Distributed by:

JAMECO

ELECTRONICS

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

Jameco Part Number 1623349

GaAlAs-IR-Lumineszenzdioden (880 nm) GaAlAs Infrared Emitters (880 nm)

Lead (Pb) Free Product - RoHS Compliant

SFH 484 SFH 485

SFH 484 SFH 485

Wesentliche Merkmale

- GaAlAs-LED mit sehr hohem Wirkungsgrad
- Hohe Zuverlässigkeit
- Gute spektrale Anpassung an Si-Fotoempfänger
- Gegurtet lieferbar (im Ammo-Pack)
- Gruppiert lieferbar
- SFH 484: Gehäusegleich mit LD 274
- SFH 485: Gehäusegleich mit SFH 300, SFH 203

Anwendungen

- IR-Fernsteuerung von Fernseh- und Rundfunkgeräten, Videorecordern, Lichtdimmern
- Gerätefernsteuerungen für Gleich- und Wechsellichtbetrieb
- Rauchmelder (UL-Freigabe)
- Sensorik
- Diskrete Lichtschranken

Features

- Very highly efficient GaAlAs-LED
- High reliability
- Spectral match with silicon photodetectors
- Available on tape and reel (in Ammopack)
- Available in bins
- SFH 484: Same package as LD 274
- SFH 485: Same package as SFH 300, SFH 203

Applications

- IR remote control of hi-fi and TV-sets, video tape recorders, dimmers
- Remote control for steady and varying intensity
- Smoke detectors (UL-approval)
- Sensor technology
- · Discrete interrupters

Typ Type	Bestellnummer Ordering Code	Gehäuse Package
SFH 484	Q62703Q1092	5-mm-LED-Gehäuse (T 1 ³ / ₄), klares violettes
SFH 484-2	Q62703Q1756	Epoxy-Gießharz, Anschlüsse im 2.54-mm-Raster (1/10"), Anodenkennzeichung: kürzerer Anschluß
SFH 485	Q62703Q1093	5 mm LED package (T 1 ³ / ₄), violet-colored epoxy resin,
SFH 485-2	Q62703Q1547	solder tabs lead spacing 2.54 mm (1/10"), anode marking: short lead

2004-12-20

Grenzwerte ($T_A = 25$ °C) **Maximum Ratings**

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{ m op};T_{ m stg}$	- 40 + 100	°C
Sperrspannung Reverse voltage	V_{R}	5	V
Durchlaßstrom Forward current	I_{F}	100	mA
Stoßstrom, $t_p = 10 \mu s$, $D = 0$ Surge current	I_{FSM}	2.5	А
Verlustleistung Power dissipation	P _{tot}	200	mW
Wärmewiderstand, freie Beinchenlänge max. 10 mm Thermal resistance, lead length between package bottom and PC-board max. 10 mm	R _{thJA}	375	K/W

Kennwerte (T_A = 25 °C) Characteristics

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Wellenlänge der Strahlung Wavelength at peak emission $I_{\rm F}$ = 100 mA	λ_{peak}	880	nm
Spektrale Bandbreite bei 50% von I_{rel} Spectral bandwidth at 50% of I_{rel} I_{F} = 100 mA	Δλ	80	nm
Abstrahlwinkel Half angle SFH 484 SFH 485	φ	± 8 ± 20	Grad deg.
Aktive Chipfläche Active chip area	A	0.09	mm ²
Abmessungen der aktiven Chipfläche Dimension of the active chip area	$L \times B \\ L \times W$	0.3 × 0.3	mm
Abstand Chipoberfläche bis Linsenscheitel Distance chip front to lens top SFH 484 SFH 485	H H	5.1 5.7 4.2 4.8	mm mm
Schaltzeiten, $I_{\rm e}$ von 10% auf 90% und von 90% auf 10%, bei $I_{\rm F}$ = 100 mA, $R_{\rm L}$ = 50 Ω Switching times, $I_{\rm e}$ from 10% to 90% and from 90% to 10%, $I_{\rm F}$ = 100 mA, $R_{\rm L}$ = 50 Ω	$t_{\rm r},t_{\rm f}$	0.6/0.5	μs
Kapazität Capacitance $V_{\rm R}$ = 0 V, f = 1 MHz	C_{o}	15	pF
Durchlaßspannung Forward voltage $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms $I_{\rm F}$ = 1 A, $t_{\rm p}$ = 100 μ s	$egin{array}{c} V_{F} \ V_{F} \end{array}$	1.50 (≤ 1.8) 3.00 (≤ 3.8)	V V
Sperrstrom, Reverse current $V_{\rm R} = 5 \text{ V}$	I_{R}	0.01 (≤ 1)	μΑ
Gesamtstrahlungsfluß, Total radiant flux $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	Φ_{e}	25	mW

Kennwerte ($T_A = 25$ °C) Characteristics (cont'd)

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Temperaturkoeffizient von I_e bzw. Φ_e , I_F = 100 mA Temperature coefficient of I_e or Φ_e , I_F = 100 mA	TC _I	- 0.5	%/K
Temperaturkoeffizient von $V_{\rm F},I_{\rm F}$ = 100 mA Temperature coefficient of $V_{\rm F},I_{\rm F}$ = 100 mA	TC_{V}	- 2	mV/K
Temperaturkoeffizient von λ , $I_{\rm F}$ = 100 mA Temperature coefficient of λ , $I_{\rm F}$ = 100 mA	TC_{λ}	0.25	nm/K

Gruppierung der Strahlstärke $I_{\rm e}$ in Achsrichtung

gemessen bei einem Raumwinkel Ω = 0.001 sr bei SFH 484 bzw. Ω = 0.01 sr bei SFH 485

Grouping of Radiant Intensity $\mathbf{I}_{\mathbf{e}}$ in Axial Direction

at a solid angle of Ω = 0.001 sr at SFH 484 or Ω = 0.01 sr at SFH 485

Bezeichnung Parameter	Symbol	Wert Value					Einheit Unit
		SFH 484	SFH 484-1	SFH 484-2	SFH 485	SFH 485-2	
Strahlstärke Radiant intensity $I_{\rm F} = 100 \text{ mA}, t_{\rm p} = 20 \text{ ms}$	$I_{ m e\ min}$ $I_{ m e\ max}$	50	50 100	80	25 160	25 100	mW/sr mW/sr
Strahlstärke Radiant intensity $I_F = 1 \text{ A}, t_p = 100 \mu\text{s}$	I _{e typ.}	800	700	900	300	340	mW/sr

Radiation Characteristics, SFH 484 I_{rel} = $f\left(\phi\right)$

Radiation Characteristics SFH 485 $I_{rel} = f(\phi)$

Relative Spectral Emission $I_{rel} = f(\lambda)$

Forward Current $I_F = f(V_F)$, single pulse, $t_p = 20 \mu s$

Radiant Intensity $\frac{I_{\rm e}}{I_{\rm e}\,{\rm 100~mA}}$ = f ($I_{\rm F}$)

Single pulse, $t_p = 20 \mu s$

Permissible Pulse Handling Capability $I_{\rm F}$ = f (τ), $T_{\rm A}$ = 25 °C, duty cycle D = parameter

Max. Permissible Forward Current $I_{\rm F} = f\left(T_{\rm A}\right)$

Forward Current vs. Lead Length between the Package Bottom and the PC-Board $I_F = f(l)$, $T_A = 25 \, ^{\circ} \times C$

Maßzeichnung Package Outlines

Maße werden wie folgt angegeben: mm (inch) / Dimensions are specified as follows: mm (inch).

Empfohlenes Lötpaddesign Recommended Solder Pad TTW Soldering OHLPY985

Maße werden wie folgt angegeben: mm (inch) / Dimensions are specified as follows: mm (inch).

OSRAM

Lötbedingungen Soldering Conditions Wellenlöten (TTW) TTW Soldering

(nach CECC 00802) (acc. to CECC 00802)

Published by OSRAM Opto Semiconductors GmbH Wernerwerkstrasse 2, D-93049 Regensburg www.osram-os.com

© All Rights Reserved.

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components ¹ may only be used in life-support devices or systems ² with the express written approval of OSRAM OS. ¹ A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. ² Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

