Введение в искусственный интеллект. Машинное обучение

Тема: Методы снижения размерности. Отбор признаков

Бабин Д.Н., Иванов И.Е.

кафедра Математической Теории Интеллектуальных Систем

План лекции

- PCA
 - SVD-разложение
 - Kernel PCA
 - Sparse PCA
- MDS
- Isomap
- Denoising autoencoder
- 🧿 Методы отбора признаков

Проклятие размерности

• Многие задачи машинного обучения содержат тысячи или даже миллионы признаков

Проклятие размерности

- Многие задачи машинного обучения содержат тысячи или даже миллионы признаков
- Типичный пример: если для восстановления плотности одномерной бинарной случайной величины нам потребуется $2\times 100=200$ примеров, то для восстановления 100-мерной с той же точностью— $2^{100}\times 100$

Проклятие размерности

- Многие задачи машинного обучения содержат тысячи или даже миллионы признаков
- Типичный пример: если для восстановления плотности одномерной бинарной случайной величины нам потребуется $2\times 100=200$ примеров, то для восстановления 100-мерной с той же точностью— $2^{100}\times 100$

Вывод

Надо уменьшать размерность данных

3 / 32

• Сжатие данных

- Сжатие данных
- Если данные лежат на многообразии меньшей размерности, то локальные координаты могут оказаться более информативными

- Сжатие данных
- Если данные лежат на многообразии меньшей размерности, то локальные координаты могут оказаться более информативными
- Удаление шума из данных

- Сжатие данных
- Если данные лежат на многообразии меньшей размерности, то локальные координаты могут оказаться более информативными
- Удаление шума из данных
- Выделение главных признаков

- Сжатие данных
- Если данные лежат на многообразии меньшей размерности, то локальные координаты могут оказаться более информативными
- Удаление шума из данных
- Выделение главных признаков
- Визуализация данных

• Encoder — процедура сжатия

5 / 32

- Encoder процедура сжатия
- Decoder процедура восстановления

- Encoder процедура сжатия
- Decoder процедура восстановления
- ullet Оптимизационная задача $||X-D(E(X))||^2
 ightarrow {\sf min}$

- Encoder процедура сжатия
- Decoder процедура восстановления
- ullet Оптимизационная задача $||X-D(E(X))||^2
 ightarrow {\sf min}$

Original

Compressed

Reconstruction

Manifold learning

• Многие алгоритмы снижения размерности имеют некоторые предположения о типе многообразия

Manifold learning

- Многие алгоритмы снижения размерности имеют некоторые предположения о типе многообразия
- Если есть априорные знания о данных, это может сильно помочь

Manifold learning

- Многие алгоритмы снижения размерности имеют некоторые предположения о типе многообразия
- Если есть априорные знания о данных, это может сильно помочь
- Типичный пример

- ullet Основное предположение о многообразии гиперплоскость 1
- Оптимизационнае задачи
 - Наименьшее отклонение от плоскости: $\sum\limits_{i}dist^{2}(x_{i},L_{k})
 ightarrow$ min
 - Наибольшое среднеквадратическое отклонение проекции на плоскость
 - Encoder и decoder линейные функции

Бабин Д.Н., Иванов И.Е

Обозначения

Пусть $x_1,...,x_\ell$ — наблюдения из \mathbb{R}^n . Пусть $ar{X}=0$.

Пусть $u_1,...,u_k$ — ортонормированный базис некоторого подпространства L_k , k < n.

Обозначения

Пусть $x_1,...,x_\ell$ — наблюдения из \mathbb{R}^n . Пусть $ar{X}=0$.

Пусть $u_1,...,u_k$ — ортонормированный базис некоторого подпространства L_k , $\mathsf{k} < \mathsf{n}$.

Задача для k=1

Для текущих наблюдений найти такой u_1 , что $||u_1||=1$ и выполнено

$$\sum_{i} ||u_1^T x_i||^2 \to \mathsf{max}$$

Обозначения

Пусть $x_1,...,x_\ell$ — наблюдения из \mathbb{R}^n . Пусть $\bar{X}=0$.

Пусть $u_1,...,u_k$ — ортонормированный базис некоторого подпространства L_k , k < n.

Задача для k=1

Для текущих наблюдений найти такой u_1 , что $||u_1||=1$ и выполнено

$$\sum_{i} ||u_1^T x_i||^2 \to \mathsf{max}$$

Замечание

$$||x_i - u_1(u_1, x_i)||^2 = ||x_i||^2 - (u_1, x_i)^2$$

Поэтому последенее условие эквивалентно $\sum\limits_{i}||x_i-u_1(u_1,x_i)||^2 o \mathsf{min}$

PCA при k=1

Решение оптимизационной задачи

$$ullet$$
 $\frac{1}{\ell}\sum_i||u_1^Tx_i||^2=u_1^TSu_1$, где $S=rac{1}{\ell}\sum_ix_ix_i^T$ — матрица ковариаций.

PCA при k=1

Решение оптимизационной задачи

- ullet $\frac{1}{\ell}\sum_i||u_1^Tx_i||^2=u_1^TSu_1$, где $S=rac{1}{\ell}\sum_ix_ix_i^T$ матрица ковариаций.
- ② Так как оптимизационная задача решается при условии $u_1^T u_1 = 1$, то перейдём к безусловной задачи максимизации (метод множителей Лагранжа):

$$u_1^T S u_1 + \lambda_1 (1 - u_1^T u_1)$$

PCA при k=1

Решение оптимизационной задачи

- ullet $\frac{1}{\ell}\sum_i||u_1^Tx_i||^2=u_1^TSu_1$, где $S=rac{1}{\ell}\sum_ix_ix_i^T$ матрица ковариаций.
- ② Так как оптимизационная задача решается при условии $u_1^T u_1 = 1$, то перейдём к безусловной задачи максимизации (метод множителей Лагранжа):

$$u_1^T S u_1 + \lambda_1 (1 - u_1^T u_1)$$

- ullet Дифференцируя по параметру и приравнивая к нулю, получаем: $Su_1=\lambda_1u_1$ и $u_1^TSu_1=\lambda_1$

РСА в общем случае

Индукция по числу компонент

Применив индукцию получаем, что $u_1, ..., u_k$ — собственные векторы матрицы S соотвествующие максимальным собственным значениям.

РСА в общем случае

Индукция по числу компонент

Применив индукцию получаем, что $u_1, ..., u_k$ — собственные векторы матрицы S соотвествующие максимальным собственным значениям.

Определение

Направления соотвествующие $u_1,...,u_k$ называются главными

Основная теорема метода главных компонент

Теорема

Если k < rkX, то минимум $||GU^T - X||^2$ достигается, когда столбцы U — это собственные векторы матрицы X^TX соотвествующие максимальным значениям $\lambda_1,...,\lambda_k$, а матрица G = XU. При этом выполнено:

- $U^T U = I_k$
- $oldsymbol{Q}$ матрица G ортогональна: $G^TG = \Lambda = diag(\lambda_1,...,\lambda_k)$
- $||GU^T X||^2 = \sum_{i=k+1}^n \lambda_i$

Сингулярное разложение

Следствие

Если в предыдущей теореме взять k=n, то

$$X = V\sqrt{\Lambda}U^T$$
,

где $U^T U = I_k$, $V^T V = I_k$.

Сингулярное разложение

Следствие

Если в предыдущей теореме взять k=n, то

$$X = V\sqrt{\Lambda}U^T$$
,

где $U^T U = I_k$, $V^T V = I_k$.

SVD

Как правило большинство реализаций PCA используют SVD разложения, для нахождения главных компонент.

12 / 32

Вероятностная интерпретация РСА

Вероятностная модель

$$p(z) = N(z|0,I)$$

$$p(x|z) = N(x|Wz + \mu, \sigma^2 I)$$

Вероятностная интерпретация РСА

Вероятностная модель

$$p(z) = N(z|0, I)$$
$$p(x|z) = N(x|Wz + \mu, \sigma^2 I)$$

$$x = Wz + \mu + \varepsilon$$

Вероятностная интерпретация РСА

Вероятностная модель

$$p(z) = N(z|0, I)$$
$$p(x|z) = N(x|Wz + \mu, \sigma^2 I)$$

$$x = Wz + \mu + \varepsilon$$

Следствие

Вероятностная интерпретация позволяет обобщить метод РСА и применять к нему вероятностные техники (например, ЕМ-алгорим)

Обобщения РСА

- Kernel PCA
- Sparse PCA

Когда линейные методы не работает

15 / 32

Ядерный PCA (kernel trick)

Если в исходном пространстве сложно разделить выборку, то попробуем перейти в пространство большей размерности $^2 \varphi : X \to H$ и применить линейный РСА там.

²Schölkopf, Bernhard (1998). "Nonlinear Component Analysis as a Kernel Eigenvalue Problem". Neural 💆 🥠

Ядерный РСА (kernel trick)

Если в исходном пространстве сложно разделить выборку, то попробуем перейти в пространство большей размерности $^2 \varphi: X \to H$ и применить линейный PCA там. Ядро – функция $K:X imes X o \mathbb{R}$, т.ч. $K(x_1,x_2)=\langle \varphi(x_1),\varphi(x_2)
angle$ при некотором $\varphi: X \to H$, где H – гильбертово пространство.

Бабин Д.Н., Иванов И.Е. PCA 16 / 32

 $^{^2}$ Schölkopf, Bernhard (1998). "Nonlinear Component Analysis as a Kernel Eigenvalue Problem". Neural 🗾 🦇 Computation 10 (5): 1299-1319

Ядерный РСА (kernel trick)

Если в исходном пространстве сложно разделить выборку, то попробуем перейти в пространство большей размерности $^2 \varphi: X \to H$ и применить линейный PCA там. Ядро – функция $K: X \times X \to \mathbb{R}$, т.ч. $K(x_1, x_2) = \langle \varphi(x_1), \varphi(x_2) \rangle$ при некотором $\varphi:X\to H$, где H – гильбертово пространство.

Теорема Мерсера

Функция $K(x_1, x_2)$ является ядром $\Leftrightarrow 1$) Она симметрична $K(x_1, x_2) = K(x_2, x_1)$ и 2) Неотрицательно определена $\int_X \int_X K(x_1,x_2) f(x_1) f(x_2) dx_1 dx_2 \ge 0$ для любой функции $f: X \to \mathbb{R}$

Бабин Д.Н., Иванов И.Е PCA 16 / 32

 $^{^2}$ Schölkopf, Bernhard (1998). "Nonlinear Component Analysis as a Kernel Eigenvalue Problem". Neural 🗾 🦇 Computation 10 (5): 1299-1319

Операции над ядрами

- ullet Скалярное произведение $K(x_1,x_2) = \langle x_1,x_2
 angle$ ядро
- Константа $K(x_1, x_2) = c ядро$
- ullet Произведение ядер $K(x_1,x_2)=K_1(x_1,x_2)K_2(x_1,x_2)$ ядро
- ullet Для любой $arphi:X o\mathbb{R}$ сепарабельная $K(x_1,x_2)=arphi(x_1)arphi(x_2)$ ядро
- ullet Линейная $K(x_1,x_2)=lpha_1K_1(x_1,x_2)+lpha_2K_2(x_1,x_2)$ ядро при $lpha_1,lpha_2>0$, K_1,K_2 ядрах
- ullet Для любой arphi:X o X подстановка $K(x_1,x_2)=K_1(arphi(x_1),arphi(x_2))$ ядро при K_1 ядро

ullet Полиномиальное ядро с мономами степени $d\colon K(x_1,x_2) = \langle x_1,x_2
angle^d$

- ullet Полиномиальное ядро с мономами степени $d\colon K(x_1,x_2)=\langle x_1,x_2
 angle^d$
- ullet Полиномиальное ядро с мономами степени $\leq d$: $K(x_1,x_2)=(\langle x_1,x_2 \rangle+1)^d$

- ullet Полиномиальное ядро с мономами степени $d\colon K(x_1,x_2)=\langle x_1,x_2
 angle^d$
- ullet Полиномиальное ядро с мономами степени $\leq d$: $K(x_1,x_2)=(\langle x_1,x_2 \rangle+1)^d$
- ullet Радиальное ядро (RBF): $K(x_1,x_2) = \exp(-\gamma ||x_1-x_2||^2)$ (наиболее универсальное)

- ullet Полиномиальное ядро с мономами степени $d\colon K(x_1,x_2)=\langle x_1,x_2\rangle^d$
- ullet Полиномиальное ядро с мономами степени $\leq d$: $K(x_1,x_2)=(\langle x_1,x_2 \rangle+1)^d$
- ullet Радиальное ядро (RBF): $K(x_1,x_2) = \exp(-\gamma ||x_1-x_2||^2)$ (наиболее универсальное)

Линейное ядро
$$K(x_1, x_2) = \langle x_1, x_2 \rangle$$

Полиномиальное ядро $K(x_1,x_2)=(\langle x_1,x_2\rangle+1)^3$

Радиальное ядро $K(x_1,x_2) = \exp(-||x_1-x_2||^2)$

Пример работы с ядром $(x^Ty+1)^2$

Sparse PCA

Недостаток РСА

При применении PCA обычно получаются компоненты с небольшим числом нулей. Обычно это затрудняет интерпретируемость компонент.

Sparse PCA

Недостаток РСА

При применении PCA обычно получаются компоненты с небольшим числом нулей. Обычно это затрудняет интерпретируемость компонент.

Решение

Добавить I1-регуляризацию

Sparse PCA

Недостаток РСА

При применении PCA обычно получаются компоненты с небольшим числом нулей. Обычно это затрудняет интерпретируемость компонент.

Решение

Добавить I1-регуляризацию

Multidimentional Scaling (MDS)

Дано

Дана матрица попарных расстояний между объектами d_{ij}

Задача

Найти $z_1, z_2, ..., z_n$ удовлетворяющие:

$$\min_{z_1,...,z_n} \sum_{i,j} (d_{ij} - ||z_i - z_j||)^2$$

Вариации MDS

Least squares / Kruskal-Shephard scaling

$$\min_{z_1,...,z_n} \sum_{i,j} (d_{ij} - ||z_i - z_j||)^2$$

Sammon mapping

$$\min_{z_1,...,z_n} \sum_{i \neq j} \frac{(d_{ij} - ||z_i - z_j||)^2}{d_{ij}}$$

Classical scaling

$$d_{ij} = (x_i - \bar{x}, x_j - \bar{x})$$
 $\min_{z_1, \dots, z_n} \sum_{i \neq j} (d_{ij} - (z_i - \bar{z}, z_j - \bar{z}))^2$

Идея

Вместо расстояний использовать геодезические

Схема алгоритма

- Построения графа соседства
- Вычисление геодезических на графе
- MDS

24 / 32

Denoising autoencoder

- Модель автоэнкодера довольно общая архитектура снижения размерности данных
- Может использоваться для генерации новых признаков
- Может использоваться для отчистки данных от шума

Методы отбора признаков

- Статистические
- Основанные на важности признаков для конкретного алгоритма машинного обучения
- Переборные

Методы отбора признаков: полный перебор

Алгоритм

Для каждой сложности наборов искать лучший набор признаков.

Методы отбора признаков: полный перебор

Алгоритм

Для каждой сложности наборов искать лучший набор признаков.

Преимущества

- простота реализации
- гарантированный результат

Методы отбора признаков: полный перебор

Алгоритм

Для каждой сложности наборов искать лучший набор признаков.

Преимущества

- простота реализации
- гарантированный результат

Недостатки

- очень долго работает
- переобучение

Методы отбора признаков: жадные алгоритмы перебор

Алгоритм

На каждой итерации алгоритма добавляется/удаляется наиболее выгодный признак

Методы отбора признаков: жадные алгоритмы перебор

Алгоритм

На каждой итерации алгоритма добавляется/удаляется наиболее выгодный признак

Преимущества

- простота реализации
- работает быстро

Методы отбора признаков: жадные алгоритмы перебор

Алгоритм

На каждой итерации алгоритма добавляется/удаляется наиболее выгодный признак

Преимущества

- простота реализации
- работает быстро

Недостатки

• склонен включать в набор лишние признаки

28 / 32

```
Вход: множество F, критерий Q, параметры: d, p_m, B — размер популяции, T — число поколений;
```

```
1: инициализировать случайную популяцию из B наборов:
   B_1 := B; R_1 := \{J_1^1, \dots, J_1^{B_1}\}; Q^* := Q(\emptyset);
2: для всех t = 1, ..., T, где t — номер поколения:
     ранжирование индивидов: Q(J_t^1) \leq \ldots \leq Q(J_t^{B_t}):
3:
      если B_t > B то
4:
        селекция: R_t := \{J_t^1, \dots, J_t^B\};
5:
     если Q(J_t^1) < Q^* то t^* := t; \ Q^* := Q(J_t^1);
6:
      если t-t^* \ge d то вернуть J_{**}^1:
7:
      породить t+1-е поколение путём скрещиваний и мутаций:
8:
      R_{t+1} := \{ \sim (J' \times J'') \mid J', J'' \in R_t \} \cup R_t;
```

Эвристики генетического алгоритма

- Увеличивать вероятности перехода признаков от более успешного родителя к потомку
- Накапливать оценки информативности признаков. Чем более информативен признак, тем выше вероятность его включения в набор во время мутации
- Скрещивать только лучшие индивиды (элитаризм)
- Переносить лучшие индивиды в следующее поколение
- В случае стагнации увеличивать количество мутаций
- Параллельно выращивать несколько изолированных популяций

Бабин Д.Н., Иванов И.Е. РСА 30 / 32

Заключение

- Метод главных компонент рабочий инструмент по уменьшению размерности
- Метод главных компонент имеет огромное число обобщений, но не всегда они работают на реальных данных
- Автоэнкодер универсальная модель для уменьшения размерности
- Отбор признаков и их ранжирование по важности ключ к пониманию данных
- Точные алгоритмы по отбору признаков не работают на реальных данных, надо использовать эвристики

Бабин Д.Н., Иванов И.Е. РСА 31/32

Источники

Ha основе материалов сайта http://www.machinelearning.ru.

