

南京拓微集成电路有限公司 NanJing Top Power ASIC Corp.

数据手册 DATASHEET

TP4067

(3mA-600mA 线性锂离子电池充电器)

1

TP4067 线性锂离子电池充电器

产品简介

TP4067 是一款完整的单节锂电池充电器,世界首创带电池正负极反接保护、输入电源正负极反接保护的单芯片,兼容大小 3mA-600mA 充电电流。采用涓流、恒流、恒压控制,SOT23-6 封装与较少的外部元件数目使得 TP4067 成为便携式应用的理想选择。TP4067 可以适合 USB 电源和适配器电源工作。

由于采用了内部 PMOSFET 架构,加上防倒充电路,所以不需要外部检测电阻器和隔离二极管。热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。充满电压可分为三档:4.35V、4.2V、3.7V。充电电流可通过一个电阻器进行外部设置。当电池达到预设电压之后,充电电流降至设定值 1/10, TP4067 将自动终止充电。

当输入电压(交流适配器或 USB 电源)被拿掉时,TP4067 自动进入一个低电流状态,电池漏电流在 1μA 以下。TP4067 的其他特点包括电源自适应、欠压闭锁、自动再充电和两个用于指示充电结束和输入电压接入的状态引脚。

产品特点

- 兼容大小 3mA-600mA 的可编程充 电电流:
- Vcc 输入端反接保护;
- 锂电池正负极反接保护:
- 用于单节锂离子电池:
- 电源自适应:
- 具有可在无过热危险的情况下实现充电速率最大化的热调节功能;
- 带涓流、恒流、恒压控制;

- 可直接从 USB 端口给电池充电;
- 精度达到±1%的预设充电电压;
- 最高输入可达 8.0V;
- 自动再充电;
- 2 个充电状态开漏输出引脚;
- C/10 充电终止:
- 待机模式下的供电电流为 65μA;
- 软启动限制了浪涌电流:
- 采用 6 引脚 SOT-23 封装。

应用

微型锂电池、充电座、移动电源 蜂窝电话、PAD、MP3播放器 ·蓝牙应用

典型应用:

图 1 500mA 单节锂电池充电器

注:建议接 R1 耗散电阻 $(0.3\,\Omega)$,可获得较大的充电电流,又可提高整机的可靠性。阻值根据实际情况选取 $(0~0.6\,\Omega)$ 。

500mA 电流完整的充电循环(500mAh 锂电池,按照图 1 典型电路, VIN=5V)

3

绝对最大额定值

- 输入电源电压 (V_{CC}): -6.5V~12V
- PROG: $-0.3V \sim V_{CC} + 0.3V$
- BAT: -4.35V∼8V
- CHRG: -0.3V~10V
- BAT 短路持续时间: 连续

- •BAT 引脚电流: 700mA
- PROG 引脚电流: 2mA
- 最大结温: 150℃
- 工作环境温度范围: -40℃~85℃
- 贮存温度范围: -65℃~125℃
- 引脚温度 (焊接时间 10 秒): 260℃

封装/订购信息

引脚功能

CHRG (引脚 1):漏极开路输出的充电状态指示端。当充电器向电池充电时,CHRG 管脚被内部开关拉到低电平,表示充电正在进行;否则 CHRG管脚处于高阻态。

GND (引脚 2): 地

BAT (引脚 3): 充电电流输出。该引脚向电池提供充电电流并将最终浮充电压调节至 4.2V。该引脚的一个精准内部电阻分压器设定浮充电压,在停机模式中,该内部电阻分压器断开。

 V_{CC} (引脚 4): 正输入电源电压。该 引脚向充电器供电。 V_{CC} 的变化范围在 4V 至 8V 之间,并应通过至少一个 $10\mu F$ 电容器进行旁路。当 V_{CC} 降至 BAT 引脚电压的 30mV 以内,TP4067 进入停机模式,从而使 I_{BAT} 降至 $1\mu A$ 以下。

STDBY (引脚 5): 电池充电完成指示端。当电池充电完成时 STDBY 被内部开关拉到低电平,表示充电完成。除此之外,STDBY 管脚将处于高阻态。PROG (引脚 6): 充电电流设定、充电电流监控和停机引脚。在该引脚与地之间连接一个精度为 1%的电阻器RPROG 可以设定充电电流。当在恒定电流模式下进行充电时,引脚的电压被维持在 1V。

PROG 引脚还可用来关断充电器。 将设定电阻器与地断接,内部一个 0.2μA 电流将 PROG 引脚拉至高电平。 当该引脚的电压达到 2.7V 的停机门限 电压时,充电器进入停机模式,充电 停止且输入电源电流降至 65μA。重新 将 R_{PROG} 与地相连将使充电器恢复正 常操作状态。

方框图

图 2 功能方框图

电特性

凡表注ullet表示该指标适合整个工作温度范围,否则仅指 $TA=25\,^\circ$ C, $V_{CC}=5V$,除非特别注明。

符号	参数	条件		最小值	典型值	最大值	单位
V _{CC}	输入电源电压		•	4.35	5	8.0	V
I_{CC}	输入电源电流	充电模式, R_{PROG} =10K 特机模式(充电终止) 停机模式(R_{PROG} 未连 接 , V_{CC} < V_{BAT} , 或 V_{CC} < VUV)	• • •		65 65 40	130 130 110	μΑ μΑ μΑ
				4.306	4.35	4.394	V
V_{FLOAT}	稳定输出(浮充)电压	0° C \leq TA \leq 85 $^{\circ}$ C, R _{PROG} =10K, I _{BAT} =25mA		4.158	4.2	4.242	V
		THROO TOTAL BAIL TO THE		3.663	3.7	3.737	V
I _{BAT} (以截止 电 压 4.2V 为 例)	BAT 引脚电流 (除说明外 V _{BAT} =4.0V)	R_{PROG} =300K,电流模式 R_{PROG} =10K,电流模式 R_{PROG} =2.2K,电流模式 待机模式, V_{BAT} =4.3V 停机模式(R_{PROG} 未连接) 睡眠模式, V_{CC} =0V	• • •	2.7 99 450	3.0 110 500 -2.5 ±1 0	3.3 121 550 -6 ±2 -1	mA mA mA μA μA
I _{TRIKL}	20%涓流充电电流	$V_{BAT} < V_{TRIKL}$ -0.4V, $R_{PROG} = 10K$	•	12	18	25	mA
V _{TRIKL}	涓流充 电门限 电压4.35V、4.2V 3.7V	R _{PROG} =10K - V _{BAT} 上升		2.8	2.9	3.0	V V
V _{TRHYS}	涓流充电迟滞电压	R _{PROG} =10K		60	80	100	mV
VUV	V _{cc} 欠压闭锁门限	V _{CC} 从低至高	•	3.6	3.8	4.0	V
VUVHYS	V _{CC} 欠压闭锁迟滞		•	150	200	300	mV
V _{ADPT}	V _{CC} 自适应启动电压	V _{CC} 从高至低		4.25	4.35	4.45	V
VMSD	手动停机门限电压	PROG 引脚电平上升 PROG 引脚电平下降	• •	3.40 1.90	3.50 2.00	3.60 2.10	V V
VASD	V _{CC} -V _{BAT} 闭锁门限电压	Vcc从低到高		60 5	100 30	140 50	mV mV
I _{TERM}	C/10 终止电流门限	R _{PROG} =10K R _{PROG} =2.2K	•	9 40	11 50	13 60	mA mA
V _{PROG}	PROG 引脚电压	R _{PROG} =10K, 电流模式	•	0.8	0.98	1.2	V
I_{CHRG}	CHRG 引脚漏电流	V _{CHRG} =5V(待机模式)			0	1	μΑ
V_{CHRG}	CHRG 引脚输出低电压	I _{CHRG} =5mA			0.3	0.6	V
ΔV_{RECHRG}	再充电电池 门限电压4.35V 4.20V	V _{FLOAT} -V _{RECHRG}		60	80	100	mV
FFY 73.5	3.70V			170	230	260	mV
TLIM	限定温度模式中的结温				135		$^{\circ}$ C

6

RON	功率 FET "导通"电阻 (在 V _{CC} 与 BAT 之间)			0.53		Ω
tss	软启动时间	I _{BAT} =0至 I _{BAT} =1100V/R _{PROG}		50		μS
t _{RECHARGE}	再充电比较器滤波时间	V _{BAT} 高至低	15	20	25	mS
t _{TERM}	终止比较器滤波时间	I _{BAT} 降至 I _{CHG} /10以下	15	20	25	mS
I _{PROG}	PROG 引脚上拉电流			0.2		μΑ
I _{VIN}	VIN 反向漏电流	VIN 端反接,V _{BAT} =V _{FLOAT}	0	10	20	μΑ
I _{BAT}	电池反向漏电流	电池反接,VIN=5V	2	4.0	10	mA

典型性能特征

7

工作原理(以 4.2V 为例)

TP4067是一款采用恒定电流/恒定电压算法的单节锂离子电池充电器。它能够提供3mA-600mA的充电电流(借助一个热设计良好的PCB布局)和一个内部P沟道功率MOSFET和热调节电路。无需隔离二极管或外部电流检测电阻器;因此,基本充电器电路仅需要两个外部元件。不仅如此,TP4067还能够从一个USB电源获得工作电源。

正常充电循环

当 Vcc 引脚电压升至 UVLO 门限电平以上且在 PROG 引脚与地之间连接了一个精度为 1%的设定电阻器或当一个电池与充电器输出端相连时,一个充电循环开始。如果 BAT 引脚电平低于涓流充电门限电压(4.35V、4.2V 芯片对应为 2.9; 3.7V 芯片对应为 2.5V),则充电器进入涓流充电模式。在该模式中,TP4067 提供约 20%的设定充电电流,以便将电流电压提升至一个安全的电平,从而实现满电流充电。

当 BAT 引脚电压升至涓流充电门限电压以上时,充电器进入恒定电流模式,此时向电池提供恒定的充电电流。 当 BAT 引脚电压达到最终浮充电压

(4.35V、4.2V 或 3.7V) 时,TP4067 进入恒定电压模式,且充电电流开始减小。当充电电流降至设定值的 1/10,充 电循环结束。

充电电流的设定

充电电流是采用一个连接在PROG 引脚与地之间的电阻器来设定的。设定 电阻器和充电电流采用下列公式来计 算,根据需要的充电电流来确定电阻器 阻值:

公式一:
$$R_{PROG} = \frac{900}{I_{BAT}}$$
 ($I_{BAT} \le 0.1A$)

公式二:
$$R_{PROG} = \frac{1100}{I_{BAT}}$$
 (I_{BAT}>0.1A)

在大于 0.4A 应用中,芯片热量相对较大,温度保护会减小充电电流,不同环境测试电流与公式计算理论值也变的不完全一致。客户应用中,可根据需求选取合适大小的 R_{PROG}。

R_{PROG} 与充电电流的关系可参考以下实测数据表格:

RPROG (K)	I _{BAT} (mA)
300	3
100	9
10	110
2.2	500
1.82	600

充电终止

当充电电流在达到最终浮充电压之后降至设定值的 1/10 时,充电循环被终止。该条件是通过采用一个内部滤波比较器对 PROG 引脚进行监控来检测的。当 PROG 引脚电压降至 100mV以下的时间超过 t_{TERM}(一般为 20ms)时,充电被终止。充电电流被锁断,TP4067 进入待机模式,此时输入电源电流降至 65µA。(注: C/10 终止在涓流充电和热限制模式中失效)。

充电时,BAT 引脚上的瞬变负载会使PROG引脚电压在DC充电电流降至设定值的 1/10 之间短暂地降至 100mV以下。终止比较器上的 20ms 滤波时间(t_{TERM})确保这种性质的瞬变负载不会导致充电循环过早终止。一旦平均充电电流降至设定值的 1/10 以下,TP4067 即终止充电循环并停止通过BAT 引脚提供任何电流。在这种状态下,BAT 引脚上的所有负载都必须由电池来供电。

在待机模式中,TP4067 对 BAT 引脚电压进行连续监控。如果该引脚电压降到再充电电压门限(V_{RECHRG})以下,则另一个充电循环开始并再次向电池供应电流。当在待机模式中进行充电循环的手动再启动时,必须取消然后再施加输入电压,或者必须关断充电器并使用 PROG 引脚进行再启动。图 4 示出了一个典型充电循环的状态图。

电池反接保护功能

TP4067 具备锂电池反接保护功能,当电池正负极反接于 TP4067 电流输出 BAT 引脚, TP4067 会停机显示故

障状态,无充电电流。两个充电指示管脚处于高阻态,LED 微亮,此时反接的电池漏电电流小于 5mA。将反接的电池正确接入,TP4067 自动开始充电循环。

反接后的 TP4067 当电池去除后,由于 TP4067 输出端 BAT 管脚电容电位仍为负值,则 TP4067 指示灯不会立刻正常亮,只有正确接入电池可自动激活充电。或者等待较长时间 BAT 端电容负电位的电量放光,BAT 端电位大于零伏,TP4067 会显示正常的无电池指示灯状态。

反接情况下,电源电压应在标准电压 5V 左右,不应超过 5.5V。过高的电源电压在反接电池电压情形下,芯片的压差会超过极限耐压。

VIN 输入端反接保护功能

TP4067 且具备电源反接保护功能,当 VIN 正负极反接于 TP4067 V_{CC} 引脚, TP4067 会停机显示故障状态, 无充电电流。两个充电指示管脚处于高阻态, LED 灯灭,此时反接的电源漏电电流小于 10μA。将反接的电源正确接入, TP4067 自动开始充电循环。

充电状态指示器 (CHRG、STDBY)

TP4067 有两个漏极开路状态指示输出端,CHRG 和 STDBY。当充电器处于充电状态时,CHRG 被拉到低电平,在其它状态,CHRG 处于高阻态。当电池没有接到充电器时,CHRG 输出脉冲信号表示没有安装电池。当电池端连接的外接电容为 1uF 时 CHRG 闪烁周期约 0.2-0.5 秒,当电池连接端 BAT管脚的外接电容为 10uF 时 CHRG 闪烁周期约 0.5-3 秒。

当不用状态指示功能时,将不用的 状态指示输出端接到地。

充电状态	红灯	绿灯
1 地名人名	CHRG	STDBY
正在充电状态	亮	灭
电池充满状态	灭	亮
电源欠压,反接	灭	灭
电池反接	微亮	微亮

无电池连接指示灯状态可选两种方案:

无电池	红灯	绿灯
待机状态	CHRG	STDBY
应用 1:BAT 接	闪烁	亮
一个 10uF 电容	内冻	冗
应用 2:BAT 端		
接 100K 电阻	灭	亮
到电源(图7)		

注: BAT 端连接 100K 电阻到电源时,电源 会通过电阻充电至电池,大小约 8uA。这样 的小电流即使在电池充满后未及时取下情 况中也不会对电池造成过充等危害。

热限制

如果芯片温度试图升至约 135℃的预设值以上,则一个内部热反馈环路将减小设定的充电电流。该功能可防止TP4067 过热,并允许用户提高给定电路板功率处理能力的上限而没有损坏TP4067 的风险。在保证充电器将在最坏情况条件下自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充电电流。有关 SOT 功率方面的考虑将在"热考虑"部分做进一步讨论。

欠压闭锁

一个内部欠压闭锁电路对输入电 压进行监控,并在 V_{CC}升至欠压闭锁门 限以上之前使充电器保持在停机模式。 UVLO 电路将使充电器保持在停机模 式。如果 UVLO 比较器发生跳变,则 在V_{CC}升至比电池电压高50mV之前充电器将不会退出停机模式。

电源自适应

V_{CC} 掉电至 4.35V 时,自适应电路 启动,自动降低输出电流直到 V_{CC} 不再 降低,该功能可以将大电流充电系统用 USB 或小功率电源适配器、太阳能电 池来做电源,而避免电源复位或重启。

手动停机

在充电循环中的任何时刻都能通过去掉 R_{PROG}(从而使 PROG 引脚浮置)来把 TP4067 置于停机模式。这使得电池漏电流降至 1μA 以下,且电源电流降至 65μA 以下。重新连接设定电阻器可启动一个新的充电循环。图 3 利用 NMOS 管关断使 PROG 引脚浮置。

图 3 可信号控制充电电路

自动再启动

一旦充电循环被终止,TP4067 立即采用一个具有 20ms 滤波时间(t_{RECHARGE})的比较器来对 BAT 引脚上的电压进行连续监控。当电池电压降至再充电电压点(大致对应于电池容量的 80%至 90%)以下时,充电循环重新开始。这确保了电池被维持在(或接近)一个满充电状态,并免除了进行周

期性充电循环启动的需要。在再充电循环过程中,CHRG引脚输出重新进入一个强下拉状态。

图 4 一个典型充电循环的状态图

稳定性与可靠性的考虑

在没有接电池时,为了防止接入 V_{CC} 或 BAT 产生高能毛刺,强烈要求 V_{CC} 和 BAT 端各加一个 $10\mu F$ 电容器。

在恒定电流模式中,位于反馈环路中的是 PROG 引脚,而不是电池。恒定电流模式的稳定性受 PROG 引脚阻抗的影响。当 PROG 引脚上没有附加电容会减小设定电阻器的最大容许阻值。PROG 引脚上的极点频率应保持在C_{PROG},则可采用下式来计算 R_{PROG} 的最大电阻值:

$$R_{PROG} \le \frac{1}{2\pi \bullet 10^5 \bullet C_{PROG}}$$

对用户来说,他们更感兴趣的可能是充电电流,而不是瞬态电流。例如,如果一个运行在低电流模式的开关电源与电池并联,则从 BAT 引脚流出的平均电流通常比瞬态电流脉冲更加重要。在这种场合,可在 PROG 引脚上采用一个简单的RC滤波器来测量平均的电池电流(如图 5 所示)。在 PROG 引脚和滤波电容器之间增设了一个10K 电阻器以确保稳定性。

图 5: 隔离 PROG 引脚上的容性负载 和滤波电路

功率损耗

TP4067 因热反馈的缘故而减小充电电流的条件可通过 IC 中的功率损耗来估算。这种功率损耗几乎全部都是由内部 MOSFET 产生的——这可由下式近似求出:

$$P_D = (V_{CC} - V_{BAT}) \bullet I_{BAT}$$

式中的 P_D 为耗散的功率, V_{CC} 为输入电源电压, V_{BAT} 为电池电压, I_{BAT} 为充电电流。当热反馈开始对 IC 提供保护时,环境温度近似为:

$$T_A = 135^{\circ}C - P_D\theta_{JA}$$

$$T_A = 135^{\circ}C - (V_{CC} - V_{BAT}) \bullet I_{BAT} \bullet \theta_{JA}$$

不仅如此,正如工作原理部分所讨论的那样,当热反馈使充电电流减小时,PROG 引脚上的电压也将成比例地减小。切记不需要在 TP4067 应用设计

中考虑最坏的热条件,这一点很重要, 因为该 IC 将在结温达到 135℃左右时 自动降低功耗。

热考虑

由于 SOT23-6 封装的外形尺寸很 小,大电流应用中(400mA以上)散 热效果不佳可能引起充电电流受温度 保护而减小。请根据实际电源电压设计 热耗散电阻,芯片 Vcc 端输入电压在 4.8V 为最佳,可得到较大充电电流, 一般热耗散电阻为 0.3 至 0.6 欧姆。采 用一个热设计精良的 PC 板布局以最大 幅度地增加可使用的充电电流,这一点 同样重要。用于耗散 IC 所产生的热量 的散热通路从芯片至引线框架,并通过 峰值后引线 (特别是接地引线) 到达 PC 板铜面。PC 板铜面为散热器。引脚 相连的铜箔面积应尽可能地宽阔,并向 外延伸至较大的铜面积,以便将热量散 播到周围环境中。至内部或背部铜电路 层的通孔在改善充电器的总体热性能 方面也是颇有用处的。当进行 PC 板布 局设计时,电路板上与充电器无关的其 他热源也是必须予以考虑的,因为它们 将对总体温升和最大充电电流有影响。

V_{CC}旁路电容器

输入旁路可以使用多种类型的电容器。然而,在采用多层陶瓷电容器时必须谨慎。由于有些类型的陶瓷电容器具有自谐振和高 Q 值的特点,因此,在某些启动条件下(比如将充电器输入与一个工作中的电源相连)有可能产生高的电压瞬态信号,建议采用高品质陶瓷电容或钽电容。

充电电流软启动

TP4067 包括一个用于在充电循环

开始时最大限度地减小涌入电流的软启动电路。当一个充电循环被启动时,充电电流将在 50μS 左右的时间里从 0上升至满幅全标度值。在启动过程中,这能够起到最大限度地减小电源上的瞬变电流负载的作用。

CHRG 状态输出引脚

当一个放电电池被连接到充电器时,充电循环的恒流部分开始,CHRG引脚电平被拉至地。CHRG引脚能够吸收高达 10mA 的电流,以驱动一个用于指示充电循环正在进行之中的 LED。

当电池接近充满时,充电器进入充电循环的恒定电压部分,充电电流开始下降。当充电电流降至不足设定电流的1/10时,充电循环结束且强下拉高阻态所取代,表示充电循环已经结束。如果输入电压被拿掉,则 CHRG 引脚也将变成高阻抗。利用一个上拉电阻器,一个微处理器能够从该引脚检测出这两种状态,如图 6 所示。

图 6: 采用一个微处理器来确定 CHRG 引脚状态为了在 TP4067 处于充电模式时进行检测,在采用 100K 上拉电阻器的情况下,N 沟道 MOSFET 把该引脚拉至低电平。一旦充电循环终止,N 沟道 MOSFET 即被关断,CHRG 引脚为高阻抗 IN 引脚随后将由 100K 上拉电阻器拉至高电平。

封装描述

Cl 1	Dimensions In	n Millimeters	Dimensions	s In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	(BSC)	0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

其他典型应用

图 7 无电池红灯灭 单节锂电池充电应用图

TP4067 测试使用注意事项

- 1、为保证各种情况下可靠使用,防止尖峰和毛刺电压引起的芯片损坏,建议 TP4067 应用中 V_{CC} 端和 BAT 端分别接 $1\mu F$ - $10\mu F$ 的陶瓷电容以及 $0.1\mu F$ 陶瓷电容,客户在大电流 400mA 及其以上电流充电使用下建议使用较大的 4.7- $10\mu F$ 电容以及 $0.1\mu F$ 陶瓷电容。所有电容位置须靠近芯片引脚放置,不宜过远。
- 2、如需测试 TP4067 充电电流,芯片 BAT 端(3 号脚)应直接连接电池正极,不可串联电流表,电流表可串在芯片 V_{CC} 端。
- 3、采用 SOT23-6 封装,大电流应用中(400mA 以上)散热效果不佳可能引起充电电流 受温度保护而减小。一般客户可以不接耗散电阻,若电流不能满足要求,请根据实 际电源电压设计热耗散电阻(耗散电阻不仅可以得到稳定的充电电流,而且对整机 系统的可靠性也有极大的提升),芯片 V_{CC} 端输入电压在 4.8V 为最佳,可得到较大 充电电流,一般热耗散电阻为 0.3 至 0.6Ω,功率最好为 0.15W 以上。良好的 PCB 板布局可以有效减小客户在大电流充电应用中温度对电流的影响。

版本历史

日期	版本说明	版本
2017.3.15	第一版	Rev1.0