МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики, информатики и механики Кафедра вычислительной математики и прикладных информационных технологий

ЛАБОРАТОРНАЯ РАБОТА №1 ЧИСЛЕННОЕ РЕШЕНИЕ СТАЦИОНАРНОГО УРАВНЕНИЯ ШРЁДИНГЕРА: МЕТОД ПРИСТРЕЛКИ

Направление: 01.04.02 – Прикладная математика и информатика

Выполнил: студент 11 группы 2 курса магистратуры

Крутько А.С.

Преподаватель: доктор физ.-мат. наук, профессор Тимошенко Ю.К.

Воронеж 2024

Содержание

1	Цели и задачи работы	3
2	Математический формализм	3
3	Метод пристрелки и алгоритм	3
4	Программная реализация алгоритма	4
5	Результаты численных экспериментов	4

1 Цели и задачи работы

Цель работы: Целями лабораторной работы являются практическое освоение информации, полученной при изучении курса "Компьютерное моделирование в математической физике"по теме "Численное решение стационарного уравнения Шрёдингера а также развития алгоритмического мышления и приобретения опыта использования знаний и навыков по математике, численным методам и программированию для решения прикладных задач физико-технического характера

Задачи работы: Проблема: электрон находится в одномерной потенциальной яме с бесконечными стенками:

$$v(x) = \begin{cases} J_2(x), & x \in (-L, L); \\ \infty, & x \notin (-L, L), \end{cases}$$

где $V_0 = 25$ эВ, L = 3 Å, $J_n(x)$ – функция Бесселя, n – целое число.

- 1. Найти собственные значения энергии и нормированные волновые функции для основного и 3-го возбужденного состояний частицы в одномерной потенциальной яме с заданной функцией потенциала.
- 2. Построить графики волновых функций и плотностей вероятности.
- 3. Вычислить квантовомеханические средние $\langle x \rangle$ и $\langle x^2 \rangle$ для этих состояний.

2 Математический формализм

Одномерное стационарное уравнение Шрёдингера имеет вид:

$$\hat{H}\psi(x) = E\psi(x),\tag{1}$$

где \hat{H} — оператор Гамильтона, E — собственные значения энергии, $\psi(x)$ — волновая функция.

Для системы с потенциальной функцией U(x), имеющей заданный вид:

$$U(x) = \begin{cases} V_0 L_5(|x|), & |x| < L, \\ \infty, & |x| \ge L, \end{cases}$$
 (2)

где $L_5(x)$ – полином Лагерра пятого порядка, $V_0=25$ эВ, L=3 Å.

3 Метод пристрелки и алгоритм

Метод пристрелки используется для численного поиска собственных значений и соответствующих волновых функций.

Алгоритм метода:

- 1. Разбить область [A, B] на сетку из n узлов.
- 2. Решить уравнение Шрёдингера методом Нумерова для двух направлений ("вперёд" и "назад").
- 3. Найти разность производных волновых функций в точке сшивки.
- 4. Уточнять энергию E, пока разность производных не станет достаточно малой.

4 Программная реализация алгоритма

Программная реализация задачи выполнена на языке **Python 3**. В Приложении 1 приведён код программы для численного решения уравнения Шрёдингера с заданной потенциальной функцией.

5 Результаты численных экспериментов

Рис. 1: Волновые функции $\psi(x)$ и потенциал U(x) для основного состояния.

Состояние	Энергия, эВ	$\langle x^2 \rangle$, Å ²
Основное	$E_0 = 3.9348$	$\langle x^2 \rangle = 1.23$
3-е возбужденное	$E_3 = 25.0$	$\langle x^2 \rangle = 2.31$

Иллюстрация работы программы

Приложение 1. Компьютерный код

(См. код, представленный выше)

Список литературы

- [1] Ландау Л.Д., Лифшиц Е.М. Квантовая механика. М.: Физматлит, 2004.
- [2] Тимошенко Ю.К. Численное решение стационарного уравнения Шрёдингера. Воронеж, 2019.
- [3] Бизли Д. *Python. Подробный справочник.* СПб.: Символ-Плюс, 2010.