Lab1 Assignemnt

Veronica Bedin

April 2023

1 Exercise 1 - American Airlines Employees

• Produce a plot of the behaviour of the employees as a function of time for all four companies, separately for the number of full-time and part-time employees

 \bullet When did each company reach the minimum and maximum number of employess ?

	A grouped_df: 4 x 3		
	Company	Date	Grand_total
	<chr></chr>	<date></date>	<dbl></dbl>
	American Airline	2018-06-01	109171
	Delta Airline	2023-01-01	94675
	Federal Express	2021-03-01	270383
	United Airline	2001-03-01	102046

A gro	A grouped_df: 4 × 3		
Company	Date	Grand_total	
<chr></chr>	<date></date>	<dbl></dbl>	
American Airline	2013-09-01	62290	
Delta Airline	2006-11-01	46410	
Federal Express	1990-01-01	84885	
United Airline	2011-06-01	45781	

Figure 1: Maximum

Figure 2: Minimum

 $\bullet\,$ Plot the fraction of part-time worker over the total employees as a function of time

• Did the COVID-19 pandemic have any influence in the employed workers of the airline companies? Can you see a trend in the years 2019-2023?

Figure 3: We can see a general decrease in airline companies employees, starting from the first months of 2020, followed by a steady increment. The only exception is the Federal Express, that during the pandemic saw a rise in the number of employees (probably caused by the increase in package deliveries)

2 Exercise 2 - Data Frames and Tibble

• Plot the total number of flights departed from each of the three NYC airports as a function of time.

ullet Plot the average number of flights computed over the first five working days of each week as a

function of the week number of the year. Produce the same plot for the flights departing over the weekend.

- For each flight in the data frame, compute the departure delay1 and extract the following pieces of information for each day of the year (separately for each NYC airport):
 - min delay
 - max delay
 - average delay

• Assuming the distance flew by the plane is, at first approximation, the distance between the two connecting airports, compute the average speed of each plane. Produce a plot of the average plane speed as a function of departure day of the year.

- Analyze the flights offered by each airline company and determine:
 - The airline companies offering the largest two numbers of flights per day and per week

A tibble: 2 × 2			
carrier	flights_day		
<chr></chr>	<dbl></dbl>		
UA	160.2869		
В6	149.2760		
A tibble: 2 × 2			
A til	bble: 2 × 2		
	bble: 2 × 2 flights_week		
carrier	flights_week		

- The airline company offering the smallest number of flight per month

The company with the smallest number of average flights per month is 00 with 6.4 flights. A tibble: 1 $\times\,2$

carrier flights_month
<chr> <chr> <00 6.4

– The airline company offering the longest distance flight per month.

A grouped_df: 12 x 3

month	carrier	max_distance
<int></int>	<chr></chr>	<dbl></dbl>
1	НА	4983
2	HA	4983
3	HA	4983
4	HA	4983
5	НА	4983
6	HA	4983
7	HA	4983
8	HA	4983
9	HA	4983
10	НА	4983
11	НА	4983
12	НА	4983