#### Checking the equivalence of context-free session types

Andreia Mordido and Vasco T. Vasconcelos

LASIGE, Faculdade de Ciências, Universidade de Lisboa

#### **Motivation**

```
1 data Tree = Leaf | Node Int Tree Tree
1 sendTree Leaf c =
2 select Leaf c
3 sendTree (Node x | r) c =
4 let c1 = select Node c
5 c2 = send x c1
6 c3 = sendTree | c2
7 c4 = sendTree r c3
8 in c4
```



#### Plan

#### **Definition (Type equivalence problem)**

Given any context-free session types S and T, the type equivalence problem consists in deciding if types S and T are equivalent, i.e.,  $S \sim T$ .

- Implement an algorithm that decides the *type equivalence problem*.
- Prove its soundness and completeness w.r.t. the metatheory of context-free session types proposed by Thiemann and Vasconcelos.
- Provide results on complexity.

#### Algorithm for checking the equivalence of CFST Main stages

#### Convert types to a grammar

Translates types into a (finite) set of productions

#### Prune unnormed productions

Streamlines the grammar by pruning unnormed productions

#### Simplify and expand

Alternates between simplification and expansion operations, until reaching a successful branch in the expansion tree or concluding that all branches are unsuccessful

We consider a finite set of productions  $X \to a \vec{Y}$  where:

- *X*, *Y* represent *non-terminal symbols*
- a is a terminal symbol (a label in the labelled transition system)



Context-free session types are seen as *simple grammars*:

- context-free grammars in Greibach normal form
- s.t. for each X and a there is at most one production  $X \to a\widetilde{Y}$

#### Example

```
S \triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int}\}); (\mu z.! \text{ int}; z; z)
T \triangleq (\mu y. \& \{n: y; y, \ell: \text{skip}\}; ? \text{ int}); (\mu z.! \text{ int}; z)
```



#### Example

$$S \triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int}\}); (\mu z.! \text{ int}; z; z)$$

$$T \triangleq (\mu y. \& \{n: y; y, \ell: \text{ skip}\}; ? \text{ int}); (\mu z.! \text{ int}; z)$$

| Type to grammar            |
|----------------------------|
| <b>.</b>                   |
| Prune unnormed productions |
| <u> </u>                   |
| Simplify and expand        |

| Productions for S                                                                                                                                           | Productions for $T$                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| $X_1  ightarrow \&n X_1 X_1 X_2 \ X_1  ightarrow \&\ell X_3 \ X_2  ightarrow ? 	ext{int} \ X_3  ightarrow ? 	ext{int} \ X_4  ightarrow ! 	ext{int} X_4 X_4$ | $Y_1  ightarrow \&n Y_1 Y_1 Y_2$ $Y_1  ightarrow \&\ell Y_2$ $Y_2  ightarrow ?int$ $Y_3  ightarrow !int Y_3$ |
| $\wedge_4 \rightarrow : \text{IIIL} \wedge_4 \wedge_4$                                                                                                      |                                                                                                              |

#### Example

$$S \triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int}\}); (\mu z.! \text{ int}; z; z)$$

$$T \triangleq (\mu y. \& \{n: y; y, \ell: \text{ skip}\}; ? \text{ int}); (\mu z.! \text{ int}; z)$$

| Type to grammar            |
|----------------------------|
|                            |
| Prune unnormed productions |
|                            |
| Simplify and expand        |

| Productions for $S$              | Productions for $T$              |
|----------------------------------|----------------------------------|
| $X \rightarrow !() X_1 X_4$      | $Y \rightarrow !() Y_1 Y_3$      |
| $X_1  ightarrow \&n X_1 X_1 X_2$ | $Y_1  ightarrow \&n Y_1 Y_1 Y_2$ |
| $X_1 \rightarrow \& \ell X_3$    | $Y_1  ightarrow \& \ell \ Y_2$   |
| $X_2 \rightarrow ?int$           | $Y_2 \rightarrow ?int$           |
| $X_3 \rightarrow ? int$          | $Y_3 \rightarrow ! int\ Y_3$     |
| $X_4 \rightarrow ! int X_4 X_4$  |                                  |
|                                  |                                  |

#### Algorithm for checking the equivalence of CFST Main stages

#### Convert types to a grammar

LOHaskellCode  $\sim$  100

#### Soundness <

- 1. Conversion of types into BPAs is sound<sup>a</sup>.
- 2. Conversion of BPAs to Greibach Normal Form without altering the solution is sound<sup>b</sup>

#### Prune unnormed productions

Simplify and expand

<sup>&</sup>lt;sup>a</sup>Thiemann and Vasconcelos. Context-free session types. 2016.

<sup>&</sup>lt;sup>b</sup>Baeten et al. Decidability of bisimulation equivalence for process generating context-free languages. 1993.

#### **Prune unnormed productions**

#### Definition ((Un)normed symbols<sup>1</sup>)

A sequence of symbols  $\alpha$  is normed if there is a path  $\alpha \to \cdots \to \varepsilon$ . Otherwise,  $\alpha$  is said to be unnormed.

Christensen, Huttel, and Stirling<sup>1</sup> noted that: whenever  $\alpha$  is unnormed,  $\alpha \sim \alpha \beta$ .



<sup>&</sup>lt;sup>1</sup> Christensen et al. Bisimulation equivalence is decidable for all CF processes. 1995

#### Prune unnormed productions

#### Definition ((Un)normed symbols<sup>1</sup>)

A sequence of symbols  $\alpha$  is normed if there is a path  $\alpha \to \cdots \to \varepsilon$ . Otherwise,  $\alpha$  is said to be unnormed.

Prune unnormed productions

Simplify and expand

Christensen, Huttel, and Stirling<sup>1</sup> noted that:

whenever  $\alpha$  is unnormed,  $\alpha \sim \alpha \beta$ .

#### Example

$$S \triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int}\}); (\mu z.! \text{ int}; z; z)$$

#### Productions for *S*

$$X_1 
ightarrow \&n X_1 X_1 X_2$$

$$X_1 \rightarrow \& \ell X_3$$

$$X_2 \rightarrow ?int$$

$$X_3 \rightarrow ?int$$

$$X_4 \rightarrow ! int X_4 X_4$$

<sup>&</sup>lt;sup>1</sup> Christensen et al. Bisimulation equivalence is decidable for all CF processes. 1995

#### Prune unnormed productions

#### Definition ((Un)normed symbols<sup>1</sup>)

A sequence of symbols  $\alpha$  is normed if there is a path  $\alpha \to \cdots \to \varepsilon$ . Otherwise,  $\alpha$  is said to be unnormed.

Prune unnormed productions

Simplify and expand

Christensen, Huttel, and Stirling<sup>1</sup> noted that:

whenever  $\alpha$  is unnormed,  $\alpha \sim \alpha \beta$ .

#### Example

 $S \triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int}\}); (\mu z.! \text{ int}; z; z)$ 

| Productions for $S$               | Productions for <i>pruned S</i>   |  |  |
|-----------------------------------|-----------------------------------|--|--|
| $X_1 \rightarrow \&n X_1 X_1 X_2$ | $X_1  ightarrow \&n X_1 X_1 X_2$  |  |  |
| $X_1  ightarrow \& \ell X_3$      | $X_1 	o \&\ellX_3$                |  |  |
| $X_2 	o $ ?int                    | $X_2  ightarrow ?$ int            |  |  |
| $X_3 	o ?$ int                    | $X_3  ightarrow ?$ int            |  |  |
| $X_4  ightarrow ! int X_4 X_4$    | $X_4  ightarrow ! 	ext{int } X_4$ |  |  |

<sup>&</sup>lt;sup>1</sup> Christensen et al. Bisimulation equivalence is decidable for all CF processes. 1995

#### Algorithm for checking the equivalence of CFST Main stages



Following the ideas from Hirshfeld, Jančar, Moller, a bisimulation is seen as an **expansion tree**<sup>23</sup> that alternates between:

- expansion operations
- simplification operations





<sup>&</sup>lt;sup>2</sup>Hirshfeld. Bisimulation trees and the decidability of weak bisimulations. 1997

<sup>&</sup>lt;sup>3</sup>Jančar and Moller. Techniques for decidability and undecidability of bisimilarity. 1999

An expansion tree alternates between:

 expansion operations - a single derived node results from the expansion of the parent node.

<sup>&</sup>lt;sup>4</sup>Jančar, Moller. Techniques for decidability and undecidability of bisimilarity. 1999 <sup>5</sup>Christensen et al. Bisimulation equivalence is decidable for all CF processes. 1995

An expansion tree alternates between:

- expansion operations a single derived node results from the expansion of the parent node.
- simplification operations
  - reflexive rule: omit from a node N any reflexive pair.
  - **congruence rule**: omit from a node *N* any pair that belongs to the least congruence containing the ancestors of *N*.

<sup>&</sup>lt;sup>4</sup> Jančar, Moller. Techniques for decidability and undecidability of bisimilarity. 1999

<sup>&</sup>lt;sup>5</sup>Christensen et al. Bisimulation equivalence is decidable for all CF processes. 1995

An expansion tree alternates between:

- expansion operations a single derived node results from the expansion of the parent node.
- simplification operations
  - reflexive rule: omit from a node N any reflexive pair.
  - **congruence rule**: omit from a node *N* any pair that belongs to the least congruence containing the ancestors of *N*.
  - basic process algebra rules<sup>45</sup>



<sup>&</sup>lt;sup>4</sup>Jančar, Moller. Techniques for decidability and undecidability of bisimilarity. 1999 <sup>5</sup>Christensen et al. Bisimulation equivalence is decidable for all CF processes. 1995

All these transformation rules preserve the *safeness property*:

#### Safeness property<sup>5</sup>

 $S \sim T$  iff the expansion tree rooted at  $\{(S, T)\}$  has a successful branch.

The finite witness property holds<sup>5</sup>:

#### Finite witness property<sup>56</sup>

If  $S \sim T$ , then there exists a **finite successful branch** in the expansion tree.

 $<sup>^6\</sup>mathrm{Christensen}$  et al. Bisimulation equivalence is decidable for all CF processes. 1995

#### Example

$$\triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int} \}); (\mu z.! \text{ int}; z; z)$$

$$\triangleq (\mu y. \& \{n: y; y, \ell: \text{ skip} \}; ? \text{ int}); (\mu z.! \text{ int}; z)$$

 $(X_1X_4,Y_1Y_3)$ 

#### Productions for pruned S

 $X_1 \rightarrow \&n X_1 X_1 X_2$   $X_1 \rightarrow \&\ell X_3$   $X_2 \rightarrow ?int$   $X_3 \rightarrow ?int$   $X_4 \rightarrow !int X_4$ 

#### Productions for T

$$Y_1 \rightarrow \&n Y_1 Y_1 Y_2$$
  
 $Y_1 \rightarrow \&\ell Y_2$   
 $Y_2 \rightarrow ?int$   
 $Y_3 \rightarrow !int Y_3$ 

Example 
$$S \triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int}\}); (\mu z.! \text{ int}; z; z)$$
$$T \triangleq (\mu y. \& \{n: y; y, \ell: \text{skip}\}; ? \text{ int}); (\mu z.! \text{ int}; z)$$

#### Productions for T

 $X_A \rightarrow ! int X_A$ 

$$Y_1 \rightarrow \&n Y_1 Y_1 Y_2$$
  
 $Y_1 \rightarrow \&\ell Y_2$   
 $Y_2 \rightarrow ?int$   
 $Y_3 \rightarrow !int Y_3$ 

# Example $S \triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int}\}); (\mu z.! \text{ int}; z; z)$ $T \triangleq (\mu y. \& \{n: y; y, \ell: \text{skip}\}; ? \text{ int}); (\mu z.! \text{ int}; z)$



#### Productions for T

$$Y_1 \rightarrow \&n Y_1 Y_1 Y_2$$
  
 $Y_1 \rightarrow \&\ell Y_2$   
 $Y_2 \rightarrow ?int$   
 $Y_3 \rightarrow !int Y_3$ 

# Example $S \triangleq (\mu x. \& \{n: x; x; ? \text{int}, \ell: ? \text{int}\}); (\mu z.! \text{int}; z; z)$ $T \triangleq (\mu y. \& \{n: y; y, \ell: \text{skip}\}; ? \text{int}); (\mu z.! \text{int}; z)$



| Productions for <i>pruned S</i>  |
|----------------------------------|
| $X_1  ightarrow \&n X_1 X_1 X_2$ |
| $X_1 \rightarrow \& \ell X_3$    |
| $X_2 \rightarrow ?int$           |
| $X_3 \rightarrow ?int$           |
| $X_4 \rightarrow ! int X_4$      |
|                                  |

#### Productions for T

$$Y_1 \rightarrow \&n Y_1 Y_1 Y_2$$
  
 $Y_1 \rightarrow \&\ell Y_2$   
 $Y_2 \rightarrow ?int$   
 $Y_3 \rightarrow !int Y_3$ 

#### $\triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int}\}); (\mu z.! \text{ int}; z; z)$ $\triangleq (\mu y. \& \{n: y; y, \ell: \text{skip}\}; ? \text{int}); (\mu z.! \text{ int}; z)$ Example $(X_1X_4, Y_1Y_3)$ Productions for pruned S $X_1 \rightarrow \&n X_1 X_1 X_2$ bpa2 self $X_1 \rightarrow \& \ell X_3$ $(X_1,Y_1),(X_4,Y_3)$ $(X_1X_4, Y_1Y_3)$ $X_2 \rightarrow ?int$ expand $X_3 \rightarrow ?int$ $X_A \rightarrow ! int X_A$ $|(X_1X_1X_2, Y_1Y_1Y_2), (X_3, Y_2), (X_4, Y_3)|$ cong $(X_1X_1X_2, Y_1Y_1Y_2), (X_3, Y_2)$ Productions for T bpa2 bpa1 $Y_1 \rightarrow \&n Y_1 Y_1 Y_2$ $(X_1, Y_1), (X_1X_2, Y_1Y_2), (X_3, Y_2)$ $[(X_1X_2,arepsilon)$ , $(Y_1Y_2,arepsilon)$ , $(X_3,Y_2)$ $Y_1 \rightarrow \& \ell Y_2$ $Y_2 \rightarrow ?int$ $Y_3 \rightarrow ! int Y_3$

## Example $S \triangleq (\mu x. \& \{n: x; x; ? \text{int}, \ell: ? \text{int}\}); (\mu z.! \text{int}; z; z)$ $T \triangleq (\mu y. \& \{n: y; y, \ell: \text{skip}\}; ? \text{int}); (\mu z.! \text{int}; z)$



# Example $S \triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int} \}); (\mu z.! \text{ int}; z; z)$ $T \triangleq (\mu y. \& \{n: y; y, \ell: \text{ skip} \}; ? \text{ int}); (\mu z.! \text{ int}; z)$ $\frac{(X_1 X_4, Y_1 Y_3)}{\text{self}} \qquad \frac{\text{Productions for } prune}{X_1 \rightarrow \& n X_1 X_2 X_3}$



# Example $S \triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int}\}); (\mu z.! \text{ int}; z; z)$ $T \triangleq (\mu y. \& \{n: y; y, \ell: \text{skip}\}; ? \text{ int}); (\mu z.! \text{ int}; z)$



### $S \triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int}\}); (\mu z.! \text{ int}; z; z)$ Example $T \triangleq (\mu y. \& \{n: y; y, \ell: \text{ skip}\}; ? \text{ int}); (\mu z.! \text{ int}; z)$



#### $\triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int}\}); (\mu z.! \text{ int}; z; z)$ $\triangleq (\mu y. \& \{n: y; y, \ell: skip\}; ? int); (\mu z.! int; z)$ Example



#### Algorithm for checking the equivalence of CFST Main stages



#### Implementation strategies

Implementation choice:

Breadth-first search on the tree

#### Implementation strategies

Implementation choice:

Breadth-first search on the tree

Strategic options that can enhance performance:

- Instead of looking for a fixed point, iterate the simplification phase
- Apply BPA rules wrapped with blocks of reflexive and congruence rules

#### Implementation strategies

Implementation choice:

Breadth-first search on the tree

Strategic options that can enhance performance:

- Instead of looking for a fixed point, iterate the simplification phase
- Apply BPA rules wrapped with blocks of reflexive and congruence rules

We showcase runtimes for four scenarios:

|                | Fixed Point Scenario |           | Iterated Scenario |           |
|----------------|----------------------|-----------|-------------------|-----------|
|                | wrapped              | unwrapped | wrapped           | unwrapped |
| Simplification | find fixed point     |           | iterate           |           |
| BPAs wrapped   | ✓                    | ×         | ✓                 | ×         |

#### Running times ( $\sim 150$ tests)





#### Time and memory allocated



#### Towards completeness...

#### Finite witness property<sup>78</sup>

If  $S \sim T$ , then there exists a **finite successful branch** in the expansion tree.

Implementation choices aiming to achieve completeness:

- Instead of looking for a fixed point, iterate the simplification phase (there may not be a fixed point)
- Use double ended enqueue, prepending promising nodes, as opposed to queuing all new nodes

 $<sup>^7\</sup>mathrm{Christensen}$  et al. Bisimulation equivalence is decidable for all CF processes. 1995

 $<sup>^8\</sup>mathrm{Jan}\check{\mathrm{car}},\ \mathrm{Moller}.\ \mathrm{Techniques}\ \mathrm{for}\ \mathrm{decidability}\ \mathrm{and}\ \mathrm{undecidability}\ \mathrm{of}\ \mathrm{bisimilarity}.\ 1999$ 

#### **Ongoing Work**

- Soundness ✓
- Completeness? ... on our way to achieve it.
- Complexity? ... in practice it does not seem to take much longer than parsing.
- Lines of Haskell code: approx. 300

#### Coming soon:

FreeST, a compiler for context-free session types!  $({\tt demos\ on\ demand})$ 

# Thank you!