# **Machine Learning**

Parte 2

Evandro J.R. Silva

ejrs.profissional@gmail.com

Bacharelado em Ciência da Computação Faculdade Estácio Teresina

23 de julho de 2022



#### Sumário

- Principais Algoritmos
- Naive Bayes

- k-NN
- Árvore de Decisão





Aprendizado Supervisionado

Aprendizado Não Supervisionado



- Aprendizado Supervisionado
  - Classificação

Regressão



- Aprendizado Supervisionado
  - Classificação
    - Naive Bayes



- Aprendizado Supervisionado
  - Classificação
    - Naive Bayes
    - k-NN



- Aprendizado Supervisionado
  - Classificação
    - Naive Bayes
    - k-NN
    - Árvore de Decisão



- Aprendizado Supervisionado
  - Classificação
    - Naive Bayes
    - k-NN
    - Árvore de Decisão
    - Redes Neurais Artificiais



Aprendizado Supervisionado

Regressão



Aprendizado Supervisionado

- Regressão
  - Regressão Logística



Aprendizado Supervisionado

Aprendizado Não Supervisionado



Aprendizado Supervisionado

- Aprendizado Não Supervisionado
  - k-Means





- Naive Bayes é um modelo de classificação baseado na probabilidade condicional.
- A partir da Teoria da Decisão Bayesiana, podemos calcular, para uma dada observação, qual sua classe mais provável.



- Naive Bayes é um modelo de classificação baseado na probabilidade condicional.
- A partir da Teoria da Decisão Bayesiana, podemos calcular, para uma dada observação, qual sua classe mais provável.
  - Classe ou categoria. Daí vem o termo classificação. A partir de um ou mais atributos podemos separar objetos em diferentes classes.



#### Lembremos dos peixes:



Figura: Salmão





Figura: Robalo

- A tarefa: classificar um peixe como Salmão ou Robalo.
  - Classes:  $\omega_1 = Robalo$
- $\omega_2 = Salmão$ .



- A tarefa: classificar um peixe como Salmão ou Robalo.
  - Classes:  $\omega_1 = Robalo$

 $\omega_2 = Salmão$ .

A priori não se sabe a qual espécie o peixe pertence.



- A tarefa: classificar um peixe como Salmão ou Robalo.
  - Classes:  $\omega_1 = Robalo$
- $\omega_2 = Salmão$ .
- A priori não se sabe a qual espécie o peixe pertence.
- O brilho do peixe foi observado.



#### ■ Probabilidade a priori

- Reflete o quão verossímil é observar uma das duas espécies de peixe.
- Se a quantidade de Salmão é igual à quantidade de Robalo, então é igualmente verossímil observar um Salmãou ou um Robalo. Portanto:



#### Probabilidade a priori

- Reflete o quão verossímil é observar uma das duas espécies de peixe.
- Se a quantidade de Salmão é igual à quantidade de Robalo, então é igualmente verossímil observar um Salmãou ou um Robalo. Portanto:
- $P(\omega_1)$ : probabilidade *a priori* de se observar um Robalo.



#### Probabilidade a priori

- Reflete o quão verossímil é observar uma das duas espécies de peixe.
- Se a quantidade de Salmão é igual à quantidade de Robalo, então é igualmente verossímil observar um Salmãou ou um Robalo. Portanto:
- $P(\omega_1)$ : probabilidade *a priori* de se observar um Robalo.
- $P(\omega_2)$ : probabilidade *a priori* de se observar um Salmão.



Regra de Decisão



- Regra de Decisão
  - Informação disponível: probabilidades a priori.



- Regra de Decisão
  - Informação disponível: probabilidades a priori.

■ Decisão = 
$$\begin{cases} \omega_1, & \text{se} \\ \omega_2, & \text{senão} \end{cases} P(\omega_1) > P(\omega_2)$$



#### ■ Regra de Decisão

- Informação disponível: probabilidades a priori.
- Decisão =  $\begin{cases} \omega_1, & \text{se} \\ \omega_2, & \text{senão} \end{cases} P(\omega_1) > P(\omega_2)$
- Se  $P(\omega_1) \gg P(\omega_2)$ , a decisão a favor de  $\omega_1$  estará correta a maior parte do tempo.



#### ■ Regra de Decisão

- Informação disponível: probabilidades a priori.
- Decisão =  $\begin{cases} \omega_1, & \text{se} & P(\omega_1) > P(\omega_2) \\ \omega_2, & \text{senão} \end{cases}$
- Se  $P(\omega_1) \gg P(\omega_2)$ , a decisão a favor de  $\omega_1$  estará correta a maior parte do tempo.
- Se  $P(\omega_1) = P(\omega_2)$ , essa decisão tem apenas 50% de chance de estar correta.



Probabilidade Condicional



- Probabilidade Condicional
  - Suponha conhecidas



- Probabilidade Condicional
  - Suponha conhecidas
    - As probabilidades a priori  $P(\omega_i)$



- Probabilidade Condicional
  - Suponha conhecidas
    - As probabilidades a priori  $P(\omega_i)$
    - As densidades condicionais  $p(x|\omega_j), j = 1, 2$



- Probabilidade Condicional
  - Suponha conhecidas
    - As probabilidades a priori  $P(\omega_i)$
    - As densidades condicionais  $p(x|\omega_j), j = 1, 2$
  - Suponha que o valor observador do brilho foi x.



#### Probabilidade Condicional

- Suponha conhecidas
  - As probabilidades a priori  $P(\omega_i)$
  - As densidades condicionais  $p(x|\omega_i), j = 1, 2$
- Suponha que o valor observador do brilho foi x.
- Como isso deve influenciar a nossa decisão em relação a que classe o peixe pertence?



#### Probabilidade Condicional

- Suponha conhecidas
  - As probabilidades a priori  $P(\omega_i)$
  - As densidades condicionais  $p(x|\omega_i), j = 1, 2$
- Suponha que o valor observador do brilho foi x.
- Como isso deve influenciar a nossa decisão em relação a que classe o peixe pertence?
  - Densidade de probabilidade conjunta:  $p(\omega_i, x)$



■ Teorema de Bayes

$$p(\omega_{j}, x) = P(\omega_{j}|x)p(x) = p(x|\omega_{j})P(\omega_{j})$$

$$\vdots$$

$$P(\omega_{j}|x) = \frac{p(x|\omega_{j})P(\omega_{j})}{p(x)}$$



# ■ Teorema de Bayes $p(\omega_j, x) = P(\omega_j | x)p(x) = p(x | \omega_j)P(\omega_j)$ $\vdots$ $P(\omega_j | x) = \frac{p(x | \omega_j)P(\omega_j)}{p(x)}$

■ Em palavras:  $posteriori = \frac{\text{verossimilhança} \times priori}{\text{evidência}}$ 





- Posteriori
  - Observando-se x pode-se passar da probabilidade a priori  $P(\omega_i)$  para a probabilidade a posteriori  $P(\omega_i|x)$ .



- Observando-se x pode-se passar da probabilidade a priori  $P(\omega_i)$ para a probabilidade *a posteriori*  $P(\omega_i|x)$ .
- $P(\omega_i|x)$ : probabilidade da classe ser  $\omega_i$  dado que observou-se x.



- Observando-se x pode-se passar da probabilidade a priori  $P(\omega_i)$ para a probabilidade *a posteriori*  $P(\omega_i|x)$ .
- $P(\omega_i|x)$ : probabilidade da classe ser  $\omega_i$  dado que observou-se x.
- Verossimilhança



- Observando-se x pode-se passar da probabilidade a priori  $P(\omega_i)$  para a probabilidade a posteriori  $P(\omega_i|x)$ .
- $P(\omega_j|x)$ : probabilidade da classe ser  $\omega_j$  dado que observou-se x.
- Verossimilhança
  - Indica que a classe  $\omega_j$  para o qual  $p(x|\omega_j)$  é maior, é mais verossímil ser a verdadeira classe.



- Observando-se x pode-se passar da probabilidade a priori  $P(\omega_i)$  para a probabilidade a posteriori  $P(\omega_i|x)$ .
- $P(\omega_j|x)$ : probabilidade da classe ser  $\omega_j$  dado que observou-se x.
- Verossimilhança
  - Indica que a classe  $\omega_j$  para o qual  $p(x|\omega_j)$  é maior, é mais verossímil ser a verdadeira classe.
- Evidência



- Observando-se x pode-se passar da probabilidade a priori  $P(\omega_i)$  para a probabilidade a posteriori  $P(\omega_i|x)$ .
- $P(\omega_j|x)$ : probabilidade da classe ser  $\omega_j$  dado que observou-se x.
- Verossimilhança
  - Indica que a classe  $\omega_j$  para o qual  $p(x|\omega_j)$  é maior, é mais verossímil ser a verdadeira classe.
- Evidência
  - Fator de escala que garante que a soma das probabilidades a posteriori é igual a 1.



- Classificador
  - A partir dos cálculos probabilísticos uma regra de decisão tem de ser escolhida.



- A partir dos cálculos probabilísticos uma regra de decisão tem de ser escolhida.
- Uma bastante comum é escolher a hipótese mais provável, de forma a minimizar a probabilidade de erro de classificação.



- A partir dos cálculos probabilísticos uma regra de decisão tem de ser escolhida.
- Uma bastante comum é escolher a hipótese mais provável, de forma a minimizar a probabilidade de erro de classificação.
- Essa regra é conhecida como máximo a posteriori.



- A partir dos cálculos probabilísticos uma regra de decisão tem de ser escolhida.
- Uma bastante comum é escolher a hipótese mais provável, de forma a minimizar a probabilidade de erro de classificação.
- Essa regra é conhecida como máximo a posteriori.
- $\hat{y} = \underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} p(C_k) \prod_{i=1}^n p(x_i | C_k)$



- A partir dos cálculos probabilísticos uma regra de decisão tem de ser escolhida.
- Uma bastante comum é escolher a hipótese mais provável, de forma a minimizar a probabilidade de erro de classificação.
- Essa regra é conhecida como *máximo a posteriori*.

$$\hat{y} = \underset{k \in \{1,...,K\}}{\operatorname{argmax}} p(C_k) \prod_{i=1}^n p(x_i|C_k)$$

- ŷ: classificação/resultado;
- argmax: argumento máximo, ou seja, o maior valor;
- K: quantidade de classes, ou seja, K classes.
- $C_k$ : classe k, em que k = 1, ..., K;
- $p(C_k)$ : probabilidade da classe k;
- $p(x_i|C_k)$ : probabilidade da observação  $x_i$  dada a classe k;
- n: quantidade de observações.



#### Exemplo

- Usuários costumam avaliar designs preliminares de produtos. Anteriormente, 95% dos produtos de alto sucesso receberam boas notas, 60% dos produtos de sucesso moderado receberam boas notas, e 10% dos produtos de baixo sucesso receberam boas notas. Além disso, 40% dos produtos tiveram alto sucesso, 35% tiveram sucesso moderado e 25% tiveram baixo sucesso.
  - (a) Qual a probabilidade de um produto ter uma boa nota?
  - (b) Se um novo desing recebe uma boa nota, qua é a probabilidade de que ele venha a ter um alto sucesso?
  - (c) Se um produto n\u00e3o tem uma boa nota, qual \u00e9 a probabilidade de ele vir a ter um alto sucesso?



#### Exemplo

- A = Alto sucesso
- M = Médio sucesso
- **B** = Baixo sucesso;
- N = Nota boa
- N' = Nota ruim





#### Resolução

- (a) Probabilidade de um produto ter uma boa nota P(N) = P(N|A)P(A) + P(N|M)P(M) + P(N|B)P(B) = 0,615
- **(b)** Probabilidade de ter um alto sucesso se receber nota boa  $P(A|N) = \frac{P(N|A)P(A)}{P(N)} = 0,618$
- (c) Probabilidade de ter um alto sucesso se receber nota ruim  $P(A|N') = \frac{P(N'|A)P(A)}{P(N')} \rightarrow P(N')$ ? P(N') = P(N'|A)P(A) + P(N'|M)P(M) + P(N'|B)P(B) = 0,385  $\therefore$  P(A|N') = 0,052



## Aprendizado Supervisionado Classificação

k-NN



- k-NN = k *Nearest Neighbors* ou k Vizinhos Mais Próximos.
- A estimação é baseada na probabilidade a posteriori.





- k-NN = k Nearest Neighbors ou k Vizinhos Mais Próximos.
- A estimação é baseada na probabilidade a posteriori.





P(vermelho) = 2/5 : P(preto) = 3/5

k é um número que pode variar





■ Como *observar* a vizinhança?



- Como observar a vizinhança?
  - Distância Euclidiana (mais comum)



- Como observar a vizinhança?
  - Distância Euclidiana (mais comum)
  - Distância =  $\sqrt{\sum_{i=1}^{d}(p_i-q_i)^2}$



- Como *observar* a vizinhança?
  - Distância Euclidiana (mais comum)
  - Distância =  $\sqrt{\sum_{i=1}^{d} (p_i q_i)^2}$
  - **Exemplo:**  $a_1 = (1, 1)$ ;  $a_2 = (4, 5)$ Distância $(a_1, a_2) = \sqrt{(1 - 4)^2 + (1 - 5)^2}$ Distância $(a_1, a_2) = \sqrt{9 + 16} = 5$



- Como *observar* a vizinhança?
  - Distância Euclidiana (mais comum)

■ Distância = 
$$\sqrt{\sum_{i=1}^{d} (p_i - q_i)^2}$$

**Exemplo**: 
$$a_1 = (1, 1)$$
;  $a_2 = (4, 5)$   
Distância $(a_1, a_2) = \sqrt{(1 - 4)^2 + (1 - 5)^2}$   
Distância $(a_1, a_2) = \sqrt{9 + 16} = 5$ 

Depois de calcular a distância de um ponto a todos os outros, é possível saber quem são os mais próximos, e suas classes.





Segundo Mitchell [1] Árvore de Decisão é um método para aproximação de funções com valores discretos, onde a função aprendida é representada por uma árvore de decisão.



- Segundo Mitchell [1] Árvore de Decisão é um método para aproximação de funções com valores discretos, onde a função aprendida é representada por uma árvore de decisão.
- Algoritmos mais recentes permitem a criação de árvores de decisão com valores contínuos.



- Representação/Visualização de uma árvore
  - Exemplo retirado de [2]





■ Termos técnicos de uma árvore





Evandro J.R. Silva Estácio Teresina

■ Como construir?



- Como construir?
- Ideia base:



- Como construir?
- Ideia base:
  - Escolher um atributo;



- Como construir?
- Ideia base:
  - Escolher um atributo;
  - Estender a árvore adicionando um ramo para cada valor do atributo;



- Como construir?
- Ideia base:
  - Escolher um atributo;
  - Estender a árvore adicionando um ramo para cada valor do atributo;
  - Passar os exemplos para as folhas (tendo em conta o valor do atributo escolhido);



- Como construir?
- Ideia base:
  - Escolher um atributo:
  - Estender a árvore adicionando um ramo para cada valor do atributo;
  - Passar os exemplos para as folhas (tendo em conta o valor do atributo escolhido);
  - 4 Para cada folha



- Como construir?
- Ideia base:
  - Escolher um atributo;
  - Estender a árvore adicionando um ramo para cada valor do atributo;
  - Passar os exemplos para as folhas (tendo em conta o valor do atributo escolhido);
  - 4 Para cada folha
    - Se todos os exemplos são da mesma classe, associar essa classe à folha:



- Como construir?
- Ideia base:
  - Escolher um atributo;
  - Estender a árvore adicionando um ramo para cada valor do atributo;
  - Passar os exemplos para as folhas (tendo em conta o valor do atributo escolhido);
  - 4 Para cada folha
    - Se todos os exemplos são da mesma classe, associar essa classe à folha:
    - Senão, repetir os passos 1 a 4.



Como construir?

Como escolher o melhor atributo?



- Como escolher o melhor atributo?
  - Um atributo deve ser o mais discriminante possível!



Evandro J.R. Silva Estácio Teresina

- Como escolher o melhor atributo?
  - Um atributo deve ser o mais discriminante possível!
  - Uma divisão, a partir de um atributo, que mantem as proporções de classes nas folhas é inútil.



- Como escolher o melhor atributo?
  - Um atributo deve ser o mais discriminante possível!
  - Uma divisão, a partir de um atributo, que mantem as proporções de classes nas folhas é inútil.
  - Já uma divisão que tem como resultado todos os exemplos de uma folha sendo da mesma classe, tem utilidade máxima.



- Algoritmo ID3 (Inductive Decision Tree [3])
  - Para escolher o melhor atributo, é feito um cálculo estatístico conhecido como ganho de informação.



- Algoritmo ID3 (Inductive Decision Tree [3])
  - Para escolher o melhor atributo, é feito um cálculo estatístico conhecido como ganho de informação.
  - $G(S,A) \equiv Entropia(S) \sum_{v \in Valores(A)} \frac{|S_v|}{|S|} Entropia(S_v)$



- Algoritmo ID3 (Inductive Decision Tree [3])
  - Para escolher o melhor atributo, é feito um cálculo estatístico conhecido como ganho de informação.
  - $G(S,A) \equiv Entropia(S) \sum_{v \in Valores(A)} \frac{|S_v|}{|S|} Entropia(S_v)$ 
    - Conjunto de todos os possíveis valores para o atributo A;



- Algoritmo ID3 (Inductive Decision Tree [3])
  - Para escolher o melhor atributo, é feito um cálculo estatístico conhecido como ganho de informação.
  - $G(S,A) \equiv Entropia(S) \sum_{v \in Valores(A)} \frac{|S_v|}{|S|} Entropia(S_v)$ 
    - Conjunto de todos os possíveis valores para o atributo A;
    - Subconjunto de S para o qual o atributo A tem valor v;



- Algoritmo ID3 (Inductive Decision Tree [3])
  - Para escolher o melhor atributo, é feito um cálculo estatístico conhecido como ganho de informação.
  - $G(S,A) \equiv Entropia(S) \sum_{v \in Valores(A)} \frac{|S_v|}{|S|} Entropia(S_v)$
  - Para entender essa fórmula, vamos ver seus elementos.



- Algoritmo ID3 (Inductive Decision Tree [3])
  - Para escolher o melhor atributo, é feito um cálculo estatístico conhecido como ganho de informação.

$$G(S,A) \equiv Entropia(S) - \sum_{v \in Valores(A)} \frac{|S_v|}{|S|} Entropia(S_v)$$

- Para entender essa fórmula, vamos ver seus elementos.
- Começando pela Entropia.



A Entropia é uma medida que caracteriza a pureza ou impureza de um conjunto arbitrário de exemplos [1].



- A Entropia é uma medida que caracteriza a pureza ou impureza de um conjunto arbitrário de exemplos [1].
- Seja um conjunto S contendo duas classes, uma positiva ( $p_{\oplus}$  = proporção de exemplos positivos) e uma negativa ( $p_{\ominus}$  = proporção de exemplos negativos).



- A Entropia é uma medida que caracteriza a pureza ou impureza de um conjunto arbitrário de exemplos [1].
- Seja um conjunto S contendo duas classes, uma positiva ( $p_{\oplus}$  = proporção de exemplos positivos) e uma negativa ( $p_{\ominus}$  = proporção de exemplos negativos).
- A entropia de S é:  $Entropia(S) \equiv -p_{\oplus}log_2p_{\oplus} - p_{\ominus}log_2p_{\ominus}$ ou  $Entropia(S) \equiv \sum_{i=1}^{c} -p_i log_2 p_i$



#### Exemplo

S = 14 exemplos ... [9+, 5-]



#### Exemplo

S = 14 exemplos ... [9+, 5-]Entropia(S) = Entropia([9+, 5-])



#### Exemplo

S = 14 exemplos ... [9+, 5-]  
Entropia(S) = Entropia([9+, 5-])  
= 
$$-(9/14)log_2(9/14) - (5/14)log_2(5/14) = 0,940$$



#### Exemplo ilustrativo

| Dia | Tempo      | Temperatura | Umidade | Vento | Jogar |
|-----|------------|-------------|---------|-------|-------|
| D1  | Ensolarado | Quente      | Alta    | Fraco | Não   |
| D2  | Ensolarado | Quente      | Alta    | Forte | Não   |
| D3  | Nublado    | Quente      | Alta    | Fraco | Sim   |
| D4  | Chuvoso    | Média       | Alta    | Fraco | Sim   |
| D5  | Chuvoso    | Frio        | Normal  | Fraco | Sim   |
| D6  | Chuvoso    | Frio        | Normal  | Forte | Não   |
| D7  | Nublado    | Frio        | Normal  | Forte | Sim   |
| D8  | Ensolarado | Média       | Alta    | Fraco | Não   |
| D9  | Ensolarado | Frio        | Normal  | Fraco | Sim   |
| D10 | Chuvoso    | Média       | Normal  | Fraco | Sim   |
| D11 | Ensolarado | Média       | Normal  | Forte | Sim   |
| D12 | Nublado    | Média       | Alta    | Forte | Sim   |
| D13 | Nublado    | Quente      | Normal  | Fraco | Sim   |
| D14 | Chuvoso    | Média       | Alta    | Forte | Não   |



Tabela: Exemplos de treino para a decisão de jogar



#### Exemplo ilustrativo

| Dia | Tempo      | Temperatura | Umidade | Vento | Jogar |
|-----|------------|-------------|---------|-------|-------|
| D1  | Ensolarado | Quente      | Alta    | Fraco | Não   |
| D2  | Ensolarado | Quente      | Alta    | Forte | Não   |
| D3  | Nublado    | Quente      | Alta    | Fraco | Sim   |
| D4  | Chuvoso    | Média       | Alta    | Fraco | Sim   |
| D5  | Chuvoso    | Frio        | Normal  | Fraco | Sim   |
| D6  | Chuvoso    | Frio        | Normal  | Forte | Não   |
| D7  | Nublado    | Frio        | Normal  | Forte | Sim   |
| D8  | Ensolarado | Média       | Alta    | Fraco | Não   |
| D9  | Ensolarado | Frio        | Normal  | Fraco | Sim   |
| D10 | Chuvoso    | Média       | Normal  | Fraco | Sim   |
| D11 | Ensolarado | Média       | Normal  | Forte | Sim   |
| D12 | Nublado    | Média       | Alta    | Forte | Sim   |
| D13 | Nublado    | Quente      | Normal  | Fraco | Sim   |
| D14 | Chuvoso    | Média       | Alta    | Forte | Não   |



Tabela: Exemplos de treino para a decisão de jogar



#### Exemplo ilustrativo

| Dia | Tempo      | Temperatura | Umidade | Vento | Jogar |
|-----|------------|-------------|---------|-------|-------|
| D1  | Ensolarado | Quente      | Alta    | Fraco | Não   |
| D2  | Ensolarado | Quente      | Alta    | Forte | Não   |
| D3  | Nublado    | Quente      | Alta    | Fraco | Sim   |
| D4  | Chuvoso    | Média       | Alta    | Fraco | Sim   |
| D5  | Chuvoso    | Frio        | Normal  | Fraco | Sim   |
| D6  | Chuvoso    | Frio        | Normal  | Forte | Não   |
| D7  | Nublado    | Frio        | Normal  | Forte | Sim   |
| D8  | Ensolarado | Média       | Alta    | Fraco | Não   |
| D9  | Ensolarado | Frio        | Normal  | Fraco | Sim   |
| D10 | Chuvoso    | Média       | Normal  | Fraco | Sim   |
| D11 | Ensolarado | Média       | Normal  | Forte | Sim   |
| D12 | Nublado    | Média       | Alta    | Forte | Sim   |
| D13 | Nublado    | Quente      | Normal  | Fraco | Sim   |
| D14 | Chuvoso    | Média       | Alta    | Forte | Não   |



Tabela: Exemplos de treino para a decisão de jogar



$$\textit{S} = [9+, 5-] \rightarrow \textit{Entropia} = 0,940$$



#### Ganho de Informação

$$S = [9+, 5-] \rightarrow \textit{Entropia} = 0,940$$

Atributo: Tempo = [Ensolarado, Nublado, Chuvoso]



#### Ganho de Informação

$$S = [9+, 5-] \rightarrow Entropia = 0,940$$
  
Atributo: Tempo = [Ensolarado, Nublado, Chuvoso]

 $S_{Ensolarado} = [2+, 3-];$ 

#### Ganho de Informação

$$S = [9+, 5-] \rightarrow Entropia = 0,940$$

Atributo: Tempo = [Ensolarado, Nublado, Chuvoso]

 $S_{Ensolarado} = [2+, 3-];$  $S_{Nublado} = [4+, 0-];$ 



#### Ganho de Informação

$$S = [9+, 5-] \rightarrow Entropia = 0,940$$

Atributo: Tempo = [Ensolarado, Nublado, Chuvoso]

 $S_{Ensolarado} = [2+, 3-];$ 

 $S_{Nublado} = [4+,0-];$ 

 $S_{Chuvoso} = [3+, 2-];$ 



#### Ganho de Informação

$$S = [9+, 5-] \rightarrow Entropia = 0,940$$

Atributo: Tempo = [Ensolarado, Nublado, Chuvoso]

 $S_{Ensolarado} = [2+, 3-];$ 

 $S_{Nublado} = [4+, 0-];$ 

 $S_{Chuvoso} = [3+, 2-];$ 

$$G(S, A) \equiv \textit{Entropia}(S) - \sum_{v \in \textit{Valores}(A)} \frac{|S_v|}{|S|} \textit{Entropia}(S_v)$$



$$S = [9+, 5-] \rightarrow Entropia = 0,940$$
  
Atributo: Tempo = [Ensolarado, Nublado, Chuvoso]  
 $S_{Ensolarado} = [2+, 3-];$   
 $S_{Nublado} = [4+, 0-];$ 

$$S_{Nublado} = [4+,0-];$$
  
 $S_{Chuvoso} = [3+,2-];$ 

$$G(S, A) \equiv \textit{Entropia}(S) - \sum_{v \in \textit{Valores}(A)} \frac{|S_v|}{|S|} \textit{Entropia}(S_v)$$

$$G(S, Tempo) \equiv 0,940 - (5/14)Entropia(S_{Ensolarado}) - (4/14)Entropia(S_{Nublado}) - (5/14)Entropia(S_{Chuvoso})$$



$$S = [9+,5-] \rightarrow Entropia = 0,940$$
  
Atributo: Tempo = [Ensolarado, Nublado, Chuvoso]  
 $S_{Ensolarado} = [2+,3-];$   
 $S_{Nublado} = [4+,0-];$   
 $S_{Chuvoso} = [3+,2-];$ 

$$G(S, A) \equiv \textit{Entropia}(S) - \sum_{v \in \textit{Valores}(A)} \frac{|S_v|}{|S|} \textit{Entropia}(S_v)$$

$$G(S, Tempo) \equiv 0,940 - (5/14) Entropia(S_{Ensolarado}) - (4/14) Entropia(S_{Nublado}) - (5/14) Entropia(S_{Chuvoso})$$

$$G(S, Tempo) \equiv 0,940 - (5/14)0,971 - (4/14)0 - (5/14)0,971$$



$$S = [9+,5-] \rightarrow Entropia = 0,940$$
  
Atributo: Tempo = [Ensolarado, Nublado, Chuvoso]  
 $S_{Ensolarado} = [2+,3-];$   
 $S_{Nublado} = [4+,0-];$   
 $S_{Chuvoso} = [3+,2-];$ 

$$G(S, A) \equiv \textit{Entropia}(S) - \sum_{v \in \textit{Valores}(A)} \frac{|S_v|}{|S|} \textit{Entropia}(S_v)$$

$$G(S, Tempo) \equiv 0,940 - (5/14) Entropia(S_{Ensolarado}) - (4/14) Entropia(S_{Nublado}) - (5/14) Entropia(S_{Chuvoso})$$

$$G(S, Tempo) \equiv 0,940 - (5/14)0,971 - (4/14)0 - (5/14)0,971$$
  
 $G(S, Tempo) \equiv 0,940 - 0,347 - 0 - 0,347$ 



#### Ganho de Informação

$$S = [9+,5-] \rightarrow Entropia = 0,940$$
  
Atributo: Tempo = [Ensolarado, Nublado, Chuvoso]  
 $S_{Ensolarado} = [2+,3-];$   
 $S_{Nublado} = [4+,0-];$   
 $S_{Chuvoso} = [3+,2-];$ 

$$G(S, A) \equiv \textit{Entropia}(S) - \sum_{v \in \textit{Valores}(A)} \frac{|S_v|}{|S|} \textit{Entropia}(S_v)$$

$$G(S, Tempo) \equiv 0,940 - (5/14)Entropia(S_{Ensolarado}) - (4/14)Entropia(S_{Nublado}) - (5/14)Entropia(S_{Chuvoso})$$

$$G(S, Tempo) \equiv 0,940 - (5/14)0,971 - (4/14)0 - (5/14)0,971$$

$$G(S, Tempo) \equiv 0,940 - 0,347 - 0 - 0,347$$

$$G(S, Tempo) \equiv 0,246$$

#### Estácio

#### Ganho de Informação

Ganho(S, Tempo) = 0,246

Ganho(S, Temperatura) = 0,029

Ganho(S, Umidade) = 0, 151

Ganho(S, Vento) = 0,048





#### Próximo Atributo

$$S_{Ensolarado} = [D1, D2, D8, D9, D11]$$

$$Ganho(S_{Ensolarado}, Umidade) = 0,970 - (3/5)0 - (2/5)0 = 0,970$$

$$Ganho(S_{Ensolarado}, Temperatura) = 0,970 - (2/5)0 - (2/5)1 - (1/5)0 = 0.570$$

$$Ganho(S_{Ensolarado}, Vento) = 0,970 - (2/5)1 - (3/5)0,918 = 0,019$$



#### Referências I

- Tom M. Mitchell. Machine Learning. ISBN: 0070428077. McGraw-Hill Science/Engineering/-Math, mar. de 1997.
- Teresa B. Ludermir. Ávores de Decisão: Sistemas Inteligentes. Aula ministrada para o [2] curso de Pós-Graduação em Ciência da Computação, CIn-UFPE. 2012.
- [3] J. R. Quinlan. "Induction of decision trees". Em: Machine Learning 1.1 (1986), pp. 81-106.

