Introto Reural Networks

BA865 – Mohannad Elhamod

Basic Linear Algebra

What is a Tensor?

- A tensor is a matrix of rank 3 or higher.
- Examples?
- You can think about it as "groups of vectors"

Addition

- Shape of the Two Tensors Needs to Conform.
- Sum Element-wise
 - Replicate B until it matches
 A's dimensions, then perform element-wise addition.
 - Each dimension can be replaced with a size of 1.

Multiplication (Dot Product)

- x.shape[-1] should equal y.shape[0]
- This is different from element-wise multiplication!

© Gordon Burtch, 2023

Linear Transformation

- Matrix multiplication is a "linear transformation".
- What does that mean? Demo
 - The outputs are a linear combination of the inputs.
 - A line remains a line and relative positions are preserved (No warping!).
 - Reflection, scaling, rotation, and shear.
 - Not translation!

Enter Non-Linearities

What is a Non-Linearity?

- A non-linearity will lead to warping and "mangling"the space.
- Demo
- Examples:
 - Quadratic function.
 - Exponential function.
 - The step function.

Popular Examples

Demo

Basic Calculus

The Derivative

- It is the <u>local</u> rate of change
 - $\lim_{\epsilon_x \to 0} \frac{\epsilon_y}{\epsilon_x} = \frac{\partial y}{\partial x}$

The Gradient

• The equivalent of the derivative in multi-dimensional space: $\nabla_{x,y}z$

Gradient Descent

Since the gradient points towards the steepest direction, following it (or going against it) will lead us to maximizing (or minimizing) the function's value.

Optimization

- By going against the direction of the gradient, you can minimize <u>an error</u> <u>function</u>. This is called <u>optimization</u>.
 - $\frac{\partial J}{\partial w}$ for one-dimensional parameter.
 - becomes $\nabla_w J$ when w is high-dimensional

Optimization

- Can we always achieve lowest error?
- Demo

TechTalks

Chain Rule

- To get the gradient of a function of a function:
 - Chain (multiply) the gradient of the first in terms of the second, ... until you reach the independent parameter.

$$z = f(x,y)$$
 $x = x(u,v)$

$$\frac{\partial \mathbf{z}}{\partial \mathbf{u}} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{x}}{\partial \mathbf{u}} + \frac{\partial \mathbf{z}}{\partial \mathbf{y}} \cdot \frac{\partial \mathbf{y}}{\partial \mathbf{u}}$$

Calculating Error

Calculating Error

- The terms error, loss, and cost are almost used interchangeably.
- A loss is <u>generally</u> a measure of how "different" the ground truth is from the model's predictions.

© Gordon Burtch, 2022

Types of Loss Functions

- Mean Absolute Error (MAE/ L1 loss)
 - Large and small differences are penalized proportionally.
- Mean Squared Error (MSE/ L2 loss)
 - Larger differences are penalized exponentially more than smaller ones

$$MAE = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{n}$$

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}$$

Obtaining Probabilities

- Probabilities occur frequently in the context of classification.
- Given an array of numbers, a softmax converts that array into a probability distribution
 - This is not the only way to convert an array into a probability distribution. However, it is the most popular way in deep learning. Why?

https://towardsdatascience.com

Measuring Error in Probabilities

- We want to measure the error between the ground truth and a probability distribution.
- Given the output of some classification mode, you can turn it into probabilities using softmax, and then measure the error using <u>cross-</u> entropy

The Perceptron

The Primordial Cell of Neural Networks

The building block: The Perceptron

Demo

Algorithm: Perceptron Learning Algorithm

 $P \leftarrow inputs$ with label 1; $N \leftarrow inputs$ with label 0; Initialize **w** randomly;

Face towards positive examples

Face away from negative examples

```
while !convergence do

Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then

| \mathbf{w} = \mathbf{w} + \mathbf{x} ;

end

| \mathbf{w} = \mathbf{w} - \mathbf{x} ;

end
```

end

//the algorithm converges when all the inputs are classified correctly

Figure courtesy of Akshay L Chandra

The building block: The Perceptron

- Does the perceptron remind you of something?
 - The perceptron uses a step function. Logistic Regression uses a sigmoid.
 - Demo

Decision boundary

The building block: The Perceptron

Works well for linearly separable cases.

The building block: The Perceptron

 Can we work around the "linear separability" issue"?

Adam Dhala

Power in Numbers: Multiple Perceptrons

Demo

XOR			
I,	l ₂	out	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

western-neuralnets.ca

Power in Numbers: Multiple Perceptrons

The <u>Multi-Layer</u> Perceptron (MLP) was born!

western-neuralnets.ca

More Layers!

- In theory, a single hidden layer is sufficient to learn any function. In practice, however, networks with more layers are easier to optimize than networks larger width.
- The more layers/nodes a model has, the higher its capacity is, making it able learn more complex decision boundaries.
- Demo

	Types of Decision Regions	Exclusive-OR Problem
Single-Layer	Half Plane Bounded by Hyperplane	A B A
Two-Layer	Convex Open or Closed Regions	A B A
Three-Layer	Arbitrary (Complexity Limited by No. of Nodes)	B A

