Projekt_peptydy

Wygenerowano przez Doxygen 1.8.13

Spis treści

1	Inde	ks prze	strzeni nazw	2
	1.1	Pakiety	y	2
2	Inde	ks klas		2
	2.1	Lista k	las	2
3	Inde	ks plike	ów	2
	3.1	Lista p	lików	2
4	Doku	umenta	cja przestrzeni nazw	2
	4.1	Dokum	nentacja przestrzeni nazw program	2
		4.1.1	Dokumentacja funkcji	3
		4.1.2	Dokumentacja zmiennych	5
5	Doku	umenta	cja klas	7
	5.1	Dokum	nentacja klasy program.atom	7
		5.1.1	Opis szczegółowy	7
		5.1.2	Dokumentacja konstruktora i destruktora	8
		5.1.3	Dokumentacja funkcji składowych	8
		5.1.4	Dokumentacja atrybutów składowych	9
	5.2	Dokum	nentacja klasy program.monomer	10
		5.2.1	Opis szczegółowy	11
		5.2.2	Dokumentacja konstruktora i destruktora	11
		5.2.3	Dokumentacja funkcji składowych	12
		5.2.4	Dokumentacja atrybutów składowych	14
	5.3	Dokum	nentacja klasy program.peptide	14
		5.3.1	Opis szczegółowy	14
		5.3.2	Dokumentacja funkcji składowych	15
		5.3.3	Dokumentacja atrybutów składowych	16
	5.4	Dokum	nentacja klasy program.vector	16
		5.4.1	Opis szczegółowy	17
		5.4.2	Dokumentacja konstruktora i destruktora	17
		5.4.3	Dokumentacja funkcji składowych	18
		5.4.4	Dokumentacja atrybutów składowych	19

6	Dokumentacja plików	19
	6.1 Dokumentacja pliku program.py	19
1	Indeks przestrzeni nazw	
1.1	Pakiety	
Oto	o lista pakietów wraz z krótkim opisem (o ile jest dostępny):	
	program	2
2	Indeks klas	
2.1	Lista klas	
Tut	aj znajdują się klasy, struktury, unie i interfejsy wraz z ich krótkimi opisami:	
	program.atom Atomy	7
	program.monomer Monomery	10
	program.peptide Peptydy	14
	program.vector Wektory w układzie kartezjańskim	16
3	Indeks plików	
3.1	Lista plików	
Tut	aj znajduje się lista wszystkich plików z ich krótkimi opisami:	
	program.py	19
4	Dokumentacja przestrzeni nazw	
4.1	Dokumentacja przestrzeni nazw program	
Kor	nponenty	
	• class atom	
	• class monomer	
	Monomery.	
	• class peptide Peptydy.	
	• class vector	
	Wektory w układzie kartezjańskim.	

Funkcje

• def transpose (m)

Transpozyjcja macierzy.

• def dihedral_angle (b1, b2, b3)

Wyznaczanie kąta torsyjnego.

• def upload_data (table)

Szuka atomow i wiązań istotnych dla tworzenia wiązania.

• def $make_output$ (peptyd, i, j, n)

Tworzy plik w formacie pdb.

Zmienne

• **file** = open('Components-pub.cif')

Tworzy monomery białkowe.

- int i = 0
- list **table** = []
- int number_of_lines = 0
- dictionary monomers_list = {}
- words = re.split("\s+",line.strip())
- def monomer_i = upload_data(table)
- data = open(sys.argv[1])

Tworzy poptyd o zadanych kątach omega, fi, psi.

- string words2 = ""
- list table2 = []
- aa = peptide()
- **f** = open('output.pdb', 'w')

Drukuje stworzony peptyd do pliku output.pdb.

• int n = 0

4.1.1 Dokumentacja funkcji

4.1.1.1 dihedral_angle()

Wyznaczanie kąta torsyjnego.

Parametry

```
b1,b2,b3 trzy wektory pomiędzy, którymi liczony jest kąt torsyjny
```

Zwraca

wartość kąta torsyjnego

Autor

Bernadeta Nowosielska

4.1.1.2 make_output()

Tworzy plik w formacie pdb.

Parametry

peptyd	obiekt klasy peptyd - gotowy produkt łączenia aminokwasow	
i	ilosć aminokwasow w peptydzie	
j	ilosć atomow w kolejnych aminokwasach	
n	numery porządkowe kolejnych aminokwasow	

Autor

Barbara Gruza

4.1.1.3 transpose()

```
\begin{array}{c} \text{def program.transpose (} \\ & m \end{array})
```

Transpozyjcja macierzy.

Parametry

т	maciwerz, która ma zostać zmieniona
---	-------------------------------------

Zwraca

macierz transponowana

Autor

Bernadeta Nowosielska

4.1.1.4 upload_data()

Szuka atomow i wiązań istotnych dla tworzenia wiązania.

Parametry

table tablica z danymi wczytanymi z pliku cif

Zwraca

obiekty klady monomer

4.1.2 Dokumentacja zmiennych

4.1.2.1 aa

```
program.aa = peptide()
```

4.1.2.2 data

```
program.data = open(sys.argv[1])
```

Tworzy poptyd o zadanych kątach omega, fi, psi.

Program wczytuje dane z pliku data.txt. W pliku wejciowym w pierwszej kolumnie musi znajdować się trzyliterowy kod monomeru. W kolejnych trzech kolumnach mogą znajdować się wartosci kątow omega, fi, psi (w takiej kolejnosci) podane w stopniach. Jesli liczba kolumn w pliku jest rożna od 4 (plik nie zawiera dokladnie trzech wartosci kątow), zostają automatycznie ustalone następujące wartosci: omega=180 fi=(-60) psi=(-45) /author Barbara Gruza

4.1.2.3 f

```
program.f = open('output.pdb', 'w')
```

Drukuje stworzony peptyd do pliku output.pdb.

Korzystając z funkcji make_output tworzy plik zawierający stworzony obiekt klasy poptyd w formacie .pdb /author Barbara Gruza

4.1.2.4 file

```
program.file = open('Components-pub.cif')
```

Tworzy monomery białkowe.

Program wczytuje dane z pliku Components-pub.cif do tablicy 'table'. Wybiera L-peptydy (oraz glicynę). Korzystając z funkcji 'upload_data' tworzy listę obiektow klasy monomer. Jesli monomer nie zawiera poprawnie zdefiniowanych nazw oraz wspołrzędnych atomow grup aminowej, karboksylowej oraz węgla alfa nie zostanie załadowany do tablicy /author Barbara Gruza

```
4.1.2.5 i
int program.i = 0
4.1.2.6 monomer_i
def program.monomer_i = upload_data( table)
4.1.2.7 monomers_list
dictionary program.monomers_list = {}
4.1.2.8 n
int program.n = 0
4.1.2.9 number_of_lines
int program.number_of_lines = 0
4.1.2.10 table
list program.table = []
4.1.2.11 table2
list program.table2 = []
4.1.2.12 words
program.words = re.split("\s+",line.strip())
4.1.2.13 words2
program.words2 = ""
```

5 Dokumentacja klas

5.1 Dokumentacja klasy program.atom

Atomy.

Metody publiczne

•	$\ def \underline{} init\underline{} (\underline{} self\underline{}, a, b, c, ID, element, znacznik$
	Konstuktor.
•	def scalar_prod (self, p)
	lloczyn skalarny.
•	def rotate (self, m)
	Obrót.
•	def translation (self, v)
	Przesunięcie.
•	def vector_prod (self, p)
	lloczyn wektorowy.
•	defstr (self)

Pozwala na wydrukowanie atomu.

Statyczne atrybuty publiczne

- int $\mathbf{x} = 0$
- int $\mathbf{y} = 0$
- int z = 0
- string **ID** = ""
- string **element** = ""
- string znacznik = ""

5.1.1 Opis szczegółowy

Atomy.

Autor

Bernadeta Nowosielska

Parametry

X,Y,Z	współrzędne w układzie kartezjańskim
ID	unikalny identyfikator
element	pierwiastek chemiczny
znacznił	atomy "funkcyjne"

5.1.2 Dokumentacja konstruktora i destruktora

Konstuktor.

Parametry

a,b,c	współrzędne
ID	unikalny identyfikator
element	pierwiastek chemiczny
znacznik	dla atomów funkcyjnych

5.1.3 Dokumentacja funkcji składowych

Pozwala na wydrukowanie atomu.

5.1.3.2 rotate()

```
def program.atom.rotate (  \underline{ \quad \quad } self \underline{ \quad } ,  m )
```

Obrót.

Parametry

m macierz obrotu

Zmienia współrzędne atomu

5.1.3.3 scalar_prod()

```
def program.atom.scalar_prod (
    __self__,
    p )
```

Iloczyn skalarny.

Parametry

Zwraca

wynik iloczynu skalarnego

5.1.3.4 translation()

```
def program.atom.translation (  \underline{ \quad \quad } self\underline{ \quad } , v )
```

Przesunięcie.

Parametry

Zmienia wspołrzędne atomu

5.1.3.5 vector_prod()

```
def program.atom.vector_prod (  \underline{ \  \  \  } self\underline{ \  \  }, p\ )
```

Iloczyn wektorowy.

Parametry

Zwraca

obiekt klasy wekotr będący wynikem iloczynu wektorowego

5.1.4 Dokumentacja atrybutów składowych

5.1.4.1 element

```
string program.atom.element = "" [static]
```

5.1.4.2 ID

```
string program.atom.ID = "" [static]
```

5.1.4.3 x

```
int program.atom.x = 0 [static]
```

5.1.4.4 y

```
int program.atom.y = 0 [static]
```

5.1.4.5 z

```
int program.atom.z = 0 [static]
```

5.1.4.6 znacznik

```
string program.atom.znacznik = "" [static]
```

Dokumentacja dla tej klasy została wygenerowana z pliku:

program.py

5.2 Dokumentacja klasy program.monomer

Monomery.

Metody publiczne

• definit (_	_self, ID , noa, atoms, nob, bonds, wazne_atomy
Konstuktor.	
• def replicate (self)
Tworzy wiern	ą kopję monomeru.
 def rotate_all 	(self, m)
Obrót wszysi	kich atomu monomeru.
 def translation 	n_all (self, v)
Przesunięcie	wszystkich atomów monomeru.
 def system_C 	(<u>self</u>)
Tworzy macie	erz układu współrzędnyc na C.
 def system_N 	(self)
Tworzy macie	erz układu współrzędnyc na C.
• def remove (_	_self, ID)
Usuwa atom.	
• defstr (_	_self)
Pozwala na v	vydrukowanie monomru.
Statyczne atrybuty publi	czne
 string ID = "" 	
 int number_of 	—
int number_of	_bonds = 0
F.0.4 Only	
5.2.1 Opis szczegółow	у
Monomery.	
Autor	
Bernadeta Now	ocioleka
Demadela Now	USIGISKA
Parametry	
ID	nazwa monomeru
number_of_atoms	liczba atomów w monomerze
number_of_bonds	liczba wiązań w monomerze

5.2.2 Dokumentacja konstruktora i destruktora

```
ID,
noa,
atoms,
nob,
bonds,
wazne_atomy)
```

Konstuktor.

Parametry

ID	nazwa
noa	liczba atomów w monomerze
atoms	tablica zawierająca obiekty klasy atom
nob	liczba wiązań w monomerze
bonds	tablica wiązań
wazne_atomy	tablica atomów funkcyjnych

5.2.3 Dokumentacja funkcji składowych

Pozwala na wydrukowanie monomru.

5.2.3.2 remove()

```
def program.monomer.remove (
    __self__,
    ID )
```

Usuwa atom.

Parametry

```
ID ID atomu który będzie usunięty
```

5.2.3.3 replicate()

```
def program.monomer.replicate ( \_\_self\_\_\ )
```

Tworzy wierną kopję monomeru.

5.2.3.4 rotate_all()

Obrót wszystkich atomu monomeru.

Parametry

```
m macierz obrotu
```

5.2.3.5 system_C()

```
def program.monomer.system_C (
    __self__ )
```

Tworzy macierz układu współrzędnyc na C.

Zwraca

Macierz układu

Tworzy macierz układu współrzędnych na karbonylowym atomie węgla. Tak aby oś x znajdowała się na wiązaniu C-OH, a oś y była prostopadła do grupy.

5.2.3.6 system_N()

```
def program.monomer.system_N (
    __self__ )
```

Tworzy macierz układu współrzędnyc na C.

Zwraca

Macierz układu

Tworzy macierz układu współrzędnych na karbonylowym atomie węgla. Tak aby oś x znajdowała się na wiązaniu N-X, a oś y była prostopadła do atomów H i węgla alpha.

5.2.3.7 translation_all()

```
def program.monomer.translation_all (  \underline{\quad \quad } self\underline{\quad \quad } , v\ )
```

Przesunięcie wszystkich atomów monomeru.

Parametry

v wektor, o który następuje przesunięcie

5.2.4 Dokumentacja atrybutów składowych

5.2.4.1 ID

```
string program.monomer.ID = "" [static]
```

5.2.4.2 number_of_atoms

```
int program.monomer.number_of_atoms = 0 [static]
```

5.2.4.3 number_of_bonds

```
int program.monomer.number_of_bonds = 0 [static]
```

Dokumentacja dla tej klasy została wygenerowana z pliku:

· program.py

5.3 Dokumentacja klasy program.peptide

Peptydy.

Metody publiczne

- def start (__self__, monomer1)
 - Dodaje pierwszy monomer do peptydu.
- def add (__self__, monomer3, omega_i, fi_i, psi_i)
 Dodaje kolejne monomery.
- def __str__ (__self__)

Pozwala na wydrukowanie peptydu.

• def rotate_da (__self__, type_, angle, N, C, m3)

Obraca o kąt torsyjny.

Statyczne atrybuty publiczne

- list **coord** = []
- list **A** = []

5.3.1 Opis szczegółowy

Peptydy.

Autor

Bernadeta Nowosielska

Parametry

coord tablica zawierajaca tablicę, która zawiera ID monomeru, jego licznik oraz tablię obiektów klasy atom.

5.3.2 Dokumentacja funkcji składowych

Pozwala na wydrukowanie peptydu.

5.3.2.2 add()

```
def program.peptide.add (
    __self__,
    monomer3,
    omega_i,
    fi_i,
    psi_i )
```

Dodaje kolejne monomery.

Parametry

monomer3	dodawany monomer
omega_i,fi_←	kąty torsyjne, które zostaną ustawione
i,psi_i	

5.3.2.3 rotate_da()

```
def program.peptide.rotate_da (
    __self__,
    type_,
    angle,
    N,
    C,
    m3 )
```

Obraca o kąt torsyjny.

Parametry

type⊷	wybrany kąt torsyjn "omega", "fi" lub "psi"	
_		
angle	wartość o którą nastąpi obrót	
N,C	końcowy i początkowy atom wiązania, na którym będzie następować obrót (obiekt klasy atom)	
m3	monomer, który będzie obracany	

5.3.2.4 start()

```
def program.peptide.start (
    __self__,
    monomer1 )
```

Dodaje pierwszy monomer do peptydu.

Parametry

monomer1	obiekt klasy monomer
----------	----------------------

5.3.3 Dokumentacja atrybutów składowych

5.3.3.1 A

```
list program.peptide.A = [] [static]
```

5.3.3.2 coord

```
list program.peptide.coord = [] [static]
```

Dokumentacja dla tej klasy została wygenerowana z pliku:

program.py

5.4 Dokumentacja klasy program.vector

Wektory w układzie kartezjańskim.

Metody publiczne

```
    def __init__ (__self__, a, b, c)
        Konstuktor.
    def leng (__self__)
        Długość wektora.
    def vector_prod (__self__, p)
        Iloczyn wektorowy.
    def scalar_prod (__self__, p)
        Iloczyn skalarny.
    def __str__ (__self__)
        Pozwala na wydrukowanie wektora.
```

Statyczne atrybuty publiczne

- int $\mathbf{x} = 0$
- int y = 0
- int z = 0

5.4.1 Opis szczegółowy

Wektory w układzie kartezjańskim.

Autor

Bernadeta Nowosielska

Parametry

```
x,y,z wspołrzędne w układzie karteziańskim
```

5.4.2 Dokumentacja konstruktora i destruktora

Konstuktor.

Parametry

```
a,b,c pobierane współrzędne
```

5.4.3 Dokumentacja funkcji składowych

Pozwala na wydrukowanie wektora.

```
5.4.3.2 leng()
```

```
def program.vector.leng (
    __self__ )
```

Długość wektora.

Zwraca

długość wekotora

5.4.3.3 scalar_prod()

```
def program.vector.scalar_prod (  \underline{ \quad \quad } self\underline{ \quad } , p )
```

Iloczyn skalarny.

Parametry

```
p atom lub wektor
```

Zwraca

wynik iloczynu skalarnego

5.4.3.4 vector_prod()

Iloczyn wektorowy.

Parametry

```
p atom lub wektor
```

Zwraca

obiekt klasy wektor

5.4.4 Dokumentacja atrybutów składowych

5.4.4.1 x

```
int program.vector.x = 0 [static]
```

5.4.4.2 y

```
int program.vector.y = 0 [static]
```

5.4.4.3 z

```
int program.vector.z = 0 [static]
```

Dokumentacja dla tej klasy została wygenerowana z pliku:

· program.py

6 Dokumentacja plików

6.1 Dokumentacja pliku program.py

Komponenty

class program.vector

Wektory w układzie kartezjańskim.

class program.atom

Atomy

• class program.monomer

Monomery.

• class program.peptide

Peptydy.

Przestrzenie nazw

program

Funkcje

• def program.transpose (m)

Transpozyjcja macierzy.

• def program.dihedral_angle (b1, b2, b3)

Wyznaczanie kąta torsyjnego.

• def program.upload_data (table)

Szuka atomow i wiązań istotnych dla tworzenia wiązania.

• def program.make_output (peptyd, i, j, n)

Tworzy plik w formacie pdb.

Zmienne

program.file = open('Components-pub.cif')
 Tworzy monomery białkowe.

- int program.i = 0
- list program.table = []
- int program.number_of_lines = 0
- dictionary program.monomers_list = {}
- program.words = re.split("\s+",line.strip())
- def program.monomer_i = upload_data(table)
- program.data = open(sys.argv[1])

Tworzy poptyd o zadanych kątach omega, fi, psi.

- string program.words2 = ""
- list program.table2 = []
- program.aa = peptide()
- **program.f** = open('output.pdb', 'w')

Drukuje stworzony peptyd do pliku output.pdb.

• int program.n = 0