IE510Applied Nonlinear Programming

Lecture 2: Gradient Methods II: Convergence Analysis

Ruoyu Sun

Jan., 2018

Questions for Last Time

- · Q1: Explain what is gradient descent.
- Q2: What is the relation between gradient descent and Newton method?
 |) ▽f(x), (▽²f(x)) ▽f(x), ≤pecial case of D of(x)
 - 2) Both quadratic approximation.
- Q3: Is it possible for GD to find the global minima?
- Q4: What are the two key ingredients of an iterative descent method?
 chion
 stepsize

Last Time summary

- Gradient descent (also called steepest descent) has the form $x \to x \alpha \nabla f(x)$.
- · Three ways to motivate
 - · Iterative descent; hill climbing
 - Successive quadratic approximation (with identity 2nd order term)
 - · Fixed point algorithm
- Two key ingredients of iterative descent methods:
 - Direction: $-\nabla f(x)$, $-\nabla^2 f(x)^{-1} \nabla f(x)$, general $D\nabla f(x)$
 - Stepsize
- · Stepsize rules
 - Pre-fixed: constant, diminishing (requirement?) کی ایک در ایک
 - · Line search: exact/limited minimization, Armijo rule

Today

- Convergence Analysis of GD and iterative descent methods
- · After today's course, you will be able to
 - Describe the convergence results for GD with various stepsize rules
 - Show the proof of convergence for GD with constant stepsize
 - Point out whether the results apply to a real world example
 - Advanced: Distinguish different kinds of convergence

Outline

- 1 Example of Basketball: Analysis
- 2 Convergence Analysis: General
- 3 Without Lipschitz Assumption
- 4 Applying Gradient Descent to Regression
- **5** Convergence Rate Analysis

Example: Basketball again

• p is position, x is the force. $\min \frac{1}{2}(p-cx)^2$

- error
- GD: $x^+ = x \alpha \nabla f(x) = \begin{tabular}{c} \mathbf{X} \mathbf{C} \mathbf{C} \end{tabular}$, where $e = \mathbf{C} \mathbf{X} \mathbf{P}$,
- Stepsize α represents how aggressively you adjust your strength What should be your strategy?

Strategy of Picking Stepsize

- Line search rules: too complex for this task
- Constant: how to pick the constant? (yeah, to achieve descent, but how? trial?)
- · If not too carefully....

Typical Convergence Analysis Types

Convergence to stationary solutions

- 1 Sanity check
- 2 Minimal requirement of any reasonable algorithm
- 3 Does not give global efficiency of the algorithm
- Asymptotic convergence rate: local analysis, assuming already close to a solution, let # of iterations go to infinity
 - 1 Linear rate/Supperlinear rate/Sublinear rate

Iteration complexity analysis

- ① Measures the number of iterations required to get an optimal solution (e.g., $f(\mathbf{x}^r) f \le \epsilon$)
- 2 Current analysis is all for the worst case and requires convexity
- Gives global behavior of the algorithm

Typical Convergence Analysis Types

- Convergence to stationary solutions
 - Sanity check
 - 2 Minimal requirement of any reasonable algorithm
 - 3 Does not give global efficiency of the algorithm
- Asymptotic convergence rate: local analysis, assuming already close to a solution, let # of iterations go to infinity
 - 1 Linear rate/Supperlinear rate/Sublinear rate
- Iteration complexity analysis
 - 1 Measures the number of iterations required to get an optimal solution (e.g., $f(\mathbf{x}^r) f \le \epsilon$)
 - 2 Current analysis is all for the worst case and requires convexity
 - 3 Gives global behavior of the algorithm

Typical Convergence Analysis Types

Convergence to stationary solutions

- Sanity check
 - 2 Minimal requirement of any reasonable algorithm
 - 3 Does not give global efficiency of the algorithm
 - Asymptotic convergence rate: local analysis, assuming already close to a solution, let # of iterations go to infinity
 - 1 Linear rate/Supperlinear rate/Sublinear rate
 - Iteration complexity analysis
 - **1** Measures the number of iterations required to get an optimal solution (e.g., $f(\mathbf{x}^r) f \le \epsilon$)
 - 2 Current analysis is all for the worst case and requires convexity
 - 3 Gives global behavior of the algorithm

Why Study Convergence Analysis?

- Do we really have to go through this? See Section 1.2.1, the last part (version 2 of Bertsekas's book).
- 1) Help choose algorithm.
 - 1.1) Determine applicability.

For different problems (convex or non-convex, smooth or non-differentiable, etc.), does the algorithm apply?

- 1.2) Help narrow down the choice of algorithms.
 Knowing the speed helps a lot: save costly experimentation.
- 2) Help use software package.
 cvx, MOSEK, Gurobi, Tensorflow, PyTorch, Caffe2, MXNet, etc.
 "Parameter tuner" requires knowledge.
- **Example**: a student used PyTorch to solve a single-neuron network. Does not converge. Why?

Convergence Analysis of Basketball Example

GD with constant stepsize: $x^+ = x - \alpha f'(x) = (1 - \alpha c^2)x + \alpha cp$.

• Simple case: p = 0. Then the sequence converges if

$$\chi^{+} = (1 - \alpha c^{2}) \chi \qquad \qquad \frac{\left| 1 - \alpha c^{2} \right| < 1}{1}$$
i.e.,
$$0 < \alpha < \frac{2}{C^{2}}.$$

- For general case $p \neq 0$?
- Use the idea of "descent" $f(x^+) < f(x)$; quantitatively,

$$f(x^{+}) = f(x) + f'(x)(x^{+} - x) + \frac{1}{2}(x^{+}x)^{2} f'(x) + o(x^{+}x^{+})$$

$$= f(x) - \alpha f'(x)^{2} + \frac{1}{2}\alpha^{2}f'(x)^{2} \cdot c^{2}$$

$$= f(x) + (-\alpha + \frac{1}{2}\alpha^{2}c^{2}) f'(x)^{2}$$

$$= f(x)$$

$$f(x)$$

$$f(x)$$

$$f(x)$$

Achieve "descent" iff (1) holds.

Convergence Analysis of Basketball Example (cont'd)

- Now we have $f(x^{r+1}) < f(x^r)$. So what?
- A decreasing sequence $\{f(x^r)\}$ must
 - either goes to $-\infty$ (impossible for this problem since
 - · or converges
- Are we done? One more thing: converge to what?
- Previous analysis: if $\{x^r\}$ converges, then $\nabla f(x^{\infty}) = 0$. Rigorously speaking, WRONG!
- Issue: $f(x^r)$ converges does NOT mean $\{x^r\}$ converges e.g. _____
 - Function value convergence v.s. iterate convergence

Convergence Analysis of Basketball Example (cont'd)

- Now we have $f(x^{r+1}) < f(x^r)$. So what?
- A decreasing sequence $\{f(x^r)\}$ must
 - either goes to $-\infty$ (impossible for this problem since _____)
 - or converges
- Are we done? One more thing: converge to what?
- Previous analysis: if $\{x^r\}$ converges, then ____ Rigorously speaking, WRONG!
- **Issue**: $f(x^r)$ converges does NOT mean $\{x^r\}$ converges . e.g. $f(x) = co(2\pi x)$, $f(x) = x^2$. $\{x^r\} = \{1, -1, 1, -1, \cdots\}$, diverge function value convergence v.s. iterate convergence

Convergence Analysis of Basketball Example (cont'd)

• Correct argument: $\int \frac{\partial}{f(x^{r+1}) - f(x^r)} = \int \frac{\partial}{\partial x^r} \int f'(x)^2$ $f(x^r) \text{ converges means } \int \frac{\partial}{\partial x^r} \int f'(x)^2 dx$

- **Proposition** 0: When using GD with constant stepsize α to solve $\min_x (p-cx)^2$, if $0 < \alpha < 2/c^2$, then $f'(x^r) \to 0$.
- Analysis of GD with constant stepsize for 1-dim guadratic problems
- Exercise: prove Prop. Quising fixed point theorem. 2-(in proof.
 - Much easier. But hard to generalize to high-dimension case
- · How much can we generalize?

Stepsize and Curvature (illustration)

Consider a general function, possibly nonconvex.

Stepsize and Curvature (illustration)

Stepsize and Curvature (illustration)

Stepsize and Curvature: Relation

- From the above graph illustration (2nd interpretation of GD), we obtain important intuition.
- Intuition: stepsize should be inversely proportional to the curvature of the function
- **Example**: $f(x) = \frac{1}{2}(p cx)^2$. Curvature is f''(x) = c, stepsize $0 < \alpha < 2/c$.

Typical choice
$$\alpha = 1/c$$
.

Typical choice
$$\alpha=1/c$$
. Non-convex: $\infty < \frac{2}{\max \ \text{curvature}}$

Extension to High Dimension

- The key ingredient in the proof: decrease of function value.
- For twice-differentiable function $f(\mathbf{x})$, let $\mathbf{x}^+ = \mathbf{x} \alpha \nabla f(\mathbf{x})$, then

$$\begin{array}{ll} \text{Compore:} & f(\mathbf{x}^+) \approx f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{x}^+ - \mathbf{x} \rangle + \frac{1}{2} (\mathbf{x}^+ - \mathbf{x})^T \sqrt[3]{\mathbf{x}} (\mathbf{x}^+ - \mathbf{x}) \\ \|\mathbf{U}\|^2 \text{ v.s. } \mathbf{u}^T \mathbf{A} \mathbf{v}^? & = \mathbf{f}(\mathbf{x}) - \alpha \|\mathbf{v} \mathbf{f}(\mathbf{x})\|^2 + \frac{1}{2} \sqrt[3]{\mathbf{f}(\mathbf{x})} \sqrt[3]{\mathbf{v}} \mathbf{f}(\mathbf{x}) \cdot \alpha^2 \\ & \stackrel{(i)}{\leq} \mathbf{f}(\mathbf{x}) + (-\alpha + \frac{1}{2} \mathbf{L} \alpha^2) \|\mathbf{v} \mathbf{f}(\mathbf{x})\|^2 \leqslant \mathbf{L} \|\nabla \mathbf{f}(\mathbf{x})\|^2 \cdot \alpha^2 \\ & \stackrel{(ii)}{\leq} f(\mathbf{x}), \end{array}$$

where in (i) we assumed

and (ii) holds when
$$\nabla^{2} f(\mathbf{y}) \preceq L \mathbf{I}, \ \forall y \in \mathbb{R}^{n}.$$

$$0 < \alpha < \frac{2}{L}.$$
(2)

The Descent Lemma

- We are almost done... except one math improvement.
- Mathematicians want a weak condition: no need to assume twice-differentiable, but continuously-differentiable (12. 2 f(x) 43. Continuously)
- Assumption 1: $f: \mathbb{R}^n \to \mathbb{R}$ has L-Lipschitz gradient, i.e., $\|\nabla f(\mathbf{x}) \nabla f(\mathbf{y})\| \le \|\mathbf{x} \mathbf{y}\|$, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- The Descent Lemma: Under Assumption 1, we have $f(\mathbf{x}) \leq f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{x} \mathbf{y} \rangle + \frac{L}{2} \|\mathbf{x} \mathbf{y}\|^2.$ Remark: Sometimes directly assume f satisfies this lemma, called L-smooth.
- Tiernark. Confedines directly assume j satisfies this fermina, called E smooth
- With this lemma, the argument in the last page still holds.

Proof of Descent Lemma (skip in class)

- See Prop. A. 24 of Bertsekas for proof of this lemma; also given below.
- Let t be a scalar and let g(t) = f(x + ty)
- Chain rule: $g'(t) = y' \nabla f(x + ty)$
- · We have the following

$$\begin{split} &f(x+y)-f(x)\\ &=g(1)-g(0)=\int_0^1 g'(t)dt=\int_0^1 y'\nabla f(x+ty)dt\\ &\leq \int_0^1 y'\nabla f(x)dt+\left|\int_0^1 y'(\nabla f(x+yt)-\nabla f(x))dt\right|\\ &\leq \int_0^1 y'\nabla f(x)dt+\int_0^1 \|y\|\|\nabla f(x+yt)-\nabla f(x)\|dt\\ &\leq y'\nabla f(x)+\|y\|\int_0^1 Lt\|y\|dt \qquad \text{(Lipschitz continuity)}\\ &=y'\nabla f(x)\frac{L}{2}\|y\|^2 \end{split}$$

Converg. Result 1: Constant Stepsize

- Proposition 1: When using GD with constant stepsize α to solve $\min_{\mathbf{x} \in \Re^n} f(\mathbf{x})$. Suppose
 - (i) f has L-Lipschitz gradient;
 - (ii) $0 < \alpha < 2/L$,

then we have

- Either $f(x) \rightarrow -\infty$, • or $\nabla f(x^r) \rightarrow 0$.
- This is the first formal result of this course.
- It provides strong guidance on how to pick stepsize.
- · Its limitation?
 - Too conservative? Not adaptive.
 - L may not exist?

Converg. Result 1: Constant Stepsize

- Proposition 1: When using GD with constant stepsize α to solve $\min_{\mathbf{x} \in \Re^n} f(\mathbf{x})$. Suppose
 - (i) f has L-Lipschitz gradient;
 - (ii) $0 < \alpha < 2/L$,

then we have

- Fither
- or
- This is the first formal result of this course.
- It provides strong guidance on how to pick stepsize.
- Its limitation?
 - Too conservative? Not adaptive.
 - · L may not exist? More discussion later.

Subtleties of "Convergence"

- In Prop. 1: either f diverges to $-\infty$, or gradient converges to zero.
- Note: $\nabla f(\mathbf{x}^r) \to 0 \Rightarrow \mathbf{x}^r$ converges:
 - Possibility 1: $\frac{\text{diverge}}{\text{diverge}}$ (even if f converges)
 - Possibility 2: jump around (non-isolated stationary points);
- Wrong statement:then $\{x^r\}$ converges to a stationary point.
- **Textbook** version: Every limit point of $\{x^r\}$ is a stationary point.
 - Does it imply a limit point exists? No.
 - Example: Every child of mine is a boy. I might have no child.
 - Mathematically, set of my child ⊆ set of boys. Empty set possible.

Subtleties of "Convergence" (optional)

- Improvement: To guarantee $\{x^r\}$ does not diverge? Under Assumption 2a and 2b below.
- Assumption 2a: The level set $\{f(\mathbf{x}) \leq f(\mathbf{x}^0)\}$ is compact; Assumption 2b: The algorithm is $\frac{\operatorname{deresing}}{\operatorname{deresing}}$ (i.e. $\frac{\operatorname{form}}{\operatorname{deresing}}$)
- Improvement: To guarantee $\{x^r\}$ converge to a single point? Under Assumption 2a,2b and Assumption 3.
- Assumption 3: Every stationary point is isolated
 - rigorously speaking, only require the sequence falls into a neighborhood of Isolated local-min (Prop 1.2.5 Capture Theorem);

Application to Least Squares

- Example: $f(x) = ||Ax b||^2$.
- Case 1: Strictly convex case. *A* is nonsingular fat (overdetermined; more sample than features).

f satisfies Assumption 2a and Assumption 3.

So GD with stepsize

$$0 (so his fiew Assumption 2b)$$

converges to the unique global-min.

Case 2: Non-strictly convex case.

A is singular; or A is tall (underdetermined; more features than samples).

For GD with proper stepsize, we still have $\nabla f(\mathbf{x}^r) \to 0$. But Prop. 1 doesn't imply $\{\mathbf{x}^r\}$ converge (need advanced tool).

Summary: "Convergence" Means What?

- Most **Textbook** results: Every limit point of {x^r} is a stationary point.
- Everyday language: "converge to stationary points".

In the course, I may say "converge to stationary points", but you should understand

- · It really means, theoretically, every (nut point a) Stationery point

In practice, diverging and jumping around are rare. There are deeper reasons, not covered in this course.

- Sometimes we can prove convergence to a single stationary point (e.g. strictly convex).
- Philosophical question: what is knowledge? Do you know "GD converges"?

More General Convergence Result

- Proposition 1b Under Assumption 1 (L-Lipschitz gradient), using GD with either one of the following choices of stepsize:
 - **1** There exits a scalar $\epsilon \in (0,2)$ such that for all r

$$\epsilon < \alpha_r \le \frac{(2 - \epsilon)}{L}$$

2 $\alpha_r \to 0$, and $\sum_{r=1}^{\infty} \alpha_r = \infty$ (i.e., $\alpha_r = \frac{1}{r}$)

we have every limit point is a stationary point.

- **Remark 1**: We can pick constant stepsize $\alpha_r = \frac{1}{2}$. But fluctuating in a range is also fine.
- Remark 2: Lipschitz gradient assumption is used for constant and diminishing stepsize.
- Remark 3: Can be even more general by allowing more choices of descent directions. See Prop. 1.2.3 and Prop. 1.2.3 in textbook.

Diminishing Stepsize

A snapshot of textbook result.

Proposition 1.2.4: (Convergence for a Diminishing Stepsize)

Let $\{x^k\}$ be a sequence generated by a gradient method $x^{k+1} = x^k + 1$ $\alpha^k d^k$. Assume that for some constant L > 0, we have

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall \ x, y \in \Re^n, \tag{1.26}$$

and that there exist positive scalars c_1 , c_2 such that for all k we have

$$c_1 \|\nabla f(x^k)\|^2 \le -\nabla f(x^k)'d^k, \quad \|d^k\|^2 \le c_2 \|\nabla f(x^k)\|^2.$$
 (1.27)

Suppose also that

condition on director

$$\alpha^k \to 0$$
, $\sum_{k=0}^{\infty} \alpha^k = \infty$. Annhiby stepsie

Then either $f(x^k) \to -\infty$ or else $\{f(x^k)\}$ converges to a finite value and $\nabla f(x^k) \to 0$. Furthermore, every limit point of $\{x^k\}$ is a stationary point of f.

Conton many elements
I break them down,
that several pieces.

Application to Simple Example 1

- Is Lipschitz gradient common?
 Well, at least non-Lipschitz gradient is common.
- Example 1: $f(x) = x^4$.
- Use GD to solve it? $\chi^{\dagger} = \chi \omega \cdot \psi \chi^{3}$.

- @ Pizk stepsize $\alpha = \frac{1}{12B^2}$, then f w decreasing, $4x^2y stays in <math>\Omega$.
- 3) By same argument, GD with stepsize $\alpha = \frac{1}{12B^2}$ corneges to 0.

Application to Simple Example 2

- Example 2: $f(x,y)=(xy-1)^2, \quad x,y\in\mathbb{R}.$
- This is 1-neuron linear neural-net, or 1-dim matrix factorization.

Convergence Result 2: No Assumption

- **Proposition 2**: Suppose we minimize a differentiable function by GD with either one of the following:
 - · minimization rule,
 - limited minimization rule,
 - · Armijo rule,

every limit point of the sequence is a stationary point.

- Proof omitted. Intuition: adaptive.
- Practical guidance: to avoid Lipschitz gradient assumption?
 Use Armijo rule.
- See Proposition 1.2.1 in textbook for a slightly more general result: descent direction only requires to be "gradient related" (next slide).

Gradient-related

(ship in closs; can read it yourself).

- The direction \mathbf{d}^r cannot be orthogonal to $\nabla f(\mathbf{x}^r)$ [figure]
- Gradient related condition: For any sequence $\{x^r\}$ that converges to a nonstationary point, the corresponding direction $\{d^r\}$ is bounded and satisfies

$$\lim_{r \to \infty} \langle \nabla f(\mathbf{x}^r), \mathbf{d}^r \rangle < 0$$

• Is this condition satisfied for $\mathbf{d}^r = -\mathbf{D}^r \nabla f(\mathbf{x}^r)$, with \mathbf{D}^r being a positive definite matrix?

Homework

- Read Section 1.2, especially Section 1.2.2, especially Prop 1.2.1
 1.2.3.
- Read Proof Prop. 1.2.4 if you are interested in analysis of diminishing stepsize (delicate proof!)
- Next time: convergence rate analysis