Dimensionality Reduction

Sophie Giffard-Roisin

sophie.giffard@colorado.edu

Clone the repo github.com/sophiegif/Workshop_dimensionality_reduction

April 18, 2019

Outline

- Dimensionality Reduction
 - Toy Example
 - Definition
- 2 Methods Overview
 - Linear Methods
 - Non-linear Methods
 - Incorporated in ML algorithms
- 3 Don't Forget

Dimensionality Reduction: Goal

- ML example: Predicting Titanic survivors (...!!)
- Data: list of passengers with their information
- Feature dimension?

	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	3	Palsson, Mrs. Nils (Alma Cornelia Berglund)	female	29.0	0	4	349909	21.075	NaN	S
1	2	Beane, Mr. Edward	male	32.0	1	0	2908	26.000	NaN	S
2	3	Palsson, Miss. Stina Viola	female	3.0	3	1	349909	21.075	NaN	S
3	3	Torber, Mr. Ernst William	male	44.0	0	0	364511	8.050	NaN	S
4	2	Bystrom, Mrs. (Karolina)	female	42.0	0	0	236852	13.000	NaN	S

Problem Setting

- Better explain the data by reducing the number of features (dimensions)
- Can be seen as 'pre-processing step' ... but not always!
- Also: for visualizing/interpreting the data, for clustering...

Figure: Most known example of dimensionality reduction: PCA (Principal Component Analysis)

Outline

- Dimensionality Reduction
 - Toy Example
 - Definition
- 2 Methods Overview
 - Linear Methods
 - Non-linear Methods
 - Incorporated in ML algorithms
- 3 Don't Forget

Principal Component Analysis

- Linear projection in a low dimensionality space
- ... such that the reduction error is minimized

Principal Component Analysis

- Linear projection in a low dimensionality space
- ... such that the reduction error is minimized
- 1) Find linear transfo. where 1sts axes maximize the variance:
 - covariance matrix $C = X^T X$ (X = centered feature matrix)
 - diagonalize $C = VLV^T$, V = eigenvectors; L = diagonal mat. of eigenvalues λ_i in < order

Principal Component Analysis

- Linear projection in a low dimensionality space
- ... such that the reduction error is minimized
- 1) Find linear transfo. where 1sts axes maximize the variance:
 - covariance matrix $C = X^T X$ (X = centered feature matrix)
 - diagonalize $C = VLV^T$, V = eigenvectors; L = diagonal mat. of eigenvalues λ_i in < order
- 2) Select the Nb of eigenvectors (= PC) to keep
- Limitation: x_i should be iid Gaussian random variables (...!)

Random Projection

- Linear random projections in low dim. spaces
- Johnson-Lindenstrauss lemma: a small set of points in a high-dim. space can be embedded in a space of << dim. s.t. distances between points are nearly preserved.
- Nb of dim. in $O\left(\frac{\log(m)}{\varepsilon^2}\right)$ with m= nb of samples

Random Projection

- Linear random projections in low dim. spaces
- Johnson-Lindenstrauss lemma: a small set of points in a high-dim. space can be embedded in a space of << dim. s.t. distances between points are nearly preserved.
- Nb of dim. in $O\left(\frac{\log(m)}{\varepsilon^2}\right)$ with m= nb of samples
- Computationally efficient
- Limitation: useful if your feature dimension >> nb of samples

Non-linear methods, ex. Isomap

Figure: 2 points that are close together in Euclidean space may not reflect their intrinsic similarity. (Tenenbaum et al.)

• Lower-dim. embedding maintaining geodesic distances.

Non-linear methods, ex. Isomap

Figure: 2 points that are close together in Euclidean space may not reflect their intrinsic similarity. (Tenenbaum et al.)

- Lower-dim. embedding maintaining geodesic distances.
- 3 steps:
 - Nearest neighbor search (define k)
 - Shortest-path graph search (Dijkstra's Algorithm)
 - Compute lower-dimensional embedding
- Limitation: Can be sensitive to k

Dim. reduction incorporated in learning methods

Ex. Automatic Relevance Determination Regression or Classif.

- Reduce feature dimension according to the output
- Automatic dim. reduction of input
- Idea:
 - Look for weights w s.t. $y = w^T \Phi(x)$
 - Prior on the w_i s : $P(w_i) = N(0, \alpha_i^{-1})$

Dim. reduction incorporated in learning methods

Ex. Automatic Relevance Determination

- Reduce feature dimension according to the output
- Automatic dim. reduction of input
- Idea:
 - Look for weights w s.t. $y = w^T \Phi(x)$
 - Prior on the w_i s : $P(w_i) = N(0, \alpha_i^{-1})$

And also...other methods!

- Linear: ICA (independent component analysis)
- Non-linear: Autoencoders (deep learning)
- Built-in ML: Random Forest

Figure: Autoencoder.

Things not to forget when doing dim. reduction

- Always find hyper-parameters on training set! (mean, std, eigenvectors, ...)
- Visualize your data first
- Linear methods are often not that bad
- Understanding your problem/data will help you know what are the relevant features!
- Information ≠ Variability

Your time to work!

- Play with different methods (scikitlearn = best friend)
- Python notebook: github.com/sophiegif/Workshop_ dimensionality_reduction

