

Predicción de ventas según el marketing

Aprendizaje automático basado en Regresión Lineal

Descripción del problema

- ¿Podemos predecir las ventas que conseguiremos según el dinero invertido en diferentes canales de publicidad?
 - Para ello, utilizaremos un dataset con inversiones de marketing y ventas, disponible en la plataforma <u>Kaggle</u> (<u>origen</u>).
 - El objetivo es determinar las ventas que podemos obtener a partir de una serie de inversiones en publicidad.

Descripción del Data Set

- id: identificador del registro
- TV: inversión de publicidad en TV (en miles de \$)
- Radio: inversión de publicidad en radio (en miles de \$)
- Newspaper: inversión de publicidad en periódicos (en miles de \$)
- Sales: ventas conseguidas (en miles de \$)

Elabora un script que:

- Procese el dataset y lo adapte → Si algún valor es 'null' o vacío, sustituirlo por el valor más común en su columna;
- Genere 10 modelos de regresión lineal, calcule los errores de cada uno (MAE, MSE y MAPE) e indique cuál es "el mejor";
- Muestre los coeficientes de cada atributo del mejor modelo;
- Identifique la muestra con mayor error absoluto generado por el modelo;
- Responda a las cuestiones planteadas.

Analiza los datos - Dependencia lineal

- Visualiza la dependencia lineal entre las variables
 - Usa la función <u>scatter.smooth</u>:
 - scatter.smooth(x=data\$x, y=data\$y, main="X vs. Y")

Analiza los datos - Correlación

- Calcula la correlación que existe entre cada atributo y el objetivo
 - Usa la función <u>cor</u>: <u>cor(data\$y, data\$x)</u>
 - Valores próximos a 1 o -1 indican la existencia de buena correlación
 - Baja correlación = -0.2 < x < 0.2</p>

Crea el modelo de regresión lineal

- Divide el dataset en entrenamiento (75%) y test (25%)
 - Utiliza la función <u>createDataPartition</u>
 - o createDataPartition(y=data\$Target, p=0.7, list=FALSE)
- Entrena el modelo de regresión lineal
 - O Utiliza la función |m // lm(formula = ¿?, data = training_data)
 - formula=target~. (usa todos los atributos del data.frame)
 - formula=target~Att-1+Att-2+...+Att-N (usa sólo algún atributo)
- Valida el modelo: predict(model, test_data)
- Calcula el error medio absoluto del modelo (Mean Absolute Error)
 - o mean(abs(prediction test_data\$Target))

Analiza el modelo de regresión lineal

- Obtén los coeficientes del modelo de regresión lineal
 - Usa la función print: print(model)

Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	686.852	527.290	1.303	0.193865	
Batting_average	-2315.678	4078.164	-0.568	0.570647	
On.base_percentage	100.318	4008.288	0.025	0.980052	
Runs	-1.191	7.640	-0.156	0.876229	
Hits	10.155	4.386	2.315	0.021392	*
Doubles	-6.892	11.883	-0.580	0.562407	
Triples	-2.780	28.990	-0.096	0.923677	
HomeRuns	61.650	17.682	3.487	0.000575	***
Runs_batted_in	7.922	7.121	1.112	0.266956	
Walks	10.171	7.038	1.445	0.149645	
Strike.Outs	-15.066	3.007	-5.010	1.01e-06	***
Stolen_bases	13.091	6.489	2.017	0.044686	*
Errors	-19.927	10.020	-1.989	0.047791	*

El número de asteriscos que posee cada atributo (en la columna derecha de la vista de los coeficientes) indica la significatividad: cuantos más asterísticos, el atributo es más significativo.

Se consideran significativos valores inferiores a 0.05.

Analiza el modelo de regresión lineal

- Confirma si el modelo tiene <u>significación estadística</u> (p-value)
 - Usa la función print: print(model)

```
Residual standard error: 865.4 on 259 degrees of freedom
Multiple R-squared: 0.5647, Adjusted R-squared: 0.5445
F-statistic: 28 on 12 and 259 DF, p-value: < 2.2e-16
```

- El valor debe ser inferior o igual a 0,05.
- Tras analizar el modelo
 - ¿Tiene sentido utilizar todas las variables del dataset?
 - Haz pruebas eliminando del modelo las variables que tienen menor relevancia

Responde a las siguientes preguntas

- Usando el mejor modelo, añade el código que permita responder a las siguientes cuestiones (justifica en la documentación cómo respondes a cada cuestión):
 - Identifica las 10 campañas con más beneficio: aquellas con mayor relación ventas/inversión.
 - Identifica las 10 campañas más 'sorprendentes':
 - Las 5 con mayor diferencia 'positiva' entre el valor real y la predicción
 - Las 5 con mayor diferencia 'negativa' entre el valor real y la predicción

Responde a las siguientes preguntas

- Usando el mejor modelo, añade el código que permita responder a las siguientes cuestiones (justifica en la documentación cómo respondes a cada cuestión):
 - Dado un presupuesto de 50.000\$, y en pasos de 5.000\$, usa el modelo para identificar la forma óptima de distribuir la inversión:
 - Cada canal debe tener un mínimo de 5.000\$ en inversión. Por ejemplo:
 - Opción 1 \rightarrow 5.000\$ TV, 5.000\$ Radio, 40.000\$ Periódico
 - Opción 2 → 5.000\$ TV, 10.000\$ Radio, 35.000\$ Periódico
 - ...
 - Opción X \rightarrow 40.000\$ TV, 5.000\$ Radio, 5.000\$ Periódico
 - Recuerda que las cifras del dataset están en miles de \$

- Entrega el trabajo a través de la tarea de ALUD
 - Fecha de entrega: 12 de mayo
 - Completa el cuestionario de tiempos y dificultades
 - Formato: fichero .ZIP
- Evaluación 10%
 - Ejecución correcta y libre de errores 5%
 - Documentación de análisis de los resultados 5%
- Esfuerzo individual
 - 20h. por persona

