Esercizio 1

Un trasformatore monofase ha i seguenti dati di targa:

$$A_n = 30 \text{ kVA}$$
 $V_{1n} = 10000 \text{ V}$ $f = 50 \text{ Hz}$

Della macchina sono noti:

numero di spire dell'avvolgimento primario : $N_1 = 2500$ numero di spire dell'avvolgimento secondario : $N_2 = 250$ sezione del nucleo magnetico : $S = 200 \text{ cm}^2$

Determinare:

- 1) il valore massimo dell'induzione nel nucleo magnetico
- 2) la corrente secondaria nominale
- 3) la tensione con la quale si deve alimentare il primario del trasformatore perché lavori con il valore di induzione precedente, ma con frequenza della tensione di alimentazione di 60 Hz.

Soluzione

1) Trascurando le cadute di tensione dovute alla resistenza ed alla reattanza di dispersione dell'avvolgimento primario ed ammettendo la tensione V_{1n} sinusoidale, si ha:

$$V_{1n} = E_1 = 4.44 \cdot f \cdot N_1 \cdot \phi_{Max}$$

Da cui essendo $\phi_{Max} = B_{Max} S$ possiamo ricavare il valore massimo dell'induzione:

$$B_{Max} = \frac{V_{1n}}{4.44 \cdot f \cdot N_1 \cdot S} = 0.9 \frac{Wb}{m^2}$$

2) La corrente nominale secondaria vale:

$$I_{2n} = \frac{A_n}{V_{20}}$$

Dove $V_{20} = \frac{V_{1n}}{K_0} = \frac{10000}{10} = 1000 \text{ V}$ e con K_0 si intende il rapporto di trasformazione a vuoto che è praticamente coincidente con il rapporto spire). Da cui si ricava

$$I_{2n} = 30 \text{ A}$$

3) La nuova tensione di alimentazione è naturalmente data da

$$V_1' = 4.44 \cdot f' \cdot N_1 \cdot B_{Max} \cdot S = 12000 \text{ V}$$

ESERCIZIO 2

Di un trasformatore monofase, alimentato alla tensione nominale primaria di 6000 V, f = 50 Hz, si conoscono i seguenti dati:

1

rapporto di trasformazione a vuoto
$$K_0 = \frac{V_{1n}}{V_{20}} = 30$$

resistenza dell'avvolgimento primario $R_1 = 8 \Omega$ resistenza dell'avvolgimento secondario $R_2 = 0.01 \Omega$

induttanza di dispersione dell'avvolgimento primario $L_{d1} = 0.06 \text{ H}$ induttanza di dispersione dell'avvolgimento secondario $L_{d2} = 0.13 \cdot 10^{-3} \text{ H}$

La corrente assorbita nel funzionamento a vuoto, alimentando la macchina con la tensione e frequenza nominali è $I_0 = 0.25$ A ed il fattore di potenza corrispondente cos $\varphi_0 = 0.2$.

Il trasformatore, alimentato alla tensione e frequenza nominali, alimenta al secondario un carico ohmico induttivo: in queste condizioni assorbe dalla rete una potenza P_1 = 24 kW con cos ϕ_1 = 0.8 (lato primario).

Determinare:

- 1) tensione, corrente e fattore di potenza del carico
- 2) i valori della resistenza e della reattanza equivalenti primarie del trasformatore

Soluzione

1) Possiamo risolvere il problema applicando il teorema di Boucherot. La rete equivalente completa si presenta come in figura:

Il trasformatore assorbe la potenza attiva P_1 e reattiva Q_1 :

$$P_1 = 24000 \text{ W} \text{ (dal testo)}$$

$$Q_1 = P_1 \cdot tg \ \phi_1 = 18000 \ VAR$$

$$A_1 = 30000 \text{ VA}$$

La corrente I₁ assorbita dalla rete è pari a:

$$I_1 = \frac{A_1}{V_1} = 5 \text{ A}$$

La potenza attiva e reattiva dell'avvolgimento primario sono pari a:

$$P_{cu1} = R_1 I_1^2 = 200 W$$

 $Q_{x1} = X_1 I_1^2 = 18.84 \cdot 5^2 = 471.24 VAR$

La potenza attiva e reattiva transitanti attraverso AA sono:

$$P_{AA} = P_1 - P_{cul} = 23800 \text{ W}$$

 $Q_{AA} = Q_1 - Q_{x1} = 17528 \text{ VAR}$
 $A_{AA} = 29559 \text{ VA}$

La f.e.m. primaria E_1 è quindi pari a: $E_1 = \frac{A_{AA}}{I_1} = 5912 \text{ V}$

La forza elettromotrice secondaria è quindi pari a:

$$E_2 = \frac{E_1}{K_0} = 197 \text{ V}$$

Le potenze attive e reattive assorbite a vuoto sono pari a:

$$P_0 = V_{1n} I_0 \cos \phi_0 = 300 W$$

 $Q_0 = P_0 tg \phi_0 = 1470 VAR$

La resistenza Ro e la reattanza Xo sono pari a Ro=V1n^2/Po=120kohm, Vo=V1n^2/Qo=24.5 kohm Da cui Po1=E1^2/Ro, Qo1=E1^2/Xo le potenze secondarie valgono:

$$P_2 = P_{AA} - P_{01} = 23509 \text{ W}$$

 $Q_2 = Q_{AA} - Q_{01} = 16102 \text{ VAR}$
 $A_2 = 28494.5 \text{ VA}$

Da cui

$$I_2 = \frac{A_2}{E_2} = 144.5 \text{ A}$$

Le potenze attiva e reattiva impegnate dall'avvolgimento secondario valgono:

$$P_{cu2} = R_2 I_2^2 = 209.9 W$$

 $Q_{x2} = X_2 I_2^2 = 854 VAR$

Quindi la potenza attiva e reattiva del carico valgono:

$$\begin{split} P_{BB} &= P_2 - P_{cu2} = 23299 \ W \\ Q_{BB} &= Q_2 - Q_{x2} = 15248 \ VAR \end{split}$$

L'angolo di sfasamento tra la tensione e la corrente del carico vale:

$$\cos \varphi_{BB} = \cos \left(arctg \frac{Q_{BB}}{P_{BB}} \right) = 0.84$$

La tensione ai capi del carico è quindi pari a:

$$V_2 = \frac{P_{BB}}{I_2 \cos \varphi_{BB}} = 193 \text{ V}$$

2) Le reattanze e resistenze equivalenti primarie valgono:

$$R'_{eq} = R_1 + R_2 K_o^2 = 17 \Omega$$

$$X'_{eq} = X_1 + X_2 K_0^2 = 55.56 \Omega$$

ESERCIZIO 3

I dati di targa di un trasformatore monofase sono:

$$A_n = 40 \text{ kVA}$$

$$V_{1n} = 12000 \text{ V}$$
 $V_{20} = 260 \text{ V}$ $f = 50 \text{ Hz}$

$$V_{20} = 260 \text{ V}$$

$$f = 50 Hz$$

Sulla macchina si sono eseguite le seguenti prove:

a) Prova a vuoto alimentando la macchina a tensione e frequenza nominali:

$$P_0 = 0.4 \%$$

$$P_0 = 0.4 \%$$
 $\cos \varphi_0 = 0.2$

b) Prova di corto circuito eseguita a corrente e frequenza nominali:

$$Pc \% = 1.8 \%$$
 $V_{cc} = 4 \%$

$$V_{cc} = 4 \%$$

Determinare

Impedenze, resistenze, reattanze dei circuiti equivalenti semplificati riferiti agli avvolgimenti primario e secondario.

Soluzione

Consideriamo il circuito equivalente semplificato riportato in figura:

Dalla prova in corto circuito possiamo ricavare i parametri equivalenti R₂ e X₂, abbiamo:

$$P_c = \frac{P_c \% \cdot A_n}{100} = 720 \text{ W}$$

$$I_{2n} = \frac{A_n}{V_{20}} = 154 \text{ A}$$

$$V_c = \frac{V_c \% \cdot V_{2n}}{100} = 10,4$$

$$\cos \varphi_{cc} = \frac{P_c}{V_c I_{2n}} = 0.45$$

da cui:

$$R_2 = \frac{P_c}{I_{2n}^2} = 3.04 \cdot 10^{-2} \ \Omega$$

$$X_2 = R_2 \cdot tg\varphi_c = 6 \cdot 10^{-2} \ \Omega$$

La resistenza R_0 e X_0 si ricavano dalla prova a vuoto:

$$P_0 = \frac{P_0 \% \cdot A_n}{100} = 160 \text{ W}$$

$$Q_0 = P_0 tg \varphi_0 = 784 \text{ VAR}$$

da cui:

$$R_{o1} = \frac{V_{1n}^{2}}{P_{0}} = 9 \cdot 10^{5} \ \Omega$$

$$X_{01} = \frac{V_{1n}^{2}}{Q_{0}} = 1.84 \cdot 10^{5} \ \Omega$$

Il rapporto di trasformazione a vuoto è:

$$K_0 = \frac{V_{1n}}{V_{20}} = 46.2$$

da cui:

$$R_{o2} = \frac{R_{o1}}{K_0^2} = 423 \Omega$$

$$X_{o2} = \frac{X_{01}}{K_0^2} = 86.4 \Omega$$

$$R_1 = R_2 \cdot K_0^2 = 64.8 \Omega$$

$$X_1 = X_2 \cdot K_0^2 = 128 \Omega$$

Esercizio 4

Ad un trasformatore monofase, alimentato alla tensione e frequenza nominali, è allacciato un carico ohmico induttivo che, sotto la tensione $V_2 = 380$ V, assorbe $I_2 = 40$ A con fattore di potenza cos $\varphi_2 = 0.707$.

Il rapporto di trasformazione a vuoto è $K_0 = \frac{V_{1n}}{V_{20}} = 4$

Con una prova a vuoto, effettuata alla tensione e frequenza nominali (fn = 50 Hz) si è trovato che la corrente assorbita è $I_0 = 0.3$ A ed il fattore di potenza cos $\varphi_0 = 0.15$

La prova di corto circuito, eseguita alla frequenza e corrente nominali alimentando la macchina dal lato bassa tensione, ha fornito i seguenti risultati:

$$V_{c2} = 19 \text{ V}$$
 $I_{c2} = 50 \text{ A}$ $\cos \varphi_c = 0.45$

Determinare:

- 1) tensione, corrente e fattore di potenza primari nelle condizioni di carico specificate
- 2) la potenza e la tensione di corto circuito percentuali

Soluzione

1) Con il teorema di Boucherot. La potenza attiva P₂ e reattiva Q₂ del carico sono:

$$P_2 = V_2 I_2 \cos \varphi_2 = 10746 \text{ W}$$

 $Q_2 = P \tan \varphi_2 = 10750 \text{ VAR}$

Le potenze attiva e reattiva impegnate dalla resistenza e reattanza equivalenti sono pari a:

$$P_{cu} = R_{c2}I_2^2 = 274 \text{ W}$$

 $Q_x = X_{c2}I_2^2 = 543 \text{ VAR}$

La potenza trasmessa al secondario (sez. AA) è quindi pari a:

$$\begin{split} P_{AA} &= P_2 + P_{cu} = 11020 \ W \\ Q_{AA} &= Q_2 + Q_{cu} = 11292 \ VAR \end{split}$$

Da cui : $\cos \varphi_{AA} = 0.695$

La f.e.m. secondaria è pari a:

$$E_2 = \frac{P_{AA}}{I_2 \cos \varphi_{AA}} = 394.5 \text{ V}$$

Dal rapporto di trasformazione ricaviamo la tensione di alimentazione:

$$V_{1n} = E_2 K_0 = 1578 \text{ V}$$

Le potenze attiva P_0 e reattiva Q_0 sono pari a:

$$P_0 = V_{1n}I_0 \cos \varphi_0 = 71 \text{ W}$$

 $Q_0 = P_{\text{tan}} \varphi_0 = 468 \text{ VAR}$

Il trasformatore assorbe quindi:

$$P_1 = PAA + P_0 = 11091 W$$

 $Q_1 = QAA + Q_0 = 11760 VAR$

Da cui (essendo
$$\tan \varphi_1 = \frac{Q_1}{P_1}$$
)

$$\cos \varphi_1 = 0.815$$

la corrente assorbita vale:

$$I_1 = \frac{P_1}{V_{1n}\cos\varphi_1} = 10.25 \text{ A}$$

2) La potenza nominale del trasformatore vale:

$$A_n = V_{20} I_{2n} = 19725 VA$$

Da cui:

$$P_c\% = \frac{P_c}{A_n} 100 = 2.16\%$$
 dove $P_c = R_{c2} \cdot I_{c2}^2 = 427 \text{ W}$

$$v_c\% = \frac{V_{c2}}{V_{20}}100 = 4.8\%$$
 oppure $v_c\% = \frac{P_c\%}{\cos\varphi_c}$

ESERCIZIO 5 (non svolto nell'a.a. 2005/2006)

Due trasformatori monofasi A e B sono collegati in parallelo ed alimentano un carico che assorbe una corrente di $I_2 = 150$ A con fattore di potenza cos $\varphi_2 = 0.8$ in ritardo. Dei due trasformatori alimentati alla tensione nominale di 1000 V e alla frequenza nominale f = 50 Hz si conoscono i seguenti dati:

Transformatore A:
$$A_n = 30 \text{ kVA}$$
 $K_0 = 4$ $P_{fe} = \frac{1}{2} P_c$ $V_c \% = 5 \%$ $\cos \phi_c = 0.5$

$$V_c \% = 5 \%$$
 $\cos \varphi_c = 0.$

Transformatore B:
$$A_n = 15 \text{ kVA}$$
 $K_0 = 4$ $P_{fe} = 2/3 P_c$ $V_c \% = 5 \%$ $\cos \phi_c = 0.5$

Determinare per le condizioni di carico considerate:

- 1) la tensione V₂ ai capi del carico
- 2) il carico percentuale di ciascun trasformatore
- 3) il rendimento di ciascun trasformatore e quello complessivo
- 4) la massima corrente che possono erogare i due trasformatori senza sovraccaricarsi

Soluzione

1) I due trasformatori, avendo lo stesso rapporto di trasformazione a vuoto K₀, hanno identica tensione a vuoto V_{20} , che vale:

$$V_{20} = \frac{V_{1n}}{K_0} = 250 V$$

La corrente nominale di ciascun trasformatore vale:

$$I_{2nA} = \frac{A_{nA}}{V_{20A}} = 120 \text{ A}$$
 $I_{2nB} = \frac{A_{nB}}{V_{20B}} = 60 \text{ A}$

Possiamo quindi determinare le resistenze e reattanze equivalenti secondarie:

$$V_{c2A} = \frac{V_c \% \cdot V_{20}}{100} = 12.5 V$$
 $V_{c2B} = \frac{V_c \% \cdot V_{20}}{100} = 12.5 V$

da cui:

$$Z_{c2A} = \frac{V_{c2A}}{I_{2nA}} = 0.104 \,\Omega$$
 $Z_{c2B} = \frac{V_{c2B}}{I_{2nB}} = 0.208 \,\Omega$

$$\begin{split} R_{c2A} &= Z_{c2A} \cdot \cos \varphi_{cA} = 5.2 \cdot 10^{-2} \ \Omega \\ X_{c2A} &= Z_{c2B} \cdot \cos \varphi_{cB} = 10.4 \cdot 10^{-2} \ \Omega \\ X_{c2A} &= Z_{c2A} \cdot \sin \varphi_{cA} = 9 \cdot 10^{-2} \ \Omega \\ \end{split} \qquad \begin{aligned} X_{c2B} &= Z_{c2B} \cdot \sin \varphi_{cB} = 18 \cdot 10^{-2} \ \Omega \\ X_{c2B} &= Z_{c2B} \cdot \sin \varphi_{cB} = 18 \cdot 10^{-2} \ \Omega \end{aligned}$$

Considerando il circuito equivalente secondario e applicando Thevenin ai nodi AB:

$$Z_{eq} = Z_{2cA} // Z_{2cB}$$

$$Z_{eq} = \frac{(R_{c2A} + jX_{c2A})(R_{c2B} + jX_{c2B})}{(R_{c2A} + jX_{c2A}) + (R_{c2B} + jX_{c2B})} = 3.46 \cdot 10^{-2} + j6 \cdot 10^{-2} \Omega$$

$$R_{eq2} = 3.46 \cdot 10^{-2} \Omega$$

 $X_{eq2} = 6.0 \cdot 10^{-2} \Omega$

$$E_{eq} = V_{20}$$

Utilizzando la formula della caduta di tensione approssimata possiamo ricavare la tensione V2

$$\Delta V = R_{c2eq} \cdot I_2 \cos \varphi_2 + X_{c2eq} \cdot I_2 \sin \varphi_2 = 9.55 \text{ V}$$

da cui

$$V_2 = V_{20} - \Delta V = 240.45 \text{ V}$$

2) Applicando le leggi di Kirchhoff delle tensioni al circuito equivalente secondario abbiamo:

$$\begin{split} \overline{V_2} &= \overline{V}_{20} - \overline{Z}_{c2A} \cdot \overline{I}_{2A} \\ \overline{V_2} &= \overline{V}_{20} - \overline{Z}_{c2B} \cdot \overline{I}_{2B} \end{split}$$

E considerando l'equivalente di Thevenin

$$\overline{V}_2 = \overline{V}_{20} - \overline{Z}_{cea2} \cdot \overline{I}_2$$

Da cui:

$$\overline{Z}_{ceq2} \cdot \overline{I}_2 = \overline{Z}_{c2A} \cdot \overline{I}_{2A} = \overline{Z}_{c2B} \cdot \overline{I}_{2B}$$

ed è possibile ricavarne il modulo:

$$I_{2A} = \frac{Z_{c2eq}I_2}{Z_{c2A}} = 100 \text{ A}$$
 $I_{2B} = \frac{Z_{c2eq}I_2}{Z_{c2B}} = 50 \text{ A}$

il carico percentuale per ogni trasformatore è:

$$carico\% = \frac{I_2}{I_{2n}} 100$$
 da cui $carico\%_A = 83.4\%$ $carico\%_B = 83.4\%$

3) Le potenze erogate da ciascun trasformatore valgono

$$P_{2A} = V_2 I_{2A} \cos \varphi_{2A} = 19250 \text{ W}$$

 $P_{2B} = V_2 I_{2B} \cos \varphi_{2B} = 9625 \text{ W}$

Le perdite nel rame:

$$P_{cuA} = R_{c2A}I_{2A}^{2} = 520 \text{ W}$$
 $P_{cuB} = 260 \text{ W}$

Le perdite nel ferro (dal legame espresso nei dati):

$$P_{feA} = 375 \text{ W}$$

$$P_{feB} = 250 \text{ W}$$

Da cui il rendimento

$$\eta_{A} = \frac{P_{2A}}{P_{2A} + P_{cuA} + P_{feA}} = 0.965$$

$$\eta_{B} = \frac{P_{2B}}{P_{2B} + P_{cuB} + P_{feB}} = 0.96$$

4) Avendo le due macchine il medesimo carico percentuale possono lavorare contemporaneamente a pieno carico e perciò la corrente massima erogabile è pari alla somma delle correnti nominali:

$$I_{2MAX} = I_{2nA} + I_{2nB} = 180 \text{ A}$$

ESERCIZIO 6

I dati di targa di un trasformatore trifase sono:

$$A_n = 50 \text{ kVA}$$
 $K_0 = \frac{V_{1n}}{V_{20}} = \frac{30000}{500}$ $f = 50 \text{ Hz}$

La prova di corto circuito, eseguita a corrente e frequenza nominali, ha fornito i seguenti valori:

$$V_c \% = 5 \%$$
 $\cos \varphi_c = 0.5$

Determinare

La resistenza, reattanza e impedenza di corto circuito equivalenti secondarie.

Soluzione

Supponiamo gli avvolgimenti primari e secondari collegati a stella.

La corrente nominale del trasformatore vale:

$$I_{2n} = \frac{A_n}{\sqrt{3}V_{20}} = 57.8 \text{ A}$$

La tensione di corto circuito secondaria tra due morsetti vale:

$$V_{c2} = \frac{V_c \% \cdot V_{20}}{100} = 25 \text{ V}$$

I parametri di corto circuito sono pari a:

$$Z_{c2} = \frac{V_{c2}}{\sqrt{3}I_{2n}} = 0.25 \Omega$$

$$R_{c2} = Z_{c2} \cdot \cos \varphi_c = 0.125 \Omega$$

$$X_{c2} = Z_{c2} \cdot \sin \varphi_c = 0.216 \Omega$$

Esercizio 7

I dati di targa di un trasformatore trifase sono:

$$A_n = 5 \text{ kVA}$$
 $V_{1n} = 260 \text{ V}$ $f = 50 \text{ Hz}$

$$K_s = \frac{N_1}{N_2} = 17.3$$
 collegamento Δ/Y

La prova di corto circuito, eseguita alla corrente e frequenza nominali, ha fornito i seguenti risultati:

$$V_{c1} = 20 \text{ V}$$
 $\cos \varphi_c = 0.5$

Determinare:

- 1) La resistenza (R_{c2}), la reattanza (X_{c2}) e l'impedenza di corto circuito secondarie.
- 2) Sapendo che $R_2 = \frac{1}{2} R_{c2}$ e che $X_2 = 3/5 X_{c2}$ determinare la resistenza e reattanza dell'avvolgimento primario

Soluzione

Sostituiamo al trasformatore con collegamento Δ/Y un trasformatore equivalente con collegamento Y/Y. I due trasformatori devono avere lo stesso rapporto di trasformazione K_0 . Per il trasformatore Δ/Y abbiamo:

$$K_0 = \frac{K_s}{\sqrt{3}} = 10$$
 che coinciderà con il rapporto spire del trasformatore Y/Y.

La tensione di corto circuito secondaria vale:

$$V_{c2} = \frac{V_{c1}}{K_0} = 2 \text{ V}$$

La corrente nominale

$$I_{2n} = \frac{A_n}{\sqrt{3}V_{20}} = 111 \,\text{A}$$
 dove $V_{20} = \frac{V_{1n}}{K_0} = 26 \,\text{V}$

I parametri di corto circuito risultano:

$$Z_{c2} = \frac{V_{c2}}{\sqrt{3}I_{2n}} = 1.04 \cdot 10^{-2} \Omega$$

$$R_{c2} = Z_{c2} \cos \varphi_c = 0.52 \cdot 10^{-2} \Omega$$

$$X_{c2} = Z_{c2} \sin \varphi_c = 0.89 \cdot 10^{-2} \Omega$$

2) dai dati ricaviamo

$$R_2 = 0.26 \cdot 10^{-2} \Omega$$

 $X_2 = 0.535 \cdot 10^{-2} \Omega$

Dato che:

$$R_{c2} = R_2 + \frac{R_{1Y}}{K_o^2}$$
 $X_{c2} = X_2 + \frac{X_{1Y}}{K_o^2}$

si ricava

$$R_{1Y} = 0.26 \Omega$$

 $X_{1Y} = 0.355 \Omega$

Per trovare la resistenza e la reattanza di ogni avvolgimento primario collegato a triangolo basta moltiplicare per 3 i precedenti risultati.

$$R_1 = 3 R_{1Y} = 0.78 \Omega$$

 $X_1 = 3 X_{1Y} = 1.065 \Omega$

ESERCIZIO 8

Ad un trasformatore trifase, alimentato alla tensione nominale e alla frequenza di 50 Hz, è allacciato un carico trifase equilibrato ohmico induttivo che sotto la tensione V_2 = 960 V assorbe la corrente I_2 = 100 A con un fattore di potenza cos ϕ_2 = 0.8.

Il rapporto di trasformazione a vuoto è $K_0 = \frac{V_{1n}}{V_{20}} = 15$

Con una prova a vuoto effettata alla tensione nominale e alla frequenza di 50 Hz, si è trovato che la corrente assorbita è $I_0 = 0.4$ A ed il fattore di potenza a vuoto è cos $\varphi_0 = 0.15$. La prova di corto circuito eseguita a corrente nominale alimentando la macchina dal lato basso tensione, ha fornito i seguenti dati:

$$V_{c2} = 46 \text{ V}$$
 $\cos \varphi_c = 0.45$ $I_{c2} = 115.8 \text{ A}$

Determinare:

- 1) tensione, corrente, fattore di potenza primari nelle condizioni di carico riportate
- 2) la potenza e la tensione di corto circuito percentuali

Soluzione

Le potenze attiva e reattiva del carico sono:

$$P_2 = \sqrt{3} \cdot V_2 \cdot I_2 \cdot \cos \varphi_2 = 132840 \text{ W}$$

 $Q_2 = P_2 \cdot \tan \varphi_2 = 99650 \text{ VAR}$

Le potenza attiva e reattiva impegnate dagli avvolgimenti sono:

$$P_{cu} = 3R_{c2}I_2^2 = 3090 \text{ W}$$

 $Q_x = 3X_{c2}I_2^2 = 6150 \text{ VAR}$

Le potenze attiva e reattiva trasmesse al secondario del circuito equivalente sono:

$$P' = P_2 + P_{cu} = 135930 \text{ W}$$

 $Q' = Q_2 + Q_x = 105800 \text{ VAR}$

Da cui:

$$\cos \varphi' = 0.789$$

la tensione secondaria a vuoto vale:

$$V_{20} = \frac{P'}{\sqrt{3}I_2 \cos \varphi'} = 1000 \text{ V}$$

Dal rapporto di trasformazione è possibile ricavare la tensione di alimentazione V_{1n}:

$$V_{1n} = V_{20} \cdot K_0 = 15000 \text{ V}$$

La potenza attiva P_0 e reattiva Q_0 a vuoto sono:

$$P_0 = \sqrt{3}V_{1n}I_0 \cos \varphi_0 = 1560 \text{ W}$$

 $Q_0 = P_0 \cdot \tan \varphi_0 = 10230 \text{ VAR}$

La potenza assorbita dal trasformatore vale:

$$P_1 = P' + P_0 = 137490 \text{ W}$$

 $Q_1 = Q' + Q_0 = 116030 \text{ VAR}$

$$\cos \varphi_1 = 0.765$$

La corrente assorbita del trasformatore vale :

$$I_1 = \frac{P_1}{\sqrt{3}V_{1n}\cos\varphi_1} = 6.91 A$$

2) La potenza nominale del trasformatore vale

$$A_n = \sqrt{3}V_{20}I_{2n} = 200000 \, VA$$

$$P_c\% = \frac{P_c}{A_n} 100 = 2.07\%$$
dove $P_c = \sqrt{3}V_{c2}I_{c2}\cos\varphi_c = 4140 \text{ W}$

dove
$$P_c = \sqrt{3}V_{c2}I_{c2}\cos\varphi_c = 4140 \text{ W}$$

$$v_c\% = \frac{V_{c2}}{V_{20}}100 = 4.6\%$$

ESERCIZIO 9 (non svolto nell'a.a. 2005/2006)

Due trasformatori A e B sono collegati in parallelo ed alimentano un carico che assorbe una corrente $I_2 = 300$ A con fattore di potenza cos $\varphi_2 = 0.8$ in ritardo. Dei due trasformatori alimentati alla tensione nominale di 10000 V e alla frequenza nominale si conoscono i seguenti dati:

Trasformatore A:

 $\begin{array}{lll} A_n = 200 \; kVA & I_0 \; \% = 2 \; \% & P_{fe} = 1/5 \; P_c \\ K_0 = 20 & V_c \; \% = 4 \; \% & P_c \; \% = 1.25 \; \% \end{array}$

 $\begin{array}{lll} A_n = 60 \; kVA & I_0 \; \% = 2.4 \; \% & P_{fe} = \frac{1}{4} \; P_c \\ K_0 = 20 & V_c \; \% = 4 \; \% & P_c = 1.25 \; \% \end{array}$ Trasformatore B:

Determinare:

1) la tensione V₂ ai capi del carico

2) il carico percentuale di ciascun trasformatore

3) il rendimento di ciascun trasformatore e quello complessivo

Soluzione

I due trasformatori avendo lo stesso rapporto di trasformazione a vuoto hanno identica tensione a vuoto V₂₀ che vale:

$$V_{20} = \frac{V_{1n}}{K_0} = 500 \text{ V}$$

la corrente nominale di ciascun trasformatore è:

 $I_{2n} = \frac{A_n}{\sqrt{3}V_{2n}}$ da cui : $I_{2nA} = 231 \text{ A}$ $I_{2nB} = 69,4 \text{ A}$

Supponendo i trasformatori collegati a stella si possono determinare la resistenza e la reattanza di corto circuito.

$$\cos \varphi_{cc} = \cos \varphi_{ccA} = \cos \varphi_{ccB} = \frac{P_c \%}{v_c \%} = 0.313$$

$$P_c = \frac{P_c \% \cdot A_n}{100} \qquad \qquad P_{cA} = 2.5 \text{ kW} \qquad \qquad P_{cB} = 0.75 \text{ kW}$$

$$R_{c2} = \frac{P_c}{3I_{2n}}^2 \qquad \qquad R_{c2A} = 1.56 \cdot 10^{-2} \Omega \qquad \qquad R_{c2B} = 5.2 \cdot 10^{-2} \Omega$$

$$X_{c2} = R_{c2} \cdot \tan \varphi_c$$
 $X_{c2A} = 4.73 \cdot 10^{-2} \Omega$ $X_{c2B} = 15.8 \cdot 10^{-2} \Omega$

Poiché il sistema è simmetrico equilibrato posso passare al circuito monofase equivalente:

E' possibile ora risolvere con Thevenin

$$Z_{c2eq} = Z_{c2A} /\!/ Z_{c2B} = 1.2 \cdot 10^{-2} + j \ 3.65 \cdot 10^{-2} \ \Omega$$

Utilizzando la caduta di tensione approssimata otteniamo:

$$\Delta V = R_{c2eq} \cdot I_2 \cos \varphi_2 + X_{c2eq} \cdot I_2 \sin \varphi_2 = 16.35 \text{ V}$$

e quindi

$$V_2 = V_{20} - \Delta V = 483.65 \text{ V}$$

2) Applicando le leggi di Kirchhoff delle tensioni al circuito equivalente secondario abbiamo:

$$\begin{split} \overline{V_2} &= \overline{V}_{20} - \overline{Z}_{c2A} \cdot \overline{I}_{2A} \\ \overline{V_2} &= \overline{V}_{20} - \overline{Z}_{c2B} \cdot \overline{I}_{2B} \end{split}$$

E considerando l'equivalente di Thevenin

$$\overline{V}_2 = \overline{V}_{20} - \overline{Z}_{c2eq} \cdot \overline{I}_2$$

Da cui:

$$\overline{Z}_{c2eq} \cdot \overline{I}_2 = \overline{Z}_{c2A} \cdot \overline{I}_{2A} = \overline{Z}_{c2B} \cdot \overline{I}_{2B}$$

ed è possibile ricavarne il modulo:

$$I_{2A} = \frac{Z_{c2eq}I_2}{Z_{c2A}} = 231 \text{ A}$$
 $I_{2B} = \frac{Z_{c2eq}I_2}{Z_{c2B}} = 69 \text{ A}$

il carico percentuale per ogni trasformatore è:

$$carico\% = \frac{I_2}{I_{2n}} 100$$
 da cui carico\%_A = 100\% carico\%_B = 100\%

3) Le potenze erogate da ciascun trasformatore valgono

$$\begin{split} P_{2A} &= V_2 I_{2A} \cos \varphi_{2A} = 154500 \text{ W} \\ P_{2B} &= V_2 I_{2B} \cos \varphi_{2B} = 46200 \text{ W} \end{split}$$

Le perdite nel rame:

$$P_{cuA} = P_{cA} = 2.5 \text{ kW}$$
 $P_{cuB} = 0.75 \text{ kW}$

Le perdite nel ferro (dal legame espresso nei dati):

$$P_{feA} = 0.5 \text{ kW}$$

 $P_{feB} = 0.1875 \text{ kW}$

Da cui il rendimento

$$\eta_{A} = \frac{P_{2A}}{P_{2A} + P_{cuA} + P_{feA}} = 0.982$$

$$\eta_{B} = \frac{P_{2B}}{P_{2B} + P_{cuB} + P_{feB}} = 0.98$$

la potenza assorbita dal carico vale $P_2 = P_{2A} + P_{2B} = 200,7 \text{ kW}$

il rendimento complessivo è quindi pari a :

$$\eta_B = \frac{P_2}{P_2 + P_{cuA} + P_{feA} + P_{cuB} + P_{feB}} = 0.98$$