вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Първо контролно по Изчислимост и сложност (упр.) 18/11/2018 г.

Зад. 1 (2 точки). Докажете, че функцията

h(x) = броят на единиците в двоичното представяне на x е примитивно рекурсивна функция.

Зад. 2. Да дефинираме функцията $\tau:\bigcup_{n>0}\mathbb{N}^n\to\mathbb{N},$ където $\tau(x_0,\dots,x_n)=2^{x_0}+2^{x_0+x_1+1}+\dots+2^{x_0+x_1+\dots+x_n+n}-1.$

Докажете, че следните функции са примитивно рекурсивни:

- а) $\mbox{mem}(u,i)=x_i$ точно тогава, когато $u=\tau(x_0,\ldots,x_i,\ldots,x_n)$. (2 точки)
- б) $\operatorname{len}(u) = n+1$ точно тогава, когато $u = \tau(x_0, \dots, x_n)$. (2 точки)
- в) ${\sf concat}(u,v)=w$ точно тогава, когато $u=\tau(x_0,\ldots,x_n),\,v=\tau(y_0,\ldots,y_m)$ и $w=\tau(x_0,\ldots,x_n,y_0,\ldots,y_m).$ (4 точки)

В доказателствата си може да използвате всички функции, които сме разглеждали на упражнения.

Успех! 🏖

вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Първо контролно по Изчислимост и сложност (упр.) 18/11/2018 г.

Зад. 1 (2 точки). Докажете, че функцията

h(x) = броят на единиците в двоичното представяне на x е примитивно рекурсивна функция.

Зад. 2. Да дефинираме функцията $\tau:\bigcup_{n>0}\mathbb{N}^n\to\mathbb{N},$ където $\tau(x_0,\dots,x_n)=2^{x_0}+2^{x_0+x_1+1}+\dots+2^{x_0+x_1+\dots+x_n+n}-1.$

Докажете, че следните функции са примитивно рекурсивни:

- а) $\mbox{mem}(u,i)=x_i$ точно тогава, когато $u=\tau(x_0,\ldots,x_i,\ldots,x_n)$. (2 точки)
- б) $\operatorname{len}(u) = n+1$ точно тогава, когато $u = \tau(x_0, \dots, x_n)$. (2 точки)
- в) сопсаt(u,v)=w точно тогава, когато $u=\tau(x_0,\ldots,x_n),\ v=\tau(y_0,\ldots,y_m)$ и $w=\tau(x_0,\ldots,x_n,y_0,\ldots,y_m).$ (4 точки)

В доказателствата си може да използвате всички функции, които сме разглеждали на упражнения.

Успех! 🧸

вариант	ф. номер	група	поток	курс	специалност
1					
Име:				•	

Първо контролно по Изчислимост и сложност (упр.) 18/11/2018 г.

Зад. 1 (2 точки). Докажете, че функцията

h(x) = броят на единиците в двоичното представяне на x е примитивно рекурсивна функция.

Зад. 2. Да дефинираме функцията $\tau:\bigcup_{n>0}\mathbb{N}^n\to\mathbb{N},$ където $\tau(x_0,\dots,x_n)=2^{x_0}+2^{x_0+x_1+1}+\dots+2^{x_0+x_1+\dots+x_n+n}-1.$

Докажете, че следните функции са примитивно рекурсивни:

- а) $\mbox{mem}(u,i)=x_i$ точно тогава, когато $u=\tau(x_0,\ldots,x_i,\ldots,x_n)$. (2 точки)
- б) $\operatorname{len}(u) = n+1$ точно тогава, когато $u = \tau(x_0, \dots, x_n)$. (2 точки)
- в) сопсаt(u,v)=w точно тогава, когато $u=\tau(x_0,\ldots,x_n),\ v=\tau(y_0,\ldots,y_m)$ и $w=\tau(x_0,\ldots,x_n,y_0,\ldots,y_m).$ (4 точки)

В доказателствата си може да използвате всички функции, които сме разглеждали на упражнения.

Успех! 🏖

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Първо контролно по Изчислимост и сложност (упр.) 18/11/2018 г.

Зад. 1 (2 точки). Докажете, че функцията

h(x) = броят на единиците в двоичното представяне на x е примитивно рекурсивна функция.

Зад. 2. Да дефинираме функцията $\tau: \bigcup_{n>0} \mathbb{N}^n \to \mathbb{N}$, където $\tau(x_0,\dots,x_n) = 2^{x_0} + 2^{x_0+x_1+1} + \dots + 2^{x_0+x_1+\dots+x_n+n} - 1.$

Докажете, че следните функции са примитивно рекурсивни:

- а) $\mbox{mem}(u,i)=x_i$ точно тогава, когато $u=\tau(x_0,\ldots,x_i,\ldots,x_n)$. (2 точки)
- б) len(u) = n+1 точно тогава, когато $u=\tau(x_0,\ldots,x_n)$. (2 точки)
- в) ${\sf concat}(u,v)=w$ точно тогава, когато $u=\tau(x_0,\ldots,x_n),\ v=\tau(y_0,\ldots,y_m)$ и $w=\tau(x_0,\ldots,x_n,y_0,\ldots,y_m).$ (4 точки)

В доказателствата си може да използвате всички функции, които сме разглеждали на упражнения.

Успех! 🙎

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Първо контролно по Изчислимост и сложност (упр.) 18/11/2018 г.

Зад. 1 (2 точки). Докажете, че функцията

h(x) = броят на единиците в двоичното представяне на x е примитивно рекурсивна функция.

Зад. 2. Да дефинираме функцията $\tau: \bigcup_{n>0} \mathbb{N}^n \to \mathbb{N}$, където $\tau(x_0,\dots,x_n) = 2^{x_0} + 2^{x_0+x_1+1} + \dots + 2^{x_0+x_1+\dots+x_n+n} - 1.$

Докажете, че следните функции са примитивно рекурсивни:

- а) $\mbox{mem}(u,i)=x_i$ точно тогава, когато $u=\tau(x_0,\ldots,x_i,\ldots,x_n).$ (2 точки)
- б) $\operatorname{len}(u) = n+1$ точно тогава, когато $u = \tau(x_0, \dots, x_n)$. (2 точки)
- в) $\mathrm{concat}(u,v)=w$ точно тогава, когато $u=\tau(x_0,\ldots,x_n),\ v=\tau(y_0,\ldots,y_m)$ и $w=\tau(x_0,\ldots,x_n,y_0,\ldots,y_m).$ (4 точки)

В доказателствата си може да използвате всички функции, които сме разглеждали на упражнения.

Успех! 🇸

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Първо контролно по Изчислимост и сложност (упр.) 18/11/2018 г.

Зад. 1 (2 точки). Докажете, че функцията

h(x) = броят на единиците в двоичното представяне на x е примитивно рекурсивна функция.

Зад. 2. Да дефинираме функцията $\tau: \bigcup_{n>0} \mathbb{N}^n \to \mathbb{N}$, където $\tau(x_0,\dots,x_n)=2^{x_0}+2^{x_0+x_1+1}+\dots+2^{x_0+x_1+\dots+x_n+n}-1.$

Докажете, че следните функции са примитивно рекурсивни:

- а) $\mbox{mem}(u,i)=x_i$ точно тогава, когато $u=\tau(x_0,\ldots,x_i,\ldots,x_n).$ (2 точки)
- б) $\operatorname{len}(u) = n+1$ точно тогава, когато $u = \tau(x_0, \dots, x_n)$. (2 точки)
- в) $\mathrm{concat}(u,v)=w$ точно тогава, когато $u=\tau(x_0,\dots,x_n),\,v=\tau(y_0,\dots,y_m)$ и $w=\tau(x_0,\dots,x_n,y_0,\dots,y_m).$ (4 точки)

В доказателствата си може да използвате всички функции, които сме разглеждали на упражнения.

Успех! 🏖