电光、计控学院本科生 2015—2016 学年第一学期线性代数课程期末考试试卷(A卷)

专业:

年级:

学号:

姓名:

成绩:

)

)

(

(

)

 A^T 表示矩阵 A 的转置矩阵, A^* 表示矩阵 A 的伴随矩阵,E 是单位矩阵,O 是零矩阵, A^{-1} 表示可逆矩阵 A 的逆矩阵,|A|表示方阵 A 的行列式, $\langle \alpha, \beta \rangle$ 表示向量 α, β 的内积。

得 分

一 .客观题: 1-3 小题为判断题,在对的后面括号中填"√",错的后面括号中填"×",

4-8 为单选题,将正确选项前的字母填在括号中.(每小题 2 分,共 16 分)。

- 1. 对于任意 n 阶矩阵 A, B, |A + B| = |A| + |B|。 (
- n 阶实对称矩阵的特征根必为实数。 ()
- 3. 同一线性变换在不同基底下的矩阵是合同的。
- 4. 下列是 6 阶行列式 $\left|a_{ij}\right|$ 展开式中的项,且取"+"号的是
 - A. $a_{11}a_{26}a_{33}a_{42}a_{54}a_{65}$; B. $a_{21}a_{53}a_{16}a_{42}a_{65}a_{34}$;
 - C. $a_{51}a_{32}a_{13}a_{44}a_{25}a_{66}$; D. $a_{15}a_{23}a_{32}a_{44}a_{51}a_{66}$
- 5. 设 A, B, C 是同阶可逆方阵, 下面各等式中正确的是
 - A. ABC = CBA
- $B. \quad |ABC| = |A||B||C|$
- C. $(ABC)^T = A^T B^T C^T$ D. $(ABC)^{-1} = A^{-1} B^{-1} C^{-1}$
- 6. 设有实二次型 $f(\mathbf{x}_1, x_2, x_3) = x_2^2 + x_3^2$,则二次型 $f(x_1, x_2, x_3)$ 为()二次型。
 - A. 正定

B. 负定

C. 不定

- D. 半正定
- 7. 设 3 阶矩阵 A 特征值为 0, 1, 2, 其对应的特征向量分别为 $\alpha_1, \alpha_2, \alpha_3$, 令 $P = (\alpha_3, \alpha_1, 2\alpha_2)$, 则 $P^{-1}AP =$ ()
- A. $diag\{2, 1, 0\}$ B. $diag\{2, 0, 1\}$ C. $diag\{0, 1, 4\}$ D. $diag\{2, 0, 2\}$
- 8. 设 n 阶矩阵 A 满足 $A^2 = 0$, E 是 n 阶单位矩阵,则

A.
$$|E-A| \neq 0$$
,但 $|E+A| = 0$ B. $|E-A| = 0$,但 $|E+A| \neq 0$

B.
$$|E-A|=0$$
,但 $|E+A|\neq 0$

C.
$$|E - A| = 0,$$
 $$|E + A| = 0$$

C.
$$|E-A|=0,$$
 $\mathbb{E}|E+A|=0$ D. $|E-A|\neq 0$ $\mathbb{E}|E+A|\neq 0$

二 、行列式计算 (第1小题6分,第2小题8分,共14分)

1. 计算行列式
$$\begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$$
的值.

$$a+1$$
 0 0 0 $a+2$ 0 $a+6$ 0 0 $a+2$ 0 $a+6$ 0 0 $a+7$ 0 $a+8$ 0 $a+3$ 0 0 0 $a+4$

得 分

四、对于线性方程组:
$$\begin{cases} x_1 + x_2 &= 1 \\ x_1 & -x_3 = 1 \\ x_1 + ax_2 + x_3 = b \end{cases}$$
 (本题 14 分)

- (1) 当 a,b 取何值时,无解,有唯一解,有无穷多解?
- (2) 当方程组有无穷多解时求其通解。

得 分

五、在线性空间
$$R^2$$
 中,给定一组基底: $\alpha_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (本题 9 分)
$$\text{在 } R^2 \text{ 中定义变换 } \sigma \text{: } \sigma \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 + x_2 \end{bmatrix}$$

- (1) 证明:变换 σ 为线性变换.
- (2) 求 σ 在基底 α_1, α_2 下的矩阵 A.

得 分

六、已知二次型:
$$f(x_1, x_2, x_3) = 2x_1^2 + 3x_2^2 + 3x_3^2 + 2x_2x_3$$
 (本题 14 分)

用正交变换 X=PY 化 $f(x_1,x_2,x_3)$ 为标准形,并求出其正交变换矩阵 P;

同时说明该二次型的类型(正定、负定、半正定、半负定、不定).

得 分

七、设
$$\alpha_1,\alpha_2,\cdots,\alpha_s$$
是齐次方程组 $AX=0$ 的一个基础解系, β 不是 $AX=0$ 的解, (本题 9 分)证明: $\beta,\beta+\alpha_1,\beta+\alpha_2,\cdots,\beta+\alpha_s$ 线性无关.

得 分

八、设
$$\mathbf{A}$$
 和 \mathbf{C} 都是 \mathbf{n} 阶可逆矩阵, $M = \begin{pmatrix} O & A \\ C & D \end{pmatrix}$, O 为零矩阵, \mathbf{D} 为 \mathbf{n} 阶矩阵 (本题 9 分) 求 M^{-1} .

得 分

九、
$$n$$
阶矩阵 A 满足 $A^2-A-2E=0$. (本题 5 分) 证明 $(1)A$ 的特征值为 -1 和2.

(2) A 与对角形矩阵相似.