Curve Algebriche in Crittografia

M. Giulietti

Dipartimento di Matematica e Informatica Università degli Studi di Perugia

> La De Cifris incontra Roma Roma, 4 ottobre 2018

De Cifris a Perugia

- Giorgio Faina MAT/03
- Massimo Giulietti MAT/03
- Fernanda Pambianco MAT/03
- Stefano Marcugini INF/01
- Marco Baioletti INF/01
- Daniele Bartoli MAT/03
- Ex studenti

Attività

- Ricerca: pura ed applicata
- Didattica: curriculum specifico della laurea magistrale in Matematica
- Public engagement: parte attiva di progetti di awareness nelle scuole (es. PLS), progetti museali (Vision); interventi presso mostre ed esposizioni (es. Enigma: Cifrare e decifrare: linguaggi nascosti, tenutasi presso la provincia di Perugia)

Ricerca pura

Teoria dei Codici e Crittografia legate alle **Geometrie di Galois** e alla **Geometria algebrica in caratteristica positiva**

- Crittografia su Curve Ellittiche
- Secret Sharing Schemes
- Funzioni APN e funzioni planari
- Codici algebrico geometrici da curve di genere superiore (in particolare massimali)
- Codici lineari come n-insiemi di PG(r, q)

Curve ellittiche in crittografia

- ECDH, ECDHE
- ECDSA

Curve ellittiche in crittografia

- ECDH, ECDHE
- ECDSA
- post quantum? SIDH: Supersingular Isogeny Diffie-Hellman
 - una delle lunghezze di chiave più piccole nell'ambito delle proposte post-quantum
 - supporta perfect forward secrecy (PFS) (a differenza di NTRU e Ring-LWS).
 - la chiave può essere generata in 200 millisecondi.

Curve ellittiche supersingolari

Theorem (Hasse-Weil)

Data una curva algebrica definita su un campo con q elementi e di genere g il suo numero N di punti soddisfa

$$q+1-2g\sqrt{q} \leq \textit{N} \leq q+1+2g\sqrt{q}$$

- Una curva ellittica definita sul campo con p² elementi è supersingolare se vale una delle due uguaglianze
- In generale una curva per cui vale $N=q+1+2g\sqrt{q}$ si dice massimale

Curve algebriche in crittografia simmetrica Definition

Una funzione $f: \mathbb{F}_q \to \mathbb{F}_q$ si dice planare o Perfect Non-linear se

$$D_a(f): x \mapsto f(x+a) - f(x)$$
 è biiettiva per ogni $a \in \mathbb{F}_q, \ a \neq 0$

Definition

Sia q pari. Una funzione $f: \mathbb{F}_q \to \mathbb{F}_q$ si dice **APN** se

$$f(x+a)-f(x)=b$$
 ha al massimo 2 soluzioni per ogni $a,b\in\mathbb{F}_q,\ a
eq 0$

Definition

Sia q pari. Una funzione $f: \mathbb{F}_q \to \mathbb{F}_q$ si dice **planare** se

$$E_a(f): x \mapsto f(x+a) - f(x) + ax$$
 è biiettiva per ogni $a \in \mathbb{F}_q, \ a \neq 0$

Theorem

Sia q pari. Sia $f:\mathbb{F}_q\to\mathbb{F}_q$ polinomiale di grado d, con $d\ge 9$ e $d<0.45q^{1/4}+0.5$.

Allora f è APN solo se la superficie di equazione

$$S: \frac{f(x) + f(y) + f(z) + f(x+y+z)}{(x+y)(x+z)(y+z)} = 0$$

non ha componenti assolutamente irriducibili definite su \mathbb{F}_q

Theorem

Sia q pari. Sia $f:\mathbb{F}_q\to\mathbb{F}_q$ polinomiale di grado d, con $d\geq 9$ e $d<0.45q^{1/4}+0.5$.

Allora f è APN solo se la superficie di equazione

$$S: \frac{f(x) + f(y) + f(z) + f(x+y+z)}{(x+y)(x+z)(y+z)} = 0$$

non ha componenti assolutamente irriducibili definite su \mathbb{F}_q

Theorem (Bartoli-Schmidt, 2018)

Sia q pari. Sia $f: \mathbb{F}_q \to \mathbb{F}_q$ polinomiale di grado d, con $d \geq 9$ e $d < 0.45q^{1/4} + 0.5$.

- Se f è APN allora d è multiplo di 4.
- Se f è planare allora il grado di ogni monomio di f è una potenza di 2.

Secret Sharing

$$\Gamma \subset \mathcal{P}(X)$$

struttura d'accesso

Se

$$\eta: X \cup \{s\} \to PG(r,q)$$

è tale che $\{x_1, x_2, \ldots, x_n\} \in \Gamma$ se e solo se $\eta(s) \in \langle \eta(x_1), \eta(x_2), \ldots, \eta(x_n) \rangle$ allora esiste un secret sharing schemes perfetto ideale dove l'insieme dei possibili segreti è q

Strutture multilivello

• Brickell (1989): esistenza di un sss ideale per struttura d'accesso a *t* livelli con livello di sicurezza

$$\epsilon < \frac{1}{t \cdot \binom{\#X}{t}}$$

problema: stessa sicurezza, più partecipanti

Alcuni risultati $(q=1/\epsilon)$

- t = 2: caratterizzazione #X = q + 1 + t per q dispari (Beato-G.-Faina)
- t=3: $\#X=\frac{1}{8}(q-1)(\sqrt{q}+1)$ per q quadrato dispari (G. Vincenti)
- t = 4: q potenza quarta, $\sqrt[4]{q} \equiv 2 \pmod{3}$

$$\#X = \frac{1}{96} (\sqrt[2]{q}) (\sqrt[4]{q} - 3)$$

per $\sqrt[4]{q} \equiv 1 \pmod{4}$,

$$\#X = \frac{1}{24} (\sqrt[2]{q}) (\sqrt[4]{q} - 3)$$

per $\sqrt[4]{q} \equiv 1 \pmod{4}$ (Bartoli-G.)

Ricerca applicata

- algoritmi su curve ellittiche: miglioramenti algoritmo di Miller per il calcolo del Weil pairing (Baioletti)
- Blockchain e PSD2: Revised Payments Service Directive: A Blockchain-based Implementation Model (Leccese-Peverini presso GCSEC)
- Watermarking in relazione al potenziamento di immagini di tipo medico (TAC senza mezzo di contrasto). Progetto cofinanziato dalla Fondazione Cassa di Risparmio di Perugia

Didattica

Laurea Magistrale in Matematica Curriculum "MATEMATICA PER LA SICUREZZA INFORMATICA"

Piano di Studi

I Anno - I Semestre	I Anno - II Semestre
Algebra Commutativa e Computazionale Mat/02	Analisi Funzionale Mat/05
Geometria Differenziale Mat/03	Crittografia e Applicazioni Mat/03
Programmazione II Inf/01	Probabilità e Statistica II
Teoria dei Codici Mat/03	Sicurezza Informatica Inf/01
II Anno - I Semestre	II Anno - II Semestre
II Anno - I Semestre Geometria Algebrica Mat/03	II Anno - II Semestre Combinatorics Mat/03
Geometria Algebrica Mat/03 Modelli Matematici	Combinatorics Mat/03 Modellistica

 Geometria Differenziale, Analisi Funzionale, Probabilità e Statistica, Modelli Matematici per le Applicazioni

Programmazione II

• Informatica: Sicurezza Informatica

Calcolabilità e Complessità Computazionale

Algebra Commutativa e Computazionale

Crittografia e Applicazioni

• Matematica: Teoria dei Codici

Combinatorics

Geometria Algebrica

Teoria dei Codici

Codici lineari e multinsiemi di spazi proiettivi. Curve algebriche su campi finiti, campi di funzioni. Codici Reed-Solomon. Codici BCH e codici ciclici. Codici algebrico-geometrici. Codici di Goppa one-point. Primi cenni alle curve ellittiche in crittografia.

Crittografia e Applicazioni

Crittografia classica. Segretezza perfetta. Cifrari a blocchi: DES, AES. Funzioni hash in crittografia. La costruzione di Merkle-Damgard e algoritmi SHA. Crittografia a chiave pubblica. DH e RSA. Curve ellittiche. Firma digitale. DSA e ECDSA. Blockchain. Secret sharing schemes.

Sicurezza Informatica

Storia della Sicurezza Informatica. Policies, Metodi di autenticazione, Concept of trust and trustworthiness, Principles of Secure Design, Defensive Programming, Threats and Attacks, Network Security, Cryptography.

Stages e tirocini formativi

 Stages/Tirocini curriculari presso aziende ed istituzioni di prestigio: fondazione GCSEC e Aruba

Stage post laurea presso GCSEC e NTT DATA

Dottorati di ricerca