AMENDMENTS TO CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A high speed search method in a speech encoder using an order character of LSP (Line Spectrum Pair) parameters in an LSP parameter quantizer using SVQ (Split Vector Quantization) used in a low-speed transmission speech encoder, the high-speed search method comprising the steps of:

rearranging a first codebook by replacing the first codebook with a new codebook in which a number of code vectors in the new codebook are arranged in an order according to an element value of a reference row of the first codebook for determining a range of code vectors to be searched; and

determining a search range by using an order character between a given target vector and an arranged code vector to obtain an optimal code vector.

wherein the rearranging step comprises the steps of:

selecting the reference row in the first codebook by using a plurality of voice data, and then determining an optimal arrangement position (Nm) in which an average search range is minimized; and

replacing the first codebook with the new codebook in which a number (Lm) of code vectors in the new codebook are arranged in a descending order according to the element value of a selected said reference row.

- 2. (Canceled)
- 3. (Currently Amended) The A high-speed search method as claimed in claim 1 in a speech encoder using an order character of LSP (Line Spectrum Pair) parameters in an LSP parameter

quantizer using SVQ (Split Vector Quantization) used in a low-speed transmission speech encoder, the high-speed search method comprising the steps of:

rearranging a first codebook by replacing the first codebook with a new codebook in which a number of code vectors in the new codebook are arranged in an order according to an element value of a reference row of the first codebook for determining a range of code vectors to be searched; and

determining a search range by using an order character between a given target vector and an arranged code vector to obtain an optimal code vector,

wherein the code vector-obtaining step obtaining an optimal code vector comprises the step steps of:

determining the search range by forward and backward comparison of the element value of the reference row in the first codebook and element values of positions before and after a reference position in the target vector; and

obtaining an error criterion $(E_{l,m})$ having high computational complexity by using the following equation only within the determined search range:

$$\mathbf{E}_{l,m} = (\mathbf{p}_m - \mathbf{p})_{l,m}^T \mathbf{W}_m (\mathbf{p}_m - \mathbf{p})_{l,m}$$

$$0 \le m \le M - 1$$

$$1 \le l \le L_m$$

where \mathbf{p} is an LSP code vector divided into M sub-vectors, each of which consists of L_m code vectors,

where \mathbf{p}_{m} is a target vector to search the mth codebook, and \mathbf{p} _{l,m} corresponds to an l^{th} code vector in a codebook for an mth sub-vector,

where l,m in the subscript of $E_{l,m}$ are indices that represent the *l*th index of the *m*th codebook, *i.e.*, the letters "l" and "m," and

where superscript T designates the transpose of $(\mathbf{p}_m - \mathbf{p})_{l,m}$ for purposes of determining the dot product of $(\mathbf{p}_m - \mathbf{p})_{l,m}$ and $\mathbf{W}_m (\mathbf{p}_m - \mathbf{p})_{l,m}$ in order to calculate the least-mean-square error $E_{l,m,s}$ and

where W_m is a weighting matrix for the m^{th} sub-vector and obtained by a non-quantized LSP code vector \mathbf{p} .

4. (Currently Amended) The high-speed search method as claimed in claim 3,

wherein the search range is an average number with which an element value of the nth row in the first codebook and element values in the n+1th and n-1th positions of the target vector satisfy the order character.

5. (Currently Amended) A high-speed search method in the G.729 fixed codebook with decreased computational complexity without loss of tone quality, the high-speed search method comprising the steps of:

arranging position indexes of tracks (t_0, t_1, t_2) in a descending order according to a correlation level (d'(n));

determining a range to search a track (t3) according to the indexes arranged in a descending order; and

canceling the detecting and searching processes for indexes which have a low probability.

6. (Currently Amended) The high-speed search method in the G.729 fixed codebook as claimed in claim 5, wherein the arranging step comprises the step of:

comparing correlation vectors of all of pulse position indexes in each track to arrange the position indexes in a descending order.

7. (Currently Amended) The high-speed search method in the G.729 fixed codebook as claimed in claim 5, wherein the search range-determining step comprises the steps of:

adding correlation values of each pulse position index for a pulse position index combination of the tracks (t_0, t_1, t_2) ; and

comparing an added result with a threshold (Cth) determined before searching the fixed codebook to search track (t3) using an the added result more than the threshold.

8. (Currently Amended) The high-speed search method in the G.729 fixed codebook as claimed in claim 5, wherein the canceling step comprises the step of:

Serial Number 09/749,782

canceling the searching processes for the range where an added result is less than a threshold.