M4 – OSCILLATEUR HARMONIQUE

I Modèle de l'oscillateur harmonique (O.H.)

- I.1 Exemples → Cf Cours
- I.2 Définition

 \diamondsuit **Définition :** Un **oscillateur harmonique** à un degré de liberté x (X, θ, \dots) est un système physique dont l'évolution au cours du temps en l'absence d'amortissement et d'excitation, est régie par l'équation différentielle linéaire :

 (E_{OH})

$$\ddot{x} + \omega_0^2 x = 0$$

où ω_0 est la pulsation propre.

 ${f Rq}$: On rencontrera cette situation en électricité pour un circuit série contenant une inductance L, une capacité C et une résistance R

En régime libre, c'est à dire sans excitation, et en l'absence d'amortissement (R=0), la charge q aux bornes du condensateur vérifie :

$$\ddot{q} + \frac{1}{LC}q = 0$$
 \rightarrow Cf Cours **E4**

L'importance du concept d'oscillateur harmonique vient de ce qu'il décrit le comportement général d'un système à un degré de liberté au voisinage d'une position d'équilibre stable.

Donc, le modèle de l'oscillateur harmonique est très utile pour un problème **unidimensionnel** et une force **conservative** qui ne dépend que d'une variable x (\rightarrow Cf Cours M3)

1.3 Description du mouvement de l'oscillateur harmonique

- La solution générale de l'équation différentielle est : $x(t) = X_m \cos(\omega_0 t + \varphi)$, avec :
 - ω_0 la pulsation propre du mouvement (en $rad.s^{-1}$,
 - X_m l'amplitude,
 - φ la phase (à l'origine des temps).
- X_m et φ sont déterminés à partir des conditions initiales (C.I.) :
 - a) $x(t=0) = X_m \cos \varphi = x_0$
 - b) $\dot{x}(t=0) = -X_m \omega_0 \sin \varphi = \dot{x}_0 = v_0.$

♦ Définition : Les oscillations d'un oscillateur harmonique sont purement si-

nusoïdales et la période propre des oscillations est :

$$T_0 = \frac{2\pi}{\omega_0}$$

Lorsque T_0 ne dépend pas de l'amplitude des oscillations, on dit qu'il y a **isochronisme** des oscillations.

Rq: On peut encore écrire $x = X_m \cos \varphi \cos \omega_0 t - X_m \sin \varphi \sin \omega_0 t$ ou encore

 $x = A\cos\omega_0 t + B\sin\omega_0 t$

où A et B sont des constantes à déterminer par les conditions initiales. Cette relation est parfois pratique. En tenant compte des C.I.:

$$A = X_m \cos \varphi = x_0$$
 et $B = X_m \sin \varphi = -\frac{v_0}{\omega_0}$ \Rightarrow $x(t) = x_0 \cos(\omega_0 t) + \frac{v_0}{\omega_0} \sin(\omega_0 t)$

Et donc : $\begin{cases} X_m = \sqrt{A^2 + B^2} = \sqrt{x_0^2 + \left(\frac{v_0}{\omega_0}\right)^2} \\ \text{et } \tan \varphi = -\frac{B}{A} = -\frac{v_0}{\omega_0 x_0} \end{cases}$ avec $\cos \varphi$ du signe de x_0 .

I.4 Énergie(s) de l'oscillateur harmonique

♦ Définition : (→ Cf Cours M3)

L'Oscillateur Harmonique à un degré de liberté x évolue dans un puits parabolique

d'énergie potentielle : $\mathcal{E}_p(x) = \mathcal{E}_p(0) + \frac{1}{2}kx^2$

Ceci revient à dire que l'Oscillateur Harmonique est soumis à une **force conservative** :

$$F(x) = -\frac{\mathrm{d}\mathcal{E}_p}{\mathrm{d}x} = -kx$$

Cas du ressort vertical (cf. I.1):

ullet Grâce à cette expression de F(x), on retrouve, bien entendu, l'équation du mouvement de l'Oscillateur Harmonique :

$$m\ddot{x} = F(x)$$
 \Leftrightarrow $\ddot{x} + \omega_0^2 x = 0$ avec : $\omega_0 = \sqrt{\frac{k}{m}}$

Où « x » est la variable notant l'écart par rapport à la position d'équilibre de l'oscillateur harmonique, soit $X=x-x_{eq}$ avec $x_{eq}=x_0+\frac{mg}{k}$; d'où :

$$\mathcal{E}_p = \frac{1}{2} k X^2 = \frac{1}{2} k \left((x - x_0) - \frac{mg}{k} \right)^2 = \underbrace{\frac{1}{2} k (x - x_0)^2}_{\mathcal{E}_{p,glast}} \underbrace{-mgx}_{\mathcal{E}_{p,g}} + \text{Cste}$$

→ L'énergie potentielle de l'oscillateur harmonique est bien la somme de ses différentes formes d'énergies potentielles.

Ici, il s'agit de l'énergie potentielle élastique (prise nulle en $x=x_0$) et de l'énergie potentielle de pesanteur (prise nulle en x=0), la Cste permettant de choisir l'origine de l'énergie potentielle totale en $x=x_{eq}$.

• → Cf. Cours.

• La solution de l'équation différentielle étant de la forme $x = X_m \cos(\omega_0 t + \varphi)$ et de période T_0 , toutes les grandeurs g décrivant le mouvement sont également périodiques de période T_0 et leurs valeurs moyennes sont définies par :

$$\langle g \rangle \equiv \frac{1}{T_0} \int_{t_0}^t g(t) dt$$
 avec $t \equiv t_0 + T_0$ et t_0 quelconque

→ La valeur moyenne des énergies cinétique et potentielle sont donc égale à :

$$<\mathcal{E}_k> \equiv \frac{1}{T_0} \int_0^{T_0} \mathcal{E}_k dt$$
 et $<\mathcal{E}_p> \equiv \frac{1}{T_0} \int_0^{T_0} \mathcal{E}_p dt$

2

... Cf. **Cours** ... D'où :

$$\boxed{<\mathcal{E}_k> = \frac{1}{4}\, m w_0^2 X_m^2 = \frac{1}{4} k X_m^2} \qquad \boxed{<\mathcal{E}_p> = \frac{1}{4}\, m w_0^2 X_m^2 = \frac{1}{4} k X_m^2}$$

Or
$$\mathcal{E}_m = \mathcal{E}_k + \mathcal{E}_p = \text{Cste} = \frac{1}{2} k X_m^2 \longrightarrow \left\{ \mathcal{E}_k > = \mathcal{E}_p > = \frac{\mathcal{E}_m}{2} \right\} \text{ avec } \left\{ \mathcal{E}_m = \frac{1}{2} k X_m^2 \right\}$$

On décrit cette égalité en disant qu'il y a équipartition de l'énergie.

(Sous-entendu: l'énergie mécanique, en moyenne, se répartit autant en énergie cinétique qu'en énergie potentielle).

 $\mathscr{E}_{\mathbf{P}}(x)$ $\mathscr{E}_{\mathbf{p}}(x)$

Aspect spatial de l'échange mutuel des formes cinétique et potentielle de l'énergie mécanique.

Energies cinétique, potentielle et mécanique de l'oscillateur harmonique (φ = 0).

Portrait de phase d'un oscillateur harmonique

♦ **Définition**: On appelle **portrait de phase** d'un système à *un degré de liberté*, dont l'évolution est décrite par la variable x(t), un diagramme caractéristiques des évolutions du système représenté dans le **plan de phase** (x, \dot{x}) (\rightarrow Cf Cours **M1**).

• On a vu au 1.4), pour le ressort modélisé par un oscillateur harmonique, que la conservation de l'énergie mécanique (Intégrale Première du Mouvement) donne une équation du type :

$$\frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2 = \mathcal{E}_m = \text{Cste soit, encore}: \quad \frac{x^2}{2\mathcal{E}_m} + \frac{\dot{x}^2}{2\mathcal{E}_m} = 1$$

$$\rightarrow$$
 On reconnaît l'équation $\frac{x^2}{a^2}+\frac{\dot{x}^2}{b^2}=1$ d'une **ellipse** de demi-axes :
$$a=\sqrt{\frac{2\mathcal{E}_m}{k}}=\sqrt{\frac{2\mathcal{E}_m}{m\omega_0^2}}\quad \text{selon }x \quad \text{ et } \quad b=\sqrt{\frac{2\omega_0^2\mathcal{E}_m}{k}}=\sqrt{\frac{2\mathcal{E}_m}{m}}\quad \text{selon }\dot{x}.$$

- \bullet L'ensemble des ellipses correspondant aux valeurs de \mathcal{E}_m possibles constitue le portrait de phase de l'oscillateur harmonique NON amorti et libre (non excité).
- → Cf. Cours
- → Cf. Poly: dans le cas du pendule simple, la modélisation de l'oscillateur harmonique est valable lorsque le portrait de phase est assimilable à une ellipse. Ce qui est le cas pour les faibles amplitudes: $\theta_m = \alpha \le 20^\circ$. Il y a alors isochronisme des petites oscillations: $T_0 = 2\pi \sqrt{\frac{l}{a}}$

Rq: Dans le cas des amplitudes modérées ($\theta \leq 90^{\circ}$), les portraits de phase ne sont plus des ellipses, il n'y a plus isochronisme des petites oscillations et on établit la formule de BORDA :

$$T \simeq T_0 \left(1 + \frac{\alpha^2}{16} \right)$$

Oscillateur harmonique spatial Ш

Définition: On parle d'oscillateur harmonique spatial lorsque les équations décrivant l'évolution du système peuvent se mettre sous la forme de 3 équations de la forme :

$$\begin{cases}
m\ddot{x} + k_1 x = 0 \\
m\ddot{y} + k_2 y = 0 \\
m\ddot{z} + k_3 z = 0
\end{cases}$$
 x, y, z étant 3 variables indépendantes (par ex. les coordonnées cartésiennes)

De solution générale :
$$\begin{cases} x = X_m \cos(\omega_1 t + \varphi_1) \\ y = Y_m \cos(\omega_2 t + \varphi_2) \\ z = Z_m \cos(\omega_3 t + \varphi_3) \end{cases}$$
 avec $\omega_i^2 = \frac{k_i}{m}$ pour $i = 1, 2, 3$.

Conclusion : Le mouvement se caractérise par des oscillations correspondant à 3 or

Conclusion : Le mouvement se caractérise par des oscillations correspondant à 3 oscillateurs harmoniques indépendants.

Exemple: Oscillateur Harmonique Spatial Isotrope

 \bullet Soit un point matériel M repéré par le vecteur $\overrightarrow{r} = \overrightarrow{OM}$ par rapport à un point O fixe du référentiel d'étude (supposé galiléen).

À la date t=0, il a la position $\overrightarrow{r_0}=\overrightarrow{OM_0}$ et une vitesse $\overrightarrow{v_0}$.

Il est soumis à la force $\overrightarrow{F} = -k \overrightarrow{r}$. • Le **P.F.D.** s'écrit : $m \frac{d^2 \overrightarrow{r}}{dt^2} = -k \overrightarrow{r}$, soit encore :

$$\boxed{\frac{\mathrm{d}^2 \overrightarrow{r}}{\mathrm{d}t^2} + \omega_0^2 \overrightarrow{r} = \overrightarrow{0}} \text{ avec} : \omega_0^2 \equiv \frac{k}{m}$$

• La solution s'écrit : $\overrightarrow{r} = \overrightarrow{A} \cos \omega_0 t + \overrightarrow{B} \sin \omega_0 t$, où \overrightarrow{A} et \overrightarrow{B} sont des vecteurs à déterminer en fonction des Conditions Initiales.

$$\rightarrow$$
 En utilisant : $\overrightarrow{r}(t=0) = \overrightarrow{r_0}$, on déduit : $\overrightarrow{A} = \overrightarrow{r_0}$

Finalement : $|\overrightarrow{r} = \overrightarrow{r_0} \cos \omega_0 t + \frac{\overrightarrow{v_0}}{\omega_0} \sin \omega_0 t|$, ce qui montre que le mouvement se fait dans le *plan* passant par O et déterminé par les directions de $\overrightarrow{r_0}$ et $\overrightarrow{v_0}$.

• Définissons un repère en prenant l'axe Ox suivant $\overrightarrow{r_0}$ et l'axe Oy dans le plan de la trajectoire. En projetant l'équation de \overrightarrow{r} sur les axes, on a :

$$\begin{cases} x = r_0 \cos \omega_0 t + \frac{v_{0x}}{\omega_0} \sin \omega_0 t \\ y = \frac{v_{0y}}{\omega_0} \sin \omega_0 t \end{cases}$$
 où v_{0x} et v_{0y} sont les composantes de $\overrightarrow{v_0}$.

- \rightarrow On obtient bien 2 oscillateurs indépendants¹.
- L'équation de la trajectoire s'obtient en éliminant le temps t à l'aide de la relation $\sin^2 \omega_0 t$ + $\cos^2 \omega_0 t = 1.$

On isole donc :
$$\begin{cases} \sin \omega_0 t = \frac{\omega_0 y}{v_{0y}} \\ \cos \omega_0 t = \frac{x}{r_0} - \frac{y v_{0x}}{r_0 v_{0y}} \end{cases} \text{ on a alors : } \left(\frac{v_{0x}^2}{r_0^2 v_{0y}^2} + \frac{\omega_0^2}{v_{0y}^2} \right) y^2 + \frac{x^2}{r_0^2} - 2xy \frac{v_{0x}}{r_0^2 v_{0y}} = 1$$

 \rightarrow CI : La trajectoire est donc une ellipse centrée en O.

^{1.} Le fait qu'il n'en apparaît que 2 au lieu des trois attendus vient du choix judicieux du repère Oxy pour exprimer la trajectoire plane

Ce qui se voit bien dans le cas particulier $v_{0x}=0$ où l'équation devient :

$$\frac{x^2}{r_0^2} + \frac{y^2}{\frac{v_{0y}^2}{\omega_0^2}} = 1 \iff \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

avec $a = r_0$ et $b = \frac{|v_{0y}|}{\omega_0}$.

Qu'en est-t-il de l'énergie potentielle d'un oscillateur harmonique spatial?

Un raisonnement similaire au précédent (cf. §4) mais tenant compte, cette fois, des trois équations scalaires du mouvement issues du P.F.D. conduit à :

$$\mathcal{E}_m = \left(\frac{1}{2}m\dot{x}^2 + \frac{1}{2}k_1x^2\right) + \left(\frac{1}{2}m\dot{y}^2 + \frac{1}{2}k_2y^2\right) + \left(\frac{1}{2}m\dot{z}^2 + \frac{1}{2}k_3z^2\right)$$

 \rightarrow **Retenons** que l'énergie mécanique d'un oscillateur harmonique spatial est la *somme* des énergies mécaniques des *trois* oscillateurs harmoniques associés à ses *trois* degrés de liberté.

On reconnaît l'énergie cinétique : $\mathcal{E}_k = \frac{1}{2}\,m\dot{x}^2 + \frac{1}{2}\,m\dot{y}^2 + \frac{1}{2}\,m\dot{z}^2$

et il apparaı̂t l'énergie potentielle : $\boxed{\mathcal{E}_p = \frac{1}{2}\,k_1x^2 + \frac{1}{2}\,k_2y^2 + \frac{1}{2}\,k_3z^2}$

Cl : Un oscillateur harmonique spatial correspond donc à un point matériel soumis à une *force* conservative :

$$\overrightarrow{F} \equiv -\left(\frac{\partial \mathcal{E}_p}{\partial x}\right)_{y,z} \overrightarrow{e_x} - \left(\frac{\partial \mathcal{E}_p}{\partial y}\right)_{x,z} \overrightarrow{e_y} - \left(\frac{\partial \mathcal{E}_p}{\partial z}\right)_{x,y} \overrightarrow{e_z} = -k_1 x \overrightarrow{e_x} - k_2 y \overrightarrow{e_y} - k_3 z \overrightarrow{e_z}$$

Et pour l'oscillateur harmonique spatial isotrope?

Ce qui précède est toujours valable bien sûr , puisque l'O.H.S.I. est un cas particulier d'O.H.S. où la force de rappel est colinéaire au vecteur position :

$$\overrightarrow{F} \equiv -k \overrightarrow{r} = -kx \overrightarrow{e_x} - ky \overrightarrow{e_y} - kz \overrightarrow{e_z}$$
 ce qui signifie : $k_1 = k_2 = k_3$.

Ce qui revient à dire que l'énergie potentielle de l'oscillateur n'est fonction que de la distance r=OM du point matériel M au centre de force O:

$$\varepsilon_p = \frac{1}{2} kOM^2 = \frac{1}{2} kr^2$$

Trajectoire d'un Oscillateur Harmonique Spatial Anisotrope :

Lorsque k_1 , k_2 et k_3 ne sont pas tous identiques, la trajectoire peut être ouverte ou fermée :

III Oscillations libres amorties de l'Oscillateur Harmonique

III.1 Exemples

Dans les deux exemples du I.1), la façon la plus simple de tenir compte de l'amortissement est d'introduire une force de frottement proportionnelle à la vitesse. On parle dans ce cas de frottement fluide visqueux car cela décrit bien l'effet dû au déplacement dans un liquide ou un gaz à des vitesses faibles. Cela permet par ailleurs, de conserver la linéarité des équations puisque la force de frottement visqueux est proportionnelle à la vitesse².

a Ressort vertical (Cf I.1)):

Dans l'exemple du ressort, on ajoute la force opposée à la vitesse $-h\dot{x} \overrightarrow{e_x}$, d'où l'équation $\textcircled{2} - \textcircled{1} : m\ddot{x} = -h\dot{x} - k(x - x_{eq})$

soit, en introduisant l'**écart** par rapport à l'équilibre $X \equiv x - x_{eq} : \ddot{X} + \frac{h}{m} \dot{X} + \frac{k}{m} X = 0.$

Ce que l'on peut encore écrire, en introduisant la pulsation propre ω_0 du système {ressort-masse} et la durée caractéristique τ :

$$\ddot{X} + \frac{\dot{X}}{\tau} + \omega_0^2 X = 0$$
 avec $\omega_0^2 \equiv \frac{k}{m}$ et $\tau \equiv \frac{m}{h}$.

b Pendule simple:

On ajoute la force -h, $\overrightarrow{v} = -hl\dot{\theta} \overrightarrow{e_{\theta}}$, d'où en projetant le **PF.D.** selon $\overrightarrow{e_{\theta}}$ dans la base polaire : $ml\ddot{\theta} = -hl\dot{\theta} - mq \sin \theta$,

soit, pour les petites oscillations $(\sin \theta \simeq \theta)$: $\ddot{\theta} + \frac{h}{m} \dot{\theta} + \frac{g}{l} \theta = 0$.

Ce que l'on peut encore écrire, en introduisant la **pulsation propre** ω_0 du pendule (système $\{\text{fil-masse}\}\)$ et la **durée caractéristique** τ :

$$\ddot{\theta} + \frac{\dot{\theta}}{\tau} + \omega_0^2 \theta = 0$$
 avec $\omega_0^2 \equiv \frac{g}{l}$ et $\tau \equiv \frac{m}{h}$.

c Rappel d'électrocinétique :

Nous rencontrerons un tel type d'équation, en Électricité (\rightarrow Cf Cours E4) : , dans le circuit RLC série, l'amortissement est dû à la résistance, et la charge q du condensateur vérifie en régime libre :

$$\ddot{q} + \frac{R}{L}\dot{q} + \frac{1}{LC}q = 0, \quad \text{qu'on peut encore \'ecrire}: \quad \ddot{q} + \frac{\dot{q}}{\tau} + \omega_0^2 q = 0 \quad \Leftrightarrow \quad \ddot{q} + \frac{\omega_0}{Q}\dot{q} + \omega_0^2 q = 0$$

$$\text{avec}: \boxed{\frac{1}{\tau} = \frac{\omega_0}{Q} = \frac{R}{L}} \text{. Soit}: \boxed{\tau = \frac{L}{R}} \text{ et} \boxed{Q = \frac{L\omega_0}{R} = \frac{1}{RC\omega_0}}, \text{ avec, toujours, } \omega_0 = \sqrt{\frac{1}{LC}}$$

III.2 Définitions

♦ **Définition :** On appelle **Oscillateur Harmonique Amorti** un système à *un* degré de liberté dont l'évolution est régie par l'équation différentielle linéaire du second

$$\ddot{x} + \frac{\dot{x}}{\tau} + \omega_0^2 x = 0 \quad (E_{OHA})$$

avec ω_0 la pulsation propre

et τ le temps de relaxation (encore appelée durée caractéristique).

^{2.} et non pas à son carré, comme c'est le cas des forces de frottement fluide pour les grandes vitesses (\rightarrow Cf Cours M2)

On introduit souvent le paramètre sans dimension Q appelé facteur de qualité défini par : $Q \equiv \omega_0 \tau$.

L'équation devient : $\ddot{x} + \frac{\omega_0}{Q}\dot{x} + \omega_0^2 x = 0$ – d'équation caractéristique : $r^2 + \frac{r}{\tau} + \omega_0^2 = 0$ (1)

Propriété : Plus Q est grand, plus le terme lié à l'amortissement est faible.

III.3 Les régimes de l'oscillateur harmonique amorti (→ Cf. E4.IV)

Le discriminant δ de l'équation caractéristique (1) :

$$\Delta = \frac{1}{\tau^2} - 4\omega_0^2 = \frac{\omega_0^2}{Q^2} - 4\omega_0^2 = -4\omega_0^2(1 - \frac{1}{4Q^2})$$

Trois régimes libres sont possibles :

Régime Apériodique	Régime Critique	Régime Pseudo-périodique
$Q<\frac{1}{2} \qquad (\Delta>0)$	$Q = \frac{1}{2} \qquad (\Delta = 0)$	$Q > \frac{1}{2} \qquad (\Delta < 0)$
Il existe deux solutions réelles r_1 et r_2 de (1) avec $ r_1 < r_2 $.	L'unique solution de (1) est : $r=-\omega_0$ d'où :	Deux solutions imaginaires de (1): $r_{1/2} = -\frac{1}{2\tau} \pm j\sqrt{\omega_0^2 - \frac{1}{4\tau^2}}$ on note $\alpha \equiv \frac{1}{2\tau} = \frac{\omega_0}{2Q} < \omega_0$ et $\omega \equiv \sqrt{\omega_0^2 - \frac{1}{4\tau^2}} = \omega_0\sqrt{1 - \frac{1}{4Q^2}}$
la solution est de la forme : $x = Ae^{r_1t} + Be^{r_2t}$ $(A,B)\in\mathbb{R}^2$	la solution est de la forme : $x = (A+Bt)e^{-\omega_0 t}$ $(A,B)\in\mathbb{R}^2$	la solution est de la forme : $x = e^{-\alpha t} A \cos(\omega t + \varphi)$ $A \in \mathbb{R}^+ \text{ et } \varphi \in [0, 2\pi[$ $Pseudo-période :$ $T = \frac{2\pi}{\omega} = \frac{2\pi}{\omega_0 \sqrt{1 - \frac{1}{4Q^2}}}$
r_1 et r_2 sont toutes les deux négatives et leur produit vaut : $r_1r_2=\omega_0^2 ightarrow r_1 <\omega_0$ et $ r_2 >\omega_0$. $ ightarrow x$ s'amortit donc principalement en $e^{r_1t}=e^{- r_1 t}$.	x s'amortit comme $e^{-\omega_0 t}$: cas où l'amortissement est le plus rapide (durée $\sim \frac{2\pi}{\omega_0}$)	$T \simeq \frac{2\pi}{\omega_0} (1 + \frac{1}{8Q^2}) > \frac{2\pi}{\omega_0} = T_0$ pseudo-période>période propre $ \rightarrow \text{ amortissement au bout de } $ ques T .

III.4 Énergie de l'oscillateur harmonique amorti

Reprenons l'équation de l'oscillateur harmonique amorti :

$$\ddot{x} + \frac{\dot{x}}{\tau} + \omega_0^2 x = 0 \iff \ddot{x} + \omega_0^2 x = -\frac{\dot{x}}{\tau}$$

Multiplions cette équation par $m\dot{x}$; il vient :

$$m\ddot{x}\dot{x} + m\omega_0^2\dot{x}x = -\frac{m\dot{x}^2}{\tau} < 0$$

Ce qu'on peut encore écrire :

L'énergie mécanique diminue donc à cause des phénomènes d'amortissement.

• En régime pseudo périodique, les pertes relatives pendant une pseudo-période sont : . . . calculs : cf. Cours manuscrit . . .

$$-\frac{\Delta \mathcal{E}_m}{\mathcal{E}_m} = \frac{\mathcal{E}_m(t) - \mathcal{E}_m(t+T)}{\mathcal{E}_m(t)} \cong \frac{2\pi}{Q}$$

ullet ightarrow cf. Portraits de phase :

Il y a retour à la position d'équilibre stable $(x = 0, \dot{x} = 0)$ quel que soit le régime libre. On dit que ce point particulier $(x = 0, \dot{x} = 0)$ du plan de phase est un «attracteur».