

DPP – 1 (Unit & Dimension)

Video	So	lution	on	W	ebsite:-

https://physicsaholics.com/home/courseDetails/49

Video Solution on YouTube:-

https://youtu.be/sHxBTYqcM0A

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/69

- Q 1. Which of the following physical quantities has neither dimensions nor unit? (Hint:- $f = \mu N$; where, $\mu =$ coefficient of friction, f = friction force & N = Normal force)
 - (a) Angle

(b) Luminous intensity

(c) Coefficient of friction

- (d) Current
- Q 2. Dimensional formula for coefficient of viscosity (η)[use $F = 6\pi\eta rv$ (r=radius; v=velocity; F=viscous force]:
 - (a) $ML^{-2}T^{-1}$

(b) $M^{-1}L^{1}T^{-1}$

(c) $M^1L^1T^{-2}$

- (d) $ML^{-1}T^{-1}$
- Q 3. The dimensions of radian per second are:
 - (a) $[M^0L^0T^0]$

(b) $[M^0L^0T^1]$

(c) $[M^0L^0T^{-1}]$

- (d) $[M^0L^2T^{-1}]$
- Q 4. The dimensional formula of radius of gyration is:
 - (a) $[M^0 L^0 T^0]$

(b) [M⁰ L⁰ T]

(e) [M⁰ L T⁰]

- (d) $[M L T^{-1}]$
- Q 5. From the following pairs of physical quantities, in which group dimensions are not same:

[Hint:- Linear momentum = mass \times velocity, Torque = Force \times perpendicular distance, Impulse = Change in momentum]

- (a) Linear Momentum and impulse
- (b) Torque and energy
- (c) Energy and work
- (d) Light year and minute
- Q 6. The dimensional formula for Planck's constant (h) is

(Hint:- Unit of planks constant = J-sec)

(a) $[ML^{-2}T^{-3}]$

(b) $[M^0L^2T^{-2}]$

(c) $[ML^2T^{-1}]$

(d) $[ML^{-2}T^{-2}]$

- Q 7. An atmosphere:
 - (a) is a unit of pressure
 - (b) is a unit of force
 - (c) gives an idea of the composition of air
 - (d) is the height above which there is no atmosphere

P hysicsaholics

Q 8. The dimensions of wavelength (λ) is:

(Wavelength = Distance travelled by wave in one time period)

(a) $[M^0 L^0 T^0]$

(b) $[M^0 L T^0]$

(c) $[M^0 L^{-1} T^0]$

- (d) none of these
- Q 9. State which of the following is correct?

(Hint:- When a charge q is accelerated by a Voltage V then its energy = qV)

- (a) joule = $coulomb \times volt$
- (b) joule = coulomb/volt
- (c) joule = volt + coulomb
- (d) joule = volt/coulomb
- Q 10. Of the following quantities, which one has dimensions different from the remaining three?

(Hint:- Angular Momentum = $mass \times velocity \times perpendicular distance,$

- & When a charge q is accelerated by a voltage V then its energy = qV)
- (a) Energy per unit volume
- (b) Force per unit area
- (c) Product of voltage and charge per unit volume
- (d) Angular momentum
- Q 11. The dimensions of frequency is:

(Hint:- frequency (f) = $\frac{1}{T}$; T = Time period)

- (a) $[T^{-1}]$
- (c) $[M^0L^0T^{-2}]$

- (b) $[M^0L^0T^0]$
- (d) None of these
- Q 12. Young's modulus (Y) of a material has the same unit as

$$(Y = \frac{Stress}{Strain}; where, Stress = \frac{Force}{Area} & Strain = \frac{Change in length}{original length})$$

(a) Pressure

(b) Strain

(c) Density

- (d) Force
- Q 13. The unit of impulse is the same as that of

(Hint:- Impulse \cong Force \times time, Momentum = mass \times velocity, Power = Energy per unit time)

(a) Energy

(b) Power

(c) Momentum

(d) Velocity

Answer Key

Q.1 c	Q.2 d	Q.3 c	Q.4 c	Q.5 d
Q.6 c	Q.7 a	Q.8 b	Q.9 a	Q.10 d
Q.11 a	Q.12 a	Q.13 c		

