Práctica 1 - Algoritmos

Table of Contents

Aprendemos	1
1. Introducción a MATLAB	
Ejercicio 1. Calcula las siguientes cantidades	
Ejercicio 2. Gráficas	
2. Iteraciones	
Ejercicio 3. Bucle for.	3
Ejercicio 4. Bucle while	
3. Funciones	
Ejercicio 5. Funciones anónimas	
Ejercicio 6. Funciones en Live script	
Para hacer	
4. Trabajo autónomo. Ejercicios de la lista: del 1 al 10.	6

Aprendemos...

1. Introducción a MATLAB

Cleve's Corner: Cleve Moler on Mathematics and Computing

A Brief History of MATLAB

Ejercicio 1. Calcula las siguientes cantidades

```
r = \sqrt{1 - \frac{2}{\pi^5}}; \ r = e^2 \ln 5; \ r = \sin^2 2 + \cos^2 4
r = 0.996726879698693
r = 11.892227022721402
r = 1.254071793527499
```

Ejercicio 2. Gráficas

Haz una gráfica de las siguientes funciones:

Toma un mínimo de 50 puntos en el intervalo; representa las gráficas con título y cuadrícula.

1.
$$f(x) = x^5 e^{-x^2} - \frac{\sin x}{x^2 + 1}$$
 para $x \in [-2\pi, 2\pi]$

2. $f(x) = \frac{x^2 - 4x - 7}{x^2 - x - 6}$ para $-6 \le x \le 6$ (presenta dos asíntotas)

2. Iteraciones

Calcula el valor del método itativo siguiente:

$$x_k = \frac{1}{2} \left(x_{k-1} + \frac{2}{x_{k-1}} \right) \quad k \ge 1, \ x_0 = 3$$

Haciendo uso de las instrucciones:

- Bucle "for"
- Bucle "while"

En todos los casos compara el resultado obtenido con el valor $\sqrt{2}$.

Ejercicio 3. Bucle for

Calcula los valores de las iteraciones, el error absoluto y relativo hasta k=10. Guarda los resultados de todas las iteraciones en vectores. Por último, presenta el resultado en una tabla en MATLAB.

k	x_k	ea_k	er_k
_			
0	3	1.5858	1.1213
1	1.83333333333333	0.41912	0.29636
2	1.46212121212121	0.047908	0.033876
3	1.4149984298948	0.00078487	0.00055499
4	1.4142137800472	2.1767e-07	1.5392e-07

5	1.41421356237311	1.6653e-14	1.1776e-14
6	1.41421356237309	2.2204e-16	1.5701e-16
7	1.41421356237309	2.2204e-16	1.5701e-16
8	1.41421356237309	2.2204e-16	1.5701e-16
9	1.41421356237309	2.2204e-16	1.5701e-16
10	1.41421356237309	2.2204e-16	1.5701e-16

Ejercicio 4. Bucle while

Calcula los 5 primeros valores de los iterados con un bulce while. Después calcula todas las iteraciones hasta que el error absoluto sea menor que 1.e-6. En ambos casos presenta los resultados en una tabla en MATLAB.

k	x_k	ea_k	er_k
-			
0	3	1.5858	0
1	1.83333333333333	0.41912	0.29636
2	1.46212121212121	0.047908	0.033876
3	1.4149984298948	0.00078487	0.00055499
4	1.4142137800472	2.1767e-07	1.5392e-07
5	1.41421356237311	1.6653e-14	1.1776e-14
k	x_k	ea_k	er_k
k _	x_k	ea_k 	er_k
k - 0	x_k	ea_k 1.5858	er_k
_			
- 0	3	1.5858	0
- 0 1	3 1.83333333333333	1.5858 0.41912	

3. Funciones

Ejercicio 5. Funciones anónimas

h = @(arglist)anonymous_function

Evalúa las funciones

$$f(x) = \sqrt{x^2 + 1} - 1$$
, $g(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$

para la sucesión de valores de $x_n = 8^{-n}$, $n \ge 1$. Aunque f(x) = g(x), el ordenador da resultados diferentes. ¿Qué resultados son de fiar y cuáles no? ¿Por qué? Justifica la respuesta.

k	8^(-k)	f(8^-k)	g(8^-k)
_			
0	1	0.41421	0.41421
1	0.125	0.0077822	0.0077822
2	0.015625	0.00012206	0.00012206
3	0.0019531	1.9073e-06	1.9073e-06
4	0.00024414	2.9802e-08	2.9802e-08
5	3.0518e-05	4.6566e-10	4.6566e-10
6	3.8147e-06	7.276e-12	7.276e-12
7	4.7684e-07	1.1369e-13	1.1369e-13
8	5.9605e-08	1.7764e-15	1.7764e-15
9	7.4506e-09	0	2.7756e-17
10	9.3132e-10	0	4.3368e-19

11	1.1642e-10	0	6.7763e-21
12	1.4552e-11	0	1.0588e-22
13	1.819e-12	0	1.6544e-24

Haz un juego de pruebas por diferentes x_n , por ejemplo tome $5^{-n}, 7^{-n}, 9^{-n}...$

-		-	•
k 	5^(-k)	f(5^-k)	g(5^-k)
0	1	0.41421	0.41421
1	0.2	0.019804	0.019804
2	0.04	0.00079968	0.00079968
3	0.008	3.1999e-05	3.1999e-05
4	0.0016	1.28e-06	1.28e-06
5	0.00032	5.12e-08	5.12e-08
6	6.4e-05	2.048e-09	2.048e-09
7	1.28e-05	8.192e-11	8.192e-11
8	2.56e-06	3.2767e-12	3.2768e-12
9	5.12e-07	1.3101e-13	1.3107e-13
10	1.024e-07	5.107e-15	5.2429e-15
11	2.048e-08	2.2204e-16	2.0972e-16
12	4.096e-09	0	8.3886e-18
13	8.192e-10	0	3.3554e-19
k	7^(-k)	f(7^-k)	g(7^-k)
_			
0	1	0.41421	0.41421
1	0.14286	0.010153	0.010153
2	0.020408	0.00020822	0.00020822
3	0.0029155	4.2499e-06	4.2499e-06
4	0.00041649	8.6733e-08	8.6733e-08
5	5.9499e-05	1.7701e-09	1.7701e-09
6	8.4999e-06	3.6124e-11	3.6124e-11
7	1.2143e-06	7.3719e-13	7.3722e-13
8	1.7347e-07	1.5099e-14	1.5045e-14
9	2.4781e-08	2.2204e-16	3.0705e-16
10	3.5401e-09	0	6.2663e-18
11	5.0573e-10	0	1.2788e-19
12	7.2248e-11	0	2.6099e-21
13	1.0321e-11	0	5.3262e-23
k	9^(-k)	f(9^-k)	g(9^-k)
_			
0	1	0.41421	0.41421
1	0.11111	0.0061539	0.0061539
2	0.012346	7.6205e-05	7.6205e-05
3	0.0013717	9.4084e-07	9.4084e-07
4	0.00015242	1.1615e-08	1.1615e-08
5	1.6935e-05	1.434e-10	1.434e-10
6	1.8817e-06	1.7704e-12	1.7704e-12
7	2.0908e-07	2.176e-14	2.1856e-14
8	2.3231e-08	2.2204e-16	2.6983e-16
9	2.5812e-09	0	3.3312e-18
10	2.868e-10	0	4.1126e-20
11	3.1866e-11	0	5.0773e-22
12	3.5407e-12	0	6.2683e-24
13	3.9341e-13	0	7.7386e-26

Ejercicio 6. Funciones en Live script

- 1. Escribe una funcion que devuelva el error relativo de los datos x, \widetilde{x} .
- 2. Escribe una funcion que devuelva los decimales exactos y las cifras significativas de los datos x, \tilde{x} .

Haz un juego de pruebas

```
0.333333333333333
                 0.3333
er_abs =
     3.3333333333297e-05
er rel =
      9.999999999989e-05
er_abs =
     3.3333333333297e-05
er_rel =
    9.999999999989e-05
        3.14159265358979
xa =
                   3.1416
er_abs =
    7.34641020683213e-06
er rel =
     2.33843499679617e-06
er_abs =
     7.34641020683213e-06
er_rel =
    2.33843499679617e-06
t =
```

Para hacer

4. Trabajo autónomo. Ejercicios de la lista: del 1 al 10.

Documento preparado por I. Parada; 14 de febrero de 2023