2.3 Perfekte Gleichgewichte und

Masn - Gielengewichte

bei un voll Ständigen informationen

Bisher bekannte Notation

· Z; Strategiemenge

· σ; ε Σ; reine strategie

• $\sigma = (\sigma_1, \dots, \sigma_n) \in \Sigma = \Sigma_1 \times \dots \times \Sigma_n$ Strategieprofil

· H;(o) Auszaniun as funktion

· G = (\(\Sigma_1, ..., \Sigma_n; H_1, ..., H_n; \) Spiel in Normalform

· s; gemischte Strategic

1. Perfekte Gleichgewichte

Spicier 2

		σ ₂₄	و 7 7
-	511	100	100
	-11	0	0
Spieler 1	٥ ₄₂	-40	40
		-40	40

$$\Rightarrow \sigma^{3} = (\sigma_{44}, \sigma_{42})$$

$$\sigma^{34} = (\sigma_{42}, \sigma_{22})$$

Spicies 2

		ნ 24	σ ₂₂	
•	G _{AA}	Aoo Aoo	400	
-	♂ 42	-49	40	

$$G_{1} := ((1-E), E)$$

$$H_{2}(S_{1}^{1}, \sigma_{24}) = (1-E) \cdot 100 - 10E = 100 - 110E < 100 + 10E = 100 - 100E < 100 + 10E = 100 - 10E < 100 + 10E = 100 + 10E < 10E <$$

8012100

spieles 2

		2016161 2		
		5 2₄	σ 22	
Spicles 1 -	G _{AA}	400	400	
	G ₄₂	-40	40	

$$H_4(\sigma_{A2}, S_2) = CA - E) + O - AO E = 40 - 50 E >$$
 $H_4(\sigma_{A1}, S_2) = O \Rightarrow H_4(\sigma_{A2}, S_2) > H_4(\sigma_{A1}, S_2)$

$$s_2: s_4 = (\epsilon, (4-\epsilon))$$

$$H_2(S_1, G_{22}) = 100 E + (1 - E) 40 = 40 + 60 E >$$
 $H_2(S_1, G_{24}) = 100 E + (1 - E) (-10) = -10 + 100 E$

• PCCTUBICCTES SPICT Normalspiel, in dem jede reine Strategie mit positiver want seneinlichkeit

CHINIMUMSWAHLS ENEINLICHKEIT) gewählt werden muss

· Def 2.22: Minimumswantscheinlichkeitsfunktion

- 1. ∀σ; ε Σ; . η (σ;) > σ
- 2. 2 g; e Z; 7 (G;) < 1

· perturbierte strategiemengen

· oct 2.23 pertubientes spiel G(7)

- + 5; (n) pertubierte smategiemenge
- · oef 2.24:

In einem Normalformspiel G ist ein Strategietupel Gt ein perfektes Greiengewicht von G wenn Folge $\{(s^t, \eta^t)\}_t$ existert mit:

- . 1 10 (+ 00)
- · 2 = 3 + (++ co)
- · Yt: 3t ist ein Nash-Gielchgewicht von GCNE)

- · Jedes perturbierte spiel nat ein Nash-Gleichgewicht;
 jedes perturbierte spiel nat ein perfektes
 Gleichgewicht
- - · Je des perfekte Gleichgewicht ist ein Nash-Gleichqewicht, nicht iedes Nash-Gleichgewicht ist ein perfektes Gleichgewicht

spicier 2

	•		
	ნ 24	σ 22	
G _{AA}	Aoo Aoo	400	
5 42	-40	40	
		σ ₂₄ σ ₄₄ σ ₄₂ σ ₄₂	

T##: Wir betrachten Folge von trembling

Functions 16()= f(für + + +) und Folge von

Nash-Gleichgewichten 5t in G(1/2) mit:

$$S_{1}^{k} = (\frac{1}{k}, (1 - \frac{1}{k}))$$
 $S_{2}^{k} = (\frac{1}{k}, (1 - \frac{1}{k}))$

spicies 2

		• • • • • • • • • • • • • • • • • • • •		
		T ₂₄	σ ₂₂	
Saigra, A	G _{AA}	, A00	400	
Spielec 1 -	5 42	-40	40	

es gilt st
$$\rightarrow$$
 G \Rightarrow G \Rightarrow

- st NGG für t "graß genug" in G(nt)

Informationen

Matching Fennics

Spicier 2

		1	524		62 2
		Korf		ldps	
			- <		+4
	011				
S = 1 = 1 = 1 A = 1	korf	+4		- ^	
Spicici 1.			+ 1		- 1
	5 ₄₂				
	tanı	-4		+4	

$$s_1^* = \left(\frac{1}{2}, \frac{1}{2}\right)$$

$$s_2^* = \left(\frac{\Lambda}{2}, \frac{\Lambda}{2}\right)$$

Formale Beschreibung:

- ·G=(21, ..., En; H1, ..., Hn; 1)
- m:= |∑|< ∞ m: Anzani aller reinen strategie kombinationen in G

(o1,..., om e E)

$$\cdot V^{Q} = \begin{bmatrix} \begin{pmatrix} H^{u}(Q_{u}) \\ \vdots \\ H^{d}(Q_{u}) \end{pmatrix} & \cdots & \begin{pmatrix} H^{u}(Q_{w}) \\ \vdots \\ H^{d}(Q_{w}) \end{pmatrix} & \in \mathbb{I}_{u \times w}$$

spiciers i (H;) in G, abhängig von der jeweiligen strategickom bination G;

$$Q_{3} = CQ^{45}, Q_{54}$$

$$Q_{45}$$

$$Q_{55}$$

$$Q_$$

Q3 = CQ45, Q54) 54= (512, 522)

- · jeder spicier hat sog. mahre nussahlungsfunktion
- . hus zahlungsfunktionen an derer Spieler durch störtelm

$$\chi_i:(\Omega,F,P)\to \mathbb{R}^m \ (i=1,...,n)$$

- → X; stochastische stärung von i menn & ¿ € ∑ grmählt wird
- . nun 11ständige Information in G wird durch

wobei M. die <u>unvollständige Information</u> von i ± i über H; repräsentiert

Many
$$2$$
 wie folgend definiert $\frac{1}{2}$ $\frac{1$

A VOLSAHIANDEU RON

Spicier 2

	Ma	ნ 24	σ ₂₂	
Spieler 1	G _{AA}	2	0	3) K0
	5 42	0	2,5	

oordin a tion 18picl

Spieles 2	_
-----------	---

	142	T ₂₄	σ ₂₂
Δ.	G _{AA}	2	3
	♂ 42	0	2,5

8 615161

⇒ Spiel mit dominanter Strategie · perturbiente Auszahlung von i mit:

b) Stetige Störung: Mi Sind Gleicherteilungen auf [- E ,+ E] (E> 0)

· Die Erwartete Strategie St ist:

· Normalformspiel G= (Sa, ..., Sn; Ha,.., Ha; 1)

mit unvallständigen intormationen

- · §*(·) Nash- Gleichgewicht, wenn kein Spieler für ilgendeine Realisierung X; von X; profitabel von S;*(X;) abweichen Kann. (Bayes Nash Gleichgewicht)
- n-Tupel von $\S^+(\cdot)$ ist Sayes-nash-Gleichgewicht wenn Yi, Y Realisielungen von X;:

$$2! \in 2! \Rightarrow H_{L}^{1}(s_{co}^{-1}, g_{s}^{1}(x!), x!) \neq H_{L}^{1}(s_{co}^{-1}, x!) \times I$$

gades - Now altorwables hat windestens en

Spicier 2

		σ 24		ሪ 52	
	517	2	N	2	•
Spielei 1	б ₄₂	٤٨	2	4	

E; gickenverteill in [0; E] (E>0), E<2

gent die maximale störung & segen 0:

spieces 2

		T ₂₄	522	
Saignar A	G _{AA}	2	2	
Spieler 1	G ₄₂	2	<i>y</i>	

$$S^8 = (Co_1 S_1 o_1 S_1) (O_1 S_1 o_1 S_2)$$
 Comiscutes NGC)

Bayes - Nash - Gleich gewicht

S2: E2>0 S4 = (e1(4-e))

 $S_2^{\sim}(E_2) = \begin{cases} E_2 & \dots & E_2 < 4 - \frac{E_2}{F_2} \\ E_2 & \dots & E_3 > 4 - \frac{E_3}{F_3} \end{cases}$

$$S_{A} : \mathcal{E}_{A} > \mathcal{O} \qquad S_{2}^{C} = (q_{1}(A-q))$$

$$S_{A} : \mathcal{E}_{A} > \mathcal{O} \qquad S_{2}^{C} = (q_{1}(A-q))$$

$$S_{A} : \mathcal{E}_{A} > \mathcal{O} \qquad S_{2}^{C} = (q_{3}(A-q))$$

$$S_{A} : \mathcal{E}_{A} > \mathcal{O} \qquad \mathcal{E}_{A} < \mathcal{O} = \mathcal{O}$$

$$S_{A} : \mathcal{E}_{A} > \mathcal{O} = \mathcal{O}$$

⇒ 5 * = ((0,5,0,5), (0,5,0,5))