Матричные вычислительные системы

Матричные системы представляют собой синхронные ВС классического ОКМД типа. Общая идея построения таких систем чрезвычайно проста - имеется большое количество одинаковых обрабатывающих устройств, в каждый из которых поступают свои данные, но которые одновременно выполняют одну и ту же операцию.

ШШР - шина с широковещательной рассылкой

ШР - шина результата

Контроллер массива процессоров (КМП)

КМП выполняет, обычно, последовательный программный код, операции условного и безусловного перехода, транслирует все команды для МП и передает сигналы управления на процессорные элементы (ПЭ).

КМП на примере системы PASM:

Массив процессоров (МП)

В матричных системах наибольшее распространение получили 2 типа организации массива процессоров:

1) "Процессорный элемент Процессорный элемент"

Такой архитектурой обладают системы MP-1, CM-2, DAP, ILLIAC IV, MPP, STARAN, PEPE.

2) Процессор-память

Обмен данными между процессорами осуществляется как через модули памяти, так и через сеть связи. Представители: BSP, TRAC.

Матричные ВС обладают следующими преимуществами:

- ✓ если производительность единичного обрабатывающего устройства (ПЭ) принять равной Рпэ, то при наличии **n** таких устройств общая пиковая производительность ВС будет в **n** раз больше: **Рвс = Рпэ · n**.
- ✓ большое число однотипных обрабатывающих устройств позволяет эффективно использовать возможности СБИС;
- ✓ легкая настройка.

Ограничения производительности обусловлены:

- ✓ коммутационная связь имеет ограниченные возможности.
- ✓ сложность одновременного доступа в память для получения данных и сохранения результатов
- ✓ наличие команд условной обработкой
- ✓ размеры структур данных (векторов или матриц) могут не соответствовать числу ПЭ в системе

Промышленные матричные системы:

Первой промышленной системой этого класса явилась разработанная в СССР в начале 80-х годов параллельная система **ПС–2000**.

Основой ПС-2000 является параллельный процессор ППС - 200, включающий в свой состав от 8 до 64 одинаковых ПЭ, которые объединяются по 8 штук в модули обработки.

Одной из наиболее мощных ВС матричного типа считалась **MPP** фирмы GOODYEAR AEROSPACE Co.

В одном корпусе СБИС размещалась подматрица из 2 х 4 ПЭ (все логические схемы, регистры, локальные памяти размеще-ны на отдельных БИС). Кроме того, в матрице предусмотрены дополнительно четыре столбца ПЭ, которые обеспечивают отказоустойчивость системы, что очень важно при большом числе компонентов.

Система МРР была весьма эффективна при обработке изображений.

Система **DAP-610** была построена в виде матрицы 64 x 64 одноразрядных ПЭ, реализованных по кМОП-технологии (в более ранней модели DAP-500 матрица состояла из 32x32 ПЭ) с циклом 100 нс.

Система **MP-1** включала от 1024 до 16384 ПЭ, имеющих архитектуру RISC. В состав ПЭ входила локальная память 16 Кбит, четырехразрядное АЛУ, узел мантисс (64 бита), узел порядков (16 бит), узел логических операций (1 бит). Процессорные элементы объединены в кластеры 4х4, каждый кластер связан с коммутационной X-сетью.

Краткие сравнительные характеристики некоторых матричных систем приведены в таблице

Модель	Число ПЭ	Тип ПЭ	ЛП (Кбит)	Тип связи	Производительно сть (MFLOPS)
ПС-2000	8 - 64	RISC	4K x 24	Кольцо	200
MPP	16384		1	4 соседа	6000
DAP-610	16384		32	4 соседа	28000
MP-1	16384		16	Х-сеть	1300
CM-2	4096 - 65536		1000	Гиперкуб	28000