discrete_event_simulation

a practical example

contents

- 1. what?
- 2. why?
- 3. how?
- 4. does it fly?

contents

1. what? discrete event simulation

2. why? why d.e.s?

3. how? **d.e.s. in r**

4. does it fly? an example

we?

December 2016

"Hold my Belgian ale"

"When everything you have is a hammer, everything looks like a nail."

~ Unknown carpenter, 33 A.D.

95% of models used today are just "fancy mappings" (at best!)

Time?
States?
Entity interplay?
Resources?

Time?

Ingenious solution!

$$X_{t} = [X_{t}, X_{t-1}, X_{t-2}]$$

 \Rightarrow AR(I)MA(X) models

Still, different models for

$$X_t \Rightarrow Y_{t+1}, X_t \Rightarrow Y_{t+5}, \dots$$

... can work, but a stretch

Other issues

- How to encode prior/expert knowledge?
 - Forcing the model to learn something that can be parametrized in the process model is a waste.
- How to model complex interplay of entities and resources?
 - X⇒ y mappings are too naive for processes with multiple agents and resources.
- Model parameters "fused" to a specific process structure
 - How to test/predict outcomes of small structural changes in the process?

what if only...

... there existed a modelling approach

... and a library

... that made all of this simple less painful?

enter: discrete event simulation (des)

• A **discrete-event simulation** (**DES**) models the operation of a <u>system</u> as a (<u>discrete</u>) <u>sequence of events</u> in time. Each event occurs at a particular instant in time and marks a change of <u>state</u> in the system

enter: discrete event simulation (des)

In other words: Replicating a real-world process in a virtual environment for the purpose of

- experimenting with different process inputs (e.g. working hours)
- better understanding the system behavior (e.g. bottlenecks)
- evaluating different scenarios to discover better processes (e.g. more resources)

enter: discrete event simulation (des)

how?

experts in data science

process discovery

Two options

- 1. Manual
 - a. Business analysis, interviews with stakeholders, data exploration
- Automated
 - a. Using Process Mining software

Data based

General format is a table containing

- 1. Entity of interest
- 2. Activity or resource occupied
- 3. Activity/resource start and end time

This allows us to reconstruct the trajectories.

Data

Case ID	Activity description	Timestamp	Resource	Location
Phone 3651	RECEIVE UNCOATED	2/03/2016 8:10	Arthur	INBOUND AREA
Phone 3651	CHECK OPERATION	2/03/2016 9:13	Arthur	INBOUND AREA
Phone 3651	CHECK DAMAGE	2/03/2016 9:25	Arthur	INBOUND AREA
Phone 3651	STORE UNCOATED	2/03/2016 10:08	Arthur	WAREHOUSE UNCOATED
Phone 3651	PICK-TO-COAT	15/03/2016 10:51	Jerome	WAREHOUSE UNCOATED
Phone 3651	START COATING	16/03/2016 15:14	Alix	COATING ROOM
Phone 3651	STOP COATING	16/03/2016 15:34	Alix	COATING ROOM
Phone 3651	TEST 1	17/03/2016 16:34	Edward	TESTING ROOM
Phone 3651	TEST 2	18/03/2016 10:34	Edward	TESTING ROOM
Phone 3651	TEST 3	18/03/2016 14:34	Edward	TESTING ROOM
Phone 3651	STORE COATED	18/03/2016 16:04	Jerome	WAREHOUSE COATED
Phone 3651	PICK-TO-SHIP	24/03/2016 9:33	Jerome	WAREHOUSE COATED
Phone 3651	SHIP COATED	24/03/2016 15:33	Jerome	OUTBOUND AREA

datarots

Tools

Closed source

- DISCO
- Logpickr
- Blueprism
- Fluxicon

Open source

- PM4Py
- Apromore
- ProM Tools

des modelling in r

simmerø

simmer is a process-oriented and trajectory-based Discrete-Event Simulation (DES) package for R. Designed to be a generic framework like <u>SimPy</u> or <u>SimJulia</u>, it leverages the power of <u>Rcpp</u> to boost the performance and turning DES in R feasible.

Developers

Iñaki Ucar

Author, copyright holder, maintainer (D)

Bart Smeets

Author, copyright holder

Very (very) short tutorial

- 1. Define trajectory
- 2. Create resources
- 3. Create trajectory generators
- 4. Run the simulation N-times
- 5. Fetch and analyze results


```
library(simmer)
set.seed(1234)
bank <- simmer()</pre>
customer <-
  trajectory("Customer's path") %>%
  log ("Here I am") %>%
  set attribute("start time", function() {now(bank)}) %>%
  seize("counter") %>%
  log (function() {paste("Waited: ", now(bank) - get attribute(bank, "start time"))}) %>%
  timeout(12) %>%
  release("counter") %>%
  log (function() {paste("Finished: ", now(bank))})
bank <-
  simmer("bank") %>%
  add resource("counter") %>%
  add generator("Customer", customer, function() \{c(0, rexp(4, 1/10), -1)\})
bank \gg \approx \text{run}(\text{until} = 400)
```


Basic grammar

```
seize(<resource>, <quantity>)
timeout(<n_intervals>)
release(<resource>, <quantity>)

set_attribute(<name>, <numerical_value>)
get_attribute(<name>)

leave()
rollback(<n_steps>)
branch(<condition>, <branch_1>, <branch_2>, ...)
```


a real-world example

The problem

- Our client is a the logistics department of a major brewery.
- Warehousing costs are very volatile and hard to predict using traditional BI approaches.
- Drivers of warehousing costs are
 - Volume of beer produced
 - Beer arrivals in and departures from warehouses
 - Total days all beers spent in each warehouse
- Movement profiles vary greatly by SKU

PoC architecture

Process diagram

experts in data science

Resource

Warehouses

Attribute

The capacity of warehouse

Variable

Total stock in each warehouse

States

- Arrivals
- Selecting a warehouse
- Seizing the warehouse
- Waiting in the warehouse
- Releasing the warehouse

Parametrization: movement profile for SKU 123

Performance

Key evaluation metric: 1 month cumulatives of:

- Moves into the warehouse (UNLOADS)
- Moves out of the warehouse (LOADS)
- Days spent in the warehouse (STORAGE DAYS)

Results:

- LOADS: 9% MAE
- UNLOADS: 8% MAE
- STORAGE DAYS: 4% MAE

Conclusions

- DES allowed us to model the process in its "natural form", leveraging the client's business knowledge.
- Running N simulations in parallel allowed us to estimate worst and best case scenarios for a set of defined inputs (normally not available with classical models)

Improvement points

Time-varying movement profiles (beer is very seasonal)

recap

experts in data science

takeaways

- white/grey(ish) process modelling approach.
- requires process understanding.
- time consuming development, but granular output.
- ONE OF alternative approaches, not THE alternative -- be wise.

DISCLAIMER

- can be time consuming/overkill
 - Model design, documentation, validation, verification
- finite number of states / fixed graph
 - Not suitable for high-degree-of-freedom reinforcement learning

thank you!

experts in data science