Kholle 26 filière MPSI/MP2I Jeudi 01 juin 2023

Planche 1

- 1. Soit $u \in \mathcal{L}(E)$. Montrer que pour toute base $b = (e_1, \dots, e_n)$ de E, le scalaire $\det_b(u(e_1), \dots, u(e_n))$ ne dépend pas de la base b.
- 2. Calculer le déterminant

3. Soit $P \in \mathbb{R}_{n-1}[X]$ de degré n-1. Calculer le déterminant de la matrice $A = (P(i+j))_{1 \le i,j \le n}$.

Planche 2

1. Soit $b=(e_1,\ldots,e_n)$ une base de E, et f une forme n-linéaire alternée. Montrer qu'il existe un scalaire λ tel que

$$\forall (x_1,\ldots,x_n) \in E^n, f(x_1,\ldots,x_n) = \lambda \sum_{\sigma \in S_n} \ldots$$

Formule à compléter, démonstration attendue par la suite.

2. Soit $(a, b, c) \in \mathbb{C}^3$. Calculer le déterminant

- 3. Soit $M \in \mathcal{M}_n(\mathbb{K})$.
 - (a) Montrer que l'application $f: \mathbb{K} \to \mathbb{K}, x \mapsto \det(xI_n M)$ est polynomiale de degré n.
 - (b) Déterminer son terme constant, son terme de plus haut degré et son terme de degré n-1.
 - (c) En déduire qu'il existe un entier naturel N non nul tel que $\forall k \ge N, M \frac{1}{k}I_n \in GL_n(\mathbb{K})$.

Planche 3

- 1. Montrer l'invariance du déterminant par transposition.
- 2. Soit $(a_1,...,a_n) \in \mathbb{C}^n$. Calculer le déterminant

$$\begin{vmatrix} 0 & \dots & 0 & a_n \\ \vdots & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & \vdots \\ a_1 & 0 & \dots & 0 \end{vmatrix}$$

3. Soit A, B deux matrices dans $\mathcal{M}_2(\mathbb{Z})$. On suppose que pour tout entier k dans [[0,4]], A+kB est inversible d'inverse dans $\mathcal{M}_2(\mathbb{Z})$. Démontrer qu'alors A+5B est inversible d'inverse dans $\mathcal{M}_2(\mathbb{Z})$.

Bonus

- 1. Soit $A \in \mathcal{M}_{p,q}(\mathbb{K})$ et $B \in \mathcal{M}_{q,p}(\mathbb{K})$. Démontrer que $\det(I_p AB) = \det(I_q BA)$.
- 2. Soit A, B deux matrices réelles. On suppose qu'elles sont semblables sur $\mathbb C$. Montrer qu'elles sont semblables sur $\mathbb R$.
