

ERTH
1006/1010
Our Solar System
Geochronology
Ch. 23, 8

Sulphur, island of Vulcano, Italy

<u>Summary</u>

- Solar System forms from nebular cloud, termed Nebular Hypothesis
- Planets form by accretion of metallic, rocky fragments between 5.5 and 4.6 Ga (giga-annum)
- Earth, other planets differentiate into core + mantle (silicate minerals; rock)
- Moon forms due to collision with Mars-size body; only silicate material ejected

What Is The Composition of the Solar System?

Why is Nebular Hypothesis so popular?

- predicts Solar System initially homogeneous
- How can we determine if this is so?
- 1) Solar abundances
- 2) Meteorites
- 3) Average Earth a problem!

Solar vs. Meteorite Abundances

Meteorites

Fragments of solar system materials that fall to Earth

Types of Meteorites

Chondritic: fragments of undifferentiated solar system material

Stony: rocky portions of differentiated planetary bodies

Irons: fragments of metallic cores of differentiated planetary bodies

Stony-irons: both rocky and metallic portions

Impacts in North America

(Royal Astronomical Society of Canada)

Geology of Our Solar System

The Moon

The Moon

Highlands: anorthosite (feldspar), 4.5 billion yrs old, cratered

-floating scum on molten Moon

Maria: younger impact basins, filled by lava flows: 3.8 - 3.2 billion years old

Lunar Surface: covered by REGOLITH: debris from impacts

(NASA)

9

Does the Earth Look Like This?

Question to Ponder:

Is Earth pock-marked by impact craters like the Moon?

Why not?

Our Solar System

(from Davidson et al., Prentice-Hall)

Vital Stats

Terrestrial Jovian

Planet	Diameter (km)	Density (g/cc)
Mercury	4878	5.43
Venus	12104	5.24
Earth	12756	5.52
Mars	6794	3.90
Jupiter	142796	1.34
Saturn	120000	0.69
Uranus	52400	1.27
Neptune	50450	1.58
Pluto (dwarf)	2400	1.70

<u>Mercury</u>

- -innermost, 2nd smallest
- -First imaged in 1974, Mariner 10
- -Heavily cratered highlands
- -No atmosphere
- -1 Mercury "day" = 176 Earth days
- -Temperature extremes:
 - -Night = -170°C
 - -Day = $+427^{\circ}$ C

Wikipedia

<u>Venus</u>

-atmosphere 97% CO₂,

shrouded in clouds

-Temperature up to 475°C, runaway greenhouse

-Surface mapped by radar – lots of studies of geology at Carleton

NASA

-Venus surface similar to Earth

- -Low crater density; abundant recent volcanism; faults; mountain ranges 10 km high
- -Clearly mantle convection on Venus, but no plate tectonics for ~ 0.5 by

Pancake volcanoes

http://volcano.oregonstate.edu/oldroot/volcanoes/planet volcano/venus/unusual.html

<u>Mars</u>

-atmosphere CO₂, trace H₂O; 1% density of Earth's

-Polar icecaps: south CO₂, north H₂O with veneer of CO₂

-Surface rocky, sand dunes

jpl.nasa.gov

Mars

- -Massive volcanoes, Olympus Mons 23 km high, 550 km across!
- -Deep valleys: running water; lakes; slumps due to ice melting in soil?
- -Two moons, captured asteroids

Wikipedia

Volcanoworld

Geologically quiet for billions of years

Olympus Mons

JPL/NASA

<u>Jupiter</u>

- -mass 2.5 times combined mass of all other planets
- -Atmosphere H, He, CH₄, NH₃, H₂O, S compounds; stormy
- -Bands driven by internal heat loss

NASA, Hubble

<u>Jupiter</u>

- -Liquid H exists at depths > 1000 km
- -May have rocky or metallic core
- -4 largest moons > our Moon
- -Innermost, Io, volcanic (>400)!

jpl.nasa.gov

Saturn, Uranus, Neptune

- -Gaseous; atmospheres mostly H, He, CH₄
- -Uranus and Neptune lack NH₃
- -Neptune winds up 1000 km/hr
- -Recent discover of rings around Uranus; horizontal axis of rotation

NASA

Pluto, a Dwarf Planet

Pluto and moons as seen by

Hubble Space telescope

Pluto relative to Earth

<u>Pluto</u>

- -discovered 1930
- -30-50% ice, 50-70% rock
- -Rotation axis tilted

- -Atmosphere 99.7% N₂, trace CH₄
- -Satellite Charon; orbit synchronous with Pluto's rotation so face each other
- Two new "moons", Nix and Hydra, 2005
- 2015: New Horizons flyby
 - http://time.com/4018747/new-horizons-flyby/

Fig. 23.5 from Plummer et al.

Early Earth

- -after Moon formation, have differentiated planet that is mostly molten
- -"scum" at surface is Earth's first crust
- -crust very unstable
- -heat from core, radioactivity
- -Earth still cooling today

Wikipedia - Kevinsong

Earth's First Crust

"oceanic" crust - basalt, solidified from melting of the mantle

Hawaiian Volcano Observatory

Continents?

4.5 bya: no continents

Today: 30% of surface is continents

How and when did continents form?

Wikipedia

Geochronology

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

TABLE 8.2

Geologic Time Scale

Chapter 8

Eon	Era	Period	Epoch
		Quaternary	Holocene (Recent Pleistocene
	Cenozoic	Neogene**	Pliocene Miocene
		Paleogene**	Oligocene Eocene Paleocene
Phanerozoic	Mesozoic	Cretaceous Jurassic Triassic	
	Paleozoic	Permian Pennsylvanian Mississippian Devonian Silurian Ordovician Cambrian	Carboniferous*

Dating Rocks

-how do we determine how old a rock is?

RADIOMETRIC DATING

- -Decay of one isotope to another: depends on time, parent/daughter
- -Must also date a mineral that is resistant to diffusion of isotopes
- -Best is ZIRCON ZrSiO₄

Radioactive Decay

An example: the U-Pb system

$$^{238}U \rightarrow ^{206}Pb$$
: $t^{1/2} = 4.5$ billion yrs

$$^{206}Pb_{p} = ^{206}Pb_{t} + ^{238}U (e^{\lambda t} - 1)$$

 λ = decay constant (= 0.693/t ^{1/2})

p = present day

t = time of crystallization

Zircon: $^{206}Pb_{t} = 0$; all Pb is from decay

Half-life

https://www.geo.arizona.edu/antevs/ecol438/geochron.html

Measure number of parent, daughter atoms, can calculate number of half-lives that have passed. Maximum six half-lives – too little parent left

Other Decay Schemes

$$2^{35}U$$
 --> $2^{07}Pb$ $t^{1/2} = 0.7$ Ga
 $2^{32}Th$ --> $2^{08}Pb$ $t^{1/2} = 14$ Ga
 $8^{7}Rb$ --> $8^{7}Sr$ $t^{1/2} = 49$ Ga (You are not responsible 147Sm --> 143Nd $t^{1/2} = 106$ Ga for knowing this information)
 $4^{0}K$ --> $4^{0}Ar$ $t^{1/2} = 1.3$ Ga information)
 $1^{76}Lu$ --> $1^{76}Hf$ $t^{1/2} = 35.3$ Ga
 $1^{87}Re$ --> $1^{87}Os$ $t^{1/2} = 45.6$ Ga

Instruments

Zircon: primarily in continental rocks

Earth's Oldest Continental Crust

Two Kinds of Crust

	Oceanic Crust	Continental Crust
First Appearance	~ 4.5 Ga	~4.4 Ga
Where Formed	Beneath oceans	Continent margins
Composition	Basalt (lo Si)	Granitic (hi Si)
Extent	Widespread	Very localized
How formed	Melt of mantle	Melt of crust

Phanerozoic 0.57 Ga - now

Proterozoic 2.5 - 0.57 Ga

Archean 4.0 - 2.5 Ga

Hadean 4.55 - 4.0 Ga The
Eons of
the
Geologic
Time
Scale

Assembly of a Continent

Orogens:

Growth by addition of small continental masses along margins of cratons

Note old orogens in craton as well

How Orogens Form by Accretion

The Atmosphere

- -first atmosphere H, He; swept away by solar wind
- -volcanism --> H₂O, CO₂, H, S
 - second atmosphere!
- -Earth cools enough that condensed H_2O pools, forms lakes, oceans removes H_2O
- CO₂ removed by photosynthesis, carbonate rocks

-eventually N, O dominate atmosphere (organic activity)

-but no free O₂ for first 2.5 billion years of Earth history

www.globalchange.umich.edu

Next: The Earth is a Layered Planet!

Davidson et al., 2000