# Riemann Hypothesis

# Paolo Bettelini

# June 2021

# Contents

| 1 | Zeta function |                                           |  |
|---|---------------|-------------------------------------------|--|
|   | 1.1           | Definition                                |  |
|   | 1.2           | Euler product                             |  |
| 2 | Prin          | me-counting function                      |  |
|   |               | S .                                       |  |
|   | 2.1           | Properties of the prime-counting function |  |
|   | 2.2           | Relationship with the zeta function       |  |

### 1 Zeta function

#### 1.1 Definition

The zeta function is defined as

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad Re(s) > 0$$

### 1.2 Euler product

The zeta function can be represented as an Euler product. We will start by using the first prime number: 2.

$$\zeta(s)\frac{1}{2^s} = \sum_{n=1}^{\infty} \frac{1}{(2n)^s}$$

We then subtract the second definition from the first one, such that

$$\zeta(s) - \zeta(s) \frac{1}{2^s} = \sum_{n=1}^{\infty} \left[ \frac{1}{n^s} \right] - \sum_{n=1}^{\infty} \left[ \frac{1}{(2n)^s} \right]$$
$$\zeta(s) \left( 1 - \frac{1}{2^s} \right) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad n \neq 2k, k \in \mathbb{Z}$$

Here we are excluding the multiples of 2 from the series.

If we do the same with the next prime number, which is 3, we get

$$\zeta(s)\left(1 - \frac{1}{2^s}\right)\left(1 - \frac{1}{3^s}\right) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad n \neq 2k_1, n \neq 3k_2, k \in \mathbb{Z}$$

We can repeat this process with every prime number.

Eventually, we will exclude every nth-term to sum as we use every prime number, except for n=1.

$$\zeta(s)\prod_{p\in P}^{\infty}1-\frac{1}{p^s}=\frac{1}{1^s}=1$$

Finally, we get the identity

$$\zeta(s) = \prod_{p \in P}^{\infty} \frac{1}{1 - p^{-s}}$$

## 2 Prime-counting function

### 2.1 Properties of the prime-counting function

The prime-counting function  $\pi(x)$  is defined as the number of primes less or equals than x.

We can consider the difference between  $\pi(x)$  of two consecutive integers

$$\pi(x) - \pi(x - 1) = \begin{cases} 1, & \text{if } x \in P \\ 0, & \text{otherwise} \end{cases}$$

Given a series over all prime numbers, we can extend it to all integers and multiply each term by this difference

The terms whose index is not a prime number will be multiplied by 0.

$$\sum_{p \in P}^{\infty} a_k = \sum_{n=2}^{\infty} [\pi(n) - \pi(n-1)] a_n$$

Here we start at 2 since there are no prime numbers less than 2.

#### 2.2 Relationship with the zeta function

We have seen that the zeta function can be written as an Euler Product

$$\zeta(s) = \prod_{p \in P}^{\infty} \frac{1}{1 - p^{-s}}$$

However, we need convert this product into a series in order to apply the identity of the last paragraph. We can take the natural logarithm of both sides and use the multiplication property

$$ln\left(\zeta(s)\right) = ln \prod_{p \in P}^{\infty} \frac{1}{1 - p^{-s}}$$
$$= \sum_{p \in P}^{\infty} ln\left(\frac{1}{1 - p^{-s}}\right)$$
$$= \sum_{p \in P}^{\infty} -ln\left(1 - p^{-s}\right)$$

Now we can apply the identity

$$ln(\zeta(s)) = \sum_{n=2}^{\infty} -ln(1 - n^{-s}) [\pi(n) - \pi(n-1)]$$

The next goal is to factor out  $\pi(n)$ 

$$ln(\zeta(s)) = \sum_{n=2}^{\infty} \left[ \pi(n-1)ln(1-n^{-s}) \right] - \sum_{n=2}^{\infty} \left[ \pi(n)ln(1-n^{-s}) \right]$$
$$= \sum_{n=2}^{\infty} \left[ \pi(n)ln(1-(n+1)^{-s}) \right] - \sum_{n=2}^{\infty} \left[ \pi(n)ln(1-n^{-s}) \right]$$
$$= \sum_{n=2}^{\infty} \pi(n) \left[ ln(1-(n+1)^{-s}) - ln(1-n^{-s}) \right]$$

[...]