```
* solo necesitas saber la fórmula para obtener la dirección de un elemento de v.
       V[i] = &V + i Tam
                    Tam és el tamaño del vector (.word, .short,...)
                        र | 6 |-<u>२</u> | 0 |
           3 0 -1 4
                                          V[7] : . word 3,0,-1,4,4,6,-2,0
            V[o] = & V → primera pas.
            si vull anar a v[4]: v[4] = &v + 4·i = &v + 4·4 = &v + 16.
            si ara volqués accedir a la info de v[4]:
                     (a $to, v # $to = &v
                     addu $t1, $t0, 16 # $t1 = @ V[4]
                     Lw $t1,0($t1) # $t1=8
     * Las matrices se guardan de izquierda a derecha por filas
     * Tipos de accesos:
                                , num columnes
                 M[i][j] - &M + i NC Tam + j Tam
                 s. Accés aleatori : calcules le formula de la pos de la cual vols l'adrega
                2. Accés sequencial (necesites una manera de parar : A) últim Element de M
B) L'ELEMENT SEGUENT DEL FINAL C) ANB LA I ) → CON FOR'S O DO WNILE'S.
                                                Primera pos. a la que vull accedir (no ha de ser N[0][0])
                                                🦊 Últim elem.
                                                🐓 Elem. seguent
                                                Utilitem el stride per mourens per M.
                  ex: renim M[i][zi+1] , int M[4][4]
        * STRIDE :
                                   for (int i = 0; i < 4 ; i++)
                                       • Primera iteració i = 0
                                          M[i][ai+1] \Rightarrow M[0][1]
                                       ° Segona iteració i = 1
                                           M [1][3]
                       MEIDESD
                     - N(0)(i)
            * STRIDE: -> N[1][2] ←
            El calculem:
                                                                                   8K+ 18
                  M[0][1] = &M + 0.4.4 + 1.4 = &N+4
                                                                                   8 H + 4
                  M[i][3] = &M + i \cdot u \cdot u + 3 \cdot u = &M + 16 + 12 = &M + 28
                                                                                     24 - STEIDE
                 * Si autero ir de 🧆 - 4
                         (C)(O) M # $40 = @ M(O)(O)
                         addiu $t1, $t0, 4 $t1 = @ M [0][1]
```

addiu \$t1, \$t1, 24 # \$+1 = @M[1][3]

SUBRUTINES

1. ESTRUCTURA

- * Crear bloc d'activació (pila) > si dins la funció crida una altre
- * Desenvoupament funció
- * Desfer bloc d'activació

2. LA PILA

Els valors es guarden en ordre de declaració sempre i estan Alineats. La pila és sempre multiple de 4.

* construccio

addiu \$sp, \$sp, - Tamany * reservas espai

Sw ... # per guardar el valor actual dels registres segurs

* RESTAURACIÓ

lw. # per recuperar els valors dels registres addiu \$5p, \$5p, tamany # restaures l'espai

RENDIMENT

$$\frac{\text{CPI}_{\text{m}}}{\sum (\text{CPI} \cdot \text{n}^{\circ} \text{ins})}$$

Texe = noins . CPIm segons

$$P_{m} = \frac{Z(P_{i} \cdot CPI_{i} \cdot n^{o}ins_{i})}{Z(CPI_{i} \cdot n^{o}ins_{i})} W$$

E = Pm · Texe J

COMA FLOTANT

- * Es guarden a \$fo, \$fi,.
- * si s=0 num>0

S=1 num <0

- * Exponent > passar 8 bits a decimal 127
- * mantissa → mateix num.
- * normalització → ±1, mantissa · aexp
- * GRS : Si GRS>100 ⇒ arrodonim num+1

< 100 ⇒ es queda igual

= 100 ⇒ Parell : res , senar : num+1

ex: 010000000110+20 bits

si S=0 ⇒ signe positiu, altrement negatiu

exp = 0x 80 - 124 = 128 - 124 = 1

mantissa = 1100...+19bits = 0.5+0.25 = 0.76

NUM = +1,75 2' = 3,5

* TAG/etiqueta → matricula per identificar la dada

TIPUS D'ASSOCIATIVITAT

CORRESPONDENCIA DIRECTA

TAG # LineaMC * Byte

- * Per saber on es trova una doda a la NC
 - ⇒ Linea MC = Lineas MP (mod Lineas MC)

COMPLETAMENT ASSOCIATIVA

* Cualsevol bloc de la MP pot anar a avalsevol bloc de la Mc.

TAG # Byte

ASSOCIATIVA DE N-VIAS

* 10 NC es divideix en conjunts de x-blocs

TAG * conjunto * Byte

ALGORISMES DE REEMPLASAMENT

- * Aleatori
- * FIFO: firs input firs output, surt el primer que ha entrat
- * LRU: Last recent used, surt el que porta més temps sense ser usat.

ESCRIPTURA I LECTURA

		Escriptura immediata sense assignació	Escriptura immediata amb assignació	Escriptura retard	dada amb assignació
	Encert	lecMC(byte)	lecMC(byte)	lecMC(byte)	
Lectura	Fallada	blocMP->MC i lecMC(byte)	blocMP->MC i lecMC(byte)	si DBreemp = 0	blocMP->MC i lecMC(byte)
				si DBreemp = 1	bloc_reempMC->MP i blocMP->MC i lecMC(byte) i DB = 0
Escriptura	Encert	escMC(byte) i escMP(byte)	escMC(byte) i escMP(byte)	escMC(byte) i DB = 1	
	Fallacia	escMP(byte)	blocMP->MC i escMC(byte) i - escMP(byte)	si DBreemp = 0	blocMP->MC i escMC(byte) i DB = 1
				si DBreemp = 1	bloc_reempMC->MP i blocMP->MC i escMC(byte) i DB = 1

TEMPS

tacces = +h++p

* on el +p es -

tр		Escriptura immediata sense assignació	Escriptura immediata amb assignació	Escriptura retardada amb assignació	
Lectura	Encert	0	0	0	
	Fallada	tblock + th	tblock + th	si DBreemp = 0	tblock + th
				si DBreemp = 1	2*tblock + th
Escriptura	Encert	0*	0*	0	
	Fallada	0*	tblock + th	si DBreemp = 0	tblock + th
				si DBreemp = 1	2*tblock + th

