1 Frequent Words

Funkcija ima dva parametra, text i k. Parametar text predstavlja nisku u kojoj tražimo podnisku dužine k. Povratna vrednost funkcije je skup podniski dužine k koje se najčešće pojavljuju.

Polazimo od praznog skupa frequent_patterns i praznog niza count. Polazeći od nulte pozicije određujemo broj pojavljivanja (funkcijom pattern_count) svake podniske dužine k i broj dodajemo u niz count. Zatim, određujemo najveći broj iz niza (ugrađenom funkcijom max). Na kraju, u skup frequent_patterns dodajemo sve podniske čiji je broj pojavljivanja jednak najvećem.

```
def frequent_words(text, k):
    frequent_patterns = set([])
    count = []

    for i in range(len(text) - k):
        pattern = text[i:i+k]
        count.append(pattern_count(text, pattern))

    max_count = max(count)

    for i in range(len(text) - k):
        if count[i] == max_count:
            frequent_patterns.add(text[i:i+k])

    return frequent_patterns
```

1.1 Pattern Count

Funkcija ima dva parametra, text i pattern. Prebrojava pojavljivanja zadate sekvence pattern u tekstu text.

```
def pattern_count(text, pattern):
    count = 0
    for i in range(len(text) - len(pattern)):
        if text[i:i+len(pattern)] == pattern:
            count += 1
    return count
```

1.1.1 Test primer

2 Faster Frequent Words

Funkcija ima dva parametra, text i k. Parametar text predstavlja nisku u kojoj tražimo podnisku dužine k. Povratna vrednost funkcije je par - skup podniski dužine k koje se najčešće pojavljuju i broj pojavljivanja sekvenci iz skupa u tekstu.

Polazi se od praznog skupa sekvenci. Prvo, određujemo niz frekvencija pojavljivanja svih podniski dužine k korišćenjem funkcije computing_frequencies. Indeks niza jedinstveno određuje nisku, i obrnuto (u tu svrhu koriste se funkcije nuber_to_pattern i pattern_to_number).

Zatim, određujemo najveću frekvenciju. Na kraju, prolazimo sve kombinacije niski nad azbukom $\{A, T, C, G\}$ i u skup dodajemo sekvence sa maksimalnom frekvencijom.

```
def faster_frequent_words(text, k):
    frequent_patterns = set([])

    frequency_array = computing_frequencies(text, k)

    max_count = max(frequency_array)

for i in range(4**k):
    if frequency_array[i] == max_count:
        pattern = number_to_pattern(i, k)
        frequent_patterns.add(pattern)

return (frequent_patterns, max_count)
```

2.1 Computing Frequencies

Funkcija ima dva parametra, text i k. Funkcija formira niz frekvencija pojavljivanja za sve moguće kombinacije niski nad azbukom $\{A, T, C, G\}$. Polazimo od niza nula dimenzije 4^k . Za svaku podnisku dužine k određujemo njen broj (funkcijom pattern_to_number) odnosno, indeks u nizu frekvencija, i odgovarajući element uvećamo za jedan.

```
def computing_frequencies(text, k):
    frequency_array = [0 for i in range(4**k)]

for i in range(len(text) - k):
    pattern = text[i:i+k]
    j = pattern_to_number(pattern)
    frequency_array[j] += 1
return frequency_array
```

2.2 Number To Pattern

Funkcija ima dva parametra, n - broj koji treba pretvoriti u sekvencu, i k - dužinu sekvence. Implementacija je rekurzivna. Izlazimo iz rekurzije kada je dužina sekvence jednaka 1, pri čemu vraćamo karakter koji odgovara trenutnoj vrednosti broja n. Računa se u osnovi 4. Prefiksni indeks predstavlja količnik broja n i broja 4. Određujemo karakter c, koji odgovara ostatku koji se dobija pri tom deljenju. Takođe, treba odrediti prefiksnu sekvencu koja odgovara prefiksnom indeksu, rekurzivnim pozivom, pri čemu je k umanjeno za 1. Vraćamo nisku koja se dobija nadovezivanjem karaktera c na prefiksnu sekvencu.

```
def number_to_pattern(n, k):
    if k == 1:
        return number_to_symbol(n)

prefix_index = n // 4
    r = n % 4
    c = number_to_symbol(r)
    prefix_pattern = number_to_pattern(prefix_index, k - 1)
```

```
return prefix_pattern + c
```

2.2.1 Pattern To Number

Funkcija ima jedan parametar, pattern, koji treba pretvoriti u broj. Implementacija je rekurzivna. Izlaz iz rekurzije je sekvenca dužine 0, kojoj odgovara broj 0. Broj se računa u osnovi 4, korišćenjem Hornerove sheme. Rekurzivno računamo broj prefiksa (podniska bez poslednjeg karaktera), množimo sa 4 i dodajemo broj koji odgovara poslednjem karakteru (korišćenjem funkcije symbol_to_number).

```
def pattern_to_number(pattern):
    if len(pattern) == 0:
        return 0

last = pattern[-1:]
    prefix = pattern[:-1]

return 4 * pattern_to_number(prefix) + symbol_to_number(last)
```

2.2.2 Symbol To Number

Funckija prima jedan karakter i vraća odgovarajući broj. Broj se čita iz mape koja preslikava karaktere A, T, C, G u brojeve 0, 1, 2, 3.

```
# Prevodjenje nukleotida u brojeve

def symbol_to_number(c):
    pairs = {
        'a': 0,
        't': 1,
        'c': 2,
        'g': 3
     }

    return pairs[c]
```

2.2.3 Number To Symbol

Funkcija prima jednu cifru i vraća odgovarajući karakter. Karakter se čita iz mape koja preslikava cifre 0, 1, 2, 3 u karatere A, T, C, G.

```
# Prevodjenje brojeva u nukleotide
def number_to_symbol(n):
    pairs = {
        0 : 'a',
        1 : 't',
        2 : 'c',
        3 : 'g'
    }
    return pairs[n]
```

3 Frequent Words With Mismatches

Funkcija ima tri parametra, text, k i d - broj dozvoljenih promašaja. Povratna vrednost je skup čestih sekvenci sa najviše d promašaja.

Polazimo od praznog skupa čestih sekvenci. Pravimo dva niza nula dimenzije 4^k , close - kanadidati za proveru i frequency_array - frekvencije kandidata. Za svaki uzorak dužine k određujemo susede - sekvence koje se od uzorka razlikuju na najviše d pozicija (korišćenjem funkcije neighbors). Za svakog suseda određujemo indeks i evidentiramo ga u nizu kandidata (niz close) - postavljamo mu vrednost na 1.

Prolazimo elemente niza close i za sve koji su evidentirani određujemo koja je sekvenca u pitanju, na osnovu indeksa (funkcijom number_to_pattern) i za njih se određuje broj pojavljivanja koji se pamti u nizu frekvencija (funkcijom approximate_pattern_count).

Zatim, određujemo najveću frekvenciju. Na kraju, u skup čestih sekvenci dodaje se svaka sekvenca čiji je frekvencija jednaka najvećoj.

```
def frequent words with mismatches (text, k, d):
    frequent patterns = set([])
    close = [0 \text{ for i in range}(4**k)]
    frequency_array = [0 \text{ for } i \text{ in } range(4**k)]
    for i in range(len(text) - k):
        neighborhood = neighbors(text[i:i+k], d)
        for pattern in neighborhood:
             index = pattern_to_number(pattern)
             close[index] = 1
    for i in range (4**k):
        if close[i] == 1:
             pattern = number_to_pattern(i, k)
             frequency_array[i] = approximate_pattern_count(text,
                                                              pattern, d)
    \max \ count = \max(frequency \ array)
    for i in range (4**k):
        if frequency_array[i] == max_count:
             pattern = number to pattern(i, k)
            frequent patterns.add(pattern)
    return frequent patterns
```

3.1 Neighbors

Funkcija ima dva parametra, pattern i d. Povratna vrednost je skup neighborhood. Implementacija je rekurzivna. Prvo se proverava da li je d jednako 0. U tom slučaju vraćamo jednočlani skup koji sadrži samo pattern. To omogućava da funkciju koristimo i u slučaju kad ne želimo promašaje bez ikakvih modifikacija.

Izlazimo iz rekurzije kada je dužina uzorka jednaka 1. U tom slučaju vraćamo skup koji sadrži listu svih slova azbuke.

Pravimo skup neighborhood koji inicijalno sadrži praznu listu. Zatim, određujemo susede sufiksa, odnosno, sekvence bez prvog karaktera niske pattern i smeštamo u suffix_neighbors. Za svakog suseda sufiksa, koji se od sufiksa razlikuje na manje od d mesta, u neighborhood dodajemo 4 sekvence, po jedna za svako slovo azbuke, pri čemu se slovo nadovezuje na početak suseda.

Za susede koji se razlikuju na više od d pozicija, u neighborhood dodajemo suseda na čiji je početak nadovezan prvi karakter niske pattern, kako se razlika ne bi povećala i premašila dozvoljeni broj d. Kao mera za razliku koristi se Hamingovo rastojanje (funckija hamming_distance).

```
def neighbors(pattern, d):
    if d == 0:
        return set([pattern])

if len(pattern) == 1:
        return set(['a', 't', 'c', 'g'])

neighborhood = set([])

suffix_neighbors = neighbors(pattern[1:], d)

for text in suffix_neighbors:
    if hamming_distance(pattern[1:], text) < d:
        for x in ['a', 't', 'c', 'g']:
            neighborhood.add(x + text)

else:
        neighborhood.add(pattern[0] + text)

return neighborhood</pre>
```

3.2 Approximate Pattern Count

Funckija ima tri parametra, tekst, pattern i d. Povratna vrednost je broj pojavljivanja podsekvenci u tekstu koje se od uzorka razlikuju na najvise d pozicija. Kao i u prethodnoj funkciji, koristi se Hamingovo rastojanje.

```
def approximate_pattern_count(text, pattern, d):
    count = 0

for i in range(len(text) - len(pattern)):
    pattern_p = text[i:i+len(pattern)]

if hamming_distance(pattern, pattern_p) <= d:
    count += 1

return count</pre>
```

3.2.1 Hamming distance

Funkcija ima dva parametra, text1 i text2. Povratna vrednost je brj pozicija na kojima se tekstovi razlikuju. Podrazumeva se da je dužina niski jednaka.

```
def hamming_distance(text1, text2):
    distance = 0

for i in range(len(text1)):
    if text1[i] != text2[i]:
        distance += 1
    return distance
```

3.2.2 Test primer

4 GC-Skew

Otvaramo fajl u FASTA formatu koji sadrži nukleotidnu sekvencu. Zanemarujemo prvi red datoteke. Dodatno, potrebno je da uklonimo beline, odnosno sve nove redove, kao i da pretvorimo slova iz velikih u mala. Nakon toga, računamo skew na osnovu nukleotida od milionitog do kraja (korišćenjem funkcije calculate_skew). Na kraju, crtamo skew (pomoću funkcije draw_skew).

```
def main():
    fajl = open('ecoli.fna', 'r')
    fajl.readline() # Zanemaruje se prvi red datoteke u FASTA formatu
    sadrzaj = ""

    sadrzaj = fajl.readlines()
    sadrzaj = "".join(sadrzaj)
    sadrzaj = sadrzaj.replace('\n', '')
    sadrzaj = sadrzaj.lower()

    skew = calculate_skew(sadrzaj[10000000:])
    draw_skew(skew)
```

4.1 Calculate Skew

Funkcija ima jedan parametar, text, koji predstavlja nukleotidnu sekvencu za koju računamo skew. Povratna vrednost je skew.

Skew je inicijalno niz nula, dimenzije datog teksta. Prolazimo sve karaktere teksta i u zavisnosti od nukleotida vršimo odgovarajuću akciju:

- ako je nukleotid G prethodnu vrednost uvećavamo za jedan
- ako je nukleotid C prethodnu vrednost smanjujemo za jedan
- u ostalim slučajevima ne menjamo prethodnu vrednost.

Dobijenu vrednost smeštamo u skew na odgovarajuću poziciju.

4.2 Draw Skew

Funkcija ima jedan parametar, skew - skew dijagram koji treba vizuelizovati. U tu svrhu, neophodno je uključiti pyplot iz biblioteke matplotlib.

Vrednosti na x-osi su brojevi iz intervala [0, len(skew)]. Pravimo ax koja sadrži subplot. U njoj iscrtavamo plot za x i skew. Možemo označiti ose (xlabel, ylabel) i postaviti naslov, pozivom funkcije set nad ax. Takođe, možemo dodati mrežu pozivom funkcije grid nad ax. Na kraju prikazujemo dijagram, pozivom funkcije show iz biblioteke pyplot.

```
def calculate_skew(text):
    skew = [0 for c in text]

last = 0

for i in range(0,len(text)):

    if text[i] == 'g':
        skew[i] = last + 1

    elif text[i] == 'c':
        skew[i] = last - 1

    else:
        skew[i] = last

last = skew[i]

return skew
```

```
import matplotlib.pyplot as plt

def draw_skew(skew):
    x = [i for i in range(len(skew))]
    ax = plt.subplot()
    ax.plot(x, skew)

ax.set(xlabel='G-C', ylabel='Nucleotide',
    title='Genome_GC_Skew')
    ax.grid()

plt.show()
```

5 Median String

Funkcija ima dva parametra, dna - niz niski koje čine nukleotidnu sekvencu, i k - željena dužina . Povratna vrednost je niska median.

Tražimo nisku dužine k koja je najmanje udaljena od svih iz dna. Uzimamo u obzir svih 4^k kombinacija i proveravamo koja najmanje udaljenda od svih. Za određivanje niske koristi se funkcija number_to_pattern (2.2). Zatim, za dobijenu nisku određujemo ukupno rastojanje od svih sekvenci iz dna (funkcijom d). Potrebno je još proveriti da li je to rastojanje trenutni minimum i, ako jeste, ažurirati minimalno rastojanje i nisku meadian.

```
def median_string(dna, k):
    distance = float('inf')
    median = ''

for i in range(4**k):
    pattern = number_to_pattern(i, k)

    current_distance = d(pattern, dna)

if distance > current_distance:
    distance = current_distance
    median = pattern

return median
```

5.1 D

Funkcija ima dva parametra, pattern - kandidat za median, i dna - niz niski koje čine nukleotidnu sekvencu. Povratna vrednost je suma Hamingovih rastojanja između niske pattern i svih sekvenci iz dna.

Prolazimo jednu po jednu sekvencu iz dna i za svaku određujemo najmanje Hamingovo rastojanje u odnosu na pattern. Ideja je da u toj sekvenci tražimo podsekvencu, dužine niske pattern (u kodu, to je vrednost k), koja se najbolje poklapa sa niskom pattern odnosno, koja ima najmanje hamingovo rastojanje (3.2.1) u odnosu na nisku pattern. Nakon što je određeno najmanje rastojanje za jednu sekvencu, ono se dodaje na ukupan zbir rastojanja, što je povratna vrednost ove funkcije.

```
def d(pattern, dna):
    k = len(pattern)
    distance = 0

for dna_string in dna:
    h_dist = float('inf')

for i in range(len(dna_string) - k + 1):
    pattern_p = dna_string[i:i+k]
    dist = hamming_distance(pattern_p, pattern)

if dist < h_dist:
    h_dist = dist

distance += h_dist
return distance</pre>
```

5.1.1 Test primer

```
dna = [
'GTAGATGTCATTAGCATGCAC',
'CCTAGCCACTCTGCCATGTCG',
'AACTCGTGCATTCTACGACTG',
'AAACTTTCCGGATCTTCATAC',
'CTACATCATCGAAGGCTACGC'
]
k = 4
median =
```

6 Greedy Motif Search

Funkcija ima tri parametra, dna - niz sekvenci, k - dužina motiva, i t - broj sekvenci u dna. Povratna vrednost je skup najboljih motiva.

Inicijalno, best_motifs sadrži prefikse svih niski iz dna dužine k. Pored najboljih motiva, pamtimo i trenutno nabolji (najmanji) skor, koji se računa koršćenjem funkcije score.

Polazimo od prve sekvence u nizu dna iz koje ćemo izdvajati podniske dužine k. Čuvamo skup motiva, a prvi motiv biće podniska dužine k u tekućoj iteraciji. Dakle, indeksiramo prvu nisku i u svakoj iteraciji izdvajamo podniske dužine k. Pored toga, u svakoj iteraciji iz preostalih t - 1 sekvenci izdvajamo podniske dužine k koje su najverovatnije (to određuje funkcija most_probable_kmer) u odnosu na matricu profile. Određujemo profil na osnovu motiva iz prethodnih iteracija (a dobijamo ga kao povratnu vrednost funkcije profile), a onda i najverovatniju podnisku. Najverovatniju podnisku dodajemo u skup motiva i on se koristi u narednoj iteraciji za pronalaženje sledećeg motiva. Kada su određeni svi motivi u tekućoj iteraciji, računa se trenutni skor i, ukoliko je bolji od trenutnog najboljeg, ažuriramo najbolji skor i motive.

```
def greedy_motif_search(dna, k, t):
    best_motifs = [dna_string[0:k] for dna_string in dna]
    best_score = score(best_motifs, k)
    first_string = dna[0]

for i in range(len(first_string) - k):
    motifs = []
    motifs.append(first_string[i:i+k])

for j in range(1, t):
    profile = profile_from_motifs(motifs, k, j)
    motifs.append(most_probable_k_mer(dna[j], profile, k))

current_score = score(motifs, k)

if current_score < best_score:
    best_motifs = copy.deepcopy(motifs)
    best_score = current_score

return best_motifs</pre>
```

6.1 Score

Funkcija ima dva parametra, motifs - skup motiva, i k - dužina svakog od motiva. Povratna vrednost je ukupan skor. Da se podsetimo, skor predstavlja ukupan broj nepopularnih nukleotida

po kolonama.

Promenljiva t pamti broj motiva, a povratna vrednost biće smeštena u promenljivu total_score. Dakle, krećemo se po kolonama, tako da će granica za izvršavanje petlje biti vrednost k, što je dužina svakog od motiva. Za svaku kolonu pamtimo koliko se koji nukleotid pojavio u nizu counts dimenzije 4. Zatim prolazimo redom karaktere motiva iz odgovarajuće kolone i ažuriramo niz. Koristimo funkciju symbol_to_number (2.2.2) za dobijanje indeksa, a potom sledi jednostavna inkrementacija elementa niza na odgovarajućoj poziciji. Kada su obrađeni svi motivi, potrebno je odrediti indeks maksimuma. Na kraju, uvećati total_score za razliku ukupnog broja nukleotida i broj pojavljivanja najpopularnijeg nukleotida.

```
\# Izracunavanje ukupnog skora za skup motiva
def score (motifs, k):
    t = len(motifs)
    total score = 0
    for j in range(k):
        counts = [0, 0, 0, 0]
        for i in range(t):
            c = motifs[i][j]
            index = symbol_to_number(c)
            counts[index] += 1
        \max index = 0
        for i in range (1,4):
            if counts[i] > counts[max_index]:
                \max index = i
        total_score += t - counts[max_index]
    return total_score
```

6.2 Profile From Motifs

Funkcija ima dva parametra, motifs - skup motiva, i k - dužina svakog motiva. Povratna vrednost funkcije je matrica profila dimenzija $4 \times k$. Podsetimo se da vrednosti u matrici profila predstavljaju verovatnoću da se pojavi odgovarajući nukleotid na odgovarajućem mestu (ako bacamo četvorostranu pristrasnu kockicu, ove vrednosti bi bile verovatnoće da padne odgovarajući nukleotid). U ovoj implementaciji primenjeno je i Laplasovo pravilo, kako bi se izbegla vreovatnoća jednaka nuli.

Zbog Laplasovog pravila, matrica profila inicijalno je popunjena jedinicama. U prvom prolazu dvostruke petlje, koja se prvo kreće po kolonama a onda po vrstama, određujemo indeks nukleotida, a onda uvećamo odgovarajuće polje u matrici profila. U drugom prolazu dvostruke petlje, delimo svaki element matrice brojem motiva uvećanog za 2.

```
def profile_from_motifs(motifs, k, t):
    profile = [[1 for i in range(k)] for x in range(4)]
    for j in range(k):
        for i in range(t):
```

```
index = symbol_to_number(motifs[i][j])
    profile[index][j] += 1

for j in range(k):
    for i in range(4):
        profile[i][j] /= (t+2)

return profile
```

6.3 Most Probable Kmer

Funkcija ima tri parametra, dna_string, profile i k. Povratna vrednost funkcije je najverovatnija podniska niske dna_string dužine k u odnosu na amtricu profila.

Iniciijalno, best_kmer je prazna niska, a best_probability je negativna vrednost. Prolazimo sve podniske dužine k i za svaku računamo verovatnoću (funkcijom probability). Ukoliko je ta verovatnoća veća od trenutno najbolje, ažuriramo najbolju podnisku i verovatnoću.

```
def most_probable_k_mer(dna_string, profile, k):
    best_k_mer = ',
    best_probability = -1

for i in range(len(dna_string) - k + 1):
    pattern = dna_string[i:i+k]
    pattern_prob = probability(pattern, profile)

if pattern_prob > best_probability:
    best_probability = pattern_prob
    best_k_mer = pattern

return best_k_mer
```

6.3.1 Probability

Funkcija ima dva parametra, pattern i profile. Funkcija vraća verovatnoću pojave pattern sekvence u odnosu na zadati profil. Ukupna verovanoća dobija se kao proizvod odgovarajućih vrednosti iz matrice profil.

Inicijalno, verovatnoća je jednaka 1. Za svaki karakter iz sekvence pattern, određujemo njegov indeks funkcijom symbol_to_number (2.2.2). Zatim, trenutnu verovatnoću množimo vrednošću iz matrice profil koja odgovara datom karakteru i poziciji na kojoj se nalazi u niski.

```
def probability(pattern, profile):
    prob = 1

for j in range(len(pattern)):
    c = pattern[j]
    index = symbol_to_number(c)

    prob *= profile[index][j]

return prob
```

6.3.2 Test primer

```
dna = [
'GTAGATGTCATTAGCATGCAC',
'CCTAGCCACTCTGCCATGTCG',
'AACTCGTGCATTCTACGACTG',
'AAACTTTCCGGATCTTCATAC',
'CTACATCATCGAAGGCTACGC'
]
k = 4
t = len(dna)
best_motifs =
```

7 Randomized Motif Search

Funkcija ima tri parametra, dna, k i t. Povratna vrednost je skup najboljih motiva.

Polazimo od slučajno odabranih motiva (dobijamo ih funkcijom random_k_mers). Pamtimo trenutno najbolje motive (na početku su to ovi slučajno odabrani) i njihov skor (koji računamo korišćenjem funkcije score, 6.1).

Vrtimo petlju dok se skor popravlja. Prvo, formiramo profil od tekućih motiva (funkcijom profile_from_motifs, 6.2), a onda obrnuto, određujemo motive od dobijenog profila (funkcijom motifs_from_profile). Računamo skor novih motiva, i ako je skor manji od najboljeg, ažuriramo najbolje motive i njihov skor. Ukoliko je novi skor lošiji, tada prekidamo petlju i vraćamo najbolje motive.

```
import copy
def randomized_motif_search(dna, k, t):
    motifs = random_k_mers(dna, k, t)
    best_motifs = copy.deepcopy(motifs)
    best_score = score(best_motifs, k)

while True:
    profile = profile_from_motifs(motifs, k, t)
    motifs = motifs_from_profile(profile, dna)
    current_score = score(motifs, k)

if current_score < best_score:
    best_score = current_score
    best_motifs = copy.deepcopy(motifs)
    else:
        return best_motifs</pre>
```

7.1 Random Kmers

Funkcija ima tri parametra, dna, k i t. Povratna vrednost je skup slučajno odabranih motiva. Skup motiva na početku je prazan. Za svaku sekvencu iz dna generišemo jedan sluačajan broj koji predstavlja poziciju od koje počinje motiv, a biće dužine k. Odabranu podsekvencu dodajemo u skup motiva.

```
def random_k_mers(dna, k, t):
    k_mers = []
```

```
for i in range(t):
    start = random.randrange(0, len(dna[i]) - k + 1)
    dna_string = dna[i]
    k_mers.append(dna_string[start:start+k])

return k_mers
```

7.2 Motifs From Profile

Funkcija ima dva parametra, profile i dna. Povratna vrednost je skup motiva.

Polazi se od praznog skupa motiva. Za svaku sekvencu iz dna određujemo najverovatniju podnisku (korišćenjem funkcije most_probable_kmer, 6.3) i dodajemo je u skup motiva.

```
def motifs_from_profile(profile, dna):
    motifs = []
    k = len(profile[0])

for dna_string in dna:
    motifs.append(most_probable_k_mer(dna_string, profile, k))

return motifs
```

7.2.1 Test primer

```
dna = [
'GTAGATGTCATTAGCATGCAC',
'CCTAGCCACTCTGCCATGTCG',
'AACTCGTGCATTCTACGACTG',
'AAACTTTCCGGATCTTCATAC',
'CTACATCATCGAAGGCTACGC'
]
k = 4
t = len(dna)
best_motifs =
```

8 Gibbs Sampler

Funkcija ima četiri parametra, dna, k, t i \mathbb{N} - broj iteracija. Povratna vrednost je skup najboljih motiva.

Polazimo od slučajno odabranih motiva (dobijamo ih funkcijom random_k_mers). Pamtimo trenutno najbolje motive (na početku su to ovi slučajno odabrani) i njihov skor (koji računamo korišćenjem funkcije score, 6.1).

Funkcija se izvršava u N iteracija, a u svakoj prvo biramo slučajan broj i iz skupa [0,t) (to je slučajno odabrani motiv koji brišemo). Koristimo pomoćnu promenljivu selected_motifs u koju kopiramo elemente iz motifs, a onda brišemo onaj na poziciji i, koja je slučano odabrana. Zatim, pravimo matricu profila (profile_from_motifs, 6.2). Na osnovu dobijenog profila, određujemo najverovatniji motiv (funkcijom most_probable_kmer, 6.3) i smeštamo u motifs na prehodno odabranu poziciju i, a brišemo ceo selected_motifs.

Nakon toga, određuje se skor novog skupa motiva i, ukoliko je manji, ažuriramo najbolje motive i njihov skor.

```
\# Pronalazenje skupa motiva nakon N iteracija koriscenjem Gibs sampler
ota
def gibbs_sampler(dna, k, t, N):
    motifs = random_k_mers(dna, k, t)
    best_motifs = copy.deepcopy(motifs)
    best_score = score(best_motifs, k)
    for j in range(N):
        i = random.randrange(0,t)
        selected_motifs = copy.deepcopy(motifs)
        del selected_motifs[i]
        profile = profile_from_motifs(selected_motifs, k, t-1)
        motifs[i] = most_probable_k_mer(dna[i], profile, k)
        del selected_motifs
        current_score = score(motifs, k)
        if current_score < best_score:</pre>
            best_motifs = copy.deepcopy(motifs)
            best score = current score
    return best_motifs
```

8.0.1 Test primer

```
dna = [
'GTAGATGTCATTAGCATGCAC',
'CCTAGCCACTCTGCCATGTCG',
'AACTCGTGCATTCTACGACTG',
'AAACTTTCCGGATCTTCATAC',
'CTACATCATCGAAGGCTACGC'
]
k = 4
t = len(dna)
N = 500
best_motifs =
```

9 Maximal Non Branching Path

Funkcija ima jedan parametar, **G** - de Bruijn graf. Funkcija vraća maksimalne nerazgranate putanje u grafu.

Putanja je inicijalno prazna lista, a dodatno održavamo mapu posećenih čvorova, koja je inicijalno prazna.

Za svaki čvor v u grafu G računamo ulazni i izlazni stepen (funkcijom degree). Ukoliko je jedan od ta dva različit od 1, obeležavamo da je čvor posećen. Dodatno, ukoliko je izlazni stepen veći od 0, želimo da obiđemo sve susede. Za svaki čvor w iz liste suseda čvora v, pravimo putanju koja na početku sadrži samo granu (v, w). Zatim, obeležimo da je čvor w posećen i računamo njegov ulazni izlazni stepen.

Pošto nam je potreban nerazgranati put, pratimo čvorove koji imaju tačno jednu ulaznu i jednu izlaznu granu. Tako, dokle god su i ulazni i izlazni stepeni čvora w jednaki 1, određujemo čvor u, čvor koji se nalazi na drugom kraju izlazne grane iz čvora w. Tu granu treba dodati u trenutni put. Zatim, čvor w dobija vrednost čvora u i potrebno je ponovo označiti čvor w kao posećen i ažurirate stepene. Kada nema više čvorova koji ispunjavaju uslov, u listu putanja dodajemo trenutni put.

Još jednom prolazimo sve čvorove grafa G, i za svaki čvor v koji nije posećen, odredićemo izlovoani ciklus (funkcijom isloated_cycle). Ukoliko takav ciklus postoji, dodajemo ga u listu putanja.

```
# Pronalazenje maksimalnih nerazgranatih putanja u grafu
def maximal_non_branching_paths(G):
    paths = []
    visited = \{\}
    for v in G:
         (v \text{ in deg}, v \text{ out deg}) = \text{degree}(G, v)
         if v in deg != 1 or v out deg != 1:
              visited[v] = True
              if v out deg > 0:
                   for w in G[v]:
                       non\_branching\_path \; = \; [\,(\,v\,,\!w\,)\,]
                       visited[w] = True
                       (w_{in}_{deg}, w_{out}_{deg}) = degree(G, w)
                       while w in deg = 1 and w out deg = 1:
                            \mathbf{u} = \mathbf{G}[\mathbf{w}][0]
                            non_branching_path.append((w,u))
                            w = u
                            visited[w] = True
                            (w_{in}_{deg}, w_{out}_{deg}) = degree(G, w)
                       paths.append(non_branching_path)
    for v in G:
         if v not in visited:
              c = isolated_cycle(G, v)
              if c != None:
                   paths.append(c)
    return paths
```

9.1 Degree

Funkcija ima dva parametra, G - de Bruijn graf, i v - čvor čiji ulazni i izlazni stepen treba odrediti. Povratna vrednost je par ulazni i izlazni stepen čvora v.

Pošto je graf predstavljen kao mapa, koja preslikava čvorove u listu čvorova sa kojim je povezan, izlazni stepen biće dužina liste čvora v u mapi G. Ulazni stepen je broj čvorova koji u svojoj listi sadrže čvor v.

```
def degree(G, v):
    out_deg = len(G[v])
    in_deg = 0

for u in G:
    if v in G[u]:
        in_deg += 1

return (in_deg, out_deg)
```

9.2 Isolated Cycle

Funkcija ima dva parametra, G - de Bruijn graf, i v - izolovani čvor za koji želimo da nađemo ciklus. Povratna vrednost je ciklus, ako postoji, a u suprotnom None.

Ciklus je inicijalno prazna lista grana (odnoso, parova ulaznih i izlaznih čvora). Pošto tražimo nerazgranate puteve, i ovde je bitno da svi čvorovi imaju ulazne i izlazne stepene jednake 1. Tako da, prvi korak je određivanje stepena čvora v (funkcijom degree, 9.1). Petlja se vrti dok su ulazni i izlazni stepen jednaki 1. Biramo čvor u koji se nalazi na drugom kraju jedine izlazne grane čvora v i dodajemo tu granu u ciklus.

Ukoliko su ulazni čvor prve grane i izlazni čvor poslednje grane ciklusa jednaki, znači da smo napravili ciklus i, pritom, obišli sve čvorove u toj komponenti povezanosti grafa G, pa vraćamo ciklus. U suprotnom, čvor v dobija vrednost čvora u. Ponovo računamo stepen čvora v. Ukoliko se naiđe na čvor koji ne ispunjava uslove petlje, vratiti None.

```
def isolated_cycle(G, v):
    cycle = []

    (in_deg, out_deg) = degree(G, v)

while in_deg == 1 and out_deg == 1:
        u = G[v][0]
        cycle.append((v,u))
        if cycle[0][0] == cycle[-1][1]:
            return cycle

        v = u
        (in_deg, out_deg) = degree(G, v)

return None
```

U nastavku su funkcije neophodne da bismo došli do reprezentacije niske u obliku de Bruijn grafa.

9.3 String To Kmers

Funkcija ima dva parametra, $\mathtt{dna_string}$ - nisku koju želimo da rasparčamo da delove, i \mathtt{k} - dužina delova.

Polazimo od prazne liste k-grama. Polazeći od pozicije 0, uzimamo podniske dužine kismeštamo u listu.

9.4 De Bruijn

Funkcija ima jedan parametar, kmers - lista k-grama. Povratna vrednost je graf predstavljen mapom.

Prolazimo listu, element po element. Za svaki k-gram izdvajamo prefiks u, bez poslednjeg karaktera i sufiks v, bez prvog karaktera. Ukoliko se u nalazi u grafu G, a čvor v nije u njegovoj listi, dodajemo čvor v u listu čvora u. Ako se u ne nalazi u grafu, onda ga dodajemo u graf, a lista inicijlano sadrži samo v. Ako čvor v nije u grafu, dodajemo ga sa praznom listom.

```
def debruijn_graph_from_k_mers(k_mers):
    G = {}

    for k_mer in k_mers:
        u = k_mer[:-1]
        v = k_mer[1:]

        if u in G:
            if v not in G[u]:
                 G[u].append(v)

        else:
            G[u] = [v]

        if v not in G:
            G[v] = []
```

9.4.1 Test primer

```
dna_string = "AATCGTGACCTCAACT"
k = 3
k_mers = string_to_k_mers(dna_string, k)
g = debruijn_graph_from_k_mers(k_mers)
paths =
```

10 All Euler Cycles

Funkcija prima jedan parametra, graf G. Povratna vrednost je lista ciklusa.

Lista ciklusa na početku je prazna. Koristimo pomoćnu promenljivu, all_graphs, koja čuva kopiju grafa G u strukturi deque. Petlja se vrti dok ima grafova u all_graphs, odnosno, dok je njegova dužina veća od nula.

Izdvajamo jedan graf, <code>G_p</code> pozivom funkcije <code>popleft()</code>. U promenljivu <code>v_p</code> želimo da smestimo čvor sa ulaznim stepenom većim od jedan u grafu <code>G_p</code>. Inicijalizujemo ga sa <code>None</code> i onda pokušavamo da ga pronađemo.

Prolazimo sve čvorove grafa G_p i računamo njihov ulazni i izlazni stepen (funkcija degree, 9.1). Prvo čvor na koji naiđemo, sa ulaznim stepenom većim od 1, dodeljujemo promenljivoj v_p i prekidamo potragu.

Ukoliko smo našli takav čvor, odnosno, ukoliko njegova vrednost nije jednaka None, želimo da napravimo jednostavniji (u, v, w) bajpas graf. Da se podsetimo, potrebno je da iz grafa uklonimo grane (u, v) i (v, w) i da dodamo novi čvor x sa granama (u, x) i (x, v).

Prolazimo sve čvorove u od kojih postoje grane ka čvoru v_p u grafu G_p, i sve čvorove w do kojih postoji grana od čvora v_p u grafu G_p. Zatim, pravimo bajpas graf (funkcijom bypass). Ukoliko je novi graf povezan (što možemo proveriti funkcijom is_connected), dodajemo njegovu kopiju u all_graphs.

Ukoliko nismo našli odgovarajući čvor v_p, onda prolazimo čvorove k grafa G_p i određujemo isolovani ciklus iz svakog (funkcija isloated_cycle, 9.2). Ukoliko takav ciklus postoji, želimo da napravimo nisku od ciklusa (funkcijom create_string_from_path) i da je dodamo u listu ciklusa, ukoliko se već ne nalazi tamo.

```
def all_eulerian_cycles(G):
    all_graphs = deque([copy.deepcopy(G)])
    cycles = []
    while len(all_graphs) > 0:
        G_p = all_graphs.popleft()
        v_p = None
        for v in G_p:
            (in\_deg, out\_deg) = degree(G\_p, v)
            if in_deg > 1:
                v p = v
                break
        if v p != None:
            for u in incoming (G p, v p):
                for w in outgoing (G_p, v_p):
                     new\_graph = bypass(G\_p, u, v, w)
                     if is_connected(new_graph):
                         all_graphs.append(copy.deepcopy(new_graph))
        else:
            for k in G_p:
                cycle = isolated_cycle(G_p, k)
                if cycle != None:
                     path = create_string_from_path(cycle)
                     if path not in cycles:
                         cycles.append(path);
    return cycles
```

10.1 Incoming

Funkcija ima dva parametra, graf G i čvor v. Funkcija vraća listu čvorova grafa G od kojih postoji grana do čvora v.

Dovoljno je da jednom petljom prođemo sve čvorove grafa ${\tt G}$ i sve koji sadrže čvor ${\tt v}$ u svojoj listi dodamo u listu.

10.2 Outgoing

Funkcija ima dva parametra, graf G i čvor v. Funkcija vraća listu čvorova do kojih postoje grane iz čvora v u grafu G, odnosno, vraća listu čvora v.

```
def outgoing(G, v):
    return G[v]
```

10.3 Bypass

Funkcija ima četiri parametra, graf ${\tt G}$ i čvorove ${\tt u}, {\tt v}$ i ${\tt w}.$ Povratna vrednost je novi graf sa izmenjenim granama. Još jednom, treba izbaciti grane (u,v) i (v,w), dodati novi čvor x (u kodu je ${\tt v}'$, kako bi implementacija funkcije za pravljenje niske bila olakšana) povezati ga sa čvorom ${\tt u}$ i čvorom ${\tt w}.$

Prvo, kopiramo graf G u G_p , koji ćemo dalje menjati. Zatim, iz liste čvora u brišemo čvor v, a iz liste čvora v brišemo čvor w. Onda dodajemo novi čvor, v' u listu čvora u, a lista čvora v' sadržaće samo čvor w. Na kraju vraćamo izmenjeni graf.

```
def bypass(G, u, v, w):
    G_p = copy.deepcopy(G)
    G_p[u].remove(v)
    G_p[v].remove(w)
    G_p[u].append(v+"'") #v'
    G_p[v+"'"] = [w]
    return G_p
```

10.4 Is Connected

Funkcija ima jedan parametar, graf G. Povratna vrednost je tipa boolean.

Održavamo mapu posećenosti. Za svaki čvor v u grafu G pozivamo pomoćnu proceduru koja će izvršiti obilazak grafa u dubinu (DFS) počevši iz čvora v nakon čega prekidamo petlju.

Za svaki čvor vu grafu G proveravamo da li se nalazi u mapi posećenih čvorova. Ukoliko bar jedan čvor nije u mapi, graf nije povezan i vraćamo False. Inače, vraćamo True.

```
def is_connected(G):
    visited = {};
```

```
for v in G:
   DFS(G, v, visited)
   break

for v in G:
   if v not in visited:
    return False

return True
```

10.5 Create String From Path

Funkcija ima jedan parametar, path - putanja na osnovu koje pravimo nisku.

Niska na početku sadrži karaktere ulaznog čvora prve grane. Ostale karaktere dobijamo proslaskom kroz sve grane na putanji, i izdvajanjem poslednjeg karaktera izlaznog čvora te grane.

```
def create_string_from_path(path):
    dna_string = path[0][0].replace("'",'')

for i in range(len(path)):
    dna_string += path[i][1].replace("'",'')[-1]

return dna_string
```

10.5.1 DFS

Funkcija ima tri parametra, graf G, čvor v i mapu posećenosti visited. Nema povratne vrednosti.

Čvor v, iz kog kreće obilazak grafa, obeležimo da je posećen. Zatim, prolazimo sve čvorove v, koji se nalaze u listi čvora v. Za svaki čvor koji do tad nije posećen, pozivamo istu proceduru.

```
def DFS(G, v, visited):
    visited[v] = True

    for w in G[v]:
        if w not in visited:
            DFS(G, w, visited)
```

10.5.2 Test primer

```
G = {
    'AT' : ['TC'],
    'TC' : ['CG'],
    'CG': ['GA','GG'],
    'GA':['AT','AC'],
    'AC':['CG'],
    'GG':['GA']
}
cycles =
```

11 String Spelled By Gapped Patterns

Funkcija ima tri parametra, gapped_patterns - skup parova k-grama, k i d - rastojanje dva susedna para k-grama. Povratna vrednost je niska sačinjena od zadatih k-grama.

Razdvajamo parove u posebne liste, first_patterns i second_patterns. Zatim, formiramo prefiksne (od first_patterns) i sufiksne (od second_patterns) niske (funkcijom string_spelled_by_patterns).

Prefiksna i sufiksna niska imaju prefiks, odnoso, sufiks dužine k+d, a ostatak niski treba da im se poklopi. Tako da, prolazimo ove niske karakter po karakter. Prefiksu prolazimo počevši od pozicije k+d do kraja, a sufiksnu prolazimo od 0 do len(prefiks_string)-k-d. Ukoliko naiđemo na nepoklapanje nukleotida na nekoj poziciji, ispisujemo odgovarajuću poruku i vraćamo praznu nisku. Ako su svi nukleotidi u redu, vraćamo nisku koja se dobije nadovezivanjem sufiksa iz sufiksne niske na prefiksnu nisku.

```
# Sastavljanje DNK niske pomocu parova k-mera na udaljenosti d
def string_spelled_by_gapped_patterns(gapped_patterns, k, d):
    first_patterns = [s[0] for s in gapped_patterns]
    second_patterns = [s[1] for s in gapped_patterns]

prefix_string = string_spelled_by_patterns(first_patterns, k)
    suffix_string = string_spelled_by_patterns(second_patterns, k)

print(prefix_string)
print(suffix_string)

for i in range(k+d, len(prefix_string)):
    if prefix_string[i] != suffix_string[i-k-d]:
        print('There_is_no_string_spelled_by_the_gapped_patterns')
        return ''
return prefix_string + suffix_string[-k-d:]
```

11.1 String Spelled By Patterns

Funkcija ima dva parametra, patterns - niske koje treba spojiti, i k - dužina svake niske. Povratna vrednost je DNK niska sastavljena od datih k-grama.

Početna vrednost niske dna_string je k-gram bez poslednjeg karaktera. Prolaskom svih k-grama iz liste patterns, gradimo nisku nadovezivanjem poslednjeg karaktera iz svakog.

```
# Sastavljanje DNK niske pomocu k-mera
def string_spelled_by_patterns(patterns, k):
    dna_string = patterns[0][:-1]

for i in range(0, len(patterns)):
    dna_string += patterns[i][-1]

return dna_string
```

11.1.1 Test primer

```
gapped_patterns = [('CTG','CTG'),('TGA','TGA'),('GAC','GAC'),('ACT','ACT')]
k = 3
d = 1
string =
```