

Rec'd PCT/PTO 22 APR 2005
16 JUN 2005

22/12/03

INVESTOR IN PEOPLE

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 3 November 2003

BEST AVAILABLE COPY

Patents Form 1/77

Patents Act 1977
(Rule 16)

25 OCT 2002

PCT/EP 03/11652

22-12-03

25 OCT 02 E730452-1 000393
PCT/7702 0.00-022494.9

The Patent Office

Cardiff Road
Newport
Gwent NP10 8QQ

Request for grant of a patent
(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

1. Your reference

2002P13595 GB / P90 / NC / SIT

2. Patent application number
(The Patent Office will fill in this part)

0224864.9

25 OCT 2002

3. Full name, address and postcode of the or of each applicant (*underline all surnames*)SIEMENS PLC
SIEMENS HOUSE, OLDBURY
BRACKNELL RG12 8FZ
UNITED KINGDOM

4095873003

Patents ADF number (*if you know it*)

UNITED KINGDOM

If the applicant is a corporate body, give the country/state of its incorporation

4. Title of the inventionA METHOD OF DETERMINING A TIMING OFFSET
BETWEEN A FIRST CLOCK AND A SECOND
CLOCK IN A COMMUNICATIONS NETWORK**5. Name of your agent** (*if you have one*)

Neil Condon

"Address for service" in the United Kingdom to which all correspondence should be sent (*including the postcode*)Intellectual Property Department
Siemens House, Oldbury
Bracknell, Berkshire, RG12 8FZ
United Kingdom

8028458002

Patents ADF number (*if you know it*)**6.** If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each these earlier applications and (*if you know it*) the or each application numberCountry Priority application number
*(if you know it)*Date of filing
*(day/month/year)***7.** If this application is divided or otherwise derived from an earlier UK application, give the number and the filling date of the earlier application**8.** Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if:
a) any application named in part 3 is not an inventor, or
b) there is an inventor who is not named as an

Yes

Patents Form 1/77

Patent Form 1/77

Patents Act 1977
(Rule 16)**The
Patent
Office**

1/77

applicant, or
 a) any named applicant is a corporate body.
 See note (d))

- 9.** Enter the number of sheets for any of the following items you are filing with this form.
 Do not count copies of the same document

Continuation sheets of this form

Description	18
Claim(s)	4
Abstract	1
Drawing(s)	2 <i>only for</i>

- 10.** If you are also filing any of the following, state how many against each item.

Priority documents**Translation of priority documents**

Statement of inventorship and right to grant a patent (Patents Form 7/77)	1
Request for preliminary examination and search (Patents Form 8/77)	1

Request for substantive examination (Patents Form 10/77)**Any other documents (please specify)****Fee Sheet****We request the grant of a patent on the basis of this application****11.****Signature****Date***Neil Condon*Neil Condon
Intellectual Property Department

25.10.2002

- 12.** Name and daytime telephone number of Person to contact in the United Kingdom

Neil Condon

+44 1344 850 0066

DUPLICATE

**A METHOD OF DETERMINING A TIMING OFFSET
BETWEEN A FIRST CLOCK AND A SECOND CLOCK IN A
COMMUNICATIONS NETWORK**

5 BACKGROUND

Field of Invention

This invention relates to a method of determining a timing offset between a first clock and a second clock in a communications network.

10

Background of the Invention

It is standard for a device connected to a computer network to have an internal clock for time keeping purposes. Typical hardware 15 clocks provide millisecond resolution and timing. Usually, the internal clocks of two or more devices communicating over a network run independently of each other and thus may not be synchronised. For certain types of network communication, it is desirable that the timing offset between the unsynchronised internal clocks of the two or more 20 communicating devices be known or be predictable. For example, measuring network delay in an IP network is simplified if the timing offset between the clocks of the communicating devices is known.

Network delay in an IP network is a measure of how long it takes for a packet to get from one point in the network to another. 25 Network delay can be measured either for a packet round trip, or in a single direction.

- One method for measuring round trip delay involves using the well-known network 'ping' feature. The 'ping' feature echoes back a packet from its reception point to the point in the network where the packet was initially transmitted. The round trip delay time is simply
- 5 calculated as the difference between the time the packet was received back at its starting point and the time the packet was initially sent from its starting point. Since this calculation is reliant only on the timing of the clock at the starting point there is no need for the starting point clock and the reception point clock to be synchronised.
- 10 One known method for measuring single direction network delay relies on an absolute clock to synchronise the timing of the clock at the network starting point and the timing of the clock at the network end point. Provided the clocks at the network start and end points are synchronised to an absolute clock, single direction delay is simply
- 15 measured as the difference between the time a packet is received at the endpoint and the time the packet is sent from the starting point. The clocks at the start and end points may for example be synchronised to a Global Positioning System (GPS) time receiver or any other such source of absolute time measurement.
- 20 RFC 1305 describes The Network Time Protocol (NTP). The NTP is designed to distribute time information from an absolute time source to devices in a large network such as the Internet.
- 25 Jitter is the amount that packet transmission rate varies from the mean during a current time period. Jitter measurements assume a set interval between packets being sent as part of the test. Thus jitter measurements only give an indication of delay effects by a comparison of the measured interval between two packets being received and the

- 3 -

set packet transmission interval. Jitter measurements do not give the single direction delays experienced by individual packets.

It is desirable to be able to determine or predict the timing offset between two clocks in a computer network. This would have many
5 advantages, including allowing one way network delay to be determined without having to use an absolute clock to synchronise the clocks at the network transmission and reception points.

Summary Of The Invention

10

According to the invention there is provided a method for determining a timing offset between a first clock and a second clock at respective first and second points in a communications network, the method comprising: transmitting a plurality of request signals from the
15 first point in the network to the second point in the network; receiving at the first point in the network a plurality of reply signals transmitted from the second point in the network, each reply signal corresponding to a respective one of the plurality of request signals; identifying a first request signal and a corresponding reply signal having a minimum round trip delay time; determining from the minimum round trip delay time a minimum single leg delay time; and estimating a timing offset
20 between the clock values of the first clock and the second clock at a first instance, the estimation being based upon the minimum single leg delay time, and a transmission time and a reception time of one of the identified request signal and the corresponding reply signal, as given by the respective clocks at the transmission and reception points of the
25 signal.

- 4 -

Brief Description Of The Drawings

An example of the invention will now be described with
5 reference to the accompanying drawings, in which:

Figure 1 illustrates a communications network;

Figure 2 illustrates a packet timing diagram.

Detailed Description Of The Preferred Embodiment

10

Referring to Figure 1 of the accompanying drawings there is illustrated a communications network 1 comprising a first terminal A and a second terminal B. In this embodiment of the invention, the first terminal A and the second terminal B are both PCs and the 15 communications network 1 is an IP based network, for example a corporate Local Area Network (LAN).

The first terminal A and the second terminal B each comprises an internal hardware clock (not shown). The internal clocks of the first terminal A and the second terminal B are not synchronised and thus at 20 a given time, a synchronisation or timing offset δ exists between the two clocks. The timing offset δ may be defined as:

$$\delta = T_B - T_A \quad (1)$$

25 where T_A is the time indicated by the clock of the first terminal A and simultaneously, T_B is the time indicated by the clock of second terminal B.

- 5 -

Whilst independently running clocks of PCs such as the first terminal A and second terminal B can be expected to keep reasonably regular frequencies (i.e. time intervals), it is unlikely that the frequencies will be the same. If, the clock of the first terminal A runs at a frequency f_1 and the clock of the second terminal B runs at a different frequency f_2 the skew of the clocks is defined as:

$$f_2 - f_1 \quad (2)$$

Since the skew of the clocks of the first terminal A and second terminal B is non zero, the synchronisation offset δ is not constant but instead varies linearly with time.

Terminal A is arranged to transmit a series of test data packets over communications network 1 to terminal B. Each test data packet received at terminal B is re-transmitted back to terminal A. The network path followed by the packets on their round trip is symmetrical.

As will be explained in more detail below, timing information obtained from the respective clocks at terminal A and terminal B and stamped into the test packets is processed by terminal A to determine a timing offset between the respective clocks at terminals A and B. This in turn, allows a clock value at one of the clocks to be predicted given the corresponding clock value at the other clock.

Figure 2 of the accompanying drawings illustrates a time diagram of the test data packets passed between the first terminal A and the second terminal B. In Figure 2, a first test packet (T_1) is sent by the first terminal A at a time $t_{A\text{send}}$ as taken from the first terminal

- 6 -

A's internal clock. A packet sequence number and a time stamp indicating the time t_{A1send} are included in the first test packet (T_1). The first packet (T_1) is received at the second terminal B at a time $t_{B1receive}$ as taken from second terminal B's internal clock.

- 5 On receiving the first packet (T_1), the second terminal B adds to the packet a time stamp indicating the time $t_{B1receive}$ as taken from the second terminal B's internal clock that the packet is received at terminal B, and immediately echoes the packet back to the first terminal A. Thus in this embodiment, the time that the packet is received at terminal B and the time that the packet is then transmitted from terminal B are taken as being the same.
- 10

The echoed first packet (T_1) is received back at the first terminal A at a time $t_{A1receive}$ as taken from the first terminal A's internal clock. The sequence number and the times t_{A1send} , $t_{B1receive}$ are read from the 15 first packet (T_1) and together with $t_{A1receive}$ are stored in memory at the first device A.

As is illustrated in Figure 2, the above described steps are repeated in sequence for each of n test packets. The packets are transmitted from terminal A at a regular interval. For simplicity, only 20 the times t_{A1send} , $t_{B1receive}$, and $t_{A1receive}$ for the packets of sequence numbers one, four and n are shown in Figure 2.

The sequence numbers and the time stamps included in the test packets echoed back to the first terminal A are used to construct the timings base illustrated below in Table 1.

- 7 -

Packet Sequence	1	2	3	4	5
Time sent by Terminal A	t_{Aisend}	t_{A2send}	t_{A3send}	t_{A4send}	t_{A5send}
Time received by Terminal B	$t_{B1receive}$	$t_{B2receive}$	$t_{B3receive}$	$t_{B4receive}$	$t_{B5receive}$
Time received by Terminal A	$t_{A1receive}$	$t_{A2receive}$	$t_{A3receive}$	$t_{A4receive}$	$t_{A5receive}$

Packet Sequence	6	7	8	n-1	N
Time sent by Terminal A	t_{A6send}	t_{A7send}	t_{A8send}	$t_{An-1send}$	t_{Ansend}
Time received by Terminal B	$t_{B6receive}$	$t_{B7receive}$	$t_{B8receive}$	$t_{Bn-1receive}$	$t_{Bnreceive}$
Time received by Terminal A	$t_{A6receive}$	$t_{A7receive}$	$t_{A8receive}$	$t_{An-1receive}$	$t_{Anreceive}$

TABLE 1

- 5 For any given packet of sequence number i the round trip delay (RTD $_i$) across the network 1 between the first terminal A and the second terminal B is equal to the time given by terminal A's clock when the echoed packet was received back at terminal A minus the time given by terminal A's clock when the packet was originally sent
 10 from terminal A:

$$RTD_i = t_{Aireceive} - t_{Aisend} \quad (3)$$

- The network path between the first terminal A and the second
 15 terminal B is a variable delay path. The time taken for packets to travel the send leg between the first terminal A and the second terminal B will vary, depending upon a number of factors, including network

- 8 -

load. Likewise, the time taken for packets to travel the return leg between the second terminal B and the first terminal A will also vary. Thus the RTD of the packets used to construct the timing base illustrated in Table 1 will vary from packet to packet.

- 5 For a timings base constructed from a large enough sequence of packets, it can be assumed that the packet having the minimum RTD between terminals A and B, will also have the minimum send leg delay and also the minimum return leg delay. Furthermore, for a symmetrical network path between the first terminal A and the second terminal B it can be assumed that the minimum send leg delay and the minimum return leg delay are equal.
- 10

Thus defining the minimum single leg delay Δ_{mx} as being equal to half the minimum RTD, in the notation of table 1:

15
$$\Delta_{mx} = (t_{A mx receive} - t_{A mx send})/2 \quad (4)$$

where the index mx indicates the sequence number of a test packet having a minimum RTD.

- 20 When the packet of sequence number mx was sent form terminal A to terminal B, if the clocks at the two terminals A and B were synchronised, the condition:

$$t_{B mx receive} = t_{A mx send} + \Delta_{mx} \quad (5)$$

- 25 would hold.

- 9 -

However, as mentioned above, at any given time, the clocks at terminal A and terminal B have a timing offset δ and so condition (5) does not hold.

Instead, if δ_{mx} is the timing offset between the two clocks at the 5 time the packet of sequence number mx is sent to terminal B the following condition holds:

$$t_{Bmxreceive} = t_{Amxsend} + \Delta_{mx} + \delta_{mx} \quad (6)$$

10 thus giving:

$$\delta_{mx} = t_{Bmxreceive} - t_{Amxsend} - \Delta_{mx} \quad (7)$$

Thus, by identifying a packet having a minimum RTD between 15 terminals A and B, terminal A can process the information $t_{Amxsend}$, $t_{Amxreceive}$ and $t_{Bmxreceive}$ according to equations (4) and (7) to determine δ_{mx} .

At the instance of the packet of sequence number mx the relationship between the clock value TB_{mx} at terminal B and the clock 20 value TA_{mx} at terminal A is:

$$TB_{mx} = TA_{mx} + \delta_{mx} \quad (8)$$

As previously mentioned, in this embodiment, the timing offset 25 δ is not a constant. The clock at terminal A and the clock at terminal B run at different frequencies and thus the timing offset δ varies linearly with time.

- 10 -

Further information is needed to allow terminal A to predict any clock value at terminal B from the corresponding simultaneous clock value at terminal A. To obtain this further information, terminal A identifies a second packet in the sequence having a minimum RTD and 5 in the manner described above, a value δ_{my} of the timing offset between the two clocks at the time this packet is sent to terminal B is determined.

Since in this example the timing offset δ is not a constant, δ_{mx} is not equal to δ_{my} . However, because the timing offset δ varies linearly 10 with time, δ_{mx} and δ_{my} can be considered as being two terms in an arithmetic progression.

An arithmetic progression is a series in which each term differs from the previous term by the same amount. The Nth term of an arithmetic progression σ_N may be expressed as:

15

$$\sigma_N = a + Md \quad (9)$$

where a and d are constants and M is the Nth term of another arithmetic progression (for example M = 1, 2, 3 etc or M = 10, 20, 30 etc).

20

Thus the arithmetic progression δ may be expressed as

$$\delta = a + Md \quad (10)$$

25 If δ_{mx} and δ_{my} are the Xth and Yth terms respectively in the arithmetic progression δ , δ_{mx} may be expressed as:

- 11 -

$$\delta_{mx} = a + M_x d \quad (11)$$

and δ_{my} may also be expressed as

$$5 \quad \delta_{my} = a + M_y d \quad (12)$$

where M_x and M_y are the Xth and Yth terms in an arithmetic progression M. In one embodiment of the invention, M may be taken as the simple arithmetic progression 1, 2, 3...etc, defined by the sequence numbers of the packets used to construct the timings base.

10 Thus, δ_{mx} , δ_{my} , M_x and M_y are all known to terminal A, allowing terminal A to calculate the constants a and d in accordance with the equations:

$$15 \quad d = \frac{\delta_{mx} - \delta_{my}}{M_x - M_y} \quad (13)$$

and

$$20 \quad a = \delta_{my} - M_y d \quad (14)$$

Having calculated the constants a and d, terminal A can determine the value of any term in the arithmetic progression δ in accordance with equation (10).

- 12 -

For any given calculated timing offset value δ , terminal A can then predict the clock time at terminal B from the corresponding clock time at terminal A in accordance with equation (1).

If more than two packets in the sequence are identified as having 5 a minimum RTD, preferably, the one having the lowest sequence number and the one having the highest sequence number are selected for use in determining δ_{mx} and δ_{my} . This maximises the accuracy in the predicted value of any other term in the progression δ and hence any predicted clock time at terminal B.

10 Table 2 shows for a sequence of eleven packets transmitted between terminal A and terminal B example measured values of $t_{A\text{send}}$, $t_{A\text{receive}}$, $t_{B\text{receive}}$ and the RTD for the packets.

- 13 -

Sequence	1	2	3	4	5	6	7	8	9	10	11
$t_{A\text{send}}$	10	30	50	70	80	110	130	150	170	190	210
$t_{B\text{receive}}$	101	125	145	169	190	211	234	256	277	300	321
$t_{B\text{receive}}$	13	35	52	76	94	112	133	155	172	194	213
RTD	3	5	2	6	4	2	3	5	2	4	3
Δ_m			1						1		
δ	90	92	94	96	98	100	102	104	106	108	110
Clock B predicted for send	100	122	144	166	188	210	232	254	276	298	320
Send leg delay	1	3	1	3	2	1	2	2	1	2	1
Return leg delay	2	2	1	3	2	1	1	3	1	2	2

TABLE 2

In this example, packets of sequence numbers three and nine are identified by terminal A as being packets having a minimum RTD of value 2, and thus a minimum single leg delay of value 1.

For the packet of sequence number 3, terminal A processes the relevant values of $t_{B\text{receive}}$, $t_{A\text{send}}$ and Δ_m according to equation (7) to give a clock offset value δ_3 :

10

$$\delta_3 = 94$$

and for the packet of sequence number 9, terminal processes the relevant values of $t_{B\text{receive}}$, $t_{A\text{send}}$ and Δ_m according to equation (7) to give a clock offset value δ_9 :

- 14 -

$$\delta_9 = 106$$

- If terminal A uses the packet sequence number values of 3 and 9
- 5 as suitable values for M_x and M_y , then substituting for $M_x = 3$, $M_y = 9$, $\delta_{mx} = 94$ and $\delta_{my} = 106$ into equations (13) and (14) gives:

$$d = \frac{106 - 94}{9 - 3} = \frac{12}{6} = 2 \text{ and}$$

10 $a = 94 - 3 \times 2 = 88$

Hence, in accordance with equation (10) terminal A can use the values for a and d to determine the value of any of the terms in the arithmetic progression δ .

- 15 For any given calculated clock offset value δ , terminal A can then predict the clock time at terminal B from the corresponding clock time at terminal A in accordance with the equation (1).

For example, when the packet of sequence number 10 was sent from terminal A, the clock at terminal A was 190.

- 20 Substituting for $a = 88$, $d = 2$ and $M = 10$ into equation (10) gives:

$$\delta_{10} = 88 + 10 \times 2$$

$$\delta_{10} = 88 + 20$$

$$\delta_{10} = 108$$

- 15 -

and hence from equation (1) terminal A estimates the time given by the clock of terminal B when terminal A's clock was at 190 as being:

5 $190 + 108 = 298$

Since the clock time at terminal B can be predicted from the clock time at terminal A, the send leg delay and the receive leg delay for any packets sent between terminal A and terminal B can be easily 10 determined. For example, for the packet of sequence number 10 the clock time at terminal B when the packet was sent from A is predicted to be of value 298. The clock time at terminal B when the packet was received at terminal B is known to have been of value 300 and hence the send leg delay is calculated to be of value 2. Since the round trip 15 delay of the packet is known to be of value 4, the return leg delay can be calculated by simple subtraction as a value of 2. Alternatively, the return leg delay may be calculated in a similar manner to the send leg delay. The clock time at terminal B when the packet was transmitted back to terminal A is known to be of value 300. Since, $\delta_{10} = 108$, the 20 corresponding clock value at terminal A is predicted to be of value 192. The clock time at terminal A when the packet is received back at terminal A is known to be of value 194, giving by subtraction a return leg delay of value 2.

It can be seen from table 2, that the output of the clock at the 25 first terminal is itself an arithmetic progression. Thus in one embodiment, rather than using packet sequence numbers, terminal A may instead use its clock output to provide suitable values for M_x and

M_y. Thus, substituting for M_x = 50, M_y = 170, δ_{nx} = 94 and δ_{ny} = 106 into equations (13) and (14) gives values for a and d as:

$$d = \frac{106 - 94}{170 - 50} = \frac{12}{120} = 0.1$$

5

and,

$$a = 94 - 50 \times 0.1 = 89.$$

10 Again using the packet of sequence number 10 as an example, terminal A may

substitute for a = 89, d = 0.1 and M = 190 into equation (10) to give:

$$\begin{aligned}\delta_{190} &= 89 + 190 \times 0.1 \\ 15 \quad \delta_{190} &= 89 + 19 \\ \delta_{190} &= 108\end{aligned}$$

and hence from equation (1) terminal A predicts the time given by the clock of terminal B when terminal A's clock was at 190 as being:

20

$$190 + 108 = 298$$

which is consistent with the value predicted using packet sequence numbers as values for M.

25 In the above described examples, values for t_{Bmreceive}, t_{Amsend} of a send leg packet (i.e transmitted from terminal A to terminal B) are

- 17 -

used in accordance with equation (7) to determine a value for a timing offset. It will be appreciated, that values for $t_{B,send}$, $t_{A,receive}$ of a return leg packet (i.e one echoed back from terminal B to terminal A) could equally well be used.

5 In an embodiment of the invention first terminal A and second terminal B contain processors programmed to perform the required functions of the terminals described above.

Over extended time periods, the frequency of the clocks at terminals such as terminals A and B may drift because of external influences such as temperature. Periodically therefore, to counter such effects, a new series of test packets should be transmitted between the terminals to allow recalibration of the arithmetic progression constants defined in equations (12) and (13).

It will be appreciated that minimum RTD's may vary with network conditions and so the packets used to calculate values for δ_{mx} and δ_{my} need not necessarily have the same value for their RTD.

In the above specific description, first terminal A and second terminal B are described as being PCs. It will be appreciated that either terminal A or terminal B can be any type of device that may be connected to a network. For example, a printer, an IP phone, a router, a server or specialised network test equipment.

In the above specific description, network 1 is described as being a corporate LAN. It will be appreciated that the network 1 may be any type of network to which terminals can be connected or indeed 25 a combination of inter connected networks.

- 18 -

In the embodiment described in detail above, the timing offset δ between the clocks at terminals A and B is not a constant, and hence the measured value of δ_{mx} is not equal to the measured value of δ_{my} . In an alternative embodiment, there is no frequency offset between the 5 clocks at terminals A and B and hence the timing offset δ remains constant. In this embodiment the measured values of δ_{mx} and δ_{my} are compared and found to be of the same value indicating that δ is constant.

In one embodiment the information included in the test packets 10 may be added to normal data-carrying packets travelling between terminals A and B.

The above described techniques may be used to make measurements of the send and receive delays for two-way real-time transmissions in an IP network, such as Voice over IP (VOIP).

15 While the invention has been described with reference to particular embodiments, it will be understood by those skilled in the art that the invention is not limited to those embodiments. Those skilled in the art will appreciate that various adaptations and changes of those embodiments may be made without departing from the scope of the 20 invention as defined in the following claims.

- 19 -

CLAIMS

1. A method for determining a timing offset between a first clock and a second clock at respective first and second points in a
5 communications network, the method comprising:

transmitting a plurality of request signals from the first point in the network to the second point in the network;

- receiving at the first point in the network a plurality of reply signals transmitted from the second point in the network, each reply signal corresponding to a respective one of the plurality of request signals;

identifying a first request signal and a corresponding reply signal having a minimum round trip delay time;

- determining from the minimum round trip delay time a minimum single leg delay time; and

estimating a timing offset between the clock values of the first clock and the second clock at a first instance, the estimation being based upon the minimum single leg delay time, and a transmission time and a reception time of one of the identified request signal and the
20 corresponding reply signal, as given by the respective clocks at the transmission and reception points of the signal.

2. A method according to claim 1, the method further comprising:
 - identifying a second request signal and a second corresponding reply signal having another minimum round trip delay time; and
 - estimating a second timing offset between the clock values of the first clock and the second clock at a second instant, the estimation

being based upon the another minimum single leg delay time, and a transmission time and a reception time of one of the second identified request signal and the second corresponding reply signal, as given by the respective clocks at the transmission and reception points of the
5 signal.

3. A method according to claim 2, the method further comprising:
using the first timing offset and the second timing offset to
estimate a third timing offset between the first and second clocks at a
10 third instance.

4. A method according to claim 3, wherein the first and second
timing offsets are treated as two terms in an arithmetic progression in
order to estimate the third timing offset.
15

5. A method according to claim 3 or 4, wherein the third timing
offset is used to
calculate the clock value at the second clock at the third instance
from the clock value at the first clock at the third instance.

20
6. A method according to claim 3 or 4, wherein the third timing
offset is used to calculate a one way delay time of a signal

25
7. A method according to any preceding claim, wherein each reply
signal includes information indicating the clock time at the first clock
when the reply signal was transmitted from the first point in the
network.

- 21 -

8. A method according to any preceding claim, wherein each reply signal includes information indicating the clock time at the second clock when the request signal corresponding to the reply signal was received at the second point in the network.
5
9. A method according to any preceding claim wherein each reply signal includes information indicating the clock time at the second clock when the reply signal was sent from the second point in the
10 network.
10. A method according to any preceding claim, wherein each reply signal includes information indicating the clock time at the first clock when the request signal corresponding to the reply signal was sent
15 from the first point in the network.
11. A method according to any preceding claim, wherein a minimum one way delay time is calculated as being half a minimum round trip delay.
20
12. A method according to any preceding claim, wherein the message and reply signals are packets.
13. A method according to claim 6, where the calculated one way delay time is that of a packet transmitted between the first and second points.
25

- 22 -

14. A method according to claim 13 wherein the packet is a VOIP packet.

15. A computer programme arranged to perform the method of any
5 preceding claim when executed by a suitably arranged processing device.

16. A processing device programmed with the computer programme claimed in claim 15.

- 23 -

ABSTRACT

A system for determining a timing offset between a first clock and a second clock at respective first and second points in a communications network. A series of request signals is transmitted from the first point in the network to the second point in the network. A series of reply signals is transmitted from the second point in the network to the first point in the network. Each reply signal corresponds to a respective one of the request signals. A request signal and a corresponding reply signal having a minimum round trip delay time are identified and a minimum single leg delay time is determined from the minimum round trip delay time. A timing offset between the clock values of the first clock and the second clock at a first instance is estimated, the estimation being based upon the minimum single leg delay time, and a transmission time and a reception time of one of the identified request signal and the corresponding reply signal, as given by the respective clocks at the transmission and reception points of the signal.

20

Figure 1

Figure 2

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.