

ME613 - Análise de Regressão

Parte 9

Benilton S Carvalho & Rafael P Maia - 2S2020

Modelo de Regressão Polinomial

Introdução

Podemos considerar funções polinomiais como um caso particular do modelo de regressão linear já visto.

Por exemplo, quando temos uma única variável preditora, podemos escrever Y como um função polinomial de X de grau q.

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_2 X^q + \varepsilon$$

Regressão Polinomial - Multicolinearidade

Em regressão polinomial a matriz desenho do modelo ${f X}$ é formada por colunas que são potências de uma mesma variável;

Essa construção implica no mau condicionamento da matriz, ou seja, na quase dependência linear de suas colunas;

Uma medida corretiva consiste em usar os dados centrados (ou seja, substituir X por $X_*=X-ar{X}$).

Exemplo: Concentração de madeira dura em celulose e força de tração do papel Kraft

Padronizando a variável X

Correlação entre X, X^2 , X^3 , X^4

```
## x x2 x3 x4

## x 1.000 0.970 0.921 0.874

## x2 0.970 1.000 0.987 0.961

## x3 0.921 0.987 1.000 0.993

## x4 0.874 0.961 0.993 1.000
```

Seja
$$X_* = X - ar{X}$$

Correlação entre X_st , X_st^2 , X_st^3 , X_st^4

```
## x_c x_c2 x_c3 x_c4

## x_c 1.000 0.297 0.910 0.399

## x_c2 0.297 1.000 0.424 0.948

## x_c3 0.910 0.424 1.000 0.574

## x_c4 0.399 0.948 0.574 1.000
```


Ajuste regressão linear simples

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.18421 2.71075 12.61061 0.00000
## x c 1.77099 0.64781 2.73379 0.01414
```


Quantis teóricos da distr. normal padrão

Ajuste polinômio grau 2

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 45.294973 1.482873 30.54542 0
## x_c 2.546344 0.253839 10.03134 0
## x c2 -0.634549 0.061788 -10.26973 0
```


Concentração de madeira dura padronizada

Quantis teóricos da distr. normal padrão

Ajuste polinômio grau 3

```
Estimate Std. Error
                                    t value Pr(>|t|)
##
## (Intercept) 44.97556
                           0.86903
                                    51.75362
                                                0e+00
                4.33939
                                   12.36373
                                                0e+00
## x_c
                           0.35098
## x_c2
               -0.54887
                           0.03920 -14.00210
                                                0e+00
## x_c3
               -0.05519
                                    -5.63781
                                                5e-05
                           0.00979
```


Quantis teóricos da distr. normal padrão

Ajuste polinômio grau 4

```
Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 44.16512
                           1.07282 41.16746
                                             0.00000
                4.11527
## x_c
                           0.38874 10.58616
                                             0.00000
## x c2
               -0.39417
                           0.12993 -3.03364
                                             0.00894
## x_c3
               -0.04527
                           0.01248 -3.62759 0.00274
## x_c4
               -0.00351
                           0.00281 -1.24665 0.23298
```


Concentração de madeira dura padronizada

Quantis teóricos da distr. normal padrão

Soma extra de quadrados e teste F

anova(m4)

round(summary(m3)\$coefficient,5)

Extrapolação

A extrapolação de modelos polinomiais para valores de \boldsymbol{x} fora do intervalo observado nos dados pode ser extremamente perigosa.

Modelo com dois preditores - segunda ordem

Vamos considerar um modelo de segunda ordem com duas variáveis preditoras X_1 e X_2

$$Y = \beta_0 + \beta_1 X_{1*} + \beta_2 X_{1*}^2 + \beta_3 X_{2*} + \beta_4 X_{2*}^2 + \beta_5 X_{1*} X_{2*} + \varepsilon$$

em que
$$X_{1st}=X_1-ar{X}_1$$
 e $X_{2st}=X_2-ar{X}_2$.

$$E(Y) = eta_0 + eta_1 X_{1*} + eta_2 X_{1*}^2 + eta_3 X_{2*} + eta_4 X_{2*}^2 + eta_5 X_{1*} X_{2*}$$

Método hierárquico de ajuste de modelo

Pode-se começar com um modelo de segunda ou terceira ordem e ir testando se os coeficientes de ordem maiores são significativos.

Por exemplo:

$$Y = \beta_0 + \beta_1 X_* + \beta_2 X_*^2 + \beta_3 X_*^3 + \varepsilon$$

Para testar se $\beta_3=0$ podemos utilizar $SQReg(X_*^3\mid X_*,X_*^2)$. Se quisermos testar se $\beta_2=\beta_3=0$:

$$SQReg(X_{*}^{2}, X_{*}^{3} \mid X_{*}) = SQReg(X_{*}^{2} \mid X_{*}) + SQReg(X_{*}^{3} \mid X_{*}, X_{*}^{2})$$

Se um termo de ordem mais alta é mantido no modelo, os de ordem mais baixa devem obrigatoriamente ser mantidos também.

Dados de um experimento realizado para estudar o efeito de duas variáveis, temperatura de reação (T) e concentração de reagente (C), na conversão percentual de um processo químico (Y)

```
T_p
##
                                        Ср
    [1,] 200.00 15.00 43 -1.172692 -1.172692
##
    [2,] 250.00 15.00 78 1.172692 -1.172692
    [3,] 200.00 25.00 69 -1.172692 1.172692
    [4,] 250.00 25.00 73 1.172692 1.172692
##
    [5,] 189.65 20.00 48 -1.658187 0.000000
    [6,] 260.35 20.00 76 1.658187
                                   0.000000
##
    [7,] 225.00 12.93 65 0.000000 -1.658187
    [8,] 225.00 27.07 74 0.000000
                                   1.658187
##
    [9,] 225.00 20.00 76 0.000000 0.000000
   [10,] 225.00 20.00 79 0.000000
                                   0.000000
## [11,] 225.00 20.00 83 0.000000
                                   0.000000
  [12,] 225.00 20.00 81 0.000000
                                   0.000000
```


$$Y = \beta_0 + \beta_1 X_{1*} + \beta_2 X_{2*} + \beta_3 X_{1*}^2 + \beta_4 X_{2*}^2 + \beta_5 X_{1*} X_{2*} + \varepsilon$$

```
Estimate Std. Error t value
                                                Pr(>|t|)
##
## (Intercept) 79.749999 1.2135308 65.717328 8.349138e-10
## C_p
               3.595475 0.7317866 4.913284 2.674827e-03
          8.378568 0.7317866 11.449469 2.664055e-05
## T p
## I(C_p^2) -3.727066 0.6977733 -5.341372 1.758987e-03
## I(T_p^2) -6.454751 0.6977733 -9.250499 9.015512e-05
## I(C_p * T_p) -5.635513  0.8824346 -6.386323 6.935235e-04
## Analysis of Variance Table
##
## Response: Y
               Df Sum Sq Mean Sq F value Pr(>F)
##
## C_p 1 142.20 142.20 24.140 0.0026748 **
## T_p 1 772.20 772.20 131.090 2.664e-05 ***
## I(C_p^2) 1 74.85 74.85 12.706 0.0118622 *
## I(T_p^2) 1 504.07 504.07 85.572 9.016e-05 ***
## I(C p * T p) 1 240.25 240.25 40.785 0.0006935 ***
## Residuals 6 35.34 5.89
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Será que um modelo de primeira ordem já seria suficiente?

$$H_0: \beta_q = \beta_{q+1} = \ldots = \beta_{p-1} = 0.$$

· H_1 : pelo menos um eta_q,\dots,eta_{p-1} não é zero.

(por conveniência, a notação assume que os últimos p-q coeficientes do modelo serão testados)

Estatística do teste:

$$F^* = rac{SQReg(X_q, \ldots, X_{p-1} \mid X_1, \ldots, X_{q-1})}{p-q} \div rac{SQE(X_1, \ldots, X_{p-1})}{n-p} \circ h_0 F_{p-q,n-p}$$

$$\begin{split} p = 6 \, ; n = 12 \, \mathrm{e} \, q = 3 \\ F^* = \frac{SQReg(X_{1*}^2, X_{2*}^2, X_{1*}X_{2*} \mid X_{1*}, X_{2*})/3}{SQE(X_{1*}, X_{2*}, X_{1*}^2, X_{2*}^2, X_{1*}X_{2*})/13} \overset{\text{sob}}{\sim} H_0 \\ F_{3,13} \\ SQReg(X_{1*}^2, X_{2*}^2, X_{1*}X_{2*} \mid X_{1*}, X_{2*}) &= SQReg(X_{1*}^2 \mid X_{1*}, X_{2*}) \\ &+ SQReg(X_{1*}^2 \mid X_{1*}, X_{2*}, X_{1*}^2) \\ &+ SQReg(X_{1*}^2 \mid X_{1*}, X_{2*}, X_{1*}^2) \\ &+ SQReg(X_{1*}X_{2*} \mid X_{1*}, X_{2*}, X_{1*}^2, X_{2*}^2) \\ &= 74.8 + 504.1 + 240.25 \\ &= 819.15 \\ \\ F_{obs} = \frac{819.15/3}{5.9} = 46.279661 \end{split}$$

Comparando com F(0.95;3,13)=3.41. Portanto, encontramos evidências contra a hipótese nula.


```
modeloreduz <- lm(Y ~ C_p + T_p)
anova(modeloreduz, modelo)

## Analysis of Variance Table
##
## Model 1: Y ~ C_p + T_p
## Model 2: Y ~ C_p + T_p + I(C_p^2) + I(T_p^2) + I(C_p * T_p)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 9 854.51
## 2 6 35.34 3 819.17 46.354 0.0001524 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```


Modelo de Regressão com Interação

Efeitos de interação

Um modelo de regressão com p-1 variáveis preditoras com efeitos aditivos tem função de regressão da forma:

$$E(Y) = f_1(X_1) + f_2(X_2) + \ldots + f_{p-1}(X_{p-1})$$

em que $f_1, f_2, \ldots, f_{p-1}$ podem ser quaisquer funções.

Por exemplo:

$$E(Y) = \underbrace{eta_0 + eta_1 X_1 + eta_2 X_1^2}_{f_1(X_1)} + \underbrace{eta_3 X_2}_{f_2(X_2)}$$

O efeito de X_1 e X_2 em Y é aditivo.

Efeitos de interação

Já no exemplo a seguir, o efeito não é aditivo, há efeito de interação:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_2 + \beta_4 X_1 X_2$$

Outro exemplo:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_1 X_2 + \beta_5 X_1 X_3$$

O efeito de uma variável sobre Y irá depender do nível da variável com a qual ela interage.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

Suponha que $X_1 = a$:

$$E(Y) = \beta_0 + \beta_1 a + \beta_2 X_2 + \beta_3 a X_2$$

Suponha que $X_1 = a + 1$:

$$E(Y) = \beta_0 + \beta_1(a+1) + \beta_2 X_2 + \beta_3(a+1)X_2$$

Diferença no valor esperado de Y quando aumentamos X_1 em 1 unidade:

$$eta_0 + eta_1(a+1) + eta_2 X_2 + eta_3(a+1) X_2 - (eta_0 + eta_1 a + eta_2 X_2 + eta_3 a X_2) \ = eta_1 + eta_3 X_2$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

Suponha que $X_2 = a$:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 a + \beta_3 X_1 a$$

Suponha que $X_2 = a + 1$:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 (a+1) + \beta_3 X_1 (a+1)$$

Diferença no valor esperado de Y quando aumentamos X_2 em 1 unidade:

$$eta_0 + eta_1 X_1 + eta_2 (a+1) + eta_3 X_1 (a+1) - (eta_0 + eta_1 X_1 + eta_2 a + eta_3 X_1 a)$$
 $= eta_2 + eta_3 X_1$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

Diferença no valor esperado de Y quando aumentamos X_1 em 1 unidade:

$$\frac{\partial E(Y)}{\partial X_1} = \beta_1 + \beta_3 X_2$$

Diferença no valor esperado de Y quando aumentamos X_2 em 1 unidade:

$$rac{\partial E(Y)}{\partial X_2} = eta_2 + eta_3 X_1$$

Modelo aditivo:

$$E(Y) = 10 + 2X_1 + 5X_2$$

 eta_1 : mudança no valor esperado de Y quando X_1 aumenta em 1 unidade, mantendo X_2 constante.

Mantendo X_2 constante: não importa se $X_2=1$ ou $X_2=3$ o efeito é sempre eta_1 no valor esperado quando X_1 aumenta em 1 unidade (retas paralelas).

Modelo com interação:

$$E(Y) = 10 + 2X_1 + 5X_2 + 0.5X_1X_2$$

Se $X_2 = 1$:

$$E(Y) = 10 + 2X_1 + 5 \times 1 + 0.5X_1 \times 1 = 15 + 2.5X_1$$

Se $X_2 = 3$:

$$E(Y) = 10 + 2X_1 + 5 \times 3 + 0.5X_1 \times 3 = 25 + 3.5X_1$$

Para avaliarmos o efeito de 1 unidade de aumento em X_1 , devemos considerar o valor de X_2 (retas não paralelas).

Exemplo:

$$E(Y) = 65 + 3X_1 + 4X_2 - 10X_1^2 - 15X_2^2 + 35X_1X_2$$

Se
$$X_1 = 1$$
:

$$E(Y) = 65 + 3 imes 1 + 4 X_2 - 10 imes (1^2) - 15 X_2^2 + 35 imes 1 imes X_2$$
 $E(Y) = 58 + 39 X_2 - 15 X_2^2$

Se
$$X_1 = -1$$
:

$$E(Y) = 65 + 3 imes (-1) + 4X_2 - 10 imes (-1^2) - 15X_2^2 + 35 imes (-1) imes X_2$$
 $E(Y) = 52 - 31X_2 - 15X_2^2$

 X_1 : tríceps, $X_{1*}=X_1-ar{X}_1$.

 X_2 : coxa, $X_{2*}=X_2-ar{X}_2$.

 X_3 : antebraço, $X_{3*}=X_1-ar{X}_3$.

Y: gordura corporal

X1	X2	Х3	Υ	x1	x2	х3	
19.5	43.1	29.1	11.9	-5.805	-8.07	1.48	
24.7	49.8	28.2	22.8	-0.605	-1.37	0.58	
30.7	51.9	37.0	18.7	5.395	0.73	9.38	
29.8	54.3	31.1	20.1	4.495	3.13	3.48	
19.1	42.2	30.9	12.9	-6.205	-8.97	3.28	
25.6	53.9	23.7	21.7	0.295	2.73	-3.92	
31.4	58.5	27.6	27.1	6.095	7.33	-0.02	
27.9	52.1	30.6	25.4	2.595	0.93	2.98	
22.1	49.9	23.2	21.3	-3.205	-1.27	-4.42	
25.5	53.5	24.8	19.3	0.195	2.33	-2.82	
31.1	56.6	30.0	25.4	5.795	5.43	2.38	
30.4	56.7	28.3	27.2	5.095	5.53	0.68	
18.7	46.5	23.0	11.7	-6.605	-4.67	-4.62	
19.7	44.2	28.6	17.8	-5.605	-6.97	0.98	
14.6	42.7	21.3	12.8	-10.705	-8.47	-6.32	
29.5	54.4	30.1	23.9	4.195	3.23	2.48	
27.7	55.3	25.7	22.6	2.395	4.13	-1.92	
30.2	58.6	24.6	25.4	4.895	7.43	-3.02	
22.7	48.2	27.1	14.8	-2.605	-2.97	-0.52	
25.2	51.0	27.5	21.1	-0.105	-0.17	-0.12	

$$E(Y) = \beta_0 + \beta_1 X_{1*} + \beta_2 X_{2*} + \beta_3 X_{3*} + \beta_4 X_{1*} X_{2*} + \beta_5 X_{1*} X_{3*} + \beta_6 X_{2*} X_{3*} + \varepsilon$$

```
modelo <- lm(Y ~ x1 + x2 + x3 + I(x1*x2) + I(x1*x3) + I(x2*x3),data=dat) summary(modelo)$coef
```

```
## (Intercept) 20.526893531 1.07362646 19.1192136 6.699796e-11
## x1 3.437808068 3.57866572 0.9606396 3.542612e-01
## x2 -2.094717339 3.03676957 -0.6897848 5.024579e-01
## x3 -1.616337237 1.90721068 -0.8474875 4.120550e-01
## I(x1 * x2) 0.008875562 0.03085046 0.2876963 7.781144e-01
## I(x1 * x3) -0.084790836 0.07341774 -1.1549093 2.689155e-01
## I(x2 * x3) 0.090415385 0.09200130 0.9827621 3.436619e-01
```


anova(modelo)

```
## Analysis of Variance Table
##
## Response: Y
##
           Df Sum Sq Mean Sq F value Pr(>F)
           1 352.27 352.27 52.2238 6.682e-06 ***
## x1
            1 33.17 33.17 4.9173 0.04503 *
## x2
           1 11.55 11.55 1.7117 0.21343
## x3
## I(x1 * x2) 1 1.50 1.50 0.2217 0.64552
## I(x1 * x3) 1 2.70 2.70 0.4009 0.53760
## I(x2 * x3) 1 6.51 6.51 0.9658 0.34366
## Residuals 13 87.69 6.75
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```


Exemplo

$$H_0: \beta_4 = \beta_5 = \beta_6 = 0$$

 H_1 : pelo menos um dentre β_4,β_5,β_6 é diferente de 0.

$$p = 7$$

$$n = 20$$

$$q = 4$$

$$F^* = \frac{SQReg(X_{1*}X_{2*}, X_{1*}X_{3*}, X_{2*}X_{3*} \mid X_{1*}, X_{2*}, X_{3*})/3}{SQE(X_{1*}, X_{2*}, X_{3*}, X_{1*}X_{2*}, X_{1*}X_{3*}, X_{2*}X_{3*})/13} \stackrel{\text{sob}}{\sim} H_0 F_{3,13}$$

Exemplo

$$SQReg(X_{1*}X_{2*},X_{1*}X_{3*},X_{2*}X_{3*} \mid X_{1*},X_{2*},X_{3*}) = SQReg(X_{1*}X_{2*} \mid X_{1*},X_{2*},X_{3*}) \ + SQReg(X_{1*}X_{3*} \mid X_{1*},X_{2*},X_{3*},X_{1*}X_{2*}) \ + SQReg(X_{2*}X_{3*} \mid X_{1*},X_{2*},X_{3*},X_{1*}X_{2*},X_{1*}X_{2*}) \ = 1.5 + 2.7 + 6.514836 \ = 10.714836$$
 $F_{obs} = \frac{10.714836/3}{6.7} = 0.5330764$

Comparando com F(0.95;3,13)=3.41, não encontramos evidências contra a hipótese nula.

Exemplo

```
modeloreduz <- lm(Y ~ x1 + x2 + x3,data=dat)
anova(modeloreduz,modelo)

## Analysis of Variance Table
##
## Model 1: Y ~ x1 + x2 + x3
## Model 2: Y ~ x1 + x2 + x3 + I(x1 * x2) + I(x1 * x3) + I(x2 * x3)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 16 98.405
## 2 13 87.690 3 10.715 0.5295 0.6699
```


Preditores Qualitativos

Y = meses até a implementação

 X_1 = tamanho da firma (em milhões de dólares)

$$X_2 = egin{cases} 1, & ext{se a firma tem ações na bolsa} \ 0, & ext{caso contrário} \end{cases}$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Se a firma não tem ações na bolsa, então $X_2=0$:

$$E(Y) = \beta_0 + \beta_1 X_1$$

Se a firma tem ações na bolsa, então $X_2=1$:

$$E(Y) = (\beta_0 + \beta_2) + \beta_1 X_1$$


```
Y X1 X2
## 1 17 151 0
## 2
     26 92 0
## 3 21 175 0
## 4 30 31 0
## 5 22 104 0
## 6
      0 277 0
## 7 12 210 0
## 8 19 120 0
## 9 4 290 0
## 10 16 238 0
## 11 28 164 1
## 12 15 272 1
## 13 11 295 1
## 14 38 68 1
## 15 31 85 1
## 16 21 224 1
## 17 20 166 1
## 18 13 305 1
## 19 30 124 1
## 20 14 246 1
```



```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.8740690 1.813858297 18.675146 9.145269e-13
## X1 -0.1017421 0.008891218 -11.442990 2.074687e-09
## X2 8.0554692 1.459105700 5.520826 3.741874e-05
```


Incluindo termo de interação:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$$

Se a firma não tem ações na bolsa, então $X_2=0$:

$$E(Y) = \beta_0 + \beta_1 X_1$$

Se a firma tem ações na bolsa, então $X_2=1$:

$$E(Y) = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)X_1$$


```
modelo <- lm(Y \sim X1 + X2 + X1*X2, data=dados); round(summary(modelo)$coef,5)
##
          Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.83837 2.44065 13.86449 0.00000
## X1
          8.13125 3.65405 2.22527 0.04079
## X2
          ## X1:X2
modelo <- lm(Y ~ X1*X2, data=dados); round(summary(modelo)$coef,5)</pre>
          Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 33.83837 2.44065 13.86449 0.00000
## X1
          8.13125 3.65405 2.22527 0.04079
## X2
## X1:X2
```


Exemplo: Salário (Y), anos de experiência desde a última titulação (X_1) e uma variável qualitativa titulo que indica o grau de titulação do funcionário.

Existem 3 níveis de titulação: bacharel, mestre e doutor.

Definimos 2 variáveis dummy ou indicadoras:

$$X_2 = \left\{ egin{array}{ll} 1, & ext{se mestre} \ 0, & ext{caso contrário} \end{array}
ight.$$

$$X_3 = \left\{ egin{array}{ll} 1, & ext{se doutor} \ 0, & ext{caso contrário} \end{array}
ight.$$

Paramétrização por casela de referência a escolha de qual o nível será a referência é arbitrária.

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

Se título = bacharel:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 \times 0 + \beta_3 \times 0 = \beta_0 + \beta_1 X_1$$

Se o título = mestre:

$$E(Y) = eta_0 + eta_1 X_1 + eta_2 imes 1 + eta_3 imes 0 = (eta_0 + eta_2) + eta_1 X_1$$

Se o título = doutor:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 \times 0 + \beta_3 \times 1 = (\beta_0 + \beta_3) + \beta_1 X_1$$

O modelo de primeira ordem implica no fato de que o efeito dos anos de experiência é linear e com o mesmo coeficiente angular para todos os níveis de titularidade. Temos diferentes interceptos para cada modelo.

- eta_1 : mudança esperada no salário médio (Y) para cada unidade de aumento nos anos de experiência (X_1) , considerando o mesmo nível de titularidade.
- β_2 : diferença esperada no salário médio do bacharel para o mestre, considerando a mesma velocidade.
- β_3 : diferença esperada no salário médio do bacharel para o doutor, considerando a mesma velocidade.


```
X1
                  titulo
      58.8 4.49
                   doutor
      34.8 2.92 bacharel
     163.7 29.54
                   doutor
      70.0 9.92
                 doutor
      55.5 0.14 doutor
## 5
      85.0 15.96
                 mestre
      34.0 2.27 bacharel
## 7
      29.7 1.20 bacharel
## 8
      56.1 5.33
## 9
                   mestre
## 10
      70.6 15.74
                   doutor
```


Qual a diferença esperada no salário médio entre o mestre o doutor?

Quando o título é mestre temos que:

$$E(Y) = (\beta_0 + \beta_2) + \beta_1 X_1$$

Quando o título é doutor temos que:

$$E(Y) = (\beta_0 + \beta_3) + \beta_1 X_1$$

A diferença entre mestre e doutor, mantendo os anos de experiência:

$$(\beta_0 + \beta_3) + \beta_1 X_1 - [(\beta_0 + \beta_2) + \beta_1 X_1] = \beta_3 - \beta_2$$

Após obtermos estimativas: $\hat{\beta}_3 - \hat{\beta}_2$ e devemos também fornecer o erropadrão da estimativa.

Lembre que:

$$Var(\hat{eta}_3 - \hat{eta}_2) = Var(\hat{eta}_3) + Var(\hat{eta}_2) - 2Cov(\hat{eta}_3, \hat{eta}_2)$$

$$\hat{\beta}_3$$
 - $\hat{\beta}_2$ = 28.57 - 13.38 = 15.18

$\hat{Var}(\hat{\beta})$

```
##
      (Intercept) X1 titulomestre titulodoutor
## (Intercept)
                   16.02 -0.43
                                    -13.03
                                                -11.63
                                -0.04
## X1
                  -0.43 0.07
                                               -0.26
               -13.03 -0.04
-11.63 -0.26
                               21.22
13.48
## titulomestre
                                                13.48
## titulodoutor
                                                24.02
```

$$Var(\hat{eta}_3 - \hat{eta}_2) = 24.02 + 21.22 - 2 \times 13.48 = 18.28$$

Y: resíduo de sabão

 X_1 : velocidade

$$X_2 = egin{cases} 1, & ext{se produção na linha 1} \ 0, & ext{caso contrário} \end{cases}$$

Y X1 X2 1 218 100 1 2 248 125 1 3 360 220 1 4 351 205 1 5 470 300 1 6 394 255 1 7 332 225 1 8 321 175 1 9 410 270 1 10 260 170 1 11 241 155 1 12 331 190 1 13 275 140 1 14 425 290 1 15 367 265 1 16 140 105 0 17 277 215 0 18 384 270 0 19 341 255 0 20 215 175 0 21 180 135 0 22 260 200 0 23 361 275 0 24 252 155 0 25 422 320 0 26 273 190 0 27 410 295 0

Iremos ajustar um modelo assumindo que:

- a relação entre a quantidade de resíduo e velocidade é linear para as duas linhas de produção;
- · retas diferentes para as duas linhas de produção;
- · as variâncias dos termos de erros ao redor de cada reta são iguais.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

Para a linha 1:
$$E(Y)=(eta_0+eta_2)+(eta_1+eta_3)X_1$$
 .

Para a linha 2: $E(Y)=eta_0+eta_1X_1$.


```
anova(modelo)
```


Se quisermos testar a hipótese nula de que temos apenas uma reta para representar as duas linhas:

$$H_0: \beta_2 = \beta_3 = 0$$

 H_a : pelo menos um entre β_2 e β_3 é diferente de zero.

Estatística do teste:

$$F^* = rac{SQReg(X_q, \dots, X_{p-1} \mid X_1, \dots, X_{q-1})}{p-q} \div rac{SQE(X_1, \dots, X_{p-1})}{n-p} \circ \sum_{\sim}^{SOb} H_0$$

$$p = 4$$
 $n = 27$
 $q = 2$

$$F^* = rac{SQReg(X_2, X_1X_2 \mid X_1)/2}{SQE(X_1, X_2, X_1X_2)/23} \stackrel{\mathrm{sob}}{\sim} rac{H_0}{\sim} F_{2,23} \ SQReg(X_2, X_1X_2 \mid X_1) = SQReg(X_2 \mid X_1) + SQReg(X_1X_2 \mid X_1, X_2 \ = 1.86941 imes 10^4 + 809.6 \ = 1.95037 imes 10^4 \ F_{obs} = rac{1.95037 imes 10^4/2}{430.6} = 22.6471203$$

Comparando com F(0.95;2,23)=3.42, encontramos evidências contra a hipótese nula.


```
modeloreduz <- lm(Y ~ X1, data=dados)
anova(modeloreduz,modelo)

### Analysis of Variance Table
##
### Model 1: Y ~ X1
### Model 2: Y ~ X1 + X2 + I(X1 * X2)
### Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 25 29407.8
## 2 23 9904.1 2 19504 22.646 3.669e-06 ***
### ---
### Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Se quisermos testar a hipótese nula de que para as duas linhas de produção o coeficiente angular é o mesmo:

$$H_0: \beta_3 = 0$$

$$H_a$$
: $\beta_3 \neq 0$.

$$p=4$$

$$n = 27$$

$$q = 3$$

$$F^* = rac{SQReg(X_1X_2 \mid X_1, X_2)/1}{SQE(X_1, X_2, X_1X_2)/23} \stackrel{ ext{sob}}{\sim}^{H_0} F_{1,23}$$

$$F_{obs} = rac{809.6/1}{430.6} = 1.8801672$$

Comparando com F(0.95;1,23)=4.28, não encontramos evidências contra a hipótese nula.

Agradecimento

- Slides criados por Samara F Kiihl / IMECC / UNICAMP
- Editado por Rafael P Maia / IMECC / UNICAMP

Leitura

- · Applied Linear Statistical Models: Seções 8.1-8.3, 8.5-8.7.
- Faraway Linear Models with R: Capítulo 14.
- · Draper & Smith Applied Regression Analysis: Capítulo 12.

