Обучение взаимосвязанных информативных представлений в задаче генерации образов

Охотников Никита Владимирович

МФТИ

2023-2024

Введение

Исследуется задача поиска наилучшего дополнения образа — множества взаимосвязанных элементов (на примере элементов одежды) — элементами конечной коллекции.

Проблемы

- ▶ Взаимосвязь элементов в образе имеет неизвестную структуру.
- ▶ Точное решение задачи дополнения требует полного перебора.

Задача

Предложить применимый на практике приближенный алгоритм дополнения образа несколькими элементами.

Предлагается

На основе известной функции оценки образа построить функцию для генерации зависимых скрытых представлений элементов, использующихся далее для выбора элементов дополнения на основе близости в латентном пространстве.

Постановка задачи

Основные понятия и обозначения

- Основная единица данных, рассматривающаяся в работе элемент одежды, далее будем называть его объектом или элементом, множество всех рассматриваемых объектов – X
- Каждый объект $X \in \mathcal{X}$ есть пара X = (I, T) из соответственно изображения о текстового описания.
- ▶ Далее под объектом $X \in \mathcal{X}$ будем понимать его векторное представление $X \in \mathbb{R}^d$ в общем для всех элементов признаковом пространстве.
- ▶ Непустые подмножества множества элементов $O = \{X_i\}_{i=1}^k \subset \mathcal{X}, O \neq \{\emptyset\}$ будем называть *образами*. Множество образов обозначим \mathcal{O} .
- Для оценки образов введем функцию оценки или совместимости его элементов:

$$\mathcal{S}: \ 2^{\mathcal{X}} \longrightarrow [0,1]$$

 $\forall O \in \mathcal{O}: \ \mathcal{S}(O) > 0$

Совместимостью или оценкой образа O будем называть $\mathcal{S}(O)$

Постановка задачи

Задача дополнения образа

▶ Дано:

$$O_n \in \mathcal{O}, \ |O| = n$$
 — исходный образ $k \in \mathbb{N}, \ k$ — количество элементов дополнения

Требуется:

Найти наилучшее в смысле максимизации функции оценки $\mathcal S$ дополнение образа O_n k элементами $\{\hat X_i\}_{i=1}^k\subset \mathcal X$ т.е. решить следующую оптимизационную задачу

$$\{\hat{X}_i\}_{i=1}^k = \underset{\{X_i\}_{i=1}^k \subset \mathcal{X}}{\operatorname{argmax}} \, \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right)$$

ightharpoonup Точное решение для известной \mathcal{S} : полный перебор всех подмножеств \mathcal{X} размера k.

Асимптотика: $|\mathcal{X}|^k$ вызовов функции \mathcal{S}

Теоретическая часть

- ightharpoonup В качестве аппроксимации функции оценки S далее будем рассматривать предобученную модель OutfitTransformer¹.
- ▶ Для задачи дополнения

$$\{\hat{X}_i\}_{i=1}^k = \underset{\{X_i\}_{i=1}^k \subset \mathcal{X}}{\operatorname{argmax}} \, \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right)$$

существует 2 глобальных подхода

- Дискретный оптимизация полного перебора
- Непрерывный решение релаксированной задачи в \mathbb{R}^d и поиск ближайших к решению элементов $\mathcal X$

¹https://doi.org/10.48550/arXiv.2204.04812

Дискретный подход

- ▶ Решение задачи приближенным перебором
- Бейзлайн: жадные алгоритмы

$$\text{$\langle 1$-step} \; X_1 = \underset{X \in \mathcal{X}}{\operatorname{argmax}} \; \mathcal{S}(O_n \cup X), \; \ldots, X_k = \underset{X \in \mathcal{X}}{\operatorname{argmax}} \; \mathcal{S}(O_n \cup X)$$

Асимптотика: $|\mathcal{X}|$ вызовов функции \mathcal{S}

«k-step»
$$X_1 = \operatorname*{argmax}_{X \in \mathcal{X}} \mathcal{S}(O_n \cup X), \ldots, X_k = \operatorname*{argmax}_{X \in \mathcal{X} \setminus \bigcup_{i=1}^{k-1} X_i} \mathcal{S}(O_n \cup X_1 \ldots X_{k-1} \cup X)$$

Асимптотика: $k \cdot |\mathcal{X}|$ вызовов функции \mathcal{S}

• Альтернатива: алгоритм beam-search, активно применяемый в языковых моделях. В граничных случаях вырождается либо в полный перебор, либо в k-step алгоритм выше. Асимптотика: $\geq k \cdot |\mathcal{X}|$ вызовов функции \mathcal{S}

Непрерывный подход (градиентный спуск)

- ightharpoonup Функция S непрерывно дифференцируема почти всюду и с ограниченным по норме градиентом, а значит липшицева с некоторой константой M
- ▶ Есть доступ не только к значению функции оценки, но и к ее градиенту
- Идея: заменим дискретную задачу непрерывной:

$$\{\tilde{X}_i\}_{i=1}^k = \underset{\{X_i\}_{i=1}^k \subset \mathbb{R}^d}{\operatorname{argmax}} \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right)$$

lacktriangle Далее выберем $\{\hat{X}_i\}\subset\mathcal{X}$ как ближайшие к решениям в смысле функции близости ho:

$$\hat{X}_i = \operatorname*{argmin}_{X \in \mathcal{X}} \rho(\tilde{X}_i, X)$$

- ▶ Полученная задача разрешима за разумное время с помощью стохастического градиентного спуска.
- Асимптотика n вызовов функции оценки и ее градиента, где n количество шагов градиентного спуска (не зависит от $|\mathcal{X}|$)

Непрерывный подход (градиентный спуск)

- ▶ S М-липшицева
- ightharpoonup рассмотрим L_p метрику в качестве ho, тогда

$$\sum_{i=1}^{k} \rho(\hat{X}_{i}, \tilde{X}_{i}) < \varepsilon \longrightarrow \left| \mathcal{S}\left(O_{n} \cup \{\tilde{X}_{i}\}_{i=1}^{k}\right) - \mathcal{S}\left(O_{n} \cup \{\hat{X}_{i}\}_{i=1}^{k}\right) \right| < M \cdot \varepsilon$$

▶ Проблема подхода: $\exists \{\hat{X}_i\} \subset \mathcal{X}: \sum_{i=1}^k \rho(\hat{X}_i, \tilde{X}_i) < \varepsilon$ — очень сильное условие и требует по крайней мере

$$\exists \{\hat{X}_i\}_{i=1}^k \subset \mathcal{X}: \ \mathcal{S}\left(O_n \cup \{\hat{X}_i\}_{i=1}^k\right) \geqslant \max_{\{X_i\}_{i=1}^k \subset \mathbb{R}^d} \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right) - M\varepsilon$$

$$\max_{\{X_i\}_{i=1}^k \subset \mathcal{X}} \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right) \geqslant \max_{\{X_i\}_{i=1}^k \subset \mathbb{R}^d} \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right) - M\varepsilon$$

Непрерывный подход (генерация скрытых представлений)

- lacktriangle Предлагается *полностью* отказаться от вызовов функции ${\mathcal S}$
- ▶ Переформулируем задачу как поиск аппроксимации функции

$$\mathcal{F}_k: \mathcal{O} \longrightarrow \mathcal{X}^k, \quad O_n \in \mathcal{O}, \ \mathcal{F}_k(O_n) = \underset{\{X_i\}_{i=1}^k \subset \mathcal{X}}{\operatorname{argmax}} \ \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right)$$

Композицией функций

$$egin{aligned} F_k^{ heta}: \mathcal{O} &\longrightarrow \mathbb{R}^d, \ F_k^{ heta}(O_n) = \{ ilde{X}_i\}_{i=1}^k \ \\ \mathbf{u} \
ho_{\mathcal{X}}: \mathbb{R}^d &\longrightarrow \mathcal{X}, \
ho_{\mathcal{X}}(ilde{X}_i) = rgmax_i
ho(ilde{X}_i, \hat{X}_i) \ & \hat{X}_i \in \mathcal{X} \end{aligned}$$

 $d\gg 1$ поэтому далее, следуя рекомендациям из статьи 2 будем в эксперименте использовать в качестве ho косинусную близость

²https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144059

Непрерывный подход (генерация скрытых представлений)

• Свели исходную задачу к задаче генерации скрытых представлений недостающих элементов $\{\tilde{X}_i\}\subset \mathbb{R}^d$, наиболее близких в смысле функции ρ к точным решениям задачи

$$\{\hat{X}_i\}_{i=1}^k = \underset{\{X_i\}_{i=1}^k \subset \mathcal{X}}{\operatorname{argmax}} \, \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right)$$

с помощью функции F_k^{θ} с вектором параметров θ .

- Рассмотрим образы $\mathcal{O}_n = \{O^i\}_{i=1}^n \subset \mathcal{O}$ и множество известных точных решений задачи дополнения для них $\mathcal{X}_n = \{\{\hat{X}_i^i\}_{j=1}^k\}_{i=1}^n \subset \mathcal{X}^k$
- ightharpoonup Тогда на параметры heta получаем следующую оптимизационную задачу:

$$\theta = \underset{\hat{\theta}}{\operatorname{argmin}} \left(\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} \rho \left(X_{j}^{i}, [F_{k}^{\hat{\theta}}(O^{i})]_{j} \right) \right)$$

Message passing GNN³

- ightharpoonup Задача симметрична к перестановке \Longrightarrow разумно рассматривать операции эквивариантные относительно группы перестановок.
- ightharpoonup Тогда представим функцию $F_k^{ heta}$ с помощью графовой нейронной сети (GNN)
- ▶ Вершины графа представления элементов образа
- ightharpoonup Общий вид преобразования $h_i^{(t)}$ скрытого состояния i-ой вершины на шаге t в message passing GNN:

$$h_i^{(t)} = \gamma^{(t)} \left(h_i^{(t-1)}, \bigoplus_{j \in \overline{1,n}} \phi^{(t)} \left(h_i^{(t-1)}, h_j^{(t-1)} \right) \right),$$

где $\gamma^{(t)}, \phi^{(t)}$ – дифференцируемые функции, \bigoplus — дифференцируемая аггрегирующая функция, инвариантная к перестановкам (в эксперименте будем использовать сумму)

³https://arxiv.org/pdf/1704.01212

Условия эксперимента

- ▶ Данные: датасет Polyvore⁴ 17000 образов из 65000 объектов
- ▶ Случайно выберем 1000 образов
- ightharpoonup Зафиксируем количество элементов дополнения k=2
- Оцениваем алгоритмы на основании распределения оценок дополненных образов
- Бейзлайн: рапределение оценок исходных образов

⁴http://arxiv.org/abs/1707.05691

Жадные алгоритмы

Жадные алгоритмы

Непрерывная аппроксимация

- Рассматриваем те же самые образы, удаляем из каждого 2 элемента и рассматриваем дополнение получившихся образов
- > Замораживаем веса модели оценки
- Добавляем 2 обучаемых эмбединга для недостающих элементов
- С помощью оптимизатора Adam получаем эмбединги, максимизирующие оценку
- Выбираем из всей коллекции элементы, ближайшие к полученным по некоторой метрике, в данном случае взяты L_1, L_2, L_{10}
- ▶ Вычисляем оценку получившегося образа

Непрерывная аппроксимация

Непрерывная аппроксимация

Сравнение

Сравнение

Выводы

- Жадные алгоритмы показывают хороший результат, но вычисления крайне не эффективны и занимают слишком много времени
- Метод непрерывного восстановления векторных представлений недостающих элементов серьезно уступает жадным
- Структура пространства представлений элементов слишком сложна, чтобы простые метрики близости позволяли выбрать лучший элемент коллекции
- Предлагается рассмотреть возможности агрегации представлений всех элементов перед выбором ближайшего для учета структуры пространства и взаимодействия элементов между собой.
- Агрегация может быть обучаемой. С учетом симметрии задачи, предлагается рассмотреть графовую нейронную сеть
- Исходя из постановки задачи, необходимо рассмотреть способы поощрения инвариантности к порядку выбора элементов
- Для обучения в дальнейшем можно применять элементы выбранные жадным образом, поскольку более точное решение задачи вряд ли достижимо за разумное время.