

Programmation Orientée Objets et Physique

Outils Numériques / Semestre 6 / Institut d'Optique / ONIP-2

Un monde d'objets

https://masevaux.fr/objets_trouves/

Des objets qui interagissent

https://www.lepoint.fr/dossiers/societe/velo-libre-service-velib/

Déroulement du module

6 séances

- 1 séance : Découverte de la programmation orientée objets
- 4 séances : Mini-Projet
 - A choisir parmi 2 sujets
 - Travail en binôme
- 1 séance : Evaluation

Livrables attendus

Vous aurez 10 minutes lors de la séance 6 pour présenter l'ensemble de vos résultats et vos analyses.

Pour valider cette session, vous devez présenter les livrables suivants :

- 1. Diagramme de classe et répartition du travail
- 2. Classes commentées (selon la norme PEP 8) pour générer des objets
- 3. Graphiques légendés incluant toutes les données nécessaires à la bonne compréhension des données présentées
- 4. Analyse des figures obtenues

Les critères d'évaluation et les étapes à suivre sont donnés dans chacun des sujets.

Evaluation / Présentation en séance 6

Présentation du travail

Vous serez convoqués par binôme 15 min avant le début de votre présentation.

Vous aurez alors 5 min pour présenter les aspects suivants de votre travail :

- 1 min Présentation générale Problématique Diagramme de classe
- 2 min Résultats sur le système final
- 2 min Code d'une classe

Vous aurez ensuite 3 à 4 min de questions par le jury.

Evaluation / Critères

Critères d'évaluation

Vous serez évalué.e selon les critères suivants :

- Méthodologie
 - Bon usage de la programmation orientée objet
 - * objets mis en oeuvre
 - * attributs et méthodes utiles pour chaque objet
 - Diagramme de classe
 - Répartition de l'écriture du code
- Programmation
 - Respect de la charte PEP8 (noms des variables, méthodes, commentaires...)
 - Utilisation, écriture et validation de classes
- Physique
 - Graphiques pertinents et légendés
 - Données pertinentes de test
- Avancement
 - Application de base validée
 - Ouverture

Outils Numériques / Semestre 6 / Institut d'Optique / ONIP-2

Projets / ONIP-2

Projet A

Carte d'éclairement de sources incohérentes

Projet B

Correction des couleurs d'une image

Projet C

Tracé de rayons en optique matricielle

calculer la carte d'éclairement produit par un ensemble de sources incohérentes

Eclairage en 3D - DIALux

calculer la carte d'éclairement produit par un ensemble de sources incohérentes

Source caractérisée par leur indicatrice de rayonnement

$$I(\alpha) = I_0 \cdot \exp(-(4 \cdot \ln(2)) \cdot (\alpha/\Delta)^2)$$

calculer la carte d'éclairement produit par un ensemble de sources incohérentes

$$E = \frac{I \cdot \cos(\psi)}{d^2}$$

donnée par la formule de Bouguer

calculer la carte d'éclairement produit par un ensemble de sources incohérentes

Grandes étapes

- Définir une source lumineuse
- Définir un plan de travail
- Définir un système comprenant un plan de travail et un ensemble de sources lumineuses
- Calculer l'éclairement produit en tout point du plan de travail par chacune des sources lumineuses
- Calculer l'éclairement de l'ensemble des sources et afficher la carte

Ouvertures

- Optimiser un éclairement sur un plan de travail donné avec un nombre fini de sources
- Afficher une carte en 3D
- Ajouter des surfaces de travail (opaque)

Correction colorimétrique d'image

Utilisation d'une mire de calibration ColorChecker

Correction colorimétrique d'image

$$\begin{bmatrix} X_1^{\text{ref}} & Y_1^{\text{ref}} & Z_1^{\text{ref}} \\ \vdots & \vdots & \vdots \\ X_N^{\text{ref}} & Y_N^{\text{ref}} & Z_N^{\text{ref}} \end{bmatrix} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

Valeurs de référence des couleurs

$$= \begin{bmatrix} 1 & X_1^{\text{mes}} & Y_1^{\text{mes}} & Z_1^{\text{mes}} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & X_N^{\text{mes}} & Y_N^{\text{mes}} & Z_N^{\text{mes}} \end{bmatrix}$$

Valeurs mesurées des couleurs

Matrice de transformatio

Déterminée numériquement par inversion du système

Code de démarrage

- Color
 - Représente une unique couleur et permet de convertir sont espace colorimétrique
- PerspectiveRemover
 - Permet de retirer la perspective sur une image à partir des coordonnées d'un rectangle
- Rectangle
 - Représente un rectangle avec quelques méthodes pour le transformer et recadrer des images.

Tracé de rayons en optique matricielle

Chaque élément optique a une matrice de transfert

$$\begin{pmatrix} 1 & 0 \\ -1/f' & 1 \end{pmatrix}$$
 Lentille mince

Miroir sphérique
$$\begin{pmatrix} 1 & 0 \\ 2n/R & 1 \end{pmatrix}$$

Tracé de rayons en optique matricielle

Tracé de rayons d'un télescope type Cassegrain²