(Jib , la Uh Una UA · Culik Boly / is in w ans Ot W= { (V=1R3 وكواه

(di bi) don I = $\oint e^{5\frac{\pi}{4}} + G_{S}(y^{3}) dy$ (in jobs) / mile / 1b C given wi (po): dhe $x^{2} + y^{2} + (2 - 3)^{2} + 4 + (3 - 3)^$: " - 10) | 10 18 (1) | 10 (1) (1) a+BEN (2) a+B=B+a (x,B,BEN p/v.gz (p)gz (3) (α+β)+ Y= α+ (β+ Y) (β+ Y) (β+ Θ = 0 ~ α+0 = α (β+ Y) α (β+ Y 3 (a+b). α=(a.α)+(b.α) (α+β)=(a.α)+(a.β) (5) 7.α = α مر اسطار ۱۷ ، تمولی نفیا کارد از ده و معولاً از را یاد ۷ × ۱۷ یاسی مودهم راره ؛ درط له ما ي دواى عداك من و مع له ما م على مد داس عوسال دام :

NAHAL

معلى على دار: سنع على كا را عن مام يهم عرف من مور / ما يم يمر ((ع) مرك مورد . نظر ما يعير ع رك (() م ول مورسا سطح قعقد معد على وركوم ، وه و هذ العامره لرميراى ك برحر ب از برله عا / عول ك م وى مرب ك مرب ك لا على مرب الما مرب الحال الما مرب الما مربع بالمرب الما مربع بالمرب الما مربع بالمرب الما مربع بالمربع المربع Sonin (N Town Part man mil) 18 92 920 Juce Find (: FUSING انسال سول مردار 1 F. do 1 F do 1 S 2 1 May () July 3 () Ju [] [] العاد العاد العاد المعادة العادة المعادة العادة ال 17Gt ds = 17G1 dnx,y; G2+0 (x,y)∈D, G(x,y,Z)=0 The S dample de=Nds=+ VG dAx, F; Gy to VG dAX, F; Gx to (a(x,y,z)=Z-f(x,y)=0 $N=t \frac{(-f_{(1}-f_{2}))}{\sqrt{f_{1}^{2}+f_{2}^{2}+1}}$: 4p ((a,v) - (x(u,v), y(u,v), 7(u,v)) 2 1/201/2 /2

NAHAL

AHAL

 $= W = \int dw = \int F. \, ds = \int F. \, ds = \int \frac{dx}{ds} = \left(\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}\right) \, ds = \left(\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}, \frac{dz}{ds}\right)$ $= \left(\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}\right) = \left(\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}\right) = \left(\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}\right)$ $= \left(\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}\right) = \left(\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}\right)$ $= \left(\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}\right) = \left(\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}\right)$ $= \left(\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}\right) = \left(\frac{dx}{ds}, \frac{dz}{ds}\right)$ $= \left(\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}\right) = \left(\frac{dx}{ds}, \frac{dz}{ds}\right)$ $= \left(\frac{dx}{ds}, \frac{dy}{ds}\right) = \left(\frac{dx}{ds}\right)$ $= \left(\frac{dx}{ds}, \frac{dy}{ds}\right) = \left(\frac{dx}{ds}\right)$ $= \left(\frac{dx}{ds}, \frac{dy}{ds}\right)$ $= \left(\frac{dx}{ds}\right) = \left(\frac{dx}{ds}\right)$ $= \left(\frac{dx}{ds}\right)$ ~ F.dr ~ (α)- γ (b) , γ=x (-) ; y=x bo ((ω)); ε(ν,γ) α (0,0) ν (γ) ε(ν,γ) = (γ²,2xγ) ως ε(ν,γ) ε (γ²,2xγ) (dibsde of) (F.dr (1,1), ade (1,1), (0,1) (1,0), (0,0), (0,0) (1,0) (1,1) (0,0) d:[a,b) 3 3 3(a) : , b (alb) 3 (b) = d (a) F-(F,, Fn): UCIR - or / well with on the state of the sta « الديم هاه مولده () ، هم , Fa, Fa, , Fa فاهم عول . JE>0: BE(N) C U NEU P/V. 60, N/2 L/ U C IR V. 52: WW identife eli Unecis. "D fois de fon Oluce F, "IR IR D in Cho Cho in Dies de mais Culture D (So F (1) F. dr=0, D, C ml in de nee vier (ram e /id (2) ewip, P, Dw Cr. Je ce C mois O: D c 1R , F-V mois of ocas but i () : ~ w

NAHAL

MAHAI

