FYS-MEK 1110 / Vår 2018 / Ukesoppgaver #2 (30.1.-2.2.)

Test deg selv: (Disse oppgavene bør du gjøre hjemme før du kommer på gruppetimen.)

- T1. En tynn aluminiumtråd strekker seg 1 mm når du henger på en vekt som veier 10 kg. Anta at tråden kan beskrives som en fjær. Hva er fjærkonstanten?
- T2. En mann på 70 kg står på en vekt i en heis som beveger seg oppover med akselerasjon a=2 m/s². Hvor stor er normalkraften? Hva viser vekten hvis den er kalibrert for å vise vekt i kg?
- T3. Et barn står på Universitetsplassen 17. mai med en heliumballong i hånden. Tegn et frilegemediagram for ballongen. (Anta at det er strålende sol og ingen vind.)
- T4. Tre legemer på en friksjonsfri flate er forbundet med vektløse snorer som vist i figuren. Den fremste klossen dras med en kraft F slik at akselerasjonen blir $a=2 \text{ m/s}^2$. Massene til klossene er $m_a=2 \text{ kg}$, $m_b=1 \text{ kg}$, $m_c=2 \text{ kg}$. Vi antar at all friksjon kan neglisjeres. Finn kraften F og snordragene T_{ab} og T_{bc} i snorene som forbinder klossene. (Hint: se først på systemet som består av alle tre klosser, abc, så på systemet som består av bc, og til slutt bare på kloss c.)

Gruppeoppgaver: (Disse oppgaver skal du jobbe med i gruppetimen.)

- G1. Du reiser i en varmluftsballong som har en konstant oppdriftskraft B. Hele systemet har masse m_0 . Siden du har mye bagasje, beveger ballongen seg nedover med konstant akselerasjon a = g/3.
 - a. Tegn et frilegemediagram for ballongen som synker ned.
 - b. Hvor stor er oppdriftskraften B, uttrykt ved $m_0 g$.
 - c. Hvor mye bagasje må du kaste for å stige med a = g/2?
- G2. En mann på 70 kg står på en vekt i en heis som beveger seg oppover. Snordraget er T=8260 N. Den totale massen av heis, mann og vekt er 700 kg. Hvilken verdi avleser mannen på vekten (i kg)?
- G3. Du slipper to massive, homogene kuler av samme diameter d fra det skjeve tårn i Pisa. Kulene er laget av forskjellige materialer slik at massen er forskjellig med $m_A > m_B$. Luftmotstanden kan beskrives ved hjelp av kvadrat-loven og koeffisienten D, som er identisk for begge kulene.
 - a. Tegn et frilegemediagram for en kule som faller ned.
 - b. Finn et generelt uttrykk for akselerasjonen til kulene.
 - c. Hvilken kule treffer bakken først, A eller B?

Du gjentar eksperimentet med to nye kuler som er laget av det samme material, men som har forskjellige diameter, $d_A>d_B$, og følgelig også forskjellig masse, $m_A>m_B$. Luftmotstanden beskrives fortsatt ved hjelp av den samme kvadratloven, hvor koeffisienten avhenger diameter: $D=C_0d^2$, og C_0 er en konstant.

- d. Finn et uttrykk for akselerasjonen som funksjon av diameteren til kulene. (Hint: En kule med diameter d har volum $V=\frac{4}{3}\pi\left(\frac{d}{2}\right)^3$ og masse $m=\frac{4}{3}\pi\rho\left(\frac{d}{2}\right)^3$, hvor ρ er massetettheten).
- e. Hvilken kule treffer bakken først, A eller B?
- G4. Ole, som har masse $m=70\,\mathrm{kg}$, hopper fra taket i en haug med snø. Han starter fra en høyde $x_0=5\,\mathrm{m}$ over snøen og han stopper 1m dypt ned i haugen. Du kan se bort fra luftmotstanden og anta at kraften fra snøen på Ole er konstant. Finn kraften F_s som virker fra snøen på Ole.

Fasit:

T1: k = 98.1 kN/m

T2: 84.3 kg

T4. $F = 10 \text{ N}, T_{ab} = 6 \text{ N}, T_{bc} = 4 \text{ N}$

G1: b. $B = \frac{2}{3}m_0g$, c. Du må kaste en masse som tilvarer 5/9 m_0 .

G2: 84.3 kg

G3: b. $a = -g + \frac{D}{m}v^2$, c. A, d. $a = -g + \frac{6C_0}{\pi \rho d}v^2$, e. A

G4: $F_s = 6mg = 4120 \text{ N}$