Oral Maths ULC (Ulm Lyon Cachan) 2008

Nathanaël FIJALKOW

1 FIJALKOW Nathanaël

Salle U/V, 10h15 mardi 24.

EXERCICE 1 Soit p = 2q un entier, et $(u_1 ldots u_p)$ des réels. On note g la fonction de \mathbb{R} dans \mathbb{C} définie par $g(x) = C \exp(-iqx) \prod_{k=1}^{p} (\exp(ix) - \exp(iu_k))$,

où C est une constante dont vous allez me montrer qu'elle peut être choisie de manière à ce que g soit à valeurs dans \mathbb{R} .

Une fois ce calcul fait, soit f de \mathbb{R} dans \mathbb{R} , 2π périodique continue, dont les coefficients de fourier a_k et b_k sont nuls pour $k \in \{0...n-1\}$. On se place sur $[0, 2\pi[$, montrez que si f change de signe un nombre fini de fois, ce nombre est pair, et que f sur cet intervalle s'annule au moins 2n fois.

EXERCICE 2 Soit E un espace vectoriel, et u,v des endomorphismes. Montrer l'équivalence $\operatorname{Ker} v \subset \operatorname{Ker} u \Longleftrightarrow \exists w \in \mathcal{L}(E), u = w \circ v.$

Enoncez et démontrez un théorème semblable avec une condition sur les images.

2 MARTIN-LAVAL Quentin

Salle R, 16h30 lundi 23.

EXERCICE 1 Soit f une fonction continue de $\mathbb R$ dans $\mathbb C$, et $\alpha \in \mathbb R$ tel que $\int_0^\infty f(t) \exp(-\alpha t) dt$ converge, montrez que pour $\lambda \geqslant \alpha$, $\int_0^\infty f(t) \exp(-\lambda t) dt$ converge.

EXERCICE 2 Soit f une fonction continue de $\mathbb R$ dans $\mathbb C$ à support compact. Notons h la fonction de $\mathbb R$ dans $\mathbb C$ définie par $h(x)=f(\frac{x^2-1}{x})$ pour $x\neq 0$, et par 0 sinon. Vérifiez que h est continue à support compact, et montrez $\int_{\mathbb R} h = \int_{\mathbb R} f$.

Généralisation : soient $(a_1 \dots a_n)$ et $(b_1 \dots b_{n-1})$ des réels ordonnés en croissant, vérifiant $a_1 < b_1 < \dots a_{n-1} < b_{n-1} < a_n$. Définissons h par $h(x) = f(\frac{\prod_{k=1}^n (x-a_k)}{\prod_{k=1}^{n-1} (x-b_k)})$ si $x \notin \{b_1 \dots b_{n-1}\}$, et 0 sinon. Vérifiez que h est continue à support compact, et montrez $\int_{\mathbb{R}} h = \int_{\mathbb{R}} f$.

3 Bonus

Ulm, lundi, fin de planche : EXERCICE Soit $n \in \mathbb{N}$, montrez que $\frac{(2n)!}{(n!)^2}$ est pair.

Une proposition de solution (de moi) pour l'exercice de Benoît Laslier : EXERCICE On considère deux polynômes réels $P(X) = \prod_{k=1}^{n} (X - a_k)$ où $a_1 < \ldots < a_n$, et $Q(X) = (X-r) \prod_{k=1}^{n-1} (X-a_k)$ où $r > a_n$. Soit $b_1 < \ldots < b_{n-1}$ et $c_1 < \ldots < c_{n-1}$ les racines de P' et Q'. Montrer que pour tout $i, b_i < c_i$.

Remarquons que P et Q sont à racines simples donc que les racines de P' et Q' sont localisables par le théorème de Rolle, à savoir entre chaque intervalle $]a_k, a_{k+1}[$. Sur un tel intervalle, P positif, croissant puis décroissant (on traite de même le cas -P), ainsi que Q. Les dérivées logarithmiques $\frac{P'}{P}$ et $\frac{Q'}{Q}$, évaluées en b_k donnent $\frac{Q'(b_k)}{Q(b_k)} > 0$, donc $Q'(b_k) > 0$, et b_k se trouve dans la phase de "croissance" de Q, ie avant c_k (un petit gribouillage s'impose). CQFD.