QUANTUM ALGORITHMS HOMEWORK 12 ADDITIONAL PROBLEMS

PROF. MATTHEW MOORE

Due: 2021-05-04

1. Let \mathcal{P} represent the portion of the eigenvalue approximation circuit shown below.

We consider the circuit for arbitrary unitary m-dimensional U, $|u\rangle \in \mathfrak{B}^m$, and $x \in \{0,1\}^n$ (the eigenvalue estimation circuit took $x = 0^n$ and $|u\rangle$ to be an eigenvector).

Show that $\mathcal{P}|x,u\rangle = |x\rangle \otimes U^{[x]}|u\rangle$, where [x] is the number with binary representation x and $U^{[x]}$ is matrix exponentiation.

- **2.** Let U be a unitary operator and suppose that $|\alpha\rangle$ and $|\beta\rangle$ are eigenvectors with respective eigenvalues $\lambda, \mu \in \mathbb{C}$. Prove that if $\lambda \neq \mu$ then $\langle \alpha \mid \beta \rangle = 0$ (i.e. $|\alpha\rangle$ and $|\beta\rangle$ are orthogonal).
- **3.** Let $\iota:\{0,1\}\to\{0,1\}$ be the identity function, defined by $\iota(x)=x$. The function $\iota_{\oplus}(x,y)=(x,x\oplus y)$ has the property that

$$\iota_{\oplus}(x,0) = (x,x),$$

meaning that it clones the bit x in the first register to the second register.

Let $|\psi\rangle \in \mathfrak{B}$ be an arbitrary 1-qubit quantum state. Show that

$$\widehat{\iota}_{\oplus}(|\psi\rangle\otimes|0\rangle) = |\psi\rangle\otimes|\psi\rangle \qquad \Leftrightarrow \qquad |\psi\rangle = |0\rangle \text{ or } |\psi\rangle = |1\rangle.$$

That is, the quantum operator $\hat{\iota}_{\oplus}$ corresponding to the classical 1-bit cloning operator ι_{\oplus} fails to clone $|\psi\rangle$ unless $|\psi\rangle$ is in a state corresponding to a classical bit.

4. Let U be a (2n)-qubit operator that *clones* two n-qubit quantum states, $|\varphi\rangle$, $|\psi\rangle \in \mathfrak{B}^{\otimes n}$, meaning

$$U(|\varphi\rangle \otimes |0^n\rangle) = |\varphi\rangle \otimes |\varphi\rangle$$
 and $U(|\psi\rangle \otimes |0^n\rangle) = |\psi\rangle \otimes |\psi\rangle$.

Prove that U clones $|\varphi\rangle$ and $|\psi\rangle$ if and only if $|\varphi\rangle = |\psi\rangle$ or $\langle \varphi | \psi\rangle = 0$. [Hint: take the inner product of the two equations.]

5. Use the previous question to prove that a there are no quantum cloning operators that work for all pairs of states.

1