Lesson 1 - Frequency and Response Latencies

Erin M. Buchanan

01/16/2019

Language Topics Discussed

- ► English Lexicon Project
- ► The Subtitle Projects
- Extension to Priming Projects

English Lexicon Project

- http://elexicon.wustl.edu/
- ► ELP was a large undertaking that helped kick start the recent uptick in standardized behavioral data for language researchers
 - ► Corpora have been around, so have databases, but in the last 10 years, this field has grown exponentially
- ► The data contains 40K + words and 40K + nonwords with many characteristics
- Lexical Decision and Naming Tasks included

English Lexicon Project

- https://www.psytoolkit.org/experiment-library/ldt.html
 - However, you would only see one word at a time (in this example you see two)
- ► In the naming task, you would be asked to read those words aloud, one at a time
- Output we are interested in is how the lexical variables might predict the response latencies

Subtitle Projects

- Starting with Brysbaert and New (several papers), there was a movement to rethink frequency and its relation to predicting language results
- ► Traditionally, two sources of frequency were used:
 - ► The Brown Corpus: Kucera and Francis (1967)
 - ► HAL Corpus: Burgess and Livesay (1998)
- However, we weren't sure these were the best estimators of frequency

Subtitle Projects

- http://subtlexus.lexique.org/
- Downloaded subtitles from www.opensubtitles.org with 50 million words+
- Provided both estimates for subtitles and music lyrics
- Models estimating lexical decision and naming times indicate these estimations of frequency are better predictors
- Expanded to 15-20 different languages

The Semantic Priming Project

- Priming occurs when cognitive processing is speeded because of a previous event
- Generally, we measure priming using lexical decision and naming tasks
- Let's say you have two trials:
 - DOCTOR -> TREE (unrelated)
 - DOCTOR -> NURSE (related)

The Semantic Priming Project

▶ Priming is thought to occur by several different mechanisms: spreading activation, deliberate cognitive processes such as expectancy generation, etc.

The Semantic Priming Project

- Contains lexical decision and naming response latencies for related, unrelated, and nonword trials
- ▶ Is paired with the ELP and SUBTLEX projects
- Gives us more data to predict either response latencies or priming latencies

Regression

- Simple regression is the relationship between one independent and one dependent variable (also correlation)
- Multiple regression is the relationship between two or more independent variables and one dependent variable
 - Useful because it allows you to examine the predictive ability of each variable adjusting for the other variables
- We can fit parametric (linear) models or nonparametric models, depending on the expectation of linearity, as well as the type of dependent variable

Understand Regression Models

$$\hat{y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} ... + \epsilon_i$$

- Y-hat is the predicted score for each person (i) on the dependent variable
- B-zero is the y-intercept
- ▶ B-1+ are the slope values for each predictor
 - Slopes are interpreted as for every one unit increase in X, we see
 B unit increases in Y
- X is each individual predictor
- Error for each individual person, as we never get their predicted score exactly right

Understand Regression Models

- ► Least Squares estimation
 - lacktriangle Creates the line of best fit by minimizing the residual error ϵ

Understand Regression Models

- ► For the overall model including all variables:
 - ▶ Determine statistical significance by using *p* values from an *F*-test for linear models
 - ▶ Determine practical significance by using R^2
- ► For the individual predictors:
 - ▶ Determine statistical significance by using *p* values from a *t*-test
 - ightharpoonup Determine practical significance by using partial correlation pr^2

Examples Using ELP

- Word is the word presented to the participant
- Length is the number of characters in each word
- ▶ SUBTLWF is the subtitle word frequency estimate
- ▶ POS is part of speech
- Mean_RT is the mean response latency in milliseconds

```
library(Rling)
data(ELP)
head(ELP)
```

##		Word	Length	${\tt SUBTLWF}$	POS	${\tt Mean_RT}$
##	1	rackets	7	0.96	NN	790.87
##	2	stepmother	10	4.24	NN	692.55
##	3	${\tt delineated}$	10	0.04	VB	960.45
##	4	swimmers	8	1.49	NN	771.13
##	5	umpire	6	1.06	NN	882.50
##	6	cobra	5	3.33	NN	645.85

Dealing with Categorical Predictors

- How can we interpret and use categorical predictors?
- ▶ When X is continuous, the interpretation is that *for every one* unit increase in X, we see B unit increases in Y
- ▶ That doesn't work as well for categorical predictors...
- ▶ Instead, we have to use Dummy Coding (well, *R* does it for us)

Dummy Coding

- ► A way to represent categorical data for regression/least squares analyses
- ► You will get (categories 1) predictors
- ► How to interpret these predictors?
 - ► Each predictor represents the difference in means between the coded group (the one with the 1) and the group coded as all zeroes (the "control" group)

No Affiliation (Indie Kid

Dummy Coding

- POS is a categorical predictor we want to use
- Three categories:
 - ▶ JJ: Adjective
 - ► NN: Noun
 - VB: Verb
- ▶ Default is to make the first category the comparison category

```
table(ELP$POS)
```

```
##
## JJ NN VB
## 159 532 189
```

Dummy Coding

► Generally, nouns would be considered the comparison group, so let's rearrange them so they are "first".

Noun Adjective Verb ## 532 159 189

- One issue in language research is that often we have non-normal data
- Especially when working with frequency (as it is distributed by Zipf's law)

hist(ELP\$SUBTLWF, breaks = 100)

Histogram of ELP\$SUBTLWF

- ▶ The simplest solution is to take the log of the variable.
- ▶ Does make interpretation a bit more difficult, but helps with the distribution of the data.

ELP\$Log_SUB = log(ELP\$SUBTLWF)
hist(ELP\$Log_SUB)

ELDELOG SLID

Build the Linear Model

- ► To be able to use our output for several purposes, we want to save it
 - ▶ You can call it whatever you want, I like model.
- ► Format for lm function is:
 - ▶ Y ~ X + X + ...
 - data = name of data frame

Summarize the Linear Model

summary(model)

##

```
## Call:
## lm(formula = Mean RT ~ Length + Log SUB + POS, data = E)
##
## Residuals:
##
      Min
            1Q Median
                              30
                                     Max
## -213.70 -62.55 -9.71 53.87 389.00
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
```

(Intercept) 616.351 12.233 50.385 < 2e-16 *** ## Length 19.555 1.433 13.645 < 2e-16 ***

Log_SUB -29.288 1.784 -16.420 < 2e-16 ***

POSAdjective 6.115 8.506 0.719 0.47238 ## POSVerb -23.069 7.918 -2.913 0.00367 ** ## ---

Residuals

- A summary of the residuals remember that residuals are the error terms or how far off we were at predicting the Mean_RT
- ► We will use this information as part of our assumptions diagnostics for data screening

```
summary(model$residuals)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -213.699 -62.551 -9.714 0.000 53.874 388.998
```

Coefficients

- The coefficients table shows you the individual predictor significance levels
- ▶ If you use p < .05 as a criterion, we see that:
 - Intercept is the average RL
 - Length is a positive predictor: long words take longer to react to
 - Frequency is a negative predictor: more frequent words are faster (i.e. low freq = high RL)
 - Adjectives and Nouns have the same RL
 - Verbs and Nouns have different RL

Coefficients

```
options(scipen = 999)
round(summary(model)$coefficients, 3)
```

```
##
            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
             616.351
                       12.233 50.385
                                      0.000
        19.555
                        1.433 13.645
                                      0.000
## Length
## Log_SUB -29.288 1.784 -16.420
                                      0.000
## POSAdjective 6.115
                       8.506 0.719
                                      0.472
## POSVerb
            -23.069 7.918 -2.913
                                      0.004
```

Coefficients

- ➤ To interpret categorical predictors, it can help to make a means table
- Now I can see that verbs are responded to faster than nouns, interpreting the categorical predictor

```
## Noun Adjective Verb
## 787.5959 822.9145 754.3316
```

Coefficient Confidence Intervals

► We can calculate the confidence intervals for the coefficients, to help understand their precision

confint(model)

```
## 2.5 % 97.5 %

## (Intercept) 592.34193 640.36007

## Length 16.74194 22.36757

## Log_SUB -32.78872 -25.78704

## POSAdjective -10.57915 22.80935

## POSVerb -38.61021 -7.52737
```

Coefficient Practical Importance

► Calculate pr²: variance accounted for in the DV by that IV after removing all variance due to other IVs

$$\frac{t_{x_i}}{\sqrt{t_{x_i}^2 + df_{res}}}$$

```
t = summary(model)$coefficients[-1 , 3]
pr = t / sqrt(t^2 + model$df.residual)
pr^2
```

```
## Length Log_SUB POSAdjective POSVerb
## 0.1754422571 0.2355448602 0.0005903474 0.0096065265
```

Overall Model

- ▶ So how much better than a random guess are we at predicting?
 - ▶ A good random guess is always the y-intercept or the mean of y.
- ▶ The *F*-statistic represents the difference of the model from zero

summary(model)\$fstatistic

```
## value numdf dendf
## 183.7024 4.0000 875.0000
```

Overall Model

► R² represents the overlap in all IV variance with the DV variance

```
summary(model)$r.squared
```

```
## [1] 0.4564574
```

Diagnostic Tests

- Outliers and influential observations: data points that have large residuals or are otherwise odd in relation to the rest of the data
- Assumptions of parametric regression:
 - Independence
 - DV is response scale
 - Additivity (no multicollinearity)
 - Linearity
 - Normality
 - Homoscedasticity/Homogeneity

Outliers

- ► Hat values (or leverage): indicates how much influence on the slope a data point has
- Studentized residuals: the normalized (z-scored) difference between a participant's predicted and actual score
- Cook's values: a measure of influence (both leverage and discrepancy)

Outliers

library(car)
influencePlot(model)

StudRes

Hat

CookD

Outliers

What do we do with them?

```
ELP[c(331,660,498,411),]
```

```
##
                   Word Length SUBTLWF
                                            POS Mean_RT
## 331 interdepartmental
                           17
                                 0.04 Adjective 1324.57
  660
           sacrilegious
##
                           12
                                 0.39 Adjective 1228.06
                                 0.10
## 498
                whippet
                                           Noun 1209.67
## 411
              archenemy
                                 0.25
                                           Noun 1188.91 -
```

Assumptions

- ► Independence the data is independent from each other (i.e. each data point is from a different "person")
- ▶ Interval scale dependent variable: check!

Additivity

##

▶ No correlation between predictors above .9 (but .7 is actually not good either)

```
summary(model, correlation = T)$correlation[ , -1]
```

```
## (Intercept) -0.94238493 -0.272940500 -0.09904041 -0.23
## Length 1.00000000 0.340416664 -0.05527619
                                                  0.0
## Log SUB 0.34041666 1.000000000 0.09363100
                                                 0.00
## POSAdjective -0.05527619 0.093631001 1.00000000
                                                 0.23
## POSVerb
            0.06668845 0.006852748 0.23717736
```

Length Log SUB POSAdjective

1.00

Additivity

► Small Variance Inflation Scores (VIF) values (less than 5 to 10)

```
vif(model)
```

```
## GVIF Df GVIF^(1/(2*Df))
## Length 1.151054 1 1.072872
## Log_SUB 1.150140 1 1.072446
## POS 1.026925 2 1.006664
```

Linearity

plot(model, which = 2)

Normality

hist(scale(residuals(model)))

Homoscedasticity/Homogeneity

plot(model, which = 1)

Homoscedasticity/Homogeneity

```
{plot(scale(residuals(model)), scale(model\fitted.values))
abline(v = 0, h = 0)}
```


One Solution to Bad Assumptions

First, build a function that saves the numbers you want:

```
bootcoef = function(formula, data, indices){
  d = data[indices, ] #randomize the data by row
  model = lm(formula, data = d) #run our model
  return(coef(model)) #give back coefficients
}
```

Bootstrapping

► Next, use the boot library to run the bootstraps (lots of runs on randomly sampled data)

Bootstrapping

model.boot

```
##
  ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = ELP, statistic = bootcoef, R = 1000, formula
##
      Length + Log SUB + POS)
##
##
## Bootstrap Statistics :
##
        original bias std. error
## t1* 616.350998 0.048541832 12.029762
## t2* 19.554757 -0.002752349 1.455837
## t3* -29.287879 -0.024054074 1.706049
## t4* 6.115101 -0.110164071
                                9.098897
## t5* -23.068792 -0.285394053
                                7.237738
```

Cls for Bootstrapped Estimates

```
boot.ci(model.boot, index = 2)
## Warning in boot.ci(model.boot, index = 2): bootstrap var
## studentized intervals
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = model.boot, index = 2)
```

```
##
## Intervals :
## Level Normal
                               Basic
## 95% (16.70, 22.41) (16.63, 22.35)
##
## Level Percentile
                                BCa
## 95% (16.76, 22.48) (16.80, 22.60)
## Calculations and Intervals on Original Scale
```