EE 550 Artificial Neural Networks

Homework 1

Due: 06/03/2020

Least Mean Square (LMS)

This project requires the computation of LMS solution of a multivariate linear model. Consider the following model

$$y(i) = \theta_1 x_1(i) + \theta_2 x_2(i) + \theta_3 x_3(i) + \theta_4 x_4(i)$$

where $\theta_1 = 2.5, \theta_2 = 1, \theta_3 = 4, \theta_4 = 3.5$.

- 1) Generate 15 data points (i = 1, 2, ..., 15) where each variable $x_j(i)$ is randomly chosen between 0 and 10.
- 2) Add zero mean Gaussian noise with standard deviations **Case a**) $\sigma = 0.2$ and **Case b**) $\sigma = 0.4$ to each data points (i.e., $y(i) = \theta_1 x_1(i) + \theta_2 x_2(i) + \theta_3 x_3(i) + \theta_4 x_4(i) + e(i)$, $e(i) \sim \mathcal{N}(0, \sigma^2)$).
- 3) For these 15 noise added data points, implement the LMS algorithm (as given in the class) to calculate the estimated model parameters $(\hat{\theta}_1, \hat{\theta}_2, \hat{\theta}_3, \hat{\theta}_4)$ for both cases.
- 4) For both cases, calculate the LMS error for the estimated model by

$$J = \sum_{i=1}^{15} [y(i) - \hat{y}(i)]^2$$

where

$$\hat{y}(i) = \hat{\theta}_1 x_1(i) + \hat{\theta}_2 x_2(i) + \hat{\theta}_3 x_3(i) + \hat{\theta}_4 x_4(i)$$

NOTES:

- 1) Please upload all your files (codes and report) to Moodle with the file convention LASTNAME_FIRSTNAME_project1.rar.
- 2) There will be a demo after due date. During demo, you will asked to download your code from Moodle and run it.
- 3) Plagiarism will not be tolerated.
- 4) Late submissions will not be accepted.