Extensões e Aplicações do Modelo Conway-Maxwell-Poisson para Modelagem de Dados de Contagem

Eduardo Elias Ribeiro Junior Orientação: Prof. Dr. Walmes Marques Zeviani

> Trabalho de Conclusão de Curso - Laboratório B Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)

> > 17 de agosto de 2016

Sumário

- 1. Introdução
- 2. Materiais e Métodos
- 3. Resultados
- 4. Extensões
- 5. Conclusões

1

Introdução

Dados de contagem

1 11 111 1111 1111

São variáveis aleatórias que representam o número de ocorrências de um evento em um dominío discreto ou contínuo.

Se Y é uma variável aleatória de contagem, y = 0, 1, 2, ...

Exemplos em Medicina:

- Número de ocorrências de uma doença por município em um ano;
- Número de admissões em um hospital por mês;
- Número de linfócitos em 1mm³ de sangue.
- **.**..

Abordagens comuns para análise

- Modelos de regressão Gaussianos com dados transformados
 - Dificultam a interpretação dos resultados;
 - Não contemplam a natureza discreta da variável;
 - Não contemplam a relação média e variância;
 - ► Transformação logarítmica é problemática para valores 0.
- Modelos de regressão Poisson (NELDER; WEDDERBURN, 1972)
 - ► Fiel a natureza dos dados;
 - Contempla a relação média e variância;
 - Suposição de equidispersão (E(X) = V(X)).
 - Produz erros padrões inconsistentes (WINKELMANN; ZIMMERMANN, 1994).

Dispersão em dados de contagem

Figura : Ilustração de processos pontuais que levam a contagens com diferentes níveis de dispersão.

1.1

Introdução **Distribuições de probabilidades**

Distribuições de probabilidades

Tabela: Distribuições de probabilidades para dados de contagem

Distribuição	Contempla a característica de				
Distribuição	Equidispersão Superdispersão		Subdispersão		
Poisson	✓				
Binomial Negativa	\checkmark	\checkmark			
Inverse Gaussian Poisson	\checkmark	\checkmark			
Compound Poisson	\checkmark	\checkmark			
Poisson Generalizada	\checkmark	\checkmark	\checkmark		
Gamma-Count	\checkmark	\checkmark	\checkmark		
COM-Poisson	\checkmark	\checkmark	\checkmark		
Katz	\checkmark	\checkmark	\checkmark		
Poisson Polynomial	\checkmark	\checkmark	\checkmark		
Double-Poisson	\checkmark	\checkmark	\checkmark		
Lagrangian Poisson	\checkmark	\checkmark	\checkmark		

Distribuições de probabilidades

Tabela: Distribuições de probabilidades para dados de contagem

Distribuição	Contempla a característica de				
Distribuição	Equidispersão Superdispersão		Subdispersão		
Poisson	✓				
Binomial Negativa	✓	✓			
Inverse Gaussian Poisson	✓	✓			
Compound Poisson	\checkmark	\checkmark			
Poisson Generalizada	\checkmark	\checkmark	\checkmark		
Gamma-Count	\checkmark	\checkmark	\checkmark		
COM-Poisson	✓	✓	\checkmark		
Katz	✓	✓	✓		
Poisson Polynomial	\checkmark	\checkmark	\checkmark		
Double-Poisson	\checkmark	\checkmark	\checkmark		
Lagrangian Poisson	\checkmark	\checkmark	\checkmark		

Modelo Poisson

Função massa de probabilidade

$$Pr(Y = y \mid \lambda) = \frac{\lambda^{y}}{y!e^{\lambda}} \quad y = 0, 1, 2, \dots$$
 (1)

Propriedades

- $P(Y=y-1) = \frac{y}{\lambda}$
- ightharpoonup $E(Y) = \lambda$
- $V(Y) = \lambda$

Modelo Poisson

Figura: Probabilidades pela distribuição Poisson para diferentes parâmetros.

Modelo Binomial Negativo

Função massa de probabilidade

$$Pr(Y = y \mid \mu, \theta) = \frac{\Gamma(\theta + y)}{\Gamma(y + 1)\Gamma(\theta)} \left(\frac{\mu}{\mu + \theta}\right)^{y} \left(\frac{\theta}{\mu + \theta}\right)^{\theta}, \quad y = 0, 1, 2, \dots \quad (2)$$

Propriedades

- ightharpoonup $E(Y) = \mu$
- $V(Y) = \mu + \mu^2/\theta$

Casos particulares

- ► Aproximadamente Poisson, quando $\theta \to \infty$
- Distribuição Geométrica, quando θ = 1

Modelo Binomial Negativo

Figura : Probabilidades pela distribuição Binomial Negativa para diferentes níveis de dispersão, fixando a média em 5.

Modelo COM-Poisson

Função massa de probabilidade

$$Pr(Y = y \mid \lambda, \nu) = \frac{\lambda^{y}}{(y!)^{\nu} Z(\lambda, \nu)} \quad y \in \mathbb{Z}_{+}$$
 (3)

em que
$$Z(\lambda,\nu)=\sum_{j=0}^{\infty} \frac{\lambda^j}{(j!)^{\nu}}; e \qquad \lambda>0 \ e \ \nu\geqslant 0$$

Propriedades

- $P(Y=y-1) = \frac{y^{\nu}}{\lambda}$
- ightharpoonup $E(Y) \approx \lambda^{\frac{1}{\nu}} \frac{\nu 1}{2\nu}$
- $V(Y) \approx \frac{1}{2} E(Y)$

Casos particulares

- Distribuição Poisson, quando ν = 1
- ▶ Distribuição Bernoulli, quando $\nu \to \infty$
- ► Distribuição Geométrica, quando v = 0, $\lambda < 1$

Modelo COM-Poisson

Figura: Probabilidades pela distribuição COM-Poisson para diferentes parâmetros.

Modelo COM-Poisson

Figura: Exemplos de casos particulares da distribuição COM-Poisson.

1.2

Introdução **Modelos de regressão**

Ideia geral

Figura: Exemplificação de um modelo de regressão.

Modelos de regressão

Regressão para dados de Contagem

Sejam Y_1, Y_2, \ldots, Y_n variáveis aleatórias condicionalmente independentes, dado o vetor de covariáveis $\underline{x}_i^t = (x_{i1}, x_{i2}, \ldots, x_{ip});$

► Regressão log-linear Poisson

$$Y_i \mid \underline{x}_i \sim Poisson(\mu_i)$$

$$log(\mu_i) = \underline{x}_i^t \beta$$

Regressão Binomial Negativa

$$Y_i \mid \underline{x}_i \sim \text{Binomial Negativa}(\mu_i, \theta)$$

 $log(\mu_i) = \underline{x}_i^t \beta$

► Regressão COM-Poisson

$$\begin{aligned} Y_i \mid & \underline{x}_i \sim COM\text{-Poisson}(\lambda_i, \nu) \\ g(E(Y_i \mid \underline{x}_i)) &= log(\lambda_i) = \underline{x}_i^t \beta \end{aligned}$$

5

Materiais e Métodos

2.1

Materiais e Métodos **Materiais**

Conjuntos de dados

- Capulhos de algodão sob desfolha artificial;
- Produtividade de algodão sob infestação de Mosca-branca;
- Produtividade de soja sob umidade e adubação potássica;
- Ocorrência de ninfas de Mosca-branca em lavoura de soja;
- Peixes capturados por visitantes de um parque Estadual;
- Número de nematoides em raizes de feijoeiro.

Conjuntos de dados

- Capulhos de algodão sob desfolha artificial;
- Produtividade de algodão sob infestação de Mosca-branca;
- Produtividade de soja sob umidade e adubação potássica;
- Ocorrência de ninfas de Mosca-branca em lavoura de soja
- Peixes capturados por visitantes de um parque Estadual;
- ▶ Número de nematoides em raizes de feijoeiro.

Recursos computacionais

Software R versão 3.3.1. Principais pacotes:

- ► MASS 7.3.45: ajuste dos modelos binomial negativo;
- ▶ pscl 1.4.9: ajuste dos modelos para excesso de zeros;
- ▶ 1me4 1.1.12: ajuste dos modelos Poisson com efeito aleatório Normal;
- ▶ bbmle 1.0.18: ajuste de modelos via máxima verossimilhança.

Relatório do TCC, inteiramente reproduzível:

- ▶ Distribuição LaTeX 3.14 (2013/Debian): para editoração do texto;
- ▶ knitr 1.13: para mesclar códigos R ao texto.
- ▶ Git 1.9.1: como sistema de versionamento.

2.2

Materiais e Métodos **Métodos**

Estimação via máxima verossimilhança

- Escreva a função de verossimilhança $\mathcal{L}(\Theta \mid y)$
- ② Tome seu logaritmo $\ell(\Theta \mid y)$
- **Solution** As estimativas dos parâmetros são $\hat{\Theta} = \arg\max \ell(\Theta \mid y)$
- ▶ Algoritmo IWLS (*Interactive Weigthed Leasts Squares*) para os modelos Poisson e Binomial Negativo¹; e
- Método BFGS para os modelos COM-Poisson.

¹IWLS para os parâmetros de locação e Newton Raphson para o parâmetro de dispersão.

Reparametrização do modelo COM-Poisson

Para garantir o espaço paramétrico do modelo nos reais, faz-se $\phi = log(v)$.

- $\phi < 0 \Rightarrow$ Superdispersão;
- $\phi = 0 \Rightarrow$ Equidispersão; e
- $\phi > 0 \Rightarrow$ Subdispersão

Log-verossimilhança

$$\ell(\varphi,\beta\mid\underline{y}) = \sum_{i=1}^n y_i \log(\lambda_i) - e^{\varphi} \sum_{i=1}^n \log(y!) - \sum_{i=1}^n \log(Z(\lambda_i,\varphi))$$

em que $\lambda_i = e^{\underline{x}_i^t \beta}$, sendo \underline{x}_i^t o vetor $(x_{i1}, x_{i2}, \dots x_{ip})$ de covariáveis da i-ésima observação, e $(\beta, \varphi) \in \mathbb{R}^{p+1}$.

Comparação de modelos

► log-verossimilhança maximizada Maximum log-likelihood

$$\ell(\hat{\Theta} \mid y)$$

 Critério de Informação de Akaike Akaike Criterion Information (AIC)

$$AIC = 2(k - \ell(\hat{\Theta}_k, y))$$

► Teste de razão de verossimilhanças Likelihood Ratio Test (LRT)

$$\text{TRV} = 2 \left(\ell(\hat{\Theta}_p,\,\underline{y}) - \ell(\hat{\Theta}_q,\,\underline{y}) \right) \sim \chi_{p-q}^2$$

► Valores preditos para a média Confidence Intervals 3

Resultados

3.1

Resultados **Pacote R**

Implementação do pacote empreg

```
devtools::install_git("https://github.com/JrEduardo/cmpreg.git")
library(cmpreg)
cmp(y ~ preditor, data = data)
hurdlecmp(y ~ count_pred | zero_pred, data = data)
mixedcmp(y ~ count_pred + (1 | ind.ranef), data = data)
```

Funções método e conjuntos de dados disponíveis

```
data(package = "cmpreg")
summary(model1)
anova(model1, model2) ## TRV's entre modelos encaixados
cmptest(model1)
residuals(model1)
predict(model1)
```

3.2

Resultados Caso subdisperso

Caso subdisperso

Capulhos de algodão

Experimento conduzido em casa de vegetação, motivação para (ZEVIANI et al., 2014).

- Objetivo: avaliar o efeito de desfolha na produção de algodão;
- Covariáveis experimentais:
 - Estágio fenológico da planta (est) (vegetativo, botão floral, florescimento, maça e capulho);
 - ► Nível de desfolha aplicada (des) (0, 25, 50, 75 e 100%).
- Variável resposta:
 - Número de capulhos produzidos.
- Unidade experimental: vaso com duas plantas;
- Delineamento: Inteiramente casualizado (5 repetições);

Análise descritiva

Figura: Disposição das contagens para cada combinação dos fatores (esquerda) e médias e variâncias amostrais (direita).

Modelagem

Preditores considerados:

- ▶ Preditor 1: $g(\mu_{ij}) = \beta_0$
- ▶ Preditor 2: $g(\mu_{ij}) = \beta_0 + \beta_1 des_i$
- ► Preditor 3: $g(\mu_{ij}) = \beta_0 + \beta_1 des_i + \beta_2 des_i^2$
- ► Preditor 4: $g(\mu_{ij}) = \beta_0 + \beta_{1j} des_i + \beta_2 des_i^2$
- ▶ Preditor 5: $g(\mu_{ij}) = \beta_0 + \beta_{1j} des_i + \beta_{2j} des_i^2$

j variando nos níveis de estágio fenológico da planta.

Modelos concorrentes:

- Poisson(μ_{ij})
- ► COM-Poisson(λ_{ij} , ϕ)
- Quasi-Poisson(μ_{ij} , σ^2)

Medidas de ajuste

Tabela: Medidas de ajuste para avaliação e comparação de modelos

Poisson	np	ℓ	AIC	diff np	$P(> X^2)$		
Preditor 1	1	-279,93	561,87				
Preditor 2	2	-272,00	548,00	1	0,0001		
Preditor 3	3	-271,35	548,71	1	0,2556		
Preditor 4	7	-258,67	531,35	4	0,0000		
Preditor 5	11	-255,80	533,61	4	0,2193		
COM-Poisson	np	ℓ	AIC	diff np	$P(> X^2)$	φ̂	$P(>X^2)$
Preditor 1	2	-272,48	548,96			0,551	1,13E-04
Preditor 2	3	-257,46	520,93	1	0,0000	0,794	6,97E-08
Preditor 3	4	-256,09	520,18	1	0,0973	0,816	3,29E-08
Preditor 4	8	-220,20	456,40	4	0,0000	1,392	1,75E-18
Preditor 5	12	-208,25	440,50	4	0,0001	1,585	1,80E-22
Quase-Poisson	np	deviance*	AIC	diff np	P(> F)	$\hat{\sigma}^2$	$P(>X^2)$
Preditor 1	1	75,51				0,567	3,66E-04
Preditor 2	2	59,65		1	0,0000	0,464	5,13E-07
Preditor 3	3	58,36		1	0,0962	0,460	3,66E-07
Preditor 4	7	33,00		4	0,0000	0,278	9,15E-16
Preditor 5	11	27,25		4	0,0002	0,241	3,57E-18

Medidas de ajuste

Tabela: Medidas de ajuste para avaliação e comparação de modelos

Poisson	np	ℓ	AIC	diff np	$P(>\chi^2)$		
Preditor 1	1	-279,93	561,87				
Preditor 2	2	-272,00	548,00	1	0,0001		
Preditor 3	3	-271,35	548,71	1	0,2556		
Preditor 4	7	-258,67	531,35	4	0,0000		
Preditor 5	11	-255,80	533,61	4	0,2193		
COM-Poisson	np	ℓ	AIC	diff np	$P(>\chi^2)$	φ̂	$P(> \chi^2)$
Preditor 1	2	-272,48	548,96			0,551	1,13E-04
Preditor 2	3	-257,46	520,93	1	0,0000	0,794	6,97E-08
Preditor 3	4	-256,09	520,18	1	0,0973	0,816	3,29E-08
Preditor 4	8	-220,20	456,40	4	0,0000	1,392	1,75E-18
Preditor 5	12	-208,25	440,50	4	0,0001	1,585	1,80E-22
Quase-Poisson	np	deviance*	AIC	diff np	P(> F)	$\hat{\sigma}^2$	$P(> X^2)$
Preditor 1	1	75,51				0,567	3,66E-04
Preditor 2	2	59,65		1	0,0000	0,464	5,13E-07
Preditor 3	3	58,36		1	0,0962	0,460	3,66E-07
Preditor 4	7	33,00		4	0,0000	0,278	9,15E-16
Preditor 5	11	27,25		4	0,0002	0,241	3,57E-18

Valores preditos

Figura: Curva dos valores preditos com intervalo de confiança de (95%).

3.3

Resultados Caso superdisperso

Grãos de soja

Experimento conduzido em casa de vegetação, motivação para CITESERAFIM

- Objetivo: avaliar a produtividade de soja sob solos com diferentes características;
- Covariáveis experimentais:
 - Umidade do solo (umid) (37,5, 62,5 e 62,5%).
 - Nível de adubação potássica (K) (0, 30, 60, 120 e 180 mg·dm⁻³);
 - Indicador de blocagem (bloc) (I, II, III, VI, V).
- Variável resposta:
 - Número de grãos de soja por u.e.
 - Número de vagens de soja por u.e.
- Unidade experimental: vaso com duas plantas;
- ▶ Delineamento: Blocos casualizados completos;

Análise descritiva

Figura: Disposição do número de grãos nas combinações dos fatores (esquerda) e médias e variâncias amostrais (direita).

Modelagem

Preditores considerados:

- ▶ Preditor 1: $g(\mu_{ijk}) = \beta_0 + \tau_i + \gamma_j + \delta_k$
- ▶ Preditor 2: $g(\mu_{ijk}) = \beta_0 + \tau_i + \gamma_j + \delta_k + \alpha_{jk}$

 τ_i é o efeito do i-ésimo bloco;

 γ_i o efeito do j-ésimo nível de umidade aplicado;

 δ_k o efeito do k-ésimo nível de adubação potássica; e

 α_{jk} o efeito da interação entre o j-ésimo nível de umidade do solo e o k-ésimo nível de adubação potássica.

Modelos concorrentes:

- ▶ Poisson(μ_{iik})
- ► COM-Poisson(λ_{ijk} , ϕ)
- Binomial-Negativo(μ_{ijk} , θ)
- Quasi-Poisson(μ_{ijk} , σ^2)

Caso superdisperso

Medidas de ajuste

Tabela: Medidas de ajuste para avaliação e comparação de modelos

Poisson	np	l	AIC	diff np	$P(>\chi^2)$	
Preditor 1 Preditor 2	11 19	-343,16 -321,67	708,33 681,34	8	8,83E-07	
COM-Poisson	np	ℓ	AIC	diff np	$P(>X^2)$	ф
Preditor 1 Preditor 2	12 20	-326,61 -315,64	677,21 671,29	8	0,0051	-0,817 -0,518
Binomial-Negativo	np	deviance*	AIC	diff np	P(> F)	$\hat{\sigma}^2$
Preditor 1 Preditor 2	12 20	-326,54 -315,39	677,07 670,77	8	0,0044	141,51 260,94
Quasi-Poisson	np	deviance*	AIC	diff np	P(> F)	$\hat{\sigma}^2$
Preditor 1 Preditor 2	11 19	167,71 124,72		8	0,0300	2,707 2,289

Caso superdisperso

Medidas de ajuste

Tabela: Medidas de ajuste para avaliação e comparação de modelos

Poisson	np	ℓ	AIC	diff np	$P(> X^2)$	
Preditor 1	11	-343,16	708,33			
Preditor 2	19	-321,67	681,34	8	8,83E-07	
COM-Poisson	np	ℓ	AIC	diff np	$P(>\chi^2)$	ф
Preditor 1	12	-326,61	677,21			-0,817
Preditor 2	20	-315,64	671,29	8	0,0051	-0,518
Binomial-Negativo	np	deviance*	AIC	diff np	P(> F)	$\hat{\sigma}^2$
Preditor 1	12	-326,54	677,07			141,51
Preditor 2	20	-315,39	670,77	8	0,0044	260,94
Quasi-Poisson	np	deviance*	AIC	diff np	P(> F)	ô ²
Preditor 1	11	167,71				2,707
Preditor 2	19	124,72		8	0,0300	2,289

Valores preditos

3.4

Resultados **Caso equidisperso**

Vagens de soja

Experimento conduzido em casa de vegetação, motivação para CITESERAFIM

- Objetivo: avaliar a produtividade de soja sob solos com diferentes características;
- Covariáveis experimentais:
 - Umidade do solo (umid) (37,5, 62,5 e 62,5%).
 - Nível de adubação potássica (K) (0, 30, 60, 120 e 180 mg·dm⁻³);
 - ► Indicador de blocagem (bloc) (I, II, III, VI, V).
- Variável resposta:
 - Número de grãos de soja por u.e.
 - Número de vagens de soja por u.e.
- Unidade experimental: vaso com duas plantas;
- ▶ Delineamento: Blocos casualizados completos;

Análise descritiva

Figura: Disposição do número de grãos nas combinações dos fatores (esquerda) e médias e variâncias amostrais (direita).

Modelagem

Preditores considerados:

- ▶ Preditor 1: $g(\mu_{ijk}) = \beta_0 + \tau_i + \gamma_j + \delta_k$
- ▶ Preditor 2: $g(\mu_{ijk}) = \beta_0 + \tau_i + \gamma_j + \delta_k + \alpha_{jk}$

 τ_i é o efeito do i-ésimo bloco;

 γ_i o efeito do j-ésimo nível de umidade aplicado;

 δ_k o efeito do k-ésimo nível de adubação potássica; e

 α_{jk} o efeito da interação entre o j-ésimo nível de umidade do solo e o k-ésimo nível de adubação potássica.

Modelos concorrentes:

- Poisson(μ_{iik})
- ► COM-Poisson(λ_{ijk} , ϕ)
- Binomial-Negativo(μ_{ijk} , θ)
- Quasi-Poisson(μ_{ijk} , σ^2)

Medidas de ajuste

Tabela: Medidas de ajuste para avaliação e comparação de modelos

Poisson	np	l	AIC	diff np	$P(>\chi^2)$	
Preditor 1 Preditor 2	11 19	-266,69 -259,62	555,38 557,23	8	0,0779	
COM-Poisson	np	ℓ	AIC	diff np	$P(>\chi^2)$	ф
Preditor 1 Preditor 2	12 20	-266,60 -259,33	557,20 558,65	8	0,0685	-0,067 0,129
Binomial-Negativo	np	ℓ	AIC	diff np	P(> F)	ê
Preditor 1 Preditor 2	12 20	-266,69 -259,62	557,37 559,23	8	0,0782	4,6E+03 1,0E+06
Quasi-Poisson	np	deviance*	AIC	diff np	P(> F)	$\hat{\sigma}^2$
Preditor 1 Preditor 2	11 19	79,43 65,28		8	0,1875	1,279 1,199

Medidas de ajuste

Tabela: Medidas de ajuste para avaliação e comparação de modelos

Poisson	np	ℓ	AIC	diff np	$P(> \chi^2)$	
Preditor 1	11	-266,69	555,38			
Preditor 2	19	-259,62	557,23	8	0,0779	
COM-Poisson	np	ℓ	AIC	diff np	$P(>X^2)$	ф
Preditor 1	12	-266,60	557,20			-0,067
Preditor 2	20	-259,33	558,65	8	0,0685	0,129
Binomial-Negativo	np	ℓ	AIC	diff np	P(> F)	ê
Preditor 1	12	-266,69	557,37			4,6E+03
Preditor 2	20	-259,62	559,23	8	0,0782	1,0E+06
Quasi-Poisson	np	deviance*	AIC	diff np	P(> F)	$\hat{\sigma}^2$
Preditor 1	11	79,43				1,279
Preditor 2	19	65,28		8	0,1875	1,199

Valores preditos

4

Extensões

4.1

Extensões Modelos para excesso de zeros

Motivação

Simulação $\mu_{count} = 2$, $\pi_{zero\; extra} = 0.1$

Gerador de dados

Dois processos compõem a geração dos dados.

Modelo Hurdle COM-Poisson

Função massa de probabilidade de um modelo Hurdle

$$Pr(Y=y\mid \pi,\Theta_c) = \begin{cases} \pi & \text{, se } y=0\,;\\ (1-\pi)\frac{Pr(Z=z\mid\Theta_c)}{1-Pr(Z=0\mid\Theta_c)} & \text{, se } y=1,2,\ldots \end{cases}$$

Verossimilhança

$$\mathcal{L}(\varphi,\beta,\gamma\,|\,\underline{y}) = \prod_{i\in\Omega_0} [\pi_i] \prod_{i\in\Omega_+} \left[(1-\pi_i) \left(\frac{\lambda_i^{y_i}}{(y_i!)^{e^{\varphi}} Z(\lambda_i,\varphi)} \right) \left(1 - \frac{1}{Z(\lambda_i,\varphi)} \right) \right]$$

Sendo

•
$$\Omega_0 = \{i \mid y_i = 0\}$$

•
$$\Omega_{+} = \{i \mid y_{i} > 0\}$$

$$\underline{\pi} = \frac{\exp(Z\gamma)}{1 + \exp(Z\gamma)}$$

$$\lambda = \exp(X\beta)$$

Aplicação

Estudo observacional com o objetivo de modelar o número de peixes capturados por atividade de pesca esportiva.

Tabela : Medidas de ajuste para avaliação e comparação

Poisson	np	ℓ	AIC	$2(\text{diff }\ell)$	diff np	$P(>\chi^2)$	
Preditor 1 Preditor 2	7 10	-857,48 -744,58	1728,96 1509,17	225,79	3	1,1E-48	
Binomial Neg.	np	ℓ	AIC	$2(diff \ \ell)$	diff np	$P(>X^2)$	ê
Preditor 1 Preditor 2	8 11	-399,79 -393,72	815,58 809,44	12,14	3	0,0069	0,20 0,37
COM-Poisson	np	ℓ	AIC	$2(diff \ \ell)$	diff np	$P(>X^2)$	φ̂
Preditor 1 Preditor 2	8 11	-409,85 -402,30	835,71 826,59	15,12	3	0,0017	-8,77 -3,77

Aplicação

► Estudo observacional com o objetivo de modelar o número de peixes capturados por atividade de pesca esportiva.

Tabela : Medidas de ajuste para avaliação e comparação

Poisson	np	l	AIC	2(diff ℓ)	diff np	$P(> X^2)$	
Preditor 1	7	-857,48	1728,96				
Preditor 2	10	-744,58	1509,17	225,79	3	1,1E-48	
Binomial Neg.	np	ℓ	AIC	2(diff ℓ)	diff np	$P(>X^2)$	ê
Preditor 1	8	-399,79	815,58				0,20
Preditor 2	11	-393,72	809,44	12,14	3	0,0069	0,37
COM-Poisson	np	ℓ	AIC	$2(diff \ell)$	diff np	$P(>X^2)$	φ̂
Preditor 1	8	-409,85	835,71				-8,77
Preditor 2	11	-402,30	826,59	15,12	3	0,0017	-3,77

Valores preditos

Figura: Valores preditos do número de peixes capturados.

4.2

Extensões Modelos de efeitos aleatórios

Motivação

 Correlação entre grupos de indivíduos induzida pelo delineamento experimental ou estrutura do problema.

Figura: Contagens que apresentam um efeito aleatório da unidade experimental (u.e.)

Modelo COM-Poisson Misto

Estrutura hierárquica do modelo

$$\begin{split} Y \mid b \sim f_*(\mu, \varphi) \\ g(\mu) = & \beta_0 + b_i \\ b_i \sim & N(0, \sigma^2) \end{split}$$

Verossimilhança

$$\mathcal{L}(\varphi, \Sigma, \beta \mid \underline{y}) = \prod_{i=1}^m \int_{\mathbb{R}^q} \left(\prod_{j=1}^{n_i} \frac{\underline{\lambda}^y}{(y!)^{e^{\varphi}} Z(\underline{\lambda}, \varphi)} \right) \cdot (2\pi)^{q/2} |\Sigma| \exp\left(-\frac{1}{2} b^t \Sigma^{-1} b \right) db_i$$

Aplicação

Tabela: Medidas de ajuste para avaliação e comparação

Poisson	np	l	AIC	2(diff ℓ)	diff np	$P(> X^2)$		
Preditor 1 Preditor 2	2 3	-237,20 -234,00	478,40 474,00	6,40	1	0,0114		
COM-Poisson	np	ℓ	AIC	$2(diff \ \ell)$	diff np	$P(>\chi^2)$	φ̂	$P(>\chi^2)$
Preditor 1 Preditor 2	3 4	-236,85 -233,16	479,71 474,31	7,40	1	0,0065	0,15 0,24	0,4060 0,1935

Aplicação

Tabela: Medidas de ajuste para avaliação e comparação

Poisson	np	l	AIC	2(diff ℓ)	diff np	$P(> X^2)$		
Preditor 1	2	-237,20	478,40					
Preditor 2	3	-234,00	474,00	6,40	1	0,0114		
COM-Poisson	np	ℓ	AIC	$2(diff \ \ell)$	diff np	$P(>\chi^2)$	φ̂	$P(>X^2)$
Preditor 1	3	-236,85	479,71				0,15	0,4060
Preditor 2	4	-233,16	474,31	7,40	1	0,0065	0,24	0,1935

Valores preditos

Figura: Valores preditos nos modelos de efeitos mistos.

5

Conclusões

Conclusões

Análise de dados de contagem:

- Modelo Poisson inadequado na maioria das aplicações, mostrando que a suposição de equidispersão é de fato restritiva;
- Modelos alternativos ao Poisson devem ser empregados na análise de dados de contagem; e
- Sugere-se o modelo COM-Poisson como alternativa totalmente paramétrica e bastante flexível.

Conclusões

Aplicação do modelo COM-Poisson:

- Resultados similares aos providos pela abordagem semi-paramétrica via quasi-verossimilhança;
- A não ortogonalidade entre os parâmetros de locação e precisão no modelo COM-Poisson se mostra como característica da distribuição;
- A simetria nos perfis de verossimilhança do parâmetro de precisão também; e
- A avaliação da constante de normalização é uma dificuldade computacional do modelo.

Trabalhos futuros

Sugestões para continuidade da pesquisa:

- Estudar reparametrizações do modelo COM-Poisson;
- Avaliar aproximações da constante de normalização;
- Realizar estudos de simulação para avaliar a robustez do modelo;
- Implementar o modelo COM-Poisson inflacionado de zeros; e
- Expandir o modelo COM-Poisson de efeitos aleatórios:

Publicização

cmpreg: Implementação computacional em formato de pacote ${\tt R}$

R. (https://github.com/JrEduardo/cmpreg)

monografia: Redação do relatório e scripts de análise. Tudo reproduzível.

\(\frac{https://github.com/JrEduardo/monografia}\)

Referências

CONWAY, R. W.; MAXWELL, W. L. A queuing model with state dependent service rates. *Journal of Industrial Engineering*, v. 12, p. 132—136, 1962.

NELDER, J. A.; WEDDERBURN, R. W. M. Generalized Linear Models. *Journal of the Royal Statistical Society. Series A (General)*, v. 135, p. 370–384, 1972.

PAULA, G. A. *Modelos de regressão com apoio computacional*. IME-USP São Paulo, 2013. Disponível em: (https://www.ime.usp.br/{~}giapaula/textoregressao.h).

Ribeiro Jr, P. J. et al. Métodos computacionais para inferência com aplicações em R. In: 20° Simpósio Nacional de Probabilidade e Estatística. [s.n.], 2012. p. 282. Disponível em: \http://leg.ufpr.br/doku.php/cursos:mcie\).

SHMUELI, G. et al. A useful distribution for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution. *Journal of the Royal Statistical Society. Series C: Applied Statistics*, v. 54, n. 1, p. 127–142, 2005. ISSN 00359254.

WINKELMANN, R.; ZIMMERMANN, K. F. Count data models for demographic data. 1994. 205–221, 223 p.

ZEVIANI, W. M. et al. The Gamma-count distribution in the analysis of experimental underdispersed data. *Journal of Applied Statistics*, n. October, p. 1–11, 2014. ISSN 0266-4763. Disponível em: (http://dx.doi.org/10.1080/02664763.2014.922168).