μA7800 SERIES

THREE - TERMINAL POSITIVE VOLTAGE REGULATORS

FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION — The μ A7800 series of Three-Terminal Positive Voltage Regulators are constructed using the Fairchild Planar* epitaxial process. These regulators employ internal current limiting, thermal shutdown and safe-area compensation making them essentially blow-out proof. If adequate heat sinking is provided, they can deliver over 1A output current. They are intended as fixed-voltage regulators in a wide range of applications including local, on-card regulation for elimination of noise and distribution problems associated with single point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and as the power pass element in precision regulators.

- OUTPUT CURRENT IN EXCESS OF 1 AMP
- NO EXTERNAL COMPONENTS
- INTERNAL THERMAL OVERLOAD PROTECTION
- INTERNAL SHORT CIRCUIT CURRENT LIMITING
- OUTPUT TRANSISTOR SAFE-AREA COMPENSATION
- AVAILABLE IN THE PLASTIC TO-220 AND THE METAL TO-3 PACKAGE

ABSOLUTE MAXIMUM RATINGS

Input Voltage (5 V through 18 V)
(24 V)

Internal Power Dissipation (Note 1)

Storage Temperature Range
Operating Junction Temperature Range
Lead Temperature (Soldering, 60 second time limit) TO-3 Package
(Soldering, 10 second time limit) TO-220 Package
230° C

VOLTAGE RANGE μ**A7805** 5 **V** μ**A7806** 6 **V μΑ7808** 8 V **μA7812** 12 V μ**A7815** 15 V **μΑ7818** 18 V μ**Α7824** 24 V **CONNECTION DIAGRAMS** TO-220 PLASTIC POWER PACKAGE (TOP VIEW) **ORDER PART NOS:** UGH7805393 UGH7806393 UGH7808393 UGH7812393 UGH7815393 UGH7818393 UGH7824393 **TO-3 PACKAGE** (TOP VIEW) OUTPUT \subset **ORDER PART NOS:** UGJ7805393 UGJ7806393

UGJ7808393

UGJ7812393 UGJ7815393 UGJ7818393

UGJ7824393

Note on following page.

FAIRCHILD LINEAR INTEGRATED CIRCUITS • µA7800 SERIES

μΑ7805

 $\textbf{ELECTRICAL CHARACTERISTICS} \; (\text{V}_{\mbox{IN}} = 10 \; \text{V}, \\ \text{I}_{\mbox{OUT}} = 500 \; \text{mA}, \\ \text{0}^{\circ} \text{C} < \text{T}_{\mbox{J}} < 125^{\circ} \text{C}, \\ \text{unless otherwise specified}) \; \text{T}_{\mbox{OUT}} = 100 \; \text{C} \; \text$

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Output Voltage	T _J = 25° C	4.8	5.0	5.2	V
Line Regulation	$T_J = 25^{\circ} C$, $I_{OUT} = 100 \text{ mA}$				
	$7 \text{ V} \leq \text{V}_{1N} \leq 25 \text{ V}$		7.0	50	mV
	8 V ≤ V _{IN} ≤ 12 V		2.0	25	mV
	$T_J = 25^{\circ} C$, $I_{OUT} = 500 \text{ mA}$				
	7 V ≤ V _{IN} ≤ 25 V		35	100	mV
	8 V ≤ V _{IN} ≤ 12 V		8.0	50	mV
Load Regulation	$T_J = 25^{\circ} C$, 5 mA $\leq I_{OUT} \leq 1.5 A$		11	100	mV
	250 mA ≤ I _{OUT} ≤ 750 mA		4.0	50	mV
Output Voltage	$7 \text{ V} \leq \text{V}_{\text{IN}} \leq 20 \text{ V}, 5 \text{ mA} \leq \text{I}_{\text{OUT}} \leq 1.0 \text{ A}$	4.75		5.25	V
	p ≤ 15 W				
Quiescent Current	$T_J = 25^{\circ}C$		4.3	8.0	mΑ
Quiescent Current Change	$7 \text{ V} \leq \text{V}_{1N} \leq 25 \text{ V}$			1.3	mΑ
	5 mA ≤ I _{OUT} ≤ 1.5 A			0.5	mΑ
Output Noise Voltage	$T_A = 25^{\circ}C$, 10 Hz $\leq f \leq 100$ kHz		40		μV
Long Term Stability				20	mV
Ripple Rejection	I _{OUT} = 20 mA, f = 120 Hz		70		dB
Dropout Voltage	$I_{OUT} = 1A$, $T_{J} = 25^{\circ}C$		2.0		V
Output Resistance			30		mΩ
Short Circuit Current Limit	T _J = 25°C		750		mA
Average Temperature Coefficient of Output Voltage	$I_{OUT} = 5 \text{ mA}, 0^{\circ} \text{C} \leq T_{A} \leq 125^{\circ} \text{C}$		-1.3		mV/°C

μΑ7806

 $\textbf{ELECTRICAL CHARACTERISTICS} \text{ (V}_{\mbox{IN}} = 11 \text{ V, I}_{\mbox{OUT}} = 500 \text{ mA, } 0^{\circ} \mbox{C} < T_{\mbox{J}} < 125^{\circ} \mbox{C, unless otherwise specified)}$

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Output Voltage	T _J = 25° C	5.75	6.0	6.25	V
Line Regulation	$T_J = 25^{\circ} C$, $I_{OUT} = 100 \text{ mA}$				
	8 V ≤ V _{IN} ≤ 25 V		9.0	60	mV
	9 V ≤ V _{IN} ≤ 13 V		3.0	30	mV
	$T_J = 25^{\circ} C$, $I_{OUT} = 500 \text{ mA}$				
	8 V ≤ V _{IN} ≤ 25 V		43	120	mV
	9 V ≤ V _{IN} ≤ 13 V		10	60	mV
Load Regulation	$T_J = 25^{\circ}C$, 5 mA $\leq I_{OUT} \leq 1.5$ A		13	120	mV
	$250 \text{ mA} \leq I_{OUT} \leq 750 \text{ mA}$		5.0	60	mV
Output Voltage	8 V \leq V _{IN} \leq 21 V, 5 mA \leq I _{OUT} \leq 1.0 A p \leq 15 W	5.7		6.3	. V
Quiescent Current	$T_J = 25^{\circ}C$		4.3	8.0	mA
Quiescent Current Change	8 V ≤ V _{IN} ≤ 25 V			1.3	mA
	5 mA ≤ I _{OUT} ≤ 1.5 A			0.5	mA
Output Noise Voltage	$T_A = 25^{\circ}C$, 10 Hz $\leq f \leq 100$ kHz		45		μV
Long Term Stability				24	mV
Ripple Rejection	I _{OUT} = 20 mA, f = 120 Hz		65		dB
Dropout Voltage	$I_{OUT} = 1 A$, $T_{J} = 25^{\circ}C$		2.0		V
Output Resistance	I _{OUT} = 500 mA		35		$m\Omega$
Short Circuit Current Limit	$T_J = 25^{\circ}C$		550		mA
Average Temperature Coefficient of Output Voltage	$I_{OUT} = 5 \text{ mA}, 0^{\circ} \text{C} \leqslant T_{A} \leqslant 125^{\circ} \text{C}$		-1.0		mV/°C

NOTE 1. Thermal resistance without a heat sink for junction to case temperature is 4.0°C/W for TO-3 package, 2.0°C/W for TO-220 package; ambient to case temperature is 35°C/W for TO-3 package and 50°C/W for TO-220 package.

FAIRCHILD LINEAR INTEGRATED CIRCUITS • μ A7800 SERIES

μΑ7808

 $\textbf{ELECTRICAL CHARACTERISTICS} \text{ (V}_{\mbox{IN}} = 14 \text{ V, I}_{\mbox{OUT}} = 500 \text{ mA, 0}^{\circ} \text{C} < \text{T}_{\mbox{J}} < 125^{\circ} \text{C, unless otherwise specified)}$

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Output Voltage	T _J = 25°C	7.7	8.0	8.3	V
Line Regulation	$T_J = 25^{\circ} C$, $I_{OUT} = 100 \text{ mA}$				
	10.5 V ≤ V _{IN} ≤ 25 V		12	80	mV
	11 V ≤ V _{IN} ≤ 17 V		5.0	40	mV
	$T_J = 25^{\circ}C$, $I_{OUT} = 500 \text{ mA}$				
	10.5 V ≤ V _{IN} ≤ 25 V		50	160	mV
	11 V ≤ V _{IN} ≤ 17 V		22	80	mV
Load Regulation	$T_J = 25^{\circ}C$, 5 mA $\leq I_{OUT} \leq 1.5$ A		26	160	mV
	250 mA ≤ I _{OUT} ≤ 750 mA		9.0	80	mV
Output Voltage	10.5 V \leq V _{IN} \leq 23 V, 5 mA \leq I _{OUT} \leq 1.0 A,	7.6		8.4	V
	p ≤ 15 W				
Quiescent Current	$T_J = 25^{\circ}C$		4.3	8.0	mA
Quiescent Current Change	$10.5 \text{ V} \leq \text{V}_{1N} \leq 25 \text{ V}$			1.0	mA
	$5 \text{ mA} \leq I_{OUT} \leq 1.5 \text{ A}$			0.5	mA
Output Noise Voltage	$T_A = 25^{\circ}C$, 10 Hz \leq f \leq 100 kHz		52		μV
Long Term Stability				32	mV
Ripple Rejection	I _{OUT} = 20 mA, f = 120 Hz		62		dB
Dropout Voltage	$I_{OUT} = 1 A, T_{J} = 25^{\circ} C$		2.0		V
Output Resistance	I _{OUT} = 500 mA		40		$m\Omega$
Short Circuit Current Limit	$T_J = 25^{\circ}C$		450		mA
Average Temperature Coefficient of Output Voltage	$I_{OUT} = 5 \text{ mA}, 0^{\circ} \text{ C} \leq T_{A} \leq 125^{\circ} \text{ C}$		-1.0		mV/°C

μA7812

 $\textbf{ELECTRICAL CHARACTERISTICS} \; (\text{V}_{\text{IN}} = 19 \; \text{V}, \text{I}_{\text{OUT}} = 500 \; \text{mA}, \\ 0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}, \\ \text{unless otherwise specified}) \; \text{T}_{\text{UN}} = 100 \; \text{M}_{\text{UN}} = 100 \; \text{M}_{\text{UN}$

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Output Voltage	T _J = 25° C	11.5	12.0	12.5	
Line Regulation	$T_J = 25^{\circ}C$, $I_{OUT} = 100 \text{ mA}$				
	$14.5 \text{ V} \leq \text{V}_{1\text{N}} \leq 30 \text{ V}$		13	120	mV
	16 V ≤ V _{IN} ≤ 22 V		6.0	60	mV
	$T_J = 25^{\circ} C$, $I_{OUT} = 500 \text{ mA}$				
	$14.5 \text{ V} \le \text{V}_{1N} \le 30 \text{ V}$		55	240	mV
	16 V ≤ V _{IN} ≤ 22 V		24	120	mV
Load Regulation	$T_J = 25^{\circ} C$, 5 mA $\leq I_{OUT} \leq 1.5$ A		46	240	mV
	250 mA ≤ I _{OUT} ≤ 750 mA		17	120	mV
Output Voltage	14.5 V \leq V _{IN} \leq 27 V, 5 mA \leq I _{OUT} \leq 1.0 A,			12.6	V
	p ≤ 15 W				
Quiescent Current	$T_J = 25^{\circ} C$		4.4	8.0	mA
Quiescent Current Change	$14.5 \text{ V} \leq \text{V}_{\text{IN}} \leq 30 \text{ V}$			1.0	mA
	$5 \text{ mA} \leq I_{OUT} \leq 1.5 \text{ A}$			0.5	mA
Output Noise Voltage	$T_A = 25^{\circ}C$, 10 Hz \leq f \leq 100 kHz		75		μV
Long Term Stability				48	mV
Ripple Rejection	IOUT = 20 mA, f = 120 Hz		61		dB
Dropout Voltage	$I_{OUT} = 1 A, T_{J} = 25^{\circ} C$		2.0		V
Output Resistance	$I_{OUT} = 500 \text{ mA}$		75		mΩ
Short Circuit Current Limit	$T_J = 25^{\circ}C$		350		mA
Average Temperature Coefficient of Output Voltage	$I_{OUT} = 5 \text{ mA}, 0^{\circ} \text{C} \leq T_{A} \leq 125^{\circ} \text{C}$		-2.0		mV/°C

FAIRCHILD LINEAR INTEGRATED CIRCUITS • μ A7800 SERIES

μΑ7815

 $\textbf{ELECTRICAL CHARACTERISTICS} \text{ (V}_{\mbox{IN}} = \mbox{,} 23 \text{ V, I}_{\mbox{OUT}} = 500 \text{ mA, 0}^{\circ} \text{C} < T_{\mbox{J}} < 125^{\circ} \text{C, unless otherwise specified)}$

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Output Voltage	T _J = 25° C	14.4	15.0	15.6	v
Line Regulation	$T_J = 25^{\circ}C$, $I_{OUT} = 100 \text{ mA}$				
	$17.5 \text{ V} \leq \text{V}_{1N} \leq 30 \text{ V}$		14	150	mV
	20 V ≤ V _{IN} ≤ 26 V		6.0	75	mV
	$T_J = 25^{\circ} C$, $I_{OUT} = 500 \text{ mA}$				
	$17.5 \text{ V} \leq \text{V}_{\text{IN}} \leq 30 \text{ V}$		57	300	mV
	20 V ≤ V _{IN} ≤ 26 V		27	150	mV
Load Regulation	$T_J = 25^{\circ} C$, 5 mA $\leq I_{OUT} \leq 1.5$ A		68	300	mV
	250 mA ≤ I _{OUT} ≤ 750 mA		25	150	mV
Output Voltage	17.5 $V \le V_{IN} \le 30 \text{ V}$, 5 mA $\le I_{OUT} \le 1.0 \text{ A}$,	14.25		15.75	V
	p ≤ 15 W				
Quiescent Current	$T_J = 25^{\circ}C$		4.4	8.0	mA
Quiescent Current Change	$17.5 \text{ V} \le \text{V}_{1N} \le 30 \text{ V}$			1.0	mA
	5 mA ≤ I _{OUT} ≤ 1.5 A			0.5	mA
Output Noise Voltage	$T_A = 25^{\circ}C$, 10 Hz \leq f \leq 100 kHz		90		μV
Long Term Stability				60	mV
Ripple Rejection	I _{OUT} = 20 mA, f = 120 Hz		60		dB
Dropout Voltage	I _{OUT} = 1 A, T _J = 25°C		2.0		V
Output Resistance	I _{OUT} = 500 mA		95		$m\Omega$
Short Circuit Current Limit	$T_J = 25^{\circ}C$		230		mA
Average Temperature Coefficient of Output Voltage	$I_{OUT} = 5 \text{ mA}, 0^{\circ} \text{C} \leqslant T_{A} \leqslant 125^{\circ} \text{C}$		-2.0		mV/°C

μA7818

 $\textbf{ELECTRICAL CHARACTERISTICS} \; (\text{V}_{\mbox{1N}} = 27 \; \text{V}, \\ \text{I}_{\mbox{OUT}} = 500 \; \text{mA}, \\ \text{0}^{\circ} \text{C} < \text{T}_{\mbox{J}} < 125^{\circ} \text{C}, \\ \text{unless otherwise specified}) \; \text{T}_{\mbox{N}} = 125^{\circ} \text{C}, \\ \text{C}_{\mbox{N}} = 125^{\circ}$

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Output Voltage	T _J = 25°C	17.3	18.0	18.7	V
Line Regulation	$T_J = 25^{\circ}C$, $I_{OUT} = 100 \text{ mA}$				
	21 V ≤ V _{IN} ≤ 33 V		25	180	m۷
	$24 \text{ V} \leq \text{V}_{1N} \leq 30 \text{ V}$		10	90	m۷
	$T_J = 25^{\circ} C$, $I_{OUT} = 500 \text{ mA}$				
	21 V ≤ V _{IN} ≤ 33 V		90	360	m۷
·	24 V ≤ V _{IN} ≤ 30 V		50	180	mV
Load Regulation	$T_J = 25^{\circ}C$, 5 mA $\leq I_{OUT} \leq 1.0$ A		110	360	mV
	250 mA ≤ I _{OUT} ≤ 750 mA		55	180	mV
Output Voltage	21 V \leq V _{IN} \leq 33 V, 5 mA \leq I _{OUT} \leq 1.0 A	17.1		18.9	V
	p ≤ 15 W				
Quiescent Current	$T_J = 25^{\circ} C$		4.5	8.0	mA
Quiescent Current Change	21 V ≤ V _{IN} ≤ 33 V			1.0	mA
	5 mA ≤ I _{OUT} ≤ 1.0 A			0.5	mA
Output Noise Voltage	$T_A = 25^{\circ}C$, 10 Hz $\leq f \leq 100 \text{ kHz}$		110		__ μV
Long Term Stability				72	mV
Ripple Rejection	I _{OUT} = 20 mA, f = 120 Hz		59		dB
Dropout Voltage	$I_{OUT} = 1 A$, $T_{J} = 25^{\circ} C$		2.0		V
Output Resistance	I _{OUT} = 500 mA		110		$m\Omega$
Short Circuit Current Limit	T _J = 25°C		200		mA
Average Temperature Coefficient of Output Voltage	$I_{OUT} = 5 \text{ mA}, 0^{\circ}\text{C} \leq T_{A} \leq 125^{\circ}\text{C}$		-1.0		mV/°C

FAIRCHILD LINEAR INTEGRATED CIRCUITS • µA7800 SERIES

μΑ7824

ELECTRICAL CHARACTERISTICS ($V_{IN} = 33 \text{ V}$, $I_{OUT} = 500 \text{ mA}$, $0^{\circ}\text{C} < T_{J} < 125^{\circ}\text{C}$, unless otherwise specified)

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Output Voltage	T _J = 25°C	23.0	24.0	35.0	V
Line Regulation	$T_J = 25^{\circ} C$, $I_{OUT} = 100 \text{ mA}$				
	27 V ≤ V _{IN} ≤ 38 V		31	240	mV
	30 V ≤ V _{IN} ≤ 36 V		14	120	mV
	$T_J = 25^{\circ} C$, $I_{OUT} = 500 \text{ mA}$				
	27 V ≤ V _{IN} ≤ 38 V		118	480	mV
	30 V ≤ V _{IN} ≤ 36 V		70	240	· mV
Load Regulation	$T_J = 25^{\circ} C$, 5 mA $\leq I_{OUT} \leq 1.0 A$		150	480	mV
	250 mA ≤ I _{OUT} ≤ 750 mA		85	240	mV
Output Voltage	27 V \leq V _{IN} \leq 38 V, 5 mA \leq I _{OUT} \leq 1.0 A p \leq 15 W	22.8		25.2	V
Quiescent Current	$T_J = 25^{\circ}C$		4.6	8.0	mA
Quiescent Current Change	27 V ≤ V _{IN} ≤ 38 V			1.0	mA
	5 mA ≤ I _{OUT} ≤ 1.0 A			0.5	mA
Output Noise Voltage	$T_A = 25^{\circ}C$, 10 Hz $\leq f \leq 100 \text{ kHz}$		170		μV
Long Term Stability				96	mV
Ripple Rejection	I _{OUT} =20 mA, f = 120 Hz		56		dB
Dropout Voltage	$I_{OUT} = 1 A, T_{J} = 25^{\circ} C$		2.0		V
Output Resistance	I _{OUT} = 500 mA		150		$m\Omega$
Short Circuit Current Limit	$T_J = 25^{\circ} C$		150		mA
Average Temperature Coefficient of Output Voltage	$I_{OUT} = 5 \text{ mA}, 0^{\circ}\text{C} \leq T_{A} \leq 125^{\circ}\text{C}$		-1.0		mV/°C

TYPICAL PERFORMANCE CURVES

MAXIMUM AVERAGE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (TO-3 PACKAGE)

PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE

MAXIMUM AVERAGE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (TO-220 PACKAGE)

RIPPLE REJECTION AS A FUNCTION OF FREQUENCY

DROPOUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE

RIPPLE REJECTION AS A FUNCTION OF OUTPUT VOLTAGES

TYPICAL PERFORMANCE CURVES (cont'd)

OUTPUT VOLTAGE
AS A FUNCTION OF JUNCTION TEMPERATURE

QUIESCENT CURRENT
AS A FUNCTION OF TEMPERATURE

OUTPUT IMPEDANCE
AS A FUNCTION OF FREQUENCY

OUTPUT IMPEDANCE AS A FUNCTION OF OUTPUT VOLTAGE

FAIRCHILD LINEAR INTEGRATED CIRCUITS • µA7800 SERIES

APPLICATIONS

- NOTES: *To specify an output voltage, substitute voltage value for "XX".
- [†] Although no output capacitor is needed for stability, it does improve transient response.
- ** Required if regulator is located an appreciable distance from power supply filter.

FIXED OUTPUT REGULATOR

V_{OUT}, 7 V to 20 V V_{IN} - $V_{OUT} \ge 2 V$

ADJUSTABLE OUTPUT REGULATOR - HIGH LINE REGULATION

 ${}^*\mathsf{R}_1$ determines output current.

CURRENT REGULATOR

HIGH CURRENT VOLTAGE REGULATOR