ECE 447 Fall 2025

Lesson 25 **Digital Receivers:** Timing, Detection, & Eye Diagrams

SCHEDULE AND ADMIN

- Schedule updated.
- Admin
 - HW4. Needs graded
 - Lab 4. Due TONIGHT.
 - HW5. Posted on website. Due M27 (23 Oct).

REVIEW

- What is Nyquist's First Criterion?
- True or False. For error-free communication, we need zero ISI across the pulse width, T_b .
- f_x is the excess bandwidth. In excess of what value?

SCRAMBLING

- Section 6.4 not part of your reading assignments
- Uses shift registers to mix up the 1's and 0's
- Makes the data appear random helpful for timing extraction and security purposes
- Not the same as encryption

EOUALIZERS

• Section 6.5.1 - also not part of your reading assignments

Equalizers

- Received signals usually attenuated and distorted by the channel
 how do we compensate for the attenuation?
- Distortion is compensated by an equalizer
- Goal is to mitigate ISI while simultaneously suppressing the channel noise - but you can't do both at the same time
- Digital signals, however, don't need to worry about fully mitigating ISI
- Equalizer types: zero-forcing, MMSE, adaptive
- Lab 5 uses an adaptive, *blind* equalizer in the flowgraph (see Section 11.10 for more on blind equalization)

- Precise synchronization critical for symbol detection 3 approaches are:
 - 1. Derive from a primary or secondary clock (e.g., GPS or a German atomic clock broadcasting as a master timing source)
 - 2. Send as separate signal (pilot)
 - 3. Self-clocking signal (ideal)
- Lab 5 uses Symbol Sync block for timing synchronization, signal decimation, and filtering

DETECTION

- Occurs after equalization and timing extraction
- Received signal = equalized pulse train + AWGN

EYE DIAGRAMS

Schedule and Admin

Practical engineering tool used to diagnose level of noise, tolerance to jitter/timing issues, level of jitter, noise margin, rise/fall times

Eye diagrams in practice

DIFFERENTIAL ENCODING

• Lab 5 uses DQPSK, or Differential Quadrature Phase Shift Keying

Scrambling

- Receiver only looks at relative difference between successive pulses vs. absolute phase
- Allows for noncoherent demodulation

		Delay T _b		(a)			
	Data I _k Encoded baseband - signal	1 0 1	0	(b)		1 0 0	<i>y</i> →
± A cos	ωs	Delay T _b		(c)	y(t)	Lowpass filter	z(-

Time k	0	1	2	3	4	5	6	7	8	9	10	
I_k		- 1	0	1	0	0	1	1	1	0	0	
q_k	0	1	1	0	0	0	1	0	1	1	1	
Line code ak	-1	1	1	-1	-1	-1	1	-1	1	1	1	
θ_k	π	0	0	π	π	π	0	π	0	0	0	
$\theta_k - \theta_{k-1}$		π	0	π	0	0	π	π	π	0	0	
Detected bits		1	0	1	0	0	1	1	1	0	0	