CLASSICAL MACHINE LEARNING

Data

Training set

representative set of examples used for training, where the target value is known

Validation set

representative set of examples used to tune the architecture of a learning algorithm and estimate prediction errors

Independent test set (blind test)

- independently assess the performance of a predictive model
- never used during the training process
- error on the blind test provides an unbiased estimate of the generalization error

K-nearest neighbours (KNN)

0. Look at the data

Say you want to classify the grey point into a class. Here, there are three potential classes - lime green, green and orange.

1. Calculate distances

Start by calculating the distances between the grey point and all other points.

2. Find neighbours

Next, find the nearest neighbours by ranking points by increasing distance. The nearest neighbours (NNs) of the grey point are the ones closest in dataspace.

3. Vote on labels

Vote on the predicted class labels based on the classes of the k nearest neighbours. Here, the labels were predicted based on the k=3 nearest neighbours.

- given training data, $D = \{(x_1, y_1), ..., (x_N, y_N)\}$ and a test point x_u
- prediction rule: look at the K most similar training examples to x_u
- for classification:
 assign the majority class label (majority voting)
- for regression: assign the average response
- The algorithm requires
 - parameter K: number of nearest neighbors to look for
 - distance function: to compute similarities between points

Naïve Bayes

Conditional probability:

$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$ Probability of A given B Probability of B Probability of B

Maximum a posteriori (MAP):

$$rg \max P(A \mid B)$$
 for each class A $rg \max P(A \mid B) = rg \max P(B \mid A) imes rac{P(A)}{P(B)}$ $= rg \max P(B \mid A) imes P(A)$

- uses Bayes's rule
- P(B) will be the same for all classes
- for a set of features x_i we calculate the joint probability: $B = (x_1, x_2, ..., x_n)$

$$\begin{array}{c} ^{\tiny \textcircled{\tiny \textbf{arg}}} \ \operatorname{arg} \max P(x_1, x_2, ..., x_n \mid A) \times P(A) \\ P(x_1, x_2, ..., x_n \mid A) = \prod_i P(x_i \mid A) \end{array}$$

- simply the product of individual probabilities
- assumption: features are independent given a class

What if our data is not linearly separable?

- Use a soft SVM
 - Add terms to objective function to penalise points on the "wrong side" of boundary, but don't forbid them
- Use a kernel function
 - Transform input data into a separable space
 - Kernel SVM allows non-linear boundaries in the original space and is a popular approach

Polynomials of degree exactly d: $K(u,v) = (u \cdot v)^d$ Polynomials of degree up to d: $K(u,v) = (u \cdot v + 1)^d$ Gaussian kernels: $K(\vec{u},\vec{v}) = \exp\left(-\frac{\|\vec{u}-\vec{v}\|_2^2}{2\sigma^2}\right)$ Sigmoid: $K(u,v) = \tanh(nu \cdot v + v)$

How to build a decision tree from data?

- 1 Choose a decision point yielding best purity
- 2 Partition data into corresponding subsets
- 3 Reiterate with resulting subsets
- 4 Stop when regions are approximately pure

Impurity in classification

- misclassification
- Gini impurity: probability of incorrectly classifying a randomly chosen data point

Impurity in regression

mean squared error

$$F(R) = \sum_{x_i \in R} (y_i - \langle y \rangle)^2$$

Performance Estimation

• Overfitting and underfitting

- Bias
 - Difference between prediction and real outcome
- Variance
 - Variability of predictions

HOLDOUT STRATEGY

Predictive Performance Metrics

- To select the best performing model we need o be able to compare them
- Predictive performance metrics
 - On the validation set
 - On an independent test set
 - Make sure they are consistent
- There are multiple metrics for classification and regression
- Classification
 - We can derive several metrics from a confusion matrix

Statistical Classification Metrics

Type I and II errors

- Which Type Error is worse?
 - Fire alarm

- Type I:
 - Fire alarm rings when there is no fire
- Type II:
 - Fire alarm fails to ring when there is fire

• Which Type Error is worse in this case?

Which models is the best one?

Metric	MODEL1	MODEL2
Recall	0.6667	0.8333
Specificity	0.8333	0.6667
Precision	0.8000	0.7143
Accuracy	0.7500	0.7500
F1 Score	0.7273	0.7692
MCC	0.5071	0.5071

Model 1

To minimise Type I Error (better precision)

Model 2

To minimise Type 2 Error (better recall)

MODEL 1	Actual disease	Actual healthy
Predicted disease	200	50
Predicted healthy	100	250

MODEL 2	Actual disease	Actual healthy
Predicted disease	250	100
Predicted healthy	50	200

• Benign vs. malignant cancer hypothetical cases