

# Генерация признаков. Методы отбора признаков. Подбор гиперпараметров.

#### Урок 8

На этой лекции вы найдете ответы на такие вопросы как:

- Что такое генерация признаков
- Какие есть методы отбора признаков
- Как осуществляется подбор гиперпараметров





## Булгакова Татьяна

Преподаватель в GeekBrains, Нетология, Skillfactory

С 2010 года занимаюсь DataScience и NN. Фрилансер

- Участвовала в разработке программы по настройке оборудования для исследования пространственного слуха китообразных НИИ ИПЭЭ РАН
- Участвую в разработке рекомендательных систем по настройке нейростимуляторов для медицинских центров
- Работаю над курсом по нейронным сетям



## План курса

Первичный и визуальный анализ данных

> Описательные статистики в контексте EDA. Корреляция и корреляционный анализ

Регрессия и использование библиотеки Scikit-learn в задачах обучения с учителем

Классификация и использование логистической регрессии в задачах классификации

Функционалы ошибки и поиск оптимальных параметров в задачах машинного обучения

Проблема переобучения и недообучения модели. Кросс-валидация и регуляризация.

Ансамблирование и использование деревьев решений в задачах машинного обучения

Генерация признаков. Методы отбора признаков. Подбор гиперпараметров. Обучение без учителя. Понижение размерности. Алгоритмы понижения размерности

10 Кластеризация и решение задачи группировки данных в машинном обучении



## Что будет на уроке сегодня

у Что такое генерация признаков

у Какие есть методы отбора признаков

у Как осуществляется подбор гиперпараметров



Генерация новых признаков является процессом создания новых переменных на основе существующих данных.

Производные от числовых переменных:

Математические операции: Новые признаки могут быть получены путем выполнения математических операций на числовых переменных

Гогарифмы и экспонента: Взятие логарифма или экспоненты от числовых переменных может

Полиномиальные признаки: Создание новых признаков путем возведения в степень



Генерация новых признаков на основе взаимодействия признаков

#### Взаимодействия

| Interaction ID | Customer ID | Дата покупки           | Туре                  | Количество |
|----------------|-------------|------------------------|-----------------------|------------|
| 0              | 0           | 16/07/2021<br>09:21:01 | Добавить в<br>корзину | N/A        |
| 1              | 0           | 16/07/2021<br>09:21:56 | Покупка               | 60         |
| 2              | 0           | 17/07/2021<br>17:54:32 | Покупка               | 400        |
| 3              | 1           | 16/08/2021<br>10:32:09 | Добавить в<br>корзину | N/A        |
| 4              | 1           | 16/08/2021<br>10:33:03 | Покупка               | 30000      |

## 69

## Генерация признаков

#### Логарифмирование

```
import pandas as pd
import numpy as np

# Пример логарифмической трансформации
data = pd.DataFrame({'value':[2,45, -23, 85, 28, 2, 35, -12]})
data['log+1'] = (data['value']+1).transform(np.log)

# Обработка отрицательных значений
# (Обратите внимание, что значения разные)
data['log'] = (data['value']-data['value'].min()+1) .transform(np.log)
```







Построение признаков на табличных данных



Избавление от пропущенных значений



Заполнение пропущенных значений



Изменение масштаба признаков



Бинарные и категориальные переменные:

Преобразование категориальных переменных: Категориальные переменные могут быть преобразованы в числовые с помощью методов

| Categorical value | Price  |
|-------------------|--------|
| 1                 | 20.000 |
| 2                 | 10.011 |
| 3                 | 50.000 |
| 3                 | 10.000 |
|                   | 1 2 3  |

| VW | Acura | Honda | Price  |
|----|-------|-------|--------|
| 1  | 0     | 0     | 20.000 |
| 0  | 1     | 0     | 10.011 |
| 0  | 0     | 1     | 50.000 |
| 0  | 0     | 1     | 10.000 |



Бинарные и категориальные переменные:

Преобразование категориальных переменных: Категориальные переменные могут быть преобразованы в числовые с помощью методов

| User | City     |          | User |   | Istanbul | Madrid |   |
|------|----------|----------|------|---|----------|--------|---|
| 1    | Roma     |          |      | 1 | 0        |        | 0 |
| 2    | Madrid   | 1        |      | 2 | 0        |        | 1 |
| 1    | Madrid   |          |      | 1 | 0        |        | 1 |
| 3    | Istanbul | <b>—</b> |      | 3 | 1        |        | 0 |
| 2    | Istanbul |          |      | 2 | 1        |        | 0 |
| 1    | Istanbul |          |      | 1 | 1        |        | 0 |
| 1    | Roma     | 7        |      | 1 | 0        |        | 0 |

```
train['MARRIAGE'].value_counts()

He женат/не замужем 4261
женат/замужен 3649
прочее 90
Name: MARRIAGE, dtype: int64

1 < 2 < 3
```



Бинарные и категориальные переменные:

Создание комбинированных или агрегированных признаков: Новые признаки могут быть созданы на основе комбинаций или агрегации категориальных переменных

| Hear ID | Candar | ۸۵۰   | Средняя или | User_ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gender |
|---------|--------|-------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| User_ID | Gender | Age   |             | 100001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F      |
| 100001  | F      | 0-17  | медиана     | The state of the s |        |
| 100002  | M      | 0-17  |             | 100002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M      |
| 100003  | F      | 55+   |             | 100003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F      |
| 100004  | F      | 26-35 |             | 100004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F      |
| 100005  | М      | 46-50 |             | 100005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M      |

| User_ID | Gender | New_Age |
|---------|--------|---------|
| 100001  | F      | 14      |
| 100002  | M      | 14      |
| 100003  | F      | 60      |
| 100004  | F      | 30      |
| 100005  | M      | 47      |



| User_ID | Gender | Lower_Age | Upper_Age |
|---------|--------|-----------|-----------|
| 100001  | F      | 0         | 17        |
| 100002  | M      | 0         | 17        |
| 100003  | F      | 55        | 80        |
| 100004  | F      | 26        | 35        |
| 100005  | M      | 46        | 50        |



Извлечение признаков из текстовых данных:

Мама мыла раму

• Токенизация

['Мама', 'мыла', 'раму']

• Нормализация

['Мама', 'мыть', 'рама']

• Векторизация

[[1, 0, 0], [0, 1, 0], [0, 0, 1]]



Этапы генерации новых признаков





Отбор признаков (фич) - это оценка важности каждого признака с использованием алгоритмов машинного обучения и удаление ненужных.

#### Методы фильтрации (filter methods)



Корреляционный отбор

Отбор на основе статистики

Отбор с использованием важности признаков

Устойчивость отбора признаков (Stability Selection)



#### Методы фильтрации (filter methods)



#### Отбор на основе статистики

```
import pandas as pd
import numpy as np
from skfeature.function.similarity_based import fisher_score
import matplotlib.pyplot as plt

# Вычисляем критерий
# Где X, у - входные и выходные данные соответственно.
ranks = fisher_score.fisher_score(X, y)

# Делаем график наших "фич"
# Где data - ваш датасет
feature_importances = pd.Series(ranks, data.columns[0:len(data.columns)-1])
feature_importances.plot(kind='barh', color='teal')
plt.show()
```

```
# Преобразование в категориальные данные путем преобразования в целые числа.

# Где X, у - входные и выходные данные соответственно.

X_categorical = X.astype(int)

# Выбираем 3 признака с наивысшим "хи-квадрат".

chi2_features = SelectKBest(chi2, k = 3)

X_kbest_features = chi2_features.fit_transform(X_categorical, y)

# Вывод "до и после"

print("Количество признаков до преобразования:", X_categorical.shape[1])

print("Количество признаков после преобразования:", X_kbest_features.shape[1])
```



#### Методы фильтрации (filter methods)



Отбор с использованием важности признаков





Устойчивость отбора признаков (Stability Selection)



#### Методы фильтрации (filter methods)



Устойчивость отбора признаков (Stability Selection)

#### Основные шаги алгоритма:

- Исходный набор данных случайным образом разбивается на несколько подвыборок.
- На каждой подвыборке обучается модель с регуляризацией (логистическая регрессия, лес случайных деревьев и др.) и производится отбор признаков.
- Для каждого признака рассчитывается частота (сколько раз этот признак был отобран на разных подвыборках). Это называется stability score.
- Признаки сортируются по убыванию stability score.
- Отбираются признаки, у которых stability score выше некоторого порогового значения. Это наиболее стабильно отбираемые и значимые признаки.



Методы обертки (wrapper methods)

Прямой отбор признаков

#### Начальная модель без переменных



#### Добавление наиболее значимой переменной



# Добавление переменных продолжается пока не достигнуто правило остановки, или переменные не закончатся





Методы обертки (wrapper methods)

#### Прямой отбор признаков

```
import pandas as pd
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_regression

# Загрузим данные
df = pd.read_csv('data.csv')
X = df.drop('SalePrice', axis=1)
y = df['SalePrice']

# Применим прямой отбор признаков
selector = SelectKBest(score_func=f_regression, k=5) # Используем корреляцию и
X_new = selector.fit_transform(X, y)

# Получим индексы выбранных признаков
selected_indices = selector.get_support(indices=True)
selected_features = X.columns[selected_indices]

# Выведем выбранные признаки
print(selected_features)
```



Методы обертки (wrapper methods

Метод последовательного отбора

#### Начальная модель включает все переменные



#### Исключить наименее значимую переменную



#### Продолжить исключение пока не будет выполнено правило остановки





Методы встроенные (embedded methods)

L1-регуляризация (регуляризация LASSO)





Методы встроенные (embedded methods)

Рекурсивное устранение объектов (RFE)

```
from sklearn.datasets import load_iris
from sklearn.feature_selection import RFECV
from sklearn.tree import DecisionTreeClassifier

# Load the iris dataset
X, y = load_iris(return_X_y=True)

# Create a decision tree classifier
estimator = DecisionTreeClassifier()

# Use RFE with cross-validation to
# find the optimal number of features
selector = RFECV(estimator, cv=5)
selector = selector.fit(X, y)

# Print the optimal number of features
print("Optimal number of features: %d" % selector.n_features_)

# Print the selected features
print("Selected features: %s" % selector.support_)
```

```
Optimal number of features: 3
Selected features: [False True True]
```



#### Grid Search

- 1. Фиксируются несколько значений для каждого гиперпараметра.
- 2. Перебираются все возможные комбинации значений различных гиперпараметров.
- 3. На каждой из этих комбинаций модель обучается и тестируется.
- 4. Выбирается комбинация, на которой модель показывает лучшее качество.





#### Grid Search

- 1. Фиксируются несколько значений для каждого гиперпараметра.
- 2. Перебираются все возможные комбинации значений различных гиперпараметров.
- 3. На каждой из этих комбинаций модель обучается и тестируется.
- 4. Выбирается комбинация, на которой модель показывает лучшее качество.

```
# Определение параметров и их значений для перебора

param_grid = {
    'n_estimators': [50, 100, 150],
    'max_depth': [None, 10, 20],
    'min_samples_leaf': [1, 2, 4]
}

# Создание модели и настройка с использованием решетчатого поиска

rf_model = RandomForestClassifier()

grid_search = GridSearchCV(rf_model, param_grid, cv=5)

grid_search.fit(X_train, y_train)
```



Random Search

Перебирать не все комбинации гиперпараметров, а только случайное подмножество.





#### Random Search

Перебирать не все комбинации гиперпараметров, а только случайное подмножество.

```
# Определение диапазонов значений для случайного поиска

param_dist = {
    'n_estimators': randint(50, 200),
    'max_depth': [None, 10, 20, 30, 40, 50],
    'min_samples_leaf': [1, 2, 4]
}

# Создание модели и настройка с использованием случайного поиска

rf_model = RandomForestClassifier()

random_search = RandomizedSearchCV(rf_model, param_distributions=param_dist, n_iter=100, cv=5)

random_search.fit(X_train, y_train)

# Вывод наилучших гиперпараметров и оценки

print("Best Hyperparameters:", random_search.best_params_)

print("Best Cross-Validation Score:", random_search.best_score_)
```



#### Байесовская оптимизация

Модель состоит из двух важных компонентов: гауссового процесса и алгоритма выбора следующей точки для проверки.

Алгоритм выбора следующей точки использует предсказания гауссовского процесса, чтобы найти наилучшую точку для дальнейшей проверки.





#### Байесовская оптимизация

Модель состоит из двух важных компонентов: гауссового процесса и алгоритма выбора следующей точки для проверки.

Алгоритм выбора следующей точки использует предсказания гауссовского процесса, чтобы найти наилучшую точку для дальнейшей проверки.

```
from skopt import BayesSearchCV
from skopt.space import Integer, Real

# Определение пространства поиска гиперпараметров
param_space = {
    'n_estimators': Integer(50, 200),
    'max_depth': Integer(10, 50),
    'min_samples_leaf': Integer(1, 4),
    'max_features': Real(0.1, 1.0, prior='uniform')
}

# Создание модели и настройка с использованием байесовской оптимизации
rf_model = RandomForestClassifier()
bayes_search = BayesSearchCV(rf_model, param_space, n_iter=50, cv=5)
bayes_search.fit(X_train, y_train)

# Вывод наилучших гиперпараметров и оценки
print("Best Hyperparameters:", bayes_search.best_params_)
print("Best Cross-Validation Score:", bayes_search.best_score_)
```



#### Итоги

Генерация признаков: Эффективная генерация признаков является одним из ключевых моментов в анализе данных. Хорошо подобранные признаки могут значительно улучшить качество модели. Для генерации признаков можно использовать различные методы, такие как полиномиальные и тригонометрические преобразования, производные и логарифмы, агрегацию данных и многое другое.

— Методы отбора признаков: Методы отбора признаков помогают выявить наиболее информативные и значимые признаки для построения модели. Отбор признаков может осуществляться на основе статистических метрик, таких как корреляция, mutual information, chi-square и др., а также на основе моделей машинного обучения, таких как случайный лес или логистическая регрессия. Это помогает улучшить интерпретируемость модели и уменьшить размерность данных.



#### Итоги

Подбор гиперпараметров: Гиперпараметры это параметры модели, которые должны быть настроены до обучения и влияют на ее производительность. Подбор гиперпараметров может быть осуществлен с использованием методов перебора, таких как сеточный поиск и случайный поиск, а также с использованием более сложных алгоритмов оптимизации, таких как градиентный спуск или байесовская оптимизация. Правильно подобранные гиперпараметры позволяют достичь более высокой точности и улучшить обобщающую способность модели.

— Генерация признаков, методы отбора признаков и подбор гиперпараметров являются важными этапами в процессе построения модели машинного обучения. Правильный выбор и оптимизация признаков и гиперпараметров позволяют достичь лучших результатов и повысить качество модели. Теоретические основы этих подходов также важны для понимания принципов работы моделей и их способности улавливать информацию и делать предсказания.







# Спасибо за внимание

