EXERCÍCIOS SUPLEMENTARES

SISTEMAS DE NUMERAÇÃO ARQUITETURA COMPUTACIONAL

- 1) Converta as bases apresentando os cálculos

 - b. 10011110₂ _____8
 - c. 1101010₂ _____₁₆
 - d. 1010001₂ _____₁₀
 - e. 1111000₂ _____8
- 2) Para as afirmações a seguir, marque as respostas como verdadeiro (V) ou falso (F) e selecione a opção corresponde de respostas
 - Os números binários são importantes na computação porque um número binário pode ser convertido em todas as outras bases.
 - ii. Números binários podem ser convertidos em hexadecimal, mas não em octal.
 - iii. A partir da esquerda para a direita, cada Agrupamento de quatro dígitos binários pode ser lido como um dígito hexadecimal.
 - iv. Um byte é composto de seis dígitos binários.
 - v. Dois dígitos hexadecimais podem ser armazenados em um byte.
 - a. V-V-F-V-V
 - b. V-F-F-V
 - c. F-F-V-F-F
 - d. F-V-F-V-F
 - e. V V V V V
- 3) Converta 891₁₀ para as seguintes bases e informe a quantidade de 1 existentes na conversão
 - a. Base de dados 8
 - b. Base de dados 16
- 4) Expresse 891₁₀ como um polinômio em cada uma das bases convertidas no exercício anterior.

Lembranca de um polinômio: $891_{10} = 8 \times 10^2 + 9 \times 10^1 + 1 \times 10^0$

- a. Polinômio na base 8
- b. Polinômio na base 16
- 5) Converta os seguintes números nas bases explicitadas para a base 10
 - a. 111₂
 - b. 777₈
 - c. FEC_{16}
 - d. 777₁₆
- 6) Explique como a base 2 e a base 8 estão relacionadas
- 7) Explique como a base 8 e a base 16 estão relacionadas
- 8) Converta os seguintes números binários em octal
 - a. 111110110₂
 - b. 1000001₂
 - c. 10000010₂
 - d. 1100010₂
- 9) Converta os seguintes números binários em hexadecimal

- a. 10101001₂
- b. 11100111₂
- c. 1101110₂
- d. 1121111₂
- 10) Converta os seguintes números hexadecimais para octal
 - a. $A9_{16}$
 - b. E7₁₆
 - c. 6E₁₆
 - d. FOCA₁₆
- 11) Converta os seguintes números octais em hexadecimais
 - a. 777₈
 - b. 605₈
 - c. 443₈
 - d. 521₈
- 12) Converta os seguintes números decimais em octal
 - a. 901₁₀
 - b. 321₁₀
 - c. 1492_{10}
 - d. 1066₁₀
- 13) Converta os seguintes números decimais em binário
 - a. 45₁₀
 - b. 69_{10}
 - c. 1066_{10}
 - d. 99₁₀
- 14) Converta os seguintes números decimais em hexadecimais
 - a. 1066_{10}
 - b. 1939₁₀
 - c. 998₁₀
 - d. 43_{10}
- 15) Execute as seguintes somas octais (Dica: converta para binário depois para decimal realize a operação de soma retorne para octal)
 - a. $770_8 + 665_8$
 - b. $101_8 + 707_8$
 - c. $202_8 + 667_8$
- 16) Execute as seguintes adições hexadecimais (Dica: utilize a mesma estratégia da questão 15)
 - a. $1AB_{16} + 43_{16}$
 - b. $AE9_{16} + F_{16}$
 - c. $106_{16} + FOCA_{16}$
- 17) Execute as seguintes subtrações octal (Dica: utilize a mesma estratégia da questão 15)
 - a. $1066_8 776_8$
 - b. 123₈ 76₈
 - c. 776₈ 554₈
- 18) Execute as seguintes subtrações hexadecimais (Dica: utilize a mesma estratégia da questão 15)
 - a. ABC₁₆ 111₁₆
 - b. $998_{16} AB_{16}$
 - c. A9F₁₆ 149₁₆

- 19) Um byte contém quantos bits?
- 20) Quantos bytes existem em uma máquina de 64 bits?
- 21) Como podemos afirmar que um número binário é par ou ímpar?

