proof of the cross-ratio theorem

The projective cross-ratio theorem

Cross-ratio is invariant under the projective group P(2).

proof

Suppose that A = [a], B = [b], C = [c] and D = [d] are distinct, collinear p-points, and that t is a projective transformation.

As t is projective, A' = t(A), B' = t(B), C' = t(C) and D' = t(D) are distinct and collinear.

Now, \mathbf{t} has the form $\mathbf{t}([\mathbf{x}]) = [M\mathbf{x}]$, where M is a non-singular 3x3 matrix, so we have A' = $[M\mathbf{a}]$, B' = $[M\mathbf{b}]$, C' = $[M\mathbf{c}]$ and D' = $[M\mathbf{d}]$.

As in the porism, $\mathbf{c} = \alpha \mathbf{a} + \beta \mathbf{b}$, and $\mathbf{d} = \gamma \mathbf{a} + \delta \mathbf{b}$. The map $\mathbf{x} \rightarrow \mathbf{M}\mathbf{x}$ is *linear*, so that $\mathbf{M}\mathbf{c} = \alpha \mathbf{M}\mathbf{a} + \beta \mathbf{M}\mathbf{b}$, and $\mathbf{M}\mathbf{d} = \gamma \mathbf{M}\mathbf{a} + \delta \mathbf{M}\mathbf{b}$ Hence the ratio for (A',B',C',D') is $\beta \gamma/\alpha \delta$, *i.e.* is equal to that for (A,B,C,D).

projective cross-ratio page