Análisis complejo

27 de abril de 2023

Índice general

Pr	iminares	
1.	Conformalidad y funciones abiertas en el disco unidad	
	.1. Funciones meromorfas	
	.2. Aplicaciones conformes	
	.3. Dominios conformemente equivalentes al plano complejo y al plano complejo extendido	
	.4. Funciones holomorfas en el disco unidad	. 1
	.5. El teorema de Schwarz-Pick	. 1
	.6. Subordinación	. 1
	.7. La métrica de Poincaré	. 1
2.	'amilias normales	2
	.1. Familias normales	. 2
	.2. El teorema de Montel	. 2
	.3. El teorema de Stieltjes-Vitali	. 2
	.4. Teoremas de Hurwitz	
3.	El teorema de Riemann de la aplicación conforme	3
	.1. Preliminares	
	.2. Dominios simplemente conexos	
	3. El teorema de Riemann de la aplicación conforme	
	4. Clasificación de los dominios simplemente conexos	
	5. El teorema de extensión de Carathéodory	
4.	unciones armónicas	4
	.1. Funciones armónicas y funciones holomorfas	
	.2. El problema de Dirichlet para el disco unidad	
	3. La integral de Poisson	
	.4. Desigualdades de Harnack	
5.	El teorema de factorización de Weierstrass	6
	.1. Funciones holomorfas sin ceros o con finitos ceros	
	.2. Productos infinitos	
	3. Funciones holomorfas definidas por productos infinitos	
	4. El teorema de factorización de Weierstrass	
	.5. Exponente de convergencia y género de una sucesión	
	.6. Factorización canónica de una función entera	
	.7. Factorización de funciones holomorfas en un dominio	. 1
6.	funciones enteras. Crecimiento y distribución de los ceros	7
	.1. Fórmula de Jensen	. 7

Preliminares

Definición 0.1. Si $a \in \mathbb{C}$ y $0 \le R_1 < R_2 \le \infty$, se define la corona de centro a y radios R_1 y R_2 como:

$$A(a, R_1, R_2) = \{ z \in \mathbb{C} : R_1 < |z - a| < R_2 \}$$

Teorema 0.1. Si $a \in \mathbb{C}$, $0 \le R_1 < R_2 \le \infty$ y f es holomorfa en $A(a, R_1, R_2)$, entonces existe una única sucesión $\{a_n\}_{-\infty}^{\infty}$ en \mathbb{C} tal que:

- \blacksquare $\sum_{-\infty}^{\infty} a_n(z-a)^n$ converge para todo $z \in A(a, R_1, R_2)$.
- $f(z) = \sum_{-\infty}^{\infty} a_n(z-a)^n$ para todo $z \in A(a, R_1, R_2)$.

Para cada $n \in \mathbb{Z}$,

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} dz$$

siendo γ cualquiera camino que esté en $A(a, R_1, R_2)$ con $n(\gamma, a) = 1$

Además, la serie $\sum_{-\infty}^{\infty} a_n(z-a)^n$ converge absoluta y uniformemente a cada subconjunto compacto de $A(a, R_1, R_2)$.

A esta serie se le llama desarrollo de Laurent de f en $A(a, R_1, R_2)$.

Definición 0.2. f tiene una singularidad aislada en $a \in \mathbb{C}$ si existe R > 0 tal que f está definida y es holomorfa en $D(a, R) \setminus \{a\} = A(a, 0, R)$.

Podemos considerar el desarrollo de Laurent de f en $D(a,R) \setminus \{a\}$. Existe una única sucesión en \mathbb{C} , $\{a_n\}_{-\infty}^{\infty}$, tal que:

$$f(z) = \sum_{-\infty}^{\infty} a_n (z - a)^n, \quad z \in D(a, R) \setminus \{a\}$$

Como la sucesión $\{a_n\}_{-\infty}^{\infty}$ no depende de R, a este desarrollo se le puede llamar desarrollo de Laurent de f en a o en un entorno perforado de a.

Proposición 0.2. Sea f una función con una singularidad aislada en $a \in \mathbb{C}$ y sea $\sum_{-\infty}^{\infty} a_n(z-a)^n$ el desarrollo de Laurent de f en a. Entonces:

- 1. a es una singularidad evitable de $f \Leftrightarrow a_n = 0$ si $n < 0 \Leftrightarrow \{n < 0 : a_n \neq 0\} = \emptyset$.
- 2. a es un polo de orden N de $f \Leftrightarrow a_{-N} \neq 0$ y $a_n = 0$ si n < -N. Luego a es un polo de $f \Leftrightarrow \{n < 0 : a_n \neq 0\}$ es finito y no vacío.
- 3. a es una singularidad esencial de $f \Leftrightarrow \{n < 0 : a_n \neq 0\}$ es infinito.

Definición 0.3. f tiene una singularidad aislada en ∞ si existe R > 0 tal que f es holomorfa en $\{z \in \mathbb{C} : |z| > R\}$.

- 1. Es una singularidad evitable de f si $\lim_{z\to\infty} f(z)$ existe en \mathbb{C} .
- 2. Es un polo de f si $\lim_{z\to\infty} f(z) = \infty$.

3. Es una singularidad esencial en otro caso.

Si f tiene una singularidad aislada en ∞ , entonces f es holomorfa en $\{z \in \mathbb{C} : |z| > R\}$ para un cierto R > 0. Entonces la función $g(z) = f\left(\frac{1}{z}\right)$ es holomorfa en $D\left(0, \frac{1}{R}\right) \setminus \{0\}$, por lo que tiene una singularidad aislada en 0.

Entonces:

- 1. f tiene una singularidad evitable en $\infty \Leftrightarrow g$ tiene una singularidad evitable en 0.
- 2. f tiene un polo en $\infty \Leftrightarrow g$ tiene un polo en 0.
- 3. f tiene una singularidad esencial en $\infty \Leftrightarrow g$ tiene una singularidad esencial en 0.

Proposición 0.3. Sea f una función con una singularidad aislada en ∞ . Entonces:

- 1. ∞ es una singularidad evitable de $f \Leftrightarrow f$ está acotada en un entorno perforado de ∞ . Es decir, si existe R > 0 tal que f es holomorfa y está acotada en $\{z \in \mathbb{C} : |z| > R\}$.
- 2. ∞ es un polo de $f \Leftrightarrow existe \ N \in \mathbb{N}$ tal que $\lim_{z \to \infty} \frac{f(z)}{z^N}$ existe en \mathbb{C} y es distinto de 0. En este caso, N es único y se denomina el orden de ∞ como polo de f.
- 3. ∞ es una singularidad esencial de $f \Leftrightarrow f(\{z \in \mathbb{C} : |z| > R\})$ es denso en \mathbb{C} para todo R > 0 suficientemente grande.

Observación. En (2), el orden de ∞ como polo de f coincide con el orden de 0 como polo de $f(\frac{1}{2})$.

Si f tiene una singularidad aislada en ∞ , entonces existe R>0 tal que f es holomorfa en $\{z\in\mathbb{C}:|z|>R\}=A(0,R,\infty)$. Podemos considerar el desarrollo de Laurent de f en $A(0,R,\infty)$: existe una única sucesión $\{a_n\}_{-\infty}^{\infty}$ en \mathbb{C} tal que:

$$f(z) = \sum_{-\infty}^{\infty} a_n z^n$$
, para todo $z \in \mathbb{C}$ con $|z| > R$

Como no depende de R, se le puede llamar desarrollo de Laurent de f en ∞ .

Proposición 0.4. Sea f una función con una singularidad aislada en ∞ y sea $\sum_{-\infty}^{\infty} a_n z^n$ el desarrollo de Laurent de f en ∞ . Entonces:

- 1. ∞ es una singularidad evitable de $f \Leftrightarrow a_n = 0$ si n > 0.
- 2. ∞ es un polo de f de orden $N \Leftrightarrow a_N \neq 0$ y $a_n = 0$ si n > N.
- 3. ∞ es una singularidad esencial de $f \Leftrightarrow \{n > 0 : a_n \neq 0\}$ es infinito.

Definición 0.4. Si f tiene una singularidad aislada en $a \in \mathbb{C}$ y $\sum_{-\infty}^{\infty} a_n(z-a)^n$ es el desarrollo de Laurent de f en a, se define $Res(f,a) = a_{-1}$.

Proposición 0.5. Sea $a \in \mathbb{C}$ y f una función con una singularidad aislada en a. Sea R > 0 tal que f es holomorfa en $D(a,R) \setminus \{a\}$. Entonces, para todo $r \in (0,R)$, se tiene que:

$$Res(f,a) = \frac{1}{2\pi i} \int_{|z-a|=r} f(z)dz$$

Proposición 0.6. Sea f una función con una singularidad aislada en ∞ . Sea R > 0 tal que f es holomorfa en $\{z \in \mathbb{C} : |z| > R\}$. Se define:

$$Res(f, \infty) = \frac{-1}{2\pi i} \int_{|z|=r} f(z)dz, \quad siendo \ r > R$$

Proposición 0.7. Si f tiene una singularidad aislada en ∞ $y \sum_{-\infty}^{\infty} a_n z^n$ es el desarrollo de Laurent de f en ∞ , entonces $Res(f,\infty) = -a_{-1}$.

Teorema 0.8 (Teorema de los residuos). Sea D un dominio en \mathbb{C} y sea f holomorfa en D salvo por singularidades aisladas, es decir, existe $A \subset D$, A sin puntos de acumulación en D, tal que f es holomorfa en $D \setminus A$. Sea γ un camino cerrado en $D \setminus A$, con $n(\gamma, z) = 0$ para todo $z \in \mathbb{C} \setminus D$. Entonces:

$$\frac{1}{2\pi i} \int_{\gamma} f(z)dz = \sum_{a \in A} Res(f, a) n(\gamma, a)$$

Teorema 0.9 (Teorema de la función inversa). Sea D un dominio en \mathbb{C} y sea f holomorfa en D, con $a \in D$ tal que $f'(a) \neq 0$. Entonces existen U, V abiertos en \mathbb{C} con $a \in U \subset D$, $f(a) \in V$, tales que:

- 1. f es inyectiva en U.
- 2. f(U) = V.
- 3. $f'(z) \neq 0$ para todo $z \in U$.
- 4. $f^{-1}: V \to U$ es holomorfa y además:

$$(f^{-1})'(f(z)) = \frac{1}{f'(z)}, \quad \forall z \in U$$

Teorema 0.10. Sea D un dominio en \mathbb{C} y sean f holomorfa en D no constante y $a \in D$. Sea n el orden de a como cero de f - f(a), es decir, el primer natural para el que $f^{(n)}(a) \neq 0$. Entonces f es localmente una aplicación $n \to 1$ cerca de a. Es decir, existe $\alpha > 0$ con $D(a, \alpha) \subset D$ tal que para todo $0 < \varepsilon < \alpha$ existe $\delta > 0$ tal que cada punto $w \in D(f(a), \delta) \setminus \{f(a)\}$ es la imagen de exactamente n puntos distintos $z_1, z_2, \ldots z_n \in D(a, \varepsilon) \setminus \{a\}$. En particular, $f(D(a, \varepsilon)) \supset D(f(a), \delta)$.

Definición 0.5. Sea D abierto en \mathbb{C} y sea f holomorfa en D salvo por polos. Si $a \in D$ es un polo de f, se tiene que $\lim_{\{z \to a\}} f(z) = \infty$. Definimos $f(a) = \infty$. Entonces $f : D \to \mathbb{C}^*$ y es continua. Se dice que f es meromorfa en D.

Teorema 0.11. Sea D un dominio en \mathbb{C} y sea f meromorfa en D, con $a \in D$ un polo de orden n de f. Entonces f es localmente una aplicación $n \to 1$ cerca de a. Es decir, existe $\alpha > 0$ tal que $D(a, \alpha) \subset D$, f es holomorfa en $D(a, \alpha) \setminus \{a\}$ y se verifica que para todo $0 < \varepsilon < \alpha$ existe R > 0 tal que cada punto $w \in \mathbb{C}$ con |w| > R es la imagen de exactamente n puntos distintos $z_1, z_2, \ldots z_n \in D(a, \varepsilon) \setminus \{a\}$. En particular, $f(D(a, \varepsilon) \setminus \{a\}) \supset \{w \in \mathbb{C} : |w| > R\}$.

Teorema 0.12. Sea f una función con un polo de orden n en ∞ . Entonces f es localmente una aplicación $n \to 1$ cerca de ∞ . Es decir, existe $R_0 > 0$ tal que f es holomorfa en $\{z \in \mathbb{C} : |z| > R_0\}$ y se verifica que para todo $R > R_0$ existe R' > 0 tal que cada punto $w \in \mathbb{C}$ con |w| > R' es la imagen de exactamente n puntos distintos z_1, \ldots, z_n de $\{z \in \mathbb{C} : |z| > R\}$. En particular, $f(\{z \in \mathbb{C} : |z| > R\}) \supset \{w \in \mathbb{C} : |w| > R\}$.

Teorema 0.13 (Teorema de la aplicación abierta). Sea D un dominio en \mathbb{C} y sea $f: D \to \mathbb{C}$ holomorfa y no constante. Entonces f es una aplicación abierta. En particular, f(D) es un dominio.

Lema 0.14. Sea D un dominio en \mathbb{C} y sea f holomorfa en D.

- Sea $a \in D$. Entonces $f'(a) \neq 0$ si y solo si f es inyectiva en un entorno de a.
- Si f es inyectiva en D, entonces $f'(z) \neq 0$ para todo $z \in D$.

Aplicaciones conformes

Definición 0.6. Sea D un dominio en \mathbb{C} y sea $f:D\to\mathbb{C}$ holomorfa e inyectiva. Sea D'=f(D). Entonces:

- D' es un dominio en D.
- $f: D \to D'$ es biyectiva.

• $f^{-1}: D' \to D$ es holomorfa.

En ese caso decimos que f es una aplicación conforme de D sobre D'.

Observación.

- 1. Si f es una aplicación conforme de D sobre D', entonces f^{-1} es una aplicación conforme de D' sobre D.
- 2. Si D_1 , D_2 y D_3 son dominios en \mathbb{C} con f aplicación conforme de D_1 sobre D_2 y g aplicación conforme de D_2 sobre D_3 , entonces $g \circ f$ es una aplicación cnforme de D_1 sobre D_3 .

Definición 0.7. Si D_1 y D_2 son dominios en \mathbb{C} , se dice que D_1 y D_2 son conformemente equivalentes si existe una aplicación conforme f de D_1 sobre D_2 .

En el conjunto de los dominios en \mathbb{C} , se tiene la relación de equivalencia "ser conformemente equivalentes".

Definición 0.8. Sea D un dominio en \mathbb{C} . D es simplemente conexo si $\mathbb{C}^* \setminus D$ es conexo. Equivalentemente, D es simplemente conexo si todo camino cerrado γ en D es homólogo a cero módulo D, es decir, $n(\gamma, z) = 0$ para todo $z \in \mathbb{C} \setminus D$.

Teorema 0.15. Sean D_1 y D_2 dos dominios en \mathbb{C} que son conformemente equivalentes. Entonces D_1 es simplemente conexo si y solo si D_2 es simplemente conexo.

Definición 0.9. Si $z_1, z_2 \in \mathbb{C} \setminus \{0\}$, el ángulo formado por z_1 y z_2 se define como:

$$\theta(z_1, z_2) = \arg \frac{z_2}{z_1} \in (-\pi, \pi]$$

Observación. Si $z_1, z_2 \in \mathbb{C} \setminus \{0\}$ y $\lambda_1, \lambda_2 > 0$, entonces $\theta(\lambda_1 z_1, \lambda_2 z_2) = \theta(z_1, z_2)$.

Definición 0.10. Sea γ un camino con origen en un punto $a \in \mathbb{C}$. Se dice que γ es regular en a si existe una parametrización \mathcal{C}^1 a trozos de γ , $\gamma : [0,1] \to \mathbb{C}$, tal que $\gamma'(0) \neq 0$.

Definición 0.11. Sean γ_1 y γ_2 dos caminos con origen $a \in \mathbb{C}$ que son regulares en a. El ángulo que forman γ_1 y γ_2 en a, $\theta_a(\gamma_1, \gamma_2)$, se define como sigue.

Sean $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$ parametrizaciones \mathcal{C}^1 a trozos de γ_1, γ_2 respectivamente tales que $\gamma_1'(0), \gamma_2'(0) \neq 0$. Entonces $\theta_a(\gamma_1, \gamma_2) = \theta(\gamma_1'(0), \gamma_2'(0))$.

Definición 0.12. Si γ es una curva en \mathbb{C} y $f: sop(\gamma) \to \mathbb{C}$ es continua, se define la curva imagen de γ por f como la curva Γ que tiene por parametrización $f \circ \gamma$, siendo γ una parametrización de γ .

Definición 0.13. Sea D un dominio en \mathbb{C} y sean f holomorfa en D y $a \in D$. Diremos que f preserva ángulos en a o que f es conforme en a si se verifica lo siguiente.

Si γ_1 y γ_2 son caminos con origen a, regulares en a, entonces las curvas imagen de Γ_1 y Γ_2 por f de γ_1 y γ_2 respectivamente son caminos con oriden f(a), que son regulares en f(a) y se tiene que:

$$\theta_{f(a)}(\Gamma_1, \Gamma_2) = \theta_a(\gamma_1, \gamma_2)$$

Teorema 0.16. Sea D un dominio en \mathbb{C} y sean f holomorfa en D y $a \in D$. Si $f'(a) \neq 0$, entonces f es conforme en a.

Demostración. Sean γ_1 y γ_2 caminos en D, con origen en a y regulares en a. Sean $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$ parametrizaciones de γ_1 y γ_2 respectivamente, ambas \mathcal{C}^1 a trozos con $\gamma'_1(0), \gamma'_2(0) \neq 0$. Consideramos las curvas imagen de γ_1 y γ_2 por f:

$$\Gamma_1 = f \circ \gamma_1 : [0, 1] \to \mathbb{C}$$

$$\Gamma_2 = f \circ \gamma_2 : [0, 1] \to \mathbb{C}$$

 Γ_1 y Γ_2 son \mathcal{C}^1 a trozos. Además, Γ_1 y Γ_2 son caminos con origen f(a), porque:

$$\Gamma_1(0) = f(\gamma_1(0)) = f(a) = f(\gamma_2(0)) = \Gamma_2(0)$$

Observamos que Γ_1 y Γ_2 son regulares en a:

$$\Gamma'_1(0) = f'(\gamma_1(0))\gamma'_1(0) = f'(a)\gamma_1(0) \neq 0$$

$$\Gamma'_2(0) = f'(\gamma_2(0))\gamma'_2(0) = f'(a)\gamma_2(0) \neq 0$$

Por tanto:

$$\theta_{f(a)}(\Gamma_1, \Gamma_2) = \theta(\Gamma_1'(0), \Gamma_2'(0)) = \arg \frac{\Gamma_2'(0)}{\Gamma_1'(0)} = \theta(\gamma_1'(0), \gamma_2'(0)) = \theta_a(\gamma_1, \gamma_2)$$

Ejemplo (Contraejemplo). Sean $D=\mathbb{C},\ f(z)=z^2$ y a=0. Observamos que f'(a)=0. Sea γ_1 el segmento [0,1] y γ_2 el segmento [0,i]. Es claro que $\theta_0(\gamma_1,\gamma_2)=\frac{\pi}{2}$. Si consideramos las curvas imagen de γ_1 y γ_2 por f, Γ_1 y Γ_2 , podemos ver que Γ_1 es el segmento [0,1] y Γ_2 el segmento [0,-1], que tienen $\theta_0(\Gamma_1,\Gamma_2)=\pi\neq\frac{\pi}{2}$.

De hecho, se tiene la equivalencia. Sea D un dominio en \mathbb{C} y sean f holomorfa en D y $a \in D$. Entonces $f'(a) \neq 0 \Leftrightarrow f$ es conforme en a.

Capítulo 1

Conformalidad y funciones abiertas en el disco unidad

1.1. Funciones meromorfas

Definición 1.1. Sea D un abierto en \mathbb{C}^* . La función $f:D\to\mathbb{C}^*$ es meromorfa en D si dado $a\in D$ se verifica una de las siguientes posibilidades:

- $a \in \mathbb{C}$ y f es holomorfa en a.
- $a \in \mathbb{C}$ y f tiene un polo en a, es decir, $f(a) = \infty$..
- $a = \infty$ y f tiene una singularidad evitable en ∞ , es decir, $\lim_{z \to \infty} f(z) = f(\infty) \in \mathbb{C}$.
- $a = \infty$ y f tiene un polo en a, es decir, $f(\infty) = \infty$.

Entonces $f:D\to\mathbb{C}^*$ es continua.

Observación. En el caso $D \subset \mathbb{C}$, la definición es la que ya conocíamos de función meromorfa. Si además $f(D) \subset \mathbb{C}$, se tiene una función holomorfa en D.

Observación. Sea D abierto en \mathbb{C}^* y sea $f: D \to \mathbb{C}^*$ continua. Supongamos que f es holomorfa en $\{z \in D \cap \mathbb{C} : f(z) \in \mathbb{C}\}$ y que el conjunto $\{z \in D : f(z) = z\}$ no tiene puntos de acumulación en D. Entonces f es meromorfa en D.

Observación. Sea D abierto en \mathbb{C}^* y sea $f: D \to \mathbb{C}^*$, f meromorfa e inyectiva en $A = \{z \in D \cap \mathbb{C} : f(z) \in \mathbb{C}\}$. Entonces f tiene a lo sumo un polo y tal polo es simple. Además, $f'(a) \neq 0$ para todo $a \in A$, por lo que f es conforme en a para todo $a \in A$.

Teorema 1.1 (Teorema de la aplicación abierta). Sea D un dominio en \mathbb{C}^* y sea $f: D \to \mathbb{C}^*$ una función meromorfa y no constante en D. Entonces f es una aplicación abierta. En particular, f(D) es un dominio en \mathbb{C}^* .

Sea D un dominio en \mathbb{C}^* y sea $f: D \to \mathbb{C}^*$ meromorfa e inyectiva, con D' = f(D). Entonces:

- 1. D' es un dominio en \mathbb{C}^* .
- 2. $f^{-1}: D' \to D$ es meromorfa e invectiva.

Veamos que (2) es cierto. Como f es una aplicación abierta, se tiene que f^{-1} es continua. Sea $w \in D' \cap \mathbb{C}$ tal que $z = f^{-1}(w) \in \mathbb{C}$, veamos que f^{-1} es holomorfa en w. Como $z \in \mathbb{C} \cap D$ y $f(z) \in \mathbb{C}$, f es holomorfa en z con $f'(z) \neq 0$. Por el teorema de la función inversa, f^{-1} es holomorfa en w.

1.2. Aplicaciones conformes

Definición 1.2. Sea D un dominio en \mathbb{C}^* y sea $f:D\to\mathbb{C}^*$ meromorfa e inyectiva en D. Sea D'=f(D). Entonces diremos que f es una aplicación conforme de D sobre D'.

En este caso, se tiene que D' es un dominio en \mathbb{C}^* y que $f^{-1}: D' \to D$ es meromorfa e inyectiva en D'. Por tanto, $f: D \to D'$ es un homeomorfismo, con f y f^{-1} meromorfas.

Observación.

- 1. Si f es una aplicación conforme de D sobre D', entonces f^{-1} es una aplicación conforme de D' sobre D.
- 2. Si D_1 , D_2 y D_3 son dominios en \mathbb{C}^* , con f aplicación conforme de D_1 sobre D_2 y g aplicación conforme de D_2 sobre D_3 , entonces $g \circ f$ es una aplicación conforme de D_1 sobre D_3 .

Se puede comprobar que, sean G_1, G_2 abiertos en \mathbb{C}^* y $f: G_1 \to \mathbb{C}, g: G_2 \to \mathbb{C}$ meroformas tal que $f(G_1) \subset G_2$, entonces $g \circ f: G_1 \to \mathbb{C}^*$ es meromorfa.

Definición 1.3. Sean D_1 y D_2 dominios en \mathbb{C}^* . Diremos que D_1 y D_2 son conformemente equivalentes si existe una aplicación conforme f de D_1 sobre D_2 .

En el conjunto de los dominios en \mathbb{C}^* , el ser conformemente equivalentes es una relación de equivalencia.

Definición 1.4. Sea D un dominio en \mathbb{C}^* . Diremos que D es simplemente conexo si $\mathbb{C}^* \setminus D$ es conexo. **Ejemplo.**

- $D = \mathbb{C}$.
- $D = \mathbb{C}^* \setminus \{a\}, \ a \in \mathbb{C}.$
- $D = \mathbb{C}^* \setminus \overline{D}(a, R), a \in \mathbb{C}, R > 0.$
- $D = D(a, R), a \in \mathbb{C}, R > 0.$
- Un semiplano sin ∞ .
- Un sector $\sin \infty$.
- El plano menos dos semirrectas.
- $D = \mathbb{C} \setminus \{a\}, a \in \mathbb{C}$, no es simplemente conexo, porque $\mathbb{C}^* \setminus D = \{a, \infty\}$ no es conexo.

Lema 1.2. Dado $a \in \mathbb{C}$, la transformación $T : \mathbb{C}^* \to \mathbb{C}^*$, $T(z) = \frac{1}{z-a}$ si $z \in \mathbb{C} \setminus \{a\}$, $T(a) = \infty$ y $T(\infty) = 0$, es una aplicación conforme de \mathbb{C}^* sobre \mathbb{C}^* .

Lema 1.3. Sea H un homeomorfismo de \mathbb{C}^* sobre \mathbb{C}^* . Si D es un dominio simplemente conexo en \mathbb{C}^* , entonces H(D) es un dominio simplemente conexo en \mathbb{C}^* .

Demostración. Como $H: \mathbb{C}^* \to \mathbb{C}^*$ y D es abierto y conexo en \mathbb{C}^* , entonces H(D) es abierto y conexo en \mathbb{C}^* . Luego H(D) es un dominio en \mathbb{C}^* . Como además $\mathbb{C}^* \setminus D$ es conexo, entonces $\mathbb{C}^* \setminus H(D) = H(\mathbb{C}^* \setminus D)$ es conexo. Por tanto, H(D) es un dominio simplemente conexo.

Teorema 1.4. Sean D_1 y D_2 dos dominios en \mathbb{C}^* que son conformemente equivalentes. Entonces D_1 es simplemente conexo si y solo si D_2 es simplemente conexo.

Demostraci'on. Sea $F: D_1 \to D_2$ aplicaci\'on conforme. Consideramos todos los posibles casos teniendo en cuenta que los papeles de D_1 y D_2 son intercambiables.

- Si $D_1, D_2 \subset \mathbb{C}$, se cumple.
- Si $D_1 = \mathbb{C}^*$, como \mathbb{C}^* es cerrado y F es un homeomorfismo, se tiene que D_2 es compacto y por tanto cerrado. Entonces D_2 es abierto y cerrado en \mathbb{C}^* , que es conexo. Por tanto, $D_2 = \mathbb{C}^* = D_1$, ambos simplemente conexos.

- Si $D_1, D_2 \neq \mathbb{C}^*$, consideramos dos casos.
 - Supongamos que $\infty \notin D_1$ y $\infty \in D_2$. D es un dominio en \mathbb{C} y D_2 es un dominio en \mathbb{C}^* . Sea $a \in \mathbb{C}^* \setminus D_2$, de hecho $a \in \mathbb{C} \setminus D_2$. Tomamos la aplicación conforme $T : \mathbb{C}^* \to \mathbb{C}^*$, $T(z) = \frac{1}{z-a}$ si $z \in \mathbb{C}^* \setminus \{a\}$, $T(a) = \infty$. Tenemos el diagrama:

$$D_1 \xrightarrow{F} D_2 \xrightarrow{T} T(D_2)$$

 $T(D_2)$ es un dominio en \mathbb{C}^* . Como $a \notin D_2$, entonces $T(a) = \infty \notin T(D_2)$. Así que $T(D_2)$ es un dominio en \mathbb{C} conformemente equivalente a D_1 . Luego D_1 es simplemente conexo si y solo si $T(D_2)$ es simplemente conexo. Por el lema anterior, esto es equivalente a que D_2 sea simplemente conexo.

• Supongamos que $\infty \in D_1, D_2$. Se sigue de un razonamiento similar usando el apartado anterior.

1.3. Dominios conformemente equivalentes al plano complejo y al plano complejo extendido

Veremos que hay tres clases de equivalencia de dominios simplemente conexos en \mathbb{C}^* : \mathbb{C}^* , \mathbb{C} y el disco unidad $\mathbb{D} = D(0,1) = \{z \in \mathbb{C} : |z| < 1\}.$

 \mathbb{C}^* es compacto. Si D es un dominio en \mathbb{C}^* que es conformemente equivalente a \mathbb{C}^* , entonces D es compacto y por tanto cerrado. Como D es abierto, entonces $D = \mathbb{C}^*$.

 $\mathbb C$ y $\mathbb D$ son homeomorfos. Por ejemplo, $T:\mathbb D\to\mathbb C,\, T(z)=\frac{z}{1-|z|}$ es un homeomorfismo.

Proposición 1.5. \mathbb{C} $y \mathbb{D}$ no son conformemente equivalentes.

Demostración. Supongamos que existe una aplicación conforme F de \mathbb{C} sobre \mathbb{D} . Entonces $F:\mathbb{C}\to\mathbb{D}$ es entera y acotada. Por el teorema de Liouville, F es constante. Esto contradice que F sea una aplicación conforme.

Proposición 1.6. Sea f entera e inyectiva, entonces f es de la forma

$$f(z) = \alpha z + \beta, \quad \alpha, \beta \in \mathbb{C}, \ \alpha \neq 0$$

Demostración. Sea $f(z) = \sum_{n=0}^{\infty} a_n z^n$, $z \in \mathbb{C}$, el desarrollo de Taylor de f en 0. Entonces ∞ es una singularidad aislada de f y el desarrollo anterior coincide con el desarrollo de Laurent de f en ∞ .

- Si ∞ es una singularidad evitable de f, entonces $a_n = 0$ si $n \ge 1$, así que f es constante. Esto no es posible.
- Si ∞ es un polo de orden N de f, entonces $a_N \neq 0$ y $a_n = 0$ si n > N. Luego f es un polinomio de grado N. f' es un polinomio de grado N 1, con $f'(z) \neq 0$ para todo $z \in \mathbb{C}$. Así que f' es constante, por tanto $N 1 = 0 \Rightarrow N = 1$.
- Si ∞ es una singularidad esencial de f, entonces $f(\{z \in \mathbb{C} : |z| > 1\})$ es denso en \mathbb{C} . Por el teorema de la aplicación abierta, $f(\{z \in \mathbb{C} : |z| < 1\})$ es abierto en \mathbb{C} . Estos conjuntos son disjuntos por ser f inyectiva, y esto no es posible.

Si D es un dominio en $\mathbb C$ que es conformemente equivalente a $\mathbb C$, entonces $D=\mathbb C$. Veamos que esto es verdad. Sea $f:\mathbb C\to D$ aplicación conforme. f es entera e inyectiva, así que $f(z)=\alpha z+\beta$, con $\alpha,\beta\in\mathbb C$, $\alpha\neq0$. Luego $D=f(\mathbb C)=\mathbb C$.

Las aplicaciones conformes de $\mathbb C$ sobre $\mathbb C$ son de la forma:

$$f(z) = \alpha z + \beta, \quad \alpha, \beta \in \mathbb{C}, \ \alpha \neq 0$$

Sea D un dominio en \mathbb{C}^* que es conformemente equivalente a \mathbb{C} .

- Si $\infty \notin D$, entonces D es un dominio en \mathbb{C} conformemente equivalente a \mathbb{C} y, por tanto, $D = \mathbb{C}$.
- Si $\infty \in D$, consideramos $F : \mathbb{C} \to D$ aplicación conforme. Como sabemos que $D \neq \mathbb{C}^*$, existe $\alpha \in \mathbb{C}^* \setminus D$, de hecho $\alpha \in \mathbb{C} \setminus D$. Sea

$$T: D \to T(D), \quad T(z) = \frac{1}{z - \alpha}$$

Tenemos el diagrama:

$$\mathbb{C} \xrightarrow{F} D \xrightarrow{T} T(D) = D'$$

D' es un dominio en \mathbb{C} conformemente equivalente a \mathbb{C} , así que $D' = \mathbb{C} = \mathbb{C}^* \setminus \{\infty\}$. Por tanto, $D = \mathbb{C}^* \setminus \{\alpha\}$.

Hemos probado que si D es un dominio en \mathbb{C}^* conformemente equivalente a \mathbb{C} , entonces $D = \mathbb{C}$ o $D = \mathbb{C}^* \setminus \{\alpha\}$, con $\alpha \in \mathbb{C}$. Es decir, $D = \mathbb{C}^* \setminus \{\alpha\}$, $\alpha \in \mathbb{C}^*$.

Los dominios en \mathbb{C}^* que son conformemente equivalentes a \mathbb{C} son $\mathbb{C}^* \setminus \{\alpha\}$, $\alpha \in \mathbb{C}^*$.

Aplicaciones conformes de \mathbb{C}^* sobre \mathbb{C}^*

Sea $T:\mathbb{C}^*\to\mathbb{C}^*$ aplicación conforme. Sea $a\in\mathbb{C}^*$ tal que $T(a)=\infty$. Consideramos dos casos:

- 1. Si $a=\infty,\,T(\infty)=\infty.$ $T:\mathbb{C}\to\mathbb{C}$ es una aplicación conforme, así que $T(z)=\alpha z+\beta,$ con $\alpha,\beta\in\mathbb{C},\,\alpha\neq0.$
- 2. Si $a \in \mathbb{C}$, $T(a) = \infty$. T es holomorfa en $\mathbb{C} \setminus \{a\}$, así que a es un polo simple de T. Consideramos el desarrollo de Laurent de T en a.

$$T(z) = \frac{A_{-1}}{z - a} + \sum_{n=0}^{\infty} A_n (z - a)^n, \quad z \in \mathbb{C} \setminus \{a\}, \ A_{-1} \neq 0$$

 ∞ es una singularidad aislada de T. De hecho, es una singularidad evitable.

Sea $F(z)=T(z)-\frac{A_{-1}}{z-a},\ z\in\mathbb{C}\setminus\{a\}$. F es holomorfa en $\mathbb{C}\setminus\{a\}$. a es singularidad evitable de F y $\lim_{z\to\infty}F(z)=T(\infty)\in\mathbb{C}$, así que ∞ es una singularidad evitable también. Evitando la singularidad de F en a, tenemos que F es entera y acotada. Por tanto F es constante. Así que $F(z)=a_0$, para todo $z\in\mathbb{C}$. Entonces:

$$T(z) = F(z) + \frac{A_{-1}}{z - a} = a_0 + \frac{A_{-1}}{z - a} = \frac{a_0 z + (A_{-1} - a_0 a)}{z - a}$$

En cualquiera de los dos casos, T es de la forma:

$$T(z) = \frac{\alpha z + \beta}{\gamma z + \delta}, \quad \alpha, \beta, \gamma, \delta \in \mathbb{C}$$

No todas las aplicaciones de esta forma son aplicaciones conformes de \mathbb{C}^* sobre \mathbb{C}^* .

Ejemplo (Contraejemplo). No es una aplicación conforme si $\alpha = \beta = 0$ o (α, β) y (γ, δ) son proporcionales. Por ejemplo:

$$T(z) = \frac{3z+2}{6z+4} = \frac{1}{2}$$

Para que las aplicaciones de esa forma sean aplicaciones conformes de \mathbb{C}^* sobre \mathbb{C}^* , se tiene que verificar que:

$$\begin{vmatrix} \alpha & \beta \\ \gamma & \delta \end{vmatrix} \neq 0$$

En el caso (1), $T(z) = Az + B = \frac{Az+B}{0z+1}$, con $A, B \in \mathbb{C}$, $A \neq 0$, luego:

$$\begin{vmatrix} A & B \\ 0 & 1 \end{vmatrix} = A \neq 0$$

En el caso (2),

$$\begin{vmatrix} a_0 & A_{-1} - a_0 a \\ 1 & -a \end{vmatrix} = -a_0 a - A_{-1} + a_0 a = -A_{-1} \neq 0$$

Teorema 1.7. Las aplicaciones conformes de \mathbb{C}^* en \mathbb{C}^* son de la forma:

$$T(z) = \frac{\alpha z + \beta}{\gamma z + \delta}, \quad \alpha, \beta, \gamma, \delta \in \mathbb{C}, \ \alpha \delta - \beta \gamma \neq 0$$

Demostración. Sea $T: \mathbb{C}^* \to \mathbb{C}^*$ una aplicación de esa forma.

• Si $\gamma = 0$, entonces:

$$T(z) = \frac{\alpha z + \beta}{\delta} = \frac{\alpha}{\delta} z + \frac{\beta}{\delta}, \quad \alpha, \delta \neq 0$$

T es una aplicación conforme de $\mathbb C$ sobre $\mathbb C$, con $\lim_{z\to\infty}T(z)=\infty$. Definiendo $T(\infty)=\infty$, tenemos que $T:\mathbb C^*\to\mathbb C^*$ es una aplicación conforme.

• Si $\gamma \neq 0$, entonces $T: \mathbb{C}^* \to \mathbb{C}^*$,

$$\begin{split} T(z) &= \frac{\alpha z + \beta}{\gamma z + \delta}, \quad z \in \mathbb{C} \setminus \left\{ -\frac{\delta}{\gamma} \right\} \\ T\left(-\frac{\delta}{\gamma} \right) &= \infty \\ T(\infty) &= \frac{\alpha}{\gamma} \end{split}$$

T es meromorfa en \mathbb{C}^* y T es inyectiva.

Veamos que T es sobreyectiva. Sea $w \in \mathbb{C} \setminus \left\{\frac{\alpha}{\gamma}\right\}$ y sea $z \in \mathbb{C} \setminus \left\{-\frac{\delta}{\gamma}\right\}$. Entonces:

$$T(z) = w \Leftrightarrow \frac{\alpha z + \beta}{\gamma z + \delta} = w \Leftarrow \alpha z + \beta = \gamma z w + \delta w \Leftrightarrow (\alpha - \gamma w)z = \delta w - \beta \Leftrightarrow z = \frac{\delta w - \beta}{-\gamma w + \alpha}$$

Por tanto, T es una aplicación conforme de \mathbb{C}^* sobre \mathbb{C}^* .

Además, hemos probado que T^{-1} es de la forma:

$$T^{-1}(z) = \frac{\delta z - \beta}{-\gamma z + \alpha}, \quad \begin{vmatrix} \delta & -\beta \\ -\gamma & \alpha \end{vmatrix} = \alpha \delta - \beta \gamma \neq 0$$

Si $\gamma = 0$, también es válida esta expresión.

1.4. Funciones holomorfas en el disco unidad

Teorema 1.8 (Lema de Schwarz). Sea φ una función holomorfa en $\mathbb D$ tal que $\varphi(0)=0$ y $\varphi(\mathbb D)\subset \mathbb D$. Entonces:

- 1. $|\varphi(z)| \leq |z|$ para todo $z \in \mathbb{D}$.
- 2. $|\varphi'(0)| \leq 1$.

Además, se da la igualdad en (1) para algún $z \in \mathbb{D}$ con $z \neq 0$ o bien se da la igualdad en (2) si y solo si φ es una rotación de \mathbb{D} , es decir, si existe $\lambda \in \mathbb{C}$ con $|\lambda| = 1$ tal que $\varphi(z) = \lambda z$ para todo $z \in \mathbb{D}$.

Observación. Si φ es una rotación, entonces se da la igualdad en (1) para todo $z \in \mathbb{D}$ y se da la igualdad en (2).

Observación. El teorema se puede enunciar de forma equivalente con la condición $\varphi(\mathbb{D}) \subset \overline{\mathbb{D}}$ en lugar de $\varphi(\mathbb{D}) \subset \mathbb{D}$. Es decir, si φ es holomorfa en \mathbb{D} con $\varphi(0) = 0$ y $\varphi(\mathbb{D}) \subset \overline{\mathbb{D}}$, entonces $\varphi(\mathbb{D}) \subset \mathbb{D}$. Veamos que esto es cierto. Supongamos que existe $z_0 \in \mathbb{D}$ con $|\varphi(z_0)| = 1$. Como $|\varphi(z)| \le 1$ para todo $z \in \mathbb{D}$, por el principio del máximo φ es constante, luego $\varphi \equiv \varphi(0) = 0$. Esto contradice que $|\varphi(z_0)| = 1$.

Sea f holomorfa en \mathbb{D} con $(\mathbb{D}) \subset \mathbb{D}$. Sea $a \in \mathbb{D}$ y $b = f(a) \in \mathbb{D}$. Definimos:

$$T_a(z) = \frac{z+a}{1+\bar{a}z}, \qquad T_a \in \mathcal{M}, \ T_a(\mathbb{D}) = \mathbb{D}, \ T_a(0) = a$$
$$S_b(z) = \frac{z-b}{1-\bar{b}z}, \qquad S_b \in \mathcal{M}, \ S_b(\mathbb{D}) = \mathbb{D}, \ S_b(b) = 0$$

Sea $\varphi = S_b \circ f \circ T_a$. φ es holomorfa en \mathbb{D} , con $\varphi(\mathbb{D}) \subset \mathbb{D}$ y $\varphi(0) = 0$. Por el lema de Schwarz,

- 1. $|\varphi(z)| \leq |z|$ para todo $z \in \mathbb{D}$.
- 2. $|\varphi(0)| \leq 1$.

Además, se da la igualdad en (1) para algún $z \in \mathbb{D}$, $z \neq 0$, o bien se da la igualdad en (2) si y solo si φ es una rotación.

Desarrollamos las dos expresiones:

1. Sea $z \in \mathbb{D}$. Consideramos $T_a^{-1}(z) \in \mathbb{D}$.

$$|\varphi(T_a^{-1}(z))| \le |T_a^{-1}(z)| \Leftrightarrow |S_b(f(z))| \le |S_a(z)| \Leftrightarrow \left| \frac{f(z) - b}{1 - \bar{z}f(z)} \right| \le \left| \frac{z - a}{1 - \bar{a}z} \right| \Leftrightarrow \left| \frac{f(z) - f(a)}{1 - \bar{f}(a)} f(z) \right| \le \left| \frac{z - a}{1 - \bar{a}z} \right|, \quad \forall z \in \mathbb{D}$$

Además, si se da la igualdad para algún $z \in \mathbb{D}$, $z \neq a$, entonces φ es una rotación. Entonces, $f = S_b^{-1} \circ \varphi \circ T_a^{-1} \in \mathcal{M}$, con $f(\mathbb{D}) = \mathbb{D}$.

2. Por la regla de la cadena, $\varphi'(0) = T'_a(0)f'(a)S'_b(b)$.

$$T'_a(z) = \frac{1 + \bar{a}z - (z+a)\bar{a}}{(1 + \bar{a}z)^2}, \qquad T'_a(0) = 1 - |a|^2$$

$$S'_b(z) = \frac{1 - \bar{b}z + (z-b)\bar{b}}{(1 - \bar{b}z)^2}, \qquad S'_b(b) = \frac{1 - |b|^2}{(1 - |b|^2)} = \frac{1}{1 - |b|^2}$$

Así que:

$$\varphi'(0) = (1 - |a|^2)f'(a)\frac{1}{1 - |b|^2}$$

Por tanto:

$$|\varphi'(0)| \le 1 \Leftrightarrow (1 - |a|^2)f'(a)\frac{1}{1 - |b|^2} \le 1 \Leftrightarrow \frac{|f'(a)|}{1 - |f(a)|^2} \le \frac{1}{1 - |a|^2}$$

Además, si se da la igualdad, entonces φ es una rotación y por tanto $f \in \mathcal{M}$, con $f(\mathbb{D}) \subset \mathbb{D}$. Por tanto, hemos probado lo siguiente:

1. Para todo $z \in \mathbb{D}$,

$$\left| \frac{f(z) - f(a)}{1 - \overline{f(a)}f(z)} \right| \le \left| \frac{z - a}{1 - \overline{a}z} \right|$$

Si se da la igualdad para algún $z \in \mathbb{D}$ con $z \neq a$ entonces $f \in \mathcal{M}$ y $f(\mathbb{D}) = \mathbb{D}$.

2.

$$\frac{|f'(a)|}{1 - |f(a)|^2} \le \frac{1}{1 - |a|^2}$$

Si se da la igualdad entonces $f \in \mathcal{M}$ y $f(\mathbb{D}) = \mathbb{D}$.

1.5. El teorema de Schwarz-Pick

Teorema 1.9 (Teorema de Schwarz-Pick). Sea f holomorfa en \mathbb{D} con $f(\mathbb{D}) \subset \mathbb{D}$. Entonces:

1. Para todo $z_1, z_2 \in \mathbb{D}$,

$$\left| \frac{f(z_2) - f(z_1)}{1 - \overline{f(z_1)} f(z_2)} \right| \le \left| \frac{z_2 - z_1}{1 - \overline{z_1} z_2} \right|$$

2. Para todo $z \in \mathbb{D}$,

$$\frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}$$

Además, se da la igualdad en (1) para algún par de puntos $z_1, z_2 \in \mathbb{D}$ con $z_1 \neq z_2$ o bien se da la igualdad en (2) para algún $z \in \mathbb{D}$ si y solo si $f \in \mathcal{M}$ y $f(\mathbb{D}) = \mathbb{D}$, en cuyo caso se da la igualdad en (1) para todo $z_1, z_2 \in \mathbb{D}$ y se da la igualdad en (2) para todo $z \in \mathbb{D}$.

Proposición 1.10. Sea $T \in \mathcal{M}$ con $T(\mathbb{D}) = \mathbb{D}$. Entonces:

1. Para todo $z_1, z_2 \in \mathbb{D}$,

$$\left| \frac{T(z_2) - T(z_1)}{1 - \overline{T(z_1)}T(z_2)} \right| = \left| \frac{z_2 - z_1}{1 - \overline{z_1}z_2} \right|$$

2. Para todo $z \in \mathbb{D}$,

$$\frac{|T'(z)|}{1 - |T(z)|^2} \le \frac{1}{1 - |z|^2}$$

Definición 1.5. Dados $z_1, z_2 \in \mathbb{D}$, definimos:

$$\rho(z_1, z_2) = \left| \frac{z_2 - z_1}{1 - \overline{z_1} z_2} \right|$$

Observamos que si $1 - \overline{z_1}z_2 = 0$ entonces $\overline{z_1}z_2 = 1 \Rightarrow |z_1||z_2| = 1$. Como esto no ocurre, ρ está bien definida.

La primera parte del teorema de Schwarz-Pick se puede reescribir usando ρ .

Sea f holomorfa en \mathbb{D} con $f(\mathbb{D}) \subset \mathbb{D}$. Entonces:

$$\rho(f(z_1), f(z_2)) \le \rho(z_1, z_2), \text{ si } z_1, z_2 \in \mathbb{D}$$

Además, se da la igualdad para algún par de puntos distintos $z_1, z_2 \in \mathbb{D}$ si y solo si $f \in \mathcal{M}$ y $f(\mathbb{D}) = \mathbb{D}$, en cuyo caso se da la igualdad para todo $z_1, z_2 \in \mathbb{D}$.

Vamos a ver que ρ es una distancia en \mathbb{D} .

$$\rho: D \times D \to \mathbb{R}$$

$$(z_1, z_2) \mapsto \rho(z_1, z_2) = \left| \frac{z_2 - z_1}{1 - \overline{z_1} z_2} \right|$$

- $\rho(z_1, z_2) \leq 0.$
- $\rho(z_1, z_2) = \rho(z_2, z_1).$
- $\rho(z_1, z_2) = 0 \Leftrightarrow z_1 = z_2.$
- $\rho(z_1, z_3) \leq \rho(z_1, z_2) + \rho(z_2, z_3).$

Lema 1.11. Para todo $a, z \in \mathbb{D}$,

$$\frac{||z| - |a||}{1 - |a||z|} \le \left| \frac{z - a}{1 - \bar{a}z} \right| \le \frac{|z| + |a|}{1 + |a||z|}$$

Observamos que si $a, z \in \mathbb{D}$, tenemos:

$$\rho(a,z) = \left| \frac{z-a}{1-\bar{a}z} \right| = |S_a(z)| < 1, \quad S_a \in \mathcal{M}, S_a(\mathbb{D}) = \mathbb{D}$$

Dados $a \in \mathbb{D}$ y 0 < r < 1, denotamos:

$$\Delta(a,r) = \{ z \in \mathbb{D} : \rho(z,a) < r \}$$

Entonces, dado $z \in \mathbb{D}$, se tiene que:

$$z \in \Delta(a,r) \Leftrightarrow \rho(z,a) < r \Leftrightarrow |S_a(z)| < r \Leftrightarrow S_a(z) \in D(0,r) \Leftrightarrow z \in S_a^{-1}(D(0,r)) \Leftrightarrow z \in T_a(D(0,r))$$

Entonces $\Delta(a,r) = T_a(D(0,r))$.

 $T_a(\partial D(0,r))$ es una circunferencia C contenida en \mathbb{D} . Sean c y R el centro y el radio de C, con $c \in \mathbb{C}$, R > 0. Entonces $T_a(D(0,r)) = D(c,R)$. Por tanto:

$$\Delta(a,r) = T_a(D(0,r)) = D(c,R)$$

Así que $\Delta(a,r)$ es un disco euclídeo. Como $T_a(0)=a$ tenemos que $a\in\Delta(a,r)$, pero a no tiene por qué ser el centro del disco.

Vamos a calcular c y R. Si a = 0, $T_a(z) = z$ luego $T_a(D(0,r)) = D(0,r)$. Supongamos que $a \neq 0$. Sea L la recta que pasa por 0 y a. Calculamos $S_a(L)$ hallando la imagen de tres puntos.

$$S_a(0) = -a$$

$$S_a(a) = 0$$

$$S_a\left(\frac{1}{\bar{a}}\right) = \infty$$

 $L' = S_a(L)$ es la recta que pasa por 0 y por -a, luego L' coincide con L. Como L' es perpendicular a $\partial D(0,r)$ en los dos puntos de corte y T_a preserva ángulos en esos dos puntos, entonces L es perpendicular a C. Por tanto c está en L.

El diámetro $\left[-r\frac{a}{|a|}, r\frac{a}{|a|}\right]$ se aplica mediante T_a en un diámetro de C, que es:

$$\left[T_a\left(-r\frac{a}{|a|}\right), T_a\left(r\frac{a}{|a|}\right)\right]$$

Entonces:

$$c = \frac{1}{2} \left(T_a \left(-r \frac{a}{|a|} \right) + T_a \left(r \frac{a}{|a|} \right) \right)$$
$$R = \frac{1}{2} \left| T_a \left(r \frac{a}{|a|} \right) - T_a \left(-r \frac{a}{|a|} \right) \right|$$

Calculamos:

$$T_a\left(-r\frac{a}{|a|}\right) = \frac{-r\frac{a}{|a|} + a}{1 - \bar{a}r\frac{a}{|a|}} = \frac{-ra + a|a|}{|a| - r|a|^2} = \frac{a(|a| - r)}{|a|(1 - r|a|)}$$
$$T_a\left(r\frac{a}{|a|}\right) = \frac{r\frac{a}{|a|} + a}{1 + \bar{a}r\frac{a}{|a|}} = \frac{ra + a|a|}{|a| + r|a|^2} = \frac{a(|a| + r)}{|a|(1 + r|a|)}$$

Se llega a que:

$$c = \frac{1 - r^2}{1 - r^2 |a|^2} a$$

$$R = \frac{r(1 - |a|^2)}{1 - r^2 |a|^2}$$

Observamos que los puntos de mayor y menor módulo de C son $T_a\left(-r\frac{a}{|a|}\right)$ y $T_a\left(r\frac{a}{|a|}\right)$ Veamos que de hecho,

$$\left| T_a \left(-r \frac{a}{|a|} \right) \right| = \frac{||a| - r|}{1 - r|a|} \le \frac{r + |a|}{1 + r|a|} = \left| T_a \left(r \frac{a}{|a|} \right) \right|$$

 \blacksquare Si $|a| \geq r$

$$\frac{|a| - r}{1 - r|a|} \le \frac{r + |a|}{1 + r|a|} \Leftrightarrow |a| + r|a|^2 - r - r^2|a| \le r + |a| - r^2|a| - r|a|^2 \Leftrightarrow 2r|a|^2 \le 2r \Leftrightarrow |a| \le 1$$

• Si |a| < r se razona de forma análoga.

Entonces, para todo $z \in \partial D(0,r)$ se tiene que:

$$\begin{aligned} &\frac{||a|-r|}{1-r|a|} \leq T_a(z) \leq \frac{r+|a|}{1+r|a|} \Leftrightarrow \frac{||a|-r|}{1-r|a|} \leq \left|\frac{z+a}{1+\bar{a}z}\right| \leq \frac{r+|a|}{1+r|a|} \Leftrightarrow \\ &\Leftrightarrow \frac{||a|-|z||}{1-|z||a|} \leq \left|\frac{z+a}{1+\bar{a}z}\right| \leq \frac{|z|+|a|}{1+|z||a|} \leq |z|+|a| \end{aligned}$$

Hemos probado esto para $a, z \in \mathbb{D}$, $a, z \neq 0$. Pero si a = 0 o z = 0 la desigualdad es trivial. Por tanto, esta cadena de desigualdades es cierta para todo $a, z \in \mathbb{D}$.

Cambiando a por -a, tenemos:

$$\frac{||a|-|z||}{1-|z||a|} \le \left|\frac{z-a}{1-\bar{a}z}\right| \le \frac{|z|+|a|}{1+|z||a|} \le |z|+|a|, \quad z,a \in \mathbb{D}$$

Las desigualdades primera y segunda corresponden al último lema.

Por otro lado,

$$\rho(a,z) \le |z| + |a|, \quad z, a \in \mathbb{D}$$

Como $\rho(z_1, 0) = |z_1|$ y $\rho(0, z_2) = |z_2|$, entonces:

$$\rho(a,z) \le \rho(a,0) + \rho(0,z), \quad a,z \in \mathbb{D}$$

Esto es un caso particular de la desigualdad triangular.

Sean $z_1, z_2, z_3 \in \mathbb{D}$. Tenemos, usando el teorema de Schwarz-Pick,

$$\begin{split} \rho(z_1,z_3) &= \rho(S_{z_2}(z_1),S_{z_2}(z_3)) \leq \rho(S_{z_2}(z_1,0)) + \rho(0,S_{z_2}(z_3)) = \\ &= \rho(S_{z_2}(z_1),S_{z_2}(z_2)) + \rho(S_{z_2}(z_2),S_{z_2}(z_3)) = \rho(z_1,z_2) + \rho(z_2,z_3) \end{split}$$

Así que ρ verifica la desigualdad triangular. Por tanto, ρ es una distancia en $\mathbb D$ que se denomina distancia pseudohiperbólica en $\mathbb D$.

$$\rho(z_1, z_2) = \left| \frac{z_2 - z_1}{1 - \overline{z_1} z_2} \right| = |S_{z_1}(z_2)| < 1$$

Si $a \in \mathbb{D}$ y 0 < r < 1, el disco pseudohiperbólico de centro a y radio r es:

$$\Delta(a,r) = \{ z \in \mathbb{D} : \rho(z,a) < r \}$$

No consideramos $r \ge 1$ porque $\Delta(a,r) = \mathbb{D}$. Sabemos que $\Delta(a,r)$ es un disco euclídeo, en concreto un disco abierto de centro $\frac{1-r^2}{1-r^2|a|^2}a$ y radio $\frac{r(1-|a|^2)}{1-r^2|a|^2}$. Si $a=0,\,\Delta(a,r)=D(0,r)$.

Esta distancia es equivalente a la distancia euclídea en \mathbb{D} .

Si $T \in \mathcal{M}$ con $T(\mathbb{D}) = \mathbb{D}$, se tiene que:

$$\rho(T(z_1), T(z_2)) = \rho(z_1, z_2), \quad z_1, z_2 \in \mathbb{D}$$

Además, si f es holomorfa en \mathbb{D} y $f(\mathbb{D}) \subset \mathbb{D}$, se tiene que:

$$\rho(f(z_1), f(z_2)) < \rho(z_1, z_2), \quad z_1, z_2 \in \mathbb{D}$$

1.6. Subordinación

Definición 1.6. Sean f, F holomorfas en \mathbb{D} . Diremos que f está subordinada a $F, f \prec F$, si existe w holomorfa en \mathbb{D} , con w(0) = 0 y $w(\mathbb{D}) \subset \mathbb{D}$ tal que $f = F \circ w$.

Observación. w está en las condiciones del lema de Schwarz.

Veamos algunas propiedades:

- f(0) = F(w(0)) = F(0).
- $\bullet f(\mathbb{D}) = F(w(\mathbb{D})) \subset F(\mathbb{D}).$
- Si 0 < r < 1, veamos que

$$f(D(0,r)) \subset F(D(0,r))$$

Si $z \in D(0,r)$, f(z) = F(w(z)). Por el lema de Schwarz,

$$|w(z)| \le |z| < r$$

• Si 0 < r < 1, veamos que

$$\max_{|z|=r} |f(z)| \le \max_{|z|=r} |F(z)|$$

Si |z|=r, como por el lema de Schwarz $|w(z)| \leq |z|=r$, entonces:

$$|f(z)| = |F(w(z))| \leq \max_{|z| \leq r} |F(z)| \Rightarrow \max_{|z| = r} |f(z)| \leq \max_{|z| \leq r} |F(z)|$$

■ Si |z| = r, como por el lema de Schwarz $|w'(0)| \le 1$ y además f'(0) = F'(w(0))w'(0) = F'(0)w'(0), entonces:

$$|f(z)| = |F(w(z))| \leq \max_{|z| \leq r} |F(z)| \Rightarrow \max_{|z| = r} |f(z)| \leq \max_{|z| \leq r} |F(z)|$$

• No se verifica para todo $r \in (0,1)$ que

$$\max_{|z|=r} |f'(z)| \le \max_{|z|=r} |F'(z)|$$

Ejemplo (Contraejemplo). Sean $f(z)=z^2$ y F(z)=z. Podemos tomar $w(z)=z^2$, que verifica w(0)=0 y $w(\mathbb{D})\subset \mathbb{D}$, luego $f\prec F$. Si 0< r<1,

$$\max_{|z|=r} |f'(z)| = \max_{|z|=r} 2|z| = 2r$$

$$\max_{|z|=r} |F'(z)| = 1$$

Observamos que no se cumple que $2r \le 1$ para todo $r \in (0,1)$.

Por la segunda parte del teorema de Schwarz-Pick,

$$\frac{|w'(z)|}{1-|w(z)|^2} \le \frac{1}{1-|z|^2}, \quad z \in \mathbb{D}$$

Entonces, si $z \in \mathbb{D}$,

$$|f'(z)| = |F'(w(z))||w'(z)| \le |F'(w(z))| \frac{1 - |w(z)|^2}{1 - |z|^2} \Leftrightarrow (1 - |z|^2)|f'(z)| \le (1 - |w(z)|^2)|F'(w(z))|$$

Entonces, si $0 < r \le 1$, tenemos que:

$$\sup_{|z| < r} (1 - |z|^2) |f'(z)| \le \sup_{|z| < r} (1 - |z|^2) |F'(z)|$$

Veamos que esto es cierto. Si |z| < r, como $|w(z)| \le |z| < r$,

$$(1-|z|^2)|f'(z)| \le (1-|w(z)|^2)|F'(w(z))| \le \sup_{|z| < r} (1-|z|^2)|F'(z)|$$

Proposición 1.12. Sean f, F holomorfas en \mathbb{D} , con $f \prec F$. Entonces:

- 1. f(0) = F(0).
- 2. $f(\mathbb{D}) \subset F(\mathbb{D})$.
- 3. Para todo $r \in (0,1)$,

$$f(D(0,r)) \subset F(D(0,r))$$

4. Para todo $r \in (0,1)$,

$$\max_{|z|=r} |f(z)| \leq \max_{|z|=r} |F(z)|$$

- 5. $|f'(0)| \le |F'(0)|$.
- 6. Para todo $r \in (0,1]$,

$$\sup_{|z| < r} (1 - |z|^2) |f'(z)| \le \sup_{|z| < r} (1 - |z|^2) |F'(z)|$$

La última propiedad tiene mucha relación con el espacio de Bloch $\mathcal B$ de las funciones holomorfas en $\mathbb D$ que satisfacen:

$$\sup_{z \in \mathbb{D}} (1 - |z|^2)|f'(z)| < \infty$$

Observación. Veamos qué se puede decir sobre los coeficientes de Taylor. Sean f y F holomorfas en \mathbb{D} con $f \prec F$. Consideramos los desarrollos de Taylor de f y F para $z \in \mathbb{D}$:

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

$$F(z) = \sum_{n=0}^{\infty} A_n z^n$$

Usando (1), observamos que:

$$\begin{cases} a_0 = f(0) \\ A_0 = F(0) \end{cases} \Rightarrow a_0 = A_0$$

Con (2), vemos que:

$$\begin{cases} a_1 = f'(0) \\ A_1 = F'(0) \end{cases} \Rightarrow |a_1| \le |A_1|$$

No podemos decir nada más. Por ejemplo, dado $N \ge 2$, podemos considerar $f(z) = z^N$ y F(z) = z. Observamos que $f \prec F$ con $w(z) = z^N$. Observamos que $a_N = 1$ y $A_N = 0$, luego no es cierto que $|a_n| \le |A_n|$.

Veamos ahora un ejemplo importante de subordinación. Sea F una aplicación conforme de \mathbb{D} sobre D, siendo D un dominio en \mathbb{C} . Si f es holomorfa en \mathbb{D} tal que $f(\mathbb{D}) \subset D$ y f(0) = F(0), entonces $f \prec F$.

Sea $w = F^{-1} \circ f$. w es holomorfa en \mathbb{D} , $w(0) = F^{-1}(f(0)) = F^{-1}(F(0)) = 0$ y $w(\mathbb{D}) \subset \mathbb{D}$. Además, $f = F \circ w$.

Por ejemplo:

$$P(z) = \frac{1+z}{1-z}$$

Esta es una transformación de Möbius que aplica $\partial \mathbb{D}$ en el eje imaginario. $P(\mathbb{D})$ es el semiplano de la derecha $\{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$ y P(0) = 1. Entonces, si f es holomorfa en \mathbb{D} , $f(\mathbb{D}) \subset \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$ y f(0) = P(0), entonces $f \prec P$. Es decir, si f es holomorfa en \mathbb{D} , $\operatorname{Re}(f(z)) > 0$ para todo $z \in \mathbb{D}$ y f(0) = 1, entonces $f \prec F$.

Sea $\mathcal{P} = \{f \text{ holomorfa en } \mathbb{D} : \text{Re}(f(z)) > 0 \ \forall z \in \mathbb{D}, f(0) = 1\}.$ Entonces:

- $P \in \mathcal{D}$
- $f \in \mathcal{P} \Rightarrow f \prec P$. De hecho, $\mathcal{P} = \{f \text{ holomorfa en } \mathbb{D} : f \prec P\}$.
- $f \in \mathcal{P} \Rightarrow \frac{1}{f} \in \mathcal{P}$.

Teorema 1.13. Si $f \in \mathcal{P}$, entonces:

1. Para todo $z \in \mathbb{D}$,

$$\frac{1-|z|}{1+|z|} \le |f(z)| \le \frac{1+|z|}{1-|z|}$$

2.
$$|f'(0)| \le 2$$

Veamos cuáles son las aplicaciones conformes de $\mathbb D$ sobre $\mathbb D$.

Sea f una aplicación conforme de \mathbb{D} sobre \mathbb{D} . Sea $a=f(0)\in\mathbb{D}$. Aplicando la segunda parte del teorema de Schwarz-Pick a f en 0, tenemos:

$$\frac{|f'(0)|}{1 - |a|^2} \le 1$$

y si se diera igualdad, f sería una transformación de Möbius.

Sea $g=f^{-1}$, que es holomorfa en $\mathbb D$ y $g(\mathbb D)\subset \mathbb D$. Aplicando lo mismo en el punto a tenemos:

$$|g'(a)| \le \frac{1}{1 - |a|^2}$$

y si se diera igualdad, g sería una transformación de Möbius.

Tenemos que:

$$|f'(0)| \le 1 - |a|^2 \le \frac{1}{|g'(a)|} = |f'(0)|$$

Por tanto se da igualdad, así que f es una transformación de Möbius con $f(\mathbb{D}) = \mathbb{D}$. En conclusión, las aplicaciones conformes de \mathbb{D} sobre \mathbb{D} son:

$$\{\lambda T_a: \lambda \in \mathbb{C}, |\lambda| = 1, a \in \mathbb{D}\} = \{\lambda S_a: \lambda \in \mathbb{C}, |\lambda| = 1, a \in \mathbb{D}\} = \{\lambda \varphi_a: \lambda \in \mathbb{C}, |\lambda| = 1, a \in \mathbb{D}\}$$

1.7. La métrica de Poincaré

Si γ es un camino en \mathbb{C} y $f: sop(\gamma) \to \mathbb{C}$ es continua, entonces:

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$
$$\int_{\gamma} f(z)|dz| = \int_{a}^{b} f(\gamma(t))|\gamma'(t)|dt$$

siendo $\gamma:[a,b]\to\mathbb{C}$ una parametrización \mathcal{C}^1 a trozos de γ .

Veamos algunas propiedades:

- 1. Si f es real, entonces $\int_{\gamma} f(z)|dz| \in \mathbb{R}$. Si además f es no negativa, entonces $\int_{\gamma} f(z)|dz| \geq 0$.
- 2. Si f(z) = 1,

$$\int_{\gamma} f(z)|dz| = \int_{a}^{b} |\gamma'(t)|dt = long(\gamma)$$

3.

$$\left| \int_{\gamma} f(z)dz \right| \leq \int_{\gamma} |f(z)||dz| \leq \max_{z \in sop(\gamma)} |f(z)|long(\gamma)$$

4. Si $f, g : sop(\gamma) \to \mathbb{R}$ continuas y $f \leq g$, entonces:

$$\int_{\gamma} f(z)|dz| \le \int_{\gamma} g(z)|dz|$$

5.

$$\int_{\gamma_1+\gamma_2} f(z)|dz| = \int_{\gamma_1} f(z)|dz| + \int_{\gamma_2} f(z)|dz|$$

6.

$$\int_{-\gamma} f(z)|dz| = \int_{\gamma} f(z)|dz|$$

7.

$$\int_{\gamma}(af(z)+bg(z))|dz|=a\int_{\gamma}f(z)|dz|+b\int_{\gamma}g(z)|dz|,\quad a,b\in\mathbb{C}$$

Sean $z_1, z_2 \in \mathbb{D}$. Sea γ un camino en \mathbb{D} con origen z_1 y extremo z_2 . Podemos considerar la integral

$$\int_{\gamma} \frac{1}{1 - |z|^2} |dz| = \int_{\gamma} \frac{|dz|}{1 - |z|^2}$$

Como la función $z\in\mathbb{D}\mapsto \frac{1}{1-|z|^2}$ es real y positiva, entonces la integral es no negativa. Definimos:

$$\delta(z_1, z_2) = \inf \left\{ \int_{\gamma} \frac{|dz|}{1 - |z|^2} : \gamma \text{ camino en } \mathbb{D} \text{ con origen } z_1 \text{ y extremo } z_2 \right\}$$

Entonces:

- $\delta(z_1, z_2) \geq 0.$
- $\delta(z_1, z_2) = \delta(z_2, z_1)$.
- $\bullet \ \delta(z_1, z_2) = 0 \Leftrightarrow z_1 = z_2.$

Sean $z_1, z_2, z_3 \in \mathbb{D}$. Consideramos:

$$A_{12} = \left\{ \int_{\gamma} \frac{|dz|}{1 - |z|^2} : \gamma \text{ camino en } \mathbb{D} \text{ con origen } z_1 \text{ y extremo } z_2 \right\}$$

Se definen de manera análoga A_{13} y A_{23} . Observamos que $A_{12} + A_{23} \subset A_{13}$. Por tanto:

$$\inf(A_{12} + A_{13}) = \inf A_{12} + \inf A_{23} \ge \inf A_{13} \Leftrightarrow \delta(z_1, z_3) \le \delta(z_1, z_2) + \delta(z_2, z_3)$$

 δ es una distancia en \mathbb{D} , denominada distancia hiperbólica en \mathbb{D} .

Proposición 1.14.

1. Si f es holomorfa en \mathbb{D} con $f(\mathbb{D}) \subset \mathbb{D}$, entonces:

$$\delta(f(z_1), f(z_2)) < \delta(z_1, z_2), \quad \forall z_1, z_2 \in \mathbb{D}$$

2. Si $T \in \mathcal{M}$ con $T(\mathbb{D}) = \mathbb{D}$, entonces:

$$\delta(T(z_1), T(z_2)) = \delta(z_1, z_2), \quad \forall z_1, z_2 \in \mathbb{D}$$

Demostración.

1. Sea f holomorfa en \mathbb{D} con $f(\mathbb{D}) \subset \mathbb{D}$ y sean $z_1, z_2 \in \mathbb{D}$.

$$\delta(z_1, z_2) = \inf \left\{ \int_{\gamma} \frac{|dz|}{1 - |z|^2} : \gamma \text{ camino de } z_1 \text{ a } z_2 \right\}$$
$$\delta(f(z_1), f(z_2)) = \inf \left\{ \int_{\Gamma} \frac{|dw|}{1 - |w|^2} : \Gamma \text{ camino de } f(z_1) \text{ a } f(z_2) \right\}$$

Sea γ un camino en \mathbb{D} con origen z_1 y extremo z_2 , con parametrización \mathcal{C}^1 a trozos $\gamma:[a,b]\to\mathbb{C}$. Entonces $\Gamma=f\circ\gamma:[a,b]\to\mathbb{C}$ es una parametrización \mathcal{C}^1 a trozos de un camino Γ en \mathbb{D} con origen $f(z_1)$ y extremo $f(z_2)$. Tenemos:

$$\int_{\Gamma} \frac{|dw|}{1 - |w|^2} = \int_a^b \frac{|\Gamma'(t)|}{1 - |\Gamma(t)|^2} dt = \int_a^b \frac{|f'(\gamma(t))||\gamma'(t)|}{1 - |f(\gamma(t))|^2} dt$$

Usando la segunda parte del teorema de Schwarz-Pick:

$$\int_{a}^{b} \frac{|f'(\gamma(t))||\gamma'(t)|}{1-|f(\gamma(t))|^{2}} dt \leq \int_{a}^{b} \frac{|\gamma'(t)|}{1-|\gamma(t)|^{2}} dt = \int_{\gamma} \frac{|dz|}{1-|z|^{2}}$$

Luego tenemos que:

$$\delta(f(z_1), f(z_2)) \le \int_{\gamma} \frac{|dz|}{1 - |z|^2}, \quad \forall \gamma$$

Por tanto, $\delta(f(z_1), f(z_2)) \leq \gamma(z_1, z_2)$.

2. Se tiene aplicando (1) a $T y T^{-1}$.

Proposición 1.15. Si $z_1, z_2 \in \mathbb{D}$, entonces:

$$\delta(z_1, z_2) = \frac{1}{2} \operatorname{Log} \frac{1 + \rho(z_1, z_2)}{1 - \rho(z_1, z_2)}$$

Demostración. Si $z_1=z_2$ es trivial. Supongamos $z_1\neq z_2$. Consideramos:

$$S_{z_1}(z) = \frac{z - z_1}{1 - \overline{z_1}z}$$

Se tiene que $S_{z_1}\in\mathcal{M},\,S_{z_1}(\mathbb{D})=\mathbb{D}$ y $S_{z_1}(z_1)=0.$ Sabemos que $S_{z_1}(z_2)\neq 0.$ Además,

$$\delta(z_1, z_2) = \delta(0, S_{z_1}(z_2))$$

Tomamos $\lambda \in \mathbb{C}$, $|\lambda| = 1$, tal que $\lambda S_{z_1}(z_2) \in (0,1)$. Sea $r = \lambda S_{z_1}(z_2)$. Entonces:

$$\delta(z_1, z_2) = \delta(0, S_{z_1}(z_2)) = \delta(0, r)$$

Además, $r = |\lambda S_{z_1}(z_2)| = |S_{z_1}(z_2)| = \rho(z_1, z_2)$. Calculamos $\delta(0, r)$.

$$\delta(0,r) = \inf \left\{ \int_{\gamma} \frac{|dz|}{1-|z|^2} : \gamma \text{ camino en } \mathbb{D} \text{ con origen } 0 \text{ y extremo } r \right\}$$

Si $\gamma = [0, r],$

$$\begin{split} & \int_{\gamma} \frac{|dz|}{1-|z|^2} = \int_0^r \frac{dt}{1-t^2} = \frac{1}{2} \int_0^r \left(\frac{1}{1-t} + \frac{1}{1+t}\right) dt = = \frac{1}{2} \left[-\text{Log}(1-t) + \text{Log}(1+t) \right]_0^r = \\ & = \frac{1}{2} \left[\text{Log} \frac{1+t}{1-t} \right]_0^r = \frac{1}{2} \text{Log} \frac{1+r}{1-r} \end{split}$$

Luego $\delta(0,r) \leq \frac{1}{2} \log \frac{1+r}{1-r}$.

Sea γ un camino en $\mathbb D$ con origen 0 y extremo r. Veamos que

$$\int_{\gamma} \frac{|dz|}{1 - |z|^2} \ge \frac{1}{2} \operatorname{Log} \frac{1 + r}{1 - r}$$

Sea $\gamma:[a,b]\to\mathbb{C}$ una parametrización \mathcal{C}^1 a trozos de γ . Sean $u=\mathrm{Re}(f)$ y $v=\mathrm{Im}(f)$, de forma que $\gamma=u+iv.$ $u,v:[a,b]\to\mathbb{R},$ \mathcal{C}^1 a trozos.

$$\int_{\gamma} \frac{|dz|}{1+|z|^2} = \int_a^b \frac{|\gamma'(t)|}{1-|\gamma(t)|^2} dt$$

Tenemos que:

$$\begin{cases} |\gamma(t)|^2 \ge u(t)^2 \Rightarrow 0 < 1 - |\gamma(t)|^2 \le 1 - u(t)^2 \Rightarrow \frac{1}{1 - |\gamma(t)|^2} \ge \frac{1}{1 - u(t)^2} \\ |\gamma'(t)| \ge |u'(t)| \ge 0 \end{cases}$$

Así que:

$$\frac{|\gamma'(t)|}{1 - |\gamma(t)|^2} \ge \frac{|u'(t)|}{1 - u(t)^2} \ge \frac{u'(t)}{1 - u(t)^2}$$

Luego:

$$\begin{split} & \int_a^b \frac{|\gamma'(t)|}{1 - |\gamma(t)|^2} dt \ge \int_a^b \frac{u'(t)}{1 - u(t)^2} dt = \frac{1}{2} \int_a^b \left(\frac{u'(t)}{1 - u(t)} + \frac{u'(t)}{1 + u(t)} \right) dt = \\ & = \frac{1}{2} \left[-\text{Log}(1 - u(t)) + \text{Log}(1 + u(t)) \right]_a^b = \frac{1}{2} \left[\text{Log} \frac{1 + u(t)}{1 - u(t)} \right]_a^b = \frac{1}{2} \text{Log} \frac{1 + r}{1 - r} \end{split}$$

porque u(a) = 0 y u(b) = r. Por tanto,

$$\delta(z_1, z_2) = \delta(0, r) = \frac{1}{2} \operatorname{Log} \frac{1+r}{1-r} = \frac{1}{2} \operatorname{log} \frac{1+\rho(z_1, z_2)}{1-\rho(z_1, z_2)}$$

Observación. Sea $h(x) = \frac{1}{2} \text{Log} \frac{1+x}{1-x}, x \in [0,1)$. Observamos que si x < 1, entonces $1+x \geq 1-x > 0 \Rightarrow \frac{1+x}{1-x} \geq 1$, así que $h:[0,1) \to [0,\infty)$. h es creciente, con h(0)=0 y $\lim_{x \to 1^-} h(x) = \infty$. Podemos escribir $\delta = h \circ \rho : \mathbb{D} \times \mathbb{D} \xrightarrow{\rho} [0,1) \xrightarrow{h} [0,\infty). \text{ Fijado } a \in \mathbb{D}, \text{ si } \{z_n\}_{n=1}^{\infty} \text{ está en } \mathbb{D} \text{ con } |z_n| \to 1, \text{ entonces:}$

$$\rho(a, z_n) = |S_a(z_n)| \xrightarrow[n \to \infty]{} 1$$

Por tanto, $\delta(a, z_n) \xrightarrow[n \to \infty]{} \infty$.

 $\mathbb D$ con esta distancia δ es un modelo de la geometría hiperbólica. Si γ es un camino en $\mathbb D$, la longitud de γ es

$$\int_{\gamma} \frac{|dz|}{1 - |z|^2}$$

La geodésica que une $z_1, z_2 \in \mathbb{D}$ es el camino γ para el que:

$$\delta(z_1, z_2) = \int_{\gamma} \frac{|dz|}{1 - |z|^2}$$

Las geodésicas con respecto a δ son los diámetros de $\partial \mathbb{D}$ y los arcos de circunferencia ortogonales a $\partial \mathbb{D}$.

Capítulo 2

Familias normales

2.1. Familias normales

Teorema 2.1 (Teorema de convergencia de Weierstrass). Sea D abierto en \mathbb{C} y sean $\{f_n\}_{n=1}^{\infty}$ una sucesión de funciones holomorfas en D y $f: D \to \mathbb{C}$. Si $f_n \xrightarrow[n \to \infty]{} f$ uniformemente en cada subconjunto compacto de D, entonces f es holomorfa en D y $f'_n \xrightarrow[n \to \infty]{} f'$ uniformemente en cada subconjunto compacto. Para todo $k \in \mathbb{N}$, $f_n^{(k)} \xrightarrow[n \to \infty]{} f^{(k)}$ uniformemente en cada compacto.

Definición 2.1. Sea D un abierto en \mathbb{C} y sea \mathcal{F} una familia de funciones holomorfas en D. Diremos que \mathcal{F} es finitamente normal si para cada sucesión $\{f_n\}_{n=1}^{\infty}$ en \mathcal{F} existe una subsucesión $\{f_{n_k}\}_{k=1}^{\infty}$ de $\{f_n\}$ que converge uniformemente en cada subconjunto compacto de D.

Observación. El límite f de tal subsucesión es una función holomorfa en D, pero no tiene por qué pertenecer a \mathcal{F} .

Definición 2.2. Sea D un abierto en \mathbb{C} y sea \mathcal{F} una familia de funciones holomorfas en D. Diremos que \mathcal{F} es compacta si para cada sucesión $\{f_n\}_{n=1}^{\infty}$ en \mathcal{F} existe una subsucesión $\{f_{n_k}\}_{k=1}^{\infty}$ de $\{f_n\}$ que converge uniformemente en cada subconjunto compacto de D a una función que pertenece a \mathcal{F} .

En el conjunto Hol(D) de las funciones holomorfas en D, con D abierto en \mathbb{C} , se puede definir una distancia d tal que (Hol(D), d) es un espacio métrico completo, y en el que:

$$f_n \xrightarrow{d} f \Leftrightarrow f_n \to f$$
 uniformemente en cada subconjunto compacto de D

Si $\mathcal{F} \subset Hol(D)$, \mathcal{F} es finitamente normal si y solo si \mathcal{F} es relativamente compacto. Los compactos coinciden con la definición de familia compacta dada.

2.2. El teorema de Montel

Lema 2.2. Sea D un abierto en \mathbb{C} y \mathcal{F} una familia de funciones holomorfas en D. Entonces son equivalentes:

- 1. F está uniformemente acotada en cada subconjunto compacto de D.
- 2. Para cada $a \in D$ existe $r_a > 0$ con $D(a, r_a) \subset D$ y f está uniformemente acotada en $D(a, r_a)$.

Lema 2.3. Sea D abierto en \mathbb{C} y sean $f_n:D\to\mathbb{C}$ para $n=1,2,\ldots$ y $f:D\to\mathbb{C}$. Entonces son equivalentes:

- 1. $f_n \to f$ uniformemente en cada subconjunto compacto de D.
- 2. Para cada $a \in D$ existe $r_a > 0$ con $D(a, r_a) \subset D$ tal que $f_n \to f$ uniformemente en $D(a, r_a)$.

Lema 2.4. Sean $C_1, C_2 \in \mathbb{C}$, con $C_1 \cap C_2 = \emptyset$ y $C_1, C_2 \neq \emptyset$. Si C_1 es compacto y C_2 es cerrado, entonces:

$$dist(C_1, C_2) = \inf\{|z_1 - z_2| : z_1 \in C_1, z_2 \in C_2\} > 0$$

Observación. Si C_1 no es compacto no es cierto en general.

Lema 2.5. Sea $A \subset \mathbb{C}$, $A \neq \emptyset$ y sea

$$F: \mathbb{C} \to \mathbb{R}, \ F(z) = dist(z, A) = \inf\{|z - a| : a \in A\}$$

Entonces F es continua y F(z)=0 para todo $z\in A$. Si además A es cerrado, entonces $F(z)=\min\{|z-a|:a\in A\}$ para todo $z\in \mathbb{C}$.

Lema 2.6. Sea $A \subset \mathbb{C}$, $A \neq \emptyset$ y sea $\varepsilon > 0$. Considerations los conjuntos:

$$B = \{ z \in \mathbb{C} : dist(z, A) < \varepsilon \}$$

$$C = \{ z \in \mathbb{C} : dist(z, A) < \varepsilon \}$$

Entonces B es abierto y C es cerrado, con $A \subset B \subset C$. Si además A es acotado, entonces B es acotado y C es compacto.

Proposición 2.7. Sea D un abierto en \mathbb{C} y \mathcal{F} una familia de funciones holomorfas en D. Supongamos que \mathcal{F} está uniformemente acotada en D. Sea K un subconjunto compacto de D. Entonces existe A > 0 tal que:

$$|f(z_2) - f(z_1)| \le A|z_2 - z_1|, \quad \forall z_1, z_2 \in K, \ \forall f \in \mathcal{F}$$

Demostración. Sea M>0 tal que $|f(z)|\leq M$ para todo $z\in D$ y para toda $f\in \mathcal{F}$. Sean $K\subset D$, K compacto. Sea d>0 con $d< dist(K,\mathbb{C}\setminus D)$. Si $D=\mathbb{C}$, tomamos d>0 cualquiera. Sea $z_0\in K$. Entonces $D(z_0,d)\subset D$. De hecho, podemos tomar $\varepsilon>0$ tal que $D(z_0,d+\varepsilon)\subset D$. Dada $f\in \mathcal{F}$, por la fórmula de Cauchy,

$$f'(z) = \frac{1}{2\pi i} \int_{|\xi - z_0| = d} \frac{f(\xi)}{(\xi - z)^2} d\xi$$
 si $z \in D\left(z_0, \frac{d}{2}\right)$

Entonces:

$$|f'(z)| \le \frac{1}{2\pi} 2\pi \max_{|\xi - z_0| = d} \frac{|f(\xi)|}{|\xi - z|^2}$$

Podemos acotar:

$$|\xi - z| = |(\xi - z_0) + (z_0 - z)| \ge |\xi - z_0| - |z_0 - z| \ge d - \frac{d}{2} = \frac{d}{2}$$

Así que $|\xi - z|^2 \ge \frac{d^2}{4} > 0$. Luego:

$$|f'(z)| \le d\frac{M}{d^2/4} = \frac{4M}{d}$$

Hemos probado que si $z_0 \in K$, $f \in \mathcal{F}$ y $z \in D\left(z_0, \frac{d}{2}\right) \subset D$, entonces $|f'(z)| \leq \frac{4M}{d}$.

Ahora, sean $z_1, z_2 \in K$ y $f \in \mathcal{F}$. Supongamos que $|z_1 - z_2| < \frac{d}{2}$. Si $\xi \in [z_1, z_2]$, entonces $z_2 \in D$ $(z_1, \frac{d}{2}) \subset D$ y $|\xi - z_1| \le |z_1 - z_2| < \frac{d}{2}$, $\xi \in D$ $(z_1, \frac{d}{2})$. Entonces $\xi \in D$ y $|f'(\xi)| \le \frac{4M}{d}$. Por tanto:

$$|f(z_2) - f(z_1)| = \left| \int_{[z_1, z_2]} f'(\xi) d\xi \right| \le |z_2 - z_1| \max_{\xi \in [z_1, z_2]} |f'(\xi)| \le |z_2 - z_1| \frac{4M}{d}$$

Entonces, si $z_1, z_2 \in K$, $|z_1 - z_2| < \frac{d}{2}$ y $f \in \mathcal{F}$, se tiene que:

$$|f(z_2) - f(z_1)| \le A|z_2 - z_1|$$

Ahora, si $z_1, z_2 \in K$, $|z_2 - z_1| \ge \frac{d}{2}$ y $f \in \mathcal{F}$, tenemos:

$$|f(z_2) - f(z_1)| \le |f(z_2)| + |f(z_1)| \le 2M = 2M \frac{d}{2} \frac{2}{d} \le \frac{4M}{d} |z_2 - z_1| = A|z_2 - z_1|$$

Teorema 2.8 (Teorema de Arzelá-Ascoli). Sean (X_1, d_1) y (X_2, d_2) dos espacios métricos, siendo (X_1, d_1) separable y (X_2, d_2) completo. Sea \mathcal{F} una familia de aplicaciones continuas de X_1 en X_2 que verifica:

- 1. \mathcal{F} es puntualmente equicontinua. Es decir, dado $x \in X_1$ se verifica que, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que si $y \in X_1$ con $d_1(x,y) < \delta$, entonces $d_2(f(x),f(y)) < \varepsilon$ para toda $f \in \mathcal{F}$.
- 2. Para todo $x \in X_1$, el conjunto $\{f(x) : f \in \mathcal{F}\}$ es relativamente compacto.

Entonces, si $\{f_n\}_{n=1}^{\infty}$ es una sucesión en \mathcal{F} , existe una subsucesión $\{f_{n_k}\}_{k=1}^{\infty}$ de $\{f_n\}$ que converge uniformemente en cada subconjunto compacto de X_1 .

Teorema 2.9 (Teorema de Montel). Sea D un abierto en \mathbb{C} y sea \mathcal{F} una familia de funciones holomorfas en D. Entonces son equivalentes:

- 1. \mathcal{F} es finitamente normal.
- 2. \mathcal{F} está uniformemente acotada en cada subconjunto compacto de D. Es decir, para cada $K \subset D$, K compacto, existe $M_K > 0$ tal que $|f(z)| \leq M_K$ para toda $f \in \mathcal{F}$ y para todo $z \in K$.

Demostración.

 \Rightarrow Sea D abierto en \mathbb{C} y sea \mathcal{F} una familia de funciones holomorfas en D, con \mathcal{F} finitamente normal. Supongamos por reducción al absurdo que existe $K \subset D$, K compacto, tal que \mathcal{F} no está uniformemente acotada en K. Entonces existen $\{z_n\}_{n=1}^{\infty}$ en K y $\{f_n\}_{n=1}^{\infty}$ en \mathcal{F} tales que $|f_n(z_n)| \to \infty$.

Como \mathcal{F} es una familia finitamente normal, existe $\{f_{n_k}\}_{k=1}^{\infty}$ subsucesión de $\{f_n\}$ tal que $\{f_{n_k}\}$ converge uniformemente en cada subconjunto compacto de D a una función f holomorfa en D. Como f es continua en K y K es compacto, existe M>0 tal que $|f(z)|\leq M$ para todo $z\in K$. Por otro lado, como $f_{n_k}\xrightarrow[k\to\infty]{}f$ uniformemente en K, existe $k_0\in\mathbb{N}$ tal que $k\geq k_0,\ z\in K\Rightarrow |f_{n_k}(z)-f(z)|<1$. Entonces $|f_{n_k}(z)|\leq |f_{n_k}(z)-f(z)|+|f(z)|<1+M,\ z\in K,\ k\geq k_0$. En particular, $|f_{n_k}(z_{n_k})|<1+M$ si $k\geq k_0$. Esta es una contradicción.

- \Leftarrow Sea D abierto en \mathbb{C} y sea \mathcal{F} una familia de funciones holomorfas en D, uniformemente acotada en cada subconjunto compacto de D. Tomamos $X_1 = D$ y $X_2 = \mathbb{C}$.
 - 1. Sea $z_0 \in \mathbb{C}$. Dado $\varepsilon > 0$, veamos que existe $\delta > 0$ tal que, si $z_1 \in D$, $|z_1 z_0| < \delta$, $f \in \mathcal{F}$, entonces $|f(z_1) f(z_0)| < \varepsilon$. Sea R > 0 con $\overline{D}(0,R) \subset D$. \mathcal{F} está uniformemente acotada en $\overline{D}(z_0,R)$ y por tanto en $D(z_0,R)$. Sea $K = \overline{D}(z_0,\frac{R}{2})$, que es un subconjunto compacto de $D(z_0,R)$. Por la proposición anterior, existe A > 0 tal que

$$|f(z_2) - f(z_1)| \le A|z_2 - z_1|$$
, si $z_1, z_2 \in K, f \in \mathcal{F}$

Entonces, si $\delta = \min\left(\frac{\varepsilon}{A}, \frac{R}{2}\right), z_1 \in D, |z_1 - z_0| < \delta \text{ y } f \in \mathcal{F}, \text{ entonces } z_1 \in \overline{D}(z_0, \frac{R}{2}) = K,$ así que:

$$|f(z_1) - f(z_0)| \le A|z_1 - z_0| < A\delta \le A\frac{\varepsilon}{A} = \varepsilon$$

2. Sea $z \in D$. El conjunto $\{f(z) : f \in \mathcal{F}\}$ está acotado, ya que \mathcal{F} está uniformemente acotada en $\{z\}$. Por tanto, su clausura es compacta.

Entonces, por el teorema de Arzelá-Ascoli, existe una subsucesión $\{f_{n_k}\}_{k=1}^{\infty}$ de $\{f_n\}$ que converge uniformemente en cada subconjunto compacto de D. Por tanto, \mathcal{F} es finitamente normal.

Observación.

1. Sea D un abierto en \mathbb{C} . Si \mathcal{F} es una familia finitamente normal de funciones holomorfas en D, entonces la familia $\mathcal{F}' = \{f' : f \in \mathcal{F}\}$ es finitamente normal. En general, si $k \in \mathbb{N}$, la familia $\mathcal{F}^{(k)} = \{f^{(k)} : f \in \mathcal{F}\}$ es finitamente normal.

Sea $\{g_n\}_{n=1}^{\infty}$ en \mathcal{F}' . Entonces $g_n = f'_n$, $f_n \in \mathcal{F}$. Existe $\{f_{n_k}\}_{k=1}^{\infty}$ subsucesión de $\{f_n\}$ que converge uniformemente en cada subconjunto compacto de D a una función f holomorfa en D. Entonces $g_{n_k} = f'_{n_k} \to f'$ uniformemente en cada subconjunto compacto de D.

- 2. Sea D abierto en C y sea G familia finitamente normal de funciones holomorfas en D con $F \subset G$. Entonces F es finitamente normal.
- 3. Si $a \in \mathbb{C}$, R > 0 y $K \subset D(a, R)$, K compacto, entonces existe $r \in (0, R)$ tal que $K \subset \overline{D}(a, r)$.

Ejemplo.

- 1. $\mathcal{F} = \{f : f \text{ es entera y } |f(z)| \leq n \text{ si } |z| = n, n = 1, 2, ...\}$. Sea $K \subset \mathbb{C}$, K compacto, y sea $f \in \mathcal{F}$. Existe $n_0 \in \mathbb{N}$ tal que $K \subset \overline{D}(0, n_0)$. Además, $|f(z_0)| \leq n_0 \text{ si } |z| = n_0$. Por el principio del máximo, $|f(z)| \leq n_0 \text{ si } |z| \leq n_0$. En particular, $|f(z)| \leq n_0 \text{ si } z \in K \text{ y } f \in \mathcal{F}$. \mathcal{F} está uniformemente acotada en K. Por el teorema de Montel, \mathcal{F} es finitamente normal.
- 2. $\mathcal{P}=\{f:f \text{ es holomorfa en } \mathbb{D}, f(0)=1, \operatorname{Re}(f(z))>0 \ \forall z\in\mathbb{D}\}.$ Sea $K\subset\mathbb{D},\ K$ compacto. Si $f\in\mathcal{P}$ y $z\in K$,

$$|f(z)| \le \frac{1+|z|}{1-|z|}$$

Existe $R \in (0,1)$ tal que $K \subset \overline{D}(0,R)$. Entonces, si $f \in \mathcal{P}$ y $z \in K$,

$$|f(z)| \le \frac{1+|z|}{1-|z|} \le \frac{1+R}{1-R}$$

 \mathcal{P} está uniformemente acotada en K para todo subconjunto compacto K de \mathbb{D} . Por el teorema de Montel, \mathcal{P} es finitamente normal.

Observación. Si quitamos la condición f(0) = 1 en \mathcal{P} , la familia deja de ser finitamente normal. Por ejemplo, $f_n(z) = n$, n = 1, 2, ..., $\{f_n : n = 1, 2, ...\} \subset \mathcal{P}$. Si tomamos $K = \{0\}$, \mathcal{P} no está uniformemente acotada en K, así que \mathcal{P} no es finitamente normal.

Recordemos que $\mathcal{P} = \{f : f \text{ es holomorfa en } \mathbb{D}, f \prec P\}$, con $P(z) = \frac{1+z}{1-z}$. Esto es un caso particular del siguiente ejemplo.

3. Sea F holomorfa en \mathbb{D} y sea

$$\mathcal{F}_F = \{f : f \text{ holomorfa en } \mathbb{D}, f \prec F\}$$

Entonces \mathcal{F}_F es finitamente normal.

4. Sean $a \in \mathbb{C}$ y R > 0. Sea \mathcal{F} una familia finitamente normal de funciones holomorfas en D(a, R). Para cada $f \in \mathcal{F}$, consideramos el desarrollo de Taylor de f centrado en a

$$f(z) = \sum_{n=0}^{\infty} a_n(f)(z-a)^n, \quad z \in D(a,R)$$

Entonces $M_n = \sup_{f \in \mathcal{F}} |a_n(f)| < \infty$ para cada n y la serie de potencias $\sum_{n=0}^{\infty} M_n (z-a)^n$ tiene radio de convergencia mayor o igual que R, y por tanto define una función holomorfa en D(a, R).

Demostración. Fijado n, si $f \in \mathcal{F}$ tenemos:

$$a_n(f) = \frac{f^{(n)}(a)}{n!} \Rightarrow |a_n(f)| = \frac{|f^{(n)}(a)|}{n!}$$

La familia $\mathcal{F}^{(n)}$ es finitamente normal y por tanto está uniformemente acotada en el conjunto $\{a\}$, por lo que $\{f^{(n)}(a): f\in \mathcal{F}\}$ está acotado. Es decir, $\sup_{f\in \mathcal{F}}|f^{(n)}(a)|<\infty$. Entonces $M_n=\sup_{f\in \mathcal{F}}|a_n(f)|=\sup_{f\in \mathcal{F}}\frac{|f^{(n)}(a)|}{n!}<\infty$. Consideramos la serie de potencias:

$$\sum_{n=0}^{\infty} M_n (z-a)^n$$

Si $r \in (0, R)$, tenemos que \mathcal{F} está uniformemente acotada en $\overline{D}(a, r)$, y por tanto existe M(r) > 0 tal que $|f(z)| \leq M(r)$ si $z \in \overline{D}(a, r)$ y $f \in \mathcal{F}$. Si $f \in \mathcal{F}$, por la fórmula de Cauchy,

$$a_n(f) = \frac{f^{(n)}(a)}{n!} = \frac{1}{2\pi i} \int_{|z-a|=r} \frac{f(z)}{(z-a)^{n+1}} dz$$
, si $r \in (0,R), n = 0, 1, 2, \dots$

Así que:

$$|a_n(f)| \le \frac{1}{2\pi} 2\pi r \max_{|z-a|=r} \frac{|f(z)|}{|z-a|^{n+1}} \le r \frac{M(r)}{r^{n+1}} = \frac{M(r)}{r^n}, \quad \text{si } r \in (0,R), n = 0, 1, 2, \dots, f \in \mathcal{F}$$

Tomando supremo en $f \in \mathcal{F}$ tenemos que:

$$|M_n| = M_n \le \frac{M(r)}{r^n} \Rightarrow \sqrt[n]{M_n} \le \frac{\sqrt[n]{M(r)}}{r}, \text{ si } r \in (0, R), n = 0, 1, 2, \dots$$

Por tanto:

$$\limsup_{n \to \infty} \sqrt[n]{M_n} \le \lim_{n \to \infty} \frac{\sqrt[n]{M(r)}}{r} = \frac{1}{r}, \quad \text{si } r \in (0, R)$$

Haciendo $r \to R$,

$$\limsup_{n \to \infty} \sqrt[n]{M_n} \le \frac{1}{R}$$

Entonces el radio de convergencia es mayor o igual que R.

5. $\mathcal{F} = \{f : f \text{ es holomorfa en } \mathbb{D} \text{ y } \iint_{\mathbb{D}} |f(z)| dxdy \leq M\}$, siendo M > 0. Veamos que \mathcal{F} es finitamente normal.

Sea $K\subset \mathbb{D},\ K$ compacto. Tomamos $r\in (0,1)$ con $K\subset D(0,r)$. Sea $f\in \mathcal{F}$ y $z\in K$, por la fórmula de Cauchy

$$f(z) = \frac{1}{2\pi i} \int_{|z|=\rho} \frac{f(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \int_{-\pi}^{\pi} \frac{f(\rho e^{i\theta})}{\rho e^{i\theta} - z} \rho d\rho, \quad r \le \rho < 1$$

$$|f(z)| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{|f(\rho e^{i\theta})|}{|\rho e^{i\theta} - z|} \rho d\rho, \quad r \le \rho < 1$$

$$\int_{\frac{1+r}{2}}^{1} |f(z)| d\rho \le \frac{1}{2\pi} \int_{\frac{1+r}{2}}^{1} \int_{-\pi}^{\pi} \frac{|f(\rho e^{i\theta})|}{|\rho e^{i\theta} - z|} \rho d\theta d\rho = \frac{1}{2\pi} \iint_{\frac{1+r}{2} < |w| < 1} \frac{|f(w)|}{|w - z|} dx dy$$

Como $|w - z| \ge |w| - |z| > \frac{1+r}{2} - r = \frac{1-r}{2} > 0$,

$$\begin{split} &\frac{1}{2\pi} \iint_{\frac{1+r}{2} < |w| < 1} \frac{|f(w)|}{|w-z|} dx dy \leq \frac{1}{2\pi} \frac{2}{1-r} \iint_{\frac{1+r}{2} < |w| < 1} |f(w)| dx dy \leq \\ &\leq \frac{1}{\pi (1-r)} \iint_{\mathbb{D}} |f(w)| dx dy \leq \frac{M}{\pi (1-r)} \end{split}$$

Por otro lado,

$$\int_{\frac{1+r}{2}}^{1} |f(z)| d\rho = |f(z)| \left(1 - \frac{1+r}{2}\right) = |f(z)| \frac{1-r}{2}$$

Entonces:

$$|f(z)| \frac{1-r}{2} \le \frac{M}{\pi(1-r)} \Rightarrow |f(z)| \le \frac{2M}{\pi(1-r)^2}$$

Por tanto, \mathcal{F} está uniformemente acotada en K.

Teorema 2.10. Sean $a \in \mathbb{C}$ y R > 0. Sea \mathcal{F} una familia de funciones holomorfas en D(a, R). Las siguientes condiciones son equivalentes:

- 1. \mathcal{F} es finitamente normal.
- 2. Existe una sucesión $\{M_n\}_{n=0}^{\infty}$ con $M_n \geq 0$ para todo n tal que la serie de potencias $\sum_{n=0}^{\infty} M_n(z-a)^n$ tiene radio de convergencia mayor o igual que R y tal que, si para cada $f \in \mathcal{F}$,

$$f(z) = \sum_{n=0}^{\infty} a_n(f)(z-a)^n, \quad z \in D(a,r)$$

se tiene que $|a_n(f)| \leq M_n$ para todo n y para todo $f \in \mathcal{F}$.

Demostración.

- $\Rightarrow M_n = \sup_{f \in \mathcal{F}} |a_n(f)|.$
- \Leftarrow Sea $K \subset D(a,R)$, K compacto. Existe $r \in (0,R)$ tal que $K \subset \overline{D}(a,r)$. Si $z \in K$ y $f \in \mathcal{F}$, se tiene:

$$|f(z)| = \left| \sum_{n=0}^{\infty} a_n(f)(z-a)^n \right| \le \sum_{n=0}^{\infty} |a_n(f)| |z-a|^n \le \sum_{n=0}^{\infty} M_n |z-a|^n \le \sum_{n=0}^{\infty} M_n r^n < \infty$$

ya que $\sum_{n=0}^{\infty} M_n(z-a)^n$ converge para z=a+r. \mathcal{F} está uniformemente acotada en K.

2.3. El teorema de Stieltjes-Vitali

Teorema 2.11 (Teorema de Stieltjes-Vitali). Sea D un dominio en \mathbb{C} y \mathcal{F} una familia finitamente normal de funciones holomorfas en D. Sea $\{f_n\}_{n=1}^{\infty}$ una sucesión en \mathcal{F} . Si existe $A \subset D$ tal que A tiene algún punto de acumulación en D, para el que existe $\lim_{n\to\infty} f_n(a) \in \mathbb{C}$ para todo $a \in A$, entonces $\{f_n\}$ converge uniformemente en cada subconjunto compacto de D.

Demostración.

1. Veamos que $\{f_n\}$ converge puntualmente en D. Sea $z^* \in D$. Supongamos por reducción al absurdo que $\{f_n(z^*)\}$ no converge. Como \mathcal{F} está uniformemente acotada en el conjunto $\{z^*\}$, tenemos que $\{f_n(z^*)\}$ está acotado. Por tanto, existen $\{f_{n_i}\}_{i=1}^{\infty}$ y $\{f_{m_i}\}_{i=1}^{\infty}$ subsucesiones de $\{f_n\}$, y $w_1, w_2 \in \mathbb{C}$ distintos, tales que $f_{n_i}(z^*) \xrightarrow[i \to \infty]{} w_1, f_{m_i}(z^*) \xrightarrow[i \to \infty]{} w_2$. Como \mathcal{F} es finitamente normal, existen $\{g_k\}_{k=1}^{\infty}$ y $\{h_k\}_{k=1}^{\infty}$ subsucesiones de $\{f_{n_i}\}$ y $\{f_{m_i}\}$, respectivamente, que convergen uniformemente en cada subconjunto compacto de D. Sean g y h los respectivos límites. Entonces g y h son holomorfas en D. Tenemos que:

$$g_k(z^*) \xrightarrow[k \to \infty]{} w_1,$$
 $g(z^*) = w_1$
 $h_k(z^*) \xrightarrow[k \to \infty]{} w_2,$ $h(z^*) = w_2$

Si $a \in A$, existe $\lim_{n \to \infty} f_n(a) \in \mathbb{C}$, así que g(a) = h(a). $g \neq h$ son holomorfas en D, g = h en A y A tiene algún punto de acumulación en D. Por el teorema de identidad, g = h en D. Pero $g(z^*) = w_1 \neq w_2 = h(z^*)$. Esto contradice nuestro supuesto.

2. Sea $K \subset D$, K compacto. Sea $\alpha > 0$ tal que $2\alpha < dist(K, \mathbb{C} \setminus D)$. Si $D = \mathbb{C}$, tomamos $\alpha > 0$ cualquiera. Sean $G = \{z \in \mathbb{C} : dist(z, K) < \alpha\}$ y $K_1 = \{z \in \mathbb{C} : dist(z, K) \leq \alpha\}$. G es abierto, K_1 es compacto y $K \subset G \subset K_1 \subset D$.

Veamos que $K_1 \subset D$. Si $z \in K_1$, $dist(z, K) \leq \alpha$. Supongamos que $z \in D$. Tomamos $w \in K$ con $|z - w| < 2\alpha$. Entonces $2\alpha < dist(K, \mathbb{C} \setminus D) \leq |w - z| < 2\alpha$. Esto contradice nuestra hipótesis.

 \mathcal{F} está uniformemente acotada en K_1 y por tanto en G. $K \subset G$, K compacto. Por una proposición previa, existe A>0 tal que $|f(z_2)-f(z_1)| \leq A|z_2-z_1|$ si $z_1,z_2 \in K$ y $f \in \mathcal{F}$. Vamos a ver que $\{f_n\}$ es uniformemente de Cauchy en K. Sea $\varepsilon>0$ y sea $\delta=\frac{\varepsilon}{3A}>0$. Tenemos que si $z_1,z_2 \in K$, $|z_1-z_2|<\delta$ y $n\in\mathbb{N}$, entonces $|f_n(z_1)-f_n(z_2)|\leq A|z_1-z_2|< A\delta=\frac{\varepsilon}{3}$. Consideramos la familia $\{D(z,\delta):z\in K\}$. Como K es compacto, existen $z_1,z_2,\ldots,z_N\in K$ tales que $K\subset\bigcup_{j=1}^N D(z_j,\delta)$. Para cada $j\in\{1,\ldots,N\}$, la sucesión $\{f_n(z_j)\}_{n=1}^\infty$ es de Cauchy, ya que $\{f_n\}$ converge puntualmente en D. Por tanto, exsite $n_j\in\mathbb{N}$ tal que $n,m\geq n_j\Rightarrow |f_n(z_j)-f_m(z_j)|<\frac{\varepsilon}{3}$. Sea $n_0=\max\{n_j:j=1,\ldots,N\}$. Si $n,n\geq n_j$ y $z\in K$, hay que probar que $|f_n(z)-f_m(z)|<\varepsilon$. Tomamos $j\in\{1,\ldots,N\}$ con $z\in D(z_j,\delta)$.

$$|f_n(z) - f_m(z)| \le |f_n(z) - f_n(z_j)| + |f_n(z_j) - f_m(z_j)| + |f_m(z_j) - f_m(z)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Ejemplo. Para $x \ge 0$, tenemos que $\left(1 + \frac{x}{n}\right)^n$ es una sucesión creciente y

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x$$

Veamos que $\lim_{n\to\infty} \left(1+\frac{z}{n}\right)^n = e^z$ para todo $z\in\mathbb{C}$, siendo la convergencia uniforme en cada subconjunto compacto de \mathbb{C} .

Sea $D = \mathbb{C}$, $f_n(z) = \left(1 + \frac{z}{n}\right)^n$, $n \in \mathbb{N}$. Cada f_n es una función entera. Veamos que \mathcal{F} es finitamente normal.

Sea $K \subset \mathbb{C}$, K compacto. Tomamos R > 0 con $K \subset \overline{D}(0,R)$. Si $k \in K$ y $n \in \mathbb{N}$,

$$|f_n(z)| = \left|1 + \frac{z}{n}\right|^n \le \left(1 + \frac{|z|}{n}\right)^n \le \left(1 + \frac{R}{n}\right)^n \le e^R$$

Sea A=[0,1]. A tiene puntos de acumulación en $\mathbb C$ y $\lim_{n\to\infty} f_n(x)=e^x$ para todo $x\in A$. Por el teorema de Stieltjes-Vitali, $\{f_n\}$ converge uniformemente en cada subconjunto compacto de $\mathbb C$. Sea f el límite, entonces f es entera. Si $x\in A$, $\lim_{n\to\infty} f_n(x)=f(x)=e^x$. Por el teorema de identidad, $f(z)=e^z$ si $z\in \mathbb C$.

Teorema 2.12 (Teorema de Lindelöf). Sea f holomorfa y acotada en \mathbb{D} . Sea $\xi \in \partial \mathbb{D}$ y supongamos que existe el límite radial, es decir, $\lim_{r \to 1^-} f(r\xi) = L \in \mathbb{C}$. Entonces para todo $\alpha \in (0, \frac{\pi}{2})$ existe el límite tangencial de f en ξ , es decir,

$$\lim_{z \to \xi, z \in S_{\alpha}(\xi)} f(z) = L$$

siendo $S_{\alpha}(\xi)$ el vector de vértice ξ y ángulo 2α , simétrico con respecto al segmento $[0,\xi]$.

Teorema 2.13. Sea f holomorfa y acotada en D(1,1). Supongamos que existe $\lim_{x\to 0^+} f(x) = L \in \mathbb{C}$. Entonces para todo $\alpha \in (0, \frac{\pi}{2})$ existe

$$\lim_{z \to 0, |\operatorname{Arg}(z)| < \alpha} f(z) = L$$

Demostración. Sea M>0 tal que $|f(z)|\leq M$ si $z\in D(1,1)$. Consideramos la sucesión $\{f_n\}_{n=1}^{\infty}$, $f_n(z)=f\left(\frac{z}{n}\right)$. Cada f_n es holomorfa en D(1,1). La familia $\mathcal{F}=\{f_n:n\in\mathbb{N}\}$ está uniformemente acotada en D, porque si $z\in D$ y $n\in\mathbb{N}$ se tiene que $|f_n(z)|=|f\left(\frac{z}{n}\right)|\leq M$. Así que \mathcal{F} es finitamente normal.

Sea A=(0,1). Si $x\in A$, $\lim_{n\to\infty} f_n(x)=\lim_{n\to\infty} f\left(\frac{x}{n}\right)=L$. Por el teorema de Stieltjes-Vitali, $\{f_n\}$ converge uniformemente en cada subconjunto compacto de D(1,1). Sea g el límite, entonces g es holomorfa en D(1,1) y g(x)=L para todo $x\in A$. Por el teorema de identidad, g(z)=L para todo $z\in D(1,1)$. Hemos probado que $f_n\xrightarrow[n\to\infty]{}L$ uniformemente en cada subconjunto compacto de D.

Sea $\alpha \in (0, \frac{\pi}{2})$. Sea $K = \left\{ z \in \mathbb{C} : \frac{\cos(\alpha)}{2} \le |z| \le \cos(\alpha), |\operatorname{Arg}(z)| \le \alpha \right\}$. K es un subconjunto compacto de D(1,1), así que $f_n \xrightarrow[n \to \infty]{} L$ uniformemente en K. Es decir, existe $n_0 \in \mathbb{N}$ tal que, si $n \ge n_0$ y $z \in K$, entonces $|f_n(z) - L| < \varepsilon$.

Sea $\delta = \frac{\cos(\alpha)}{2n_0} > 0$. Sea z tal que $0 < |z| < \delta$ y $|\operatorname{Arg}(z)| < \alpha$. Observamos que $|z| < \frac{\cos(\alpha)}{2n_0} \le \frac{\cos(\alpha)}{2}$. Tomamos n_z el primer natural para el que $n_z|z| \ge \frac{\cos(\alpha)}{2}$. Como $|z| < \frac{\cos(\alpha)}{2n_0} \Leftrightarrow n_0|z| < \frac{\cos(\alpha)}{2}$, entonces $1 \le n_0 < n_z$. Por otro lado,

$$(n_z - 1)|z| < \frac{\cos(\alpha)}{2} \Leftrightarrow n_z|z| - |z| < \frac{\cos(\alpha)}{2} \Leftrightarrow n_z|z| < |z| + \frac{\cos(\alpha)}{2} < \frac{\cos(\alpha)}{2} + \frac{\cos(\alpha)}{2} = \cos(\alpha)$$

Así que $\frac{\cos(\alpha)}{2} \le n_z |z| = |n_z z| < \cos(\alpha)$. Además, $|\operatorname{Arg}(n_z z)| = |\operatorname{Arg}(z)| < \alpha$. Por tanto, $n_z z \in K$. Entonces:

$$|f_{n_k}(n_z z) - L| = |f(z) - L| < \varepsilon$$

2.4. Teoremas de Hurwitz

Teorema 2.14 (Teorema de Rouché). Sea D un dominio simplemente conexo en \mathbb{C} y sea J un camino de Jordan en D. Sean f y g funciones holomorfas en D tales que

$$|f(z) - g(z)| < |f(z)|$$
 si $z \in J$

Entonces:

- 1. $I(J) \subset D$.
- 2. Ni f ni g se anulan en J.
- 3. f y g tienen el mismo n'umero de ceros en I(J).

Teorema 2.15 (Primer teorema de Hurwitz). Sea D un dominio en \mathbb{C} y sea $\{f_n\}_{n=1}^{\infty}$ una sucesión de funciones holomorfas y nunca nulas en D, que converge uniformemente en cada subconjunto de D a una función f. Entonces f es nunca nula en D o bien f es idénticamente nula en D.

Demostración. Si $f \equiv 0$ en D, no hay nada que hacer. Supongamos que $f \not\equiv 0$ en D. Supongamos por reducción al absurdo que existe $a \in D$ con f(a) = 0. Entonces a es un cero aislado de f. Podemos tomar R > 0 tal que $D(a, 2R) \subset D$ y f no tiene ceros en $D(a, 2R) \setminus \{a\}$.

Sea C_R la circunferencia |z-a|=R. Como f no tiene ceros en C_R , existe $\alpha>0$ tal que $|f(z)|>\alpha$ para todo $z\in C_R$. Como $f_n\to f$ uniformemente en C_R , existe $n_0\in\mathbb{N}$ tal que $n\geq n_0, z\in C_R\Rightarrow |f_n(z)-f(z)|<\alpha$. Entonces, si $n\geq n_0$ y $z\in C_R$, se tiene que

$$|f_n(z)-f(z)|<\alpha<|f(z)|$$

Por el teorema de Rouché, f_n y f tienen el mismo número de ceros en D(a, R). Pero f_n es nunca nula en D, por lo que no tiene ceros en D(a, R), mientras que f(a) = 0. Esta es una contradicción. Entonces f es nunca nula en D.

Teorema 2.16 (Segundo teorema de Hurwitz). Sea D un dominio en \mathbb{C} y sea $\{f_n\}_{n=1}^{\infty}$ una sucesión de funciones holomorfas e inyectivas en D. Si $\{f_n\}$ converge uniformemente a f en cada subconjunto compacto de D, entonces f es inyectiva o constante.

Demostración. Sabemos que f es holomorfa en D. Supongamos que f no es constante. Sean $a,b \in D$ con $a \neq b$. Veamos que $f(a) \neq f(b)$. $D \setminus \{a\}$ es un dominio en $\mathbb C$. Para cada $n \in \mathbb N$, sea $g_n(z) = f_n(z) - f_n(a)$ si $z \in D \setminus \{a\}$. Cada g_n es holomorfa y nunca nula en $D \setminus \{a\}$. $f_n \to f$ uniformemente en cada subconjunto compacto de D. Sea g(z) = f(z) - f(a), $z \in D \setminus \{a\}$. Entonces $g_n \to g$ uniformemente en cada subconjunto compacto de $D \setminus \{a\}$. Por el teorema anterior, $g \equiv 0$ en $D \setminus \{a\}$ o bien g es nunca nula en $D \setminus \{a\}$.

- 1. Si $g \equiv 0$ en $D \setminus \{a\}$, entonces f(z) = f(a) si $z \in D \setminus \{a\} \Rightarrow f(z) = f(a)$ si $z \in D$. f es constante, lo que contradice nuestra hipótesis.
- 2. Si $g(z) \neq 0$ si $z \in D \setminus \{a\}$, en particular $g(b) = f(b) f(a) \neq 0 \Rightarrow f(a) \neq f(b)$.

Capítulo 3

El teorema de Riemann de la aplicación conforme

3.1. Preliminares

Recordemos algunos conceptos y resultados.

Definición 3.1. Sea D un dominio en \mathbb{C} y sea f una función holomorfa en D.

- g es una rama de \sqrt{f} en D si $g:D\to\mathbb{C}$ es una función continua tal que $g(z)^2=f(z)$ para todo $z\in D$.
- g es una rama de $\log(f)$ en D si $g:D\to\mathbb{C}$ es una función continua tal que $e^{g(z)}=f(z)$ para todo $z\in D$.

Proposición 3.1. Sean D un dominio en \mathbb{C} y f una función holomorfa y nunca nula en D.

- 1. Si g es una rama de \sqrt{f} en D, entonces g es holomorfa en D y $g'(z) = \frac{f'(z)}{2g(z)}$ para todo $z \in D$.
- 2. Si g es un rama de $\log(f)$ en D, entonces g es holomorfa en D y $g'(z) = \frac{f'(z)}{f(z)}$ para todo $z \in D$.
- 3. Existe una rama de $\log(f)$ en D si y solo si $\frac{f'}{f}$ tiene primitiva en D.

Proposición 3.2. Sean D un dominio en \mathbb{C} y $f:D\to\mathbb{C}$ una función continua en D. Entonces f tiene primitiva en D si y solo si $\int_{\gamma} f(z)dz = 0$ para todo camino cerrado γ en D.

Definición 3.2. Si D es un dominio en \mathbb{C} y Γ es un ciclo en D, se dice que Γ es homólogo a cero módulo D, y se denota $\Gamma \sim 0 (mod D)$, si $n(\Gamma, a) = 0$ para todo $a \in \mathbb{C} \setminus D$.

Teorema 3.3 (Versión general del teorema de Cauchy). Sea D un dominio en \mathbb{C} y sea Γ un ciclo en D. Las dos siguientes condiciones son equivalentes:

- 1. $\Gamma \sim 0 (mod D)$.
- 2. $\int_{\Gamma} f(z)dz = 0$ para toda función f holomorfa en D.

3.2. Dominios simplemente conexos

Definición 3.3. Si D es un dominio en \mathbb{C} , se dice que D es simplemente conexo si $\mathbb{C}^* \setminus D$ es conexo.

Hay una serie de caracterizaciones para los dominios simplemente conexos, que se pueden deducir de los resultados anteriores.

Teorema 3.4. Sea D un dominio en \mathbb{C} . Las siguientes condiciones son equivalentes:

- 1. D es simplemente conexo.
- 2. Todo ciclo en D es homólogo a cero módulo D.
- 3. Todo camino cerrado en D es homólogo a cero módulo D.
- 4. $\int_{\Gamma} f(z)dz = 0$ para toda f holomorfa en D y para todo ciclo Γ en D.
- 5. $\int_{\gamma} f(z)dz = 0$ para toda f holomorfa en D y para todo camino cerrado γ en D.
- 6. Toda función holomorfa en D tiene primitiva.
- 7. Para toda función f holomorfa y nunca nula en D, existe una rama de $\log(f)$ en D.
- 8. Para toda función f holomorfa y nunca nula en D, existe una rama de \sqrt{f} en D.

Recordamos que:

- Dos dominios D_1 y D_2 en \mathbb{C}^* son conformemente equivalentes si existe una aplicación conforme f de D_1 sobre D_2 .
- \blacksquare En el conjunto de los dominios en \mathbb{C}^* , el ser conformemente equivalentes es una relación de equivalencia.
- Si D_1 y D_2 son dos dominios en \mathbb{C}^* que son conformemente equivalentes, entonces D_1 es simplemente conexo si y solo si D_2 es simplemente conexo.
- \mathbb{C}^* , \mathbb{C} y el disco unidad $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ son tres dominios simplemente conexos en \mathbb{C}^* , que no son conformemente equivalentes.
- \blacksquare El único dominio en \mathbb{C}^* conformemente equivalente a \mathbb{C}^* es \mathbb{C}^* .

Vamos a ver que, además de \mathbb{C}^* , \mathbb{C} y \mathbb{D} , no hay más dominios simplemente conexos en \mathbb{C}^* módulo la relación de equivalencia. Es decir, si D es un dominio simplemente conexo en \mathbb{C}^* , entonces D es conformemente equivalente a uno de los tres: \mathbb{C}^* , \mathbb{C} o \mathbb{D} . Por tanto se tendrá que, si D es un dominio simplemente conexo en \mathbb{C} , con $D \neq \mathbb{C}$, entonces D es conformemente equivalente a \mathbb{D} .

Definición 3.4. Sea D un dominio en \mathbb{C}^* . Llamamos automorfismos de D a aquellas aplicaciones conformes de D sobre D. El conjunto de todos los automorfismos de D se denota Aut(D), y tiene estructura de grupo con la composición.

Tenemos que

$$Aut(\mathbb{C}^*) = \mathcal{M}$$

$$Aut(\mathbb{C}) = \{ f_{\alpha,\beta} : f_{\alpha,\beta}(z) = \alpha z + \beta, \alpha, \beta \in \mathbb{C}, \alpha \neq 0 \} = \{ T \in \mathcal{M} : T(\mathbb{C}) = \mathbb{C} \}$$

$$Aut(\mathbb{D}) = \{ \lambda T_a : \lambda \in \mathbb{C}, |\lambda| = 1, a \in \mathbb{D} \} = \{ T \in \mathcal{M} : T(\mathbb{D}) = \mathbb{D} \}$$

Ejemplo. Veamos algunos ejemplos de dominios en \mathbb{C} para los que podemos encontrar una aplicación conforme del dominio sobre \mathbb{D} .

1. Un disco abierto, D(a, R), $a \in \mathbb{C}$, R > 0.

$$\mathbb{D} \to D(a,R)$$
$$z \mapsto a + rz$$

2. Un semiplano.

$$\mathbb{D} \to \mathbb{H} = \{ z \in \mathbb{C} : \operatorname{Re}(z) > 0 \}$$
$$z \mapsto P(z)$$

donde $P(z) = \frac{1+z}{1-z}$, es una aplicación conforme.

Componiendo con una rotación y una traslación, vemos que $\mathbb D$ es conformemente equivalente a cualquier semiplano.

$$\mathbb{D} \to \mathbb{C}$$
$$z \mapsto a + e^{i\theta} P(z)$$

con $a \in \mathbb{C}$ y $\theta \in \mathbb{R}$.

3. El exterior de un disco, $\{z \in \mathbb{C} : |z-a| > R\} \cup \{\infty\}, a \in \mathbb{C}, R > 0.$

$$D(a,R) \to \{z \in \mathbb{C} : |z - a| > R\} \cup \{\infty\}$$
$$z \mapsto \frac{1}{z}$$

4. El plano menos una semirrecta, $\mathbb{C} \setminus \{a + re^{i\theta}, r \geq 0\}, a \in \mathbb{C}, \theta \in \mathbb{R}.$

$$\mathbb{H} \to \mathbb{C} \setminus (-\infty, 0]$$
$$z \mapsto z^2$$

es una aplicación conforme. Así que

$$\mathbb{H} \to \mathbb{C} \setminus (-\infty, 0]$$
$$z \mapsto P(z)^2 = \left(\frac{1+z}{1-z}\right)^2$$

es una aplicación conforme.

Componiendo con una rotación y una traslación, vemos que $\mathbb D$ es conformemente equivalente al plano menos una semirrecta cualquiera.

5. La función exponencial no es inyectiva.

$$z = x + iy_0 \mapsto e^z = e^{x+iy_0} = e^x(\cos(y_0) + i\sin(y_0))$$

Es inyectiva en cualquier banda horizontal abierta de amplitud menor o igual que 2π . Por ejemplo,

$$\exp:\left\{z\in\mathbb{C}:|\mathrm{Im}(z)|<\frac{\pi}{2}\right\}\to\mathbb{H}$$

es una aplicación conforme. Como \mathbb{H} es conformemente equivalente a \mathbb{D} , tenemos que esta banda es conformemente equivalente a \mathbb{D} .

Componiendo con el producto por un número real, una rotación y una traslación, vemos que \mathbb{D} es conformemente equivalente a cualquier banda.

6. Sectores.

$$\left\{z \in \mathbb{C} : |\mathrm{Im}(z)| < \frac{\alpha}{2}\right\} \xrightarrow{\exp} S$$

donde S es el sector de vértice 0 y amplitud α , es una aplicación conforme.

7. $\mathbb{D}^+ = \{ z \in \mathbb{D} : \text{Im}(z) > 0 \}.$

$$\mathbb{D}^+ \xrightarrow{P} \{z \in \mathbb{C} : \operatorname{Re}(z) > 0, \operatorname{Im}(z) > 0\}$$

es una aplicación conforme. El dominio $\{z \in \mathbb{C} : \text{Re}(z) > 0, \text{Im}(z) > 0\}$ es un sector, así que es conformemente equivalente a \mathbb{D} .

3.3. El teorema de Riemann de la aplicación conforme

Teorema 3.5 (Teorema de Riemann de la aplicación conforme). Sea D un dominio simplemente conexo en \mathbb{C} con $D \neq \mathbb{C}$ y sea $z_0 \in D$. Entonces existe una única aplicación conforme f de D sobre \mathbb{D} tal que $f(z_0) = 0$ y $f'(z_0) > 0$.

Observación.

- 1. Existen infinitas aplicaciones conformes de D sobre \mathbb{D} . Basta cambiar el punto z_0 o componer con una rotación.
- 2. Para la demostración, las condiciones
 - a) D simplemente conexo.
 - b) $D \neq \mathbb{C}$.

solo las vamos a utilizar para deducir que:

- $\mathbb{C} \setminus D$ tiene más de un punto.
- Si h es holomorfa y nunca nula en D, existe una rama de \sqrt{h} en D.

Teorema 3.6. Sea D un dominio en \mathbb{C} tal que:

- 1. $\mathbb{C} \setminus D$ tiene más de un punto.
- 2. Para toda función h holomorfa y nunca nula en D, existe una rama de \sqrt{h} en D.

Sea $z_0 \in D$. Entonces existe una única aplicación conforme f de D sobre \mathbb{D} tal que $f(z_0) = 0$ y $f'(z_0) > 0$.

Demostración. Sea $\mathcal{F} = \{f : f \text{ es holomorfa e inyectiva en } D, f(D) \subset \mathbb{D}, f(z_0) = 0\}.$

1. Veamos que $\mathcal{F} \neq \emptyset$. Por (1), existen $a, b \in \mathbb{C} \setminus D$ con $a \neq b$. Sea $\varphi(z) = \frac{z-a}{z-b}, z \in D$.

$$\begin{vmatrix} 1 & -a \\ 1 & -b \end{vmatrix} = -b + a \neq 0 \Rightarrow \varphi \in \mathcal{M}$$

 φ es holomorfa e inyectiva en D y φ es nunca nula en D, porque $a, b \notin D$. Por (2), existe ψ rama de $\sqrt{\varphi}$ en D. ψ es holomorfa e inyectiva en D y ψ es nunca nula.

Además, se tiene que si $w \in \psi(D)$, entonces $-w \notin \psi(D)$. Veámoslo. Supongamos que $w \in \psi(D)$ y $-w \in \psi(D)$. Entonces:

$$w = \psi(z_1), \quad z_1 \in D$$

 $-w = \psi(z_2), \quad z_2 \in D$

$$\psi(z_1)^2 = w^2 = (-w)^2 = \psi(z_2)^2 \Leftrightarrow \varphi(z_1) = \varphi(z_2) \Leftrightarrow z_1 = z_2 \Leftrightarrow w = -w \Leftrightarrow w = 0 \in \psi(D)$$

Sin embargo, ψ es nunca nula en D.

Tomamos $w_0 \in \psi(D)$. Como $\psi(D)$ es abierto, existe r > 0 tal que $\overline{D}(0,r) \subset \psi(D)$. Entonces, si $z \in D$ se tiene que $\psi(z) \in \psi(D)$ y por tanto $-\psi(z) \notin \psi(D)$, de manera que $-\psi(z) \notin \overline{D}(w_0,r)$. Es decir,

$$|-\psi(z)-w_0| > r \Leftrightarrow |\psi(z)+w_0| > r > 0 \Leftrightarrow \frac{r}{|\psi(z)+w_0|} < 1$$

Sea $h(z) = \frac{r}{\psi(z) + w_0}$, $z \in D$. h es holomorfa e inyectiva en D y |h(z)| < 1 para todo $z \in D$, luego $h(D) \subset \mathbb{D}$. Consideramos la transformación de Möbius $S_{h(z_0)}(z) = \frac{z - h(z_0)}{1 - \overline{h(z_0)}z}$. Sabemos que $S_{h(z_0)}(\mathbb{D}) = \mathbb{D}$ y $S_{h(z_0)}(h(z_0)) = 0$. Por tanto, $f = S_{h(z_0)} \circ h \in \mathcal{F}$.

2. \mathcal{F} está uniformemente acotada en D. Por el teorema de Montel, \mathcal{F} es finitamente normal.

- 3. Sea $M = \sup_{f \in \mathcal{F}} |f'(z_0)|, \ 0 \le M \le \infty$. Si $f \in \mathcal{F}$, f es holomorfa e inyectiva en D, por lo que $f'(z_0) \ne 0$. Entonces $M \ne 0$. Como $\mathcal{F}' = \{f' : f \in \mathcal{F}\}$ es finitamente normal, entonces está uniformemente acotada en $\{z_0\}$. Entonces $\{f'(z_0) : f \in \mathcal{F}\}$ está acotado, así que $M = \sup_{f \in \mathcal{F}} |f'(z_0)| < \infty$. Por tanto, $0 < M < \infty$.
 - Tomamos una sucesión $\{f_n\}_{n=1}^{\infty}$ en \mathcal{F} tal que $\lim_{n\to\infty}|f_n'(z_0)|=M$. Como \mathcal{F} es finitamente normal, existe $\{f_{n_k}\}_{k=1}^{\infty}$ subsucesión de $\{f_n\}$ que converge a una función F uniformemente en cada subconjunto comapcto de D. Entonces F es holomorfa en D y cada f_{n_k} es holomorfa e inyectiva en D. Por el segundo teorema de Hurwitz, F es inyectiva o constante. Como $f'_{n_k}\to F'$ uniformemente en cada subconjunto compacto de D, se tiene que $f'_{n_k}(z_0)\to F'(z_0)$, así que $|f'_{n_k}(z_0)|\to |F'(z_0)|=M>0$. Luego F no es constante. Entonces F es inyectiva. Además, $F(z_0)=\lim_{k\to\infty}|f_{n_k}(z_0)=0$ porque $f_{n_z}(z_0)=0$. Si $z\in D$, $F(z)=\lim_{k\to\infty}|f_{n_k}(z)$, así que $|F(z)|=\lim_{k\to\infty}|f_{n_z}(z)|\leq 1$ porque $|f_{n_z}(z)|<1$. Pero si |F(z)|=1 para algún $z\in D$, por el principio del máximo F sería constante, lo cual es imposible. Por tanto, |F(z)|<1 para todo $z\in D$, luego $F(D)\subset \mathbb{D}$. Entonces $F\in \mathcal{F}$ y $|F'(z_0)|=M$.
- 4. Veamos que $F(D) = \mathbb{D}$. Supongamos por reducción al absurdo que existe $\alpha \in \mathbb{D} \setminus F(D)$. Consideramos $S_{\alpha}(z) = \frac{z-\alpha}{1-\bar{\alpha}z}$ transformación de Möbius con $S_{\alpha}(\mathbb{D}) = \mathbb{D}$ y $S_{\alpha}(\alpha) = 0$. Sea $h = S_{\alpha} \circ F$. h es holomorfa e inyectiva en D. Además, h es nunca nula en D y $h(D) \subset \mathbb{D}$. Por (2), existe g una rama de \sqrt{h} en D, es decir, $g^2 = h$ en D. g es holomorfa, inyectiva y nunca nula en D, con $g(D) \subset \mathbb{D}$. Sea $G = S_{g(z_0)} \circ g$. G es holomorfa e inyectiva en G0, con G1 G2 G3. Por tanto, $G \in \mathcal{F}$ 5.

Calculemos $|G'(z_0)|$.

$$G'(z_0) = g'(z_0)S'_{g(z_0)}(g(z_0))$$

En primer lugar, hallamos la derivada de S_a .

$$S'_a(z) = \frac{1 - \bar{a}z + (z - a)\bar{a}}{(1 - \bar{a}z)^2} = \frac{1 - |a|^2}{(1 - \bar{a}z)^2}$$

Observamos que $S_a'(a) = \frac{1}{1-|a|^2}$ y $S_a'(0) = 1-|a|^2.$ Así que:

$$G'(z_0) = g'(z_0) \frac{1}{1 - |g(z_0)|^2} \Rightarrow |G'(z_0)| = \frac{|g'(z_0)|}{1 - |g(z_0)|^2}$$

Como $g^2 = h$ en D, también tenemos que 2gg' = h en D. Luego $|g(z_0)|^2 = |h(z_0)|$ y también $2|g(z_0)||g'(z_0)| = |h'(z_0)|$. Entonces:

$$|G'(z_0)| = \frac{|h'(z_0)|}{2|g(z_0)|} \frac{1}{1 - |g(z_0)|^2} = \frac{|h'(z_0)|}{2\sqrt{|h(z)|}} \frac{1}{1 - |h(z_0)|}$$

Calculamos también:

$$h'(z_0) = F'(z_0)S'_{\alpha}(F(z_0)) = F'(z_0)S'_{\alpha}(0) = F'(z_0)(1 - |\alpha|^2)$$

$$h(z_0) = S_{\alpha}(F(z_0)) = S_{\alpha}(0) = -\alpha \Rightarrow |h(z_0)| = |\alpha|$$

Por tanto:

$$|G'(z_0)| = \frac{|F'(z_0)|(1-|\alpha|^2)}{2\sqrt{|\alpha|}(1-|\alpha|)} = M\frac{1-|\alpha|^2}{2\sqrt{|\alpha|}(1-|\alpha|)} = M\frac{1+|\alpha|}{2\sqrt{|\alpha|}}$$

Veamos que $\frac{1+|\alpha|}{2\sqrt{|\alpha|}} > 1$.

$$\frac{1+|\alpha|}{2\sqrt{|\alpha|}} > 1 \Leftrightarrow 1+|\alpha| > 2\sqrt{|\alpha|} \Leftrightarrow 1+\alpha-2\sqrt{|\alpha|} > 0 \Leftrightarrow (1-\sqrt{|\alpha|})^2 > 0 \Leftrightarrow 1-\sqrt{|\alpha|} \neq 0 \Leftrightarrow \sqrt{|\alpha|} \neq 1 \Leftrightarrow |\alpha| \neq 1$$

Como $\alpha \in \mathbb{D}$, la desigualdad se cumple. Por tanto, tenemos que $|G'(z_0)| > M$, con $G \in \mathcal{F}$ y $M = \sup_{f \in \mathcal{F}} |f'(z_0)|$, luego llegamos a contradicción. Entonces, $F(D) = \mathbb{D}$.

5. Tenemos $F \in \mathcal{F}$, $|F'(z_0)| = M$ y $F(D) = \mathbb{D}$. F es una aplicación conforme de D sobre \mathbb{D} con $F(z_0) = 0$. Falta que $F'(z_0) > 0$.

Queremos encontrar $\lambda \in \mathbb{C}$ con $|\lambda| = 1$ tal que $f = \lambda F$ verifique que $f'(z_0) > 0$.

$$f'(z_0) = \lambda F'(z_0) > 0 \Leftrightarrow f'(z_0) = |\lambda||F'(z_0)| = |F'(z_0)| = M \Rightarrow \lambda = \frac{M}{F'(z_0)}$$

Sea $\lambda = \frac{M}{F'(z_0)} \in \mathbb{C}$, con $|\lambda| = \frac{M}{|F'(z_0)|} = 1$, $F'(z_0) \neq 0$. Sea $f = \lambda F$. f es holomorfa e inyectiva en D, con $f(D) = \mathbb{D}$, $f(z_0) = 0$ y $f'(z_0) = \lambda F'(z_0) = \frac{M}{F'(z_0)} F'(z_0) = M > 0$.

6. Veamos que esta aplicación conforme es única. Supongamos $f_1, f_2 : D \to \mathbb{D}$ aplicación conforme, con $f_j(z_0) = 0, f'_j(z_0) > 0$. Sea $g = f_1 \circ f_2^{-1}$.

$$q: \mathbb{D} \xrightarrow{f_2^{-1}} D \xrightarrow{f_1} \mathbb{D}$$

q es una aplicación conforme de $\mathbb D$ sobre $\mathbb D$, así que es de la forma

$$g(z) = \lambda T_a(z) = \lambda \frac{z+a}{1+\bar{a}z}, \quad \lambda \in \mathbb{C}, \ |\lambda| = 1, \ a \in \mathbb{D}$$

Como g(0) = 0,

$$g(0) = \lambda a = 0 \Rightarrow a = 0 \Rightarrow g(z) = \lambda z$$

Como $g \circ f_2 = f_1$ en D,

$$f_2'(z_0)g'(f_2(z_0)) = f_1'(z_0) \Leftrightarrow f_2'(z_0)g'(0) = f_1'(z_0) \Leftrightarrow g'(0) = \frac{f_1'(z_0)}{f_2'(z_0)} > 0$$

П

Como $g'(0) = \lambda > 0$ y $|\lambda| = 1$, entonces $\lambda = 1$. Por tanto, $g(z) = z \Leftrightarrow f_1 = f_2$.

Otros enunciados equivalentes

Teorema 3.7 (Teorema de Riemann). Sea D un dominio simplemente conexo en \mathbb{C} con $D \neq \mathbb{C}$ y sea $z_0 \in D$. Entonces existe una única aplicación conforme de \mathbb{D} sobre D tal que $f(0) = z_0$ y f'(0) > 0.

Teorema 3.8 (Teorema de Riemann: enunciado equivalente). Sea D un dominio simplemente conexo en \mathbb{C} con $D \neq \mathbb{C}$ y sea $z_0 \in D$. Entonces existe un único R > 0 tal que existe una aplicación conforme f de D sobre D(0,R) con $f(z_0) = 0$ y $f'(z_0) = 1$. Además, esta f es única.

A este número R se le denomina radio conforme interior a D en z_0 y se denota $r(D, z_0)$.

Demostración. Este enunciado es equivalente al teorema de Riemann. Si D es un dominio simplemente conexo en \mathbb{C} con $D \neq \mathbb{C}$ y $z_0 \in D$.

- 1. Si $f: D \to \mathbb{D}$ aplicación conforme, $f(z_0) = 0$ y $f'(z_0) > 0$, entonces si $R = \frac{1}{f'(z_0)} > 0$ se tiene que $g = Rf: D \to D(0, R)$ es una aplicación conforme con $g(z_0) = 0$ y $g'(z_0) = 1$.
- 2. Si R > 0, $g: D \to D(0,R)$ es una aplicación conforme con $g(z_0) = 0$ y $g'(z_0) = 1$, entonces $f = \frac{1}{R}g: D \to \mathbb{D}$ es una aplicación conforme con $f(z_0) = 0$ y $f'(z_0) = \frac{1}{R}g'(z_0) = \frac{1}{R} > 0$.

Observación. Hemos visto que cualquier dominio D simplemente conexo en \mathbb{C} con $D \neq \mathbb{C}$ es conformemente equivalente a \mathbb{D} . Entonces, si D_1 y D_2 son dominios simplemente conexos en \mathbb{C} con D_1 , $D_2 \neq \mathbb{C}$, D_1 y D_2 son conformemente equivalentes.

3.4. Clasificación de los dominios simplemente conexos

En \mathbb{C}^* tenemos el siguiente resultado.

Teorema 3.9. Sea D un dominio simplemente conexo en \mathbb{C}^* tal que $\mathbb{C}^* \setminus D$ tiene más de un punto. Entonces D es conformemente equivalente a \mathbb{D} .

Demostración.

- Si $D \subset \mathbb{C}$, entonces D es un dominio simplemente conexo en \mathbb{C} con $D \neq \mathbb{C}$, ya que $\mathbb{C}^* \setminus D$ tiene más de un punto. Entonces D es conformemente equivalente a \mathbb{D} .
- Si $\infty \in D$, entonces tomamos $a, b \in \mathbb{C}^* \setminus D$ con $a \neq b$. Entonces $a, b \in \mathbb{C} \setminus D$. Sea $T(z) = \frac{1}{z-a}$, $z \in \mathbb{C} \setminus \{a\}$, con $T(a) = \infty$ y $T(\infty) = 0$. $T : \mathbb{C}^* \to \mathbb{C}^*$ es una aplicación conforme. Entonces $D \xrightarrow{T} T(D) = D'$ es una aplicación conforme y D' es un dominio simplemente conexo en \mathbb{C}^* .

Como $a,b \notin D$, $T(a) = \infty \notin D'$, así que D' es un dominio en \mathbb{C} . Además, $T(b) \notin D'$ con $T(b) \in \mathbb{C}$, luego $D \neq \mathbb{C}$. D' es un dominio simplemente conexo en \mathbb{C} , con $D' \neq \mathbb{C}$. Por tanto, D' es conformemente equivalente a \mathbb{D} . Como D' es conformemente equivalente a D, entonces D es conformemente equivalente a \mathbb{D} .

П

Ya tenemos clasificados los dominios simplemente conexos en \mathbb{C}^* módulo la relación de equivalencia ser conformemente equivalentes.

Sea D un dominio simplemente conexo en \mathbb{C}^* .

- 1. Si $\mathbb{C}^* \setminus D = \emptyset$, entonces $D = \mathbb{C}^*$, que es el único dominio conformemente equivalente a \mathbb{C}^* .
- 2. Si $\mathbb{C}^* \setminus D$ se reduce a un punto, entonces $D = \mathbb{C}$ o bien $D = \mathbb{C}^* \setminus \{\alpha\}$, $\alpha \in \mathbb{C}$. Estos son los dominios en \mathbb{C}^* que son conformemente equivalentes a \mathbb{C} .
- 3. Si $\mathbb{C}^* \setminus D$ tiene más de un punto, entonces D es conformemente equivalente al disco unidad \mathbb{D} .

Teorema 3.10. Sea D un dominio en \mathbb{C} . Son equivalentes:

- 1. D es simplemente conexo.
- 2. Para toda función f holomorfa y nunca nula en D, existe una rama de \sqrt{f} en D.

Demostración.

- \Rightarrow Lo sabemos.
- ← Hay tres posibilidades.
 - 1. $D = \mathbb{C}$. Entonces D es simplemente conexo.
 - 2. $\mathbb{C} \setminus D$ se reduce a un punto. Entonces $\mathbb{C} \setminus D = \{a\}, a \in \mathbb{C}$. Queremos llegar a contradicción, ya que D no es simplemente conexo.

Sea $f(z) = \frac{1}{z-a}$, $z \in D$. f es holomorfa y nunca nula en D. Sea g una rama de \sqrt{f} en D. Entonces g es holomorfa y nunca nula en D, y $g^2 = f$ en D.

Sea R>0 y sea γ la circunferencia |z-a|=R. Sea Γ la curva imagen de γ por g. Entonces Γ es un camino cerrado que no pasa por g. Unas parametrizaciones de g y g son:

$$\gamma:[0,2\pi]\to\mathbb{C}$$

$$\Gamma:[0,2\pi]\to\mathbb{C}$$

$$t\mapsto a+Re^{it} \qquad \qquad t\mapsto g(a+Re^{it})$$

Entonces:

$$n(\Gamma, 0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{dw}{w} = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{\Gamma'(t)}{\Gamma(t)} dt = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{g'(a + Re^{it})Rie^{it}}{g(a + Re^{it})} dt = \frac{1}{2\pi i} \int_{\gamma} \frac{g'(z)}{g(z)} dz$$

Como $g^2 = f$, entonces además 2gg' = f'. Luego:

$$\frac{2gg'}{g^2} = \frac{f'}{g^2} \Leftrightarrow \frac{g'}{g} = \frac{1}{2}\frac{f'}{f}$$

Como
$$f'(z) = -\frac{1}{(z-a)^2}$$
,

$$\frac{f'(z)}{f(z)} = -\frac{z-a}{(z-a)^2} = -\frac{1}{z-a}$$

Por tanto:

$$n(\Gamma,0) = \frac{1}{2\pi i} \int_{\gamma} \frac{g'(z)}{g(z)} dz = \frac{1}{2\pi i} \frac{1}{2} \int_{\gamma} \frac{f'(z)}{f(z)} dz = -\frac{1}{2} \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z-a} dz = -\frac{1}{2} n(\gamma,a) = -\frac{1$$

Luego $n(\Gamma, 0) = -\frac{1}{2} \notin \mathbb{Z}$. Esto es imposible.

3. $\mathbb{C}\setminus D$ tiene más de un punto. Por el teorema que probamos para la demostración del teorema de Riemann, tenemos que D es conformemente equivalente a \mathbb{D} . Por tanto D es simplemente conexo.

3.5. El teorema de extensión de Carathéodory

Recordemos que \mathbb{C} y \mathbb{D} son homeomorfos, aunque no conformemente equivalentes.

Corolario 3.11. Si D_1 y D_2 son dominios simplemente conexos en \mathbb{C} , entonces D_1 y D_2 son homeomorfos.

Demostración.

- Si $D_1 = D_2 = \mathbb{C}$, son iguales.
- Si $D_1 = \mathbb{C}$, $D_2 \neq \mathbb{C}$, entonces por el teorema de Riemann D_2 es conformemente equivalente y por tanto homeomorfo a \mathbb{D} . Además, $D_1 = \mathbb{C}$ es homeomorfo a \mathbb{D} . Entonces D_1 y D_2 son homeomorfos
- Si $D_1, D_2 \neq \mathbb{C}$, entonces D_1 y D_2 son conformemente equivalentes y por tanto homeomorfos a \mathbb{D} . Entonces D_1 y D_2 son homeomorfos.

Si D es un dominio simplemente conexo en \mathbb{C} con $D \neq \mathbb{C}$, por el teorema de Riemann existe una aplicación conforme f de \mathbb{D} sobre D.

Notación. Si $D \subset \mathbb{C}$, denotamos $\partial_{\infty}D$ a la frontera de D como subconjunto de \mathbb{C}^* . Es decir,

- Si D es acotado, $\partial_{\infty}D = \partial D$.
- Si D no es acotado, $\partial_{\infty}D = \partial D \cup \{\infty\}$.

Proposición 3.12. Sean D_1 y D_2 dos dominios en \mathbb{C} y sea f un homeomorfismo de D_1 sobre D_2 . Sea $\{z_n\}_{n=1}^{\infty}$ una sucesión en D_1 y supongamos que existe $\lim_{n\to\infty} z_n = \xi \in \partial_{\infty} D_1$. Entonces todos los puntos de acumulación de la sucesión $\{f(z_n)\}$ están en $\partial_{\infty} D_2$.

Demostración. Supongamos por reducción al absurdo que existe un punto de acumulación de $\{f(z_n)\}$ que está en $\mathbb{C}^* \setminus \partial_{\infty} D_2$. Le llamamos w_0 . Existe $\{z_{n_k}\}_{k=1} \infty$ subsucesión de $\{z_n\}$ tal que $f(z_{n_k}) \xrightarrow[k \to \infty]{} w_0 \in D_2$. f^{-1} es continua en w_0 . Además,

$$f^{-1}(f(z_{n_k})) \to f^{-1}(w_0) \in D_1$$

Sin embargo, $f^{-1}(f(z_{n_k})) = z_{n_k} \text{ y } z_{n_k} \to \xi \in \partial_{\infty} D_1$.

Proposición 3.13. Sean D_1 y D_2 dos dominios en \mathbb{C} y f un homeomorfismo de D_1 sobre D_2 . Supongamos que f se extiende de forma continua a $\overline{D_1}$ y le llamamos f a la extensión $f:\overline{D_1}\to\mathbb{C}^*$. Entonces $f(\overline{D_1})=\overline{D_2}, f(D_1)=D_2$ y $f(\partial_\infty D_1)=\partial_\infty D_2$.

Demostración. Sea $\xi \in \partial_{\infty} D_1$. Existe una sucesión $\{z_n\}_{n=1}^{\infty}$ en D_1 con $z_n \to \xi$, y podemos tomar todos los z_n distintos. Como f es continua en ξ , tenemos que $f(z_n) \xrightarrow[n \to \infty]{} f(\xi) \in \mathbb{C}^*$. Como todos los $f(z_n)$ son distintos, $f(\xi)$ es un punto de acumulación de $\{f(z_n)\}$.

Por la proposición anterior, $f(\xi) \in \partial_{\infty} D_2$. Por tanto, $f(\partial_{\infty} D_1) \subset \partial_{\infty} D_2$. Además, sabemos que $f(D_1) = D_2$. Entonces $f(\overline{D_1}) \subset \overline{D_2}$. Ahora tenemos que

$$D_2 = f(D_1) \subset f(\overline{D_1}) \subset \overline{D_2}$$

 $\overline{D_1}$ es cerrado en \mathbb{C}^* y compacto. Como $f:\overline{D_1}\to\mathbb{C}^*$ es continua, entonces $f(\overline{D_1})$ es compacto y por tanto cerrado.

$$D_2 \subset f(\overline{D_1}) \subset \overline{D_2} \Rightarrow f(\overline{D_1}) = \overline{D_2}$$

Entonces también tenemos que $f(\partial_{\infty}D_1) = \partial_{\infty}D_2$.

Observación.

- 1. $f(\partial_{\infty}D_1) = \partial_{\infty}D_2$ pero no tiene por qué ser inyectiva. Lo mismo para $f(\overline{D_1}) = \overline{D_2}$.
- 2. Puede ocurrir que la extensión f no exista. Por ejemplo.

$$D = \left\{ z = x + iy : 0 < x < 1, 0 < y < 1 \right\} \setminus \bigcup_{i=1}^{\infty} \left\{ \frac{1}{2^n} + iy : 0 < y \le \frac{1}{2} \right\}$$

D es un dominio simplemente conexo en \mathbb{C} . Entonces existe $f: \mathbb{D} \to D$ aplicación conforme. Supongamos que f se extiende de manera continua $f: \bar{\mathbb{D}} \to \bar{D}$ continua, con $f(\partial \mathbb{D}) = \partial D$ y $f(\bar{\mathbb{D}}) = \bar{D}$. Como $0 \in \partial D$, entonces $0 = f(\xi)$ con $\xi \in \partial \partial \mathbb{D}$. Sea γ el segmento $[0, \xi]$. Sea Γ la curva imagen de γ por f. Unas parametrizaciones son:

$$\gamma: [0,1] \to \mathbb{C} \qquad \qquad \Gamma: [0,1] \to \mathbb{C}$$

$$t \mapsto t\xi \qquad \qquad t \mapsto f(t\xi)$$

 Γ tiene origen en $f(0) \in D$ y extremo 0. El soporte de γ está en D salvo por el extremo.

Una curva de Jordan es una curva en \mathbb{C} que tiene alguna parametrización $\gamma:[a,b]\to\mathbb{C}$ inyectiva en [a,b) con $\gamma(a)=\gamma(b)$. Si esto ocurre para una parametrización, entonces pasa para todas.

Si J es el soporte de una curva de Jordan en \mathbb{C} , entonces $\mathbb{C} \setminus J$ tiene dos componentes conexas.

- \blacksquare I(J) es la componente acotada y se le llama dominio interior a J.
- \blacksquare E(J) es la componente no acotada y se le llama dominio exterior a J.

Además, J es la frontera de ambas. Observamos que I(J) y E(J) son dominios en \mathbb{C} . Como $\mathbb{C} \setminus J$ es abierto, sus componentes conexas son abiertas.

Además, I(J) es un dominio simplemente conexo en \mathbb{C} .

$$\mathbb{C}^* \setminus I(J) = J \cup E(J) \cup \{\infty\}$$
$$\partial_{\infty} E(J) = \partial E(J) \cup \{\infty\} = J \cup \{\infty\}$$

Observamos que $\mathbb{C}^* \setminus I(J)$ es la clausura en \mathbb{C}^* de E(J). Como E(J) es conexo, $\mathbb{C}^* \setminus I(J)$ también lo es. Luego I(J) es simplemente conexo. Observamos además que $I(J) \cup J$ es compacto.

Sea $D=I(J),\,D$ es un dominio simplemente conexo con $D\neq\mathbb{C}.$ Por el teorema de Riemann, existe una aplicación conforme f de \mathbb{D} sobre D.

Teorema 3.14 (Teorema de extensión de Carathéodory). Sea J una curva de J ordan en \mathbb{C} y sea D el dominio interior a J. Sea f una aplicación conforme de \mathbb{D} sobre D. Entonces f se extiende de forma continua a $\overline{\mathbb{D}}$, y esta extensión es un homeomorfismo de $\overline{\mathbb{D}}$ sobre $\overline{D} = I(J) \cup J$.

Observación. Como consecuencia, la extensión también es un homeomorfismo de $\partial \mathbb{D}$ sobre $\partial D = J$.

Capítulo 4

Funciones armónicas

4.1. Funciones armónicas y funciones holomorfas

Definición 4.1. Sea D un abierto en \mathbb{R}^n y sea $f:D\to\mathbb{R}$. Decimos que f es armónica en D si $f\in\mathcal{C}^2(D)$ y

$$\Delta f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2}$$

Definición 4.2. Dado D abierto en \mathbb{C} y $u: D \to \mathbb{R}$, con $u \in \mathcal{C}^2(D)$. El laplaciano de u se define como:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

Definición 4.3. Sea D abierto en \mathbb{D} y sea $u:D\to\mathbb{R}$, con $u\in\mathcal{C}^2(D)$. Diremos que u es armónica en D si $\Delta u=0$.

Ejemplo.

- Las funciones constantes. $u(z) = a, a \in \mathbb{R}$, es armónica en \mathbb{C} .
- La función parte real es armónica en C.

$$\operatorname{Re}: \mathbb{C} \to \mathbb{R}$$

$$z \mapsto \operatorname{Re}(z) = \frac{z + \overline{z}}{2}$$

$$(x, y) \mapsto x$$

 \blacksquare La función parte imaginaria es armónica en \mathbb{C} .

$$\operatorname{Im}: \mathbb{C} \to \mathbb{R}$$

$$z \mapsto \operatorname{Im}(z) = \frac{z - \bar{z}}{2i}$$

$$(x, y) \mapsto y$$

- Si D es un abierto en \mathbb{C} y u y v son armónicas en D, entonces u+v es armónica en D.
- Si D es un abierto en \mathbb{C} , u es armónica en D y $c \in \mathbb{R}$, entonces cu es armónica en D.

Teorema 4.1. Sea D un abierto en \mathbb{C} y sea f una función holomorfa en D. Entonces $\operatorname{Re}(f)$ e $\operatorname{Im}(f)$ son armónicas en D.

Demostración. Sean u = Re(f) y v = Im(f), $u, v : D \to \mathbb{R}$, con $u, v \in \mathcal{C}^{\infty}(D) \subset \mathcal{C}^{2}(D)$. Se verifican las condiciones de Cauchy-Riemann:

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases}$$

Por tanto:

$$\Delta u = u_{xx} + u_{yy} = v_{yx} - v_{xy} = 0$$
$$\Delta v = v_{xx} + v_{yy} = -u_{yx} + u_{xy} = 0$$

El recíproco no es cierto. Es decir, dado D abierto en \mathbb{C} , u y v armónicas en D y $f = u + iv : D \to \mathbb{C}$, no se cumple en general que f sea holomorfa en D.

Ejemplo (Contraejemplo). Sea $D = \mathbb{C}$ y sean u(z) = Re(z) y v(z) = Im(z). u y v son armónicas en \mathbb{C} . Sin embargo, $f(z) = u(z) + iv(z) = \bar{z}$ no es holomorfa.

Definición 4.4. Sea D un abierto en \mathbb{C} y sea u armónica en D. Diremos que $v:D\to\mathbb{R}$ es una conjugada armónica de u en D si la función f=u+iv es holomorfa en D.

Propiedades.

- \blacksquare Si existe una conjugada armónica de u en D, entonces es una función armónica en D.
- Si u es una conjugada armónica de u en D, entonces u+c es conjugada armónica de u en D para todo $c \in \mathbb{R}$.
- Si D es un dominio en \mathbb{C} , u es armónica en D y v_1, v_2 son conjugadas armónicas de u en \mathbb{C} , entonces existe $c \in \mathbb{R}$ tal que $v_1 v_2 = c$.

Demostración. $f_1 = u + iv_1$ y $f_2 = u + iv_2$ son holomorfas en D, así que $f_2 - f_1 = i(v_2 - v_1)$ es holomorfa en D. Como Re $(f_2 - f_1) = 0$ en D con D dominio, entonces $f_2 - f_1$ es constante. Es decir, existe $c \in \mathbb{R}$ con $f_2 - f_1 = ic$. Por tanto:

$$i(v_2-v_1)=ic \Rightarrow v_2-v_1=c$$

No tiene por qué existir la conjugada armónica.

Ejemplo (Contraejemplo). Sea $D = \mathbb{C} \setminus \{0\}$ abierto en \mathbb{C} y sea $u : D \to \mathbb{R}$, u(z) = Log|z|. Si escribimos z = x + iy,

$$u(z) = \text{Log}(x^2 + y^2)^{1/2} = \frac{1}{2}\text{Log}(x^2 + y^2)$$

Calculamos sus derivadas parciales:

$$u_x(z) = \frac{1}{2} \frac{2x}{x^2 + y^2} = \frac{x}{x^2 + y^2}$$

$$u_y(z) = \frac{y}{x^2 + y^2}$$

$$u_{xx}(z) = \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$u_y(z) = \frac{y}{x^2 + y^2}$$

$$u_y(z) = \frac{y}{x^2 + y^2}$$

$$u_y(z) = \frac{y}{x^2 + y^2}$$

 $\Delta u = 0$, así que u es armónica en D.

Supongamos que v es una conjugada armónica de u en D. Entonces $v : \mathbb{C} \setminus \{0\} \to \mathbb{R}$, con f = u + iv holomorfa en $\mathbb{C} \setminus \{0\}$. Consideramos:

$$g = \operatorname{Log} : \mathbb{C} \setminus (-\infty, 0] \to \mathbb{C}$$
$$z \mapsto \operatorname{Log}(z) = \log|z| + i\operatorname{Arg}(z)$$

f y g son holomorfas en $\mathbb{C} \setminus (-\infty, 0]$, luego f - g es holomorfa en $\mathbb{C} \setminus (-\infty, 0]$. Como Re(f - g) = 0, entonces f - g = ic, con $c \in \mathbb{R}$. Así que g = f - ic. Sin embargo, g no se extiende de forma continua a $\mathbb{C} \setminus \{0\}$. Esto es una contradicción.

Hemos probado que la función u(z) = Log|z| es armónica en $\mathbb{C} \setminus \{0\}$.

Lema 4.2. Sea D un abierto en \mathbb{C} y sea f una función holomorfa y nunca nula en D. Entonces la función u = Log|f| es armónica en D.

Demostración. Sean $z_0 \in D$ y R > 0 tales que $D(z_0, R) \subset D$. Como $D(z_0, R)$ es un dominio simplemente conexo en \mathbb{C} , existe g una rama de $\log(f)$ en $D(z_0, R)$. g es holomorfa en $D(z_0, R)$, con

$$Re(g(z)) = Log|f(z)|, \quad z \in D(z_0, R)$$

Re(g) = Log|f| es armónica en $D(z_0, R)$.

Proposición 4.3. Sea D un abierto en \mathbb{C} y sea u armónica en D. Entonces la función $u_x - iu_y$ es holomorfa en D.

Corolario 4.4. Sea D abierto en \mathbb{C} y sea u armónica en D. Entonces $u \in \mathcal{C}^{\infty}(D)$.

Demostración. Sea u armónica en D. Entonces $f = u_x - iu_y$ es holomorfa en D. Así que $u_x, u_y \in \mathcal{C}^{\infty}(D)$. Como además $u \in \mathcal{C}^2(D)$, entonces $u \in \mathcal{C}^{\infty}(D)$.

Proposición 4.5. Sea D un dominio simplemente conexo en \mathbb{C} y sea u armónica en D. Entonces existe F holomorfa en D tal que $\operatorname{Re}(F) = u$ en D. Además, esta F es única salvo adición de constantes imaginarias.

Demostración. Sea $f = u_x - iu_y$, que es holomorfa en D. Como D es simplemente conexo, existe g primitiva de f en D. g es holomorfa en D y g' = f en D. Escribimos g = U + iV, con U = Re(f) y V = Im(f). Como g es holomorfa, $U_x = V_y$ y $U_y = -V_x$. Además, $g' = U_x + iV_x = u_x - iu_y$, así que $U_x = u_x$ y $V_x = -u_y$.

Sea F = u + iV, $F : D \to \mathbb{C}$, con $u \in \mathcal{C}^2(D)$. V es armónica en $D, V \in \mathcal{C}^{\infty}(D)$. F es diferenciable en sentido real. Además,

$$\begin{cases} u_x = U_x = V_y \\ u_y = -V_x \end{cases}$$

Luego F es holomorfa en D, con Re(F) = u en D.

Veamos que F es única salvo adición de constantes imaginarias.

- Si $c \in \mathbb{R}$, está claro que si G = F + ic, entonces G es holomorfa en D y Re(G) = u en D.
- Si G es holomorfa en D y Re(G) = u en D. Entonces F G es holomorfa y Re(F G) = 0 en D. Por tanto F G es constante, así que existe $c \in \mathbb{R}$ con $F G = ic \Leftrightarrow G = F ic$.

Corolario 4.6. Sea D un abierto en \mathbb{C} y sea u armónica en D. Si $z_0 \in D$ y R > 0 con $D(z_0, R) \subset D$, entonces existe F holomorfa en $D(z_0, R)$ tal que Re(F) = u en $D(z_0, R)$.

Toda función armónica, localmente, es la parte real de una función holomorfa.

Teorema 4.7. Sea D un dominio en \mathbb{C} . Son equivalentes:

- 1. D es simplemente conexo.
- 2. Toda función armónica tiene conjugada armónica.

Demostración.

П

- \Rightarrow Lo sabemos.
- \Leftarrow Sea f holomorfa y nunca nula en D. Veamos que existe un rama de $\log(f)$ en D. Sea u = Log|f|, que es una función armónica en D. Sea v una conjugada armónica de u en D. Entonces F = u + iv es holomorfa en D. Sea $h = fe^{-F}$ holomorfa en D. Como $|e^F| = |e^{u+iv}| = e^u = e^{\text{Log}|f|} = |f|$, entonces

$$|h| = \frac{|f|}{|e^F|} = 1$$

Entonces h es constante. Es decir, existe $\xi = e^{ic}$ con $c \in \mathbb{R}$ tal que $h(z) = \xi$ para todo $z \in D$.

$$h = \frac{f}{e^F} \Rightarrow f = \xi e^F = e^{ic} e^F = e^{F+ic}$$

La función F + ic es una rama de $\log(f)$ en D.

Toda función holomorfa y nunca nula en D tiene una rama del logaritmo. Luego D es simplemente conexo.

Teorema 4.8 (Propiedad del valor medio). Sea D un abierto en \mathbb{C} y sea u armónica en D. Sea $z_0 \in D$ $y \mid R > 0$ con $D(z_0, R) \subset D$. Entonces:

$$u(z_0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(z_0 + re^{it}) dt, \quad 0 \le 0 < R$$

Demostración. Si r=0 es trivial. Supongamos 0 < r < R. Existe F holomorfa en $D(z_0, R)$ con Re(F) = u en $D(z_0, R)$. Por la fórmula de Cauchy,

$$F(z_0) = \frac{1}{2\pi i} \int_{|z-z_0| = r} \frac{F(z)}{z-z_0} dz = \frac{1}{2\pi i} \int_{-\pi}^{\pi} \frac{F(z_0 + re^{it})}{z_0 + re^{it} - z_0} rie^{it} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(z_0 + re^{it}) dt$$

Tomando parte real,

$$u(z_0) = \operatorname{Re}\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} F(z_0 + re^{it}) dt\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \operatorname{Re}(F(z_0 + re^{it})) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(z_0 + Re^{it}) dt$$

Teorema 4.9 (Forma débil del principio del máximo para funciones armónicas). Sea D un abierto en \mathbb{C} y sea u armónica en D. Si u tiene un máximo local en un punto $z_0 \in D$, entonces existe r > 0 con $D(z_0, R) \subset D$ tal que u es constante en $D(z_0, R)$.

Demostración. Sea r > 0 con $D(z_0, r) \subset D$. Existe F holomorfa en $D(z_0, r)$ tal que Re(F) = u en $D(z_0, r)$. Sea $f = e^F$, que es holomorfa en $D(z_0, r)$. En $D(z_0, r)$ tenemos que:

$$|f| = |e^F| = e^{\operatorname{Re}(F)} = e^u$$

Existe r_1 con $0 < r_1 < r$, tal que $u(z) \le u(z_0)$ si $z \in D(z_0, r_1)$. Entonces

$$|e^{F(z)}| = e^{u(z)} \le e^{u(z_0)} = |e^{F(z_0)}|$$

 $|e^F|$ tiene un máximo local en z_0 . Por el principio del máximo, tenemos que e^F es constante en $D(z_0, r)$. Entonces $|e^F| = e^u$ es constante, así que u es constante en $D(z_0, r)$.

Sea D dominio en \mathbb{C} , sean u, v armónicas en D y sea $A \subset D$, A con puntos de acumulación en D. u = v en A no implica en general que u = v en D.

Ejemplo (Contraejemplo). Sea $D = \mathbb{C}$ y sean u(z) = Re(z) y v(z) = 0 armónicas. u = v en el eje imaginario, que tiene puntos de acumulación en \mathbb{C} , pero $u \neq v$ en \mathbb{C} .

Observación. Sea D un dominio en \mathbb{C} y sea $u:D\to\mathbb{R}$. Si existen u_x y u_y en D y $u_x=u_y=0$ en D, entonces u es constante en D.

Teorema 4.10 (Teorema de identidad para funciones armónicas). Sea D un dominio en \mathbb{C} y sea u armónica en D. Si existe $G \subset D$, G abierto y no vacío tal que u = 0 en G, entonces u = 0 en D.

Demostración. Sea $f = u_x - iu_y$ holomorfa en D. Como u = 0 en G, tenemos que $u_x = u_y = 0$ en G. Entonces f = 0 en G. Por el teorema de identidad, f = 0 en D. Entonces $u_x = u_y = 0$ en D, luego u es constante en D. Como u = 0 en G, entonces u = 0 en D.

Corolario 4.11. Sea D un dominio en \mathbb{C} y sean u y v armónicas en D. Si existe $G \subset D$, G abierto y no vacío tal que u = v en G, entonces u = v en D.

Teorema 4.12 (Principio del máximo para funciones armónicas: primera versión). Sea D un dominio en \mathbb{C} y sea u armónica en D. Si u tiene un máximo local en un punto $z_0 \in D$, entonces u es constante en D.

Demostración. Existe R > 0 con $D(z_0, R) \subset D$ tal que u es constante en $D(z_0, R)$. Es decir, u(z) = c, $z \in D(z_0, R)$, $c \in \mathbb{R}$. Sea v(z) = c, $z \in D$. $u \neq v$ son armónicas en $D \neq u = v$ en $D(z_0, R)$. Entonces u = v en D, es decir, u(z) = c para todo $z \in D$.

Notación. Si D es un dominio en \mathbb{C} , \bar{D} denotará la clausura de D como subconjunto de \mathbb{C}^* .

• Si D es acotado, entonces $\partial_{\infty}D = \partial D$.

$$\bar{D} = D \cup \partial_{\infty} D = D \cup \partial D$$

• Si D no es acotado, entonces $\partial_{\infty}D = \partial D \cup \{\infty\}$.

$$\bar{D} = D \cup \partial_{\infty} D = D \cup \partial D \cup \{\infty\}$$

Teorema 4.13 (Principio del máximo para funciones armónicas: segunda versión). Sea D un dominio en \mathbb{C} y sea u armónica en D. Si existe $M \in \mathbb{R}$ tal que

$$\limsup_{z \to \xi, z \in D} u(z) \le M, \quad \forall \xi \in \partial_{\infty} D$$

entonces $u(z) \leq M$ para todo $z \in D$. Además, si $u(z_0) = M$ para algún $z_0 \in D$, entonces u es constante en D.

Demostración. Sea $K = \sup_{z \in D} u(z) \in \mathbb{R} \cup \{\infty\}$. Hay que probar que $K \leq M$. Existe $\{z_n\}_{n=1}^{\infty}$ en D tal que $\lim_{n \to \infty} u(z_n) = K$. Podemos suponer, pasando si es necesario a una subsucesión, que existe $\lim_{n \to \infty} z_n = z^* \in \mathbb{C}^*$. Entonces $z^* \in \bar{D} = D \cup \partial_{\infty} D$.

■ Si $z^* \in \partial_{\infty} D$, entonces

$$K \le \limsup_{z \to z^*. z \in D} u(z) \le M$$

 \blacksquare Si $z^*\in D,$ como $\lim_{n\to\infty}z_n=z^*,$ se tiene que $\lim_{n\to\infty}u(z_n)=u(z^*)=K.$ Luego

$$u(z) < u(z^*) \quad \forall z \in D$$

Por la primera versión del principio del máximo, u es constante en D, es decir, u(z) = K para todo $z \in D$. Aplicando la hipótesis a un punto ξ cualquiera de $\partial_{\infty}D$, vemos que $K \leq M$. Observamos que $\partial_{\infty}D \neq \emptyset$. Si $\partial_{\infty}D = \emptyset$, entonces $\bar{D} = D$, luego D sería abierto y cerrado en \mathbb{C}^* . Por tanto, $D = \emptyset$ o $D = \mathbb{C}^*$, lo que es imposible.

Teorema 4.14 (Principio del mínimo para funciones armónicas). Sea D un dominio en \mathbb{C} y sea u armónica en D.

- 1. Si u tiene un mínimo local en un punto $z_0 \in D$, entonces u es constante en D.
- 2. Si existe $m \in \mathbb{R}$ tal que

$$\liminf_{z \to \xi, z \in D} u(z) \ge m, \quad \forall \xi \in \partial_i nftyD$$

entonces $u(z) \ge m$ para todo $z \in D$. Además, si $u(z_0) = m$ para algún $z_0 \in D$, entonces u es constante en D.

Corolario 4.15. Sea D un dominio en \mathbb{C} y sea $u: \bar{D} \to \mathbb{R}$ armónica en D y continua en \bar{D} . Entonces:

$$\max_{z\in \bar{D}} u(z) = \max_{z\in \partial_{\infty} D} u(z)$$

$$\min_{z \in \bar{D}} u(z) = \min_{z \in \partial_{\infty} D} u(z)$$

Corolario 4.16. Sea D un dominio en \mathbb{C} y sea $u: \bar{D} \to \mathbb{R}$ armónica en D y continua en \bar{D} . Si u = 0 en $\partial_{\infty}D$, entonces u = 0 en D.

Corolario 4.17. Sea D un dominio en \mathbb{C} y sean $u, v : \bar{D} \to \mathbb{R}$ armónicas en D y continuas en \bar{D} . Si u = v en $\partial_{\infty}D$, entonces u = v en D.

Observación. Sea D un dominio en \mathbb{C} y sea $u: \bar{D} \to \mathbb{R}$ armónica en D y continua en \bar{D} . Entonces los valores de u en D están completamente determinados por los valores de u en $\partial_{\infty}D$.

4.2. El problema de Dirichlet para el disco unidad

Esto da lugar a la siguiente cuestión. Sea D un dominio en \mathbb{C} y sea $f:\partial_{\infty}D\to\mathbb{R}$ continua. Queremos estudiar si existe $u:\bar{D}\to\mathbb{R}$ armónica en D y continua en \bar{D} tal que u=f en D. Esto es el problema de Dirichlet en D con valores frontera f. Si existe una solución del problema de Dirichlet en D con valores frontera f, esta es única.

Si D es un dominio en \mathbb{C} , se dice que D es regular para el problema de Dirichlet si para toda f: $\partial_{\infty}D \to \mathbb{R}$ continua existe la solución del problema de Dirichlet con valores frontera f. Queremos resolver el problema de Dirichlet en el disco unidad.

Sea $u: \overline{\mathbb{D}} \to \mathbb{R}$ armónica en \mathbb{D} y continua en $\overline{\mathbb{D}}$. Vamos a expresar u(z) para $z \in \mathbb{D}$ en función de $u(\xi)$, con $\xi \in \partial \mathbb{D}$. Por la propiedad del valor medio, si 0 < r < 1,

$$u(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(re^{it})dt$$

Si consideramos las funciones

$$u_r(t) = u(re^{it}), \quad t \in [-\pi, \pi]$$

vemos que $u_r \xrightarrow[r \to 1^-]{} u_1$ uniformemente porque u es uniformemente continua en $\bar{\mathbb{D}}$. Así que:

$$u(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u_r(t)dt \xrightarrow[r \to 1^{-}]{} \frac{1}{2\pi} \int_{-\pi}^{\pi} u_1(t)dt \Rightarrow u(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(e^{it})dt$$

Lema 4.18. Sean G_1 y G_2 dos abiertos en \mathbb{C} , sea f holomorfa en G_1 con $f(G_1) \subset G_2$ y sea u armónica en G_2 . Entonces $u \circ f$ es armónica en G_1 .

Demostración. $u \circ f \in C^2(G_1)$. Se puede comprobar que $\Delta(u \circ f) = 0$. De otra manera, sea $z_0 \in G_1$, entonces $f(z_0) \in G_2$. Tomamos R > 0 con $D(f(z_0), R) \subset G_2$. Como f es continua en z_0 , existe $\delta > 0$ tal que $D(z_0, \delta) \subset G_1$ y $f(D(z_0, \delta)) \subset D(f(z_0), R)$.

Como u es armónica en $D(f(z_0), R)$, existe F holomorfa en D(f(z), R) tal que u = Re(F) en $D(f(z_0), R)$.

$$D(z_0, \delta) \xrightarrow{f} D(f(z_0), R) \xrightarrow{F} \mathbb{C}$$

 $F \circ f$ es holomorfa en $D(z_0, \delta)$, así que $\text{Re}(f \circ F)$ es armónica en $D(z_0, \delta)$. Si $z \in D(z_0, \delta)$, tenemos que $f(z) \in D(f(z_0), R)$.

$$\operatorname{Re}(F \circ f)(z) = \operatorname{Re}(F(f(z))) = u(f(z))$$

Entonces $\operatorname{Re}(F \circ f) = u \circ f$. Por tanto $u \circ f$ es armónica en $D(z_0, \delta)$. Entonces $u \circ f$ es armónica en D.

Sea $u: \overline{\mathbb{D}} \to \mathbb{R}$ armónica en \mathbb{D} y continua en $\overline{\mathbb{D}}$. Hemos visto que:

$$u(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(e^{it}) dt$$

Sea $a \in \mathbb{D}$. Consideramos $T_a(z) = \frac{z+a}{1+\bar{a}z}$, con $T_a(0) = a$ y $T_a(\bar{\mathbb{D}}) = \bar{\mathbb{D}}$. Sea $v = u \circ T_a$.

$$\bar{\mathbb{D}} \xrightarrow{T_a} \bar{\mathbb{D}} \xrightarrow{u} \mathbb{R}$$

v es continua en $\bar{\mathbb{D}}$ y armónica en \mathbb{D} .

$$u(a) = v(0) \frac{1}{2\pi} \int_{-\pi}^{\pi} v(e^{it}) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(T_a(e^{it})) dt$$

Hacemos el cambio de variable:

$$T_a(e^{it}) = e^{i\varphi} \Leftrightarrow e^{it} = T_a^{-1}(e^{i\varphi}) = S_a(e^{i\varphi})$$

Derivando,

$$ie^{it}dt = ie^{i\varphi}S_a'(e^{i\varphi})d\varphi \Leftrightarrow dt = \frac{e^{i\varphi}S_a'(e^{i\varphi})}{S_a(e^{i\varphi})}d\varphi$$

Recordamos que $S_a'(z)=\frac{1-|a|^2}{(1-\bar az)^2},$ así que $S_a'(e^{i\varphi})=\frac{1-|a|^2}{(1-\bar ae^{i\varphi})^2}$ y entonces:

$$dt = \frac{e^{i\varphi}(1-|a|^2)}{(1-\bar{a}e^{i\varphi})^2}\frac{1-\bar{a}e^{i\varphi}}{e^{i\varphi}-a}d\varphi = \frac{1-|a|^2}{(1-\bar{a}e^{i\varphi})(1-ae^{i\varphi})}d\varphi = \frac{1-|a|^2}{|1-ae^{-i\varphi}|^2}d\varphi$$

Entonces la integral queda de la forma:

$$u(a) = \frac{1}{2\pi} \int_{-\pi+\theta_0}^{\pi+\theta_0} u(e^{i\varphi}) \frac{1-|a|^2}{|1-ae^{-i\varphi}|^2} d\varphi = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(e^{it}) \frac{1-|a|^2}{|1-ae^{-it}|^2} dt$$

Sea $u: \bar{\mathbb{D}} \to \mathbb{R}$ armónica en \mathbb{D} y continua en $\bar{\mathbb{D}}$. Hemos visto que:

$$u(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(e^{it})dt$$

Sea $a \in \mathbb{D}$. Consideramos $T_a(z) = \frac{z+a}{1+\bar{a}z}$, con $T_a(0) = a$ y $T(\bar{\mathbb{D}}) = \bar{\mathbb{D}}$. Sea $v = u \circ T_a$.

$$\bar{\mathbb{D}} \xrightarrow{T_a} \bar{\mathbb{D}} \xrightarrow{u} \mathbb{R}$$

v es continua en $\bar{\mathbb{D}}$ y armónica en \mathbb{D} .

$$u(a) = v(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} v(e^{it})dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(T_a(e^{it}))dt$$

48

Hacemos el cambio de variable:

$$T_a(e^{it}) = e^{i\varphi} \Leftrightarrow e^{it} = T_a^{-1}(e^{i\varphi}) = S_a(e^{i\varphi})$$

Derivando,

$$ie^{it}dt = ie^{i\varphi}S_a'(e^{i\varphi})d\varphi \Leftrightarrow dt = \frac{e^{i\varphi}S_a'(e^{i\varphi})}{S_a(e^{i\varphi})}d\varphi$$

Recordamos que $S_a(z)=\frac{z-a}{1-\bar{a}z}$ y $S_a'(z)=\frac{1-|a|^2}{(1-\bar{a}z)^2}$, así que $S_a'(e^{i\varphi})=\frac{1-|a|^2}{(1-\bar{a}e^{i\varphi})^2}$ y entonces:

$$dt = \frac{e^{i\varphi}(1-|a|^2)}{(1-\bar{a}e^{i\varphi})^2}\frac{1-\bar{a}e^{i\varphi}}{e^{i\varphi}-a}d\varphi = \frac{1-|a|^2}{(1-\bar{a}e^{i\varphi})(1-ae^{-i\varphi})}d\varphi = \frac{1-|a|^2}{|1-ae^{-i\varphi}|^2}d\varphi$$

Entonces la integral queda de la forma:

$$u(a) = \frac{1}{2\pi} \int_{-\pi+\theta_0}^{\pi+\theta_0} u(e^{i\varphi}) \frac{1-|a|^2}{|1-ae^{-i\varphi}|^2} d\varphi = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(e^{it}) \frac{1-|a|^2}{|1-ae^{-it}|^2} dt$$

Teorema 4.19. Sea $u: \overline{\mathbb{D}} \to \mathbb{R}$ armónica en \mathbb{D} y continua en $\overline{\mathbb{D}}$. Entonces

$$u(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(e^{it}) \frac{1 - |z|^2}{|1 - ze^{-it}|^2} dt, \quad \forall z \in \mathbb{D}$$

Si $f: \partial_{\infty}D \to \mathbb{R}$ es una función continua, sabemos que la solución del problema de Dirichlet en \mathbb{D} con valores frontera f, de existir, es única. Además, tendría que ser la siguiente:

$$u: \bar{\mathbb{D}} \to \mathbb{R}, \quad u(z) = \begin{cases} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) \frac{1 - |z|^2}{|1 - ze^{-it}|^2} dt & \text{si } z \in \mathbb{D} \\ u(z) = f(z) & \text{si } z \in \partial \mathbb{D} \end{cases}$$

4.3. La integral de Poisson

Una primera expresión del núcleo de Poisson es

$$P(z,e^{it}) = \frac{1-|z|^2}{|1-ze^{-it}|^2}, \quad z \in \mathbb{D}, \; t \in \mathbb{R}$$

Si $z = re^{i\theta}$, $0 \le r < 1$, $\theta \in \mathbb{R}$,

$$P(z, e^{it}) = \frac{1 - r^2}{|1 - re^{i\theta}e^{-it}|^2} = \frac{1 - r^2}{|1 - re^{i(\theta - t)}|^2}$$

De esta forma llegamos a una segunda expresión del núcleo de Poisson:

$$P_r(t) = \frac{1 - r^2}{|1 - re^{it}|^2}, \quad 0 \le r < 1, \ t \in \mathbb{R}$$

Podemos escribir el denominador de otra forma:

$$|1 - re^{it}|^2 = (1 - re^{it})(1 - re^{-it}) = 1 - re^{-it} - re^{it} + r^2 = 1 - r(e^{it} + e^{-it}) + r^2 = 1 - 2r\cos(t) + r^2$$

Luego

$$P_r(t) = \frac{1 - r^2}{1 - 2r\cos(t) + r^2}, \quad 0 \le 1, \ t \in \mathbb{R}$$

Observación.

- 1. Si $0 \le r < 1$, $\theta \in \mathbb{R}$, $t \in \mathbb{R}$ y $z = re^{i\theta}$, entonces $P(z, e^{it}) = P_r(\theta t)$.
- 2. Si $0 \le r < 1$, $t \in \mathbb{R}$ y $z = re^{it}$, entonces $P_r(t) = P(z, e^{i0}) = P(z, 1)$.

Propiedades.

- 1. $P(z, e^{it}) > 0$ si $z \in \mathbb{D}$ y $t \in \mathbb{R}$. Equivalentemente, $P_r(t) > 0$ si $0 \le r < 1$ y $t \in \mathbb{R}$.
- 2. Fijando $t \in \mathbb{R}$, la función $z \in \mathbb{D} \mapsto P(z, e^{it}) > 0$ es armónica en \mathbb{D} .

Demostración.

• Si t = 0 y $z \in \mathbb{D}$,

$$P(z, e^{i0}) = \frac{1 - |z|^2}{|1 - z|^2} = \frac{1 - z\bar{z}}{(1 - z)(1 - \bar{z})} = \frac{1 - z + z - z\bar{z}}{(1 - z)(1 - \bar{z})} = \frac{1}{1 - \bar{z}} + \frac{z}{1 - z} = \frac{1}{1 - z} + \frac{z - 1 + 1}{1 - z} = \frac{1}{1 - \bar{z}} - 1 + \frac{1}{1 - z} = -1 + \operatorname{Re}\left(\frac{1}{1 - z}\right) = \operatorname{Re}\left(-1 + \frac{2}{1 - z}\right) = \operatorname{Re}\left(\frac{1 + z}{1 - z}\right)$$

La función $z \in \mathbb{D} \mapsto P(z,e^{i0}) = \operatorname{Re}\left(\frac{1+z}{1-z}\right)$ es armónica en $\mathbb{D}.$

 \bullet Si $t\in\mathbb{R}$ y $z\in\mathbb{D}$, tomamos $w=ze^{-it}\in\mathbb{D},$ con |w|=|z|. Entonces:

$$P(z, e^{it}) = \frac{1 - |z|^2}{|1 - ze^{-it}|^2} = \frac{1 - |w|^2}{|1 - w|^2} = \operatorname{Re}\left(\frac{1 + w}{1 - w}\right) = \operatorname{Re}\left(\frac{1 + ze^{-it}}{1 - ze^{-it}}\right)$$

La función $z \in \mathbb{D} \mapsto P(z, e^{it})$ es armónica en \mathbb{D} .

3. Si $z \in \mathbb{D}$ y $t \in \mathbb{R}$,

$$P(z, e^{it}) = \operatorname{Re}\left(\frac{1 + ze^{-it}}{1 - ze^{-it}}\right)$$

Si $0 \le r < 1$ y $t \in \mathbb{R}$,

$$P_r(t) = \operatorname{Re}\left(\frac{1 + re^{it}}{1 - re^{it}}\right)$$

4. Fijado $r \in [0,1)$, tenemos la función

$$P_r : \mathbb{R} \to \mathbb{R}$$

$$t \mapsto P_r(t) = \frac{1 - r^2}{|1 - re^{it}|^2} = \frac{1 - r^2}{1 + r^2 - 2r\cos(t)}$$

que es continua, positiva, periódica de periodo 2π , par y decreciente en $[0,\pi]$. Observamos que:

$$P_r(0) = \frac{1 - r^2}{(1 - r)^2} = \frac{1 + r}{1 - r} \xrightarrow[r \to 1^-]{} \infty$$
$$P_r(\pi) = P_r(-\pi) = \frac{1 - r^2}{(1 + r)^2} = \frac{1 - r}{1 + r} \xrightarrow[r \to 1^-]{} 0$$

Tenemos entonces la desigualdad:

$$\frac{1-r}{1+r} \le P_r(t) \le \frac{1+r}{1-r}, \quad 0 \le r < 1, \ t \in \mathbb{R}$$

Además, si en el teorema anterior tomamos $u \equiv 1$ y z = r, tenemos:

$$1 = u(r) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(-t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(t) dt$$

Por tanto,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(t) = 1$$

5. Para cada $t \in [-\pi, 0) \cup (0, \pi]$ se tiene que $P_r(t) \xrightarrow[r \to 1^-]{} 0$. Además, si $\delta \in (0, \pi)$, se tiene que $P_r(t) \xrightarrow[r \to 1^-]{} 0$ uniformemente en $[-\pi, -\delta] \cup [\delta, \pi]$.

Si $t \in [-\pi, 0) \cup (0, \pi]$, $\cos(t) \neq 1$, así que:

$$\lim_{r \to 1^{-}} P_r(t) = \frac{0}{2 - 2\cos(t)} = 0$$

Si $\delta \in [0, \pi)$, entonces:

$$P_r(t) \le P_r(\delta) \xrightarrow[r \to 1^-]{} 0$$

Definición 4.5. Sea $f: \partial \mathbb{D} \to \mathbb{R}$ continua. Se define la integral de Poisson de f, y se denota P[f], como la función

$$P[f]: \mathbb{D} \to \mathbb{R}$$
$$z \mapsto P[f](z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) P(z, e^{it}) dt$$

Equivalentemente, si $z=re^{i\theta}$ con $0\leq r<1$ y $\theta\in\mathbb{R},$ entonces

$$P[f](z) = P[f](re^{it}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) P_r(\theta - t) dt$$

Teorema 4.20. El disco unidad \mathbb{D} es un dominio regular para el problema de Dirichlet. En concreto, si $f: \partial \mathbb{D} \to \mathbb{R}$ es continua, entonces la solución del problema de Dirichlet en \mathbb{D} con valores frontera f es la función:

$$u: \mathbb{D} \to \mathbb{R}$$

$$u(z) = \begin{cases} P[f](z) & z \in \mathbb{D} \\ f(z) & z \in \partial \mathbb{D} \end{cases}$$

Es decir, u es armónica en \mathbb{D} , continua en $\overline{\mathbb{D}}$ y u = f en $\partial \mathbb{D}$.

Demostración.

1. P[f] es armónica en \mathbb{D} . Si $z \in \mathbb{D}$, tenemos que

$$P[f](z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) P(z, e^{it}) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) \operatorname{Re}\left(\frac{1 + ze^{-it}}{1 - ze^{-it}}\right) dt =$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \operatorname{Re}\left(f(e^{it}) \frac{1 + ze^{-it}}{1 - ze^{-it}}\right) dt = \operatorname{Re}\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) \frac{1 + ze^{-it}}{1 - ze^{-it}} dt\right)$$

Veamos que $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) \frac{1+ze^{-it}}{1-ze^{-it}} dt$ es una función holomorfa en \mathbb{D} expresándola como serie de potencias.

Si $z \in \mathbb{D}$,

$$\frac{1+z}{1-z} = \frac{1}{1-z} + \frac{z}{1-z} = \sum_{n=0}^{\infty} z^n + \sum_{n=0}^{\infty} z^{n+1} = 1 + 2\sum_{n=1}^{\infty} z^n$$

converge uniformemente en cada subconjunto compacto de D. Así que:

$$\frac{1+ze^{-it}}{1-ze^{-it}} = 1 + 2\sum_{n=1}^{\infty} z^n e^{-int}, \quad t \in [-\pi, \pi]$$

con convergencia uniforme. Entonces:

$$P[f](z) = \operatorname{Re}\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) \left(1 + 2\sum_{n=1}^{\infty} z^n e^{-int}\right) dt\right) =$$

$$= \operatorname{Re}\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(f(e^{it}) + 2\sum_{n=1}^{\infty} f(e^{it}) z^n e^{-int}\right) dt\right) =$$

$$= \operatorname{Re}\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) dt + \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(2\sum_{n=1}^{\infty} f(e^{it}) z^n e^{-int}\right) dt\right) =$$

$$= \operatorname{Re}\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) dt + 2\sum_{n=1}^{\infty} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) e^{-int} dt\right) z^n\right)$$

Sea

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it})e^{-int}dt, \quad n = 0, 1, 2, \dots$$

Entonces:

$$P[f](z) = \operatorname{Re}\left(a_0 + 2\sum_{n=1}^{\infty} a_n z^n\right)$$

Esta es una serie de potencias centrada en 0 que converge para todo $z \in \mathbb{D}$. Su radio de convergencia es mayor o igual que 1. Por tanto, define una función holomorfa en \mathbb{D} . Entonces la función $z \in \mathbb{D} \mapsto P[f](z)$ es armónica en \mathbb{D} .

2. Veamos que:

$$\lim_{z \to 1, z \in \mathbb{D}} u(z) = f(1)$$

Si $z \in \mathbb{D}$, $z = re^{i\theta}$ con $0 \le r < 1$ y $\theta \in \mathbb{R}$.

$$u(z) - f(1) = P[f](z) - f(1) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) P_r(\theta - t) dt - f(1) =$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) P_r(\theta - t) dt - f(1) \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(s) ds =$$

$$= \frac{1}{2\pi} \int_{-\pi + \theta}^{\pi + \theta} f(e^{i(\theta - s)}) P_r(s) ds - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(1) P_r(s) ds =$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(f(e^{i(\theta - s)}) - f(e^{i0}) \right) P_r(s) ds$$

Así que

$$|u(z) - f(1)| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f\left(e^{i(\theta - t)}\right) - f\left(e^{i0}\right) \right| P_r(t) dt$$

Sea $\varepsilon > 0$, como la función $t \in [-\pi, \pi] \mapsto f(e^{it})$ es uniformemente continua, existe $\delta_1 \in (0, \pi)$ tal que si $t, s \in [-\pi, \pi]$ con $|t - s| < \delta_1$, entonces $|f(e^{it}) - f(e^{is})| < \frac{\varepsilon}{2}$. Como f está acotada

en $\partial \mathbb{D}$, existe M > 0 tal que $|f(z)| \leq M$ para todo $z \in \partial \mathbb{D}$. Tomamos $\delta = \frac{\delta_1}{2} \in (0, \frac{\pi}{2})$. Como $P_r(t) \xrightarrow[r \to 1^-]{} 0$ uniformemente en $[-\pi, -\delta] \cup [\delta, \pi]$, existe $r_0 \in (0, 1)$ tal que

$$\begin{cases} r_0 < r < 1 \\ t \in [-\pi, -\delta] \cup [\delta, \pi] \end{cases} \Rightarrow P_r(t) < \frac{\varepsilon}{4M}$$

Entonces, si $r_0 < r < 1$ y $|\theta| < \delta$, vamos a ver que $|u(z) - f(1)| < \varepsilon$.

$$|u(z) - f(1)| \leq \frac{1}{2\pi} \int_{-\delta}^{\delta} \left| f\left(e^{i(\theta - t)}\right) - f\left(e^{i0}\right) \right| P_r(t) dt + \frac{1}{2\pi} \int_{[-\pi,\pi] \setminus [-\delta,\delta]} \left| f\left(e^{i(\theta - t)}\right) - f\left(e^{i0}\right) \right| P_r(t) dt$$

Si $t \in [-\delta, \delta]$, tenemos que

$$|\theta - t - 0| \le |\theta| + |t| < \delta + \delta = 2\delta = \delta_1 < \pi$$

Además, $\theta - t, 0 \in [-\pi, \pi]$. Así que:

$$\left| f\left(e^{i(\theta-t)}\right) - f\left(e^{i0}\right) \right| < \frac{\varepsilon}{2}$$

Luego:

$$|u(z) - f(1)| \le \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{\varepsilon}{2} P_r(t) dt + \frac{1}{2\pi} \int_{[-\pi,\pi] \setminus [-\delta,\delta]} 2M \frac{\varepsilon}{4M} dt =$$

$$\le \frac{\varepsilon}{2} \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(t) dt + \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\varepsilon}{2} dt = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

3. Veamos que

$$\lim_{z \to \xi, z \in \mathbb{D}} u(z) = f(\xi), \quad \forall \xi \in \partial \mathbb{D}$$

Sea $g: \partial \mathbb{D} \to \mathbb{R}$, $g(z) = f(\xi z)$, es continua. Sea $v = P[g]: \mathbb{D} \to \mathbb{R}$. Sabemos que $\lim_{z \to 1, z \in \mathbb{D}} v(z) = g(1)$. Veamos que $v(z) = u(\xi z)$ para todo $z \in \mathbb{D}$.

Sea $z \in \mathbb{D}$, $z = re^{i\theta}$ con $0 \le r < 1$ y $\theta \in \mathbb{R}$.

$$v(z) = P[g](z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(e^{it}) P_r(\theta - t) dt = \frac{1}{2\pi} f(\xi e^{it}) P_r(\theta - t) dt$$

Si escribimos $\xi = e^{i\theta_0}$, con $\theta_0 \in \mathbb{R}$, entonces:

$$v(z) = \frac{1}{2\pi} f(\xi e^{i(\theta_0 - t)}) P_r(\theta - t) dt = \frac{1}{2\pi} f(\xi e^{is}) P_r(\theta + \theta_0 - s) ds = P[f](re^{i(\theta - \theta_0)}) = P[f](\xi z) = u(\xi z)$$

Entonces:

$$\lim_{z \to 1, z \in \mathbb{D}} u(\xi z) = f(\xi) \Rightarrow \lim_{z \to \xi, z \in \mathbb{D}} u(z) = f(\xi)$$

4. Veamos que u es continua en $\overline{\mathbb{D}}$. u es continua en \mathbb{D} porque es armónica en \mathbb{D} . Dado $\xi \in \partial \mathbb{D}$, hay que probar que

$$\lim_{z \to \xi, z \in \bar{\mathbb{D}}} f(\xi)$$

Dada $\{z_n\}_{n=1}^\infty$ sucesión en $\bar{\mathbb{D}}$ con $z_n \to \xi$, definimos la sucesión $\{w_n\}_{n=1}^\infty$ como sigue.

- Si $z_n \in \mathbb{D}$, tomamos $w_n = z_n$.
- Si $z_n \in \partial \mathbb{D}$, tomamos $w_n \in \mathbb{D}$ con $|z_n w_n| < \frac{1}{n}$ y $|u(z_n) u(w_n)| < \frac{1}{n}$. Esto se puede hacer porque $\lim_{z \to z_n, z \in \mathbb{D}} u(z) = u(z_n)$.

Hay que probar que $u(z_n) \to f(\xi)$.

$$|u(z_n) - f(\xi)| \le |u(z_n) - u(w_n)| + |u(w_n) - f(\xi)|$$

Observamos que

$$|w_n - \xi| \le |w_n - z_n| + |z_n - \xi| \to 0$$

Además, sabemos que $\lim_{z \to \xi, z \in \mathbb{D}} u(z) = f(\xi)$, así que $u(w_n) \to f(\xi)$. Por tanto,

$$|u(z_n) - f(\xi)| \to 0$$

Teorema 4.21. Sea D un dominio simplemente conexo en \mathbb{C} con $D \neq \mathbb{C}$. Supongamos que existe una aplicación conforme F de \mathbb{D} sobre D que se puede extender a un homeomorfismo de $\bar{\mathbb{D}}$ sobre $\bar{D} = D \cup \partial_{\infty} D$. Entonces D es regular para el problema de Dirichlet.

En concreto, si $f: \partial_{\infty}D \to \mathbb{R} \to \mathbb{R}$ continua, la función $u: \bar{D} \to \mathbb{R}$ definida por

$$u(z) = \begin{cases} f(z) & z \in \partial_{\infty} D \\ u(z) = P[f \circ F](F^{-1}(z)) & z \in D \end{cases}$$

es la solución del problema de Dirichlet en D con valores frontera f.

Demostraci'on. $F: \mathbb{D} \to D$ se puede extender a una homeomorfismo $F: \overline{\mathbb{D}} \to \overline{D}$. Observamos que F es un homeomorfismo de $\partial \mathbb{D}$ sobre $\partial_{\infty} D$. Sea $g = f \circ F$.

$$g: \partial \mathbb{D} \xrightarrow{F} \partial_{\infty} D \xrightarrow{f} \mathbb{R}$$

g es continua. Sea v la solución del problema de Dirichlet en \mathbb{D} con valores frontera g. $v: \overline{\mathbb{D}} \to \mathbb{R}$ es armónica en \mathbb{D} , continua en $\overline{\mathbb{D}}$ y con v = g en $\partial \mathbb{D}$.

Sea $u: \bar{D} \to \mathbb{R}$, $u=v \circ F^{-1}$. u es continua en \bar{D} y armónica en D. Si $z \in \partial_{\infty}D$,

$$u(z) = v(F^{-1}(z)) = g(F^{-1}(z)) = f(z)$$

Luego u = f en $\partial_{\infty} D$.

Ejemplo. Cualquier disco abierto es un dominio regular para el problema de Dirichlet.

Sea $a \in \mathbb{C}$ y R > 0. Sea D = D(a, R). Sea $F : \mathbb{D} \to D$, F(z) = a + Rz. D es regular para el problema de Dirichlet.

Si $f: \partial D(a,R) \to \mathbb{R}$ es continua, entonces la solución del problema de Dirichlet en D(a,R) con valores frontera f es $u: \bar{D}(a,R) \to \mathbb{R}$, con

$$u(z) = f(z), \quad z \in \partial D(a, R)$$

Si $z \in D(a, R)$, $z = a + re^{i\theta}$ con $0 \le r < R$ y $\theta \in \mathbb{R}$,

$$u(z) = P[f \circ F](F^{-1}(z)) = P[f \circ F] \left(\frac{z - a}{R}\right) = P[f \circ F] \left(\frac{r}{R}e^{i\theta}\right) =$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} (f \circ F)(e^{it}) P_{r/R}(\theta - t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(a + Re^{it}) \frac{1 - \left(\frac{r}{R}\right)^2}{\left|1 - \frac{r}{R}e^{i(\theta - t)}\right|^2} dt =$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(a + Re^{it}) \frac{R^2 - r^2}{|R - re^{i(\theta - t)}|^2} dt$$

Sea D el dominio interior a una curva de Jordan en $\mathbb C$. Entonces D es un dominio simplemente conexo en D, con $D \neq \mathbb C$. Por el teorema de Riemann, existe una aplicación conforme F de $\mathbb D$ sobre D, que se puede extender a un homeomorfismo de $\bar{\mathbb D}$ sobre \bar{D} por el teorema de extensión de Carathéodory. Por el teorema anterior, D es regular para el problema de Dirichlet. Si $f:\partial D \to \mathbb R$ es continua, entonces la función $u:\bar{D}\to\mathbb R$ dada por

$$u(z) = \begin{cases} f(z) & z \in \partial D \\ P[f \circ F](F^{-1}(z)) & z \in D \end{cases}$$

es la solución del problema de Dirichlet en D con valores frontera f.

Teorema 4.22 (Principio del máximo para funciones armónicas: tercera versión). Sea D un dominio acotado en \mathbb{C} y sea u una función armónica y acotada superiormente en D. Si existen $M \in \mathbb{R}$ y $\{\xi_1, \xi_2, \ldots, \xi_n\} \in \partial D$ tales que

$$\limsup_{z \to \xi, z \in D} u(z) \le M, \quad \forall \xi \in \partial D \setminus \{\xi_1, \xi_2, \dots \xi_n\}$$

entonces $u(z) \leq M$ para todo $z \in D$.

Demostración. Sea $\alpha = diam(D) = \sup\{|z - w| : z, w \in D\}$. Entonces $0 < \alpha < \infty$. Dado $\varepsilon > 0$, sea $u_{\varepsilon} : D \to \mathbb{R}$ dada por

$$u_{\varepsilon}(z) = u(z) + \varepsilon \sum_{i=1}^{n} \operatorname{Log}\left(\frac{|z - \xi_{j}|}{\alpha}\right)$$

Si $z \in D$ y $j \in \{1, ..., n\}$, como $|z - w| \le \alpha$ para todo $w \in D$, se tiene que

$$0 < |z - \xi_j| \le \alpha \Rightarrow 0 < \frac{|z - \xi_j|}{\alpha} \le 1 \Rightarrow \operatorname{Log}\left(\frac{|z - \xi_j|}{\alpha}\right) \le 0$$

Entonces $u_{\varepsilon} \leq u$ en D. Como la función $z \mapsto \frac{z - \xi_j}{\alpha}$ es holomorfa y nunca nula en D, se tiene que $\operatorname{Log}\left(\frac{|z - \xi_j|}{\alpha}\right)$ es armónica en D para cada j. Por tanto, u_{ε} es armónica en D.

Sea $\xi \in \partial D \setminus \{\xi_1, \xi_2, \dots, \xi_n\}$. Entonces:

$$\limsup_{z \to \xi, z \in D} u_{\varepsilon}(z) \leq \limsup_{z \to \xi, z \in D} u(z) \leq M$$

Sea $j_0 \in \{1, ..., n\}$.

$$\lim_{z \to \xi_{j_0}, z \in D} u_{\varepsilon}(z) = \lim_{z \to \xi_{j_0}, z \in D} \left(u(z) + \varepsilon \operatorname{Log}\left(\frac{|z - \xi_{j_0}|}{\alpha}\right) + \varepsilon \sum_{j=1, j \neq j_0}^n \operatorname{Log}\left(\frac{|z - \xi_j|}{\alpha}\right) \right) = -\infty \le M$$

Por la segunda versión del principio del máximo, $u_{\varepsilon}(z) \leq M$ para todo $z \in D$. Entonces hemos probado que, dado $\varepsilon > 0$, se tiene que

$$u(z) + \varepsilon \sum_{j=1}^{n} \operatorname{Log}\left(\frac{|z - \xi_j|}{\alpha}\right) \le M, \quad \forall z \in D$$

Haciendo $\varepsilon \to 0$, tenemos que $u(z) \leq M$ para todo $z \in D$.

Teorema 4.23 (Principio del máximo para funciones armónicas: cuarta versión). Sea D un dominio en \mathbb{C} con exterior no vacío y sea u una función armónica y acotada superiormente en D. Supongamos que existen $M \in \mathbb{R}$ y $\{\xi_1, \xi_2, \ldots, \xi_n\} \in \partial_{\infty}D$ tales que

$$\limsup_{z \to \xi, z \in D} u(z) \le M, \quad \forall \xi \in \partial_{\infty} D \setminus \{\xi_1, \xi_2, \dots \xi_n\}$$

Entonces $u(z) \leq M$ para todo $z \in D$.

Demostración. Sea $a \in \mathbb{C}$ un punto exterior a D. Existe R > 0 tal que $D(a,R) \cap D = \emptyset$. Entonces $|z - a| \ge R$ para todo $z \in D$. Para cada $j \in \{1, \ldots, n\}$ vamos a construir una función h_j holomorfa y nunca nula en D, con $|h_j| \le 1$ en D y tal que $\lim_{z \to \xi_j, z \in D} h_j(z) = 0$ y $\lim_{z \to \xi_i, x \in D} h_j(z)$ existe en $\mathbb{C} \setminus \{0\}$ si $i \ne j$.

• Si $\xi_j = \infty$,

$$h_j(z) = \frac{R}{z - a}, \quad z \in D$$

 h_i es holomorfa y nunca nula en D con $|h_i| \leq 1$ en D.

• Si $\xi_j \in \mathbb{C}$,

$$\left| \frac{z - \xi_j}{z - a} \right| = \left| \frac{z - a + a - \xi_j}{z - a} \right| \le \frac{|z - a| + |a - \xi_j|}{|z - a|} = 1 + \frac{|a - \xi_j|}{|z - a|} \le 1 + \frac{|a - \xi_j|}{R} = K_j > 0$$

Sea

$$h_j(z) = \frac{1}{K_i} \frac{z - \xi_j}{z - a}$$

 h_j es holomorfa y nunca nula en D, con

$$|h_j(z)| = \frac{1}{K_j} \left| \frac{z - \xi_j}{z - a} \right| \le \frac{1}{K_j} K_j = 1, \quad \forall z \in D$$

Además,

$$\begin{cases} \lim_{z \to \xi_j, z \in D} h_j(z) = 0 \\ \lim_{z \to \xi_i, z \in D} h_j(z) = \frac{1}{K_i} \frac{\xi_i - \xi_j}{\xi_i - a} \in \mathbb{C} \setminus \{0\} \quad i \neq j \end{cases}$$

Sea $\varepsilon > 0$, definimos:

$$u_{\varepsilon}(z) = u(z) + \varepsilon \sum_{n=1}^{\infty} \text{Log}|h_{j}(z)|, \quad z \in D$$

Se sigue como en la demostración del teorema anterior.

Teorema 4.24 (Teorema de la singularidad evitable para funciones armónicas). Sean $a \in \mathbb{C}$ y R > 0. Si u es armónica y acotada en $D(a,R) \setminus \{a\}$, entonces u se puede extender a una función armónica en D(a,R).

Demostración. Sea $f = u|_{\partial D(a,R/2)}$, $f : \partial D(a,R/2) \to \mathbb{R}$ es continua. Como D(a,R/2) es regular para el problema de Dirichlet, existe $v : \bar{D}(a,R/2) \to \mathbb{R}$ armónica en D(a,R/2), continua en $\bar{D}(a,R/2)$ y con v = f en $\partial D(a,R/2)$.

Sea $D = D(a, R/2) \setminus \{a\}$. $u \ y \ v$ son armónicas en $D, u - v \ y \ v - u$ también. Aplicamos la tercera versión del principio del máximo a $u - v \ y \ v - u$ en D. D es un dominio acotado en \mathbb{C} , u está acotada en D y v es continua en $\bar{D}(a, R/2)$, así que v está acotada en D. Luego $u - v \ y \ v - u$ están acotadas en D.

Si $\xi \in \partial D(a, R/2) = \partial D \setminus \{a\},\$

$$\begin{split} & \limsup_{z \to \xi, z \in D} (u(z) - v(z)) \le u(\xi) - v(\xi) = 0 \\ & \limsup_{z \to \xi, z \in D} (v(z) - u(z)) \le v(\xi) - u(\xi) = 0 \end{split}$$

Por tanto, $u(z) - v(z) \le 0$ y $v(z) - u(z) \le 0$ para todo $z \in D$. Luego u(z) = v(z) para todo $z \in D = D(a, R/2) \setminus \{a\}$, con v armónica en D(a, R/2). Definiendo u(a) = v(a), vemos que u se puede extender a una función armónica en D(a, R).

Teorema 4.25. $\mathbb{D} \setminus \{0\}$ es un dominio en \mathbb{C} que no es regular para el problema de Dirichlet.

Demostración. $D = \mathbb{D} \setminus \{0\}$, $\partial D = \partial \mathbb{D} \cup \{0\}$. Sea $f : \partial D \to \mathbb{R}$, f(z) = 0 si |z| = 1 y f(0) = 1. f es continua en ∂D . Supongamos que existe $u : \bar{\mathbb{D}} \to \mathbb{R}$ armónica en $\mathbb{D} \setminus \{0\}$, continua en $\bar{\mathbb{D}}$ y con u = f en ∂D . Como u es armónica y acotada en $\mathbb{D} \setminus \{0\}$, por el teorema anterior u se puede extender a una función armónica en \mathbb{D} . Entonces u es armónica en \mathbb{D} y continua en $\bar{\mathbb{D}}$. Por tanto,

$$\max_{z \in \bar{\mathbb{D}}} u(z) = \max_{z \in \partial \mathbb{D}} u(z) = 0$$

Sin embargo, esto contradice que $u(0) = 1 \neq 0$.

Observación. La condición de que u está acotada superiormente no se puede suprimir en la tercera versión del principio del máximo.

Ejemplo. Sea $D = \mathbb{D} \setminus \{0\}$ dominio acotado en \mathbb{C} y sea $u(z) = \operatorname{Log}\left(\frac{1}{|z|}\right)$, $z \in D$. Como la función $z \mapsto \frac{1}{z}$ es holomorfa y nunca nula en D, entonces u es armónica en D. u no está acotada superiormente en D.

$$\partial D = \partial \mathbb{D} \cup \{0\}$$

Si $\xi \in \partial \mathbb{D}$,

$$\limsup_{z \to \xi, z \in D} u(z) = \limsup_{z \to \xi, z \in \mathbb{D}} \operatorname{Log} \left(\frac{1}{|z|} \right) = 0 = M$$

Pero no es cierto que $u(z) \leq 0$ para todo $z \in D$. De hecho, u(z) > 0 para todo $z \in D$.

Lema 4.26. Sean $a \in \mathbb{C}$ y R > 0. Sea $u : \bar{D}(a, R) \to \mathbb{R}$ una función continua, con $u \equiv 0$ en $\partial D(a, R)$. Supongamos que para cada $z_0 \in D(a, R)$ existe $r_{z_0} > 0$ con $D(z_0, r_{z_0}) \subset D(a, R)$ tal que

$$u(z_0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(z_0 + re^{it}) dt, \quad r \in [0, r_{z_0}]$$

Entonces $u \equiv 0$ en D(a, R).

Demostración. Sea $M = \max\{u(z) : z \in \bar{D}(a,R)\}$ y sea $K = \{z \in \bar{D}(a,R) : u(z) = M\}$. K es un compacto no vacío con $K \subset \bar{D}(a,R)$. Como la función $z \in \mathbb{C} \mapsto |z-a|$ es continua, alcanza el máximo en K. Tomamos $z_0 \in K$ tal que $|z_0 - a| = \max\{|z - a| : z \in K\}$.

Supongamos por reducción al absurdo que $z_0 \in D(a, R)$. Tomamos $r_{z_0} > 0$, que existe por hipótesis, y fijamos $r \in (0, r_{z_0})$. Entonces

$$u(z_0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(z_0 + re^{it}) dt$$

Sean $E_1 = \{t \in [-\pi, \pi] : |z_0 + re^{it} - a| \le |z_0 - a|\}$ y $E_2 = \{t \in [-\pi, \pi] : |z_0 + re^{it} - a| > |z_0 - a|\}$. Observamos que $E_2 \ne \emptyset$. Si $t \in E_2$, se tiene que $z_0 + re^{it} \notin K$. Así que $u(z_0 + re^{it}) < M$. Entonces

$$u(z_0) = \frac{1}{2\pi} \int_{E_1} u(z_0 + re^{it}) dt + \frac{1}{2\pi} \int_{E_2} u(z_0 + re^{it}) dt$$

Observamos que:

$$\frac{1}{2\pi} \int_{E_1} u(z_0 + re^{it}) dt \le \frac{1}{2\pi} \int_{E_1} M dt$$
$$\frac{1}{2\pi} \int_{E_1} u(z_0 + re^{it}) dt < \frac{1}{2\pi} \int_{E_2} M dt$$

Por tanto,

$$u(z_0) < \frac{1}{2\pi} \int_{E_1} Mdt + \frac{1}{2\pi} \int_{E_2} Mdt = \frac{1}{2\pi} \int_{-\pi}^{\pi} Mdt = M$$

Esto contradice que $z_0 \in K$. Entonces $z_0 \in \partial D(a, R)$, así que por hipótesis $u(z_0) = 0$. Es decir,

$$u(z_0) = M = \max\{u(z) : z \in \bar{D}(a, R)\} = 0$$

Por tanto, $u(z) \leq 0$ para todo $z \in D(a, R)$.

Aplicando la parte del lema que acabamos de ver a la función -u, tenemos que $-u(z) \le 0$ para todo $z \in D(a, R)$. Por tanto, $u \equiv 0$ en D(a, R).

Teorema 4.27 (Caracterización de la armonicidad por la propiedad del valor medio). Sea D un abierto en \mathbb{C} y sea $u: D \to \mathbb{R}$ continua. Supongamos que para cada $a \in D$ existe $r_a > 0$ con $D(a, r_a) \subset D$, tal que

$$u(a) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(a + re^{it}) dt, \quad r \in [0, r_a]$$

Entonces u es armónica en D.

Demostración. Sea $a \in D$. Tomamos $r_a > 0$ y $R = \frac{r_a}{2}$. Sea v la solución del problema de Dirichlet en D(a,R) con valores frontera u. Entonces $v: \bar{D}(a,R) \to \mathbb{R}$ es armónica en D(a,R), continua en $\bar{D}(a,R)$ y con u=v en $\partial D(a,R)$. Vamos a aplicar el lema a u-v. $u-v:\bar{D}(a,R) \to \mathbb{R}$ es continua y $u-v\equiv 0$ en $\partial D(a,R)$. Sea $z_0\in D(a,R)$. Tomamos $r_{z_0}>0$, que elegimos suficientemente pequeño para que $D(z_0,r_{z_0})\subset D(a,R)$. Si $r\in [0,r_{z_0})$, tenemos que

$$u(z_0) - v(z_0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(z_0 + re^{it}) dt - frac 12\pi \int_{-\pi}^{\pi} v(z_0 + re^{it}) dt = frac 12\pi \int_{-\pi}^{\pi} (u - v)(z_0 + re^{it}) dt$$

Por el lema, u-v=0 en D(a,R). Como v es armónica en D(a,R), u es armónica en D(a,R). Para cada $a \in D$ hemos encontrado R>0 con $D(a,R)\subset D$ tal que u es armónica en D(a,R). Entonces u es armónica en D.

Observación. Esta es la forma débil de la propiedad del valor medio. Como u es armónica en D, tenemos que u verifica la propiedad del valor medio.

Teorema 4.28. Sea D un dominio en \mathbb{C} y sea $\{u_n\}_{n=1}^{\infty}$ una sucesión de funciones armónicas en D. Supongamos que $\{u_n\}$ converge uniformemente en cada subconjunto compacto de D. Sea $u(z) = \lim_{n \to \infty} u_n(z), z \in D$. Entonces u es armónica en D.

Demostración. Tenemos $u: D \to \mathbb{R}$. Si $K \subset D$, K compacto, tenemos que $u_n \to u$ uniformemente en K y u_n es continua en K para cada $n \in \mathbb{N}$. Así que u es continua en K, luego u es continua en D. Sea $a \in D$ y sea R > 0 con $D(a, R) \subset D$. Sea $r \in [0, R)$. Tenemos que

$$u_n(a) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u_n(a + re^{it}) dt, \quad \forall n \in \mathbb{N}$$

Haciendo $n \to \infty$,

$$u(a) = \lim_{n \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} u_n(a + re^{it}) dt$$

Como $u_n \to u$ uniformemente en $\partial D(a, r)$,

$$u(a) = \lim_{n \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} u_n(a + re^{it}) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \lim_{n \to \infty} u_n(a + re^{it}) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(a + re^{it}) dt$$

Por el teorema anterior, u es armónica en D.

Vamos a ver qué sucede al cambiar la condición de convergencia uniforme en compactos por la condición de que $\{u_n\}$ sea creciente.

4.4. Desigualdades de Harnack

Sean $a \in \mathbb{C}$ y R > 0. Sea u una función armónica y no negativa en D(a, R). Entonces, si $r \in (0, R)$, se tiene que

$$\frac{R-r}{R+r}u(a) \le u(z) \le \frac{R+r}{R-r}, \quad \forall z \in \bar{D}(a,R)$$

Por tanto, tomando $r = \frac{R}{2}$, tenemos

$$\frac{1}{3}u(a) \le u(z) \le 3u(a), \quad z \in \bar{D}\left(a, \frac{R}{2}\right)$$

 $Demostraci\'on. \ \ \text{Fijamos} \ r \in (0,R). \ \ \text{Tomamos} \ \rho \ \text{con} \ r < \rho < R. \ \ \text{Sea} \ v : \bar{\mathbb{D}} \to \mathbb{R}, \ v(z) = u(a + \rho z).$

$$v: \mathbb{D} \to D(a, R) \xrightarrow{u} \mathbb{R}$$

 $z \mapsto a + \rho z$

v es continua en $\bar{\mathbb{D}}$, armónica en \mathbb{D} y no negativa en $\bar{\mathbb{D}}$.

Sea $z \in \partial D\left(0, \frac{r}{\rho}\right)$. z es de la forma $z = \frac{r}{\rho}e^{i\theta}$, con $\theta \in \mathbb{R}$. Entonces:

$$v(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} v(e^{it}) P_{r/\rho}(\theta - t) dt$$

Además,

$$v(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} v(e^{it}) dt$$

Recordemos que

$$\frac{1-r}{1+r} \le P_r(t) \le \frac{1+r}{1-r}, \quad 0 \le r < 1, \ t \in \mathbb{R}$$

Entonces, si $\theta \in \mathbb{R}$ y $z = \frac{r}{\rho}e^{i\theta}$, tenemos:

$$\begin{split} &\frac{1}{2\pi}\int_{-\pi}^{\pi}v(e^{it})\frac{1-r/\rho}{1+r/\rho}dt \leq \frac{1}{2\pi}\int_{-\pi}^{\pi}v(e^{it})P_{r/\rho}(\theta-t)dt \leq \frac{1}{2\pi}\int_{-\pi}^{\pi}v(e^{it})\frac{1+r/\rho}{1-r/\rho}dt \Leftrightarrow \\ &\Leftrightarrow \frac{\rho-r}{\rho+r}\frac{1}{2\pi}\int_{-\pi}^{\pi}v(e^{it})dt \leq v(z) \leq \frac{\rho+r}{\rho-r}\frac{1}{2\pi}\int_{-\pi}^{\pi}v(e^{it})dt \Leftrightarrow \frac{\rho-r}{\rho+r}v(0) \leq v(z) \leq \frac{\rho+r}{\rho-r}v(0) \end{split}$$

En términos de u,

$$\frac{\rho-r}{\rho+r}u(a) \leq u(a+\rho z) \leq \frac{\rho+r}{\rho-r}u(a), \quad \theta \in \mathbb{R}, \ \rho \in (r,R), \ z = \frac{r}{\rho}e^{i\theta}$$

Como $u(a + \rho z) = u\left(a + \rho \frac{r}{\rho}e^{i\theta}\right) = u(a + re^{i\theta})$, entonces

$$\frac{\rho - r}{\rho + r}u(a) \le u(a + \rho z) \le \frac{\rho + r}{\rho - r}u(a), \quad \theta \in \mathbb{R}, \ \rho \in (r, R)$$

Haciendo $\rho \to R^-$, tenemos que:

$$\frac{R-r}{R+r}u(a) \le u(a+re^{i\theta}) \le \frac{R+r}{R-r}u(a), \quad \forall \theta \in \mathbb{R}$$

Entonces:

$$\frac{R-r}{R+r}u(a) \le u(z) \le \frac{R+r}{R-r}u(a), \quad z \in \partial D(a,r)$$

Como u es continua en $\bar{D}(a,r)$ y armónica en D(a,r), por el principio del máximo y el principio del mínimo,

$$\max_{z \in \bar{D}(a,r)} u(z) = \max_{z \in \partial D(a,r)} u(z)$$

$$\min_{z \in \bar{D}(a,r)} u(z) = \min_{z \in \partial D(a,r)} u(z)$$

Entonces tenemos la desigualdad para todo $z \in \bar{D}(a, r)$.

Proposición 4.29. Sea D un dominio en \mathbb{C} y sea $\{u_n\}_{n=1}^{\infty}$ una sucesión de funciones armónicas y no negativas en D. Si existe $z_0 \in D$ tal que $\lim_{n \to \infty} u_n(z_0) = \infty$, entonces

$$\lim_{n \to \infty} u_n(z) = \infty, \quad \forall z \in D$$

siendo la convergencia uniforme en cada subconjunto compacto de D.

Demostración. Para cada $n \in \mathbb{N}$ tenemos $u_n : D \to \mathbb{R}$ armónica no negativa. Sea

$$A = \{ z \in D : \lim_{n \to \infty} u_n(z) = \infty \}$$

 $A \neq \emptyset$ porque $z_0 \in A$. Veamos que A es abierto y cerrado en D.

1. Probemos que A es abierto. Queremos ver que si $a \in A$ y R > 0 tal que $D(a, R) \subset D$, entonces $D(a, R/2) \subset A$ y $u_n \xrightarrow[n \to \infty]{} \infty$ uniformemente en D(a, R/2).

Basta ver la convergencia uniforme. Sea M>0, veamos que existe $n_0\in\mathbb{N}$ tal que si $n\geq n_0$ y $z\in D(a,R/2)$, entonces $u_n(z)>M$. Como $a\in A$, tenemos que $\lim_{n\to\infty}u_n(a)=\infty$. Por tanto, existe $n_0\in\mathbb{N}$ tal que

$$n \ge n_0 \Rightarrow u_n(a) > 3M$$

Entonces, si $n \ge n_0$ y $z \in D(a, R/2)$, por las desigualdades de Harnack tenemos

$$u_n(z) \ge \frac{1}{3}u_n(a) > \frac{1}{3}3M = M$$

Por tanto, A es abierto.

2. Veamos que A es cerrado en D, es decir, que $D \setminus A$ es abierto.

Sea $a \in D \setminus A$ y sea R > 0 con $D(a, R) \subset D$. $D(a, R/2) \subset D \setminus A$, ya que si $z \in D(a, R/2)$, entonces $u_n(z) \leq 3u_n(a)$ para todo $n \in \mathbb{N}$ y $z \in D$. Si $z \in A$, $\lim_{n \to \infty} u_n(z) = \infty$ y $\lim_{n \to \infty} u_n(a) = \infty$, pero $a \notin A$. Así que $D \setminus A$ es abierto.

A es abierto y cerrado en D, que es conexo. Como $A \neq \emptyset$, tenemos que A = D. Entonces $\lim_{n \to \infty} u_n(z) = \infty$ para todo $z \in D$. Sabemos que, dado $a \in D$ y R > 0 con $D(a,R) \subset D$, se tiene que $u_n \xrightarrow[n \to \infty]{} \infty$ uniformemente en D(a,R/2). Entonces $u_n \xrightarrow[n \to \infty]{} \infty$ uniformemente en cada subconjunto compacto de D.

Teorema 4.30 (Teorema de Harnack). Sea D un dominio en \mathbb{C} y sea $\{u_n\}_{n=1}^{\infty}$ una sucesión creciente de funciones armónicas en D. Para cada $z \in D$, sea $u(z) = \lim_{n \to \infty} u_n(z) \in \mathbb{R} \cup \{\infty\}$. Entonces se da una de las dos siguientes posibilidades:

- 1. $u \equiv \infty$. En este caso, $u_n \xrightarrow[n \to \infty]{} \infty$ uniformemente en cada subconjunto compacto de D.
- 2. $u(z) \in \mathbb{R}$ para todo $z \in D$. En este caso, u es armónica en D y $u_n \xrightarrow[n \to \infty]{} u$ uniformemente en cada subconjunto compacto de D.

Demostraci'on. Supongamos en primer lugar que u_n es no negativa para cada $n \in \mathbb{N}$. Hay dos posibilidades:

- Existe $z_0 \in D$ tal que $u(z_0) = \infty$. Entonces $u(z) = \lim_{n \to \infty} u_n(z) = \infty$ y $u_n \xrightarrow[n \to \infty]{} u$ uniformemente en cada subconjunto compacto de D. Se verifica (1).
- $u(z) \in \mathbb{R}$ para todo $z \in D$. Entonces $u : D \to \mathbb{R}$. Sea $a \in D$ y R > 0 con $D(a, R) \subset D$. Veamos que $\{u_n\}$ es uniformemente de Cauchy en D(a, R/2).

Sea $\varepsilon > 0$. Como $\{u_n(a)\}_{n=1}^{\infty}$ es una sucesión de Cauchy por ser convergente, tenemos que existe $n_0 \in \mathbb{N}$ tal que

$$n \ge m > n_0 \Rightarrow 0 \le u_n(a) - u_m(a) < \frac{\varepsilon}{3}$$

ya que $u_n - u_m$ es armónica en D(a, R) y no negativa. Por tanto, $\{u_n\}_{n=1}^{\infty}$ converge uniformemente en D(a, R/2).

Entonces, dado $a \in D$ y R > 0 con $D(a, R) \subset D$, hemos visto que $u_n \xrightarrow[n \to \infty]{} u$ uniformemente en D(a, R/2). Por tanto, $u_n \xrightarrow[n \to \infty]{} u$ uniformemente en cada subconjunto compacto de D. Entonces u es armónica en D, así que se verifica (2).

Consideramos ahora el caso general. Para cada $n \in \mathbb{N}$, sea $v_n = u_n - u_1$. Entonces $\{v_n\}_{n=1}^{\infty}$ es una sucesión creciente de funciones armónicas no negativas. Para cada $z \in D$, sea

$$v(z) = \lim_{n \to \infty} v_n(z) \in \mathbb{R} \cup \{\infty\}$$

Si $z \in D$,

$$v(z) = \lim_{n \to \infty} (u_n(z) - u_1(z)) = \begin{cases} \infty & \text{si } u(z) = \infty \\ u(z) - u_1(z) & \text{si } u(z) \in \mathbb{R} \end{cases}$$

Por el caso anterior se da una de las dos siguientes posibilidades:

- $v \equiv \infty$. Veamos que $v_n \to \infty$ uniformemente en cada subconjunto compacto de D. Sea $K \subset D$, K compacto. Sea $A = \min_{z \in K} u_1(z)$. Como $v_n \to \infty$ uniformemente en D, existe $n_0 \in \mathbb{N}$ tal que si $n \geq n_0$ y $z \in K$, entonces v(z) > M - A, con $M \in \mathbb{R}$. Entonces, si $n \geq n_0$ y $z \in K$, $u_n(z) = u_1(z) + v_n(z) > A + M - A = M$. Por tanto, se verifica (1).
- $v(z) \in \mathbb{R}$ para todo $z \in D$. Veamos que u es armónica y $u_n \xrightarrow[n \to \infty]{} u$ uniformemente en cada subconjunto compacto de D.

Sabemos que

$$v(z) = u(z) - u_1(z) \Leftrightarrow u(z) = u_1(z) + v(z), \quad z \in D$$

Entonces $u(z) \in \mathbb{R}$ para todo $z \in D$ y u es armónica en D. Además, $u_n - u_1 \xrightarrow[n \to \infty]{} u - u_1$ uniformemente en cada subconjunto compacto de D. Por tanto, $u_n \to u$ uniformemente en cada subconjunto compacto de D, así que se verifica (2).

Capítulo 5

El teorema de factorización de Weierstrass

Si P(z) es un polinomio con ceros z_1, \ldots, z_n , entonces podemos factorizar P(z) como

$$P(z) = c \prod_{k=1}^{n} (z - z_k)$$

El objetivo es factorizar una función holomorfa usando sus ceros.

5.1. Funciones holomorfas sin ceros o con finitos ceros

Teorema 5.1. Sea D un dominio simplemente conexo y sea f una función holomorfa en D sin ceros. Entonces existe g holomorfa en D tal que $f = e^g$.

Teorema 5.2. Sea D un dominio simplemente conexo y sea f una función holomorfa en D con un número finito de ceros z_1, \ldots, z_n . Entonces existe g holomorfa en D tal que

$$f(z) = e^{g(z)} \prod_{n=1}^{N} (z - z_n)$$

Demostración. Sea

$$h(z) = \frac{f(z)}{(z - z_1) \dots (z - z_N)}$$

Solucionando las singularidades evitables, h es holomorfa en D y sin ceros. Entonces por el teorema anterior existe g holomorfa en D tal que

$$e^{g(z)} = h(z) = \frac{f(z)}{(z - z_1)\dots(z - z_N)} \Rightarrow f(z) = e^{g(z)} \prod_{n=1}^{N} (z - z_n)$$

Desde otro punto de vista, sea D un dominio simplemente conexo y $\{z_{\alpha}\}_{{\alpha}\in\mathcal{F}}\subset D$, podemos plantearnos si existe f holomorfa en D tal que f tiene ceros $\{z_{\alpha}\}_{{\alpha}\in\mathcal{F}}$.

Si $\{z_{\alpha}\}_{{\alpha}\in\mathcal{F}}$ tiene un punto de acumulación en D entonces, por el teorema de identidad de Weierstrass, $f\equiv 0$. Nos interesa el caso en el que $\{z_n\}_{n=1}^{\infty}$ es numerable y sin puntos de acumulación en D.

Sea $D = \mathbb{C}$ y sea $\{z_n\}_{n=1}^{\infty}$ numerable y sin puntos de acumulación. Habría que definir $\prod_{n=1}^{\infty} (z - z_n)$, por ejemplo de la forma

$$\prod_{n=1}^{\infty} (z - z_n) = \lim_{N \to \infty} \prod_{n=1}^{N} (z - z_n)$$

Como $\{z_n\}_{n=1}^{\infty}$ es infinito, entonces necesariamente $|z_n| \to \infty$. En caso contrario, $\{z_n\}$ tendría un punto de acumulación en \mathbb{C} . Si fijamos $z \in \mathbb{C}$, existe $n_0 \in \mathbb{N}$ tal que si $n \geq n_0$ entonces $|z - z_n| > 2$, así que

$$\lim_{N \to \infty} \prod_{n=n_0}^{\infty} |z - z_n| = \infty$$

5.2. Productos infinitos

Sea $\{a_n\}_{n=1}^{\infty}$ una sucesión de números complejos. Queremos darle sentido a $\prod_{n=1}^{\infty} a_n$. Por ejemplo, si $P_N = \prod_{n=1}^N a_n$, podemos definir

$$\prod_{n=1}^{\infty} a_n = \lim_{N \to \infty} P_N = \lim_{N \to \infty} \prod_{n=1}^{N} a_n$$

Sin embargo, esta definición plantea algunos problemas.

- 1. Si tenemos una multiplicación de números complejos cuyo resultado es 0, queremos que uno de ellos sea cero. Sin embargo, si $a_n = \frac{1}{n}$, entonces $P_N = \prod_{n=1}^N \frac{1}{n} = \frac{1}{N!}$ y $\lim_{n \to \infty} P_N = 0$, con $a_n \neq 0$ para todo $n \in \mathbb{N}$.
- 2. Queremos que la convergencia depende de la cola. Sin embargo, con esta definición depende de un número finito de términos.

Sea $a_1=a$ y $a_n=n$ para $n\geq 2$, entonces $\lim_{N\to\infty}P_N=0$ porque $P_N=0$ para todo $N\in\mathbb{N}$. Sin embargo, si $a_n=n+1$ para todo $n\geq 2$, entonces $\lim_{N\to\infty}P_N=\infty$.

Definición 5.1. Sea $\{a_n\}_{n=1}^{\infty}$ una sucesión de números complejos. Diremos que el producto infinito asociado a $\{a_n\}_{n=1}^{\infty}$, que denotamos por $\prod_{n=1}^{\infty} a_n$, converge si:

- 1. Existe $n_0 \in \mathbb{N}$ tal que $a_n \neq 0$ para todo $n \geq n_0$.
- 2. Existe $\lim_{N\to\infty} \prod_{n=1}^N a_n$ y además es distinto de cero.

Si converge, entonces $\prod_{n=1}^{\infty} a_n = \lim_{N \to \infty} \prod_{n=1}^{N} a_n$.

Ejemplo.

1. Se
a $a_n=\frac{1}{n},\,n\in\mathbb{N}.$ Observamos que $a_n\neq 0$ para todo
 $n\in\mathbb{N}.$ Sin embargo,

$$\lim_{N \to \infty} \prod_{n=1}^{N} a_n = \lim_{N \to \infty} \frac{1}{N!} = 0$$

Por tanto, $\prod_{n=1}^{\infty} a_n$ no converge.

2. Sea $a_1 = 0$ y $a_n = 1 - \frac{1}{n}$, $n \ge 2$. Se verifica que $a_n \ne 0$ para $n \ge 2$. Ahora bien,

$$\prod_{n=2}^{N} \left(1 - \frac{1}{n} \right) = \prod_{n=2}^{N} \frac{n-1}{n} = \frac{1}{2} \frac{2}{3} \dots \frac{N-1}{N} = \frac{1}{N} \xrightarrow[N \to \infty]{} 0$$

Por tanto, $\prod_{n=1}^{\infty} a_n$ no converge.

3. Sea $a_1=0$ y $a_n=1-\frac{1}{n^2}, n\geq 2$. Es claro que $a_n\neq 0$ para $n\geq 2$. Además,

$$\begin{split} &\prod_{n=2}^{N} \left(1 - \frac{1}{n^2}\right) = \prod_{n=2}^{N} \frac{n^2 - 1}{n^2} = \prod_{n=2}^{N} \frac{(n-1)(n+1)}{n^2} = \left(\prod_{n=2}^{N} \frac{n-1}{n}\right) \left(\prod_{n=2}^{N} \frac{n+1}{n}\right) = \\ &= \frac{1}{N} \frac{N+1}{2} \to \frac{1}{2} \end{split}$$

Por tanto, $\prod_{n=1}^{\infty} a_n$ converge.

Teorema 5.3. Sea $\{a_n\}_{n=1}^{\infty}$ una sucesión de números complejos. Entonces $\prod_{n=1}^{\infty} a_n$ converge si ocurre lo siguiente.

- 1. El conjunto $\{a_n : a_n = 0\}$ es finito.
- 2. Si existe $M \in \mathbb{N}$ tal que $a_n \neq 0$ para todo $n \geq M$, entonces existe $\lim_{N \to \infty} \prod_{n=M}^N a_n$ y es distinto de 0.

Teorema 5.4. Sea $\{a_n\}_{n=1}^{\infty}$ tal que $\prod_{n=1}^{\infty} a_n$ converge. Entonces:

- 1. $\lim_{n\to\infty} a_n = 1.$
- 2. $\prod_{n=1}^{\infty} a_n = 0$ si y solo si existe $n_0 \in \mathbb{N}$ tal que $a_{n_0} = 0$.
- 3. Sea $N \in \mathbb{N}$. Entonces $\prod_{n=1}^{\infty} a_{n+N}$ converge y además

$$\prod_{n=1}^{\infty} a_n = \left(\prod_{n=1}^{N} a_n\right) \left(\prod_{n=1}^{\infty} a_{n+N}\right)$$

4. Sea $\{b_n\}_{n=1}^{\infty}$ tal que $\prod_{n=1}^{\infty} b_n$ converge. Entonces $\prod_{n=1}^{\infty} a_n b_n$ converge y además

$$\prod_{n=1}^{\infty} a_n b_n = \left(\prod_{n=1}^{\infty} a_n\right) \left(\prod_{n=1}^{\infty} b_n\right)$$

Demostración.

1. Como $\prod_{n=1}^{\infty} a_n$ converge, existe $n_0 \in \mathbb{N}$ tal que $a_n \neq 0$ para todo $n \geq n_0$ y $\lim_{N \to \infty} \prod_{n=n_0}^N a_n = q$, con q > 0. Si $M > n_0$,

$$a_M = \frac{\prod_{n=n_0}^M a_n}{\prod_{n=n_0}^{M-1} a_n} \xrightarrow[M \to \infty]{} \frac{q}{q} = 1$$

2. Supongamos que existe $n_0 \in \mathbb{N}$ tal que $a_{n_0} = 0$. Como $\prod_{n=1}^{\infty} a_n$ converge, entonces

$$\prod_{n=1}^{\infty} a_n = \lim_{N \to \infty} \prod_{n=1}^{N} a_n = \lim_{N \to \infty} P_N \to 0$$

Si $N > n_0$, entonces $P_N = a_1 \dots a_{n_0-1} 0 a_{n_0+1} \dots a_N = 0$.

Recíprocamente, si $a_n \neq 0$ para todo $n \in \mathbb{N}$, entonces $\prod_{n=1}^{\infty} a_n \neq 0$ y $\prod_{n=1}^{\infty} a_n$ converge.

3. Tomemos $N \in \mathbb{N}$. Si $\prod_{n=1}^{\infty} a_n$ converge, entonces existe $n_0 \in \mathbb{N}$ tal que $a_n \neq 0$ para todo $n \geq n_0$ y $\lim_{M \to \infty} \prod_{n=n_0}^M a_n = q$ con $q \neq 0$. Entonces $a_{n+N} \neq 0$ para todo $n \geq n_0$ y además

$$\prod_{n=n_0}^{M} a_{n+N} = \prod_{n=n_0+N}^{M+N} a_n = \frac{\prod_{n=n_0}^{M+N} a_n}{a_{n_0} \dots a_{n_0+N-1}} \to \frac{q}{a_{n_0} \dots a_{n_0+N-1}} \neq 0$$

Por tanto, $\prod_{n=1}^{\infty} a_{n+N}$ converge.

- 4. $\prod_{n=1}^{\infty} a_n$ y $\prod_{n=1}^{\infty} b_n$ convergen. Entonces:
 - Existe $n_a \in \mathbb{N}$ tal que $a_n \neq 0$ para todo $n \geq n_a$ y $\lim_{N \to \infty} \prod_{n=n_a}^N a_n = l_a \neq 0$.
 - Existe $n_b \in \mathbb{N}$ tal que $b_n \neq 0$ para todo $n \geq n_b$ y $\lim_{N \to \infty} \prod_{n=n_b}^N b_n = l_b \neq 0$.

Sea $n_0 = \max\{n_a, n_b\}$. Entonces $a_n b_n \neq 0$ para todo $n \geq n_0$.

$$\lim_{N \to \infty} \prod_{n=n_0}^{N} a_n b_n \to c \neq 0$$

Como los productos convergen,

$$\prod_{n=1}^{\infty} a_n b_n = \lim_{N \to \infty} \left(\prod_{n=1}^N a_n \right) \left(\prod_{n=1}^N b_n \right) = \left(\lim_{N \to \infty} \prod_{n=1}^N a_n \right) \left(\lim_{N \to \infty} \prod_{n=1}^N b_n \right) = \left(\prod_{n=1}^{\infty} a_n \right) \left(\prod_{n=1}^{\infty} b_n \right) = \left(\prod_{n=1}^{\infty} a_n \right) \left(\prod_{n=1}^{\infty} b_n \right) = \left(\prod_{n=1}^{\infty} a_n \right) \left(\prod_{n=1}^{\infty} b_n \right) = \left(\prod_{n=1}^{\infty} a_n \right) \left(\prod_{n=1}^{\infty} b_n \right) = \left(\prod_{n=1}^{\infty} a_n \right) \left(\prod_{n=1}^{\infty} b_n \right) = \left(\prod_{n=1}^{\infty} a_n \right) \left(\prod_{$$

Teorema 5.5. Sea $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C}$, entonces son equivalentes:

- 1. $\prod_{n=1}^{\infty} a_n$ converge.
- 2. Existe $n_0 \in \mathbb{N}$ tal que $a_n \neq 0$ para todo $n \geq n_0$ y $\sum_{n=n_0}^{\infty} \text{Log}(a_n)$ converge.

Demostraci'on.

 \Rightarrow Como $\prod_{n=1}^{\infty} a_n$ converge, existe $n_0 \in \mathbb{N}$ tal que $a_n \neq 0$ para todo $n \geq n_0$ y además $\prod_{n=n_0}^{N} \rightarrow q$ con $q \neq 0$. Sea $S_N = \sum_{n=n_0}^{N} \text{Log}(a_n)$. Entonces:

$$e^{S_N} = e^{\sum_{n=1}^N \operatorname{Log}(a_n)} = \prod_{n=n_0}^N a_n = q_N \Rightarrow S_N \in \operatorname{log}(q_n) \Rightarrow S_N = \operatorname{Log}(a_n) + 2\pi k_N i, \quad k_N \in \mathbb{Z}$$

Distinguimos dos casos:

1. Supongamos que $q \notin (-\infty, 0)$. Como $q_N \to q$, entonces existe $N_0 \in \mathbb{N}$ tal que $q_N \notin (-\infty, 0]$ para todo $N \ge N_0$. Así que $\lim_{N \to \infty} \text{Log}(q_N) = \text{Log}(q)$.

$$\begin{cases} S_{N+1} - S_N = \operatorname{Log}(q_{N+1}) - \operatorname{Log}(q_N) + 2\pi(k_{N+1} - k_N)i \\ S_{N+1} - S_N = \operatorname{Log}(a_{N+1}) \xrightarrow[N \to \infty]{} 0 \end{cases} \Rightarrow \lim_{N \to \infty} (k_{N+1} - k_N) = 0$$

Como $k \in \mathbb{Z}$, entonces existe $j \in \mathbb{N}$ tal que $k_N = k$ para todo $N \ge j$.

2. Supongamos que $q \in (-\infty, 0)$. Definimos una nueva sucesión $\tilde{a}_{n_0} = -a_{n_0}$ y $\tilde{a}_n = a_n$ para $n > n_0$.

$$\tilde{q}_N = \prod_{n=n_0}^N \tilde{a}_n = -\prod_{n=n_0}^N a_n \to -q > 0$$

Por el caso anterior. $\tilde{S}_N = \sum_{n=n_0}^N \text{Log}(\tilde{a}_n)$ converge. Equivalentemente, S_N converge.

 \Leftarrow Falta ver que $\prod_{n=n_0}^N a_n \to q \neq 0$. Sabemos que $S_N = \sum_{n=n_0}^N \text{Log}(a_n) \to p$ y $q_N = e^{S_N}$. Tomando límites,

$$\lim_{N \to \infty} q_N = \lim_{N \to \infty} e^{S_N} = e^{\lim_{N \to \infty} S_N} = e^p = q \neq 0$$

Corolario 5.6. Sea $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C} \setminus \{0\}$, entonces son equivalentes:

- 1. $\prod_{n=1}^{\infty} a_n$ converge.
- 2. $\sum_{n=1}^{\infty} \text{Log}(a_n)$ converge.

Además,

$$\prod_{n=1}^{\infty} a_n = e^{\sum_{n=1}^{\infty} \text{Log}(a_n)}$$

Queremos encontrar una noción de convergencia absoluta. Para las series sabemos lo siguiente.

Teorema 5.7. Sea $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C}$, entonces son equivalentes:

- 1. $\sum_{n=1}^{\infty} a_n$ converge absolutamente.
- 2. Dada $\sigma: \mathbb{N} \to \mathbb{N}$ permutación, $\sum_{n=1}^{\infty} a_{\sigma(n)}$ converge y es igual a $\sum_{n=1}^{\infty} a_n$.
- 3. Sea $\{A_n\}$ una partición de $\mathbb N$ con infinitos elementos. Entonces $\sum_{k\in A_n}a_k$ converge y además

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \left(\sum_{k \in A_n} a_n \right)$$

Como consecuencia, si $\sum_{n=1}^{\infty} a_n$ converge absolutamente, en particular converge.

Uniendo los teoremas anteriores, obtenemos el siguiente resultado.

Teorema 5.8. Sea $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C} \setminus \{0\}$. Entonces son equivalentes:

- 1. $\sum_{n=1}^{\infty} \text{Log}(a_n)$ converge absolutamente.
- 2. Dada $\sigma: \mathbb{N} \to \mathbb{N}$ permutación, $\prod_{n=1}^{\infty} a_{\sigma(n)}$ converge y su valor es

$$\prod_{n=1}^{\infty} a_n = e^{\sum_{n=1}^{\infty} \text{Log}(a_n)}$$

3. Sea $\{A_n\}$ una partición de $\mathbb N$ con infinitos elementos. Entonces $\prod_{k\in A_n} a_k$ converge y además

$$\prod_{n=1}^{\infty} a_n = \prod_{n=1}^{\infty} \left(\prod_{k \in A_n} a_n \right)$$

Lema 5.9. Sea $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C} \setminus \{0\}$, entonces son equivalentes:

- 1. $\sum_{n=1}^{\infty} \text{Log}(a_n)$ converge absolutamente.
- 2. $\sum_{n=1}^{\infty} (1-a_n)$ converge absolutamente.

Demostración. Empecemos por $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$, entonces

$$Log(1-z) = -\sum_{n=0}^{\infty} \frac{z^{n+1}}{n+1}$$

Además,

$$Log(1+z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{n+1}}{n+1}$$

Queremos analizar

$$\left| \frac{\text{Log}(1+z)}{z} - 1 \right| = \left| \sum_{n=0}^{\infty} \frac{(-1)^n z^{n+1}}{n+1} - 1 \right| = \left| \sum_{n=1}^{\infty} \frac{(-1)^n z^n}{n+1} \right| \le \frac{1}{2} \sum_{n=1}^{\infty} |z|^n = \frac{1}{2} \frac{|z|}{1 - |z|}$$

Si $|z| < \frac{1}{2}$, entonces

$$\left| \frac{\log(1+z)}{z} - 1 \right| = \frac{1}{2} \frac{|z|}{1-|z|} \le \frac{1}{2}$$

Así que

$$\left| \left| \frac{\operatorname{Log}(1+z)}{z} \right| - 1 \right| \leq \left| \frac{\operatorname{Log}(1+z)}{z} - 1 \right| \leq \frac{1}{2} \Rightarrow \frac{1}{2} \leq \left| \frac{\operatorname{Log}(1+z)}{z} \right| \leq \frac{3}{2}$$

Por último, sea z = w - 1, entonces si $|w - 1| = |z| \le \frac{1}{2}$,

$$\frac{1}{2} \le \left| \frac{\text{Log}(w)}{1 - w} \right| \le \frac{3}{2}$$

Basta ver que existe $n_0 \in \mathbb{N}$ tal que $|1 - a_n| < \frac{1}{2}$.

 \Leftarrow Como $\sum_{n=1}^{\infty} (1-a_n)$ converge absolutamente, $a_n \to 1$. Por tanto, existe $n_0 \in \mathbb{N}$ tal que $|1-a_n| \leq \frac{1}{2}$ para todo $n \geq n_0$.

 \Rightarrow Análogo.

Teorema 5.10. Sea $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C}$, entonces son equivalentes:

- 1. $\sum_{n=1}^{\infty} (1-a_n)$ converge absolutamente.
- 2. Existe $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$ se tiene que $|1 a_n| \leq \frac{1}{2}$ y $\sum_{n=n_0}^{\infty} \text{Log}(a_n)$ converge uniformemente.
- 3. Para cada permutación $\sigma: \mathbb{N} \to \mathbb{N}$ se tiene que $\prod_{n=1}^{\infty} a_{\sigma(n)}$ converge y además

$$\prod_{n=1}^{\infty} a_{\sigma(n)} = \prod_{n=1}^{\infty} a_n$$

4. Sea $\{A_n\}$ una partición de $\mathbb N$ con infinitos elementos. Entonces $\prod_{k\in A_n}a_k$ converge y además

$$\prod_{n=1}^{\infty} a_n = \prod_{n=1}^{\infty} \left(\prod_{k \in A_n} a_n \right)$$

Definición 5.2 (Convergencia absoluta). Sea $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C}$, su producto infinito asociado converge absolutamente si $\sum_{n=1}^{\infty} (1-a_n)$ converge absolutamente.

Observación.

- 1. Si $\prod_{n=1}^{\infty} a_n$ converge absolutamente, entonces converge.
- 2. Si $\prod_{n=1}^{\infty} a_n$ converge absolutamente, entonces $\prod_{n=1}^{\infty} (1 + |1 a_n|)$ converge absolutamente.

Demostración. $\prod_{n=1}^{\infty} (1+|1-a_n|)$ converge absolutamente si y solo si $\prod_{n=1}^{\infty} (1-1-|1-a_n|) = -\prod_{n=1}^{\infty} |1-a_n|$ converge absolutamente.

5.3. Funciones holomorfas definidas por productos infinitos

Teorema 5.11. Sea $\{f_n\}_{n=1}^{\infty}$ una sucesión de funciones holomorfas en un dominio D. Entonces son equivalentes:

1. $\sum_{n=1}^{\infty} (1 - f_n)$ es absoluta y uniformemente convergente en compactos de D.

2. Para cada compacto K en D existe $n_K \in \mathbb{N}$ tal que para todo $n \ge n_K$ se tiene que $|1 - f_n(z)| \le \frac{1}{2}$ $y \sum_{n=n_K}^{\infty} \text{Log}(f_n)$ converge absoluta y uniformemente en K.

Lema 5.12. Sea $\{u_k\}_{k=1}^{\infty} \subset \mathbb{C}$. Entonces

$$\left| \prod_{k=1}^{n} (1 + u_k) - 1 \right| \le \prod_{k=1}^{n} (1 + |u_k|) - 1, \quad \forall n \in \mathbb{N}$$

Demostración. Razonamos por inducción.

 \blacksquare Para n=1,

$$|1+u-1-1|=|u_1|\leq |u_1|$$

• Supongamos que es cierto para n y veamos para el caso n+1.

$$\begin{split} & \left| \prod_{k=1}^{n+1} (1+u_k) - 1 \right| = \left| (1+u_{n+1}) \prod_{k=1}^{n+1} (1+u_k) - 1 \right| = \left| (1+u_{n+1}) \left(\prod_{k=1}^{\infty} (1+u_k) - 1 \right) + u_{n+1} \right| \le \\ & \le |1+u_{n+1}| \left| \prod_{k=1}^{\infty} (1+u_k) - 1 \right| + |u_{n+1}| \le |1+u_{n+1}| \left| \prod_{k=1}^{\infty} (1+|u_k|) - 1 \right| + |u_{n+1}| \le \\ & \le (1+|u_{n+1}|) \left| \prod_{k=1}^{\infty} (1+|u_k|) - 1 \right| + |u_{n+1}| = \prod_{k=1}^{n+1} (1+|u_k|) - 1 \end{split}$$

Teorema 5.13. Sea $\{f_n\}_{n=1}^{\infty}$ una sucesión de funciones holomorfas en D. Si $\sum_{n=1}^{\infty} (1-f_n)$ converge absoluta y uniformemente en compactos de D, entonces:

- 1. $\prod_{k=1}^n$ converge uniformemente en cada compacto de D a una función holomorfa P que denotamos por $\prod_{n=1}^{\infty} f_n$.
- 2. La convergencia de $\prod_{k=1}^n f_k$ no depende de reordenaciones.
- 3. Para cada $z_0 \in D$ tenemos que $ord(z_0, P) = \sum_{k=1}^{\infty} ord(z_0, f_k)$, donde $ord(z_0, f)$ es el orden de z_0 como cero de f.
- 4. Las derivadas logarítmicas $\frac{P'}{P}$ y $\frac{f'_n}{f_n}$ existen como funciones meromorfas. Además,

$$\frac{P'}{P} = \sum_{k=1}^{\infty} \frac{f'_k}{f_k}$$

Si R > 0 y $\overline{D(z_0, R)} \subset D$ existe $n_0 \in \mathbb{N}$ tal que f_n no tiene ceros en $\overline{D(z_0, R)}$ para todo $n \ge n_0$ y $\sum_{n=n_0+1}^{\infty} \frac{f'_n}{f_n}$ converge absoluta y uniformemente en $\overline{D(z_0, R)}$.

Demostración.

1. Sea K compacto de D y sea $P_n = \prod_{k=1}^n f_k$. Basta ver que P_n es uniformemente de Cauchy. En primer lugar, veamos que P_n es uniformemente acotado en K. Como $\sum_{n=1}^{\infty} (1 - f_n)$ converge absoluta y uniformemente en K, entonces existe c_K tal que $\sum_{n=1}^{\infty} |1 - f_n(z)| < c_K$. Entonces:

$$|P_n| = \left| \prod_{k=1}^n f_k \right| = \left| \prod_{k=1}^n (1 + f_k - 1) \right| \le \prod_{k=1}^n (1 + |1 - f_k|) \le \prod_{k=1}^n e^{|1 - f_k|} = e^{\sum_{k=1}^n |1 - f_k|} \le e^{\sum_{k=1}^n |1 - f_k|} < e^{c_K}$$

Ahora, veamos que $\{f_n\}$ es uniformemente de Cauchy en K. Sea $\varepsilon>0$, existe $\delta>0$ de modo que si $|x|<\delta$ entonces $e^{c_K}|e^x-1|<\varepsilon$. Como $\sum_{n=1}^\infty (1-f_n)$ es de Cauchy uniformemente en K, existe n_K tal que si $m\leq n\leq n_K$, entonces $\sum_{k=n}^m |1-f_k|<\delta$. Por tanto, si $m\geq n\geq n_K$,

$$|P_m - P_n| = \left| \prod_{k=1}^m f_k - \prod_{k=1}^n f_k \right| = |P_n| \left| \left(\prod_{k=n+1}^m f_k \right) - 1 \right| \le e^{c_K} \left| \prod_{k=n+1}^m (1 + f_k - 1) - 1 \right| \le e^{c_K} \left(\prod_{k=n+1}^m (1 + |1 - f_k|) - 1 \right) \le e^{c_K} \left(e^{\sum_{k=n+1}^m |1 - f_k|} - 1 \right) < \varepsilon$$

- 2. Es consecuencia de (1).
- 3. Sabemos que existe $n_0 \in \mathbb{N}$ tal que $\sum_{n=n_0}^{\infty} |1-f_n(z)| < \frac{1}{2}$ para todo $z \in \overline{D(z_0, R')}$, con $\overline{D(z_0, R)} \subset D(z_0, R')$. Entonces, en particular $|1-f_n(z)| < \frac{1}{2}$ para todo $n \geq n_0 + 1$. Así que f_n no se anula en $\overline{D(z_0, R')}$ para todo $n \geq n_0 + 1$. Sea entonces $g_n = \prod_{k=n_0+1}^n f_k$. Sabemos que g_n converge uniformemente en $\overline{D(z_0, R')}$ a una función g.

$$|g_n(z) - 1| = \left| \left(\prod_{k=n_0+1}^n f_k(z) \right) - 1 \right| = \left| \prod_{k=n_0+1}^n (1 + f_k(z) - 1) - 1 \right| \le$$

$$\le \prod_{k=n_0+1}^n (1 + |f_k(z) - 1|) - 1 \le e^{\sum_{k=n_0}^n |1 - f_k(z)|} - 1 \le e^{1/2} - 1, \quad \forall z \in \overline{D(z_0, R')}$$

Por tanto, g no tiene ceros en $\overline{D(z_0, R')}$. Entonces

$$P = f_1 \dots f_{n_0} \prod_{n=n_0+1}^{\infty} f_n = f_1 \dots f_{n_0} g$$

Como g es no nula,

$$ord(z_0, P) = \sum_{n=1}^{n_0} ord(z_0, f_n) + ord(z_0, g) = \sum_{n=1}^{\infty} ord(z_0, f_n)$$

4. De la expresión anterior tenemos que

$$\frac{P'}{P} = \sum_{n=1}^{n_0} \frac{f'_n}{f_n} + \frac{g'}{g}$$

Falta ver que $\sum_{n=n_0+1}^N \frac{f_n'}{f_n} \to \frac{g'}{g}$. Como $\sum_{n=n_0+1}^N f_k = \frac{g_N'}{g_N}$, podemos ver equivalentemente que $\frac{g_N'}{g_N} \to \frac{g'}{g}$ uniformemente en $\overline{D(0,R')}$.

$$\begin{split} \left| \frac{g_N'(z)}{g_N(z)} - \frac{g'(z)}{g(z)} \right| &= \left| \frac{g_N'(z)g(z) - g'(z)g_N(z)}{g_N(z)g(z)} \right| = \\ &= \left| \frac{g_N'(z)g(z) - g(z)g'(z) + g(z)g'(z) - g'(z)g_N(z)}{g_N(z)g(z)} \right| \leq \\ &\leq \frac{|g(z)||g_N'(z) - g'(z)| + |g'(z)||g_N(z) - g(z)|}{|g_N(z)||g(z)|} \end{split}$$

Sabemos que

$$||g_n(z)| - 1| \le |g_n(z) - 1| < e^{1/2} - 1 \Leftrightarrow 2 - e^{1/2} < |g_n(z)| < e^{1/2}$$

 $||g(z)| - 1| \le |g(z) - 1| < e^{1/2} - 1 \Leftrightarrow 2 - e^{1/2} < |g(z)| < e^{1/2}$

Además, existe $c_K = \max_{z \in \overline{D(z_0, R')}} (|g(z)| + |g'(z)|)$. Por tanto,

$$\left|\frac{g_N'(z)}{g_N(z)} - \frac{g'(z)}{g(z)}\right| \to 0$$

uniformemente en $\overline{D(z_0,R')}$.

Ejemplo.

1. $\prod_{n=1}^{\infty} \left(1 - \frac{z}{n^2}\right)$. Veamos que converge uniformemente en compactos de \mathbb{C} .

Sea K compacto de C. Entonces existe R > 0 tal que $K \subset \overline{D(0,R)}$.

$$\sum_{n=1}^{\infty} \left| 1 - \left(1 - \frac{z}{n^2} \right) \right| = \sum_{n=1}^{\infty} \frac{|z|}{n^2} \le R \sum_{n=1}^{\infty} \frac{1}{n^2} \le Rc$$

Por el teorema anterior, el producto converge uniformemente en K. Además, $\prod_{n=1}^{\infty} \left(1 - \frac{z}{n^2}\right)$ se anula en $\{n^2 : n \in \mathbb{N}\}$.

2. Busquemos una función entera que se anule en \mathbb{Z} y cuyos ceros tengan orden 1. Consideramos $P(z)=z\prod_{n=1}^{\infty}\left(1-\frac{z^2}{n^2}\right)$. Sea K un compacto en \mathbb{C} , existe R>0 tal que $K\subset\overline{D(0,R)}$.

$$\sum_{n=1}^{\infty} \left| \frac{z^2}{n^2} \right| = \sum_{n=1}^{\infty} \frac{|z|^2}{n^2} \le R^2 c$$

Por tanto, converge uniformemente en K.

La función $z \mapsto \sin(\pi z)$ tiene las mismas características que buscábamos en P. Por tanto, la función

$$z \mapsto \frac{\sin(\pi z)}{P(z)} = \frac{\sin(\pi z)}{z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right)}$$

es una función holomorfa sin ceros y se puede factorizar de la forma

$$\frac{\sin(\pi z)}{z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right)} = e^{\varphi(z)}$$

5.4. El teorema de factorización de Weierstrass

Sea $\{z_{\alpha}\}_{{\alpha}\in\mathcal{F}}$ una colección de puntos de \mathbb{C} . Nuestro objetivo era encontrar una función entera que se anule en $\{z_{\alpha}\}_{{\alpha}\in\mathcal{F}}$.

- Si $\{z_k\}_{k=1}^N$ es finita, esta función es $\prod_{n=1}^N (z-z_n)$.
- Si $\{z_{\alpha}\}_{{\alpha}\in\mathcal{F}}$ tiene un punto de acumulación, entonces la función tiene que ser nula.

En el caso restante, $\{z_k\}_{k=1}^{\infty}$ tiene $\lim_{k\to\infty}|z_k|=\infty$. Consideramos la expresión

$$\prod_{k=1}^{\infty} \left(1 - \frac{z}{z_k} \right)$$

Si $z \in \overline{D(0,R)}$ con R > 0,

$$\sum_{k=1}^{\infty}\left|1-\left(1-\frac{z}{z_k}\right)\right|=\sum_{k=1}^{\infty}\frac{|z|}{|z_k|}\leq R\sum_{k=1}^{\infty}\frac{1}{|z_k|}$$

Teorema 5.14. Sea $\{z_k\}_{k=1}^{\infty} \subset \mathbb{C} \setminus \{0\}$ tal que $\sum_{k=1}^{\infty} \frac{1}{|z_k|}$ converge y $\lim_{k \to \infty} |z_k| = \infty$. Entonces $\prod_{k=1}^{\infty} \left(1 - \frac{z}{z_k}\right)$ converge absoluta y uniformemente en compactos de \mathbb{C} y además tiene como ceros $\{z_k\}_{k=1}^{\infty}$.

Observación. La función $z^N \prod_{n=1}^{\infty} \left(1 - \frac{z}{z_n}\right)$ tiene como ceros $\{z_n\}_{n=1}^{\infty}$ y además el 0 es un cero de multiplicidad N.

Falta por ver qué ocurre cuando $\sum_{k=1}^{\infty} \frac{1}{|z_k|}$ no converge, donde $\{z_k\}_{k=1}^{\infty}$ con $\lim_{k\to\infty} |z_k| = \infty$. Consideramos

$$\prod_{k=1}^{\infty} \left(1 - \frac{z}{z_k} \right) e^{q_k \left(\frac{z}{z_k} \right)}$$

Veamos un razonamiento intuitivo. Que el producto absoluto converja absoluta y uniformemente en compactos de $\mathbb C$ es análogo a que converja la serie

$$\sum_{k=1}^{\infty} \left| \operatorname{Log} \left(\left(1 - \frac{z}{z_k} \right) e^{q_k \left(\frac{z}{z_k} \right)} \right) \right| = \sum_{k=1}^{\infty} \left| \operatorname{Log} \left(1 - \frac{z}{z_k} \right) + q_k \left(\frac{z}{z_k} \right) \right|$$

Si conseguimos que

$$\sup_{|z| < R} \left| \operatorname{Log} \left(1 - \frac{z}{z_k} \right) + q_k \left(\frac{z}{z_k} \right) \right| < M_K(R)$$

y además $\sum_{k=1}^{\infty} M_K(R) < \infty$, por el criterio de la mayorante de Weierstrass se tiene la convergencia. Para $k \geq k_0$, tenemos que

$$\frac{|z|}{|z_k|} \le \frac{R}{2R} = \frac{1}{2} < 1$$

Sea $w = \frac{z}{z_k}$,

$$|\text{Log}(1-w) + q_k(w)| = \left| -\text{Log}\left(\frac{1}{1-w}\right) + q_k(w) \right| = \left| \sum_{n=1}^{\infty} \frac{w^n}{n} - q_k(w) \right|$$

Entonces, si $q_k(w) = \sum_{n=1}^k \frac{w^n}{n}$,

$$\left| \sum_{n=1}^{\infty} \frac{w^n}{n} - q_k(w) \right| = \left| \sum_{n=k+1}^{\infty} \frac{w^n}{n} \right| \le \frac{1}{k+1} \sum_{n=k+1}^{\infty} |w|^n = \frac{|w|^{k+1}}{k+1} \frac{1}{1-|w|}$$

Tenemos que $\frac{1}{1-|w|}$ < 2. Por tanto, queremos que

$$\sum_{k=k_0}^{\infty} \frac{|w|^{k+1}}{k+1} < \infty$$

Esta serie siempre converge. En lugar de considerar q_k podemos tomar q_{p_k} , donde $\{p_k\}_{k=1}^{\infty} \subset \mathbb{N} \cup \{0\}$. Basta tomar p_k tal que

$$\sum_{k=k_0}^{\infty} \frac{|w|^{p_k+1}}{p_k+1} < \infty$$

Definición 5.3 (Factores primos de Weierstrass). Los factores primos de Weierstrass son

$$E_0(z) = 1 - z$$

$$E_p(z) = (1-z) \exp\left(\sum_{k=1}^p \frac{z^k}{k}\right), \quad p \in \mathbb{N}$$

donde $\sum_{k=1}^{p} \frac{z^k}{k}$ es el polinomio de Taylor de orden p de $\log\left(\frac{1}{1-z}\right)$.

Observación. Para todo $p \in \mathbb{N} \cup \{0\}, \, E_p(0) = 1, \, E_p(1) = 0$ y E_p es entera.

Lema 5.15. Sea $p \in \mathbb{N} \cup \{0\}$ y |z| < 1, entonces $|1 - E_p(z)| \le |z|^{p+1}$.

Demostración. Si p = 0,

$$|1 - E_0(z)| = |1 - (1 - z)| = |z|$$

Si $p \in \mathbb{N}$, como E_p es una función entera,

$$E_p(z) = \sum_{n=0}^{\infty} a_n z^n$$

Como $E_p(0) = 1$, entonces $a_0 = 1$. Así que

$$E_p(z) = 1 + \sum_{n=1}^{\infty} a_n z^n$$

Además, como $E_p(1) = 0$, entonces $\sum_{n=1}^{\infty} a_n = -1$. De la expresión anterior,

$$-\sum_{n=1}^{\infty} a_n z^n = 1 - E_p(z) = 1 - (1-z) \exp\left(\sum_{k=1}^p \frac{z^k}{k}\right)$$

Derivando,

$$-\sum_{n=1}^{\infty} n a_n z^{n-1} = \exp\left(\sum_{k=1}^n \frac{z^k}{k}\right) - (1-z) \exp\left(\sum_{k=1}^p \frac{z^k}{k}\right) \left(\sum_{k=1}^p z^{k-1}\right) =$$

$$= \exp\left(\sum_{k=1}^p \frac{z^k}{k}\right) \left(1 - (1-z)\sum_{k=0}^{p-1} z^k\right) = \exp\left(\sum_{k=1}^p \frac{z^k}{k}\right) z^p =$$

$$= z^p \left(1 + \sum_{k=1}^p \frac{z^k}{k} + \frac{\left(\sum_{k=1}^p \frac{z^k}{k}\right)^2}{2!} + \dots\right) = z^p + A_{p+1} z^{p+1} + A_{p+2} z^{p+2} + \dots$$

Por tanto, $a_n = 0$ para todo $1 \le n \le p$. Además,

$$-(p+1)a_{p+1} = 1 \Rightarrow a_{p+1} = -\frac{1}{p+1}$$

En general, para todo n > p + 1,

$$na_n = -A_{n-1} < 0 \Rightarrow a_n < 0$$

Así que

$$\begin{aligned} |1 - E_p(z)| &= \left| \sum_{n=1}^{\infty} a_n z^n \right| = \left| \sum_{n=p+1}^{\infty} a_n z^n \right| = |z|^{p+1} \left| \sum_{n=p+1}^{\infty} a_n z^{n-(p+1)} \right| \le \\ &\le |z|^{p+1} \sum_{n=p+1}^{\infty} |a_n| |z|^{n-(p+1)} \le |z|^{p+1} \sum_{n=p+1}^{\infty} |a_n| = |z|^{p+1} \left(-\sum_{n=p+1}^{\infty} a_n \right) = \\ &= |z|^{p+1} \left(-\sum_{n=1}^{\infty} a_n \right) = |z|^{p+1} \end{aligned}$$

Observación. Hemos visto que

$$E_p(z) = 1 - \frac{z^{p+1}}{p+1} + \sum_{n=p+2}^{\infty} a_n z^n$$

Teorema 5.16 (Teorema de factorización de Weierstrass: primera versión). Sea $\{a_n\} \subset \mathbb{C} \setminus \{0\}$ con $\lim_{n \to \infty} |a_n| = \infty$. Entonces existe una sucesión de números $\{p_n\} \subset \mathbb{N} \cup 0$ de modo que

$$\prod_{n=1}^{\infty} E_{p_n} \left(\frac{z}{a_n} \right)$$

converge absoluta y uniformemente en compactos de \mathbb{C} y además define una función entera cuyos ceros son $\{a_n\}_{n=1}^{\infty}$.

Demostración. Sea K compacto de \mathbb{C} , entonces existe R>0 tal que $K\subset \overline{D(0,R)}$. Como $\{a_n\}\to\infty$, existe $n_0\in\mathbb{N}$ tal que para todo $n\geq n_0$ se tiene que $\frac{|z|}{|a_n|}\leq \frac{R}{2R}<1$. Por el lema anterior,

$$\left|1 - E_{p_n}\left(\frac{z}{a_n}\right)\right| \le \left|\frac{z}{a_n}\right|^{p_n + 1} \le \left(\frac{1}{2}\right)^{p_n + 1}$$

Si consideramos $p_n = n$, por el criterio de la mayorante de Weierstrass tenemos que

$$\sum_{n=n_0}^{\infty} \left| 1 - E_n \left(\frac{z}{a_n} \right) \right|$$

converge uniformemente en K. Además.

$$E_n\left(\frac{a_n}{a_n}\right) = E_n(1) = 0$$

Teorema 5.17 (Teorema de factorización de Weierstrass: segunda versión). Sea f una función entera tal que en z=0 tiene un cero de orden N y los demás ceros de f son $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C} \setminus \{0\}$. Entonces existe $\{p_n\}_{n=1}^{\infty} \subset \mathbb{N} \cup \{0\}$ y una función entera g tal que

$$f(z) = e^{g(z)} z^N \prod_{n=1}^{\infty} E_{p_n} \left(\frac{z}{a_n} \right)$$

Demostración. Suponemos $\{a_n\}$ conjunto infinito. Por el teorema anterior, existe una función entera que se anula en $\{a_n\}_{n=1}^{\infty}$. Entonces

$$\frac{f(z)}{z^N \prod_{n=1}^{\infty} E_{p_n} \left(\frac{z}{a_n}\right)}$$

es entera y no se anula en \mathbb{C} . Por tanto, existe g entera tal que

$$\frac{f(z)}{z^N \prod_{n=1}^{\infty} E_{p_n} \left(\frac{z}{a_n}\right)} = e^{g(z)}$$

Observación.

1. La factorización no es única. Si la sucesión $\{p_n\}_{n=1}^{\infty}$ da una descomposición, entonces una sucesión $\{q_n\}_{n=1}^{\infty}$ tal que $p_n \leq q_n$ para todo $n \in \mathbb{N}$ también sirve.

2. Si $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C} \setminus \{0\}$ y existe p tal que $\sum_{n=1}^{\infty} \frac{1}{|a|^{p+1}}$ converge, entonces

$$\prod_{n=1}^{\infty} E_p\left(\frac{z}{a_n}\right)$$

converge absoluta y uniformemente en compactos de \mathbb{C} .

Demostración. Sea K compacto de \mathbb{C} , entonces existe R>0 tal que $K\subset \overline{D(0,R)}$. Como $\lim_{n\to\infty}|a_n|=\infty$, existe $n_0\in\mathbb{N}$ tal que para todo $n\geq n_0$ se tiene que

$$|a_n| \ge 2R \Rightarrow \left|\frac{z}{a_n}\right| \le \frac{1}{2} < 1$$

Por el lema anterior,

$$\sum_{n=n_0}^{\infty} \left| 1 - E_p\left(\frac{z}{a_n}\right) \right| \leq \sum_{n=n_0}^{\infty} \left| \frac{z}{a_n} \right|^{p+1} \leq R^{p+1} \sum_{n=n_0}^{\infty} \frac{1}{|a_n|^{p+1}} < \infty$$

5.5. Exponente de convergencia y género de una sucesión

A partir de las observaciones anteriores, introducimos la siguiente definición.

Definición 5.4. Sea $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C} \setminus \{0\}$ tal que $\lim_{n \to \infty} |a_n| = \infty$. Definimos el exponente de convergencia de la sucesión como

$$\sigma = \inf \left\{ s \in \mathbb{R} : \sum_{n=1}^{\infty} \frac{1}{|a_n|^s} < \infty \right\}$$

Observación.

- 1. Si $s \in \mathbb{R}$ satisface que $\sum_{n=1}^{\infty} \frac{1}{|a_n|^s} < \infty$, entonces si t > s se cumple que $\sum_{n=1}^{\infty} \frac{1}{|a_n|^t} < \infty$.
- 2. Diremos que ínf $\emptyset = +\infty$, es decir, $\sigma = +\infty$ cuando ningún $s \in \mathbb{R}$ satisface que $\sum_{n=1}^{\infty} \frac{1}{|a_n|^s} < \infty$.
- 3. Si $\sigma < \infty$,

$$\sum_{n=1}^{\infty} \frac{1}{|a_n|^s} < \infty \text{ si } s \in (\sigma, +\infty)$$

$$\sum_{n=1}^{\infty} \frac{1}{|a_n|^s} = \infty \text{ si } s \in (-\infty, \sigma)$$

Definición 5.5. Sea $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C} \setminus \{0\}$ tal que $\lim_{n \to \infty} |a_n| = \infty$ y $\sigma < \infty$. Entonces el género de la sucesión es el menor entero p tal que

$$\sum_{n=1}^{\infty} \frac{1}{|a_n|^{p+1}} < \infty$$

Observación.

- 1. $\sigma > 0$ siempre. Además, $\sum_{n=1}^{\infty} \frac{1}{|a_n|^0} = \infty$ así que $p \ge 0$.
- 2. $p \le \sigma \le p + 1$.

Si $\{a_n\}$ es finita entonces diremos que $\sigma = p = 0$.

Ejemplo.

1. Sea $a_n = n + 1$.

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^s} < \infty \Leftrightarrow s < 1 \Rightarrow \sigma = 1, p = 1$$

2. Sea $a_n = (n+1)^2$.

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2s}} < \infty \Leftrightarrow s > \frac{1}{2} \Rightarrow \sigma = \frac{1}{2}, p = 0$$

3. Sea $a_n = (n+1)\log^2(n+1)$.

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^s \log^{2s}(n+1)} < \infty \Leftrightarrow s \ge 1 \Rightarrow \sigma = 1, p = 0$$

Para el caso s = 1,

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\log^2(n+1)} \sim \int_1^{\infty} \frac{1}{(x+1)\log^2(x+1)} dx = -\frac{1}{\log(x+1)} \bigg]_1^{\infty} = \frac{1}{\log(2)}$$

4. Sea $a_n = \log(n+1)$.

$$\sum_{n=1}^{\infty} \frac{1}{\log^s(n+1)} = \infty \ \forall s \in \mathbb{R} \Rightarrow \sigma = \infty$$

5. Sea $a_n = 2^n$.

$$\sum_{n=1}^{\infty} \frac{1}{2^{ns}} = \sum_{n=1}^{\infty} \frac{1}{(2^s)^n} < \infty \ \forall s > 0 \Rightarrow \sigma = 0, p = 0$$

5.6. Factorización canónica de una función entera

Con las definiciones anteriores vamos a tener el siguiente teorema.

Teorema 5.18 (Teorema de factorización canónica). Sea f una función entera con z=0 un cero de orden N y $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C} \setminus \{0\}$ los demás ceros de f. Si $\lim_{n\to\infty} |a_n| = \infty$ y $\sigma < \infty$, entonces

$$f(z) = e^{g(z)} z^N \prod_{n=1}^{\infty} E_p\left(\frac{z}{a_n}\right)$$

donde p es el género de $\{a_n\}_{n=1}^{\infty}$.

Demostración. Sea K compacto de \mathbb{C} , entonces existe R > 0 tal que $K \subset \overline{D(0,R)}$. Queremos ver que $\prod_{n=1}^{\infty} E_p\left(\frac{z}{a_n}\right)$ converge absoluta y uniformemente en K. Basta ver que $\sum_{n=1}^{\infty} \left|1 - E_p\left(\frac{z}{a_n}\right)\right|$ converge uniformemente en K. Como $|a_n| \to \infty$, existe $n_0 \in \mathbb{N}$ tal que $|a_n| \ge 2R$ para todo $n \ge n_0$. Entonces, como p es el género de $\{a_n\}_{n=1}^{\infty}$,

$$\left| \sum_{n=n_0}^{\infty} \left| 1 - E_p \left(\frac{z}{a_n} \right) \right| \le \sum_{n=n_0}^{\infty} \frac{|z|^{p+1}}{|a_n|^{p+1}} \le R^{p+1} \sum_{n=n_0}^{\infty} \frac{1}{|a_n|^{p+1}} < \infty \right|$$

5.7. Factorización de funciones holomorfas en un dominio

Teorema 5.19. Sea D un dominio en \mathbb{C} y sea $\{a_n\}_{n=1}^{\infty} \subset D \setminus \{0\}$ sin puntos de acumulación en D. Entonces existe una función holomorfa en D que se anula en $\{a_n\}_{n=1}^{\infty}$.

Demostración. Si $\{a_n\}_{N=1}^{\infty}$ es finito, entonces dicha función es $\prod_{n=1}^{N}(z-a_n)$. Si $\{a_n\}_{n=1}^{\infty}$, entonces definimos $\delta_n = \operatorname{dist}(a_n, \mathbb{C} \setminus D)$. Consideramos primero dos casos.

1. Existe $N_0 \in \mathbb{N}$ tal que $|a_n|\delta_n \geq 1$ para todo $n \geq N_0$. Veamos que $\lim_{n \to \infty} |a_n| = \infty$. Supongamos por reducción al absurdo que $\lim_{n \to \infty} |a_n| \neq \infty$. Entonces existe una subsucesión $\{a_{n_k}\}_{k=1}^{\infty}$ acotada. Así que existe una subsucesión $\{a_m\}_{m=1}^{\infty}$ de $\{a_{n_k}\}$ convergente a $a_0 \in \mathbb{C} \setminus D$. Si $D = \mathbb{C}$, esto es imposible. En otro caso,

$$1 \le |a_m|\delta_m \le |a_m||a_m - w|, \quad \forall w \in \mathbb{C} \setminus D$$

Tomando límites,

$$1 \le |a_0||a_0 - w|, \quad \forall w \in \mathbb{C} \setminus D$$

Como necesariamente $|a_0| \neq 0$, entonces

$$|a_0 - w| \ge \frac{1}{|a_0|} \Rightarrow a_0 \notin \mathbb{C} \setminus D \Rightarrow a_0 \in D$$

Esto es una contradicción.

2. Existe $N_0 \in \mathbb{N}$ tal que $|a_n|\delta_n \leq 1$ para todo $n \geq N_0$. Veamos por reducción al absurdo que $\delta_n \xrightarrow[n \to \infty]{} 0$. Supongamos que existen una subsucesión $\{\delta_{n_k}\}_{k=1}^{\infty}$ y $\varepsilon > 0$ tales que $\delta_{n_k} \geq \varepsilon > 0$ para todo $k \in \mathbb{N}$. Entonces existe una subsucesión $\{\delta_m\}_{m=1}^{\infty}$ de $\{\delta_{n_k}\}$ que converge a un cierto $\delta_0 \geq \varepsilon$. Como además $|a_m| < \frac{1}{\varepsilon}$, existe una subsucesión $\{a_l\}_{l=1}^{\infty}$ de $\{a_m\}$ que converge a a_0 . Así que

$$\varepsilon \leq \delta_l \leq |a_l - w|, \quad \forall w \in \mathbb{C} \setminus \{0\}$$

Tomando límites,

$$\varepsilon < \delta_0 < |a_0 - w|, \quad \forall w \in \mathbb{C} \setminus \{0\} \Rightarrow a_0 \in D$$

Esto contradice que $\{a_n\}$ no tenga puntos de acumulación.

Construyamos ahora una función holomorfa f con ceros en $\{a_n\}$. Para cada a_n existe un $b_n \in \mathbb{C} \setminus D$ de modo que $|a_n - b_n| \leq \frac{3}{2} \delta_n$. Entonces definimos

$$\prod_{n=1}^{\infty} E_n \left(\frac{a_n - b_n}{z - b_n} \right)$$

cuyos ceros son $\{a_n\}_{n=1}^{\infty}$.

Sea K un compacto de D y sea $d = \operatorname{dist}(K, \mathbb{C} \setminus D)$. Observamos que d > 0. Como $\delta_n \to 0$, podemos tomar $n_0 \in \mathbb{N}$ tal que $\delta_n < \frac{d}{2}$ para todo $n \geq n_0$.

$$|a_n - b_n| \le \frac{3}{2}\delta_n < \frac{3}{4}d \le \frac{3}{4}|z - b_n|, \quad \forall z \in K$$

Así que

$$\sum_{n=n_0}^{\infty} \left| 1 - E_n \left(\frac{a_n - b_n}{z - b_n} \right) \right| \le \sum_{n=n_0}^{\infty} \left| \frac{a_n - b_n}{z - b_n} \right|^{n+1} \le \sum_{n=n_0}^{\infty} \left(\frac{3}{4} \right)^{n+1} < \infty$$

Por tanto,

$$\prod_{n=1}^{\infty} E_n \left(\frac{a_n - b_n}{z - b_n} \right)$$

converge absoluta y uniformemente en compactos de D.

En general, la sucesión $\{a_n\}_{n=1}^{\infty}$ se puede separar en $\{b_n\}_{n=1}^{\infty}$ y $\{c_n\}_{n=1}^{\infty}$, con $\{b_n\}$ en el caso 1 y $\{c_n\}$ en el caso 2. Por el caso 1, existe f holomorfa en D con ceros $\{b_n\}_{n=1}^{\infty}$. De igual forma, por el caso 2 existe g holomorfa en D con ceros $\{c_n\}_{n=1}^{\infty}$. Consideramos h = fg. h es holomorfa en D con ceros $\{a_n\}_{n=1}^{\infty}$.

Capítulo 6

Funciones enteras. Crecimiento y distribución de los ceros

Teorema 6.1 (Teorema de Liouville). Si f es una función entera y acotada, entonces f es constante.

Teorema 6.2 (Generalización del teorema de Liouville). Sea f entera tal que existen $\alpha > 0$, c > 0 y $R_0 > 0$ con $|f(z)| \le c|z|^{\alpha}$ para todo $|z| \ge R_0$. Entonces f es un polinomio de grado $E(\alpha)$ y por tanto tiene $E(\alpha)$ ceros.

Demostración. Sea $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Sea R > 0,

$$a_n = \frac{f^{(n)}(0)}{n!} = \frac{1}{2\pi i} \int_{|z|=R} \frac{f(z)}{z^{n+1}} dz \le \max_{|z|=R} |f(z)| \frac{1}{R^n} \le c \frac{|z|^\alpha}{R} = c R^{\alpha-n} \xrightarrow[R \to \infty, n > E(\alpha)]{} 0$$

Por tanto, $a_n = 0$ para todo $n > E(\alpha)$.

Observación.

- 1. Parece que si el crecimiento está controlado, el número de ceros también lo está.
- 2. Al revés esto no ocurre. Por ejemplo, con la exponencial.

6.1. Fórmula de Jensen

La fórmula de Jensen permite controlar el número de ceros de una función holomorfa sabiendo restricciones sobre su crecimiento.

Teorema 6.3 (Fórmula de Jensen). Sea f una función holomorfa en D(0,R) con $f(0) \neq 0$ y tal que tiene ceros $\{a_n\}$ de modo que

$$|a_1| \le |a_2| \le |a_3| \le \dots$$

Sea $\rho \in (0,R)$ y $n(\rho,f) = \#\{a_n : |a_n| \leq \rho\}$. Entonces

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \log|f(\rho e^{i\theta})| d\theta = \log|f(0)| + \sum_{k=0}^{n(\rho,f)} \log\left(\frac{\rho}{|a_k|}\right)$$