Cryptanalysis of the Structure-Preserving Signature Scheme on Equivalence Classes from Asiacrypt 2014

Yanbin Pan

Academy of Mathematics and Systems Science, Chinese Academy of Sciences

> CT-RSA 2016, San Francisco 2016-3-3

Contents

- 1. Structure-Preserving Signature Scheme on Equivalence Classes
 - a. Structure-Preserving Signature Scheme on Equivalence Classes
 - b. Security of SPS-EQ
- 2. The Hanser-Slamanig SPS-EQ Scheme
 - a. Description of the Hanser-Slamanig SPS-EQ Scheme
 - b. Fuchsbauer's Attack to Break the EUF-CMA of the Scheme
- 3. Our Attacks
 - a. Our Attacks
 - b. Related Work to Fix the Scheme

Structure-Preserving Signature Scheme on Equivalence Classes

Digital Signature Scheme

- ▶ **KeyGen**(1^n): Generate public key **pk** and private key **sk**;
- ▶ **Sign**: Given message m, the signer computes the signature $\sigma = \mathsf{Sign}_{\mathsf{pk},\mathsf{sk}}(m)$ and publishes the pair

$$(m, \sigma)$$
.

▶ **Verify**: the verifier accepts the message-signature pair if and only if $Verify_{pk}(m, \sigma) = true$.

- ▶ Proposed by Abe et al. in CRYPTO 2010;
- ► Employs bilinear map;

- ▶ Proposed by Abe et al. in CRYPTO 2010;
- ► Employs bilinear map;

Bilinear Map

Let \mathbb{G}_1 , \mathbb{G}_2 and \mathbb{G}_T be cyclic groups of prime order p, where \mathbb{G}_1 and \mathbb{G}_2 are additive and \mathbb{G}_T is multiplicative. Let P and P' generate \mathbb{G}_1 and \mathbb{G}_2 , respectively. We call

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$

- a bilinear map if it is efficiently computable and satisfies
 - For any $a, b \in \mathbb{Z}_p$, $e(aP, bP') = e(P, P')^{ab} = e(bP, aP')$.
 - $ightharpoonup e(P,P') \neq 1_{\mathbb{G}_T}.$

- ▶ Proposed by Abe et al. in CRYPTO 2010;
- Employs bilinear map;

- ▶ The **pk**, m and σ consist only of group elements;
- ► The signature can be verified just by deciding group membership and by evaluating some pairing-product equations;

- Proposed by Abe et al. in CRYPTO 2010;
- Employs bilinear map;

- ▶ The **pk**, m and σ consist only of group elements;
- ► The signature can be verified just by deciding group membership and by evaluating some pairing-product equations;

► Many applications: blind signatures, group signatures, homomorphic signatures, tightly secure encryption...

SPS on Equivalence Classes (SPS-EQ)

- Proposed by Hanser and Slamanig in Asiacrypt 2014;
- ▶ A structure-preserving signature with message space $(\mathbb{G}^*)^{\ell}$;
- For any message N equivalent to M, its valid signature can be efficiently obtained by the signature of M.

SPS on Equivalence Classes (SPS-EQ)

- Proposed by Hanser and Slamanig in Asiacrypt 2014;
- ▶ A structure-preserving signature with message space $(\mathbb{G}^*)^{\ell}$;
- ► For any message *N* equivalent to *M*, its valid signature can be efficiently obtained by the signature of *M*.

Equivalence Relation in [HS2014]

Given a cyclic group \mathbb{G} with order p and an integer $\ell > 1$:

► The equivalence relation:

$$\mathcal{R} = \{ (M, N) \in (\mathbb{G}^*)^{\ell} \times (\mathbb{G}^*)^{\ell} : \exists \rho \in \mathbb{Z}_p^* \text{ s.t. } N = \rho M \}.$$

► The equivalence class:

$$[M]_{\mathcal{R}} = \{ N \in (\mathbb{G}^*)^{\ell} : \exists \rho \in \mathbb{Z}_p^* \text{ s.t. } N = \rho M \}.$$

SPS on Equivalence Classes (SPS-EQ)

- Proposed by Hanser and Slamanig in Asiacrypt 2014;
- ▶ A structure-preserving signature with message space $(\mathbb{G}^*)^{\ell}$;
- ► For any message *N* equivalent to *M*, its valid signature can be efficiently obtained by the signature of *M*.
- Used to construct an efficient multi-show attribute-based anonymous credential system [HS2014].

SPS-EQ

Definition (SPS-EQ- \mathcal{R})

An SPS-EQ- \mathcal{R} scheme consists of the following polynomial-time algorithms:

- ▶ $\mathbf{BGGen}_{\mathcal{R}}(\mathbf{1}^{\kappa})$: Given a security parameter κ , outputs a bilinear group description \mathbf{BG} .
- ▶ KeyGen_R(BG, ℓ): Given BG and vector length $\ell > 1$, outputs a key pair (sk, pk).
- ▶ $\operatorname{Sign}_{\mathcal{R}}(M, \operatorname{sk})$: On input a representative M of equivalence class $[M]_{\mathcal{R}}$ and secret key sk , outputs a signature σ for the equivalence class $[M]_{\mathcal{R}}$.
- ▶ ChgRep_R(M, σ, ρ , pk): On input a representative M of an equivalence class $[M]_{\mathcal{R}}$, the corresponding signature σ , a scalar ρ and a public key pk, outputs $(\rho M, \hat{\sigma})$, where $\hat{\sigma}$ is the signature on ρM .
- ▶ **Verify**_{\mathcal{R}} (M, σ, \mathbf{pk}) : Given a representative M of equivalence class $[M]_{\mathcal{R}}$, a signature σ and public key \mathbf{pk} , outputs true if σ is a valid signature for $[M]_{\mathcal{R}}$ and false otherwise.

Security of SPS-EQ

	Unforgeability	Existential Unforgeability
Random Message Attack	UF-RMA	EUF-RMA
Non-Adaptive CMA	UF-NACMA	EUF-NACMA
Adaptive CMA	UF-ACMA	EUF-ACMA

► EUF-ACMA:

$$\Pr\left[\begin{array}{c} (\mathsf{sk},\mathsf{pk}) \leftarrow \mathit{KeyGen}(1^n), (\mathit{M}^*,\sigma^*) \leftarrow \mathcal{A}^{\mathcal{O}(\mathsf{sk},\cdot)}(\mathsf{pk}) : \\ [\mathit{M}^*]_{\mathcal{R}} \text{has not been queried} \land \mathit{Verify}_{\mathcal{R}}(\mathit{M}^*,\sigma^*,\mathsf{pk}) = \mathit{true} \end{array}\right] \leq \mathsf{negl}(\mathit{n})$$

The Hanser-Slamanig SPS-EQ Scheme

The Hanser-Slamanig SPS-EQ Scheme

▶ **BGGen**_{\mathcal{R}}(1^{κ}): Given a security parameter κ , outputs

$$\mathbf{BG} = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, P, P', e).$$

▶ **KeyGen**_{\mathcal{R}}(**BG**, ℓ): Given $\ell > 1$, chooses $x \stackrel{R}{\leftarrow} \mathbb{Z}_p^*$ and $(x_i)_{i=1}^{\ell} \stackrel{R}{\leftarrow} (\mathbb{Z}_p^*)^{\ell}$, computes

$$\mathsf{sk} \quad \leftarrow (x, (x_i)_{i=1}^{\ell}),$$

$$\mathbf{pk} \leftarrow (X', (X_i')_{i=1}^{\ell}) = (xP', (x_i x P')_{i=1}^{\ell}).$$

The Hanser-Slamanig SPS-EQ Scheme

▶ **Sign**_R(M, **sk**): On input a representative $M = (M_i)_{i=1}^{\ell} \in (\mathbb{G}_1^*)^{\ell}$ of $[M]_{\mathcal{R}}$, chooses $y \stackrel{R}{\leftarrow} \mathbb{Z}_p^*$ and computes

$$Z \leftarrow x \sum_{i=1}^{\ell} x_i M_i, \quad V \leftarrow y \sum_{i=1}^{\ell} x_i M_i, \quad (Y, Y') \leftarrow y \cdot (P, P').$$

Then, outputs $\sigma = (Z, V, Y, Y')$.

▶ **Verify**_{\mathcal{R}}(M, σ, \mathbf{pk}): checks whether

$$\prod_{i=1}^{\ell} e(M_i, X_i') \stackrel{?}{=} e(Z, P) \bigwedge e(Z, Y') \stackrel{?}{=} e(V, X') \bigwedge e(P, Y') \stackrel{?}{=} e(Y, P')$$

or not and outputs true if this holds and false otherwise.

Fuchsbauer's Attack when $\ell=2$

- 1. \mathcal{A} receives **pk** and has access to a signing oracle.
- 2. \mathcal{A} makes a signing query (P, P) and receives the signature (Z_1, V_1, Y_1, Y_1') .
- 3. A makes a signing query (Z_1, P) and receives the signature (Z_2, V_2, Y_2, Y_2') .
- 4. \mathcal{A} makes a signing query (P, Z_1) and receives the signature (Z_3, V_3, Y_3, Y_3') .
- 5. A makes a signing query (Z_1, Z_2) and receives the signature (Z_4, V_4, Y_4, Y_4') .
- 6. A outputs (Z_4, V_4, Y_4, Y_4') as a forgery for the equivalence class represented by (Z_3, Z_1) .

Some Remarks on Fuchsbauer's attack

- ▶ It needs 4 adaptive queries;
- Succeeds with high probability;

- ▶ Neglected to check whether (Z_3, Z_1) is in $(\mathbb{G}_1^*)^2$ or not;
- ▶ Break EUF-CMA just for $\ell = 2$;

▶ Amazing but hard to follow the idea. It is hard to point out which component of the scheme is weak from his attack.

Our Attacks

Main Result

Attack Model	Security	ℓ
RMA	Existential Unforgeability [HS14]	$\ell \geq 2$
NACMA	Existential Forgeability [this work]	$\ell \geq 2$
ACMA	Existential Forgeability [Fuch14]	$\ell = 2$
ACIVIA	Universal Forgeability [this work]	$\ell \geq 2$

Our Attacks

- ► Never Fail;
- ► Use less queries;

	$\ell = 2$	$\ell > 2$
Non-Adaptive CMA	2	3
Adaptive CMA	3	4

▶ Easy to understand, and provide clear hint to fix the scheme.

The Key Observation

▶ $\mathbf{Sign}_{\mathcal{R}}(M, \mathbf{sk})$: On input a representative $M = (M_i)_{i=1}^{\ell} \in (\mathbb{G}_1^*)^{\ell}$ of $[M]_{\mathcal{R}}$, chooses $y \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_p^*$ and computes

$$Z \leftarrow x \sum_{i=1}^{\ell} x_i M_i, \quad V \leftarrow y \sum_{i=1}^{\ell} x_i M_i, \quad (Y, Y') \leftarrow y \cdot (P, P').$$

Then, outputs $\sigma = (Z, V, Y, Y')$.

The Key Observation

▶ **Sign**_{\mathcal{R}}(M, **sk**): On input a representative $M = (M_i)_{i=1}^{\ell} \in (\mathbb{G}_1^*)^{\ell}$ of $[M]_{\mathcal{R}}$, chooses $y \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_p^*$ and computes

$$Z \leftarrow x \sum_{i=1}^{\ell} x_i M_i, \quad V \leftarrow y \sum_{i=1}^{\ell} x_i M_i, \quad (Y, Y') \leftarrow y \cdot (P, P').$$

Then, outputs $\sigma = (Z, V, Y, Y')$.

For any two messages M and M^* , if

$$\sum_{i=1}^{\ell} x_i M_i = \sum_{i=1}^{\ell} x_i M_i^*,$$

then M and M^* share the same signature.

The Key Observation

▶ **Sign**_R(M, **sk**): On input a representative $M = (M_i)_{i=1}^{\ell} \in (\mathbb{G}_1^*)^{\ell}$ of $[M]_{\mathcal{R}}$, chooses $y \stackrel{R}{\leftarrow} \mathbb{Z}_p^*$ and computes

$$Z \leftarrow x \sum_{i=1}^{\ell} x_i M_i, \quad V \leftarrow y \sum_{i=1}^{\ell} x_i M_i, \quad (Y, Y') \leftarrow y \cdot (P, P').$$

Then, outputs $\sigma = (Z, V, Y, Y')$.

Generally, for any
$$K \in \ker(\varphi)$$
, that is, $\sum_{i=1}^{\ell} x_i K_i = 0$,

$$\varphi: \quad (\mathbb{G}_1)^{\ell} \quad \to \quad \mathbb{G}_1$$
$$(M_i)_{i=1}^{\ell} \quad \mapsto \quad \sum_{i=1}^{\ell} x_i M_i,$$

M and M + K share the same signature.

Find a Non-Trivial K

▶ $\mathbf{Sign}_{\mathcal{R}}(M, \mathbf{sk})$: On input a representative $M = (M_i)_{i=1}^{\ell} \in (\mathbb{G}_1^*)^{\ell}$ of $[M]_{\mathcal{R}}$, chooses $y \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_p^*$ and computes

$$Z \leftarrow x \sum_{i=1}^{\ell} x_i M_i, \quad V \leftarrow y \sum_{i=1}^{\ell} x_i M_i, \quad (Y, Y') \leftarrow y \cdot (P, P').$$

Then, outputs $\sigma = (Z, V, Y, Y')$.

Find a Non-Trivial K

▶ $\mathbf{Sign}_{\mathcal{R}}(M, \mathbf{sk})$: On input a representative $M = (M_i)_{i=1}^{\ell} \in (\mathbb{G}_1^*)^{\ell}$ of $[M]_{\mathcal{R}}$, chooses $y \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_p^*$ and computes

$$Z \leftarrow x \sum_{i=1}^{\ell} x_i M_i, \quad V \leftarrow y \sum_{i=1}^{\ell} x_i M_i, \quad (Y, Y') \leftarrow y \cdot (P, P').$$

Then, outputs $\sigma = (Z, V, Y, Y')$.

Note that

$$K = (xx_2P, -xx_1P, \mathbf{0}, \cdots, \mathbf{0}) \in \ker(\varphi) \setminus (\mathbf{0}, \cdots, \mathbf{0}).$$

Find K when $\ell = 2$

- 1. A receives **pk** and has access to a signing oracle.
- 2. A first chooses any invertible matrix

$$\left(\begin{array}{cc} a_1 & a_2 \\ a_3 & a_4 \end{array}\right) \in \mathbb{Z}_p^{*2 \times 2}$$

and computes its inverse

$$\left(\begin{array}{cc}b_1&b_2\\b_3&b_4\end{array}\right)\in\mathbb{Z}_p^{2\times2},$$

such that

$$\left(\begin{array}{cc}b_1&b_2\\b_3&b_4\end{array}\right)\left(\begin{array}{cc}a_1&a_2\\a_3&a_4\end{array}\right)=\left(\begin{array}{cc}1&0\\0&1\end{array}\right)\mod p.$$

Find K when $\ell = 2$

- 3 \mathcal{A} makes a signing query with (a_1P, a_2P) and gets its signature (Z_1, V_1, Y_1, Y_1') .
- 4 \mathcal{A} makes a signing query with (a_3P, a_4P) and gets its signature (Z_2, V_2, Y_2', Y_2') .
- 5 A computes $((b_3Z_1 + b_4Z_2), -(b_1Z_1 + b_2Z_2)).$

We claim that

$$((b_3Z_1+b_4Z_2),-(b_1Z_1+b_2Z_2))=(xx_2P,-xx_1P).$$

Find K when $\ell > 2$

- 1. A receives **pk** and has access to a signing oracle.
- 2. \mathcal{A} makes a signing query with (P, P, P, \dots, P) and gets (Z_1, V_1, Y_1, Y_1') .
- 3. \mathcal{A} makes a signing query with $(2P, P, P, \cdots, P)$ and gets (Z_2, V_2, Y_2, Y_2') .
- 4. \mathcal{A} makes a signing query with $(P, 2P, P, \dots, P)$ and gets (Z_3, V_3, Y_3, Y_3') .
- 5. A computes $(Z_3 Z_1, Z_1 Z_2, \mathbf{0}, \dots, \mathbf{0})$.

We claim that

$$(Z_3 - Z_1, Z_1 - Z_2, \mathbf{0}, \cdots, \mathbf{0}) = (xx_2P, -xx_1P, \mathbf{0}, \cdots, \mathbf{0}).$$

The Procedure to Find *K*

Note that

- ▶ The procedure to find *K* only involves non-adaptive queries;
- ▶ For $\ell = 2$, we need 2 queries;
- ▶ For $\ell > 2$, we need 3 queries.

Framework of Our Attacks

Breaking the EUF-Non-Adaptive-CMA:

- ► Find *K* with the non-adaptive queries;
- ▶ Output the message-signature pair $(M^* = M + \rho K, \sigma_M)$, where M has been queried in the procedure above and σ_M is its signature.

Breaking the UF-Adaptive-CMA:

- ► Find *K* with the non-adaptive queries;
- ► For any message M^* to be signed, generate $M = M^* + \rho K$, make a signing query with M and get its signature σ_M ;
- ▶ Output σ_M as the signature of M^* .

Some Remarks

Note that we have to show

- ▶ $[M^*]_{\mathcal{R}}$ has not been queried to the signing oracle;
- ▶ Every message queried to the signing oracle must be in $(\mathbb{G}_1^*)^{\ell}$, that is, every component of the message is not zero.

E.g.: Breaking the EUF-NA-CMA when $\ell=2$ (I)

- ▶ Choose any invertible matrix $\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$ ∈ $\mathbb{Z}_p^{*2 \times 2}$ with its inverse $\begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix}$ ∈ $\mathbb{Z}_p^{2 \times 2}$.
- Query with $M^{(1)} = (a_1P, a_2P)$ and gets $\sigma_1 = (Z_1, V_1, Y_1, Y_1')$.
- Query with $M^{(2)} = (a_3P, a_4P)$ and gets $\sigma_2 = (Z_2, V_2, Y_2, Y_2')$.
- A computes $K = ((b_3Z_1 + b_4Z_2), -(b_1Z_1 + b_2Z_2)).$

E.g.: Breaking the EUF-NA-CMA when $\ell=2$ (II)

- ▶ If K is equivalent to neither $M^{(1)}$ nor $M^{(2)}$, output the message K and the signature $\sigma = (\mathbf{0}, \mathbf{0}, yP, yP')$ for any $y \in \mathbb{Z}_p^*$.
- ▶ If K is equivalent to $M^{(1)}$, output the message $M^* = M^{(2)} + \rho K$ and the signature σ_2 , where $\rho \in \{1, 2, 3\}$ is chosen to ensure that that $M^* \in (\mathbb{G}_1^*)^2$.
- ▶ If K is equivalent to $M^{(2)}$, output the message $M^* = M^{(1)} + \rho K$ and the signature σ_1 , where $\rho \in \{1, 2, 3\}$ is chosen to ensure that that $M^* \in (\mathbb{G}_1^*)^2$.

There is only One Signature Essentially!

For any
$$M
ot\in \ker(\varphi)$$
,
$$\dot{\bigcup}_{\rho\in\mathbb{Z}_p} \left(\rho M + \ker(\varphi)\right) = \mathbb{G}_1^\ell.$$

▶ Given any (M, σ) where $M \notin \ker(\varphi)$, we can forge the signature on any message M', if we could find the unique ρ such that $M' \in \rho M + \ker(\varphi)$.

The Weak Point and How to Fix

In [HS14]:

▶ $\operatorname{Sign}_{\mathcal{R}}(M,\operatorname{sk})$: On representative $M \in (\mathbb{G}_1^*)^{\ell}$ of $[M]_{\mathcal{R}}$, chooses $y \stackrel{R}{\leftarrow} \mathbb{Z}_p^*$ and computes $\sigma = (Z, V, Y, Y')$, where

$$Z \leftarrow x \sum_{i=1}^{\ell} x_i M_i, \quad V \leftarrow y \sum_{i=1}^{\ell} x_i M_i, \quad (Y, Y') \leftarrow y \cdot (P, P').$$

The Weak Point and How to Fix

In [HS14]:

▶ $\operatorname{Sign}_{\mathcal{R}}(M,\operatorname{sk})$: On representative $M \in (\mathbb{G}_1^*)^{\ell}$ of $[M]_{\mathcal{R}}$, chooses $y \stackrel{R}{\leftarrow} \mathbb{Z}_p^*$ and computes $\sigma = (Z, V, Y, Y')$, where

$$Z \leftarrow x \sum_{i=1}^{\ell} x_i M_i, \quad V \leftarrow y \sum_{i=1}^{\ell} x_i M_i, \quad (Y, Y') \leftarrow y \cdot (P, P').$$

In [FHS14] eprint 2014/944:

▶ **Sign**_{\mathcal{R}}(M, **sk**): On representative $M \in (\mathbb{G}_1^*)^\ell$ of $[M]_{\mathcal{R}}$, chooses $y \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_p^*$ and computes $\sigma = (V, Y, Y')$, where

$$V \leftarrow y \sum_{i=1}^{\ell} x_i M_i, \qquad (Y, Y') \leftarrow \frac{1}{y} \cdot (P, P').$$

Remarks about FHS14

▶ The FHS14 scheme is proven to be EUF-CMA;

- It certainly can resist our attack;
- ▶ It still employs the structure $\sum_{i=1}^{\ell} x_i M_i$.
 - ▶ If we can find $K \in \ker(\varphi)$, the scheme will be insecure, but it seems we can not:
 - If part of the private key are leaked, such as x₁ and x₂, we can find K.

Thank You!

SHORT STRUCTURE-PRESERVING SIGNATURES

Essam Ghadafi

e.ghadafi@ucl.ac.uk

Department of Computer Science,
University College London

CT-RSA 2016

OUTLINE

- 1 BACKGROUND
- 2 OUR SCHEME
- 3 EFFICIENCY COMPARISON
- 4 SOME APPLICATIONS
- 5 SUMMARY & OPEN PROBLEMS

DIGITAL SIGNATURES

Unforgeabiltiy: You can only sign messages if you have the signing key

(PRIME-ORDER) BILINEAR GROUPS

 \mathbb{G} , $\tilde{\mathbb{G}}$, \mathbb{T} are finite cyclic groups of prime order p, where $\mathbb{G}=\langle G \rangle$ and $\tilde{\mathbb{G}}=\langle \tilde{G} \rangle$

Pairing $(e: \mathbb{G} \times \tilde{\mathbb{G}} \longrightarrow \mathbb{T}):$

The function e must have the following properties:

■ Bilinearity: $\forall P \in \mathbb{G}$, $\forall \tilde{Q} \in \tilde{\mathbb{G}}$, $\forall x, y \in \mathbb{Z}$, we have

$$e(P^x, \tilde{Q}^y) = e(P, \tilde{Q})^{xy}$$

- Non-Degeneracy: The value $e(G, \tilde{G}) \neq 1$ generates \mathbb{T}
- \blacksquare The function e is efficiently computable

Type-III [GPS08]: $\mathbb{G} \neq \widetilde{\mathbb{G}}$ and no efficiently computable homomorphism between \mathbb{G} and $\widetilde{\mathbb{G}}$ in either direction

STRUCTURE-PRESERVING SIGNATURES

Some History:

- The term "Structure-Preserving" was coined by Abe et al. 2010
- Earlier constructions: Groth 2006 and Green and Hohenberger 2008
- Many constructions in the 3 different main types of bilinear groups
- Optimal Type-III constructions are the most efficient

STRUCTURE-PRESERVING SIGNATURES

What are they?

DEFINITION (A STRUCTURE-PRESERVING SIGNATURE)

A signature scheme (defined over bilinear groups) where:

- **•** m, vk and σ are elements of \mathbb{G} and/or $\tilde{\mathbb{G}}$
- Verifying signatures only involves deciding group membership and evaluating pairing-product equations (PPE):

$$\prod_{i}\prod_{j}e(A_{i},\tilde{B}_{j})^{c_{i,j}}=Z,$$

where $A_i \in \mathbb{G}$, $\tilde{B}_j \in \tilde{\mathbb{G}}$ and $Z \in \mathbb{T}$ are group elements appearing in \mathcal{P} , m, vk, σ , whereas $c_{i,j} \in \mathbb{Z}_p$ are constants

STRUCTURE-PRESERVING SIGNATURES

Why Structure-Preserving Signatures?

- Compose well with other pairing-based schemes
 - Easy to encrypt
 - Compose well with ElGamal/BBS linear encryption
 - Easy to combine with NIZK proofs
 - Compose well with Groth-Sahai proofs

APPLICATIONS OF STRUCTURE-PRESERVING SIGNATURES

Applications of Structure-Preserving Signatures:

- Blind signatures
- Group signatures
- Malleable signatures
- Tightly secure encryption schemes
- Anonymous credentials
- Oblivious transfer
- Network coding
-

EXISTING LOWER BOUNDS

Lower Bounds (for unilateral messages) in Type-III Bilinear Groups (Abe et al. 2011):

- Signatures contain at least 3 group elements
- Signatures cannot be unilateral (must contain elements from both \mathbb{G} and $\tilde{\mathbb{G}}$)
 - Note: Size of elements of $\tilde{\mathbb{G}}$ are at least twice as big as those of \mathbb{G}
- At least 2 PPE verification equations

OUR CONTRIBUTION

- A new signature scheme in Type-III bilinear groups with shorter signatures than existing ones:
 - Signatures consist of 3 elements from \mathbb{G} (i.e. unilateral)
 - 2 PPE verification equations (5 pairings in total)
 - Message space is the set of Diffie-Hellman pairs (Abe et al. 2010):
 - $\bullet \ \ \text{The set} \ \hat{\mathbb{G}}=\{(M,\tilde{N})|(M,\tilde{N})\in \mathbb{G}\times \tilde{\mathbb{G}}, e(M,\tilde{G})=e(G,\tilde{N})\}$
- More efficient instantiations of some existing cryptographic protocols (e.g. DAA)

OUR SCHEME

The Underlying Idea:

- Can be viewed as an extension of the non-structure-preserving scheme of Pointcheval and Sanders (CT-RSA 2016)
- Can be viewed as a more efficient variant of Ghadafi (ACISP 2013) Camenisch-Lysyanskaya based structure-preserving scheme

OUR SCHEME

The Scheme:

- **KeyGen:** Choose $x, y \leftarrow \mathbb{Z}_p$, set $\mathsf{sk} := (x, y)$ and $\mathsf{pk} := (\tilde{X} := \tilde{G}^x, \tilde{Y} := \tilde{G}^y) \in \tilde{\mathbb{G}}^2$
- **Sign:** To sign $(M, \tilde{N}) \in \hat{\mathbb{G}}$,
 - Choose $a \leftarrow \mathbb{Z}_p^{\times}$, $\sigma := (A := G^a, B := M^a, C := A^x \cdot B^y) \in \mathbb{G}^3$
- Verify: Check that $A \neq 1_{\mathbb{G}}$ and $(M, \tilde{N}) \in \hat{\mathbb{G}}$ and

$$\begin{split} e(A,\tilde{N}) &= e(B,\tilde{G}) \\ e(C,\tilde{G}) &= e(A,\tilde{X})e(B,\tilde{Y}) \end{split}$$

■ **Randomize:** Choose $r \leftarrow \mathbb{Z}_p^{\times}$, return $\sigma' := (A' := A^r, B' := B^r, C' := C^r)$

PROPERTIES OF THE SCHEME

Some Properties of the Scheme:

- The scheme is secure in the generic group model
 - \Rightarrow alternatively can be based on an interactive assumption
- Unilateral signatures
- (Perfectly) Fully re-randomizable
- Only M part of the message is needed for signing

EFFICIENCY COMPARISON

Scheme	Size				R?	A	Verification	
Scheme	σ	vk	\mathcal{P}	m	K:	Assumptions	PPE	Pairing
[GH08] a	$\mathbb{G}^4 \times \tilde{\mathbb{G}}$	$\tilde{\mathbb{G}}^2$	-	G	Y	q-HLRSW	4	8
[Fuc09]	$\mathbb{G}^3 \times \tilde{\mathbb{G}}^2$	$\mathbb{G} \times \tilde{\mathbb{G}}$	\mathbb{G}^3	Ĝ	N	q-ADHSDH+AWFCDH	3	9
[AFG+10] I	$\mathbb{G}^5 imes \tilde{\mathbb{G}}^2$	$\mathbb{G}^{10} \times \tilde{\mathbb{G}}^4$	-	G	P	q-SFP	2	12
[AFG+10] II	$\mathbb{G}^2 \times \tilde{\mathbb{G}}^5$	$\mathbb{G}^{10} \times \tilde{\mathbb{G}}^4$	-	Ĝ	P	q-SFP	2	12
[AGH+11] I	$\mathbb{G}^2 \times \tilde{\mathbb{G}}$	$\mathbb{G} \times \tilde{\mathbb{G}}^3$	-	$\mathbb{G} \times \tilde{\mathbb{G}}$	N	GGM	2	7
[AGH+11] II	$\mathbb{G}^2 \times \tilde{\mathbb{G}}$	$\mathbb{G} \times \tilde{\mathbb{G}}$	-	Ğ	Y	GGM	2	5
[Gha13]	\mathbb{G}^4	$\tilde{\mathbb{G}}^2$	-	Ĝ	Y	DH-LRSW	3	7
[CM14] I	$\mathbb{G} \times \tilde{\mathbb{G}}^2$	\mathbb{G}^2	-	Ĝ	N	GGM	2	5
[CM14] II	$\mathbb{G} \times \tilde{\mathbb{G}}^2$	\mathbb{G}^2	-	Ğ	Y	GGM	2	6
[CM14] III	$\mathbb{G}^2 \times \tilde{\mathbb{G}}$	$\tilde{\mathbb{G}}^2$	-	G	Y	GGM	2	6
[AGO+14] I	$\mathbb{G}^3 \times \tilde{\mathbb{G}}$	Ğ Ğ	G	G	Y	GGM	2	6
[AGO+14] II	$\mathbb{G}^2 \times \tilde{\mathbb{G}}$	$ ilde{\mathbb{G}}$	G	G	N	GGM	2	6
[BFF15]	$\mathbb{G} \times \tilde{\mathbb{G}}^2$	\mathbb{G}^2	-	Ğ	Y	GGM	2	5
[Gro15] I	$\mathbb{G} \times \tilde{\mathbb{G}}^2$	\mathbb{G}	Ĝ	Ĝ	Y	GGM	2	6
[Gro15] II	$\mathbb{G} \times \tilde{\mathbb{G}}^2$	\mathbb{G}	Ĝ	Ĝ	N	GGM	2	7
Ours	\mathbb{G}^3	$\tilde{\mathbb{G}}^2$	-	Ĝ	Y	GGM	2	5

^aThis scheme is only secure against a random message attack.

EFFICIENCY COMPARISON

Comparison with schemes with the same message space

Scheme	Size			R?	Assumptions	Verification		
Scheme	σ	vk	\mathcal{P}	I K:	K: Assumptions		Pairing	
[Fuc09]	$\mathbb{G}^3 \times \tilde{\mathbb{G}}^2$	$\mathbb{G} \times \tilde{\mathbb{G}}$	\mathbb{G}^3	N	q-ADHSDH+AWFCDH	3	9 or (7 & 2 ECAdd)	
[Gha13]	\mathbb{G}^4	$\tilde{\mathbb{G}}^2$	-	Y	DH-LRSW	3	7 or (6 & 1 ECAdd)	
Ours	\mathbb{G}^3	$\tilde{\mathbb{G}}^2$	-	Y	GGM	2	5	

^{*} Cost does not include checking well-formedness of the message

GENERIC CONSTRUCTION OF DAA

Bernhard et al. 2013 gave a generic construction of DAA which requires the following tools:

■ Randomizable Weakly Blind Signatures (RwBS)

 Used by the Issuer to issue certificates as credentials when users join the group

■ Linkable Indistinguishable Tags (LIT)

 Needed to provide the linkability of signatures when the same basename is signed by the same user

■ Signatures of Knowledge (SoK)

• Used by users to prove they have a credential and that the signature on the basename verifies w.r.t. thier certified secret key

Security Requirements:

- Blindness: An adversary (i.e. a signer) who chooses the messages, does not learn which message being signed and cannot link a signature to its signing session
- Unforgeability: An adversary (i.e. a user) cannot forge new signatures

Security Requirements:

- Blindness: An adversary (i.e. a signer) who chooses the messages, does not learn which message being signed and cannot link a signature to its signing session
- **Unforgeability:** An adversary (i.e. a user) cannot forge new signatures

RANDOMIZABLE WEAKLY BLIND SIGNATURES (RWBS)

Similar to blind signatures but:

- **Randomizability:** Given a signature σ , anyone can produce a new signature σ' on the same message
- Weak Blindness: Same as blindness but the adversary never sees the messages ⇒ The adversary cannot tell if he was given a signature on a different message or a re-randomization of a signature on the same message

The Idea: Combine the new scheme with SXDH-based Groth-Sahai proofs

■ Only M is needed for signing \Rightarrow To request a signature on (M, \tilde{N}) , send M and a NIZKPoK π of \tilde{N}

$$\mathcal{L}_{\mathrm{User}}:\left\{\left(M,\underline{\tilde{N}}\right):e(G,\underline{\tilde{N}})=e(M,\underline{\tilde{G}'})\ \wedge\ \underline{\tilde{G}'}\cdot\bar{G}=1_{\tilde{\mathbb{G}}}\right\}$$

■ The signer produces a signature σ and a NIZK proof Ω (without knowing \tilde{N}) for the validity of σ

$$\mathcal{L}_{\text{Signer}} : \left\{ \left((A, B, M), \tilde{\underline{A}} \right) : e(G, \underline{\tilde{A}}) = e(A, \underline{\tilde{G}'}) \right.$$

$$\wedge \ e(M, \underline{\tilde{A}}) = e(B, \underline{\tilde{G}'}) \ \wedge \ \underline{\tilde{G}'} \cdot \tilde{G} = 1_{\tilde{\underline{G}}} \right\}$$

The Idea: Combine the new scheme with SXDH-based Groth-Sahai proofs

■ Only M is needed for signing \Rightarrow To request a signature on (M, \tilde{N}) , send M and a NIZKPoK π of \tilde{N}

$$\mathcal{L}_{\mathrm{User}}:\left\{\left(M,\underline{\tilde{N}}\right):e(G,\underline{\tilde{N}})=e(M,\underline{\tilde{G}'})\ \wedge\ \underline{\tilde{G}'}\cdot \tilde{G}=1_{\tilde{\mathbb{G}}}\right\}$$

■ The signer produces a signature σ and a NIZK proof Ω (without knowing \tilde{N}) for the validity of σ

$$\mathcal{L}_{\text{Signer}} : \left\{ \left((A, B, M), \tilde{\underline{A}} \right) : e(G, \underline{\tilde{A}}) = e(A, \underline{\tilde{G}'}) \right.$$

$$\wedge \ e(M, \underline{\tilde{A}}) = e(B, \underline{\tilde{G}'}) \ \wedge \ \underline{\tilde{G}'} \cdot \underline{\tilde{G}} = 1_{\tilde{\mathbb{G}}} \right\}$$

The Idea: Combine the new scheme with SXDH-based Groth-Sahai proofs

■ Only M is needed for signing \Rightarrow To request a signature on (M, \tilde{N}) , send M and a NIZKPoK π of \tilde{N}

$$\mathcal{L}_{\mathrm{User}}:\left\{\left(M,\underline{\tilde{N}}\right):e(G,\underline{\tilde{N}})=e(M,\underline{\tilde{G}'})\ \wedge\ \underline{\tilde{G}'}\cdot \bar{G}=1_{\tilde{\mathbb{G}}}\right\}$$

■ The signer produces a signature σ and a NIZK proof Ω (without knowing \tilde{N}) for the validity of σ

$$\mathcal{L}_{\text{Signer}} : \left\{ \left((A, B, M), \tilde{\underline{A}} \right) : e(G, \underline{\tilde{A}}) = e(A, \underline{\tilde{G}'}) \right.$$

$$\wedge \ e(M, \underline{\tilde{A}}) = e(B, \underline{\tilde{G}'}) \ \wedge \ \underline{\tilde{G}'} \cdot \tilde{G} = 1_{\tilde{\mathbb{G}}} \right\}$$

The Idea: Combine the new scheme with SXDH-based Groth-Sahai proofs

■ Only M is needed for signing \Rightarrow To request a signature on (M, \tilde{N}) , send M and a NIZKPoK π of \tilde{N}

$$\mathcal{L}_{\mathrm{User}}:\left\{\left(M, \underline{\tilde{N}}\right): e(G, \underline{\tilde{N}}) = e(M, \underline{\tilde{G}'}) \ \land \ \underline{\tilde{G}'} \cdot \underline{\tilde{G}} = \mathbf{1}_{\tilde{\mathbb{G}}}\right\}$$

■ The signer produces a signature σ and a NIZK proof Ω (without knowing \tilde{N}) for the validity of σ

$$\mathcal{L}_{\text{Signer}} : \left\{ \left((A, B, M), \tilde{\underline{A}} \right) : e(G, \underline{\tilde{A}}) = e(A, \underline{\tilde{G}'}) \right.$$

$$\wedge \ e(M, \underline{\tilde{A}}) = e(B, \underline{\tilde{G}'}) \ \wedge \ \underline{\tilde{G}'} \cdot \tilde{G} = 1_{\tilde{\mathbb{G}}} \right\}$$

Security of the RwBS Scheme:

■ Unforgeability of the SPS Scheme + SXDH

Efficiency of the RwBS Scheme:

Scheme	Signature	Verification			
Scheme	Signature	PPE	Pairing		
Bernhard et al. 2013 I	\mathbb{G}^4	3	7 or (6 & 1 ECAdd)		
Ours	\mathbb{G}^3	2	5		

SUMMARY & OPEN PROBLEMS

■ Summary:

- A new unilateral SPS scheme with short signatures
- More efficient instantiations of building blocks for DAA without random oracles

■ Open Problems:

- More efficient constructions of unilateral structure-preserving signatures
- Constructions based on standard assumptions (e.g. DDH, DLIN, etc.)
- (Constant-size?) constructions for a vector of Diffie-Hellman pairs

THE END

Thank you for your attention! Questions?