Pràctica 2. Neteja i Validació de Dades

1 Descripció del dataset	1
2 Selecció i Neteja de dades	
2.1 Tractament de valors nuls	
2.2 Tractament d'outliers	6
3 Anàlisi de les dades	9
3.1 Atributs categòrics	9
3.2 Normalització de les dades	10
3.3 Variància de les dades	12
4 Proves estadístiques	13
5 Conclusions	15
6 Codi	15
7 - Recursos	15

1.- Descripció del *dataset*

El conjunt de dades seleccionat conté informació referent a les vendes d'immobles a la ciutat de Melbourne durant els anys 2016, 2017 i 2018. Aquestes dades s'han obtingut del *site* de Kaggle https://www.kaggle.com/anthonypino/melbourne-housing-market

En aquest dataset obtenim les dades de dos fitxers en format CSV:

- 1. Melbourne_house_prices_LESS.csv
- 2. Melbourne_housing_FULL.csv

El primer d'ells conté més registres (52964), però menys columnes d'informació (12). El segon és més complet en quant a dimensions (21), però conté menys registres (34857). Es aquest segon fitxer el que escollim per a fer l'estudi, ja que considerem que conté un volum de dades suficient i el nombre d'atributs és més complet.

Detall de les variables del fitxer Melbourne_housing_FULL.csv:

- Suburb: barri de l'immoble
- Address: adreça de l'immoble
- Rooms: número d'habitacions
- Type:
 - o br bedroom(s)
 - o h house, cottage, villa, semi, terrace
 - o u unit, duplex
 - o t townhouse

- o dev site development site
- o o res other residential
- Price: preu de venda en dòlars australians (AUD). A data 02/06/18 un AUD equival a 0.65€
- Method: mètode de venda
 - S property sold
 - SP property sold prior
 - o PI property passed in
 - PN sold prior not disclosed
 - o SN sold not disclosed
 - o NB no bid
 - o VB vendor bid
 - O W withdrawn prior to auction
 - SA sold after auction
 - SS sold after auction price not disclosed
 - o N/A price or highest bid not available
- SellerG: codi de l'agent de venda
- Date: data de la venda
- Distance: distància al districte financer de Melbourne en quilòmetres
- PostCode: codi postal de l'immoble
- Bedroom2 : número d'habitacions amb llit
- Bathroom: número de banys
- Car: número de places de garatge
- Landsize: tamany del terreny en metres
- BuildingArea: tamany de l'immoble en metres
- YearBuilt: any de construcció de l'immoble
- CouncilArea: ajuntament al qual pertany el terreny
- Lattitude: latitud de l'immoble
- Longtitude: longitud de l'immoble
- RegionName: regió (West, North West, North, North east ...etc)
- Propertycount: número total d'immobles registrats al barri on està l'immoble

Aquest dataset s'ha publicat amb una llicència Creative Commons **CC BY-NC-SA 4.0**. Per tant podem:

- Compartir copiar i redistribuir el conjunt de dades en gualsevol medi o format
- Adaptar barrejar, transformar i construir sobre el conjunt de dades

2.- Selecció i Neteja de dades

En primer lloc es realitza la lectura de les dades a l'entorn R d'anàlisi. En el nostre cas a l'entorn **RStudio**:

> #Lectura de dades

> mhm <- read.csv("Melbourne_housing_FULL.csv")

Observem que s'han carregat totes les dades:

Veiem la capçalera de dades:

> head(mhm)

	110	aatiiiii	•••												
Γ		Suburb		Addr	ess	Rooms	Туре	Pric	e Method	SellerG	Date	Distance	Postcode B	edroom2	Bathroom
ŀ	1 Abl	ootsford	6	8 Studley	St	2	h	N/	A 55	Jellis	3/09/2016	2.5	3067	2	1
П	2 Abl	ootsford		85 Turner	St	_ 2	h	148000	0 5	Biggin	3/12/2016	2.5	3067	2	1
ı	3 Abl	ootsford	25 1	Bloomburg	St	2	h	103500	0 5	Biggin	4/02/2016	2.5	3067	2	1
1	4 Abl	ootsford	18/659	Victoria	St	3	u	N/	A VB	Rounds	4/02/2016	2.5	3067	3	2
ı	5 Abl	ootsford	!	5 Charles	St	3	h :	146500	0 SP	Biggin	4/03/2017	2.5	3067	3	2
ı	6 Abl	ootsford	40 F	ederation	La	3	h	85000	O PI	Biggin	4/03/2017	2.5	3067	3	2
ı	Car	· Landsi:	ze Buil	dingArea	Year	rBuilt		Coun	cilArea I	Lattitude	Longtitud	e	Region	name Pro	pertycount
-	1 1	L 17	26	NA		NA	Yarra	City (Council	-37.8014	144.995	8 Norther	n Metropol	itan	4019
ı	2 1	L 20	02	NA		NA	Yarra	City (Council	-37.7996	144.998	4 Norther	n Metropol	itan	4019
ı	3 (1!	56	79		1900	Yarra	City (Council	-37.8079	144.993	4 Norther	n Metropol	itan	4019
ŀ	4 1	L	0	NA		NA	Yarra	City (Council	-37.8114	145.011	6 Norther	n Metropol	itan	4019
ı	5 (1	34	150		1900	Yarra	City (Council	-37.8093	144.994	4 Norther	n Metropol	itan	4019
П	6 1	L 9	94	NA		NA	Yarra	City (Council	-37.7969	144.996	9 Norther	n Metropol	itan	4019

I ara analitzem el tipus de dades d'aquestes variables:

> sapply(mhm, function(x) class(x))

ш	Suburb	Address	Rooms	Type	Price	Method	SellerG	Date
ш	"factor"	"factor"	"integer"	"factor"	"integer"	"factor"	"factor"	"factor"
	Distance	Postcode	Bedroom2	Bathroom	Car	Landsize	BuildingArea	YearBuilt
ш	"factor"	"factor"	"integer"	"integer"	"integer"	"integer"	"numeric"	"integer"
	CouncilArea	Lattitude	Longtitude	Regionname	Propertycount	-		-
	"factor"	"numeric"	"numeric"	"factor"	"factor"			

Observem que tenim:

- 11 variables de tipus factor (categòriques)
- 7 variables de tipus integer
- 3 variables de tipus **numeric**

> str(mhm)


```
34857 obs. of 21 variables:
: Factor w/ 351 levels "Abbotsford","Aberfeldie",..: 1 1 1 1 1 1 1 1 1 1 ...
: Factor w/ 34009 levels "1 Abercrombie St",..: 29459 32513 15390 9769 25129 23201 27095 8333 26797 33
 $ Suburb
$ Address
959 ...
$ Rooms
                  int 2 2 2 3 3 3 4 4 2 2 ...
Factor w/ 3 levels "h","t","u": 1 1 1 3 1 1 1 1 1 1
$ Type
$ Price
                $ Method
 $ sellerG
 $ Date
  Distance
 $ Postcode
                : int 2 2 2 3 3 3 3 3 4 3
: int 1 1 1 2 2 2 1 2 1 2
 $ Bedroom2
 $ Bathroom
                 : int 1 1 0 1 0 1 2 2 2 1 ...
: int 126 202 156 0 134 94 120 400 201 202 ...
 $ Car
$ Landsize
```

Veiem que tenim alguns atributs de tipus *factor* que contenen valors "#N/A". Per tal de tractarlos correctament els convertim a valors desconeguts (NA's):

- > levels(mhm\$Distance) <- sub("#N/A", NA, levels(mhm\$Distance))
- > levels(mhm\$Postcode) <- sub("#N/A", NA, levels(mhm\$Postcode))
- > levels(mhm\$CouncilArea) <- sub("#N/A", NA, levels(mhm\$CouncilArea))
- > levels(mhm\$Regionname) <- sub("#N/A", NA, levels(mhm\$Regionname))
- > levels(mhm\$Propertycount) <- sub("#N/A", NA, levels(mhm\$Propertycount))

Comprobem:

```
> sum(is.na(mhm$Distance))
```

[1] 1

> sum(is.na(mhm\$Postcode))

[1] 1

> sum(is.na(mhm\$CouncilArea))

[1] 3

> sum(is.na(mhm\$Regionname))

[1] 3

> sum(is.na(mhm\$Propertycount))

[1] 3

L'atribut **Distance** de tipus *factor* el convertim a *numeric*:

> mhm\$Distance <- as.numeric(as.character(mhm\$Distance))

El mateix fem amb l'atribut **Propertycount**:

> mhm\$Propertycount <- as.numeric(as.character(mhm\$Propertycount))

Per últim convertim l'atribut Date a tipus date. El format d'aquest atribut és "dd/mm/yyyy": > mhm\$Date <- as.Date(mhm\$Date, format = "%d/%m/%Y")

Pel nostre estudi no considerem necessaris els següents atributs:

- Address: volem analitzar els preus dels immobles a nivell de barri, no pas de carrers
- **SellerG**: no considerem que el venedor tingui influència en el preu de venda de l'immoble
- > #Eliminem atribut Address

- > mhm <- mhm[,-2]
- > #Eliminem atribut SellerG
- > mhm <- mhm[,-6]

Finalment reubiquem la columna **Price** a la última posició del *Dataframe*:

- > col_price <- grep("Price", names(mhm))
- > mhm <- mhm[, c((1:ncol(mhm))[-col price], col price)]

Anem ara a consultar el número de registres que no informen de Price:

> sapply(mhm, function(x) sum(is.na(x)))

Postcode	Distance	Date	Method	Price	Туре	Rooms	Suburb
(0	0	0	7610	0	0	0
Lattitude	CouncilArea	YearBuilt	BuildingArea	Landsize	Car	Bathroom	Bedroom2
7976	0	19306	21115	11810	8728	8226	8217
					Propertycount	Regionname	Longtitude
					0	0	7976

Observem que tenim **7610** immobles dels quals no tenim informació sobre el preu de venda. Com que aquest és l'atribut <u>objectiu</u> eliminarem aquests registres:

- > mhm <- mhm[!is.na(mhm\$Price),] > dim(mhm) [1] 27247 19
- 2.1 Tractament de valors nuls

No considerem la opció d'eliminar els registres en els que algun atribut té valor nul (NA), ja que estaríem perdent molta informació que pot ser rellevant de cara al nostre estudi.

Per tal de donar solució a aquesta situació aplicarem un valor a cadascun d'aquests atributs nuls basat en l'algoritme dels k-veïns més propers.

Per tal d'aplicar aquest algoritme s'ha de carregar la llibreria VIM:

> load(VIM)

Apliquem l'algoritme als atributs:

- > mhm\$Bedroom2 <- kNN(mhm)\$Bedroom2
- > mhm\$Bathroom <- kNN(mhm)\$Bathroom
- > mhm\$Car <- kNN(mhm)\$Car
- > mhm\$Postcode <- kNN(mhm)\$Postcode
- > mhm\$Regionname <- kNN(mhm)\$Regionname
- > mhm\$Landsize <- kNN(mhm)\$Landsize
- > mhm\$BuildingArea <- kNN(mhm)\$BuildingArea
- > mhm\$YearBuilt <- kNN(mhm)\$YearBuilt
- > mhm\$CouncilArea <- kNN(mhm)\$CouncilArea
- > mhm\$Lattitude <- kNN(mhm)\$Lattitude
- > mhm\$Longtitude <- kNN(mhm)\$Longtitude
- > mhm\$Propertycount <- kNN(mhm)\$Propertycount

Ara ja tenim tots els atributs amb tots els seus valors informats:

> sapply(mhm, function(x) sum(is.na(x)))

Albert Navarro Pérez

Suburb	Rooms	Type	Price	Method	Date	Distance	Postcode	Bedroom2
0	0	, 0	0	0	0	0	0	0
Bathroom	Car	Landsize	BuildingArea	YearBuilt	CouncilArea	Lattitude	Longtitude	Regionname
0	0	0	- 0	0	0	0	- 0	0
Propertycount								
0								

I el Dataframe de la següent manera:

> str(mhm)

```
'data.frame':
                  27247 obs. of 19 variables:
                  $ Suburb
$ Rooms
$ Type
$ Method
$ Date
$ Distance
$ Postcode
                  : num 2 2 3 3 3 2 4 2 3 2 ...
$ Bedroom2
$ Bathroom
                   : num 1122112111...
$ car
                  : num 1 0 0 1 2 0 0 2 2 1
$ Landsize : int 202 156 134 94 120 181 245 256 263 321 ...
$ BuildingArea : num 87 79 150 112 142 ...
                 : int 1995 1900 1900 1900 2014 1890 1910 1890 2014 1960 ...

: Factor w/ 33 levels "Banyule City Council",..: 32 32 32 32 32 32 32 32 32 32 ...

: num -37.8 -37.8 -37.8 -37.8 -37.8 ...

: num 145 145 145 145 ...
$ YearBuiĺt
$ CouncilArea
$ Lattitude
$ Longtitude
$ Regionname : Factor w/ 8 levels "Eastern Metropolitan",..: 3 3 3 3 3 3 3 3 3 3 ... $ Propertycount: num 4019 4019 4019 4019 ...
                  : int 1480000 1035000 1465000 850000 1600000 941000 1876000 1636000 1000000 745000 ...
$ Price
```

2.2 Tractament d'outliers

> summary(mhm)

Suburb	Rooms	Туре	Price	Method	Date	Distance	Postcode	Bedroom2
Reservoir : 727	Min. : 1.000	h:18472	Min. : 85000	s :17515	28/10/2017: 879	11.2 : 1112	3073 : 727	Min. : 0.00
Bentleigh East: 493	1st Qu.: 2.000	t: 2866	1st Qu.: 635000	SP : 3603	17/03/2018: 753	13.8 : 558	3046 : 545	1st Qu.: 2.00
Richmond : 439	Median : 3.000	u: 5909	Median : 870000	PI : 3255	24/02/2018: 723	10.5 : 526	3020 : 544	Median : 3.00
Preston : 415	Mean : 2.992		Mean : 1050173	VB : 2684	9/12/2017 : 723	5.2 : 486	3165 : 493	Mean : 3.02
Brunswick : 387	3rd Qu.: 4.000		3rd Qu.: 1295000	5A : 190	25/11/2017: 682	7.8 : 461	3121 : 489	3rd Qu.: 4.00
Essendon : 361	Max. :16.000		Max. :11200000	PN : 0	18/11/2017: 681	9.2 : 459	3040 : 466	Max. :20.00
(Other) :24425				(Other): 0	(Other) :22806	(Other):23645	(Other):23983	
		ndsize	BuildingArea	YearBuilt		CouncilArea	Lattitude	Longtitude
Min. :0.000 Min.	: 0.000 Min.			Min. :1196	Boroondara City Co		Min. :-38.19	Min. :144.4
	.: 1.000 1st Q			1st Qu.:1955	Darebin City Counc		1st Qu.:-37.85	1st Qu.:144.9
	: 2.000 Media			Median :1975	Moreland City Cour		Median :-37.80	Median :145.0
	: 1.695 Mean			Mean :1974	Glen Eira City Cou		Mean :-37.80	Mean :145.0
	.: 2.000 3rd Q			3rd Qu.:2006	Moonee Valley City		3rd Qu.:-37.74	3rd Qu.:145.1
Max. :9.000 Max.	:18.000 Max.	:433014.0	Max. :44515.0	Max. :2019	Melbourne City Cou (Other)	ıncil : 1502 :15859	Max. :-37.40	Max. :145.5
R	egionname Prop	ertycount			(ocher)	.13033		
Southern Metropolitan	:8524 2165							
Northern Metropolitan	:7864 8870	: 609						
Western Metropolitan	:5815 1096	9 : 493						
Eastern Metropolitan	:3272 1494	9 : 439						
South-Eastern Metropol	itan:1341 1457	7 : 415						
Eastern Victoria	: 166 1191	8 : 387						
(Other)	: 265 (Oth	er):24177						

Observem que Lattitude i Longtitude no tenen outliers:

```
Lattitude
                  Longtitude
      :-38.19
Min.
                Min.
                       :144.4
1st Qu.:-37.85
                1st Qu.:144.9
Median :-37.80
                Median :145.0
Mean :-37.80
                Mean :145.0
3rd Qu.:-37.74
                3rd Qu.:145.1
     :-37.40
                Max.
                       :145.5
```

YearBuilt: observem que el valor 2019 és incorrecte, ja que l'any actual és 2018:

```
YearBuilt
Min. :1196
1st Qu.:1955
Median :1975
Mean :1974
3rd Qu.:2006
Max. :2019
```

> sum(mhm\$YearBuilt[mhm\$YearBuilt==2019])

[1] 2019

En aquest cas el substituirem pel valor de *Median*:

> mhm\$YearBuilt[mhm\$YearBuilt==2019] <- median((mhm\$YearBuilt))

Ho comprovem:

> summary(mhm\$YearBuilt)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 1196 1955 1975 1974 2006 2018
```

La resta d'outliers els visualitzarem amb **boxplots**:

Rooms:

> boxplot(mhm\$Rooms)

No sembla molt normal tenir immobles amb més de 8 habitacions. Hem vist anteriorment que el conjunt de dades que estem tractant conté com a tipus d'immobles:

- h: house, cottage, villa, semi, terrace
- t: townhouse
- u: unit, duplex

Per tant, optarem per assignar als immobles amb més de 8 habitacions el valor de 8:

> sum(mhm\$Rooms>8)

[1]9

> mhm\$Rooms[mhm\$Rooms>8] <- 8

Bedroom2:

> boxplot(mhm\$Bedroom2)

Seguint el mateix criteri comentat anteriorment, optarem per assignar als immobles amb més de 8 habitacions amb llit el valor de 8:

> sum(mhm\$Bedroom2>8)

[1] 10

> mhm\$Bedroom2[mhm\$Bedroom2>8] <- 8

Bathroom:

UO(

> boxplot(mhm\$Bathroom)

Optarem per assignar als immobles amb més de 5 quarts de bany el valor de 5:

> sum(mhm\$Bathroom>5)

[1] 16

> mhm\$Bathroom[mhm\$Bathroom>5] <- 5

Car:

> boxplot(mhm\$Car)

Optarem per assignar als immobles amb més de 5 garatges el valor de 5:

> sum(mhm\$Car>5)

[1] 151

> mhm\$Car[mhm\$Car>5] <- 5

Landsize:

> boxplot(mhm\$Landsize)

> sum(mhm\$Landsize>50000)

[1] 5

Tenim un total de 5 habitatges amb més de 50000metres de superfície. Aquests valors els deixarem així, per que pot ser el cas de immobles que estan en llocs amb molt terreny.

BuildingArea:

> boxplot(mhm\$BuildingArea)

> sum(mhm\$BuildingArea>5000)

[1] 3

Com en el cas de l'atribut anterior, poden tenir alguns terrenys molt grans. Per tant deixem aquests outliers com estan.

3.- Anàlisi de les dades

3.1 Atributs categòrics

Observem que els atributs **Suburb** i **Postcode** estan relacionats, en el sentit que cada barri té un codi postal assignat:

- > suburb_pcode <- mhm[,c('Suburb','Postcode')]
- > suburb_pcode <- unique(suburb_pcode)
- > suburb_pcode

	Subuch	Postcode
_		
1	Abbotsford	3067
67	Airport West	3042
134	Albert Park	3206
195	Alphington	3078
231	Altona	3018
284	Altona North	3025
365	Armadale	3143
485	Ascot Vale	3032
598	Ashburton	3147
680	Ashwood	3147
748	Avondale Heights	3034
824	Balaclava	3183
847	Balwyn	3103
1011	Balwyn North	3104
1210	Bentleigh	3204
1356	Bentleigh East	3165
1629	Box Hill	3128
1688	Bravhrook	3019

Veiem que hi han diferents barris que pertanyen al mateix codi postal, com per exemple Ashburton i Ashwood, que pertanyen al codi postal 3147.

De la mateixa manera podríem pensar que els atributs **Postcode** i **CouncilArea** estan relacionats, en el sentit que cada codi postal està assignat a un ajuntament:

- > pcode_council <- mhm[,c('Postcode','CouncilArea')]
- > pcode_council <- unique(pcode_council)
- > head(pcode council,20)

	Postcode	CouncilArea
1	3067	Yarra City Council
67	3042	Moonee Valley City Council
134	3206	Port Phillip City Council
195	3078	Darebin City Council
231	3018	Hobsons Bay City Council
284	3025	Hobsons Bay City Council
365	3143	Stonnington City Council
485	3032	Moonee Valley City Council
598	3147	Boroondara City Council
680	3147	Monash City Council
748	3034	Moonee Valley City Council
824	3183	Port Phillip City Council
847	3103	Boroondara City Council
1011	3104	Boroondara City Council
1210	3204	Glen Eira City Council
1356	3165	Glen Eira City Council
1629	3128	Whitehorse City Council
1688	3019	Maribyrnong City Council
1733	3186	Bayside City Council
1946	3187	Bayside City Council
2140	3056	Moreland City Council
2332	3055	Moreland City Council
2433	3105	Manningham City Council

Però veiem que no. Trobem algun cas en que un mateix codi postal pertany a diferents ajuntaments.

3.2 Normalització de les dades

A continuació estudiarem si les variables quantitatives del dataset estan normalitzades.

Farem servir la prova de normalitat d'**Anderson Darling**. Si el valor de p-value és inferior al nivell de significació prefixat $\alpha = 0$, 05 llavors la variable en qüestió no segueix una distribució normal.

El primer pas serà carregar la llibreria **nortest** de R, la qual implementa entre d'altres tests de normalització el d'Anderson Darling (ad.test).

```
> library(nortest)
> alpha = 0.05
> col.names = colnames(mhm)
> for (i in 1:ncol(mhm)) {
+         if (is.integer(mhm[,i]) | is.numeric(mhm[,i])) {
+            p_val = ad.test(mhm[,i])$p.value
+         if (p_val < alpha) {
+            cat("-> ",col.names[i])
+            cat("\n")
```



```
+ }
+ }
+ }
-> Rooms
-> Date
-> Postcode
-> Bedroom2
-> Bathroom
-> Car
-> Landsize
-> BuildingArea
-> CouncilArea
-> Lattitude
```

-> Regionname-> Propertycount

Observem que tenim un total de 12 variables que no segueixen una distribució normal.

A continuació mostrem les gràfiques de Quantile-Quantile Plot per variable de tipus enter i el respectiu Histograma.

3.3 Variància de les dades

Per tal d'analitzar la variància de les dades farem servir el test de **Fligner-Killeen**, el qual es basa en la mediana. Escollim aquest test ja que no es compleix la condició de normalitat en les observacions.

Mirem la homogeneïtat dels grups formats pel tipus d'immoble (atribut Type):

> fligner.test(Price ~ Type, data = mhm)

```
Fligner-Killeen test of homogeneity of variances

data: Price by Type
Fligner-Killeen:med chi-squared = 3030.2, df = 2, p-value < 2.2e-16
```

UO(

Tipologia i Cicle de Vida de les dades

> plot(Price ~ Type, data = mhm)

Ara apliquem el mateix test al barri de l'immoble (atribut **Suburb**):

> fligner.test(Price ~ Suburb, data = mhm)

```
Fligner-Killeen test of homogeneity of variances

data: Price by Suburb
Fligner-Killeen:med chi-squared = 9019.7, df = 344, p-value < 2.2e-16
```

I per últim apliquem el test per nom de la regió de l'immoble (atribut **Regionname**):

> fligner.test(Price ~ Regionname, data = mhm)

```
Fligner-Killeen test of homogeneity of variances

data: Price by Regionname
Fligner-Killeen:med chi-squared = 4270.3, df = 7, p-value < 2.2e-16
```

Observem que en els 3 test realitzats el valor de **p-value** és molt inferior a 0.05. Per tant acceptem la hipòtesi que les variàncies de les mostres no són homogènies.

4.- Proves estadístiques

Quines són les variables que més influeixen en el preu de l'immoble?

Per tal de comprovar-ho anem a realitzar una anàlisi de la correlació lineal entre les diferents variables quantitatives del *dataset*. Es farà servir la correlació d'**Spearman**, ja que les variables no ténen una distribució normal.

Creem una <u>matriu de correlació</u>, amb les columnes 'estimate' i 'p-value' i calculem els coeficients per cadascuna de les variables (exceptuant **Price**):

```
> corr_matrix <- matrix(nc = 2, nr = 0)
> colnames(corr_matrix) <- c("estimate", "p-value")</pre>
```



```
> for (i in 1:(ncol(mhm) - 1)) {
   if (is.integer(mhm[,i]) | is.numeric(mhm[,i])) {
     spearman_test = cor.test(mhm[,i], mhm[,length(mhm)], method = "spearman")
     corr coef = spearman test$estimate
     p val = spearman test$p.value
     # Add row to matrix
     pair = matrix(ncol = 2, nrow = 1)
     pair[1][1] = corr coef
     pair[2][1] = p_val
     corr_matrix <- rbind(corr_matrix, pair)</pre>
     rownames(corr matrix)[nrow(corr matrix)] <- colnames(mhm)[i]</pre>
  }
+ }
 Warning messages:
 1: In cor.test.default(mhm[, i], mhm[, length(mhm)], method = "spearman") :
   Cannot compute exact p-value with ties
 2: In cor.test.default(mhm[, i], mhm[, length(mhm)], method = "spearman") :
 Cannot compute exact p-value with ties

3: In cor.test.default(mhm[, i], mhm[, length(mhm)], method = "spearman") :
   Cannot compute exact p-value with ties
 4: In cor.test.default(mhm[, i], mhm[, length(mhm)], method = "spearman") :
   Cannot compute exact p-value with ties
 5: In cor.test.default(mhm[, i], mhm[, length(mhm)], method = "spearman") :
   Cannot compute exact p-value with ties
 6: In cor.test.default(mhm[, i], mhm[, length(mhm)], method = "spearman") :
   Cannot compute exact p-value with ties
 7: In cor.test.default(mhm[, i], mhm[, length(mhm)], method = "spearman") :
   Cannot compute exact p-value with ties
 8: In cor.test.default(mhm[, i], mhm[, length(mhm)], method = "spearman") :
 Cannot compute exact p-value with ties
9: In cor.test.default(mhm[, i], mhm[, length(mhm)], method = "spearman"):
   Cannot compute exact p-value with ties
```

Els missatges d'error no invaliden la prova, ja que només avisa que no es pot calcular el valor exacte de 'p' degut a la presència d'empats (parell de dades iguals).

> print(corr matrix)

princ(con_macris	7	
' ` -	estimate	p-value
Rooms	0.50429707	0.000000e+00
Distance	-0.18810737	1.886959e-215
Bedroom2	0.43326932	0.000000e+00
Bathroom	0.35847703	0.000000e+00
Car	0.25676798	0.000000e+00
Landsize	0.25754910	0.000000e+00
BuildingArea	0.46483594	0.000000e+00
YearBuilt	-0.26284133	0.000000e+00
Lattitude	-0.34461770	0.000000e+00
Longtitude	0.27837500	0.000000e+00
Propertycount	-0.04247446	2.316639e-12

Observem que la variable **Rooms** és la que més pes té a l'hora de determinar el preu de l'immoble, seguida de **BuildingArea** i **Bedroom2**.

5.- Conclusions

En aquest estudi d'un dataset hem realitzat un preprocessament de dades, fent selecció d'atributs, neteja de registres, conversió de dades i tractament de valors nuls i d'outliers.

Hem comprovat si les dades del dataset estaven normalitzades, així com la homogeneitat de la variància d'alguns grups.

Per tal de saber quin és l'atribut que més influeix en el preu final d'un immoble hem fet servir una matriu de correlacions, en particular la correlació d'Spearman. Mitjançant aquesta matriu hem detectat que l'atribut més influent és el numero d'habitacions que té l'immoble, seguit dels metres construits i a continuació del numero de dormitoris.

6.- Codi

La realització d'aquesta pràctica ha estat amb el llenguatge R, utilitzant com a eina el programari Rstudio, version 1.0.153.

Les dades una vegada aplicat el Cleaning Data s'han deixat en el fitxer "Mhm_data_clean.csv" amb la instrucció:

> write.csv(mhm, "Mhm_data_clean.csv")

Tots els fitxers referents a aquesta pràctica es poden trobar en el repositori de Github:

https://github.com/alnape/M2.951 practica2

7.- Recursos

Els següents recursos són d'utilitat per la realització de la pràctica:

- Megan Squire (2015). Clean Data. Packt Publishing Ltd.
- Jiawei Han, Micheine Kamber, Jian Pei (2012). Data mining: concepts and techniques.
 Morgan Kaufmann.
- Jason W. Osborne (2010). Data Cleaning Basics: Best Practices in Dealing with Extreme Scores. Newborn and Infant Nursing Reviews; 10 (1): pp. 1527-3369.
- Peter Dalgaard (2008). Introductory statistics with R. Springer Science & Business Media.
- https://en.wikipedia.org/wiki/Anderson%E2%80%93Darling_test
- https://cran.r-project.org/web/packages/nortest/nortest.pdf
- https://rpro.wikispaces.com/Prueba+de+Fligner-Killeen
- https://rpro.wikispaces.com/Estad%C3%ADstica+y+programaci%C3%B3n+con+R