Fiche de cours 4ème inf ETUDES DES FONGTIONS

maths av lycee *** ali avir

Site Web: http://maths-akir.midiblogs.com/

Soit f une fonction définie sur un domaine D inclus dans R et soit (C) sa courbe Représentative relativement à un repère orthogonale R = (O, i, j).

Fonctions paires

f est paire si et seulement si , pour tout x de D on a : $(-x) \in D$ et f(-x) = f(x) Axe de symétrie

La droite $\Delta: x=a$ est un axe de symétrie pour la courbe (C) si et seulement si , pour tout x de D , on $a: (2a-x) \in D$ et f(2a-x)=f(x).

Fonctions impaires

f est impaire si et seulement si, pour tout x de D on a: $(-x) \in D$ et f(-x) = -f(x). Centre de symétrie

Le point I(a,b) est un centre de symétrie de (C) si et seulement si , pour tout x de D on $a:(2a-x)\in D$ et f(2a-x)=2b-f(x).

$Fonctions\ p\'eriodiques$

La fonction f est périodique s'il existe un réel a non nul tel que , pour tout x de f on $a: (a+x) \in D$ et f(x+a)=f(x).

Point d'inflexion

Soit x_0 un réel et f une fonction deux fois dérivable sur un intervalle ouvert contenant x_0 . Si f" s'annule en x_0 , en changeant de signe, alors le point $I(x_0, f(x_0))$ est un point d'inflexion.

ASYMPTOTE

 $\lim f(x) = b$

 Δ : y = b est un asymptote horizontale

 $\lim_{x\to\infty}\frac{f(x)}{x}=a$

 $\lim_{x \to \infty} (f(x) - ax) \geqslant ?$

 $\lim_{x \to \infty} (f(x) - ax) = b$

 $A \cdot y = ax + b \text{ est}$ yn asymptote pblique

 $\lim_{x \to \infty} \frac{f(x)}{x} =$

 $\lim_{x\to\infty}\frac{f(x)}{x}=0$

Branche parabolique de directeur (y'y) $\lim_{x \to \infty} \frac{f(x)}{x} = 0$

Branche
parabolique
de directeur
(x'x)

 $\lim (f(x) - ax) = \infty$

