Name:

Kennitala:

Explain your solution concisely but clearly. Include all derivation steps. Make sure a fellow student would be able to understand what you mean.

1. Use L'Hôpital's rule as many times as necessary to find the following limit. State why you can use L'Hôpital's rule. (What condition needs to be satisfied?)

$$L = \lim_{x \to 0} \frac{(x+1)e^{-x} - 1}{\sin^2 x}$$

Solution:	

2. Consider the function

$$f(x) = \frac{x^2 + 2x + 1}{x^2 + 3x + 3}$$

- 1. Make a sketch of the function and observe where it reaches its smallest and largest value. Use GeoGebra or any other tool for plotting.
- 2. State what the value of f'(x) is at the points x where f(x) reaches its smallest and largest value ("bottom of the valley", "peak of the mountain").
- 3. Find a formula for f'(x). Simplify it fully.
- 4. Solve the equation f'(x) = 0. This gives the location of the maximum and minimum.

Solution	n:			