Projeto da Linguagem de Programação

Lucas Virgili

Sumário

1	Fase	lpha 1		
	1.1	Domínio		
		1.1.1 Introdução		
		1.1.2 Descrição do domínio		
	1.2	Proposta da linguagem de programação		
	1.3	Elementos essencias à linguagem		
2	Fase 2			
	2.1	Tipos de dados		
		2.1.1 Tipos primitivos		
		2.1.2 Tipos compostos		
	2.2	Expressões		
	2.3	Comandos		
	2.4	Vinculação		
	2.5	Sistema de tipos		

1 Fase 1

1.1 Domínio

1.1.1 Introdução

Há aproximadamente 2400 anos, Zeno de Elea abalou as fundações da matemática da época através da proposição de diversos paradoxos. Um deles é muito famoso:

Um corredor nunca pode terminar uma corrida, já que para isso, ele primeiro tem que andar metade do percurso, em seguida um quarto, depois um oitavo, e assim por diante, ad infinitum.

Após 2000 anos, matemáticos dos séculos XII e XIII deram início à teoria de séries infinitas. Nessa teoria, a noção usual de soma, válida para conjuntos finitos, é expandida para coleções infinitas.

Dessa forma, o "paradoxo" de Zeno foi selecionado, já que, naquele contexto, a soma que representa as "etapas" que o corredor deve percorrer é conhecida

$$\frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^n} + \ldots \tag{1}$$

e seu resultado é 1.

1.1.2 Descrição do domínio

A teoria de séries e sequências não tem seu uso limitado a mostrar como gregos mortos estavam errados; ela é extremamente usada. Por exemplo, em análise, utilizase sequências de funções para demonstrar os teoremas de convergência monótona de Lesbegue. Esse teorema é importantíssimo em probabilidade, por exemplo.

Definimos sequências e séries abaixo.

Sequência: Uma função f cujo domínio é o conjunto dos inteiros positivos $1, 2, 3, \dots$ é uma sequência infinita. O valor f(n) é o enésimo termo da sequência.

Série: Dada uma sequência, podemos gerar uma nova sequência somando termos sucessivos. Logo, se temos uma sequência

$$a_1, a_2, \dots, a_n, \dots \tag{2}$$

Podemos gerar as seguintes "somas parciais":

$$s_1 = a_1, s_2 = a_1 + a_2, s_3 = a_1 + a_2 + a_3$$
(3)

e assim continuarmos até a enésima soma parcial:

$$s_n = a_1 + a_2 + a_3 + a_4 + \ldots + a_n = \sum_{i=1}^n a_i$$
 (4)

A sequência s_n das somas parciais é chamada de *série infinita* ou, simplesmente $s\acute{e}rie$, e é denotada por

$$a_1 + a_2 + a_3 + \dots$$
, ou $\sum_{i=1}^{\infty} a_i$ (5)

Informalmente, dizemos que uma sequência converge se existe uma quantidade L para a qual a sequência se aproxima o quanto quisermos¹. Uma série, então, converge se sua sequência s_n converge.

É comum, enquanto estamos trabalhando com sequências ou séries, escrevermos programas em uma linguagem como C para avaliar se uma sequência ou série converge.

1.2 Proposta da linguagem de programação

Para este projeto, propomos desenvolver uma linguagem de programação que permita a declaração de sequências e séries, bem como analisar a convergência das mesmas através de métodos conhecidos.

Por exemplo, será possível para o programador definir uma sequência e operar sobre elas:

¹Formalmente, se para qualquer $\epsilon > 0$, existe um um número positivo N tal que $|f(n) - L| < \epsilon$ para qualquer $n \ge N$.

```
seq s
s(n) = 1 / n ^ 2
s(3) = 0.125
series(s, 3) = 0.875 ## calcula s_3
sequence_converges(s, 0.000001)
## -> (true, 0)
## Se a sequencia converge com uma precisao de 10 ^ (-5)
series_converges(s, 0.00001)
## -> (true, 1)
## Se a serie converge com uma "precisao" de 10 ^ (-5)
```

1.3 Elementos essencias à linguagem

Os seguintes elementos são fundamentais para a linguagem:

1. Declarações

Nesta linguagem, as "variáveis" serão as sequências. Como visto no exemplo acima, o programador poderá declarar sequências utilizando a palavra reservada seq.

2. Operadores

Sejam a_n e b_n duas sequências convergentes. É fácil mostrar que a série

$$\sum_{n=1}^{\infty} (\alpha a_n + \beta b_n E) \tag{6}$$

também converge e seu limite é dado por

$$\alpha \sum_{n=1}^{\infty} a_n + \beta \sum_{n=1}^{\infty} b_n \tag{7}$$

Assim, podemos multiplicar séries convergentes por constantes numéricas e também podemos somar e subtrair séries convergentes. Logo, a linguagem irá fornecer os operadores soma (+) e subtração (-) entre séries e o operador produto (*) entre uma constante e uma série.

3. Funções

A linguagem oferecerá ao programador as seguintes funções:

Função	O que ela calcula
series(sequencia, n)	calcula a enésima soma parcial de sequencia
sequence_converges(sequenca, precisao)	diz se sequência converge com precisão precisao
series_converges(serie, precisao)	diz se a série converge com precisão precisao

- 2 Fase 2
- 2.1 Tipos de dados
- 2.1.1 Tipos primitivos
- 2.1.2 Tipos compostos
- 2.2 Expressões
- 2.3 Comandos
- 2.4 Vinculação
- 2.5 Sistema de tipos