ECE2 - Mathématiques

DS₂

Exercice 1

On dispose d'une pièce de monnaie amenant Pile avec la probabilité $\frac{2}{3}$ et Face avec la probabilité $\frac{1}{3}$.

Partie I : Étude d'une première variable aléatoire

On effectue une succession de lancers avec cette pièce et on définit la variable aléatoire X prenant la valeur du nombre de Face obtenus avant l'obtention du deuxième Pile.

- 1. a. Décrire les événements [X = 0], [X = 1], [X = 2] puis calculer leurs probabilités.
 - **b.** Montrer: $\forall n \in \mathbb{N}, P([X = n]) = (n+1) \frac{4}{3^{n+2}}$

Partie II : Étude d'une expérience en deux étapes

On effectue une succession de lancers avec la pièce précédente jusqu'à l'obtention du deuxième Pile; puis en fonction du nombre n de Face obtenus, on place n+1 boules dans une urne, les boules étant numérotées de 0 à n et indiscernables au toucher, et enfin on pioche au hasard une boule dans cette urne.

On note toujours X la variable aléatoire prenant la valeur du nombre de Face obtenus, et on note U la variable aléatoire prenant la valeur du numéro de la boule obtenue. On pose V = X - U.

- **2. a.** Déterminer l'ensemble des valeurs prises par la variable aléatoire U.
 - **b.** Déterminer, pour tout n de \mathbb{N} , la loi conditionnelle de U sachant [X = n].
 - **c.** En déduire, pour tout k de \mathbb{N} :

$$P([U = k]) = \sum_{n=k}^{+\infty} \frac{1}{n+1} P([X = n])$$
 puis $P([U = k]) = \frac{2}{3^{k+1}}$.

- d. Montrer que U admet une espérance et une variance et les calculer.
- **3. a.** Déterminer l'ensemble des valeurs prises par la variable V.
 - **b.** Déterminer, pour tout n de \mathbb{N} , la loi conditionnelle de \mathbb{V} sachant [X = n].
 - c. En déduire la loi de V.
- 4. Montrer que les variables aléatoires U et V sont indépendantes.
- **5.** Que vaut Cov(U, V)? En déduire Cov(X, U).

Partie III : Étude d'un jeu

Dans cette partie, p désigne un réel de]0;1[.

Deux individus A et B s'affrontent dans un jeu de Pile ou Face dont les règles sont les suivantes :

- le joueur A dispose d'une pièce amenant Pile avec la probabilité $\frac{2}{3}$ et lance cette pièce jusqu'à l'obtention du deuxième Pile; on note X la variable aléatoire prenant la valeur du nombre de Face alors obtenus;
- le joueur B dispose d'une autre pièce amenant Pile avec la probabilité *p* et lance cette pièce jusqu'à l'obtention d'un Pile; on note Y la variable aléatoire prenant la valeur du nombre de Face alors obtenus;
- Le joueur A gagne si son nombre de Face obtenus est inférieur ou égal à celui de B; sinon c'est le joueur B qui gagne.

On dit que le jeu est équilibré lorsque les joueurs A et B ont la même probabilité de gagner.

6. Simulation informatique

- a. Écrire une fonction Scilab d'en-tête function x = simule X() qui simule la variable aléatoire X.
- **b.** On suppose que l'on dispose d'une fonction $simule_Y$ qui, prenant en argument un réel p de]0;1[, simule la variable aléatoire Y. Expliquer ce que renvoie la fonction suivante :

```
function r = mystere(p)
2.
3.
         N = 10^4
4.
         for k = 1:N
                   x = simule X()
6.
                   y = simule_Y(p)
7.
                   if x <= y then</pre>
8.
9.
                   end
10.
         end
    endfunction
```

c. On trace, en fonction de p, une estimation de la probabilité que A gagne et on obtient le graphe suivant :

À la vue de ce graphe, conjecturer une valeur de p pour lequel le jeu serait équilibré.

7. Étude de la variable aléatoire Y

On note Z la variable aléatoire prenant la valeur du nombre de lancers effectués par le joueur B.

- a. Reconnaître la loi de Z et préciser son(ses) paramètre(s), son espérance et sa variance.
- **b.** Exprimer Y à l'aide de Z et en déduire l'existence de l'espérance et de la variance de Y et préciser leurs valeurs.
- **c.** Montrer: $\forall n \in \mathbb{N}$, $P([Y \ge n]) = (1-p)^n$.
- **8. a.** Montrer: $P([X \le Y]) = \sum_{n=0}^{+\infty} P([X = n]) P([Y \ge n]).$
 - **b.** Déduire des résultats précédents : $P([X \le Y]) = \frac{4}{(2+p)^2}$.
 - **c.** Déterminer la valeur de *p* pour laquelle le jeu est équilibré.

Exercice 2

On considère dans cet exercice l'espace vectoriel $E = \mathbb{R}^3$, dont on note $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique. Soit f l'application de E dans E définie par :

$$\forall (x, y, z) \in \mathbb{R}^3, \quad f((x, y, z)) = \left(\frac{-x + 2y + z}{3}, \frac{-x - y - 2z}{3}, \frac{x + y + 2z}{3}\right).$$

Partie A

- 1. (a) Montrer que f est un endomorphisme de E.
 - (b) Déterminer une base et la dimension du noyau de f. L'application f est-elle injective?
 - (c) En déduire, sans utiliser l'algorithme du pivot de Gauss, le rang de f. L'application f est-elle surjective?
 - (d) Calculer f^2 puis f^3 .
- 2. Soit g un endomorphisme de E vérifiant

$$g(e_1) = \frac{1}{3}(-e_1 - e_2 + e_3) \quad ; \quad g(e_2) = \frac{1}{3}(2e_1 - e_2 + e_3) \quad ; \quad g(e_3) = \frac{1}{3}(e_1 - 2e_2 + 2e_3).$$

Montrer que g = f.

- 3. Soient $e'_1 = (-1, -1, 1), e'_2 = (2, -1, 1)$ et $e'_3 = (-1, 2, 1)$.
 - (a) Démontrer que la famille $\mathscr{B}' = (e'_1, e'_2, e'_3)$ est une base de E.
 - (b) Calculer $f(e'_1)$, $f(e'_2)$ et $f(e'_3)$.
 - (c) (Bonus) Déterminer la matrice de f dans la base \mathscr{B}' .

Partie B

Dans cette partie, on veut montrer qu'il n'existe aucun endomorphisme g de E vérifiant $g \circ g = f$. On suppose donc par l'absurde qu'il existe un endomorphisme g tel que $g \circ g = f$.

- 1. Montrer que $g \circ f = f \circ g$.
- 2. (a) Montrer que $g(e'_1)$ appartient au noyau de f. En déduire qu'il existe un réel a tel que $g(e'_1) = a e'_1$.
 - (b) Montrer que $g(e'_2) a e'_2$ appartient aussi au noyau de f. En déduire qu'il existe un réel b tel que $g(e'_2) = b e'_1 + a e'_2$.
 - (c) Montrer que : $f \circ g(e_3') = g \circ f(e_3') = a e_2' + b e_1'$. En déduire que $g(e_3') - a e_3' - b e_2'$ appartient au noyau de f.
 - (d) En déduire qu'il existe un réel *c* tel que :

$$g(e'_1) = ae'_1$$
; $g(e'_2) = be'_1 + ae'_2$; $g(e'_3) = ae'_3 + be'_2 + ce'_1$.

3. Calculer $g^2(e_1')$, $g^2(e_2')$, $g^2(e_3')$ en fonction de a, b et c, puis en utilisant l'hypothèse $g \circ g = f$, obtenir une contradiction.

Exercice 3

Les deux parties de cet exercice sont indépendantes.

I - Une loi exponentielle et une suite

1. Une loi exponentielle.

Soit X une variable aléatoire réelle qui suit une loi exponentielle de paramètre 1.

- (a) Donner une densité de X et rappeler la valeur de l'espérance de la variable aléatoire X.
- (b) Redémontrer que la fonction de répartition de la variable aléatoire X est la fonction F définie pour tout réel *x* par :

$$F(x) = \begin{cases} 0 & \text{si } x < 0, \\ 1 - e^{-x} & \text{si } x \ge 0. \end{cases}$$

2. Étude d'une suite.

On considère la suite $(u_n)_{n\geq 1}$ définie par $u_1=1$ et pour tout entier naturel non nul n par : $u_{n+1}=F(u_n)$.

- (a) Montrer que pour tout réel $x: e^x \ge x + 1$. Montrer que l'égalité a lieu **si et seulement si** x = 0.
- (b) Montrer que pour tout entier naturel non nul n, on a : $u_n > 0$.
- (c) Recopier et compléter le programme SCILAB suivant qui permet de représenter les cent premiers termes de la suite $(u_n)_{n\geqslant 1}$:

(d) Le programme précédent complété permet d'obtenir la représentation graphique suivante :

Quelle conjecture pouvez-vous émettre sur la monotonie et la limite de la suite $(u_n)_{n \ge 1}$?

- (e) Étudier la monotonie de la suite $(u_n)_{n \ge 1}$.
- (f) En déduire que la suite $(u_n)_{n\geq 1}$ est convergente et déterminer sa limite.
- (g) À l'aide de la question 2(a), montrer successivement que pour tout entier naturel n non nul :

$$u_{n+1} \ge \frac{u_n}{1+u_n}$$
 et $\frac{1}{u_{n+1}} \le 1 + \frac{1}{u_n}$.

(h) Montrer par récurrence que pour tout entier naturel n non nul :

$$u_n \geqslant \frac{1}{n}$$
.

(i) On modifie le programme écrit en question 2(c) en remplaçant la dernière ligne par :

Le programme ci-dessus permet d'obtenir la représentation graphique suivante :

4

Que représente le vecteur-ligne S?

Quelle conjecture pouvez-vous émettre sur la nature de la série de terme général u_n ?

(j) A l'aide de la question 2(h), établir la nature de la série de terme général u_n .

II - Une fonction et une variable aléatoire à densité

Soit g la fonction définie sur \mathbb{R} par :

$$g(x) = \begin{cases} 0 & \text{si } x < 0, \\ xe^{-x} & \text{si } x \ge 0. \end{cases}$$

1. Étude de la fonction g.

- (a) Montrer que g est dérivable sur] $-\infty$,0[et sur]0,+ ∞ [. Est-elle continue en 0? Est-elle dérivable en 0?
- (b) Donner le tableau de variations de g sur $[0, +\infty[$ (on précisera la limite de g en $+\infty$).
- (c) Étudier la convexité de g sur $]0, +\infty[$.
- (d) Donner l'allure de la courbe représentative de la fonction g sur \mathbb{R} . On précisera avec soin cette allure au voisinage du point d'abscisse 0 de la courbe. On rappelle que $e^{-1} \approx 0.37$.

2. Étude de variables aléatoires.

(a) Montrer que la fonction g est une densité de probabilité.

On note Y une variable aléatoire dont une densité est la fonction *g*, et dont la fonction de répartition est notée G.

(b) Montrer que pour tout réel *x*,

$$G(x) = \begin{cases} 0 & \text{si } x < 0, \\ 1 - e^{-x} (1 + x) & \text{si } x \ge 0. \end{cases}$$

- (c) Justifier que G est de classer \mathscr{C}^1 sur \mathbb{R} .
- (d) Soit A > 0, montrer que

$$\int_0^A t g(t) dt = -A^2 e^{-A} + 2 \int_0^A g(t) dt.$$

(e) En déduire que la variable aléatoire Y admet une espérance, que l'on calculera.

Problème

On convient que, pour tout réel x, on a $x^0 = 1$

1. Pour tout n de \mathbb{N} , justifier l'existence des intégrales :

$$I_n = \int_0^1 \frac{x^n}{(1+x)^2} dx \text{ et } J_n = \int_0^1 \frac{x^n}{1+x} dx$$

- 2. Calculer I₀ et I₁
- 3. (a) Pour tout n de \mathbb{N} , calculer $I_{n+2} + 2I_{n+1} + I_n$
 - (b) En déduire I2
 - (c) Compléter le script Scilab suivant pour qu'il permette le calcul de I_n (dans la variable b) et son affichage pour une valeur de n entrée par l'utilisateur.

```
n=input ('donnez une valeur pour n: ')
a=1/2
b= log(2) - 1/2
for k=2: n
    aux = a
    a=----
b=-----
end
disp (b)
```

- 4. (a) Montrer que : $\forall n \in \mathbb{N}, 0 \leq I_n \leq \frac{1}{n+1}$.
 - (b) En déduire que la suite (I_n) est convergente et donner sa limite.
- 5. Établir, à l'aide d'une intégration par parties, que : $\forall n \in \mathbb{N}^*$, $I_n = nJ_{n-1} \frac{1}{2}$
- 6. (a) Calculer J_0 puis exprimer, pour tout entier naturel n, $J_n + J_{n+1}$ en fonction de n.
 - (b) En déduire la valeur de J₁.
- 7. En utilisant les questions 5) et 6), compléter le script Scilab suivant afin qu'il permette le calcul et l'affichage de I_n pour une valeur de n entrée par l'utilisateur.

- 8. Établir que : $\forall n \in \mathbb{N}^*$, $J_n = (-1)^n \left(\ln 2 \sum_{k=1}^n \frac{(-1)^{k-1}}{k} \right)$
- 9. (a) Utiliser les questions 4) et 5) pour déterminer la valeur de $\lim_{n \to +\infty} J_n$.
 - (b) En déduire la nature de la série de terme général $\frac{(-1)^{k-1}}{k}$ ainsi que la valeur de $\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k}$
 - (c) Utiliser la question 5) pour déterminer un équivalent de J_n , du type $\frac{1}{\alpha n}$, avec $\alpha > 0$, lorsque n est au voisinage de $+\infty$.
- 10. Pour tout n de \mathbb{N}^* , on pose $u_n = \ln 2 \sum_{j=1}^n \frac{(-1)^{j-1}}{j}$
 - (a) Déduire des questions précédentes un équivalent de u_n lorsque n est au voisinage de $+\infty$
 - (b) Montrer que la série de terme général $\frac{(-1)^n}{2n}$ est convergente. Peut-on en déduire la nature de la série de terme général u_n ?
- 11. On se propose, malgré l'impasse précédente, de montrer que la série de terme général u_n est convergente. Pour ce faire, on admet le résultat suivant : si une suite (x_n) est telle que les suites (x_{2n}) et (x_{2n+1}) sont convergentes et de même limite ℓ , alors la suite (x_n) converge vers ℓ .

Pour tout entier naturel *n* non nul, on pose $S_n = \sum_{k=1}^n u_k$.

- (a) Justifier que, pour tout entier naturel k non nul, on a : $u_k = (k+1)u_{k+1} ku_k + (-1)^k$.
- (b) En déduire l'égalité suivante :

$$\forall n \in \mathbb{N}^*, \quad S_n = (n+1)u_{n+1} - u_1 - \frac{1}{2}(1 - (-1)^n)$$

- (c) Montrer alors que $\lim_{n\to +\infty} S_{2n} = \lim_{n\to +\infty} S_{2n+1} = \frac{1}{2} \ln 2$. Conclure.

 12. Des trois résultats suivants, expliquer lequel on vient de démontrer.

 a) $\sum_{k=1}^{+\infty} \sum_{j=1}^{k} \frac{(-1)^{j-1}}{j} = \frac{1}{2} \ln 2$ b) $\sum_{k=1}^{+\infty} \sum_{j=1}^{+\infty} \frac{(-1)^{j-1}}{j} = \frac{1}{2} \ln 2$ c) $\sum_{k=1}^{+\infty} \sum_{j=k+1}^{+\infty} \frac{(-1)^{j-1}}{j} = \frac{1}{2} \ln 2$