Extracción Líquido-Líquido

IIQ2023 - Operaciones Unitarias II

José Rebolledo Oyarce

20 de Abril de 2021

Contenidos

- Recordatorio de Clase Anterior
- Objetivos de la Clase
- Extracción Líquido-Líquido
 - Configuración a Flujo Cruzado
 - Configuración a Flujo a Contracorriente
 - Relación Mínima de Solvente

Balance de Materia

Balances:

B.M. : F + S = M = E + R

B.M. Soluto : $Fx_F + Sy_S = Mx_M = Ey + Rx$

Según análisis visto el punto M con composición x_M se localiza en línea que une composiciones x_F y y_S . Además, la x_M se localiza en línea que une composiciones x e y.

La ubicación de M en diagrama ternario se puede determinar a partir de las cantidades relativas de alimentación y de solvente.

Balance de Materia

¿Qué podemos hacer para mejorar la pureza del refinado?

Se hace la introducción del concepto de múltiples etapas en la extracción líquido-líquido

Objetivos de la Clase

- Comprender los principios de la extracción en múltiples etapas a corriente cruzada.
- Determinar las corrientes de extracto y refinado en un proceso de extracción multietapas a contracorriente.

Extracción múltiples etapas

Existen 3 tipos de configuraciones posibles para la Extracción en múltiples etapas:

1) Configuración a Co-Corriente

Alimentación

Extracción múltiples etapas

Existen 3 tipos de configuraciones posibles para la Extracción en múltiples etapas:

2) Configuración a Flujos Cruzados

Extracción múltiples etapas

Existen 3 tipos de configuraciones posibles para la Extracción en múltiples etapas:

3) Configuración a ContraCorriente

Extracción multietapas a corriente cruzada

En este proceso el refinado obtenido en una etapa se pone en contacto después con el solvente fresco en una 2^{da} etapa

Balances para una etapa n del proceso:

B.M. : $R_{n-1} + S_n = R_n + E_n = M_n$

B.M. Soluto : $R_{n-1}x_{n-1,R} + S_ny_s = R_nx_{n,R} + E_ny_{n,E} = M_nx_{n,M}$

Extracción multietapas a contracorriente

En este proceso la alimentación que contiene el soluto que se va a extraer y el solvente de extracción entran por los extremos opuestos de un aparato de extracción multietapas.

Balances de masa para el proceso completo:

B.M. :
$$F + S = R_N + E_1 = M$$

B.M. Soluto :
$$Fx_F + Sy_S = R_N x_{N,R} + E_1 y_{1,E} = M x_M$$

M es el flujo total de masa que entra y sale del sistema (x_M es la composición total de soluto)

B.M. : $F + S = R_N + E_1 = M$

B.M. Soluto : $Fx_F + Sy_S = R_N x_N + E_1 y_1 = M x_M$

Los puntos F, S y M están en una línea recta, así como los puntos R_N , E_1 y M (M estará entre ptos. F y S y entre ptos. R_N y E_1)

M se localiza en diagrama según:

$$x_M = \frac{Fx_F + Sy_S}{M} = \frac{Fx_F + Sy_S}{F + S}$$

$$\frac{S}{F} = \frac{FM}{SM}$$

Por otro lado, las ecuaciones se pueden escribir como:

B.M. :
$$F + S = R_N + E_1 = M$$

$$F - E_1 = R_N - S = \Delta$$

B.M. Soluto :
$$Fx_F + Sy_S = R_N x_N + E_1 y_1 = M x_M$$

$$Fx_F - E_1 y_1 = R_N x_N - Sy_S = \Delta x_\Delta$$

Como los ptos. F y E_1 y los ptos. R_N y S representan distintas líneas el pto. D debe estar en la intersección.

Por otro lado, las ecuaciones se pueden escribir como:

B.M. : $F - E_1 = R_N - S = \Delta$

B.M. Soluto : $Fx_F - E_1y_1 = R_Nx_N - Sy_S = \Delta x_\Delta$

Al aplicar los balances de materia a las envolventes resulta:

$$R_{n-1} - E_n = R_n - S = \Delta$$

El pto. de diferencia Δ es común para todas las líneas que se extienden a través de las corrientes que se cruzan.

Etapas en la construcción del diagrama:

- Localizar F y S
- Localizar M
- 3. Para completar construcción se debe conocer composición de extracto E_1 o refinado R_N (R_4 en diagrama). Sea R_4 conocida: trazar línea a través de M hasta curva de fases $\rightarrow E_1$
- 4. Localizar pto. Δ extendiendo líneas desde F a través de E₁ y desde R₄ a través de S.
- 5. Completar construcción.

Relación mínima de solvente a alimentación

Las líneas de enlace convergen hacia el solvente de extracción

$$\frac{S}{F} = \frac{FM_m}{SM_m}$$

Las líneas de enlace divergen del solvente de extracción

$$\frac{S}{F} = \frac{FM_m}{SM_m}$$

Las líneas de enlace divergen del solvente de extracción

$$\frac{S}{F} = \frac{FM_m}{SM_m}$$

Las líneas de enlace divergen del solvente de extracción

$$\frac{S}{F} = \frac{FM_m}{SM_m}$$

Método de Varteressian-Fenske o McCabe-Thiele

Podemos trazar una serie de líneas por el punto de diferencia, y de esta forma construir una curva de operación en un gráfico y v/s x.

Método de Maloney-Schubert

Redefinición de coordenadas en base libre de solvente de extracción (S), en que A es el soluto y B el solvente original

$$X_A = \frac{\text{masa de A}}{\text{masa de A} + \text{masa de B}} = \frac{x_A}{x_A + x_B}$$

$$Y_A = \frac{\text{masa de A}}{\text{masa de A} + \text{masa de B}} = \frac{y_A}{y_A + y_B}$$

$$N_R = \frac{\text{masa de } S}{\text{masa de } A + \text{masa de } B} = \frac{x_S}{x_A + x_B}$$

$$N_E = \frac{\text{masa de } S}{\text{masa de } A + \text{masa de } B} = \frac{y_S}{y_A + y_B}$$

Balance de materia en base libre de solvente de extracción (kg A + kg B / h):

$$F' + S' = E'_1 + R'_{N_p} = M'$$

(Generalmente F = F')

→ M' sobre línea F'S' con coordenadas determinadas según:

$$F'X_F + S'Y_S = M'X_M$$

El punto de diferencia está determinado por:

$$R'_{N_p} - S' = F' - E'_1 = \Delta'_R$$

Para toda etapa S se cumple:

$$R'_{N_p} - S' = R_{S-1}' - E'_S = \Delta'_R$$

Conceptos Revisados en la Clase

- Comprender los principios de la extracción en múltiples etapas a corriente cruzada.
- Determinar las corrientes de extracto y refinado en un proceso de extracción multietapas a contracorriente.

Extracción Líquido-Líquido

IIQ2023 - Operaciones Unitarias II

José Rebolledo Oyarce

20 de Abril de 2021

