

True/False: This model is a "conditional language model" in the sense that the decoder portion (shown in green) is modeling the probability of the input sentence x.

- True
- False

✓ Correct

The encoder-decoder model for machine translation models the probability of the output sentence y conditioned on the input sentence x. The encoder portion is shown in green, while the decoder portion is shown in purple.

1/1 point

1/1 point

4. Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$.

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.95*10^{-7}$$

$$P(y^* \mid x) = 3.42*10^{-9}$$

True/False: Trying a different network architecture could help correct this example.

- False
- True

∠ Expand

○ Correct

 $P(y^* \mid x) < P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm. If the RNN model is at fault, then a deeper layer of analysis could help to figure out if you should add regularization, get more training data, or try a different network architecture.

1/1 point

False.

True.

∠ Expand

✓ Correct

Further, here is the formula for $\alpha^{< t, t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t,t'>}$ are true? Check all that apply.

1 Corner

Correct! If we sum over $\alpha^{< t, \ell'>}$ for all t' (the formulation can be seen in the image), the numerator will be equal to the denominator, therefore, $\sum_{\ell} \alpha^{< t, \ell'>} = 1$.

- We expect $\alpha^{<\ell,\ell'>}$ to be generally larger for values of $\alpha^{<\ell>}$ that are highly relevant to the value the network should output for $y^{<\ell'>}$. (Note the indices in the superscripts.)
- We expect $\alpha^{< t, t'>}$ to be generally larger for values of $\alpha^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)

✓ Correct

Correct! $\alpha^{< t, t'>}$ is equal to the amount of attention $\mathcal{Y}^{< t>}$ should pay to a < t'>. So, if a value of a < t'> is highly relevant to $\mathcal{Y}^{< t>}$, then the attention coefficient $\alpha^{< t, t'>}$ should be larger. Note the difference between a (activation) and α (attention coefficient).

$$\bigcap \sum_t lpha^{< t, \ell>} = 1$$
 (Note the summation is over t .)

7. The network learns where to "pay attention" by learning the values $e^{< t, t'>}$, which are computed using a small neural network:

We can replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network because $s^{< t>}$ is independent of $\alpha^{< t,t'>}$ and $e^{< t,t'>}$.

- () True
- False

(V) Correct

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t'>}$ which in turn depends on and $e^{< t,t'>}$; so at the time we need to evaluate this network, we haven't computed $s^{< t>}$.

8.	Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:	nt
	\bigcirc The input sequence length T_x is small.	
	$ ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext$	

coookkbooooookkk

1/1 point

- $igoreal{igoreal}$ Features of the audio (such as spectrogram features) at time t.
- The t-th input word, represented as either a one-hot vector or a word embedding.
- Whether someone has just finished saying the trigger word at time t.
- Whether the trigger word is being said at time t.