Statistik och Dataanalys I

Föreläsning 15 - Sannolikhetsmodeller I

Mattias Villani

Statistiska institutionen Stockholms universitet

Översikt

- Bernoulliförsök
- Geometrisk f\u00f6rdelning
- Binomialfördelning
- Likformig fördelning
- Normalfördelning

Bernoulliförsök

Bernoulliförsök

- 1 Bara två möjliga utfall: lyckas/misslyckas.
- 2 Samma sannolikhet för lyckas, p, i alla försök.
- 3 Oberoende försök.
- Typexempel: **slantsingling**.
 - ► Lyckas = Krona, Misslyckas = Klave.
 - ▶ Sannolikhet p = 0.5 för schysst mynt.
 - Utfall på en singling beror inte på andra singlingar.
- Lyckas/Misslyckas är bara en benämning.
- Död/Levande. Hel/Trasig. Spam/Ham.
- \bigwedge Utan återläggning \Rightarrow inte samma p i olika försök:
 - ► $P(1:a \text{ kortet } \spadesuit) = \frac{13}{52} = \frac{1}{4}$
 - ▶ $P(2:a \text{ kortet } \spadesuit) = \frac{12}{51} \text{ om } 1:a \spadesuit \text{ eller } \frac{13}{51} \text{ om } 1:a \heartsuit, \diamondsuit, \clubsuit.$

Motivation - regression med binära y-variabler

- Bernoulli-fördelning med samma sannolikhet *p*.
- Spamdata: lära oss om p = P(spam) från data. $\hat{p} = 0.9$. \bigcirc
- **Spam-filter**: ska datorn skicka **just detta mejl** till Spam?
- SDAII: Logistisk regression där spam sannolikheten *p* beror på förklarande variabler, som i regression.

Bernoullifördelning

- Två möjliga utfall: lyckad/misslyckad. Binär variabel.
- \blacksquare Vi kan koda lyckat = 1, misslyckat = 0.

$$X = egin{cases} 1 & ext{om Bernoulli-försök lyckat} \ 0 & ext{om Bernoulli-försök misslyckat} \end{cases}$$

$$P(X = x) = \begin{cases} p & \text{för } x = 1\\ q = 1 - p & \text{för } x = 0 \end{cases}$$

■ Väntevärde och Varians

$$\begin{split} E(\mathbf{X}) &= \mu = \sum_{\text{alla } \mathbf{X}} \mathbf{X} \cdot P(\mathbf{X}) = 0 \cdot P(\mathbf{X} = 0) + 1 \cdot P(\mathbf{X} = 1) \\ &= 0 \cdot \mathbf{q} + 1 \cdot \mathbf{p} = \mathbf{p} \end{split}$$

$$Var(X) = \sum_{p} (x - \mu)^{2} \cdot P(x) = (0 - p)^{2} \cdot q + (1 - p)^{2} \cdot p$$
$$= p^{2}q + q^{2} \cdot p = pq(\underbrace{p + q}) = pq$$

Statistik och Dataanalys I

Geometrisk fördelning

- Email: **spam** eller **ham** (icke-spam).
 - ► P(spam) = p = 0.9
 - P(ham) = q = 1 p = 0.1
- Hur många mejl måste du öppna tills du får ditt första ham?

$$P(\text{f\"orsta ham på fj\"arde mejlet}) = \underbrace{0.9 \cdot 0.9 \cdot 0.9}_{\text{3 spam}} \cdot \underbrace{0.1}_{\text{ham}} = 0.9^{3} \cdot 0.1 = 0.0729$$

 \blacksquare Vad är sannolikheten för x st mejl tills första ham?

$$P(\text{första ham på } x:\text{te mejlet}) = 0.9^{x-1} \cdot 0.1$$

Geometrisk slumpvariabel från Bernoulliförsök

X =antal försök *tills första lyckade* inträffar

■ Geometrisk fördelning

$$P(X = x) = q^{x-1}p, \quad \text{for } x = 0$$

X inkluderar försöket där du först lyckas.
Wikipedia kallar detta för för-första-gången-fördelning.

Statistik och Dataanalys I ST1101

Geometrisk fördelning

Geometrisk fördelning i R

lacksquare $X \sim \mathrm{Geom}(p=0.4)$. Sannolikheten p kallas prob i R.

Beräkning	R kommando
P(X=2)	dgeom(x = 2, prob = 0.4)
$P(X \le 2)$	pgeom(q = 2, prob = 0.4)
Kvantil	qgeom(p = 0.5, prob = 0.4)
10 slumptal	rgeom(n = 10, prob = 0.4)

R använder Wikipedias definition av geometrisk fördelning. X räknar antalet misslyckade försök innan första lyckade. Fix:

```
y = rgeom(n = 100, prob = 0.5) \# y is number of trials BEFORE first success x = y + 1 # x is number of trials INCLUDING first success
```

Se programkoden geometric.R på kurssidan.

Binomialfördelning

- Geometrisk fördelning:
 - ► Hur många Bernoulli-försök tills första lyckade?
 - Antal försök är slumpmässigt.
- Binomialfördelning:
 - ▶ Hur många lyckade i n Bernoulli-försök med sannolikhet p.
 - ▶ Antal försök n är förbestämt och fixerat.
 - ► Antal lyckade är slumpmässigt.
- Vi skriver $X \sim Bin(n, p)$ och säger:
- "X är binomialfördelad med parametrar n och p."
- Binomial: summan av *n* oberoende Bernoullivariabler

$$X = X_1 + X_2 + \ldots + X_n$$

Exempel: n = 3 försök med resultat:

 $X_1 = 1$ (Krona första), $X_2 = 1$ (Krona andra) och $X_3 = 0$ (Klave tredje).

$$X = 1 + 1 + 0 = 2$$
 st lyckade (Krona).

Binomialfördelning

Binomialfördelning - väntevärde

Väntevärde i en binomialfördelning? 😱

$$E(X) = \sum_{x=0}^{n} x \cdot P(x)$$

Väntevärde - summa av slumpvariabler.
$$E(X_1+X_2+\ldots,X_n)=E(X_1)+E(X_2)+\ldots+E(X_n)$$

- Väntevärde för varje Bernoulli-variabel: $E(X_i) = p$.
- **V**äntevärde för $X \sim \text{Bin}(n, p)$

$$E(X) = E(X_1) + E(X_2) + \ldots + E(X_n) = \underbrace{p + p + \ldots + p}_{n \text{ st}} = np$$

Binomialfördelning - varians

Varians i en binomialfördelning? 😱 😱 😱

$$E(X) = \sum_{x=0}^{n} (x - \mu)^{2} \cdot P(x)$$

Varians - summa av oberoende slumpvariabler.
$$V(X_1+X_2+\ldots,X_n)=Var(X_1)+Var(X_2)+\ldots+Var(X_n)$$

- Bernoulliförsök är oberoende. V
- Varians för varje Bernoulli-variabel: $Var(X_i) = pq$.
- **Varians för** $X \sim \text{Bin}(n, p)$

$$Var(X) = Var(X_1) + \ldots + Var(X_n) = \underbrace{pq + pq + \ldots + pq}_{n \text{ st}} = \underbrace{npq}_{n \text{ st}}$$

Binomialfördelning - interaktivt

Binomialfördelningens sannolikheter

- Om $X \sim \text{Bin}(n, p)$ vad är egentligen P(X = x)?
- Sannolikheten att få $\{1,1,0\}$ i n=3 försök?

$$p \cdot p \cdot q = p^2 q^1$$

Det finns dock flera sätt att få X = 2 i n = 3 försök:

1:a försök	2:a försök	3:e försök	Χ	P(X = x)
1	1	0	2	p^2q
1	0	1	2	p^2q
0	1	1	2	p^2q

- Eftersom dessa tre olika sätt att få X = 2 är disjunkta:
- På samma sätt

$$\begin{split} P(X=0) &= P(\{0,0,0\}) = 1 \cdot q^3 \\ P(X=1) &= P(\{1,0,0\},\{0,1,0\},\{0,0,1\}) = 3 \cdot pq^2 \\ P(X=2) &= P(\{1,1,0\},\{1,0,1\},\{0,1,1\}) = 3 \cdot p^2 q \\ P(X=3) &= P(\{1,1,1\}) = 1 \cdot p^3 \end{split}$$

 $P(X = 2) = 3 \cdot p^2 q$

Binomialfördelningens sannolikheter

Sannolikhetsfördelning $X \sim \text{Bin}(3, p)$

X	0	1	2	3
P(x)	q^3	$3 \cdot pq^2$	$3 \cdot p^2 q$	p^3

Kolla att summan av alla sannolikheter är ett:

$$q^3 + 3 \cdot pq^2 + 3 \cdot p^2q + p^3 = (p+q)^3 = 1^3 = 1$$

Allmänna fallet $X \sim Bin(n, p)$

$$P(X = x) = {}_{n}C_{x} \cdot p^{x}q^{n-x}$$

 $\square_n C_x$ är antalet sätt ordna x st 1:or bland n observationer.

Kombinationer och permutationer

Hur många sätt att välja k element bland n element?						
	med återläggning	utan återläggning				
med ordning	n ^k	$_{n}P_{k}=\frac{n!}{(n-k)!}$				
utan ordning	ej på kurs	$_{n}C_{k}=\frac{n!}{(n-k)!k!}$				

Kontinuerliga slumpvariabler och täthetsfunktionen

- **Kontinuerlig slumpvariabel** antar alla värden, men P(X = x) = 0 för alla x!
- **Täthetsfunktion**: f(x).
- Positiv f(x) > 0 för alla x.
- Täthetsfunktion ger **inte** sannolikheter. OK om f(x) > 1.
- Täthetsfunktionen används för att beräkna sannolikheter:

$$P(a \le X \le b) = \text{arean under } f(x) \text{ mellan } a \text{ och } b$$

SDAIII: räkna arean under funktion med integration.

Likformig fördelning

Normalfördelning

 $X \sim N(\mu, \sigma^2)$

$$E(X) = \mu$$
$$Var(X) = \sigma^2$$

■ 68-95-99.7% regeln

Normalfördelning - standardisering

Standardisering

$$X \sim N(\mu, \sigma^2) \Rightarrow Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

Sannolikhet via standardisering för $X \sim N(2, 3^2)$

$$P(X \le 5) = P(X - 2 \le 5 - 2) = P\left(\frac{X - 2}{3} \le \frac{5 - 2}{3}\right) = P(Z \le 1)$$

Normalfördelning - Z-tabell

Normalfördelning

Tabellen ger sannolikheten $\Phi(z)=P(Z\leq z)$ för olika z där Z är standardnormal, $Z\sim N(0,1)$. Sannolikheter i den vänstra svansen fås genom symmetri: $P(Z\leq -z)=1-P(Z\leq z)$.

Andra decimalen i z

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817

Normalfördelning - symmetri

- Negativa z-värden finns inte i Z-tabellen.
- Vi utnyttjar normalfördelningens symmetri för negativa z

$$P(Z \le -2) = 1 - P(Z \le 2)$$

Normalfördelning - intervall via standardisering

Sannolikhet via standardisering för $X \sim N(2, 3^2)$

$$P(0 \le X \le 5) = P\left(\frac{0-2}{3} \le \frac{X-2}{3} \le \frac{5-2}{3}\right)$$
$$= P(-0.667 \le Z \le 1)$$
$$= P(Z \le 1) - P(Z \le -0.667)$$

och pga symmetri

$$P(Z \le -0.667) = 1 - P(Z \le 0.667)$$

Normalfördelningen - interaktivt

Normalfördelning - egenskaper

Linjärkombination av normalfördelad slumpvariabel.

Om $X \sim \mathrm{N}(\mu, \sigma^2)$ och Y = c + aX så gäller

$$Y \sim N(c + a\mu, a^2\sigma^2)$$

Summa av oberoende normalfördelade slumpvariabler.

Om $X \sim \mathrm{N}(\mu_X, \sigma_X^2)$ och $Y \sim \mathrm{N}(\mu_Y, \sigma_Y^2)$ är oberoende slumpvariabler så är även summan normalfördelad:

$$X + Y \sim N(\mu_X + \mu_Y, \, \sigma_X^2 + \sigma_Y^2)$$

- Fördelningarna för linjärkombination och summa är normal!
- Summan är fortfarande normal om X och Y är beroende.

Approximera binomialfördelning med normal

lacksquare Om $X \sim \mathrm{Bin}(n,p)$ så

$$E(X) = \mu = np$$

och

$$Var(X) = \sigma^2 = npq$$

■ Normalapproximation av binomialfördelning

$$X \stackrel{\text{approx}}{\sim} N(np, npq)$$

Approximationen är tillräckligt bra om

$$np \ge 10$$
 och $nq \ge 10$

Man kan också gör en kontinuitetskorrektion som korrigerar för att vi approximerar en diskret fördelning (binomial) med en kontinuerlig (normal), see SDM-boken kapitel 15.5.

Normalapproximation av binomial - interaktivt

