PART-A
$$(10 \times 2 = 20)$$

(Answer all the questions)

- Find $\frac{du}{dt}$ if $u = x^2 + y^2$, $x = at^2$, y = 2at.

 State Maclaurin's series.
- 3 Change the order of integration $\int_0^1 \int_0^x f(x,y) dy dx$
- 4 State Green's Theorem.
- 5 Evaluate: $(D^4 1)y = 0$
- 6 Solve $(\cos x x \cos y) dy (\sin y + y \sin x) dx = 0$

The product of two eigen values of the matrix A =

 $\begin{bmatrix} 7 & -2 & 2 \\ -2 & 3 & -1 \end{bmatrix}$

is 16. Find the third eigen value.

		IT	1	01	AND THE PROPERTY OF THE PROPER
8	Find the rank of the matrix	2	1	1	
		11	1	1	
9	Define Vector space.				
10	Define Linear Span				and the state of the second control of the control of the second control of the second
-		-	-	THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN	

	DADT DEVICE ON					
	(a) (i) Find the intervals on which f is increasing or decreasing, local maximum or minimum, intervals of concavity and the inflection points: $f(x) = 2x^3 + 3x^2 - 36x$. (a) (ii) Determine $\lim_{x \to \frac{\pi}{2}} \frac{1 + \cos 2x}{(\pi - 2x)^2}$					
11						
	(OR) (b) (i) Expand $e^x \log(1+y)$ in powers of x and y using Taylor's series up to third degree terms.					
						(b) (ii) Examine the extreme values $f(x,y) = x^3 + y^3 - 3x - 12y + 20$.
		(a) (i) Verify Gauss's divergence theorem for $\vec{F} = 4xz\vec{\imath} - y^2\vec{\jmath} + yz\vec{k}$ taken over the cube bounded by the planes $x = 0, x = 1, y = 0, y = 1, z = 0, z = 1$.				
	(a) (ii) Show that $\vec{F} = (6xy + z^3)\vec{i} + (3x^2 - z)\vec{j} + (3xz^2 - y)\vec{k}$ is irrotational vector					
2	(OR)					
	(b) (i) Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$					
	(b) (ii) By changing Cartesian to polar co-ordinates, show that $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy = \frac{\pi}{4}$ and hence evaluate					
1	$\int_0^\infty e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$					
	(a) (i) Produce a complete solution for $(D^2 + a^2)y = tanax$					
2	tanax					

(a) (ii) Find the singular integral of $z = px + qy + \sqrt{1 + p^2 + q^2}$

Service College Colleg	(b) (i) Convert $[(3x+2)^2D^2 + 3(3x+2)D - 36]y = 3x^2 + 4x + 1$ into constant coefficients also produce a general solution.	CO3			
English Description association and an experience	(b) (ii) Generate complete solution for the differential equation $(D^2 + 4)y = x^2 \cos 2x$	CO3			
	(a) (i) Reduce the quadratic form $6x_1^2 + 3x_2^2 + 3x_3^2 - 4x_1x_2 + 4x_1x_3 - 2x_2x_3$ to canonical form through an orthogonal transformation and find its nature, rank and signature.	CO4			
14	(OR)				
	(b) (i) Factorize the following system of equations by LU decomposition method $7x_1 - 2x_2 + x_3 = 12$, $14x_1 - 7x_2 - 3x_3 = 17$, $-7x_1 + 11x_2 + 18x_3 = 5$				
	(b) (ii) Solve the following system of equations by Gauss Jordan method $x + 2y + z = 3$, $2x + 3y + 3z = 10$, $3x - y + 2z = 13$	cc			
	(a) (i) Let V be the set of all positive real numbers. Define the vector addition and scalar multiplication as follows: $x + y = xy & kx = x^k$. Determine whether or not V is a vector space over F with respect to above operations.				
15	(a) (ii) Let $V = R^3$; $W = \{(a_1, a_2, a_3)/2a_1 - 7a_2 + a_3 = 0\}$. Verify whether it is a subspace or not.				
	(OR)				
	(b) (i) State and prove Dimension theorem (or) Rank- Nullity theorem				
	(b) (ii) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ and $U: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformations respectively defined by $T(a_1, a_2) = (a_1 + 3a_2, 0, 2a_1 - 4a_2)$, $U(a_1, a_2) = (a_1 - a_2, 2a_1, 3a_1 + 2a_2)$, then prove that $[T+U]_{\beta}^{\gamma} = [T]_{\beta}^{\gamma} + [U]_{\beta}^{\gamma}$	COS			