Week 07 - Lab Session Results

February 17, 2023

Evaluation of Recommender Systems

Based on the same dataset used on previous weeks, let us evaluate the Collaborative Filtering (CF) model implemented last week.

Exercise 1

Based on the user-based neighborhood model that was created last week, let's make a general system that can be used to generate recommendations for all users and items. The system would take into account the mean rating of each user. We can use Scikit-Surprise for this. https://surprise.readthedocs.io/en/stable/index.html

Use cosine as similarity measure and try to vary the (maximum) number of neighbors to take into account when predicting ratings. Set the random state to 0 for comparable results. Keep Scikit-Surprise's default settings for all other parameters.

Is it better to use 1 or 10 neighbors? You should determine this based on the Root Mean Square Error (RMSE) over 3-fold cross-validation.

Number of neighbors with lowest validation RMSE: 10

Exercise 2

2.1

Fit the neigborhood-based model defined in exercise 1 on the full training set with cosine as similarity measure and either 1 or 10 neighbors based on what you found to be better in exercise 1. Keep Scikit-Surprise's default settings for all other parameters, but set the random state to 0 for comparable results.

Use the model to predict the unobserved ratings for the users in the training set. Remove predictions for users that are not in the test set (test_df).

How many predictions are there and what is the average of all the predictions (rounded to 2 decimal places)?

There are 32 users in the unobserved ratings set that are not in the test set.

Number of predictions: 52988 Average of predictions: 4.73

2.2

Report the RMSE of the rating prediction of users and items in test_df (rounded to 3 decimal places).

Note that the documentation https://surprise.readthedocs.io/en/stable/predictions_module.html defines r_u as the true rating of user u for item i, but in fact, it is the mean rating of all users over all items. It should not be used for any computations.

RMSE for neighborhood-based Collaborative Filtering: 0.304

Exercise 3

Define a general method to get the top-k recommendations for each user, based on the rating predictions obtained in Exercise 2.1. Discard those predictions that are below 4.0.

Print the top-k with $k = \{5, 10, 20\}$ recommendations for the user with ID ARARUVZ8RUF5T and its estimated ratings.

```
Neighborhood based Collaborative Filtering:
TOP-5 predictions for user ARARUVZ8RUF5T: [('B000WR2HB6', 5), ('B000F0I48G', 4.675), ('B000VV1Y0Y', 4.667), ('B001ET7FZE', 4.6), ('B000PKKAGO', 4.5)]

TOP-10 predictions for user ARARUVZ8RUF5T: [('B000WR2HB6', 5), ('B000F0I48G', 4.675), ('B000VV1Y0Y', 4.667), ('B001ET7FZE', 4.6), ('B000PKKAGO', 4.5), ('B00EF1QRMU', 4.47), ('B016V8YWBC', 4.458), ('B00W259T7G', 4.42), ('B00CZH3K1C', 4.333), ('B000GLRREU', 4.233)]

TOP-20 predictions for user ARARUVZ8RUF5T: [('B000WR2HB6', 5), ('B000F0I48G', 4.675), ('B000VV1Y0Y', 4.667), ('B001ET7FZE', 4.6), ('B000PKKAGO', 4.5), ('B00EF1QRMU', 4.47), ('B016V8YWBC', 4.458), ('B00W259T7G', 4.42), ('B00CZH3K1C', 4.333), ('B000GLRREU', 4.233), ('B00N2WQ2IW', 4.223), ('B00EYZY6LQ', 4.205), ('B01BNEYGQU', 4.167), ('B002GP80EU', 4.042), ('B0009RF9DW', 4.0), ('B000F14S1E', 4.0), ('B000URXP6E', 4.0), ('B00006L9LC', 4.0), ('B0012Y0ZG2', 4.0), ('B001DHV1H4', 4.0)]
```

Exercise 4

Report Precision@k (P@k), MAP@k and the MRR@k with $k = \{5, 10, 20\}$ averaged across users for the CF model. Round the scores to 3 decimal places.

When computing precision, we consider as relevant items those with an observed rating ≥ 4.0 (i.e., those items from the test set with a rating ≥ 4.0). Reflect on the differences obtained.

```
Metrics for Neighborhood based CF: Averaged P@5: 0.147
```

MAP@5: 0.166 MRR@5: 0.167

Averaged P@10: 0.077

MAP@10: 0.172 MRR@10: 0.173

Averaged P@20: 0.039

MAP@20: 0.173 MRR@20: 0.174

Exercise 5

Based on the top-5, top-10 and top-20 predictions from Exercise 3, compute the system's hit rate averaged over the total number of users in the test set.

Hit Rate for Neighborhood based CF:

Hit Rate (top-5): 0.738 Hit Rate (top-10): 0.778 Hit Rate (top-20): 0.791