МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА»

(Самарский университет)

Институт информатики и кибернетики Кафедра лазерных и биотехнических систем

Пояснительная записка к курсовому проекту 'ИЗМЕРИТЕЛЬ ПОСТОЯННОГО ТОКА''

Выполнил студент группы 6364-120304D:	Рожновская Д.О.
Руководитель проекта:	Корнилин Д.В.
Работа защищена с оценкой:	

ЗАДАНИЕ

Разработать измеритель постоянного тока со следующими параметрами:

- Диапазон измеряемых токов: 1мкА 0.1А;
- Максимальная погрешность: 0.5%;
- Индикация: цифровая с необходимым количеством разрядов;
- Передача данных: по интерфейсу CAN с фиксированной скоростью.

РЕФЕРАТ

Пояснительная записка: 20 страниц, 11 рисунков, источников, 1 приложение.

ИЗМЕРИТЕЛЬ ПОСТОЯННОГО ТОКА, МИКРОКОНТРОЛЛЕР, CAN, STM32, АЛГОРИТМ, ПРОГРАММА, ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ, ИНСТРУМЕНТАЛЬНЫЙ УСИЛИТЕЛЬ, ЦИФРОВАЯ ИНДИКАЦИЯ

В курсовом проекте разработаны структурная и принципиальная схемы измерителя постоянного тока, осуществлен выбор микроконтроллера с шиной САN, подобраны элементы для блока питания и датчика тока. В качестве индикатора выбран IPS дисплей. Разработан алгоритм анализа данных и программа на языке Си, реализующая его.

СОДЕРЖАНИЕ

1	РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА	6
2	РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ УСТРОЙСТВА	8
2.1	1 Выбор акселерометра	8
2.2	2 Выбор микроконтроллера	12
2.3	3 Блок питания	15
3	РАЗРАБОТКА ПРОГРАММЫ	17
4	РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА	18

ВВЕДЕНИЕ

Разработка измерителя постоянного тока является важной задачей в области электротехники и электроники. Такой прибор необходим для точного измерения постоянного тока в различных электрических цепях и системах.

Измерители постоянного тока используются в различных областях, включая промышленность, автомобильную отрасль, энергетику и телекоммуникации. Они помогают обеспечить безопасность и надежность работы систем, а также повышают эффективность использования электроэнергии. Важность измерителей постоянного тока заключается в том, что они позволяют контролировать и оптимизировать работу систем, что в свою очередь повышает качество продукции и уменьшает затраты на производство.

В данном курсовом проекте рассматривается способ создания устройства на базе микроконтроллера, который сможет обеспечить высокую скорость передачи данных, что позволит быстро и точно измерять ток. В процессе был подобран необходимый в задании микроконтроллер с шиной CAN, а также написана управляющая программа на языке Си.

1 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА

Структурная схема устройства представлена на рисунке 1.

Рисунок 1 – Структурная схема устройства

Стоит отметить, что измерять ток цифровые устройства не умеют, поэтому, ток преобразуют в напряжение, чтобы АЦП мог оцифровать его. Принцип работы устройства заключается в следующем. АЦП имеет два канала. На один канал подключен выход инструментального уселителя, усиливающего напряжение на низкоомном шунте. Данный канал используется для измерения токов в диапазоне 1мА-100мА. Для измерения токов в диапазоне 1мкА-1мА используется схема трансимпедансного усилителя [7], изображенная на рисунке 2.

Figure 3—The transimpedance amplifier is a way to automatically adjust the counter voltage. An operational amplifier will set its output in order to have a nearly null voltage offset between its two inputs: $U_{AB} = 0$, which is exactly what we are looking for.

Рисунок 2 – Трансимпедансный усилитель

Переключение между каналами осуществляется программно. Измеренное значение напряжения пересчитывается в ток, и выводится на IPS дисплей. Так же, результаты могут быть переданы по интерфейсу CAN с фиксированной скоростью.

Блок питания формирует напряжение +12B и -12B из 220B для питания операционных усилителей. Посредством использования стабилизаторов напряжения из 12B получаем напряжения в 3.3B и 5B, необходимые для питания микроконтроллера и других элементов схемы.

2 РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ УСТРОЙСТВА

Электрическая принципиальная схема представлена в приложении.

2.1 Выбор ОУ

Основным требованием для ОУ в схеме трансимпендасного усилителя является маые входные токи - они должны быть меньше, чем минимальная разрешенная погрешность измерения. Данному требованию удовлетворяет AD8603 от Analog Devices. Его основные особенности представлены на рисунке ??.

FEATURES

Easy to use

Gain set with one external resistor

(Gain range 1 to 10,000)

Wide power supply range $(\pm 2.3 \text{ V to } \pm 18 \text{ V})$

Higher performance than 3 op amp IA designs

Available in 8-lead DIP and SOIC packaging

Low power, 1.3 mA max supply current

Excellent dc performance (B grade)

50 µV max, input offset voltage

0.6 μV/°C max, input offset drift

1.0 nA max, input bias current

100 dB min common-mode rejection ratio (G = 10)

Low noise

9 nV/√Hz @ 1 kHz, input voltage noise

0.28 µV p-p noise (0.1 Hz to 10 Hz)

Excellent ac specifications

120 kHz bandwidth (G = 100)

15 µs settling time to 0.01%

Рисунок 3 – Особенности AD8603

3 РАЗРАБОТКА ПРОГРАММЫ

Для работы программы необходимо для начала разработать алгоритм. Алгоритм нашего устройства представлен на

4 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Data Sheet на акселерометр ADXL345 [Электронный ресурс]. URL:https://static.chipdip.ru/lib/876/DOC011876534.pdf (Дата обращения: 15.05.2023)
- 2 Токарчук, Т. С. Особенности регистрации медико-биологических данных с применением акселерометрических датчиков / Т. С. Токарчук, Ю. О. Боброва // СПбНТОРЭС: труды ежегодной НТК. 2019. № 1(74). С. 367-369.
- 3 Data Sheet на микроконтроллер STM32WB35CCU6 [Электронный ресурс]. URL:https://www.st.com/resource/en/datasheet/stm32wb35cc.pdf (Дата обращения: 16.05.2023)
- 4 Application note на микроконтроллеры серии STM32WB [Электронный ресурс]. URL:https://www.st.com/resource/en/application_note/an5165-development-of-rf-hardware-using-stm32wb-microcontrollers-stmicroelectronics.pdf (Дата обращения: 16.05.2023)
- 5 Спецификация на Li-pol аккумулятор LP-130-232635 [Электронный ресурс]. URL:https://static.chipdip.ru/lib/412/DOC005412824.pdf (Дата обращения: 16.05.2023)
- 6 Data Sheet на DC-DC преобразователь LM3671/-Q1 [Электронный ресурс]. URL:https://static.chipdip.ru/lib/091/DOC001091994.pdf (Дата обращения: 16.05.2023)
- 7 Robert L., Picoammeter Design[Текст]/Robert Lacoste//CIRCUIT CELLAR –2010. –№237 С. 62-66.

ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ