Novo Espaço – Matemática A, 12.º ano

Apoio à avaliação [outubro - 2023]

Data: ___ - ___ - ___

Nome:

Ano / Turma: _____ N.º: ____

1. Considera todos os números naturais de sete algarismos que é possível formar com os algarismos de 1 a 9.

Destes números, quantos têm exatamente três algarismos iguais a 1?

(A) 58 800

(B) 143 360

(C) 229 635

- **(D)** 860 160
- 2. A Maria gosta muito de fazer construções com peças de encaixe. Numa tarde de chuva, enquanto realizava uma dessas construções, separou 15 peças com forma igual, sendo 6 amarelas, 5 verdes e as restantes roxas e começou a construir torres encaixando as 12 peças aleatoriamente umas em cima das outras, completamente alinhadas.

Quantas torres distintas, atendendo às cores, pode a Maria construir, de modo que as peças verdes fiquem todas juntas?

3. A Lista X, candidata à Associação de Estudantes da escola da Maria, é constituída por 14 elementos, sendo 8 raparigas e 6 rapazes. Para organizar a festa de *Halloween* da escola, pretende-se escolher uma comissão de três elementos para ocupar três cargos: **Presidente**; **Relações públicas** e **Tesoureiro**.

Quantas comissões mistas (com pelo menos um rapaz e pelo menos uma rapariga) poderão ser formadas?

(A) ${}^{8}A_{2} \times 6 + {}^{6}A_{2} \times 8$

- **(B)** ${}^{8}C_{2} \times 6 + {}^{6}C_{2} \times 8$
- (C) $({}^{8}A_{2} \times 6 + {}^{6}A_{2} \times 8) \times 3!$
- **(D)** $({}^{8}C_{2} \times 6 + {}^{6}C_{2} \times 8) \times 3!$

Novo Espaço – Matemática A, 12.º ano

4. Para assistirem ao concerto da artista Olivia Rodrigo no Altice Arena, em 2024, sete amigos, três raparigas e quatro rapazes, entre eles a Ana e o Pedro, compraram sete bilhetes para sete lugares consecutivos na mesma fila. De quantas maneiras diferentes podem ser distribuídos pelos sete lugares, ficando numa das pontas, em lugares consecutivos, a Ana e o Pedro?

5. No teste de Matemática havia oito questões de escolha múltipla, cada uma com quatro opções de resposta: A, B, C e D. No final do teste, a professora referiu que a chave correta das escolhas múltiplas era constituída por uma opção A, duas opções B, duas opções C e três opções D, mas não revelou a ordem pela qual elas ocorriam. Ao invés disso, decidiu colocar uma questão aos alunos: "Atendendo à informação que vos revelei, quantas são as possibilidades de chaves diferentes da escolha múltipla do teste?"

Indica a opção que representa a resposta correta à questão colocada pela professora.

(A) 576

(B) 1680

(C) 40320

- **(D)** 134 400
- 6. Na figura está representado um tabuleiro quadrado dividido em 16 quadrados iguais, numerados de 1 a 16. A Maria tem 12 discos, 9 brancos, 1 preto, 1 vermelho e 1 amarelo, só distinguíveis pela cor. Os 12 discos vão ser colocandos, ao acaso, no tabuleiro não mais do que um em cada quadrado.

1	2	3	4		
5	6	7	8		
9	10	11	12		
13	14	15	16		

6.1. Cada uma das expressões permite determinar o número de configurações diferentes que a Maria poderá obter como resultado da colocação dos 12 discos no tabuleiro.

I.
$${}^{16}C_9 \times {}^7A_3$$

II.
$${}^{16}C_{12} \times {}^{12}C_9 \times 3!$$

Numa composição, explica os raciocínios que conduzem a cada uma destas expressões, referindo o significado, no contexto do problema, de cada um dos seus fatores.

Novo Espaço – Matemática A, 12.º ano

Apoio à avaliação [outubro - 2023]

6.2. A Maria coloca, aleatoriamente, as 12 peças no tabuleiro. Determina a probabilidade de as duas diagonais ficarem totalmente preenchidas com discos brancos.

Apresenta o resultado na forma de fração irredutível.

- 7. Sabe-se que o elemento central de uma certa linha do Triângulo Pascal é representado por $^{n+1}C_7 + ^{n+1}C_8$. Determina a soma de todos os elementos dessa linha.
- 8. O produto do segundo elemento pelo penúltimo elemento de uma certa linha do Triângulo de Pascal é 144.

Selecionam-se, ao acaso, dois elementos dessa linha.

Qual é a probabilidade de os elementos selecionados serem iguais?

- (A) $\frac{12}{13}$ (B) $\frac{2}{13}$ (C) $\frac{1}{13}$
- **9.** Considera o desenvolvimento de $\left(\frac{1}{x^2} x\right)^6$, $x \neq 0$.

Determina o termo deste desenvolvimento que não depende da variável x.

10. Um saco contém 50 bolas, todas indistinguíveis ao tato, numeradas de 1 a 50. Cada bola tem uma única cor e só existem bolas azuis e brancas no saco.

Sabe-se que o número de bolas azuis é maior do que o número de bolas brancas.

Vão ser retiradas do saco, simultaneamente, duas dessas bolas.

Sabe-se que a probabilidade de saírem duas bolas de cores distintas é $\frac{3}{7}$.

Determina quantas bolas brancas há no saco.

FIM

Cotações											Total	
Questões	1.	2.	3.	4.	5.	6.1.	6.2.	7.	8.	9.	10.	Total
Cotações	15	20	15	20	15	20	20	20	15	20	20	200