Nur die Aufgaben mit einem * werden korrigiert.

8.1. MC Fragen.

- (a) Sei $D \subset \mathbb{R}$ und $f_n \colon D \to \mathbb{R}$ eine Folge stetigen Funktionen. Wählen Sie die richtige Aussagen.
 - \square Falls f_n nach f gleichmässig konvergiert, konvergiert f_n nach f punktweise.
 - Falls $|f_n(x)| < c_n$ für $c_n \in \mathbb{R}$ und jedes $x \in D$, dann konvergiert die Reihe $\sum_{n=0}^{\infty} f_n(x)$ punkteweise.
 - \square Falls $|f_n(x)| < c_n$ für jedes $x \in D$ und $\sum_{n=1}^{\infty} c_n$ konvergiert, dann konvergiert die Reihe $\sum_{n=0}^{\infty} f_n(x)$ punkteweise.
- (b) Sei $D \subset \mathbb{R}$ eine Telmenge. Der Punkt $x_0 \in \mathbb{R}$ ist ein Häufungspunkt von D, falls
 - \square $x_0 \in D$;
 - \square für jedes $\delta > 0$ gilt es $((x_0 \delta, x_0 + \delta) \setminus \{x_0\}) \cap D \neq \emptyset$;
 - \square für jedes $\delta > 0$ gilt es $(x_0 \delta, x_0 + \delta) \cap D \neq \emptyset$.
- (c) Wir betrachten die Funktionenfolge (f_n) mit

$$f_n: \mathbb{R}_{>0} \to \mathbb{R}, x \mapsto (x^{1/2} + n^{-1})^2.$$

Welche der Aussagen gilt?

- \square $\lim_{n\to\infty} f_n(x) = x$ für alle $x \in \mathbb{R}_{\geq 0}$
- ☐ Die Funktionenfolge konvergiert gleichmässig.
- \square Für alle M>0 gilt, dass die Funktionenfolge $f_n|_{[0,M]}:[0,M]\to\mathbb{R}$ gleichmässig konvergiert.
- *8.2. Konvergenz von Funktionenfolgen. Konvergieren die folgenden Funktionenfolgen auf dem Intervall [0,1] punktweise gegen eine Grenzfunktion f? Falls ja, bestimmen Sie f und untersuche, ob die Konvergenz gleichmässig ist.
 - (a) $f_n(x) := \left(1 + \frac{x}{n}\right)^2, \quad n \in \mathbb{N};$
 - **(b)** $f_n(x) := \frac{\sin x}{n};$
 - (c) $f_n(x) := 1 + x^n (1 x)^n, \quad n \in \mathbb{N};$

- *8.3. Gleichmässigkonvergenz. $f_n: D \to \mathbb{R}$ sei beschränkt für jedes $n \in \mathbb{N}$ und f_n konvergiere gleichmässig gegen f auf D. Dann zeigen Sie, dass $f: D \to \mathbb{R}$ beschränkt ist.
- 8.4. Trigonometrische Funktion.
 - (a) Zeige, dass $\forall x, y \in \mathbb{R}$

$$\sin x - \sin y = 2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right) \tag{1}$$

$$\cos x - \cos y = -2\sin\left(\frac{x-y}{2}\right)\sin\left(\frac{x+y}{2}\right) \tag{2}$$

- (b) Zeige dass sin: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$ eine strong monoton stetige bijektive Abbildung ist.
- (c) Zeige für alle $k \in \mathbb{N}$ und $0 \le x \le \sqrt{(4k+5)(4k+6)}$ gilt:

$$\cos x \ge 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots - \frac{x^{2(2k+1)}}{[2(2k+1)]!}$$