

2012 Yr 6 H2 Math Preliminary Examination Paper 1 Suggested Mark Scheme

Qn	Suggested Solution	Marking Scheme
1	$\frac{ x +3}{x^2+1} > 1$ $\Rightarrow \frac{y+3}{y^2+1} > 1$ $\Rightarrow y+3 > y^2+1$ i.e. $y^2 - y - 2 < 0$ $(y-2)(y+1) < 0$ $-1 < y < 2$ $0 \le x < 2$ $-2 < x < 2$	M1 – Cross-multiply or state that $y^2 + 1 > 0$ (in the case of combining into a single fraction) B1 – Correct answer in terms of y
		Total: 3 marks

Qn	Suggested Solution	Marking Scheme
2	$\int_{\frac{1}{2}}^{n} \frac{\left(\tan^{-1} 2x\right)^{2}}{1+4x^{2}} dx$	$\mathbf{M1}$ – Use $k \int f'(x) [f(x)]^n dx$
		and proceed to $(\tan^{-1} 2x)^{n+1}$
	$= \frac{1}{2} \int_{\frac{1}{2}}^{n} 2 \frac{\left(\tan^{-1} 2x\right)^{2}}{1 + 4x^{2}} dx = \frac{1}{6} \left[\left(\tan^{-1} 2x\right)^{3} \right]_{\frac{1}{2}}^{n}$	
	$=\frac{1}{6}\left[\left(\tan^{-1}2n\right)^3-\left(\frac{\pi}{4}\right)^3\right]$	A1 – Evaluation with correct limits
	As $n \to \infty$, $\tan^{-1} 2n \to \frac{\pi}{2}$	M1 – Can show implicitly
	$\int_{\frac{1}{2}}^{\infty} \frac{\left(\tan^{-1} 2x\right)^2}{1 + 4x^2} dx = \frac{1}{6} \left[\left(\frac{\pi}{2}\right)^3 - \left(\frac{\pi}{4}\right)^3 \right]$	
	$=\frac{7}{384}\pi^3$	A1 – Exact answer
		Total: 4 marks

Qn	Suggested Solution	Marking Scheme
3		
	$\frac{2+x}{\sqrt{9-x}}$	
	$= (2+x)\frac{1}{3}\left(1-\frac{x}{9}\right)^{-\frac{1}{2}}$	B1 - $k \left(1 - \frac{x}{9}\right)^{-\frac{1}{2}}$
	$= \frac{1}{3}(2+x)\left(1+\left(-\frac{1}{2}\right)\left(-\frac{x}{9}\right)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left(-\frac{x}{9}\right)^{2}+\dots\right)$	M1 – Correct use of binomial theorem
	$= \frac{1}{3}(2+x)\left(1+\frac{x}{18}+\frac{x^2}{216}+\dots\right)$	
	$= \frac{1}{3} \left(2 + \frac{x}{9} + \frac{x^2}{108} + x + \frac{x^2}{18} + \dots \right)$	
	$= \frac{2}{3} + \frac{10}{27}x + \frac{7}{324}x^2 + \dots$	A1
	$\frac{2+x}{\sqrt{9-x}} \approx \frac{2}{3} + \frac{10}{27}x$	
	$\therefore \frac{2+\frac{1}{9}}{\sqrt{9-\frac{1}{9}}} \approx \frac{2}{3} + \frac{10}{27} \left(\frac{1}{9}\right)$	$\sqrt{M1}$ – Correct substitution (to award once $\sqrt{5}$ is seen)
	$\frac{19}{9} \times \frac{3}{4\sqrt{5}} \approx \frac{172}{243}$	
	$\sqrt{5} \approx \frac{19}{9} \times \frac{3}{4} \times \frac{243}{172} = \frac{1539}{688}$	A1
	i.e. $p = 1539$, $q = 688$	
	Alternatively,	
	$\frac{19}{9} \times \frac{3}{4\sqrt{5}} \approx \frac{172}{243}$	
	$\frac{19}{12\sqrt{5}} \approx \frac{172}{243}$	
	$\frac{19\sqrt{5}}{60} \approx \frac{172}{243}$	
	$\sqrt{5} \approx \frac{3440}{1539}$	
	i.e. $p = 3440$, $q = 1539$	Total: 5 marks

Qn	Suggested Solution	Marking Scheme
4	$f(r-1) - f(r) = \frac{r-1}{(r-2)!} - \frac{r}{(r-1)!}$ $= \frac{(r-1)^2 - r}{(r-1)!}$ $= \frac{r^2 - 2r + 1 - r}{(r-1)!}$	M1 – Simplify with $(r-1)!$ in the denominator.
	$=\frac{r^2-3r+1}{(r-1)!}$	AG1
(i)	$\sum_{r=2}^{n} \frac{r^2 - 3r + 1}{(r - 1)!} = \sum_{r=2}^{n} (f(r - 1) - f(r))$ $= f(1) - f(2)$ $+f(2) - f(3)$ $+f(3) - f(4)$ \vdots $f(n-1) - f(n)$ $= f(1) - f(n)$ $= 1 - \frac{n}{(n-1)!}$	M1 – List terms and show cancellation $B1 - f(1) - f(n)$ $A1$
(ii)	As $n \to \infty$, $\frac{n}{(n-1)!} = \frac{n}{(n-1)(n-2)1} \to 0$.	$\frac{n}{(n-1)(n-2)1} \to 0$
	Thus $\sum_{r=2}^{\infty} \frac{r^2 - 3r + 1}{(r-1)!} = 1$	B1 Total: 7 marks

Qn	Suggested Solution	Marking Scheme
5(a)	Volume of solid	
	$=\pi \int_0^{\ln 5} x^2 \mathrm{d}y$	B1 – Correct formulation
	$=\pi \int_0^{\ln 5} (5-e^y)^2 dy$	and limits.
	= 38.44 (2 dp) by GC	B1 – Answer to 2dp (accept
		$12.24\pi)$
b(i)	$\left\{x \in \mathbb{R}, \ 0 \le x \le 4\right\}$	B1 – Condone w/o set
		notation
(ii)	ν=ε((π))	
	$y = f(x)$ $for -\frac{9}{2} \le x \le 0$ $for 0 \le x \le \frac{9}{2}$	
	for $-\frac{9}{2} \le x \le 0$ for $0 \le x \le \frac{9}{2}$	
	-9/A A	
	2 -4 4 4 x	
	$O \left(\frac{9}{2} \right)$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	From the diagram	
	$\int_{0}^{\frac{\pi}{2}} f(x) dx - \int_{-\frac{9}{2}}^{0} f(x) dx$	M1 – Identify and simplify
	=(A+B)-(A-B)=2B	required sections by
		symmetry
	Consider:	
	$\int \ln(5-x) \mathrm{d}x$	
	$= x \ln(5-x) + \int \frac{x}{5-x} dx$	M1 – Correct integration by
		parts applied
	$= \left[x \ln(5-x) \right] - \int \left(1 - \frac{5}{5-x} \right) dx$	
	$= x \ln(5-x) - [x+5\ln(5-x)] + c$	M1 – Split numerators and apply by parts. Must see
	$= (x-5)\ln(5-x) - x + c$	apply by parts. Must see $[x+k \ln(5-x)]$. Condone
		w/o + c
	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\therefore 2B = 2 \left[(x-5) \ln(5-x) - x \right]_{4}^{\frac{9}{2}} = 2 \left -\frac{1}{2} \ln \frac{1}{2} - \frac{1}{2} \right $	B1 – Correct limits (or
		equivalents)
	$=1-\ln 2$	
	$\therefore a=1$, $b=-1$	A1 – Both a and b correct
		Total: 8 marks

Qn	Suggested Solution	Marking Scheme
6	$y = e^{\cos^{-1} x}$	
(i)	$\ln y = \cos^{-1} x$	
		D4
	$\frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{\sqrt{1-x^2}}$	B1
	$\left(1 - x^2\right) \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = y^2$	
	$\left(1 - x^2\right) \left(2\frac{dy}{dx}\right) \left(\frac{d^2y}{dx^2}\right) + \left(-2x\right) \left(\frac{dy}{dx}\right)^2 = 2y \left(\frac{dy}{dx}\right)$	M1– Differentiate wrt <i>x</i> again. Two out of three terms correct.
	$\left(1 - x^2\right) \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - x \frac{\mathrm{d}y}{\mathrm{d}x} = y \text{(shown)}$	AG1 – All terms correct
	Alternative $y = e^{\cos^{-1} x}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{\sqrt{1-x^2}} e^{\cos^{-1}x}$	B1
	$\frac{d^2 y}{dx^2} = \frac{1}{1 - x^2} e^{\cos^{-1} x} + e^{\cos^{-1} x} \left(\left(\frac{1}{2} \right) (1 - x^2)^{-\frac{3}{2}} (-2x) \right)$	M1 – Differentiate wrt <i>x</i> again. Correct application of chain rule or product rule.
	$= \frac{1}{1-x^2} e^{\cos^{-1}x} - x(1-x^2)^{-\frac{3}{2}} e^{\cos^{-1}x}$	chum runo er productruno.
	LHS = $\left(1 - x^2\right) \frac{d^2 y}{dx^2} - x \frac{dy}{dx}$	
	$ \left(1 - x^2\right) \left(\frac{1}{1 - x^2} e^{\cos^{-1} x} - x \left(1 - x^2\right)^{-\frac{3}{2}} e^{\cos^{-1} x} \right) $	
	$-x\left(-\frac{1}{\sqrt{1-x^2}}e^{\cos^{-1}x}\right)$	
	$= e^{\cos^{-1} x} = y = RHS \text{ (shown)}$	AG1 – Show LHS = RHS
(ii)	$(1-x^2)\frac{d^3y}{dx^3} - 2x\frac{d^2y}{dx^2} - \frac{dy}{dx} - x\frac{d^2y}{dx^2} = \frac{dy}{dx}$	M1 – Any pair of terms in LHS correct (as evident of correct implicit
	$\left(1 - x^2\right) \frac{d^3 y}{dx^3} - 3x \frac{d^2 y}{dx^2} - 2\frac{dy}{dx} = 0$	differentiation)
	When $x = 0$, $y = e^{\frac{\pi}{2}}$, $\frac{dy}{dx} = -e^{\frac{\pi}{2}}$, $\frac{d^2y}{dx^2} = e^{\frac{\pi}{2}}$, $\frac{d^3y}{dx^3} = -2e^{\frac{\pi}{2}}$,	M1– First 3 terms correct and d^3y
	$y = e^{\frac{\pi}{2}} \left(1 - x + \frac{x^2}{2!} - \frac{2x^3}{3!} + \dots \right)$	provide value for $\frac{d^3y}{dx^3}$
	$= e^{\frac{\pi}{2}} \left(1 - x + \frac{x^2}{2} - \frac{x^3}{3} + \dots \right)$	A1

Qn	Suggested Solution	Marking Scheme
(iii)	$\frac{d}{dx}e^{\cos^{-1}x} = \frac{d}{dx}e^{\frac{\pi}{2}}\left(1 - x + \frac{x^2}{2} - \frac{x^3}{3} + \dots\right)$	M1– Differentiate both sides of the equation in (ii)
	$\therefore -\frac{e^{\cos^{-1}x}}{\sqrt{1-x^2}} = e^{\frac{\pi}{2}} \left(-1 + x - x^2 + \dots \right)$	B1
	$\left \frac{\mathrm{d}y}{\mathrm{d}x} \right _{x=0.5} = -\frac{\mathrm{e}^{\cos^{-1}x}}{\sqrt{1-x^2}} \right _{x=0.5} \approx \mathrm{e}^{\frac{\pi}{2}} \left(-1 + \left(0.5 \right) - \left(0.5 \right)^2 \right)$	
	$= -\frac{3}{4}e^{\frac{\pi}{2}} \text{ or } -3.61 (3.\text{s.f})$	A1
		Total: 9 marks

Qn	Suggested Solution	Marking Scheme
7	$\overrightarrow{OD} = \frac{3\mathbf{a} + 2p\mathbf{b}}{5}$	B1
(i)	$OD = {5}$	
	$\overrightarrow{OE} = \frac{3\mathbf{a} + \mathbf{b}}{4}$	B1
	4	
(0.0)		N64 G III
(ii)	OD = qOE, where q is a constant	M1 – Collinear;
	$\frac{3\mathbf{a} + 2p\mathbf{b}}{5} = q\left(\frac{3\mathbf{a} + \mathbf{b}}{4}\right)$	form $OD = qOE$
	$5 - 4 \begin{pmatrix} 4 \end{pmatrix}$	using answer in (i)
	$\Rightarrow \frac{3}{5} = \frac{3}{4} q \Rightarrow q = \frac{4}{5}$	M1 – Comparing
	$\rightarrow \frac{1}{5} = \frac{1}{4} q \rightarrow q = \frac{1}{5}$	coefficient
	$\Rightarrow \frac{2}{5} p = \frac{1}{4} q \Rightarrow p = \frac{1}{2}$	
	$\rightarrow \frac{1}{5}p - \frac{1}{4}q \rightarrow p - \frac{1}{2}$	A1
/***		
(iii)	Shortest distance from the point E to OB	
	$= \left \overrightarrow{OE} \times \frac{\overrightarrow{OB}}{OB} \right $	
	OB	
	$ (3\mathbf{a}+\mathbf{b})\cdot\mathbf{b} $	
	$= \left \left(\frac{3\mathbf{a} + \mathbf{b}}{4} \right) \times \frac{\mathbf{b}}{5} \right $	M1 – Formula
	1 (2 - 2)	M1 – Obtain the
	$= \frac{1}{20} (3\mathbf{a} \times \mathbf{b}) + (\mathbf{b} \times \mathbf{b}) $	$\begin{vmatrix} \mathbf{v} 1 - \mathbf{O} & \mathbf{v} 1 \\ \mathbf{e} & \mathbf{v} \mathbf{b} \end{vmatrix}$
	3 1 (1 2 2	' '
	$= \frac{3}{20} \mathbf{a} \times \mathbf{b} (: \mathbf{b} \times \mathbf{b} = 0)$	using properties of cross product
	, 3	cross product
	$k = \frac{3}{20}$	A1 – Correct k value,
		can be shown in the
		form $k \mathbf{a} \times \mathbf{b} $.
(iv)	It is the length of projection of a onto b .	B1
	a	
	b	
	$\left \mathbf{a}\cdot\hat{\mathbf{b}}\right $	
		Total: 9 marks

Qn	Suggested Solution	Marking Scheme
8 (i)	$y = \frac{x^2 + (\lambda - 1)x}{x - 1} = x + \lambda + \frac{\lambda}{x - 1}$ The equations of asymptotes: $y = x + \lambda$ and $x = 1$	$\mathbf{B1} - y = x + \lambda$ $\mathbf{B1} - x = 1$
(ii)	$\frac{dy}{dx} = 1 - \frac{\lambda}{(x-1)^2}$ At stationary point, $\frac{dy}{dx} = 0 \Rightarrow 1 - \frac{\lambda}{(x-1)^2} = 0$ $(x-1)^2 = \lambda$ $x = 1 \pm \sqrt{\lambda} \text{ where } \lambda > 0$ For C to have 2 stationary points for $x > 0$, $1 - \sqrt{\lambda} > 0 \Rightarrow \lambda < 1$ $\therefore 0 < \lambda < 1$	M1 – Correct differentiation based on expression in (i) B1 – Correct simplification of $\frac{dy}{dx} = 0$ to a quadratic equation at stationary point M1 – Use smaller root > 0 A1 – 0 < λ < 1
(iii)	$y = x + \lambda$ $x = 1$	G1 – Asymptotes + shape G1 – <i>x</i> -intercepts (condone if not written in coordinates form)
(iv)	$y = 1$ $(1 - \sqrt{\lambda}, 0)$ $x = 1$	G1 – Asymptotes + x-intercepts (equidistance from vert asymptote & condone if not written in coordinates form) G1– Shape (symmetrical about vert asymptote)
		Total: 10 marks

Qn	Suggested Solution	Marking Scheme
9(a)	$z^4 = -4 - 4\sqrt{3} i$	
	$z^{4} = 8e^{i\left(-\frac{2\pi}{3}\right)}$ $z = 8^{\frac{1}{4}}e^{i\frac{1}{4}\left(-\frac{2\pi}{3} + 2k\pi\right)}, k = 0, \pm 1, 2$	B1 – Correct argument for z^4 M1 – Apply DM's Thm correctly
	$z = 8^{\frac{1}{4}} e^{i\frac{\pi}{6}(3k-1)}, \ k = 0, \pm 1, 2$	A1 – Correct answer with correct <i>k</i> values or listing of roots
	$w^{4} = -1 + \sqrt{3} i = \frac{1}{4} \left(z^{4}\right)^{*}$ $\Rightarrow w = \frac{z^{*}}{\sqrt{2}}$	M1 – Attempt to make use of $\frac{1}{4}(z^4)^*$ or equivalent
	$\Rightarrow w = \frac{\sqrt{2}}{\sqrt{2}}$ $w = \frac{z^*}{\sqrt{2}} = \frac{8^{\frac{1}{4}} e^{i\frac{\pi}{6}(1-3k)}}{\sqrt{2}} = 2^{\frac{1}{4}} e^{i\frac{\pi}{6}(1-3k)}, k = 0, \pm 1, 2$	B1 – Correct relationship between <i>z</i> and <i>w</i> A1 – Correct answer
	\- \- \- \- \- \- \- \- \- \- \- \- \- \	THE CONTOCT MISWER
9(b)	$\left \frac{p^7}{q^3} \right = \frac{ p ^7}{ q ^3} = \frac{2^7}{7^3} = \frac{128}{343}$	M1 – Award once $\frac{2^7}{7^3}$ is seen
	Consider $7 \arg(p) - 3 \arg(q) = 7 \left(\frac{\pi}{3}\right) - 3 \left(-\frac{2\pi}{3}\right) = \frac{13\pi}{3}$	M1 – Award once $7 \arg(p) - 3 \arg(q)$ is seen
	$\therefore \arg\left(\frac{p^7}{q^3}\right) = \frac{13\pi}{3} - 4\pi = \frac{\pi}{3}$	A1 – Correct answer $\frac{\pi}{3}$
	$\therefore \frac{p^7}{q^3} = \frac{128}{343} \left[\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right) \right] = \frac{64}{343} + i\frac{64\sqrt{3}}{343}$	A1
	Smallest integer value of <i>n</i> is 3.	B1
		Total: 11 marks

Qn	Suggested Solution	Marking Scheme
10 (i)	Let $y = x^2 + 2x + 4 = (x+1)^2 + 3$ $(x+1)^2 = y-3$	M1 – Express y in terms of x and solve for x (to award
		once <i>x</i> is expressed as the subject, no need to choose
	$\begin{cases} x = -\sqrt{y-3-1} & (7 \cdot x \le -1) \\ f^{-1}(x) = -\sqrt{x-3} - 1 \end{cases}$	correct expression from the two choices)
	$D_{g-1} = R_f = [3, \infty)$	two choices)
	$D_{\mathrm{f}^{-1}} = \mathbf{K}_{\mathrm{f}} = [5, \infty)$	A1 – Expression for $f^{-1}(x)$ in terms of x
(ii)	y = f(x) $y = x$	G1 – $f(x)$: Shape, domain, range and min pt correct
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G1 – Correct symmetry about $y = x$ [No follow-through]
	Since there is no intersection between the 2 graphs, there is no solution for $f(x) = f^{-1}(x)$.	B1 – Answer with reason
(iii)	$R_f = [3, \infty), D_g = (\frac{1}{2}, \infty)$	
	Since $R_f \subseteq D_g$, gf exists.	$\mathbf{B1}$ – Reason with details of \mathbf{R}_{f} and \mathbf{D}_{g}
	$gf(x) = g\left(\left(x+1\right)^2 + 3\right)$	3
	$= \ln\left(2\left[\left(x+1\right)^2+3\right]-1\right)$	M1 – Correct substitution with $f(x)$
	$= \ln\left(2\left(x+1\right)^2 + 5\right)$	A1 – Correct expression
	$(-\infty,-1]$ \xrightarrow{f} $[3,\infty)$ \xrightarrow{g} $[\ln 5,\infty)$	√M1 – Show a two-step matching process
	$\therefore R_{gf} = [\ln 5, \infty)$	A1 – Exact range
	Alternatively From graph of $gf(x)$ for $x \le -1$,	
	$y = \ln(2(x+1)^2 + 5)$ In (2(x+1)^2 + 5)	
	-1 O X	
	$R_{gf} = [\ln 5, \infty)$	Total: 11marks

Qn	Suggested Solution	Marking Scheme
11 (a)	$z = e^{2x} \frac{dy}{dx}$	
	$\frac{dz}{dx} = e^{2x} \frac{d^2 y}{dx^2} + 2e^{2x} \frac{dy}{dx}$ $= e^{2x} \left(\frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} \right)$	M1 – Correct implicit differentiation
	Given $\frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} = e^{1-4x}$	
	$e^{-2x} \frac{dz}{dx} = e^{1-4x}$	
	$\Rightarrow \frac{dz}{dx} = e^{1-4x} \cdot e^{2x} \Rightarrow \frac{dz}{dx} = e^{1-2x} (shown)$	AG1 – Substitution & simplify to AG
	Hence, $\int dz = \int e^{1-2x} dx$	
	$z = -\frac{1}{2}e^{1-2x} + C$	M1 – Condone wrong sign
	$e^{2x} \frac{dy}{dx} = -\frac{1}{2}e^{1-2x} + C$	M1 – Replace z to obtain and solve 1 st order DE
	$\frac{dy}{dx} = -\frac{1}{2}e^{1-4x} + Ce^{-2x}$	
	$y = \frac{1}{8}e^{1-4x} - \frac{1}{2}Ce^{-2x} + D$	A1
	where <i>C</i> and <i>D</i> are arbitrary constants	

Qn	Suggested Solution	Marking Scheme
11 (b)	$\frac{\mathrm{d}I}{\mathrm{d}t} = \frac{1}{25}I - 0.25$	AG1 – Correct formulation leading to answer
	$\frac{dI}{dt} = 0.04(I - 6.25)$ $\int \frac{1}{I - 6.25} dI = \int 0.04 dt$	M1 – Separate variables &
	$ \ln I - 6.25 = 0.04t + c $ $ I - 6.25 = Ae^{0.04t} \qquad (A = \pm e^{c}) $ $ I = Ae^{0.04t} + 6.25 $	integrate M1 – Correct result from integration, with arbitrary
	When $t = 0$, $I = 5$, $5 = Ae^{0} + 6.25 \Rightarrow A = -1.25$	constant seen
	$S = Ae^{t} + 6.25 \Rightarrow A = -1.25$ $\therefore I = 6.25 - 1.25e^{0.04t}$ $I (thousands)$	$\mathbf{A1} - I$ in terms of t
	5	G1 – ecf; condone wrong <i>t</i> -
		intercept or no t-intercept [Note: Do not award if graph includes negative I or t regions.]
	40.2 <i>t</i> /days	
	Since the curve $I = 6.25 - 1.25e^{0.04t}$ cuts the <i>t</i> -axis i.e. $I = 0$ at $t = 40.2$, it is possible for the insect population to be depleted.	
	Number of days for this to happen is 41 days.	B1 – To the nearest day
		Total: 11 marks

Qn	Suggested Solution	Marking Scheme
12	$A = 3h^{2} + \frac{\pi}{2} \left[(2r)^{2} - r^{2} \right] + 7h^{2}$	M1 – Correct method
(a)		for area of "D"
(i)	$= 10h^{2} + \frac{3}{2}\pi r^{2} \text{ (Shown)}$ $A = \frac{10k}{r} + \frac{3}{2}\pi r^{2}$	AG1
(ii)	$A = \frac{10k}{r} + \frac{3}{2}\pi r^2$	M1 – Express in terms of a single variable
	$\frac{\mathrm{d}A}{\mathrm{d}r} = -\frac{10k}{r^2} + 3\pi r$	
		$\sqrt{M1}$ – Correct differentiation
	$\frac{dA}{dr} = 0 \Rightarrow r^3 = \frac{10k}{3\pi}$	B1
		ы
	$r^2 \frac{k}{h^2} = \frac{10k}{3\pi}$	
	$\frac{r}{h} = \sqrt{\frac{10}{3\pi}}$	
	$\int \frac{1}{h} - \sqrt{3\pi}$	A1
	$\frac{d^2 A}{dr^2} = \frac{20k}{r^3} + 3\pi > 0 \text{ since } k > 0$	B1 – Apply 2 nd
	ar r	derivative test &
	∴ A has a minimum value.	provide correct
		conclusion
	min $A = 14.7$ (3 s.f. from GC)	B1
(b)	$y = 2x + 5 + \frac{4}{x}$ $\frac{dy}{dx} = 2 - \frac{4}{x^2}$	
	dy = 4	D1
		B1
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 0 \Rightarrow x = \pm\sqrt{2}$	M1 – Find stationary
	$\mathbf{d}x$	points (must see some x-values computed)
	Since the graph is that of a hyperbola, the stationary points $(\sqrt{5}, \sqrt{5}, \sqrt{5})$	$\sqrt{M1}$ – Compute <i>y</i> -
	correspond to turning points at $\left(-\sqrt{2}, 5 - 4\sqrt{2}\right)$ and	coordinates of turning
	$(\sqrt{2}, 5+4\sqrt{2})$. Hence the set of values required is	points
	$\{y \in \mathbb{R} : 5 - 4\sqrt{2} < y < 5 + 4\sqrt{2}\}.$	A1
		S.R. 1 mark for correct
		method by GC
		(regardless of answer)
		Total: 12 marks

END OF SOLUTION