Estimating Respondents with Doctoral Degrees Using the 2022 ACS Data

Group 38

2024-10-03

Table of contents

1.	Introduction
2.	Instructions for Obtaining the Data
3.	Overview of the Ratio Estimator Approach
4.	Data Analysis
5.	Comparison to Actual Respondent Totals
6.	Observations and Explanation
7.	Conclusion
Αī	ppendix

1. Introduction

This document aims to analyze the 2022 American Community Survey (ACS) dataset from IPUMS. We will estimate the total number of respondents in each state who have a doctoral degree using Laplace's ratio estimator. Finally, we'll compare these estimates to the actual number of respondents.

2. Instructions for Obtaining the Data

To access the 2022 ACS data:

- 1. Visit the [IPUMS website]
- 2. Register for an account if you haven't already.
- 3. Once logged in, go to the IPUMS USA section and select the 2022 ACS dataset.
- 4. Add the following variables to your extract:

- STATEICP: State identifier based on IPUMS coding.
- EDUCD: Educational attainment detail.
- 5. Download the .csv.gz file and decompress it using:

```
gunzip usa_00002.csv.gz
```

3. Overview of the Ratio Estimator Approach

The ratio estimator is a technique commonly used to estimate the size of a population based on known sample characteristics. Here, we use the following formula to estimate the total respondents in a state:

 $Estimated \ Total \ Respondents = \frac{Respondents \ with \ Doctoral \ Degrees}{Total \ Respondents \ in \ the \ State} \times Known \ Total \ in \ California$

where:

- The numerator is the number of respondents with a doctoral degree in each state.
- The denominator is the total number of respondents in each state.
- The known total for California is provided as 391,171.

4. Data Analysis

```
# Load necessary libraries
library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
   filter, lag

The following objects are masked from 'package:base':
   intersect, setdiff, setequal, union
```

```
library(readr)
  library(here)
here() starts at /Users/tina/STA304/2022_ACS_Ratio
  system("gunzip usa_00002.csv.gz")
  # Read the dataset
  acs_data <- read_csv(here("usa_00002.csv"))</pre>
Rows: 3373378 Columns: 3
-- Column specification ------
Delimiter: ","
dbl (3): STATEICP, EDUC, EDUCD
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
  # Filter for respondents with doctoral degrees
  doctoral_data <- acs_data %>%
    filter(EDUCD == 116) %>%
    group_by(STATEICP) %>%
    summarize(doctoral_count = n())
  # Count total respondents in each state
  state_totals <- acs_data %>%
    group_by(STATEICP) %>%
    summarize(total_count = n())
  # Join the two tables
  state_data <- doctoral_data %>%
    left_join(state_totals, by = "STATEICP")
  # Calculate the ratio between doctoral respondents and total respondents
  state_data <- state_data %>%
    mutate(ratio = doctoral_count / total_count)
```

Estimate the total number of respondents using the ratio and known total for California

```
california_total <- 391171
  state_data <- state_data %>%
    mutate(estimated_total = ratio * california_total)
  # Display the state data with estimates
  print(state_data)
# A tibble: 51 x 5
  STATEICP doctoral_count total_count ratio estimated_total
     <dbl>
                                <int> <dbl>
                    <int>
                                                        <dbl>
1
         1
                      600
                                 37369 0.0161
                                                        6281.
2
          2
                      165
                                 14523 0.0114
                                                        4444.
3
         3
                     2014
                                73077 0.0276
                                                       10781.
4
         4
                      244
                                14077 0.0173
                                                       6780.
5
         5
                      177
                               10401 0.0170
                                                        6657.
6
                      131
                                 6860 0.0191
                                                        7470.
         6
7
        11
                      152
                                 9641 0.0158
                                                        6167.
8
        12
                      1438
                                 93166 0.0154
                                                        6038.
9
        13
                      2829
                               203891 0.0139
                                                        5428.
10
        14
                      1620
                               132605 0.0122
                                                        4779.
```

5. Comparison to Actual Respondent Totals

i 41 more rows

```
# Calculate the difference between actual and estimated totals
 state_data <- state_data %>%
   mutate(difference = total_count - estimated_total)
 # Display a summary of the differences
 summary(state_data$difference)
 Min. 1st Qu. Median
                          Mean 3rd Qu.
                                          Max.
-11391
         14092
                 41132
                                 72230 384835
                         61048
 # Visualize the comparison between actual and estimated counts
 library(ggplot2)
 ggplot(state_data, aes(x = total_count, y = estimated_total, label = STATEICP)) +
   geom_point(color = 'blue') +
```

```
geom_text(nudge_x = 5000, nudge_y = 5000, size = 3) +
labs(title = "Comparison of Actual vs. Estimated Respondent Totals by State",
    x = "Actual Total Respondents",
    y = "Estimated Total Respondents") +
theme_minimal()
```

Comparison of Actual vs. Estimated Respondent Totals by St

6. Observations and Explanation

The discrepancies between the estimated and actual total respondents in each state can be attributed to various factors:

- Sample Representation: The proportion of respondents with doctoral degrees may not be consistent across states, leading to differences in estimates.
- Variation in Ratios: States may have varying educational demographics that aren't captured accurately when using a single ratio.
- Size of the California Sample: The estimation depends on the accuracy of the known respondent total in California, which may not generalize well across other states.

7. Conclusion

The use of Laplace's ratio estimator provides a quick method to estimate popula ased on sample characteristics. While useful, the results highlight that estimates gnificantly from actual values, indicating the importance of considering state-spec raphics and context.	can differ		
Appendix			
The dataset and code used in this analysis are available on GitHub.			