Generalized Planning: Non-Deterministic Abstractions and Trajectory Constraints

- B. Bonet¹ G. De Giacomo² H. Geffner³ S. Rubin⁴
 - ¹ Universidad Simón Bolívar, Venezuela
 - ² Sapienza Università di Roma, Italy
 - ³ ICREA & Universitat Pompeu Fabra, Spain
 - ⁴ Università degli Studi di Napoli Federico II, Italy

Generalized Planning: Example

Want policy that works for many (possibly ∞) problem instances

Example: Problem Counter-n:

- Counter problem with single variable X with initial value X=n
- Agent senses whether X=0 or X>0
- Agent can increase or decrease value of X
- **Observable goal** is to reach X=0

Policy: "if X > 0, decrease X" works:

- for any $n \ge 0$
- problems with more than one possible initial state
- even if actions may fail sometimes; e.g. decrease don't work sometimes

(Srivastava et al. 2008, 2011; Hu & Levesque 2010; Hu & De Giacomo 2011; B. & Geffner 2015; Belle & Levesque 2016; etc)

Generalized Planning: Formulation

- In Hu & De Giacomo (2011) formulation, collection ${\cal P}$ of instances assumed to share **common pool of observations and actions**
- Policy μ mapping observations into actions said to **generalize** to $\mathcal P$ if it solves **all problems** in $\mathcal P$
- General finite-state controllers can be defined in same way

Generalized Planning: Computation

Top-down appproach:

- If \mathcal{P} is finite, **compile** \mathcal{P} into a regular planning problem or do **search** in controller space (Hu & De Giacomo 2011)
- If $\mathcal P$ is infinite, finite subset of $\mathcal P$ sometimes ensures generalization to $\mathcal P$ (e.g. 1D problems; Hu & Levesque 2010)

Bottom-up approach:

- Solve **single** "representative instance" P of \mathcal{P} and **prove** that solution ensures generalization (B. et al. 2009)
- **Example:** solution to Counter problem with **two** possible initial states **generalizes** to class $\mathcal{P} = \{\text{Counter-}n : n \geq 0\}$

Goal for this paper

Key question in **bottom-up approach:**

– What's the **common structure** between **single problem** P and class \mathcal{P} that yields the generalization?

Question partially answered in earlier work:

Theorem (B. & Geffner 2015)

If P reduces to P' and μ is strong cyclic solution for P', then μ solves P if it terminates in P over fair trajectories

In this work, we:

- analyze necessity of termination in B. & Geffner (2015) formulation
- show how to **get rid** of termination condition

Outline

- Basic framework
- Observation projections abstractions
- Trajectory constraints
- New generalization theorems
- Generalized planning as LTL Synthesis
- Generalized planning over QNPs as FOND planning
- Wrap up

PONDPs and Classes

Partially obs. non-det. problem $P = (S, I, \Omega, Act, T, A, obs, F)$:

- -S is state space (finite or infinite)
- $I \subseteq S$ is set of initial states
- Ω is set of observations
- Act is set of actions
- $-T \subseteq S$ is set of goal states
- $A: S \rightarrow 2^{Act}$ is available-actions function
- $obs: S \to \Omega$ is observation function
- $F: Act \times S \rightarrow 2^S \setminus \{\emptyset\}$ is non-deterministic transition function

Class \mathcal{P} of PONDPs with **observable goals** and **action preconditions**, and where all problems share common:

- set of actions Act
- set of observations Ω
- subset T_{Ω} of goal observations; $\forall P \, \forall s : s \in T_P$ iff $obs_P(s) \in T_{\Omega}$
- subsets A_{ω} of actions: $\forall P \, \forall s : A_P(s) = A_{obs(s)}$

Standard Solution Concepts

Policy is function $\mu:\Omega^+\to Act$

Policy μ is valid for problem P if it selects applicable actions

Let P be a problem and μ be a valid policy for P:

- μ is (strong) solution for P iff every μ -trajectory is goal reaching
- μ is fair solution or strong cyclic solution for P iff every fair μ -trajectory is goal reaching

Henceforth, we focus on valid policies

Abstractions: Observation Projection

Project entire class \mathcal{P} into single non-deterministic problem P^o :

- state space: $S^o = \Omega$
- initial states: $\omega \in I^o$ iff $obs_P(s) = \omega$ for some P and $s \in I_P$
- actions: $Act^o = Act$ and $A^o(\omega) = A_\omega$
- goal states: $T^o = T_{\Omega}$
- transitions: $\omega' \in F^o(a, \omega)$ iff $s' \in F_P(a, s)$ for some problem P in \mathcal{P} , and states s and s' with $a \in A_P(s)$, $obs_P(s) = \omega$ and $obs_P(s') = \omega'$

Example: For class of Counter-n problems, P^o features:

- **2 states** (observations): [X = 0] and [X > 0]
- non-deterministic transitions; e.g. [X>0] transitions under decrease action to both [X=0] and [X>0]

Need for More Structure

Policy $\mu=$ "if X>0, decrement X" solves all Counter-n problems but doesn't solve projection P^o

 P^o is **non-deterministic** and μ may get trapped into loop where Decrement X doesn't work

Projection P^o misses important **structural property** that all Counter-n problems share but that is lost projection:

If variable X is decreased infinitely often and increased only a finite number of times, it eventually reaches X=0

In this work we extend the model to make such properties explicit

Trajectory Constraints

Trajectory constraint C over P is subset of **infinite state-action sequences** (i.e. $C \subseteq (S \times Act)^{\infty}$) or subset of **infinite observation-action sequences** (i.e. $C \subseteq (\Omega \times Act)^{\infty}$)

Trajectory τ satisfies C if τ is finite, or either $\tau \in C$ (if $C \subseteq (S \times Act)^{\infty}$), or $obs(\tau)$ in C (if $C \subseteq (\Omega \times Act)^{\infty}$) where

$$obs(\langle s_0, a_0, s_1, a_1, \ldots \rangle) = \langle obs(s_0), a_0, obs(s_1), a_1, \ldots \rangle$$

- ullet Problem P extended with constraint C is denoted by P/C
- ullet Problem P satisfies constraint C if all trajectories in P satisfy C

New solution concept: μ solves P/C iff every μ -trajectory τ that satisfies C is goal reaching

Example: $C = \{\tau : \tau \text{ is infinite and satisfies the crucial property} \} \text{ for } \mathcal{P}$

New Generalization Theorems

Theorem (Generalization)

Let $\mathcal P$ be a class of FONDP and C a constraint such that every P in $\mathcal P$ satisfies C. Then, μ solves all problems in $\mathcal P$ if μ solves P^o/C

Example: trajectories in P^o that satisfy C happen to be fair. Thus, μ must be fair solution (P^o has no strong solution by non-determinism). Theorem asserts μ solves all instances in which decrease action satisfies constraint

Theorem (Completeness)

If P^o is obs. projection for class $\mathcal P$ and μ solves all problems in $\mathcal P$, there is constraint C over P^o such that every P in $\mathcal P$ satisfies C and μ solves P^o/C

Generalized Planning as LTL Synthesis

When trajectory constraints can be expressed in LTL (over language $\Sigma = Act \cup \Omega$), LTL techniques can be used to obtain general plans

Theorem

Let P^o/C be obs. projection with constraint C expressed in LTL as Ψ . Then, solving P^o/C (and hence all P/C for $P \in \mathcal{P}$) is **2EXPTIME-complete**; it's double-exponential in $|\Psi| + |T^o|$ and polynomial in $|P^o|$

Sketch: Idea is to think of policies μ as Ω -branching Act-labeled graph:

- Build **tree-automaton** accepting policies μ such that every μ -trajectory satisfies formula $\Phi = \Psi \supset \Diamond T^o$ where $\Diamond T^o$ is **reachability goal** in \mathcal{P}
- Check non-emptiness of language accepted by tree-automaton; this test yields witness (i.e. policy) if it exists

Generalized Planning over QNPs as FOND Planning

Qualitative Numerical Planning

- Problem R_V with set V of non-negative numeric variables (don't have to be integer variables) and standard Boolean propositions
- Actions can affect propositions and also increase or decrease value of numeric variables non-deterministically
- Propositions are fully observable while only X=0 and X>0 can be observed for each var X
- Paper describes syntax for specifying class of QNPs sharing same set of vars, fluents, actions, observations, . . .

Example: General problem of stacking a block x on a block y in instance with any number of blocks can be cast as QNP

Abstractions for some QNPs appear in (Srivastava et al., 2011, 2015)

Solving QNPs with FOND Planners

Given QNP R_V , obs. projection R_V^o constructed **syntactically**:

- Projection contains only propositions and no numeric variables
- For each variable X, there are propositions X>0 and X=0
- Each effect Inc(X) replaced by atom X>0, and effect Dec(X) replaced by non-det. effect $X>0\,|\,X=0$

Non-determinism in P^o isn't **fair** (Srivastava et al. 2011); i.e. strong cyclic plan for R_V^o isn't guaranteed to be solution

Projection R_V^o is **modified** to target interesting subclasses of QNPs:

Theorem (Soundness and Completeness)

Let R_V be QNP such that a) actions with Dec(X) effects have prec. X>0, and b) actions have decrement effects for at most one variable. μ is fair solution to modified R_V^o iff μ solves all problems in class defined by R_V

Related Work

- QNPs related to problems considered by (Srivastava et al. 2011, 2015)
- 1D problems (Hu & Levesque 2010; Hu & De Giacomo 2011) is infinite class of "identical" problems characterized by single integer parameter
- Hu & De Giacomo (2011) construct a single "large enough" abstraction whose solution provides a solution to the class
- Sardiña et al. (2006) also analyze tasks in which "global properties" are lost in observation projection; we recover such properties with constraints
- De Giacomo et al. (2016) show that trace constraints are necessary for belief construction to work on infinite domains

Summary

- Bottom-up approach for generalized planning where general policies are obtained from solutions of single instances
- Non-deterministic abstraction P^o extended with **trajectory constraints** avoid need for checking termination for solutions
- Solutions to class ${\mathcal P}$ of problems that satisfy constraint C obtained from solutions to P^o/C
- P^o/C can be solved using LTL (if constraints are LTL-expressible) or, in some cases, using more efficient FOND planners

Discussion

- There are many constraints that are satisfied by given target class of instances; Which constraints to make explicit?
- Can we automate the discovery of relevant constraints?
- Extend scope of QNPs that can be solved using FOND planners;
 General results?
- Analyze and test LTL synthesis for specific and relevant types of problems/constraints; Can existing LTL synthesis techniques be effectively used to solve interesting generalized planning tasks?