UNIVERSITY OF CALIFORNIA AT BERKELEY

Department of Mechanical Engineering ME233 Advanced Control Systems II Spring 2011

Midterm Examination I

Your Name:			

Closed book and closed notes.

Two double-sided sheets (i.e. 4 pages) of handwritten notes on $8.5" \times 11"$ paper are allowed. Please answer all questions.

Problem:	1	2	3	Total
Max. Grade:	30	40	30	100
Grade:				

Problem 1

Let X be an n-dimensional random vector and Y be a m-dimensional random vector with

$$E\{X\} = m_X$$

$$E\{Y\} = m_Y$$

$$E\left\{ \begin{bmatrix} X - m_X \\ Y - m_Y \end{bmatrix} \left[(X - m_X)^T \quad (Y - m_Y)^T \right] \right\} = \begin{bmatrix} \Lambda_{XX} & \Lambda_{XY} \\ \Lambda_{YX} & \Lambda_{YY} \end{bmatrix}.$$

Now consider the linear estimator of X given by

$$Z = AY + b$$

where $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^{n \times 1}$ are the estimator parameters to be designed. Also consider the corresponding estimation error

$$J = X - Z$$
.

Denote the mean of J as m_J and the covariance of J as Λ_{JJ} .

- 1. Find m_J and Λ_{JJ} as functions of the matrix A and the vector b.
- 2. Under the assumption that Λ_{YY} is invertible, determine values of A and b so that $m_J = 0$ and trace $[\Lambda_{JJ}]$ is minimized.

Hint: Use the technique of completing the square to express

$$\Lambda_{JJ} = (A - M_1)M_2(A - M_1)^T + M_3$$

for some matrices M_1 , M_2 , and M_3 , where $M_2 \succ 0$, and $M_3 = M_3^T$. None of these three matrices should depend on A.

Problem 2

Consider the discrete-time linear time-invariant system

$$x(k+1) = Ax(k) + Bd(k)$$
$$p(k) = Cx(k)$$

and the cost function

$$J_m[x_m, N] = \sum_{k=m}^{N-1} \{ p^T(k)p(k) - d^T(k)d(k) \}$$
 s.t. $x(m) = x_m$

which is defined for m = 0, 1, ..., N - 1. In this problem, we are interested in the worst-case (i.e. largest) possible value of this cost function over all choices of d, i.e. we are interested in solving the optimization problems

$$J_m^o[x_m, N] = \max_{d(m), \dots, d(N-1)} J_m[x_m, N]$$

for m = 0, 1, ..., N - 1.

Let the sequence of matrices P_0, P_1, P_2, \ldots satisfy the discrete Riccati difference equation

$$P_{k+1} = A^T P_k A + C^T C - A^T P_k B (B^T P_k B - I)^{-1} B^T P_k A.$$

with the initial condition $P_0 = 0$. Also assume that this sequence of matrices satisfies the conditions

- $B^T P_k B I \prec 0$, k = 0, 1, 2, ...
- $\bullet \lim_{k \to \infty} P_k = P_{\infty}$
- 1. Use dynamic programming to prove that $J_m^o[x_m, N] = x_m^T P_{(N-m)} x_m$. You may find it convenient to define $J_N^o[x_N, N] = x_N^T P_0 x_N = 0$ to facilitate the proof.
- 2. Let x(0) = 0. Show that whenever $\sum_{k=0}^{\infty} d^{T}(k)d(k)$ is finite and nonzero, then

$$\left(\frac{\sum_{k=0}^{\infty} p^{T}(k)p(k)}{\sum_{k=0}^{\infty} d^{T}(k)d(k)}\right) \le 1.$$

Problem 3

Consider the discrete-time linear time-invariant system

$$x(k+1) = Ax(k) + Bu(k) + B_w w(k)$$
(1)

where u(k) is the control input, x(0) is Gaussian, and w(k) is white Gaussian noise. The relevant means and covariances are given by

$$E\{x(0)\} = x_0 \qquad E\{[x(0) - x_0][x(0) - x_0]^T\} = X_0$$

$$E\{w(k)\} = 0 \qquad E\{w(k+j)w^T(k)\} = W\delta(j)$$

$$E\{[x(0) - x_0]w^T(k)\} = 0.$$

In this problem, we will design a control policy u(k) for this system; throughout this problem, u(k) is only allowed to be a function of $x(0), \ldots, x(k)$ and $w(0), \ldots, w(k)$.

1. In this problem, we would like to find the control policy for the system (1) that minimizes the cost function

$$J_N = E\left\{ x^T(N)Q_f x(N) + \sum_{k=0}^{N-1} \left[x^T(k)C^T C x(k) + u^T(k)R u(k) \right] \right\}$$

where $Q_f \succeq 0$, $R \succ 0$. This optimal control problem can be reformulated as an optimal state feedback LQG control problem in which the state dynamics have the form

$$\bar{x}(k+1) = \bar{A}\bar{x}(k) + \bar{B}(k)u(k) + \bar{B}_w\eta(k) \tag{2}$$

and the cost function has the form

$$J_N = E\left\{ \bar{x}^T(N)\bar{Q}_f \,\bar{x}(N) + \sum_{k=0}^{N-1} \left[\bar{x}^T(k)\bar{C}^T\bar{C}\bar{x}(k) + u^T(k)Ru(k) \right] \right\} . \tag{3}$$

Obtain expressions for \bar{A} , \bar{B} , \bar{B}_w , \bar{C} , \bar{Q}_f , $\bar{x}(k)$, and $\eta(k)$ that correspond to this reformulation. Also show that $\eta(k)$ is uncorrelated with $\bar{x}(0)$ for all $k \geq 0$.

- 2. Find the optimal state feedback control policy $u^o(k)$ for the system (2) that minimizes the cost function (3). Leave the resulting expressions in terms of \bar{A} , \bar{B} , \bar{B}_w , \bar{C} , \bar{Q}_f , and $\bar{x}(k)$. You do not need to find the associated optimal cost.
- 3. Consider the cost function

$$J' = \lim_{N \to \infty} \left[\frac{1}{N} E \left\{ \bar{x}^T(N) \bar{Q}_f \, \bar{x}(N) + \sum_{k=0}^{N-1} \left[\bar{x}^T(k) \bar{C}^T \bar{C} \bar{x}(k) + u^T(k) R u(k) \right] \right\} \right]$$

$$= E \left\{ \bar{x}^T(k) \bar{C}^T \bar{C} \bar{x}(k) + u^T(k) R u(k) \right\} .$$
(4)

List a set of conditions that guarantees the existence of a stabilizing state feedback control policy for the system (2) that minimizes the cost function (4). Leave the conditions in terms of \bar{A} , \bar{B} , \bar{B}_w , \bar{C} , and $\bar{x}(k)$. You do not need to find an optimal control policy or the corresponding optimal cost.