Sequential Logic Design

- System States
- State Diagrams & Transition Tables
- Sequential Circuit Analysis
- Sequential Circuit Design

System States

The state diagram shows a traffic light sequence with four states.

The states are represented by circles and the transitions between the states by directed arrows.

For a synchronous system, movement between states will happen when an active edge from a free running clock is applied.

Sequential Circuit States

- At any point in time, a sequential circuit can be said to be in a certain **state**.
- The state is defined by the outputs of the flip-flops in the sequential circuit.
- In a synchronous sequential circuit, movement between states only occurs in response to a clock edge.
- A state diagram can be used to graphically show the progression from one state to the next.
- The state is represented by a circle and the transitions between states are represented by directed lines joining one state to the next.

State Diagrams

The state of a single flip-flop is one of the two stable conditions that the output can take ($\mathbf{0}$ or $\mathbf{1}$).

A state diagram can be used to graphically show the progression from one state to the next. The state is represented by a circle and the transitions between states are represented by directed lines joining one state to the next.

Consider the D-Type flip-flop:

T-Type Flip-Flop

$$\begin{array}{c|c} T & Q(\text{next}) \\ \hline 0 & Q & \longleftarrow \text{unchanged} \\ 1 & \overline{Q} & \longleftarrow \text{Toggle} \end{array}$$

$$Q_{(next)} = T.\overline{Q} + \overline{T}.Q$$

JK Flip-Flop

$$Q_{(next)} = J\overline{Q} + \overline{K}Q$$

Analysis of Clocked Sequential Circuits

The output of a clocked sequential circuit depends upon its inputs and the state of the flip-flops. Its behaviour can be described by a state equation (sometimes called transition equation). Consider the circuit below.

The next state of F, one clock edge later, is denoted by F(t + 1).

$$F(t+1) = F(t).X(t) + Y(t).\overline{X}(t)$$

The right hand side is the Boolean expression that will make the next state equal to '1'. It is usual to omit the designation (t) giving:

$$F(t+1) = F.X + Y.\overline{X}$$

Analysis of Clocked Sequential Circuits

The output of a clocked sequential circuit depends upon its inputs and the state of the flip-flops. Its behaviour can be described by a state equation (sometimes called transition equation). Consider the circuit below.

The next state of F, one clock edge later, is denoted by F(t + 1).

$$F(t+1) = F(t).X(t) + Y(t).\overline{X}(t)$$

$$CLK$$

The right hand side is the Boolean expression that will make the next state equal to '1'. It is usual to omit the designation (t) giving:

$$F(t+1) = F.X + Y.\overline{X}$$

Write down state equations for A,B,C.

Remember $Q_{(next)} = D$

Write down state equations for A,B,C.

Remember $Q_{(next)} = D$

$$A_{(t+1)} = A.X + Y.B$$

$$\mathbf{B}_{(t+1)} = \overline{\mathbf{A}.\mathbf{Y}}$$

$$C = \overline{Y} \cdot (A + B)$$

State Tables

The time sequence of inputs, outputs and flip-flop states can be represented by a state table (sometimes called state transition table).

$F(t+1) = FX + \overline{X}Y$	Present State	Input	Next State
A sequential circuit with	F	ΧY	$F_{(t+1)}$
m flip-flops and n inputs needs 2^{m+n} rows in the	0	0 0	0
state transition table.	$0 \\ 0$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$\frac{1}{0}$
A state table is a truth table that takes into account the time	0 1	1 1 0 0	$0 \\ 0$
dependant nature of a synchronous sequential circuit.	1 1 1	0 1 1 0 1 1	1 1 1

A synchronous sequential circuit is required with two inputs \mathbf{D} , \mathbf{E} and one output \mathbf{Q} . The output will be unchanged when the enable signal E is '0' and will take the value of the D input when $\mathbf{E} = \mathbf{1}$ '.

present	Inputs		next
state Q	Е	D	state $Q_{(t+1)}$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

A synchronous sequential circuit is required with two inputs \mathbf{D} , \mathbf{E} and one output \mathbf{Q} . The output will be unchanged when the enable signal E is '0' and will take the value of the D input when $\mathbf{E} = \mathbf{1}$ '.

present	Inputs		next
state Q	Е	D	state $Q_{(t+1)}$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

A synchronous sequential circuit is required with two inputs \mathbf{D} , \mathbf{E} and one output \mathbf{Q} . The output will be unchanged when the enable signal E is '0' and will take the value of the D input when $\mathbf{E} = \mathbf{1}$ '.

present	Inputs		next
state			state
Q	Е	D	$Q_{(t+1)}$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

A synchronous sequential circuit is required with two inputs \mathbf{D} , \mathbf{E} and one output \mathbf{Q} . The output will be unchanged when the enable signal E is '0' and will take the value of the D input when $\mathbf{E} = \mathbf{1}$ '.

present	Inp	uts	next	
state Q	Е	D	state $Q_{(t+1)}$	Then solve for Q(t+1):
0	0	0	0	
0 0 0 0 1	0	1	0	$Q(t+1) = \overline{Q}ED + Q\overline{E}\overline{D} + Q\overline{E}D + QED$
0	1	0	0	
0	1 0	1	1	Q(t+1) = QE(D+D) + ED(Q+Q)
1	0	0	1	
1	0	1	1	Q(t+1) = QE + ED
1	1	0	0	
1	1	1	1 1	

State Equation:
$$Q(t+1) = Q\overline{E} + ED$$

The state equation gives the combinational logic that is required as the input to the D-type flip-flop. This will then give the required next state after the next active clock edge.

In this example, we have produced a D-type flip-flop with enable. The logic circuit is that for a 2-to-1 multiplexer. The enable line \mathbf{E} selects between keeping the same state when $\mathbf{E} = \mathbf{0}$ or clocking in a new value for D when $\mathbf{E} = \mathbf{1}$.

Summary

- Sequential circuit outputs depend upon current and previous inputs.
- Changes in synchronous sequential circuits happen on active clock edges.
- There are three types of flip-flop: D-type, T-type and JK
- D-Type flip flops are generally used for sequential design.