Discretionary Note

Anish Krishna Lakkapragada

IF YOU USE THIS FILE TO CHEAT, YOU ARE NOT ONLY STUPID BUT YOU ARE CHEATING YOURSELF OUT OF THE ABILITY TO FALL IN LOVE WITH MATH. Furthermore, I am not smarter than you and my solutions did not always get a perfect score.

CONTENT STARTS ON NEXT PAGE.

To access the general instructions for this repository head **here**.

ESPONSIBLY. USE RESPONSIBLY. USE I

RESPONSIBLY. USE RESPONS

Pick $n \in \mathbb{N}$. We can construct $S'_n = \{N_{\frac{1}{n}}(x) : x \in K\} \supset K$ as an open cover of K. Because K is compact, every open cover of K has a finite subcover. So open cover S'_n has a subcover which we can define as: $S_n = \{N_{\frac{1}{n}}(x_i^{(n)}) : i = 1 \dots m_n\} \subset S'_n$ where m_n is the number of points (in K) required for S_n to be an open cover of K. We can then define the subset $C' = \bigcup_{n=1}^{\infty} \bigcup_{j=1}^{m_n} x_j^{(n)}$ which is the union of all the required points for each finite subcover S_n to cover K. Because C' is a countable union of finite sets¹, C' is at most countable. Furthermore, $\forall x \in C', x \in K \implies C' \subset K$.

We now show that C' is a *dense* subset of K. To do so, we show $\forall x \in K, x$ is either in C' or x is a limit point of C'. We prove this occurs with casework:

- 1. Case One: $x \in C'$ In this case, our job is done.
- 2. Case Two: $x \notin C'$

In this case, we WTS x is a limit point of C' or that $\forall \ \epsilon > 0, \exists \ p \in N_{\epsilon}(x)$ s.t. $p \neq x$ and $p \in C'$. Pick $\epsilon > 0$. Note that $\forall n \in \mathbb{N}, C'$ contains all the points which neighborhoods with size $\frac{1}{n}$ will cover K. By the Archmidean property, $\exists \ n \in \mathbb{N}$ s.t. $n(1) = n > \frac{1}{\epsilon} \implies \exists \ n \text{ s.t.}$ $\frac{1}{n} < \epsilon$. We proceed with this value of n. Because S_n is an open cover of K, $x \in K \implies x$ is contained in some set $x \in S_n \implies \exists \ 1 \leq k \leq m_n \text{ s.t. } x \in N_{\frac{1}{n}}(x_k^{(n)}) \text{ where } x_k^{(n)} \in C' \text{ and } x \neq x_k^{(n)} \text{ (given by } x \notin C')$. Thus, $d(x, x_k^{(n)}) < \frac{1}{n} \implies N_{\frac{1}{n}}(x) \text{ contains some } x_k^{(n)} \in C'$. Because $x \in S_n = 0$ and $x \in S_n = 0$ and so $x \in S_n = 0$ on the same $x \in S_n = 0$. Thus, $x \in S_n = 0$ and $x \in S_n = 0$ and $x \in S_n = 0$ and $x \in S_n = 0$. Thus, $x \in S_n = 0$ and $x \in S_n = 0$ an

2.

Let $\{G_i\}$ be an open cover of $\{x_n \mid n \in \mathbb{N}\} \cup \{x\}$. This means that \exists some open set $G_j \in \{G_i\}$ s.t. $x \in G_j$. Because G_j is open, all points of G_j are interior points of $G_j \Longrightarrow x$ is an interior point of $G_j \Longrightarrow \exists \epsilon > 0$ s.t. $N_{\epsilon}(x) \subset G_j$. Because $(x_n) \to x \Longrightarrow \exists N$

¹For clarity, the *n*th finite set is given by $\{x_1^{(n)}, \dots, x_{m_n}^{(n)}\}$.

²i.e. a neighborhood

s.t. $\forall n \geq N, d(x_n, x) < \epsilon$. Thus, this means that $N_{\epsilon}(x)$ will contain x and x_N, x_{N+1}, \ldots Because $N_{\epsilon}(x) \subset G_j$, this means x and x_N, x_{N+1}, \ldots are contained in G_j . Now for each of the finitely many points x_1, \ldots, x_{N-1} (all of which are contained in $\{G_i\}$), we can pick a given set in $\{G_i\}$ which contains this point. Let $G_{n_k} \in \{G_i\}$ be the set which contains the kth point x_k where $1 \leq k \leq N-1$. Then $G' = G_j \cup \bigcup_{i=1}^{N-1} G_{n_k}$ covers $\{x_n \mid n \in \mathbb{N}\} \cup \{x\}$. Because $G' \subset \{G_i\} \implies G'$ is a finite subcover of $\{G_i\}$. Thus we have shown all open covers of $\{x_n \mid n \in \mathbb{N}\} \cup \{x\}$ have a finite subcover $\implies \{x_n \mid n \in \mathbb{N}\} \cup \{x\}$ is compact.

3.

We prove that $\lim_{n\to\infty}\frac{2n+1}{3n-1}=\frac{2}{3}$ by showing that the sequence $(p_n)\to\frac{2}{3}$ in metric space $\mathbb R$ where $p_n=\frac{2n+1}{3n-1}$. Pick $\epsilon>0$. We now aim to find $N\in\mathbb N$ s.t. $\forall n\geq N, d(p_n,\frac{2}{3})<\epsilon$ or expressed more simply³, we aim to find $N\in\mathbb N$ s.t. $\forall n\geq N, d(p_n,\frac{2}{3})=d(\frac{2n+1}{3n-1},\frac{2}{3})=|\frac{2n+1}{3n-1}-\frac{2}{3}|=|\frac{3(2n+1)-2(3n-1)}{3(3n-1)}|=|\frac{5}{3(3n-1)}|<\epsilon$. We solve the $|\frac{5}{3(3n-1)}|<\epsilon$ inequality for n below:

$$\left|\frac{5}{3(3n-1)}\right| < \epsilon$$

Because $n \in \mathbb{N} \implies n \ge 1 \implies \frac{5}{3(3n-1)} > 0 \implies \left|\frac{5}{3(3n-1)}\right| = \frac{5}{3(3n-1)}$ and so we can proceed removing the absolute value term:

$$\frac{5}{3(3n-1)} < \epsilon$$

$$5 < \epsilon(9n-3)$$

$$\frac{5}{\epsilon} < 9n-3$$

$$n > \frac{1}{9}(\frac{5}{\epsilon} + 3)$$

Thus, we see $d(p_n, \frac{2}{3}) < \epsilon$ for any $n > \frac{1}{9}(\frac{5}{\epsilon} + 3)$. Thus, we aim to choose for N any nautral number $> \frac{1}{9}(\frac{5}{\epsilon} + 3)$. By Archmidean property, $\exists m \in \mathbb{N}$ s.t. $m(1) > \frac{1}{9}(\frac{5}{\epsilon} + 3)$ and so we can simply take this m to be our choice of N. Thus we have shown $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ s.t. $\forall n \geq N, d(p_n, \frac{2}{3}) < \epsilon \implies (p_n) \to \frac{2}{3} \implies \lim_{n \to \infty} \frac{2n+1}{3n-1} = \frac{2}{3}$.

4

Lemma 0.1 Let $x, y \in \mathbb{R}$. We will prove $||x| - |y|| \le |x - y|$. By Triangle Inequality, we know $|x + y| \le |x| + |y|$ and thus we can show these two facts:

³Because we are operating in the metric space $\mathbb R$ with the standard distance function, d(x,y) = |x-y|.

1. By Triangle Inequality, we know $|x| + |y - x| \ge |x + y - x|$ and so we have:

$$|x| + |y - x| \ge |x + y - x|$$

$$|y - x| \ge |y| - |x|$$

$$|x - y| \ge |y| - |x|$$

2. By Triangle Inequality, we know $|y| + |x - y| \ge |y + x - y|$ and so we have:

$$|y| + |x - y| \ge |y + x - y|$$
$$|x - y| \ge |x| - |y|$$

Thus, we know the two facts: $|x-y| \ge |y| - |x|$ and $|x-y| \ge |x| - |y|$ which together $imply |x-y| \ge \pm (|x|-|y|) \implies |x-y| \ge ||x|-|y||$.

We WTS sequence $|x_n|$ will converge to |x|. Pick $\epsilon > 0$. To show $(|x_n|) \to |x|$, we must find some $N \in \mathbb{N}$ s.t. $\forall n \geq N, d(|x_n|, |x|) = ||x_n| - |x|| < \epsilon$. Because $(x_n) \to x \implies \exists M \in \mathbb{N}$ s.t. $\forall n \geq M, d(x_n, x) < \epsilon \implies \forall n \geq M, |x_n - x| < \epsilon \implies \text{by (Lemma 0.1)} \ \forall n \geq M, ||x_n| - |x|| \leq |x_n - x| < \epsilon \implies \forall n \geq M, d(|x_n|, |x|) = ||x_n| - |x|| < \epsilon$. Thus, we can simply set N = M and so we have shown $\forall \epsilon > 0, \exists N \in \mathbb{N}$ s.t. $\forall n \geq N, d(|x_n|, |x|) < \epsilon$. This proves $|x_n| \to |x|$.

We now show that the converse is not true. Let us define sequence (x_n) in metric space \mathbb{R} where $x_n = -1$. Because every element in this sequence is equal to -1, $(x_n) \to -1$. We can now define sequence (y_n) where $y_n = |x_n| = |-1| = 1$. Because every element in (y_n) is equal to $1, (y_n) \to 1$. Expressed differently, $y_n = |x_n| \to |1|$. So we have found a case where $|x_n| \to |1|$ but $x_n \not\to 1$ and thus we have disproved the converse of this statement.