Draft 2

Definition v in terms of p_1

We have that

$$v(t) = \exp\left(\int_0^t e^{-t+s} (\mu - p_1(s)) \ ds\right)$$
 (0.1)

Lemma 4.2 (v satisfies a certain integral equation)

For $t \geq 0$, v(t) satisfies

$$v(t) = 1 - f_0(t) + f_0(0)e^{-\int_0^t \log v(s) \, ds} + \mu \int_0^t [v(s)]^{e^{-t+s}} e^{-t+s} \, ds, \tag{0.2}$$

where $f_0(t) := G(0, 1 - e^{-t})$.

0.1 Lemma for Determinant Condition

Let $k \in L^1(\mathbb{R}^+; \mathbb{R})$ be a strictly decreasing and positive function such that $\hat{k}(z)$ is defined for $\Re z \geq 0$. Then $[1 + \hat{k}(z)] \neq 0$ for $\Re z \geq 0$.

Proof. We want to show that $\int_0^\infty k(t)e^{-zt} dt \neq -1$ for $\Re z \geq 0$. Write $z = z_1 + iz_2$. We have two cases. First, if $z_2 = 0$, then $\int_0^\infty k(t)e^{-z_1t} dt > 0$. Second, if $z_2 \neq 0$, then

$$\int_0^\infty k(t)e^{-(z_1+iz_2)t} dt = \int_0^\infty k(t)e^{-z_1t}\cos(z_2t) dt - i\int_0^\infty k(t)e^{-z_1t}\sin(z_2t) dt.$$

Since $k(t)e^{-z_1t}$ is strictly decreasing, the imaginary part is always non-zero.

0.2 Lemma e^{ν} is the fixed point of φ

Let $\varphi: \mathbb{R}^+ \setminus \{0\} \to \mathbb{R}^+$ be a strictly increasing continuous function defined by

$$\varphi(x) = \mu \int_0^\infty x^{e^{-t}} e^{-t} dt = \begin{cases} \mu \cdot \frac{x-1}{\log x}, & x > 0, x \neq 1 \\ \mu, & x = 1 \end{cases}.$$

Let $\nu = \mu + W_0(-\mu e^{-\nu})$. We have that e^{ν} is the only fixed point of $\varphi(x)$.

Proof. It is easy to check that e^{ν} is a fixed point of $\varphi(x)$. It being the only fixed point follows from the concavity of φ .

Lemma Existence and Uniqueness of v

For $\mu > 1$, there exists a unique solution v(t) to the integral equation (0.2).

Proof. Let $x(t) = v(t) - e^{\nu}$. We rewrite (0.2) as

$$x(t) = \underbrace{1 - f_0(t) + f_0(0)e^{-\int_0^t \log v(s) \, ds}}_{e_2(t)} + \mu \int_0^t [x(s) + e^{\nu}]^{e^{-t+s}} e^{-t+s} \, ds - e^{\nu}$$

Using Lemma 0.2, the right hand side becomes

$$e_{2}(t) + \mu \int_{0}^{t} [x(s) + e^{\nu}]^{e^{-t+s}} e^{-t+s} ds - \mu \int_{0}^{\infty} e^{\nu e^{-s}} e^{-s} ds$$

$$= e_{2}(t) - \mu \int_{t}^{\infty} e^{\nu e^{-s}} e^{-s} dt + \mu \int_{0}^{t} \left\{ [x(s) + e^{\nu}]^{e^{-t+s}} e^{-t+s} - e^{\nu e^{-s}} e^{-s} \right\} ds$$

$$= \underbrace{e_{2}(t) + \frac{\mu}{\nu} \left(1 - e^{\nu e^{-t}} \right)}_{f(t)} + \int_{0}^{t} \underbrace{\mu \left\{ [x(s) + e^{\nu}]^{e^{-t+s}} - e^{\nu e^{-t+s}} \right\} e^{-t+s}}_{-g(t-s,x(s))} ds$$

$$(0.3)$$

where $g(t,x) = -\mu \left\{ [x + e^{\nu}]^{e^{-t}} - e^{\nu e^{-t}} \right\} e^{-t}$. Since g is differentiable in x, we compute

$$k(t) = \frac{\partial}{\partial x} g(t, x) \bigg|_{x=0} = -\mu e^{-2t} e^{\nu(e^{-t} - 1)}.$$

and let h(t,x) = g(t,x) - k(t)x be the remainder. The existence and uniqueness of x (and by extension v) follows from Theorem 3.1. It remains for us to check that the integral equation (0.3) satisfies the sufficient conditions.

(i) Since $e^{\nu(e^{-t}-1)}$ is bounded, k(t) is $L^1(\mathbb{R}^+,\mathbb{R})$. Next, we have that k is negative and

$$\frac{d}{dt}k(t) = -\mu e^{-3t}(2e^t + \nu)e^{\nu(e^{-t} - 1)}$$
(0.4)

which implies that k is strictly increasing for all $t \ge 0$. By Lemma 0.1, $\det[1 + \hat{k}(z)] \ne 0$ for $\Re z \ge 0$.

- (ii) Since g(t,x) and k(t)x is continuous, h(t,x) is continuous and thus $t \mapsto h(t,x)$ is clearly Borel-measurable. Next, we check that $h(t,0) = g(t,0) k(t) \cdot 0 = 0$.
- (iii) For all $0 < \delta \le 1$, we have that

$$b_{\delta}(t) = \sup_{\substack{|x|,|y| \le \delta \\ x \ne y}} \frac{|h(t,x) - h(t,y)|}{|x - y|}$$

$$= \sup_{\substack{|x|,|y| \le \delta \\ x \ne y}} \frac{\left| \mu \left[(x + e^{\nu})^{e^{-t}} - (y + e^{\nu})^{e^{-t}} \right] e^{-t} - \mu e^{-2t} e^{\nu(e^{-t} - 1)} (x - y) \right|}{|x - y|}$$

$$= \sup_{\substack{|x|,|y| \le \delta \\ x \ne y}} \mu e^{-t} \frac{\left| \left[(x + e^{\nu})^{e^{-t}} - (y + e^{\nu})^{e^{-t}} \right] - e^{-t} e^{\nu(e^{-t} - 1)} (x - y) \right|}{|x - y|}$$

$$= \sup_{\substack{|x|,|y| \le \delta \\ x \ne y}} \mu e^{-t} \frac{\left| \left[(x + e^{\nu})^{e^{-t}} - e^{-t} e^{\nu(e^{-t} - 1)} x \right] - \left[(y + e^{\nu})^{e^{-t}} - e^{-t} e^{\nu(e^{-t} - 1)} y \right] \right|}{|x - y|}$$

Recall that a function in an interval is γ -Lipschitz if its derivative is bounded by γ . Consider

$$p(x) = (x + e^{\nu})^{e^{-t}} - e^{-t}e^{\nu(e^{-t} - 1)}x.$$

Then

$$p'(x) = e^{-t} \left[(x + e^{\nu})^{e^{-t} - 1} - e^{\nu(e^{-t} - 1)} \right].$$

Since $(x + e^{\nu})^{e^{-t}-1}$ is decreasing in x, p'(x) attains it maximum absolute value at either endpoints $x = \pm \delta$. Therefore,

$$b_{\delta}(t) = \mu e^{-2t} \left[(\pm \delta + e^{\nu})^{e^{-t} - 1} - e^{\nu(e^{-t} - 1)} \right] = Ce^{-2t}.$$

$$(0.5)$$

We deduce that $b_{\delta}(t)$ belongs to $L^{1}(\mathbb{R}^{+};\mathbb{R})$. We also have that

$$\lim_{\delta \to 0} ||b_{\delta}||_{L^{1}(\mathbb{R}^{+})} \leq \lim_{\delta \to 0} \int_{0}^{\infty} \mu e^{-2t} \left[(\pm \delta + e^{\nu})^{e^{-t} - 1} - e^{\nu(e^{-t} - 1)} \right] dt = 0$$

by the dominated convergence theorem. Finally, since

$$0 \le 1 - f_0(t) = 1 - G(0, 1 - e^{-t}) \le \partial_z G(0, 1) e^{-t} = \mu e^{-t}$$

and

$$\int_0^t \log v(s) \ ds \ge \int_0^t (\mu - 1)(1 - e^{-s}) \ ds = (\mu - 1)(t + e^{-t} - 1) \ge (\mu - 1)(t - 1),$$

we deduce that

$$e_2(t) \le \mu e^{-t} + f_0(0)e^{-(\mu-1)(t-1)}.$$
 (0.6)

We conclude that f is bounded. Therefore, by Theorem 11.3.1 [1], there exists a unique solution x. \Box

0.3 Lemma Infinite Sums of Lipschitz Continuous Functions with Bounded Lispchitz constant is Lipschitz Continuous

Let $\{a_n(t)\}_{n=0}^{\infty}$ be a sequence of Lipschitz continuous function all with Lipschitz constant less than or equal to γ . Let $\{b_n\}_{n=0}^{\infty}$ be a sequence terms that is absolutely summable. Then

$$c(t) = \sum_{n=0}^{\infty} b_n a_n(t)$$

is well-defined and Lipschitz continuous.

Proof. For $\delta > 0$ and $|t - s| < \delta$, we have that

$$|c(t) - c(s)| \le \sum_{n=0}^{\infty} |b_n| |a_n(t) - a_n(s)| \le \sum_{n=0}^{\infty} |b_n| \cdot \gamma |t - s|.$$

Since the third series is absolutely summable, we deduce that the second one is as well and thus c(t) is well-defined and Lispchitz with constant $\gamma \sum_{n=0}^{\infty} |b_n|$.

0.4 Corollary v converges to e^{v}

We have that $x \in BC_0(\mathbb{R}^+; \mathbb{R})$.

Proof. We rewrite

$$f(t) = e_2(t) + \frac{\mu}{\nu} \left(1 - (1 + \nu e^{-t} + O(e^{-2t})) \right)$$

$$= e_2(t) + \frac{\mu}{\nu} (-\nu e^{-t} + O(e^{-2t}))$$

$$= e_2(t) - \mu e^{-t} + O(e^{-2t}). \tag{0.7}$$

This shows that f is bounded. From (0.6), $\lim_{t\to\infty} f(t) = 0$. It remains to show that f is continuous. First, as a solution to a well-posed system of ODEs, v is continuous. This implies that $f_0(0) \exp\left(-\int_0^t \log v(s) \ ds\right)$ is continuous. Next, recall that

$$f_0(t) = \sum_{n=0}^{\infty} p_n(0)(1 - e^{-t})^n.$$

We want to show that $a(t) = (1 - e^{-t})^n$ is Lipschitz-continuous with Lipschitz constant 1. When n = 0, 1, this is obvious. When $n \ge 2$ we compute the first two derivatives

$$\frac{d}{dt}a(t) = ne^{-t}(1 - e^{-t})^{n-1}$$
$$\frac{d^2}{dt^2}a(t) = -\frac{n(1 - e^{-t})^n(e^t - n)}{(e^t - 1)^2}$$

Observe that the second derivative is zero at 0 and $\ln(n)$. At $\ln(n)$, the first derivative attains the value $\left(1-\frac{1}{n}\right)^{n-1}$. This value is positive and is less than 1 for all $n \geq 2$. By Lemma 0.3, $f_0(t)$ is Lipschitz continuous. By Theorem 11.3.1(3) [1], x(t) of (0.3) is in the space $BC_0(\mathbb{R}^+;\mathbb{R})$. From the definition of x, we also deduce that $\lim_{t\to\infty} v(t) = e^{\nu}$.

0.5 Lemma Estimate (4.16)

We have that

$$e_2(t) \le \mu e^{-t} + Ce^{-\nu t}$$
.

Proof. From (0.6) and (0.7), we have that

$$|f(t)| \le 2\mu e^{-t} + f_0(0)e^{-(\mu-1)(t-1)} + O(e^{-2t}).$$

From this bound, we deduce that f is $L^1(\mathbb{R}^+;\mathbb{R}^n)$. By Theorem 3.1 f being $L^1(\mathbb{R}^+;\mathbb{R})$ implies that x is also $L^1(\mathbb{R}^+;\mathbb{R}^n)$. By Lipschitzness, we get

$$\int_0^t |\log v(s) - \nu| \ ds \le \int_0^t |v(s) - e^{\nu}| \ ds \le C.$$

Therefore, we can improve that estimate of Equation 4.8 [2] to

$$e_2(t) \le 1 - f_0(t) + f_0(0) \exp\left(-\int_0^t \nu \ ds\right) \cdot \exp\left(\int_0^t |\log v(s) - \nu| \ ds\right)$$

 $\le \mu e^{-t} + Ce^{-\nu t}.$

Lemma Convergence Rate

For $t \geq 0$, we have that

$$|v(t) - e^{\nu}| \le \begin{cases} Ce^{-\nu t} & \nu < 1 \\ Ce^{-ct} & \nu \ge 1 \text{ and } c < 1 \end{cases}.$$

Proof. We apply Theorem 11.3.3 [1]. Choosing e^{ct} to be our submultiplicative weight function on \mathbb{R}^+ , we check the sufficient conditions:

(i) From (0.4), we have that $k \in L^1(\mathbb{R}^+; e^{ct}; \mathbb{R})$ because

$$\int_0^\infty |k(t)e^{ct}| \ dt \le C \int_0^\infty e^{-(2-c)t} \ dt < \infty.$$

We show that $\det[I + \hat{k}(z)] \neq 0$ for $\Re z \geq -c$. This is equivalent to $\det[I + \hat{k}(z-c)] \neq 0$ for $\Re z \geq 0$. In particular, $\hat{k}(z-c) = e^{c\cdot k(\cdot)}(z)$. We now have $e^{ct}k(t) = -\mu e^{-(2-c)t}e^{\nu(e^{-t}-1)}$. Since \hat{k} is monotonically increasing and $\hat{k}(-1)$, by Lemma 0.1, we obtain $\det[I + \hat{k}(z)] \neq 0$ for z > -1.

- (ii) Since g(t,x) and k(t)x are continuous in both variables, $x \mapsto h(t,x)$ is continuous for every $t \in \mathbb{R}^+$ and $t \mapsto h(t,x)$ is measurable for every $x \in \mathbb{R}$.
- (iii) For $0 < \eta < 1$, we obtain from (0.5) that

$$b_{\eta}(t) := \sup_{|x| < \eta} \frac{|h(t, x)|}{|x|} \le Ce^{-2t}.$$

(Theorem 3.3 only requires (iii) to be true for all sufficiently small $\delta > 0$) From this bound, it is clear that $b_{\eta}(t)$ belongs to $L^{1}(\mathbb{R}^{+}; e^{ct}; \mathbb{R})$. Again from (0.5), we have that

$$\lim_{\eta \to 0} ||b_{\eta}||_{L^{1}(\mathbb{R}^{+}; e^{ct})} \leq \lim_{\eta \to 0} \int_{0}^{\infty} \mu e^{-(2-c)t} \left[(\pm \eta + e^{\nu})^{e^{-t} - 1} - e^{\nu(e^{-t} - 1)} \right] dt = 0$$

by the dominated convergence theorem.

(iv) From the proof of Lemma 0.4, $f \in BC_0(\mathbb{R}^+; \mathbb{R})$. From (0.7) and 0.5, we have that $|f(t)| \leq Ce^{-ct}$. Therefore, $e^{ct}f(t)$ is bounded.

(v) This is the result of
$$(0.4)$$
.

Proposition 4.9

Let $y_2(t) = \int_0^t |v(s) - e^{\nu}| e^{-2t+2s} ds$ and $c = \nu \wedge 1$. There exists a constant C > 0 depending on μ such that

$$y_2(t) + |v(t) - e^{\nu}| + |v'(t)| \le Ce^{-ct}$$
.

Proof. First, we have that

$$y_2(t) = \int_0^t |v(s) - e^{\nu}| e^{-2t + 2s} ds$$

$$\leq Ce^{-2t} \int_0^t e^{(2-c)s} ds$$

$$= Ce^{-2t} \left(\frac{1}{c-2} - \frac{e^{2t-ct}}{c-2} \right)$$

$$= \frac{Ce^{-2t}}{c-2} - \frac{Ce^{-ct}}{c-2}$$

$$\leq Ce^{-ct}.$$

For the derivative estimate, we differentiate v using (0.2) and get

$$v'(t) = e'_2(t) + \mu v(t) - \mu \int_0^t [v(s)]^{e^{-t+s}} e^{-t+s} ds - \mu \int_0^t [v(s)]^{e^{-t+s}} \log(v(s)) e^{-2t+2s} ds$$
$$= e'_2(t) + (\mu - 1)v(t) + \mu e_2(t) - \mu \int_0^t [v(s)]^{e^{-t+s}} \log(v(s)) e^{-2t+2s} ds,$$

in which

$$e'_2(t) = -f'_0(t) - f_0(0) \exp\left(-\int_0^t \log v(s) \ ds\right) \log v(t) = \mathcal{O}\left(e^{-ct}\right).$$

Note that $x \mapsto x^{\alpha} \log x$ is Lipschitz on $[1, e^{\nu}]$ uniformly for $\alpha \in [0, 1]$, hence

$$\left| \mu \int_0^t [v(s)]^{e^{-t+s}} \log(v(s)) e^{-2t+2s} ds - \mu \int_0^t \nu e^{\nu e^{-t+s}} e^{-2t+2s} ds \right|$$

$$\leq C\mu \int_0^t |v(s) - e^{\nu}| e^{-2t+2s} ds = Cy_2(t)$$

Therefore,

$$\begin{aligned} |v'(t)| &\leq |e_2'(t)| + (\mu - 1)|v(t) - e^{\nu}| + \mu e_2(t) + Cy_2(t) \\ &+ (\mu - 1)e^{\nu} - \mu\nu \int_0^t e^{\nu e^{-2s}} e^{-2s} \ ds \\ &\leq |e_2'(t)| + (\mu - 1)|v(t) - e^{\nu}| + |\mu e_2(t)| + Cy_2(t) + \mu\nu \int_t^{\infty} e^{\nu e^{-s}} e^{-2s} \ ds \\ &\leq Ce^{-ct}. \end{aligned}$$

This completes the proof.

As a corollary, we deduce the following convergence rate of $p_1(t) \to \mu - \nu$ as $t \to \infty$.

Corollary 4.10

For $t \geq 0$, we have

$$|p_1(t) - \mu + \nu| \le Ce^{-ct},$$

where $c = \nu \wedge 1$.

Proof. It suffices to notice that $\mu - p_1(t)$ can be recovered from v via

$$\mu - p_1(t) = \frac{v'(t)}{v(t)} + \log v(t).$$

Since both $v'(t) \to 0$ and $v(t) \to e^{\nu}$ occur at this rate, the result follows.

References

- [1] Volterra Integral and Functional Equations
- [2] Quantitative convergence guarantees for the mean-field dispersion process