Cracking Wordle

DATA201 | LGCC Evelyn Kim

About Wordle

- Daily game
- Guess the word
- English words
- 5 Letters
- 6 tries
- Strategy is key

My Approach

- vowels
- hope

Each guess must be a valid 5 letter word. Hit the enter button to submit.

After each guess, the color of the tiles will change to show how close your guess was to the word.

Examples

The letter W is in the word and in the correct spot.

The letter I is in the word but in the wrong spot.

The letter **U** is not in the word in any spot.

A new WORDLE will be available each day!

My Interest

A few weeks ago, I had no idea what Wordle even was. I'd been seeing people post a sequence of colored squares across social media, but had no idea what it meant.

I finally bit the bullet and looked it up to see what all the buzz was about. I soon learned it's a fun game to play and share results with friends.

Most people I know play this game (my cousins and I even have a group chat to share our daily scores)

Research Question

What is the best strategy to start off my daily Wordle?

Goals

- find a data-backed approach
- examine as many 5-letter
 English words as possible
- find helpful patterns

Variables of Interest

General Information

- Number of 5 letter words
- Letter frequency
- Common prefixes/suffixes
- Number of words with repeating letters

Good Words

- Words including the most common letters
- Words including common prefixes/suffixes
- Combination of words that include every/most letters in the alphabet?

About the Data

Dataset: https://github.com/dwyl/english-words

- Type: .txt file
- Size: 479k+ entries
 - Non-alpha: 370k+ words
 - 5-letter: ~16k words
- Contents: Comprehensive list of English words

Methodologies

• **Libraries:** seaborn, matplotlib, numpy, wordcloud

Process

- **Imported** .txt file as a dataframe, adding a column name
- **Filtered** initial data to only examine 5-letter words
- **Created** a new dataframe to examine words by letter, with columns for words, word count, letter count, and duplicate count
- **Transformed** computed data types into integer type
- **Created** visualizations based on column values

Results

Letters found in the most words

• A: 8392 words

• E: 7800 words

• S: 6537 words

• R: 5143 words

• I: 5067 words

Results

Letters that appeared the most

• A: 8392 times

• E: 7800 times

• S: 6537 times

• O: 5219 times

• R: 5143 times

Results

Most duplicated letters

• A: 1145 times

• E: 1072 times

• S: 666 times

• 0: 606 times

• T: 313 times

Discussion

- Incorporate common letters into my initial guesses
 - Common Letters: A, E, S, R, I, O, L, T, N, U
 - Potential First Guesses: raise, riots, tries
 - Potential Later Guesses: toner, tonal, count
- Keep an eye out for likely duplicate letters
 - A, E, S, O, and T were most likely to be duplicated
 - If I get stuck on a word, I can consider re-using a letter
- I'd like to examine the data further:
 - Find common prefixes & suffixes
 - Find common letter combinations
 - Find the number of words containing repeating letters (total and by letter)
 - I had difficulty creating a letter cloud based on letter frequency, so I'd like to problem solve that