

By Dr. Zhenyu He and Yao Xu Autumn 2010

## Outline

- Introduction
- Fourier Series
- Fourier Transform
  - Continuous Fourier Transform
  - Discrete Fourier Transform
- Disadvantage
- Conclusion

#### Introduction

- The conception of Fourier transform is put forward by the French mathematician and physicist Mr. Jean Baptiste Joseph Fourier.
- In signal analysis and signal processing, Fourier transform is an important and basis technology.
- It can transform a signal in time domain to another in frequency domain.

# Mr. Jean Baptiste Joseph Fourier $1768 \sim 1830$



Definition:

In mathematics, Fourier series decomposes any periodic function or periodic signal into the sum of a (possibly infinite) set of simple oscillating functions, namely sines and cosines.

The family of functions  $\{\cos n\omega t, \sin n\omega t\}$  constructs an orthonormal basis of  $L^2[t-T/2,t+T/2]$ .

It can be written as:

$$f(t) = \sum_{k} a_{k} e_{k}$$

Where

$$a_k = \langle f(t), e_k(t) \rangle$$

Also, more detailedly:

$$f(t) = \sum_{n=0}^{\infty} \left( a_n \cos n \omega_1 t + b_n \sin n \omega_1 t \right)$$
$$= a_0 + \sum_{n=1}^{\infty} \left( a_n \cos n \omega_1 t + b_n \sin n \omega_1 t \right)$$

The Fourier coefficients in the equation are:

$$a_{0} = \frac{1}{T} \int_{-T/2}^{T/2} f(t) dt$$

$$a_{n} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega t) dt$$

$$b_{n} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(n\omega t) dt$$

The periodic function f(t) should satisfy the Dirichilet condition:

- must have a finite number of <u>extrema</u> in any given interval;
- must have a finite number of <u>discontinuities</u> in any given interval;
- must be <u>absolutely integrable</u> over a period;
- must be bounded.

Trigonometric functions are orthogonal to each other.

$$\int_{t-T/2}^{t+T/2} \sin(n\omega t) \sin(m\omega t) dt = \begin{cases} 0, & n \neq m \\ \frac{T}{2}, & n = m \end{cases}$$

$$\int_{t-T/2}^{t+T/2} \cos(n\omega t) \cos(m\omega t) dt = \begin{cases} 0, & n \neq m \\ \frac{T}{2}, & n = m \end{cases}$$

$$\int_{t-T/2}^{t+T/2} \sin(n\omega t) \cos(m\omega t) dt = 0, & m, n = 0, 1, \dots, \infty.$$

• Another expression with trigonometric functions:  $f(t) = c_0 + \sum_{n=0}^{\infty} c_n \cos(n\omega t + \phi_n)$ 

$$f(t) = c_0 + \sum_{n=1}^{\infty} c_n \cos(n\omega t + \phi_n)$$

$$f(t) = d_0 + \sum_{n=1}^{\infty} d_n \cos(n\omega t + \theta_n)$$

$$a_0 = c_0 = d_0$$

$$c_n = d_n = \sqrt{a_n^2 + b_n^2}$$

$$a_n = c_n \cos \phi_n = d_n \sin \theta_n$$

$$b_n = -c_n \sin \phi_n = d_n \cos \theta_n$$

$$\tan \theta_n = \frac{a_n}{b_n}, \tan \phi_n = -\frac{b_n}{a_n}$$

# Frequency Spectrum

The spectral lines of periodic signal only appear at the frequencies that are integral times of the basis frequency.





## Complex Exponential Series

The family of trigonometric functions can be written in the form of Euler's function:

$$\left\{e^{jn\omega t}\right\}_{n=0,\pm 1,\pm 2,\cdots}$$

The Fourier series can be written as:

$$f(t) = \sum_{-\infty}^{\infty} F(n\omega) e^{jn\omega t}$$

where

$$F(0) = a_0$$

$$F(n\omega) = \frac{1}{2}(a_n - jb_n)$$

Introduce the negative frequency

$$F(-n\omega) = \frac{1}{2}(a_n + jb_n)$$

# Complex Exponential Series

The frequency spectrogram of periodic complex exponential signal is show as follows:



## Complex Exponential Series

The coefficients of the complex Fourier series will be:

$$F(n\omega) = F_n = \frac{1}{T} \int_{t_0 - T/2}^{t_0 + T/2} f(t) e^{-jn\omega t} dt$$

- Fourier series can only expand the periodic function, the integral domain is one period of the function;
- ♦ For non-periodic function, we should expand the integral domain to the whole field, i.e.  $T\rightarrow\infty$ , then we get the Fourier transform.

#### Fourier Transform

• For any signal (periodic or not)  $\forall f(t) \in L^2(R)$ , the Fourier transform is defined as:

$$F(t) = \int_{-\infty}^{\infty} f(x)e^{-j2\pi xt} dx$$
$$j^{2} = -1$$

The inverse Fourier transform is:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(u)e^{j2\pi xt} dx$$

## Definition

- Continuous FT
  - 1-D Case

$$F(u) = \int_{-\infty}^{\infty} f(t)e^{-j2\pi ut}dt$$
$$j^{2} = -1$$

2-D Case

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi(ux+vy)}dxdy$$

## Definition

- Discrete FT
  - 1-D Case

$$F(u) = \sum_{x=0}^{M-1} f(x)e^{-j2\pi ux/N} \qquad u = 0,1,...,N-1.$$

2-D Case

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y)e^{-j2\pi(ux/M+vy/N)} dxdy$$
  

$$u = 0,1,...,M-1; v = 0,1,...,N-1$$

# **DEMO** (1-D)



From the figure we see that the initial signal is a pulse signal. FT can find its frequency easily.

A signal consisting of one frequency  $f(t)=\sin(2\pi t)$ 

# **DEMO (1-D)**



From the figure we see that FT can transform the signal in time domain to signal in frequency domain. FT obviously finds the two waves of different frequencies.

A signal consisting of two frequencies  $f(t)=\sin(2*pi*t)+0.5*\sin(2*pi*5*t)$ 

# **DEMO** (2-D)





a) the initial image

b) the frequency distribution

From above figure we see that FT can transform an image in time domain to an image in frequency domain.

## Properties Fourier Transform

- Symmetry and Linearity (对称性和线性叠加性)
- ◆ Conjugation (奇偶虚实性)
- ◆ Scaling (尺度变换特性)
- ◆ Time Translation and Frequency Translation (时移特性和频移特性)
- ◈微分和积分特性

# Symmetry

♦ IF

$$F(\omega) = FT[f(t)]$$

♦ THEN

$$FT[F(t)] = 2\pi f(-\omega)$$

## Linearity

♦ IF

$$FT\left[f_i(t)\right] = F_i(\omega)$$

THEN

$$FT\left[\sum_{i=1}^{n} a_{i} f_{i}(t)\right] = \sum_{i=1}^{n} a_{i} F_{i}(\omega)$$

# Conjugation

• Whenever f(t) is real function or complex function, the equations below are right:

$$FT [f(t)] = F(\omega)$$

$$FT [f(-t)] = F(-\omega)$$

$$FT [f^*(t)] = F^*(-\omega)$$

$$FT [f^*(-t)] = F^*(\omega)$$

# Scaling

♦ IF

$$FT[f(t)] = F(\omega)$$

**⋄** THEN

$$FT[f(at)] = \frac{1}{|a|}F\left(\frac{\omega}{a}\right)$$

## Time Translation

♦ IF

$$FT[f(t)] = F(\omega)$$

**⋄** THEN

$$FT[f(t-t_0)] = F(\omega)e^{-j\omega t_0}$$

## Frequency Translation

F

$$FT[f(t)] = F(\omega)$$

◆ THEN

$$FT\left[f(t)e^{j\omega_0t}\right] = F(\omega - \omega_0)$$

## Differential

♦ IF

$$FT[f(t)] = F(\omega)$$

◆ THEN

$$FT\left\lceil \frac{df(t)}{dt}\right\rceil = j\omega F(\omega)$$

$$FT\left[\frac{d^n f(t)}{dt^n}\right] = (j\omega)^n F(\omega)$$

## Integral

♦ IF

$$\omega = 0$$
,  $\left| \frac{F(\omega)}{\omega} \right| < \infty$  or  $F(0) = 0$ 

$$FT[f(t)] = F(\omega)$$

**♦ THEN** 

$$FT\left[\int_{-\infty}^{t} f(\tau)d\tau\right] = \frac{F(\omega)}{j\omega}$$

## Integral

♦ IF

$$FT[f(t)] = F(\omega)$$
$$F(0) \neq 0$$

♦ THEN

$$FT\left[\int_{-\infty}^{t} f(\tau)d\tau\right] = \frac{F(\omega)}{j\omega} + \pi F(0)\delta(\omega)$$

## Fourier Transform

Analysis Fourier transform with physical sense:

- $\bullet$  F( $\omega$ ) is a concept of density function;
- $\bullet$  F( $\omega$ ) is a continuous spectrum;
- $\bullet$  F( $\omega$ ) includes all frequency components from 0 to infinite high frequency;
- Each frequency component is not harmonic with another.

#### DISADVANTAGE

- FT uses sine basis function which expands the whole time domain, not a specific moment.
- So FT can not find the location of the specific signal.
- FT has a limitation that can only analyze the global frequency distribution.