

Philosophische Probleme der Quantentheorie

Wissenschaftstheorie

|Daniel> |Fink> \ \ \ |Marcel> |Messer>

Quantelung

Geschichte der Quantentheorie

- Max Planck (1900)
- ➤ Elektromagnetische Strahlung ist eine Form von Energiepaketen (Quanten)

SimTech Cluster of Excellence

Geschichte der Quantentheorie

Photoeffekt

- Albert Einstein (1905)
- Deutung des Photoelektrischen Effekts mittels der Lichtquantenhypothese

Geschichte der Quantentheorie

Entdeckungen

- Millikan (1909) bestimmt die Elementarladung mit Hilfe der Tröpfchenmethode
- Rutherford (1911) untersucht die Streuung von α-Teilchen an Goldatomen und stellt sein Atommodell auf
- Bohr (1913) entwickelt aus dem Rutherford-Modell und der Planckschen Quantenhypothese sein neues Atommodell
- De Broglie (1924) führt das Konzept der Materiewelle ein

Geschichte der Quantentheorie

Schrödinger-Gleichung

- Erwin Schrödinger (1925)
- ➤ Erweitert die Überlegungen von **de Broglie** über Materiewellen zu einer Wellenmechanik, die durch die **Schrödingergleichung** beschrieben wird

$$\mathrm{i}\hbarrac{\partial}{\partial t}|\left.\psi(t)
ight
angle = \hat{H}|\left.\psi(t)
ight
angle$$

Geschichte der Quantentheorie

Unschärferelation

- Werner Heisenberg (1927)
- Stellte die These auf, dass zwei nicht vertauschbare Eigenschaften eines Teilchens nicht gleichzeitig beliebig genau gemessen werden können

Wahrscheinlichkeits-Interpretation

Geschichte der Quantentheorie

- Max Born (1927)
- ➤ Deutete das Betragsquadrat der Wellenfunktion als räumliche Dichte für die Wahrscheinlichkeit, das Quantenobjekt an einem bestimmten Ort zu einer bestimmten Zeit zu detektieren

Kopenhagener Deutung

Geschichte der Quantentheorie

- Kopenhagener Deutung (1927)
- Mathematischer Theoriekern
- Vereinheitlichung der bisherigen Theorien und Thesen

Interpretation

Minimalinterpretation

- Verschiedene Stufen der Interpretation
 - Erste Stufe:
 - Versuch den mathematischer Formalismus in der Anwendung mit Erfahrung in Verbindung zu bringen
 - Legt man nun die Randbedingungen bzw. Annahmen fest bzgl.:
 - Annahme über Bedeutung von Thermen in der mathematischen Struktur
 - Annahme über empirische Testbarkeit
 - Minimalinterpretation

Minimalinterpretation

Beschreibung

- Reicht um im Alltag im Kontext der Quantentheorie zu arbeiten
- Bei der Minimalinterpretation müssen alle Interpretationen übereinstimmen
 - Beschränkung auf Minimalinterpretation ist die am meisten verbreitete Interpretation
- Beispiele für zentrale Annahmen
 - $|\langle \psi | \phi_m \rangle|^2$ WS. bei Messung mit $|\psi\rangle$ Messwert für Zustand $|\phi\rangle$ zu bekommen
 - $|\psi\rangle$ Zustand vor der Messung keine Aussage
 - $\langle \psi | \phi \rangle$ Skalarprodukt
 - $|\phi\rangle$ Element aus der Menge der Basiszuständen
 - Eigenwert ist definiert und vorhersagbar für jeden Basiszustand

Minimalinterpretation

Ergänzungen

- Fügt weitere Annahmen hinzu geleitet von dem Wunsch die Quantentheorie in das übrige physikalische und naturphilosophische Weltbild einzuordnen.
 - Nutzt Quantentheorie nicht nur als Instrument
 - Macht sich eine Vorstellung wie die Welt ist wenn Theorie wahr wäre

Ergänzungen

Minimalinterpretation

- Große Diskussion über Einordnung in komplexes physikalisches Weltbild was weiteren Interpretationspielraum zulässt
 - Fragen zur Semantik der Zustandsbeschreibung also Bedeutung von $|\phi\rangle$
 - $|\phi\rangle$ Ensemble von Quantenobjekten oder auch Einzelsystem
 - Bezieht sich $|\phi\rangle$ auf objektiven Zustand in der Welt "ontische Interpretation" oder nur auf durch Experimente gewonnenes Wissen "epistemische Interpretation"
 - Interpretation des Wahrscheinlichkeitsbegriffes
 - Relative Häufigkeiten, subjektives Unwissen oder objektive Disposition (Propensiäten)

Minimalinterpretation

Ergänzungen

- Grenzfälle der Interpretationen fordern Abänderung der Theorie
 - → Ergänzung durch verborgene Parameter die Quantenmechanik als statistische Mechanik über einen deterministischen Unterbau gedeutet werden kann
- Weitere Große Felder liefern fragen über den Messprozess
 - Wird der Zustand bei Messung wirklich verändert?
 - Veränderung vielleicht doch durch Bewegungsgleichung der Quantenmechanik beschrieben? Eventuell durch Anpassungen?
 - Gibt es einen Mechanismus der Messungen realisiert, ohne die Wahrscheinlichkeit zu verwenden?

Minimalinterpretation

Ergänzungen

- Die Debatten veranschaulichen dass es noch keine akzeptierte Standardauffassung zu finden ist.
 - → Ist die Quantentheorie so unvollkommen, dass man für sie keine vernünftige Interpretation finden kann?

Theorie des Messprozesses

Interpretation

- Kopenhagener Interpretation
 - Unter anderem von Niels Bohr unterstützt und erreichte damals großen Zuspruch von führenden Wissenschaftlern
 - Heute: nur noch historische Bedeutung weil:
 - Verzicht auf Analyse der genauen Vorgänge des Messprozesses da die Existenz eines externen Messgeräts vorausgesetzt wird
 - → Physiker, die dem Universum einen Zustandsvektor zuordnen wollen haben sich deshalb nach einer Alternative umgesehen!

Theorie des Messprozesses

Modell

- Quantenmechanisch formulierte Modelle
 - Stehen im Zentrum neuerer Analysen
 - Stark vereinfachtes aber anschauliches Beispiel
 - Modell beschreibt Messung einer Eigenschaft die nur 2 Werte hat
 - "Teilchen durchläuft einen Filter ohne Veränderung" (Wert 1) Zustand $|a\rangle$
 - "Teilchen wird absorbiert" (Wert 2) Zustand |b>
 - \rightarrow Quantenmechanik gibt es noch einen dritten Zustand $|c\rangle$ (durch Superposition $|a\rangle$ und $|b\rangle$)

 $|a\rangle$

 $|c\rangle$

 $|b\rangle$

■ → bei Messung wird festgestellt in welchen Basiszustand c übergeht!

Zweite Dynamik

Theorie des Messprozesses

- Es gibt verschiedene Arten diesen Übergang zu erklären
 - 1.) Zweite Dynamik
 - Zustandsänderung ist ein Prozess besonderer Art
 - Unterscheidet sich von der Zustandsentwicklung des isolierten Systems wesentlich!
 - Da Prozess nicht durch Schrödingergleichung beschrieben werden kann
 - → Ist also keine normale zeitliche Entwicklung des Systemzustands

Theorie des Messprozesses

Indeterminismus

- 2.) Indeterminismus
 - QM kann nicht vorhersagen nach welcher Richtung der Zustandsvektor $|c\rangle$ sich dreht
 - Theorie gibt nur Wahrscheinlichkeit für verschiedene Messergebnisse an
 - → Quantentheorie indeterministisch
 - → instantanten akausalen Prozess

Alternativen

Theorie des Messprozesses

- Alternative Messtheorien
 - Geschilderte Übergänge werden häufig als Kollaps bezeichnet
 - Man kann Theorien des Messprozesses in zwei Gruppen aufteilen:
 - → Zusammenbruch / Kollaps wird akzeptiert
 - Siehe vorherige Theorien

Theorie des Messprozesses

- → Wird nicht akzeptiert d.h. also finden einer Theorie ohne Kollaps
 - Viele-Welten-Interpretation
 - So eine Theorie legt Nahe, dass alle möglichen Vergangenheiten und Zukünfte die passieren real sind und jede eine tatsächliche Welt repräsentiert
 - Veränderung der Schrödingergleichung
 - Schrödingergleichung so zu verändern, dass Übergänge im Rahmen der normalen Dynamik der Theorie erklärbar sind

Verschränkung

- Verschränkung
 - Zwei Objekte treten in Wechselwirkung und werden dann wieder getrennt
 - Wechselwirkung ist nicht mehr in derselben Weise beschreibbar
 - → Sind keine eigenen Zustandsfunktionen mehr
 - Besonderheit der Quantentheorie
 - Erzwingt Abweichung von herkömmlicher Denkweise
 - Gilt als Nachweis das Quantenmechanik noch nicht Vollständig

Verschränkung

- Beispiel zur Verschränkung
 - → Messergebnisse sind korreliert
 - Korrelation ist nicht über gemeinsame Vergangenheit erklärbar
 - gesteuert durch instantane geheimnisvolle Fernwirkung
 - Quantenmechanik liefert dafür keine Erklärung
 - Trotz räumliche Separation keine Trennung
 - → Ergebnis der 2. Dynamik

Verschränkung

- Quantenobjekte + Wechselwirkung
 - → Bleiben verschränkt
- Gekoppelter Messprozess obwohl r\u00e4umliche Trennung
- Phänomene werden beschrieben durch
 - Lokalität
 - Holismus

Begrifflichkeiten

- Holismus
 - "Das Ganze" System als ganzes betrachtet
 - → Nicht die Zusammensetzung ihrer Teile
- Lokalität
 - Beschreibt räumlichen Zustand

Separabilität

- System ist separabel wenn
 - Zustandsbeschreibung holistisch
 - Lokalität Fernwirkung ausschließt
 - → Gesamtzustand nicht durch die Zustände der Komponenten festgelegt ist

Lokalität & Holismus

Konsequenz

- Bisher keine deterministische Quantentheorie die
 - Alle statistische Vorhersagen der Quantentheorie wiedergibt
 - Im (lokalen Sinne)
 - → Messausgang hängt nur vom Zustand des zerfallenden Teilchens sowie von den Eigenschaften es Messgeräts ab
 - → Insb. keine Berücksichtigung des anderen Geräts

Lokalität & Holismus

Konsequenz

- Im Bereich der Verschränkung sind Messergebnisse gut bestätigt
 - → Theorie mit verborgenen Parameter nicht korrekt

Konsequenz

- Verschränkung hat auch folgen für den Messprozess
 - Quantenobjekt Zustand $|c\rangle = c_1|a\rangle + c_2|b\rangle$
 - Zustände der Messgeräte $|A\rangle$, $|B\rangle$
 - Nach Schrödingergleichung Gesamtsystem

 - → Messgerät hat noch keinen Zustand

- → 2.Dynamik liefert instantan indeterministisch
 - $|a\rangle|A\rangle$ oder $|b\rangle|B\rangle$

Konsequenz

- Schrödingers-Katze
 - Zustand ob tot oder lebendig nicht einsehbar
 - Zustand $|b\rangle|B\rangle$ wäre
 - Atom nicht zerfallen $|b\rangle$ und Katze nicht tot $|B\rangle$
 - Zustand $|a\rangle|A\rangle$ wäre
 - Atom zerfallen |a⟩ und Katze tot |A⟩

Konsequenz

- Katze ist im Schwebezustand
 - → Ausweg Katze als Messgerät auffassen
 - → 2.Dynamik in Anspruch nehmen
- → Demonstriert Willkür bei der Frage was ein Messgerät ist

Bewustsein

- Messprozesses → Materie hängt vom Bewusstsein des Beobachters ab
- Subjektivistische Auffassungen sind verbreitet beruhen auf Missverständnissen
- Indeterminismus → beseitigt scheinbaren Wiederspruch zwischen Willensfreiheit und deterministischer Physik?

Ist die Quantentheorie eine indeterministische Theorie?

Indeterministisch?

- Schrödingergleichung ist eine Bewegungsgleichung (legt Zustände fest)
- > Quantentheorie ist eine **deterministische** Theorie

- Ausgang eines einzelnen Messprozesses ist objektiv zufällig
- > Quantentheorie ist eine **indeterministische** Theorie

Liefert die Quantentheorie Argumente gegen die Möglichkeit einer objektiven/realistischen Beschreibung der Natur?

Wiss. Realismus

- Erkennbare Wirklichkeit existiert und ist unabhängig vom menschlichen Denken
- Eine bestätigte wissenschaftliche Theorie beschreibt diese Wirklichkeit
- Alle beinhalteten Entitäten sind objektiv

Ich und Welt

Liefert die Quantentheorie Argumente gegen die Möglichkeit einer objektiven/realistischen Beschreibung der Natur?

QT & Realismus

Anti-Realist:

"Ein physikalisches System muss für alle Observablen festgelegte Wahrheitswerte besitzen"

Realist:

"Diese Behauptung unterstricht den Willen der Festhaltung an der **klassischen Ontologie**, welche jedoch nicht identisch ist mit dem erkenntnistheoretischen Realismus"

QT & Objektivität

- Eigenschaften des physikalischen Systems abhängig von der Messanordnung?
- Quantentheorie ist Wissenschaft von der Natur, wie sie sich uns zeigt, wenn wir sie mit bestimmten Verfahren beobachten
- Sind die Schwierigkeiten die Quantentheorie ohne solche relationalen Vorbehalte zu verstehen ein Hinweis auf ein irregeleitetes objektivistisches Programm?
- Nicht-objektivistische Interpretationen vergeben die Chance, die Details des Messprozesses besser zu verstehen

Dekohärenz

- Ansätze zur Lösung des Messproblems
- Wie können klassische Beschreibungen aus der Quantentheorie hervorgehen?
- \triangleright Übergang von einer Superposition der Form $|c\rangle$ in ein **statistisches Gemisch** aus Zuständen der Form $|a\rangle$ und $|b\rangle$ ähnlich wie in der **Thermodynamik**
- Motiviert durch eine nie ganz abzuschirmende Wechselwirkung eines Quantenobjekts mit seiner Umgebung
- > Verschränkung ist Ergebnis konkreter Wechselwirkungsprozesse

Dekohärenz

- Übergang von Quantentheorie zu klassischen Eigenschaften bestimmt, ob die Quantentheorie als universell aufgefasst werden kann
- Thermodynamik → Näherungen → Erkenntnisprozess
 - → Prinzipieller Näherungscharakter physikalischer Theorien

Viele Welten Theorien

- Interpretationen bei denen die Quantentheorie nur eine Dynamik besitzt
- > Problem des Messvorgangs wird gelöst durch Annahme "Vieler Welten"
- Bei einer Messung spaltet sich die Welt auf, wobei wir lediglich
 Zugang zu einem Zweig dieser Aufspaltung haben

Viele Welten Theorien

- Die Wellenfunktion des Universums entwickelt sich in der Zeit gemäß der Schrödingergleichung
- Alle möglichen Messergebnisse treten tatsächlich auf (in verschiedenen Welten)
- Die Wellenfunktion des "Multiversums" ist die Summe aller Wellenfunktionen der einzelnen "Universen"
- Quantentheorie wird deterministisch
- > Schrödingergleichung gilt universell (keine zweite Dynamik)
- > Es treten keine nichtlokalen Effekte auf

Viele Welten Theorien

Probleme

- > Begriffe wie Quantenobjekt oder Messprozess bleiben unpräzisiert
- ➤ Ist die Annahme vieler Welten (und damit die Vervielfachung der Ontologie) ein zu hoher Preis für die Vorteile
- Ockhams Rasiermesser???

Quantenfeldtheorie

- In der klassischen Physik kann man die räumliche Gestalt der Objekte unmittelbar aus dem mathematischen Formalismus ablesen
- Ähnliches gilt für Felder die Raumpunkten eine Feldstärke zuordnet

- Sind Quantenobjekte diskontinuierlich lokalisiert oder kontinuierlich verteilt?
- > Sind sie durch Bahnen identifizierbar oder wie Wellen superponierbar?

Quantenfeldtheorie

- Die Quantenfeldtheorie versucht auch elektromagnetische Felder in der Art der Quantentheorie zu beschreiben
- Wechselwirkenden Teilchen & Felder werden analog zu Observablen behandelt
- ➤ Quantisierung von Feldern → Entstehung & Vernichtung von Elementarteilchen

- > Erfolgreiche Verwendung um den Ausgang von Experimenten vorherzusagen
- > ABER extrem schwierig abzulesen wie die Objekte in den Raum eingebettet sind

Quellen

Nützliches...

- Zeittafel der Quantentheorie
 - http://www.quantum.physik.uni-mainz.de/lectures/2005/ss05_quantenphysik/Zeittafel_QP.pdf
- Geschichte der Quantenmechanik
 - http://heureka-stories.de/Erfindungen/1900-1927---Die-Quantenmechanik/Die-ganze-Geschichte
- Heisenbergsche Unschärferelation
 - https://de.wikipedia.org/wiki/Heisenbergsche_Unsch%C3%A4rferelation
- Bornsche Warscheinlichkeitsinterpretation
 - https://de.wikipedia.org/wiki/Bornsche_Wahrscheinlichkeitsinterpretation

Nützliches...

Quellen

- Quantenfeldtheorie
 - https://de.wikipedia.org/wiki/Quantenfeldtheorie
- Wissenschaftstheorie
 - Andreas Bartels / Manfred Stöckler (Hrsg.) 2007

