

DEPARTMENT OF MATHEMATICS

Course: Linear Algebra and Probability	CIE-II	Maximum marks: 50
Theory		
	Third semester 2023-2024	Time: 10:00AM-11:30AM
Course code: MA231CT	Branch: CS, CD, CY	Date: 20-02-2024

SCHEME AND SOLUTION

Q.No	Solutions	Marks
1.	Row echelon form of $A = \begin{bmatrix} 1 & -2 & 2 & 3 & -1 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	3
	Basis for row space is $\{(-3, 6, -1, 1, -7)^T, (1, -2, 2, 3, -1)^T\}$	1
	Basis for column space is $\{(-3,1,2)^T, (-1,2,5)^T\}$	1
	Dimension of row space = Dimension of column space = 2	1
	Consider	
	$\begin{bmatrix} 1 & -2 & 2 & 3 & -1 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	
	$\Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$	2
	Basis of Null space is $\{(2,1,0,0,0)^T, (1,0,-2,1,0)^T, (-3,0,2,0,1)^T\}$	1
	Dimension of Null space = 3	1
2.a	Matrix representations and diagrams:	
	$i) \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \qquad ii) \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \qquad jii) \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$	1+1+1
	(-1,1) $(-1,1)$ $(-1,1)$	1+1+1
2.b	Verify:	
	i) $T((x_1, y_1, z_1) + (x_2, y_2, z_2)) = T((x_1, y_1, z_1)) + T((x_2, y_2, z_2))$	2 2
	ii) $T(\alpha(x_1, y_1, z_1)) = \alpha T((x_1, y_1, z_1))$	2
3.	for all $\alpha \in \mathbb{R}$, (x_1, y_1, z_1) , $(x_2, y_2, z_2) \in \mathbb{R}^3$ Suppose $\{v_1, v_2, v_3\}$ is orthogonal basis. Then	
3.	Suppose $\{v_1, v_2, v_3\}$ is orthogonal basis. Then $v_1 = u_1 = \begin{bmatrix} 1\\3\\1\\1 \end{bmatrix}, v_2 = u_2 - \frac{(u_2 \cdot v_1)}{v_1 \cdot v_1} v_1 = \begin{bmatrix} 6\\-8\\-2\\-4 \end{bmatrix} - \frac{-24}{12} \begin{bmatrix} 1\\3\\1\\1 \end{bmatrix} = \begin{bmatrix} 8\\-2\\0\\-2 \end{bmatrix}$	1+3
	$v_{3} = u_{3} - \frac{u_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} - \frac{u_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2} = \begin{bmatrix} 6 \\ 3 \\ 6 \\ -3 \end{bmatrix} - \frac{18}{12} \begin{bmatrix} 1 \\ 3 \\ 1 \\ 1 \end{bmatrix} - \frac{48}{72} \begin{bmatrix} 8 \\ -2 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} -5/6 \\ -1/6 \\ 9/2 \\ -19/6 \end{bmatrix}$	3

	Projection is	
	$\vec{p} = \frac{u \cdot v_1}{v_1 \cdot v_1} \ v_1 + \frac{u \cdot v_2}{v_2 \cdot v_2} \ v_2 + \frac{u \cdot v_3}{v_3 \cdot v_3} v_3 = \frac{1}{6} \begin{bmatrix} 1\\3\\1\\1 \end{bmatrix} + \frac{1}{9} \begin{bmatrix} 8\\-2\\0\\-2 \end{bmatrix} - \frac{7}{93} \begin{bmatrix} -5/6\\-1/6\\9/2\\-19/6 \end{bmatrix} = \begin{bmatrix} 104/93\\9/31\\-16/93\\17/93 \end{bmatrix}$	3
4.a	i) $\int_{v=0}^{1} \int_{x=0}^{1} c(x^2 + y^2) dx dy = 1 \Rightarrow c = \frac{3}{2}$	2
	ii) Marginal distributions	
	$f_X(x) = \int_{v=0}^1 c(x^2 + y^2) dy = \frac{1}{2} (3x^2 + 1)$	
		1
	$f_Y(y) = \int_{x=0}^1 c(x^2 + y^2) dx = \frac{1}{2} (3y^2 + 1)$	1
	iii) $P(X + Y < 1) = \int_{y=0}^{1} \int_{x=0}^{1-y} c(x^2 + y^2) dx dy = \frac{1}{4}$	2
4.b	Let <i>X</i> denote the number of engine running, it is a binomial r.v. with parameter $p = 0.6$ and n .	
	When $n = 4$, the probability that plane has a successful flight is	
	$P(X \ge 2) = 1 - P(X < 2) = 1 - b(0; 4,0.6) - b(1; 4,0.6) = 1 - (0.4)^4 - 4(0.6)(0.4)^3 = 0.8208$	2
	When $n = 2$, the probability that plane has a successful flight is	
	$P(X \ge 1) = 1 - P(X < 1) = 1 - b(0; 2, 0.6) = 1 - (0.4)^2 = 0.84$	
	Thus 2- engine flight has a higher probability for a successful flight than the 4 – engine flight.	1
5.a	Let <i>K</i> denote number of arrival of messages and <i>X</i> denote time interval between two successive messages.	
	Given $\lambda = 10$, number of messages in one hour.	
	i) $P(1 < K < 10) = \sum_{k=2}^{9} \frac{e^{-2\lambda}(2\lambda)^k}{k!} = 1 - 0.004995$	2
	ii) $P(X > 40min \mid X > 30min) = P(X > 10min) = P\left(X > \frac{1}{6}\right) = e^{-\frac{\lambda}{6}} = 0.1888$	2
	iii) $P(X > x) = 0.8 \Rightarrow e^{-\lambda x} = 0.8 \Rightarrow x = 0.0223 hr = 1.339 min.$	2
5.b	$\mu=6000$ and $\sigma=100$.	
	Let X denote strength of samples of cement, corresponding standard normal r.v., $Z = \frac{X-\mu}{\sigma}$	
	i) $P(5800 < X < 5900) = P(-2 < Z < -1) = \Phi(-1) - \Phi(-2) = 0.158655 - 0.02275 = 0.1359$	2
	ii) $P(X > x) = 0.95 \Rightarrow P(Z > z) = 0.95 \Rightarrow \Phi(z) = 1 - 0.95 \Rightarrow z = -1.65$	1
	Thus the strength that is exceeded by 95% of the samples is, $x = -1.65\sigma + \mu = 5835$.	1