

11. $(a_2x + b_2)y_{xx}'' + (a_1x + b_1)y_x' + (a_0x + b_0)y = 0$.

Let the function $\mathcal{J}(a,b;x)$ be an arbitrary solution of the degenerate hypergeometric equation $xy_{xx}'' + (b-x)y_x' - ay = 0$ (see 2.10), and the function $Z_{\nu}(x)$ be an arbitrary solution of the Bessel equation $x^2y_{xx}'' + xy_x' + (x^2 - \nu^2)y = 0$ (see 2.13). The results of solving the original equation are presented in Table.

TABLE Solutions of equation 2.11 for different values of the determining parameters

Solution: $y = e^{kx}w(z)$, where $z = \frac{x-\mu}{\lambda}$					
Constraints	k	λ	μ	w	Parameters
$a_2 \neq 0,$ $a_1^2 \neq 4a_0a_2$	$\frac{\sqrt{D} - a_1}{2a_2}$	$-\frac{a_2}{2a_2k+a_1}$	$-\frac{b_2}{a_2}$	$\mathcal{J}(a,b;z)$	$a = B(k)/(2a_2k+a_1),$ $b = (a_2b_1-a_1b_2)a_2^{-2}$
$a_2 = 0,$ $a_1 \neq 0$	$-\frac{a_0}{a_1}$	1	$-\frac{2b_2k+b_1}{a_1}$	$\mathcal{J}(a, \frac{1}{2}; \beta z^2)$	$a = B(k)/(2a_1),$ $\beta = -a_1/(2b_2)$
$a_2 \neq 0, \\ a_1^2 = 4a_0 a_2$	$-\frac{a_1}{2a_2}$	a_2	$-\frac{b_2}{a_2}$	$z^{\nu/2}Z_{\nu}(\beta\sqrt{z})$	$\nu = 1 - (2b_2k + b_1)a_2^{-1},$ $\beta = 2\sqrt{B(k)}$
$a_2 = a_1 = 0,$ $a_0 \neq 0$	$-\frac{b_1}{2b_2}$	1	$\frac{b_1^2 - 4b_0b_2}{4a_0b_2}$	$z^{1/2}Z_{1/3}(\beta z^{3/2})$	$\beta = \frac{2}{3} \left(\frac{a_0}{b_2}\right)^{1/2}$
Notation: $D = a_1^2 - 4a_0a_2$, $B(k) = b_2k^2 + b_1k + b_0$					

References

Bateman, H. and Erdélyi, A., Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953.

Polyanin, A. D. and Zaitsev, V. F., *Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition,* Chapman & Hall/CRC, Boca Raton, 2003.

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/ode/ode0211.pdf