Value	Probability	
1	0.1	
2	0.1	
3	0.2	
4	0.1	
5	0.3	
6	0.2	
	mwan	Sum of the above

Sum {}

where x runs over all possible event

Roll 120 times 1, 6, 2, 5, 4, 2, 3, 4, 5, 6

Roughly how often will you get a 1? 20 2? 20

Value	Probability	
1	0.1	1 * 0.1
2	0.1	2 * 0.1
3	0.2	3 * 0.2
4	0.1	4 *.0.1
5	0.3	5 * 0.3
6	0.2	6 * 0.2
	mwan	Sum of the above

Sum over all possible outcomes x {x * Prob(x)}

where x runs over all possible event

```
Roll 1000 times

1, 6, 2, 5, 4, 2, 3, 4, 5, .... 6

Roughly how often will you get a 1? 100

2? 100

3? 200

(100 * 1 + 100 * 2 + 200 * 3 + ... + 200 *

6)/ 1000 =
```

1 * 0.1 + 2 * 0.1 + 3 * 0.2 ... +6 * 0.2

	Meaning
λ	Arrival rate
μ	service rate Mean service time = $1/\mu$
ρ	Utilisation
m	Number of servers
n	Number of holding slots

For M/M/1 queue:
$$\rho = \lambda / \mu$$

Procedure:

Draw a diagram with the states

Add arcs between states with transition rates

Derive flow balance equation for each state, i.e.

Rate of entering a state = Rate of leaving a state

Solve the equation for steady state probability

Value	Probability	
1	0.1	1 * 0.1
2	0.1	2 * 0.1
3	0.2	3 * 0.2
4	0.1	4 *.0.1
5	0.3	5 * 0.3

Number of jobs k	Probability P_k	
0	P_0	0 * P_0
1	P_1	1 * P_1
2	P_2	2 * P_2
3	P_3	3 * P_3
4	P_4	
5	P_5	
6	P_6	

Sum (k * Prob[k jobs])

=
$$0* (1-\rho) + 1* (1-\rho)\rho + 2* (1-\rho)\rho^2 + 3* (1-\rho)\rho^3 +$$

= $(1-\rho)[1* \rho + 2* \rho^2 + 3* \rho^3 +]$

Use the formula on p.20.

$$p = ?. q = ?. x = ?.$$

For $0 \le x < 1$,

$$p + x(p+q) + x^{2}(p+2q) + x^{3}(p+3q) + \dots = \frac{p}{1-x} + \frac{xq}{(1-x)^{2}}$$

	Meaning
λ	Arrival rate
μ	service rate Mean service time = $1/\mu$
ρ	Utilisation
m	Number of servers
n	Number of holding slots

For M/M/1 queue: $\rho = \lambda / \mu$

Need: $\lambda < \mu$

Throughput

= min(offered load, maximum processing rate) = min(λ , μ) = λ Probability [a job will finish its service in next δ seconds] = μ δ Probability [a job will NOT finish its service in next δ seconds] = 1- μ δ

Prob(Job 1 will finish in the next δ seconds OR Job 2 will finish in the next δ seconds)

= Prob(Job 1 will finish in the next δ seconds) + Prob(Job 2 will finish in the next δ seconds)

Prob(Job 1 will finish in the next δ seconds AND Job 2 will finish in the next δ seconds)

=
$$\mu \delta + \mu \delta - (\mu \delta)^2$$

= $2 \mu \delta$

Prob(A or B) = Prob(A) + Prob(B) - Prob(A and B)