Elementy Modelowania Matematycznego

Wykład 9

Systemy kolejkowe

Spis treści

- Wstęp
- Systemy masowej obsługi (SMO)
 - Notacja Kendalla
 - Schemat systemu masowej obsługi
 - Przykład systemu M/M/1
 - Założenia modelu matematycznego
- Przykłady

Wstęp

 Teoria masowej obsługi, zwana także teorią systemów kolejkowych, zajmuje się budową modeli matematycznych, które można wykorzysta¢ w racjonalnym zarządzaniu dowolnymi systemami działania, zwanymi systemami masowej obsługi.

Wstęp

- Przykłady takich systemów:
 - sklepy,
 - porty lotnicze,
 - systemy użytkowania samochodów w przedsiębiorstwie transportowym,
 - stacje benzynowe itp.

Wstęp

- W systemie masowej obsługi (SMO) mamy do czynienia
 - z napływającymi w miarę upływu czasu zgłoszeniami (np. uszkodzony pojazd, klient, statek
 - z kolejką obiektów oczekujących na obsługę
 - ze stanowiskami obsługi (np. stanowiska diagnozowania pojazdu, sprzedawca, stanowisko wyładunku)

- Rozróżnia się systemy masowej obsługi:
 - z oczekiwaniem;
 - bez oczekiwania.

- W SMO z oczekiwaniem zgłoszenie (obiekt zgłoszenia) oczekuje w kolejce na obsługę,
- zaś w systemie bez oczekiwania, wszystkie stanowiska obsługi są zajęte i obiekt zgłoszenia wychodzi z systemu nie obsłużony.

- Charakterystyki SMO:
 - procent czasu zajętości wszystkich stanowisk obsługi
 - prawdopodobieństwo, że system nie jest pusty
 - średnia liczba czekających klientów
 - średnia liczba klientów czekających i obsługiwanych
 - średni czas czekania
 - średni czas czekania i obsługi
 - prawdopodobieństwo, że przybywający klient czeka
 - prawdopodobieństwo, że w systemie jest n klientów

Procesy

- Proces wejściowy
 - intensywność strumienia
 wejściowego, intensywność przybywania;
 - liczba klientów trend;
 - czas czekania na klienta.

Procesy

- Proces obsługi
 - Czas obsługi (bez czasu czekania w kolejce)
 - Rozkład czasu obsługi, np. wykładniczy:

$$P(t_1 \le T \le t_2) = \int_{t_1}^{t_2} \mu e^{-\mu x} dx = e^{-\mu t_1} - e^{-\mu t_2}, \text{ dla } t_1 < t_2$$

- gdzie
 - μ intensywność obsługi
 - średni czas obsługi 1/μ

Notacja Kendalla

- System kolejkowy opisany jest 3 lub 4 parametrami: 1/2/3/4
- oznaczającymi:
 - czas przybycia / czas obsługi / liczba stanowisk / liczba miejsc w systemie

Notacja Kendalla

- Parametr 1 rozkład napływu
 - M = Markowski (rozkład Poissona) czas przybycia
 - D = Deterministyczny czas przybycia
- Parametr 2 rozkład czasu obsługi
 - M = Markowski (wykładniczy) czas obsługi
 - G = Dowolny rozkład czasu obsługi
 - D = Deterministyczny czas obsługi (jednopunktowy)
- Parametr 3 liczba stanowisk obsługi
- Parametr 4 liczba miejsc w systemie (łącznie stanowiska obsługi+ kolejka) Jeśli jest nieskończona jest pomijana w zapisie

System M/M/s

- System M/M/s oznacza, że mamy:
 - strumień wejściowy Poissona z parametrem λ
 - obsługa wykładnicza z parametrem μ
 - liczba stanowisk s
 - dyscyplina obsługi FIFO
 - pojedyncza kolejka
 - $\lambda < s \mu$

System M/G/1

- System M/G/1 oznacza:
 - strumień wejściowy Poissona z parametrem λ
 - czas obsługi o dowolnym rozkładzie, średniej μ i odchyleniu standardowym σ
 - jedno stanowisko obsługi
- Czas obsługi nie musi mieć rozkładu wykładniczego, np.:
 - naprawa telewizora
 - badanie wzroku
 - fryzjer

System M/D/1

- System M/D/1 oznacza, że czas obsługi może być ustalony. np. w
- przypadku
 - taśmy produkcyjnej
 - myjni automatycznej
- Tak więc, czas obsługi jest deterministyczny.
- Aby uzyskać system M/D/1 z systemu M/G/1, trzeba przyjąć odchylenie standardowe równe 0 (σ = 0)

Schemat systemu masowej obsługi

1 - zgłoszenia (obiekty zgłoszenia), 2- kolejka obiektów, 3 - stanowiska obsługi, 4 - przemieszczenia obiektów w systemie bez oczekiwania, 5 - przemieszczenia obiektów w systemie z priorytetem obsługi, 6 - przemieszczenia obiektu w systemie z oczekiwaniem, λ_{wej} - strumień wejściowy zgłoszeń, λ_{wyj} - strumień wyjściowy obsłużonych obiektów.

- W zależności od dyscypliny obsługi SMO można podzielić następująco:
 - FIFO (first in first out), czyli kolejność obsługi według przybycia;
 - SIRO (selection in random order) czyli kolejność obsługi losowa;
 - LIFO (last in last out), czyli ostatnie zgłoszenie jest najpierw obsłużone;
 - priorytet dla niektórych usług (5), np. bezwzględny priorytet usługi oznacza, że zostaje przerwane aktualnie wykonywana obsługa obiektu, a na jego miejsce wchodzi obiekt z przyznanym priorytetem

Przykład systemu M/M/1

- Charakterystyka systemu
 - Napływ : proces Poissona z intensywnością λ
 - Czas obsługi: rozkład wykładniczy z parametrem μ
 - Procesy napływu i obsługi są niezależne
 - Pojedyncze urządzenie obsługujące
 - Nieskończona kolejka
- N(t): stan systemu (liczba klientów chwili t)

- Model matematyczny funkcjonowania SMO opiera się na teorii procesów stochastycznych.
- W modelu tym występują następujące zmienne losowe:
 - czas upływający między wejściem do systemu dwóch kolejnych zgłoszeń;
 - czas obsługi jednego zgłoszenia przez stanowisko obsługi;
 - liczba stanowisk;
 - liczebność miejsc w kolejce zgłoszeń oczekujących na obsługę.

- Założenia modelu określają
 - typ rozkładu prawdopodobieństwa zmiennych losowych (rozkład deterministyczny - równe odstępy czasu), rozkład wykładniczy, rozkład Erlanga, dowolny rozkład;
 - zależność lub niezależność zmiennych losowych czasu czekania na zgłoszenie i czasu obsługi;
 - skończona lub nieskończona wartość liczby stanowisk obsługi, długości poczekalni;
 - obowiązującą w systemie dyscyplinę obsługi.

- W systemie kolejkowym mamy do czynienia ze skończoną liczbą serwerów N, (np. operatorów telefonicznych, kas w supermarkecie) i bardzo dużą liczbą klientów R.
- Przyjmuje się że R zbiega do nieskończoności.
- Co jakiś czas klienci wysyłają losowo żądanie obsługi, co odpowiada sytuacji gdy abonent telefoniczny wybiera numer, a klient decyduje się podejść do kasy.

- W swojej pracy Erlang wykazał, że losowe żądania obsługi mają rozkład Poissona.
- W rzeczywistości nie musi to być regułą, gdyż w przypadku blokady operatora, abonent zazwyczaj próbuje połączyć się jeszcze raz.
- Mimo to, rozkład ten dość dobrze odzwierciedla prawdziwy proces powstawania żądań.
- Dowodzi się również, że model Erlanga działa nawet gdy nadchodzące żądania odbiegają od rozkładu Poissona.

- Inne założenia modelu to:
 - niezależne generowanie żądań przez źródła
 (abonenci nie decydują, że będą razem dzwonić o ustalonej porze),
 - czas obsługi żądania (rozmowy telefonicznej) ma rozkład wykładniczy,
 - obsługa ma charakter FIFO (First In First Out) żądania obsługuje się w kolejności ich przychodzenia).

- Erlang jednostka natężenia ruchu telekomunikacyjnego (w żargonie: trafiku).
- Nazwa wywodzi się od nazwiska Agnera Krarupa Erlanga, autora teorii masowej obsługi, znanej również jako teoria kolejek, która stanowi uogólnienie zjawisk zaobserwowanych w telekomunikacji.

◆ Dla danego systemu telekomunikacyjnego składającego się z 1 linii, i czasu obserwacji równego 1 godzinie (60 minut), jeśli linia ta zajęta jest cały czas przez pełną godzinę, to natężenie ruchu wynosi 1 Erlang; odpowiednio, jeśli linia ta zajęta jest przez 30 minut, natężenie to wynosi 0,5 Erlanga

- W teorii systemów kolejkowych wyróżniamy:
 - jednokanałowe systemy obsługi
 - wielokanałowe systemy obsługi

Kanał obsługi:

- stopa przybycia λ przeciętna liczba klientów przypadająca na jednostkę czasu, ma rozkład Poissona;
- stopa obsługi μ przeciętna liczba klientów obsłużonych w jednostce czasu, ma rozkład wykładniczy;
- liczba równoległych kanałów obsługi wynosi r;
- parametr intensywności ruchu ρ stosunek liczby klientów przybywających do liczby klientów obsłużonych w jednostce czasu.

rozpatrywane są tylko sytuacje w których klienci obsługiwani są według kolejności przybywania do punktu świadczącego usługę, zatem wszyscy klienci są traktowani na równi.

Rozpatruje się dwa przypadki:

- Gdy układ zmierza do stanu równowagi, to $\lambda < r\mu$ (jeżeli obie wartości stałe) to prawdopodobieństwo tego, iż kolejka ma określoną długość, jest stałe w każdej jednostce czasu.
- ② Gdy $\lambda \ge r\mu$, to układ jest niestabilny, a prawdopodobieństwo długiej kolejki rośnie (układ nie może nadrobić czasu w którym był chwilowo niewykorzystany).

- Na poczcie obok innych stanowisk jedno jest przeznaczone do obsługi wpłat i wypłat gotówkowych osób fizycznych.
- Ruch w godzinach 14-18 jest tak duży, że rozważa się możliwość uruchomienia dodatkowego stanowiska obsługi.
- Sprawdzić, czy jest to słuszna decyzja.
- Poniżej podano obserwacje poczynione w czasie jednej z godzin szczytowych.

Numer klienta	Czas przyjścia liczony od przybycia poprzednie go klienta (w min)	Czas obsługi klienta (w min)	Numer klienta	Czas przyjścia liczony od przybycia poprzednie go klienta (w min)	Czas obsługi klienta (w min)
1	0	1,5	11	1	5,5
2	0,5	2,5	12	1,5	4,5
3	1	1	13	2	4
4	1,5	2	14	1,5	3
5	1	3	15	1	2
6	2,5	5	16	2,5	1,5
7	0,5	0,5	17	3	3
8	6	1,5	18	3,5	4
9	2	2,5	19	4	4
10	1,5	6	20	3,5	3
Razem				40	60

Rozwiązanie

stopa przybycia $\lambda=\frac{20}{40}=0.5$ stopa obsługi $\mu=\frac{20}{60}=\frac{1}{3}$ parametr intensywności ruchu $\rho=\frac{\lambda}{\mu}=\frac{3}{2}=1.5$ Zatem zachodzi nierówność $\lambda>\mu$, czyli stopa przybyć przewyższa stopę obsługi. Wartość parametru $\rho>1$ sugeruje, że mamy do czynienia z układem niestabilnym, a prawdopodobieństwo długiej kolejki się zwiększa.

Osiągnięcie stanu równowagi jest tylko możliwe dzięki podjęciu radykalnych działań: skróceniu czasu obsługi klienta lub zainstalowaniu dodatkowego stanowiska obsługi.

Prawdopodobieństwo, że w układzie brak klientów, czyli n=0 obliczamy ze wzoru:

$$P(n = 0) = \frac{1}{\sum_{i=0}^{r-1} \frac{\rho^{i}}{i!} + \frac{\rho^{r}}{(r-\rho)(r-1)!}}$$

Przeciętna liczba klientów oczekujących w kolejce to:

$$Q = \frac{\rho^{r+1}P(n=0)}{(r-\rho)^2(r-1)!}$$

Prawdopodobieństwo, że w kolejce oczekuje n klientów

$$P(n) = \begin{cases} \frac{\rho^n P(n=0)}{n!} & \text{dla } n \le r \\ \frac{r^{r-n} \rho^n P(n=0)}{r!} & \text{dla } n \le r \end{cases}$$

Prawdopodobieństwo, że w kolejce oczekuje więcej niż n0 klientów (pod warunkiem gdy $n_0 \ge r-1$)

$$P(n > n_0) = \frac{r^{r-n_0} \rho^{n_0+1} P(n=0)}{(r-\rho) r!}$$

Prawdopodobieństwo, że czas oczekiwania w kolejce jest dłuższy niż t_0 :

$$P(t > t_0) = P(n > r - 1)e^{-\mu t_0(r - \rho)}$$

W prywatnej przychodni stomatologicznej czynne są dwa gabinety lekarskie. Przecięty czas przybycia pacjenta wynosi 3,8 na godz., a stopa obsługi wynosi 2 pacjentów na godz.

Czy system obsługi zmierza do stanu równowagi?

$$\lambda = 3.8$$
 $\mu = 2$ $r = 2$ $\rho = \frac{\lambda}{\mu r} = \frac{3.8}{2 \cdot 2} = 0.95$

stan równowagi systemu jest zachowany, bo 3.8 < 4

Jakie jest prawdopodobieństwo, że nie będzie kolejki?

$$P(n=0) = \frac{1}{1 + 0.95 + \frac{(0.95)^2}{1.05 \cdot 1}} = 0.36$$

Prawdopodobieństwo, że nie będzie kolejki w tej poradni stomatologicznej wynosi 36%.

Jakie jest prawdopodobieństwo, że pacjent będzie musiał oczekiwać?

$$P(n > 0) = \frac{2^{2-0}0.95^{0+1}0.36}{(2-0.95)2!} = 0.64$$

Prawdopodobieństwo, że pacjent będzie musiał oczekiwać na przyjęcie w poradni wynosi 64%.

Jakie jest prawdopodobieństwo, że w kolejce znajdują się więcej niż dwie osoby?

$$P(n > 2) = \frac{2^{2-2}0.95^{2+2}0.36}{(2-0.95)2!} = 0.15$$

Prawdopodobieństwo, że w kolejce znajdują się więcej niż dwie osoby wynosi 15%.

Ilu przeciętnie pacjentów oczekuje w kolejce na przyjęcie?

$$Q = \frac{0.95^{2+1}0.36}{(2-0.95)^2(2-1)!} = 0.28$$

Przeciętnie oczekuje w kolejce na przyjęcie 0.28 pacjentów.

Jak wygląda sytuacja z punktu widzenia właściciela poradni? Sytuacja z punktu widzenia właściciela poradni dla pacjentów jest komfortowa. Wprawdzie prawdopodobieństwo bezkolejkowego przyjęcia jest duże, bo wynoszące 0,36. Małe jest prawdopodobieństwo oczekiwania w kolejce więcej niż dwóch pacjentów, bo wynoszące 0,15. Bardzo małe jest prawdopodobieństwo, że pacjent będzie czekał dłużej niż pół godziny, bo wynosi 0,11. Z analizy wynika, że przeciętnie w kolejce oczekuje 0,28 pacjentów.

