ANSWER SET PROGRAMMING FOR JUDGMENT AGGREGATION

RONALD DE HAAN
ILLC, University of Amsterdam

MARIJA SLAVKOVIK
University of Bergen

Judgment aggregation

How to aggregate individual views on a set of logically related issues?

Judgment aggregation

user bought a toilet seat (p)stop recommending toilet seats(q)a user who bought a toilet was not recommended more toilet seats (r)user was satisfied with service (t)

		$r \leftarrow$	$\mapsto (p -$	$\rightarrow q) \leftarrow$	——— Constraint
AM Turk	$\{p$	q	r	<i>t</i> } ←	——— Agenda
$\overline{\mathrm{W1}}$	yes	no	no	no	
W2	no	no	yes	yes	Profile
W3	yes	yes	yes	yes	Collective judgment set
Majority	yes	no	no	yes 🗸	Outcome

Aggregating judgment sets is hard

Judgment aggregation rule F	Complexity of the outcome determination problem
Condorcet rule Con	Σ_2^{p} -complete
Slater rule Sla	Θ_2^{p} -complete
Kemeny rule Кем	Θ_2^{p} -complete
MaxHamming rule МахНам	Θ_2^{p} -complete
AvgGeo-rule	Θ_3^p -complete
MaxGeo-rule	Θ_3^p -complete
Reversal-scoring rule RevSco	Θ_2^{p} -complete
Ranked-agenda rule Ran	Σ_2^{p} -complete
LexiMax-rule	Δ_2^{p} -complete
Young rule YNG	Θ_2^{p} -complete
Dodgson rule Dod	Θ_2^{p} -complete

^{*} Figure shamelessly borrowed from a manuscript in preparation that also includes Ulle Endriss and Jerome Lang

Answer set programming

Given is a declarative logic program, a finite set of rules:

Answer set programming

Given is a declarative logic program, a finite set of rules:

Find a model (an answer set) that satisfies the rules.

Answer set programming

```
bird(tux). penguin(tux).
bird(tweety). chicken(tweety).
flies(X) := bird(X), not -flies(X).
-flies(X): -bird(X), not flies(X).
-flies(X) :- penguin(X).
Answer set 1: {bird(tux), penguin(tux), bird(tweety), chicken(tweety),
flies(tweety), -flies(tux)}
Answer set 2: {bird(tux), penguin(tux), bird(tweety), chicken(tweety),
-flies(tweety), -flies(tux)}
```

Find a model (an answer set) that satisfies the rules.

r	(\rightarrow	(n)	\rightarrow	a
•	1	1	(P)	/	\mathbf{Y}

AM Turk	p	q	r	t
$\overline{W1}$	yes	no	no	no
W2	no	no	yes	yes
W3	yes	yes	yes	yes

issue(p).
issue(q).
issue(r).
issue(t).

		$r \leftrightarrow (p \rightarrow q)$				
AM	Turk	$\mid p \mid$	q	r	t	
	W1	yes	no	no	no	
	W2	no	no	yes	yes	
	W3	yes	yes	yes	yes	

issue(p). voter(1).
issue(q). voter(2).
issue(r). voter(3).
issue(t).

$r \leftrightarrow (p \rightarrow q)$

AM Turk	p	q	r	t
W1	yes	no	no	no
W2	no	no	yes	yes
W3	yes	yes	yes	yes

issue(p). voter(1).
issue(q). voter(2).
issue(r). voter(3).
issue(t).

$$\begin{array}{|c|c|c|c|c|c|}\hline (\neg p \lor q \lor \neg r) \land (p \lor r) \land (\neg q \lor r)\\\hline AM Turk & p & q & r & t\\\hline W1 & yes & no & no & no\\\hline W2 & no & no & yes & yes\\\hline W3 & yes & yes & yes & yes\\\hline\end{array}$$

issue(p). voter(1).
issue(q). voter(2).
issue(r). voter(3).
issue(t).
clause(1,(-p;q;-r)).

$$(\neg p \lor q \lor \neg r) \land (p \lor r) \land (\neg q \lor r)$$

AM Turk p q r t

W1 yes no no no

W2 no no yes yes

W3 yes yes yes yes

```
issue(p). voter(1).
issue(q). voter(2).
issue(r). voter(3).
issue(t).
clause(1,(-p;q;-r)).
clause(2,(p;r)).
```

$$(\neg p \lor q \lor \neg r) \land (p \lor r) \land (\neg q \lor r)$$

AM Turk p q r t

W1 yes no no no

W2 no no yes yes

W3 yes yes yes yes

```
issue(p). voter(1).
issue(q). voter(2).
issue(r). voter(3).
issue(t).

clause(1,(-p;q;-r)).
clause(2,(p;r)).
clause(3,(-q;r)).
```

$$(\neg p \lor q \lor \neg r) \land (p \lor r) \land (\neg q \lor r)$$
AM Turk p q r t

W1 yes no no no

W2 no no yes yes

W3 yes yes yes yes

```
issue(p). voter(1).
issue(q). voter(2).
issue(r). voter(3).
issue(t).
clause(1,(-p;q;-r)).
clause(2,(p;r)).
clause(3,(-q;r)).
```

js(1,p).js(1,-q).js(1,-r).js(1,-t).

$$(\neg p \lor q \lor \neg r) \land (p \lor r) \land (\neg q \lor r)$$
AM Turk p q r t

W1 yes no no no

W2 no no yes yes

W3 yes yes yes yes

```
issue(p). voter(1).
issue(q). voter(2).
issue(r). voter(3).
issue(t).

clause(1,(-p;q;-r)).
clause(2,(p;r)).
clause(3,(-q;r)).
```

js(1,p). js(1,-q). js(1,-r). js(1,-t).js(2,-p). js(2,-q). js(2,r). js(2,t).

$$(\neg p \lor q \lor \neg r) \land (p \lor r) \land (\neg q \lor r)$$
 $AM Turk \mid p \quad q \quad r \quad t$
 $W1 \quad yes \quad no \quad no \quad no$
 $W2 \quad no \quad no \quad yes \quad yes$
 $W3 \quad yes \quad yes \quad yes \quad yes$

```
issue(p). voter(1).
issue(q). voter(2).
issue(r). voter(3).
issue(t).

clause(1,(-p;q;-r)).
clause(2,(p;r)).
clause(3,(-q;r)).
```

js(1,p). js(1,-q). js(1,-r). js(1,-t). js(2,-p). js(2,-q). js(2,r). js(2,t).js(3,p). js(3,q). js(3,r). js(3,t).

$$(\neg p \lor q \lor \neg r) \land (p \lor r) \land (\neg q \lor r)$$
 $AM Turk \mid p \quad q \quad r \quad t$
 $W1 \quad yes \quad no \quad no \quad no$
 $W2 \quad no \quad no \quad yes \quad yes$
 $W3 \quad yes \quad yes \quad yes \quad yes$

agent(A) :- voter(A).

lit(X;-X) := issue(X).

issue(p). voter(1).
issue(q). voter(2).
issue(r). voter(3).
issue(t).
clause(1,(-p;q;-r)).
clause(2,(p;r)).
clause(3,(-q;r)).

js(2,-p). js(2,-q). js(2,r). js(2,t).js(3,p). js(3,q). js(3,r). js(3,t).

js(1,p).js(1,-q).js(1,-r).js(1,-t).

enforcers completeness

We implemented

Judgment aggregation rule F	Complexity of the outcome determination problem			
Condorcet rule Con	Σ_2^{p} -complete	(Theorems 4.1 and 4.2)		
Slater rule Sla	Θ_2^{p} -complete	(Theorems 4.3 and 4.4)		
Kemeny rule Кем	Θ_2^{p} -complete	(Theorems 4.5 and 4.6)		
MaxHamming rule МахНам	Θ_2^{p} -complete	(Theorems 4.7 and 4.8)		
Reversal-scoring rule RevSco	Θ_2^{p} -complete	(Theorems 4.14 and 4.15)		
Ranked-agenda rule RAN	Σ_2^{p} -complete	(Theorems 4.16 and 4.17)		
LexiMax-rule	Δ_2^{p} -complete	(Theorems 4.18 and 4.19)		
Young rule YNG	Θ_2^{p} -complete	(Theorems 4.20 and 4.21)		
Dodgson rule Dod	Θ_2^{p} -complete	(Theorems 4.22 and 4.23)		

Majority

```
issue(p). voter(1). clause(1,(-p;q;-r)). js(1,p). js(1,-q). js(1,-r). js(1,-t).
issue (q). voter(2). clause(2,(p;r)).
                                          js(2,-p). js(2,-q). js(2,r). js(2,t).
issue(r). voter(3). clause(3,(-q;r)).
                                          js(3,p). js(3,q). js(3,r). js(3,t).
issue(t).
agent(A) := voter(A).
lit(X;-X) := issue(X).
1 \{ js(A,X) ; js(A,-X) \} 1 :- agent(A), issue(X)
:- agent(A), clause(C,_), js(A,-L) : clause(C,L).
pc(X,N) := lit(X), N = #count \{ A : voter(A), js(A,X) \}.
maj(X) := lit(X), pc(X,N), pc(-X,M), N > M.
js(col,X):-maj(X).
agent(col).
```

What we did

Judgment aggregation aggregation rules

Preference aggregation rules

Agenda properties

Profile properties

and review code, manage projects, and build software together.

Sign up

Encodings of Judgment Aggregation (JA) problems into Answer Set Programming (ASP)

70 commits	₽ 1 branch	♡ 0 releases	2 1 contributor	រាំ្ម GPL-3.0
Branch: master ▼ New pull reque	est			Find File Clone or download ▼
rdehaan Update README			Late	st commit 6f107a3 on 29 Sep 2018
agenda-properties	Rename 'single-crossedness'	to 'unidimensional alignme	ent'	11 months ago
examples	Fix examples/profile/profile3.lp	р		11 months ago
profile-properties	Rename 'single-crossedness'	to 'unidimensional alignme	ent'	11 months ago
windet windet	Add (naive) encoding of Keme	eny based on saturation		11 months ago
gitignore	Create todos.md			last year
LICENSE	Initial commit			last year
README.md	Update README			11 months ago
ia.lp	Encode the graph of all compl	ete & consistent judgmen	t sets	11 months ago
meta.lp	Import files			last year
metaD.lp	Improve file organization			last year
metaO.lp	Improve file organization			last year
models.lp	Add support for auxiliary varia	bles in the encodings		last year
pretty-printing.lp	Rename 'single-crossedness'	to 'unidimensional alignme	ent'	11 months ago
todos.md	Update todos			11 months ago

Thank you