10-208 (3)		
1010 (209) / 3000 (200)	tuition on thomas points o3) (need to shorter I here. It that satisfies (A10/28,6)	scient concise) 13) and (BIO17A,C3) only.
· NGM -> molirected eages (· similar to BN; parametr	isation of MN = jocal miles	actions about
· product of local factors,	- normalised - normalised fuction (MRF in	Statistical physics)
MN-connection merved	Part of Section 1	anderen en e
a wolledon gray	, and a set of (positive) poten	p(X1,, Xn) defined by tial functions ye associated
p(X1,,Xn) = 1/2	$T_{ce}(x_c)$ $z = z$	TT 40(30)
1 00010 36 0 [14] [1]) a void	(3e)3 factorses ove a MNH
- Factor that pagnetose	MN are clique potestials the idea of a maximal cliques of using maximal cliques of	oscurs stadue in original
**************************************	-> fully connected subset	of nocks
- For G = EE, V3, a comple such that nodes V'	ete subgrafh (clique) is a :	subgraph G'= qv' = V, E' = E3

· Anaximal dique is a complete subgraph s.t. any superset V">V" is not complete . Asub-clique is not newscarily a meximal clique sub-cliques - can be earges, singletons 16011c (2009): See Box 4.13. - MN for CV 4.3. MN moupe objects - Similar to Kolleian pres. -> Hows of prob. influence/active trails 04.8 - WH DE ON MN structure · W X, -... - XI ne a path mH. wize X be a set of observed variables The path X, -... - XR is active given Z if none of the Xis R=1,..., R is in Z plious a definition of separation 04.9 (separation/global maybe decils) - We say a set of nodes & separates X and Y in H, denoted sept (X:Y/Z), if there is no active path between any node X eX and YeY given ?. we arefive the global independencies associated with H to be:-1(H)= {(XLY/Z): SEPH(X;Y/Z)} Remak: independucies I(H) are precisely those guaranteled to hold for every distri P OVV H. sep. witerian sound for outceting indep. properties ove H. (11) BN => correction with meleperature propringfiled by MN stritue factorising a distri over the graph (11) of both representation His on t-map for Gibbs fact of Heorens for BN, eqinivalence of:distripour a graph H => Platest is P scarges Madan ass. I(H))

4.3.1.1. (sondness) (11) to 1.3.2. i.e. Gibbs distri satisfies molyterducies associated with a graph.

10. somethess of separation (factorisation = 4.1/3.1)

accord. G 4.2/3.1 1.4.1. · WIP he adistriove X, and H an MN structure ove X - If P is a Gibbs distri that factorises our H, then H is an I-map for P other direction i.e. C.J. of destri -> factorisation: Hammesley-Clifford Theorem - unlike for BN , HCT does not hold in general - Require additional assumption that Pisa positive distri 1.4.2 - Les P me a positive distriou X, and Ha Markov network graph our X. - If His an I-map for P, then Pis a Gibbs distri that factorses on H. (x). For positive distins; the global independencies imply that distri factorises according to the retrode stricture. (*) Formiclass of distributions, he have that a distribution P factorises over a maker reducet if and only if His an Imap of P. Box reduce deform use His on 1-map for a district if 1(H) = 1(P) i.e. Pertails B If PBa Gibbs distrious H, then H is an I-map of P. · soundress of separation as criterion for detecting independences in MN.

- any distriction factorises our G satisfies the molyperduce ass. implied my seperation -completeess - strong usion of completeress does not hold It is not the use that every privatinades X and Y that are not separated in Have dependent in every distribution P which factorises on H 1.4.3

- Let H be a MN structure.

-If X and Y are not separated given & MH, then X and Y are dependent given & in some distrip that factorises out.

- same aguments as 1.3.5 to conclud: @ For almost all distri P that factorise ow H (all district except for a set of measure on space of factor param.), we have I(P)= I(H). - ow outmof I(H) is maximal one. - for any muperon a assertion that is not a consequence of separation on H, He can always find a counteexample distril that factories ove H. 4.3.2. Indep revisited BN: weed more. leach near is indep of nondese given parents) Globel melip (molved by d-sep) -showed that these are equiv, in the scale of one implies the other. @: (1) to BN; can be provide local indep. molecul by MN, avalogously to local indep of BN P(x): 3 niff poss defin. of mouperolnoies associated with network streture the local, are global in out 4.9. 4.3.2.1. - WIGH MC100 VASS. 0.4.10 -> intuitively, two variables directly connected; potential for ditel correlation man unaddicted why. envesely, two vars not directly linked, some vary of receiving c.i. - Xma Y may give all otherodes. 0.4.10 (lawrise indipulations) ut H maMN we define pairing indipendencies associated with H to be:-TP(H)= {(X1Y | X - {X,Y} : {X,Y3 x x }} 2.4.11 -> aralogue to local mely. associated with B.N. 4.11. (males v blanket) for a given graph H, we outlie the Markov blanket of X m H, MBH(X) to he the reighbours of XM H. redefire the local independencies associated with H to be:-I(H)= ?(X1X- 2X3-MBH 2X3 | MBH(X): XEX)}

ie local independencies state that X is indep of nodes ingreyor given inwed neighbows

- we will show that these local indep. ass. hold from district that factorises over H, so that x's Markov blanket in H try does up it framall obviousables.

4.3.2.2. - relationships between Markov properties

-3 sets of moly assertions assoc. with network structure H.

- Forgeneal distri Ip(H) is weaker than In(H) is weaker than I(H).

-AH 3018 eq (*) All 300 equivalent for positive distri

Prop 4.3

· For any MN H, and any distri P, we have that if P = In(H) then P = Ip(H)

Prop 4.4

- This my MNH, and any distri P, we have that if P = I(H) the P = I(H)

14.4

- Let P me a positive distri. If P scalisfies Ip (H), then P scalisfies I(H).

Grollery 4.1

The following statements are equivalent for a positive distri P.

1. P= Tu(H)

2. P= Ip(H)

3. PF I(H)

- Pt P-Mays

- An MN His a perect-map for P if for my X, Y, Z, we have that SEPH(X:Y/Z) @ PF (XIY/Z)

Theorem: Not every distributes a perfect map as MGM


```
from hereon, Tordan (2003)
- byonertial form
- constraining dique potedials to be the meaning possibly
QQ: what effect does this have on equivalence of local and global Markov
     preperties?
represent a clique potential as: - Yelze) = exp ?-de(ze)?
de (20) - a potestial
Moditive structure: pla) = = Trexp2-de(ze)}
                      H(x) = \int_{c} dc(x_c)
                                                     Botteman distri
H(3) - free energy
one relable forms/gn to pologics:-
OHEMONN Machines
ally connected graph, pairinge edge pot., binary valued nodes (-1,1)
(x1, x2, x3, x4)= = = exp { = dij(x1,xj)} = = exp { = 0ij xixj + 2 xxi + C}
call negy fn:-
(2)= 5(xi-p)0;(xj-p)=(z-p)0(x-p)
w technique to lean this model, recove graph Str. from data.
Models
adel energy of a physical system (atom interction)
pula grid topology
Hi-state > Potts
() = = exp { = BijXiXj + Z BioXi}
```

P(x,h | 0) = exp { \(\frac{2}{2} \text{ \text{\ti}\text{\te