PROVA SUBSTITUTIVA DE TERMODINÂMICA (EQE-363)

(Profs. Caetano Moraes e Frederico W. Tavares)

PARTE do Prof. Frederico Tavares

1) (20 Pontos) Dois líquidos (**A** e **B**), em quantidades e temperaturas diferentes, são misturados em um tanque. Colocam-se 100 mols de **A** ($T_A = 300K$) e 50 mols de **B** ($T_B = 500K$). Os líquidos são completamente miscíveis e a mistura se comporta como *mistura ideal*. Sabendo-se que as capacidades caloríficas dos líquidos puros, em cal/(gmol K), são: $\left(C_P^L\right)_A = 10$ e $\left(C_P^L\right)_B = 5 + 0.02T(K)$, calcule:

- a) A temperatura final e a variação de entropia total do sistema considerando o processo adiabático.
- b) O calor envolvido para que a temperatura final seja de 600K.
- 2) (30 Pontos) O ciclo de Rankine é utilizado para produção de energia elétrica de uma fábrica. Sabendo-se os seguintes dados das correntes: Corrente 1 (saída da caldeira): 800 °F e 750 Psia; Corrente 2 (saída da turbina): 14,7 psia; Corrente 3 (saída do condensador): 177,5 °F, e que a turbina trabalha com 59 % de eficiência, calcule:
- a) as propriedades P, T, H e S das correntes.
- b) a potência elétrica produzida quando são gastos 30000 Btu/min na caldeira.

ABS_PRESS		TEMPERATURE, DEG F					
PSIA		SAT WATER	SAT STEAM	200	250	300	350
(SAT TEMP)				202 5	400 4	452.3	482.1
(101.74)	V U H S	0.0161 69.73 69.73 0.1326	333.60 1044.1 1105.8 1.9781	392.5 1077.5 1150.2 2.0509	422.4 1094.7 1172.9 2.0841	1112.0 1195.7 2.1152	1129.5 1218.7 2.1445
(162.24)	V U H S	0.0164 130.18 130.20 0.2349	73.532 1063.1 1131.1 1.8443	78.14 1076.3 1148.6 1.8716	84.21 1093.8 1171.7 1.9054	90.24 1111.3 1194.8 1.9369	96.25 1128.9 1218.0 1.9664
10 (193.21)	V U H S	0.0166 161.23 161.26 0.2836	38.420 1072.3 1143.3 1.7879	38.84 1074.7 1146.6 1.7928	41.93 1092.6 1170.2 1.8273	44.98 1110.4 1193.7 1.8593	48.02 1128.3 1217.1 1.8892
14.696 (212.00)	V U S	0.0167 180.12 180.17 0.3121	26.799 1077.6 1150.5 1.7568		28.42 1091.5 1168.8 1.7833	30.52 1109.6 1192.6 1.8158	32.60 1127.6 1216.3 1.8460
ABS PRESS				TEMPERATURE,	DEG F		
PSIA (SAT TEMP)		SAT WATER	SAT STEAM	700	750	800	900
725 (507.01)	Y U H S	0.0206 493.5 496.3 0.6975	0.6318 1116.5 1201.3 1.4268	0.8729 1227.0 1344.1 1.5624	0.9240 1249.9 1373.8 1.5876	0.9732 1272.0 1402.6 1.6109	1.068 1315.3 1458.5 1.6536
750 (510.84)	V H S	0.0207 498.0 500.9 0.7022	0.6095 1116.1 1200.7 1.4232	0.8409 1225.8 1342.5 1.5577	0.8907 1248.9 1372.5 1.5830	0.9386 1271.2 1401.5 1.6065	1.031 1314.6 1457.6 1.6494

e

$$\Delta S_{n}^{VAP} = 8.0 + 1.897 \ln(T_{n})$$
 e $\frac{\Delta H_{a}^{VAP}}{\Delta H_{b}^{VAP}} = \left(\frac{T_{a} - T_{C}}{T_{b} - T_{C}}\right)^{0.38}$

 $R = 1.987 cal/(gmol K) = 82.05(atmcm^3)/(gmol K)$

 $144 \text{ Btu/lbm} = 778 \text{ ft}^3 \text{psia/lbm}$

 $T(^{0}F) = T(R) - 459.7$; $T(^{0}C) = T(K) - 273.15$ e T(R) = 1.8T(K)