

Diffusion MRI Reconstruction

Erjun Zhang

June 5, 2020 Brainhack School 2020 Project

Project Background

- dMRI: an high resolution while imaging lesions in vivo tissues
- 2. dMRI limitations: quality of data acquisition, quality of image reconstruction, quality of post analysis
- dMRI reconstruction:
- Open-source tools: qMRLab

PROBLEMS!

What behind these tools?

Goals

- 1. Get preprocessed diffusion MR images from raw data
- Reconstruct diffusion tensor images from the preprocessed data;
- 3. By using machine learning, try to classify two hemispherical brains from preprocessed diffusion images

Diffusion MRI: a good method to imaging this changes

Low blood sugar leads to brain structures changing!

Tools Used

Coding:

Project organization and version control:

Visualization

Datasets

Deliverables

Requirement: epi data with two opposite phase-encoding directions

over 800 neonatal scans and over 250 fetal scans

to reconstruct diffusion Images

- 1.Data Visualization
- 2. Open-source dMRI reconstruction code
- 3. Markdown files to describe reconstruction details
- 4. Brain data statistics analysis example
- 5.Project report
- 6.Report google slides

Data Visualization

Interactive widgets use to show preprocess results

3D volume slices image

Interactive widgets use to show reconstruction results

Skills learnt

Results 1

Results 2

Results 3

	precision	recall	f1-score	support
0.0	0.91	0.91	0.91	11
5.0	0.92	0.92	0.92	13
accuracy			0.92	24
macro avg	0.92	0.92	0.92	24
weighted avg	0.92	0.92	0.92	24

What To Do Next

- •Combine different processing methods into this project
- Look deep into DTI model fitting
- •Try to replace it by a new model created by myself

Keep Going

you're doing GREAT!

Thanks

