

PMW3360DM-T2QU: Optical Gaming Navigation Sensor

General Description

PMW3360DM-T2QU is PixArt Imaging's high end gaming sensor which comprises of navigation sensor and IR LED integrated in a 16pin molded lead-frame DIP package. It provides best in class gaming experience with the enhanced features of high speed, high resolution, high accuracy and selectable lift detection height to fulfill professional gamers' need. The sensor comes with self-adjusting variable frame rate algorithm to enable wireless gaming application. It is designed to be used with LM19-LSI lens to achieve optimum performance.

Key Features

- Integrated 16 pin molded lead-frame DIP package with IR LED
- Operating Voltage: 1.8V 2.1V
- Lift detection options
 - Manual lift cut off calibration
 - 2mm
 - 3mm
- High speed motion detection 250ips (typical) and acceleration 50g (max).
- Selectable resolutions up to 12000cpi with 100cpi step size
- Resolution error of 1% (typical)
- Four wire serial port interface (SPI)
- External interrupt output for motion detection
- Internal oscillator no clock input needed
- Self-adjusting variable frame rate for optimum power performance in wireless application
- Customizable response time and downshift time for rest modes
- Enhanced programmability
 - Angle snapping
 - Angle tunability

Applications

- Wired and Wireless Optical gaming mice
- Integrated input devices
- Battery-powered input devices

Key Sensor Parameters

Parameter	Value
Power supply Range	1.8V - 2.1V
Optical Lens	1:1
Interface	4 wire Serial Port Interface
	(SPI)
System Clock	70MHz
Frame Rate	Up to 12000 fps
Speed	250ips (typical)
Resolution	12000 cpi
Package Type	16 pin molded lead-frame
	DIP package with
	integrated IR LED

Ordering Information

Part Number	Package Type		
PMW3360DM-T2QU	16pin-DIP		
LM19-LSI	Lens		

Contents

PMW3	3360DM-T2QU: Optical Gaming Navigation Sensor	1
	eral Description	
	Features	
Арр	lications	1
	Sensor Parameters	
Ord	ering Information	1
1.0	System Level Description	3
1.1	Pin Configuration	
1.2	Package Outline Drawing	4
1.3	Assembly Drawings	
1.4	PCB Assembly Recommendation	11
1.5	Reference Schematics	12
2.0	Electrical Specifications	14
2.1	Absolute Maximum Ratings	14
2.2	Recommended Operating Conditions	14
2.3	AC Electrical Specifications	15
2.4	DC Electrical Specifications	16
3.0	Registers Table	18

1.0 System Level Description

This section covers PMW3360's guidelines and recommendations in term of sensor, lens & PCB assemblies.

1.1 Pin Configuration

Pin No.	Function	Symbol	Туре	Description
1	NA	NC	NC	(Float)
2	NA	NC	NC	(Float)
3	Supply Voltage	VDDPIX	Power	LDO output for
	, .			selective analog circuit
4	and	VDD	Power	Input power supply
5	I/O Voltage	VDDIO	Power	I/O reference voltage
6	NA	NC	NC	(Float)
7	Reset control	NRESET	Input	Chip reset(active low)
8	Ground	GND	GND	Ground
9	Motion Output	MOTION	Output	Motion detect
10		SCLK	Input	Serial data clock
11	4-wire spi	MOSI	Input	Serial data input
12	communication	MISO	Output	Serial data output
13		NCS	Input	Chip select(active low)
14	NA	NC	NC	(Float)
15	LED	LED_P	Input	LED Anode
16	NA	NC	NC	(Float)

Figure 1. Device output pins

Table 1. PMW3360DM-T2QU Pin Description

Items	Marking	Remark
Product	PMW3360DM-T2QU	
Number		
Lot Code	AYWWXXXXX	A: Assembly house
		Y : Year
		WW : Week
		XXXXX: PixArt reference

1.2 Package Outline Drawing

Figure 2. Packages Outline Drawing

CAUTION: It is advised that normal static discharge precautions be taken in handling and assembling of this component to prevent damage and/or degradation which may be induced by ESD.

1.3 Assembly Drawings

Figure 3. Recommended sensor orientation, mechanical cutouts and spacing (Top View)

Figure 4. Assembly drawing of PMW3360DM-T2QU and distance from lens reference plane to tracking surface (Z)

Figure 5. Exploded View of Assembly

Figure 6. Lens Outline Drawing

Figure 7. Cross section view of lens assembly

Figure 8. Recommended Base Plate Opening

Note: Mouse feet should be placed close to the opening to stabilize the surface within the FOV of the sensor.

1.4 PCB Assembly Recommendation

- 1) Insert the integrated sensor and all other electrical components into PCB.
- 2) Wave-solder the entire assembly in a no-wash solder process utilizing solder-fixture. A solder-fixture is required to protect the sensor from flux spray and wave solder.
- 3) Avoid getting any solder flux onto the sensor body as there is potential for flux to seep into the sensor package, the solder fixture should be designed to expose only the sensor leads to flux spray & molten solder while shielding the sensor body and optical apertures. The fixture should also set the sensor at the correct position and height on the PCB.
- 4) Place the lens onto the base plate. Care must be taken to avoid contamination on the optical surfaces.
- 5) Remove the protective kapton tapes from optical apertures of the sensor. Care must be taken to prevent Contaminants from entering the apertures. Do not place the PCB with the sensor facing up during the entire mouse assembly process. Hold the PCB vertically when removing kapton tape.
- 6) Insert PCB assembly over the lens onto the base plate aligning post to retain PCB assembly. The sensor package will self-align to the lens via the guide posts. The optical position reference for the PCB is set by the base plate and lens. Note that the PCB motion due to button presses must be minimized to maintain optical alignment.
- 7) **Recommendation**: The lens can be permanently secured to the sensor package by melting the lens' guide posts over the sensor with heat staking process. Please refer to the application note PMS0122-LM19-LSI-AN for more details.
- 8) Install mouse top case. There must be a feature in the top case to press down onto the PCB assembly to ensure all components are stacked or interlocked to the correct vertical height.

Sensor Block Diagram

Figure 9. Block diagram of PMW3360DM-T2QU

1.5 Reference Schematics

Figure 10. Schematic diagram for interface between PMW3360DM-T2QU and microcontroller on a wired solution

Figure 11. Schematic diagram for interface between PMW3360DM-T2QU and microcontroller on a wireless solution

2.0 Electrical Specifications

Regulatory Requirements

- Passes FCC "Part15, Subpart B, Class B", "CISPR 22 1997 ClassB" and worldwide analogous emission limits when assembled into a mouse with shielded cable and following PixArt Imaging's recommendations.
- Passes IEC 62471: 2006 Photo biological safety of lamps and lamp systems

2.1 Absolute Maximum Ratings

Table 2: Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units	Notes
Storage Temperature	Ts	-40	85	°C	
Lead Solder Temperature	T _{SOLDER}		260	°C	For 7 seconds, 1.6mm below seating plane.
Supply Voltage	V _{DD}	-0.5	2.10	V	
	V_{DDIO}	-0.5	3.60	V	
ESD (Human Body Model)			2	kV	All pins
Input Voltage	V _{IN}	-0.5	3.6	V	All I/O pins.

2.2 Recommended Operating Conditions

Table 3: Recommended Operating Condition

Parameter	Symbol	Min	Тур.	Max	Units	Notes
Operating Temperature	TA	0		40	°C	
Power Supply Voltage	V_{DD}	1.80	1.90	2.10	V	excluding supply noise
	V _{DDIO}	1.80	1.90	3.60	V	excluding supply noise. (VDDIO must be same or greater than VDD)
Power Supply Rise Time	t _{RT}	0.15		20	ms	0 to VDD min
Supply Noise (Sinusoidal)	V _{NA}			100	mVp-p	10 kHz —75 MHz
Serial Port Clock Frequency	f _{SCLK}			2.0	MHz	50% duty cycle
Distance from Lens Reference Plane to Tracking Surface	Z	2.2	2.4	2.6	mm	
Speed	S		250		ips	300ips on QCK, Vespula Speed, Vespula Control and FUNC 1030 surfaces
Resolution error	ResErr		1		%	Up to 200ips on QCK with 5000 cpi
Acceleration	А			50	g	In run mode

2.3 AC Electrical Specifications

Table 4. AC Electrical Specifications

Electrical characteristics over recommended operating conditions. Typical values at 25 °C, V_{DD} = 1.9 V, V_{DDIO} = 1.9 V.

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Motion Delay After Reset	t _{MOT-RST}	50			ms	From reset to valid motion, assuming motion is present
Shutdown	tstdwn			500	μs	From Shutdown mode active to low current
Wake From Shutdown	twakeup	50			ms	From Shutdown mode inactive to valid motion. Notes: A RESET must be asserted after a shutdown. Refer to section "Notes on Shutdown", also note t _{MOT-RST}
MISO Rise Time	t _{r-MISO}		50		ns	C _L = 100pF
MISO Fall Time	t _{f-MISO}		50		ns	C _L = 100pF
MISO Delay After SCLK	t _{DLY-MISO}			90	ns	From SCLK falling edge to MISO data valid, no load conditions
MISO Hold Time	t _{hold-MISO}	200			ns	Data held until next falling SCLK edge
MOSI Hold Time	thold-MOSI	200			ns	Amount of time data is valid after SCLK rising edge
MOSI Setup Time	t _{setup-MOSI}	120			ns	From data valid to SCLK rising edge
SPI Time Between Write Commands	t _{sww}	180			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second data byte.
SPI Time Between Write And Read Commands	tswr	180			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second address byte.
SPI Time Between Read And Subsequent Commands	t _{SRR}	20			μs	From rising SCLK for last bit of the first data byte, to falling SCLK for the first bit of the address byte of the next command.
SPI Read Address-Data Delay	tsrad	160			μs	From rising SCLK for last bit of the address byte, to falling SCLK for first bit of data being read.
SPI Read Address-Data Delay for Burst Mode Motion Read	t _{SRAD_MOTBR}	35			μs	From rising SCLK for last bit of the address byte, to falling SCLK for first bit of data being read. Applicable for Burst Mode Motion Read only.
NCS Inactive After Motion Burst	t _{BEXIT}	500			ns	Minimum NCS inactive time after motion burst before next SPI usage
NCS To SCLK Active	tncs-sclk	120			ns	From last NCS falling edge to first SCLK rising edge

Version 1.30 | 6 April 2016

SEE. FEEL. TOUCH.

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
SCLK To NCS Inactive (For Read Operation)	tsclk-ncs	120			ns	From last SCLK rising edge to NCS rising edge, for valid MISO data transfer
SCLK To NCS Inactive (For Write Operation)	tsclk-ncs	35			μs	From last SCLK rising edge to NCS rising edge, for valid MOSI data transfer
NCS To MISO High-Z	t _{NCS-MISO}			500	ns	From NCS rising edge to MISO high-Z state
MOTION Rise Time	t _{r-MOTION}		50		ns	C _L = 100pF
MOTION Fall Time	t _{f-MOTION}		50		ns	C _L = 100pF
Input Capacitance	Cin		50		рF	SCLK, MOSI, NCS
Load Capacitance	CL			100	pF	MISO, MOTION
Transient Supply Current	Iddt			70	mA	Max supply current during the supply ramp from OV to V _{DD} with min 150 us and max 20ms rise time. (Does not include charging currents for bypass capacitors)
	I _{DDTIO}			60	mA	Max supply current during the supply ramp from 0V to V _{DDIO} with min 150 us and max 20ms rise time. (Does not include charging currents for bypass capacitors)

2.4 DC Electrical Specifications

Table 5. DC Electrical Specifications

Electrical characteristics, over recommended operating conditions. Typical values at 25 °C, V_{DD} = 1.9 V, V_{DDIO} = 1.9 V, LED current at 12mA, 70MHz (internal), and 1.1kHz (slow clock).

Parameter	Symbol	Min	Тур.	Max	Units	Notes
DC Supply Current	I _{DD_RUN1}		16.3		mA	Average current consumption,
	Idd_run2		18.6		mA	including LED current with 1ms
	Idd_run3		21.6		mA	polling.
	Idd_run4		37.0		mA	
	IDD_REST1		2.8		mA	
	DD_REST2		61.0		uA	
	DD_REST3		32.0		uA	
Power Down Current	I _{PD}		10		μΑ	
Input Low Voltage	VIL			0.3 x V _{DDIO}	V	SCLK, MOSI, NCS
Input High Voltage	V _{IH}	0.7 x V _{DDIO}			V	SCLK, MOSI, NCS
Input Hysteresis	V_{I_HYS}		100		mV	SCLK, MOSI, NCS
Input Leakage Current	lleak		±1	±10	μΑ	Vin=V _{DDIO} or 0V, SCLK, MOSI, NCS
Output Low Voltage	Vol			0.45	V	lout=1mA, MISO, MOTION
Output High Voltage	V _{OH}	V _{DDIO} - 0.45			V	lout=-1mA, MISO, MOTION

Version 1.30 | 6 April 2016

SEE. FEEL. TOUCH.

Figure 12 Mean Resolution vs. Z at default resolution at 5000cpi

Figure 13 Path error vs. Z-height at default resolution at 5000cpi (mm)

3.0 Registers Table

PMW3360DM-T2QU registers are accessible via the serial port. The registers are used to read motion data and status as well as to set the device configuration. Note: (R = Read / W = Write or Read/Write= RW)

Address	Register	Access	Default Value
0x00	Product_ID	R	0x42
0x01	Revision_ID	R	0x01
0x02	Motion	RW	0x20
0x03	Delta_X_L	R	0x00
0x04	Delta_X_H	R	0x00
0x05	Delta_Y_L	R	0x00
0x06	Delta_Y_H	R	0x00
0x07	SQUAL	R	0x00
0x08	Pixel_Sum	R	0x00
0x09	Maximum Pixel	R	0x00
0x0A	Minimum Pixel	R	0x00
0x0B	Shutter Lower	R	0x12
0x0C	Shutter Upper	R	0x00
0x0D	Control	RW	0x02
0x0F	Config1	RW	0x31
0x10	Config2	RW	0x20
0x11	Angle_Tune	RW	0x00
0x12	Frame Capture	RW	0x00
0x13	SROM Enable	W	N/A
0x14	Run Downshift	RW	0x32
0x15	Rest1 Rate Lower	RW	0x00
0x16	Rest1_Rate_Upper	RW	0x00
0x17	Rest1_Downshift	RW	0x1F
0x18	Rest2 Rate Lower	RW	0x63
0x19	Rest2 Rate Upper	RW	0x00
0x1A	Rest2 Downshift	RW	0xBC
0x1B	Rest3 Rate Lower	RW	0xF3
0x1C	Rest3 Rate Upper	RW	0x01
0x24	Observation	RW	0x00
0x25	Data Out Lower	R	0x00
0x26	Data Out Upper	R	0x00
0x29	Pixel Dump	RW	0x00
0x2A	SROM ID	R	0x00
0x2B	Min SQ Run	RW	0x10
0x2C	Pixel Threshold	RW	0x0A
0x2F	Config5	RW	0x31
0x3A	Power_Up_Reset	W	N/A
0x3B	Shutdown	W	N/A
0x3F	Inverse Product ID	R	OxBD
0x41	LiftCutoff Tune3	RW	0x00
0x42	Angle Snap	RW	0x00
0x4A	LiftCutoff_Tune1	RW	0x00
0x50	Motion_Burst	RW	0x00
0x58	LiftCutoff Tune Timeout	RW	0x27
0x5A	LiftCutoff Tune Min Length	RW	0x09
0x62	SROM Load Burst	W	N/A
0x63	Lift Config	RW	0x02
0x64	Pixel Burst	R	0x00
0x65	LiftCutoff Tune2	R	0x00