<pre>fn [1]: # Import libraries from pandas import read_csv from matplotlib import pyplot from numpy import sqrt import warnings import itertools import pandas as pd</pre>	
<pre>import pandas as pd import numpy as np import matplotlib.pyplot as plt import statsmodels.api as sm import pandas as pd</pre> import pandas as pd	
series = pd.read_excel("/Users/SAURABH/Saurabh patil/DATA SCIENCE/SVM/CocaCola_Sales_Rawdata.xlsx", header=0, index_col=0, parse_dates=True) in [3]: series Sales	
Quarter Q1_86 1734.827000 Q2_86 2244.960999	
 Q3_86 2533.804993 Q4_86 2154.962997 Q1_87 1547.818996 Q2_87 2104.411995 	
Q3_87 2014.362999 Q4_87 1991.746998 Q1_88 1869.049999	
Q2_88 2313.631996 Q3_88 2128.320000 Q4_88 2026.828999 Q1_89 1910.603996	
Q2_89 2331.164993 Q3_89 2206.549995 Q4_89 2173.967995	
Q1_90 2148.278000 Q2_90 2739.307999 Q3_90 2792.753998	
 Q4_90 2556.009995 Q1_91 2480.973999 Q2_91 3039.522995 Q3_91 3172.115997 	
Q4_91 2879.000999 Q1_92 2772.000000 Q2_92 3550.000000	
Q3_92 3508.000000 Q4_92 3243.859993 Q1_93 3056.000000 Q2_93 3899.000000	
Q3_93 3629.000000 Q4_93 3373.000000 Q1_94 3352.000000	
Q2_94 4342.000000 Q3_94 4461.000000 Q4_94 4017.000000 Q1_95 3854.000000	
Q2_95 4936.000000 Q3_95 4895.000000 Q4_95 4333.000000 Q1_96 4194.000000	
Q2_96 5253.000000 n [4]: from pandas import read_csv from matplotlib import pyplot	
series.plot() pyplot.show() 5000 - Sales	
4500 - 4000 - 3500 -	
3000 - 2500 - 2000 - 1500 -	
Q1_86	
Sales 10 Sales	
2 1500 2000 2500 3000 3500 4000 4500 5000	
<pre>series.plot(kind='kde') put[6]: <axessubplot:ylabel='density'></axessubplot:ylabel='density'></pre>	
0.00040 - 0.00035 - 0.00030 - 0.00025 -	
0.00015 - 0.00010 - 0.00005 -	
0.00000 0 1000 2000 3000 4000 5000 6000 7000 In [7]: from pandas import read_csv	
<pre>from sklearn.metrics import mean_squared_error from math import sqrt # load data train = pd.read_excel('/Users/SAURABH/Saurabh patil/DATA SCIENCE/SVM/CocaCola_Sales_Rawdata.xlsx', header=0, index_col=0, parse_dates=True) # prepare data X = train.values</pre>	
<pre>X = X.astype('float32') train_size = int(len(X) * 0.50) train, test = X[0:train_size], X[train_size:]</pre> In [8]: train	
Dut[8]: array([[1734.827],	
[2104.412], [2014.363], [1991.747], [1869.05], [2313.632], [2128.32],	
[2026.829], [1910.604], [2331.165], [2206.55], [2173.968], [2173.968], [2739.308],	
[2792.754], [2556.01], [2480.974]], dtype=float32) in [9]: history = [x for x in train] predictions = list()	
<pre>for i in range(len(test)): yhat = history[-1] predictions.append(yhat) # observation obs = test[i] history.append(obs)</pre>	
<pre>print('>Predicted=%.3f, Expected=%.3f' % (yhat, obs)) # report performance rmse = sqrt(mean_squared_error(test, predictions)) print('RMSE: %.3f' % rmse) >Predicted=2480.974, Expected=3039.523</pre>	
>Predicted=3039.523, Expected=3172.116 >Predicted=3172.116, Expected=2879.001 >Predicted=2879.001, Expected=2772.000 >Predicted=2772.000, Expected=3550.000 >Predicted=3550.000, Expected=3508.000 >Predicted=3508.000, Expected=3243.860	
>Predicted=3243.860, Expected=3056.000 >Predicted=3056.000, Expected=3899.000 >Predicted=3899.000, Expected=3629.000 >Predicted=3629.000, Expected=3373.000 >Predicted=3373.000, Expected=3352.000 >Predicted=3352.000, Expected=4342.000	
>Predicted=4342.000, Expected=4461.000 >Predicted=4461.000, Expected=4017.000 >Predicted=4017.000, Expected=3854.000 >Predicted=3854.000, Expected=4936.000 >Predicted=4936.000, Expected=4895.000 >Predicted=4895.000, Expected=4333.000	
>Predicted=4333.000, Expected=4194.000 >Predicted=4194.000, Expected=5253.000 RMSE: 527.148 import warnings from pandas import read_csv	
<pre>from statsmodels.tsa.arima_model import ARIMA from sklearn.metrics import mean_squared_error from math import sqrt # evaluate an ARIMA model for a given order (p,d,q) and return RMSE</pre>	
<pre>def evaluate_arima_model(X, arima_order): # prepare training dataset X = X.astype('float32') train_size = int(len(X) * 0.50) train, test = X[0:train_size], X[train_size:] history = [x for x in train]</pre>	
<pre># make predictions predictions predictions = list() for t in range(len(test)): model = ARIMA(history, order=arima_order) # model_fit = model.fit(disp=0)</pre>	
<pre>model_fit = model.fit(disp=0) yhat = model_fit.forecast()[0] predictions.append(yhat) history.append(test[t]) # calculate out of sample error rmse = sqrt(mean_squared_error(test, predictions))</pre>	
<pre>return rmse [12]: # evaluate combinations of p, d and q values for an ARIMA model def evaluate_models(dataset, p_values, d_values, q_values): dataset = dataset.astype('float32') hast recombinations of p, d and q values for an ARIMA model def evaluate combinations of p, d and q values for an ARIMA model def evaluate combinations of p, d and q values for an ARIMA model def evaluate combinations of p, d and q values for an ARIMA model def evaluate _models(dataset, p_values, d_values): dataset = dataset.astype('float32')</pre>	
<pre>best_score, best_cfg = float('inf'), None for p in p_values: for d in d_values: for q in q_values: order = (p,d,q) try:</pre>	
<pre>rmse = evaluate_arima_model(train, order) if rmse < best_score: best_score, best_cfg = rmse, order print('ARIMA%s RMSE=%.3f' % (order,rmse)) except: continue</pre>	
<pre>print('Best ARIMA%s RMSE=%.3f' % (best_cfg, best_score)) [13]: train = pd.read_excel('/Users/SAURABH/Saurabh patil/DATA SCIENCE/SVM/CocaCola_Sales_Rawdata.xlsx', header=0, index_col=0, parse_dates=True) X = train.values X = X.astype('float32')</pre>	
<pre>[14]: # fit model model = ARIMA(X, order=(3,1,0)) model_fit = model.fit() forecast=model_fit.forecast(steps=10)[0] model_fit.plot_predict(1, 79)</pre>	
C:\Users\SAURABH\anaconda3\lib\site-packages\statsmodels\tsa\arima_model.py:472: FutureWarning: statsmodels.tsa.arima_model.ARMA and statsmodels.tsa.arima_model.ARIMA have been deprecated in favor of statsmodels.tsa.arima.model.ARIMA (note the . between arima and model) and statsmodels.tsa.SARIMAX. These will be removed after the 0.12 release.	
statsmodels.tsa.arima.model.ARIMA makes use of the statespace framework and is both well tested and maintained. To silence this warning and continue using ARMA and ARIMA until they are	
<pre>removed, use: import warnings warnings.filterwarnings('ignore', 'statsmodels.tsa.arima_model.ARMA',</pre>	
warnings.warn(ARIMA_DEPRECATION_WARN, FutureWarning) t[14]: 8000 forecast y 95% confidence interval	
7000 - 5000 - 4000 - M	
4000	
0 10 20 30 40 50 60 70 80 8000 - forecast	
6000 - 5000 - 4000 -	
3000	
2000 - 10 20 30 40 50 60 70 80	
2000	
2000 - 10 20 30 40 50 60 70 80	
2000 - 10 20 30 40 50 60 70 80	