What is claimed is:

1	1.	A method of testing an integrated circuit (1C), the method comprising:
2		driving a terminal on the IC to a state;
3		stopping the driving of the terminal;
4		floating the terminal for a predetermined time; and
5		determining a state of the terminal after the predetermined time.
1	2.	The method of claim 1 further comprising:
2 3		determining quality of the IC based on the state of the terminal after the predetermined time.
1 2	3.	The method of claim 1, wherein driving includes applying a logic low to the terminal.
1 2	4.	The method of claim 1, wherein driving includes applying a logic high to the terminal.
1 2	5.	The method of claim 1, wherein determining includes measuring a voltage of the terminal after the predetermined time.
1	6.	A method of testing comprising:
2		charging a pin on an integrated circuit (IC) until it reaches a known state;
3		stopping the charging of the pin;
4		floating the pin for a predetermined time;
5		sampling a state of the pin after the predetermined time; and
6		determining a test result of the pin based on the state of the pin after the
7		predetermined time, wherein the method is performed with Boundary
8		Scan.

- 1 7. The method of claim 6, wherein charging includes driving the pin to a logic low.
- 1 8. The method of claim 6, wherein charging includes driving the pin to a logic high.
- 1 9. The method of claim 6, wherein sampling includes determining if the pin changes
- 2 state after the predetermined time.
- 1 10. A method of testing comprising:
- driving the first terminal on an integrated circuit (IC) to a first state;
- driving the second terminal on the IC to a second state;
- 4 stopping the driving of at least one of the terminals;
- floating at least one of the terminals for a predetermined time; and
- 6 determining a state of at least one of the terminals after the predetermined
- 7 time.
- 1 11. The method of claim 10 further comprising:
- determining quality of the IC based on the state of at least one of the terminal after
- 3 the predetermined time.
- 1 12. The method of claim 10, wherein driving the first and second terminals include
- 2 applying opposite states to the terminals.
- 1 13. The method of claim 10, wherein determining includes measuring a voltage value
- 2 of least one of the terminals.

1	14.	A method of testing comprising:
2		charging the first pin on an integrated circuit (IC) to a first known state;
3		charging the second pin on the IC to a second known state;
4		stopping the charging of at least one of the pins;
5		floating at least one of the pins for a predetermined time;
6		sampling a state of at least one of the pins after the predetermined time; and
7		determining a test result of at least one of the pins based on the state of at least
8		one the pins after the predetermined time, wherein the method is
9		performed with Boundary Scan.
1	15.	The method of claim 14, wherein charging the first and second terminals includes
2		applying opposite states to the terminals.
1	16.	The method of claim 14, wherein sampling includes determining whether at least
2		one of the pin changes state after the predetermined time.
1	17.	A method of testing a circuit module, the method comprising:
2		tri-stating all of the terminals on any of the integrated circuits (ICs) connected
3		to a net, the ICs located on the same circuit module, and wherein the ICs
4		includes different types of ICs and perform different functions,
5		driving the net to a state through a terminal on one or more of the ICs;
6		stopping the driving of the terminal;
7		floating the net for a predetermined time; and
8		determining a state of the net after the predetermined time, wherein the
9		method is performed with Boundary Scan.
1	18.	The method of claim 17 further includes:
2		determining quality of the circuit module based on the state of the net after the
3		predetermined time.

	Atto	rney Docket No. 884 410US1 Client Ref. No. P10926
2		pins, wherein the tester connects to the IC through the Boundary Scan pins.
1	24.	The apparatus of claim 23, wherein the IC comprises a plurality of Boundary Scan
10		time, wherein the method is performed with Boundary Scan.
9		determining a state of at least one of the terminals after the predetermined
8		floating at least one of the terminals for a predetermined time; and
7		stopping the driving of at least one of the terminals;
6		driving the second terminal of an IC to a second state;
5		driving the first terminal of an IC to a first state;
4		by a method of:
3		a tester connected to the IC, wherein the tester performs a leakage test on the IC
2		an integrated circuit (IC); and
1	23.	An apparatus comprising:
1	22.	The apparatus of claim 20, wherein the tester is a computer.
2		pins, wherein the tester connects to the IC through the Boundary Scan pins.
1	21.	The apparatus of claim 20, wherein the IC includes a plurality of Boundary Scan
8		determining a state of the terminal after the predetermined time.
7		floating the terminal for a predetermined time; and
6		stopping the driving of the terminal;
5		driving the terminal of an IC to a state;
4		a method of:
3		a tester connected to the IC, wherein the tester performs leakage test on the IC by
2		an integrated circuit (IC); and
1	20.	An apparatus comprising:
2		changes from one state to another.
1	19.	The method of claim 17, wherein determining includes determining if the net

30.

1

2

The apparatus of claim 23, wherein the tester performs the leakage test through 1 25. the Boundary Scan pins. 2 The apparatus of claim 23, wherein the tester is a computer. 26. 1 A machine-readable medium having instructions stored thereon capable of 1 27. causing a tester to perform method of testing, the method comprising: 2 charging the pin of an integrated circuit (IC) until it reaches a known state; 3 stopping the charging of the pin; 4 floating the pin for a predetermined time; 5 sampling a state of the pin after the predetermined time; and 6 determining a test result of the pin based on the state of the pin after the 7 predetermined time. 8 The method of claim 27, wherein charging includes driving the pin to a logic low. 28. 1 The method of claim 27, wherein charging includes driving the pin to a logic 1 29. 2 high.

The method of claim 27, wherein sampling includes determining if the pin

changes state after the predetermined time.