Knowledge transfer to 'non hightech' industry and services: The case of Additive Manufacturing adoption by the molds sector

Joana Mendonça

Joana.mendonca@tecnico.pt

November 2017

Stimulating Knowledge Transfer: Challenges and Policy Responses

Additive manufacturing creates objects, layer-by-layer, from a digital design

Polymer Additive manufacturing (PAM)

Metal Additive manufacturing (MAM)

Uses

First commercialized

Cost

Prototyping, Consumer Products 1987 (3D Systems, USA)

Low-end (since 2009): \$100s

High-end: \$0.5-\$1M

Final components 1994 (EOS, Germany)

\$0.5-1M

Comparative case study:

Metal (MAM) vs Polymer (PAM) additive manufacturing

Portugal

- 10M people
- Public funding for innovation comes from EU funds
 - 5 NUTS II regions
 - Lisboa "more developed" since 2005
 - Centro and Norte "less developed"
- 2 molds clusters

Reference: Bonnín Roca, J., Vaishnav, P., Morgan, M. G., Fuchs, E. & Mendonça, J. (2017). Technology forgiveness to institutional instability: adoption of polymer and metal additive manufacturing in a technology follower nation. *Working Paper*

Comparative case study:

Metal (MAM) vs Polymer (PAM) additive manufacturing Portugal molds industry: globally competitive, PAM/MAM pioneer

Why have PAM and MAM had such different level of adoption?

PAM

- used for prototypes
- Widespread (+100 machines)

MAM

- improves 10-20% performance
- modest adoption (<10 machines)</p>

Source: initial.fr

Two technologies, different stages of development, uncertainty

	•	
	PAM	MAM
Capital investment	Low-end: <\$1,000	Lligh and COEIM
	High-end: \$0.5-1M	High-end: \$0.5-1M
Expertise (availability knowledge workers)	Many learning opportunities	Low
Stakeholder dynamics	Many small players	Large companies and universities
Incumbent technology	Costly handcrafted prototyping	Reliable CNC
# of constituents and interactions	Lower	Higher
New measurement techniques required	Yes	Yes
Testability during intermediate phases of production	Not yet	Not yet
Learning by using	Low	High (Corrosion, fatigue)

PAM - Early Growth and Transition to High-end applications

MAM - Early Instability and Stagnation

Machines

- 1992: First SLA
- 1997: SLS & LOM
- 2000: 9 machines (2 FDM)
- 2016: 100+ machines

1997: First DMLS

- After 2011: Machines at companies
- 2012: DMLS for research
- 2016: 7 machines

Institutions

- 1992: Start in Lisbon
- 1997: Extend to rest of country
- 2005: TTO with SLA shut down
- 2007: PAM research center
- 2011: PAM manufacturer
- 2016: DONE lab

- 1997: Start in Lisbon
- 2006: National Lab shut down
- 2006-12: No MAM research
- 2016: DONE lab

rojects

- 1990: First EU project
- 1994: First PT project
- 1997: National PPP
- 1997-2016: Continuous work, transition to high-tech applications in biotech

- 1997-2006: PT projects
- 1999: EU consortia RAPTIA (no continuity)
- 2007-2014: No projects
- 2014: Portuguese Additive Manufacturing Initiative

Know-how: PAM democratized, MAM scarce

PAM

- Initially acquired through EUwide projects
- Expanded across the country
- Critical role of technology center
- Now: 'Democratization' with low-, mid- and high-quality machines
- Training offered by companies, at universities and free online material
- Now: No need for own investment, wide variety of suppliers of PAM parts

MAM

- Initially acquired through EU-wide projects, but destroyed
- Concentrated in molds region
- Inactive technology center
- Only high-end equipment, less accessible
- No opportunities for formal training, little research
- Few local suppliers, quality issues
 - → Increased caution

Lack of legitimation may lead to technology lockout

Findings: EU funding instruments shift towards small and medium sized entrepreneurs – MAM has fewer small, entrepreneurial firms than PAM

FP7 (2007-2013)

- Projects required at least:
 - 3 different SMEs, from 3 countries
 - 2 "Research and Technology Development" performers

Horizon 2020 (2014-2020)

- Single firms may apply
- Priority: fast-growing firms
- EU enlargement towards Eastern Europe
- Portugal success rate fell from ~18% to ~13%
- Traditional sectors not a priority under the new program
- PAM more used by entrepreneurs than MAM!

Key observations

- Underinvestment in MAM could mean a loss of competitiveness in the long term.
- The Portuguese higher education system has neither enough equipment nor know-how to supply graduates with MAMrelated skills.
- Portuguese firms and intermediary organizations reluctant to invest in MAM.
- Current structure of EU Structural Funds imposes severe constraints for the promotion of emerging technologies.

Policy recommendations

- Promote the creation of multisector public-private consortia to share equipment and accelerate the awareness of MAM's potential nationwide.
- Increase scope of existing international partnerships to access world-class MAM skills.
- Renegotiate the conditions of the Structural Funds for the next Framework Programme, to achieve flexibility to promote MAM in Portugal or create a national pool of funds for the promotion of technologies such as MAM which could be considered 'strategic'.

Knowledge transfer to 'non hightech' industry and services: The case of Additive Manufacturing adoption by the molds sector

Stimulating Knowledge Transfer: Challenges and Policy Responses

Joana Mendonça

Joana.mendonca@tecnico.pt

November 2017