Scalable Data Engineering, Exercise 5

HENRY HAUSTEIN

Task 1

- (a) True, technically there is also a base part, but often this is included into the trend.
- (b) False, the season mask is fixed in length.
- (c) False, this does piece wise aggregate approximation. SAX represents segments with an alphabet.
- (d) False, with very large time series this takes forever.
- (e) False, for some forecasting methods you need the season length too.
- (f) False, e.g. no one can predict the value of a share in the future.
- (g) True.

Task 2

(a) Visualization

The local maxima are at 3, 8 and 13. This suggests a season length of 5. Running the following R code

```
1 series = c(-1, 2, 7, 4, 3, 4, 7, 12, 9, 8, 9, 12, 17, 14, 13)
2 trend = filter(series, rep_len(1,5)/5)
3 detrend = series - trend
4 mat = matrix(detrend, ncol = 5, byrow = TRUE)
5 figure = apply(mat, 2, mean, na.rm = TRUE)
```

We get as detrend: NA, NA, 4, -8.881784e-16, -2, -2, 0, 4, 0, -2, -2, -1.776357e-15, 4, NA, NA. And as season mask: -2, 0, 4, 4.440892e-16, -2.

(b) I don't see any problem. Obviously one season has a length of 4, so running

2 decompose(ts(series, frequency = 4))

doesn't give any errors. All residuals are just 0.

Task 3

Let's plot the data first

We see s=5. Then the predicted values are

x_t	AR(1)	AR(2)	EGRV	$\varepsilon_{AR(1)}^2$	$arepsilon_{AR(2)}^2$	ε_{EGRV}^2
4	4	4	4	0	0	0
7	2	7	7	25	0	0
12	1	3	12	121	81	0
9	0,5	-0,3	9	72,25	86,49	0
8	0,25	-1,08	8	60,0625	82,4464	0
9	0,125	-0,558	9	78,765625	91,355364	0
12	0,0625	-0,0108	12	142,50390625	144,25931664	0
17	0,03125	0,16092	17	287,9384765625	283,5546152464	0
14	0,015625	$0,\!099792$	14	195,562744140625	$193,\!215782443264$	0
13	0,0078125	0,0115992	13	168,796936035156	168,698555341441	0

The AIC is

• for AR(1): 2305,760376

• for AR(2): 2264,040067

• for EGRV: 2

 \Rightarrow EGRV is for this time series the best forecast.