

Robotics

Legged Locomotion

Why legs, Raibert hopper, statically stable walking, zero moment point, human walking, compass gait, passive walker

Marc Toussaint FU Berlin

Legged Locomotion

• Why legs?

Bacterial Flagellum: (rotational "motors" in Biology?)

Legged Locomotion

- Why legs?
 - Human/Animal Locomotion Research
 - Potentially less weight
 - Better handling of rough terrains
 (climbing, isolated footholds, ladders, stairs)

Rolling vs walking

One-legged locomotion

- Three separate controllers for:
 - hopping height
 - horizontal velocity (foot placement)
 - attitude (hip torques during stance)
- Each a simple (PD-like) controller

Raibert et al.: Dynamically Stable Legged Locomotion. 1985 http://dspace.mit.edu/handle/1721.1/6820

Tedrake: Applied Optimal Control for Dynamically Stable Legged Locomotion. PhD thesis (2004).

http://groups.csail.mit.edu/robotics-center/public_papers/Tedrake04b.pdf

Biped locomotion

- Walking vs Running
 Walking := in all instances at least one foot is on ground
 Running := otherwise
- 2 phases of Walking
 - double-support phase (in Robotics often statically stable)
 - single-support phase (statically instable)

Asimo

Statically Stable Walk

You could rest (hold pose) at any point in time and not fall over

CoG = center of gravity of all body masses support polygon = hull of foot contact points

Try yourself: Move as slow as you can but make normal length steps...

- Vukobratovic's view on walking, leading to ZMP ideas:
 "Basic characteristics of all biped locomotion systems are:
 - (i) the possibility of rotation of the overall system about one of the foot edges caused by strong disturbances, which is equivalent to the appearance of an unpowered (passive) DOF,
 - (ii) gait repeatability (symmetry), which is related to regular gait only
 - (iii) regular interchangeability of single- and double-support phases"

Vukobratovic & Borovac: Zero-moment point—Thirty five years of its life. International Journal of Humanoid Robotics 1, 157-173, 2004.

http://www.cs.cmu.edu/~cga/legs/vukobratovic.pdf

- "ZMP is defined as that point on the ground at which the net moment of the inertial forces and the gravity forces has no component along the horizontal axes." (Vukobratovic & Borovac, 2004)
- f_i = force vector acting on body i (gravity plus external) w_i = angular vel vector of body i I_i = interia tensor ($\in \mathbb{R}^{3 \times 3}$) of body i $r_i = p_i p_{\mathsf{ZMP}}$ = relative position of body i to ZMP
- Definition: p_{ZMP} is the point on the ground for which

$$\sum_{i} r_{i} \times f_{i} + I_{i} \dot{w}_{i} + w_{i} \times I_{i} w_{i} \stackrel{!}{=} (0, 0, \star)^{\top}$$

See also: Popovic, Goswami & Herr: *Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications.* International Journal of Robotics Research 24(12), 2005.

http://www.cs.cmu.edu/~cga/legs/Popovic_Goswami_Herr_IJRR_Dec_2005.pdf

- If the ZMP is outside the support polygon → foot rolls over the edge (presumes foot is a rigid body, and non-compliant control)
- Locomotion is dynamically stable if the ZMP remains within the foot-print polygons.
- Computing the ZMP in practise:
 - either exact robot model
 - or foot pressure sensors

Zero Moment Point – example

 combine ZMP with 3D linear inverted pendulum model and model-predictive control

HRP-2 stair climbing

Kajita et al.: Biped Walking Pattern Generation by using Preview Control of Zero-Moment Point. ICRA 2003. http://eref.uqu.edu.sa/files/eref2/folder1/biped_walking_pattern_generation_by_usin_53925.pdf

ZMP Summary

- ZMP is the "rescue" for conventional methods:
 - ZMP-stability \rightarrow the robot can be controlled as if foot is "glued" (virtually) to the ground!
 - The whole body behaves like a "conventional arm"
 - Can accellerate \ddot{q} any DoF \rightarrow conventional dynamic control fully actuated system

Limitations:

- Humans don't use ZMP stability, we allow our feet to roll (toe-off, heel-strike: ZMP at edge of support polygon)
- Can't describe robots with point feet (walking on stilts)

Models of human bipedal locomotion

The following illustrations are from:

McMahon: Mechanics of Locomotion. IJRR 3:4-28, 1984

http://www.cs.cmu.edu/~cga/legs/mcmahon1.pdf http://www.cs.cmu.edu/~cga/legs/mcmahon2.pdf

Walking research from Marey 1874:

following Saunders, Inman & Eberhart (1953)

1. Compass Gait:

following Saunders, Inman & Eberhart (1953)

2. Pelvic Rotation:

following Saunders, Inman & Eberhart (1953)

3. Pelvic Tilt:

following Saunders, Inman & Eberhart (1953)

4. Stance Knee Flexion:

following Saunders, Inman & Eberhart (1953)

5. Stance Ankle Flextion:

following Saunders, Inman & Eberhart (1953)

6. Pelvis Lateral Displacement:

Models of human bipedal locomotion

- Human model with 23 DoFs, 54 muscles
 - Compare human walking data with model
 - Model: optimize energy-per-distance
 - Energy estimated based on metabolism and muscle heat rate models

Anderson & Pandy: *Dynamic Optimization of Human Walking*. Journal of Biomechanical Engineering 123:381-390, 2001.

http://e.guigon.free.fr/rsc/article/AndersonPandy01.pdf Anderson & Pandy: *Static and dynamic optimization solutions for gait are practically equivalent.* Journal of Biomechanics 34 (2001) 153-161.

http://www.bme.utexas.edu/faculty/pandy/StaticOptWalking2001.pdf

Models of human bipedal locomotion

- Suggest different principles of human motion:
 - passive dynamics (Compass Gait) \leftrightarrow underactuated system
 - modulation of basic passive dynamics
 - Energy minimization

Passive dynamic walking: Compass Gait

Basic 2D planar model of the Compass Gait:

The pose is described by $q = (\theta_s, \theta_{ns})$, the state by (q, \dot{q})

Goswami, Thuilot & Espiau: A study of the passive gait of a compass-like biped robot: symmetry and chaos. International Journal of Robotics Research 17, 1998. http://www.ambarish.com/paper/COMPASS_IJRR_Goswami.pdf

Passive dynamic walking: Compass Gait

• Swing phase has analytic equations of motions $M(q)\ddot{q}+C(q,\dot{q})\dot{q}+G(q)=0$ but can't be solved analytically...

• Phase space plot of numeric solution:

Passive walker examples

compass gait simulation controlled on a circle passive walker

Minimally actuated: Minimal Control on rough terrain

Impact Models in the Compass Gait

- Switch between two consecutive swing phases: depends on slope!
- Typical assumptions made in simulation models:
 - The contact of the swing leg with the ground results in no rebound and no slipping of the swing leg.
 - At the moment of impact, the stance leg lifts from the ground without interaction.
 - The impact is instantaneous.
 - The external forces during the impact can be represented by impulses.
 - The impulsive forces may result in an instantaneous change in the velocities, but there is no instantaneous change in the configuration.
 - The actuators cannot generate impulses and, hence, can be ignored during impact.

Westervelt, Grizzle & Koditschek: *Hybrid Zero Dynamics of Planar Biped Walkers*. IEEE Trans. on Automatic Control 48(1), 2003.

http://repository.upenn.edu/cgi/viewcontent.cgi?article=1124&context=ese_papers

Implausibility of the stiff Compass Gait leg

Geyer, Seyfarth & Blickhan: Compliant leg behaviour explains basic dynamics of walking and running. Proc. Roy. Soc. Lond. B, 273(1603): 2861-2867, 2006. http://www.cs.cmu.edu/~cga/legs/GeyerEA06RoySocBiolSci.pdf

Learning to walk in 20 Minutes

- Policy Gradient method (Reinforcement Learning) Stationary policy parameterized as linear in features $u=\sum_i w_i \phi_i(q,\dot{q})$
- Problem: find parameters w_i to minimize expected costs cost = mimick (q,\dot{q}) of the passive down-hill walker at "certain point in cycle"

Learning To Walk

Tedrake, Zhang & Seung: Stochastic policy gradient reinforcement learning on a simple 3D biped. IROS, 2849-2854, 2004.

http://groups.csail.mit.edu/robotics-center/public_papers/Tedrake04a.pdf

Summary

- ZMP type walking was successful (ASIMO, HRP-2, etc), but limited
- Future types of walking:
 - Exploit passive dynamics, cope with *underactuation*
 - Follow some general optimiality principle (but real-time!)
 - Learn (esp. Reinforcement Learning)
 - Compliant hardware! (controllable elasticity & damping)
- Recommended reading: Tedrake: Underactuated Robotics: Learning, Planning, and Control for Efficient and Agile Machines. Course Notes for MIT 6.832

www.cs.berkeley.edu/~pabbeel/cs287-fa09/readings/Tedrake-Aug09.pdf

Finally, multi-legged locomotion

Finally, multi-legged locomotion

http://www.bostondynamics.com/robot_rise.html