A Deep Dive into Computer Networking for Web Development

Presented By: Yingquan Li

Date: Fri. 3/17/23 @ 10:30 AM EST

About Me

Name: Yingquan Li

- Full-time Student @ Virginia Tech (M.S. in IT expected in 08/23)

Bio: I'm an engineer who has worked in both the private & public sectors. Most recently, I worked in academia. Long time networking hobbyist!

Work: U. of Pennsylvania, Deloitte, PwC, Gartner, HPE

Should a web developer learn about networking?

Frontend Developer

Backend Developer

Talk Outline

- <u>Fundamental Concepts</u>: TCP/IP Model, IPv4/IPv6 addresses, subnetting, routing, TCP/UDP, Sockets/Ports, DNS, HTTP Protocol
- Networking with the command-line interface.
- Networking with Python.

Fundamental Concepts

OSI Model → TCP/IP Model

- APPLICATION: Work with interfaces, protocols, software.
- TRANSPORT: Error-free data delivery between host → destination nodes.
- INTERNET: Package data into IP packets; transmit packets across the network.
- **NETWORK INTERFACE**: Transmit bits across the network.

IPv4 & IPv6 Addresses

<u>IPv4 Address (32-bits)</u>: **18.154.277.99**

IPv4	1st Octet	2nd Octet	3rd Octet	4th Octet
Dotted-Decimal	18	154	227	99
Binary Digits	00010010	10011010	11100011	01100011

<u>IPv6 Address (128-bits)</u>: **2001:0DB8:AC10:FE01::**

IPv6	Hex #s	Hex #s	Hex #s	Hex #s	Hex #s	Hex #s	Hex #s	Hex #s
Colon- Hex	2001	0DB8	AC10	FE01	0000	0000	0000	0000
Binary Digits	00100000 00000001	00001101 10111000	10101100 00010000	11111110 00000001	00000000	00000000	00000000	00000000

IPv4 Subnetting (Part 1)

A routable IPv4's address class:

Address Class	Value in First Octet	Classful Mask (Dotted Decimal)	CIDR** Notation	
Class A	1 - 126	255.0.0.0	/8	
Class B	128 - 191	255.255.0.0	/16	
Class C	192 - 223	255.255.255.0	/24	
Class D	224 - 239	-	-	

^{*} We skip 127 because 127.0.0.1 is reserved (i.e. loopback address).

A **routable IPv4**'s address can be broken into the <u>network</u> and <u>host</u> portion:

^{**} CIDR: Classless Inter-Domain Routing

IPv4 Subnetting (Part 2)

Subnetting: Take large network a split it into smaller networks.

1	2	4	8	16	32	64	128
20	2 ¹	2 ²	2 ³	24	2 ⁵	2 ⁶	27

Subnetting Masks:

- Modify subnets so that they are scoped properly.
- Default classful subnet mask may not give optimal subnet size.

Jason Dion, Network+

Formula #1: Number of Created Subnets = 2^S (s is the number of borrowed bits)

Formula #2: Number of Allocable IP Addresses per Subnet = 2^h - 2 (h is the number of host bits)

• Subtract 2 for the <u>network</u> and <u>broadcast</u> addresses!

Example: 192.186.3.0/26

Formula #1: Number of Created Subnets = 2^S (s is the number of borrowed bits)

Formula #2: Number of Allocable IP Addresses per Subnet = 2^h - 2 (h is the number of host bits)

• Subtract 2 for the <u>network</u> and <u>broadcast</u> addresses!

Example: 192.186.3.0/26

Binary: 11000000.10111010.00000011.00000000

Formula #1: Number of Created Subnets = 2⁵ (s is the number of borrowed bits)

Formula #2: Number of Allocable IP Addresses per Subnet = 2^h - 2 (h is the number of host bits)

• Subtract 2 for the <u>network</u> and <u>broadcast</u> addresses!

Example: 192.186.3.0/26

Binary: 11000000.10111010.00000011.00000000

Formula #1: Number of Created Subnets = 2^{S} (s is the number of borrowed bits)

Formula #2: Number of Allocable IP Addresses per Subnet = $2^h - 2$ (h is the number of host bits)

• Subtract 2 for the <u>network</u> and <u>broadcast</u> addresses!

Example: 192.186.3.0/26

Binary: 11000000.10111010.00000011.00000000

Number of Created Subnets = $2^2 \Rightarrow 4$

Number of Allocable IP Addresses / Subnet = $2^6 - 2 \Rightarrow 62$

Formula #1: Number of Created Subnets = 2^S (s is the number of borrowed bits)

Formula #2: Number of Allocable IP Addresses per Subnet = $2^h - 2$ (h is the number of host bits)

• Subtract 2 for the <u>network</u> and <u>broadcast</u> addresses!

Example: 192.186.3.0/26

Binary: 11000000.10111010.00000011.00000000

Number of Created Subnets = $2^2 \Rightarrow 4$

Number of Allocable IP Addresses / Subnet = $2^6 - 2 \Rightarrow 62$

- **1st Subnet:** 192.186.3. $0 \rightarrow 192.186.3.63$
- **2nd Subnet**: 192.186.3.<mark>64</mark> → 192.186.3.<mark>127</mark>
- **3rd Subnet**: 192.186.3.<mark>128</mark> → 192. 186.3.<mark>191</mark>
- 4th Subnet: 192.186.3.192 → 192.186.3.255

- Network ID (First IP): 0, 64, 128, 192
- Broadcast (Last IP): 63, 127, 191, 255

Routing

 Facilitates communication between subnets/networks.

Separates broadcast domains.

Operates at OSI Model - Level 3
 (Network) and TCP/IP Model Level 2 (Internet).

FIGURE 10-5 Directly Connected Routes

Routing + Network Address Translation (NAT)

TCP vs. UDP

- Operates at OSI Model Level 4 (Transport) and TCP/IP Model Level 3 (Transport).
- Host-to-host communication via the Internet.
- I've met **Vint Cerf** personally twice!

ТСР	UDP
 Connection-oriented Data remains intact; arrives in the same order Slower Heavyweight Use cases: Email, web browsing 	 Connectionless Not guaranteed that packets will reach destination at all Faster Lightweight Use cases: VoIP, music streaming

Socket

- Sockets are what most web libraries work with.
- Sockets are also known as a connection's endpoint across a network.

Consists of:

- A transport protocol (TCP, UDP).
- **2.** An IP address (IPv4 or IPv6).
- **3.** A port (Port 80 is web server default).

Domain Name System (DNS)

Domain Names: labels separated by dots.

www.yahoo.com

- .com is the root domain.
- yahoo.com is a subdomain of com.
- www.yahoo.com is a subdomain of yahoo.com

1. DNS Hierarchy

2. DNS Query Process

Networking with the Command-Line Interface

Key Networking Commands

Mac:

- arp/arp-a
- ifconfig
- ping
- traceroute
- netstat
- nslookup / host
- dig
- route

Windows:

- arp/arp-a
- Ipconfig / ipconfig /all
- ping
- tracert
- nbtstat
- netstat
- nslookup
- route

Networking with Python

Python Networking Resources

https://docs.python.org/3/library/ipc.html

https://www.yeahhub.com/top-7-python-libraries-networking-programming/

References:

- Jason Dion (Udemy Network+ Class)
 - https://docs.google.com/document/d/1ghng228GURwrnHaTSSE8uVZErRumFDP-Rg5mKo7
 hsAk/edit
- Kendall Giles (ECE5480 Network Security)
 - https://docs.google.com/document/d/1oX3vwq-Aktl4aR1pPEXhiHbFk1BIPf3yowdkXq4r17I/edit
- Gregory Kulczycki (CS5244 Software Engineering)
 - https://docs.google.com/document/d/1-3c81BQjsmGG1MIRYJPoFXRaTIdKUj3c3D2Zj4qp6 80/edit

Thank you!

Contact: yli12313@umd.edu

Phone: 301-204-3957

Slides that will not be presented.

Additional Tasks

- Finish subnetting slides
- Make decision on DNS
- Spell check!
- Add picture sources
- Finish Networking with Python section
- Think about concluding message.