Scilab Textbook Companion for Turbines, Compressors And Fans by S. M. Yahya¹

Created by Ankur Garg M.TECH.

Mechanical Engineering
National Institute of Technology, Tiruchirappalli
College Teacher
Dr. M. Udayakumar
Cross-Checked by
Bhavani Jalkrish

May 30, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Turbines, Compressors And Fans

Author: S. M. Yahya

Publisher: Tata Mcgraw Hill Education Pvt. Ltd., New Delhi

Edition: 4

Year: 2011

ISBN: 0-07-070702-2

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
2	Thermodynamics	5
3	Gas Turbine Plants	13
4	Steam Turbine Plants	20
5	Combined Cycle Plants	27
6	Fluid dynamics	31
7	Dimensional Analysis and Performance Parameters	34
8	Flow Through Cascades	40
9	Axial Turbine Stages	47
11	Axial Compressor Stages	60
12	Centrifugal Compressor Stage	73
13	Radial Turbine Stages	81
14	Axial Fans and Propellers	87
15	Centrifugal Fans and Blowers	94
16	Wind Turbines	97

List of Scilab Codes

Exa 2.1	Calculation on a Diffuser	5
Exa 2.2	Determining the infinitesimal stage efficiencies	6
Exa 2.3	Calculations on air compressor	7
Exa 2.4	compressor with same temperature rise	8
Exa 2.5	Calculations on three stage gas turbine	9
Exa 2.6	Calculations on a Gas Turbine	1
Exa 3.1	Constant Pressure Gas Turbine Plant	3
Exa 3.2	Gas Turbine Plant with an exhaust HE	4
Exa 3.3	ideal reheat cycle Gas Turbine Plant	5
Exa 3.4	Calculations on Gas Turbine Plant	6
Exa 3.5	Calculations on Gas Turbine Plant	7
Exa 4.1	Calculations on Steam Turbine Plant	0
Exa 4.2	Steam Turbine Plant for different reheat cycles 2	2
Exa 4.3	Calculations on Steam Turbine Plant	3
Exa 5.1	Calculation on combined cycle power plant 2	7
Exa 5.2	combined gas and steam cycle power plant	9
Exa 6.1	inward flow radial turbine 32000rpm	1
Exa 6.2	radially tipped Centrifugal blower 3000rpm 3	2
Exa 6.3	Calculation on an axial flow fan	3
Exa 7.1	Calculation for the specific speed	4
Exa 7.2	Calculating the discharge and specific speed 3	6
Exa 7.3	Calculation on a small compressor	6
Exa 7.4	Calculation on design of a single stage gas turbine 3	8
Exa 8.1	Calculation on a compressor cascade 4	0
Exa 8.2	Calculation on a turbine blade row cascade 4	1
Exa 8.3	Calculation on a compressor cascade 4	2
Exa 8.4	Calculation on a blower type annular cascade tunnel . 4	4
Exa 8.5	Calculation on a compressor type radial cascade tunnel 4	5

Exa 9.1	Calculation on multi stage turbine 47
Exa 9.2	Calculation on an axial turbine stage
Exa 9.3	Calculation on an axial turbine stage
Exa 9.4	axial turbine stage 3000 rpm
Exa 9.5	Calculation on a gas turbine stage 57
Exa 11.1	Calculation on an axial compressor stage 60
Exa 11.2	Calculation on an axial compressor stage 62
Exa 11.3	Calculation on an axial compressor stage 65
Exa 11.4	Calculation on hub mean and tip sections 64
Exa 11.5	Forced Vortex axial compressor stage 66
Exa 11.6	General Swirl Distribution axial compressor 69
Exa 11.7	flow and loading coefficients
Exa 12.1	Calculation on a centrifugal compressor stage
Exa 12.2	Calculation on a centrifugal air compressor
Exa 12.3	centrifugal compressor stage 17000 rpm
Exa 12.4	Radially tipped blade impeller
Exa 12.5	Radially tipped blade impeller
Exa 13.1	ninety degree IFR turbine 82
Exa 13.2	Mach Number and loss coefficient
Exa 13.3	IFR turbine with Cantilever Blades
Exa 14.1	Axial fan stage 960 rpm
Exa 14.2	Downstream guide vanes
Exa 14.3	upstream guide vanes
Exa 14.4	rotor and upstream guide blades
Exa 14.5	DGVs and upstream guide vanes 91
Exa 14.6	open propeller fan
Exa 15.1	Centrifugal fan stage 1450 rpm
Exa 15.2	Centrifugal blower 3000 rpm 95
Exa 16.1	Wind turbine output 100 kW 97
Exa 18.1	Gas Turbine nozzle row
Exa 18.2	Steam Turbine nozzle
Exa 18.3	Irreversible flow in nozzles
Exa 18.4	Calculation on a Diffuser
Exa 18.5	Calculation on a Draft Tube
Exa 18.6	Calculations on a Gas Turbine
Exa 18.7	RHF of a three stage turbine 105
Exa 18.8	Calculation on an air compressor
Exa 18.9	Constant Pressure Gas Turbine Plant

Exa 18.10	Calculation on combined cycle power plant	110
Exa 18.11	Calculation on combined cycle power plant	112
Exa 18.12	turbo prop Gas Turbine Engine	114
Exa 18.13	Turbojet Gas Turbine Engine	115
Exa 18.15	Impulse Steam Turbine 3000 rpm	117
Exa 18.16	large Centrifugal pump 1000 rpm	119
Exa 18.17	three stage steam turbine	120
Exa 18.18	Ljungstrom turbine 3600 rpm	121
Exa 18.19	blower type wind tunnel	122
Exa 18.20	Calculation on an axial turbine cascade	124
Exa 18.21	low reaction turbine stage	125
Exa 18.22	Isentropic or Stage Terminal Velocity for Turbines .	127
Exa 18.23	axial compressor stage efficiency	128
Exa 18.24	Calculation on an axial compressor cascade	128
Exa 18.25	Calculation on two stage axial compressor	129
Exa 18.26	Calculation on an axial compressor cascade	131
Exa 18.27	Isentropic Flow Centrifugal Air compressor	132
Exa 18.28	centrifugal Air compressor	134
Exa 18.29	Centrifugal compressor with vaned diffuser	135
Exa 18.30	Inward Flow Radial Gas turbine	137
Exa 18.31	Cantilever Type IFR turbine	139
Exa 18.32	IFR turbine stage efficiency	140
Exa 18.33	Vertical Axis Crossflow Wind turbine	141
Exa 18.34	Counter Rotating fan	142
Exa 18.35	Sirocco Radial fan 1440 rpm	143
Exa 18.37	Calculation for the specific speed	144
Exa 18.38	Kaplan turbine 70 rpm	146
Exa 18.39	Calculation for Pelton Wheel prototype	147
Exa 18.40	Francis turbine 910 rpm	147
Exa 18.41	Calculation for the Pelton Wheel	148
Exa 18.42	Calculation for Tidal Power Plant	149
Exa 18.43	Francis turbine 250 rpm	150
Exa 18.44	Pelton Wheel 360 rpm	151
Exa 18.45	Kaplan turbine 120 rpm	153
Exa 18.46	Fourneyron Turbine 360 rpm	154
Exa 18.47	Crossflow Radial Hydro turbine	155
Exa 18.48	Calculation on a Draft Tube	156
Exa 18 49	Centrifugal pump 890 kW	157

Exa 18.50	Centrifugal pump 1500 rpm	158
Exa 18.51	Axial pump 360 rpm	159
Exa 18.52	NPSH for Centrifugal pump	160
Exa 18.53	NPSH and Thoma Cavitation Coefficient	162
Exa 18.54	Maximum Height of Hydro Turbines	163
Exa 18.55	Propeller Thrust and Power	164

Thermodynamics

Scilab code Exa 2.1 Calculation on a Diffuser

```
1 // scilab Code Exa 2.1 Calculation on a Diffuser
3 p1=800; // Initial Pressure in kPa
4 T1=540; // Initial Temperature in K
5 p2=580; // Final Pressure in kPa
6 gamma=1.4; // Specific Heat Ratio
7 cp=1005; // Specific Heat at Constant Pressure in J
     /(kgK)
8 R=0.287; // Universal Gas Constant in kJ/kgK
9 g=9.81; // Gravitational acceleration in m/s^2
10 sg=13.6; // Specific Gravity of mercury
11 n=0.95; // Efficiency in \%
12 AR=4; // Area Ratio of Diffuser
13 delp=(367)*(1e-3)*(g)*(sg); // Total Pressure Loss
     Across the Diffuser in kPa
14 pr=p1/p2; // Pressure Ratio
15 T2s=T1/(pr^((gamma-1)/gamma));
16 T2=T1-(n*(T1-T2s));
17 c2=sqrt(2*cp*(T1-T2));
```

```
18 ro2=p2/(R*T2);
19 c3=c2/AR;
20 m=0.5*1e-3*ro2*((c2^2)-(c3^2));
21 n_D=1-(delp/m);
22 disp ("%",n_D*1e2," Efficiency of the diffuser is")
23 p3=(p2+n_D*m)*1e-2;
24 disp("m/s",c2," the velocity of air at diffuser entry is")
25 disp("m/s",c3," the velocity of air at diffuser exit is")
26 disp("bar",p3," static pressure at the diffuser exit is")
```

Scilab code Exa 2.2 Determining the infinitesimal stage efficiencies

```
1 // Exa 2.2 Determining the infinitesimal stage
      efficiencies
2 p1=1.02; // Initial Pressure in bar
3 T1=300; // Initial Temperature in K
5 // part(a)
6 T2=315; // Final Temperature in K
7 gamma=1.4; // Specific Heat Ratio
8 g=9.81; // Gravitational acceleration in m/s^2
9 sg=1; // Specific Gravity of air
10 delp=(1500)*(0.001)*(g)*(sg); // Total Pressure Loss
      Across the Diffuser in kPa
11 p2=p1+(0.01*delp);
12 pr=p2/p1; // Pressure Ratio
13 T2s=T1*(pr^((gamma-1)/gamma));
14 n_c=(T2s-T1)/(T2-T1); // Efficiency in \%
15 n_p=((gamma-1)/gamma)*((log(p2/p1))/(log(T2/T1)));
16 disp ("%", n_c*100," (a) Efficiency of the compressor
```

```
is")
17 disp ("%", n_p*100, "and infinitesimal stage
      Efficiency or polytropic efficiency of the
      compressor is")
18
19 // part(b) Determining the infinitesimal stage
      efficiency
20
21 p2_b=2.5; // Final pressure in bar
22 \text{ n_b=0.75}; // Efficiency
23 pr_b=p2_b/p1; // Pressure Ratio
24 T2s_b=T1*(pr_b^((gamma-1)/gamma));
25 T2_b=T1+((T2s_b-T1)/n_b);
26 \text{ n_p_b} = ((gamma - 1)/gamma)*((log(p2_b/p1))/(log(T2_b/T1))
      )));
27 disp ("%" ,n_p_b*100,"(b)infinitesimal stage
      Efficiency or polytropic efficiency of the
      compressor is")
```

Scilab code Exa 2.3 Calculations on air compressor

```
// scilab Code Exa 2.3 Calculation on a compressor
p1=1.0; // Initial Pressure in bar
t1=40; // Initial Temperature in degree C

T1=t1+273; // in Kelvin
s=8; // number of stages
m=50; // mass flow rate through the compressor in kg
/s
pr=1.35; // equal Pressure Ratio in each stage
opr=pr^s; // Overall Pressure Ratio
gamma=1.4; // Specific Heat Ratio
cp=1.005; // Specific Heat at Constant Pressure in
kJ/(kgK)
```

```
11 n=0.82; // Overall Efficiency
12
13 // part(a) Determining state of air at the
      compressor exit
14 p9=opr*p1;
15 delTc=T1*(opr^((gamma-1)/gamma)-1)/n;
16 \quad T9=T1+delTc;
17 disp("bar",p9,"(a)Exit Pressure is")
18 disp("K", T9, "and Exit Temperature is")
19
20 // part(b) Determining the polytropic or small stage
       efficiency
21 n_p = ((gamma - 1)/gamma) * ((log(p9/p1))/(log(T9/T1)));
22 disp("%",n_p*100,"(b)small stage Efficiency or
      polytropic efficiency of the compressor is")
23
24 // part(c) Determining efficiency of each stage
25 n_st=(pr^((gamma-1)/gamma)-1)/(pr^(((gamma-1)/gamma)
     /n_p)-1);
26 disp ("%", n_st*100,"(c) Efficiency of each stage is")
27
28 // part(d) Determining power required to drive the
      compressor
29 n_d=0.9; // Overall efficiency of the drive
30 P=m*cp*delTc/n_d;
31 \mathtt{disp} ("MW" ,P/1e3," (d)Power required to drive the
      compressor is")
```

Scilab code Exa 2.4 compressor with same temperature rise

```
1 // Exa 2.4 compressor with same temperature rise
2
3 p1=1.0; // Initial Pressure in bar
```

```
4 t1=40; // Initial Temperature in degree C
5 T1=t1+273; // in Kelvin
6 s=8; // number of stages
7 pr=1.35;
8 opr=pr^s; // Overall Pressure Ratio
9 n=0.82; // Overall Efficiency
10 p9=opr*p1;
11 gamma=1.4;
12 delTc = (T1*(opr^((gamma-1)/gamma)-1)/n);
13 delTi=delTc/s;
14 \quad T9 = T1 + delTc;
15 n_p = ((gamma - 1)/gamma) * ((log(p9/p1))/(log(T9/T1)));
      // small stage Efficiency or polytropic
      efficiency
16 \text{ m=8};
17 T(1) = T1;
18 \text{ for } i=1:m
       T(i+1)=T(i)+delTi;
19
20
       pr(i) = (1 + (delTi/T(i)))^(n_p/((gamma - 1)/gamma));
       n_st(i)=(pr(i)^((gamma-1)/gamma)-1)/(pr(i)^(((
21
          gamma-1)/gamma)/n_p)-1);
22 disp(T(i),"T is");
23 disp(pr(i), "pressure ratio is")
24 disp(n_st(i), "efficiency is")
25 end
```

Scilab code Exa 2.5 Calculations on three stage gas turbine

```
1 // scilab Code Exa 2.5 Calculation on three stage
    gas turbine
2
3 p1=1.0; // Initial Pressure in bar
4 gamma=1.4;
```

```
5 T1=1500; // Initial Temperature in K
6 s=3; // number of stages
7 opr=11; // Overall Pressure Ratio
9 // part(a) Determining pressure ratio of each stage
10 pr=opr^(1/s); // equal Pressure Ratio in each stage
11 disp (pr, "(a) Pressure ratio of each stage is")
12
13 // part(b) Determining the polytropic or small stage
      efficiency
14 n_o=0.88; // Overall Efficiency
15 delT=T1*(1-opr^(-((gamma-1)/gamma)))*n_o;
16 \quad T2=T1-delT;
17 n_p = (\log(T1/T2))/(((gamma-1)/gamma)*(\log(opr)));
18 disp ("%", n_p*100," (b) small stage Efficiency or
      polytropic efficiency of the turbine is")
19
20 // part(c) Determining mass flow rate
21 P=30000; // Power output of the Turbine in kW
22 n_d=0.91; // Overall efficiency of the drive
23 cp=1.005; // Specific Heat at Constant Pressure in
     kJ/(kgK)
24 \text{ m=P/(cp*delT*n_d)};
25 disp ("kg/s",m,"(c) mass flow rate is")
26
27 // part(d) Determining efficiency of each stage
28 n_st=(1-pr^(n_p*(-((gamma-1)/gamma))))/(1-pr^(-((
      gamma-1)/gamma)));
29 disp ("%",n_st*100,"(d) Efficiency of each stage is")
30 d=3;
31 T(1) = T1;
32 \text{ for } i=1:d
33
       delT(i)=T(i)*(1-pr^(n_p*(-((gamma-1)/gamma))));
34
       T(i+1)=T(i)-delT(i);
35
       P(i)=m*cp*delT(i);
36 printf("\n P(\%d)=\%f\ MW",i,P(i)*1e-3)
37 end
```

Scilab code Exa 2.6 Calculations on a Gas Turbine

```
1 // scilab Code Exa 2.6 calculation on a gas turbine
3 funcprot(0);
4 p1=5; // Inlet Pressure in bar
5 p2=1.2; // Exit Pressure in bar
6 T1=500; // Initial Temperature in K
7 gamma=1.4;
8 m=20; // mass flow rate of the gas in kg/s
9 cp=1.005; // Specific Heat at Constant Pressure in
     kJ/(kgK)
10 n_T=0.9; // Overall Efficiency
11 pr=p1/p2; // Pressure Ratio
12 // part(a)
13 T2s=T1/(pr^((gamma-1)/gamma));
14 T2=T1-(n_T*(T1-T2s));
15 n_p = (log(T1/T2))/(log(T1/T2s));
16 disp("%",n_p*100,"(a)small stage Efficiency or
      polytropic efficiency of the expansion is")
17 P=m*cp*(T1-T2);
18 disp("kW", P, "and Power developed is")
19
20 // part(b)
21 AR=2.5; // Area Ratio of Diffuser
22 R=0.287; // Universal Gas Constant in kJ/kgK
23 p3=1.2; // Exit Pressure for diffuser in bar
24 c2=75; // Velocity of gas at turbine exit in m/s
25 \quad c3=c2/AR;
26 n_d=0.7; // Efficiency of the diffuser
27 \text{ ro2=p2/(R*T2)};
28 delp=n_d*(0.5*0.001*ro2*((c2^2)-(c3^2))); // delp=p3
```

Gas Turbine Plants

Scilab code Exa 3.1 Constant Pressure Gas Turbine Plant

```
1 // scilab Code Exa 3.1 Constant Pressure Gas Turbine
       Plant
3 t1=50; // Minimum Temperature in degree C
4 T1=t1+273; // in Kelvin
5 t3=950; // Maximum Temperature in degree C
6 T3=t3+273; // in Kelvin
7 n_c=0.82; // Compressor Efficiency
8 n_t=0.87; // Turbine Efficiency
9 gamma=1.4; // Specific Heat Ratio
10 cp=1.005; // Specific Heat at Constant Pressure in
      kJ/(kgK)
11 beeta=T3/T1;
12 alpha=beeta*n_c*n_t;
13 T_opt=sqrt(alpha); // For maximum power output, the
      temperature ratios in the turbine and compressor
14
15 // part(a) Determining pressure ratio of the turbine
       and compressor
```

Scilab code Exa 3.2 Gas Turbine Plant with an exhaust HE

```
1 // scilab Code Exa 3.2 Gas Turbine Plant with an
     exhaust HE
2 T1=300; // Minimum cycle Temperature in Kelvin
3 funcprot(0);
4 pr=10; // pressure ratio of the turbine and
     compressor
5 T3=1500; // Maximum cycle Temperature in Kelvin
6 m=10; // mass flow rate through the turbine and
     compressor in kg/s
7 e(1)=0.8; // thermal ratio of the heat exchanger
8 e(2)=1;
9 n_c=0.82; // Compressor Efficiency
10 n_t=0.85; // Turbine Efficiency
11 gamma=1.4; // Specific Heat Ratio
12 cp=1.005; // Specific Heat at Constant Pressure in
     kJ/(kgK)
```

```
13 beeta=T3/T1;
14 T2s=T1*(pr^((gamma-1)/gamma));
15 T2=T1+((T2s-T1)/n_c);
16 T4s=T3*(pr^(-((gamma-1)/gamma)));
17 T4=T3-((T3-T4s)*n_t);
18
19 for i=1:2
20 T5=T2+e(i)*(T4-T2);
21 T6=T4-(T5-T2);
22 Q_s = cp*(T3-T5);
23 Q_r = cp*(T6-T1);
24 // part(a) Determining power developed
25 \text{ w_p=Q_s-Q_r};
26 \quad P = m * w_p;
27 printf ("for effectiveness=\%f, \n (a) the power
      developed is %f kW",e(i),P)
28
  // part(b) Determining thermal efficiency of the
      plant
30 \text{ n_th=1-(Q_r/Q_s)};
31 disp ("%", n_th*100," (b) thermal efficiency of the
      plant is")
32 end
33
34 // part(c) Determining efficiencies of the ideal
      Joules cycle
35 n_Joule=1-(pr^((gamma-1)/gamma)/beeta);
36 disp("%", n_Joule *100,"(c) efficiency of the ideal
      Joules cycle with perfect heat exchange is")
37 \quad n_{Carnot=1-(T1/T3)};
38 disp("\%", n\_Carnot*100," and the Carnot cycle
      efficiency is")
```

Scilab code Exa 3.3 ideal reheat cycle Gas Turbine Plant

```
1 // scilab Code Exa 3.3 ideal reheat cycle gas
      turbine
2 T1=300; // Minimum cycle Temperature in Kelvin
3 r=25; // pressure ratio of the turbine and
      compressor
4 gamma=1.4;
5 T3=1500; // Maximum cycle Temperature in Kelvin
6 cp=1.005; // Specific Heat at Constant Pressure in
     kJ/(kgK)
7 beeta=T3/T1;
8 n = (gamma - 1) / gamma;
9 t = (r^n);
10 d=1/sqrt(t);
11 // part(a) Determining mass flow rate through the
      turbine and compressor
12 c=2*beeta*[1-d];
13 wp_max = cp*T1*(c+1-t);
14 \ m=1000/wp_max;
15 disp ("kg/s", m, "(a) mass flow rate through the
      turbine and compressor is")
16
17 // part(b) Determining thermal efficiency of the
18 n_{th}=(c+1-t)/(2*beeta-t-(beeta/sqrt(t)));
19 disp ("%", n_th*100," (b) thermal efficiency of the
      plant is")
```

Scilab code Exa 3.4 Calculations on Gas Turbine Plant

```
1 // scilab Code Exa 3.4 Calculations on Gas Turbine
Plant for an ideal reheat cycle with optimum
```

```
reheat pressure and perfect exhaust heat exchange
2 T1=300; // Minimum cycle Temperature in Kelvin
3 r=25; // pressure ratio of the turbine and
      compressor
4 T3=1500; // Maximum cycle Temperature in Kelvin
5 gamma=1.4; // Specific Heat Ratio
6 cp=1.005; // Specific Heat at Constant Pressure in
      kJ/(kgK)
7 beeta=T3/T1;
8 n = (gamma - 1) / gamma;
9 t=(r^n);
10 d=1/sqrt(t);
11 // part(a) Determining mass flow rate through the
      turbine and compressor
12 c=2*beeta*[1-d];
13 wp_max = cp*T1*(c+1-t);
14 \text{ m} = 1000/\text{wp_max};
15 disp ("kg/s" ,m," mass flow rate through the turbine
       and compressor is")
16
17
18 // part(b) Determining thermal efficiency of the
      plant
19 c = sqrt(t) * (sqrt(t) + 1) / (2*beeta);
20 \, \text{n_th=1-c};
21 disp ("%",n_th*100," thermal efficiency of the plant
       is")
```

Scilab code Exa 3.5 Calculations on Gas Turbine Plant

```
1 // scilab Code Exa 3.5 Calculations on Gas Turbine Plant
```

```
3 P=10e4; // Power Output in kW
4 T1=310; // Minimum cycle Temperature in Kelvin
5 p1=1.013; // Compressor Inlet Pressure in bar
6 pr_c=8; // Compressor pressure ratio
7 gamma=1.4;
8 \text{ gammag=1.33};
9 R=0.287;
10 p2=pr_c*p1; // Compressor Exit Pressure in bar
11 T3=1350; // Maximum cycle Temperature (Turbine inlet
       temp) in Kelvin
12 n_c=0.85; // Compressor Efficiency
13 p3=0.98*p2; // turbine inlet pressure
14 p4=1.02; // turbine exit pressure in bar
15 CV=40*10e2; // Calorific Value of fuel in kJ/kg;
16 n_B=0.98; // Combustion Efficiency
17 n_m=0.97; // Mechanical efficiency
18 n_t=0.9; // Turbine Efficiency
19 n_G=0.98; // Generator Efficiency
20 cp_a=1.005; // Specific Heat of air at Constant
      Pressure in kJ/(kgK)
21
22 // Air Compressor
23 T2s=T1*(pr_c^((gamma-1)/gamma));
24 T2=T1+((T2s-T1)/n_c);
25 \text{ w_c=cp_a*(T2-T1)};
26
27 // Gas Turbine
28 \quad n_g = (gamma_g - 1) / gamma_g;
29 cp_g=1.157; // Specific Heat of gas at Constant
      Pressure in kJ/(kgK)
30 \text{ pr_t=p3/p4};
31 T4s=T3/(pr_t^{((gamma_g-1)/gamma_g));
32 \quad T4=T3-(n_t*(T3-T4s));
33 w_t = cp_g * (T3 - T4);
34 \text{ w_net=w_t-w_c};
35 \text{ w_g=n_m*n_G*w_net};
36
37 // part(a) Determining Gas Flow Rate
```

```
38 \text{ m_g=P/w_g};
39 \operatorname{disp} ("kg/s", m_g, "(a) Gas flow rate is")
40
41 // part(b) Determining Fuel-Air Ratio
42 F_A = ((cp_g * T3) - (cp_a * T2)) / ((CV * n_B) - (cp_g * T3));
43 disp(F_A, "(b) Fuel-Air Ratio is")
44
45 // part(c) Air flow rate
46 \text{ m_a=m_g/(1+F_A)};
47 \operatorname{disp}("kg/s", m_a, "(c) Air flow rate is")
48
49 // part(d) Determining thermal efficiency of the
      plant
50 \text{ m_f=m_g-m_a};
51 \quad n_{th=m_g*w_net/(m_f*CV)};
52 disp ("%",n_th*100,"(d)thermal efficiency of the
      plant is")
53
54 // part(e) Determining Overall efficiency of the
      plant
55 \quad n_o = n_m * n_G * n_th;
56 disp ("%",n_o*100,"(e)overall efficiency of the
      plant is")
57
58 // part(f) Determining ideal Joule cycle efficiency
59 n_Joule=1-(1/(pr_c^((gamma-1)/gamma)));
60 disp ("%", n_Joule *100," (f) efficiency of the ideal
      Joule cycle is")
```

Steam Turbine Plants

Scilab code Exa 4.1 Calculations on Steam Turbine Plant

```
1 // scilab Code Exa 4.1 Calculations on Steam Turbine
      Plant
3 p1=25; // Turbine Inlet Pressure in bar
4 p2=0.065; // Condenser Pressure in bar
5 n_B=0.82; // Boiler efficiency
6 delp=p1-p2;
7 v_w=0.001; // Specific Volume at condenser Pressure
     in m3/kg
9 h1=160.6; // from steam tables at p1=0.065 bar
10 h2=h1+(delp*100*v_w);
11
12 //part(a) Determining exact and approximate Rankine
      efficiency of the plant
13 h3=2800; // from steam table vapour enthalpy at 25
     bar
14 h4=1930; // from steam table
15 n_{\text{rankine}} = (h3-h4-(h2-h1))/(h3-h1-(h2-h1));
```

```
16 disp ("%", n_rankine_ex*100,"(a)(i) Exact Rankine
      efficiency is")
17
18 n_{\text{rankine\_app}} = (h3-h4)/(h3-h1);
19 disp ("%", n_rankine_app*100," (a)(ii)Approximate
      Rankine efficiency is")
20
21 //part(b) Determining thermal and relative
      efficiencies of the plant
22 n_t=0.78; // Turbine Efficiency
23 CV=26.3*10e2; // Calorific Value of fuel in kJ/kg;
24 \quad n_{th} = (n_{t*}(h3-h4))/(h3-h1);
25 \text{ disp}(\%\%, n_{th*100}, (b)(i) \text{ thermal efficiency of the}
      plant is")
26 n_rel=n_th/n_rankine_app;
27 disp("%",n_rel*100,"(ii)relative efficiency of the
      plant is")
28
29 //part(c) Determining Overall efficiency of the
      plant
30 \quad n_o=n_th*n_B;
31 disp("%",n_o*100,"(c)overall efficiency of the plant
       is")
32
33 //part(d) Turbine and Overall heat rates
34 \text{ hr_t=} 3600/\text{n_th};
35 disp("kJ/kWh", hr_t, "(d)(i) Turbine Heat Rate is")
36 hr_o=3600/n_o;
37 disp("kJ/kWh",hr_o,"(d)(ii)overall Heat Rate is")
38
39 //part(e) Steam Consumption per kWh
40 m_s = 3600/(n_t*(h3-h4));
41 disp("kg/kWh", m_s,"(e)Steam Consumption is")
42
43 //part(f) Fuel Consumption per kWh
44 m_f = 3600/(CV*n_o);
45 disp("kg/kWh", m_f,"(f)Fuel Consumption is")
```

Scilab code Exa 4.2 Steam Turbine Plant for different reheat cycles

```
1
2 // scilab Code Exa 4.2 Steam Turbine Plant for
      different reheat cycles
3
4 p1=160; // Turbine Inlet Pressure in bar
5 T1=500; // Turbine Entry Temperature in Degree
      Celsius
6 p2=0.06; // Condenser Pressure in bar
8 // from steam tables at p1=0.06 bar,
9 h1=147; // Specific Enthalpy of water in kJ/kg
10 h2=2567; // Specific Enthalpy of steam in kJ/kg
11
12 h3=3295; // from steam table
13 h4=1947; // from steam table
14 q_n=h3-h1;
15 n_N = (h3-h4)/(q_n);
16 x=(h4-h1)/(h2-h1);
17 disp("%", n_N*100," for non reheat cycle plant
      efficiency is")
18 disp ("kJ/kWh", 3600/n_N, "Turbine Heat Rate is")
19 disp(x, "final dryness fraction is")
20 // for reheat cycle
21
22 p(1) = 70;
23 h5(1)=3412; // in kJ/kg
24 h7(1)=3065; // in kJ/kg
25 h6(1)=2094; // in kJ/kg
26 p(2) = 50;
27 h5(2) = 3433; // in kJ/kg
```

```
28 h7(2) = 2981; // \text{ in } kJ/kg
29 h6(2)=2144; // in kJ/kg
30 p(3) = 25;
31 h5(3)=3475; // in kJ/kg
32 h7(3) = 2826; // \text{ in } kJ/kg
33 h6(3)=2249; // \text{ in } kJ/kg
34 \text{ for } i=1:3
q_r(i)=h5(i)-h7(i);
36 \ a(i) = (h6(i)-h4)/(q_r(i));
37 n_r(i)=1-a(i); // exact Rankine efficiency
38 b(i)=q_r(i)*n_r(i)/n_N;
39 n_{th(i)} = (q_n+b(i))*n_N/(q_n+q_r(i));
40 hr_t(i)=3600/n_th(i);
41 x(i) = (h6(i)-h1)/(h2-h1);
42 disp("bar",p(i),"for reheat pressure")
43 disp("kJ",q_r(i),"q_R=")
44 disp("kJ", h6(i)-h4, "H6-H4=")
45 disp("%",n_r(i)*100," Rankine efficiency of the plant
       is")
46 disp("%",n_th(i)*100,"thermal efficiency of the
      plant is")
47 disp("kJ/kWh",hr_t(i),"Heat Rate is")
48 disp(x(i), "final dryness fraction is")
49
50 end
51
52 disp("Comment: Error in Textbook, Answers vary due
      to Round-off Errors")
```

Scilab code Exa 4.3 Calculations on Steam Turbine Plant

```
1 // scilab Code Exa 4.3 Calculations on Steam Turbine Plant
```

```
3 p1=82.75; // Turbine Inlet Pressure in bar
4 T1=510; // Turbine Entry Temperature in Degree
      Celsius
5 pc=0.042; // Condenser Pressure in bar
6 \text{ H} = 3420;
7 n_e = 0.85;
8 \text{ gamma} = 1.4;
9 \text{ n_st1=0.85};
10
11 p2=22.75;
12 // for regenerative cycle
13 hs(1)=121.4; // from steam tables and mollier chart
14 p(6)=p2; // pressure at bleed point 1
15 Hs(6)=3080; // Enthalpy of steam at bleed point 1
16 h1s=931;
17 hs(6)=h1s; // Enthalpy of water at bleed point 1
18 H_22=H-(n_st1*(H-h1s));
19
20 p(5)=10.65; // pressure at bleed point 2
21 Hs(5)=2950; // Enthalpy of steam at bleed point 2
22 hs(5)=772; // Enthalpy of water at bleed point 2
23
24 p(4)=4.35; // pressure at bleed point 3
25 Hs(4)=2730; // Enthalpy of steam at bleed point 3
26 hs(4)=612; // Enthalpy of water at bleed point 3
27
28 p(3)=1.25; // pressure at bleed point 4
29 Hs(3)=2590; // Enthalpy of steam at bleed point 4
30 hs(3)=444; // Enthalpy of water at bleed point 4
31
32 p(2)=0.6; // pressure at bleed point 5
33 Hs(2)=2510; // Enthalpy of steam at bleed point 5
34 hs(2)=360; // Enthalpy of water at bleed point 5
35
36 m = 1;
37 h_c=121.4;
38 x = 0.875;
```

```
39 disp(x,"(a)the final state at point C is")
40 for i=2:6
41 alpha(i)=(Hs(i)-hs(i-1))/(Hs(i)-hs(i));
42 \text{ m=m*alpha(i)};
43 end
44 disp("kg",m,"(b) The mass of steam raised per kg of
      steam reaching the condenser is")
45 // part(c) thermal efficiency with feed heating
46 H_c=2250;
47 h_n=hs(6);
48 n_{th}=1-((H_c-h_c)/(m*(H-h_n)));
49 hr_t=3600/n_th;
50 //(c) the improvement in thermal efficiency and heat
       rate
51 c=H-H_c;
52 d=H-h_c;
n_R = (H-H_c)/(H-h_c);
54 \text{ hr}_R = 3600/n_R;
55 \text{ deln_th} = (n_{th} - n_{R}) / n_{R};
56 disp ("%", deln_th*100,"(c) therefore, the improvement
       in efficiency is")
57 delhr_t=(hr_R-hr_t)/hr_R;
58 disp ("%", delhr_t*100," and, the improvement in heat
       rate is")
59
60 // part(d) decrease of steam flow to the condenser
      per kWh due to feed heating
61 q_s=m*(H-h_n);
62 q_r=H_c-h_c;
63 \text{ w_t=q_s-q_r};
64 \text{ wt_m=w_t/m};
65 \text{ sf_r=3600/wt_m};
66 \text{ s_c=sf_r/m};
67 // without feed heating
68 \text{ wt}_f = H - H_c;
69 m_wf=3600/wt_f;
70 sr_c = (m_wf - s_c)/m_wf;
71 disp ("%", sr_c*100," (d) the decrease in steam
```

```
reaching the condenser is")
72 disp("comment: the calculation for the improvement in efficiency is wrong in the book.")
```

Combined Cycle Plants

Scilab code Exa 5.1 Calculation on combined cycle power plant

```
1 // scilab Code Exa 5.1. Calculation on combined
     cycle power plant
3 P_gt=1e5; // Power Output in kW
4 m_g=400; // mass flow rate of the exhaust gas in kg/
5 cp_g=1.157; // Specific Heat of gas at Constant
     Pressure in kJ/(kgK)
6 x=0.9; // dryness fraction of steam at the turbine
     exit
8 // part(a) Determining capacity of the boiler in kg
     of steam per hour
9 p1=90; // steam Pressure at the entry of steam
     turbine in bar
10 // from steam tables
11 t_6s=303.3; // saturation temperature at 90 bar in
     degree C
12 t_5s=t_6s;
```

```
13 h_fg=1380.8; // from steam table liquid vapour
      enthalpy at 90 bar
14 pp=20; // pinch point in degree C
15 t_6=t_6s+pp;
16 h_5s = 2744.6;
17 h_6s=1363.8;
18
19 t4=592.6; // Exhaust gas temperature at gas turbine
       end in degree C
20 T4=t4+273; // in Kelvin
21 p_c=0.1; // Condenser pressure in bar
22 t7=176; // Exhaust gas temperature at stack in
      degree C
23 T7=t7+273; // in Kelvin
24 h_7s=191.8; // Specific Enthalpy of water in kJ/kg
25
26 \text{ m_st} = (\text{m_g*cp_g*(t_6-t7)})/(\text{h_6s-h_7s});
27 disp ("tonnes/hr", m_st*3.6, "(a) capacity of the
      boiler in kg of steam per hour is")
28
29 // part(b) temperature of steam at turbine entry
30 t_5=t_6+((m_st*(h_5s-h_6s))/(m_g*cp_g)); // energy
      balance for the evaporator
31
32 h_4s=h_5s+(m_g*cp_g*(t4-t_5)/m_st);
33 t_4s=540; // in degree C from steam table at p=90
      bar
34 disp("degree celsius", t_4s, "(b) temperature of steam
      at turbine entry is")
35
36 // part(c)steam turbine plant output and thermal
      efficiency
37 h_5=2350;
38 h_6 = 2150;
39 \text{ w_st_s=h_4s-h_5};
40 w_st_g=w_st_s*(m_st/m_g);
41 \quad P_st=m_st*w_st_s;
42 disp("MW", P_st/10e02,"(c) Power output of the steam
```

```
turbine plant is")
43 \quad q_st=h_4s-h_7s;
44 \text{ n_st=w_st_s/q_st};
45 disp ("%" ,n_st*100," thermal Efficiency of staem
      turbine plant is")
46
47 // part(d) thermal efficiency of the combined cycle
      plant
48 n_gt=0.2666; // Gas turbine plant Efficiency
49 \text{ w_gt=P_gt/m_g};
50 q_gt=w_gt/n_gt;
51 n_c = (w_gt + w_st_g)/q_gt;
52 disp ("%", n_c*100," (d) thermal Efficiency of
      combined cycle plant is")
53 disp("Comment: Error in Textbook, Answers vary due
      to Round-off Errors")
```

Scilab code Exa 5.2 combined gas and steam cycle power plant

```
// scilab Code Exa 5.2 combined gas and steam cycle
    power plant
P_gt=10e03; // Power Output in kW
n_st=0.32; // Steam turbine power plant Efficiency

// part(a)steam turbine plant output
n_gt=0.2; // Gas turbine plant Efficiency
q_gt=P_gt/n_gt;
q_st=(1-n_gt)*q_gt;
P_st=n_st*q_st;
disp("MW",P_st/10e02,"(a)Power output of the steam turbine plant is")

// part(b) thermal efficiency of the combined cycle
```

```
plant
13 n_c=n_gt+n_st-(n_gt*n_st);
14 disp ("%" ,n_c*100,"(b)thermal Efficiency of
        combined cycle plant is")
15
16 // part(c) the heat rate of the combined cycle plant
17 hr_c=3600/n_c;
18 disp ("kJ/kWh",hr_c," (c)Heat Rate of the combined
        cycle plant is")
```

Fluid dynamics

Scilab code Exa 6.1 inward flow radial turbine 32000rpm

```
1 // scilab Code Exa 6.1 inward flow radial turbine
      32000 \mathrm{rpm}
2 P=150; // Power Output in kW
3 N=32e3; // Speed in RPM
4 d1=20/100; // outer diameter of the impeller in m
5 d2=8/100; // inner diameter of the impeller in m
6 V1=387; // Absolute Velocity of gas at entry in m/s
7 V2=193; // Absolute Velocity of gas at exit in m/s
9 // part(a) determining mass flow rate
10 u1 = \%pi * d1 * N/60;
11 u2=d2*u1/d1;
12 w_at=u1^2/10e2;
13 m=P/w_at;
14 \operatorname{disp} ("kg/s" ,m,"(a) mass flow rate is")
15
16 // part (b) determining the percentage energy
      transfer due to the change of radius
17 n=((u1^2-u2^2)/2e3)/w_at;
```

```
18 disp ("%",n*100,"(b) percentage energy transfer due to the change of radius is")
```

Scilab code Exa 6.2 radially tipped Centrifugal blower 3000rpm

```
1 // scilab Code Exa 6.2 radially tipped Centrifugal
      blower 3000rpm
2 P=150; // Power Output in kW
3 N=3e3; // Speed in RPM
4 d2=40/100; // outer diameter of the impeller in \boldsymbol{m}
5 d1=25/100; // inner diameter of the impeller in m
6 b=8/100; // impeller width at entry in m
7 n_st=0.7; // stage efficiency
8 V1=22.67; // Absolute Velocity at entry in m/s
9 ro=1.25; // density of air in kg/m<sup>3</sup>
10
11 // part(a) determining the pressure developed
12 u2 = \%pi*d2*N/60;
13 u1=d1*u2/d2;
14 w_ac=u2^2;
15 delh_s=n_st*w_ac;
16 delp=ro*delh_s;
17 disp ("mm W.G.", delp/9.81,"(a) the pressure
      developed is")
18
19 // part (b) determining the power required
20 \quad A1 = \%pi * d1 * b;
21 \text{ m=ro*V1*A1};
22 P=m*w_ac/10e2;
23 disp("kW",P,"(b) Power required is")
```

Scilab code Exa 6.3 Calculation on an axial flow fan

```
// scilab Code Exa 6.3 Calculation on an axial flow
fan

N=1.47e3; // Speed in RPM
d=30/100; // Mean diameter of the impeller in m
ro=1.25; // density of air in kg/m3

// part(b) determining the pressure rise across the fan
u=%pi*d*N/60;
w_c=u^2/3;
delp=ro*w_c;
disp ("mm W.G.", delp/9.81,"(b) the pressure rise across the fan is")
```

Dimensional Analysis and Performance Parameters

Scilab code Exa 7.1 Calculation for the specific speed

```
1 // scilab Code Exa 7.1 Calculation for the specific
      speed
2 funcprot(0)
3 //part(a) specific speed of gas turbine
4 P=2e3; // Gas Turbine Power Output in kW
5 N=16e3; // Speed in RPM
6 T1=1e3; // Entry Temperature in Kelvin
7 p1=50; // Entry Pressure in bar
8 p2=25; // Exit Pressure in bar
9 cp=1.15e3; // Specific Heat at Constant Pressure in
      J/(kgK)
10 gamma_g=1.3;
11 omega=\%pi*2*N/60;
12 ro=p1*1e5/(((gamma_g-1)/gamma_g)*cp*T1);
13 pr=p2/p1; // pressure ratio
14 T2s=T1*(pr^((gamma_g-1)/gamma_g));
15 delh_s=cp*(T1-T2s);
```

```
16 NS=omega*sqrt(P*10e2/ro)*delh_s^(-5/4)
17 disp(NS,"(a) the specific speed of gas turbine is")
18
19 // part(b) the specific speed of a centrifugal
      compressor
20 pr_b=2; // Compressor pressure ratio
21 N_b=24e3; // Speed in RPM
22 m=1.5; // in kg/s
23 cp_a=1.005e3; // Specific Heat of air at Constant
      Pressure in kJ/(kgK)
24 R = 0.287;
25 \quad \text{gamma} = 1.4;
26 T1_b=300; // Entry Temperature in Kelvin
27 pl_b=1; // Entry Pressure in bar
28 \text{ ro_b=p1_b*1e2/(R*T1_b)};
29 omega_b=%pi*2*N_b/60;
30 \quad Q=m/ro_b;
31 T2=T1_b*(pr_b^((gamma-1)/gamma));
32 \text{ delh_s_b=cp_a*(T2-T1_b)};
33 NS_b = omega_b * sqrt(Q) * delh_s_b^(-3/4);
34 disp(NS_b,"(b) the specific speed of a centrifugal
      compressor is")
35
36 // part(c)the specific speed of an axial compressor
37 pr_c=1.4; // Compressor pressure ratio
38 N_c=6e3; // Speed in RPM
39 m_c=15; // in kg/s
40 omega_c=\%pi*2*N_c/60;
41 Q_c=m_c/ro_b;
42 T2_c=T1_b*(pr_c^((gamma-1)/gamma));
43 delh_s_c=cp_a*(T2_c-T1_b);
44 NS_c = omega_c * sqrt(Q_c) * delh_s_c^(-3/4)
45 disp(NS_c,"(c)the specific speed of an axial
      compressor is")
```

Scilab code Exa 7.2 Calculating the discharge and specific speed

```
1
2 // scilab Code Exa 7.2 Calculating the discharge of
     a geometrically similar blower and specific speed
       of the fan
3 pr=2; // Compressor pressure ratio
4 N1=1.47e3; // fan Speed in RPM
5 N2=0.36e3; // blower Speed in RPM
6 Q1=2; // discharge in m3/s
7 h=10e-3; // in m W.G.
8 \text{ ro}_{w}=10e2;
9 ro_a=1.25; // density of air in kg/m3
10 omega1=\%pi*2*N1/60;
11 g=9.81; // in m/s2
12 p = ro_w * g * h
13 H=p/(ro_a*g);
14 delh_s=g*H;
15 NS=omega1*sqrt(Q1)*delh_s^(-3/4)
16 disp(NS, "the specific speed is")
17 // for the same specific speed of two geometrically
      similar fans
18 a=N1/N2;
19 Q2=a^2*Q1;
20 disp("m3/s",Q2,") and the discharge of a
      geometrically similar blower is")
```

Scilab code Exa 7.3 Calculation on a small compressor

```
1 // scilab Code Exa 7.3 Calculation on a small
      compressor
2 pr=1.6; // Compressor pressure ratio
3 \text{ N1=54e3}; // Speed in RPM
4 n_c=0.85; // efficiency
5 \text{ m_a=1.5778}; // \text{ in kg/s}
6 cp_a=1.009; // Specific Heat of air at Constant
      Pressure in kJ/(kgK)
7 \quad \text{gamma} = 1.4;
8 // part (a) determining the power required to drive
      the compressor
9 T01=300; // Entry Temperature in Kelvin
10 p01=1.008; // Entry Pressure in bar
11 n = (gamma - 1) / gamma;
12 T2s=T01*(pr^n);
13 delh_s=cp_a*(T2s-T01)/n_c;
14 P=m_a*delh_s;
15 disp("kW",P,"(a) Power required to drive the
      compressor is")
16
17 // part (b) determining the speed, mass flow rate,
      pressure ratio and power required of a
      geometrically similar compressor
18 // geometrically similar compressor of 3 times the
      size of small compressor is constructed
19 N2=N1/3;
20 disp("rpm", N2,"(b)(i) speed of a geometrically
      similar compressor is")
21 \text{ m}2=9*\text{m}_a;
22 \operatorname{disp}("kg/s", m2,"(b)(ii)) mass flow rate of a
      geometrically similar compressor is")
23 disp(pr,"(b)(iii) pressure ratio of a geometrically
      similar compressor is")
24 P2 = 9 * P;
25 disp("kW", P2,"(b)(iv) Power required is")
```

Scilab code Exa 7.4 Calculation on design of a single stage gas turbine

```
1 // scilab Code Exa 7.4 Calculation on a single stage
       gas turbine
3 \text{ gammag=1.33};
4 \text{ gamma} = 1.4
5 R_g = 284.1;
6 R = 287;
7 P=1e3; // Power Output in kW
8 N1=3e3; // Speed in RPM
9 n_t=0.87; // efficiency
10 cp_g=1.145; // Specific Heat of gas at Constant
      Pressure in kJ/(kgK)
11 cp_a=1.0045; // Specific Heat of air at Constant
      Pressure in kJ/(kgK)
12
13 // part (a) mass flow rate of the gas through the
      turbine
14 T01=1000; // Entry Temperature in Kelvin
15 p01=2.5; // Entry Pressure in bar
16 T01a=500; // Entry Temperature of air in Kelvin
17 p01a=2; // Entry Pressure of air in bar
18 p02=1; // Exit Pressure in bar
19 pr0=p01/p02;
20 T02=T01*(pr0^(-((gamma_g-1)/gamma_g)));
21 delh_s1=cp_g*(T01-T02)*n_t;
22 m_g=P/delh_s1;
23 disp("kg/s",m_g,"(a) mass flow rate of the gas
      through the turbine is")
24
25 // part (b) speed, mass flow rate, pressure ratio and
```

```
power required
26 N2=sqrt(1/2)*5*N1;
27 disp("rpm",N2,"(b)(i)speed of a geometrically similar compressor is")
28 a=0.2; // a=D2/D1;
29 m2=(a^2)*sqrt(R_g/R)*sqrt(T01/T01a)*(p01a/p01)*m_g;
30 disp("kg/s",m2,"(b)(ii)mass flow rate of a geometrically similar turbine is")
31 delh_s2=0.5*delh_s1;
32 P2=m2*delh_s2;
33 disp("kW",P2,"(b)(iii)Power developed is")
34 pr=(1-(delh_s2/(cp_a*T01a*n_t)))^(-1/((gamma-1)/gamma));
35 disp(pr,"(b)(iv)pressure ratio of a geometrically similar turbine is")
```

Flow Through Cascades

Scilab code Exa 8.1 Calculation on a compressor cascade

```
1 // scilab Code Exa 8.1 Calculation on a compressor
     cascade
3 V1=75; // Absolute Velocity of air at entry in m/s
4 alpha1=48; // air angle at entry
5 alpha2=25; // air angle at exit
6 p=1.1; // pitch-chord ratio
7 delps=11; // stagnation pressure loss in mm W.G.
8 ro=1.25; // density of air in kg/m3
9 g=9.81;
10 a=0.5*(tand(alpha1)+tand(alpha2));
11 alpham=atand(a);
12 b=0.5*ro*(V1^2);
13 Y=delps*g/b;
14 disp (Y,"the loss coefficient is")
15 c=(cosd(alpham)^3)/(cosd(alpha1)^2);
16 C_D=p*Y*c;
17 disp (C_D,"the drag coefficient is")
18 d=2*p*(tand(alpha1)-tand(alpha2))*cosd(alpham);
```

```
19 e=C_D*tand(alpham);
20 C_L=d-e;
21 disp (C_L,"the Lift coefficient is")
22 f=(cosd(alpha1)^2)/(cosd(alpha2)^2);
23 C_ps=1-f;
24 disp (C_ps,"the Ideal pressure recovery coefficient is")
25 C_pa=C_ps-Y;
26 disp (C_pa,"the Actual pressure recovery coefficient is")
27 n_D=C_pa/C_ps;
28 disp (n_D,"the Diffuser efficiency is")
29 n_dmax=1-(2*C_D/C_L);
30 disp (n_dmax,"the Maximum Diffuser efficiency is")
```

Scilab code Exa 8.2 Calculation on a turbine blade row cascade

```
// scilab Code Exa 8.2 Calculation on a turbine
    blade row cascade

beta1=35; // blade angle at entry
beta2=55; // blade angle at exit

i=5; // incidence
delta=2.5; // deviation
alpha1=beta1+i; // air angle at entry
alpha2=beta2-delta; // air angle at exit

t_c=0.3; // maximum thickness-chord ratio(t/l)
a_r=2.5; // aspect ratio

//part(a) optimum pitch-chord ratio from Zweifels
relation

C_z=0.8; // from Zweifel's relation
p_c=C_z/(2*(cosd(alpha2)^2)*(tand(alpha1)+tand(
```

```
alpha2)));
15 disp (p_c,"(a) the optimum pitch-chord ratio from
      Zweifels relation is")
16
17 //part(b) loss coefficient from Soderbergs and
     Hawthorne relations
18 ep=alpha1+alpha2; // deflection angle
19 Zeeta=0.075;
20 b=(1+Zeeta)*(0.975+(0.075/a_r))
21 zeeta=b-1;
22 disp (zeeta,"(b)(i)the loss coefficient from
     Soderbergs relation is")
23 z_p=0.025*(1+((ep/90)^2)); // Hawthorne's relation
24 disp (z_p,"(b)(ii)the loss coefficient from
     Hawthorne relation is")
25 z=(1+(3.2/a_r))*z_p; // the total cascade loss
      coefficient
26 \ Y=0.5*(z+zeeta);
27
28 // part(c)drag coefficient
29 alpham=atand(0.5*(tand(alpha2)-tand(alpha1)));
30 C_D=p_c*Y*(cosd(alpham)^3)/(cosd(alpha2)^2);
31 disp (C_D,"(c)the drag coefficient is")
32
33 // part(d) Lift coefficient
34 C_L=(2*p_c*(tand(alpha1)+tand(alpha2))*cosd(alpham))
     +(C_D*tand(alpham));
35 disp (C_L,"(d)the Lift coefficient is")
```

Scilab code Exa 8.3 Calculation on a compressor cascade

```
1 // scilab Code Exa 8.3 Calculation on a compressor cascade
```

```
2 theta=25; // Camber angle
3 gamma_a=30; // stagger angle
4 i=5; // incidence
5 t_c=0.031; // momentum thickness-chord ratio(t/l)
6 p_c=1; // pitch-chord ratio
8 //part(a)cascade blade angles
9 beta1=((2*gamma_a)+theta)*0.5; // blade angle at
10 beta2=((2*gamma_a)-theta)*0.5; // blade angle at
      exit
11 disp ("(a) therefore, the blade angles are")
12 disp ("degree", beta1, "beta1=")
13 disp ("degree", beta2, "beta2=")
14
15 //part(b) the nominal air angles
16 alpha1=beta1+i; // air angle at entry
17 alpha2=atand(tand(alpha1)-(1.55/(1+(1.5*p_c)))); //
      air angle at exit
18 disp ("(b) therefore, the air angles are")
19 disp ("degree", alpha1, "alpha1=")
20 disp ("degree", alpha2, "alpha2=")
21
22 //part(c) stagnation pressure loss coefficient
23 Y=2*t_c*p_c*(cosd(alpha1)^2)/(cosd(alpha2)^3);
24 disp (Y,"(c) the stagnation pressure loss coefficient
      is")
25
26 // part(d)drag coefficient
27 alpham=atand(0.5*(tand(alpha1)+tand(alpha2)));
28 C_D=p_c*Y*(cosd(alpham)^3)/(cosd(alpha1)^2);
29 disp (C_D,"(d)the drag coefficient is")
30
31 // part(e) Lift coefficient
32 \quad C_L = (2*p_c*(tand(alpha1)-tand(alpha2))*cosd(alpham))
      -(C_D*tand(alpham));
33 disp (C_L,"(e)the Lift coefficient is")
```

Scilab code Exa 8.4 Calculation on a blower type annular cascade tunnel

```
1 // scilab Code Exa 8.4 blower type annular cascade
     tunnel
3 t = 35;
4 T=t+273; // test Temperature in Kelvin
5 p=1.02; // test Pressure in bar
6 dm=50/100; // mean diameter of the impeller blade in
      \mathbf{m}
7 b=15/100; // blade length in m
8 n_o=0.6; // stage efficiency
9 R = 287;
10 c=100; // Maximum Velocity upstream of the cascade
     in m/s
11 ro=p*10e4/(R*T); // density of air in kg/m3
12
13 // part(a) determining the total pressure developed
     by the blower
14 d_h=0.5*ro*(c^2);
15 \ loss=0.1*d_h;
16 delp=d_h+loss;
17 disp ("mm W.G.", delp/9.81, "(a) the pressure
      developed is")
18
19 // part (b) determining the discharge
20 A=%pi*dm*b; // the annulus cross-sectional area
21 Q = c * A;
22 disp ("m3/min", Q*60, "(b) the discharge is")
23
24 // part (c) determining the power required to drive
     the blower
```

```
25 P=Q*delp/(n_o*10e2);
26 disp("kW",P,"(c)Power required to drive the blower
    is")
```

Scilab code Exa 8.5 Calculation on a compressor type radial cascade tunnel

```
1 // scilab Code Exa 8.5 compressor type radial
     cascade tunnel
3 M=0.7; // Mach Number
4 pr=0.721; // pr=pt/p0 From isentropic gas tables
5 t_{opt}=0.911; // t_{opt}=Tt/T0
6 pa=1.013; // Atmospheric Pressure in bar
7 Ta=306; // in K
8 \text{ n\_c=0.65}; // efficiency
9 R = 288;
10 \text{ gamma} = 1.4;
11 alpha=30;
12 dm=45/100; // mean diameter of the impeller blade in
13 b=10/100; // blade width in m
14 cp_a=1.008; // Specific Heat of air at Constant
      Pressure in kJ/(kgK)
15
16 // part(a) pressure ratio of the compressor
17 pr_c=1/pr;
18 disp(pr_c,"(a) pressure ratio of the compressor is")
19
20 // part(b) stagnation pressure in the settling
     chamber
21 p02=pa*pr_c;
22 disp("bar",p02,"(b) stagnation pressure in the
```

```
settling chamber is")
23
24 // part(c) test section conditions(static pressure,
      temperature and velocity)
25 \quad n = (gamma - 1) / gamma;
26 T02s=Ta*(pr_c^((gamma-1)/gamma));
27 T02=Ta+((T02s-Ta)/n_c);
28 \quad T_t = t_opt * T02;
29 p_t=pr*p02;
30 c_t=M*sqrt(gamma*R*T_t);
31 disp("(c) test section conditions are given by: ")
32 disp("bar",p_t," static pressure of air in the test
      section is")
33 disp("K",T_t," static temperature of air in the test
      section is")
34 disp("m/s",c_t," velocity of air in the test section
      is")
35
36 // part(d) determining mass flow rate
37 c_r=c_t*sind(alpha);
38 ro_t=p_t*1e5/(R*T_t); // density of air in kg/m3
39 \quad A_t = \%pi*dm*b;
40 \text{ m=ro\_t*A\_t*c\_r};
41 disp("kg/s",m,"(d) mass flow rate of compressor is")
42
43 // part (e) determining the power required to drive
      the air compressor
44 delh_s=cp_a*(T02-Ta);
45 P=m*delh_s;
46 disp("kW",P,"(e)Power required to drive the air
      compressor is")
```

Axial Turbine Stages

Scilab code Exa 9.1 Calculation on multi stage turbine

```
1 // scilab Code Exa 9.1 Calculation on multi stage
      turbine
3 d=1; // mean diameter of the impeller blade in m
4 T1=500; // Initial Temperature in degree C
5 t1=T1+273; // in Kelvin
6 p1=100; // Initial Pressure in bar
7 N=3e3; // Speed in RPM 8 m=100; // in kg/s
9 alpha2=70; // exit angle of the first stage nozzle
      blades
10
11 // part(a) single stage impulse
12 nsti=0.78;
13 u = \%pi * d * N / 60;
14 sigma=0.5*(sind(alpha2)); // maximum utilization
      factor
15 \text{ c2=u/sigma};
16 \text{ cx=c2*(cosd(alpha2))};
```

```
17 beta2=atand(0.5*(tand(alpha2))); // beta2=beta3
18 wst=2*(u^2)*1e-3;
19 P=m*wst;
20 disp("(a) for single stage impulse")
21 disp("degree", beta2, "blade angles are beta2=beta3="
22 disp("MW",P*1e-3," Power developed is")
23
24 sv=0.04; // specific volume of steam after expansion
       in m3/kg
25 h=(m*sv)/(cx*\%pi*d); // h2=h3=h
26 disp("cm",h*1e2,"blade height is")
27 delhs=wst/nsti;
28 disp("final state of the steam is")
29 p=81.5; // from enthalpy-entropy diagram
30 \quad T = 470;
31 disp("bar",p,"p=")
32 disp("degree C",T,"T=")
33
34 // part(b) Two-stage Curtis wheel
35 \text{ nstc=0.65};
36 \quad u = \%pi*d*N/60;
37 sigma2=0.25*(sind(alpha2));
38 \text{ c2}_2=\text{u/sigma2};
39 \text{ cx2=c2_2*(cosd(alpha2))};
40 beta2_2=atand((3*u)/cx2); // beta2=beta3
41 alpha3=atand((2*u)/(c2_2*cosd(alpha2))); // alpha2'=
      alpha3
42 beta2_s=atand((u)/cx2); // beta2'=beta3'
43 wI=6*(u^2)*1e-3;
44 wII = 2*(u^2)*1e-3;
45 \text{ wst2=wI+wII};
46 P2=m*wst2:
47 disp("(b) for Two-stage Curtis wheel")
48 disp("degree",alpha3, air angles are alpha2s=alpha3=
       ")
49 disp("degree", beta2_2, "for first stage blade angles
      are beta2=beta3=")
```

```
50 disp("degree", beta2_s, "for second stage blade angles
       are beta2s=beta3s=")
51
52 disp("MW", P2*1e-3, "Power developed is")
53
54 delhs2=wst2/nstc;
55 // from enthalpy-entropy diagram for the expansion
56 disp ("final state of the steam is")
57 p2=27;
58 T2 = 365;
59 v2=0.105; // specific volume of steam after
      expansion in m3/kg
60 disp("bar",p2,"p=")
61 disp("degree C",T2,"T=")
62 disp("m3/kg", v2, "v=")
63 h2=(m*v2)/(cx2*\%pi*d);
64 disp("cm", h2*1e2, "blade height is")
65
66 // part(c) Two-stage Reateau wheel
67 \text{ nst1} = 0.78;
68 wI3=2*(u^2)*1e-3;
69 wII3=2*(u^2)*1e-3;
70 wst3=wI3+wII3;
71 P3=m*wst3;
72 disp("(c) for Two-stage Reateau wheel")
73 disp("degree", beta2, "blade angles are beta2=beta3="
      )
74 disp("MW", P3*1e-3, "Power developed is")
75 delhs3=wst3/nst1;
76 disp("final state of the steam is")
77 p3=65; // from enthalpy-entropy diagram
78 \quad T3 = 445;
79 v3=0.05; // specific volume of steam after expansion
       in m3/kg
80 disp("bar",p3,"p=")
81 disp("degree C", T3, "T=")
82 disp("m3/kg", v3, "v=")
83 h3=(m*v3)/(cx*\%pi*d);
```

```
84 disp("cm", h3*1e2," blade height for the second stage
       is")
85
 86 // part(d) single stage 50% reaction
87 nstr=0.85;
88 sigma4=sind(alpha2); // maximum utilization factor
89 c2_4=u/sigma4; // c2_4=w_3
90 cx4=c2_4*(cosd(alpha2)); // alpha2=beta3;
91 beta2_4=0; // beta2=alpha3
92 \text{ wst4} = (u^2) * 1e - 3;
93 \quad P4=m*wst4;
94 disp("(d) for single stage 50% reaction")
95 disp("degree", beta2_4, "blade angles are beta2=alpha3
      = ")
96 disp("degree", alpha2, "and beta3=alpha2=")
97 disp("MW", P4*1e-3, "Power developed is")
98 delhs4=wst4/nstr;
99 // from enthalpy-entropy diagram
100 disp("final state of the steam is")
101 p4=90;
102 \quad T4 = 485;
103 \quad v4 = 0.035;
104 disp("bar",p4,"p=")
105 disp("degree C", T4, "T=")
106 disp("m3/kg", v4, "v=")
107 h4 = (m*v4)/(cx4*\%pi*d);
108 disp("cm", h4*1e2," the rotor blade height at exit is"
       )
```

Scilab code Exa 9.2 Calculation on an axial turbine stage

```
1 // scilab Code Exa 9.2 Calculation on an axial turbine stage
```

```
3 dh=0.450; // hub diameter in m
4 dt=0.750; // tip diameter in m
5 d=0.5*(dt+dh); // mean diameter of the impeller
      blade in m
6 \text{ r=d/2}:
7 T1=500; // Initial Temperature in degree C
8 t1=T1+273; // in Kelvin
9 p1=100; // Initial Pressure in bar
10 N=6e3; // rotor Speed in RPM
11 m=100; // in kg/s
12 alpha2m=75; // air angle at nozzle exit
13 beta2m=45; // air angle at rotor entry
14 beta3m=76; // air angle at rotor exit
15 u = \%pi*d*N/60;
16 uh = \%pi * dh * N/60;
17 ut=\%pi*dt*N/60;
18 // for mean section
19 c2m=(cosd(beta2m)/sind(alpha2m-beta2m))*u;
20 cx2m=c2m*cosd(alpha2m);
21 ct2m=c2m*sind(alpha2m);
22 ct3m = (cx2m*tand(beta3m)) - u;
23 \quad C2=r*ct2m;
24 \quad C3=r*ct3m;
25
26 // part(a) the relative and absolute air angles
27 disp("for mean section")
28 disp("(a) the relative and absolute air angles are")
29 disp("degree", beta2m, "air angle at rotor entry is
      beta2m = ")
30 disp("degree", beta3m, air angle at rotor exit is
      beta3m = ")
31 disp("degree", alpha2m, "air angle at nozzle exit is
      alpha2m = ")
32 // part(b) degree of reaction
33 \quad cx = cx2m;
34 R=cx*(tand(beta3m)-tand(beta2m))*100/(2*u);
35 disp("%",R,"(b) degree of reaction is")
```

```
36 // part(c) blade-to-gas speed ratio
37 sigma=u/c2m;
38 disp(sigma,"(c)blade-to-gas speed ratio is")
39 // part(d) specific work
40 omega=2*\%pi*N/60;
41 w=omega*(C2+C3);
42 \operatorname{disp}("kJ/kg", w*1e-3,"(d) \operatorname{specific work is"})
43 // part(e) the loading coefficient
44 z=w/(u^2);
45 disp(z,"(e)the loading coefficient is")
46
47 // for hub section
48 rh=dh/2;
49 alpha2h=atand(C2/(rh*cx));
50 disp("for hub section")
51 disp("(a) the relative and absolute air angles are")
52 disp("degree", alpha2h, "air angle at nozzle exit is
      alpha2h=")
53 beta2h=atand(tand(alpha2h)-(uh/cx));
54 disp ("degree", beta2h, "air angle at rotor entry is
      beta2h = ")
55 beta3h=atand((C3/(rh*cx))+(uh/cx));
56 disp ("degree", beta3h, "air angle at rotor exit is
      beta3h = ")
57 // part(b) degree of reaction
58 Rh=cx*(tand(beta3h)-tand(beta2h))*100/(2*uh);
59 disp("%",Rh,"(b) degree of reaction is")
60 // part(c) blade-to-gas speed ratio
61 c2h=cx/(cosd(alpha2h));
62 sigmah=uh/c2h;
63 disp(sigmah,"(c)blade-to-gas speed ratio is")
64 // part(d) specific work
65 wh=uh*cx*(tand(beta3h)+tand(beta2h));
66 \operatorname{disp}("kJ/kg", wh*1e-3,"(d) \operatorname{specific} work is")
67 // part(e) the loading coefficient
68 \text{ zh=wh/(uh^2)};
69 disp(zh,"(e)the loading coefficient is")
70
```

```
71 // for tip section
72 \text{ rt}=dt/2;
73 alpha2t=atand(C2/(rt*cx));
74 disp("for tip section")
75 disp("(a) the relative and absolute air angles are")
76 disp("degree", alpha2t, "air angle at nozzle exit is
      alpha2t = ")
77 beta2t=atand(tand(alpha2t)-(ut/cx));
78 disp("degree", beta2t, "air angle at rotor entry is
      beta2t = ")
79 beta3t=atand((C3/(rt*cx))+(ut/cx));
80 disp("degree", beta3t, "air angle at rotor exit is
      beta3t = ")
81 // part(b) degree of reaction
82 Rt=cx*(tand(beta3t)-tand(beta2t))*100/(2*ut);
83 disp("%",Rt,"(b)degree of reaction is")
84 // part(c) blade-to-gas speed ratio
85 c2t=cx/(cosd(alpha2t));
86 sigmat=ut/c2t;
87 disp(sigmat,"(c)blade-to-gas speed ratio is")
88 // part(d) specific work
89 wt=ut*cx*(tand(beta3t)+tand(beta2t));
90 \operatorname{disp}("kJ/kg", wt*1e-3,"(d) \operatorname{specific} work is")
91 // part(e) the loading coefficient
92 zt=wt/(ut^2);
93 disp(zt,"(e)the loading coefficient is")
```

Scilab code Exa 9.3 Calculation on an axial turbine stage

```
1 // scilab Code Exa 9.3 Calculation on an axial
    turbine stage
2
3 dh=0.450; // hub diameter in m
```

```
4 dt=0.750; // tip diameter in m
5 d=0.5*(dt+dh); // mean diameter of the impeller
      blade in m
6 \text{ r=d/2};
7 R_m=0.5; // degree of reaction for mean section
8 T1=500; // Initial Temperature in degree C
9 t1=T1+273; // in Kelvin
10 p1=100; // Initial Pressure in bar
11 N=6e3; // rotor Speed in RPM
12 m=100; // in kg/s
13 alpha2m=75; // air angle at nozzle exit
14 beta_2m=0; // air angle at rotor entry
15 beta_3m=75; // air angle at rotor exit
16 // assuming radial equillibrium and free vortex flow
       in the stage, axial velocity is constant
      throughout
17 u_m = \%pi*d*N/60;
18 uh=%pi*dh*N/60;
19 ut=\%pi*dt*N/60;
20 // for mean section
21 c_xm=u_m*cotd(alpha2m);
22 c_2m = (1/sind(alpha2m))*u_m;
23 \quad c_t2m=u_m;
24
25 disp("for mean section")
26 // part(c) blade-to-gas speed ratio
27 \text{ sigma_m=u_m/c_2m};
28 disp(sigma_m,"(c)blade-to-gas speed ratio is")
29 // part(d) specific work
30 \quad w_m = u_m * c_t 2m;
31 \operatorname{disp}("kJ/kg", w_m*1e-3,"(d) \operatorname{specific} work is")
32 // part(e) the loading coefficient
33 shi_m=w_m/(u_m^2);
34 disp(shi_m,"(e) the loading coefficient is")
35
36 // for hub section
37 \text{ rh}=dh/2;
38 n = (sind(alpha2m)^2);
```

```
39 c_x2h = c_xm*((r/rh)^n);
40 c_{t2h} = c_{t2m} * ((r/rh)^n);
41 c_2h = c_2m * ((r/rh)^n);
42 disp("for hub section")
43 disp("(a) the relative air angles are")
44 beta2h=atand((c_t2h-uh)/c_x2h);
45 disp("degree", beta2h, "air angle at rotor entry is
      beta2h = ")
46 beta3h=atand(uh/c_x2h);
47 disp ("degree", beta3h, "air angle at rotor exit is
      beta3h = ")
48 // part(b) degree of reaction
49 Rh=c_x2h*(tand(beta3h)-tand(beta2h))*100/(2*uh);
50 disp("%",Rh,"(b) degree of reaction is")
51 // part(c) blade-to-gas speed ratio
52 sigmah=uh/c_2h;
53 disp(sigmah,"(c)blade-to-gas speed ratio is")
54 // part(d) specific work
55 \text{ wh=uh*c_t2h};
56 disp("kJ/kg", wh*1e-3,"(d) specific work is")
57 // part(e) the loading coefficient
58 \text{ shi}_h=\text{wh}/(\text{uh}^2);
59 disp(shi_h,"(e)the loading coefficient is")
60
61 // for tip section
62 \text{ rt}=dt/2;
63 c_x2t=c_xm*((r/rt)^n);
64 c_t2t=c_t2m*((r/rt)^n);
65 c_2t=c_2m*((r/rt)^n);
66 disp("for tip section")
67 disp("(a) the relative air angles are")
68 beta2t=atand((c_t2t-ut)/c_x2t);
69 disp("degree", beta2t, "air angle at rotor entry is
      beta2t = ")
70 beta3t=atand(ut/c_x2t);
71 disp("degree", beta3t, "air angle at rotor exit is
      beta3t = ")
72 // part(b) degree of reaction
```

```
Rt=c_x2t*(tand(beta3t)-tand(beta2t))*100/(2*ut);

disp("%",Rt,"(b)degree of reaction is")

// part(c) blade-to-gas speed ratio

sigmat=ut/c_2t;

disp(sigmat,"(c)blade-to-gas speed ratio is")

// part(d) specific work

wt=ut*c_t2t;

disp("kJ/kg",wt*1e-3,"(d)specific work is")

// part(e) the loading coefficient

shi_t=wt/(ut^2);

disp(shi_t,"(e)the loading coefficient is")
```

Scilab code Exa 9.4 axial turbine stage 3000 rpm

```
1 // scilab Code Exa 9.4 axial turbine stage 3000 rpm
3 d=1; // mean diameter of the impeller blade in m
4 r=d/2;
5 N=3e3; // rotor Speed in RPM
6 \text{ a_r(1)=1}; // aspect ratio
7 a_r(2) = 2;
8 a_r(3)=3;
9 alpha2=70; // air angle at nozzle exit
10 alpha3=0;
11 beta_2=54; // air angle at rotor entry
12 sigma=0.5*(sind(alpha2)); // blade to gas speed
      ratio
13 u = \%pi*d*N/60;
14 \text{ c2=u/sigma;}
15 cx=c2*(cosd(alpha2));
16 beta_3=beta_2; // air angle at rotor exit
17 phi=cx/u;
18 e_R=beta_2+beta_3; // Rotor deflection angle
```

```
19 zeeta_p_N=0.025*(1+((alpha2/90)^2)); // profile loss
       coefficient for nozzle
20 zeeta_p_R=0.025*(1+((e_R/90)^2)); // profile loss
      coefficient for rotor
21 for i=1:3
22 disp(a_r(i), "when Aspect ratio=")
23 zeeta_N=(1+(3.2/a_r(i)))*zeeta_p_N; // total loss
      coefficient for nozzle
24 zeeta_R=(1+(3.2/a_r(i)))*zeeta_p_R; // total loss
      coefficient for rotor
25 \quad a=(zeeta_R*(secd(beta_3)^2))+(zeeta_N*(secd(alpha2)))
      ^2));
26 b=phi*(tand(alpha2)+tand(beta_3))-1;
27 c=(zeeta_R*(secd(beta_3)^2))+(zeeta_N*(secd(alpha2)
      ^2))+(secd(alpha3)^2);
28 n_{tt=inv}(1+(0.5*(phi^2)*(a/b)));
29 disp("%",n_tt*1e2,"total-to-total efficiency is")
30 n_{ts}=inv(1+(0.5*(phi^2)*(c/b)));
31 disp("%",n_ts*1e2,"total-to-static efficiency is")
32 end
```

Scilab code Exa 9.5 Calculation on a gas turbine stage

```
// scilab Code Exa 9.5 Calculation on a gas turbine
stage

Rm=0.5; // Degree of reaction
funcprot(0);
T1=1500; // in Kelvin
p1=10; // Initial Pressure in bar
N=12e3; // rotor Speed in RPM
m=70; // in kg/s
pr=2; // Pressure Ratio
```

```
10 n_st=0.87; // Stage Efficiency
11 alpha_2=60; // Fixed Blade exit angle
12 cp=1005; // Specific Heat at Constant Pressure in J
      /(kgK)
13 R = 287;
14 \quad \text{gamma} = 1.4;
15 n = (gamma - 1) / gamma;
16 T3ss=T1/(pr^n);
17 delh1_3=cp*(T1-T3ss)*n_st;
18 delh1_2=0.5*delh1_3;
19 c2=sqrt(2*delh1_2);
20 sigma_opt=sind(alpha_2);
21 u=sigma_opt*c2;
22 // part(a) Flow coefficient
23 \text{ cx=c2*cosd(alpha_2)};
24 phi=cx/u;
25 disp(phi,"(a)Flow coefficient is")
26
27 // part(b) mean diameter of the stage
28 d=u*60/(%pi*N);
29 disp("m",d,"(b) mean diameter of the stage is")
30
31 // part(c) power developed
32 P=m*delh1_3;
33 disp("MW", P*1e-6," (c) power developed is")
34
35 // part(d) pressure ratio across the fixed and rotor
       blade rings
36 delh1_3ss=delh1_3/n_st;
37 \text{ delT1}_3 = \text{delh1}_3/\text{cp};
38 delT1_3ss=delh1_3ss/cp;
39 stage_loss=delT1_3ss-delT1_3;
40 \text{ delT1}_2=\text{delh1}_2/\text{cp};
41 delT1_2s=delT1_2+(0.5*stage_loss)
42 pr_stator = ((1-(delT1_2s/T1))^(-1/n));
43 disp(pr_stator,"(d)pressure ratio across the fixed
      blade rings is")
44 pr_rotor=pr/pr_stator;
```

```
45 disp(pr_rotor, and pressure ratio across the rotor
      blade rings is")
46
47 // part(e) hub-tip ratio of the rotor
48 p2=p1/pr_stator;
49 T2 = T1 - del T1_2;
50 \text{ ro2}=(p2*1e5)/(R*T2);
51 12=m/(ro2*cx*\%pi*d);
52 p3=p2/pr_rotor;
53 T3=T1-delT1_3;
54 \text{ ro3=p3*1e5/(R*T3)};
55 \ 13=m/(ro3*cx*\%pi*d);
56 \quad 1=0.5*(12+13);
57 \text{ rm} = d/2;
58 \text{ rh=rm-(1/2)};
59 \text{ rt}=\text{rm}+(1/2);
60 disp(rh/rt,"(e)hub-tip ratio of the rotor is")
61
62 // part(f) degree of reaction at the hub and tip
63 Rh=1-((1-Rm)*(rm^2/rh^2));
64 Rt=1-((1-Rh)*(rh^2/rt^2));
65 disp("%", Rh*1e2," (f) degree of reaction at the hub is
66 disp("%", Rt*1e2," (f) degree of reaction at the tip is
```

Axial Compressor Stages

Scilab code Exa 11.1 Calculation on an axial compressor stage

```
1 // scilab Code Exa 11.1 Calculation on an axial
     compressor stage
3 Rm=0.5; // Degree of reaction
4 funcprot(0);
5 T1=300; // in Kelvin
6 p1=1; // Initial Pressure in bar
7 gamma=1.4;
8 N=18e3; // rotor Speed in RPM
9 d=36/100; // Mean Blade ring diameter in m
10 h=6/100; // blade height at entry in m
11 cx=180; // Axial velocity in m/s
12 alpha_1=25; // air angle at rotor and stator exit
13 wdf=0.88; // work-done factor
14 m=70; // in kg/s
15 pr=2; // Pressure Ratio
16 n_st=0.85; // Stage Efficiency
17 n_m=0.967; // Mechanical Efficiency
18 cp=1005; // Specific Heat at Constant Pressure in J
```

```
/(kgK)
19 R = 287;
20 u = \%pi*d*N/60;
21 \quad n = (gamma - 1) / gamma;
22
23 // part(a) air angles at rotor and stator entry
24 cy1=cx*tand(alpha_1);
25 \text{ wy1} = u - cy1;
26 beta1=atand(wy1/cx);
27 disp ("degree", beta1, "air angles at rotor and stator
      entry are beta1=alpha2=")
28 phi=cx/u;
29
30 // part(b) mass flow rate of the air
31 \text{ ro1}=(p1*1e5)/(R*T1);
32 \quad A1 = \%pi * d * h;
33 \quad m = ro1 * cx * A1;
34 disp("kg/s",m,"(b) mass flow rate of the air is")
35
36 // part(c) Determining power required to drive the
      compressor
37 beta2=alpha_1;
38 w=wdf*u*cx*(tand(beta1)-tand(beta2))
39 P=m*w/n_m;
40 disp ("kW", P/1000,"(c) Power required to drive the
      compressor is")
41
42 // part(d) Loading coefficient
43 shi=w/(u^2);
44 disp (shi,"(d)Loading coefficient is")
45
46 // part(e) pressure ratio developed by the stage
47 delTa=w/cp;
48 delTs=n_st*delTa;
49 pr = ((1+(delTs/T1))^(1/n));
50 disp(pr,"(e) pressure ratio developed by the stage is
      ")
51
```

```
52 // part(f) Mach number at the rotor entry
53 w1=cx/(cosd(beta1));
54 Mw1=w1/sqrt(gamma*R*T1);
55 disp(Mw1,"(f)Mach number at the rotor entry is")
```

Scilab code Exa 11.2 Calculation on an axial compressor stage

```
1 // scilab Code Exa 11.2 Calculation on an axial
     compressor stage
2
3 T1=314; // in Kelvin
4 p1=768; // Initial Pressure in mm Hg
5 N=18e3; // rotor Speed in RPM
6 d=50/100; // Mean Blade ring diameter in m
7 u=100; // peripheral speed in m/s
8 h=6/100; // blade height at entry in m
9 beta1=51;
10 beta2=9;
11 alpha_1=7; // air angle at rotor and stator exit
12 wdf=0.95; // work-done factor
13 m=25; // in kg/s
14 n_st=0.88; // Stage Efficiency
15 n_m=0.92; // Mechanical Efficiency
16 cp=1005; // Specific Heat at Constant Pressure in J
     /(kgK)
17 R=287;
18 gamma=1.4;
19 n = (gamma - 1) / gamma;
20
21 // part(a) air angle at stator entry
22 cx=u/(tand(alpha_1)+tand(beta1));
23 disp(cx, "cx=")
24 alpha2=atand(tand(alpha_1)+tand(beta1)-tand(beta2))
```

```
25 disp ("degree", alpha2, "air angle at stator entry is
      alpha2=")
26
27 // part(b) blade height at entry and hub-tip
      diameter ratio
28 ro1=(p1/750*1e5)/(R*T1);
29 h1=m/(ro1*cx*\%pi*d);
30 disp("cm", h1*1e2,"(b) blade height at entry is")
31 dh = d - h1;
32 disp(dh,"dh=")
33 dt=d+h1;
34 disp(dt, "dt=")
35 disp(dh/dt, "and hub-tip diameter ratio is")
36
37 // part(c) stage Loading coefficient
38 w=wdf*u*cx*(tand(beta1)-tand(beta2));
39 shi=w/(u^2);
40 disp (shi,"(d)Loading coefficient is")
41
42 // part(d) stage pressure ratio
43 \text{ delTa=w/cp};
44 delTs=n_st*delTa;
45 pr = ((1+(delTs/T1))^(1/n));
46 disp(pr,"(e) pressure ratio developed by the stage is
      ")
47
48 // part(e) Determining power required to drive the
      compressor
49 P=m*w/n_m;
50 disp ("kW", P/1000,"(e) Power required to drive the
      compressor is")
```

Scilab code Exa 11.3 Calculation on an axial compressor stage

```
1 // scilab Code Exa 11.3 Calculation on an axial
     compressor stage
3 // part(c) Verification of stage efficiency of exa
     11.1
4 beta1=54.82;
5 alpha_1=25;
6 beta2=alpha_1;
7 alpha_2=beta1;
8 phi=0.53; // Flow coefficient
9 YR=0.09; // loss coefficient for the blade rows
10 n_st=1-((phi*YR*(secd(beta1)^2))/(tand(beta1)-tand(
     beta2)))
11 disp("%",n_st*1e2," stage efficiency n_st=")
12 // part(d) Determining efficiencies of the rotor and
      Diffuser blade rows
13 n_D=1-(YR/(1-((secd(alpha_1)^2)/(secd(alpha_2)^2))))
14 disp ("%", n_D*100," Efficiency of the diffuser n_D=
     n_R = "
```

Scilab code Exa 11.4 Calculation on hub mean and tip sections

```
// scilab Code Exa 11.4 Calculation on hub, mean and
tip sections

dm=50/100; // Mean Blade ring diameter in m

rm=dm/2;
dh=0.3098354; // from results of exa 11.2

dt=0.6901646;

um=100; // peripheral speed in m/s

beta_1m=51;
beta_2m=9;
alpha_1m=7; // air angle at rotor and stator exit
```

```
11 alpha_2m=50.177922;
12 omega=um/rm;
13 rh=dh/2;
14 \text{ rt}=dt/2;
15 uh = omega * rh;
16 ut=omega*rt;
17
18 // part(a) rotor blade air angles
19 cx = 73.654965;
20 c_theta1m=cx*tand(alpha_1m);
21 C1=rm*c_theta1m;
22 \text{ c_theta1h=C1/rh};
23 c_theta1t=C1/rt;
24 c_theta2m=cx*tand(alpha_2m);
25 \quad C2=rm*c_theta2m;
26 c_theta2h=C2/rh;
27 c_theta2t=C2/rt;
28 disp("(a) the rotor blade air angles are")
29 // for hub section
30 alpha1h=atand(C1/(rh*cx));
31 alpha2h=atand(C2/(rh*cx));
32 disp("for hub section")
33 disp("degree", alpha1h, "alpha1h=")
34 disp("degree",alpha2h,"alpha2h=")
35 beta1h=atand((uh/cx)-tand(alpha1h));
36 beta2h=atand((uh/cx)-tand(alpha2h));
37 disp("degree", beta1h, "beta1h=")
38 disp("degree", beta2h, "beta2h=")
39
40 // for tip section
41 alpha1t=atand(C1/(rt*cx));
42 alpha2t=atand(C2/(rt*cx));
43 disp("for tip section")
44 disp("degree", alpha1t, "alpha1t=")
45 disp("degree", alpha2t, "alpha2t=")
46 beta1t=atand((ut/cx)-tand(alpha1t));
47 beta2t=atand((ut/cx)-tand(alpha2t));
48 disp("degree", beta1t, "beta1t=")
```

```
49 disp("degree", beta2t, "beta2t=")
50
51 // part(b)Flow coefficients
52 disp("(b)Flow coefficients are")
53 phi_h=cx/uh;
54 disp(phi_h, "phi_h=")
55 \text{ phi_m=cx/um};
56 disp(phi_m, "phi_m=")
57 phi_t=cx/ut;
58 \text{ disp(phi_t,"phi_t=")}
59 // part(c) degrees of reaction
60 disp("(c) Degrees of reaction are")
61 Rh=cx*(tand(beta1h)+tand(beta2h))*100/(2*uh);
62 disp("%", Rh, "Rh=")
63 Rm = cx*(tand(beta_1m)+tand(beta_2m))*100/(2*um);
64 disp("%", Rm, "Rm=")
65 Rt=cx*(tand(beta1t)+tand(beta2t))*100/(2*ut);
66 disp("%", Rt, "Rt=")
67
68 // part(d) specific work
69 \text{ w=omega*(C2-C1)};
70 disp("kJ/kg", w*1e-3,"(d) specific work is")
71 // part(e) the loading coefficients
72 disp("(e)the loading coefficients are")
73 shi_h=w/(uh^2);
74 disp(shi_h, "shi_h=")
75 shi_m=w/(um^2);
76 disp(shi_m, "shi_m=")
77 shi_t=w/(ut^2);
78 disp(shi_t, "shi_t=")
```

Scilab code Exa 11.5 Forced Vortex axial compressor stage

```
1 // scilab Code Exa 11.5 Forced Vortex axial
      compressor stage
3 dm=50/100; // Mean Blade ring diameter in m
4 rm=dm/2;
5 dh=0.3098354; // from results of exa 11.2
6 dt = 0.6901646;
7 um=100; // peripheral speed in m/s
8 beta_1m=51;
9 beta2m=9;
10 alpha_1m=7; // air angle at rotor and stator exit
11 alpha_2m=50.177922;
12 omega=um/rm;
13 rh=dh/2;
14 rt=dt/2;
15 uh=omega*rh;
16 ut=omega*rt;
17 // part(a) rotor blade air angles
18 \text{ cx} = 73.654965;
19 c_theta1m=cx*tand(alpha_1m);
20 C1=c_theta1m/rm;
21 c_theta1h=C1*rh;
22 c_theta1t=C1*rt;
23 K1=cx^2+(2*(C1^2)*(rm^2));
24 \text{ cx1h} = \text{sqrt}(K1 - (2*(C1^2)*(rh^2)));
25 cx1t=sqrt(K1-(2*(C1^2)*(rt^2)));
26 c_theta2m=cx*tand(alpha_2m);
27 C2=c_theta2m/rm;
28 c_theta2h=C2*rh;
29 c_theta2t=C2*rt;
30 \text{ K2=cx^2-(2*(C2-C1)*omega*(rm^2))+(2*(C2^2)*(rm^2));}
31 \text{ cx2h} = \text{sqrt}(K2 + (2*(C2-C1)*omega*(rh^2)) - (2*(C2^2)*(rh^2))
      ^2)));
32 \text{ cx2t} = \text{sqrt} (K2 + (2*(C2-C1)*omega*(rt^2)) - (2*(C2^2)*(rt^2))
33 disp("(a) the rotor blade air angles are")
34 // for hub section
35 alpha1h=atand(C1*rh/cx1h);
```

```
36 alpha2h=atand(C2*rh/cx2h);
37 disp("for hub section")
38 beta1h=atand((uh/cx1h)-tand(alpha1h));
39 beta2h=atand((uh/cx2h)-tand(alpha2h));
40 disp("degree", beta1h, "beta1h=")
41 disp("degree", beta2h, "beta2h=")
42
43 // for tip section
44 alpha1t=atand(C1*rt/cx1t);
45 alpha2t=atand(C2*rt/cx2t);
46 disp("for tip section")
47 beta1t=atand((ut/cx1t)-tand(alpha1t));
48 beta2t=atand((ut/cx2t)-tand(alpha2t));
49 disp("degree", beta1t, "beta1t=")
50 disp("degree", beta2t, "beta2t=")
51
52 // part(b) specific work
53 \text{ wh=omega*}(C2-C1)*(rh^2);
54 \text{ wm} = \text{omega} * (C2 - C1) * (rm^2);
55 \text{ wt=omega*}(C2-C1)*(rt^2);
56 disp("kJ/kg", wh*1e-3,"(b) specific work at hub is")
57 disp("kJ/kg",wm*1e-3,"specific work at mean section
      is")
58 disp("kJ/kg", wt*1e-3, "specific work at tip is")
59 // part(c) the loading coefficients
60 disp("(c)the loading coefficients are")
61 shi_h=wh/(uh^2);
62 disp(shi_h, "shi_h=")
63 \text{ shi_m=wm/(um^2)};
64 disp(shi_m, "shi_m=")
65 shi_t=wt/(ut^2);
66 disp(shi_t, "shi_t=")
67
68 // part(c) degrees of reaction
69 disp("(d) Degrees of reaction are")
70 Rh = ((cx1h^2)*(secd(beta1h)^2)-(cx2h^2)*(secd(beta2h)
      ^2))*100/(2*wh);
71 Rm = ((cx^2) * (secd(beta_1m)^2) - (cx^2) * (secd(beta_2m))
```

Scilab code Exa 11.6 General Swirl Distribution axial compressor

```
1 // scilab Code Exa 11.6 General Swirl Distribution
      axial compressor
3 Rm=0.5; // Degree of reaction
4 dm=36/100; // Mean Blade ring diameter in m
5 \text{ rm}=dm/2;
6 N=18e3; // rotor Speed in RPM
7 h=6/100; // blade height at entry in m
8 \quad dh = dm - h;
9 dt = dm + h;
10 cx=180; // Axial velocity in m/s
11 alpha_1m=25; // air angle at rotor and stator exit
12 alpha_2m=54.820124;
13 um = \%pi * dm * N / 60;
14 omega=um/rm;
15 rh=dh/2;
16 \text{ rt}=dt/2;
17 uh=omega*rh;
18 ut=omega*rt;
19
20 // part(a) rotor blade air angles
21 c_theta1m=cx*tand(alpha_1m);
22 c_theta2m=cx*tand(alpha_2m);
23 \quad a=0.5*(c_theta1m+c_theta2m)
```

```
24 b=rm*(c_theta2m-c_theta1m)*0.5;
25 \text{ c_theta1h=a-(b/rh)};
26 c_{theta1t=a-(b/rt)};
27 K1=cx^2+(2*(a^2)*((b/(a*rm))+log(rm)));
28 cx1h = sqrt(K1 - (2*(a^2)*((b/(a*rh)) + log(rh))));
29 cx1t = sqrt(K1 - (2*(a^2)*((b/(a*rt))+log(rt))));
30
31 c_{theta2h=a+(b/rh)};
32 c_{theta2t=a+(b/rt)};
33 K2=cx^2+(2*(a^2)*(log(rm)-(b/(a*rm))));
34 cx2h = sqrt(K2 - (2*(a^2)*(log(rh) - (b/(a*rh)))));
35 cx2t = sqrt(K2 - (2*(a^2)*(log(rt) - (b/(a*rt)))));
36 disp("(a) the rotor blade air angles are")
37 // for hub section
38 alpha1h=atand(c_theta1h/cx1h);
39 alpha2h=atand(c_theta2h/cx2h);
40 disp("for hub section")
41 beta1h=atand((uh/cx1h)-tand(alpha1h));
42 beta2h=atand((uh/cx2h)-tand(alpha2h));
43 disp("degree", beta1h, "beta1h=")
44 disp("degree", beta2h, "beta2h=")
45
46 // for tip section
47 alpha1t=atand(c_theta1t/cx1t);
48 alpha2t=atand(c_theta2t/cx2t);
49 disp("for tip section")
50 beta1t=atand((ut/cx1t)-tand(alpha1t));
51 beta2t=atand((ut/cx2t)-tand(alpha2t));
52 disp("degree", beta1t, "beta1t=")
53 disp("degree", beta2t, "beta2t=")
54
55 // part(b) specific work
56 \text{ w=}2*\text{omega*b};
57 \operatorname{disp}("kJ/kg", w*1e-3,"(b) \operatorname{specific} work is")
58
59 // part(c) the loading coefficients
60 disp("(c)the loading coefficients are")
61 	 shi_h=w/(uh^2);
```

```
62 disp(shi_h, "shi_h=")
63 \text{ shi}_m=w/(um^2);
64 disp(shi_m, "shi_m=")
65 shi_t=w/(ut^2);
66 disp(shi_t, "shi_t=")
67
68 // part(c) degrees of reaction
69 disp("(d) Degrees of reaction are")
70 Rh = ((cx1h^2)*(secd(beta1h)^2) - (cx2h^2)*(secd(beta2h))
      ^2))*100/(2*w);
71 Rt=((cx1t^2)*(secd(beta1t)^2)-(cx2t^2)*(secd(beta2t)
      ^2))*100/(2*w);
72 disp("%", Rh, "Rh=")
73 disp("%",Rm*100,"Rm=")
74 disp("%", Rt, "Rt=")
75 disp("Comment: book contains wrong calculation for
      Rt value")
```

Scilab code Exa 11.7 flow and loading coefficients

```
disp(phi(i), "when flow coefficient phi=")
disp(shi(i), "then loading coefficient shi=")
end
```

Centrifugal Compressor Stage

Scilab code Exa 12.1 Calculation on a centrifugal compressor stage

```
1 // scilab Code Exa 12.1 Calculation on a centrifugal
       compressor stage
2 T01=335; // in Kelvin
3 funcprot(0);
4 p01=1.02; // Initial Pressure in bar
5 dh=0.10; // hub diameter in m
6 dt=0.25; // tip diameter in m
7 m=5; // in kg/s
8 gamma=1.4;
9 N=7.2e3; // rotor Speed in RPM
10 d1=0.5*(dt+dh); // Mean Blade ring diameter
11 cp=1005; // Specific Heat at Constant Pressure in J
     /(kgK)
12 A = \%pi * ((dt^2) - (dh^2))/4;
13 R = 287;
14 // I trial
15 ro1=(p01*1e5)/(R*T01);
16 \text{ cx0=m/(ro1*A)};
17 T0=T01-((cx0^2)/(2*cp));
```

```
18 n = (gamma - 1) / gamma;
19 p1=p01*((T0/T01)^(1/n));
20 \text{ ro}=(p1*1e5)/(R*T0);
21 cx=m/(ro*A);
22 // II Trial
23 \text{ cx}2=123;
24 T1=T01-((cx2^2)/(2*cp));
p2=p01*((T1/T01)^(1/n));
26 \text{ ro2}=(p2*1e5)/(R*T1);
27 \text{ cx1=m/(ro2*A)};
28 u1 = \%pi * d1 * N / 60;
29 beta1=atand(cx1/u1);
30 disp ("degree", beta1, "air angle at inducer blade
      entry beta1=")
31 w1=cx1/(sind(beta1));
32 \quad a1 = sqrt(gamma*R*T1);
33 Mw1 = w1/a1;
34 disp(Mw1," the Relative Mach number at inducer blade
      entry Mw1=")
35 \text{ alpha1=atand(cx1/u1)};
36 disp("degree", alpha1, air angle at IGVs exit alpha1=
37 c1=cx1/(sind(alpha1));
38 T1_new=T01-((c1^2)/(2*cp));
39 a1_new=sqrt(gamma*R*T1_new);
40 \text{ Mw1}_{new=cx1/a1}_{new};
41 disp(Mw1_new," the new value of Relative Mach number
      Mw1_new=")
```

Scilab code Exa 12.2 Calculation on a centrifugal air compressor

```
1 // scilab Code Exa 12.2 Calculation on a centrifugal air compressor
```

```
2 T01=288; // in Kelvin
3 p01=1.02; // Initial Pressure in bar
4 dh=0.10; // hub diameter in m
5 dt=0.25; // tip diameter in m
6 m=5; // in kg/s
7 gamma=1.4;
8 n = (gamma - 1) / gamma;
9 N=7.2e3; // rotor Speed in RPM
10 d2=0.45; // Impeller diameter in m
11 cp=1005; // Specific Heat at Constant Pressure in J
      /(kgK)
12 u2 = \%pi * d2 * N/60;
13 pr0=((1+(u2^2/(cp*T01)))^(1/n));
14 disp(pr0, "pressure ratio developed pr0=")
15 \text{ w=u2^2};
16 \operatorname{disp}(\mathrm{"kW/(kg/s)"}, \mathrm{w*1e-3}, \mathrm{"Power required to drive the})
       compressor P=")
```

Scilab code Exa 12.3 centrifugal compressor stage 17000 rpm

```
13 d_it=0.48; // Impeller tip diameter in m
14 d1=0.5*(dt+dh); // Mean Blade ring diameter
15 \text{ rm} = d1/2;
16 cp=1005; // Specific Heat at Constant Pressure in J
      / (kgK)
17 A = \%pi*((dt^2)-(dh^2))/4;
18 R = 287;
19 n=86; // number of iterations
20 \text{ ro01}=(p01*1e5)/(R*T01);
21 cx(1)=m/(ro01*A);
22 \quad for \quad i=1:n
23
        T1=T01-((cx(i)^2)/(2*cp));
24
        p1=p01*((T1/T01)^(1/((gamma-1)/gamma)));
25 \text{ ro1}=(p1*1e5)/(R*T1);
26 cx(i+1)=m/(ro1*A);
27 if cx(i+1) == cx(i) then
        disp("m/s", cx(i+1), "cx=")
28
       disp(T1,"T1")
29
30 disp(p1,"p1")
31 disp(ro1, "ro1")
32 end
33 end
34 \text{ cx1} = \text{cx(i+1)};
35 \quad u1m = \%pi*d1*N/60;
36 omega=u1m/rm;
37 \text{ rh}=dh/2;
38 \text{ rt}=dt/2;
39 uh=omega*rh;
40 ut=omega*rt;
41 u2=d_it*u1m/d1;
42 beta1h=atand(cx1/uh);
43 beta1m=atand(cx1/u1m);
44 beta1t=atand(cx1/ut);
45 disp("(a) Without IGVs")
46 disp ("degree", beta1h, "air angle at hub section
      beta1h=")
47 disp("degree", beta1m, "air angle at mean section
      beta1m=")
```

```
48 disp ("degree", beta1t, "air angle at tip section
      beta1t=")
49 w1t=cx1/(sind(beta1t));
50 a1=sqrt(gamma*R*T1);
51 M1t=w1t/a1;
52 disp(M1t," the maximum Mach number at inducer blade
      entry M1t=")
53 pr0=((1+(mu*n_st*(u2^2)/(cp*T01)))^(1/((gamma-1)/
      gamma)));
54 disp(pr0, "total pressure ratio developed is")
55 P=m*mu*(u2^2);
56 disp ("kW", P/1000, "Power required to drive the
      compressor without IGVs is")
57
58 // part(b) with IGVs
59 alpha1h=beta1h;
60 alpha1m=beta1m;
61 alpha1t=beta1t;
62 disp("(b)With IGVs")
63 disp("degree", alpha1h, "air angle at hub section
      alpha1h=")
64 disp("degree", alpha1m, "air angle at mean section
      alpha1m=")
65 disp("degree", alpha1t, "air angle at tip section
      alpha1t=")
66 c1t=cx1/(sind(alpha1t));
67 T1t=T01-((c1t^2)/(2*cp));
68 a1t=sqrt(gamma*R*T1t);
69 \text{ Mwlt=cx1/alt};
70 disp(Mw1t," the maximum Mach number at inducer blade
      entry Mw1t=")
71 pr0_w = ((1+(n_st*(mu*(u2^2)-(u1m^2))/(cp*T01)))^(1/((
      gamma-1)/gamma)));
72 disp(pr0_w, "total pressure ratio developed is")
73 P_w=m*(mu*(u2^2)-(u1m^2));
74 disp ("kW", P_w/1000, "Power required to drive the
      compressor is")
75 disp ("Comment: here the solution is found out using
```

programming, so this gives slightly small variation from the answers given in hte book, but answers from the present solution are exact.")

Scilab code Exa 12.4 Radially tipped blade impeller

```
1 // scilab Code Exa 12.4.b Radially tipped blade
     impeller
2 phi2=0.268; // Flow coefficient
3 T01=293; // in Kelvin
4 p01=1; // Initial Pressure in bar
5 dr=2.667; // diameter ratio (d2/d1)
6 \text{ gamma}=1.4;
7 R = 287;
8 N=8e3; // rotor Speed in RPM
9 d1=0.18; // Mean diameter at the impeller entry in m
10 u1 = \%pi * d1 * N / 60;
11 a1=sqrt(gamma*R*T01);
12 Mb1=u1/a1;
13 disp(Mb1," the Mach number at inducer blade entry Mb1
     ="
14 M2 = sqrt(((dr^2)*(Mb1^2)*(1+(phi2^2)))/(1+(0.5*(gamma)))
     -1)*(dr^2)*(Mb1^2)*(1-(phi2^2)))));
15 disp(M2," the flow Mach number at impeller exit M2=")
```

Scilab code Exa 12.5 Radially tipped blade impeller

```
1 // scilab Code Exa 12.5 Radially tipped blade impeller
```

```
2 // part(a) free vortex flow
3 r3=0.25; // volute base circle radius in m
4 c_theta3=177.5; // tangential velocity component of
      air in m/s
5 \text{ K=r3*c\_theta3};
6 b=0.12; // width in m
7 Q=5.4; // discharge in m3/s
8 n=8;
9 disp("part(a)")
10 theta(1)=\%pi/4;
11 theta(2)=%pi/2;
12 theta(3) = 3*\%pi/4;
13 theta(4)=%pi;
14 theta(5)=5*\%pi/4;
15 theta(6)=3*\%pi/2;
16 theta(7)=7*\%pi/4;
17 theta(8) = 2*\%pi;
18 disp("the volute radii at eight angular positions
      are given below:")
19 for i=1:n
        r4(i)=r3*exp(theta(i)*Q/(2*%pi*K*b))
20
        {\tt disp}\,("\,{\tt radian}"\,,{\tt theta}({\tt i})\,,"\,{\tt at}\ theta=")
21
        disp("cm",r4(i)*100,"r4=")
22
23 end
24 L=r4(8)-r3;
25 \operatorname{disp}(L/(2*r3), "(a) \operatorname{throat-to-diameter ratio} (L/d3)=")
26
27 // part(b) constant mean velocity of 145 m/s
28 cm=145; // constant mean velocity in m/s
29 disp("part(b)")
30 \text{ for } i=1:n
31
        r4b(i)=r3+(Q/(cm*b)*(theta(i)/(2*\%pi)));
        disp("radian",theta(i), "at theta=")
32
        disp("cm", r4b(i)*100, "r4=")
33
34 end
35 L_b=r4b(8)-r3;
36 \operatorname{disp}(L_b/(2*r3),"(b)\operatorname{throat-to-diameter} ratio (L/d3) =
      ")
```

Radial Turbine Stages

Scilab code Exa 13.1 ninety degree IFR turbine

```
1 // scilab Code Exa 13.1 ninety degree IFR turbine
2 t=650; // in degree C
3 T01=t+273; // in Kelvin
4 p3=1; // Exit Pressure in bar
5 \text{ gamma} = 1.4;
6 sigma=0.66; // blade-to-isentropic speed ratio
7 N=16e3; // rotor Speed in RPM
8 b2=5/100; // blade height at entry in m
9 alpha_2=20; // air angle at nozzle exit
10 d_r=0.45; // rotor diameter ratio (d3/d2)
11 p01_3=3.5; // total-to-static Pressure Ratio (p01/p3)
12 \quad n_N=0.95; // Nozzle \quad Efficiency
13 cp=1005; // Specific Heat at Constant Pressure in J
      /(kgK)
14 R = 287;
15 n = (gamma - 1) / gamma;
16
17 // part(a) the rotor diameter
18 c_0 = sqrt(2*cp*T01*(1-(p01_3^(-n))))
```

```
19 \quad u_2 = sigma * c_0;
20 d2=60*u_2/(\%pi*N);
21 disp("cm", d2*1e2,"(a) the rotor diameter is")
22
23 // part(b) air angle at rotor blade exit
24 d3=d2*d_r;
25 \text{ c_r2=u_2*tand(alpha_2)};
26 \quad u3 = \%pi*d3*N/60;
27 beta3=atand(c_r2/u3);
28 disp("degree", beta3, "(b) air angle at rotor blade
      exit beta3=")
29
30 // part(c) mass flow rate
31 T03=T01-((u_2^2)/cp);
32 T3=T03-((c_r2^2)/(2*cp));
33 T2=T3+((0.5*(u_2^2))/cp);
34 c2=u_2/(cosd(alpha_2));
35 p01_2 = (1 - (((0.5*(c2^2))/(cp*n_N))/T01))^(-1/n);
36 p01=p3*p01_3;
37 p2=p01/p01_2;
38 \text{ ro2}=(p2*1e5)/(R*T2);
39 m=ro2*c_r2*%pi*d2*b2;
40 disp("kg/s",m,"(c) mass flow rate is")
41
42 // part(d) hub and tip diameters at the rotor exit
43 ro3=(p3*1e5)/(R*T3);
44 b3=m/(ro3*c_r2*\%pi*d3);
45 \text{ dh} = d3 - b3;
46 disp("cm", dh*1e2,"(d) hub diameter at the rotor exit
      is")
47 \text{ dt} = d3 + b3;
48 disp("cm",dt*1e2,"(d)tip diameter at the rotor exit
      is")
49
50 // part(e) Determining the power developed
51 P=m*(u_2^2);
52 disp ("kW", P/1000," (e) Power developed is")
53
```

Scilab code Exa 13.2 Mach Number and loss coefficient

```
1 // scilab Code Exa 13.2 Mach Number and loss
      coefficient
2 t=650; // in degree C
3 T01=t+273; // in Kelvin
4 p3=1; // Exit Pressure in bar
5 \text{ gamma} = 1.4;
6 sigma=0.66; // blade-to-isentropic speed ratio
7 N=16e3; // rotor Speed in RPM
8 b2=5/100; // blade height at entry in m
9 alpha_2=20; // air angle at nozzle exit
10 d_r=0.45; // rotor diameter ratio (d3/d2)
11 p01_3=3.5; // total-to-static Pressure Ratio (p01/p3)
12 n_N=0.95; // Nozzle Efficiency
13 cp=1005; // Specific Heat at Constant Pressure in J
     / (kgK)
14 R = 287;
15 n = (gamma - 1) / gamma;
16 c_0 = sqrt(2*cp*T01*(1-(p01_3^(-n))))
17 u_2=sigma*c_0;
18 Mb0=u_2/sqrt(gamma*R*T01);
19
20 // part(a) Mach number at nozzle exit
21 M2 = Mb0/(cosd(alpha_2)*sqrt(1-(0.5*(gamma-1)*(Mb0^2))
      *(secd(alpha_2)^2))));
22 disp(M2,"(a) the flow Mach number at nozzle exit M2="
```

```
)
23
24 // part(b)rotor exit Relative Mach number
25 d2=60*u_2/(\%pi*N);
26 d3=d2*d_r;
27 c_r2=u_2*tand(alpha_2);
28 \quad u3 = \%pi * d3 * N / 60;
29 beta3=atand(c_r2/u3);
30 w3=u3/(cosd(beta3));
31 T03=T01-((u_2^2)/cp);
32 T3=T03-((c_r2^2)/(2*cp));
33 a3=sqrt(gamma*R*T3);
34 \text{ M3\_rel=w3/a3};
35 disp(M3_rel,"(b) the Relative Mach number at rotor
      exit is")
36
37 // part(c) Nozzle enthalpy loss coefficient
38 T2=T3+((0.5*(u_2^2))/cp);
39 c2=u_2/(cosd(alpha_2));
40 T2s=T01-((0.5*(c2^2))/(cp*n_N));
41 c2=u_2/(cosd(alpha_2));
42 zeeta_N=cp*(T2-T2s)/(0.5*(c2^2));
43 disp(zeeta_N,"(c)the Nozzle enthalpy loss
      coefficient is")
44
45 // part(d)rotor enthalpy loss coefficient
46
47 p01_2 = (1 - (((0.5*(c2^2))/(cp*n_N))/T01))^(-1/n);
48 p01=p3*p01_3;
49 p2=p01/p01_2;
50 \quad T3s = T2/((p2/p3)^n);
51 zeeta_R=cp*(T3-T3s)/(0.5*(w3^2));
52 disp(zeeta_R,"(d)the rotor enthalpy loss coefficient
       is")
53 disp("comment: Nozzle enthalpy loss coefficient
      value is not correctly calculated in the textbook
      . the above value is correct.")
```

Scilab code Exa 13.3 IFR turbine with Cantilever Blades

```
1 // scilab Code Exa 13.3 IFR turbine with Cantilever
      Blades
2 phi=0.4; // flow coefficient
3 funcprot(0);
4 P=100; // Power developed in kW
5 n_tt=0.9; // total-to-total Efficiency
6 N=12e3; // rotor Speed in RPM
7 m=1; // in kg/s
8 T01=400; // in Kelvin
9 \quad \text{gamma} = 1.4;
10 d_r=0.8; // rotor diameter ratio (d3/d2)
11 u2=sqrt(P*1000/(2*m));
12 d2=60*u2/(\%pi*N);
13 disp("cm",d2*1e2,"the rotor diameter at entry is")
14 d3=d2*d_r;
15 disp("cm",d3*1e2,"the rotor diameter at exit is")
16 beta2=atand(phi);
17 disp ("degree", beta2, "air angle at rotor entry is
      beta2=")
18 \ d3 = d2 * d_r;
19 u3 = \%pi*d3*N/60;
20 c_r2=u2*phi;
21 beta3=atand(c_r2/u3);
22 disp("degree", beta3, "air angle at rotor exit is
      beta3=")
23 \text{ cp} = 1005;
24 n = (gamma - 1) / gamma;
25 alpha_2=atand(c_r2/(2*u2));
26 disp("degree", alpha_2, "air angle at nozzle exit is
      alpha_{-}2=")
```

```
27 p01_03=(1-((2*(u2^2))/(n_tt*cp*T01)))^(-1/n);
28 disp(p01_03, "stagnation pressure ratio across the stage is")
```

Axial Fans and Propellers

Scilab code Exa 14.1 Axial fan stage 960 rpm

```
1 // scilab Code Exa 14.1 Axial fan stage 960 rpm
2 beta3=10; // rotor blade air angle at exit in degree
3 dh=0.3; // hub diameter in m
4 dt=0.6; // tip diameter in m
5 N=960; // rotor Speed in RPM
6 P=1; // Power required in kW
7 phi=0.245; // flow coefficient
8 T1=316; // in Kelvin
9 p1=1.02; //Initial Pressure in bar
10 R = 287;
11 A = \%pi * ((dt^2) - (dh^2))/4;
12 d=0.5*(dt+dh);
13 u = \%pi*d*N/60;
14 \text{ cx=phi*u};
15 Q=cx*A;
16 ro=(p1*1e5)/(R*T1);
17 delp0_st=ro*(u^2)*(1-(phi*(tand(beta3))));
18 disp("mm W.G.", delp0_st/9.81, "stage pressure rise is
```

Scilab code Exa 14.2 Downstream guide vanes

```
// scilab Code Exa 14.2 Downstream guide vanes

beta3=10; // rotor blade air angle at exit in degree

dh=0.3; // hub diameter in m

t=0.6; // tip diameter in m

n=960; // rotor Speed in RPM

phi=0.245; // flow coefficient

d=0.5*(dt+dh);

u=%pi*d*N/60;

cx=phi*u;

cy3=u-(cx*tand(beta3));

alpha3=atand(cy3/cx);

disp("the rotor blade air angles, overall efficiency, flow rate, power required and degree of reaction are the same as calculated in Ex14_1")
```

14 disp("degree", alpha3," the guide vane air angle at the entry alpha3=")

Scilab code Exa 14.3 upstream guide vanes

```
1 // scilab Code Exa 14.3 upstream guide vanes
2 beta2=86; // rotor blade air angle at inlet in
      degree
3 dh=0.3; // hub diameter in m
4 dt=0.6; // tip diameter in m
5 N=960; // rotor Speed in RPM
6 phi=0.245; // flow coefficient
7 T1=316; // in Kelvin
8 p1=1.02; //Initial Pressure in bar
9 R = 287;
10 n_o=0.647; // overall Efficiency of the drive
11 A = \%pi * ((dt^2) - (dh^2))/4;
12 d=0.5*(dt+dh);
13 u = \%pi * d * N / 60;
14 \text{ cx=phi*u};
15 Q = cx * A;
16 ro=(p1*1e5)/(R*T1);
17
18 // part(i) static pressure rise in the rotor and
      stage
19 delh0_st=(u^2)*((phi*(tand(beta2)))-1);
20 delp0_st=ro*delh0_st;
21 disp("mm W.G.", delp0_st/9.81,"(i) static pressure
      rise in the stage is")
22 beta3=atand(u/cx);
23 \text{ w2=cx/(cosd(beta2))};
24 \text{ w3=cx/(cosd(beta3))};
25 delp_r=0.5*ro*((w2^2)-(w3^2));
```

```
26 disp("mm W.G.", delp_r/9.81," and the static pressure
      rise in the rotor is")
27
28 // part(ii) the stage pressure coefficient and
      degree of reaction
29 shi = 2*((phi*(tand(beta2)))-1);
30 disp(shi,"(ii)stage pressure coefficient is")
31 DOR=0.5*((phi*(tand(beta2)))+1);
32 disp("%",DOR*1e2," and the degree of reaction is")
33
34 // part(iii) the blade air angle at the rotor exit
      and the air angle at the UGV exit
35 disp("degree", beta3, "(iii) the blade air angle at the
       rotor exit beta3=")
36 \text{ cy2=}(\text{cx*tand}(\text{beta2})) - \text{u};
37 alpha2=atand(cy2/cx);
38 disp("degree", alpha2, and the air angle at the UGV
      exit alpha2=")
39
40 // part(iv) Power required to drive the fan
41 m=ro*Q;
42 P=m*delh0_st/n_o;
43 disp("kW", P/1000," (iv) Power required to drive the
      fan is")
```

Scilab code Exa 14.4 rotor and upstream guide blades

```
5 dt=0.6; // tip diameter in m
6 N=960; // rotor Speed in RPM
7 phi=0.245; // flow coefficient
8 T1=316; // in Kelvin
9 p1=1.02; //Initial Pressure in bar
10 R = 287;
11 n_d=0.88; // Efficiency of the drive
12 n_f=0.8; // Efficiency of the fan
13 A = \%pi * ((dt^2) - (dh^2))/4;
14 d=0.5*(dt+dh);
15 u = \%pi*d*N/60;
16 \text{ cx=phi*u};
17 Q = cx * A;
18 ro=(p1*1e5)/(R*T1);
19 delh0_st=(u^2)*phi*(tand(beta2)-tand(beta3));
20 \quad n_o = n_f * n_d;
21 delp0_st=n_f*ro*delh0_st;
22 disp("mm W.G.",delp0_st/9.81," static pressure rise
      in the stage is")
23 shi=2*phi*(tand(beta2)-tand(beta3));
24 disp(shi, "stage pressure coefficient is")
25 \text{ m=ro*Q};
26 \text{ P=m*delh0_st/n_d};
27 disp("kW",P/1000,"Power required to drive the fan is
      ")
```

Scilab code Exa 14.5 DGVs and upstream guide vanes

```
1 // scilab Code Exa 14.5 DGVs and upstream guide
    vanes
2 beta2=86; // rotor blade air angle at inlet in
    degree
3 beta3=10; // rotor blade air angle at exit in degree
```

```
4 dh=0.3; // hub diameter in m
5 dt=0.6; // tip diameter in m
6 N=960; // rotor Speed in RPM
7 phi=0.245; // flow coefficient
8 T1=316; // in Kelvin
9 p1=1.02; //Initial Pressure in bar
10 R = 287;
11 n_d=0.8; // Efficiency of the drive
12 n_f = 0.85; // Efficiency of the fan
13 A = \%pi*((dt^2)-(dh^2))/4;
14 d=0.5*(dt+dh);
15 u = \%pi*d*N/60;
16 \text{ cx=phi*u};
17 Q = cx * A;
18 ro=(p1*1e5)/(R*T1);
19 delh0_st=2*(u^2)*((phi*(tand(beta2)))-1);
20 delp0_st=n_f*ro*delh0_st;
21 disp("mm W.G.", delp0_st/9.81, "static pressure rise
      in the stage is")
22 shi=4*((phi*(tand(beta2)))-1);
23 disp(shi, "stage pressure coefficient is")
24 \text{ m=ro*Q};
25 P=m*delh0_st/n_d;
26 disp("kW",P/1000,"Power of the electric motor is")
```

Scilab code Exa 14.6 open propeller fan

```
1 // scilab Code Exa 14.6 open propeller fan
2 c_u=5; // upstream velocity in m/s
3 c_s=25; // downstream velocity in m/s
4 t=37; // in degree C
5 T=t+273; // in Kelvin
6 d=0.5;
```

```
7 p=1.02; // Initial Pressure in bar
8 R = 287;
9 n_o=0.4; // overall Efficiency of the fan
10 A = \%pi*(d^2)/4;
11 c=0.5*(c_u+c_s);
12 Q = c * A;
13 ro=(p*1e5)/(R*T);
14 m = ro*c*A;
15 disp("kg/s",m,"(a) flow rate through the fan is")
16 delh_0=0.5*((c_s^2)-(c_u^2));
17 delp_0=ro*delh_0;
18 disp("mm~W.G.", delp_0/9.81,"(b) static pressure rise
      in the stage is")
19 P=m*delh_0/n_o;
20 disp("kW", P/1000," (c) Power required to drive the fan
       is")
```

Centrifugal Fans and Blowers

Scilab code Exa 15.1 Centrifugal fan stage 1450 rpm

```
1 // scilab Code Exa 15.1 Centrifugal fan stage 1450
                        rpm
   3 d1=0.18; // inner diameter of the impeller in m
  4 d2=0.2; // outer diameter of the impeller in m
  5 N=1450; // rotor Speed in RPM
  6 c1=21; // Absolute velocity at entry in m/s
  7 w1=20; // relative velocity at entry in m/s 8 c2=25; // Absolute velocity at exit in m/s
  9 w2=17; // relative velocity at exit in m/s
10 m=0.5; // flow rate in kg/s
11 n_m=0.78; // overall Efficiency of the motor
12 ro=1.25; // density of air in kg/m3
13
14 \text{ u1=\%pi*d1*N/60};
15 u2 = \%pi * d2 * N/60;
16 delp_r=0.5*ro*((w1^2)-(w2^2))+(0.5*ro*((u2^2)-(u1^2))
17 delp0_st=0.5*ro*(((w1^2)-(w2^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2))+((u2^2)-(u1^2)-(u1^2))+((u2^2)-(u1^2)-(u1^2)-(u1^2))+((u2^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)-(u1^2)
```

```
c2^2)-(c1^2)));

18 disp("mm W.G.",delp0_st/9.81,"(a)stage pressure rise is")

19 DOR=delp_r/delp0_st;
20 disp(DOR,"(b)the degree of reaction is")
21 w_st=delp0_st/ro;
22 P=m*w_st/n_m;
23 disp("W",P,"(c)the motor Power required to drive the fan is")
```

Scilab code Exa 15.2 Centrifugal blower 3000 rpm

```
1 // scilab Code Exa 15.2 Centrifugal blower 3000 rpm
3 beta2=90; // rotor blade air angle at inlet in
      degree
4 N=3e3; // rotor Speed in RPM
5 T1=310; // in Kelvin
6 p1=0.98; //Initial Pressure in bar
7 R = 287;
8 n_d=0.88; // Efficiency of the drive
9 n_f=0.82; // Efficiency of the fan
10 Q=200/60; // discharge in m3/s
11 h=1000; // mm column of water
12 delp0=h*9.81;
13 Pi=Q*delp0/1000; // ideal power
14 P=Pi/(n_d*n_f);
15 disp("kW",P,"(a) Power required by the electric motor
      is")
16
17 // part(b) impeller diameter
18 ro=(p1*1e5)/(R*T1);
19 u2=sqrt(delp0/(ro*n_f));
```

```
20 d2=u2*60/(\%pi*N);
21 disp("cm", d2*1e2,"(b) the impeller diameter is")
22
23 // part(c) inner diameter of the blade ring
24 c_r2=0.2*u2;
25 c_i = 0.4 * u2;
26 d1=sqrt(Q*4/(%pi*c_i));
27 disp("cm",d1*1e2,"(c)the inner diameter of the blade
       ring is")
28
29 // part(d) air angle at the entry
30 u1=u2*d1/d2;
31 beta1=atand(c_r2/u1);
32 disp("degree", beta1, "(d) the air angle at the entry
      beta1=")
33
34 // part(e) impeller widths at entry and exit
35 b1=Q/(c_r2*\%pi*d1);
36 disp("cm",b1*1e2,"(e)the impeller width at entry is"
      )
37 b2=b1*d1/d2;
38 disp("cm", b2*1e2, "and the impeller width at exit is"
39
40 // part(f) number of impeller blades
41 z=8.5*sind(beta2)/(1-(d1/d2));
42 disp(z,"(f) the number of impeller blades is")
43
44 // part(g) the specific speed
45 \text{ gH}=u2^2;
46 omega=2*\%pi*N/60;
47 NS=omega*sqrt(Q)/(gH^(3/4));
48 disp(NS,"(g)the dimensionless specific speed is")
```

Wind Turbines

Scilab code Exa 16.1 Wind turbine output 100 kW

```
1 // scilab Code Exa 16.1 Wind turbine output 100 kW
3 c_u=48*5/18; // wind upstream velocity in m/s
4 n=0.95; // overall Efficiency of the drive
5 P=100; // aerogenerator power output in kW
6 n_m=0.9; // mechanical Efficiency of the drive
7 n_a=0.7; // aerodynamic Efficiency
8 ro=1.125; // density of air in kg/m3
9 cp_max=0.593; // power coefficient for the windmill(
     Pi/Pu)
10
11 // part(a) propeller diameter of the windmill
12 A=2*P*1e3/(ro*(c_u^3)*n*n_m*n_a*cp_max);
13 d = sqrt(4*A/\%pi);
14 disp("m",d,"(a) the propeller diameter of the
     windmill is")
15
16 // part(b)
17 disp("(b) corresponding to maximum power")
```

```
18 c=2*c_u/3;
19 disp("m/s",c," the wind velocity through the
        propeller disc is")
20 delp1_a=5*ro*(c^2)/8;
21 disp("mm W.G.",delp1_a/9.81," the gauge pressure just
        before the disc is")
22 delp2_a=-3*ro*(c^2)/8;
23 disp("mm W.G.",delp2_a/9.81," the gauge pressure just
        after the disc is")
24 Fx=(delp1_a-delp2_a)*A;
25 disp("kN",Fx*1e-3," and the axial thrust is")
```

Miscellaneous Solved Problems in Turbomachines

Scilab code Exa 18.1 Gas Turbine nozzle row

```
1 // scilab Code Exa 18.1 Gas Turbine nozzle row
3 T1=600; // Entry Temperature of the gas in Kelvin
4 p1=10; // Inlet Pressure in bar
5 \text{ gammag=1.3};
6 delT=32; // Temperature drop of the gas(T1-T2) in K
7 cp_g=1.23*1e3; // Specific Heat of gas at Constant
     Pressure in kJ/(kgK)
8 pr1_2=1.3; // pressure ratio (p1/p2)
9 T2s=T1/(pr1_2^((gamma_g-1)/gamma_g));
10 delTs=T1-T2s;
11
12 // part(a) nozzle efficiency
13 n_N=delT/delTs;
14 disp("%", n_N*100,"(a) nozzle efficiency is")
15
16 // part(b)
```

```
17 disp("(b)(i) for ideal flow:")
18 p2=p1/pr1_2;
19 h_01 = cp_g * T1;
20 h2s=cp_g*T2s;
21 c_2s = sqrt((h_01 - h2s)/0.5);
22 disp("m/s",c_2s," the nozzle exit velocity is")
23 R_g = cp_g * ((gamma_g - 1)/gamma_g);
24 M_2s=c_2s/(sqrt(gamma_g*R_g*T2s));
25 disp(M_2s," and the Mach number is")
26 disp("(b)(ii) for actual flow:")
27 T2=T1-delT;
28 \quad a2 = sqrt(gamma_g*R_g*T2);
29 c_2=sqrt((cp_g*delT)/0.5);
30 disp("m/s",c_2," the nozzle exit velocity is")
31 M2=c_2/a2;
32 disp(M2, "and the Mach number is")
33
34 // part(c) stagnation pressure loss across the
      nozzle
35 p01=p1;
36 p02=p2/0.79; // from isentropic gas tables p2/p02
      =0.79 at gamma=1.3 and M2=0.613
37 delp0=p01-p02;
38 disp("bar",delp0,"(c)the stagnation pressure loss
      across the nozzle is")
39
40 // part(d) nozzle efficiency based on stagnation
      pressure loss
41 delp=p1-p2;
42 \text{ n_N_a=1-(delp0/delp)};
43 disp("%",n_N_a*100,"(d)the nozzle efficiency based
      on stagnation pressure loss is")
```

Scilab code Exa 18.2 Steam Turbine nozzle

```
1 // scilab Code Exa 18.2 Steam Turbine nozzle
3 t1=550; // Entry Temperature in Kelvin
4 p1=170; // Inlet Pressure in bar
5 p2=120.7; // Exit Pressure in bar
6 d=1; // Mean Blade ring diameter in m
7 alpha_2=70; // nozzle angle in degree
8 gamma_g=1.3; // for superheated steam
9 R=0.5*1e3; // in J/kgK
10 m = 280; // in kg/s
11
12 // part(a) exit velocity c2 of steam
13 h1=3440; // from superheated steam tables at p1 and
     t1
14 h2=3350; // at p2
15 t2=503; // at p2 in degree C
16 v_s2=0.0268; // Specific Volume at p2 in m3/kg
17 c_2 = sqrt((h1-h2)*1e3/0.5);
18 disp("m/s",c_2,"(a)the nozzle exit velocity is")
19
20 // part(b)
21 \quad T2=t2+273;
22 a2=sqrt(gamma_g*R*T2);
23 M2=c_2/a2;
24 disp(M2,"(b) and the exit Mach number is")
25
26 // part(c)
27 \text{ cx=c_2*cosd(alpha_2)};
28 h=m*v_s2/(%pi*cx*d);
29 disp("cm",h*1e2,"(c)nozzle blade height at exit is")
30
31 T2s=0.87*(t1+273); // T2s/T1=0.87 from gas tables
32 p2s=0.546*p1; // p2s/p1=0.546 from gas tables
33 vs_s=0.031; // from steam tables
34 a_s=sqrt(gamma_g*R*T2s);
35 disp("m/s",a_s," the corresponding nozzle exit
```

```
velocity is")
36 cx_s=a_s*cosd(alpha_2);
37 m_max=cx_s*%pi*d*h/(vs_s);
38 disp("kg/s",m_max,"the maximum possible mass flow rate is")
```

Scilab code Exa 18.3 Irreversible flow in nozzles

```
// scilab Code Exa 18.3 Irreversible flow in nozzles
pr=0.843; // pr=p/p0
n_n=0.95; // nozzle efficiency
gamma=1.4;
Ms=0.5; // from gas tables for gammma and pr value
Ma=sqrt((2/(gamma-1))*(n_n/(1-n_n+(2/((gamma-1)*(Ms_2))))));
disp(Ma, "actual value of the Mach number is")
```

Scilab code Exa 18.4 Calculation on a Diffuser

```
// scilab Code Exa 18.4 Calculation on a Diffuser

pe=35; // Initial Pressure in mm W.G.

pa=1.0135; // ambient pressure in bar

c1=100; // entry velocity in m/s

C_pa=0.602; // actual pressure recovery coefficient

ro=1.25; // density in kg/m3

g=9.81; // Gravitational acceleration in m/s^2

Ar=1.85; // Area Ratio of Diffuser
```

```
11 // part(a)
12 C_ps=1-(1/(Ar^2));
13 disp(C_ps,"(a)ideal value of the pressure recovery
      coefficient is")
14
15 // part(b)
16 \text{ n_D=C_pa/C_ps};
17 disp ("%",n_D*1e2,"(b) Efficiency of the diffuser is"
18
19 // part(c)
20 p1=pa+(pe*g*1e-5);
21 p01=p1+(0.5*ro*(c1^2)*1e-5);
22 delp_0=(C_ps-C_pa)*(0.5*ro*(c1^2)*1e-5);
23 disp("mm W.G.", delp_0*1e5/g,"(c) the stagnation
      pressure loss across the diffuser is")
24
25 // part(d)
26 p02=p01-delp_0;
27 c2=c1/Ar;
28 p2=p02-(0.5*ro*(c2^2)*1e-5);
29 disp("mm W.G.", (p2-pa)*1e5/g," (d) the gauge pressure
      at the diffuser exit is")
```

Scilab code Exa 18.5 Calculation on a Draft Tube

```
// scilab Code Exa 18.5 Calculation on a Draft Tube

c2=6.25; // exit velocity in m/s

ro=1e3; // density in kg/m3

g=9.81; // Gravitational acceleration in m/s^2

AR=1.6; // Area Ratio of Diffuser

Q=100; // discharge in m3/s
```

```
8 n_D=0.82; // Efficiency of the Draft Tube
10 // part(a)
11 c1=c2*AR;
12 A1=Q/c1;
13 disp("m2", A1,"(a) area of cross-section at entry is")
14 A2=A1*AR;
15 disp("m2", A2, "and the area of cross-section at exit
      is")
16
17 // part(b)
18 delHi = ((c1^2) - (c2^2))/(2*g);
19 delH_a=delHi*n_D;
20 disp("m",delH_a,"(b)actual head gained by the Draft
      Tube is")
21
22 // part(c)
23 \text{ m=ro*Q};
24 \text{ delP_a=m*g*delH_a};
25 disp("MW", delP_a*1e-6," (c) the additional power
      generated is")
26
27 // part (d)
28 Loss=delHi-delH_a;
29 disp("m", Loss, "(d) the loss of head due to losses in
      the draft tube is")
```

Scilab code Exa 18.6 Calculations on a Gas Turbine

```
4 T01=1335; // Turbine inlet temp in Kelvin
5 p01=10; // Turbine Inlet Pressure in bar
6 c2=150; // exit velocity in m/s
7 pr0=10; // Turbine pressure ratio
8 gamma_g=1.67;
9 T2=560; // Temperature of gases at exit in Kelvin
10 cp_g=1.157; // Specific Heat of gas at Constant
      Pressure in kJ/(kgK)
11
12 // part(a) Determining total to total efficiency
13 T02=T2+(0.5*(c2^2)/(cp_g*1e3));
14 T02s=T01/(pr0^((gamma_g-1)/gamma_g));
15 n_{tt}=(T01-T02)/(T01-T02s);
16 disp("%", n_tt*100,"(a) total to total efficiency is")
17
18
19 // part(b) Determining total to static efficiency
20 T2s=T02s-(0.5*(c2^2)/(cp_g*1e3));
21 \text{ n_ts} = (T01 - T02) / (T01 - T2s);
22 disp("%", n_ts*100,"(b) total to static efficiency is"
     )
23
24 // part(c) Determining the polytropic efficiency
25 \text{ n_p=((gamma_g)/(gamma_g-1))*((log(T01/T02))/(log(pr0)))}
26 disp("%",n_p*100,"(c)polytropic efficiency is")
27
28 // part(d) Determining power developed by the
      turbine
29 P=m*cp_g*(T01-T02);
30 disp("MW", P/1e3," (d) Power developed by the turbine
      is")
```

Scilab code Exa 18.7 RHF of a three stage turbine

```
1 // scilab Code Exa 18.7 RHF of a three stage turbine
3 p1=1.0; // Initial Pressure in bar
4 gamma=1.4;
5 T1=1500; // Initial Temperature in K
6 s=3; // number of stages
7 opr=11; // Overall Pressure Ratio
8 pr=opr^(1/s); // equal Pressure Ratio in each stage
9 n_T=0.88; // Overall Efficiency
10 delTa=T1*(1-opr^(-((gamma-1)/gamma)))*n_T;
11 T2=T1-delTa;
12 n_p=(log(T1/T2))/(((gamma-1)/gamma)*(log(opr))); //
      polytropic or small stage efficiency
13 cp=1.005; // Specific Heat at Constant Pressure in
     kJ/(kgK)
14 \text{ n_st} = (1-\text{pr^(n_p*(-((gamma-1)/gamma))))}/(1-\text{pr^(-((}
      gamma-1)/gamma))); // stage efficiency
15 T(1)=T1;
16 for i=1:3
       delT(i)=T(i)*(1-pr^(n_p*(-((gamma-1)/gamma))));
17
       delw_s(i) = delT(i) * cp/n_st;
18
       T(i+1)=T(i)-delT(i);
19
20 end
21 \text{ w_a=cp*delTa};
22 \text{ w_s=w_a/n_T};
23 RHF=(delw_s(1)+delw_s(2)+delw_s(3))/w_s;
24 disp(RHF," the reheat factor is")
```

Scilab code Exa 18.8 Calculation on an air compressor

```
1 // scilab Code Exa 18.8 Calculation on an air
```

```
compressor
2
3 funcprot(0)
4 p1=1.0; // Initial Pressure in bar
5 T1=305; // Initial Temperature in degree K
6 k=16; // number of stages
7 m=400; // mass flow rate through the compressor in
     kg/s
8 p_rc=10; // overall Pressure Ratio
9 gamma=1.4; // Specific Heat Ratio
10 cp=1.005; // Specific Heat at Constant Pressure in
     kJ/(kgK)
11 n_p=0.88; // polytropic efficiency
12
13 // part(a) Determining stage Pressure Ratio
14 pr=p_rc^(1/k);
15 disp(pr,"(a) stage Pressure Ratio is")
16
17 // part(b) Determining the stage efficiency
18 T2s=T1*(pr^((gamma-1)/gamma));
19 T2=T1*(pr^((gamma-1)/(gamma*n_p)));
20 n_st = (T2s-T1)/(T2-T1);
21 disp("%", n_st*100,"(b) stage Efficiency of the
     compressor is")
22
23 // part(c) Determining power required for the first
     stage
24 P1=m*cp*(T2-T1);
25 disp ("MW", P1/1e3," (c) Power required for the first
     stage is")
26
27 // part(d) Overall Compressor Efficiency
28 T17=T1*exp(((gamma-1)/(gamma*n_p))*(log(p_rc))); //
     k+1=17;
29 T17s=T1*(p_rc^((gamma-1)/gamma));
30 n_C = (T17s - T1) / (T17 - T1);
31 disp ("%",n_C*100,"(d)Overall Compressor Efficiency
     is")
```

Scilab code Exa 18.9 Constant Pressure Gas Turbine Plant

```
1 // scilab Code Exa 18.9 Constant Pressure Gas
     Turbine Plant
3 T1=298; // Minimum Temperature in Kelvin
4 beeta=4.5; // Maximum to Minimum Temperature ratio (
     T_{\text{max}}/T_{\text{min}}
5 m=115; // mass flow rate through the turbine and
      compressor in kg/s
6 n_C=0.79; // Compressor Efficiency
7 n_T=0.83; // Turbine Efficiency
8 gamma_g=1.33;
9 R=0.287;
10 cp=(gamma_g/(gamma_g-1))*R; // Specific Heat at
      Constant Pressure in kJ/(kgK)
11 alpha=beeta*n_C*n_T;
12 t_opt=sqrt(alpha); // For maximum power output, the
      temperature ratios in the turbine and compressor
13
14 // part(a) Determining optimum pressure ratio of the
      plant
15 r=t_opt^(gamma_g/(gamma_g-1));
16 disp(r,"(a)optimum pressure ratio of the plant is")
17
18 // part(b) Carnot's efficiency
```

```
19 n_{carnot=1-(1/beeta)};
20 disp("%",n_Carnot*100,"(b)Carnot efficiency of the
      plant is")
21
22 // part(c) Determining Joule's cycle efficiency
23 \text{ n_Joule=1-(1/t_opt)};
24 disp("%", n_Joule *100,"(c) efficiency of the Joule
      cycle is")
25
26 // part(d) Determining thermal efficiency of the
      plant for maximum power output
27 \text{ n_th} = (t_opt-1)^2/((beeta-1)*n_C-(t_opt-1));
28 disp("%",n_th*100,"(d)thermal efficiency of the
      plant for maximum power output is")
29
30 // part(e) Determining power output
31 wp_max = cp*T1*((t_opt-1)^2)/n_C; // maximum work
      output
32 \quad P_{max=m*wp_{max}};
33 disp ("MW", P_max/1e3," (e) Power output is")
34
35 // part(f) Determining power generated by the
      turbine required to drive the compressor
36 T3=beeta*T1; // Maximum Temperature in degree K
37 \text{ T4s}=\text{T3}*(r^(-((gamma_g-1)/gamma_g)));
38 \quad T4=T3-((T3-T4s)*n_T);
39 P_T = m * cp * (T3 - T4);
40 disp ("MW", P_T/1e3," (f) Power generated by the
      turbine is")
41
  // part(g) Determining power absorbed by the
      compressor
43 T2s=T1*(r^((gamma_g-1)/gamma_g));
44 T2=T1+((T2s-T1)/n_C);
45 P_C = m * cp * (T2 - T1);
46 disp ("MW", P_C/1e3," (g) Power absorbed by the
      compressor is")
47
```

```
// part(h) heat supplied in the combustion chamber
Qs=m*cp*(T3-T2);
disp("MW",Qs/1e3,"(h) heat supplied in the combustion chamber is")
```

Scilab code Exa 18.10 Calculation on combined cycle power plant

```
1 // scilab Code Exa 18.10 Calculation on combined
     cycle power plant
3 P_gt=25.845; // Power Output of gas turbine plant in
      MW
4 P_st=21; // Power Output of steam turbine plant in
5 m_gt=115; // mass flow rate of the exhaust gas in kg
6 n_T=0.86; // Turbine Efficiency
7 \text{ gamma}_{g} = 1.33;
8 R=0.287;
9 cp=(gamma_g/(gamma_g-1))*R; // Specific Heat at
      Constant Pressure in kJ/(kgK)
10 T3=1341; // Maximum Temperature in gas turbine in
     degree K from Ex18.9
11 p1=84; // steam Pressure at the entry of steam
     turbine in bar
12 // from steam tables
13 t_6s=298.4; // saturation temperature at 84 bar in
      degree C
14 t_5s=t_6s;
15 h_6s=1336.1; // from steam table liquid vapour
     enthalpy at 84 bar
16 t6=535; // steam temperature at the entry of steam
     turbine in degree C
```

```
17 T6=t6+273; // in Kelvin
18 h_4s=3460; // from mollier diagram at t=535 degree C
19 h_7 = 2050;
20 p_c=0.07; // Condenser pressure in bar
21 r=8.8502464; //optimum pressure ratio from Ex18.9
22 T4=875.92974; //from Ex 18.9
23 t4=T4-273; // in degree C
24 h_7s=163.4; // Specific Enthalpy of water in kJ/kg
25 \text{ m\_st=P\_st*1e3/((h\_4s-h\_7)*n\_T); // mass flow rate of}
       the steam in kg/s
26
27 // part(a) Exhaust gas temperature at stack
28 t_7 = t4 - ((m_st*(h_4s-h_7s))/(m_gt*cp)); // energy
      balance for the economiser entry (7') to the
      superheater exit (4')
29 disp("degree celsius",t_7,"(a)Exhaust gas
      temperature at stack is")
30
31 // part(b) mass of steam per kg of gas
32 disp("kg",m_st/m_gt,"(b) mass of steam per kg of gas
      is")
33
34 // part(c) Pinch Point(PP)
35 t_6=t_7+((m_st*(h_6s-h_7s))/(m_gt*cp)); // energy
      balance for the economiser
36 \text{ PP=t}_{6}-t_{6};
37 disp("degree celsius", PP, "(c) Pinch Point (PP) is")
38
39 // part(d)thermal efficiency of steam turbine plant
40 delh4s_7ss = (h_4s-h_7)*n_T;
41 \text{ n_st=delh4s_7ss/(h_4s-h_7s)};
42 disp("%", n_st*100," (d) thermal Efficiency of steam
      turbine plant is")
43
44 // part(e) thermal efficiency of the combined cycle
      plant
45 n_B=0.978; // Assuming Combustion chamber Efficiency
46 Qs=102.72554; // heat supplied in the combustion
```

```
chamber from Ex 18.9
47 Qss=Qs/n_B; // power supplied to the combined cycle
48 n_gst=(P_gt+P_st)/Qss;
49 disp ("%" ,n_gst*100,"(e)thermal Efficiency of
        combined gas and steam power plant is")
50
51 // part(f)the dryness fraction of steam at the
        turbine exhaust
52 x=0.875; // from Mollier diagram at p=0.07 bar
53 disp(x,"(f)the dryness fraction of steam at the
        turbine exhaust is")
```

Scilab code Exa 18.11 Calculation on combined cycle power plant

```
13 t_6s=298.4; // saturation temperature at 84 bar in
      degree C
14 h_6s=1336.1; // from steam table liquid vapour
      enthalpy at 84 bar
15 pp(1)=20; // pinch point in degree C
16 \text{ pp}(2) = 28.2;
17 pp(3)=35;
18
19 for i=1:3
       printf("\nfor PP=%d degree C\n",pp(i))
21 t_6=t_6s+pp(i);
22 h_4s=3460; // from mollier diagram at t=535 degree C
23 h_7=2050;
24 p_c=0.07; // Condenser pressure in bar
25 T4=875.92974; //from Ex 18.9
26 t4=T4-273; // in degree C
27 h_7s=163.4; // Specific Enthalpy of water in kJ/kg
28
29 // part(a)steam flow per kg of gas
30 \text{ m\_st\_gt=cp*(t4-t\_6)/(h\_4s-h\_6s); // steam flow per}
     kg of gas
31 disp("kg",m_st_gt,"(a)steam flow per kg of gas is")
32
33 // part(b) Exhaust gas temperature at stack
34 t_7=t_6-((m_st_gt*(h_6s-h_7s))/(cp)); // energy
      balance for the economiser entry (7') to the
      superheater exit (4')
35 disp("degree celsius",t_7,"(b)Exhaust gas
      temperature at stack is")
36
37 // part(c)steam turbine plant output
38 h_7ss = 2247;
39 P_st=m_st_gt*m_gt*(h_4s-h_7ss);
40 disp("MW", P_st/1e3," (c) Power output of the steam
      turbine plant is")
41
42 // part(d)thermal efficiency of steam turbine plant
43 delh4s_7ss = (h_4s-h_7)*n_T;
```

```
44 \text{ n_st=delh4s_7ss/(h_4s-h_7s)};
45 disp("%", n_st*100," (d) thermal Efficiency of steam
      turbine plant is")
46
47 // part(e) thermal efficiency of the combined cycle
      plant
48 n_B=0.978; // Assuming Combustion chamber Efficiency
49 Qs=102.72554; // heat supplied in the combustion
      chamber from Ex 18.9
50 Qss=Qs/n_B; // power supplied to the combined cycle
51 n_gst = (P_gt + (P_st * 1e - 3))/Qss;
52 disp("%",n_gst*100,"(e)thermal Efficiency of
     combined gas and steam power plant is")
53 end
54
55 disp("Comment: Error in Textbook, Answers vary due
     to Round-off Errors")
```

Scilab code Exa 18.12 turbo prop Gas Turbine Engine

```
// scilab Code Exa 18.12 turbo prop Gas Turbine
Engine

7
Ti=268.65; // in Kelvin
1 n_C=0.8; // Compressor Efficiency
2 c1=85; // entry velocity in m/s
2 m=50; // mass flow rate of air in kg/s
3 R=287;
4 gamma=1.4; // Specific Heat Ratio
5 cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)
4 u=500/3.6; // speed of a turbo prop aircraft in m/s
5 delT=225; // temperature rise through the compressor
```

```
(T02-T01) in K
12 pi=.701; // Initial Pressure in bar
13 n_D=0.88; // inlet diffuser efficiency
14 a_i=sqrt(gamma*R*Ti);
15 Mi=u/a_i;
16 Toi_i=1/0.965; // (Toi/Ti) from isentropic flow gas
      tables at Mi and gamma values
17 T01=Ti*Toi_i;
18 T1=T01-(0.5*(c1^2)/(cp*1e3));
19
20 // part (a)
21 T1s_i=1+n_D*((T1/Ti)-1); // (T1s/Ti)isentropic
      temperature ratio through the diffuser
22 p1_i=T1s_i^{gamma}/(gamma-1); // (p1s/pi)isentropic
      pressure ratio
23 p1=p1_i*pi;
24 \text{ delp_D=p1-pi};
25 disp("bar", delp_D,"(a) isentropic pressure rise
      through the diffuser is")
26
27 // part(b) compressor pressure ratio
28 T02s=T01+(delT*n_C);
29 \text{ r_oc=}(T02\text{s/}T01)^{(gamma/(gamma-1))}; //compressor
      pressure ratio (p02/p01)
30 disp(r_oc,"(b)compressor pressure ratio is")
31
32 // part(c)
33 P=m*cp*delT;
34 disp("MW", P*1e-3,"(c) power required to drive the
      compressor is")
```

Scilab code Exa 18.13 Turbojet Gas Turbine Engine

```
1 // scilab Code Exa 18.13 Turbojet Gas Turbine Engine
3 T1=223.15; // in Kelvin
4 n_C=0.75; // Compressor Efficiency
5 c1=85; // entry velocity in m/s
6 m=50; // mass flow rate of air in kg/s
7 R = 287;
8 n_B=0.98; // Combustion chamber Efficiency
9 Qf=43*1e3; // Calorific Value of fuel in kJ/kg;
10 T03=1220; // Turbine inlet stagnation temp in
      Kelvin
11 n_T=0.8; // Turbine Efficiency
12 gamma=1.4; // Specific Heat Ratio
13 n_m=0.98; // Mechanical efficiency
14 sigma=0.5; // flight to jet speed ratio (u/ce)
15 n_N=0.98; // exhaust nozzle efficiency
16 cp=1.005; // Specific Heat at Constant Pressure in
      kJ/(kgK)
17 u=886/3.6; // flight speed of a turbo prop aircraft
      in m/s
18 delT=200; // temperature rise through the compressor
      (T02-T01) in K
19 pi=.701; // Initial Pressure in bar
20 n_D=0.88; // inlet diffuser efficiency
21 a1=sqrt(gamma*R*T1);
22 M1=u/a1; // Mach number at the compressor inlet
23 T1_01=0.881; // (T1/T01) from isentropic flow gas
      tables at M1 and gamma values
24 \quad T01 = T1/T1_01;
25 T1=T01-(0.5*(c1^2)/(cp*1e3));
26
27 // part(a) compressor pressure ratio
28 \quad T02s = T01 + (delT*n_C);
29 \text{ r_oc=}(T02\text{s/}T01)^{(gamma/(gamma-1))}; //compressor
      pressure ratio (p02/p01)
30 disp(r_oc,"(a) compressor pressure ratio is")
31
32 // part(b)
```

```
33 T02 = T01 + delT;
f = ((cp*T03) - (cp*T02)) / ((Qf*n_B) - (cp*T03)); // f = (ma/s)
     mf); energy balance in the combustion chamber
35 disp(1/f,"(b)Air-Fuel Ratio is")
36
37 // part(c) turbine pressure ratio
38 // turbine power input P_T=n_m*(ma+mf)*cp*(T03-T01)
39 // power input to the compressor P_{-}C=ma*cp*(T02-T01)
40 T04s=T03-(delT/(n_m*n_T*(1+f))); // from energy
      balance P_T=P_C
41 r_{ot}=(T03/T04s)^{(gamma/(gamma-1))}; //turbine
      pressure ratio (p03/p04)
42 disp(r_ot,"(c) turbine pressure ratio is")
43
44 // part(d)exhaust nozzle pressure ratio
45 ce=u/sigma; // jet velocity at the exit of the
      exhaust nozzle
46 T04=T03-(delT/(n_m*(1+f)));
47 Te=T04-(0.5*(ce^2)/(cp*1e3));
48 Tes=T04-((T04-Te)/n_N);
49 r_N=(T04/Tes)^(gamma/(gamma-1)); //exhaust nozzle
      pressure ratio (p04/pe)
50 disp(r_N,"(d)exhaust nozzle pressure ratio is")
51 ae=sqrt(gamma*R*Te);
52 Me=ce/ae; // Mach number
53 disp(Me, "and the Mach Number is")
```

Scilab code Exa 18.15 Impulse Steam Turbine 3000 rpm

```
4 u=100; // peripheral speed of the rotor blades in m/
5 cy2=200; // whirl component of the absolute velocity
      at entry of the rotor
6 cy3=0; // whirl component of the absolute velocity
      at exit of the rotor
7 alpha2=65; // nozzle angle at exit
8 n_st=0.69; // isentropic stage efficiency
9 p2=8; // steam pressure at the exit of the first
      stage in bar
10 t2=200; // steam temperature at the exit of the
      first stage in degree C
11 N=3e3; // rotor Speed in RPM
12
13 //part(a) Mean diameter of the stage
14 d=u*60/(%pi*N);
15 disp("m",d,"(a) Mean diameter of the stage is")
16
17 // part(b) mass flow rate of the steam
18 w_st=2*(u^2)*1e-3; // specific work
19 m=P/w_st;
20 disp("kg/s",m,"(b) mass flow rate of the steam is")
21
22 // part(c) isentropic enthalpy drop
23 delh_s=w_st/n_st;
24 disp("kJ/kg",delh_s,"(c) isentropic enthalpy drop is"
     )
25
26 // part(d)rotor blade angles
27 \text{ cx=cy2/(tand(alpha2))};
28 beta3=atand(u/cx);
29 disp("degree", beta3, "(d) the rotor blade angles are
      beta2=beta3=")
30
31 // part(e)blade height at the nozzle exit
32 v_s2=0.2608; // from steam tables at p2=8bar and t2
      =200 degree C
33 Q = m * v_s 2;
```

```
34 h=Q/(cx*%pi*d);
35 disp("m",h,"(e)blade height at the nozzle exit is")
```

Scilab code Exa 18.16 large Centrifugal pump 1000 rpm

```
1 // scilab Code Exa 18.16 large Centrifugal pump 1000
     rpm
3 N=1e3; // rotor Speed in RPM
4 H=45; // height in m
5 \text{ ro=1e3};
6 g=9.81; // Gravitational acceleration in m/s^2
7 n_o=0.75; // overall Efficiency of the drive
8 dr=2; // diameter ratio (d2/d1)
9 phi=0.35; // flow coefficient (cr2/u2)
10 Q=2.5; // discharge in m3/s
11
12 //part(a) Power required to drive the pump
13 P=(ro*Q*g*H)/(n_o);
14 disp("kW", P*1e-3," (a) Power required to drive the
     pump is")
15
16 // part(b) impeller diameters at entry and exit
17 u2=sqrt(g*H);
18 w_p=u2^2;
19 d2=u2*60/(\%pi*N);
20 disp("cm",d2*1e2,"(b)the impeller diameter at exit
      is")
21 d1=d2/2;
22 disp("cm",d1*1e2," and the impeller diameter at entry
      is")
23
24 //part(c) impeller width
```

```
25 c_r2=phi*u2;
26 b=Q/(c_r2*%pi*d2);
27 disp("cm",b*1e2,"(c)the impeller width is")
28
29 // part(d)impeller blade angle at the entry
30 c_r1=Q/(b*%pi*d1);
31 u1=u2/dr;
32 beta1=atand(c_r1/u1);
33 disp("degree",beta1,"(d)the impeller blade angle at the entry beta1=")
```

Scilab code Exa 18.17 three stage steam turbine

```
1 // scilab Code Exa 18.17 three stage steam turbine
2
3 t1=250; // Initial Temperature in degree C
4 n_T=0.75; // overall Efficiency of the turbine
5 p1=10; //Initial Pressure in bar
6 n_m=0.98; // Mechanical Efficiency
7 m=5;
8 N=1e3; // rotor Speed in RPM
9 H=45; // height in m
10 ro=1e3;
11 g=9.81; // Gravitational acceleration in m/s^2
12 Q=2.5; // \text{ discharge in } m3/s
13
14 P=(ro*Q*g*H)/(n_T);
15 delh_T=P/(m*n_m*1e3);
16 delh_st=delh_T/3;
17 delh1_4ss=delh_T/n_T;
18
19 //part(a)steam conditions
20 h1=2940; // from Mollier diagram
```

```
21 disp("(a)steam conditions at the turbine exit are:")
22 h_4ss=h1-delh1_4ss;
23 p4=1.2; // in bar
24 disp("bar",p4,"pressure:")
25 \text{ h4} = 2640;
26 \times 4 = 0.98;
27 t4=104.8; // in degree C
28 disp("degree C", t4, "temperature:")
29 disp(x4," the dryness fraction is:")
30
31 // part(b) stage Efficiencies
32 h2=h1-delh_st;
33 p2=5;
34 \text{ h3=h2-delh\_st};
35 p3=2.5;
36 \text{ h4=h3-delh_st};
37 \text{ h2s} = 2795;
38 \text{ h3s} = 2705;
39 \text{ h4s} = 2605;
40 \text{ n_st1=delh_st/(h1-h2s)};
41 n_st2=delh_st/(h2-h3s);
42 \text{ n_st3=delh_st/(h3-h4s)};
43 disp ("%",n_st1*100,"(b) Efficiency of the first
      stage is")
44 disp ("%", n_st2*100, "Efficiency of the second stage
45 disp ("%", n_st3*100, "Efficiency of the third stage
      is")
```

Scilab code Exa 18.18 Ljungstrom turbine 3600 rpm

```
1\ //\ \rm scilab Code Exa 18.18 Ljungstrom turbine 3600 rpm
```

```
3 d1=0.92; // inner diameter of the impeller in m
4 d2=1; // outer diameter of the impeller in m
5 N=3.6e3; // rotor Speed in RPM
6 aplha_1=20; // blade exit angle in degree
7 p2=0.1; //exit Pressure of steam in bar
8 x2=0.88; // dryness fraction at exit
9 n_st=0.83; // stage Efficiency
10 u1 = \%pi * d1 * N/60;
11 u2 = \pi * d2 * N/60;
12
13 //part(a)power developed
14 sigma=cosd(aplha_1)/2;
15 w_st=u1^2+u2^2;
16 disp("kW/(kg/s)", w_st*1e-3,"(a) power developed per
      unit flow rate is")
17
18 //part(b) isentropic enthalpy drop
19 delh_s=w_st/n_st;
20 disp("kJ/kg", delh_s*1e-3,"(b)) is entropic enthalpy
      drop is")
21
22 // part(c)steam conditions at entry
23 disp("(c)steam conditions at entry are:")
24 p1=0.18; // in bar
25 disp("bar",p1,"pressure:")
26 \times 1 = 0.9;
27 disp(x1,"the dryness fraction is:")
```

Scilab code Exa 18.19 blower type wind tunnel

```
1 // scilab Code Exa 18.19 blower type wind tunnel
2
3 T01=310; // in Kelvin
```

```
4 p01=1.013; // Initial Pressure in bar
5 n_n=0.96; // nozzle efficiency
6 n_c=0.78; // compressor efficiency
7 \text{ Ma}(1) = 0.5;
8 \text{ Ma}(2) = 0.9;
9 pi(1)=0.837; // from isentropic flow gas tables
10 pi(2) = 0.575;
11 gamma=1.4; // Specific Heat Ratio
12 R = 287;
13 cp=1.005; // Specific Heat at Constant Pressure in
      kJ/(kgK)
14
15 \text{ for } i=1:2
16 printf ("when Ma=\%f", Ma(i))
17 //part(a)
18 Ms = ((n_n/(Ma(i)^2)) - (((gamma-1)/2)*(1-n_n)))^(-1/2);
19 disp(Ms,"(a) Mach number for isentropic flow is")
20
21 // part(b)
22 p0e=1;
23 p_r0(i)=p0e/pi(i);
24 disp(p_r0(i),"(b) pressure ratio of the compressor is
25
26 // part(c)
27 delT0e_0i = ((p_r0(i)^((gamma-1)/gamma))-1)/n_c;
28 T0e=T01+(T01*delT0e_0i);
29 delT0e_t=n_n*(1-(p_r0(i)^((1-gamma)/gamma)))*T0e;
30 T_t=T0e-delT0e_t;
31 disp("K", T_t,"(c) the test section temperature is")
32 a_t=sqrt(gamma*R*T_t);
33 c_t=Ma(i)*a_t;
34 disp("m/s",c_t," and the test section velocity is")
35
36 // part(d)
37 \text{ ro_t=p01*1e5/(R*T_t)};
38 \quad A_t=0.17*0.15;
39 \text{ m=ro\_t*A\_t*c\_t};
```

```
40 disp("kg/s",m,"(d)mass flow rate is")
41
42 // part(e)
43 P(1)=m*cp*(T0e-T01);
44 P(2)=m*cp*(T_t-T01);
45 disp("kW",P(i),"(e)power required for the compressor is")
46 end
```

Scilab code Exa 18.20 Calculation on an axial turbine cascade

```
1 // scilab Code Exa 18.20 Calculation on an axial
      turbine cascade
3 beta1=35; // blade angle at entry
4 beta2=55; // blade angle at exit
5 i(1)=5; // incidence
6 i(2) = 10;
7 i(3) = 15;
8 i(4) = 20;
9 delta=2.5; // deviation
10 alpha2=beta2-delta; // air angle at exit
11 a_r=2.5; // aspect ratio(h/l)
12
13 n=4;
14 for m=1:n
15 //part(a)
16 printf("\nfor incidence=%d\n",i(m))
17 alpha1=beta1+i(m); // air angle at entry
18 ep=alpha1+alpha2; // deflection angle
19 disp("degree", ep, "(a) flow deflection is")
20 p_c = 0.505; //(s/1)
21
```

```
22 //part(b) loss coefficient from Hawthorne relations
23
z_p=0.025*(1+((ep/90)^2)); // Hawthorne's relation
25 disp (z_p,"(b) the profile loss coefficient from
      Hawthorne relation is")
z=(1+(3.2/a_r))*z_p; // the total cascade loss
      coefficient
27 disp (z,"and the total loss coefficient is")
28 \quad Y=z:
29
30 // part(c)drag and lift coefficients
31 alpham=atand((0.5*(tand(alpha2)-tand(alpha1))));
32 \quad C_D = p_c * Y * ((cosd(alpham)^3)/(cosd(alpha2)^2));
33 disp (C_D,"(c)the drag coefficient is")
34
35 \quad C_L = (2*p_c*(tand(alpha1)+tand(alpha2))*cosd(alpham))
      +(C_D*tand(alpham));
36 disp (C_L, "and the Lift coefficient is")
37 end
```

Scilab code Exa 18.21 low reaction turbine stage

```
1 // scilab Code Exa 18.21 low reaction turbine stage
2
3 Beta2=35; // rotor blade air angle in degree
4 alpha1=0; // fixed blade air angle in degree
5 alpha2=65;
6 beta3=52.5;
7 I(1)=0; // incidence angle
8 I(2)=5;
9 I(3)=10;
10 I(4)=15;
11 I(5)=20;
```

```
12 a_r=2.5; // aspect ratio(h/l)
13
14 for i=1:5
15 disp("degree", I(i), "when incidence=")
16 beta2(i)=Beta2+I(i); // beta2 varies with incidence
17
18 //part(a)
19 phi=cosd(alpha2)*cosd(beta2(i))/(sind(alpha2-beta2(i
20 ep=alpha1+alpha2; // deflection angle
21 disp(phi,"(a)flow coefficient is")
22 p_c=0.505; //pitch-chord ratio(s/l)
23
24 //part(b) blade to gas speed ratio
25 sigma=sind(alpha2-beta2(i))/(cosd(beta2(i)));
26 disp(sigma,"(b) blade to gas speed ratio is")
27 z_N=2.28*0.025*(1+((ep/90)^2)); // Hawthorne's
      relation
28
29 // part(c)degree of reaction
30 R=0.5*phi*(tand(beta3)-tand(beta2(i)));
31 disp("%", R*1e2,"(c) the degree of reaction is")
32
33 // part(d)total-to-total efficiency
34 e_R=beta2(i)+beta3; // Rotor deflection angle
35 zeeta_p_R=0.025*(1+((e_R/90)^2)); // profile loss
      coefficient for rotor
36 zeeta_R=(1+(3.2/a_r))*zeeta_p_R; // total loss
      coefficient for rotor
37 a=(zeeta_R*(secd(beta3)^2))+(z_N*(secd(alpha2)^2));
38 b=phi*(tand(alpha2)+tand(beta3))-1;
39 n_{tt=inv}(1+(0.5*(phi^2)*(a/b)));
40 disp("%", n_tt*1e2,"(d)total-to-total efficiency is")
41
42 end
```

Scilab code Exa 18.22 Isentropic or Stage Terminal Velocity for Turbines

```
1 // scilab Code Exa 18.22 Isentropic or Stage
     Terminal Velocity for Turbines
3 T01=1273; // in Kelvin
4 funcprot(0);
5 p01=5; // Initial Pressure in bar
6 p02=3.5; // exit gas Pressure in bar
7 cp=1.005; // Specific Heat at Constant Pressure in
     kJ/(kgK)
8 gamma=1.4; // Specific Heat Ratio
9 m=28; // mass flow rate of the gas in kg/s
10 n_{tt}=0.84; // stage efficiency
11 shi=1.7; // stage loading coefficient
12 pr_0=p01/p02;
13 delh01_03ss=cp*T01*(1-(pr_0^((1-gamma)/gamma)));
14
15 //part(a) stage terminal velocity
16 c0=sqrt(2*delh01_03ss*1e3);
17 disp("m/s",c0,"(a) stage terminal velocity is")
18
19 // part(b) isentropic blade to gas speed ratio
20 sigma_s=sqrt(0.5*n_tt/shi);
21 disp(sigma_s,"(b)the isentropic blade to gas speed
     ratio is")
22
23 //part(c) peripheral speed of the rotor
24 \text{ u=sigma_s*c0};
25 disp("m/s",u,"(c) peripheral speed of the rotor is")
27 //part(d) the power developed
```

```
28 P=m*n_tt*delh01_03ss;
29 disp("MW",P*1e-3,"(d) the power developed is")
```

Scilab code Exa 18.23 axial compressor stage efficiency

```
// scilab Code Exa 18.23 axial compressor stage
    efficiency

R=0.5; // Degree of reaction

n_R=0.849; // efficiency of rotor blade row

n_D=0.849; // efficiency of diffuser blade row

n_st=R*n_R+(1-R)*n_D;

disp("%",n_st*1e2," the value of stage efficiency is")
```

Scilab code Exa 18.24 Calculation on an axial compressor cascade

```
// scilab Code Exa 18.24 Calculation on an axial
    compressor cascade

beta1=51;
beta2=9;
alpha_1=7; // air angle at rotor and stator exit
    u=100; // test section velocity of air in m/s
    cx=u/(tand(alpha_1)+tand(beta1));
    w1=cx/cosd(beta1);
    alpha2=atand(tand(alpha_1)+tand(beta1)-tand(beta2))
    c2=cx/cosd(alpha2);
```

Scilab code Exa 18.25 Calculation on two stage axial compressor

```
1 // scilab Code Exa 18.25 Calculation on two stage
      axial compressor
3 T01=310; // in Kelvin
4 funcprot(0);
5 \text{ gamma} = 1.4;
6 p01=1.02; // Initial Pressure in bar
7 pr_o = 2;
8 pr_o1=1.5;
9 N=7.2e3; // rotor Speed in RPM
10 d=65/100; // Mean Blade ring diameter in m
11 h=10/100; // blade height at entry in m
12 n_p=0.9; // polytropic efficiency
13 wdf=0.87; // work-done factor
14 m=25; // in kg/s
15 cp=1.005; // Specific Heat at Constant Pressure in
     kJ/(kgK)
16 R = 287;
17 T01(1) = T01;
18 // part(a) stage pressure ratio
```

```
19 pr_o2=pr_o/pr_o1;
20 disp(pr_o2,"(a) pressure ratio developed by the 2nd
      stage is")
21
22 //part(b) stage efficiency
23 \quad n = (gamma - 1) / gamma;
24 \text{ n_st1} = ((pr_o1^n) - 1) / ((pr_o1^(n/n_p)) - 1);
25 disp("%",n_st1*1e2,"(b) stage efficiency for the
      stage 1 is")
26 \text{ n_st2} = ((pr_o2^n)-1)/((pr_o2^(n/n_p))-1);
27 disp("%",n_st2*1e2," and stage efficiency for the
      stage 2 is")
28 // part(c)power required to drive the compressor
29 T02=T01*(pr_o1^((gamma-1)/gamma));
30 P1=m*cp*(T02-T01)/n_st1;
31 disp("kW",P1,"(c) power required for the 1st stage
      is")
32 \quad T02s = T01 + (T01 * (pr_o1^((gamma - 1)/gamma) - 1)/n_st1);
33 P2=m*cp*T02s*(pr_o2^((gamma-1)/gamma)-1)/n_st2;
34 disp("kW", P2," and power required for the 2nd stage
      is")
35
36
37
38 // part(d) air angles of the rotors and stators
39 A1 = \%pi * d * h;
40 ro_01=(p01*1e5)/(R*T01);
41 \text{ cx=m/(ro_01*A1)};
42
       T1=T01-((cx^2)/(2*cp*1e3));
       p1=p01*((T1/T01)^(1/((gamma-1)/gamma)));
43
44 ro1=(p1*1e5)/(R*T1);
45 \text{ cx_new=m/(ro1*A1)};
46 \text{ c1=cx_new};
47 disp("for first stage")
48 \ u = \%pi*d*N/60;
49 beta1=atand(u/c1);
50 disp("degree", beta1, "beta1=")
51 \text{ wst1=cp*}(T02-T01)*1e3/n_st1;
```

```
52 \text{ cy2=wst1/(wdf*u)};
53 alpha2=atand(cy2/cx_new);
54 disp("degree",alpha2,"alpha2=")
55 beta2=atand((u/cx_new)-tand(alpha2));
56 disp("degree", beta2, "beta2=")
57 R=cx_new*(tand(beta1)+tand(beta2))*100/(2*u);
58 disp("%",R," degree of reaction for the first stage
      is")
59
60 T01_II=T02s;
61 disp("for second stage")
62 T02_II=T01_II*(pr_o2^((gamma-1)/gamma));
63 wst2=cp*1e3*(T02_II-T01_II)/n_st2;
64 alpha1s=beta2;
65 cy1s=cx_new*tand(alpha1s);
66 cy2s = (cy1s) + (wst2/(wdf*u));
67 alpha2s=atand(cy2s/cx_new);
68 disp("degree", alpha2s, "alpha2s=")
69 beta1s=atand((u-cy1s)/cx_new);
70 disp("degree", beta1s, "beta1s=")
71 beta2s=atand((u-cy2s)/cx_new);
72 disp("degree", beta2s, "beta2s=")
73 R_{II}=cx_{new}*(tand(beta1s)+tand(beta2s))*100/(2*u);
74 disp("%", R_II," Degree of Reaction for the second
      stage is")
```

Scilab code Exa 18.26 Calculation on an axial compressor cascade

```
1 // scilab Code Exa 18.24 Calculation on an axial
        compressor cascade
2
3 R=0.5906; // Degree of reaction
4 beta1=66;
```

```
5 beta2=22;
6 alpha2=61;
7 p_R=0.865; // pitch-chord ratio(s/l) for rotor
8 p_S=0.963; // pitch-chord ratio(s/l) for stator
9 alpha_3=beta2; // air angle at rotor and stator
      exit
10 u=100; // test section velocity of air in m/s
11 Y_D=0.077; // profile loss coefficient for stator
     blade row
12 Y_R=0.08; // loss coefficient for rotor blade row
13 beta_m=atand(0.5*(tand(beta1)+tand(beta2)));
14 C_D_R=p_R*Y_R*(cosd(beta_m)^3)/(cosd(beta1)^2);
15 C_L_R = (2*p_R*(tand(beta1)-tand(beta2))*cosd(beta_m))
     -(C_D_R*tand(beta_m));
16 n_R=1-(2*C_D_R/(C_L_R*sind(2*beta_m)));
17 disp("%",n_R*1e2,"the value of rotor cascade
      efficiency is")
18
19 alpham=atand(0.5*(tand(alpha2)+tand(alpha_3)));
20 C_D_S=p_S*Y_D*(cosd(alpham)^3)/(cosd(alpha2)^2);
21 C_L_S=(2*p_S*(tand(alpha2)-tand(alpha_3))*cosd(
     alpham))-(C_D_S*tand(alpham));
22 \text{ n_D=1-(2*C_D_S/(C_L_S*sind(2*alpham)))};
23 disp("%",n_D*1e2,"the value of diffuser cascade
      efficiency is")
24
25 \text{ n_st} = R*n_R+(1-R)*n_D;
26 disp("%", n_st*1e2," the value of stage efficiency is"
```

Scilab code Exa 18.27 Isentropic Flow Centrifugal Air compressor

```
1 // scilab Code Exa 18.27 Isentropic Flow-centrifugal
```

```
Air compressor
2
3 T01=335; // in Kelvin
4 p01=1.02; // Initial Pressure in bar
5 beta1=61.4; // air angle at the inlet of axial
      inducer blades
6 \quad \text{gamma} = 1.4;
7 d1=0.175; // Mean Blade ring diameter at entry
8 d2=0.5; // impeller diameter at exit
9 cp=1005; // Specific Heat at Constant Pressure in J
      /(kgK)
10 A1=0.0412; // Area of cross section at the impeller
      inlet
11 R = 287;
12
13 N(1)=5700; // rotor Speed in RPM
14 N(2) = 6200;
15 N(3) = 6700;
16 N(4) = 7200;
17 \text{ for } i=1:4
18 printf("\n for N=\%d rpm \n\n", N(i))
19 u1 = \%pi * d1 * N(i) / 60;
20 u2 = \pi i * d2 * N(i) / 60;
21 c1=u1*tand(beta1);
22 T1=T01-((c1^2)/(2*cp));
23 p1=p01*((T1/T01)^(gamma/(gamma-1)));
24 \text{ ro1}=(p1*1e5)/(R*T1);
25 pr0=((1+(u2^2/(cp*T01)))^(gamma/(gamma-1)));
26 disp(pr0,"(a) pressure ratio is")
27 \text{ m=ro1}*A1*c1;
28 disp("kg/s", m, "(b)) mass flow rate of air is")
29 T02=T01*(pr0^((gamma-1)/gamma));
30 P=m*cp*(T02-T01);
31 disp("kW", P*1e-3," (c) Power required to drive the
      compressor P=")
32 end
```

Scilab code Exa 18.28 centrifugal Air compressor

```
1 // scilab Code Exa 18.28 centrifugal Air compressor
2 T01=335; // in Kelvin
3 p01=1.02; // Initial Pressure in bar
4 beta1=61.4; // air angle at the inlet of axial
      inducer blades
5 \text{ gamma} = 1.4;
6 N=7200; // rotor Speed in RPM
7 d1=0.175; // Mean Blade ring diameter at entry
8 d2=0.5; // impeller diameter at exit
9 cp=1005; // Specific Heat at Constant Pressure in J
      /(kgK)
10 A1=0.0412; // Area of cross section at the impeller
      inlet
11 R = 287;
12 b2=A1/(\%pi*d2);
13 disp("cm", b2*1e2,"(a) width of the impeller at exit
      is")
14 u2 = \%pi*d2*N/60;
15 // \text{for N} = 7200 \text{ rpm}
16 p1=0.9444579; // from Ex18.27
17 pr=1.4206988; //pressure ratio
18 m=5.0061078; //mass flow rate of air in kg/s
19 T02=370.35381;
20 ro2=1.1; //trial and error
21 \text{ cr2}(1)=m/(A1*ro2);
22 n = 2;
23 \text{ for } i=1:n
24
       c2(i) = sqrt(cr2(i)^2 + (u2^2));
       T2=T02-((c2(i)^2)/(2*cp));
25
26
       p02=pr*p01;
```

```
p2=p02*((T2/T02)^(1/((gamma-1)/gamma)));
ro2=(p2*1e5)/(R*T2);
cr2(i+1)=m/(ro2*A1);
end
cr=cr2(3);
disp(p2/p1,"(b)the static pressure ratio is")

//part(c)
slpha2=atand(cr/u2);
disp("degree",alpha2,"(c)the direction alpha2 of the absolute velocity vector(c2) or the diffuser angle at entry is")
```

Scilab code Exa 18.29 Centrifugal compressor with vaned diffuser

```
1 // scilab Code Exa 18.29 Centrifugal compressor with
      vaned diffuser
2 T01=310; // in Kelvin
3 p01=1.103; // Initial Pressure in bar
4 dh=0.10; // hub diameter in m
5 d2=0.55; // impeller diameter in m
6 c1=100; // Velocity of air at the entry of inducer
7 c3=c1; // Velocity of air at diffuser exit
8 shi=1.035; // power input factor
9 mu=0.9; // slip factor
10 m=7.5; // in kg/s
11 gamma=1.4;
12 N=15e3; // rotor Speed in RPM
13 disp("(a) for radially tipped blades")
14 cp=1005; // Specific Heat at Constant Pressure in J
     /(kgK)
15 R = 287;
16 n_tt=0.81; // total to total efficiency
```

```
17 T1=T01-((c1^2)/(2*cp));
18 p1=p01*((T1/T01)^(gamma/(gamma-1)));
19 ro1=(p1*1e5)/(R*T1);
20 \quad A1=m/(ro1*c1);
21 dt=sqrt((A1*4/(%pi))+(dh^2));
22 disp("cm", dt*1e2,"(i) tip diameter of the inducer at
      entry is")
23 d1=0.5*(dt+dh); // Mean Blade ring diameter
24 \text{ u1=\%pi*d1*N/60};
25 \text{ w1=sqrt}((u1^2)+(c1^2));
26 a1=sqrt(gamma*R*T1);
27 \text{ M1\_rel=w1/a1};
28 disp(M1_rel,"(ii)the Relative Mach number at inducer
       blade entry Mw1=")
29 \quad u2 = \%pi * d2 * N / 60;
30 \text{ w_st=shi*mu*(u2^2)};
31 T02 = T01 + (w_st/cp);
32 T02s=T01+(n_tt*(T02-T01));
33 pr_0 = (T02s/T01)^(gamma/(gamma-1));
34 disp(pr_0,"(iii)stagnation pressure ratio developed
      is")
35 P=m*cp*(T02-T01);
36 disp("kW",P*1e-3,"(iv)the power required is")
37 disp("(b) for vaned diffuser")
38 c_theta2=mu*u2; // velocity of whirl(swirl component
      ) at the impeller exit
39 // vaneless space between the impeller exit and the
      vaned diffuser entry=0.1*impeller radius
40 / r2s = r2 * 1.1;
41 // width of the casing after the impeller exit=1.4*
      impeller passage width
42 c_theta2s=c_theta2/(1.1*1.4);
43 cr2=c1:
44 cr2s=cr2/(1.1*1.4);
45 c2s=sqrt((cr2s^2)+(c_theta2s^2));
46 alpha2s=atand(cr2s/c_theta2s);
47 disp("degree", alpha2s, "(i) the direction of flow at
      the diffuser entry is alpha2s=")
```

```
48 T2s=T02-((c2s^2)/(2*cp));
49 a2s=sqrt(gamma*R*T2s);
50 \text{ M2s} = \text{c2s/a2s};
51 disp(M2s,"(ii)the Mach number at the diffuser entry
      is")
52 \text{ Ar} = \text{c2s/c3};
53 d3_2s=1.16; // d3/d2s from last trial given in the
      book
54 alpha3=acosd(cosd(alpha2s)/d3_2s);
55 Ar_v=d3_2s*sind(alpha3)/(sind(alpha2s));
56 disp(Ar_v,"(iii) Area ratio of the vaned diffuser is"
57 \quad T03 = T02;
58 T3=T03-((c3^2)/(2*cp));
59 \text{ pr3}_1 = (((T3*T01)/(T1*T03))^(gamma/(gamma-1)))*pr_0;
60 disp(pr3_1,"(iv)the static pressure ratio of the
      compressor is")
61 disp("comment: Calculations in the book are wrong in
       the beginning itself for pl. so the values
      slightly differs here only for part(a)")
```

Scilab code Exa 18.30 Inward Flow Radial Gas turbine

```
// scilab Code Exa 18.30 Inward Flow Radial Gas
    turbine

T1=873; // the gas entry temperature at nozzle in
    Kelvin

p1=4; // the gas entry pressure at nozzle in bar

n_T=0.85; // isentropic efficiency

d2=0.4; // rotor blade ring diameter at entry in m

d3=0.2; // rotor blade ring diameter at exit in m

pr_t=4; // static Pressure Ratio across the turbine(
```

```
p3/p1)
9 pr_n=2; // static Pressure Ratio across the nozzles(
10 phi=0.3; // flow coefficient at impeller entry
11 gamma=1.4;
12 N=18e3; // rotor Speed in RPM
13 m=5; // mass flow rate of gas in kg/s
14 cp=1005; // Specific Heat at Constant Pressure in J
      /(kgK)
15 R = 287;
16 \quad u2 = \%pi * d2 * N / 60;
17 u3 = \%pi*d3*N/60;
18 cr2=phi*u2;
19 // part(a)
20 T3ss=T1/(pr_t^((gamma-1)/gamma));
21 T3=T1-n_T*(T1-T3ss);
22 T2s=T1/(pr_n^((gamma-1)/gamma));
23 T2=T2s+(0.5*(T3-T3ss)); // half of the losses(T3-
      T3ss) occur in the nozzles
24 p2=p1/pr_n;
25 \text{ rho2}=(p2*1e5)/(R*T2);
26 b2=m/(rho2*cr2*\%pi*d2);
27 disp("cm", b2*1e2,"(a) axial width of the impeller
      blade passage at entry is")
28 \quad alpha2=atand(cr2/u2);
29 disp("degree", alpha2, "(b) nozzle exit air angle is")
30 \text{ cx3}=\text{cr2};
31 beta3=atand(cx3/u3);
32 disp("degree", beta3, "(c) impeller exit air angle is")
33 c_{theta} = 0;
34 \text{ c\_theta2=u2};
35 P=m*(u2*c_theta2-u3*c_theta3);
36 \text{ disp}("kW", P*1e-3,"(d) power developed is")
```

Scilab code Exa 18.31 Cantilever Type IFR turbine

```
1 // scilab Code Exa 18.31 Cantilever Type IFR turbine
3 P=150; // Power developed in kW
4 T01=960; // the gas entry temperature at nozzle in
      Kelvin
5 p01=3; // the gas entry pressure at nozzle in bar
6 beta2=45; // air angle at rotor blade entry (from
      radial direction)
7 beta3=65; // air angle at rotor blade exit (from
      radial direction)
8 d2=0.2; // rotor blade ring diameter at entry in m
9 d3=0.15; // rotor blade ring diameter at exit in m
10 gamma=1.4;
11 N=36e3; // rotor Speed in RPM
12 alpha_2=15; // air angle at nozzle exit(from
      tangential direction)
13 pr0=2.29; // total-to-static Pressure Ratio(p01/p3)
14 n_N=0.94; // Nozzle Efficiency
15 cp=1100; // Specific Heat at Constant Pressure in J
      / (kgK)
16 R=cp*((gamma-1)/gamma);
17 u2 = \%pi * d2 * N/60;
18 \quad u3 = \%pi * d3 * N / 60;
19
20 // part(a) mass flow rate of the gas
21 cr2_theta2=tand(alpha_2); // cr2_theta2=cr2/c_theta2
22 c_theta2=u2/(1-cr2_theta2); // c_theta2=cr2*tan(
      alpha2)+u2
23 cr2=c_theta2*cr2_theta2;
24 cr3=cr2;
25 \text{ c\_theta3=(cr3*tand(beta3))-u3;}
26 \text{ w_st=}(u2*c\_theta2)+(u3*c\_theta3);
27 \text{ m=P/(w_st*1e-3)};
28 disp("kg/s",m,"(a) mass flow rate of the gas is")
29
30 // part(b)rotor blade axial length at entry
```

```
31 c2=cr2/sind(alpha_2);
32 T2s=T01-((0.5*(c2^2))/(cp*n_N));
33 T2=T01-((T01-T2s)*n_N);
34 p_rn=(T2s/T01)^(gamma/(gamma-1));
35 p2=p01*p_rn;
36 \text{ rho2}=(p2*1e5)/(R*T2);
37 b2=m/(rho2*cr2*%pi*d2);
38 disp("cm", b2*1e2,"(b) rotor blade axial length at
      entry is")
39
40 // part(c)total-to-total turbine efficiency
41 T03ss=T01*(pr0^((1-gamma)/gamma));
42 n_T=P/(m*cp*1e-3*(T01-T03ss));
43 disp("%",n_T*1e2,"(c)total-to-total turbine
      efficiency is")
44
45 //part(d)rotor blade length at exit
46 p03=p01/pr0;
47 T03=T01-(P/(m*cp*1e-3));
48 c3=sqrt((cr3^2)+(c_theta3^2));
49 T3=T03-((cr3^2)/(2*cp));
50 p3=p03*((T3/T03)^(gamma/(gamma-1)));
51 \text{ ro3}=(p3*1e5)/(R*T3);
52 b3=m/(ro3*cr3*\%pi*d3);
53 disp("cm", b3*1e2,"(d) rotor blade length at exit is")
54
55 // part(e) degree of reaction
56 DOR=(T2-T3)/(T01-T03);
57 disp("%", DOR*1e2,"(e) degree of reaction is")
```

Scilab code Exa 18.32 IFR turbine stage efficiency

```
1 // scilab Code Exa 18.32 IFR turbine stage
```

```
efficiency

2
3 // part(b)
4 R=0.48;
5 sigma_s=0.6;
6 n_n=0.92;
7 alpha_2=15; // air angle at nozzle exit(from tangential direction)
8 n_st=2*sigma_s*sqrt(n_n*(1-R))*cosd(alpha_2);
9 disp("%",n_st*100," stage efficiency of the radial turbine is")
```

Scilab code Exa 18.33 Vertical Axis Crossflow Wind turbine

```
1 // scilab Code Exa 18.33 Vertical Axis Crossflow
     Wind turbine
3 c1=24/3.6; // wind speed in m/s
4 c2=30/3.6; // rotor speed in m/s
5 m1=25; // mass flow rate of air at wind side in kg/s
6 m2=31.25; // rotor air mass flow rate in kg/s
7 d1=3; // rotor outer diameter in m
8 d2=2; // rotor inner diameter in m
9 gamma=1.4;
10 alpha=37; // air angle at rotor entry (from
      tangential direction)
11 c(1)=c1;
12 c(2) = c2;
13 m(1) = m1;
14 m(2) = m2;
15
16 for i=1:2
17 c_theta1=c(i)*cosd(alpha);
```

```
18 u1=c_{theta1/2}
19 u2=u1*d2/d1;
20 disp("kmph",c(i)*3.6," for speed=")
21
22 // part(a)optimum rotor speed
23 N=60*u1/(%pi*d1);
24 disp("rpm", N, "(a) optimum rotor speed is")
25
26 // part(b) blade to wind speed ratio
27 sigma=u1/c(i);
28 disp(sigma," blade to wind speed ratio is")
29
30 // part(c) hydraulic powers and efficiencies
31 Ph=m(i)*((2*(u1^2))+(u2^2));
32 disp("Watts", Ph, "(c) hydraulic power is")
33 n_h = ((2*(u1^2))+(u2^2))/(0.5*(c(i)^2));
34 disp("%", n_h * 1e2, "and hydraulic efficiency is")
35 end
```

Scilab code Exa 18.34 Counter Rotating fan

```
// scilab Code Exa 18.34 Counter Rotating fan

n=0.809; // combined efficiency of the fans

hi=0.245; // flow coefficient

A=0.212; // data from Ex14.1

d=0.45; // data from Ex14.1

u=22.62; // data from Ex14.1

cx=phi*u;

Q=1.175; // in m3/s

delp0_I=550.755; // data from Ex14.1

delp0_II=delp0_I;

delp0=delp0_I+delp0_II;
```

Scilab code Exa 18.35 Sirocco Radial fan 1440 rpm

```
1 // scilab Code Exa 18.35 Sirocco Radial fan 1440 rpm
3 d2=0.4; // outer diameter of the impeller in m
4 d1=0.36; // inner diameter of the impeller in m
5 b=0.5; // axial length of the impeller in m
6 rho=1.25; // density of air in kg/m3
7 N=1440; // rotor Speed in RPM
8 P=50; // Power required in kW
10 u1 = \%pi * d1 * N/60;
11 u2 = \%pi * d2 * N/60;
12
13 beta1=atand(d2/d1);
14 disp("degree", beta1, "(a) the blade air angle at the
      impeller entry beta1=")
15 beta2=90-beta1;
16 disp("degree", beta2, "and the blade air angle at the
      impeller exit beta2=")
17 delp0=2*rho*(u2^2);
18 disp ("mm W.G.", delp0/9.81," (b) the stagnation
      pressure rise across the fan is")
19 cr1=u1*tand(beta1);
20 m=rho*cr1*%pi*d1*b;
21 disp("kg/s",m,"(c)) mass flow rate of the air through
```

Scilab code Exa 18.37 Calculation for the specific speed

```
1 // scilab Code Exa 18.37 Calculation for the
      specific speed
3 //part(1) specific speed of Axial flow gas turbine
4 P1=0.5e3; // Gas Turbine Power Output in kW
5 N1=60; // Speed in RPS
6 omega1=\%pi*2*N1;
7 \text{ ro1}=2;
8 delh_1=30; // change of enthalpy in kJ
9 NS_1 = omega1 * sqrt(P1 * 10 e 2/ro1) * ((delh_1 * 1e3)^(-5/4));
10 disp(NS_1,"1. the specific speed of Axial flow gas
      turbine is")
11
12 //part(2) specific speed of IFR gas turbine
13 P2=0.75e3; // Gas Turbine Power Output in kW
14 N2=300; // Speed in RPS
15 omega2=\%pi*2*N2;
16 \text{ ro2=1};
17 delh_2=250; // change of enthalpy in kJ
18 NS_2 = omega2 * sqrt(P2 * 10 e 2 / ro 2) * ((delh_2 * 1 e 3)^(-5/4));
19 disp(NS_2,"2.the specific speed of IFR gas turbine
      is")
20
```

```
21 // part(3) the specific speed of an axial compressor
22 N_c=120; // Speed in RPS
23 \text{ omega_c=\%pi*2*N_c};
24 Q_c=25; // flow rate in m3/s
25 delh_3=40; // change of enthalpy in kJ
26 \text{ NS_c=omega_c*sqrt}(Q_c)*((delh_3*1e3)^(-3/4));
27 disp(NS_c, "3. the specific speed of an axial
      compressor is")
28
29 // part (4) the specific speed of a centrifugal
      compressor
30 Q=5; // flow rate in m3/s
31 delh_4=35; // change of enthalpy in kJ
32 \text{ NS}_4 = \text{omega}_c * \text{sqrt}(Q) * ((delh_4 * 1e3)^(-3/4));
33 disp(NS_4,"4.the specific speed of a centrifugal
      compressor is")
34
35 // part(5)the specific speed of an axial fan
36 N5=22; // Speed in RPS
37 \text{ omega}_5 = 2 * \% pi * N5;
38 Q_5=3.5; // flow rate in m3/s
39 rho=1.25; // density in kg/m3
40 g=9.81; // gravitational acceleration in m/s2
41 H1=55/rho; // head in m
42 NS_5 = omega_5 * sqrt(Q_5) * ((g*H1)^(-3/4));
43 disp(NS_5, "5. the dimensionless specific speed of an
      axial fan is")
44
45 // part(6) the specific speed of a Radial fan
46 N6=20; // Speed in RPS
47 omega_6=2*%pi*N6;
48 Q_6=1.4; // flow rate in m3/s
49
50 H2=52/rho; // head in m
51 NS_6 = omega_6 * sqrt(Q_6) * ((g*H2)^(-3/4));
52 disp(NS_6, "6. the dimensionless specific speed of a
      Radial fan is")
```

Scilab code Exa 18.38 Kaplan turbine 70 rpm

```
1 // scilab Code Exa 18.38 Kaplan turbine 70 rpm
3 //part(a) flow rate and specific speed
4 P=8e3; // Gas Power Output in kW
5 N=70; // Speed in RPM
6 H=10; // net head in m
7 n_m=0.85; // efficiency
8 omega=%pi*2*N/60;
9 NS=omega*sqrt(P*10e2)*(H^(-5/4))/549.016;
10 disp(NS,"(a) the specific speed of turbine is")
11 rho=1000; // density in kg/m3
12 g=9.81; // gravitational acceleration in m/s2
13 Q=P*1e3/(n_m*rho*g*H);
14 disp("m3/s", Q, "and the flow rate is")
15
16 // part(b) determining the speed, flow rate and
      power for the model
17 Dp_m = 12; // Dp_m = Dp/Dm
18 Np=N; // Speed for prototype
19 Hm=3; // head of the model
20 Hp=H; // head for prototype
21 Nm=Np*Dp_m*sqrt(Hm/Hp);
22 disp("rpm", Nm,"(b) speed for the model is")
23 \quad Dm_p=1/Dp_m;
24 \, \mathbb{Q}p = \mathbb{Q};
25 Qm = (Dm_p^2) * sqrt(Hm/Hp) * Qp;
26 disp("m3/s",Qm,"the flow rate for model is")
27 Pm=n_m*rho*g*Qm*Hm;
28 disp("kW", Pm*1e-3," the power for the model is")
```

Scilab code Exa 18.39 Calculation for Pelton Wheel prototype

```
1 // scilab Code Exa 18.39 Calculation for the Pelton
     Wheel
3 Nm=102; // Speed for the model in RPM
4 Hm=30; // net head for the model in m
5 n_m=1; // Assuming efficiency
6 Qm=0.345; // discharge in m3/s
7 rho=1000; // density in kg/m3
8 g=9.81; // gravitational acceleration in m/s2
9 omega_m=%pi*2*Nm/60;
10 Pm=n_m*rho*g*Qm*Hm;
11 NS=omega_m*sqrt(Pm)*(Hm^(-5/4))/549.016;
12 disp(NS," the specific speed of turbine is")
13
14 // determining the speed, flow rate and power for
      the prototype
15 Hp=1500; // head for prototype
16 Pp = ((Hp/Hm)^(3/2)) * Pm;
17 disp("MW", Pp*1e-6," the power for the prototype is")
18 omega_p=NS*549.016*(Hp^{(5/4)})/(sqrt(Pp));
19 Np = omega_p * 60/(2 * \%pi);
20 disp("rpm", Np, "speed for the prototype is")
21 Qp = sqrt(Hp/Hm) * Qm;
22 disp("m3/s",Qp,"the flow rate for prototype is")
```

Scilab code Exa 18.40 Francis turbine 910 rpm

```
1 // scilab Code Exa 18.40 Calculation for the Francis
       turbine
3 // part(a) determining the speed, specific speed and
      power for the model
4 Qm=0.148; // discharge in m3/s
5 N=910; // Speed in RPM
6 Hm=25; // net head in m
7 n=0.9; // efficiency
8 omega=%pi*2*N/60;
9 NS=omega*sqrt(Qm)*(Hm^(-3/4))*0.1804;
10 disp(NS,"(a) the specific speed of turbine is")
11 Nu=N/(sqrt(Hm));
12 disp("rpm", Nu, "unit speed for the model is")
13 rho=1000; // density in kg/m3
14 g=9.81; // gravitational acceleration in m/s2
15 Pm=rho*g*Qm*Hm;
16 disp("kW", Pm*1e-3," the power for the model is")
17
18 // part(b) determining the speed, flow rate and power
       for the prototype
19 Hp=250; // head for prototype
20 Dp_m=6; // Dp_m=Dp/Dm
21 Qp = sqrt(Hp/Hm) * Qm * (Dp_m^2);
22 disp("m3/s",Qp,"(b)the flow rate for prototype is")
23 \text{ Pp=rho*g*Qp*Hp*n};
24 disp("MW", Pp*1e-6," the power for the prototype is")
25 omega_p=NS*(Hp^(3/4))/(0.1804*sqrt(Qp));
26 \text{ Np=omega_p*60/(2*\%pi)};
27 disp("rpm", Np, "speed for the prototype is")
```

Scilab code Exa 18.41 Calculation for the Pelton Wheel

```
1 // scilab Code Exa 18.41 Calculation for the Pelton
      Wheel
2 NS=0.1; // specific speed
3 H1=1000; // net head for the model in \ensuremath{\text{m}}
4 Q1=1; // discharge in m3/s
5 omega1=NS*(H1^(3/4))/(sqrt(Q1)*0.1804);
6 N1 = omega1 * 60/(2 * \%pi);
7 disp("rpm", N1, "speed of the rotation is")
8 rho=1000; // density in kg/m3
9 g=9.81; // gravitational acceleration in m/s2
10 P1=rho*g*Q1*H1;
11
12 // determining the speed, flow rate and power for
      the prototype
13 H2=100; // head for prototype
14 N2=N1*sqrt(H2/H1);
15 disp("rpm", N2, "speed for the prototype is")
16 \ Q2 = sqrt(H2/H1) * Q1;
17 disp("m3/s",Q2," the discharge for the prototype is")
18 P2=((H2/H1)^{(3/2)})*P1;
19 disp("MW", P2*1e-6," the power for the prototype is")
```

Scilab code Exa 18.42 Calculation for Tidal Power Plant

```
// scilab Code Exa 18.42 Calculation for Tidal Power
Plant

T=50e6; // capacity of basin in cubic meters of sea
water
N=60; // Speed for the model in RPM
NS=3; // specific speed
H=9.8; // net head for the model in m
n_o=0.78; // Assuming efficiency
```

```
8 rho=1000; // density in kg/m3
9 g=9.81; // gravitational acceleration in m/s2
10 n(1)=5; // number of turbines
11 n(2) = 10;
12 omega=\%pi*2*N/60;
13
14 P=(NS^2)*(H^(5/2))*(549.016^2)/(omega^2);
15 disp("MW", P*1e-6,"(a)) the power for the turbines is")
16 Q=P/(n_0*rho*g*H); // discharge in m3/s
17 disp("m3/s",Q,"(b)the discharge rate for the
     turbines is")
18 disp("(c)")
19 for i=1:2
20
       disp(n(i), "when number of turbines are:")
       t=T/(n(i)*Q*3600);
21
22 disp("hours",t,"duration of operation is")
23 end
```

Scilab code Exa 18.43 Francis turbine 250 rpm

```
// scilab Code Exa 18.43 Francis turbine 250 rpm

NS=0.4; //specific speed
N=250; // Speed in RPM
H=75; // net head in m
beta3=25; // exit angle of the runner blades
n_o=0.81; // overall efficiency
g=9.81; // gravitational acceleration in m/s2
rho=1000; // density in kg/m3
// part(a)
lu2=0.6*sqrt(2*g*H);
cr2=0.21*sqrt(2*g*H);
omega=%pi*2*N/60;
```

```
14 Q=(NS^2)*(H^3(3/2))/((0.1804^2)*(omega^2));
15 disp("m3/s",Q,"(a) the discharge rate for the turbine
       is")
16 // part(b)
17 d2=u2*60/(%pi*N);
18 disp("m",d2,"(b) outer diameter of the runner blade
      ring is")
19 cr3=cr2;
20 \text{ cx3}=\text{cr3};
21 / Euler work, w_ET=u2*c_theta2
22 c_{theta2} = ((g*H) - (0.5*(cx3^2)))/u2;
23 u3=cx3/(tand(beta3));
24 d3=u3*60/(%pi*N);
25 disp("m",d3," and inner diameter of the runner blade
      ring is")
26 // part(c)
27 alpha2=atand(cr2/c_theta2);
28 disp("degree", alpha2, "(c) the inlet guide vane exit
      angle is")
29 beta2=atand(cr2/(c_theta2-u2));
30 disp("degree", beta2, "and inlet angle of the runner
      blades is beta2=")
31 // part(d)
32 \text{ n_h=(u2*c_theta2)/(g*H)};
33 disp("%",n_h*1e2,"(d)the hydraulic efficiency is")
34 // part(e)
35 P=n_o*rho*g*Q*H;
36 disp("MW", P*1e-6," (e) the output power is")
37 disp("comment: the calculation for c_theta2 is done
      wrongly in the book. hence the values of alpha2,
      beta2, n_h differs from the book.")
```

Scilab code Exa 18.44 Pelton Wheel 360 rpm

```
1 // scilab Code Exa 18.44 Pelton Wheel 360 rpm
3 d=2; // mean diameter in m
4 N=360; // Speed in RPM
5 theta=150; //deflection angle of water jet in degree
6 H=140; // net head for the model in m
7 q=45000; // discharge in litres/min
8 Q=q*1e-3/60; // in m3/s
9 rho=1000; // density in kg/m3
10 g=9.81; // gravitational acceleration in m/s2
11 // part(a)
12 u = \%pi*d*N/60;
13 c2=sqrt(2*g*H);
14 sigma=u/c2;
15 disp(sigma,"(a) blade to jet speed ratio is")
16 // part(b)
17 w2=c2-u;
18 \text{ w3=w2};
19 beta2=0;
20 \text{ beta3=} 180-\text{theta};
21 \text{ cy2=c2};
22 \text{cy3}=\text{u}-(\text{w3}*\text{cosd}(\text{beta3}));
23 w_T = u * (cy2 - cy3);
24 \text{ m=rho*Q};
25 \quad P_T = m * w_T;
26 disp("kW", P_T*1e-3,"(b)) the power developed is")
27 // part(c)
28 n=w_T/(0.5*(c2^2));
29 disp("\%",n*1e2,"(c)the efficiency is")
30 // part (d)
31 n_{max} = 0.5*(1+cosd(beta3));
32 disp("%", n_max*1e2,"(d) the Maximum efficiency is")
33 P_{max=m*g*H*n_{max}}
34 disp("kW", P_max*1e-3," and the Maximum power
      developed is")
35 // part(e)
36 sigma_opt=0.5; // for Maximum efficiency
37 u_opt=sigma_opt*c2;
```

Scilab code Exa 18.45 Kaplan turbine 120 rpm

```
1 // scilab Code Exa 18.45 Kaplan turbine 120 rpm
3 N=120; // Speed in RPM
4 H=25; // net head in m
5 Q=120; // discharge in m3/s
6 dt=5; // runner diameter in m
7 dh_t=0.4; // hub-tip ratio of the runner
8 beta2=150; //inlet angle of the runner blades in
      degree
9 n_o=0.8; // overall efficiency
10 rho=1000; // density in kg/m3
11 g=9.81; // gravitational acceleration in m/s2
12 // part(a)
13 P=n_o*rho*g*Q*H;
14 disp("MW", P*1e-6," (a) the output power is")
15 // part(b)
16 omega=\%pi*2*N/60;
17 NS = omega*sqrt(P)*(H^(-5/4))/549.016;
18 disp(NS,"(b) the specific speed of turbine is")
19 // part(c)
20 dh=dh_t*dt;
21 d=0.5*(dt+dh); // mean diameter of the impeller
      blade in m
```

```
22  u=%pi*d*N/60;
23  cx=Q*4/(%pi*(dt^2-dh^2));
24  cy2=u-(cx*tand(90-(180-beta2)));
25  alpha2=atand(cx/cy2);
26  disp("degree",alpha2,"(c)the inlet guide vane exit angle is")
27  // part(d)
28  beta3=atand(cx/u);
29  disp("degree",beta3,"(d)the exit angle of the runner blades is beta3=")
30  // part(e)
31  n_h=(u*cy2)/(g*H);
32  disp("%",n_h*1e2,"(e)the hydraulic efficiency is")
```

Scilab code Exa 18.46 Fourneyron Turbine 360 rpm

```
1 // scilab Code Exa 18.46 Fourneyron Turbine 360 rpm
3 d2=3; // outer diameter of the impeller in m
4 d1=1.5; // inner diameter of the impeller in m
5 H=50; // net head in m
6 rho=1000; // density in kg/m3
7 g=9.81; // gravitational acceleration in m/s2
8 N=360; // rotor Speed in RPM
9 n_o=0.785; // overall efficiency
10 P=4; // Power Output in MW
11 u1 = \%pi * d1 * N/60;
12 u2 = \%pi*d2*N/60;
13 // part(a)
14 Q=P*1e6/(n_o*rho*g*H);
15 \operatorname{disp}("m3/s", Q, "(a)) the discharge is")
16 c2=9; // velocity of water at exit in m/s
17 // part(b)
```

```
18 w_ET = (g*H) - (0.5*(c2^2));
19 n_h=w_ET/(g*H);
20 disp("%", n_h*1e2,"(b) the hydraulic efficiency is")
21 // part(c)
22 \text{ cr2=c2};
23 b=Q/(cr2*%pi*d2); // axial length of the impeller in
24 disp("cm",b*1e2,"(c)the runner passage width is")
25 // part (d)
26 beta2=atand(cr2/u2);
27 disp("degree", beta2, "(d) the blade air angle at the
      impeller exit beta2=")
28 c_theta1=w_ET/u1;
29 cr1=Q/(b*\%pi*d1);
30 beta1=atand(cr1/(u1-c_theta1));
31 disp("degree", beta1, "and the blade air angle at the
      impeller entry beta1=")
32 // part(e)
33 alpha1=atand(cr1/c_theta1);
34 disp("degree", alpha1, "(e) the guide vane exit angle
      is")
```

Scilab code Exa 18.47 Crossflow Radial Hydro turbine

```
1 // scilab Code Exa 18.47 Crossflow Radial Hydro
    turbine
2
3 N=50; // Speed in RPM
4 H=25; // net head in m
5 Q=150; // discharge in m3/s
6 P=20; // Power Output in MW
7 d1=3.5; // runner diameter in m
8 dr=1.3; // diameter ratio of the runner
```

```
9 rho=1000; // density in kg/m3
10 g=9.81; // gravitational acceleration in m/s2
11 u1 = \%pi * d1 * N/60;
12 u2=u1/dr;
13 c_theta1=2*u1;
14 c_theta2=u2;
15 w_st1=(u1*c_theta1)-(u2*c_theta2);
16 u3=u2;
17 c_theta3=u2;
18 c_{theta} = 0;
19 w_st2=(u3*c_theta3)-(u1*c_theta4);
20 \text{ w_st=w_st1+w_st2};
21 // part(a)
22 \quad n_h=w_st/(g*H);
23 disp("%",n_h*1e2,"(a)the hydraulic efficiency is")
24 Ph=rho*Q*w_st;
25 disp("MW", Ph*1e-6," and the hydraulic power is")
26 \text{ n_o=P*1e6/(rho*Q*g*H)};
27 disp("%", n_o *1e2, "and the overall efficiency is")
28 // part(b)
29 omega=\%pi*2*N/60;
30 NS=omega*sqrt(P*1e6)*(H^(-5/4))/549.016;
31 disp(NS,"(b) the specific speed of turbine is")
32 // part(c)
33 disp("(c) Adopting the flow model of the crossflow
      wind turbine")
34 P_h=rho*Q*((2*(u1^2))+(u2^2));
35 disp("MW",P_h*1e-6," the hydraulic power is")
36 nh = ((2*(u1^2))+(u2^2))/(g*H);
37 disp("%",nh*1e2," and hydraulic efficiency is")
```

Scilab code Exa 18.48 Calculation on a Draft Tube

```
// scilab Code Exa 18.48 Calculation on a Draft Tube

pa=1.013; // atmospheric pressure in bar
p3=0.4*pa; // turbine exit pressure in bar
fho=1e3; // density in kg/m3
g=9.81; // Gravitational acceleration in m/s^2
n_D=0.82; // Efficiency of the Draft Tube
delHi=3.1058869; // from Ex 18.5
// part(b)
Hd=delHi;
Hs=((pa-p3)*1e5/(rho*g))-(n_D*Hd); // Hs=Z3-Z4
disp("m",Hs,"(b) the suction head(height of the turbine exit above the tail race) is")
disp("comment: the calculation for Hs is done wrongly in the book. hence the value of Hs differs from the book.")
```

Scilab code Exa 18.49 Centrifugal pump 890 kW

```
// scilab Code Exa 18.49 Centrifugal pump 890 kW

H=50; // head developed in m
P=890; // Power required in kW

NS=0.75; // specific speed
rho=1e3;
g=9.81; // Gravitational acceleration in m/s^2
n_h=0.91; // hydraulic efficiency
f=0.925; // blockage factor for the flow
Q=1.5; // discharge in m3/s of water
u2=0.8*sqrt(2*g*H);
cr2=0.3*sqrt(2*g*H);
dr=0.5; // diameter ratio(d1/d2)
// part(a)
```

```
15 omega=NS*(H^(3/4))/(0.1804*sqrt(Q));
16 N = omega*60/(2*\%pi);
17 disp("rpm", N, "(a) the speed of rotation is")
18 // part(b) impeller diameter
19 d2=u2*60/(%pi*N);
20 disp("m",d2,"(b)the impeller diameter is")
21 //part(c)
22 c_{theta2=g*H/(u2*n_h)};
23 beta2=atand(cr2/(u2-c_theta2));
24 disp("degree", beta2, "(c) the blade air angle at the
      impeller exit beta2=")
25 u1=u2*dr;
26 cr1=cr2;
27 beta1=atand(cr1/u1);
28 disp("degree", beta1, and the blade air angle at the
      impeller entry beta1=")
29 //part(d)
30 b2=Q/(cr2*\%pi*d2*f);
31 disp("m",b2,"(d)the impeller width at exit is")
32 //part(e) overall Efficiency
33 \text{ n_o=rho*Q*H*g/(P*1e3)};
34 disp("%", n_o *1e2, "(e) overall efficiency is")
```

Scilab code Exa 18.50 Centrifugal pump 1500 rpm

```
// scilab Code Exa 18.50 Centrifugal pump 1500 rpm

N=1500; // rotor Speed in RPM
H=5.2; // head in m
b=2/100; // width in m
d1=2.5/100; // entry diameter of the blade ring in m
d2=0.1; // exit diameter of the blade ring in m
rho=1e3;
```

```
9 g=9.81; // Gravitational acceleration in m/s^2
10 n_o=0.75; // overall Efficiency of the drive
11 u2 = \%pi * d2 * N/60;
12 u1=u2*d1/d2;
13 // part(a) impeller blade angle at the entry
14 c_r2=0.4*u2;
15 c_r1=c_r2*d2/d1;
16 beta1=atand(c_r1/u1);
17 disp("degree", beta1, "(a) the impeller blade angle at
      the entry beta1=")
18 //part(b) discharge
19 Q=c_r1*%pi*d1*b;
20 disp("litres/sec",Q*1e3,"(b)the discharge is")
21 //part(c)Power required
22 P = (rho * Q * g * H) / (n_o);
23 disp("kW",P*1e-3,"(a)Power required to drive the
      pump is")
24 // part(d)
25 \text{ omega=\%pi*2*N/60};
26 \text{ NS}=(\text{H}^{(-3/4)})*0.1804*(\text{omega})*\text{sqrt}(Q);
27 disp(NS,"(d) the specific speed is")
```

Scilab code Exa 18.51 Axial pump 360 rpm

```
// scilab Code Exa 18.51 Axial pump 360 rpm

N=360; // rotor Speed in RPM

the dh=0.30; // hub diameter of the impeller in m

beta2=48; // exit angle of the runner blades(from the tangential direction)

cx=5; // axial velocity of water through the impeller in m/s

n_h=0.87; // hydraulic efficiency
```

```
8 n_o=0.83; // overall Efficiency
9 Q=2.5; // discharge in m3/s
10 rho=1e3;
11 g=9.81; // Gravitational acceleration in m/s^2
12 //part(a)
13 dt = sqrt((4*Q/(cx*%pi))+(dh^2));
14 disp("m", dt, "(a) the impeller tip diameter is")
15 // part(b)impeller blade angle at the entry
16 d=0.5*(dt+dh); // mean diameter of the impeller
      blade in m
17 u = \%pi*d*N/60;
18 beta1=atand(cx/u);
19 disp("degree", beta1, "(b) the impeller blade angle at
      the entry beta1=")
20 // part(c)
21 cy2=u-(cx/tand(beta2));
22 H=n_h*u*cy2/g;
23 disp("m", H,"(c)) the head developed is")
24 //part(d)Power required
25 P = (rho * Q * g * H) / (n_o);
26 disp("kW",P*1e-3,"(d)Power required to drive the
     pump is")
27 // part(e)
28 \text{ omega=\%pi}*2*N/60;
29 NS=(H^{(-3/4)})*0.1804*(omega)*sqrt(Q);
30 disp(NS,"(e) the specific speed is")
```

Scilab code Exa 18.52 NPSH for Centrifugal pump

```
1 // scilab Code Exa 18.52 NPSH for Centrifugal pump
2
3 H=30; // head developed in m
4 ds=0.15; // suction pipe diameter in m
```

```
5 f=0.005; // Coefficient of friction for the suction
      pipe
6 pa=1.013; // atmospheric pressure in bar
7 As=\%pi/4*(ds^2); // Cross-sectional Area of the
      suction pipe in m2
8 rho=1e3; // density of water in kg/m3
9 g=9.81; // Gravitational acceleration in m/s^2
10 t=30; // temperature of water in degree C
11 pv=0.0424; // vapour pressure of water at t value
12 Hv=pv*1e5/(rho*g);
13 Z(1)=0; // altitude in m
14 Z(2) = 2500;
15 p(1)=pa; // at altitude Z=0
16 p(2) = 0.747; // \text{ at } Z=2500 \text{m}
17 Q(1)=0.065; // discharge in m3/s of water
18 Q(2) = 0.1;
19 Q(3) = 0.15;
20 Hs(1)=3; // vertical length of the suction pipe in m
21 \text{ Hs}(2) = 5;
22 \quad for \quad i=1:3
23
       disp("m3/s",Q(i),"when Q=")
24
       cs=Q(i)/As;
25
       for k=1:2
            disp("m", Hs(k), "and Hs=")
26
            delHf = 4*f*(Hs(k)/ds)*(cs^2/(2*g));
27
28
            for j=1:2
29
            disp("m",Z(j),"and Z=")
30
            Ha=p(j)*1e5/(rho*g);
       H1=Ha-(Hs(k)+(cs^2/(2*g))+delHf);
31
32
       NPSH = H1 - Hv;
33 disp(NPSH,"NPSH=")
34 sigma=NPSH/H;
35 disp(sigma, "Cavitation Coefficient sigma=")
36 \text{ end}
37 end
38 end
```

Scilab code Exa 18.53 NPSH and Thoma Cavitation Coefficient

```
1 // scilab Code Exa 18.53 NPSH and Thoma Cavitation
      Coefficient
3 H=60; // head developed in m
4 c1=8; // exit velocity in m/s
5 pa=1.0133; // ambient pressure in bar
6 \text{ rho=1e3};
7 n_d=0.8; // Efficiency of the Draft Tube
8 g=9.81; // Gravitational acceleration in m/s^2
9 ta=30; // ambient temperature of water in degree C
10 pv=0.0424; // vapour pressure of water at t value
11 Hv=pv*1e5/(rho*g);
12 / Q = c1 * A1 = c2 * A2
13 Ar(1)=1.2; // draft tube area ratio (A2/A1=c1/c2)
14 Ar (2) = 1.4;
15 \text{ Ar}(3) = 1.6;
16 Hs=2.5; // vertical length of the draft tube between
       the turbine exit and the tail race in m
17 Ha=pa*1e5/(rho*g);
18 for i=1:3
19
       Hsd=(c1^2)*(1-(1/(Ar(i)^2)))/(2*g); // ideal
          head gained by the draft tube
       Hd=n_d*Hsd; //Actual head gained by the draft
20
          tube
       disp(Ar(i), "for Area Ratio Ar=")
21
       disp("m", Hd, "(a) Actual head gained by the draft
22
          tube is")
23
       H1=Ha-(Hs+Hd);
24
       NPSH = H1 - Hv;
25 disp(NPSH,"(b)NPSH=")
```

Scilab code Exa 18.54 Maximum Height of Hydro Turbines

```
1 // scilab Code Exa 18.54 Maximum Height of Hydro
      Turbines
3 H=52; // head developed in m
4 c1=6.5; // exit velocity in m/s
5 pa=1.0133; // ambient pressure in bar
6 \text{ rho=1e3};
7 n_d=0.75; // Efficiency of the Draft Tube
8 g=9.81; // Gravitational acceleration in m/s^2
9 ta=20; // ambient temperature of water in degree C
10 sigma_cr = 0.1;
11 pv=0.023; // vapour pressure of water at t value(
      from tables)
12 Hv = pv * 1e5/(rho * g);
13 / Q = c1 * A1 = c2 * A2
14 Ar=1.5; // draft tube area ratio (A2/A1=c1/c2)
15 Z(1)=0; // altitude in m
16 \quad Z(2) = 2500;
17 Z(3) = 3000;
18 Z(4) = 4000;
19 p(1)=pa; // at altitude Z=0
20 p(2) = 0.747; // \text{ at } Z=2500 \text{m}
21 p(3)=0.701; // at altitude Z=3000m
22 p(4) = 0.657; // \text{ at } Z=4000 \text{m}
   Hsd=(c1^2)*(1-(1/(Ar^2)))/(2*g); // ideal head
       gained by the draft tube
```

```
Hd=n_d*Hsd; //Actual head gained by the draft
24
          tube
25 \text{ Ha=pa*1e5/(rho*g)};
26 \text{ for } i=1:4
            disp("m",Z(i),"For Z=")
27
28
            Ha=p(i)*1e5/(rho*g);
29
       H1=Ha-(Hsd+Hd);
       Hs=Ha-((sigma_cr*H)+Hd+Hv); // vertical length
30
          of the draft tube between the turbine exit
          and the tail race in m
       disp("m", Hs," the maximum height of the turbine
31
          exit above the tail race is")
32
       NPSH=sigma_cr*H;
33 disp(NPSH, "NPSH=")
34 end
```

Scilab code Exa 18.55 Propeller Thrust and Power

```
// scilab Code Exa 18.55 Propeller Thrust and Power

c_u=5; // upstream velocity in m/s

c_s=10; // downstream velocity in m/s

rho=1e3; // density of water in kg/m3

c=0.5*(c_u+c_s); // velocity of water through the propeller in m/s

d(1)=0.5; // propeller diameter in m

d(2)=1;

d(3)=1.5;

delh_0=0.5*((c_s^2)-(c_u^2));

delp_0=rho*delh_0;

disp("bar",delp_0*1e-5,"(b) stagnation pressure rise across the propeller is")

for i=1:3
```

```
disp("cm",d(i)*1e2,"for propeller diameter=")
A=%pi*(d(i)^2)/4;
Q=c*A;
m=rho*Q;
disp("m3/s",Q,"(a) flow rate through the propeller is")
Fx=A*delp_0;
disp("kN",Fx*1e-3,"(c) thrust exerted by the propeller on the boat is")
P=m*delh_0;
disp("kW",P/1000,"(d)the ideal Power required to drive the propeller is")
```