DiffTraj: Generating GPS Trajectory with Diffusion Probabilistic Model DiffTraj: 利用扩散概率模型生成 GPS 轨迹 https://github.com/Yasoz/DiffTraj 2023 NeurIPS

扩散概率模型由两个主要过程组成: 一个是用噪声逐渐扰动数据分布的正 向过程,另一个是学习恢复原始数据 分布的反向(去噪)过程。

用于轨迹生成的时空扩散概率模型DiffTraj

核心: 前向轨迹扩散过程对轨迹分布进行噪声扰动,反向轨迹去噪过程从噪声中重建和合成地理轨迹。

方法: Traj-UNet网络,以嵌入条件信息,并在反向过程中准确估计噪声水平

利用扩散模型生成轨迹的示意图 (左图)正向和反向过程 (右图)用于反向去噪的耦合神 经网络模型结构

DiffTraj 主要目标:利用参数化模型 $p_{\theta}(x_0^s \mid x_0^{co})$ 估计真实世界的轨迹分布 $q(x_0 \mid x_0^{co})$ 。给定随机噪声 $x_T \sim \mathcal{N}(0, I)$,DiffTraj 以观测值 x_0^{co} 为条件生成合成轨迹 x_0^s 。

条件信息:

数字运动属性:速度、距离;采用Wide网络嵌入离散外部属性:出发时间、区域;采用Deep网络嵌入

实验DiffTraj

数据集:成都、西安出租车数据

	Column 1 Product	Column 2	Column 3 Country	Column 4 Date	Column 5 Sales Amount
Row Group 1	Ball	John Doe	USA	2023-01-01	100
	T-Shirt	John Doe	USA	2023-01-02	200
Row Group 2	Socks	Maria Adams	UK	2023-01-01	300
	Socks	Antonio Grant	USA	2023-01-03	100
Row Group 3	T-Shirt	Maria Adams	UK	2023-01-02	500
	Socks	John Doe	USA	2023-01-05	200

Head shape: [depature time, total_distance, total_travel_time, total_length_of_points, avg_distance_between_points, avg_speed, start_area_id, end_area_id].

Trajectory: [2, length_of_trajs], mean latitude and longitude.

数据格式