Technical Note: CRT-HT Position, Velocity & Attitude Results

Paul F. Roysdon

Jay A. Farrell

I. COMPARISON: CRT HT RESULTS

For each algorithm in [1], Fig. 1 shows the cumulative distribution function (CDF) of the position error norm $\|\hat{\mathbf{p}}_k - \mathbf{p}_k\|$ where the ground truth trajectory is used as \mathbf{p}_k . The value of $\hat{\mathbf{p}}_k$ is the *a posteriori* result after the optimization of eqn. (6) in [1] at the first time when the k-th epoch enters the sliding window. For outlier removal, the threshold was computed using a significance level of $\alpha = 0.05$. The CRT algorithm curves are included for various window lengths L. Similar results are shown in Figs. 2 & 3 for velocity and attitude error, respectively.

The CDF in Fig. 1 shows that the percentage of occurrences where the EKF position error is less than 0.1m, is roughly 18%. Roughly 90% of the trajectory, as estimated by the EKF, has errors less than 1.0m. This is as expected for a double-difference L1 pseudorange-only GPS-INS with an EKF. For the CRT with L>5, 100% of the position errors are less than 1.0m. CRT algorithms with L>20 each achieve 0.6m position accuracy on 100% of the trajectory. The EKF and IEKF CDF plots do not reach 100% until the position accuracy is over 3.0m.

The CDF in Fig. 2 shows that the percentage of occurrences where the EKF velocity error is less than 0.01m/s, is roughly 15%. Roughly 85% of the trajectory, as estimated by the EKF, has errors less than 0.1m/s. For the CRT with L>10, 30% of the velocity errors are less than 0.01m/s and 100% of the velocity errors are less than 0.1m/s.

The CDF in Fig. 3 shows that the percentage of occurrences where the EKF attitude error is less than 0.01^o , is roughly 10%. Roughly 98% of the trajectory, as estimated by the EKF, has errors less than 0.1^o . For the CRT with L>10, 15% of the attitude errors are less than 0.01^o and 100% of the attitude errors are less than 0.1^o .

Figs. 1-3 indicate that accuracy improves from the EKF to the IEKF to the CRT. Also, CRT performance (generally) improves with the window length L.

REFERENCES

 P. F. Roysdon and J. A. Farrell, "GPS-INS Outlier Detection and Elimination using a Sliding Window Filter," *American Control Conference*, In Presc., 2017.

Fig. 1. Cumulative distribution of position error for each algorithm.

Fig. 2. Cumulative distribution of velocity error for each algorithm.

Fig. 3. Cumulative distribution of attitude error for each algorithm.