The data set "avg_measure_per_activity_per_subject.txt" includes the following columns:

- 1. Activity_lable
- 2. subject

Columns 3-50 are one column per feature above – which is the average value for the specific activity and specific subject. The activities are:

- 3. tBodyAcc_mean_X
- 4. tBodyAcc_mean_Y
- 5. tBodyAcc_mean_Z
- 6. tBodyAcc_std_X
- 7. tBodyAcc_std_Y
- 8. tBodyAcc_std_Z
- 9. tGravityAcc_mean_X
- 10. tGravityAcc_mean_Y
- 11. tGravityAcc_mean_Z
- 12. tGravityAcc_std_X
- 13. tGravityAcc_std_Y
- 14. tGravityAcc_std_Z
- 15. tBodyAccJerk_mean_X
- 16. tBodyAccJerk_mean_Y
- 17. tBodyAccJerk mean Z
- 18. tBodyAccJerk_std_X
- 19. tBodyAccJerk_std_Y
- 20. tBodyAccJerk_std_Z
- 21. tBodyGyro_mean_X
- 22. tBodyGyro_mean_Y
- 23. tBodyGyro mean Z
- 24. tBodyGyro_std_X
- 25. tBodyGyro_std_Y
- 26. tBodyGyro_std_Z
- 27. tBodyGyroJerk_mean_X
- 28. tBodyGyroJerk_mean_Y
- 29. tBodyGyroJerk_mean_Z
- 30. tBodyGyroJerk_std_X
- 31. tBodyGyroJerk_std_Y
- 32. tBodyGyroJerk_std_Z
- 33. tBodyAccMag_mean
- 34. tBodyAccMag_std
- 35. tGravityAccMag mean
- 36. tGravityAccMag std
- 37. tBodyAccJerkMag_mean
- 38. tBodyAccJerkMag_std
- 39. tBodyGyroMag_mean
- 40. tBodyGyroMag_std
- 41. tBodyGyroJerkMag mean
- 42. tBodyGyroJerkMag_std
- 43. fBodyAcc_mean_X
- 44. fBodyAcc_mean_Y

- 45. fBodyAcc_mean_Z
- 46. fBodyAcc_std_X
- 47. fBodyAcc std Y
- 48. fBodyAcc_std_Z
- 49. fBodyAcc_meanFreq_X
- 50. fBodyAcc meanFreq Y

The bellow is an explanation on the data base features used to calculate the above:

The features selected for this database come from the accelerometer and gyroscope 3-axial raw signals tAcc-XYZ and tGyro-XYZ. These time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Similarly, the acceleration signal was then separated into body and gravity acceleration signals (tBodyAcc-XYZ and tGravityAcc-XYZ) using another low pass Butterworth filter with a corner frequency of 0.3 Hz.

Subsequently, the body linear acceleration and angular velocity were derived in time to obtain Jerk signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ). Also the magnitude of these three-dimensional signals were calculated using the Euclidean norm (tBodyAccMag, tGravityAccMag, tBodyAccJerkMag, tBodyGyroMag, tBodyGyroJerkMag).

Finally a Fast Fourier Transform (FFT) was applied to some of these signals producing fBodyAcc-XYZ, fBodyAccJerk-XYZ, fBodyGyro-XYZ, fBodyAccJerkMag, fBodyGyroMag, fBodyGyroJerkMag. (Note the 'f' to indicate frequency domain signals).

These signals were used to estimate variables of the feature vector for each pattern:

'-XYZ' is used to denote 3-axial signals in the X, Y and Z directions.

tBodyAcc-XYZ

tGravityAcc-XYZ

tBodyAccJerk-XYZ

tBodyGyro-XYZ

tBodyGyroJerk-XYZ

tBodyAccMag

tGravityAccMag

tBodyAccJerkMag

tBodyGyroMag

tBodyGyroJerkMag

fBodyAcc-XYZ
fBodyAccJerk-XYZ
fBodyGyro-XYZ
fBodyAccMag
fBodyAccJerkMag
fBodyGyroMag
fBodyGyroJerkMag
The set of variables that were estimated from these signals are:
mean(): Mean value
std(): Standard deviation
Additional vectors obtained by averaging the signals in a signal window sample. These are used on the angle() variable:
used on the angle() variable.
gravityMean
tBodyAccMean
tBodyAccJerkMean
tBodyGyroMean
tBodyGyroJerkMean