

Model Optimization and Tuning Phase

Date	July 2024
Team ID	739765
	Occupancy Rates and Demand in the
Project Title	Hospitality Industry.
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	
		Optimal Values
		-
Logistic	-	
Regression		

	K-Neighbors Classifier	-	-	
			_	
	Decision Tree	-	-	
	Classifier			
	SVC	-		
]	Performance Me	trics Comparison Report (2 Marks):		
	Model	Ontimized Metric		

Logistic	From sklearn.linear_model import LogisticRegression
Regression	lr = LogisticRegression()
	lr.fit(x_train, y_train)
	/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap y = column_or_1d(y, warn=True)
	- LogisticRegression
	LogisticRegression()

Final			
			ı
			ı
			ı
	Model	Reasoning	
SVC	sv=SVC	klearn.svm import SVC () (x_train,y_train)	
	y = 0	ocal/lib/python3.10/dist-packages/sklearn/utils/val: column_or_1d(y, warn=True)	idation.
	▼ SVC SVC()		
K-		earn.neighbors import KNeighborsClassifier hborsClassifier()	
Neighbors Classifier		_train, y_train)	
	Andrew A. Brancher	al/lib/python3.10/dist-packages/sklearn/neighbors/_classific selffit(X, y)	ation.py
		borsClassifier rsClassifier()	
	KWCIBIIOO		
	0		

Final Model Selection Justification (2 Marks):

	It is used to find Classification and Regression. KNN classifier is a simple, instance-based learning algorithm. It is a fast and real-time performance.
K-Neighbors Classifier	