Block Relaxation as Majorization

Jan de Leeuw

Version 007, November 04, 2016

Abstract

This short note shows that all block relaxation algorithms can be formulated as majorization algorithms. The result is mostly a curiosity, without any obvious practical applications.

Contents

1	Introduction	1
2	Block Relaxation	1
3	Augmentation	2
4	Majorization	2
5	Majorization from Blocking	3
6	Partial Majorization	3
R	eferences	4

Note: This is a working paper which will be expanded/updated frequently. All suggestions for improvement are welcome. The directory deleeuwpdx/pubfolders/block has a pdf version, the complete Rmd file, and the bib file.

1 Introduction

We use notation and terminology taken from De Leeuw (1994).

2 Block Relaxation

To minimize $g: X \otimes Y \to \mathbb{R}$ over $x \in X$ and $y \in Y$ we can use the block relaxation algorithm.

$$\begin{split} y^{(k+1)} &\in \mathbf{argmin}_{y \in Y} g(x^{(k)}, y), \\ x^{(k+1)} &\in \mathbf{argmin}_{x \in X} g(x, y^{(k+1)}). \end{split}$$

Note that the argmin's are point-to-set maps, because the minima over blocks are not necessarily unique.

As an example, consider $g(a, b) = \mathbf{SSQ}(y - Xa - Zb)$ with $\mathbf{SSQ}()$ the sum of squares. The algorithm, using Moore-Penrose inverses, is

$$b^{(k+1)} = Z^{+}(y - Xa^{(k)}),$$

$$a^{(k+1)} = X^{+}(y - Zb^{(k+1)}).$$

3 Augmentation

Suppose the original problem is to minimize $f: X \to \mathbb{R}$ over $x \in X$ and we can find $g: X \times Y \to \mathbb{R}$ such that $f(x) = \min_{y \in Y} g(x, y)$. Such a g is called an *augmentation* of f. Minimizing f over $x \in X$ can be done by applying block relaxation to the augmentation g over $x \in X$ and $y \in Y$.

In least squares factor analysis, for example, we minimize

$$f(X) = SSQ(off(R - XX')),$$

where $\mathbf{off}(X) = X - \mathbf{diag}(X)$. Choose the augmentation

$$g(X, \Delta) = \mathbf{SSQ}(R - XX' - \Delta)$$

where Δ varies over diagonal matrices. The block relaxation algorithm is

$$\Delta^{(k+1)} = \mathbf{diag}(R - X^{(k)}(X^{(k)})'),$$
$$(R - \Delta^{(k+1)})X^{(k+1)} = X^{(k+1)}\Lambda,$$

where Λ is a symmetric matrix of Lagrange multipliers. Thus finding $X^{(k+1)}$ involves solving the eigen problem for $R - \Delta^{(k+1)}$.

4 Majorization

Again we want to minimize $f: X \to \mathbb{R}$ over $x \in X$. Suppose there is a $g: X \times X \to \mathbb{R}$ such that $g(x,y) \geq f(x)$ for all $x \in X$ and $y \in X$ and such that g(x,x) = f(x) for all $x \in X$. Such a g is called a *majorization* of f. Minimize f over $x \in X$ by applying block relaxation to the majorization g over $x \in X$ and $y \in X$.

Clearly any majorization of f is also an augmentation of f. Majorization is a special type of augmentation because X = Y and $x \in \mathbf{argmin}_{y \in Y} g(x, y)$. Thus the block relaxation is simply

$$x^{(k+1)} \in \mathbf{argmin}_{x \in X} g(x, x^{(k)}).$$

Thus majorization algorithms are block relaxation algorithms.

5 Majorization from Blocking

Suppose $h: X \otimes Z \to \mathbb{R}$. Define $T(x) = \operatorname{argmin}_{z \in Z} h(x, z)$, and suppose t(x) is a selection from T(x), i.e. $t(x) \in T(x)$ for all $x \in X$. Define f(x) = h(x, t(x)) and g(x, y) = h(x, t(y)). Then $g(x, y) \geq g(x, x) = f(x)$. Thus g is a majorization of f. The majorization algorithm for f and g is simply the block relaxation algorithm for h. Thus block relaxation algorithms are majorization algorithms. Our reasoning here is very similar to Lange (2016) (section 4.9).

As an example consider

$$h(X, \Delta) = \mathbf{SSQ}(R - XX' - \Delta).$$

Then

$$f(X) = SSQ(off(R - XX')),$$

and the majorization of f is

$$g(X,Y) = \mathbf{SSQ}(R - XX' - \mathbf{diag}(R - YY')).$$

Another example is

$$h(a,b) = \mathbf{SSQ}(y - Xa - Zb).$$

Then

$$f(a) = (y - Xa)'(I - ZZ^{+})(y - Xa),$$

and the majorization of f is

$$g(a,b) = \mathbf{SSQ}(y - Xa - ZZ^{+}(y - Xb)).$$

Clearly we can also interchange the role of the two blocks. In the factor analysis example we can minimize out X to get

$$f(\Delta) = \sum_{s=n+1}^{n} \lambda_s(R - \Delta),$$

where the $\lambda_s(X)$ are the ordered eigenvalues of X (assuming the p largest eigenvalues are non-negative). The majorization function is

$$g(\Delta, \Omega) = \mathbf{SSQ}(R - \Delta - (R - \Omega)_p),$$

with $(X)_p$ the best rank p approximation of X.

6 Partial Majorization

Suppose the problem we want to solve is minimizing g(x,y) over $x \in X$ and $y \in Y$. If both minimizing g(x,y) over $x \in X$ for fixed $y \in Y$ and minimizing g(x,y) over $y \in Y$ for fixed $x \in X$ is easy, then we often use block-relaxation, alternating the two conditional minimization problems until convergence.

But now suppose only one of the two problems, say minimizing g(x,y) over $y \in Y$ for fixed $x \in X$, is easy. Define

$$f(x) = \min_{y \in Y} g(x, y)$$

and let y(x) (be any $y \in Y$ such that f(x) = g(x, y(x))).

Suppose we have a majorizing function h(x, z) for f(x). Thus

$$f(x) \le h(x, z)$$
 $\forall x, z \in X$,
 $f(x) = h(x, x)$ $\forall x \in X$.

Suppose our curent best solution for x is \tilde{x} , with corresponding $\tilde{y} = y(\tilde{x})$. Let x^+ be any minimizer of $h(x, \tilde{x})$ over $x \in X$. Now

$$g(x^+, y(x^+)) = f(x^+) \le h(x^+, \tilde{x}) \le h(\tilde{x}, \tilde{x}) = f(\tilde{x}) = g(\tilde{x}, y(\tilde{x}))$$

which means that $(x^+, y(x^+))$ gives a lower loss function value than $(\tilde{x}, y(\tilde{x}))$. Thus we have, under the usual conditions, a convergent algorithm.

References

De Leeuw, J. 1994. "Block Relaxation Algorithms in Statistics." In *Information Systems and Data Analysis*, edited by H.H. Bock, W. Lenski, and M.M. Richter, 308–24. Berlin: Springer Verlag. http://www.stat.ucla.edu/~deleeuw/janspubs/1994/chapters/deleeuw_C_94c.pdf.

Lange, K. 2016. MM Optimization Algorithms. SIAM.