

DIGITAL LOGIC AND DESIGN

LAB ASESSMENT - 5

Name: VIBHU KUMAR SINGH

Reg. No: 19BCE0215

Teacher: Sairabanu J.

Q1) Realization of characteristic table of different types of flip flop.

A1)

S-R Flip Flop

Logic Diagram:

Characteristic Table:

Q(t+1)	R	S	Q
0	0	0	0
0	1	0	0
1	0	1	0
Forbidden(0)	1	1	0
1	0	0	1
0	1	0	1
1	0	1	1
Forbidden(0)	1	1	1

SR = 0

(c) Characteristic equation

S-R Flip Flop:

Input(310,270)	Input(310,330)	Output(800,290)
0	0	0
0	1	0
1	1	0
1	0	0
1	0	1
1	0	0
1	1	0
1	1	1
0	1	1
0	0	1
0	1	1
0	1	0
0	1	1
1	1	1
1	0	1
1	1	1

(a) Logic diagram

Characteristic Table:

Q	D	Q(t+1)
0	0	0
0	1	1
1	0	0
1	1	1

(c) Characteristic equation

D Flip Flop:

Logging Table:

Input(480,360)	Output(830,320)
0	0
1	0
1	1
0	1
0	0
0	1
1	1

• JK Flip Flop

Logic Diagram:

(a) Logic diagram

Characteristic Table:

Q	J	K	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

JK Flip Flop:

Input(310,270)	Input(310,330)	Output(910,290)
0	0	0
0	1	0
0	0	0
1	0	0
1	0	1
1	0	0
1	1	0
1	1	1
0	1	1
0	0	1
0	1	1
0	1	0
0	1	1
1	1	1
1	0	1
1	1	1
1	1	0

T Flip Flop Logic Diagram:

Characteristic Table:

Q	Т	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

T Flip Flop:

Input(480,360)	Output(830,320)
0	0
1	0
1	1
0	1
1	1
1	0

 $\mathbf{Q2})$ Design and implement a 3 bit binary synchronous counter using T flip Flop.

A2)

Excitation Table:

Pr	esent Sta	ate	I	Next Stat	:e		Flip-Flop)
A2	A1	A0	A2	A1	A0	TA2	TA1	TA0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

Equations:

Circuit:

Output(310,40)	Output(470,30)	Output(650,30)
1	1	1
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1
0	0	0

Q3) Design a SISO Shift register. A3)

Truth Table:

Clock pulse No	QA	QB	QC	QD
0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	1
5	0	0	0	0

Screenshots(4):

Output(970,190)	Clock(140,450)
0	
1	
0	
1	
0	
0	1
0	0
0	1
0	0
0	1
0	0
0	1.
0	0
1	1

Q4) Design the state diagram using JK flip flops.

A4)

te tak	P.S.	N.S.		
	AB	X=0	X=1	
		AB	A B	
	0 0	0 0	0 1	
	0 1	10	0 1	
	10	10		
	1-1	11	00	

P.S.	X	N.S.	JAKA	JB KB
AB		AB	0	
00	0	00	D .X	0 X
00	1	. 01	DX) X
0 1	0	10	1 X	x I
01	1	01	0 X	X O
10	0	10	X O	0 X
10	1	11	X O	1 ×
11	0	11	X D	x 0
11	1	00	X I	x I

Equations:

JA=BX' KA=BX JB=X KB=A'X'+AX=A (XNOR) X

K-Maps:

Screenshots:

Input(190,220)	Output(680,240)	Output(680,390)
0	0	0
1	0	0
1	0	1
0	0	1
0	1	0
1	1	0
1	1	1
0	1	1
1	1	1
1	0	0