Conectando Geometria de Finsler e Mecânica via Geodésicas

Guilherme Cerqueira Gonçalves-IME-USP (bolsista FAPESP 2021/00551-3) Orientador: Prof. Marcos M. Alexandrino-IME-USP

Dezembro 2021

Variedades de Riemann e Finsler

Definição 1 (Variedade)

Um subconjunto $M \subset \mathbb{R}^{m+k}$ é uma variedade mergulhada se é localmente descrita por gráficos locais.

Figura:
$$M = \{x \in \mathbb{R}^3 | (\sqrt{x_1^2 + x_2^2} - 3)^2 + x_3^2 = 1\}$$

Definição 2 (Espaço tangente)

O espaço tangente T_pM é o espaço vetorial das velocidades $\alpha'(0)$ das curvas $\alpha: (-\epsilon, \epsilon) \to M$ com $\alpha(0) = p$. $TM = \bigcup_{p \in M} T_pM$ o fibrado tangente de M

Definição 3 (Métrica Riemanniana Induzida)

Para cada $p \in M$, e $V = (v_1, v_2, v_3)$, $W = (w_1, w_2, w_3) \in T_pM$ (vetores tangentes a M em $p \in M$) podemos definir um produto interno (chamado **métrica em p**) em T_pM

$$g_p(V, W) = \langle V, W \rangle = v_1 w_1 + v_2 w_2 + v_3 w_3$$

Figura: $||X|| = \sqrt{g_p(X,X)}$

ロト 4 倒 ト 4 重 ト 4 重 ト 9 9 (や)

$$R(v)=\sqrt{g(v,v)}+g(v,ec{eta})$$
 em que g é uma métrica Riemanniana, e $\sqrt{g(ec{eta},ec{eta})}<1.$

$$R(v)=\sqrt{g(v,v)}+g(v,ec{eta})$$
 em que g é uma métrica Riemanniana, e $\sqrt{g(ec{eta},ec{eta})}<1.$

Note que: (para $\lambda > 0$)

$$R(\lambda v) = \sqrt{g(\lambda v, \lambda v)} + g(\lambda v, \vec{\beta}) = \lambda(\sqrt{g(v, v)}) + \lambda(g(v, \vec{\beta})) = \lambda R(v)$$

$$R(v)=\sqrt{g(v,v)}+g(v,ec{eta})$$
 em que g é uma métrica Riemanniana, e $\sqrt{g(ec{eta},ec{eta})}<1.$

Note que: (para $\lambda > 0$)

$$R(\lambda v) = \sqrt{g(\lambda v, \lambda v)} + g(\lambda v, \vec{\beta}) = \lambda(\sqrt{g(v, v)}) + \lambda(g(v, \vec{\beta})) = \lambda R(v)$$

$$R(v) = \sqrt{g(v,v)} + g(v,\vec{\beta}) \neq R(-v) = \sqrt{g(v,v)} - g(v,\vec{\beta})$$

$$R(v)=\sqrt{g(v,v)}+g(v,ec{eta})$$
 em que g é uma métrica Riemanniana, e $\sqrt{g(ec{eta},ec{eta})}<1.$

Note que: (para $\lambda > 0$)

$$R(\lambda v) = \sqrt{g(\lambda v, \lambda v)} + g(\lambda v, \vec{\beta}) = \lambda(\sqrt{g(v, v)}) + \lambda(g(v, \vec{\beta})) = \lambda R(v)$$

$$R(v) = \sqrt{g(v,v)} + g(v,\vec{\beta}) \neq R(-v) = \sqrt{g(v,v)} - g(v,\vec{\beta})$$

Definição 5 (Norma Finsleriana)

Uma variedade *M* é dita uma **variedade Finsler** se para cada espaço tangente existe uma *norma de Minkowski*:

- (1) $F: TM \to \mathbb{R}$ with $F(\lambda v) = \lambda F(v)$ para $\lambda > 0$;
- (2) $g_v(u, w) = \frac{1}{2} \frac{\partial^2}{\partial s \partial t} F^2(v + su + tw)|_{s=t=0}$, é uma métrica.

Distância e geodésicas

Seja $\|\cdot\|$ a norma Riemanniana $\sqrt{\mathrm{g}(\cdot,\cdot)}$ ou a norma Finsleriana $F(\cdot)$. A distancia entre dois pontos é definida como:

$$d(p,q)=\inf\sum_i\int_{t_i}^{t_i+1}\|\alpha_i'(t)\|dt$$
 em que $\alpha:[0,1]\to M$ é uma curva suave por partes com $\alpha(0)=p$ e $\alpha(1)=q$.

Note que no caso de uma norma Randers $d(p,q) \neq d(q,p)$.

Distância e geodésicas

Seja $\|\cdot\|$ a norma Riemanniana $\sqrt{\mathrm{g}(\cdot,\cdot)}$ ou a norma Finsleriana $F(\cdot)$. A distancia entre dois pontos é definida como:

 $d(p,q)=\inf\sum_i\int_{t_i}^{t_i+1}\|\alpha_i'(t)\|dt$ em que $\alpha:[0,1]\to M$ é uma curva suave por partes com $\alpha(0)=p$ e $\alpha(1)=q$.

Note que no caso de uma norma Randers $d(p,q) \neq d(q,p)$.

Definição 6 (Geodésica)

Uma curva suave parametrizada por comprimento de arco $\gamma:I\to M$ é dita **geodésica** se ela *minimiza a distância localmente*, i.e, para cada $s_0\in I$ existe $\epsilon>0$ tal que $d(\gamma(s_0),\gamma(s))=\int_{s_0}^s\|\gamma'(t)\|dt=s-s_0$ para $s\in[s_0,s_0+\epsilon].$

Distância e geodésicas

Definição 6 (Geodésica)

Uma curva suave parametrizada por comprimento de arco $\gamma:I\to M$ é dita **geodésica** se ela *minimiza a distância localmente*, i.e, para cada $s_0\in I$ existe $\epsilon>0$ tal que $d(\gamma(s_0),\gamma(s))=\int_{s_0}^s\|\gamma'(t)\|dt=s-s_0$ para $s\in[s_0,s_0+\epsilon].$

Equação de Newton

Proposição 7 (Métrica de Jacobi)

Seja γ a solução da Equação de Newton $(\gamma''(t))^T = -(\nabla U)^T$ numa variedade Riemanniana com métrica induzida (M, g_0) tal que a função potencial U é limitada superiormente (U < c). Então γ é geodésica da métrica de Jacobi $(c - U)g_0$ a menos de reparametrização.

Geodésicas em norma de Randers

Alternativamente, norma de Randers pode ser definida como:

$$R(v) = h(v - R(v)W)$$

onde h é uma **norma Riemanniana** e W é um campos vetorial tal que h(W, W) < 1 (chamado **vento**).

O par (h, W) é chamado **data de Zermelo**, em T_pM :

$$B_{\epsilon}^{R}(0) = B_{\epsilon}^{h}(0) + \epsilon W_{p}$$

Figura: Vide S. Markvorsen, A Finsler geodesic spray paradigm for wildfire spread modelling, Nonlinear Anal., Real World Appl. 28 (2016) 208–228.

Teorema 8 (1)

Considere a norma Randers R com data de Zermelo (h, W) em M, tal que W é um Campo de Killing (i.e., um campo vetorial cujo fluxo é uma isometria). Seja $\alpha:I\subset\mathbb{R}\to M$ uma geodésica parametrizada por comprimento de arco na variedade Riemanniana (M, h). Então $\beta(t) = \varphi_t(\alpha(t))$ é uma geodésica Randers parametrizada por comprimento de arco, em que φ_t é o fluxo de W.

Figura: [1]: P. Foulon and V. S. Matvee, Zermelo Deformation of Finsler metrics, Electronic Research Announcements, V. 25 (2018), 1-7

Exemplo de Katok em S^2

Figura: Geodésica Randers na esfera, obtida com data de Zermelo (h, W) onde h é a métrica Euclidiana induzida na esfera S^2 e W é uma rotação com velocidade angular irracional $\frac{1}{\sqrt{5}}$

Distância e paralelismo para a frente

Dado $f:M\to\mathbb{R}$ a partição $\mathcal{F}=\{f^{-1}(c)\}$ é chamado **paralela para frente** se para $c_0 < c_1$

$$x \in f^{-1}(c_1) \cap C_{\epsilon}^+(f^{-1}(c_0)) \Longrightarrow f^{-1}(c_1) \subset C_{\epsilon}^+(f^{-1}(c_0))$$

Figura: f(x) = d(0, x)

Figura: f(x) = d(0,x)

Teorema 9 (3)

As frentes de ondas são pre-imagens da função distância relativo a sua fonte. Ou seja, f(x) = d(A, x), então as frentes de ondas são $f^{-1}(c)$.

Figura: Huygens: cada ponto de uma frente de onda possui a funcionalidade de uma nova fonte pontual

Figura: Markvorsen: Modelo para incêndio (com vento fraco)

[3] H.R. Dehkordi and S. Alberto, *Huygens? envelope principle in Finsler spaces and analogue gravity.* Classical and Quantum Gravity 36.8 (2019): 085008.

Função transnormal: generalizando a função distância

Definição 10

Dado uma variedade de Finsler (M, F) Uma função suave $f: M \to \mathbb{R}$ é chamada F-função transnormal se

$$F(\nabla f)^2 = b(f)$$

onde b é contínua.

- $f(x,y) = \sqrt{x^2 + y^2} \to \|\nabla f(x,y)\|^2 = 1$, então $b \equiv 1$.
- $f(x, y) = x^2 + y^2 \rightarrow \|\nabla f(x, y)\|^2 = 4(x^2 + y^2)$, então b(z) = 4z.

Função transnormal: generalizando a função distância

Definição 10

Dado uma variedade de Finsler (M,F) Uma função suave $f:M\to\mathbb{R}$ é chamada F-função transnormal se

$$F(\nabla f)^2 = b(f)$$

onde b é contínua.

- $f(x,y) = \sqrt{x^2 + y^2} \rightarrow \|\nabla f(x,y)\|^2 = 1$, então $b \equiv 1$.
- $f(x,y) = x^2 + y^2 \rightarrow \|\nabla f(x,y)\|^2 = 4(x^2 + y^2)$, então b(z) = 4z.

Observação 11

• $df(\cdot) = g_{\nabla f}(\nabla f, \cdot)$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト 9 Q (C)

Comentário Extras: Em que condições os conjuntos de nível são paralelos para frente e para trás, ou seja $\mathcal{F} = \{f^{-1}(c)\}$ é uma partição de Finsler?

Comentário Extras: Em que condições os conjuntos de nível são paralelos para frente e para trás, ou seja $\mathcal{F} = \{f^{-1}(c)\}$ é uma partição de Finsler?

Teorema 12 (Em andamento-IC FAPESP)

Seja (M,F) uma variedade de Finsler conexa, compacta analítica e $f:M\to\mathbb{R}$ uma função F-transormal analítica com f(M)=[a,b]. Suponha que os conjuntos de níveis são conexos e a, b são os únicos valores singulares de [a,b]. Então:

- (a) os conjuntos $f^{-1}(a)$ e $f^{-1}(b)$ são subvariedades.
- (b) os conjuntos são equidistantes, ou seja $\mathcal{F} = \{f^{-1}(c)\}$ é uma folheação de Finsler
- [2] M. M. Alexandrino, B. O. Alves, H. R. Dehkordi, *On Finsler transnormal functions*, Differential Geometry and its Applications Volume 65, 93-107 (2019)

40 140 15 15 15 15 10 0

Equação de Newton

Proposição 13 (Métrica de Jacobi)

Seja γ a solução da Equação de Newton $(\gamma''(t))^T = -(\nabla U)^T$ numa variedade Riemanniana com métrica induzida (M, g_0) tal que a função potencial U é limitada superiormente (U < c). Então γ é geodésica da métrica de Jacobi $(c - U)g_0$ a menos de reparametrização.

Ideia da prova da Métrica de Jacobi

 Então, os gradientes simpléticos são múltiplos, ou seja:
X_H_O(z) = λ(z)X_H_O(z) Existe φ, tal que se α₁, α₂ são soluções dos fluxos X_{H1}, X_{H2} respectivamente, α₂ = α₁ ∘ φ.

 Aplicar o resultado aos Hamiltoneanos:

$$H(v_p) = \frac{1}{2} ||v_p||^2 + U(p)$$

$$H_J(v_p) = \frac{\|v_p\|^2}{2(c - U(p))}$$

Teorema 14 (1)

Considere a norma Randers R com data de Zermelo (h, W) em M, tal que W é um Campo de Killing (i.e., um campo vetorial cujo fluxo é uma isometria). Seja $\alpha:I\subset\mathbb{R}\to M$ uma geodésica parametrizada por comprimento de arco na variedade Riemanniana (M,h). Então $\beta(t)=\varphi_t(\alpha(t))$ é uma geodésica Randers parametrizada por comprimento de arco, em que φ_t é o fluxo de W.

Figura: [1]: P. Foulon and V. S. Matvee, Zermelo Deformation of Finsler metrics, Electronic Research Announcements, V. 25 (2018), 1–7

• Pelas propriedades de fluxo e regra da cadeia tem-se que a derivada de β é: $\beta'(t) = W(\varphi_t(\alpha(t))) + \varphi_{t*}\alpha'(t)$.

- Pelas propriedades de fluxo e regra da cadeia tem-se que a derivada de β é: $\beta'(t) = W(\varphi_t(\alpha(t))) + \varphi_{t*}\alpha'(t)$.
- Como φ preserva h e W, prova-se que preserva R. Assim:

$$R(W(\varphi_t(\alpha(t))) + \varphi_{t*}\alpha'(t)) = R(W(\alpha(t)) + \alpha'(t)) = h(\alpha'(t))$$

- Pelas propriedades de fluxo e regra da cadeia tem-se que a derivada de β é: $\beta'(t) = W(\varphi_t(\alpha(t))) + \varphi_{t*}\alpha'(t)$.
- Como φ preserva h e W, prova-se que preserva R. Assim:

$$R(W(\varphi_t(\alpha(t))) + \varphi_{t*}\alpha'(t)) = R(W(\alpha(t)) + \alpha'(t)) = h(\alpha'(t))$$

• Então, β é parametrizada por comprimento de arco em relação a R e a seguinte igualdade é verdade:

$$\int h(\alpha'(t))dt = \int R(\beta'(t))dt$$

- Pelas propriedades de fluxo e regra da cadeia tem-se que a derivada de β é: $\beta'(t) = W(\varphi_t(\alpha(t))) + \varphi_{t*}\alpha'(t)$.
- Como φ preserva h e W, prova-se que preserva R. Assim:

$$R(W(\varphi_t(\alpha(t))) + \varphi_{t*}\alpha'(t)) = R(W(\alpha(t)) + \alpha'(t)) = h(\alpha'(t))$$

• Então, β é parametrizada por comprimento de arco em relação a R e a seguinte igualdade é verdade:

$$\int h(\alpha'(t))dt = \int R(\beta'(t))dt$$

• Como α é geodésica, minimiza localmente a distância, então:

$$d_R(0,\varphi_{\epsilon}(p)) \leqslant d_h(0,p)$$

ロト 4回ト 4 重ト 4 重ト 重 り90

- Pelas propriedades de fluxo e regra da cadeia tem-se que a derivada de β é: $\beta'(t) = W(\varphi_t(\alpha(t))) + \varphi_{t*}\alpha'(t)$.
- Como φ preserva h e W, prova-se que preserva R. Assim:

$$R(W(\varphi_t(\alpha(t))) + \varphi_{t*}\alpha'(t)) = R(W(\alpha(t)) + \alpha'(t)) = h(\alpha'(t))$$

• Então, β é parametrizada por comprimento de arco em relação a R e a seguinte igualdade é verdade:

$$\int h(\alpha'(t))dt = \int R(\beta'(t))dt$$

ullet Como lpha é geodésica, minimiza localmente a distância, então:

$$d_R(0,\varphi_{\epsilon}(p)) \leqslant d_h(0,p)$$

• Constrói-se um argumento semelhante, considerando h norma com data (R, -W) obtemos que β também minimiza distância localmente, logo é geodésica.