Pinch Technology

Optimization of heat exchange How to design a HEN

Pinch Technology – whose idea

- Developed by Bodo Linnhof PhD thesis at Leeds University 1977
- *and D.R. Vredeveld. What happened to him?
- Joined ICI and in 1982 Uni of Manchester
- At 33 full professor
- Started Linnhof March consultancy in 1983
- Sold to KBC Advanced Technologies in 2002
- Retired to do other things

What is Pinch technology?

- Methodology for making energy savings
- Based on thermodynamic principles
 First law energy conservation
 Second law heat cannot pass from a colder to a warmer body; entropy increases
- Provides a way to calculate minimum theoretical use of external utilities (hot and cold)

Purpose

- Determine minimum theoretical use of external utilities in a plant
- Reduce energy consumption
- Reduce capital cost of heat exchange equipment
- Minimize aggregate capital cost + operating cost of heat exchange
- Set targets for energy saving
- Reduce emissions (CO2, SO2, NOX)

Simple reactor, no process heat exchange

Reactor system with feed/effluent exchanger

Data Extraction flowsheet

Stream Number	Stream Type	Start Temperature (^o c)	Target temperature (°c)	Heat capacity (kW/ ^o c) rate
1	Hot	180	80	20
2	Hot	130	40	40
3	Cold	60	100	80
4	Cold	30	120	36

Extract thermal data

ΔT min = 10degC

Utilities steam at 200°c Cooling water at 25°c to 30°c

Construction of hot and cold composite curves

This is the hot one – streams getting colder

Hot and cold composite curves energy targets for hot and cold utilities

Composite curve two streams

· Cool streams need heating .

. Hot streams need cooling

Temperature lines

Heating Demard: 50

Cooling Demand: 50

Heat needed: 72 - 62 = 10 mm BTU 1st Law Analysis

The Pinch principle Don't transfer heat across the pinch

Pinch rules

```
Do not transfer heat across the
             pinch
Do not use hot utility below the
  pinch (no external heating)
Do not use cold utility above the
  pinch (no external cooling)
```

No hot utility below pinch (β) No cold above the pinch (γ)

The Pinch Divides the Problem into Source and Sink

By violating the three golden rules Q_{Hmin} and Q_{Cmin} are each increased by $\alpha+\beta+\gamma$.

Heat Capacity block diagram

HEN grid diagram

Selection of ΔT min

- Low ΔT min leads to lower energy costs (utility circulation rate) but higher capital costs (heat exchange area).
- High AT high energy costs low capital costs

Industry	Common ΔT Min degC	Comments
Oil refining	20 – 40	Low heat transfer coefficients. Fouling of exchangers
Petrochemical & Chemical	10 – 20	Reboilers & condensers better HT coefficients, low fouling
Low Temperature	3 – 5	Power for refrigeration \$\$\$. Use lower ΔT with low refrigerant temp

Effect of reducing Δ T min

reduced minimum utility requirement but larger exchangers

Energy operating costs vs Capital

Limitations to the technique

- Don't join different process plants
- Be cautious joining different parts of same plant
 - e.g. heat exchange from one reactor system to another
- Make sure all the capital cost of heat exchange equipment is properly accounted for
 - e.g. long runs of alloy piping
- Be careful using in condensers and reboilers
 - Consider start-up and shut-down & Process control

References

Introduction to Pinch Technology, Linhoff March, 1998 *

Pinch Technology: Basics for beginners, The Chemical Engineer's resource, 2001 *

Pinch analysis: for the efficient use of energy, water, & hydrogen, Natural Resources Canada, 2003 *

Aspen energy analyzer tutorial guide, Aspentech *

Aspen energy analyzer tutorial (retro). Cornell seniors *

Pinch Analysis and Process Integration (second ed), Ian Kemp, IChemE, Butterworth-Heinemann ISBN: 978-0-7506-8260-2 *

* On Canvas CHEME4620>FilesWaste Plastic Recycle Plant Project>Heat Exchange Pinch Technology