1-1. 화학에서의 측점

- 1. SI 단위계(systeme internationale de Unite)
- → SI 기본 단위는 총 []개가 존재하며 이로부터 유도 단위를 가지고 사용

물리럄	단위(기호)	점의
시간		[] 원자의 초미세 원자 전이에 해당하는 복사선의 주기의 특점 배수
길이		1/[]초 동안 진공에서 []이 진행한 거리
질량		[]가 정의되도록 하는 질량
 전류		1초 동안 []의 기본 전하량이 흐를 때의 전류
물질의 양		아보가드로 수만큼의 원자나 분자와 같은 입자
빛의 세기		특정 빛의 발광 효율이 특정 값이 되도록 하는 값
 평면각		원주가 2π가 되도록 점의
입체각		1개의 구형각이 4π 가 되도록 점의

2.	화학	농도(chemical	concentration)	
----	----	-----	----------	----------------	--

•					
(1)	몰놈도(molarity,	M) · 묘지미	보스트]의 []로 나눈 값
(1)	ㄹㅇㅗ(!!!!!!내내 !! ٧,	111 . 024	272 (J-1 L	그ᅩ ᅴᆣ ᄡ

- ② 몰랄놈도(molality, m) : 용질의 몰수를 []의 []로 나눈 값
- ③ 형식 놈도(formacl concentration, F) : 용액 중에 물질이 다른 화학종으로 변환되는 것을 포함한 놈도
- 예) 0.50M NaCl의 형식 농도가 <math>0.50M ightarrow 초기에 넣은 NaCl의 몰수가 0.50mol/L
- ④ 백만분율(parts per million, ppm) : 물질의 질량을 시료의 질량으로 나눈 값에 []을 곱한 것
- cf. 십억분율(parts per billion, ppb) : 물질의 질량을 시료의 질량으로 나눈 값에 []을 곱한 것
- 예) (α) 일반적으로 바닷물은 100mL 당 2.7g의 소금이 들어 있다. 바닷물에 들어 있는 NαCl의 몰놈도는 얼마인가? (b) 바닷물에 포함된 MgCl₂의 놈도는 0.054M이다. 바닷물 25mL에는 몇 그램의 MgCl₂가 들어 있는가? (단, NαCl과 MgCl₂의 화학식량은 각각 58.44, 95.20으로 계산하라.)
- 예) 독일 하노버의 여름철 빗물에 포함된 $C_{29}H_{60}$ 의 농도는 34 ppb이다. 이 알케인 화합물의 몰농도를 구하고 SI 접두어를 이용해 나타내시오.
- 3. 용맥의 제조(preparing solutions)

※ 희석 식(dilution) : 용질의 []는 보존됨을 이용한다 → []에 그 용맥의 []를 곱한 값은 유지된다!▷ 즉, MV=M'V'

예) 28.0wt % 암모니아를 포함하는 진한 수산화암모늄 용액의 밀도는 0.899g/mL이다. 0.250M 암모니아 용액 500.0mL를 만들기 위해 필요한 이 시약의 부피는 얼마인가?

- 4. 무게 분석법을 위한 화학양론적 계산
- 예) 무게 분석에서 정확하게 무게를 달기 위해서는 충분한 생성물이 필요하다. 식이요법 보조 정제한 개에 약 15 mg의 철이 들어 있다. 최소한 0.25g의 Fe203 생성물을 얻기 위해서는 몇 개의 정제를 분석해야 하는가?

1단계) 푸마르산 철(II) 염($\mathrm{Fe^{2+}C_4H_2O_4^{2-}}$)과 비활성 결합제가 들어 있는 정제를 0.100M HCI 150 mL와 혼합하여 $\mathrm{Fe^{2+}C_4H_2O_4^{2-}}$ 녹인다. 용액을 걸러서 녹지 않은 결합제를 제거한다.

2단계) 맑은 액체에 포함된 철(II)은 과량의 과산화 수소를 가하여 철로 산화시킨다.

$$2Fe^{2+}$$
 + H_2O_2 + $2H^+$ \rightarrow $2Fe^{3+}$ + $2H_2O$ 2 2 (II) 과산화 수소 2 2 (III) 2 (제2철 이온)

3단계) 수산화 암모늄을 가하여 젤혐의 수화 산화 철(III)로 침전시킨다. 젤을 거르고 전기로에서 가열하여 순수한 고체 $\mathrm{Fe}_2\mathrm{O}_3$ 로 전환시킨다.

Fe³⁺ + 3OH⁻ +
$$(x-1)$$
 H₂O \longrightarrow FeOOH \cdot x H₂O(s) $\stackrel{900^{\circ}\text{C}}{\longrightarrow}$ Fe₂O₃(s) 수산화 이온 \qquad 수화 산화 철(III) \qquad 산화 철 (III) FM 159.69

1-2. 실험 오차(experimental error)

1. 유효 숫자

☆ 유효 숫자(significant figure) : []를 훼손하지 않으면서 과학적인 표기 방법(scientific notation)으로 기록하는 데

필요한 []의 자릿수

 $\rightarrow 92500 \qquad 9.250 \times 10^4 \qquad 9.25000 \times 10^4$

- 2. 연산에서의 유효 숫자
- ① 덧셈과 뺄셈: 가잠 작은 []을 갖도록 답을 맞춘다.

예) 0.140mL의 물에 0.28334mL의 물을 추가로 부었다. 물의 얌은?

② 곱셈과 나눗셈 : 가잠 작은 []를 갖도록 답을 맞춘다.

예) 어떤 금속의 부피는 $1.0 \, \mathrm{m}^3$ 이고 질량은 $1.0000 \, \mathrm{g}$ 이다. 이 금속의 밀도는?

③ 로그 : 로그의 []에 있는 유효 숫자의 수와 답의 []에 있는 유효 숫자의 수가 같아야 한다.

④ 지수 : []의 유효 숫자의 수는 []의 자리수와 같아야 한다.

antilog
$$(-3.42) = 10^{-3.42} = 3.8 \times 10^{-4}$$

2 \times 10 2 \times 2 2 \times 2

▷ 유효 숫자에 대한 내용 추가 : 만일 유효 숫자를 구하는 데 문제에서 요구하는 마지막 단계가 아니라면...

- 3. 오차의 종류
- 1 [] 오차(systematic error) : 실험 설계나 잠비에 의한 문제 → 고칠 수 []다.
-] 오차(random error) : 모든 측정은 []하므로 발샘 → 고칠 수 []다. 2 [
- ③ 점밀도와 점확도
- 점밀도(precision) : 값이 얼마나 [](reproducibility)을 나타내는가?
- 정확도(accuracy) : 값이 얼마나 [](true value)에 가까운가?
- ④ 불확점도(uncertainty)
- 절대 불확정도(absolute uncertainty) : 측정에 따르는 불확정도의 범위
- 예) 저울을 이용해서 질량을 측정했는데 그 불확정도가 ± 0.1 q이라면, 절대 불확정도는 ± 0.1 q이다.
- 상대 불확점도(relative uncertainty) : 절대 불확점도를 관련된 측정의 크기와 비교해서 나타낸 것
- 예) 질럄이 1.0 ± 0.1g이라면, 상대 불확정도는 0.1g/1.0g = 0.1
- 상대 불확정도 백분율(percent relative uncertainty, %): 100 × [
- 예) 위의 예시에서 상대 불확정도 백분율은 10%이다.
- 4. 우연 오차로부터 불확정도의 전파
- → 내가 대수적인 연산을 한다면 최종 값의 불확정도는 어떻게 표현될까?
- ① 덧셈과 뺄셈의 경우 : 덧셈과 뺄셈의 경우 각각의 [] 불확정도를 합한 뒤 []을 씌운 값으로 정의
- 예) 철수의 몸무게는 40.00 ± 0.03kg, 영희의 몸무게는 50.00 ± 0.04kg이라면 둘의 몸무게의 합의 불확정도는?
- ② 곱셈과 나눗셈의 경우

모든 불확정도를]로 변환

답의 상대 불확정도 백분율은 각 상대 불확정도 백분율의 []의 근호

계산값에 곱해서 []를 얻는다.

- * 마지막에 곱하는 단계가 추가되므로 모든 연산에서 1개 이상의 ______
- ③ 혼합 연산과 유효 숫자의 실제 규칙

※ 실제 규칙 : [] 불확정도의 첫 번재 자리는 계산 결과의 []의 마지막 자리와 일치해야 한다.

 \triangleright

예) 철수는 28.0(±0.5) wt% 암모니아(밀도 = 0.899(± 0.003) q/mL) 8.46(±0.04)mL를 500.0(±0.2)mL로 묽혀 0.250M 암모니아 용액을 만들었다. 만든 암모니아 용액의 놈도(=0.250M)의 불확정도를 구하시오. (단, 이 문제에서 암모니아의 분자럄인 17.031의 불확정도는 무시할 수 있어 불변값이라 간주한다.)

표 3-1 불	확정도 전파 규칙의 요약		
함수	불확정도	함수"	불확정도 ^b
$y = x_1 + x_2$	$e_{y} = \sqrt{e_{x_{1}}^{2} + e_{x_{2}}^{2}}$	$y = x^a$	$\%e_y = a(\%e_x)$
$y = x_1 - x_2$	$e_{y} = \sqrt{e_{x_{1}}^{2} + e_{x_{2}}^{2}}$	$y = \log x$	$e_{y} = \frac{1}{\ln 10} \frac{e_{x}}{x} \approx 0.434 \ 29 \frac{e_{x}}{x}$
$y = x_1 \cdot x_2$	$\%e_{y} = \sqrt{\%e_{x_{1}}^{2} + \%e_{x_{2}}^{2}}$	$y = \ln x$	$e_y = \frac{e_x}{x}$
$y = \frac{x_1}{x_2}$	$\%e_{y} = \sqrt{\%e_{x_{1}}^{2} + \%e_{x_{2}}^{2}}$	$y = 10^x$	$\frac{e_y}{y}$ = (ln 10) $e_x \approx 2.302 6 e_x$
-		$y = e^x$	$\frac{e_y}{y} = e_x$

- 5. 계통 오차의 불확정도 전파 : 계통 오차는 흔히 나타나며, 계산할 때 우연 오차와는 다르게 취급한다.
- 예) A급 25mL 부피 피펫은 25.00±0.03 mL를 옮기도록 보정되어 있다. 이 피펫을 4번 사용하여 100mL를 옮겼을 때, (α) 교 정된 피펫에서 부피 100mL의 불확정도는? (b) 슬프게도 피펫이 보정되어 있지 않았을 때 부피 100mL의 불확정도는?
- → 교정된 피펫에서 오차는 [] 오차, 교정되지 않은 피펫에서 오차는 [] 오차이다. 따라서 전자의 경우는 단순히 오차에 배수를 취하면 되며, 후자의 경우에는 []의 합에 []를 씌워야 한다.

1-3. 톰계(statistics)

- 1. 가우스 분포 : 반복 측정의 결과가 좀 모양으로 나타난다면 "정규적으로 분포되어 있다"고 기술 → normal distribution
- ① 가무스 분포를 결정하는 두 파라미터 : $[(\overline{x})]$ 와 [(s)]
 - *[](degrees of freedom, d.o.f) : 독립적인 변수의 개수를 d.o.f로 점의
 - ightarrow 만일 n회의 측점이 이루어졌지만 평균 x를 알고 있다면 평균 x를 통해 하나의 측점값을 유추할 수 있으므로 이 경우 자유도는 n이 아니라 []이다.

n→∞민 겸무:

 $\sigma =$

* 삼대 표준 편차(common variance, %) : 삼대 표준 편차는 평균값에 대한 표준 편차의 비율로 정의

cv=

- 예) 0, 100, 200에 대한 평균, 표준 편차, 상대 표준 편차를 구하시오.
- ② 가우스 분포의 식 : 확률변수 $X \sim N(m,\sigma^2)$ 인 경우

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

표준화시킨 겸우 :

$$f(z) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{z^2}{2\sigma^2}}$$

(단, z=)

- 이를 표준화(standarization of distribution)이라고 하며. 표준화 변수를 이용한다.
- ▶ 정규 분포에서 확률은 []을 적분으로 계산해서 얻을 수 있다.

$ z ^{\alpha}$	У	면적 b		У	면적	z	У	면적
0.0	0.398 9	0.000 0	1.4	0.149 7	0.419 2	2.8	0.007 9	0.497 4
0.1	0.397 0	0.039 8	1.5	0.129 5	0.433 2	2.9	0.006 0	0.498 1
0.2	0.391 0	0.079 3	1.6	0.1109	0.445 2	3.0	0.004 4	0.498 650
0.3	0.381 4	0.1179	1.7	0.094 1	0.455 4	3.1	0.003 3	0.499 032
0.4	0.368 3	0.155 4	1.8	0.079 0	0.464 1	3.2	0.002 4	0.499 313
0.5	0.352 1	0.191 5	1.9	0.065 6	0.471 3	3.3	0.001 7	0.499 517
0.6	0.333 2	0.225 8	2.0	0.054 0	0.477 3	3.4	0.001 2	0.499 663
0.7	0.312 3	0.258 0	2.1	0.044 0	0.482 1	3.5	0.000 9	0.499 767
0.8	0.289 7	0.288 1	2.2	0.035 5	0.486 1	3.6	0.000 6	0.499 841
0.9	0.266 1	0.315 9	2.3	0.028 3	0.489 3	3.7	0.000 4	0.499 904
1.0	0.242 0	0.341 3	2.4	0.022 4	0.491 8	3.8	0.000 3	0.499 928
1.1	0.2179	0.364 3	2.5	0.017 5	0.493 8	3.9	0.000 2	0.499 952
1.2	0.1942	0.384 9	2.6	0.0136	0.495 3	4.0	0.000 1	0.499 968
1.3	0.171 4	0.403 2	2.7	0.010 4	0.496 5	000	0	0.5

예) 어떤 공장에서 제작한 전등의 수명은 평균적으로 845.2시간이며 그 표준 편차는 94.2시간이었다. 이 업체에서는 사용 시간 600 시간 이하에서 고장난 전등을 무상 교체해 주려고 한다. 이를 위해 공장은 몇 개의 전등을 추가로 제작해야 하는가?

③ 평균 표준 편차(average standard deviation, u_x) : 측점에 의한 불확점도 s_x 를 \sqrt{n} 으로 나눈 값으로 점의한다.

 $u_x =$

 $s_x =$

n→∞인 겸무:

 $u_x \rightarrow$

- 2. 신뢰 구간(confidence interval)
- ① 신뢰 구간 : n회 측정을 해서 얻은 데이터를 토대로 구한 모평균이 특정 확률로 존재할 구간

신뢰 구간 =

 $-\overline{x}$: [

]을 의미. t : [

]'s t value, s : [

]를 의미

표 4-4 St	udent의 t 값						
				신뢰 수준(%)			
자유도	50	90	95	98	99	99.5	99.9
1	1.000	6.314	12.706	31.821	63.656	127.321	636.578
2	0.816	2.920	4.303	6.965	9.925	14.089	31.598
3	0.765	2.353	3.182	4.541	5.841	7.453	12.924
4	0.741	2.132	2.776	3.747	4.604	5.598	8.610
5	0.727	2.015	2.571	3.365	4.032	4.773	6.869
6	0.718	1.943	2.447	3.143	3.707	4.317	5.959
7	0.711	1.895	2.365	2.998	3.500	4.029	5.408
8	0.706	1.860	2.306	2.896	3.355	3.832	5.041
9	0.703	1.833	2.262	2.821	3.250	3.690	4.781
10	0.700	1.812	2.228	2.764	3.169	3.581	4.587
15	0.691	1.753	2.131	2.602	2.947	3.252	4.073
20	0.687	1.725	2.086	2.528	2.845	3.153	3.850
25	0.684	1.708	2.060	2.485	2.787	3.078	3.725
30	0.683	1.697	2.042	2.457	2.750	3.030	3.646
40	0.681	1.684	2.021	2.423	2.704	2.971	3.551
60	0.679	1.671	2.000	2.390	2.660	2.915	3.460
120	0.677	1.658	1.980	2.358	2.617	2.860	3.373
∞	0.674	1.645	1.960	2.326	2.576	2.807	3.291

예) 어느 용기의 부피를 5회 측점하여 6.375, 6.372, 6.374, 6.377, 6.375 mL를 얻었다. 이때 용기의 부피에 대한 95% 신뢰 수준에서의 신뢰 구간을 구하시오.

3. 통계적 검점(statistical test) : 무슨 목적으로 사용하는가?

검정의 이름	목적					
	두 측정의 표준 편차가 유의하게 다르지 않을 때, 측정 결과 또한 비슷하다고 볼 수 있는가?					
두 집단에서 분산의 차이를 비교하고 그 차이가 유의한지 검정하는 데 사용						
	특점 값이 outlier인지 아닌지 판단하기 위해 사용					

- (1) []-검정(F test) : 두 집단의 표준편차(또는 분산)를 통해 두 집단의 분포가 유의하게 다른지를 판단
- ① F-검정에서의 영가설(null hypothesis, H_0) : 두 쌍의 측정 결과 모두 동일한 모집단 []로부터 얻어졌다
- ② F값의 정의: F 값은 반드시 1보다 []다. ▷ []% 신뢰 수준에서(관례적) 영가설이 채택되거나 부정된다(by 가설검정)

 $F_{cal}=$ retain할 조건: F_{cal} () F_{table}

- 채택역에 포함될 조건:

- 기각역에 포함될 조건 :

표 4-3	양쪽 꼬리	<i>F</i> 시험0	네서 95%	성 신뢰 수	·준에서 /	$F=s_1^2/s$	s ² 의 임계	ll값						
s_2						S	1의 자유	도						
자유도	2	3	4	5	6	7	8	9	10	12	15	20	30	00
2	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40	39.41	39.43	39.45	39.46	39.50
2 3	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42	14.34	14.25	14.17	14.08	13.90
4 5	10.65	9.98	9.60	9.36	9.20	9.07	8.98	8.90	8.84	8.75	8.66	8.56	8.46	8.26
5	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68	6.62	6.52	6.43	6.33	6.23	6.02
6	7.26	6.60	6.23	5.99	5.82	5.70	5.60	5.52	5.46	5.37	5.27	5.17	5.07	4.85
7	6.54	5.89	5.52	5.29	5.12	4.99	4.90	4.82	4.76	4.67	4.57	4.47	4.36	4.14
8	6.06	5.42	5.05	4.82	4.65	4.53	4.43	4.36	4.30	4.20	4.10	4.00	3.89	3.67
9	5.71	5.08	4.72	4.48	4.32	4.20	4.10	4.03	3.96	3.87	3.77	3.67	3.56	3.33
10	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.78	3.72	3.62	3.52	3.42	3.31	3.08
11	5.26	4.63	4.28	4.04	3.88	3.76	3.66	3.59	3.53	3.43	3.33	3.23	3.12	2.88
12	5.10	4.47	4.12	3.89	3.73	3.61	3.51	3.44	3.37	3.28	3.18	3.07	2.96	2.72
13	4.97	4.35	4.00	3.77	3.60	3.48	3.39	3.31	3.25	3.15	3.05	2.95	2.84	2.60
14	4.86	4.24	3.89	3.66	3.50	3.38	3.29	3.21	3.15	3.05	2.95	2.84	2.73	2.49
15	4.77	4.15	3.80	3.58	3.41	3.29	3.20	3.12	3.06	2.96	2.86	2.76	2.64	2.40
16	4.69	4.08	3.73	3.50	3.34	3.22	3.12	3.05	2.99	2.89	2.79	2.68	2.57	2.32
17	4.62	4.01	3.66	3.44	3.28	3.16	3.06	2.98	2.92	2.82	2.72	2.62	2.50	2.25
18	4.56	3.95	3.61	3.38	3.22	3.10	3.01	2.93	2.87	2.77	2.67	2.56	2.44	2.19
19	4.51	3.90	3.56	3.33	3.17	3.05	2.96	2.88	2.82	2.72	2.62	2.51	2.39	2.13
20	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.84	2.77	2.68	2.57	2.46	2.35	2.09
30	4.18	3.59	3.25	3.03	2.87	2.75	2.65	2.57	2.51	2.41	2.31	2.20	2.07	1.79
∞	3.69	3.12	2.79	2.57	2.41	2.29	2.19	2.11	2.05	1.94	1.83	1.71	1.57	1.00

- 예) 철수와 영희의 몸무게를 측점하는 실험에서 새로운 저울의 표준 편차는 $s_1=0.47$ (단, 4회 측정)이고, 기존 저물의 표준 편차는 $s_2=0.28$ (단, 10회 측정)이다. 새로운 저울의 표준 편차는 기존 기기의 표준 편차보다 '상당히' 큰가?
- (2) []-검점(=Student's T test)
- ① t-검정에서의 영가설(null hypothesis, H_0) : 두 쌈의 측정이 모집단 평균이 같은 모집단에서 얻어졌다.
- ② 경우1) 알려진 값과 측정 결과의 비교
- 예) NIST에서 황 3.19wt%가 들어 있다고 공인한 석탄 표준 기준 물질을 구입하여 wt%를 측정한 결과 3.29, 3.22, 3.20, 3.23 wt%을 얻어 평균 $\overline{x}=3.26$ $_{0}$ 과 표준 편차 s=0.04 $_{1}$ 을 계산하였다. 이 측정은 유의한 측정인가?

② 반복 측정의 비교 : []-검정을 무선 시햄 ightarrow []-검정을 시햄

 $lackbox{lackbox{\rightarpoonup}} t_{cal}$ () t_{table} 인 경우 영가설을 채택한다.

- 두 집단의 표준 편차가 크게 다른 경우 : F-검정에 의해서 영가설이 부정된다 → 다른 측정
- ight
 angle 그래도 t-검정을 쓴다면, 각각 n_1 번, n_2 번 측정하여 평균값이 $\overline{x_1}$, $\overline{x_2}$ 로 주어진 데이터 집합에 대하여,

 $t_{cal} =$

자유도 =

- 두 집단의 표준 편차가 삼담히 다르지 않은 경우 : 평균에 대한 +-검점을 사용한다.
- \triangleright 각각 n_1 번, n_2 번 측정하여 평균값이 $\overline{x_1}$, $\overline{x_2}$ 로 주어진 데이터 집합에 대하여,

 $s_{pooled} =$

- 예) Rayleigh 경이 공기로부터 얻은 질소 질량의 평균 값은 $\overline{x_1}$ = 2.31010_9 g이고, 표준 편차는 s_1 = 0.00014_3 (n_1 : 7회 측정)이다. 화학적 방법으로 얻은 질소의 평균값은 $\overline{x_2}$ = 2.29947_2 g이고 표준 편차는 s_2 = 0.00137_9 (n_2 =8회 측정)이다. 두 질량은 상담히 다른가?
- ③ 개별 차이의 비교를 위한 t-검정 : 시료 여러 개를 다른 방법으로 한 번식 측정할 때, 두 방법이 '[] 내에서' 같은 답을 주는가?

 $t_{cal} =$

 $s_d =$

- 예) 뽀로로, 크롬, 포비의 몸무게를 구식 저울과 정밀 저울로 이용해 측정한 결과, $\overline{d} = 0.114$ g, $s_d = 0.401$ g을 얻었다. 이를 이용하여 구식 저울과 정밀 저울로부터 얻는 데이터가 유의하게 다른지 판단하시오.
- ▶ Tailed test(단측 검점)

(3) [] 검정과 [] 검정 : 특정 값이 []인지 판단하기 위해 사용

① [] test:

 G_{cal} retain할 조건: G_{cal} () G_{table}

예) 학생이 AgNO₃ 적정 시약을 이용하여 KCI 표준 용액을 적정하는 반복 실험을 수행하였다. 당량점까지 첨가한 적정액의 부피(mL)는 다음과 같다: 28.54, 28.39, 28.47, 27.68. 27.68은 retain해야하는 값인가, 아니면 버려야 하는 값인가? (단, 95% 유의 수준에서 계산하라.)

丑 4-6	이상점을 버리기 위한 <i>G</i> 의 임계값
관찰수	<i>G</i> (95% 신뢰도)
3	1.153
4	1.463
5	1.672
6	1.822
7	1.938
8	2.032
9	2.110
10	2.176
11	2.234
12	2.285
15	2.409
20	2.557
30	2.745
50	2.956

② [] test:

 $Q_{\!c\!a\!l}\!=\!$ retain할 조건:

 Q_{cal} () Q_{table}

Critical Values for the Rejection of Quotient Q							
Number of Observations	$Q_{\text{crit}}(\text{Reject if } Q_{\text{exp}} > Q_{\text{crit}})$						
	90% Confidence	95% Confidence	99% Confidence				
3	0.941	0.970	0.994				
4	0.765	0.829	0.926				
5	0.642	0.710	0.821				
6	0.560	0.625	0.740				
7	0.507	0.568	0.680				
8	0.468	0.526	0.634				
9	0.437	0.493	0.598				
10	0.412	0.466	0.568				

예) 위의 예제에 대해서 Q-test를 시행하면?

- 4. 최소 자슴법(method of least squares)
- ▷ 여러 data point에 대해서 편차가 가장 작게 나타나는 좋은 직선(straight line)은 무엇인가?

예) 다음에 대하여 최소 자슴법을 통해 best line을 구하면?

표 4-7 최소	스 제곱 분석을 위한 계	산			
x_i	y_i	$x_i y_i$	x_i^2	$d_i(=y_i-mx_i-b)$	d_i^2
1	2	2	1	0.038 46	0.001 479 3
3	3	9	9	$-0.192\ 31$	0.036 982
4	4	16	16	0.192 31	0.036 982
6	5	30	36	-0.03846	0.001 479 3
$\Sigma x_i = 14$	$\overline{\Sigma y_i} = 14$	$\overline{\Sigma(x_iy_i)=57}$	$\Sigma(x_i^2) = 62$		$\Sigma(d_i^2) = 0.076923$

→ 기울기와 절편의 불확실도는 어떻게 계산하는가? 불확정도의 첫 번째 자리가 []와 []의 마지막 자리이다.

$$u_b^2 =$$

5. 교점 곡선(calibration curve) : 알려진 양의 분석 물질에 대한 분석 밤법의 감음을 보여준다.

→ 여러 [] 용맥(standard solution)으로부터 얻은 [](absorbance)로 []의 놈도 삼관성을 도시한다.

① 교정 곡선 그리기

4단계) [

1단계) 미지 시료의 예삼 농도를 포함하는 적담한 농도 범위를 갖는 표준 시료를 준비한다. 이 표준 물질에 대한 분석 과정 의 감음을 측정하고 자료를 작성한다.

2단계) 보점 흡광도를 구하기 위해서는 [](blank solution)의 흡광도를 빼줘야 한다.

3단계) 보정 흡광도를 기질의 [

]에 대해서 plot한다. 이때 그래프가 어느 정도까지 [기 유지되는지,

]는 없는지 확인해야 한다. 만일 문제가 있다면, 해당 point를 다시 측정한다.

] 범위(linear range)에 대해서 최소 제곱법을 이용해서 최적의 직선을 구한다.

5단계) 미지의 용액을 가지고 실험해서 얻은 흡광도를 바탐으로 용액 속 시료의 놈도를 구할 수 있다.

② 교점 곡선의 선형 범위(linear range)와 비선형 범위(nonlinear range) : 선형 근사(최소 제곱법)는 교정 곡선의 선형 범위 (linear range)에 대해서만 해줘야 한다.

✓ ○ 시료에서 x값의 불확정도 :

 $u_x =$

O 위의 calibration curve의 예제:

 $m = 0.0163_0$ $u_m = 0.0002_2$ $u_y = 0.005_9$ $b = 0.004_7$ $s_b = 0.002_6$

예) 미지 단백질 시료의 흡광도는 0.406이고 바탕 용액의 흡광도는 0.104이다. 미지 용액 시료 중에 함유된 단백질은 몇 μ q인 가? 이 시료에서 x의 불확정도는 얼마인가?