SISTEMAS SECUENCIALES

Técnicas Digitales I

Luis Eduardo Toledo

SISTEMAS SECUENCIALES

En un sistema secuencial, las salidas no dependen únicamente de las entradas sino también de los estados internos.

SISTEMAS SECUENCIALES

En un sistema secuencial, las salidas no dependen únicamente de las entradas sino también de los estados internos. Introduce dos conceptos: Tiempo y Memoria.

BIESTABLES

Par de inversores formando un elemento biestable.

BIESTABLE SENSIBLE A NIVEL: LATCH

¿Como cambiar el valor almacenado en un elemento biestable?

a) Cortando el lazo de realimentación

b) Ganando el control del lazo de realimentación

	(4)		i)	A	Q	Q
S	0	_	0	0	Q	$\overline{\mathcal{Q}}$
	~		1	0	1	0
R	\overline{Q}	-	0	1	0	1
			1	1	0	0

BIESTABLE SENSIBLE A NIVEL: LATCH

Símbolo y formas de onda de un latch.

LATCH BASADO EN MULTIPLEXOR

Latch positivo
Transparente cuando CLK=1.

Latch negativo
Transparente cuando CLK=0.

$$Q = \overline{Clk} \cdot Q + Clk \cdot In$$

$$Q = Clk \cdot Q + \overline{Clk} \cdot In$$

BIESTABLE DISPARADO POR FLANCO: FLIP-FLOP MAESTRO-ESCLAVO

Latch negativo seguido de otro positivo.

BIESTABLE DISPARADO POR FLANCO: FLIP-FLOP MAESTRO-ESCLAVO

Latch negativo seguido de otro positivo. IMPLEMENTACIÓN

DEFINICIONES DE TEMPORIZACIÓN

El t_{su} (set-up time) es el tiempo que la entrada de dato (D input) debe ser estable antes de la transición del reloj (Esto es, la transición de 0 a 1 para un registro activado por flanco positivo). El t_{hold} (hold time) es el tiempo en que el dato de entrada debe permanecer válido después del flanco de reloj.

El dato en la entrada $\bf D$ se copia a la salida $\bf Q$ después de un retardo de propagación (el peor caso con referencia al flanco del reloj) denominado por ${\it t_{c-a}}$.

FLIP-FLOP D

FLIP-FLOP D

$$Q_{t+1} = D_t$$

D significa DELAY

OTROS FLIP-FLOPS

flip-flop JK

Diagrama circuital

JK I	JK Flip-Flop				
J	K	Q(t+1)			
0	0	Q(t)			
0	1	0			
1	0	1			
1	1	Q'(t)			

Símbolo Gráfico

OTROS FLIP-FLOPS

flip-flop T

A partir de un **JK**

A partir de un **D**

Símbolo Gráfico

T	F	i	p-	F	0	p
---	---	---	----	---	---	---

T	Q(t + 1)
0	Q(t)
1	Q'(t)

CAJA NEGRA Y DIAGRAMA DE ESTADOS

Supongamos que tenemos un sistema cuya salida Y se activa ante la presencia de tres unos consecutivos en la entrada X.

CODIFICACIÓN DE ESTADOS Y TABLA DE VERDAD

ESTADO	$Q_1 Q_0$
EO	0 0
E1	0 1
E2	1 0
E3	1 1

X	Q _{1t}	Q _{0t}	Q _{1t+1}	Q _{0t+2}	Y _t
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	1
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	1	0
1	1	1	1	1	1

MAPA DE KARNAUGH

$X Q_{1t} Q_{0t}$	$Q_{1t+1} Q_{0t+1} Y_t$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1	0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$Q_{1t+1} = X.Q_{1t} + X.Q_{0t}$ $Q_{0t+1} = X.Q_{1t} + X./Q_{0t}$ $Y_t = Q_{1t}.Q_{0t}$

IMPLEMENTACIÓN

$$Q_{1t+1} = X.Q_{1t} + X.Q_{0t}$$

$$Q_{1t+1} = X.Q_{1t} + X.Q_{0t}$$
 $Q_{0t+1} = X.Q_{1t} + X./Q_{0t}$ $Y_t = Q_{1t}.Q_{0t}$

$$Y_t = Q_{1t} . Q_{0t}$$

