Decision Trees

By Kayla Thomas Thanks to: Ryan Henning

- Decision Trees
- Entropy
- Information Gain
- Recursion
- How to build a tree

Historical log of times I played tennis:

Temp	Outlook	Humidity	Windy	Played
Hot	Sunny	High	False	No
Hot	Sunny	High	True	No
Hot	Overcast	High	False	Yes
Cool	Rain	Normal	False	Yes
Cool	Overcast	Normal	True	Yes
Mild	Sunny	High	False	No
Cool	Sunny	Normal	False	Yes
Mild	Rain	Normal	False	Yes
Mild	Sunny	Normal	True	Yes
Mild	Overcast	High	True	Yes
Hot	Overcast	Normal	False	Yes
Mild	Rain	High	True	No
Cool	Rain	Normal	True	No
Mild	Rain	High	False	Yes

```
def will play(temp, outlook, humidity,\
            windy):
  if outlook == 'sunny':
      if humidity == 'normal':
          return True
      else: # humidity == 'high'
          return False
  elif outlook == 'overcast':
      return True
  else: # outlook == 'rain'
      if windy == True:
          return False
      else: # windy == False:
          return True
```


ves

```
def will_play(temp, outlook, humi_ity,\
            windy):
  if outlook == 'sunny':
      if humidity == 'normal':
          return True
      else: # humidity == 'high'
          return False
  elif outlook == 'overcast':
      return True
  else: # outlook == 'rain'
      if windy == True:
          return False
      else: # windy == False:
          return True
```

Instead, let's write an algorithm to build a **Decision Tree** for us, based on the training data we have. Outlook sunny overcast rain Windy Humidity yes normal high false true

no

no

ves

Benefits:

- non-parametric, non-linear
- can be used for classification and for regression
- real and/or categorical features
- easy to interpret
- computationally cheap prediction
- handles missing values and outliers
- can handle irrelevant features

Drawbacks:

- expensive to train
- greedy algorithm (local maxima)
- easily overfits
- right-angle decision boundaries only

But how can we build one of these from training data?

We can measure the diversity of a set using Shannon Entropy (H) if we interpret the frequency of elements in the set as probabilities.

Estimate:

H = 1.55

One level in a decision tree:

Information Gain = 0.57

Splitting Algorithm:

Possible Splits:

Consider all binary splits based on a single feature:

- if the feature is categorical, split on <u>value</u> or <u>not value</u>.
- if the feature is numeric, split at a threshold: <u>>threshold</u> or <=threshold

Splitting Algorithm:

- 1. Calculate the information gain for all possible splits.
- 2. Commit to the split that has the highest information gain.

galvanıze

Recursion

What is this function?

$$f(x) = \prod_{i=1}^{x} i$$

Is this an equivalent function?

$$f(x) = \begin{cases} 1, & \text{if } x \le 1\\ xf(x-1), & \text{otherwise} \end{cases}$$

```
def f(x):
  1 1 1
  This function returns x!.
  >>> f(5)
  120
  . . .
  if x <= 1:
      return 1
  else:
      return x * f(x-1)
name == ' main ':
  import doctest
  doctest.testmod()
```

How to build a decision tree (pseudocode):


```
function BuildTree:
  If every item in the dataset is in the same class
  or there is no feature left to split the data:
      return a leaf node with the class label
  Else:
      find the best feature and value to split the data
      split the dataset
      create a node
      for each split
          call BuildTree and add the result as a child of the node
      return node
```


The Gini Index

A measure of impurity: the probability of a misclassification if a random sample drawn from the set is classified according to the distribution of classes in the set

Scikit-learn <u>doesn't</u> use *Shannon Entropy Diversity* by default. It uses the *Gini Index*:

$$Gini(S) = 1 - \sum_{i \in S} p_i^2$$

Information gain using the *Gini Index*:

$$IG(S, C) = Gini(S) - \sum_{C_i \in C} \frac{|C_i|}{|S|} Gini(C_i)$$

Regression Trees

Targets are real values... so...

now we can't use Information Gain or Gini Index for splitting! What do we do?

Use variance! Cool, now we can train.

How do we predict?

Either predict the mean value of the leaf, or do linear regression within the leaf!

Salary is color-coded from low (blue, green) to high (yellow,red)

Note: Graph from Stanford - Statistical learning

Salary is color-coded from low (blue, green) to high (yellow,red)

Note: Graph from Stanford - Statistical learning

Overfitting is likely if you build your tree all the way until every leaf is pure.

Prepruning ideas - setting limitations on the building of the decision tree:

- leaf size: stop splitting when #examples gets small enough
- **depth:** stop splitting at a certain depth
- purity: stop splitting if enough of the examples are the same class
- gain threshold: stop splitting when the information gain becomes too small

Post Pruning - Let the tree grow large and prune it back:

Cost complexity pruning - punish trees with more terminal nodes

Algorithm Names:

The details of training a decision tree vary... each specific algorithm has a name. Here are a few you'll often see:

- ID3: category features only, information gain, multi-way splits, ...
- C4.5: continuous and categorical features, information gain, missing data okay, pruning, ...
- CART: continuous and categorical features and targets, gini index, binary splits only, ...
- SciKit-learn uses an optimized version of CART -important to note that CART uses only Binary splits (for categorical: Value or not value, continuous: >threshold, or <=threshold)

galvanıze

Summary

- Trees are easy to explain often even easier than a linear regression
- Mirrors human decision making
- Trees can be displayed graphically which makes them easy to interpret especially for non-experts
- Handles numeric and categorical features
- Alone decision trees are not as accurate at predicting, but when combined in ensemble methods trees performance can be greatly improved