Lecture 8: Generalized Least Squares Prepared for ECON 5033

Eric S. Lin

Department of Economics, National Tsing Hua University

November 19, 2024

Outline

- ► General non-spherical errors relaxing homoskedasticity and non-serial correlation
- ► Generalized least squares approach
- ► Heteroskedasticity

Basic Assumptions

- Let's reconsider the classical assumptions:
 - Zero covariance
 - Constant variance across observations
- Linear regression model becomes "generalized" linear regression (GLR) model.
- Recall the assumptions we have before:
 - ▶ The $n \times k$ data matrix X is of full column rank, i.e., rank(X) = k and n > k.
 - ► Conditional on X, the mean of Y is a linear combination of the columns of X: $E[Y|X] = X\beta$.
 - ► Conditional on X, the variance covariance matrix of Y is $var[Y|X] = \sigma^2 I_n$.

Basic Assumptions

- In GLR model, we say that the conditional variance is no longer a sphere.
- ► Conditional on X, the variance covariance matrix of Y is $\text{var}[Y|X] = \sigma^2 \Omega \neq \sigma^2 I$, where Ω is symmetric and positive definite.
- ► The non-spherical disturbances include heteroskedasticity and autocorrelation.
- Heteroskedasticity:
 - ▶ For the *i*th error term: $E[\varepsilon_i^2] = \sigma_i^2 = \sigma^2(X_i) \neq \sigma^2$
 - Variance-covariance matrix of \varepsilon
- Autocorrelation
 - ▶ For the *i* and *j*th error terms: $cov[\varepsilon_i, \varepsilon_i] \neq 0$
 - Variance-covariance matrix of ε

Autocorrelation

Example

Consider the stationary autoregressive of order one, AR(1), process:

$$\varepsilon_t = \rho \varepsilon_{t-1} + v_t, \ |\rho| < 1, \ v_t \overset{i.i.d.}{\sim} (0, \sigma_v^2).$$

Using the fact that $\varepsilon_t = \sum_{i=0}^{\infty} \rho^i v_{t-j}$ leads to the following:

$$\operatorname{var}[\varepsilon_t] = \sum_{i=0}^{\infty} \rho^{2j} \operatorname{var}[v_{t-j}] = \frac{\sigma_v^2}{1 - \rho^2}$$

$$\mathrm{cov}[\varepsilon_t,\varepsilon_{t-s}] = \mathrm{cov}[\sum_{i=0}^\infty \rho^j v_{t-j}, \sum_{i=0}^\infty \rho^j v_{t-s-j}] = \frac{\sigma_v^2 \rho^{|s|}}{1-\rho^2}.$$

Autocorrelation

Example

Consider the following static one-factor random component model (RE Panel model):

$$y_{it} = x'_{it}\beta + \varepsilon_{it}, i = 1, ..., N; t = 1, ..., T$$

$$\varepsilon_{it} = \alpha_i + u_{it},$$

where α_i are i.i.d. $(0, \sigma_{\alpha}^2)$ and independent of u_{it} and $x_{it} \, \forall i, t. \, u_{it}$ are i.i.d. $(0, \sigma_u^2)$. To get a full understanding of the variance covariance structure, we first consider the following:

$$E[\varepsilon_i \varepsilon_i'] = E[(\iota_T \alpha_i + u_i)(\iota_T \alpha_i + u_i)'] = \sigma_\alpha^2 \iota_T \iota_T' + \sigma_u^2 I_T$$

$$E[\varepsilon_i \varepsilon_i'] = E[(\iota_T \alpha_i + u_i)(\iota_T \alpha_i + u_i)'] = 0$$

Autocorrelation

Example

The variance covariance structure of ε is

$$\mathsf{E}[\varepsilon\varepsilon'] = \sigma_u^2 I_{NT} + \sigma_\alpha^2 (I_N \otimes \iota_T \iota_T').$$

One can see that ε_{it} is homoskedastic but serial correlated.

- **1** Off-diagonal blocks $(i \neq j)$
- ② Diagonal blocks (i = j): diagonal and off-diagonal elements

OLS under Nonspherical Disturbance

▶ The regression model is $Y = X\beta + \varepsilon$ with $var[\varepsilon] = \sigma^2 \Omega$. The OLS estimator is.

$$\hat{\beta} = (X'X)^{-1} X'Y.$$

Also, one can show.

$$\mathsf{E}[\hat{\beta}] = \beta$$
$$\mathsf{var}[\hat{\beta}] = \sigma^2 (X'X)^{-1} X' \Omega X (X'X)^{-1} \neq \sigma^2 (X'X)^{-1}.$$

- Problem using incorrect standard errors?
- Under the Gaussian errors, we have,

$$\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(X'X)^{-1}X'\Omega X(X'X)^{-1}).$$

Using the new (correct) standard errors to do inference.

OLS under Nonspherical Disturbance

▶ If the errors have enough moments and there is not too much serial correlation, one would be able to establish the consistency and asymptotic normality results for OLS estimator.

$$\sqrt{n}(\hat{\beta} - \beta) \xrightarrow{d} \mathcal{N}(0, \sigma^2 Q^{-1} \text{plim}(\frac{X'\Omega X}{n})Q^{-1}),$$

where Q = plim(X'X/n).

- ▶ OLS estimator, however, is not BLUE in non-spherical disturbances.
- Better estimator than OLS?
 - GLS turns out to be the better estimator.

Too Much Serial Correlation

Example

Here is an example of too much serial correlation.

$$\sigma^2 \Omega = \sigma^2 \left[\begin{array}{cccc} 1 & \rho & \dots & \rho \\ \rho & 1 & \dots & \rho \\ \dots & \dots & \dots & \dots \\ \rho & \rho & \dots & 1 \end{array} \right].$$

GLS Transformation

▶ Before introducing GLS transformation, we provide a useful lemma.

Lemma

Given Ω a positive definite matrix, there exists a square, nonsingular matrix ω which satisfies $\omega'\omega=\Omega^{-1}$.

Proof.

If Ω is a positive definite matrix, there exist C and Λ such that

$$\Omega = C \Lambda C' \text{ with } C'C = I.$$

$$\Omega = C \Lambda^{1/2} \Lambda^{1/2} C'$$

$$\Omega^{-1} = (C')^{-1} \Lambda^{-1/2} \Lambda^{-1/2} C^{-1}$$

$$\Omega^{-1} = C \Lambda^{-1/2} \Lambda^{-1/2} C' = \omega' \omega$$

GLS Transformation

lacktriangle Let's pre-multiply the regression model by ω defined above,

$$\omega Y = \omega X \beta + \omega \varepsilon$$
$$Y^* = X^* \beta + \varepsilon^*.$$

The variance of transformed error term is,

$$var[\varepsilon^*|X^*] = E[\varepsilon^*\varepsilon^{*\prime}|X^*] = \sigma^2 I$$

- ▶ The transformed model satisfies the assumption of spherical errors.
- Now we could apply the Gauss-Markov Theorem that OLS on the transformed model is BLUE.

GLS Estimator

The GLS estimator (or Aitken estimator) is,

$$\hat{\beta}_{GLS} = (X^{*\prime}X^*)^{-1}X^{*\prime}Y^* = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}Y.$$

One can show the following properties of GLS estimator.

$$E[\hat{\beta}_{GLS}] = \beta + E[(X'\Omega^{-1}X)^{-1}X'\Omega^{-1}\varepsilon] = \beta$$
$$var[\hat{\beta}_{GLS}] = \sigma^2(X'\Omega^{-1}X)^{-1}$$

▶ With normality assumption, $\varepsilon \sim \mathcal{N}(0, \sigma^2 \Omega)$, it is easy to show,

$$\hat{\beta}_{GLS} \sim \mathcal{N}(\beta, \sigma^2 (X'\Omega^{-1}X)^{-1}).$$

- Once again, the Gauss-Markov theorem could be applied to get efficiency of GLS estimator.
- ► Can we show it directly?

Efficient GLS Estimator

Theorem

GLS estimator is more efficient than OLS estimator.

Proof.

One could show,

$$\begin{split} X'\Omega^{-1}X - X'X \left(X'\Omega X \right)^{-1} X'X \\ &= X'\Omega^{-1/2} (I - \Omega^{1/2}X(X'\Omega X)^{-1}X'\Omega^{1/2})\Omega^{-1/2}X, \end{split}$$

which is p.s.d.

Large Sample Properties of GLS Estimator

- Without imposing normality assumption, we can still yield some nice large sample properties of GLS estimators.
- ▶ Provided that the transformed X^* have sufficient moments then $\text{plim}\hat{\beta}_{GLS} = \beta$ or $\hat{\beta}_{GLS} \stackrel{p}{\to} \beta$.
- We can also have that:

$$\sqrt{n}(\hat{\beta}_{GLS} - \beta) \xrightarrow{d} \mathcal{N}(0, \sigma^2 \text{plim}(\frac{X'\Omega X}{n})^{-1}).$$

GLS vs. MLE

- ▶ All tests go through as usual in terms of the transformed model and GLS is the MLE under the assumption that $\varepsilon \sim \mathcal{N}(0, \sigma^2\Omega)$.
- ► The log-likelihood function has the form,

$$\ln \mathcal{L} = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(|\sigma^2\Omega|) - \frac{1}{2\sigma^2}(Y - X\beta)'\Omega^{-1}(Y - X\beta).$$

• With Ω a matrix of known constants, the MLE of β is the vector that minimizes the generalized residual sum of squares.

$$GRSS(\beta) = (Y - X\beta)'\Omega^{-1}(Y - X\beta)$$

One will yield,

$$\hat{\beta}_{MLE} = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}Y = \hat{\beta}_{GLS}$$

$$\hat{\sigma}_{MLE}^2 = \frac{1}{n}(Y - X\hat{\beta}_{MLE})'\Omega^{-1}(Y - X\hat{\beta}_{MLE}).$$

Some Pitfalls

- ► For OLS:
 - You may use wrong standard errors, i.e., $\hat{\sigma}^2(X'X)^{-1}$, even $\hat{\beta}$ is still consistent
 - Inconsistent standard errors in plim sense.
 - Inconsistent estimator of error variance (non-constant now!)
 - Misleading inference, i.e., all tests are invalid.
 - Even if you happen to get the right standard error, it's not good enough.
 - $\operatorname{var}[\hat{\beta}] = \sigma^2(X'X)^{-1}X'\Omega X(X'X)^{-1}$
 - Efficiency issue!
- For GLS:
 - ▶ Typically Ω is unknown.
 - It's known as infeasible GLS.
 - Will need to do feasible GLS or EGLS later on.

Why Is Infeasible GLS?

- What is the dimension of Ω ?
- ► The number of parameters to estimate is larger than *n* and increases faster than *n*.
- There is no way to devise an estimator that satisfies a LLN without adding restrictions.
- ▶ The feasible GLS estimator is based on making sufficient assumptions regarding the form of Ω so that a consistent estimator can be devised.

How to Do Feasible GLS?

▶ Suppose that we parameterize Ω as a function of X and θ , where θ may include β as well as other parameters, so that:

$$\Omega = \Omega(X, \theta),$$

where θ is of fixed dimension.

- ▶ If we can consistently estimate θ , we can consistently estimate Ω , as long as $\Omega(X, \theta)$ is a continuous function of θ (by Slutsky theorem).
- ► In this case,

$$\hat{\Omega} = \Omega(X, \hat{\theta}) \stackrel{p}{\to} \Omega(X, \theta)$$

▶ If we replace Ω in the formula for the GLS estimator with $\hat{\Omega}$, we obtain the FGLS estimator.

How to Do Feasible GLS?

▶ The FGLS estimator can be obtained as follows:

$$\hat{\omega}Y = \hat{\omega}X\beta + \hat{\omega}\varepsilon,$$

where $\hat{\omega} = \text{Chol}(\hat{\Omega}^{-1})$ – Cholesky decomposition

- ► The FGLS estimator shares the same asymptotic properties as GLS:
 - Consistency
 - Asymptotic normality
 - Asymptotic efficiency if the errors are normally distributed (CRLB)
 - Test procedures are asymptotically valid

Midterm #2

- ▶ Midterm #2 will be held on November 26 from 9 to noon
- Coverage includes:
 - multiple regression model FWL, testing, RLS
 - asmptotic theory consistency, LLN, CLT
 - trinity of tests W, LR, LM
 - Ohow test, dummies, collinearity
 - GLS basics
- ► Two A4 formula sheets are allowed