01 0.129E-01	24.6	5 1014.2 5 1014.3	: }	2 2		315 9 315 10			
1/14	700	27 1.54	69 41.36	10.2 27	1 21.0	5 20.0	68.7	7 U. 128E-01	23.	5 1014.2	!	2		315 9	330	27	17.4
1/14 1/14		27 6.35 27 14.14	69 46.27 69 56.22	9.7 27 9.7 28	1 21.6 5 21.4	3 20.0 3 20.0	70.5 71.3	0.133E-01 0.135E-01	23.	2 1014.6 1014.6)	2		315 9 315 9			
_, _ ,																	

estera Tropososos especientes estadorda Tradorda December 1998 estadoras 1999 estador 1999 estador 1999 estador 1988

Table Vb-1 (Leg 1, continued)

DATE	TDŒ	1	LAT	i	LONG	WS	WD	ATI	AT2	RH	ABS HUM	SST	BP	CLOUD	WAVE	s	sc	ss	AWD	AWS	TW
			20.93								0.131E-01				2	_			270		
			27.28 28.34		46.10 38.42						0.125E-01 0.124E-01			31 69 6259	2 31 2 31	3	135		260		
1/14	1300	27	21.83		30.18						0.120E-01			5259	3 31	3			190		
			15.28		22.44						0.118E-01			6259	3 31	3	135				16.6
	1500		7.84	-	11.50 4.26						0.118E-01 0.123E-01			6279 6274	3 31 3 31	3	142		180		16.6 17.0
1/14	1700	26	53.90		57.16			21.9			0.1182-01			6814	3 31	3	142				16.8
			53.82		5.74			19.8			0.124E-01			7854	2 31	4	275	9			16.4
			54.27 55.04		14.09			21.0			0.113E-01 0.118E-01			785 7844	2 31 2 31	3	310 300	0			16.1 16.4
1/14	21.00	26	55.15	69	15.01	5.1	329	20.9	18.9	65.5	0.118E-01	24.6	1018.2	76	1 31	3	310	ŏ	20	10	16.4
			55.74 56.08		15.36						0.109E-01 0.109E-01			86	1 31	,	310	0			15.6
1/15			56.79		15.53						0.105E-01			8	1 31 1 31	3	310 310	0			15.5 15.4
1/15			57.32		14.97	6.2	319	20.3	18.7	63.2	0.110E-01	24.6	1019.8		1 31	3	310	0	10	12	15.6
1/15			57.62 57.90		15.03						0.110E-01 0.109E-01			0	1 31	2	310 310		350 345		15.7
1/15	400	26	57.75	69	15.12	6.5	296	20.2	18.8	63.9	0.110E-01	24.6	1020.0		1 31	2	225	B			15.6
1/15			56.37 57.19		19.41 26.51						0.110E-01 0.102E-01				1 31	2	270	8			15.6
1/15			59.03		38.99						0.105E-01				1 31	2	270 270	8			15.1 15.3
1/15			59.43		46.96						0.105E-01				1 31	2	270	7	0	18	15.3
	900 1000		3.32 8.20		53.80						0.108E-01 0.110E-01				1 31	2	332 332		320 310		
			14.56		59.45						0.1062-01			637	1 31	3	329		325		
			18.54		3.06						0.1142-01				1 31	3	90		245		
			14.60		58.00 52.65						0.110E-01 0.106E-01			527 4	1 31 1 32	3	315	10	160		15.6 15.4
1/15	1500	27	12.22		53.31	6.3	322	20.8	18.5	56.7	0.101E-01	23.4	1024.4	31.7	1 32	2	290	ĭ			15.2
			33.33		54.70						0.988E-02				1 32	2	301	2			14.9
			14.42		56.43						0.105E-01 0.107E-01			21 21	1 32	2	302 302	2			15.5 15.6
			16.21		0.15						0.1182-01				1 32	2	310	2			16.4
			17.48	70	2.33						0.1192-01			31	1 32	2	320	2			16.2
			17.85 17.11	70 70	3.15 1.49						0.108E-01 0.112E-01			21 31	1 32 1 32	2	31.5 26.5	0			15.6 15.9
1/15	2300	27	17.10	70	1.60	4.1	4	20.6	19.0	63.5	0.112E-01	23.1	1025.1		1 32	2	31.5	0	50	8	15.9
1/16			19.52	70 70	4.08	4.5					0.108E-01 0.105E-01				1 32	2	270 180	4	60 325		15.6
1/16			16.08	70	2.72	3.6					0.103E-01 0.128E-01				1 32	2	110				17.0
1/16			17.48			5.1					0.1248-01				1 32	2	8				16.8
1/16			17.71		1.84	5.1 5.2					0.115E-01 0.112E-01				1 32 1 31	2 1	8 353				16.2
1/16	600	27	17.97	70	1.54	5.1	30	21.0	19.0	61.6	0.111E-01	22.9	1025.4		1 31	ī	346		-		16.0
1/16	700 800		15.48 9.40		0.26 52.19	5.7 8.1					0.117E-01 0.124E-01								300		16.4 17.0
	900		3.83		46.37	5.1					0.1242-01						35				16.4
	1000		0.10		40.66	5.7					0.121E-01					_	45				16.8
			59.79 48.37		39.74 16.28	5.7 6.7					0.124E-01 0.132E-01				1 31	2	45 310				17.0 17.5
	1300		4.29		47.68	5.5					0.1248-01				1 31	2	310				17.0
	1400		9.84		54.62	15.3					0.150E-01				2 35	2	310				18.4
	1600		7.13 0.68		50.35	10.9					0.149E-01 0.144E-01				2 02	2	144 250				18.6
	1700		1.05	69	50.42	12.9	44	21.8	19.5	80.2	0.151E-01	24.0	1027.2	8	2 03	2	60	1	345	26	19.0
	1800 1900		2.27 3.54		49.05 48.11	12.4					0.144E-01 0.149E-01				2 02	2	45 75				18.6
	2000		4.41								0.140E-01				2 02	2					18.4
1/16	21,00	27	5.04	69	46.89	12.9	46	21.8	19.4	75.2	0.142E-01	24.5	1027.5	7	2 02	2					18.4
	2200		4.59 0.57		51.77 63.75	7.7 14.7					0.151E-01 0.130E-01				2 02 3 04	2	150 135				18.6 17.2
1/17			56.20	69	39.02						0.1482-01				3 04	3	45		5	25	18.4
1/17			56.90		39.31	12.9					0.1422-01				3 04	3		0			18.2
1/17	200 300		57.34 2.23			11.3 12.0					0.137E-01 0.141E-01				3 04 3 04	3	50 310				17.8
1/17	400	27	4.45	69	47.35	10.3	59	21.2	19.2	70.5	0.129E-01	24.4	1028.9	1	3 04	3	75	0	345	20	17.3
1/17	500		4.62		17.34 47.33						0.132E-01 0.124E-01				3 04 3 04	3	80 80				17.7 17.0
1/17	600 700		4.99 4.96		47.00						0.1248-01				2 05	2					17.2
1/17	800	27	5.30	69	46.17	8.8	40	21.2	19.3	66.5	0.121E-01	24.6	1026.6)	2 05	2	100	9	320	23	16.8
	900		3.57		42.66						0.125E-01 0.133E-01				2 05	2	315				17.1 17.6
			16.10								0.130E-01				3 05		225	8	230	18	17.6
1/17	1200	27	10.52	69	58.33	12.5	76	21.7	19.7	74.3	0.139E-01	23.5	1027.5	;	3 05						18.2
	1300 1400		4.61		49.00						0.144E-01 0.150E-01				3 05 3 06	3	135 60				18.5
	1500		2.53		42.17						0.139E-01				3 06	3	82	2	340	23	18.2
1/17	1600	27	2.81	69	41.08	12.9	69	22.5	19.9	71.8	0.141E-01	24.8	1027.0)	3 06	3					18.6
	1700 1800		3.11 5.24		40.66						0.134E-01 0.128E-01				3 07 3 06	3	82 90				18.6
	1900		4.06	69	38.18	10.8	64	24.5	20.1	63.4	0.139E-01	24.8	1025.0	42	3 06	3	85	1	. 340	22	19.2
1/17	2000	27	3.39	69	39.37	11.3	74	22.2	20.0	70.8	0.137E-01	24.8	1025.0	52	3 07	3	85				18.2
	21.00 2200		3.36 5.19		39.36						0.134E-01 0.133E-01				3 07 3 07		85 265				18.1
											0.132E-01				3 08						18.0

SASSES, MARIES, MARIES, MARIES, MARIES MARIES, MARIES,

Table Vb-1 (Leg 1, continued)

DATE	TDŒ	LAT	LONG	WS WI	ATL	AT2	RH	ABS HUM	SST	BP	CLOUD	WAVES	SC	SS AWD	AWS TW
1/18	0	27 4.88	69 40.94	11.8 74	22.7	20.1	6R 1	0.135E-01	24.4	1026.1		3 08 3	75	0 0	23 18.3
1/18	100		69 42.99					0.127E-01				3 08 3	199		19 17.5
1/18		26 59.69	69 43.50					0.132E-01				3 09 3	85		21 18.0
1/18	300		69 43.61					0.134E-01				3 09 3	88		20 18.0
1/18	400		69 43.57					0.129E-01				2 09 3	94		20 17.6
1/18	500	27 1.49	69 43.16					0.124E-01				2 09 3	88		18 17.3
1/18	600	27 2.30	69 43.14	9.3 87	21.9	20.0	69.7	0.132E-01	24.6	1024.6		1 08 2	88		18 17.8
1/18	700		69 43.17	10.3 99	22.0	20.2	66.6	0.127E-01	24.6	1024.2		1 07 2	90	0 10	20 17.5
1/18	800		69 42.82					0.142E-01				1 07 2	90	0 350	19 18.5
1/18	900		69 42.59					0.149E-01				1 08 2	90	0 350	20 19.0
	1000		69 42.16					0.128E-01				1 08 2	90		18 17.6
	1100 : 1200 :		69 41.64					0.158E-01				1 04 2	90		18 19.4
		27 2.08 26 57.00	69 47.83 69 54.14					0.162E-01				2 08 2	225		14 19.9
		26 57.18	69 55.82					0.156E-01 0.160E-01				2 08 2	90		23 19.8
		26 57.05	69 53.80					0.1608-01				2 08 2	95 92		23 20.1
		6 57.01	69 51.79					0.163E-01			67	2 08 2	92		25 20.2
		26 57.00	69 49.71					0.1698-01			77	2 08 2	95		22 20.8
1/18	1800	6 57.04	69 47.92					0.167E-01			725	2 08	105		22 20.4
1/18	1900	26 57.13	69 46.55					0.1678-01			625	2 08 3	85		19 20.4
		6 57.99	69 48.06					0.167E-01			625	2 08 2	85	_	19 20.4
		26 56.21	69 46.33	10.3 94	22.1	20.8	87.3	0.1682-01	24.6	1020.2	323	2 09 3	95		28 20.1
		6 57.61	69 46.78					0.176E-01			62	2 09 3	100	0 0	18 20.7
		6 58.14	69 46.61					0.1708-01				2 09 3	95		23 20.1
1/19		6 58.87	69 46.52					0.161E-01				3 09 3	100		24 19.5
1/19 1/19	200 2	6 59.70	69 46.47					0.167E-01				3 09 3	115	0 0	
1/19	300 2		69 45.72 69 39.24					0.159E-01 0.181E-01				2 10 3	. 58		30 19.6
1/19	400 2		69 39.21					0.172E-01				3 10 3 3 10 3	120 120	0 0	
1/19	500 2		69 39.20					0.1798-01				3 10 3	120	0 0	25 20.8
1/19	600 2		69 38.77					0.179E-01				2 11 3	135		22 20.9
1/19	700 2		69 43.58					0.168E-01				111 3			17 20.5
1/19	800 2	7 3.30	69 52.61	9.4 112	22.6	20.3	90.2	0.178E-01	24.0	1018.4		2 11 3			13 20.9
1/19	900 2	7 6.15	69 58.03	11.2 155	22.6	20.9	92.8	0.1832-01	24.0	1018.3		3 11 3	0	9 140	14 21.2
		7 16.23	69 57.91					0.176E-01				3 11 3	0	9 130	15 21.0
		7 19.39	69 57.26					0.173E-01			34	3 13 3	135	0 0	25 20.8
		7 20.05	69 56.85					0.1798-01			151	3 12 3	135		22 21.2
		7 20.47	69 55.74					0.1788-01			3251	3 12 3	135		22 21.2
		7 15.96	69 50.37					0.1838-01			4321	3 12 3	149		23 21.6
		7 9.56	69 44.52					0.177E-01			4321	3 13 3	149		26 21.2
	1600 2	7 5.16 7 12.76	69 39.04 69 32.45					0.1878-01			4264	3 13 3	-		18 22.0
		7 19.87	69 25.81					0.182E-01 0.187E-01			4264 526	3 13 3 3 13 3	43		17 21.6
		7 27.18	69 19.19					0.1838-01			426	2 12 2			12 21.6
		7 34.27	69 12.14					0.1908-01			4275	2 13 2			13 21.8
		7 41.33	69 5.19					0. 187E-01			4275	2 13 2	43		15 21.8
		7 48.91	68 57.59					0.187E-01			4279	2 13 2	43		18 21.7
1/19	2300 2	7 56.91	68 50.24					0.1898-01			- •	2 13 2			16 21.9
1/20	0 2	8 5.04	68 43.22					0.1912-01				2 13 2			18 22.1

Table Vb-1 (cont.): KNORR 119, Leg 2, Manual Hourly Meteorological Observations

BEGIN 1200 JAN 24, 1986 END 1200 PEB 6, 1986

***	*****	**1	*****	***	******	****	***	****	****	****	******	****	****	******	******	****	***	****	***	****
DATE	TIME	L	TA		LONG	WS	WD	AT1	AT2	RH	ABS HUM	SST	BP	CLOUD	WAVES	sc	ss	AWD	AWS	TW
					43.03						0.1192-01			86	1 27 2			113		
	1300				47.77 54.21						0.127E-01 0.115E-01			86 76	1 27 2			113		15.9 15.3
	1500			67							0.1168-01			76	0 26 1		0 10			15.8
	1600			67		5.8	294	19.5	17.5	77.5	0.128E-01	22.7	1017.2	76	0 26 1		0 10			16.6
	1700 1 80 0				12.21						0.124E-01 0.122E-01			67	0 10 1		0 10			16.7
	1900				24.44						0.135E-01			67 67	1 10 1					16.6 17.6
	2000		5.76		30.62	6.8	309	21.2	19.1	69.1	0.1262-01	23.8	1015.9	58	1 10 1					17.1
	2100 2200				36.00 42.88						0.126E-01			12	1 10 1					17.2
	2300			-	48.67						0.132E-01 0.131E-01			38 38	1 30 1					17.5 17.4
1/25			36.07		55.30	8.5	336	21.0	19.0	66.4	0.120E-01	23.5	1018.0	28	1 30 1		0 10			16.6
1/25			28.58	68							0.133E-01			21	1 30 1		0 10			17.6
1/25			12.89	68 68	15.17						0.127E-01 0.127E-01			11 21	1 30 1		0 10 0 10			17.2 17.2
1/25	400	28	4.81	68	21.52	9.7	347	21.0	19.1	71.3	0.1298-01	24.2	1019.0	21	1 32 1		0 10		-	17.2
1/25			56.86		27.16						0.120E-01			21	1 33 1		0 10			16.6
1/25			50.01 43.68		34.08 42.10						0.1278-01 0.1238-01			11 11	1 33 1		8 10 8 9		-	17.2 16.8
1/25			37.22		48.75	7.2	353	21.2	19.2	66.7	0.122E-01	23.9	1018.0	21	1 33 1					16.8
1/25			30.17	_	55.23						0.1308-01			32	1 33 1			80	12	17.4
	1000			69 69	3.55 12.35	10.3					0.136E-01 0.132E-01			52 32	1 34 1			120 85		
	1200				25.18	9.4	17	21.2	19.3	71.5	0.130E-01	24.3	1019.0	32	1 35 1			110		
	1300				30.08	10.3	22	21.8	19.6	71.2	0.134E-01	24.2	1020.0	31	1 35 1	. 24	0 9	120	14	17.9
	1400 1500		7.60 5.22		39.40 44.24	10.3					0.136E-01 0.136E-01			21 42	1 35 1		0 10 0 9			18.1 17.9
	1600				55.84	10.7					0.141E-01			42	1 35		0 10			18.2
	1700			70		11.2	36	21.0	18.8	74.6	0.135E-01	23.3	1019.6	22	2 35 2	31	.0 9	65	24	17.6
	1800 1900			70 70	9.81 16.91	11.6 9.8					0.133E-01 0.126E-01			22 12	2 02 3					17.4 17.0
	2000				17.65	9.3					0. 104 E-01			ii	2 02 3		5 0			15.4
	2100				18.03	9.3	34	21.5	18.0	71.0	0.132E-01	22.2	1018.5	11	2 02	1	5 0	20	18	17.6
	2200 : 2300 :				18.32	10.3					0.134E-01 0.135E-01			11 11	2 02 4		.5 O .5 O			17.5 17.5
1/26			29.19		19. 12	8.8					0.134E-01			0	2 02 4		5 0			17.5
1/26			21.00		19.00	8.5	57	21.0	18.7	81.3	0.147E-01	23.1	1018.5	Ö	2 02 3	18	0 10	275	14	18.4
1/26			11.86 10.99	70	18.90 9.46	8.3 8.8					0.139E-01 0.142E-01			21 51	2 02 3		109 50			18.0 18.3
1/26			11.28	70	8. 17	7.7					0.137E-01			31	1 04 2		0 0			18.0
1/26			10.92	70	9.38	7.2	64	21.6	19.7	71.1	0.133E-01	23.8	1017.6	21	1 03 2			100	14	17.7
1/26			11.0° 10.9/	70 70	8.38 7.84	6.7 5.7					0.135E-01 0.128E-01			41 21	1 03 2					17.8 17.4
1/26			11.91	70	8.38	5.6					0.132E-01			21	1 03 2					17.6
1/26	900		9.91	70	8.79	4.3					0.1448-01			21	1 03 2		0 3	310	10	18.2
	1000			70 70	6.88 6.81	0.0 8.2					0.127E-01 0.138E-01			42 52	1 03 2		0 0			17.3 17.6
	1200		8. 91	70	6.94						0.127E-01			59	1 03					17.1
	1300		6.86		58.65						0.136E-01			22	0 03 2					17.7
	1400 : 1500 :		6.73 8.05		57.67 56.44						0.133E-01 0.137E-01			22 32	0 03 2		0 2			17.8 18.2
	1600		9.53		55.59						0.1328-01				1 03					17.9
	1700				54.84	5.5	166	22.2	20.1	63.2	0.122E-01	24.0	1015.2	52	1 03 3	2 3	2 1	130	10	17.2
	1800 : 1900 :				55.81 54.09						0.127E-01 0.124E-01				1 03 2					17.6 17.6
1/26	2000	27	7.79		56.65	5.7	186	23.1	20.0	58.4	0.1182-01	24.0	1012.5	22	1 03					17.3
	2100		1.38	70		6.1	166	22.0	20.2	77.2	0.147E-01	24.2	1012.0	22		2 13	5 10	17	21	18.8
	2200 : 2300 :		0.63		0.58 59.80						0.118E-01 0.130E-01				1 04 2	2 18 3 18				17.0 17.3
1/27	0 :	27	2.17		59.31	0.0	0	20.8	20.7	76.1	0.136E-01	23.8	1012.0			2				17.6
1/27			3.86		59.04	0.0	0	21.2	20.6	76.5	0.140E-01	23.7	1012.1	61	1 01	2				18.0
1/27	200 300		2.66 1.75		58.83 59.24	9.3					0.146E-01 0.150E-01			41 51		2 18 2				18.6 18.8
1/27	400		3.93		57.67	0.0	0	22.6	21.0	69.8	0.138E-01	23.8	1012.0	65		2				18.4
1/27	500		6.11		52.60		179	21.8	21.0	85.5	0.161E-01	23.7	1010.0	65	1 01	2				19.6
1/27 1/27	600 700		5.91 4.19		57.00 56.32						0.153E-01 0.163E-01					2 16 2 18		-		19.6
1/27	800		2.55		55.91						0.170E-01						90 2			20.4
1/27	900	27	1.98	69	56.05	12.4	205	20.0	17.1	94.2	0.160E-01	24.0	1008.2	8	4	4 19	95 1	. 10	25	18.9
	1100		58.86 4.81		38.64 41.14						0.161E-01 0.162E-01				3 3 21					19.7
	1200		2.59		35.22						0.1532-01						25 0			19.6
1/27	1300	27	1.37	69	36.04	9.8	239	23.8	21.7	72.5	0.153E-01	24.0	1009.5	11	2 23	3 2:	30 0	10	19	19.8
			0.75		36.79 37.42						0.1608-01						15 1			20.3
	1600		59.97 58.85		38.87						0.161E-01 0.164E-01					3 22 3 25				20.0 19.8
1/27	1700	26	58.11	69	40.23	4.1	252	21.8	19.2	87.2	0.1658-01	24.2	1009.5	87	2 23	3 2:	33 2	2 0	10	19.8
1/27	1800	26	57.14	69	41.58	7.2	294	22.5	20. 1	80.1	0. 1578-01	24.2	1006.6	87	2 23	3 2:	30 0	65	14	19.6

DATE	TIME	LAT	LONG	WS WD	ATL	AT2	RH	ABS HUM	SST	BP	CLOUD	WAVES	SC SS AWD AWS TW
1/27	1900 2	26 56.63	69 41.74					0.154E-01			87	2 23 3	277 8 340 25 19.4
	2000 2	26 58.98	69 40.10 69 46.61					0.158E-01 0.146E-01			87 87	2 25 2 2 25 2	95 10 150 12 19.2 304 8 320 26 18.8
	2200		69 54.41.	12.5 237	21.9	19.6	77.1	0.146E-01	23.6	1009.9	87	2 30	304 9 310 29 18.7
1/27 1/28		27 11.38 27 12.14	69 55.64 69 55.27					0.129E-01 0.129E-01			87 41	2 30 3 2 30 3	260 0 0 21 17.4 255 0 0 23 16.8
1/28		7 12.06	69 55.35					0.132E-01			51	2 30 3	250 0 0 30 17.4
1/28 1/28		27 12.13 27 12.19	69 55.46					0.114E-01 0.111E-01			41 62	2 32 3 2 31 3	257 0 10 30 16.2 250 0 10 22 16.0
1/28		27 12.23	69 55.55 69 55.53					0.1168-01			31	2 25 3	250 0 0 23 16.4
1/28 1/28	500 a		69 48.80 69 42.57					0.122E-01 0.129E-01			31	2 25 3 2 25 3	136 8 90 21 16.8 138 8 85 18 17.4
1/28		26 57.71	69 39.04					0.112E-01			61 72	3 25 3	255 0 0 28 16.3
1/28 1/28		26 57.84 26 57.81	69 39.80 69 39.86					0.106E-01 0.124E-01			31 51	3 26 3 3 26 3	255 0 0 29 16.0 265 0 0 29 17.0
		26 57.90	69 39.79					0.124E-01 0.126E-01			J1	3 26 3	265 0 0 27 17.2
	1100 2	26 57.83 27 3.74	69 39.80 69 39.18					0.127E-01 0.123E-01			65 75	3 26 3 3 27 4	270 0 0 22 17.0 0 10 310 20 17.0
		7 11.04	69 37.28					0.112E-01			32	3 28 4	275 0 275 22 16.2
		27 11.46 27 11.49	69 40.37 69 41.76					0.132E-01 0.120E-01			87 87	3 28 4 3 30 4	264 2 30 20 17.3 270 2 35 25 16.4
		27 11.43	69 43.63					0.120E-01			77	3 30 4	274 2 25 25 16.3
		27 11.30 27 11.31	69 45.36 69 47.38					0.110E-01 0.100E-01			65 58	3 30 4 3 30 4	274 2 20 25 15.6 275 2 15 29 14.7
		27 11.48	69 49.41					0.105E-01			21	3 30 4	280 0 18 27 15.0
	2000 2	27 10.09 27 4.97	69 46.85 69 38.06					0.108E-01 0.110E-01			31 31	3 30 4 3 30 4	125 9 160 12 15.3 125 15 145 9 15.4
		26 59.89	69 29.36					0.110E-01 0.107E-01			31	3 30 4	125 9 140 16 15.2
		26 54.46	69 23.79					0.105E-01 0.104E-01			21	3 31 4 3 31 3	225 9 50 23 15.2 135 10 170 13 14.8
1/29		26 48.57 26 44.04	69 28.83 69 21.55					0.104E-01			31 31	3 31 4	45 9 307 21 14.8
1/29		26 51.44	69 16.72					0.107E-01			31	2 32 3 2 32 3	
1/29	400	26 57.28 27 0.00	69 15.80 69 24.00					0.978E-02 0.891E-02			31 81	2 32 3 2 32 3	
1/29	500		69 30.00					0.831E-02				2 31 3 2 31 3	
1/29 1/29		27 12.00 27 11.43	69 36.00 69 45.75					0.907E-02 0.882E-02			81	2 31 3 2 31 3	
1/29	800	27 12.00	69 54.00	9.3 339	18.3	16.5	57.4	0.887E-02	23.4	1020.2	81	2 31 3	
1/29	1000	27 11.70 27 5.48	69 48.90 69 41.11					0.848E-02 0.101E-01				2 31 3	
1/29	1100	27 4.04	69 38.91	6.7 359	18.7	16.7	59.6	0.942E-02	23.8	1021.0		1 30 3	
	1200 2	27 3.89 26 59.32	69 43.37 69 50.91					0.103E-01 0.927E-02				1 30 3	
1/29	1400	26 59.07	69 52.88	6.7 336	19.4	17.4	53.2	0.877E-02	24.0	1023.2	75	1 32 3	319 2 15 15 13.6
	1500 2 1600 3		69 53.92 69 54.91					0.931E-02 0.965E-02				1 32 3	
1/29	1700	27 3.16	69 55.87	6.8 348	19.4	17.0	59.6	0.982E-02	24.1	1023.0	68	1 32 3	
	1800 2 1900 2		69 56.81 69 56.29					0.102E-01 0.944E-02				1 32 3	
1/29	2000	27 10.95	69 49.47	6.2 359	19.5	16.9	59.0	0.977E-02	23.9	1021.4	11	1 31 3	
	2100 2		69 46.40 69 42.21					0.105E-01 0.105E-01				1 31 3	
1/29	2300	27 5.23	69 42.44	4.6 14				0.102E-01				1 31 3	
1/30 1/30	100		69 42.77 69 42.77					0.109E-01 0.100E-01				1 31 2	
1/30	200	27 5.53	69 45.14	5.5 71	. 19.7	17.8	62.4	0.105E-01	23.9	1022.7		1 33 2	
1/30 1/30	300 (400 (69 53.23 69 55.43					0.114E-01 0.107E-01				1 33 2	
1/30			69 54.85					0.108E-01				0 33 2	
1/30 1/30	600 700		69 54.25 69 53.50					0.107E-01 0.105E-01				0 34 1	
1/30	800	27 5.46	69 54.73 69 56.34	5.1 221	. 20.0	18.1	63.6	0.108E-01 0.106E-01	24.0	1020.	•	0 35 1	
	900 I		69 56.72					0.100E-01				0 35 1	
1/30	1100	27 4.40	69 49.68	1.0 201	. 20.4	18.4	67.4	0.117E-01 0.124E-01	23.8	1020.9	41	0 1	
	1200 1300	27 4.23 26 58. <u>21</u>	69 48.55 69 49.07					0.124E-01 0.119E-01				0 1	191 9 50 9 16.3
1/30	1400	26 56.66	69 49.18					0.123E-01				0 1	
		26 54.38 26 47.53	69 44.61 69 36.08					0.125E-01 0.115E-01				0 1	1 135 10 20 9 16.4
1/30	1700	26 40.50	69 29.30	3.1 314	22.4	19.1	67.1	0.131E-01	23.7	1021.7	41	0 1	
		26 33,59 26 26.84	69 21.79 69 14.74					7 0.124E-01 5 0.128E-01				0 1	1 135 10 315 4 17.2 1 135 9 335 4 18.2
1/30	2000	26 20.08	69 9.80	3.2 34	24.4	0.0	57.(0.124E-01	23.4	1020.	32		1 135 10 325 6 18.2 1 135 9 270 5 18.8
	2100 2200	26 13.11 26 7.02	69 0.41 68 53.23					7 0.130E-01 2 0.132E-01					L 135 10 280 8 18.4
1/30	2300	25 54.78	68 45.68	6.9 350	21.8	19.6	65.	7 0.124E-01	24.	1020.	7 32		1 135 10 270 9 17.2 1 90 10 300 17 17.6
1/31 1/31		25 59.14 25 59.38	68 36.86 68 26.89					8 0.130E-01 0 0.136E-01					l 90 10 300 17 17.6 L 90 10 330 17 18.0
1/31	200	25 1.55	68 21.59	5.6 1	8 21.4	19.6	70.	0 0.129E-0	1 24.	1022.	0	1 32	1 315 9 35 17 17.4
1/31 1/31		26 7.97 2 6 14.04	68 29.74 68 37.77	7.0 13 5.9 35	21.6 9 21.0	19.4	67.	9 0.119E-01 2 0.121E-01	L 24.	1022.	11		L 315 9 35 20 16.8 L 315 9 25 19 16.7
1/31	500	26 20.63	68 45.84	5.8 33	2 20.8	19.0	62.	2 0.111E-01	24.	5 1022.	2	1 34	l 315 9 10 20 15.9
1/31 1/31		26 27.27 26 33.72		4.5 34	7 20.6	18.7	63.:	0.111E-01 5 0.112E-01	L 23.	7 1021.	7	1 34	1 315 10 20 18 15.9 1 315 10 15 18 15.9
1/31	800	26 40.00	69 10.14	5.2 35	4 20.1	18.7	7 68.	6 0.122 E- 0	L 23.	5 1021.	•	1.34	1 315 10 20 19 16.7
1/31	900	26 46.37	69 18.65	5,5 34	¥ 20.5	18.6	70.	7 0.1248-0	L 23.4	1021.	•		1 315 10 15 20 16.7

Table Vb-1 (Leg 2, continued)

1/31 2000 27 25.16 70 3.35 7,7 14 20.2 16.7 55.9 0.964.50 22.5 1023.6 11 1 3.4 2 10 0 3 15 15.0 17.1 12.00 27 24.40 77 3.5 28 8.4 10 15.0 16.8 67.0 17.0 17.0 17.0 12.0 12.0 12.0 12.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	DATE	TIME	LAT	LONG	WS	WD	ATI	AT2	RH	ABS HUM	SST	BP	CLOUD	WAVES	SC SS AWD AWS TW
1/31 1200 27 6.487 69 44.73 7.7 0 20.2 18.6 7/16 0.1278-0.2 21.5 120.3 0 25 16.8 1 3.2 2 15 10 32 25 16.8 1 13 10 20 27 14.1 1300 27 14.68 69 44.03 2 1.5 18 20 14.7 0 14.8 0 14.															
1/31 1300 27 14.83 69 44.05 77 12 20.2 17.2 86.1 01.148-01 22.1 1021.0 1 1 34 2 315 10 35 22 15.6 17.1 14.00 27 24.08 79 31.00 77 27.0 8.1 14.0 20 27 27.0 8 70 4.32 10.0 10.0 8 19 19.0 10.0 11.0 11.0 11.0 11.0 11.0 1															
1/31 1900 27 27.81 69 57.67 7.7 2 19.6 1/7.0 68.1 0.1138-01 27.1 102.5 11 1 34 2 315 9 30 22 15.6 1/1 100 27 31.50 70 4.53 6.0 9 15.8 14.7 85.0 0.1038-01 27.1 102.3 11 1 34 2 315 9 30 22 15.6 1/1 100 27 31.50 70 4.32 10.6 195 15.0 1/2 67.8 0.1038-01 27.1 102.3 11 1 34 2 315 9 30 22 15.6 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/													2.1		
1/31 1600 27 33.85 70 4.53 8.0 9 19.9 19.9 19.7 63.7 63.0 1.098-0. 12.7 1023.6 1 1 1 1 2 2 115 9 32 115.4 1 1/31 1700 27 23.00 70 4.39 6.7 18 20.0 18.7 53.6 0.448-0. 12.9 1023.1 1 1 1 2 2 1 1 80 10 180 11 14.7 1/31 1700 27 23.00 70 4.99 6.7 18 20.0 18.7 53.6 0.448-0. 23.1 1023.7 1 1 1 3 2 2 8 9 3 22 14.4 1/31 1700 27 23.00 70 4.99 6.7 18 20.0 18.7 53.6 0.448-0. 23.1 1023.7 1 1 1 3 2 2 8 9 3 22 14.4 1/31 1700 27 23.00 70 3.15 77 1 4 20.1 14.7 53.9 0.948-0. 23.1 1023.7 1 1 1 3 2 2 8 9 3 22 14.4 1/31 1700 27 24.00 70 3.35 9.3 14 19.1 18.5 18.6 84.0 0.1078-0. 23.1 1023.8 1 1 2 3 2 10 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															
1/31 1700 27 25.08 70 4.32 10.8 39 18.0 17.2 62.4 0.100e-00 22.9 1024.3 31 1 34 2 180 10 180 11 14.4 17.3 1800 27 25.00 70 4.32 10.8 19.7 12.00 17.0 17.0 17.0 17.0 17.0 17.0 17.0 1						9	19.6	17.0	65.0	0.113E-01 0.109E-01	21.8	1025.0			
1/11 1800 27 24.53 70 4.23 7.7 4 19.6 16.6 69.1 0.1095-02 23.5 1022.7 11 1 34 2 5 0 0 15 15.0 17.0 1200 27 24.60 70 3.00 16 15.50 0.1095-01 23.5 1022.7 11 1 34 2 70 0 0 15 15.50 0.1095-01 23.5 1022.7 11 1 34 2 70 0 0 15 15.50 0.1095-01 23.5 1022.7 11 1 24 2 75 0 0 15 15.50 0.1095-01 23.5 1022.7 11 1 2 14 3 0 0 0 15 15.50 0.1095-01 23.5 1022.7 11 1 2 14 3 0 0 0 15 15.50 0.1095-01 23.5 1022.7 11 1 2 14 3 0 0 0 15 15.50 0.1095-01 23.5 1022.7 11 2 2 14 3 0 0 0 15 15.50 0.1095-01 23.5 1022.7 11 2 2 14 3 0 0 0 0 15 15.50 0.1095-01 23.5 1022.7 11 2 2 14 3 0 0 0 15 15.50 0.1095-01 23.5 1022.7 11 1 2 14 3 0 0 0 0 15 15.50 0.1095-01 23.5 1022.7 11 2 2 14 3 0 0 0 15 15.50 0.1095-01 23.5 1022.7 11 1 2 14 2 14 1 1 1 1 1 1 1 1 1 1 1 1	1/31	1700	27 25.08	70 4.32											
1/31 2000 27 25.16 70 3.35 7,7 14 20.2 16.7 55.9 0.964.50 22.5 1023.6 11 1 3.4 2 10 0 3 15 15.0 17.1 12.00 27 24.40 77 3.5 28 8.4 10 15.0 16.8 67.0 17.0 17.0 17.0 12.0 12.0 12.0 12.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17															
1/11 1200 27 24.60 70 3.35 9.3 14 19.2 18.8 8.6.0 0.1075-03 23.0 1023.8 11 1 3 4 7 70 100 18 15.0 11 12 10 27 24.80 70 3.08 8.2 19.10 10.8 874.0 10.90-01 22.8 1023.4 11 2 3 3 0 0 0 40 18 14.2 17 11 100 27 12.80 90 10.10 10															
1/11 200 27 24.00 79 3.09 0.0 0 19.2 18.8 39.4 0.9972-03 22.9 10.01.5 11 2 3.4 3 0.0 0.0 40.8 18.1 17.3 19.0 17.3 19.0 19.0 10.0 10.0 14.8 17.1 19.0 17.2 19.0 19.0 19.0 19.0 19.0 19.0 19.0 10.0 14.8 17.1 19.0 17.3 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	1/31	21.00	27 24.60	70 3.55	9.3	14	19.2	16.8	66.0	0.107E-01	23.0	1023.8		1 34 2	75 0 300 18 15.0
27 1 00 27 25,00 99 57,13 5,7 52 20,0 17,0 58,0 6,1002-01 23,0 1028,5															
27 1 200 27 21.38 69 40.78 5.7 93 19.6 17.5 59.9 0.9975-02 23.7 1024.6 1 3.6 2 30 10 0.0 20 14.6 17 1 400 27 34.48 69 40.14 3.4 27 19.6 17.5 51.0 10.22-01.22.5 1025.0 1 34. 2 30 10 0.0 20 14.6 17 1 400 27 34.48 69 40.14 3.4 27 19.6 17.5 51.5 0.1022-01.22.5 1025.0 1 34. 2 20 10 45 22 14.8 17.5 17.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19	2/1	0	27 25.00										11		
27 1 300 27 30.31 69 35.52 5.2 29 20.0 17.8 57.2 0.9735-02 23.6 1024.8 74 1 500 27 33.57 69 41.0 9.4 27 19.6 17.5 61.5. 0.1025-01 22.5 1025.0 1 1 34 2 230 10 65 24 14.8 17 1 500 27 33.57 69 47.31 10.0 21 18.9 17.3 61.2 0.1025-01 21.6 1025.1 1 1 34 2 230 10 45 24 14.8 17 1 500 27 33.57 69 47.31 10.0 21 18.9 17.3 61.2 0.1025-01 21.6 1025.1 1 1 34 2 220 10 135 11 14.6 27 1 10.0 27 17.3 67 0 4.50 9 41.0 10.0 21 18.9 17.3 61.2 0.1025-01 21.6 1025.1 1 1 34 2 220 10 135 11 14.6 27 1 10.0 27 17.3 67 0 4.50 9 41.0 1 9.8 16 15.0 17.4 64.0 10.1025-01 21.4 1025.1 1 1 34 2 225 10 135 11 14.6 27 1 10.0 27 17.3 67 0 4.50 9 4.2 1 10.0 17 1 10.0 27 17.3 67 0 4.50 1 9.8 16 14.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17															
27 1 400 27 38-48 69 40.14 9.4 27 19.6 17.5 61.5 0.1022-01 22.5 1025.0 1 13.4 2 225 19.0 45 24 14.5 27 1 500 27 13.37 69 47.31 10.0 21 18.9 17.3 62.2 0.9 958-02 21.6 1025.1 1 13.4 2 225 19.131 11.4 11.7 17.0 27 2.0 27 0.8 95 41.0 9.8 16 19.0 17.4 6.0 0.1012-01 21.4 1025.1 1 13.4 2 225 19.130 11.1 11.3 17.1 17.0 17.0 17.0 17.0 17.0 17.0 17.0															
27 1 600 27 26.69 69 34.10 9.8 16 19.0 17.4 64.0 0.1018-01 23.4 1025.0 1 13.4 220 91 400 11 15.2 27 1 700 27 0.00 4.70 4.30 9.8 24 19.0 17.2 65.1 0.118-01 23.4 1025.0 1 13.5 2 23.9 140 11 15.2 17 1 100 27 17.36 70 4.36 11.4 356 13.2 17.3 65.3 0.118-01 23.4 1025.0 1 13.5 2 23.9 140 11 15.2 17 1 100 27 17.36 70 4.30 9.8 24 19.0 17.2 65.1 0.118-01 23.4 1025.0 1 13.5 2 23.9 140 11 15.2 17 1 100 27 17.36 70 4.30 9.8 24 19.0 17.2 65.1 0.118-01 23.4 1025.0 1 13.5 2 23.9 140 11 15.2 17 1 100 27 12.34 69 59.23 9.0 339 15.7 17.6 70.7 0.1188-01 23.3 1025.6 68 23 52 12.80 86 20 13 16.2 2 17 1 100 27 12.36 69 43.02 2 10.8 14 18.0 14.7 17.0 17.0 11.8 10.0 12.3 1025.6 68 23 52 12.80 86 20 13 16.2 2 17 1 100 27 12.89 69 50.86 17.3 30 20.0 17.9 64.5 0.118-01 23.5 1027.6 68 23 52 2 12.80 86 20 13 16.2 2 17 1 1400 27 13.66 69 43.02 9.8 24 20.0 18.4 56.3 0.118-01 23.5 1027.6 69 12 2 2 2 2 5 7 9 20 27 14.0 17.1 1400 27 13.6 69 49.2 9.8 24 20.0 18.4 56.5 0.108-01 23.5 1027.6 52 10 2 2 35 1 0 18 15.2 17.1 1400 27 13.36 69 49.2 9.8 24 20.0 18.4 56.5 0.108-01 23.5 1027.6 52 10 2 2 35 1 0 18 15.2 17.1 1400 27 17.18 69 44.23 9.8 28 20.7 18.0 63.6 0.118-01 23.5 1027.6 52 10 2 2 35 1 0 18 15.2 17.1 1400 27 17.18 69 44.23 9.8 28 20.7 18.0 63.6 0.118-01 23.5 1027.5 52 1 0 2 2 35 1 0 18 15.5 11.5 11.5 11.5 11.5 11.5 11.5 1					9.4	27	19.6	17.5	61.5	0.102E-01	22.5	1025.0		1 34 2	
27 1 700 27 20.62 70 0.80 9.7 27 19.1 17.6 68.4 0.1112-01 23.4 1025.0 1 13.4 2 230 9 140 11 15.7 1 1 800 27 19.00 70 14.30 9.8 24 19.00 17.2 69.1 0.1112-01 23.4 1025.0 1 15.5 2 275 0 110 19 15.2 27 1 1000 27 17.36 70 4.38 11.4 356 19.2 17.3 69.3 0.1112-01 23.5 1025.6 6 2 23 2 135 8 200 17 10 17 17 17 17 17 17 17 17 17 17 17 17 17															
27 1 900 27 17.36 70 4.58 11.4 336 19.2 17.3 69.5 0.1131-01 221.4 1025.9 2 2 135 8 200 17 15.4 1027 11.100 27 11.12 69 57.32 90. 379 19.7 17.6 70.7 0.1181-01 23.5 1025.8 68 2 35 2 180 8 200 13 16.0 27 11.120 27 11.200 27 12.68 69 57.82 10.8 34 19.4 61.75 64.0 0.1111-01 23.5 1025.8 68 2 35 2 180 8 200 13 16.0 27 11.100 27 11.200 27 12.68 69 57.82 10.8 34 19.4 61.75 64.0 0.1111-01 23.5 1025.8 68 2 35 2 180 8 200 13 16.0 27 11.400 27 11.68 69 43.02 9.8 22 03.0 18.5 48.0 1.111-01 23.5 1025.8 68 2 35 2 180 8 200 13 16.0 27 11.400 27 11.400 27 11.69 69 43.02 9.8 22 03.1 8.0 48.0 61.6 0.1011-01 23.5 1027.6 32 1 02 02 2 85 9 230 27 16.0 27 11.400 27 11.59 64 1.6 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2/ 1	700	27 20.62	70 0.80	9.7	27	19.1	17.6	68.4	0.111E-01	23.4	1025.0			
27 1 1000 27 12.94 69 59.25 9.0 399 19.7 17.6 70.7 0.118E-01 23.5 1023.8 68 2 35 2 103 8 250 13 16.0 27 12.100 27 12.26 99 57.22 10.8 34 19.6 17.5 66.4 0.1111E-01 23.5 1023.8 68 2 35 2 103 8 200 15 16.2 7 1 1000 27 12.6 99 57.22 10.8 34 19.6 17.5 66.4 0.1111E-01 23.5 1023.6 68 2 35 2 103 8 200 15 16.2 7 1 1000 27 12.6 99 57.22 10.8 34 19.6 17.5 66.4 0.1111E-01 23.5 1026.6 41 2 00 2 13 7 7 0 28 15.4 7 1 1000 27 11.6 69 43.02 9.8 24 20.3 18.4 38.5 3 0.1011E-01 23.3 1026.6 7 4 2 00 2 2 25 0 0 19 15.0 17 1 1500 27 12.9 99 40.5 6 1.3 30 12.0 14.1 15.0 11.1 15.0 12.1 15.0 12.1 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15					9.8	24	19.0	17.2	69.1	0.111E-01	23.4	1025.0			275 0 110 19 15.2
27 1 1100 27 11.12 9 9 55.38 11.7 13 19.7 17.8 72.4 0.121E-01 23.5 1025.6 84 2 50 2 13.6 200 15 16.2 27 1 1200 27 12.89 9 69 50.86 17.3 303 20.0 17.9 68.5 0.117E-01 23.5 1026.6 41 2 00 2 2 35 7 0 28 15.4 27 1 1400 27 13.68 9 43.02 9.8 24 20.3 18.4 56.3 0.1018-01 23.4 1027.6 13 2 02 2 2 30 0 19 15.0 27 1 14.00 27 13.5 46 94 14.8 8 10.3 13 20.4 18.6 61.6 0.107E-01 23.5 1026.6 41 2 00 2 3 5 7 0 28 15.4 27 1 1400 27 17.1 69 94 2.48 8 10.3 13 20.4 18.6 61.6 0.107E-01 23.5 1027.5 2 1 02 2 35 1 0 18 15.5 17 1 1400 27 17.1 69 94 12.5 94 12.5 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2															
27 1300 27 12.89 9 50.86 17.3 301 20.0 17.9 68.5 0.117-01 21.3 1026.6 74.0 2 2 2 2 5 0 0.19 15.0 27 1.100 27 14.91 69 42.48 86.8 34 20.4 18.6 61.6 0.107-01 23.5 1027.6 52 1 02 2 35 1 0.19 18.5 17.1 18.00 27 13.5 69 41.28 86.8 10.3 11.20 41.89 66.6 0.107-01 23.5 1027.5 25 1 02 2 35 1 0.18 15.5 17.1 17.0 27 17.18 69 41.25 98 23.0 41.89 66.6 0.107-01 23.5 1027.5 25 1 02 2 35 1 0.18 15.5 17.1 17.0 27 17.18 69 41.25 98 23.0 41.89 63.6 0.1132-01 23.5 1027.5 25 1 02 2 35 1 0.18 18.5 27.1 1.10 27 17.1 18.00 27 18.5 69 60.5 10.3 98 32.00 41.79 72.0 20.1265-01 23.5 1025.6 74 2 0.2 2 2 2 2 2 2 2 2 2	2/1	1100	27 11.12	69 55.38	11.7	13	19.7	17.8	72.4	0.121E-01	23.5	1025.8	68		
27 1 1400 27 13.68 69 43.02 9.8 24 20.3 18.4 38.3 0.1012-01 23.5 1027.6 51 10.2 2 25 0 0 19 13.5 1.0 18 13.5 17 14.9 169 42.48 8.8 34 20.4 18.6 16.0 1078-01 23.5 1027.5 52 1 0.2 2 25 0 0 19 13.5 1.0 18 13.5 17 14.1 14.0 14.1 14.1 14.1 14.1 14.1 14.1													-		
27 1 1500 27 14.91 69 42.48 8.8 34 20.4 18.6 61.6 0.107E-01 23.5 1027.6 52 1 00 2 155 1 0 18 15.6 17 1 100 27 17.18 69 41.25 9.8 28 20.7 18.0 63.6 0.1150-01 23.6 1027.5 52 1 00 2 2 35 1 0 18 15.6 17 1 100 27 17.18 69 41.25 9.8 28 20.7 18.0 63.6 0.1150-01 23.5 1027.0 52 1 00 2 34 1 355 20 16.0 27 1 1800 27 19.27 69 40.56 10.3 29 20.4 17.9 72.2 0.1265-01 23.4 1026.4 21 03 2 34 1 35.5 00 16.0 27 1 100 27 19.27 69 40.56 10.3 29 20.4 17.9 72.2 0.1265-01 23.5 1026.2 74 20 2 2 210 9 180 11 15.6 27 1 2000 27 18.09 69 41.29 11.3 29 20.5 18.4 61.8 0.1088-01 23.5 1026.2 74 20 2 2 20 35 0 0 21 16.7 1 100 27 18.09 69 41.29 11.3 29 20.5 18.4 61.8 0.1088-01 23.5 1026.0 74 20 2 2 35 0 0 2 11.6 17.1 100 27 18.09 69 41.29 11.3 29 20.5 18.2 66.6 0.1215-01 23.5 1026.0 74 20 2 2 35 0 0 2 11.6 17.1 100 27 18.09 69 41.29 11.3 29 20.5 18.2 66.6 0.1215-01 23.5 1026.0 74 20 2 2 40 0 350 22 16.4 27 1 2200 27 18.39 69 41.18 8.8 34 20.4 18.1 64.0 0.1125-01 23.4 1027.2 20 22 2 35 0 0 27 15.5 0 17 15.8 0 17 15.0 1															
27 1 1700 27 17.18 69 41.23 9.8 28 20.7 18.0 63.6 0.1138-01 23.5 1027.0 52 1.00 2 2 4.1 50 27 19.27 69 40.55 10.3 9.8 32 20.4 17.9 72.2 0.1286-01 23.5 1026.2 74 20 22 210 91 01 15.6.4 71 2000 27 19.27 69 40.56 10.3 29 20.5 18.4 61.8 0.1088-01 23.5 1026.2 74 20 22 210 91 01 15.6.4 71 2000 27 19.80 69 41.29 11.3 29 20.5 18.4 61.8 0.1088-01 23.5 1026.0 74 20 2 2 10.0 91 00 11 15.6.4 71 2100 27 18.09 69 41.29 11.3 29 20.5 18.2 66.6 0.1118-01 23.5 1026.0 74 20 2 2 40 0 30 50 22 16.4 71 2200 27 18.39 69 41.18 8.8 34 20.4 18.3 77.0 0.128-01 23.5 1026.0 74 20 2 2 40 0 30 50 22 16.4 71 2200 27 18.39 69 41.18 8.8 34 20.4 18.3 77.0 0.128-01 23.5 1026.0 64 20 2 35 0 350 22 16.4 72 2 00 27 23.82 69 47.36 9.1 28 20.4 18.3 61.6 0.1078-01 23.4 1027.0 20 3 3 5 0 0 17 15.8 72 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 2 2 2 2 2 2 35 0 0 17 15.8 72 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2/1	1500	27 14.91	69 42.48	8.8	34	20.4	18.6	61.6	0.107E-01	23.5	1027.6			
27 1 1800 27 18.15 69 40.53 9.8 32 20.4 17.9 72.2 0.1268-01 23.5 1026.4 42 10.3 2 3.1 10 20 16.8 4 27 1 2000 27 17.85 69 41.10 10.8 34 20.3 18.2 69.6 0.1218-01 23.5 1026.0 74 2 02 2 210 9 180 11 15.6 27 1 2000 27 18.36 69 41.22 11.3 27 20.5 18.2 69.6 0.1218-01 23.5 1026.0 74 2 02 2 210 9 180 11 15.6 27 1 2000 27 18.36 69 41.32 11.3 24 20.2 18.2 70.4 0.1218-01 23.5 1026.0 74 2 02 2 35 0 0 21 16.4 27 1 2300 27 18.39 69 41.28 18.8 8.8 34 20.4 18.3 57.7 0.1018-01 23.4 1026.6 6 2 2 2 35 0 0 17 15.8 27 2 0 27 18.36 69 41.22 8.8 34 20.4 18.3 57.7 0.1018-01 23.4 1027.2 2 0 3 2 35 0 0 17 15.8 27 2 100 27 23.82 69 47.96 8.2 44 20.1 18.5 77.1 0.1228-01 23.1 1027.0 2 0 3 2 35 0 0 17 15.8 27 2 2 00 27 24.82 69 47.96 8.2 44 20.1 18.5 77.1 0.1228-01 23.3 1027.0 2 0 3 2 35 0 0 17 15.8 27 2 0 20 27 25.41 69 47.70 9.3 5 40.25 18.6 69.0 0.1218-01 23.4 1027.1 2 0 3 2 35 0 0 0 17 15.8 27 2 500 27 25.77 69 47.67 8.5 44 20.4 18.6 69.0 0.1218-01 23.4 1027.0 2 0 3 2 30 0 15 16 16.4 27 2 500 27 25.77 69 47.67 8.5 44 20.4 18.6 68.7 0.1128-01 23.3 1027.0 2 0 3 2 0 2 0 2 0 10 18 16.1 27 2 600 27 25.03 69 46.51 8.1 44 20.3 18.6 64.7 0.1128-01 23.3 1025.6 2 0 3 2 0 2 0 2 0 10 18 16.3 27 2 500 27 15.24 69 49.06 8.2 49 20.2 18.5 64.5 0.1128-01 23.3 1025.6 2 0 3 2 2 0 2 0 2 0 18 16.3 27 2 500 27 15.24 69 49.06 8.2 49 20.2 18.5 64.5 0.1128-01 23.3 1025.6 2 0 3 2 2 2 2 2 5 0 12 15 16 15.4 27 2 500 27 15.24 69 49.06 8.2 49 20.2 18.5 64.5 0.1128-01 23.3 1025.6 2 0 3 2 2 2 2 2 5 0 10 17 15.5 27 2 100 27 8.5 69 41.67 10.1 32 20.4 18.7 17.4 0.1258-01 23.3 1025.0 2 0 3 2 10 2 0 2 0 10 10 15.6 27 2 100 27 8.5 69 41.87 10.1 32 20.4 18.7 17.4 0.1258-01 23.5 1025.0 7 7 1 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2															
27 1 1900 27 19,27 69 40.56 10.3 29 20.5 18,4 61.8 0.108E-01 23.5 1026.2 74 202 2 210 9 180 11 15.6 27 1 2000 27 18.9 69 41.29 11.3 29 20.5 18.2 66.6 0.117E-01 23.5 1026.6 74 2 02 2 35 0 0 21 16.4 62 1 1200 27 18.9 69 41.29 11.3 29 20.5 18.2 66.6 0.117E-01 23.5 1026.6 74 2 02 2 40 0 350 22 16.4 72 1 2200 27 18.3 9 69 41.18 8.8 34 20.4 18.3 57.7 0.101E-01 23.5 1026.6 64 2 02 2 35 0 0 22 16.4 62 1 20 20 2 1 20 2 1 20 2 2 35 0 0 27 21.6 1 20 2 2 1 20 2 2 2 2 2 2 2 2 2 2 2 2 2															
27 1 2100 27 18.09 69 41.29 11.3 29 20.5 18.7 66.6 0.1178-01 23.5 1028-0 74 2 02 2 35 0 350 22 16.4 27 1 2300 27 18.39 69 41.18 8.8 34 20.4 18.1 64.0 0.1128-01 23.5 1028-0 64 2 02 2 35 0 350 22 16.4 27 1 2300 27 18.39 69 41.18 8.8 34 20.4 18.1 64.0 0.1128-01 23.5 1028-0 64 2 02 2 35 0 350 22 16.4 27 2 100 27 23.82 69 47.36 91 28 20.4 18.3 37.7 0.10128-01 23.4 1027-0 2 2 2 35 0 350 2 16.4 27 2 100 27 23.82 69 47.36 91 28 20.4 18.3 361.6 0.1078-01 23.4 1027-0 2 2 2 3 2 35 0 0 17 13.8 27 2 200 27 23.82 69 47.70 93 54 20.5 18.7 65.7 0.1158-01 23.3 1027-0 2 0 3 2 35 0 0 17 13.5 27 2 300 27 25.41 69 47.70 93 54 20.5 18.7 65.7 0.1158-01 23.2 1027-0 2 0 3 2 35 0 0 17 18.5 27 2 300 27 25.75 69 47.87 8.8 49 20.5 18.6 69.0 0.1218-01 23.2 1026-7 2 0 3 2 40 0 17 18.5 27 2 500 27 25.77 69 47.87 8.8 44 20.4 18.6 68.1 0.1198-01 23.3 1026-0 2 0 3 2 0 2 50 0 0 17 18.5 27 2 700 27 19.84 69 42.06 8.2 49 20.2 18.5 62.2 0.1078-01 23.5 1026-0 2 0 3 2 0 2 2 50 0 0 17 18.5 27 2 700 27 19.84 69 42.07 11.3 31 20.4 18.7 11.4 0.1258-01 23.5 1025-0 61 20 3 2 155 10 157 15.8 27 2 700 27 19.84 69 42.07 11.3 31 20.4 18.7 17.1 40.1258-01 23.5 1025-0 61 20 3 2 155 9 00 19 15.7 2 27 2 100 27 5.8.19 69 42.07 11.3 31 20.4 18.7 17.1 40.1258-01 23.5 1025-0 61 20 3 2 160 9 235 13 16.7 27 2 100 27 5.8.19 69 42.07 12.3 31 20.4 18.7 14.4 0.1258-01 23.5 1025-0 61 20 3 2 180 9 235 13 16.7 27 2 100 27 5.8.19 69 42.07 12.3 31 20.4 18.7 14.4 0.1258-01 23.5 1025-0 61 20 3 2 180 9 235 13 16.7 27 2 100 27 5.8.19 69 42.07 12.3 31 20.4 18.7 14.4 0.1258-01 23.5 1025-0 7 1 0 2 2 20 2 2 15 15 6 15.4 27 2 100 27 5.8.19 69 42.07 12.3 31 20.4 18.7 14.4 0.1258-01 23.5 1025-0 7 1 0 2 2 20 2 2 15 16 15.4 27 2 100 27 5.8.19 69 42.07 12.3 31 20.4 18.7 14.4 0.1258-01 23.5 1025-0 7 1 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2/1	1900	27 19.27	69 40.56	10.3	29	20.5	18.4	61.8	0.108E-01	23.5	1026.2	74	2 02 2	210 9 180 11 15.6
2/1 2200 27 18.34 69 41.32 11.3 24 20.2 18.2 70.4 0.121E-01 23.5 1026.6 64 2 02 2 135 0 350 22 16.4 2/1 2300 27 18.35 69 41.22 8.8 34 20.4 18.1 64.0 0.112E-01 23.4 1027.2 2 2 2 35 0 0 17 15.5 8 2/2 0 0 27 18.56 69 41.22 8.8 34 20.4 18.3 57.7 0.101E-01 23.4 1027.2 2 2 33 2 35 0 0 17 15.5 0 1/2 10.0 27 23.82 69 47.36 8.2 44 20.1 18.5 71.1 0.122E-01 23.4 1027.1 2 2 33 2 315 9 50 22 15.5 0 2/2 15.0 27 24.82 69 47.96 8.2 44 20.1 18.5 71.1 0.122E-01 23.3 1027.0 2 2 33 2 315 9 50 22 15.5 0 2/2 15.0 27 25.4 16 94 47.70 9.3 54 20.5 18.6 69.0 0.121E-01 23.3 1027.0 2 2 33 2 35 0 0 17 15.6 2/2 12 500 27 25.4 16 94 47.70 9.3 54 20.5 18.6 69.0 0.121E-01 23.3 1027.0 2 2 33 2 35 0 0 17 15.6 2/2 12 500 27 25.77 69 44.67 8.8 49 20.5 18.6 69.0 0.121E-01 23.5 1026.6 2 2 3 2 2 50 0 0 17 15.5 2/2 12 500 27 15.34 9 46.51 8.1 44 20.3 18.6 69.1 0.119E-01 23.3 1026.6 2 2 3 2 2 0 2 0 0 0 17 15.5 2/2 12 500 27 16.32 69 3.0 8 1.8 1 44 20.3 18.6 69.1 0.119E-01 23.5 1025.0 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2															
2/1 2300 27 18.39 69 41.18 8.8 34 20.4 18.1 64.0 0.1128-01 23.4 1026.6 20 2 2 35 0 0 17 15.0 2/2 100 27 23.82 69 47.36 9.1 28 20.4 18.3 57.7 0.1018-01 23.3 1027.0 2 0 2 35 0 0 17 15.0 2/2 100 27 23.82 69 47.36 9.1 28 20.4 18.3 51.6 0.1078-01 23.3 1027.0 2 0 3 2 35 0 0 17 15.0 2/2 100 27 25.45 69 47.96 8.2 44 20.1 18.5 71.1 0.1228-01 23.3 1027.0 2 0 3 2 35 0 0 17 15.0 2/2 2 0 30 27 25.45 69 47.70 9.3 54 20.5 18.7 57.1 0.1228-01 23.3 1027.0 2 0 3 2 35 0 0 17 15.0 2/2 2 0 3 2 30 0 2 15.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5															
22 2 100 27 23.82 69 47.36 9.1 28 20.4 18.3 61.6 0.1078-01 23.3 1027.0 2 03 2 315 9 50 22 13.5 9 67.7 27.2 200 27 25.48 69 47.96 8.2 44 20.1 18.5 71.1 0.1228-01 23.3 1027.0 2 03 2 30 0 15 16.5 4.2 2 03 2 2 00 2 2 0 15 15 16.5 4.2 2 03 2 2 00 2 2 0 15 15 16.5 4.2 2 03 2 0 2 0 15 16.5 16.5 4.2 2 03 2 0 2 0 17 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5					8.8	34	20.4	18.1	64.0	0.112E-01	23.4	1026.6		2 02 2	35 0 0 17 15.8
27 2 200 27 24.82 69 47.96 8.2 44 20.1 18.5 71.1 0.122-01 23.3 1027.0 2 03 2 03 0 0 15 16 16.4 27 24 000 27 25.35 69 47.50 8.8 49 20.5 18.6 69.0 0.1218-01 23.2 1026.7 2 03 2 03 2 05 0 0 17 16.5 27 2 25 00 0 27 25.37 69 47.57 8.8 49 20.5 18.6 69.0 0.1218-01 23.3 1026.6 2 03 2 05 0 0 0 17 16.5 27 2 25 00 0 27 25.37 69 46.51 8.1 44 20.3 18.6 64.7 0.1122-01 23.5 1026.0 2 0 3 2 0 2 0 18 16.3 16 27 2 200 27 18.32 69 48.51 8.1 44 20.3 18.6 64.7 0.1122-01 23.5 1026.0 2 0 3 2 155 10 255 17 15.8 27 2 100 27 18.32 69 42.07 11.3 31 20.4 18.7 68.6 0.1118-01 23.5 1025.0 6 1 2 03 2 135 9 300 19 15.7 67 2 100 27 6.32 69 42.07 11.3 31 20.4 18.7 68.6 0.1118-01 23.5 1025.0 6 1 2 03 2 135 9 300 19 15.7 67 2 100 27 6.32 69 42.03 18.8 27 21.0 19.0 73.7 0.1332-01 23.5 1025.0 7 1 03 2 285 0 125 16 15.4 67 2 100 27 6.32 69 44.28 7.7 54 21.0 19.1 74.5 0.1342-01 23.5 1025.0 7 1 03 2 285 0 125 16 15.4 67 2 100 27 6.32 69 44.28 7.7 54 21.0 19.1 74.5 0.1342-01 23.5 1025.0 7 1 03 2 200 0 100 17 17.5 7 12.0 100 27 6.33 7 0 103 2 25 50 0 0 0 17 15.6 16.1 10 25 10 25 10 25 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															
2/ 2 400 27 25.35 69 47.67 8.8 49 20.5 18.6 69.0 0.1218-01 23.2 1026.7 20 27 25.77 69 47.67 8.7 42.0 19.6 69.1 0.119-01 23.3 1026.6 20 2 0 2 0 10 16.6.3 2/ 2 600 27 25.03 69 48.51 8.1 44 20.3 18.6 64.7 0.1128-01 23.5 1026.0 20 3 2 135 9 300 19 15.7 6/ 2 800 27 18.32 69 42.06 8.2 49 20.2 18.5 64.6 0.1118-01 23.5 1025.0 61 2 03 2 135 9 300 19 15.7 6/ 2 1000 27 6.32 69 42.07 11.3 31 20.4 18.7 68.1 0.1192-01 23.5 1025.0 61 2 03 2 135 9 300 19 15.7 6/ 2 1000 27 6.32 69 42.07 11.3 31 20.4 18.7 71.4 0.1138-01 23.5 1025.0 61 2 03 2 135 9 300 19 15.7 6/ 2 1200 27 6.32 69 42.03 8.8 29 21.0 19.0 73.7 0.1332-01 23.5 1025.0 61 2 03 2 180 9 230 13 16.3 6/ 2/ 2 1100 25 58.19 69 44.28 7.7 4.0 1138-01 23.5 1025.0 77 1 03 2 290 0 100 17 17.5 6/ 2/ 2 1200 27 58.19 69 44.28 7.7 4 21.0 19.1 74.5 0.1348-01 23.5 1025.0 77 1 03 2 290 0 100 17 17.5 6/ 2/ 2 1200 27 18.34 70 10.00 8.9 44 21.5 18.9 70.9 0.1328-01 23.5 1025.0 78 1 04 2 315 10 45 22 17.6 6/ 2/ 2 1600 27 18.34 70 10.00 8.9 44 21.5 18.9 70.9 0.1328-01 23.5 1025.0 72 1 04 2 315 10 45 22 17.6 6/ 2/ 2 1600 27 18.36 70 21.15 8.2 31 21.2 18.3 68.2 0.1248-01 23.5 1025.0 72 1 04 2 315 10 45 22 17.6 6/ 2 100 27 40.49 70 19.11 7.7 29 20.8 18.0 72.0 1248-01 22.5 1025.0 72 1 04 2 315 10 55 22 17.7 2/ 2 1000 27 40.04 70 19.51 7 7.2 9 20.8 18.0 72.7 0.138-01 22.5 1025.0 71 1 04 2 315 10 55 22 17.7 2/ 2 2000 27 40.04 70 19.51 7 7.2 9 20.8 18.0 72.7 0.138-01 22.5 1023.0 1 1 0.4 2 30 0 0 0 15 17.6 2/ 2 2000 27 40.04 70 19.51 7 7.2 9 20.8 18.0 72.7 0.138-01 22.5 1023.0 1 1 0.4 2 30 0 0 0 15 17.6 2/ 2 2000 27 40.04 70 19.51 7 7.2 9 20.8 18.0 72.7 0.138-01 22.5 1023.0 1 1 0.4 2 30 0 0 0 15 17.6 2/ 2 2000 27 40.04 70 19.51 7 7.2 9 20.8 18.0 72.7 0.138-01 22.5 1023.0 1 1 0.4 2 30 0 0 0 15 17.6 2/ 2 2000 27 40.04 70 19.51 7 7.2 9 20.8 18.0 72.7 0.138-01 22.5 1023.0 1 1 0.4 2 30 0 0 0 15 17.6 2/ 2 2000 27 40.04 70 19.51 7 7.2 9 20.8 18.0 72.7 0.138-01 22.5 1023.0 1 1 0.4 2 30 0 0 0 15 17.6 2/ 2 2000 27 40.04 70 19.51 7 7.2 9 20.8 18.0 72.7 0.138-01 22.5 1023.0 1 1 0.4 2 20 0 3 25 3 11 17.9 11 10.0															
27 2 500 27 25.77 69 47.87 8.5 44 20.4 18.6 68.1 0.119E-01 23.3 1026.6 20 3 2 0 2 40 18 16.3 42 26.3 16.2 66.4 20 11.2 66.0 27 25.0 36 94.5 18.3 1.4 20.3 18.6 64.7 0.112E-01 23.5 1026.0 27 19.8 4 69 42.0 8 8.2 49 20.2 18.5 62.2 0.107E-01 23.4 1025.8 20 3 2 135 9300 19 15.7 15.8 27 2 900 27 15.27 69 42.07 11.3 31 20.4 18.7 68.1 0.119E-01 23.5 1025.0 61 2 03 2 135 9300 19 15.7 17.5 18.2 19 19 19 19 19 19 19 19 19 19 19 19 19						54	20.5	18.7	65.7	0.115E-01	23.3	1027.0			
2/ 2 600 27 25.03 69 46.51 8.1 44 20.3 18.6 64.7 0.112E-01 23.5 1026.0 2 0.3 2 145 10 295 17 15.8 2/ 2 700 27 19.84 69 42.06 8.2 49 20.2 18.5 64.6 0.112E-01 23.5 1025.0 61 2 0.3 2 135 9 300 19 15.7 2 100 27 86.55 69 42.07 11.3 31 20.4 18.7 76.4 0.125E-01 23.5 1025.0 61 2 0.3 2 135 9 300 19 15.7 2/ 2 1000 27 6.52 69 42.07 11.3 31 20.4 18.7 71.4 0.125E-01 23.5 1025.3 77 1 0.3 2 290 0 100 17 17.5 2/ 2 1000 27 6.55 69 42.03 8.8 29 21.0 19.0 73.7 0.133E-01 23.5 1025.3 77 1 0.3 2 290 0 100 17 17.5 2/ 2 1200 26 58.19 69 44.28 7.5 42 1200 19.1 14.5 0.135E-01 23.5 1025.3 77 1 0.3 2 290 0 100 17 17.5 2/ 2 1200 27 9.31 70 1.25 8.5 25 20.9 19.1 74.5 0.135E-01 23.5 1025.3 77 1 0.3 2 290 0 100 17 17.5 2/ 2 1500 27 15.34 70 10.00 8.9 44 21.5 18.9 70.9 0.132E-01 23.5 1025.5 72 1 0.4 2 315 10 60 22 17.6 2/ 2 1500 27 15.34 70 10.00 8.9 44 21.5 18.9 70.9 0.132E-01 23.5 1025.5 72 1 0.4 2 315 10 60 22 17.6 2/ 2 1500 27 33.29 70 21.39 8.9 37 21.2 18.4 68.1 0.124E-01 23.3 1025.4 68 1 0.4 2 0.9 25 25 17.0 2/ 2 1500 27 33.29 70 21.39 8.9 37 21.2 18.4 68.1 0.124E-01 23.3 1025.4 68 1 0.4 2 0.9 25 25 17.0 2/ 2 1500 27 40.69 70 19.87 8.8 29 21.7 18.0 67.9 0.127E-01 22.5 1024.0 11 1 0.4 2 30 0 0 16 17.6 2/ 2 2000 27 40.27 01.98 7 8.8 29 21.7 18.0 67.9 0.127E-01 22.5 1024.0 11 1 0.4 2 30 0 0 16 17.6 2/ 2 2000 27 40.02 70 19.53 8.2 29 21.6 18.5 17.0 2.9 10.132E-01 23.1 1023.4 11 1 0.4 2 30 0 0 16 17.6 2/ 2 2000 27 40.04 70 19.51 7.7 29 21.7 18.0 67.9 0.127E-01 22.5 1024.0 11 1 0.4 2 30 0 0 16 17.6 2/ 2 2000 27 40.04 70 19.53 8.2 29 21.6 18.5 18.5 70.7 7.7 29 21.7 18.0 67.9 0.127E-01 22.5 1023.6 11 1 0.4 2 30 0 0 16 17.6 2/ 2 2000 27 40.04 70 19.55 70 19.55 8.2 29 21.6 18.5 17.0 7.9 20.2 13.5 10.2 10.2 11 1 1 0.4 2 30 0 0 16 17.6 2/ 2 2000 27 40.04 70 19.55 70 19.55 8.2 29 21.6 18.5 17.0 7.9 20.2 13.5 10.2 10.2 11 1 1 0.4 2 30 0 0 16 17.6 2/ 2 2000 27 40.04 70 19.55 70 19.55 8.2 29 21.6 18.5 10.2 10.2 10.2 10.2 11 1 1 0.4 2 30 0 0 16 17.6 2/ 2 2000 27 40.04 70 19.55 70 19.55 8.2 29 21.6 18.5 70.5 10.2 10.2 10.2 11 1 1 0.4 2 30 0 0 16 17.6 2/ 2															
27 2 800 27 18.12 69 39.01 8.5 46 20.2 18.5 64.6 0.111E-01 23.5 1025.0 61 2 03 2 180 9 230 15 16.3 27 2 1000 27 6.32 69 42.07 11.3 31 20.4 18.7 68.1 0.119E-01 23.5 1025.0 61 2 03 2 180 9 230 15 16.3 27 2 1000 27 6.32 69 41.87 10.1 32 20.4 18.7 71.4 0.125E-01 23.5 1025.2 7 1 03 2 290 0 100 17 17.5 27 2 1200 26 58.19 69 44.28 7.7 54 21.10 19.1 74.5 0.134E-01 23.5 1025.3 77 1 03 2 290 0 100 17 17.5 27 2 1200 27 58.19 69 44.28 7.7 54 21.10 19.1 74.5 0.134E-01 23.5 1025.0 78 1 04 2 35 10 50 15 17.6 27 2 1400 27 9.31 70 2.25 8.5 23 20.9 19.2 75.2 0.155E-01 23.5 1025.5 72 1 04 2 315 10 60 22 17.6 27 2 1400 27 9.31 70 3.59 9.8 44 20.2 18.6 80.6 0.139E-01 23.5 1025.5 72 1 04 2 315 10 60 22 17.6 27 2 1400 27 31.29 70 21.39 8.9 37 21.2 18.4 68.1 0.124E-01 23.5 1025.7 72 1 04 2 315 10 60 20 17.6 27 2 1800 27 38.26 70 21.39 8.9 37 21.2 18.4 68.1 0.124E-01 23.5 1025.0 72 1 04 2 315 10 60 20 17.6 27 2 1800 27 40.17 70 20.17 7.7 29 21.7 18.1 68.7 0.129E-01 22.9 1024.6 68 1 04 2 0 9 25 25 17.0 27 2 1000 27 40.17 70 20.17 7.7 29 21.7 18.1 68.7 0.129E-01 22.9 1024.6 64 1 04 2 0 9 20 24 17.0 27 2 2000 27 40.17 70 20.17 7.7 29 21.7 18.1 68.7 0.139E-01 22.5 1025.0 14 1 04 2 0 9 20 24 17.0 27 2 2000 27 40.17 70 20.17 7.7 29 21.7 18.1 68.7 0.139E-01 22.6 1023.6 11 1 04 2 30 0 0 15 17.2 27 2 2000 27 40.17 70 20.17 7.7 29 21.7 18.1 68.7 0.139E-01 22.6 1023.6 11 1 04 2 30 0 0 15 17.2 27 2 2000 27 40.17 70 17.68 7.7 29 20.8 18.0 72.7 0.130E-01 22.6 1023.6 11 1 04 2 30 0 0 15 17.2 27 2 2000 27 40.17 70 17.68 7.7 29 20.8 18.0 72.7 0.130E-01 22.6 1023.6 11 1 04 2 30 0 0 15 17.2 27 2 2000 27 40.04 7 70 17.68 7.7 29 20.8 18.0 72.7 0.130E-01 22.6 1023.6 11 1 04 2 30 0 0 15 17.2 27 2 2000 27 40.04 7 70 10.60 7.7 29 20.8 18.0 72.7 0.130E-01 22.6 1023.6 11 1 04 2 30 0 0 15 17.2 27 2 2000 27 40.04 7 70 10.50 8.9 32 11.7 18.0 67.9 0.130E-01 22.9 1023.7 11 1 04 2 30 0 0 15 17.2 27 3 2000 27 42.04 70 17.6 87.7 29 20.8 18.0 72.7 0.130E-01 22.9 1023.7 11 1 04 2 30 0 0 15 17.2 27 3 2000 27 42.04 70 10.60 7.7 29 20.8 18.0 77.7 0.130E-01 22.9 1023.7 11 1 0															
22 2 900 27 15.27 69 42.07 11.3 31 20.4 18.7 768.1 0.119-01 23.5 1024.8 61 2 03 2 180 9 230 15 16.7 2 2 1000 27 6.32 69 44.87 10.1 32 20.4 18.7 71.4 0.1252-01 23.5 1025.2 2 03 2 180 9 235 13 16.7 2 2 1100 26 58.65 69 42.33 8.8 29 21.0 19.0 73.7 0.1332-01 23.5 1025.3 77 1 03 2 290 0 100 17 17.5 2 2 1200 26 58.65 69 42.33 8.8 29 21.0 19.0 73.7 0.1332-01 23.5 1025.3 77 1 03 2 290 0 100 17 17.5 2 2 1300 27 3.03 69 54.54 9.8 41 20.2 18.6 80.6 0.1392-01 23.5 1025.0 78 1 04 2 315 10 60 22 17.6 2 (2 1500 27 15.34 70 10.00 8.9 44 21.5 18.9 70.9 0.1322-01 23.5 1025.5 72 1 04 2 315 10 60 22 17.6 2 (2 1500 27 15.34 70 10.00 8.9 44 21.5 18.9 70.9 0.1322-01 23.5 1025.5 72 1 04 2 315 10 60 20 17.6 2 (2 1500 27 31.29 70 21.39) 8.9 37 21.2 18.4 68.1 0.1242-01 23.5 1025.7 72 1 04 2 315 10 60 20 17.6 2 (2 1500 27 31.29 70 21.39 8.9 37 21.2 18.4 68.1 0.1242-01 23.5 1025.7 72 1 04 2 315 10 60 20 17.6 2 12.7 2 1000 27 40.17 70 20.17 7.7 29 21.7 18.1 68.7 0.1242-01 23.5 1025.0 14 1 04 2 30 0 0 17 17.4 2 2009 7 40.22 7 01.9.87 8.8 29 21.7 18.0 67.9 0.1272-01 22.5 1024.0 11 1 04 2 30 0 0 16 17.6 2 (2 2200 27 40.49 70 19.91 7.7 29 20.2 18.0 74.6 0.1242-01 23.5 1023.6 11 1 04 2 30 0 0 16 17.6 2 (2 2200 27 40.49 70 19.51 7 7.2 9 20.2 18.0 74.6 0.1242-01 23.5 1023.6 11 1 04 2 30 0 0 16 17.6 2 (2 2200 27 40.49 70 19.51 7 7.2 9 20.2 18.0 74.6 0.1242-01 23.5 1023.6 11 1 04 2 30 0 0 16 17.6 2 (2 2200 27 40.49 70 19.51 7 7.2 9 20.2 18.0 74.6 0.1242-01 23.5 1023.6 11 1 04 2 30 0 0 15 17.2 2 (2 2200 27 40.49 70 19.51 7 7.2 9 20.2 18.0 74.6 0.1242-01 23.5 1023.6 11 1 04 2 30 0 0 15 17.2 2 (2 2200 27 40.49 70 17.68 7.7 29 20.8 18.0 72.7 0.1302-01 22.5 1023.6 11 1 04 2 30 0 0 15 17.6 2 (2 2200 27 40.49 70 19.51 7 7.2 9 20.8 18.0 72.7 0.1302-01 22.5 1023.6 11 1 04 2 30 0 0 15 17.6 2 (2 2200 27 40.49 70 13.50 8 3 44 20.0 18.3 84.0 0.1432-01 22.5 1023.6 11 1 04 2 30 0 0 0 15 17.6 2 (2 3 3 00 27 3.9 7) 70 12.80 9.3 46 19.8 18.5 82.1 0.1332-01 22.5 1023.7 11 1 04 2 30 0 0 0 15 17.6 2 (2 3 3 00 27 40.49 70 13.5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													61		
2/2 1 1000 27 6.32 69 41.87 10.1 32 20.4 18.7 71.4 0.125E-01 23.5 1025.2 7 2/2 1 1000 26 58.65 69 42.33 8.8 2 92 1.0 19.0 73.7 0.133E-01 23.5 1025.3 7 1 03 2 290 0 100 17 17.6 2/2 1 2 1 2 2 0 2 6 58.19 69 44.28 7.7 54 21.0 19.1 74.5 0.134E-01 23.5 1025.0 78 1 04 2 315 10 60 22 17.6 2/2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2															
2/2 21000 26 58.19 69 44.28 7.7 54 21.0 19.1 74.5 0. 134E-01 23.5 1025.0 78 1 04 2 31.5 10 60 22 17.6 62 2 1300 27 30.3 69 54.54 9.8 41 20.2 18.6 80.6 0.139E-01 23.5 1025.5 72 1 04 2 31.5 10 60 22 17.6 62 2 15.0 27 2 15.0 2 2 2 2 2 2 2 2 2						32	20.4	18.7	71.4	0.125E-01	23.5	1025.2		2 03 2	180 9 235 13 16.7
27 2 1300 27 3.03 69 54.54 9.8 41 20.2 18.6 80.6 0.139E-01 23.3 1024.8 82 1 04 2 31.5 10 60 22 17.6 67 2 1400 27 9.31 70 2.25 8.5 25 20.9 19.2 75.2 0.135E-01 23.5 1026.0 72 1 04 2 31.5 10 60 22 17.6 67 2 1500 27 15.34 70 10.00 8.9 44 21.5 18.9 70.9 0.132E-01 23.5 1026.0 72 1 04 2 31.5 10 60 22 17.6 67 2 1500 27 31.29 70 13.39 9.4 36 21.4 18.7 72.4 0.134E-01 23.5 1025.7 72 1 04 2 31.5 10 60 20 17.6 72 1 100 27 31.29 70 21.39 8.9 37 21.2 18.4 68.1 0.124E-01 23.5 1025.7 72 1 04 2 31.5 10 55 22 17.7 67 2 1 04 2 31.5 10 55 22 17.7 67 2 1 04 2 31.5 10 55 22 17.7 67 2 1 04 2 31.5 10 55 22 17.7 67 2 1 04 2 31.5 10 55 22 17.7 67 2 1 04 2 31.5 10 60 20 17.6 67 2 1 00 27 31.29 70 12.39 8.9 37 21.2 18.4 68.1 0.124E-01 23.5 1025.4 68 1 0.4 2 0 9 20 24 17.0 67 2 1 00 27 40.17 70 20.17 7.7 29 21.7 18.1 68.7 0.129E-01 22.9 1024.6 24 1 04 2 0 9 20 24 17.0 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															
2/ 2 1500 27 15.34 70 10.00 8.9 44 21.5 18.9 70.9 0.132E-01 23.5 1026.0 72 1 04 2 315 10 60 20 17.6 2 1 2 1000 27 31.29 70 13.90 9.4 36 21.4 18.7 72.4 0.134E-01 23.5 1025.7 72 1 04 2 315 10 55 22 17.7 22 1700 27 31.29 70 21.39 8.9 37 21.2 18.4 68.1 0.124E-01 23.5 1025.4 68 1 04 2 0 9 25 25 17.0 27 21.09 8.2 31 21.5 18.3 68.2 0.124E-01 23.5 1025.4 68 1 04 2 0 9 25 25 17.0 27 21.09 27 40.17 70 20.17 7.7 29 21.7 18.1 68.7 0.129E-01 22.5 1025.0 14 1 04 2 0 9 20 24 17.0 27 2 2000 27 40.22 70 19.87 8.8 29 21.7 18.0 67.9 0.127E-01 22.5 1024.0 11 1 04 2 30 0 0 17 17.4 27 2 2100 27 40.12 70 19.53 8.2 29 21.6 18.1 70.2 0.131E-01 22.5 1024.0 11 1 04 2 30 0 0 15 17.6 27 2 2200 27 40.40 70 17.68 7.7 29 20.8 18.0 72.7 0.130E-01 22.6 1023.6 11 1 04 2 30 0 0 15 17.6 27 2 2300 27 42.04 70 17.68 7.7 29 20.8 18.0 72.7 0.130E-01 22.6 1023.6 11 1 04 2 30 0 0 15 17.6 27 2 300 27 45.31 70 15.17 7.2 29 19.8 18.1 61.7 0.104E-01 21.5 1023.6 11 1 04 2 30 4 0 19 16.9 27 3 10 27 42.48 70 13.69 8.5 21 20.0 18.0 78.7 0.134E-01 21.5 1023.8 1 1 04 2 30 4 0 18 15.0 27 3 3 3 0 27 37.9 70 12.80 9.3 46 19.8 18.5 82.1 0.134E-01 22.9 1023.7 1 1 04 2 30 4 0 18 15.0 27 3 3 3 0 27 37.9 70 12.80 9.3 46 19.8 18.5 82.1 0.134E-01 22.9 1023.6 11 1 04 2 30 4 0 18 15.0 27 3 3 3 0 27 37.9 70 12.80 9.3 46 19.8 18.5 82.1 0.134E-01 22.5 1023.8 1 1 04 2 30 4 0 18 15.0 27 3 3 3 0 27 37.9 70 12.80 9.3 46 19.8 18.5 82.1 0.134E-01 22.5 1023.8 1 1 04 2 180 5 200 13 17.8 27 3 3 3 3 0 27 37.9 70 12.80 9.3 46 19.8 18.5 82.1 0.134E-01 22.5 1023.8 1 1 04 2 180 5 20 13 17.8 27 3 3 3 0 27 37.9 70 12.80 9.3 46 19.8 18.5 82.1 0.134E-01 23.4 1023.4 1 1 03 2 330 10 30 20 17.2 27 3 3 3 0 27 37.9 70 12.80 9.3 46 19.8 18.5 82.1 0.134E-01 23.4 1023.4 1 1 03 2 330 10 30 30 21 17.4 27 3 3000 27 37.9 70 12.80 9.3 46 19.8 18.5 37.7 2 0.133E-01 22.7 1021.7 1 0 3 2 255 3 150 10 17.0 27 3 3 1000 27 42.84 70 15.11 6.5 21 20.0 17.9 77.0 0.131E-01 22.5 1021.2 1 1 0 1 0 3 2 255 3 150 10 17.0 27 3 3 1000 27 42.84 70 15.11 6.5 21 20.0 17.9 77.0 0.131E-01 22.5 1021.2 1 1 0 6 2 25 0 9 355 11 7.0 27															
2/ 2 1600 27 21.99 70 13.90 9.4 36 21.4 18.7 72.4 0.134E-01 23.5 1025.7 72 1 04 2 315 10 55 22 17.7 2/ 2 1700 27 31.29 70 21.39 8.9 37 21.2 18.4 68.1 0.124E-01 23.3 1025.4 68 1 04 2 0 9 25 51 7.0 2/ 2 1800 27 30.26 70 21.15 8.2 31 21.2 18.3 60.2 0.124E-01 22.9 1024.6 24 1 04 2 0 9 25 25 17.0 2/ 2 1800 27 40.17 70 20.17 7.7 29 21.7 18.1 60.7 0.129E-01 22.4 1025.0 14 1 04 2 25 0 5 15 17.5 2/ 2 2000 27 40.22 70 19.53 8.2 29 21.6 18.1 70.2 0.131E-01 22.5 1024.0 11 1 04 2 30 0 0 17 17.4 2/ 2 2100 27 40.32 70 19.53 8.2 29 21.6 18.1 70.2 0.131E-01 22.6 1023.6 11 1 04 2 30 0 0 16 17.6 2/ 2 2200 27 40.49 70 19.11 7.7 29 20.8 18.0 72.7 0.130E-01 22.6 1023.6 11 1 04 2 30 0 0 15 17.2 2/ 2 200 27 40.49 70 15.17 7.2 29 19.8 18.1 61.7 0.104E-01 21.5 1023.6 11 1 04 2 30 0 0 15 17.2 2/ 2 30 0 27 42.04 70 17.66 7.7 29 20.2 18.0 74.6 0.134E-01 21.5 1023.6 11 1 04 2 30 0 0 15 17.2 2/ 3 100 27 42.48 70 13.69 8.5 21 20.0 18.0 78.7 0.134E-01 21.5 1023.8 10 4 2 30 4 0 19 16.9 2/ 3 300 27 37.97 70 12.80 9.3 46 19.8 18.5 82.1 0.134E-01 21.5 1023.8 10 4 2 180 5 240 13 17.8 2/ 3 300 27 37.97 70 12.80 9.3 46 19.8 18.5 82.1 0.134E-01 23.1 1023.4 104 2 180 5 240 15 17.4 2/ 3 600 27 36.73 70 15.05 6.4 23 20.2 18.3 77.2 0.133E-01 23.1 1023.4 104 2 180 5 240 15 17.4 2/ 3 600 27 36.73 70 15.05 6.4 23 20.2 18.3 77.2 0.133E-01 22.9 1022.1 1 10 3 2 330 9 35 21 17.4 2/ 3 600 27 40.61 70 19.96 5.2 335 20.2 18.0 77.2 0.133E-01 22.9 1022.1 1 10 3 2 330 10 30 20 17.2 2/ 3 700 27 40.61 70 18.70 7.5 25 20.4 18.6 77.4 0.133E-01 22.9 1022.1 1 10 3 2 330 10 30 20 17.2 2/ 3 700 27 40.61 70 18.70 7.5 25 20.4 18.6 77.4 0.133E-01 22.9 1022.1 1 1 1 04 2 285 3 150 10 17.0 2/ 3 1000 27 40.61 70 18.70 7.5 25 20.4 18.6 77.4 0.133E-01 22.9 1022.1 1 1 1 04 2 285 3 150 10 17.0 2/ 3 1000 27 40.61 70 18.70 70 12.74 6.7 4 20.2 17.9 77.0 0.131E-01 22.7 1021.4 1 1 03 2 30 0 0 35 11 17.9 2/ 3 1000 27 40.61 70 18.70 70 18.70 70 18.70 70 18.70 70 18.70 70 18.70 70 18.70 70 18.70 70 18.70 70 18.70 70 18.70 70 18.70 70 18.70 70 18.70 70 18.70 70 18.70 70 18.70 70 18.70 70 18.70 7															
2/ 2 1700 27 31.29 70 21.39 8.9 37 21.2 18.4 68.1 0.1248-01 23.3 1025.4 68 1 0.4 2 0 9 25 25 17.0 27 21 1800 27 38.26 70 21.15 8.2 31 21.2 18.3 68.2 0.1248-01 22.9 1026.6 24 1 0.4 2 0 9 20 24 17.0 27 2 1900 27 40.17 70 20.17 7.7 29 21.7 18.1 68.7 0.1298-01 22.4 1025.0 14 1 0.4 2 25 0 5 15 17.5 27 2 2000 27 40.22 70 19.87 8.8 2 92 11.7 18.0 67.9 0.1278-01 22.5 1026.0 11 1 0.4 2 30 0 0 17 17.4 27 2 2100 27 40.49 70 19.11 7.7 29 20.8 18.0 72.7 0.1308-01 22.6 1023.6 11 1 0.4 2 30 0 0 16 17.6 27 2 2000 27 40.49 70 19.11 7.7 29 20.8 18.0 72.7 0.1308-01 22.6 1023.6 11 1 0.4 2 30 0 0 15 17.2 27 3 0 0 7 45.31 70 15.17 7.2 29 19.8 18.1 61.7 0.1048-01 21.5 1023.6 11 1 0.4 2 30 0 0 15 17.2 27 3 100 27 42.48 70 13.69 8.5 21 20.0 18.0 78.7 0.1348-01 21.5 1023.8 1 0.4 2 30 4 0 18 15.0 22.3 10.0 27 42.48 70 13.69 8.5 21 20.0 18.0 78.7 0.1348-01 21.5 1023.8 1 0.4 2 30 4 0 18 15.0 22.3 3 000 27 37.85 70 13.04 8.3 44 20.0 18.3 84.0 0.1438-01 21.5 1023.8 1 0.4 2 180 5 240 15 17.8 27 3 500 27 30.73 70 14.52 7.5 25 20.4 18.6 67.4 0.1358-01 23.1 1023.4 1 0.4 2 180 5 240 15 17.8 27 3 500 27 30.73 70 14.52 7.5 25 20.4 18.6 77.2 0.1338-01 22.7 1023.4 1 0.3 2 300 10 30 20 17.2 27 3 500 27 40.61 70 18.96 5.2 335 20.2 18.3 77.2 0.1338-01 22.7 1021.7 1 0.3 2 300 10 30 20 17.2 27 3 1000 27 40.61 70 18.96 5.2 335 20.2 18.0 77.2 0.1338-01 22.7 1021.7 1 0.3 2 270 5 45 13 17.2 27 3 1000 27 40.61 70 18.70 7.7 14 20.0 18.0 77.0 0.1318-01 22.7 1021.7 1 1 0.3 2 270 5 45 13 17.2 27 3 1000 27 40.61 70 18.70 7.7 14 20.0 18.0 77.0 0.1318-01 22.7 1021.7 1 1 0.3 2 270 5 45 13 17.2 27 3 1000 27 44.67 70 15.06 7.7 14 20.0 18.0 77.0 0.1318-01 22.7 1021.7 1 1 0.0 2 270 5 45 13 17.2 27 3 1000 27 44.67 70 15.00 7.4 1.4 10.0 18.7 7.9 77.0 0.1318-01 22.7 1021.7 1 1 0.0 2 270 5 45 13 17.0 2 270 5 45 13 17.2 27 1021.4 1 0.0 2 200 27 40.4 70 15.1 6.5 21 20.0 17.9 77.0 0.1318-01 22.7 1021.7 1 1 0.0 2 255 9 330 20 16.8 27 3 1000 27 45.4 70 15.1 6.5 21 20.0 17.9 77.0 0.1318-01 22.7 1021.7 1 1 0.0 2 255 9 330 20 16.8 27 3 1000 27 45.4 70 15.1 6.5 21 20.0 17.9 77.0 0.131															
2/ 2 1900 27 40.17 70 20.17 7.7 29 21.7 18.1 68.7 0.129E-01 22.4 1025.0 14 1 04 2 25 0 5 15 17.5 27 2 2000 27 40.22 70 19.87 8.8 29 21.7 18.0 67.9 0.127E-01 22.5 1023.6 11 1 04 2 30 0 0 16 17.6 2/ 2 2200 27 40.49 70 19.11 7.7 29 20.8 18.0 72.7 0.130E-01 22.6 1023.6 11 1 04 2 30 0 0 16 17.6 2/ 2 2300 27 42.04 70 17.68 7.7 29 20.8 18.0 72.7 0.130E-01 22.6 1023.6 11 1 04 2 30 0 0 15 17.2 2/ 2 2300 27 42.04 70 17.68 7.7 29 20.8 18.0 72.7 0.130E-01 22.6 1023.6 11 1 04 2 30 0 0 15 17.2 2/ 2 2300 27 42.04 70 13.69 8.5 21 20.0 18.0 78.7 0.134E-01 21.5 1023.6 11 1 04 2 30 4 0 18 15.0 2/ 3 100 27 42.48 70 13.69 8.5 21 20.0 18.0 78.7 0.134E-01 21.5 1023.6 11 1 04 2 30 4 0 18 15.0 2/ 3 100 27 42.48 70 13.69 8.5 21 20.0 18.0 78.7 0.134E-01 21.5 1023.6 11 1 04 2 30 4 0 18 15.0 2/ 3 100 27 37.85 70 13.04 8.3 44 20.0 18.3 84.0 0.143E-01 22.9 1023.7 1 04 2 180 5 240 13 17.2 2/ 3 400 27 28.09 70 12.36 7.4 38 20.6 18.6 80.1 0.143E-01 23.4 1023.4 1 04 2 180 5 240 13 17.4 2/ 3 600 27 38.12 70 18.95 6.4 23 20.2 18.3 77.2 0.133E-01 23.1 1023.4 1 04 2 180 5 235 11 17.9 2/ 3 600 27 30.13 1 00 3 1 10 10 10 10 10 10 10 10 10 10 10 10 1	2/2	1700 2	27 31.29												0 9 25 25 17.0
2/ 2 2000 27 40.22 70 19.87															
2/ 2 2100 27 40.32 70 19.53 8.2 29 21.6 18.1 70.2 0.131E-01 22.6 1023.6 11 1 04 2 30 0 0 16 17.6 2/ 2 2200 27 40.49 70 19.11 7.7 29 20.8 18.0 72.7 0.130E-01 22.6 1023.6 11 1 04 2 30 0 0 15 17.2 2/ 2 2300 27 42.04 70 17.68 7.7 29 20.2 18.0 74.6 0.129E-01 21.6 1023.7 31 1 04 2 30 4 0 19 16.9 2/ 3 100 27 42.48 70 13.69 8.5 21 20.0 18.0 78.7 0.134E-01 21.5 1023.6 11 1 04 2 30 4 0 18 15.0 2/ 3 100 27 42.48 70 13.69 8.5 21 20.0 18.0 78.7 0.134E-01 21.5 1023.6 11 1 04 2 30 4 0 18 15.0 2/ 3 300 27 37.97 70 12.80 9.3 46 19.8 18.5 82.1 0.138E-01 21.5 1023.7 1 04 2 180 5 240 13 17.8 2/ 3 300 27 37.97 70 12.80 9.3 46 19.8 18.5 82.1 0.138E-01 23.1 1023.4 1 04 2 180 5 240 13 17.8 2/ 3 400 27 28.09 70 12.36 7.4 38 20.6 18.6 80.1 0.141E-01 23.4 1023.4 1 04 2 180 5 240 15 17.4 2/ 3 600 27 38.12 70 18.95 6.4 23 20.2 18.3 77.2 0.133E-01 23.4 1023.4 1 03 2 330 9 35 21 17.4 2/ 3 600 27 38.12 70 18.95 6.4 23 20.2 18.0 77.2 0.133E-01 22.9 1022.1 0 1 03 2 330 10 30 20 17.2 2/ 3 900 27 42.32 70 16.05 7.7 14 20.0 18.0 77.0 0.131E-01 22.7 1021.7 1 03 2 270 5 45 13 17.2 2/ 3 1000 27 41.15 70 16.61 7.9 32 20.0 18.0 78.8 0.134E-01 23.5 1021.2 1 03 2 225 3 150 10 17.0 2/ 3 1000 27 44.15 70 16.61 7.9 32 20.0 18.0 78.8 0.134E-01 23.5 1021.2 1 0 3 2 255 3 150 10 17.0 2/ 3 1000 27 44.07 70 12.74 6.7 4 20.2 17.8 73.8 0.127E-01 22.9 1021.0 1 1 04 2 285 3 80 14 16.6 2/ 3 1200 27 44.67 70 12.74 6.7 4 20.2 17.9 73.8 0.127E-01 21.5 1021.7 11 1 06 2 20 0 335 12 17.6 2/ 3 1600 27 45.47 70 9.10 5.7 4 20.2 17.9 73.8 0.127E-01 21.5 1021.7 11 1 06 2 20 0 335 12 17.6 2/ 3 1600 27 45.47 70 9.10 5.7 4 20.8 17.9 77.0 0.131E-01 21.5 1021.7 11 1 06 2 20 0 335 12 17.6 2/ 3 1600 27 45.47 70 9.10 5.7 4 20.8 17.9 77.0 0.132E-01 21.5 1021.7 11 1 06 2 20 0 335 12 17.6 2/ 3 1600 27 45.47 70 15.8 4.6 7.9 12.0 17.9 77.0 0.132E-01 21.5 1021.7 11 1 06 2 20 0 335 12 17.6 2/ 3 1600 27 45.47 70 15.8 4.6 9.2 17.9 77.0 0.132E-01 21.5 1022.7 11 1 06 2 20 0 355 18 16.9 2/ 3 1600 27 45.47 70 15.8 4.6 9.2 17.9 77.0 0.132E-01 21.5 1022.5 11 1 06 2 20 0 355 18 16.9 2/ 3 1600 27 45.47															
2/ 2 2300 27 42.04 70 17.68 7.7 29 20.2 18.0 74.6 0.129E-01 21.6 1023.7 31 1 04 2 30 4 0 19 16.9 2/3 0 27 45.31 70 15.17 7.2 29 19.8 18.1 61.7 0.104E-01 21.5 1023.6 11 1 04 2 30 4 0 18 15.0 2/3 100 27 42.48 70 13.69 8.5 21 20.0 18.0 78.7 0.134E-01 21.5 1023.8 1 04 2 180 5 210 12 17.2 2/3 200 27 37.85 70 13.04 8.3 44 20.0 18.3 84.0 0.143E-01 22.9 1023.7 1 04 2 180 5 240 13 17.8 2/3 300 27 37.97 70 12.80 9.3 46 19.8 18.5 82.1 0.138E-01 23.1 1023.4 1 04 2 180 5 240 15 17.4 2/3 300 27 37.97 70 12.80 9.3 46 19.8 18.5 82.1 0.138E-01 23.1 1023.4 1 04 2 180 5 240 15 17.4 2/3 600 27 38.12 70 18.95 6.4 23 20.2 18.3 77.2 0.133E-01 22.9 1022.4 1 1 03 2 330 9 35 21 17.4 2/3 800 27 40.61 70 19.96 5.2 335 20.2 18.0 77.2 0.133E-01 22.9 1022.1 0 1 03 2 330 10 30 20 17.2 2/3 300 27 42.32 70 16.05 7.7 14 20.0 18.0 77.0 0.131E-01 22.7 1021.7 1 03 2 270 5 45 13 17.2 2/3 1000 27 42.84 70 15.11 6.5 21 20.0 17.9 77.0 0.131E-01 22.5 1021.2 1 03 2 225 3 150 10 17.0 2/3 1000 27 40.61 70 18.70 7.1 17 19.8 17.9 75.1 0.127E-01 22.9 1021.0 1 1 04 2 285 3 80 14 16.6 2/3 1100 27 40.61 70 18.70 7.1 17 19.8 17.9 75.1 0.127E-01 21.5 1021.7 1 1 06 2 265 3 80 14 16.6 2/3 1500 27 44.73 70 12.74 6.7 4 20.2 17.8 73.8 0.127E-01 21.5 1021.7 1 1 06 2 20 0 335 19 17.2 2/3 1000 27 44.73 70 12.74 6.67 4 20.2 17.8 73.8 0.127E-01 21.5 1021.7 1 1 06 2 20 0 335 19 17.2 2/3 1600 27 45.57 70 5.74 6.2 354 23.0 18.0 61.0 0.127E-01 21.5 1021.7 1 1 06 2 20 0 335 19 17.2 2/3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.127E-01 21.5 1021.7 1 1 06 2 20 0 335 19 17.2 2/3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.127E-01 21.5 1022.7 1 1 1 06 2 20 0 335 19 17.2 2/3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.127E-01 21.5 1022.7 1 1 1 06 2 20 0 335 19 17.2 2/3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.127E-01 21.5 1022.7 1 1 1 06 2 20 0 335 19 17.2 2/3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.127E-01 21.5 1022.7 1 1 1 06 2 20 0 355 8 16.9 2/3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.127E-01 21.5 1022.5 1 1 06 2 20 0 355 8 16.9 2/3 1500 27 47.55 70													11	1 04 2	30 0 0 16 17.6
2/3 0 27 45.31 70 15.17 7.2 29 19.8 18.1 61.7 0.104E-01 21.5 1023.6 11 1 0 4 2 30 4 0 18 15.0 2/3 100 27 42.48 70 13.69 8.5 21 20.0 18.0 78.7 0.134E-01 21.5 1023.8 1 0 4 2 180 5 210 12 17.2 2/3 200 27 37.85 70 13.04 8.3 44 20.0 18.3 84.0 0.143E-01 22.9 1023.7 1 0 4 2 180 5 240 13 17.8 2/3 300 27 37.97 70 12.80 9.3 46 19.8 18.5 82.1 0.138E-01 23.1 1023.4 1 0 4 2 180 5 240 15 17.4 2/3 3 400 27 28.09 70 12.36 7.4 38 20.6 18.6 80.1 0.141E-01 23.4 1023.0 1 1 0 3 2 180 5 235 11 17.9 2/3 500 27 30.73 70 14.52 7.5 25 20.4 18.6 77.4 0.135E-01 22.9 1022.4 1 1 0 3 2 130 10 30 20 17.2 2/3 800 27 40.61 70 19.96 5.2 335 20.2 18.0 77.2 0.133E-01 22.7 1021.7 1 0 3 2 230 1 30 20 17.2 2/3 800 27 42.32 70 16.05 7.7 14 20.0 18.0 77.2 0.133E-01 22.7 1021.7 1 0 3 2 270 5 45 13 17.2 2/3 800 27 42.32 70 16.05 7.7 14 20.0 18.0 77.0 0.131E-01 22.7 1021.4 1 0 3 2 225 3 150 10 17.0 2/3 1000 27 40.61 70 18.70 7.1 17 19.8 17.9 75.1 0.127E-01 22.9 1021.0 1 1 0 3 2 225 3 150 10 17.0 2/3 1000 27 44.73 70 12.74 6.7 4 20.2 17.9 78.0 0.131E-01 22.9 1021.0 1 1 1 0 4 2 285 3 80 14 16.6 2/3 1200 27 44.73 70 12.74 6.7 4 20.2 17.9 78.0 0.127E-01 22.9 1021.0 1 1 1 0 6 2 235 9 70 8 16.6 2/3 1200 27 44.73 70 12.74 6.7 4 20.2 17.9 78.1 0.127E-01 21.5 1021.3 1 1 0 6 2 235 9 70 8 16.6 2/3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.123E-01 21.5 1021.7 1 1 0 6 2 235 9 70 8 16.6 2/3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.123E-01 21.5 1021.7 1 1 0 6 2 235 9 70 8 16.6 2/3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.123E-01 21.5 1022.7 1 1 1 0 6 2 20 0 335 12 17.6 2/3 1600 27 45.47 70 9.10 5.7 24 20.8 17.9 78.9 0.128E-01 23.1 1020.7 21 1 0 6 2 20 0 355 8 16.9 2/3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.123E-01 23.1 1020.7 21 1 0 6 2 20 0 355 8 16.9 2/3 1500 27 47.55 70 15.88 4.6 9 21.4 17.8 69.2 0.128E-01 23.1 1020.7 21 1 0 6 2 20 0 355 8 16.9 2/3 1500 27 43.67 70 15.88 4.6 9 21.4 17.8 69.2 0.128E-01 23.1 1020.7 21 1 0 6 2 10 0 350 10 17.6 2/3 1000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.1 1020.5 31 1 0 0 2 10 0 350 10 17.6 2/3															
2/3 200 27 37.85 70 13.04 8.3 44 20.0 18.3 84.0 0.143E-01 22.9 1023.7 1 0.4 2 180 5 240 13 17.8 2/3 300 27 37.97 70 12.80 9.3 46 19.8 18.5 82.1 0.138E-01 23.1 1023.4 1 04 2 180 5 240 15 17.4 27 3 500 27 30.73 70 14.52 7.5 25 20.4 18.6 77.4 0.135E-01 23.2 1022.4 1 1 03 2 330 9 35 21 17.9 2/3 500 27 30.73 70 14.52 7.5 25 20.4 18.6 77.4 0.135E-01 23.2 1022.4 1 1 03 2 330 9 35 21 17.4 2/3 600 27 38.12 70 18.95 6.4 23 20.2 18.3 77.2 0.133E-01 22.9 1022.1 0 1 03 2 330 10 30 20 17.2 2/3 700 27 40.61 70 19.96 5.2 335 20.2 18.0 77.2 0.133E-01 22.7 1021.7 1 03 2 270 5 45 13 17.2 2/3 900 27 42.84 70 15.11 6.5 21 20.0 17.9 77.0 0.131E-01 22.7 1021.4 1 03 2 230 0 345 15 17.0 2/3 900 27 42.84 70 15.11 6.5 21 20.0 17.9 77.0 0.131E-01 22.5 1021.2 1 03 2 225 3 150 10 17.0 2/3 1000 27 40.61 70 18.70 7.1 17 19.8 17.9 75.1 0.127E-01 22.9 1021.0 1 1 04 2 285 3 80 14 15.6 2/3 1100 27 40.61 70 18.70 7.1 17 19.8 17.9 75.1 0.127E-01 22.9 1021.0 1 1 04 2 285 3 80 14 15.6 2/3 1100 27 40.61 70 18.70 7.1 17 19.8 17.9 75.1 0.127E-01 21.5 1021.7 1 1 06 2 261 9 335 19 17.2 2/3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.127E-01 21.5 1021.7 1 1 06 2 235 9 70 8 16.6 2/3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.127E-01 21.5 1022.2 1 1 1 06 2 235 9 70 8 16.6 2/3 1500 27 44.63 70 10.82 5.0 8 19.9 17.8 76.1 0.127E-01 22.8 1021.9 21 1 06 2 20 0 335 12 17.6 2/3 1500 27 44.63 70 10.82 5.0 8 19.9 17.8 76.1 0.127E-01 22.8 1021.9 21 1 06 2 20 0 355 8 16.9 2/3 1500 27 41.75 70 15.88 4.6 9 21.4 17.8 69.2 0.128E-01 23.1 1020.7 21 1 06 2 20 0 355 8 16.9 2/3 1500 27 41.75 70 15.88 4.6 9 21.4 17.8 69.2 0.128E-01 23.1 1020.7 21 1 06 2 10 0 350 10 17.6 2/3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.1 1020.5 31 1 060 2 10 0 350 10 17.6 2/3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.1 1020.5 31 1000.2 41.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.1 1020.5 31 1000.5 41 106 2 10 0 350 10 17.6 2/3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.1 1020.5 31 1000.5 41 106 2 10 0 350 10 17.6 2/4 3 2000 27 43.67 70															
2/3 300 27 37.97 70 12.80 9.3 46 19.8 18.5 82.1 0.138E-01 23.1 1023.4 1 1 04 2 180 5 240 15 17.4 2/3 400 27 28.09 70 12.36 7.4 38 20.6 18.6 80.1 0.141E-01 23.1 1023.4 1 1 03 2 180 5 235 11 17.9 2/3 500 27 30.73 70 14.52 7.5 25 20.4 18.6 77.4 0.135E-01 23.2 1022.4 1 1 03 2 330 9 35 21 17.4 2/3 600 27 38.12 70 18.95 6.4 23 20.2 18.3 77.2 0.133E-01 22.9 1022.1 0 1 03 2 330 10 30 20 17.2 2/3 700 27 40.61 70 19.96 5.2 335 20.2 18.0 77.2 0.133E-01 22.7 1021.7 1 03 2 270 5 45 13 17.2 2/3 800 27 42.32 70 16.05 7.7 14 20.0 18.0 77.0 0.131E-01 22.7 1021.4 1 03 2 270 5 45 13 17.2 2/3 1000 27 42.84 70 15.11 6.5 21 20.0 17.9 77.0 0.131E-01 22.5 1021.2 1 03 2 225 3 150 10 17.0 2/3 1000 27 40.61 70 18.70 7.1 17 19.8 17.9 75.1 0.127E-01 22.9 1021.0 1 03 2 245 3 140 13 17.2 2/3 1100 27 40.61 70 18.70 7.1 17 19.8 17.9 75.1 0.127E-01 22.9 1021.0 1 1 04 2 285 3 80 14 16.6 2/3 1200 27 40.73 70 12.74 6.7 4 20.2 17.8 73.8 0.127E-01 21.5 1021.3 11 1 07 2 55 9 330 20 16.8 2/3 1500 27 49.61 70 2.58 5.0 4 20.2 17.9 71.2 0.129E-01 21.5 1021.7 11 1 06 2 265 9 335 19 17.2 2/3 1600 27 45.47 70 9.10 5.7 24 20.8 17.9 72.1 0.124E-01 21.5 1022.7 11 1 06 2 20 0 335 12 17.6 2/3 1500 27 44.63 70 10.82 5.0 8 19.9 17.8 76.1 0.129E-01 22.1 1020.7 21 1 06 2 20 0 335 12 17.6 2/3 1900 27 44.63 70 10.82 5.0 8 19.9 17.8 76.1 0.129E-01 22.1 1020.7 21 1 06 2 20 0 355 8 16.9 2/3 1900 27 44.75 70 15.88 4.6 9 21.4 17.8 69.2 0.128E-01 23.1 1020.7 21 1 06 2 20 0 355 8 16.9 2/3 1900 27 44.63 70 15.88 4.6 9 21.4 17.8 69.2 0.128E-01 23.1 1020.7 21 1 06 2 10 0 350 10 17.2 2/3 1900 27 44.65 70 15.53 5.1 359 21.4 16.5 71.7 0.136E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 2/3 1900 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.136E-01 23.1 1020.5 31 1 000 2 10 0 350 10 17.6 2/3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.136E-01 23.1 1020.5 31 1000.5 31 10 0 350 10 17.6 2/3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.136E-01 23.1 1020.5 31 1000.5 31 10 0 350 10 17.6 2/4 3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.136E-01 23.1 1020.5 31 1000.5 31 10 0 350 10 17						21	20.0	18.0	78.7	0.134E-01	21.5	1023.8			180 5 210 12 17.2
2/3 500 27 30.73 70 14.52 7.5 25 20.4 18.6 80.1 0.141E-01 23.4 1023.0 1 1 03 2 180 5 235 11 17.9 2/3 500 27 30.73 70 14.52 7.5 25 20.4 18.6 77.4 0.135E-01 23.2 1022.4 1 1 03 2 330 9 35 21 17.4 22/3 600 27 38.12 70 18.95 6.4 23 20.2 18.3 77.2 0.133E-01 22.9 1022.1 0 1 03 2 330 10 30 20 17.2 2/3 800 27 42.32 70 16.05 7.7 14 20.0 18.0 77.2 0.133E-01 22.7 1021.7 1 03 2 270 5 45 13 17.2 2/3 800 27 42.84 70 15.11 6.5 21 20.0 17.9 77.0 0.131E-01 22.7 1021.4 1 03 2 20 0 0 345 15 17.0 2/3 1000 27 41.15 70 16.61 7.9 32 20.0 18.0 78.8 0.134E-01 23.0 1021.0 1 03 2 225 3 150 10 17.0 2/3 1000 27 44.73 70 12.74 6.7 4 20.2 17.8 73.8 0.127E-01 22.9 1021.0 11 1 04 2 285 3 80 14 16.6 2/3 1200 27 44.73 70 12.74 6.7 4 20.2 17.8 73.8 0.127E-01 21.5 1021.3 11 1 07 2 55 9 330 20 16.8 2/3 1500 27 49.05 70 3.45 5.9 16 21.0 17.9 71.2 0.129E-01 21.5 1021.3 11 1 06 2 235 9 70 8 16.6 2/3 1500 27 49.05 70 3.45 5.9 16 21.0 17.9 72.1 0.129E-01 21.5 1021.2 11 1 06 2 235 9 70 8 16.6 2/3 1600 27 49.61 70 2.58 5.0 4 20.2 17.9 72.1 0.129E-01 21.5 1021.2 11 1 06 2 20 0 335 19 17.2 2/3 1600 27 45.47 70 9.10 5.7 4 20.8 17.9 68.6 0.129E-01 21.5 1022.2 11 1 06 2 25 0 0 11 16.7 6/3 1500 27 45.47 70 9.10 8.7 4 20.8 17.9 68.6 0.129E-01 21.5 1022.2 11 1 06 2 20 0 335 12 17.6 2/3 1600 27 45.47 70 9.10 82 5.0 8 19.9 17.8 76.1 0.129E-01 22.8 1021.9 21 1 06 2 20 0 355 8 16.9 2/3 1800 27 43.47 70 15.88 4.6 9 21.4 17.8 69.2 0.128E-01 23.1 1020.7 21 1 06 2 20 0 355 8 16.9 2/3 1800 27 43.71 70 12.35 4.1 14 20.3 17.9 73.9 0.128E-01 23.1 1020.7 21 1 06 2 10 0 0 9 17.3 2/3 1900 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.138E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 2/3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 2/3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 2/3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 2/3 2000 27 43.67 70 15.00 3.1 359 21.4 16.5 71.7 0.132E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 2/3 2000 27 4															
2/3 700 27 40.61 70 19.96 5.2 335 20.2 18.3 77.2 0.133E-01 22.9 1022.1 0 1 03 2 330 10 30 20 17.2 27.3 700 27 40.61 70 19.96 5.2 335 20.2 18.0 77.2 0.133E-01 22.7 1021.7 1 03 2 270 5 45 13 17.2 27.3 800 27 42.32 70 16.05 7.7 14 20.0 18.0 77.0 0.131E-01 22.7 1021.4 1 03 2 30 0 345 15 17.0 27.3 1000 27 41.15 70 16.61 7.9 32 20.0 18.0 78.8 0.134E-01 23.0 1021.0 1 03 2 225 3 150 10 17.0 27.3 1000 27 40.61 70 18.70 7.1 17 19.8 17.9 75.0 0.131E-01 22.9 1021.0 1 1 04 2 285 3 80 14 16.6 27.3 1100 27 40.61 70 18.70 7.1 17 19.8 17.9 75.1 0.127E-01 22.9 1021.0 1 1 04 2 285 3 80 14 16.6 27.3 1300 27 49.05 70 3.45 5.9 16 21.0 17.9 71.2 0.129E-01 21.5 1021.7 11 1 06 2 61 9 335 19 17.2 27.3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.123E-01 21.5 1022.2 11 1 06 2 235 9 70 8 16.6 27.3 1500 27 45.47 70 9.10 5.7 24 20.8 17.9 68.6 0.122E-01 21.5 1022.5 11 1 06 2 20 0 335 12 17.6 27.3 1500 27 44.63 70 10.82 5.0 8 19.9 17.8 76.1 0.129E-01 22.8 1021.9 21 1 06 2 20 0 355 8 16.9 27.3 1900 27 43.67 70 15.88 4.6 9 21.4 17.8 69.2 0.128E-01 23.1 1020.7 21 1 06 2 20 0 355 8 16.9 27.3 1900 27 43.67 70 15.88 4.6 9 21.4 17.8 69.2 0.128E-01 23.1 1020.7 21 1 06 2 10 0 350 10 17.3 27.3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.133E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 27.3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.1 1020.5 31 1 06 2 10 0 350 10 17.6 27.3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 27.5 3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 27.5 3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.1 1020.5 31 1000.5 31 10 0 350 10 17.6 27.5 30 10 17.6 30		400 2	27 28.09										1		
2/3 700 27 40.61 70 19.96 5.2 335 20.2 18.0 77.2 0.133E-01 22.7 1021.7 1 03 2 270 5 45 13 17.2 2/3 800 27 42.32 70 16.05 7.7 14 20.0 18.0 77.0 0.131E-01 22.7 1021.4 1 03 2 30 0 345 15 17.0 2/3 1000 27 42.84 70 15.11 6.5 21 20.0 17.9 77.0 0.131E-01 22.5 1021.2 1 03 2 225 3 150 10 17.0 2/3 1000 27 40.61 70 18.70 7.1 17 19.8 17.9 75.1 0.127E-01 22.9 1021.0 1 1 04 2 285 3 80 14 16.6 2/3 1200 27 44.73 70 12.74 6.7 4 20.2 17.8 73.8 0.127E-01 22.9 1021.0 11 1 04 2 285 3 80 14 16.6 2/3 1200 27 49.61 70 2.58 5.9 16 21.0 17.9 71.2 0.127E-01 21.5 1021.3 11 1 07 2 55 9 330 20 16.6 2/3 1400 27 49.61 70 2.58 5.9 16 21.0 17.9 71.2 0.127E-01 21.5 1021.3 11 1 06 2 235 9 70 8 16.6 2/3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.123E-01 21.5 1022.2 11 1 06 2 235 9 70 8 16.6 2/3 1500 27 45.47 70 9.10 5.7 24 20.8 17.9 68.6 0.122E-01 21.5 1022.5 11 1 06 2 235 9 70 8 16.8 2/3 1800 27 43.67 70 15.88 4.6 9 21.4 17.8 69.2 0.128E-01 23.1 1020.7 21 1 06 2 20 0 355 8 16.9 2/3 1900 27 41.75 70 15.88 4.6 9 21.4 17.8 69.2 0.128E-01 23.1 1020.7 21 1 06 2 10 0 350 10 17.6 2/3 1900 27 43.66 70 15.53 5.1 359 21.4 16.5 71.7 0.130E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 2/3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.130E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 2/3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.130E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 2/3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.130E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 2/4 3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.130E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 2/4 3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.130E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 2/4 3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.130E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 2/4 3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.130E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 2/4 3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.130E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6 2/4 3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.130E-01 23.1 1020.5 31 1 07 2 10															
2/3 800 27 42.32 70 16.05 7.7 14 20.0 18.0 77.0 0.131E-01 22.7 1021.4 1 03 2 30 0 345 15 17.0 2/3 900 27 42.84 70 15.11 6.5 21 20.0 17.9 77.0 0.131E-01 22.5 1021.2 1 03 2 225 3 150 10 17.0 17.0 17.0 17.0 17.0 17.0 17.0													U		
2/ 3 1000 27 41.15 70 16.61 7.9 32 20.0 18.0 78.8 0.134E-01 23.0 1021.0 1 03 2 245 3 140 13 17.2 2/ 3 1100 27 40.61 70 18.70 7.1 17 19.8 17.9 75.1 0.127E-01 22.9 1021.0 11 1 04 2 285 3 80 14 16.6 2/ 3 1300 27 49.05 70 3.45 5.9 16 21.0 17.9 71.2 0.129E-01 21.5 1021.3 11 1 07 2 55 9 330 20 16.8 2/ 3 1500 27 49.61 70 2.58 5.0 4 20.2 17.9 72.1 0.124E-01 21.5 1021.7 11 1 06 2 61 9 335 19 17.2 2/ 3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.123E-01 21.5 1022.2 11 1 06 2 235 9 70 8 16.6 2/ 3 1500 27 45.47 70 9.10 5.7 24 20.8 17.9 68.6 0.122E-01 21.5 1022.7 11 1 06 2 20 0 335 12 17.6 2/ 3 1600 27 45.47 70 9.10 5.7 24 20.8 17.9 68.6 0.122E-01 21.7 1022.5 11 1 06 2 239 9 70 8 16.8 2/ 3 1800 27 43.71 70 12.35 4.1 14 20.3 17.9 73.9 0.128E-01 23.1 1020.7 21 1 06 2 239 9 70 8 16.8 2/ 3 1900 27 43.71 70 12.35 4.1 14 20.3 17.9 73.9 0.128E-01 23.1 1020.7 21 1 06 2 20 0 355 8 16.9 2/ 3 1900 27 43.75 70 15.88 4.6 9 21.4 17.8 69.2 0.128E-01 23.1 1020.7 21 1 06 2 10 0 0 9 17.3 2/ 3 2000 27 43.66 70 15.53 5.1 359 21.4 16.5 71.7 0.132E-01 23.2 1020.2 41 1 06 2 10 0 350 10 17.6 2/ 3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6	2/3	800 2	27 42.32	70 16.05	7.7	14	20.0	18.0	77.0	0.131E-01	22.7	1021.4		1 03 2	30 0 345 15 17.0
2/ 3 1100 27 40.61 70 18.70 7.1 17 19.8 17.9 75.1 0.127E-01 22.9 1021.0 11 1 04 2 285 3 80 14 16.6 2/ 3 1200 27 44.73 70 12.74 6.7 4 20.2 17.8 73.8 0.127E-01 21.5 1021.3 11 1 07 2 55 9 30 20 16.8 2/ 3 1300 27 49.05 70 3.45 5.9 16 21.0 17.9 71.2 0.129E-01 21.5 1021.7 11 1 06 2 61 9 335 19 17.2 2/ 3 1400 27 49.61 70 2.58 5.0 4 20.2 17.9 72.1 0.124E-01 21.5 1021.2 11 1 06 2 255 9 70 8 16.6 2/ 3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.123E-01 21.6 1022.7 11 1 06 2 255 9 70 8 16.6 2/ 3 1600 27 45.47 70 9.10 5.7 24 20.8 17.9 68.6 0.122E-01 21.6 1022.7 11 1 06 2 25 0 0 11 16.7 2/ 3 1600 27 45.47 70 9.10 5.7 24 20.8 17.9 68.6 0.122E-01 21.6 1022.7 11 1 06 2 25 0 0 11 16.7 2/ 3 1800 27 43.71 70 12.35 4.1 14 20.3 17.9 73.9 0.128E-01 22.8 1021.9 21 1 06 2 25 0 0 355 8 16.9 2/ 3 1800 27 43.71 70 12.35 4.1 14 20.3 17.9 73.9 0.128E-01 23.1 1020.7 21 1 06 2 20 0 355 8 16.9 2/ 3 1900 27 41.75 70 15.88 4.6 9 21.4 17.8 69.2 0.128E-01 23.1 1020.7 21 1 06 2 10 0 0 9 17.3 2/ 3 2000 27 42.62 70 15.53 5.1 359 20.8 17.9 76.0 0.136E-01 23.2 1020.4 41 1 06 2 10 0 350 10 17.6 2/ 3 2000 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.2 1020.5 31 1 07 2 10 0 350 10 17.6 2/ 3 2200 27 43.67 70 15.00 5.1 359 21.4 16.5 71.7 0.132E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6															
2/ 3 1200 27 44.73 70 12.74 6.7 4 20.2 17.8 73.8 0.127E-01 21.5 1021.3 11 1 07 2 55 9 330 20 16.8 2/ 3 1300 27 49.05 70 3.45 5.9 16 21.0 17.9 71.2 0.129E-01 21.5 1021.3 11 1 06 2 61 9 335 19 17.2 2/ 3 1400 27 49.61 70 2.58 5.0 4 20.2 17.9 72.1 0.124E-01 21.5 1022.2 11 1 06 2 235 9 70 8 16.6 2/ 3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.123E-01 21.6 1022.7 11 1 06 2 20 0 335 12 17.6 2/ 3 1600 27 45.47 70 9.10 5.7 24 20.8 17.9 68.6 0.122E-01 21.7 1022.5 11 1 06 2 25 0 0 11 16.7 2/ 3 1600 27 43.71 70 10.82 5.0 8 19.9 17.8 76.1 0.129E-01 22.8 1021.9 21 1 06 2 239 9 70 8 16.8 2/ 3 1800 27 43.71 70 12.35 4.1 14 20.3 17.9 73.9 0.128E-01 23.1 1020.7 21 1 06 2 20 0 355 8 16.9 2/ 3 1900 27 41.75 70 15.88 4.6 9 21.4 17.8 69.2 0.128E-01 23.2 1020.6 31 1 06 2 10 0 0 9 17.3 2/ 3 2000 27 42.62 70 15.53 5.1 359 20.8 17.9 76.0 0.136E-01 23.2 1020.2 41 1 06 2 10 0 350 10 17.6 2/ 3 2100 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.2 1020.2 41 1 06 2 10 0 350 10 17.6 2/ 3 2200 27 43.66 70 15.50 5.1 359 21.4 16.5 71.7 0.132E-01 23.2 1020.2 41 1 06 2 10 0 350 10 17.6 2/ 3 2200 27 43.66 70 15.50 5.1 359 21.4 16.5 71.7 0.132E-01 23.2 1020.5 31 1 00 2 10 0 350 10 17.6													11		
2/ 3 1400 27 49.61 70 2.58 5.0 4 20.2 17.9 72.1 0.124E-01 21.5 1022.2 11 1 06 2 235 9 70 8 16.6 2/ 3 1500 27 47.52 70 5.74 6.2 354 23.0 18.0 61.0 0.123E-01 21.6 1022.7 11 1 06 2 20 0 335 12 17.6 10.2 1 1 1 1 0.2 1 1 1 1 0.2 1 1 1 1 0.2 1 1 1 1 0.2 1 1 1 1 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2/3	1200 2	27 44.73	70 12.74	6.7	4	20.2	17.8	73.8	0.127E-01	21.5	1021.3	11	1 07 2	55 9 330 20 16.8
2/ 3 1500 27 45.47 70 9.10 5.74 6.2 354 23.0 18.0 61.0 0.123E-01 21.6 1022.7 11 1 06 2 20 0 335 12 17.6 2/ 3 1600 27 45.47 70 9.10 5.7 24 20.8 17.9 68.6 0.122E-01 21.7 1022.5 11 1 06 2 25 0 0 11 16.7 2 3 1700 27 44.63 70 10.82 5.0 8 19.9 17.8 76.1 0.129E-01 22.8 1021.9 21 1 06 2 239 9 70 8 16.8 2/ 3 1800 27 41.71 70 12.35 4.1 14 20.3 17.9 73.9 0.128E-01 23.1 1020.7 21 1 06 2 20 0 355 8 16.9 2/ 3 1900 27 41.75 70 15.88 4.6 9 21.4 17.8 69.2 0.128E-01 23.2 1020.6 31 1 06 2 10 0 0 9 17.3 27 3 2000 27 42.62 70 15.53 5.1 359 20.8 17.9 76.0 0.136E-01 23.2 1020.4 41 1 06 2 10 0 350 10 17.6 2/ 3 2100 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.2 1020.5 31 1 07 2 10 0 350 10 17.6 2/ 3 2200 27 43.67 70 15.00 5.1 359 21.2 16.4 71.5 0.130E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.6															
2/ 3 1600 27 45.47 70 9.10 5.7 24 20.8 17.9 68.6 0.122E-01 21.7 1022.5 11 1 06 2 25 0 0 11 16.7 2/ 3 1700 27 44.63 70 10.82 5.0 8 19.9 17.8 76.1 0.129E-01 22.8 1021.9 21 1 06 2 239 9 70 8 16.8 2/ 3 1800 27 43.71 70 12.35 4.1 14 20.3 17.9 73.9 0.128E-01 22.8 1021.9 21 1 06 2 239 9 70 8 16.8 2/ 3 1900 27 41.75 70 15.88 4.6 9 21.4 17.8 69.2 0.128E-01 23.2 1020.6 31 1 06 2 10 0 0 9 17.3 2/ 3 2000 27 42.62 70 15.53 5.1 359 20.8 17.9 76.0 0.136E-01 23.2 1020.4 41 1 06 2 10 0 350 10 17.6 2/ 3 2100 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.2 1020.2 41 1 06 2 10 0 350 10 17.6 2/ 3 2200 27 43.67 70 15.00 5.1 359 21.2 16.4 71.5 0.130E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.4															
2/3 1800 27 43.71 70 12.35 4.1 14 20.3 17.9 73.9 0.128E-01 23.1 1020.7 21 1 06 2 20 0 355 8 16.9 2/3 1900 27 41.75 70 15.88 4.6 9 21.4 17.8 69.2 0.128E-01 23.2 1020.6 31 1 06 2 10 0 0 9 17.3 2/3 2000 27 42.62 70 15.53 5.1 359 20.8 17.9 76.0 0.136E-01 23.2 1020.4 41 1 06 2 10 0 350 10 17.6 2/3 2100 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.2 1020.2 41 1 06 2 10 0 350 10 17.6 2/3 2200 27 43.67 70 15.00 5.1 359 21.2 16.4 71.5 0.130E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.4	2/3	1600 2	27 45.47	70 9.10	5.7	24	20.8	17.9	68.6	0.122E-01	21.7	1022.5	11	1 06 2	25 0 0 11 16.7
2/3 1900 27 41.75 70 15.88 4.6 9 21.4 17.8 69.2 0.1282-01 23.2 1020.6 31 1 06 2 10 0 0 9 17.3 2/3 2000 27 42.62 70 15.53 5.1 359 20.8 17.9 76.0 0.1362-01 23.2 1020.4 41 1 06 2 10 0 350 10 17.6 2/3 2100 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.1322-01 23.2 1020.2 41 1 06 2 10 0 350 10 17.6 2/3 2200 27 43.67 70 15.00 5.1 359 21.2 16.4 71.5 0.1302-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.4															
2/3 2000 27 42.62 70 15.53 5.1 359 20.8 17.9 76.0 0.136E-01 23.2 1020.4 41 1 06 2 10 0 350 10 17.6 2/3 2100 27 43.66 70 15.57 5.1 359 21.4 16.5 71.7 0.132E-01 23.2 1020.2 41 1 06 2 10 0 350 10 17.6 2/3 2200 27 43.67 70 15.00 5.1 359 21.2 16.4 71.5 0.130E-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.4															
2/ 3 2200 27 43.67 70 15.00 5.1 359 21.2 16.4 71.5 0.1308-01 23.1 1020.5 31 1 07 2 10 0 350 10 17.4	2/ 3	2000	27 42.62	70 15.53	5.1	359	20.8	17.9	76.0	0.136E-01	23.2	1020.4			10 0 350 10 17.6

Table Vb-1 (Leg 2, continued)

DATE	TIME	LAT	LONG	WS	WD	AT1	AT2	RH	ABS I	HUM	SST	BP	CTOAD	W	aves		SC	SS	AMD	aws	TW
2/ 4	0	27 39.74	70 19.24	5.1	354	19.8	16.6	78.6	0.132	2E-01	23.0	1021.0		1	06	2	355	0	0	10	17.0
2/ 4	100	27 38.90	70 19.23	5.7	349	19.6	16.6	74.9	0.12	5E-01	22.9	1021.3		1	06	2	305	0	45	11	16.4
2/ 4		27 37.60										1021.5		1		2	280				16.0
2/ 4		27 36.05										1022.0		1		2	232	8			16.0
2/ 4		27 35.07										1021.7		1		2	235	9			15.8
2/ 4		27 33.67 27 36.72										1021.4		1		2	280 50				15.6 15.4
2/4		27 41.21										1020.5		1		2	60	•			16.0
2/ 4		27 43.59		4.7								1020.4				2	90				16.1
2/ 4		27 45.49		-								1020.5		_	07	_	45			-	16.2
		27 41.85		0.0								1020.7				2	0	0	0	10	15.4
		27 40.39		0.0								1020.9	31			2	0	0			15.2
		27 41.54		4.1								1021.4	31	-	80	_	40	0			15.8
		27 42.11										1022.0			08		45	0			16.7
		27 42.67										1022.5		-	80	_	45	0			16.6
		27 44.24 27 50.54		3.3								1022.4	31 31			1	0	6			16.4
		27 58.96		3.9 4.2								1022.1				1	355	9			16.3
		27 59.17		2.6								1021.7				î	25	ó			16.8
		27 56.48										1021.3				ī	30	ŏ			16.2
		27 56.70										1021.3				ī	20	0			16.4
		27 56.87		4.1	25	20.0	16.5	68.6	0.11	7 E- 01	22.1	1021.3	31			1	26	2			16.0
		27 56.05		2.4								1021.9				1	180				16.4
		27 53.75		0.0								1022.2				1	0	0			16.4
2/5		27 54.02										1022.6			80 80	1	180 40	0			16.4
2/ 5		27 51.27 27 51.42		4.1 5.2								1023.0			08	1	40				16.7
2/ 5		27 50.76		4.4								1023.2			08	ì	160				16.6
2/ 5		27 49.19										1023.1			08	ī	70	ō			17.0
2/ 5		27 49.58										1022.5		0	08	ī	65	0	30	5	17.0
2/5	600	27 45.18	70 13.44									1021.8		0	80	1	185	6	31.5	10	17.2
2/5		27 43.07										1021.3			80	1	45	6			17.2
2/ 5		27 48.76										1021.0			80	1	300	6			16.7
2/5		27 44.13										1020.2		-	08	1					17.2
		27 35.93										1020.2			08 08	1					17.5 17.2
		27 27.19 27 18.45										1020.5		_	08	i					17.0
		27 11.76										1022.0				î					17.4
		27 13.37		0.0								1022.7		-		ī		10			18.0
		27 21.95		0.0								1023.2		Ó		1	0	0	220	4	18.0
		27 25.03		1.1	293	22.0	17.9	69.0	0.13	2 E- 01	24.0	1022.8			08	1					17.8
2/5	1700	27 32.09	70 13.21	0.0								1022.1			80	1			160		17.2
		27 39.70										1021.0			80	1		10	. 0		18.4
		27 41.96										1020.6			06	i					17.6
		27 45.49										1020.3			07	1			30		17.8 17.6
		27 49.79										1020.0			07 07	1	230 280		350 330		17.6
		27 50.68 27 51.38										1020.1			06	î	220				17.6
2/6		27 54.38										1020.5			06	î			325		17.8
2/ 6		28 1.49										1021.0			06	ī	260		330		18.2
2/ 6		28 2.43	70 12.45		230	20.8	17.9	81.2	0.14	5E-01	22.0	1021.0)		06	1	0	10	335		18.2
2/6	300	28 11.57	70 17.15	0.0								1020.			06	1					18.5
2/ 6		28 12.34										1020.9			06	1			325		18.7
2/6		28 19.43										1020.5			06	ļ		11			18.7
2/6		28 26.36										1020.3			06 06	1			85 225		18.2
2/6		28 33.48 28 40.29										1020.1				1			255		18.2
2/6		28 47.27										1019.2		_	06	î			235		18.2
		28 54.20										1019.3				ī			225		18.0
		29 1.52										1019.4		ĭ		ī			235		18.0
			68 59.44									1019.5									18.2

Figure Vb-3. KNORR 123 Underway Meteorological Log Plot

Figure Vb-4. KNORR 123 Expanded Scale Meteorological Plots.

Figure Vb-4 (continued)

Figure Vb-4 (continued)

Figure Vb-4 (continued)

Figure Vb-4 (continued)

Figure Vb-4 (continued)

Table Vb-2: KNORR 123 Manual Hourly Meteorological Observations

START 2200Z JUNE 6,1986 END 0200 JUNE 23, 1986

NOTES ON PARAMETERS:

- Date Month/da
- Time UTC, hrmin
- Lat and Long Positions are from Internav LORAN receiver.
- WS,WD True wind speed and direction derived from apparent wind speed and direction and ship speed (ship's speed log) and direction (gyro). Direction is from which, meteorological convention.
- June 20, psychrometer was switched to Bendix.
- RH Relative humidity computed from wet and dry bulb temperatures from Assman (Bendix) by equations and constants in Smithsonian Meteorological Tables by subroutine RHPSYCH.FOR. AH - Absolute humidity (kg/m^3) (RHPSYCH.FOR).
- SST Sea surface temperature from bucket (C).
- BF Barometric pressure (mb) from bridge barometer.
- 10.
- TC Total cloud amount in octas.
 CLOUD Cloud observations. The four digits are: total octants of low clouds, cloud type for low, medium, high clouds.

 WAVES - The three two digit numbers are: sea wave height (1/2 m), and direction (10's of degrees) and
- height (1/2 m) of predominant swell.
- SC,SS Ship's course and speed (kts) from ship's gyrocompass and speed log.

 AWD,AWS Apparent wind direction and speed (m/s) from SAIL system anemometer.

15. TWET - Wet bulb temperature (C) from Assman (Bendix).
FORMAT (13,'/',12,15,13,F6.2,14,F6.2,F6.1,14,2F5.1,E10.3,F5.1,F7.1,1X,A1,1X,A4,A9,2(14,F5.1),F5.1)

MO DA TIME LAT LONG TWS TWD AT RH BP TC CLD WAVES SC SS AWD AWS TWEE 6 2200 36 35.96 71 2.98 26.5 175 22.7 90.5 0.190E-01 22.3 1018.3 8 8600 4 16 6 2300 36 30.51 71 5.07 24.6 166 22.7 92.2 0.193E-01 22.3 1018.4 8 8600 4 16 4 193 8.8 345 60.6 21.6 4 190 8.9 340 56.0 21.8 0 36 21.99 71 6.29 5.7 357 22.8 92.3 0.194E-01 22.3 1018.5 7 7730 2 18 4 189 9.0 130 2.8 21.9 6/ 7 100 36 13.38 71 8.73 5.6 359 22.4 94.8 0.195E-01 22.0 1018.5 3 190 9.0 130 71 11.22 10.8 150 22.8 91.4 0.193E-01 22.2 1018.5 6/ 200 36 4.66 4 18 2 0 2 0 0.00 0.0 21.8 71 13.09 15.9 150 22.8 89.7 0.189E-01 22.3 1018.5 300 35 56.60 2 0.0 0 0.0 21.6 1 18 4 187 400 35 48.43 71 15.48 21.1 186 22.5 93.9 0.194E-01 22.4 1018.0 2 18 0 50.0 21.8 9.0 21.0 156 22.8 94.8 0.200E-01 22.3 1017.5 20.9 151 22.4 99.1 0.204E-01 22.2 1017.0 20.0 153 22.4 98.2 0.202E-01 22.9 1016.5 71 18.10 6/ 500 35 40.12 2 18 4 192 8.5 330 48.0 22.2 600 35 31.52 71 20.74 2 18 4 188 8.8 330 48.0 22.3 700 35 23.16 71 21.55 8.5 330 46.0 22.2 4 190 2 18 800 35 14.63 71 23.29 23.6 167 22.4 98.2 0.202E-01 22.0 1016.0 2 18 4 191 8.7 340 54.0 22.2 7 900 35 6.28 7 1000 34 58.20 71 25.43 71 28.23 4 191 19.8 158 22.9 95.7 0.203E-01 22.8 1015.9 8 87 2 18 8.6 333 46.0 22.4 19.0 154 22.8 95.7 0.201E-01 22.5 1016.0 8 87 20.5 149 22.4 97.4 0.200E-01 21.8 1015.8 8 87 6/ 3 18 5 191 8.5 330 44.0 22.3 1100 34 49.79 71 31.12 3 18 7.8 325 46.0 22.1 5 191 1200 34 40.62 71 32.85 22.7 142 22.0 97.3 0.196E-01 22.0 1015.5 8 87 5 187 7.9 322 50.0 21.7 3 18 71 35.46 71 36.78 23.6 145 22.4 91.3 0.188E-01 22.0 1015.5 7 77 11.3 173 22.6 90.5 0.188E-01 22.1 1015.4 8 87 13.4 164 22.6 94.8 0.197E-01 22.7 1015.5 7 77 6/ 7 1300 34 28.54 5 189 8.1 323 52.0 21.4 3 18 1400 34 21.65 5 190 6 168 8.3 348 30.0 21.5 7.8 357 33.8 22.0 3 18 1500 34 12.39 71 38.75 3 18 14.3 183 22.4 94.8 0.195E-01 22.7 1015.0 8 86 14.5 176 22.2 98.2 0.200E-01 22.2 1015.0 8 86 13.8 191 22.2 96.5 0.196E-01 22.2 1014.5 8 86 1600 34 3.29 1700 33 55.47 71 40.66 71 42.32 6 187 6.3 357 34.0 21.8 3 18 6 187 6.0 351 34.0 22.0 1800 33 48.81 71 44.54 3 18 6 190 5.3 1 32.0 21.8 7.5 356 32.0 21.4 7 191 6/ 1900 33 42.25 71 46.54 12.6 185 21.8 96.4 0.191E-01 22.8 1014.0 8 86 3 18 15.9 183 21.7 97.3 0.192E-01 22.8 1013.4 8 87 14.0 183 21.8 98.2 0.195E-01 22.8 1012.3 8 87 17.4 185 22.7 96.5 0.202E-01 23.0 1011.9 8 87 2000 33 36.01 71 48.38 3 18 8 188 7.1 356 38.0 21.4 2100 33 30.22 71 50.47 8 186 3 18 6.8 358 34.0 21.6 2200 33 24.80 71 52.19 4 18 8 190 6.2 356 40.0 22.3 16.9 187 22.8 98.3 0.207E-01 23.0 1011.9 8 87 16.8 171 21.9 98.2 0.196E-01 23.0 1011.9 8 87 71 53.79 71 55.41 6/ 2300 33 19.70 4 18 10 190 5.2 358 38.0 22.6 0 33 14.51 4 18 10 188 4 18 10 188 6/ 4.9 345 37.4 21.7 100 33 9.77 200 33 4.95 16.7 194 22.9 96.5 0.205E-01 23.0 1012.0 71 56.40 3.8 6 36.2 22.5 71 57.16 13.8 206 22.4 89.7 0.184E-01 22.9 1012.0 3 18 8 188 5.9 15 32.4 21.2 6/ 300 32 59.15 71 57.84 15.3 201 22.7 97.4 0.204E-01 22.8 1013.0 3 18 8 187 6.4 12 36.0 22.4 16.6 207 22.6 94.8 0.197E-01 22.8 1013.4 14.5 211 22.5 88.8 0.184E-01 22.8 1013.4 400 32 53.30 71 58.74 3 18 8 192 8 191 6.4 13 38.4 22.0 500 32 46.80 71 59.93 3 19 5.9 17 33.8 21.2 600 32 40.97 1.53 13.5 207 22.4 96.5 0.199E-01 22.8 1013.5 3 19 8 192 12 32.6 22.0 6.6 13.2 208 22.0 95.6 0.192E-01 22.8 1013.5 11.9 215 22.7 96.5 0.202E-01 22.8 1013.5 700 32 32.89 72 3.45 8 189 7.1 15 32.4 21.5 72 5.38 6/ 800 32 25.08 3 19 8 189 7.4 20 30.0 22.3 72 8.69 11.8 21.1 22.8 94.0 0.198E-01 22.8 1013.8 11.1 217 22.9 95.7 0.203E-01 22.8 1014.4 8 87 900 32 16.56 7 189 3 19 7.6 17 30.0 22.1 1000 32 8.63 72 9.57 23 28.0 22.4 3 19 6 187 1100 31 59.32 72 10.88 10.0 226 22.9 96.5 0.205E-01 22.7 1015.3 8 87 3 19 6 189 7.8 27 26.0 22.5 9.3 232 23.2 96.5 0.208E-01 23.0 1016.2 8 87 10.6 239 23.5 93.2 0.205E-01 23.4 1016.2 8 87 9.8 241 23.2 91.5 0.197E-01 23.5 1016.5 8 86 6/8 1200 31 49.43 72 12.43 72 13.99 3 19 4 191 7.4 30 24.0 22.8 6/ 8 1300 31 40.05 35 26.0 22.7 4 193 7.2 2 19 6/ 8 1400 31 30.34 72 16.08 2 19 3 192 9.2 34 26.0 22.2 28 26.0 22.9 1500 31 20.87 72 18.31 9.9 230 24.4 87.7 0.203E-01 23.8 1016.9 8 86 3 191 8.0 14.3 173 23.4 92.3 0.201E-01 23.5 1017.5 6 26 9.4 222 23.4 93.2 0.203E-01 23.6 1017.5 2 26 8.7 200 22.8 88.1 0.186E-01 23.8 1017.6 2 26 6/ 8 1600 31 11.30 72 20.50 2 20 3 190 8.5 347 36.0 22.5 2 192 21 26.0 22.6 31 4.31 30 55.59 72 21.27 1 20 8.5 6/ 8 1700 31 72 22.59 1 19 2 192 8.4 6 25.2 21.4 6/8 1800 1900 46.85 72 23.42 9.2 208 23.1 79.3 0.170E-01 24.1 1017.6 7 663 1 18 2 189 8.8 13 26.4 20.6 2000 30 37.39 72 24.80 8.3 208 23.7 89.9 0.200E-01 23.9 1017.6 7 7631 1 18 2 191 9.2 11 25.0 22.5 6.4 191 24.0 93.3 0.211E-01 24.0 1017.4 8 8631 7.0 189 23.9 95.8 0.215E-01 24.4 1017.4 7 7631 2 190 10.5 8 2100 30 28.15 72 26.17 1 17 1 23.0 23.2 17 72 27.88 2200 30 18.83 4.9 192 23.8 93.2 0.208E-01 24.3 1017.4 6 6631 1 17 2 190 10.5

Table Vb-2 (continued)

MO D	A TIME LAT	LONG	TWS TWD	AT RH	AH	SST	BP TC CLD	WAVES	SC SS AWD AWS TWET
6/9		72 32.22					1017.5 6 6631		
6/9		72 35.04 72 36.63	6.4 200 23				1017.6 5 5	2 17 1 17	2 190 9.7 10 22.0 23.6 2 190 9.7 6 22.0 23.6
6/9		72 43.93	8.0 204 23						2 190 6.7 10 22.0 23.6
6/ 9	400 29 18.45	72 45.49	7.7 218 23	.8 99.1	0.221E-01	24.3	1019.0 4	1 17	2 191 9.7 17 24.0 23.7
6/9		72 47.22	7.2 218 24					1 17	2 190 9.7 17 23.0 23.7
6/9		72 48.96 72 50.79	6.5 213 24					1 17	2 189 9.8 14 22.0 23.8
6/9		72 52.15	5.5 214 23 5.4 205 24					1 17 1 17	2 190 9.8 13 20.0 23.8 2 190 9.7 8 20.0 23.8
6/9		72 53.67					1018.4 1 1831		2 188 9.8 1 21.0 23.8
	1000 28 20.19	72 54.34					1018.4 4 4831	1 17	2 189 10.5 5 21.2 23.7
	1100 28 9.89	72 54.34					1018.6 6 6831		2 189 10.5 352 19.6 23.8
	1200 27 59.71 1300 27 49.55	72 56.94 73 0.24					1019.3 5 5831 1019.7 7 75	1 15 1 15	2 190 9.1 0 19.0 23.8 2 193 9.3 0 18.0 23.8
	1400 27 39.47	76 2.76					1019.5 8 85		2 195 8.8 347 8.0 24.0
	1500 27 29.12	73 5.55	4.2 185 25	0 91.8	0.220E-01	25.6	1020.0 7 78	1 15	2 194 8.6 356 16.8 24.0
	1600 27 19.38	73 8.97					1020.2 4 2890	1 15	2 192 9.2 348 18.0 24.1
	1700 27 9.54 1800 27 0.15	73 12.22 73 15.12					1020.1 3 1870 1020.0 2 2260	1 15 1 15	2 192 9.9 342 18.0 24.2 2 194 10.0 352 18.0 23.7
	1900 26 50.53	73 17.92					1019.6 2 2260		2 195 10.0 357 16.2 24.0
	2000 26 40.88	73 20.36					1019.2 2 283	1 15	2 192 10.0 359 16.4 23.9
	2100 26 31.42	73 22.78					1018.9 3 38 2	1 15	2 193 9.7 355 14.0 23.8
	2200 26 22.15 2300 26 12.78	73 26.60 73 27.17					1018.6 2 28 1018.4 1 18	1 15 1 15	2 194 9.4 344 14.8 23.8 2 192 9.4 342 13.6 23.8
6/10	0 26 2.90	73 29.77					1018.6 6 63		2 194 9.8 334 14.0 23.6
6/10		73 32.04					1018.6 3 3	1 15	2 184 9.6 333 16.8 23.8
6/10	200 25 41.77	73 33.20					1018.6 2 2	1 15	2 185 9.7 392 19.2 23.8
6/10	300 25 30.86	73 30.86					1018.8 2 2	1 15	2 185 9.8 342 17.2 23.8
6/10 6/10	400 25 19.89 500 25 9.41	73 36.47 73 36.91	4.3 147 24. 5.3 149 25.						1 192 10.1 340 17.0 23.9 1 170 5.0 346 15.0 24.0
6/10	600 25 8.20	73 37.22	3.3 139 25					0 15	1 28 0.3 109 6.4 23.8
6/10	700 25 8.49	73 37.76	1.5 124 25.	7 86.4	0.216E-01	26.2	1018.6 0 0		1 12 0.2 109 2.8 24.0
6/10	800 25 9.37	73 32.56					1018.4 0 0		1 82 9.5 10 16.8 23.5
6/10	900 25 10.42 1000 25 11.50	73 22.08 73 11.83					1018.4 1 18 1018.5 1 18	_	1 83 9.8 17 18.2 24.0 1 82 9.2 7 18.4 23.8
	1100 25 12.90	73 1.89					1016.8 2 28		1 83 9.5 23 18.6 24.0
	1200 25 14.24	72 51.91	5.8 131 25.	6 87.2	0.216E-01	26.1	1020.0 2 28		84 9.3 26 18.8 24.0
	1300 25 15.66	72 41.83					1020.0 2 28	1 11	2 84 9.1 24 19.6 23.9
	1400 25 16.98 1500 25 17.71	72 36.15 72 49.37					1020.0 1 196 1020.2 2 286		2 273 8.8 331 6.2 23.7 2 275 9.0 348 5.6 24.0
	1600 25 18.77	73 1.91					1020.4 2 1206	1 11	2 276 9.6 344 7.2 23.7
6/10	1700 25 20.18	73 14.61					1020.4 3 1206	1 11	2 275 9.8 335 8.6 23.9
	1800 25 21.41	73 27.55					1020.5 3 1206	1 11	2 274 9.9 330 8.4 23.6
	1900 25 22.63 2000 25 24.04	73 39.53 73 51.39	1.2 143 26. 0.5 166 26.				1019.3 2 2164	1 14 1 14	1 276 9.2 347 7.8 23.7 2 276 8.5 353 8.2 24.0
	2100 25 25.59	74 3.08					1019.6 2 2164	0 11	2 275 8.0 0 5.4 24.2
	2200 25 27.28	74 14.64					1018.9 1 1164	0 11	2 276 9.3 12 6.6 23.8
6/11	2300 25 29.07 0 25 30.85	74 26.18 74 38.00					1018.9 1 1164 1018.8 2 22	0 11 0 11	2 276 9.9 0 6.4 24.1 1 275 10.2 9 5.6 23.5
6/11	100 25 32.19	74 50.45					1018.8 1 12	0	0 275 9.5 23 4.6 23.6
6/11	200 25 33.40	75 1.16	3.1 110 26.	7 77.9	0.206E-01	27.1	1018.7 1 1	0	0 277 9.8 340 4.2 23.8
6/11	300 25 34.90	75 14.22	2.6 113 25.					0	0 290 9.4 356 4.4 23.7
6/11	400 25 36.12 500 25 36.20	75 23.83 75 36.08	2.6 105 25. 2.5 101 25.					1	0 274 10.0 349 5.2 23.5 0 274 10.0 353 5.2 23.9
6/11	600 25 36.52	75 48.49	2.8 102 25.					î	0 277 10.3 354 5.0 23.7
6/11	700 25 38.19	76 0.51	1.1 81 25.					1	0 281 10.2 5 8.2 23.6
6/11	800 25 39.95	76 12.37					1018.2 1 111	0	0 282 10.3 335 3.6 23.8
6/11	900 25 42.48 1000 25 44.96	76 23.66 76 35.95	3.3 109 26.				1018.2 3 3100	0	0 282 9.9 347 3.6 23.9 0 282 9.9 336 3.4 23.7
	1100 25 45.73	76 47.33					1018.2 2 2101	ŏ	0 271 10.1 336 5.4 23.8
6/11	1200 25 43.72	76 56.30	3.9 134 25.	4 87.1	0.214E-01	27.3	1018.5 2 2130	1	0 219 10.1 325 13.2 23.8
	1300 25 35.16	77 2.67					1018.3 2 2130	1	0 219 10.2 331 10.6 24.2
	1400 25 26.01 1500 25 15.43	77 9.92 77 15.77					1018.5 5 5130 1018.4 3 3170	1	0 215 9.7 333 15.8 24.1 0 203 8.6 338 16.8 24.6
	1600 25 4.02	77 18.95					1018.5 2 1260	î	0 203 5.6 333 13.6 24.3
	1700 24 55.27	77 17.54					1018.4 2 1260	ī	0 96 0.0 9 11.0 24.0
	1800 24 55.73	77 17.51					1018.1 2 1260	1	0 104 0.0 6 13.6 23.9
	1900 24 55.00 2000 25 10.85	77 17.99 77 16.56					1017.6 2 1260 1016.9 1 1260	0	0 359 9.5 64 12.6 24.5 0 32 9.7 44 16.6 24.0
	2100 25 22.63	77 12.30					1016.9 1 1260	o	0 33 9.6 54 12.2 24.0
6/11	2200 25 33.09	77 7.31	4.4 123 27.	1 76.6	0.207E-01	28.1	1016.7 2 2260	Ō	0 32 9.7 42 12.8 24.0
	2300 25 42.00	77 0.17					1016.7 2 2260	,	89 9.5 14 18.8 24.0
6/12 6/12	0 25 42.76 100 25 42.14	76 48.25 76 36.15	6.3 132 25. 5.9 144 25.				1016.7 1 14 1016.9 1		2 95 9.8 21 20.8 24.5 2 95 9.8 27 19.3 24.3
6/12	200 25 42.07	76 24.73			0.216E-01			1 13	2 95 10.0 0 18.7 24.2
6/12	300 25 41.89	76 13.39	4.6 94 25.	8 87.2	0.219E-01	27.1	1018.9	1 13	2 95 9.8 0 18.8 24.2
6/12	400 25 41.37	76 2.06					1018.9 1 1	1 13	2 94 9.9 0 15.8 23.8
6/12	500 25 40.31 600 25 39.24	75 51.15 75 39.80					1018.8 1 1 1018.5 1 1	1 13 1 13	2 95 10.0 0 16.0 24.2 2 96 9.8 0 16.0 23.8
6/12	700 25 38.13	75 28.33					1017.7 2 1	1 13	2 95 9.9 0 18.0 24.3
6/12		75 17.28					1017.4 2 2	1 13	2 95 9.2 0 14.6 24.3
6/12		75 5.87					1017.4 2 211	1 13	2 95 9.0 0 16.4 74 .

Table Vb-2 (continued)

HO DA TIME LAT	LONG	TWS TWD AT	RH AH	SST BP TC CLD	WAVES	SC SS AWD AWS TWET
6/12 1000 25 36.03	74 54.43			27.0 1017.5 2 211		96 9.1 0 17.2 24.1
6/12 1100 25 35.46	74 43.33 74 34.04			27.0 1017.7 3 311		96 8.1 0 16.0 24.4 94 9.7 0 19.6 24.5
6/12 1200 25 34.74 6/12 1300 25 34.19	74 21.12			26.9 1018.9 4 413 26.8 1018.8 3 313		94 9.3 0 20.8 24.5
6/12 1400 25 33.72	74 9.88	4.8 93 26.7	85.9 0.227E-01	26.8 1019.0 4 413		94 9.5 0 18.8 24.9
6/12 1500 25 33.36 6/12 1600 25 33.33	73 59.04 73 48.77			27.0 1019.0 2 213 27.6 1020.0 3 226		94 8.4 0 16.4 24.6 92 9.2 0 16.0 24.3
6/12 1700 25 33.43	73 38.43			27.4 1020.0 3 223		94 9.1 0 15.6 24.0
6/12 1800 25 33.82	73 28.32	4.8 91 26.2	86.5 0.222E-01	27.5 1020.0 2 2200		92 9.2 0 18.6 24.5
6/12 1900 25 33.88 6/12 2000 25 33.44	73 18.21 73 8.20			27.3 1019.6 2 2200 27.0 1019.1 2 2200		95 9.6 15 18.6 24.4 95 8.6 20 18.8 24.3
6/12 2100 25 33.31	72 58.41			27.0 1018.8 1 1200		94 9.3 11 19.4 24.2
6/12 2200 25 33.11	72 48.58	4.9 133 26.4	81.4 0.21 LE-01	27.2 1018.5 2 2260		95 8.9 20 17.4 24.0
6/12 2300 25 32.99 6/13 0 25 32.32	72 39.01 72 28.93			. 26.9 1018.5 2 2260 . 26.7 1018.8 3 39		95 9.1 13 18.0 24.2 95 9.5 20 21.0 24.5
6/13 0 25 32.32 6/13 100 25 31.39	72 18.81			26.7 1019.0 3 39		94 9.8 13 20.0 23.8
6/13 200 25 30.87	72 8.58	6.1 108 26.2	80.6 0.207E-01	26.9 1019.0		95 8.7 8 20.4 23.7
6/13 300 25 30.56	71 58.26		83.4 0.209E-01			94 9.1 15 19.4 23.7 96 8.9 18 21.4 23.1
6/13 400 25 30.35 6/13 500 25 29.92	71 47.66 71 37.36		89.3 0.206E-01 88.5 0.210E-01		1 12 2	96 9.5 12 16.4 23.4
6/13 600 25 31.53	71 32.26		84.0 0.204E-01		1 12 2	94 9.5 9 17.8 23.2
6/13 700 25 29.67	71 10.97		86.3 0.208E-01			95 9.6 4 17.6 23.4
6/13 800 25 29.19 6/13 900 25 28.65	71 1.23 70 51.03			. 26.4 1019.4 2 2 . 26.4 1019.4 1 1		93 9.2 358 19.0 23.3 94 8.9 5 18.8 23.1
6/13 1000 25 28.79	70 39.83			26.5 1019.6 1 1190		90 10.2 358 19.2 23.1
6/13 1100 25 28.57	70 29.14			26.6 1020.0 1 1190		88 9.8 4 14.2 23.5
6/13 1200 25 26.20 6/13 1300 25 27.28	70 13.85 69 59.62			26.6 1020.8 4 4371 26.3 1021.1 5 4371	1 16 1	84 8.8 13 19.6 23.4 105 0.0 3 18.2 23.3
6/13 1400 25 26.60	69 57.53			26.5 1021.2 2 186	1 14 1	
6/13 1500 25 27.23	69 57.20	4.6 113 26.2	77.6 0.199E-01	26.6 1021.4 2 186	1 14 1 2	
6/13 1600 25 27.09	69 58.52			26.5 1022.0 3 186	1 12 1	2 0.2 109 6.2 23.8
6/13 1700 25 27.14 6/13 1800 25 27.03	69 59.23 69 59.76			26.4 1022.0 2 068 26.8 1022.1 3 316	1 12 1	2 1.3 161 8.6 23.6 99 1.5 10 10.8 23.6
6/13 1900 25 27.12	69 59.98			76.8 1021.6 2 226		96 1.3 29 13.6 23.3
6/13 2000 25 27.15	69 59.94			26.2 1021.0 2 126	1 0 1	100 1.5 29 16.8 23.3
6/13 2100 25 28.12	70 2.74			26.8 1020.8 1 126	2 14 2 3	
6/13 2200 25 38.22 6/13 2300 25 48.78	70 3.51 70 4.02			26.6 1020.8 1 126 26.7 1020.8 1 11 4	2 14 2 2 14 2	5 8.7 73 9.8 23.8 4 11.4 74 11.2 23.7
6/14 0 25 59.53	70 3.99			26.7 1021.1 2 21 3	2 13 2	12 9.6 58 14.0 23.9
6/14 100 26 10.84	70 3.90		85.7 0.21 SE-01		2 13 2	6 9.3 68 12.8 24.0
6/14 200 26 21.58 6/14 300 26 32.71	70 3.62 70 3.48		85.6 0.212E-01 85.6 0.214E-01		1 15 2	6 9.7 63 13.2 23.8 6 9.6 61 11.8 23.9
6/14 400 26 43.53	70 3.32			26.4 1022.5 2 2200		8 9.4 62 7.2 23.2
6/14 500 26 54.54	70 3.34			26.3 1022.5 1 1200	1 15 2	5 9.2 65 11.8 23.3
6/14 600 27 5.43	70 2.64			26.5 1022.2 1 1200	1 15 2	6 9.3 65 11.8 23.2
6/14 700 27 16.80 6/14 800 27 18.72	70 1.45 70 1.39			1 26.7 1022.1 1 1200 1 26.5 1021.9 1 12	1 15 2	6 9.8 48 9.4 23.4 345 1.6 150 6.2 23.3
6/14 900 27 18.63	70 1.26			26.5 1021.9 2 12		71 0.4 65 6.4 23.3
6/14 1000 27 18.73	70 1.37			26.5 1022.0 2 22 1		47 0.3 91 5.2 23.0
6/14 1100 27 19.18	70 1.02			26.5 1022.0 2 22	0 14 1 0 16 1	70 0.9 19 8.2 23.4 101 0.1 24 7.4 23.3
6/14 1200 27 19.62 6/14 1300 27 18.77	70 0.56 69 59.69			1 26.6 1021.9 3 32 1 1 26.5 1022.1 4 42 1	1 16 1	
6/14 1400 27 9.63	69 56.47			26.5 1022.0 2 22 1	1 16 1	169 5.5 341 15.8 23.2
6/14 1500 27 5.28	69 54.74			1 26.5 1022.0 2 11 1	1 16 1	
6/14 1600 27 6.18 6/14 1700 27 4.64	69 54.47 69 56.72			1 26.7 1022.5 2 1101 1 26.7 1022.3 2 1101	1 16 1 1	
6/14 1800 27 4.89	69 54.89			26.9 1022.0 3 1101	1 13 1	
6/14 1900 27 4.89	69 54.71	4.8 72 26.3	76.9 0.199E-01	1 26.8 1021.8 3 1104	1 13 1	35 0.0 38 9.4 23.3
6/14 2000 27 4.45	69 54.92			1 26.9 1021.4 3 2104 1 26.8 1021.2 4 3101	1 13 2 1 13 2	
6/14 2100 27 10.81 6/14 2200 27 11.59				1 26.7 1021.2 3 2101		15 0.0 72 8.6 23.4
6/14 2300 27 12.18	69 53.87	3.3 98 26.4	77.7 0.202E-01	1 26.7 1021.2 2 1101	1 13 3	36 0.5 59 6.6 23.5
6/15 0 27 12.63	69 53.67			1 26.7 1021.1 1 12	1 13 3	
6/15 100 27 13.03 6/15 200 27 10.86	69 53.43 69 51.21			1 26.7 1021.1 2 12 1 26.5 1021.2 2 12	1 13 3	124 1.2 358 12.2 23.2 151 8.5 359 22.0 22.9
6/15 300 27 2.28	69 45.87			1 26.5 1021.2 2 12	1 12 2	
6/15 400 26 56.43	69 40.10	6.9 134 25.7	77.4 0.193E-01	1 26.6 1021.4 2 12		114 1.6 18 15.0 22.8
6/15 500 26 56.28				1 26.6 1021.5 2 1201 1 26.6 1021.1 2 1201	1 12 2 1 12 2	109 0.0 23 13.6 23.2 111 0.3 19 10.8 23.4
6/15 600 26 56.40 6/15 700 26 56.38	69 40.07			1 26.5 1021.0 2 1201		108 0.0 11 10.4 23.3
6/15 800 27 3.30	69 46.01	3.4 87 25.9	79.0 0.199E-01	1 26.5 1020.9 1 12	1 12 2	328 6.6 60 6.6 23.2
6/15 900 27 3.58	69 45.82			1 26.4 1020.8 2 21		131 0.5 350 11.2 23.1
6/15 1000 27 3.50 6/15 1100 26 59.85	69 45.61 69 41.48	6.1 118 25.8	5 80.4 0.202E-0	1 26.3 1020.8 2 21 1 26.5 1020.9 1 1201		130 0.5 349 12.4 23.3 139 10.9 1 23.0 23.1
6/15 1100 26 54.34	69 35.70			1 26.6 1021.9 2 2109		117 0.5 0 12.0 23.0
6/15 1300 26 56.13		4.4 66 27.1	3 73.4 0.207E-0	1 26.6 1022.0 2 2109	2 14 3	302 5.3 86 7.0 24.2
6/15 1400 26 56.30	69 39.57			1 26.7 1022.1 2 2101		8 0.0 54 11.8 23.2
6/15 1500 26 56.82	69 39.87 69 40.29			1 26.8 1022.1 2 2101 1 26.7 1022.8 3 1201		
6/15 1600 26 57.29 6/15 1700 26 59.00		6.0 80 26.3	3 74.1 0.191E-0	1 26.4 1022.8 3 1201	1 14 2	12 6.3 46 15.2 22.9
6/15 1800 27 3.90	69 37.74	4.1 106 26.	79.1 0.203E-0	1 26.4 1022.6 4 3201	1 13 2	
6/15 1900 27 3.89				1 26.4 1022.4 3 1204		98 -1.7 13 11.4 23.2 265 7.8 287 5.4 23.3
6/15 2000 27 3.49				1 26.9 1022.0 3 1204 1 26.8 1021.5 3 1204		265 7.8 287 5.4 23.3 9 0.2 65 6.6 23.4
6/15 2100 27 3.53 6/15 2200 27 3.66		2.7 64 26.4	81.4 0.21 IE-0	1 26.8 1021.4 5 2104	1 13 2	10 0.4 51 5.4 24.0
6/15 2300 27 4.27		8.0 106 26.	5 72.1 0.188E-0	26.6 1021.3 4 2108	1 13 2	91 0.5 15 16.0 22.8

127
Table Vb-2 (continued)

MO DA TIME LAT	LONG	TWS TWD AT	RH AH	SST BP	TC CLD	WAVES	sc ss	AWD AWS TWET
6/16 0 27 4.56 6/16 100 27 2.77 6/16 200 27 1.10 6/16 300 27 9.47	69 45.74 69 43.48 69 39.03 69 39.74	7.3 88 26.4 75 8.1 127 26.2 76 7.5 123 26.2 80 7.2 117 26.3 78	.5 0.207E-01	26.5 1021. 26.5 1021.	2 1 4 1		82 0.3 150 8.3 0 8.6 0 0.0	6 14.4 23.2 345 23.6 23.1 87 12.2 23.7 0 0.0 0.0
6/16 400 27 17.83 6/16 500 27 18.05	69 39.71 69 50.53	6.8 111 26.3 76 5.1 119 26.2 80	.9 0.199E-01 .5 0.207E-01	26.6 1022. 26.5 1022.	2 2100 1 2 2100	2 10 2 2 10 2	270 9.5 270 10.0	239 5.6 23.3 285 5.0 23.7
6/16 600 27 18.10 6/16 700 27 10.02 6/16 800 27 1.10	70 1.30 70 3.05 70 3.42	5.0 112 25.8 81 4.9 135 25.7 81 5.7 133 25.8 83	.1 0.202E-01	26.3 1021.	2 2 21 00	2 10 2		273 4.6 23.5 337 16.8 23.3 333 17.8 23.7
6/16 900 26 52.20 6/16 1000 26 56.36	70 4.12 69 55.30	7.1 112 25.9 80. 6.8 111 25.6 84	.4 0.203E-01 .9 0.210E-01	26.4 1021. 26.4 1021.	0 3 32 0 2 22	1 16 1 1 14 1	63 7.8 65 8.0	32 19.8 23.4 29 19.6 23.7
6/16 1100 27 0.21 6/16 1200 27 3.51 6/16 1300 27 4.52	69 46.47 69 40.13 69 38.26	5.7 113 26.2 78. 6.1 80 26.6 77. 6.4 118 26.8 75.	1 0.203E-01	26.5 1022.	2 2 22	1 14 1 1 14 1 1 14 1	64 7.2 60 0.0 91 0.7	30 16.6 23.4 21 11.8 23.6 26 13.0 23.6
6/16 1400 27 3.84 6/16 1500 27 3.81	69 39.56 69 38.48	8.0 114 26.8 76 6.3 106 27.6 72	.4 0.203E-01 .0 0.200E-01	26.6 1022. 26.6 1022.	4 3 3200 5 1 1200	1 14 2 1 14 1	98 0.7 95 0.9	16 16.2 23.7 11 13.2 23.8
6/16 1600 27 4.14 6/16 1700 27 4.27 6/16 1800 26 59.47	69 38.30 69 38.14 69 43.44	7.2 136 26.8 75. 5.2 136 26.8 76. 4.9 150 26.0 78.	4 0.203E-01	26.7 1022.	5 1 1200	1 11 1	108 -1.1 107 1.0 225 6.6	31 13.0 23.6 27 11.0 23.7 315 13.0 23.2
6/16 1900 26 57.46 6/16 2000 26 57.85	69 46.15 69 47.55	5.6 50 26.2 72 7.5 134 26.4 73	.6 0.187E-01 .4 0.191E-01	26.7 1021. 27.0 1021.	9 1 1200 5 2 22	1 11 1 1 11 1	325 0.0 177 3.4	86 10.8 22.6 325 17.2 22.9
6/16 2100 26 57.11 6/16 2200 26 57.08 6/16 2300 26 57.37	69 47.16 69 47.38 69 47.70	6.1 137 26.3 72 6.5 113 26.3 67 5.8 96 26.0 75		26.9 1021.	4 1 12		134 0.0 113 -0.4 37 -0.7	4 11.8 22.6 1 12.2 21.9 63 11.0 22.8
6/17 0 26 58.14 6/17 100 26 58.69	69 48.05 69 47.73	5.1 118 26.2 74. 6.1 117 26.2 74.	8 0.192E-01 8 0.192E-01	26.8 1021. 26.6 1021.	4 5 2 2200	1 12 2 1 12 2	50 0.0 93 2.7	69 10.0 22.9 20 14.4 22.9
6/17 200 26 59.55 6/17 300 27 9.07 6/17 400 27 18.05	69 38.55 69 30.79 69 39.20	6.8 103 25.8 76. 5.9 107 26.4 72. 5.0 112 25.8 79.	7 0.189E-01	26.6 1021.	4	1 12 2 1 09 2 1 09 2	4 8.8 0 8.9 269 8.2	63 14.6 22.8 63 12.2 22.8 259 4.0 23.2
6/17 500 27 17.62 6/17 600 27 17.50	69 50.15 70 0.48	4.7 125 25.8 73. 5.4 118 25.8 76.	1 0.184E-01 0 0.191E-01	26.5 1021. 26.5 1021.	2 1 1100	1 09 2 1 09 2	270 8.5 270 8.9	282 5.4 22.3 265 5.0 22.7
6/17 700 27 11.01 6/17 800 27 9.12 6/17 900 27 11.14	70 2.88 69 56.47 69 46.25	6.7 144 25.5 78. 7.0 130 25.7 73. 9.2 135 25.7 75.	8 0.184E-01	26.4 1020.	2 0 0000	1 09 2 1 11 2 1 11 2	180 8.2 78 7.8 91 5.8	338 20.2 22.7 34 19.4 22.3 34 22.4 22.5
6/17 1000 27 11.48 6/17 1100 27 11.95	69 44.96 69 47.16	2.0 114 25.5 71. 4.7 50 25.8 72.	6 0.176E-01 4 0.182E-01	26.5 1020. 26.5 1020.	5 2 22 7 1 12	1 12 2 1 12 2	315 6.6 46 -0.9	26 3.2 21.8 5 8.2 22.2
6/17 1200 27 11.28 6/17 1300 27 11.80 6/17 1400 27 12.12	69 47.22 69 47.37 69 47.23	4.6 93 26.7 68. 2.6 128 27.4 67. 4.9 80 26.5 70.	2 0.185E-01	26.5 1021.	0 1 1100	1 12 2 1 12 2 1 12 2	54 1.2 51 0.7 56 -1.0	35 9.8 22.5 70 5.2 22.9 27 8.6 22.6
6/17 1500 27 11.46 6/17 1600 27 8.15	69 48.35	4.7 141 26.4 70. 5.3 144 26.2 70.	7 0.184E-01 5 0.181E-01	26.7 1022. 26.7 1021.	0 1 1100 8 2 2100	1 12 2 1 12 2	215 2.5 215 2.5	300 10.2 22.5 301 11.4 22.3
6/17 1700 27 4.18 6/17 1800 27 15.19 6/17 1900 27 10.58	69 53.80 69 56.01 69 47.69	3.7 101 27.2 70. 6.1 117 26.4 72. 6.5 126 26.1 73.	1 0.187E-01	26.8 1020.	7 2 2100	1 13 2 1 13 2 1 13 2	45 0.0 52 6.3 40 9.8	57 7.2 23.2 44 15.6 22.7 50 16.4 22.6
6/17 2000 27 18.53 6/17 2100 27 19.22	69 38.77 69 39.01	6.4 147 26.2 71. 3.6 140 26.3 69.	9 0.185E-01 2 0.179E-01	27.0 1020. 26.9 1020.	2 7 1208 0 7 1208	1 13 2 1 13 2	125 -0.6 55 -1.7	24 11.8 22.5 100 7.0 22.2
6/17 2200 27 18.37 6/17 2300 27 18.76 6/18 0 27 19.10	69 38.43 69 38.23 69 37.62	5.2 104 26.3 71. 3.6 131 26.2 68. 1.3 185 26.2 70.	5 0.176E-01	26.8 1019.	8 7 1208	1 13 2 1 13 2 1 13 2	60 -0.6 56 -0.5 180 2.5	47 9.6 22.5 80 6.8 22.0 3 5.0 22.3
6/18 100 27 13.43 6/18 200 27 7.43 6/18 300 27 5.97	69 43.99 69 52.01 69 54.59		2 0.185E-01 3 0.200E-01	26.5 1020.0 26.6 1020.0	0 1 1100 0 2 2100	1 13 2 1 14 2	230 8.8 230 8.3	318 3.2 22.4 311 14.4 23.3
6/18 400 27 3.54 6/18 500 27 3.82	69 54.39 69 54.77	8.8 140 25.8 77. 7.5 146 25.7 78.	5 0.194E-01	26.5 1019.	7 2 2170		90 3.1 91 3.0 100 2.1	40 15.4 22.9 43 19.2 22.9 41 16.0 23.0
6/18 600 27 4.17 6/18 700 27 4.05 6/18 800 27 3.73	69 53.06 69 55.10 69 54.49	5.2 146 25.8 78. 3.5 204 25.4 81. 3.2 189 25.8 79.	0 0.199E-01	26.5 1018.	1 1100	1 14 2	255 4.4 269 1.4 265 3.7	305 7.6 23.0
6/18 900 27 5.47 6/18 1000 27 3.42	69 53.71 69 53.96	0.9 36 25.4 77. 4.9 189 25.4 78.	3 0.190E-01 8 0.193E-01	26.4 1018. 26.5 1018.	3 7 72 6 5 52		266 4.5 290 4.6	23 3.6 22.5
6/18 1100 27 12.73 6/18 1200 27 21.98 6/18 1300 27 32.77	69 57.92 69 58.19 69 54.72	4.5 164 25.6 81. 2.7 132 26.1 77. 2.4 132 26.8 74.	6 0.198E-01	26.6 1019.	2 3 3260	0 14 1 1 15 2 1 15 2	0 10.4 0 8.4 2 8.4	50 3.0 23.2 39 6.2 23.2 34 6.4 23.4
6/18 1400 27 43.39 6/18 1500 27 54.50	69 54.29 69 54.32	2.7 143 26.4 75. 3.8 147 26.6 79.	6 0.196E-01 2 0.208E-01	26.7 1019. 26.8 1019.	2 4 4201 2 2 2202	1 15 2 2 15 2	0 8.6 2 7.9	36 5.4 23.2 67 4.6 23.9
6/18 1600 27 57.78 6/18 1700 27 57.18 6/18 1800 27 57.75	69 53.46 69 54.06 69 54.41	6.5 168 25.9 83. 6.7 188 26.5 76. 2.5 136 26.4 77.	3 0.199E-01	27.1 1019.	2 2 1170		171 0.9	296 13.6 23.8 16 13.8 23.4 45 4.8 23.4
6/18 1900 27 58.70 6/18 2000 27 59.57	69 54.14 69 53.85	5.4 148 25.9 79. 5.1 181 26.6 68.	0 0.199E-01 7 0.181E-01	27.0 1018. 27.1 1018.	9 3 2170 4 2 2208	2 15 2 1 14 1	81 0.0 98 -0.2	68 10.4 23.2 85 9.8 22.4
6/18 2100 28 0.21 6/18 2200 28 0.18 6/18 2300 28 0.26	69 53.39 69 53.10 69 52.72	5.0 206 26.1 79. 4.1 195 26.2 79. 3.2 191 26.2 76.	8 0.205E-01	27.0 1018.	2 3 2208	1 16 2	178 -0.5 182 0.0 182 -0.3	30 9.2 23.4 14 8.0 23.6 10 6.0 23.1
6/19 0 27 58.02 6/19 100 27 48.81	69 52.76 69 53.71	2.2 206 26.0 78 2.8 204 25.8 80 4.0 181 26.1 74	3 0.199E-01 4 0.202E-01	26.9 1018. 26.6 1018.	0 4 2264 6 2 2108	1 15 2 1 15 2	188 9.0 188 9.1	6 13.2 23.2 6 14.4 23.3
6/19 200 27 38.58 6/19 300 27 28.36 6/19 400 27 18.58	69 54.60 69 56.21 69 58.32	4.6 181 26.0 74. 4.6 187 26.0 77.	7 0.190E-01	27.0 1018.	5 2 1201		194 9.3	357 17.4 22.7 354 18.2 22.7 356 17.4 23.1
6/19 500 27 11.11 6/19 600 27 11.65	70 0.38 70 0.01 69 59.60	3.6 131 25.5 81 2.6 171 26.0 71 2.1 156 25.7 78	8 0.202E-01 9 0.182E-01	26.8 1018. 26.7 1018.	7 2 1201 6 2 1201	1 15 2	172 0.0 132 0.0 132 0.0	40 5.0 22.3
6/19 700 27 11.93 6/19 800 27 12.34 6/19 900 27 11.34	69 59.16 70 0.72	4.6 170 25.8 76. 2.3 151 25.8 76.	7 0.193E-01 0 0.191E-01	26.9 1018. 26.8 1018.	2 1 3 2808	1 15 1 1 14 1	130 0.2 179 7.8	40 9.0 22.8 350 12.0 22.7
6/19 1000 27 5.25 6/19 1100 27 3.10 6/19 1200 27 3.96	69 59.70 70 0.33 70 0.51	5.0 184 25.6 75. 4.4 147 26.0 74. 4.1 165 26.4 72.	7 0.190E-01	26.5 1018.	3 2 1208	1 15 1		0 17.6 22.5 90 8.6 22.7 110 8.0 22.7
6/19 1300 27 3.33 6/19 1400 27 8.73	70 0.51 70 0.53 70 5.92	4.1 111 26.8 73 4.9 166 27.4 71	.7 0.196E-01	26.6 1019.	7 3 1101	1 15 1	315 6.8	98 3.2 23.3

Table Vb-2 (continued)

MO DA TIME LAT	LONG	TWS TWD AT RH	AH SST	BP TC CLD	WAVES SC SS AWD AWS TWET
6/19 1500 27 3.88	70 6.03	1.9 19 26.6 73.6			
6/19 1600 27 5.52 6/19 1700 27 4.50	70 0.05 70 0.18	3.8 165 26.9 68.2 2.2 171 26.7 67.4			1 15 1 110 3.6 38 9.8 22.6 0 15 1 213 9.1 347 12.6 22.3
6/19 1800 26 58.71	70 4.41	4.0 125 27.0 65.0	0.175E-01 27.7	1020.1 2 1101	0 15 1 103 5.7 13 13.2 22.2
6/19 1900 26 57.64 6/19 2000 27 6.19	69 56.62 69 56.56	3.8 126 26.5 68.0 2.7 70 26.5 75.6			0 15 1 76 0.8 46 8.0 22.2 0 15 1 357 0.8 66 5.6 23.3
6/19 2100 27 8.30	69 58.65	5.5 100 26.5 73.5			0 15 1 357 0.8 66 5.6 23.3 0 13 1 87 -1.8 16 9.0 23.0
6/19 2200 27 9.19	69 58.56	4.6 102 26.4 74.9	0.195E-01 27.0	1019.6 2 1208	0 14 2 93 -0.7 10 8.2 23.1
6/19 2300 27 9.98 6/20 0 27 10.64	69 58.00 69 57.59	5.0 108 26.3 76.2 5.8 107 26.4 76.3			0 15 2 93 0.0 16 9.8 23.2 1 15 2 93 0.0 15 11.2 23.3
6/20 100 27 11.28	69 57.10	7.6 118 26.6 77.8	0.205E-01 26.9	1019.7 2 21	1 15 2 151 3.1 333 17.4 23.7
6/20 200 27 7.65 6/20 300 29 8.11	69 55.44 69 59.03	5.6 159 25.8 82.6 3.9 107 26.4 78.4			1 15 2 178 3.6 346 14.4 23.6 1 15 2 5 3.3 77 7.5 23.6
6/20 400 27 9.72	69 56.68	6.5 170 26.2 82.8			0 16 1 233 5.7 316 16.0 24.0
6/20 500 27 3.66 6/20 600 27 0.62	70 3.60 70 0.51	7.0 161 26.3 80.6 5.6 165 26.3 81.3			0 16 1 230 9.2 318 19.0 23.8
6/20 700 26 53.93	70 10.29	3.2 90 26.3 82.1	0.212E-01 26.8	1019.4 3 32	1 16 1 164 3.7 1 14.6 23.9 1 16 1 53 2.2 28 8.0 24.0
6/20 800 27 0.98 6/20 900 27 6.69	70 3.89 69 56.23	4.7 158 26.3 78.4	0.203E-01 26.6	1019.6 2 22	0 15 1 45 8.5 60 9.6 23.5
6/20 1000 27 9.45	69 57.94	6.3 168 26.3 79.9 3.9 179 26.2 82.0			0 15 1 339 3.0 193 9.2 23.7 0 15 1 33 3.0 129 5.4 23.9
6/20 1100 27 7.67	69 58.19	6.7 185 25.8 84.9	0.213E-01 26.7	1019.6 2 22	0 15 1 193 7.4 355 20.4 23.9
6/20 1200 26 59.26 6/20 1300 26 51.93	70 0.67 70 3.19	5.4 188 26.3 82.5 3.5 145 26.8 80.0			0 15 1 199 7.7 354 18.2 0.0 0 15 1 65 -2.1 98 6.8 24.2
6/20 1400 26 51.67	69 56.34	5.4 146 26.8 79.3	0.211E-01 26.9	1020.5 3 3200	0 15 1 93 0.0 54 10.4 24.1
6/20 1500 26 54.62 6/20 1600 27 1.20	69 50.76 69 50.99	6.0 152 27.2 78.8 7.9 134 25.9 76.1			2 15 2 10 -1.2 146 12.6 24.4 2 15 2 325 8.4 158 7.2 22.8
6/20 1700 27 8.44	69 56.38	6.3 164 26.3 76.3	0.197E-01 27.0	1020.8 3 32	2 15 2 323 5.7 219 7.2 0.0
6/20 1800 27 13.18 6/20 1900 27 10.86	69 59.64	9.7 181 26.7 76.4			2 15 2 322 5.4 233 15.0 23.6
6/20 2000 27 10.01	69 59.95 69 55.05	6.0 160 27.0 73.1 4.4 131 26.5 77.0			2 15 2 149 3.7 9 15.2 23.4 1 15 2 325 1.9 163 6.8 23.5
6/20 2100 27 13.55	69 55.79	4.1 136 25.7 76.0	0.190E-01 27.0	1019.4 8 83	1 15 2 74 1.9 52 9.0 22.6
6/20 2200 27 15.59 6/20 2300 27 14.08	69 53.13 69 53.43	3.6 157 26.1 79.8 5.3 172 26.7 79.3			1 16 2 176 1.8 345 8.8 23.5 1 16 1 2 3.1 167 7.2 24.0
6/21 0 27 16.18	69 52.54	7.0 150 26.9 79.4	0.212E-01 26.9	1019.5 3 3201	1 15 2 90 2.9 51 15.2 24.2
6/21 100 27 13.87 6/21 200 27 16.07	69 53.47 69 51.95	5.5 168 26.7 84.4 6.4 174 26.7 82.2			1 15 2 6 2.5 157 8.4 24.7
6/21 300 27 14.29	69 54.90	5.7 158 26.8 81.5			1 15 2 179 2.9 356 15.4 24.4 1 15 2 73 -0.1 86 11.0 24.4
6/21 400 27 15.82 6/21 500 27 13.32	69 52.20 69 51.84	8.0 180 26.5 80.7			1 15 2 46 4.1 121 13.0 24.0
6/21 600 27 5.16		6.6 195 26.4 79.2 2.5 84 26.4 81.4			1 15 2 190 8.6 3 21.4 23.7 1 15 2 190 8.8 276 23.6 24.0
6/21 700 27 5.46	69 54.41	8.0 190 26.3 80.6	0.208E-01 26.8	1017.9 3 32	1 15 2 176 0.8 14 16.4 23.8
6/21 800 27 5.09 6/21 900 27 4.61		8.8 199 26.3 79.9 9.6 191 26.3 80.6			1 15 1 177 0.1 22 17.2 23.7 1 15 1 179 0.1 12 18.8 23.8
6/21 1000 27 3.70	69 53.91	9.9 195 26.3 82.1	0.212E-01 27.0	1017.0 2 22	2 15 1 180 0.5 15 19.8 24.0
6/21 1100 27 4.11 6/21 1200 27 4.11		6.1 136 26.6 80.7 8.4 227 26.7 82.2			2 15 1 85 0.9 48 12.4 24.1 2 15 2 164 0.3 63 16.4 24.4
6/21 1300 27 3.68	69 53.38	9.1 221 26.7 77.9	0.206E-01 26.9	1018.0 4 426	2 15 2 170 -0.1 52 17.6 23.8
6/21 1400 27 4.00 6/21 1500 27 4.27		6.2 226 27.2 78.8 8.1 214 27.2 78.8			2 15 2 332 0.5 257 12.0 24.4 2 15 2 183 -0.3 32 15.4 24.4
6/21 1600 27 3.58		7.4 218 26.9 79.4			2 15 2 252 1.0 329 15.2 24.2
6/21 1700 27 3.98		7.2 226 27.1 78.7			2 15 2 343 0.3 245 13.8 24.3
6/21 1800 27 4.15 6/21 1900 27 4.00		8.1 223 27.3 78.8 8.3 228 27.1 83.1			2 15 2 197 1.6 24 17.2 24.5 2 15 2 217 0.0 12 16.2 24.9
6/21 2000 27 3.38	69 54.45	8.1 243 27.3 80.2	0.220E-01 27.1	1017.0 6 633	2 0 217 0.0 27 15.8 24.7
6/21 2100 27 4.48 6/21 2200 27 14.17		5.6 250 27.0 81.6 6.5 260 26.8 75.1			2 0 355 10.0 305 12.8 24.6 2 0 358 10.0 304 15.0 23.5
6/21 2300 27 17.81	69 42.63	6.8 244 26.3 74.8	0.193E-01 26.8	1017.0 7 633	2 0 358 9.7 290 13.0 23.0
6/22 0 27 35.99 6/22 100 27 45.81		4.3 321 25.2 84.0 2.1 274 25.2 80.2			1 24 2 355 9.1 344 16.8 23.2 1 24 2 356 9.7 339 11.0 22.7
6/22 200 27 56.25	69 56.08	1.0 318 25.5 82.6			1 24 2 356 9.7 339 11.0 22.7
6/22 300 28 6.74	69 57.30	2.1 238 25.3 82.5	0.201E-01 26.6	1017.4 5 546	1 24 2 356 9.7 335 8.6 23.1
6/22 400 28 17.39 6/22 500 28 28.56		3.5 275 25.3 79.5 5.1 277 25.5 80.3			1 24 2 355 9.7 329 12.8 22.7 1 24 2 356 9.6 320 15.0 23.0
6/22 600 28 38.93	70 2.37	5.0 307 25.6 78.9	0.196E-01 26.5	1017.0 5 446	1 24 2 357 9.7 335 17.6 22.9
6/22 700 28 50.04 6/22 800 29 1.34		7.5 15 22.5 91.4 3.7 76 24.0 80.5	0.189E-01 26.0 0.182E-01 26.3		1 357 9.4 11 23.6 21.5 1 356 9.4 34 12.8 21.6
6/22 900 29 12.17	70 7.31	5.8 18 24.7 74.8	0.176E-01 26.5	1016.3 8 83	1 357 10.4 11 21.2 21.5
6/22 1000 29 23.09 6/22 1100 29 33.55		4.8 17 24.3 70.2 4.4 12 24.2 63.7			0 34 1 358 10.8 9 19.8 20.5 0 34 1 357 10.2 7 18.6 19.5
6/22 1200 29 43.71		3.6 16 23.9 60.0			
6/22 1300 29 54.15	70 10.64	6.2 354 24.2 58.9			1 35 2 356 8.9 359 21.0 18.8
6/22 1400 30 4.26 6/22 1500 30 13.77		5.3 11 24.0 52.7 5.5 355 24.7 56.0			2 35 4 356 7.6 9 17.8 17.7 1 32 5 356 7.2 0 17.8 18.8
6/22 1600 30 23.26	70 12.02	3.3 347 24.1 60.8	0.138E-01 26.2	1018.7 3 2110	1 34 4 355 9.4 357 15.8 19.0
6/22 1700 30 32.81 6/22 1800 30 42.18		5.6 344 24.2 56.9 3.8 339 24.8 60.7			
6/22 1900 30 51.58	70 14.46	8.3 0 25.0 56.9	0.136E-01 26.0	1018.2 1 1100	1 34 4 355 6.9 4 23.0 19.2
6/22 2000 31 0.77		5.4 341 24.2 59.6			1 34 4 355 9.3 353 19.6 18.9 1 34 5 357 9.0 359 17.8 18.5
6/22 2100 31 9.75 6/22 2200 31 19.05		4.5 354 24.0 58.0 4.8 9 23.6 60.4	0.131E-01 25.9 0.133E-01 25.3		1 34 5 357 9.0 359 17.8 18.5 1 34 5 356 9.0 7 18.2 18.5
6/22 2300 31 28.19	70 18.58	3.9 4 23.3 61.6	0.134E-01 25.3	1018.2 6 62	1 34 5 356 9.4 4 17.0 18.4
6/23 0 31 34.67 6/23 100 31 47.13		6.3 16 23.3 60.9 4.6 13 22.8 56.2			1 35 5 356 8.5 12 20.4 18.3 1 00 5 356 8.6 9 17.4 17.2
6/23 200 31 56.32					1 01 4 357 9.5 1 16.8 16.7

VI. FASINEX CTD Data

Phase One - KNORR 119

A Neil Brown internally recording CTD was used for 22 stations on KNORR 119. 18 stations supplied good data. The data were processed on an HP85 system while at sea, providing preliminary plots of temperature, salinity and t/s. Listing of temperature, conductivity, and salinity were generated. Two sections were taken perpendicular to the front to 1000m. Five stations were taken near PCM moorings.

Salinity samples were taken at the bottom of each cast. The bottles were run on a Guildline Salinometer. The conductivity ratio was calculated using programs written for the Long Term Upper Ocean Study (LOTUS) on an Hewlett-Packard 85. The data were averaged to two decibars. The plots and the lists were averaged to arbitary standard depths.

Figure VI-1	Positions of CTD Stations
Table VI-1	CTD Station Times and Positions
Figure VI-2	Preliminary plots showing Warm vs. Cold side of the
	Front.
Figure VI-3	Temperature, Salinity and Sigma Theta vs Depth Plots
Table VI-2	CTD Station Derived Variable Lists
Figure VI-4	CTD Section One Plot
Figure VI-5	CTD Section Two Plot

Phase Two - KNORR 123

12 CTD stations were taken on KNORR 123. Except for two, all stations were taken adjacent to a PCM or a Brink mooring. One station was taken in the central array area. One station was taken for intercomparison between the CTD and RTP.

Figure VI-6	Positions of CTD Stations
Table VI-3	CTD Stations Times and Positions
Figure VI-7	Temperature, Salinity and Sigma Theta vs Depth Plots
Table VI-4	CTD Station Derived Variable Lists

FASINEX Knorr 119 CTD Stations

Figure VI-l

Table VI-1: KNORR 119 CTD Station Times and Positions

Station	(GMT) Time	1986	INTERNAV P Latitude	ositions Longitude	Comments		
2	2342-0016	18 Jan	27°03.57'	69°41.74'	2 yoyos to 200 m F3		
3	0344-0419	19 Jan	27°06.18'	69°39.87'	3 yoyos to 200 m F5		
4	1957-2021	29 Jan	27°10.95'	69°49.47'	200 m by F7		
5	2227-0130	29 Jan	27°05.24'	69°42.37'	5000 m by F3		
6	0349-0419	30 Jan	27°05.20'	69°53.23'	200 m by F9		
7	1313-1355	3 Feb	27°49.46'	70°02.63'	1000 m		
8	1434-1515	3 Feb	27°47.44'	70°05.90'	1000 m		
9	1554-1643	3 Feb	27°45.47'	70°09.10'	1000 m		
10	1717 <i>-</i> 1802	3 Feb	27°43.49'	70°12.61'	1000 m		
11	1847-1931	3 Feb	27°41.68'	70°15.19'	1000 m		
12	0007-0056	4 Feb	27°39.74'	70°19.24'	1000 m		
16	0551-0645	5 Feb	27°11.75'	70°13.60'	1000 m		
17	1458-1540	5 Feb	27°27.19'	70°13.64'	1000 m		
18	1645-1734	5 Feb	27°31.90'	70°13.34'	1000 m		
19	1847 <i>-</i> 1930	5 Feb	27°41.67'	70°12.92'	1000 m		
20	2301-2353	5 Feb	27°50.68'	70°13.26'	1000 m		
21	0109-0151	6 Feb	27°54.38'	70°13.20'	1000 m		
22	0305-0355	6 Feb	28°11.57'	70°15.50'	1000 m		

Figure VI-2. Preliminary Plots Showing Warm vs. Cold Side of the Front.

Figure VI-3a. CTD Station 2: Plot. (KNORR 119)

KN119	ETD OO	2 19	986 018	2342Z	27 03.5	7N 69	41.74W	corrD	: 5400m
PRESS	TEMP	SALIN	SIGMA-t	POTEMP	POTDEN	BR-V	DYNHGT	POTGRD	SSPEED
dbar	°C	psu	kg/m**3	_	kg/m**3	cph	dvn m	m ^O C/db	m/s
8.	24.447	36.592	24.732		24.715	0.00	0.0000	0.00	1534.9
12.	24.455	36.572	24.729		24.713	-1.99	.0111	-3.22	1535.0
16.	24.445	36.592	24.732		24.716	2.06	.0238	4.32	1535.0
22.	24.448	36.592	24.732		24.716	32	.0442	20	1535.1
26.	24.451	36.592	24.731	24.445	24.715	-1.13	. 0569	99	1535.2
32.	24.438	36.593	24.735	24.431	24.720	68	.0754	7B	1535.3
36.	24.399	36.595	24.749	24.392	24.734	2.85	.0885	6.46	1535.3
42,	24.289	36.600	24.785	24.280	24.771	4.05	.1084	16.39	1535.1
46.	24.128	36.608	24.840	24.118	24.826	6.49	. 1209	39.60	1534.8
52.	23.929	36.617	24.906	23.919	24.892	5.42	. 1384	27.01	1534.4
56.	23.870	36.621	24.927	23.8 58	24.913	3.93	. 1514	12.21	1534.3
62.	23.862	36.622	24.929	23.849	24.916	1.18	. 1688	1.38	1534.4
66.	23.857	36.622	24.931	23.843	24.918	1.00	. 1812	1.01	1534.5
72.	23.850	36.622	24.933	23.835	24.920	. 98	. 2007	. 99	1534.5
76.	23.847	36.622	24.934	23.831	24.922	1.29	.2131	1.25	1534.6
82.	23.846	36.623	24.935	23.8 28	24.924	1.27	. 2311	1.02	1534.7
86.	23.840	36.624	24.937		24.926	1.65	. 2432	2.62	1534.8
92.	23.800	36.624	24.949		24.938	2.15	. 2606	4.77	1534.8
96.	23.738	36.621	24.965		24.955	4.39	. 2747	23.58	1534.7
102.	23.395	36.606	25.055		25.045	7.29	. 2911	68.69	1533.9
106.	23.041	36.596	25. 151	23.019	25.141	6.67	.3030	63.57	1533.1
112.	22.715	36.586	25.238		25.228	7.01	. 3201	60.48	1532.3
116.	22.252	34.590	25.373		25.364	10.32	.3312	119.03	1531.2
126.	21.561	36.610	25.583		25.574	B. 40	. 3564	89.63	1529.6
136.	20.635	36.601	25.830		25.822	5.01	. 3803	33.68	1527.3
146.	20.369	36.601	25.902		25.894	1.98	.4014	5.87	1526.7
156.	20.046	36.565	25.960		25.953	5.86	. 4235	66.91	1525.9
166.	19.596	36.537	26.058	19.566	26.051	6.34	.4432	47.22	1524.8
176.	19.064	36.523	26.186	19.032	26.179	6.24	. 4631	40.06	1523.5
186.	18.909	36.519	26.222	18.876	26.216	2.73	. 4827	12.46	1523.2
196.	18.78 9	36.516	26.251	18.754	26.245	3.43	.5006	16.58	1523.0

DATA UNAVAILABLE (OCTOBER 1986)

Figure VI-3b. CTD Station 3: Plot. (KNORR 119)

DATA UNAVAILABLE (OCTOBER 1986)

Table VI-2b. CTD Station 3: List. (KNORR 119)

Figure VI-3c. CTD Station 4: Plot. (KNORR 119)

KN119	CTD 00	4 10	786 029 1	19 5 72	27 10.9	3N 69	49.47W	corrD	: 5400m
PRESS db ar	TEMP C	SALIN p s u	SIGMA-t kg/m##3	POTE MP OC	POTDEN kg/m##3	BR-V cph	DYNHGT dvn m	POTGRD m ^o C/db	SSPEED m/s
112.	22.730	36.609	25.250	22.707	25.241	0.00	0.0000	0.00	1532.4
116.	22,275	36.627	25.395	22.251	25.3 85	8.54	.0100	67.95	1531.3
120.	22.196	36.630	25.419	22.172	25.410	4.67	.0204	23.86	1531.2
126.	21.907	36.637	25.506	21.882	25.497	4.80	.0364	27.77	1530.5
130.	21.465	36,623	25.619	21.440	25.610	9.16	.0462	111.62	1529.4
136.	20 .598	36.586	25.828	20.572	25.820	7.88	.0597	79.64	1527.1
140.	20.178	36.573	25.931	20.152	25.923	8.05	.0683	82.82	1526.0
146.	19.867	36.558	26.003	19.840	25.994	7.49	.0813	74.46	1525.3
150.	19.652	36.550	26.053	19.624	26.045	5.47	.0878	42.07	1524.7
156.	19.534	36.549	26.083	19.505	26.076	2.62	.1014	11.15	1524.5
160.	19.464	36.548	26.101	19.434	26.093	4.54	.1091	30.03	1524.4
166.	19.331	36.547	26.135	19.301	26.128	3 .55	.1207	9.15	1524.1
170.	19.225	36.545	26.161	19.194	26.153	3.97	.1280	22.32	1523.9
176.	19.168	36 .545	26.176	19.136	26.169	3.14	. 1403	12.56	1523.8
180.	19.037	36 .5 36	26.203	19.005	26.196	4.86	.1474	31.44	1523.5
186.	18.974	36.541	26.222	18.940	26.216	3.45	. 1590	10.95	1523.4
190.	18.914	36.539	26.237	18.879	26.230	2.16	.1661	8.65	1523.3
196.	18.798	36.524	26.255	18.763	26.248	2.12	.1781	9.28	1523.1
200.	18.772	36.521	26.259	18.736	26.253	2.22	. 1847	7.79	1523.1
206.	18.707	36.518	26.273	18.670	26.267	1.95	. 1956	4.48	1523.0

Figure VI-3d. CTD Station 5: Plot. (KNORR 119)

KN119 CTD 005 1986 029 22272 27 05.24N 69 42.37W corrD: 5400m PRESS TEMP SIGMA-t POTEMP POTDEN BR-V DYNHGT POTGRD SALIN SSPEED °C oc. kg/m*#3 kg/m##3 m^OC/db dbar psu cph dyn m 36.556 24.784 24.184 24.767 0.00 0.00 2. 24.184 0.0000 1534.1 36.555 24.779 24.196 .0128 -.89 1534.2 6. 24.197 24.762 -1.2010. 24.195 36.556 24.780 24.193 24.764 -.86 .0253 -1.07 1534.3 24.198 36.555 24.779 24.194 24.763 .91 .0443 .36 1534.4 16. 24.196 .0571 -2.13 20. 24.200 36.555 24.778 24.763 -1.561534.5 26. 24.193 36.556 24.781 24.188 24.765 . 95 .0764 . 57 1534.5 36.555 -.85 -.22 30. 24.200 24.778 24.194 24.763 .0886 1534.6 24.197 36.555 24.779 24.189 24.764 . 58 .1090 . 60 1534.7 36. 2.27 36.556 24.784 24.770 . 1523 1534.9 50. 24.183 24.172 1.75 24.110 36.569 24.816 24.096 24.803 2.24 .2033 3.36 1535.0 66. 36.586 23.950 24.859 5.76 76. 23.966 24.871 . 2346 26.41 1534.9 8.10 100. 23.323 36.644 25.105 23.302 25.095 3.03 .3066 1533.7 36.657 10.40 121.24 25.473 22.052 126. 22.077 25.464 .3782 1531.0 150. 20.851 36.657 25.814 20.823 25.806 3.92 .4372 29.04 1528,1 200. 19.235 36.584 26.188 19.199 26.183 3.71 .5390 18.52 1524.4 250. 18.470 36.517 26.333 18.426 26.329 2.93 . 6305 15.22 1523.0 18.191 18.138 300. 36.516 26.402 26.400 2.70 .7179 8.50 1523.0 36.482 26.453 350. 17.882 26.453 17.822 1.70 .8041 4.77 1522.9 400. .8877 6.06 17.516 36.438 26.509 26.511 17.447 1.81 1522.6 16.943 36.356 450. 17.018 26.567 26.570 1.37 .9695 4.24 1521.9 36.250 26.634 16.315 3.19 1.0492 500. 16.397 26.637 20.88 1520.7 550. 15.616 36.115 26.710 15.528 26.714 .76 1.1263 5.56 1519.0 35.970 14.718 26.799 26.803 2.25 20.84 600. 14.626 1.1995 1516.8 650. 13.704 35.811 26.893 13.609 26.897 3.28 1.2691 29.92 1514.2 700. 12.434 35.624 27.007 12.339 27.009 1.3338 15.70 1510.6 2.41 11.245 35.456 750. 27.104 11.149 27.104 3.02 1.3931 26.74 1507.2 16.53 800. 10.237 35.329 27.186 10.140 27.185 2.17 1.4484 1504.3 8.445 1.5472 1499.2 900. 35.153 27.345 8.347 27.341 3.57 29.96 7.303 7.201 1.6295 1496.5 1000. 35.139 27.506 27.500 1.61 6.10 6.011 35.082 27.637 5.909 1493.0 1100. 27.630 . 90 1.6979 3.92 35.072 1492.3 5.407 5.300 1200. 27.705 27.697 1.63 1.7561 5.26 1300. 4.996 35.056 27.741 4.884 1.09 3.89 1492.2 27.733 1.8094 35.049 4.705 4.586 1492.7 1400. 27.770 27.762 1.12 1.8598 . 56 1500. 4.528 35.049 27.790 4.402 27.782 1.9085 5.41 1493.6 1.16 35.036 4.196 1.9560 1494.5 27.794 1600. 4.329 27.801 1.60 .71 1800. 4.017 35.020 27.822 3.868 27.816 1.12 2.0489 1.95 1496.5 1.44 2.1397 3.699 34.999 4.01 1498.5 2000. 27.838 3.534 27.833 2200. 3.414 34.979 27.850 3.234 27.846 1.03 2.2283 1.66 1500.6 3.196 34.965 27.860 3.002 27.857 . 38 1503.1 2400. 2.3151 -.11 34.959 2.881 .70 2.3561 2500. 3.082 27.866 27.863 1.89 1504.3 34.954 2.788 . 88 2600. 2.998 .81 27.870 27.868 2.4006 1505.6 2800. 2.841 34.943 -.47 2.4852 .73 27.876 2.614 27.875 1508.3 2.5691 34.934 27.881 3000. 2.696 2.452 27.881 -.64 .17 1511.1 2.573 34.926 3200. 27.886 2.311 27.887 .70 2.6525 . 81 1514.0 3400. 2.483 34.920 27.889 2.202 27.891 . 22 2.7357 . 18 1517.0 3600. 2.405 34.914 27.891 2.104 27.895 . 21 2.8192 . 43 1520.1 34.910 3800. 2.353 27.892 2.032 27.897 . 78 2.9033 1.36 1523.3 34.906 4000. 2.328 27.891 1.985 27.898 . 45 2.9886 .09 1526.6 34.903 . 21 4200. 2.313 27.890 1.947 27.899 -. 63 3.0752 1530.0 4400. 2.305 34.901 27.889 1.916 27.899 . 68 3.1638 1533.4 .16 4600. 2.302 34,897 27.886 1.888 27.898 . 86 3.2543 . 22 1536.9 4800. 2.294 34.893 27.884 -1.857 27.898 . 27 3.3469 . 31 1540.3 3.4413 5000. 2.276 34.888 27.881 1.814 27.896 . 42 . 16 1543.7

Table VI-2d. CTD Station 5: List. (KNORR 119)

Figure VI-3e. CTD Station 6: Plot. (KNORR 119)

KN119	CTD OO	6 19	986 030 0	349Z	27 05.2	ON 69	53.23W	corrD	: 5400m
PRESS	TEMP	SALIN	SIGMA-t	POTEMP	POTDEN	BR-V	DYNHGT	POTGRD	SSPEED
dbar	°C	psu	kg/m##3	°C	kg/m**3	cph	dvn m	m ^O C/db	m/s
3.	24.135	36.575	24.813	24.135	24.796	0.00	0.0000	0.00	1534.0
6.	24.136	36.575		24.134	24.796	.78	.0105	.13	1534.1
10.	24.132	36.575	24.814	24.130	24.797	16	.0232	.57	1534.2
16.	24.143	36.574	24.810	24.140	24.794	64	.0419	40	1534.3
20.	24.145	36.574	24.809	24.140	24.793	62	.0544	47	1534.3
26.	24.144	36.574	24.809	24.139	24.794	. 57	.0738	.84	1534.4
30.	24.140	36.573	24.810	24.133	24.794	87	.0862	38	1534.5
36.	24.116	36.571	24.815	24.108	24.800	1.43	.1047	3.08	1534.5
40.	24.070	36.567	24.826	24.061	24.812	2.37	.1174	7.30	1534.5
46.	24.009	3 6.567	24.844	23.9 99	24.830	3.83	. 1378	13.19	1534.4
50.	23.92 9	36.574	24.874	23.918	24.860	4.91	. 1494	20.66	1534.3
56.	23.844	3 6.584	24.906	23 .832	24.893	4.17	. 1683	14.43	1534.2
60.	23.771	3 6.59 0	24.932	23 .758	24.919	4.40	. 1802	16.95	1534.1
66.	23.704	36.595	24.956	23.69 0	24.943	1.75	. 1989	2.98	1534.1
70.	23.704	3 6.595	24.956	23.689	24.944	16	.2101	01	1534.1
76.	23.702	36 .5 96	24.957	23.686	24.945	. 27	. 2288	. 24	1534.2
80.	23.681	36.600	24.966	23.664	24.954	3.52	. 2407	8.89	1534.2
86.	23.389	36.592	25.047	23.371	25.035	7.35	. 2594	61.17	1533.6
90.	23.382	36.640	25.084	23.363	25.073	3.92	. 2707	-5.19	1533.7
96.	23.017	36.674	25.217	22 .997	25.206	7.89	. 2878	62.33	1532.9
100.	22.651	36.6 5 1	25.305	22.631	25.295	10.61	. 2982	138.59	1532.0
106.	2 2.48 0	36.626	25.336	22 .458	25.325	3.65	.3145	28.52	1531.7
110.	22.197	36.618	25.410	22.175	25.400	6.64	. 3248	46.92	1531.0
120.	21.432	36.611	25.619	21.408	25.610	9.33	.3510	107.87	1529.1
130.	20.610	36.581	25.821	20 .586	25.812	7.87	. 3737	86.28	1527.1
140.	20.076	36.579	2 5. 963	20.050	25.955	7.78	. 3955	68.71	1525.8
150.	20.043	36.600	25.988	20.015	25.98 0	3.04	.4166	10.26	1525.9
160.	19.750	36.574	26.046	19.721	26.038	2.14	. 4367	14.44	1525.2
170.	19.566	36.562	26.085	19.535	26.078	4.59	. 4566	30.06	1524.8
180.	19.370	36.559	26.134	19.337	26.127	3.56	. 4763	19.35	1524.5
190.	19.221	36.552	26.167	19.186	26.161	2.86	. 4959	10.20	1524.2
200.	19.163	36.55°	26.186	19.127	26.180	3.57	.5146	11.20	1524.2

Table VI-2e. CTD Station 6: List. (KNORR 119)

Figure VI-3f. CTD Station 7: Plot. (KNORR 119)

KN119	CTD OO	7 19	786 084 1	3132	27 49.4	6N 70	02.63W	corrD	: 5400m
PRESS	TEMP	SALIN	SIGMA-t	POTEMP	POTDEN	BR-V	DYNHGT	POTGRD	SSPEED
dbar	°C	psu	kg/m##3	°C	kg/m##3	cph	dyn m	m ^O C/db	m/s
2.	21.459	36.572	25.581	21.459	25.566	0.00	0.0000	0.00	1527.2
6.	21.462	36.571	25.580	21.461	25.565	.23	.0088	06	1527.3
10.	21.461	36.571	25.581	21.459	25.565	. 24	.0182	.06	1527.3
16.	21.462	36.572	25.581	21.459	25.566	. 42	.0330	14	1527.4
20.	21.463	36.572	25.581	21.459	25.566	32	.0426	08	1527.5
26.	21.465	3 6.572	25.580	21.459	25.566	35	.0572	05	1527.6
30.	21.464	36.571	25.580	21.458	25.565	75	.0667	. 43	1527.7
36.	21.465	36.572	25.580	21.458	25.566	. 70	.0816	09	1527.8
40.	21.464	36.572	25.581	21.456	25.567	. 78	.0912	. 30	1527.8
46.	21.464	36.573	25.581	21.455	25.567	1.06	.1058	. 35	1527.9
50.	21.465	36.573	25.581	21.456	25.568	.70	. 1156	19	1528.0
56.	21.458	36.575	25.584	21.447	25.571	1.90	. 1298	2.54	1528.1
60.	21.455	36.576	25.586	21.443	25.573	1.37	. 1397	. 69	1528.2
66.	21.430	36.578	25.594	21.417	25.582	3.07	. 1541	10.39	1528.2
70.	21.345	36.572	25.613	21.332	25.601	3.90	. 1636	22.82	1528.0
76.	21.290	36.565	25.623	21.276	25.611	98	. 1782	2.35	1528.0
8 0.	21.285	36.566	25.625	21.269	25.614	. 40	. 1882	. 18	1528.0
86.	21.127	36.569	25.671	21.110	25.660	6.14	. 2024	41.42	1527.7
90.	20.840	36.577	25.756	20.823	25.745	9.38	.2115	90.03	1527.0
96.	20.588	36.578	25.825 25.837	20,570	25.815	3.61	. 2248	16.55	1526.4
100. 106.	20.545	36.578 36.574	25.891	20.526 20.315	25.826 25.880	2.38 8.18	. 2336 . 2466	6.21 73.55	1526.4 1525.9
110.	20.335	36.578	25.919	20.313	25.909	5.01	. 2552	75.55 26.92	1525.7
120.	19.962	36.576	25.991	19.939	25. 782	4.49	. 2763	22.84	1525.1
130.	19.664	36.567	26.063	19.640	26.054	4.76	. 2969	30.45	1524.5
140.	19.479	36.556	26.104	19.453	26.095	2.38	. 3161	11.18	1524.1
150.	19.198	36.536	26.161	19.171	26.153	3.60	. 3356	18.23	1523.4
160.	18.992	36.523	26.204	18.964	26.196	3.00	. 3549	8.75	1523.0
170.	18.841	36.518	26.239	18.811	26.232	2.75	.3734	18.70	1522.7
180.	18.674	36.511	26.276	18.642	26.269	2.02	.3917	6.10	1522.4
190.	18.595	36.509	26.295	18.561	26.289	2.40	. 4094	7.32	1522.4
200.	18.495	36.500	26.314	18.459	26.307	2.19	. 4274	5.96	1522.2
220.	18.405	36,498	26.334	18.366	26.329	1.57	. 4628	5.08	1522.3
240.	18.313	36.498	26. 3 36	18.271	26.353	2.06	. 4985	4.45	1522.4
260.	18.208	36.48 8	26.376	18.163	26.373	1.23	. 5333	2.29	1522.4
280.	18.131	36. 486	26.396	18.082	26.393	1.61	. 5680	3.97	1522.5
300.	18.065	36.484	26.40 9	18.013	26.407	. 94	. 6026	1.92	1522.6
320.	17.955	36.475	26.42 9	17.900	26.4 28	1.65	. 6367	4.67	1522.6
340.	17.887	36. 480	26.450	17.828	2 6.450	1.43	.6710	4.23	1522.8
360.	17.733	36.461	26.474	17.671	26.474	1.95	. 7049	8.39	1522.6
3 8 0.	17.606	36.44	26.496	17.541	26.497	1.75	. 7380	8.76	1522.6
400.	17.374	36,409	26.522	17.306	26.524	1.62	.7716	8.49	1522.2
45 0.	16.695	36.326	26.574	16.820	26.577	1.64	. 8530	7.75	1521.5
5 00.	16.293	36.221	26.635	16.212	26.639	1.61	. 9327	14.66	1520.4
550.		36.061		15.242			1.0088	26.53	1518.0
600.	14.289	35.886	26.827	14, 199	26.831	1.56	1.0802	12.77	1515.4
65 0.	13.530	35.770	26.898	13.436	26.901	3.36	1.1496	28.04	1513.6
700.	12.509	35.623	26.991	12.413	26.993	3.41	1.2145	32.43	1510.9
7 5 0.	11.092	35.436	27.116	10.996	27.116	2.42	1.2739	28.40	1506.6
80 0.	9.940	35.306	27.220	9.844	27.218	3.14	1.3277	31.47	1503.2
85 0.	8.633 7.794	35.161	27.322 27.410	8.539	27.318	1.18	1.3767	12.77 33.15	1 499. 0 1 496. 7
900. 9 5 0.	7.120	35.10 0 35.006	27.490	7.700 7.02 5	27.404 27.483	3. 85 2.0 9	1.4209	9.06	1494.9
. 3.7.		. ∵ . ∵ . ∵.	4/. 470	/.∪∡∋	4/.703	4.07	1.700/	7.00	A 7 7 7 8 7

STAS PULLUMA, SOSSOS SOSSOS SOSSOSS

PRODUCE TO A CONTRACT OF THE PARTY OF THE PA

Figure VI-3g. CTD Station 8: Plot. (KNORR 119)

EN119	CTD 00	8 19	986 034 1	434Z	27 47.4	4N 70	05.90W	corrD	: 5400m
PRESS	TEMP	SALIN	SIGMA-t	POTEMP	POTDEN	BR-V	DYNHGT	POTGRD	SSPEED
dbar	o.c	psu	kg/m##3	°C	kg/m**3	cph	dyn m	m ^O C/db	m/s
3.	21.443	36.597	25.605	21.443	25.590	0.00	0.0000	0.00	1527.2
6.	21.446	36.597	25.604	21.445	25.589	56	.0076	83	1527.3
10.	21.432	36.596	25.607	21.430	25.592	2.60	.0169	9.37	1527.3
16.	21.403	36.595	25.615	21.400	25.600	1.50	.0315	2.63	1527.3
20.	21.400	36.595	25.616	21.396	25.601	1.00	.0409	1.07	1527.4
26.	21.389	36 .595	25.619	21.383	25.604	. 96	.0556	. 93	1527.4
30.	21.383	36.594	25.620	21.377	25.606	1.17	.0650	1.87	1527.5
36.	21.379	36.593	25.620	21.372	25.606	. 55	.0793	. 67	1527.6
4Ó.	21.372	36.592	25.621	21.36 5	25.607	. 7 9	.0889	2.31	1527.6
46.	21.370	36.592	25.621	21.361	25.608	. 35	. 1031	. 24	1527.7
5 0.	21.370	36.592	25.621	21.360	25.608	. 69	.1130	. 51	1527.8
56.	21.370	36.592	25.621	21.359	2 5.608	. 34	.1272	. 20	1527.9
60.	21.370	36.592	25.622	21.3 58	25.609	. 68	. 1361	. 36	1527.9
66.	21.324	36.582	25.627	21.311	25.614	1.28	. 1511	4.91	1527.9
70.	21.311	36.577	25.626	21.298	25.614	. 49	. 1603	5.03	1527.9
76.	21.277	36.573	25.633	21.262	25.621	2.78	. 1743	4.77	1527.9
80.	21.267	36.572	25.635	21.252	25.623	1.31	.1847	2.05	1528.0
86.	21.257	36.573	25.638	21.240	25.627	2.02	. 1991	3.79	1528.1
90.	21.242	36.572	25.642	21.224	25.631	1.72	. 2080	3.78	1528.1
96.	21.185	36.575	25.660	21.166	25.649	3.19	. 2230	9.47	1528.0
100.	21.150	36.579	25.672	21.131	25.662	3.72	. 2319	12.28	1528.0
106.	20.987	36.585	25.721	20.967	25.711	7.04	. 2456	52.77	1527.7
110.	20.580	36.599	25.843	20.559	25.833	9.20	. 2552	93.81	1526.7
120. 130.	20.205	36.589	25.937	20.1 82 19.871	25.927	5.75	.2770	42.13	1525.8
140.	19.895	36. 5 76 36. 5 67	26.009	19.630	26.000	4.55	. 2976	27.46 21.55	1525.1 1524.6
150.	19.655 19.520	36.566	26.06 5 26.100	19.493	26.057 26.092	4.19 3.91	.3177 .3378	17.56	1524.4
160.	19.218	36.548	26.165	19.189	26.157	3.67	.3572	22.21	1523.7
170.	19.013	36.539	26.211	18.983	26.204	4.13	. 3761	26.42	1523.3
180.	18.844	36.530	26.248	18.811	26.241	3.22	. 3946	15.34	1522.9
190.	18.677	36.519	26.282	18.643	26.275	2.41	.4125	7.25	1522.6
200.	18.611	36.521	26.300	18.575	26.294	1.43	.4304	3.97	1522.6
220.	18.401	36.501	26.338	18.362	26.333	2.41	. 4664	15.57	1522.3
240.	18.279	36.496	26.365	18.237	26.360	2.59	.5014	7.55	1522.3
260.	18.168	36.494	26.391	18.123	26.387	1.52	. 5361	1.62	1522.3
280.	18.117	36.498	26.407	18.068	26.404	. 85	.5703	1.14	1522.5
300.	18.051	36.493	26.420	17.999	26.418	1.04	. 6050	1.86	1522.6
320.	17.981	36.487	26.433	17.925	26.432	1.25	. 6392	2.13	1522.7
340.	17.893	36.480	26.449	17.834	26.449	1.27	.6735	3.32	1522.8
360.	17.791	36.467	26.465	17.728	26.465	1.73	.7071	6.64	1522.8
3 8 0.	17.644	36.448	26.486	17.579	26.487	1.96	.7408	8.61	1522.7
400.	17.478	36.424	26.508	17.410	26.509	2.67	. 7743	15.15	1522.5
45 0.	16.940	36.336	26.571	16.865	26.574	2.05	. 8561	10.81	1521.6
500.	16.368	36.238	26.631	16.286	26.635	1.37	. 93 58	5.22	1520.6
550.	15.460	36.083	26.721	15.373	26.725	3.38	1.0122	25.68	1518.5
600.	14.505	35.931	26.815	14.414	26.819	3.24	1.0847	31.79	1516.1
650.	13.515	35.784	26.912	13.421	26.915	3.68	1.1534	27.73	1513.6
700.	12.477	35.636	27.00 8	12.380	27.010	2.56	1.2174	14.97	1510.8
750.	10.941	35.425	27.136	10.846	27.135	4.66	1.2763	55.40	1506.1
BOO.	9.690	35.283	27.245	9.596	27.242	3.22	1.3293	32.02	1502.3
85 0.	8.571	35.161	27.332	8.477	27.327	2.31	1.3767	19.75	1498.8
900.	7.785	35.110	27.412	7.692	27.406	2.15	1.4204	11.68	1496.6
9 5 0.	7.16 9	35.091	27.487	7.074	27 .48 0	1.43	1.4602	7.50	1495.1

Figure VI-3h. CTD Station 9: Plot. (KNORR 119)

KN119	CTD OO	9 19	786 034 1	554Z	27 45.4	7N 70	09.10W	corrD	: 5400m
PRESS	TEMP	SALIN	SIGMA-t	POTEMP	POTDEN	BR-V	DYNHGT	POTGRD	SSPEED
dbar	OC.	psu	kg/m##3	°C	kg/m**3	cph	dyn m	m ^O C/db	m/s
2.	21.521	36.576	25.567	21.521	25.552	0.00	0.0000	0.00	1527.4
6.	21.529	36.577	25.566	21.528	25.551	-1.64	.0090	-3.25	1527.5
10.	21.518	36.576	25.568	21.516	25.553	1.36	.0190	4.13	1527.5
16.	21.484	36.577	25.578	21.481	25.563	1.37	.0328	1.45	1527.5
20.	21.483	36.577	25.578	21.479	25.564	.73	.0430	. 35	1527.6
26.	21.483	36.577	25.579	21.478	25.564	.63	.0571	.20	1527.7
30.	21.483	36.577	25.579	21.477	25.564	.91	.0675	.43	1527.7
36.	21.484	36.577	25.579	21.477	25.565	. 55	.0817	. 16	1527.6
40.	21.483	36.577	25.579	21.475	25.565	31	.0910	08	1527.9
46.	21.483	36.577	25.579	21.474	25.565	08	.1059	. 26	1528.0
50.	21.484	36.577	25.578	21.474	25.565	57	.1151	55	1528.1
56.	21.483	36.577	25.578	21.472	25.566	17	.1300	.31	1528.2
60.	21.483	36.577	25.579	21.472	25.566	.71	. 1404	. 25	1528.2
66.	21.485	36.577	25.578	21.472	25.566	. 58	. 1548	03	1528.3
70.	21.485	36.577	25.578	21.472	25.566	44	. 1643	09	1528.4
76.	21.485	36.577	25.578	21.470	25.567	.73	.1793	. 32	1528.5
80.	21.485	36.577	25.578	21.469	25.567	33	. 1885	.21	1528.6
86.	21.482	36.576	25.579	21.465	25.568	1.01	. 2034	1.62	1528.7
90.	21.476	36.576	25.580	21.459	25.569	1.23	.2130	1.79	1528.7
96.	21.472	36.576	25.581	21.453	25.570	.61	. 2281	. 26	1528.8
100.	21.459	36.574	25.584	21.439	25.573	1.98	. 2373	5.45	1528.8
106.	21.334	36.568	25.614	21.313	25.604	3.56	. 2525	17.78	1528.6
110.	21.259	36.568	25.634	21.238	25.624	3.33	. 2617	12.50	1528.5
120.	20.671	36.578	25.802	20.649	25.793	5.98	. 2851	43.38	1527.1
130.	20.034	36.579	25.974	20.010	25.965	6.16	.3067	42.90	1525.5
140.	19.665	3 6.56 1	26.058	19.639	26.050	4.51	.3271	27.07	1524.6
150.	19.497	36.556	26.098	19.469	26.0 9 0	4.35	.3469	25.32	1524.3
160.	19.196	36.550	26.172	19.167	26.164	3.28	. 3666	14.64	1523.6
170.	18.953	36.533	26.221	18.923	26.214	4.74	. 3850	32.24	1523.1
180.	18.836	36.532	26.251	18.804	26.244	3.51	.4038	22.97	1522.9
190.	18.681	36.520	26.281	18.647	26.275	3.03	.4218	12.08	1522.6
200.	18.584	36.513	26.300	18.549	26.294	1.89	. 4392	6.48	1522.5
220.	18.504	36.515	26.323	18.465	26.318	2.19	. 4758	6.60	1522.6
240.	18.359	36.505	26.351	18.317	26.347	1.39	.5111	2.64	1522.5
260.	18.292	3 6.509	26.371	18.247	26.368	1.25	. 5462	2.06	1522.7
280.	18.192	36.499	26.3 89	18.143	26.386	1.54	. 5809	26	1522.7
300.	18.094	36.491	26.408	18.042	26.406	2.27	.6156	4.01	1522.7
320.	17.994	36.481	26.424	17.939	26.423	2.05	. 6500	8.66	1522.8
340.	17.911	36.478	26.443	17.852	26.442	1.49	. 6844	3.05	1522.8
360.	17.805	36 .464	26.459	17.742	26.459	1.63	.7184	6.07	1522.9
380.	17.696	36 .455	26.478	17.631	26.479	1.07	.7520	2.66	1522.9
400.	17.518	36 .428	26.502	17.449	26.503	1.56	. 7856	6.43	1522.6
450.	16.956	36.3 39	26.569	16.881	26.572	1.70	.8688	10.11	1521.7
500.	16.356	36.234	26.631	16.274	26.635	1.66	. 9476	11.73	1520.6
550.	15.528	36.092		15.441	26.716		1.0244	25.20	1518.7
600.	14.575	35.938	26.806	14.484	26.809	2.35	1.0978	19.98	1516.4
650.	13.286	35.743	26.927	13.193	26.930	3.18	1.1661	24.08	1512.8
700.	12.209	35.597	27.030	12.115	27.031	3.14	1.2296	34.01	1509.8
751.	11.118	35.456	27.128	11.022	27.128	1.44	1.2883	7.07	1506.7
800.	9.793	35.297	27.238	9.698	27.236	3.21	1.3409	28.82	1502.6
850.	8.580	35.166	27.334	8.487	27.330	2.88	1.3887	18.22	1498.9
899.	7.749	35.106	27.414	7.655	27.408	2.35	1.4319	19.50	1496.5
950.	7.026	35.087	27.504	6.931	27.497	2.77	1.4716	15.48	1494.5
1000.	6.553	35.079	27.563	6.457	27.556	2.04	1.5072	10.85	1493.5

Figure VI-3i. CTD Station 10: Plot. (KNORR 119)

KN119 CTD 010 corrD: 5400m 1986 034 17172 27 43.49N 70 12.61W PRESS TEMP SALIN SIGMA-t POTEMP POTDEN BR-V DYNHGT POTGRD SSPEED ос ٥c kg/m**3 kg/m**3 m^OC/db dbar psu cph dvn m m/s 23.070 23.065 2.10 . 4034 36.637 25.173 25.159 28 6.54 1531.9 25.231 22.789 25.246 22.782 103.92 32. 36.625 9.23 .4151 1531.2 22.240 25.408 22,232 38. 36.632 25.394 8.49 53.64 .4309 1529.9 42. 21.977 36.588 25.449 21.969 3.00 .4412 14.78 25.435 1529.2 21.892 3.49 21.902 25,470 25.457 48. 34.588 . 4563 13.21 152 . 1 52. 21.893 ~6.588 25.473 21.883 1.09 25.459 . 4669 1.06 1529.2 58. 21.896 36.590 25.473 21.885 .4817 -.42 1529.3 25,460 -.60 62. 21.908 36.600 25.477 21.896 25.465 2.09 .4921 -5.45 1529.4 27.74 68. 21.837 36.583 25.484 21.824 25,472 3.27 .5070 1529.3 72. 21.652 36.565 25.523 21.638 25.511 6.83 .5178 62.59 1528.9 78. 21.633 36.566 25.529 21.618 . 82 .5319 . 61 25,517 1528.9 11.76 82. 21.601 36.571 25.542 21.585 25.530 3.94 .5417 1528.9 68. 21.557 36.571 25.554 21.540 25.543 1.54 . 5571 4.96 1528.9 92. 21.522 21.504 36.567 25.560 25.549 2.23 .5670 8.30 1528.9 98. 21.409 5.58 36.566 25.591 21.390 25.580 .5815 31.71 1528.7 102. 21.337 36.566 25.611 21.317 25.601 3.86 .5913 19.12 1528.5 108. 21.123 36.574 25.676 21.103 25.666 3.42 . 6054 11.53 1528.1 25.683 112. 21.109 36.578 21.088 25.673 2.88 .6149 4.99 1528.1 20.897 122, 36.594 25.753 20.874 25.744 5.88 .6383 40.17 1527.7 20.038 132. 36.588 25.981 20.013 25.972 3.93 .6603 27.55 1525.5 142. 19.573 19.547 4.90 1524.4 36.568 26.088 26.079 .6802 32.88 . 6994 152. 19.304 36.552 26.146 19.276 26.138 2.27 8.98 1523.8 18.972 19.001 36.535 2.82 10.03 162. 26.211 26.203 .7184 1523.1 18.887 18.918 26.223 3.45 172. 36.531 26.230 .7374 19.03 1523.0 18.823 18.791 182. 36.523 26.247 26.241 1.08 .7558 1.43 1522.9 26.272 6.82 192. 18.727 36.523 18.693 2.45 1522.8 26.266 .7739 202. 18.649 36.517 26.287 1.25 .7920 18.613 26.281 2.76 1522.7 18.559 26.306 222. 36.512 18.520 1.44 2.01 1522.8 .8278 26.301 242. 18.432 36.511 26.338 18.389 26.333 1.72 .8643 4.08 1522.8 .8996 18.313 36.508 26.365 18.267 -.57 2.44 1522.8 262. 26.362 26.394 26.391 282. 18.173 36.500 18.124 2.13 .9336 8.46 1522.7 18.079 36.487 26.408 18.026 9.07 1522.7 302. 26.406 1.90 .9683 26.424 322, 17.993 36.482 26.425 17.937 2.01 1.0031 6.29 1522.8 342. 17.892 36.474 26.444 17.833 26.444 1.0373 4.16 1522.8 1.62 362. 17.799 36.466 26.462 17.736 26.462 2.04 1.0713 8.00 1522.9 26.479 1.1054 7.57 382. 17.666 36.446 17.601 1.49 1522.8 26.480 26.505 402. 17.490 36.421 26.503 17.421 1.48 1.1385 6.46 1522.6 17.049 452. 16.973 8.46 36.354 26.559 26.562 2.05 1.2211 1522.0 502. 16.316 36.226 16.234 2.55 1.3012 17.68 1520.5 26.634 26.638 1.3777 10.81 552. 15.274 36.050 26.737 15.188 26.741 1.50 1517.9 14.215 602. 14.305 35.896 1.4492 1515.5 26.832 26.835 2.62 19.39 13.023 652. 13.116 35.715 26.941 1.5169 1512.2 26.943 2.48 26.38 702. 12.231 35.613 27.038 12.136 25.59 1509.9 27.040 3.01 1.5795 35.444 752. 11.001 27.139 10.905 27.139 2.90 1.6376 25.76 1506.3 802. 9.701 35.273 9.607 2.88 25.45 1502.3 27.235 27.233 1.6906 852. 8.581 27.333 8.487 27.329 1498.9 35.165 1.7384 33.30 3.61 902. 7.797 35.118 27.417 7.703 27.411 2.50 1.7817 12.96 1496.7 27.497 952. 7.035 27.504 6.941 1494.6 35.089 1.32 1.8208 4.54

SERVER TO CONTROL TO SERVENCE SERVENCES DE CONTROL DE C

Figure V1-3j. CTD Station 11: Plot. (KNORR 119)

1986 034 1847Z CTD 011 27 41.68N 70 15.19W FN119 corrD: 5400m PRESS TEMP SALIN SIGMA-t POTEMP POTDEN BR-V DYNHGT POTGRD SSPEED Öc °C kg/m**3 kg/m**3 m^OC/db dbar psu cph dvn m 25.144 25.128 0.00 0.0000 2. 23.187 35.643 23.186 0.00 1531.7 23.187 25.144 23.186 25.127 .81 .0095 6. 36.643 2.20 1531.8 25.136 2.53 23.152 36.640 25.152 23.150 10. .0210 1531.8 10.05 16. 23.102 36.640 25.166 23.099 25.151 1.42 .0381 1.64 1531.8 20. 23.092 36.639 25.168 23.088 25.153 1.25 .0496 2.10 1531.8 23.083 25.171 23.077 . 0656 26. 36.639 25.156 1.56 2.63 1531.9 23.005 30. 23.011 36.634 25.189 25.174 4.83 .0772 29.20 1531.8 22.362 22.355 .0930 25.356 25.342 1530.2 36. 36.610 7.17 46.63 40. 22.005 36.591 25.444 21.997 25.430 7.33 .1043 112.22 1529.3 21.921 25.448 17.43 1529.2 46. 21.930 25.462 .1188 36.588 3.66 25.459 21.895 36.588 25.472 21.865 .1295 1529.2 50. 1.76 3.63 . 1445 56. 21.895 36.590 25.474 21.884 25.461 . 68 1529.3 -.3125,462 60. 21.896 36.592 25.475 21.884 1.40 .1547 . 23 1529.3 36.595 25.478 . 95 .1699 21.893 21.880 25.466 11.80 1529.4 66. 2.80 70. 21.795 36.574 25.490 21.782 25.477 .1801 21.05 1529.2 76. 21.634 25.529 21.619 25.517 2.29 . 1949 4.65 1528.9 36.567 80. 21.621 36.568 25.533 21.606 25.522 2.50 .2054 5.70 1528.9 25.541 3.04 . 2202 21.567 36.573 25,553 21.550 10.40 1528.9 86. 90. 21.539 36.569 25.557 21.521 25.546 2.41 .2299 9.89 1528.9 96. 21.473 36.563 25.571 21.455 25.561 3.37 . 2446 17.50 1528.8 100. 21.374 36.568 25.602 21.355 25.592 4.16 . 2545 17.28 1528.6 106. 21.146 36,573 25.669 21.125 25.659 7.37 .2688 52.90 1528.1 .2782 1528.1 110. 21.119 36.576 25.678 21.098 25.668 1.86 2.47 20.985 20.962 120. 36.595 25.730 25.720 4.65 .3013 20.60 1527.9 20.098 . 3238 36.596 25.970 20.074 1525.7 130. 25.961 11.07 141.09 140. 19.640 36.571 19.614 26.073 26.064 5.78 .3442 50.27 1524.6 26.144 19.291 19.319 32.46 150. 36.554 4.53 1523.8 26.136 .3642 160. 19.020 36.535 26.206 18.992 26.198 3.27 .3828 12.45 1523.1 18.958 36.535 18.927 6.83 170. 26.222 .4015 1523.1 26.215 2.40 26.247 180. 18.826 36.523 18.794 26.240 1.46 .4202 3.36 1522.9 190. 18.740 26.269 18.706 .4382 36.523 2.22 6.58 1522.8 26.262 36.518 200. 18.654 26.287 18.618 26.281 . 4566 6.79 2.07 1522.7 2.05 220. 18.563 36.512 26.305 18.524 . 4927 26.300 1.26 1522.8 240. 18.440 36.511 26.336 18.398 26.331 1.55 .5284 2.37 1522.8 260. 18.318 36.510 26.366 18.272 . 5639 12.65 26.362 3.37 1522.7 280. 18.187 36.502 26.392 18.138 26.389 . 5989 1.79 6.56 1522.7 300. 18.096 36.490 18.044 1.99 26.406 26.404 . 6330 9.97 1522.7 .6673 320. 18.007 36.483 26.423 17.951 26.422 1.94 6.86 1522.8 1.84 340. 17.901 36.475 26.443 17.842 26.443 .701B 5.59 1522.8 360. 17.815 36.469 26.459 17.753 26.460 1.58 .7357 6.07 1522.9 36.450 380. 17.682 26.478 17.616 .7699 10.57 26.479 1522.8 2.25 400. 17.500 36.424 26.502 17.432 26.504 .8036 6.26 1.61 1522.6 17.067 36.357 450. 26.556 16.991 . 8856 8.27 26.559 1522.0 1.30 500. 16.349 36.232 26.631 16.267 .9662 1520.6 26.634 2.34 16.65 36.055 550. 15.297 26.736 15.211 1.0425 1517.9 26.740 1.43 16.81 26.828 600. 14.343 35.902 14.253 26.831 2.64 1.1144 24.74 1515.6 13.075 26.940 650. 13.167 35.725 26.938 1.1823 3.93 44.18 1512.3 700. 12.284 35.620 27.033 12.189 27.035 2.39 1.2449 19.68 1510.1 750. 11.052 10.956 1.3032 35.451 27.135 4.34 1506.5 27.135 48.01 800. 9.753 35.279 27.231 9.658 27.229 2.45 1.3564 25.63 1502.5 850. 8.654 35.170 27.326 9.560 2.00 1.4042 17.14 1499.1 27.322 7.728 900. 7.822 35.119 27.414 3.47 1.4479 22.98 1496.8 27.408 950. 7.044 35.089 27.503 6.950 27.497 1.4872 1494.6 3.18 18.40

•

Figure VI-3k. CTD Station 12: Plot. (KNORR 119)

CTD 012 1986 035 0007Z 27 39.74N 70 19.24W KN119 corrD: 5400m PRESS TEMP SALIN SIGMA-t POTEMP POTDEN BR-V DYNHGT POTGRD SSPEED ОС ŌС m^OC/db kg/m**3 kg/m##3 dbar psu cph dvn m 23.160 0.0000 0.00 2. 23.161 36.634 25.145 25,128 0.00 1531.7 23.175 36.633 25.140 23.173 25.124 .0108 -3.241531.8 6. -1.6736.634 25.141 23.170 10. 23.172 25.126 .30 .0217 -1.731531.8 16. 23.160 36.633 25.144 23.156 25.128 2.16 .0389 5.63 1531.9 25.145 23.153 25,130 20. 23.157 36.633 -.71 .0500 .08 1532.0 23.094 36,633 25.164 23.089 25.149 .0666 23.30 26. 5.16 1531.9 30. 22.941 36.641 25.214 22.935 25, 199 7.11 .0789 47.58 1531.6 36. 22.512 36.591 25.300 22.505 25.285 8.09 .0945 102.77 1530.5 40. 22.397 36.595 25.335 22.389 25.321 4.45 .1060 20.88 1530.3 36.590 46. 22.281 25.365 22.272 25, 351 4.20 .1216 21.11 1530.1 36.590 So. 22.241 25.376 25.362 22.231 2.83 . 1321 10.36 1530.1 36.591 25.391 22.179 25.378 56. 22.191 2.14 .1480 6.19 1530.0 25.407 40. 22.124 36.587 22.112 25.394 . 1575 18.47 1529.9 3.80 66. 22.005 36.586 25.440 21.991 25.428 5.48 .1724 30.19 1529.7 .1839 70. 21.915 36.587 25.466 21.901 9.96 1529.5 25.454 2.57 76. 21.896 36.587 25.472 21.881 25,460 1.68 . 1985 2.86 1529.6 80. 21.884 36.586 25.473 21.868 25.462 1.18 . 2098 3.15 1529.6 36.587 1529.7 25.478 86. 21.871 21.854 25.467 1.60 . 2244 1.43 90. 21.866 36.587 25.480 21.849 25.469 1.31 . 2340 2.82 1529.8 96. 36.588 25.485 21.828 25.475 . 2501 1529.8 21.847 2.47 4.30 21.823 100. 21.842 36.598 25.495 25.484 2.66 . 2599 . 36 1529.9 106. 21.439 36.589 21.419 25.590 64.16 25.600 7.15 .2740 1528.9 110. 21.275 36.594 25.649 21.254 25.640 5.95 . 2844 35.38 1528.5 120. 20.754 25,797 .3072 63.42 36,601 20.731 25.788 5.44 1527.3 34.589 25.944 130. 20.177 20.153 25.935 6.65 . 3295 49.81 1525.9 140. 19.794 36.601 26.055 19.768 26.046 5.30 . 3500 27.99 1525.0 150. 19.622 36.587 26.089 19.594 26.081 2.07 .3701 11.65 1524.7 160. 19.420 36.564 26.124 19.391 26.117 3.85 .3893 25.33 1524.3 36.543 19.155 .4090 170. 19.186 26.169 26.162 3.40 14.60 1523.8 36.530 180. 18.919 26.228 18.887 26,221 4.48 . 4278 26.82 1523.2 190. 36.521 18.692 . 4459 18.726 26.270 26.264 4.61 26.08 1522.8 26.300 200. 18.566 36.514 26.306 18.530 2.89 . 4644 9.72 1522.5 18.400 36.503 24.340 18.361 220. 26.334 .5000 11.88 1522.3 3.01 18.243 . 5351 240. 18.285 36.501 1522.3 26.367 26.363 2.08 3.33 36.496 260. 18.189 26.388 18.143 26.384 2.56 . 5699 7.95 1522.3 280. 18.103 36.488 26.403 18.055 26.400 2.00 .6045 7.09 1522.4 18.035 18.087 36.491 26.409 26,407 1.23 . 6387 1.62 1522.7 300. 320. 18.026 36.483 26.418 17.970 26.417 . 51 .6735 1522.9 . 66 17.931 17.872 340. 36.477 26.437 26.436 2.12 .7077 6.79 1522.9 36.465 10.90 360. 17.823 26.454 17.761 26.455 2.34 .7420 1522.9 36.443 380. 17.643 26.483 17.578 26.484 1.96 .7754 7.22 1522.7 36.425 26.503 400. 17.512 26.501 17.444 . 81 .8090 6.10 1522.6 450. 17.023 36.348 26.560 16.948 26.563 2,22 .8914 13.84 1521.9 500. 16.107 36.186 26.652 16.026 26.655 2.89 . 9708 30.50 1519.8 1.0467 550. 15.371 36.066 26.728 15.285 26.731 1.82 10.04 1518.2 14.434 35.916 600. 26.819 14.344 26.823 1.99 1.1187 12.27 1515.9 3.89 650. 13.007 35.698 26.950 12.916 26.952 1.1862 33.21 1511.8 . 88 2.25 700. 12.302 35.622 27.031 12.207 27.033 1.2486 1510.2 35.469 27.122 1.90 1.3072 12.90 750. 11.198 27.122 11.102 1507.0 25.97 9.929 27.217 9.833 BOO. 35.299 27.215 2.54 1.3613 1503.1 850. 8.965 35.202 27.301 27.298 1.4107 1.95 1500.3 8.869 1.06 8.082 27.389 27.384 1.90 1497.8 35.137 7.986 1.4557 9.69 900. 950. 7.223 35.097 27.484 7.128 27.478 2.55 1.4961 10.25 1495.3

Figure VI-31. CTD Station 16: Plot. (KNORR 119)

) Separate Constant Separate Resolved

KN119	CTD 01	6 19	986 036 9	0 551 Z	27 11.7	'5N 70	13.60W	corrD	: 5400m
PRESS	TEMP	SALIN	SIGMA-t	POTEMP	POTDEN	BR-V	DYNHGT	POTGRD	SSPEED
dbar	°C	psu	Fg/m##3	°C	kg/m##3	cph	dyn m	m [©] C/db	m/s
3.	23.424	36.610	25.050	23.423	25.033	0.00	0.0000	0.00	1532.3
5. 6.	23.424	36.610	25.050	23.423	25.033	.72	.0099	.22	1532.4
10.	23.424	36.610	25.050	23.422	25.034	.52	.0212	.07	1532.4
16.	23.424	36.610	25.050	23.421	25.034	70	.0392	40	1532.5
20.	23.425	36.610	25.050	23.421	25.034	69	.0511	09	1532.6
26.	23.426	36.611	25.050	23.421	25.035	.58	.0682	.21	1532.7
30.	23.427	36.611	25.049	23.421	25.034	77	.0798	31	1532.8
36.	23.428	36.611	25.049	23.420	25.035	1.05	.0974	. 33	1532.9
40.	23.428	36.611	25.049	23.419	25.035	26	.1092	17	1532.9
46.	23.427	36.611	25.050	23.418	25.036	1.01	.1269	.70	1533.0
50.	23.428	36.611	25.049	23.417	25.036	64	.1387	22	1533.1
54.	23.428	36.611	25.050	23.416	25.036	. 91	. 1558	. 79	1533.2
60.	23.422	36.612	25.052	23.409	25.039	1.62	.1679	2.24	1533.3
66.	23.395	36.613	25.060	23.381	25.048	2.37	. 1854	6.21	1 5 33.3
70.	23.386	36.612	25.063	23.371	25.050	1.27	.1973	1.52	1533.3
76.	23.327	36.610	25.078	23.312	25.066	3.61	.2147	14.57	1533.3
eo.	23.260	36.616	25.102	23.243	25.090	4.87	. 2264	19.75	1533.2
86.	23.226	36.633	25.125	23.208	25.114	4.16	. 2439	14.46	1533.2
90.	23.193	36.641	25.141	23.174	25.130	3.69	. 2555	7.50	1533.2
96.	23.118	36.651	25,170	23.098	25.159	4.01	.2719	12.93	1533.1
100.	22.783	36.675	25.285	22.763	25.275	12.04	.2840	133.69	1532.4
106.	22.529	36.675	25.358	22.508	25.348	5.72	. 2997	44.59	1531.8
110.	22.222	36.667	25.439	22.200	25.430	6.97	.3100	45.95	1531.1
120.	21.620	36.648	25.595	21.596	25.585	5.13	. 33 53	33.78	1529.7
130.	20.991	36.631	25 . 755	20.966	25.747	9.42	. 3592	106.83	1528.2
140.	20.593	36.619	25.855	20.567	25.846	6.76	. 3816	53.23	1527.2
150.	20.238	36.602	2 5. 937	20.210	25.929	4.87	.4036	34.96	1526.4
160.	19.871	36.580	26.019	19.841	26.011	4.79	.4242	33.05	1525.5
170.	19.480	36.553	26.100	19.449	26.093	5.68	. 4443	45.34	1524.6
180.	19.245	36.549	26.158	19.213	26.152	4.98	. 4641	33.39	1524.1
190.	19.070	36.542	26.199	19.035	26.193	4.04	. 4831	20.55	1523.8
200.	18.845	36.522	26.241	18.809	26.235	3.54	.5017	12.51	1523.3
220.	18.678	36.527	26.287	18.639	26.282	2.44	.5382	7.26	1523.1
240.	18.538	36.517	26.316	18.495	26.311	2.52	. 5744	12.53	1523.0
260.	18.364	36.505	26.351	18.318	26.347	2.43	.6102	9.71	1522.9
280.	18.266	36.503	26.374	18.217	26.371	. 68	. 6452	.83	1522.9
300.	18.159	36.498	26.396	18.107	26.395	2.11	. 6801	6.97	1522.9
320.	18.074	36.495	26.415	18.018	26.414	1.24	.7149	1.91	1523.0
340.	17.938	36.4 83	26.440	17.879	26.439	1.86	. 7492	5.00	1522.9
360.	17.820	36.473	26.461	17.757	26.462	1.60	. 7833	3.27	1522.9
380.	17.651	36.453	26.488	17.586	26.489	1.55	.8171	5.43	1522.7
400.	17.538	36.436	26.503	17.470	26.505	2.99	. 8501	17.40	1522.7
450.	17.148	3 6.376	26.552	17.072	26.555	1.94	.9332	9.30	1522.3
5 00.	16.551	36.271	26.613	16.469	26.617	1.41	1.0136	6.83	1521.2
550.	15.704	36.122	26.696	15.616	26.700	2.07	1.0916	15.17	1519.3
600.	14.768	35.967	26.785	14.676	26.790	1.30	1.1654	9.95	1517.0
650.	13.784	35.817	26.881	13.689	26.885	3.21	1.2354	24.66	1514.5
700.	12.806	35.670	26.969	12.708	26.971	1.40	1.3013	6.95	1511.9
750.	11.416	35.475	27.0 87	11.318	27.088	2.65	1.3624	24.98	1507.8
800.	10.325	35.353	27.189	10.227	27.188	3.15	1.4180	21.62	1504.6
850.	9.260	35.260	27.299	9.162	27.296	2.24	1.4682	12.24	1501.5
900.	8.163	35.173	27.405	8.067	27.400	3.26	1.5132	20.20	1498.1
950.	7.23 9	35.131	27.509	7.143	27.502	1.18	1.5528	12.64	1495.4

Figure VI-3m. CTD Station 17: Plot. (KNORR 119)

EN119	CTD 01	7 19	786 036 1	458Z	27 27.1	9N 70	13.64W	corrD	: 5400m
PRESS	TEMP	SALIN	SIGMA-t	POTEMP	POTDEN	BR-V	DYNHGT	POTGRD	SSPEED
dbar	o C	psu	kg/m##3	°C	kg/m##3	cph	dvn m	m ^o C/db	m/s
2.	23.517	36.619	25.029	23.517	25.012	0.00	0.0000	0.00	1532.5
6.	23.459	36.619	25.047	23.457	25.030	2.81	.0121	8.97	1532.5
10.	23.449	36.619	25.050	23.446	25.034	1.57	.0234	2.39	1532.5
16.	23.442	36.619	25.051	23.438	25.036	. 45	.0407	.80	1532.6
20.	23.441	36.619	25.052	23.437	25.036	. 93	.0527	.36	1532.7
26.	23.441	36.619	25.052	23.436	25.936	. 44	.0707	.40	1532.8
30.	23.440	36.619	25.052	23.434	25.037	. 19	.0816	. 51	1532.8
36.	23.439	36.619	25.0 5 3	23.431	2 5. 03 8	.82	.0994	.50	1532.9
40.	23.441	35.619	25.052	23.433	25.038	92	.1112	74	1533.0
46.	23.440	36.619	25.052	23.431	25.038	. 53	. 1294	. 35	1533.1
50.	23.440	36.619	25.052	23.429	25.039	. 78	. 1406	. 95	1 5 33.2
56.	23.439	36.619	25.052	23.428	25.039	.70	. 1585	. 19	1533.3
6Q.	23.440	36.619	25.052	23.427	25.039	58	.1701	.09	1533.3
6 6.	23.440	36.619	25.052	23.426	25.039	. 60	. 1881	. 04	1533.4
70.	23.440	36.619	25.052	23 . 425	25.040	48	. 1991	12	1533.5
76.	23.440	36. 6 19	25.052	23.424	25.040	. 21	.2171	. 28	1533.6
80.	23.440	36.619	25.052	23.423	25.040	. 42	. 2288	. 14	1533.7
86.	23 .436	36.619	25.053	23.418	25.042	1.15	. 2465	1.29	1533.7
90.	23.428	36.619	25.055	23.409	25.044	1.40	. 2583	2.60	1533.8
96.	23.279	36.620	25.099	23.259	25.0 89	7.08	. 2759	54.09	1533.5
100.	22.981	36.635	25.198	22.961	25.108	10.47	. 2867	103.69	1532.8
106.	22.330	36.658	25.402	22.309	25.392	12.61	. 3039	155.08	1531.3
110.	22.188	36.657	25.442	22.166	25.432	6.21	.3141	40.28	1531.0
120.	21.552	36.649	25.614	21.528	25.605	7.32	.3391	68.77	1529.5
130.	21.004	36.638	25.758	20.979	25.749	8.06	.3629	74.83	1528.2
140.	20.725	36.628	25.826	20.698	25.818	5.79	. 3856	43.64	1527.6
150.	20.459	36.616	25.889	20.431	25.881	4.83	.4070	33.19	1527.0
160.	20.016	36.603	25.998	19.986	25.990	3.66	. 4286	13.61	1526.0
170. 180.	19.674 19.324	36.583 36.542	26.073 26.133	19.643 19.291	26.066 26.127	4.38 3.48	. 4489 . 4688	31.87 22.05	1525.2 1524.3
190.	19.022	36.534	26.133	18.987	26.127	4.40	. 4877	23.96	1523.6
200.	18.826	36.525	26.249	18.790	26.243	3.62	.5064	17.51	1523.2
220.	18.631	36.519	26.293	18.592	26.288	3.39	.5430	14.10	1523.0
240.	18.466	36.509	26.328	18.423	26.323	2.21	.5786	8,24	1522.8
260.	18.365	36.502	26.348	18.320	26.344	1.34	.6143	2.72	1522.9
280.	18.297	36.501	26.364	18.248	26.362	.50	. 6496	1.75	1523.0
300.	18.218	36.499	76.382	18.166	26.381	1.71	. 6849	5.67	1523.1
320.	18.156	36.496	26.396	18.100	26.395	1.07	.7199	3.66	1523.3
340.	18.082	36.492	26.411	18.022	26.411	1.82	. 7545	4.13	1523.4
360.	17.985	36.487	26.431	17.922	26.432	2.34	. 7895	8.01	1523.4
380.	17.857	36.474	26.453	17.791	26.454	2.10	.8235	8.72	1523.4
400.	17.693	36.455	26.479	17.625	26.481	2.68	. 8576	13.28	1523.2
450.	17.323	36.400	26.528	17.247	26.531	1.72	. 9414	6.47	1522.9
500.	16.646	36.2 87	26.603	16.564	26.608	1.27	1.0229	5.02	1521.5
550.	15.692	36.124	26.700	15.605	26.704	2.01	1.1008	8.78	1519.3
600.	14.751	35.968	26.790	14.660	26.794	. 98	1.1749	9.26	1516.9
650.	13.865	35.831	26.875	13.769	26.879	1.65	1.2445	13.61	1514.8
700.	12.787	35.672	26.974	12.690	26.976	3.25	1.3110	30.16	1511.8
750.	11.495	35.493	27.086	11.397	27.087	3.20	1.3719	28.60	1508.1
800.	10.417	35.370	27.187	10.319	27.186	2.84	1.4280	23.19	1505.0
850.	9.221	35.242	27.291	9.123	27.2 88	2.43	1.4787	24.20	1501.3
900.	8.300	35.186	27.394	8.203	27 . 389	3.2 8	1.5239	30.00	1498.7
950.	7.433	35.137	27.485	7.336	27.479	2.13	1.5643	12.42	1496.1
1000.	6.647	35.087	27.556	6.550	27.549	2.12	1.6010	11.44	1493.9

Figure VI-3n. CTD Station 18: Plot. (KNORR 119)

FN119 CTD 018 1986 036 1645Z 27 31.90N 70 13.34W corrD: 5400m POTEMP PRESS TEMP SALIN SIGMA-t POTLEN BR-V DYNHGT POTGRD SSPEED °C °C m^OC/db dbar 0**5**u kg/m**3 kg/m##3 cph dvn m m/s 5. 23.704 24.972 23.703 24.956 0.00 36.616 0.0000 0.00 1533.0 23.615 25,001 23.613 24.985 8. 36,620 4.31 .0096 18.56 1532.9 23.539 12. 23.542 36.622 25.024 25.008 4.15 .0221 17.27 1532.8 23.511 25.034 23.507 .0399 4.92 18. 36.623 25.018 2.16 1532.8 25.037 25.022 22. 23.498 36.622 23.493 1.35 .0514 2.22 1532.8 28. 23.480 36.622 25.042 23.474 25.027 1.40 .0688 1.70 1532.9 32. 23.478 36.622 25.043 23.471 . 95 .60 25.028 .0804 1532.9 38. 23.476 36.622 25.044 23.468 25.029 . 32 .0982 .31 1533.0 42. 23.473 36.621 25.044 23.464 25,030 .1098 1.00 1.16 1533.1 48. 23.464 36.620 25.046 23.454 25.032 .89 .1278 . 94 1533.2 52. 23.459 36.620 25.047 23.449 25.033 . 1391 . 59 . 68 1533.2 58. 23.433 25.054 36.619 23.421 25.040 1.54 . 1566 2.29 1533.3 9.34 23.412 25.060 23.399 62. 36.618 25.047 2.94 .1689 1533.3 68. 23.252 36.628 40.61 25.114 23.238 25.101 6.67 .1862 1533.0 72. 22.869 30.660 25.249 22.855 25.237 .1978 88.49 9.86 1532.1 78. 22.533 90.55 36.643 25.333 22.517 7.50 .2141 25.321 1531.3 82. 22.306 36.637 25.394 22.289 25.382 7.28 . 2244 54.59 1530.8 88. 22.114 36.649 25.457 22.096 25.445 5.86 .2402 31.52 1530.4 92. 21.968 36.652 25.500 21.949 25.489 6.03 . 2509 37.90 1530.1 98. 21.737 36.649 25.563 21.718 25.552 4.46 . 2653 24.19 1529.6 102. 21.556 36.643 25,609 21.535 25.599 7.43 .2749 45.30 1529.2 108. 21.158 36.642 25.718 21.137 25.708 5.40 .2892 35.66 1528.2 25.754 112. 20.981 36.638 25.764 20.959 6.26 .2982 44.11 1527.8 122. 20.609 36.623 25.853 20.586 25.844 3.63 .3205 22.30 1527.0 20.126 36.603 20.101 132. 25.968 25.959 7.44 .3421 73.79 1525.8 142. 19.676 36.558 26.053 19.650 26.044 4.96 .3624 30.12 1524.7 152. 19.420 36.553 19.392 26.108 3.24 .3822 12.92 1524.1 26, 116 162. 19.198 36.545 26.168 19.168 26.160 5.49 .4015 39.80 1523.7 172. 19.042 36.546 26.209 19.011 26.202 3.84 . 4207 19.66 1523.4 182. 18.823 36.528 26.251 18.791 26.244 4.72 .4391 32.18 1522.9 192. 18.691 36.523 26.281 18.657 26.275 3.38 . 4575 14.73 1522.7 202. 18.584 18.620 36.516 26, 294 26.288 2.00 . 4756 5.38 1522.6 222. 18.495 36.514 26.324 18.455 26.319 1.83 .5112 4.06 1522.6 36.510 242. 18.356 18.314 1522.5 26.356 26.351 1.71 . 5466 4.38 36.505 26.379 .5816 262. 18.250 18.204 26.376 2.63 8.73 1522.6 26.395 . 88 282. 18.168 36.499 18.119 26.392 .6165 1522.7 1.68 302. 18.124 36.498 26.405 18.071 26.403 .6512 -1.55 1522.9 . 75 322. 18.036 36.494 26.424 17.980 26.423 . 6855 1522.9 1.36 1.72 17.867 342. 17.926 36.488 26.447 26.446 2.36 .7199 8.64 1522.9 36.479 26.459 17.850 17.787 26.459 .7537 8.32 1523.0 362. 2.27 382. 17.703 36.457 26.478 17.637 26.479 .7876 1522.9 1.64 5.61 26.494 17.531 402. 17.600 36.445 26.496 1.69 .8214 5.79 1522.9 5.23 452. 17.187 36.380 26.545 17.111 26.548 1.28 .9041 1522.5 16.782 502. 26.589 26.594 1.05 . 9855 9.47 36.311 16.698 1522.0 552. 15.857 36.156 26.686 15.769 26.691 2.19 1.0644 14.13 1519.8 26.782 602. 14.944 36.007 26.777 14.851 1.1388 16.61 1517.6 2.83 13.933 652. 35.845 26.871 13.837 26.875 3.41 1.2093 23.38 1515.0 1.2756 702. 12.769 35.668 26.974 12.671 26.977 4.20 56.08 1511.8 11.535 35.504 27.087 752. 14.437 27.088 1.81 1.3364 15.96 1508.3 802. 10.319 35.360 27.197 10.221 27.196 1.3917 24.20 1504.6 2.65 9.136 852. 35.237 27.301 9.038 27.298 3.28 1.4421 39.02 1501.0 27.407 902. 8.257 35.194 8.160 27.402 1.66 1.4870 13.51 1498.6 27.502 952. 35.090 27.508 6.918 1.5264 7,012 2.68 9.69 1494.5

Figure VI-3o. CTD Station 19: Plot. (KNORR 119)

CTD 019 1986 036 18472 27 41.67N 70 12.92W KN119 corrD: 5400m POTEMP POTDEN PRESS TEMP SALIN SIGMA-t BR-V DYNHGT POTGRD SSPEED оc ОC kg/m**3 kg/m##3 dbar DSU cph dvn m m[©]C/db 2. 23.518 36.626 25.034 23.518 25.018 0.00 0.0000 0.00 1532.6 23.549 25.025 23.548 25.009 .0105 .56 36.626 -1.161532.7 6. 23,400 23.398 10. 36.622 25.066 25.050 7.06 .0224 64.04 1532.4 23.256 23.252 25.092 9.78 16. 36.622 25,108 2.87 .0398 1532.1 25.095 36.621 25.111 23.241 1.70 .0507 20. 23.245 2.75 1532.2 23.236 25.114 23.230 25.099 1.34 .0682 26. 36.622 1.47 1532.2 23.210 25.120 23.204 25.105 .0797 30. 11.42 36.620 2.86 1532.2 36. 22.989 36.624 25.187 22.982 25.173 7.77 .0964 58.76 1531.8 40. 22.930 36.626 25.205 22.922 25.191 .1082 24.28 4.68 1531.7 22.772 46. 36.628 25.253 22.762 25.239 3.54 .1243 12.32 1531.4 50. 22.657 36.623 25.282 22.647 25.269 5.98 .1353 43.15 1531.2 36.618 7.19 .1510 22.171 25.417 22.160 25.404 56. 60.29 1530.0 60. 22.015 36.595 25.444 22.003 25.431 2.87 .1620 15.81 1529.7 36.587 1529.6 21.944 25.457 21.931 25.445 3.45 .1773 20.79 66. 70. 21.878 36.578 25.469 21.864 25.457 2.42 .1873 8.38 1529.4 21.838 36.574 21.823 .2023 1529.4 76. 25, 477 25.465 1.51 . 96 5.62 80. 21.822 36.570 25.479 21.806 25.468 1.61 .2128 1529.5 36.575 25.484 21.798 25.473 2.27 . 2279 1.48 1529.5 86. 21.815 . 98 . 2379 90. 21.812 36.577 25.487 21.794 25.476 1.12 1529.6 96. 21.805 36.580 25.491 21.786 25.480 2.40 . 2528 3.63 1529.7 100. 36.586 25.539 25.529 21.650 21.630 5.84 .2630 44.70 1529.3 35.66 106. 21.103 36.622 25.718 21.082 25.708 5.80 . 2775 1528.0 20.942 110. 36.635 4.08 17.65 20.963 25.766 25.756 . 2865 1527.7 120. 20.450 25.891 20.427 25.882 .3085 54.17 1526.5 36.616 6.40 20.027 20.052 25.991 25.982 5.09 .3299 1525.6 130. 36.607 30.80 51.34 140. 19.594 36.559 26.075 19.568 26.067 5.37 . 3504 1524.4 26.140 150. 19.349 36.560 19.322 26.132 4.69 .3696 26.09 1523.9 160. 19.056 36.541 26.202 19.027 26.194 4.76 .3885 45.65 1523.2 26.235 170. 18.852 36.526 26.242 18.821 2.73 .4070 11.31 1522.8 3.97 180. 18.747 36.528 26.271 18.714 26.264 . 4253 17.92 1522.7 190. 18.692 36.534 26.289 18.658 26.283 2.39 . 4435 5.46 1522.7 18.578 18.542 36.526 1522.5 200. 26.312 26.306 2.25 .4614 8.39 220. 36.511 18.426 26.339 18.387 26.334 1.61 . 4968 4.15 1522.4 240. 18.306 36.501 18.263 26.358 . 5324 26.362 1.86 4.80 1522.4 18,179 260. 18.224 36.501 26.382 26.378 2.29 .5670 4.89 1522.5 26.400 36.497 26.398 280. 18.140 18.091 1.33 .6017 1522.5 1.64 300. 18.080 36.497 26.415 18.027 26.413 .6362 3.77 1522.7 1.65 17.937 .6708 3.45 320. 17.993 36.491 26.433 26.432 1.60 1522.8 36.483 340. 17.894 26.451 17.835 26.451 2.04 .7045 6.46 1522.8 360. 17.817 36.474 26.463 17.755 26.463 1.18 .7389 3.74 1522.9 380. 17.710 36.460 26.479 17.645 26.480 1.58 .7722 6.48 1522.9 1.96 400. 17.524 36.433 26.503 17.455 26.505 .8058 10.36 1522.7 450. 16.962 36.343 26.571 16.967 26.574 2.41 .8879 15.58 1521.7 16.120 2.15 500. 16.201 36.209 26.648 26.651 .70 .9673 1520.1 550. 15.248 36.050 26.743 15.162 26.746 3.13 1.0435 27.42 1517.8 2.50 600. 14.262 35.896 26.841 14.172 26.844 1.1147 17.44 1515.3 35.734 450. 13.162 26.946 13.070 26.948 3.29 1.1823 22.21 1512.3 700. 27.035 27.037 2.90 12.301 35.627 12.206 1.2450 25.76 1510.2 35.443 27.143 1.3031 750. 10.976 10.881 27.143 3.65 41.85 1506.2 B00. 35.278 27.242 9.589 27.239 1.3553 9.683 1.90 13.86 1502.2 850. 27.326 27.322 1499.4 8.710 35.181 8.615 1.21 1.4033 8.26 900. 7.977 35.132 27.401 7.882 27.395 1.13 1.4473 5.29 1497.4 950. 7.321 35.122 27.490 7.225 27.483 2.02 1.4873 3.10 1495.7

Figure VI-3p. CTD Station 20: Plot. (KNORR 119)

KN119 CTD 020 1986 036 23012 27 50.68N 70 13.26W corrD: 5400m POTDEN BR-V DYNHGT POTGRD SSPEED PRESS POTEMP TEMP SALIN SIGMA-t °C ОC dbar kg/m**3 kg/m**3 cph dvn m m^oC/db psu m/s 25.280 0.00 2. 0.00 22.661 36.643 25.296 22.661 0.0000 1530.4 25.16 6. 22.611 36.634 25.304 22.610 25.288 3.69 .0103 1530.3 22.404 25.347 4.04 14.59 10. 22,402 1529.9 36.634 25.363 .0211 16. 22.326 25.384 22.323 25.369 3.84 .0361 18.11 1529.8 36.633 20. 22.303 36.634 25.392 22,299 25.377 2.16 .0465 4.16 1529.8 22,290 26. 36.636 25.397 22.285 25.382 1.67 .0626 2.30 1529.8 22.251 22.245 25.392 .0731 30. 36.634 25.407 2.88 10.34 1529.8 17.87 36. 22.144 22.137 25.413 .0882 36.621 25.427 3.00 1529.6 40. 22.068 22.060 25.432 2.80 11.51 36.618 25.446 .0989 1529.5 46. 22.010 16.10 25.453 22,001 25.440 .1138 1529.4 36.606 2.41 50. 21.983 36.605 25.460 21.973 25.447 2.43 .1238 3.26 1529.4 .1391 56. 21.917 36.595 25.471 21.906 25.458 2.25 14.30 1529.3 .1494 60. 21.886 36.589 25.475 21.874 25.463 1.56 6.28 1529.3 66. 21.865 36.586 25.479 21.852 25.467 1.81 .1647 5.21 1529.3 21.857 . 86 70. .1748 1.95 1529.4 36.585 25.481 21.843 25.468 76. 21.843 36.584 25.484 21.828 25.472 1.24 . 1896 1.68 1529.5 36.583 21.808 80. 21.824 25.489 25.477 1.96 .2003 1529.5 5.74 86. 21.455 36.594 25.600 21.438 25.589 6.88 .2149 53.09 1528.6 21.111 90. 21.129 36.616 25.706 25.695 8.36 . 2246 53.21 1527.8 96. 20.949 36.612 25.753 20.930 25.742 4.47 .2378 35.36 1527.4 100. 20.877 36.615 25.775 20.857 25.764 2.92 .2474 13.44 1527.3 25.899 106. 20.357 36.593 20.337 25.889 8.75 . 2607 93.22 1526.0 110. 20.057 36.583 25.972 20.036 25.962 6.26 1525.2 . 2690 57.06 36.553 1523.9 19.535 26.086 19.513 25.88 120. 26.077 4.52 . 2888 130. 19.210 36.539 26.160 19.186 26.151 3.70 .3086 24.86 1523.2 26.198 4.25 140. 18.987 36.525 18.961 29.02 1522.7 26.207 .3273 26.234 8.47 150. 18.879 36.524 18.852 26.226 2.67 . 3458 1522.5 160. 18.774 36.521 26.258 18.746 26.251 1.54 5.62 1522.4 .3638 170. 18.693 36.512 26.272 .3823 8.69 1522.3 18.663 26.265 2.56 1.09 180. 18.643 36.509 26.283 18.611 26.276 .4000 1.30 1522.3 36.510 26.284 190. 18.614 26.290 18.580 2.22 .4184 4.63 1522.4 26.291 200. 18.592 36.511 26.298 18.556 1.85 . 4365 3.33 1522.5 220. 18.480 36.518 26.331 18.441 26.326 1.84 .4720 5.54 1522.5 2.37 240. 18.399 36.516 26.350 18.356 26.346 1.31 .5075 1522.6 1.94 .5426 1522.6 260. 18.280 36.510 26.375 18.234 26.372 4.60 .5770 26.403 2.87 13.30 1522.6 280. 18.150 36.504 18.102 26.400 17.990 36.491 11.77 1522.4 300. 26.433 17.938 26.431 2.30 .6116 2.19 36.472 26.461 .07 1522.2 320. 17.821 17.766 26.460 .6452 26.476 .6787 3.06 1522.3 340. 17.743 36.468 26.477 17.685 1.41 26.491 36.456 26.490 17.588 1.32 .7123 1.76 1522.4 360. 17.650 36.444 26.502 . 88 .7456 3.13 26.501 17.505 1522.5 380. 17.570 400. 17.420 36.422 26.520 17.352 26.522 2.05 .7787 8.53 1522.3 24.579 1.51 .8599 4.75 1521.6 450. 16.937 36.342 26.576 16.862 500. 16.158 36.202 26.652 16.077 26.656 3**.5**0 . 9394 41.91 1519.9 36.016 550. 15.030 26.766 14.945 26.769 2.49 1.0140 16.05 1517.1 600. 13.912 35.840 26.872 13.824 26.875 2.01 1.0844 9.11 1514.1 12.983 35.702 26.958 12.891 26.960 2.54 1.1503 15.23 1511.7 650. 700. 12.066 35.580 27.045 11.972 27.046 2.13 1.2125 16.42 1509.3 11.072 750. 11.168 35.460 27.121 27.121 2.52 1.2707 15.61 1506.9 800. 9.867 35.295 27.224 9.772 27.222 3.15 1.3246 36.43 1502.9 1499.6 850. 8.784 35.191 27.321 8.689 27.317 1.17 1.3733 10.77 7.819 27.395 2.20 1496.7 900. 35.102 27.401 7.725 1.4173 12.96 1.4578 11.05 1495.4 950. 7.244 35.098 27.482 7.149 27.476 2.30

Table VI-2r. CTD Station 20: List. (KNORR 119)

Figure VI-3q. CTD Station 21: Plot. (KNORR 119)

+N119	CTD 02	21 1	9 86 037 0	1092	27 54.3	38N 70	13.20W	corrD	: 5400m
FRESS	TEMP	SALIN	SIGMA-t	POTEMP	POTDEN	BR-V	DYNHGT	POTGRD	SSPEED
dbar	°C	psu	kg/m**3	°C	kg/m##3	cph	d∨n m	m [©] C/db	m/s
			25.439	22.115	25.423	0.00	0.0000	0.00	1529.0
2.	22.116	36.627 36.62 5	25.437	22.120	25.421	.03	.0096	.73	1529.1
6. 10.	22.006	36.614	25.460	22.004	25.445	5.60	.0195	44.55	1528.8
16.	21.621	36.609	25.565	21.618	25.550	7.50	.0348	67.03	1527.9
20.	21.431	36.598	25.610	21.427	25.595	5.19	.0444	37.95	1527.5
24.	21.195	36.584	25.664	21.190	25.649	2.86	.0585	12.31	1526.9
30.	21.175	36.584	25.669	21.169	25.655	2.56	.0680	6.96	1526.9
36.	21.167	36.584	25.672	21.160	25.658	42	.0817	.06	1527.0
40.	21.167	36.584	25.672	21.159	25.658	4.21	.0914	. 41	1527.1
46.	21.137	36.584	25.680	21.128	25.666	1.55	.1053	3.17	1527.1
50.	21.126	36.583	25.582	21.116	25.669	1.36	.1146	3.27	1527.1
56.	21.082	36.580	25.692	21.071	25.679	2.28	. 1285	7.9 9	1527.1
60.	21.050	36.579	25.700	21.038	25.687	2.71	.1379	8.90	1527.1
66.	21.027	36.576	25.704	21.014	25.692	1.43	.1516	4.24	1527.1
70.	21.018	36.575	25.706	21.005	25.694	1.28	.1617	2.41	1527.2
76.	21.014	36.575	25.707	20.999	25.695	. 84	.1750	.91	1527.2
80.	21.009	36.575	25.708	20.994	25.696	1.37	. 1843	2.16	1527.3
86.	20.984	36.575	25.715	20.967	25.704	2.70	. 1979	8.69	1527.3
90.	20.565	36 .59 0	25.841	20.548	25.830	12.86	.2074	165.88	1526.3
96.	20.081	36.588	25.969	20.063	25 .958	8.38	.2198	77.19	1525.1
100.	19.906	36.580	26.009	19.888	25.999	5.89	. 2284	38.8 3	1524.6
106.	19.827	36 .58 9	26.037	19.807	26.026	3.78	. 2404	18.17	1524.5
110.	19.657	36 .5 83	26.077	19.637	26.067	6.63	. 2482	57.41	1524.1
120.	19.493	36.572	26.112	19.471	26.103	3.01	. 2681	13.91	1523.8
130.	19.205	აგ . 552	26.172	19.182	26.163	4.61	. 2874	35.54	1523.2
140.	18 .978	36 .5 38	26.220	18.952	26.211	4,55	.3062	28.61	1522.7
150.	18.839	36.535	26.252	18.812	26.244	3.12	. 3244	12.62	1522.4
160.	18.716	36.529	26.279	18.687	26.271	2.96	. 3427	9.01	1522.2
170.	18.640	36.525	26.296	18.610	26.289	1.57	. 3607	4.56	1522.2
180.	18.576	36.523	26.310	18.544	26.303	1.87	.3782	4.22	1522.2
190.	18.521	36.520	26.322	18.488	26.316	1.31	. 3958	2.74	1522.2
200.	18.454	36.517	26.337	18.419	26.331	1.79	.4139	4.17	1522.1
220.	18.316	36.512	26.368	18.277	26.362	2.43	. 4488	9.18	1522.1
240.	18.236	36.507	26.384	18.194	26.379	1.75	. 4836	5.41	1522.2
260.	18.147	36.505	26.405	18.102	26.401	1.79	.5180	4.14	1522.2
280.	18.017 17.923	36.471 36.484	26.426 26.445	17.969	26.423	1.56	.5521	3.81	1 522. 2 1 522. 2
300. 320.	17.923	36.476	26.443	17.871 17.769	26.443 26.461	1.99 1.69	.5860 .6199	6.36 4.64	1522.3
340.	17.678	36.460	26.486	17.620	26.486	2.48	.6534	9.17	1522.1
360.	17.533	36.439	26.506	17.472	26.506	1.79	. 6865	8.28	1522.0
380.	17.423	36.423	26.521	17.358	26.522	2.06	.7194	9.83	1522.0
400.	17.204	36.391	26.550	17.136	26.551	2.73	.7522	14.22	1521.7
450.	16.734	36.311	26.601	16.659	26.604	1.50	. 8321	6.43	1521.0
500.	15.962	36.173	26.676	15.882	26.679	2.26	.9101	17.56	1519.3
550.	14.910	35.798	26.778	14.826	26.781	2.78	.9844	23.19	1516.7
600.	13.891	35.833	26.871	13.803	26.874	2.46	1.0539	16.21	1514.0
650.	12.826	35.680	26.973	12.735	26.974	3.63	1.1196	30.20	1511.2
700.	11.946	35.564	27.056	11.853	27.057	2.26	1.1810	15.35	1508.9
750.	11.044	35.449	27.136	10.949	27.135	1.86	1.2385	10.05	1506.4
800.	9.725	35.278	27.235	9.630	27.233	2.82	1.2917	27.27	1502.4
850.	8.658	35.177	27.331	8.565	27.326	1.95	1.3396	12.66	1499.2
900.	7.842	35.103	27.39 9	7.748	27.393	2.41	1.3834	15.94	1496.8
950.	7.127	35.092	27.494	7.032	27.487	2.42	1.4235	13.57	1494.9

Figure VI-3r. CTD Station 22: F1.*. (KNORR 119)

+N119	@₹D ~420	198	36 37	につちて	28 11.5	7N 70	15.50₩	corro	: 5400m
PRESS	TEMP	SALIN S	SIGMA-t	POTEMP	POTDEN	28 -V	DYNHGT	POTGRD	SSPEED
dbar	ا م		g m8#3	°C	kg/m##3	cph	dvn m	m [©] C/db	m / s
2.	21.562	56.599	25.574	21.562	25.558	0.00	0.0000	0.00	1521.5
5.	21.563	16.599	27.573	21.562	25.558	80	0.090	7.3	1527.6
10.	21.528	36.501	25.585	21.526	25.570	4.05	0192	14.90	1527.5
15.	21.504	36.601	25.591	21.501	25.576	1.83	.0328	4.1	1527.6
20.	21.488	36.600	25,595	21.484	25.580	1.71	. 431	4.49	1527.6
26.	21.420	16.597	25.612	31.415	25.598	2.49	. 4569	5.94	1527.5
7.	21. 197	16.597	25.518	21.791	25.604	2.29	. 06 70	5.69	1527.5
ేద.	21.373	36.596	25.624	21.366	25.610	1.51	, 0 8 09	2.86	1527.5
400	21.362	6.596	25.627	21.355	25.617	*6	1906	. 79	:527.6
46.	21.546	36.596	25.631	21.337	25.618	1.86	1 +46	7,9	1527.
50.	21.755	36.597	25.635	21, 125	25.622	1.98	. 1146		15. 1. 1
56.	21.719	16.597	25.639	21, 509	25.627	1.60	1.286	1,87	15.7 8
50%	21.705	36.597	25.644	21.293	25.671	2.04	.1579	4.77	1521 8
5 6.	21.202	36.597	25.649	21.269	25.637	1.57	. 1525	2.94	1527.8
70.	21.250	36.597	25.656	21.247	25.644	2.84	. 1624	8.52	1527.8
³Ġ.	21.195	6.596	25.673	21.1 9 0	25.662	3. 15	1 765	1 7 4	1527.8
900.	29.817	36,594	25, 758	20.862	25, 147	9.83	. 1855	109.21	: 52 7. ·
86.	20.762	76.597	25.901	20.345	25.890	0.72	. 1986	77.15	1525
∌ri,	20 . 227	"6. 50 6	25, 945	20.219	25, 934	5,40	20174	71 / 71	1525.4
95.	19,948	6.606	26.910	19,930	26,007	6.71	2197	58	1524 7
1 200	1 ♥ , ▼ →4	36,578	26. 61	19.685	26. (51	5.23	. 2274	52.86	15.14
: 6.	19.444	76 / 555	26.111	19.424	26.111	4.55	191	26.41	527.4
1.1 %	19, 296	76.542	26.142	19 270	26.172	4 ''	. 2471	7. 78	1527
12.5	19,994	76. 531	.6.184	19 (23	26,174	4 1.7	2664	26 5	15.2
: 🕶 .	: 8.9 15	16.526	26.276	:9.651	26, 227	2.50	2847	•	5
1.46	18.158	ຳ5.521	26.260	19.145	26, 251	1 65	*679	• •	1522
: 5	9 54	6.514	. 5 . 195	P 62:	26.277	2.43	124.0		
: •	9 55	75.512	26. TO€	9.574	26, 300	2 24	* *B6	' '^	15.1 4
: •	9 45	6 51	.6. 133	18 420	26 129	7 9	· • · •		
: 3)		16.548	5 350	9 14:	26 343	2 15		•	
; 3	9 9	16 / 502	. 6 . 66	(B 26)		. 91	19:4		•
•	:9 2 58	16.498	2A. 171	.0 223	. 6 65	, ,	4084		• 1
	.9 155	16 496	. 6 300	19 126	26 103	41	4428	4 0	•
4	9, 42	15 498	26 406	19 /54 17 911	26 401 26 417	. 6 75	•	- 48	• · ·
- *)'	A 1	15 484	25 421	: 7 99 0		42	7471	'9	• . •
29		6.461	6 430	1 94.1		24	5 786	,	
* *	. 1955 	15 414		790	26 457 26 469	. : :	3 57 69 51. ₹	9.	•
4	•				5 44		71. 74 9 9	A 4A	
	1 447	'n 44'	36 447 36 51	:00	26 511	2.3	P9	• •	
ं ं * ।} ।	• • •	a '86	6 730	19		•	1 4	4 17**	
4 4	•	. V	15 564	, 79·	6 56	•		7 9	•
• = /-	~ 5 · ·	'ሳ . ሳ ብ	ი ალი "რინე	6 499	. 6 51Fl	•	4.19		.
• ,	~ · • • •	10 . ng	. 6 4	1 170			≱eu 49		•
,		4 9		4 745				•	•
· •				9.4	5 9 4	4.	44	4 4	- 4
- 7 4		- 76	, ,,,,	~04			•	•	•
7 7	•		• •			• 4	•		•
· - ,,	• • •		5 9	44		-4	. ,	• .	A
+ -			• • •	. 49		>•	•		•
45				A .		•	40	4	4 761
¥1 4	. 44	90	. 99	•	144	*40	· ** .	14	4 **
2 4 ,	44.1	- 44	•	4	• • •	4	• •	•	4 ()

Figure VI-1, ITD section Two Plot (FNOPR 119)

FASINEX Knorr 123 CTD Stations

Figure VI-6

Table VI-2: KNORR 123 CTD Station Times and Positions

TOTAL DESCRIPTION OF THE PROPERTY OF THE PROPE

concer bearing annouse ancecees a

	(GMT)		INTERNAV Po	sitions				
Station	Time	1986	Latitude	Longitude	Comment	: s		
1	1800-2040	13 June	25°27.03'N	69°59.76'W	5000 m	F12		
2	1438-1502	14 June	27°05.10'N	69°54.90'W	2000 m	F9		
3	1626-1652	14 June	27°04.31'N	69°56.95'W	200 m	P 9		
4	1200-1228	16 June	27°03.51'N	69°40.13'W	200 m	P3		
5	1257-1317	16 June	27°04.57'N	69°38.26'W	200 m	F 3		
6	1826-1846	16 June	26°57,20'N	69*46.03'W	200 m	P 5		
7	1915-1939	16 June	26°58.20'N	69°47.44'W	200 m	P 5		
8	0921-0943	17 June	27°11.14'N	69°44,95'W	200 m	P 7		
9	1016-1038	17 June	27°11.48'N	69°44.96'W	200 m	P 7		
10	2056-2341	18 June	28°00.21'N	69*53.39'W	5000 m	Pl		
11	0505-0750	19 Jun e	27°11.11'N	70°00.38'W	5000 m	Central Array Area		
12	2138-0040	19 June	'*08.79'N	69*58.69'W	200 m	Intercompari- son with RTP		

21.173 TO CO.

EN123	CTD GO	1 19	786 164	1800Z	25 27.0	3N 69	59.76W	corrD	3400m
PRESS	TEMP	SALIN	SIGMA-t	POTEMP	POTDEN	BR-V	DYNHGT	POTGRD	SSPEED
dbar	оc	p s u	kg-m##3	оC	kg/m##3	cph	d∨n m	m [©] C/db	m/s
4.	26.638	16.449	27.945	26.637	23.927	0.00	0.0000	0.00	1539.9
8.	26.480	6.440	23.989	26.478	23.972	7.81	.0160	63.99	1539.6
12.	26,205	36.457	24.089	26.202	24.071	6.36	.0321	26.24	1539.0
18.	25.715	36.461	24.245	25.711	24.228	8.59	.0544	6 8. 10	1538.0
22.	25.667	16.461	24.260	25.662	24.244	3.8 3	. 0684	14.72	1537.9
28.	25.124	76.538	24.485	25.118	24.469	14.15	.0903	148.02	1536.8
52.	24.345	76.575	24.826	24.338	24.811	16.79	. 1036	203.86	1535.2
₹ 0 .	23.868	36, 711	24.995	23.860	24.981	7.99	.1225	62.82	1534.1
4.1.	23.772	76.712	25.024	23.763	25.010	4, 43	. 1338	21.03 56.41	1533.9 1533.4
48.	23.497	36,706 36,701	25.101 25.131	23.487 23.372	25.067 25.117	7.06 4.83	. 1516 . 1629	27.75	1533.1
52. 5 8 .	23,383 23,229	36.694	25.171	23.217	25.158	4.48	.1802	24.62	1532.8
52.	23, 146	36.691	25. 192	23.133	25.179	5.17	.1912	29.90	1532.7
58.	22.804	36.674	25. 278	22.79 0	25.266	6.97	. 2083	5F . 53	1531.9
12.	22.686	36.569	25.309	22.672	25, 297	2.74	. 2180	9.37	1531.7
*9.	22,470	36.669	25. 371	22.455	25.359	7.64	. 2352	61.78	1531.2
02.	22.376	76.670	25, 198	22.359	25.387	5.71	. 2457	33.28	1531.0
₽ 8 .	22.251	36.671	25.434	22.233	25.423	3.71	. 2613	14.42	1530.8
42.	22,229	6.571	25.441	22.211	25.430	2.72	. 2713	7.90	1570.8
∍B .	22. 01	56.6 68	25.481	22.061	25.470	6.23	. 2869	46.05	1530.5
1 (2)	.1.983	6 669	25.509	21.962	25.498	3.73	. 2972	18.13	1530.4
1⊕8.	21.950	36.570	25.516	21.937	25.506	.97	. 3118	1.12 9.10	1530.4 1530.4
112.	21.937	16.669 16.678	25.522 25.650	21.915	25.512 25.640	2.61 6.7 5	. 3219 . 3 465	50.21	1529.4
122.	21.505 21.541	*6.5 8 7	25.702	21.315	25.693	3.36	. 3703	10.74	1529.2
14.	1. 152	6.691	25. 784	21.024	25. 776	5.18	. 3931	33.19	1528.6
152	21.715	6.690	25.876	20.686	25.868	6.02	. 4157	-33.50	1527.8
152	2 1, 26 7	6 64 7	25.961	20.236	25, 954	4.27	. 4366	45.92	1526.7
1 * 2 .	19.872	'ი. 588	26.024	19.840	26.018	4.28	. 4576	31.29	1525.8
192	19,590	16.5 19	26.965	19.656	26.958	3.28	. 4 7B3	14.82	1525.4
1.5%	19.601	76.592	26.099	19.565	26.093	2.48	. 4983	3.54	1525.
202.	19.657	16.659	26, 135	19.620	26.129	4.04	51 7 7	19.76	1525 7
	18. <i>9</i> 81	16.563	26.230	18.941	26.233	7.88	. 5561	18.79	1524.1
242	19.536	76.529	26.300	18.573	26.296	2.09	. 5927	5.44	1521.4 1522.4
252	18, 165	14.499	26.345	18.319	26.342	1.64	. 62 8 6 . 6640	3.71 11.90	1523.0
82	18.289 18.240	15.500 15.533	26.366 26.403	10.240	26.363 26.401	2.57 3.47	. 6989	4. 35	1527.2
3.4.4	7 0 70	14 488	26.444		26.443	2.26	. 7332	14.27	1522.6
142	4.3	6.461	26.471	17.684	26.471	2.22	866	88	1522.4
	1 1, 553	16.435	26.498	17,491	26.498	1.71	. 8000	6.87	1522.1
я.	1 1 325	16 197	26.525	17.261	26.526	2.20	. 8332	13.95	1521.
40.	17.056	16, 155	26.5 58		26.559	2.52	. 8657	15.92	1521.2
45	15 544	14. 149	26.613	16.469	26.616	. 27	. 9455	1.22	1520.4
51 2	15. 195	15 144	26.694	15, 705	26,697	2. 8 0	1.0227	*0.0 5	1518.8
57.1	14 986	15 348	26, 193	14.801	2 6. 78 6	1.89	1.0958	14.71	1516.6
4	1 * 905	.5 949				2.35	1.1653	14.51	
ላኝ.	1. 901	*5, *00	26.912			1.06	1.2505	31.17	1711 7
* <i>*</i>	11 746	15 565	27,056			7.11	1.2919	\$1.94	1508 9 1508 2
	10 763	476	27 140			2. 30		17.69	1506 2 1502 6
A .	<i>2 19</i> €	75 (67 75 (67	27,232			2 26 2 26	1:4022	14 74	1449 5
95.	H *A:	77 (6.1 75 7 96	184		7.303 7.378	1.62	1 4961	8 64	144 - 1
.	18		497		451	. •6	1 ****	22 41	و سريق
• '•	•	14							400

Figure WI Tr. III tatue Vol Flot.

KN RR Lit

COLUMN TO THE PROPERTY OF THE

KN123	CTD 00	2 19	786 165 1	438Z	27 05.1	ON 69	54.90W	corrD	: 5400m
PRESS	TEMP	SALIN	SIGMA-t	POTEMP	POTDEN	9R-V	DYNHGT	POTGRD	SSPEED
dbar	o _C	psu	kg/m##3	°C	kg/m**3	cph	dyn m	m ^o C/db	m/s
3.	26.442	36.664	24.170	26.442	24.152	0.00	0.0000	0.00	1539.6
5. 6.	26.471	36.661	24.159	26.470	24.141	-3.13	.0119	-9.27	1539.7
10.	26.413	36.659	24.175	26.410	24.158	5.01	.0271	28.76	1537.7
16.	25.634	36.637	24.402	25.631	24.386	12.97	.0489	177.30	1537.9
20.	25.530	36.638	24.436	25.526	24.420	4.23	.0629	17.75	1537.8
26.	25.173	36.629	24.539	25, 167	24.523	10.28	.0846	116.66	1537.0
30.	24.688	36.641	24.696	24.682	24.681	11.24	.0973	119.51	1535.9
36.	24.379	36.660	24.804	24.371	24.789	9.19	.1164	67.03	1535.3
40.	24.131	36.660	24.878	24.122	24.864	6.46	. 1292	55.00	1534.7
46.	24.008	36.650	24.908	23.998	24.894	3.06	. 1475	11.84	1534.5
50.	23.963	36.653	24.923	23.953	24.909	3.08	. 1603	5.42	1534.5
56.	23.886	36.6 5 0	24.944	23.874	24.931	3.18	. 1783	9.47	1534.4
60.	23 .85 0	36.659	24.961	23.837	24.948	3.89	. 1909	9.79	1534.4
66.	23.7 63	36.664	24.991	23.749	24.978	4.18	. 2082	25.36	1534.3
70.	23 .675	36.6 5 6	25.011	23.660	24.999	4.44	. 2201	21.89	1534.1
76.	23.575	36.668	25.049	23.559	25.037	5.29	. 2377	25.94	1534.0
80.	23.460	36.671	25.086	23.443	25.074	4.40	. 2498	17.56	1533.8
86.	23.375	36.676	25.114	23.358	25.103	4.24	. 2674	14.39	1533.7
90.	23.306	36.677	25.135	23.287	25.124	3.13	. 2790	8.58	1533.5
96.	23.234	36.681	25.159	23.214	25.149	2.28	. 2959	4.68	1533.5
100.	23.196	36.684	25.173	23.175	25.162	2.49	.3078	5.32	1533.4
106.	23.146	36.688	25.190	23.124	25.180	2.45	. 3240	6.13	1533.4
110.	23.120	36.686	25.196	23.097	25.187	1.89	. 3363	3.46	1533.4
120.	23.006	36.684	25.227	22.981	25.218	4.03	. 3634	18.38	1533.3
130.	22.769	36.678	25.292	22.742	25.283	5.34	. 3920	30.81	1532.9
140.	22.495	36.673	25.367	22.466	25.358	3.94	.4186	20.73	1532.3
150.	21.978	36.625	25.477	21.948	25.469	5.52	. 4444	25.13	1531.1
140.	21.583	36.633	25.594	21.552	25.587	6.09	. 4696	23.73	1530.2
170.	21.355	36.672	25.686	21.322	25.680	5.48	. 4941	27.27	1529.8
180.	20.856	36.618	25.783	20.822	25.777	2.51	.5178	5.72	1528.6
1 9 0.	20.661	36.615	25.833	20.625	25.828	4.06	. 5393	19.75	1528.2

Figure VI-7c. CTD Station 3: Plot. (KNORR 123)

KN123	CTD OO	3 19	786 165	1626Z	27 04.3	1N 69	56.95W	corrD	: 5400m
PRESS	TEMP	SALIN	SIGMA-t	POTEMP	POTDEN	BR-V	DYNHGT	POTGRD	SSPEED
dbar	°C	p s u	kg/m##3	oc	kg/m##3	cph	dyn m	m ^O C/db	m/s
2.	26.386	36.635	24.166	26.385	24.148	0.00	0.0000	0.00	1539.5
6.	26.360	36.635	24, 173		24.156	2.75	.0132	10.98	1539.5
10.	26.290	36.640	24,200		24.183	3.38	.0281	8.90	1539.4
16.	25.656	36.635	24,394	25.653	24.378	4.94	.0498	25.59	1538.0
20.	25.439	36.632	24.459		24.443	7.59	.0634	57.38	1537.5
26.	24.716	36.645	24,690		24.675	13.89	. 0846	182.95	1535.9
30.	24.551	36.659	24.751	24.545	24.736	8.10	.0974	55.46	1535.6
36.	24.321	36.679	24,836	24.313	24.821	3.58	.1161	16.26	1535.2
40.	24.210	36.668	24.860	24.201	24.846	5.13	.1290	35.30	1534.9
46.	24.113	36.662	24,886	24.103	24.872	4.00	.1473	19.69	1534.8
50.	24.061	36.6 58	24,897	24.050	24.884	2.57	. 1595	7.49	1534.7
56.	23.968	36.651	24.920	23.956	24.907	4.22	.1780	25.37	1534.6
60.	23.922	36.649	24.932	23.910	24.919	2.77	. 1899	7.94	1534.5
66.	23.880	36.657	24,950	23.866	24.938	3.77	. 2093	5.66	1534.6
70.	23.840	36.666	24.969	23.825	24.957	3.79	. 2209	16.07	1534.5
76.	23.708	36.654	24.999	23.692	24.987	3.86	. 2390	15.86	1534.3
80.	23.635	36.663	25.028	23.618	25.016	4.90	. 2509	17.43	1534.2
86.	23 . 59 3	36.670	25.045	23.575	25.034	3.60	. 26 89	11.74	1534.2
90.	23.546	36.671	25.060	23.528	25.049	4.08	. 2809	17.19	1534.1
96.	23.472	36.673	25.084	23.452	25.073	3.70	. 2981	13.30	1534.1
100.	23.385	36.674	25, 110	23.364	2 5. 099	5.23	.3102	29.12	1533.9
106.	23.254	36.681	2 5. 1 5 3	23.232	25.143	3 .3 0	. 3271	9.23	1 53 3.7
110.	23.184	36 .686	25.177		25.167	4.62	. 3384	20.57	1533.6
120.	23.086	36.690	25.209	23.061	25.200	3.32	.3664	12.15	1533.5
130.	22 . 929	36.682	25.248		25.240	4.57	. 3944	26.92	1533.3
140.	22.671	36.679	25.321	22.643	25.313	5.33	. 4227	30.92	1532.8
150.	22.295	36.677	25.427		25.419	4.72	. 4488	26.64	1532.0
160.	21.844	36.644	25.529	21.812	2 5.522	4.77	. 4745	18.02	1530.9
170.	21.386	36.645	25.658	21.353	25.651	7.84	. 4987	66.42	1529.9
180.	20.852	36.619	25.785	20.817	25.779	6.99	.5228	70.55	1528.6
190.	20.675	36.616	25.830	20.638	25.824	1.98	. 5452	3.87	1528.3
200.	20 .5 07	36.615	25,875	20.469	25.870	3.72	. 5675	19.34	1528.0

KN123	CTD 00	4 1	986 167	12007	27 03.5	1N 69	40.13W	corrD	: 5400m
PRESS	TEMP	SALIN	SIGMA-t	POTEMP	POTDEN	BR-V	DYNHGT	POTGRD	SSPEED
dbar	°c	psu	kg/m##3	s °c	kg/m##3	cph	dyn m	m ^o C/db	m/s
2.	26.459	36.666	24.166	26.458	24.148	0.00	0.0000	0.00	1539.6
5.	26.465	36,665			24.146	58	.0144	39	1539.7
10.	26.463	36.664	24.164		24.146	.93	.0292	.77	1539.8
10.	26.164	36.640	24.239	26.160	24.223	9.90	.0521	120.36	1539.2
20.	25.752	36.627	24.358	25.748	24.342	10.52	.0665	124.22	1538.3
25.	25.342	36.609	24.472	25.336	24.456	6.17	.0881	47.94	1537.4
70.	24.990	36.634	24.599	24.983	24.584	11.74	.1014	118.75	1536.6
J6.	24.503	36.644	24.754	24.495	24.739	9.10	.1214	92.53	1535.6
4.O.	24.311	36.666	24.829	24.302	24.815	5.30	. 1334	-5.98	1535.2
46.	24.236	36.680	24.862	24.226	24.848	2.79	. 1521	5.02	1535.1
50.	24.145	36.678	24.888		24.874	4.92	.1650	28.94	1535.0
56.	24.047	36.678	24.917	_	24.904	3.18	. 1831	15.45	1534.8
60.	23.936	36. 671	24.945		24.931	5.51	. 1950	32.03	1534.6
5 6 .	23.821	36.664	24.974		24.961	3.64	.2140	15.59	1534.4
₹ ○.	23.778	3 6.68 0	24.999		24.986	4.46	. 2256	15.80	1534.4
76.	23.596	36.669	25.044		25.032	5.25	. 2442	34.60	1534.0
8 0.	23.508	36.660	25.063		25.051	3.66	. 2558	18.15	1533.9
მბ.	23.410	36.663	25.094		25.083	4.72	. 2738	26.52	1533.7
90.	23.292	36.654	25.122		25.111	4.72	. 2846	31.87	1533.5
96.	23.23 5	36.677	25.156		25.145	4.13	.3014	-8.20	1533.5
190.	23.132	36.660	25.173		25.163	3.79	. 3133	24.20	1533.3
106.	22.971	36.655	25.216		25.206	4.45	. 3299	31.14	1532.9
110.	22.878	36.653	25.241		25.232	4.38	.3415	13.75	1532.8
120.	22.865	36.725	25.300		25.290	4.79	. 3689	19.94	1533.0
130.	22.560	36.737	25.397		25.388	6.91	.3960	44.72	1532.4
140.	22.089	36.689	25.494		25.486	3.76	.4218	22.38	1531.3
150.	21.731	36.659	25.572	_	25.564	5.48	. 4467	39.31	1530.5
16	21.497	36.653	25.633		25.626	4.37	.4713	13.51	1530.0
1	21.136	36.643	25.725		25.718	4.43	. 4951	29.49	1529.2
190.	21.060	36.635	25.740		25.734	3.22	.5183	19.60	1529.2
٠٠٠ الم	20,907	36.624	25.774		25.768	3.67	.5414	18.95	1528.9
200.	20.747	36.628	25.820	20.708	25.815	3.79	.5636	13.19	1528.7

Figure VI-7e. CTD Station 5: Plot. (KNORR 123)

		•	• • •	-	•		•		•
			 ,		* • .		· 🚈 🖷 -	•	
		•					•	•	
	4 *		a	•	•				
			4 10		•		•		•
	4		4 .		4		•		•
	,	A	• **		•		- 4		• •
	•		4 -		• • •	•	e 1800		
			4 4 4	- 4 34 %	4 4 4	+ + + 1 €		40 44	•
	•	4	4 - 44	•	4 ^	• 4		4 .	•
			•	A	4	**	**		
	4		4 14	4 4	4 59 4	•	• •	4	
4.0	4		4 40 4	•	4	4 54	-4,	. *	• •
•.	4 +-		4 14/4	4 -1-	4 40	*41		•	
T. e.	4	● منغ رہ		4	4 . 4		4	, ,	* •
7	. ,•		4 - 4		4		· ·		* *
	140.0		4 '5"	1.45	4	4 - 4 1	. •		• • •
	,		4 9514		4 4 1	• .		4 4	• • •
			• ,	1 56	4 • •	• 4	. 46	•	• • •
	564		- 4-		• • •	4 44	• •	4 4	• •
at	. 494	584	- 40	. 460			•	4	• ,
•	• •	'A 987	• 4		,. •	* ••	96 '	· .	• •
34	• •		- 44	• •	24 51	• 96		•	• • • •
		16 201	- 9		•	4 44	1:54		•
6	•	'o 500	.5 . 0	٠ 6	୍କ ହଳ	. 4	1.24	' +	
•	4		•	• 4	. 13 223	4 '9	14.1	4	• • • •
*	43	0 075		1,0	36.3	o 6 '	• • • 2	50 41	• • •
•	44:	6 5 4	- 0	4.4		• 🙇	. 🕶 🗎 1	*	. • • .
A :	22 25	(0 6 0	- 4 4	•	. 9 400	5 51	4241	• • •	* 4
. 5		'h 201		50 :	. 5 5 1	5	4 4 6 7	4 * 44	
. F		., ,,,,,							

Figure VI-7f. CTD Station 6: Plot. (KNORR 123)

114	* [- 13	186 151 1	H267	26 57.2	ON 69	46.03W	corrD	: 5400m
FHE 55	1 F MAP	HIL!N	SIGMA .	FOTEMP	POTDEN	BR-V	DYNHGT	POTGRD	SSPEED
31: 41	41	₽ € G	FQ m##"	o _C	1g/m883	cph	dyn m	m [©] C/db	m/s
	149	6 657	24.601	26.798	24.015	0.00	0.0000	α , $\phi\phi$	1540.4
٠	. 6 * H	16.632	24.064	26.699	24.046	4.77	.0147	27.21	1540.2
	. 6. 44 1	4.657	24,163	26.444	24.146	10.37	. 0296	79.40	1539.7
٠.	.6. 64	ი. ანნ	24.180	26.560	24.171	2.12	. 0524	15.83	1539.7
	. 5. 5.19	5.636	24.403	25.624	24.387	9.48	.0673	83.35	1538.0
b	5.140	°6.627	24.545	25.142	24.530	7.61	. 0882	62.73	1536.9
• •	4 ' / -	Se.633	24.667	24.756	24.652	8.53	. 1016	78.80	1536.1
်စ	4 598	`ბ. ბ ებ	24.795	24.391	24.780	5.09	. 1 205	24.45	1575.3
40.0	74.176	'6.665	24.869	24.167	24.854	6.85	. 1329	47.24	1534.9
46	. 1. 936	36.646	24.926	23.926	24.912	6.45	. 1514	5 0.00	1534.3
•	23.830	6.657	24,965	23.820	24.952	5.84	. 1637	32.60	1534.2
•6.	23.746	ిది. దక్కి	24,991	23.734	24.977	2.89	. 1820	14.47	1534.1
å⊕.	23.706	36.659	25.004	23.694	24.991	3.11	. 1938	8.65	1534.0
76 ·	21.674	76.6 62	25.915	23.660	25.003	2.37	. 2118	2.79	1534.1
" .	23.661	30.000	25.023	23.646	25.010	2.70	. 2232	4.20	1534.1
'6 .	23.600	36.669	25.040	23.592	25.02 8	3.56	. 2411	12.95	1534.1
90.	23.565	16.672	25.055	23.540	25.044	3.32	. 2528	11.08	1534.0
86.	23,492	36.673	25.078	23.474	25.066	3.81	. 2710	12.52	1533.9
90.	23, 434	36.675	25.096	23.416	25.085	4.65	. 2823	20.17	1533.9
96.	23. 2 26	16.672	25.125	23.308	25.114	4.21	. 29 98	17.68	1533.7
100.	23.267	36.675	25.145	23.246	25.135	3.97	. 3113	17.30	1533.6
146.	23.169	36.678	25.175	23.147	25.165	3.40	. 3266	11.15	1533.5
1.100	27.097	36.682	25.200	23.074	25.190	4.25	. 3394	14.61	1533.4
120.	22,931	36.676	25.244	22.907	25.234	4.47	. 3677	23.61	1533.1
150.	22.734	6.661	25.304	22.707	25.295	4.52	. 3950	19.61	1532.8
140.	22.447	36.654	25.366	22.418	25.358	3.31	. 4222	32.30	1532.2
150.	22.135	16.682	25.476	22.105	25.468	6.72	. 4487	.43	1531.6
160.	21.819	26.673	25.561	21.778	25.554	2.38	. 4737	17.54	1530.9
1.70	21.602	36.650	25.601	21.569	25.5 95	4.54	. 4984	30.77	1530.5
180.	21.392	36.646	25.656	21.357	25.650	3.09	. 5224	10.59	1530.1
190.	21.097	36.631	25.727	21.061	25.721	2.60	. 5461	11.39	1529.4
200.	20.932	36.624	25.767	20.893	25.762	2.80	. 5697	13.64	1529.2

Figure VI-7g. CTD Station 7: Plot. (KNORR 123)

+ N12*	* [1	. 19	786 15" 1	- .:	.6 *A 2	-M 49	4 ' 44W	mer (: *4
PHE 95	'E MF	AL IN	113MA +	D() T E MP	POTDEN	୍ ସମ୍ମ	SYNHOT	POTORE	35FFE1
ob ar	77	₽#4	ky meet	.)(+ g - m## 1	CDF	gyr a	⊕ ^D C db	* *
· .	5, 119	16 528	14 148	26. 119	24. (*1	* ***	ne proces		1*4 .
5	6	75 651	24.063	26.699	24.045	L. 92	1149	1. A.	1 - 4
100	25,44	16.656	24, 163	26.444	24.145	100 57		19 41	1737
15.	.b. 64	"ბ. ი55	24.187	26.360	24.171	2.12	9526	15.83	15**
2	5.6.9	16.635	24.40	35.624	24.387	9.48	. 4675	H 1, 15	1578
. o.	25.148	16.626	24.545	25.142	24.529	7.51	0884	52 **	1576
300	24. 162	36.632	24.667	24. 156	24.651	9.51	1 1 1 🙃	7 8 . 6 0	1 7 76
6.	4 198	16.655	24, 794	24. 191	24.780	5, 00	.1207	4 45	1 7 7 7
411	.4.1.6	16.565	24.868	24.167	24.854	6.85	. 1371	47.24	1574 9
46.	23.936	°6.645	24,925	27, 926	24.911	5.45	. 1516	5 00,000	1514
50.	. 1.830	16.656	24,965	23.020	24.951	5.84	. 1639	32.50	1534 .
56.	46	36.656	24,990	23.734	24.977	2.89	. 1022	14.47	1534.1
60.	23. 206	16.658	25.003	23.694	24,990	5.11	. 1940	8.65	1514
66.	27.674	36.661	25.015	23.660	25.002	2, 37	2120		1534.
70.	23.661	36.665	25.022	23.646	25.009	2.70	. 2235	4.20	1574.1
' 6.	23.608	16.668	25.040	23.592	25.028	1.56	. 2414	12.95	1534.1
8 0.	23.565	16.671	25.055	23.546	25.043	3. 32	. 25 30	11.98	1534.0
86.	23, 492	36.673	25.077	23.474	25.066	3.01	. 2712	12.52	1533.9
90.	23, 434	36.674	25.096	23.416	25.084	4.65	. 2824	20.17	1533.9
96.	23. 328	36.672	25.125	23.308	25.114	4.21	. 3001	17.68	1533. *
100.	23.267	36.674	25.144	23.246	25.134	3.97	. 3115	17.30	1533.6
106.	23, 169	36.677	25.175	23.147	25.165	3.40	. 3289	11.15	1537.5
110.	23.097	36.682	25.199	23.074	25.190	4.25	. 3397	14.61	1533.4
120.	22.931	36.676	25.243	22.907	25.234	4.47	. 3679	23.61	1533.1
130.	22.734	36.680	25.303	22.707	25. 295	4.52	. 3953	19.61	1532.8

Figure VI-7h. CTD Station 8: Plot. (KNORR 123)

	• •	,	HA 5H	u 1 '	•	48	44 25W		• 4 •
4 64 5 1 1 1 L	* 6 ***	.a N	: MAL	FISTE MED	4917 (16 N	HP	1 - NHOE 1	POST ARE	444
** •*		•		٠,	1 g	p.n	, . · · •	• 1	
		. *	24 91	A 45		,	()()4		· · · · ·
٠.	401	· . • #4	14 ; 4	A 460	4. 8.	24	100	4	
	A 465	' ~ "BA	4 1 ·5	. A 458	24 . 161. 4	1.25	1	y *	. •
•	* A	'A = 91	24 (120)	36 422	24.1.1	4.76	14. J. 4	1 1 4 2	ي: 🕶
	A 4:	5 5 5	4 246	26 157	24 229	8.30	1686	40.00	1
, Ac	, 4	* * * * * * *	4 769		. 4. 551	86 B	1895	6. 51	1 T TA H
•	14 9 1	5:	4 561	24.921	24 546	9.51	1026	• •	15 *A *
	4 4 19	.v. 244	4 '9'	24 431	24.778	4.19	1222	1 🕶	1 7 7 4
4	14 17 11	'A ⊃ 6 ⊋'	.4 8 %	24 279	24.821	6.65	: 148	55	: • • • •
4 %	24 14H	10 566	24.878	24 : 1.70	24.864	4.31	. 1539	16.59	1514 9
۹,	्य सम	14.666	24.895	24,079	24.002	7.28	1662	1	1554 H
76	. 991	16.666	4,924	23. 9 8 0	24.911	5.90	. 1843	34 50	1534.
3 (1)	27, 965	16.594	24.953	23.952	24,940	3, *7	. 1964	11.58	14
56	23. 135	14.661	25.001	23 721	24.988	4.73	2146	32.82	1534
•.	23.6	¹6. 66 °	25.019	23.658	25.007	1.36	. 2270	12. 46	1574.1
¹6.	23, 561	10 669	25.0 5 4	23.545	25,042	4.49	. 2448	21	1533.9
H)	25.513	°ბ. ბბ ∰	25.966	23.496	25.056	7.45	. 2562	14.49	1555.9
46.	25, 515	Tal. 677	25.132	23.297	25.121	6.9 0	. 2735	41.58	1937.5
90,	23.275	16.681	25.148	23, 254	25.137	2.98	. 2846	0.9	1577.5
96.	23.189	¹6∵6 88	25.177	23.169	25.166	2.90	. 2014	ଟ. ଅପ	1537.4
1 .10%	23, 153	:6.6 68	25. 188	23.132	2 5 . 1 7 0	3.37	. 3132	12.14	1573.7
1.76.	23,090	76.5 88	25.207	23.068	25.196	3.01	:299	11.07	1535.
4.100	23.936	₹6.6 68	25. 222	23.014	25.212	3.53	. 3416	17.69	1533.2
120.	22.916	76.683	25, 253	22.691	25.244	4.41	. 3693	23.55	1537.1
1.30.	22.677	16.678	25.310	22.651	25.310	4.95	. 3967	26.12	1532.6
140.	22.340	36.676	25.413	22.311	25.405	5.00	. 4234	30.17	1531.9
150.	22.116	36.669	25.471	22.066	25.464	3.15	. 4493	18.00	1531.5
160.	21.622	36.647	25.593	21.590	25.586	6.12	. 4747	51.49	1530.3
170.	21.163	36.647	25.721	21.130	25.714	6.57	. 4984	36.44	1529.3
180.	20.692	36.626	25.834	20.658	25.827	6.07	. 5214	44.86	1528.2
190.	20.645	36.626	25.846	20.60	25.840	2.52	. 5443	5.27	1528.2
200.	20.345	36.608	25.913	20.307	2 5.908	5.10	. 5656	37.24	1527.5

Figure VI-7i. CTD Station 9: Plot. (KNORR 123)

FN123	CID OF	9 19	786 168 1	0167	27 11.4	8N 69	44.96W	corrD	: 5400m
PRESS	TEMP	SALIN	SIGMA-t	POTEMP	POTDEN	BR-V	DYNHGT	POTGRD	SSPEED
dbar	°C	psu	1g/m##3	°C	kg/m##3	cph	dvn m	m [©] C db	m/s
	25.365	5.5 6 2	24.117	26.365	24.099	0.00	0.0000	0.00	1539. 7
5.	26.378	36.586	24.131	26.377	24.114	. 67	.0152	24	1539.4
100.	26.380	36.587	24.131	26.377	24.114	2.21	.0294	3.48	1539.5
15.	26.166	36. 598	24.207	26.163	24.190	10.17	. 0529	91.95	1539.1
20.	.5. 885	36.603	24.299	25.880	24.283	10.07	.0675	106.17	1538.5
26.	25.037	36.645	24.593	25.032	24.577	11.20	. 0880	111.22	1536.7
70.	24.653	76.063	24.724	24.646	24.709	8.56	.1014	70.52	1535.9
76.	24.290	36.661	24.832	24.282	24.817	5.11	. 1202	26.84	1535.1
40.	24.218	36.669	24.859	24.209	24.844	3.77	. 1337	10.86	153 5. 0
46.	24.122	36.675	24.893	24.112	24.879	4.15	. 1525	15.21	1534.8
5 0.	24.050	36.695	24.929	24.040	24.915	5.90	. 1637	25.44	1534.7
56.	23.891	36.675	24.961	23.879	24.948	4.20	. 1825	20.51	1534.4
60.	23.833	36.681	24.983	23.821	24,970	4.23	. 1941	21.08	1534.4
5 6 .	23.637	36.671	25.033	23.623	25.020	5.62	. 2126	33.38	1534.0
70.	23.530	36.668	25.063	23.515	2 5. 0 5 0	4.55	. 2239	21.55	1533.8
³ 6.	23.374	36.669	25.109	23.3 58	25.0 98	5.16	. 2422	26.7 8	1533.5
80.	23.312	36.673	25.130	23.295	25.119	4.15	. 2526	15.80	1533.4
86.	23.265	36.680	25.149	23.247	25.138	1.57	. 2706	1.50	1533.4
90.	23.218	36.684	25.166	23.199	25.155	4.17	. 2819	15.94	1533.3
96.	23.173	36.686	25.181	23.153	25.170	2.54	. 2987	6.30	1533.3
100.	23.149	36.687	25.186	23.129	25.178	2.18	. 3104	4.68	1533.3
106.	23.093	36.687	25.205	23.071	25.195	3.24	. 3269	10.94	1533.3
110.	23.039	36.683	25.218	23.016	25.206	2.89	. 3385	10.69	1533.2
120.	22.848	36.679	25.270	22.824	25.261	4.07	. 3664	18.33	1532.9
130.	22.612	36.676	25.336	22.586	25.327	4.45	. 3934	23.41	1532.5
140.	22.332	36.677	25.416	22.303	25.406	4.27	. 4202	20.01	1531.9
150.	22.092	36.673	25.401	22.062	25.474	3.95	. 4452	10.34	1531.4
	_				_				
160. 170. 180.	21.749 21.330 21.132 20.983	36.647 36.637 36.646 36.647	25.559 25.667 25.729 25.770	21.717 21.297 21.097 20.947	25.551 25.660 25.723 25.764	6.10 5.55 3.63 2.38	.4709 .4759 .5183	50.22 33.76 14.24 6.88	1530.7 1529.7 1529.4 1529.1

Figure VI-7j. CTD Station 10: Plot. (KNORR 123)

KN123	CTD OI	0 19	986 169 Z	:056 <i>1</i>	28 00.2	1N 69	53.39w	corrD	1 5400m
PRESS	TEMP	SALIN	SIGMA-t	POTEMP	POTDEN	BR-V	DYNHGT	POTGRD	SSPEED
dbar	a _C	psu	kg/m883	o _C	kg/m##3	cph	den m	m [©] C db	M 8
4.	26.687	36.583	24.031	26.686	24.014	0,00	0.0000	; 10.4	1540.1
8.	26.490	36.582	24.093	26.488	24.076	10.45	.0155	104.64	1579
12.	25.990	36.562	24.235	25.987	24.218	12.14	0309	156.69	1538.6
19.	25.638	36.551	24.337	25.634	24.320	6.24	. 0530	18.82	1537 9
22.	25.528	36.546	24.367	25.523	24.351	5.12	. 0674	73.84	1537.
28.	25.402	36. 5 62	24.418	25.396	24.402	5, 72	. ୧ ୫୫ ଅ	18,90	1537.7
32.	25. 225	36.579	24.485	25.218	24.470	8.41	. 1026	57.81	1537.2
20.	24.509	36.647	24.755	24.501	24.740	7.66	. 1228	46.05	1535.6
42.	24.278	36.673	24.844	24.269	24.830	9,40	. 1354	77.05	1535.2
48. 52.	23.892 23.765	36.694	24.975	23.882 23.754	24.961	8.78	. 1538	76.36	1534.3
58.	23.763	36.690 36.685	25.010 25.060	23.569	24.997 25.047	4.75	. 1661 . 1838	28.73	1534.1
62.	23.298	36.667	25.130	23.285	25.117	5.50 6.02	. 1948	37,46 88 ,76	1533. **
68.	23.037	36.664	25.204	23.023	25.191	7.30	. 2124	61.31	1532.5
72.	22.868	36.645	25.238	22.653	25.226	4.38	. 2238	35.97	1537.1
78.	22.516	36.619	25.319	22.500	25.308	5.56	. 2396	44.66	1531.3
82.	22.367	36.604	25.351	22.351	25.339	6.06	. 2500	44.08	1530.9
88.	22.171	36.617	25.416	22.153	25.405	6.09	. 2659	43.35	1530.5
92.	21.958	36.596	25.461	21.940	25.450	5.59	. 2763	53.38	1 53 0.0
98.	21.737	36.592	25.520	21.718	25.509	4.69	. 2917	22.60	1529.6
102.	21.608	36.609	25.569	21.588	25.558	6.47	. 3015	37.86	1529.3
108.	21.396	36.596	25.617	21.375	25.607	6.10	. 3159	61.03	1528.8
112.	21.295	36.590	25.641	21.273	25.631	3.77	. 3256	20.14	1528.6
122. 132.	21.066 20.7 8 0	36.605 36. 589	25.715	21.042	25.706	5.52	. 3492	18.11	1528.7
142.	20.647	36.596	25.781 25.823	20.754	25.773 25.814	3.77	. 3723	14.14	1527.6
152.	20.375	36.589	25.891	20.347	25.883	4.61 4.56	. 3947 . 4169	19.81 38.49	1527.4 1526.8
162.	20.082	36.579	25.961	20.051	25.954	5.38	. 4386	44.63	1526.2
172.	19.809	36.553	26.014	19.777	26.007	4.55	. 4592	32.11	1525.5
182.	19.631	36.547	26.057	19.597	26.050	3.96	. 4797	14.51	1525.2
192.	19.393	36.557	26.127	19.358	26.121	2.60	. 4993	13.52	1524.7
202.	19.151	36.547	26.181	19.115	26.176	4.43	.5186	29.82	1524.2
222.	18.799	36.533	26.261	18.759	26.256	3.29	. 5562	17.00	1523.5
242.	18.559	36.515	26.309	18.516	26.305	2.30	. 5926	7.27	1523.1
262.	18.410	36.507	26.340	18.364	26.337	1.23	. 6280	2.55	1523.0
282. 302.	18.281 18.179	36.501	26.3 68	18.231	26.366	1.61	. 6640	4.75	1523.0
322.	18.073	36.497 36.488	26.390 26.410	18.126 18.016	26.3 89 26.409	1.50	. 69 8 9	4.64	1523.0
342.	17.978	36.481	26.429	17.919	26.428	2.81 1.90	.7336 .767 9	12.00	1523.0 1523.1
362.	17.851	36.468	26.450	17.788	26.451	1.83	.8026	6.58	1523.0
382.	17.715	36.452	26.471	17.650	26.472	2.08	. 8364	9.96	1522.9
402.	17.586	36.434	26.489	17.517	26.491	1.69	.8700	5.56	1522.9
452.	17.269	36.394	26.536	17.192	26.539	1.71	. 9537	6.76	1522.7
502.	16.655	36.286	26.600	16.572	26.605	3.08	1.0351	25.10	1521.6
552.	15.858	36.149	26.681	15.769	26.686	1.55	1.1134	7. 87	1519.8
602.	14.982	26.008	26.770	14.889	26.775	3.14	1.1884	21.50	1517.8
652.	13.897	35.837	26.873	13.801	26.877	2.00	1.2589	14.36	1514.9
702.	12.852	35.683	26.970	12.754	26.973	1.59	1.3248	9.64	1512.1
752.	11.789	35.532	27.061	11.689	27.063	1.90	1.3863	11.71	1509.2
802.	10.874	35.413	27.138	10.772	27.139	3.11	1.4442	25.28	1506.7
852. 902.	9.615 8.777	35.260	27.239	9.515 8.676	27.237	2.28	1.4974	14.90	1502.8
952.	B. 021	35.175 35.123	27.310 27.387	7.920	27.307	2.71	1.5465	24.78 7.68	1500.5 1498.4
1002.	7.411	35.082	27.445	7.309	27.383 27.440	1.95 1.65	1.5915	12.99	1496.9
4202.	2.340	34.904	27.888	1.973	27.897	.82	3.1360	. 23	1530.1
4402.	2.328	34.901	27.887	1.938	27.897	62	3.2254	. 16	1533.5
4602.	2.324	34.897	27.885	1.909	27.897	.57	3.3167	.07	1537.0
4802.	2.317	34.894	27.882	1.879	27.897	.60	3.4101	. 34	1540.4

Table VI-4j. CTD Station 10: List. (KNORR 123)

Figure VI-7k. CTD Station 11: Plot. (KNORR 123)

• N1.2*	70 1	1 1	986 170 0	505Z	27 11.1	1N 70	00.38W	corrD	: 5400m
PRESS	TEMP	SALIN	SIGMA-t	POTEMP	POTDEN	BR-V	DYNHGT	POTGRD	SSPEED
ther		psu	+g/m##3	°C	kg/m##3	cph	d∨n m	m ^O C/db	m/s
			24.056	26.672	24.038	0.00	0.0000	0.00	1540.1
	.5.577	36.611		26.668		-3.70	.0147	-15.35	1540.1
· .	.5.559	36.614 36.612	24.060 24.062	26.655	24.042 24.044	3.67	.0297	12.05	1540.1
	25.558 25.298		24.162	26.284	24.145	8.66	.0532	101.11	1539.4
, f		36.588		25.214					
-	25.218	36.573	24.483	24.906	24.467	17.36	.0678	271.91 72.25	1536.9 1536.4
. 6	24 912 24 190	36.631	24.621 24.669	24.774	24.605 24.654	8.85 5.45	.0884 .1017	22.72	1536.1
	4.474	36.643						9.98	
ີສ. • າ.		36.640	24.760	24.466	24.745	3.10	.1211		1535.5
	24,229	36.644	24.837 24.940	24.218 23.937	24.823	3.94	.1657 .2147	34.44 3.46	1575.1 1534.7
56.	27, 951	35.571		23.744	24.928	4.01			
•	27.750	36.666	24.993		24.981	4.40	. 2451	21.06	1534.4
	27.158	ີວ. ວ 5 ົ	25.155	23.147	25.145	4.62	.3156	34.42	1533.3
25.	22.516	6.646	25.340	22.490	25.331	6.05	.3877	47.04	1572.1
	21.4.4	5.010	25.630	21.375	25.623	7.71	. 4498	69.78	1529.6
	. 481	. o. o51	25.909	20.443	25.904	2.57	.5635	23.30	1528.0
	19.037	36.580	26.184	19.191	26.181	2.44	. 6659	8.57	1525.3
	19.405	76.503	26.338	18.352	26.337	2.71	.7596	9.68	1523.6
50.	18.195	16.505	26.392	18.134	26.393	1.02	.8471	2.69	1523.9
4 14 .	17.862	76.480	26.457	17.793	26.459	2.02	.9339	8.22	1523.7
45	17.428	36.421	26.518	17.351	26.522	1.86	1.0185	9.12	1523.2
- ·	16.871	36.334	26.586	16.787	26.590	1.66	1.1004	5.88	1522.3
	15.215	36.223	26.655	16.126	26.660	3.64	1.1802	37.46	1521.0
45 44	15.182	36.047	26.756	15.088	26.761	3.53	1.2563	32.88	1518.4
550	14.275	35.903	26.844	14,177	26.848	2.50	1.3281	20.01	1516.2
7 7	11.170	75.733	26.944	13.070	26.948	1.72	1.3955	10.11	1513.2
:5 0.	12.199	35.576	27.035	11.998	27.037	2.53	1.4584	22.58	1510.2
Acres.	11.048	35.429	27.119	10.946	27.120	1.65	1.5171	9.31	1507.3
9. a	₹.119	75.217	27.288	9.016	27.286	3.47	1.6231	35.40	1501.7
1 400.	7.519	35.074	27.424	7.416	27.419	3.24	1.7137	25.47	1497.2
1.1783	6.590 5.001	35.083	27.548	6.582	27.542	. 93	1.7915	15	1495.7
1200.	5.801	35.075	27.658	5.691	27.651	2.02	1.8570	7.05	1493.8
1300.	5.292	35.067	27.715	5.177	27.708	1.29	1.9144	5.11	1493.4
1400.	4.942	35.050	27.749	4.820	27.742	1.02	1.9678	4.63	1493.7
1500.	4.626	35.037	27.769	4.498	27.762	. 47	2.0187	2.34	1494
1600.	4.363	35.019	27.784	4.229	27.777	. 28	2.0682	1.38	1494.6
1800.	4.070	35.008	27.807	3.920	27.801	44	2.1644	. 69	1496
2000.	3.809	34.997	27.825	3.644	27.820	. 82	2.2583	. 60	1400
2200.	3. 583	34.987	27.840	3.402	27.836	. 75	2.3502	1.12	1501.4
2400.	3.343	34.973	27.852	3.147	27 .85 0	. 13	2.4403	. 88	1507.
2500.	3.236	34.966	27.857	3.031	27.855	.80	2.4849	1.11	1504
260 0.	3.158	34.961	27.861	2.945	27.859	. 92	2.5292	. 1	15 6
2 8 00.	2.971	34.948	27 .868	2.741	27.867	~.68	2.6170	. 56	; % (P) ~
3000.	2.822	34.940	27.875	2.575	27.876	. 78	2.7037	√ 5.7	: • •
3200.	2.687	34.932	27. 88 1	2.422	27. 882	. 94	2.7 898	1 10	1714 4
3400.	2.565	34.924	27.8 65	2.282	27. 888	. 31	2.8753	45	
3600.	2.471	34.918	27 .888	2.168	27.892	. 54	2.9606	46	! * .
3 80 0.	2.401	34.912	27. 89 0	2.078	27.895	. 83	3.0460	4.1	•
4000.	2.356	34.908	27. 89 0	2.012	27. 89 7	. 74	3.1321	•	• . •
4200.	2.330	34.904	27.8 9 0	1.964	27. 898	. 22	7.2195	. 4	• •
4400.	2.322	34.902	27. 888	1.932	27.899	. 51	1.30 8 6	-	• •
4600.	2.315	34.897	27.8 85	1.901	27.897	. 52	1 .00*	•	•
4800.	2.310	34.894	27.883	1.872	27.897	. 68	7 40.74		• •

MICROCOPY RESOLUTION TEST CHART
NATIONAL HOME AND THE TANGARDS THE A

SOUTH THE STATE OF THE STATE OF

Figure VI-71. CTD Station 12: Plot. (KNORR 123)

KN123	CTD 01	2 1	986 170 2	138Z	27 08.7	9N 69	58.49W	corrD	: 5400m
PRESS	TEMP	SALIN	SIGMA-t	POTEMP	POTDEN	BR-V	DYNHGT	POTGRD	SSPEED
dbar	a _C	psu	kg/m**3	°C	kg/m##3	cph	dyn m	m ^O C/db	m/s
6.	26.848	36.586	-	26.846	23.964	0.00	0.0000	0.00	1540.5
10.	26.822	36.582		26.819		5.59	.0142	37.44	1540.5
14.	26.357	36.546	24.108	26.354	24.091	9.85	.0305	129.08	1539.5
20.	25.784	36.625		25.780	24.331	6.33	.0513	-19.48	1538.3
24.	25.246	36.639		25.240	24.509	13.72	.0660	178.39	1537.1
30.	24.842	36.646		24.836		7,11	.0862	45.15	1536.3
34.	24.777	36.650		24.770	24.661	4.21	.0994	16.90	1536.2
40.	24.394	36.666		24.386	24.789	8.02	.1193	46.93	1535.4
44.	24.289	36.667		24.280	24.822	5.20	.1314	31.49	1535.2
50.	24.096	36.671	24.897	24.085	24.884	4.99	. 1502	27.60	1534.8
54.	24.032	36.667		24.020	24.900	2.63	.1620	14.02	1534.7
60.	23.871	36.662	24.957	23.858	24.944	5.32	. 1805	22.62	1534.4
64.	23.825	36.666		23.812	24.961	3.43	.1928	9.10	1534.4
70.	23.784	36.669		23.770	24.976	2.87	.2101	7.29	1534.4
74.	23.729	36.667		23.713	24,991	2.54	.2227	10.93	1534.3
во.	23.636	36.657		23.619	25.012	3.98	. 2404	19.05	1534.2
84.	23.571	36.661	25.045	23.553	25.034	4.31	. 2523	18.30	1534.1
90.	23.446	36.664	25.084	23.428	25.073	4.58	.2702	22.45	1533.9
94.	23.361	36.669	25.113	23.342	25.102	4.89	.2817	21.36	1533.7
100.	23.263	36.671	25.143	23.242	25.132	4.03	. 2991	19.14	1533.6
104.	23.177	36.668	25.166	23.156	25.155	4.59	.3108	22.14	1533.5
110.	23.052	36.663	25.198	23.030	25.189	3.14	.3270	11.86	1533.2
114.	23.057	36.686	25.215	23.033	25.205	4.19	. 3383	-10.88	1533.3
124.	22.925	36.696	25.261	22.900	25.252	4.54	. 3666	21.75	1533.2
134.	22.505	36.627	25.329	22.478	25.320	4.59	. 3940	28.55	1532.2
144.	22.306	36.672	25.420	22.277	25.412	4.91	. 4208	28.02	1531.9
154.	22.060	36.658		22.030	25.471	3.87	. 4463	28.24	1531.4
164.	21.656	36.637		21.623	25.570	2.24	.4713	11.81	1530.5
174.	21.305	36.596	25.642	21.271	25.636	4.74	. 4956	24.31	1529.7
184.	20.949	36.590	25.736	20.913	25.730	5.96	.5197	41.51	1528.9
194.	20.731	36.404	25.808	20.694	25.802	4.52	.5427	20.52	1528.5

VII. Vertical Current Meter (VCM) Data

VCMs are neutrally buoyant, free-floating instruments which are ballasted to sink to a predetermined depth. While floating at that depth the instrument makes measurements of the vertical velocity relative to itself, of pressure, and of temperature.

Relative vertical current is sensed by an array of vanes mounted axially around the float. Because the float compressibility is less than that of water, vertical motions in the water generate relative vertical flow past the vanes causing the entire float to rotate. This rotation is sensed relative to an internal compass. The sum of the pressure change (float vertical motion) and the rotation of the float (flow relative to the float) is a measure of total vertical water displacement, with a resolution of about 2 cm.

The VCM includes an AMF acoustic release receiver and a release of WHOI design. On command from the ship, or on preset command from an internal timer, the float drops a 900 gm weight and returns to the surface for recovery. A flashing light turns on at release time, and the "ping" rate doubles to confirm release.

Phase One - KNORR 119

A Dual VCM comparison data set was gathered on KNORR 119. The floats were ballasted to 145 and 175m. They were deployed within 30 minutes of each other. The floats were placed in a front and moved along the front staying on the cold side. The floats were tracked for three days before being recovered. Some preliminary data are presented.

Figure VII-1 Schematic of VCM
Figure VII-2 Area 1 Drift Tracks

Figure VII-3 Expanded Scale Drift Tracks of VCM 2 and 4

Table VII-1 VCM Drift Information

Figure VII-4 Displacement Plots from VCM 2 and 4

Phase Three - KNORR 123

During KNORR 123, another pair of VCMs were deployed. Their time series runs for approximately 30 hours. They were ballasted for 190 and 165m. Preliminary data is presented.

Figure VII-5 Area 1 Drift Tracks

Figure VII-6 Expanded Scale Drift Tracks of VCM 2 and 4

Table VII-2 VCM Drift Information

Figure VII-7 Displacement Plots from VCM 2 and 4

Figure VII-1. Schematic Drawing of Vertical Current Meter.

FASINEX Knorr 119 VCM Drift Tracks

Figure VII-2

Figure VII-3. Expanded Scale Drift Tracks of VCM 2 and 4.

(KNORR 119)

(Drift tracks annotated with arrow every six hours.)

Table VII-1: Vertical Current Meter Drift Information (KNORR 119)

KN	1	9

VCM Drop #	Nominal Depth	Data Hours	Start Time (Z)	End Time (Z)	Comment	Deployment Latitude	Position Longitude	Retrieval Latitude	Position Longitude
1	145 m	75.42	2 Feb 86 1900	5 Feb 86 2225	VCH #4	27*40.17'	70°20.17'	27*51.10'	70*10.12'
2	175 m	73.7	2 Feb 86 1935	5 Feb 86 2115	VCH #2	27*40.27'	70°20.02'	27°49.87'	70°07.72'

Figure VII-4. Displacement Plots from VCM 2 and 4.

FASINEX Knorr 123 VCM Drift Tracks

Figure VII-5

Figure VII-6. Expanded Scale Drift Tracks of VMC 2 and 4. (KNORR 123)

(Drift tracks annotated with arrow every six hours.)

Table VII-2: Vertical Current Meter Drift Information (KNORR 123)

KN123

VOM Drop #	Nominal Depth	Data Hours	Start Time (2)	End Time (2)	Comment	Deployment Latitude		Ketrieval Latitude	Position Longitude
1	190 m	41.05	19 June 86 1035	21 June 86 0328	VQ1 #2	27*02.92'	70*00.43	27*14.11*	69*52.71
2	165 m	42.22	19 June 86 1039	21 June 86 0434	VOH #4	27*02.92*	70*00.43'	27*16.31'	69°51.21°

Figure VII-7. Displacement Plots from VCM 2 and 4.

VIII. Real Time Profiler Data

The RTP directly measures vertical velocities as well as horizontal velocities, temperature, and conductivity. Two velocity sensors, consisting of two cosine-response propellor assemblies are mounted at right angles on the RTP with the axis of rotation of one propeller assembly on each sensor oriented vertically. A fin attached to the pressure case that houses the electronics orients the instrument with respect to the mean flow so that the velocity sensors are upstream of the pressure housing. Two vertically oriented propeller assemblies produce redundant vertical velocity measurements. The two horizontally oriented propeller assemblies measure orthogonal components of velocity, which, together with the heading from the compass in the instrument, transformed into the east and north components of horizontal velocity. In addition, the instrument is fitted with an external temperature sensor, a conductivity sensor, a pressure sensor, and two accelerometers that sensed tilt. All other data from the RTP are both recorded internally and transmitted in digital format up the cable every 14 seconds.

Phase One - KNORR 119

RTP stations were taken on both Legs of KNORR 119. Most of the stations consisted of a down and up profile to approximately 300m. On Leg 1, the RTP measured surface water on the warm side of the front moving ENE at 50-70m s $^{-1}$ relative to the water below the seasonal themocline. Figure VIII-3 shows the real time plot of that event.

Figure VIII-1 Schematic of RTP
Figure VIII-2 RTP Station Positions
Table VIII-1 RTP Station Information
Figure VIII-3 RTP Vertical 3-D sticks of Relative Flow
January 17, 1986

Phase Three - KNORR 123

An RTP/CTD intercomparison was completed on KNORR 123. The RTP profiled to 300m, while the CTD remained at 15m. The CTD then profiled to 200m while the RTP remained fixed at 15m. A second profile was made with the RTP and a final profile with the CTD.

Figure VIII-1. Schematic Drawing of Real Time Profiler

FASINEX Knorr 119 RTP Profiles

SEES CHESTONIC COSSISSION CONTRACTOR CHESTOSION

Figure VIII-2. RTP Station Positions

Table VIII-1: Real Time Profiler Station Information (KNORR 119)

KNORK 119 RTP

Station No.	Start Time (Z)	End Time (Z)	Deployment Latitude	Position Longitude	Retrieval i	Position Longitude	Drop Nos.	Max Depth (m)
1	0954 16 Jan	1139 16 Jan	27°00.09' Magnavox	69*40.76' M	26°59.44' SAIL	69°39.12' LORAN	1	300
2	2117 17 Jan	2330 17 Jan	27°04.69'	69*42.51'	27*05.91*	69*44.61*	1 2	270 230
3	0116 18 Jan	1055 18 Jan	26*59.50'	69°43.28'	27*05.43*	69*41.64*	1 2 3	300 300 300
							4 5 6	300 300 264
4	2250 18 Jan	0145 19 Jan	26*58.05'	69*46.82*	27*00.00*	69*46.44*	1 2	243 300
5	0436 19 Jan	0620 19 Jan	27*05.42*	69°39.06'	27°06.44'	69*38.72*	1	300
6	1020 19 Jan	1257 19 Jan	27°18.95'	69°57.66'	27*20.37'	69*56.03'	1 2 3	305 315 47
7	2215 26 Jan	0900 27 Jan	27°00.57'	70*00.52'	27°01.98'	69*56.05'	drifted	across fron
8	0416 30 Jan	0728 30 Jan	27°05.29'	69°55.55'	27*06.50*	69*53.49'	1 2	300 300
9	2040 3 Feb	2223 3 Feb	27*42.84*	70*15.45*	27°43.84'	70*15.10'	1	300
10	1237 4 Feb	1410 4 Feb	27*41.86'	70°17.76'	27*42.79*	70°17.49'	1	300
11	1707 4 Feb	1832 4 Feb	27*59.10'	70*13.68'	27*59.15*	70*13.23'	1	300
12	1904 4 Feb	2043 4 Feb	27°56.48'	70°13.72'	27°56.67°	70°12.43'	1	300
13	2220 4 Feb		27*53.73'	70°13.97'			1	300
14	0027 5 Feb	0158 5 Feb	27*51.20'	70°13.43'	27°51.41'	70°13.52'	1	300
15	0327 5 Feb	0510 5 Feb	27*48.98'	70°13.21'	27*49.71*	70*13.18'	1	300

Figure VIII-3. RTP Vertical Three-Dimensional Sticks of Relative Flow.
(January 17, 1986)
(KNORR 119)

IX. AVHRR Data

Peter Cornillon, URI, utilizing the ATS Data channel received processed satellite imagery during KNORR 119. The NEARSS computer with floppy disk storage held the transmitted data and allowed for advanced processing, including the combination of different images. The system included a hard copy unit, allowing for gray scale display of the sea surface temperature field.

Images were received throughout the two legs of the cruise. The first was received before the ship reached the FASINEX area and showed a frontal region that later was measured with a concentrated XBT survey. Once the front was located with the XBTs, the movement of the front was monitored with the satellite data.

The following is an explanation and a description from Peter Cornillon of the computer system used and the data received on the KNORR.

During KNORR 119, the University of Rhode Island in conjunction with the University of Miami collected all available AVHRR data. The clearest of these images were processed and sent to R/V KNORR for display on the S-100 based NEARSS terminal. The data sent to KNORR are summarized in Table IX-1 and graphically in Figure IX-1. The straight line in the figure corresponds to data received on R/V KNORR the same day that the satellite passed over the area. The distance of the X's above the line corresponds to the delay. After the University of Miami receiving station came on line and after we gained experience in the operation, the delay was in general less than one day. Large X's covering two days correspond to two day composites.

The complete list of AVHRR passes in the University of Miami/URI archive covering the FASINEX area during KNORR 119 is presented in Table IX-2. The NOAA-9 data are preferred for this period as all sensors were operating properly. This is not true of the other TIROS-N series satellites in the listing.

The three images included are from 2-3 January, which pinpointed the front for the extensive XBT survey. The second is from 21-22 January showing the planned positions of 8 of the 9 moorings in and near the central array. At this time, only the first 4 moorings were already set. The third image is from 3 March. During Phase 2, 11 February - 12 March, the major part of the frontal work was done between 28-29 N since the original front had moved to the northwest.

Table IX-1 Imagery Acquired in Miami and sent to KNORR

Table IX-2 Archived KNORR 119 AVHRR Data

Figure IX-1 Day Imagery Availability versus Collection Date.

Figure IX-2 AVHRR Composite Image from 2-3 January 1986

Figure IX-3 AVHRR Composite Image from 21-22 January 1986

Figure IX-4 AVHRR Image from 3 March 1986

Table IX-1: Imagery Acquired in Miami or NESDIS, Processed at URI and Sent to KNORR for Near Real-Time Use

ANNA CESESES. MONNOC. SERVICE SERVICEN RECEIVES

Year Day of Image	Date Available on board Knorr	Acquired From	Quality of Data at 27°N, 70°W				
036CO ^a	2/5	U. Miami	Very clear				
035CO	2/5	Ħ	Partly clear				
034C0	2/5	n	Mostly clear				
033CO	2/2	n	Partly clear				
03200	2/2	n	-				
03118 ^b	2/1	Ħ	Partly clear				
03018	1/30	n	Mostly clear				
02919	1/29	n	Mostly cloudy				
02608	1/29	n	Mostly cloudy				
02418	1/24	n	Partly clear				
022A023 ^c	1/23	n	Mostly clear				
02200	1/23	n	-				
021A022	1/23	n	Very clear				
02118	1/22	n	Partly clear				
018CO	1/20	n	Mostly cloudy				
017CO	1/19	Ħ	Mostly cloudy				
016CO	1/19	n	Partly clear				
015CO	1/18	m	Mostly cloudy				
00719	1/14	NESDIS	Mostly cloudy				
00706	1/11	11	Mostly clear				
004A005	1/9	11	Mostly clear				
002A003	1/7	Ħ	Very clear				

a CO means composited from 2 or more images on the given day.

Two digits following the year day are the hour.

C A means composited from 2 or more images on the 2 days shown.

Table IX-2: AVHRR Data in the University of Miami / University of Rhode Island
Archive for KNORR 119

	NOAA-9										
DAY	HH:MM:SS										
007	06:36:30	007	17:59:58	007	19:41:45	008	08:05:12	008	17:49:52		
008	19:31:19	009	07:53:55	009	17:39:48	009	19:20:26	010	07:42:38		
010	17:29:47	010	19:08:53	011	07:31:55	011	18:57:33	012	18:47:09		
013	07:11:16	014	18:24:43	015	06:49:10	015	08:31:54	015	18:14:25		
015	19:55:58	016	06:39:07	016	08:21:05	016	18:04:09	016	19:45:53		
017	06:28:21	017	08:09:40	017	17:54:10	017	19:35:37	018	07:57:59		
018	17:44:02	018	19:24:37	019	07:46:33	019	17:33:43	019	19:13:32		
020	07:35:53	020	19:01:33	021	07:25:59	021	18:50:10	022	07:14:38		
022	18:39:38	023	07:05:50	023	18:29:40	024	06:53:35	024	18:18:42		
024	20:00:13	025	06:43:28	025	18:08:37	025	19:50:18	026	06:33:00		
026	08:14:36	026	17:58:27	026	19:40:03	027	08:03:05	027	17:48:19		
027	19:29:10	028	07:51:45	028	17:38:08	028	19:18:37	029	07:40:21		
029	17:27:59	029	19:06:29	030	07:29:51	030	18:54:31	031	07:19:00		
031	18:44:05	032	07:08:52	032	18:33:29	033	06:57:55	033	18:23:01		
034	06:47:27	034	18:12:45	034	19:54:23	035	06:37:00	035	08:18:58		
035	18:02:30	035	19:44:09	036	06:26:59	036	08:07:30	036	17:52:19		
036	19:33:48	037	07:55:51	037	17:42:15	037	19:22:56	038	07:44:45		
038	17:32:07	038	19:11:24	039	07:34:25	039	17:22:10	039	18:59:45		
040	07:23:26	040	18:48:26	041	07:12:50	041	18:38:20	042	07:02:17		
042	18:27:22	043	06:51:47	043	18:17:15	043	19:58:35	044	06:41:17		
044	08:24:00	044	18:06:44	044	19:48:25						

Table IX-2 (continued)

					NOAA-7				
DAY	HH:MM:SS								
010	10:10:06	011	09:56:52	012	09:44:20	012	21:09:15	013	09:32:20
013	20:57:03	018	10:10:38	019	09:57:19	020	09:44:50	021	09:33:21
026	10:12:06	028	21:10:50	033	10:26:03	034	10:12:22	035	09:59:10
036	09:46:37	041	10:26:55	043	10:00:12	044	09:47:27		

NIA		•	•
NO	A	А	C

									
DAY	HH:MM:SS	DAY	HH:MM:SS	DAY	HH:MM:SS	DAY	HH:MM:SS	DAY	HH:MM:SS
007	11:21:00	008	10:57:21	009	10:34:13	009	12:14:10	009	23:33:33
010	11:48:32	010	23:09:19	011	11:25:13	012	11:01:05	013	00:00:34
013	10:37:38	013	12:18:09	013	23:37:11	014	11:52:16	014	23:11:53
016	11:04:18	017	00:06:16	017	10:40:43	017	12:21:44	017	23:40:25
018	11:55:50	018	23:15:30	019	11:31:33	020	11:07:59	021	00:07:15
021	10:44:47	021	12:26:03	021	23:44:17	022	11:59:46	022	23:20:09
024	11:11:26	025	10:48:04	025	12:29:41	025	23:48:09	026	12:04:04
026	23:24:07	027	11:39:47	028	11:15:45	029	10:51:26	029	12:32:43
029	23:51:22	030	12:07:55	030	23:27:24	031	11:42:32	031	23:01:19
032	11:18:42	033	10:54:58	033	23:54:56	034	12:11:52	034	23:31:17
035	11:46:08	035	23:04:52	036	11:22:15	037	10:58:30	037	23:58:23
038	10:35:08	038	12:15:41	038	23:34:53	039	11:49:49	039	23:09:30
040	11:25:50	041	11:02:12	042	00:01:45	042	10:39:32	042	12:19:33
042	23:38:22	043	11:53:38	043	23:13:25	044	11:29:24		

YEAR DAY IMAGE AVAILABLE ON KNORR

Figure IX-1. Day imagery available on KNORR versus day imagery collected by satellite. Diagonal line corresponds to data being available on the day it was acquired. Large X's correspond to composites of images from both days.

STATE THE RESIDENCE TO STATE AND ADDRESS OF THE PROPERTY OF TH

Figure IX-2. AVHRR Composite Image from 2-3 January 1986.

Figure IX-3. AVHRR Composite Image from 21-22 January 1986.

Historica 18-4. AVHER Image from 3 March 1986.

X. ARGOS Data

The MRs (Meteorological Recorders) on the five FASINEX surface buoys telemetered data using ARGOS, a system consisting of two TIROS satellites in orbit, equipped with data collection systems and leveral ground data processing centers. Each buoy transmitted data to the satellites, which was then transmitted to a telemetry station. The data were processed and available on line or stored for monthly transmittal. The following plots are from the 9 track tapes. The information from these backs was monitored daily to check that they remained on station and to review the variability of certain meteorological parameters in the area of the array.

The time series runs from 20 January to 16 June 1986. This time base begins when correctly calibrated data is logged to tape. The data have been edited and averaged to 1 point per pass. The time base is in real Julian days. Each of the variables is plotted separately. The overplots show the variation between the buoys. Buoy motion plots are also displayed. Even with some spike removal and the averaging, questionable positions still remain in the data set. Since this is just an overview of the motion of the buoys, further editing is unlikely. (GPS anchor position is marked by a solid dot on the watch circle plots.)

The transmitter on buoy F10 worked only marginally. A secondary transmitter was mounted on the buoy which transmitted only position and was not archived to tape.

Figure X-1 Sea Temperature Overplots from the Buoys Figure X-2 Air Temperature Overplots from the Buoys Figure X-3 Barometric Pressure Overplots from the Buoys Figure X-4 Relative Humidity Overplots from the Buoys Figure X-5 Wind Speed Overplots from the Buoys Wind Direction Overplots from the Buoys Figure X-6 Figure X-7 Tension Overplots from the Buoys Surface Buoys Movement with Drifting F10 Figure X-8 Figure X-9 F2 Watch Circle Figure X-10 F4 Watch Circle Figure X-11 F6 Watch Circle F8 Watch Circle Figure X-12 F10 Watch Circle Figure X-13

Figure X-1. Sea Temperature Overplots from the Buoys.

Figure X-2. Air Temperature Overplots from the Buoys.

STATES AND THE STATES OF THE STATES AND THE STATES OF THE

Figure X-3. Barometric Pressure Overplots from the Buoys

Figure X-4. Relative Humidity Overplots from the Buoys.

Figure X-5. Wind Speed Overplots from the Buoys

Figure X-6. Wind Direction Overplots from the Buoys.

Figure X-7. Tension Overplots from the Buoys.

FASINEX Surface Moorings with Drifting F10

Figure X-8. Surface Buoys Movement with Drifting F10.

reverse arrested arrested between secons and transcription and the secons of the second of the secon

Figure X-9

FASINEX Buoy F4 Watch Circle

Figure X-10

FASINEX Buoy F6 Watch Circle

Figure X-11

ACTION OF THE PROPERTY OF THE

FASINEX Buoy F8 Wotch Circle

Figure X-12

Figure X-13

Acknowledgements

The work done on these cruises was successful, in part, due to the cooperation and skill of the crew of R/V KNORR. Funding for the work summarized here was provided by the Office of Naval Research, Contract N00014-84-C-0134 (R. Weller), Contract N00014-86-K-0325 (C. Eriksen), and Contract N00014-81-C-0062 (P. Cornillon).

The people in the WHOI Buoy Group, especially Rick Trask, and Ocean Engineering Department have contributed significantly to this project. We thank them for their time and their committment in making the field program a success.

We thank Paul Eden who assisted us throughout the cruises with the Applied Technology Satellite (ATS) system. His help and input, almost daily, allowed for a successful communication link for KNORR during the Phases One and Three mooring cruises and between the ships and the Bermuda Biological Station office, where the aircraft scientists were able to pass their flight schedules and observations to the ships during Phase Two.

Our thanks to Mary Ann Lucas for her assistance with many tedious aspects of the typing, editing and data processing of the data sets for all the field work included in this document. We also thank Barbara Gaffron for her help with the final preparation of this document.

Appendix A: FASINEX Julian Day Conversion Table

The FASINEX field program began in January 1986 and concluded late in June 1986. Several of the data sets have a Julian Day time base. This table is a conversion table from calendar days to Julian Days.

Jan 1	-	001	Feb 1	-	032	Mar 1	~	060	Apr 1	-	091	May 1	-	121	Jun 1	_	152
2	-	002	2	-	033	2	-	061	2	-	092	2	-	122	2	-	153
3	-	003	3	-	034	3	-	062	3	-	093	3	-	123	3	~	154
4	-	004	4	-	035	4	-	063	4	-	094	4	-	124	4	-	155
5	-	005	5	-	036	5	-	064	5	-	095	5	-	125	5	-	156
6	-	006	6	-	037	6	-	065	6	-	096	6	-	126	6	-	157
7	-	007	7	-	038	7	-	066	7	-	097	7	-	127	7	-	158
8	-	008	8	-	039	8	-	067	8	-	098	8	-	128	8	-	159
9	-	009	9	-	040	9	-	068	9	-	099	9	-	129	9	_	160
10	~	010	10	-	041	10	-	069	10	-	100	10	-	130	10	-	161
11	-	011	11	-	042	11	-	070	11	-	101	11	-	131	11	-	162
12	-	012	12	-	043	12	-	071	12	-	102	12	-	132	12	-	163
13	-	013	13	-	044	13	-	072	13	-	103	13	-	133	13	-	164
14	-	014	14	-	045	14	-	073	14	-	104	14	-	134	14	-	165
15	-	015	15	-	046	15	-	074	15	-	105	15	-	135	15	-	166
16	-	016	16	-	047	16	-	075	16	-	106	16	-	136	16	-	167
17	-	017	17	-	048	17	-	076	17	-	107	17	-	137	17	-	168
18	-	018	18	-	049	18	-	077	18	-	108	18	-	138	18	-	169
19	-	019	19	-	050	19	-	078	19	-	109	19	-	139	19	-	170
20	-	020	20	-	051	20	-	079	20	-	110	20	-	140	20	-	171
21	-	021	21	-	052	21	-	080	21	•	111	21	-	141	21	-	172
22	-	022	22	-	053	22	-	081	22	-	112	22	-	142	22	-	173
23	-	023	23	-	054	23	-	082	23	-	113	23	- '	143	23	-	174
24	-	024	24	-	055	24	-	083	24	-	114	24	-	144	24	-	175
25	-	025	25	-	056	25	-	084	25	-	115	25	-	145	25	-	176
26	-	026	26	-	057	26	-	085	26	-	116	26	-	146	26	-	177
27	-	027	27	-	058	27	-	086	27	-	117	27	-	147	27	-	178
28	-	028	28	-	059	28	-	087	28	-	118	28	-	148	28	-	179
29	-	029				29	-	880	29	-	119	29	-	149	29	-	180
30	-	030				30	-	089	30	-	120	30	-	150	30	-	181
31	-	031				31	-	090				31	_	151			

STATE OF THE PROPERTY OF STATES OF S

Appendix B: Mooring Designations

The FASINEX moorings have several different designations. FASINEX identified each mooring with a letter and number. There was a WHOI Buoy Group designation. There was a buoy identifier. And there was an ARGOS transmitter number. Of the eleven moorings, there were three different types of mooring. The following table summarizes the above-mentioned information:

DESIGNATION											
FASINEX	F 1	72	73	74	P5	76	₹7	78	79	F10	F12
WHOI Mooring	829	845	-	846	-	847	-	848	-	849	830
8UOY Identifier		A	POH-1	с	PCH-2	•	PCH-3	E	POI-4	D	
ARGOS #		6430		6432		6431	İ	6434		6433	
Hooring Type	subsurface	surface	near- surface	surface	near- surface	surface	near- surface	surface	mear- surface	surface	subsurface
Latitude Longitude	27*58.90 69*58.80	27°18.95 70°05.86	27°05.34 69°42.75	27°05.35 69°50.30	26°58.58 69°50.40	27°12.59 69°58.48	27°12.53 69°51.03	26°58.66 69°43.19	27°05.45 69°58.33	27°19.63 69°42.52	25°29.10 70°00.70
Deployment	28 Oct 84 2238	15 Jan 86 2020	17 Jan 86 1811	16 Jan 86 1947	18 Jan 86 1840	26 Jan 86 1715	28 Jan 86 1852	27 Jan 86 1748	29 Jan 86 1806	1 Feb 86 1801	29 Oct 84 1724
Recovery	18 Jun 86 1721	14 Jun 86 0950	16 Jun 86 1352	15 Jun 86 2133	16 Jun 86 2011	14 Jun 86 2151	17 Jun 86 1106	15 Jun 86 1333	Lost	10 Jun 86 0545	13 Jun 86 1957
Deta Days	598	150	150	150	149	139	139	139	0	103	592
Instrument Depths		10 20 30 40 80 120	20	met 10 20 30 40 80 120	20	met 10 20 30 40 80 120	20	met 10 20 30 40 80 120	20	10 20 30 40 80 120	
	225 325 550 625 700 1100 4100	700	200	700 1000 4000	200	700	200	700 1000 4000	200	700	225 325 550 625 700 1100 4100

All times are UTC.

DOCUMENT LIBRARY

November 21, 1986

Distribution List for Technical Report Exchange

Institute of Marine Sciences Library University of Alaska O'Neill Building 905 Koyukuk Ave., North Fairbanks, AK

Attn: Stella Sanchez-Wade **Documents Section** Scripps Institution of Oceanography Library, Mail Code C-075C La Jolla, CA 92093

Hancock Library of Biology & Oceanography Alan Hancock Laboratory University of Southern California University Park Los Angeles, CA 90089-0371

Gifts & Exchanges Library Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, NS, B2Y 4A2, CANADA

Office of the International Ice Patrol c/o Coast Guard R & D Center Avery Point Groton, CT 06340

Library Physical Oceanographic Laboratory Nova University 8000 N. Ocean Drive Dania, FL 33304

NOAA/EDIS Miami Library Center 4301 Rickenbacker Causeway Miami, FL 33149

Library Skidaway Institute of Oceanography P.O. Box 13687 Savannah, GA 31416

Institute of Geophysics University of Hawaii Library Room 252 2525 Correa Road Honolulu, HI 96822

Library Chesapeake Bay Institute 4800 Atwell Road Shady Side, MD 20876

MIT Libraries Serial Journal Room 14E-210 Cambridge, MA 02139

Director, Ralph M. Parsons Laboratory Room 48-311 MIT Cambridge, MA 02139

Marine Resources Information Center Bldg. E38-320 MIT Cambridge, MA 02139

Library Lamont-Doherty Geological Observatory Colombia University Palisades, NY 10964

MANOSONE PROGRAMMENDA BERNAMA PERSONAN PERSONAN PERSONAN PERSONAN PERSONAN PERSONAN PERSONAN PERSONAN PERSONAN

Library Serials Department Oregon State University Corvallis, OR 97331

Pell Marine Science Library University of Rhode Island Narragansett Bay Campus Narragansett, RI 02882

Working Collection Texas A&M University Dept. of Oceanography College Station, TX 77843

Library Virginia Institute of Marine Science Gloucester Point, VA 23062

Fisheries-Oceanography Library 151 Oceanography Teaching Bldg. University of Washington Seattle, WA 98195

Library R.S.M.A.S. University of Miami 4600 Rickenbacker Causeway Miami, FL 33149

Maury Oceanographic Library **Naval Oceanographic Office** Bay St. Louis NSTL, MS 39522-5001 ATTN: Code 4601

0273-101 REPORT DO	CUMENTATION	1. REPORT NO.	2		3. Recipient's Accession No.
FASINE Summar	rme X Frontal Air ies for PASIN	WHOI-86-35 Sea Interaction Experime EX Mooring Cruise ORR Cruise 119 Phase Thr	•		
Nancy J	. Pennington	Robert A. Weller			8. Performing Organization Rept. No WHOI-86-35
). Performing C	rganization Name a	nd Address			10, Project/Task/Werk Unit No.
	lole Oceanogi Iole, Massach	raphic Institution usetts 02543			11. Contract(C) or Grant(G) No. (C) N00014-84-C-0134, (G) NR 083-400
12. Sponsoring	Organization Name :	and Address	·		13. Type of Report & Period Covered
Office o	f Naval Rese	arch			Technical Report
i6. Abstract (Li	response oceanic response the ass began in	front in the subtrop of the lower atmosp sociated two-way intera in the winter (January 1	to atmospical converted to the converted	pheric forcingence zone (at vicinity (ween ocean luded in the ruary and Mar	ing in the vicinity of a southwest of Bermuda, the to the oceanic front, an and atmosphere. FASINE early summer (June 1986 rch. The experiment too
	climato	in the vicinity of 270N logically common. asurements were made fr			
	report One, t array Phase instrum measure	summarizes the mooring he deployment cruise, of surface and Profili Three, the recovery cruientation that had be ments were made in this carried out and the	deployment located a ing Curren ise returne ien on st ie frontal ie underway	and recover frontal feat t Meters mo d to the FAS ation for region du data collec	y cruises. FASINEX Phas ure, mapped it and set a orings across the front.

17. Decument Analysis a. Descriptore

summarized in this report.

- 1. air-sea interaction
- 2. FASINEX

- 3. oceanic front
- b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Avoilability Class (This Report)
UNCLASSIFIED
23 9

Approved for publication; distribution unlimited.

21. No. of Pages
UNCLASSIFIED
23 9

22. Price

(See ANSI-230.16)

See Instructions on Revers

OPTIONAL FORM 272 (4-77) (Formerly HTIS-35) Department of Commerce