Fourier Transforms for Circuit and LTI Systems Analysis

Scope and Background Reading

This session we will apply what we have learned about Fourier transforms to some typical cicuit problems. After a short introduction, this session will be an examples class.

The material in this presentation and notes is based on Chapter 8 (Starting at Section 8.8) of <u>Steven T. Karris, Signals and Systems: with Matlab Computation and Simulink Modelling, 5th Edition.</u>
(http://site.ebrary.com/lib/swansea/reader.action?docID=10547416&ppg=271) from the **Required Reading List**. I also used Chapter 5 of <u>Benoit Boulet, Fundamentals of Signals and Systems</u>
(http://site.ebrary.com/lib/swansea/reader.action?docID=10228195&ppg=194) from the **Recommended Reading List**.

Agenda

- · The system function
- Examples
- · The system function
- Examples

The System Function

System response from system impulse response

Recall that the convolution integral of a system with impulse response h(t) and input u(t) is

$$h(t) * u(t) = \int_{-\infty}^{\infty} h(t - \tau)u(\tau) d\tau.$$

We let

$$g(t) = h(t) * u(t)$$

Then by the time convolution property

$$h(t) * u(t) = g(t) \Leftrightarrow G(\omega) = H(\omega). U(\omega)$$

The System Function

We call $H(\omega)$ the system function.

We note that the system function $H(\omega)$ and the impulse response h(t) form the Fourier transform pair $h(t) \Leftrightarrow H(\omega)$

Obtaining system response

If we know the impulse resonse h(t), we can compute the system response g(t) of any input u(t) by multiplying the Fourier transforms of $H(\omega)$ and $U(\omega)$ to obtain $G(\omega)$. Then we take the inverse Fourier transform of $G(\omega)$ to obtain the response g(t).

- 1. Transform $h(t) \rightarrow H(\omega)$
- 2. Transform $u(t) \rightarrow U(\omega)$
- 3. Compute $G(\omega) = H(\omega)$. $U(\omega)$
- 4. Find $\mathcal{F}^{-1}\left\{G(\omega)\right\} \to g(t)$

Examples

Example 1

Karris example 8.8: for the linear network shown below, the impulse response is $h(t) = 3e^{-2t}$. Use the Fourier transform to compute the response y(t) when the input $u(t) = 2[u_0(t) - u_0(t-3)]$. Verify the result with Matlab.

26/03/2017

Solution		

ft3

Matlab verification

See ft3 ex1.m (matlab/ft3 ex1.m)

Result:

$$y = 3*heaviside(t) - 3*heaviside(t - 3) + 3*heaviside(t - 3)*exp(6 - 2*t) - 3*exp(-2*t)*heaviside(t)$$

Which after gathering terms gives

$$y(t) = 3(1 - 3e^{-2t})u_0(t) - 3(1 - 3e^{-2(t-3)})u_0(t-3)$$

And here's a plot:

26/03/2017

Example 2

Karris example 8.9: for the circuit shown below, use the Fourier transfrom method, and the system function $H(\omega)$ to compute $V_L(t)$. Assume $i_L(0^-)=0$. Verify the result with Matlab.

ft3

Solution	Sol	lution	1
----------	-----	--------	---

Matlab verification

See ft3 ex2.m (matlab/ft3 ex2.m)

Result:

$$vout = -5*exp(-3*t)*heaviside(t)*(2*exp(t) - 3)$$

Which after gathering terms gives

$$v_{\text{out}} = 5 \left(3e^{-3t} - 2e^{-2t} \right) u_0(t)$$

And here's a plot:

26/03/2017

Example 3

Karris example 8.10: for the linear network shown below, the input-output relationship is:

$$\frac{d}{dt}v_{\text{out}} + 4v_{\text{out}} = 10v_{\text{in}}$$

ft3

where $v_{\rm in}=3e^{-2t}$. Use the Fourier transform method, and the system function $H(\omega)$ to compute the output $v_{\rm out}$. Verify the result with Matlab.

Solution

Matlab verification

See ft3 ex3.m (matlab/ft3 ex3.m)

Result:

 $15*\exp(-4*t)*heaviside(t)*(exp(2*t) - 1)$

Which after gathering terms gives

$$v_{\text{out}}(t) = 15 \left(e^{-2t} \right) - e^{-4t} \right) u_0(t)$$

And here's a plot:

Example 4

Karris example 8.11: the voltage across a 1 Ω resistor is known to be $V_R(t)=3e^{-2t}u_0(t)$. Compute the energy dissipated in the resistor for $0 < t < \infty$, and verify the result using Parseval's theorem. Verify the result with Matlab.

Note from tables of integrals (http://en.wikipedia.org/wiki/Lists of integrals)

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C.$$

Matlab verification

See ft3 ex4.m (matlab/ft3 ex4.m)

Result:

Wr = (51607450253003931*pi)/72057594037927936 = 2.25