1. Matching Pennies (Repaso Rápido)

Ya se discutió antes de forma detallada, así que haremos un repaso para contextualizar:

Descripción:

- Dos jugadores (1 y 2) eligen simultáneamente mostrar "Cara" (C) o "Cruz" (X) de una moneda.
- Si coinciden (C-C o X-X), Jugador 1 gana 1 (y Jugador 2 pierde 1).
- Si difieren (C-X o X-C), Jugador 2 gana 1 (y Jugador 1 pierde 1).

Matriz de pagos (para Jugador 1, Jugador 2):

```
$
\begin{array}{c|cc}
& \text{Cara (C) 2} & \text{Cruz (X) 2} \
\hline
\text{Cara (C) 1} & (+1,,-1) & (-1,,+1) \
\text{Cruz (X) 1} & (-1,,+1) & (+1,,-1)
\end{array}
$
```

No hay equilibrio en puras. El equilibrio mixto:

- Jugador 1 juega Cara con probabilidad \$p^* = 1/2\$.
- Jugador 2 juega Cara con probabilidad $q^* = 1/2$.

Interpretaciones no clásicas:

- Podríamos ver a dos emprendedores que compiten por sacar un producto al mercado (ej. un gadget innovador). Cada uno decide si se centra en "características de software" (Cara) o "características de hardware" (Cruz). Si ambos eligen lo mismo, uno gana la delantera y el otro pierde. Al final, la estrategia es "mezclar" (innovar un poco en ambos campos) para no ser predecible y así no dejar vía libre al competidor.
- También se puede imaginar una coreografía de danza (Cara/Cruz como dos estilos opuestos). Los bailarines se turnan intentando coincidir o no coincidir en el momento del espectáculo; la "mezcla" en sus movimientos crea un equilibrio que mantiene el interés escénico.

2. Piedra, Papel o Tijeras

2.1. Descripción y Matriz de Pagos

Uno de los ejemplos más famosos de juego en el que **no hay** equilibrio en estrategias puras y, en cambio, hay un **equilibrio mixto**:

- Cada jugador elige simultáneamente "Piedra" (P), "Papel" (A) o "Tijeras" (T).
- Piedra gana a Tijeras, Tijeras gana a Papel y Papel gana a Piedra.

 Cuando un jugador gana, el otro pierde (juego de suma cero); en caso de empate (mismo símbolo), la recompensa es cero para ambos.

Podemos representar la matriz de pagos para Jugador 1 en forma resumida (aunque para 3x3 es un poco más grande). Por ejemplo:

	Papel (A)	Piedra (P)	Tijeras (T)
Papel (A)	\$0,,0\$	\$+1,,-1\$	\$-1,,+1\$
Piedra (P)	\$-1,,+1\$	\$0,,0\$	\$+1,,-1\$
Tijeras (T)	\$+1,,-1\$	\$-1,,+1\$	\$0,,0\$

(El primer valor es la utilidad de Jugador 1, el segundo la de Jugador 2.)

2.2. Equilibrio de Nash en Estrategias Mixtas

Por **simetría**, en muchos de estos juegos de "ciclo" (P-A-T) la mezcla de equilibrio es la misma para ambos jugadores:

```
p^{(\text{text{Piedra}})} = p^{(\text{text{Papel}})} = p^*(\text{Tijeras}) = \text{tfrac{1}{3}}.
```

Es decir, cada jugador elige **cada opción con probabilidad 1/3**. Esta mezcla hace a cualquier oponente **indiferente** entre jugar P, A o T, ya que todas dan la misma utilidad esperada.

2.3. Interpretaciones no clásicas

- En ecología, puede modelar competencia de especies que se especializan en diferentes nichos (un sistema "roca-papel-tijeras" se ha observado, por ejemplo, en ciertos lagartos de distintas coloraciones y comportamientos). La mezcla de estrategias evolutiva podría ser la proporción de individuos con cada "comportamiento".
- En una liga deportiva con tres tipos de tácticas (por ejemplo, un equipo de fútbol que alterna ataque por bandas, ataque por el centro o contraataque), cada táctica "vence" a una y "pierde" con otra. El entrenador puede, en equilibrio, mezclar sus tácticas al 33% para sorprender al rival.

3. Chicken (El "Juego de la Gallina")

El famoso "Juego de la Gallina" (o "Chicken") consiste en que **dos conductores** avanzan en dirección de choque frontal. Cada uno elige "Desviarse" (D) o "No Desviarse" (N). Si ambos no se desvían, ocurre un desastre (gran castigo para ambos). Si uno se desvía y el otro no, el que se desvió queda como "cobarde" y el otro obtiene un beneficio simbólico (por ejemplo, prestigio).

Una posible matriz de pagos (para Jugador 1, Jugador 2) es:

```
$
\begin{array}{c|cc}
```

```
& \text{No Desviarse (N) 2} & \text{Desviarse (D) 2} \
hline
\text{No Desviarse (N) 1} & (-10,,-10) & (+2,,-2) \
\text{Desviarse (D) 1} & (-2,,+2) & (0,,0)
\end{array}
$
```

- \$(-10, -10)\$: choque frontal; ambos pierden mucho.
- \$(+2, -2)\$: Jugador 1 "gana prestigio" mientras Jugador 2 "cede".
- \$(-2, +2)\$: Jugador 1 "cede" mientras Jugador 2 "gana prestigio".
- \$(0, 0)\$: ambos se desvían, todos seguros, sin prestigio adicional.

3.1. Equilibrios de Nash en Puras

- (N, D): Jugador 1 no se desvía, Jugador 2 se desvía.
- (D, N): Jugador 1 se desvía, Jugador 2 no se desvía.

Ambas combinaciones son equilibrios puros.

3.2. Equilibrio en Estrategias Mixtas

Existe también un **equilibrio mixto** donde cada jugador elige "No Desviarse" con cierta probabilidad que llamaremos \$p\$, y "Desviarse" con \$1 - p\$. Por **simetría**, ambos jugadores usarán la misma \$p^*\$.

Para encontrar p^* , hacemos que cualquiera de los dos jugadores sea indiferente entre N y D. Por ejemplo, la **utilidad esperada** para Jugador 1 si juega N contra la mezcla (p, 1-p) de Jugador 2:

```
$ U_1(\text{N} \neq p) = p \cdot (-10) + (1 - p) \cdot (2 = -10p + 2 - 2p = 2 - 12p. $
```

La utilidad esperada si Jugador 1 juega D:

```
$
PROF U_1(\text{D} \mid p) = p \cdot (-2) + (1 - p) \cdot 0 = -2p.
$
```

La condición de indiferencia:

```
$
2 - 12p = -2p
\quad\Longrightarrow\quad
2 = 10p
\quad\Longrightarrow\quad
p^* = \frac{2}{10} = 0.2.
$
```

Así, en el equilibrio mixto:

Cada jugador no se desvía (N) con prob \$0.2\$.

• Cada jugador se desvía (D) con prob \$0.8\$.

3.3. Interpretaciones no clásicas

- Dos artistas en una competición (o dos orquestas) deciden si van a tocar una pieza
 extremadamente difícil (no desviarse) o una más sencilla (desviarse). Si ambos tocan la difícil y
 fallan, es catastrófico (pérdida de prestigio). Si uno toca la difícil y el otro la sencilla, el primero
 destaca más. Mezclar probabilidades (a veces arriesgar, a veces ser más cauto) puede ser un
 equilibrio.
- Ocurren ejemplos en mercados financieros: dos traders pueden "arriesgar" mucho en inversiones
 (N) o ser más conservadores (D). Si ambos arriesgan y el mercado cae, la pérdida es grande. El equilibrio mixto representa la proporción de veces que uno arriesga vs. se retira.

4. Battle of the Sexes (Batalla de los Sexos)

Un ejemplo clásico de **coordinación** con preferencias distintas: se suele contar como una pareja que quiere salir juntos, pero uno prefiere "Ópera" (O) y el otro "Boxeo" (B). Quieren coordinar para disfrutar juntos, pero cada quien tiene su propia actividad favorita.

Podemos denominar las estrategias de Jugador 1: {O, B} y las de Jugador 2: {O, B}. Una matriz de pagos posible:

```
$
\begin{array}{c|cc}
& \text{O 2} & \text{B 2} \
\hline
\text{O 1} & (2,1) & (0,0) \
\text{B 1} & (0,0) & (1,2)
\end{array}
$
```

PROF

- (O, O): Jugador 1 gana 2, Jugador 2 gana 1.
- (B, B): Jugador 1 gana 1, Jugador 2 gana 2.
- (O, B) o (B, O): obtienen (0,0).

4.1. Equilibrios Puros

Hay dos equilibrios en estrategias puras:

- (O, O)
- (B, B)

Los dos coordinan en un mismo lugar, aunque uno de los dos es "más feliz" que el otro en cada caso.

4.2. Equilibrio Mixto

También existe un equilibrio en estrategias mixtas:

- Sea \$p\$ la probabilidad con que Jugador 1 juega O (y \$1-p\$ juega B).
- Sea \$q\$ la probabilidad con que Jugador 2 juega O (y \$1-q\$ juega B).

Para que Jugador 1 sea indiferente entre O y B, se igualan sus utilidades esperadas:

```
$U_1(\text{O}) = 2 \times q + 0 \times (1-q) = 2q.$
```

```
    $U_1(\text{B}) = 0 \times q + 1 \times (1-q) = 1 - q.$
```

```
Indiferencia:
```

```
$
2q = 1 - q
\quad\Longrightarrow\quad
3q = 1
\quad\Longrightarrow\quad
q^* = \tfrac{1}{3}.
$
```

Para que Jugador 2 sea indiferente:

```
$U_2(\text{O}) = 1 \times p + 0 \times (1-p) = p.$
```

```
    $U_2(\text{B}) = 0 \times p + 2 \times (1-p) = 2(1-p) = 2 - 2p.$
```

Indiferencia:

```
$
p = 2 - 2p
\quad\Longrightarrow\quad
3p = 2
\quad\Longrightarrow\quad
p^* = \tfrac{2}{3}.
$
```

Así, el **equilibrio de Nash en mixtas** es:

- Jugador 1 elige O con \$p^* = \frac{2}{3}\$.
- Jugador 2 elige O con \$q^* = \frac{1}{3}\$.

4.3. Interpretaciones no clásicas

- Dos compañías de software quieren acordar un estándar (por ejemplo, un lenguaje de programación para un proyecto conjunto). A cada una le conviene que las dos usen el mismo, pero cada una tiene una preferencia distinta por razones internas. Pueden terminar "coordinándose" en la preferencia de la compañía A o de la compañía B, pero a veces la negociación se resuelve con probabilidades.
- Dos grupos musicales quieren hacer un **álbum colaborativo** y decidir el género principal: uno prefiere pop y otro prefiere rock. Coordinar en un género genera ganancias (fama, dinero), pero cada grupo prefiere su propio estilo. Hay mezcla de ensayos en pop y rock hasta que se define la colaboración final (o se dan versiones en ambos estilos).

5. Hawk-Dove (o "Juego de Halcón-Paloma")

También llamado "Snowdrift" o "Juego del Atizador de Fuego". Modela conflictos donde hay un posible comportamiento agresivo ("Halcón") y uno menos agresivo o más pacífico ("Paloma"). La idea principal:

- Si ambos son agresivos (H-H), hay una confrontación costosa para ambos.
- Si uno es agresivo y el otro pacífico, el agresivo gana más (se queda con el recurso).
- Si ambos son pacíficos (P-P), se reparten el recurso y se obtiene un beneficio, aunque menor que si uno intimida al otro sin coste.

Una matriz de pagos típica es (para Jugador 1, Jugador 2):

```
$
\begin{array}{c|cc}
& \text{Halcón (H) 2} & \text{Paloma (P) 2} \
\hline
\text{Halcón (H) 1} & (\frac{B-C}{2}, \frac{B-C}{2}) & (B, 0) \
\text{Paloma (P) 1} & (0, B) & (\frac{B}{2}, \frac{B}{2})
\end{array}
$
```

Donde:

- \$B\$ = beneficio del recurso.
- \$C\$ = coste de la confrontación (y se asume \$C > B\$ para que sea peor pelear que no obtener el recurso).
- \$\frac{B-C}{2}\$ = si ambos pelean, a veces se parte el recurso tras un costo grande.

5.1. Equilibrios

- No suele haber un **equilibrio puro** único (dependiendo de los valores de \$B\$ y \$C\$ puede haber uno o dos). A menudo, el **juego tiene un equilibrio mixto**.
- Si llamamos \$p\$ la probabilidad de Jugador 1 de jugar Halcón, y \$q\$ la de Jugador 2, se obtiene un \$p^*\$ donde cada jugador es indiferente entre H y P.

La **condición de indiferencia** para Jugador 1:

```
$
U_1(\text{H}) = p^,(\tfrac{B-C}{2}) + (1-p^),B,
$
$
U_1(\text{P}) = p^,0 + (1-p^),\tfrac{B}{2}.
$
Igualando:
$
p^,\bigl(\tfrac{B-C}{2}\bigr) + (1-p^),B;=; (1-p^*),\tfrac{B}{2}.
$
Se resuelve y se obtiene:
```

5.2. Interpretaciones no clásicas

- Modelar discusiones creativas en un equipo de diseño. "Halcón" es insistir agresivamente en tu
 idea, "Paloma" es ceder o discutir en tono más suave. Ambos comportamientos pueden llevar a
 ciertas ganancias y costos. A veces la mezcla natural en un equipo es que una parte de las
 discusiones alguien adopta la posición "firme" y otras veces "concede".
- Seguridad informática: hay dos desarrolladores (o departamentos) que pueden "ser agresivos"
 (H) intentando imponer su sistema de seguridad, o "ser dóciles" (P) adoptando estándares compartidos. Si ambos son agresivos, se generan altos costos de incompatibilidad. Si uno impone y el otro cede, el primero gana mayor control. El equilibrio mixto indica la proporción con la que se "pelea" por una configuración vs. se colabora.

Conclusiones Generales

Como se ve, **muchos juegos no tienen equilibrio en estrategias puras** (o tienen múltiples equilibrios puros), y las **estrategias mixtas** garantizan que exista (por el Teorema de Nash). La idea clave es siempre la misma:

- 1. Asignar probabilidades a cada estrategia.
- 2. Calcular utilidades esperadas frente a la mezcla del oponente.
- 3. Exigir indiferencia (para las estrategias que se van a usar con prob. positiva).
- 4. **Resolver** para hallar las probabilidades en equilibrio.

Las **interpretaciones** pueden ir más allá de la política o la sociedad: se puede aplicar a fenómenos naturales, competiciones artísticas, ecología, economía digital, etc. Lo importante es identificar la estructura de recompensas y costos para entender cómo (y por qué) una mezcla de estrategias puede estabilizarse como un **equilibrio** donde ningún jugador mejora cambiando unilateralmente su estrategia.

Referencias y Lecturas Sugeridas

- Teoría de Juegos de Roger Myerson (libro clásico).
- Juego, Estrategia y Razonamiento de Avinash Dixit y Susan Skeath.
- Artículos sobre **RPS dynamics** en ecología (p.ej., sobre lagartos Uta stansburiana con distintos comportamientos reproductivos).
- Modelos de suma cero con múltiples estrategias, como "Generalized Rock-Paper-Scissors".

Estos ejemplos demuestran la **amplitud de aplicaciones** de la Teoría de Juegos y, en particular, la **universalidad del concepto de equilibrio de Nash en estrategias mixtas** como una forma de entender

PFESSEUR : M.DA ROS	+8/8+	BTS SIO BORDEAUX - LYCÉE GUSTAVE EIFFEL

decisiones interdependientes en multitud de ámbitos.