系泊系统的设计

摘要

本文针对系泊系统的设计问题,通过受力分析,建立了系泊系统静力学模型,并对锚链进行简化处理得到悬链线模型和抛物线模型;通过构造评价指标,建立了两个优化模型。使用 Excel 2013 和 MATLAB 2010/2014b 编程,解得各组件受力情况和空间状态,并得到最优的设计方案,最后还做出了灵敏度分析。

对于问题 1,通过对系统各个组件的受力情况进行分析,以合力为零、合力矩为零与几何关系建立模型 I。分情况讨论了锚链接触海床和不接触两种情况,并使用差值法求解了模型 I。得到海面风速为 12 m/s 和 14 m/s 时,系统所有组件的力学和空间状态。其中浮标吃水深度分别为 0.7352 m 和 0.7493 m。

对于问题 2,使用模型 I,得到了风速为 36 m/s、重物球质量为 1200kg 时,系统所有组件的力学和空间状态。其中浮标吃水深度为 0.7705 m,但钢桶倾角为 8.0247°、锚链在锚点与海床的夹角为 18.0846°,均不满足要求,需要优化设计重物球。重物球质量越大,吃水越深,越重视吃水深度这一指标;同理,质量越小越重视钢桶倾斜角这一评价指标。以此构建优化模型,得到最佳质量为 2500 kg。

对于问题 3,问题 1、问题 2 中使用的离散模型虽然能准确描述系统的力学状态,但是不适用于链环个数未知的设计类问题,且链环数过多导致计算量庞大。本文对锚链使用悬链线分析法,将若干离散的链环简化为悬链线。为便于计算,本文使用抛物线方程代替悬链线方程,再次简化了模型。对于系泊系统设计问题,本文用集合论将问题描述为:寻找符合所有环境条件对应可行域的交集上的最优解,进而等价为只需寻求在最恶劣条件下最优解。类比解决问题二采用的评价指标,用 H=16 时的钢桶倾角和 H=20 时的吃水深度的线性组合作为评价标准。灵敏度分析表明,该模型给出的评价指标对参数的微小变化不敏感,模型具有较好的适应性。

关键词: 受力分析, 悬链线, 抛物线, 优化

1 问题重述

近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成。某型 传输节点的浮标系统可简化为圆柱体;系泊系统由钢管、钢桶、重物球、电焊锚 链和特制的抗拖移锚组成;水声通讯系统安装在密封圆柱形钢桶内。钢桶上接钢 管,下接电焊锚链。

系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

要求: 锚链末端与锚的链接处的切线方向与海床的夹角不超过 16 度,否则锚会被拖行,致使节点移位丢失。钢桶的倾斜角度(钢桶与竖直线的夹角)不超过 5 度。为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。

- 问题 1 某型传输节点选用 II 型电焊锚链 22.05 m,选用的重物球的质量为 1200 kg。现将该型传输节点布放在水深 18 m、海床平坦、海水密度为 1.025×10³ kg/m³ 的海域。若海水静止,分别计算海面风速为 12 m/s 和 24m/s 时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。
- 问题 2 在问题 1 的假设下, 计算海面风速为 36m/s 时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。请调节重物球的质量, 使得钢桶的倾斜角度不超过 5 度, 锚链在锚点与海床的夹角不超过 16°。
- 问题 3 由于潮汐等因素的影响,布放海域的实测水深介于 16 m~20 m 之间。布放点的海水速度最大可达到 1.5 m/s、风速最大可达到 36 m/s。请给出考虑风力、水流力和水深情况下的系泊系统设计,分析不同情况下钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

2 问题分析

对于问题 1,要求在给定的锚链型号、长度和重物球质量的情况下,计算出两种海面风速情况下的锚泊系统状态。首先对整个系统中各个组件进行编号,然后从上至下使用进行静力学分析,然后构建离散模型。分别求出每个组件的受力情况及空间位置。

对于问题 2,要求在问题 1 的假设下,调节重物球质量,优化整个锚泊系统。 以问题 1 中建立的离散模型为基础,增加优化模型。

对于问题 3,虽然问题 1、问题 2 中使用的离散模型能准确描述系统的力学状态,但是不适用于链环个数未知的设计类问题,且链环数过多导致计算量庞大。我们对锚链使用悬链线分析法,将若干离散的链环简化为悬链线。之后,我们又使用抛物线方程代替悬链线方程,再次简化了模型。

3 模型假设与约定

- (1) 不考虑锚、锚链和重物球所受浮力和水流力;
- (2) 浮标系统各处均为刚性;
- (3) 各部件质量分布均匀;
- (4) 不考虑流体脉动;
- (5) 不考虑浮标露出水面收到的大气浮力;
- (6) 浮标中心线始终保持垂直状态;
- (7) 水速、风速定向且大小不变。

4 符号说明

编号如图 1 所示,浮标编号为 1、钢管从上到下分别为 2/3/4/5、钢桶编号为 6、锚链各链节编号为 7~6+n(n 为链节数),锚编号为 7+n。

图 1 系统组件编号及部分符号 表 1 各符号意义及单位

符号	意义	单位
P_{i}	组件i所受浮力	N
m_i	组件i的质量	kg
$G_{_i}$	组件i所受浮力和重力矢量和	N
$oldsymbol{L}_i$	组件i的长度	m
d_{i}	组件i的直径	m
$oldsymbol{F}_i$	组件 $(i+1)$ 对组件 i 的力	N
\boldsymbol{F}_{n+7}	海床对锚的作用力	N
$lpha_{_i}$	F_i 和水平方向的夹角	rad

$oldsymbol{eta_i}$	L_i 和水平方向的夹角	rad	
符号	意义	单位	
ω	锚链单位长度质量	kg	
n	链节数量	个	
H	实际水深	m	
v_f	风速	m/s	
v_s	海水流速	m/s	
$ extbf{\emph{T}}_f$	近海风载荷	N	
T_s	近海水流力	N	
g	重力加速度	m/s^2	
ho	海水密度	kg/m^3	
R	浮标质心距锚质心的水平距离	m	
h	浮标吃水深度	m	

5 模型建立与求解

5.1 问题 1

5.1.1 模型建立

由阿基米德原理:

$$P_{i} = \begin{cases} \rho g \frac{\pi}{4} d_{1}^{2} h , & i = 1 \\ \rho g \frac{\pi}{4} d_{1}^{2} h , & i = 2, 3, ..., 6 \\ 0 , & i = 7, 8, ..., n + 7 \end{cases}$$

$$F_{i} = \begin{pmatrix} F_{ix} \\ F_{iy} \end{pmatrix}, \quad L_{i} = \begin{pmatrix} L_{ix} \\ L_{iy} \end{pmatrix}, \quad G_{i} = \begin{pmatrix} 0 \\ P_{i} - m_{i}g \end{pmatrix}, \quad \tan \alpha_{i} = \frac{F_{iy}}{F_{ix}}, \quad \tan \beta_{i} = \frac{L_{iy}}{L_{ix}}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

图 2 浮标受力分析 图 3 组件总体受力分析 如图 2 所示,对浮标(第 1 个组件)受力分析:

图 4 组件 i 受力分析

$$\boldsymbol{F}_{1} = -\boldsymbol{G}_{1} - \boldsymbol{T}_{f} \tag{1}$$

近似公式:

$$T_{f} = \begin{pmatrix} 0.625Sv_{f}^{2} \\ 0 \end{pmatrix} = \begin{pmatrix} 0.625(L_{1} - h)v_{f}^{2} \\ 0 \end{pmatrix}$$
 (2)

第 i 个组件有两种受力情况:未接触海底、平铺至海底。

当第i个组件未平铺到海底时,对前i个组件构成的总体受力分析:

$$\boldsymbol{F}_{i} = -\sum_{k=1}^{i} \boldsymbol{G}_{k} - \boldsymbol{T}_{f} \tag{3}$$

i>5 时,以前 i 个组件为总体(包括重物球质量):

$$F_{i} = -\sum_{k=1}^{i} G_{k} - T_{f} - \varphi(i) m_{b} g$$

$$\varphi(i) = \begin{cases} 0, & i \leq 5 \\ 1, & i > 5 \end{cases}$$

$$(4)$$

当第 i 个组件未平铺到海底时,对第 i 个组件分析。

对下端点取矩,可得:

$$\frac{1}{2}L_{ix}(P_i - m_i g) + L_{iy}F_{(i-1)x} - L_{iy}F_{(i-1)y} = 0$$

方程两侧同除以 $L_{ix}F_{(i-1)y}$ 可得:

$$\tan \alpha_{i-1} = \tan \beta_i + \frac{P_i - m_i g}{2F_{(i-1)r}}$$
 (5)

当第 i 个组件平铺到海底时,不考虑该组件及其之后所有组件受力情况。同时有几何关系:

$$H = h + \sum_{k=1}^{i} L_k \sin \beta_k \tag{6}$$

综上所述,问题1的数学描述为:

$$\begin{cases} \boldsymbol{F}_{i} = -\sum_{k=1}^{i} \boldsymbol{G}_{k} - \boldsymbol{T}_{f} - \varphi(i) m_{b} \boldsymbol{g} \\ \tan \alpha_{i-1} = \tan \beta_{i} + \frac{P_{i} - m_{i} g}{2F_{(i-1)x}} \\ H = h + \sum_{i=1}^{N} L_{i} \sin \beta_{i} \end{cases}$$
 (模型 I)

其中:

$$\varphi(i) = \begin{cases} 0, & i \le 5 \\ 1, & i > 5 \end{cases} \quad i = 1, 2, ..., N,$$

第 N, N+1, ..., n+7 个组件平铺在海底。

$$\tan \alpha_i = \frac{F_{iy}}{F_{ix}}, \quad \tan \beta_i = \frac{L_{iy}}{L_{ix}}$$

5.1.2 模型的求解与分析

现需确定有多少组件平铺在海底。简单计算可知,接触海底的组件只能是锚链。如果直接按只有锚接触海底计算,则:

 β_{n+6} ≥ 0 时,只有锚接触海底,即符合计算结果。

 β_{n+6} < 0 时,锚链进入海底以下,说明有部分锚链平铺在海底。注意到当第 i 个组件平铺在海底时,第 i+1 到第 n+7 个组件的状态不影响其余组件的受力情况,如图 4 中 1 和 2 两种情况,所对应的右侧组件所处的状态完全一致。

图 5 β_{n+6} < 0 时的两种情况

所以可在数值求解过程中通过寻求系统最高点和最低点的垂直距离,找寻使得垂直距离等于水深的吃水深度,从而求出平铺时系统的状态。算法思路如下所示:

- (1) 给予一系列吃水深度的数值 $h_1,h_2,...h_n$;
- (2) 求出每个数值对应的系统最低点与最高点间垂直距离 $X_1, X_2, ... X_n$;
- (3)选取垂直距离与水深最接近(min|X_i-H|)的吃水深度以及链节数。

	表 2 问题 1 结	论		
	风速为 12 m/s 时	风速为 24m/s 时		
钢桶倾角 /(°)	0.9627	3.8050		
各节 钢管倾角 /(°)	0.9318	3.6911		
	0.9376	3.7124		
	0.9434	3.7339		
	0.9493	3.7556		
	12 -			

图 7 海面风速为 12 m/s 和 24 m/s 时锚链形状

5.2 问题 2

5.2.1 重物球为 1200 kg 时的结论

表 3 重物球为 1200 kg 时的结论

5.2.2 重物球优化模型的建立与求解

在问题 1 的基础上增加一个评价模型。

给三个评价指标以权重 p_1 、 p_2 、 p_3 ,建立综合评价指标:

$$\min W = p_1 h + p_2 \pi R^2 + p_3 \left(\frac{\pi}{2} - \beta_6 \right)$$

图 12 重物球与三个物理量的单调性

如图 11 所示,重物球质量越大,游动区域和倾斜角越小,因此可用一个评价指标代替。考虑该系统功能是信号传输,因此倾斜角更为重要,故舍弃游动区域这一指标。

$$\min W = ph + (1-p)\left(\frac{\pi}{2} - \beta_6\right)$$

重物球质量越大,吃水越深,越重视吃水深度这一指标;同理,质量越小越重视钢桶倾斜角这一评价指标。

记在可行域内质量最值分别为: m_{max} 、 m_{min} 。则令:

$$m = m_{\text{max}}$$
, $p = 1$;
 $m = m_{\text{min}}$, $p = 0$

不妨设p是线性的,即

$$p = \frac{m - m_{\min}}{m_{\max} - m_{\min}}$$

吃水深度和钢桶倾角单位不一致,取值范围不一致,分别用这两个物理量的 取值范围将其无量纲化,归一化:

$$h^* = \frac{h}{2m - 0m}$$
$$\beta^* = \frac{\frac{\pi}{2} - \beta_6}{5^\circ - 0^\circ}$$

则该优化问题为:

图 13 mb与 W的关系图

程序求解后,得到图 13,重物球质量选在 2500kg 为该评价指标下的最优解。

5.3 问题 3

5.3.1 模型的优化

整个系统有 1 个浮标、1 个锚、1 个钢桶、4 个钢管和 n 节链环。共 n+7 个结构。

共有 3n+20 个未知量, 分别为:

- (1) 每相邻两结构间的拉力待求,即有 2(n+7-1)个未知量;
- (2) 除浮标和锚,每个结构与坐标轴夹角待求,即有 n+4+1 个未知量;
- (3) 锚受到的支持力和摩擦力待求,即有2个未知量;
- (3) 浮标吃水深度待求,即有1个未知量。

共有 3n+20 个方程 , 分别为:

- (1) 浮标和锚各有 2 个方程, 即有 4 个方程;
- (2) 除浮标和锚,每个结构有3个方程,即有3(n+4+1)个方程;
- (3) 水深 H 几何关系有 1 个方程。

所以,若方程独立,则方程组理论上可解。现根据锚链和每节链环长度,可得链环数量:

$$n = \frac{22.05}{105 \times 10^{-3}} = 210$$

则方程组有3×210+20=650个。

所以, n 的数量过大导致方程组庞大, 化简锚链是简化模型的关键。

一、悬链线分析法

悬链线分析法是锚泊线的静力计算中最简洁的。悬链线是指一种具有均质, 完全柔性而无延伸的链或索自由悬挂于两定点时所形成的曲线。悬链线分析法在 浮标系统设计的初始阶段,拥有足够的精确度。其模型的建立,基于以下几点假 设^[1](符合上述模型假设):

- (1) 锚链无弹性;
- (2) 锚链材质均匀且较重;
- (3) 海床平坦;
- (4) 不考虑锚链的三维形变:

推导过程:

对于第 i 个组件:

$$\tan \alpha_{i-1} = \tan \beta_i + \frac{P_i - m_i g}{2F_{(i-1)x}}$$

可知有:

$$\tan \beta_{i+1} - \tan \beta_i = \tan \alpha_i - \tan \alpha_{i-1} = \frac{F_{iy} - F_{(i-1)y}}{F_{(i-1)x}} = -\frac{m_i g}{T_f}$$

用微元体替代离散的链环,并取极限,得到锚链的悬链线模型。注意到标号顺序与坐标轴顺序相反,链环与水平方向夹角正切值即悬链线的导数值:

$$-d\dot{y} = -\frac{g}{T_f}dm = -\frac{\omega g}{T_f}ds = -\frac{\omega g}{T_f}\sqrt{1+\dot{y}^2}dx$$

由文献[2,3]可得通解为:

$$y = \frac{T_f}{\omega g} ch \left(\frac{\omega g}{T_f} x + A\right) + B$$

$$\int_{x_7}^{x_6} dy' = \int_0^s \frac{\omega g}{T_f} ds$$

$$y'(x_6) = \frac{\sum_{k=1}^6 (P_k - m_k g) - m_b g}{T_f}$$

$$y'(x_6) = \frac{\sum_{k=1}^6 (P_k - m_k g) - m_b g}{T_f}$$

图 14 边界条件示意图

如下图所示,A、B由边界条件求得:

$$y(x_7) = 0$$

$$\frac{\omega g}{T_f}(s - x_7) = \dot{y}(x_6) - \dot{y}(x_7)$$

$$T_f \dot{y}(x_6) = \sum_{k=1}^{6} (P_k - m_k g) - m_b g$$

其中 x₆ 是悬链与铁通连接点, x₇ 是锚链与海床接触点。 考虑是否有链环平铺,可得以下两种边界条件:

$$x_7 > 0 \quad \text{fif}, \quad \dot{y}(x_7) = 0$$
$$x_7 = 0$$

因此有:

 $x_7 = 0$ 时,链环不平铺,此时有:

$$-\dot{y}(x_7) = \frac{\omega g s}{T_f} - \frac{\sum_{k=1}^{6} (P_k - m_k g) - m_b g}{T_f} < 0$$

$$sh(A) = \frac{\sum_{k=1}^{6} (P_k - m_k g) - m_b g - \omega g s}{T_f}$$

$$B = -\frac{\omega g}{T_f} ch(A)$$

 $x_7 > 0$ 时,链环有一部分平铺

$$\frac{\omega g}{T_f} x_7 = \frac{\omega g s}{T_f} - \frac{\sum_{k=1}^{6} (P_k - m_k g) - m_b g}{T_f} > 0$$

$$A = \frac{\omega g}{T_f} \left(\frac{\sum_{k=1}^{6} (P_k - m_k g) - m_b g}{\omega g} - s \right)$$
$$B = -\frac{\omega g}{T_f}$$

另有几何约束条件:

$$h + \sum_{i=1}^{6} L_{iy} + y(x_6) = H$$

综上,采用悬链线简化得到的模型为:

$$\begin{cases} F_{ix} = -0.625(L_1 - h)v_f^2 \\ F_{iy} = -\sum_{k=1}^{i} (P_k - m_k g) - \varphi(i)m_b g , i = 1, 2, ..., 6 \\ y = \frac{T_f}{\omega g} ch \left(\frac{\omega g}{T_f} x + A\right) + B \\ H = h + \sum_{i=1}^{6} L_i \sin \beta_i + y(x_6) \end{cases}$$

其中A, x6, x7 满足条件

$$T_{f}\dot{y}(x_{6}) = \sum_{k=1}^{6} (P_{k} - m_{k}g) - m_{b}g$$

$$x7 = \begin{cases} 0 & , & \omega gs - \sum_{k=1}^{6} (P_{k} - m_{k}g) + m_{b}g \leq 0 \\ s - \frac{\sum_{k=1}^{6} (P_{k} - m_{k}g) - m_{b}g}{\omega g} & , & \omega gs - \sum_{k=1}^{6} (P_{k} - m_{k}g) + m_{b}g > 0 \end{cases}$$

$$A = \begin{cases} ar \sinh \frac{\sum_{k=1}^{6} (P_{k} - m_{k}g) - m_{b}g - \omega gs}{T_{f}} & , & x_{7} = 0 \end{cases}$$

$$A = \begin{cases} \frac{\omega g}{T_{f}} \left(\sum_{k=1}^{6} (P_{k} - m_{k}g) - m_{b}g - \omega gs}{wg} - s \right) & , & x_{7} > 0 \end{cases}$$

$$B = \begin{cases} -\frac{\omega g}{T_{f}} ch(A) & , & x_{7} = 0 \\ -\frac{\omega g}{T_{f}} & , & x_{7} > 0 \end{cases}$$

二、抛物线近似

悬链线方程中含有双曲函数,属于超越方程,求解不便,因此考虑对悬链线

方程进行简化。由文献^[4,5]可知,工程上常用抛物线替代悬链线。对悬链线方程 (7),用泰勒公式在 *x*₇ 处展开,仅保留前两项可得:

$$y = sh\left(\frac{\omega g}{T_f}x_7 + A\right)(x - x_7) + \frac{\omega g}{2T_f}ch\left(\frac{\omega g}{T_f}x_7 + A\right)(x - x_7)^2$$
(8)

为便于求解, A, x_6, x_7 ,仍采用悬链线模型的公式计算。

图 15 三个模型计算问题 1 风速为 24 m/s 时的锚链形状

5.3.2 模型的求解与分析

系泊系统设计是指确定锚链型号、长度和重物球的质量,使得浮标的吃水深度、游动区域和钢桶倾斜角度尽可能小。在采用抛物线模型和悬链线模型时,表示锚链型号的物理量为锚链单位长度的质量。设定本优化问题的某评价指标W:

$$\min W = p_1 h + p_2 \pi R^2 + p_3 \left(\frac{\pi}{2} - \beta_6 \right)$$

对于给定的某一边界条件 $\{v_s, v_f, H\}$

由约束条件

$$0 < h < 2$$
, $\left| \frac{\pi}{2} - \beta_6 \right| \le 5^\circ$, $\left| \beta_{n+6} \right| \le 16^\circ$

唯一确定一个三维可行域 D,其边界为 ∂D ,则任意一组可行的设计 $X_i = \{m_{bi}, \omega_i, s_i\}$,都是该可行域中的解,即:

$$X_i \in D$$

$$\partial D = f\left(\mathbf{v}_{s}, \mathbf{v}_{f}, H\right)$$

由于一天内边界条件不断变化,而系泊系统一经设定则无法改变。因此可行的设计为:

 $\forall (v_s, v_f, H)$ 所确定的可行域 D,均有,

$$X_i \in D$$

所有 X_i 组成的解空间 G_i 是所有 D 的交集, 是任意 D 的子集。

图 16 解空间示意图

则问题转化为试求 G 内最优解 X_{best} , 使得 W 取最小值。

现分析风速、海水流速和水深三种边界条件,来确定G的边界 ∂G 。

对实际问题而言,显然风速和水速均达到最大值,且风速和水速同向时,系 泊系统工作条件最为恶劣,显然所设计的三个参数只需满足该情况下的约束条件, 即可适应其它风速和水速的条件。因此,只需确定水深对应的边界条件即可。

对于某一水深 H, 由约束条件可确定一 D:

$$\begin{cases} m_b \in [m_1(H), m_2(H)] \\ \omega \in [\omega_1(H), \omega_2(H)] \\ s \in [s_1(H), s_2(H)] \end{cases}$$

则交成的解空间 G 为:

$$\begin{cases} m_b \in [m_{1\text{max}}, m_{2\text{min}}] \\ \omega \in [\omega_{1\text{max}}, \omega_{2\text{min}}] \\ s \in [s_{1\text{max}}, s_{2\text{min}}] \end{cases}$$

考虑 H 的两个极值。当 H=16 时,系泊系统更易出现钢桶倾角过大的问题; 当 H=20 时,系泊系统更易出现吃水深度过大的问题。因此,H 从 16 增加到 20 时,待设计的三个参数变化显然是单调的(图 12 也表明这一点)。

所以解空间 G 是风速水速均达最大且方向相同,H=16 和 H=20 时,解得的两可行域的交集。

对于评价指标:

$$\min W = p_1 h + p_2 \pi R^2 + p_3 \left(\frac{\pi}{2} - \beta_6 \right)$$

类比模型 II , H 越大, 越重视吃水深度, H 越小, 越重视钢桶倾角过大的问题。重物球质量越大, 游动区域和倾斜角越小, 因此可用一个评价指标代替。考

虑该系统功能是信号传输,因此倾斜角更为重要,故舍弃游动区域这一指标。

由于所设计的系统应是在不同的 H 条件下都有较好的工作效果,因此评价指标 W 应考虑到不同 H 条件的工作状态。

所以用H=16时的钢桶倾角和H=20时的吃水深度的线性组合作为评价标准,同时采用模型II的归一化和无量纲化方法:

$$\min W = ph^* \Big|_{H=20} + (1-p)\beta^* \Big|_{H=16}$$

$$s.t. \begin{cases} X_i = \{m_{bi}, \omega_i, s_i\} \in G \\ \forall (v_{si}, v_{fi}, H_i) \to D_i \\ G = \bigcup_i D_i \end{cases}$$

另外,考虑水流作用,前6个组件的静力学模型中加入近海水流力:

$$\begin{cases} F_{i} = -\sum_{k=1}^{i} G_{k} - T_{f} - T_{s} - \varphi(i) m_{b} \mathbf{g}, & i = 1, 2, ..., 6 \\ y = \frac{\omega g}{T_{f}} sh \left(\frac{\omega g}{T_{f}} x_{7} + A \right) (x - x_{7}) + \frac{\omega g}{2T_{f}} ch \left(\frac{\omega g}{T_{f}} x_{7} + A \right) (x - x_{7})^{2} \\ H = h + \sum_{i=1}^{6} L_{i} \sin \beta_{i} + y(x_{6}) \\ \tan \alpha_{i-1} = \tan \beta i \left(1 - \frac{374 L_{i} \sin \beta_{i} v_{s}^{2}}{2F_{(i-1)x}} \right) + \frac{P_{i} - m_{i}g}{2F_{(i-1)x}} \end{cases}$$

该方程组不易求解,需做一定近似处理。考虑到前面的模型中 β :较小且变化不大,所以 $\sin\beta$:接近于 1 且变化不大,因此考虑将 4 个钢管看成一个整体,同时在计算近海水流力时按钢管和钢桶垂直来流方向计算。

由于该优化问题涉及三个变量,不易求解。而在模型 II 中已经对风速 36m/s 时的重物球质量进行了优化,因此考虑重物球质量按模型 II 的结果为 2500kg,对五种锚链,改变锚链长度,求算评价指标,寻找最优解。

链长	I型	链长	II 型	链长	III 型	链长	IV 型	链长	V 型
16	1.2416	60	1.2065	38	1.1914	27	1.1757	19	1.1657
17	1.2343	70	1.2041	40	1.1909	28	1.1755	22	1.1596
18	1.2323	73	1.2039	42	1.1907	30	1.1757	23	1.1595
19	1.2328	75	1.2039	44	1.1910	32	1.1780	24	1.1606
20	1.2327	77	1.2040			35	1.1858	30	1.2261

表 4 模型 III 数值解

由上表可以看出,在小球质量选择 2500 kg 的情况下,选用 I 型链,长度约为 18m (取 18.018m) 时,系统设计较好。

对于最优解,在以下两种情况下,系统的状态为:

H=20

钢桶倾斜角: 87.3114° 钢管倾斜角: 84.0658°

锚链形状: y=0.009461×cosh(0.959399) x²/2+1.113503x

浮标吃水深: 1.241m 游动半径: 16.5259m

H=16

钢桶倾斜角: 86.9423° 钢管倾斜角: 83.6869°

锚链形状: y=0.009461×cosh(0.546579734) x²/2+ 0.574204223x

浮标吃水深: 1.1842m 游动半径: 20.0142m

6 敏感性分析

	W	W 改变率
未改变	1.2323	/
风速增加 1%	1.2432	0.8796%
水速增加 1%	1.2323	$-4.0574 \times 10^{-3}\%$
水深下界增加 1%	1.2303	-0.1682%
水深上界增加 1%	1.2348	0.2029%

7 模型优缺点

模型优点:

- (1)通过静力学分析建立的第一个模型具有很强的普适性,且为系统精确描述:
- (2)采用悬链线、抛物线两种连续模型替代离散的锚链,大幅减少运算量,同时使得链环个数不确定的系统设计问题可以迭代求解;
 - (3) 对系统设计问题,模型指出应采用满足最恶劣环境下的最优解;
 - (4)灵敏性分析表明问题三的评价指标对参数的变化不敏感,适用性较好。

模型缺点:

- (1) 缺乏对问题三较好的求解方案;
- (2) 直接采用第二问解出的重物球质量很可能导致丢失最优解:
- (3) 未考虑浮标的倾斜。

8 参考文献

- [1] 朱亚洲. 浮体锚泊线响应分析研究[D].哈尔滨工程大学,2009.
- [2] 胡灵斌, 唐军. 悬链线方程的求解及其应用[J]. 船舶,2004,01:17-20.
- [3] 田小康, 冯小松, 宵高宜. 基于准悬链线理论的舰船缆绳张力计算[J]. 广州航海高等专科学校学报,2009,01:18-20+23.
- [4] 郭常瑞. 悬链线与抛物线缆索计算理论对比分析[J]. 山西建筑,2012,03:173-176.
- [5] 林贵瑜,冯优达,苑登波. 钢丝绳抛物线理论与悬链线理论的计算误差分析 [J]. 建筑机械化,2010,03:42-43+55.

9 附录

语言 MATLAB

```
syms mydata n
int m
                %定义数组
a=zeros(1000,1);
for i=0.7:0.001:0.8
mydata=i
n=1000*i-699;
m=round(n);
xlswrite('data1.xlsx',i, '12 米每秒计算程序', 'A1'); %向表格中 A1 写入数据
a(m)=xlsread('data1.xlsx', '12 米每秒计算程序', 'Q1'); %读表格中 Q1 的数据
end
a
syms mydata n
int m
                %定义数组
a=zeros(1000,1);
for i=0.7:0.001:0.8
mydata=i
n=1000*i-699;
m=round(n);
xlswrite('data1.xlsx',i, '24 米每秒计算程序', 'A1'); %向表格中 A1 写入数据
a(m)=xlsread('data1.xlsx', '24 米每秒计算程序', 'Q1'); %读表格中 Q1 的数据
end
a
syms mydata1 mydata2 n u
uint64 m=1
uint64 v=1
A=[];
B=[];
         %定义矩阵
C=[]:
for i=0.7:0.05:2
mydata=i
n=20*i-13
m=round(n)
xlswrite('data2.xlsx',i, 'Sheet1', 'A1'); %向表格中 A1 写数据
  for j=1770:10:2830
  mydatatwo=j
  u=j/10-176
  v=round(u)
  xlswrite('data2.xlsx',j, '36 米每秒计算程序', 'Q4');
                                              %向表格中 Q4 写数据
```

A(m,v)=xlsread('data2.xlsx', '36 米每秒计算程序', 'Q5'); %从表格中 Q5 读数据 B(m,v)=xlsread('data2.xlsx', '36 米每秒计算程序', 'Q6'); %从表格中 Q6 读数据 C(m,v)=xlsread('data2.xlsx', '36 米每秒计算程序', 'Q7'); %从表格中 Q7 读数据 end

end

A

В

 \mathbf{C}