Why are program analysis tools difficult to understand?

A tool (mis)communication theory and adaptive approach for supporting developers during tool use

Brittany Johnson

NC State University bijohnso@ncsu.edu

Abstract.

1 My Thesis

Program analysis tool use is a form of communication and inability to interpret and resolve notifications is a result of miscommunication caused by knowledge gaps and knowledge mismatches; therefore we can improve tool design by applying constructivism communication theory such that tools can approximate individual developer's conceptual knowledge to adapt notifications accordingly, leading to reduced time and context-switching required for developers to interpret and resolve tool notifications.

Fig. 1. Findbugs notification in the Eclipse IDE concerning multi-threading.

2 Research Significance

Motivating Example

Valerie is a software developer at a start-up company. She primarily writes Java code, though she did not learn to program in Java, and uses the Eclipse Integrated Development Environment (IDE). In her spare time, she builds her knowledge of Java programming concepts by contributing to open source software and using tools that provide feedback about the code she writes. While modifying code in the Sun JDK source code repository, she contributes code that results in the notification shown in Figure 1. She has experience using FindBugs, so she is familiar with some of the ways FindBugs communicates. For example, she knows that an orange bug icon indicates a *scary* bug and that by clicking the bug icon she can gain access to more information about the bug.

As she explores the information provided by FindBugs, she realizes that despite her experience with FindBugs, she is having difficulty determining how to resolve the notification. She first attempts to use what knowledge she does have regarding multi-threading, which she accrued from struggling with and resolving compiler synchronization warnings, to better understand the problem. However, she is unfamiliar with the concept central to the notification in Figure 1 (lazy initialization). Though the notification tells her that the problem relates to multi-threading, she is unable to make a connection between her knowledge regarding multi-threading and the message FindBugs is attempting to communicate and

therefore cannot resolve the notification without outside help. As done previously with compiler synchronization notifications, she toggles between the web and her IDE to understand and resolve the notification.

Fig. 2. Findbugs notification in the Eclipse IDE on checking string equality.

Although Valerie's goal when using tools like FindBugs is to find and resolve defects, which requires the ability to interpret the notifications provided by the tools, a secondary goal is to learn more about Java programming concepts. She found, however, that some notifications are better at communicating problems while contributing to knowledge than others. For example, when first learning how to work with strings in Java, Valerie encountered the notification in Figure 2. The first time she encountered the problem she was able to understand and resolve the notification. Looking back, she realizes this was because the notification in Figure 2 filled in gaps in her own knowledge of the concept by informing her why what she was doing was wrong and how she can fix it.

Because the tools Valerie uses have no notion of what she does and does not know, some notifications communicate in a way that she is able to understand the problem, while others are not, leading to miscommunication. In the following sections, I will discuss research that explores challenges like those encountered by Valerie and motivate research for developing techniques, frameworks, and tools that mitigate these challenges.

Fig. 3. EclEmma notifications in the Eclipse IDE.

2.1 What are program analysis tools?

Program analysis tools are designed to aide developers when developing software by automating the writing, analysis, and modification of source code. Often, program analysis is discussed as synonymous with static analysis [38]. For the purpose of my research, I define a program analysis tool as a recommendation system that performs program analysis, whether it be static or dynamic analysis, and provides information regarding the source code being analyzed [42]. Examples of program analysis tools include, but are not limited to, static code analyzers, code coverage tools, code smell detectors, and refactoring tools [2, 34, 15]. Program analysis tools can be used in integrated development environments (IDEs) as well in most text editors that can be used for programming, such as Vim ¹ or Emacs ². In the following sections, I will define and discuss static analysis and dynamic analysis tools separately; the reader should note that although I discuss static and dynamic analysis separately, it is not uncommon to find program analysis tools that combine static and dynamic analysis [11].

Static Analysis Tools. Static analysis tools are designed to aide developers when developing software by statically analyzing source code, pre-runtime, and providing the developer with feedback about the state of their code [11].

¹ http://www.vim.org/

² https://www.gnu.org/software/emacs/

Typically, static analysis works by examining the current state of the program, predicting how the program may react in that state at runtime, and reporting any information they deem necessary to the developer. Static analyses are often more conservative than dynamic analyses; this is to reduce the potential for false positives, as in most cases static analysis cannot say with 100% certainty what will happen during run-time. Examples of static analysis tools include defect detectors, such as FindBugs, compilers, code smell detectors, and refactoring tools.

Let's use the example of FindBugs,³ an open source static analysis tool, to better understand how static analysis tools work. FindBugs statically analyzes code to report potential defects. FindBugs determines the potential for defects using bug patterns. Bug patterns are code idioms that map to errors, found in Java bytecode. Bytecode, in Java, represents the compiled Java class files. Because FindBugs analyzes code without executing it, there is a heightened risk for false positives. False positives are defects detected that will never manifest during run-time. When FindBugs finds a potential defect, it alerts the developer using notifications that provide information regarding the defect. I will discuss tool notifications in more detail in Section 2.2.

Dynamic Analysis Tools. Dynamic analysis tools are designed to aide developers when developing software by analyzing source code during run-time and providing the developer with feedback about runtime behavior [11]. Dynamic analysis works by executing the program and then making observations about program execution; because dynamic analysis runs the code, it is typically more precise than static analysis. Though dynamic analysis can produce more precise results in a similar amount of time as static analysis, dynamic analysis execution is less likely to generalize to future executions since it is based on a set of inputs that can, and probably will, change for each execution. Examples of dynamic analysis tools include testing, code coverage, and profiling tools.

Let's use the example of Cobertura,⁴ an open source dynamic code coverage tool, to better understand how dynamic analysis tools work. Cobertura executes source code using JUnit test cases and reports to the user what parts of the code got covered and what parts did not. Because Cobertura executes the source code, it can communicate precisely regarding the flow of the program during run-time. A static code coverage tool could speculate how much of a code base would be covered based on test cases, and possibly even a set of inputs; however, it would require more effort and be more likely to produce false positives than a dynamic code coverage tool. On the down side, the test suites a developer writes may not be characteristic of all possible executions of the program, thereby lowering the generalizability of dynamic analyses.

³ http://findbugs.sourceforge.net/factSheet.html

⁴ http://cobertura.github.io/cobertura/

2.2 How do tools communicate?

One common thread between program analysis tools like FindBugs and Cobertura is that they use *notifications* to communicate with the developer. Figure 3 and Figure 1 provide examples of tool notifications. A notification, when speaking in terms of program analysis tools, is typically a combination of visuals and text used to communicate a message to its user; for program analysis tools, the user is the developer. Text editors like Vim and Emacs rarely include any visual components, however, because text editors are a simpler versions of IDEs, research on notifications in IDEs are more likely to backwards apply to text editors than vice versa. Therefore, I focus my research on notifications inside IDEs.

Notifications across tools vary; some provide lots of text (like FindBugs) with few visual aides, some use primarily visual means of communications (like Cobertura). Notifications can also have different goals, which may influence how developers design notifications. For example, the goal of a notification from Coverity ⁵. another static analysis tool, is to explain a potential defect in the developer's source code and, ideally, help the developer make a decision about the defect (i.e. whether and how to resolve). Because Coverity's goal is to explain, we expect to see textual notifications that provide that explanation. The goal of code coverage notifications is to statically show dynamic program behavior and help the developer determine the effectiveness of her test suite. EclEmma, another code coverage tool, uses colors applied directly to the source code to communicate as opposed to text. Though EclEmma also uses text to communicate code coverage (i.e. 1 of 2 branches missed on a partially covered if statement), this does not allow the developer to scan the program for areas in most need of attention. Therefore, EclEmma uses other visuals, such as the bar visuals in the Coverage View (Figure 3) to show coverage on a given package or class.

The list of tools and notifications tools use can go on and on, but for the purposes of my research, the general definition I will use for a notification is a combination of visual and textual interfaces used by a program analysis tool to communicate information to developers about their source code. Notifications can vary regarding what information and how much detail they provide, however, there are commonalities across tool notifications that informed this definition, which I will discuss next.

2.3 What are the typical components of a tool notification?

One reason I talk about program analysis tools as a type of recommendation system is because they provide information to developers completing software engineering tasks [42]. Another reason is that program analysis tools use the same strategies defined by Robillard as typical of recommendation systems: 1) strategies for getting the user's attention and 2) descriptive interfaces. Program analysis tools use these strategies when communicating with developers via notifications.

⁵ http://www.coverity.com/

There are a variety of ways that a tool can get the attention of its user [42]. Program analysis tool notifications get the attention of developers in their IDEs in one or more of the following ways: icons, dashboards, pop-ups, affordance overlays, annotations, or email notifications. Once the tool has the developer's attention, program analysis tool notifications provide descriptive interfaces that convey information about a developer's source code. Information is conveyed using some combination of textual, visual, and sometimes transformative descriptions.

Some tools, like FindBugs and most IDE compilers, use icons to get developers' attention. Using the same icons, developers can access more information either by hovering over or clicking the icon. Although the icons are visual, most of the description provided by these tools is textual. As stated previously, these kinds of notifications are most common with static analysis tools as they typically need to be more descriptive. However, dynamic analysis tools like Veracode ⁶, which communicate about defects similar to the ones reported by FindBugs and Coverity, also use icons and text descriptions to pass along information to the developer.

Fig. 4. Notifications provided by Cobertura regarding code coverage.

Some tools use affordance overlays or annotations to both get the attention of the developer and for the descriptive interface. For example, Cobertura and JSlice ⁷ use affordance overlays in the form of source code highlighting, as shown in Figure 4 and Figure 5, to alert the developer of and communicate about dynamic behavior. Coverity Dynamic Analyzer ⁸, which is similar to Veracode, uses annotations, such as the one in Figure 6 in the editor to communicate about defects in the code.

A small subset of tools use dashboards, such as the one shown to the right in Figure 7. StenchBlossom, a code smell detection tool gets and maintains a developer's attention using an ambient dashboard [34]. At anytime the developer is interested in the information being provided by the tool, the developer can use

⁶ http://www.veracode.com/products/dynamic-analysis-dast/dynamic-analysis

⁷ http://jslice.sourceforge.net/

⁸ http://www.coverity.com/library/pdf/Coverity-Dynamic-Analysis.pdf

Fig. 5. Notifications provided by JSlice regarding a dynamic slice of the program.

```
| Individual Defect > met
| Process | Process
```

Fig. 6. A notification provided by Coverity regarding a race condition.

options in the dashboard to explore code smells present in their code base. The description is visual, using color overlays that map to each type of code smell.

Fig. 7. Notifications provided by StenchBlossom regarding code smells.

Finally, an even smaller subset of program analysis tools provide transformative descriptive interfaces. Transformative interfaces provide the developer with some idea of how the suggestion being made would affect the task at hand. For example, WitchDoctor, a refactoring tool, detects refactorings and then makes the developer aware of their refactoring by offering to complete the refactoring for the developer. To inform this process, WitchDoctor provides information regarding the assumed refactoring by showing the developer within their text editor what will happen if the refactoring is applied, as shown in Figure 8.

2.4 What do tool notifications communicate about?

The goal of program analysis tool notifications is to communicate some information to the developer about her source code about the task at hand. The source code a developers writes is a runnable manifestation of programming-oriented and human-oriented concepts [51,7]. At the lowest, most fundamental level, are programming-oriented concepts, which relate to how the source code maps to programming language concepts. For simplicity, I will refer to these concepts simply

```
public static int fullSize()
{
    int size = 0;
    for(String string : list)
    {
        size = findSize(size, string);
    }
    return size;
}
private static int findSize(int size,String string){
    int string_size=string.length();
    size+=string_size;
    return size;
}
```

Fig. 8. A notification provided by WitchDoctor regarding a refactoring that's taking place.

as programming concepts. Programming concepts can be as simple as the means for storing and passing data, such as variables, or as complex as the means for structuring data, such as generics [24]. At a more abstract level, *human-oriented concepts* relate to the high level requirement of the source code, such as "acquire target" or "complete transaction".

Typically a given notification is associated with only one human-oriented concept, though not all tools communicate about human-oriented concepts. For example, refactoring tools do not communicate about requirements such as "acquire target." These kinds of tools typically focus on programming concepts; refactoring tools attempt to communicate about programming concepts such as variables and modules. On the flip side, there can be more than one notification pertaining to a one human-oriented concept and one notification can communicate about more than one programming concept.

Consider, for example, the following source code:

```
private BufferedWriter bufferedLogWriter = null;
      private static LogWriter theWriter = null;
      private Service loggingService = null;
      private boolean demoMode = true;
      public void writeLog(String eventString) {
6
        if (isDemoMode()) {
           //DebugLogger.log("Sending: " + eventString);
           Sender.send(eventString);
        } else {
           try {
              openLogForWriting();
              if (bufferedLogWriter != null) {
                 bufferedLogWriter.append(eventString);
                 bufferedLogWriter.append("\n");
                 bufferedLogWriter.flush();
                 bufferedLogWriter.close();
18
```

```
}
DebugLogger.log("Writing: " + eventString);

catch (IOException e) {
    DebugLogger.log("Couldn't write to " + bufferedLogWriter);
    e.printStackTrace();
}

}

}
```

The requirement, or human-oriented concept, at play is "write to log file". A notification attached to this code is telling the developer something about the code she wrote to "write to log file". There are multiple programming concepts at play, which aligns with the types of notifications the developer could get. In the process of writing this code, the developer could get a notification regarding any number of programming concepts (buffered streams, exception handling); for example, tools like FindBugs, Sonar, and IntelliJ's built-in static analyzers notify developers when they have opened a stream (BufferedWriter in the above example) and there is a possibility the stream that is writing to the file is not closed. A developer may also get a notification regarding exception handling. Here, the developer has written code to catch an IOException if it occurs. However, if she did not implement code to deal with the potential for an IOException she would get a compiler notification communicating the need to do so.

2.5 Are developers able to interpret tool notifications?

Despite the possibility provided by program analysis tools for exploration and improvement of source code, research has found that developers often to not use program analysis tools [4, 15]. Though research has explored tool usage, there was no research that explored the reasons developers have for using the tools they do use and not using the tools they do not use [6, 30]. To answer the question why do developers not use program analysis tools, I conducted interactive interviews with 20 professional developers to better understand why they do not use static analysis tools, one common type of program analysis tool, to find bugs when writing code [27].

Based on the data from these interviews, some of the reasons developers do not frequently use static analysis tools are Lack of collaborative support, Seemingly unorganized tool output, Poor support for customizations, and Difficult to interpret notifications. Three out of four findings regarding tool use pertain to the notifications tools use and how tools present information to the developer. Discovering that tool notifications are one of the reasons developers do not use program analysis tools is useful, however, not actionable. The next piece of information needed to make these findings actionable is to discover what about tool notifications make it difficult for developers to interpret them.

3 A Tool Miscommunication Theory

To answer the question why do developers encounter challenges when interpreting program analysis tool notifications?, I observed 26 developers with varying backgrounds while they used three different program analysis tools: Eclipse Java compiler, FindBugs, and EclEmma. I presented participants with and asked them to interpret notifications from each of the three tools. To identify challenges, we examined tool use through the lens of communication theory [8]. Building on an existing model of (mis)communication [36], we identified 12 kinds of challenges developers encounter when interpreting tool notifications.

Based on the challenges participants encountered when interpreting tool notifications, I proposed a tool miscommunication theory that can be used to inform the design of program analysis tools. Experts in qualitative research suggest that rather than presenting a set of disparate findings, qualitative researchers should instead produce an explanatory theory, a "skeleton or framework that explains why things happen" [10]. While explicitly putting forward theories is rare in software engineering [23], one example is Lawrance and colleagues' theory of how programmers navigate code during debugging [32]. In the same way that Lawrance and colleagues' build on information foraging theory [39], my theory builds on communication theory [8]. I summarize my theory as:

The challenges developers encounter when interpreting program analysis tool notifications are caused by gaps and mismatches between developer knowledge and how notifications communicate information.

I speak about knowledge here and throughout as the culmination of experiences [28, 3]. Using that definition, a *knowledge gap* occurs when there is a gap between what the developer knows and how the tool communicates; a *knowledge mismatch* occurs when what the developer knows and expects from the tool does not match the notification the tool uses.

Remember Valerie? Though she is a hypothetical developer, the challenges she faced are not hypothetical. Valerie experienced challenges caused by both knowledge gaps (no knowledge regarding lazy initialization) and knowledge mismatches (expecting an explicit connection to synchronization). Based on this theory, I hypothesize that if it was possible for tools to be aware of what developers know and do not know, tools can improve communication by adapting its notifications to the developer.

4 A Proposed Approach for Modeling Developer Knowledge

In order to adapt tool notifications to a given developer's knowledge, there needs to be some notion of how much the developer knows about the concepts in the notification. For the remainder of this document, I use concept to mean programming concepts. I chose to focus on programming concepts because existing

research conducted by Smith and colleagues suggests understanding programming concepts affects developers' ability to resolve notifications [46]. Borrowing from education research and using developer experiences as a concrete representation of knowledge, I evaluate the possibility to learn and approximately predict developer knowledge of programming concepts.

4.1 Using Concept Inventories to Assess Concept Knowledge

To create any kind of model, I need a dependent variable and one or more independent variables that could be used to predict the value of the dependent variable. Since I want to build models that predict knowledge, my dependent variable has to be some measure of developer concept knowledge. Borrowing from existing computer science education research, I developed concept inventories for knowledge assessment.

Traditionally, concept inventories are used to assess conceptual knowledge and identify misconceptions; in Computer Science, the target audience is typically CS1 students [49, 29]. I need to assess knowledge with a wide range of developers outside of academia, therefore I could not borrow directly from research that creates concept inventories for novice academic programming concept knowledge assessment [48]. I combined existing concept inventory research with examinations using revised Bloom's Taxonomy [49, 37, 43]. By using Bloom's Taxonomy to inform question creation, I increased assurance that my questions exhaustively assess understanding [43]. The final process I have developed for creating general programming concept inventories is as follows:

Define Conceptual Content for Test Specification. A test specification is a way of formally outlining what will be on the test without having to write the questions [49]. Once you have decided on the programming concept of interest, use language tutorials surrounding that concept to define conceptual content. This process should be exhaustive; the sub-concepts covered for a given concept in any tutorial found should be included in the test specification.

Build Bank of Test Questions. This step is where Bloom's Taxonomy becomes important. Without using Bloom's Taxonomy, I could create a group of questions that potentially assess the same level of understanding. To assess different levels of understanding, each question should map to at least one level of Bloom's Taxonomy. If possible, it is helpful to compare the kinds of questions asked to assess each level of Bloom's Taxonomy with the questions in the bank to be used. It is also more effective if each level of Bloom's Taxonomy is represented in the bank of questions.

Pilot Questions. Once you have a bank of questions, the next step is to pilot the questions on the target audience. The goal of this pilot is to note the range in scores to inform validation, which is the next step. If all the scores are really

high, or really low, this might suggest an assessment that is too difficult or too easy [37], which would require revisiting and revising the test bank.

Establish Validity and Reliability. Validation of an assessment tool can be done in a variety of ways. The most common form of validation is item analysis [18]. The purpose of item analysis is to determine how effective your test, and the items on it, for knowledge assessment. This includes determining at a more granular level which questions may be too hard, too easy, or unfair. An example of an unfair question is a question where more than one response is a reasonable response, making it more difficult to determine the best response, even for an easy question.

4.2 Using Public Git Repositories to Predict Concept Knowledge

As a developer, many experiences are focused on writing and modifying source code; writing software is also perhaps one of the most concrete actions that can be labeled as an experience for a developer. Therefore *concept-specific source code* can be used to determine independent variables for concept knowledge models. I define concept-specific code as code that maps to a given programming concept; an example of multi-threading-specific code is <code>synchronized(variable)</code>, where the developer has written code that synchronizes variables for multi-threaded execution.

To accurately create models, we need to be able to attribute code changes to a specific developer; their contributions are coupled with concept inventory scores to create and evaluate the models. Analyzing static code can detect the presence of concept-specific code, such as synchronization or generics usage. However, it can not tell me who contributed that code, which is important when trying to build models that can accurately predict individual knowledge. Using version control can automate and ease the process of assigning code contributions to a given developer. Version control is also useful for determining how recently a developer has made concept-specific code contributions, which may be an important factor when using experience as a proxy for knowledge [26]. Given the ability to model concept knowledge, the next step is to assess the use of these models to determine appropriate information to give a developer in a given notification.

5 A Proposed Approach for Knowledge-Based Notifications

Program analysis tools could improve communication with developers by aligning notifications with the experience and knowledge of the developer using the tool. For example, FindBugs provides the following notification:

This call to a generic collection method passes an argument while compile type Object where a specific type from the generic type parameters is expected. Thus, neither the standard Java type system nor static analysis can provide useful information on whether the object being passed as a parameter is of an appropriate type.

A developer who is less familiar with concepts related to generic types might find this notification difficult to understand. In contrast, a developer who is very familiar with these concepts might find this notification too verbose or even distracting.

A tool that has access to models that can predict what a developer knows about programming concepts could adapt the notification to the developer looking at it. To continue the above example, if a developer knows little about the concept of generic types, the message would be more verbose, perhaps providing links to relevant on-line material or example solutions. If a developer knows all the relevant concepts well, the notification could instead simply say "unchecked generic type," and point her to where in the code the generic type parameters are expected.

The code that the developer has written is a useful source of data for hints about a developer's knowledge of a concept. For the generic type notification, this includes usage of generics where a generic type parameter is specified and usage of generic objects. Another source would be notifications she has already resolved; if the developer has resolved notifications of the same kind or notifications that involve the same concepts, the developer likely has some knowledge of the underlying concepts.

I have outlined my proposed research; next I will outline the studies, experiments, and evaluations I have completed and will complete for my dissertation research.

6 Experiments & Evaluations

This section outlines the research I have completed and will complete for my dissertation. For each study, I provide an abbreviated name in brackets ([]) to facilitate discussion about projects and results in later sections.

6.1 Why don't developers use program analysis tools? [Reasons]⁹

Study rationale. Static analysis tools provide a means for analyzing code without having to run the code, helping ensure higher quality software throughout the development process. There are a variety of ways to perform automatic static analyses [16], including at the developer's request, continuously while creating the software in a development environment, and just before the software is committed to a version control system. The tool may allow the developer to configure what kinds of bugs it finds, and sometimes even define new bug patterns. Static analysis tools use well-defined programming rules to find defects early in the development process, when they are cheap to fix [4]. For example, there are static analysis tools that can alert developers to synchronization issues which

⁹ Publication: Johnson, B., Song, Y., Murphy-Hill, E., & Bowdidge, R. (2013, May). Why don't software developers use static analysis tools to find bugs?. In Software Engineering (ICSE), 2013 35th International Conference on (pp. 672-681). IEEE.

can lead to unsafe thread interactions. Developers have been able to eliminate many defects that were previously overlooked at large companies [1] using the warnings produced by static analysis tools. Despite the benefits of using static analysis tools to find bugs, consistent usage of these tools is not very frequent [4]. There have been studies to investigate ways of improving static analysis tools. However, none explore why they do or do not use existing tools [6, 30].

Research questions.

RQ1 What reasons do developers have for using or not using static analysis tools to find bugs?

RQ2 How well do current static analysis tools fit into the workflows of developers?

RQ3 What improvements do developers want to see made to static analysis.

ysis tools?

Methodology. To answer my research questions, I used semi-structured interviews. Each semi-structured interview consisted of three parts: *Question and Short Response*, *Interactive Interview*, and *Participatory Design*. Once completed, I transcribed and coded each interview. Here I briefly describe each part of the interview and my coding process. Research materials can be found online. ¹⁰

Question and Short Response. During the Question and Short Response portion of the interview, we asked developers questions related to their general usage, understanding, and opinion of static analysis tools in order to answer RQ1. Questions asked can be found on-line with other research materials.

Interactive Interview. The goal behind an interactive interview was observe developers actually using a static analysis tool; for the study, the tool was Find-Bugs. I provided 6 open source projects in Java, such as log4j [55] and Ant [54], and asked each participant to run FindBugs on one of them. I chose FindBugs because it is one of the most popular and mature static analysis tools for Eclipse. I used information obtained during this portion of the interview to answer RQ1 and RQ2. I asked participants to explain what they are doing out loud [33] so I could get a better understanding of their workflow and thought process as they used the tool. I define a workflow as the steps a developer takes when writing, inspecting and modifying code.

Participatory Design. I used the last part of the interview to solicit participant design suggestions for improving static analysis tools. I utilized a concept called participatory design [47], which involves getting stakeholders (in this case, developers) involved in the design process by allowing them to show what they want instead of saying it. To promote creativity, I gave each participant a blank sheet of paper and asked them to show me what they wanted their tool to look

¹⁰ http://www4.ncsu.edu/ bijohnso/ffsat.html

like and how it should work [25]. It was not mandatory for participants to draw something, but 6 of them did. Figure 9 shows an example drawing from one participant. The other participants gave verbal descriptions of tool features they desired.

Fig. 9. One participant's participatory design drawing; (A) shows where Matt wants the gradient colors and (B) shows the way his current tool represents severity.

Coding Interview Responses. After completing the interviews, I manually transcribed each interview. Then, I coded the final transcripts. Coding is a process that is meant to make referencing transcriptions quicker and easier [17]. I used Gordon's basic steps to code the interviews. Before coding an interview, "coding categories" needed to be defined. For example, one coding category was Workflows. Some coding categories emerged after reading the transcripts. The final set of coding categories are as follows:

Tool Output – Anything related to the output produced by the tool (for example, false positives).

User Input/Customizability – Anything about the customizability of the static analysis tools (for example, modifying rule sets).

Supporting Teamwork – Anything about using static analysis tools in a team or collaborative setting.

Result Understandability – Anything about the ability or inability to understand or interpret the results produced by a static analysis tool.

Workflows – Anything related to the steps a developer takes when writing, inspecting and modifying their software (for example, tool integration).

Tool Design – Proposed tool design ideas from participants.

To ease indexing in the transcripts, I used color to identify each coding category. The last step was to check the reliability of the codings. Once I finished coding the interviews, I passed the transcripts off to four other researchers to look over. If they found any discrepancies, we discussed and resolved them as a group. This included items that could fall into more than one category; in this situation, either a new, more specific, category or a "sub-category" was created for the item. The purpose of the categories are to organize the data in a relevant and useful manner; they are not meant to directly correlate with the research questions.

Participants. I conducted this study with 20 participants. I recruited participants using a recruitment flyer sent out to industry contacts. Sixteen participants were professional developers at a large company and 4 were graduate students at NC State University with previous industry experience. Participant development experience ranged from 3 to 25 years.

Results. As I discuss my findings, I use parentheses after each theme to denote how many participants discussed topics in each theme. Participants discussed the following as reasons they do use static analysis tools (**RQ1**):

- **Automation (5)** Static analysis tools automate bug finding, and sometimes bug solving. Developers use static analysis tools to save time and effort when maintaining their code.
- **Availability (3)** Some development environments, such as IntelliJ IDEA ¹¹, come with built-in static analysis tools. Developers also use static analysis tools because they are already installed and available in their IDEs, requiring little effort on their parts to at least adopt the tool.
- Customizability (3) Some tools allow its users to customize anything from the appearance of the tool's output to the type of output that is presented. Developer use static analysis tools when they are able to make desired customizations.

¹¹ https://www.jetbrains.com/idea/

On the flip side, participants discussed the following reasons they do not use static analysis tools (**RQ1**):

- Collaboration (9) Software development is inherently collaborative; some participants noted that tools they use and have used do not provide support for collaborative code improvement efforts.
- Tool Output (14) Findings prior to this study found that tools can produce large volumes of notifications, many of which end up being false positives [1, 44]; I found that this output can be overwhelming as presented by current tools. Participants noted that more intuitive and user-friendly output could help minimize the effects of dealing with these characteristics of tool output.
- Customizability (17) Developers want to configure their tools to present output how and when they want; currently tools do not effectively support the customizations developers want to make. If they do support customizations, the support is minimal and often time-consuming to use.
- Result Understandability (19) In order to effectively use static analysis tools, developers need to be able to interpret the notifications provided. Currently, many of the tools participants use provide cryptic notifications that lead to challenges for them when attempting to interpret the message.

I also explored the ability for existing tools to integrate with developer workflows ($\mathbf{RQ2}$). Based on feedback from 19 participants, the following are workflow integration concerns:

- **IDEs vs. Text Editors** Developers have preferences regarding how they want their tool integrated into their work environment. For example, some developers use IDEs so it is ideal if the tool can integrate with their IDE. Some developers do not use IDEs, so they would prefer compiler-level integration provided by some tools, like Clang¹².
- **Tight Integration** Another important factor is how tight the integration is; some participants used IntelliJ as an example of an IDE with good tool and workflow integration due to the fact that the static analysis is built-in. This includes the tool running without having to be explicitly invoked by the developer.
- Fast Feedback Participants noted that another important part of workflow integration is the ability to give fast feedback; the sooner the tool can alert the developer to a problem in their code, the better the tool integrates into their workflow.

Finally, participants elaborated a number of ideas for how current static analysis tools could improve (**RQ3**). The majority of design suggestions fell into one of two categories: **Quick Fix Design** and **Warning Notification and Manipulation Design**.

Quick Fix Design (10) Quick fixes automatically resolve defects by applying a fix to the developer's code on her behalf. Suggestions participants had

 $^{^{12}~\}mathrm{http://clang.llvm.org/docs/ClangTools.html}$

for improving this feature include providing fix previews through diffs and providing dialog boxes for walking through and toggling between fixes.

Warning Notification and Manipulation Design (20) All participants had suggestions for improving how and when notifications are presented to them. Suggestions for notifications include providing fast, discrete feedback and allowing developer to make and apply on-the-fly judgements, such as temporary suppression, to a given notification.

6.2 Why do developers have difficulty interpreting tool notifications? [Challenges]¹³

Study rationale. Program analysis tools, such as static analysis tools, refactoring tools, and code smell detectors, can ease manual and sometimes tedious software development tasks by automatically analyzing and modifying source code [2, 34]. Output from these tools, such as warnings and errors, come in the form of textual or visual notifications that vary from tool to tool. In previous interviews, 19 professional developers reported not using static analysis tools, one type of program analysis tool, because notifications can be difficult to interpret [27]. The goal of this study was to understand what makes it challenging for developers to interpret program analysis tool notifications. To identify challenges, I examined tool use through the lens of communication theory [8].

Research question. Using Hannay and colleagues' guidelines [23], I framed my research question as why rather than what to support building a theory that explains the challenges developers encounter, yielding the following research question:

RQ1 Why do developers encounter challenges when interpreting program analysis tool notifications?

Methodology. To answer my research question, I observed participants while using three different program analysis tools.

Program Analysis Tools Investigated. My research currently focuses on tools that can be used in the Eclipse Integrated Development Environment (IDE) [56]. I chose Eclipse because it is one of the most widely used IDEs [19], making it easier to recruit qualified participants, and because it is compatible with a variety of tools. I selected FindBugs, the Eclipse Java Compiler, and EclEmma as mature, popular tools. FindBugs is a static analysis tool for detecting potential defects in Java source code. The Eclipse Java compiler alerts developers of warnings and errors related to compilation and potential run-time problems. EclEmma is a Java code coverage tool. Examples of notifications used by these tools are shown in Figure 10 (FindBugs), Figure 11 (compiler), and Figure 12.

Publication: Johnson, B., Pandita, R., Smith, J., Ford, D., Elder, S., Murphy-Hill, E., Heckman, S., Sadowski, C., What We Have Here is a Failure to Communicate! A Cross Tool Study on Program Analysis Tool Notifications. FSE 2016 (in submission)

(a) Source Code

Nullcheck of e at line 605 of value previously dereferenced in javax.swing.text.DefaultStyledDocument.getParagraphElement(int)

(b) Short Description

A value is checked here to see whether it is null, but this value can't be null because it was previously dereferenced and if it were null a null pointer exception would have occurred at the earlier dereference. Essentially, this code and the previous dereference disagree as to whether this value is allowed to be null. Either the check is redundant or the previous dereference is erroneous.

(c) Full Description

Fig. 10. A notification of a previous null check from FindBugs (FB4).

(a) Source Code

The type new AbstractInterrruptibleChannelInterruptible()
must implement the inherited abstract method new AbstractInterruptibleChannel.Interruptible.interrupt()

(b) Text Description

Fig. 11. An Eclipse compiler notification about unimplemented methods (CMP5).

```
if (this.std != that.std) {
    return false;
    }

(a) Source Code with Highlighting
```

1 of 2 branches missed (b) Text Description

Fig. 12. An EclEmma notification about partial branch coverage (ECL3).

Study Protocol. Participants engaged with each tool I investigated during sessions that each lasted approximately one hour. Each session consisted of seventeen tasks. For each task, I presented participants with and asked them to interpret one or more notifications from each tool. I disallowed the use of a web browser to isolate the challenges developers encounter to the notifications used by the tools and to exclude challenges caused by outside tools. During many tasks, and at least once for every participant, participants discussed or completed notification resolution. I did not require them to do so, since it would be unfair to ask them to resolve a notification if they did not understand it. As participants explained the notifications, I asked follow-up questions as necessary.

For each task, I chose notifications to represent the types of notifications developers may encounter when programming. For FindBugs and the Eclipse compiler, I chose notifications that appeared frequently in the Sun JDK project. I chose EclEmma notifications from JFreeChart to exercise a range of its coverage scenarios. Because EclEmma's documentation does not specify the range of notifications it uses, I manually went through JFreeChart's codebase after running the tool and took note of each new coverage scenario encountered. I then included an example of each coverage scenario in the EclEmma tasks.

Fig. 13. A notification from the compiler about generics (CMP2).

For FindBugs, each task corresponded to a single notification. All but one compiler task corresponded to a single notification; because the two notifications on CMP2 (Figure 13) contribute to the same problem on the same line, we presented them as one task. Each EclEmma task consisted of coverage notifications for an entire class.

Data Collection & Analysis. I transcribed each session and included descriptions of actions that a participant performed relevant to interpreting the notification. For example, if a participant navigated to different parts of the code but did not explicitly describe it, I added a description of that navigation to the transcript.

I analyzed each transcript using selective coding [10] to discover the challenges participants encountered with the goal of explaining the challenges programmers encounter. To identify a challenge, observing tool use as communication, I used Mustajoki's proposed model of (mis)communication to determine

when a miscommunication-related challenge occurred [36]. I created three criteria for identifying a challenge: 1) the participant explicitly states a challenge, 2) is unable to explain the notification, or 3) has to take steps, outside of reading the notification, to deduce the problem.

The coding process was completed by two researchers, myself and a co-author on the submitted work, and in two phases. In phase 1, we each coded all the transcripts individually using the criteria above. In phase 2, we reconvened to merge our codes and check for disagreements. Of the 404 codes we originally extracted, we disagreed on 82 (20%). To resolve our disagreements, we referred to our criteria; if we could not come to an agreement regarding the code fitting the criteria, we removed the statement from our data set. For four sessions, we had no disagreement. In the end, we identified 322 codes. I put each code onto a note card, along with the participant and tool being used.

Using the note cards created during the coding process, I completed a card sort using a methodology similar to that of Muşlu and colleagues [35]. The goal of this card sort was to identify themes based on our codes. I completed the card sort with four other researchers (also co-authors on the submitted work) and in three phases. In phase 1, we sorted all cards into high-level themes; each card could only go in one theme. Phase 2 focused on determining where high-level themes could be broken down into lower-level themes. In phase 3, we focused on making sure that each card was in the best fitting theme. During this phase, we also clarified theme definitions and made note of example statements to represent each theme.

Participants. I conducted this study with 26 undergraduate students (10), graduate students (6), and professional developers(10), with varying amounts of development and tool usage experience. Three graduate students reported having industry experience. I recruited participants using mailing lists, classroom recruitment, and personal contacts. Ten participants had prior experience using EclEmma. Nineteen participants had prior experience with FindBugs. All participants had experience with the Eclipse Java compiler.

Results. Based on findings from the study, I propose the following theory:

The challenges developers encounter when interpreting program analysis tool notifications are caused by gaps and mismatches between developer knowledge and how notifications communicate information.

The kinds of challenges developer encountered during this study are shown in Figure 14.¹⁴ Vertical lines represent the tasks and the horizontal bars indicate challenges. The different size dots indicate how many participants encountered challenges with that notification in that theme. The smallest dot represents one developer and the largest dot represents eight or more developers. Diagonal lines map participants to the challenges interpreting that notification. Green

¹⁴ Credit for the creation of this figure goes to Sarah Elder, a co-author on this work.

Fig. 14. Distribution of challenges encountered and notifications that caused them.

challenges are caused by *knowledge gaps* in what the developer knows and red challenges are caused by *knowledge mismatches* between what the developer knows and how the tool communicates about those concepts. When opened in Adobe Acrobat, clicking "Hide/Display Details" interactively toggles between showing and hiding this mapping.

6.3 Can we use developer experience to predict knowledge? $[Predictions]^{15}$

Study rationale. The challenges developers encounter when interpreting tool notifications stem from the one-size-fits-all nature of tool notifications, despite the differences in what developers know and do not know. Communication between notifications and developers can be improved if the notifications could adapt to the developer based on the developer's knowledge of programming concepts. This proposition is based on constructivism, a verbal communication theory that suggests awareness of how the audience might react to a message

To Publication: Johnson, B., Pandita, R., Murphy-Hill, E., Heckman, S., Menzies, T., Predicting Developer Conceptual Knowledge Using Public Git Repositories. VL/HCC 2016 (in submission)

improves communication [20]. For this to be possible in the context of tool use, tools need a way of knowing what concepts the developer knows and do not know. I implemented and evaluated an approach that uses concept inventories, a method used in education research for assessing conceptual knowledge [48], and explores the possibility of providing knowledge information to tools in the form of concept knowledge models. The goal of this study was to develop and assess an approach for developing models that predict knowledge of programming concepts that appear in tool notifications based on concept-specific code the developer has written.

Hypotheses.

 ${\tt H_1}$ We can predict conceptual knowledge using source code as a primary source of developer data.

H₂ Concept-specific code increases model accuracy and precision compared to a model that uses lines of code (LOC) only.

Approach. Below I outline the approach I developed; research materials are available on-line. ¹⁶

Assessing & Encapsulating Conceptual Knowledge. To assess & encapsulate developer knowledge as the dependent variable for the models, I borrowed from computer science education literature and developed a concept inventory [48]. To determine the questions for the inventory, I identified key generics concepts using the Oracle Java Tutorial on Generics¹⁷ to find and map the relationships between generics concepts and ancestor concepts; if Lesson 5 built on top of Lesson 1, I considered Lesson 5 an ancestor of Lesson 1. For example, based on the generics tutorial, I labeled Upper Bounded Wildcards as an ancestor concept to Wildcards. To ensure I covered all concepts, I checked other Java generics tutorials; no new concepts emerged from this process.

Once I had the key concepts, I came up with at least 1 question for each level of revised Bloom's taxonomy, based on my test specification, using examples found in work by Nelson [37] and Thompson and colleagues [50]. From this process, I derived 11 questions. I piloted my initial set of questions with 11 developers and students at NC State University.

Next, to test the validity and reliability of the concept inventory, I used item and distractor analysis in R. Item analysis determined if the items on the inventory are valid methods of assessment; from this process I eliminated 1 question, which yielded a final set of 10 questions. Distractor analysis determined if the options provided for a given question are fair and if the incorrect options contribute to the quality of the inventory; because each option was selected at least once for each inventory item, and most often the correct option was chosen, I kept all response options for each inventory item. I did another pilot once I established validity and reliability.

 $^{^{16}\ \}mathrm{http://www4.ncsu.edu/}\ \mathrm{bijohnso/apatian.html}$

¹⁷ http://docs.oracle.com/javase/tutorial/java/generics/

I also asked participants to self-report how much they know about generics to assess the possibility to use self-report as a proxy for knowledge and experience. However, developers almost always over- or underestimated their knowledge based on my assessment, matching concept inventory scores 18% of the time. This aligns with existing research that suggests objective knowledge, based on a factual test, may be better for task performance oriented measures, such as ability to understand concepts [9,41]. Based on these findings, and existing research, I used concept inventory scores rather and collect source code as a proxy for experiences that led to knowledge [3,41] rather than self-report scores alone.

Source Code Analysis. To test my hypotheses, I chose Java generics as the initial concept. I made this decision primarily because generics requires motivation on behalf of the developer to explore beyond the basics and is a concept appears in notifications across program analysis tools. When we say motivation, we refer to an intrinsic motivation to learn that stems from an interest in learning [31, 22]. Another advantage to using a concept like generics to test my hypotheses is that it is multi-faceted; there are enough features of and ways to use generics for there to be relationships that I can explore and use to generalize for applicability to other concepts. ¹⁸

To determine the independent variables for my model, I analyzed for code contributions and assigned them to developers using version control. I built a Java source code analyzer that analyzes code bases for concept-specific code using the Eclipse JDT ASTParser. One example of generics-specific code is a generic type declaration ((public class <T> Box)). I used code bases in repositories to determine what developer made what contribution via the commit history. I chose the versioning platform Git¹⁹ so I could use JGit,²⁰ which allows for manipulation of Git repositories via Java code, along with ASTParser to analyze for developer code contributions.

To test H_1 and H_2 , I collected concept-specific code and manually collected LOC added from GitHub, a social coding site where developers can create and maintain Git repositories. ²¹ To determine LOC, I manually checked the contributions reported by GitHub for each developer's repositories. To determine what concept-specific code to analyze for, I used the same key concepts identified for the concept inventory (i.e. generic type declarations). I collected 11 different types of generics usage, such as generic type declarations and usage of the Wildcard (?) generic type. ²²

¹⁸ Although this approach is evaluated on what I would consider a complex concept, this approach will also work for simpler concepts where, based on the language features, there may be fewer options for advanced learning about the concept.

¹⁹ https://git-scm.com/

²⁰ http://eclipse.org/jgit/

²¹ http://www.github.com

²² The repository that holds the analyzer can be found at https://github.com/brittjay0104/APATIANproto.git.

I also used version control to detect when the most recent contribution of each type of generics usage was made; prior analyses indicated time may play a factor in how predictive code contributions are [26]. The output of my analyzer for each repository is an occurrence count for all contributed generics code and when the most recent contribution for each type of generics was. To determine which types of generics usage might be more advanced than others, I used the output from analyses to create a hierarchy of generics feature usage. The feature hierarchy, along with a description of the creation process and usage, can be found on-line. ²³

To increase the generalizability of the model to other concepts, I characterized the independent variables for the model by grouping the types of generics collected based on *features* of the data. For example, a feature of type declarations and type parameter methods (public <T> method()) that groups them together is that the developer wrote new generic code for use by other developers, rather than using existing generic code. The set of features I identified among the data are as follows:

- Declared Generics: I computed Declared Generics by adding together counts from the types of generics where the developer wrote new generic code for use by themselves or others (i.e. type declarations).
- Used Generics: I computed Used Generics by adding together counts from the types of generics that are ways to use generics, as opposed to contributing to a new generic type (i.e. method invocations).
- Levels of Generics Usage: I computed the Levels of Generics Usage by adding together counts from the types of generics that would be considered on a basic, intermediate, or advanced level of usage. I used the feature hierarchy discussed above.

I also defined two *heuristics* to apply to the feature groups:

- Recency: The recency heuristic takes each of the features and multiplies each value by 1.0 if the most recent contribution was made in the last week, 0.8 if between one week and one month, 0.6 for 1–6 months, 0.4 for one year, and 0.2 for more than one year. For example, if, the total number of declarations made by a developer (Declaration heuristic) is 198 and the most recent declaration was written between one week and one month, the Declaration Recency (DeclRecency) heuristic value would be 158.4 (198 × 0.8).
- Natural Log: This heuristic calculates natural log of each feature group before and after the recency heuristic is applied.

I applied natural log to the data following the reasoning of Fritz and colleagues, who used natural log in their models to account for the potential for large differences in variable values [14]. For example, some repositories returned counts in the thousands for class instantiations but counts of zero for explicit

²³ http://www4.ncsu.edu/ bijohnso/docs/feature-map.pdf

method invocations; this might cause our model to put more weight on the contribution of feature groups and heuristics that include class instantiations than it truly contributes. I used both the *features* and *heuristics* defined above to determine the independent variables for analyses.

Data Analysis. To define the relationship between the dependent and independent variables, I used Weka [21] for access to machine learning algorithms suitable for my small dataset of 24 GitHub developers; only 24 developers completed the concept inventory, which was necessary for developing and evaluating my current approach. Specifically, I used Weka's J48 classifier [53] to create decision trees.

To select the independent variables best suited for the model, I used Correlation-based Feature Selection (CFS) in Weka. This analysis runs k-fold cross validation using the independent variables passed in; to lower the potential for a model with overestimation bias, I maintained even and sizable chunks by using 4-fold cross validation. CFS evaluates each attribute on its predictive ability and uses cross-validation to indicate how stable the best subset of variables is based on how many folds the variable appeared in. For increased model stability, I selected the variables that appeared in more than one fold.

Table 1. Precision, Recall, and F-Score for Beginner Classification

Beginner		
Precision	Recall	F-Score
0.5	0.333	0.4
0.667	0.333	0.444
0.625	0.833	0.714
	Precision 0.5 0.667	Precision Recall 0.5 0.333 0.667 0.333

Table 2. Precision, Recall, and F-Score for Intermediate Classification

	Intermediate		
	Precision	Recall	F-Score
LOC	0.636	0.778	0.7
DeclRecency	0.727	0.889	0.8
DeclRecency + LOC	0.75	0.667	0.706

Table 3. Precision, Recall, and F-Score for Advanced Classification

	Advanced		
	Precision	Recall	F- $Score$
LOC	0.875	0.875	0.875
DeclRecency	0.778	0.875	0.824
$\begin{array}{c} \textbf{DeclRecency} \ + \\ \textbf{LOC} \end{array}$	1	0.875	0.933

Table 4. Total Precision, Recall, and F-Score

	Total		
	Precision	Recall	F- $Score$
LOC	0.684	0.696	0.683
DeclRecency	0.729	0.739	0.715
$\begin{array}{c} \textbf{DeclRecency} \ + \\ \textbf{LOC} \end{array}$	0.804	0.783	0.787

Results. Based on developer classifications and the set of independent variables, CFS identified two variables that fit my variable selection criteria: LOC and DeclRecency. I created three decision tree models: 1) LOC only (Figure 17, 2) DeclRecency only (Figure 16, and 3) LOC + DeclRecency (Figure 15. I created a model based on LOC only to test H_2 . To further explore how each affects overall model accuracy and precision for H_1 and H_2 , I created a model using both LOC and DeclRecency. The values for each model's *precision*, *recall*, and *F-Score* values are shown in Table 1 (Beginner), Table 2 (Intermediate), Table 3 (Advanced), and Table 4 (Total).

Fig. 15. Decision tree model using DeclRecency and LOC as independent variables.

My findings support H_1 : it is possible to predict conceptual knowledge using source code as a primary source of developer data.

All three models correctly classified developers more often than not (LOC = 70%; DeclRecency = 74%; Combination = 78%); in fact, by combining LOC with DeclRecency, the accuracy of classification increased by 4%. This increase may be due to the fact that, as existing research suggests, all experiences contribute to overall knowledge [3, 41]. Similarly, general coding experience seems to also contribute to conceptual knowledge.

Based on the models shown in Figure 15 and Figure 16, how recently code contributions are made also affect conceptual knowledge. Based on the recency

Fig. 16. Decision tree model using DeclRecency as the independent variable.

Fig. 17. Decision tree model using LOC as the independent variable.

heuristic, a higher DeclRecency value suggest more recent code contributions. This suggests that determining a developer's knowledge of concepts may require both concept-specific declarations and recent experience with concept-specific declarations.

My findings support H₂: concept-specific code improves model performance compared to a model that uses LOC only.

The LOC model's precision, recall, and F-Score suggest it may be better at classifying developers with advanced generics knowledge than the DeclRecency model (Figure 3). However, overall model accuracy is higher in the DeclRecency model (74%) than the LOC model (70%) (Table 4. There was also a slight performance increase overall, with increased precision and F-Score for beginner (+0.167, +0.04) and intermediate (+0.09, +0.1) classification and increased total precision (+0.05), recall (+0.04), and F-Score (+0.03). Also, as shown in Figure 15, LOC only becomes relevant when classifying beginner and intermediate developers. This may be because beginner and intermediate developers do not declare enough generics to make an informed decision without some reference to the general experience they have. Regardless, these findings suggest that although both LOC and concept-specific code can both be used to predict conceptual knowledge, concept-specific code increases overall model accuracy and precision.

6.4 Does my prototype concept knowledge model generalize? [Generalizability]

Study rationale. Two important aspects to consider when developing a quality tool or approach are performance and scalability [13]. However, when evaluating models, rather assessing scalability, researchers should assess model performance and generalizability [12]. My previous study, **Predictions**, found that it is possible to assess, model, and accurately predict developer knowledge regarding Java generics (performance), based on the predictions of a prototype model (M1). However, it is not obvious if M1 generalizes to other concepts and developers. The end goal is an approach that can be applied to any concept and be used to make predictions for any Java developer (scalable) while still performing at a high level. Therefore, I designed a study where I will explore the generalizability of M1 to other programming concepts and different sets of developers.

Research questions.

RQ1 To what extent does M1 generalize to developers outside the set used to create the model?
 RQ2 To what extent does M1 generalize to concepts outside the concept used to create the model?
 RQ3 What factors do developers perceive as contributors to their knowledge of programming concepts?

Proposed methodology. I plan to explore the generalizability of, and refine, the approach that led to M1 by combining qualitative feedback with generalizability assessments. One of my ongoing (implicit) model refinement efforts is finding more developers for building and assessing M1 and, if needed, creating and evaluating new models.

Generalizability Assessments. I built and evaluated M1 using the same set of developers. I plan to assess the generalizability M1 on other developers (RQ1) by making predictions using M1 with a separate set of developers. Doing so will allow me to observe the ability for M1 to generalize to a wide range of developers. To assess the generalizability of the approach that led to M1 in regards to other concepts (RQ2), I plan to develop new concept inventories and analyze participant repositories for concept-specific code pertaining to others Java concepts. I plan to conduct these generalizability assessments using three concepts: operators, variables, and exceptions. I chose three concepts to balance feasibility of completion within a reasonable timeframe (1 - 1.5 years) and confidence in generalizability outside of one concept or set of notifications. I chose operators, variables, and exceptions as the three concepts I will use for my generalizability assessments because 1) there are notifications across tools pertaining to these concepts, 2) FindBugs, the tool whose notifications I will use in future evaluations, has notifications pertaining to these concepts, and 3) notifications pertaining to these concepts appear in production software [5].

Qualitative Data Collection & Analysis. Although there is value in quantitative findings, my research experience suggests that there is a richness in qualitative data that cannot be achieved with quantitative data and analyses. I chose the variables for M1 based on qualitative and quantitative findings; therefore, another way I plan to assess the generalizability, and find opportunities for refinement, of M1 is by conducting short, semi-structured interviews with developers (10-20) regarding their perceptions of source code and programming concept expertise (RQ2).

Each interview will last approximately 30 minutes and will be divided into two phases: 1) the relationship between the code they write and their expertise regarding the concept and 2) other factors that contribute to their knowledge of programming concepts.

Assessing generalizability in the context of a mathematical model is a primarily quantitative process. Therefore, I also plan to explore the generalizability, and approach that led to the creation, of M1 by interviewing and surveying developers.

To determine what factors developers consider as contributors to their knowledge, I plan to 1) code each transcript and 2) perform content analysis in R [40] on interview transcripts. Content analysis assumes that content most frequently mentioned is the most important. For example, if in multiple interviews participants discuss on-line programming forums, such as Stack Overflow, one item that content analysis may identify as important in relation to the topic being discussed, is on-line forums. In order to perform content analysis, I need well defined categories, such as on-line forum usage; this is where the coding process comes into play. Using a methodology similar to the one in Section 6.2, I will code each transcript for statements pertaining to their knowledge of concepts and experiences that contributed knowledge for them.

Using the codes from the transcripts, I will perform content analysis to determine which factors developers feel contribute most to their knowledge. To validate source code as a factor, and other factors that emerged during the interviews, I plan to administer a survey to another set of developers (50–100). To encourage participation, and thereby increase the likelihood I will get a large set of responses [45], I plan to ask only one question: Which of the following contribute to your knowledge of programming concepts?. I will include a definition and example of a programming concept so that participants are able to accurately respond. I will also communicate to their interests as developers, such as improvement of the tools available for the to use. I will include each factor identified during the interviews as response options. I will determine the factors that contribute most to developer knowledge by running various analyses using R with data from the survey. Findings from both the qualitative and quantitative analyses will serve to potentially confirm current model building efforts and inform future data analysis and model building efforts.

Participants. To increase the ability to compare M1 to future models, I plan to conduct this study with at least 25 GitHub developers. I plan to recruit par-

ticipants by re-contacting participants from **Predictions**. As a back-up, I also plan to use mailing lists, personal contacts, and GitHub search to find developers. Because I already have a participant pool to re-sample, and a handful of participants that have expressed interest in continuing participation and helping with recruitment, I expect it will be faster and easier to acquire my goal of at least 25 participants.

6.5 Are adaptive, knowledge-based notifications more effective than one-size-fits-all notifications? [SmartBugs]

Study rationale. Based on findings from previous studies, I proposed that communication between tools and developers can be improved if rather than using one-size-fits-all notifications, tools used knowledge-based notifications. Knowledge-based notifications would use concept knowledge models. We found that communication theory applies directly to tool use, therefore constructivism communication theory should also apply [20]. Constructivism states that a speaker with awareness of how her audience will react to her message can tailor the message to the audience and therefore improve the audience's ability to understand and relate to the message. I have explicitly assessed the applicability of general communication theory to tool use (Section 6.2), however, I have not explicitly assessed the applicability of constructivism to notification and tool design. Therefore, the goal of this study is to assess whether knowledge-based communication, in regards to tool use, is better than one-size-fits-all communication.

Research questions & Hypothesis.

RQ1 How does existing notification design, problem solving, and debugging research map to differences in developer knowledge?

RQ2 Are there differences in notification design expectations across developers with differing knowledge?

H₁ Adaptive, knowledge-based notifications require less time and contextswitching for notification understanding and resolution than onesize-fits-all notifications.

Proposed methodology. To answer RQ1, rather than iterating on design ideas based on speculation, I will perform a literature review of existing research on notification design, problem solving, and debugging in relation to programming expertise. The focus of this literature review will be the design space of notifications and how developers with various backgrounds (i.e. novice versus expert) find and use information to understand problems in their code. For example, existing research suggests that experts more often rely on abstractions to understand problems in their code, while novices tend to focus on the literal features, such as the constructs in the source code [52]. Therefore, one potential design consideration for notifications for novices is to center the explanation around

the source code, or parts of the source code, while for experts a consideration would be to use more abstractions. I will compile a list of related findings and map these findings to developer knowledge or expertise.

To answer RQ2, I will code the list of findings to determine 1) themes within a knowledge group and 2) how themes differ across knowledge groups. I plan to use a methodology similar to the methodology outlined in Section 6.2. Once I have these themes, I can begin to develop my approach for assessing H_1 .

To assess H_1 , I plan to 1) assess potential knowledge-based notification adaptations and 2) implement and evaluate a tool that replaces one-size-fits-all notifications with knowledge-based notifications. I will first use findings from RQ1 and RQ2 to design notification templates that map to different expertise categories; for consistency, I will attempt to use three groups as I did in the study in Section 6.3.

Notification adaptations will be based on knowledge of programming concepts, therefore I need to be able to identify the concepts present in a given notification to know what to adapt. I will identify concepts in notifications based on:

- Type of tool.
- Keywords in text.
- Source code notification is attached to.

Once I have a prototype notification design template for each expertise category, I will assess the validity and applicability of existing research regarding expertise and

Based on the results from my user study, I will develop a prototype tool, which I will call SmartBugs, that will adapt notification presentation based on developer knowledge. I plan to build SmartBugs on top of FindBugs because it is a mature, open source defect finding tool with a wide range of notifications that have no obvious pattern behind the information it provides in a given notification. FindBugs will serve as the baseline (one-size-fits-all) set of notifications to compare SmartBugs' notifications to (knowledge-based).

For the evaluation of SmartBugs, I will attempt to re-use the same participants from **Predictions** and **Generalizability**. This will prevent the overhead of finding new participants with Git repositories and the potential overhead of asking more developers to take potentially multiple concept inventories. As a back-up plan, I will plan to have participants take the concept inventory as part of participation prior to arrival for their session using SmartBugs.

For the user evaluation, I will divide participants into two groups: one group will use FindBugs (FB) and the other will use SmartBugs(SB). Each group will have an equal number of developers from each classification group to ease the process of analyzing the data. All developers in the FB group will be presented with the normal notifications used by FindBugs. Developers in the SB group will be presented with notifications based on their classification and the mappings from RQ1 and RQ2.

To assess whether SmartBugs is more effective than FindBugs, I will observe 1) the ability for participants to understand and resolve each notification and 2)

the time it takes for participants to understand and resolve each notification. I will measure understanding by requesting participants explain the notification aloud. I will assess the correctness of their explanations to determine whether they correctly interpreting the message; this will be my proxy for understanding. I will assess ability to resolve the notification by observing if the participant makes intentional code changes

I also plan to allow use of the web for both FindBugs and SmartBugs; this will inform future improvement efforts. For example, if a group of SmartBugs users have to go to the web, particularly if they are in the same classification, this information can be used to improve the information provided to developers in that classification.

To assess user satisfaction with SmartBugs and FindBugs notifications, I will administer a user satisfaction survey post-evaluation to gain insights into participant options of both sets of output.

6.6 Participants.

I plan to recruit 10–20 developers for this study. I will begin recruitment with existing participants from previous studies, as we will have built rapport, and ideally a mutual interest in the outcomes of my proposed research. I will also, if necessary, recruit using mailing lists and personal contacts.

7 Related Work

There will be lots here – just seemed like something I could put on the backburner for later drafts. :)

8 Project Plan

8.1 Completed Projects & Publications

I have completed the following projects & publications:

Reasons Completed Fall 2012; Publication: ICSE 2013
 Challenges Completed Fall 2015; Publication: FSE 2016 (in submission)
 Predictions Completed Spring 2016; Publication: VL/HCC 2016 (in submission)

8.2 Upcoming Projects & Publications

I plan to complete the following projects & publications by my defense in Spring 2017:

- Generalizability (in progress) Amend IRB for interviews and survey (May 2 May 9); Data collection (April 11 April 25); Conduct Interviews (May 11 May 20); Data analysis (May 21 May 28); Create and administer survey (May 29 June 12); Survey analysis (June 13 June 30); Publication: ICSE 2017 (est. 8/28)
- SmartBugs Study IRB (May 2 May 9); Literature Review (June 6 June 12); Develop SmartBugs (with aide of Master's student) (June 13 – October 3); User Study (October 10 – October 21); Data analysis (October 22 – October 30); Write and edit draft (November 1 - March 11/March 18); Publication: FSE 2017 (est. 3/11) or VL/HCC 2017 (est. 3/18)
- **Dissertation** Write and edit draft (January 1 May 1); Publication: Thesis Document

Acknowledgments

References

- 1. The Google FindBugs Fixit. In: Proc. ISSTA. pp. 241–252 (2010)
- 2. Adolph, S., Hall, W., Kruchten, P.: Using grounded theory to study the experience of software development. Empirical Software Engineering 16(4), 487–513 (2011)
- Argote, L., Miron-Spektor, E.: Organizational learning: From experience to knowledge. Organization science 22(5), 1123–1137 (2011)
- 4. Ayewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix, J., Pugh, W.: Using static analysis to find bugs. IEEE Software 25(5), 22–29 (2008)
- Ayewah, N., Pugh, W., Morgenthaler, J.D., Penix, J., Zhou, Y.: Evaluating static analysis defect warnings on production software. In: Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering. pp. 1–8. ACM (2007)
- 6. Bessey, A., Engler, D., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C., Kamsky, A., McPeak, S.: A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World. Commun. ACM 53(2), 66–75 (2010)
- 7. Biggerstaff, T.J., Mitbander, B.G., Webster, D.E.: Program understanding and the concept assignment problem. Communications of the ACM 37(5), 72–82 (1994)
- 8. Bowman, J.P., Targowski, A.S.: Modeling the communication process: The map is not the territory. Journal of Business Communication 24(4), 21–34 (1987)
- 9. Cole, C.A., Gaeth, G., Chakraborty, G., Levin, I.: Exploring the relationship among self-reported knowledge, objective knowledge, product usage and consumer decision making. Advances in Consumer Research 19, 191 (1992)
- 10. Corbin, J., Strauss, A.: Basics of qualitative research: Techniques and procedures for developing grounded theory. Sage publications (2014)
- 11. Ernst, M.D.: Static and dynamic analysis: Synergy and duality. In: WODA 2003: ICSE Workshop on Dynamic Analysis. pp. 24–27. Citeseer (2003)
- 12. Forster, M.R.: Key concepts in model selection: Performance and generalizability. Journal of mathematical psychology 44(1), 205–231 (2000)
- Fox, T., Scott, J.E., Spendolini, S.: Performance and scalability. In: Pro Oracle Application Express 4, pp. 559–598. Springer (2011)
- Fritz, T., Ou, J., Murphy, G.C., Murphy-Hill, E.: A degree-of-knowledge model to capture source code familiarity. In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1. pp. 385–394. ACM (2010)

- Ge, X., DuBose, Q.L., Murphy-Hill, E.: Reconciling manual and automatic refactoring. In: Software Engineering (ICSE), 2012 34th International Conference on. pp. 211–221. IEEE (2012)
- 16. Gegick, M., Williams, L.: Towards the use of automated static analysis alerts for early identification of vulnerability- and attack-prone components. In: Proc. ICIMP. pp. 18–23 (2007)
- 17. Gordon, R.: Coding interview responses. In: Basic Interviewing Skills, pp. 183–199. Waveland Pr Inc. (1998)
- 18. Gorsuch, R.L.: Exploratory factor analysis: Its role in item analysis. Journal of personality assessment 68(3), 532–560 (1997)
- 19. Goth, G.: Beware of the March of this IDE: Eclipse is overshadowing other tool technologies. IEEE Software 22(4), 108–111 (2005)
- 20. Griffin, E.A., McClish, G.A.: A first look at communication theory. McGraw-Hill Boston (2011)
- 21. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009), http://doi.acm.org/10.1145/1656274.1656278
- 22. Hall, T., Sharp, H., Beecham, S., Baddoo, N., Robinson, H.: What do we know about developer motivation? IEEE software 25(4), 92 (2008)
- 23. Hannay, J.E., Sjøberg, D.I., Dybå, T.: A systematic review of theory use in software engineering experiments. Software Engineering, IEEE Transactions on 33(2), 87–107 (2007)
- 24. Jazayeri, M., GHEZZI, C.: Programming language concepts (1997)
- 25. Johnson, B.: A Study on Improving Static Analysis Tools: Why are we not using them? In: Proc. ICSE, Student Research Competition (2012)
- Johnson, B., Pandita, R., Murphy-Hill, E., Heckman, S.: Bespoke tools: adapted to the concepts developers know. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. pp. 878–881. ACM (2015)
- 27. Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R.: Why don't software developers use static analysis tools to find bugs? In: Software Engineering (ICSE), 2013 35th International Conference on. pp. 672–681. IEEE (2013)
- 28. Johnson-Laird, P.N.: Mental models. (1989)
- Kaczmarczyk, L.C., Petrick, E.R., East, J.P., Herman, G.L.: Identifying student misconceptions of programming. In: Proceedings of the 41st ACM technical symposium on Computer science education. pp. 107–111. ACM (2010)
- 30. Khoo, Y.P., Foster, J.S., Hicks, M., Sazawal, V.: Path projection for user-centered static analysis tools. In: Proc. PASTE. pp. 57–63 (2008)
- 31. Krapp, A.: Interest, motivation and learning: An educational-psychological perspective. European journal of psychology of education 14(1), 23–40 (1999)
- 32. Lawrance, J., Bogart, C., Burnett, M., Bellamy, R., Rector, K., Fleming, S.D.: How programmers debug, revisited: An information foraging theory perspective. Software Engineering, IEEE Transactions on 39(2), 197–215 (2013)
- Lewis, C.H.: Using the "Thinking Aloud" Method In Cognitive Interface Design. Tech. Rep. RC-9265, IBM (1982)
- 34. Murphy-Hill, E., Black, A.: An interactive ambient visualization for code smells. In: Proceedings of International Symposium on Software Visualization. pp. 5–14 (2010)
- 35. Muşlu, K., Bird, C., Nagappan, N., Czerwonka, J.: Transition from Centralized to Distributed Version Control Systems: A Case Study on Reasons, Barriers, and Outcomes. In: Proceedings of the International Conference on Software Engineering (2014)

- 36. Mustajoki, A., et al.: Modelling of (mis) communication. Prikladna lingvistika ta ligvistitshni tehnologii: Megaling-2007 35 (2008)
- 37. NELSON, C.H.: Testing and evaluation in the biological sciences. (1967)
- 38. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis. Springer (2015)
- 39. Pirolli, P., Card, S.: Information foraging. Psychological review 106(4), 643 (1999)
- 40. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013), http://www.R-project.org/, ISBN 3-900051-07-0
- Raju, P.S., Lonial, S.C., Mangold, W.G.: Differential effects of subjective knowledge, objective knowledge, and usage experience on decision making: An exploratory investigation. Journal of consumer psychology 4(2), 153–180 (1995)
- 42. Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T.: Recommendation systems in software engineering. Springer (2014)
- Scott, T.: Bloom's taxonomy applied to testing in computer science classes. Journal
 of Computing Sciences in Colleges 19(1), 267–274 (2003)
- 44. Shen, H., Fang, J., Zhao, J.: EFindBugs: Effective error ranking for findbugs. In: Proc. ICST. pp. 299–308 (2011)
- 45. Smith, E., Loftin, R., Murphy-Hill, E., Bird, C., Zimmermann, T.: Improving developer participation rates in surveys. In: Cooperative and Human Aspects of Software Engineering (CHASE), 2013 6th International Workshop on. pp. 89–92. IEEE (2013)
- Smith, J., Johnson, B., Murphy-Hill, E., Chu, B., Lipford, H.R.: Questions developers ask while diagnosing potential security vulnerabilities with static analysis.
 In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. pp. 248–259. ACM (2015)
- 47. Spinuzzi, C.: The Methodology of Participatory Design. Technical Commun. 52(2), 163–174 (2005)
- 48. Tew, A.E.: Assessing fundamental introductory computing concept knowledge in a language independent manner (2010)
- 49. Tew, A.E., Guzdial, M.: Developing a validated assessment of fundamental cs1 concepts. In: Proceedings of the 41st ACM technical symposium on Computer science education. pp. 97–101. ACM (2010)
- Thompson, E., Luxton-Reilly, A., Whalley, J.L., Hu, M., Robbins, P.: Bloom's taxonomy for cs assessment. In: Proceedings of the tenth conference on Australasian computing education-Volume 78. pp. 155–161. Australian Computer Society, Inc. (2008)
- 51. Van-Roy, P., Haridi, S.: Concepts, techniques, and models of computer programming. MIT press (2004)
- 52. Weiser, M., Shertz, J.: Programming problem representation in novice and expert programmers. International Journal of Man-Machine Studies 19(4), 391–398 (1983)
- 53. Witten, I.H., Frank, E., Trigg, L., Hall, M., Holmes, G., Cunningham, S.J.: Weka: Practical machine learning tools and techniques with java implementations (1999)
- 54. ANT, http://ant.apache.org/
- $55.~\log 4j,\, \texttt{http://logging.apache.org/log4j/}$
- 56. Eclipse, http://www.eclipse.org