## ROIL: Robust Offline Imitation Learning

Gersi Doko<sup>1</sup>, Guang Yang<sup>2</sup>, Daniel S. Brown<sup>2</sup> Marek Petrik<sup>1</sup>

<sup>1</sup>University of New Hampshire, <sup>2</sup>University of Utah

#### Summary

#### Motivation

- ► Compute policies that are robust to parameter uncertainty is very important in many domains, like health care, inventory control or finance.
- ► Seek policies that maximize the expected return over a distribution of MDP models

#### Limitations of existing methods

- ightharpoonup Reliance on  $\hat{u}_e$  leads to covariate shift for off-policy datasets.
- $\triangleright$  No guarantees of policy convergence to  $u_e$ .

#### Our contributions

- ▶ New algorithm for robust offline imitation learning.
- Guaranteed convergence to the optimal policy for tabular domains.
- ▶ Flexibility to define the reliance on  $\hat{u}_e$ .

## Markov Decision Process (MDP)



# Transition probability p: p( , , , ) = 1 Reward function r: r( , , ) = 100

## (1111 )



#### Multi-model Markov Decision Processes (MMDPs)



 $\mathcal{M} = \{1, 2\}, \lambda = \{\lambda_1, \lambda_2\}, \mathcal{S} = \{\textit{mild}, \textit{moderate}, \textit{severe}\}, \mathcal{A} = \{\textit{A}, \textit{B}\}$ 

► Mean return across the uncertain true models

$$\rho(\pi) = \mathbb{E}^{\lambda} \left[ \mathbb{E}^{\pi, p^{\tilde{m}}, \mu} \left[ \sum_{t=1}^{T} r_{t}^{\tilde{m}}(\tilde{s}_{t}, \tilde{a}_{t}) \mid \tilde{m} \right] \right]$$
(1).

ightharpoonup Optimal policy  $ho^*$ 

$$\rho^* = \max_{\pi \in \Pi} \rho(\pi).$$

### Prior Work: Weight-Select-Update (WSU)

#### **WSU Approximation Algorithm**

**Input:** MMDPs, Model weights →

**Output:**  $\pi = (\pi_1, \dots, \pi_T)$ 

- In Initialize  $v^\pi_{T+1,m}(s_{T+1})=0, orall m\in\mathcal{M}$
- 2. For t = T, T 1, ..., 1 do
  - $\pi_t(s_t) \in \mathop{
    m arg\,max}_{a \in \mathcal{A}} \sum_{m \in \mathcal{M}} langle_{h_m} \cdot q_{t,m}^\pi(s_t, a), \quad orall s_t \in \mathcal{S}.$
- 4.  $v_{t,m}^{\pi}(s_t) = r_t^m(s_t, \pi(s_t)) + \sum_{s_{t+1} \in \mathcal{S}} p_t^m(s_{t+1} \mid s_t, \pi(s_t)) \cdot v_{t+1,m}^{\pi}(s_t+1), \forall m \in \mathcal{M}$
- 5. end for

## MMDP Policy Gradient

- Main idea: Take a coordinate ascent perspective to adjust model weights iteratively.
- ▶ **Definition 4.1** An *adjustable weight* for each  $m \in \mathcal{M}$ ,  $\pi \in \Pi$ ,  $t \in \mathcal{T}$ , and  $s \in \mathcal{S}$  is

$$b_{t,m}^{\pi}(s) = \mathbb{P}[\tilde{m}=m, \tilde{s}_t=s],$$

where  $S_0 \sim \mu$ ,  $\tilde{m} \sim \lambda$ , and  $\tilde{s}_1, \ldots, \tilde{s}_T$  are distributed according to  $p^{\tilde{m}}$  of policy  $\pi$ .

▶ **Theorem 4.1**: Gradient of  $\rho$  in Eq. (1) for each  $t \in \mathcal{T}$ ,  $\hat{s} \in \mathcal{S}$ ,  $\hat{a} \in \mathcal{A}$ , and  $\pi \in \Pi_R$  is

$$rac{\partial 
ho(\pi)}{\partial \pi_t(\hat{\pmb s},\hat{\pmb a})} \; = \; \sum_{m\in\mathcal{M}} b^\pi_{t,m}(\hat{\pmb s}) \cdot q^\pi_{t,m}(\hat{\pmb s},\hat{\pmb a}) \, ,$$

where q is state-action value function and b is an adjustable weight

- **Corollary 4.2** For any  $\bar{\pi} \in \Pi$  and  $t \in \mathcal{T}$ , function  $\pi_t \mapsto \rho(\bar{\pi}_1, \dots, \pi_t, \dots, \bar{\pi}_T)$  is *linear*.
- Linearity implies that we can solve the maximization over  $\pi_t(s)$  as

$$\pi^n_t(s) \in rg \max_{a \in \mathcal{A}} \sum_{m \in \mathcal{M}} b^{\pi^{n-1}}_{t,m}(s) \cdot q^{\pi^n}_{t,m}(s,a).$$

#### Coordinate Ascent Dynamic Programming (CADP)

- ▶ Main idea: Combine coordinate ascent method and DP to solve MMDPs.
- $\triangleright$  Corresponds to: Replace the fixed model weights  $\lambda_m$  in WSU by adjustable weights  $b_{t,m}^{\pi}$
- ▶ Blue dotted rectangle is to compute an initial policy (for example by WSU, MVP)



#### Related Algorithms

- ► Prior MMDP algorithms: WSU and MVP
- ► Gradient-based MMDP methods: Mirror and Gradient
- ► Thompson sampling-based algorithms: MixTS
- ► POMDP formulations: QMDP and POMCP

#### Simulation Results: Pest Control

- ightharpoonup Time horizon T=50, Domain: Pest control simulation
- ▶ Below figure: mean returns of CADP with different initial policies.



- ► Left figure: mean returns of algorithms, and right figure: runtimes of algorithms.
- ► Marker X: no single policy available or runtime is greater than 900 minutes



#### Simulation Results: Other Domains

 $\blacktriangleright$  Mean returns  $\rho(\pi)$  on the test set of policies  $\pi$  computed by each algorithm

| <b>Algorithm</b> | RS     |        | POP    |        | POPS   |        | INV    |        | HIV   |       |
|------------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|
|                  | T = 50 | T =150 | T = 5 | T =20 |
| CADP             | 204    | 207    | -361   | -368   | -1067  | -1082  | 323    | 350    | 33348 | 42566 |
| WSU              | 203    | 206    | -542   | -551   | -1915  | -1932  | 323    | 349    | 33348 | 42564 |
| MVP              | 201    | 204    | -704   | -717   | -2147  | -2179  | 323    | 350    | 33348 | 42564 |
| Mirror           | 181    | 183    | -1650  | -1600  | -3676  | -3800  | 314    | 345    | 33348 | 42566 |
| Gradient         | 203    | 206    | -542   | -551   | -1915  | -1932  | 323    | 349    | 33348 | 42564 |
| MixTS            | 167    | 176    | -1761  | -1711  | -2857  | -3016  | 327    | 350    | 293   | -1026 |
| QMDP             | 190    | 183    | -      | -      | -      | -      | -      | -      | 30705 | 39626 |
| POMCP            | 58     | 64     | -      | -      | -      | -      | -      | -      | 25794 | 30910 |
| Oracle           | 210    | 213    | -168   | -172   | -882   | -894   | 332    | 360    | 40159 | 53856 |