## PHYS11 CH18: Electrostatics

Charges, Fields, Potential, and Capacitors

Mr. Gullo

May, 2025

## Presentation Outline



## Learning Objectives

By the end of this presentation, you will be able to:

- Describe the nature of electric charge and its conservation
- Apply Coulomb's law to calculate forces between charges
- Define and calculate electric fields around charge distributions
- Understand electric potential and potential energy concepts
- Explain how capacitors work and calculate their capacitance
- Solve problems involving electric forces, fields, potential, and capacitors



# Electrical Charges

## **Key Concepts**

- Two varieties: **positive** and **negative**
- Like charges repel, opposite charges attract



### Conductors vs. Insulators

• **Conductors**: Charges move easily **Insulators**: Charges cannot move easily

Mr. Gullo Electric Forces & Fields May 2025

# Transfer of Charge

Three ways to charge objects:

- Charging by contact
  - Direct physical contact between objects
  - Charges transfer from one object to another
- Charging by conduction
  - Charges flow through conducting path
- Charging by induction
  - No contact required
  - Charge separation due to electric field

# **Friction**



# Conduction



# Induction



### **Polarization**

## Polarized Objects

- A polarized object may be electrically neutral overall
- But its charge is unbalanced:
  - One side has excess negative charge
  - The other side has equal magnitude of excess positive charge





## Coulomb's Law

#### **Definition**

Coulomb's law describes the electrostatic force between charged particles:

$$\vec{F} = \frac{kq_1q_2}{r^2}\hat{r} \tag{1}$$

where:

- $k = 9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$  (Coulomb constant)
- $q_1, q_2$  are the charges
- r is the distance between charges
- $\hat{r}$  is the unit vector pointing from  $q_1$  to  $q_2$



Mr. Gullo

# Properties of Coulomb's Law

- Inverse square law: Force  $\propto \frac{1}{r^2}$
- Force is **proportional** to the product of charges
- Force interpretation:
  - $F < 0 \rightarrow$  attractive force
  - $F > 0 \rightarrow$  **repulsive** force
- Vector nature: Forces act along the line joining the charges





12/1

# Electric Field Concept

#### Definition

The electric field defines the force per unit charge in the space around a charge distribution:

$$\vec{E} = \frac{\vec{F}}{q_{\text{test}}} \tag{2}$$

### Point Charge Electric Field

For a point charge or sphere of uniform charge:

$$E = \frac{kq}{r^2} \tag{3}$$





## **Electric Field Lines**

Properties of electric field lines:

- Electric field lines **never cross** each other
- More field lines indicate a stronger field
- Lines start at positive charges and point away
- Lines end at negative charges and point toward them
- In free space, field lines extend to infinity





16/1

# Electric Potential Energy

#### Definition

Electric potential energy is the potential that charges have to do work by virtue of their positions relative to each other.

### Mathematical Expression

For a charge q in the presence of a point charge Q:

$$U_E = \frac{kqQ}{r} \tag{4}$$

Change in potential energy in constant field:

$$\Delta U_E = -qE(r_f - r_i) \tag{5}$$



Mr. Gullo



## Electric Potential

### Definition

Electric potential is the electric potential energy per unit charge:

$$V = \frac{U_E}{q} \tag{6}$$

## Mathematical Expression

For a point charge Q:

$$V = \frac{kQ}{r} \tag{7}$$

Change in potential in constant field:

$$\Delta V = -E(r_f - r_i) \tag{8}$$



Mr. Gullo



# Movement of Charges in Potential

## **Key Principles**

- Potential is always measured between two points
- One reference point may be at infinity (V = 0)
- Charges move spontaneously to minimize potential energy:
  - Positive charges move from high to low potential
  - Negative charges move from low to high potential





23/1

# Capacitors

### Definition

A capacitor is a device that stores electric charge and energy in the electric field between its plates.

### Capacitance

Capacitance is the ratio of charge to potential difference:

$$C = \frac{Q}{V} \tag{9}$$

Capacitance depends only on:

- Geometry of the capacitor
- Materials from which it is made
- Does not depend on the voltage





# Parallel-Plate Capacitor

## Capacitance Formula

For a parallel-plate capacitor:

$$C = \epsilon_0 \frac{A}{d} \tag{10}$$

where:

- $\epsilon_0 = 8.85 \times 10^{-12} \, \text{F/m}$  (permittivity of free space)
- A is the area of each plate
- d is the separation distance between plates

## **Energy Storage**

Energy stored in a capacitor:

$$U_E = \frac{1}{2}CV^2 \tag{11}$$

Mr. Gullo

### **Dielectrics**

#### Definition

A dielectric material is an insulator that becomes polarized in an electric field.

### Effects of Dielectrics

Inserting a dielectric between capacitor plates:

ullet Increases the capacitance by a factor  $\kappa$  (dielectric constant)

$$C = \kappa \epsilon_0 \frac{A}{d} \tag{12}$$

- Reduces the electric field inside the capacitor
- Allows for higher voltage before breakdown



27/1

Mr. Gullo Electric Forces & Fields May 2025





# **Key Equations Summary**

### **Electric Potential:**

Coulomb's Law:

$$V = \frac{kQ}{r} \tag{16}$$

$$F = \frac{kq_1q_2}{r^2}$$

(13) Capacitance:

**Electric Field:** 

$$C = \frac{Q}{V} \tag{17}$$

$$E = \frac{F}{q_{\text{test}}}$$

(14) Parallel-Plate Capacitor:

Point Charge Field:

$$C = \epsilon_0 \frac{A}{d} \tag{18}$$

$$E = \frac{kq}{r^2}$$

(15) **Energy Storage:** 

$$U_E = \frac{1}{2}CV^2 \tag{19}$$

## "I do" Example: Coulomb's Law

#### **Problem**

Two point charges  $q_1 = +2.0 \,\mu\text{C}$  and  $q_2 = -3.0 \,\mu\text{C}$  are separated by a distance of 0.15 m. Find the magnitude and direction of the electric force between them.

32 / 1

## "I do" Example: Coulomb's Law

#### **Problem**

Two point charges  $q_1 = +2.0 \,\mu\text{C}$  and  $q_2 = -3.0 \,\mu\text{C}$  are separated by a distance of 0.15 m. Find the magnitude and direction of the electric force between them.

### Solution

Using Coulomb's law: 
$$F = \frac{kq_1q_2}{r^2}$$

$$F = \frac{(9 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)(2.0 \times 10^{-6} \text{ C})(-3.0 \times 10^{-6} \text{ C})}{(0.15 \text{ m})^2}$$

$$F = \frac{(9 \times 10^9)(-6.0 \times 10^{-12})}{0.0225}$$

$$F = -2.4 \times 10^{-3} \text{ N}$$

The negative sign indicates an attractive force. The force on  $q_1$  is directed toward  $q_2$ , and the force on  $q_2$  is directed toward  $q_1$ .

→ロト→部ト→主ト→主 り<0</p>

## "We do" Example: Electric Field

### Problem

Three point charges are arranged on the x-axis:  $q_1=+2.0\,\mu\text{C}$  at x=0,  $q_2=-3.0\,\mu\text{C}$  at  $x=0.15\,\text{m}$ , and  $q_3=+1.0\,\mu\text{C}$  at  $x=0.30\,\text{m}$ . Find the electric field at point P located at  $x=0.45\,\text{m}$ .

# "We do" Example: Electric Field

### **Problem**

Three point charges are arranged on the x-axis:  $q_1=+2.0\,\mu\text{C}$  at x=0,  $q_2=-3.0\,\mu\text{C}$  at  $x=0.15\,\text{m}$ , and  $q_3=+1.0\,\mu\text{C}$  at  $x=0.30\,\text{m}$ . Find the electric field at point P located at  $x=0.45\,\text{m}$ .

### Solution Approach

1. Calculate the electric field due to each charge at point P

$$E_1 = \frac{kq_1}{r_1^2} = \frac{k(+2.0 \times 10^{-6})}{(0.45)^2}$$
 (pointing right) (20)

$$E_2 = \frac{kq_2}{r_2^2} = \frac{k(-3.0 \times 10^{-6})}{(0.30)^2}$$
 (pointing left) (21)

$$E_3 = \frac{kq_3}{r_3^2} = \frac{k(+1.0 \times 10^{-6})}{(0.15)^2}$$
 (pointing right) (22)

33/1

2. Find the total field by superposition:  $\vec{E}_{total} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3$ 

Mr. Gullo Electric Forces & Fields May 2025

# "You do" Example: Capacitor

### Problem

A parallel-plate capacitor has plates with an area of  $0.0025\,\mathrm{m}^2$  separated by a distance of  $0.5\,\mathrm{mm}$ .

- (a) Calculate the capacitance of this capacitor.
- (b) If the capacitor is connected to a  $12\,\mathrm{V}$  battery, determine the charge stored on each plate.
- (c) Calculate the energy stored in the capacitor.
- (d) If a dielectric with  $\kappa=3.0$  is inserted between the plates, find the new capacitance.

### Hints

- Use  $C = \epsilon_0 \frac{A}{d}$  for part (a)
- Apply Q = CV for part (b)
- Use  $U_E = \frac{1}{2}CV^2$  for part (c)
- Remember that with a dielectric,  $C = \kappa \epsilon_0 \frac{A}{d}$

Mr. Gullo Electric Forces & Fields May 2025

34 / 1



# Summary: Key Takeaways

# Electrical Charges & Coulomb's Law

- Electric charge is conserved; like charges repel, unlike attract
- Coulomb's law:  $F = \frac{kq_1q_2}{r^2}$

### Electric Field & Potential

- Electric field: force per unit charge;  $E = \frac{F}{q_{\text{test}}}$
- Electric potential: potential energy per unit charge;  $V = \frac{U_E}{q}$

## Capacitors & Dielectrics

- Capacitance  $C = \frac{Q}{V}$ ; energy storage  $U_E = \frac{1}{2}CV^2$
- Parallel-plate capacitor:  $C = \epsilon_0 \frac{A}{d}$
- $\bullet$  Dielectrics increase capacitance by a factor  $\kappa$



## Thank You!

# Questions?

Practice problems: Textbook Chapter 18