

Escuela de Ingeniería y Arquitectura Universidad Zaragoza

Departamento de Informática e Ingeniería de Sistemas Universidad Zaragoza

Tema 9 – Descripción de Comportamiento

AOC2
Grado en Ing. Informática

P. Ibáñez, J.L. Briz, V. Viñals, J. Alastruey, J. Resano Arquitectura y Tecnología de Computadores Departamento de Informática e Ingeniería de Sistemas

Guión del tema

- Notación
- Descripción mediante Diagrama de estados
- Ejercicio: diagrama para write once
- Descripción mediante Algoritmo
- Calculo de Tiempo Efectivo de Acceso, ejemplos

Notación (1 de 3)

1. Datos y direcciones

Palabra: minúscula con prima

X'

Bloque x

Bloque: minúsculas

que referencia el procesador x

o expulsado de Mc u víctima

Dirección de

O Dato y su dirección: mayúscula X = < @x, x> bloque

 $U = \langle @u, u \rangle$ bloque

 $X' = \langle @x', x' \rangle$ palabra

Notación (2 de 3)

2. Enviar comando desde Mc a Mp

Mp

evento: comp_destino (comando, item)

rh: read hit

wh: write hit

rm: read miss

wm: write miss

rpl: replacement

rB: read block

wB: write block

rw: read word

www: write word

parámetros del

comando: @x, U, ...

Comandos entre otras parejas de componentes; por ejemplo *desde* Mc1 *hacia* Mc2

evento: Mc1>Mc2 (comando, item)

Notación (3 de 3)

3. Cargar bloque o palabra en Mc

Operador "+"

Mc + x; después de un fallo, el bloque x se carga en Mc

4. Invalidar bloque en Mc

Operador "-"

Mc - *u*; invalida el bloque *u* el contenedor puede recibir un nuevo bloque

Papel del controlador de bus y Mc

- Estado S de cada bloque según las reglas de escritura y reemplazo
 - o validez, sucio/limpio, ...
 - Estado de reemplazo
- Primer nivel en chip normalmente separado: datos e instrucciones
- Siguientes niveles en chip normalmente unificados

- K_{Mc}: implementa comunicación con el procesador y cambio de estado
- K_{bus}: implementa el autómata de comunicación con el bus

K_{BUS} + K_{Mc}: una máquina de estados

- Describimos un contenedor cualquiera de Mc
- Sólo detallamos relación Mc Bus
 - o P.e. no ponemos CPU+x o Mc+x

1. Localizar

- ⊃ selección de contenedor
 → el que contiene el bloque x o el bloque víctima u
- o comprobación de acierto/fallo

Esto no se ve en el diagrama de estados

- 2. Acierto: 1 transición (rh o wh)
 - Fallo: 1 transición (rpl) + 1 transición (rm o wm)

Escritura Inmediata – Write Through + AF

2 estados: Inválido y Limpio. Un solo bit por bloque (V bit)

Fallo en escritura:

Fetch on write-miss (AF)

COPIAS en Mc COHERENTES con Mp

Comandos	¿cuándo?	comentario
Mp(rB,@x)	m (rów)	leemos bloque en fallo
Mp(wW,X')	w (hóm)	escribimos palabra en Mp siempre

Escritura Retardada – Copy-Back + AF

3 estados: Inválido, Limpio y Sucio. Dos bits por bloque: V bit + D bit

Comandos	¿cu á ndo?	comentario
Mp(wW,	nunca	No es posible
Mp(wB,	rpl ^ S	El algoritmo de reemplazo selecciona un bloque víctima u y lo envía a memoria principal
Mp(rB,	m	Se carga el bloque x . En caso de escritura se cambia el valor de x' en el bloque recién traído

Ejercicio: Write Once

Aplica Write-Through en el primer acierto o fallo de escritura.

En el resto aplica Write-Back.

Política de carga de bloques: fetch on write-miss (AF)

Utilizado en el Motorola M88200

4 estados: Inválido, Limpio 0, Limpio 1 y Sucio.

Dos bits por bloque: V bit + D bit

M88200: chip con 16KB de SRAM cache + controlador pensado para funcionar con el micro Motorola 88000 (1990)

Escritura Inmediata Sin Buffering + AF

Algoritmo

- CrB lectura de bloque desde Mp (latencia + transferencia)
- CwW escritura de palabra en Mp

Escritura Inmediata Sin Buffering + AF

 Duración media de un acceso a datos = ciclos efectivos de acceso (ciclos/ref)

$$Ceff = 1 + \frac{\sum wh \times CwW}{\sum refs} + \frac{\sum rm \times (CrB + 1)}{\sum refs} + \frac{\sum wm \times (CrB + 1 + CwW)}{\sum refs}$$

- CrB + 1
- CrB + 1 + CwW

penalización de fallo en lectura

penalización de fallo en escritura

Escritura Retardada sin Buffering + AF

Algoritmo

Especificación	Tiempos
look-up(@x);	1
<pre>if miss(@x) {</pre>	
u=LRU(); Mc-u;	0
if sucio (u)	
{Mp(wB,U); waitfor Mp;}	CwB
Mp(rB,@x); waitfor Mp; Mc+X;	CrB+1
MRU(@x);	0
switch (proc_r/w)	
<pre>case proc_r: ret x';</pre>	0
<pre>case proc_w: {Mc+x'; sucio(x)=true; ret;}</pre>	1

- CwB escritura del bloque hacia Mp (transferencia + latencia)
- CrB lectura de bloque desde Mp (latencia + transferencia)

Escritura Retardada Sin Buffering

Cálculo del tiempo efectivo en ciclos (ciclos/ref)

$$Ceff = 1 + \frac{\sum wh \times 1}{\sum refs} + \frac{\sum rm \times (CrB + 1)}{\sum refs} + \frac{\sum wm \times (CrB + 2)}{\sum refs} + \frac{\sum (m \wedge sucio) \times CwB}{\sum refs}$$

- CrB + 1 penalización de fallo en lectura
- CrB + 2 penalización de fallo en escritura
- CwB penalización de fallo sucio