1-Phenylpyrrolidine-2-one-3-carboxamides

The present invention relates to 1-phenylpyrrolidin-2-one-3-5 carboxamides and their agriculturally useful salts, to compositions comprising such compounds and to the use of the 1-phenylpyrrolidin-2-one-3-carboxamides, of their salts or of compositions comprising them as herbicides.

10 WO 95/33719 describes 1-arylthiazolidinones, 1-aryloxazolidinones and 1-arylpyrrolidinones of the formula:

15
$$\begin{array}{c}
A \\
N \\
R^2 \\
R^3
\end{array}$$
 $X \quad Y \quad Z_n R^1$

or substituted aryl.

where A is an aromatic or heteroaromatic radical, n is 0 or 1, X 20 is in particular S, 0 or CH₂, Y is in particular S, 0, CH₂ or CH(CH₃) or a group NR⁶, Z is in particular NH or 0, R¹ is preferably selected from unsubstituted or substituted alkyl, alkenyl, alkynyl, unsubstituted or substituted cycloalkyl, unsubstituted or substituted phenyl, benzyl or hetaryl, acyl, 25 alkoxycarbonylalkyl and silyl, R² and R³ are in particular hydrogen and R⁶ is inter alia hydrogen, formyl, unsubstituted or

substituted alkyl, alkenyl, alkynyl, cycloalkyl or unsubstituted

30 WO 95/33718 describes 1-phenylpyrrolidinethiones having herbicidal activity which, in the 3-position of the pyrrolidinethione ring, contain a group O-C(O)-NR¹R² where R¹R² are, for example, hydrogen, an unsubstituted or substituted hydrocarbon radical or hetaryl, or together with the nitrogen atom to which they are attached form a heterocycle.

Furthermore, US 4,874,422 discloses herbicidally active 1-phenylpyrrolidin-2-one-3-carboxamides of the formula A

40
$$(F)_{n} \xrightarrow{Y} X \xrightarrow{Z}_{R^{2}} R^{1}$$

$$R^{3}$$

$$(A)$$

where X is hydrogen or halogen, Y and Z independently of one another are O or S, n is O or 1, R¹ is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, phenyl, halophenyl, benzyl, halobenzyl, or alkyl which is substituted by alkoxy, alkylthio, 5 phenyl, hydroxyl or cyano, R² is hydrogen or alkyl, R³ is alkyl or alkenyl and R⁴ is selected from the group consisting of hydrogen, halogen, methyl, trifluoromethyl, 1,1,2,2-tetrafluoroethyl, 1,1,2,2-tetrafluoroethyloxy, difluoromethoxy, trifluoromethoxy, methylsulfanyl, methylsulfinyl, methylsulfonyl,

10 methoxyiminomethyl, methoxyimino-1-ethyl, benzyloxyiminomethyl
 and benzyloxyimino-1-ethyl.

The herbicidal activity of the 1-arylpyrrolidinones described in the prior art is not always satisfactory. Their selectivity for 15 harmful plants is unsatisfactory, too. In particular, even at low application rates, such herbicides tend to interfere with the generation of chlorophyll even in crop plants, which is undesirable in principle and may lead to yield losses.

20 It is an object of the present invention to provide novel herbicidally active compounds which allow a better targeted control of unwanted plants than the known herbicides. Advantageously, the novel herbicides should be highly active against harmful plants. Moreover, high compatibility with crop plants is desirable. Moreover, the compounds should have no adverse effect on the chlorophyll synthesis in crop plants.

We have found that this object is achieved by 1-phenylpyrrolidin-2-one-3-carboxamides of the formula I defined 30 below and their agriculturally useful salts:

where the variables R^1 , R^2 , R^3 , X, Y, A, n, R^a , R^b , R^c , R^d and R^e 40 are as defined below:

Is hydrogen, OH, Cl, Br, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, C(0)R⁴ or OC(0)R⁴;

45 R^2 and R^3 independently of one another are hydrogen, C_1-C_{10} -alkyl, C_3-C_{10} -cycloalkyl, C_7-C_{10} -polycycloalkyl, C_3-C_8 -alkenyl, C_3-C_{10} -alkynyl, C_5-C_{10} -cycloalkenyl, C_3-C_8 -cycloalkyl-

.

C₁-C₄-alkyl, phenyl or 3- to 7-membered heterocyclyl, where the 9 last-mentioned groups may be unsubstituted, partially or fully halogenated and/or contain 1, 2 or 3 radicals selected from the group consisting of OH, CN, NO2, COOH, $C_1-C_6-alkyl$, $C_1-C_6-haloalkyl$, $C_1-C_6-alkoxy$, $C_1-C_4-haloalkoxy$, 5 C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkylthio, C1-C4-haloalkylthio, unsubstituted or substituted phenyl, COOR5, NR6R7, C(O)NR⁸SO₂R¹³, C(O)NR⁸R⁹ and 3- to 7-membered heterocyclyl, and each heterocyclyl may contain 1, 2 or 3 heteroatoms selected from the group consisting of oxygen, nitrogen, 10 sulfur, a group NR¹⁰ and a group SO₂, and, if appropriate, 1, 2 or 3 carbonyl groups and/or thiocarbonyl groups as ring members; and/or may contain a ring-fused phenyl ring which is unsubstituted or substituted; or

15

20

 R^2 and R^3 with the group $N-(A)_n$ to which they are attached form a saturated 3- to 7-membered heterocycle which, in addition to the nitrogen atom, may contain 1, 2 or a further 3 heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur and a group NR^{10} and, if appropriate, 1, 2 or 3 carbonyl groups and/or thiocarbonyl groups as ring members;

Ra, Rb, Rc, Rd and Re independently of one another are hydrogen, OH, CN, NO₂, halogen, C₁-C₁₀-alkyl, C₃-C₆-cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₁-C₆-alkoxy, C₁-C₄-haloalkoxy, C₁-C₆-alkylthio, C₁-C₄-haloalkylthio, C(O)R⁴, COOR⁵, NR⁶R⁷, C(O)NR⁸R⁹, S(O)₂NR⁸R⁹, S(O)R¹¹, S(O)₂R¹¹ or C₁-C₄-alkoxy-C₁-C₆-alkyl; or

30

35

two adjacent radicals R^a to R^e together with the atoms to which they are attached form a 5-, 6- or 7-membered saturated or unsaturated ring which may contain one or two heteroatoms selected from the group consisting of nitrogen, oxygen, sulfur and a group NR^{10} as ring-forming atom and/or may carry one, two, three or four radicals selected from the group consisting of halogen and C_1 - C_4 -alkyl;

X, Y independently of one another are oxygen or sulfur; 40

n is 0 or 1;

- A is 0, $S(0)_k$ or NR^{12} , where k is 0, 1 or 2;
- 45 R^4 , R^8 , R^9 independently of one another are hydrogen or $C_1-C_4-alkyl$;

 R^5 , R^{11} are C_1-C_4 -alkyl;

- R^6 , R^7 independently of one another are hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, $C(0)R^4$, $COOR^5$ or $S(0)_2R^{11}$;
- R^{10} , R^{12} independently of one another are hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl; and
- R¹³ is phenyl which is unsubstituted or carries 1, 2, 3 or 4 10 substituents, where the substituents are selected from the group consisting of halogen, nitro, cyano, OH, alkyl, alkoxy, haloalkyl, haloalkoxy, COOR⁵, NR⁶R⁷ and C(O)NR⁸R⁹.

Accordingly, the present invention relates to 1-phenyl15 pyrrolidin-2-one-3-carboxamides of the formula I and their agriculturally useful salts.

Moreover, the present invention relates to

- the use of compounds I and/or their salts as herbicides;
- 20 crop protection compositions comprising at least one 1-phenylpyrrolidin-2-one-3-carboxamide of the formula I and/or at least one agriculturally useful salt of I as active substances; and
- methods for controlling unwanted vegetation, which comprises
 allowing a herbicidally effective amount of at least one
 1-phenylpyrrolidin-2-one-3-carboxamide of the formula I or an
 agriculturally useful salt of I to act on plants, their
 habitat or on seed.
- 30 Depending on the substitution pattern, the compounds of the formula I may contain one or more centers of chirality, in which case they are present as mixtures of enantiomers or diastereomers. The invention provides both the pure enantiomers or diastereomers and their mixtures. The invention also provides tautomers of compounds of the formula I.
 - If R¹ represents hydrogen, the 1-phenylpyrrolidin-2-one-3-carbox-amides of the formula I according to the invention can be present in the form of their agriculturally useful salts. In general,
- 40 agriculturally useful salts are the salts of those bases or cations which have no adverse effect on the herbicidal action of the compounds I. Thus, suitable basic salts are in particular the salts of the alkali metals, preferably of sodium and potassium, of the alkaline earth metals, preferably of calcium, magnesium
- 45 and barium, and of the transition metals, preferably of manganese, copper, zinc and iron, and also ammonium salts where the ammonium ion may, if desired, carry one to four C_1-C_4 -alkyl

substituents, C₁-C₄-hydroxyalkyl substituents,
C₁-C₄-alkoxy-C₁-C₄-alkyl substituents and/or one phenyl or benzyl
substituent, preferably diisopropylammonium, tetramethylammonium,
tetrabutylammonium, trimethylbenzylammonium, trimethyl5 2-hydroxyethylammonium, bis(2-hydroxyethyl)methylammonium,
tris(2-hydroxyethyl)ammonium, bis(2-hydroxyethyl)dimethylammonium, tris(2-hydroxyethyl)methylammonium, furthermore
phosphonium ions, sulfonium ions, preferably
tri(C₁-C₄-alkyl)sulfonium, and sulfoxonium ions, preferably
tri(C₁-C₄-alkyl)sulfoxonium.

The organic moieties mentioned in the definition of the substituents R¹ to R¹² or as radicals on heterocyclic rings are — like the term halo — collective terms for individual listings of the individual group members. All carbon chains, i.e. all alkyl, haloalkyl, cyanoalkyl, aminoalkyl, aminocarbonylalkyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, alkylsulfinyl, alkylsulfonyl, alkynyl and alkenyl moieties, may be straight-chain or branched. Halogenated substituents preferably carry one to five identical or different halogen atoms. The term halo denotes in each case fluorine, chlorine, bromine or iodine.

Examples of other meanings are:

- 25 C₁-C₄-alkyl: for example methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl or 1,1-dimethylethyl;
 - C₁-C₆-alkyl: C₁-C₄-alkyl as mentioned above and also, for example, n-pentyl, 1-methylbutyl, 2-methylbutyl,
- 30 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl,
- 35 1—ethylbutyl, 2—ethylbutyl, 1,1,2—trimethylpropyl,
 1—ethyl—1—methylpropyl or 1—ethyl—3—methylpropyl;
- C₁-C₁₀-alkyl: C₁-C₆-alkyl as mentioned above and also, for example, n-heptyl, 2-heptyl, 2-methylhexyl, n-octyl,
 1-methylheptyl, 2-ethylhexyl, n-nonyl, 2-nonyl, n-decyl,
 2-decyl, 2-propylheptyl and the like;
- C₁-C₄-haloalkyl: a C₁-C₄-alkyl radical as mentioned above which is partially or fully substituted by fluorine,
 chlorine, bromine and/or iodine, i.e., for example, chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl,

```
dichlorofluoromethyl, chlorodifluoromethyl, 2-fluoroethyl,
       2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-difluoroethyl,
       2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl,
       2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl,
       2,2,2-trichloroethyl, pentafluoroethyl, 2-fluoropropyl,
 5
       3-fluoropropyl, 2,2-difluoropropyl, 2,3-difluoropropyl,
       2-chloropropyl, 3-chloropropyl, 2,3-dichloropropyl,
       2-bromopropyl, 3-bromopropyl, 3,3,3-trifluoropropyl,
       3,3,3-trichloropropyl, 2,2,3,3,3-pentafluoropropyl,
       heptafluoropropyl, 1-(fluoromethyl)-2-fluoroethyl,
10
       1-(chloromethyl)-2-chloroethyl, 1-(bromomethyl)-2-bromoethyl,
       4-fluorobutyl, 4-chlorobutyl, 4-bromobutyl or
       nonafluorobutyl; in particular difluoromethyl,
       trifluoromethyl;
15
       C<sub>1</sub>-C<sub>6</sub>-haloalkyl: C<sub>1</sub>-C<sub>4</sub>-haloalkyl as mentioned above and also
       5-fluoropentyl, 5-chloropentyl, 5-bromopentyl, 5-iodopentyl,
       undecafluoropentyl, 6-fluorohexyl, 6-chlorohexyl,
       6-bromohexyl, 6-iodohexyl or dodecafluorohexyl;
20
       C_1-C_2-fluoroalkyl: C_1-C_2-alkyl which carries 1, 2, 3, 4 or 5
       fluoride atoms, for example difluoromethyl, trifluoromethyl,
       2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl,
       1,1,2,2-tetrafluoroethyl and pentafluoroethyl;
25
       C_1-C_2-fluoroalkoxy: C_1-C_2-alkoxy which carries 1, 2, 3, 4 or 5
       fluorine atoms, for example difluoromethoxy,
       trifluoromethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy,
       2,2,2-trifluoroethoxy, 1,1,2,2-tetrafluoroethoxy and
       pentafluoroethoxy;
30
       C1-C4-alkoxy: for example methoxy, ethoxy, n-propoxy,
       1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy or
       1,1-dimethylethoxy;
35
       C_1-C_6-alkoxy: C_1-C_4-alkoxy as mentioned above and also, for
       example, pentoxy, 1-methylbutoxy, 2-methylbutoxy,
       3-methylbutoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy,
       2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1-methylpentoxy,
       2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy,
40
       1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy,
       2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy,
       1-ethylbutoxy, 2-ethylbutoxy, 1,1,2-trimethylpropoxy,
       1,2,2-trimethylpropoxy, 1-ethyl-1-methylpropoxy or
45
       1-ethyl-2-methylpropoxy;
```

```
C1-C4-haloalkoxy: a C1-C4-alkoxy radical as mentioned above
       which is partially or fully substituted by fluorine,
       chlorine, bromine and/or iodine, i.e., for example, OCH2F,
       OCHF2, OCF3, OCH2Cl, OCH(Cl)2, OC(Cl)3, chlorofluoromethoxy,
       dichlorofluoromethoxy, chlorodifluoromethoxy, 2-fluoroethoxy,
 5
       2-chloroethoxy, 2-bromoethoxy, 2-iodoethoxy,
       2,2-difluoroethoxy, 2,2,2-trifluoroethoxy,
       2-chloro-2-fluoroethoxy, 2-chloro-2,2-difluoroethoxy,
       2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, OC<sub>2</sub>F<sub>5</sub>,
       2-fluoropropoxy, 3-fluoropropoxy, 2,2-difluoropropoxy,
10
       2,3-difluoropropoxy, 2-chloropropoxy, 3-chloropropoxy,
       2,3-dichloropropoxy, 2-bromopropoxy, 3-bromopropoxy,
       3,3,3-trifluoropropoxy, 3,3,3-trichloropropoxy, OCH<sub>2</sub>-C<sub>2</sub>F<sub>5</sub>,
       OCF_2-C_2F_5, 1-(CH_2F)-2-fluoroethoxy, 1-(CH_2Cl)-2-chloroethoxy,
15
       1-(CH<sub>2</sub>Br)-2-bromoethoxy, 4-fluorobutoxy, 4-chlorobutoxy,
       4-bromobutoxy or nonafluorobutoxy, preferably OCHF2 or OCHF3;
       C_1-C_4-alkoxy-C_1-C_6-alkyl: C_1-C_6-alkyl which is substituted by
       C_1-C_6-alkoxy - as mentioned above -, i.e., for example,
       CH_2-OCH_3, CH_2-OC_2H_5, n-propoxymethyl, CH_2-OCH(CH_3)_2,
20
       n-butoxymethyl, (1-methylpropoxy)methyl,
       (2-methylpropoxy)methyl, CH<sub>2</sub>-OC(CH<sub>3</sub>)<sub>3</sub>, 2-(methoxy)ethyl,
       2-(ethoxy)ethyl, 2-(n-propoxy)ethyl, 2-(1-methylethoxy)ethyl,
       2-(n-butoxy)ethyl, 2-(1-methylpropoxy)ethyl,
       2-(2-methylpropoxy)ethyl, 2-(1,1-dimethylethoxy)ethyl,
25
       2-(methoxy)propyl, 2-(ethoxy)propyl, 2-(n-propoxy)propyl,
       2-(1-methylethoxy)propyl, 2-(n-butoxy)propyl,
       2-(1-methylpropoxy)propyl, 2-(2-methylpropoxy)propyl,
       2-(1,1-dimethylethoxy)propyl, 3-(methoxy)propyl,
30
       3-(ethoxy)propyl, 3-(n-propoxy)propyl,
       3-(1-methylethoxy)propyl, 3-(n-butoxy)propyl,
       3-(1-methylpropoxy)propyl, 3-(2-methylpropoxy)propyl,
       3-(1,1-dimethylethoxy)propyl, 2-(methoxy)butyl,
       2-(ethoxy)butyl, 2-(n-propoxy)butyl, 2-(1-methylethoxy)butyl,
       2-(n-butoxy)butyl, 2-(1-methylpropoxy)butyl,
35
       2-(2-methylpropoxy)butyl, 2-(1,1-dimethylethoxy)butyl,
       3-(methoxy)butyl, 3-(ethoxy)butyl, 3-(n-propoxy)butyl,
       3-(1-methylethoxy)butyl, 3-(n-butoxy)butyl,
       3-(1-methylpropoxy)butyl, 3-(2-methylpropoxy)butyl,
40
       3-(1,1-dimethylethoxy)butyl, 4-(methoxy)butyl,
       4-(ethoxy)butyl, 4-(n-propoxy)butyl, 4-(1-methylethoxy)butyl,
       4-(n-butoxy)butyl, 4-(1-methylpropoxy)butyl,
       4-(2-methylpropoxy)butyl, 4-(1,1-dimethylethoxy)butyl,
       2-(1-methylethoxy)pentyl, 2-(n-butoxy)pentyl,
       2-(1-methylpropoxy)pentyl, 2-(2-methylpropoxy)pentyl,
45
       2-(1,1-dimethylethoxy)pentyl, 3-(methoxy)pentyl,
        3-(ethoxy)pentyl, 3-(n-propoxy)pentyl,
```

```
3-(1-methylethoxy)pentyl, 3-(n-butoxy)pentyl,
        3-(1-methylpropoxy)pentyl, 3-(2-methylpropoxy)pentyl,
        3-(1,1-dimethylethoxy)pentyl, 4-(methoxy)pentyl,
        4-(ethoxy)pentyl, 4-(n-propoxy)pentyl,
        4-(1-methylethoxy)pentyl, 4-(n-butoxy)pentyl,
 5
       4-(1-methylpropoxy)pentyl, 4-(2-methylpropoxy)pentyl,
       4-(1,1-dimethylethoxy)pentyl, 4-(methoxy)pentyl,
        5-(ethoxy)pentyl, 5-(n-propoxy)pentyl,
       5-(1-methylethoxy)pentyl, 5-(n-butoxy)pentyl,
       5-(1-methylpropoxy)pentyl, 5-(2-methylpropoxy)pentyl,
10
       5-(1,1-dimethylethoxy)pentyl, 2-(1-methylethoxy)hexyl,
       2-(n-butoxy)hexyl, 2-(1-methylpropoxy)hexyl,
       2-(2-methylpropoxy)hexyl, 2-(1,1-dimethylethoxy)hexyl,
       3-(methoxy)hexyl, 3-(ethoxy)hexyl, 3-(n-propoxy)hexyl,
       3-(1-methylethoxy)hexyl, 3-(n-butoxy)hexyl,
15
       3-(1-methylpropoxy)hexyl, 3-(2-methylpropoxy)hexyl,
       3-(1,1-dimethylethoxy)hexyl, 4-(methoxy)hexyl,
       4-(ethoxy)hexyl, 4-(n-propoxy)hexyl, 4-(1-methylethoxy)hexyl,
       4-(n-butoxy)hexyl, 4-(1-methylpropoxy)hexyl,
       4-(2-methylpropoxy)hexyl, 4-(1,1-dimethylethoxy)hexyl,
20
       4-(methoxy)hexyl, 5-(ethoxy)hexyl, 5-(n-propoxy)hexyl,
       5-(1-methylethoxy)hexy1, 5-(n-butoxy)hexy1,
       5-(1-methylpropoxy)hexyl, 5-(2-methylpropoxy)hexyl,
       5-(1,1-dimethylethoxy) hexyl, 6-(ethoxy) hexyl,
        6-(n-propoxy)hexyl, 6-(1-methylethoxy)hexyl,
25
        6-(n-butoxy)hexyl, 6-(1-methylpropoxy)hexyl,
        6-(2-methylpropoxy)hexyl, 6-(1,1-dimethylethoxy)hexyl;
       C1-C4-alkylthio: an alkylsulfanyl radical having 1 to 4 carbon
30
        atoms, for example SCH<sub>3</sub>, SC<sub>2</sub>H<sub>5</sub>, SCH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub>, SCH(CH<sub>3</sub>)<sub>2</sub>,
        n-butylthio, SCH(CH_3)-C_2H_5, SCH_2-CH(CH_3)_2 or SC(CH_3)_3;
        C1-C6-alkylthio: C1-C4-alkylthio as mentioned above and also,
        for example, pentylthio, 1-methylbutylthio,
        2-methylbutylthio, 3-methylbutylthio, 2,2-dimethylpropylthio,
35
        1-ethylpropylthio, hexylthio, 1,1-dimethylpropylthio,
        1,2-dimethylpropylthio, 1-methylpentylthio,
        2-methylpentylthio, 3-methylpentylthio, 4-methylpentylthio,
        1,1-dimethylbutylthio, 1,2-dimethylbutylthio,
        1,3-dimethylbutylthio, 2,2-dimethylbutylthio,
40
        2,3—dimethylbutylthio, 3,3—dimethylbutylthio,
        1-ethylbutylthio, 2-ethylbutylthio,
        1,1,2-trimethylpropylthio, 1,2,2-trimethylpropylthio,
        1-ethyl-1-methylpropylthio or 1-ethyl-2-methylpropylthio;
45
        C<sub>1</sub>-C<sub>4</sub>-haloalkylthio: a C<sub>1</sub>-C<sub>4</sub>-alkylthio radical as mentioned
        above which is partially or fully substituted by fluorine,
```

```
chlorine, bromine and/or iodine, i.e., for example,
       fluoromethylthio, difluoromethylthio, trifluoromethylthio,
       chlorodifluoromethylthio, bromodifluoromethylthio,
       2-fluoroethylthio, 2-chloroethylthio, 2-bromoethylthio,
       2-iodoethylthio, 2,2-difluoroethylthio,
 5
       2,2,2-trifluoroethylthio, 2,2,2-trichloroethylthio,
       2-chloro-2-fluoroethylthio, 2-chloro-2,2-difluoroethylthio,
       2,2-dichloro-2-fluoroethylthio, pentafluoroethylthio,
       2-fluoropropylthio, 3-fluoropropylthio, 2-chloropropylthio,
       3-chloropropylthio, 2-bromopropylthio, 3-bromopropylthio,
10
       2,2-difluoropropylthio, 2,3-difluoropropylthio,
       2,3-dichloropropylthio, 3,3,3-trifluoropropylthio,
       3,3,3-trichloropropylthio, 2,2,3,3,3-pentafluoropropylthio,
       heptafluoropropylthio, 1-(fluoromethyl)-2-fluoroethylthio,
       1-(chloromethyl)-2-chloroethylthio,
15
       1-(bromomethyl)-2-bromoethylthio, 4-fluorobutylthio,
       4-chlorobutylthio, 4-bromobutylthio or nonafluorobutylthio;
       phenyl-C1-C4-alkyl: for example benzyl, 1-phenylethyl,
       2-phenylethyl, 1-phenylprop-1-yl, 2-phenylprop-1-yl,
20
       3-phenylprop-1-yl, 1-phenylbut-1-yl, 2-phenylbut-1-yl,
       3-phenylbut-1-yl, 4-phenylbut-1-yl, 1-phenylbut-2-yl,
       2-phenylbut-2-yl, 3-phenylbut-2-yl, 4-phenylbut-2-yl,
       1-(benzyl)eth-1-yl, 1-(benzyl)-1-(methyl)eth-1-yl or
25
       1-(benzyl)prop-1-yl;
       C2-C6-alkenyl: a monounsaturated aliphatic hydrocarbon radical
       having 2 to 6 and in particular 2 to 4 carbon atoms, for
       example ethenyl, prop-1-en-1-yl, prop-2-en-1-yl,
       1-methylethenyl, buten-1-yl, buten-2-yl, buten-3-yl,
30
       1-methylprop-1-en-1-yl, 2-methylprop-1-en-1-yl,
       1-methylprop-2-en- 1-yl, 2-methylprop-2-en-1-yl, penten-1-yl,
       penten-2-yl, penten-3-yl, penten-4-yl, 1-methylbut-1-en-1-yl,
       2-methylbut-1-en-1-yl, 3-methylbut-1-en-1-yl,
       1-methylbut-2-en-1-yl, 2-methylbut-2-en-1-yl,
35
       3-methylbut-2-en-1-yl, 1-methylbut-3-en-1-yl,
       2-methylbut-3-en-1-yl, 3-methylbut-3-en-1-yl,
       1,1-dimethylprop-2-en-1-yl, 1,2-dimethylprop-1-en-1-yl,
       1,2-dimethylprop-2-en-1-yl, 1-ethylprop-1-en-2-yl,
40
       1-ethylprop-2-en-1-yl, hex-1-en-1-yl, hex-2-en-1-yl,
       hex-3-en-1-y1, hex-4-en-1-y1, hex-5-en-1-y1,
       1-methylpent-1-en-1-yl, 2-methylpent-1-en-1-yl,
       3-methylpent-1-en-1-yl, 4-methylpent-1-en-1-yl,
       1-methylpent-2-en-1-yl, 2-methylpent-2-en-1-yl,
       3-methylpent-2-en-1-yl, 4-methylpent-2-en-1-yl,
45
       1-methylpent-3-en-1-yl, 2-methylpent-3-en-1-yl,
       3-methylpent-3-en-1-yl, 4-methylpent-3-en-1-yl,
```

```
1-methylpent-4-en-1-yl, 2-methylpent-4-en-1-yl,
       3-methylpent-4-en-1-yl, 4-methylpent-4-en-1-yl,
       1,1-dimethylbut-2-en-1-yl, 1,1-dimethylbut-3-en-1-yl,
       1,2-dimethylbut-1-en-1-yl, 1,2-dimethylbut-2-en-1-yl,
       1,2-dimethylbut-3-en-1-yl, 1,3-dimethylbut-1-en-1-yl,
 5
       1,3-dimethylbut-2-en-1-yl, 1,3-dimethylbut-3-en-1-yl,
       2,2-dimethylbut-3-en-1-yl, 2,3-dimethylbut-1-en-1-yl,
       2,3-dimethylbut-2-en-1-yl, 2,3-dimethylbut-3-en-1-yl,
       3,3-dimethylbut-1-en-1-yl, 3,3-dimethylbut-2-en-1-yl,
       1-ethylbut-1-en-1-yl, 1-ethylbut-2-en-1-yl,
10
       1-ethylbut-3-en-1-yl, 2-ethylbut-1-en-1-yl,
       2-ethylbut-2-en-1-yl, 2-ethylbut-3-en-1-yl,
       1,1,2-trimethylprop-2-en-1-yl,
       1-ethyl-1-methylprop-2-en-1-yl,
15
       1-ethyl-2-methylprop-1-en-1-yl and
       1-ethyl-2-methylprop-2-en-1-yl;
       C3-C8-alkenyl: an aliphatic hydrocarbon radical which contains
       a C=C double bond and has 3 to 8, preferably 3 to 6 and in
       particular 3 or 4 carbon atoms as mentioned above, which is
20
       preferably not attached via a carbon atom of the double bond,
       for example one of the radicals mentioned under C2-C6-alkenyl
       and also 1-hepten-3-yl, 1-hepten-4-yl, 1-hepten-5-yl,
       1-hepten-6-yl, 1-hepten-7-yl, 3-hepten-1-yl, 2-hepten-4-yl,
       3-hepten-5-yl, 3-hepten-6-yl, 3-hepten-7-yl, 1-octen-3-yl,
25
       1-octen-4-yl, 1-octen-5-yl, 1-octen-6-yl, 1-octen-7-yl,
       1-octen-8-yl, 3-octen-1-yl, 2-octen-1-yl, 2-octen-4-yl,
       3-octen-5-yl, 3-octen-6-yl, 3-octen-7-yl, 3-octen-8-yl and
       the like;
30
       C2-C6-haloalkenyl: C2-C6-alkenyl as mentioned above which is
       partially or fully substituted by fluorine, chlorine, and/or
       bromine, i.e., for example, 2-chlorovinyl, 2-chloroallyl,
       3-chloroallyl, 2,3-dichloroallyl, 3,3-dichloroallyl,
       2,3,3-trichloroally1, 2,3-dichlorobut-2-enyl, 2-bromoally1,
35
       3-bromoally1, 2,3-dibromoally1, 3,3-dibromoally1,
       2,3,3-tribromoallyl and 2,3-dibromobut-2-enyl;
       C2-C6-alkynyl: an aliphatic hydrocarbon radical which contains
       a C-C triple bond and has 2 to 6 and in particular 2 to 4
40
       carbon atoms: for example ethynyl, propargyl (2-propynyl),
       1-propyny1, but -1-yn-3-y1, but -1-yn-4-y1, but -2-yn-1-y1,
       pent-1-yn-3-yl, pent-1-yn-4-yl, pent-1-yn-5-yl,
       pent-2-yn-1-y1, pent-2-yn-4-y1, pent-2-yn-5-y1,
       3-methylbut-1-yn-3-y1, 3-methylbut-1-yn-4-y1, hex-1-yn-3-y1,
45
       hex-1-yn-4-y1, hex-1-yn-5-y1, hex-1-yn-6-y1, hex-2-yn-1-y1,
       hex-2-yn-4-y1, hex-2-yn-5-y1, hex-2-yn-6-y1, hex-3-yn-1-y1,
```

```
hex-3-yn-2-yl, 3-methylpent-1-yn-3-yl, 3-methylpent-1-yn-4-yl, 3-methylpent-1-yn-5-yl, 4-methylpent-2-yn-4-yl or 4-methylpent-2-yn-5-yl;
```

- 5 C₃-C₁₀-alkynyl: an aliphatic hydrocarbon radical which contains a triple bond and has 3 to 10, preferably 3 to 6 and in particular 3 or 4 carbon atoms as mentioned above, which is preferably not attached via a carbon atom of the triple bond, for example one of the radicals mentioned under
- 10 C₂-C₆-alkynyl and also 1-heptyn-3-yl, 1-heptyn-4-yl,
 1-heptyn-5-yl, 1-heptyn-6-yl, 1-heptyn-7-yl, 3-heptyn-1-yl,
 2-heptyn-4-yl, 3-heptyn-5-yl, 3-heptyn-6-yl, 3-heptyn-7-yl,
 1-octyn-3-yl, 1-octyn-4-yl, 1-octyn-5-yl, 1-octyn-6-yl,
 1-octyn-7-yl, 1-octyn-8-yl, 3-octyn-1-yl, 2-octyn-1-yl,
 2-octyn-4-yl, 3-octyn-5-yl, 3-octyn-6-yl, 3-octyn-7-yl,
- C₃-C₁₀-cycloalkyl: a monocyclic hydrocarbon radical having 3 to 10 carbon atoms, in particular 3 to 8 carbon atoms and
 especially 3 to 6 carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl;
- C₇-C₁₀-polycycloalkyl: a bicyclic, tricyclic or tetracyclic hydrocarbon radical having 7 to 10 carbon atoms, for example bicyclo[2.2.1]-hept-1-yl, bicyclo[2.2.1]hept-2-yl, bicyclo[2.2.1]hept-7-yl, bicyclo[2.2.2]oct-1-yl, bicyclo[2.2.2]oct-2-yl or adamantan-1-yl;
- 30 C₃-C₈-cycloalkyl-C₁-C₄-alkyl: C₁-C₄-alkyl which carries a C₃-C₈-cycloalkyl radical as defined above, for example cyclopropylmethyl, 1-cyclopropylethyl, 2-cyclopropylethyl, 1-cyclopropylprop-1-yl, 2-cyclopropylprop-1-yl, 3-cyclopropylprop-1-yl, 1-cyclopropylbut-1-yl,
- 2-cyclopropylbut-1-yl, 3-cyclopropylbut-1-yl,
 4-cyclopropylbut-1-yl, 1-cyclopropylbut-2-yl,
 2-cyclopropylbut-2-yl, 3-cyclopropylbut-2-yl,
 3-cyclopropylbut-2-yl, 4-cyclopropylbut-2-yl,
 1-(cyclopropylmethyl)eth-1-yl,

3-octyn-8-yl and the like;

- 1-(cyclopropylmethyl)-1-(methyl)eth-1-yl,
 1-(cyclopropylmethyl)prop-1-yl, cyclobutylmethyl,
 1-cyclobutylethyl, 2-cyclobutylethyl, 1-cyclobutylprop-1-yl,
 2-cyclobutylprop-1-yl, 3-cyclobutylprop-1-yl,
 1-cyclobutylbut-1-yl, 2-cyclobutylbut-1-yl,
- 3-cyclobutylbut-1-yl, 4-cyclobutylbut-1-yl, 1-cyclobutylbut-2-yl, 2-cyclobutylbut-2-yl, 3-cyclobutylbut-2-yl, 4-cyclobutylbut-2-yl,

```
1-(cyclobutylmethyl)eth-1-yl,
       1-(cyclobutylmethyl)-1-(methyl)eth-1-yl,
       1-(cyclobutylmethyl)prop-1-yl, cyclopentylmethyl,
       1-cyclopentylethyl, 2-cyclopentylethyl,
       1-cyclopentylprop-1-yl, 2-cyclopentylprop-1-yl,
 5
       3-cyclopentylprop-1-yl, 1-cyclopentylbut-1-yl,
       2-cyclopentylbut-1-yl, 3-cyclopentylbut-1-yl,
       4-cyclopentylbut-1-yl, 1-cyclopentylbut-2-yl,
       2-cyclopentylbut-2-yl, 3-cyclopentylbut-2-yl,
       3-cyclopentylbut-2-yl, 4-cyclopentylbut-2-yl,
10
       1-(cyclopentylmethyl)eth-1-yl,
       1-(cyclopentylmethyl)-1-(methyl)eth-1-yl,
       1-(cyclopentylmethyl)prop-1-yl, cyclohexylmethyl,
       1-cyclohexylethyl, 2-cyclohexylethyl, 1-cyclohexylprop-1-yl,
15
       2-cyclohexylprop-1-yl, 3-cyclohexylprop-1-yl,
       1-cvclohexylbut-1-yl, 2-cyclohexylbut-1-yl,
       3-cyclohexylbut-1-yl, 4-cyclohexylbut-1-yl,
       1-cyclohexylbut-2-yl, 2-cyclohexylbut-2-yl,
       3-cyclohexylbut-2-yl, 4-cyclohexylbut-2-yl,
       1-(cyclohexylmethyl)eth-1-yl,
20
       1-(cyclohexylmethyl)-1-(methyl)eth-1-yl,
       1-(cyclohexylmethyl)prop-1-yl, cycloheptylmethyl,
       1-cycloheptylethyl, 2-cycloheptylethyl,
       1-cycloheptylprop-1-yl, 2-cycloheptylprop-1-yl,
       3-cycloheptylprop-1-yl, 1-cycloheptylbut-1-yl,
25
       2-cycloheptylbut-1-yl, 3-cycloheptylbut-1-yl,
       4-cycloheptylbut-1-yl, 1-cycloheptylbut-2-yl,
       2-cycloheptylbut-2-yl, 3-cycloheptylbut-2-yl,
       4-cycloheptylbut-2-yl, 1-(cycloheptylmethyl)eth-1-yl,
       1-(cycloheptylmethyl)-1-(methyl)eth-1-yl,
30
       1-(cycloheptylmethyl)prop-1-yl, cyclooctylmethyl,
       1-cyclooctylethyl, 2-cyclooctylethyl, 1-cyclooctylprop-1-yl,
       2-cyclooctylprop-1-yl, 3-cyclooctylprop-1-yl,
       1-cyclooctylbut-1-yl, 2-cyclooctylbut-1-yl,
       3-cyclooctylbut-1-yl, 4-cyclooctylbut-1-yl,
35
       1-cyclooctylbut-2-yl, 2-cyclooctylbut-2-yl,
       3-cyclooctylbut-2-yl, 4-cyclooctylbut-2-yl,
       1-(cyclooctylmethyl)eth-1-yl,
       1-(cyclooctylmethyl)-1-(methyl)eth-1-yl or
       1-(cyclooctylmethyl)prop-1-yl, preferably cyclopropylmethyl,
40
       cyclobutylmethyl, cyclopentylmethyl or cyclohexylmethyl.
       C5-C10-cycloalkenyl: a mono- or bicyclic hydrocarbon radical
       having 5 to 10 carbon atoms, in particular 5 to 8 carbon
       atoms and especially 5 to 6 carbon atoms and which contains a
45
       C=C double bond, for example cyclopenten-1-y1,
       cyclopenten-3-yl, cyclohexen-1-yl, cyclohexen-3-yl,
```

```
13
       cyclohexen-4-yl, cyclohepten-1-yl, cyclohepten-3-yl,
       cyclohepten-4-yl, cycloocten-1-yl, cycloocten-3-yl,
       cycloocten-4-yl, cycloocten-5-yl,
       bicyclo[2.2.1]hept-2-en-1-yl, bicyclo[2.2.1]hept-2-en-2-yl,
       bicyclo[2.2.1]hept-2-en-5-yl, bicyclo[2.2.1]hept-2-en-7-yl,
 5
       bicyclo[2.2.2]oct-2-en-1-yl, bicyclo[2.2.2]oct-2-en-2-yl,
       bicyclo[2.2.2]oct-2-en-5-yl, bicyclo[2.2.2]oct-2-en-7-yl;
       unsubstituted or substituted phenyl: a phenyl group which is
       unsubstituted or carries 1, 2, 3 or 4 substituents, where the
10
       substituents are selected from the group consisting of
       halogen, nitro, cyano, OH, alkyl, alkoxy, haloalkyl,
       haloalkoxy, COOR<sup>5</sup>, NR<sup>6</sup>R<sup>7</sup>, C(O)NR<sup>8</sup>R<sup>9</sup>;
       3- to 7-membered heterocyclyl: a heterocyclic radical which
15 -
       has 3, 4, 5, 6 or 7 ring members, where 1, 2 or 3 of the ring
       members are heteroatoms selected from the group consisting of
       oxygen, nitrogen, sulfur, a group SO2 and a group NR10.
       Moreover, the heterocycle may optionally contain 1, 2 or 3
20
       carbonyl groups and/or thiocarbonyl groups as ring members.
       The heterocycle may furthermore contain a ring-fused
       unsubstituted or substituted phenyl ring. The heterocycle may
       be aromatic (heteroaryl) or partially or fully saturated.
25
       Examples of saturated heterocycles are:
       oxiran-1-yl, aziridin-1-yl, oxetan-2-yl, oxetan-3-yl,
       thietan-2-yl, thietan-3-yl, azetidin-1-yl, azetidin-2-yl,
       azetidin-3-yl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl,
       tetrahydrothiophen-2-yl, tetrahydrothiophen-3-yl,
30
       pyrrolidin-1-yl, pyrrolidin-2-yl, pyrrolidin-3-yl,
       1,3-dioxolan-2-yl, 1,3-dioxolan-4-yl, 1,3-oxathiolan-2-yl,
       1,3-oxathiolan-4-yl, 1,3-oxathiolan-5-yl,
       1,3-oxazolidin-2-yl, 1,3-oxazolidin-3-yl,
       1,3-oxazolidin-4-yl, 1,3-oxazolidin-5-yl,
       1,2-oxazolidin-2-yl, 1,2-oxazolidin-3-yl,
35
       1,2-oxazolidin-4-yl, 1,2-oxazolidin-5-yl, 1,3-dithiolan-2-yl,
       1,3-dithiolan-4-yl, pyrrolidin-1-yl, pyrrolidin-2-yl,
       pyrrolidin-5-yl, tetrahydropyrazol-1-yl,
       tetrahydropyrazol-3-yl, tetrahydropyrazol-4-yl,
40
       tetrahydropyran-2-yl, tetrahydropyran-3-yl,
```

piperidin-4-yl, 1,3-dioxan-2-yl, 1,3-dioxan-4-yl,
1,3-dioxan-5-yl, 1,4-dioxan-2-yl, 1,3-oxathian-2-yl,
1,3-oxathian-4-yl, 1,3-oxathian-5-yl, 1,3-oxathian-6-yl,
1,4-oxathian-2-yl, 1,4-oxathian-3-yl, morpholin-2-yl,

tetrahydropyran-4-yl, tetrahydrothiopyran-2-yl, tetrahydrothiopyran-3-yl, tetrahydropyran-4-yl, piperidin-1-yl, piperidin-2-yl, piperidin-3-yl,

morpholin-3-yl, morpholin-4-yl, hexahydropyridazin-1-yl, hexahydropyridazin-3-yl, hexahydropyridazin-4-yl, hexahydropyrimidin-1-yl, hexahydropyrimidin-2-yl, hexahydropyrimidin-4-yl, hexahydropyrimidin-5-yl, piperazin-1-yl, piperazin-2-yl, piperazin-3-yl, 5 hexahydro-1,3,5-triazin-1-yl, hexahydro-1,3,5-triazin-2-yl, oxepan-2-yl, oxepan-3-yl, oxepan-4-yl, thiepan-2-yl, thiepan-3-yl, thiepan-4-yl, 1,3-dioxepan-2-yl, 1,3-dioxepan-4-yl, 1,3-dioxepan-5-yl, 1,3-dioxepan-6-yl, 1,3-dithiepan-2-yl, 1,3-dithiepan-4-yl, 1,3-dithiepan-5-yl, 10 1,3-dithiepan-6-yl, 1,4-dioxepan-2-yl, 1,4-dioxepan-7-yl, hexahydroazepin-1-yl, hexahydroazepin-2-yl, hexahydroazepin-3-yl, hexahydroazepin-4-yl, hexahydro-1,3-diazepin-1-yl, hexahydro-1,3-diazepin-2-yl, hexahydro-1,3-diazepin-4-yl, hexahydro-1,4-diazepin-1-yl and 15 hexahydro-1,4-diazepin-2-yl; Examples of unsaturated heterocycles are: dihydrofuran-2-yl, 1,2-oxazolin-3-yl, 1,2-oxazolin-5-yl, 1,3-oxazolin-2-yl; 20 Examples of aromatic heterocyclyl are the 5- and 6-membered aromatic, heterocyclic radicals, for example furyl, such as 2-furyl and 3-furyl, thienyl, such as 2-thienyl and 3-thienyl, pyrrolyl, such as 2-pyrrolyl and 3-pyrrolyl, 25 isoxazolyl, such as 3-isoxazolyl, 4-isoxazolyl and 5-isoxazolyl, isothiazolyl, such as 3-isothiazolyl, 4-isothiazolyl and 5-isothiazolyl, pyrazolyl, such as 3-pyrazolyl, 4-pyrazolyl and 5-pyrazolyl, oxazolyl, such as 2-oxazolyl, 4-oxazolyl and 5-oxazolyl, thiazolyl, such as 30 2-thiazolyl, 4-thiazolyl and 5-thiazolyl, imidazolyl, such as 2-imidazolyl and 4-imidazolyl, oxadiazolyl, such as 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl and 1,3,4-oxadiazol-2-yl, thiadiazolyl, such as 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl and 35 1,3,4-thiadiazol-2-yl, triazolyl, such as 1,2,4-triazol-1-yl, 1,2,4-triazol-3-yl and 1,2,4-triazol-4-yl, pyridinyl, such as 2-pyridinyl, 3-pyridinyl and 4-pyridinyl, pyridazinyl, such as 3-pyridazinyl and 4-pyridazinyl, pyrimidinyl, such as 2-pyrimidinyl, 4-pyrimidinyl and 5-pyrimidinyl, furthermore 40 2-pyrazinyl, 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl, in

If the radicals R² and R³ together with the nitrogen atom to which 45 they are attached form a saturated heterocycle, n is preferably 0. In this case, the saturated heterocycle is selected, for example, from the group consisting of 1,3-oxazolidin-3-yl,

particular pyridyl, pyrimidyl, furanyl and thienyl.

1,2-oxazolidin-2-yl, pyrrolidin-1-yl, pyrrolidin-2-on-1-yl, tetrahydropyrazol-1-yl, 2-methyltetrahydropyrazol-1-yl, piperidin-1-yl, piperidin-2-on-1-yl, morpholin-4-yl, hexahydropyrimidin-1-yl, piperazin-1-yl, 4-methylpiperazin-1-yl, 5 hexahydro-1,3,5-triazin-1-yl, 3,5-dimethyltriazin-1-yl, hexahydroazepin-1-yl, hexahydroazepin-2-on-1-yl, hexahydro-1,3-diazepin-1-yl, hexahydro-1,4-diazepin-1-yl, in particular from the group consisting of pyrrolidin-1-yl, piperidin-1-yl and morpholin-4-yl.

10 If two adjacent radicals Ra to Re together with the atoms to which they are attached form a 5-, 6- or 7-membered saturated or unsaturated ring which may contain one or two heteroatoms selected from the group consisting of nitrogen, oxygen, sulfur 15 and a group NR¹⁰ as ring-forming atom(s) and/or may carry one, two, three or four radicals selected from the group consisting of halogen and C_1-C_4 -alkyl, two adjacent radicals R^a to R^e , for example Rb and Rc or Rc and Rd, together are a 3-, 4- or 5-membered saturated or unsaturated carbon chain in which one or two 20 non-adjacent carbon atoms of the chain may be replaced by heteroatoms selected from the group consisting of O, N, a group NR10 and S and in which the carbon atoms of the chain may carry one, two, three or four substituents selected from the group consisting of halogen and C1-C4-alkyl. For example, two adjacent 25 radicals Ra to Re may be a chain of the formula -O-CH2-O-, $-O-(CH_2)_2-O-$, $-O-(CH_2)_2-$, $-O-(CH_2)_3-$, $-(CH_2)_3-$, $-(CH_2)_4-$ or $-(CH_2)_5-$.

With a view to the use of the compounds of the formula I according to the invention as herbicides, the variables R1, R2, 30 R3, X, Y, A, n, Ra, Rb, Rc, Rd and Re are preferably as defined below, independently of one another and in particular in combination:

- R1 is hydrogen, OH, Cl, Br, C1-C6-alkyl or OC(O)R4, particularly 35 preferably hydrogen;
- \mathbb{R}^2 is C_1-C_{10} -alkyl, C_3-C_8 -cycloalkyl, C_3-C_8 -alkenyl, C_3-C_8 -alkynyl, C_3-C_8 -cycloalkyl, C_5-C_8 -cycloalkenyl or C_3-C_8 -cycloalkyl- C_1-C_4 -alkyl, where C_1-C_{10} -alkyl and C₃-C₈-cycloalkyl may be partially or fully halogenated and/or 40 may carry one or two radicals selected from the group consisting of C_1 - C_6 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_6 -alkylthio, C1-C4-haloalkylthio, unsubstituted or substituted phenyl, COOR⁵, NR⁶R⁷, C(O)NR⁸R⁹, phenyl which may be unsubstituted or substituted by 1, 2 or 3 substituents selected from the group 45 consisting of halogen, nitro, OH, CN, C1-C6-alkyl, $C_1-C_6-alkoxy$, $C_1-C_4-haloalkoxy$, $C_1-C_6-alkylthio$,

C₁-C₄-haloalkylthio, unsubstituted or substituted phenyl,
COOR⁵, NR⁶R⁷, C(O)NR⁸R⁹. In particular, R² is C₁-C₆-alkyl,
C₃-C₆-cycloalkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl,
C₅-C₆-cycloalkenyl, C₃-C₆-cycloalkyl-C₁-C₄-alkyl or
unsubstituted or substituted phenyl, where C₁-C₆-alkyl and
C₃-C₆-cycloalkyl may be partially or fully halogenated and/or
may carry one or two, in particular one, radical selected
from the group consisting of C₁-C₆-alkoxy, C₁-C₄-haloalkoxy,
C₁-C₆-alkylthio, C₁-C₄-haloalkylthio, unsubstituted or
substituted phenyl, COOR⁵, NR⁶R⁷, C(O)NR⁸R⁹. Particularly
preferably, R² is C₁-C₆-alkyl, C₃-C₈-cycloalkyl, unsubstituted
or substituted phenyl, phenylalkyl or
C₃-C₈-cycloalkyl-C₁-C₄-alkyl;

15 R³ is hydrogen or C₁-C₆-alkyl;

X is oxygen;

Y is oxygen; and

20

A if present, is oxygen, a group $N-R^{12}$, where R^{12} = hydrogen or alkyl, or a group SO_2 ;

n is 0;

25

30

 R^a , R^b , R^c , R^d , R^e are hydrogen, halogen, CN, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy, C_1-C_4 -haloalkoxy, in particular halogen, CN, C_1-C_4 -alkyl, C_1-C_2 -fluoroalkyl and C_1-C_2 -fluoroalkoxy and especially fluorine, chlorine, bromine, CN, C_1-C_4 -alkyl, methoxy, CF_3 , CHF_2 , OCF_3 and $OCHF_2$.

With a view to the use as herbicides, preference is given to 1-phenylpyrrolidin-2-one-3-carboxamides of the formula I according to the invention where not more than 3 of the radicals 35 Ra, Rb, Rc, Rd and Re and in particular 3 or 4 of the abovementioned radicals are different from hydrogen. Particular preference is given to 1-phenylpyrrolidin-2-one-3-carboxamides of the formula I where at least Rb and/or Rd are different from hydrogen. In this case, the other radicals Ra-Re, at least one of the radicals Ra and Re and especially both radicals Ra and Re are particularly preferably hydrogen. Particular preference is also given to compounds of the formula I in which Rb and Rc or Rd and Rc are different from hydrogen and the other radicals of the radicals Ra-Re are hydrogen. Another preferred embodiment of the invention relates to compounds in which the radicals Ra and Re or

 R^a and R^b or R^a and R^c are different from hydrogen and the other radicals of the radicals R^a - R^e are hydrogen.

Preferred radicals Ra, Rb, Rc, Rd, Re are, in addition to 5 hydrogen, the substituents halogen, CN, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy, C1-C4-haloalkoxy, in particular halogen, CN, C1-C4-alkyl, C1-C2-fluoroalkyl and C1-C2-fluoroalkoxy and especially fluorine, chlorine, bromine, CN, C1-C4-alkyl, methoxy, CF3, CHF2, OCF3 and OCHF2.

10

A particularly preferred group of compounds of the formula I are those compounds in which R^a and R^e are hydrogen. Here, the radical

15

$$\mathbb{R}^{\mathsf{d}}$$
 \mathbb{R}^{a}

20 denotes, for example, a group of the formulae Q1 to Q31:

Another preferred group of compounds of the formula I are those compounds in which R^a and, if appropriate, one of the radicals R^b , R^c or R^e are different from hydrogen and the other radicals R^a-R^e are hydrogen. Here, the radical

denotes, for example, a group of the formulae Q32 to Q39:

Particular preference is given to the 1-phenylpyrrolidin-2-one-3-carboxamides of the formula Ia (= I 10 where Ra = Rb = H, X = O, Y = O, R1 = H, R3 = CH3 and n = 0) where Rb, Rc, Rd and R2 have the meanings mentioned above, in particular the meanings mentioned as being preferred. Examples of such compounds are the compounds Ia.1 to Ia.1717 in which the variables Rb, Rc, Rd and R2 together have the meanings given in one row of Table 1.

25 Table 1:

	No.	Rb	Rc	Rd	R ²
	1.	Cl	Н	H	Н
	2.	Br	H	H	Н
30	3.	F	H	H	Н
	4.	CH ₃	H	H	H
	5.	C ₂ H ₅	H	H	Н
	6.	CH(CH ₃) ₂	H	H	Н
	7.	OCH ₃	H	H	Н
	8.	CN	H	H	Н
35	9.	CF ₃	H	H	H
	10.	OCF ₃	H	H	H
	11.	OCHF ₂	H	H	Н
	12.	Cl	H	H	CH ₃
	13.	Br	H	H	CH ₃
40	14.	F	H	H	CH ₃
	15.	CH ₃	H	H	CH ₃
	16.	C ₂ H ₅	H	H	CH ₃
	17.	CH(CH ₃) ₂	H	H	CH ₃
	18.	OCH ₃	H	H	CH ₃
45	19.	CN	H	H	CH ₃
	20.	CF ₃	H	H	CH ₃
,	21.	OCF ₃	H	H	CH ₃
	22.	OCHF ₂	H	H	CH ₃

i	No.	Rb	Rc	Rd	R ²
	23.	Cl	Н	H	C ₂ H ₅
	24.	Br	Н	Н	C ₂ H ₅
	25.	F	Н	Н	C ₂ H ₅
_	26.	CH ₃	Н	Н	C ₂ H ₅
5	27.	C ₂ H ₅	Н	Н	C ₂ H ₅
	28.	CH(CH ₃) ₂	H	Н	C ₂ H ₅
	29.	OCH ₃	Н	H	C ₂ H ₅
	30.	CN	H	H	C ₂ H ₅
	31.	CF ₃	H	H	C ₂ H ₅
10	32.	OCF ₃	Н	Н	C ₂ H ₅
	33.	OCHF ₂	H	H ·	C ₂ H ₅
	34.	Cl	H	H	n-C ₃ H ₇
	35.	Br	H	Н	n-C ₃ H ₇
Ì	36.	F	Н	Н	n-C ₃ H ₇
15	37.	CH ₃	Н	H	n-C ₃ H ₇
12	38.	C ₂ H ₅	Н	Н	n-C ₃ H ₇
İ	39.	CH(CH ₃) ₂	H	H	n-C ₃ H ₇
Ì	40.	OCH ₃	H	H	n-C ₃ H ₇
	41.	CN	H	H	n-C ₃ H ₇
	42.	CF ₃	Н	Н	n-C ₃ H ₇
20	43.	OCF ₃	H	H	n-C ₃ H ₇
	44.	OCHF ₂	Н	H	n-C ₃ H ₇
	45.	Cl	H	H	CH(CH ₃) ₂
	46.	Br	H	H	CH(CH ₃) ₂
	47.	F	H	H	CH(CH ₃) ₂
25	48.	CH ₃	H	H	CH(CH ₃) ₂
	49.	C ₂ H ₅	H	Н	CH(CH ₃) ₂
	50.	CH(CH ₃) ₂	H	H	CH(CH ₃) ₂
	51.	OCH ₃	H	H	CH(CH ₃) ₂
	52.	CN	Н	H	CH(CH ₃) ₂
20	53.	CF ₃	H	H	CH(CH ₃) ₂
30	54.	OCF ₃	H	H	CH(CH ₃) ₂
	55.	OCHF ₂	H	H	CH(CH ₃) ₂
	56.	Cl	H	H	n-C ₄ H ₉
	57.	Br	H	H	n-C ₄ H ₉
	58. 59.	F	H	H	n-C ₄ H ₉
35	60.	CH ₃	H	H :	n-C ₄ H ₉
•		C ₂ H ₅ CH(CH ₃) ₂	Н	H	n-C ₄ H ₉
	61.	OCH ₃	H	H	n-C ₄ H ₉
	63.	CN CN	H	H	n-C ₄ H ₉
	64.	CF ₃	H	H	n-C ₄ H ₉
40	65.	OCF ₃	H	H	n-C ₄ H ₉
	66.	OCHF ₂	H	H	n-C ₄ H ₉
	67.	Cl	H	H	C(CH ₃) ₃
	68.	Br	н	H	C(CH ₃) ₃
	69.	F	Н	H	C(CH ₃) ₃
. –	70.	CH ₃	H	H	C(CH ₃) ₃
45	71.	C ₂ H ₅	H	H	C(CH ₃) ₃
	72.	CH(CH ₃) ₂	Н	Н	C(CH ₃) ₃
	73.	OCH ₃	Н	Н	C(CH ₃) ₃
•					<u> </u>

....

74. CN H H H C(CH3)3 75. CF3 H H H C(CH3)3 76. OCF3 H H H C(CH3)3 77. OCHF2 H H C(CH3)3 77. OCHF2 H H C(CH3)3 78. Cl H H CCH3 79. Br H H CCH5 80. F H H CCH5 81. CG3 H H CCH5 82. CCH5 H H CCH5 83. CH(CH3)2 H CCH5 84. OCH3 H H CCH5 85. CN H H CCH5 86. CF3 H H CCH5 87. OCF3 H H CCH5 89. Cl H H CCCH5 89. Cl H CCCH5 89. Cl H H CCCCH5 89. Cl H CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		No.	Rb	Rc	Rd	R ²
75. CF3 H H C C(CH3)3 76. OCF3 H H C C(CH3)3 77. OCGF2 H H C C(CH3)3 778. C1 H H C C(GH3)3 778. C1 H H C C(GH3)3 778. C1 H H C C(GH3)3 80. F H H H C C(GH3) 80. F H H H C C(GH3) 81. CH3 H H C C(GH3) 82. C2,H5 H H C C(GH3) 84. OCH3 H H C C(GH3) 85. CN H H C C(GH3) 86. CF3 H H C C(GH3) 87. OCF3 H H C C(GH3) 88. OCHF2 H H C C(GH3) 88. OCHF2 H H C C(GH3) 90. Br H H C C(GH3) 91. F H H C C(GH3) 93. C2,H5 H H C C(GH3) 94. CH(CH3)2 H H C C(GH3) 95. OCCH3 H H C C(GH3) 96. CN H H C C(GH3) 97. CF3 H H C C(GH3) 98. OCF3 H H C C(GH3) 99. OCH3 H H C C(GH3) 99. OCH3 H H C C(GH3) 99. OCH3 H H C C(GH3) 99. OCH5 H H C C(GH3) 100. C1 H H H C		74.	CN	H	H	C(CH ₃) ₃
76. OCF3 H H H C(CH3)3 77. OCHF2 H H H C(CH3)3 77. OCHF2 H H H C(CH3)3 78. C1 H H H C6H5 80. F H H H C6H5 81. CH3 H H C6H5 81. CH3 H H C6H5 82. C2H5 H H C6H5 83. CH(CH3)2 H H C6H5 84. OCH3 H H C6H5 85. CN H H C6H5 86. CF3 H H C6H5 87. OCF3 H H C6H5 89. C1 H H C6CH5 89. C1 H H C9Clopropyl 90. Br H H C9Clopropyl 91. F H H C9Clopropyl 92. CH3 H H C9Clopropyl 93. C2H5 H H C9Clopropyl 94. CH(CH3)2 H H C9Clopropyl 95. OCH3 H H C9Clopropyl 96. CN H H C9Clopropyl 97. CF3 H H C9Clopropyl 98. OCF3 H H C9Clopropyl 99. OCHF2 H H C9Clopropyl 100. C1 H H C9Clopropyl 101. Br H H C9Clopropyl 102. F H H C9Clopropyl 103. CH3 H H C9Clopropyl 104. CH(CH3)2 H H C9Clopropyl 105. CH3 H H C9Clopropyl 106. OCH5 H H C9Clopropyl 107. CF3 H H C9Clopropyl 108. CF3 H H C9Clopropyl 109. CH4 H H C9Clopropyl 100. C1 H H C9Clopropyl 101. Br H C9Clopropyl 102. F H H C9Clopropyl 103. CH3 H H C9Clopropyl 104. C2H5 H H C9Clopropyl 105. CH(CH3)2 H H C9Clopropyl 106. OCH3 H H C9Clopropyl 107. CN H H C9Clopropyl 108. CF3 H H C9Clopropyl 109. OCF3 H H C9Clopropyl 100. C1 H H H C9Clopropyl 101. Br H C9Clopropyl 102. F H H C9Clopropyl 103. CH3 H H C9Clopropyl 104. C2H5 H H C9Clopropyl 105. CH(CH3)2 H H C9Clopropyl 106. OCH3 H H C9Clopropyl 107. CN H H C9Clopropyl 108. CF3 H H C9Clopropyl 109. OCF3 H H C9Clopropyl 110. OCHF2 H H C9Clopropyl 111. C1 H H C9Clopropyl 112. Br H H C9Clobutyl 113. F H H C9Clobutyl 114. CH3 H H C9Clobutyl 115. C2H5 H H C9Clobutyl 116. CH(CH3)2 H H C9Clobutyl 117. OCH3 H H C9Clobutyl 118. CN H H C9Clobutyl 119. CF3 H H C9Clobutyl 119. CF3 H H C9Clobutyl 110. OCHF2 H H H C9Clobutyl 111. CH H H C9Clobutyl 112. Br H H C9Clobutyl 113. CN H H C9Clobutyl 114. CH3 H H C9Clobutyl 115. C1 H H H C9Clobutyl 116. CN H H C9Clobutyl 117. OCH5 H H C9Clobutyl 118. CN H H C9Clobutyl 119. CF3 H H C9Clobutyl 120. OCF3 H H C9Clobutyl 121. OCH5 H H H C9Clobutyl 122. C1 H H H C9Clobutyl			CF ₃	Н	Н	
77. OCHF2 H H H C6H3)3 78. C1 H H H C6H5 78. C1 H H H C6H5 79. Br H H H C6H5 80. F H H H C6H5 81. CH3 H H C6H5 81. CH3 H H C6H5 82. C2H5 H H C6H5 83. CH(CH3)2 H H C6H5 84. OCH3 H H C6H5 85. CN H H C6H5 86. CF3 H H C6H5 87. OCF3 H H C6H5 89. C1 H H C6H5 89. C1 H H C9Clopropyl 90. Br H H C9Clopropyl 91. F H H C9Clopropyl 92. CH3 H H C9Clopropyl 93. C2H5 H H C9Clopropyl 94. CH(CH3)2 H H C9Clopropyl 95. OCH3 H H C9Clopropyl 96. CN H H C9Clopropyl 97. CF3 H H C9Clopropyl 98. OCF3 H H C9Clopropyl 99. OCHF2 H H C9Clopropyl 100. C1 H H C9Clopropyl 101. Br H C9Clopropyl 102. F H H C9Clopropyl 103. C2H5 H H C9Clopropyl 104. C2H5 H H C9Clopropyl 105. CH(CH3)2 H H C9Clopropyl 106. OCH H H C9Clopropyl 107. CN H H C9Clopropyl 108. CF3 H H C9Clopropyl 109. OCHF2 H H C9Clopropyl 100. C1 H H						
78. C1	-					
79. Br	5					
80. F						
S1. CH3						
Record R						
10						
84. OCH3	10					
S5. CN						
Ref. CF3						- Table Trade Trad
87. OCF3						
15 88. OCHF2						
89. C1						
90. Br	15					
91. F H H Cyclopropyl 92. CH ₃ H H Cyclopropyl 93. C ₂ H ₅ H H Cyclopropyl 93. C ₂ H ₅ H H Cyclopropyl 94. CH(CH ₃) ₂ H H Cyclopropyl 95. OCH ₃ H H Cyclopropyl 96. CN H H Cyclopropyl 97. CF ₃ H H Cyclopropyl 97. CF ₃ H H Cyclopropyl 98. OCF ₃ H H Cyclopropyl 100. Cl H H CYclopropyl 101. Br H H CH ₂ -cyclopropyl 102. F H H CH ₂ -cyclopropyl 103. CH ₃ H H CH ₂ -cyclopropyl 104. C ₂ H ₅ H H CH ₂ -cyclopropyl 105. CH(CH ₃) ₂ H H CH ₂ -cyclopropyl 106. OCH ₃ H H CH ₂ -cyclopropyl 107. CN H CH ₂ -cyclopropyl 108. CF ₃ H H CH ₂ -cyclopropyl 109. OCF ₃ H H CH ₂ -cyclopropyl 109. OCF ₃ H H CH ₂ -cyclopropyl 1100. OCH ₂ H H CH ₂ -cyclopropyl 1101. Cl H H CH ₂ -cyclopropyl 1102. F H CH ₂ -cyclopropyl 1103. CH ₃ H CH ₂ -cyclopropyl 1104. C ₂ H ₅ H CH ₂ -cyclopropyl 1105. CH(CH ₃) ₂ H CH CH ₂ -cyclopropyl 1106. OCH ₃ H CH ₂ -cyclopropyl 1107. CN H CH ₂ -cyclopropyl 1108. CF ₃ H CH ₂ -cyclopropyl 1109. OCF ₃ H CH CH ₂ -cyclopropyl 1109. OCH ₂ H CH CH ₂ -cyclopropyl 1110. Cl H CH CH ₂ -cyclopropyl 1111. Cl H CH CH ₂ -cyclopropyl 1122. Br H Cyclobutyl 1133. F H Cyclobutyl 1144. CH ₃ H H Cyclobutyl 1155. C ₂ H ₅ H H Cyclobutyl 1166. CH(CH ₃) ₂ H H Cyclobutyl 1177. OCH ₃ H H Cyclobutyl 1188. CN H H Cyclobutyl 1199. CF ₃ H H Cyclobutyl 1199. CF ₃ H H Cyclobutyl 1109. CF ₃ H H Cyclobutyl 1109. CF ₃ H H Cyclobutyl 11109. CF ₃ H H Cyclobutyl 1121. OCH ₂ H H Cyclobutyl 1122. Cl H H H Cyclopentyl	•					
92.						
93. C2H5 H						
94. CH(CH ₃) ₂ H	•					
95. OCH3	20					
96. CN	•					
97. CF3	2					
98. OCF3 H H Cyclopropyl 99. OCHF2 H H Cyclopropyl 100. Cl H H H CH2-cyclopropyl 101. Br H H CH2-cyclopropyl 102. F H H H CH2-cyclopropyl 103. CH3 H H CH2-cyclopropyl 104. C2H5 H H CH2-cyclopropyl 105. CH(CH3)2 H H CH2-cyclopropyl 106. OCH3 H H CH2-cyclopropyl 107. CN H H CH2-cyclopropyl 108. CF3 H H CH2-cyclopropyl 109. OCF3 H H CH2-cyclopropyl 110. OCHF2 H H CH2-cyclopropyl 112. Br H H CY2-cyclopropyl 113. F H H CY2-cyclopropyl 114. CH3 H H CY2-cyclopropyl 115. C2H5 H H CY2-cyclopropyl 116. CH(CH3)2 H H CY2-cyclopropyl 117. OCH3 H H CY2-cyclopropyl 118. CN H H CY2-cyclopropyl 119. CF3 H H CY2-cyclopropyl 120. OCF3 H H CY2-cyclopropyl 119. CF3 H H CY2-cyclopropyl 120. OCF3 H H CY2-cyclopropyl 121. OCHF2 H H CY2-cyclopropyl 122. Cl H H CY2-cyclopropyl 123. Br H CY2-cyclopropyl						
99. OCHF2	~					
100. C1	٥.					
101. Br H H H CH2-cyclopropyl 102. F H H H CH2-cyclopropyl 103. CH3 H H CH2-cyclopropyl 104. C2H5 H H CH2-cyclopropyl 105. CH(CH3)2 H H CH2-cyclopropyl 106. OCH3 H H CH2-cyclopropyl 107. CN H H CH2-cyclopropyl 108. CF3 H H CH2-cyclopropyl 109. OCF3 H H CH2-cyclopropyl 110. OCHF2 H H CH2-cyclopropyl 111. Cl H H CYclobutyl 112. Br H H Cyclobutyl 113. F H H Cyclobutyl 114. CH3 H H Cyclobutyl 115. C2H5 H H Cyclobutyl 116. CH(CH3)2 H H Cyclobutyl 117. OCH3 H H Cyclobutyl 118. CN H H Cyclobutyl 119. CF3 H H Cyclobutyl 119. CF3 H H Cyclobutyl 120. OCF3 H H Cyclobutyl 121. OCH52 H Cyclobutyl 122. Cl H H Cyclopentyl 123. Br H Cyclobutyl 123. Br H Cyclobutyl 1245	25					
102. F						
103. CH ₃ H H CH ₂ -cyclopropyl 104. C ₂ H ₅ H H CH ₂ -cyclopropyl 105. CH(CH ₃) ₂ H H CH ₂ -cyclopropyl 106. OCH ₃ H H CH ₂ -cyclopropyl 107. CN H CH ₂ -cyclopropyl 108. CF ₃ H H CH ₂ -cyclopropyl 109. OCF ₃ H H CH ₂ -cyclopropyl 110. OCHF ₂ H H CH ₂ -cyclopropyl 111. Cl H H Cyclobutyl 112. Br H H cyclobutyl 113. F H H cyclobutyl 114. CH ₃ H H cyclobutyl 115. C ₂ H ₅ H H cyclobutyl 116. CH(CH ₃) ₂ H H cyclobutyl 117. OCH ₃ H H cyclobutyl 118. CN H H cyclobutyl 119. CF ₃ H H cyclobutyl 120. OCF ₃ H H Cyclobutyl 121. OCH ₃ H H cyclobutyl 122. Cl H H Cyclopentyl 123. Br H H Cyclopentyl 123. Br H H Cyclopentyl					H	
104. C ₂ H ₅ H			CH ₃	H	Н	
105. CH(CH ₃) ₂ H		104.		H	H	
106. OCH3	30	105.		H	Н	
107. CN		106.		H	H	CH2-cyclopropyl
108. CF3	:	107.	CN	H	Н	
110. OCHF2	•		CF ₃	H	H	CH2-cyclopropyl
111. Cl H H Cyclobutyl 112. Br H H Cyclobutyl 113. F H H Cyclobutyl 114. CH ₃ H H Cyclobutyl 115. C ₂ H ₅ H H Cyclobutyl 116. CH(CH ₃) ₂ H H Cyclobutyl 117. OCH ₃ H H Cyclobutyl 118. CN H H Cyclobutyl 119. CF ₃ H H Cyclobutyl 120. OCF ₃ H H Cyclobutyl 121. OCHF ₂ H H Cyclobutyl 122. Cl H H Cyclopentyl 123. Br H H Cyclopentyl		109	OCF ₃	H	H	
111. Cl	35	110.	OCHF ₂	H	H	CH ₂ -cyclopropyl
113. F H H Cyclobutyl 114. CH ₃ H H Cyclobutyl 115. C ₂ H ₅ H H Cyclobutyl 116. CH(CH ₃) ₂ H H Cyclobutyl 117. OCH ₃ H H Cyclobutyl 118. CN H H Cyclobutyl 119. CF ₃ H H Cyclobutyl 120. OCF ₃ H H Cyclobutyl 121. OCHF ₂ H H Cyclobutyl 122. Cl H H Cyclopentyl 123. Br H H Cyclopentyl		111.	Cl	H	H	cyclobutyl
114. CH ₃ H H Cyclobutyl 115. C ₂ H ₅ H H Cyclobutyl 116. CH(CH ₃) ₂ H H Cyclobutyl 117. OCH ₃ H H Cyclobutyl 118. CN H H Cyclobutyl 119. CF ₃ H H Cyclobutyl 120. OCF ₃ H H Cyclobutyl 121. OCHF ₂ H H Cyclobutyl 122. Cl H H Cyclopentyl 123. Br H H Cyclopentyl		112.	Br	H	H	
115. C ₂ H ₅ H H Cyclobutyl 116. CH(CH ₃) ₂ H H Cyclobutyl 117. OCH ₃ H H Cyclobutyl 118. CN H Cyclobutyl 119. CF ₃ H H Cyclobutyl 120. OCF ₃ H H Cyclobutyl 121. OCHF ₂ H H Cyclobutyl 122. Cl H H Cyclopentyl 123. Br H H Cyclopentyl		113.		H	H	
116. CH(CH ₃) ₂ H H Cyclobutyl 117. OCH ₃ H H Cyclobutyl 118. CN H H Cyclobutyl 119. CF ₃ H H Cyclobutyl 120. OCF ₃ H H Cyclobutyl 121. OCHF ₂ H H Cyclobutyl 122. Cl H H Cyclopentyl 123. Br H H Cyclopentyl		114.	CH ₃	H	H	
117. OCH ₃ H H Cyclobutyl 118. CN H H Cyclobutyl 119. CF ₃ H H Cyclobutyl 120. OCF ₃ H H Cyclobutyl 121. OCHF ₂ H H Cyclobutyl 122. Cl H H Cyclopentyl 123. Br H H Cyclopentyl		115.	C ₂ H ₅	H	H	cyclobutyl
118. CN H H Cyclobutyl 119. CF ₃ H H cyclobutyl 120. OCF ₃ H H cyclobutyl 121. OCHF ₂ H H cyclobutyl 122. Cl H H Cyclopentyl 123. Br H H cyclopentyl	40	116.	CH(CH ₃) ₂	H	H	cyclobutyl
119. CF ₃ H H cyclobutyl 120. OCF ₃ H H cyclobutyl 121. OCHF ₂ H H cyclobutyl 122. Cl H H cyclopentyl 123. Br H H cyclopentyl		117.	OCH ₃	H	H	cyclobutyl
120. OCF ₃ H H Cyclobutyl 121. OCHF ₂ H H Cyclobutyl 122. Cl H H Cyclopentyl 123. Br H H Cyclopentyl		118.	CN	H	H	<u> </u>
121. OCHF ₂ H H cyclobutyl 122. Cl H H cyclopentyl 123. Br H H cyclopentyl		119.	CF ₃	H	H	
122. Cl H H cyclopentyl 123. Br H H cyclopentyl				H	Н	
122.ClHHcyclopentyl123.BrHHcyclopentyl	45	121.	OCHF ₂	H	H	
			Cl	H	H	
124. F H H cyclopentyl			Br	Н	Н	
		124.	F	H	H	cyclopentyl

	No.	Rp	Rc	Rd	R ²
•	125.	CH ₃	H	H	cyclopentyl
	126.	C ₂ H ₅	H	H	cyclopentyl
_	127.	CH(CH ₃) ₂	H	H	cyclopentyl
	128.	OCH ₃	Н	Н	cyclopentyl
5	129.	CN	Н	H	cyclopentyl
	130.	CF ₃	Н	H	cyclopentyl
	131.	OCF ₃	H	H	cyclopentyl
	132.	OCHF ₂	H	H	cyclopentyl
	133.	Cl	H	H	cyclohexyl
10	134.	Br	Н	H	cyclohexyl
	135.	F	Н	H	cyclohexyl
	136.	CH ₃	Н	H	cyclohexyl
	137.	C ₂ H ₅	H	H	cyclohexyl
	138.	CH(CH ₃) ₂	Н	H	cyclohexyl
	139.	OCH ₃	Н	H	cyclohexyl
15	140.	CN	H	Н	cyclohexyl
	141.	CF ₃	H	H	cyclohexyl
	142.	OCF ₃	Н	Н	cyclohexyl
	143.	OCHF ₂	H	H	cyclohexyl
	144	H	Cl	H ·	H
20	145.:	H	Br	Н	H
	146.	Н	F	Н	Н
	147.	H	CH ₃	H	H
	148.	Н	C ₂ H ₅	H	H
	149.	Н	CH(CH ₃) ₂	Н	Н
0.5	150.	H	OCH ₃	H	H
25	151.	Н .	CN	H	H
	152.	H	CF ₃	H	Н
	153.	H	OCF ₃	H	Н
	154.	H	OCHF ₂	Н	Н
	155.	H	Cl	H	CH ₃
30	156.	H	Br	H	CH ₃
	157.	H	F	H	CH ₃
	158.	H	CH ₃	H	CH ₃
	159.	H	C ₂ H ₅	H	CH ₃
	160.	H	CH(CH ₃) ₂	H	CH ₃
35	161.	H	OCH ₃	H	CH ₃
	162.	H	CN	H	CH ₃
	163.	Н .	CF ₃	Н .	CH ₃
	164.	H	OCF ₃	H	CH ₃
	165.	H	OCHF ₂	H	CH ₃
-	166.	H	Cl	H	C ₂ H ₅
40	167.	H	Br	H	C ₂ H ₅
	168.	H	F	Н	C ₂ H ₅
	169.	H	CH ₃	H	C ₂ H ₅
	170.	H	C ₂ H ₅	H	C ₂ H ₅
	171.	H	CH(CH ₃) ₂	H	C ₂ H ₅
45	172.	Н	OCH ₃	H	C ₂ H ₅
	173.	H	CN	Н	C ₂ H ₅
	174.	Н	CF ₃	H	C ₂ H ₅
	175.	H	OCF ₃	H	C ₂ H ₅

				23	
	No.	Rb	Rc	Rd	R ²
	176.	H	OCHF ₂	H	C ₂ H ₅
	177.	H	Cl	H	n-C ₃ H ₇
	178.	H	Br	H	n-C ₃ H ₇
5	179.	H	F	H	n-C ₃ H ₇
3	180.	H	CH ₃	H	n-C ₃ H ₇
	181.	H	C ₂ H ₅	H	n-C ₃ H ₇
	182.	Н	CH(CH ₃) ₂	H	n-C ₃ H ₇
	183.	H	OCH ₃	H	n-C ₃ H ₇
	184.	H	CN	H	n-C ₃ H ₇
10	185.	H	CF ₃	H	n-C ₃ H ₇
	186.	H	OCF ₃	H	n-C ₃ H ₇
	187.	Н	OCHF ₂	H	n-C ₃ H ₇
	188.	Н	Cl	H	CH(CH ₃) ₂
	189	H.	Br	H .	CH(CH ₃) ₂
15	190.	H	F	H	CH(CH ₃) ₂
15	191.	Н ;	CH ₃	H	CH(CH ₃) ₂
	192.	H	C ₂ H ₅	H	CH(CH ₃) ₂
	193.	H	CH(CH ₃) ₂	H	CH(CH ₃) ₂
	194.	H .	OCH ₃	H	CH(CH ₃) ₂
	195.	H	CN	Н	CH(CH ₃) ₂
20	196.	H :	CF ₃	H	CH(CH ₃) ₂
	197.	н -	OCF ₃	H	CH(CH ₃) ₂
	198.	Н	OCHF ₂	H	CH(CH ₃) ₂
	199.	H	Cl	H	n-C ₄ H ₉
	200.	H	Br	H	n-C ₄ H ₉
25	201.	H .	F	H	n-C ₄ H ₉
	202.	H	CH ₃	H	n-C ₄ H ₉
	203.	H	C ₂ H ₅	H	n-C4H9
	204.	H	CH(CH ₃) ₂	H	n-C ₄ H ₉
	205.	H	OCH ₃	H	n-C ₄ H ₉
	206.	H	CN	H	n-C ₄ H ₉
30	207.	H	CF ₃	H	n-C ₄ H ₉
	208.	H	OCF ₃	H	n-C ₄ H ₉
	209.	H ·	OCHF ₂	H	n-C ₄ H ₉
	210.	H	Cl	H	C(CH ₃) ₃
	211.	H .	Br	H	C(CH ₃) ₃
35	212.	H	F	H	C(CH ₃) ₃
	213.	H	CH ₃	H	C(CH ₃) ₃
	214.	H	C ₂ H ₅	H	C(CH ₃) ₃
	215.	H	CH(CH ₃) ₂	H	C(CH ₃) ₃
	216.	H	OCH ₃	H	C(CH ₃) ₃
40	217.	H	CN	H	C(CH ₃) ₃
40	218.	H	CF ₃	H	C(CH ₃) ₃
	219.	H	OCF ₃	H	C(CH ₃) ₃
	220.	H	OCHF ₂	H	C(CH ₃) ₃
	221.	H	Cl	H	C ₆ H ₅
	222.	H	Br	H	C ₆ H ₅
45	223.	H	F	H	C ₆ H ₅
	224.	H	CH ₃	H	C ₆ H ₅
	225.	H	CH/CH/	H	C ₆ H ₅
	226.	H	CH(CH ₃) ₂	H	C ₆ H ₅

227. H OCH ₃ H C ₆ H ₅ 228. H CN H C ₆ H ₅ 229. H CF ₃ H C ₆ H ₅ 230. H OCF ₃ H C ₆ H ₅ 231. H OCHF ₂ H C ₆ H ₅ 232. H Cl H cyclopropy 233. H Br H cyclopropy 234. H F H cyclopropy 235. H CH ₃ H cyclopropy 236. H C ₂ H ₅ H cyclopropy 237. H CH(CH ₃) ₂ H cyclopropy	
228. H CN H C ₆ H ₅ 229. H CF ₃ H C ₆ H ₅ 230. H OCF ₃ H C ₆ H ₅ 231. H OCHF ₂ H C ₆ H ₅ 232. H Cl H cyclopropy 233. H Br H cyclopropy 234. H F H cyclopropy 235. H CH ₃ H cyclopropy 236. H C ₂ H ₅ H cyclopropy 237. H CH(CH ₃) ₂ H cyclopropy	
5 H CF3 H C6H5 230. H OCF3 H C6H5 231. H OCHF2 H C6H5 232. H Cl H cyclopropy 233. H Br H cyclopropy 234. H F H cyclopropy 235. H CH3 H cyclopropy 236. H C2H5 H cyclopropy 237. H CH(CH3)2 H cyclopropy	
5 230. H OCF3 H C ₆ H ₅ 231. H OCHF2 H C ₆ H ₅ 232. H Cl H cyclopropy 233. H Br H cyclopropy 234. H F H cyclopropy 235. H CH ₃ H cyclopropy 236. H C ₂ H ₅ H cyclopropy 237. H CH(CH ₃) ₂ H cyclopropy	
231. H OCHF ₂ H C ₆ H ₅ 232. H Cl H cyclopropy 233. H Br H cyclopropy 234. H F H cyclopropy 235. H CH ₃ H cyclopropy 236. H C ₂ H ₅ H cyclopropy 237. H CH(CH ₃) ₂ H cyclopropy	
232. H Cl H cyclopropy 233. H Br H cyclopropy 234. H F H cyclopropy 235. H CH ₃ H cyclopropy 236. H C ₂ H ₅ H cyclopropy 237. H CH(CH ₃) ₂ H cyclopropy	
234. H F H cyclopropy 235. H CH ₃ H cyclopropy 236. H C ₂ H ₅ H cyclopropy 237. H CH(CH ₃) ₂ H cyclopropy	1
234. H F H cyclopropy 235. H CH ₃ H cyclopropy 236. H C ₂ H ₅ H cyclopropy 237. H CH(CH ₃) ₂ H cyclopropy	1
235. H CH ₃ H cyclopropy 236. H C ₂ H ₅ H cyclopropy 237. H CH(CH ₃) ₂ H cyclopropy	
10 236. H C_2H_5 H cyclopropy 237. H $CH(CH_3)_2$ H cyclopropy	
237. H CH(CH ₃) ₂ H cyclopropy	
	1
238. H OCH ₃ H cyclopropy	1
239. H CN H cyclopropy	1
240. H CF ₃ H cyclopropy	1
15 241. H OCF ₃ H cyclopropy	1
242. H OCHF ₂ H cyclopropy	1
243. H Cl H CH ₂ -cyclops	
244. H Br H CH2-cyclops	
245. H F H CH ₂ -cyclops	
246. H CH ₃ - H CH ₂ -cyclops	ropyl
20 247. H C ₂ H ₅ : H CH ₂ -cyclops	
248. H $CH(CH_3)_2$ H CH_2 -cyclops	
249. H OCH ₃ H CH ₂ -cyclops	
250. H CN H CH ₂ -cyclops	
251. H CF ₃ H CH ₂ -cyclops	
25 252. H OCF ₃ H CH ₂ -cyclop	
253. H OCHF ₂ H CH ₂ -cyclopi	ropyl
254. H Cl H cyclobutyl	
255. H Br H cyclobutyl	
256. H F H cyclobutyl	
257. H CH ₃ H cyclobutyl 30 258. H C ₂ H ₅ H cyclobutyl	
260. H OCH ₃ . H cyclobutyl CN H cyclobutyl	
262. H CF ₃ H cyclobutyl	
262 H OCE H cyclobutyl	
35 264. H OCHF ₂ H cyclobutyl	
265. H Cl H cyclopenty	
266. H Br H cyclopenty	
267. H F H cyclopenty	
268. H CH ₃ H cyclopenty	
40 269. H C ₂ H ₅ H cyclopenty	
270. H CH(CH ₃) ₂ H cyclopenty	
271. H OCH ₃ H cyclopenty	
272. H CN H cyclopenty	1
273. H CF ₃ H cyclopenty	
45 274. H OCF ₃ H cyclopenty	
275. H OCHF ₂ H cyclopenty	1
276. H Cl H cyclohexyl	
277. H Br H cyclohexyl	

	No.	Rp	Rc	Rd	R ²
	278.	H	F	H	cyclohexyl
	279.	H	CH ₃	H	cyclohexyl
	280.	Н	C ₂ H ₅	H	cyclohexyl
_	281.	Н	CH (CH ₃) ₂	H	cyclohexyl
5	282.	Н	OCH ₃	H	cyclohexyl
	283.	H	CN	Н	cyclohexyl
	284.	H	CF ₃	H	cyclohexyl
	285.	H	OCF ₃	Н	cyclohexyl
	286.	H	OCHF ₂	Н	cyclohexyl
10	287.	CF ₃	Br	H	Н
	288.	CF ₃	OCH ₃	Н	Н .
	289.	CF ₃	Cl	H	H
	290.	CF ₃	F	H	Н
	291.	CF ₃	CH ₃	H	Н
	292.	CF ₃	C ₂ H ₅	H	Н
15	293.			H ·	Н
	294.	CF ₃	CF ₃	H .	H
	294.	CF ₃		H	Н
	296.	CF ₃	OCHF ₂	H	CH ₃
	297.	CF ₃	OCH ₃	н -	CH ₃
20	298.	CF ₃	Cl	H	CH ₃
	299.	CF ₃	F	H	CH ₃
	300.	CF ₃	CH ₃	Н	CH ₃
	301.	CF ₃	C ₂ H ₅	H	CH ₃
	302.	CF ₃	CF ₃	H -	CH ₃
	303.	CF ₃	OCF ₃	H	CH ₃
25	304.	CF ₃	OCHF ₂	н .	CH ₃
	304.	CF ₃	Br	H	C ₂ H ₅
	306.	CF ₃	OCH ₃	H	C ₂ H ₅
	307.	CF ₃	Cl	H	C ₂ H ₅
	308.	CF ₃	F	н	C ₂ H ₅
30	309.	CF ₃	CH ₃	H	C ₂ H ₅
	310.	CF ₃	C ₂ H ₅	H	C ₂ H ₅
	311.	CF ₃	CF ₃	H :	C ₂ H ₅
	312.	CF ₃	OCF ₃	Н	C ₂ H ₅
	313.	CF ₃	OCHF ₂	H	C ₂ H ₅
	314.	CF ₃	Br	H	n-C ₃ H ₇
35	315.	CF ₃	OCH ₃	H	n-C ₃ H ₇
	316.	CF ₃	C1	H	n-C ₃ H ₇
	317.	CF ₃	F	H	n-C ₃ H ₇
	318.	CF ₃	CH ₃	.H	n-C ₃ H ₇
	319.	CF ₃	C ₂ H ₅	Н	n-C ₃ H ₇
40	320.	CF ₃	CF ₃	Н	n-C ₃ H ₇
	321.	CF ₃	OCF ₃	Н	n-C ₃ H ₇
	322.	CF ₃	OCHF ₂	H	n-C ₃ H ₇
	323.	CF ₃	Br	H	CH(CH ₃) ₂
	324.	CF ₃	OCH ₃	H	CH(CH ₃) ₂
	325.	CF ₃	Cl	H	CH(CH ₃) ₂
45	326.	CF ₃	F	H	CH(CH ₃) ₂
	327.	CF ₃	CH ₃	H	CH(CH ₃) ₂
	328.	CF ₃	C ₂ H ₅	H	CH(CH ₃) ₂
	L <u></u>	1 3 - 3	1 -23	L	\ / /

				20	
	No.	Rp	Rc	Rd	R ²
	329.	CF ₃	CF ₃	H	CH(CH ₃) ₂
	330.	CF ₃	OCF ₃	H ·	CH(CH ₃) ₂
	331.	CF ₃	OCHF ₂	H	CH(CH ₃) ₂
_	332.	CF ₃	Br	H	n-C ₄ H ₉
5	333.	CF ₃	OCH ₃	H	n-C ₄ H ₉
	334.	CF ₃	Cl	H	n-C ₄ H ₉
:	335.	CF ₃	F	Н	n-C ₄ H ₉
	336.	CF ₃	CH ₃	H	n-C ₄ H ₉
	337.	CF ₃	C ₂ H ₅	H	n-C ₄ H ₉
10	338.	CF ₃	CF ₃	H	n-C ₄ H ₉
	339.	CF ₃	OCF ₃	Н	n-C ₄ H ₉
	340.	CF ₃	OCHF ₂	Н	n-C ₄ H ₉
	341.	CF ₃	Br	Н	C(CH ₃) ₃
	342.	CF ₃	OCH ₃	Н	C(CH ₃) ₃
	343.	CF ₃	Cl	Н	C(CH ₃) ₃
15	344.	CF ₃	F	H	C(CH ₃) ₃
	345.	CF ₃	CH ₃	H	C(CH3)3
	346.	CF ₃	C ₂ H ₅	Н	C(CH ₃) ₃
	347.	CF ₃	CF ₃	H	C(CH ₃) ₃
	348.	CF ₃	OCF ₃	H	C(CH ₃) ₃
20	349.	CF ₃	OCHF ₂	H	C(C#3)3
	350.	CF ₃	Br	Н	C ₆ H ₅
	351.	CF ₃	OCH ₃	H	C ₆ H ₅
	352.	CF ₃	Cl	Н	C ₆ H ₅
	353.	CF ₃	F	H	C ₆ H ₅
٥-	354.	CF ₃	CH ₃	Н	C ₆ H ₅
25	355.	CF ₃	C ₂ H ₅	Н	C ₆ H ₅
	356.	CF ₃	CF ₃	H	C ₆ H ₅
	357.	CF ₃	OCF ₃	Н	C ₆ H ₅
	358.	CF ₃	OCHF ₂	H	C ₆ H ₅
	359.	CF ₃	Br	H	cyclopropyl
30	360.	CF ₃	OCH ₃	H	cyclopropyl
	361.	CF ₃	Cl	H	cyclopropyl
	362.	CF ₃	F	H	cyclopropyl
	363.	CF ₃	CH ₃	H	cyclopropyl
	364.	CF ₃	C ₂ H ₅	H	cyclopropyl
35	365.	CF ₃	CF ₃	H	cyclopropyl
	366.	CF ₃	OCF ₃	H	cyclopropyl
•	367.	CF ₃	OCHF ₂	H	cyclopropyl
	368.	CF ₃	Br	H	CH2-cyclopropyl
	3.69.	CF ₃	OCH ₃	H	CH2-cyclopropyl
	370.	CF ₃	Cl	H	CH ₂ -cyclopropyl
40	371.	CF ₃	F	Н	CH2-cyclopropyl
	372.	CF ₃	CH ₃	H	CH2-cyclopropyl
	373.	CF ₃	C ₂ H ₅	H	CH ₂ -cyclopropyl
	374.	CF ₃	CF ₃	Н	CH2-cyclopropyl
	375.	CF ₃	OCF ₃	Н	CH2-cyclopropyl
45	376.	CF ₃	OCHF ₂	Н	CH2-cyclopropyl
-z -J	377.	CF ₃	Br	H	cyclobutyl
	378.	CF ₃	OCH ₃	H	cyclobutyl
	379.	CF ₃	Cl	Н	cyclobutyl

	No.	Rb	R ^C	Rd	R ²
	380.	CF ₃	F	H	cyclobutyl
	381.	CF ₃	CH ₃	H	cyclobutyl
	382.	CF ₃	C ₂ H ₅	H	cyclobutyl
5	383.	CF ₃	CF ₃	H	cyclobutyl
,	384.	CF ₃	OCF ₃	H	cyclobutyl
	385.	CF ₃	OCHF ₂	H	cyclobutyl
	386.	CF ₃	Br	H	cyclopentyl
	387.	CF ₃	OCH ₃	H	cyclopentyl
	388.	CF ₃	Cl	H	cyclopentyl
10	389.	CF ₃	F	H	cyclopentyl
	390.	CF ₃	CH ₃	H	cyclopentyl
	391.	CF ₃	C ₂ H ₅	H	cyclopentyl
	392.	CF ₃	CF ₃	H	cyclopentyl
	393	CF ₃	OCF ₃	H .	cyclopentyl
	394.	CF ₃	OCHF ₂	H	cyclopentyl
15	395.	CF ₃	Br	H	cyclohexyl
	396.	CF ₃	OCH ₃	Н	cyclohexyl
	397.	CF ₃	Cl	Н	cyclohexyl
	398.	CF ₃	F .	H	cyclohexyl
	399.	CF ₃	CH ₃	H	cyclohexyl *
20	400.	CF ₃	C ₂ H ₅	Н	cyclohexyl
	401.	CF ₃	CF ₃	H	cyclohexyl.
	402.	CF ₃	OCF ₃	H	cyclohexyl
	403.	CF ₃	OCHF ₂	H	cyclohexyl
	404.	CF ₃	H	Br	H
25	405.	CF ₃	H	OCH ₃	Н .
25	406.	CF ₃	H	Cl	H
	407.	CF ₃	H	F	H
	408.	CF ₃	H	CH ₃	H
	409.	CF ₃	H	C ₂ H ₅	H
	410.	CF ₃	H	CF ₃	Н
30	411.	CF ₃	H	OCF ₃	Н
	412.	CF ₃	H	OCHF ₂	H
	413.	CF ₃	H	Br	CH ₃
	414.	CF ₃	H	OCH ₃	CH ₃
	415.	CF ₃	н	Cl	CH ₃
35	416.	CF ₃	Н	F	CH ₃ .
<i>J J</i>	417.	CF ₃	H	CH ₃	CH ₃
	418.	CF ₃	H	C ₂ H ₅	CH ₃
	419.	CF ₃	H	CF ₃	CH ₃
	420.	CF ₃	H	OCF ₃	CH ₃
	421.	CF ₃	H	OCHF ₂	CH ₃
40	422.	CF ₃	H	Br	C ₂ H ₅
	423.	CF ₃	Н	OCH ₃	C ₂ H ₅
	424.	CF ₃	Н	Cl	C ₂ H ₅
	425.	CF ₃	Н	F	C ₂ H ₅
	426.	CF ₃	H	CH ₃	C ₂ H ₅
45	427.	CF ₃	H	C ₂ H ₅	C ₂ H ₅
43	428.	CF ₃	H	CF ₃	C ₂ H ₅
	429.	CF ₃	H	OCF ₃	C ₂ H ₅
	430.	CF ₃	Н	OCHF ₂	C ₂ H ₅

	No.	Rb	Rc	Rd	R ²
	431.	CF ₃	H	Br	n-C ₃ H ₇
	432.	CF ₃	Н	OCH ₃	n-C ₃ H ₇
5	433.	CF ₃	H	Cl	n-C ₃ H ₇
	434.	CF ₃	Н	F	n-C ₃ H ₇
	435.	CF ₃	Н	CH ₃	n-C ₃ H ₇
	436.	CF ₃	Н	C ₂ H ₅	n-C ₃ H ₇
	437.	CF ₃	Н	CF ₃	n-C ₃ H ₇
	438.	CF ₃	Н	OCF ₃	n-C ₃ H ₇
	439.	CF ₃	Н	OCHF ₂	n-C ₃ H ₇
10	440.	CF ₃	Н	Br	CH(CH ₃) ₂
	441.	CF ₃	H	OCH ₃	CH(CH ₃) ₂
	442.	CF ₃	Н	Cl	CH(CH ₃) ₂
	443.	CF ₃	H	F	CH(CH ₃) ₂
	444	CF ₃	H	CH ₃	CH(CH ₃) ₂
1-	445.	CF ₃	H	C ₂ H ₅	CH(CH ₃) ₂
15	446.	CF ₃	Н	CF ₃	CH(CH ₃) ₂
	447.	CF ₃	Н	OCF ₃	CH(CH ₃) ₂
	448.	CF ₃	Н	OCHF ₂	CH(CH ₃) ₂
	449.	CF ₃	H	Br	n-C ₄ H ₉
	450.	CF ₃	H	OCH ₃	n-C ₄ H ₉ -
20	451.	CF ₃	H	Cl	n-C ₄ H ₉ :
	452.	CF ₃	H	F	ъ С.П.
	453.	CF ₃	Н	CH ₃	n-C ₄ H ₉
	454.	CF ₃	H	C ₂ H ₅	n-C ₄ H ₉
	455.	CF ₃	H	CF ₃	n-C ₄ H ₉
25	456.	CF ₃	H	OCF ₃	n-C ₄ H ₉
	457.	CF ₃	H	OCHF ₂	n-C ₄ H ₉ .
	458.	CF ₃	Н	Br	C(CH ₃) ₃
	459.	CF ₃	Н	OCH ₃	C(CH ₃) ₃
1	460.	CF ₃	H	Cl	C(CH ₃) ₃
	461.	CF ₃	Н	F	C(CH ₃) ₃
30	462.	CF ₃	H	CH ₃	C(CH ₃) ₃
	463.	CF ₃	H	C ₂ H ₅	C(CH ₃) ₃
	464.	CF ₃	H	CF ₃	C(CH ₃) ₃
	465.	CF ₃	H	OCF ₃	C(CH ₃) ₃
	466.	CF ₃	H	OCHF ₂	C(CH ₃) ₃
35	467.	CF ₃	H	Br	C ₆ H ₅
	468.	CF ₃	H	OCH ₃	C ₆ H ₅
	469. 470.	CF ₃	H H	F	C ₆ H ₅
	471		Н		C ₆ H ₅
	472.	CF ₃	<u>н</u> Н	CH ₃	C ₆ H ₅
40	473.	CF ₃	H	CF ₃	C ₆ H ₅
	474.	CF ₃	H	OCF ₃	C ₆ H ₅
	475.	CF ₃	H	OCHF ₂	C ₆ H ₅
	476.	CF ₃	H	Br	cyclopropyl
	477.	CF ₃	H	OCH ₃	cyclopropyl
	478.	CF ₃	H	Cl	cyclopropyl
45	479.	CF ₃	H	F	cyclopropyl
	480.	CF ₃	H	CH ₃	cyclopropyl
	481.	CF ₃	H	C ₂ H ₅	cyclopropyl
		1 - 3	l 	745	1-1

	No.	Rb	Rc	Rd	R ²
	482.	CF ₃	Н	CF ₃	cyclopropyl
	483.	CF ₃	H	OCF ₃	cyclopropyl
5	484.	CF ₃	H	OCHF ₂	cyclopropyl
	485.	CF ₃	H	Br	CH2-cyclopropyl
5	486.	CF ₃	H	OCH ₃	CH2-cyclopropyl
	487.	CF ₃	H	Cl	CH2-cyclopropyl
	488.	CF ₃	H	F	CH2-cyclopropyl
	489.	CF ₃	H	CH ₃	CH2-cyclopropyl
	490.	CF ₃	H	C ₂ H ₅	CH2-cyclopropyl
10	491.	CF ₃	H	CF ₃	CH2-cyclopropyl
	492.	CF ₃	Н	OCF ₃	CH2-cyclopropyl
	493.	CF ₃	H	OCHF ₂	CH2-cyclopropyl
	494.	CF ₃	H	Br	cyclobutyl
	495.	CF ₃	Н	OCH ₃	cyclobutyl
15	496.	CF ₃	Н	Cl	cyclobutyl
15	497.	CF ₃	Н	F	cyclobutyl
	498.	CF ₃	H	CH ₃	cyclobutyl
	499.	CF ₃	Н.	C ₂ H ₅	cyclobutyl
	500.	CF ₃	H	CF ₃	cyclobutyl
	501.	CF ₃	Н	OCF ₃	cyclobutyl
20	502.	CF ₃	H	OCHF ₂	cyclobutyl
	503.	CF ₃	H	Br	cyclopentyl
	504.	CF ₃	H	OCH ₃	cyclopentyl
	505.	CF ₃	H	Cl	cyclopentyl
	506.	CF ₃	H	F	cyclopentyl
25	507.	CF ₃	H	CH ₃	cyclopentyl
	508.	CF ₃	H	C ₂ H ₅	cyclopentyl
	509.	CF3	H	CF ₃	cyclopentyl
.•	510.	CF ₃	H	OCF ₃	cyclopentyl
	511.	CF ₃	H	OCHF ₂	cyclopentyl
20	512.	CF ₃	H	Br	cyclohexyl
30	513.	CF ₃	H	OCH ₃	cyclohexyl
	514.	CF ₃	H	Cl	cyclohexyl
	515.	CF ₃	H	F	cyclohexyl
	516.	CF ₃	H	CH ₃	cyclohexyl cyclohexyl
	517.	CF ₃	H	C ₂ H ₅	cyclohexyl
35	518.	CF ₃	H	CF ₃	cyclohexyl
	519.	CF ₃	H	OCF ₃	cyclohexyl
	520. 521.	CF ₃	Br	H	H
	521.	OCF ₃	OCH ₃	Н	••
	523.	OCF ₃	Cl	Н	H
40	524.	OCF ₃	F	H	H
	525.	OCF ₃	CH ₃	H	H
	526.	OCF ₃	C ₂ H ₅	H	H
	527.	OCF ₃	CF ₃	H	H
	527.	OCF ₃	OCF ₃	H	Н
	529.	OCF ₃	OCHF ₂	H	H
45	530.	OCF ₃	Br	H	CH ₃
	531.	OCF ₃	OCH ₃	H	CH ₃
	532.	OCF ₃	Cl	н	CH ₃
		10023			1

1	No.	Rb	Rc	Rd	R ²
	533.	OCF ₃	F	H	CH ₃
	534.	OCF ₃	CH ₃	H	CH ₃
	535.	OCF ₃	C ₂ H ₅	H	CH ₃
	536.	OCF ₃	CF ₃	H	CH ₃
5	537.	OCF ₃	OCF ₃	H	CH ₃
	538.		OCHF ₂	H	CH ₃
		OCF ₃	Br	H	C ₂ H ₅
	539.	OCF ₃		H	C ₂ H ₅
	540.	OCF ₃	OCH ₃	H	C ₂ H ₅
10	541. 542.	OCF ₃	F	H	C ₂ H ₅
		OCF ₃		H	C ₂ H ₅
	543.	OCF ₃	CH ₃	H	
	544.	OCF ₃	C ₂ H ₅		C ₂ H ₅
	545.	OCF ₃	CF ₃	H	C ₂ H ₅
	546.	OCF ₃	OCF3	H	C ₂ H ₅
15	547.	OCF ₃	OCHF ₂	H	C ₂ H ₅
	548.	OCF ₃	Br	H	n-C ₃ H ₇
	549.	OCF ₃	OCH ₃	H	n-C ₃ H ₇
	550.	OCF ₃	C1	H	n-C ₃ H ₇
	551.	OCF ₃	F	H	n-C ₃ H ₇
20	552.	OCF ₃	CH ₃	H	n-C ₃ H ₇
20	553.	OCF ₃	C ₂ H ₅	H	n-C ₃ H ₇
ļ	554.	OCF ₃	CF ₃	H	n-C ₃ H ₇
	555.	OCF ₃	OCF3	H	n-C ₃ H ₇
	556.	OCF ₃	OCHF ₂	H	n-C ₃ H ₇
	557.	OCF ₃	Br	H	CH(CH ₃) ₂
25	558.	OCF ₃	OCH ₃	H	CH(CH ₃) ₂
	559.	OCF ₃	C1	H	CH(CH ₃) ₂
,	560.	OCF ₃	F	H	CH(CH ₃) ₂
	561.	OCF ₃	CH ₃	H	CH(CH ₃) ₂
	562.	OCF ₃	C ₂ H ₅	H	CH(CH ₃) ₂
30	563.	OCF ₃	CF ₃	H	CH(CH ₃) ₂
30	564.	OCF ₃	OCF ₃	H	CH(CH ₃) ₂
	565.	OCF ₃	OCHF ₂	H	CH(CH ₃) ₂
	566.	OCF ₃	Br	H	n-C ₄ H ₉
	567.	OCF ₃	OCH ₃	Н	n-C ₄ H ₉
	568.	OCF ₃		H	n-C ₄ H ₉
35	569.	OCF ₃	F	H	n-C ₄ H ₉
	570.	OCF ₃	CH ₃	Н	n-C ₄ H ₉ n-C ₄ H ₉
	571.	OCF ₃	CE-	Н	
	572.	OCF ₃	CF ₃		n-C ₄ H ₉ n-C ₄ H ₉
	573.	OCF ₃	OCF3	H	
40	574.	OCF ₃	OCHF ₂	H	n-C ₄ H ₉
40	575.	OCF ₃	Br	H	C(CH ₃) ₃
	576.	OCF ₃	OCH ₃	H	C(CH ₃) ₃
	577.	OCF ₃	Cl	H	C(CH ₃) ₃
	578.	OCF ₃	F	H	C(CH ₃) ₃
	579.	OCF ₃	CH ₃	H	C(CH ₃) ₃
45	580.	OCF ₃	C ₂ H ₅	H	C(CH ₃) ₃
	581.	OCF ₃	CF ₃	H	C(CH ₃) ₃
	582.	OCF ₃	OCF ₃	H	C(CH ₃) ₃
	583.	OCF ₃	OCHF ₂	H	C(CH ₃) ₃

.

	No.	Rb	RC	Rd	R ²
	584.	OCF ₃	Br	H	C ₆ H ₅
	585.	OCF ₃	OCH ₃	H	C ₆ H ₅
	586.	OCF ₃	Cl	H	C ₆ H ₅
5	587.	OCF ₃	F	H	C ₆ H ₅
9	588.	OCF ₃	CH ₃	H	C ₆ H ₅
	589.	OCF ₃	C ₂ H ₅	H	C ₆ H ₅
	590.	OCF ₃	CF ₃	H	C ₆ H ₅
	591.	OCF ₃	OCF ₃	H	C ₆ H ₅
	592.	OCF ₃	OCHF ₂	H	C ₆ H ₅
10	593.	OCF ₃	Br	H	cyclopropyl
	594.	OCF ₃	OCH ₃	Н	cyclopropyl
	595.	OCF ₃	Cl	H	cyclopropyl .
	596.	OCF ₃	F	H	cyclopropyl
	597.	OCF ₃	CH ₃	H	cyclopropyl
15	598.	OCF ₃	C ₂ H ₅	H	cyclopropyl
15	599.	OCF ₃	CF ₃	H	cyclopropyl
	600.	OCF3	OCF ₃	H	cyclopropyl
	601.	OCF ₃	OCHF ₂	H	cyclopropyl
	602.	OCF ₃	Br	Н	CH2-cyclopropyl
	603.	OCF ₃	OCH ₃	H	CH2-cyclopropyl
20	604.	OCF ₃	Cl	H	CH2-cyclopropyl
	605.	OCF ₃	F	H	CH ₂ -cyclopropyl
	606.	OCF ₃	CH ₃	H	CH2-cyclopropyl
	607.	OCF ₃	C ₂ H ₅	H	CH ₂ -cyclopropyl
	608.	OCF ₃	OCF ₃	H	CH ₂ -cyclopropyl
25	609.	OCF ₃	CF ₃	H	CH2-cyclopropyl
	610.	OCF ₃	OCHF ₂	H	CH ₂ -cyclopropyl
	611.	OCF ₃	Br	H	cyclobutyl
	612.	OCF ₃	OCH ₃	H	cyclobutyl
	613.	OCF ₃	Cl	H	cyclobutyl
20	614.	OCF ₃	F	H	cyclobutyl
30	615.	OCF ₃	CH ₃	H	cyclobutyl
	616.	OCF ₃	C ₂ H ₅	H	cyclobutyl
	617.	OCF ₃	OCF ₃	H	cyclobutyl
	618.	OCF ₃	CF ₃	H	cyclobutyl cyclobutyl
	619.	OCF ₃	OCHF ₂	H	cyclopentyl
35	620. 621.	OCF ₃	Br OCH ₃	H	cyclopentyl
	622.	OCF ₃	Cl	H	cyclopentyl
	623.	OCF ₃	F	H	cyclopentyl
	624.	OCF ₃	CH ₃	H	cyclopentyl
	625.	OCF ₃	C ₂ H ₅	H	cyclopentyl
40	626.	OCF ₃	OCF ₃	H	cyclopentyl
	627.	OCF ₃	CF ₃	H	cyclopentyl
	628.	OCF ₃	OCHF ₂	H	cyclopentyl
	629.	OCF ₃	Br	H	cyclohexyl
	630.	OCF ₃	OCH ₃	H	cyclohexyl
	631.	OCF ₃	Cl	H	cyclohexyl
45	632.	OCF ₃	F	H .	cyclohexyl
	633.	OCF ₃	CH ₃	H	cyclohexyl
	634.	OCF ₃	C ₂ H ₅	H	cyclohexyl
	L	1 2 2 2	1 -23		

635. OCF3 CF3 H cyclohexyl		No.	Rb	RC	Rd	R ²
636. OCF3 CF3 H Cyclohexyl						
637. OCF3 H Br H 638. OCF3 H Br H 639. OCF3 H OCH3 H 640. OCF3 H C1 H 641. OCF3 H C1 H 641. OCF3 H C1 H 642. OCF3 H C2H5 H 643. OCF3 H C73 H 644. OCF3 H OCF3 H 645. OCF3 H OCF3 H 647. OCF3 H OCH2 H 648. OCF3 H C1 CH3 651. OCF3 H F CH3 651. OCF3 H F CH3 651. OCF3 H CP3 CH3 652. OCF3 H CP4 CH3 653. OCF3 H OCF						
638. OCF3 H Br H 639. OCF3 H OCH3 H 640. OCF3 H C1 H 641. OCF3 H CH3 H 642. OCF3 H CH3 H 643. OCF3 H CCH3 H 644. OCF3 H OCF3 H 646. OCF3 H OCF3 H 647. OCF3 H OCH2 H 648. OCF3 H OCH3 CH3 648. OCF3 H CH3 CH3 651. OCF3 H F CH3 651. OCF3 H CH3 CH3 652. OCF3 H CH3 CH3 653. OCF3 H OCF3 CH3 654. OCF3 H DCF3 CH3 655. OCF3 H						
639. OCF3 H C1 H 640. OCF3 H C1 H 641. OCF3 H F H 642. OCF3 H F F H 642. OCF3 H C2H5 H 643. OCF3 H C2H5 H 644. OCF3 H C75 H 645. OCF3 H C75 H 646. OCF3 H C75 H 646. OCF3 H C75 H 647. OCF3 H C75 H 648. OCF3 H C1 CH3 649. OCF3 H C1 CH3 650. OCF3 H C1 CH3 651. OCF3 H C1 CH3 652. OCF3 H C1 CH3 653. OCF3 H C75 CH3 654. OCF3 H C75 CH3 655. OCF3 H C75 CH3 656. OCF3 H C75 CH3 657. OCF3 H C75 CH3 658. OCF3 H C1 C2H5 659. OCF3 H C1 C2H5 660. OCF3 H C1 C2H5 661. OCF3 H C73 C2H5 662. OCF3 H C73 C2H5 663. OCF3 H C75 C2H5 664. OCF3 H C75 C2H5 665. OCF3 H C75 C2H5 666. OCF3 H C75 C2H5 666. OCF3 H C75 C2H5 667. OCF3 H C75 C2H5 668. OCF3 H C75 C2H5 669. OCF3 H C75 C2H5 660. OCF3 H C75 C2H5 661. OCF3 H C75 C2H5 662. OCF3 H C75 C2H5 663. OCF3 H C75 C2H5 664. OCF3 H C75 C2H5 665. OCF3 H C75 C2H5 6660. OCF3 H C75 C2H5 667. OCF3 H C75 C2H5 668.						
640. OCF3	5					
641. OCF3						
642. OCF3						
10						
10						
645. OCF3 H OCF3 H 646. OCF3 H OCHF2 H 647. OCF3 H OCHF2 H 648. OCF3 H OCH3 CH3 649. OCF3 H C1 CH3 650. OCF3 H C2H5 CH3 651. OCF3 H C2H5 CH3 652. OCF3 H CF3 CH3 653. OCF3 H OCF3 CH3 654. OCF3 H OCF3 CH3 655. OCF3 H OCF3 CH3 656. OCF3 H OCH52 CH3 657. OCF3 H C1 C2H5 658. OCF3 H C1 C2H5 659. OCF3 H C1 C2H5 660. OCF3 H CH3 C2H5 661. OCF3 H CH3 C2H5 662. OCF3 H CH3 C2H5 663. OCF3 H CH3 C2H5 664. OCF3 H CF3 C2H5 665. OCF3 H CF3 C2H5 666. OCF3 H CF3 C2H5 667. OCF3 H OCH72 C2H5 668. OCF3 H OCH72 C2H5 669. OCF3 H OCH72 C2H5 669. OCF3 H OCH3 N-C3H7 669. OCF3 H CH3 N-C3H7 670. OCF3 H CH3 N-C3H7 670. OCF3 H CF3 N-C3H7 671. OCF3 H CF3 N-C3H7 672. OCF3 H CF3 N-C3H7 673. OCF3 H CF3 N-C3H7 674. OCF3 H CF3 N-C3H7 675. OCF3 H CF3 CH(CH3)2 676. OCF3 H CH CH3)2 677. OCF3 H CH CH3)2 678. OCF3 H CH CH3)2 679. OCF3 H CH CH3)2 680. OCF3 H CH CH3)2 681. OCF3 H CP5 CH(CH3)2 682. OCF3 H CP5 CH(CH3)2 683. OCF3 H DCH52 CH(CH3)2 684. OCF3 H DCH53 N-C4H59 684. OCF3 H DCH54 N-C4H59 688. OCF3 H DCH54 N-C4H59 689. OCF3 H DCH54 N-C4H59 689. OCF3 H DCH54 N	10					
646. OCF3						
647. OCF3 H Br CH3 648. OCF3 H OCH3 CH3 649. OCF3 H C1 CH3 650. OCF3 H F CH3 651. OCF3 H CH3 CH3 652. OCF3 H CP45 CH3 652. OCF3 H CP45 CH3 653. OCF3 H CP45 CH3 654. OCF3 H OCF3 CH3 655. OCF3 H OCH52 CH3 656. OCF3 H OCH3 C2H5 657. OCF3 H C1 C2H5 657. OCF3 H C1 C2H5 657. OCF3 H C1 C2H5 659. OCF3 H C1 C2H5 661. OCF3 H CP43 C2H5 662. OCF3						
648						
15						
15						
651. OCF3	15					
652. OCF3						
653. OCF3	.					
Color						
20 655. OCF3 H OCHF2 CH3 656. OCF3 H Br C2H5 657. OCF3 H C1 C2H5 658. OCF3 H C1 C2H5 659. OCF3 H F C2H5 660. OCF3 H C1 C2H5 661. OCF3 H C2H5 661. OCF3 H C2H5 662. OCF3 H C2H5 663. OCF3 H C2H5 664. OCF3 H CF3 C2H5 6662. OCF3 H OCF3 6663. OCF3 H OCF3 6664. OCF3 H OCHF2 C2H5 6665. OCF3 H OCH5 6660. OCF3 H OCH5 6660. OCF3 H OCH5 6660. OCF3 H OCH3 6660. OCF3 H C1 N-C3H7 6660. OCF3 H C1 N-C3H7 6660. OCF3 H C1 N-C3H7 6660. OCF3 H C2H5 N-C3H7 6670. OCF3 H C2H5 N-C3H7 670. OCF3 H C2H5 N-C3H7 671. OCF3 H CF3 N-C3H7 672. OCF3 H OCHF2 N-C3H7 673. OCF3 H OCHF2 N-C3H7 674. OCF3 H OCH52 N-C3H7 675. OCF3 H OCH52 N-C3H7 676. OCF3 H OCH52 N-C3H7 676. OCF3 H OCH52 N-C3H7 677. OCF3 H C1 CH(CH3)2 676. OCF3 H C1 CH(CH3)2 676. OCF3 H C1 CH(CH3)2 677. OCF3 H C1 CH(CH3)2 678. OCF3 H C1 CH(CH3)2 679. OCF3 H CCH3 CH(CH3)2 679. OCF3 H CCH3 CH(CH3)2 680. OCF3 H CCF3 CH(CH3)2 681. OCF3 H OCH52 CH(CH3)2 682. OCF3 H OCH52 CH(CH3)2 683. OCF3 H OCH52 CH(CH3)2 683. OCF3 H OCH52 CH(CH3)2 684. OCF3 H OCH52 CH(CH3)2 684. OCF3 H OCH52 CH(CH3)2						
656. OCF3	20					
657. OCF3 H OCH3 C2H5 658. OCF3 H F C2H5 659. OCF3 H F C2H5 660. OCF3 H CH3 C2H5 661. OCF3 H CF3 C2H5 662. OCF3 H OCF3 C2H5 663. OCF3 H OCF3 C2H5 664. OCF3 H OCF3 C2H5 665. OCF3 H OCH52 C2H5 666. OCF3 H OCH3 n-C3H7 667. OCF3 H C1 n-C3H7 668. OCF3 H C1 n-C3H7 669. OCF3 H CH3 n-C3H7 670. OCF3 H CH3 n-C3H7 671. OCF3 H CF3 n-C3H7 672. OCF3 H CF3 n-C3H7 673. OCF3 H OCF3 n-C3H7 674. OCF3 H OCF3 n-C3H7 675. OCF3 H OCH52 n-C3H7 676. OCF3 H OCH52 n-C3H7 677. OCF3 H C1 CH(CH3)2 678. OCF3 H C1 CH(CH3)2 679. OCF3 H CH3 CH(CH3)2 679. OCF3 H CH3 CH(CH3)2 680. OCF3 H CF3 CH(CH3)2 681. OCF3 H OCF3 CH(CH3)2 682. OCF3 H OCH52 CH(CH3)2 683. OCF3 H OCH52 CH(CH3)2 684. OCF3 H OCH52 CH(CH3)2 683. OCF3 H OCH52 CH(CH3)2 684. OCF3 H OCH53 N-C4H9 684. OCE3 H OCH53 N-C4H9 685. OCE3 H OCH53 N-C4H9 686. OCF3 H OCH54 OCH54 686. OCF3 H OC						
25 658. OCF3 H F C2H5 659. OCF3 H F C2H5 660. OCF3 H CH3 C2H5 661. OCF3 H CF3 C2H5 662. OCF3 H OCF3 C2H5 663. OCF3 H OCF3 C2H5 664. OCF3 H OCF3 C2H5 665. OCF3 H OCHF2 C2H5 666. OCF3 H OCH3 N-C3H7 666. OCF3 H OCH3 N-C3H7 667. OCF3 H C1 N-C3H7 668. OCF3 H CH3 N-C3H7 669. OCF3 H CH3 N-C3H7 670. OCF3 H CF3 N-C3H7 671. OCF3 H CF3 N-C3H7 672. OCF3 H OCF3 N-C3H7 674. OCF3 H OCF3 N-C3H7 675. OCF3 H OCH52 N-C3H7 676. OCF3 H OCH52 N-C3H7 677. OCF3 H OCH52 N-C3H7 678. OCF3 H OCH3 CH(CH3)2 679. OCF3 H CH3 CH(CH3)2 679. OCF3 H CH3 CH(CH3)2 680. OCF3 H CP3 CH(CH3)2 681. OCF3 H OCF3 CH(CH3)2 682. OCF3 H OCF3 CH(CH3)2 683. OCF3 H OCH52 CH(CH3)2 684. OCF3 H OCH52 CH(CH3)2 688. OCF3 H OCF3 CH(CH3)2 688. OCF3 H OCH52 CH(CH3)2 688. OCF3 H OCH52 CH(CH3)2 688. OCF3 H OCH54 OCH54 688. OCF3 H OCH5						
25 660. OCF3 H CH3 C2H5						
25 660. OCF3 H CH3 C2H5 661. OCF3 H C2H5 C2H5 662. OCF3 H CF3 C2H5 663. OCF3 H OCF3 C2H5 664. OCF3 H OCHF2 C2H5 665. OCF3 H Br n-C3H7 666. OCF3 H OCH3 n-C3H7 667. OCF3 H CH3 n-C3H7 668. OCF3 H CH3 n-C3H7 669. OCF3 H CH3 n-C3H7 670. OCF3 H CP3 n-C3H7 671. OCF3 H CF3 n-C3H7 672. OCF3 H OCF3 n-C3H7 673. OCF3 H OCF3 n-C3H7 674. OCF3 H OCF3 n-C3H7 675. OCF3 H OCHF2 n-C3H7 676. OCF3 H OCH5 n-C3H7 677. OCF3 H C1 CH(CH3)2 678. OCF3 H C1 CH(CH3)2 679. OCF3 H CH3 CH(CH3)2 679. OCF3 H CP3 CH(CH3)2 680. OCF3 H CP5 CH(CH3)2 681. OCF3 H OCF3 CH(CH3)2 682. OCF3 H OCH5 CH(CH3)2 683. OCF3 H OCH5 CH(CH3)2 684. OCF3 H OCH5 CH(CH4)9 684. OCF3 H OCH5 CH(CH4)9 684. OCF3 H OCH5 CH(CH4)9 684. OCF3 H OCH5 CH449 685. OCF3 H OCH5 CH449 686. OCF3 H OCH5 CH450						
661. OCF3 H C2H5 C2H5 662. OCF3 H OCF3 C2H5 663. OCF3 H OCF3 C2H5 664. OCF3 H OCHF2 C2H5 665. OCF3 H OCH3 N-C3H7 666. OCF3 H OCH3 N-C3H7 667. OCF3 H C1 N-C3H7 668. OCF3 H C1 N-C3H7 669. OCF3 H C2H5 N-C3H7 670. OCF3 H C2H5 N-C3H7 671. OCF3 H CF3 N-C3H7 672. OCF3 H OCH52 N-C3H7 673. OCF3 H OCH52 N-C3H7 674. OCF3 H OCH52 N-C3H7 675. OCF3 H OCH52 N-C3H7 676. OCF3 H C1 CH(CH3)2 676. OCF3 H C1 CH(CH3)2 677. OCF3 H C1 CH(CH3)2 678. OCF3 H CH3 CH(CH3)2 679. OCF3 H CH3 CH3 679. OCF3 H CH3 679. OCF3 H CH3 680. OCF3 H CCH3 681. OCF3 H CCF3 CH(CH3)2 682. OCF3 H OCH52 CH(CH3)2 683. OCF3 H OCH52 CH(CH3)2 684. OCF3 H OCH52 CH(CH3)2 683. OCF3 H OCH52 CH(CH3)2 684. OCF3 H OCH52 CH(CH3)2						
662. OCF3 H CF3 C ₂ H ₅ 663. OCF3 H OCF3 C ₂ H ₅ 664. OCF3 H OCHF ₂ C ₂ H ₅ 665. OCF3 H Br n-C ₃ H ₇ 666. OCF3 H OCH3 n-C ₃ H ₇ 667. OCF3 H C1 n-C ₃ H ₇ 668. OCF3 H F n-C ₃ H ₇ 669. OCF3 H CH3 n-C ₃ H ₇ 670. OCF3 H CP3 n-C ₃ H ₇ 671. OCF3 H CF3 n-C ₃ H ₇ 672. OCF3 H OCH ₃ n-C ₃ H ₇ 673. OCF3 H OCH ₂ n-C ₃ H ₇ 674. OCF3 H OCHF ₂ n-C ₃ H ₇ 675. OCF3 H OCHF ₂ n-C ₃ H ₇ 676. OCF3 H C1 CH(CH ₃) ₂ 677. OCF3 H C1 CH(CH ₃) ₂ 678. OCF ₃ H C1 CH(CH ₃) ₂ 679. OCF ₃ H CCH ₃ CH(CH ₃) ₂ 680. OCF ₃ H CP3 CH(CH ₃) ₂ 681. OCF ₃ H CF3 CH(CH ₃) ₂ 682. OCF ₃ H OCHF ₂ CH(CH ₃) ₂ 683. OCF ₃ H OCHF ₂ CH(CH ₃) ₂ 684. OCF ₃ H OCH ₃ CH(CH ₃) ₂ 687. OCF ₃ H CP3 CH(CH ₃) ₂ 688. OCF ₃ H CP3 CH(CH ₃) ₂ 688. OCF ₃ H CP3 CH(CH ₃) ₂ 688. OCF ₃ H CP4 CH(CH ₃) ₂ 688. OCF ₃ H CP5 CH(CH ₃) ₂ 688. OCF ₃ H CP5 CH(CH ₃) ₂ 688. OCF ₃ H OCHF ₂ CH(CH ₃) ₂	25					
663. OCF3 H OCF3 C ₂ H ₅ 664. OCF3 H OCHF ₂ C ₂ H ₅ 665. OCF3 H Br n-C ₃ H ₇ 666. OCF3 H OCH ₃ n-C ₃ H ₇ 667. OCF3 H C1 n-C ₃ H ₇ 668. OCF3 H F n-C ₃ H ₇ 669. OCF3 H CH ₃ n-C ₃ H ₇ 670. OCF3 H CH ₃ n-C ₃ H ₇ 671. OCF3 H CF3 n-C ₃ H ₇ 672. OCF3 H OCH ₂ n-C ₃ H ₇ 673. OCF3 H OCHF ₂ n-C ₃ H ₇ 674. OCF3 H Br CH(CH ₃) ₂ 675. OCF ₃ H OCH ₃ CH(CH ₃) ₂ 676. OCF ₃ H C1 CH(CH ₃) ₂ 677. OCF ₃ H C1 CH(CH ₃) ₂ 678. OCF ₃ H CH ₃ CH(CH ₃) ₂ 679. OCF ₃ H CH ₃ CH(CH ₃) ₂ 680. OCF ₃ H CF ₃ CH(CH ₃) ₂ 681. OCF ₃ H OCHF ₂ CH(CH ₃) ₂ 682. OCF ₃ H OCHF ₂ CH(CH ₃) ₂ 683. OCF ₃ H OCHF ₂ CH(CH ₃) ₂ 684. OCF ₃ H OCH ₃ CH(CH ₃) ₂ 687. OCF ₃ H CF ₃ CH(CH ₃) ₂						
30 664. OCF3 H Br n-C3H7 665. OCF3 H OCH3 n-C3H7 666. OCF3 H C1 n-C3H7 668. OCF3 H F n-C3H7 669. OCF3 H CH3 n-C3H7 670. OCF3 H CF3 n-C3H7 671. OCF3 H OCF3 n-C3H7 672. OCF3 H OCF3 n-C3H7 673. OCF3 H OCH52 n-C3H7 674. OCF3 H Br CH(CH3)2 675. OCF3 H OCH3 CH(CH3)2 676. OCF3 H F CH(CH3)2 677. OCF3 H CH3 CH(CH3)2 679. OCF3 H CF3 CH(CH3)2 681. OCF3 H OCF3 CH(CH3)2 682. OCF3 H OCH52 CH(CH3)2 683. OCF3 H OCH52 CH(CH3)2 <tr< th=""><th></th><th></th><th></th><th></th><th></th><th></th></tr<>						
30 665. OCF3 H Br n-C3H7 666. OCF3 H OCH3 n-C3H7 667. OCF3 H F n-C3H7 668. OCF3 H CH3 n-C3H7 669. OCF3 H CH3 n-C3H7 670. OCF3 H CF3 n-C3H7 670. OCF3 H OCF3 n-C3H7 671. OCF3 H OCF3 n-C3H7 672. OCF3 H OCH5 n-C3H7 673. OCF3 H OCH5 n-C3H7 674. OCF3 H Br CH(CH3)2 675. OCF3 H OCH3 CH(CH3)2 676. OCF3 H F CH(CH3)2 677. OCF3 H CH CH(CH3)2 679. OCF3 H CF3 CH(CH3)2 681. OCF3 H OCF3 CH(CH3)2 682. OCF3 H OCH52 CH(CH3)2						
30 666. OCF3 H OCH3 n-C3H7 667. OCF3 H F n-C3H7 668. OCF3 H CH3 n-C3H7 669. OCF3 H CH3 n-C3H7 670. OCF3 H CF3 n-C3H7 671. OCF3 H OCF3 n-C3H7 672. OCF3 H OCHF2 n-C3H7 673. OCF3 H OCHF2 n-C3H7 674. OCF3 H Br CH(CH3)2 675. OCF3 H OCH3 CH(CH3)2 676. OCF3 H C1 CH(CH3)2 677. OCF3 H CH3 CH(CH3)2 679. OCF3 H CF3 CH(CH3)2 680. OCF3 H OCF3 CH(CH3)2 681. OCF3 H OCHF2 CH(CH3)2 682. OCF3 H OCHF2 CH(CH3)2 683. OCF3 H OCHF2 CH(CH3)2						
667. OCF3 H F N-C3H7 668. OCF3 H F N-C3H7 669. OCF3 H CH3 N-C3H7 670. OCF3 H CF3 N-C3H7 671. OCF3 H CF3 N-C3H7 672. OCF3 H OCF3 N-C3H7 673. OCF3 H OCH52 N-C3H7 674. OCF3 H Br CH(CH3)2 675. OCF3 H OCH3 CH(CH3)2 676. OCF3 H C1 CH(CH3)2 677. OCF3 H C1 CH(CH3)2 678. OCF3 H CCB CH(CH3)2 679. OCF3 H CCB CH(CH3)2 679. OCF3 H CCB CH(CH3)2 680. OCF3 H CCB CH(CH3)2 681. OCF3 H CCF3 CH(CH3)2 682. OCF3 H OCF2 CH(CH3)2 683. OCF3 H OCF2 CH(CH3)2 684. OCF3 H OCH5 NCCC CH(CH3)2	30					
668. OCF3 H F n-C3H7 669. OCF3 H CH3 n-C3H7 670. OCF3 H C2H5 n-C3H7 671. OCF3 H OCF3 n-C3H7 672. OCF3 H OCF3 n-C3H7 673. OCF3 H OCHF2 n-C3H7 674. OCF3 H OCH3 CH(CH3)2 675. OCF3 H OCH3 CH(CH3)2 676. OCF3 H C1 CH(CH3)2 677. OCF3 H C1 CH(CH3)2 678. OCF3 H CH3 CH(CH3)2 679. OCF3 H CH3 CH(CH3)2 680. OCF3 H C2H5 CH(CH3)2 681. OCF3 H OCF3 CH(CH3)2 682. OCF3 H OCH52 CH(CH3)2 683. OCF3 H OCH52 CH(CH3)2 684. OCF3 H OCH52 CH(CH3)2						
669. OCF ₃ H CH ₃ n-C ₃ H ₇ 670. OCF ₃ H C ₂ H ₅ n-C ₃ H ₇ 671. OCF ₃ H OCF ₃ n-C ₃ H ₇ 672. OCF ₃ H OCF ₃ n-C ₃ H ₇ 673. OCF ₃ H OCH ₂ n-C ₃ H ₇ 674. OCF ₃ H Br CH(CH ₃) ₂ 675. OCF ₃ H OCH ₃ CH(CH ₃) ₂ 676. OCF ₃ H Cl CH(CH ₃) ₂ 677. OCF ₃ H F CH(CH ₃) ₂ 678. OCF ₃ H CH ₃ CH(CH ₃) ₂ 679. OCF ₃ H CH ₃ CH(CH ₃) ₂ 680. OCF ₃ H CF ₃ CH(CH ₃) ₂ 681. OCF ₃ H OCF ₃ CH(CH ₃) ₂ 682. OCF ₃ H OCF ₃ CH(CH ₃) ₂ 683. OCF ₃ H OCH ₂ CH(CH ₃) ₂ 684. OCF ₃ H OCH ₃ n-C ₄ H ₉ 684. OCF ₃ H OCH ₃ n-C ₄ H ₉						
35 670. OCF3 H C2H5 n-C3H7 671. OCF3 H OCF3 n-C3H7 672. OCF3 H OCH5 n-C3H7 673. OCF3 H OCH5 n-C3H7 674. OCF3 H Br CH(CH3)2 675. OCF3 H OCH3 CH(CH3)2 676. OCF3 H F CH(CH3)2 677. OCF3 H F CH(CH3)2 678. OCF3 H C2H5 CH(CH3)2 679. OCF3 H CF3 CH(CH3)2 680. OCF3 H OCF3 CH(CH3)2 681. OCF3 H OCH52 CH(CH3)2 682. OCF3 H OCH52 CH(CH3)2 683. OCF3 H Br n-C4H9 684. OCF3 H OCH3 n-C4H9				H	CH ₃	
35 671. OCF3 H CF3 n-C3H7 672. OCF3 H OCF3 n-C3H7 673. OCF3 H OCHF2 n-C3H7 674. OCF3 H Br CH(CH3)2 675. OCF3 H OCH3 CH(CH3)2 676. OCF3 H C1 CH(CH3)2 677. OCF3 H F CH(CH3)2 678. OCF3 H CH3 CH(CH3)2 679. OCF3 H CF3 CH(CH3)2 680. OCF3 H CF3 CH(CH3)2 681. OCF3 H OCF3 CH(CH3)2 682. OCF3 H OCHF2 CH(CH3)2 683. OCF3 H Br n-C4H9 684. OCF3 H OCH3 n-C4H9				Н		
672. OCF3 H OCF3 n-C3H7 673. OCF3 H OCHF2 n-C3H7 674. OCF3 H OCH3 CH(CH3)2 675. OCF3 H C1 CH(CH3)2 676. OCF3 H C1 CH(CH3)2 677. OCF3 H F CH(CH3)2 678. OCF3 H CH3 CH(CH3)2 679. OCF3 H CH3 CH(CH3)2 680. OCF3 H CF3 CH(CH3)2 680. OCF3 H CF3 CH(CH3)2 681. OCF3 H OCF3 CH(CH3)2 682. OCF3 H OCF3 CH(CH3)2 683. OCF3 H OCH52 CH(CH3)2 684. OCF3 H OCH52 CH(CH3)2	25			H		
673. OCF ₃ H OCHF ₂ n-C ₃ H ₇ 674. OCF ₃ H Br CH(CH ₃) ₂ 675. OCF ₃ H OCH ₃ CH(CH ₃) ₂ 676. OCF ₃ H Cl CH(CH ₃) ₂ 677. OCF ₃ H F CH(CH ₃) ₂ 678. OCF ₃ H CH ₃ CH(CH ₃) ₂ 679. OCF ₃ H C ₂ H ₅ CH(CH ₃) ₂ 680. OCF ₃ H CF ₃ CH(CH ₃) ₂ 681. OCF ₃ H OCF ₃ CH(CH ₃) ₂ 682. OCF ₃ H OCF ₃ CH(CH ₃) ₂ 683. OCF ₃ H OCHF ₂ CH(CH ₃) ₂ 684. OCF ₃ H OCH ₃ n-C ₄ H ₉	35			H		
674. OCF ₃ H Br CH(CH ₃) ₂ 675. OCF ₃ H OCH ₃ CH(CH ₃) ₂ 676. OCF ₃ H Cl CH(CH ₃) ₂ 677. OCF ₃ H F CH(CH ₃) ₂ 678. OCF ₃ H CH ₃ CH(CH ₃) ₂ 679. OCF ₃ H CH ₃ CH(CH ₃) ₂ 680. OCF ₃ H CF ₃ CH(CH ₃) ₂ 681. OCF ₃ H OCF ₃ CH(CH ₃) ₂ 682. OCF ₃ H OCF ₃ CH(CH ₃) ₂ 683. OCF ₃ H OCH ₂ CH(CH ₃) ₂ 684. OCF ₃ H OCH ₃ n-C ₄ H ₉				H		
675. OCF3 H OCH3 CH(CH3)2 676. OCF3 H Cl CH(CH3)2 677. OCF3 H F CH(CH3)2 678. OCF3 H CH3 CH(CH3)2 679. OCF3 H CH3 CH(CH3)2 680. OCF3 H CF3 CH(CH3)2 681. OCF3 H OCF3 CH(CH3)2 682. OCF3 H OCF3 CH(CH3)2 683. OCF3 H OCH52 CH(CH3)2 684. OCF3 H OCH52 CH(CH3)2		674.		Н		
676. OCF ₃ H Cl CH(CH ₃) ₂ 677. OCF ₃ H F CH(CH ₃) ₂ 678. OCF ₃ H CH ₃ CH(CH ₃) ₂ 679. OCF ₃ H C ₂ H ₅ CH(CH ₃) ₂ 680. OCF ₃ H CF ₃ CH(CH ₃) ₂ 681. OCF ₃ H OCF ₃ CH(CH ₃) ₂ 682. OCF ₃ H OCH ₂ CH(CH ₃) ₂ 683. OCF ₃ H DCH ₂ CH(CH ₃) ₂ 684. OCF ₃ H OCH ₃ n-C ₄ H ₉	40	675		H	OCH ₃	
678. OCF ₃ H CH ₃ CH(CH ₃) ₂ 679. OCF ₃ H C ₂ H ₅ CH(CH ₃) ₂ 680. OCF ₃ H CF ₃ CH(CH ₃) ₂ 681. OCF ₃ H OCF ₃ CH(CH ₃) ₂ 682. OCF ₃ H OCHF ₂ CH(CH ₃) ₂ 683. OCF ₃ H Br n-C ₄ H ₉ 684. OCF ₃ H OCH ₃ n-C ₄ H ₉		676.		Н	Cl	CH(CH ₃) ₂
679. OCF ₃ H C ₂ H ₅ CH(CH ₃) ₂ 680. OCF ₃ H CF ₃ CH(CH ₃) ₂ 681. OCF ₃ H OCF ₃ CH(CH ₃) ₂ 682. OCF ₃ H OCHF ₂ CH(CH ₃) ₂ 683. OCF ₃ H Br n-C ₄ H ₉ 684. OCF ₃ H OCH ₃ n-C ₄ H ₉		677.	OCF ₃	Н	F	CH(CH ₃) ₂
680. OCF ₃ H CF ₃ CH(CH ₃) ₂ 681. OCF ₃ H OCF ₃ CH(CH ₃) ₂ 682. OCF ₃ H OCHF ₂ CH(CH ₃) ₂ 683. OCF ₃ H Br n-C ₄ H ₉ 684. OCF ₃ H OCH ₃ n-C ₄ H ₉		678.	OCF ₃	H	CH ₃	CH(CH ₃) ₂
680. OCF ₃ H CF ₃ CH(CH ₃) ₂ 681. OCF ₃ H OCF ₃ CH(CH ₃) ₂ 682. OCF ₃ H OCHF ₂ CH(CH ₃) ₂ 683. OCF ₃ H Br n-C ₄ H ₉ 684. OCF ₃ H OCH ₃ n-C ₄ H ₉		679.	OCF ₃	Н	C ₂ H ₅	CH(CH ₃) ₂
45 682. OCF ₃ H OCHF ₂ CH(CH ₃) ₂ 683. OCF ₃ H Br n-C ₄ H ₉ 684. OCF ₃ H OCH ₃ n-C ₄ H ₉		680.		Н	CF ₃	CH(CH ₃) ₂
45 682. OCF ₃ H OCHF ₂ CH(CH ₃) ₂ 683. OCF ₃ H Br n-C ₄ H ₉ 684. OCF ₃ H OCH ₃ n-C ₄ H ₉				Н		I
683. OCF ₃ H Br n-C ₄ H ₉ 684. OCF ₃ H OCH ₃ n-C ₄ H ₉	45			Н	OCHF ₂	CH(CH ₃) ₂
	45	683.		Н	Br	n-C ₄ H ₉
685. OCF ₃ H Cl n-C ₄ H ₉		684.	OCF ₃	H	OCH ₃	n-C ₄ H ₉
		685.	OCF ₃	Н	Cl	n-C ₄ H ₉

	No.	Rb	Rc	Rd	R ²
	686.	OCF ₃	H	F	n-C ₄ H ₉
	687.	OCF ₃	Н	CH ₃	n-C ₄ H ₉
	688.	OCF ₃	Н	C ₂ H ₅	n-C ₄ H ₉
_	689.	OCF ₃	H	CF ₃	n-C ₄ H ₉
5	690.	OCF ₃	H	OCF ₃	n-C ₄ H ₉
	691.	OCF ₃	Н	OCHF ₂	n-C ₄ H ₉
	692.	OCF ₃	H	Br	C(CH ₃) ₃
	693.	OCF ₃	H	OCH ₃	C(CH ₃) ₃
	694.	OCF ₃	Н	Cl	C(CH ₃) ₃
10	695.	OCF ₃	Н	F	C(CH ₃) ₃
	696.	OCF ₃	H .	CH ₃	C(CH ₃) ₃
	697.	OCF ₃	Н	C ₂ H ₅	C(CH ₃) ₃
	698.	OCF ₃	H	CF ₃	C(CH ₃) ₃
	699.	OCF ₃	H .	OCF ₃	C(CH ₃) ₃
	700.	OCF ₃	Н	OCHF ₂	C(CH ₃) ₃
15	701.	OCF ₃	Н	Br	C ₆ H ₅
	702.	OCF ₃	Н	OCH ₃	С6Н5
	703.	OCF ₃	Н	Cl	C ₆ H ₅
	704.	OCF ₃	Н	F	С6Н5
	705.	OCF ₃	H	CH ₃	C ₆ H ₅
20	706.	OCF ₃	H	C ₂ H ₅	C ₆ H ₅
	707.	OCF ₃	H	CF ₃	C ₆ H ₅
	708.	OCF ₃	H	OCF ₃	C ₆ H ₅
	709.	OCF ₃	H	OCHF ₂	C ₆ H ₅
	710.	OCF ₃	H	Br	cyclopropyl
25	711.	OCF ₃	H	OCH ₃	cyclopropyl
23	712.	OCF ₃	H	Cl	cyclopropyl
	713.	OCF ₃	H	F	cyclopropyl
	714.	OCF ₃	H	CH ₃	cyclopropyl
	715.	OCF ₃	H	C ₂ H ₅	cyclopropyl
	716.	OCF ₃	H	CF ₃	cyclopropyl
30	717.	OCF ₃	H	OCF ₃	cyclopropyl
	718.	OCF ₃	H	OCHF ₂	cyclopropyl
	719.	OCF ₃	H	Br	CH ₂ -cyclopropyl
	720.	OCF ₃	H	OCH ₃	CH ₂ -cyclopropyl
	721.	OCF ₃	H	Cl	CH ₂ -cyclopropyl
35	722.	OCF ₃	H	F	CH ₂ -cyclopropyl
	723.	OCF ₃	H	CH ₃	CH ₂ -cyclopropyl
	724.	OCF ₃	H	C ₂ H ₅	CH ₂ -cyclopropyl
	725.	OCF ₃	H	CF ₃	CH ₂ -cyclopropyl
	726.	OCF ₃	H	OCF ₃	CH ₂ -cyclopropyl
40	727.	OCF ₃	H	OCHF ₂	CH ₂ -cyclopropyl cyclobutyl
	728.	OCF ₃	H	Br	
	729.	OCF ₃	H	OCH ₃	cyclobutyl
	730.	OCF ₃	H	Cl	cyclobutyl
	731.	OCF ₃	H	F CH-	cyclobutyl cyclobutyl
	732.	OCF ₃	H	CH ₃	cyclobutyl
45	733.	OCF ₃	H	CE-	cyclobutyl
	734.	OCF ₃	H	CF ₃	cyclobutyl
	735.	OCF3	H	OCHE-	cyclobutyl
	736.	OCF ₃	н	OCHF ₂	GAGTODUCAT

	No.	Rb	Rc	Rd	R ²
	737.	OCF ₃	H	Br	cyclopentyl
•	738.	OCF ₃	H	OCH ₃	cyclopentyl
	739.	OCF ₃	H	Cl	cyclopentyl
5	740.	OCF ₃	H	F	cyclopentyl
3	741.	OCF ₃	H	CH ₃	cyclopentyl
	742.	OCF ₃	H	C ₂ H ₅	cyclopentyl
	743.	OCF ₃	H	CF ₃	cyclopentyl
	744.	OCF ₃	H	OCF ₃	cyclopentyl
	745.	OCF ₃	H	OCHF ₂	cyclopentyl
10	746.	OCF ₃	H	Br	cyclohexyl
	747.	OCF ₃	H	OCH ₃	cyclohexyl
	748.	OCF ₃	H	Cl	cyclohexyl
	749.	OCF ₃	H	F	cyclohexyl
	750.	OCF ₃	Н	CH ₃	cyclohexyl
15	751.	OCF ₃	H	C ₂ H ₅	cyclohexyl
13	752.	OCF ₃	H	CF ₃	cyclohexyl
	753.	OCF ₃	H	OCF ₃	cyclohexyl
	754.	OCF ₃	H	OCHF ₂	cyclohexyl
,	755.	OCHF ₂	Br	Н	H
	756.	OCHF ₂	OCH ₃	H	Н
20	757.	OCHF ₂	Cl	Н	Н
	758.	OCHF ₂	F	H	Н
	759.	OCHF ₂	CH ₃	H	H· .
	760.	OCHF ₂	C ₂ H ₅	H	H
	761.	OCHF ₂	OCF ₃	H	Н
25	762.	OCHF ₂	CF ₃	H	H
23	763.	OCHF ₂	Br	H	CH ₃
	764.	OCHF ₂	OCH ₃	H	CH ₃
	765.	OCHF ₂	Cl	H	CH ₃
	766.	OCHF ₂	F	Н	CH ₃
	767.	OCHF ₂	CH ₃	H	CH ₃
30	768.	OCHF ₂	C ₂ H ₅	Н	CH ₃
	769.	OCHF ₂	OCF ₃	H	CH ₃
	770.	OCHF ₂	CF ₃	Н	CH ₃
	771.	OCHF ₂	Br	H	C ₂ H ₅
	772.	OCHF ₂	OCH ₃	H	C ₂ H ₅
35	773.	OCHF ₂	Cl	H	C ₂ H ₅
	774.	OCHF ₂	F	H	C ₂ H ₅
	775.	OCHF ₂	CH ₃	H	C ₂ H ₅
	776.	OCHF ₂	C ₂ H ₅	H	C ₂ H ₅
	777	OCHF ₂	OCF ₃	H	C ₂ H ₅
	778.	OCHF ₂	CF ₃	H	C ₂ H ₅
40	779.	OCHF ₂	Br	H	n-C ₃ H ₇
	780.	OCHF ₂	OCH ₃	H	n-C ₃ H ₇
	781.	OCHF ₂	Cl	H	n-C ₃ H ₇
	782.	OCHF ₂	F	H	n-C ₃ H ₇
	783.	OCHF ₂	CH ₃	Н	n-C ₃ H ₇
45	784.	OCHF ₂	C ₂ H ₅	H	n-C ₃ H ₇
13	785.	OCHF ₂	OCF ₃	H	n-C ₃ H ₇
	786.	OCHF ₂	CF ₃	H	n-C ₃ H ₇
	787.	OCHF ₂	Br	H	CH(CH ₃) ₂

	No.	Rb	Rc	Rd	R ²
	788.	OCHF ₂	OCH ₃	Н	CH(CH ₃) ₂
ľ	789.	OCHF ₂	Cl	H	CH(CH ₃) ₂
	790.	OCHF ₂	F	H	CH(CH ₃) ₂
5	791.	OCHF ₂	CH ₃	H	CH(CH ₃) ₂
5	792.	OCHF ₂	C ₂ H ₅	H	CH(CH ₃) ₂
	793.	OCHF ₂	OCF ₃	Н	CH(CH ₃) ₂
	794.	OCHF ₂	CF ₃	H	CH(CH ₃) ₂
	795.	OCHF ₂	Br	H	n-C ₄ H ₉
	796.	OCHF ₂	OCH ₃	H	n-C ₄ H ₉
10	797.	OCHF ₂	Cl	H	n-C ₄ H ₉
	798.	OCHF ₂	F	H	n-C ₄ H ₉
	799.	OCHF ₂	CH ₃	H	n-C ₄ H ₉
:	800.	OCHF ₂	C ₂ H ₅	H	n-C ₄ H ₉
	801.	OCHF ₂	OCF ₃	H	n-C ₄ H ₉
15	802.	OCHF ₂	CF ₃	H	n-C ₄ H ₉
13	803.	OCHF ₂	Br	H	C(CH ₃) ₃
	804.	OCHF ₂	OCH3	H	C(CH ₃) ₃
	805.	OCHF ₂	Cl	H	C(CH ₃) ₃
	806.	OCHF ₂	F	H	C(CH ₃) ₃
	807.	OCHF ₂	CH ₃	H	C(CH ₃) ₃
20	808.	OCHF ₂	C ₂ H ₅	H	C(CH ₃) ₃
	809.	OCHF ₂	OCF ₃	H	C(CH ₃) ₃
	810.	OCHF ₂	CF ₃	H	C(CH ₃) ₃
	811.	OCHF ₂	Br	H	C ₆ H ₅
	812.	OCHF ₂	OCH ₃	Н	C ₆ H ₅
25	813.	OCHF ₂	Cl	H	C ₆ H ₅
	814.	OCHF ₂	F	H	C ₆ H ₅
	815.	OCHF ₂	CH ₃	H	C ₆ H ₅
	816.	OCHF ₂	C ₂ H ₅	H	C ₆ H ₅
	817.	OCHF ₂	OCF ₃	H	C ₆ H ₅
	818.	OCHF ₂	CF ₃	H	C ₆ H ₅
30	819.	OCHF ₂	Br	H	cyclopropyl
	820.	OCHF ₂	OCH ₃	H	cyclopropyl
	821.	OCHF ₂	Cl	H	cyclopropyl
	822.	OCHF ₂	F	H	cyclopropyl
	823.	OCHF ₂	CH ₃	H	cyclopropyl
35	824.	OCHF ₂	C ₂ H ₅	H	cyclopropyl
	825.	OCHF ₂	OCF ₃	H	cyclopropyl
	826.	OCHF ₂	CF ₃	H	cyclopropyl
	827.	OCHF ₂	Br	H	CH ₂ -cyclopropyl
•	828.	OCHF ₂	OCH ₃	H	CH ₂ -cyclopropyl
40	829.	OCHF ₂	Cl	H	CH ₂ -cyclopropyl
	830.	OCHF ₂	F	H	CH ₂ -cyclopropyl
	831.	OCHF ₂	CH ₃	H	CH ₂ -cyclopropyl
	832.	OCHF ₂	C ₂ H ₅	H	CH ₂ -cyclopropyl
	833.	OCHF ₂	OCF ₃	H	CH ₂ -cyclopropyl CH ₂ -cyclopropyl
	834.	OCHF ₂	CF ₃	H	cyclobutyl
45	835.	OCHF ₂	Br	H	cyclobutyl
	836.	OCHF ₂	OCH ₃	H	cyclobutyl
	837.	OCHF ₂	L	H	cyclobutyl
	838.	OCHF ₂	F	H	CACTODUCAT

	No.	Rb	Rc	Rd	R ²
	839.	OCHF ₂	CH ₃	H	cyclobutyl
	840.	OCHF ₂	C ₂ H ₅	Н	cyclobutyl
	841.	OCHF ₂	OCF ₃	Н	cyclobutyl
_	842.	OCHF ₂	CF ₃	Н	cyclobutyl
5	843.	OCHF ₂	Br	Н	cyclopentyl
	844.	OCHF ₂	OCH ₃	H	cyclopentyl
	845.	OCHF ₂	Cl	Н	cyclopentyl
	846.	OCHF ₂	F	Н	cyclopentyl
	847.	OCHF ₂	CH ₃	Н	cyclopentyl
10	848.	OCHF ₂	C ₂ H ₅	Н	cyclopentyl
	849.	OCHF ₂	OCF ₃	Н	cyclopentyl
	850.	OCHF ₂	CF ₃	Н	cyclopentyl
	851.	OCHF ₂	Br	Н	cyclohexyl
	852.	OCHF ₂	OCH ₃	н	cyclohexyl
	853.	OCHF ₂	Cl	H	cyclohexyl
15	854.	OCHF ₂	F	Н	cyclohexyl
	855.	OCHF ₂	CH ₃	Н	cyclohexyl
	856.	OCHF ₂	C ₂ H ₅	Н	cyclohexyl
	857.	OCHF ₂	OCF ₃	Н	cyclohexyl
	858.	OCHF ₂	CF ₃	Н	cyclohexyl
20	859.	OCHF ₂	H	Br	H·
	860.	OCHF ₂	Н	OCH ₃	H
	861.	OCHF ₂	Н	Cl	Н
	862.	OCHF ₂	H	F	Н
	863.	OCHF ₂	H	CH ₃	H
25	864.	OCHF ₂	H	C ₂ H ₅	H
25	865.	OCHF ₂	H	OCF ₃	H
	866.	OCHF ₂	Н	CF ₃	H
	867.	OCHF ₂	Н	Br	CH ₃
	868.	OCHF ₂	H	OCH ₃	CH ₃
	869.	OCHF ₂	H	Cl	CH ₃
30	870.	OCHF ₂	H	F	CH ₃
	871.	OCHF ₂	H	CH ₃	CH ₃
	872.	OCHF ₂	H	C ₂ H ₅	CH ₃
	873.	OCHF ₂	H	OCF ₃	CH ₃
	874.	OCHF ₂	H	CF ₃	CH ₃
35	875.	OCHF ₂	H	Br	C ₂ H ₅
	876.	OCHF ₂	H	OCH ₃	C ₂ H ₅
	877.	OCHF ₂	H	Cl	C ₂ H ₅
	878.	OCHF ₂	H	F	C ₂ H ₅
40	879.	OCHF ₂	H	CH ₃	C ₂ H ₅
	880.	OCHF ₂	H	C ₂ H ₅	C ₂ H ₅
	881.	OCHF ₂	H	OCF ₃	C ₂ H ₅
	882.	OCHF ₂	H	CF ₃	C ₂ H ₅
	883.	OCHF ₂	H	Br	n-C ₃ H ₇
	884.	OCHF ₂	H	OCH ₃	n-C ₃ H ₇
	885.	OCHF ₂	H	C1	n-C ₃ H ₇
45	886.	OCHF ₂	H	F	n-C ₃ H ₇
	887.	OCHF ₂	H	CH ₃	n-C ₃ H ₇
	888.	OCHF ₂	H	C ₂ H ₅	n-C ₃ H ₇
	889.	OCHF ₂	H	OCF ₃	n-C ₃ H ₇

			· ·	3 /	
	No.	Rb	R ^c	Rd	R ²
	890.	OCHF ₂	H	CF ₃	n-C ₃ H ₇
	891.	OCHF ₂	H	Br	CH(CH ₃) ₂
	892.	OCHF ₂	H	OCH ₃	CH(CH ₃) ₂
5	893.	OCHF ₂	H	Cl	CH(CH ₃) ₂
9	894.	OCHF ₂	H	F	CH(CH ₃) ₂
	895.	OCHF ₂	H	CH ₃	CH(CH ₃) ₂
	896.	OCHF ₂	H	C ₂ H ₅	CH(CH ₃) ₂
:	897.	OCHF ₂	H	OCF ₃	CH(CH ₃) ₂
	898.	OCHF ₂	H	CF ₃	CH(CH ₃) ₂
10	899.	OCHF ₂	H	Br	n-C ₄ H ₉
l	900.	OCHF ₂	H	OCH ₃	n-C ₄ H ₉
	901.	OCHF ₂	H	Cl	n-C ₄ H ₉
	902.	OCHF ₂	Н	F	n-C ₄ H ₉
	903.	OCHF ₂	Н	CH ₃	n-C ₄ H ₉
	904.	OCHF ₂	H	C ₂ H ₅	n-C ₄ H ₉
15	905.	OCHF ₂	H	OCF ₃	n-C ₄ H ₉
	906.	OCHF ₂	H	CF ₃	n-C ₄ H ₉
	907.	OCHF ₂	H	Br	C(CH ₃) ₃
	908.	OCHF ₂	H	OCH ₃	C(CH ₃) ₃
	909.	OCHF ₂	H ·	Cl	C(CH ₃) ₃
20	910.	OCHF ₂	Н	F	C(CH ₃) ₃
	911.	OCHF ₂	Н	CH ₃	C(CH ₃) ₃
	912.	OCHF ₂	Н	C ₂ H ₅	C(CH ₃) ₃
	913.	OCHF ₂	H	OCF ₃	C(CH ₃) ₃
	914.	OCHF ₂	H	CF ₃	C(CH ₃) ₃
	915.	OCHF ₂	H	Br	C ₆ H ₅
25	916.	OCHF ₂	Н	OCH ₃	C ₆ H ₅
	917.	OCHF ₂	H	C1	C ₆ H ₅
	918.	OCHF ₂	H	F	C ₆ H ₅
	919.	OCHF ₂	Н	CH ₃	C ₆ H ₅
	920.	OCHF ₂	H	C ₂ H ₅	C ₆ H ₅
30	921.	OCHF ₂	H	OCF ₃	C ₆ H ₅
	922.	OCHF ₂	Н	CF ₃	C ₆ H ₅
	923.	OCHF ₂	Н	Br	cyclopropyl
	924.	OCHF ₂	H	OCH ₃	cyclopropyl
	925.	OCHF ₂	H	Cl	cyclopropyl
	926.	OCHF ₂	H	F .	cyclopropyl
35	927.	OCHF ₂	H	CH ₃	cyclopropyl
	928.	OCHF ₂	H	C ₂ H ₅	cyclopropyl
	929.	OCHF ₂	Н	OCF ₃	cyclopropyl
	930.	OCHF ₂	H	CF ₃	cyclopropyl
	931.	OCHF ₂	H	Br	CH ₂ -cyclopropyl
40		OCHF ₂		OCH ₃	CH ₂ -cyclopropyl
	932. 933.		H	Cl	CH ₂ -cyclopropyl
		OCHF ₂	H		
	934.	OCHF ₂	H	F	CH ₂ -cyclopropyl
	935.	OCHF ₂	H	CH ₃	CH ₂ -cyclopropyl
	936.	OCHF ₂	H	C ₂ H ₅	CH ₂ -cyclopropyl
45	937.	OCHF ₂	H	OCF ₃	CH_cyclopropyl
	938.	OCHF ₂	H	CF ₃	CH ₂ -cyclopropyl
	939.	OCHF ₂	H	Br	cyclobutyl
	940.	OCHF ₂	H	OCH ₃	cyclobutyl

	No.	R ^b	Rc	Rd	R ²
	941.	OCHF ₂	H	Cl	cyclobutyl
	942.	OCHF ₂	H	F	cyclobutyl
	943.	OCHF ₂	H	CH ₃	cyclobutyl
_	944.	OCHF ₂	H	C ₂ H ₅	cyclobutyl
5	945.	OCHF ₂	H	OCF ₃	cyclobutyl
	946.	OCHF ₂	Н	CF ₃	cyclobutyl
	947.	OCHF ₂	Н	Br	cyclopentyl
	948.	OCHF ₂	H	OCH ₃	cyclopentyl
	949.	OCHF ₂	H	Cl	cyclopentyl
10	950.	OCHF ₂	H	F	cyclopentyl
	951.	OCHF ₂	H	CH ₃	cyclopentyl
	952.	OCHF ₂	H	C ₂ H ₅	cyclopentyl
	953.	OCHF ₂	H	OCF ₃	cyclopentyl
	953.		H		cyclopentyl
		OCHF ₂		CF ₃	cyclohexyl
15	955.	OCHF ₂	H	Br OCH ₃	cyclohexyl
	956.	OCHF ₂	H		cyclohexyl
	957.	OCHF ₂	H	Cl F	
	958.	OCHF ₂	H		cyclohexyl
	959.	OCHF ₂	Н	CH ₃	cyclohexyl
20 :	960.	OCHF ₂	H	C ₂ H ₅	cyclohexyl cyclohexyl
20 :	961.	OCHF ₂	H	OCF ₃	
	962.	OCHF ₂	H	CF ₃	cyclohexyl
•	963.	OCH ₃	Br	H	H
	964.	OCH ₃	OCH ₃	H	H
	965.	OCH ₃	Cl	H	H
25	966.	OCH ₃	F	H	H
•	967.	OCH ₃	CH ₃	H	H
	968.	OCH ₃	C ₂ H ₅	H	H
	969.	OCH ₃	CF ₃	H	H
	970.	OCH ₃	OCF3	H	H
30	971.	OCH ₃	OCHF ₂	H	H CH ₃
30	972.	OCH ₃	Br	H	
	973.	OCH ₃	OCH ₃	H	CH ₃
:	974.	OCH ₃			CH ₃
	975.	OCH ₃	F	H	CH ₃
•	976.	OCH ₃	CH ₃	Н	CH ₃
35 ,	977.	OCH ₃	C ₂ H ₅		
	978.	OCH ₃	CF ₃	H	CH ₃
	979.	OCH ₃	OCF3	H .	CH ₃
	980.	OCH ₃	OCHF ₂	H	C-H-
	981.	OCH ₃	Br	H	C ₂ H ₅
40	982.	OCH ₃	OCH ₃	H	C ₂ H ₅
	983.	OCH ₃			C ₂ H ₅
	984.	OCH ₃	F	H	C ₂ H ₅
	985.	OCH ₃	CH ₃	H	C ₂ H ₅
	986.	OCH ₃	C ₂ H ₅	H	C ₂ H ₅
	987.	OCH ₃	CF ₃	H	C ₂ H ₅
45	988.	OCH ₃	OCHE-	H	C ₂ H ₅
	989.	OCH ₃	OCHF ₂	H	C ₂ H ₅
	990.	OCH ₃	Br	H	n-C ₃ H ₇
	991.	OCH ₃	OCH ₃	H	n-C ₃ H ₇

	No.	Rb	R ^c	Rd	R ²
	992.	OCH ₃	Cl	H	n-C ₃ H ₇
	993.	OCH ₃	F	H	n-C ₃ H ₇
	994.	OCH ₃	CH ₃	H	n-C ₃ H ₇
5	995.	OCH ₃	C ₂ H ₅	H	n-C ₃ H ₇
	996.	OCH ₃	CF ₃	H	n-C ₃ H ₇
	997.	OCH ₃	OCF ₃	H	n-C ₃ H ₇
	998.	OCH ₃	OCHF ₂	H	n-C ₃ H ₇
	999.	OCH ₃	Br	H	CH(CH ₃) ₂
	1000.	OCH ₃	OCH ₃	H	CH(CH ₃) ₂
10	1001.	OCH ₃	Cl	H	CH(CH ₃) ₂
	1002.	OCH ₃	F	H	CH(CH ₃) ₂
	1003.	OCH ₃	CH ₃	H	CH(CH ₃) ₂
	1004.	OCH ₃	C ₂ H ₅	H	CH(CH ₃) ₂
	1005.	OCH ₃	CF ₃	H	CH(CH ₃) ₂
15	1006.	OCH ₃	OCF ₃	Н	CH(CH ₃) ₂
	1007.	ÓСН ₃	OCHF ₂	H	CH(CH ₃) ₂
	1008.	OCH ₃	Br	H	n-C ₄ H ₉
	1009.	OCH ₃	OCH ₃	Н	n-C ₄ H ₉
	1010.	OCH ₃	Cl	H	n-C ₄ H ₉
	1011.	QCH ₃	F	H	n-C ₄ H ₉
20	1012.	OCH ₃	CH ₃	H	n-C ₄ H ₉
	1013.	QCH ₃	C ₂ H ₅	H	n-C ₄ H ₉
	1014.	OCH ₃	CF ₃	H	n-C ₄ H ₉
	1015.	OCH ₃	OCF ₃	H	n-C ₄ H ₉
	1016.	OCH ₃	OCHF ₂	H	n-C ₄ H ₉
25	1017.	OCH ₃	Br	H	C(CH ₃) ₃
	1018.	OCH ₃	OCH ₃	Н	C(CH ₃) ₃
	1019.	OCH ₃	Cl	H	C(CH ₃) ₃
	1020.	OCH ₃	F	H	C(CH ₃) ₃
	1021.	OCH ₃	CH ₃	H	C(CH ₃) ₃
	1022.	OCH ₃	C ₂ H ₅	H	C(CH ₃) ₃
30	1023.	OCH ₃	CF ₃	H	C(CH ₃) ₃
	1024.	OCH ₃	OCF ₃	H	C(CH ₃) ₃
		OCH ₃	OCHF ₂	H	C(CH ₃) ₃
	1026.	OCH ₃	Br	H	C ₆ H ₅
	1027		OCH ₃	H	C ₆ H ₅
35	1028.	OCH ₃	Cl _	H	C ₆ H ₅
	1029.	OCH ₃	F	H	C ₆ H ₅
	1030.	OCH ₃	CH ₃	H	C ₆ H ₅
	1031.	OCH ₃	C ₂ H ₅	H	C ₆ H ₅
•	1032.	OCH ₃	CF ₃	H	C ₆ H ₅
40	1033.	OCH ₃	OCF ₃	H	C ₆ H ₅
	1034.	OCH ₃	OCHF ₂	H	C ₆ H ₅
	1035.	OCH ₃	Br	H	cyclopropyl
	1036.	OCH ₃	OCH ₃	H	cyclopropyl
	1037.	OCH ₃	Cl	H	cyclopropyl
	1038.	OCH ₃	F	H	cyclopropyl
45	1039.	OCH ₃	CH ₃	H	cyclopropyl
	1040.	OCH ₃	C ₂ H ₅	H	cyclopropyl
	1041.	OCH ₃	CF ₃	H	cyclopropyl
	1042.	OCH ₃	OCF ₃	H	cyclopropyl

	No.	Rb	Rc	Rd	R ²
	1043.	OCH ₃	OCHF ₂	H	cyclopropyl
	1044.	OCH ₃	Br	H	CH ₂ -cyclopropyl
	1045.	OCH ₃	OCH ₃	H	CH ₂ -cyclopropyl
_	1046.	OCH ₃	Cl	H	CH ₂ -cyclopropyl
5	1047.	OCH ₃	F	H	CH ₂ -cyclopropyl
	1047.	OCH ₃	CH ₃	H	CH ₂ -cyclopropyl
	1049.	OCH ₃	C ₂ H ₅	H	CH ₂ -cyclopropyl
	1050.	OCH ₃		H	CH ₂ -cyclopropyl
	1050.		CF ₃	H	CH ₂ -cyclopropyl
10		OCH ₃	OCF3		CH ₂ -cyclopropyl
10	1052.	OCH ₃	OCHF ₂	H	
	1053.	OCH ₃	Br	H	cyclobutyl
	1054.	OCH ₃	OCH ₃	H	cyclobutyl
	1055.	OCH ₃	Cl	H	cyclobutyl
	1056.	OCH ₃	F	H	cyclobutyl
15	1057.	OCH ₃	CH ₃	H	cyclobutyl
	1058.	OCH ₃	C ₂ H ₅	H	cyclobutyl
	1059.	OCH ₃	CF ₃	H	cyclobutyl
	1060.	OCH ₃	OCF ₃	H	cyclobutyl
	1061.	OCH ₃	OCHF ₂	Н	cyclobutyl
	1062.	OCH ₃	Br	H	cyclopentyl
20	1063.	OCH ₃	OCH ₃	H	cyclopentyl
	1064.	OCH ₃	Cl	Н	cyclopentyl
	1065.	OCH ₃	F	H	cyclopentyl
	1066.	OCH ₃	CH ₃	H	cyclopentyl
	1067.	OCH ₃	C ₂ H ₅	Н	cyclopentyl
25	1068.	OCH ₃	CF ₃	H	cyclopentyl
	1069.	OCH ₃	OCF ₃	Н	cyclopentyl
	1070.	OCH ₃	OCHF ₂	H	cyclopentyl
	1071.	OCH ₃	Br	H	cyclohexyl
	1072.	OCH ₃	OCH ₃	H	cyclohexyl
	1073.	OCH ₃	Cl	H	cyclohexyl
30	1074.	OCH ₃	F	H	cyclohexyl
	1075.	OCH ₃	CH ₃	H	cyclohexyl
	1076.	OCH ₃	C ₂ H ₅	H	cyclohexyl
	1077.	OCH ₃	CF ₃	H	cyclohexyl
	1078.	OCH ₃	OCF ₃	H	cyclohexyl
35	1079.	OCH ₃	OCHF ₂	H	cyclohexyl
	1080.	OCH ₃	H	Br	Н
	1081.	OCH ₃	H	OCH ₃	H
	1082.	OCH ₃	Н	Cl	H
	1083.	OCH ₃	H	F	H
40	1084.	OCH ₃	Н	CH ₃	Н
	1085.	OCH ₃	H	C ₂ H ₅	H
	1086.	OCH ₃	H	CF ₃	H
	1087.	OCH ₃	H	OCF ₃	H
	1088.	OCH ₃	Н	OCHF ₂	Н
	1089.	OCH ₃	H	Br	CH ₃
45	1090.	OCH ₃	Н	OCH ₃	CH ₃
43	1091.	OCH ₃	Н	Cl	CH ₃
	1092.	OCH ₃	Н	F	CH ₃
	1093.	OCH ₃	Н	CH ₃	CH ₃

	No.	Rb	Rc	Rd	R ²
	1094.	OCH ₃	H	C ₂ H ₅	CH ₃
	1095.	OCH ₃	H	CF ₃	CH ₃
	1096.	OCH ₃	H	OCF ₃	CH ₃
_	1097.	OCH ₃	H	OCHF ₂	СH ₃
5	1098.	OCH ₃	H	Br	C ₂ H ₅
-	1099.	OCH ₃	Н	OCH ₃	C ₂ H ₅
	1100.	OCH ₃	Н	Cl	C ₂ H ₅
	1101.	OCH ₃	Н	F	C ₂ H ₅
	1102.	OCH ₃	H	CH ₃	C ₂ H ₅
10	1103.	OCH ₃	Н	C ₂ H ₅	C ₂ H ₅
	1104.	OCH ₃	Н	CF ₃	C ₂ H ₅
	1105.	OCH ₃	H	OCF ₃	C ₂ H ₅
	1106.	OCH ₃	Н	OCHF ₂	C ₂ H ₅
	1107.	OCH ₃	Н	Br	.n-C ₃ H ₇
	1108.	OCH ₃	Н	OCH ₃	n-C ₃ H ₇
15	1109.	OCH ₃	H ·	Cl	n-C ₃ H ₇
	1110.	OCH ₃	Н	F	n-C ₃ H ₇
•	1111.	OCH ₃	Н	CH ₃	n-C ₃ H ₇
	1112.	OCH ₃	H	C ₂ H ₅	n-C ₃ H ₇
*	1113.	OCH ₃	н -	CF ₃	n-C ₃ H ₇
20	1114.	OCH ₃	н :	OCF ₃	n-C ₃ H ₇
	1115.	OCH ₃	H .	OCHF ₂	n-C ₃ H ₇
	1116.	OCH ₃	H	Br	CH(CH ₃) ₂
	1117.	OCH ₃	H	OCH ₃	CH(CH ₃) ₂
	1118.	OCH ₃	H	Cl	CH(CH ₃) ₂
25	1119.	OCH ₃	Н .	F	CH(CH ₃) ₂
	1120.	OCH ₃	H ·	CH ₃	CH(CH ₃) ₂
	1121.	OCH ₃	H	C ₂ H ₅	CH(CH ₃) ₂
	1122.	OCH ₃	H	CF ₃	CH(CH ₃) ₂
	1123.	OCH ₃	H	OCF ₃	CH(CH ₃) ₂
20	1124.	OCH ₃	H	OCHF ₂	CH(CH ₃) ₂
30	1125.	OCH ₃	H	Br	n-C ₄ H ₉
	1126.	OCH ₃	H	OCH ₃	n-C ₄ H ₉
	1127.	OCH ₃	H :	Cl	n-C ₄ H ₉
	1128.	OCH ₃	H	F	n-C ₄ H ₉
	1129	OCH ₃	H	CH ₃	n-C ₄ H ₉
35	1130.	OCH ₃	H	CE-	n-C ₄ H ₉
	1131. 1132.	OCH ₃	H	CF ₃	n-C ₄ H ₉
	1133.	OCH ₃	H	OCHF ₂	n-C ₄ H ₉
	1134.	OCH ₃	H	Br	C(CH ₃) ₃
40	1135.	OCH ₃	H	OCH ₃	C(CH ₃) ₃
	1136.	OCH ₃	H	Cl	C(CH ₃) ₃
	1137.	OCH ₃	H	F	C(CH ₃) ₃
	1138.	OCH ₃	H	CH ₃	C(CH ₃) ₃
	1139.	OCH ₃	Н	C ₂ H ₅	C(CH ₃) ₃
	1140.	OCH ₃	H	CF ₃	C(CH ₃) ₃
	1141.	OCH ₃	H	OCF ₃	C(CH ₃) ₃
45	1142.	OCH ₃	H	OCHF ₂	C(CH ₃) ₃
	1143.	OCH ₃	H	Br	C ₆ H ₅
	1144.	OCH ₃	Н	OCH ₃	C ₆ H ₅
		1 2 2 3	1		

	No.	Rb	Rc	Rd	R ²
	1145.	OCH ₃	H	Cl	C ₆ H ₅
	1146.	OCH ₃	H	F	C ₆ H ₅
	1147.	OCH ₃	H	CH ₃	C ₆ H ₅
5	1148.	OCH ₃	H	C ₂ H ₅	C ₆ H ₅
	1149.	OCH ₃	H	CF ₃	C ₆ H ₅
,	1150.	OCH ₃	Н	OCF ₃	C ₆ H ₅
	1151.	OCH ₃	H	OCHF ₂	C ₆ H ₅
	1152.	OCH ₃	H	Br	cyclopropyl
	1153.	OCH ₃	H	OCH ₃	cyclopropyl
10	1154.	OCH ₃	H	Cl	cyclopropyl
	1155.	OCH ₃	H	F	cyclopropyl
	1156.	OCH ₃	H	CH ₃	cyclopropyl
	1157.	OCH ₃	H	C ₂ H ₅	cyclopropyl
	1158.	OCH ₃	H	CF ₃	cyclopropyl
15	1159.	OCH ₃	H	OCF ₃	cyclopropyl
15	1160.	OCH ₃	H	OCHF ₂	cyclopropyl
	1161.	OCH ₃	H	Br	CH2-cyclopropyl
	1162.	OCH ₃	H	OCH ₃	CH2-cyclopropyl
	1163.	OCH ₃	H	Cl	CH2-cyclopropyl
	1164.	OCH ₃	H	F -	CH2-cyclopropyl
20	1165.	OCH ₃	H	CH ₃	CH2-cyclopropyl
	1166.	OCH ₃	H	C ₂ H ₅	CH2-cyclopropyl
	1167.	OCH ₃	H	CF ₃	CH2-cyclopropyl
	1168.	OCH ₃	H	OCF ₃	CH2-cyclopropyl
	1169.	OCH ₃	H	OCHF ₂	CH ₂ -cyclopropyl
25	1170.	OCH ₃	H	Br	cyclobutyl
	1171.	OCH ₃	H	OCH ₃	cyclobutyl
	1172.	OCH ₃	Н	Cl	cyclobutyl
	1173.	OCH ₃	H	F	cyclobutyl
	1174.	OCH ₃	H	CH ₃	cyclobutyl
	1175.	OCH ₃	H	C ₂ H ₅	cyclobutyl
30	1176.	OCH ₃	H	CF ₃	cyclobutyl
	1177.	OCH ₃	H	OCF ₃	cyclobutyl
	1178.	OCH ₃	H	OCHF ₂	cyclobutyl
	1179.	OCH ₃	H	Br	cyclopentyl
	1180.	OCH3	H	OCH ₃	cyclopentyl
35	1181.	OCH ₃	H	Cl	cyclopentyl
,	1182.	OCH ₃	H	F	cyclopentyl
	1183.	OCH ₃	H	CH ₃	cyclopentyl
•	1184.	OCH ₃	H	C ₂ H ₅	cyclopentyl
40	1185.	OCH ₃	H	CF ₃	cyclopentyl
	1186.	OCH ₃	H	OCF ₃	cyclopentyl
	1187.	OCH ₃	H	OCHF ₂	cyclopentyl cyclohexyl
	1188.	OCH ₃	H	Br	
	1189.	OCH ₃	H	OCH ₃	cyclohexyl cyclohexyl
	1190.	OCH ₃	H	F	cyclohexyl
	1191.	OCH ₃	<u> </u>		cyclohexyl
45	1192. 1193.	OCH ₃	H	CoH-	cyclohexyl
	1193.	OCH ₃		C ₂ H ₅	cyclohexyl
	1194.	OCH ₃	H	CF 3	CACTOHEVAT

	No.	Rb	Rc	Rd	R ²
	1195.	OCH ₃	H	OCF ₃	cyclohexyl
	1196.	OCH ₃	H	OCHF ₂	cyclohexyl
	1197.	Cl	Cl	H	Н
_	1198.	Cl	F	H	Н
5	1199.	Cl	CH ₃	H	Н
	1200.	Cl	OCH ₃	H	H
	1201.	Cl	Br	H	н
	1202.	Cl	CF ₃	H	H
	1203.	Cl	OCF ₃	H	H
10	1204.	Cl	Cl	H	CH ₃
	1205.	Cl	F	H	CH ₃
	1206.	Cl	CH ₃	H	CH ₃
	1207.	Cl	OCH ₃	H	CH ₃
:	1208.	Cl.	Br .	H	CH ₃
15	1209.	Cl	CF ₃	H	CH ₃
15	1210.	Cl	OCF ₃	H	CH ₃
	1211.	Cl	Cl	H	C ₂ H ₅
	1212.	Cl	F.	Н	C ₂ H ₅
	1213.	Cl	CH ₃	H	C ₂ H ₅ .
	1214.	Cl	OCH ₃	H	C ₂ H ₅
20	1215.	Cl	Br	H	C ₂ H ₅
	1216.	Cl	CF ₃	H	C ₂ H ₅ -
	1217.	Cl	OCF ₃	H	C ₂ H ₅
	1218.	Cl	Cl	H	n-C ₃ H ₇
	1219.	Cl	F	H	n-C ₃ H ₇
25	1220.	Cl	CH ₃	H	n-C ₃ H ₇ .
	1221.	Cl	OCH ₃	H	n-C ₃ H ₇
	1222.	Cl	Br	H	n-C ₃ H ₇
	1223.	Cl	CF ₃	H	n-C ₃ H ₇
	1224.	Cl	OCF ₃	H	n-C ₃ H ₇
20	1225.	Cl	Cl	H	CH(CH ₃) ₂
30	1226.	Cl	F	H	CH(CH ₃) ₂
	1227.	Cl	CH ₃	H	CH(CH ₃) ₂
	1228.	C1	OCH ₃	Н	CH(CH ₃) ₂
	1229.	Cl	Br	H	CH(CH ₃) ₂
	1230.	Cl	CF ₃	H .	CH(CH ₃) ₂ CH(CH ₃) ₂
35	1231.	Cl	OCF ₃	H	n-C ₄ H ₉
	1233.	Cl	F	H	n-C ₄ H ₉
	1234.	Cl	CH ₃	Н	n-C ₄ H ₉
	1235.	Cl	OCH ₃	H	n-C ₄ H ₉
	1236.	Cl	Br	H	n-C ₄ H ₉
40	1237.	Cl	CF ₃	H	n-C ₄ H ₉
	1238.	Cl	OCF ₃	H	n-C ₄ H ₉
	1239.	Cl	Cl	H	C(CH ₃) ₃
	1240.	Cl	F	H	C(CH ₃) ₃
	1241.	Cl	CH ₃	H	C(CH ₃) ₃
4 -	1242.	Cl	OCH ₃	Н	C(CH ₃) ₃
45	1243.	Cl	Br	H	C(CH ₃) ₃
	1244.	Cl	CF ₃	н	C(CH ₃) ₃
	1245.	Cl	OCF ₃	H	C(CH ₃) ₃
			· · · · · · · · · · · · · · · · · · · 		

	No.	Rb	Rc	Rd	R ²
	1246.	Cl	Cl	H	C ₆ H ₅
	1247.	Cl	F	H	С ₆ Н ₅
	1248.	Cl	CH ₃	Н	C ₆ H ₅
5	1249.	Cl	OCH ₃	Н	C ₆ H ₅
Э,	1250.	Cl	Br	H	C ₆ H ₅
	1251.	Cl	CF ₃	H	C ₆ H ₅
	1252.	Cl	OCF ₃	H	C ₆ H ₅
	1253.	Cl	Cl	H	cyclopropyl
	1254.	Cl	F	H	cyclopropyl
10	1255.	Cl	CH ₃	H	cyclopropyl
	1256.	Cl	OCH ₃	H	cyclopropyl
	1257.	Cl	Br	H	cyclopropyl
	1258.	Cl	CF ₃	H	cyclopropyl
	1259.	Cl	OCF ₃	Н	cyclopropyl
15	1260.	Cl	Cl	Н	CH2-cyclopropyl
13	1261.	Cl	F	Н	CH2-cyclopropyl
	1262.	Cl	CH ₃	H	CH2-cyclopropyl
	1263.	Cl	OCH ₃	H	CH2-cyclopropyl
	1264.	Cl	Br	H	CH ₂ -cyclopropyl
	1265.	Cl	CF ₃	H	CH2-cyclopropyl
20	1266.	Cl	OCF ₃	H	CH ₂ -cyclopropyl
	1267.	Cl	Cl	H	cyclobutyl
•	1268.	Cl	F	H	cyclobutyl
	1269.	Cl	CH ₃	H	cyclobutyl
	1270.	Cl	OCH ₃	H	cyclobutyl -
25	1271.	Cl	Br	H	cyclobutyl
	1272.	Cl	CF ₃	H	cyclobutyl
	1273.	Cl	OCF ₃	H	cyclobutyl
	1274.	Cl	Cl	H	cyclopentyl
	1275.	Cl	F	H	cyclopentyl
20	1276.	Cl	CH ₃	H	cyclopentyl
30	1277.	Cl	OCH ₃	H	cyclopentyl
	1278.	Cl	Br	H	cyclopentyl
	1279.	Cl	CF ₃	H	cyclopentyl
	1280.	Cl	OCF ₃	H ·	cyclopentyl cyclohexyl
	1281.	Cl	F	H	cyclohexyl
35	1282. 1283.	Cl	CH ₃	Н	cyclohexyl
	1284.	Cl	OCH ₃	H	cyclohexyl
٠.	1285.	Cl	Br	H	cyclohexyl
	1286.	Cl	CF ₃	H	cyclohexyl
	1287.	Cl	OCF ₃	H	cyclohexyl
40	1288.	Cl	H	Cl	Н
	1289.	Cl	H	F	H
	1290.	Cl	H	CH ₃	H
	1291.	Cl	H	OCH ₃	H
	1292.	Cl	H	Br	H
	1293.	Cl	H	CF ₃	H
45	1294.	Cl	Н	OCF ₃	H
	1295.	Cl	H	C1	CH ₃
	1296.	Cl	Н	F	CH ₃
		J	<u> </u>	1	

	No.	Rb	Rc	Rd	R ²
	1297.	Cl	H	CH ₃	CH ₃
	1298.	Cl	H	OCH ₃	CH ₃
	1299.	Cl	Н	Br	CH ₃
_	1300.	Cl	H	CF ₃	CH ₃
5	1301.	Cl	H	OCF ₃	CH ₃
	1302.	Cl	H	Cl	C ₂ H ₅
-	1303.	Cl	H	F	C ₂ H ₅
	1304.	Cl	H	CH ₃	C ₂ H ₅
	1305.	Cl	H	OCH ₃	C ₂ H ₅
10	1306.	Cl	H	Br	C ₂ H ₅
	1307.	Cl	H	CF ₃	C ₂ H ₅
	1308.	Cl	H	OCF ₃	C ₂ H ₅
	1309.	Cl	H	Cl	n-C ₃ H ₇
	1310.	Cl	H	F	n-C ₃ H ₇
15	1311.	Cl	H	CH ₃	n-C ₃ H ₇
13	1312.	Cl	H	OCH ₃	n-C ₃ H ₇
	1313.	Cl	Н	Br	n-C ₃ H ₇
	1314.	Cl	H	CF ₃	n-C ₃ H ₇
	1315.	Cl	H	OCF ₃	n-C ₃ H ₇
	1316.	Cl	H	Cl	CH(CH ₃) ₂
20	1317.	Cl	H	F	CH(CH ₃) ₂
•	1318.	Cl	H	CH ₃	CH(CH ₃) ₂
	1319.	Cl	H	OCH ₃	CH(CH ₃) ₂
	1320.	Cl	H	Br	CH(CH ₃) ₂
	1321.	Cl	H	CF ₃	CH(CH ₃) ₂
25	1322.	Cl	H	OCF ₃	CH(CH ₃) ₂
	1323.	Cl	H	Cl	n-C ₄ H ₉
	1324.	Cl	Н	F	n-C ₄ H ₉
	1325.	Cl	H	CH ₃	n-C ₄ H ₉
	1326.	Cl	H	OCH ₃	n-C ₄ H ₉
	1327.	Cl	H	Br	n-C ₄ H ₉
30	1328.	Cl	H	CF ₃	n-C ₄ H ₉
	1329.	Cl	H	OCF ₃	n-C ₄ H ₉
	1330.	Cl	Н	Cl	C(CH ₃) ₃
	1331.	Cl	H	F	C(CH ₃) ₃
	1332.	Cl	H	CH ₃	C(CH ₃) ₃
35	1333.	Cl	H	OCH ₃	C(CH ₃) ₃
	1334.	Cl	H	Br	C(CH ₃) ₃
	1335.	Cl	H	CF ₃	C(CH ₃) ₃
	1336.	Cl	H	OCF ₃	C(CH ₃) ₃
	1337.	C1.	H	Cl	C ₆ H ₅
40	1338.	Cl	H	F	C ₆ H ₅
40	1339.	Cl	H	CH ₃	C ₆ H ₅
	1340.	Cl	H	OCH ₃	C ₆ H ₅
	1341.	Cl	H	Br	C ₆ H ₅
	1342.	Cl	H	CF ₃	C ₆ H ₅
	1343.	Cl	H	OCF ₃	C ₆ H ₅
45	1344.	Cl	H	Cl	cyclopropyl
	1345.	Cl	H	F	cyclopropyl
	1346.	Cl	H	CH ₃	cyclopropyl
	1347.	Cl	H	OCH ₃	cyclopropyl

	No.	Rb	Rc	Rd	R ²
	1348.	Cl	H	Br	cyclopropyl
	1349.	Cl	н	CF ₃	cyclopropyl
	1350.	Cl	Н	OCF ₃	cyclopropyl
_	1351.	Cl	H	Cl	CH ₂ -cyclopropyl
5	1352.	Cl	H	F	CH ₂ -cyclopropyl
	1353.	Cl	H	CH ₃	CH2-cyclopropyl
	1354.	Cl	Н	OCH ₃	CH ₂ -cyclopropyl
	1355.	Cl	Н	Br	CH2-cyclopropyl
	1356.	Cl	Н	CF ₃	CH2-cyclopropyl
10	1357.	Cl	Н	OCF ₃	CH ₂ -cyclopropyl
	1358.	Cl	Н	Cl	cyclobutyl
	1359.	Cl	Н	F	cyclobutyl
	1360.	Cl	Н	CH ₃	cyclobutyl
	1361.	Cl	Н	OCH ₃	cyclobutyl
1 -	1362.	Cl	H	Br	cyclobutyl
15	1363.	Cl	Н	CF ₃	cyclobutyl
	1364.	Cl	Н	OCF ₃	cyclobutyl
	1365.	Cl	Н	Cl	cyclopentyl
	1366.	Cl	H	F	cyclopentyl
	1367.	Cl	H	CH ₃	cyclopentyl
20	1368.	Cl	H	OCH ₃	cyclopentyl
	1369.	Cl	H	Br	cyclopentyl
	1370.	Cl	H	CF ₃	cyclopentyl
	1371.	Cl	H	OCF ₃	cyclopentyl
	1372.	Cl	H	Cl	cyclohexyl
25	1373.	Cl	H	F	cyclohexyl
2,5	1374.	Cl	H	CH ₃	cyclohexyl
	1375.	Cl	H	OCH ₃	cyclohexyl
	1376.	Cl	H	Br	cyclohexyl
	1377.	Cl	Н .	CF ₃	cyclohexyl
	1378.	Cl	H	OCF ₃	cyclohexyl
30	1379.	Br	Cl	H	H
	1380.	Br	F	H ·	Н
	1381.	Br	CH ₃	Н .	H
	1382.	Br	OCH ₃	H	H
	1383.	Br	Br	H	H
35	1384.	Br	CF ₃	H	H
	1385.	Br	OCF ₃	H	Н
	1386.	Br.	Cl	H	CH ₃
	1387.	Br	F	H	CH ₃
40	1388.	Br	CH ₃	H	CH ₃
	1389.	Br	OCH ₃	H	CH ₃
	1390.	Br	Br	H	CH ₃
	1391.	Br	CF ₃	H	CH ₃
	1392.	Br	OCF ₃	H	CH ₃
	1393.	Br	Cl	H	C ₂ H ₅
	1394.	Br	F	H .	C ₂ H ₅
45	1395.	Br	CH ₃	H	C ₂ H ₅
	1396.	Br	OCH ₃	H	C ₂ H ₅
	1397.	Br	Br	H	C ₂ H ₅
	1398.	Br.	CF ₃	H .	C ₂ H ₅

	No.	Rb	Rc	Rq	R ²
	1399.	Br	OCF ₃	H	C ₂ H ₅
	1400.	Br	Cl	Н	n-C ₃ H ₇
	1401.	Br	F	H	n-C ₃ H ₇
5	1402.	Br	CH ₃	H	n-C ₃ H ₇
9	1403.	Br	OCH ₃	H	n-C ₃ H ₇
	1404.	Br	Br	H	n-C ₃ H ₇
	1405.	Br	CF ₃	Н	n-C ₃ H ₇
	1406.	Br	OCF ₃	H	n-C ₃ H ₇
	1407.	Br	Cl	H	CH(CH ₃) ₂
10	1408.	Br	F	Н	CH(CH ₃) ₂
	1409.	Br	CH ₃	Н	CH(CH ₃) ₂
	1410.	Br	OCH ₃	н	CH(CH ₃) ₂
	1411.	Br	Br	H	CH(CH ₃) ₂
	1412.	Br	CF ₃	Н	CH(CH ₃) ₂
15	1413.	Br	OCF ₃	Н	CH(CH ₃) ₂
12	1414.	Br	Cl	Н	n-C ₄ H ₉
	1415.	Br	F	Н	n-C ₄ H ₉
	1416.	Br	CH ₃	H	n-C ₄ H ₉
	1417.	Br	OCH ₃	H	n-C ₄ H ₉
	1418.	Br	Br	H	n-C ₄ H ₉
20	1419.	Br	CF ₃	H	n-C ₄ H ₉
	1420.	Br	OCF ₃	H	n-C ₄ H ₉
	1421.	Br	Cl	H	C(CH ₃) ₃
	1422.	Br .	F	H	C(CH ₃) ₃
	1423.	Br	CH ₃	H	C(CH ₃) ₃
25	1424.	Br	OCH ₃	H	C(CH ₃) ₃
	1425.	Br	Br	H	C(CH ₃) ₃
ĺ	1426.	Br	CF ₃	H	C(CH ₃) ₃
ĺ	1427.	Br	OCF ₃	H	C(CH ₃) ₃
	1428.	Br	Cl	H	C ₆ H ₅
	1429.	Br	F	H	C ₆ H ₅
30	1430.	Br	CH ₃	H	C ₆ H ₅
	1431.	Br	OCH ₃	H	C ₆ H ₅
	1432.	Br	Br	H	C ₆ H ₅
	1433.	Br	CF ₃	H	C ₆ H ₅
	1434.	Br	OCF ₃	H	C ₆ H ₅
35	1435.	Br	Cl	H	cyclopropyl
	1436.	Br	F	H	cyclopropyl
	1437.	Br	CH ₃	H	CACTOBLOBAT
	1438.	Br	OCH ₃	H	cyclopropyl
	1439.	Br	Br	H	cyclopropyl
40	1440.	Br	CF ₃	H	cyclopropyl cyclopropyl
	1441.	Br	OCF ₃	H	CH ₂ -cyclopropyl
	1442.	Br	F		CH ₂ -cyclopropyl
:	1443.	Br		H	CH ₂ -cyclopropyl
	1444.	Br	CH ₃	H	CH ₂ -cyclopropyl
	1445.	Br	Br	Н	CH ₂ -cyclopropyl
45	1446.	Br Br	CF ₃	Н	CH ₂ -cyclopropyl
	1447.	Br	OCF ₃	Н	CH ₂ -cyclopropyl
	1449.	Br	Cl	Н	cyclobutyl
	1442.	121			CACTONGCAT

	No.	Rb	RC	Rd	R ²
	1450.	Br	F	H	cyclobutyl
	1451.	Br	CH ₃	H	cyclobutyl
	1452.	Br	OCH ₃	H	cyclobutyl
	1453.	Br	Br	H	cyclobutyl
5	1454.	Br	CF ₃	H	cyclobutyl
	1455.	Br	OCF ₃	H	cyclobutyl
	1456.	Br	Cl	H	cyclopentyl
	1457.	Br	F	H	cyclopentyl
	1457.	Br	CH ₃	H	cyclopentyl
10	1459.	Br	OCH ₃	H	cyclopentyl
	1460.	Br	Br	H	cyclopentyl
	1461.	Br	CF ₃	Н	cyclopentyl
	1461.	Br	OCF ₃	H	cyclopentyl
	1462.		Cl	Н	cyclohexyl
	1464.	Br	F	Н	cyclohexyl
15	1464.	Br		H	cyclohexyl
	1466.	Br	CH ₃	Н	cyclohexyl
	1467.	Br	Br	H	cyclohexyl
	1467.	Br Br	CF ₃	H	cyclohexyl
	1469.	Br	OCF ₃	H	cyclohexyl
20	1470.	Br	H	Cl	H
	1471.	Br	н	F	H
	1471.	Br	H	CH ₃	H
	1472.	Br	H	OCH ₃	Н
	1474.	Br	H	Br	H
	1475.	Br	H	CF ₃	H
25	1476.	Br	H	OCF ₃	H
	1477.	Br	H	Cl	CH ₃
	1478.	Br	H	F	CH ₃
	1479.	Br	H	CH ₃	CH ₃
	1480.	Br	H	OCH ₃	CH ₃
30	1481.	Br	H	Br	CH ₃
	1482.	Br	H	CF ₃	CH ₃
-	1483.	Br	H	OCF ₃	CH ₃
	1484.	Br	H	Cl	C ₂ H ₅
	1485.	Br	H	F	C ₂ H ₅
25	1486.	Br	H	CH ₃	C ₂ H ₅
35	1487.	Br	H	OCH ₃	C ₂ H ₅
	1488.	Br	H	Br .	C ₂ H ₅
	1489.	Br	H	CF ₃	C ₂ H ₅
	1490.	Br	H	OCF ₃	C ₂ H ₅
40	1491.	Br	H '	Cl	n-C ₃ H ₇
	1492.	Br	Н	F	n-C ₃ H ₇
	1493.	Br	H	CH ₃	n-C ₃ H ₇
	1494.	Br	Н	OCH ₃	n-C ₃ H ₇
	1495.	Br	H	Br	n-C ₃ H ₇
	1496.	Br	Н	CF ₃	n-C ₃ H ₇
45	1497.	Br	H	OCF ₃	n-C ₃ H ₇
4 3	1498.	Br	Н	Cl	CH(CH ₃) ₂
	1499.	Br	Н	F	CH(CH ₃) ₂
	1500.	Br	Н	CH ₃	CH(CH ₃) ₂

	No.	Rb	RC	Rd	R ²
	1501.	Br	H	OCH ₃	CH(CH ₃) ₂
	1502.	Br	H	Br	CH(CH ₃) ₂
5	1503.	Br	Н	CF ₃	CH (CH ₃) ₂
	1504.	Br	H	OCF ₃	CH (CH ₃) ₂
	1505.	Br	Н	Cl	n-C ₄ H ₉
	1506.	Br	H	F	n-C ₄ H ₉
	1507.	Br	H	CH ₃	n-C ₄ H ₉
	1508.	Br	H	OCH ₃	n-C ₄ H ₉
	1509.	Br	H	Br	n-C ₄ H ₉
10	1510.	Br	H	CF ₃	n-C ₄ H ₉
	1511.	Br	Н	OCF ₃	n-C ₄ H ₉
	1512.	Br	H	Cl	C(CH ₃) ₃
	1513.	Br	H	F	C(CH ₃) ₃
	15.14.	Br	Н	CH ₃	C(CH ₃) ₃
	1515.	Br	Н	OCH ₃	C(CH ₃) ₃
15	1516.	Br	Н	Br	C(CH ₃) ₃
	1517.	Br	Н	CF ₃	C(CH ₃) ₃
	1518.	Br	Н	OCF ₃	C(CH ₃) ₃
	1519.	Br	Н	Cl	C ₆ H ₅
	1520.	Br	H	F	C ₆ H ₅
20	1521.	Br	H	CH ₃	C ₆ H ₅
	1522.	Br '	Н	OCH ₃	С6Н5
	1523.	Br	Н	Br	C ₆ H ₅
	1524.	Br	H	CF ₃	C ₆ H ₅
	1525.	Br	Н	OCF ₃	C ₆ H ₅
25	1526.	Br	H	Cl	cyclopropyl
	1527.	Br	H	F	cyclopropyl
	1528.	Br	H	CH ₃	cyclopropyl
	1529.	Br	H	OCH ₃	cyclopropyl
	1530.	Br	H	Br	cyclopropyl
	1531.	Br	H	CF ₃	cyclopropyl
30	1532.	Br	H	OCF ₃	cyclopropyl
	1533.	Br	H ·	Cl	CH ₂ -cyclopropyl
	1534.	Br	H	F	CH ₂ -cyclopropyl
	1535.	Br	H	CH ₃	CH ₂ -cyclopropyl
	1536.	Br	H	OCH ₃	CH ₂ -cyclopropyl
35	1537.	Br	H	Br	CH ₂ -cyclopropyl
	1538.	Br	H	CF ₃	CH ₂ -cyclopropyl
	1539.	Br	Н -	OCF ₃	CH ₂ -cyclopropyl cyclobutyl
	1540.	Br	H	F	cyclobutyl
	1541.	Br	H		cyclobutyl
40	1542. 1543.	Br	H	CH ₃	cyclobutyl
	1544.	Br Br	H	Br Br	cyclobutyl
	1545.	Br	Н	CF ₃	cyclobutyl
	1546.	Br	Н	OCF ₃	cyclobutyl
	1547.	Br	H	Cl	cyclopentyl
	1547.	Br	Н	F	cyclopentyl
45	1549.	Br	Н	CH ₃	cyclopentyl
	1550.	Br	H	OCH ₃	cyclopentyl
	1551.	Br	H	Br	cyclopentyl
	1001.				oloroboucly

	No.	Rb	Rc	Rd	R ²
	1552.	Br	H	CF ₃	cyclopentyl
5	1553.	Br	H	OCF ₃	cyclopentyl
	1554.	Br	H	Cl	cyclohexyl
	1555.	Br	H	F	cyclohexyl
	1556.	Br	H	CH ₃	cyclohexyl
	1557.	Br	H	OCH ₃	cyclohexyl
	1558.	Br	H	Br	cyclohexyl
	1559.	Br	H	CF ₃	cyclohexyl
	1560.	Br	Н	OCF ₃	cyclohexyl
10	1561.	CH ₃	Cl	Н	H
	1562.	CH ₃	F	H	Н
	1563.	CH ₃	CH ₃	Н	н
	1564.	CH ₃	OCH ₃	Н	H
	1565.	CH ₃	Br ·	H	Н
	1566.	CH ₃	CF ₃	Н	H
15	1567.	CH ₃	OCF ₃	H	Н
	1568.	CH ₃	Cl	H	CH ₃
	1569.	CH ₃	F	H	CH ₃
	1570.	CH ₃	CH ₃	H	CH ₃
	1571.	CH ₃	Br	Н	CH ₃
20	1572.	CH ₃	CF ₃	H	CH ₃
	1573.	CH ₃	OCF ₃	H	CH ₃
	1574.	CH ₃	Cl	H	C ₂ H ₅
	1575.	CH ₃	F	H	C ₂ H ₅
	1576.	CH ₃	CH ₃	H	C ₂ H ₅
25	1577.	CH ₃	Br	Н	C ₂ H ₅
	1578.	CH ₃	CF ₃	H	C ₂ H ₅
	1579.	CH ₃	OCF ₃	H	C ₂ H ₅
į	1580.	CH ₃	Cl	H	n-C ₃ H ₇
	1581.	CH ₃	F	H	n-C ₃ H ₇
_	1582.	CH ₃	CH ₃	H	n-C ₃ H ₇
30	1583.	CH ₃	Br	H	n-C ₃ H ₇
	1584.	CH ₃	CF ₃	H	n-C ₃ H ₇
	1585.	CH ₃	OCF ₃	H	n-C ₃ H ₇
	1586.	CH ₃	Cl	H	CH(CH ₃) ₂
	1587.	CH ₃	F	H	CH(CH ₃) ₂
35	1588.	CH ₃	CH ₃	H	CH(CH ₃) ₂
	1589.	CH ₃	Br	H	CH(CH ₃) ₂
	1590.	CH ₃	CF ₃	H	CH(CH ₃) ₂
	1591.	CH ₃	OCF ₃	H	CH(CH ₃) ₂
40	1592.	CH ₃	Cl	H	n-C ₄ H ₉
	1593.	CH ₃	F	H	n-C ₄ H ₉
	1594.	CH ₃	CH ₃	H	n-C ₄ H ₉
	1595.	CH ₃	Br CF-	H	n-C ₄ H ₉
	1596.	CH ₃	CF ₃	H	
	1597. 1598.	CH ₃	Cl	H	$n-C_4H_9$ $C(CH_3)_3$
	1598.	CH ₃	F	Н	C(CH ₃) ₃
45	1600.	CH ₃	CH ₃	Н	C(CH ₃) ₃
	1600.	CH ₃	Br	Н	C(CH ₃) ₃
	1601.	CH ₃	CF ₃	H	C(CH ₃) ₃
	1002.	C113	OF 3	1 **	0(0113)3

	No.	Rb	RC	Rd	R ²
	1603.	CH ₃	OCF ₃	H	C(CH ₃) ₃
5	1604.	CH ₃	Cl	Н	C ₆ H ₅
	1605.	CH ₃	F	Н	С ₆ н ₅
	1606.	CH ₃	CH ₃	H	C ₆ H ₅
	1607.	CH ₃	Br	H	C ₆ H ₅
	1608.	CH ₃	CF ₃	H	C ₆ H ₅
	1609.	CH ₃	OCF ₃	H	C ₆ H ₅
	1610.	CH ₃	Cl	H	cyclopropyl
	1611.	CH ₃	F	H	cyclopropyl
10	1612.	CH ₃	CH ₃	H	cyclopropyl
		CH ₃	Br	H	cyclopropyl
	1613.			H	
	1614.	CH ₃	CF ₃	Н	cyclopropyl
	1615.	CH ₃	OCF ₃		cyclopropyl CH2-cyclopropyl
	1616.	CH ₃		H	
15	1617.	CH ₃	F	H	CH ₂ -cyclopropyl
	1618.	CH ₃	CH ₃	H	CH ₂ -cyclopropyl
	1619.	CH ₃	Br	H	CH ₂ -cyclopropyl
	1620.	CH ₃	CF ₃	H	CH ₂ -cyclopropyl
	1621.	CH ₃	OCF ₃	H	CH ₂ -cyclopropyl cyclobutyl
20	1622.	CH ₃	C1	H	cyclobutyl
20	1623.	CH ₃	F	H H	cyclobutyl
	1624. 1625.	CH ₃	CH ₃	Н	cyclobutyl
	1626.	CH ₃	Br CF ₃	H	cyclobutyl
	1627.	CH ₃	OCF ₃	H	cyclobutyl
į	1627.	CH ₃	Cl	H	cyclopentyl
25	1629.	CH ₃	F	H	cyclopentyl
	1630.	CH ₃	CH ₃	H	cyclopentyl
	1631.	CH ₃	Br	H	cyclopentyl
	1632.	CH ₃	CF ₃	H	cyclopentyl
	1633.	CH ₃	OCF ₃	Н	cyclopentyl
30	1634.	CH ₃	Cl	H	cyclohexyl
	1635.	CH ₃	F	Н	cyclohexyl
	1636.	CH ₃	CH ₃	Н	cyclohexyl
	1637.	CH ₃	Br	Н	cyclohexyl
	1638.	CH ₃	CF ₃	H	cyclohexyl
	1639.	CH ₃	OCF ₃	Н	cyclohexyl
35	1640.	CH ₃	Н	Cl	H
	1641	CH ₃	H-	F	H
	1642.	CH ₃	H	CH ₃	H
40	1643.	CH ₃	Н	Br	Н
	1644.	CH ₃	Н	CF ₃	H
	1645.	CH ₃	H	OCF ₃	Н
	1646.	CH ₃	Н	Cl	CH ₃
	1647.	CH ₃	Н	F	CH ₃
	1648.	CH ₃	H	CH ₃	CH ₃
	1649.	CH ₃	H	Br	CH ₃
4-	1650.	CH ₃	Н	CF ₃	CH ₃
45	1651.	CH ₃	H	OCF ₃	CH ₃
,	1652.	CH ₃	Н	Cl	C ₂ H ₅
	1653.	CH ₃	Н	F	C ₂ H ₅
			<u> </u>	·	_

	No.	Rb	Rc	Rd	R ²
	1654.	CH ₃	H	CH ₃	C ₂ H ₅
	1655.	CH ₃	H	Br	C ₂ H ₅
5	1656.	CH ₃	H	CF ₃	C ₂ H ₅
	1657.		H	OCF ₃	C ₂ H ₅
		CH ₃	H	Cl	n-C ₃ H ₇
	1658.	CH ₃		F	n-C ₃ H ₇
	1659.	CH ₃	H		
	1660.	CH ₃	H	CH ₃	n-C ₃ H ₇
	1661.	CH ₃	H	Br	n-C ₃ H ₇
10	1662.	CH ₃	H	CF ₃	n-C ₃ H ₇
10	1663.	CH ₃	H	OCF ₃	n-C ₃ H ₇
	1664.	CH ₃	H	C1	CH(CH ₃) ₂
	1665.	CH ₃	H	F	CH(CH ₃) ₂
	1666.	CH ₃	H	CH ₃	CH(CH ₃) ₂
	1667.	CH ₃	H	Br	CH(CH ₃) ₂
15	1668.	CH ₃	Н	CF ₃	CH(CH ₃) ₂
	1669.	CH ₃	H	OCF ₃	CH(CH ₃) ₂
	1670.	CH ₃	H	Cl	n-C ₄ H ₉
	1671.	CH ₃	H	F	n-C ₄ H ₉
	1672.	CH ₃	H	CH ₃	n-C ₄ H ₉
	1673.	CH ₃	H	Br	n-C ₄ H ₉
20	1674.	CH ₃	Η.	CF ₃	n-C ₄ H ₉
	1675.	CH ₃	H	OCF ₃	n-C ₄ H ₉
	1676.	CH ₃	H	Cl	C(CH ₃) ₃
	1677.	CH ₃	H	F	C(CH ₃) ₃
	1678.	CH ₃	H	CH ₃	C(CH ₃) ₃
25	1679.	CH ₃	H	Br	C(CH ₃) ₃
	1680.	CH ₃	H	CF ₃	C(CH ₃) ₃
	1681.	CH ₃	H	OCF ₃	C(CH ₃) ₃
	1682.	CH ₃	H	Cl	C ₆ H ₅
	1683.	CH ₃	H	F	C ₆ H ₅
	1684.	CH ₃	H.	CH ₃	C ₆ H ₅
30	1685.	CH ₃	Н	Br	C ₆ H ₅
	1686.	CH ₃	H	CF ₃	C6H5
	1687.	CH ₃	H	OCF ₃	C ₆ H ₅
	1688.	CH ₃	H	Cl	cyclopropyl
	1689.	CH ₃	H	F	cyclopropyl
35	1690.	CH ₃	H	CH ₃	cyclopropyl
	1691.	CH ₃	H	Br	cyclopropyl
	1692.	CH ₃	H	CF ₃	cyclopropyl
	1693.	CH ₃	H	OCF ₃	cyclopropyl
40	1694.	CH ₃	H	Cl	CH ₂ -cyclopropyl
	1695.	CH ₃	H	F	CH ₂ -cyclopropyl
	1696.	CH ₃	H	CH ₃	CH ₂ -cyclopropyl
	1697.	CH ₃	H	Br	CH ₂ -cyclopropyl
	1698.	CH ₃	H	CF ₃	CH ₂ -cyclopropyl
	1699.	CH ₃	H	OCF ₃	CH ₂ -cyclopropyl
	1700.	CH ₃	H	Cl	cyclobutyl
45	1701.	CH ₃	H	F	cyclobutyl
43	1702.	CH ₃	H	CH ₃	cyclobutyl
	1703.	CH ₃	H	Br	cyclobutyl
	1704.	CH ₃	H	CF ₃	cyclobutyl

	No.	Rb	Rc	Rd	R ²
	1705.	CH ₃	H	OCF ₃	cyclobutyl
5	1706.	CH ₃	H	Cl	cyclopentyl
	1707.	CH ₃	H	F	cyclopentyl
	1708.	CH ₃	H	CH ₃	cyclopentyl
	1709.	CH ₃	H	Br	cyclopentyl
	1710.	CH ₃	Н	CF ₃	cyclopentyl
10	1711.	CH ₃	H	OCF ₃	cyclopentyl
	1712.	CH ₃	H	Cl	cyclohexyl
	1713.	CH ₃	H	F	cyclohexyl
	1714.	CH ₃	H	CH ₃	cyclohexyl
	1715.	CH ₃	H	Br	cyclohexyl
	1716.	CH ₃	Н	CF ₃	cyclohexyl
	1717.	CH ₃	H	OCF ₃	cyclohexyl

15 Particular preference is also given to the 1-phenylpyrrolidin2-one-3-carboxamides of the formula Ib (= I where Ra = Re = H, X
= O, Y = O, R1 = H, R3 = H and n = 0) where Rb, Rc, Rd and R2 have
the meanings given above, in particular the meanings mentioned as
being preferred. Examples of such compounds are the compounds
20 Ib.1 to Ib.1717 in which the variables Rb, Rc, Rd and R2 together
have the meanings given in one row of Table 1.

Particular preference is also given to the 1-phenylpyrrolidin-30 2-one-3-carboxamides of the formula Ic (\equiv I where $R^a=R^e=H$, X = O, Y = O, $R^1=H$, $R^3=C_2H_5$ and n=0) where R^b , R^c , R^d and R^2 have the meanings given above, in particular the meanings mentioned as being preferred. Examples of such compounds are the compounds Ic.1 to Ic.1717 in which the variables R^b , R^c , R^d and R^2 together have the meanings given in one row of Table 1.

Particular preference is also given to the 1-phenylpyrrolidin-2-one-3-carboxamides of the formula Id (\equiv I where X = 0, Y = 0, 45 R¹ = H, R³ = CH(CH₃)₂ and n = 0) where R^b, R^c, R^d and R² have the meanings given above, in particular the meanings mentioned as being preferred. Examples of such compounds are the compounds

Id.1 to Id.1717 in which the variables R^b , R^c , R^d and R^2 together have the meanings given in one row of Table 1.

Particular preference is also given to the 1-phenylpyrrolidin-2-one-3-carboxamides of the formula Ie (\equiv I where X = 0, Y = 0, R¹ = H, R³ = H, A = 0 and n = 1) where R^b, R^c, R^d and R² have the 15 meanings given above, in particular the meanings mentioned as being preferred. Examples of such compounds are the compounds Ie.1 to Ie.1717 in which the variables R^b, R^c, R^d and R² together have the meanings given in one row of Table 1.

Particular preference is also given to the 1-phenylpyrrolidin-2-one-3-carboxamides of the formula If (≡ I where X = 0, Y = 0, 30 R¹ = H, R³ = CH₃, A = 0 and n = 1) where Rb, Rc, Rd and R² have the meanings given above, in particular the meanings mentioned as being preferred. Examples of such compounds are the compounds If.1 to If.1717 in which the variables Rb, Rc, Rd and R² together have the meanings given in one row of Table 1.

Particular preference is also given to the 45 1-phenylpyrrolidin-2-one-3-carboxamides of the formula Ig (\equiv I where X = O, Y = O, R¹ = H, R³ = C₂H₅, A = O and n = 1) where R^b, R^c, R^d and R² have the meanings given above, in particular the

meanings mentioned as being preferred. Examples of such compounds are the compounds Ig.1 to Ig.1717 in which the variables R^b , R^c , R^d and R^2 together have the meanings given in one row of Table 1.

Particular preference is also given to the 1-phenylpyrrolidin-2-one-3-carboxamides of the formula Ih (\equiv I where X = 0, Y = 0, 15 R¹ = H, R³ = CH(CH₃)₂, A = 0 and n = 1) where R^b, R^c, R^d and R² have the meanings given above, in particular the meanings mentioned as being preferred. Examples of such compounds are the compounds Ih.1 to Ih.1717 in which the variables R^b, R^c, R^d and R² together have the meanings given in one row of Table 1.

Particular preference is also given to the 1-phenylpyrrolidin30 2-one-3-carboxamides of the formula Ii (≡ I where X = 0, Y = 0,
R¹ = H, R³ = H, n = 1 and A = NR¹² where R¹² = H) where Rb, Rc, Rd
and R² have the meanings given above, in particular the meanings
mentioned as being preferred. Examples of such compounds are the
compounds Ii.1 to Ii.1717 in which the variables Rb, Rc, Rd and R²
35 together have the meanings given in one row of Table 1.

45 Particular preference is also given to the 1-phenylpyrrolidin-2-one-3-carboxamides of the formula Ij (\equiv I where X = 0, Y = 0, R¹ = H, R³ = CH₃, n = 1 and A = NR¹² where R¹² = H) where R^b, R^c,

 R^d and R^2 have the meanings given above, in particular the meanings mentioned as being preferred. Examples of such compounds are the compounds Ij.1 to Ij.1717 in which the variables Rb, Rc, Rd and R2 together have the meanings given in one row of Table 1.

5

Particular preference is also given to the 1-phenylpyrrolidin-15 2-one-3-carboxamides of the formula Ik (\equiv I where X = 0, Y = 0, $R^1 = H$, $R^3 := C_2H_5$, n = 1 and $A = NR^{12}$ where $R^{12} = H$) where R^b , R^c , \mathbb{R}^d and \mathbb{R}^2 have the meanings given above, in particular the meanings mentioned as being preferred. Examples of such compounds are the compounds Ik.1 to Ik.1717 in which the variables Rb, Rc, 20 Rd and R2 together have the meanings given in one row of Table 1.

Particular preference is also given to the 1-phenylpyrrolidin-30 2-one-3-carboxamides of the formula Il (\equiv I where X = 0, Y = 0, $R^{1} = H$, $R^{3} = CH(CH_{3})_{2}$, n = 1 and $A = NR^{12}$ where $R^{12} = H$) where R^{b} , R^c , R^d and R^2 have the meanings given above, in particular the meanings mentioned as being preferred. Examples of such compounds are the compounds Il.1 to Il.1717 in which the variables Rb, Rc, 35 Rd and R2 together have the meanings given in one row of Table 1.

40
$$\begin{array}{c|cccc}
R^{b} & O & H & O & H \\
\hline
N & N & R^{2} & \\
\hline
CH(CH_{3})_{2} & & & \\
\end{array}$$
(I1)

Particular preference is also given to the 1-phenylpyrrolidin-45 2-one-3-carboxamides of the formula Im (\equiv I where X = 0, Y = 0, $R^1 = H$, $R^3 = H$, n = 1 and $A = NR^{12}$ where $R^{12} = CH_3$) where R^b , R^c , Rd and R2 have the meanings given above, in particular the

meanings mentioned as being preferred. Examples of such compounds are the compounds Im.1 to Im.1717 in which the variables R^b , R^c , R^d and R^2 together have the meanings given in one row of Table 1.

10

Particular preference is also given to the 1-phenylpyrrolidin-2-one-3-carboxamides of the formula In (\equiv I where X = 0, Y = 0, R^1 = H, R^3 = CH₃, n = 1 and A = NR¹² where R¹² = CH₃) where R^b, R^c, R^d and R² have the meanings given above, in particular the 15 meanings mentioned as being preferred. Examples of such compounds are the compounds In.1 to In.1717 in which the variables R^b, R^c, R^d and R² together have the meanings given in one row of Table 1.

25 Particular preference is also given to the

1-phenylpyrrolidin-2-one-3-carboxamides of the formula Io (\equiv I where X = 0, Y = 0, R¹ = H, R³ = C₂H₅, n = 1 and A = NR¹² where R¹² = CH₃) where R^b, R^c, R^d and R² have the meanings given above, in particular the meanings mentioned as being preferred. Examples of 30 such compounds are the compounds Io.1 to Io.1717 in which the variables R^b, R^c, R^d and R² together have the meanings given in one row of Table 1.

40 Particular preference is also given to the 1-phenylpyrrolidin-2-one-3-carboxamides of the formula Ip (\equiv I where X = 0, Y = 0, R¹ = H, R³ = CH(CH₃)₂, n = 1 and A = NR¹² where R¹² = CH₃) where R^b, R^c, R^d and R² have the meanings given above, in particular the meanings mentioned as being preferred. Examples of such compounds are the compounds Ip.1 to Ip.1717 in which the variables R^b, R^c, R^d and R² together have the meanings given in one row of Table 1.

30

35

40

45

$$\begin{array}{c|cccc}
R^{b} & O & CH_{3} \\
\hline
N & N & R^{2} \\
\hline
CH(CH_{3})_{2}
\end{array}$$

The 1-phenylpyrrolidin-2-one-3-carboxamides of the formula I according to the invention can be prepared, for example, by one 10 of the processes A to G described below.

A) Amidation of a carboxylic acid II or a carboxylic acid derivative of II

The preparation of the compound I according to the invention can be carried out, for example, according to Scheme 1 by reacting an activated form of a pyrrolidine-3-carboxylic acid of the formula II with an amine III.

20 Scheme 1:

$$R^{b}$$
 R^{a}
 R^{a}
 R^{a}
 R^{b}
 R^{a}
 In Scheme 1, the variables R1, X, Ra, Rb, Rc, Rd, Re, A, n, R2 and R3 are as defined above. Such reactions are known, for example from WO 01/83459, and can be applied in an analogous manner to the reaction illustrated in Scheme 1. The carboxylic acid II is preferably initially activated by carrying out the reaction in the presence of a coupling agent. Suitable coupling agents are, for example, N, N'-carbonyldiimidazole or carbodiimides, such as dicyclohexylcarbodiimide. These compounds are generally employed in an at least equimolar amount and up to a four-fold excess, based on the carboxylic acid II. If appropriate, it may be advantageous to carry out the reaction of the carboxylic acid II with the coupling agent in the presence of a catalytic amount of a tertiary aminopyridine, such as 4-dimethylaminopyridine (DMAP). In this case, the amount of aminopyridine added is preferably 5 to 10 mol%, based on the carboxylic acid II. The reaction is usually carried out in a solvent. Suitable solvents are, for example, chlorinated hydrocarbons, such as methylene chloride,

10

15

20

25

30

35

40

45

1,2—dichloroethane, ethers, for example dialkyl ethers, such as diethyl ether, methyl tert—butyl ether, or cyclic ethers, such as tetrahydrofuran or dioxane, carboxamides, such as dimethylformamide, N-methyllactams, such as N-methylpyrrolidone, nitriles, such as acetonitrile, aromatic hydrocarbons, such as toluene, or mixtures of these.

The molar ratio of amine III to carboxylic acid II is generally at least 0.9:1, preferably at least 1:1. If appropriate, it may be advantageous to employ the amine in a slight excess, for example in an excess of up to 30%, based on the carboxylic acid II.

In general, the reaction temperature is in the range from 0°C to the boiling point of the solvent.

Alternatively, the carboxylic acid II can initially be activated by converting it into its acid halide, preferably its acid chloride. Means for this purpose are known, for example from US 4,874,422. Suitable compounds are inorganic acid halides, preferably acid chlorides, such as thionyl chloride, phosphoryl chloride, phosphorus pentachloride or phosphorus trichloride, and organic acid chlorides, such as oxalyl chloride. The acid halide of II formed can be isolated and then be reacted with the amine III. It is also possible to react the acid chloride of II formed directly, without isolation, with the amine III. If appropriate, the reactivity of the acid halide is enhanced by adding catalytic amounts of an N, N-dialkylcarboxamide, such as dimethylformamide. The halogenating agent is usually employed in an at least equimolar amount, based on the carboxylic acid II. The acid halides thionyl chloride, phosphorus trichloride or phosphoryl chloride can simultaneously act as solvent. Suitable solvents are furthermore solvents which are inert under the reaction conditions, for example chlorinated hydrocarbons, such as methylene chloride, 1,2-dichloroethane, aromatic hydrocarbons, such as benzene or toluene, aliphatic and cycloaliphatic hydrocarbons, such as hexane, petroleum ether, cyclohexane, and mixtures thereof. The reaction temperature is generally between room temperature and the boiling point of the solvent. After the reaction has ended, excess halogenating agent is generally removed. The resulting acid halide of II is then reacted with the amine III. In general, the amine III is dissolved in the solvent which was also used for preparing the carbonyl halide, unless the solvent is one of the acid halides mentioned above.

10

25

If appropriate, the reaction is carried out in the presence of an auxiliary base which is preferably employed in an equimolar amount or an up to four-fold excess, based on the carboxylic acid II. Suitable bases are, for example, amines such as 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), pyridine, α -, β -, γ -lutidine or triethylamine.

It is, of course, also possible to use other methods for activating the carboxylic acid II. Such methods are described in the prior art, for example in J. Falbe, Houben Weyl, Methoden der Organischen Chemie [Methods of organic chemistry], Vol. E5, 4th Ed., 1985, p. 941 ff.

In a further process variant, the corresponding carboxylic acid ester of II (carboxylic acid ester VI), in particular the C₁-C₄-alkyl ester of II and especially the methyl or ethyl ester of II, is reacted with the amine III, if appropriate in the presence of a base. Regarding a suitable base, solvent and reaction temperatures, reference is made to what was said above. The preparation of the carboxylic acid ester VI is described below.

Compounds of the formula II where R^1 = H can be prepared, for example, similarly to a process described in Journal of Heterocyclic Chemistry, 3 (1966), 311. The synthesis is shown in Scheme 2.

Scheme 2:

In Scheme 2, the variables R^a , R^b , R^c , R^d , R^e are as defined above and R is C_1 - C_4 -alkyl. The reaction of the aniline compound IV with butyrolactone is usually carried out in the presence of an inorganic acid, such as sulfuric acid, phosphoric acid or hydrochloric acid, or in the presence of an organic acid, such as acetic acid. The reaction can be carried out in the absence of a solvent or in the presence of a solvent. Suitable solvents are all solvents which are inert under the reaction conditions. However, the reaction is preferably carried out in the absence of a solvent. If the reaction is carried out in the absence of a solvent, the butyrolactone is employed in an excess, based on the aniline IV. The reaction temperatures are generally in the range of from $20^{\circ}C$ to the boiling point of the solvent.

15

20

25

30

35

10

5

In the next step, the resulting pyrrolidinone V is generally reacted without further purification, for example with a carbonate (RO)₂CO or a synthetic equivalent, such as a chloroformic ester. To this end, the pyrrolidinone V is generally initially converted into the corresponding enolate by treatment with a suitable base. Suitable bases include in particular organolithium compounds, such as n-butyllithium, tert-butyllithium and phenyllithium, lithium amides, such as lithium diisopropylamide, and alkali metal hydrides, such as sodium hydride. The reaction is generally carried out in an organic solvent. Suitable solvents are inert solvents, such as aliphatic and cycloaliphatic hydrocarbons, such as hexane, petroleum ether, cyclohexane, ethers, for example dialkyl ethers, such as diethyl ether, methyl tert-butyl ether, or cyclic ethers, such as tetrahydrofuran or dioxane, and also mixtures of these. In general, the deprotonation of the compound V is carried out at low temperatures to about room temperature, preferably at about 0°C. To this end, the base is employed in an at least equimolar amount, preferably a 1.1- to 4-fold molar excess, based on the compound V.

The subsequent introduction of the alkoxycarbonyl group is carried out, for example, using a carbonic acid diester, such as dimethyl carbonate or diethyl carbonate. The carbonic acid diester and the enolate of the compound V are usually employed in equimolar amounts. It is, of course, possible for one of the two reactants to be employed in a slight excess. The temperature required for the reaction is generally in the range of from 0°C to the boiling point of the solvent.

45

40

The carboxylic acid ester VI is then hydrolyzed by known methods (see, for example, Organikum, 17th Edition, VEB

Deutscher Verlag der Wissenschaften, 1988, p. 415) to give the carboxylic acid II. The hydrolysis can be carried out either in acidic medium using strong mineral acids, such as concentrated hydrochloric acid or sulfuric acid, or organic acids, such as glacial acetic acid, or mixtures of these in the presence of water, or in alkaline medium using bases, such as alkali metal hydroxide, for example sodium hydroxide or potassium hydroxide, if appropriate in the presence of water.

Suitable solvents both for acidic and basic hydrolysis of esters are, for example, ethers, for example dialkyl ethers, such as diethyl ether, methyl tert—butyl ether, or cyclic ethers, such as tetrahydrofuran or dioxane, alcohols, water and mixtures of these solvents. The reaction temperature is usually between room temperature and the boiling point of the solvent.

The compounds II can furthermore be prepared by aminoethylation of malonic acid esters VII in which R^1 is as defined above and R is C_1 - C_4 -alkyl with phenylaziridines VII and subsequent hydrolysis. The synthesis is shown in Scheme 3 and can be carried out similarly to known methods as described, for example, in Archiv der Pharmazie (Weinheim) 302(4) (1969), 253, Justus Liebigs Ann. Chem. 716 (1968), 121 - 126 or in Angew. Chem. 74, (1962), 694.

Scheme 3:

The reaction is generally carried out in the presence of LiH/LiI in a solvent. Suitable solvents include aromatic solvents, such as benzene, toluene or xylene. Frequently, the aziridine VII and the malonic acid ester are employed in approximately equimolar amounts. It may be advantageous to

10

15

30

employ an excess of malonic acid ester VIII, preferably an excess of up to 30%, based on the aziridine VII. The resulting ester VIa is then converted according to known methods by hydrolysis in acidic or alkaline medium into the corresponding carboxylic acids II. With regard to ester hydrolysis, reference is made to what was said above.

Compounds of the formula II in which R¹ is H can furthermore be prepared similarly to a process described in JP 2000143624-A. To this end, anilines IV are reacted with 1,1-cyclopropanedicarboxylic acid. The synthesis route is shown in Scheme 4. The reaction is usually carried out in water or in an aliphatic nitrile, such as acetonitrile, or in mixtures thereof with water, at temperatures between 40 and 100°C.

Scheme 4:

Compounds of the formula II in which R¹ is H can furthermore be obtained similarly to processes described in J. Am. Chem. Soc. 97 (1975), 3239 or Organic Synthesis 60, (1981), 66. The reaction of the aniline IV with the dioxaspirooctanedione IX gives the carboxylic acid II. The synthesis route is shown in Scheme 5.

35 Scheme 5:

25

30

35

40

45

B) Linking a pyrrolidinone X to an aromatic compound XI

Compounds of the formula I can furthermore be prepared by reacting suitably substituted pyrrolidinones X with aromatic compounds of the formula XI according to the synthesis shown in Scheme 6.

Scheme 6:

In Scheme 6, the variables R^a , R^b , R^c , R^d , R^d , R^e , X, Y, A, n, R^1 , R^2 and R^3 are as defined above. Z is halogen, preferably fluorine, chlorine or bromine, or $B(OH)_2$, $B(OR')_2$ or $Sn(R')_3$. In these radicals, R' is aryl, such as phenyl, or C_1-C_{10} -alkyl.

The reaction is preferably carried out in a solvent, in particular a polar aprotic solvent, such as dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, dimethylacetamide, an ether, such as diethyl ether, tetrahydrofuran or dioxane, and mixtures of these solvents.

In general, the reaction is carried out at temperatures above room temperature, preferably in the range from 50 to 200°C. To this end, the compounds of the formulae X and XI are preferably employed in approximately equimolar amounts. It is, of course, also possible to use an excess of one of the components, the excess preferably being not more than 50 mol%, in particular not more than 20 mol%, based on the component which is present in a substoichiometric amount.

The compounds I according to the invention are furthermore obtained by coupling XI (for example Z = Cl, Br, I, B(OR)₂, SnR₃) with a pyrrolidinone X, preferably in the presence of catalytically active amounts of a palladium, copper or nickel compound, if appropriate in the presence of a base, in an organic solvent or a mixture of a solvent with water, at room temperature or elevated temperatures. Processes for coupling

a phenylboronic acid are described, for example, in WO 02/42275.

Suitable palladium catalysts are, in addition to palladium 5 carboxylates, such as palladium(II) acetate, also palladium/phosphine complexes, such as tetrakistriphenylphosphinepalladium, bistriphenylphosphinepalladium(II) chloride, bis(1,2-diphenylphosphinoethane)palladium(II) chloride, bis(1,3-diphenylphosphinopropane)palladium(II) chloride, 10 bis(1,4-diphenylphosphinobutane)palladium(II) chloride and bis(diphenylphosphino)ferrocenylpalladium(II) chloride. However, it is also possible to react palladium halides such as palladium(II) chloride in situ with phosphine ligands, giving the catalytically active complexes. Suitable phosphine 15 ligands are, for example, arylphosphines which are unsubstituted or substituted in the ortho-, meta- or para-position by halogen, alkyl and/or SO₃H, such as triphenylphosphine, 1,2-bis(diphenylphosphino)ethane, 20 1,3-bis(diphenylphosphino)propane, 1,4-bis(diphenylphosphino)butane, bis(diphenylphosphino)ferrocene, hetarylphosphines, such as trifurylphosphine or tripyridylphosphine.

- Suitable Ni catalysts are nickel(II) acetylacetonate alone or in combination with the abovementioned phosphine ligands, or Ni(II) acetylacetonate with imidazolium carbene ligands, and also complexes of nickel(II) salts with the abovementioned phosphine ligands, for example
- bis(triphenylphosphine)nickel(II) chloride,
 [1,3-bis(diphenylphosphino)propane]nickel(II) chloride,
 [1,4-bis(diphenylphosphino)butane]nickel(II) chloride and
 [bis(diphenylphosphino)ferrocene]nickel(II) chloride.
- Suitable copper compounds are, in particular, copper(I) compounds, such as CuCl, CuBr and the like.

The catalyst is usually employed in substoichiometric amounts, preferably of 0.001-0.8 equivalents and particularly preferably of 0.01 to 0.5 equivalents, based on the pyrrolidinone XI used.

If appropriate, it may be advantageous to convert the compound X initially with a base into its salt. Suitable bases are, for example, alkali metal hydrides, such as sodium hydride, and sodium alkoxides, such as sodium methoxide and sodium ethoxide, lithium amides, such as lithium

15

diisopropylamide, and also organolithium compounds, such as butyllithium and phenyllithium.

The molar ratio of compound XI to compound X is preferably in the range from 0.95:1 to 1:1.5.

Suitable bases are, if required, alkali metal and alkaline earth metal hydroxides, alkali metal (bi)carbonates and alkali metal phosphates, such as NaOH, NaHCO3, Na2CO3, KHCO3, K2CO3, Ba(OH)2, K3PO4, alkali metal, alkaline earth metal, thallium and transition metal alkoxides, such as sodium ethoxide and thallium ethoxide. Other suitable bases are alkali metal fluorides, such as potassium fluoride, cesium fluoride, ammonium fluorides and tetrabutylammonium fluoride. The base is usually employed in an approximately stoichiometric amount or in up to 10-fold excess, based on the compound II.

Suitable solvents are organic solvents, such as DMF,
dimethylacetamide, toluene, tetrahydrofuran (THF), dioxane
and dimethoxyethane. If the coupling is carried out with
boronic acid, the abovementioned solvents can also be
employed in a mixture with water, for example in a ratio of
about 5:1 to 1:5, preferably in a ratio of about 2:1 to 1:2
and in particular of about 1:1.

The reaction temperature is usually above the melting point and can be up to the boiling point of the solvent. It is preferably in the range between 50 and 150°C.

The pyrrolidino compounds X can be prepared by customary processes, for example analogously to the procedure described in process A.

35 C) Alkylation of compounds of the formula I in which R¹ = H

Compounds of the formula I in which R¹ is hydrogen can be prepared according to general methods by treatment with an alkylation agent R¹-L in compounds of the formula I in which R¹ is not hydrogen. The synthesis route is shown in Scheme 7.

30

Scheme 7:

5
$$R^{c} \longrightarrow R^{a} \longrightarrow R^{a} \longrightarrow R^{2} \longrightarrow R^{c} \longrightarrow R^{a} \longrightarrow R^{2} \longrightarrow R^{d} \longrightarrow R^$$

10

15

20

In Scheme 7, the variables R^1 , R^a , R^b , R^c , R^d , R^d , R^e , X, Y, A, n, R^1 , R^2 and R^3 are as defined above. L is a nucleophilically displaceable leaving group, such as halogen, for example chlorine, bromine, iodine, or imidazolyl, carboxylate, such as acetate, arylsulfonate or alkylsulfonate, for example mesylate or triflate. The reaction is usually carried out in the presence of a base. Suitable bases include alkali metal or alkaline earth metal hydroxides, metal hydrides, such as alkali metal hydrides, for example sodium hydride, tertiary alkylamines, such as triethylamine, aromatic amines, such as pyridine, α -, β -, γ -lutidine, lithium diisopropylamide.

Suitable solvents are, for example, chlorinated hydrocarbons, such as methylene chloride or 1,2-dichloroethane, aromatic hydrocarbons, such as toluene, xylene or chlorobenzene, ethers, such as diethyl ether, methyl tert-butyl ether, tetrahydrofuran, dioxane, polar aprotic solvents, such as acetonitrile, dimethylformamide or dimethyl sulfoxide.

30

In general, the reaction temperature is in the range from $0^{\circ}C$ to the boiling point of the reaction mixture.

D) Sulfurization of the compounds of the formula I in which X orY is oxygen.

Compounds of the formula I in which X or Y is oxygen can be prepared according to general methods by treatment with a sulfurizing agent in compounds of the formula I in which X or Y is sulfur. This synthesis route is illustrated in Scheme 8.

40

Scheme 8:

5

$$R^{c}$$
 R^{a}
 R^{c}
 R^{c}
 R^{d}
 15
$$\mathbb{R}^{2}$$
 \mathbb{R}^{2} $\mathbb{R}^{$

In Scheme 8, the variables Ra, Rb, Rc, Rd, Rd, Re, X, Y, A, n, 25 R^1 , R^2 and R^3 are as defined above. Examples of suitable sulfurizing agents are phosphorus(V) sulfides, organotin sulfides, and also organophosphorus sulfides (see also J. March, Advanced Organic Synthesis, 2nd Edition, Wiley Interscience 1985, p. 794 and the literature cited therein). 30 Particularly suitable sulfurizing agents are phosphorus(V) sulfide and 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-dithione ("Lawesson's reagent"). Sulfurization processes are described, for example, in WO 95/33718. The reaction can be carried out in a solvent or neat. Suitable solvents are all solvents which are inert 35 under the reaction conditions, for example aromatic hydrocarbons, such as benzene, toluene, xylene, chlorobenzene, basic solvents, such as pyridine, ethers, such as diethyl ether, 1,2-dimethoxyethane or tetrahydrofuran, 40 etc. The temperatures required for the reaction are generally above room temperature and in particular in the range of from 50°C to the boiling point of the reaction mixture.

E) Condensation of an anilide XII

45

A further route to the compounds I according to the invention is the reaction of an anilide XII with a suitable

difunctional compound L-CH2-CH2-L' with ring closure according to Scheme 9.

Scheme 9:

- 5

10
$$\mathbb{R}^2$$
 \mathbb{R}^2 \mathbb{R}^2

15

In Scheme 9, the variables Ra, Rb, Rc, Rd, Rd, Re, X, Y, A, n, R1, R2 and R3 are as defined above, L is as defined in C) and L' has the meaning of L.

The cyclization is carried out in the presence of a base. 20 Suitable bases are all bases mentioned under C). In general, the reaction is carried out in an inert solvent. Suitable solvents are in particular chlorinated hydrocarbons, such as methylene chloride or 1,2-dichloroethane, aromatic hydrocarbons, such as toluene, xylene or chlorobenzene, 25 ethers, such as diethyl ether, methyl tert-butyl ether, tetrahydrofuran, dioxane, polar aprotic solvents, such as acetonitrile, dimethylformamide or dimethyl sulfoxide. The starting material XII and the difunctional compound L-CH₂-CH₂-L' are expediently employed in approximately 30 equimolar amounts; however, to optimize the conversion, it may be advantageous to use an excess of one of the two components. The reaction is generally carried out at a temperature between room temperature and the boiling point of the reaction mixture.

35

40

The starting materials XII can be prepared in two steps similarly to the process described in Synlett 12 (1969), 1209. In the first step, an isocyanate XIII is reacted with meldrum acid (2,2-dimethyl-1,3-dioxane-4,6-dione). In the second step, the resulting product is then reacted with a suitable amine III. In Scheme 10, the variables Ra, Rb, Rc, R^d , R^d , R^e , X, Y, A, n, R^1 , R^2 and R^3 are as defined above.

45.

Scheme 10

5
$$R^{c}$$
 R^{a} R^{c} R^{a} R^{c} $R^$

15 F) Condensations

F.1 Condensation of anilines IV with tetrahydro-2-furanones XIV

The compounds I according to the invention can be prepared,
for example, by condensing anilines IV with
tetrahydro-2-furanones XIV according to the synthesis route
shown in Scheme 11. Analogous reactions are known, for
example from Tetrahedron Letters, 31 (21) (1990), 2991, and
can be applied to the preparation of the compounds according
to the invention.

Scheme 11:

30
$$R^{b}$$

$$R^{c}$$

$$R^{c}$$

$$R^{d}$$

$$R$$

In Scheme 11, the variables Ra, Rb, Rc, Rd, Rd, Re, X, Y, A, n, R1, R2 and R3 are as defined above. The reaction of the anilines IV is usually carried out in a carboxylic acid, such as acetic acid, at temperatures in the range from 0°C to 100°C. In general, the starting materials are employed in equimolar amounts, or one of the two components is employed in excess.

40

F.2 Condensation of anilines IV with carboxylic acid derivatives XV and subsequent cyclization

The compounds I according to the invention can be prepared, for example, by condensing anilines IV with carboxylic acid derivatives XV according to the synthesis route shown in Scheme 12.

Scheme 12:

10

5

In Scheme 12, the variables Ra, Rb, Rc, Rd, Rd, Re, X, Y, A, n, R^1 , R^2 and R^3 are as defined above. L is as defined in C) and L' has the meaning of L. The reaction of the aniline IV with the carboxylic acid derivative XV is usually carried out 25 in the presence of a base. Suitable bases are, for example, amines, such as 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), pyridine or triethylamine. The base is usually employed in up to six-fold excess, based on the carboxylic acid derivative XV. The 30 reaction is generally carried out in a solvent. Suitable solvents are, for example, chlorinated hydrocarbons, such as methylene chloride, 1,2-dichloroethane, ethers, for example dialkyl ethers, such as diethyl ether, methyl tert-butyl 35 ether, or cyclic ethers, such as tetrahydrofuran or dioxane, carbonamides, such as dimethylformamide, N-methyllactams, such as N-methylpyrrolidone, nitriles, such as acetonitrile, aromatic hydrocarbons, such as toluene, aromatic amines, such as pyridine, or mixtures of these. In general, the reaction temperature is in a range of from 0°C to the boiling point of 40 the solvent.

- G) Reaction of a pyrrolidinone XVI with an iso(thio)cyanate XVII
- Compounds of the formula I can be prepared by reacting pyrrolidinones XVI with an iso(thio)cyanate XVII in the presence of a base according to the synthesis route shown in

Scheme 13. Such reactions are known, for example, from US 5,185,349.

Scheme 13:

In Scheme 13, the variables R^a, R^b, R^c, R^d, R^d, R^e, X, Y and R¹
are as defined above. R³ has the meanings mentioned for R³
which are different from hydrogen. To prepare compounds I
where R³ = H, preference is given to using the salt of an
isocyanate or isothiocyanate, for example sodium
iso(thio)cyanate or potassium iso(thio)cyanate.

Suitable bases include alkali metal hydrides, such as sodium hydride or potassium hydride, organolithium compounds, such as lithium diisopropylamide. In general, the reaction is carried out in a solvent. Suitable solvents include ethers, such as diethyl ether, methyl tert-butyl ether, tetrahydrofuran, 1,4-dioxane, anisole, glycol ethers, such as dimethyl glycol ether, hydrocarbons, such as hexane, petroleum ether or mixtures of these.

30 The compounds I and their agriculturally useful salts are suitable - both as isomer mixtures and in the form of the pure isomers - as herbicides. The herbicidal compositions comprising I permit very good control of plant growth on uncultivated areas. In crops such as wheat, rice, corn, soybean and cotton, they are seffective against broad-leaved weeds and harmful grasses without significantly damaging the crops. This effect occurs in particular at low application rates.

Depending on the particular application method, the compounds I
40 or the herbicidal compositions comprising them may be used in a
further number of crops for eliminating unwanted plants. Suitable
are, for example, the following crops:

Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus 45 officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis,

Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis quineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, 5 (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot esculenta, Medicago sativa, Musa spec., Nicotiana tabacum 10 (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (S. vulgare), Theobroma cacao, 15 Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera and Zea mays.

The compounds I may also be used in crops which are tolerant to the action of herbicides as a result of breeding, including the 20 use of genetic engineering methods.

The compounds I or the herbicidal compositions comprising them can be used, for example, in the form of directly sprayable aqueous solutions, powders, suspensions, including highly

25 concentrated aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusting agents, broadcasting agents or granules, by spraying, nebulizing, dusting, broadcasting or pouring, or for seed dressing or mixing with the seed. The application forms depend on the intended uses; they should in any case ensure very fine distribution of the active ingredients according to the invention.

The herbicidal compositions comprise a herbicidally effective amount of at least one active compound of the formula I and 35 auxiliaries which are usually used in formulating crop protection agents.

Suitable inert auxiliaries are essentially:
mineral oil fractions having a medium to high boiling point, such
40 as kerosine and diesel oil, and coal tar oils and oils of
vegetable or animal origin, aliphatic, cyclic and aromatic
hydrocarbons, for example paraffins, tetrahydronaphthalene,
alkylated naphthalenes and derivatives thereof, alkylated
benzenes and derivatives thereof, alcohols, such as methanol,
45 ethanol, propanol, butanol and cyclohexanol, ketones, such as

cyclohexanone, and strongly polar solvents, for example amines, such as N-methylpyrrolidone, and water.

Aqueous application forms can be prepared from emulsion 5 concentrates, from suspensions, pastes, wettable powders or water-dispersible granules by adding water. For the preparation of emulsions, pastes or oil dispersions, the 1-phenylpyrrolidin-2-onecarboxamides I, as such or dissolved in an oil or solvent, can be homogenized in water by means of wetting agents, 10 adherents, dispersants or emulsifiers. However, it is also possible to prepare concentrates which consist of active ingredient, wetting agent, adherent, dispersant or emulsifier and possibly solvent or oil, which are suitable for dilution with water.

15

Suitable surfactants are the alkali metal, alkaline earth metal and ammonium salts of aromatic sulfonic acids, e.g. lignin-, phenol-, naphthalene- and dibutylnaphthalenesulfonic acid, and of fatty acids, alkylsulfonates and alkylarylsulfonates, alkyl 20 sulfates, lauryl ether sulfates and fatty alcohol sulfates, and salts of sulfated hexa-, hepta- and octadecanols and of fatty alcohol glycol ether, condensates of sulfonated naphthalene and its derivatives with formaldehyde, condensates of naphthalene or of naphthalenesulfonic acids with phenol and formaldehyde, 25 polyoxyethylene octylphenol ether, ethoxylated isooctyl-, octylor nonylphenol, alkylphenyl polyglycol ether, tributylphenyl polyglycol ether, alkylaryl polyether alcohols, isotridecyl alcohol, fatty alcohol/ethylene oxide condensates, ethoxylated castor oil, polyoxyethylene alkyl ethers or polyoxypropylene 30 alkyl ethers, lauryl alcohol polyglycol ether acetate, sorbitol

Powders, broadcasting agents and dusting agents can be prepared by mixing or milling the active ingredients together with a solid 35 carrier.

esters, lignosulfite waste liquors and methylcellulose.

Granules, for example coated, impregnated and homogeneous granules, can be prepared by binding the active ingredients to solid carriers. Solid carriers are mineral earths, such as 40 silicas, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, milled plastics, fertilizers, such as ammonium sulfate, ammonium phosphate, ammonium nitrate and ureas, and vegetable products, such as grain 45 flour, bark meal, wood meal and nutshell meal, cellulosic powders and other solid carriers.

The concentrations of the active ingredients I in the ready-to-use formulations may be varied within wide ranges. In general, the formulations comprise from about 0.001 to 98, preferably from 0.01 to 95, % by weight of at least one active ingredient I. The active ingredients are used in a purity of from 90 to 100 %, preferably from 95 to 100 % (according to the NMR spectrum).

The compounds I according to the invention can be formulated, for 10 example, as follows:

- I. 20 parts by weight of a compound I are dissolved in a mixture which consists of 80 parts by weight of alkylated benzene, 10 parts by weight of the adduct of from 8 to 10 mol of ethylene oxide with 1 mol of N-monoethanololeamide, 5 parts by weight of the calcium salt of dodecylbenzenesulfonic acid and 5 parts by weight of the adduct of 40 mol of ethylene oxide with 1 mol of castor oil. By pouring the solution into 100,000 parts by weight of water and finely distributing it therein, an aqueous dispersion which comprises 0.02% by weight of the active ingredient is obtained.
- 25 mixture which consists of 40 parts by weight of cyclohexanone, 30 parts by weight of isobutanol, 20 parts by weight of the adduct of 7 mol of ethylene oxide with 1 mol of isooctylphenol and 10 parts by weight of the adduct of 40 mol of ethylene oxide with 1 mol of castor oil. By pouring the solution into 100,000 parts by weight of water and finely distributing it therein, an aqueous dispersion which comprises 0.02% by weight of the active ingredient is obtained.
- 35 III. 20 parts by weight of a compound I are dissolved in a mixture which consists of 25 parts by weight of cyclohexanone, 65 parts by weight of a mineral oil fraction boiling within the range from 210 to 280°C and 10 parts by weight of the adduct of 40 mol of ethylene oxide with 1 mol of castor oil. By pouring the solution into 100,000 parts by weight of water and finely distributing it therein, an aqueous dispersion which comprises 0.02% by weight of the active ingredient is obtained.
- 45 IV. 20 parts by weight of a compound I are thoroughly mixed with 3 parts by weight of the sodium salt of disobutylnaphthalene- α -sulfonic acid, 17 parts by weight

5

20

45

of the sodium salt of a lignosulfonic acid obtained from a sulfite waste liquor and 60 parts by weight of silica gel powder, and the mixture is milled in a hammer mill. By finely distributing the mixture in 20,000 parts by weight of water, a spray liquor which comprises 0.1% by weight of the active ingredient is obtained.

- V. 3 parts by weight of a compound I are mixed with 97 parts by weight of finely divided kaolin. A dusting agent which comprises 3% by weight of the active ingredient is obtained in this manner.
- VI. 20 parts by weight of a compound I are thoroughly mixed with 2 parts by weight of the calcium salt of dodecylbenzenesulfonic acid, 8 parts by weight of fatty alcohol polyglycol ether, 2 parts by weight of sodium salt of a phenol/urea/formaldehyde condensate and 68 parts by weight of a paraffinic mineral oil. A stable oily dispersion is obtained.
- VII. 1 part by weight of a compound I is dissolved in a mixture which consists of 70 parts by weight of cyclohexanone, 20 parts by weight of ethoxylated isooctylphenol and 10 parts by weight of ethoxylated castor oil. A stable emulsion concentrate is obtained.
- VIII. 1 part by weight of a compound I is dissolved in a mixture which consists of 80 parts by weight of cyclohexanone and 20 parts by weight of Wettol[®] EM31 (= nonionic emulsifier based on ethoxylated castor oil; BASF AG). A stable emulsion concentrate is obtained.

The active compounds I or the herbicidal compositions can be applied by the preemergence or postemergence method. The

35 herbicidal compositions or active compounds can also be applied by sowing crop seed which has been pretreated with the herbicidal compositions or active compounds. If the active ingredients are less well tolerated by certain crops, it is possible to use application methods in which the herbicidal compositions are

40 sprayed with the aid of the sprayers in such a way that the leaves of the sensitive crops are as far as possible not affected, while the active compounds reach the leaves of undesirable plants growing underneath or the uncovered soil surface (post-directed, lay-by).

The application rates of active compound I are from 0.001 to 3.0, preferably from 0.01 to 1.0, kg/ha of active ingredient (a.i.),

depending on the aim of control, the season, the target plants and the state of growth.

In order to broaden the action spectrum and to achieve
5 synergistic effects, the compounds I according to the invention
may be mixed with many members of other groups of herbicidal or
growth-regulating active ingredients and applied together with
them.

- 10 Examples of suitable components of the mixture are 1,2,4-thiadiazoles, 1,3,4-thiadiazoles, amides, aminophosphoric acid and derivatives thereof, aminotriazoles, anilides, aryloxy-/hetaryloxyalkanoic acids and derivatives thereof, benzoic acid and derivatives thereof, benzothiadiazinones,
- 15 2-(hetaroyl/aroyl)-1,3-cyclohexanediones, hetarylarylketones, benzylisoxazolidinones, meta-CF₃-phenyl derivatives, carbamates, quinolinecarboxylic acid and derivatives thereof, chloroacetanilides, cyclohexane-1,3-dione derivatives, diazines, dichloropropionic acid and derivatives thereof,
- 20 dihydrobenzofurans, dihydrofuran-3-ones, dinitroanilines, dinitrophenols, diphenyl ethers, dipyridyls, halocarboxylic acids and derivatives thereof, ureas, 3-phenyluracils, imidazoles, imidazolinones, N-phenyl-3,4,5,6-tetrahydrophthalimides, oxadiazoles, oxiranes, phenols, aryloxy- and
- 25 heteroaryloxyphenoxypropionic esters, phenylacetic acid and derivatives thereof, 2-phenylpropionic acid and derivatives thereof, pyrazoles, phenylpyrazoles, pyridazines, pyridinecarboxylic acid and derivatives thereof, pyrimidyl ethers, sulfonamides, sulfonylureas, triazines, triazinones,
 30 triazolinones, triazolcarboxamides and uracils.

It may also be useful to apply the compounds I together, alone or in combination with other herbicides, also as a mixture with further crop-protection agents, for example with pesticides or

35 agents for controlling phytopathogenic fungi or bacteria. The miscibility with mineral salt solutions which are used for eliminating nutrient and trace element deficiencies is also of interest. Nonphytotoxic oils and oil concentrates can also be added.

40

The examples below are intended to illustrate the invention without limiting it.

Preparation examples

The products were characterized by HPLC/MS (high performance liquid chromatography/mass spectrometry), by ¹H-NMR spectroscopy 5 or by their melting point.

HPLC column: RP-18 column (Chromolith Speed ROD from Merck KgaA, Germany).

10 Mobile phase: acetonitrile + 0.1% trifluoroacetic acid (TFA)/water + 0.1% TFA in a gradient from 5:95 to 95:5 over 5 minutes, at 40°C.

MS: quadrupole electrospray ionization, 80 V (positive mode)

15

Example 1: 1-(3-trifluoromethyl)phenyl-3-(N-methyl)carboxamido-2-pyrrolidinone

20

25

1.1: 1-(3-trifluoromethyl)phenyl-2-pyrrolidinone

54 g (0.34 mol) of 3-trifluoromethylaniline, 110 ml of butyrolactone and 5 ml of concentrated hydrochloric acid were

30 heated at reflux for 13 hours. Excess butyrolactone was then removed under reduced pressure. The resulting crystalline residue was washed initially with an aqueous sodium bicarbonate solution and then with water and subsequently with pentane. Drying gave 65.5 g (85% of theory) of 1-(3-trifluoromethyl)phenyl-2-

35 pyrrolidinone.

 $^{1}\text{H-NMR}$ (270 MHz, CDCl3) δ (ppm): 7.85 (m, 2H), 7.45 (t, 1H), 7.4 (d, 1H), 3.85 (t, 2H), 2.6 (t, 2H), 2.2 (qu, 2H).

1.2: 2-oxo-1-(3-trifluoromethyl)phenyl-3-pyrrolidinecarboxylic
40 acid

Under nitrogen, 50 ml of absolute tetrahydrofuran were added to 13.6 g (0.06 mol) of 1-(3-trifluoromethyl)phenyl-2-pyrrolidinone from 1.1, the mixture was cooled to 0°C and 60 ml of 2M (0.12 mol) 45 lithium diisoproylamide in a solvent mixture of heptane, tetrahydrofuran and ethylbenzene were added. The reaction mixture was stirred at 0°C for 45 minutes. 5.4 g (0.06 mol) of dimethyl

carbonate in 10 ml of absolute tetrahydrofuran were then added. After the addition had ended, the reaction mixture was allowed to warm to 20°C and stirred for another 72 hours. The solvent was evaporated under reduced pressure and methyl tert-butyl ether and 5 water were then added to the resulting residue, the phases were separated and the organic phase was extracted twice with water. The aqueous phase was acidified with hydrochloric acid (10% by weight) to pH = 1. The mixture was extracted twice with in each case 100 ml of ethyl acetate and the combined organic phase was 10 dried and concentrated under reduced pressure. This gave 5.61 g (34% of theory) of 2-oxo-1-(3-trifluoromethyl)phenyl-3-pyrrolidinecarboxylic acid of melting point 121°C. $^{1}\text{H-NMR}$ (400 MHz, CDCl₃) δ (ppm): 7.9 (s, 1H), 7.8 (d, 1H), 7.5 (t, 1H), 7.45 (d, 1H), 4.1 - 3.9 (m, 2H), 3.7 (t, 1H), 2.55 (m, 2H).

15

1.3: 1-(3-trifluoromethyl)phenyl-3-(N-methyl)carboxamido-2-pyrrolidinone

0.14 g (1.8 mmol) of a 40% strength aqueous methylamine solution 20 was added to 0.5 g (1.8 mmol) of 2-oxo-1-(3-trifluoromethyl) phenyl-3-pyrrolidinecarboxylic acid from 1.2 in 50 ml of dichloromethane and 0.35 g (2 mmol) of 1,1'-carbonyldiimidazole. The reaction mixture was stirred at room temperature for 18 hours. The reaction mixture was extracted with saturated aqueous 25 ammonium chloride solution and the organic phase was then extracted with water. The organic phase was dried over anhydrous sodium sulfate, the solvent was removed under reduced pressure and the residue that remained was then titrated with methyl tert-butyl ether. The insoluble fraction was then separated off, 30 and the residue was washed with methyl tert-butyl ether. This gave 0.166 g (32% of theory) of the title compound of melting point 128°C.

-1H-NMR (400 MHz, CDCl₃) δ (ppm): 7.9 (s, -1H)-7.75 (d, 1H), 7.5 35 (t, 1H), 7.4 (d, 1H), 7.3 - 7.2 (br, 1H), 4.0 - 3.8 (m, 2H), 3.5 (t, 1H), 2.9 (d, 3H), 2.75 - 2.6 (m, 1H), 2.55 - 2.45 (m, 1H).

Example 2:

40 1-(3-trifluoromethoxy)phenyl-3-acetyloxy-3-(N-phenyl)carboxamido-2-pyrrolidinone

0.34 g (0.93 mmol) of 1-(3-trifluoromethoxy)phenyl-3-(N-phenyl)10 carboxamido-2-pyrrolidinone, prepared analogously to Example 1
 using the starting material 3-trifluoromethoxyaniline, was
 initially charged in 3 ml of dry dimethylformamide (DMF), and
 0.04 g (0.093 mmol) of sodium hydride (60% in mineral oil) was
 added at 20°C. The mixture was then stirred at 20°C for 30 min,
15 0.07 g (0.093 mmol) of acetyl chloride was then added and the
 mixture was stirred at 20°C for another 18 h. Water was added and
 the mixture was extracted repeatedly with dichloromethane. The
 combined organic phases were washed with water, the solvent was
 removed and the residue was chromatographed. This gave 0.27 g of
20 the title compound of melting point 140°C.

The compounds of Examples 3 to 191 were prepared in an analogous manner:

25 Table 2:

$$R^* = \begin{pmatrix} 0 & R^1 & 0 \\ & & &$$

35	Ex- am- ple	(A) _n	R*	R ¹	R ²	R ³	m.p. [°C] or RT (HPLC/MS)
	1	-	3-CF ₃	H	methyl	Н	128
	2	-	3-OCF ₃	OC(O)CH ₃	phenyl	Н	140
40	3	-	3-CF ₃	Н	ethyl	Н	122
	4	-	3-CF ₃	H	n-propyl	H	112
	5	-	3-CF ₃	H	n-butyl	Н	111
	6	-	3-CF ₃	Н	tert-butyl	H	oil
45	7	-	3-CF ₃	H	cyclopentyl	Н	oil
	8	-	3-CF ₃	Н	ethyl	ethyl	oil
	9		3-CF ₃	Н	methyl	n-butyl	oil

		· · · · · · · · · · · · · · · · · · ·	r · · · · · · · · · · · · · · · · · · ·		_	,	
	Ex- am- ple	(A) _n	R*	R ¹	R ²	R ³	m.p. [°C] or RT (HPLC/MS)
	10	-	3-CF ₃	Н	phenyl	Н	oil
5	11	-	3-CF ₃	H	CH(CH ₃) ₂	H	136
	12	_	3-CF ₃	H	cyclohexyl	Н	141
	13	_	3-CF ₃	Н	CH2-cyclopropyl	H	108
	14	-	3-CF ₃	H	cyclopropyl	Н	oil
10	15	-	3-CF ₃	Н	methyl	methyl	oil
	16	_	3-CF ₃	Н	cyclopropyl	methyl	oil
	17	0	3-CF ₃	H	t-butyl	Н	122
	18	-	3-OCF ₃	Н	methyl	H	103
15	19	-	3-OCF ₃	Н	ethyl	Н	111
15	20	-	3-OCF ₃	H	n-propyl	H	110
	21	-	3-OCF ₃	H	tert-butyl	Н	89
	22	-	3-OCF ₃	H	cyclopentyl	H	140
	23	-	3-OCF ₃	Н	methyl	n-butyl	oil
20	24	-	3-OCF ₃	H	phenyl	Н	108
	25	-	3-0CF ₃	Н ;	CH(CH ₃) ₂	H	134
	26	-	3-0CF ₃	H	cyclopropyl	H	134
	27	1	3-OCF ₃	H	methyl	methyl	oil
25	28	-	3-OCF ₃	H	H	H	106
	29	0	3-0CF ₃	H	H	H	124
	30	-	3-OCF ₃	OC(O)CH ₃	cyclopentyl	Н	oil
	31	0	3-OCF ₃	H	methyl	H	98
30	32	-	3-0CF ₃	CH ₃	tert-butyl	H	40
	33	0	3-OCF ₃	H	CH ₂ -phenyl	H	108
	34	0	3-OCF ₃	H	methyl	methyl	oil
	35	0	3-OCF ₃	H	CH(CH ₃) ₂	H	123
35	36	0 ~	3-OCF ₃	H	CH ₂ CH=CH ₂	Н	75
	37	0	3-OCF ₃	Н	$CH_2C(C1)=CH_2$	Н	68
	38	0	3-OCF ₃	H	CH ₂ CH ₂ CH ₂		29
	39	0	3-OCF ₃	Н	CH ₂ CH=CHCH ₃	H	87
••	40	0	3-OCF ₃	H	CH ₂ CH=CHCl	H	62
40	41	0	3-OCF ₃	H	CH ₂ CH ₃	H	100
	42	0	3-OCF ₃	H	CH ₂ CH ₂ OCH ₃	H	85
	43	0	3-OCF ₃	H	cylohexyl	H	152
	44	0	3-OCF ₃	H	CH ₂ -cylohexyl	H	135
45	45	-	3-CH(CH ₃) ₂	H	tert-butyl	H	51
	46	-	3-CH(CH ₃) ₂	CH ₃	tert-butyl	H	78
	47	0	3-CF ₃	H	tert-butyl	H	oil

	Ex- am-	(A) _n	R*	R ¹	R ²	R ³	m.p. [°C] or RT
	ple	\ .=/II					(HPLC/MS)
	48	0	3-OCF ₃	H	tert-butyl	Н	112
5	49	-	2-C1	Н	tert-butyl	H	76
	50	-	3-C1	H	tert-butyl	H	118
	51		3-C1; 5-C1	Н	tert-butyl	H	130
	52-		2-C1; 4-C1	H	tert-butyl	H	93
10	53	-	2-F	H	tert-butyl	H	113
	54	-	2-CF ₃	H	tert-butyl	H	90
	55	-	4-CF ₃	H	tert-butyl	H	155
	56	-	2-CH ₃	H	tert-butyl	H	93
15	57	-	3-CH ₃	Н	tert-butyl	H	88
13	58	-	4-CH ₃	H	tert-butyl	H	135
	59	-	2-CH(CH ₃) ₂	H	tert-butyl	H	104
	60	-	3-OCH ₃	H	tert-butyl	H	43
	61	-	4-OCH ₃	H	tert-butyl	H	132
20	62	-	2-OCH ₃	H	tert-butyl	H	oil
	63	-	2-C1; 6-C1	Н	tert-butyl	H	oil
	64	-	2-C1; 3-C1	H	tert-butyl	H	oil
	65	-	4-C1	H	tert-butyl	H	155
25	66	-	3-OCH ₃	н		H	110-112
30	67	-	3-OCF ₃	Н	•	Н	3.78 min, m/z = 405 [M+H]+
35	68	-	3-0CF ₃	н		H	4.09 min m/z = 399 [M+H]+
	69	_	3-0CF ₃	н	S	н	3.62 min m/z = 391 [M+H]+
40	70	_	3-0CF ₃	Н	•	н	3.89 min m/z = 397 [M+H]+
45	71	_	3-OCF ₃	H .	CI	н	4.30 min m/z = 469 [M+H]+

	Ex- am- ple	(A) _n	R*	R ¹	R ²	R ³	m.p. [°C] or RT (HPLC/MS)
5	72	_	3-OCF ₃	Н	1 CI	н	4.03 min m/z = 469 [M+H]+
10	73	-	3-OCF ₃	Н	+	Н	3.95 min m/z = 443 [M+Na]+
	74	-	3-OCF ₃	н		H	3.93 min m/z = 443 [M+Na]+
13	75	1	3-OCF ₃	Н		н	3.61 min m/z = 525 [M+H]+
20	76	-	3-OCF ₃	н		Н	3.75 min m/z = 459 [M+Na] ⁺
25	77	-	3-OCF ₃	н		н	3.55 min m/z = 489 [M+Na] ⁺
30	78	-	3-OCF ₃	н		н	3.84 min m/z = 373 [M+H]+
30	79	-	3-OCF ₃	н	CI CI	н	4.11 min m/z = 498 [M+Na]+
35	80	-	3-OCF ₃	H		н	3.79 min m/z = 443 [M+H]+
40	81	-	3-OCF ₃	Н	•	н	3.88 min m/z = 373 [M+H]+
45	82	_	3-OCF ₃	H	•	Н	3.60 min m/z = 387 [M+H]+

	Ex- am- ple	(A) _n	R*	R ¹	R ²	R ³	m.p. [°C] or RT (HPLC/MS)
5	83	1	3-OCF ₃	Н		H	3.80 min m/z = 429 [M+Na] ⁺
	84	-	3-OCF ₃	Н	•	Н	3.37 min m/z = 355 [M+H] ⁺
10	85	_	3-OCF ₃	Н	● <u></u> =N	н	3.17 min m/z = 356 [M+H]+
15	86	-	3-OCF ₃	н		H	4.20 min m/z = 401 [M+H]+
20	87	-	3-OCF ₃	н		Н	3.55 min m/z = 405 [M+H]+
	88	-	3-OCF ₃	н	<u>-</u>	Н .	3.52 min m/z = 435 [M+H] ⁺
25	89	-	3-OCF ₃	н	•	Н	3.91 min m/z = 451 [M+H] ⁺
30	90	ı	3-OCF ₃	н	CI	H	4.20 min m/z = 491 [M+Na]+
35	91	-	3-OCF ₃	Н		Н	3.18 min m/z = 389 [M+H] ⁺
40	92		3-OCF ₃	н		н	3.85 min m/z = 460 [M+Na]+
45	93	_	3-OCF ₃	н	FF	Н	4.03 min m/z = 475 [M+H]+

	Ex- am- ple	(A) _n	R*	R ¹	R ²	R ³	m.p. [°C] or RT (HPLC/MS)
5	94	-	3-OCF ₃	Н	H-N	H	3.82 min m/z = 579 [M+Na] ⁺
10	95	-	3-OCF ₃	Н		Н	3.19 min m/z = 401 [M+H]+
e • (i)	96	-	3-OCF ₃	н		н	3.32 min m/z = 481 [M+H]+
15	97	-	3-OCF ₃	Н		н	3.75 min m/z = 383 [M+H]+
20	98	-	3-OCF ₃	н .	•	Н	4.26 min m/z = 401 [M+H]+
25	99	-	3-0CF ₃	н		н	4.06 min m/z = 411 [M+H]+
30	100	_	3-0CF ₃	Н	•	Н	3.54 min m/z = 415 [M+H]+
35	101	-	3-OCF ₃	Н		н	3.79 min m/z = 429 [M+H]+
40	102	_	3-0CF ₃	Н		Н	3.77 min m/z = 429 [M+H]+
45	103	_	3-OCF ₃	H		Н	4.09 min m/z = 435 [M+H]+

	Ex- am- ple	(A) _n	R*	R ¹	R ²	R ³	m.p. [°C] or RT (HPLC/MS)
5	104	-	3-OCF ₃	Н	F	н	3.98 min m/z = 439 [M+H]+
10	105	-	3-OCF ₃	н		н	3.75 min m/z = 383 [M+H]+
	106	_	3-OCF ₃	Н		Н	2.93 min m/z = 421 [M+H]+
15	107	_	3-OCF ₃	н		Н	3.63 min m/z = 504 [M+H] ⁺
20	108	_	3-OCHF ₂	H	phenyl	H	104
	109	-	3-OCHF ₂	H		Н	80
	110	_	3-OCHF ₂	H	tert-butyl	Н	64
25	111	_	3-OCHF ₂	н		н	oil
30	112	-	3-OCHF ₂	H		H	153
35	113	_	3-OCHF ₂	H .	- III	н	oil
40	114	_	3-OCHF ₂	Н		Н	oil
45	115	-	3-OCHF ₂	Н	•	Н	48

	Ex- am- ple	(A) _n	R*	R ¹	R ²	R ³	m.p. [°C] or RT (HPLC/MS)
5	116	-	3-OCHF ₂	Н		н	oil
10	117	-	3-OCHF ₂	Н		Н	82
15	118	-	3-OCHF ₂	н .		н	oil
15	119	_	3-OCHF ₂	Н	CH ₃	H	74
	120	_	3-OCHF ₂	H	ethyl	H	70
	121	_	3-OCHF ₂	Н	isopropyl	H	126
	122	-	3-OCHF ₂	H	cylopropyl	H	130
	123	1	4-CH=C(C1) ₂	H	tert-butyl	H	166-167
20	124	-	3-CF ₃ ; 5-CF ₃	н	tert-butyl	н	135–136
	125	_	4-SCH ₃	H	tert-butyl	H	166-167
	126	-	4-CH(CH ₃) ₂	H	tert-butyl	H	130-131
	127	-	4-OCHF ₂	H	tert-butyl	H	152-153
25	128	-	3-Cl; 4-Cl; 5-Cl	н	tert-butyl	Н	160-163
	129	-	3-Br; 5-Br	Н	tert-butyl	н	140-141
30	130	-	4-NO ₂ ; 5-Cl	н	tert-butyl	н	152-153
	131	-	4-OCF ₂ CF ₃	H	tert-butyl	H	66-67
	132	-	3-OCF ₃	Н	Br	н	oil
35	133	<u>-</u>	3-OCF ₃	н		Н	3.51 min m/z = 357 [M+H]+
. (134	-	3-OCF ₃	н		н	3.67 min m/z = 359 [M+H]+
40	135	-	3-OCF ₃	н	он	Н	2.92 min m/z = 361 [M+H]+
45	136	-	3-OCF ₃	Н	• N	H	3.31 min m/z = 370 [M+H]+

.

	Ex- am- ple	(A) _n	R*	R ¹	R ²	R ³	m.p. [°C] or RT (HPLC/MS)
5	137	_	3-0CF ₃	Н	N	Н	3.23 min m/z = 370 [M+H]+
	138	-	3-CF ₃ ; 4-Cl	н	tert-butyl	Н	3.65 min m/z = 363 [M+H]+
10	139	-	3-ОСН ₃ ; 5-ОСН ₃	Н	tert-butyl	Н	2.87 min m/z = 321 [M+H]+
-	140	-	3-SCH ₃	H	tert-butyl	Н	3.14 min m/z = 307 [M+H]+
15 :	141	-	3-tert-bu- tyl	Н	tert-butyl	Н	3.62 min m/z = 317 [M+H]+
20	142	-	O-CH(CH ₃) ₂	Ħ	tert-butyl	Н	3.24 min m/z = 319 [M+H]+
20	143	-	3-F; 4-F	Н	tert-butyl	Н	3.07 min m/z = 297 [M+H]+
25	144	-	3-OCH ₃ ; 4-OCH ₃ ; 5-OCH ₃	н	tert-butyl	н	2.64 min m/z = 351 [M+H]+
•	145	-	4-propyl	н	tert-butyl	Н	3.53 min m/z = 303 [M+H]+
30	146	-	4-0-tert- butyl	н	tert-butyl	Н	3.36 min m/z = 333 [M+H]+
÷ •	147	-	3-C1; 4-F	н	tert-butyl	н	3.26 min m/z = 313 [M+H]+
35	148	**	4-0-propyl	н .	tert-butyl	н	3.67 min m/z = 319 [M+H] ⁺ 3.19 min
	149	-	4-Br	н	tert-butyl	Н	m/z = 339 [M+H] ⁺ 3.32 min
40	150	_	4-SCH ₂ CH ₃	н	tert-butyl	Ħ	m/z = 321 [M+H] ⁺ 3.49 min
	151	-	3-Br; 4-OCH ₃ ; 5-Cl	н	tert-butyl	Н	m/z = 405 [M+H]+
45	152	_	3-C1; 4-O-propyl	н	tert-butyl	Н	3.58 min m/z = 353 [M+H]+

	Ex- am- ple	(A) _n	R*	R1	R ²	R ³	m.p. [°C] or RT (HPLC/MS)
5	153	_	3-F; 4-NO ₂	н	tert-butyl	Н	2.97 min $m/z = 324$ [M+H]+
	154	-	3-Br; 5-Br; 4-Cl	н	tert-butyl	Н	3.86 min m/z = 452 [M+H]+
10	155	_	3-ethyl; 5-CH ₃	H	tert-butyl	Н	3.47 min m/z = 303 [M] ⁺
	156	-	3-CH ₃ ; 5-CH ₃	H	tert-butyl	Н	3.22 min m/z = 289 [M+H]+
15	157	-	3-Br	н	tert-butyl	Н	3.21 min m/z = 341 [M+H]+
	158	-	3-ethyl	Н	tert-butyl	н	3.23 min m/z = 289 [M+H]+
20	159		3-iso- propyl; 4-OCH ₃	H	tert-butyl	Н	3.46 min m/z = 333 [M+H]+
	160	· .	3,4 -OCH ₂ CH ₂ O-	H .	tert-butyl	Н	2.66 min m/z = 319 [M+H]+
25	161		4-CN	Н	tert-butyl	Н	2.74 min m/z = 286 [M+H]+
30	162	-	3-CN; 4-OCH ₃	Н	tert-butyl	н	2.74 min m/z = 316 [M+H]+
30	163	-	3-CN; 4-F	Н	tert-butyl	н	2.79 min m/z = 304 [M+H]+
35	164	- :	3-F; 4-CH ₃	н	tert-butyl	Н	3.22 min m/z = 293 [M+H]+
	165	_	3-CN; 4-C1	Н	tert-butyl	Н	3.09 min $m/z = 320$ [M+H]+
40	166	-	3-C1; 4-C1	н	tert-butyl	Н	3.53 min m/z = 329 [M]+
	167	_	3-CH ₃ ; 4-F	н	tert-butyl	Н	3.11 min m/z = 293 [M+H]+
45	168	-	3-C1; 4-OCH ₃	н	tert-butyl	Н	3.06 min m/z = 325 [M+H]+

	Ex- am-	(A) _n	R*	R ¹	R ²	R ³	m.p. [°C] or RT (HPLC/MS)
	ple						
5	169	-	4-heptyl	H	tert-butyl	H	4.50 min m/z = 359 [M+H]+
	170	-	4-tert- butyl	Н	tert-butyl	Н	3.73 min m/z = 317 [M+H]+
10	171	-	4-ethyl	Н	tert-butyl	Н	3.32 min m/z = 289 [M+H]+
	172	-	3-Cl; 4-iso- propyl	Н	tert-butyl	Н	3.82 min m/z = 337 [M+H]+
15	173	-	3-C1; 4-CH _{3.}	H	tert-butyl	н	3.45 min m/z = 309 [M] ⁺
	174		3-F	Н	tert-butyl	н	3.96 min m/z = 279 [M+H]+
20	175	-	3-CH ₃ ; 5-prdpyl	Н	tert-butyl	н	94-96
	176	-	3-ethyl; 5-ethyl	Н	tert-butyl	н	120-122
	177	-	3-0-ethyl	H	tert-butyl	H	86-88
25	178	-	3-OCH ₃ ; 4-Br	Н	tert-butyl	н	150-152
	179	-	3-OCH ₃ ; 4-C1	Н	tert-butyl	н	137–139
	180	-	3-C1; 4-SCF ₃	Н	tert-butyl	Н	3.86 min m/z = 395 [M+H]+
30	181	-	4-F	Н	tert-butyl	Н	2.77 min m/z = 278 [M+H] ⁺
35	182	- ·	3-OCF ₃	н	H., H	Н .	4.16 min m/z = 423 [M+H]+
40	183	_	3-OCF ₃	H	CI	H	4.31 min m/z = 469 [M+H]+
45	184	·	3-OCF ₃	н		н	3.87 min m/z = 443 [M+H]+

	Ex- am- ple	(A) _n	R*	R ¹	R ²	R ³	m.p. [°C] or RT (HPLC/MS)
5	185	_	3-OCF ₃	Н	F	н	3.76 min m/z = 447 [M+Na]+
10	186	-	3-OCF ₃	н	O NH ₂	н	3.00 min m/z = 402 [M+H]+
15	187	ı	3-OCF ₃	H.		н	3.75 min m/z = 453 [M+Na]+
20	188	-	3-OCF ₃	H.	Ci	н	3.94 min m/z = 463 [M+Na]+
25	189	ı	3-OCF ₃	H		н .	4.42 min m/z = 553 [M+Na]+
	190	-	3-OCF ₃	Ĥ	•	Н	3.85 min m/z = 473 [M+Na]+
40	191	_	3-OCF ₃	н		Н	4.49 min m/z = 611 [M+Na]+

^{*} The number in front of the substituent denotes the position of 45 the substituent on the phenyl ring.

92

• Attachment site

RT = retention time, HPLC/MS

m.p. = melting point

5 phenyl = C_6H_5

Example 192:

1-(3-trifluoromethoxy)phenyl-3-(N-(1,1-dimethylethyl))carbox10 amido-2-pyrrolidinethione and 1-(3-trifluoromethoxy)phenyl3-(N-(1,1-dimethylethyl))thiocarboxamido-2-pyrrolidinone

15
$$F_3CO$$
 H CH_3 F_3CO H CH_3 F_3CO H CH_3

20 0.26 g (0.7 mmol) of 1-(3-trifluoromethoxy)phenyl-3- (N-(1,1-di-methylethyl))carboxamido-2-pyrrolidinone was initially charged in 3 ml of dry toluene, and 0.17 gt (0.42 mmol) of 2,4-bis(4-methoxy-phenyl)-1,3-dithia-2,4-diphosphetane-2,4- dithione (Lawesson's reagent) was added at 20°C, and the mixture was heated at 70°C for

25 7 h. The reaction mixture was then washed twice with water. The solvent was removed and the residue was chromatographed on silica gel using a mixture of cyclohexane/ethyl acetate as mobile phase. A first fraction gave 0.06 g (22%) of

1-(3-trifluoromethoxy)phenyl-3-(N-(1,1-dimethyl-

30 ethyl))thiocarboxamido-2-pyrrolidinone of melting point 65°C and 0.08 g (29%) of 1-(3-trifluoromethoxy)phenyl-3-(N-(1,1-dimethylethyl))carboxamido-2-pyrrolidinethione of melting point 116°C.

Use examples

35

The herbicidal activity of the 1-phenylpyrrolidon-2-one-3-carboxamides of the formula I was demonstrated by the following greenhouse experiments:

- 40 The cultivation containers used were plastic flowerpots containing loamy sand with approximately 3.0% of humus as the substrate. The seeds of the test plants were sown separately for each species.
- 45 For the preemergence treatment, directly after sowing the active compounds, which had been suspended or emulsified in water, were applied by means of finely distributing nozzles. The containers

were irrigated gently to promote germination and growth and subsequently covered with transparent plastic hoods until the plants had rooted. This cover causes uniform germination of the test plants, unless this was adversely affected by the active 5 compounds.

For the postemergence treatment, the test plants were first grown to a height of 3-15 cm, depending on the plant habit, and only then treated with the active compounds which had been suspended 10 or emulsified in water. The test plants were for this purpose either sown directly and grown in the same containers, or they were first grown separately as seedlings and transplanted into the test containers a few days prior to the treatment. The application rate for the pre- and postemergence treatment was 15 3.0 kg of a.i./ha.

Depending on the species, the plants were kept at 10 - 25°C or 20 - 35°C. The test period extended over 2 to 4 weeks. During this time, the plants were tended, and their response to the

20 individual treatments was evaluated.

Evaluation was carried out using a scale from 0 to 100. 100 means no emergence of the plants, or complete destruction of at least the above-ground parts, and 0 means no damage, or normal course 25 of growth.

The plants used in the greenhouse experiments were of the following species:

30 Bayer code Common name
ABUTH Velvetleaf
AVEFA wild Oat
LOLMU italien Ryegrass

SETIT Millet

35 SINAL velvetleaf

At application rates of 3 kg/ha, the compound from Example 3, applied by the post-emergence method, shows very good herbicidal activity against AVEFA and SINAL.

At application rates of 3 kg/ha, the compound from Example 18, applied by the post-emergence method, shows very good herbicidal activity against ABUTH, SETIT and SINAL.

40

At application rates of 3 kg/ha, the compound from Example 18, applied by the pre-emergence method, shows very good herbicidal activity against ABUTH, SETIT and SINAL.

5 At application rates of 3 kg/ha, the compound from Example 19, applied by the pre-emergence method, shows very good herbicidal activity against ABUTH and SINAL.

At application rates of 3 kg/ha, the compound from Example 26, 10 applied by the post-emergence method, shows very good herbicidal activity against AVEFA and SINAL.

At application rates of 3 kg/ha, the compound from Example 26, applied by the pre-emergence method, shows very good herbicidal activity against ABUTH, LOLMU and SINAL.