Calculate the most probable values of X and Y for the following system of equations using:

- (a) Tabular method.
- (b) Matrix method.

$$3X + 4Y = 24.1 + v1$$

$$5X - 2Y = 13.8 + v2$$

$$X - 3Y = 13.2 + v3$$

EQN	а	b	I	a^2	ab	ŀ	o^2 al	bl	
	1	3	4	3.0	9.0	12.0	16.0	9.0	12.0
	2	5	-2	1.5	25.0	-10.0	4.0	7.5	-3.0
	3	1	3	0.2	1.0	3.0	9.0	0.2	0.6
Totals					35.0	5.0	29.0	16.7	9.6

Х	35.0	5.0	=	16.7
Υ	5.0	29.0		9.6

n=A'*A

Inv(N)=

0.0293	-0.0051
-0.0051	0.0354

A'*L

=inv(N)*A*L

3.97401 3.04941

Matrix method

This part was entirely done using Matlab. I will paste the code in here so I can keep everything in one place.

Matrix method code:

% Calculating the most probable values of X and Y for the following system of equations using:

% Matrix method.

$$% 3X + 4Y = 24.1 + v1$$

$$\% 5X - 2Y = 13.8 + v2$$

$$% X + 3Y = 13.2 + v3$$

```
A=[3 4;5 -2;1 3]
% X=[x;y]
L=[24.1;13.8;13.2]
N=A'*A
X = inv(N)*(A'*L)
V=A*X-L
Solution:
>> part_1_HM8
A =
  3 4
   5 -2
   1 3
L =
 24.1000
 13.8000
 13.2000
N =
  35 5
  5 29
X =
  3.9783
  3.0520
V =
  0.0429
 -0.0126
 -0.0657
```

11.11	The following coordinates of points	ts on a line were computed for a block.
What	are the slope and v-intercept of the	e line? What is the azimuth of the line?

Point	X (ft)	Y (ft)
1	1254.72	3373.22
2	1362.50	3559.95
3	1578.94	3934.80
1 2 3 4	1843.68	4393.35

Point	2	x y	7		
	1	1254.72	3373.22	x*y	x^2
	2	1362.5	3559.95	4232446.598	1574322
	3	1578.94	3934.8	4850431.875	1856406
	4	1843.68	4393.35	6212813.112	2493052
Total		6039.84	15261.32	8099931.528	3399156
				23395623.11	9322936

Data

X= 6039.84 ft Y= 15261.32 ft

 $B = n*sum(x*y)-sum(x*y)/(n*sum(x*y)^2)-(sum(x*y)^2)$

Note: n is not the Normal but the number of n eqns. 1+1+1+1 etc.

<u>6039.84</u> <u>15261.32</u>

36479667.23

B= **1.73**

A = Sum(y/n)-b(sum(x/n))

A= 3815.33 -

1.732054787 1509.96

A= 1200.00

Slope= 1.73205479

Y-intercept 1199.99655

```
Slope=m=tan(theta)= 1.73205479

Tan^1(θ)= 1.04719855

= 60.00006

Now, Based on this answer we convert it to an azimuth:

= 90 - 60.00005701

= 29.99994 or=> 29°59'59.79"
```