Cercetări operaționale 6

Cristian Niculescu

Curs 6 1

Multimea soluțiilor optime

Fie problema

$$\begin{cases} \inf \left(c^T x \right) \\ Ax = b \\ x \ge 0 \end{cases}, A \in \mathcal{M}_{m,n}(\mathbb{R}), rangA = m < n. \tag{1}$$

Reamintim:

$$P = \{x \in \mathbb{R}^n | Ax = b, x \geq 0\}$$
 este domeniul admisibil. $P^* = \{x^* \in P | c^T x^* = \inf_{x \in P} c^T x\}$ este mulţimea soluţiilor optime.

Situații posibile:

- 1) $P = \emptyset \implies P^* = \emptyset$.
- 2) $P \neq \emptyset$, $\inf_{x \in P} c^T x = -\infty \implies P^* = \emptyset$
- 3) $P^* \neq \emptyset$; algoritmul simplex primal dă o soluție optimă de bază.

Propoziția 1. Fie B bază primal admisibilă pentru problema (1) astfel $\operatorname{incat} z_i^B - c_j \leq 0, \forall j \in \mathcal{R}.$

Atunci
$$x \in P^* \iff x \in P \text{ şi } x_j \left(z_j^B - c_j \right) = 0, \forall j \in \mathcal{R}.$$

Demonstrație. B primal admisibilă, $z_i^B - c_j \leq 0, \forall j \in \mathcal{R} \stackrel{\text{TO}}{\Longrightarrow} \overline{z}^B$ este valoarea optimă.

$$(\Longrightarrow) x \in P^* \Longrightarrow x \in P.$$

$$x \in P^* \Longrightarrow c^T x = \overline{z}^B$$

$$c^T x = \overline{z}^B - \sum_{j \in \mathcal{R}} x_j (z_j^B - c_j)$$

$$\geqslant \sum_{j \in \mathcal{R}} x_j \underbrace{(z_j^B - c_j)}_{\leq 0} = 0 \Longrightarrow$$

$$x_j \left(z_j^B - c_j \right) = 0, \forall j \in \mathcal{R}.$$

$$(\Longleftrightarrow) x_j \left(z_j^B - c_j \right) = 0, \forall j \in \mathcal{R} \implies c^T x = \overline{z}^B \stackrel{x \in P}{\Longrightarrow} x \in P^*$$

 $(\Leftarrow)x_j(z_j^B-c_j)=0, \forall j\in\mathcal{R} \implies c^Tx=\overline{z}^B \stackrel{x\in P}{\Longrightarrow} x\in P^*.$ **Testul de unicitate.** Fie *B* bază primal admisibilă pentru problema (1). Condiția necesară și suficientă pentru ca soluția de bază asociată lui B să fie unica soluție optimă este $z_j^B-c_j<0, \forall j\in\mathcal{R}.$ Pentru necesitate se presupune în plus că soluția de bază este nedegenerată.

Demonstrație. Necesitatea.

1) Arătăm că $z_i^B - c_j \leq 0, \forall j \in \mathcal{R}$.

Reducere la absurd. Presupunem $\exists k \in \mathcal{R}$ astfel încât $z_k^B - c_k > 0$.

Dacă $y_k^B \leq 0 \implies$ problema (1) are optim infinit $\implies P^* = \emptyset$, contradicție.

Dacă
$$y_k^B \nleq 0 \implies B \to \widetilde{B}$$
 înlocuind o coloană a^r cu a^k . Noua valoare a funcției obiectiv este $\overline{z}^{\widetilde{B}} = \overline{z}^B - \underbrace{(\overline{z_k^B} - c_k)}^{>0} \underbrace{\overline{z_r^B}}_{>0} < \overline{z}^B$, contradicție cu \overline{z}^B

valoare optimă.

2) Arătăm că $z_j^B - c_j < 0, \forall j \in \mathcal{R}$.

Reducere la absurd. Presupunem $\exists k \in \mathcal{R}$ astfel încât $z_k^B - c_k = 0$.

Fie $\alpha \in \mathbb{R}_+$ şi $x(\alpha) \in \mathbb{R}^n$ definit astfel:

$$x_i(\alpha) = \begin{cases} \overline{x}_i^B - \alpha y_{ik}^B, i \in \mathcal{B} \\ \alpha, i = k \\ 0, i \in \mathcal{R} \setminus \{k\} \end{cases}$$

a) Dacă $y_k^B \leq 0 \implies x(\alpha) \in P, \forall \alpha \geq 0$ (din demonstrația testului de optim infinit).

$$x(\alpha)$$
 este distinctă de soluția de bază asociată lui $B, \forall \alpha > 0$. $c^T x(\alpha) = \overline{z}^B - \underbrace{\left(z_k^B - c_k\right)}_{=0} \alpha = \overline{z}^B \implies x(\alpha)$ este o altă soluție optimă, contradicție cu unicitatea soluției optime.

b) Dacă $y_k^B \nleq 0 \implies \alpha_0 = \min_{i|y_{ik}^B>0} \frac{\overline{x}_i^B}{y_{ik}^B} > 0$ (deoarece soluția este nedege-

nerată) $\implies x(\alpha_0)$ este soluție optimă distinctă de soluția de bază asociată lui B, contradicție cu unicitatea soluției optime. (Admisibilitatea lui $x(\alpha_0)$ s-a demonstrat la teorema de schimbare a bazei.)

 $z_j^B-c_j<0, \forall j\in\mathcal{R}\implies z_j^B-c_j\leq 0, \forall j\in\mathcal{R} \stackrel{\mathrm{TO}}{\Longrightarrow}$ soluția de bază asociată lui B este soluție optimă.

Fie x^* soluție optimă propoz

$$x_j^*\underbrace{\left(z_j^B - c_j\right)}_{<0} = 0, \forall j \in \mathcal{R} \implies x_j^* = 0, \forall j \in \mathcal{R} \implies \text{componentelor nenule}$$

ale lui x^* le corespund coloane ale lui $B \implies x^*$ este soluția de bază asociată bazei $B \implies$ această solutie de bază este unica solutie optimă.

2 Seminar 6

1) Să se afle mulțimea soluțiilor optime:

$$\begin{cases} \inf (x_1 + x_2) \\ 2x_1 + x_2 + x_3 = 6 \\ 3x_1 + x_2 + x_4 = 3 \\ x_j \ge 0, j = \overline{1, 4} \end{cases}$$

$$A = \left(\begin{array}{cccc} 2 & 1 & 1 & 0 \\ 3 & 1 & 0 & 1 \end{array}\right).$$

$$B = (a^3, a^4) = I_2 \implies B^{-1}b = I_2 \begin{pmatrix} 6 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \end{pmatrix} \ge 0 \implies B \text{ primal}$$

admisibilă.

				1	1		
	c_B	VB	VVB	x_1	x_2	x_3	x_4
ĺ	0	x_3	6	2	1	1	0
Ì	0	x_4	3	3	1	0	1
•		z	0	-1	-1	0	0

 $z_j^B - c_j \leq 0, \forall j \in \mathcal{R} \implies$ testul de optim este îndeplinit. $z_j^B - c_j < 0, \forall j \in \mathcal{R} \implies$ soluția optimă este unică \implies mulțimea soluțiilor optime este $P^* = \{(0,0,6,3)^T\}$, iar valoarea optimă este

2) Să se afle mulțimea soluțiilor optime:

$$\begin{cases} \inf(-3x_1 - x_2) \\ 2x_1 + x_2 + x_3 = 6 \\ 3x_1 + x_2 + x_4 = 3 \\ x_j \ge 0, j = \overline{1, 4} \end{cases}$$

$$A = \left(\begin{array}{cccc} 2 & 1 & 1 & 0 \\ 3 & 1 & 0 & 1 \end{array}\right).$$

$$B = (a^3, a^4) = I_2 \implies B^{-1}b = I_2 \begin{pmatrix} 6 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \end{pmatrix} \ge 0 \implies B$$
 primal admisibilă.

			-3	-1		
c_B	VB	VVB	$\overset{\downarrow}{x_1}$	x_2	x_3	x_4
0	x_3	6	2	1	1	0
0	$\leftarrow x_4$	3	3	1	0	1
	z	0	3	1	0	0

 $z_1^B - c_1 = 3 \nleq 0 \implies \text{testul de optim nu este îndeplinit.}$

$$y_1^B=\left(\begin{array}{c}2\\3\end{array}\right)\not\leq 0, y_2^B=\left(\begin{array}{c}1\\1\end{array}\right)\not\leq 0\implies$$
testul de optim infinit nu este îndeplinit.

 $\max(3,1) = 3 \implies x_1 \text{ intră în bază.}$ $\min\left(\frac{6}{2},\frac{3}{3}\right)=1 \implies x_4 \text{ iese din bază}.$

VB	VVB	x_1	x_2	x_3	x_4
x_3	4	0	$\frac{1}{3}$	1	$-\frac{2}{3}$
x_1	1	1	$\frac{1}{3}$	0	$\frac{1}{3}$
z	-3	0	0	0	-1

 $z_j^B - c_j \leq 0, \forall j \in \mathcal{R} \implies \text{testul de optim este îndeplinit.}$ Testul de unicitate: $z_j^B - c_j < 0, \forall j \in \mathcal{R}$. $z_2^B - c_2 = 0, 2 \in \mathcal{R} \implies \text{soluția optimă nu este unică.}$

$$\begin{cases}
B \text{ primal admisibilă} \\
z_j^B - c_j \leq 0, \forall j \in \mathcal{R} \\
x \text{ soluție optimă}
\end{cases}
\Longrightarrow$$

$$\iff \begin{cases} x \text{ soluție admisibilă} &\iff \begin{cases} 2x_1 + x_2 + x_3 = 6\\ 3x_1 + x_2 + x_4 = 3\\ x_j \ge 0, j = \overline{1, 4} \end{cases} \\ x_j \left(z_j^B - c_j \right) = 0, \forall j \in \mathcal{R} &\iff \begin{cases} x_2 \cdot 0 = 0\\ x_4 \cdot (-1) = 0 \end{cases} \iff x_4 = 0 \end{cases} \iff \begin{cases} 2x_1 + x_2 + x_3 = 6\\ x_1 + x_2 + x_3 = 6\\ 3x_1 + x_2 - 3 \end{cases}$$

$$\begin{cases} 2x_1 + x_2 + x_3 = 6 \\ 3x_1 + x_2 = 3 \\ x_j \ge 0, j = \overline{1, 3} \\ x_4 = 0 \end{cases}$$

$$x_{1} = \lambda \geq 0 \implies \begin{cases} x_{2} = 3 - 3\lambda \geq 0 \implies \lambda \leq 1 \\ x_{3} = 6 - 2\lambda - (3 - 3\lambda) = \lambda + 3 \geq 0 \implies \lambda \geq -3 \end{cases} \implies$$
mulţimea soluţiilor optime este $P^{*} = \{(\lambda, 3 - 3\lambda, \lambda + 3, 0)^{T} | \lambda \in [0, 1] \}$, va-

loarea optimă este -3.

Această metodă se poate folosi mereu, spre deosebire de cea în care se determină toate soluțiile optime de bază și se scrie mulțimea soluțiilor optime ca acoperirea convexă a mulțimii soluțiilor optime de bază, care se poate folosi numai când mulțimea soluțiilor optime e mărginită.

3) Să se afle mulțimea soluțiilor optime:

$$\begin{cases} \inf (x_1 - x_2 - x_3) \\ -x_1 + x_2 + x_3 + x_4 = 1 \\ -x_1 - x_2 + x_5 = 1 \\ x_j \ge 0, \forall j = \overline{1, 5} \end{cases}$$

$$B = (a^3, a^5) = I_2 \implies B^{-1}b = I_2\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 1\\1 \end{pmatrix} \ge 0 \implies B \text{ primal ad-}$$

misibilă.

			1	-1		0	
c^B	VB	VVB	x_1	x_2	x_3	x_4	x_5
$\overline{-1}$	x_3	1	-1	1	1	1	0
0	x_5	1	-1	-1	0	0	1
	2.	-1	0	0	0	-1	0

$$\begin{cases}
-x_1 + x_2 + x_3 + x_4 = 1 \\
-x_1 - x_2 + x_5 = 1 \\
x_j \ge 0, \forall j = \overline{1,5}
\end{cases} \quad \text{si} \begin{cases}
x_1 \cdot 0 = 0 \\
x_2 \cdot 0 = 0 \\
x_4 \cdot (-1) = 0
\end{cases} \iff \begin{cases}
-x_1 + x_2 + x_3 = 1 \\
-x_1 - x_2 + x_5 = 1 \\
x_4 = 0 \\
x_j \ge 0, \forall j \in \{1, 2, 3, 5\}
\end{cases}$$

 $x_1 = \alpha \ge 0, \ x_2 = \beta \ge 0 \implies x_3 = \alpha - \beta + 1 \ge 0, \ x_5 = \alpha + \beta + 1 \ge 0$ $\alpha \ge 0, \ \beta \ge 0 \implies \alpha + \beta + 1 \ge 0.$

⇒ mulțimea soluțiilor optime este

 $P^* = \{(\alpha, \beta, \alpha - \beta + 1, 0, \alpha + \beta + 1)^T | \alpha \ge 0, \beta \ge 0, \alpha - \beta + 1 \ge 0 \}, \text{ iar va-}$ loarea optimă este -1.