Spotting Cinderella at the Dance: Predicting Upsets in the NCAA Men's Basketball Tournament

Matthew Worley

Presentation Outline

Introduce and define the problem

Performance: Metrics and Real-World

Adding value and iterating to improve

The Problem

Most games are an uneven matchup between a favored team expected to win and an "underdog"

Around one-fifth of the time, underdogs "upset" the favorites

Upsets bust brackets

Upsets cause bracket pool players to lose points

Future matchups are eliminated

Which upsets to predict?

Bracket players have worse accuracy for upsets

Know they occur, but lack guidance on which to pick

"Experts"

or

Algorithms?

The Solution

Use machine learning to provide better upset guidance for bracket contests and game wagers

Project Pipeline

Data Processing and Exploration

Create and Compare Models

Test Models

Download and webscrape data

Build characteristics for each tournament team

Label games as upsets or not

Train classification models to predict upsets from features of teams in each game

Use best models to classify held-out games

Provide estimate of future performance

Strategy: Broad range of team features

Player Statistics

GAME STATISTICS				
Player	GP	MIN	PPG	RPG
Frank Mason III	36	36.1	20.9	4.2
Josh Jackson	35	30.8	16.3	7.4
Devonte' Graham	36	35.3	13.4	3.1
Sviatoslav Mykhailiuk	36	27.3	9.8	3.0
Landen Lucas	35	25.6	8.0	8.3

Coach History

Distance Traveled

Team Season Performance

Rank	Team	Conf	W-L	AdjEM
6	Kansas 1	B12	31-5	+27.45

1 Kansas (28-4)

16 UC Davis (23-12)

Player	GP	MIN	PPG	RPG
Brynton Lemar	36	33.0	16.1	3.3
Chima Moneke	36	27.3	14.6	9.5
Siler Schneider	36	23.2	10.3	3.3
Lawrence White	36	27.3	7.7	3.6
Darius Graham	36	28.9	7.3	1.8

Rank	Team	Conf	W-L	AdjEM
218	UC Davis 16	BW	23-13	-4.41

Focus only on upsets

Games with "upset potential" involve a "favorite" vs. an "underdog"

Criteria: Seed difference > 3

Labels for games that meet criteria:

"Not upset" - Underdog wins
"Not upset" - Underdog loses
"N/A" - Game not used

Machine Learning Process

Use Case: 2017 NCAA Tournament

Use model to classify future games

90% Upset Recall
Predicted 9 of 10 true upsets

45% Upset Precision
9 true upsets in 20 upset predictions

F1 = 0.60

17% return on wagers using predictions

Scenario: Place \$100 money line bet on each game

Iteration: Addressing Label Imbalance

Only ~20% of games are an upset

Most classification algorithms perform better with more balanced labels

The Solution

Use "resampling" to reduce the label imbalance in training sets

Random Undersampling

Randomly remove non-upsets

Random Oversampling

Randomly repeat upsets

Synthetic Oversampling

Create new upsets similar to authentic ones

Resampling in Machine Learning

Best model used for 2017 prediction

Model Selection: Test set performance

Use Case: 2017 NCAA Tournament

Resampling improved upset classification

80% Upset Recall
Predicted 8 of 10 true upsets

53% Upset Precision 8 true upsets in 15 upset predictions

F1 = 0.64

Scoring the model vs. Kaggle submissions

A trade-off between predicting and few false positives (x-axis) and most true upsets (y-axis)

Model achieved good balance

In 1st percentile of Kaggle contest entries (one entry had higher *F1*)

21% return on wagers using predictions

Scenario: Place \$100 money line bet on each game

Client Recommendations

Bracket Contest Players

Pick Round 1 underdog winners

79% accuracy rate in 2017 Differentiate scores from competitors

Be skeptical of favorites predicted to be upsetNone made Final Four in 2017

Game Wagers

Weight bets to highconfidence picks

Moderate-return underdogs Small-return favorites

Spread smaller bets across lower-confidence upset picks Account for most false positives Pick games with larger returns