Assignment 01 - Linear Regression Assignment: Part 2

Name: Tanveer Kaur

Student ID: 901038217

Alpha (Learning Rate): Controls the step size during weight updates.

Epochs: The number of times the model sees the entire training dataset.

Experiments and Results:

Observations:

Alphas	Epochs	Training Loss	Testing Loss		Weights	
0.0001	93089	0.00582130	0.00757410	[21.07772523,	46.98908338,	75.06583492,
				76.19575298]		
0.001	12000	0.00015584	0.00020950	[21.07734465,	46.95684358,	75.15428547,
				76.25243578]		
0.002	7500	0.0000029	0.0000040	[21.07663541,	46.94931326,	75.16861454,
				76.26178203]		
0.002	5000	0.00226574	0.00297734	[21.07804265,	46.97620148,	75.10598923,
				76.2213652]		
0.01	900	0.0084959	0.0110142	[21.07742366,	46.99577947,	75.04355955,
				76.18157478]		
0.01	1000	0.0021839	0.0028722	[21.078077,	46.97589201,	75.10722798,
				76.22214929]		
0.1	90	0.00572476	0.00749398	[21.07848821,	46.99129109,	75.06735467,
				76.19654316]		
0.13	90	0.00011398	0.00015454	[21.07736656,	46.95602032,	75.15686077,
				76.25407703]		
0.195	50	0.00124329	0.00166167	[21.0786281,	46.97207085,	75.12380404,
				76.23261308]		

Analysis:

Impact of Alpha:

- Smaller alpha values (e.g., 0.0001) required more epochs to converge but achieved stable results.
- Larger alpha values (e.g., 0.13) allowed faster convergence with fewer epochs.

Impacts of Epochs:

- Increasing the number of epochs improved the model's performance up to a certain point.
- Beyond a certain number of epochs, the model started to overfit, as seen by the increasing gap between training and testing loss.

The best performance was achieved with alpha = 0.13 and epochs = 90, resulting in a testing loss of 0. 00015454.

Relationship between Alpha and Epochs

There is an inverse relationship between alpha and epochs:

- A larger alpha allows the model to converge faster, requiring fewer epochs.
- A smaller alpha required more epochs to achieve similar performance.

Like, with alpha = 0.0001, the model required 93089 epochs to achieve a testing loss of 0.00757410.

And with alpha = 0.13, the model achieved a much lower testing loss of 0. 00015454 in just 90 epochs.

Conclusion:

The observations demonstrated the importance of tuning hyperparameters in linear regression. The best performance was achieved with alpha = 0.13 and epochs = 90, resulting in a testing loss of 0.00015454. This highlights the trad-off between alpha and epochs, where a larger alpha allows for faster convergence with fewer epochs.