Deep Learning

Multi Layer Perceptron

Geoffroy Peeters

contact: geoffroy.peeters@telecom-paris.fr

Télécom-Paris, IP-Paris, France

Overview

McCulloch and Pitts - mathematical model of a neuron

Warren S. McCulloch and Walter H. Pitts "A logical calculus of the ideas immanent in nervous activity", Bulletin of Mathematical Biophysics, vol. 5, 1943, p. 115-133

McCulloch - Pitts - mathematical model of a neuron

Perceptron model

Problem:

- given $\mathbf{x} \in \mathbb{R}^{n_x}$,
- predict $\hat{y} \in \{0,1\} \Rightarrow$ binary classification

Model:

- linear function followed by a threshold
 - $\bullet \quad \hat{\mathbf{y}} = h_{\mathbf{w}}(\mathbf{x})$
- Formulation 1

•
$$\hat{y} = \text{Threshold}(\mathbf{x}^T \cdot \mathbf{w}) \text{ with } \mathbf{x}_0 = 1, \mathbf{w}_0 = b$$

- Formulation 2
 - $\hat{\mathbf{y}} = \text{Threshold}(\mathbf{x}^T \cdot \mathbf{w} + b)$
- where
 - Threshold(z) = 1 if $z \ge 0$
 - Threshold(z) = 0 if z < 0

Parameters:

- $\theta = \{ \mathbf{w} \in \mathbb{R}^{n_x}, b \in \mathbb{R} \}$
 - w: weights
 - *b*: bias

Perceptron training (empirical)

Training:

- Adapt **w** and b such that $\hat{y} = h_{\mathbf{w}}(\mathbf{x})$ equal y on training data

Algorithm:

- $\forall i \quad (\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$
 - compute $\hat{\mathbf{y}}^{(i)} = h_{\mathbf{w}}(\mathbf{x}^{(i)}) = \text{Threshold}(\mathbf{x}^{\mathbf{T}^{(l)}} \cdot \mathbf{w})$
 - if $\hat{\mathbf{y}}^{(i)} \neq \mathbf{y}^{(i)}$ update

$$- w_d \leftarrow w_d + \alpha (y^{(i)} - \hat{y}^{(i)}) x_d^{(i)} \quad \forall d$$

- where α is the learning rate

Inputs

Output

Three cases:

$$-(y^{(i)} - \hat{y}^{(i)}) = 0$$
, no update

$$(y^{(i)} - \hat{y}^{(i)}) = +1$$
, update, the weights are too low,

$$(y^{(i)} - \hat{y}^{(i)}) = -1$$
, update, the weights are too high,

increase w_d for positive $x_d^{(i)}$ decrease w_d for positive $x_d^{(i)}$

Perceptron training (minimising a loss)

Perceptron:

- predict a class
- model: $\hat{y}^{(i)} = h_{\mathbf{w}}(\mathbf{x}^{(i)}) = \text{Threshold}(\mathbf{x}^{\mathbf{T}^{(i)}} \cdot \mathbf{w})$
- _ update rule: $w_d \leftarrow w_d + \alpha (y^{(i)} \hat{y}^{(i)}) x_d^{(i)} \quad \forall d$
- It corresponds to minimising a loss function

$$\mathcal{L}(\mathbf{y}^{(i)}, \hat{\mathbf{y}}^{(i)}) = -(\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)}) \mathbf{x}^{\mathbf{T}^{(i)}} \cdot \mathbf{w}$$

Gradient descent ?

$$\begin{aligned} w_d &\leftarrow w_d - \alpha \frac{\partial \mathcal{L}(y^{(i)}, \hat{y}^{(i)})}{\partial w_d} \quad \forall d \\ &\leftarrow w_d + \alpha (y^{(i)} - \hat{y}^{(i)}) x_d^{(i)} \quad \forall d \end{aligned}$$

Gradient ?

$$\frac{\partial \mathcal{L}}{\partial w_d} = -\left(\frac{\partial (y^{(i)} - \hat{y}^{(i)})}{\partial w_d} \mathbf{x}^{\mathbf{T}^{(i)}} \mathbf{w} + (y^{(i)} - \hat{y}^{(i)}) x_d^{(i)}\right)$$
$$= -\left(0 + \left(y^{(i)} - \hat{y}^{(i)}\right) \cdot x_d^{(i)}\right)$$

- **Problem**: the derivative of $h_{\mathbf{w}}(\mathbf{x}^{(i)})$ does not exist at $\mathbf{x}^{\mathbf{T}}\mathbf{w} = 0$
 - ullet \Rightarrow Using the Threshold function lead to instability during training

Empirical Risk Minimisation Loss minimisation and Gradient Descent

Loss minimisation and Gradient Descent

Risk minimisation

- A neural network is a function $f_{\theta}(\mathbf{x})$ of parameters θ (\mathbf{w} , b in the example) which gives a prediction \hat{y} of a ground-truth value y
- The goal is to find the parameters θ that minimises a **risk**, or a **loss** $\mathcal{L}_{\theta}(\hat{y}, y)$

Empirical Risk minimisation

- we do not observe p(x, y) but only samples from this distribution $x^{(i)}, y^{(i)} \sim p(x, y)$ (dataset: train/valid/test)
- find the parameters θ that minimises empirically a **risk**, or a **loss** $\mathcal{L}_{\theta}(\hat{y}^{(i)}, y^{(i)})$ over the dataset (train/valid/test)

Loss minimisation and Gradient Descent

Gradient Descent algorithm

- We compute the dependency of the Loss $\mathscr{L}_{ heta}$ w.r.t. to the parameters heta
- Dependency?
 - partial derivatives $\frac{\partial \mathcal{L}}{\partial w_1}, \frac{\partial \mathcal{L}}{\partial w_2}, \frac{\partial \mathcal{L}}{\partial b} \Rightarrow$ the gradient vector $\frac{\partial \mathcal{L}}{\partial \theta}$
- $-\frac{\partial \mathscr{L}}{\partial \theta}$ indicates the direction of maximum increase of the loss
- _ To reduce the loss, we progressively move down the hill in the opposite direction of $\dfrac{\partial \mathscr{L}}{\partial \underline{ heta}}$
 - progressively= by a small step (learning rate α)

Deep Learning issues

- Need to define a Loss \mathscr{L} , output activation
 - depends on the problem: binary classification, muti-class, multi-label, regression, ...
- Need to be able to compute derivatives $\frac{\partial \mathcal{L}}{\partial \theta}$
 - use differentiable functions (not the Threshold!)
- In deep learning $\mathcal{L}_{\theta}(\hat{y}, y)$ is a non-convex function
 - use more elaborate optimisation algorithm (Momentum, NAG, ADAM, ...)
- Need an efficient way to compute the derivatives $\frac{\partial \mathscr{L}}{\partial \underline{\theta}}$
 - the back-propagation algorithm
- How to sample $x^{(i)}, y^{(i)} \sim p(x, y)$
 - batch GD, mini-batch GD, stochastic GD

https://medium.com/swlh/non-convex-optimization-in-deep-learning-26fa30a2b2b3

Deep Learning issues

- Need to define a Loss \mathcal{L} , output activation
 - depends on the problem: binary classification, muti-class, multi-label, regression, ...
- Need to be able to compute derivatives $\frac{\partial \mathcal{L}}{\partial \theta}$
 - use differentiable functions (not the Threshold!)
- In deep learning $\mathcal{L}_{\theta}(\hat{y}, y)$ is a non-convex function
 - use more elaborate optimisation algorithm (Momentum, NAG, ADAM, ...)
- Need an efficient way to compute the derivatives $\frac{\partial \mathscr{L}}{\partial \underline{\theta}}$
 - the back-propagation algorithm
- How to sample $x^{(i)}, y^{(i)} \sim p(x, y)$
 - batch GD, mini-batch GD, stochastic GD

From Perceptron to Logistic Regression

Logistic regression

- predicts a probability to belong to a class
- model

$$\hat{y} = p(Y = 1 \mid \mathbf{x}) = h_{\mathbf{w}}(\mathbf{x}) = \text{Logistic}(\mathbf{x}^{\mathbf{T}} \cdot \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{x}^{\mathbf{T}} \cdot \mathbf{w}}}$$

- decision
 - if $h_{\mathbf{w}}(\mathbf{x}) \ge 0.5$ choose class 1
 - if $h_{\mathbf{w}}(\mathbf{x}) < 0.5$ choose class 0
- We define the **Loss** as (binary-cross-entropy)

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = -\left(y^{(i)}\log(\hat{y}^{(i)}) + (1 - y^{(i)})\log(1 - \hat{y}^{(i)})\right)$$

Gradient descent?

$$\begin{aligned} w_d &\leftarrow w_d - \alpha \frac{\partial \mathcal{L}(y^{(i)}, \hat{y}^{(i)})}{\partial w_d} \quad \forall d \\ &\leftarrow w_d + \alpha (y^{(i)} - \hat{y}^{(i)}) x_d^{(i)} \quad \forall d \end{aligned}$$

Gradient?

$$\frac{\partial \mathcal{L}}{\partial w_d} = -(y^{(i)} - \hat{y}^{(i)}) \cdot x_d^{(i)} \quad \forall d$$

The update rule is therefore the same as for the Perceptron but the definitions of the Loss ${\mathscr L}$ and of $h_{\mathbf{w}}(\mathbf{x})$ are different

Binary classification

Binary classification

Model

- We have several a single output neurons \hat{y}
 - with a **sigmoid** activation function
- We minimise the binary-cross-entropy $\mathcal{L} = -\left(y\log(\hat{y}) + (1-y)\log(1-\hat{y})\right)$

Binary Classification

Binary Classification

- Spam
- Not spam

Binary classification

Output activation function: sigmoid/ logistic

- **Usage**: binary classification (0 or 1)
 - (logistic regression or deep neural network with binary output)

$$\begin{cases} P(y = 1 \mid \mathbf{x}) &= \sigma(\mathbf{x}^{\mathsf{T}} \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{x}^{\mathsf{T}} \mathbf{w})}} \\ P(y = 0 \mid \mathbf{x}) &= 1 - P(y = 1 \mid \mathbf{x}) \end{cases}$$

Models the log-odds $\log \frac{p}{1-p}$ (posterior probability) of the value "1" using a linear model of the

inputs X

$$P(y = 1 | \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{x}^{T}\mathbf{w}}}$$

$$\frac{1}{P(y = 1 | \mathbf{x})} = 1 + e^{-\mathbf{x}^{T}\mathbf{w}}$$

$$\frac{1 - P(y = 1 | \mathbf{x})}{P(y = 1 | \mathbf{x})} = e^{-\mathbf{x}^{T}\mathbf{w}}$$

$$\log\left(\frac{P(y = 0 | \mathbf{x})}{P(y = 1 | \mathbf{x})}\right) = -\mathbf{x}^{T}\mathbf{w}$$

$$\log\left(\frac{P(y = 1 | \mathbf{x})}{P(y = 0 | \mathbf{x})}\right) = \mathbf{x}^{T}\mathbf{w}$$

Binary classification Loss

Binary Cross-Entropy (1)

- The ground-truth output y is a **binary** variable $\in \{0,1\}$
 - y follows a **Bernoulli** distribution: $P(Y = y) = p^y(1-p)^{1-y}$ $y \in \{0,1\}$
- In logistic regression, the output of the network \hat{y} estimates p: $\hat{y} = P(Y = 1 | x, \theta)$
 - $P(Y = y | x, \theta) = \hat{v}^y (1 \hat{v})^{1-y} \quad v \in \{0, 1\}$
- We want to
 - find the θ that ... maximise the **likelihood** of the y given the input x

$$\max_{\theta} P(Y = y \mid x, \theta) = \hat{y}^{y} (1 - \hat{y})^{1 - y} \quad y \in \{0, 1\}$$

• ... that maximise the log-likelihood

$$\max_{\theta} \log p(y \mid x) = \log(\hat{y}^y (1 - \hat{y})^{(1-y)}) = y \log(\hat{y}) + (1 - y)\log(1 - \hat{y}) = -\mathcal{L}(\hat{y}, y)$$

• ... that minimise a loss named **Binary Cross-Entropy** (BCE)

$$\min_{\theta} \mathcal{L}(\hat{y}, y) = -\left(y\log(\hat{y}) + (1 - y)\log(1 - \hat{y})\right)$$

Binary classification Loss

Binary Cross-Entropy (2)

... maximising **log-likelihood** on the whole training set

$$p(\text{labels}) = \prod_{i=1}^{m} p(y^{(i)} | x^{(i)})$$

$$\log p(\text{labels}) = \log \left(\prod_{i=1}^{m} p(y^{(i)} | x^{(i)}) \right) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}) = \sum_{i=1}^{m} -\mathcal{L}y^{(i)}, y^{(i)})$$

... is equivalent to minimising the
$$\operatorname{Cost} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L} y^{(i)} | x^{(i)})$$

$$\underline{x} \rightarrow \boxed{w_1 x_1 + w_2 x_2 + b} \stackrel{z}{\rightarrow} \boxed{\sigma(z)} \stackrel{a}{\rightarrow} \boxed{\mathcal{L}(\hat{y} = a, y)}$$

Problem:

Given $\mathbf{x} \in \mathbb{R}^{n_x}$, predict $\hat{y} = P(y = 1 \mid \mathbf{x}) \mid \hat{y} \in [0,1]$

Model

$$- \hat{\mathbf{y}} = \sigma(\mathbf{x}^{\mathbf{T}} \cdot \mathbf{w})$$

- Sigmoid function: $\sigma(z) = \frac{1}{1 + e^{-z}}$
 - if z is very large then $\sigma(z) \simeq \frac{1}{1+0} = 1$
 - if z is very small (negative) then $\sigma(z) = 0$

Parameters

 $\theta = \{ \mathbf{w} \in \mathbb{R}^{n_x}, b \in \mathbb{R} \}$

Loss/ Cost function (Empirical Risk Minimisation)

Training data

- Given $\{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})\}$
- We want to find the parameters hetaof the network such that $\hat{y}^{(i)} \simeq y^{(i)}$
- How to measure? Define a Loss \mathscr{L} (error) function which needs to be minimised
 - if $y \in \mathbb{R}$: Mean-Square-Error (MSE): $\mathscr{L}(\hat{y}, y) = \frac{1}{2}(\hat{y} y)^2$ if $y \in \{0,1\}$: Binary-Cross-Entropy (BCE): $\mathcal{L}(\hat{y},y) = -\left(y\log(\hat{y})\right) + (1-y)\log(1-\hat{y})\right)$ if $y \in \{1,...,K\}$: Cross-Entropy: $\mathscr{L}(\hat{y},y) = -\sum_{k=0}^{K} \left(y_{k} \log(\hat{y}_{k})\right)$
- **Cost** *J* **function**= sum of the Loss for all training examples

$$J_{\theta} = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}_{\theta}(\hat{\mathbf{y}}^{(i)}, \mathbf{y}^{(i)})$$

- In the case of the BCE: $J_{\theta} = -\sum_{i=1}^m \left(y^{(i)}\log(\hat{y}^{(i)})) + (1-y^{(i)})\log(1-\hat{y}^{(i)})\right)$
- We want to find the parameters θ of the network that minimise J_{θ}

Gradient Descent

How to minimise J_{θ} ?

- The gradient $\frac{\partial J_{\theta}}{\partial \mathbf{w}}$ points in the direction of the greatest rate of increase of the function
- We will go in the opposite direction:
 - We move down the hill in the steepest direction

Gradient descent:

Repeat

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial J_{\theta}}{\partial \mathbf{w}}$$
$$b \leftarrow b - \alpha \frac{\partial J_{\theta}}{\partial b}$$

ullet where lpha is the "learning rate"

Gradient Descent

- Parameters to update
 - $\theta = \{\mathbf{w}, b\}$
- **Gradient descent:**
 - **Initialise** the parameters θ
 - Repeat for # iterations
 - Repeat for all training examples $\forall i \in \{1,...,m\}$
 - **Forward computation:** compute the prediction $\hat{y}^{(i)}$
 - Compute the Loss $\mathcal{L}_{\theta}(\hat{y}^{(i)}, y^{(i)})$
 - **Backward propagation:** compute the gradients: $\frac{\partial \mathcal{L}_{\theta}(\hat{y}^{(i)}, y^{(i)})}{\partial \mathcal{L}_{\theta}(\hat{y}^{(i)}, y^{(i)})}$, $\frac{\partial \mathcal{L}_{\theta}(\hat{y}^{(i)}, y^{(i)})}{\partial \mathcal{L}_{\theta}(\hat{y}^{(i)}, y^{(i)})}$
 - Compute the Cost $J_{ heta}$
 - **Update the parameters** θ using the learning rate α

Forward propagation

$$\underline{x} \rightarrow \boxed{w_1 x_1 + w_2 x_2 + b} \xrightarrow{z} \boxed{\sigma(z)} \xrightarrow{a} \boxed{\mathcal{L}(\hat{y} = a, y)}$$

$$\begin{split} z^{(i)} &= w_1 x_1^{(i)} + w_2 x_2^{(2)} + b \\ a^{(i)} &= \sigma(z^{(i)}) & \text{with } \sigma(z) = \frac{1}{1 + e^{-z}} \\ \hat{y}^{(i)} &= a^{(i)} \end{split}$$

$$\underline{x} \rightarrow \boxed{w_1 x_1 + w_2 x_2 + b} \stackrel{z}{\rightarrow} \boxed{\sigma(z)} \stackrel{a}{\rightarrow} \boxed{\mathcal{L}(\hat{y} = a, y)}$$

$$\begin{split} \hat{y}^{(i)} &= a^{(i)} \\ \mathcal{L}_{\theta}(\hat{y}^{(i)}, y^{(i)}) &= -\left(y^{(i)}\log(\hat{y}^{(i)})\right) + (1 - y^{(i)})\log(1 - \hat{y}^{(i)})\right) \end{split}$$

Backward propagation

(we ommit (i) in the following)

$$\underline{x} \rightarrow \boxed{w_1 x_1 + w_2 x_2 + b} \stackrel{z}{\rightarrow} \boxed{\sigma(z)} \stackrel{a}{\rightarrow} \boxed{\mathcal{L}(\hat{y} = a, y)}$$

$$\frac{\partial \mathcal{L}}{\partial a} = -\left(\frac{y}{a} - \frac{1 - y}{1 - a}\right) = \frac{a - y}{a(1 - a)}$$

$$\frac{\partial \mathcal{L}}{\partial z} = \frac{\partial \mathcal{L}}{\partial a} \frac{da}{dz} = \frac{a - y}{a(1 - a)} \cdot a(1 - a) = a - y$$

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial w_1} = x_1 \cdot \frac{\partial \mathcal{L}}{\partial z}$$

$$\frac{\partial \mathcal{L}}{\partial w_2} = \frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial w_2} = x_2 \cdot \frac{\partial \mathcal{L}}{\partial z}$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial b} = \frac{\partial \mathcal{L}}{\partial z}$$

What is the chain rule?

formula for computing the derivative of the composition of two or more functions

$$\frac{\partial}{\partial t} f(x(t)) = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t}$$

$$\frac{\partial}{\partial t} f(x(t), y(t)) = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$$

Example 1:

$$z_{1} = z_{1}(x_{1}, x_{2})$$

$$z_{2} = z_{2}(x_{1}, x_{2})$$

$$p = p(z_{1}, z_{2})$$

$$\frac{\partial p}{\partial x_{1}} = \frac{\partial p}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{1}} + \frac{\partial p}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{1}}$$

Example 2:

$$h(x) = f(x)g(x)$$

$$\frac{\partial h}{\partial x} = \frac{\partial h}{\partial f} \frac{\partial f}{\partial x} + \frac{\partial h}{\partial g} \frac{\partial g}{\partial x} = f'g + fg'$$

What is back-propagation?

an efficient algorithm to compute the chain-rule by storing intermediate (and re-use derivatives)

Example 1: Logistic regression / least square (single output)

$$z = xw + b$$

$$\hat{y} = a = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(\hat{y} - y)^2$$

Computing derivative as in calculus class

$$\mathcal{L} = \frac{1}{2} \left(\sigma(wx + b) - y \right)^2$$

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial}{\partial w} \left[\frac{1}{2} (\sigma(wx + b) - y)^2 \right]$$

$$= \frac{1}{2} \frac{\partial}{\partial w} \left(\sigma(wx + b) - y \right)^2$$

$$= \left(\sigma(wx + b) - y \right) \frac{\partial}{\partial w} \left(\sigma(wx + b) - y \right)$$

$$= \left(\sigma(wx + b) - y \right) \sigma'(wx + b) \frac{\partial}{\partial w} (wx + b)$$

$$= (\sigma(wx + b) - y) \sigma'(wx + b) x$$

Example 1: Logistic regression / least square (single output)

$$z = xw + b$$

$$\hat{y} = a = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(\hat{y} - y)^2$$

Computing derivative using back-propagation

$$\frac{\partial \mathcal{L}}{\partial \hat{y}} = \hat{y} - y$$

$$\frac{\partial \mathcal{L}}{\partial z} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \sigma'(z)$$

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial w} = \frac{\partial \mathcal{L}}{\partial z} x$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial b} = \frac{\partial \mathcal{L}}{\partial z}$$

- We can diagram out the computations using a computation graph
 - nodes represent all the inputs and computed quantities,
 - edges represent which nodes are computed directly as a function of which other nodes

Example 2: MLP / least square (1 hidden layer, multiple outputs)

$$z_{j}^{[1]} = \sum_{i} x_{i} w_{ij}^{[1]} + b_{j}^{[1]}$$

$$a_{j}^{[1]} = \sigma(z_{j}^{[1]})$$

$$z_{k}^{[2]} = \sum_{j} a_{j}^{[1]} w_{jk}^{[2]} + b_{k}^{[2]}$$

$$\hat{y}_{k} = a_{k}^{[2]} = z_{k}^{[2]}$$

$$\mathcal{L} = \frac{1}{2} \sum_{k} (\hat{y}_{k} - y_{k})^{2}$$

$$b_{1}^{[1]} w_{11}^{[1]} w_{21}^{[1]} b_{1}^{[2]} w_{11}^{[2]} w_{21}^{[2]} y_{1}$$

$$x_{1} \qquad x_{2}^{[1]} \qquad x_{2}^{[1]} \qquad \hat{y}_{2}^{[1]}$$

$$x_{2} \qquad x_{2}^{[1]} \qquad x_{2}^{[1]} \qquad \hat{y}_{2}^{[2]}$$

$$b_{2}^{[1]} w_{12}^{[1]} w_{22}^{[1]} \qquad b_{2}^{[2]} w_{12}^{[2]} w_{22}^{[2]} \qquad y_{2}$$

$$i \qquad j \qquad k$$

Computing derivative using back-propagation

- How much changing w_{11} or x_2 affect \mathscr{L} ?
- We need to take into account all possible paths

$$\frac{\partial \mathcal{L}}{\partial \hat{y}_{k}} = \hat{y}_{k} - y_{k}$$

$$\frac{\partial \mathcal{L}}{\partial w_{jk}^{[2]}} = \frac{\partial \mathcal{L}}{\partial \hat{y}_{k}} a_{j}^{[1]} \qquad \frac{\partial \mathcal{L}}{\partial b_{k}^{[2]}} = \frac{\partial \mathcal{L}}{\partial \hat{y}_{k}}$$

$$\frac{\partial \mathcal{L}}{\partial a_{j}^{[1]}} = \sum_{k} \frac{\partial \mathcal{L}}{\partial \hat{y}_{k}} w_{jk}^{[2]}$$

$$\frac{\partial \mathcal{L}}{\partial z_{j}^{[1]}} = \frac{\partial \mathcal{L}}{\partial a_{j}^{[1]}} \sigma'(z_{j})$$

$$\frac{\partial \mathcal{L}}{\partial w_{ij}^{[1]}} = \frac{\partial \mathcal{L}}{\partial z_{j}^{[1]}} x_{i} \qquad \frac{\partial \mathcal{L}}{\partial b_{j}^{[1]}} = \frac{\partial \mathcal{L}}{\partial z_{j}^{[1]}}$$

How to compute efficiently the gradients? The back-propagation algorithm

Chain-rule

$$\frac{d}{dt}f(x(t)) = \frac{df}{dx}\frac{dx}{dt}$$
$$\frac{d}{dt}f(x(t), y(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Back-propagation

 an efficient way to compute the chain-rule as a succession of partial chain-rules (minimum storage, maximum re-use)

Backward: compute gradients

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. nature, 323(6088):533–536, 1986.

Gradient of Cost / Gradient of the Loss

For one training example i:

– Forward propagation:

•
$$\hat{\mathbf{y}}^{(i)} = a^{(i)} = \sigma(\mathbf{z}^{(i)}) = \sigma(\mathbf{x}^{\mathbf{T}^{(i)}}\mathbf{w} + b)$$

Computing the Loss:

•
$$\mathcal{L}_{\theta}(\hat{\mathbf{y}}^{(i)}, \mathbf{y}^{(i)})$$

For all training examples

- Computing the Cost (sum of the Loss \mathscr{L} over all training examples m)

$$J_{\theta} = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}_{\theta}(\hat{\mathbf{y}}^{(i)}, \mathbf{y}^{(i)})$$

Minimising the Cost

– We need to compute the gradient of the Cost w.r.t. the parameters heta

$$\frac{\partial J_{\theta}}{\partial \theta_{1}} = \frac{\partial}{\partial \theta_{1}} \left(\frac{1}{m} \sum_{i=1}^{m} \mathcal{L}_{\theta}(\hat{\mathbf{y}}^{(i)}, \mathbf{y}^{(i)}) \right) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \mathcal{L}_{\theta}(\hat{\mathbf{y}}^{(i)}, \mathbf{y}^{(i)})}{\partial \theta_{1}}$$

• The gradient of the Cost is the average (over the m training examples) of the gradient of the Loss

Parameters update

- At iteration t

$$w_1^{[t]} = w_1^{[t-1]} - \alpha \frac{\partial J}{\partial w_1}$$

$$w_2^{[t]} = w_2^{[t-1]} - \alpha \frac{\partial J}{\partial w_2}$$

$$b^{[t]} = b^{[t-1]} - \alpha \frac{\partial J}{\partial b}$$

where α is the learning rate

- **Batch Gradient descent** ⇒ the gradient is estimated using all (m) training data

Logistic Regression (0 hidden layers)

Limitation of linear classifiers

- Perceptron and Logistic Regression are linear classifiers
 - can model AND, OR operators
- What if classes are not linearly separable?
 - cannot model XOR operator

Logistic Regression (0 hidden layers) illustration in https://playground.tensorflow.org/

Logistic Regression (0 hidden layers) illustration in https://playground.tensorflow.org/

Logistic Regression (0 hidden layers)

Limitation of linear classifiers

- Solution to the XOR problem:
 - project the input data **x** in a new space **x**' $x_1^{[1]} = \text{AND}(x_1^{[0]}, x_2^{[0]})$ $-x_2^{[1]} = \text{OR}(x_1^{[0]}, x_2^{[0]})$
- We therefore need one hidden layer of projection
 - → this is a 2 layers Neural Network
 → 1 hidden projection
- In a Neural Network, f_1 and f_2 and trainable projections; they can be many more of such projections

Neural Network as Universal Function Approximator

 A Neural Network with only one hidden layer can approximate any function (with enough hidden neurons)

3 unit Multi Layer Perceptron using Step function to approximate a continuous function

https://medium.com/analytics-vidhya/neural-networks-and-the-universal-approximation-theorem-e5c387982eed

Neural Network as Universal Function Approximator

A Neural Network with only one hidden layer can approximate any function (with enough hidden neurons)

3 unit Multi Layer Perceptron using Step function to approximate a continuous function

https://medium.com/analytics-vidhya/neural-networks-and-the-universalapproximation-theorem-e5c387982eed

Deep Learning is about making the approximation of the function progressively (with several hidden layers of fewer neurons)

Logistic Regression (1 layer, 0 hidden layer)

$$\underline{x} \rightarrow \boxed{w_1 x_1 + w_2 x_2 + b} \stackrel{z}{\rightarrow} \boxed{\sigma(z)} \stackrel{a}{\rightarrow} \boxed{\mathcal{L}(\hat{y} = a, y)}$$

Neural Network (2 layers, 1 hidden layer)

$$\underline{x} \xrightarrow{\underline{a^{[0]}}} \underbrace{\underline{x} \, \underline{\underline{W}^{[1]} + \underline{b^{[1]}}}}_{Layer[1]} \xrightarrow{\underline{z^{[1]}}} \underbrace{g^{[1]}(\underline{z^{[1]}})}_{\underline{a^{[1]}}} \xrightarrow{\underline{a^{[1]}} \underline{\underline{W}^{[2]} + \underline{b^{[2]}}}} \xrightarrow{z^{[2]}} \underbrace{g^{[2]}(z^{[2]})}_{Layer[2]} \xrightarrow{a^{[2]}} \underbrace{\mathcal{L}(\hat{y} = a^{[2]}, y)}_{Layer[2]}$$

Notations

- $\mathbf{a}^{[l]}$
 - activations at layer [l]
- n^[l]
 - number of neurons of layer [l]
- $\bullet \quad \mathbf{a}^{[0]} = \mathbf{x}$
 - input vector
- $\bullet \quad \hat{\mathbf{y}} = \mathbf{a}^{[L]}$
 - output vector
- W^[/]
 - weight matrix connecting layer [l-1] to layer [l]
- $\mathbf{h}^{[l]}$
 - bias of layer [l]

$$\underline{x} \xrightarrow{\underline{a^{[0]}}} \underbrace{\left[\underline{x} \ \underline{\underline{W^{[1]}}} + \underline{b^{[1]}} \right]}_{Layer[1]} \xrightarrow{\underline{z^{[1]}}} \underbrace{\left[g^{[1]}(\underline{z^{[1]}})\right]}_{\underline{a^{[1]}}} \xrightarrow{\underline{a^{[1]}} \underline{\underline{W^{[2]}}} + \underline{b^{[2]}}}_{Layer[2]} \xrightarrow{z^{[2]}} \underbrace{\left[g^{[2]}(z^{[2]})\right]}_{\underline{a^{[2]}}} \xrightarrow{\underline{a^{[2]}}} \underbrace{\mathcal{L}(\hat{y} = a^{[2]}, y)}_{\underline{a^{[2]}}}$$

Parameters to update

$$- \theta = \{ \mathbf{W}_{(n^{[0]}, n^{[1]})}^{[1]}, \mathbf{b}_{(1, n^{[1]})}^{[1]}, \mathbf{W}_{(n^{[1]}, n^{[2]})}^{[2]}, \mathbf{b}_{(1, n^{[2]})}^{[2]} \}$$

Gradient descent:

- **Initialise** the parameters θ
- Repeat for # iterations
 - Repeat for all training examples $\forall i \in \{1,...,m\}$
 - **Forward computation:** compute the prediction $\hat{y}^{(i)}$
 - Compute the Loss $\mathscr{L}_{\theta}(\hat{y}^{(i)}, y^{(i)})$
 - **Backward propagation:** compute the gradients: $\frac{\partial \mathscr{L}_{\theta}(\ldots)}{\partial \mathbf{W^{[1]}}}, \frac{\partial \mathscr{L}_{\theta}(\ldots)}{\partial \mathbf{h^{[1]}}}, \frac{\partial \mathscr{L}_{\theta}(\ldots)}{\partial \mathbf{W^{[2]}}}, \frac{\partial \mathscr{L}_{\theta}(\ldots)}{\partial \mathbf{h^{[2]}}}$
 - Compute the Cost $J_{\scriptscriptstyle{A}}$
 - **Update the parameters** θ using the learning rate α

$$\underline{\underline{x}} \xrightarrow{\underline{\underline{a^{[0]}}}} \underbrace{\left[\underline{\underline{x}} \ \underline{\underline{W^{[1]}}} + \underline{\underline{b^{[1]}}} \right]}_{Layer[1]} \xrightarrow{\underline{\underline{z^{[1]}}}} \underbrace{\left[\underline{\underline{a^{[1]}}} \ \underline{\underline{w^{[2]}}} + \underline{\underline{b^{[2]}}} \right]}_{Layer[2]} \xrightarrow{\underline{\underline{a^{[2]}}}} \underbrace{\left[\underline{\underline{a^{[2]}}} \ \underline{\underline{w^{[2]}}} + \underline{\underline{b^{[2]}}} \right]}_{Layer[2]} \xrightarrow{\underline{\underline{a^{[2]}}}} \underbrace{\left[\underline{\underline{L^{[2]}}} \ \underline{\underline{c^{[2]}}} \right]}_{Layer[2]} \xrightarrow{\underline{\underline{a^{[2]}}}} \underbrace{\left[\underline{\underline{a^{[2]}}} \ \underline{\underline{c^{[2]}}} \right]}_{Layer[2]} \xrightarrow{\underline{\underline{a^{[2]}}}} \underbrace{\underline{\underline{b^{[2]}}}}_{Layer[2]}$$

Version 1 (each dimension d, each training examples i) \Rightarrow Forward

- for i=1 to m
 - Input

•
$$\mathbf{a}^{[0](i)} = \mathbf{x}^{(i)}$$

Output

$$\cdot \quad \hat{\mathbf{y}}^{(i)} = \mathbf{a}^{[2](i)}$$

- Layer 1
 - for d=1 to $n^{[1]}$ $z_d^{[1](i)} = \mathbf{a}^{[0](i)^T} \mathbf{w}_d^{[1]} + b_d^{[1]}$ $a_d^{[1](i)} = g^{[1]}(z_d^{[1](i)})$

Layer 2

- for d'=1 to
$$n^{[2]}$$

$$z_{d'}^{[2](i)} = \mathbf{a}^{[1](i)^T} \mathbf{w}_{d'}^{[2]} + b_{d'}^{[2]}$$

$$a_{d'}^{[2](i)} = g^{[2]}(z_{d'}^{[2](i)})$$

$$\underline{\underline{x} \overset{\underline{\underline{a^{[0]}}}}{\longrightarrow} \underbrace{\underline{\underline{x} \overset{\underline{\underline{W}^{[1]}}}{\longrightarrow} \underline{\underline{b^{[1]}}}}_{Layer[1]} \overset{\underline{\underline{z^{[1]}}}}{\longrightarrow} \underbrace{\underline{\underline{a^{[1]}} \overset{\underline{\underline{W}^{[2]}}}{\longrightarrow} \underline{\underline{b^{[2]}}}}_{Layer[2]} \xrightarrow{\underline{\underline{a^{[2]}}}} \underbrace{\underline{\underline{g^{[2]}}}_{\underline{\underline{a^{[2]}}}} \underbrace{\underline{\underline{b^{[2]}}}_{\underline{\underline{a^{[2]}}}} \underbrace{\underline{\underline{b^{[2]}}}_{\underline{\underline{a^{[2]}}}}} \underbrace{\underline{\underline{b^{[2]}}}_{\underline{\underline{a^{[2]}}}} \underbrace{\underline{\underline{b^{[2]}}}_{\underline{\underline{a^{[2]}}}} \underbrace{\underline{\underline{b$$

Version 2 (all dimensions d, each training examples i) \Rightarrow Forward

- for i=1 to m
 - Input

•
$$\mathbf{a}^{[0](i)} = \mathbf{x}^{(i)}$$

Output

$$\cdot \quad \hat{\mathbf{y}}^{(i)} = \mathbf{a}^{[2](i)}$$

• Layer 1
$$\mathbf{z}_{(n^{[1]},1)^T}^{[1](i)^T} = \mathbf{a}_{(n^{[0]},1)^T}^{[0](i)^T} \mathbf{W}_{(n^{[1]},n^{[1]})}^{[1]} + \mathbf{b}_{(n^{[1]})}^{[1]}$$

$$\mathbf{a}_{(n^{[1]},1)^T}^{[1](i)^T} = g^{[1]}(\mathbf{z}_{(n^{[1]},1)^T}^{[1](i)^T})$$

Layer 2
$$\mathbf{z}_{(n^{[2]},1)^{T}}^{[2](i)^{T}} = \mathbf{a}_{(n^{[1]},1)^{T}}^{[1](i)^{T}} \mathbf{W}_{(n^{[1]},n^{[2]})}^{[2]} + \mathbf{b}_{(n^{[2]})}^{[2]}$$

$$\mathbf{a}_{(n^{[2]},1)^{T}}^{[2](i)^{T}} = g^{[2]}(\mathbf{z}_{(n^{[2]},1)^{T}}^{[1](i)^{T}})$$

$$\underline{x} \xrightarrow{\underline{a^{[0]}}} \underbrace{\left[\underline{x} \ \underline{\underline{W^{[1]}}} + \underline{b^{[1]}} \right]}_{Layer[1]} \xrightarrow{\underline{z^{[1]}}} \underbrace{\left[g^{[1]}(\underline{z^{[1]}})\right]}_{\underline{a^{[1]}}} \xrightarrow{\underline{a^{[1]}}} \underbrace{\underline{W^{[2]}} + \underline{b^{[2]}}}_{Layer[2]} \xrightarrow{\underline{z^{[2]}}} \underbrace{\left[g^{[2]}(z^{[2]})\right]}_{\underline{a^{[2]}}} \xrightarrow{\underline{a^{[2]}}} \underbrace{\mathcal{L}(\hat{y} = a^{[2]}, y)}_{\underline{a^{[2]}}}$$

Version 2 (all dimensions d, each training examples i) \Rightarrow Backward

Version 2 (all dimensions
$$a$$
, each training examples t) \Rightarrow

$$-\frac{\partial \mathcal{L}}{\partial a^{[2]}} = \text{derivative of the loss} = -\left(\frac{y}{a^{[2]}} + \frac{(1-y)}{(1-a^{[2]})}\right) = \frac{a^{[2]} - y}{a^{[2]}(1-a^{[2]})}$$

$$- \text{Layer 2 (input } \frac{\partial \mathcal{L}}{\partial a^{[2]}})$$

$$-\frac{\partial \mathcal{L}}{\partial a^{[2]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \frac{\partial a^{[2]}}{\partial z^{[2]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \odot g^{[2]}(\mathbf{z}^{[2]})$$

$$= \frac{\partial \mathcal{L}}{\partial a^{[2]}} \odot a^{[2]}(1-a^{[2]}) = a^{[2]} - y$$

$$-\frac{\partial \mathcal{L}}{\partial \mathbf{w}^{[2]}} = \frac{\partial \mathcal{L}}{\partial z^{[2]}} \frac{\partial z^{[2]}}{\partial \mathbf{w}^{[2]}} = \mathbf{a}^{[1]} \frac{\partial \mathcal{L}}{\partial z^{[2]}}$$

$$-\frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[2]}} = \frac{\partial \mathcal{L}}{\partial z^{[2]}} \frac{\partial z^{[2]}}{\partial b^{[2]}} = \frac{\partial \mathcal{L}}{\partial z^{[2]}}$$

$$-\frac{\partial \mathcal{L}}{\partial a^{[1]}} = \frac{\partial \mathcal{L}}{\partial z^{[2]}} \frac{\partial z^{[2]}}{\partial a^{[1]}} = \frac{\partial \mathcal{L}}{\partial z^{[2]}} \frac{\partial z^{[2]}}{\partial z^{[2]}} = \frac{\partial z^{[2]}}{\partial z^{[2]}} \frac{\partial z^{[2]}}{\partial z^{[2]}} = \frac{\partial z^{[2]}}{\partial$$

 $(1,n^{[2]})$

$$\underline{x} \xrightarrow{\underline{a^{[0]}}} \underbrace{\left[\underline{x} \ \underline{\underline{W}^{[1]}} + \underline{b^{[1]}}\right]}_{Layer[1]} \xrightarrow{\underline{z^{[1]}}} \underbrace{\left[\underline{z^{[1]}}\right]}_{\underline{a^{[1]}}} \underbrace{\underbrace{\underline{a^{[1]}} \underline{\underline{W}^{[2]}} + \underline{b^{[2]}}}_{Layer[2]} \xrightarrow{z^{[2]}} \underbrace{\left[\underline{g^{[2]}}(z^{[2]})\right]}_{\underline{a^{[2]}}} \xrightarrow{\underline{a^{[2]}}} \underbrace{\mathcal{L}(\hat{y} = a^{[2]}, y)}_{\underline{a^{[2]}}}$$

Version 2 (all dimensions d, each training examples i) \Rightarrow Backward

$$-\frac{\partial \mathcal{L}}{\partial a^{[2]}} = \text{derivative of the loss} = -\left(\frac{y}{a^{[2]}} + \frac{(1-y)}{(1-a^{[2]})}\right) = \frac{a^{[2]} - y}{a^{[2]}(1-a^{[2]})}$$

$$- \text{Layer 2 (input } \frac{\partial \mathcal{L}}{\partial a^{[2]}}) \qquad - \text{Layer 1 (input } \frac{\partial \mathcal{L}}{\partial a^{[1]}})$$

$$-\frac{\partial \mathcal{L}}{\partial z^{[2]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \frac{\partial a^{[2]}}{\partial z^{[2]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \odot g^{[2]'}(\mathbf{z}^{[2]}) \qquad \qquad \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} \mathbf{z}^{[1]} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} \mathbf{z}^{[1]} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} \mathbf{z}^{[1]} \mathbf{z}^{[1]} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} \mathbf{z}^{[1]} \mathbf{z}^{[1]} \mathbf{z}^{[1]} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} \mathbf{z}^{[1]} \mathbf{z}^{[$$

 $(1,n^{[2]})$

Layer 1 (input
$$\frac{\partial \mathcal{L}}{\partial a^{[1]}}$$
)
$$\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[1]}} \mathbf{a}^{[1]} \mathbf{z}^{[1]} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[1]}} g^{[1]'}(\mathbf{z}^{[1]})$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}^{[1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} \frac{\partial \mathbf{z}^{[1]}}{\partial \mathbf{w}^{[1]}} = \mathbf{a}^{[0]}_{(n^{[0]}, n^{[1]})} \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} \frac{\partial \mathbf{z}^{[1]}}{\partial \mathbf{b}^{[1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}}$$

$$\underline{\underline{x} \xrightarrow{\underline{a^{[0]}}} \underbrace{\underline{\underline{x} \, \underline{\underline{W}^{[1]} + \underline{b^{[1]}}}}_{Layer[1]} \xrightarrow{\underline{z^{[1]}}} \underbrace{\underline{g^{[1]}(\underline{z^{[1]}})}}_{\underline{a^{[1]}} \xrightarrow{\underline{a^{[1]}}} \underbrace{\underline{\underline{W}^{[2]} + \underline{b^{[2]}}}_{Layer[2]} \xrightarrow{\underline{z^{[2]}}} \underbrace{\underline{g^{[2]}(z^{[2]})}}_{\underline{a^{[2]}} \xrightarrow{\underline{a^{[2]}}} \underbrace{\underline{\mathcal{L}}(\hat{y} = a^{[2]}, y)}_{\underline{a^{[2]}}$$

Version 3 (all dimensions d, all training examples D) \Rightarrow Forward

Input

sklearn order of dimensions: (n_samples, n_features)

- Output
 - $\hat{Y} = A^{[2]}$

$$\mathbf{Z}^{[1]}_{(m,n^{[1]})} = \mathbf{A}^{[0]}_{(m,n^{[0]})} \mathbf{W}^{[1]}_{(n^{[0]},n^{[1]})} + \mathbf{b}^{[1]}_{(n^{[1]})}$$
$$\mathbf{A}^{[1]}_{(m,n^{[1]})} = g^{[1]}(\mathbf{Z}^{[1]}_{(m,n^{[1]})})$$

• Layer 2
$$\mathbf{Z}^{[2]} = \mathbf{A}^{[1]} \mathbf{W}^{[2]} + \mathbf{b}^{[2]} \atop (m,n^{[2]})} = g^{[2]} (\mathbf{Z}^{[2]}) \atop (m,n^{[2]})}$$

$$\underline{\underline{x} \xrightarrow{\underline{a^{[0]}}} \underbrace{\underline{\underline{x} \, \underline{\underline{W}^{[1]} + \underline{b^{[1]}}}}_{Layer[1]} \xrightarrow{\underline{z^{[1]}}} \underbrace{\underline{g^{[1]}(\underline{z^{[1]}})}}_{\underline{a^{[1]}} \underbrace{\underline{\underline{W}^{[2]} + \underline{b^{[2]}}}_{Layer[2]} \xrightarrow{\underline{z^{[2]}}} \underbrace{\underline{g^{[2]}(z^{[2]})}}_{\underline{a^{[2]}} \underbrace{\underline{Layer^{[2]}}}_{\underline{a^{[2]}} \underbrace{\underline{Layer^{[2]}}_{\underline{a^{[2]}}}}_{\underline{a^{[2]}} \underbrace{\underline{Layer^{[2]}}}_{\underline{a^{[2]}} \underbrace{\underline{Layer^{[2]}}}_{\underline{a^{[2]}} \underbrace{\underline{Layer^{[2]}}}_{\underline{a^{[2]}} \underbrace{\underline{Layer^{[2]}}}_{\underline{a^{[2]}} \underbrace{\underline{Layer^{[2]}}}_{\underline{a^{[2]}}}}_{\underline{a^{[2]}} \underbrace{\underline{Layer^{[2]}}}_{\underline{a^{[2]}}}_{\underline{a^{[2]}}}}_{\underline{a^{[2]}} \underbrace{\underline{Layer^{[2]}}}_{\underline{a^{[2]}}}}_{\underline{a^{[2]}} \underbrace{\underline{Layer^{[2]}}}_{\underline{a^{$$

Version 3 (all dimensions d, all training examples D) \Rightarrow Backward

Layer 2

$$\frac{\partial \mathcal{L}}{\partial \mathbf{Z}^{[2]}} = \mathbf{A}^{[2]}_{(m,n^{[2]})} - \mathbf{Y}_{(m,n^{[2]})}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[2]}} = \frac{1}{m} \mathbf{A}^{[1]T}_{(m,n^{[1]})^{T}} \frac{\partial \mathcal{L}}{\partial \mathbf{Z}^{[2]}_{(m,n^{[2]})}}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[2]}} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \mathcal{L}}{\partial \mathbf{Z}^{[2]}_{(m,n^{[2]})}}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{A}^{[1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{Z}^{[2]}_{(m,n^{[2]})}} \mathbf{W}^{[2]T}_{(n^{[1]},n^{[2]})^{T}}$$

Layer 1

$$\frac{\partial \mathcal{L}}{\partial \mathbf{Z}_{(m,n^{[1]})}^{[1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{A}_{(m,n^{[1]})}^{[1]}} \odot g^{[1]'}(\mathbf{Z}_{(m,n^{[1]})}^{[1]})$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{(n,n^{[1]})}^{[1]}} = \frac{1}{m} \mathbf{A}_{(m,n^{[0]})^{T}}^{[0]^{T}} \frac{\partial \mathcal{L}}{\partial \mathbf{Z}_{(m,n^{[1]})}^{[1]}}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{b}_{(n,n^{[1]})}^{[1]}} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \mathcal{L}}{\partial \mathbf{Z}_{(n,n^{[1]})}^{[1]}}$$

$$\underline{x} \xrightarrow{\underline{a^{[0]}}} \underbrace{x} \underbrace{\underline{W^{[1]}} + \underline{b^{[1]}}}_{Layer[1]} \xrightarrow{\underline{z^{[1]}}} \underbrace{g^{[1]}(\underline{z^{[1]}})}_{\underline{a^{[1]}}} \xrightarrow{\underline{a^{[1]}}} \underbrace{\underline{w^{[2]}} + \underline{b^{[2]}}}_{Layer[2]} \xrightarrow{z^{[2]}} \underbrace{g^{[2]}(z^{[2]})}_{\underline{a^{[2]}}} \xrightarrow{\underline{a^{[2]}}} \underbrace{\mathcal{L}(\hat{y} = a^{[2]}, y)}_{\underline{a^{[2]}}}$$

Parameters update

$$\mathbf{W}^{[l]} = \mathbf{W}^{[l]} - \alpha \frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[l]}}$$
$$\mathbf{b}^{[l]} = \mathbf{b}^{[l]} - \alpha \frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[l]}}$$

 $_{-}$ where lpha is the learning rate

Neural Network (2 layers, 1 hidden layer)

Deep Neural Network (many layers, > 2 hidden layer)

Forward (general formulation for layer l, all training examples)

- Input:
$$\mathbf{A}^{[l-1]}$$

$$\mathbf{Z}^{[l]}_{(m,n^{[l]})} = \mathbf{A}^{[l-1]}_{(m,n^{[l-1]})} \mathbf{W}^{[l]}_{(n^{[l-1]},n^{[l]})} + \mathbf{b}^{[l]}_{(1,n^{[l]})}$$

$$\mathbf{A}^{[l]}_{(m,n^{[l]})} = g^{[l]}(\mathbf{Z}^{[l]})$$

- Output: $A^{[l]}$
- Storage for back-propagation: $A^{[l-1]}, Z^{[l]}, W^{[l]}$

Backward (general formulation for layer l, all training examples)

 $\partial \mathscr{L}$

Input:
$$\frac{\partial \mathcal{L}}{\partial \mathbf{A}^{[l]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{A}^{[l]}} \mathbf{g}^{[l]'}(\mathbf{Z}^{[l]}) = \left(\frac{\partial \mathcal{L}}{\partial \mathbf{Z}^{[l+1]}} \mathbf{W}^{[l+1]^T}\right) \odot \mathbf{g}^{[l]'}(\mathbf{Z}^{[l]})$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[l]}} = \frac{1}{m} \mathbf{A}^{[l-1]^T} \frac{\partial \mathcal{L}}{\partial \mathbf{Z}^{[l]}}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[l]}} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \mathcal{L}}{\partial \mathbf{Z}^{[l]}}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{A}^{[l-1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{Z}^{[l]}} \mathbf{W}^{[l]^T}$$

Output parameters update:

 $\partial \mathcal{L}$, $\partial \mathcal{L}$ $\partial \mathcal{L}$ Paris, IP-Paris 59

Parameters update

$$\mathbf{W}^{[l]} = \mathbf{W}^{[l]} - \alpha \frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[l]}}$$
$$\mathbf{b}^{[l]} = \mathbf{b}^{[l]} - \alpha \frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[l]}}$$

 $_{-}$ where lpha is the learning rate

Why non-linear activation functions?

Consider the following network

$$\mathbf{z}^{[1]} = \mathbf{x} \ \mathbf{W}^{[1]} + \mathbf{b}^{[1]}$$

$$\mathbf{a}^{[1]} = g^{[1]}(\mathbf{z}^{[1]})$$

$$\mathbf{z}^{[2]} = \mathbf{a}^{[1]}\mathbf{W}^{[2]} + \mathbf{b}^{[2]}$$

$$\mathbf{a}^{[2]} = g^{[2]}(\mathbf{z}^{[2]})$$

If $g^{[1]}$ and $g^{[2]}$ are **linear activation functions** (identity function)

```
\mathbf{a}^{[1]} = \mathbf{z}^{[1]} = \mathbf{x} \ \mathbf{W}^{[1]} + \mathbf{b}^{[1]}
\mathbf{a}^{[2]} = \mathbf{z}^{[2]} = \mathbf{a}^{[1]}\mathbf{W}^{[2]} + \mathbf{b}^{[2]}
         = (x W^{[1]} + b^{[1]}) W^{[2]} + b^{[2]}
          = xW^{[1]}W^{[2]} + b^{[1]}W^{[2]} + b^{[2]}
          = \mathbf{x} \mathbf{W}' + \mathbf{b}'
```

- then the network the network reduces to a simple linear function
- Linear activation? only interesting for the last layer $g^{[L]}$ of regression problem: $y \in \mathbb{R}$

Sigmoid σ .

Sigmoid function

$$a = g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

- Derivative:

$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$
$$g'(z) = a(1 - a)$$

- Proof:

$$\sigma'(z) = -e^{-z} \frac{1}{(1+e^{-z})^2}$$

$$= \frac{1+e^{-z}-1}{(1+e^{-z})^2}$$

$$= \frac{1}{1+e^{-z}} \left(1 - \frac{1}{1+e^{-z}}\right)$$

$$= \sigma(z)(1-\sigma(z))$$

– Other properties:

$$\sigma(-z) = 1 - \sigma(z)$$

Hyperbolic tangent function

Sigmoid function

$$a = g(z) = \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

- Derivative

$$g'(x) = 1 - \left(\tanh(z)\right)^2$$
$$g'(z) = 1 - a^2$$

– Other properties:

$$\tanh(z) = 2\sigma(2z) - 1$$

Usage

- $\tanh(z)$ better than $\sigma(z)$ in middle hidden layers because its mean = zero ($a \in [-1,1]$).
- **Problem** with σ and tanh:
 - if z is very small (negative) or very large (positive)
 - ⇒ slope becomes zero
 - → slow down Gradient Descent

Vanishing gradient

– Reminder:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{Z}^{[l]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{Z}^{[l+1]}} \underline{\mathbf{W}^{[l+1]^T} \odot g^{[l]'}(\mathbf{Z}^{[l]})}$$
$$\frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[l]}} = \frac{1}{m} \sum_{m} \frac{\partial \mathcal{L}}{\partial \mathbf{Z}^{[l]}}$$

- Hence for a deep network (supposing $g^{[l]}(z) = \sigma(z)$)

$$\frac{\partial \mathcal{L}}{\partial b^{[1]}} = \frac{\partial \mathcal{L}}{\partial a^{[4]}} \sigma'(z^{[4]}) W^{[4]} \sigma'(z^{[3]}) \quad W^{[3]} \sigma'(z^{[2]}) \quad W^{[2]} \sigma'(z^{[1]})$$

Problem:
$$\max_{z} \sigma'(z) = \frac{1}{4}!$$

- Therefore, the deeper the network, the fastest the gradient diminishes/vanishes during back-propagation
- Consequence? The network stop learning!

Use a ReLu activation

ReLU (Rectified Linear Units)

- ReLU function

$$a = g(z) = \max(0, z)$$

Derivative

$$g'(x) = 1$$
 if $z > 0$
= 0 if $z \le 0$

Variations of ReLU

- Leaky ReLU function

- $\cdot a = g(x) = \max(0.01z, z)$
- ullet allows to avoid the zero slope of the ReLU for z < 0 ("the neuron dies")
- Derivative

$$g'(x) = 1$$
 if $z > 0$
= 0.01 if $z \le 0$

- $a = g(x) = \max(\alpha z, z)$
- same as Leaky ReLU but \$\alpha\$ is a parameter to be learnt
- Derivative

$$g'(x) = 1$$
 if $z > 0$
= α if $z \le 0$

Softplus function

$$g(x) = \log\left(1 + e^x\right)$$

- continuous approximation of ReLU
- Derivative

$$g'(x) = \frac{1}{1 + e^{-x}}$$

• the derivative of the Softplus function is the Logistic function (smooth approximation of the derivative of the rectifier, the Heaviside step function.)

List of possible activation functions

Name	Plot	Equation	Derivative
Identity	/	f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]	/	$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Various types of problems

Regression

Model

- We (can) have several output neurons \hat{y}_c
- output value are not mutually exclusive
 - ⇒ each neuron has a linear (ReLU) activation function,
 - \Rightarrow for each neuron we minimise the mean-square-error
- We minimise the sum of the MSE

$$\mathcal{L} = -\sum_{c} (y_c - \hat{y}_c)^2$$

Regression

Regression Loss

Mean Square Error

- The ground-truth output y is a continuous variable $\in \mathbb{R}$
 - $y^{(i)}$ is gaussian distributed with mean $\hat{y}^{(i)}$
 - $y^{(i)} \sim \mathcal{N}(\hat{y}^{(i)}, \sigma^2) = \hat{y}^{(i)} + \mathcal{N}(0, \sigma^2)$
- $_{-}$ We want to find the heta
 - ... that maximise the **likelihood** of the $y^{(i)}$ given the $x^{(i)}$

$$p(y|X,\theta,\sigma) = \prod_{i=1}^{n} p(y^{(i)}|x^{(i)},\theta,\sigma)$$

$$= \prod_{i=1}^{n} \frac{1}{(2\pi\sigma)^{1/2}} e^{-\frac{1}{2\sigma^2}(y^{(i)} - \hat{y}^{(i)})^2}$$

$$= \frac{1}{(2\pi\sigma)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2}$$

... that minimise the Mean Square Error - MSE (minimise the cost)

$$J(\theta) = \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2$$

Multi-label classification

Model

- We have several output neurons \hat{y}_{o}
- output label are not mutually exclusive
 - ⇒ each neuron has a **sigmoid** activation function,
 - \Rightarrow for each neuron we minimise the binary cross-entropy
- We minimise the sum of the BCEs

$$\mathcal{L} = -\sum_{o} \left(y_o \log(\hat{y}_o) + (1 - y_o) \log(1 - \hat{y}_o) \right)$$

Multi-label Sigmoid **BCE** 0 BCE

Multi-label Classification

- Dog
- Cat
- Horse
- Fish
- · Bird

Multi-label classification

Loss

Loss

$$\mathcal{L} - \sum_{o} \left(y_o \log(\hat{y}_o) + (1 - y_o) \log(1 - \hat{y}_o) \right)$$

Forward

$$z_h^{[1]} = \sum_{i} w_{ih}^{[1]} x_i$$

$$a_h^{[1]} = \frac{1}{1 + e^{-z_h^{[1]}}}$$

$$z_o^{[2]} = \sum_{h} w_{ho}^{[2]} a_h^{[1]}$$

$$\hat{x} = \frac{1}{1 + e^{-z_h^{[1]}}}$$

Multi-label classification

Backward

$$\frac{\partial \mathcal{L}}{\partial w_{ho}^{[2]}} = \frac{\partial \mathcal{L}}{\partial \hat{y}_o} \frac{\partial \hat{y}_o}{\partial z_o^{[2]}} \frac{\partial z_o^{[2]}}{\partial w_{ho}^{[2]}}$$

$$d(Loss) \frac{\partial \mathcal{L}}{\partial \hat{y}_o} = \left(-\frac{y_o}{\hat{y}_o} + \frac{1 - y_o}{1 - \hat{y}_o}\right) = \frac{\hat{y}_o - y_o}{\hat{y}_o(1 - \hat{y}_o)}$$

$$d(Sigmoid) \frac{\partial \hat{y}_o}{\partial z_o^{[2]}} = \hat{y}_o(1 - \hat{y}_o)$$

$$\frac{\partial \mathcal{L}}{\partial z_o^{[2]}} = \hat{y}_o - y_o$$

$$\frac{\partial z_o^{[2]}}{\partial w_{ho}^{[2]}} = a_h^{[1]}$$

$$\frac{\partial \mathcal{L}}{\partial w_{ho}^{[2]}} = (\hat{y}_o - y_o)a_h^{[1]}$$

$$\frac{\partial \mathcal{L}}{\partial w_{ih}^{[1]}} = \sum_o \frac{\partial \mathcal{L}}{\partial z_o^{[2]}} \frac{\partial z_o^{[2]}}{\partial a_h^{[1]}} \frac{\partial a_h^{[1]}}{\partial z_h^{[1]}} \frac{\partial z_h^{[1]}}{\partial w_{ih}^{[1]}}$$

$$= \sum_o (\hat{y}_o - y_o)w_{ho}^{[2]}a_h^{[1]}(1 - a_h^{[1]})x_i$$

Model

- We have several output neurons \hat{y}_c
- output label are not mutually exclusive
 - ⇒ each neuron has a **softmax** activation function,
- We minimise the cross-entropy

$$\mathcal{L} - \sum_{c=1}^{K} \left(y_c \log(\hat{y}_c) \right)$$

Multi-class

Multiclass Classification

- Dog
- Cat
- Horse
- Fish
- Bird

Output activation function: softmax (1)

- **Usage**: multi-class classification $(1 \cdots K)$
 - (softmax regression or deep neural network with several mutually exclusive outputs)

$$P(y = 1 \mid \mathbf{x}) = \frac{e^{\mathbf{w}_1 \cdot \mathbf{x}}}{\sum_{c=1}^{K} e^{\mathbf{w}_c \cdot \mathbf{x}}}$$
...
$$P(y = o \mid \mathbf{x}) = \frac{e^{\mathbf{w}_o \cdot \mathbf{x}}}{\sum_{c=1}^{K} e^{\mathbf{w}_c \cdot \mathbf{x}}}$$
...
$$P(y = K \mid \mathbf{x}) = \frac{e^{\mathbf{w}_K \cdot \mathbf{x}}}{\sum_{c=1}^{K} e^{\mathbf{w}_c \cdot \mathbf{x}}}$$

- Has a "redundant" set of parameters!
 - if we subtract some fixed vector ψ from each \mathbf{w}_o , we get the same results

$$P(y = o \mid \mathbf{x}) = \frac{e^{(\mathbf{w}_o - \psi) \cdot \mathbf{x}}}{\sum_{c=1}^K e^{(\mathbf{w}_c - \psi) \cdot \mathbf{x}}} = \frac{e^{\mathbf{w}_o \cdot \mathbf{x}} e^{-\psi \cdot \mathbf{x}}}{\sum_{c=1}^K e^{\mathbf{w}_c \cdot \mathbf{x}} e^{-\psi \cdot \mathbf{x}}} = \frac{e^{\mathbf{w}_o \cdot \mathbf{x}}}{\sum_{c=1}^K e^{\mathbf{w}_c \cdot \mathbf{x}}}$$

- Common choice: $\psi = \mathbf{w}_K$ hence $e^{(\mathbf{w}_K - \psi) \cdot \mathbf{x}} = 1$

$$P(y = o \mid \mathbf{x}) = \frac{e^{\mathbf{w}_o \mathbf{x}}}{1 + \sum_{c=1}^{K-1} e^{\mathbf{w}_c \mathbf{x}}} \quad \forall o \in [1...K-1]$$

$$P(y = K \mid \mathbf{x}) = \frac{1}{1 + \sum_{c=1}^{K-1} e^{\mathbf{w}_c \cdot \mathbf{x}}}$$

Output activation function: softmax (2)

We of course have

$$P(y = 1 | \mathbf{x}) + P(y = 2 | \mathbf{x}) + ... + P(y = K | \mathbf{x}) = 1$$

Models the log-odds $\log \frac{P_c}{M}$ (posterior probability) using linear models of the inputs ${\bf x}$

$$\log\left(\frac{P(y=1\,|\,\mathbf{x})}{P(y=K\,|\,\mathbf{x})}\right) = \mathbf{w}_1\mathbf{x}$$

$$\log \left(\frac{P(y = o \mid \mathbf{x})}{P(y = K \mid \mathbf{x})} \right) = \mathbf{w}_o \mathbf{x}$$

$$\log \left(\frac{P(y = K - 1 \mid \mathbf{x})}{P(y = K \mid \mathbf{x})} \right) = \mathbf{w}_{K-1} \mathbf{x}$$

- If K=2 their is an equivalence with Logistic Regression (binary classification)
 - we choose $\psi = \mathbf{w}_1$

$$P(y = 1 \mid \mathbf{x}) = \frac{e^{\mathbf{w}_{1}\mathbf{x}}}{e^{\mathbf{w}_{1}\mathbf{x}} + e^{\mathbf{w}_{2}\mathbf{x}}} = \frac{e^{(\mathbf{w}_{1} - \psi)\mathbf{x}}}{e^{(\mathbf{w}_{1} - \psi)\mathbf{x}} + e^{(\mathbf{w}_{2} - \psi)\mathbf{x}}} = \frac{1}{1 + e^{(\mathbf{w}_{2} - \mathbf{w}_{1})\mathbf{x}}}$$

$$P(y = 2 \mid \mathbf{x}) = \frac{e^{\mathbf{w}_{2}\mathbf{x}}}{e^{\mathbf{w}_{1}\mathbf{x}} + e^{\mathbf{w}_{2}\mathbf{x}}} = \frac{e^{(\mathbf{w}_{2} - \psi)\mathbf{x}}}{e^{(\mathbf{w}_{1} - \psi)\mathbf{x}} + e^{(\mathbf{w}_{2} - \psi)\mathbf{x}}} = \frac{e^{(\mathbf{w}_{2} - \mathbf{w}_{1})\mathbf{x}}}{1 + e^{(\mathbf{w}_{2} - \mathbf{w}_{1})\mathbf{x}}} = 1 - P(y = 1 \mid \mathbf{x})$$

Loss

Loss

$$\mathcal{L} - \sum_{c=1}^{K} \left(y_c \log(\hat{y}_c) \right)$$

Forward

$$z_o^{[2]} = \sum_h w_{ho}^{[2]} a_h^{[1]}$$

$$\hat{y}_c = \frac{e^{z_c^{[2]}}}{\sum_o e^{z_o^{[2]}}}$$

Backward

$$d(Loss) \ \frac{\partial \mathcal{L}}{\partial \hat{y_c}} = -\frac{y_c}{\hat{y_c}}$$

$$- \text{ reminder: } \hat{y_c} = \frac{e^{z_c^{[2]}}}{\sum_o e^{z_o^{[2]}}}$$

$$d(Softmax)$$

$$\left(\frac{f}{g}\right)' = \frac{f'}{g} \qquad \qquad -\frac{fg'}{g^2}$$

$$\text{if } c = o \ \frac{\partial \hat{y_c}}{\partial z_o^{[2]}} = \frac{e^{z_c^{[2]}}}{\sum_o e^{z_o^{[2]}}} \qquad -\frac{e^{z_c^{[2]}} e^{z_c^{[2]}}}{\left(\sum_c e^{z_o^{[2]}}\right)^2} = \hat{y_c}(1 - \hat{y_c})$$

$$\text{if } c \neq o \ \frac{\partial \hat{y_c}}{\partial z_o^{[2]}} = 0 \qquad \qquad -\frac{e^{z_c^{[2]}} e^{z_o^{[2]}}}{(\sum_o e^{z_o^{[2]}})^2} = -\hat{y_c}\hat{y_o}$$

$$\begin{split} \frac{\partial \mathcal{L}}{\partial z_o^{[2]}} &= \sum_c \frac{\partial \mathcal{L}}{\partial \hat{y}_c} \frac{\partial \hat{y}_c}{\partial z_o^{[2]}} \\ &= \frac{\partial \mathcal{L}}{\partial \hat{y}_{c=o}} \frac{\partial \hat{y}_{c=o}}{\partial z_{c=o}^{[2]}} + \sum_{c \neq o} \frac{\partial \mathcal{L}}{\partial \hat{y}_c} \frac{\partial \hat{y}_c}{\partial z_o^{[2]}} \\ &= -\frac{y_o}{\hat{y}_o} \hat{y}_o (1 - \hat{y}_o) + \sum_{c \neq o} \frac{y_c}{\hat{y}_c} \hat{y}_c \hat{y}_o \\ &= -y_o (1 - \hat{y}_o) + \sum_{c \neq o} y_c \hat{y}_o \\ &= -y_o + y_o \hat{y}_o + \sum_{c \neq o} y_c \hat{y}_o \\ &= -y_o + \hat{y}_o \sum_c y_c \\ &= -y_o + \hat{y}_o \cdot 1 \\ &= \hat{y}_o - y_o \\ &\Rightarrow \text{ same gradient } \frac{\partial \mathcal{L}}{\partial z_o^{[2]}} \text{ as for sigmoid binary} \end{split}$$

(slide from from Alexandre Allauzen)

A convenient way to represent a complex mathematical expressions :

- each node is an operation or a variable
- an operation has some inputs / outputs made of variables

Example 1: A single layer network

- Setting $\boldsymbol{x}^{(1)}$ and $\boldsymbol{W}^{(1)}$
- ullet Forward pass $o oldsymbol{y}^{(1)}$

$$\mathbf{y}^{(1)} = f^{(1)}(\mathbf{W}^{(1)}\mathbf{x}^{(1)})$$

(slide from from Alexandre Allauzen)

- A variable node encodes the label
- To compute the output for a given input
 - → forward pass
- To compute the gradient of the loss wrt the parameters $(\boldsymbol{W}^{(1)})$
 - → backward pass

(slide from from Alexandre Allauzen)

A function node

Forward pass

This node implements:

$$\boldsymbol{z} = f(\boldsymbol{x}, \boldsymbol{y})$$

(slide from from Alexandre Allauzen)

A function node - 2

Backward pass

A function node knows:

• the "local gradients" computation

$$\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$$

how to return the gradient to the inputs :

$$\left(\frac{\partial l}{\partial z}\frac{\partial z}{\partial x}\right), \left(\frac{\partial l}{\partial z}\frac{\partial z}{\partial y}\right)$$

Summary of a function node

Example of a single layer network

Forward

For each function node in topological order

forward propagation

Which means:

$$a^{(1)} = W^{(1)}x^{(1)}$$

$$\mathbf{y}^{(1)} = f^{(1)}(\mathbf{a}^{(1)})$$

$$l(y^{(1)}, c_{(i)})$$

(slide from from Alexandre Allauzen)

Example of a single layer network

Backward

For each function node in reversed topological order

backward propagation

Which means:

- $\mathbf{0} \nabla_{\boldsymbol{y}^{(1)}}$
- $\nabla_{a^{(1)}}$

Example of a two layers network

- The algorithms remain the same,
- even for more complex architectures
- Generalization by coding your own function node or by
- Wrapping a layer in a module

Deep Learning Frameworks

Deep Learning Frameworks

Tensorboard

Deep Learning Frameworks

Colab https://colab.research.google.com/

Various types of training

Various types of training

- *m* training examples:
 - $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$
- Various types of training:
 - Batch Gradient Descent
 - Mini Batch Gradient Descent
 - Stochastic Gradient Descent (SGD)

(mini-batch) Gradient Descent

Notations

- iteration: t
- parameter at iteration t: $\theta^{[t]}$, θ can be either \mathbf{W} (weight matrix) or \mathbf{b} (bias vector)
- gradient of the loss w.r.t. θ : $\frac{\partial \mathcal{L}}{\partial \theta}$

Mini-batch Gradient Descent

$$\theta^{[t]} = \theta^{[t-1]} - \alpha \frac{\partial \mathcal{L}(\theta^{[t-1]}, x^{(i:i+n)}, y^{(i:i+n)})}{\partial \theta}$$

Problems

- does not guarantee good convergence
- neural network = highly non-convex error functions
 - avoid getting trapped in their numerous suboptimal local minima or saddle points (points where one dimension slopes up and another slopes down) which are usually surrounded by a plateau
- choosing a proper learning rate can be difficult, need to adapt the learning rate to dataset's characteristics
- each parameter may require a different learning rate (sparse data)

Alternatives to Gradient Descent

- first-order methods: Momentum, Nesterov (NAG), Adagrad, Adadelta/RMSprop, Adam
- second-order methods: Newton

Momentum

- Goal?
 - helps accelerating gradient descent in the relevant direction and dampens oscillations
- How?
 - add a fraction β of the update vector of the past time step to the current step
- **Momentum**
 - On iteration t, compute $\frac{\partial \mathcal{L}(\theta^{[t-1]}, x, y)}{\partial \theta}$ on current mini-batch

$$V_{d\theta}^{[t]} = \beta V_{d\theta}^{[t-1]} + (1 - \beta) \frac{\partial \mathcal{L}(\theta^{[t-1]}, x, y)}{\partial \theta}$$
$$\theta^{[t]} = \theta^{[t-1]} - \alpha V_{d\theta}^{[t]}$$

- usual choice: $\beta = 0.9$
- Explanation: the momentum term
 - increases for dimensions whose gradients point in the same directions
 - reduces updates for dimensions whose gradients change directions
 - gain faster convergence and reduced oscillation
- β plays the role of a friction parameter
 - $V_{d\theta}$ plays the role of the velocity
 - $\frac{\partial}{\partial \theta}$ plays the role of acceleration

Nesterov Accelerated Gradient (NAG)

- Problem:
 - "A ball that rolls down a hill, blindly following the slope, is highly unsatisfactory."
- Solution:
 - "We'd like to have a smarter ball, a ball that has a notion of where it is going so that it knows to slow down before the hill slopes up again."
 - ullet We know that we will use our momentum term $eta V_{d heta}^{[t-1]}$ to move heta

$$-\theta^{[t]} = \theta^{[t-1]} - \alpha \left[\beta V_{d\theta}^{[t-1]} + (1-\beta) \frac{\partial \mathcal{L}}{\partial \theta} \right]$$

- We therefore compute the derivative of the loss at $\theta^{[t-1]} \alpha \beta V_{d\theta}^{[t-1]}$ instead of $\theta^{[t-1]}$
- This gives us an approximation of the next positon of heta
- Nesterov Accelerated Gradient
 - At iteration t

$$\begin{aligned} V_{d\theta}^{[t]} &= \beta V_{d\theta}^{[t-1]} + (1-\beta) \frac{\partial \mathcal{L}(\theta^{[t-1]} - \alpha \beta V_{d\theta}^{[t-1]}, x, y)}{\partial \theta} \\ \theta^{[t]} &= \theta^{[t-1]} - \alpha V_{d\theta}^{[t]} \end{aligned}$$

Nesterov Accelerated Gradient (NAG)

- Momentum
 - 1) computes the gradient at the current $(\theta^{[t-1]})$ position: $\frac{\partial \mathcal{L}(\theta^{[t-1]})}{\partial \theta}$
 - 2) before using it, we do a big jump in the direction of the previous accumulated gradient $lphaeta V_{d heta}^{[t-1]}$
- Nesterov Accelerated Gradient (NAG)
 - ullet 1) big jump *in the direction of the previous accumulated gradient* $lphaeta V_{d heta}^{[t-1]}$
 - 2) compute the gradient at the propagated $(\theta^{[t-1]} \alpha \beta V_{d\theta})$ position: $\frac{\partial \mathcal{L}(\theta^{[t-1]} \alpha \beta V_{d\theta}^{[t-1]})}{\partial \theta}$
 - 3) makes the correction
- Prevents us from going too fast and results in increased responsiveness

AdaGrad

- Goal: adapt the updates to each individual parameters
 - we want smaller update (lower learning rate) for frequently occurring features
 - we want larger update (higher learning rate) for infrequent features

_ Notation:
$$d\theta_i^{[t]} = \frac{\partial \mathcal{L}(\theta_i^{[t]}, x, y)}{\partial \theta_i}$$

_ SGD:
$$\theta_i^{[t]} = \theta_i^{[t-1]} - \alpha d\theta_i^{[t-1]}$$

- AdaGrad
 - Compute the past gradients that have been used for θ_i : $G_{i,i}^{[t]} = \sum_{\tau=0}^l d\theta_i^{[\tau]^2}$

$$G_{i,i}^{[t]} = \sum_{\tau=0}^{t} d\theta_i^{[\tau]^2}$$

$$\theta_i^{[t]} = \theta_i^{[t-1]} - \frac{\alpha}{\sqrt{G_{i,i}^{[t-1]} + \epsilon}} d\theta_i^{[t-1]}$$

- Problem
 - the gradient are accumulated since the beginning
 - the learning rates will shrink

AdaDelta

- Extension of AdaGrad: instead of accumulating all past squared gradients, we restrict the window of accumulated past gradients to some fixed size
- AdaDelta:

$$\mathbb{E}[d\theta^2]^{[t]} = \gamma \mathbb{E}[d\theta^2]^{[t-1]} + (1-\gamma)d\theta^{[t]^2}$$

$$\theta^{[t]} = \theta^{[t-1]} - \frac{\alpha}{\sqrt{\mathbb{E}[d\theta^2]^{[t-1]} + \epsilon}} d\theta^{[t-1]}$$

RMSprop (Root Mean Square prop)

- On iteration t compute d heta on current mini-batch
- RMSprop:

$$S_{d\theta}^{[t]} = \gamma S_{d\theta}^{[t-1]} + (1 - \gamma) d\theta^{[t]^2}$$

$$\theta^{[t]} = \theta^{[t-1]} - \frac{\alpha}{\sqrt{S_{d\theta}^{[t-1]} + \epsilon}} d\theta^{[t-1]}$$

– Want speed up in horizontal (W)

- Want slow down (damping) oscillation in vertical (b)
 - $S_{dW}^{[t]}$ large $\Rightarrow 1/\sqrt{S_{dW}^{[t]} + \epsilon}$ small \Rightarrow slow down

Adam (Adaptive moment estimation)

- Adam = Mometum + AdaDelta/RMSprop
 - ullet On iteration t compute d heta on current mini-batch

$$\begin{aligned} V_{d\theta}^{[t]} &= \beta_1 V_{d\theta}^{[t-1]} + (1 - \beta_1) d\theta^{[t-1]} \\ S_{d\theta}^{[t]} &= \beta_2 S_{d\theta}^{[t-1]} + (1 - \beta_2) d\theta^{[t-1]^2} \\ \theta^{[t]} &= \theta^{[t-1]} - \alpha \frac{V_{d\theta}^{[t]}}{\sqrt{S_{d\theta}^{[t]} + \epsilon}} \end{aligned}$$

Hyperparameters

- α : learning rate (needs to be tuned)
- $\beta_1 = 0.9$ (momentum term, first moment)
- $\beta_2 = 0.999$ (RMSprop term, second moment)
- $\epsilon = 10^{-8}$ (avoid divide-by-zero)

Initialise W with all zeros ?

$$\mathbf{W}^{[1]} = \begin{pmatrix} 000\\000 \end{pmatrix}$$

$$\mathbf{W}^{[2]} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

- then for any input $\Rightarrow a_1^{[1]} = a_2^{[1]} = a_3^{[1]}$
 - the three hidden units are computing exactly the same function
 - they are symmetric

$$\mathbf{z}^{[1]} = \mathbf{a}^{[0]} \mathbf{W}^{[1]}$$

$$(\mathbf{z}_{1}^{[1]} \mathbf{z}_{2}^{[1]} \mathbf{z}_{3}^{[1]}) = (\mathbf{a}_{1}^{[0]} \mathbf{a}_{2}^{[0]}) \begin{pmatrix} w_{11}^{[1]} w_{12}^{[1]} w_{13}^{[1]} \\ w_{21}^{[1]} w_{22}^{[1]} w_{23}^{[1]} \end{pmatrix}$$

$$\mathbf{z}^{[2]} = \mathbf{a}^{[1]} \mathbf{W}^{[2]}$$

$$\mathbf{z}_{1}^{[2]} = (\mathbf{a}_{1}^{[1]} \mathbf{a}_{2}^{[1]} \mathbf{a}_{3}^{[1]}) \begin{pmatrix} w_{11}^{[2]} \\ w_{21}^{[2]} \\ w_{31}^{[2]} \end{pmatrix}$$

Initialise W with all zeros ?

- Back-propagation?

$$\frac{\partial \mathcal{L}}{\partial z^{[2]}} = a^{[2]} - y$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[2]}} = \mathbf{a}^{[1]} \frac{\partial \mathcal{L}}{\partial z^{[2]}} = \begin{pmatrix} a_1^{[1]} \\ a_2^{[1]} \\ a_3^{[1]} \end{pmatrix} \frac{\partial \mathcal{L}}{\partial z^{[2]}}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[1]}} = \frac{\partial \mathcal{L}}{\partial z^{[2]}} \mathbf{W}^{[2]T} = \frac{\partial \mathcal{L}}{\partial z^{[2]}} \left(w_{11}^{[2]} w_{21}^{[2]} w_{31}^{[2]} \right)$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} \odot g^{[1]'}(z^{[1]}) = \frac{\partial \mathcal{L}}{\partial z^{[2]}} \left(w_{11}^{[2]} w_{21}^{[2]} w_{31}^{[2]} \right) \odot g^{[1]'} \left(z_1^{[1]} z_2^{[1]} z_3^{[1]} \right)$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[1]}} = \mathbf{a}^{[0]} \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} = \begin{pmatrix} a_1^{[0]} \\ a_2^{[0]} \end{pmatrix} \begin{pmatrix} \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} 3 \end{pmatrix} = \begin{pmatrix} \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} a_1^{[0]} \frac{\partial \mathcal{L}}{\partial \mathbf$$

- When we compute back-propagation, we have $\frac{\partial \mathcal{L}}{\partial \mathbf{z^{[1]}}_1} = \frac{\partial \mathcal{L}}{\partial \mathbf{z^{[1]}}_2} = \frac{\partial \mathcal{L}}{\partial \mathbf{z^{[1]}}_3}$
 - Therefore $\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[1]}}$ is in a symmetric form $\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[1]}} = \begin{pmatrix} u & u & u \\ v & v & v \end{pmatrix}$ and the update $\mathbf{W}^{[1]} = \mathbf{W}^{[1]} \alpha \frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[1]}}$ will keep the symmetricity: $z_1^{[1]} = z_2^{[1]} = z_3^{[1]} = a_1^{[0]}u + a_2^{[0]}v$
- so this is not use-full since we want the different units to compute difference functions
 - ⇒initialise the parameters randomly

Weight initialisation with random values

- Random initialisation

- $W^{[1]}$ = np.random.randn((2,3))*0.01
- $b^{[1]} = 0$
- $W^{[2]}$ = np.random.randn((3,1))*0.01
- $b^{[2]} = 0$
- $_{-}$ Remark: ${f b}$ doesn't have the symmetry problem

- Why 0.01?

• If **W** is big \Rightarrow Z is also big

$$\mathbf{Z}^{[1]} = \mathbf{X} \ \mathbf{W}^{[1]} + \mathbf{b}^{[1]}$$

 $\mathbf{A}^{[1]} = g^{[1]}(\mathbf{Z}^{[1]})$

- ⇒we are in the flat part of the sigmoid/tanh
 - \Rightarrow slope is small
 - − ⇒ gradient descent slow
 - − ⇒ learning slow
- Better to initialise to a very small value (valid for $\sigma(z)$ and $\tanh(z)$)

Vanishing/ exploding gradients

- For a very deep neural network

- suppose $g^{[l]}(z) = z$ (linear activation) and $b^{[l]} = 0$
- then

$$y = \underbrace{\mathbf{X} \mathbf{W}^{[1]}}_{\mathbf{A}^{[1]} = g(\mathbf{Z}^{[1]}) = \mathbf{Z}^{[1]}} \mathbf{W}^{[2]} \dots \mathbf{W}^{[L]}$$

$$\underbrace{\mathbf{A}^{[2]} = g(\mathbf{Z}^{[2]}) = \mathbf{Z}^{[2]}}_{\mathbf{A}^{[2]} = g(\mathbf{Z}^{[2]}) = \mathbf{Z}^{[2]}}$$

Exploding gradient

• suppose

$$\mathbf{W}^{[l]} = \begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix}$$

• then

$$\hat{\mathbf{y}} = \mathbf{X} \begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix}^{L-1} \mathbf{W}^{[L]}$$

- if L is large $\Rightarrow (1.5)^{L-1}$ is very large
 - $-\Rightarrow$ the value of \hat{y} will explode
- Similar arguments can be used for the gradient

Vanishing gradient

suppose

$$\mathbf{W}^{[l]} = \begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix}$$

- if L is large $\Rightarrow (0.5)^{L-1}$ is very small
 - $-\Rightarrow$ the value of \hat{y} will vanish

Weight initialisation

Weight initialisation for Deep Neural Networks

Suppose a single neuron network

$$z = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$$

- In order to avoid vanishing/exploding gradient) \AR
 - The larger n is \Rightarrow the smallest w_d should be
- Solution?
 - set $Var(w_i) = 1/n$
- In practice

$$\mathbf{W}^{[l]} = \text{np.random.randn(shape)} * \text{np.sqrt} \left(1/n^{[l-1]}\right)$$

- Other possibilities
 - For a ReLu: $Var(w_i) = \frac{2}{n}$ works a bit better
 - For a tanh

$$Var(w_i) = \frac{1}{n^{[l-1]}}$$
: Xavier initialisation

$$Var(w_i) = \frac{2}{n^{[l-1]}n^{[l]}}$$
: Bengio initialisation

L1 and L2 regularisation

- Goal ?
 - avoid over-overfitting (high variance)
- How ?
 - reduce model complexity
- In logistic regression

$$J(\mathbf{w}, b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{\mathbf{y}}^{(i)}, \mathbf{y}^{(i)}) + \frac{\lambda_1}{2m} ||\mathbf{w}||_1 + \frac{\lambda_2}{2m} ||\mathbf{w}||_2^2 +$$

with
$$||w||_1 = \sum_{j=1}^{n_x} |w_j|$$
 and $||w||_2^2 = \sum_{j=1}^{n_x} w_j^2 = \mathbf{w}^T \mathbf{w}$

- L1 regularisation (Lasso):
 - will end up with sparse **w** (many zero)
- **L2 regularisation** (Ridge):
 - will end up with small values of w
- L1+L2: Elastic Search
 - λ is the regularisation parameter (hyper-parameter)

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

L1 and L2 regularisation

In neural network

$$J(\ldots) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}\hat{\mathbf{y}}^{(i)}, \mathbf{y}^{(i)}) + \frac{\lambda}{2m} \sum_{l=1}^{L} ||\mathbf{W}^{[l]}||^{2} \qquad d'\mathbf{W}^{[l]} = \frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[l]}} + \frac{\lambda}{m} \mathbf{W}^{[l]}$$

where $||\mathbf{W}||_2^2 = ||\mathbf{W}||_E$ is the "Frobenius norm"

$$\|\mathbf{W}\|^2 = \sum_{i=1}^{n^{[l-1]}} \sum_{j=1}^{n^{[l]}} (\mathbf{W}_{i,j}^{[l]})^2$$

- In gradient descent?

$$d'\mathbf{W}^{[l]} = \frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[l]}} + \frac{\lambda}{m} \mathbf{W}^{[l]}$$

Therefore

Why regularisation reduces over-fitting?

Intuition 1

$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \sum_{l=1}^{L} ||\mathbf{W}^{[l]}||^{2}$$

- If we set λ very very big then $\mathbf{W}^{[l]} \simeq 0$
 - − ⇒ many hidden units are not active
 - ⇒ the network becomes much simpler ⇒ avoid over-fitting

- Intuition 2

- Suppose we are using a tanh
 - If z is small, the tanh is linear
- If λ is large,
 - then $\mathbf{W}^{[l]}$ is small,
 - then $z^{[l]}$ is small
 - then every layer is almost linear,
 - \rightarrow the whole network is linear

DropOut regularisation

During training

- for each training example **randomly turn-off** the neurons of hidden units (with p = 0.5)
 - this also removes the connections
- for different training examples, turn-off different unit
- possible to vary the probability across layers
 - for large matrix $\mathbf{W} \Rightarrow p$ is higher
 - for small matrix $\mathbf{W} \Rightarrow p$ is lower

During testing

no drop out

Dropout effects:

- prevents co-adaptation between units
- can be seen as averaging different models that share parameters
- acts as a powerful regularisation scheme
- since the network is smaller, it is easier to train (as regularisation)
- The network cannot rely on any feature, it has to spread out weights
 - Effect: shrinking the squared norm of the weights (similar to L2 regularisation)
 - Can be shown to be an adaptive form of L2-regularisation

Data augmentation

Normalising the inputs

- "Standardising":

- subtracting a measure of location and dividing by a measure of scale
- subtract the mean and divide by the standard deviation

$$\mu_d = \frac{1}{m} \sum_{i=1}^m x_d^{(i)} \to x_d = x_d - \mu_d$$

$$\sigma_d^2 = \frac{1}{m} \sum_{i=1}^m (x_d^{(i)} - \mu_d)^2 \to x_d = \frac{x_d}{\sigma_d}$$

 \bullet We use also μ_{train} and σ_{train}^2 to standardise the test set

- "Normalising":

- rescaling by the minimum and range of the vector
- make all the elements lie between 0 and 1.

Normalising the inputs

- Suppose: $x_1 \in [1...1000]$ and $x_2 \in [0...1]$
 - Then w_1 and w_2 will take very different value
- if no normalisation
 - many oscillations
 - need to use a small learning rate

– Why use input normalisation?

- get similar values for w_1 and w_2
 - gradient descent can go straight to the minimum
 - can use large learning rate
- avoid each activation to be large (see sigmoid activation)
- numerical instability

Batch Normalisation (BN)

- Objective?
 - Apply the same normalisation for the input of each layer [l]
 - allows to learn faster
- Try to reduce the "covariate shift"
 - the inputs of a given layer [l] is the outputs of the previous layer [l-1]
 - these outputs [l-1] depends on the parameters of the previous layer which change over training!
 - normalise the output of the previous layer $a^{[l-1]}$
 - in practice normalise the pre-activation $z^{[l-1]}$
- Don't want all units to always have mean 0 and standard-deviation 1
 - Learn an appropriate bias β and scale γ to apply to $z^{[l-1]}$ before the non-linear function $g^{[l]}$

Batch Normalisation (BN)

– Given some intermediate values in the network: $z^{[l](1)}, z^{[l](2)}, ..., z^{[l](m)}$

- Normalisation

$$\mu^{[l]} = \frac{1}{m} \sum_{i} z^{[l](i)}, \qquad \sigma^{2^{[l]}} = \frac{1}{m} \sum_{i} (z^{[l](i)} - \mu^{[l]})^{2}$$

$$z^{[l](i)}_{norm} = \frac{z^{[l](i)} - \mu^{[l]}}{\sqrt{\sigma^{2^{[l]}} + \epsilon}}$$

- Re-scaling:

• New parameters **to be trained**: β allows to set the **mean** of $\tilde{z}^{[l]}$, γ allows to set the **variance** of $\tilde{z}^{[l]}$, $\tilde{z}^{[l](i)} = \gamma \cdot z_{norm}^{[l](i)} + \beta$

Non-linearity

$$a^{[l](i)} = g^{[l]}(\tilde{z}^{[l](i)})$$

_ Note: if
$$\gamma=\sqrt{\sigma^{2^{[l]}}+\epsilon}$$
 and $\beta=\mu$ then $\tilde{z}^{[l](i)}=z^{[l](i)}$

Batch Normalisation (BN)

- New parameters:
 - $\beta^{[1]}, \gamma^{[1]}, \beta^{[2]}, \gamma^{[2]}, \dots$

- How to estimate $\beta^{[l]}$, $\gamma^{[l]}$?
 - $\beta^{[l]}$, $\gamma^{[l]}$ are estimated using **gradient-descent**

_ Gradient:
$$\frac{\partial \mathcal{L}}{\partial \beta^{[l]}}, \frac{\partial \mathcal{L}}{\partial \gamma^{[l]}}$$

_ Update:
$$\beta^{[l]} = \beta^{[l]} - \alpha \frac{\partial \mathcal{L}}{\partial \beta^{[l]}}, \qquad \gamma^{[l]} = \gamma^{[l]} - \alpha \frac{\partial \mathcal{L}}{\partial \gamma^{[l]}}$$

- With mini-batches $\{1\}, \{2\}, \dots$
 - $a^{[0]\{1\}} \xrightarrow{W^{[1]},b^{[1]}} z^{[1]\{1\}} \xrightarrow{BN:\gamma^{[1]},\beta^{[1]}} \tilde{z}^{[1]\{1\}} \to a^{[1]\{1\}} = g^{[1]}(\tilde{z}^{[1]\{1\}})$
 - $-\mu$ and σ are computed over the mini-batch $\{1\}$
 - $a^{[0]\{2\}} \xrightarrow{W^{[1]}, b^{[1]}} z^{[1]\{2\}} \xrightarrow{BN: \gamma^{[1]}, \beta^{[1]}} \tilde{z}^{[1]\{2\}} \to a^{[1]\{2\}} = g^{[1]}(\tilde{z}^{[1]\{2\}})$
 - $_{-}$ μ and σ are computed over the mini-batch $\{2\}$

Overview

