COMPUTER SCIENCE & MATHEMATICS Review Sistem Bilangan dan Fungsi

Fakultas Ilmu Komputer, Universitas Indonesia

TABLE OF CONTENTS

O1 Sistem Bilangan Riil

Pertidaksamaan

Dan Harga Mutlak

O3 Aljabar dan
Sifat-Sifat Fungsi

Fungsi Riil
Sederhana

Fungsi
Transendental

06 Invers Fungsi

Sistem Bilangan

```
Asli \to \mathbb{N} = \{x \mid x \in (1, 2, 3, ...)\}
              Bulat \to \mathbb{Z} = \{x \mid x \in (..., -1, 0, 1, 2, ...)\}
           Rasional \rightarrow \mathbb{Q} = \{x \mid x = m/n; m, n \in \mathbb{Z} \text{ dan } n \neq 0\}
       Irrasional = \{x \mid x = \sqrt{m}\}
  \mathsf{Riil} \to \mathbb{R} = \{x \mid x \in (-\infty, \infty)\}\
Kompleks
```

Sifat bilangan riil:

1. Trichotomy

Jika x dan y merupakan suatu bilangan, maka tepat salah satu kondisi di bawah terpenuhi x < y; x = y, x > y.

2. Transitivity

Jika x < y dan y < z, maka x < z.

3. Addition

Jika x<y, maka terpenuhi x < y \Leftrightarrow x + z < y + z.

4. Multiplication

Jika z=+, maka terpenuhi x < y \Leftrightarrow xz < yz. Jika z=-, maka terpenuhi x < y \Leftrightarrow xz > yz.

5. Infinite

Tidak terdapat nilai maksimum maupun minimum.

6. Continuous

Jika x,y \in R dan x \neq y maka akan selalu ada z \in R dimana x < z < y atau y < z < x.

Latihan Soal

5.
$$0^5 =$$

6.
$$17^0 =$$

Latihan Soal

- 1. 0.0 = 0
- 2. 0/0 = tidak terdefinisi
- 3. 0/17 = 0
- 4. 3/0 = tidak terdefinisi
- 5. $0^5 = 0$
- 6. $17^0 = 1$

(desimal \rightarrow rasional)

3,929292... =

(desimal \rightarrow rasional)

```
3,929292... =
100x = 392,9292...
x = 3,9292...
99x = 389
x = 389/99
```

2. Pertidaksamaan Dan Harga Mutlak

Set Notation	Interval Notation	Graph
$\{x \colon a < x < b\}$	(a,b)	()
$x: a \le x \le b\}$	[a,b]	a b
$\{x \colon a \le x < b\}$	[a,b)	a b
$x: a < x \le b\}$	(a,b]	a b
$: x \le b\}$	$(-\infty, b]$	a b
$x: x < b\}$	$(-\infty, b)$	<i>b</i>
$x\colon x\geq a\}$	$[a, \infty)$	- [
$x: x > a\}$	(a, ∞)	<i>a</i>
₹	$(-\infty, \infty)$	a -

Definisi Fungsi Pertidaksamaan:

dua expresi matematis yang dihubungkan dengan relasi <, ≤, > atau ≥

Solusi Fungsi Pertidaksamaan:

- Menambahkan bil. yang sama pada kedua ruas
- Mengalikan kedua ruas dengan:
 - bil. positif
 - bil. negatif, kemudian membalik arah dari tanda pertidaksamaan

2. Pertidaksamaan Dan Harga Mutlak

Nilai Mutlak

(1)
$$x = riil, x \ge 0 \rightarrow |x| = x$$

(2)
$$x = riil, x < 0 \rightarrow |x| = -x$$

Kuadrat Nilai Mutlak

(cek sifat nilai mutlak nomor 1)

$$\Rightarrow |x|^2 = x^2 \Rightarrow |x| = \sqrt{x^2}$$

Pertidaksamaan Mengandung Nilai Mutlak

- $|x| < a \leftrightarrow -a < x < a$ (AND inequality)
- 2) $|x| > a \leftrightarrow x < -a$ atau x > a (OR inequality)

Sifat Nilai Mutlak

1.
$$|ab| = |a||b|$$
 2. $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$

$$2. \left| \frac{a}{b} \right| = \frac{|a|}{|b|}$$

$$|a + b| \le |a| + |b|$$

4.
$$|a-b| \ge ||a|-|b||$$

2. Pertidaksamaan Dan Harga Mutlak

Latihan Soal

- 1) himpunan penyelesaian: | x | < 4 Petunjuk. AND inequality
- 2) himpunan penyelesaian: | x + 5 | > 3 Petunjuk. OR inequality
- 3) himpunan penyelesaian: |2x 4| > x
- 4) himpunan penyelesaian: $x^2 2x 5 \le 0$ Petunjuk. Solusi untuk persamaan kuadrat $ax^2 + bx + c = 0$ diberikan oleh:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Definisi Fungsi

Suatu fungsi f merupakan suatu pemetaan yang menghubungkan setiap x pada himpunan daerah asal D (domain) ke tepat satu nilai tunggal f(x) pada himpunan daerah hasil R (range) fungsi, $f: x \mapsto f(x)$; $x \in D$

Himpunan R = $\{y = f(x); x \in D\}$, disebut daerah hasil.

Sifat-Sifat Fungsi

Injektif

Bijektif

Penyajian Fungsi

Disajikan dalam bentuk rumus pasangan antara anggota domain dan kodomain

- Single Formula
 - \circ f(x) = 5x-2
- Compound Formula

$$of(x) = \begin{cases} -2x, & x < 0 \\ 5x, & x \ge 0 \end{cases}$$

Operasi pada Fungsi

- (f+g)(x) = f(x) + g(x)
- (f-g)(x) = f(x) g(x)
- (fg)(x) = f(x) g(x)
- $\bullet \quad (f/g)(x) = f(x)/g(x)$

Fungsi Komposit

- dapat dinyatakan dalam bentuk (f \circ g) (x)
- $(f \circ g)(x) = f(g(x))$

^{*}Perhatikan bahwa $(g \circ f)(x) \neq (f \circ g)(x)$.

Untuk setiap x,

- 1. Jika f(-x) = f(x), maka f adalah **fungsi genap** (even function).
- 2. Jika f(-x) = -f(x), maka f adalah **fungsi ganjil** (odd function).
- 3. Jika $x < y \rightarrow f(x) < f(y)$ maka f fungsi monoton naik
- 4. Jika $x < y \rightarrow f(x) \le f(y)$ maka f fungsi monoton tak turun
- 5. Jika $x < y \rightarrow f(x) > f(y)$ maka f fungsi monoton turun
- 6. Jika $x < y \rightarrow f(x) \ge f(y)$ maka f fungsi monoton tak naik

Bagaimana jika dilakukan: (lihat definisi fungsi genap dan ganjil di atas)

perkalian fungsi genap dan ganjil?

- perkalian fungsi ganjil dan ganjil?

Untuk setiap x,

- 1. Jika f(-x) = f(x), maka f adalah **fungsi genap** (even function).
- 2. Jika f(-x) = -f(x), maka f adalah **fungsi ganjil** (odd function).
- 3. Jika $x < y \rightarrow f(x) < f(y)$ maka f fungsi monoton naik
- 4. Jika $x < y \rightarrow f(x) \le f(y)$ maka f fungsi monoton tak turun
- 5. Jika $x < y \rightarrow f(x) > f(y)$ maka f fungsi monoton turun
- 6. Jika $x < y \rightarrow f(x) \ge f(y)$ maka f fungsi monoton tak naik

Bagaimana jika dilakukan:

- perkalian fungsi genap dan ganjil? $f(x) * -f(x) = -f(x) \Rightarrow f(-x) = -f(x) \Rightarrow \therefore$ fungsi ganjil
- perkalian fungsi ganjil dan ganjil? $-f(x) * -f(x) = f(x) \Rightarrow f(-x) = f(x) \Rightarrow \therefore$ fungsi genap

Latihan Soal

- 1. Mana yang merupakan fungsi genap atau ganjil?
 - a. Penjumlahan dua fungsi genap
 - b. Penjumlahan dua fungsi ganjil
 - c. Hasil kali dua fungsi genap
- 2. Diketahui fungsi $f(x) = x^2 + x$ dan $g(x) = \frac{2}{x+3}$. Tentukan:
 - a. komposisi fungsi $F(x) = (g \circ f)(x)$,
 - b. apakah fungsi F (x) merupakan fungsi ganjil, genap, atau bukan keduanya.

4. Fungsi Riil Sederhana

1. Fungsi Polinomial

dinyatakan dalam bentuk $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_n x + a_0$; $a_i \in \mathbb{R}$, i = (0,1,..., n); a_i tidak semuanya nol

2. Fungsi Rasional

dinyatakan dalam bentuk
$$f(x) = \frac{P(x)}{Q(x)}$$
; $P(x)$, $Q(x)$ = polinomial dan $Q(x) \neq 0$

3. Fungsi Irrasional

dinyatakan dalam bentuk $f(x) = \sqrt[n]{g(x)}$; g(x) = rasional

Fungsi Eksponensial

dinyatakan dalam bentuk: $f(x) = b^x$; di mana basis b > 0; $b \ne 1$.

Sifat-sifat Fungsi Eksponensial

Untuk setiap konstan a, b > 0 dan untuk setiap x, $y \in R$:

- 1. b^{x} . $b^{y} = b^{x+y}$
- $2. \ \frac{b^x}{b^y} = b^{x-y}$
- 3. $(b^x)^y = b^{xy}$
- 4. $(ab)^x = a^x b^x$
- 5. $\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$

Fungsi Logaritma

dinyatakan dalam bentuk: $f(x) = \log_b(x)$; untuk suatu konstanta b > 0; b \neq 1.

Sifat-sifat Fungsi Logaritma

Untuk setiap konstan a, b, c > 0, b \neq 1, dan untuk setiap r \in R

- 1. $\log_b(ac) = \log_b a + \log_b c$
- $2. \quad \log_b\left(\frac{a}{c}\right) = \log_b a \log_b c$
- 3. $\log_b(a^r) = r \log_b a$

Teorema Pythagoras

dinyatakan sebagai: $a^2 + b^2 = c^2$

Rumus Jarak

(ingat Kuadrat Nilai Mutlak.)

(Aplikasikan teorema pythagoras)

$$d(A, B)^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Persamaan Lingkaran

(aplikasikan rumus jarak antara titik h ke titik lainnya yang mengitari, membuat bentuk lingkaran)

$$r^2 = (x-h)^2 + (y-k)^2$$

Anggap r = 1 dengan pusat (h,k) ada di (0,0)

$$r^2 = (x-h)^2 + (y-k)^2$$

$$\Leftrightarrow$$
 1 = x^2 + y^2

- Keliling Lingkaran = $2\pi r = 2\pi$
- Jika $t = \pi$, maka dapat ditemukan P(-1,0)
 - ∴Untuk setiap t, dapat ditemukan titik P.
 - ⇒ Membolehkan kita untuk membuat definisi kunci dari fungsi trigonometri

Identitas Trigonometri

Odd-even identities

Cofunction identities

Double-angle identities

Half-angle identities

 $\sin(-x) = -\sin x$

 $\sin\left(\frac{\pi}{2} - x\right) = \cos x$

 $\sin 2x = 2\sin x \cos x$

 $\sin\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1-\cos x}{2}}$

 $\cos\left(\frac{\pi}{2} - x\right) = \sin x$

 $\cos 2x = \cos^2 x - \sin^2 x$

 $\cos\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1+\cos x}{2}}$

 $\cos(-x) = \cos x$

 $\tan\left(\frac{\pi}{2} - x\right) = \cot x$

 $= 2 \cos^2 x - 1$ $= 1 - 2\sin^2 x$

Pythagorean identities

tan(-x) = -tan x

Addition identities

Sum identities

 $\sin^2 x + \cos^2 x = 1$

 $\sin(x + y) = \sin x \cos y + \cos x \sin y$

cos(x + y) = cos x cos y - sin x sin y

 $1 + \tan^2 x = \sec^2 x$

 $1 + \cot^2 x = \csc^2 x$

$$\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

 $\sin x + \sin y = 2 \sin \left(\frac{x+y}{2} \right) \cos \left(\frac{x-y}{2} \right)$ $\cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$

Latihan Soal

Buktikan identitas trigonometri berikut:

1.
$$(1 + \sin x)(1 - \sin x) = \frac{1}{\sec^2 x}$$

2.
$$(\sec x - 1)(\sec x + 1) = \tan^2 x$$

3.
$$\sec x - \sin x \tan x = \cos x$$

$$4. \quad \frac{sec^2x-1}{sec^2x} = sin^2x$$

6. Invers Fungsi

Definisi

Diberikan suatu fungsi f dengan domain D dan range R, invers fungsi f (jika ada) adalah suatu fungsi f⁻¹ dengan domain R dan range D sedemikian sehingga $f^{-1}(y) = x$ jika f(x) = y.

Dengan kata lain, untuk fungsi f dan invers fungsinya f^{-1}

 $f^{-1}(f(x)) = x$ untuk setiap $x \in D$ dan $f^{-1}(f(y)) = y$ untuk setiap $y \in R$.

