## **Deterministische Endliche Automaten**

#### **Definition:**

Ein DEA wird immer so angegeben A =  $(X, S, S_0, \delta, F)$ 

X → Endliches Eingabealphabet -> nie leer

S → Endliche Zustandsmenge -> nie leer

 $S_0 \rightarrow Startzustand S_0 \in S$ 

 $\delta \rightarrow$  Zustandsübergangsfunktion:  $\delta: S \times X \rightarrow S$ 

 $F \rightarrow$  Endzustände,  $F \subseteq S$ 



A = ({Alphabet}, {alle Zustände}, Startzustand, δ gemäß Graph, {Endzustand}) Hinweis: Nie vergessen das Tupel hinzuschreiben, das führt sonst zu unnötigen Punktabzügen!

#### Aufgabe 1:

Gegeben ist das Alphabet  $X = \{X, Y, Z\}$ .

Konstruiere einen deterministischen endliche Automaten, der alle Wörter akzeptiert, welche die Zeichenkette XXYZX enthalten.

#### <u>Aufgabe 2: (Altklausuraufgabe vom Fuhr)</u>

Geben Sie einen endlichen deterministischen Automaten A an mit L(A) = L.

## Aufgabe 3:

Gegeben ist das Alphabet  $X = \{a, b\}$ . Geben sie für folgende Sprachen L einen endlichen deterministischen Automaten A an mit L = L(A). Mit L = L(A)

- a)  $\{ w \in X^* \mid w \text{ endet mit ab } \}$
- b) {  $w \in X^* | |w|_a \neq 3$  }
- c) {  $w \in X^* \mid |w|_a = 2 \lor |w|_b = 1$  }
- d) {  $w \in X^* \mid |w|_a = 2 \land |w|_b = 1$  }
- e) {  $w \in X^* \mid w = (ab)^n (aabb)^m \text{ mit } n, m \in \mathbb{N}$  }
- f) {  $w \in X^* \mid w = ab^n$ ;  $n \ge 2$  }  $\cup$  {  $w \in X^* \mid w = ba^m$ ;  $m \ge 2$  }

### Aufgabe 4:

Welche Sprache akzeptiert der dargestellte Automat? Geben sie diese in Mengenschreibweise an.



# Aufgabe 5: (Aufgabe 1. Altklausuren)

Konstruieren Sie einen deterministisch endlichen Automaten, der genau die Worte aus {0, 1}\* mit der Eigenschaft "Zwischen zwei Einsen stehen mindestens zwei Nullen" akzeptiert