Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

Cognome, no	me e	matricola	ı:
-------------	------	-----------	----

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) Siano A, B, C lettere proposizionali e P una formula proposizionale scritta a partire da esse che abbia la seguente tavola di verità:

2 punti

Α	В	С	Р
$\overline{\mathbf{V}}$	\mathbf{V}	V	\mathbf{V}
\mathbf{V}	\mathbf{V}	${f F}$	\mathbf{V}
\mathbf{V}	${f F}$	\mathbf{V}	\mathbf{F}
\mathbf{V}	\mathbf{F}	${f F}$	\mathbf{V}
${f F}$	\mathbf{V}	\mathbf{V}	\mathbf{V}
${f F}$	\mathbf{V}	${f F}$	\mathbf{V}
${f F}$	\mathbf{F}	\mathbf{V}	\mathbf{F}
${f F}$	\mathbf{F}	${f F}$	\mathbf{V}

- P non è una tautologia.
- \square P \models C.
- \blacksquare P \land C \begin{array}{c} B
- $\blacksquare \neg P \land B$ è una contraddizione.
- (b) Sia φ la formula $\forall x \forall y P(y, x) \rightarrow \exists y P(x, y)$, dove P è un simbolo di predicato binario.

2 punti

- \Box φ è un enunciato e la variabile x occorre sia libera che vincolata in φ .
- \square φ è un enunciato.
- \blacksquare La variabile *x* occorre libera e vincolata in φ.
- \Box La variabile y occorre libera e vincolata in φ .

(c)	Siano φ, ψ delle <i>L</i> -formule.	2 punti
	\blacksquare Se ϕ è soddisfacibile allora $\psi \to \phi$ è soddisfacibile.	
	\square Se $\neg \phi$ è soddisfacibile allora ϕ è una tautologia.	
	$\Box \ \phi$ è soddisfacibile se e solo se ϕ è una tautologia.	
	\blacksquare Se ϕ è una tautologia allora $\psi \to \phi$ è soddisfacibile.	
(d)	Consideriamo il linguaggio L con due simboli di funzione unaria f,g . Quali delle seguenti espressioni sono L -enunciati che formalizzano correttamente relativamente alla L -struttura $\langle A, f, g \rangle$ l'affermazione "la funzione f è l'inversa della funzione g "	2 punti
	$\Box \ \forall x (f(g(x)) = x)$ $\Box \ \forall x (f(x) \cdot q(x) = 1)$	
	$ \forall x (f(x) \cdot g(x) = 1) $ $ \forall x (f(g(x)) = x \land g(f(x)) = x) $	
	$\Box f = g^{-1}$	
(e)	La relazione S su $\mathbb{Q} \setminus \{0\}$ definita da x S y se e solo se $\exists z(x \cdot z = y)$ \blacksquare è riflessiva.	2 punti
	□ non è simmetrica.	
	■ è transitiva.	
	□ non è una relazione d'equivalenza.	
(f)	La funzione $f \colon \mathbb{Q} \to \mathbb{Q}$ definita da $f(q) = 2q^2 + 1$ è	2 punti
	□ iniettiva ma non suriettiva.	
	□ suriettiva ma non iniettiva.	
	□ biettiva.	
	■ né iniettiva, né suriettiva.	
(g)	Quali dei seguenti insiemi sono infiniti e numerabili?	2 punti
	$\square \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Z} \lor y \notin \mathbb{Q}\}$	
	$\blacksquare \ \{x \in \mathbb{R} \mid \sqrt{x} \in \mathbb{Q}\}\$	
	$\blacksquare \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Z} \land y \in \mathbb{Q}\}$	

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{f\}$ con f simbolo di funzione binario. Sia φ la L-formula

$$\exists y \, (f(y,y) = x).$$

1. Stabilire se

$$\langle \mathbb{N}, + \rangle \models \varphi[y/2, x/1].$$

2. Stabilire se

$$\langle \mathbb{N}, + \rangle \models \varphi[y/2, x/2].$$

3. Stabilire se

$$\langle \mathbb{N}, + \rangle \models \forall x \varphi[y/2, x/2].$$

4. Stabilire se

$$\langle \mathbb{N}, + \rangle \models \exists x \varphi[y/2, x/1].$$

5. Stabilire se

$$\langle \mathbb{R}, \cdot \rangle \models \varphi[y/1, x/3].$$

6. Stabilire se

$$\langle \mathbb{R}, \cdot \rangle \models \varphi[y/\sqrt{2}, x/-2].$$

- 7. È vero che $\langle \mathbb{R}, \cdot \rangle \models \forall x \, \varphi[y/1, x/3]$?
- 8. Sia $\mathcal{C} = \langle \mathbb{R}^+, \cdot \rangle$, dove $\mathbb{R}^+ = \{ r \in \mathbb{R} \mid r > 0 \}$. È vero che $\mathcal{C} \models \forall x \, \varphi[y/1, x/3]$?

Giustificare le proprie risposte.

Soluzione:

- 1. L'interpretazione di φ in $\langle \mathbb{N}, + \rangle$: "Esiste un numero naturale y tale che x = y + y (ovvero x = 2y)". Dunque la risposta al primo punto è no poiché 1 è un numero naturale dispari.
- 2. Per quanto visto sopra la risposta al secondo punto si poiché 2 è un numero naturale pari.
- 3. Per quanto visto sopra si ha che

$$\langle \mathbb{N}, + \rangle \not\models \forall x \varphi[y/2, x/2]$$

come testimoniato dai numeri dispari (se assegnati a x per φ nella struttura $(\mathbb{N}, +)$).

4. Per quanto visto sopra si ha che

$$\langle \mathbb{N}, + \rangle \models \exists x \varphi[y/2, x/2]$$

come testimoniato da qualunque numero pari (se assegnato a x per φ nella struttura $(\mathbb{N}, +)$).

5. Posto $\mathcal{B} = \langle \mathbb{R}, \cdot \rangle$, l'interpretazione di φ in \mathcal{B} è: "Esiste un numero reale y tale che $x = y \cdot y$ (ovvero $x = y^2$)". Quindi la risposta al punto quattro è positiva in quanto 3 è il quadrato del numero reale $\sqrt{3}$.

- 6. Per quanto scritto sopra la risposta al punto cinque è negativa in quanto -2 è un numero reale negativo e quindi non può essere il quadrato di alcun numero reale.
- 7. Per quanto visto al punto cinque, si ha che $\mathcal{B} \not\models \forall x \varphi$: per esempio -3 è un assegnamento alla variabile x che testimonia questa asserzione (se assegnato a x per φ nella struttura \mathcal{B}).
- 8. Per quanto visto ai punti precedenti si ha che $\mathcal{C} \models \forall x \, \phi$: infatti, tutti i numeri reali strettamente positivi sono il quadrato di un numero reale strettamente positivo.

Esercizio 3 9 punti

Sia $\langle A, < \rangle$ un ordine lineare stretto e siano B, C sottoinsiemi di A. Formalizzare relativamente alla struttura $\langle A, <, B, C \rangle$ mediante il linguaggio $L = \{<, B, C\}$ con un simbolo di relazione binaria e due simboli di predicato unari le seguenti affermazioni:

- 1. Tra due elementi di A c'è un elemento di B.
- 2. Dati due elementi distinti di B, uno dei due è minore dell'altro, cioè $\langle B, < \rangle$ è un ordine totale.
- 3. Ogni elemento di B è minore di ogni elemento di C.
- 4. C'è un elemento di B che è il minimo di $\langle A, < \rangle$.

Soluzione: 1. Tra due elementi di A c'è un elemento di B:

$$\forall x \forall y \, (x < y \to \exists z (B(z) \land x < z \land z < y))).$$

2. Dati due elementi distinti di B, uno dei due è minore dell'altro, cioè $\langle B, < \rangle$ è un ordine totale:

$$\forall x \forall y (\neg (x = y) \land B(x) \land B(y) \rightarrow x < y \lor y < x)$$

3. Ogni elemento di B è minore di ogni elemento di C:

$$\forall x \forall y (B(x) \land C(y) \to x < y)$$

4. C'è un elemento di B che è il minimo di $\langle A, < \rangle$:

$$\exists x (B(x) \land \forall y (x < y \lor x = y))$$