Complementing Büchi Automata with Ranker

Vojtěch Havlena Ondřej Lengál Barbora Šmahlíková

Brno University of Technology, Czech Republic

CAV'22

Complementation:

- Given \mathcal{A} , get a BA $\mathcal{A}^{\complement}$ such that $\mathcal{L}(\mathcal{A}^{\complement}) = \overline{\mathcal{L}(\mathcal{A})}$
- We consider state/transition based Büchi automata

Complementation:

- Given A, get a BA A^{\complement} such that $\mathcal{L}(A^{\complement}) = \overline{\mathcal{L}(A)}$
- We consider state/transition based Büchi automata

Motivation:

■ Model checking of linear-time properties

$$\underbrace{\mathcal{S}}_{\mathsf{system}} \models \underbrace{\varphi}_{\mathsf{property}} \leadsto \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi}) \quad \leadsto \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \cap \mathcal{L}(\mathcal{A}_{\varphi}^{\complement}) = \emptyset$$

Complementation:

- Given A, get a BA A^{\complement} such that $\mathcal{L}(A^{\complement}) = \overline{\mathcal{L}(A)}$
- We consider state/transition based Büchi automata

Motivation:

■ Model checking of linear-time properties

$$\underbrace{\mathcal{S}}_{\mathsf{system}} \models \underbrace{\varphi}_{\mathsf{property}} \leadsto \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi}) \quad \leadsto \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \cap \mathcal{L}(\mathcal{A}_{\varphi}^{\complement}) = \emptyset$$

■ Termination analysis of programs: Ultimate Automizer

Complementation:

- Given A, get a BA A^{\complement} such that $\mathcal{L}(A^{\complement}) = \overline{\mathcal{L}(A)}$
- We consider state/transition based Büchi automata

Motivation:

■ Model checking of linear-time properties

$$\underbrace{\mathcal{S}}_{\text{system}} \models \underbrace{\varphi}_{\text{property}} \leadsto \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi}) \quad \leadsto \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \cap \mathcal{L}(\mathcal{A}_{\varphi}^{\complement}) = \emptyset$$

- Termination analysis of programs: Ultimate Automizer
- Decision procedures: implements negation
 - ▶ S1S: MSO over $(\omega, 0, +1)$
 - QPTL: quantified propositional temporal logic
 - ► FO over Sturmian words

Complementation:

- Given A, get a BA A^{\complement} such that $\mathcal{L}(A^{\complement}) = \overline{\mathcal{L}(A)}$
- We consider state/transition based Büchi automata

Motivation:

Model checking of linear-time properties

$$\underbrace{\mathcal{S}}_{\mathsf{system}} \models \underbrace{\varphi}_{\mathsf{property}} \leadsto \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi}) \quad \leadsto \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \cap \mathcal{L}(\mathcal{A}_{\varphi}^{\complement}) = \emptyset$$

- Termination analysis of programs: Ultimate Automizer
- Decision procedures: implements negation
 - ▶ S1S: MSO over $(\omega, 0, +1)$
 - QPTL: quantified propositional temporal logic
 - ► FO over Sturmian words
- Basic operation for inclusion/equivalence checking

Ranker – architecture

- Implemented in C++
- Input: HOA / BA, output: HOA

Ranker – architecture

- Implemented in C++
- Input: HOA / BA, output: HOA
- Preprocessing: direct simulation reduction, deelevation, saturation, feature extraction

Ranker – architecture

- Implemented in C++
- Input: HOA / BA, output: HOA
- Preprocessing: direct simulation reduction, deelevation, saturation, feature extraction
- Postprocessing: removing useless states, direct simulation reduction

Ranker – complementation

Inherently weak BAs:

- Every SCC is nonaccepting or it contains accepting state/transition in every cycle
- Optimized Miyano-Hayashi construction
- Simulation-based macrostates pruning/saturation

Ranker – complementation

Inherently weak BAs:

- Every SCC is nonaccepting or it contains accepting state/transition in every cycle
- Optimized Miyano-Hayashi construction
- Simulation-based macrostates pruning/saturation

Semi-deterministic BAs:

- Nonaccepting and deterministic accepting part
- NCSB-MaxRank: optimized NCSB construction
- Nondeterminism reduction
- At most two successors for every macrostate and symbol

Ranker - complementation

Other BAs:

- Optimized rank-based construction
 - Friedgut, Kupferman, Vardi, Schewe
- Elevator automata¹
 - Deterministic and inherently weak SCCs
 - Efficient procedure based on the structure
 - Extension to nonelevator automata
 - Deelevation: decreases the rank bound to 3

¹Havlena, Lengál, and Šmahlíková. "Sky Is Not the Limit: Tighter Rank Bounds for Elevator Automata in Büchi Automata Complementation". In: *TACAS* 22.

- Random automata from [Tsai,Fogarty,Vardi,Tsay'11]
 - alphabet of 2 symbols
 - starting with 15 states
 - ► 4533 hard automata

- Random automata from [Tsai,Fogarty,Vardi,Tsay'11]
 - alphabet of 2 symbols
 - starting with 15 states
 - ► 4533 hard automata
- LTL automata
 - larger alphabets (up to 128 symbols)
 - from LTL formulae (from literature and randomly generated)
 - 1716 hard automata

- Random automata from [Tsai,Fogarty,Vardi,Tsay'11]
 - alphabet of 2 symbols
 - starting with 15 states
 - ▶ 4533 hard automata
- LTL automata
 - larger alphabets (up to 128 symbols)
 - from LTL formulae (from literature and randomly generated)
 - 1716 hard automata
- Automizer automata
 - BAs obtained from Ultimate Automizer
 - alphabets up to 2³⁵ symbols
 - 906 hard automata

- Random automata from [Tsai,Fogarty,Vardi,Tsay'11]
 - alphabet of 2 symbols
 - starting with 15 states
 - ▶ 4533 hard automata
- LTL automata
 - larger alphabets (up to 128 symbols)
 - from LTL formulae (from literature and randomly generated)
 - ► 1716 hard automata
- Automizer automata
 - BAs obtained from Ultimate Automizer
 - alphabets up to 2³⁵ symbols
 - 906 hard automata
- Total: 7155 state-based BAs, preprocessed with autfilt, timeout 5 min

- RANKER compared with:
 - ► GOAL (Schewe, Safra, Piterman, Fribourg)
 - ► SPOT (Safra, Piterman, Redziejowski)
 - ► LTL2DSTAR
 - ► SEMINATOR 2
 - ▶ ROLL
- Focus on the number of states

https://github.com/vhavlena/ranker

Experimental Evaluation – States

- after postprocessing
- logarithmic axes

- red: LTL
- green: Automizer

Conclusion

- Timeouts decreased by 65 %
- RANKER has the smallest mean and median
- More wins than losses compared to any other tool

Conclusion

- Timeouts decreased by 65 %
- RANKER has the smallest mean and median
- More wins than losses compared to any other tool

Future work:

- Generalization to complementation of TELA
 - transition-based Emerson-Lei automata
- Language inclusion checking
- Decomposition-based complementation

Conclusion

- Timeouts decreased by 65 %
- RANKER has the smallest mean and median
- More wins than losses compared to any other tool

Future work:

- Generalization to complementation of TELA
 - transition-based Emerson-Lei automata
- Language inclusion checking
- Decomposition-based complementation

THANK YOU!

Experimental Evaluation – States

method	mean	median	wins						losses						timeouts					
RANKER	38	11													158	(53	:	0	- 1	105)
RANKEROLD	30	12	1554	(356	:	650	:	548)	264	(142	- :	69	- 1	53)	458	(259	:	7	:	192)
PITERMAN @	43	14	2881	(1279	:	966	:	636)	392	(263	:	68	:	61)	309	(12	:	4	:	293)
Safra 🏵	49	15	3109	(1348	:	1117	:	644)	274	(229	:	31	:	14)	599	(160	:	30	:	409)
SPOT	46	11	1347	(935	:	339	:	73)	1057	(327	:	343	:	387)	73	(13	:	0	:	60)
FRIBOURG @	49	11	2223	(1177	:	503	:	543)	586	(245	:	207	:	134)	399	(93	:	2	:	304)
LTL2DSTAR	44	14	2794	(1297	:	924	:	573)	448	(283	:	88	:	77)	288	(130	:	13	:	145)
SEMINATOR 2	46	11	1626	(1297	:	291	:	38)	1113	(286	:	398	:	429)	419	(368	:	1	:	50)
ROLL	18	9	6050	(3824	:	1551	:	675)	620	(369	:	125	:	126)	1893	(1595	:	8	:	290)

Experimental Evaluation – Time

method		r	ne	an		median							
RANKER	3.72	(4.34	:	0.45	:	7.30)	0.05	(0.10	:	0.04	:	0.08)	
RANKEROLD	4.62	(5.33	:	0.72	:	9.69)	0.07	(0.19	:	0.03	:	0.15)	
PITERMAN 😵	8.06	(6.07	:	5.95	:	28.38)	5.12	(4.96)	:	5.08	:	8.68)	
Safra 🟵	11.58	(10.41	:	6.51	:	38.65)	5.41	(5.32)	:	5.26	:	9.02)	
SPOT	0.64	(0.57	:	0.02	:	2.28)	0.02	(0.02)	:	0.01	:	0.02)	
Fribourg 🥸	13.13	(14.14	:	6.06	:	23.88)	5.69	(6.82)	:	4.92	:	6.57)	
LTL2DSTAR	2.1	(2.25	:	0.34	:	5.15)	0.02	(0.02)	:	0.01	:	0.05)	
SEMINATOR 2	4.16	(6.33	:	0.03	:	1.88)	0.03	(0.08	:	0.01	:	0.03)	
ROLL	23.65	(29.82	:	3.88	:	49.02)	3.34	(6.19	:	1.71	:	17.14)	