

Contents

- 1. Review some basic theories?
- Correlation and Linear Regression in Excel
 a. Analysis Toolpak
- 3. Correlation and Linear Regression in R a. Im function
- 4. What about logistic?
- 5. Logistic Regression in R

What is Correlation

Correlation คือสถิติสำหรับหาความสัมพันธ์ ของตัวแปร numeric สองตัว

- ค่าวิ่งอยู่ระหว่าง -1 , +1
- เครื่องห^{ุ้}มาย -/+ บอกทิศทางความ สัมพันธ์ของตัวแปรสองตัว
- ยิ่งค่าเข้าใกล้ | 1 | ความสัมพันธ์ยิ่งสูง

Explain Correlation

Explain Correlation

What is Linear Regression

$$y = intercept + slope*x$$

$$y = b0 + b1*x$$

What is Linear Regression

$$y = b0 + b1*x$$

slope =
$$\triangle y / \triangle x$$

How the algorithm work

The best fitted line = lowest error

Knowledge Check

MPG = 30.09 - 0.06HP

- 1. Correlation ระหว่างตัวแปรสองตัวนี้เป็นแบบ positive หรือ negative
- 2. ถ้า HP=0 ค่า MPG จะเป็นเท่าไหร่
- 3. ถ้า HP=200 ค่า MPG จะเป็นเท่าไหร่

Basic Forms of Linear Regression

```
// Simple linear regression
y = b0 + b1*x1

// Multiple linear regression
y = b0 + b1*x1 + b2*x2 + b3*x3 + ... + bk*xk
```

Advanced - Normal Equation

Normal equation

$$\Theta = (X^T X)^{-1} X^T y$$

Model Evaluation

Root Mean Squared Error

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

RMSE lower is better

Error หรืออีกชื่อคือ Residual

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

How to calculate the Root Mean Square Error (RMSE) of an interpolated pH raster? — Hatari Labs

What is Logistic Regression

Logistic Regression!!!! - DEV

Logistic Function

เราใช้สูตรคณิตศาสตร์ เพื่อปรับผลลัพธ์ให้อยู่ ระหว่าง 0-1 (เหมือนความน่าจะเป็น)

		Actual	
		Yes	No
Predicted	Yes	50	16
	No	9	25

Accuracy (50+25) / 100 = 75%

Model Training Golden Rule

Correlation Plot

An Introduction to corrplot Package (r-project.org)

An Introduction to corrplot Package

Introduction

The **corrplot** package is a graphical display of a correlation matrix, confidence interval. It also contains some algorithms to do matrix reordering. In addition, corrplot is good at details, including choosing color, text labels, color labels, layout, etc.

Visualization methods

There are seven visualization methods (parameter method) in **corrplot** package, named "circle", "square", "ellipse", "number", "shade", "color", "pie".

Positive correlations are displayed in blue and negative correlations in red color. Color intensity and the size of the circle are proportional to the correlation coefficients.

```
library(corrplot)
## corrplot 0.84 loaded

M <- cor(mtcars)
corrplot(M, method = "circle")</pre>
```

