単元別演習 数列③

漸化式(応用②)

対数型

例題 1

 $a_1=10,\; a_{n+1}=a_n^2$ で定まる数列 $\{a_n\}$ の一般項を求めよ.

// Point.

 $a_{n+1} = p(a_n)^q$ は両辺の対数を取る (底は何でもいいが、初項や p の値を参考にして対数が綺麗になるものを選ぶ).

√ 解答

 $a_1 = 10$ なので、両辺の常用対数をとると、

$$\log_{10} a_{n+1} = 2\log_{10} a_n$$

より、数列 $\{\log_{10}a_n\}$ は初項 1、公比 2 の等比数列である.よって、 $\log_{10}a_n=2^{n-1}$ なので、

$$a_n = 10^{\log_{10} a_n} = 10^{2^{n-1}}$$

₽問1

次の漸化式で定まる数列 $\{a_n\}$ の一般項を求めよ.

(1)
$$a_1 = 2$$
, $a_{n+1} = 16a_n^5$

(2)
$$a_1 = 3$$
, $a_{n+1} = 9\sqrt{a_n}$

和を含む漸化式

例題 2

数列 $\{a_n\}$ に対して, $S_n=\sum_{k=1}^n a_k$ とすると, $S_n=\frac{3}{2}a_n+3-4n$ が成り立つとする.

- (1) a_1 を求めよ.
- (2) a_{n+1} と a_n の漸化式を作れ.
- (3) a_n を求めよ.

₩ 解答

- (2) $a_{n+1} = S_{n+1} S_n = \frac{3}{2}a_{n+1} \frac{3}{2}a_n 4 \ \text{\sharp b, } a_{n+1} = 3a_n + 8.$
- (3) (1),(2) より、 $\{a_n\}$ は $a_1=2$, $a_{n+1}=3a_n+8$ で定まる数列なので、 $a_n=2\cdot 3^n-4$.

1

₽ <u>問 2</u>

 $S_n = 3a_n + 2n + 1$ で定まる数列 $\{a_n\}$ の一般項を求めよ.

復習用問題

₽問3

 $a_1=10,\; a_{n+1}=\sqrt{\sqrt{10a_n}}$ で定まる数列 $\{a_n\}$ の一般項を求めよ.

○ 問 4

 $S_n = -2a_n - 2n + 5$ で定まる数列 $\{a_n\}$ の一般項を求めよ.

₽<u>問 5</u>

整式 P(x) を $(x-1)^2$ で割ったときの余りが 4x-5 で, x+2 で割ったときの余りが -4 である.

- (1) P(x) を x-1 で割ったときの余りを求めよ.
- (2) P(x) を (x-1)(x+2) で割ったときの余りを求めよ.
- (3) P(x) を $(x-1)^2(x+2)$ で割ったときの余りを求めよ.

[山形大]