Discrete and Continuous Models for Concurrent Systems

4. Advanced Topics

Uli Fahrenberg

EPITA Research Laboratory (LRE), Rennes/Paris, France

EWSCS 27. Viinistu. March 2025

Presheaves

- 1 Introduction
- 2 Geometric Realisation
- 3 Presheaves
- 4 Concurrent Kleene Algebra
- 5 Birkhoff Duality & Path Objects
- **6** Conclusion

Geometric Realisation

Definition

Introduction

A precubical set is a graded set $X = \{X_n\}_{n \ge 0}$ together with face maps $\delta_i^0, \delta_i^1: X_n \to X_{n-1}$, for $i = 1, \ldots, n$, satisfying $\delta_i^{\nu} \delta_i^{\mu} = \delta_{i-1}^{\mu} \delta_i^{\nu}$ for i < j.

Definition

The geometric realisation of a precubical set X is the d-space $|X| = \bigsqcup_{n>0} X_n \times \vec{l}^n /_{\sim}$, where \sim is the equivalence generated by $(\delta_i^{\nu} x, (t_1, \ldots, t_{n-1})) \sim (x, (t_1, \ldots, t_{i-1}, \nu, t_{i+1}, \ldots, t_{n-1})).$

Geometric Realisation

Definition

Introduction

The geometric realisation of a precubical set X is the d-space $|X| = \bigsqcup_{n \geq 0} X_n \times \tilde{I}^n /_{\sim}$, where \sim is the equivalence generated by

$$(\delta_i^{\nu} x, (t_1, \ldots, t_{n-1})) \sim (x, (t_1, \ldots, t_{i-1}, \nu, t_{i+1}, \ldots, t_{n-1})).$$

- usual coend definition; left adjoint to singular precubical set functor
- actually, |X| is an lpo-space

Dipaths in Geometric Realisations

Let $p: \vec{l} \to |X|$ be a dipath in the geometric realisation of precubical set X.

- let $C_p = \{x \in X \mid \operatorname{im}(p) \cap |x| \neq \emptyset\}$ all cells touched by p
- organize C_p into a sequence $c_p = (x_1, \ldots, x_m)$ s.t. $\forall i$:

$$x_i = \delta^0_+ x_{i+1}$$
 or $x_{i+1} = \delta^1_+ x_i$ (iterated face maps)

Dipaths in Geometric Realisations

Let $p: \vec{l} \to |X|$ be a dipath in the geometric realisation of precubical set X.

- let $C_p = \{x \in X \mid \operatorname{im}(p) \cap |x| \neq \emptyset\}$ all cells touched by p
- organize C_p into a sequence $c_p = (x_1, \ldots, x_m)$ s.t. $\forall i$:

$$x_i = \delta_+^0 x_{i+1}$$
 or $x_{i+1} = \delta_+^1 x_i$ (iterated face maps)

 \implies the carrier sequence of p: a combinatorial path

Lemma

- any combinatorial path c gives rise to dipath p_c (non-unique) with $c_{p_c}=c$
- if $c_p = c_a$, then p and q are dihomotopic

Combinatorial Homotopy

equivalence relation on combinatorial paths generated by local replacements

Lemma

Introduction

- dipaths p, q are dihomotopic iff c_p and c_q are homotopic
- combinatorial paths c, d are homotopic iff p_c and p_d are dihomotopic

Conclusion

Summing Up

- precubical sets: combinatorial models of directed spaces
- linked to directed spaces via geometric realisation
- dipaths $\hat{=}$ combinatorial paths $\hat{=}$ executions
- dihomotopy \(\hat{\phi}\) combinatorial homotopy \(\hat{\phi}\) equivalence of executions

Combinatorial Homotopy vs Subsumption

- subsumption □: preorder generated by local replacements
- combinatorial homotopy \simeq is the equivalence relation generated by subsumption

Lemma

- $\alpha \sqsubseteq \beta \implies ev(\alpha) \sqsubseteq ev(\beta)$
- ???? $\alpha \simeq \beta \implies \text{ev}(\alpha)$??? $\text{ev}(\beta)$

- Introduction
- 2 Geometric Realisation
- 3 Presheaves
- 4 Concurrent Kleene Algebra
- 5 Birkhoff Duality & Path Objects
- **6** Conclusion

Precubical Sets?

Introduction

Definition (today)

A precubical set is a graded set $X = \{X_n\}_{n \geq 0}$ together with face maps $\delta_i^0, \delta_i^1: X_n \to X_{n-1}$, for $i = 1, \ldots, n$, satisfying $\delta_i^{\nu} \delta_j^{\mu} = \delta_{j-1}^{\mu} \delta_i^{\nu}$ for i < j.

Definition (yesterday)

A precubical set is a set X together with a mapping $\mathrm{ev}: X \to \text{(conclists)}$ and with face maps $\delta_A^0, \delta_A^1: X[U] \to X[U \setminus A]$ satisfying $\delta_A^\mu \delta_B^\nu = \delta_B^\nu \delta_A^\mu$ for $A \cap B = \emptyset$.

Presheaves Presheaves Presheaves

(augmented) precube category \Box	large (augmented) precube category $oxdot$
objects $\{0,1\}^n$ for $n \ge 0$	objects totally ordered finite sets
morphisms injections of 0s and 1s	morphisms A, B-injections
skeletal	isos are unique

Lemma

Introduction

The inclusion $\square \hookrightarrow \square$ is an equivalence of categories with a unique left inverse.

Corollary

The presheaf categories $\operatorname{Set}^{\square^{\operatorname{op}}}$ and $\operatorname{Set}^{\square^{\operatorname{op}}}$ are uniquely naturally isomorphic.

• precubical sets: Set or Set or Set makes no difference

Presheaves Presheaves Presheaves

(augmented) precube category \square	large (augmented) precube category \odot
objects $\{0,1\}^n$ for $n \ge 0$	objects totally ordered finite sets
morphisms injections of 0s and 1s	morphisms A, B-injections
skeletal	isos are unique

Lemma

The inclusion $\square \hookrightarrow \square$ is an equivalence of categories with a unique left inverse.

Corollary

The presheaf categories $\mathsf{Set}^{\square^\mathsf{op}}$ and $\mathsf{Set}^{\square^\mathsf{op}}$ are uniquely naturally isomorphic.

• precubical sets: Set or Set or Set makes no difference

Presheaves

• (but, no labels in \boxdot ; fundamental theorem takes care of this: For \mathcal{C} a presheaf cat and $\Sigma \in \mathcal{C}$, also the slice \mathcal{C}/Σ is a presheaf cat.)

Context

(augmented) precube category \square	large (augmented) precube category \odot
objects $\{0,1\}^n$ for $n \ge 0$	objects totally ordered finite sets
morphisms injections of 0s and 1s	morphisms A, B -injections
skeletal	isos are unique
$\square \hookrightarrow \square$ equivalence with unique left inverse	

Context

(augmented) ${}$ precube category \Box	large (augmented) precube category \odot
objects $\{0,1\}^n$ for $n \ge 0$	objects totally ordered finite sets
morphisms injections of 0s and 1s	morphisms A, B -injections
skeletal	isos are unique
$\square \hookrightarrow \boxdot$ equivalence with unique left inverse	
augmented presimplex category Δ	large augmented presimplex category Δ
augmented presimplex category Δ objects $\{1 < \cdots < n\}$ for $n \ge 0$	large augmented presimplex category Δ objects totally ordered finite sets
	3 3
objects $\{1 < \cdots < n\}$ for $n \ge 0$	objects totally ordered finite sets

Presheaves 00000

Context

(augmented) precube category □	large (augmented) precube category \odot
objects $\{0,1\}^n$ for $n \ge 0$	objects totally ordered finite sets
morphisms injections of 0s and 1s	morphisms A, B -injections
skeletal	isos are unique
$\square \hookrightarrow \boxdot$ equivalence with unique left inverse	
augmented $\frac{presimplex}{presimplex}$ category Δ	large augmented presimplex category Δ
objects $\{1 < \cdots < n\}$ for $n \ge 0$	objects totally ordered finite sets
morphisms order injections	morphisms order injections
skeletal	isos are unique
$\Delta \hookrightarrow \Delta$ equivalence with unique left inverse	
	category of species ${\mathbb B}$
	objects finite sets
	morphisms bijections
	isos are not unique

Context

(augmented) precube category \Box	large (augmented) precube category \odot
objects $\{0,1\}^n$ for $n \ge 0$	objects totally ordered finite sets
morphisms injections of 0s and 1s	morphisms A, B -injections
skeletal	isos are unique
$\square \hookrightarrow \overline{\ }$ equivalence with unique left inverse	
augmented $\frac{presimplex}{presimplex}$ category Δ	large augmented presimplex category Δ
objects $\{1 < \cdots < n\}$ for $n \ge 0$	objects totally ordered finite sets
morphisms order injections	morphisms order injections
skeletal	isos are unique
$\Delta \hookrightarrow \Delta$ equivalence with unique left inverse	
"category" of ordinals	category of species ${\mathbb B}$
objects $\{1,\ldots,n\}$ for $n\geq 0$	objects finite sets
morphisms permutations	morphisms bijections
skeletal	isos are not unique

The Zoo of Cubes (It's HoTT!)

precubical set: graded set $X = \{X_n\}_{n \geq 0}$ plus face maps $\delta_i^0, \delta_i^1 : X_n \to X_{n-1}$

- plus degeneracies $\epsilon_i: X_n \to X_{n+1}$: cubical set
- with connections $\gamma_i^0, \gamma_i^1: X_n \to X_{n+1}$
- with transpositions $\sigma_i: X_n \to X_n$
- with diagonals $\Delta: X_n \to X_{n-1}$
- many subsets of these are in use
- all are presheaves
- diagonals are important in cubical homotopy type theory
- cubical ω -categories with connections are equivalent to globular ω -categories

- 2 Geometric Realisation
- 3 Presheaves
- 4 Concurrent Kleene Algebra
- 5 Birkhoff Duality & Path Objects
- **6** Conclusion

Monoids, Semirings, Kleene Algebra (Recall, Hopefully)

- ullet a monoid: set S, operation \cdot on S, associative with unit $1 \in S$
 - free monoid on Σ : Σ^* ; · is concatenation
- a semiring: set S, operations + (associative, commutative, unit 0) and · (associative, unit 1), plus distributivity (x + y)z = xz + yz and z(x + y) = zx + zy
 - idempotent if x + x = x
 - free idempotent semiring on Σ: finite subsets of Σ*
 - (powerset lifting; general principle of adding idempotent + to algebraic structure)
- a Kleene algebra: idempotent semiring plus (unary) * operation
 - * "computes loops" / "computes least fixed points"
 - (different axiomatisations possible)

Concurrent Kleene Algebra

Definition

Introduction

A concurrent monoid $(S, \cdot, ||, 1, \leq)$:

- S set, \cdot and \parallel associative operations with shared unit 1
 - · concatenation, | parallel composition
- \leq partial order on S such that \cdot and \parallel are monotone
 - $x \le y \implies x \cdot z \le y \cdot z$ and $x || z \le y || z$ etc.
- and such that $(x||y) \cdot (z||w) \le (x \cdot z) || (y \cdot w)$
 - lax interchange:

Concurrent Kleene Algebra?

- concurrent monoid: $(\mathcal{S},\cdot,\parallel,1,\leq)$
- free concurrent monoid on Σ : series-parallel pomsets
 - ullet pomsets obtained from $a\in \Sigma$ by series and parallel composition
- Theorem (old): pomset P is series-parallel iff P contains no induced N

Concurrent Kleene Algebra?

- concurrent monoid: $(S,\cdot,\parallel,1,\leq)$
- free concurrent monoid on Σ : series-parallel pomsets
- ullet pomsets obtained from $a\in \Sigma$ by series and parallel composition
- Theorem (old): pomset P is series-parallel iff P contains no induced N
- but look we have N's:

Special ipomsets

Definition

Introduction

An ipomset $(P, <, --\rightarrow, S, T, \lambda)$ is

- discrete if < is empty (hence --→ is total)
 - also written _SP_T
- a conclist ("concurrency list") if it is discrete and $S = T = \emptyset$
- a starter if it is discrete and T = P
- a terminator if it is discrete and S = P
- an identity if it is both a starter and a terminator

• a · · · b •

- b•
- b•

Lemma (Janicki-Koutny 93; reformulated)

An ipomset is interval iff it has a decomposition into discrete ipomsets.

Decompositions

Introduction

Lemma (Janicki-Koutny 93)

A poset (P, <) is an interval order iff the order defined on its maximal antichains defined by $A \prec B \iff \forall a \in A, b \in B : b \not< a$ is total.

Corollary

An ipomset is interval iff it has a decomposition into discrete ipomsets.

Lemma

Any discrete ipomset is a gluing of a starter and a terminator. $\begin{bmatrix} \bullet a \\ \bullet b \bullet \\ \bullet \bullet \end{bmatrix} = \begin{bmatrix} \bullet a \bullet \\ \bullet b \bullet \\ \bullet b \bullet \end{bmatrix} * \begin{bmatrix} \bullet a \\ \bullet b \bullet \\ \bullet b \bullet \end{bmatrix}$

$$\begin{bmatrix} a \\ b \bullet \\ a \bullet \end{bmatrix} = \begin{bmatrix} \bullet a \bullet \\ \bullet b \bullet \\ a \bullet \end{bmatrix} * \begin{bmatrix} \bullet a \\ \bullet b \bullet \\ \bullet a \bullet \end{bmatrix}$$

Corollary

Any interval ipomset has a decomposition as a sequence of starters and terminators.

$$\begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} a \cdot \\ c \end{bmatrix} * \begin{bmatrix} \cdot a \\ a \cdot \end{bmatrix} * \begin{bmatrix} b \\ \cdot a \end{bmatrix} = \begin{bmatrix} a \cdot \\ c \cdot \end{bmatrix} * \begin{bmatrix} \cdot a \cdot \\ \cdot c \end{bmatrix} * \begin{bmatrix} \cdot a \cdot \\ a \cdot \end{bmatrix} * \begin{bmatrix} \cdot a \cdot \\ \cdot a \cdot \end{bmatrix} * \begin{bmatrix} b \cdot \\ \cdot \\ \cdot a \cdot \end{bmatrix} * \begin{bmatrix} b$$

Unique decompositions

Notation: St: set of starters SU_{II}

Te: set of terminators $_{II}U_{T}$

 $Id = St \cap Te$: set of identities I_1U_{11}

 $\Omega = St \cup Te$

Definition

Introduction

A word $w = (S_1, U_1, T_1) \dots (S_n, U_n, T_n) \in \Omega^+$ is coherent if $T_i = S_{i+1}$ for all i.

Definition

A coherent word is sparse if proper starters and proper terminators are alternating.

- additionally, all $w \in Id \subseteq \Omega^+$ are sparse
- so that's $Id \cup (St \setminus Id)((Te \setminus Id)(St \setminus Id))^* \cup (Te \setminus Id)((St \setminus Id)(Te \setminus Id))^*$

Lemma

Any interval ipomset P has a unique decomposition $P = P_1 * \cdots * P_n$ such that $P_1 \dots P_n \in \Omega^+$ is sparse.

Step sequences

Introduction

Let \sim be the congruence on Ω^+ generated by the relation

$$_SU_U \cdot _UT_T \sim _ST_T$$
 $_SS_U \cdot _UU_T \sim _SS_T$

(compose subsequent starters and subsequent terminators)

Definition

A step sequence is a \sim -equivalence class of coherent words in Ω^+ .

Lemma

Any step sequence has a unique sparse representant.

Theorem

The category of interval ipomsets is isomorphic to the category of step sequences.

Conclusion

Categories?

Introduction

Definition (Category iiPoms)

objects: conclists U (discrete ipomsets without interfaces)

morphisms in iiPoms(U, V): interval ipomsets P with sources U and targets V

composition: gluing identities id u = uUv

Definition (Category Coh)

objects: conclists U (discrete ipomsets without interfaces)

morphisms in $\mathsf{Coh}(U,V)$: step sequences $[(S_1,U_1,T_1)\dots(S_n,U_n,T_n)]_{\sim}$ with $S_1=U$ and $T_n=V$

composition: concatenation identities $id_{IJ} = I_I U_{IJ}$

- Coh is category generated from (directed multi)graph Ω under relations \sim
- isomorphisms Φ : iiPoms \leftrightarrow Coh : Ψ provided by
 - $\Phi(P) = [w]_{\sim}$, where w is any step decomposition of P;
 - $\Psi([P_1 \dots P_n]_{\sim}) = P_1 * \dots * P_n$ (needs lemma)

Algebra?

Introduction

this is not cancellative:

$$a \cdot \begin{bmatrix} \bullet a \cdot \\ a \cdot \end{bmatrix} = a \cdot \begin{bmatrix} a \cdot \\ \bullet a \cdot \end{bmatrix} = \begin{bmatrix} a \cdot \\ a \cdot \end{bmatrix}$$

- "categorical concurrent Kleene algebra"?
- (what to do about subsumptions? 2-categories?)

- 2 Geometric Realisation
- 3 Presheaves
- 4 Concurrent Kleene Algebra
- 5 Birkhoff Duality & Path Objects
- **6** Conclusion

Path Objects

Introduction

Theorem

For every ipomset P there exists an HDA $\square^P := X$ such that $L(X) = \{P\} \downarrow$.

- the path object of P
- ad-hoc construction

Lemma (very useful!)

For any ipomset P and HDA X, $P \in L(X) \iff \exists f : \Box^P \to X$.

express languages using morphisms

Now Look At Those Down-Closed Subsets!

• join-irreducibles $\hat{=}$ principal downsets

Now Look At Those Down-Closed Subsets!

- join-irreducibles $\hat{}$ principal downsets
- induced order isomorphic to P

Now Look At Those Down-Closed Subsets!

- join-irreducibles $\hat{}$ principal downsets
- induced order isomorphic to P
- principal strict downsets totally ordered $\iff P$ interval order

Now Look At Those Down-Closed Subsets!

- join-irreducibles $\hat{}$ principal downsets
- induced order isomorphic to P
- principal strict downsets totally ordered $\iff P$ interval order
- Conjecture: path object $\square^P = CAT0$ -closure of subset lattice

Conclusion

- The Geometry of Concurrency
- Concurrent Semantics of Petri Nets
- 3 Languages of Higher-Dimensional Automata
- Advanced Topics
- Geometry and topology of concurrency provide intuition and methodology
- Petri nets are a nice and useful model for concurrent systems
- Higher-dimensional automata are a powerful model for concurrent systems with a nice language theory
- Non-interleaving concurrency is both nice and necessary
- Categories, functors, and presheavs are everywhere

Projects

Introduction

Three (!) PhD proposals:

- HDAs on infinite words
- Model checking of HDAs and Petri nets (with Philipp Schlehuber)
- Active learning techniques for HDAs and other models for concurrency

Other current work.

- "French automata theory" for HDAs
- Lattice/domain theoretic approach to directed homotopy
- Homotopy and unfoldings
- Higher-dimensional timed automata (and time Petri nets)

Nine (!) open permanent positions at EPITA Paris

Come and join us if you dare!

Conclusion

Selected Bibliography

- L.Fajstrup. Dicovering spaces. Homology Homotopy Appl. 2003
- L.Fajstrup. Dipaths and dihomotopies in a cubical complex. Adv.Appl.Math. 2005
- F.A.Al-Agl, R.Brown, R.Steiner. *Multiple categories: the equivalence of a globular and a cubical approach.* Adv.Math. 2002
- S.Awodey. Cartesian cubical model categories. arxiv 2023
- T.Hoare, B.Möller, G.Struth, I.Wehrman. Concurrent Kleene algebra and its foundations. J.Log.Alg.Prog. 2011
- C.Calk, L.Santocanale. Complete congruences of completely distributive lattices.
 RAMiCS 2024