MQTT Broker List

```
myMQTT(1) = mqtt('tcp://192.168.0.124:1883');
                                              % V1
myMQTT(2) = mqtt('tcp://192.168.0.123:1883');
                                              % V2
myMQTT(3) = mqtt('tcp://192.168.0.112:1883');
                                              % V3
myMQTT(4) = mqtt('tcp://192.168.0.113:1883');
                                              % I1
myMQTT(5) = mqtt('tcp://192.168.0.120:1883');
                                              % 12
myMQTT(6) = mqtt('tcp://192.168.0.119:1883');
                                              % I3
myMQTT(7) = mqtt('tcp://192.168.0.118:1883');
                                              % Vn
myMQTT(8) = mqtt('tcp://192.168.0.117:1883');
                                              % In
myMQTT(9) = mqtt('tcp://192.168.0.116:1883'); % Freq
myMQTT(10) = mqtt('tcp://192.168.0.115:1883'); % Load
myMQTT(11) = mqtt('tcp://192.168.0.114:1883'); % Subscribe
```

Feeders:

*Install dashboard and table UI nodes if MQTT is not connecting to the feeders

Raspberry Pi Allocations

PLC - 192.168.0.102

IED1 - 192.168.0.121

IED2 - 192.168.0.117

SCADA - 192.168.0.124

Bus 1:

Feeder 1: 192.168.0.101 Feeder 2: 192.168.0.103 Feeder 3: 192.168.0.104 Feeder 4: 192.168.0.105 Feeder 5: 192.168.0.107

Feeder 6: 192.168.0.108

Feeder 7: 192.168.0.109

Feeder 8: 192.168.0.110

Feeder 9: 192.168.0.111

Bus 2:

Feeder 10: 192.168.0.112

Feeder 11: 192.168.0.113

Feeder 12: 192.168.0.114

Feeder 13: 192.168.0.115

Feeder 14: 192.168.0.116

Feeder 15: 192.168.0.118

Feeder 16: 192.168.0.119

Feeder 17: 192.168.0.120

Feeder 18: 192.168.0.123

Problem Raspberry Pis:

192.168.0.106 192.168.0.122

Database Parameters:

- Timestamp
 - o Collects data every 10 minutes
- 9 input values
- CB status
- CB decision
- Events that occur
 - At every event, collect all data regardless of 10 minute cycle

To COPY and paste from SCADA node to auto delete for last 500 entries for all 20 ieds

If nodered shows EADDRESS 0.0.0.0 in use, ps -e | grep -i node-red Sudo kill process no.

MQTT

Configuration: Matlab Broker - 192.168.0.124 Matlab file consist of:

- Broker and supply configuration
- Hardcoded values for Supply 1 and 2
- MQTT channels/topics for hardcoded values
- Publish and subscribe settings
- Display status for both CB

Topics:

Supply 1

Voltage Phase 1 - Matlab_to_IED1/S1_Vphase1
Voltage Phase 2 - Matlab_to_IED1/S1_Vphase2
Voltage Phase 3 - Matlab_to_IED1/S1_Vphase3
Voltage Neutral - Matlab_to_IED1/S1_Vn
Current Phase 1 - Matlab_to_IED1/S1_Iphase1
Current Phase 2 - Matlab_to_IED1/S1_Iphase2
Current Phase 3 - Matlab_to_IED1/S1_Iphase3
Current Neutral - Matlab_to_IED1/S1_In
Frequency - Matlab_to_IED1/S1_frequency

Supply 2

Voltage Phase 1 - Matlab_to_IED2/S2_Vphase1
Voltage Phase 2 - Matlab_to_IED2/S2_Vphase2
Voltage Phase 3 - Matlab_to_IED2/S2_Vphase3
Voltage Neutral - Matlab_to_IED2/S2_Vn
Current Phase 1 - Matlab_to_IED2/S2_Iphase1
Current Phase 2 - Matlab_to_IED2/S2_Iphase2
Current Phase 3 - Matlab_to_IED2/S2_Iphase3
Current Neutral - Matlab_to_IED2/S2_In
Frequency - Matlab_to_IED1/S2_frequency

Modbus

Server location: 192.168.0.104

PyModbus Setup

To activate: Go to command prompt/terminal

Type: cd Python python Simple_ModbusServer.py

Example:

```
johannes@X230:Python$ python Simple_ModbusServer.py
Start server...
Server is online
^CShutdown server ...
Server is offline
johannes@X230:Python$
```

Modbus Addresses

IED1 \rightarrow PLC:

- FC: 6, Unit ID: 2, Address: 15

IED2 \rightarrow PLC:

- FC: 6, Unit ID: 4, Address: 15

Feeder 1 IED \rightarrow PLC

- FC: 6, Unit ID: 2, Address: 20

Feeder 2 IED \rightarrow PLC

- FC: 6, Unit ID: 2, Address: 21

Feeder 3 IED \rightarrow PLC

- FC: 6, Unit ID: 2, Address: 22

Feeder 4 IED \rightarrow PLC

- FC: 6, Unit ID: 2, Address: 23

Feeder 5 IED \rightarrow PLC

- FC: 6, Unit ID: 2, Address: 24

Feeder 6 IED \rightarrow PLC

- FC: 6, Unit ID: 2, Address: 25

Feeder 7 IED \rightarrow PLC

- FC: 6, Unit ID: 2, Address: 26

Feeder 8 IED \rightarrow PLC

- FC: 6, Unit ID: 2, Address: 27

Feeder 9 IED \rightarrow PLC

- FC: 6, Unit ID: 2, Address: 28

Feeder 10-18 IED \rightarrow PLC

- FC: 6, Unit ID: 2, Address: 29-37

$\textbf{IED1} \rightarrow \textbf{SCADA}$

- FC: 16, Unit ID: 10, Address: 50, Quantity: 9

$\textbf{IED2} \rightarrow \textbf{SCADA}$

- FC: 16, Unit ID: 10, Address: 75, Quantity: 9

Feeder $1 \rightarrow SCADA$

FC: 16, Unit ID: 10, Address: 100, Quantity: 9

Feeder2→ SCADA

FC: 16, Unit ID: 10, Address: 125, Quantity: 9

Feeder3→ SCADA

FC: 16, Unit ID: 10, Address: 150, Quantity: 9

Feeder4→ SCADA

FC: 16, Unit ID: 10, Address: 175, Quantity: 9

Feeder5→ SCADA

FC: 16, Unit ID: 10, Address: 200, Quantity: 9

Feeder6→ SCADA

FC: 16, Unit ID: 10, Address: 225, Quantity: 9

Feeder7→ SCADA

FC: 16, Unit ID: 10, Address: 250, Quantity: 9

Feeder8→ SCADA

FC: 16, Unit ID: 10, Address: 275, Quantity: 9

Feeder9→ SCADA

FC: 16, Unit ID: 10, Address: 300, Quantity: 9

Feeder10 \rightarrow SCADA

FC: 16, Unit ID: 10, Address: 325, Quantity: 9

Feeder11→ SCADA

FC: 16, Unit ID: 10, Address: 350, Quantity: 9

Feeder12→ SCADA

FC: 16, Unit ID: 10, Address: 375, Quantity: 9

Feeder13→ SCADA

FC: 16, Unit ID: 10, Address: 400, Quantity: 9

Feeder14→ SCADA

FC: 16, Unit ID: 10, Address: 425, Quantity: 9

 $\textbf{Feeder15} {\rightarrow} \, \textbf{SCADA}$

FC: 16, Unit ID: 10, Address: 450, Quantity: 9

Feeder16 \rightarrow SCADA

FC: 16, Unit ID: 10, Address: 475, Quantity: 9

Feeder17 \rightarrow SCADA

FC: 16, Unit ID: 10, Address: 500, Quantity: 9

Feeder18 \rightarrow SCADA

FC: 16, Unit ID: 10, Address: 525, Quantity: 9

Scada \rightarrow IED 1, IED2 ,Feeder 1 to 18

FC: 6, Unit ID: 2, Address: **551 to 570** , Quantity: 1