$12a_{1161} \ (K12a_{1161})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{32} - u^{31} + \dots + 3u^2 + 1 \rangle$$

 $I_2^u = \langle u^5 + 3u^3 + u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 37 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{32} - u^{31} + \dots + 3u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{6} + 3u^{4} + 2u^{2} + 1 \\ u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{1} + 6u^{9} + 12u^{7} + 10u^{5} + 5u^{3} \\ -u^{13} - 7u^{11} - 17u^{9} - 16u^{7} - 4u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{11} + 6u^{9} + 12u^{7} + 10u^{5} + 5u^{3} \\ -u^{13} - 7u^{11} - 17u^{9} - 16u^{7} - 4u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{25} - 14u^{23} + \dots + 5u^{5} + u \\ u^{27} + 15u^{25} + \dots + u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{24} + 13u^{22} + \dots - u^{2} - u \\ -u^{31} - 18u^{29} + \dots - 2u^{2} - u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{20} - 11u^{18} + \dots + 3u^{2} + 1 \\ -u^{20} - 10u^{18} - 38u^{16} - 66u^{14} - 47u^{12} - 4u^{10} + 6u^{8} + 2u^{6} - 5u^{4} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$\begin{array}{l} -4u^{30} + 4u^{29} - 76u^{28} + 68u^{27} - 632u^{26} + 500u^{25} - 3012u^{24} + 2072u^{23} - 9052u^{22} + 5284u^{21} - 17812u^{20} + 8508u^{19} - 23164u^{18} + 8580u^{17} - 19788u^{16} + 5292u^{15} - 10868u^{14} + 1960u^{13} - 3384u^{12} + 344u^{11} - 36u^{10} - 80u^9 + 376u^8 - 44u^7 + 156u^6 - 96u^5 + 36u^4 - 12u^3 - 28u^2 + 4u - 10 - 36u^4 - 36u^$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{32} - 9u^{31} + \dots - 110u + 33$
$c_2, c_3, c_8 \ c_9$	$u^{32} + u^{31} + \dots + 3u^2 + 1$
c_4, c_7	$u^{32} - 4u^{31} + \dots - 108u + 36$
c_5, c_6, c_{10} c_{11}, c_{12}	$u^{32} + u^{31} + \dots + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{32} - 7y^{31} + \dots - 3982y + 1089$
$c_2,c_3,c_8 \ c_9$	$y^{32} + 37y^{31} + \dots + 6y + 1$
c_4, c_7	$y^{32} - 20y^{31} + \dots + 19080y + 1296$
c_5, c_6, c_{10} c_{11}, c_{12}	$y^{32} + 41y^{31} + \dots + 6y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.300810 + 0.836112I	6.82102 - 1.42764I	-4.51155 - 0.98064I
u = 0.300810 - 0.836112I	6.82102 + 1.42764I	-4.51155 + 0.98064I
u = 0.489031 + 0.734239I	8.08609 + 8.05482I	-2.31310 - 6.73676I
u = 0.489031 - 0.734239I	8.08609 - 8.05482I	-2.31310 + 6.73676I
u = -0.454853 + 0.736272I	-0.91691 - 6.31171I	-4.12363 + 8.39972I
u = -0.454853 - 0.736272I	-0.91691 + 6.31171I	-4.12363 - 8.39972I
u = 0.408575 + 0.750241I	-3.78730 + 3.13913I	-10.07435 - 5.21729I
u = 0.408575 - 0.750241I	-3.78730 - 3.13913I	-10.07435 + 5.21729I
u = -0.508887 + 0.453816I	12.96460 - 1.76928I	2.67390 + 3.90594I
u = -0.508887 - 0.453816I	12.96460 + 1.76928I	2.67390 - 3.90594I
u = 0.431538 + 0.445802I	3.53431 + 1.54706I	2.87219 - 5.01991I
u = 0.431538 - 0.445802I	3.53431 - 1.54706I	2.87219 + 5.01991I
u = 0.598654 + 0.128367I	9.86359 - 4.36101I	1.36134 + 2.03096I
u = 0.598654 - 0.128367I	9.86359 + 4.36101I	1.36134 - 2.03096I
u = -0.554088 + 0.092280I	0.95148 + 2.86543I	0.05561 - 3.87784I
u = -0.554088 - 0.092280I	0.95148 - 2.86543I	0.05561 + 3.87784I
u = -0.09682 + 1.49663I	6.60174 - 3.81122I	0. + 2.89590I
u = -0.09682 - 1.49663I	6.60174 + 3.81122I	0 2.89590I
u = -0.188661 + 0.441864I	-0.184695 - 0.792115I	-5.07140 + 8.68136I
u = -0.188661 - 0.441864I	-0.184695 + 0.792115I	-5.07140 - 8.68136I
u = 0.06894 + 1.52078I	-2.97865 + 3.12510I	-4.00000 - 3.93405I
u = 0.06894 - 1.52078I	-2.97865 - 3.12510I	-4.00000 + 3.93405I
u = -0.02317 + 1.55273I	-7.06597 - 1.36583I	0. + 4.57803I
u = -0.02317 - 1.55273I	-7.06597 + 1.36583I	0 4.57803I
u = -0.13063 + 1.61792I	-8.94709 - 8.50994I	0
u = -0.13063 - 1.61792I	-8.94709 + 8.50994I	0
u = 0.14214 + 1.61709I	0.08629 + 10.42610I	0
u = 0.14214 - 1.61709I	0.08629 - 10.42610I	0
u = 0.11670 + 1.62115I	-11.89960 + 5.11913I	0
u = 0.11670 - 1.62115I	-11.89960 - 5.11913I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.09928 + 1.62252I	-9.83905 - 1.68285I	0
u = -0.09928 - 1.62252I	-9.83905 + 1.68285I	0

II.
$$I_2^u = \langle u^5 + 3u^3 + u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + u + 1 \\ -u^{4} - 2u^{2} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + u + 1 \\ -u^{3} + u^{2} - u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + u + 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3} + 1 \\ -2u^{3} - 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^5 - 2u^4 - u^3 + 4u^2 + 3u - 3$
c_2, c_3, c_5 c_6, c_8, c_9 c_{10}, c_{11}, c_{12}	$u^5 + 3u^3 + u + 1$
c_4, c_7	$(u+1)^5$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^5 - 6y^4 + 23y^3 - 34y^2 + 33y - 9$
c_2, c_3, c_5 c_6, c_8, c_9 c_{10}, c_{11}, c_{12}	$y^5 + 6y^4 + 11y^3 + 6y^2 + y - 1$
c_4, c_7	$(y-1)^5$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.343105 + 0.770791I	-1.64493	-6.00000
u = -0.343105 - 0.770791I	-1.64493	-6.00000
u = 0.525261	-1.64493	-6.00000
u = 0.08047 + 1.63341I	-1.64493	-6.00000
u = 0.08047 - 1.63341I	-1.64493	-6.00000

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u5 - 2u4 - u3 + 4u2 + 3u - 3)(u32 - 9u31 + \dots - 110u + 33) $
$c_2, c_3, c_8 \ c_9$	$(u^5 + 3u^3 + u + 1)(u^{32} + u^{31} + \dots + 3u^2 + 1)$
c_4, c_7	$((u+1)^5)(u^{32}-4u^{31}+\cdots-108u+36)$
c_5, c_6, c_{10} c_{11}, c_{12}	$(u^5 + 3u^3 + u + 1)(u^{32} + u^{31} + \dots + 2u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^5 - 6y^4 + 23y^3 - 34y^2 + 33y - 9)(y^{32} - 7y^{31} + \dots - 3982y + 1089)$
$c_2, c_3, c_8 \ c_9$	$(y^5 + 6y^4 + 11y^3 + 6y^2 + y - 1)(y^{32} + 37y^{31} + \dots + 6y + 1)$
c_4, c_7	$((y-1)^5)(y^{32} - 20y^{31} + \dots + 19080y + 1296)$
c_5, c_6, c_{10} c_{11}, c_{12}	$(y^5 + 6y^4 + 11y^3 + 6y^2 + y - 1)(y^{32} + 41y^{31} + \dots + 6y + 1)$