Covid19 Germany Deutschland (RKI data)

March 30, 2020

```
[95]: # This Python 3 environment comes with many helpful analytics libraries,
      \hookrightarrow installed
      # It is defined by the kaggle/python docker image: https://github.com/kaggle/
       \rightarrow docker-python
      # For example, here's several helpful packages to load in
      import os
      import urllib
      import numpy as np # linear algebra
      import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
      import matplotlib as mpl
      import matplotlib.pyplot as plt
      import seaborn as sns
      # Input data files are available in the "../input/" directory.
      # For example, running this (by clicking run or pressing Shift+Enter) will list⊔
      →all files under the input directory
      # import os
      # for dirname, _, filenames in os.walk('/kaggle/input'):
            for filename in filenames:
                print(os.path.join(dirname, filename))
      # # Any results you write to the current directory are saved as output.
      sns.set()
      %matplotlib inline
      # This checks if the notebook is executed on Kaggle or on your local machine and
      # acts accordingly with filenames. On Kaggle the dataset is already managed by \Box
      \rightarrowa managed
      # and downloaded to (URLs are linked) a dataset there.
      try:
          os.environ['KAGGLE_DATA_PROXY_TOKEN']
      except KeyError:
          # daily infections in Germany
```

```
url_daily_corona = "https://opendata.arcgis.com/datasets/
 {\scriptstyle \hookrightarrow} dd4580c810204019a7b8eb3e0b329dd6\_0.csv"
    # infections per 100k residents in German states
    url_corona_bl_100k = "https://opendata.arcgis.com/datasets/
 →ef4b445a53c1406892257fe63129a8ea 0.csv"
    # infections per 100k residents in German provinces
    url_corona_provinces = "https://opendata.arcgis.com/datasets/
 \hookrightarrow 917fc37a709542548cc3be077a786c17_0.csv"
    fname1 = "./RKI_covid19_daily_de.csv"
    fname2 = "./RKI_covid19_states_100k.csv"
    fname3 = "./RKI_covid19_provinces_100k.csv"
    urllib.request.urlretrieve(url_daily_corona, fname1)
    urllib.request.urlretrieve(url_daily_corona, fname2)
    urllib.request.urlretrieve(url_daily_corona, fname3)
    fname4 = "./covid19_events_measures.csv"
else:
    dirname = "/kaggle/input/covid19-data-germany-robert-koch-institute/"
    # daily infections in Germany
    fname1 = dirname + "dd4580c810204019a7b8eb3e0b329dd6 0.csv"
    # infections per 100k residents in German states
    fname2 = dirname + "ef4b445a53c1406892257fe63129a8ea_0.csv"
    # infections per 100k residents in German provinces
    fname3 = dirname + "917fc37a709542548cc3be077a786c17_0.csv"
df_daily_data = pd.read_csv(fname1, parse_dates=["Meldedatum"],__
→date_parser=lambda ts: pd.Timestamp(ts).strftime('%Y-%m-%d'))
df_measures_events = pd.read_csv(fname4, parse_dates=["Date"])
df_daily_data.sort_values(['Meldedatum'], inplace=True)
df_measures_events.sort_values(['Date'], inplace=True)
```

[96]: df_daily_data

[96]:		IdBundesland	Bundesland	Landkreis	Altersgruppe	\
	4942	8	Baden-Württemberg	LK Rastatt	A00-A04	
	12074	9	Bayern	LK Landsberg a.Lech	A15-A34	
	12700	9	Bayern	LK Starnberg	A35-A59	
	9925	9	Bayern	LK Fürstenfeldbruck	A15-A34	

9110	9	1	Bayern	SK München	A15-A34
•••	•••		•••	•••	•••
989	3	Nie	dersachsen	LK Stade	A35-A59
21447	13	Mecklenburg-	Vorpommern	SK Rostock	A60-A79
12380	9	1	Bayern	LK München	A35-A59
12348	9	1	Bayern	LK München	A35-A59
21270	12	В	Brandenburg	LK Oder-Spree	A15-A34
			ahlTodesfall	ObjectId Meldedatur	
4942	W	1	0	475225 2020-01-24	
12074	M	1	0	478357 2020-01-28	
12700	M	1	0	478983 2020-01-28	
9925	M	1	0	478208 2020-01-29	
9110	W	1	0	477393 2020-01-29	9
		•••			_
989	М	1	0	466272 2020-03-28	
21447	W	1	0	484573 2020-03-28	
12380	W	3	0	478663 2020-03-28	
12348	М	1	0	478631 2020-03-28	
21270	М	1	0	484396 2020-03-28	3
	IdLandkreis	Datenst	and NeuerFal	l NeuerTodesfall	
4942	8216	29.03.2020 00	0:00	0 -9	
12074	9181			0 -9	
12700	9188	29.03.2020 00	0:00	0 -9	
9925	9179	29.03.2020 00	0:00	0 -9	
9110	9162	29.03.2020 00	0:00	0 -9	
•••	•••	•••	•••		
989	3359	29.03.2020 00	0:00	1 -9	
21447	13003	29.03.2020 00	0:00	1 -9	
12380	9184	29.03.2020 00	0:00	1 -9	
12348	9184	29.03.2020 00	0:00	1 -9	
21270	12067	29.03.2020 00	0:00	1 -9	

[22157 rows x 13 columns]

Measures taken and events/incidents concerning Covid19. These might show a connection to the falling or rising of the curves:

\	State	In_Short	[97]: Date
	Alle	Schools, day care centers closed.	0 2020-03-16
	Alle	Entry bans and strict border controls.	1 2020-03-16
	Bavern	Quarantine Bavaria, only vital locations open.	2 2020-03-20

```
3 2020-03-22 Quarantine country-wide, only vital locations ...
                                                                          Alle
                                                 Description
       0
                          Schools, day care centers closed.
         Germany has decided on entry bans and strict c...
       1
       2
                                    Kontaktverbot blablabla.
       3
                                    Kontaktverbot blablabla.
[98]: print("Total sum of cases in Germany:")
       df_daily_data["AnzahlFall"].sum()
      Total sum of cases in Germany:
[98]: 52534
[99]: print("Describe number of cases per day in Germany:")
       df_daily_data.groupby("Meldedatum").sum()["AnzahlFall"].describe()
      Describe number of cases per day in Germany:
[99]: count
                  45.000000
      mean
                1167.422222
       std
                1658.485488
      min
                   1.000000
       25%
                   3.000000
       50%
                 147.000000
      75%
                1969.000000
                5356.000000
      max
      Name: AnzahlFall, dtype: float64
[100]: # def annotationsForDate(df, date):
       #
       #
             Takes the measures df and a time index and returns all the short
       #
             measure descriptions as a string for the annotations below
       #
       #
             query = df_measures_events.query("Date == '{}'".format(date))
       #
             for i in query.index:
                 state = ""
                 if query["State"].iloc[i]:
       #
                     state = query["State"].iloc[i] + ": "
       #
       #
                 s = query["In_Short"].iloc[i]
                 ann += s + ' \setminus n'
       #
             return ann.rstrip()
[101]: gr_day_reported = df_daily_data.groupby('Meldedatum')
```

```
# TODO: make these relative to screen size somehow
figsize = (12,11)
fig, ax = plt.subplots(2, 1, figsize=figsize, sharex=True, ___
fig.subplots_adjust(hspace=0.0)
suptitel attr = {"fontsize" : 16, "fontweight" : "bold", "ha" : "center", "va" :
→ "bottom", "y" : 0.94}
# set plot stuff
fig.suptitle("Sum of confirmed cases per day and growth rate thereof for L
\hookrightarrowGermany. Below are points "
            + "for political measures or events/incidents.", **suptitel attr)
for axis in ax.flat:
   axis.set_xlabel('Date')
   rule = mpl.dates.rrulewrapper(mpl.dates.MONTHLY, bymonthday=(5, 10, 15,
40, 25)
   axis.xaxis.set_minor_locator(mpl.dates.RRuleLocator(rule))
   axis.xaxis.set_minor_formatter(mpl.dates.DateFormatter("%d"))
   axis.xaxis.set major locator(mpl.dates.MonthLocator(bymonthday=1))
    axis.xaxis.set_major_formatter(mpl.dates.DateFormatter('%Y-%m'))
ax[1].yaxis.set_minor_locator(mpl.ticker.NullLocator())
ax[1].yaxis.set_major_locator(mpl.ticker.NullLocator())
sum_cases_per_day = gr_day_reported['AnzahlFall'].sum()
growth_rate = sum_cases_per_day.diff()
ax[0].plot(sum_cases_per_day, color='red', label='Sum')
ax[0].plot(growth_rate, color='blue', label='Growth rate')
plt.setp(ax[0].xaxis.get_majorticklabels(), rotation=90)
plt.setp(ax[0].xaxis.get_minorticklabels(), rotation=45)
for d in df_measures_events["Date"].unique():
   #s = annotationsForDate(df_measures_events, d)
    \#axs[1].annotate(s = "bla", xy=(d, sum_cases_per_day[d]), xytext=(-50,-10),
→xycoords="data")
   pass
ax[1].scatter(df_measures_events["Date"].unique(),__
→len(df_measures_events["Date"].unique()) * [100], c='k')
for axis in ax.flat:
   plt.setp(axis.xaxis.get_majorticklabels(), rotation=90)
```

```
plt.setp(axis.xaxis.get_minorticklabels(), rotation=45)
ax[0].legend()
```

[101]: <matplotlib.legend.Legend at 0x7f04fbaf4d90>

Sum of confirmed cases per day and growth rate thereof for Germany. Below are points for political measures or events/incidents.

[102]: print("Total sum of cases per German state") df_daily_data.groupby(['Bundesland'])["AnzahlFall"].sum()

Total sum of cases per German state

[102]: Bundesland

Baden-Württemberg	9794
Bayern	12875
Berlin	2360
Brandenburg	721
Bremen	275
Hamburg	1846
Hessen	2605
Mecklenburg-Vorpommern	348
Niedersachsen	3450
Nordrhein-Westfalen	11395
Rheinland-Pfalz	2395
Saarland	560
Sachsen	1616

Sachsen-Anhalt 592
Schleswig-Holstein 1005
Thüringen 697
Name: AnzahlFall, dtype: int64

[103]: print("Describe sum of daily cases per day per German state.")

df_daily_data.groupby(['Bundesland', "Meldedatum"])['AnzahlFall'].sum().

ounstack().T.fillna(0).describe().round(decimals=0)

Describe sum of daily cases per day per German state.

	Describe sum	or dall	ly cases per	aay per	r German	state.			
[103]:	Bundesland	Baden-W	ürttemberg	Bayern	Berlin	Brandenburg	Bremen	Hamburg	\
	count		45.0	45.0	45.0	45.0	45.0	45.0	
	mean		218.0	286.0	52.0	16.0	6.0	41.0	
	std		325.0	450.0	78.0	23.0	9.0	57.0	
	min		0.0	0.0	0.0	0.0	0.0	0.0	
	25%		1.0	2.0	0.0	0.0	0.0	0.0	
	50%		32.0	17.0	5.0	1.0	0.0	3.0	
	75%		325.0	456.0	72.0	23.0	11.0	75.0	
	max		1120.0	1543.0	284.0	82.0	40.0	188.0	
	Bundesland	Hessen	Mecklenbur	g-Vorpom	mern Ni	ledersachsen	\		
	count	45.0			45.0	45.0			
	mean	58.0			8.0	77.0			
	std	90.0			13.0	117.0			
	min	0.0			0.0	0.0			
	25%	0.0			0.0	0.0			
	50%	4.0			1.0	6.0			
	75%	84.0			11.0	106.0			
	max	288.0			43.0	384.0			

Bundesland	Nordrhein-Westfalen	Rheinland-Pfalz	Saarland	Sachsen	١
count	45.0	45.0	45.0	45.0	
mean	253.0	53.0	12.0	36.0	
std	342.0	77.0	19.0	56.0	
min	0.0	0.0	0.0	0.0	
25%	0.0	0.0	0.0	0.0	
50%	58.0	2.0	0.0	2.0	
75%	424.0	114.0	20.0	41.0	
max	1079.0	258.0	69.0	179.0	

Bundesland	Sachsen-Anhalt	Schleswig-Holstein	Thüringen
count	45.0	45.0	45.0
mean	13.0	22.0	15.0
std	22.0	33.0	25.0
min	0.0	0.0	0.0
25%	0.0	0.0	0.0

```
    50%
    0.0
    1.0
    0.0

    75%
    15.0
    35.0
    24.0

    max
    79.0
    105.0
    75.0
```

```
[104]: # Get daily cases and growth rate per German state
       loc_unknown_col = "-nicht erhoben-"
       state_names = df_daily_data['Bundesland'].unique()
       # remove column name for unknown location of the case
       index = np.where(state_names == loc_unknown_col)
       state_names = np.delete(state_names, index)
       states_daily = df_daily_data.groupby(['Meldedatum',__

¬'Bundesland'])['AnzahlFall'].sum()
       df_per_state_daily = pd.DataFrame()
       for state in state_names:
           df_per_state_daily[state] = states_daily.unstack()[state].fillna(0)
[105]: # TODO: make these relative to screen size somehow
       figsize = (19,16)
       ax label fontsize = 10.0
       legend_fontsize = 8.0
       major_tick_fontsize = 8.0
       minor_tick_fontsize = 7.0
       tick_monthdays = (10, 20)
[106]: # Plot sum of confirmed cases per day per German state
       fig, ax = plt.subplots(4, 4, sharey=True, figsize=figsize)
       fig.subplots_adjust(hspace = 0.4, wspace = 0.4)
       fig.suptitle("Sum of cases per day per German state", **suptitel_attr)
       for axis in ax.flat:
           rule = mpl.dates.rrulewrapper(mpl.dates.MONTHLY, bymonthday=tick_monthdays)
           axis.xaxis.set_minor_locator(mpl.dates.RRuleLocator(rule))
           axis.xaxis.set_minor_formatter(mpl.dates.DateFormatter("%d"))
           axis.xaxis.set_major_locator(mpl.dates.MonthLocator(bymonthday=1))
           axis.xaxis.set_major_formatter(mpl.dates.DateFormatter('%Y-%m'))
           for tick in axis.xaxis.get_major_ticks():
                   tick.label.set_fontsize(tick_fontsize)
       for plt_row in ax:
           plt row[0].set ylabel('Sum of cases per day', fontsize=ax label fontsize)
       for column plots in ax.T:
```

Sum of cases per day per German state


```
[107]: # Plot growth rate of daily confirmed cases per German state
       fig, ax = plt.subplots(4, 4, sharey=True, figsize=figsize)
       fig.subplots_adjust(hspace = 0.4, wspace = 0.4)
       fig.suptitle("Growth rate of cases per day per German state", **suptitel_attr)
       for axis in ax.flat:
           rule = mpl.dates.rrulewrapper(mpl.dates.MONTHLY, bymonthday=tick_monthdays)
           axis.xaxis.set minor locator(mpl.dates.RRuleLocator(rule))
           axis.xaxis.set_minor_formatter(mpl.dates.DateFormatter("%d"))
           axis.xaxis.set_major_locator(mpl.dates.MonthLocator(bymonthday=1))
           axis.xaxis.set_major_formatter(mpl.dates.DateFormatter('%Y-%m'))
           for tick in axis.xaxis.get_major_ticks():
                   tick.label.set_fontsize(tick_fontsize)
       for plt_row in ax:
           plt_row[0].set_ylabel('Growth rate', fontsize=ax_label_fontsize)
       for column_plots in ax.T:
           column_plots[-1].set_xlabel('Date', fontsize=ax_label_fontsize)
       ix = 0
       for subp in ax.flat:
           state = state names[ix]
           subp.plot(df_per_state_daily[state].diff(), color='blue', label = "{}".
       →format(state))
           subp.legend(fontsize=legend_fontsize, loc="upper left")
           plt.setp(subp.xaxis.get_majorticklabels(), rotation=90)
           plt.setp(subp.xaxis.get_minorticklabels(), rotation=45)
           for tick in subp.xaxis.get_major_ticks():
                   tick.label.set_fontsize(major_tick_fontsize)
           for tick in subp.xaxis.get_minor_ticks():
                   tick.label.set_fontsize(minor_tick_fontsize)
           ix += 1
```

Growth rate of cases per day per German state

