Correction Devoir Final 1

Voici un corrigé succint. Il n'a pas été nécessaire de terminer le sujet pour obtenir la note maximale (mais presque !).

Exercice de cours. Soit $n \in \mathbb{N}^*$. Soient $A, B \in M_n(\mathbb{R})$ deux matrices semblables. Montrer que A et B ont les mêmes valeurs propres.

On écrit $\det(A-XI) = \det(PBP^{-1}-XI) = \det(P(B-XI)P^{-1}) = \det(B-XI)$. Donc A et B ont même polynômes caractéristiques, donc mêmes vp.

Exercice 1. Soit $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 5 & 1 & 3 & 7 & 8 & 9 & 10 & 6 & 2 & 4 \end{pmatrix}$ une permutation.

1. Écrire l'inverse de σ .

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 9 & 3 & 10 & 1 & 8 & 4 & 5 & 6 & 7 \end{pmatrix}$$

2. Décomposer σ en cycles à supports disjoints.

$$\sigma = c_1 \circ c_2 \text{ avec } c_1 = (158692) \text{ et } c_2 = (4710)$$

3. On rappelle que l'orbite d'un élément $i \in \{1,\dots,10\}$ associée à σ est définie comme l'ensemble

$$O(i) := \{ \sigma^k(i), k \in \mathbb{Z} \}.$$

Déterminer toutes les orbites associées à σ .

Un élément i est soit dans le support de c_1 soit dans le support de c_2 ou soit 3. Dans le premier cas l'orbite de i est le support de c_1 , dans le deuxième le support de c_2 et sinon c'est 3.

- 4. Calculer la signature de σ . $\epsilon(\sigma) = \epsilon(c_1)\epsilon(c_2) = -1$.
- 5. Quel est l'ordre de σ ? ppcm de l'ordre de c_1 et c_2 c'est à dire 6.
- 6. Calculer σ^{2025} . La division euclidienne par 6 et un calcul donnent $\sigma^{2025} = \sigma^3 = c_1^3 = (16)(59)(82)$.

Exercice 2. Considérons l'endomorphisme u de \mathbb{R}^3 représenté dans la base canonique de \mathbb{R}^3 par la matrice

$$A = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}.$$

- 1. Calculer le polynôme caractéristique de u. $(1-X)^3$
- 2. Justifier que u n'est pas diagonalisable. A n'est pas semblable à l'identité car différent de l'identité !
- 3. Quelle est la décomposition de Jordan-Chevalley de u? u = id + (u id). Attention il faut tout justifier, en particulier (u id) nilpotent!
- 4. Déterminer une base \mathcal{B} de \mathbb{R}^3 telle que la matrice de u dans cette base, notée $T = \operatorname{mat}_{\mathcal{B}}(u) \in M_3(\mathbb{R})$, est donnée par

$$T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Plusieurs possibilités mais la plus courte: Poser n = u - id. Prendre $x \in E = \ker n^3 / \ker n^2$ (justifier) et vérifier que $(n^2(x), n(x), x)$ est une base et qu'elle a bien la propriété souhaitée pour u!

5. Quel est le polynôme minimal de u? $(X-1)^3$ car ses diviseurs (X-1) et $(X-1)^2$ n'annulent pas A!

Problème. Soit $n \in \mathbb{N}^*$. On munit le \mathbb{C} -espace vectoriel \mathbb{C}^n de sa base canonique (e_1, \ldots, e_n) . On note S_n le l'ensemble des bijections de $\{1, \ldots, n\}$ dans lui même. Pour tout $\sigma \in S_n$, on note P_{σ} la matrice dont le coefficient associé à ligne i et la colonne j vaut 1 si $i = \sigma(j)$, 0 sinon; où $i, j \in \{1, \ldots, n\}$. On dit que P_{σ} est la matrice de permutation associée à σ . Considérons

$$\mathcal{P}_n := \{ P_\sigma | \sigma \in S_n \}$$

l'ensemble des matrices de permutations.

- 1. (a) Expliciter \mathcal{P}_2 et \mathcal{P}_3 . On a I_2 et $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ pour \mathcal{P}_2 . On a I_3 et les 5 matrices suivantes et pour \mathcal{P}_3 :

 3 associées aux transpositions: $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. et 2 aux 3-cycles $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$.
 - (b) Déterminer les valeurs propres et les sous espaces propres de chaque élément de \mathcal{P}_2 . Justifier que les éléments de \mathcal{P}_2 sont diagonalisables (sur \mathbb{C}). Je vous laisse traiter le que cas de I_2 . Pour $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, le polynôme caractéristique est $X^2 1$ qui est s.r.s, donc la matrice est diagonalisable (sur \mathbb{R} donc sur \mathbb{C}) de vecteurs propres (1,1) pour la vp 1 et (1,-1) pour vp -1.

- (c) Déterminer les valeurs propres de chaque élément de P₃. Justifier que les éléments de P₃ sont diagonalisables sur C (on ne demande pas de calculer les sous-espaces propres). Les vp des matrices associées aux transpositions sont 1 et −1 il faut vérifier que m₃ = m₃ dans ce cas. Ou bien :), remarquer que les matrices de transpositions élevées au carré sont égales à elles-mêmes. On a donc un polynôme annulateur s.r.s de ces matrices. Pour les 3-cycles: le polynôme caractéristique est X³ − 1 s.r.s dans C, donc les matrices sont diagonalisables. Ou bien :(, remarquer que les matrices des 3-cycles élevées au cube sont égales à elles-mêmes...
- 2. (a) Soit $\sigma \in S_n$. Soit u_{σ} l'endomorphisme de \mathbb{C}^n canoniquement associé à P_{σ} . Montrer que pour tout $i = 1, \ldots, n$, on a $u_{\sigma}(e_i) = e_{\sigma(i)}$. Par définition de P_{σ} , on a $u(e_i) = e_j$ avec $j = \sigma(i)$, pour tout $i = 1, \ldots, n$.
 - (b) Montrer alors que $P_{\sigma} \in GL_n(\mathbb{C})$. P_{σ} transforme une base en une base!
 - (c) Soient $\sigma, \sigma' \in S_n$. Montrer que $P_{\sigma}P_{\sigma'} = P_{\sigma\circ\sigma'}$. Un utilise 2)a): $P'_{\sigma}P_{\sigma}(e_i) = e_{\sigma'(\sigma(i))} = P_{\sigma'\circ\sigma}(e_i)$ pour tout $i = 1, \ldots, n$. D'où le résultat. En déduire que \mathcal{P}_n est un sous-groupe de $GL_n(\mathbb{C})$. $\mathcal{P}_n \ni I_n$ donnée par $\sigma = id$. On observe que $P_{\sigma}^{-1} = P_{\sigma^{-1}}$ pour tout σ , par la question juste avant. Et donc $P_{\sigma'}^{-1}P_{\sigma} = P_{\sigma'^{-1}\circ\sigma} \in \mathcal{P}_n$.
- 3. Soit $\sigma \in S_n$. Justifier que l'application $\phi_{\sigma} : k \in \mathbb{Z} \mapsto \sigma^k \in S_n$ ne peut pas être injective. On ne peut pas injecter un ensemble infini dans un ensemble fini! En déduire que pour tout $\sigma \in S_n$, il existe un entier N tel que $\sigma^N = id$. Par le principe des tiroirs, il existe $k_1 \geq k_2$ tel que $\sigma^{k_1} = \sigma^{k_2}$, d'où on tire $\sigma^{k_1-k_2} = id$.
- 4. En déduire que tout élément de \mathcal{P}_n est diagonalisable (sur \mathbb{C}). Étant donnée σ , il existe N tel que $\sigma^N=id$. D'où, $I_n=P_{\sigma^N}=P_{\sigma}^N$. Donc X^N-1 est annulateur de P_{σ} et est s.r.s sur \mathbb{C} . Ainsi, toute matrice de \mathcal{P}_n est diagonalisable.
- 5. Notons c le cycle $c = \begin{pmatrix} 1 & 2 & \dots & n \end{pmatrix}$. Calculer le polynôme minimal de P_c . Le résultat est X^n-1 mais il faut le justifier...en calculant le polynôme caractéristique de P_c par exemple!