Monadic dynamic semantics for anaphora

Simon Charlow

Rutgers, The State University of New Jersey

OSU Dynamics Workshop October 24, 2015

1

Goals for today

- I'll sketch a monadic dynamic semantics for discourse (and donkey) anaphora.
 - Dynamic semantics is state and nondeterminism.
 - A monadic dynamic semantics takes state and nondeterminism to be linguistic side effects (Shan 2002, 2005).
- Show why we should prefer this kind of approach to standard varieties of dynamic semantics:
 - Embodies more conservative view of lexical semantics.
 - Predicts wide variety of exceptional scope phenomena.
 - Super modular.
- Monadic dynamics suggests a fundamental connection between static alternatives-based and dynamic approaches to indefinites.

Where we are

Dynamic semantics

Monad

Monadic dynamic semantics

Features of the monadic account

Modularity

Basic data

- A familiar data point: Indefinites behave more like names than quantifiers with respect to anaphoric phenomena.
 - (1) $\{\text{Polly}_i, \text{ a linguist}_i, *\text{no linguist}_i\}$ came in. She_i sat.

4

Dynamics (e.g., Groenendijk & Stokhof 1991; Dekker 1994)

In a nutshell: sentences add discourse referents (drefs) to the "conversational scoreboard". E.g., for proper names:

$$i \longrightarrow [\![Polly came in]\!] \longrightarrow i + P$$

► Indefinites introduce drefs **nondeterministically**. E.g., if four linguists came in — A, B, C, and D — we'll have:

$$i \longrightarrow [a \text{ linguist came in}]$$

$$i + A$$

$$i + B$$

$$i + C$$

$$i + D$$

Formally captured by modeling meanings as relations on states.
 E.g., here is a dynamic meaning for a linguist came in:

$$\lambda i. \{i + x \mid \text{ling } x \land \text{came } x\}$$

Going Montagovian

Proper names:

POLLY
$$= \lambda \kappa i. \kappa P (i + P)$$

Indefinites:

A.LING
$$\coloneqq \lambda \kappa i. \bigcup_{ling \ x} \kappa x (i + x)$$

Pronouns:

$$SHE_0 = \lambda \kappa i. \kappa i_0 i$$

 Things like VPs will denote functions from individuals into dynamic propositions (i.e. relations on states). Meaning composition is therefore simple functional application.

Dynamic conjunction

 Given relational sentence meanings, sentential conjunction amounts to relation composition:

$$AND \coloneqq \lambda RLi. \bigcup_{j \in Li} Rj$$

Deriving a linguist came in, (and) she sat:

Given as a relation on states:

$$\lambda i. \{i + x \mid \text{ling } x \land \text{came } x \land \text{sat } x\}$$

Downstream indefinites may create further branching.

7

Getting closure

- Dynamic binding isn't anything-goes:
 - (2) I don't own a radio. #It's a Panasonic.
 - (3) Every boy fed a donkey. #It's braying. $(\forall > \exists)$
- Negation is externally static (i.e., closed):

NOT =
$$\lambda Si$$
. $\begin{cases} \{i\} \text{ if } Si = \{\} \\ \{\} \text{ otherwise} \end{cases}$

Quantifiers, too:

EVERY.BOY =
$$\lambda \kappa i$$
. $\begin{cases} \{i\} \text{ if } \forall x \in BOY. \ \kappa x i \neq \{ \} \\ \{ \} \text{ otherwise} \end{cases}$

8

Where we are

Dynamic semantics

Monads

Monadic dynamic semantics

Features of the monadic accoun

Modularity

What are monads?

- Construct from category theory and computer science used to talk about side effects (roughly, fancy things that happen in computations besides application of functions to values).
 - Some key citations: Moggi 1989; Wadler 1992, 1994, 1995; Liang et al. 1995; Shan 2002; Giorgolo & Asudeh 2012; Unger 2012.
- Gives a unified perspective on how meanings inhabiting "fancy" types, abbreviated Ma, interact with more quotidian bits.

This section

- Introducing you to two monads and how they relate to extant modes of composition in the semantics literature:
 - Reader monad: index-dependence
 - Set monad: nondeterminism
- As linguists, we can think of a monadic semantics as contributing two combinators or type-shifters to the grammar,
 and ★:
 - ▶ ☐ lifts boring things into maximally boring fancy things
 - * tells us how to combine fancy things
- As we'll see, scope-taking is an essential part of the story.

Example #1: Reader monad

► Task: compositionally integrating index-sensitive meanings:

$$SHE_0 = \lambda i. i_0$$

 Usual approach is enriching the semantics of combination (e.g., Heim & Kratzer 1998):

$$[\![XY]\!]^i = [\![X]\!]^i [\![Y]\!]^i$$

In the monadic setting, the two combinators look like so:

$$x := \lambda i. x$$
 $m^* := \lambda \kappa i. \kappa (m i) i$

A fancy α in the Reader monad, 'M α ', is an index-dependent α :

$$Ma := i \rightarrow a$$

Reader monad derivation

• An example of how this works for *Bob met her* $_0$:

- Result: λi. MET i₀ B. (Same as what Heim & Kratzer derive.)
- This pattern will be repeated time and again. The fancy thing takes scope via ★, and ⊡ applies to its remnant.

Example #2: Set monad

It is sometimes useful to entertain multiple values in parallel (e.g., Hamblin 1973; Kratzer & Shimoyama 2002):

Usual approach is to enrich composition to handle sets:

$$[\![A B]\!] = \{fx \mid f \in [\![A]\!] \land x \in [\![B]\!]\}$$

In the monadic setting, the two combinators look like so:

$$x := \{x\}$$
 $m^* := \lambda \kappa . \bigcup_{x \in m} \kappa x$

Emodies a notion of **nondeterministic** computation, where fancy things introduce alternatives into the semantics:

$$Ma := \{a\} \text{ (i.e., } a \rightarrow t)$$

Set monad derivation

▶ How this works for *Bob met a linguist* (Charlow 2015):

Gives the expected set of propositions, about different linguists:

$$\{MET x B \mid LING x\}$$

Again, exactly the same pattern as Reader and State.

15

Monads, summed up

▶ Typing judgments, where Ma should be read as "a fancy a"

- Sub-cases:
 - ▶ Reader. $Ma := i \rightarrow a$
 - Set. Ma := {a}
- For any monad, $x^* = \lambda \kappa$. Each monad thus implicates a different **decomposition** of LIFT (Partee 1986).

Compositionality

- ▶ The theory:
 - Find evidence for some side effects.
 - Posit some lexical items exploiting these side effects.
 - ▶ Fix the appropriate monad (i.e., a pair of \boxdot and \star).
 - Use , *, and scope-taking (already present in your theory, I hope) to interface between the boring things and the fancy things.
- Plug in your favorite account of scope-taking. I'm using 'LFs', but your favorite account of scope will work just as well.
 - Proof-theoretic accounts (e.g., TLG).
 - Continuations + CCG (e.g., Shan & Barker 2006; Charlow 2014).

٠..

Where we are

Dynamic semantics

Monads

Monadic dynamic semantics

Features of the monadic account

Modularity

Set the stage

- Dynamics relies on State, the ability to update indices, and nondeterminism (indefinites output alternative assignments).
- ▶ It's straightforward to fold dynamics into the monadic perspective.

State monad

 A generalization of the Reader monad allows meanings that store, as well as extract, anaphoric information (e.g., Unger 2012):

POLLY
$$\coloneqq \lambda i. \langle P, i + P \rangle$$
 SHE₀ $\coloneqq \lambda i. \langle i_0, i \rangle$

Here, the fancy types are functions from indices to pairs of values, and possibly-updated indices:

$$Ma := i \rightarrow \langle a, i \rangle$$

Monadic combinators again essentially follow from the types $(\langle x,y\rangle_1 = x, \text{ and } \langle x,y\rangle_r = y)$:

$$x := \lambda i. \langle x, i \rangle$$
 $m^* := \lambda \kappa i. \kappa (mi)_l (mi)_r$

Compare Reader:

$$x = \lambda i. x$$
 $m^* = \lambda \kappa i. \kappa (m i) i$

State monad derivation

► An example of how this works for *Bob met Polly*:

- The result: λi . (MET PB, i + P).
- ▶ Along similar lines, we can derive a meaning for *she waved*:

$$\mathsf{she_0}^\star(\lambda x. \ \ \mathsf{WAVED}\ x) = \lambda i. \langle \mathsf{WAVED}\ i_0, i \rangle$$

How to bind pronouns? We'll see.

21

Adding nondeterminism to State

• One way to think of this is in terms of a new "fancy" type:

$$Ma := i \rightarrow \{\langle a, i \rangle\}$$

The monadic operations essentially follow from the types:

$$x := \lambda i. \{\langle x, i \rangle\}$$
 $m^* := \lambda \kappa i. \bigcup_{(x,j) \in mi} \kappa x j$

 Just a combination of the State and Set monads. (In fact, fully determined by something known as the State monad transformer, cf. Liang et al. 1995.)

22

Basic meanings

Meaning for an indefinite (nondeterministic, but no update):

A.LING =
$$\lambda i. \{\langle x, i \rangle \mid LING x\}$$

And pronouns, where i₀ is the most recently introduced dref in i (deterministic, value returned depends on i, but no update):

$$SHE_0 = \lambda i. \{\langle i_0, i \rangle\}$$

Introducing drefs

Introducing drefs can happen modularly:

$$m_{\bullet} := m^{\star} (\lambda x i. \{\langle x, i + x \rangle\})$$

Example with an indefinite:

A.LING =
$$\lambda i. \{\langle x, i + x \rangle \mid LING x\}$$

We can also ▶-shift simple type e individuals injected into the monad with (would also work with State monad):

$$\boxed{B}_{\bullet} = \lambda i. \{\langle B, i + B \rangle\}$$

• (Possibility of polymorphic drefs for e.g. VP ellipsis.)

Example

▶ How this works for Bob met a linguist.:

Gives the expected set of propositions, about different linguists, each tagged with an update:

$$\lambda i. \{ \langle MET x B, i + x \rangle \mid LING x \}$$

- Like the Reader monad's *Bob met Polly*, with nondeterminism. Like the Set monad's *Bob met a linguist*, with index modification.
- Again, exactly the same pattern as before.

Getting monadic closure

- Dynamic closure operators have monadic dynamic analogs.
- ▶ Negation, type $Mt \rightarrow Mt$:

NOT =
$$\lambda$$
mi. $\{\langle \neg \exists \pi \in m \ i : \pi_l, i \rangle\}$

▶ Universals, type $(e \rightarrow Mt) \rightarrow Mt$:

$$\textbf{every.boy} = \lambda \kappa \textbf{i}. \left\{ \left\langle \, \forall x \in \text{boy} : \exists \pi \in \kappa \, x \, \textbf{i} : \pi_l, \textbf{i} \right\rangle \right\}$$

The results at any κ are deterministic, and encode no update. I.e., they lack side effects — or, in other words, are **pure**.

Where we are

Dynamic semantics

Monads

Monadic dynamic semantics

Features of the monadic account

Modularity

The shape of the grammar and the lexicon

- In standard dynamics, updates are only associated with sentences. In the present account, any constituent may encode an update.
- But needn't: the dynamic bits of the grammar can be dynamic, but the static parts can stay static. No need to lift the whole thing.
- Ergo, the monadic perspective on dynamics can afford to be more conservative about lexical semantics than standard approaches.

Derived exceptional scope

► Every monad's * is an "associative" operation:

$$(\mathfrak{m}^{\star}(\lambda x. \kappa x))^{\star} \gamma = \mathfrak{m}^{\star}(\lambda x. (\kappa x)^{\star} \gamma)$$

- This means exceptional scope behavior is a theorem of any semantics that uses monads to facilitate composition:
 - Suppose $\mathfrak{m}^*(\lambda x. \kappa x)$ is the meaning of some **island**.
 - Associativity means that, even so, \mathfrak{m} can acquire a kind of semantic "scope" over γ 's outside the island.

Exceptional scope #1: Dynamic binding

Remarkably, dynamic binding arises via a kind of 'LF' pied-piping (cf. Nishigauchi 1990):

- Result: $\lambda i. \{ \langle CAME x \wedge SAT x, i + x \rangle \mid LING x \}$
- Unlike standard dynamic approaches, this derivation doesn't require a notion of dynamic conjunction.
 - ▶ In keeping with the approach I've been advocating, conjunction is boring and interacts with fancy things via and ★.

Exceptional scope #2: Indefinites

- Exceptionally scoping indefinites (e.g., Reinhart 1997):
 - (4) If [a rich relative of mine dies], I'll inherit a house. $(\exists > if)$
- Exceptional scope is derived, again, by 'LF' pied-piping:

By associativity, this will end up equivalent to:

A.RELATIVE
$$^{\star}(\lambda x. \text{ if } ...) = \lambda i. \{ \langle \text{DIES } x \Rightarrow \text{HOUSE}, i + x \rangle \mid \text{RELATIVE } x \}$$

Exceptionally scoping indefinites (cont.)

- Upshot: unified take on dynamic binding, exceptional scope.
 Eludes static, dynamic approaches to indefiniteness.
- Also gives better empirical coverage of exceptionally scoping indefinites than extant accounts (e.g., choice functions).
- E.g., for us exceptional scope really requires scope (i.e., of the island)! So we don't wrongly predict wide-scope-indefinite readings for things like the following (Schwarz 2001):
 - (5) No candidate; submitted a paper he_i wrote. (*a > no)

Exceptional scope #3: Proper names

- Proper names can bind pronouns, no matter how embedded:
 - (6) If e.o. [who hates Walt_i] comes, I'll feel bad for him_i
 If e.o. [who hates PETE_j] comes, I won't (feel bad for him_j).
- Predicted by our theory: by associativity, so long as the [island] can scope over the pronoun, the proper name can bind the pronoun.

Exceptional scope #4: Maximal drefs

- Maximal drefs contributed by deeply embedded quantifiers:
 - (7) Everyone heard the rumor that [at most six [senators]_i [supported Cruz's filibuster]_j]. It turned out to be erroneous: they_{i \cap j} numbered at least ten.
- Suggests even quantifiers take a kind of exceptional scope.
- Predicted if quantifiers introduce maximal drefs, as is standard in modern dynamic semantics (Kamp & Reyle 1993):

at.most.six.senators =
$$\lambda \kappa i. \{ \langle | \text{sen} \cap X | \leq 6, i + X \rangle \}$$

where $X = \text{sen} \cap \{ x \mid \exists \pi \in \kappa \, x \, i. \, \pi_l \}$

Where we are

Dynamic semantics

Monads

Monadic dynamic semantics

Features of the monadic account

Modularity

Extension #1: Focus

Focus usually handled with bidimensional meanings:

$$[\![A\ B]\!]^o = [\![A]\!]^o [\![B]\!]^o \qquad [\![A\ B]\!]^f = \left\{fx \mid f \in [\![A]\!]^f, x \in [\![B]\!]^f\right\}$$

Monadic version (Shan's 2002 pointed powerset monad):

$$x := \langle x, \{x\} \rangle$$
 $\langle x, S \rangle^* := \lambda \kappa. \langle (\kappa x)_1, \bigcup_{y \in S} (\kappa y)_r \rangle$

Meanings for F-marked nodes:

$$x_F \coloneqq \langle x, ALT_x \rangle$$

Focus (cont.)

 There's nothing else to do! Instead of 2 combinators running around, we'll have 4. But they play nicely together (Charlow 2014).

► This technique is known as **composing applicative functors** (McBride & Paterson 2008). It works for *any* number of monads.

37

Extension #2: Conventional Implicature

- Negation appears not to interact with nonrestrictive relatives:
 - (8) I didn't read Great Expectations, which is a stone cold classic.
- Potts 2005 proposes a non-compositional two-dimensional semantics to derive this.
- Giorgolo & Asudeh 2012 suggest the Writer monad:

$$x := x \bullet T$$
 $(x \bullet p)^* := \lambda \kappa. v \bullet (p \land q)$ where $v \bullet q = \kappa x$

Conventional implicature (cont.)

Also comes with a transformer, can be used to roll a big monad that does dynamic binding and 2nd dimensional stuff (and focus!):

$$Ma := i \rightarrow \{\langle a \bullet t, i \rangle\}$$

The operation:

$$x := \lambda i. \{\langle x \bullet \top, i \rangle\}$$

And the * operation:

$$\mathfrak{m}^{\star} \coloneqq \lambda \kappa. \bigcup_{(x \bullet p, j) \in \mathfrak{m}i} \left\{ \left\langle v \bullet (p \wedge q), k \right\rangle \mid \left\langle v \bullet q, k \right\rangle \in \kappa \chi j \right\}$$

A number of nice results. Feel free to ask about them.

Alternative semantics

▶ Reader + Set monad, for index-dependence and nondeterminism:

$$x = \lambda i. \{\langle x, i \rangle\}$$
 $m^* = \lambda \kappa. \lambda i. \bigcup_{\langle x, j \rangle \in mi} \kappa x i$

- Still gets exceptional scope. Only the dynamic monad gets dynamic anaphora.
- (It turns out that there's no need to define a combined Reader + Set monad. Simply turning the Reader and Set monads loose is enough, as with Focus.)

Applicatives? Transformers? Functors?

Monadic *:

$$Ma \rightarrow \underbrace{(a \rightarrow Mb) \rightarrow Mb}_{\text{scope}}$$

 Can always be composed into an applicative functor (sometimes also a monad):

$$M_1M_2a$$
 M_2M_1a

Functor fmap type:

$$(a \rightarrow b) \rightarrow Fa \rightarrow Fb$$

Flipped:

$$Fa \rightarrow (a \rightarrow b) \rightarrow Fb$$
scope

Wrapping up

- Go monadic: a shift in perspective (thinking of dynamic semantics in terms of side effects) buys a lot.
- There's empirical and methodological juice:
 - Better coverage (exceptional scope).
 - More extensible, via transformers, applicatives, functors.
- You needn't even go dynamic to reap the fruits. There's something for dyed-in-the-wool static alternative-semanticists, too.

THANKS!

References

- Charlow, Simon. 2014. On the semantics of exceptional scope: New York University Ph.D. thesis.
- Charlow, Simon. 2015. The scope of alternatives. Talk presented at SALT 25.
- Dekker, Paul. 1994. Predicate Logic with Anaphora. In Mandy Harvey & Lynn Santelmann (eds.), *Proceedings of Semantics and Linguistic Theory 4*, 79–95. Ithaca, NY: Cornell University.
- Giorgolo, Gianluca & Ash Asudeh. 2012. (Μ, η, *): Monads for conventional implicatures. In Ana Aguilar Guevara, Anna Chernilovskaya & Rick Nouwen (eds.), *Proceedings of Sinn und Bedeutung 16*, 265–278. MIT Working Papers in Linguistics.
- Groenendijk, Jeroen & Martin Stokhof. 1991. Dynamic predicate logic. *Linguistics and Philosophy* 14(1). 39–100.
- Hamblin, C. L. 1973. Questions in Montague English. Foundations of Language 10(1). 41–53.
- Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar. Oxford: Blackwell.
- Kamp, Hans & Uwe Reyle. 1993. From Discourse to Logic. Dordrecht: Kluwer Academic Publishers.
- Kratzer, Angelika & Junko Shimoyama. 2002. Indeterminate pronouns: The view from Japanese. In Yukio Otsu (ed.), *Proceedings of the Third Tokyo Conference on Psycholinguistics*, 1–25. Tokyo: Hituzi Syobo.
- Liang, Sheng, Paul Hudak & Mark Jones. 1995. Monad transformers and modular interpreters. In 22nd ACM Symposium on Principles of Programming Languages (POPL '95), 333–343. ACM Press.
- McBride, Conor & Ross Paterson. 2008. Applicative programming with effects. *Journal of Functional Programming* 18(1). 1–13.

References (cont.)

- Moggi, Eugenio. 1989. Computational lambda-calculus and monads. In *Proceedings of the Fourth Annual Symposium on Logic in computer science*, 14–23. Piscataway, NJ, USA: IEEE Press.
- Nishigauchi, Taisuke. 1990. *Quantification in the theory of grammar*. Dordrecht: Kluwer Academic Publishers.
- Partee, Barbara H. 1986. Noun phrase interpretation and type-shifting principles. In Jeroen Groenendijk, Dick de Jongh & Martin Stokhof (eds.), *Studies in Discourse Representation Theory and the Theory of Generalized Quantifiers*, 115–143. Dordrecht: Foris.
- Potts, Christopher. 2005. *The logic of conventional implicatures*. Oxford: Oxford University Press.
- Reinhart, Tanya. 1997. Quantifier scope: How labor is divided between QR and choice functions. *Linguistics and Philosophy* 20(4). 335–397.
- Schwarz, Bernhard. 2001. Two kinds of long-distance indefinites. In Robert van Rooy & Martin Stokhof (eds.), *Proceedings of the Thirteenth Amsterdam Colloquium*, 192–197. University of Amsterdam.
- Shan, Chung-chieh. 2002. Monads for natural language semantics. In Kristina Striegnitz (ed.), Proceedings of the ESSLLI 2001 Student Session, 285–298.
- Shan, Chung-chieh. 2005. Linguistic side effects: Harvard University Ph.D. thesis.
- Shan, Chung-chieh & Chris Barker. 2006. Explaining crossover and superiority as left-to-right evaluation. *Linguistics and Philosophy* 29(1). 91–134.

References (cont.)

- Unger, Christina. 2012. Dynamic semantics as monadic computation. In Manabu Okumura, Daisuke Bekki & Ken Satoh (eds.), *New Frontiers in Artificial Intelligence JSAI-isAI 2011*, vol. 7258 Lecture Notes in Artificial Intelligence, 68–81. Springer Berlin Heidelberg.
- Wadler, Philip. 1992. Comprehending monads. In *Mathematical Structures in Computer Science*, vol. 2 (special issue of selected papers from 6th Conference on Lisp and Functional Programming), 461–493.
- Wadler, Philip. 1994. Monads and composable continuations. *Lisp and Symbolic Computation* 7(1). 39–56.
- Wadler, Philip. 1995. Monads for functional programming. In Johan Jeuring & Erik Meijer (eds.), Advanced Functional Programming, vol. 925 Lecture Notes in Computer Science, 24–52. Springer Berlin Heidelberg.