Appunti di Analisi 2 Paolini - Luccardesi

Ludovico Sergiacomi a.a. 2025/2026

Indice

	3
1.1 Norme e Distanze	3
1.2 Successioni in \mathbb{R}^N	4
1.2.1 Parentesi di Topologia	4
Limiti di funzioni tra spazi metrici 2.1 Funzioni a valori reali	7 9
Funzioni continue 3.1 Compattezza	10 11

1 Funzioni in \mathbb{R}^N

 $\mathbb{R}^N = \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_{N \text{ volte}}$ è uno **spazio vettoriale**. I suoi elementi sono $x \in \mathbb{R}^N$ e si indicano con $x_i \in \mathbb{R}$ le componenti.

Abbiamo i sottoinsiemi $\Omega \subset \mathbb{R}^N \quad \Omega = \{x \in \mathbb{R}^N \mid espressione \ analitica\}.$

Possiamo scrivere le funzioni $f: \mathbb{R}^N \to \mathbb{R}^M$ in questo modo

$$f(x_1,...,x_N) \in \mathbb{R}^M = (f_1(x_1,...,x_N),...,f_M(x_1,...,x_N))$$

Def.

- $f: \mathbb{R}^N \to \mathbb{R}$ (n=1) f si dice scalare
- $f: \mathbb{R}^N \to \mathbb{R}^M$ $f \text{ si dice } \boxed{\text{vettoriale}}$
- $f: \mathbb{R}^N \to \mathbb{R}^N$ f si dice campo vettoriale

Osservazione. Le varie f_i (componenti) sono funzioni scalari.

Esempio. f(x,y,z,t)= Temperatura del punto di coordinate (x,y,z) all'istante t.

1.1 Norme e Distanze

Un concetto chiave è quello di **vicinanza** tra gli elementi di \mathbb{R}^N .

- In \mathbb{R} abbiamo il modulo |x-y|
- In \mathbb{R}^2 abbiamo $||x y|| = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$

In \mathbb{R}^N possiamo estendere la norma come segue:

Def. $\forall x \in \mathbb{R}^N$ si chiama norma euclidea

$$||x|| = \sqrt{\sum_{i=1}^{N} x_i^2}$$

Ricordiamo che la norma in uno spazio vettoriale X è una funzione $\| \| : X \to \mathbb{R}$ che rispetta le seguenti proprietà:

- 1. $||x|| \ge 0$, $||x|| = 0 \Leftrightarrow x = 0$
- 2. $\|\lambda x\| = |\lambda| \|x\| \ \forall \lambda \ \forall x$
- 3. $||x + y|| \le ||x|| + ||y||$

Possiamo verificare che la norma euclidea rispetti effettivamente le condizioni.

Def. Chiamiamo palla di raggio r centrata in O

$$B_r = \{ x \in \mathbb{R}^N \mid ||x|| < r \}$$

E se definissi la norma in un'altra maniera? Che cosa posso dire?

Def. Due norme $\| \|_A$ e $\| \|_B$ sullo stesso spazio vettoriale, sono dette equivalenti se

$$\exists c, \tilde{c} > 0 \text{ t.c. } \tilde{c} ||x||_B < ||x||_A < c||x||_B$$

Spoiler. In \mathbb{R}^N so no tutte equivalenti. In generale no.

Notazione. $\| \|_A \sim \| \|_B$

Osservazione. Per costruire le norme fa comodo il **prodotto scalare**: $x \cdot y = \sum x_i y_i \longrightarrow ||x|| = \sqrt{xx}$. Dunque il prodotto scalare induce la norma, che a sua volta induce la distanza

Def. Dato X spazio vettoriale, una distanza su X è una funzione $d: X \times X \to \mathbb{R}$ t.c.

- 1. $d(x,y) \ge 0 \quad \forall x,y \in X$
- 2. d(x,y) = d(y,x)
- 3. $d(x,y) = 0 \Leftrightarrow x = y$
- 4. $d(x,y) \le d(x,z) + d(y,z)$

Osservazione. Non è richiesta l'omogeneità per d, questo "implica" che non tutte le distanza sono indotte da norme.

Def. Dato X spazio vettorial e d una distanza, (X, d) si chiama spazio metrico.

1.2 Successioni in \mathbb{R}^N

Riprendiamo la definizione di **successione** da AM1:

Def. Una successione in X è una funzione $\mathbb{N} \to X$, di cui indichiamo l'immagine con $\{x_n\}_{n\in\mathbb{N}}$.

Def. In uno spazio metrico (X,d) una successione $\{x_n\}_{n\in\mathbb{N}}$ a valori in X, si dice che converge a $\overline{x}\in X$ se

$$\forall \varepsilon \ \exists \overline{n} \ \text{ t.c. } \ \forall n \geq \overline{n} \quad d(x_n, \overline{x}) < \varepsilon \quad \text{ cioè } \lim_{n \to \infty} d(x_n, \overline{x}) = 0.$$

1.2.1 Parentesi di Topologia

Aperti

Def. Sia (X, d) uno spazio metrico e $A \subseteq X$ un suo sottoinsieme, allora

- $x_0 \in A$ si dice interno ad A se $\exists r \in \mathbb{R}$ t.c. $B_r(x_0) \subset A$.
- $\operatorname{Int}(A) = \mathring{A} = \{x \in A \mid x \text{ è interno ad } A\}$ si dice parte interna .
- A si dice aperto se $A = \mathring{A}$.

Esempio. $A = \{(0,0)\}$ $A \neq \emptyset$ ma $\mathring{A} = \emptyset$, perché r > 0 (e non $r \geq 0$).

Esempio. Definiamo $Q=[0,1)\times [0,1),$ cioè:

Nel disegno x_1 è interno e x_2 non lo è. $\mathring{Q} = (0,1) \times (0,1) \neq Q \Rightarrow Q$ non è aperto. I punti interni hanno sempre quel dischetto che ricerchiamo, ma se prendo – ad esempio – (0, 0.5) ha sempre un po' di punti che finiscono fuori.

Proposizione 1. La palla aperta $B_r(x_0)$ è aperta. Wow! - no invece è interessante...

Dimostrazione. Preso $x \in B_r(x_0)$, x soddisfa $d(x,x_0) < r$, quindi c'è un po' di spazio tra $d(x,x_0)$ e r, all'interno del quale possiamo prendere s t.c. $d(x,x_0) + s < r$.

4

Claim: $B_s(x) \subset B_r(x_0)$ è la palla che stiamo cercando. Infatti, preso $z \in B_s(x)$, esso è caratterizzato da d(z,x) < s. Cosa sappiamo invece su $d(z,x_0)$? Che vale la disuguaglianza triangolare:

$$d(z, x_0) \le d(z, x) + d(x, x_0) < s + d(x, x_0) < r.$$

Abbiamo concluso: la palla di raggio s e centro x è contenuta nella palla aperta di partenza e questo vale per qualsiasi punto in $B_r(x)$. Dunque tutti i punti sono interni. Dunque l'insieme è aperto.

Osservazione. Funziona sempre perché non posso prendere i punti sul bordo.

Chiusi

Def. Sia (X, d) uno spazio metrico e $A \subseteq X$ un suo sottoinsieme, allora

- $x_0 \in X$ si dice punto di chiusura di A se $\forall r > 0$ $B_r(x_0) \cap A \neq \emptyset$.
- $\overline{A} = \{x \in X \mid x \text{ è punto di chiusura di } A\}$ si dice chiusura di A.
- A si dice chiuso se $A = \overline{A}$

Esempio. Riprendendo l'esempio di prima, con Q, abbiamo $\overline{Q} = [0,1] \times [0,1] \neq Q$.

In particolare, x_1 appartiene alla chiusura, x_2 no.

E se volessimo chiudere la palla aperta?

Allora scriviamo $\overline{B}_r(x_0) = \{x \in X \mid d(x, x_0) \leq r\}$: abbiamo aggiunto l'uguale.

Una caratterizzazione che si può dare di un insieme C chiuso.

Proposizione 2. Un sottoinsieme $C \subset X$ è chiuso sse il suo complementare $X \setminus C$ è aperto.

Dimostrazione. Un insieme è chiuso sse è uguale alla sua chiusura, ovvero

$$C = \{ x \in X \mid \forall r > 0 \ B_r(x) \cap C \neq \emptyset \}.$$

Per quanto riguarda il complementare, possiamo dire

$$X \setminus C = \{x \in X \mid \exists r > 0 \mid B_r(x) \cap C = \emptyset\}$$
$$= \{x \in X \mid \exists r > 0 \mid B_r(x) \subset X \setminus C\}$$

cioè $X \setminus C$ è aperto.

Nota $\$ Per convenzione, \emptyset e X sono sia aperti che chiusi.

Caratterizzazione sequenziale di chiusura

Proposizione 3. Dato (X, d) spazio metrico e $A \subset X$, allora

$$x \in \overline{A} \quad \Leftrightarrow \quad \exists \{x_n\}_{n \in \mathbb{N}} \subset A \quad t.c. \quad x_n \to x.$$

Morale: la chiusura è fatta di tutti punti che sono limiti di successioni convergenti di elementi di A.

Dimostrazione. \implies $x \in A \Rightarrow \forall r > 0 \ \exists x_r \in B_r(x) \cap A$ che dunque ha le proprietà: $x_r \in A$ e $d(x_r, x) < r$. Allora mi basta scegliere r della forma r = [successione convergente decrescente con $n \in \mathbb{N}$] – ad esempio $\frac{1}{n}$. Allora vale

$$0 \le \lim_{r \to \infty} d(x_r, x) \le \lim_{n \to \infty} \frac{1}{n} = 0$$

e quindi, per il *Teorema dei Carabinieri*, si ha che $\{x_n\}_{n\in\mathbb{N}}\to x$.

Restringo sempre di più le palle, stringendole intorno a x e scegliendo come x_r dei punti appartenenti anche ad A.

 \Leftarrow Se ho $\{x_n\}_{n\in\mathbb{N}}\subset A, x\in X, x_n\to x$, allora è vero che $\forall r>0$ $B_r(x)\cap A\neq\emptyset$? L'idea è la seguente: il fatto che la successione converga a x vuol dire che, presa una qualsiasi distanza ε da x, trovo alcuni elementi della successione a distanza minore di ε . Quindi mi basta usare come distanza il raggio di $B_r(x)$ e trovo elementi di A arbitrariamente vicini a x, ovvero x è un punto di chiusura.

$$x_n \to x$$
 rispetto a $d \Rightarrow \exists \overline{n}$ t.c. $\forall n > \overline{n}$ $d(x_n, x) < \varepsilon = r$.

Per ipotesi $x_n \in A$, quindi ne ho infiniti!

Def. (X,d) spazio metrico e $A\subset X,$ allora si chiama frontiera (o bordo) di A

$$\partial A = \{ x \in X \mid \forall r > 0 \quad B_r(x) \cap A \neq \emptyset, \quad B_r(x) \cap (X \setminus A) \neq \emptyset \}$$

cioè le varie palle di x intersecano sia l'interno che l'esterno: sono punti che appartengono sia alla chiusura di A che alla chiusura del suo complementare A^C .

Osservazione.

$$\overline{A} = \mathring{A} \ \dot{\cup} \ \partial A$$
$$= A \ \cup \ \partial A$$

Esempio. La frontiera di una palla è $\partial B_r(x_0) = \{x \in X \mid d(x, x_0) = r\}.$

Esercizio/proposizione

- \bigcap finita di aperti è aperta;
- U arbitraria di aperti è aperta;

e, passando ai complementari,

- \cap arbitraria di chiusi è chiusa;
- [] finita di chiusi è chiusa.

Osservazione. In uno spazio metrico (X,d) le relazioni insiemistiche tra la palla aperta

$$B_r(x_0) = \{ x \in X \mid d(x, x_0) < r \},\$$

la palla chiusa

$$C_r(x_0) = \{x \in X \mid d(x, x_0) \le r\},\$$

e la sfera

$$S_r(x_0) = \{x \in X \mid d(x, x_0) = r\}$$

non sono quelle intuitive che applichiamo in \mathbb{R}^N , cioè

$$\overline{B_r}(x_0) = C_r(x_0), \quad \partial B_r(x_0) = S_r(x_0).$$

In generale valgono soltanto le inclusioni:

$$\overline{B_r}(x_0) \subset C_r(x_0), \quad \partial B_r(x_0) \subset S_r(x_0).$$

Dimostrazione. La prima si dimostra osservando che: la chiusura è il più piccolo insieme chiuso che contenga la palla aperta; la palla chiusa contiene la palla aperta.

La seconda invece, deriva dal fatto che la chiusura $\overline{B_r}(x_0)$ è l'unione disgiunta tra la parte interna $B_r(x_0)$ e la frontiera, quindi $\partial B_r(x_0) = \overline{B_r}(x_0) \setminus B_r(x_0)$ e, per l'inclusione precedente, si ottiene $\partial B_r(x_0) \subset C_r(x_0) \setminus B_r(x_0) = S_r(x_0)$.

Esempio. Siamo in \mathbb{R}^N e consideriamo la distanza come segue:

$$d_{discr} = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}.$$

Allora, per un qualsiasi $x_0 \in \mathbb{R}$ vale

$$\overline{B_1}(x_0) = \{x_0\} \subsetneq \mathbb{R}^N = C_1(x_0) \tag{1}$$

$$\partial B_1(x_0) = \overline{B_1}(x_0) \setminus B_1(x_0) = \emptyset \subsetneq \mathbb{R}^N \setminus \{x_0\} = S_1(x_0) \tag{2}$$

Infatti ogni $B_1(x)$ include il solo punto x: stiamo chiedendo che la distanza sia minore di 1, quindi non può che essere 0; ma l'unico punto che dista 0 da x è il punto stesso.

Per la seconda, osserviamo che $B_1(x_0) = \{x_0\} = \overline{B_1}(x_0)$ e che la sfera di raggio 1 include tutti i punti con distanza = 1, ovvero $x \neq x_0$ e quindi è proprio $\mathbb{R}^N \setminus \{x_0\}$.

2 Limiti di funzioni tra spazi metrici

Consideriamo una funzione $f: X \to Y$ con (X, d_X) e (Y, d_Y) spazi metrici (ad esempio $f: \mathbb{R}^N \to \mathbb{R}^M$). Vogliamo definire la scrittura

$$\lim_{x \to x_0} f(x) = y_0.$$

Osserviamo che sono presenti due limiti: il primo è dato dalla convergenza delle $x \to x_0$; il secondo dalla convergenza delle $f(x) \to y_0$.

Def. Siano (X, d_X) uno spazio metrico e $A \subset X$ un suo sottoinsieme. Allora un punto generico $x_0 \in X$ si dice punto di accumulazione di A se

$$\forall r > 0 \qquad (B_r(x_0) \cap A) \setminus \{x_0\} \neq \emptyset.$$

Esempi in \mathbb{R}^2

- 1. I punti di accumulazione del disco aperto $B_r((0,0))$ e del disco chiuso sono cotituiti dal disco chiuso.
- 2. Un insieme che includa un solo punto non ha punti di accumulazione.
- 3. I punti di accumulazione del piano perforato $\mathbb{R}^2 \setminus \{(0,0)\}$ sono tutti i punti di \mathbb{R} : anche x_0 è punto di accumulazione perché, per quanto piccolo possa essere il raggio, comunque il disco interseca il resto del piano.

Def. Siano (X, d_X) e (Y, d_Y) due spazi metrici, $f: A \to Y$ una funzione, $A \subseteq X$ sottoinsieme, $x_0 \in X$ punto di accumulazione. Un punto $y_0 \in Y$ si dice limite di f per x che tende a x_0 , e si scrive $\lim_{x \to x_0} f(x) = y_0$ se

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \text{t.c.} \quad x \in A, \ 0 < d_X(x, x_0) < \delta \quad \Rightarrow \quad d_Y(f(x), y_0) < \varepsilon.$$

Osservazione. Per dare un senso alla definizione, non è necessario che $f(x_0)$ esista (ovvero $x_0 \in A$. Anche perché la richiesta $d_X(x,x_0) > 0$ lo esclude direttamente.

Si può dare una definizione equivalente di limite, come dimostra il seguente

Teorema 1 (Caratterizzazione sequenziale di limite). Siano (X, d_X) e (Y, d_Y) due spazi metrici, $f: A \to Y$ con $A \subseteq X$, $x_0 \in X$ punto di accumulazione di A. Allora sono equivalenti:

- 1. $\lim_{x \to x_0} f(x) = y_0$
- 2. se $\{x_n\}_{n\in\mathbb{N}}\subset A\setminus\{x_0\}\ e\ x_n\xrightarrow{d_X}x_0\ allora\ f(x_n)\xrightarrow{d_Y}y_0$.

Dimostrazione.

 $[1. \Rightarrow 2.]$ Sia $\{x_n\}_{n\in\mathbb{N}}\subset A\setminus\{x_0\}$ una successione convergente ad x_0 . Vogliamo dimostrare che,

$$\forall \varepsilon > 0 \quad \exists \overline{n} \in \mathbb{N} \text{ t.c. } \forall n \geq \overline{n} \quad d_Y(f(x_n), y_0) < \varepsilon.$$

Sia $\delta(\varepsilon) > 0$ un numero reale associato a ε secondo le condizioni dell'ipotesi (1), ovvero $0 < d_X(x, x_0) < \delta(\varepsilon) \Rightarrow d_Y(f(x), y_0) < \varepsilon$. L'ipotesi (2) ci dice che

$$\exists \overline{n} \in \mathbb{N} \text{ t.c. } \forall n \geq \overline{n} \quad 0 < d_X(x_n, x_0) < \delta(\varepsilon)$$

(la distanza non può mai essere nulla, perché $x_n \neq x_0$). Quindi possiamo inserire x_n soddisfa le condizioni e possiamo scrivere $0 < d_X(x_n, x_0) < \delta(\varepsilon) \Rightarrow d_Y(f(x_n), y_0) < \varepsilon$, come volevasi dimostrare.

 $[2. \Rightarrow 1.]$ Devo dimostrare che, per ogni $\varepsilon > 0$ esiste un δ , come nella definizione di *limite* scritta sopra. Supponiamo per assurdo che (1) non valga; allora

$$\exists \varepsilon > 0 \text{ t.c. } \forall \delta > 0 \quad \exists x_{\delta} \text{ t.c. } 0 < d_X(x_{\delta}, x_0) < \delta, \text{ ma } d_Y(f(x_{\delta}), y_0) \geq \varepsilon.$$

Scegliamo una successione di $\delta = \frac{1}{n}$, $n \in \mathbb{R}$ e chiamiamo x_n i corrispondenti x_{δ} . Allora, applicando l'ipotesi (2), otteniamo che

$$d_X(x_n,x_0)<\frac{1}{n},$$
 cioè $x_n\to x_0$, però $d_Y(f(x_n),y_0)\geq \varepsilon,$

che contraddice $f(x_n) \to y_0$.

Osservazione. Per dimostrare che un limite esiste, dobbiamo:

- 1. esibire un candidato limite y_0 , trovato ad esempio analizzando la convergenza di $f(\hat{x})_n$ in Y, dove \hat{x}_n è una successione particolare di elementi di $A \setminus \{x_0\}$ che converge a x_0 ;
- 2. dimosatrare che il limite è y_0 per ogni successione scelta, non solo quella particolare che abbiamo analizzato.

Per dimostrare, invece, che un limite non esiste, dobbiamo esibire due successioni che convergono entrambe a x_0 in X, ma le cui immagini convergono a due limiti distinti y_1 e y_2 in Y.

2.1 Funzioni a valori reali

Nel caso in cui lo spazio metrico di arrivo sia \mathbb{R} , valgono le proprietà dei limiti viste in AM1. Ad esempio: siano $f, g: A \to \mathbb{R}$ con $A \subset X$ tali che

$$\lim_{x \to x_0} f(x) = \ell_f \in \mathbb{R}, \qquad \lim_{x \to x_0} g(x) = \ell_g \in \mathbb{R}.$$

Allora vale

$$\lim_{x \to x0} (f+g)(x) = \ell_f + \ell_g, \qquad \lim_{x \to x_0} (f \cdot g)(x) = \ell_f \cdot \ell_g,$$

in oltre se $\ell_q \neq 0$,

$$\lim_{x \to x_0} \frac{f}{g}(x) = \frac{\ell_f}{\ell_g}.$$

Vediamo degli esempi di calcolo del limite.

Esempio in cui esiste Data la funzione

$$f(x,y) := \frac{xy^2}{x^2 + y^2}$$

calcolarne i limiti (se esistono) nei punti di accumulazione.

Il dominio è $\mathbb{R} \setminus \{(0,0)\}$ e punti di accumulazioni sono tutti i punti di \mathbb{R}^2 . Per calcolare il limite, distinguiamo i due casi $(x,y) \neq (0,0)$ e (x,y) = (0,0).

Nel primo caso possiamo utilizzare il fatto che

$$(x,y) \to (x_0,y_0) \Leftrightarrow \begin{cases} x \to x_0 \\ y \to y_0 \end{cases}$$

per dedurre che

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \frac{x_0 y_0^2}{x_0^2 + y_0^2},$$

che può essere calcolato a seconda dei vari punti (x_0, y_0) .

Nel caso in cui, invece, il punto limite sia O, non possiamo utilizzare l'approccio precedente: verrebbe una forma indeterminata 0/0. Consideriamo allora una particolare traiettoria di punti $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ tali che $(x,y) \to (0,0)$, ad esempio (x,0) con $x \to 0$. Lungo questa traiettoria la funzione si annulla; quindi, se il limite esiste, è necessariamente 0. Dimostriamo che sia effettivamente così:

$$0 \le |f(x,y) - 0| = \left| \frac{xy^2}{x^2 + y^2} \right| \le |x| \frac{|xy|}{x^2 + y^2} \le \frac{|x|}{2},$$

dove il primo \leq è dovuto al fatto che $|x| \geq |y|$ e per il secondo si usa

$$(a \pm b)^2 \ge 0 \quad \Rightarrow \quad |ab| \le \frac{a^2 + b^2}{2}.$$

Dunque, poiché il membro destro tende a 0, quando $x \to 0$, abbiamo dimostrato (*Carabinieri*) che il limite di f, per $(x,y) \to (0,0)$ è 0.

Coordinate polari Un altro approccio possibile è l'utilizzo delle coordinate polari: indichiamo con $\rho \geq 0$ la coordinata radiale e con $\theta \in [0, 2\pi]$ la coordinata angolare, allora $(x, y) = \rho(\cos \theta + \sin \theta)$ con $\rho = \|(x, y)\|$. La convergenza a (0, 0) di un punto del piano è equivalente a $\rho \to 0$, infatti:

$$(x,y) \to (0,0) \quad \Leftrightarrow ||(x,y)|| \to 0 \quad \Leftrightarrow \rho \to 0.$$

Può essere vantaggioso perché ci riconduciamo a un limite con una sola variabile. Bisogna però fare attenzione: su θ non abbiamo nessun controllo. Calcoliamo il limite di prima:

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^2} = \lim_{\rho \to 0} \rho \cos \theta (\sin \theta)^2 = 0.$$

Vale 0 poiché è la moltiplicazione tra un fattore infinitesimo ρ e un fattore limitato $\cos \theta (\sin \theta)^2$.

Se il punto limite è diverso dall'origine, basta utilizzare un sistema di coordinate diverso, centrato in quel punto.

Esempio in cui non esiste Determinare (se esiste)

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}.$$

Lungo la traiettoria (x,0) con $x \to 0$, la funzione vale costantemenete 0; lungo la traiettoria (x,x) con $x \to 0$, la funzione vale costantemente $\frac{1}{2}$. Abbiamo trovato due traiettorie di punti diversi dall'origine, che tendono a O, lungo cui f abbia limiti diversi. Dunque non esiste.

Visto in coordinate polari, avremmo avuto

$$\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}=\lim\cos\theta\sin\theta,$$

che non esiste, visto che non possiamo dire nulla su θ .

3 Funzioni continue

Def. Siano (X, d_X) e (Y, d_Y) spazi metrici e sia $f: A \to Y$ $A \subseteq X$ una funzione. Allora f si dice continua in $x_0 \in A$ se

$$\forall \varepsilon \; \exists \delta \; \text{t.c.} \; x \in A, d_X(x, x_0) < \delta \; \Rightarrow d_Y(f(x), f(x_0)) < \varepsilon.$$

Inoltre, f si dice continua in A se è continua in ogni punto $x \in A$.

Def. Se x_0 è anche punto di accumulazione in A, la continuità è uguale alla caratterizzazione del limite:

$$f$$
 continua in $x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0) \Leftrightarrow \forall \{x_n\} \subset A \quad x_n \to x_0 \Rightarrow f(x_n) \to f(x_0)$.

Proposizione 4. Siano f, g funzioni da spazi metrici in spazi metrici come rappresentato dal seguente diagramma

$$(X, d_X) \xrightarrow{f} (Y, d_Y) \xrightarrow{g} (Z, d_Z).$$

Allora, se f e g sono continue, anche $g \circ f$ è continua.

Dimostrazione. Fisso $x_0 \in \mathbb{R}^n$, se $x^{(n)} \to x_0$, abbiamo dimostrato che vale $x_i^{(n)} \to x_i \ \forall i = 1, \dots, n$. Quindi tutte le componenti sono funzioni continue e, di conseguenza, tutte le somme e i prodotti lo sono.

Caratterizzazione alternativa (topologica)

Teorema 2. Data una funzione $f:(X,d_X)\to (Y,d_Y)$, allora sono equivalenti i seguenti fatti:

- 1. f continua in X;
- 2. $\forall U \subseteq Y \text{ aperto vale } f^{-1}(U) \subseteq X \text{ è aperto};$
- 3. $\forall C \subseteq Y \ chiuso \ vale \ f^{-1}(C) \subseteq X \ \grave{e} \ chiuso.$

Dimostrazione. Tre inclusioni utili

$$\forall A \subset X \quad f^{-1}(f(A)) \supset A \tag{I_1}$$

$$\forall E \subset Y \quad f(f^{-1}(E)) \subset E \tag{I_2}$$

$$\forall E \subset Y \quad X \setminus f^{-1}(E) = f^{-1}(Y \setminus E) \tag{I_3}$$

Nota Qui si parla di immagini e controimmagini, non di funzioni inverse.

 $[1. \Rightarrow 2.]$ Partendo da U aperto in Y voglio far vedere che $f^{-1}(U)$ è aperto in X.

Sia $x_0 \in f^{-1}(U)$ e $y_0 = f(x_0)$ la sua immagine. Allora, si può trovare un $\varepsilon > 0$, per cui $B_{\varepsilon}^Y(y_0) \subset U$, poiché U è aperto.

Per ipotesi di continuità

$$\exists \delta \text{ t.c. } d_X(x, x_0) < \delta \Rightarrow d_Y(f(x), f(x_0)) < \varepsilon.$$

E questo vale per tutti gli x a distanza minore di δ , ovvero

$$f\left(B_{\delta}^{X}(x_{0})\right) \subset B_{\varepsilon}^{Y}(y_{0}) \subset U$$

$$\Rightarrow f^{-1}(U) \supset f^{-1}\left(B_{\varepsilon}^{Y}(y_{0})\right) \supset f^{-1}\left(f\left(B_{\delta}^{X}(x_{0})\right)\right) \stackrel{I_{1}}{\supset} B_{\delta}^{X}(x_{0}).$$

Quindi $f^{-1}(U)$ è contenuto in un aperto ed è, a sua volta, aperto.

 $[2. \Rightarrow 1.]$ Partiamo da un insieme aperto in Y, la cui controimmagine è aperta e dobbiamo verificare la continuità di f.

Prendiamo $x_0 \in X$ e $y_0 = f(x_0)$. Fissato un $\varepsilon > 0$, prendo la palla $B_{\varepsilon}^Y(y_0)$ e, per ipotesi, so che $f^{-1}\left(B_{\varepsilon}^Y(y_0)\right)$ è aperto in X. Ciò significa che $\exists \delta$ t.c. $B_{\delta}^X(x_0) \subset f^{-1}\left(B_{\varepsilon}^Y(y_0)\right)$. Allora, usando I_2 , otteniamo

$$f\left(B_{\delta}^{X}(x_{0})\right) \subset f\left(f^{-1}\left(B_{\varepsilon}^{Y}(y_{0})\right)\right) \subset B_{\varepsilon}^{Y}(y_{0}).$$

Ovvero: presi dei punti δ -vicini a x_0 , allora le loro immagini sono ε -vicine a y_0 , cioè f è continua.

 $[2. \Rightarrow 3.]$ Preso C chiuso in Y, allora il suo complementare $Y \setminus C$ sarà aperto. Per ipotesi (ovvero il punto 2.) abbiamo che $f^{-1}(Y \setminus C)$ è aperto in X. Sfruttando I_3 abbiamo

$$f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$$
 aperto .

Di conseguenza, il suo complementare $X \setminus (X \setminus f^{-1}(C)) = f^{-1}(C)$ è chiuso.

 $[3. \Rightarrow 2.]$ Analogamente,

$$U \subset Y$$
 aperto $\Rightarrow Y \setminus U$ chiuso $\stackrel{hp3}{\Rightarrow} f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$ chiuso $\Rightarrow X \setminus (X \setminus f^{-1}(U)) = f^{-1}(U)$ aperto.

Corollario 1. La composizione di funzioni continue è continua.

Dimostrazione. Prese $f: X \to Y$ e $g: Y \to Z$

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$
$$X \xrightarrow{g \circ f} Z$$

e un insieme $U \subset Z$ aperto, allora vale

$$(g\circ f)^{-1}(U)=f^{-1}\left(g^{-1}(U)\right)\underset{g\text{ cont.}}{=}f^{-1}(\text{ aperto })\underset{f\text{ cont.}}{=}\text{aperto }\Rightarrow g\circ f\text{ continua}.$$

3.1 Compattezza

Def. Sia (X, d) spazio metrico, $A \subset X$ si dice compatto (per successioni) se

$$\forall \{x_n\}_{n\in\mathbb{N}} \subset A \quad \exists \{x_{n_k}\}_{n\in\mathbb{N}} \text{ t.c. } x_{n_k} \to x_0 \in A.$$

Def. (X, d) spazio metrico, $A \subset X$, $f: A \to \mathbb{R}$, allora

- $x_M \in A$ si dice punto di massimo assoluto di f su A se $f(x) \leq f(x_M) \ \forall x \in X$;
- $x_m \in A$ si dice punto di minimo assoluto di f su A se $f(x) \ge f(x_m) \ \forall x \in X$;

Teorema 3 (Weierstrass). Sia (X, d) spazio metrico, $A \subset X$ e $f : A \to \mathbb{R}$.

Se f è continua in A e A è sequenzialmente compatto, allora f ha massimo e minimo assoluti in A.

Dimostrazione. Dimostro che esiste il massimo.

Sia $\ell = \sup_A f$, in particolare $\exists \{x_n\}_{n \in \mathbb{N}} \subset A$ t.c. $f(x_n) \to \ell$. Inoltre, siccome A è compatto, c'è una sottosuccessione $\{x_{n_k}\} \to x_0 \in A$.

Osserviamo che $f(x_{n_k})$ è una sottosuccessione di $f(x_n)$ e, di conseguenza, essa tende a ℓ ; per giunta, data la continuità di f, vale $f(x_{n_k}) \to f(x_0)$. Concludiamo dicendo che, per l'unicità del limite, $f(x_0) = \ell$ e quindi il sup è in realtà il massimo cercato.

La dimostrazione è analoga per il minimo (utilizzo l'inf).

Caratterizzazione dei sequenzialmente compatti

Def. A si dice limitato se $\exists R > 0$ t.c. $A \subset B_R(0)$.

Teorema 4. In $(\mathbb{R}^N, \|\cdot\|)$ i sequenzialmente compatti sono tutti e soli i **chiusi** e **limitati**.

Dimostrazione. [compatto \Rightarrow chiuso] Dato $A \subset \mathbb{R}^N$, considero $\overline{x} \in \overline{A} \subset \mathbb{R}^N$. Allora, per definizione di chiusura, $\exists \{x_n\}_{n \in \mathbb{N}} \subset A$ t.c. $x_n \to \overline{x}$; uso l'ipotesi per estrarre una sottosuccessione convergente a un certo $x \in A$. Di conseguenza, anche $x_n \to x$, ovvero $\overline{x} \in A$. Quindi $\overline{A} \subset A \Rightarrow \overline{A} = A$, cioè A è chiuso.

[compatto \Rightarrow limitato] Supponiamo per assurdo che non si riesca a trovare un raggio per costruire una palla che contenga tutto A.

$$\nexists R \text{ t.c. } A \subset B_R(0) \Rightarrow \forall n \in \mathbb{N} \exists x_n \in A \text{ t.c. } x_n \notin B_n(0).$$

Considero allora la successione degli x_n , $\{x_n\}_{n\in\mathbb{N}}\subset A$ e osservo che vale $||x_n||>n$ (visto che non sono all'interno delle rispettive palle).

Dato che A è sequenzialmente compatto, $\exists \{x_{n_k}\} \to x_0$. Allora

$$n < \|x_{n_k}\| = \|x_0 + x_{n_k} - x_0\| \le \|x_0\| + \|x_{n_k} - x_0\| < \varepsilon.$$
fissato tende a 0

Che è assurdo: n di certo non è limitato. Il che conclude.

[viceversa] Ho A chiuso e limitato e voglio dimostrare che è compatto. Bisogna esibire una successione e una sua sottosuccessione che converga a un valore in A.

Consideriamo allora la generica successione $\{x^{(n)}\}_{n\in\mathbb{N}}\subset A$. Poiché A è limitato, vale $\|(x^{(n)}\|\leq R)$. Inoltre, anche ogni singola coordinata è limitata, ovvero $x_i^{(n)}\in [-R,R]$, per ogni $i=1,\ldots,N$.

Consideriamo i=1: poiché la successione è limitata, possiamo estrarre (sfruttando fatti noti da AM1) una sottosuccessione, diciamo

$$\{x_1^{(n_k)}\}_{k\in\mathbb{N}},$$

convergente a x_1 .

Consideriamo adesso i=2 e, invece di partire dalla successione principale, per estrarre una sottosuccessione, partiamo da quella appena definita: in questo modo ci assicuriamo che gli indici delle sottosuccessioni siano in comune; altrimenti otterremmo delle sottosuccessioni, per ogni coordinata, sì convergenti, ma non sugli stessi indici: a quel punto non le potremmo mettere insieme per avere una sottosuccesione di x, le cui coordinate siano i vari x_i .

Quindi abbiamo $\{x_2^{(n_k)}\}_{k\in\mathbb{N}}$ da cui estraiamo

$$\{x_2^{(n_k')}\}_{k'\in\mathbb{N}},$$

che convergerà a un certo x_2 .

Proseguiamo in questo modo, estraendo di volta in volta una sottosuccessione da quella del passaggio precedente.

Scriviamo gli indici dell'ultima di queste come n_h $h \in \mathbb{N}$. Notiamo che questi indici sono comuni a tutte le N sottosuccessioni che abbiamo scelto. Quindi vale

$$\{x_i^{(n_h)}\}_{h\in\mathbb{N}} \stackrel{h\to\infty}{\longrightarrow} x_i \quad \forall i=1,\dots N.$$

Consideriamo infine $x=(x_1,\ldots,x_N)$, come limite della sottosuccessione $\{x^{(n_h)}\}\subset\{x^{(n)}\}$; poiché A è chiuso, sfruttando la caratterizzazione sequenziale di chiusura, risulta $x\in A$. Ed ecco dimostrata la compattezza di A: data una generica successione in A abbiamo costruito una sottosuccessione, convergente a un valore in A.