Instructor: Dr.Ing. Sergio A. Abreo C.

Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones

Sesión 5

Universidad Industrial de Santander

Semana: 5

Sesión 5

- Sesión 5
 - Circuitos Combinacionales
 - Multiplexores
 - Decodificadores
 - Codificadores
 - Comparadores
 - Diseño
- Consulta
- Agradecimientos
- Referencias

Introducción

Sesión 5

- ¿Qué es un circuito combinacional?
- Un circuito cuya salida depende de las entradas.

Introducción

Sesión 5

- ¿ Qué es un circuito combinacional?
- Un circuito cuya salida depende de las entradas.

Introducción

Sesión 5

- ¿ Qué es un circuito combinacional?
- Un circuito cuya salida depende de las entradas.
- No tiene memoria.

Sesión 5

- ¿ Qué es un circuito combinacional?
- Un circuito cuya salida depende de las entradas.
- No tiene memoria.
- Para idénticas entradas idénticas salidas.

Ejemplo

A	В	F
0	0	0
0	1	1
1	0	0
1	1	1

Función de Verdad

$$F_{(A,B)} = \overline{AB} + AB \quad (POS)$$

$$F_{(A.B)} = (A+B)(\overline{A}+B)$$
 (SOP)

Mintérminos

$$F_{(A,B)} = \sum (1,3)$$

Maxtérminos

$$F_{(A,B)} = \prod (0,2)$$

Sesión 5

Sesión 5

Discusión

Sesión 5

• ¿Cómo se modifica el diseño anterior para que funcione como sumador-restador?

Sesión 5

Sumador de 4 bits A(3) B(3) A(0) B(0) A(2) B(2) A(1) B(1) В В В Cout Cout C_{out} Suma(3) Suma(1) Suma(0) Carry Suma(2)

Multiplexores

Sesión 5

Sesión 5

¿Qué es un decodificador?

Es un circuito que detecta un código en la entrada e indica su presencia activando una salida específica.

Decodificadores

Decodificadores

Sesión 5

¿Qué es un codificador?

- Hace la tarea "inversa" a un decodificador.
- Muestra en la salida un código binario correspondiente a una entrada activa.

Opción 1

Siempre hay una y sólo una señal activada

S3	S2	S1	SO	D1	D0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1
				Х	Х

El resto de condiciones en la tabla de verdad Son condiciones NO IMPORTA

Sesión 5

Opción 2

Cuando existe la posibilidad de que NO este activada ninguna señal.

S3	S2	S1	SO	D2	D1	D0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	1	0	0	0	1	1
1	0	0	0	1	0	0
				Х	X	X

El resto de condiciones en la tabla de verdad Son condiciones NO IMPORTA

Sesión 5

Permiten que exista más de una señal activa

S3	S2	S1	S0	D2	D1	D0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	Χ	0	1	0
0	1	Х	Χ	0	1	1
1	Χ	Χ	Χ	1	0	0

X = condiciones NO IMPORTA

Codificador

Sesión 5

Sesión 5

¿Qué es un comparador?

es un circuito combinacional que realiza la comparación entre dos entradas e indica si son: iguales, si uno es mayor o menor que otro.

Comparador

Sesión 5

Comparador

Sesión 5

Igualdad de 2 bits. 1 1 1 1

Sesión 5

Comparador

Sesión 5

Meno o igual que (2 bits). 1 1 1

Comparador

Sesión 5

Diseñar el circuito usando algunos de los elementos lógicos discutidos en clase.

$F_{2:0}$	Function
000	A AND B
001	A OR B
010	A + B
011	not used
100	A AND \overline{B}
101	A OR \overline{B}
110	A - B
111	SLT

Textos de Referencia.

Sesión 5

- [Tocci and Widmer, 2003].
- [Harris and Harris, 2010].

Agradecimientos

Sesión 5

Grupo CPS: Línea Sistemas Digitales.

La información presentada en estas diapositivas intenta recopilar los elementos pedagógicos desarrollados por los profesores Carlos Fajardo y Carlos Angulo en sus cursos de Sistemas Digitales I durante los últimos años de trabajo en esta línea.

Sesión 5

Harris, D. and Harris, S. (2010).

Digital design and computer architecture. Morgan Kaufmann.

Tocci, R. J. and Widmer, N. S. (2003).

Sistemas digitales: principios y aplicaciones.

Pearson Educación.