形式语言与自动机理论

下推自动机

王春宇

计算机科学与技术学院 哈尔滨工业大学

下推自动机

- 下推自动机
 - 形式定义
 - 瞬时描述和转移符号
- 下推自动机接受的语言
- 下推自动机与文法的等价性
- 确定型下推自动机

下推自动机

E-NFA: 有限的态, 非确定, 它就错

栈:后进先出,只用栈顶,长度无限。

Pop: 仅弹出栈顶的一个符号 Push: 可压入一串符号

下推自动机的形式定义

定义

下推自动机(PDA, Pushdown Automata) P 为七元组

$$P = (Q, \Sigma(\Gamma, \delta, q_0, Z_0, F))$$

- Q, 有穷状态集;
- ② Σ, 有穷输入符号集;

- ❸ Γ,有穷栈符号集;
- \bullet $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \rightarrow 2^{Q \times \Gamma^*}$, 状态转移函数;
- **6** q_0 ∈ Q, 初始状态;
- **6** Z_0 ∈ $\Gamma \Sigma$, 栈底符号;
- $F \subseteq Q$,接收状态集或终态集.

PDA 的动作和状态转移图

如果 $q, p_i \in Q$ $(1 \le i \le m), a \in \Sigma, Z \in \Gamma, \beta_i \in \Gamma^*,$ 可以有动作:

$$\delta(q, a, Z) = \{(p_1, \beta_1), (p_2, \beta_2), \cdots, (p_m, \beta_m)\}, \ \ \ \ \delta(q, \varepsilon, Z) = \{(p_1, \beta_1), (p_2, \beta_2), \cdots, (p_m, \beta_m)\}.$$

$$a, Z/\beta_i \qquad p_i \qquad \varepsilon, Z/\beta_i \qquad p_i$$

$$q \qquad q \qquad q$$

$$a, Z/\beta_j \qquad p_j \qquad \varepsilon, Z/\beta_j \qquad p_j$$

例 1. 设计识别 $L_{01} = \{0^n 1^n \mid n \ge 1\}$ 的 PDA.

例 2. 设计识别 $L_{wwr} = \{ww^R \mid w \in (0+1)^*\}$ 的 PDA.

瞬时描述

定义

为描述 PDA 瞬间的格局, 定义 $Q \times \Sigma^* \times \Gamma^*$ 中三元组

$$(q,w,\gamma)$$

为瞬时描述(ID, Instantaneous Description),表示此时 PDA 处于状态 q,剩余输入串 w,栈为 γ ...

转移符号

定义

在 PDA P 中如果 $(p,\beta) \in \delta(q,a,Z)$, 由 $(q,aw,Z\alpha)$ 到 $(p,w,\beta\alpha)$ 的变化, 称 为 ID 的转移 \vdash , 记为

 $(q, aw, Z\alpha) \vdash_{\!\scriptscriptstyle P} (p, w, \beta\alpha)$

其中 $w \in \Sigma^*$, $\alpha \in \Gamma^*$.

若有 IDI, J 和 K, 递归定义 $\stackrel{*}{\vdash}$ 为:

- I ≒ I;● 若 I ≒ J, J ≒ K, 则 I ≒ K.
- ② 若 I ┡ J, J ┡ K, 则 I ┡ K.

若 P 已知, 可省略, 记为 \vdash 和 \vdash *.

续例 1. 语言 $L_{01} = \{0^n 1^n \mid n \ge 1\}$ 的 PDA, 识别 0011 时的 ID 序列.

$$(9_{6}, 0_{0}|1, 2_{0}) \vdash (9_{0}, 0|1, 72_{0}) \vdash$$

$$(2_{0}, 0|1, 7_{0}) \vdash (2_{1}, 1, 7_{0}) \vdash$$

$$0, 0/00 \vdash (2_{1}, 2_{0}) \vdash$$

$$0, Z_{0}/0Z_{0} \vdash (2_{1}, 2_{1}) \vdash$$

$$0, Z_{0}/0Z_{0} \vdash (2_{1}, 2_{1})$$

对
$$\forall w \in \Sigma^*, \forall \gamma \in \Gamma^*,$$
如果

$$(q, xw, \alpha\gamma) \vdash_{\overline{P}}^* (p, yw, \beta\gamma).$$
 $0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0$

Finite Control

 $1 \quad Z_0$

 $(q, x, \alpha) \vdash_{P}^{*} (p, y, \beta),$

对 $\forall w \in \Sigma^*$, 如果

 Z_0

Finite Control