WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREAT! (PCE)

US

US

US

i	(51) International Patent Classification 7:				
Ì	C12N 15/12, 5/10, C07K 14/705, 16/28,				
ı	C12Q 1/68, G01N 33/50, A61K 38/17				

(11) International Publication Number:

WO 00/29583

(43) International Publication Date:

25 May 2000 (25.05.00)

(21) International Application Number:

PCT/US99/27566

(22) International Filing Date:

19 November 1999 (19.11.99)

(30) Priority Data:

Not furnished 19 November 1998 (19.11.98) 22 December 1998 (22,12,98) 60/113,635 60/128,194 7 April 1999 (07.04.99)

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications 60/113,635 (CIP) 211 Filed on 22 December 1998 (22,12,98) 211 60/128,194 (CIP) Filed on 7 April 1999 (07.04.99) Not furnished (CIP)

US 19 November 1998 (19.11.98) Filed on US 09/195,853 (CIP) Filed on 19 November 1998 (19.11.98)

(71) Applicant (for all designated States except US): INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive. Palo Alto, CA 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). TANG, Y., Tom [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). CORLEY, Neil, C. [US/US]; 1240 Dale Avenue #30, Mountain View, CA 94040 (US). GUEGLER, Karl, J. [CH/US]; 1048 Oakland Avenue, Menlo Park, CA 94025 (US). GORGONE, Gina, A. [US/US]; 1253 Pinecrest Drive, Boulder Creek, CA 95006 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). LU, Dyung, Aina, M. [US/US]; 55 Park Belmont Place, San Jose, CA 95136 (US). LAL, Preeti [BVUS]; 2382 Lass Drive, Santa Clara, CA 95054 (US). HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive #12, Mountain View, CA 94040 (US). YANG, Junming [CN/US]; 7136 Clarendon Street, San Jose, CA 95129 (US).

(74) Agents: BILLINGS, Lucy, J. et al.; Incyte Pharmaceuticals, Inc., 3174 Porter Drive, Palo Alto, CA 94304 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR. BY, CA, CH, CN, CU, CZ, DB, DK, EE, ES, FI, GB, GD. GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KB, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SB), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: IMMUNOGLOBULIN SUPERFAMILY PROTEINS

(57) Abstract

The invention provides human immunoglobulin superfamily proteins (IGFAM) and polynucleotides which identify and encode IGFAM. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of IGFAM.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ı					•		
AL,	Albania	ES	Spein	LS	Lesotho	SI	Slovenia
AM	Armonia	Pi	Pintend	LT	Litternia	SK.	
AT	Anstria	FR	Prance	เม	Luxembourg	SN	Slovakia
AU	Austrafia	GA	Gabos	LV	Latvia	8Z	Senegal
AZ:	Azerbeijen	GB	United Kingdom	MC	Monaco		Swaziland
BA	Bosnia and Herzegovina	GB	Georgia	MD	Republic of Moldova	TD	Ched ·
BB	Barbados	GH	Ghana	MG	Madagascar	TG	Тодо
BR	Belgium	GN	Guinea	MK		TJ	Tujikisten
BF	Burkina Paso	GR	Greece	ma	The former Yugoslav	TM	Turkmenistan
BG	Bulgaria	HU	Hungary	MIL	Republic of Macedonia	TR	Torkey
ÐJ	Benin	IR .	. Ireland	MN	Mali	TT	Trinidad and Tobago
BR	Brazil	IL.	Israel	MIR	Mongolia	UA	Ukraine
BY	Belarus	18	Icrhod		Maurkania	UG	Uganda
CA	Canada	'n	Italy	WW	Malawi	US	United States of America
CF	Central African Republic	JP		MX	Mexico	UZ	Uzbekistan
CG	Congo	KR	Japan	NB	Niger	· VN	Viet Nam
CH	Switzerland		Kenya	NL	Notherlands	YU	Yugoslavia
a	Cite d'Ivoire	KG	Kyrgyzatan	NO	Norway	zw	Zimbabwe
CM		KP	Democratic People's	NZ	New Zealand		
CN	Cameroon China		Republic of Korea	PL	Polend		
CU		KR	Republic of Korea	PT	Portugal		
	Caba	KZ	Kazakatan	RO	Romania		
cz	Crech Republic	LC	Saint Lucia	RU	Russian Federation		
DR	Germany	u	Licchteostein	SD	Sodan		

PCT/US99/27566

5

25

30

IMMUNOGLOBULIN SUPERFAMILY PROTEINS

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of immunoglobulin superfamily proteins and to the use of these sequences in the diagnosis, treatment, and prevention of cancer, immune system disorders, and infections.

BACKGROUND OF THE INVENTION

All vertebrates have developed sophisticated and complex immune systems that provide protection from viral, bacterial, fungal, and parasitic infections. Protection is mediated through cell surface and soluble molecules which function in recognition, adhesion or binding. The vertebrate immune system evolved from a common evolutionary precursor (i.e., these proteins have structural homology). A number of molecules outside the immune system that have similar functions are also derived from this same evolutionary precursor.

An important characteristic of the immune system is its ability to recognize and destroy foreign molecules, or antigens. Antigen recognition is mediated primarily by secreted and

15 transmembrane proteins expressed by leukocytes (white blood cells) such as granulocytes, monocytes, and lymphocytes. Most of these proteins belong to the immunoglobulin (Ig) superfamily. The cell surface and soluble molecules of the immune system are classified as members of the Ig superfamily, members of which contain one or more repeats of a conserved structural Ig domain. The Ig domain, 70-110 amino acid residues in length, is homologous to either Ig variable-like (V) or Ig constant-like

20 (C) domains. The Ig domain is described as antiparallel β sheets joined by a disulfide bond in an arrangement called the Ig fold. Members of the Ig superfamily include antibodies (Ab), T cell receptors (TCRs), class I and II major histocompatibility (MHC) proteins, CD2, CD3, CD4, CD8, poly-Ig receptors, Fc receptors, neural cell adhesion molecule (NCAM) and platelet-derived growth factor receptor (PDGFR).

Ig domains (V and C) are regions of conserved amino acid residues that give a polypeptide a globular tertiary structure called an immunoglobulin (or antibody) fold, which consists of two approximately parallel layers of β -sheets. Conserved cysteine residues form an intrachain disulfide-bonded loop, 55-75 amino acid residues in length, which connects the two layers of the β -sheets. Each β -sheet has three or four anti-parallel β -strands of 5-10 amino acid residues. Hydrophobic and hydrophilic interactions of amino acid residues within the β -strands stabilize the Ig fold (hydrophobic on inward facing amino acid residues and hydrophilic on the amino acid residues in the outward facing portion of the strands). A V domain consists of a longer polypeptide than a C domain, with an

1

PCT/US99/27566

additional pair of \beta-strands in the lg fold.

WO 00/29583

A consistent feature of Ig superfamily genes is that each sequence of an Ig domain is encoded by a single exon. It is possible that the superfamily evolved from a gene coding for a single Ig domain involved in mediating cell-cell interactions. New members of the superfamily then arose by exon and gene duplications. Modern Ig superfamily proteins contain different numbers of V and/or C domains. Another evolutionary feature of this superfamily is the ability to undergo DNA rearrangements, a unique feature retained by the antigen receptor members of the family.

Many members of the Ig superfamily are integral plasma membrane proteins with extracellular Ig domains. The hydrophobic amino acid residues of their transmembrane domains and their cytoplasmic tails are very diverse, with little or no homology among Ig family members or to known signal-transducing structures. There are exceptions to this general superfamily description. For example, the cytoplasmic tail of PDGFR has tyrosine kinase activity. In addition Thy-1 is a glycoprotein found on thymocytes and T cells. This protein has no cytoplasmic tail, but is instead attached to the plasma membrane by a covalent glycophosphatidylinositol linkage.

Another common feature of many Ig superfamily proteins is the interactions between Ig domains which are essential for the function of these molecules. Interactions between Ig domains of a multimeric protein can be either homophilic or heterophilic (i.e., between the same or different Ig domains). Antibodies are multimeric proteins which have both homophilic and heterophilic interactions between Ig domains. Pairing of constant regions of heavy chains forms the Fc region of an antibody and pairing of variable regions of light and heavy chains forms the antigen binding site of an antibody. Heterophilic interactions also occur between Ig domains of different molecules. These interactions provide adhesion between cells for significant cell-cell interactions in the immune system and in the developing and mature nervous system. (Reviewed in Abbas, A.K. et al. (1991) Cellular and Molecular Immunology, W.B. Saunders Company, Philadelphia, PA, pp.142-145.)

25 Antibodies

10

15

Antibodies, or immunoglobulins, are the founding members of the lg superfamily and are the central components of the humoral immune response. Antibodies are either expressed on the surface of B-cells or secreted by B-cells into the circulation. Antibodies bind and neutralize blood-borne foreign antigens. The prototypical antibody is a tetramer consisting of two identical heavy polypeptide chains (H-chains) and two identical light polypeptide chains (L-chains) interlinked by disulfide bonds. This arrangement confers the characteristic Y-shape to antibody molecules. Antibodies are classified based on their H-chain composition. The five antibody classes, lgA, lgD, lgE, lgG and lgM, are defined by the α , δ , ϵ , γ , and μ H-chain types. There are two types of L-chains, κ and λ , either of which may associate as a pair with any H-chain pair. lgG, the most common class

of antibody found in the circulation, is tetrameric, while the other classes of antibodies are generally variants or multimers of this basic structure.

H-chains and L-chains each contain an N-terminal variable region and a C-terminal constant region. The constant region consists of about 110 amino acids in L-chains and about 330 or 440 amino acids in H-chains. The amino acid sequence of the constant region is nearly identical among H- or L-chains of a particular class. The variable region consists of about 110 amino acids in both H- and L-chains. However, the amino acid sequence of the variable region differs among H- or L-chains of a particular class. Within each H- or L-chain variable region are three hypervariable regions of extensive sequence diversity, each consisting of about 5 to 10 amino acids. In the antibody molecule, the H- and L-chain hypervariable regions come together to form the antigen recognition site. (Reviewed in Alberts, B. et al. (1994) Molecular Biology of the Cell, Garland Publishing, New York, NY, pages 1206-1213 and 1216-1217.)

Both H-chains and L-chains contain repeated Ig domains. For example, a typical H-chain contains four Ig domains, three of which occur within the constant region and one of which occurs within the variable region and contributes to the formation of the antigen recognition site. Likewise, a typical L-chain contains two Ig domains, one of which occurs within the constant region and one of which occurs within the variable region. In addition, H chains such as μ have been shown to associate with other polypeptides during differentiation of the B-cell. One such polypeptide called 8HS-20 is itself a member of the Ig superfamily and contains a single Ig domain (Shirasawa, T. et al. (1993) EMBO J. 12:1827-1834).

The immune system is capable of recognizing and responding to any foreign molecule that enters the body. Therefore, the immune system must be armed with a full repertoire of antibodies against all potential antigens. Such antibody diversity is generated by somatic rearrangement of gene segments encoding variable and constant regions. These gene segments are joined together by site-specific recombination which occurs between highly conserved DNA sequences that flank each gene segment. Because there are hundreds of different gene segments, millions of unique genes can be generated combinatorially. In addition, imprecise joining of these segments and an unusually high rate of somatic mutation within these segments further contribute to the generation of a diverse antibody population.

Antibodies can also be described in terms of their two main functional domains. Antigen recognition is mediated by the Fab (antigen binding fragment) region of the antibody, while effector functions are mediated by the Fc (crystallizable fragment) region. Binding of antibody to an antigen, such as a bacterium, triggers the destruction of the antigen by phagocytic white blood cells such as macrophages and neutrophils. These cells express surface receptors that specifically bind to the

30

antibody Fc region and allow the phagocytic cells to engulf, ingest, and degrade the antibody-bound antigen. The Fc receptors expressed by phagocytic cells are single-pass transmembrane glycoproteins of about 300 to 400 amino acids (Sears, D. W. et al. (1990) J. Immunol. 144:371-378). The extracellular portion of the Fc receptor typically contains two or three Ig domains.

5

20

Unique variants of Fc receptors have been identified in myeloid and lymphoid cells (Samaridis, J. and Colonna, M. (1997) Eur. J. Immunol. 27:660-665). Like typical Fc receptors, these proteins contain extracellular Ig domains and are encoded by cDNAs designated ILT1 and ILT2 (Iglike transcripts 1 and 2). However, the transmembrane and cytoplasmic domains diverge significantly. In particular, the cytoplasmic domain is extended and contains protein motifs consistent with a role in intracellular signal transduction.

A new member of the Ig superfamily appears to play a structural role in the control of monocyte migration across epithelium or endothelium to sites of inflammation. This protein, called junctional adhesion molecule (JAM), is situated at tight junctions which occur between adjacent epithelial or endothelial cells (Martin-Padura, I. et al. (1998) J. Cell Biol. 142:117-127). JAM is 300 amino acids in length and contains two Ig domains. A monoclonal antibody (mAb) directed against JAM inhibited transmigration of monocytes across endothelial cell layers in vitro. Furthermore, systemic administration of this mAb to mice prevented recruitment of monocytes to sites of inflammation.

Viral proteins which contain Ig domains have also been described (Senkevich, T. G. et al. (1996) Science 273:813-816). These proteins include MHC-like homologs identified in the human tumorigenic poxvirus Molluscum contagiosum. Such proteins may provide a mechanism by which the virus evades the host's immunologic surveillance system.

T-cell receptors are both structurally and functionally related to antibodies. (Reviewed in Alberts, supra, pp. 1228-1229.) T-cell receptors are cell surface proteins that bind foreign antigens and mediate diverse aspects of the immune response. A typical T-cell receptor is a heterodimer comprised of two disulfide-linked polypeptide chains called α and β. Each chain is about 280 amino acids in length and contains one variable region and one constant region. Each variable or constant region folds into an Ig domain. The variable regions from the α and β chains come together in the heterodimer to form the antigen recognition site. T-cell receptor diversity is generated by somatic rearrangement of gene segments encoding the α and β chains. T-cell receptors recognize small peptide antigens that are expressed on the surface of antigen-presenting cells and pathogen-infected cells. These peptide antigens are presented on the cell surface in association with major histocompatibility proteins which provide the proper context for antigen recognition.

25

Synaptic Membrane Glycoproteins

Specialized cell junctions can occur at points of cell-cell contact. Among these cell junctions are communicating junctions which mediate the passage of chemical and electrical signals between cells. In the central nervous system, communicating junctions between neurons are known as synaptic junctions. They are composed of the membranes and cytoskeletons of the pre- and post-synaptic neurons. Some glycoproteins, found in biochemically isolated synaptic subfractions such as the synaptic membrane (SM) and postsynaptic density (PSD) fractions, have been identified and their functions established. An example is the SM glycoprotein, gp50, identified as the β2 subunit of the Na*/K*-ATPase.

Glycoproteins in the SM and PSD which have their oligosaccharide domains facing the synaptic junction are in a good position to mediate adhesive interactions between neurons. The PAC 1 glycoproteins, components of the PSD, have been identified as members of the cadherin family, proteins involved in the Ca²⁻-dependent cell-cell adhesion in vertebrate tissues. Further support of these molecules mediating adhesive interactions is the presence of integrin-type adhesion molecules and NCAM, a member of the Ig superfamily, in the SM.

Two glycoproteins, gp65 and gp55, are major components of synaptic membranes prepared from rat forebrain. They are members of the Ig superfamily containing three and two Ig domains, respectively. As members of the Ig superfamily, it is proposed that a possible function of these proteins is to mediate adhesive interactions at the synaptic junction. (Langnaese, K. et al. (1997) J. Biol. Chem. 272(2):821-827.)

The discovery of new immunoglobulin superfamily proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cancer, immune system disorders, and infections.

SUMMARY OF THE INVENTION

The invention features substantially purified polypeptides, immunoglobulin superfamily proteins, referred to collectively as "IGFAM" and individually as "IGFAM-1," "IGFAM-2," "IGFAM-3," "IGFAM-4," "IGFAM-5," "IGFAM-6," "IGFAM-7," "IGFAM-8," "IGFAM-9," "IGFAM-10," "IGFAM-11," "IGFAM-12," "IGFAM-13," "IGFAM-14," "IGFAM-15," "IGFAM-16," "IGFAM-17," "IGFAM-18," and "IGFAM-19." In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-19 and fragments thereof. The invention also includes a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-19.

PCT/US99/27566

WO 00/29583

15

20

The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO:1-19 and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-19 and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-19 and fragments thereof.

Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-19 and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1-19 and fragments thereof.

The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of: (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one aspect, the method further comprises amplifying the polynucleotide prior to hybridization.

The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:20-38 and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:20-38 and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:20-38 and fragments thereof.

The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-19. In another aspect, the expression vector is contained within a host cell.

The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing a polynucleotide of the

invention under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-19 and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention further includes a purified antibody which binds to a polypeptide selected from the group consisting of SEQ ID NO:1-19 and fragments thereof. The invention also provides a purified agonist and a purified antagonist to the polypeptide.

The invention also provides a method for treating or preventing a disorder associated with decreased expression or activity of IGFAM, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-19 and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention also provides a method for treating or preventing a disorder associated with increased expression or activity of IGFAM, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-19 and fragments thereof.

BRIEF DESCRIPTION OF THE TABLES

Table 1 shows polypeptide and nucleotide sequence identification numbers (SEQ ID NOs), clone identification numbers (clone IDs), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding IGFAM.

20

25

Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods, algorithms, and searchable databases used for analysis of IGFAM.

Table 3 shows selected fragments of each nucleic acid sequence; the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis; diseases, disorders, or conditions associated with these tissues; and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones encoding IGFAM were isolated.

Table 5 shows the tools, programs, and algorithms used to analyze IGFAM, along with applicable descriptions, references, and threshold parameters.

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

"IGFAM" refers to the amino acid sequences of substantially purified IGFAM obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which intensifies or mimics the biological activity of IGFAM. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of IGFAM either by directly interacting with IGFAM or by acting on components of the biological pathway in which IGFAM participates.

An "allelic variant" is an alternative form of the gene encoding IGFAM. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding IGFAM include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as IGFAM or a polypeptide with at least one functional characteristic of IGFAM. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding IGFAM, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding IGFAM. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent IGFAM. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of IGFAM is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.

The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence.

Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of IGFAM. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of IGFAM either by directly interacting with IGFAM or by acting on components of the biological pathway in which IGFAM participates.

The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab'), and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind IGFAM polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or

oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

5

The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "antisense" refers to any composition containing a nucleic acid sequence which is complementary to the "sense" strand of a specific nucleic acid sequence. Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and to block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand.

The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic IGFAM, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The terms "complementary" and "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3" bonds to the complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acid strands, and in the design and use of peptide nucleic acid (PNA) molecules.

A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution.

Compositions comprising polynucleotide sequences encoding IGFAM or fragments of IGFAM may

be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using the XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of one or more Incyte Clones and, in some cases, one or more public domain ESTs and/or cDNAs, using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to produce the consensus sequence.

"Conservative amino acid substitutions" are those substitutions that, when made, least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.

	Original Residue	Conservative Substitution
	Ala	Gly, Ser
	Arg	. His, Lys
20	Asn	Asp, Gln, His
	Asp	Asn, Glu
	Cys	Ala, Ser
	Gln	Asn, Glu, His
	Glu	Asp, Gln, His
25	Gly	Ala
-	His	Asn, Arg, Gln, Glu
	Ile	Leu, Val
	Leu .	lie, Vai
	Lys	Arg, Gln, Glu
30	Met	Leu, Ile
•	Phe	His, Met, Leu, Trp, Tyr
	Ser	Cýs, Thr
	Thr	Ser, Val
	Trp	Phe, Tyr
35	Тут	His, Phe, Trp
	Val	He, Leu, Thr

Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.

20

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the

The term "derivative" refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

A "fragment" is a unique portion of IGFAM or the polynucleotide encoding IGFAM which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50% of a polypeptide) as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.

A fragment of SEQ ID NO:20-38 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:20-38, for example, as distinct from any other sequence in the same genome. A fragment of SEQ ID NO:20-38 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:20-38 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:20-38 and the region of SEQ ID NO:20-38 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A fragment of SEQ ID NO:1-19 is encoded by a fragment of SEQ ID NO:20-38. A fragment of SEQ ID NO:1-19 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-19. For example, a fragment of SEQ ID NO:1-19 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-19. The precise length of a fragment of SEQ ID NO:1-19 and the region of SEQ ID NO:1-19 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

30

The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

The phrases "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequence pairs.

Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at http://www.ncbi.nlm.nih.gov/BLAST/. The BLAST software suite includes various sequence analysis

programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at http://www.ncbi.nlm.nih.gov/gorf/bl2.html. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

10 Reward for match: 1

Penalty for mismatch: -2

Open Gap: 5 and Extension Gap: 2 penalties

Gap x drop-off: 50

Expect: 10

Word Size: 11

Filter: on

15

Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20 at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the hydrophobicity and acidity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.

Percent identity between polypeptide sequences may be determined using the default

parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.

Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) with blastp set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Open Gap: 11 and Extension Gap: 1 penalties

Gap x drop-off: 50

Expect: 10

Word Size: 3

15 Filter: on

10

Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 20 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain

DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for

stable mitotic chromosome segregation and maintenance.

The term "humanized antibody" refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

"Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of identity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding

PCT/US99/27566

between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 µg/ml denatured salmon sperm DNA.

WO 00/29583

15

Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Generally, such wash temperatures are selected to be about 5°C to 20°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating T_m and conditions for nucleic acid hybridization are well known and can be found in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.

High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about $0.2 \times SSC$ and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about $65^{\circ}C$, $60^{\circ}C$, $55^{\circ}C$, or $42^{\circ}C$ may be used. SSC concentration may be varied from about 0.1 to $2 \times SSC$, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, denatured salmon sperm DNA at about $100\text{-}200 \,\mu\text{g/ml}$. Organic solvent, such as formamide at a concentration of about $35\text{-}50\% \,\text{v/v}$, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., Cot or Rot analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.

"Immune response" can refer to conditions associated with inflammation, trauma, immune

disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

The term "microarray" refers to an arrangement of distinct polynucleotides on a substrate.

The terms "element" and "array element" in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

The term "modulate" refers to a change in the activity of IGFAM. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of IGFAM.

The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition.

PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

"Probe" refers to nucleic acid sequences encoding IGFAM, their complements, or fragments
thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule.
Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes.
"Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target
DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).

Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100,

or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.

Methods for preparing and using probes and primers are described in the references, for example Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel et al.,1987, Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis et al., 1990, PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).

Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.

A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence.

15

This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, <u>supra</u>. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.

Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding IGFAM, or fragments thereof, or IGFAM itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

"Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic

acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blasm with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95% or at least 98% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% or greater sequence identity over a certain defined length of one of the polypeptides.

THE INVENTION

30

The invention is based on the discovery of new human immunoglobulin superfamily proteins (IGFAM), the polynucleotides encoding IGFAM, and the use of these compositions for the diagnosis, treatment, or prevention of cancer, immune system disorders, and infections.

Table 1 lists the Incyte clones used to assemble full length nucleotide sequences encoding IGFAM. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone IDs of the Incyte clones in which nucleic acids encoding each IGFAM were identified, and column 4 shows the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones and their corresponding cDNA libraries. Clones for which cDNA libraries are not indicated were derived from pooled cDNA libraries. The Incyte clones in column 5 were used to assemble the consensus nucleotide sequence of each IGFAM and are useful as fragments in hybridization technologies.

The columns of Table 2 show various properties of each of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3 shows potential phosphorylation sites; column 4 shows potential glycosylation sites; column 5 shows the amino acid residues comprising signature sequences and motifs; column 6 shows homologous sequences as identified by BLAST analysis; and column 7 shows analytical methods and in some cases, searchable databases to which the analytical methods were applied. The methods of column 7 were used to characterize each polypeptide through sequence homology and protein motifs. Note that in column 5, all but one of the polypeptides of the invention contain one or more Ig domains as predicted by protein function analysis programs such as PROFILESCAN, BLIMPS, PFAM, and MOTIFS. The polypeptide of the invention which lacks a predicted Ig domain (SEQ ID NO:4) does, however, show significant similarity with the viral Ig-containing protein MC51L-53L-54L.

20

The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding IGFAM. The first column of Table 3 lists the nucleotide SEQ ID NOs. Column 2 lists fragments of the nucleotide sequences of column 1. These fragments are useful, for example, in hybridization or amplification technologies to identify SEQ ID NO:20-38 and to distinguish between SEQ ID NO:20-38 and related polynucleotide sequences. The polypeptides encoded by these fragments are useful, for example, as immunogenic peptides. Column 3 lists tissue categories which express IGFAM as a fraction of total tissues expressing IGFAM. Column 4 lists diseases, disorders, or conditions associated with those tissues expressing IGFAM as a fraction of total tissues expressing IGFAM. Column 5 lists the vectors used to subclone each cDNA library. Note that the nucleotide sequences of SEQ ID NO:23, and SEQ ID NO:27 are expressed primarily in cells and tissues associated with the hematopoietic/immune system and inflammation.

The columns of Table 4 show descriptions of the tissues used to construct the cDNA libraries from which cDNA clones encoding IGFAM were isolated. Column 1 references the nucleotide SEQ ID NOs, column 2 shows the cDNA libraries from which these clones were isolated, and column 3

shows the tissue origins and other descriptive information relevant to the cDNA libraries in column 2. was a column 2.

The invention also encompasses IGFAM variants. A preferred IGFAM variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the IGFAM amino acid sequence, and which contains at least one functional or structural characteristic of IGFAM.

The invention also encompasses polynucleotides which encode IGFAM. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:20-38, which encodes IGFAM.

The invention also encompasses a variant of a polynucleotide sequence encoding IGFAM. In particular, such a variant polynucleotide sequence will have at least about 80%, or alternatively at least about 90%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding IGFAM. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:20-38 which has at least about 80%, or alternatively at least about 90%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:20-38. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of IGFAM.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding IGFAM, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring IGFAM, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode IGFAM and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring IGFAM under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding IGFAM or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding IGFAM and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a

greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode IGFAM and IGFAM derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding IGFAM or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:20-38 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Perkin-Elmer). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Perkin-Elmer), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding IGFAM may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.)

Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids

Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze
the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary
sequencing may employ flowable polymers for electrophoretic separation, four different nucleotidespecific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the
emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate
software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process
from loading of samples to computer analysis and electronic data display may be computer controlled.
Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be
present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode IGFAM may be cloned in recombinant DNA molecules that direct expression of IGFAM, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express IGFAM.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter IGFAM-encoding sequences for a variety of purposes including, but

not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

In another embodiment, sequences encoding IGFAM may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.)

Alternatively, IGFAM itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of IGFAM, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.)

The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY.)

15

20

In order to express a biologically active IGFAM, the nucleotide sequences encoding IGFAM or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding IGFAM. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding IGFAM. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding IGFAM and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an inframe ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used.

PCT/US99/27566

a established by

(See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding IGFAM and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding IGFAM. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding IGFAM. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding IGFAM can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding IGFAM into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of IGFAM are needed, e.g. for the production of antibodies, vectors which direct high level expression of IGFAM may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of IGFAM. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast <u>Saccharomyces cerevisiae</u> or <u>Pichia pastoris</u>. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, <u>supra</u>; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, C.A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of IGFAM. Transcription of sequences encoding IGFAM may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding IGFAM may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses IGFAM in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

10

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of IGFAM in cell lines is preferred. For example, sequences encoding IGFAM can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk* and *apr* cells, respectively. (See, e.g., Wigler, M. et

PCT/US99/27566 WO 00/29583

al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate: neo confers resistance to the aminoglycosides neomycin and G-418; and als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding IGFAM is inserted within a marker gene sequence, transformed cells containing sequences encoding IGFAM can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding IGFAM under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding IGFAM and that express IGFAM may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

20

25

Immunological methods for detecting and measuring the expression of IGFAM using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on IGFAM is preferred, but a 30 competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)

PCT/US99/27566 WO 00/29583

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding IGFAM include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. 5 Alternatively, the sequences encoding IGFAM, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega 10 (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding IGFAM may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode IGFAM may be designed to contain signal sequences which direct secretion of IGFAM through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for 25 post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

20

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding IGFAM may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric IGFAM protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of IGFAM activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST),

maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity

purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the IGFAM encoding sequence and the heterologous protein sequence, so that IGFAM may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10).

A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled IGFAM may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 33S-methionine.

Fragments of IGFAM may be produced not only by recombinant means, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, <u>supra</u>, pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A peptide synthesizer (Perkin-Elmer). Various fragments of IGFAM may be synthesized separately and then combined to produce the full length molecule.

THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of IGFAM and immunoglobulin superfamily proteins and Ig domain-containing proteins such as antibody heavy and light chains. In addition, the expression of IGFAM is closely associated with proliferating tissues, cancerous tissue and with hematopoiesis, inflammation, and other processes mediated by the immune system. Therefore, IGFAM appears to play a role in cancer, immune system disorders, and infections. In the treatment of disorders associated with increased IGFAM expression or activity, it is desirable to decrease the expression or activity of IGFAM. In the treatment of disorders associated with decreased IGFAM expression or activity, it is desirable to increase the expression or activity of IGFAM.

Therefore, in one embodiment, IGFAM or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of IGFAM. Examples of such disorders include, but are not limited to, a cancer such as

adenocarcinoma, melanoma, sarcoma, teratocarcinoma, and in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; a disorder of the immune system such as inflammation, actinic keratosis, acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, arteriosclerosis, asthma. atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, bursitis, cholecystitis, cirrhosis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis. diabetes mellitus, emphysema, erythroblastosis fetalis, erythema nodosum, atrophic gastritis. glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, paroxysmal nocturnal hemoglobinuria, hepatitis, hypereosinophilia, irritable bowel syndrome, episodic lymphopenia with lymphocytotoxins, mixed connective tissue disease (MCTD), multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, myelofibrosis, osteoarthritis, osteoporosis, pancreatitis, polycythemia vera, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, primary thrombocythemia, thrombocytopenic purpura, ulcerative colitis, uveitis. Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, trauma, and hematopoietic cancer including lymphoma, leukemia, and myeloma; and an infection caused by a viral agent classified as adenovirus, arenavirus, bunyavirus, calicivirus, coronavirus, filovirus, hepadnavirus, herpesvirus, flavivirus, orthomyxovirus, parvovirus, papovavirus, paramyxovirus, picornavirus, poxvirus, recovirus, retrovirus, rhabdovirus, or togavirus; an infection caused by a bacterial agent classified as pneumococcus, staphylococcus, streptococcus, bacillus, corynebacterium, clostridium, meningococcus, gonococcus, listeria, moraxella, kingella, haemophilus, legionella, bordetella, gram-negative enterobacterium including shigella, salmonella, or campylobacter, pseudomonas, vibrio, brucella, francisella, yersinia, bartonella, norcardium, actinomyces, mycobacterium, spirochaetale, rickettsia, chlamydia, or mycoplasma; an infection caused by a fungal agent classified as aspergillus, blastomyces, dermatophytes, cryptococcus, coccidioides, malasezzia, histoplasma, or other mycosis-causing fungal agent; and an infection caused by a parasite classified as plasmodium or malaria-causing, parasitic entamoeba, leishmania, trypanosoma, toxoplasma, pneumocystis carinii, intestinal protozoa such as giardia, trichomonas, tissue nematode such as trichinella, intestinal nematode such as ascaris, lymphatic filarial nematode, trematode such as schistosoma, and cestrode such as tapeworm.

20

In another embodiment, a vector capable of expressing IGFAM or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased

expression or activity of IGFAM including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified IGFAM in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of IGFAM including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of IGFAM may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of IGFAM including, but not limited to, those listed above.

In a further embodiment, an antagonist of IGFAM may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of IGFAM. Examples of such disorders include, but are not limited to, those cancer, immune system disorders, and infections described above. In one aspect, an antibody which specifically binds IGFAM may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express IGFAM.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding IGFAM may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of IGFAM including, but not limited to, those described above.

15

25

30

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of IGFAM may be produced using methods which are generally known in the art. In particular, purified IGFAM may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind IGFAM. Antibodies to IGFAM may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, `
and others may be immunized by injection with IGFAM or with any fragment or oligopeptide thereof
which has immunogenic properties. Depending on the host species, various adjuvants may be used to

increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to IGFAM have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of IGFAM amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

5

Monoclonal antibodies to IGFAM may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen'specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce IGFAM-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)

Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for IGFAM may also be generated. For example, such fragments include, but are not limited to, F(ab')₂ fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and

easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between IGFAM and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering IGFAM epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).

10

25

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for IGFAM. Affinity is expressed as an association constant, K_a, which is defined as the molar concentration of IGFAM-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple IGFAM epitopes, represents the average affinity, or avidity, of the antibodies for IGFAM. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular IGFAM epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10° to 10¹2 L/mole are preferred for use in immunoassays in which the IGFAM-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 106 to 10² L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of IGFAM, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington, DC; Liddell, J.E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of IGFAM-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding IGFAM, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding IGFAM may be used in situations in which it would be

desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding IGFAM. Thus, complementary molecules or fragments may be used to modulate IGFAM activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding IGFAM.

Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding IGFAM. (See, e.g., Sambrook, supra; Ausubel, 1995, supra.)

Genes encoding IGFAM can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide, or fragment thereof, encoding IGFAM. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.

As mentioned above, modifications of gene expression can be obtained by designing

complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or
regulatory regions of the gene encoding IGFAM. Oligonucleotides derived from the transcription
initiation site, e.g., between about positions -10 and +10 from the start site, may be employed.

Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing
is useful because it causes inhibition of the ability of the double helix to open sufficiently for the

binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances
using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber,
B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp.
163-177.) A complementary sequence or antisense molecule may also be designed to block
translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding IGFAM.

30

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding IGFAM. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

10

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of

such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and
monkeys.

An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of IGFAM,

10

15

antibodies to IGFAM, and mimetics, agonists, antagonists, or inhibitors of IGFAM. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of <u>Remington's Pharmaceutical Sciences</u> (Maack Publishing, Easton PA).

Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, tale, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol.

Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

5

15

20

Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acids. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of IGFAM, such labeling would include amount, frequency, and method of administration.

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of

WO 00/29583

administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example IGFAM or fragments thereof, antibodies of IGFAM, and agonists, antagonists or inhibitors of IGFAM, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD₅₀/ED₅₀ ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and 20 response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 μg to 100,000 μg , up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and 25 methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

30

15

In another embodiment, antibodies which specifically bind IGFAM may be used for the diagnosis of disorders characterized by expression of IGFAM, or in assays to monitor patients being treated with IGFAM or agonists, antagonists, or inhibitors of IGFAM. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for IGFAM include methods which utilize the antibody and a label to detect

PCT/US99/27566 WO 00/29583

IGFAM in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

5.

20

30

A variety of protocols for measuring IGFAM, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of IGFAM expression. Normal or standard values for IGFAM expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibody to IGFAM under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of IGFAM expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding IGFAM may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences. complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of IGFAM may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of IGFAM, and to monitor regulation of IGFAM levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding IGFAM or closely related molecules may be used to identify nucleic acid sequences which encode IGFAM. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding IGFAM, allelic variants, or related 25 sequences.

Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the IGFAM encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:20-38 or from genomic sequences including promoters, enhancers, and introns of the IGFAM gene.

Means for producing specific hybridization probes for DNAs encoding IGFAM include the cloning of polynucleotide sequences encoding IGFAM or IGFAM derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a

variety of reporter groups, for example, by radionuclides such as ¹²P or ¹⁵S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding IGFAM may be used for the diagnosis of disorders associated with expression of IGFAM. Examples of such disorders include, but are not limited to, a cancer such as adenocarcinoma, melanoma, sarcoma, teratocarcinoma, and in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; a disorder of the immune system such as inflammation, actinic keratosis, acquired immunodeficiency syndrome (AIDS), Addison's disease, 10 adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, arteriosclerosis, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis. bronchitis, bursitis, cholecystitis, cirrhosis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, paroxysmal nocturnal hemoglobinuria, hepatitis, hypereosinophilia, irritable bowel syndrome, episodic lymphopenia with lymphocytotoxins, mixed connective tissue disease (MCTD). multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, myelofibrosis, osteoarthritis, osteoporosis, pancreatitis, polycythemia vera, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, primary thrombocythemia, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, trauma, and hematopoietic cancer including lymphoma, leukemia, and myeloma; and an infection caused by a viral agent classified as adenovirus, arenavirus, bunyavirus, calicivirus, coronavirus, filovirus, hepadnavirus, herpesvirus, flavivirus, orthomyxovirus, parvovirus, papovavirus, paramyxovirus, picornavirus, poxvirus, recovirus, retrovirus, rhabdovirus, or togavirus; an infection caused by a bacterial agent classified as pneumococcus, staphylococcus, streptococcus, bacillus, corynebacterium, clostridium, meningococcus, gonococcus, listeria, moraxella, kingella, haemophilus, legionella, bordetella, gram-negative enterobacterium including shigella, salmonella, or campylobacter, pseudomonas, vibrio, brucella, francisella, yersinia, bartonella, norcardium, 30 actinomyces, mycobacterium, spirochaetale, rickettsia, chlamydia, or mycoplasma; an infection caused by a fungal agent classified as aspergillus, blastomyces, dermatophytes, cryptococcus, coccidioides, malasezzia, histoplasma, or other mycosis-causing fungal agent; and an infection caused by a parasite classified as plasmodium or malaria-causing, parasitic entamoeba, leishmania, trypanosoma, toxoplasma, pneumocystis carinii, intestinal protozoa such as giardia, trichomonas,

tissue nematode such as trichinella, intestinal nematode such as ascaris, lymphatic filarial nematode, trematode such as schistosoma, and cestrode such as tapeworm. The polynucleotide sequences encoding IGFAM may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered IGFAM expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding IGFAM may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding IGFAM may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding IGFAM in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of IGFAM, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding IGFAM, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

20

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals

to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding IGFAM may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding IGFAM, or a fragment of a polynucleotide complementary to the polynucleotide encoding IGFAM, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.

Methods which may also be used to quantify the expression of IGFAM include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

10

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)

In another embodiment of the invention, nucleic acid sequences encoding IGFAM may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.)

PCT/US99/27566 WO 00/29583

Fluorescent in situ hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding IGFAM on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other 15 gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

10

In another embodiment of the invention, IGFAM, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between IGFAM and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with IGFAM, or fragments thereof, 30 and washed. Bound IGFAM is then detected by methods well known in the art. Purified IGFAM can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing

antibodies capable of binding IGFAM specifically compete with a test compound for binding IGFAM. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with IGFAM.

In additional embodiments, the nucleotide sequences which encode IGFAM may be used in
any molecular biology techniques that have yet to be developed, provided the new techniques rely on
properties of nucleotide sequences that are currently known, including, but not limited to, such
properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all patents, applications, and publications mentioned above and below, in particular U.S. Ser. No. [Attorney Docket No. PF-0643 P, filed November 19, 1998], U.S. Ser. No. 60/113,635, and U.S. Ser. No. 60/128,194, are hereby expressly incorporated by reference.

EXAMPLES

L Construction of cDNA Libraries

20

RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA

libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), or pINCY (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

15

Plasmids were recovered from host cells by <u>in vivo</u> excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

cDNA sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Perkin-Elmer) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (Perkin-Elmer) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V.

The polynucleotide sequences derived from cDNA sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the tools, programs, and algorithms used and provides applicable descriptions, references, and threshold parameters. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between two sequences). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments were generated using the default parameters specified by the clustal algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.

The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and PFAM to acquire annotation using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probabilistic approach which analyzes consensus primary structures of gene

families. (See, e.g., Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.)

The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:20-38. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.

IV. Northern Analysis

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel, 1995, supra, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

% sequence identity x % maximum BLAST score

100

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.

The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding IGFAM occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation, trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories.

Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3.

V. Extension of IGFAM Encoding Polynucleotides

The full length nucleic acid sequences of SEQ ID NO:20-38 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this

fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCl A and PCl B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 μ l PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 μ l of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μ l to 10 μ l aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent <u>E. coli</u> cells. Transformed cells were selected on

antibiotic-containing media, individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase

(Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following

parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min;

Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing

primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

In like manner, the nucleotide sequences of SEQ ID NO:20-38 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

VI. Labeling and Use of Individual Hybridization Probes

15

Hybridization probes derived from SEQ ID NO:20-38 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide

fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 µCi of [7-3P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech).

An aliquot containing 107 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases:

Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.

VII. Microarrays

A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, supra.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal,

5 UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.

Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

VIII. Complementary Polynucleotides

Sequences complementary to the IGFAM-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring IGFAM. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of IGFAM. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the IGFAM-encoding transcript.

30 IX. Expression of IGFAM

Expression and purification of IGFAM is achieved using bacterial or virus-based expression systems. For expression of IGFAM in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (tac) hybrid

PCT/US99/27566 WO 00/29583

promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express IGFAM upon induction with isopropyl beta-Dthiogalactopyranoside (IPTG). Expression of IGFAM in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding IGFAM by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, IGFAM is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from 20 IGFAM at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified IGFAM obtained by these methods can be used directly in the following activity assay.

Demonstration of IGFAM Activity X.

15

An assay for IGFAM activity measures the ability of IGFAM to recognize and precipitate antigens from serum. This activity can be measured by the quantitative precipitin reaction. (Golub, E. S. et al. (1987) Immunology: A Synthesis, Sinauer Associates, Sunderland, MA, pages 113-115.) IGFAM is isotopically labeled using methods known in the art. Various serum concentrations are added to constant amounts of labeled IGFAM. IGFAM-antigen complexes precipitate out of solution and are collected by centrifugation. The amount of precipitable IGFAM-antigen complex is proportional to the amount of radioisotope detected in the precipitate. The amount of precipitable IGFAM-antigen complex is plotted against the serum concentration. For various serum

concentrations, a characteristic precipitin curve is obtained, in which the amount of precipitable IGFAM-antigen complex initially increases proportionately with increasing serum concentration, peaks at the equivalence point, and then decreases proportionately with further increases in serum concentration. Thus, the amount of precipitable IGFAM-antigen complex is a measure of IGFAM activity which is characterized by sensitivity to both limiting and excess quantities of antigen.

Alternatively, an assay for IGFAM activity measures the expression of IGFAM on the cell surface. cDNA encoding IGFAM is transfected into a non-leukocytic cell line. Cell surface proteins are labeled with biotin (de la Fuente, M.A. et.al. (1997) Blood 90:2398-2405). Immunoprecipitations are performed using IGFAM-specific antibodies, and immunoprecipitated samples are analyzed using SDS-PAGE and immunoblotting techniques. The ratio of labeled immunoprecipitant to unlabeled immunoprecipitant is proportional to the amount of IGFAM expressed on the cell surface.

XI. Functional Assays

IGFAM function is assessed by expressing the sequences encoding IGFAM at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT (Life Technologies) and pCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 μ g of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 μ g of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.

The influence of IGFAM on gene expression can be assessed using highly purified

populations of cells transfected with sequences encoding IGFAM and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding IGFAM and other genes of interest can be analyzed by northern analysis or microarray techniques.

XII. Production of IGFAM Specific Antibodies

25

30

IGFAM substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the IGFAM amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-IGFAM activity by, for example, binding the peptide or IGFAM to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XIII. Purification of Naturally Occurring IGFAM Using Specific Antibodies

Naturally occurring or recombinant IGFAM is substantially purified by immunoaffinity chromatography using antibodies specific for IGFAM. An immunoaffinity column is constructed by covalently coupling anti-IGFAM antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing IGFAM are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of IGFAM (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/IGFAM binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and IGFAM is collected.

XIV. Identification of Molecules Which Interact with IGFAM

IGFAM, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter reagent. (See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled IGFAM, washed, and any wells with labeled IGFAM complex are assayed. Data obtained using different concentrations of IGFAM are used to calculate values for the number, affinity, and association of IGFAM with the candidate molecules.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention.

Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

			—т	T	 T	T		- 1	
Fragments	079785H1 (SYNORABO1), 079785R6 (SYNORABO1), 930708R1 (CERVNOT01)	731672R1 (LUNGNOT03), 1241709R6 (LUNGNOT03), 1535284H1 (SPLNNOT04), 2242944T6 (PANCTUT02), 2354183H1 (LUNGNOT20), 2469025H1 (THYRNOT08), 3370185H1 (CONNTUT04), 3508954H1 (CONCNOT01), 38821135F6 (SPLNNOT11), 5021181H1 (ÖVARNON03)	2684470r6 (LUNGNOT23), 2906265H1 (THYMNOT05), 2906265r6 (THYMNOT05), SBQA01965D1	334315R6 (EOSIHETO2), 788975H1 (PROSTUTO3), 2995078H1 (OVARTUTO7), 3210491T6 (BLADNOTO8), SAJA03793F1, SAJA00460R1	1407148H1 (LATHTUTO2), 1666491T6 (BMARNOTO3), 3339721F6 (SPLNNOT10)	1600994F6 (BLADNOT03), 1870848F6 (SKINBIT01), 1870848H1 (SKINBIT01), 1870848H3 (SKINBIT01), 3586454H1 (S93TF4T01), SBGA04741F1, SBGA05485F1	1888468H1 (BLADTUTO7), 2848829H1 (BRSTTUT13), 3336345F6 (SPLANOT10)	034758X22 (THPINOBO1), 034758X34R1 (THPINOBO1), 169537X14 (BWARNORO2), 1526466F1 (UCMCL5T01), 2770104H1 (COLANOTO2)	540284R1 (INODNOT02), 689572R6 (LUNGTUT02), 2851053H1 (BRSTTUT13)
Library	SYNORAB01	THYRNOT08	THYMNOT05	PROSTUT03	LATRIUT02	SKINBIT01	BLADTUT07	COLANOT02	BRSTTUT13
Clone ID	079785	2469025	2906265	788975	1407148	1870848	1888468	2770104	2851053
Nucleotide SEO ID NO:	20	21	22	23	24	25	26	27	28
Polypeptide	1	62	m	4	v	v	7	۵	6

on the many states of the topper could be a second consistency of the constant of the constant

										
Fragments	540284F1 (LNODNOF02), 792219T1 (PROSTUT03), 2179956H1 (SININOT01), 2630239T6 (COLNTUT15), 3238787H1 (COLAUCT01)	701560H1 (SYNORAT03), 3336345F6 (SPLANOT10), 3559548H1 (LUNGNOT31)	2354696F6 (LUNGNOT20), 2998376F6 (OVARTUT07), 3872741H1 (BMARNOT03)	930366T1 (CERVNOT01), 3981428F6 (LUNGTUT08), 3981428H1 (LUNGTUT08)	2849560P6 (BRSTTUT13), 4635039H1 (GBLADIT02)	182051616 (GBLATUT01), 3240710H1 (COLAUCT01), 3344660F6 (SPLANOT09)	1435848F6 (PANCNOTO8), 1822478F6 (GBLATUTO1), 4945813H1 (SININOT25), SBJA01188F1, SBPA02549D1	2183186H1 (SININOTO1), 4948957H1 (SINTNOT25), SAWAOOO61F1	232824F1 (SINTNOTO2), 991833T1 (COLANOT11), 2994953H1 (OVARTUTO7), 3860911T6 (LNODNOTO3), 4949649H1 (SINTNOT25)	036351X10, 036351X6 and 036351X9 (HUVENOB01), 777804R1 (COLNNOTO5), 810532R1 (LUNGNOTO4), 2538351H1 (BONRTUT01), 5500302H1 (BRABDIR01)
Library	COLAUCT01	LUNGNOT31	BMARNOT03	LUNGTUT08	GBLADIT02	COLAUCTO1	SINTNOT25	SINTNOT25	SINTNOT25	BRABDIR01
Clone ID	3238787	3559548	3872741	3981428	4635039	3240710	4945813	4948957	4949649	5500302
Nucleotide SEQ ID NO:	29	30	31	32	33	34	35	36	37	3.9
Polypeptide SEO ID NO:	10	11	12	13	14	15	16	17	18	19

Table 2

Analytical Methods and Databases	BLAST MOTIFS PPAM PROFILESCAN BLOCKS SPSCAN	BLAST MOTIFS PRAM PROFILESCAN BLOCKS SPSCAN
Homologous Sequences	k L-chain (g2765423) (Homo aspiens)	& H-chain (g495871) (Homo sapiens)
Signature Sequences Motifs, and Domains	Ig domains G18-Q112 S150-V219 D193-E236 Ig signatures S154-A176 Y215-F232 Signal peptide M1-C22	Ig domains S41-R128 N174-V239 R336-L404 E440-V510 T486-M536 Ig signatures Y235-H241 W444-R466 Y506-R523 Signal peptide M1-S26
Potential Glycosylation Sites		N83 N378 N469 N520
Potential Phosphorylation Sites	S36 S89 T125 S185 T187 S205 T44	S215 T117 T206 S246 S511 S93 T104 S110 S256 T284 T288 Y529
Amino Acid Residues	237	537
Polypeptide SEQ ID NO:	1	7

Analytical Methods and Databases	BLAST MOTIFS PFAM BLOCKS HWM SPSCAN	BLAST MOTIFS	BLAST MOTIFS PROFILESCAN BLOCKS PFAM SPSCAN HMM
Homologous Sequences	T cell receptor β chain (g3002935) (Homo sapiens)	MCSIL-53L-54L homolog (secreted glycoprotein) (45231020) (MOJluscum contagiosum virus)	Ig k light chain (g2765423) (Homo sapiens)
Signature Sequences Motifs, and Domains	1g domains	Signal peptide M1-A30	Ig domeins G38-Q112 S149-V218 D192-E235 Signal peptide M1-C22
Potential Glycosylation Sites		N79 N94 N103 N147	
Potential Phosphorylation	872 T101 T132 8151 8238 828 T32 881 T158 8211	846 T70 8105 T119 T2 843	S36 T124 S184 . T186 S204 T44
Amino	311	194	236
Polypeptide SEQ ID NO:	m	4	w .

- Marin Spekker

			1. 1.43 1. 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		٠,٠
Analytical Methods and Databases	BLAST MOTIFS PPAM SPSCAN HWM	BLAST MOTIFS PFAM SPSCAN HMM	BLAST MOTIFS PPAM HMM	BLAST MOTIFS PROFILESCAN BLOCKS PFAM SPSCAN HEM	(laj
Homologous Sequences	JAM: junctional adhesion molecule (g3462455) (Mus musculus)	Ig heavy chain variable region (g3170981) (Homo sapiens)	ILFIc: myeloid- and lymphoid-specific Ig-like receptor (g1907323) (Homo sapiens)	Ig K light chain (g2765423) (Homo sapiens)	
Signature Sequences Motifs, and Domains	Ig domains F46-V117 G153-A221 Signal peptide M1-G30 Transmembrane domain: Y238-T260	Ig domain G34-R117 Signal peptide M1-S19	Ig domains: G86-Y144 G181-S241 Transmembrane domains: E275-F295	1g domains 038-0112 \$149-0218 D192-8235 Signal peptide M1-C22	
Potential Glycosylation Sites	N104 N192	m	N183		
Potential Phosphorylation Sites	S110 T106 T296 S37 S99 S227 S281 Y77	S26 T106 T4 S36 S40 S142	T11 S303 T137 T236 S300	S36 S89 T124 S184 T186 S204 T44 Y54	
Amino Acid Residues	310	148	310	236	
Polypeptide SEQ ID NO:	v	7	ω	6	

Analytical Methods and Databases	BLAST MOTIFS PROFILESCAN BLOCKS PFAM SPSCAN HWM	BLAST MOTIFS PFAM SPSCAN HMM	BLAST MOTIFS PROFILESCAN BLOCKS PFAM SPSCAN HMM	BLAST MOTIFS PROFILESCAN BLOCKS PFAM SPSCAN
Homol ogous Sequences	Ig w light chain (g2765423) (Homo sapiens)	Ig heavy chain variable region (g3170891) (Homo sapiens)	Ig k light chain (g2765423) (Homo sepiens)	Ig k light chain (g2765423) (Homo sapiens)
Signature Sequences Motifs, and Domains	Ig domains G38-C112 S150-V219 D193-E236 Signal peptide M1-C22	Ig domain G34-R117 Signal peptide M1-S19	Ig domains G38-H112 S149-V218 D192-E215 Signal peptide M1-C22	Ig domains G38-Q112 S150-V219 D193-E236 Signal peptide M1-C22
Potential Glycosylation Sites				
Potential Phosphorylation Sites	S36 S89 T125 S185 T187 S205 T44	S26 T106 S36 S40 S142	836 874 T124 8184 T186 S204	836 889 T125 \$185 T187 \$205 T44
Amino Acid	237	148	236	23.7
Polypeptide SEQ ID NO:	10	#	12	13

Analytical Methods and Databases	BLAST MOTIFS PFAM BLOCKS SPSCAN HMM	BLAST PFAM, MOTIFS, BLOCKS, SPSCAN, ProfileScan	BLAST PFAM, MOTIFS, BLOCKS, SPSCAN, ProfileScan	BLAST PFAM, MOTIFS, BLOCKS, SPSCAN, ProfileScan
Homologous Sequences	Ig heavy chain variable region (g186807) (Homo sapiens)	chimeric monoclonal TSH ab, K chain (g413074) (synthetic construct)	SNC73 protein, down regulated protein in colorectal cancer (g3201900) (Homo sapiens)	anti-Entamoeba histolytica Ig K light chain (45360673) (Homo sapiens)
Signature Sequences Motifs, and Domains	Ig domain G34-R117 Signal peptide M1-S19	Ig Domain: G36-R115 S154-V223 Signal Peptide: M1-A20	Ig Domain: 841-T125 N397-V469 Signal Peptide: M1-S26	Ig Domain: G40-Q120 S157-V226 Signal Peptide: M1-A20
Potential Glycosylation Sites			N298 N494	
Potential Phosphorylation Sites	S26 T47 T157 T181 S183 T4 S36 S40 S146 T190	S18 S92 S101 T129 S189 T191 S209 S42 S77 T97	T114 T170 T194 S410 S435 S90 T101 S107 S159 T203 S320 T379	S38 S82 S97 T132 S192 T194 S212 T46
Amino Acid Residues	219	241	507	244
Polypeptide SEQ ID NO:	14	15	16	17

Analytical Methods and Databases	BLAST PFAM, MOTIFS, BLOCKS, SPSCAN,	BLAST PFAM, MOTIFS, BLOCKS, SPSCAN, HAMER,	અ(જિલ્ <u>ફ્</u>	eterikkis irien 1995 -	ivitain ir 11 pr	: જે છે વ્યવસાયના જોવા 	dadisin rise. Liberar	, program Program
Homologous Sequences	Ig λ light chain (g2765427) (Homo sapiens)	Glycoprotein 56 (g1806278) (Rattus norvegicus)						
Signature Sequences Motifs, and Domains	Ig Domain: G39-Lil6 A155-V223 Signal Peptide: M1-S24	Ig Domain: G45-A118 G252-A318 Signal Peptide: M1-A28 Transmembrane		3 Ag e ²				10. ys.
Potential Glycosylation Sites		N171 N197 N229 N284 N296 N317 N382						
Potential Phosphorylation Sites	S20 8149 S228 S78 S215	T88 T107 T152 S199 S74 T194 S286 Y216						
Amino Acid	240	398				·		
Polypeptide SEQ ID NO:	18	19						

Table 3

		Meze (17, 11				 i		
Vector	PBLUESCRIPT	pINCY	pincy	PSPORT1	pINCY	pINCY	pincy	PINCY
Diseases, Disorders, or Conditions (Fraction of Total)	Cancer (0.598) Inflammation (0.269)	Cancer (0.514) Inflammation (0.411)	Inflammation (0.411) Cancer (0.356) Fetal (0.110)	Inflammation (0.556) Cancer (0.333) Fetal (0.074)	Cancer (0.571) Inflammation (0.296) Trauma (0.086)	Cancer (0.471) Inflammation (0.206) Fetal (0.176)	Cancer (0.546) Inflammation (0.370) Trauma (0.065)	Inflammation (0.625) Cancer (0.250) Fetal (0.250)
Tissue Expression (Fraction of Total)	Reproductive (0.285) Gastrointestinal (0.261) Cardiovascular (0.116)	Gastrointestinal (0.308) Reproductive (0.215) Hematopoletic/Immune (0.159)	Hematopoietic/Immune (0.274) Gastrointestinal (0.233) Reproductive (0.178)	Hematopoietic/Immune (0.407) Nervous (0.148) Cardiovascular (0.111)	Gastrointestinal (0.270) Reproductive (0.266) Hematropojetic/Immune (0.129)	Nervous (0.412) Nervous (0.412) Cardiovascular (0.088)	Gastrointestinal (0.324) Reproductive (0.250) Hematopoietic/Immune (0.120)	Hematopoietlc/Immune (0.562) Gastrointestinal (0.188) Musculoskeletal (0.125)
Selected Fragment(s)	356-400	110-154	346-393	659-688	209-250	494-538	263-307	327-371 597-641 1029-1073
Nucleotide SEQ ID NO:	20	21	22	23	24	25	36	27

	,	·		···			T	
Vector	pINCY	pincy	pINCY	pincy	pINCY	pincy	pincy	pINCY
Diseases, Disorders, or Conditions (Fraction of Total)	Cancer (0.582) Inflammation (0.285) Trauma (0.084)	Cancer (0.586) Inflammation (0.263) Trauma (0.094)	Cancer (0.571) Inflammation (0.337) Trauma (0.071)	Cancer (0.570) Inflammation (0.294) Trauma (0.085)	Cancer (0.585) Inflammation (0.269) Trauma (0.092)	Cancer (0.565) Inflammation (0.339) Trauma (0.081)	Cancer (0.561) Inflammation (0.305)	Cancer (0.591) Inflammation (0.307)
Tissue Expression (Fraction of Total)	Reproductive (0.280) Gastrointestinal (0.259) Hematopoletic/Immune (0.126)	Reproductive (0.274) Gastrointestinal (0.259) Cardiovascular (0.124)	Gastrointestinal (0.316) Reproductive (0.194) Cardiovascular (0.143)	Gastrointestinal (0.281) Reproductive (0.255) Hematopoletic/Immune (0.128)	Reproductive (0.281) Gastrointestinal (0.258) Cardiovascular (0.123)	Gastrointestinal (0.306) Reproductive (0.218) Cardiovascular (0.137)	Gastrointestinal (0.269) Reproductive (0.269) Hematopoietic/Immune (0.130) Cardiovascular (0.121)	Reproductive (0.284) Gastrointestinal (0.276) Cardiovascular (0.133) Hematopolet.of Immune (0.116)
Selected Fragment(s)	149-232	154-183	245-292	152-187	360–389	380-430	70-114 355-396	80-121 177-466
Nucleotide SEQ ID NO:	28	29	30	31	32	33	34	35

.1(3).000°	rotas or milita	الم المواقع والموادد	e de digisare es
Vector	pincy	pINCY	PINCY
Diseases, Disorders, or Conditions (Fraction of Total)	Cancer (0.567) Inflammation (0.299)	Cancer (0.562) Inflammation (0.308)	Cancer (0.408) Inflammation (0.255)
Tissue Expression (Fraction of Total)	Gastrointestinal (0.272) Reproductive (0.263) Hematopoietic/Immune (0.129) Cardlovascular (0.121)	Gastrointestinal (0,303) Reproductive (0.244) Cardiovascular (0.129) Hematopoietic/Immune (0.119)	Reproductive (0.245) Nervous (0.214) Gastrointestinal (0.153) Cardiovascular (0.133)
Selected Fragment(s)	1-32 (5' UTR, possible promoter) 105-149	370-414	2-169 (5'-UTR, possible promoter) 1250-1363
Nucleotide SEQ ID NO:	36	37	38

methor carbon o complete come accept to a polymer about the extra the experience of the complete come of the complete co

Table 4

•							——
Library Description	man eventshand only library was constructed using RNA isolated from the synovial	membrane tissue of a 68-year-old Caucasian female with rheumatoid arthritis.	The THYRNOTO8 cDNA library was constructed using RNA isolated from diseased lette thyroid tissue removed from a 13-year-old Caucasian female during a complete thyroidectomy. Pathology indicated lymphocytic thyroiditis.	The THYMNOTOS CDNA library was constructed using RNA isolated from thymus tissue removed from a 3-year-old Hispanic male during thymectomy and closure of a patent ductus arteriosus. Patient history included cardiac catheterization.	The library was constructed using RNA isolated from prostate tumor tissue removed from a 67-year-old Caucasian male during radical prostatectomy and lymph node biopsy. Pathology indicated adenocarcinoma Gleason grade 3+3. Adenofibromatous hyperplasia was present. Patient history included coronary artery disease, stomach ulcer, and osteoarthritis. Family history included connestive heart failure.	The library was constructed using RNA isolated from a myxoma removed from the left atrium of a 43-year-old Caucasian male during annuloplasty. Pathology indicated atrial myxoma. Patient history included pulmonary insufficiency, acute myocardial infarction, atherosclerotic coronary artery disease, hyperlipidemia, and tobacco use. Family history included benign hypertension, acute myocardial infarction, atherosclerotic coronary attery disease, and type II diabetes.	The library was constructed using RNA isolated from diseased axin tissue or the left lower leg. Patient history included erythema nodosum of the left lower leg.
Library	100000	SYNOKABUT	THYRNOTOB	THYMNOT05	PROSTUTO3	LATRTUT02	SKINBIT01
Nucleotide	SEQ ID NO:	20	21	22	23	24	25

BLADTUTO7 T EASTTUT13 T BRSTTUT13 T EASTTUT13 T EASTTU					
H W O.	Library Description	The library was constructed using RNA isolated from bladder tumor tissue removed from the anterior bladder wall of a 58-year-old Caucasian male during a radical cystectomy, radical prostatectomy, and gastrostomy. Pathology indicated a grade 3 transitional cell carcinoma in the left lateral bladder. Patient history included angina, emphysema, and tobacco use. Family history included acute myocardial infarction, atherosclerotic coronary artery disease, and type II diabetes.	The library was constructed using RNA isolated from diseased ascending colon tissue removed from a 25-year-old Caucasian female during a multiple segmental resection of the large bowel. Pathology indicated moderately to severely active chronic ulcerative colitis, involving the entire colectomy specimen and sparing 2 cm of the attached ileum. Grossly, the specimen showed continuous involvement from the rectum proximally, marked mucosal atrophy and no skip areas were identified. Microscopically, the specimen showed dense, predominantly mucosal inflammation and crypt abscesses. Patient history included benign large bowel neoplasm. Previous surgeries included a polypectomy.	The library was constructed using RNA isolated from breast tumor tissue removed from the right breast of a 46-year-old Caucasian female during a unilateral extended simple mastectomy with breast reconstruction. Pathology indicated an invasive grade 3 adenocarcinoma, ductal type with apocrine features and greater than 50% intraductal component. Patient history included breast cancer.	The library was constructed using RNA isolated from diseased ascending colon tissue removed from a 74-year-old Gaucasian male during a multiple-segment large bowel excision with temporary lieostomy. Pathology indicated inflammatory bowel disease most consistent with chronic ulcerative colitis, characterized by severa acute and chronic mucosal inflammation with erythema, ulceration, and pseudopolyp formation involving the entire colon and rectum. The sigmoid colon had an area of mild stricture formation. One diverticulum with diverticulitis was identified near this zone.
ucleotide 26 27 28 29	Library	BLADTUTO7	COLANOTO2	BRSTTUT13	COLAUCT01
ž "	Nucleotide SEQ ID NO:	56	72	28	53

:	,	. 1 _{.2} 4 <u></u>	enirise esigne elistree	en parani e en . P	hiji et e hiji kilikele. Tarah sa karah	mine developing
Library Description	The library was constructed using RNA isolated from right middle lobe lung tissue removed from a 63-year-old Caucasian male. Pathology for the associated tumor indicated grade 3 adenocarcinoma. Patient history included an abdominal aortic aneurysm, cardiac dysrhythmia, atherosolarotic coronary artery disease, histal hernia, chronic sinusitis, and lupus. Family history included acute myocardial infarction and atherosclerotic coronary artery disease.	The library was constructed using RNA isolated from the left tibial bone marrow tissue of a 16-year-old Caucasian male during a partial left tibial ostectomy with free skin graft. Patient history included an abnormality of the red blood cells. Previous surgeries included bone matrow biopsy, and soft tissue excision. Family history included osteoarthritis.		Library was constructed using RNA isolated from diseased gallbladder tissue removed from an 18-year-old Caucasian female during cholecystectomy and incidentel appendectomy. Pathology incidente and chronic cholecystits with cholelithiasis. The gallbladder contained multiple fragments of stony material. The appendix showed lymboid hyperplasia. Previous surgeries included total splenectomy. Family history included benign hypertension, acute myocardial infarction, and atherosclerotic coronary artery disease.		
Library	LUNGNOT31	BMARNOT03	LUNGTUTO8	GBLADIT02		
Nucleotide SEQ ID NO:	30	31	32	33		

 $\cdot \hat{g}_{i,k}^{(i)}$

	COLAUCTO1 The COLAUCTO1 library was constructed using RNA isolated from diseased ascending colon tissue removed from a 74-year-old Caucasian male during a multiplesegment large bowel excision with temporary ileostomy. Pathology indicated segment large bowel disease most consistent with chronic ulcerative colitis, characterized by severe acute and chronic mucosal inflammation with erythema, ulceration, and pseudopolyp formation involving the entire colon and rectum. The sigmoid colon had an area of mild stricture formation. One diverticulum with diverticulitis was identified near this zone.	SININOT25 The SINTNOT25 library was constructed using RNA isolated from small intestine tissue removed from a 13-year-old Caucasian male, who died from a gunshot wound to the head. Family history included diabetes.	SINTNOT25 The SINTNOT25 library was constructed using RNA isolated from small intestine tissue removed from a 13-year-old Caucasian male, who died from a gunshot wound to the head. Family history included diabetes.	SINTNOT25 The SINTNOT25 library was constructed using RNA isolated from small intestine tissue removed from a 13-year-old Caucasian male, who died from a gunshot wound to the head. Family history included diabetes.	BRABDIR01 The BRABDIR01 library was constructed using RNA isolated from diseased cerebellum tissue removed from the brain of a 57-year-old Caucasian male, who died from a cerebrovascular accident.
Library	COLA	SINT	SINT	SINI	BRAE
Nucleotide SEQ ID NO:	34	35	36	37	38

Table 5

			i
۵	Description	Reference	Parameter Threshold
< 2	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
4 8 4	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences. A program that assembles nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA. Perkin-Elmer Applied Biosystems, Foster City, CA.	Mismatch <50%
≪ 22 25 25	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, shart, thlastn, and tblasts.	Aischul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Aischul, S.F. et al. (1997) Nucleic Acids Res. 25: 3389-3402.	ESTs: Probability value= 1.05-8 or less Full Length sequences: Probability value= 1.05-10 or less
€ 8 8 €	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises as least free functions: fista, tfasta, fastx, tfastx, and ssearch.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad Sci. 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183: 63-98; and Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489.	ESTs: fasta E value=1.06E-6 Assembled ESTs: fasta Identity= 95% or greater and Match length=200 bases or greater, fastx E value=1.0E-8 or less Full Length sequences: fastx score=100 or greater
	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S and J.G. Henikoff, Nucl. Acid Res., 19:6565-72, 1991. JG. Henikoff and S. Henikoff (1996) Methods Enzymol. 266:88- 105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37: 417-424.	Score=1000 or greater; Ratio of Score/Strength = 0.75 or larger, and, if applicable, Probability value= 1.0E-3 or less
•	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) J. Mol. Biol., 235;1501-1531; Sonnhammer, B.L.L. et al. (1988) Nucleic Acids Res. 26:320-322.	Score=10-50 bits for PPAM hits, depending on individual protein families

Table 5 (cont.)

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25: 217-221.	Normalized quality scores GCC specified "HIGH" value for the particular Prosite motif. Generally, score=1.4-2.1.
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186- 194.	#+
Phrap 2.2	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M. S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, W.A.	Score- 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12: 431-439.	Score=3.5 or greater
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch et al. gupra; Wisconsin Package Program Manual, version 9, page MS1-59, Genetics Computer Group, Madison, WI.	

What is claimed is

 A substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-19 and fragments thereof.

5

- 2. A substantially purified variant having at least 90% amino acid sequence identity to the amino acid sequence of claim 1.
 - 3. An isolated and purified polynucleotide encoding the polypeptide of claim 1.

10

- An isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide of claim 3.
- An isolated and purified polynucleotide which hybridizes under stringent conditions
 to the polynucleotide of claim 3.
 - An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 3.

20

- A method for detecting a polynucleotide, the method comprising the steps of:
- (a) hybridizing the polynucleotide of claim 6 to at least one nucleic acid in a sample, thereby forming a hybridization complex; and
- (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of the polynucleotide in the sample.

- The method of claim 7 further comprising amplifying the polynucleotide prior to hybridization.
- An isolated and purified polynucleotide comprising a polynucleotide sequence
 selected from the group consisting of SEQ ID NO:20-38 and fragments thereof.
 - 10. An isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide of claim 9.

11. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 9.

- 12. An expression vector comprising at least a fragment of the polynucleotide of claim 3.
- A host cell comprising the expression vector of claim 12.

5

15

- 14. A method for producing a polypeptide, the method comprising the steps of:
- a) culturing the host cell of claim 13 under conditions suitable for the expression
 of the polypeptide; and
 - b) recovering the polypeptide from the host cell culture.
 - 15. A pharmaceutical composition comprising the polypeptide of claim 1 in conjunction with a suitable pharmaceutical carrier.
 - 16. A purified antibody which specifically binds to the polypeptide of claim 1.
 - 17. A purified agonist of the polypeptide of claim 1.
- 20 18. A purified antagonist of the polypeptide of claim 1.
 - 19. A method for treating or preventing a disorder associated with decreased expression or activity of IGFAM, the method comprising administering to a subject in need of such treatment an effective amount of the pharmaceutical composition of claim 15.
 - 20. A method for treating or preventing a disorder associated with increased expression or activity of IGFAM, the method comprising administering to a subject in need of such treatment an effective amount of the antagonist of claim 18.

SEQUENCE LISTING

There is a stand with the first the wife standing with the standing of the sta

```
<110> INCYTE PHARMACEUTICALS, INC.
      YUE, Henry
      TANG, Y. Tom
      CORLEY, Neil C.
      GUEGLER, Karl J.
      GORGONE, Gina A.
      BAUGHN, Mariah R.
      LU, Dyung Aina M.
      LAL, Preeti
      HILLMAN, Jennifer L.
      YANG, Junming
<120> IMMUNOGLOBULIN SUPERFAMILY PROTEINS
<130> PF-0643 PCT
<140> To Be Assigned
<141> Herewith
<150> 09/195,853; unassigned; 60/113,635; 60/128,194
<151> 1998-11-19; 1998-11-19; 1998-12-22; 1999-04-07
<160> 38
<170> PERL Program
<210> 1
<211> 237
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID NO: 079785CD1
Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu
                                      10
  1
Trp Leu Arg Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro
                                      25
Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys
                 35
                                      40
Arg Ala Gly Gln Ser Ile Ser Ser Tyr Leu Asn Trp Tyr Gln Gln
                 50
Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ala Ala Ser Ser
                                      70
Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly
                                      85
Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe
                                     100
                 95
Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Pro Ile Thr
                110
```

```
Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys Arg Thr Val Ala Ala
างหลัง การมหาวาจังทัว 125 การสำรัชสิทธิ์ การสำรัชสิทธิ์ การสำราช เพื่องเลาได้
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser
                140
Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg
                                      160
                 155
Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly
                                      175
                 170
Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr
                                      190
                 185
Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
                                      205
                 200
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
                                      220
                 215
Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
                                      235
                 230
```

<210> 2 <211> 537 <212> PRT <213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID NO: 2469025CD1

<400> 2 Met Asp Leu Leu His Lys Asn Met Lys His Leu Trp Phe Phe Leu 10 Leu Leu Val Ala Ala Pro Arg Trp Val Leu Ser Gln Val Gln Leu 25 20 Gln Gln Trp Gly Ala Gly Leu Leu Lys Pro Ser Glu Thr Leu Ser 40 Leu Thr Cys Ala Val Tyr Gly Gly Ser Phe Ser Gly Tyr Tyr Leu 55 Ser Gly Tyr Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly 75 70 Leu Glu Trp Ile Gly Glu Ile Asn His Ser Gly Ser Thr Asn Tyr 85 Asn Pro Ser Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser 100 95 Lys Asn Gln Phe Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp 115 110 Thr Ala Val Tyr Tyr Cys Ala Arg Gly Arg Ser Asp Ser Ser Gly 130 Ser Pro Tyr Gly Leu Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr 145 140 Val Ser Ser Ala Pro Thr Lys Ala Pro Asp Val Phe Pro Ile Ile 160 155 Ser Gly Cys Arg His Pro Lys Asp Asn Ser Pro Val Val Leu Ala 170 Cys Leu Ile Thr Gly Tyr His Pro Thr Ser Val Thr Val Thr Trp 190 Tyr Met Gly Thr Gln Ser Gln Pro Gln Arg Thr Phe Pro Glu Ile

a arte densa terrenta il Silver con

```
205
                200
Gln Arg Arg Asp Ser Tyr Tyr Met Thr Ser Ser Gln Leu Ser Thr
                                                        225
                                    220
                215
Pro Leu Gln Gln Trp Arg Gln Gly Glu Tyr Lys Cys Val Val Gln
                                    235
                230
His Thr Ala Ser Lys Ser Lys Lys Glu Ile Phe Arg Trp Pro Glu
                                    250
                245
Ser Pro Lys Ala Gln Ala Ser Ser Val Pro Thr Ala Gln Pro Gln
                                    265
                260
Ala Glu Gly Ser Leu Ala Lys Ala Thr Thr Ala Pro Ala Thr Thr
                                    280
                275
Arg Asn Thr Gly Arg Gly Gly Glu Glu Lys Lys Glu Lys Glu
                                    295
                290
Lys Glu Glu Glu Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys Pro
                                    310
                305
Ser His Thr Gln Pro Leu Gly Val Tyr Leu Leu Thr Pro Ala Val
                                     325
                320
Gln Asp Leu Trp Leu Arg Asp Lys Ala Thr Phe Thr Cys Phe Val
                                     340
                335
Val Gly Ser Asp Leu Lys Asp Ala His Leu Thr Trp Glu Val Ala
                                     355
Gly Lys Val Pro Thr Gly Gly Val Glu Glu Gly Leu Leu Glu Arg
                                     370
His Ser Asn Gly Ser Gln Ser Gln His Ser Arg Leu Thr Leu Pro
                                     385
Arg Ser Leu Trp Asn Ala Gly Thr Ser Val Thr Cys Thr Leu Asn
                                     400
His Pro Ser Leu Pro Pro Gln Arg Leu Met Ala Leu Arg Glu Pro
                                     415
                 410
Ala Ala Gln Ala Pro Val Lys Leu Ser Leu Asn Leu Leu Ala Ser
                                     430
Ser Asp Pro Pro Glu Ala Ala Ser Trp Leu Leu Cys Glu Val Ser
                                     445
                 440
Gly Phe Ser Pro Pro Asn Ile Leu Leu Met Trp Leu Glu Asp Gln
                                     460
 Arg Glu Val Asn Thr Ser Gly Phe Ala Pro Ala Arg Pro Pro Pro
                                     475
                 470
 Gln Pro Gly Ser Thr Thr Phe Trp Ala Trp Ser Val Leu Arg Val
                                     490
 Pro Ala Pro Pro Ser Pro Gln Pro Ala Thr Tyr Thr Cys Val Val
                                     505
 Ser His Glu Asp Ser Arg Thr Leu Leu Asn Ala Ser Arg Ser Leu
                                     520
 Glu Val Ser Tyr Val Thr Asp His Gly Pro Met Lys
                                      535
```

```
<210> 3
<211> 311
<212> PRT
<213> Homo sapiens
```

<220>

<221> misc_feature

<223> Incyte ID NO: 2906265CD1

```
<400> 3
Met Gly Thr Arg Leu Leu Phe Trp Val Ala Phe Cys Leu Leu Gly
                                     10
Ala Asp His Thr Gly Ala Gly Val Ser Gln Ser Pro Ser Asn Lys
                                     25
                 20
Val Thr Glu Lys Gly Lys Asp Val Glu Leu Arg Cys Asp Pro Ile
                                                         45
                                    : 40
                 35
Ser Gly His Thr Ala Leu Tyr Trp Tyr Arg Gln Ser Leu Gly Gln
                                     55
                 50
Gly Leu Glu Phe Leu Ile Tyr Phe Gln Gly Asn Ser Ala Pro Asp
Lys Ser Gly Leu Pro Ser Asp Arg Phe Ser Ala Glu Arg Thr Gly
                                      85
                 80
Gly Ser Val Ser Thr Leu Thr Ile Gln Arg Thr Gln Glu Asp
                                                         105
                 95
                                     100
Ser Ala Val Tyr Leu Cys Ala Ser Ser Phe Leu Ala Gly Arg Gly
                 110
                                     115
Asn Thr Ile Tyr Phe Gly Glu Gly Ser Trp Leu Thr Val Val Glu
                                     130
                 125
Asp Leu Asn Lys Val Phe Pro Pro Glu Val Ala Val Phe Glu Pro
                                     145
                 140
Ser Glu Ala Glu Ile Ser His Thr Gln Lys Ala Thr Leu Val Cys
                                     160
                 155
Leu Ala Thr Gly Phe Phe Pro Asp His Val Glu Leu Ser Trp Trp
                                     175
Val Asn Gly Lys Glu Val His Ser Gly Val Ser Thr Asp Pro Gln
                                     190
Pro Leu Lys Glu Gln Pro Ala Leu Asn Asp Ser Arg Tyr Cys Leu
                                     205
 Ser Ser Arg Leu Arg Val Ser Ala Thr Phe Trp Gln Asn Pro Arg
                                     220
                 215.
 Asn His Phe Arg Cys Gln Val Gln Phe Tyr Gly Leu Ser Glu Asn
                                     235
                 230
 Asp Glu Trp Thr Gln Asp Arg Ala Lys Pro Val Thr Gln Ile Val
                                     250
                 245
 Ser Ala Glu Ala Trp Gly Arg Ala Asp Cys Gly Phe Thr Ser Val
                                     265
                 260
 Ser Tyr Gln Gln Gly Val Leu Ser Ala Thr Ile Leu Tyr Glu Ile
                                     280
                 275
 Leu Leu Gly Lys Ala Thr Leu Tyr Ala Val Leu Val Ser Ala Leu
                                     295
                 290
 Val Leu Met Ala Met Val Lys Arg Lys Asp Phe
                 305
```

```
<210> 4
<211> 194
<212> PRT
<213> Homo sapiens
-
<220>
```

<221> misc_feature <223> Incyte ID NO: 788975CD1

<400> 4

```
Met Thr Met Arg His Asn Trp Thr Pro Asp Leu Ser Pro Leu Trp
10 15
Val Leu Leu Cys Ala His Val Val Thr Leu Leu Val Arg Ala
                                                                      en kann fre fra skriver mer fra skrivet fra fra frikliger.
                    Thr Pro Val Ser Gln Thr Thr Thr Ala Ala Thr Ala Ser Val Arg
                                                40
                            35
           Ser Thr Lys Asp Pro Cys Pro Ser Gln Pro Pro Val Phe Pro Ala
                            50
           Ala Lys Gln Cys Pro Ala Leu Glu Val Thr Trp Pro Glu Val Glu
                            65
           Val Pro Leu Asn Gly Thr Leu Ser Leu Ser Cys Val Ala Cys Ser
                                                85
           Arg Phe Pro Asn Phe Ser Ile Leu Tyr Trp Leu Gly Asn Gly Ser
                                               100
                            95
           Phe Ile Glu His Leu Pro Gly Arg Leu Trp Glu Gly Ser Thr Ser
                                               115
                           110
           Arg Glu Arg Gly Ser Thr Gly Thr Gln Leu Cys Lys Ala Leu Val
                                               130
                           125
            Leu Glu Gln Leu Thr Pro Ala Leu His Ser Thr Asn Phe Ser Cys
                                               145
                            140
            Val Leu Val Asp Pro Glu Gln Val Val Gln Arg His Val Val Leu
                                               160
                            155
            Ala Gln Leu Trp Ala Gly Leu Arg Ala Thr Leu Pro Pro Thr Gln
                                               175
                            170
            Glu Ala Leu Pro Ser Ser His Ser Ser Pro Gln Gln Gln Gly
                        . . . 185
                                                190
```

<210> 5 <211> 236 <212> PRT <213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID NO: 1407148CD1

<400> 5 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu 10 Trp Leu Pro Gly Ala Arg Cys Asp Ile Gln Leu Thr Gln Ser Pro 25 20 Ser Phe Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys 40 35 Arg Ala Ser Gln Leu Ile Ser Asn His Leu Ala Trp Tyr Gln Gln 55 50 Lys Pro Gly Arg Ala Pro Lys Leu Leu Val His Ser Ala Ser Ile 70 Leu Gln Ser Gly Val Pro Leu Arg Phe Ser Gly Ser Gly Tyr Gly 85 Thr Glu Phe Thr Leu Thr Val Ala Ser Leu Gln Pro Glu Asp Ser Ala Thr Tyr Tyr Cys Gln Gln Arg Asn Gly Tyr Pro Ile Thr Phe 115

Gly Gln Gly Thr Arg Leu Glu Ile Lys Arg Thr Val Ala Ala Pro

```
130
                125
Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
                                    145
                140
Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu
                                    160
                155
Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn
                                    175
                170
Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr
                                                         195
                                    190
                185
Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys
                                     205
                200
His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
                                     220
                215
Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
                230
<210> 6
```

<211> 310 <212> PRT <213> Homo sapiens

<221> misc_feature <223> Incyte ID NO: 1870848CD1

Met Ala Leu Arg Arg Pro Pro Arg Leu Arg Leu Cys Ala Arg Leu 10 Pro Asp Phe Phe Leu Leu Leu Phe Arg Gly Cys Leu Ile Gly 25 Ala Val Asn Leu Lys Ser Ser Asn Arg Thr Pro Val Val Gln Glu 40 Phe Glu Ser Val Glu Leu Ser Cys Ile Ile Thr Asp Ser Gln Thr 55 Ser Asp Pro Arg Ile Glu Trp Lys Lys Ile Gln Asp Glu Gln Thr 70 Thr Tyr Val Phe Phe Asp Asn Lys Ile Gln Gly Asp Leu Ala Gly 85 Arg Ala Glu Ile Leu Gly Lys Thr Ser Leu Lys Ile Trp Asn Val 100 95 Thr Arg Arg Asp Ser Ala Leu Tyr Arg Cys Glu Val Val Ala Arg 115 Asn Asp Arg Lys Glu Ile Asp Glu Ile Val Ile Glu Leu Thr Val 130 Gln Val Lys Pro Val Thr Pro Val Cys Arg Val Pro Lys Ala Val 140 Pro Val Gly Lys Met Ala Thr Leu His Cys Gln Glu Ser Glu Gly 155 His Pro Arg Pro His Tyr Ser Trp Tyr Arg Asn Asp Val Pro Leu 175 170 Pro Thr Asp Ser Arg Ala Asn Pro Arg Phe Arg Asn Ser Ser Ser 190 His Leu Asn Ser Glu Thr Gly Thr Leu Val Phe Thr Ala Val His 210 200 205

```
Lys Asp Asp Ser Gly Gln Tyr Tyr Cys Ile Ala Ser Asn Asp Ala
225
Gly Ser Ala Arg Cys Glu Glu Glu Met Glu Val Tyr Asp Leu
                                   235 240
                230
Asn Ile Gly Gly Ile Ile Gly Gly Val Leu Val Val Leu Ala Val
                                   250
                245
Leu Ala Leu Ile Thr Leu Gly Ile Cys Cys Ala Tyr Arg Arg Gly
                                   265
                260
Tyr Phe Ile Asn Asn Lys Gln Asp Gly Glu Ser Tyr Lys Asn Pro
                                   280
                275
Gly Lys Pro Asp Gly Val Asn Tyr Ile Arg Thr Asp Glu Glu Gly
                                   295
                290
Asp Phe Arg His Lys Ser Ser Phe Val Ile
                                   310
                305
<210> 7
<211> 148
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> misc feature
 <223> Incyte ID NO: 1888468CD1
<400> 7
 Met Asp Trp Thr Trp Arg Ile Leu Phe Leu Val Ala Ala Ala Thr
                                     10
                   5
 Gly Ala His Ser Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val
                                     25
 Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly
                                     40
 Tyr Thr Phe Thr Gly Tyr Tyr Met His Trp Val Arg Gln Ala Pro
                                                         60
                                     55
                         . 5
 Gly Gln Gly Leu Glu Trp Met Gly Trp Ile Ser Pro Asn Asn Gly
                                      70
 Asp Thr Phe Tyr Ala His Arg Leu Gln Asp Arg Val Thr Leu Thr
                                      85
 Thr Asp Thr Ser Ala Thr Thr Gly Tyr Met Glu Leu Arg Ser Leu
                                    100
 Thr Ser Asp Asp Thr Ala Ile Tyr Tyr Cys Ala Arg Gly Asp Tyr
                                     115
 Gly Asn Ser Leu Asp His Trp Gly Gln Gly Asn Leu Val Thr Val
                                     130
                 125
 Ser Ser Ala Ser Pro Thr Ser Pro Lys Gly Leu Pro Ala
                 140
 <210> 8
  <211> 310
  <212> PRT
  <213> Homo sapiens
  <220>
  <221> misc_feature
```

<223> Incyte ID NO: 2770104CD1

```
<400> 8
Met Arg Arg Thr Gln Pro Leu Ser Val His Thr Gly Trp Glu Gly
Gly Glu Ala Ile Ser Leu Cys Val Ser Leu Ser Arg Gln His Arg
                                     25
Gly Leu Ile His Pro Gln Ser Arg Ala Val Gly Gly Asp Ala Met
Thr Pro Ile Val Thr Val Leu Ile Cys Leu Gly Leu Ser Leu Gly
                                     55
Pro Arg Thr His Val Gln Thr Gly Thr Ile Pro Lys Pro Thr Leu
                                     70
Trp Ala Glu Pro Asp Ser Val Ile Thr Gln Gly Ser Pro Val Thr
                 80
                                     85
Leu Ser Cys Gln Gly Ser Leu Glu Ala Gln Glu Tyr Arg Leu Tyr
                                    100
                 95
Arg Glu Lys Lys Ser Ala Ser Trp Ile Thr Arg Ile Arg Pro Glu
                                    115
                110
Leu Val Lys Asn Gly Gln Phe His Ile Pro Ser Ile Thr Trp Glu
                                    130
                125
His Thr Gly Arg Tyr Gly Cys Gln Tyr Tyr Ser Arg Ala Arg Trp
                                    145
Ser Glu Leu Ser Asp Pro Leu Val Ala Gly Asp Asp Arg Ser Tyr
                                    160
Gln Asn Pro Thr Ser Gln Pro Ser Pro Gly Pro Val Val Thr Pro
                                    175
Gly Lys Asn Val Thr Leu Leu Cys Gln Ser Arg Gly Gln Phe His
                                    190
Thr Phe Leu Leu Thr Lys Glu Gly Ala Gly His Pro Pro Leu His
                                    205
Leu Arg Ser Glu His Gln Ala Gln Gln Asn Gln Ala Glu Phe Arg
                                     220
Met Gly Pro Val Thr Ser Ala His Val Gly Thr Tyr Arg Cys Tyr
                                     235
Ser Ser Leu Ser Ser Asn Pro Tyr Leu Leu Ser Leu Pro Ser Asp
                                     250
Pro Leu Glu Leu Val Val Ser Ala Ser Leu Gly Gln His Pro Gln
                                     265
Asp Tyr Thr Val Glu Asn Leu Ile Arg Met Gly Val Ala Gly Leu
                                     280
Val Leu Val Val Leu Gly Ile Leu Leu Phe Glu Ala Gln His Ser
Gln Arg Ser Leu Gln Asp Ala Ala Gly Arg
                 305
```

```
<210> 9
<211> 236
<212> PRT
<213> Homo sapiens
```

المراجعة والإفارانة والإنطاء لأعور بطؤا فارع ومصراه رجو

```
<400> 9
Met Asp Met Arg Val Leu Ala Gln Leu Leu Gly Leu Leu Leu Leu
                                     10
Cys Phe Pro Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro
Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys
                                      40
Arg Ala Ser Gln Asp Ile Ser Asn Tyr Leu Ala Trp Phe Gln Gln
                                      55
                 50
Lys Pro Gly Thr Ala Pro Lys Ser Leu Ile Tyr Asp Thr Ser Ser
                 65
Leu Gln Ser Gly Val Pro Ser Lys Phe Ser Gly Ser Gly Ser Gly
                                      85
                 80
Thr Asp Phe Thr Leu Thr Ile Asn Ser Leu Gln Pro Glu Asp Phe
                                     100
Ala Thr Tyr Tyr Cys Gln Gln His His Ser Tyr Pro Leu Thr Phe
                                     115
                110
Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala Pro
                125
                                     130
Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
                                     145
                 140
Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu
                                     160
                 155
Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn
                                     175
                170
Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr
                                                          195
                                     190
                 185
Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys
                                     205
                 200
His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
                                     220
                 215
 Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
                 230
```

```
<210> 10
<211> 237
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID NO: 3238787CD1
```

```
Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly
 State of the state
                                                                                                                                                                                                        90
Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe
                                                                           100 66 166 166 105
                                                             95
Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Pro Ile Thr
                                                          110
                                                                                                                                115
 Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys Arg Thr Val Ala Ala
                                                          125
 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser
                                                                                                                                 145
 Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg
                                                                                                                                 160
                                                          155
 Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly
                                                                                                                                 175
                                                          170
 Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr
                                                                                                                                  190
                                                           185
 Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
                                                                                                                                  205
                                                           200
 Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
                                                                                                                                  220
                                                           215
  Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
                                                           230
```

<210> 11 <211> 148 <212> PRT <213> Homo sapiens

<220> <221> misc_feature <223> Incyte ID NO: 3559548CD1

<400> 11 Met Asp Trp Thr Trp Ser Ile Leu Phe Leu Val Ala Ala Ala Thr 10 Gly Ala His Ser Gln Val His Leu Val Gln Ser Gly Ala Glu Val 25 20 Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly 40 35 Tyr Thr Phe Thr Ser His Gly Ile Thr Trp Val Arg Gln Ala Pro 50 Gly Gln Gly Leu Glu Trp Met Gly Trp Ile Ser Pro Asn Asn Gly Asp Thr Phe Tyr Ala His Arg Leu Gln Asp Arg Val Thr Leu Thr 90 85 Thr Asp Thr Ser Ala Thr Thr Gly Tyr Met Glu Leu Arg Ser Leu 100 105 95 Thr Ser Asp Asp Thr Ala Ile Tyr Tyr Cys Ala Arg Gly Asp Tyr 115 110 Gly Asn Ser Leu Asp His Trp Gly Gln Gly Asn Leu Val Thr Val 130 125 Ser Ser Ala Ser Pro Thr Ser Pro Lys Gly Leu Pro Ala 145

```
<210> 12
to (211) 236 Callegian til Ambrea antitan av varket kilder antital antital an antital antital antital antital a
  <213> Homo sapiens
 <220>
  <221> misc_feature
  <223> Incyte ID NO: 3872741CD1
  Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu
  Trp Leu Ser Gly Ala Arg Cys Asp Thr Gln Met Thr Gln Ser Pro
                                        25
                   20
  Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Leu Thr Ile Thr Cys
                   35
                                        40
  Gln Ala Ser Glu Asp Val Ile Lys Tyr Val Asn Trp Tyr Gln Gln
                                        55
  Lys Pro Arg Lys Ala Pro Lys Leu Leu Ile His Asp Ala Ser Asn
                                        70
                    65
  Leu Glu Thr Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly
                                        85
                    BO
  Thr Leu Phe Thr Phe Thr Ile Ser Asn Leu Gln Pro Glu Asp Val
                    95
                                       100
  Ala Thr Tyr Tyr Cys Gln His Tyr Ala Ser His Pro Leu Thr Phe
               ... 110
                                       115
  Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala Pro
                                       130
                   125
  Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
                                       145
                   140
  Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu
                  155
                                       160
  Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn
                                       ·175
                   170
  Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr
                                                             195
                                       190
                   185
  Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys
                                       205
                   200
  His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
                                                            225
                                        220
                   215
  Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
                                        235
                   230
  <210> 13
```

```
<211> 13
<211> 237
<212> PRT
<213> Homo sapiens
```

<220>
<221> misc_feature
<223> Incyte ID NO: 3981428CD1

<400> 13 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu

```
Trp Leu Arg Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro
                                     25
Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Met Thr Cys
                                     40
                 35
Arg Ala Ser Gln Ser Ile Ser Thr Tyr Leu Asn Trp Tyr Gln Gln
Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ala Ala Ser Ser
                                     70
Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly
                                     85
                 80
Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe
                                     100
                 95
Ala Thr Tyr Tyr Cys Gln Gln Ser Phe Asn Thr His Met Tyr Thr
                                  115
                110
Phe Gly Gln Gly Thr Arg Leu Glu Met Lys Arg Thr Val Ala Ala
                                     130
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser
                                     145
                140
Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg
                                     160
Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly
                                     175
                170
Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr
                                     190
                 185
Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
                                     205
                 200
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
                                     220
                 215
 Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
                230
```

```
<210> 14
<211> 219
<212> PRT
<213> Homo sapiens
```

<220>
<221> misc_feature
<223> Incyte ID NO: 4635039CD1

 <4400> 14

 Met Asp Trp Thr Trp Srg Ile Leu Phe Leu Val Ala Ala Val Thr 10
 15

 Gly Val His Ser Gln Val Cln Leu Val Gln Ser Gly Ala Glu Val 25
 30

 Arg Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Thr Phe Ser Asp His Tyr Ile His Trp Val Arg Gln Ala Pro 50
 40

 Tyr Thr Phe Ser Asp His Tyr Ile His Trp Val Arg Gln Ala Pro 50
 55

 Gly Gln Gly Leu Glu Trp Met Gly Trp Ile Asn Pro Asn Ser Gly 65
 75

 Gly Ala Arg Tyr Ala Gln Gly Phe Gln Gly Leu Val Thr Met Thr 80
 85

```
Arg Asp Thr Ser Ile Ser Thr Ala Tyr Leu Glu Leu Arg Gly Leu
      105
Arg Ser Asp Gly Ser Ala Val Tyr Phe Cys Ala Arg Gln Thr Thr
                                                  120
                            115
              110
Ser Ser Pro Val Gly Asp Ala Phe Asp Ile Trp Gly Gln Gly Thr
                                130
              125
Met Val Thr Val Ser Ser Ala Ser Pro Thr Ser Pro Lys Val Phe
                                145
              140
Pro Leu Ser Leu Cys Ser Thr Gln Pro Asp Gly Asn Val Val Ile
                                160
              155
Ala Cys Leu Val Gln Gly Phe Phe Pro Gln Glu Pro Leu Ser Val
                                 175
              170
Thr Trp Ser Glu Thr Asp Gln Gly Val Thr Ala Lys Lys Leu Pro
                                 190
              185
Thr Gln Pro Gly Cys Leu Arg Gly Thr Val Asn His Glu Gln Pro
                                 205
               200
Ala Asp Pro Ala Gly Gln Asn Ser Ala
               215
```

<210> 15 <211> 241 <212> PRT <213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID NO: 3240710CD1

<400> 15 Met Arg Leu Pro Ala Gln Leu Leu Gly Leu Leu Met Leu Trp Ile 1 Pro Gly Ser Ser Ala Asp Ile Val Leu Thr Gln Thr Pro Leu Ser 20 Leu Ser Val Thr Pro Gly Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Glu Ser Leu Leu His Thr Asp Gly Lys Thr Tyr Leu His Trp 55 Phe Val Gln Lys Ala Gly Gln Pro Pro Gln Val Leu Met Tyr Glu 70 65 Val Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser 85 80 Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala 100 95 Glu Asp Val Arg Ile Tyr Tyr Cys Met Arg Thr Ile Gln Val Pro 115 110 Pro Thr Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu 150 145 140 Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn 160 155 Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala 175 170 Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser

```
190
                      185
Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys
                                          205
                     200
      Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His
                                          220
                      215
      Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu
      Cys
      <210> 16
      <211> 507
      <212> PRT
      <213> Homo sapiens
      <220>
      <221> misc_feature
      <223> Incyte ID NO: 4945813CD1
      Met Asp Leu Leu Cys Lys Asn Met Lys His Leu Trp Phe Phe Leu
                                           10
      Leu Leu Val Ala Ala Pro Arg Trp Val Leu Ser Gln Leu Gln Leu
                                            25
                        20
      Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu Thr Leu Ser
                                            40
                        35
      Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr Asn His
                                            55
                        50
       Tyr Trp Gly Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp
                                            70
                        65
       Ile Gly Ser Ile Phe Tyr Thr Gly Asn Ser Tyr Tyr Asn Pro Ser
                                            85
                        80
       Leu Lys Ser Arg Leu Ala Ile Ser Val Asp Thr Ser Lys Ser Gln
                                           100
                        95
       Leu Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val
                                           115
       Tyr Tyr Cys Ala Thr Val Pro Lys Thr Arg Ser Arg Pro Arg Gly
                                           130
                       125
       Tyr Thr Tyr Gly Pro Phe Asp Phe Trp Gly Gln Gly Thr Leu Val
                                           145
       Thr Val Ser Ser Ala Ser Pro Thr Ser Pro Lys Val Phe Pro Leu
                                           160
                       155
       Ser Leu Cys Ser Thr Gln Pro Asp Gly Asn Val Val Ile Ala Cys
                                            175
                       170
       Leu Val Gln Gly Phe Phe Pro Gln Glu Pro Leu Ser Val Thr Trp
                                            190
                        185
       Ser Glu Ser Gly Gln Gly Val Thr Ala Arg Asn Phe Pro Pro Ser
                                            205
       Gln Asp Ala Ser Gly Asp Leu Tyr Thr Thr Ser Ser Gln Leu Thr
                                                                225
                                            220
                        215
       Leu Pro Ala Thr Gln Cys Leu Ala Gly Lys Ser Val Thr Cys His
                                            235
                        230
       Val Lys His Tyr Thr Asn Pro Ser Gln Asp Val Thr Val Pro Cys
                                                                 255
                                            250
                        245
       Pro Val Pro Ser Thr Pro Pro Thr Pro Ser Pro Ser Thr Pro Pro
```

and professional publication of the contraction

```
265
                260
Thr Pro Ser Pro Ser Cys Cys His Pro Arg Leu Ser Leu His Arg
                                                        285
                                    280
                275
Pro Ala Leu Glu Asp Leu Leu Leu Gly Ser Glu Ala Asn Leu Thr
                                    295
                290
Cys Thr Leu Thr Gly Leu Arg Asp Ala Ser Gly Val Thr Phe Thr
                                    310
                305
Trp Thr Pro Ser Ser Gly Lys Ser Ala Val Gln Gly Pro Pro Glu
                                    325
                320
Arg Asp Leu Cys Gly Cys Tyr Ser Val Ser Ser Val Leu Pro Gly
                                    340
                335
Cys Ala Glu Pro Trp Asn His Gly Lys Thr Phe Thr Cys Thr Ala
                                    355
Ala Tyr Pro Glu Ser Lys Thr Pro Leu Thr Ala Thr Leu Ser Lys
                                    370
                365
Ser Gly Asn Thr Phe Arg Pro Glu Val His Leu Leu Pro Pro Pro
                                    385
Ser Glu Glu Leu Ala Leu Asn Glu Leu Val Thr Leu Thr Cys Leu
                                     400
                395
Ala Arg Gly Phe Ser Pro Lys Asp Val Leu Val Arg Trp Leu Gln
                                     415
Gly Ser Gln Glu Leu Pro Arg Glu Lys Tyr Leu Thr Trp Ala Ser
                                     430
Arg Gln Glu Pro Ser Gln Gly Thr Thr Thr Phe Ala Val Thr Ser
                                     445
                 440
Ile Leu Arg Val Ala Ala Glu Asp Trp Lys Lys Gly Asp Thr Phe
                                     460
Ser Cys Met Val Gly His Glu Ala Leu Pro Leu Ala Phe Thr Gln
                                     475
Lys Thr Ile Asp Arg Leu Ala Gly Lys Pro Thr His Val Asn Val
                                     490
Ser Val Val Met Ala Glu Val Asp Gly Thr Cys Tyr
                 500
```

```
<210> 17
<211> 244
<212> PRT
<213> Homo sapiens
```

<220>
<221> misc_feature
<223> Incyte ID NO: 4948957CD1

 <4400> 17

 Met
 Val
 Leu
 Gln
 Thr
 Gln
 Val
 Phe
 Ile
 Ser
 Leu
 Leu
 Leu
 Trp
 Ile

 Ser
 Val
 Leu
 Thr
 Ala
 Gly
 Ala
 Trp
 Gly
 Asp
 Ile
 Val
 Met
 Thr
 Gln
 Gln
 Gln
 Asp
 Ile
 Val
 Trp
 Gln
 Asp
 Ile
 Val
 Met
 Thr
 Gln
 Gln
 Asp
 Ile
 Val
 Met
 Thr
 Ile
 Asp
 Ile
 Val
 Met
 Thr
 Gln
 Asp
 Ile
 Val
 Asp
 Ile
 Val
 Thr
 Asp
 Ile
 Val
 Asp
 Asp
 Ile
 Asp
 Asp

egiftige grower bloker, her dielege geforte gewennichtet ein gehalte.

```
Met Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val Pro Asp
    Secretary 180 the Antich-of Hatti Cast analytical Matter 20
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile
                                100
                 95
Ser Ser Leu Gln Ala Glu Asp Val Ala Leu Tyr Tyr Cys Gln Gln
                110
                                  115
Tyr Phe Thr Thr Pro Tyr Thr Phe Gly Gln Gly Thr Arg Leu Glu
                                    130
                125
Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro
                                    145
                140
Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu
                                    160
                155
Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val
                                                        180
                                    175
                170
Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu
                                    190
                185
Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr
                                                        210
                                    205
                200
Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu
                                                        225
                                    220
Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn
                                                        240
                                    235
Arg Gly Glu Cys
```

<210> 18 <211> 240 <212> PRT <213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID NO: 4949649CD1

Met Ser Val Pro Thr Met Ala Trp Met Met Leu Leu Leu Gly Leu 10 Leu Ala Tyr Gly Ser Gly Val Asp Ser Gln Thr Val Val Thr Gln 25 \ 20 Glu Pro Ser Leu Ser Val Ser Pro Gly Gly Thr Val Thr Leu Thr 40 35 Cys Gly Leu Ala Ser Asp Ser Val Ser Thr Asn Phe Phe Pro Thr 60 55 Trp Tyr Gln Gln Thr Pro Gly Gln Ala Pro Arg Thr Leu Ile Tyr 70 65 Ser Thr Ser Thr Arg Ser Ser Gly Val Pro Asp Arg Phe Ser Gly 90 85 80 Ser Ile Leu Gly Asn Lys Ala Ala Leu Thr Ile Thr Gly Ala Gln 100 95 Ala Asp Asp Glu Ser Asp Tyr Tyr Cys Ala Leu Tyr Met Gly Ser 120 115 110 Gly Ile Ser Val Phe Gly Gly Gly Thr Lys Val Thr Val Leu Gly 135 130 125 Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser 145 140

.....

```
Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser
                water water was 155 high highest growing a section of the contract of the cont
Asp Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser
                                                                                                                                                                                                                                                                                                   180
                                                                                                                                                                                         175
                                                                                      170
 Ser Pro Val Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln
                                                                                      185
                                                                                                                                                                                            190
 Ser Asn Asn Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro
                                                                                                                                                                                            205
                                                                                      200
 Glu Gln Trp Lys Ser His Arg Ser Tyr Ser Cys Gln Val Thr His
                                                                                                                                                                                            220
                                                                                      215
  Glu Gly Ser Thr Val Glu Lys Thr Val Ala Pro Thr Glu Cys Ser
                                                                                                                                                                                             235
```

<210> 19 <211> 398 <212> PRT <213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID NO: 5500302CD1

<400> 19 Met Ser Gly Ser Ser Leu Pro Ser Ala Leu Ala Leu Ser Leu Leu 1 5 Leu Val Ser Gly Ser Leu Leu Pro Gly Pro Gly Ala Ala Gln Asn Ala Gly Phe Val Lys Ser Pro Met Ser Glu Thr Lys Leu Thr Gly 45 40 Asp Ala Phe Glu Leu Tyr Cys Asp Val Val Gly Ser Pro Thr Pro 55 Glu Ile Gln Trp Trp Tyr Ala Glu Val Asn Arg Ala Glu Ser Phe 70 Arg Gln Leu Trp Asp Gly Ala Arg Lys Arg Arg Val Thr Val Asn 85 Thr Ala Tyr Gly Ser Asn Gly Val Ser Val Leu Arg Ile Thr Arg 100 Leu Thr Leu Glu Asp Ser Gly Thr Tyr Glu Cys Arg Ala Ser Asn 110 Asp Pro Lys Arg Asn Asp Leu Arg Gln Asn Pro Ser Ile Thr Trp 125 Ile Arg Ala Gln Ala Thr Ile Ser Val Leu Gln Lys Pro Arg Ile 145 140 Val Thr Ser Glu Glu Val Ile Ile Arg Asp Ser Pro Val Leu Pro 160 155 Val Thr Leu Gln Cys Asn Leu Thr Ser Ser Ser His Thr Leu Thr 175 170 Tyr Ser Tyr Trp Thr Lys Asn Gly Val Glu Leu Ser Ala Thr Arg 190 185 Lys Asn Ala Ser Asn Met Glu Tyr Arg Ile Asn Lys Pro Arg Ala 200 205 Glu Asp Ser Gly Glu Tyr His Cys Val Tyr His Phe Val Ser Ala 220 215 Pro Lys Ala Asn Ala Thr Ile Glu Val Lys Ala Ala Pro Asp Ile

```
240
                230
Thr Gly His Lys Arg Ser Glu Asn Lys Asn Glu Gly Gln Asp Ala
                                                        255
                                    250
                245
Thr Met Tyr Cys Lys Ser Val Gly Tyr Pro His Pro Asp Trp Ile
                                                        270
                                    265
                260
Trp Arg Lys Lys Glu Asn Gly Met Pro Met Asp Ile Val Asn Thr
                                                        285
                                    280
                275
Ser Gly Arg Phe Phe Ile Ile Asn Lys Glu Asn Tyr Thr Glu Leu
                                                         300
                                    295
                290
Asn Ile Val Asn Leu Gln Ile Thr Glu Asp Pro Gly Glu Tyr Glu
                                     310
                305
Cys Asn Ala Thr Asn Ala Ile Gly Ser Ala Ser Val Val Thr Val
                                    325
                320
Leu Arg Val Arg Ser His Leu Ala Pro Leu Trp Pro Phe Leu Gly
                                     340
                335
Ile Leu Ala Glu Ile Ile Ile Leu Val Val Ile Ile Val Val Tyr
                                                         360
                                     355
                350
Glu Lys Arg Lys Arg Pro Asp Glu Val Pro Asp Asp Asp Glu Pro
                                     370
Ala Gly Pro Met Lys Thr Asn Ser Thr Asn Asn His Lys Asp Lys
                                                         390
                                     385
Asn Leu Arg Gln Arg Asn Thr Asn
                 395
 <210> 20
 <211> 917
 <212> DNA
 <213> Homo sapiens
 <221> misc_feature
 <223> Incyte ID NO: 079785CB1
 gtcaggacac agcatggaca tgagggtccc cgctcagctc ctggggctcc tgctactctg 60
 gctecgaggt gccagatgtg acatecagat gacccagtet ccatectece tgtetgcate 120
 tgtaggagac agagtcacca tcacttgccg ggcaggtcag agcattagca gctatttaaa 180
 ttggtatcag cagaaaccag ggaaagcccc taagctcctg atctatgctg catccagttt 240
 gcaaagtggg gtcccatcaa ggttcagtgg cagtggatct gggacagatt tcactctcac 300
 catcagcagt ctgcaacctg aagattttgc aacttactac tgtcaacaga gttacagtac 360
 coetcogate acetteggee aagggacacg actggagatt aaacgaactg tggetgcace 420
 atetgtette atetteeege catetgatga geagttgaaa tetggaactg cetetgttgt 480
 gtgcctgctg aataacttct atcccagaga ggccaaagta cagtggaagg tggataacgc 540
 cctccaatcg ggtaactccc aggagagtgt cacagagcag gacagcaagg acagcaccta 600
 cagceteage ageaceetga egetgageaa ageagaetae gagaaacaca aagtetaege 660
 ctgcgaagtc acccatcagg gcctgagctc gcccgtcaca aagagcttca acaggggaga 720
 gtgttagagg gagaagtgcc cccacctgct cctcagttcc agcctgaccc cctcccatcc 780
 tttggcctct gacccttttt ccacagggga cctaccccta ttgcggtcct ccagctcatc 840
 tttcacctca cocccctcct cctccttggc tttaattatg ctaatgttgg aggagaatga 900
```

<210> 21 <211> 1746

ataaataaag tgatcga

```
<212> DNA
                                                                     South the supplemental than the
<213> Homo sapiens
                     and a man to seeing a to the first tell of the fifty or declined with and to
<220>
<221> misc_feature
<223> Incyte ID NO: 2469025CB1
<400> 21
ctgctcacat gggaaatact ttctgagagt catggacctc ctgcacaaga acatgaaaca 60
cotgtggtte ttectectee tggtggcage teccagatgg gtectgteec aggtgcaget 120
acagcagtgg ggcgcaggac tgttgaagcc ttcggagacc ctgtccctca cctgcgctgt 180
ctatggtggg tccttcagtg gttactactt aagtggttac tactggagct ggatccgcca 240
gcccccaggg aaggggctgg agtggattgg ggaaatcaat catagtggaa gcaccaacta 300
caaccegtee etcaagagte gagteaceat atcagtagae acgteeaaga accagttete 360
cctgaagctg agctctgtga ccgccgcgga cacggctgtg tattactgtg cgagaggcag 420
gagtgatagt agtggttecc catatggact tgactactgg ggccagggaa ccctggtcac 480
cgtctcctca gcacccacca aggctccgga tgtgttcccc atcatatcag ggtgcagaca 540
cccaaaggat aacagecetg tggteetgge atgettgata actgggtace acccaacgte 600
cgtgactgtc acctggtaca tgggggacaca gagccagccc cagagaacct tccctgagat 660
acaaagacgg gacagctact acatgacaag cagccagctc tecacceccc tecagcagtg 720
gegecaagge gagtacaaat gegtggteca geacacegee ageaagagta agaaggagat 780
cttccgctgg ccagagtete caaaggcaca ggceteetea gtgcccactg cacaaececa 840
agcagagggc agectegeca aggcaaccac agececagec accacegga acacaggaag 900
aggaggagaa gagaagaaga aggagaagga gaaagaggaa caagaagaga gagagacaaa 960
gacaccagag tgtccgagcc acacccagcc tcttggcgtc tacctgctaa cccctgcagt 1020
gcaggacetg tggctccggg acaaagccac cttcacetgc ttcgtggtgg gcagtgacet 1080
gaaggatget cacetgacet gggaggtgge tgggaaggte eccacagggg gegtggagga 1140
agggetgetg gageggeaca geaacggete ecagagecag cacageegte tgaceetgee 1200
 caggtccttg tggaacgcgg ggacctccgt cacctgcaca ctgaaccatc ccagcctccc 1260
 accccagagg ttgatggcgc tgagagaacc cgctgcgcag gcacccgtca agctttccct 1320
 gaacetgetg geetegtetg accetecega ggeggeeteg tggeteetgt gtgaggtgte 1380
 tggetteteg cececcaaca teeteetgat gtggetggag gaccagegtg aggtgaacac 1440
 ttctgggttt gcccccgcac gccccctcc acagcccggg agcaccacgt tctgggcctg 1500
 gagtgtgctg cgtgtcccag ccccgcccag ccctcagcca gccacctaca cgtgtgtggt 1560
 cagccacgag gaetcccgga etetgetcaa egecagecgg agectagaag teagetatgt 1620
 aacagaccat ggccccatga aatgatcccg gaccagatcc gtccacaccc gccactcagc 1680
 agetetggee gageteacag tacaaccaca ataaactett gttgaatgaa etetaaaaaa 1740
                                                                    1746
 aaaaaa
 <210> 22
 <211> 1160
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID NO: 2906265CB1
 <400> 22
 gccatgggca ccaggetect ettetgggtg gccttetgte teetggggge agateaeaca 60
 ggagetggag teteccagte ecccagtaac aaggteacag agaagggaaa ggatgtagag 120
 ctcaggtgtg atccaattte aggtcatact gccctttact ggtaccgaca gagcctgggg 180
 cagggcctgg agtttttaat ttacttccaa ggcaacagtg caccagacaa atcagggctg 240
 cccagtgate gettetetge agagaggact gggggatecg tetecactet gacgatecag 300
```

```
cgcacacage aggaggacte ggccgtgtat ctctgtgcca gcagetttct tgcagggagg 360
ggaaacacca tatattttgg agagggaagt tggctcactg ttgtagagga cctgaacaag 420
gtgttcccac ccgaggtcgc tgtgtttgag ccatcagaag cagagatctc ccacacccaa 480
aaggecacae tggtgtgeet ggecacagge ttetteeetg accaegtgga getgagetgg 540
tgggtgaatg ggaaggaggt gcacagtggg gtcagcacgg acccgcagcc cctcaaggag 600
cagecegece teaatgacte cagatactge etgageagee geetgagggt eteggeeace 660
ttctggcaga accecegeaa ceaettcege tgtcaagtcc agttctaegg getcteggag 720
aatgacgagt ggacccagga tagggccaaa cccgtcaccc agatcgtcag cgccgaggcc 780
tggggtagag cagactgtgg ctttacctcg gtgtcctacc agcaaggggt cctgtctgcc 840
accatectet atgagatect getagggaag gecaeeetgt atgetgtget ggteagegee 900
cttgtgttga tggccatggt caagagaaag gatttctgaa ggcagccctg gaagtggagt 960
taggagette taaccegtea tggttteaat acacattett ettttgeeag egettetgaa 1020
gagetgetet cacetetetg cateccaata gatatecece tatgtgeatg cacaectgea 1080
cactcacggc tgaaatctcc ctaacccagg gggaccttag catgcctaag tgactaaacc 1140
aaataaaaat gttctggtca
<210> 23
<211> 1356
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID NO: 788975CB1
gctgaagaga gcactgcctc cctgtgtgac tggagaagag gacgttgtca cagataaaga 60
gccaggetca ccagetcetg acgcatgcat catgaccatg agacacaact ggacaccaga 120
cotcagocot tigigggtoc tgetectgtg tgeccaegte gteactetee tggteagage 180
cacacetgte tegeagacea ecacagetge caetgeetca gttagaagea caaaggacee 240
etgeccetee cageccecag tgttcccage agetaageag tgtccageat tggaagtgae 300
ctggccagag gtggaagtgc cactgaatgg aacgctgagc ttatcctgtg tggcctgcag 360
cogetteece aactteagea teetetactg getgggeaat ggtteettea ttgageacet 420
cccaggcega ctgtgggagg ggagcaccag ccgggaacgt gggagcacag gtacgcagct 480
tgtgctcgtg gaccctgaac aggttgtcca gcgtcacgtc gtcctggccc agctctgggc 600
tgggctgagg gcaaccttgc ccccaccca agaagccctg ccctccagcc acagcagtcc 660
acagcagcag ggttaagact cagcacaggg ccagcagcag cacaaccttg accagagctt 720
gggtcctacc tgtctacctg gagtgaacag tccctgactg cctgtaggct gcgtggatgc 780
gcaacacacc coctecttct ctgctttggg tcccttctct caccaaattc aaactccatt 840
cccacctacc tagaaaatca cagcctcctt ataatgcctc ctcctcctgc cattctctct 900
ccacctatec attageette ctaaegteet acteeteaca etgetetaet geteagaaac 960
caccaagact gttgatgcct tagccttgca ctccagggcc ctacctgcat ttcccacatg 1020
actitictgga agecteccaa ctattettge titteccaga cageteccae teccatgtet 1080
etgetcattt agtecegtet teetcacege cecageaggg gaacgetcaa geetgyttga 1140
aatgetgeet etteagtgaa gteateetet tteagetetg geegeattet geagaettee 1200
 tatettegtg etgtatgttt ttttttttee ceetteacte taatggactg ttecagggaa 1260
gggatggggg cagcagctgc ttcggatcca cactgtatct gtgtcatccc cacatgggtc 1320
                                                                 1356
 ctcataaagg attattcaat ggaggcaaaa aaaaaa
```

<210> 24

<211> 916

<212> DNA

```
<213> Homo sapiens
                                                   the same of a section of the section
<220>
<221> misc_feature
<223> Incyte ID NO: 1407148CB1
gtcaggacac agcatggaca tgagggtccc cgctcagctc ctggggctcc tgctgctctg 60
geteccaggt gecagatgtg acatecagtt gacccagtet ccatecttee tgtetgegte 120
tgtgggagac agagtcacca tcacttgccg ggccagtcag ctcattagta atcatttagc 180
ctggtatcag caaaagccag ggagagcccc taaactcctg gtccatagtg catccattct 240
gcaaagtggg gtcccattaa gattcagcgg cagtggatac gggacagagt tcactctcac 300
agtogocago otgoagootg aggattoogo aacttattao tgtoaacago goaacggtta 360
tecgateace tteggecaag ggacaegeet ggagattaaa cgaactgtgg etgeaceate 420
tgtetteate ttecegecat etgatgagea gttgaaatet ggaaetgeet etgttgtgtg 480
cctgctgaat aacttctatc ccagagaggc caaagtacag tggaaggtgg ataacgccct 540
ccaatcgggt aactcccagg agagtgtcac agagcaggac agcaaggaca gcacctacag 600
cctcagcage accctgacge tgagcaaage agactacgag aaacacaaag tetacgcctg 660
cgaagtcacc catcagggcc tgagctcgcc cgtcacaaag agcttcaaca ggggagagtg 720
ttagagggag aagtgccccc acctgctcct cagttccagc ctgaccccct cccatecttt 780
ggectetgae cettitteca caggggacet acceetattg eggteeteca geteatettt 840
 cacctcacce ecetectect cettggettt aattatgeta atgttggagg agaatgaata 900
 aataaagtga atcttc
 <210> 25
 <211> 1956
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID NO: 1870848CB1
  <400> 25
 eggggactac aageegegee gegetgeege tggeecetea geaaceeteg acatggeget 60
 gaggeggeca cegegactec ggetetgege teggetgeet gaettettee tgetgetget 120
  tttcaggggc tgcctgatag gggctgtaaa tctcaaatcc agcaatcgaa ccccagtggt 180
  acaggaattt gaaagtgtgg aactgtettg catcattaeg gattegeaga caagtgaeee 240
  caggategag tggaagaaaa ttcaagatga acaaaccaca tatgtgtttt ttgacaacaa 300
  aattcaggga gacttggegg gtegtgeaga aatactgggg aagacateee tgaagatetg 360
  gaatgtgaca eggagagact cagecettta tegetgtgag gtegttgete gaaatgaceg 420
  caaggaaatt gatgagattg tgatcgagtt aactgtgcaa gtgaagccag tgacccctgt 480
  ctgtagagtg ccgaaggctg taccagtagg caagatggca acactgcact gccaggagag 540
  tgagggccac ccccggcctc actacagctg gtatcgcaat gatgtaccac tgcccacgga 600
  ttccagagcc aatcccagat ttcgcaattc ttcttcccac ttaaactctg aaacaggcac 660
  tttggtgttc actgctgttc acaaggacga ctctgggcag tactactgca ttgcttccaa 720
  tgacgcaggc tcagccaggt gtgaggagca ggagatggaa gtctatgacc tgaacattgg 780
  cggaattatt gggggggttc tggttgtcct tgctgtactg gccctgatca cgttgggcat 840
  ctgctgtgca tacagacgtg gctacttcat caacaataaa caggatggag aaagttacaa 900
  gaacccaggg aaaccagatg gagttaacta catccgcact gacgaggagg gcgacttcag 960
  acacaagtca tcgtttgtga tctgagaccc gcggtgtggc tgagagcgca cagagcgcac 1020
  gtgcacatac ctctgctaga aactcctgtc aaggcagega gagctgatgc acteggacag 1080
  agetagacae teatteagaa gettttegtt ttggccaaag ttgaccaeta etettettae 1140
  tctaacaagc cacatgaata gaagaatttt cctcaagatg gacceggtaa atataaccac 1200
```

and adjust at a side with

WO 00/29583

<210> 26

```
<211> 589
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID NO: 1888468CB1
```

 <400> 26
 cagcaacca atctgtcctc
 tagagaatcc cctgagagct
 ccgttcctca
 ccatggactg
 60

 gacctggagg
 atcetcttct
 tggtgcagc
 agccaacgag
 gcccactcc
 agtgcagct
 120

 gtgaagtct
 ggggctgagg
 tgaagaagc
 tggggctca
 gtgaaggtct
 cctgcaaggc
 180

 gttgagtg
 atggggtga
 tcagcctaat
 gcactggtg
 cgacaggccc
 ctggacaagg
 240

 gcttgagtgg
 gtgaacgaaga
 gccacagaca
 acatggtgac
 caacagaca
 300

 ccaggacaga
 tctgacacac
 acaggctaca
 acaggctaca
 tggagctgac
 420

 caacaggtctt
 ccegcttgaag
 cctctgcaag
 cacccagccc
 agatggggaa
 cgaccagcc
 480

 ccactgctcacc
 tgggtccacc
 tgggtccacc
 sggtccaccc
 ccacagaccc
 540

 ccgcttgcc
 tgggtccacc
 tgggtcaccc
 ccacatata
 ccacagaccc
 540

```
<210> 27
<211> 1388
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
```

<223> Incyte ID NO: 2770104CB1

c400> 27
caggaaggag cagacacaag aagcaccagt tctatttgct gctacatccc ggctctcggt 60
gagacgagga gaaaccagac agacagtggc tgggggtcag gaaagacccc attacagtct 120
gaaatgctct cagagggccc agtgcatgcn cccacctcag ctctaaaaga atgagagtca 180
ggctcctggg agggcagttc cgcttcttgt gtggctgcag atgacaacac cccatgagaa 240
ggacccagcc tctgagtgtc cacacagggt gggaaggag ggaggctatt tctctctgtg 300
tgtctctgtc ccgccagcac cgagggctca tccatccgca gagcagggga ggggggagg360

September 1949 at

WO 00/29583

```
teacceaggg gagtecegte acceteagtt gteaggggag cettgaagce caggagtace 540
gtetatatag ggagaaaaaa teageatett ggattacaeg gataegaeea gagettgtga 600
agaacggcca gttccacatc ccatccatca cctgggaaca cacagggcga tatggctgtc 660
agtattacag cogogotogg tggtctgagc tcagtgaccc cctggttgct ggtgatgaca 720
ggagetacca aaacccaacc tetcagecca geccaggece tgtggtgacc ccaggaaaga 780
acgtgaccct gctgtgtcag tcacgggggc agttccacac tttccttctg accaaggagg 840
gggcaggcca teccecactg catetgagat cagagcacca agetcagcag aaccaggetg 900
aatteegeat gggteetgtg accteagece acgtggggae ctacagatge tacageteae 960
teageteeaa eccetacetg etgtetetee ecagtgacee eetggagete gtggteteag 1020
catecetagg ecaacaceee caggattaca cagtggagaa teteateege atgggtgtgg 1080
ctggcttggt cctggtggtc ctcgggattc tgctatttga ggctcagcac agccagagaa 1140
gectacaaga tgcagceggg aggtgaacag cagagaggac aatgcateet teagegtggt 1200
ggagceteag ggacagatet gatgatecea ggaggetetg gaggacaate taggacetae 1260
attatetgga etgtatgetg gteattteta gagacageaa teaatatttg agtgtaagga 1320
aactgtctgg ggtgattcct agaagatcat taaactgtgg tacatttttt tgtctatgaa 1380
aaaaaaa
<210> 28
<211> 817
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID NO: 2851053CB1
 <400> 28
 cagcaacagc atggacatga gagteetege teageteetg gggeteetge tgetetgttt 60
 cccaggtgcc agatgtgaca tccagatgac ccagtetcca tcctcactgt ctgcatctgt 120
 tggagacaga gtcaccatca cttgtcgggc gagtcaggac attagcaatt atttagcctg 180
 gtttcagcag aaaccaggga cagcccctaa gtccctgatc tatgatacat ccagtttgca 240
 aagtggggtc ccatcaaagt tcagcggcag tggatctggg acagatttca ctctcaccat 300
 caacageetg cageetgaag attttgcaac ttattactge caacageate atagttatee 360
 tettaettte ggeggaggga ecaaggtgga gatcaaacga actgtggetg caccatetgt 420
 cttcatcttc ccgccatctg atgagcagtt gaaatctgga actgcctctg ttgtgtgcct 480
 gctgaataac ttctatccca gagaggccaa agtacagtgg aaggtggata acgccctcca 540
 ategggtaac teccaggaga gtgtcacaga gcaggacage aaggacagca cetacageet 600
 cagcagcacc etgacgetga gcaaagcaga etacgagaaa cacaaagtet acgcetgcga 660
 agtcacccat cagggcctga gctcgcccgt cacaaagagc ttcaacaggg gagagtgtta 720
 gagggagaag tgtccccacc tgctcctcag ttcagcctga ccccctccca tcctttgggc 780
 totgaccott tttccacagg gggactaccc ctattgg
  <210> 29
  <211> 936
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> misc_feature
  <223> Incyte ID NO: 3238787CB1
  <400> 29
  tetcagtcag gacacagcat ggacatgagg gtccccgctc agctcctggg gctcctgcta 60
```

```
ctetggetee gaggtgecag atgtgacate cagatgacee agtetecate etecetgtet 120
 gcatctgtag gagacagagt caccatcact tgccgggcaa gtcagagcat tagcagctat 180
 ttaaattggt atcagcagaa accagggaaa gcccctaagc tcctgatcta tgctgcatcc 240
 agtttgcaaa gtggggtccc atcaaggttc agtggcagtg gatctgggac agatttcact 300
 ctcaccatca gcagtctgca acctgaagat tttgcaactt actactgtca acagagttac 360
 agtacccetc cgatcacett cggccaaggg acacgactgg agattaaacg aactgtggct 420
 gcaccatetg tetteatett ecegecatet gatgageagt tgaaatetgg aactgeetet 480
 gttgtgtgcc tgctgaataa cttctatccc agagaggcca aagtacagtg gaaggtggat 540
 aacgccctcc aatcgggtaa ctcccaggag agtgtcacag agcaggacag caaggacagc 600
 acctacagee teageageae cetgaegetg agcaaageag actacgagaa acacaaagte 660
 taegcotgeg aagtcaccca teagggootg agetegeeeg teacaaagag etteaacagg 720
 ggagagtgtt agagggagaa gtgcccccac ctgctcctca gttccagcct gaccccctcc 780
 catcetttgg cetetgacce tttttccaca ggggacetac cectattgeg gteetceage 840
 teatetttea ceteacece etecteetee ttggetttaa ttatgetaat gttggaggag 900
 aatgaataaa taaagtgaat ctttgcaaaa aaaaaa
 <210> 30
 <211> 571
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
  <223> Incyte ID NO: 3559548CB1
  <400> 30
  cttgggagaa teceetagat caeageteet caecatggae tggaeetgga geateetttt 60
  cttggtggca gcagcaacag gtgcccactc ccaggttcac ctggtacagt ctggagctga 120
  ggtgaagaag cctggggcct cagtgaaggt ctcctgcaag gcttctggtt acacctttac 180
  cagteatggt atcacctggg tgcggcaggc ccctggacaa gggcttgagt ggatggggtg 240
  gateagecet aacaatggtg acacatteta tgcacacaga etecaggaca gagteacett 300
  gaccacagac acateggega ccacaggeta catggagetg aggageetga catetgaega 360
  caeggccata tattattgcg cgagagggga ctaeggtaac tctcttgacc actggggcca 420
  gggaaacetg gtcactgtct cctcagcatc cccgaccagc cccaaaggtc ttcccgcttg 480
  agectetgea ageacceage ceagatgggg aaccgtggte aatcgcetge cetgggteca 540
  ggggetttet tecceaaggg agecaattaa t
  <210> 31
  <211> 890
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> misc feature
  <223> Incyte ID NO: 3872741CB1
  <400> 31
  gtcccaacca ggacacagca tggacatgag ggtccctgct cagctcctgg ggctcctgct 60
  getetggete teaggtgeea gatgtgaeae ceagatgaee cagteteeat ceteeetgte 120
  tgcatctgte ggagacagac tcaccatcac ttgccaggeg agtgaggacg tcatcaaata 180
  tgtgaattgg tatcaacaaa aacctaggaa agcccctaaa ctcctgatcc acgatgcatc 240
  caatttggaa acaggggtcc catcaaggtt cagtggaagt ggatctggga cactttttac 300
```

tttcaccatc agcaacctgc agcctgaaga tgttgcaaca tattactgtc agcactatgc 360

```
tagtcatccg ctcactttcg gcggagggac caaggtggag atcaaacgaa ctgtggctgc 420
accatctgtc ttcatcttcc cgccatctga tgagcagttg aaatctggaa ctgcctctgt 480
tgtgtgcctg ctgaataact tctatcccag agaggccaaa gtacagtgga aggtggataa 540
cgccctccaa tcgggtaact cccaggagag tgtcacagag caggacagca aggacagcac 600
ctacagcete ageageacce tgacgetgag caaagcagac tacgagaaac acaaagteta 660
cgcctgcgaa gtcacccatc agggcctgag ctcgcccgtc acaaagagct tcaacagggg 720
agagtgttag agggagaagt tgccccacct gctcctcagt tccagcctga ccccctccca 780
teetttggee tetgageett tttecacaag gggactacee etattgeggg tetecagete 840
atetttcace teacecegte ettetgettg getttaatta tgetatgttt
<210> 32
<211> 928
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID NO: 3981428CB1
<400> 32
ggagtcagtc tcagtcagga cacagcatgg acatgagggt ccccgctcag ctcctggggc 60
tectgetact etggetecga ggtgecagat gtgacateca gatgacecag tetecatect 120
ccctgtctgc atctgtagga gacagagtca ccatgacttg ccgggcaagt cagagcatta 180
gcacctattt aaattggtat cagcagaaac cagggaaagc ccctaagctc ttgatctatg 240
ctgcatccag tttgcaaagt ggggtcccat caaggttcag tggcagtgga tctgggacag 300
atttcactct caccatcage agtctgcaac ctgaagattt tgcaacttac tactgtcaac 360
agagtttcaa tacccacatg tacacttttg gccaggggac acgactggag atgaaacgaa 420
ctgtggctgc accatctgtc ttcatcttcc cgccatctga tgagcagttg aaatctggaa 480
ctgcctctgt tgtgtgcctg ctgaataact tctatcccag agaggccaaa gtacagtgga 540
aggtggataa cgccctccaa tcgggtaact cccaggagag tgtcacagag caggacagca 600
aggacagcac ctacagcete agcagcacce tgacgetgag caaagcagac tacgagaaac 660
acaaagteta egeetgegaa gteacceate agggeetgag etegeeegte acaaagaget 720
tcaacagggg agagtgttag agggagaagt gcccccacct gctcctcagt tccagcctga 780
coccetecea teetteggee tetgaccett tttccacagg ggacetacce ctattgeggt 840
cctecagete atettteace teaceccet ecteaagett ggetttaatt atgetaatgt 900
 tggaggagaa tgaataaata caagtgaa
 <210> 33
 <211> 762
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID NO: 4635039CB1
 <400> 33
 ccacatctgt cctctagaga atcccctgag agctccgttc ctcaccatgg actggacctg 60
 gaggatecte ttettggtgg cagcagteac aggagtecae teccaagtge agetggtgea 120
 gtctggggct gaggtgagga agcctggggc ctcagtgaag gtctcctgta aggcttctgg 180
 ctacacette agegaceact atatteactg ggttegacag geceetggac aaggacttga 240
 gtggatggga tggatcaacc ctaatagtgg tggcgcaagg tatgcacagg gctttcaggg 300
 cttggtcacc atgaccaggg acacgtccat cagtacagcc tacttggagc tgcgcgggct 360
```

WO 00/29583

```
gagatetgae ggeteggeeg tgtacttetg tgegagaeaa accaectegt etectgtagg 420
     agatgetttt gatatetggg gecaagggae aatggteace gtetetteag cateceegae 480
     cagececaag gtetteeege tgagectetg cageacecag ccagatggga acgtggteat 540
     egectgectg gtecaggget tettececca ggagecacte agtgtgacet ggagegaaac 600
     ggaccagggc gtgaccgcca aaaaacttcc cacccagcca ggatgccttc gggggactgt 660
     aaaccacgag cagccagctg accctgccgg gcaaaacagt gcctaacccg gaaaattcgg 720
     tgaaattgcc acgtgaagca ttaaaggatt cccagccagg gt
     <210> 34
     <211> 925
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
     <223> Incyte ID NO: 3240710CB1
     <400> 34
     ctteteacea tgaggetece tgeteagete etggggetge ttatgetetg gatacetgga 60
     togagtgegg acattgtgtt gacccagact ccactetete tgtccgtcae cccgggacag 120
     coggectica tetectgeaa gtettetgag agecteetge atactgatgg aaagacetat 180
     ttgcattggt tcgtgcagaa ggcaggccag ccgccacaag tcctgatgta tgaagtctcc 240
     aaccggttet ctggagtgcc agataggtte agtggcagcg ggtcaggcac agatttcaca 300
     ctgaaaatca gccgggtgga ggctgaggat gttcggattt attactgcat gagaactata 360
      caggitteete caaegiggae giteggeeaa gggaccaagg iggaaatcaa acgaactgig 420
      gctgcaccat ctgtcttcat cttcccgcca tctgatgagc agttgaaatc tggaactgcc 480
      totgttgtgt gcctgctgaa taacttctat cccagagagg ccaaagtaca gtggaaggtg 540
      gataacgccc tccaatcggg taactcccag gagagtgtca cagagcagga cagcaaggac 600
      agcacctaca gcctcagcag caccctgacg ctgagcaaag cagactacga gaaacacaaa 660
      gtctacgcct gcgaagtcac ccatcagggc ctgagctcgc ccgtcacaaa gagcttcaac 720
      aggggagagt gttagaggga gaagtgcccc cacctgctcc tcagttccag cctgaccccc 780
      teccatectt tggcetetga ecetttttee acaggggace tacccetatt geggteetee 840
      ageteatett teaceteace eccetectee teettggett taattatget aatgttggag 900
      gagaatgaat aaataaagtg aatcc
      <210> 35
      <211> 1584
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> misc feature
      <223> Incyte ID NO: 4945813CB1
      <400> 35
      catggacete etgtgcaaga acatgaagca eetgtggtte tteeteetge tggtggegge 60
      teccagatgg gtectgtece agetgeaact geaggagteg ggeecaggat tggtgaagee 120
      tteggagace ctgteeetea ectgeactgt etetggtgge tecatcagea gttataatea 180
      ctactggggc tgggtccgcc agcccccagg gaaggggctg gaatggattg ggagtatctt 240
      ttatactggg aattettact acaaccegte ceteaagagt egactegeea tateagtaga 300
      caegtccaag agccagetet ecetgaaget gagetetgtg acegeegegg acaeggeegt 360
      gtattactgt gcgacagttc ctaaaacccg gtctcgacca cgtggataca cctatggtcc 420
      ctttgacttc tggggccagg gaaccctggt caccgtctcc tcagcatccc cgaccagccc 480
```

```
caaggtette eegetgagee tetgeageae eeageeagat gggaaegtgg teategeetg 540
cctggtccag ggcttcttcc cccaggagcc actcagtgtg acctggagcg aaagcggaca 600 mar on which the
gggegtgacc gccagaaact tcccacccag ccaggatgcc tccggggacc tgtacaccac 660
gagcagecag etgaccetge eggecacaca gtgectagec ggeaagteeg tgacatgeca 720
egtgaagcac tacacgaatc ccagccagga tgtgactgtg ccctgcccag ttccctcaac 780
tocacctace coatetecet caactecace taccccatet coetcatget gecacceceg 840
actgtcactg caccgaccgg ccctcgagga cctgctctta ggttcagaag cgaacctcac 900
gtgcacactg accggcctga gagatgcctc aggtgtcacc ttcacctgga cgccctcaag 960
tgggaagage getgttcaag gaccacetga gegtgaeete tgtggetget acagegtgte 1020
cagtgtcctg cegggctgtg cegagccatg gaaccatggg aagaccttca cttgcactgc 1080
tgcctacccc gagtccaaga ccccgctaac cgccaccctc tcaaaatccg gaaacacatt 1140
coggecegag gtecacetge tgeegeegee gteggaggag etggecetga aegagetggt 1200
gacgctgacg tgcctggcac gcggcttcag ccccaaggac gtgctggttc gctggctgca 1260
ggggtcacag gagctgcccc gcgagaagta cctgacttgg gcatcccggc aggagcccag 1320
ccagggcacc accaccttcg ctgtgaccag catactgcgc gtggcagccg aggactggaa 1380
gaagggggac accttctcct gcatggtggg ccacgaggcc ctgccgctgg ccttcacaca 1440
gaagaccate gacegettgg egggtaaacc cacccatgte aatgtgtetg ttgtcatgge 1500
ggaggtggac ggcacctgct actgagccgc ccgcctgtcc ccacccctga ataaactcca 1560
tgetececca aaaaaaaaaa aaaa
 <210> 36
 <211> 804
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID NO: 4948957CB1
 <400> 36
 ctgagctaca acaggcaggc aggggcagca agatggtgtt gcagacccag gtcttcattt 60
 ctctgttgct ctggatetet gtcctgactg caggtgccta cggggacate gtgatgaccc 120
 agtetecaga etecetgget gtgtetetgg gegagaggge caccateace tgcaagteca 180
 gccagagtgt tttctacaac tccaacaata agaactactt agtttggtac cagcaaagac 240
 caggacagce tectaaaatg eteatttact gggeatetac cegggaatee ggggteeetg 300
 accgattcag tggcagcggg tctgggacag atttcactct caccatcagc agcctgcagg 360
 ctgaagatgt ggcactttat tactgtcagc aatattttac tactccgtac acttttggcc 420
 aggggaccag gctggagatc aaacgaactg tggctgcacc atctgtcttc atcttcccgc 480
 catetgatga gcagttgaaa tetggaactg cetetgttgt gtgcetgetg aataacttet 540
 atcccagaga ggccaaagta cagtggaagg tggataacgc cctccaatcg ggtaactccc 600
 aggagagtgt cacagagcag gacagcaagg acagcaccta cagcctcagc agcaccctga 660
 cgctgagcaa agcagactac gagaaacaca aagtctacgc ctgcgaagtc acccatcagg 720
 gcctgagctc gcccgtcaca aagagcttca acaggggaga gtgttagagg gagaagtgcc 780
 cccacctgct cctcagttcc aggg
  <210> 37
  <211> 878
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> misc_feature
  <223> Incyte ID NO: 4949649CB1
```

But the water att of the state of the

<210> 38 <211> 1680

```
a apprint a like of the regions
gcctgagage acttagcgtt catgagtgte cccaccatgg cctggatgat gcttetecte 60
ggactcettg ettatggate aggagtggat teteagactg tggtgaceca agagecateg 120
ttatcagtgt cccctggagg gacagtcaca ctcacttgtg gcttggcctc tgactcagtc 180
tetactaatt tetteeceae etggtaceag cagaceecag gecaggetee aegeaegete 240
atetacagea caageacteg etettetggg gteeetgate gtttetetgg etecateett 300
gggaacaaag ctgccctcac cattacgggg gcccaggcag atgatgaatc tgattattac 360
tgtgcgcttt atatgggcag tggcatttcg gtattcggcg gagggaccaa ggtgaccgtc 420
ctaggtcage ccaaggetge ecceteggte actetgttee egeceteete tgaggagett 480
caagccaaca aggccacact ggtgtgtctc ataagtgact tctacccggg agccgtgaca 540
gtggcctgga aggcagatag cagccccgtc aaggcgggag tggagaccac cacaccctcc 600
aaacaaagca acaacaagta cgcggccagc agctatctga gcctgacgcc tgagcagtgg 660
aagtcccaca gaagctacag ctgccaggtc acgcatgaag ggagcaccgt ggagaagaca 720
gtggccccta cagaatgttc ataggttctc aaccctcacc ccccaccacg ggagactaga 780
getgeaggat eccaggggag gggtetetec teccacecca aggeateaag ecettetece 840
tgcactcaat aaaccctcaa taaatattct cattgtca
```

```
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID NO: 5500302CB1
```

<400> 38 ctgggegetg eggeggeagg aggaggaegg ggaaggaegg ageegageeg eggetgeete 60 cetegeteac tecetegege actegecege eccetecete ectecetec etteceegge 120 cceggetctg gccceggccc attegctgtt gggtcttctg ctagggagga tgtcgggttc 180 gtegetgeec agegecetgg cecteteget gttgetggte tetggetece tecteceagg 240 gecaggegee geteagaaeg etgggtttgt caagtegeee atgteagaaa etaageteae 300 gggggacgcc tttgagctgt actgtgacgt ggtcgggagc cccacgccag agatccagtg 360 gtggtacgca gaagtcaacc gggcagagtc tttcagacag ctgtgggacg gtgctcggaa 420 gegcegtgte accgtaaaca cegectaegg gtcaaaegge gtgagtgtgc tgagaataac 480 ceggeteace ttggaggaet etgggaetta egagtgeagg geeageaacg acceeaagag 540 gaatgacttg aggcaaaacc cctccataac atggattcga gcccaggcca ccataagcgt 600 ccttcagaag ccaaggattg tcaccagtga agaggtcatt attcgagaca gccctgttct 660 ccctgtcacc ctgcagtgta acctcacctc cagctctcac acccttacat acagctactg 720 gacaaagaat ggggtggaac tgagtgccac tcgtaagaat gccagcaaca tggagtacag 780 gatcaataag ccgagagctg aggattcagg cgaataccac tgcgtatatc actttgtcag 840 egetectaaa geaaaegeea eeattgaagt gaaageeget eetgacatea etggeeataa 900 acggagtgag aacaagaatg aagggcagga tgccactatg tattgcaagt cagttggcta 960 cccccaccca gactggatat ggcgcaagaa ggagaacggg atgcccatgg acattgtcaa 1020 tacctctggc cgcttcttca tcatcaacaa ggaaaattac actgagttga acattgtgaa 1080 cctgcagatc acggaagacc ctggcgagta tgaatgtaat gccaccaacg ccattggctc 1140 egectetgtt gteactgtee teagggtgeg gagecaectg gecceactet ggeetttett 1200 gggaattetg getgaaatta teateettgt ggtgateatt gttgtgtatg agaagaggaa 1260 gaggccagat gaggttcctg acgatgatga accagctgga ccaatgaaaa ccaactctac 1320 caacaatcac aaagataaaa acttgcgcca gagaaacaca aattaagtac tgcttacaat 1380 atctttaggt tcctgaaact ggtggcaaca tgacctgcta aaattttctg cttggacctc 1440 tttggttctc tcccctttca agtgagcaac accacaatga ctgtctaaag catgccttat 1500 ttageetete etgtaagggt gatetageea ggtacatttt aaacaatget teagtgtaga 1560 aggtgtaaac tattttgggc ttgatgtgct gtgaatgttg ctttttttt ccttggtaaa 1620

WO 00/29583

PCT/US99/27566

atatttaaat tagaagtgaa aaggtcctct gaggatcaga ttcatgcatg cgccatttt 1680

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.