Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3115</u> Студент Конаныхина А. А.	К работе допущен Работа выполнена				
Преподаватель Боярский К.К.	Отчет принят				
Рабочий протокол и отчет по лабораторной работе №3.10					
«Изучение Своб	бодных Затухающих				
Эпектромагни	тных Копебаний»				

Цель работы:

Изучение основных характеристик свободных затухающих колебаний.

Схема установки:

Рабочая схема для изучения затухающих колебаний напряжения на конденсаторе:

- HГ1 генератор переменных напряжений;
- L катушка индуктивности;
- С конденсатор;
- R_m магазин сопротивлений добавочное сопротивление в контуре.

Измерительные приборы:

Nº п/п	Наименование	Используемый диапазон	Погрешность прибора
1	Осциллограф	Настраиваемый	Настраиваемый

Исходные данные:

Параметры установки:

Количество витков намагничивающей обмотки І:

 $N_1 = 1700$ вит

Количество витков намагничивающей обмотки II:

 $N_2 = 1000$ вит

Номиналы конденсаторов:

 $C_1 = 0.022 \text{ MK}\Phi$

 $C_2 = 0,033$ мкФ

 $C_3 = 0,047 \text{ MK}\Phi$

 $C_4 = 0,47$ мкФ

Результаты прямых измерений:

В ходе лабораторной работы необходимо было рассмотреть осциллограмму затухающих колебаний при различных параметрах RLC контура. В 1 эксперименте необходимо менять сопротивление из банка сопротивлений и измерять параметры осциллограммы (рис.слева).

Измерим при разных сопротивлениях магазина R_m период колебаний в контуре и значения $2U_i$, $2U_{i+n}$ — значения удвоенной амплитуды колебаний напряжения на конденсаторе для двух моментов времени, разделённых количеством периодов n=1-5. Повторим данный эксперимент при сопротивлении магазина R_m в диапазоне от 0 до 100 Ом с шагом 10 Ом, а также при значениях 200 Ом, 300 Ом, 400 Ом:

Таблица 1.

тиолици 1.								
R_м, ом	Т, мс	2Ui, дел	2Ui+n, дел	n	λ	Q	R, om	L, мГн
0	7,3	6,2	1,8	4	0,3	13,6	87	17,1
10	7,3	6	1,3	4	0,4	11,8	97	13,9
20	7,3	5,8	1,1	4	0,4	11,1	107	14,3
30	7,3	5,6	1	4	0,4	10,9	117	15,9
40	7,3	5,4	0,8	4	0,5	10,2	127	15,3
50	7,3	5,3	0,7	4	0,5	9,9	137	15,8
60	7,3	5	0,5	4	0,6	9,2	147	14,1
70	7,3	4,8	0,4	4	0,6	8,8	157	13,8
80	7,3	4,8	0,3	4	0,7	8,4	167	12,6
90	7,3	4,3	0,3	4	0,7	8,5	177	15,3
100	5,5	4,2	0,3	4	0,7	8,6	187	17,4
200	3,7	3	0,4	2	1,0	7,2	287	17,6
300	1,9	2,1	0,4	1	1,7	6,5	387	11,8
400	1,9	1,5	0,1	1	2,7	6,3	487	7,0

Во втором эксперименте необходимо было измерить период колебаний при разных емкостях конденсаторов. Установив нулевое сопротивление магазина и последовательно включая в качестве ёмкости контура конденсаторы C_1 , C_2 , C_3 и C_4 , измерим период $T_{\mbox{\tiny ЭКСП}}$ колебаний в контуре. Также посчитаем значения $T_{\mbox{\tiny Теор}}$ для каждого из значений ёмкостей по формуле:

$$T_{\text{reop}} = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}$$

Таблица 2.

С, мкФ	Т _{эксп} , с	Т _{теор} , с	$\delta T = \frac{T_{ m 9KC\Pi} - T_{ m Teop}}{T_{ m Teop}}$, %
0,022	0,09	0,11	0,21
0,033	0,11	0,14	0,22
0,047	0,13	0,17	0,22
0,47	0,44	0,54	0,19

Расчет результатов косвенных измерений:

1) Найдем логарифмический декремент для каждого значения сопротивлений из банка сопротивлений по формуле и внесем в таблицу 1:

$$\lambda = \frac{1}{n} \ln \left(\frac{U_i}{U_{i+n}} \right)$$

Методом наименьших квадратов посчитаем коэффициенты зависимости $\lambda = AR + B$:

$$A \equiv \frac{\left(\sum_{i=1}^{N} R_{i} \lambda_{i} - \frac{1}{N} \sum_{i=1}^{N} R_{i} \sum_{i=1}^{N} \lambda_{i}\right)}{\sum_{i=1}^{N} R_{i}^{2} - \frac{1}{N} (\sum_{i=1}^{N} R_{i})^{2}} = 0,0038 \text{ Om}^{-1}$$

$$B = \frac{1}{N} \left(\sum_{i=1}^{N} \lambda_i - A \sum_{i=1}^{N} x_i \right) = 0.33$$

Зная их, найдём собственное сопротивление контура R₀:

$$R_0 = \frac{B}{A} = 86 \text{ Om}$$

Найдём полные сопротивления и занесём в таблицу 1:

$$R = R_m + R_0$$

Найдём индуктивности катушки L по формуле и занесём в таблицу 1:

$$L = \frac{\pi^2 R^2 C}{\lambda^2}$$

Найдём среднюю индуктивность по формуле:

$$L_{\rm cp} = \frac{L_1 + L_2 + \dots + L_N}{N} = 0,504 \ \Gamma {\rm H}$$

Посчитаем добротности по формуле и занесём в таблицу 1:

$$Q = \frac{2\pi}{1 - e^{-2\lambda}}$$

Для R_m < 100 добротность найдём по формуле:

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Для случаев R_m > 100 найдём период колебаний по формуле:

$$T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}$$

Для сопротивлений магазина 0, 200 и 400 Ом вычислим значение периода колебаний в контуре и сравним его с теоретическим:

4

R _m , O _M	Тэксп, С	Т _{теор} , С
0	0,37	0,11
200	0,19	0,12
400	0,10	0,12

Критическое сопротивление можно найти, увеличивая R_m в контуре до тех пор, пока колебания не прекратятся. Экспериментальное значение, при котором это случилось – 1100 Ом, то есть полное сопротивление в контуре было $R = R_m + R_0 = 1186~{
m Om},$ а теоретически это значение находится по формуле: $R_{\text{крит}} = 2\sqrt{\frac{L}{c}} = 1653 \text{ Ом}$

2) По формуле $T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}$ находим периоды колебаний при разных ёмкостях и сравним с получившимися в ходе эксперимента, построив график.

Расчет погрешностей:

Погрешность логарифмического декремента найдём по формуле:

$$\Delta \lambda = \lambda \sqrt{\left(\frac{\partial \lambda}{\partial U_i} \Delta U_i\right)^2 + \left(\frac{\partial \lambda}{\partial U_{i+n}} \Delta U_{i+n}\right)^2} = \lambda \sqrt{\left(\frac{\Delta U_i}{U_i}\right)^2 + \left(\frac{\Delta U_{i+n}}{U_{i+n}}\right)^2} = \lambda \sqrt{(\delta U_i)^2 + (\delta U_{i+n})^2}$$

Найдём погрешность А и В через их среднеквадратичное отклонение:

$$\sigma_A = \sqrt{\frac{1}{D(N-2)} \sum_{i=1}^N {d_i}^2} = 1.8*10^{-8}$$
 $\sigma_A = \sqrt{\frac{\sum_{i=1}^N {d_i}^2}{D(N-2)} \left(\frac{1}{n} + \frac{\langle R \rangle^2}{D}\right)} = 2*10^{-6}$
Гле:

$$d_i = a_i - (A + B\lambda_i)$$

$$D = \sum_{i=1}^{N} \lambda_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \lambda_i \right)^2 = 0.17$$

Саму погрешность найдём по формуле:

 $n * \sigma_x * X$, где n – коэффициент Стьюдента для 11 измерений (2,23)

$$\Delta A = 1.5 * 10^{-10} \text{ om}^{-1}$$

 $\Delta B = 1.5 * 10^{-6} \text{ om}^{-1}$

Найдём погрешность сопротивления контура:

$$\Delta R_0 = R_0 \sqrt{\left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta B}{B}\right)^2} = 86*\sqrt{(1.5*10^{-10}/0.0038)^2 + (1.5*10^{-6}/0.33)^2} = 0.0004~\mathrm{Om}$$

И погрешность полного сопротивления:

$$\Delta R = \Delta R_0 + \Delta R_m$$

Найдём погрешности индуктивности в контуре по формуле:

$$\Delta L = L \sqrt{4 \left(\frac{\Delta R}{R}\right)^2 + \left(\frac{\Delta C}{C}\right)^2 + 4 \left(\frac{\Delta \lambda}{\lambda}\right)^2}$$

Погрешность L_{ср} найдем через среднеквадратичное отклонение:

$$\sigma_{L_{
m cp}} = \sqrt{\frac{1}{N(N-1)} (L_i - L_{
m cp})} = 0,00097$$
 $\Delta L_{
m cp} = n * \sigma_{L_{
m cp}} * L_{
m cp} = 0,003 \ \Gamma {
m H}$

Найдем погрешность критического сопротивления, практическую: $\Delta R_{\rm kp} = \Delta R_{m_{\rm kp}} + \Delta R_0 = 400~{\rm Om}$

И теоретическую:

$$\Delta R_{\mathrm{Kp}} = R_{\mathrm{Kp}} \sqrt{\frac{\Delta L^2}{LC} + \left(\frac{\sqrt{L}}{C^{\frac{3}{2}}}\Delta C\right)^2} = 1367 \text{ Om}$$

Графики:

В ходе выполнения лабораторной работы получились следующие графики:

График λ(R) для всех значений R из первого эксперимента:

График λ(R) для первых 11 значений R:

График зависимости добротности контура от сопротивления:

Данный график показывает, что добротность обратно пропорциональна сопротивлению.

График зависимости периода от ёмкостей конденсатора:

Исходя из графика, период колебаний возрастает с ростом емкости, но экспериментальная зависимость меньше теоретической.

Результаты:

При выполнении лабораторной работы были получены следующие значения:

Индуктивность катушки: $L_{cp} = (504 \pm 3) * 10^3 \ \Gamma \mathrm{H}$

Сопротивление в контуре: $R_0 = 86 \pm 0,0004~{\rm Om}$

Практическое критическое сопротивление контура: $R_{\rm \kappa p} = 1186 \pm 400~{
m Om}$

Теоретическое критическое сопротивление контура: $R_{\rm \kappa p} = 1653 \pm 1367~{\rm Om}$

Вывод:

В ходе лабораторной работы были изучены свойства колебательного RLC контура. Графически была подтверждена прямая зависимость логарифмического декремента от сопротивления в контуре. Также подтверждено, что добротность контура обратно пропорциональна сопротивлению контуру, а период колебаний возрастает с ростом емкости конденсатора.