Faculty of Engineering University of Jaffna, Sri Lanka MC~1020~Mathematics - April 2023

Duration: 90 Minutes

Assignment Test - 01

\mathbf{P} \mathbf{U}_{1}

rart I nderline the correct answer				
1.	1. If $A = \{m, a, t, h\}$ then, How many non-empty subsets are available for A?			
	(a) 16	(b) 4	(c) 15	(d) None of the above
2.	The cardinality of the set $\{a, b, c, \{a, b, c\}\}$ is			
	(a) 2	(b) 4	(c) 6	(d) None of the above
3. The power set of $\mathbb{Z} = \{0, 1\}$ is				
	(a) $\mathbb{P}(\mathbb{Z}) = \{\{0\}, \{1\}, \{\mathbb{Z}\}\}$ (b) $\mathbb{P}(\mathbb{Z}) = \{\phi, \{\mathbb{Z}\}\}$		(c) $\mathbb{P}(\mathbb{Z}) = \{\{\mathbb{Z}\}\}\$ (d) $\mathbb{P}(\mathbb{Z}) = \{\{0\}, \{1\}, \{\mathbb{Z}\}, \phi\})$	
4.	Let $A = \{x \in \mathbb{R} -3 < x < 2\}$. and $A = \{x \in \mathbb{R} x^2 + x - 6 < 0\}$. Which of the following is true?			
	(a) $A = B$	(b) $A \subseteq B$	(c) $A \neq B$	(d) (a) and (b)
5.	What is the another way of writing the set $B = \{x \in \mathbb{R} : x - 3 < 2\}$			
	(a) $(2,3]$	(b) $[2,4]$	(c) $(2,3)$	(d) $(1,5)$
6.	Find the angle bety	ween the vectors $u =$	$= \begin{bmatrix} -\cos t \\ \sin t \\ 0 \end{bmatrix} \text{ and } v =$	$= \begin{bmatrix} \cos t \\ -\sin t \\ 0 \end{bmatrix}.$
	(a) $\frac{\pi}{2}$	(b) 0	(c) π	(d) $3t$
7.	Calculate the area of	of the parallelogram	whose edges are P =	$= \begin{bmatrix} -2\\0\\4 \end{bmatrix} \text{ and } Q = \begin{bmatrix} 1\\3\\6 \end{bmatrix}.$
	(a) 20.88	(b) 41.66	(c) 10.44	(d) 5.22

- 8. Given vector u, find its projection p in the direction of vector v.

- (a) $p = \left[\frac{u \cdot v}{v \cdot v}\right] v$ (b) $p = \left[\frac{u \cdot v}{v \cdot u}\right] v$ (c) $p = \left[\frac{u \cdot v}{v \cdot v}\right] u$ (d) $p = \left[\frac{u \cdot v}{u \cdot u}\right] u$
- 9. Resolve the vector u, perpendicular u_{\perp} , to the vector v where $u = \begin{bmatrix} 2 \\ -6 \\ 2 \end{bmatrix}$,
 - $v = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$

 - (a) $u_{\perp} = \begin{bmatrix} 0 \\ -4 \\ 4 \end{bmatrix}$ (b) $u_{\perp} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$ (c) $u_{\perp} = \begin{bmatrix} 2 \\ -2 \\ -2 \end{bmatrix}$ (d) $u_{\perp} = \begin{bmatrix} 1 \\ -5 \\ 3 \end{bmatrix}$
- 10. Find an equation that defines the line that passes through the point p in the direction of a vector u where $p = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$, $u = \begin{bmatrix} -3 \\ 2 \\ 5 \end{bmatrix}$, $x = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$
 - (a) x = 7 3t, y = 9 + 2t, z = 7 + 5t (c) x = 3 + 2t, y = 4 + 4t, z = 1 3t
- - (b) x = 4 + 5t, y = 1 3t, z = 3 + 2t
- (d) x = 1 3t, y = 3 + 2t, z = 4 + 5t
- 11. If $z_1 = 3 + 4i$, $z_2 = 7 3i$, then $Im(z_1.z_2)$ is
 - (a) 33

(b) 19

- (c) 33 + 19i
- (d) 19 + 33i
- 12. Find the polar form of the complex number $z = \frac{2+6\sqrt{3}i}{5+\sqrt{3}i}$
 - (a) $2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$

(c) $2(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{2})$

(b) $2(\cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3})$

- (d) $2(\cos\frac{\pi}{3} i\sin\frac{\pi}{3})$
- 13. It is known that the polynomial equation $z^4 4z^3 + 14z^2 36z + 45 = 0$ has 3iand 2-i as two of its roots. What are other two roots.
 - (a) 3i, 2+i
- (b) 2 3i, i
- (c) -3i, 2+i (d) 1-3i, 2+i

- 14. If $z = z^*$, then
 - (a) z is purely real

(c) Re(z) = Im(z)

(b) z is purely imaginary

(d) z is any complex number

15. The square roots of -8i are

(a)
$$2-2i, -2+2i$$

(c)
$$2-2i, -2-2i$$

(b)
$$2+2i, -2+2i$$

(d)
$$-2-2i$$
, $2+2i$

Part II

Answer the following questions

- 1. (a) Let A be the set of students who live within one mile of school and let B be the set of students who walk to classes. Describe the students in each of these sets.
 - i. $A \cup B$
 - ii. $B \setminus A$
 - (b) A and B are sets, then Prove the following
 - i. $A \setminus B = A \cap \bar{B}$.
 - ii. $(A \cap B) \cup (A \cap \bar{B}) = A$.
- 2. The lines l, $r = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, and m, $r = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, lie in the same plane π .
 - (a) Find the co-ordinates of any two points on each of the lines.
 - (b) Show that all the four points you found in part (i) lie on the plane x-z=2.
 - (c) Explain why you now have more than sufficient evidence to show that the plane π has equation x z = 2.
 - (d) Find the co ordinates of the point where the lines l and m intersect.
- 3. (a) Find all the solution of the equation $z^3 + n = 0$, where n is positive real number.
 - (b) If u = 3 3i, find u^4 in the form $rcis\theta$
 - (c) Given that w = -1 + 2i is a root of the equation $w^3 + 7w^2 + 15w + 25 = 0$, find other two roots of the equation.
 - (d) Draw an argand diagram showing the set of points z for which |z-3-4i|=5