Scheeper's Meager-NWD Game and the Menger Game AU Topology Seminar

Steven Clontz

Department of Mathematics and Statistics Auburn University

October 22, 2013

Abstract

Marion Scheepers designed the Meager-NWD game $Fill_{\mathcal{MN}}^{\subseteq}(J)$ in the 80s to study the existence of k-tactics in set-theoretic and topological games.

There are strong similarities between Dr. Scheeper's game and the special case of the Menger game $Cov_{\mathscr{CF}}(\kappa^{\dagger})$ played upon the one-point "Lindelöfication" of a discrete cardinal κ .

We will explore the relationship between k-tactical stratgies in $Fill_{\mathscr{MN}}^{\subseteq}(J)$ and k-Marköv strategies in $Fill_{\mathscr{MN}}^{\subseteq}(J)$ or $Cov_{\mathscr{CF}}(\kappa^{\dagger})$, as well as a sentence $S(\kappa,\omega,\omega)$ which is consistent with ZFC.

Abstract

Marion Scheepers designed the Meager-NWD game $Fill_{\mathcal{MN}}^{\subseteq}(J)$ in the 80s to study the existence of k-tactics in set-theoretic and topological games.

There are strong similarities between Dr. Scheeper's game and the special case of the Menger game $Cov_{\mathscr{CF}}(\kappa^{\dagger})$ played upon the one-point "Lindelöfication" of a discrete cardinal κ .

We will explore the relationship between k-tactical stratgies in $Fill_{\mathscr{M}\mathscr{N}}^{\subseteq}(J)$ and k-Marköv strategies in $Fill_{\mathscr{M}\mathscr{N}}^{\subseteq}(J)$ or $Cov_{\mathscr{CF}}(\kappa^{\dagger})$, as well as a sentence $S(\kappa,\omega,\omega)$ which is consistent with ZFC.

Abstract

Marion Scheepers designed the Meager-NWD game $Fill_{\mathcal{MN}}^{\subseteq}(J)$ in the 80s to study the existence of k-tactics in set-theoretic and topological games.

There are strong similarities between Dr. Scheeper's game and the special case of the Menger game $Cov_{\mathscr{CF}}(\kappa^{\dagger})$ played upon the one-point "Lindelöfication" of a discrete cardinal κ .

We will explore the relationship between k-tactical stratgies in $Fill_{\mathscr{MN}}^{\subseteq}(J)$ and k-Marköv strategies in $Fill_{\mathscr{MN}}^{\subseteq}(J)$ or $Cov_{\mathscr{CF}}(\kappa^{\dagger})$, as well as a sentence $S(\kappa,\omega,\omega)$ which is consistent with ZFC.

Menger Game

Game

The two-player Menger Game $Cov_{\mathscr{CF}}(X)$ proceeds as follows:

- Round n: player \mathscr{C} chooses an open cover \mathcal{U}_n of X
- Round n: player \mathscr{F} chooses finite $\mathcal{F}_n \subseteq \mathcal{U}_n$.

 \mathscr{F} wins if $\bigcup_{n < \omega} \mathcal{F}_n$ is a cover of X.

- Easy to see that \mathscr{F} can win for any σ -compact space.
- The existence or non-existence of various limited info strategies in this game characterize covering properties of X.

Menger Game

Game

The two-player Menger Game $Cov_{\mathscr{CF}}(X)$ proceeds as follows:

- Round n: player \mathscr{C} chooses an open cover \mathcal{U}_n of X
- Round n: player \mathscr{F} chooses finite $\mathcal{F}_n \subseteq \mathcal{U}_n$.

 \mathscr{F} wins if $\bigcup_{n < \omega} \mathcal{F}_n$ is a cover of X.

- Easy to see that \mathscr{F} can win for any σ -compact space.
- The existence or non-existence of various limited info strategies in this game characterize covering properties of X.

Menger Game

Game

The two-player Menger Game $Cov_{\mathscr{CF}}(X)$ proceeds as follows:

- Round n: player \mathscr{C} chooses an open cover \mathcal{U}_n of X
- Round n: player \mathscr{F} chooses finite $\mathcal{F}_n \subseteq \mathcal{U}_n$.

 \mathscr{F} wins if $\bigcup_{n < \omega} \mathcal{F}_n$ is a cover of X.

- Easy to see that \mathscr{F} can win for any σ -compact space.
- The existence or non-existence of various limited info strategies in this game characterize covering properties of X.

- † denotes a player with a winning strategy
- †mark denotes a player with a winning Marköv strategy (using only the round number and most recent move of opponent)
- $\uparrow_{k\text{-mark}}$ denotes a player with a winning k-Mark"ov strategy (using only the round number and k most recent moves of opponent)

Theorem

Assume
$$k \geq 2$$
. $\mathscr{F} \uparrow_{k\text{-mark}} \mathsf{Cov}_{\mathscr{CF}}(X) \Leftrightarrow \mathscr{F} \uparrow_{2\text{-mark}} \mathsf{Cov}_{\mathscr{CF}}(X)$

Theorem

For X second-countable, $\mathscr{F} \uparrow_{mark} Cov_{\mathscr{CF}}(X) \Leftrightarrow \mathscr{F} \uparrow Cov_{\mathscr{CF}}(X)$

- † denotes a player with a winning strategy
- †mark denotes a player with a winning Marköv strategy (using only the round number and most recent move of opponent)
- †_{k-mark} denotes a player with a winning k-Marköv strategy (using only the round number and k most recent moves of opponent)

Theorem

Assume $k \geq 2$. $\mathscr{F} \uparrow_{k\text{-mark}} Cov_{\mathscr{CF}}(X) \Leftrightarrow \mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(X)$

Theorem

For X second-countable, $\mathscr{F} \uparrow_{\mathsf{mark}} \mathsf{Cov}_{\mathscr{CF}}(X) \Leftrightarrow \mathscr{F} \uparrow \mathsf{Cov}_{\mathscr{CF}}(X)$

Here are a couple properties between σ -compact and Menger:

- Alster
- Hurewicz

An example of a Menger space which doesn't yield a Markov strategy for \mathscr{F} in the Menger game is ω^{\dagger} .

 $(\kappa^{\dagger} = \kappa \cup \{\infty\})$ is the one-point "Lindelöfication" of discrete κ .)

Theorem

$$\mathscr{F} \uparrow_{mark} \mathit{Cov}_{\mathscr{F}}(\omega_1^{\dagger}) \mathit{but} \mathscr{F} \uparrow_{2-\mathit{mark}} \mathit{Cov}_{\mathscr{F}}(\omega_1^{\dagger})$$

Here are a couple properties between σ -compact and Menger:

- Alster
- Hurewicz

An example of a Menger space which doesn't yield a Markov strategy for \mathscr{F} in the Menger game is ω_1^{\dagger} .

 $(\kappa^{\dagger} = \kappa \cup \{\infty\})$ is the one-point "Lindelöfication" of discrete κ .)

Theorem

$$\mathscr{F} \not\upharpoonright_{mark} \mathit{Cov}_{\mathscr{CF}}(\omega_1^\dagger) \ \mathit{but} \ \mathscr{F} \uparrow_{2\text{-mark}} \mathit{Cov}_{\mathscr{CF}}(\omega_1^\dagger)$$

What about $Cov_{\mathscr{CF}}(\kappa^{\dagger})$?

• The direct proof of $\mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(\omega_1^{\dagger})$ uses injective functions $f_{\alpha} : \alpha \to \omega$ for each $\alpha < \omega_1$ such that for $\alpha < \beta$:

$$|\{\gamma < \alpha : f_{\alpha}(\gamma) \neq f_{\beta}(\gamma)\}| < \omega$$

(Proof in Kunen's set theory text, used for construction of an Aronszajn tree)

• Would like to extend this idea for $\kappa > \omega_1$ to show $\mathscr{F} \uparrow_{2\text{-mark}} \mathit{Cov}_{\mathscr{F}}(\kappa^\dagger)...$

What about $Cov_{\mathscr{CF}}(\kappa^{\dagger})$?

• The direct proof of $\mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(\omega_1^{\dagger})$ uses injective functions $f_{\alpha} : \alpha \to \omega$ for each $\alpha < \omega_1$ such that for $\alpha < \beta$:

$$|\{\gamma < \alpha : f_{\alpha}(\gamma) \neq f_{\beta}(\gamma)\}| < \omega$$

(Proof in Kunen's set theory text, used for construction of an Aronszajn tree)

• Would like to extend this idea for $\kappa > \omega_1$ to show $\mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(\kappa^{\dagger})...$

Game

The **strict filling game** $Fill_{\mathcal{MN}}^{\subsetneq}(J)$ on an ideal J proceeds as follows:

- Round 0: player \mathcal{M} chooses $M_0 \in \langle J \rangle$, the σ -completion of J (closure under countable unions)
- Round 0: player \mathcal{N} chooses $N_0 \in J$.
- Round n + 1: player \mathcal{M} chooses M_{n+1} where $M_n \subsetneq M_{n+1} \in \langle J \rangle$
- Round n + 1: player \mathcal{N} replies with $N_{n+1} \in J$.

Player \mathcal{N} wins the game if $\bigcup_{n<\omega} N_n \supseteq \bigcup_{n<\omega} M_n$.

- The sets in \(\lambda J \) and \(J \) are referred to as meager and nowhere-dense sets, respectively.
 - For any topological space, the set of nowhere dense sets J forms an ideal.
 - For every ideal *J*, there is a topological space where *J* is the set of nowhere dense sets.
- This game was defined and studied by Marion Scheepers. Here's some facts.

Proposition

 $\mathcal{N} \uparrow \mathit{Fill}^{\subseteq}_{\mathcal{M} \mathcal{N}}(\mathsf{J})$

- The sets in \(\lambda J \) and \(J \) are referred to as meager and nowhere-dense sets, respectively.
 - For any topological space, the set of nowhere dense sets J forms an ideal.
 - For every ideal *J*, there is a topological space where *J* is the set of nowhere dense sets.
- This game was defined and studied by Marion Scheepers.
 Here's some facts.

Proposition

$$\mathscr{N}\uparrow \mathit{Fill}^{\subsetneq}_{\mathscr{M}\mathscr{N}}(J)$$

$$\mathscr{N} \uparrow_{tact} \mathit{Fill}^{\subsetneq}_{\mathscr{M} \mathscr{N}}(J) \Leftrightarrow J = \langle J \rangle$$

- †tact denotes a player with a winning tactical strategy (using only the most recent move of opponent)
- $\uparrow_{k\text{-tact}}$ denotes a player with a winning k-tactical strategy (using only the k most recent moves of opponent)

Assume
$$cf(\langle J \rangle) = \omega_1$$
. Let $J_X = \{N \cap X : N \in J\}$. $\mathscr{N} \uparrow_{k\text{-tact}} Fill_{\mathscr{M}\mathscr{N}}^{\subsetneq}(J) \Leftrightarrow \mathscr{N} \uparrow_{k\text{-tact}} Fill_{\mathscr{M}\mathscr{N}}^{\subsetneq}(J_X)$ for each $X \in \langle J \rangle \setminus J$

Proof: \Rightarrow is straight-forward.

- ① \mathscr{M} 's attack may never go outside S_{α} , so \mathscr{N} can cover according to the strategy for $\mathscr{N} \uparrow_{k\text{-tact}} Fill_{\mathscr{M}}^{\subseteq}(S_{\alpha})$.
- ② \mathscr{M} 's attack may eventually exceed S_{α} , but by using tree arrangments $<_n$ of ω_1 of finite height approximating <, \mathscr{N} car cover according to the *winning perfect information strategy* as though \mathscr{M} had played sets S_{β} for $\beta \leq_n \alpha$ instead.

Assume
$$cf(\langle J \rangle) = \omega_1$$
. Let $J_X = \{N \cap X : N \in J\}$. $\mathcal{N} \uparrow_{k\text{-tact}} Fill_{\mathscr{M}\mathscr{N}}^{\subseteq}(J) \Leftrightarrow \mathscr{N} \uparrow_{k\text{-tact}} Fill_{\mathscr{M}\mathscr{N}}^{\subseteq}(J_X)$ for each $X \in \langle J \rangle \setminus J$

Proof: \Rightarrow is straight-forward.

- ① \mathscr{M} 's attack may never go outside S_{α} , so \mathscr{N} can cover according to the strategy for $\mathscr{N} \uparrow_{k-\text{tact}} Fill_{\mathscr{M}}^{\subseteq}(S_{\alpha})$.
- ② \mathscr{M} 's attack may eventually exceed S_{α} , but by using tree arrangments $<_n$ of ω_1 of finite height approximating <, \mathscr{N} car cover according to the *winning perfect information strategy* as though \mathscr{M} had played sets S_{β} for $\beta \leq_n \alpha$ instead.

Assume
$$cf(\langle J \rangle) = \omega_1$$
. Let $J_X = \{N \cap X : N \in J\}$. $\mathscr{N} \uparrow_{k\text{-tact}} Fill_{\mathscr{M}\mathscr{N}}^{\subsetneq}(J) \Leftrightarrow \mathscr{N} \uparrow_{k\text{-tact}} Fill_{\mathscr{M}\mathscr{N}}^{\subsetneq}(J_X)$ for each $X \in \langle J \rangle \setminus J$

Proof: \Rightarrow is straight-forward.

- ① \mathscr{M} 's attack may never go outside S_{α} , so \mathscr{N} can cover according to the strategy for $\mathscr{N} \uparrow_{k\text{-tact}} Fill_{\mathscr{M}}^{\varsigma}(S_{\alpha})$.
- ② \mathscr{M} 's attack may eventually exceed S_{α} , but by using tree arrangments $<_n$ of ω_1 of finite height approximating <, \mathscr{N} car cover according to the *winning perfect information strategy* as though \mathscr{M} had played sets S_{β} for $\beta \leq_n \alpha$ instead.

Assume
$$cf(\langle J \rangle) = \omega_1$$
. Let $J_X = \{N \cap X : N \in J\}$. $\mathscr{N} \uparrow_{k\text{-tact}} Fill_{\mathscr{M}\mathscr{N}}^{\subsetneq}(J) \Leftrightarrow \mathscr{N} \uparrow_{k\text{-tact}} Fill_{\mathscr{M}\mathscr{N}}^{\subsetneq}(J_X)$ for each $X \in \langle J \rangle \setminus J$

Proof: \Rightarrow is straight-forward.

- ① \mathscr{M} 's attack may never go outside S_{α} , so \mathscr{N} can cover according to the strategy for $\mathscr{N} \uparrow_{k\text{-tact}} Fill_{\mathscr{M}}^{\varsigma}(S_{\alpha})$.
- ② \mathscr{M} 's attack may eventually exceed S_{α} , but by using tree arrangments $<_n$ of ω_1 of finite height approximating <, \mathscr{N} can cover according to the *winning perfect information strategy* as though \mathscr{M} had played sets S_{β} for $\beta \leq_n \alpha$ instead.

Assume
$$cf(\langle J \rangle) = \omega_1$$
. Let $J_X = \{N \cap X : N \in J\}$. $\mathscr{N} \uparrow_{k\text{-tact}} Fill_{\mathscr{M}\mathscr{N}}^{\subsetneq}(J) \Leftrightarrow \mathscr{N} \uparrow_{k\text{-tact}} Fill_{\mathscr{M}\mathscr{N}}^{\subsetneq}(J_X)$ for each $X \in \langle J \rangle \setminus J$

Proof: \Rightarrow is straight-forward.

- ① \mathscr{M} 's attack may never go outside S_{α} , so \mathscr{N} can cover according to the strategy for $\mathscr{N} \uparrow_{k\text{-tact}} Fill_{\mathscr{M}}^{\subsetneq}(S_{\alpha})$.
- ② \mathscr{M} 's attack may eventually exceed S_{α} , but by using tree arrangments $<_n$ of ω_1 of finite height approximating <, \mathscr{N} can cover according to the *winning perfect information strategy* as though \mathscr{M} had played sets S_{β} for $\beta \leq_n \alpha$ instead.

Corollary

If
$$|\bigcup J| \leq \omega_1$$
 and $|M| \leq \omega$ for $M \in \langle J \rangle$, then $\mathscr{N} \uparrow_{2\text{-tact}} \mathsf{Fill}^{\subsetneq}_{\mathscr{M}\mathscr{N}}(J)$.

Proof: Assume $\omega \in \langle J \rangle$ and assume the two latest moves of \mathscr{M} are $M \subsetneq M' \subseteq \omega$. Let $n = \min(M' \setminus M)$, and have \mathscr{N} cover $\{0,\ldots,n\}$. It follows that the generated n must be unbounded for any legal attack by \mathscr{M} , making it a winning 2-tactic for $Fill_{\mathscr{M}}^{\subseteq}(J_{\omega})$.

Apply the previous theorem to finish the result.

Corollary

If
$$|\bigcup J| \leq \omega_1$$
 and $|M| \leq \omega$ for $M \in \langle J \rangle$, then $\mathscr{N} \uparrow_{2\text{-tact}} \mathsf{Fill}^{\subsetneq}_{\mathscr{M}\mathscr{N}}(J)$.

Proof: Assume $\omega \in \langle J \rangle$ and assume the two latest moves of \mathscr{M} are $M \subsetneq M' \subseteq \omega$. Let $n = \min(M' \setminus M)$, and have \mathscr{N} cover $\{0,\ldots,n\}$. It follows that the generated n must be unbounded for any legal attack by \mathscr{M} , making it a winning 2-tactic for $\text{Fill}_{\mathscr{M},\mathscr{N}}^{\subsetneq}(J_{\omega})$.

Apply the previous theorem to finish the result.

Corollary

If
$$|\bigcup J| \leq \omega_1$$
 and $|M| \leq \omega$ for $M \in \langle J \rangle$, then $\mathscr{N} \uparrow_{2\text{-tact}} \mathsf{Fill}^{\subseteq}_{\mathscr{M}\mathscr{N}}(J)$.

Proof: Assume $\omega \in \langle J \rangle$ and assume the two latest moves of \mathscr{M} are $M \subsetneq M' \subseteq \omega$. Let $n = \min(M' \setminus M)$, and have \mathscr{N} cover $\{0,\ldots,n\}$. It follows that the generated n must be unbounded for any legal attack by \mathscr{M} , making it a winning 2-tactic for $\text{Fill}_{\mathscr{M}\mathscr{N}}^{\subsetneq}(J_{\omega})$.

Apply the previous theorem to finish the result.

Countable Finite Game

Game

The special case of $Fill_{\mathscr{M}\mathscr{N}}^{\subseteq}(J)$ where $J=[\kappa]^{<\omega}$ is the Countable-Finite game $Fill_{\mathscr{C}\mathscr{F}}^{\subseteq}(\kappa)$.

Corollary

$$\mathscr{F} \uparrow_{2\text{-tact}} \mathsf{Fill}_{\mathscr{CF}}^{\subseteq}(\omega_1)$$

So $\mathscr{F} \uparrow_{2\text{-tact}} \mathit{Fill}^{\mathscr{F}}_{\mathscr{F}}(\omega_1)$ and $\mathscr{F} \uparrow_{2\text{-mark}} \mathit{Cov}_{\mathscr{F}}(\omega_1^{\dagger})$. In addition, the basic goal of \mathscr{F} in $\mathit{Cov}_{\mathscr{F}}(\omega_1^{\dagger})$ is similar to the goal of \mathscr{F} in $\mathit{Fill}^{\mathscr{F}}_{\mathscr{F}}(\omega_1)$: \mathscr{F} can cover a co-countable neighborhood of ∞ in the initial round, and is trying to cover the countable remainder in the following rounds (most likely using finitely many singletons from \mathscr{C} 's covers).

Countable Finite Game

Game

The special case of $Fill_{\mathscr{M}\mathscr{N}}^{\subseteq}(J)$ where $J=[\kappa]^{<\omega}$ is the Countable-Finite game $Fill_{\mathscr{C}\mathscr{F}}^{\subseteq}(\kappa)$.

Corollary

$$\mathscr{F}\uparrow_{2\text{-tact}} \mathit{Fill}_{\mathscr{E}\mathscr{F}}^{\subseteq}(\omega_{1})$$

So $\mathscr{F} \uparrow_{2\text{-tact}} \mathit{Fill}^{\mathscr{F}}_{\mathscr{F}}(\omega_1)$ and $\mathscr{F} \uparrow_{2\text{-mark}} \mathit{Cov}_{\mathscr{F}}(\omega_1^{\dagger})$. In addition, the basic goal of \mathscr{F} in $\mathit{Cov}_{\mathscr{F}}(\omega_1^{\dagger})$ is similar to the goal of \mathscr{F} in $\mathit{Fill}^{\mathscr{F}}_{\mathscr{F}}(\omega_1)$: \mathscr{F} can cover a co-countable neighborhood of ∞ in the initial round, and is trying to cover the countable remainder in the following rounds (most likely using finitely many singletons from \mathscr{C} 's covers).

Countable Finite Game

Game

The special case of $Fill_{\mathscr{M}\mathscr{N}}^{\subseteq}(J)$ where $J=[\kappa]^{<\omega}$ is the Countable-Finite game $Fill_{\mathscr{C}\mathscr{F}}^{\subseteq}(\kappa)$.

Corollary

$$\mathscr{F}\uparrow_{2\text{-tact}} \mathit{Fill}_{\mathscr{E}\mathscr{F}}^{\subseteq}(\omega_{1})$$

So $\mathscr{F}\uparrow_{2\text{-tact}} \mathit{Fill}^{\subseteq}_{\mathscr{F}}(\omega_1)$ and $\mathscr{F}\uparrow_{2\text{-mark}} \mathit{Cov}_{\mathscr{CF}}(\omega_1^{\dagger})$. In addition, the basic goal of \mathscr{F} in $\mathit{Cov}_{\mathscr{CF}}(\omega_1^{\dagger})$ is similar to the goal of \mathscr{F} in $\mathit{Fill}^{\subseteq}_{\mathscr{F}}(\omega_1)$: \mathscr{F} can cover a co-countable neighborhood of ∞ in the initial round, and is trying to cover the countable remainder in the following rounds (most likely using finitely many singletons from \mathscr{C} 's covers).

• Question: why does \mathscr{F} need the round number in $Cov_{\mathscr{F}}(\omega_1^{\dagger})$ and not $Fill_{\mathscr{E}_{\mathscr{F}}}^{\subseteq}(\omega_1)$?

Proposition

$$\mathscr{F} \uparrow_{k\text{-tact}} Cov_{\mathscr{CF}}(X) \Leftrightarrow X \text{ is compact}$$

Proof: If X isn't compact, and \mathscr{C} constantly chooses an open cover \mathcal{U} without a finite subcover for X throughout the entire game, then \mathscr{F} only chooses k different finite subcollections of \mathcal{U} by the game's end, which cannot cover X.

If X is compact, $\mathscr{F} \uparrow_{\text{tact}} Cov_{\mathscr{CF}}(X)$ trivially.

• Answer: $\mathscr C$ cannot choose a constant strategy in $Fill_{\mathscr C\mathscr F}^{\subseteq}(\kappa)$ but $\mathscr C$ can in $Cov_{\mathscr C\mathscr F}(\kappa^\dagger)$.

• Question: why does \mathscr{F} need the round number in $Cov_{\mathscr{F}}(\omega_1^{\dagger})$ and not $Fill_{\mathscr{CF}}^{\subseteq}(\omega_1)$?

Proposition

$$\mathscr{F} \uparrow_{k\text{-tact}} Cov_{\mathscr{CF}}(X) \Leftrightarrow X \text{ is compact}$$

Proof: If X isn't compact, and $\mathscr C$ constantly chooses an open cover $\mathcal U$ without a finite subcover for X throughout the entire game, then $\mathscr F$ only chooses k different finite subcollections of $\mathcal U$ by the game's end, which cannot cover X.

If X is compact, $\mathscr{F} \uparrow_{\text{tact}} Cov_{\mathscr{CF}}(X)$ trivially.

• Answer: $\mathscr C$ cannot choose a constant strategy in $Fill_{\mathscr C\mathscr F}^{\subseteq}(\kappa)$ but $\mathscr C$ can in $Cov_{\mathscr C\mathscr F}(\kappa^{\dagger})$.

• Question: why does \mathscr{F} need the round number in $Cov_{\mathscr{F}}(\omega_1^{\dagger})$ and not $Fill_{\mathscr{CF}}^{\subseteq}(\omega_1)$?

Proposition

$$\mathscr{F} \uparrow_{k\text{-tact}} Cov_{\mathscr{CF}}(X) \Leftrightarrow X \text{ is compact}$$

Proof: If X isn't compact, and $\mathscr C$ constantly chooses an open cover $\mathcal U$ without a finite subcover for X throughout the entire game, then $\mathscr F$ only chooses k different finite subcollections of $\mathcal U$ by the game's end, which cannot cover X.

If X is compact, $\mathscr{F} \uparrow_{\text{tact}} Cov_{\mathscr{CF}}(X)$ trivially.

• Answer: $\mathscr C$ cannot choose a constant strategy in $Fill_{\mathscr C\mathscr F}^{\subseteq}(\kappa)$, but $\mathscr C$ can in $Cov_{\mathscr C\mathscr F}(\kappa^\dagger)$.

This provides the motivation to change the rules of Scheeper's game to bring it more in line with the Menger game.

Game

The game $Fill^{\subseteq}_{\mathcal{MN}}(J)$ is identical to $Fill^{\subseteq}_{\mathcal{MN}}(J)$, except that \mathcal{M} may choose the same set in successive rounds.

Game

$$Fill_{\mathscr{CF}}^{\subseteq}(\kappa)$$
 is identical to $Fill_{\mathscr{MN}}^{\subseteq}([\kappa]^{<\omega})$

It seems reasonable to ask if k-tactics in $Fill_{\mathcal{MN}}^{\subseteq}(J)$ correspond to k-Marköv strategies in $Fill_{\mathcal{MN}}^{\subseteq}(J)$.

This provides the motivation to change the rules of Scheeper's game to bring it more in line with the Menger game.

Game

The game $Fill_{\mathscr{M}\mathscr{N}}^{\subseteq}(J)$ is identical to $Fill_{\mathscr{M}\mathscr{N}}^{\subseteq}(J)$, except that \mathscr{M} may choose the same set in successive rounds.

Game

$$Fill_{\mathscr{CF}}^{\subseteq}(\kappa)$$
 is identical to $Fill_{\mathscr{MN}}^{\subseteq}([\kappa]^{<\omega})$

It seems reasonable to ask if k-tactics in $Fill_{\mathcal{MN}}^{\subseteq}(J)$ correspond to k-Marköv strategies in $Fill_{\mathcal{MN}}^{\subseteq}(J)$.

This provides the motivation to change the rules of Scheeper's game to bring it more in line with the Menger game.

Game

The game $Fill^{\subseteq}_{\mathcal{MN}}(J)$ is identical to $Fill^{\subseteq}_{\mathcal{MN}}(J)$, except that \mathcal{M} may choose the same set in successive rounds.

Game

$$Fill_{\mathscr{CF}}^{\subseteq}(\kappa)$$
 is identical to $Fill_{\mathscr{MN}}^{\subseteq}([\kappa]^{<\omega})$

It seems reasonable to ask if k-tactics in $Fill_{\mathcal{M},\mathcal{N}}^{\subseteq}(J)$ correspond to k-Marköv strategies in $Fill_{\mathcal{M},\mathcal{N}}^{\subseteq}(J)$.

$$\mathscr{N} \uparrow_{2\text{-tact}} \mathsf{Fill}^{\subsetneq}_{\mathscr{M}\mathscr{N}}(\mathsf{J}) \Rightarrow \mathscr{N} \uparrow_{2\text{-mark}} \mathsf{Fill}^{\subseteq}_{\mathscr{M}\mathscr{N}}(\mathsf{J})$$

Proof: Enumerate the sets in J as A_{α} for $\alpha < |J|$. For $M \in \langle J \rangle$ and $n < \omega$, let M + 0 = M and M + n + 1 be the union of M + n and the least A_{α} not contained in M + n.

Let σ be a winning 2-tactical strategy for N in $Fill_{\mathcal{MN}}^{\subseteq}(\kappa)$, and assume $\sigma(M) \cup \sigma(M') \subseteq \sigma(M, M')$.

We define a 2-Markov strategy τ for F in $Fill_{M,N}^{\subseteq}(\kappa)$ as follows

$$\mathscr{N} \uparrow_{2\text{-tact}} \mathsf{Fill}^{\subsetneq}_{\mathscr{M}\mathscr{N}}(J) \Rightarrow \mathscr{N} \uparrow_{2\text{-mark}} \mathsf{Fill}^{\subseteq}_{\mathscr{M}\mathscr{N}}(J)$$

Proof: Enumerate the sets in J as A_{α} for $\alpha < |J|$. For $M \in \langle J \rangle$ and $n < \omega$, let M + 0 = M and M + n + 1 be the union of M + n and the least A_{α} not contained in M + n.

Let σ be a winning 2-tactical strategy for N in $Fill_{\mathcal{MN}}^{\subseteq}(\kappa)$, and assume $\sigma(M) \cup \sigma(M') \subseteq \sigma(M, M')$.

We define a 2-Markov strategy τ for F in $Fill_{M,N}^{\subseteq}(\kappa)$ as follows:

$$\mathscr{N}\uparrow_{2\text{-tact}} \mathsf{Fill}^{\subsetneq}_{\mathscr{M}\mathscr{N}}(J) \Rightarrow \mathscr{N}\uparrow_{2\text{-mark}} \mathsf{Fill}^{\subseteq}_{\mathscr{M}\mathscr{N}}(J)$$

Proof: Enumerate the sets in J as A_{α} for $\alpha < |J|$. For $M \in \langle J \rangle$ and $n < \omega$, let M + 0 = M and M + n + 1 be the union of M + n and the least A_{α} not contained in M + n.

Let σ be a winning 2-tactical strategy for N in $Fill_{\mathcal{M},\mathcal{N}}^{\subseteq}(\kappa)$, and assume $\sigma(M) \cup \sigma(M') \subseteq \sigma(M,M')$.

We define a 2-Markov strategy τ for F in $Fill_{M,N}^{\subseteq}(\kappa)$ as follows:

$$\mathscr{N}\uparrow_{2\text{-tact}} \mathsf{Fill}^{\subsetneq}_{\mathscr{M}\mathscr{N}}(J) \Rightarrow \mathscr{N}\uparrow_{2\text{-mark}} \mathsf{Fill}^{\subseteq}_{\mathscr{M}\mathscr{N}}(J)$$

Proof: Enumerate the sets in J as A_{α} for $\alpha < |J|$. For $M \in \langle J \rangle$ and $n < \omega$, let M + 0 = M and M + n + 1 be the union of M + n and the least A_{α} not contained in M + n.

Let σ be a winning 2-tactical strategy for N in $Fill_{\mathcal{M},\mathcal{N}}^{\subseteq}(\kappa)$, and assume $\sigma(M) \cup \sigma(M') \subseteq \sigma(M,M')$.

We define a 2-Markov strategy τ for F in $Fill_{\mathcal{MN}}^{\subseteq}(\kappa)$ as follows:

$$\tau(\textit{M}_0,0) = \sigma(\textit{M}_0)$$

$$\tau(\textit{M}_n,\textit{M}_{n+1},\textit{n}+1) = \left\{ \begin{array}{ll} \sigma(\textit{M}_n,\textit{M}_{n+1}) & \text{if } \textit{M}_n \subsetneq \textit{M}_{n+1} \\ \bigcup_{m < n} \sigma(\textit{M}_n+m,\textit{M}_{n+1}+m+1) & \text{otherwise} \end{array} \right.$$

• (Essentially, if \mathcal{M} tries to be tricky and not increase the size of her meager set, \mathcal{N} can pretend she added a few extra nowhere dense sets based on the round number.)

$$\tau(\textit{M}_0,0) = \sigma(\textit{M}_0)$$

$$\tau(\textit{M}_n,\textit{M}_{n+1},\textit{n}+1) = \left\{ \begin{array}{ll} \sigma(\textit{M}_n,\textit{M}_{n+1}) & \text{if } \textit{M}_n \subsetneq \textit{M}_{n+1} \\ \bigcup_{m < n} \sigma(\textit{M}_n+m,\textit{M}_{n+1}+m+1) & \text{otherwise} \end{array} \right.$$

 (Essentially, if M tries to be tricky and not increase the size of her meager set, N can pretend she added a few extra nowhere dense sets based on the round number.)

• Assume $M_n = M_N$ for all $n \ge N$.

The collection produced by σ versus the attack

$$M_N + 0 \subsetneq M_N + 1 \subsetneq \dots$$

must cover M_N as σ is a winning strategy. Let $x \in M_N$. If $x \in \sigma(M_N + 0)$, then x will be covered in round N + 1 by

$$\tau(M_N, M_N, N+1) \supseteq \sigma(M_N+0, M_N+1) \supseteq \sigma(M_N+0)$$

Otherwise, $x \in \sigma(M_N + n, M_N + n + 1)$, and x will be covered in round N + n + 1 by

$$\tau(M_N, M_N, N+n+1) \supseteq \sigma(M_N+n, M_N+n+1)$$

4 m > 4 m > 4 m > 4 m >

• Assume $M_n = M_N$ for all $n \ge N$. The collection produced by σ versus the attack

$$M_N + 0 \subsetneq M_N + 1 \subsetneq \dots$$

must cover M_N as σ is a winning strategy.

Let $x \in M_N$. If $x \in \sigma(M_N + 0)$, then x will be covered in round N + 1 by

$$\tau(M_N, M_N, N+1) \supseteq \sigma(M_N+0, M_N+1) \supseteq \sigma(M_N+0)$$

Otherwise, $x \in \sigma(M_N + n, M_N + n + 1)$, and x will be covered in round N + n + 1 by

$$\tau(M_N, M_N, N+n+1) \supseteq \sigma(M_N+n, M_N+n+1)$$

• Assume $M_n = M_N$ for all $n \ge N$. The collection produced by σ versus the attack

$$M_N + 0 \subsetneq M_N + 1 \subsetneq \dots$$

must cover M_N as σ is a winning strategy. Let $x \in M_N$. If $x \in \sigma(M_N + 0)$, then x will be covered in round N + 1 by

$$\tau(M_N, M_N, N+1) \supseteq \sigma(M_N+0, M_N+1) \supseteq \sigma(M_N+0)$$

Otherwise, $x \in \sigma(M_N + n, M_N + n + 1)$, and x will be covered in round N + n + 1 by

$$\tau(M_N, M_N, N+n+1) \supseteq \sigma(M_N+n, M_N+n+1)$$

• Assume $M_n = M_N$ for all $n \ge N$. The collection produced by σ versus the attack

$$M_N + 0 \subsetneq M_N + 1 \subsetneq \dots$$

must cover M_N as σ is a winning strategy. Let $x \in M_N$. If $x \in \sigma(M_N + 0)$, then x will be covered in round N + 1 by

$$\tau(M_N, M_N, N+1) \supseteq \sigma(M_N+0, M_N+1) \supseteq \sigma(M_N+0)$$

Otherwise, $x \in \sigma(M_N + n, M_N + n + 1)$, and x will be covered in round N + n + 1 by

$$\tau(M_N, M_N, N+n+1) \supseteq \sigma(M_N+n, M_N+n+1)$$

• Otherwise we may find $0 < f(0) < f(1) < \dots$ such that $M_{f(n)} \subsetneq M_{f(n)+1} = M_{f(n+1)}$.

Then the collection produced by σ versus the attack

$$M_{f(0)} \subsetneq M_{f(1)} \subsetneq M_{f(2)} \dots$$

must cover $\bigcup_{n<\omega} M_n$ as σ is a winning strategy. Let $x\in\bigcup_{n<\omega} M_n$. If $x\in\sigma(M_{f(0)})$, then x will be covered by τ in round f(0)+1 by

$$\tau(M_{f(0)}, M_{f(0)+1}, f(0)+1) = \sigma(M_{f(0)}, M_{f(0)+1}) \supseteq \sigma(M_{f(0)})$$

Otherwise, $x \in \sigma(M_{f(n)}, M_{f(n+1)})$, and x will be covered by τ in round f(n) + 1 by

$$\tau(M_{f(n)},M_{f(n)+1},f(n)+1)=\sigma(M_{f(n)},M_{f(n)+1})=\sigma(M_{f(n)},M_{f(n+1)})_{\mathbf{I}}$$

Thus au is a winning strategy.

• Otherwise we may find $0 < f(0) < f(1) < \dots$ such that $M_{f(n)} \subseteq M_{f(n)+1} = M_{f(n+1)}$. Then the collection produced by σ versus the attack

$$M_{f(0)} \subsetneq M_{f(1)} \subsetneq M_{f(2)} \dots$$

must cover $\bigcup_{n<\omega} M_n$ as σ is a winning strategy.

Let $x \in \bigcup_{n < \omega} M_n$. If $x \in \sigma(M_{f(0)})$, then x will be covered by τ in round f(0) + 1 by

$$\tau(M_{f(0)}, M_{f(0)+1}, f(0)+1) = \sigma(M_{f(0)}, M_{f(0)+1}) \supseteq \sigma(M_{f(0)})$$

Otherwise, $x \in \sigma(M_{f(n)}, M_{f(n+1)})$, and x will be covered by τ in round f(n) + 1 by

$$\tau(M_{f(n)}, M_{f(n)+1}, f(n)+1) = \sigma(M_{f(n)}, M_{f(n)+1}) = \sigma(M_{f(n)}, M_{f(n+1)})$$

Thus τ is a winning strategy.

• Otherwise we may find $0 < f(0) < f(1) < \dots$ such that $M_{f(n)} \subsetneq M_{f(n)+1} = M_{f(n+1)}$. Then the collection produced by σ versus the attack

$$M_{f(0)} \subsetneq M_{f(1)} \subsetneq M_{f(2)} \dots$$

must cover $\bigcup_{n<\omega} M_n$ as σ is a winning strategy. Let $x\in\bigcup_{n<\omega} M_n$. If $x\in\sigma(M_{f(0)})$, then x will be covered by τ in round f(0)+1 by

$$\tau(M_{f(0)}, M_{f(0)+1}, f(0)+1) = \sigma(M_{f(0)}, M_{f(0)+1}) \supseteq \sigma(M_{f(0)})$$

Otherwise, $x \in \sigma(M_{f(n)}, M_{f(n+1)})$, and x will be covered by τ in round f(n) + 1 by

$$\tau(M_{f(n)}, M_{f(n)+1}, f(n)+1) = \sigma(M_{f(n)}, M_{f(n)+1}) = \sigma(M_{f(n)}, M_{f(n+1)})$$

Thus au is a winning strategy.

4日 > 4周 > 4 至 > 4 至

• Otherwise we may find $0 < f(0) < f(1) < \dots$ such that $M_{f(n)} \subsetneq M_{f(n)+1} = M_{f(n+1)}$. Then the collection produced by σ versus the attack

$$M_{f(0)} \subsetneq M_{f(1)} \subsetneq M_{f(2)} \dots$$

must cover $\bigcup_{n<\omega} M_n$ as σ is a winning strategy. Let $x\in\bigcup_{n<\omega} M_n$. If $x\in\sigma(M_{f(0)})$, then x will be covered by τ in round f(0)+1 by

$$\tau(M_{f(0)}, M_{f(0)+1}, f(0)+1) = \sigma(M_{f(0)}, M_{f(0)+1}) \supseteq \sigma(M_{f(0)})$$

Otherwise, $x \in \sigma(M_{f(n)}, M_{f(n+1)})$, and x will be covered by τ in round f(n)+1 by

$$\tau(M_{f(n)}, M_{f(n)+1}, f(n)+1) = \sigma(M_{f(n)}, M_{f(n)+1}) = \sigma(M_{f(n)}, M_{f(n+1)})$$

Thus au is a winning strategy.

• Otherwise we may find $0 < f(0) < f(1) < \dots$ such that $M_{f(n)} \subsetneq M_{f(n)+1} = M_{f(n+1)}$. Then the collection produced by σ versus the attack

$$M_{f(0)} \subsetneq M_{f(1)} \subsetneq M_{f(2)} \dots$$

must cover $\bigcup_{n<\omega} M_n$ as σ is a winning strategy. Let $x\in\bigcup_{n<\omega} M_n$. If $x\in\sigma(M_{f(0)})$, then x will be covered by τ in round f(0)+1 by

$$\tau(M_{f(0)}, M_{f(0)+1}, f(0)+1) = \sigma(M_{f(0)}, M_{f(0)+1}) \supseteq \sigma(M_{f(0)})$$

Otherwise, $x \in \sigma(M_{f(n)}, M_{f(n+1)})$, and x will be covered by τ in round f(n)+1 by

$$\tau(M_{f(n)}, M_{f(n)+1}, f(n)+1) = \sigma(M_{f(n)}, M_{f(n)+1}) = \sigma(M_{f(n)}, M_{f(n+1)})$$

Thus τ is a winning strategy.

But the converse need not hold.

Theorem

There is a free ideal J such that \mathcal{N} $\gamma_{2\text{-tact}}$ $Fill_{\mathcal{M},\mathcal{N}}^{\subseteq}(J)$ but $\mathcal{N} \uparrow_{2\text{-mark}} Fill_{\mathcal{M},\mathcal{N}}^{\subseteq}(J)$.

Proof: This counterexample was constructed by Scheepers for another purpose, but works for us as well. Assume \mathbb{R} has the usual Euclidean topology.

Choose $A \subseteq \mathbb{R}$ such that $|A| = \omega$ and A is meager but not nowhere dense. Then choose $V \subseteq \mathbb{R}$ such that $|V| = 2^{\omega}$, V is meager, and V is disjoint from A. Assume $A = \{a_n : n < \omega\}$.

Certainly, if J is the collection of nowhere dense subsets of $A \cup V$, then $F \uparrow_{2\text{-mark}} Fill_{\mathcal{M},\mathcal{N}}^{\subseteq}(J)$. In fact, since $A \cup V$ is meager, $F \uparrow_{\text{pre}} Fill_{\mathcal{M},\mathcal{N}}^{\subseteq}(J)$ (\mathscr{F} has a **predetermined strategy** using only the round number).

But the converse need not hold.

Theorem

There is a free ideal J such that $\mathscr{N} \uparrow_{2\text{-tact}} \mathsf{Fill}^{\subseteq}_{\mathscr{M}\mathscr{N}}(J)$ but $\mathscr{N} \uparrow_{2\text{-mark}} \mathsf{Fill}^{\subseteq}_{\mathscr{M}\mathscr{N}}(J)$.

Proof: This counterexample was constructed by Scheepers for another purpose, but works for us as well. Assume $\mathbb R$ has the usual Euclidean topology.

Choose $A \subseteq \mathbb{R}$ such that $|A| = \omega$ and A is meager but not nowhere dense. Then choose $V \subseteq \mathbb{R}$ such that $|V| = 2^{\omega}$, V is meager, and V is disjoint from A. Assume $A = \{a_n : n < \omega\}$.

Certainly, if J is the collection of nowhere dense subsets of $A \cup V$, then $F \uparrow_{2\text{-mark}} Fill_{\mathcal{M},\mathcal{N}}^{\subseteq}(J)$. In fact, since $A \cup V$ is meager, $F \uparrow_{\text{pre}} Fill_{\mathcal{M},\mathcal{N}}^{\subseteq}(J)$ (\mathscr{F} has a **predetermined strategy** using only the round number).

But the converse need not hold.

Theorem

There is a free ideal J such that \mathcal{N} $\gamma_{2\text{-tact}}$ $Fill_{\mathcal{M}\mathcal{N}}^{\subseteq}(J)$ but \mathcal{N} $\uparrow_{2\text{-mark}}$ $Fill_{\mathcal{M}\mathcal{N}}^{\subseteq}(J)$.

Proof: This counterexample was constructed by Scheepers for another purpose, but works for us as well. Assume $\mathbb R$ has the usual Euclidean topology.

Choose $A \subseteq \mathbb{R}$ such that $|A| = \omega$ and A is meager but not nowhere dense. Then choose $V \subseteq \mathbb{R}$ such that $|V| = 2^{\omega}$, V is meager, and V is disjoint from A. Assume $A = \{a_n : n < \omega\}$.

Certainly, if J is the collection of nowhere dense subsets of $A \cup V$, then $F \uparrow_{2\text{-mark}} Fill_{\mathscr{M}\mathscr{N}}^{\subseteq}(J)$. In fact, since $A \cup V$ is meager, $F \uparrow_{\text{pre}} Fill_{\mathscr{M}\mathscr{N}}^{\subseteq}(J)$ (\mathscr{F} has a **predetermined strategy** using only the round number).

Let σ be a 2-tactical strategy for $\mathscr N$ in $Fill_{\mathscr M\mathscr N}^{\subseteq}(J)$.

By Cor 28 of Scheepers' "Partition relation for partially ordered sets", for every partition $\{K_n : n < \omega\}$ of the comparable pairs in $[\mathcal{P}(V)]^2$ there is some $n' < \omega$ and sequence $C_0 \subsetneq C_1 \subsetneq \cdots \subsetneq V$ where $\{C_m, C_{m+1}\} \in K_{n'}$ for all $m < \omega$.

Define K_n to be the collection of pairs of sets $\{B, C\}$ such that $B \subsetneq C$ and n is the least integer where $a_n \in A \setminus \sigma(A \cup B, A \cup C)$.

Then σ may be countered by the attack $A \cup C_0, A \cup C_1, \ldots$, since $a_{n'} \in A \setminus \sigma(A \cup C_m, A \cup C_{m+1})$ for all $m < \omega$ and thus is never covered.

Question

$$\mathscr{N}\uparrow_{2\text{-mark}} \mathit{Fill}^{\subseteq}_{\mathscr{F}}(\kappa) \Rightarrow \mathscr{N}\uparrow_{2\text{-tact}} \mathit{Fill}^{\subseteq}_{\mathscr{F}}(\kappa)?$$

Let σ be a 2-tactical strategy for $\mathscr N$ in $Fill_{\mathscr M\mathscr N}^{\subseteq}(J)$.

By Cor 28 of Scheepers' "Partition relation for partially ordered sets", for every partition $\{K_n : n < \omega\}$ of the comparable pairs in $[\mathcal{P}(V)]^2$ there is some $n' < \omega$ and sequence $C_0 \subsetneq C_1 \subsetneq \cdots \subsetneq V$ where $\{C_m, C_{m+1}\} \in K_{n'}$ for all $m < \omega$.

Define K_n to be the collection of pairs of sets $\{B, C\}$ such that $B \subsetneq C$ and n is the least integer where $a_n \in A \setminus \sigma(A \cup B, A \cup C)$.

Then σ may be countered by the attack $A \cup C_0, A \cup C_1, \ldots$, since $a_{n'} \in A \setminus \sigma(A \cup C_m, A \cup C_{m+1})$ for all $m < \omega$ and thus is never covered.

Question

$$\mathscr{N} \uparrow_{2\text{-mark}} Fill_{\mathscr{CF}}^{\subseteq}(\kappa) \Rightarrow \mathscr{N} \uparrow_{2\text{-tact}} Fill_{\mathscr{CF}}^{\subseteq}(\kappa)$$
?

Let σ be a 2-tactical strategy for $\mathscr N$ in $Fill_{\mathscr M\mathscr N}^{\subsetneq}(J)$.

By Cor 28 of Scheepers' "Partition relation for partially ordered sets", for every partition $\{K_n: n<\omega\}$ of the comparable pairs in $[\mathcal{P}(V)]^2$ there is some $n'<\omega$ and sequence $C_0\subsetneq C_1\subsetneq\cdots\subsetneq V$ where $\{C_m,C_{m+1}\}\in K_{n'}$ for all $m<\omega$.

Define K_n to be the collection of pairs of sets $\{B, C\}$ such that $B \subsetneq C$ and n is the least integer where $a_n \in A \setminus \sigma(A \cup B, A \cup C)$.

Then σ may be countered by the attack $A \cup C_0, A \cup C_1, \ldots$, since $a_{n'} \in A \setminus \sigma(A \cup C_m, A \cup C_{m+1})$ for all $m < \omega$ and thus is never covered.

Question

 $\mathscr{N} \uparrow_{2\text{-mark}} Fill_{\mathscr{CF}}^{\subseteq}(\kappa) \Rightarrow \mathscr{N} \uparrow_{2\text{-tact}} Fill_{\mathscr{CF}}^{\subseteq}(\kappa)$?

Let σ be a 2-tactical strategy for $\mathscr N$ in $Fill_{\mathscr M\mathscr N}^{\subsetneq}(J)$.

By Cor 28 of Scheepers' "Partition relation for partially ordered sets", for every partition $\{K_n: n<\omega\}$ of the comparable pairs in $[\mathcal{P}(V)]^2$ there is some $n'<\omega$ and sequence $C_0\subsetneq C_1\subsetneq\cdots\subsetneq V$ where $\{C_m,C_{m+1}\}\in K_{n'}$ for all $m<\omega$.

Define K_n to be the collection of pairs of sets $\{B, C\}$ such that $B \subsetneq C$ and n is the least integer where $a_n \in A \setminus \sigma(A \cup B, A \cup C)$.

Then σ may be countered by the attack $A \cup C_0, A \cup C_1, \ldots$, since $a_{n'} \in A \setminus \sigma(A \cup C_m, A \cup C_{m+1})$ for all $m < \omega$ and thus is never covered.

Question

$$\mathscr{N} \uparrow_{2\text{-mark}} Fill_{\mathscr{C}\mathscr{F}}^{\subseteq}(\kappa) \Rightarrow \mathscr{N} \uparrow_{2\text{-tact}} Fill_{\mathscr{C}\mathscr{F}}^{\subseteq}(\kappa)$$
?

Let σ be a 2-tactical strategy for $\mathscr N$ in $Fill_{\mathscr M\mathscr N}^{\subsetneq}(J)$.

By Cor 28 of Scheepers' "Partition relation for partially ordered sets", for every partition $\{K_n: n<\omega\}$ of the comparable pairs in $[\mathcal{P}(V)]^2$ there is some $n'<\omega$ and sequence $C_0\subsetneq C_1\subsetneq\cdots\subsetneq V$ where $\{C_m,C_{m+1}\}\in K_{n'}$ for all $m<\omega$.

Define K_n to be the collection of pairs of sets $\{B, C\}$ such that $B \subsetneq C$ and n is the least integer where $a_n \in A \setminus \sigma(A \cup B, A \cup C)$.

Then σ may be countered by the attack $A \cup C_0, A \cup C_1, \ldots$, since $a_{n'} \in A \setminus \sigma(A \cup C_m, A \cup C_{m+1})$ for all $m < \omega$ and thus is never covered.

Question

$$\mathscr{N}\uparrow_{2\text{-mark}} \mathit{Fill}^\subseteq_{\mathscr{E}\mathscr{F}}(\kappa) \Rightarrow \mathscr{N}\uparrow_{2\text{-tact}} \mathit{Fill}^\subseteq_{\mathscr{E}\mathscr{F}}(\kappa)?$$

$S(\kappa,\omega,\omega)$

Scheepers introduced the sentence $S(\kappa, \omega, \omega)$ (or rather, a sentence equivalent to the one I use below).

Definition

For two functions f, g we say f is **almost compatible** with $g(f||^*g)$ if $|\{x \in \text{dom}(f) \cap \text{dom}(g) : f(x) \neq g(x)\}| < \omega$.

Definition

 $S(\kappa,\omega,\omega)$ is shorthand for the sentence: there exist injective functions $f_A:A\to\omega$ for each $A\in[\kappa]^\omega$ such that $f_A\|^*f_B$ for all $A,B\in[\kappa]^\omega$.

$S(\kappa,\omega,\omega)$

Scheepers introduced the sentence $S(\kappa, \omega, \omega)$ (or rather, a sentence equivalent to the one I use below).

Definition

For two functions f, g we say f is **almost compatible** with g $(f||^*g)$ if $|\{x \in \text{dom}(f) \cap \text{dom}(g) : f(x) \neq g(x)\}| < \omega$.

Definition

 $S(\kappa,\omega,\omega)$ is shorthand for the sentence: there exist injective functions $f_A:A\to\omega$ for each $A\in[\kappa]^\omega$ such that $f_A\|^*f_B$ for all $A,B\in[\kappa]^\omega$.

$S(\kappa,\omega,\omega)$

Scheepers introduced the sentence $S(\kappa, \omega, \omega)$ (or rather, a sentence equivalent to the one I use below).

Definition

For two functions f, g we say f is **almost compatible** with g $(f||^*g)$ if $|\{x \in \text{dom}(f) \cap \text{dom}(g) : f(x) \neq g(x)\}| < \omega$.

Definition

 $S(\kappa,\omega,\omega)$ is shorthand for the sentence: there exist injective functions $f_A:A\to\omega$ for each $A\in[\kappa]^\omega$ such that $f_A\|^*f_B$ for all $A,B\in[\kappa]^\omega$.

 $S(\omega_1,\omega,\omega)$

Proof: Use Kunen's f_{α} mentioned earlier.

Theorem

$$\neg S(\kappa, \omega, \omega)$$
 for $\kappa > 2^{\omega}$

Proof: Let $A_{\alpha} = \{\alpha \cdot \omega + n : n < \omega\} \in [\kappa]^{\omega}$ and $f_{A_{\alpha}} : A_{\alpha} \to \omega$ be injective for $\alpha < \kappa$. Since there are $\kappa > |[\omega]^{\omega}|$ different A_{α} , there must be α, β where $\operatorname{ran}(f_{A_{\alpha}}) = \operatorname{ran}(f_{A_{\beta}})$. Then there is no way to define $f_{A_{\alpha} \cup A_{\beta}}$ so that it is almost compatible with both $f_{A_{\alpha}}$ and $f_{A_{\beta}}$.

Corollary

$$S(\omega_2,\omega,\omega) \Rightarrow \neg CF$$

 $S(\omega_1,\omega,\omega)$

Proof: Use Kunen's f_{α} mentioned earlier.

Theorem

$$\neg S(\kappa, \omega, \omega)$$
 for $\kappa > 2^{\omega}$

Proof: Let $A_{\alpha} = \{\alpha \cdot \omega + n : n < \omega\} \in [\kappa]^{\omega}$ and $f_{A_{\alpha}} : A_{\alpha} \to \omega$ be injective for $\alpha < \kappa$. Since there are $\kappa > |[\omega]^{\omega}|$ different A_{α} , there must be α, β where $\operatorname{ran}(f_{A_{\alpha}}) = \operatorname{ran}(f_{A_{\beta}})$. Then there is no way to define $f_{A_{\alpha} \cup A_{\beta}}$ so that it is almost compatible with both $f_{A_{\alpha}}$ and $f_{A_{\beta}}$.

Corollary

$$S(\omega_2,\omega,\omega) \Rightarrow \neg CH$$

 $S(\omega_1,\omega,\omega)$

Proof: Use Kunen's f_{α} mentioned earlier.

Theorem

$$\neg S(\kappa, \omega, \omega)$$
 for $\kappa > 2^{\omega}$

Proof: Let $A_{\alpha} = \{\alpha \cdot \omega + n : n < \omega\} \in [\kappa]^{\omega}$ and $f_{A_{\alpha}} : A_{\alpha} \to \omega$ be injective for $\alpha < \kappa$. Since there are $\kappa > |[\omega]^{\omega}|$ different A_{α} , there must be α, β where $\operatorname{ran}(f_{A_{\alpha}}) = \operatorname{ran}(f_{A_{\beta}})$. Then there is no way to define $f_{A_{\alpha} \cup A_{\beta}}$ so that it is almost compatible with both $f_{A_{\alpha}}$ and $f_{A_{\beta}}$.

Corollary

$$S(\omega_2, \omega, \omega) \Rightarrow \neg CH$$

Theorem

$$S(\kappa,\omega,\omega) \Rightarrow \mathscr{F} \uparrow_{2\text{-tact}} Fill_{\mathscr{CF}}^{\subseteq}(\kappa)$$

Proof: Due to Todorcevic. Let $f_A: A \to \omega$ for $A \in [\kappa]^\omega$ witness $S(\kappa, \omega, \omega)$, and let $g_A(\alpha)$ be the number of ordinals "skipped" by f_A below $f_A(\alpha)$, that is, $f_A(\alpha) - |\{\beta \in A: f_A(\beta) < f_A(\alpha)\}|$.

Note that for $A \subsetneq B$, $|\{\alpha \in A : g_A(\alpha) \leq g_B(\alpha)\}| < \omega$ since the difference in f_A and $f_B \upharpoonright A$ is finite, and f_B has to map at least one more ordinal than f_A .

Let $\sigma(C, C') = \{\alpha \in C : g_C(\alpha) \leq g_{C'}(\alpha)\}$. If $C_0 \subsetneq C_1 \subsetneq \ldots$ was an attack defeating σ , then let $\alpha \in C_N \setminus \bigcup_{n < \omega} \sigma(C_n, C_{n+1})$.

Theorem

$$S(\kappa,\omega,\omega)\Rightarrow \mathscr{F}\uparrow_{2 ext{-tact}} Fill_{\mathscr{CF}}^{\subsetneq}(\kappa)$$

Proof: Due to Todorcevic. Let $f_A: A \to \omega$ for $A \in [\kappa]^\omega$ witness $S(\kappa, \omega, \omega)$, and let $g_A(\alpha)$ be the number of ordinals "skipped" by f_A below $f_A(\alpha)$, that is, $f_A(\alpha) - |\{\beta \in A: f_A(\beta) < f_A(\alpha)\}|$.

Note that for $A \subsetneq B$, $|\{\alpha \in A : g_A(\alpha) \leq g_B(\alpha)\}| < \omega$ since the difference in f_A and $f_B \upharpoonright A$ is finite, and f_B has to map at least one more ordinal than f_A .

Let $\sigma(C, C') = \{\alpha \in C : g_C(\alpha) \leq g_{C'}(\alpha)\}$. If $C_0 \subsetneq C_1 \subsetneq \ldots$ was an attack defeating σ , then let $\alpha \in C_N \setminus \bigcup_{n < \omega} \sigma(C_n, C_{n+1})$.

Theorem

$$S(\kappa,\omega,\omega) \Rightarrow \mathscr{F} \uparrow_{2 ext{-tact}} Fill_{\mathscr{CF}}^{\subseteq}(\kappa)$$

Proof: Due to Todorcevic. Let $f_A: A \to \omega$ for $A \in [\kappa]^\omega$ witness $S(\kappa, \omega, \omega)$, and let $g_A(\alpha)$ be the number of ordinals "skipped" by f_A below $f_A(\alpha)$, that is, $f_A(\alpha) - |\{\beta \in A: f_A(\beta) < f_A(\alpha)\}|$.

Note that for $A \subsetneq B$, $|\{\alpha \in A : g_A(\alpha) \leq g_B(\alpha)\}| < \omega$ since the difference in f_A and $f_B \upharpoonright A$ is finite, and f_B has to map at least one more ordinal than f_A .

Let $\sigma(C, C') = \{ \alpha \in C : g_C(\alpha) \leq g_{C'}(\alpha) \}$. If $C_0 \subsetneq C_1 \subsetneq \ldots$ was an attack defeating σ , then let $\alpha \in C_N \setminus \bigcup_{n < \omega} \sigma(C_n, C_{n+1})$.

Theorem

$$S(\kappa,\omega,\omega) \Rightarrow \mathscr{F} \uparrow_{2 ext{-tact}} Fill_{\mathscr{CF}}^{\subseteq}(\kappa)$$

Proof: Due to Todorcevic. Let $f_A: A \to \omega$ for $A \in [\kappa]^\omega$ witness $S(\kappa, \omega, \omega)$, and let $g_A(\alpha)$ be the number of ordinals "skipped" by f_A below $f_A(\alpha)$, that is, $f_A(\alpha) - |\{\beta \in A: f_A(\beta) < f_A(\alpha)\}|$.

Note that for $A \subsetneq B$, $|\{\alpha \in A : g_A(\alpha) \leq g_B(\alpha)\}| < \omega$ since the difference in f_A and $f_B \upharpoonright A$ is finite, and f_B has to map at least one more ordinal than f_A .

Let $\sigma(C,C')=\{\alpha\in C:g_C(\alpha)\leq g_{C'}(\alpha)\}$. If $C_0\subsetneq C_1\subsetneq\ldots$ was an attack defeating σ , then let $\alpha\in C_N\setminus\bigcup_{n<\omega}\sigma(C_n,C_{n+1})$.

Theorem

$$S(\kappa,\omega,\omega) \Rightarrow \mathscr{F} \uparrow_{2 ext{-tact}} Fill_{\mathscr{CF}}^{\subseteq}(\kappa)$$

Proof: Due to Todorcevic. Let $f_A: A \to \omega$ for $A \in [\kappa]^\omega$ witness $S(\kappa, \omega, \omega)$, and let $g_A(\alpha)$ be the number of ordinals "skipped" by f_A below $f_A(\alpha)$, that is, $f_A(\alpha) - |\{\beta \in A: f_A(\beta) < f_A(\alpha)\}|$.

Note that for $A \subseteq B$, $|\{\alpha \in A : g_A(\alpha) \le g_B(\alpha)\}| < \omega$ since the difference in f_A and $f_B \upharpoonright A$ is finite, and f_B has to map at least one more ordinal than f_A .

Let $\sigma(C, C') = \{ \alpha \in C : g_C(\alpha) \leq g_{C'}(\alpha) \}$. If $C_0 \subsetneq C_1 \subsetneq \ldots$ was an attack defeating σ , then let $\alpha \in C_N \setminus \bigcup_{n < \omega} \sigma(C_n, C_{n+1})$.

Observe that $g_{\mathcal{C}_N}(\alpha) > g_{\mathcal{C}_{N+1}}(\alpha) > g_{\mathcal{C}_{N+2}}(\alpha) > \ldots$, contradiction.

Theorem

$$S(\kappa,\omega,\omega)\Rightarrow\mathscr{F}\uparrow_{2 ext{-tact}}Fill_{\mathscr{CF}}^{\subseteq}(\kappa)$$

Proof: Due to Todorcevic. Let $f_A: A \to \omega$ for $A \in [\kappa]^\omega$ witness $S(\kappa, \omega, \omega)$, and let $g_A(\alpha)$ be the number of ordinals "skipped" by f_A below $f_A(\alpha)$, that is, $f_A(\alpha) - |\{\beta \in A: f_A(\beta) < f_A(\alpha)\}|$.

Note that for $A \subsetneq B$, $|\{\alpha \in A : g_A(\alpha) \leq g_B(\alpha)\}| < \omega$ since the difference in f_A and $f_B \upharpoonright A$ is finite, and f_B has to map at least one more ordinal than f_A .

Let $\sigma(C, C') = \{ \alpha \in C : g_C(\alpha) \leq g_{C'}(\alpha) \}$. If $C_0 \subsetneq C_1 \subsetneq \ldots$ was an attack defeating σ , then let $\alpha \in C_N \setminus \bigcup_{n < \omega} \sigma(C_n, C_{n+1})$.

$$S(\kappa,\omega,\omega) \Rightarrow \mathscr{F} \uparrow_{2\text{-mark}} Fill_{\mathscr{C}\mathscr{F}}^{\subseteq}(\kappa)$$

Proof: Corollary of the previous theorem. Alternatively, \mathscr{F} can use the winning strategy

$$\sigma(C, C', n+1) = f_C^{-1}(\{0, \dots, n-1\}) \cup \{\alpha \in C : f_C(\alpha) \neq f_{C'}(\alpha)\}$$

Back to $Cov_{\mathscr{CF}}(\kappa^{\dagger})$

While a proof $\mathscr{F} \uparrow_{2\text{-mark}} \mathit{Fill}^\subseteq_{\mathscr{F}}(\kappa) \Rightarrow \mathscr{F} \uparrow_{2\text{-mark}} \mathit{Cov}_{\mathscr{CF}}(\kappa^\dagger)$ has eluded me, the techniques used previously are very useful for dealing with $\mathit{Cov}_{\mathscr{CF}}(\kappa^\dagger)$ directly.

It will be useful to define a sufficient property for $\mathscr{F}\uparrow_{2-\text{mark}} Cov_{\mathscr{F}}(X)$, which I've called almost- σ -(relatively compact).

Back to $Cov_{\mathscr{CF}}(\kappa^{\dagger})$

While a proof $\mathscr{F} \uparrow_{2\text{-mark}} \mathit{Fill}^\subseteq_{\mathscr{F}}(\kappa) \Rightarrow \mathscr{F} \uparrow_{2\text{-mark}} \mathit{Cov}_{\mathscr{CF}}(\kappa^\dagger)$ has eluded me, the techniques used previously are very useful for dealing with $\mathit{Cov}_{\mathscr{CF}}(\kappa^\dagger)$ directly.

It will be useful to define a sufficient property for $\mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(X)$, which I've called almost- σ -(relatively compact).

Definition

Let \mathcal{U} be a cover of X. We say $C \subseteq X$ is \mathcal{U} -compact if there exists a finite subcover of \mathcal{U} which covers C.

We say X is almost- σ -(relatively compact) if there exist functions $r_{\mathcal{V}}: X \to \omega$ for each open cover \mathcal{V} of X such that both of the following sets are \mathcal{V} -compact for all open covers \mathcal{U} , \mathcal{V} and $n < \omega$:

$$c(\mathcal{V}, n) = \{x \in X : r_{\mathcal{V}}(x) \le n\}$$
$$p(\mathcal{U}, \mathcal{V}) = \{x \in X : 0 < r_{\mathcal{U}}(x) < r_{\mathcal{V}}(x)\}$$

Proposition

 $X \sigma$ -(relatively compact) $\Rightarrow X$ almost- σ -(relatively compact)

Definition

Let \mathcal{U} be a cover of X. We say $C \subseteq X$ is \mathcal{U} -compact if there exists a finite subcover of \mathcal{U} which covers C.

We say X is almost- σ -(relatively compact) if there exist functions $r_{\mathcal{V}}: X \to \omega$ for each open cover \mathcal{V} of X such that both of the following sets are \mathcal{V} -compact for all open covers \mathcal{U} , \mathcal{V} and $n < \omega$:

$$c(\mathcal{V}, n) = \{x \in X : r_{\mathcal{V}}(x) \le n\}$$
$$p(\mathcal{U}, \mathcal{V}) = \{x \in X : 0 < r_{\mathcal{U}}(x) < r_{\mathcal{V}}(x)\}$$

Proposition

 $X \sigma$ -(relatively compact) $\Rightarrow X$ almost- σ -(relatively compact)

If X is almost- σ -(relatively compact), then $\mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(X)$.

Proof: Let $\sigma(\mathcal{U}_0,0)$ cover $c(\mathcal{U}_0,0)$, and let $\sigma(\mathcal{U}_n,\mathcal{U}_{n+1},n+1)$ cover both $c(\mathcal{U}_{n+1},n+1)$ and $p(\mathcal{U}_n,\mathcal{U}_{n+1})$. If $\mathcal{U}_0,\mathcal{U}_1,\ldots$ is any play by C, then for each $x\in X$, we note that one of the following must occur:

- $r_{\mathcal{U}_0}(x) = 0$ and thus $x \in c(\mathcal{U}_0, 0)$.
- $r_{\mathcal{U}_0}(x) = N + 1$ for some $N \ge 0$ and:
 - For all $n \leq N$,

$$n+1 < r_{M_{n+1}}(x) < N+1$$

and thus
$$x \in c(\mathcal{U}_{N+1}, r_{\mathcal{U}_{N+1}}(x)) = c(\mathcal{U}_{N+1}, N+1).$$

If X is almost- σ -(relatively compact), then $\mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(X)$.

Proof: Let $\sigma(\mathcal{U}_0,0)$ cover $c(\mathcal{U}_0,0)$, and let $\sigma(\mathcal{U}_n,\mathcal{U}_{n+1},n+1)$ cover both $c(\mathcal{U}_{n+1},n+1)$ and $p(\mathcal{U}_n,\mathcal{U}_{n+1})$. If $\mathcal{U}_0,\mathcal{U}_1,\ldots$ is any play by C, then for each $x\in X$, we note that one of the following must occur:

- $r_{U_0}(x) = 0$ and thus $x \in c(U_0, 0)$.
- $r_{\mathcal{U}_0}(x) = N + 1$ for some $N \ge 0$ and:
 - For all $n \leq N$,

$$n+1 < r_{\mathcal{U}_{n+1}}(x) \le N+1$$

and thus
$$x \in c(\mathcal{U}_{N+1}, r_{\mathcal{U}_{n+1}}(x)) = c(\mathcal{U}_{N+1}, N+1)$$
.

If X is almost- σ -(relatively compact), then $\mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(X)$.

Proof: Let $\sigma(\mathcal{U}_0,0)$ cover $c(\mathcal{U}_0,0)$, and let $\sigma(\mathcal{U}_n,\mathcal{U}_{n+1},n+1)$ cover both $c(\mathcal{U}_{n+1},n+1)$ and $p(\mathcal{U}_n,\mathcal{U}_{n+1})$. If $\mathcal{U}_0,\mathcal{U}_1,\ldots$ is any play by C, then for each $x\in X$, we note that one of the following must occur:

- $r_{\mathcal{U}_0}(x) = 0$ and thus $x \in c(\mathcal{U}_0, 0)$.
- $r_{\mathcal{U}_0}(x) = N + 1$ for some $N \ge 0$ and:
 - For all $n \leq N$,

$$n+1 < r_{\mathcal{U}_{n+1}}(x) \le N+1$$

and thus $x \in c(\mathcal{U}_{N+1}, r_{\mathcal{U}_{n+1}}(x)) = c(\mathcal{U}_{N+1}, N+1)$.

If X is almost- σ -(relatively compact), then $\mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(X)$.

Proof: Let $\sigma(\mathcal{U}_0,0)$ cover $c(\mathcal{U}_0,0)$, and let $\sigma(\mathcal{U}_n,\mathcal{U}_{n+1},n+1)$ cover both $c(\mathcal{U}_{n+1},n+1)$ and $p(\mathcal{U}_n,\mathcal{U}_{n+1})$. If $\mathcal{U}_0,\mathcal{U}_1,\ldots$ is any play by C, then for each $x\in X$, we note that one of the following must occur:

- $r_{\mathcal{U}_0}(x) = 0$ and thus $x \in c(\mathcal{U}_0, 0)$.
- $r_{\mathcal{U}_0}(x) = N + 1$ for some $N \ge 0$ and:
 - For all $n \leq N$,

$$n+1 < r_{\mathcal{U}_{n+1}}(x) \le N+1$$

and thus
$$x \in c(\mathcal{U}_{N+1}, r_{\mathcal{U}_{n+1}}(x)) = c(\mathcal{U}_{N+1}, N+1)$$
.

If X is almost- σ -(relatively compact), then $\mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(X)$.

Proof: Let $\sigma(\mathcal{U}_0,0)$ cover $c(\mathcal{U}_0,0)$, and let $\sigma(\mathcal{U}_n,\mathcal{U}_{n+1},n+1)$ cover both $c(\mathcal{U}_{n+1},n+1)$ and $p(\mathcal{U}_n,\mathcal{U}_{n+1})$. If $\mathcal{U}_0,\mathcal{U}_1,\ldots$ is any play by C, then for each $x\in X$, we note that one of the following must occur:

- $r_{\mathcal{U}_0}(x) = 0$ and thus $x \in c(\mathcal{U}_0, 0)$.
- $r_{\mathcal{U}_0}(x) = N + 1$ for some $N \ge 0$ and:
 - For all $n \leq N$,

$$n+1 < r_{U_{n+1}}(x) \le N+1$$

and thus
$$x \in c(\mathcal{U}_{N+1}, r_{\mathcal{U}_{N+1}}(x)) = c(\mathcal{U}_{N+1}, N+1)$$
.

- $r_{\mathcal{U}_0}(x) = N + 1$ for some $N \ge 0$ and: (cont.)
 - For some $n \leq N$,

$$r_{U_{n+1}}(x) < n+1 \le r_{U_n}(x) < N+1$$

• For some $n \leq N$,

$$n+1 \leq r_{\mathcal{U}_n}(x) < N+1 < r_{\mathcal{U}_{n+1}}(x)$$

and thus $x \in p(\mathcal{U}_n, \mathcal{U}_{n+1})$

Corollary

X almost- σ -(relatively compact) \Rightarrow *X* Menger

Question

 $\mathscr{F}\uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(X) \Rightarrow X \text{ almost-}\sigma\text{-(relatively compact)? (Or can I slightly adjust the definition to get this result?)}$

- $r_{\mathcal{U}_0}(x) = N + 1$ for some $N \ge 0$ and: (cont.)
 - For some $n \leq N$,

$$r_{U_{n+1}}(x) < n+1 \le r_{U_n}(x) < N+1$$

• For some $n \leq N$,

$$n+1 \le r_{U_n}(x) < N+1 < r_{U_{n+1}}(x)$$

and thus $x \in p(\mathcal{U}_n, \mathcal{U}_{n+1})$

Corollary

X almost- σ -(relatively compact) \Rightarrow *X* Menger

Question

 $\mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(X) \Rightarrow X \text{ almost-}\sigma\text{-(relatively compact)? (Or can I slightly adjust the definition to get this result?)}$

- $r_{\mathcal{U}_0}(x) = N + 1$ for some $N \ge 0$ and: (cont.)
 - For some $n \leq N$,

$$r_{U_{n+1}}(x) < n+1 \le r_{U_n}(x) < N+1$$

• For some $n \leq N$,

$$n+1 \le r_{U_n}(x) < N+1 < r_{U_{n+1}}(x)$$

and thus $x \in p(\mathcal{U}_n, \mathcal{U}_{n+1})$

Corollary

X almost- σ -(relatively compact) \Rightarrow *X* Menger

Question

 $\mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(X) \Rightarrow X \text{ almost-}\sigma\text{-(relatively compact)? (Or can I slightly adjust the definition to get this result?)}$

- $r_{\mathcal{U}_0}(x) = N + 1$ for some $N \ge 0$ and: (cont.)
 - For some $n \leq N$,

$$r_{U_{n+1}}(x) < n+1 \le r_{U_n}(x) < N+1$$

• For some $n \leq N$,

$$n+1 \le r_{U_n}(x) < N+1 < r_{U_{n+1}}(x)$$

and thus $x \in p(\mathcal{U}_n, \mathcal{U}_{n+1})$

Corollary

X almost- σ -(relatively compact) \Rightarrow *X* Menger

Question

 $\mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(X) \Rightarrow X \text{ almost-}\sigma\text{-(relatively compact)? (Or can I slightly adjust the definition to get this result?)}$

If $S(\kappa, \omega, \omega)$, then κ^{\dagger} is almost- σ -(relatively compact).

Proof: Take the injective funcions $f_A : A \to \omega$ witnessing $S(\kappa, \omega, \omega)$. For each cover \mathcal{V} of κ^{\dagger} let $A(\mathcal{V})$ define a set such that $\kappa^{\dagger} \setminus A(\mathcal{V})$ is in a refinement of \mathcal{V} .

$$r_{\mathcal{V}}(x) = \left\{ \begin{array}{ll} 0 & x \in \kappa^{\dagger} \setminus A(\mathcal{V}) \\ f_{A(\mathcal{V})}(x) + 1 & x \in A(\mathcal{V}) \end{array} \right.$$

witnesses the property as $c(\mathcal{V}, 0)$ is contained in a single open set in \mathcal{V} , $c(\mathcal{V}, n+1)$ is a singleton or empty set, and

$$p(\mathcal{U}, \mathcal{V}) = \{ \alpha \in A(\mathcal{U}) \cap A(\mathcal{V}) : f_{A(\mathcal{U})}(\alpha) < f_{A(\mathcal{V})}(\alpha) \}$$

is finite

If $S(\kappa, \omega, \omega)$, then κ^{\dagger} is almost- σ -(relatively compact).

Proof: Take the injective funcions $f_A: A \to \omega$ witnessing $S(\kappa, \omega, \omega)$. For each cover $\mathcal V$ of κ^\dagger let $A(\mathcal V)$ define a set such that $\kappa^\dagger \setminus A(\mathcal V)$ is in a refinement of $\mathcal V$.

Then $r_{\mathcal{V}}$ defined by

$$r_{\mathcal{V}}(x) = \begin{cases} 0 & x \in \kappa^{\dagger} \setminus A(\mathcal{V}) \\ f_{A(\mathcal{V})}(x) + 1 & x \in A(\mathcal{V}) \end{cases}$$

witnesses the property as $c(\mathcal{V},0)$ is contained in a single open set in \mathcal{V} , $c(\mathcal{V},n+1)$ is a singleton or empty set, and

$$p(\mathcal{U}, \mathcal{V}) = \{ \alpha \in A(\mathcal{U}) \cap A(\mathcal{V}) : f_{A(\mathcal{U})}(\alpha) < f_{A(\mathcal{V})}(\alpha) \}$$

is finite

If $S(\kappa, \omega, \omega)$, then κ^{\dagger} is almost- σ -(relatively compact).

Proof: Take the injective funcions $f_A: A \to \omega$ witnessing $S(\kappa, \omega, \omega)$. For each cover $\mathcal V$ of κ^\dagger let $A(\mathcal V)$ define a set such that $\kappa^\dagger \setminus A(\mathcal V)$ is in a refinement of $\mathcal V$.

Then $r_{\mathcal{V}}$ defined by

$$r_{\mathcal{V}}(x) = \left\{ \begin{array}{ll} 0 & x \in \kappa^{\dagger} \setminus A(\mathcal{V}) \\ f_{A(\mathcal{V})}(x) + 1 & x \in A(\mathcal{V}) \end{array} \right.$$

witnesses the property as $c(\mathcal{V},0)$ is contained in a single open set in \mathcal{V} , $c(\mathcal{V},n+1)$ is a singleton or empty set, and

$$p(\mathcal{U}, \mathcal{V}) = \{ \alpha \in A(\mathcal{U}) \cap A(\mathcal{V}) : f_{A(\mathcal{U})}(\alpha) < f_{A(\mathcal{V})}(\alpha) \}$$

is finite.

If
$$S(\kappa, \omega, \omega)$$
, then $\mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(\kappa^{\dagger})$

This result becomes more interesting if we can show $S(\kappa, \omega, \omega)$ is consistent for $\kappa > \omega_1$.

Definition

A finite partial function p from A to B has a domain which is a finite subset of A and a range which is a finite subset of B. Let the set of all finite partial functions from A to B be denoted by Fn(A,B).

Definitior

Let $Fn^2(A, B) \subset Fn(A, Fn(\bigcup A, B))$ such that for each $p \in Fn^2(A, B)$, $p(A) = p_A \in Fn(A, B)$.

If
$$S(\kappa, \omega, \omega)$$
, then $\mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(\kappa^{\dagger})$

This result becomes more interesting if we can show $S(\kappa, \omega, \omega)$ is consistent for $\kappa > \omega_1$.

Definition

A finite partial function p from A to B has a domain which is a finite subset of A and a range which is a finite subset of B. Let the set of all finite partial functions from A to B be denoted by Fn(A,B).

Definition

Let $Fn^2(A, B) \subset Fn(A, Fn(\bigcup A, B))$ such that for each $p \in Fn^2(A, B)$, $p(A) = p_A \in Fn(A, B)$.

If
$$S(\kappa, \omega, \omega)$$
, then $\mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(\kappa^{\dagger})$

This result becomes more interesting if we can show $S(\kappa, \omega, \omega)$ is consistent for $\kappa > \omega_1$.

Definition

A finite partial function p from A to B has a domain which is a finite subset of A and a range which is a finite subset of B. Let the set of all finite partial functions from A to B be denoted by Fn(A,B).

Definition

Let
$$Fn^2(A, B) \subset Fn(A, Fn(\bigcup A, B))$$
 such that for each $p \in Fn^2(A, B)$, $p(A) = p_A \in Fn(A, B)$.

Definition

For $\kappa > \omega_1$, let $\mathbb{P}_{\kappa} \subset \mathit{Fn}^2([\kappa]^{\omega}, \omega)$ be such that each p_A is injective, and give it the partial order \leq defined by $q \leq p$ if and only if:

- $dom(q) \supseteq dom(p)$
- For each $A \in \text{dom}(p)$, $q_A \supseteq p_A$
- For each $A, B \in \text{dom}(p)$, if p_A and p_B are not defined for some $\alpha \in A \cap B$, but q_A is, then q_B is also defined for α and $q_A(\alpha) = q_B(x)$. That is, for $\alpha \in A \cap B$

$$\alpha \in \text{dom}(q_A) \setminus (\text{dom}(p_A) \cup \text{dom}(p_B))$$

$$\Downarrow$$

$$\alpha \in \text{dom}(q_B)$$
 and $q_A(x) = q_B(x)$

Lemma

 \mathbb{P}_{κ} has property K (and thus is c.c.c.). That is, let $P \subseteq \mathbb{P}_{\kappa}$ be uncountable: there is an uncountable $Q \subseteq P$ such that points in Q are pairwise compatible.

Proof: If $|\{\operatorname{dom}(p): p \in P\}| > \omega$, we will use the Δ -system lemma to find an uncountable $P' \subseteq P$ such that for $p, q \in P'$, $\operatorname{dom}(p) \cap \operatorname{dom}(q) = \mathcal{R}$. Otherwise, we may fix an uncountable $P' \subseteq P$ such that for $p, q \in P'$, $\operatorname{dom}(p) = \operatorname{dom}(q) = \mathcal{R}$.

Similarly, for each $A \in \mathcal{R}$ we may find that $|\{\operatorname{dom}(p_A): p \in P'\}| > \omega$, and we can use the Δ -system lemma to find an uncountable $P'' \subseteq P'$ where $\operatorname{dom}(p_A) \cap \operatorname{dom}(q_A) = A'$ for all $p, q \in P''$, or otherwise we may find $P'' \subseteq P'$ where $\operatorname{dom}(p_A) = \operatorname{dom}(q_A) = A'$ for all $p, q \in P''$.

Lemma

 \mathbb{P}_{κ} has property K (and thus is c.c.c.). That is, let $P \subseteq \mathbb{P}_{\kappa}$ be uncountable: there is an uncountable $Q \subseteq P$ such that points in Q are pairwise compatible.

Proof: If $|\{\operatorname{dom}(p): p \in P\}| > \omega$, we will use the Δ -system lemma to find an uncountable $P' \subseteq P$ such that for $p, q \in P'$, $\operatorname{dom}(p) \cap \operatorname{dom}(q) = \mathcal{R}$. Otherwise, we may fix an uncountable $P' \subseteq P$ such that for $p, q \in P'$, $\operatorname{dom}(p) = \operatorname{dom}(q) = \mathcal{R}$.

Similarly, for each $A \in \mathcal{R}$ we may find that $|\{\operatorname{dom}(p_A) : p \in P'\}| > \omega$, and we can use the Δ -system lemma to find an uncountable $P'' \subseteq P'$ where $\operatorname{dom}(p_A) \cap \operatorname{dom}(q_A) = A'$ for all $p, q \in P''$, or otherwise we may find $P'' \subseteq P'$ where $\operatorname{dom}(p_A) = \operatorname{dom}(q_A) = A'$ for all $p, q \in P''$.

Lemma

 \mathbb{P}_{κ} has property K (and thus is c.c.c.). That is, let $P \subseteq \mathbb{P}_{\kappa}$ be uncountable: there is an uncountable $Q \subseteq P$ such that points in Q are pairwise compatible.

Proof: If $|\{\operatorname{dom}(p): p \in P\}| > \omega$, we will use the Δ -system lemma to find an uncountable $P' \subseteq P$ such that for $p, q \in P'$, $\operatorname{dom}(p) \cap \operatorname{dom}(q) = \mathcal{R}$. Otherwise, we may fix an uncountable $P' \subseteq P$ such that for $p, q \in P'$, $\operatorname{dom}(p) = \operatorname{dom}(q) = \mathcal{R}$.

Similarly, for each $A \in \mathcal{R}$ we may find that $|\{\operatorname{dom}(p_A): p \in P'\}| > \omega$, and we can use the Δ -system lemma to find an uncountable $P'' \subseteq P'$ where $\operatorname{dom}(p_A) \cap \operatorname{dom}(q_A) = A'$ for all $p, q \in P''$, or otherwise we may find $P'' \subseteq P'$ where $\operatorname{dom}(p_A) = \operatorname{dom}(q_A) = A'$ for all $p, q \in P''$.

Finally, for each $A \in \mathcal{R}$ and $\alpha \in A'$, we may find $n_{A,\alpha}$ such that there are uncountable $p \in P''$ with $p_A(\alpha) = n_{A,\alpha}$, and thus we may choose $Q \subseteq P''$ to be an uncountable collection such that for $p, q \in Q$, $p_A = q_A$ for $A \in \mathcal{R}$.

Then it is easily verified that $p \cup q \in \mathbb{P}_{\kappa}$ and $p \cup q \leq p, q$ for all $p, q \in Q$.

Since \mathbb{P}_{κ} is c.c.c.:

Corollary

Any forcing using a \mathbb{P}_{κ} -generic filter preserves cardinals and cofinalities.

Corollary

If $cf(\kappa) > \omega$, any forcing using a \mathbb{P}_{κ} -generic filter results in $2^{\omega} \leq \kappa$.

Finally, for each $A \in \mathcal{R}$ and $\alpha \in A'$, we may find $n_{A,\alpha}$ such that there are uncountable $p \in P''$ with $p_A(\alpha) = n_{A,\alpha}$, and thus we may choose $Q \subseteq P''$ to be an uncountable collection such that for $p, q \in Q$, $p_A = q_A$ for $A \in \mathcal{R}$.

Then it is easily verified that $p \cup q \in \mathbb{P}_{\kappa}$ and $p \cup q \leq p, q$ for all $p, q \in Q$.

Since \mathbb{P}_{κ} is c.c.c.:

Corollary

Any forcing using a \mathbb{P}_{κ} -generic filter preserves cardinals and cofinalities.

Corollary

If $cf(\kappa) > \omega$, any forcing using a \mathbb{P}_{κ} -generic filter results in $2^{\omega} \leq \kappa$.

Finally, for each $A \in \mathcal{R}$ and $\alpha \in A'$, we may find $n_{A,\alpha}$ such that there are uncountable $p \in P''$ with $p_A(\alpha) = n_{A,\alpha}$, and thus we may choose $Q \subseteq P''$ to be an uncountable collection such that for $p, q \in Q$, $p_A = q_A$ for $A \in \mathcal{R}$.

Then it is easily verified that $p \cup q \in \mathbb{P}_{\kappa}$ and $p \cup q \leq p, q$ for all $p, q \in Q$.

Since \mathbb{P}_{κ} is c.c.c.:

Corollary

Any forcing using a \mathbb{P}_{κ} -generic filter preserves cardinals and cofinalities.

Corollary

If $cf(\kappa) > \omega$, any forcing using a \mathbb{P}_{κ} -generic filter results in $2^{\omega} < \kappa$.

Proposition

For $A \in [\kappa]^{\omega}$ and $\alpha \in A$, the sets

$$D_{\mathcal{A}} = \{ p \in \mathbb{P}_{\kappa} : \mathcal{A} \in dom(p) \}$$

$$D_{A,\alpha} = \{ p \in \mathbb{P}_{\kappa} : A \in dom(p), \alpha \in dom(p_A) \}$$

are dense in \mathbb{P}_{κ} .

Theorem

If
$$cf(\kappa) > \omega$$
, $S(\kappa, \omega, \omega) + (\kappa = 2^{\omega})$ is consistent with ZFC.

Proof: We adapt a forcing argument due to Scheepers (which used a slightly different poset). Let M be a countable transitive submodel of ZFC. Consider the c.c.c. poset \mathbb{P}_{κ} realized in the model M. Let G be a \mathbb{P}_{κ} -generic filter over M.

Proposition

For $A \in [\kappa]^{\omega}$ and $\alpha \in A$, the sets

$$D_{\mathcal{A}} = \{ p \in \mathbb{P}_{\kappa} : \mathcal{A} \in dom(p) \}$$

$$\mathcal{D}_{A,\alpha} = \{ p \in \mathbb{P}_{\kappa} : A \in dom(p), \alpha \in dom(p_A) \}$$

are dense in \mathbb{P}_{κ} .

Theorem

If $cf(\kappa) > \omega$, $S(\kappa, \omega, \omega) + (\kappa = 2^{\omega})$ is consistent with ZFC.

Proof: We adapt a forcing argument due to Scheepers (which used a slightly different poset). Let M be a countable transitive submodel of ZFC. Consider the c.c.c. poset \mathbb{P}_{κ} realized in the model M. Let G be a \mathbb{P}_{κ} -generic filter over M.

We now work in the smallest model M[G] extending M and containing G.

For each $A \in [\kappa]^{\omega}$, note $[\kappa]^{\omega} \cap M$ is cofinal in $[\kappa]^{\omega}$, so let $A' \supseteq A$ be in $[\kappa]^{\omega} \cap M$ and let $f_A = \bigcup_{p \in G \cap D_{A'}} p_{A'} \upharpoonright A$. Since G is a \mathbb{P}_{κ} -generic filter over M, it is easily verified (considering the dense sets $D_{A,\alpha}$) that f_A is an injective function from A into ω .

In addition, for $A, B \in [\kappa]^{\omega} \cap M$, let $p \in G \cap D_A \cap D_B$. For all $q \leq p$ it follows that

```
\{\alpha \in \mathrm{dom}(q_A) \cap \mathrm{dom}(q_B) : q_A(\alpha) \neq q_B(\alpha)\} \subseteq \mathrm{dom}(p_A) \cup \mathrm{dom}(p_B)
```

Thus $|\{\alpha \in A \cap B : f_A(\alpha) \neq f_B(\alpha)\}| < \omega$ and $f_A\|^* f_B$ for $A, B \in [\kappa]^\omega \cap M$, and it's immediate that $f_A\|^* f_B$ for $A, B \in [\kappa]^\omega$ as well.

The f_A witness $S(\kappa, \omega, \omega)$. Since $\kappa \geq 2^{\omega}$ and $S(\kappa, \omega, \omega)$ is a contradiction for $\kappa > 2^{\omega}$, we know $\kappa = 2^{\omega}$.

We now work in the smallest model M[G] extending M and containing G.

For each $A \in [\kappa]^{\omega}$, note $[\kappa]^{\omega} \cap M$ is cofinal in $[\kappa]^{\omega}$, so let $A' \supseteq A$ be in $[\kappa]^{\omega} \cap M$ and let $f_A = \bigcup_{p \in G \cap D_{A'}} p_{A'} \upharpoonright A$. Since G is a \mathbb{P}_{κ} -generic filter over M, it is easily verified (considering the dense sets $D_{A,\alpha}$) that f_A is an injective function from A into ω .

In addition, for $A, B \in [\kappa]^{\omega} \cap M$, let $p \in G \cap D_A \cap D_B$. For all $q \leq p$ it follows that

$$\{\alpha \in \operatorname{dom}(q_A) \cap \operatorname{dom}(q_B) : q_A(\alpha) \neq q_B(\alpha)\} \subseteq \operatorname{dom}(p_A) \cup \operatorname{dom}(p_B)$$

Thus $|\{\alpha \in A \cap B : f_A(\alpha) \neq f_B(\alpha)\}| < \omega$ and $f_A\|^* f_B$ for $A, B \in [\kappa]^\omega \cap M$, and it's immediate that $f_A\|^* f_B$ for $A, B \in [\kappa]^\omega$ as well.

The f_A witness $S(\kappa, \omega, \omega)$. Since $\kappa \geq 2^{\omega}$ and $S(\kappa, \omega, \omega)$ is a contradiction for $\kappa > 2^{\omega}$, we know $\kappa = 2^{\omega}$.

We now work in the smallest model M[G] extending M and containing G.

For each $A \in [\kappa]^{\omega}$, note $[\kappa]^{\omega} \cap M$ is cofinal in $[\kappa]^{\omega}$, so let $A' \supseteq A$ be in $[\kappa]^{\omega} \cap M$ and let $f_A = \bigcup_{p \in G \cap D_{A'}} p_{A'} \upharpoonright A$. Since G is a \mathbb{P}_{κ} -generic filter over M, it is easily verified (considering the dense sets $D_{A,\alpha}$) that f_A is an injective function from A into ω .

In addition, for $A, B \in [\kappa]^{\omega} \cap M$, let $p \in G \cap D_A \cap D_B$. For all $q \leq p$ it follows that

$$\{\alpha \in \operatorname{dom}(q_A) \cap \operatorname{dom}(q_B) : q_A(\alpha) \neq q_B(\alpha)\} \subseteq \operatorname{dom}(p_A) \cup \operatorname{dom}(p_B)$$

Thus $|\{\alpha \in A \cap B : f_A(\alpha) \neq f_B(\alpha)\}| < \omega$ and $f_A\|^* f_B$ for $A, B \in [\kappa]^\omega \cap M$, and it's immediate that $f_A\|^* f_B$ for $A, B \in [\kappa]^\omega$ as well.

The f_A witness $S(\kappa, \omega, \omega)$. Since $\kappa \geq 2^{\omega}$ and $S(\kappa, \omega, \omega)$ is a contradiction for $\kappa > 2^{\omega}$, we know $\kappa = 2^{\omega}$.

For all κ , $\mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{F}}(\kappa^{\dagger})$ is consistent with ZFC.

Question

Is $\mathscr{F} \uparrow_{2\text{-mark}} Cov_{\mathscr{CF}}(\omega_2^{\dagger})$ a theorem of ZFC?

