Databázové systémy a metody zpracování dat

4.přednáška

Pojmy Drill-down,

- Drill-down: ukaž mi větší detail
 - Přidání sloupce z dimenze do výstupu
- Drill-up: ukaž mi agregaci
 - Odebrání sloupce z výstupu
- Drill-across: spojení dvou a více faktových tabulek se stejnou granualitou
- Drill-around: podobné jako drill-across, ale pro nelineární uspořádání
- Slice-dice: řez multidimenzionální kostkou, omezení výběru
 - Slice výběr dimenze (zákazník, produkt, čas)
 - Dice výběr hodnoty v dimenzi (za rok = 2004 a produkt = chleba)

Pojmy Drill-down,

- Příklad drill-across: obchodní řetězec
 - Zásoba, objednávka, dodávka, prodej
 - Samostatné fact tabulky spojené časovou a produktovou dimenzí (dimenze jsou "conformed" vůči faktovým tabulkám)
 - Výsledný dotaz využívá outer-join

Pojmy Drill-down,

• Drill-around: příklad zdravotnictví, conformed dimenze pacient

Dimensionální modelování

- BUS architektura
 - Zajišťuje napojení jednotlivých etap (datových tržišť) navzájem a tak zajišťuje vytvoření celistvého DW
 - Datová tržiště by měla obsahovat co nejvíce podrobná atomická data
 - Vytvořena za pomoci Conformed dimensions a standard fact
- Conformed dimensions
 - Dimenze, která znamená to samé ve všech faktových tabulkách na které může být připojena
 - Je stejná ve všech datových tržištích
 - Klasickým příkladem: Zákazník, Produkt, Region, Čas
 - Potřeba identifikovat tyto dimenze, udržovat je, publikovat a dodržovat
 - Data pro conformed dimenzi často z více zdrojů
 - Fyzicky jsou implementovány jednou tabulkou napojitelnou na všechny relevantní faktové tabulky
 - Dovoluje tedy operaci drill across
 - Návrh většinou na co nejdetailnější úrovni
 - Využívat umělé klíče
 - Větší flexibilita
 - Nezávislost na OLTP
 - SCD

Dimensionální modelování

- Conformed standard fact
 - · Aby zaručilo bezchybné drill across
 - Stejná fakta musí být stejně uložena ve všech datových tržištích (např. příjem)
 - Stejné měrné jednotky (ne jednou v jednotkách, jednou v krabicích)
 - Lze ztěží porovnat v reportech
 - Uložit oboje
 - · Označuje-li jiné věci, pojmenovat rozdílně
- Není-li třeba provázanosti, je někdy možné vytvářet nezávislé datové tržiště (např. prodáváme-li rychlé občerstvení a traktory, nemusí mít cenu zákazníky sdružovat do jedné dimenze)

Dimensionální modelování

- Praktické zkušenosti:
 - Obvykle 4 15 dimenzí na faktovou tabulku
- Fakt je něco co není známo většinou předem, co pozorujeme, co vychází z chování trhu, ...
- Dimenze
 - Často záleží na rozhodnutí designera
 - Lze dimenze produkt a obchod
 - Prodávají-li se produkty ve všech obchodech (nezávislé)
 - Nebo jednu dimenzi obchod-produkt
 - Prodávají-li se určité produkty v určitém obchodě (závislé)
 - Taková dimenze je výhodnější nese informaci o tom kde se co prodává lze tuto informaci získat přímo prohlížením (browsing) dimenze

Praktický příklad 3

- Vytvořte multidimenzionální model 1. vrstvy datového skladu:
 - Uživatelé chtějí sledovat:
 - Prodej zboží v korunách a kusech
 - Prodeje v jednotlivých dnech
 - Prodeje podle produktů, jejich kategorií a subkategorií
 - Analyzovat využití dopravců počet přepraveného zboží
 - Analyzovat prodejce
 - Analyzovat prodeje podle jednotlivých zákazníků a skupin zákazníků (dle geografického umístění)

Praktický příklad 3 | Italian | It

Dimenzionální modelování

- Modelovací řešení
 - Slowly Changing Dimensions
 - Rychle se měnící dimenze (RCD)
 - Surrogate Keys
 - Pomocné tabulky (vztahy M:N)
 - Složité hierarchie v dimenzi
 - Degenerovaná dimenze
 - · Junk dimension
 - Heterogenní produkty
 - Spojení fakt tabulek
 - Transakční dimenze
 - Audit dimenze
 - Časová dimenze
 - Mnohonásobné měrné jednotky

- □ Různě měny
- Intervalový reporting
- □ Změny v dimenzi
- Velké dimenze
- Causal dimension
- Role
- Many Alternate Realities
- Unity dimension
- □ Faktová tabulka bez faktů
- Vztahy parent-child
- On-line DW
- Sledování zákazníka

Slowly Changing Dimensions

- Problém uchování historie v datech
 - OLTP systémy často neřeší
 - Přepsání hodnot
 - Odmazání historických dat
- Příklad: Změna názvu produktu, ID produktu se nemění
- Tři možnosti řešení
 - Přepsání
 - Vytvoření nového záznamu
 - Vytvoření atributu s aktuální hodnotou

SCD - Typ 1

- Nejednoduší a nejrychlejší
- Neudržuje historii
- Stará hodnota pro nás není významná
 - Např. byla špatně zadaná

SCD - Typ 2

- Pro každou změnu neklíčového atributu (jehož historii chceme sledovat) se vytvoří nový záznam
- Pro záznamy v dimenzi jsou využity dva klíče
 - IDU Umělý identifikátor, mění se s změnou atributu, odkazuje do faktové tabulky
 - IDS konstantní ID
- Je vhodné doplnit do dimenze atributy
 - Platnost od
 - Platnost do
- Výhody/Nevýhody
 - Umožňuje přesně sledovat vývoj v historii
 - Zvětšuje dimenzionální tabulku

SCD - Typ 3

- Vhodné jestliže chceme sledovat vývoj jak podle staré tak nové hodnoty
- Přidají se atributy
 - Aktuální hodnota
 - Předchozí hodnota

Sales team dimension

Salesteam_key
Team_name
Team_leader
Region

Sales team dimension
Salesteam_key
Team_name
Team_leader
Previous_region
Current_region

Rychle se měnící dimenze (RCD)

- · Velké dimenze, kterých probíhají časté změny
 - Velký nárůst dat
- Např. Dimenze Zákazník a několik atributů scorujících zákazníka (Dobrý, Brzy odejde, ...)
 - Mění se každý měsíc
- Řešení:
 - Jsou-li měnící se atributy textové a používají se pro tvorbu reportů -> Vytvořit pro ně novou dimenzi přímo napojenou na fakt tabulku
 - Jsou-li numerické převést je na fakta

Surrogate Keys

- Surrogate Keys umělé klíče, používané v DW místo přirozených primárních klíčů
- Je doporučováno všechny přirozené klíče nahradit umělými
 - Všechny join do fakt tabulek přes umělé klíče
- Umělé klíče integer datový typ
 - 4 byte 2 miliardy hodnot
- Důvody
 - Flexibilní, nezávislé na změnách v OLTP systémech
 - Označení hodnoty "Nevím" v dimenzi
 - SCD
 - Rychlejší join
 - Většinou menší nároky na místo než u přirozených klíčů
- I časová dimenze by měla mít umělý klíč
 - Nespojovat přes DATE-TIME (datový typ) atribut

Surrogate Keys Original complete set of dimension records • Umělé klíče: přiřazené každé Production_key dimenzi Description ienerate surrogate keys starting with key = 1 Brand • Hodnoty 1, 2, 3, Category • Přiřazení hodnot umělého Package_type klíče: Size • První načtení • Následné načtení Original set of loadable • Využití look-up tabulek dimension records Surrogate_key Production_key Description Data loader Brand Category Package_type Size

Surrogate Keys

• Look-up tabulka

Production_key	Current_surrogate_key
SKU43WERT567	2345
SKU653TYH7889	4567
SKU34RTB567MM	5436
SKU34ERA23UJ4	2376

Surrogate Keys • Nakonec je třeba aktualizovat look-up tabulky • Jestliže OLTP systémy podporují sledování změn (datum, odpovědnost) nemusí se provádět náročné porovnání položek záznamu. Get new Surrogate key Type 1 Get current Surrogate key Type 2 Fields change Type 2 Surrogate key Lookup table Test unknow production key Type 1 Covenvrite Dimension Type 2 Lookup table Lookup

- Pro řešení vztahu M:N mezi dimenzí a faktovou tabulkou
- Jednomu záznam ve faktové tabulce neodpovídá jeden záznam v dimenzi
- Např.: dimenze diagnóza u sledování pacientů
- Řešení:
 - Vypustit dimenzi
 - Vybrat jednu hlavní hodnotu a ostatní vypustit
 - Vytvořit pevný počet dimenzí diagnózy (každá dimenze pro jednu diagnózu)
 - Zvětšit granualitu faktové tabulky
 - Využít pomocnou tabulku (Helper table)

- Pomocná tabulka
- Weight_Faktor zaručuje správné výsledky ve výstupech
 - Fakta jsou násobena Weight_Faktor
 - Součet Weight_Faktor pro jednu skupinu se rovna 1
 - Zde nastavit proporcionálně pro celou skupinu
- Impact report
 - Není využit Weight_Faktor k násobení
 - Nelze potom agregovat

- Pro uživatele je možné připravit schéma Hvězdy
 - Využit views
 - Spojit pomocnou tabulku na faktovou tabulku
 - Vynásobit fakta Weight_Faktor
 - Výsledek je přímo napojený na dimenzi Diagnóza
- Pomocné tabulky se využijí i v např:
 - Bankovnictví více vlastníků účtu

- Pomocná tabulka obsahuje umělé klíče do tabulek Klient a Účet
 - Při každé SCD2 změně v některé z těchto tabulek je nutné přidat záznam do pomocné tabulky
 - BeginDate a EndDate v pomocné tabulce ukazují interval v němž byl klient majitelem účtu a obě dimenze se neměnily
- Architektura umožňuje komplexní analýzu
 - S jednoduchými SQL dotazy
- Dopad na složitost ETL: doplnit EndDate do předchozího záznamu

- Klient účtu ABC123:
 - SELECT customer.name
 FROM account, map, customer
 WHERE account.accountkey = map.Accountkey
 AND customer.customerkey = map.Customerkey
 AND account.naturalid = 'ABC123'
 AND '7/18/2001' BETWEEN map.begindate AND map.enddate

- · Weight Faktor:
 - K alokaci aditivních faktů na jednotlivé položky dimenzionální tabulky
 - Pro daný účet součet roven 1
- Balance na účtu ABC123
 - SELECT customer.name, fact.balance*weightingfactor FROM fact, account, map, customer, month

WHERE fact.accountkey = account.Accountkey

AND fact.monthkey = month.Monthkey

AND account.accountkey = map.Accountkey

AND customer.customerkey = map.Customerkey

AND account.naturalid = 'ABC123'

AND month.monthdate = 'July, 2001'

- Bez faktoru impact report pro každého majitele účtu stejná hodnota balance
 - Není možné agregovat na zjištění balance účtu
 - Ukazuje s kolika skutečně penězi může klient disponovat

- Pomocná tabulka musí být aktualizovaná:
 - Při změně v dimenzi Účet, Klient
 - Při přidání klienta k účtu, při odebrání klienta z účtu
 - Při úpravě Weight_Faktor (součet 1)
- Pro zjednodušení je vhodné znovu zapsat všechny klienty pro daný účet do pomocné tabulky (stejný BeginDate)

Složité hierarchie v dimenzi

- Využití pomocné tabulky pro sledování složitých hierarchií v dimenzi
 - Standardní SQL
- Uvažujme příklad:
 - Konzultantská firma prodává svým zákazníkům
 - Prodeje mohou být provedeny jedné firmě ale na různých úrovních
 - Uživatelé chtějí sledovat jak prodeje celé firmě tak i jednotlivým oddělením

Složité hierarchie v dimenzi

- Klasický rekurzivní atribut (join tabulky zákazníků samu na sebe) neřeší problém:
 - Není možné využít jednoduché SQL pro dotazy

Revenue fact table

Date_of_service_key

Customer_key

Consulting_service_key

Consulting_manager_key

Project_status_key

Invoice_number

Billed_revenue

Billed_hours

Customer dimension table

Customer_key

Customer_name

Customer_address

Customer_type

Customer_industry

Parent_key

Tempting to add this

The two

recursive pointer

Složité hierarchie v dimenzi

- Řešení přes pomocnou tabulku
- Nijak neovlivní dosavadní model
- Obsahuje záznam pro každou cestu z uzlu na sebe sama a na uzly pod sebou
- Atributy:
 - Parent Customer Key
 - Subsidiary Customer Key
 - Depth From Parent
 - Lowest Flag
 - Topmost Flag

Složité hierarchie v dimenzi

- Umožňuje jednoduchým SQL získat pro daný uzel informace o všech potomcích
- Obrácením spojení se můžete dívat na nadřízené, např:
 - Depth = 1 nadřízený
 - Topmost = True nejvyšší

Složité hierarchie v dimenzi

- Řešení je možné rozšířit o přidání atributů do pomocné tabulky:
 - Začátek_Platnosti
 - Konec_Platnosti
- Umožňuje sledovat změny v hierarchii
- Je-li více rodičů v hierarchii je možné řešit přidáním Weight_Faktor do pomocné tabulky
 - Součet pro uzel musí být roven 1

Degenerovaná dimenze

- Degenerovaná dimenze:
 - Většinou se objeví v případě popisu reality objekt položky objektu (např. objednávka položky objednávky)
 - Faktová tabulka na úrovni položek objednávky
 - Kam s číslem objednávky?
 - Jedná se o degenerovanou dimenzi je zapsaná ve faktové tabulce a nemá přímou napojitelnost na žádnou dimenzionální tabulku
 - Vhodná je pro tvorbu reportů, napojení na provozní systémy, ...

Junk dimension

- Při analýze zdrojových dat zůstanou atributy, které nelze přiřadit k některé dimenzi
 - Např. 10 atributů označujících kód transakce,
- Co s nimi?
 - Vytvořit deset dalších dimenzí může být nepřehledné pro uživatele
 - Spojit všechny atributy do jedné junk dimense
- Junk dimenze vhodné uskupení náhodných indikátorů a různých atributů
- Pozor aby Junk dimense neobsahovala příliš mnoho záznamů

Junk dimension

- Má-li např. každý atribut 100 různých hodnot a jsou plně nezávislé pak může mít dimenze až 100¹⁰ záznamů
- Řešení:
 - Rozdělit atributy do skupin korelovaných atributů
 - Např. má-li A_1 100 různých hodnot a A_2 1000 různých hodnot, kolik různých hodnot nabývá kombinace atributů A_1 a A_2
 - 1000 A₁ je rodičem A₂
 - 100 000 A_1 nezávislé na A_2 rozdělit do dvou dimenzí
 - 10 000 Ize A₁ do dimenze s A₂
- Nabývají-li např. jen 3 různých hodnot lze vytvořit dimenzi se všemi deseti atributy (maximálně 3¹⁰ záznamů)

Heterogenní produkty

- Heterogenní produkty
 - Řešení v businessu kde řada produktů s různými charakteristikami
 - Potřeba sledovat celkový obraz i jednotlivé produkty
- Řešení
 - Základní faktová tabulka pro všechny produkty
 - Faktové tabulky pro jednotlivé produkty

Spojení fakt tabulek

- Pozor při tvorbě dotazů spojujících jednu dimenzi s více než jednou faktovou tabulkou
 - Není možné použít jednoduchý join

Audit dimenze

- Pro sledování auditních informací o plnění faktových tabulek
 - Lze rozšířit na vybrané dimenze i celý datový sklad
- V případě že dochází k update faktové tabulky je třeba (vztah M:N mezi faktovou tabulkou a auditní dimenzí) je třeba přidat mezi faktovou tabulku a auditní dimenzi pomocnou tabulku (vazební)

Časová dimenze

- Vyskytuje se téměř u všech faktových tabulek
- Lze uvažovat dva přístupy
 - Pouze hodnota v faktové tabulce (date-time)
 - Vlastní plnohodnotná dimenze
- Druhá možnost podporuje analýzu
 - SQL funkce nejsou tak komplexní aby zachytily veškerou časovou logiku (např. finanční rok, kalendářní rok, sezónnost, ...)

Time_key

Day_of_week

Day_number_in_month

Day_number_overall

Month

Month_number_overall

Quarter

Fiscal_period

Season

Holiday_flag

Weekday_flag

Last_day_in_month

...

Časová dimenze

- Data jsou plněna "ručně"
 - · Např. makro v Excelu
 - Naplnit několik let (10 20)
- Většinou granualita denní, v některých případech až na sekundy
 - Vhodné rozdělit, sekundy jako numerická fakta (date-time atribut ve fakt tabulce) + klasická denní časová dimenze

Časová dimenze

- Základní dimenze v každém datovém skladě
 - Předpokládejme nejprve denní
- Na první pohled jednoduchá, predikovatelná
 - Kalendářní dny, 365 dní za rok
- · Vyrůstající otázka okolo časových intervalů
- Příkladem transakce na účtu (otevření účtu, transakce –výběr, uložení, uzavření účtu)
- Otázky bez problémů:
 - Ukaž všechny transakce za daný časový úsek
 - Urči zda daná transakce nastala v daném časovém úseku
 - Umožni pokročilou časovou analýzu při využití informací o svátcích, prázdninách, víkendech, ...
- Předchozí otázky vyžadují klasickou časovou dimenzi
- Vhodné doplnit atributy:
 - Poslední den v časovém intervalu (např. poslední den v čtvrtletí)
 - Hodnoty Ano/Ne

Čas dne

- Je-li třeba zachytit přesný čas je vhodné ho oddělit od denní časové dimenze
 - Přesný čas je uvažován spíše jako fakt
 - I když může existovat jeho interpretace (čas oběda, čas uzávěrky, ...)
- Potřebujeme-li sledovat více časových zón lze přidat více časových dimenzí

Čas dne

Sales fact table

Date_key (FK)

GMT_data_key (FK)

Product_key (FK)

Customer_key (FK)

Call_center_key (FK)

Service_rep_key (FK)

Promotion_key (FK)

Time_of_day

GMT_time_of_day

Dollars_sold

Unit_sold

Dollar_cost

Časová dimenze

- · Složitější situace:
 - Ukaž všechny, kteří jsou zákazníky v daném časovém intervalu.
 - Ukaž poslední transakci zákazníka v daném časovém intervalu
 - Ukaž stav účtu zákazníka v libovolném časovém okamžiku
- K odpovědi vystačíme s jednou časovou dimenzí
 - Dotazy jsou ovšem komplexní a složité
 - Neefektivní dotazy
 - · Koncové programy je těžko automaticky definují
- Řešení: Dvě časové dimenze
 - · Počátek a konec intervalu
- · Odpovědi na otázky:
 - Nalézt všechny účty s cas_zacatek transakce otevření účtu před koncem intervalu a cas_konec transakce zavření účtu po začátku daného intervalu
 - Najdi transakci s cas_zacatek v nebo před koncem intervalu a cas_konec v nebo po konci intervalu
 - Najdi transakci s cas_zacatku v nebo před daným okamžikem a cas_konce v nebo po daném okamžiku
- Vystačíme s BETWEEN klauzulí

Časová dimenze

- Dopady dvou dimenzí:
 - Musíte navštívit každý záznam v faktové tabulce dvakrát
 - Při prvním insertu (cas konce nastaven na neurčito, ne null)
 - Při následujícím insertu na účtu k správnému nastavení předcházejícího cas_zacatku
- Problém s větší granualitou
 - Lze využít dvě dimenze
 - Nelze využít klasickou předpřipravenou časovou dimenzi mnoho záznamů (31 milionu sekund za rok)
- Řešení:
 - Čtyři dimenze, dvě s denní granualitou, dvě s sekundovou (pouze date/time ve faktové tabulce)
 - Dynamická časová dimenze (pro daný záznam ve faktové se vygeneruje záznam v časové dimenzi)

Různě měny • Pro sledování různých měn • Lze uložit fakta v různých měnách • Nebo využít speciální faktovou tabulku pro konverzi Multinational sales fact table Date_key (FK) Product_key (FK) Buying_cou

Daily currency conversion fact table
Date_key (FK)
Buying_country_key (FK)

Selling_counry_key (FK)

Conversion_rate

US_dollar_equivaveInt_tendered

Local_currency_tendered

Reporting_country_key (FK)
Customer_key (FK)
Promotion_key (FK)
Quantity_sold

Store_key (FK)

Intervalový reporting

• Je-li potřeba vytvořit report stylu:

Balance range	Number of Accounts	Total of Balances
0 - 1000	456	123
1001 - 2000	678	234
2001 - 3000	345	125
3001 and up	123	23

- Není jednoduché v SQL
 - Možno využít CASE, ...není transparentní
- Lze využít speciální design
 - Join přes spodní a horní meze intervalu
 - Do reportu název intervalu
 - Využívá indexy na faktech

Změny v dimenzi

- V reálném DW nevystačíme pouze s faktovými a dimenzionálními tabulkami
- Potřeba zachytit změnu v prostředí
- Řešení SCD (typ 2)
- Co když ale chceme prohlížet dimenzi odděleně od faktové tabulky?
 - Kdy se zákazník oženil?
 - Kdy poprvé si potom zakoupil zboží?
 - Které další atributy se u zákazníka změnily?
 - Které atributy se obvykle mění společně?

Změny v dimenzi

- 0 pomáhá identifikovat kdy zákazník byl vložen do systému
- V obrázku je využita technika dvou časových dimenzí cas_zacatku, cas_konce efektu transakce
- Last_Trans_Flag pro nalezení poslední transakce aktuálního profilu zákazníka
- Technika je využitelná nejen pro dimenzi zákazník (produkt, dodavatel, zaměstnanec)

Náročné úlohy

Velké dimenze

- Některé dimenze mohou být opravdu velké
 - Zákazníci
 - Produkty (500 000)
- Nutné využít bitmapové indexy
- Rozdělit velké dimenze
 - Stabilní část
 - Proměnlivá SCD (rozdělit na intervaly, naplnit všemi možnostmi)
 - Obě dimenze napojené na fakt tabulku
 - Nebo neimplementovat SCD
- Problémy:
 - Ztráta informace při převodu na intervaly
 - Proměnlivá dimenze nesmí být moc velká řešení vytvořit jich několik
 - Zpomalení prohlížení dimenze, nutné přes faktovou tabulku
 - Změna pouze při zápisu do faktové tabulky řešení vytvořit umělý typ transakce změna atributu, kdy se změní atributy v proměnlivé dimenzi

Causal dimension

- Zachycuje důvody proč došlo k zápisu do faktové tabulky
- Příklad: Prodej v obchodním řetězci
 - Proč zákazník nakoupil
 - Důvody: Platí sleva, promo akce, ochutnávka, ...
- Obdobně telekomunikace: sleva na volaní, akce na víkend, nej číslo, ...
- Vhodné nalézt tyto informace a dodat do modelu
 - Podpora marketingových analýz
- Nemá vliv na původní faktovou tabulku
 - Nemění její granualitu

Causal dimension

• Důležité je nezapomenout na hodnotu: Žádná promoce

Role

- Výskyt dimenzionální tabulky ve více rolích
- Např.: Akumulovaná fakt tabulka objednávek
 - Dimenze: Datum objednávky, Datum balení, Datum dodávky, Datum platby, ..., Zákazník, Produkt
- Není možné napojit vše na jednu časovou dimenzi
 - Fyzicky je možné udržovat pouze jednu dimenzi
 - Využít view, kopie, materializované view každá dimenze své jméno (i atributy)
- Podobně je možné řešit např. výskyt Regionu v různých dimenzích (Zakaznik, Dodavatel, ...)
 - Pouze jedna dimenze Region
 - Napojení přes Sněhovou vločku na dimenze ostatní