Niveau II / Année 2017-18, Session de Rattrapage E.N.S.P. ND/NG

U.E. MAT 217 « Séries et Intégrales généralisées », Examen Final (3H00mn)

- 1. DOCUMENTS INTERDITS / CALCULATRICES AUTORISEES, SAUF LES PROGRAMMABLES.
- 2. Le correcteur appréciera le SOIN apporté à la REDACTION et à la PRESENTATION du devoir.
- 3. Toute réponse doit être justifiée, mais éviter des explications INUTILEMENT KILOMETRIQUES.
- 4. L'objectif ici ne doit pas être de chercher à traiter à tout prix toute l'épreuve, en sprintant inconsidérément et en bâclant. Mais, plutôt, d'en couvrir une part significative de manière convaincante.

**** **EXERCICE 1** (5,5 POINTS) **** | Pour $n \in \mathbb{N}^*$, on pose :

$$I_n = \int_0^{+\infty} (1 - \operatorname{th}^{2n} t) \, dt, \quad J_n = \int_0^1 \frac{1 - x^{2n}}{1 - x^2} \, dx, \quad K_n = \int_{-\infty}^{+\infty} (1 - \operatorname{th}^{2n} t) \, dt.$$

- 1°) Sans chercher à trouver la nature, ni calculer la valeur des intégrales I_n , J_n , K_n , montrer que :
 - a) $I_n = J_n$, et dire ce que cela signifie cette égalité dans ce contexte;
 - b) J_n est une intégrale définie (au sens de Riemann);
 - c) I_n est un réel ≥ 0 .
- 2°) Exprimer I_n sous forme de somme de n réels ≥ 0 , mais en calculant chaque terme de cette somme.
- **3°)** Utiliser ce qui précède pour : **a)** Déduire que K_n est un réel ≥ 0 ; **b)** Trouver la valeur de K_n .

**** EXERCICE 2 (4,5 POINTS) ****

Soit
$$A = \sum_{n=p+q}^{+\infty} \frac{\cos^2(\omega n - \omega q)}{5^n}$$
, où $\omega \in \mathbb{R}$ et $p, q \in \mathbb{N}$.

- 1°) Pourquoi dit-on que A est une somme infinie?
- **2°)** Sans chercher à calculer A, montrer que $A \in \mathbb{R}$.
- 3°) Calculer A (N.B. En simplifiant le résultat autant que possible).
- 4°) Dire ce que signifie, en pratique, cette valeur de la somme infinie A (notamment pourquoi on parle, plus précisément, de somme totale, et préciser de quoi).

**** EXERCICE 3 (6,5 POINTS) ****

I - Etudier la nature des séries :

(1)
$$\sum_{n\geqslant 0} \sqrt[5]{1- \tanh^6 n}$$
; (2) $\sum_{n\geqslant 2} (-1)^n \frac{\cos{(7n\pi)}}{\ln n}$, (3) $\sum_{n\geqslant 0} e^{2n} \sinh(e^{-10n/3})$, (4) $\sum_{n\geqslant 1} \frac{(-1)^n}{\sqrt{n} + \sin(5n)}$.

III - L'intégrale $\int_0^{+\infty} e^{-it^3} dt$ et la série $\sum_{n>0} e^{-in^3}$ sont-elles de même nature?

*** EXERCICE 4 (7 POINTS) ****

On pose:
$$F(x) = \sum_{k=0}^{+\infty} (-1)^k \frac{x^{2k}}{(2k)!}, \quad I = \int_0^8 \frac{\cos(\sqrt{x}) - 1}{x} dx, \quad W = \sum_{k=1}^{+\infty} \frac{(-8)^k}{(2k)! \cdot k}, \quad T = \sum_{n \geqslant 0} a_n x^n.$$

- $\mathbf{1}^{\circ}$) Sans chercher à calculer ni F(x), ni I, ni W:
 - a) Montrer que $W \in \mathbb{R}$.
 - b) Montrer que I est une intégrale définie (au sens de Riemann).
 - c) Trouver le domaine de définition \mathcal{D}_F de la fonction F dans \mathbb{C} .
- **2°)** a) Montrer que : $\forall x \in IR$, $\cos x = F(x)$.
 - b) En déduire que I = W. N.B. Admettre que permuter les symboles intégral et somme infinie est valide ici.
 - c) Utiliser ce résultat pour calculer une approximation de I avec une incertitude absolue $< 10^{-8}$.
- 3°) On rappelle qu'une série entière est une série de la forme T, où $(a_n)_{n \in IN}$ est une suite numérique. Montrer alors que F(x) est la somme d'une série entière, en précisant les coefficients a_n appropriés. **N.B.** On donnera d'abord a_0 , a_1 , a_2 , a_3 , avant d'extrapoler le cas général pour n quelconque dans IN.