4.6 IMPATT and TRAPATT

Module:4 Microwave Sources

Course: BECE305L – Antenna and Microwave Engineering

-Dr Richards Joe Stanislaus

Assistant Professor - SENSE

Email: richards.stanislaus@vit.ac.in

Module:4 Microwave Sources 5 hours

 Microwave frequencies and applications, Microwave Tubes: TWT, Klystron amplifier, Reflex, Klystron & Magnetron. Semiconductor Devices: Gunn diode, Tunnel diode, IMPATT – TRAPATT - BARITT diodes, PIN Diode.

- Semiconductor junction structures with highly doped p and n junctions
- Reverse bias of sufficient strength produces large E field to create an avalanche of carriers
- Impact ionization with adjacent highly doped p and n layers

- Semiconductor junction structures with highly doped p and n junctions
- Reverse bias of sufficient strength produces large E field to create an avalanche of carriers
- Impact ionization with adjacent highly doped p and n layers
- Generated carriers transit (travel through) a drift space causes delay in collection at anode
- If delay causes current to be out of phase with voltage across the device – Negative resistance appears across the structure's terminals.

1) IMPATT: Impact Ionization Avalanche Transit Time Efficiency of 3% continuous wave power, 60% pulsed power Output power: 1W CW; 400W pulsed power From 500MHz to 100GHz

- 1) IMPATT: Impact Ionization Avalanche Transit Time Efficiency of 3% continuous wave power, 60% pulsed power Output power: 1W CW; 400W pulsed power From 500MHz to 100GHz
- 2) TRAPATT: Trapped Plasma Avalanche Triggered Transit Low frequency (1-3GHz) Pulsed power output of several hundred watts and 20-60% efficiency

- IMPATT: Impact Ionization Avalanche Transit Time Efficiency of 3% continuous wave power, 60% pulsed power Output power: 1W CW; 400W pulsed power From 500MHz to 100GHz
- 2) TRAPATT: Trapped Plasma Avalanche Triggered Transit Low frequency (1-3GHz) Pulsed power output of several hundred watts and 20-60% efficiency
- 3) BARITT: Barrier Injected Transit Time
 Low noise figures (<15dB) with low power and smaller bandwidth

10.2 IMPATT Diodes

- IMPATT: Impact Ionization Avalanche Transit Time
- Produce differential negative resistance $(n^+ p i p^+)$ junction) at microwave frequencies by:

the effect of carrier impact ionization breakdown across a reverse biased p-n junction and

the drift of carrier in the high field region of a semiconductor

10.2 IMPATT Diodes

- IMPATT: Impact Ionization Avalanche Transit Time
- Produce differential negative resistance $(n^+ p i p^+)$ junction) at microwave frequencies by:

the effect of carrier impact ionization breakdown across a reverse biased p-n junction and

the drift of carrier in the high field region of a semiconductor

GaAs (highest operating frequency, efficiency and least noise power),
 Si (upto 100GHz with typical dc to RF efficiency of 5-10%)
 InP.

Applications: Missile seekers, Oscillators and Amplifiers

Cathode

n⁺ substrate

p⁺ layer

Active *n* layer

Heat sink

10.2 IMPATT Diodes: READ diode

- Doping profile: n⁺p i p⁺
- n^+ and p^+ are heavily doped regions
- p: moderately doped 10^{13} /cm³

i: slightly n - type with doping concentration of

Si form

10.2 IMPATT Diodes: READ diode

Active *n* layer

p⁺ layer

Heat sink

Cathode

n⁺ substrate

10.2 IN

Distance. um

- When reverse bias exceeds breakdown voltage V_B , maximum electric field of very high value (MV/m) appears at n^+p junction
- E field in intrinsic region (i-region) remains below breakdown

- When reverse bias exceeds breakdown voltage V_B , maximum electric field of very high value (MV/m) appears at n^+p junction
- E field in intrinsic region (i-region) remains below breakdown
- *p* –region is very thin.
- Space between $n^+ p$ junction and $i p^+$ junction is called space charge region

- When reverse bias exceeds breakdown voltage V_B , maximum electric field of very high value (MV/m) appears at n^+p junction
- E field in intrinsic region (i-region) remains below breakdown
- p —region is very thin.
- Space between $n^+ p$ junction and $i p^+$ junction is called space charge region
- Generated electrons due to electric field move through the *i* region with <u>saturated drift</u> <u>velocity</u> and are collected at p⁺ region.

 Holes move to high field region acquire sufficient energy to excite valence electrons of the atom into conduction band resulting in avalanche multiplication of electron hole pairs.

- Holes move to high field region acquire sufficient energy to excite valence electrons of the atom into conduction band resulting in avalanche multiplication of electron hole pairs.
- Doping profile designed to peak E field
- Impact avalanche effect occurs only near junction of n^+ and p
- Carriers increase rapidly

- Holes move to high field region acquire sufficient energy to excite valence electrons of the atom into conduction band resulting in avalanche multiplication of electron hole pairs.
- Doping profile designed to peak E field
- Impact avalanche effect occurs only near junction of n^+ and p
- Carriers increase rapidly
- To prevent diode from burning constant bias source is used to maintain average current at safe limit.

- To prevent diode from burning constant bias source is used to maintain average current at safer limit.
- Diode current : conduction electrons which move to n^+ region and holes which drift through i space region to p^+

- To prevent diode from burning constant bias source is used to maintain average current at safer limit.
- Diode current : conduction electrons which move Electric-field to n^+ region and holes which drift through i space region to p^+
- Drift time: $t_d = l/v_d$
- v_d : Drift velocity of holes (~10^5 m/s for E ~0.5MV/m)
- l = 2mm, $t_d = 20ps$

High-field

10.2.1 READ diode: Operation

- To prevent diode from burning constant bias source is used to maintain average current at safe limit.
- Diode current : conduction electrons which move to n^+ region and holes which drift through i space region to p^+
- Drift time: $t_d = l/v_d$
- v_d : Drift velocity of holes (~10^5 m/s for E~0.5MV/m)
- l = 2mm, $t_d = 20ps$
- Breakdown voltage for silicon p^+n : $|V_B| = \frac{\rho_n \mu_n \varepsilon |E_{max}|^2}{2}$
- ρ_n : resistivity of the semiconductor
- μ_n : electron mobility ε : permittivity
- E_{max} : Max breakdown electric field at n^+p junction

Distance, um

- Breakdown voltage for silicon p^+n : $|V_B| = \frac{\rho_n \mu_n \varepsilon |E_{max}|^2}{2}$
- ρ_n : resistivity of the semiconductor
- μ_n : electron mobility ε : permittivity
- E_{max} : Max breakdown electric field at n^+p junction
- $V_B \sim 50V$ doping concentration $10^{16}/cm^3$
- $V_B \sim 10V$ for doping order of $10^{17}/cm^3$

- Biased below V_B (breakdown voltage)
- AC voltage superimposed over dc voltage
- Bias voltage is near V_B , total voltage (dc+ac)> V_B in positive half of ac cycle

- Biased below V_B (breakdown voltage)
- AC voltage superimposed over dc voltage
- Bias voltage is near V_B , total voltage (dc+ac)> V_B in positive half of ac cycle
- t=0+: Avalanche multiplication process starts and grows exponentially with time while field is above critical breakdown.
- Injected junction current or carriers at junction due to avalanche: peak at t = T/2

- Biased below V_B (breakdown voltage)
- AC voltage superimposed over dc voltage
- Bias voltage is near V_B , total voltage (dc+ac)> V_B in positive half of ac cycle
- t=0+: Avalanche multiplication process starts and grows exponentially with time while field is above critical breakdown.
- Injected junction current or carriers at junction due to avalanche: peak at t = T/2
- t>T/2: generated carriers decay rapidly
- Injected carrier current at $n^+ p$ junctions is short duration pulse delayed by T/4 ($\pi/2$ phase)
- Injected holes traverse through drift space (iregion).

- Holes move with constant saturated drift velocity through drift zone and current in external circuit with constant saturated drift velocity through the drift zone.
- Current in external circuit remains constant till time the carriers reach cathode contact.

- Holes move with constant saturated drift velocity through drift zone and current in external circuit with constant saturated drift velocity through the drift zone.
- Current in external circuit remains constant till time the carriers reach cathode contact.
- Transit time through drift zone = l/v_d
- $t_d = T/2$, duration for external current is from $t = \frac{T}{2} to t = T$
- External current during –ve half cycle of AC

- Holes move with constant saturated drift velocity through drift zone and current in external circuit with constant saturated drift velocity through the drift zone.
- Current in external circuit remains constant till time the carriers reach cathode contact.
- Transit time through drift zone = l/v_d
- $t_d = T/2$, duration for external current is from $t = \frac{T}{2} to t = T$
- External current during –ve half cycle of AC
- Incremental terminal resistance of IMPATT device is negative
- Effective transit time of carriers must be equal to half the time period of oscillator voltage

- Effective transit time of carriers must be equal to half the time period of oscillator voltage
- $t_d = \frac{T}{2} = \frac{1}{21}$

- Effective transit time of carriers must be equal to half the time period of oscillator voltage
- $t_d = \frac{T}{2} = \frac{1}{2f}$
- $f = \frac{1}{2t_d} = \frac{v_d}{2l}$ is frequency of oscillation

 R_d: diode negative resistance (series lead resistance R_S and negative resistance - R_j)

- R_d: diode negative resistance (series lead resistance R_S and negative resistance - R_j)
- C_j : Junction capacitance at break-down voltage

- R_d: diode negative resistance (series lead resistance R_S and negative resistance - R_i)
- C_j : Junction capacitance at break-down voltage
- L_p , C_p : Package lead inductance and capacitance
- Diode is mounted in coaxial lines, waveguides or microstrip lines

- R_d : diode negative resistance (series lead resistance negative resistance $-R_i$)
- C_i : Junction capacitance at break-down voltage
- L_p , C_p : Package lead inductance and capacitance
- Diode is mounted in coaxial lines, waveguides or microstrip lines
- Power extracted by ac field from dc field compensates for power dissipation in positive resistance of circuit, Total resistance R_d =0.

Peak RF current determines the load power. Impedance matching – due to low negative resistance.

- R_d : diode negative resistance (series lead resistance negative resistance $-R_i$)
- C_i : Junction capacitance at break-down voltage
- L_p , C_p : Package lead inductance and capacitance
- Diode is mounted in coaxial lines, waveguides or microstrip lines
- Power extracted by ac field from dc field compensates for power dissipation in positive resistance of circuit, Total resistance R_d =0.
- Diode chip resistance:

$$Z_d = -|R_d| - \frac{J}{\omega C_i}$$

• Load impedance $Z_L = -Z_d$ or $R_L = |R_d|$ and $X_L = \frac{1}{\omega C_i}$

Peak RF current determines the load power. Impedance matching – due to low negative resistance.

- Power $P_{dc} = V_m I_m$ max output voltage and current
- Efficiency η
- Output power $P = \eta P_{dc}$

Peak RF current determines the load power. Impedance matching – due to low negative resistance.

- $p^+n n^+$ or $(n^+p p^+)$ configuration
- PN junction is reverse biased beyond breakdown

Т

T/2

Time

- $p^+n n^+$ or $(n^+p p^+)$ configuration
- PN junction is reverse biased beyond breakdown
- Current density is higher
- Electric field in space charge region is decreased and carrier transit time is increased

T/2

Time

- $p^+n n^+$ or $(n^+p p^+)$ configuration
- PN junction is reverse biased beyond breakdown
- Current density is higher

- Frequency of operation becomes lower and is limited to below 10GHz
- Efficiency increases due to low power dissipation.

- TRAPATT diode is mounted inside coax resonator
- at max RF voltage swing
 DC reverse bias+RF swing causes potential
 to exceed beyond threshold of breakdown: :
 avalanche occurs

- TRAPATT diode is mounted inside coax resonator at max RF voltage swing
- DC reverse bias+RF swing beyond threshold of breakdown: avalanche occurs
- A plasma of holes and electrons are generated
- Plasma density results in high potential difference across junction - Opposite to dc reverse bias

Plasma is typically an <u>electrically quasineutral medium</u> of <u>unbound positive and negative particles</u> (i.e. the overall charge of a plasma is **roughly zero**). Although these particles are unbound, <u>they are not "free"</u> in the sense of not experiencing forces.

- TRAPATT diode is mounted inside coax resonator at max RF voltage swing
- DC reverse bias+RF swing beyond threshold of breakdown: avalanche occurs
- A plasma of holes and electrons are generated
- Plasma density results in high potential difference across junction - Opposite to do reverse bias
- Plasma gets trapped
- External circuit current flow causes voltage to rise, trapped plasma is released producing current pulse across drift space.

- TRAPATT diode is mounted inside coax resonator at max RF voltage swing
- DC reverse bias+RF swing beyond threshold of breakdown: avalanche occurs
- A plasma of holes and electrons are generated
- Plasma density results in high potential difference across junction - Opposite to do reverse bias
- Plasma gets trapped
- External circuit current flow causes voltage to rise, trapped plasma is released producing current pulse across drift space.

Total transit time

- = delay time in releasing plasma
- + drift time

Operating frequency is limited to 10GHz

Current pulse is associated with low voltage.
Power dissipation is low