CS-584 MACHINE LEARNING

ASSIGNMENT - 1 PARAMETRIC REGRESSION

By

JAIMIN SANGHVI(A20344798)

PROBLEM STATEMENT

- ◆ Linear Regression is general method for estimating and describing association between a continuous outcome variable(dependent) and one or more multiple predictors in one equation.
- ◆ Given a data set consisting of a set of coordinates in the form positionX, representing feature, positionY being a representation of fitness of each point.
- ◆ In the given assignment1(Parametric Regression), I have implemented techniques for parametric regression.
- ◆ I have implemented and evaluated algorithm for single variable regression and multivariate regression. I have implemented 10 fold cross validation to evaluate the performance of single variable and multi variated regression.
- ◆ I have evaluated algorithms by changing parameters such as training and testing data set, type of regression from linear to polynomial(degree-1,2,3,4..).

PROPOSED SOLUTION

- ◆ I have implemented parametric regression algorithms from the scratch using core logic of matrix multiplication in Python.
- ◆ I have implemented two separate program files for single variable regression[SingleFeature.py] and multivariate regression[MultiVariance.py].
- ◆ I have implemented single variable and multivariate regression in the following steps:
 - ✓ Load data into an object and plot it to choose regression model(Linear/Polynomial)
 - \checkmark Distinguish training and training data according to k-fold
 - ✔ Evaluated regression co-efficient using train data
 - ✔ Apply regression co-efficient to test data and train data to evaluate predicted value of y
 - ✔ Evaluate mean squared error
 - ✔ Observe the effect of performance on linear and polynomial models for single variable regression
 - ✔ Plot data for minimum MSE
- ◆ In addition, I have evaluated given data set using Scikit learn libraries and compare it with derived training and testing errors as well as regression co-efficients
- ♦ By using an iterative approach, I have evaluated regression

problem and compare the regression co-efficients

IMPLEMENTATION DETAILS

DESIGN ISSUES

- ◆ It is little bit challenging to implement matrix multiplication without using any library.
- ◆ In extend, it was difficult to implement dynamic matrix for polynomial regression
- ♦ Issued with Gaussian Kernel function for dual regression

SOLUTION

- ◆ To make it simple, I have used numpy library.
- ◆ I have generate outputs for different polynomials and compare it to find best model and plot it

INSTRUCTION TO RUN

- ◆ I have implemented given problem solution in PyCharm IDE.
- ◆ Instruction to run given project file
 - i. Load given project in IDE
 - ii. Run SingleFeature.py file for single variable regression. It will run program for four given dataset simultaneously Note: For single variable regression, I have fetch dataset from URL. Hence it must need Internet connectivity
 - i. Run MultiVariance.py file for Multi variance regression. It will run program for four given dataset simultaneously Note: For multivariate regression, I have fetch dataset from URL. Hence it must need Internet connectivity
 - iii. Run SciKit_Learn.py file for training and testing error by Scikit library

Note: For SciKit Library, I have used store dataset. You must need to store it with SciKit Learn.py.

RESULT AND DISCUSSION

SINGLE VARIABLE REGRESSION (DATASET-1, K-fold=10)

(K-fold=10, Polynomial DEG=1) (K-fold=10, Polynomial DEG=1)

CS584 - MACHING LEARNIGNG

SINGLE VARIABLE REGRESSION (DATASET-3, DEG-5)

- ◆ As per an observation, I can conclude that the testing error is always higher than training error.
- ◆ As per evaluation, I found that the result is improve as we increase degree of an polynomial.
- ◆ I have plotted the data for X and predictedY of the minimum mean squared error.
- ◆ After evaluating all set, I observed that first data is linear and other datasets are polynomial.

Compare Solution

- ◆ To compare the evaluated results, I have used in-build library sklearn import linear_model.
- ◆ Using this library, I have found linear training and testing error for single variable regression[Polynomial DEG=1, K-fold=1 and Dataset-1,2,3,4]

Dataset	Training	Training	Testing	Testing Error
	Error(Evaluat	Error(Sklearn	Error(Evaluat	(Sklearn)
	ed))	ed)	
svar-set1	4.3351	4.335	3.4944	3.495
svar-set2	0.0605	0.060	0.0518	0.051
svar-set3	0.4978	0.497	0.5063	0.506
svar-set4	1.2092	1.209	1.1373	1.137

I observed that as I reduced k-fold size, the testing data will decrease.

MULTIPLE VARIABLE REGRESSION

In multivariate regression, I have implemented algorithm for higher dimensional data using 10 K-folds. I have evaluated training and testing error for all given data set. In case of multivariate, there is small difference between training and testing error.

In addition, I have observed and compared the values of training and testing with the output(error) of sklearn library.

A20344798

Dataset	Training	Training	Testing	Testing Error
	Error(Evaluat	Error(Sklearn	Error(Evaluat	(Sklearn)
	ed))	ed)	
mvar-set1	0.2582	0.2582	0.2630	0.2639
mvar-set2	0.0199	0.0200	0.0194	0.0195
mvar-set3	0.2512	0.2512	0.2463	0.2464
mvar-set4	0.0042	0.0042	0.0038	0.0039

ITERATIVE APPROACH:

I have implemented gradient algorithm and find gradient theta for a given set. In addition I have compared the gradient theta with evaluated results.

The comparison between gradient and evaluated theta is as below:

Theta	Evaluated Theta	Gradient Theta
Theta-1	0.9958	0.9999
Theta-2	0.9975	0.9999
Theta-3	0.9904	0.9998

A20344798

REFERENCES

- 1.http://www.astro.ufl.edu/~warner/prog/python.html
- 2.http://www.holehouse.org/mlclass/10_Advice_for_applying_machine_learning.html
- 3.http://aimotion.blogspot.com/2011/10/machine-learning-with-python-linear.html
- 4.http://scikit-learn.org/stable/supervised_learning.html#supervised_learning