Московский Физико-Технический Институт (государственный университет)

Вычислительная математика

Лабораторная работа №7

Автор:

Овсянников Михаил Б01-008

Долгопрудный, 2023

Содержание

еоретические све	тΩ	ши	T																				
Общая задача	,дс.	LIVI	./1	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
Описание трехста	υ <u>∠</u> Ц <i>У</i> 11	ИП	JI (J IV	161	υд	аı	U.S	СП	оþ	ON	а	•	•	•	•	•	•	•	•	•	•	•
Сама система																							
Сама система Постановка залач								•					•			•			•				•
Сама система Постановка задач	 IИ .	•																					
Сама система Постановка задач Результаты	 IИ . 				•		 			 													

Цель

Реализовать методы решения жестких систем ОДУ.

Теоретические сведения

Общая задача

Пусть у нас есть система ОДУ:

$$\begin{cases} y'(x) = f(x, y), \\ y(x_0) = y_0. \end{cases}$$

Требуется численно решить данную систему. Для этого есть множество методов, однако некоторые из них могут оказаться неустойчивыми для данной системы и решение будет посчитано неверно, уйдет в бесконечность или начнет сильно осциллировать. Это происходит потому, что система может оказаться жесткой, то есть спектр матрицы Якоби данной системы распадается на две части:

• Жесткая

$$\mathrm{Re}\lambda_i\leqslant -\Lambda_0,$$
 где $\Lambda_0>0,$ $|\mathrm{Im}\lambda_i|<|\mathrm{Re}\lambda_i|, \qquad i=1,2,...,N_1;$

• Нежесткая

$$|\lambda_i| \leqslant \lambda_0, \qquad i = N_1 + 1, ..., N;$$

И $q=\Lambda_0/\lambda_0\gg 1$ – число жесткости.

На практике легко определить жесткую систему, когда её собственные значения сильно расходятся по порядку.

Выход из столь неприятной ситуации – использовать устойчивые методы. Например, такие как неявные методы Рунге-Кутты, многостадийные методы Розенброка или неявные многошаговые методы. В данной работе как раз реализован трехстадийный метод Розенброка для решения жесткой системы обыкновенных дифференциальных уравнений.

Описание трехстадийного метода Розенброка

Все методы Розенброка основаны на том, что мы линеаризируем правую часть уравнения и на каждом шаге решаем СЛАУ. Конкретно для трехстадийного процедура выглядит так:

$$y_{n+1} = y_n + p_1 k_1 + p_2 k_2 + p_3 k_3,$$

где:

$$D_n k_1 = h f(x_n, y_n),$$

$$D_n k_2 = h f(x_n + \beta_{21} h, y_n + \beta_{21} k_1),$$

$$D_n k_3 = h f(x_n + (\beta_{31} + \beta_{32}) h, y_n + \beta_{31} k_1 + \beta_{32} k_2)),$$

$$D_n = E - ah \frac{\partial f}{\partial y}(x_n, y_n).$$

Здесь a, p_i, β_{ij} – действительные числа. Конкретно:

$$a = 0.435866521508$$

$$p_1 = 0.435866521508$$

$$p_2 = 0.478240833275$$

$$p_3 = 0.085892645217$$

$$\beta_{21} = 0.435866521508$$

$$\beta_{31} = 0.435866521508$$

$$\beta_{32} = -2.116053335950$$

То есть на каждом шаге интегрирования нам нужно решить 3 СЛАУ.

Сама система

Постановка задачи

В качестве примера жесткой системы ОДУ был выбран номер **Х.9.8** второй части сборника Аристовой и Лобанова:

$$\begin{cases} \dot{x} = 77.27(y + x(1 - 8.375 \cdot 10^{-6}x - y)), \\ \dot{y} = \frac{1}{77.27}(z - (1 + x)y), \\ \dot{z} = 0.161(x - z). \end{cases}$$

В качестве начального значения выбран вектор $(x \ y \ z)_0^T = (4 \ 1.1 \ 4)^T$.

Данная система является математической моделью Филда-Нойса «орегонатор» периодической химической реакции Белоусова-Жаботинского.

Видно, что данная система является жесткой, так как есть сильные различия в «константах скорости реакций» веществ X, Y и Z.

На каждом шаге интегрирования мы будем решать 3 системы линейных алгебраических уравнений. Для этого будем использовать метод верхней релаксации.

Результаты

Процесс решения достаточно долгий ввиду того, что нужно решать еще 3 СЛАУ на каждом шаге интегрирования. На машине с процессором AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx 2.10 GHz расчет по имеющемуся коду занял 112 секунд для 80000 итераций с шагом интегрирования $h=10^{-2}$.

Однако результат того стоит. Система была спокойно решена. Предоставим зависимость x,y и z от времени:

Рис. 1. Графики решения системы

Видно, что решение периодическое. Также виден резкий всплеск концентрации вещества X. Если посмотреть на главную часть поближе, то

увидим следующее:

Рис. 2. Главная интересующая часть решения

То есть быстротекущий процесс связан с веществом X, а медленные – с Y и Z.

Также, можем взглянуть на отдельный пик поближе:

Рис. 3. Вид резкого всплеска концентрации вещества Х

Вывод

В работе был реализован один из методов решения жестких систем обыкновенных дифференциальных уравнений, а именно — трехстадийный метод Розенброка. С помощью него была решена система, которая является жесткой. Процесс небыстрый, однако с его помощью можно хоть как-то решать жесткие системы.