

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«Информатика и системы управления»</u>							
КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>							
Лабораторная работа № <u>6</u>							
Тема <u>Построение и программная реализация алгоритмов</u> численного дифференцирования							
Студент Пересторонин Павел							
Группа <u>ИУ7-43Б</u>							
Оценка (баллы)							
Преподаватель Градов В. М							

Техническое задание

Тема: Построение и программная реализация алгоритмов численного дифференцирования.

Цель работы. Получение навыков построения алгоритма вычисления производных от сеточных функций .

Задание.

Задана табличная (сеточная) функция. Имеется информация, что закономерность, представленная этой таблицей, может быть описана формулой

$$y = \frac{a_0 x}{a_1 + a_2 x},$$

параметры функции неизвестны и определять их не нужно..

X	y	1	2	3	4	5
1	0.571					
2	0.889					
3	1.091					
4	1.231					
5	1.333					
6	1.412					

Вычислить первые разностные производные от функции и занести их в столбцы (1)-(4) таблицы:

- 1 односторонняя разностная производная,
- 2 центральная разностная производная,
- 3- 2-я формула Рунге с использованием односторонней производной,
- 4 введены выравнивающие переменные.

В столбец 5 занести вторую разностную производную.

Результаты.

Заполненная таблица с краткими комментариями по поводу использованных формул и их точности

Вопросы при защите лабораторной работы.

Ответы на вопросы дать письменно в Отчете о лабораторной работе.

- 1. Получить формулу порядка точности $O(h^2)$ для первой разностной производной \mathcal{Y}'_N в крайнем правом узле \mathcal{X}_N .
- 2. Получить формулу порядка точности $O(h^2)$ для второй разностной производной \mathcal{Y}''_0 в крайнем левом узле \mathcal{X}_0 .
- 3. Используя 2-ую формулу Рунге, дать вывод выражения (9) из Лекции №7 для первой производной \mathcal{Y}'_{0} в левом крайнем узле

$$y'_0 = \frac{-3y_0 + 4y_1 - y_2}{2h} + O(h^2)$$
.

4. Любым способом из Лекций №7, 8 получить формулу порядка точности $O(h^3)$ для первой разностной производной \mathcal{Y}'_0 в крайнем левом узле \mathcal{X}_0 .

Исходный код алгоритмов.

```
main.py
  1 def left side(Y, step, index):
         return (Y[index] - Y[index - 1]) / step if index > 0 else '---'
  3
   4 def right_side(Y, step, index):
         return (Y[index + 1] - Y[index]) / step if index < len(Y) - 1 else '---'
   7 def center_side(Y, step, index):
         return (Y[index + 1] - Y[index - 1]) / 2 / step if index > 0 and index < len(Y) - 1 else '---'
  8
  9
  10 def second_diff(Y, step, index):
  11
         return (Y[index - 1] - 2 * Y[index] + Y[index + 1]) / step ** 2 if index > 0 and index < len(Y) - 1 else '---'
  12
  13 def runge left(Y, step, index):
  14
         if index < 2:
            return '-
  15
         F1 = left_side(Y, step, index)
  16
         F2 = (Y[index] - Y[index - 2]) / 2 / step
  17
         return F1 + F1 - F2
  18
  19
  20 def align vars diff(Y, X, step, index):
         if index > len(Y) - 2:
  21
  22
             return
         eta ksi diff = (1 / Y[index + 1] - 1 / Y[index]) / (1 / X[index + 1] - 1 / X[index])
  23
         y = Y[index]
  24
  25
         x = X[index]
  26
         return eta_ksi_diff * y * y / x / x
  27
  28
  29 X = [1, 2, 3, 4, 5, 6]
  30 Y = [0.571, 0.889, 1.091, 1.231, 1.333, 1.412]
  31 table = [[0 for i in range(6)] for j in range(5)]
  32 methods = [left_side, center_side, runge left, align_vars_diff, second_diff]
  34 print('-' * (6 + 8 * 5))
  35 for i in range(len(X)):
         print('|', end='')
  36
         for j in range(len(methods) - 2):
  37
  38
             res = methods[j](Y, X[1] - X[0], i)
  39
             print(f'{res:.3f}'.center(8) if res != '---' else res.center(8), '|', sep='', end='')
  40
         res = align_vars_diff(Y, X, X[1] - X[0], i)
         print(f'{res:.3f}'.center(8) if res != '---' else res.center(8), '|', sep='', end='')
  41
         res = second_diff(Y, X[1] - X[0], i)
  42
         print(f'{res:.3f}'.center(8) if res != '---' else res.center(8), '|', sep='')
  43
         print('-' * (6 + 8 * 5))
  45
```

Интерфейс работы.

```
0.408
0.318
          0.260
                               0.247
                                          -0.116
0.202
          0.171
                     0.144
                             | 0.165
                                          -0.062
0.140
          0.121
                     0.109
                             | 0.118
                                          -0.038
         | 0.090
0.102
                   | 0.083
                             | 0.089
                                         -0.023
0.079
                   | 0.068
```

Моя программа выводит незаполненную часть таблицы.

Получаем заполненную таблицу:

X	y	1	2	3	4	5
1	0.571	-	-	-	0.408	-
2	0.889	0.318	0.260	-	0.247	-0.116
3	1.091	0.202	0.117	0.144	0.165	-0.062
4	1.231	0.140	0.121	0.109	0.118	-0.038
5	1.333	0.102	0.090	0.083	0.089	-0.023
6	1.412	0.079	-	0.068	-	-

Прокомментируем используемые формулы и их значение (получение):

1. Левосторонняя разностная производная:
$$y_n = \frac{y_{n+1} - y_n}{h} + O(h)$$
. Получается из

разложения функции в ряд Тейлора для точки, прозводную в которой хотим найти. Далее просто выражаем значение через этот ряд для следующей точке в ряде и выражаем 1 производную из него.

(выражение:
$$y_{n-1} = y_n - \frac{h}{1!} y'_n + \frac{h^2}{2!} y_n'' - \frac{h^3}{3!} y_n''' + \frac{h^4}{4!} y_n''' - \dots$$
)

Порядок точности: O(h).

2. Центральная разностная производная.

Выражение:
$$y'_n = \frac{y_{n+1} - y_{n-1}}{2h} + O(h^2)$$
. Получается при f_{n+1} - f_{n-1} , где f - ряд

Тейлора построенный для точки, в которой требуется найти производную (n+1 - индекс следующей на сетке точке, n - 1 - индекс предыдущей точки на сетке)

3. Формула Рунге на основе левосторонней разностной производной. В данном случае левосторонняя разностная производная служит некоторой приближенной формулой для вычисления некоторой величины (в нашем случае производной) и Рунге позволяет увеличить точность исходя из следующих преобразований:

 $\Omega = \Phi(h) + \psi(x) h^p + O(h^{p+1})$ - структура формулы для вычисления численного значения, которая может быть преобразована с помощью преобразований рунге. Запишем формулу для шага mh, где шаг удобно взять m=2:

$$\Omega = \Phi(mh) + \psi(x)(mh)^p + O(h^{p+1})$$

Комбинируя 2 выражения получаем формулу: $\Omega = \Phi(h) + \frac{\Phi(h) - \Phi(mh)}{m^p - 1} + O(h^{p+1})$, точность которой выше.

4. Метод выравнивающих переменных. При удачном выборе этих переменных исходная кривая может быть преобразована в прямую линию, производная от которой вычисляется точно по самым простым формулам. В моем случае можно сделать следующее:

5. Вторая разностная производная: $y_n = \frac{y_{n-1} - 2y_n + y_{n+1}}{h^2} + O(h^2)$. Получается так

же при разложении функции в ряд тейлора и проведении некоторых преобразований (конкретно: ряд тейлора для точки, в которой надо найти производную, выразить через него следующую и предыдущую по индексам точки и сложить получившиеся выражения, выразив у")

Ответы на вопросы к защите.

1. Получить формулу порядка точности $O(h^2)$ для первой разностной производной $\mathcal{Y'}_N$ в крайнем правом узле \mathcal{X}_N .

- **2.** Получить формулу порядка точности $O(h^2)$ для второй разностной производной y''_0 в крайнем левом узле x_0 . Нет ответа.
- Используя 2-ую формулу Рунге, дать вывод выражения (9) из
 Лекции №7 для первой производной у'₀ в левом крайнем узле

$$y'_0 = \frac{-3y_0 + 4y_1 - y_2}{2h} + O(h^2).$$

$$S = \Phi(h) + \Phi(h) - \Phi(mh) + O(h^{p+i})$$

$$\Phi(h) = \frac{y_0 - y_0}{h}$$

$$\int_{S} = \frac{y_1 - y_0}{h} + \frac{y_1 - y_0}{h} - \frac{y_2 - y_0}{2h} = \frac{y_2 - y_0}{2h}$$

$$= \frac{3y_0 + 4y_1 - y_2}{2h} + O(h^2)$$

4. Любым способом из Лекций №7, 8 получить формулу порядка точности $O(h^3)$ для первой разностной производной \mathcal{Y}'_0 в крайнем левом узле \mathcal{X}_0 .

