EXERCICES D'ANALYSE FONCTIONNELLE – SÉANCE 11 COMPACITÉ

Exercice 1. Fixons v > 0. Sur $L^2(\mathbb{R})$ considérons l'opérateur de translation $\tau_v u(\cdot) = u(\cdot - v)$. Le nombre $\lambda = 1$ est-il une valeur propre (approchée) de τ_v ?

Idée de solution de l'exercice 1. Valeur propre. Si $\lambda \in \mathbb{R} \setminus \{0\}$ est telle qu'il existe $v \in L^2(\mathbb{R})$ de sorte que pour tout $x \in \mathbb{R}$

$$u(x-v) = u(x),$$

alors u est v-périodique. Or les seules fonctions périodiques de carré intégrable sont les fonctions presque partout nulles.

Valeur propre approchée. Fixons $u \in L^2[0,1[$ de norme 1 et étudions

$$\|\tau_v u - u\|_2^2 = \int_{\mathbb{R}} |u(x) - u(x - v)|^2 dx$$

On prend $u_n = \chi_{(-n,n)}/2n$ ce qui donne

$$\int_{\mathbb{R}} |u_n(x) - u_n(x - v)|^2 dx = \frac{2v}{(2n)^2}.$$

On peut aussi

$$\|\tau_v u - u\|_2^2 = 2 - 2(\tau_v u|u).$$

Exercice 2. L'opérateur de Shift $S(x_n)_n = (0, x_1, x_2, ...)$ est un opérateur $\ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$. Observez qu'il ne possède pas de valeur propre non-triviale.

Idée de solution de l'exercice 2. Si $\lambda \in \mathbb{R} \setminus \{0\}$ est telle qu'il existe $x \in \ell^2(\mathbb{N})$ de sorte que

$$\lambda(x_1, x_2, x_3, \dots) = (0, x_1, x_2, \dots)$$

on déduit par récurennce que $x_n = 0$ pour tout n.

Exercice 3. Fixons V et W deux espaces vectoriels complets. Montrez que l'ensemble des opérateurs compacts $V \to W$ est un espace vectoriel fermé pour la norme $\|\cdot\|_{\mathcal{L}(V,W)}$.

Idée de solution de l'exercice 3. Le caractère vectoriel suit du fait que la somme vectorielle de deux précompacts est précompacte.

Pour le caractère fermé, donnons nous K un opérateur et une suite K_n d'opérateurs compacts qui convergent vers K pour la norme d'opérateur $\|\cdot\|_{\mathcal{L}(V,W)}$. Fixons $\epsilon > 0$. Par convergence, il existe n tel que

$$||K - K_n||_{\mathcal{L}(V,W)} \le \epsilon/2$$

Date: Automne 2022.

et K_n étant compact il existe un nombre fini de w_i de sorte que

$$K_n(B(0,1)) \subset \bigcup_i B(w_i, \epsilon/2).$$

On conclut que

$$K(B(0,1)) \subset \bigcup_{i} B(w_i, \epsilon).$$

Exercice 4. Prouver que l'opérateur symétrique

$$A: L^2[0,1[\to L^2]0,1[:u\mapsto xu]$$

ne possède pas de valeur propre. Déduire que A n'est pas compact.

Idée de solution de l'exercice 4. Si $\lambda \in \mathbb{R} \setminus \{0\}$ est telle qu'il existe $u \in L^2]0,1[$ qui vérifie $\lambda u(x) = xu(x)$ pour tout $x \in \mathbb{R}$. Si u n'est pas presque partout nulle pour toute paire de points x_1,x_2 sur le support de u on a

$$x_1 = \lambda = x_2$$
.

Montrant ainsi que u est nulle expeté en au moins un point. Elle est donc presque partout nulle.

Exercice 5. Supposons que $T: \mathcal{H} \to \mathcal{H}$ soit un opérateur compact et auto-adjoint sur un espace de Hilbert. Fixons $n \geq 1$ un entier impair. Expliquez pourquoi il existe un opérateur compact et auto-adjoint tel que

$$A^n = T$$
.

Montrez alors qu'un tel opérateur est unique.

Idée de solution de l'exercice 5 quand n = 3. Par la proposition 13.17(iv),

$$T(x) = \sum_{n \in \mathbb{N}} \lambda_n(e_n|x)e_n$$

On pose

$$A(x) = \sum_{n \in \mathbb{N}} \lambda_n^{1/3}(e_n|x_n)e_n$$

Par proposition 13.17(iii), $\#\{\lambda_n \geq 1\}$ est fini. On voit alors que

$$||A(x)||^2 = \Big| \sum_{n \in \mathbb{N}, \lambda_n \ge 1} \lambda_n^{1/3} (e_n | x_n) e_n \Big|^2 + \Big| \sum_{n \in \mathbb{N}, \lambda_n < 1} \lambda_n^{1/3} (e_n | x_n) e_n \Big|^2$$

$$\le (\# \{ \lambda_n \ge 1 \} + 1) ||x||^2$$

donc A est bien défini comme limite d'opérateur continus uniformément bornés.

Par orthogonalité,

$$A(A(A(x))) = \sum_{n \in \mathbb{N}} \lambda_n^{1/3}(e_n|x_n)e_n$$

Exercice 6. (a) Montrez que l'opérateur d'intégration,

$$V(u)(t) = \int_0^t u(s) \, \mathrm{d}s,$$

est $L^2[0,1] \to L^2[0,1]$.

- (b) Montrez que l'opérateur n'a pas de vecteur propre non nul et déterminer spectre.
- (c) Montrez que l'opérateur est compact en étudiant l'équicontinuité de l'image de V.
- (d) Calculez son adjoint V^* .
- (e) Montrez que $P = V + V^*$ est une projection au sens où $P \circ P = P = P^*$. Pouvez-vous déterminer l'image de P?
- (f) Calculez VV^* . Comme composition d'opérateurs compacts V^*V est compact.
- (q) Calculez la norme de V. Indication : pour ce faire, observez que

$$||V||^2 = ||V^*V||$$

et utilisez les valeurs propres de V^*V pour déduire la valeur de la quantité $\|V^*V\|$.

(h) Déduisez l'inégalité de Poincaré : pour chaque $f \in C^1[0,1]$

$$\int_{[0,1]} |f(t) - f(0)|^2 dt \le \left(\frac{2}{\pi}\right)^2 \int_{[0,1]} |f'(t)|^2 dt$$

Exercice 7. Considérons une base $(e_i)_{i\in I}$ d'un espace de Hilbert \mathcal{H} . Considérons les opérateurs linéaires bornés $A: \mathcal{H} \to \mathcal{H}$ tels que

$$||A||_T = \left(\sum_{i \in I} ||Ae_i||_{\mathfrak{H}}^2\right)^{\frac{1}{2}}$$

est finie. Appelons de tels opérateurs les opérateurs de trace finie.

- (a) Montrez que l'adjointe de A, noté A^* , satisfait $||A^*||_T = ||A||_T$ et déduisez que la définition d'opérateur trace ne dépend pas de la base.
- (b) Montrez que l'espace des opérateurs trace \mathcal{H}_T est en fait un espace de Hilbert. Décrivez son produit scalaire $\langle \cdot, \cdot \rangle_{\mathcal{H}_T}$.
- (c) Si $\mathcal{H} = \mathbb{R}^d$, décrivez \mathcal{H}_T et $\langle \cdot, \cdot \rangle_{\mathcal{H}_T}$.
- (d) Tout opérateur $A \in \mathcal{H}_T$ est compact. Indication : les opérateurs de rang fini sont compacts et les opérateurs compacts forment un sous-espace vectoriel fermé des opérateurs linéaires bornés.