UNIT 10 Sequences

Overhead Slides

Overhead Slides

- 10.1 Constant Differences
- 10.2 Sequences Defined by Formulae
- 10.3 Finding the Formula
- 10.4a Quadratic Sequences
- 10.4b Quadratic Sequences
- 10.5 Further Sequences
- 10.6 Finding the Limit of a Sequence

OS 10.1

Use the differences to extend each sequence:

A 3 10 17 24 31

....

B 1 9 17 25 33

....

 C
 5
 8
 11
 14
 17

....

D 90 79 68 57 46

....

A sequence is defined by the formula $u_n = 5n - 3$

$$u_1 = 5 \times 1 - 3$$

=

$$u_2 = 5 \times \ldots -3$$

=

$$u_3 =$$

=

$$u_4 =$$

=

$$u_{20} =$$

=

$$u_{100} =$$

=

OS 10.3

Finding the Formula

Determine a formula for this sequence:

The difference is , so the formula is

$$u_n = \boxed{ n + c}$$

Use the first term to obtain c

$$7 = \boxed{ \times 1 + c \Rightarrow c = }$$

So the formula is

$$u_n =$$

Determine a formula for this sequence:

The difference is , so the formula is

$$u_n = \boxed{ \qquad n + c}$$

Use the first term to obtain c

$$40 = \times 1 + c \Rightarrow c =$$

So the formula is

$$u_n =$$

OS 10.4a Quadratic Sequences

Determine the formula for the sequence:

As the second differences are constant and all equal to 2, the sequence will have formula

$$u_n = n^2 +$$

Subtract n^2 from each term to obtain a new sequence

The formula for this sequence is

$$v_n =$$

Combining the two sequences gives:

$$u_n =$$

Determine the formula for the sequence

The sequence will have a formula

$$u_n = \left| n^2 \right| +$$

Now form a new sequence as below:

$$-2$$
 -6

This sequence has formula

$$v_n =$$

So the original sequence has formula

$$u_n =$$

OS 10.5

Use differences to extend the following sequences:

1. 2 3 5 8 13

2. 1 4 5 9 14

3.

What happens to the sequence

$$u_n = \frac{2n-3}{n+1}$$

as *n* becomes large?

Complete the following table, and comment on the results.

n	u_n
1	
2	
5	
10	
50	
100	
1000	
2000	
5000	
10 000	