Examen Final de Física Computacional II

Profesor: John Díaz

Índice

1.	Parte A: Simulación de Sistemas Físicos con POO 1.1. Problema 6: Movimiento Browniano en Medio Viscoso	2
2.	Parte B1: Generación de Números Aleatorios y Caminatas Aleatorias 2.1. Problema B1.2: Caminata Aleatoria Autoevitante (SAW)	3
	Parte B2: Aplicación del Método de Monte Carlo a la Física Estadística 3.1. Problema B2.4: Integración de e^{-x^2} por Muestreo Aleatorio	3

Instrucciones Generales

Cada **grupo de trabajo** (máximo dos personas) debe desarrollar un proyecto final compuesto por **tres partes** seleccionadas según el esquema siguiente:

Trabajo por grupo

- Un (1) problema de la Parte A Simulación de un sistema físico usando Programación Orientada a Objetos (POO).
- Un (1) problema de la Parte B1 Generación y análisis de números aleatorios.
- Un (1) problema de la Parte B2 Aplicación del método de Monte Carlo a la Física Estadística.

Para todas las partes se exige:

- Implementación en C++ con POO y estructura modular: src/, include/, results/, scripts/, documents/, bin/.
- Métodos numéricos apropiados (Verlet, Euler, RK4, etc.).
- Visualización científica (trayectorias, histogramas, energías, distribuciones).
- Documentación completa en LATEX (teoría, resultados, análisis físico).
- Comentarios con formato Doxygen y,si quiere ir más allá, un archivo Doxyfile.
- Makefile funcional para compilar el proyecto, generar documentación y producir gráficos/informes.

Cada entrega debe incluir:

- a) Código fuente y ejecutable.
- b) Scripts de graficación (.gp(gnuplot), .py(python), .m(octave)).
- c) Carpeta results/ con datos y Figuras.
- d) Informe principal en LATEX.
- e) Si quiere: Documentación HTML/PDF generada con doxygen.
- f) Carpeta comprimida con toda la estructura.

1. Parte A: Simulación de Sistemas Físicos con POO

Este problema se acompaña de objetivos, fundamento físico, requisitos técnicos, entrada/salida, visualización, documentación y criterios de evaluación.

1.1. Problema 6: Movimiento Browniano en Medio Viscoso

Objetivo

Simular el movimiento browniano y analizar la difusión.

Fundamento

$$m\frac{d\vec{v}}{dt} = -\gamma \vec{v} + \vec{\eta}(t), \quad \langle \eta_i(t)\eta_j(t')\rangle = 2\gamma k_B T \,\delta_{ij} \,\delta(t-t').$$

POO

Clase ParticulaBrowniana; método de Euler-Maruyama.

Visualización & Documentación

results/browniano.dat; scripts plot_browniano.*; informe documents/browniano.tex.

2. Parte B1: Generación de Números Aleatorios y Caminatas Aleatorias

Antes de resolver los problemas, cada grupo debe entregar un documento documents/investigacion.tex que explique:

- Concepto y requisitos de los pseudonúmeros aleatorios.
- Ejemplo de generador simple en C++ y visualización de correlaciones.
- Uso y precauciones de los RNG en simulaciones físicas.
- Descripción del generador MIXMAX.
- Definición de caminata aleatoria y su relación con difusión.
- Comparación de rand(), drand48(), <random>, etc.

2.1. Problema B1.2: Caminata Aleatoria Autoevitante (SAW)

- ullet Implementar SAW en retícula 2D; medir tiempo de CPU y máximo N factible.
- Investigar un algoritmo más eficiente y describirlo.
- Clase sugerida: SAWSimulador.

3. Parte B2: Aplicación del Método de Monte Carlo a la Física Estadística

Seleccione un problema.

3.1. Problema B2.4: Integración de e^{-x^2} por Muestreo Aleatorio

- Calcular $\int_0^1 e^{-x^2} dx$ con Monte Carlo.
- Graficar error vs. número de muestras.
- Clase sugerida: IntegradorMonteCarlo.

Investigación Final: Método de Monte Carlo y Física Estadística

Entregar documents/montecarlo.tex con:

- Introducción general al método de Monte Carlo.
- Tipos de integrales y problemas que resuelve.
- Aplicaciones a distintos ensambles (microcanónico, canónico, gran canónico).
- Propuesta e implementación de cinco problemas sencillos:
 - a) Cálculo de π (disco en cuadrado).
 - b) Energía media de un gas ideal 1D.
 - c) Lanzamiento de monedas.
 - d) Integración de e^{-x^2} .
 - e) Partición canónica para dos niveles.

El problema debe:

- Usar POO y modularización.
- Guardar resultados en results/.
- Incluir visualizaciones en scripts/.
- Documentarse en el mismo archivo LATEX.

Entrega y Calificación

- Fecha límite: 9/7/23.
- Puntuación total: 100 pts. Cada parte vale 33.3 pts, ponderados según:
 - Video de Sustentación (20%).
 - Correctitud física y numérica (30 %).
 - Estructura de código y POO (20%).
 - Visualización y análisis (20%).
 - Documentación y estilo (IAT_EX + Doxygen) (10%).
- Suba un archivo .zip con la estructura completa al aula virtual.