Análisis de Datos Multivariantes

5. DISTRIBUCIÓN NORMAL MULTIVARIANTE

(Parte 1: Propiedades básicas)

2016/17

Contenido

- Normal univariante
 - Definición y propiedades básicas
 - Datos normal univariante
- Normal multivariante
 - Definición
 - Ejemplo
- Oatos normal multivariante
 - Aspectos generales
 - Normales singulares (*)
 - Datos no normales
- Propiedades de la normal multivariante
 - Resultados básicos
 - Distribuciones condicionadas

- Normal univariante
 - Definición y propiedades básicas
 - Datos normal univariante
- Normal multivariante
 - Definición
 - Ejemplo
- 3 Datos normal multivariante
 - Aspectos generales
 - Normales singulares (*)
 - Datos no normales
- Propiedades de la normal multivariante
 - Resultados básicos
 - Distribuciones condicionadas.

Normal univariante

Definición

• Una variable aleatoria $X \sim N(\mu, \sigma^2)$ tiene función de densidad:

$$f(x) = rac{1}{\sigma\sqrt{2\pi}} \, \exp\left[-rac{1}{2\sigma^2} \, (x-\mu)^2
ight] \quad , \quad -\infty < x < +\infty \; .$$

- Media: $E(X) = \mu$. Varianza: $var(X) = \sigma^2 > 0$ ($\sigma = +\sqrt{\sigma^2}$).
- X es simétrica y concentrada alrededor de μ :

$\Pr(X \in \mu \pm \sigma)$	$\Pr(X \in \mu \pm 2\sigma)$	$\Pr(X \in \mu \pm 3\sigma)$	
.6827	.9545	.9973	

• $Z = (X - \mu)/\sigma \sim N(0, 1)$.

$$\Pr(Z > z_{\alpha}) = \alpha : \left\{ \begin{array}{c|ccc} \alpha & .1 & .05 & .01 \\ \hline z_{\alpha} & 1.2816 & 1.6449 & \textbf{2.3263} \end{array} \right.$$

Universidad

- Datos X_1 , X_2 , ..., X_n de $N(\mu, \sigma^2)$ siguen el **patrón** de la densidad.
- Por **ejemplo** en la siguiente muestra de n = 100 de una N(0, 1):

Normal univariante

Al **ordenar** las observaciones $X_{(1)} < X_{(2)} < \ldots < X_{(99)} < X_{(100)}$:

• 12 primeras observaciones:

1	2	3	4	5	6
-2.5611	-2.0106	-1.9715	-1.8163	-1.4579	-1.4336
7	8	9	10	11	12
-1.2161	-1.0965	-1.0833	-1.0486	-1.0434	-0.9783

• 18 últimas observaciones:

83	84	85	86	87	88
0.9763	1.0182	1.0223	1.0497	1.1014	1.2000
89	90	91	92	93	94
1.2393	1.3195	1.3355	1.3547	1.4270	1.4290
95	96	97	98	99	100
1.7386	1.7542	1.7899	1.8713	2.2408	3.0315

- Normal univariante
 - Definición y propiedades básicas
 - Datos normal univariante
- Normal multivariante
 - Definición
 - Ejemplo
- 3 Datos normal multivariante
 - Aspectos generales
 - Normales singulares (*)
 - Datos no normales
- Propiedades de la normal multivariante
 - Resultados básicos
 - Distribuciones condicionadas

Normal multivariante

Definición

Un vector aleatorio de $p \times 1$ X sigue una distribución $N_p(\mu, \Sigma)$ cuando

$$f(\mathbf{x}) = (2\pi)^{-p/2} |\Sigma|^{-1/2} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right].$$

• Estructura similar al caso p = 1:

$$f(x) = \underbrace{(2\pi)^{-1/2}}_{\text{constante}} \underbrace{(\sigma^2)^{-1/2}}_{\text{escala}} \underbrace{\exp}_{\text{exp}} \underbrace{\left[-\frac{1}{2}(x-\mu)(\frac{1}{\sigma^2})(x-\mu)\right]}_{\text{cuadrática}}.$$

• En la definición: $|\Sigma| > 0$. $E(X) = \mu$, $Var(X) = \Sigma$.

- Mormal univarianto
 - Definición y propiedades básicas
 - Datos normal univariante
- Normal multivariante
 - Definición
 - Ejemplo
- 3 Datos normal multivariante
 - Aspectos generales
 - Normales singulares (*)
 - Datos no normales
- Propiedades de la normal multivariante
 - Resultados básicos
 - Distribuciones condicionadas.

Datos normal multivariante

• Los datos x_1, x_2, \ldots, x_n de $N_p(\mu, \Sigma)$ siguen el patrón elíptico de la densidad. Como por ejemplo:

Muestra aleatoria de tamaño n = 200 de **Normal 2D** (r = -.8)

Las características elípticas de los datos de $N_p(\mu, \Sigma)$ son:

- Centro alrededor de μ .
- Concentración decreciente a lo largo de los ejes definidos por Σ .

Ejemplo

 $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ de $N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, donde n = 400 y

$$m{\mu} = \left(egin{array}{c} 0 \ 0 \ 0 \end{array}
ight) \quad , \quad m{\Sigma} = \left(egin{array}{ccc} 1 & \mathsf{r}_{12} & 0 \ \mathsf{r}_{12} & 1 & 0 \ 0 & 0 & 1 \end{array}
ight) \; .$$

Carlos III de Madrid

Datos normal multivariante

Muestras aleatorias de tamaño n = 400 de Normal 3D

Datos normal multivariante

- En general, $|\Sigma| > 0$.
- Si $|\Sigma| = 0$: normal en un subespacio de dimensión $r(\Sigma)$.

Ejemplo

En los siguientes casos, $\mu = \mathbf{0}$ y $\Sigma = \mathbf{u}\mathbf{u}^T$:

- p = 2, $\mathbf{u} = \begin{pmatrix} 1 & 2 \end{pmatrix}^T$.
- \bullet p = 3, $\mathbf{u} = \begin{pmatrix} 1 & 2 & 4 \end{pmatrix}^T \mathbf{y}$

$$\mathbf{u} = \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \\ 0 & 2 \end{array} \right) .$$

Datos normal multivariante

Muestras aleatorias de tamaño n = 400 de normales singulares

- En la **práctica**, los datos **no son siempre** normales.
- La hipótesis de normalidad es útil como aproximación.
- Se descarta únicamente cuando existe una clara evidencia en contrario. Como por ejemplo:

Muestra aleatoria de tamaño n = 300 de No Normal 2D

Datos de calidad del papel de impresora no son normales.

Calidad del papel de impresora en variables (X_2, X_3)

- Definición y propiedades básicas
- Datos normal univariante
- Normal multivariante
 - Definición
 - Ejemplo
- 3 Datos normal multivariante
 - Aspectos generales
 - Normales singulares (*)
 - Datos no normales
- Propiedades de la normal multivariante
 - Resultados básicos
 - Distribuciones condicionadas

Teorema

Suponer X = $(X_1, \dots, X_n)^T \sim N_n(\mu, \Sigma)$. Entonces:

• Dados A de $q \times p$, $r(A) = q \le p^{(*)}$, y b de $q \times 1$:

$$\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b} \sim \mathcal{N}_q(\mathbf{A}oldsymbol{\mu} + \mathbf{b}$$
 , $\mathbf{A}\mathbf{\Sigma}\mathbf{A}^T)$.

- Para q = 1. $\mathbf{a}^T \mathbf{X} + b \sim N_1 (\mathbf{a}^T \boldsymbol{\mu} + b, \mathbf{a}^T \boldsymbol{\Sigma} \mathbf{a})$.
- La normalidad se conserva bajo transformaciones lineales.

Corolario

- Marginales $X_i \sim N_1(\mu_i, \sigma_{ii}), i = 1, \ldots, p$.
- Bloques $X_{(1)} \sim N_q(\mu_{(1)}, \Sigma_{11}), X_{(2)} \sim N_r(\mu_{(2)}, \Sigma_{22}).$
- $X_{(1)}$ y $X_{(2)}$ son independientes si y sólo si $\Sigma_{12} = 0$.

Suponer
$$\mathbf{X} = (X_1, \dots, X_p)^T = \begin{pmatrix} \mathbf{X}_{(1)}^T & \mathbf{X}_{(2)}^T \end{pmatrix}^T \sim N_p(\mu, \Sigma).$$

Teorema

La distribución condicionada de $X_{(1)}$ dado que $X_{(2)} = y$ es

$$\mathsf{X}_{(1)} \mid \mathsf{X}_{(2)} = \mathsf{y} \sim \mathit{N}_q(\mu_{1.2}, \Sigma_{11.2})$$
:

Media condicionada (lineal en y):

$$oldsymbol{\mu}_{1.2} = \mathsf{E}\left[\left. oldsymbol{\mathsf{X}}_{(1)} \mid oldsymbol{\mathsf{X}}_{(2)} = oldsymbol{\mathsf{y}}
ight] = oldsymbol{\mu}_{(1)} + oldsymbol{\Sigma}_{12} oldsymbol{\Sigma}_{22}^{-1} [oldsymbol{\mathsf{y}} - oldsymbol{\mu}_{(2)}] \; .$$

• Varianza condicionada (no depende de y):

$$\Sigma_{11.2} = \text{Var} \left[\, \boldsymbol{X}_{(1)} \mid \boldsymbol{X}_{(2)} = \boldsymbol{y} \, \right] = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \, \, .$$

Ejemplo

Para p=2:

$$X_1 \mid X_2 = y \sim N_1 \left[\mu_{1.2} = \mu_1 + \sqrt{\frac{\sigma_{11}}{\sigma_{22}}} \ \rho \left(y - \mu_2 \right), \ \sigma_{1.2}^2 = \sigma_1^2 (1 - \rho^2) \right].$$

- Media condicionada lineal y varianza condicionada constante justifican el modelo de regresión lineal simple.
- Como en el siguiente ejemplo de $X_1 \mid X_2 = y$, (n = 20), con

$$oldsymbol{\mu} = \left(egin{array}{c} 0 \ 0 \end{array}
ight) \quad , \quad oldsymbol{\Sigma} = \left(egin{array}{c} 2 & 1 \ 1 & 1 \end{array}
ight) \; .$$

Datos de la **distribución condicionada** $X_1 \mid X_2 = y \sim N_1(y, 1)$

- Normal univariante
- Normal multivariante
- Datos normal multivariante
- Propiedades de la normal multivariante

• Referencias: Johnson, R.A. y Wichern, D.W. (2007) [Cap. 4].