Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный университет»

Физический факультет Кафедра электроники

Исследование зарядовой модели излучения импульсных сигналов

Отчет по НИРС
Направление 03.04.03 «Радиофизика»
Специализация «Информационные системы»

Обучающийся Д. В. Шаповалов

Руководитель П. А. Кретов

Зав. кафедрой д. ф.-м. н., профессор А. М. Бобрешов

Воронеж

2019

Оглавление

Введение	2
1 Зарядовая модель излучения импульсных сигналов	
2 Поле точечного заряда	
2.1 Поле постоянного во времени точечного заряда	
2.2 Поле изменяемого точечного заряда	
3. Частная антенна.	
3.1. Антенна Бабочка	18
Заключение	19
Листинг А	20

Введение

К сожалению, в литературе крайне сложно найти четкое разделение антенн на импульсные и сверхширокополосные (СШП). Этот факт осложняет соотношение результатов теоретических к экспериментальных исследований, относящихся к СШП и импульсным антеннам и наоборот. Однако, любую импульсною антенну можно считать СШП, но не всякая СШП антенна может использоваться в качестве импульсной. Как пример можно привести интересную и насыщенную фактическим материалом монографию [1], в которой описываются вопросы, относящиеся как к СШП, так и импульсным антеннам без четкого разделения, вперемежку.

Важная роль в СШП импульсных сигналах играет измерение характеристик антенн импульсным методом [2]. В качестве основных преимуществ импульсного метода измерения перед частотным здесь, как и при измерении радиолокационных характеристик, а именно, измерение основных характеристик антенны (диаграммы направленности, коэффициента усиления, входного сопротивления и др.) в широкой полосе частот без использования безэховых камер. Так же, что не мало важно, данный метод позволяет измерять диаграмму направленности без вращения антенны, при небольшом числе датчиков. Здесь вместо движения в пространстве используется изменение сигналов во времени, а значит, вместо пространственных радиоголограмм, применяемых в антенной технике [3], можно использовать временные радиоголограммы.

Возможности сверхскоростной видеоимпульсной радиосвязи можно назвать наименее исследованными в настоящее время. Некоторые аспекты СШП связи описаны в [4]. Очевидно, для повышения скорости передачи информации следует увеличивать полосу пропускания канала.

Основные подходы к процессам излучения, рассеяния и приёма электромагнитных волн основаны на рассмотрении этих процессов во временной области. Ввиду [5], временной подход обладает наглядностью и допускает простую физическую интерпретацию происходящих процессов, которая позволила построить модель излучения и приема волн [6], названную зарядовой моделью.

Однако, из за больших объёмов данных, рассчитываемых во временном подходе, обсчёт антенны может занимать весьма длительное время, в отличии от зарядовой модели. В некоторых моментах, этот фактор может быть критичным. Зарядовая модель, в свою очередь занимает гораздо меньше времени, но, к сожалению, с меньшей точностью, что не мешает получить предварительные данные по конкретно выбранной антенне. Так же, на данный момент, этот метод является одним из наименее исследованных.

1 Зарядовая модель излучения импульсных сигналов

При подаче на вход антенны кратковременного импульса возникает возбуждение, сосредоточенное на одном или нескольких локальных участках антенны. Положение этих возбужденных участков изменяется во времени, в виду их движения вдоль проводников. Такие перемещающиеся в пространстве участки малых размеров удобно считать движущимися сосредоточенными зарядами. Сумму полей, создаваемых этими зарядами можно в данном случае считать полем излучения антенны.

Сформулированные выше положения можно описать исходя из рис. 1.1. На рис. 1.1,а показано условное расположение силовых линий вокруг провода в некоторый момент времени. Электрическое поле \vec{E} отлично от нуля на небольшом участке проводника. По нормальной составляющей поля E_n можно подсчитать поверхностную плотность заряда $\sigma_{\text{пов}}$:

$$\sigma_{nos}(t) = \epsilon E_n(t)$$

Поверхностную плотность заряда также можно подсчитать через уравнение непрерывности, при условии, что известен ток в проводнике.

Зависимость поверхностной плотности заряда от поперечных координат может не учитываться при рассмотрении тонких проводников. Зависимость линейной плотности заряда р от продольной координаты 1 изображена на рис. 1.1,б. На рис. 1.1,в показан заменяющий этот распределенный заряд, сосредоточенный заряд q, движущийся вдоль проводника с некоторой скоростью v, зависящей от времени t. Полагается, что поле излучения этого сосредоточенного заряда близко к истинному полю $\vec{E}(\vec{r},t)$ на рис. 1.1,а.

Представление излучения проволочных антенн полями сосредоточенных движущихся зарядов составляет суть зарядовой модели. Потому как ток по определению представляет движение зарядов, переход при расчетах от токов к зарядам погрешности не вносит.

Рис.1.1. Зарядовая модель антенны: а -силовые линии поля вблизи проводника, возбужденного импульсным сигналом; б - зависимость плотности заряда на проводнике от продольной координаты; в - поле сосредоточенного заряда, заменяющего распределенный.

Погрешность возникает при переходе от реальных движений к упрощенным и, следовательно, замене распределенных зарядов сосредоточенными.

Представим аргументы в пользу зарядовой модели. Приведем результаты эксперимента, численного анализа и на модели в частотной области, которые убедили бы в справедливости зарядовой модели.

Рассмотрим простейший асимметричный вибратор — штырь над идеально проводящей плоскостью, возбуждаемый у основания (рис.1.2,а). Известно [7], что характеристики такой антенны приближенно могут быть подсчитаны, если считать, что ток в штыре распределен так же, как в отрезке длинной линии, разомкнутой на конце, т.е. распределение тока имеет характер стоячей волны с узлом на конце.

Рассмотрим возбуждение антенны на рис. 1.2,а импульсным сигналом и будем полагать, что представление об антенне как об отрезке длинной линии, разомкнутой на конце, справедливо для всех частот в спектре возбуждающего импульса. Для анализа антенны при этом предположении следует определить ток или закон движения заряда в отрезке линии на рис. 1.2,6

Рис.1.2. Модель вибраторной антенны: а - несимметричный вибратор; б - отрезок длинной линии, заменяющий вибратор, возбуждаемый импульсным сигналом.

В воздушной длинной линии импульсный сигнал распространяется без искажений, и по достижении конца линии, возвращается обратно. Допустим, что линия и источник согласованы на всех частотах, тогда переотражений возникать не будет. Пространственные размеры возбужденного в линии участка Δl определяются длительностью импульса Δt ($\Delta l = c \Delta t$) и при δ - импульсном виде сигнала, равны нулю, т.е. этот заряд можно считать сосредоточенным. Величина заряда определяется интегралом от входного тока:

$$q = \int_{-\infty}^{\infty} \delta(t) dt = 1 .$$

Если при подаче на штырь δ - импульсного тока в нем возникает единичный сосредоточенный заряд, частотный и временной подходы к физическим процессам в штыревой антенне окажутся не противоречащими друг другу. Этот заряд движется со скоростью света от основания штыря к вершине, отражается от нее и возвращается обратно ко сопротивление на входе согласовано с волновым сопротивлением штыря, то ЭТОТ поглощается на входе, иначе возникают заряд многократные переотражения. Для учета влияния идеально проводящей плоскости следует рассмотреть зеркальное движение противоположного по знаку заряда.

Таким образом, зарядовая модель соответствует представлению проволочной антенны в рассмотрении её как воздушная длинная линия с постоянным сопротивлением. Далее, будем полагать, волновым проволочных антеннах при импульсном возбуждении распространяются сосредоточенные заряды. Так же, траектории движения зарядов определяются формой проводников, а скорость движения равна скорости света. Это антенной и было названо зарядовой моделью проволочной антенны[6].

В качестве второй группы аргументов в пользу зарядовой модели существуют результаты экспериментов [8][9]. В указанных работах приведены экспериментальные результаты по возбуждению проволочных антенн импульсным сигналом. Отмечается, что результаты эксперимента получают

качественное объяснение, если считать, что по антенне движется со скоростью света сосредоточенный заряд. Излучение возникает при изменении направления движения заряда (изменении скорости).

Приведённые в данной работе вычисления основаны на принципах, изложенных в [6], авторы которых утверждают то, что эта модель может быть использована не только для качественного объяснения физических процессов, но и при расчетах для анализа и синтеза антенн во временной области.

Для антенн, содержащих металлические поверхности и металлические тела, также можно применить зарядовую модель, хотя и не без некоторых трудностей. При подаче импульсного воздействия на такие антенны возникают возбужденные локальные участки, но они в некоторый момент времени сосредоточены около каких-либо линий на поверхности, т. е. приходится рассматривать движение заряженных линий на поверхности тела. Конечно, при этом указать априорно характер движения зарядов еще сложнее, чем для проволочных антенн. Вывод общих соотношений, связывающих характер движения зарядов на поверхности тела с геометрическими характеристиками поверхности, представляет важную задачу для дальнейшего развития импульсной электродинамики.

Основное достоинство зарядовой модели — это наглядность, причем не только в представлении физических процессов, но и при выполнении расчетов.

Мы также проверили данные [6] выкладки для случая треугольной антенны при помощи компьютерного вычисления [10] и соотнесли с данными полученными в CST Studio Suite. Полученные данные не противоречат друг другу.

2 Поле точечного заряда

В виду отсутствия полного вывода формул у авторов зарядовой теории [6], в данной работе был произведён их вывод из уравнений Максвелла.

Отдельно стоит так же отметить труды американского лауреата нобелевской премии по физике, Ричарда Фейнмана [11]. На основании полученных формул, а так же выводах Фейнмана для поля заряда постоянного во времени, можем расширить задачу поиска общего решения до нахождения поля, в котором заряд будет изменяться со временем.

2.1 Поле постоянного во времени точечного заряда

Представим вывод формулы для вычисления электрического поля заряда постоянного во времени на основании известных [12] из курса теоретической физики уравнений Максвелла:

$$\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \cdot \vec{B} = 0$$

$$c^2 \nabla \times \vec{B} = \frac{\vec{j}}{\epsilon_0} + \frac{\partial \vec{E}}{\partial t} ,$$

а так же, их решений:

$$\vec{E} = -\nabla \phi - \frac{\partial \vec{A}}{\partial t}$$

$$\vec{B} = \nabla \times \vec{A}$$
 ,

при потенциалах:

$$\phi(1,t) = \int \frac{\rho(2,t - \frac{r_{12}}{c})}{4\pi\epsilon_0 r_{12}} dV_2$$

$$\vec{A}(1,t) = \int \frac{\vec{j}\left(2,t - \frac{r_{12}}{c}\right)}{4\pi\epsilon_0 c^2 r_{12}} dV_2$$
.

Опираясь на вывод потенциалов Лиенара-Вихерта [12][13], найдём решения для представленных потенциалов:

Выведем отдельно скалярный потенциал.

$$\phi(\vec{r},t) = \int \frac{\rho(\vec{r},t')}{4\pi \,\varepsilon_0 \vec{r}} dV \quad ,$$

где
$$\vec{r} = |\vec{r} - \vec{r}_0(t')|$$

$$\phi(\vec{r},t) = \int \frac{\rho(\vec{r},t')}{4\pi\varepsilon_0 |\vec{r}-\vec{r}_0(t')|} dV$$

Вынесем постоянную часть за скобку интегрирования.

$$\phi(\vec{r},t) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r},t')}{|\vec{r}-\vec{r}_0(t')|} dV$$

Отбросим на время постоянную часть, для упрощения записи и понимания дальнейших действий.

$$\phi(\vec{r},t) = \int \frac{\rho(\vec{r},t')}{|\vec{r}-\vec{r_0}(t')|} dV$$

Приведём к интегралу по 4 переменным

$$\phi(\vec{r},t) = \int \int \frac{\rho(\vec{r},t')}{|\vec{r}-\vec{r}_0(t')|} \delta(t'-\tau) d\tau dV ,$$

где
$$\tau = t - \frac{1}{c} \left| \vec{r} - \vec{r_0}(t') \right|$$
 , и $\rho(\vec{r},t) = q \delta(\vec{r} - \vec{r_0}(t'))$,

тогда выражение скалярного потенциала принимает вид:

$$\phi(\vec{r},t) = \int \int \frac{q \, \delta(r' - \vec{r}(t'))}{|\vec{r} - \vec{r}_0(t')|} \delta(t' - \tau) d\tau dV$$

После тривиальных действий с изменением порядка интегрирования, а так же выноса заряда, потому как мы приняли его постоянным по времени:

$$\phi(\vec{r},t) = q \int \frac{\delta(t'-\tau)}{|\vec{r}-\vec{r_0}(t')|} d\tau$$

Воспользуемся приведённым в [14] правилом интегрирования названным

правилом параметризации Фейнмана $\int g(x)\delta(f(x)-\alpha)dx = \frac{g(x_0)}{f'(x_0)}$, при $f(x_0)=\alpha$

$$\delta(t'-\tau) = \frac{\delta(t'-\tau)}{\frac{\partial}{\partial t'}(t'-(t-\frac{1}{c}|\vec{r}-\vec{r_0}(t')|))} = \frac{\delta(t'-\tau)}{\frac{\partial}{\partial t'}t'-\frac{\partial}{\partial t'}t+\frac{1}{c}(\frac{\partial}{\partial t'}|\vec{r}-\vec{r_0}(t')|)}$$

Исходя из прил.1, имеем:

$$\delta(t'-\tau) = \frac{\delta(t'-\tau)}{1-\vec{n}\vec{\beta}}$$
, где $\vec{\beta} = \vec{v}(t')$, а $\vec{n} = \frac{(\vec{r}-\vec{r}_0(t'))}{|\vec{r}-\vec{r}_0(t')|}$.

Переходим во время $t'=\tau$.

Тогда скалярный потенциал примет вид:

$$\phi(\vec{r},t) = \frac{q}{4\pi\varepsilon_0} \frac{1}{|\vec{r} - \vec{r}_0(\tau)|(1-\vec{n}\,\vec{\beta})}$$

Найдём теперь решение уравнения для векторного потенциала. В ходе вывода будем руководствоваться схожими рассуждениями.

$$\vec{A}(\vec{r},t) = \int \frac{\vec{j}(\vec{r},t')}{4\pi\varepsilon_0 c^2 \vec{r}} dV$$
,

где
$$\vec{r} = |\vec{r} - \vec{r}_0(t')|$$

$$\vec{A}(\vec{r},t) = \int \frac{\vec{j}(\vec{r},t')}{4\pi\varepsilon_0 c^2 |\vec{r}-\vec{r_0}(t')|} dV$$

Вынесем постоянную часть за скобку интегрирования.

$$\vec{A}(\vec{r},t) = \frac{1}{4\pi\varepsilon_0 c^2} \int \frac{\vec{j}(\vec{r},t')}{|\vec{r} - \vec{r}_0(t')|} dV$$

Отбросим на время постоянную часть, для упрощения записи и понимания дальнейших действий

$$\vec{A}(\vec{r},t) = \int \frac{\vec{j}(\vec{r},t')}{|\vec{r}-\vec{r}_0(t')|} dV$$

Приведём к интегралу по 4 переменным

$$\vec{A}(\vec{r},t) = \int \int \frac{\vec{j}(\vec{r},t')}{|\vec{r}-\vec{r_0}(t')|} \delta(t'-\tau) d\tau dV ,$$

где
$$\tau = t - \frac{1}{c} |\vec{r} - \vec{r}_0(t')|$$
 , и $\vec{j}(\vec{r},t) = q \vec{v}(t') \delta(\vec{r} - \vec{r}_0(t'))$,

тогда выражение скалярного потенциала принимает вид:

$$\vec{A}(\vec{r},t) = \int \int \frac{q\vec{v}(t')\delta(r'-\vec{r}(t'))}{|\vec{r}-\vec{r}_0(t')|} \delta(t'-\tau) d\tau dV$$

После тривиальных действий с изменением порядка интегрирования, а также выноса заряда, потому как мы приняли его постоянным по времени.

$$\vec{A}(\vec{r},t) = q \int \frac{\vec{v}(t')\delta(t'-\tau)}{|\vec{r}-\vec{r}_0(t')|} d\tau$$

правилом параметризации Фейнмана $\int g(x)\delta(f(x)-\alpha)dx=\frac{g(x_0)}{f'(x_0)}$, при $f(x_0)=\alpha$

Воспользуемся приведённым в [13] правилом интегрирования названным

$$\delta(t'-\tau) = \frac{\delta(t'-\tau)}{\frac{\partial}{\partial t'}(t'-(t-\frac{1}{c}|\vec{r}-\vec{r_0}(t')|))} = \frac{\delta(t'-\tau)}{\frac{\partial}{\partial t'}t'-\frac{\partial}{\partial t'}t+\frac{1}{c}(\frac{\partial}{\partial t'}|\vec{r}-\vec{r_0}(t')|)}$$

Исходя из прил.1, имеем:

$$\delta(t'- au) = \frac{\delta(t'- au)}{1-\vec{n}\vec{\beta}}$$
 , где $\vec{\beta} = \vec{v}(t')$, а $\vec{n} = \frac{(\vec{r}-\vec{r}_0(t'))}{|\vec{r}-\vec{r}_0(t')|}$.

Переходим во время $t'=\tau$.

Тогда скалярный потенциал примет вид:

$$\vec{A}(\vec{r},t) = \frac{q}{4\pi\varepsilon_0 c} \frac{\vec{\beta}}{|\vec{r} - \vec{r}_0(\tau)|(1 - \vec{n}\,\vec{\beta})}$$

Используя прил.2 и прил.4, убеждаемся в правильности данных формул, найдя калибровку Лоренца $\frac{d\,\phi}{dt} + c^2 \nabla\,\vec{A} = 0$:

$$\frac{d\phi}{dt} = \frac{d}{dt} \left(\frac{q}{4\pi\epsilon_0} \frac{1}{|\vec{r} - \vec{r_0}(\tau)|(1 - \vec{n}\,\vec{\beta})} \right) = \frac{q}{4\pi\epsilon_0} \frac{c\,\vec{n}\,\vec{\beta} - c\,\vec{\beta}^2 + (\vec{r} - \vec{r_0}(\tau))\,\vec{\beta}}{(|\vec{r} - \vec{r_0}(\tau)|)^2(1 - \vec{n}\,\vec{\beta})^3}$$

$$\nabla \vec{A} = \nabla \left(\frac{-q}{4\pi\epsilon_0 c} \frac{\vec{\beta}}{(|\vec{r} - \vec{r_0}(\tau)|)^2 (1 - \vec{n}\vec{\beta})^3} \right) = \frac{-q}{4\pi\epsilon_0 c} \frac{\vec{n}\vec{\beta} - \vec{\beta}^2 + (\vec{r} - \vec{r_0}(\tau)) \frac{\vec{\beta}}{c}}{(|\vec{r} - \vec{r_0}(\tau)|)^2 (1 - \vec{n}\vec{\beta})^3}$$

Как можем заметить, равенство выполняется. Сумма данных величин будет равна нулю.

Для нахождения поля обратимся к вспомогательным уравнениям 3 и 5.

$$\begin{split} \vec{E} &= \frac{q}{4 \pi \varepsilon_0} \frac{1}{(\left| \vec{r} - \vec{r_0}(\tau) \right|)^2 (1 - \vec{n} \vec{\beta})^3} \left[\vec{n} \left(1 - \vec{\beta}^2 + (\vec{r} - \vec{r_0}(\tau)) \frac{\dot{\vec{\beta}}}{c} \right) - \vec{\beta} (1 - \vec{n} \vec{\beta}) \right] - \\ &- \frac{q}{4 \pi \varepsilon_0 c} \frac{c}{(\left| \vec{r} - \vec{r_0}(\tau) \right|)^2 (1 - \vec{n} \vec{\beta})^3} \left[\vec{\beta} \left(\vec{n} \vec{\beta} - \vec{\beta}^2 + (\vec{r} - \vec{r_0}(\tau)) \frac{\beta}{c} \right) + \left| \vec{r} - \vec{r_0}(\tau) \right| \frac{\dot{\vec{\beta}}}{c} (1 - \vec{n} \vec{\beta}) \right] = \end{split}$$

вынесем за скобки $\frac{q}{4\pi\epsilon_0}\frac{1}{(|\vec{r}-\vec{r_0}(\tau)|)^2(1-\vec{n}\vec{\beta})^3}$, тогда записаное выше уравнение примет вид:

$$\begin{split} &= \left[\vec{n} \left(1 - \beta^2 + (\vec{r} - \vec{r_0}(\tau)) \frac{\dot{\vec{\beta}}}{c} \right) - \beta (1 - \vec{n} \, \vec{\beta}) \right] - \left[\dot{\vec{\beta}} \left(\vec{n} \, \vec{\beta} - \vec{\beta}^2 + (\vec{r} - \vec{r_0}(\tau)) \frac{\dot{\vec{\beta}}}{c} \right) + |\vec{r} - \vec{r_0}(\tau)| \frac{\dot{\vec{\beta}}}{c} (1 - \vec{n} \, \vec{\beta}) \right] = \\ &= \vec{n} \left(1 - \vec{\beta}^2 + (\vec{r} - \vec{r_0}(\tau)) \frac{\dot{\vec{\beta}}}{c} \right) - \vec{\beta} + \vec{n} \, \vec{\beta}^2 - \vec{n} \, \vec{\beta}^2 + \vec{\beta}^3 - (\vec{r} - \vec{r_0}(\tau)) \frac{\dot{\vec{\beta}}}{c} \, \vec{\beta} - |\vec{r} - \vec{r_0}(\tau)| \frac{\dot{\vec{\beta}}}{c} (1 - \vec{n} \, \vec{\beta}) = \\ &= \vec{n} - \vec{\beta}^2 \, \vec{n} + (\vec{r} - \vec{r_0}(\tau)) \frac{\dot{\vec{\beta}}}{c} \, \vec{n} - \vec{\beta} + \vec{\beta}^3 - (\vec{r} - \vec{r_0}(\tau)) \frac{\dot{\vec{\beta}}}{c} \, \vec{\beta} - |\vec{r} - \vec{r_0}(\tau)| \frac{\dot{\vec{\beta}}}{c} (1 - \vec{n} \, \vec{\beta}) = \\ &= (\vec{n} - \vec{\beta}) \left((\vec{r} - \vec{r_0}(\tau)) \frac{\dot{\vec{\beta}}}{c} \right) + \vec{n} (1 - \vec{\beta}^2) - \vec{\beta} (1 - \vec{\beta}^2) - |\vec{r} - \vec{r_0}(\tau)| \frac{\dot{\vec{\beta}}}{c} (1 - \vec{n} \, \vec{\beta}) = \\ &= (\vec{n} - \vec{\beta}) \left((\vec{r} - \vec{r_0}(\tau)) \frac{\dot{\vec{\beta}}}{c} \right) + (\vec{n} - \vec{\beta}) (1 - \vec{\beta}^2) - |\vec{r} - \vec{r_0}(\tau)| \frac{\dot{\vec{\beta}}}{c} (1 - \vec{n} \, \vec{\beta}) = \\ &= (\vec{n} - \vec{\beta}) (1 - \vec{\beta}^2) + |\vec{r} - \vec{r_0}(\tau)| (\vec{n} - \vec{\beta}) - |\vec{r} - \vec{r_0}(\tau)| (\vec{n} (\vec{n} - \vec{\beta})) \frac{\dot{\vec{\beta}}}{c} = \end{split}$$

Возвращаясь к константам, получим:

$$\begin{split} \vec{E} &= \frac{q}{4 \pi \varepsilon_0 |\vec{r} - \vec{r}_0(\tau)|^2 (1 - \vec{n} \, \vec{\beta})^3} \times \\ &\times \left[(\vec{n} - \vec{\beta})(1 - \vec{\beta}^2) + |\vec{r} - \vec{r}_0(\tau)| \left(\vec{n} \frac{\dot{\vec{\beta}}}{c} \right) (\vec{n} - \vec{\beta}) - |\vec{r} - \vec{r}_0(\tau)| (\vec{n} \, (\vec{n} - \vec{\beta})) \frac{\dot{\vec{\beta}}}{c} \right] \end{split}$$

Полученное выражение не противоречит идее о зарядовой модели, и наоборот, её подтверждает. В источниках [6] и [11] так же можно встретить её сокращённый вариант записи. Указывать его здесь не имеет особого смысла. Приведённый выше вариант является удобным для понимания происходящего процесса. Однако, здесь возникает проблема в случае необходимости обсчёта антенны, для которой заряд будет переменной величиной. Помимо излучения на местах смены траектории, ещё вклад будет вносить и тот факт, что на единичной площадке антенны заряд будет претерпевать некоторые изменения. Само же нахождение такой формулы не является столь же тривиальным. К примеру Фейнман в [11] указывает на сложность нахождения приведённой выше формулы, а в [6] авторы описывают попытки вывода формул для изменяющегося заряда и их не удачу в процессе.

2.2 Поле изменяемого точечного заряда

В попытках решения представленной ранее проблемы, был произведён вывод формулы для вычисления электрического поля изменяемого заряда. Опираясь на предыдущий вывод, на уже упомянутых [12] уравнений Максвелла, можем записать:

$$\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \cdot \vec{B} = 0$$

$$c^2 \nabla \times \vec{B} = \frac{\vec{j}}{\epsilon_0} + \frac{\partial \vec{E}}{\partial t} ,$$

а так же, их решений:

$$\vec{E} = -\nabla \phi - \frac{\partial \vec{A}}{\partial t}$$

$$\vec{B} = \nabla \times \vec{A}$$
,

при потенциалах:

$$\phi(1,t) = \int \frac{\rho(2, t - \frac{r_{12}}{c})}{4\pi\epsilon_0 r_{12}} dV_2$$

$$\vec{A}(1,t) = \int \frac{\vec{j}\left(2, t - \frac{r_{12}}{c}\right)}{4\pi\epsilon_0 c^2 r_{12}} dV_2 .$$

Так же, опираясь на вывод потенциалов Лиенара-Вихерта [12][13], найдём решения для представленных потенциалов:

Выведем отдельно скалярный потенциал.

$$\phi(\vec{r},t) = \int \frac{\rho(\vec{r},t')}{4\pi\epsilon_0 \vec{r}} dV \quad ,$$

где
$$\vec{r} = |\vec{r} - \vec{r}_0(t')|$$

$$\phi(\vec{r},t) = \int \frac{\rho(\vec{r},t')}{4\pi\varepsilon_0 |\vec{r}-\vec{r}_0(t')|} dV$$

Вынесем постоянную часть за скобку интегрирования.

$$\phi(\vec{r},t) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r},t')}{|\vec{r}-\vec{r}_0(t')|} dV$$

Отбросим на время постоянную часть, для упрощения записи и понимания дальнейших действий.

$$\phi(\vec{r},t) = \int \frac{\rho(\vec{r},t')}{|\vec{r}-\vec{r_0}(t')|} dV$$

Приведём к интегралу по 4 переменным

$$\phi(\vec{r},t) = \int \int \frac{\rho(\vec{r},t')}{|\vec{r}-\vec{r_0}(t')|} \delta(t'-\tau) d\tau dV ,$$

где
$$\tau = t - \frac{1}{c} |\vec{r} - \vec{r_0}(t')|$$
 , и $\rho(\vec{r}, t) = q(t') \delta(\vec{r} - \vec{r_0}(t'))$,

тогда выражение скалярного потенциала принимает вид:

$$\phi(\vec{r},t) = \int \int \frac{q(t')\delta(r'-\vec{r}(t'))}{|\vec{r}-\vec{r}_0(t')|} \delta(t'-\tau) d\tau dV$$

После тривиальных действий с изменением порядка интегрирования.

$$\phi(\vec{r},t) = \int \frac{q(t')\delta(t'-\tau)}{|\vec{r}-\vec{r}_0(t')|} d\tau$$

Воспользуемся приведённым в [14] правилом интегрирования названным

правилом параметризации Фейнмана $\int g(x)\delta(f(x)-\alpha)dx = \frac{g(x_0)}{f'(x_0)}$, при $f(x_0)=\alpha$

$$\delta(t'-\tau) = \frac{\delta(t'-\tau)}{\frac{\partial}{\partial t'}(t'-(t-\frac{1}{c}|\vec{r}-\vec{r_0}(t')|))} = \frac{\delta(t'-\tau)}{\frac{\partial}{\partial t'}t'-\frac{\partial}{\partial t'}t+\frac{1}{c}(\frac{\partial}{\partial t'}|\vec{r}-\vec{r_0}(t')|)}$$

Исходя из прил.1, имеем:

$$\delta(t'- au) = \frac{\delta(t'- au)}{1-\vec{n}\vec{\beta}}$$
 , где $\vec{\beta} = \vec{v}(t')$, а $\vec{n} = \frac{(\vec{r}-\vec{r_0}(t'))}{|\vec{r}-\vec{r_0}(t')|}$.

Переходим во время $t'=\tau$.

Тогда скалярный потенциал примет вид:

$$\phi(\vec{r},t) = \frac{1}{4\pi\varepsilon_0} \frac{q(\tau)}{|\vec{r} - \vec{r}_0(\tau)|(1 - \vec{n}\,\vec{\beta})}$$

Найдём теперь решение уравнения для векторного потенциала. В ходе вывода будем руководствоваться схожими рассуждениями.

$$\vec{A}(\vec{r},t) = \int \frac{\vec{j}(\vec{r},t')}{4\pi\varepsilon_0 c^2 \vec{r}} dV$$
,

где
$$\vec{r} = |\vec{r} - \vec{r}_0(t')|$$

$$\vec{A}(\vec{r},t) = \int \frac{\vec{j}(\vec{r},t')}{4\pi\varepsilon_0 c^2 |\vec{r} - \vec{r_0}(t')|} dV$$

Вынесем постоянную часть за скобку интегрирования.

$$\vec{A}(\vec{r},t) = \frac{1}{4\pi\varepsilon_0 c^2} \int \frac{\vec{j}(\vec{r},t')}{|\vec{r} - \vec{r}_0(t')|} dV$$

Отбросим на время постоянную часть, для упрощения записи и понимания дальнейших действий

$$\phi(\vec{r},t) = \int \frac{\rho(\vec{r},t')}{|\vec{r}-\vec{r_0}(t')|} dV$$

Приведём к интегралу по 4 переменным

$$\phi(\vec{r},t) = \int \int \frac{\rho(\vec{r},t')}{|\vec{r}-\vec{r_0}(t')|} \delta(t'-\tau) d\tau dV ,$$

где
$$\tau = t - \frac{1}{c} |\vec{r} - \vec{r_0}(t')|$$
 , и $\vec{j}(\vec{r},t) = q(t') \vec{v}(t') \delta(\vec{r} - \vec{r_0}(t'))$,

тогда выражение скалярного потенциала принимает вид:

$$\vec{A}(\vec{r},t) = \int \int \frac{q\vec{v}(t')\delta(r'-\vec{r}(t'))}{|\vec{r}-\vec{r}_0(t')|} \delta(t'-\tau)d\tau dV$$

После тривиальных действий с изменением порядка интегрирования.

$$\vec{A}(\vec{r},t) = \int \frac{q(t')\vec{v}(t')\delta(t'-\tau)}{|\vec{r}-\vec{r}_0(t')|} d\tau$$

Воспользуемся приведённым в [13] правилом интегрирования названным

правилом параметризации Фейнмана $\int g(x)\delta(f(x)-\alpha)dx = \frac{g(x_0)}{f'(x_0)}$, при $f(x_0)=\alpha$

$$\delta(t'-\tau) = \frac{\delta(t'-\tau)}{\frac{\partial}{\partial t'}(t'-(t-\frac{1}{c}|\vec{r}-\vec{r_0}(t')|))} = \frac{\delta(t'-\tau)}{\frac{\partial}{\partial t'}t'-\frac{\partial}{\partial t'}t+\frac{1}{c}(\frac{\partial}{\partial t'}|\vec{r}-\vec{r_0}(t')|)}$$

Исходя из прил.1, имеем:

$$\delta(t'- au) = \frac{\delta(t'- au)}{1-\vec{n}\vec{\beta}}$$
 , где $\vec{\beta} = \vec{v}(t')$, а $\vec{n} = \frac{(\vec{r}-\vec{r}_0(t'))}{|\vec{r}-\vec{r}_0(t')|}$.

Переходим во время $t'=\tau$.

Тогда скалярный потенциал примет вид:

$$\vec{A}(\vec{r},t) = \frac{1}{4\pi\varepsilon_0 c} \frac{q(\tau)\vec{\beta}}{|\vec{r} - \vec{r}_0(t')|(1 - \vec{n}\vec{\beta})}$$

Используя прил.6 и прил.8, убеждаемся в правильности данных формул, найдя калибровку Лоренца $\frac{d\phi}{dt} + c^2 \nabla \vec{A} = 0$:

$$\begin{split} &\frac{d\,\phi}{dt} = \frac{d}{dt} \left(\frac{1}{4\,\pi\,\epsilon_0} \right) \\ &\times \left(\dot{q}(\tau) [|\vec{r} - \vec{r_0}(\tau)|(1 - \vec{n}\,\vec{\beta})] - q(\tau)[-\vec{n}\,\vec{\beta}\,c + \vec{\beta}^2 c - (\vec{r} - \vec{r_0}(\tau))\dot{\vec{\beta}}] \right) \\ &\times \left(\dot{q}(\tau) [|\vec{r} - \vec{r_0}(\tau)|(1 - \vec{n}\,\vec{\beta})] - q(\tau)[-\vec{n}\,\vec{\beta}\,c + \vec{\beta}^2 c - (\vec{r} - \vec{r_0}(\tau))\dot{\vec{\beta}}] \right) \\ &\nabla \vec{A} = \nabla \left(\frac{-1}{4\,\pi\,\epsilon_0\,c} \frac{q(\tau)\vec{\beta}}{(|\vec{r} - \vec{r_0}(\tau)|^2(1 - \vec{n}\,\vec{\beta})^3} \right) = \frac{1}{|\vec{r} - \vec{r_0}(\tau)|^2(1 - \vec{n}\,\vec{\beta})^3} \times \\ &\times [(|\vec{r} - \vec{r_0}(\tau)|(1 - \vec{n}\,\vec{\beta})(\vec{\beta}\,\dot{q}(\tau) + \dot{\vec{\beta}}\,q(\tau))) - q(\tau)\,\vec{\beta}(\vec{n}\,\vec{\beta}\,c + \vec{\beta}^2 c - (\vec{r} - \vec{r_0}(\tau))\dot{\vec{\beta}})] \end{split}$$

Можно без особых ухищрений заметить факт не выполнения калибровки. Однако, если в данном случае предположить, что q = const, то условие выше выполняется. Этот факт можно объяснить нарушением закона сохранения энергии на антеннах подобного типа. Если на участке не происходит изменения заряда, то, следовательно, закон сохранения энергии выполняется. Иначе возникнут погрешности, что мы и наблюдаем в данном случае.

Для нахождения поля обратимся к вспомогательным уравнениям 7 и 9. Опустим тривиальные преобразования и перейдём сразу к искомой формуле:

$$\begin{split} \vec{E} &= \frac{1}{4 \, \pi \, \epsilon_0} \frac{1}{\left| \vec{r} - \vec{r_0} (\tau) \right|^2 (1 - \vec{n} \, \vec{\beta})^3} \, q(\tau) \times \\ &\times \left[\vec{n} - \vec{\beta} (\vec{\beta}^2 + (1 - \vec{n} \, \vec{\beta})) + \frac{\dot{\vec{\beta}}}{c} \left| \vec{r} - \vec{r_0} (\tau) \right| (1 - \vec{n} \, \vec{\beta}) + (\vec{r} - \vec{r_0} (\tau)) (\vec{n} + \vec{\beta}) \right] + \\ &+ \frac{1}{4 \, \pi \, \epsilon_0} \frac{1}{\left| \vec{r} - \vec{r_0} (\tau) \right|^2 (1 - \vec{n} \, \vec{\beta})^3} \, \dot{q}(\tau) (\vec{n} + \vec{\beta}) \frac{1}{c} \left| \vec{r} - \vec{r_0} (\tau) \right| (1 - \vec{n} \, \vec{\beta}) \end{split}$$

Таким образом, получили выражение для вычисления электрического поля антенны с переменным зарядом. В целях подтверждения её, мы произвели расчёт частного случая антенны по этой формуле, а так же сравнили с результатами широко признанной в узких кругах программой моделирования антенн CST Studio Suit для всё той же антенны.

3 Частная антенна

приведённых выше формул, проведём моделирование пользу нескольких антенн при помощи численного моделирования на языке программирования Python и рассчёта модели в программе CST Studio Suite. Опорным критерием для нас будет энергетическая диаграмма направленности антенны. Ввиду того, что метод FDTD (Finite Difference Time Domain, или же метод конечных разностей во временной области), используемый в CST очень хорошо исследован, а так же сама программа обрела определённую популярность и доверие среди инженеров, результаты полученные из неё можно считать достоверными. Сравниванием исчисленных программно данных с результатами полученными в CST докажем правдивость зарядовой модели и полученных формул.

3.1 Код

что вычисление полей антенны является весьма трудоёмким процессом, пожалуй, не является секретом. В связи с этим, данные выражения были перенесены в программный код. В качестве языка программирования был выбран язык Python версии 3.Х. Выбор этого языка был не случайным: он позволяет значительно упростить процесс написания алгоритмов вычисления, в первую очередь, за счёт встроенных функций языка. Так же, благодаря внутренним требованиям по написанию кода, определённым в стандартах Python, удаётся достичь высокого удобства чтения функций. Однако, за такие достоинства приходиться расплачиваться скоростью выполнения программы. Хоть и не многим, но он уступает в производительности таким языкам, как С. Но несмотря на это, скорость обсчёта полей не уступает скорости сходных антенн, но с более распространённым методом FDTD. И за это тоже приходится чем-то жертвовать. В данном случае - точностью измерений.

Описанные ниже участки кода приведены в соответствующих листнигах в конце работы.

В листинге 1 приведены вспомогательные функции для векторной алгебры, которых не хватило из стандартного набора.

Функция _dot принимает на вход два вектора и вычисляет сумму перемноженных координат. _sqrMagnitude вызывает _dot, передавая на вход один и тот же вектор дважды, тем самым получаем квадрат диагонали прямоугольного треугольника, построенного в прямоугольной системе координат по двум точкам, записанным в данном векторе. _magnitude возвращает корень из квадрата диагонали, полученного ранее. _distance определяет расстояние между двумя точками в двумерной плоскости. _normalize вычисляет норму вектора и возвращает его нормированной значение, тем самым создаёт нормированное векторное пространство. _proj выдаёт проекцию одного вектора на другой. _directions генерирует точки наблюдения поля.

3.2 CST Studio Suite

CST Studio Suite - это, по заверению разработчиков, высокопроизводительный пакет программного обеспечения для электромагнитного анализа в трёхмерном пространстве, предназначенный для проектирования, анализа и оптимизации электромагнитных компонентов и систем.

В программе, по выбору, представлено несколько основных алгоритмов, для обработки полей моделируемых антенн. В случае, рассматриваемом в данной работе, более всего уместен метод FDTD.

Для моделирования антенны реализован специальный трёхмерный редактор, позволяющий так же визуально наблюдать саму модель, что очень помогает в обнаружении конструктивных ошибок при проектировании.

Что бы просчитать поле в заданной точке необходимо задать в пространстве пробный заряд, настроить программу для вычислений соответствующим с поставленной задачей образом и отдать команду на вычисление.

Рассчитанные данные, а так же различные компоненты и некоторые настройки для программы вычисления. На иллюстрации (ИЛЛЮСТРАЦИЯ) представлен общий вид окна дизайнера программы, а на (ИЛЛЮСТРАЦИЯ) показан пример окна настройки вычислений.

Так же, отметим, что данная программа снискала огромную популярность среди инженеров и учёных, которые работают в области исследований антенн.

В виду перечисленных выше достоинств этой программы, было решено в производимых вычислениях опираться на неё. Как упоминалось ранее больший интерес представляет энергетическая диаграмма направленности. Получив исчисленные данные из программы описанной в предыдущем пункте, можно сравнить диаграмму направленности полученной из формул с той, что была просчитана по другому известному и популярному алгоритму в CST Studio Suite.

Вставить иллюстрации

Ожидается, что максимумы и минимумы, как и общая картина, совпадут по направлению. Однако, численные значения могут быть различны, в виду различающейся точности в вычислениях.

3.3 Антенна «Бабочка»

У Наиболее данной антенны существует МНОГО названий. распространённые — бабочка и крыло летучей мыши. Для упрощения, будем использовать первый вариант. Такие имена антенна получила за свою (ИЛЛЮСТРАЦИЯ). Если форму исходить характерную разрезного полуволнового вибратора и стараться придать ему широкий частотный диапазон, надо превратить его в «толстый» вибратор. Для этого плечо вибратора выполняется в виде треугольной плоскости (ИЛЛЮСТРАЦИЯ ВЫШЕ). Такие вибраторы известны в области УКВ как широкополосные излучатели. Можно ещё больше расширить полосу частот вибратора, если добавить два взаимно параллельных короткозамкнутых четвертьволновых проводника. Так же можно дополнить треугольники до прямоугольников, при этом оба проводника образуют полуволновую щель между ними. Здесь возбуждение осуществляется в геометрической середине щели. В принципе, это будет щелевой излучатель, отличающийся тем, что вертикальная щель даёт горизонтальную поляризацию. Чтобы улучшить распределение тока и частотную характеристику, плечо вибратора прогибают, и его контур начинает напоминать плечо летучей мыши в размахе.

Однако, в данном случае больший интерес представляет именно конструкция «бабочки». Выбор треугольников в антенне экономит материал и позволяет четко задавать вход антенны в виде треугольников, расположенных рядом. Повышенный емкостный краевой эффект вызывает значительное укорочение вибратора. Входное сопротивление, коэффициент укорочения и частотный интервал этого волнового вибратора определяются углом раскрыва α .

По конструктивным соображениям в области УКВ угол раскрыва α выбирают близким 30°, но в ДМВ диапазоне предпочитают углы от 60° до 80°, обеспечивающие большую ширину полосы частот.

При $\alpha=30^{\circ}$ входное сопротивление вибратора составляет около 350 Ом, а его длина достигает $0.8~\lambda$. В этих условиях относительная ширина интервала частот $f=0.65f_{m}$. Чтобы снизить вес и парусность, треугольники делают из перфорированной жести или мелкой металлической сетки. Используют также решетчатые конструкции из прутка.

Изменение входного сопротивления в зависимости от от угла раскрыва происходит лишь в узком интервале изменений последнего, а само сопротивление почти постоянно в относительно широком интервале частот. Углы от 60° до 80° являются оптимальными. Им соответствует входное сопротивление 160-200 Ом и коэффициент укорочения около 0.73. Реактивная составляющая входного импеданса и её частотный ход пренебрежимо малы, а длина 1 благодаря широкополосности излучателя слабо влияет на основные параметры.

Как известно(ссыль), «узкий» волновой вибратор даёт усиление 1.8 дБ относительно настроенного полуволнового вибратора. Достаточно широкополосный плоский вибратор работает на значительно более высоких частотах, чему способствует частотная зависимость его импеданса. В высокочастотной области вибратор окажется, естественно электрически длиннее 1 λ. Поэтому усиление растёт с частотой и способно достигать 4 dBd.

Не смотря на очень высокую популярность подобных антенн в телевизионной области, их вопрос освещен в литературе крайне слабо.

Вопрос конусных антенн (бабочка, BowTie) очень слабо освещен в литературе, хотя это самый популярный тип ТВ антенн в мире, наряду с Uda-Yagi.

Поэтому в статье опишем принципы их работы и конструирования: волновые свойства одиночного вибратора-бабочки, влияние рефлекторов и директоров на диаграмму направленности и усиление антенны, принципы соединения вибраторов-бабочка в синфазные решетки.

Кроме того, представим читателю 7 хорошо оптимизированных с помощью САПР практических дизайнов телевизионных антенн на основе вибратора «бабочка» от простейших (в т.ч. безрефлекторные) до очень высокопроизводительной антенны с средним усилением 16.3 dBi для дальнего приёма.

В основе всех антенн обязательно присутствует активный элемент (вибратор, radiator), к которому подводится напряжение при работе на передачу, или напряжение работе снимается при на приём. В большинстве типов антенн вибратором является полуволновой диполь и его (разрезной петлевой, двойной петлевой, разновидности диполь, четвертьволновый штырь, набор диполей с логопериодической геометрией и т.д.).

Конструкция паразитных элементов и согласование антенны исходят из свойств вибратора. Свойства полуволнового диполя отлично известны и широко описаны. Сопротивление излучения равно 73Ω на центральной частоте, диаграмма направленности почти круговая, с небольшим усилением 2.15 dBi перпендикулярно оси.

Ось диполя проходит через Е-плоскость, т.е. поляризация излучения совпадает с осью диполя.

Сопротивление излучения быстро падает при снижении частоты и растёт с

ростом частоты.

Диполь, отцентрированный на 600 МГц, при КСВ=1 на линию 73 Ω будет иметь КСВ=2 уже при частотах 560 и 650 МГц, т.е. сохраняет приемлемый КСВ в диапазоне -7%...+8%.

Диполь идеален для узкополосных применений, а сделать его широкополосным можно только компромиссными путями — добавлять паразитные элементы (рефлекторы, директоры), подбирая их геометрию так, чтобы выровнять волновое сопротивление в разных участках диапазона. При таком подборе геометрии, усиление многоэлементной антенны будет значительно ниже, чем с таким же количеством паразитных элементов, оптимизированных под узкий диапазон. Усиление антенны очень неравномерно по диапазону, а КСВ выходит за рамки приличия на краях диапазона.

Решающие программы для всего спектра электромагнитных полей доступны в едином пользовательском интерфейсе пакета CST Studio Suite. Эти решающие программы можно объединять для гибридной симуляции, что дает инженерам возможность эффективно и быстро анализировать целые системы, состоящие из множества компонентов. Совместное проектирование с использованием других продуктов SIMULA позволяет интегрировать ЭМ-симуляцию в процесс проектирования и управлять процессом разработки с самых ранних этапов.

К наиболее распространенным предметам ЭМ-анализа относятся производительность и эффективность антенн и фильтров, электромагнитная совместимость и помехи (ЭМС/ЭМП), воздействие человеческого тела на электромагнитные поля, электромеханические эффекты в двигателях и генераторах, а также тепловые эффекты в устройствах высокой мощности.

CST Studio Suite используется в ведущих технологических и инженерных компаниях по всему миру. Это решение обеспечивает значительные преимущества на рынке, сокращая циклы разработки и затраты. Симуляция позволяет использовать виртуальное прототипирование. Можно оптимизировать производительность устройства, выявлять потенциальные несоответствия нормативным требованиям и устранять их на ранних этапах процесса проектирования, уменьшить количество необходимых физических прототипов и свести к минимуму риск ошибок и отзывов продукции

3.1 Антенна Бабочка

Диаграмма направленности излучения BowTie немного отличается от дипольной. Вверх/вниз BowTie излучает на 3-4 dB слабее чем вперёд/назад. В стороны подавляет излучение значительно сильнее, чем классический диполь. За счёт этого усиление вперед/взад на центральной частоте около 4.8 dBi (против 2.15 dBi диполя), а в полосе частот 400...800 МГц плавно растёт с 3.6 dBi до 6.7 dBi.

Заключение

В предоставленной работе была исследована применимость зарядовой модели по отношению к треугольной антенне. Из полученных данных можно сделать вывод о том, что данный метод расчёта полей не противоречит методу конечных разностей.

Простота заложенных в неё понятий обеспечивает относительно лёгкое понимание процесса излучения импульсных сигналов, но в то же время, вывод необходимых формул занимает отдельное место среди тяжёлых, и в то же время весьма увлекательных задач.

Проблема подобного излучения не была исследована полностью в данной работе, и потому представляет особый интерес для дальнейшего изучения. Помимо нахождения общих формул, есть задача о представлении последних в численных методах для решения связанных с этим методом задач на программной основе, в связи с выдающейся трудоёмкостью данного процесса.

Листинг А

Файл math_func.h

```
#ifndef MATH_FUNC_H_INCLUDED
#define MATH_FUNC_H_INCLUDED
#pragma once
#include <iostream>
```

Список литературы

- 1: H. Schantz, Ultrawideland Antennas, Artech House, 2005
- 2: Пономарёв Д. М. и др., Способ определения диаграммы направленности антенны в диапазоне частот, Б. И., 1988
- 3: Бахрах Л. Д., Курочкин А. П., Голография в микроволновой технике, М.: Сов. радио, 1979
- 4: Милстайн Л. Б., Методы подавления помех в системах радиосвязи с широкополосными сигналами, ТИИЭР, 1988
- 5: Астанин Л. Ю., Костылев А. А., Основы сверхширокополосных радиолокационных измерений, М.: Радио и связь, 1989
- 6: Ковалев И. П., Пономарев Д. М., Анализ процессов излучения и приёма импульсных сигналов во временной области, М.: Радио и связь, 1996
- 7: Фрадин Ф. З., Антенно-фидерные устройства, М.: Связь, 1977
- 8: Ковалев И. П., Пономарев Д. М., Клюев Е. А., Нестационарные процессы в проволочных антеннах при импульсном возбуждении, Радиотехника и электроника, 1991
- 9: Небабин В. Г., Гришин В. К., Методы и техника радиолокационного распознавания: современное состояние, тенденции развития, преспективы, Зарубежная радиоэлектроника, 1992
- 10:, ,,,,
- 11: Фейнман Р., Лейтон Р., Сендс М., Фейнмановские лекции по физике, М., 2004
- 12: Ландау Л. Д., Лифшиц Е. М., Теория поля (Теоретическая физика, т. II), М.: Физматлит, 2003
- 13: Е.Ю. Петров, ИЗЛУЧЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН ДВИЖУЩИМИСЯ ЗАРЯЖЕННЫМИ ЧАСТИЦАМИ, Нижегородский государственный университет им. Н. И. Лобачевского, 2019
- 14: Weinberg, Steven, The Quantum Theory of Fields, Volume I, Cambridge: Cambridge University Press, 2008