Quilting

Dominic Steiner Etienne Mettaz Oleh Kuzyk Ondrej Cernin

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Input Image

Input Image

Input Image

Input Image

Output Image

Selected Block

Input Image

Quilting Algorithm - Complexity

Error calculation:

• time complexity = $O(b^2 \cdot w \cdot h \cdot n^2)$

Min-cut:

• time complexity = $O(b^2 \cdot n^2)$

Where:

- b = block-size
- w = input-width
- h = input-height
- $n^2 = \#$ output blocks

Cost function:

 $C(b, w, h, n) = N_{add} + N_{mul} + N_{div} + N_{cmp}$

Quilting Algorithm - Baseline

- Operational Intensity: 0.39 OP/B
- **■** Performance: 1.18 GigaOPS
 - 40% integer scalar peak,
 - 3.3% integer vector peak

Optimizations

- Opt 1: Loop unrolling + smarter indexing using less computations
- Opt 2: attempt at blocking optimization for cache
- Opt 3: optimized min-cut function, removed transpose
- Opt 4: removed min. error from index search
- Opt 5: change to separate arrays for each RGB value and cut mask from int to char
- Opt 6: vectorization of min-cut overlap error and marge cut mask
- Opt 6a: vectorization of calc-error (i16) and improved find block
- Opt 6b: initial early stopping
- Opt 6c: more early stopping with colors separated
- Opt 6d: optimized loop order for input image access
- Opt 7: Loop unrolling + smarter indexing using less computations for separate RGB array version
- Opt 8: vectorization of calc-error function (i32)
- Opt 9: finalized early stopping with vectorization
- Opt10: automatic color permutation
- Opt11: minimum error prediction

Error Calculation Early Stopping

Error Calculation Early Stopping

Error Calculation with RGB Order

Error Calculation with BGR Order

Experimental Setup

- AMD Ryzen 9 3900x @ 3.6 GHz
 - gcc -Wall -Wextra -Wpedantic -O3 -ffast-math -march=native -mavx
- Intel i7-8550U @ 1.8 GHz
 - gcc -Wall -Wextra -Wpedantic -O3 -ffast-math -march=native -mavx
- Intel i5-1135G7 @ 2.4 GHz
 - icx -Wall -Wextra -Wpedantic -O3 -ffast-math -march=native -mavx -qoptzmm-usage=high
 - supports AVX-512

Experimental Setup

- Input Images
 - red-radishes (192x192)
 - blue-flowers (192x192)
 - large-dandelion (1024x683)
- Output Image size: 12x12 blocks

Quilting Runtime [Ryzen 9 3900x @ 3.6 Ghz, overlap = 0.5 * block_size]

red-radishes (192x192), output size: 12x12

Quilting Speedup [Ryzen 9 3900x @ 3.6 Ghz, overlap = 0.5 * block_size]

red-radishes (192x192), output size: 12x12

Quilting Speedup [Ryzen 9 3900x @ 3.6 Ghz, overlap = 0.5 * block_size]

■ blue-flowers (192x192), output size: 12x12

Quilting Speedup [Ryzen 9 3900x @ 3.6 Ghz, overlap = 0.5 * block_size]

large-dandelion (1024x683), output size: 12x12

Quilting Speedup [i5-1135G7 @ 2.4 Ghz, overlap = 0.5 * block_size]

blue-flowers (192x192), output size: 12x12

Roofline Analysis

■ blue-flowers (192x192), block size: 64, overlap: 16, output size: 12x12

Questions?