Technical Report 4:

Hopper and Trailer technical subsystem

&

Business management

Candidate Number – 12085

Word Count: 6922

Abstract

As a collective, project Anaconda aims to provide a solution for concrete pumping on small to medium scale worksites.

The final proposed solution, dubbed 'The Anaconduit', is a 3.5 tonne trailer-mounted peristaltic line pump capable of delivering 8m³ loads of concrete in 30 minutes. It can be towed with a Category B Driver's License, has a reach of up to 29 metres, and an expected placement depth up to 1.5 metres.

Of the five technical reports documenting the project, this is fourth in the reading order. Contained within this is the documentation relating to the Hopper and Trailer technical subsystem of the Anaconduit, as well as the business management report.

Table of Contents

List of tables and figures	6
1. Introduction	8
1.1. Overview	8
1.2. Description of technical components	8
1.2.1. Description	8
1.2.2. Relationship to other subsystems	9
1.2.3. Dependencies	10
1.3. Technical subsystem design process	11
1.3.1. Design process flow chart	11
1.3.2. Description of design process	12
1.3.2. Consideration and subsequent discarding of modular	ity concept13
1.3. Business report	14
2. Design specifications	15
2.1. Approach to Design Specifications	15
2.2. Table of Subsystem Design specifications	17
2.3. Categories outlined design specifications	24
Operations and requirements	24
Health and safety	24
Transport	24
Cleaning and maintenance	25
Manufacturing, Cost, Sustainability and the Environment	25
Final Product Specifications and Solution Cycle Analysis	25
3. Technical Component: Hopper	26
3.1. Justification	26
3.2. Geometry	26
3.2.1. Shape	26
3.2.2. Key dimensions and specifications	27
3.2.3. Selection from product market	30
3.3. Selected component	31
4. Technical component: Trailer	32
4.1. Justification	32
4.2 Key dimensions and specifications	33

	A preliminary note on Outriggers	35
	4.3. Trailer selection from product market	36
	4.4. Selected component	38
5.	Technical component: Outriggers and outrigger pads	39
	5.1. Justification	39
	5.2. Outriggers	40
	5.2.1. Key specifications	40
	5.2.2. Outrigger selection from product market	42
	5.3. Outrigger pads	43
	5.3.1. Key specifications	43
	5.3.2. Outrigger Pad selection from product market	45
	5.4. Selected Components	47
	Outriggers	47
	Outrigger pads	48
6.	Joints, transport attachments and Displays	49
	6.1. Joints	49
	Outriggers-to-trailer	49
	Hopper-to-trailer	50
	Pump-to-Trailer	51
	Hopper to pipe	52
	6.2. Transport securing components	52
	6.3. Displays	54
7.	Subsystem costing	58
	7.1. Detailed costing table	58
	7.2. Costing summary	60
8.	Verification against design specifications	61
9.	Conclusion and evaluation of technical subsystem	68
	9.1. Evaluation and reflection	68
	A reflection on the topic of in-house manufacturing	68
	Limitations to the design process	69
	Sub-system related challenges	69
	9.2. Future work	70
Вι	usiness report	72
	Overview	72
	Key responsibilities	72
	1.Deadline management	72

2. Formatting of document, granularization, and allocation of tasks	72
3.Spearheading research	73
4.Proofreading	73
Record of business-related activities	73
High-level business task breakdown	73
Proposed timeline and distribution of tasks	75
Formatting and proofreading Gantt chart	78
Challenges	79
Time management and prioritisation of responsibilities	79
Approach to task allocation	79
Communication of responsibilities	80
Conflict with group members	80
Proofreading	81
Summary and takeaways	82
References	83
Appendices	89
Appendices A: Group Business and Design Project (GBDP) Brief – Project Anaconda	89
Appendices B: Customer Needs	89
Appendix C: Target specifications	93
A.C.1. Nomenclature and Diagrams	93
A.C.2. Target Specifications	95
Appendix D: Hand calculations of hopper height	114
Appendix E: Detailed hopper selection	115
Appendix F: Detailed Trailer Selection	117
Appendix G: Hand calculations for outrigger selection	121
Appendix H: Detailed outrigger selection	122
Appendix I: Calculation for outrigger pad selection using 75 kPa limit	124
Appendix J: Detailed outrigger Pad selection	125
Appendix K: Detailed costing spreadsheet	128
Appendix L: Commercial viability timeline	131
Appendix M: Detailed granularization of business related tasks	135

List of tables and figures

Table 1: Example developmental path of a customer need into sub-system design specification	16
Table 2: Detailed design specifications of the trailer and hopper subsystem	17
Table 3: Geometry comparison of conical and pyramidal geometries	27
Table 4: Key parameters in concrete hopper selection	28
Table 5: Hopper selection from online market	30
Table 6: Selected Hopper Specifications	31
Table 7: Estimated weight of Anticonduit during transport	33
Table 8: Key parameters in Trailer selection	34
Table 9: Trailer selection from online market	36
Table 10: Selected Trailer Specifications	38
Table 11: Soil bearing pressure limits	39
Table 12: Key parameters in Outrigger selection	40
Table 13: Outrigger selection from online market	42
Table 14: Estimated weight of physical components in the Anaconduit during use	43
Table 15: Key parameters in outrigger pad selection	44
Table 16: Outrigger Selection from Online market	45
Table 17: final outrigger specifications	47
Table 18: Selected outrigger pad specifications	48
Table 19: Components associated with Anconduit transport	53
Table 20: Detailed costing of trailer and hopper subsystem	58
Table 21: Subsystem cost summary	60
Table 22: Verification of subsystem against design specifications	61
Table 23: Summary of 'Before product' and 'After product' tasks	73
Figure 1: Description of subsystem using CAD render of Anaconduit	
Figure 2: Schematic diagram showing technical relationships between various reports	
Figure 3: Flow chart detailing subsystem design process	
Figure 4: Initial, modular concept design of the Anaconduit	
Figure 5: Initial hopper and chassis subsystem	
Figure 6: Flow diagram representing journey from project brief to sub-system design specification	
Figure 7: CAD render of Anaconduit, with hopper highlighted in red	
Figure 8: Commonly available hopper geometries (Mehos, n.d.)	
Figure 9: Schematic diagram showing key hopper geometries	
Figure 10: Selected concrete hopper (Rollaway Container, n.d.)	
Figure 11: CAD render of Anaconduit, with trailer highlighted in red	
Figure 12: Schematic diagram showing key trailer dimensions	
Figure 13 : Schematic diagram describing bed-height consideration	
Figure 14: Final Trailer selection (Bateson Trailers, n.d.)	
Figure 15: CAD render of Anaconduit, with outriggers and outrigger pads highlighted in red	
Figure 16: Schematic diagram representing key parameters	
Figure 17: final outrigger selection (Power-Packer, n.d.)	
Figure 18: Selected Outrigger Pad (Outrigger Pads, n.d.)	
Figure 19: Example of put and holt joint	49

Figure 20: Example of lashing chains in use (Cottinham, n.d.)	50
Figure 21: Pump CAD, with holes for bolting/joining annotated	51
Figure 22: Trailer tarpaulin (Amazon, n.d.)	52
Figure 23: Heavy-duty ratchet straps (WebEX Supply, n.d.)	52
Figure 24: Heavy-duty 18mm synthetic rope (Rope Services UK, n.d.)	53
Figure 25 : Trailer and hopper subsystem: label and display orientation	54
Figure 26: Display of soil bearing pressure ratings: In concordance with EHSR, Eurocode 1 and HSW	۷A
guidelines	55
Figure 27: Display of system load bearing limit: In concordance with EHSR, Eurocode 1 and HSWA	
guidelines	56
Figure 28: LEFT: "Do not sit" sign (Keysigns, n.d.), in concordance with EHSR guidelines; RIGHT:	
"Hazardous substances" sign (hazard signs, n.d.), in concordance with EHSR and HSWA guidelines.	56
Figure 29: "Hazardous substances" sign (Seton, n.d.), in concordance with EHSR and HSWA guidelines are substances."	nes
	57
Figure 30: CAD render of Anaconduit, with relevant subsystem coloured red	70
Figure 31: Initial high-level breakdown of business tasks	74
Figure 32: Flow chart showing route to commercial viability timeline	75
Figure 33: Proposed commercial viability timetable (available in Appendix L)	76
Figure 34: Fully granularized business-related deliverables (available in Appendix M)	
Figure 35: Gantt chart of proofreading and task allocation process	78

1. Introduction

1.1. Overview

The fourth report in reading order, this report is split into two distinct sections.

The first, technical aspect covers documentation relating to the hopper and trailer subsystem of the Anaconduit. Broadly, this consists of design specifications, component selection, costing, and verification of the final subsystem design. It then concludes with an evaluation of the current iteration of the subsystem, noting points of furture development.

The second, more colloquial aspect of this report covers content relating to the role of business manager within the Anaconduit team. This includes defining managerial responsibilities, a record of team activities, and documentation and reflection relating to the challenges faced throughout the project. If the reader wishes to begin here, refer to the end of the technical report, after 'Section 9. Conclusion and evaluation of technical subsystem'.

1.2. Description of technical components

1.2.1. Description

Figure 1: Description of subsystem using CAD render of Anaconduit

Labelled above in Figure 1 are the main physical components associated with the hopper and trailer subsystem.

At a high level, it features a painted steel conical hopper, a specialised plant trailer made of galvanised steel, and a set of four extendible outriggers to be used with pressure-spreading pads.

Specially assembled with the intent of maximising the use of OTS (off-the-shelf) components, this subsystem allows for the Anaconduit to be easily transported by towing as a standard 3.5 tonne trailer within the UK, as well as deployed safely on a worksite with the aid of outriggers.

In addition to the selection of these components, this report details the various joints and interfaces within the subsystem, products and supplies that would be needed to assist in transport, and displays pertaining to health and safety regulations in the construction industry.

In total, the hopper and trailer subsystem is estimated to cost £6316.67, with £5028.26 (80%) attributed to purchasing main subsystem components, £608.72 (10%) attributed to joining and workshop costs, £579.70 (9%) to transportation-related components, and £100 (1%) to signs and displays.

1.2.2. Relationship to other subsystems

Figure 2: Schematic diagram showing technical relationships between various reports

Illustrated in Figure 2 is a schematic diagram showing how the various technical reports within the project interact with one another, and where this report lies among them.

Notably, the technical content of this report was directly dependent on outputs from Reports 2 and 3, which were in turn dependent on content relating to Report 1.

1.2.3. Dependencies

Report 2: concrete and pump selection subsystem

The first group of dependencies relating to Report 2 concerned concrete properties, where information was needed to aid hopper design as well as material selection. However, given that only a basic information was needed (concrete density, approximate pH values, etc.), this did not pose a significant hurdle to this subsystem's design process

However, the second group, relating to pump selection, did. Initially during the design process of the Anaconduit, chassis and hopper design was initially done for an assumedly light (<25 kg), modular pump. Within this context, the scope of the hopper and chassis subsystem was to design a subsystem suitable to be handled ergonomically, and transported within a large van.

However, this changed significantly later in the design process, when the eventually selected pump was found to weigh 1200 kg, and a group decision was made to abandon modularity as a concept altogether.

The led to significant design changes of the Anaconduit, now needed to be suitable for **hauling by trailer**, and effectively redefining key constraints to the hopper and chassis subsystem. This is further documented in '1.3. Subsystem design process.'

Report 3: Hose and robotic nozzle

In comparison, dependencies relating to Report 3 were easier to manage. Dependencies were primarily guiding values, rather than constraints, such as pipe length, total subsystem weight, and other geometrical parameters.

In the initial stages of design, these factors were accounted for using formative, generous values during calculations. When they were subsequently solidified in Report 3, verification was done iteratively on already-selected components, and modifications made where relevant.

1.3. Technical subsystem design process

1.3.1. Design process flow chart

Figure 3: Flow chart detailing subsystem design process

1.3.2. Description of design process

Illustrated in Figure 3 is a detailed flowchart recording the design process of the trailer and hopper subsystem.

First, upon receiving the project brief from the client (Appendix A), a detailed set of design specifications were created, and an initial design proposal for the Anaconduit was produced.

Figure 4: Initial, modular concept design of the Anaconduit

This concept proposal for the Anaconduit consisted of a modular, easily linked pump and pipe unit, with a separate unit acting as an inlet. Designed to be handheld, this concept utilised modularity and ease-of-use as a selling point, with modularity allowing for flexibility in scaling over a wide range of site sizes.

Figure 5: Initial hopper and chassis subsystem

Within this, the hopper and chassis subsection (then called the 'inlet and chassis subsection') consisted of designing the platform for each modular unit to rest against when on the ground, a method for receiving concrete from the truck, and ensuring the system could be transportable by van.

At a high level, this meant researching into how machinery might interact with its environment, and designing methods to account for this.

With this, research was done regarding the geometry, verification and selection of a concrete hopper. This was then followed immediately by research and embodiment pertaining to the design of a chassis for a small, light piece of machinery.

1.3.2. Consideration and subsequent discarding of modularity concept

For most of the project, subsystem research assumed this modular design to be effectively locked, taking hopper and pump chasses design as far as the embodiment stage.

However, as noted in red in Figure 3, there was a major upheaval to this when the group collectively found that modularity would be technically unfeasible. Whilst this is recorded in more detail in Reports 1 and 2, the primary reason for this was that the peristaltic pump needed for the desired flow

rate was found to weigh approximately 1200 kg, compared to the 25 kg aim guided by the legal weight limit for free-hand carrying of workers (HSWA, 1974).

This weight change directly affected the hopper and chassis subsystem, as the Anaconduit would no longer be road-legal for van transport. Upon further research, it was decided to change the Anaconduit's transportability from "transport by van" to "transport by standard trailer."

This is noted in final Design specification No. 4.3.1.

"Sub-system must be able to be transported in an analogous manner of a standard trailer"

Subsequently, subsystem research switched from designing bespoke chasses, to selecting an OTS trailer suitable for use with the Anaconduit, and various design specifications had to be overwritten.

Additionally, with discarding the concept of modularity, Anaconduit was no longer aiming to be a product suitable for production at scale. This made it difficult to justify designing and making components in-house, as they could potentially incur large costs for marginal return.

The lasting impact this had on the hopper and chassis subsystem was that ordering components OTS was now of high priority, aiming to minimise needless capital costs.

To conclude, whilst this report aims to record the full development of this final, non-modular design, it is worth noting that much information within this process has been omitted.

1.3. Business report

In addition to technical elements relating to the hopper and trailer subsystem, this report also contains documentation relating to the role of Business Manager. Covering responsibilities, a record of related activities, and challenges faced within the role. This can be found upon finishing 'Section 9. Conclusion and evaluation of technical subsystem'.

2. Design specifications

2.1. Approach to Design Specifications

Figure 6: Flow diagram representing journey from project brief to sub-system design specifications

Figure 6 details the process by which subsystem-specific design specifications were created, starting from the initial project brief.

Guided by the methods outlined in Chapter 6 of Ulrich's book 'Product Design and Development' (Ulrich, et al., 2020), key customer needs (Appendix B) were identified qualitatively using the initial project brief (Appendices A) and conversations with the client. These generally took the form of quotes or statements, and were subsequently converted into a set of target specifications (Appendices C).

Then, upon completing initial concept ideation and technical research, a more detailed set of research-informed, full-system design specifications (Available in Report 1) were created. These

included factors such as legal codes that would have to be adhered to, as well as key performance benchmarks to be met for our product to be competitive.

This was followed by final concept selection, where the project was split into five distinct subsystems. Upon this, subsystem-specific, detailed sets of design specifications were then produced.

Customer need	Target specification	Full-system design	Sub-system design
		specification	specification
"The product should	The product shall be	The product shall	The product shall not
be of industry-	compliant with legal	adhere to regulations	exert a ground-
standard quality"	codes and/or	outlined in 'Eurocode	bearing pressure
	standards where	1 - Actions on	exceeding 150 kPa ¹
	relevant	structures'	

Table 1: Example developmental path of a customer need into sub-system design specification

Shown above Table 1 is an example for how an initially vague, qualitative customer need gradually evolves into a specific, quantifiable design specification.

-

¹ Informed by British Standards EN 1991-1-1:2002 (British Standards Institution, 2002)

2.2. Table of Subsystem Design specifications

Table 2: Detailed design specifications of the trailer and hopper subsystem

Ref	D/W ³	Description	Unit	Value	Verification activity	Reference ⁴	Source			
No. ²										
4.1.	Operat	Operational requirements and worksite considerations								
4.1.1.	D	System must be designed to be	-	-	Incorporated into	1.01, 1.02	Project Brief			
		deployed and used on a standard			design development					
		work site								
4.1.2.	D	Sub-system must be deployable	Pass/ Fail	-	Final product	1.08	Report 5			
		without aid of external power			specifications					
		source								
4.1.3.	D	While fully filled with concrete	kPa	≤150	Operation cycle study	1.12	Eurocode 1 ⁶ : Part 1			
		during operation, system must not			following methodology					
		exert a ground pressure of 150			outlined in Eurocode 1					
		kPa ⁵ with the assistance of								
		outrigger pads								

² Where the first digit '4' is in reference to this being the fourth report in reading order

³ Demands/Wishes

⁴ In reference to the Master Design Spec in Report 1

⁵ Tested in accordance with (Eurocode, 2004)

⁶ Eurocode 1: Actions on Structures (British Standards Institution, 2002)

4.1.4.	W	While fully filled with concrete	kPa	≤75	Operation cycle study	1.12	Eurocode 1: Part 1
		during operation, system must not			following methodology		
		exert a ground pressure of 75 kPa			outline d in Eurocode		
		with the assistance of outrigger			1		
		pads					
4.1.5.	D	Whilst Anaconduit is being used,	Characteristic	Optimise	Operation cycle study	1.13	Eurocode 1: Part 3
		system must not vibrate	values		using procedure		
		excessively in accordance with			detailed in Eurocode 1:		
		Eurocode 1: Part 3			Part 3: Section 3		
4.1.6.	D	Whilst deployed, system must not	A x B m	4 x 6	Final product	3.05	Project Brief
		take up a footprint larger than 4 x			specifications		
		6 m					
4.1.7.	D	Sub-system shall be managed,	No. people	3	Operation cycle study	3.02	Project Brief
		setup, and cleaned by a total of no					
		more than 3 people					
4.1.8.	D	Concrete must be received at a	Cm	≤188	Final product	3.05	Standard height of cement
		height not exceeding 188cm			specifications		truck chute as detailed in
							Project Brief
4.1.9.	D	Subsystem shall, wherever	-	-	Operation cycle study	1.03	Report 2
		possible, not encourage					
		segregation in the concrete					

4.1.10	D	Whilst in use, subsystem shall be	m³	0.5	Final product	1.07	Hand calculations using
		able to store at least 0.5 m ³ of			specifications		Report 1
		concrete					
4.2.	Health	and Safety					
4.2.1.	D	Whilst sub-system is being	Pass/Fail	EHSR ⁷	Risk assessment	1.13, 2.06	Section 6 of HSWA 1974 ⁸
		prepared for use, it should not,		guidelines			
		wherever possible, cause harm to					
		individuals in the area					
4.2.2.	D	Whilst sub-system is in use, it	Pass/Fail	EHSR	Risk assessment	2.07	Section 6 of HSWA 1974
		should not, wherever possible,		guidelines			
		cause harm to individuals in the					
		area					
4.2.3.	D	Sub-system must clearly display	Pass/Fail	EHSR	Incorporate into design	2.07	- Eurocode 1
		soil-bearing-pressure ratings in		guidelines			- Section 7 of LOLER 1998 ⁹
		concordance with Eurocode 1 and					- Section 7 of HSWA
		HSWA					
4.2.4.	D	Sub-system must clearly display	Pass/Fail	EHSR	Incorporate into design	2.07	- Eurocode 1
		system load bearing limits		guidelines			- section 7 of LOLER 1998

Essential Health and Safety Requirements (EHSR, 2015)
 Health and Safety Work Act 1974 (HSWA, 1974)
 Lifting Operations and Lifting Equipment Operations 1998 (LOLER, 1998)

4.2.5.	D	Sub-system must clearly display	Pass/Fail	EHSR	Incorporate into design	2.07	Section 28 of HSWA
		'do not sit', unless specifically		guidelines			
		designed for that purpose					
4.2.6.	D	Sub-system must be clearly	Pass/Fail	EHSR	Incorporate into design	2.07	Section 12 of HSWA
		marked to contain hazardous		guidelines			
		substances, and described as					
		heavy machinery					
4.2.7.	D	When in use, system must emit no	dB	≤90	Operation cycle study	2.07	Section 8 of NWR ¹¹ 1989
		more than 90 dB in noise level			using methodology		
					outlined according to		
					ISO 14000 ¹⁰		
4.3.	Transp	ort					
4.3.1.	D	Sub-system must be able to be	-	-	Final product	1.11	Chosen concept design
		transported in an analogous			specifications		
		manner of a standard 3.5 tonne					
		trailer					
4.3.2.	D	During transport, total system	kg	≤3500	Weighbridge	1.11	Maximum authorised
		must not exceed 3500 kg					trailer weight for standard

 $^{^{10}}$ ISO 14000: Environmental Management Standards (Morris, 2004) 11 Noise at Work Regulations 1989 (NWR, 1989)

							vehicle in accordance with RTA 1988 ¹²
4.3.3.	D	During transport, total system length must not exceed 7m (in the direction of road travel)	m	≤7	Final product specifications	1.11, 3.05	- Section 7 of TRVR 1986 ¹³
4.3.4.	D	During transport, total system must not exceed a width of 2.5m	m	≤2.5	Final product specifications	1.11, 3.05	Section 8 of TRVR 1986
4.3.5.	D	During transport, the lowest point of the system must have a minimum ground clearance of 160mm	mm	≥160	Final product specifications	1.11	Section 76 of TRVR 1986
4.3.6.	D	During transport, all components must be able to be physically secured	-	-	Operation cycle study	1.11, 2.07	Section 40A of RTA
4.4.	Cleanii	ng and maintenance					
4.4.1.	D	System must be cleaned after use using either pressurised water or air in under 60 minutes	Minutes	≤60	Operation cycle study	2.04	Benchmark cleaning procedures for a line pump (Putzmeister, n.d.) (Camfaud, n.d.)

Road traffic Act 1988 (RTA, 2021)
 The Road Vehicle Regulations (construction and use) 1986 (TRVR, 1986)

4.4.2.	D	Sub-system must be designed with	Months	≥6	Solution lifecycle	2.01, 2.04	Industry standard
		the intention of scheduled			calculations		recommendation (Medic,
		maintenance every 6 months					n.d.)
4.4.3.	D	Sub-system must be easily	-	-	Operation cycle study	2.01, 2.04	Section 9 of HSWA 1974
		disassembled for maintenance and					
		repair					
4.4.4.	D	Sub-system must be easily	Months	≥6	Operation cycle study	2.01	Section 9 of HSWA 1974
		disassembled for periodic					
		maintenance and repair					
4.4.5.	D	Sub-system must resist damage	Comparative	Qualitative	Materials analysis	2.01, 2.03	Report 1
		due to corrosion, exposure to			using Ashby charts and		
		concrete, weathering, and other			Granta Edupack		
					(ANSYS, 2023)		
4.4.6.	D	System shall not fail due to fatigue	Pass/Fail	Fatigue	Fatigue load analysis	2.01	Report 1
		within its lifetime of 10,000 hrs		analysis			
4.4.7.	D	The subsystem shall be designed	Pass/Fail	FEA	FEA analysis	2.02	
		not fail due to yielding		analysis			
4.5.	Manuf	facturing, Cost, Sustainability and Env	rironment				
4.5.1.	D	Sub-system assembly shall use	-	-	Incorporated into	1.03	Chapter 7 of Ulrich's
		standard parts and components			design development		textbook (Ulrich, et al.,
		where feasible					2020)

4.5.2.	W	Sub-system should not use	Comparative	Qualitative	Materials analysis	1.13	ISO 14000 guidelines
		components or materials that are			using Ashby charts and		
		not easily disposed of safely			Granta Edupack		
4.5.3.	W	Sub-system should be designed	Embodied	Minimise	Embodied carbon	1.13	ISO 14000 guidelines
		with materials that are	carbon		calculations		
		environmentally friendly	(kg.CO ₂)				
4.5.4.	W	Sub-system shall, wherever	£	Minimise	Detailed costing	4.01	Report 1
		possible, minimise manufacturing					
		cost					

2.3. Categories outlined design specifications

Shown Table 2 are the design specifications relating to the technical components in this report, created using the methodology outlined in Figure 6.¹⁴

Operations and requirements

A majority of specifications in this category were informed by Eurocode 1, as the subsystem, by nature, will constantly be interacting directly with the ground whilst active on a worksite.

Particularly integral to this report, a value for maximum ground bearing pressure was produced using the soil bearing pressure ratings for stiff clays, 150kPa, whilst a preferable limit of 75kPa corresponded to soft clays and salts. (British Standards Institution, 2002).

Other specifications in this category were guided by constraints set by other subsystems, as well as the project brief.

Health and safety

Specifications in this category were guided predominantly by HSWA and Eurocode guidelines.

Notably to the design embodiment, symbols and stickers need to be clearly displayed indicating potential hazards to the user to avoid health and safety risks.

Transport

Specifications found in this category relate exclusively to transporting the Anaconduit as a road-legal trailer. This pertains to its Master Design Specification reference:

1.11. System shall be able to be transported and stored as a standard trailer (Report 1)

As such, RTA and TRVR regulations served as key informing documents.

¹⁴ Customer needs, Target specification, and full-system design specifications served as key informing documents, and can be found in Appendix B, Appendix C, and Report 1 respectively.

Cleaning and maintenance

Constraints in this category relating to on-site cleaning were selected using values taken from industry-standard line pumps, and using them as a comparative measure. Whilst they are not hard limits, they pose suitable targets to aim for.

In regards to more periodic, long term maintenance and repair, HSWA guidelines associated with industrial trailer maintenance were used.

Manufacturing, Cost, Sustainability and the Environment

The primary challenge with this set of specifications was selecting metrics to measure them by. For example, specification **4.5.1.** could be described as simply common engineering practice, and even specification **4.5.3.**, measured quantitatively in the units of embodied carbon kg.CO₂, is difficult to approach (embodied carbon values for any material are highly unreliable depending on supply chain (Sergio Alvarez, 2016)).

This posed the difficulty of verifying whether they have been met, as setting benchmarks were at best, formative.

As such, these specifications served not as metrics to compare the final product solution against, but as guiding principles to assist during design development

Final Product Specifications and Solution Cycle Analysis

For certain specifications, 'in-house' verification activities were assigned. A description of these are as follows:

Final Product Specifications – A detailed, technical description associated with the final, fully developed product

Solution cycle Analysis – Taking a fully embodied prototype, the sub-system is put through a series of activities emulating its work environment. Measurements are taken from this, and used to inform further development

However, as these activities are dependent on having a physical prototype, they remain at the time of writing incomplete, to be done at a later stage in development

3. Technical Component: Hopper

Figure 7: CAD render of Anaconduit, with hopper highlighted in red

3.1. Justification

The use of hoppers in funnelling and moving concrete is a well-established, familiar industry procedure (Ding, 2004). Valued for their simplicity in both use and manufacture, they are a standard component of high market availability, and would be familiar to industry professionals (Merlin Industrial, n.d.) (Haarup, n.d.).

For these reasons, the use of a hopper was incorporated into funnelling and temporarily storing concrete within the Anaconduit.

3.2. Geometry

3.2.1. Shape

Figure 8: Commonly available hopper geometries (Mehos, n.d.)¹⁵

¹⁵ Whilst asymmetrical geometries are also occasionally used, they were not considered as they offer no technical advantages in regards to mass-flow, while being more difficult to manufacture and source (Schultz, 2021)

Shown in Figure 8 are a range of common hopper geometries. Wedge-shaped, transition, and chisel geometries were not considered due to geometrical constraints set by the pipe and robotic arm subsystem (Report 3), while a comparative study was done between the remaining two.

Table 3: Geometry comparison of conical and pyramidal geometries

Geometry	Advantages	Disadvantages
Conical	Less likely to instil turbulent flow	Less volume per unit height
	Less likely to cause segregation in	
	bulk solids	
Pyramidal	More volume per unit height	Higher tendency to cause
		segregation in bulk solids
		Difficult to clean, edges encourage
		material buildup

Illustrated in Table 3 is a qualitative comparison, using 'designing for mass-flow in bulk solids' as well as 'designing for laminar flow in fluids' as a guiding metric (Schultz, 2021), (Pirozzoli, 2018). With this, consultation was done with relevant design specifications (4.1.8., 4.1.9., 4.4.7.).

Ultimately, even with its lowered capacity for volume efficiency, the conical hopper was selected due to a better capacity for concrete handling, as well as cleaning.

3.2.2. Key dimensions and specifications

Figure 9: Schematic diagram showing key hopper geometries

Table 4: Key parameters in concrete hopper selection

Symbol	Parameter	Value	Source	Relevant design specifications
D	Major Diameter	≤2500	Maximum legal trailer width	4.3.4.
d	Outlet diameter (mm)	≥ 80	Constraint set by Report 2, bulk solid approximation (Amalsi, Jan. 24, 2023)	4.1.9.
θ	Hopper half angle (degrees)	60 ± 5	Industry rule of thumb using a bulk solid approximation (Amalsi, Jan. 24, 2023)	4.1.9.
h	Height (mm)	≤1500	Hand calculations (Appendix D)	4.1.8.
	Weight	Minimise	Design specification	4.3.2.
	Product specified holding volume (m³)	0.5 m ³	Constraints set by Report 2	4.1.10
	Cost (£)	Minimise	-	4.5.1., 4.5.4.
	Embodied Carbon (kg.CO ₂)	Minimise	Design specification	4.5.3.
	Embodied Energy (MJ)	Minimise	Design specification	4.5.3.

Based on this, a list of parameters was created to guide hopper selection.

A note regarding hopper angles:

In deriving maximum hopper angle, two approaches were taken. The first utilised the industry 'rule of thumb' (Amalsi, Jan. 24, 2023), producing a value of 60 ± 5 degrees, whilst the second used the assumption that concrete could be treated as a cohesive bulk solid.

Using the Jenike method (Jenike, 1961) with formative powder properties, this second approach produced a maximum hopper angle of 72 degrees was derived to prevent funnel flow.

Given that the rule of thumb produced a higher constraint, this was used as the final parameter constraint.

Notably, based on the findings of Report 2, concrete was also found to behave as a Newtonian fluid once moving, omitting the need of the Jenike method.

3.2.3. Selection from product market

Table 5: Hopper selection from online market

		Model					
		16		17		18	
Dimension	Benchmark	вст80	вст99	SBB 7	SBB-10	BB-7	BB-10
Major Diameter (mm)	≤2500	1250	1250	1230	1475	1250	1475
Base Diameter (mm)	≤2500	930	930	-	-	-	-
Outlet diameter (mm)	≥80	200	200	405	405	405	405
Hopper half angle (degrees)	60 ± 5	55	55	50	50	50	50
Height (mm)	≤1500	11	1160	1090	1170	1250	1475
Weight (kg)	Minimise	180	195	190	250	115	140
Volume (m³)	0.5	0.8	1.0	0.6	0.8	0.6	0.8
Cost (£)	Minimise	1115.59	1153.15	Awaiting quote	Awaiting quote	Awaiting quote	Awaiting quote
Material	-	Painted steel	Painted steel	Painted steel	Painted steel	Aluminium	Aluminium
Embodied Carbon (kg.CO ₂) ¹⁹	Minimise	360	390	380	500	1380	1680
Embodied Energy (MJ)	Minimise	6120	6630	6260	8500	24150	29400

¹⁶ https://www.rollawaycontainer.com/conical-concrete-bucket-central-unloading-rubber-hose-capacity-3900kg.html

17 https://mandbmag.ca/index.php/concrete-buckets/steel-buckets/upright-steel-buckets/

¹⁸ https://mandbmag.ca/index.php/concrete-buckets/aluminum-buckets/upright-aluminum-buckets/

¹⁹Approximated using embodied carbon values from textbook 'Data, Statistics, and Useful Numbers for Environmental Sustainability' (Benoit & Cremonini, 2021)

With this, hopper selection was done by comparing off-the-shelf (OTS) products against the defined parameters.

In total, ten models of concrete hoppers were considered. Whilst a full table can be found in Appendix E, the six models that satisfied the outlined constraints best are shown in Table 4, with green indicating the final selection, and orange indicating those disregarded.

Of these, three were disregarded due to relatively excessive weight, and two due to relatively high embodied energy and carbon. This left the final selection: the *Rollaway Container BCT80* model.

3.3. Selected component

Figure 10: Selected concrete hopper (Rollaway Container, n.d.)

Table 6: Selected Hopper Specifications

Model	ВСТ80	
Parameter	Value	Constraint
Major Diameter (mm)	1250	≤2500
Base dimeter (mm)	930	≤2500
Outlet diameter (mm)	200	≥ 80
Hopper half-angle (degrees)	55	60 ± 5
Height (mm)	1120	≤1500
Weight (kg)	180	-
Volume (m³)	0.8	0.5
Cost (£)	1115.59	-
Material	Painted steel	-
Embodied Carbon (kg.CO ₂)	360	Minimise
Embodied Energy (MJ)	6120	Minimise

^{*}Product also complies with the following: UNI EN ISO 12100, UNI EN 349, UNI ISO 8686, UNI EN 10027 and UNI EN 10204 standards

4. Technical component: Trailer

Figure 11: CAD render of Anaconduit, with trailer highlighted in red

4.1. Justification

As detailed before in the Introduction and Design Specification **4.3.1.**, the final design of the Anaconduit features the ability to be transported as a trailer.

Like hoppers, trailers are standard, common pieces of construction equipment, and as such easily available commercially.

Given this, there is little justification to manufacturing a new trailer in-house, as specialised manufacturers exist²⁰. Additionally, strict legal regulations in the manufacturing and use of such components would pose high barriers to in-house manufacturing²¹, further justifying ordering them OTS.

²⁰ Of which even make bespoke models to order. Bateson Trailers UK, for example (Bateson Trailers, n.d.)

²¹ Guided by the TRVR and RTA

4.2. Key dimensions and specifications

Figure 12: Schematic diagram showing key trailer dimensions

Table 7: Estimated weight of Anticonduit during transport

Component	Pump	Pipe and	Hopper	Outriggers ²²	Total
		nozzle			
Weight (kg)	1200	140	180	200	1720
Relevant report	Report 2	Report 3	Covered	Covered within	
			within this	this report	
			report		

-

²² Conservative limit from preliminary market study

Table 8: Key parameters in Trailer selection

Symbol	Parameter	Value	Source	Relevant design specifications
L	Length (mm)	≤7000	TRVR 1986	4.3.3.
w	Width (mm)	≤2500	TRVR 1986	4.3.4.
		≥1300	Pump dimensions (Report 2)	-
h	Bed height (mm)	≥160	TRVR 1986	4.3.5.
		≤760	Hand Calculation (Appendix D)	4.1.8.
LW	Maximum laden weight while in transport (kg)	≤3500	RTA 1988	4.3.2.
UW	Unladen weight (kg)	Minimise	-	4.3.2.
	Minimum load capacity (kg)	≥1720	Table 7	-
	Cost (£)	Minimise	-	4.5.1.
	Embodied Carbon (kg.CO ₂)	Minimise	ISO 14000	4.5.3.
	Embodied Energy (MJ)	Minimise	ISO 14000	4.5.3.
	Compatibility with outrigger selection	Qualitative	Selection process	-

Constraints driving trailer selection were set predominantly by RTA guidelines. These are listed in the subsystem design specifications, and again above.

The other key constraint was the trailer's ability to carry the Anaconduit without damage, and remaining road safe through the use of common securing methods (ropes, tie-downs, etc.). Using conservative values, preliminary estimates produced a minimum loading capacity of 1720 kg, with the breakdown shown in Table 7.

A preliminary note on Outriggers

In addition to transport, the selected trailer also had to support the Anaconduit whilst in use, i.e. filled with up to 0.5 m³ of concrete, an additional 1300kg.

Preliminary research indicated that the most feasible solution to this would be the addition of aftermarket, extendible outriggers, which would strengthen the supporting capacity of the Anaconduit whilst deployed.

As such, during component selection, *trailer selection was conducted in parallel with outrigger selection*, iteratively comparing models in each component for compatibility. This effectively produced a difficult-to-quantify selection parameter of *'compatibility with outriggers'* during trailer selection, and an analogous *'compatibility with trailer'* parameter during outrigger selection.

4.3. Trailer selection from product market

Table 9: Trailer selection from online market

		Model					
		00		1			
Parameter	Constraint	26 MD Plant	1264 General	0854 General	1064 General		
		<u>Trailer</u>	<u>Purpose Trailer</u>	Purpose Trailer	Purpose Trailer		
Length (mm)	≤7000	4220	5010	2500	4410		
Width	≥1300	1760	2300	1500	2300		
(mm)	≤2500						
Bed height (mm)	≥160	450	420	450	450		
Laden weight (kg)	≤3500	2600	2600	2000	2600		
Unladen weight (kg)	Minimise	500	545	400	490		
Load capacity (kg)	≥1720	2100	2055	1600	2110		
Cost (£)	Minimise	3050	3100	2600	3000		
Material	-	Galvanised Steel	Steel	Galvanised Steel	Galvanised Steel		
Embodied carbon ²³	Minimise (kg.CO ₂)	2000	1090	1600	980		
Embodied Energy	Minimise (MJ)	16000	17440	12800	15680		

In total, ten models of trailer were considered for the Anaconduit. A majority of these were sourced from Bateson Trailers UK (Bateson Trailers, n.d.), with others from other independent manufacturers. Whilst a full table can be found in Appendix F, Table 9 outlines the four best suited for the Anaconduit.

Of the ten initially considered models, six were immediately disregarded due to not meeting required specifications. One other was then disregarded due to being geometrically incompatible with the selected hopper.

²³ Approximated using embodied carbon values from textbook 'Data, Statistics, and Useful Numbers for Environmental Sustainability' (Benoit & Cremonini, 2021)

Figure 13 : Schematic diagram describing bed-height consideration

Of the remaining, the chosen model (indicated in green) was selected for two reasons. First, its functionally suitability, given its specificity of design for plant²⁴ transport, and second, its relatively high bed height, which allowed for more geometrical freedom in outrigger selection. Figure 13 illustrates this schematically

-

²⁴ In construction, plant typically refers to heavy machinery and large equipment (Go Construct, 2021)

4.4. Selected component

Figure 14: Final Trailer selection (Bateson Trailers, n.d.)²⁵

Table 10: Selected Trailer Specifications

Model	Bateson 26 MD Plant Trailer	
Parameter	Value	Constraint
Length (mm)	4220	≤7000
Width (mm)	1760	≥1300
		≤2500
Bed height (mm)	450	≥160
Laden weight (kg)	2600	≤3500
Unladen weight (kg)	500	Minimise
Load capacity (kg)	2100	≥1720
Cost (£)	3050	Minimise
Material	Galvanised Steel	-
Embodied carbon ²⁶	2000	Minimise (kg.CO ₂)
Embodied Energy	16000	Minimise (MJ)

Shown above is the selected plant trailer for the Anaconduit. It features a 2.6 tonne carrying capacity, as well as a collapsible rear wall. Designed for the transport of mini diggers, it can be easily altered for use in the Anaconduit.

²⁵ https://www.batesontrailers.com/product/26md-mini-digger-plant-excavator-trailer/

²⁶ Approximated using embodied carbon values from textbook 'Data, Statistics, and Useful Numbers for Environmental Sustainability' (Benoit & Cremonini, 2021)

5. Technical component: Outriggers and outrigger pads

Figure 15: CAD render of Anaconduit, with outriggers and outrigger pads highlighted in red

5.1. Justification

As noted prior, the trailer-hopper subsystem is responsible for ensuring that safety is maintained on the worksite whilst the Anaconduit is in use.

The key concern in this, in contrast to transport, was ensuring that the system could hold an additional 0.5 m³ of concrete without exceeding acceptable soil bearing pressure.

Table 11: Soil bearing pressure limits²⁷

Ultimate soil bearing pressure	Desired soil bearing pressure		
limit	limit		
<150 kPa	<75 kPa		

To this regard, it was decided that aftermarket outriggers would be added to the OTS trailer, recognised to be a common solution to this problem within the industry. (Interface, 2023) (Power-Packer, n.d.).

The verification for the need and subsequent specification of outriggers was conducted using an FBD and moment's analysis, with conservative assumptions where relevant. This is available in Appendix G.

This section records the selection of OTS aftermarket outriggers, as well as outrigger pads (pressure-spreading pads that held distribute weight across the ground).

_

²⁷ Taken directly from design specifications

5.2. Outriggers

5.2.1. Key specifications

Figure 16: Schematic diagram representing key parameters

Table 12: Key parameters in Outrigger selection

Symbol	Parameter	Value	Source	Relevant design specifications
	Weight (kg)	Minimise	-	4.1.1
	Bearing capacity (kN)	≥32	Appendix G	-
С	Clearance height (mm)	≥160	TRVR 1986	4.3.5.
h	Height (mm)	-	Compatible with trailer	4.1.8.
	Cost (£)	Minimise	-	4.5.1.
	Embodied Carbon (kg.CO ₂)	Minimise	ISO 14000	4.5.3.
	Embodied energy (MJ)	Minimise	ISO 14000	4.5.3.
	Compatibility with outrigger selection	Qualitative	Selection process	-

^{*}Note the qualitative 'Compatibility with outrigger selection', that reflects the in-tandem selection process that outriggers and trailers had to be done in

In selecting aftermarket outriggers, the primary aim was trailer-compatibility. As such, strict geometrical constraints were not produced, other than ensuring a retracted clearance height of ≥160mm.

The reason for this was the difficulty of producing homogenous constraints across different types of outriggers. For example, an outrigger may be either bottom-mounted, or side mounted. These two types would be defined by different geometries, and as such considered independently. A similar thing can be said for swing-out outriggers vs folding, or hydraulic vs manual.

In addition to the in-tandem trailer and outrigger selection process, this meant that key parameters in outrigger selection were relatively lax, as reflected in Table 12.

5.2.2. Outrigger selection from product market

Table 13: Outrigger selection from online market

		Model				
			28	29		30
		Semi-trailer	Semi-trailer outrigger Standard outrigger		Hydraulic outrigger system < 14000 lbs.	
Parameter	Constraint	2010-18	3510000265	SQ2819F-G1	Round legs	Square legs
Weight		33.11	47.63	100 per leg	75	60
Bearing capacity	≥32 kN per	71 kN	71 kN	25 tons per	62.3 kN	62.3 kN
	leg			leg lifting		
				50 tons		
				static		
Height from fixing	≥140 mm	0	0	0	535	429
to retracted base						
Extended length		457	635	840	1173	1334
Span (if relevant)		-	-	-	2081	2081
Cost (£)	Minimise	Awaiting	Awaiting	90 per leg	-	-
		quote	quote			
Material		Stainless	Stainless	Stainless	Stainless	Stainless
		steel	steel	steel	steel	steel
Embodied carbon	Minimise	165	235	500	375	300
31	(kg.CO₂)					
Embodied Energy (MJ)	Minimise	2904	4191	8800	6600	5280
Notes		Side Moun	ted ISO 9001	Side	Rottom r	l nounted,
Notes		Side Mounted, ISO 9001 certified		mounted ECE ³² certified	ISO9000 certified	
				certified		

In total, nine outrigger models were compared across the online market, specifically selecting options from reputable, certified manufacturers. Whilst a full table of this can be found in Appendix H, the five best models are shown in Table 13. Orange indicates factors that removed products from consideration, while green indicates the selected product.

²⁸ https://www.powerpackerus.com/hydraulic-cylinders/stabilization-truck-outriggers/standard-hydraulic-stabilization-legs/

²⁹ https://www.alibaba.com/product-detail/Truck-Trailer-Parts-Heavy-Duty-StLanding 1601122119796.html

³⁰ https://www.powerpackerus.com/hydraulic-cylinders/stabilization-truck-outriggers/hydraulic-outrigger-stabilizers/

³¹ Approximated using embodied carbon values from textbook 'Data, Statistics, and Useful Numbers for Environmental Sustainability' (Benoit & Cremonini, 2021)

³² Economic Commission of Europe (Economic Commission for Europe, n.d.)

During selection, all models were rated well above the needed bearing capacity of 32 kN per leg, with even the lowest-rated model designed for up to 62 kN per leg. As such, selection was primarily guided by minimising geometric and environmental factors, as well as weight.

Of the five best options, two were disregarded due to mounting height posing a limiting factor to trailer selection. (Being bottom mounted, they need a larger bed clearance compared to sidemounted options)

Of the remaining, selection was done by comparing embodied carbon and energy values. This produced the *PowerPacker 2010-18* (Power-Packer, n.d.) as the best solution.

5.3. Outrigger pads

5.3.1. Key specifications

Table 14: Estimated weight of physical components in the Anaconduit during use

Component	Pump	Pipe and	Hopper	Trailer ³³ Outriggers ³		Concrete	Total
		nozzle					
Weight (kg)	1200	140	180	820	200	1300	3840
Relevant	Report 2	Report 3	Covered	Covered	Covered	Design	
report			within this	within	within this	spec	
			report	this	report	4.1.10.	
				report			

³³ Conservative limit from preliminary market study

³⁴ Conservative limit from preliminary market study

Table 15: Key parameters in outrigger pad selection

Symbol	Parameter	Value	Source	Relevant design specifications
А	Area (m²)	≥0.25	75 kPa soil bearing	4.1.3., 4.1.4.
	Area (m x m)	0.5 x 0.5	limit assumption,	
	oa (x)		Conservative	
			estimate using	
			Weight of major	
			components	
			(Appendix I)	
	Bearing capacity	≥2000	Conservative	4.1.3., 4.1.4.
		22000	estimate using	4.1.3., 4.1.4.
	(kg)			
			Weight of major	
			components	
			(Appendix I)	
	Cost (£)	Minimise	_	4.5.1.
	COST (L)	IVIIIIIIISE	_	7.3.1.
	Embodied Carbon	Minimise		4.5.3.
	(kg.CO ₂)			
	Embodied Energy	Minimise		4.5.3.
	(MJ)			

In addition to outriggers, pads were also selected from the online market. Required specifications were guided with the use of conservative FBD and moment calculations, detailed in Appendix I.

5.3.2. Outrigger Pad selection from product market

Table 16: Outrigger Selection from Online market\

		Model		
		35	36	37
Parameter	Constraint	500 x 500: IP-	500 x 500: IP-	500 x 500: IP-57096
		72001	72002	
Bearing	≥4	15	15	15
capacity				
(tonnes)				
Area (m²)	≥0.25	0.25	0.25	0.25
i.e. square of	≥0.5 m	0.5	0.5	0.5
length				
Height (m)	Minimise	0.04	0.04	0.04
Weight (kg)	Minimise	9.90	9.90	10.50
Cost (£)	Minimise	65.77	80.26	76.76
Material	-	High mol weight	High mol weight	Heavy duty UHMW
		polyethylene	polyethylene	polyethylene
Embodied	Minimise	29.7	29.7	31.5
carbon (kg.CO ₂)				
38				
Embodied	Minimise	544.5	544.5	577.5
Energy (MJ)				
Notes			Final selection	

³⁵ https://www.outriggerpads.co.uk/product/500x500x40-eco-lift-outrigger-pad/

³⁶ https://www.outriggerpads.co.uk/product/500x500x40-hi-viz-outrigger-pad/

³⁷ https://www.outriggerpads.co.uk/product/500x500x40-premium-outrigger-pad/

³⁸ Approximated using embodied carbon values from textbook 'Data, Statistics, and Useful Numbers for Environmental Sustainability' (Benoit & Cremonini, 2021)

Of the ten outrigger pads considered for use with the Anaconduit (full table in Appendix J), the three best-suited are shown above.

Outrigger pads are an extremely simple, standard piece of equipment. As such, there proved to be little variance in product specifications across the market regarding bearing capacity, size, and price.

Consequently, key determining factors during selection were embodied carbon, embodied energy, and weight. Accounting for a safety factor, products that were well above minimum bearing capacity (that were on balance heavier and more expensive) were disregarded, with the final chosen product being that with the least embodied carbon.

5.4. Selected Components

Outriggers

Figure 17: final outrigger selection (Power-Packer, n.d.)³⁹

Table 17: final outrigger specifications

Model	Power-Packer standard outrigger: 2010-18		
Model	Value	Constraint	
	33.11	Minimise	
Bearing capacity	71 kN	≥32 kN per leg	
Height from fixing to retracted	0	≥140 mm	
base			
Extended length	457	Compatible with Trailer	
Cost (£)	Awaiting quote	Minimise	
Material	Stainless steel	-	
Embodied carbon ⁴⁰	165	Minimise (kg.CO ₂)	
Embodied Energy (MJ)	2904	Minimise	
Notes	Side Mounted, ISO 9001 certified	-	

^{*}Product also complies with ISO 9001

³⁹ https://www.powerpackerus.com/hydraulic-cylinders/stabilization-truck-outriggers/standard-hydraulic-stabilization-legs/

⁴⁰ Approximated using embodied carbon values from textbook 'Data, Statistics, and Useful Numbers for Environmental Sustainability' (Benoit & Cremonini, 2021)

Outrigger pads

Figure 18: Selected Outrigger Pad (Outrigger Pads, n.d.) 41

Table 18: Selected outrigger pad specifications

	Model	Bearing Capacity (tonnes)	Area (m²)	Thickness (m)	Weight (kg)	Material	Embodied carbon (kg.CO ₂)	Embodied energy (MJ)	Cost (£)
I	P-72002	15	0.25	0.04	9.90	High Molecular weight Polyethylene	29.7	544.5	80.26
C	onstraint	4	≥0.25	-	Minimise	-	Minimise	Minimise	Minimise

^{*}Product also complies with the following: ISO 527, ISO 868, ISO 15527, ASTM D1505, ASTM D3418

-

⁴¹ https://www.outriggerpads.co.uk/product/500x500x40-hi-viz-outrigger-pad/

6. Joints, transport attachments and Displays

6.1. Joints

Outriggers-to-trailer

Figure 19: Example of nut and bolt joint

To join the outriggers to the trailer, all four legs can be simply bolted to the chassis, as noted in their product specifications (Power-Packer, n.d.).

A simple workshop procedure, at an estimated $\underline{\texttt{£38}}$ hourly rate in Bath (hamuch.com, 2024) and one hour per leg, the outrigger-trailer interface is estimated to cost £152.

Hopper-to-trailer

Figure 20: Example of lashing chains in use (Cottinham, n.d.)

To secure the hopper to the trailer, two forms of joining were considered. The first was to join them permanently through workshop processes such as welding or brackets.

However, such a process could potentially hinder efforts to conduct maintenance on the hopper, as it would be difficult to disengage from the trailer.

This led to the selected joining method - the use of lashing chains.

Traditionally used to secure large vehicles to trailers, lashing chains are easily engaged and disengaged by twisting the central load binder. This would allow for the hopper to be both easily secured to the trailer, as well as loosened for maintenance, cleaning, or work-site preference (LES, n.d.).

Assuming that three chains would be needed to restrict movement of the hopper, at $\underline{£76.24}$ apiece, the hopper-trailer interface is estimated to cost £228.72 (the Ratchetshop, n.d.).

Pump-to-Trailer

Figure 21: Pump CAD, with holes for bolting/joining annotated

As the selected pump is designed to be bolted to a flat surface (Report 2), this interface would be managed by bolting the pump directly to the trailer bed.

At an estimated $\underline{£38}$ hourly rate in Bath (hamuch.com, 2024) and an assumption of six hours needed for this process (Drilling, cleaning, etc.), this interface is estimated to cost £228.

However, it should be noted that whilst this was the selected joining method, it could potentially compromise the bearing capacity of the trailer, as drilling holes would create stress concentration regions within its structure (Axsom, 2022).

As such, a potential point of future design development would be to design a bespoke pump chassis, which the pump is first bolted onto, before then being mounted onto the trailer. Unfortunately, given the time constraints within this project as well as unforeseen delays in pump selection, this chassis has not been designed, and should be revisited later.

Hopper to pipe

The final major component interface pertaining to the trailer-hopper subsystem is the interface between the hopper outlet, and the hose and robotic arm subsystem. This was done by augmenting the hopper outlet, adapting the diameter to match that of the hose. For more detail, refer to Report 3.

6.2. Transport securing components

For the Anaconduit to be secured during transport, certain items are needed. These are listed here, with the identification of suitable securing methods guided by industry recommendation (Robertson, 2023).

Figure 22: Trailer tarpaulin (Amazon, n.d.)

Figure 23: Heavy-duty ratchet straps (WebEX Supply, n.d.)

Figure 24: Heavy-duty 18mm synthetic rope (Rope Services UK, n.d.)

Table 19: Components associated with Anconduit transport

Component	Est. Number needed	Est. total Cost (£)		
Tarp	4 x 3 m	130		
Heavy duty ratchet	4	28		
straps				
Rope	40m	100		
Total	-	258		

First, physical subsystems of the Anaconduit (pipes, robotics, hopper...) would be secured to the trailer using heavy duty ratchet straps. This would prevent damage from sudden, jerking movements associated with road travel.

Next, a protective, waterproof tarp would be placed on top of the Anaconduit, secured in place with the use of 18mm synthetic rope. This protects the Anaconduit from unfavourable weather, sun damage, and flying debris.

For these components, a detailed market comparison was not conducted as they are cheap, standard, and mass-produced. However, to aid costing, an average cost was found by comparing similar components across the market, with a full list available in Appendix K.

In total, purchases associated with the securing of Anaconduit during transport were estimated at £258.

6.3. Displays

Operating as a piece of construction equipment, various stickers and displays would have to be placed on the Anaconduit to remain concordant with industry health and safety guidelines.

Figure 25: Trailer and hopper subsystem: label and display orientation

Figure 25 indicates where each display within the trailer-hopper subsystem would be placed, with each number corresponding to a particular sign.

In accordance with HSWA, labels and signs pertaining to safety must be "Obviously displayed" (HSWA, 1974). Whilst the suggested placements above attempt to reflect this, they should be reassessed upon physical embodiment of the Anaconduit, e.g., verifying that signs are close to eyelevel, easy to see at distance, etc.

Note: For each display, the guidelines that they pertain to have been noted within the figure captions.

	BEAR	ING	
	VALUE		
TYPE OF SOIL	(kPa)	T/sqm	ACTION
Dense gravel or dense sand and		>61	SAFE WITH DEPLOY OF
gravel	>600		OUTRIGGERS
Dense dense gravel or medium dense		20-61	SAFE WITH DEPLOY OF
sand and gravel	200-600		OUTRIGGERS
		20	SAFE WITH DEPLOY OF
Loose gravel or loose sand and gravel	<200		OUTRIGGERS AND PADS
		>300	SAFE WITH DEPLOY OF
Compact sand	>300		OUTRIGGERS AND PADS
		10-30	SAFE WITH DEPLOY OF
Medium dense sane	100-300		OUTRIGGERS AND PADS
		30-61	SAFE WITH DEPLOY OF
Very stiff boulder clays and hard clays	300-600		OUTRIGGERS AND PADS
		15-30	SAFE WITH DEPLOY OF
Stiff clays	150-300		OUTRIGGERS AND PADS
Firm clays	75-150	8-15	NOT SUITABLE FOR PLANT
Soft clays and salts	<75	8	NOT SUITABLE FOR PLANT
Very soft clays and salts	-	-	NOT SUITABLE FOR PLANT

Figure 26: Display of soil bearing pressure ratings: In concordance with EHSR, Eurocode 1 and HSWA guidelines⁴²

_

 $^{^{42}}$ Made with values taken directly from BS 8004 in accordance with Eurocode 1 (British Standards Institution, 2002)

THIS PIECE OF MACHINERY IS EQUIPPED FOR LOADS OF UP TO 1.5 TONNES

Figure 27: Display of system load bearing limit: In concordance with EHSR, Eurocode 1 and HSWA guidelines

Figure 28: LEFT: "Do not sit" sign (Keysigns, n.d.), in concordance with EHSR guidelines; RIGHT: "Hazardous substances" sign (hazard signs, n.d.), in concordance with EHSR and HSWA guidelines

Figure 29: "Hazardous substances" sign (Seton, n.d.), in concordance with EHSR and HSWA guidelines

Regarding costing, these displays would be made in-house. As such, while costs associated with them would be marginal compared to the total subsystem cost, a formative value of £ 20 per display has been used in the final detailed costing of the subsystem.

7. Subsystem costing

7.1. Detailed costing table

Table 20: Detailed costing of trailer and hopper subsystem

ly by retailer						
not available, ave	erage taken	as estima	ie			
Description / model	Quantity	Total cost	£ per unit	Unit	Total Embodied Carbon (kg.CO ²)	Total Embodied Energy (MJ)
	1	Ma	ain comp	onents		
<u>BCT80</u>	1	1115.59	1115.59	-	360	6120
Bateson 26MD Plant Trailer	1	3050.00	3050.00	-	2000	16000
Power-Packer standard outrigger: 2010- 18	4	862.67	215.67	-	660	11616
		5028.26			3020	33736
		Joir	ts and pr	ocesses	5	
Lashing chains	3	228.72	<u>76.24</u>	-	1	19
Nut and bolt	4	152.00	<u>38.00</u>	hour	negligible	negligible
Nut and bolt	6	228.00	<u>38.00</u>	hour	negligible	negligible
		608.72			1	19
	Tra	nsport an	d work-si	te relat	ed components	S
<u>IP-72002</u>	4	321.04	<u>80.26</u>	-	119	2178
-	1	129.69	129.69	-	negligible	negligible
-	4	28.17	7.04	-	negligible	negligible
-	40	100.80	2.52	m	20	710
		579.70			20	710
	Description / model BCT80 Bateson 26MD Plant Trailer Power-Packer standard outrigger: 2010- 18 Lashing chains Nut and bolt Nut and bolt IP-72002	not available, average taken Description / model	Description / Quantity Total cost	Description / Quantity Total f per unit	Description / Quantity Total f per unit Unit	Description / Quantity Total £ per unit Unit Embodied Carbon (kg.CO²)

				Sig	ns and d	isplays		
_		-	5	100.00	20.00	No. signs	negligible	negligible
Total				100.00				

^{*}Note: For a detailed breakdown on sources for cost values, refer to Appendix K

In costing the subsystem, several assumptions were made. For standard items such as rope, tarps and chains, which have little product-to-product variance, averages were calculated using values from the online market.

Costs associated with machining were based the assumption of outsourcing them to workshops, using standard rates around the city of Bath, England. As such, if these processes were to be done inhouse, they would be significantly cheaper.

Similarly, costs associated with signs and displays were based on a formative value of £20 per sign, introducing another area of uncertainty.

The largest uncertainty within costing was in aftermarket outriggers. At the time of writing, the retailer had not provided a quote, and as such an estimation had to be made using the cost of other similarly designed products. These values ranged between £200 and £3000 per unit, producing a large variance to provide a reliable estimate. Currently estimated at £862 (13% of total subsystem cost), the true cost of these outriggers could affect the true subsystem cost significantly.

Other assumptions related to embodied carbon and energy. For most components, it was assumed that only one material was used (for example, the trailer was assumed to be made completely of galvanised steel), for ease of calculation. This introduced a level of error, but allowed a useful metric of product comparison.

7.2. Costing summary

Table 21: Subsystem cost summary

TOTAL SUBSYSTEM COST	
Monetary (£)	6316.67
Embodied Carbon (kg.CO ²)	3041.18
Embodied energy (MJ)	34464.94

In total, the trailer and hopper subsystem is estimated to cost a total £6316.67.

Of this cost, £5028.26 (80%) is attributed to purchasing main subsystem components: an OTS hopper, trailer, and four aftermarket outriggers. Of the remaining, £608.72 (10%) is attributed to joining and workshop costs, £579.70 (9%) to transportation-related components, and £100 (1%) to signs and displays.

The subsystem contains approximately 3000 kg.CO² of carbon, and 34000 MJ in embodied energy.

8. Verification against design specifications

Table 22: Verification of subsystem against design specifications

Ref	D/W ⁴⁴	Description	Unit	Value	Verification activity	Status	Source / Notes			
No. ⁴³										
4.1.	Operational requirements and worksite considerations									
4.1.1.	D	System must be designed to be	-	-	Incorporated into design	Met	Incorporated into			
		deployed and used on a standard work			development		design embodiment			
		site								
4.1.2.	D	Sub-system must be deployable	Pass/ Fail	-	Final product	Met				
		without aid of external power source			specifications					
4.1.3.	D	While fully filled with concrete during	kPa	≤150	Operation cycle study	Met	Use of outriggers and			
		operation, system must not exert a			following methodology		outrigger pads			
		ground pressure of 150 kPa ⁴⁵ with the			outlined in Eurocode 1					
		assistance of outrigger pads								
4.1.4.	W	While fully filled with concrete during	kPa	≤75	Operation cycle study	Met	Use of outriggers and			
		operation, system must not exert a			following methodology		outrigger pads			
					outlined in Eurocode 1					

 $^{^{43}}$ Where the first digit '4' is in reference to this being the fourth report in reading order

⁴⁴ Demands/Wishes

⁴⁵ Tested in accordance with (Eurocode, 2004)

		ground pressure of 75 kPa with the					
		assistance of outrigger pads					
4.1.5.	D	Whilst Anaconduit is being used,	Characteristic	Optimise	Operation cycle study	Blocked	Blocked by operation
		system must not vibrate excessively in	values		using procedure detailed		cycle study
		accordance with Eurocode 1: Part 3			in Eurocode 1: Part 3:		
					Section 3		
4.1.6.	D	Whilst deployed, system must not take	AxBm	4 x 6	Final product	Met	Incorporated into
		up a footprint larger than 4 x 6 m			specifications		constraints during
							component selection
4.1.7.	D	Sub-system shall be managed, setup,	No. people	3	Operation cycle study	Blocked	Blocked by operation
		and cleaned by a total of no more than					cycle study
		3 people					
4.1.8.	D	Concrete must be received at a height	Cm	≤188	Final product	Met	Incorporated into
		not exceeding 188cm			specifications		constraints during
							component selection
4.1.9.	D	Subsystem shall, wherever possible,	-	-	Operation cycle study	Blocked	Blocked by operation
		not encourage segregation in the					cycle study
		concrete					
4.1.10	D	Whilst in use, subsystem shall be able	m³	0.5	Final product	Met	Hopper selection
		to store at least 0.5 m ³ of concrete			specifications		within report
4.2.	Health	and Safety					

4.2.1.	D	Whilst sub-system is being prepared for	Pass/Fail	EHSR ⁴⁶	Risk assessment	Blocked	Blocked by creation
4.2.1.	U	writist sub-system is being prepared for	PdSS/FdII	ЕПЭК	RISK assessment	Вюскей	Blocked by creation
		use, it should not, wherever possible,		guidelines			of risk assessment
		cause harm to individuals in the area					
4.2.2.	D	Whilst sub-system is in use, it should	Pass/Fail	EHSR	Risk assessment	Blocked	Blocked by creation
		not, wherever possible, cause harm to		guidelines			of risk assessment
		individuals in the area					
4.2.3.	D	Sub-system must clearly display soil-	Pass/Fail	EHSR	Incorporate into design	Met	'Displays' section
		bearing-pressure ratings in		guidelines			within report
		concordance with Eurocode 1 and					
		HSWA					
4.2.4.	D	Sub-system must clearly display system	Pass/Fail	EHSR	Incorporate into design	Met	'Displays' section
		load bearing limits		guidelines			within report
4.2.5.	D	Sub-system must clearly display 'do not	Pass/Fail	EHSR	Incorporate into design	Met	'Displays' section
		sit', unless specifically designed for that		guidelines			within report
		purpose					
4.2.6.	D	Sub-system must be clearly marked to	Pass/Fail	EHSR	Incorporate into design	Met	'Displays' section
		contain hazardous substances, and		guidelines			within report
		described as heavy machinery					
4.2.7.	D	When in use, system must emit no	dB	≤90	Operation cycle study	Blocked	Blocked by operation
		more than 90 dB in noise level			using methodology		cycle study

⁴⁶ Essential Health and Safety Requirements (EHSR, 2015)

4.3.	Transpo D	Sub-system must be able to be transported in an analogous manner of a standard 3.5 tonne trailer	-	-	outlined according to ISO 14000 ⁴⁷ Final product specifications	Met	Trailer selection within report
4.3.2.	D	During transport, total system must not exceed 3500 kg	kg	≤3500	Weighbridge	Blocked	Whilst theoretically met, verification activity incomplete
4.3.3.	D	During transport, total system length must not exceed 7m (in the direction of road travel)	m	≤7	Final product specifications	Met	Trailer selection within report
4.3.4.	D	During transport, total system must not exceed a width of 2.5m	m	≤2.5	Final product specifications	Met	Trailer selection within report
4.3.5.	D	During transport, the lowest point of the system must have a minimum ground clearance of 160mm	mm	≥160	Final product specifications	Met	Trailer and outrigger selection within report
4.3.6.	D	During transport, all components must be able to be physically secured	-	-	Operation cycle study	Met	'Transport securing components' section within report

_

⁴⁷ ISO 14000: Environmental Management Standards (Morris, 2004)

4.4.	Cleanin	ng and maintenance					
4.4.1.	D	System must be cleaned after use using either pressurised water or air in under 60 minutes	Minutes	≤60	Operation cycle study	Blocked	Blocked by operation cycle study
4.4.2.	D	Sub-system must be designed with the intention of scheduled maintenance every 6 months	Months	≥6	Solution lifecycle calculations	Blocked	Solution lifecycle not yet considered at time of writing
4.4.3.	D	Sub-system must be easily disassembled for maintenance and repair	-	-	Operation cycle study	Blocked	Blocked by operation cycle study
4.4.4.	D	Sub-system must be easily disassembled for periodic maintenance and repair	Months	≥6	Operation cycle study	Blocked	Blocked by operation cycle study
4.4.5.	D	Sub-system must resist damage due to corrosion, exposure to concrete, weathering, and other	Comparative	Qualitative	Materials analysis using Ashby charts and Granta Edupack (ANSYS, 2023)	Met	All selected components are designed to relevant standards
4.4.6.	D	System shall not fail due to fatigue within its lifetime of 10,000 hrs	Pass/Fail	Fatigue analysis	Fatigue load analysis	Blocked	Fatigue load analysis not conducted at time of writing
4.4.7.	D	The subsystem shall be designed not fail due to yielding	Pass/Fail	FEA analysis	FEA analysis	Blocked	FEA not conducted at time of writing

4.5.	Manufacturing, Cost, Sustainability and Environment								
4.5.1.	D	Sub-system assembly shall use	-	-	Incorporated into design	Met	-		
		standard parts and components where			development				
		feasible							
4.5.2.	W	Sub-system should not use components	Comparative	Qualitative	Materials analysis using	Blocked	Not yet considered at		
		or materials that are not easily			Ashby charts and Granta		time of writing		
		disposed of safely			Edupack				
4.5.3.	W	Sub-system should be designed with	Embodied	Minimise	Embodied carbon	Met	Component selection		
		materials that are environmentally	carbon (kg.CO ₂)		calculations		throughout design		
		friendly							
4.5.4.	W	Sub-system shall, wherever possible,	£	Minimise	Detailed costing	Met	Component selection		
		minimise manufacturing cost					throughout design		

With the use of the initial subsystem product specifications, this section records the verification of the trailer and hopper subsystem at present.

Where relevant, notes have been made regarding how particular specifications have been met, unmet, or blocked.

Notably, most blocked specifications are as such due to being dependent on conducting an operation cycle study of a physical, fully embodied prototype. These have been indicated in orange.

Regarding this, actions to be visited at later date would be to create a detailed methodology for the operation cycle study, and to conduct a risk assessment. Using these two documents in tandem with the design specifications would allow for a more quantitative mode of verification.

Aside from this, specifications that **could have** been verified but have not currently due to time constraints are indicated in yellow. These relate to verification activities that such as FEA, fatigue load analysis, and solution lifecycle analysis, and represent immediately actionable steps.

9. Conclusion and evaluation of technical subsystem

9.1. Evaluation and reflection

Overall, the current technical solution of the trailer and hopper subsystem satisfactorily meets the functional, legal, and technical needs of the Anaconduit.

Comprised in majority of OTS components and utilising simple joining processes, the subsystem solution takes advantage of existing industry solutions, integrating them into a functioning, intuitive whole.

Whilst it is noted that several challenges and inefficiencies were faced during the design of this subsystem, they were considered and accounted for when possible, and where not, noted for future reference.

A reflection on the topic of in-house manufacturing

With the current design of the Anaconduit, the use of bespoke, custom-made components within the subsystem was difficult to justify.

With a combination of stringent industry standards, as well as an already active, wide market of suitable industry components, it would have been economically inefficient to create parts in-house as opposed to simply ordering them from established retailers.

The decision to use an OTS hopper, trailer, and outriggers within the subsystem reflect this. With strict legal codes surrounding both construction and road transport, to design these components inhouse with adequate specifications would have incurred significant financial and logistical costs for marginal efficiency gains.

In addition to this, based on the team's market research, building a business around the manufacture and sale of the Anaconduit was assessed to be non-viable. The final business proposal reflects this, modelled around renting out a small number of Anaconduits on a hire-to-hire basis. 48

With only a small number needed to fulfil this proposal (with just eight units needed two years downstream), in-house design and manufacture was further disincentivised, as to do so would incur high set-up costs (tooling, moulds, etc.), without the benefits of economical scaling.

⁴⁸ Refer to Commercial viability report for more information.

Limitations to the design process

Noting the aforementioned points, it should also be acknowledged that even with the benefits of using OTS components and solutions, certain limitations are imposed by this.

Firstly, in the use of OTS parts, certain constraints were imposed on design, as embodiment was limited by product availability. For example, the hopper was not fully optimised for angle, height, or weight efficiency, as selection was limited by retailers. In a similar manner, trailer geometry was not optimised for storage, holding volume, or weight, and outrigger mounting for structural integrity. These all posed potential sources of inefficiency that could be revisited at a later date.

Secondly, by embodying a subsystem around the use of already available components, there is a possibility that creativity was restricted during the design process, and that more novel, unique design concepts were never considered. As such, there is a chance that the opportunity for more commercially viable designs were missed.

Sub-system related challenges

Finally, regarding the 'functional' position this subsystem holds in relation to the Anaconduit as a whole, heavy, unforeseen time constraints were imposed during the design process, as certain activities were blocked by actions relating to other subsystems. Compared to others, this subsystem was particularly affected as it was heavily dependent on not only the pump subsystem, but also the hose and robotics.

Most notably, for much of the project, chassis design was researched and explored for a presumedly light (<25 kg) and handheld modular pump. It was not until very late that this was deemed unfeasible, and as a result design concepts had to change significantly in a short time to account for a much larger, non-modular, 1200 kg ton pump.

Retrospectively, whilst this posed a significant hurdle, this could not have been avoided given the interlinked nature of the subsystems, as modularity had to be fully explored before being deemed unfeasible. As such, whilst depth of analysis was limited due to this timeframe, they pose key points for future work.

9.2. Future work

With all this noted, there are several key points to take away for future reference.

Firstly, the current approach to the Anaconduit trailer and hopper subsystem was guided heavily by the Anaconduit being designed for one-off/small batch manufacture. As a result, OTS components were used wherever possible in the interest of economic efficiency.

As a result, if the Anaconduit were to be mass-produced in the future, this subsystem would benefit from being revisited, as in-house, bespoke component manufacturing could become economically viable. Particularly, the design of a custom trailer stands to be considered, as at present, it takes up £3050: nearly 50% of total subsystem cost.

Secondly, should the design proposal of this subsystem be taken further, a structural analysis of relevant components within the subsystem is highly recommended. This could take the form/combination of a Finite Element Analysis (FEA), fatigue cycle analysis, or workshop testing. Particularly, a structural analysis of the aftermarket outriggers whilst deployed, and of their mountings, are highly recommended.

Finally, in the future, a risk assessment should be conducted relating to this subsystem during its process cycle (e.g. 'failure mode, effects, and criticality analysis'). This could then be used in tandem with the verification methods outlined in the subsystem design specifications to help assess the safety of the subsystem whilst both in use, and in transport.

Figure 30: CAD render of Anaconduit, with relevant subsystem coloured red

(end of technical section of report)

Business report

Overview

Briefly, this section of the report covers content relating to my role as the business manager of the group.

The first, relatively brief subsection identifies and defines the responsibilities associated with my role, providing context to the rest of the report.

The second subsection serves as a record of general, high level tasks associated with research and report-writing, such as allocation of tasks, deadline management, and proofreading.

The third, most significant subsection records the challenges faced during my role as business manager, as well as how I accounted for them throughout the project.

And finally, the business report concludes 'Summary and key takeaways', noting important points of reflection for future projects, as well as personal recommendation for how I would approach this role if I were to reprise it.

Key responsibilities

1.Deadline management

Acting as business manager, a key responsibility was ensuring that adequate time was allocated to business-related activities at every stage of the group project.

This consisted primarily of identifying dates by which certain actions would need to be completed, using external deadlines (report hand-in, Mid-term review, etc.) to create a backwards schedule.

In addition to this, I was also responsible for managing internal business deadlines, ensuring that items were completed at a suitable pace whilst accounting for potential hurdles along the way.

2. Formatting of document, granularization, and allocation of tasks

In the initial stages of the project, I took charge of formatting and planning the structure of the group business report. Splitting its contents into distinct research packages, this allowed for key areas of market research to be identified, and for the granularization⁴⁹ of tasks to distribute within the group.

⁴⁹ i.e. breaking down large work packages into smaller ones

Once I had created a proposed structure for the document, I presented it to the group, who then provided feedback to improve it iteratively over time.

3. Spearheading research

During the initial market researching phase of the project, I was responsible for identifying key areas of information to be investigated. Working closely with the Project manager at this stage, we created a strategy for how we would identify the potential market for our project, size it, and quantify key customer needs.

Split into a top-down secondary research and a primary research phase, this was crucial to not only addressing commercial viability, but also in guiding technical design, as it served a key source for our final product specifications.

4. Proofreading

The final major responsibility I held throughout this project was the proofreading of written work.

Upon receiving work done by members of the team, this involved weaving a narrative thread throughout the sections, maintaining consistency in grammar, and communicating with members when inconsistencies or issues came up.

Coupled with task allocation, this served an efficient 'sandwich-like' package structure throughout the project, where I could allocate tasks to members, and whilst they acted on them, proofread previously written sections.

Record of business-related activities

High-level business task breakdown

Table 23: Summary of 'Before product' and 'After product' tasks

"Before Product"	"After product"
- Identification of potential markets	 Detailed costing of product
 Identification of potential clients, 	 Research of potential business
end-users, and stakeholders	models and legal variables
 Top-down sizing using secondary 	- Breakeven prices
data	 Business setup costs
 Primary research via calling 	 Cashflow forecast and business
industry professionals	model proposal

Figure 31: Initial high-level breakdown of business tasks

Broadly, business-related tasks were split into two categories: "Before product" and "After product". 'Before product' tasks focused on identifying and sizing potential target markets, identifying potential stakeholders, and noting performance benchmarks of current industry solutions. Using our initial project brief for guidance, these tasks had to be done either prior to or in parallel with technical design, as their findings directly guided the design process.

Conversely, "After product" tasks focused on commercial verification of our final design, and were as such blocked until a final design was fully embodied.

Splitting the tasks into these categories allowed for business-related work to be done in parallel with technical work, helping streamline the time management of the project.

Proposed timeline and distribution of tasks

Figure 32: Flow chart showing route to commercial viability timeline

Figure 33: Proposed commercial viability timetable (available in Appendix L)

Figure 34: Fully granularized business-related deliverables (available in Appendix M)

In managing the progress and distribution of business-related tasks, a master timeline was first made. Figure 32 represents this process schematically, where accounting for each member's individual technical reports, key dates were identified.

Upon finalising this timeline with the group, a highly detailed, granular list of deliverables was created. Notably, each deliverable was assigned a writer and proofreader, such that upon myself proofreading it, it would have had two proofreading 'passes'.

By updating this document regularly, I was able to keep track of which tasks were on schedule, ahead, or falling behind, and redistribute tasks accordingly.

Formatting and proofreading Gantt chart

Figure 35: Gantt chart of proofreading and task allocation process

On a high level, contents pertaining to the commercial viability report were split into three distinct sections. This allowed for task allocation, content creation, and proofreading to happen in a cyclical manner, in that order. This is illustrated in the Gantt chart Figure 35. Each 'cycle' represents the start-to-finish process of writing these sections, with cycle four representing proofreading all sections as a whole.

Challenges

Time management and prioritisation of responsibilities

Acting as business manager, I was at times more emotionally invested in the progress of the commercial viability report when compared to other members.

This posed two direct consequences. Firstly, when tasks were allocated to members for completion within a timeframe, they were either not ready for proofreading, or not written at all. This posed a significant hurdle to my managerial responsibility of proofreading, causing delays to my group-related tasks.

The second consequence was conflict of interest. Due to the project unit structure, members understandably prioritised individual technical reports over the group business report for most of the project. Conversely, I heavily prioritised actions relating to the group work over individual, as being business manager I felt a distinct responsibility.

This posed a personal challenge, as it meant that when tasks allocated to other members remained incomplete, I felt personally responsible for taking them on myself. This meant that on average, I wrote and invested disproportionately more time into the group report than other members, leaving little time for my own individual work.

Upon reflection, perhaps a way to account for these issues would be to have a more active role in assessing the progress between task allocation and proofreading, checking in at intermediary points rather than just on the agreed delivery date. This could provide more time to account for unforeseen challenges, and help streamline the process.

Approach to task allocation

Initially, task allocation was approached in a 'first-come, first-serve' manner, where I would granularize actions, and then let members choose their sections in a business meeting.

This approach was used for the first set of allocations, but upon feedback from the project manager, replaced with a more active approach, where I would personally allocate responsibilities *prior* to hosting a business meeting, and let individuals opt out if they wished to.

This proved to be a significant timesaver, and was followed for the rest of the project.

Communication of responsibilities

At the start of the project, communicating with other team members regarding their allocated tasks proved to be a challenge.

Communication was initially approached passively, assuming that members would understand their responsibilities through my written descriptions, and seek clarification when unsure. I would consequently invest much time into writing detailed, thorough descriptions to assist them.

However, upon receiving first drafts of members' sections, this approach was quickly discarded, as it became very clear that I was not a very good writer.

Subsequent task allocation was then approached in a more active manner, arranging individual meetings with members after task allocation to ensure responsibilities were understood. This proved to a huge time-saver, and was followed for the rest of the project.

Conflict with group members

Towards the end of the project, stress levels within the group gradually increased, occasionally presenting a challenge to allocating tasks as people were less enthusiastic to take them on.

On the whole, this was not a significant issue, apart from one incident where a member refused to complete their section and to communicate their decision.

Upon speaking to them and offering support, they returned with the section complete, but of poor quality. We then had two more rounds of feedback with similar result.

Given the little time left, I eventually decided to subsequently take responsibility for this member's section, as I was at this point most familiar with it, and redistributed my other responsibilities among the group.

Retrospectively, it would have been difficult to avoid or manage this conflict differently even with current knowledge. However, one action for future projects could be to account for potential conflicts by creating a team charter to instil a stronger sense of responsibility within members.

Proofreading

Throughout the project, proofreading proved to be an interesting albeit challenging task.

Firstly, integrating different member's writing styles together without altering grammar significantly proved difficult. Certain members preferred to use an active voice, whilst others passive, and as such integrating them together comprised a significant chunk of time.

Secondly, given that different report sections were attributed to different members, it was common for the same information to be repeated by different members independently. Once this was noticed when proofreading the first section of the report, it was accounted for in future sections by writing the 'first' and 'last' sentences of each section before allocating them to members, effectively storyboarding the document.

The final challenge appeared towards the end of the project, where a significant number of words had to be cut for word count. For this, a 'round-robin' proofreading approach was used, allocating members to different sections to cut words, iteratively rotating until word count was met. I then did one more thorough pass through the document before submitting.

Whilst these challenges didn't pose much disturbance to the progress of the group report, this would likely change if the document were larger in size.

As such, one way to mitigate these issues in the future could be to approach task allocations differently: appointing members as either 'designated writers' or 'designated researchers' according to individual skill, rather than have each member do both for their section. Whilst this may restrict each member's ability to work independently initially, it would help streamline the proofreading process thereafter.

Summary and takeaways

Overall, acting as the business manager was a pleasant, fulfilling role.

Throughout the project, certain challenges presented themselves, such as miscommunication between members, poor personal time management, and inefficiencies in my approach to task allocation.

However, as the project progressed, these were gradually accounted for, with no major lasting issues faced. If one were to take on the role of business manager in the future for this group, I would recommend the following.

Firstly, I would suggest being proactive regarding conflict management. This could take the form of having a designated team charter for such situations, or investing in activities that encourage team building.

Similarly, I would also suggest taking a direct approach to communication, arranging individual meetings to discuss task-related details, rather than relying on written description.

Finally, regarding writing a shared document, I would recommend (where possible) splitting the team into designated writers and researchers based on individual strengths *for the whole document*, rather than have members do both for each section. This would be especially recommended for larger documents, where proofreading would take up proportionally more time.

References

Amalsi, A., Jan. 24, 2023. Powder Handling: Silos, Hoppers and Bins, Oh My. [Online]

Available at: <a href="https://www.chemicalprocessing.com/powder-solids/article/21545814/powder-solids/article/2154814/powder-solids/article/21

handling-silos-hoppers-and-bins-oh-my

[Accessed 10 April 2024].

Amazon, n.d. 3m x 3m blue tarpaulin/ground sheet/cover up with eyelets, waterproof. [Online]

Available at: https://www.amazon.co.uk/tarpaulin-ground-sheet-cover-

eyelets/dp/B08C5JXLR2/ref=asc df B08C5JXLR2/?tag=googshopuk-

21&linkCode=df0&hvadid=446856026572&hvpos=&hvnetw=g&hvrand=13447230507936430151&h

<u>vpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1</u>

[Accessed 30 May 2024].

ANSYS, 2023. Ansys GRANTA EduPack software. Cambridge, UK: ANSYS, Inc.

Axsom, T., 2022. Stress Concentrations: How to Identify and Reduce Them in Your Designs. [Online]

Available at: https://www.fictiv.com/articles/stress-concentrations-how-to-identify-and-reduce-

them-in-your-designs

[Accessed 28 May 2024].

Bateson Trailers, n.d. 26MD Mini Digger, Plant, Excavator Trailer. [Online]

Available at: https://www.batesontrailers.com/product/26md-mini-digger-plant-excavator-trailer/ [Accessed 25 April 2024].

Bateson Trailers, n.d. Bateson Trailers: Welcome to Bateson Trailers website. [Online]

Available at: https://www.batesontrailers.com/

[Accessed 17 April 2024].

Benoit, C.-R. & Cremonini, B. T., 2021. *Data, Statistics, and Useful Numbers for Environmental Sustainability.* 1st ed. s.l.:Candice Janco.

British Standards Institution, 2002. BS EN 1991-1-1:2002. Eurocode 1: Actions on Structures - Part 1-1: General actions - Densities, self-weight, imposed loads for buildings. Brussels: European Prestandards.

British Standards Institution, 2006. *BS EN 1991-3: 2006. Eurocode 1 - Actions on structures - Part 3: Actions induced by cranes and machinery, s.l.:* European Prestandards.

Camfaud, n.d. *CONCRETE POURING - GUIDE TO MANAGING A SUCCESSFUL PUMP POUR.* [Online] Available at: https://www.camfaud.co.uk/managing-a-pump-pour [Accessed 15 5 2024].

Cottinham, D., n.d. What are lashings and load securing devices?. [Online]

Available at: https://www.driverknowledgetests.com/resources/what-are-lashings-and-load-securing-devices/

[Accessed 24 May 2024].

Ding, S., 2004. *INVESTIGATIONS OF FLOW AND PRESSURE IN SILOS DURING FILLING AND DISCHARGING IN PRESENCE OF INSERTS*, s.l.: University of Edinburgh.

Economic Commission for Europe, n.d. *EU type Approval services: Enter the European market with your compliant automotive products.* [Online]

Available at: https://www.tuvsud.com/en/industries/mobility-and-automotive/automotive-and-oem/homologation-and-global-market-access/ece-vehicle-certification
[Accessed 5 May 2024].

EHSR, 2015. *Managing health and safety in construction: Construction (Design and Management) Regulations 2015,* s.l.: Health and Safety Executive.

Eurocode, 2004. EN 1997, Eurocode 7: Geotechnical design, s.l.: s.n.

Go Construct, 2021. WHAT IS CONSTRUCTION PLANT AND WHY IS IT IMPORTANT?. [Online] Available at: <a href="https://www.goconstruct.org/why-choose-construction/whats-happening-in-construction/what-is-construction-plant-and-why-is-it-c

important/#:~:text=Plant%20refers%20to%20machinery%2C%20equipment,think%20cranes%2C%20excavators%20and%20bulldozers.

[Accessed 31 May 2024].

gov.uk, n.d. Towing with a car. [Online]

Available at: https://www.gov.uk/towing-with-car/weight-and-width-limits [Accessed 15 April 2024].

Haarup, n.d. Concrete holding hoppers. [Online]

Available at: https://www.haarup.com/products/concrete-transport/concrete-holding-hoppers [Accessed 9 April 2024].

hamuch.com, 2024. *Bath & North East Somerset car mechanics cost from £38 per hour.* [Online] Available at: https://www.hamuch.com/rates/mechanic-garage/bath+%7C+north+east+somerset [Accessed 24 May 2024].

hazard signs, n.d. Warning Heavy Machinery Sign. [Online]

Available at: https://www.hazard-signs.nz/warning-heavy-machinery-sign/

[Accessed 28 May 2024].

HSWA, 1974. Health and Safety at Work etc Act 1974: , s.l.: s.n.

Interface, 2023. OUtlining force solutions for structural engineering. [Online]

Available at: https://www.interfaceforce.com/outlining-force-solutions-for-structural-outrigging/ [Accessed 5 May 2024].

Jenike, A., 1961. Gravity Flow of Bulk Solids, s.l.: University of Utah, 1961.

Keysigns, n.d. [Online]

[Accessed 28 May 2024].

Available at: https://www.keysigns.co.uk/safety-signs-c358/prohibition-safety-signs-c372/no-sitting-signs-c505/do-not-sit-on-this-machinery-signs-p1566

LES, n.d. RATCHET LOAD BINDERS. [Online]

Available at: https://liftingequipmentstore.com/lifting-equipment/lashing-equipment/ratchet-load-binders.html#:~:text=It's%20typically%20employed%20in%20the,shifting%20or%20falling%20during%20transit.

[Accessed 24 May 2024].

LOLER, 1998. Lifting Operations and Lifting Equipment Operations 1998, s.l.: s.n.

Mandbang, n.d. *UPRIGHT STEEL BUCKETS*. [Online]

Available at: https://mandbmag.ca/index.php/concrete-buckets/steel-buckets/upright-steel-buckets/
[Accessed 23 April 2024].

Medic, T., n.d. *Trailer Servicing*. [Online]

Available at: https://trailermedic.co.uk/service-and-repair/trailer-servicing/ [Accessed 4 April 2024].

Mehos, G., n.d. Perry's Chemical Engineers' Handbook, 9th Edition. s.l.:s.n.

Merlin Industrial, n.d. Cement and Concrete Hoppers. [Online]

Available at: https://merlin-industrial.com/cement-and-concrete-hopper

[Accessed 10 April 2024].

Morris, A. S., 2004. ISO 14000: environmental management standards: engineering and financial

aspects, s.l.: Chichester, England; Hoboken, NJ: Wiley.

NWR, 1989. Noise at Work Regulations 1989, s.l.: s.n.

Outrigger Pads, n.d. 500 X 500 X 40 HI-VIZ OUTRIGGER PAD. [Online]

Available at: https://www.outriggerpads.co.uk/product/500x500x40-hi-viz-outrigger-pad/

[Accessed 20 May 2024].

Pirozzoli, S. e. a., 2018. Turbulence and secondary motions in square duct flow. *Journal of Fluid Mechanics*, Volume 840, p. 631–655.

, , , , ,

Power-Packer, n.d. Stabiliser legs and outriggers. [Online]

Available at: https://www.powerpackerus.com/hydraulic-cylinders/stabilization-truck-

outriggers/standard-hydraulic-stabilization-legs/

[Accessed 18 May 2024].

Putzmeister, n.d. How to properly clean the concrete spraying equipment. [Online]

Available at: https://bestsupportunderground.com/cleaning-concrete-spraying-

equipment/?lang=en#:~:text=The%20concrete%20line%20can%20be,sweeps%20out%20the%20rem

[Accessed 15 May 2024].

aining%20material.

PUWER, 1998. The Provision and Use of Work Equipment Regulations 1998, s.l.: s.n.

Robertson, J., 2023. 5 Ways to Secure Your Cargo in an Enclosed Trailer for Safe Transportation.

[Online]

Available at: https://medium.com/@jeff-robertson/5-ways-to-secure-your-cargo-in-an-enclosed-

trailer-for-safe-transportation-

ddd584723034#:~:text=Ratchet%20Straps%3A,the%20strap%20through%20the%20ratchet.

[Accessed 30 May 2024].

Rollaway Container, n.d. Conical concrete bucket with central unloading and rubber hose capacity up

to 3900 kg. [Online]

Available at: https://www.rollawaycontainer.com/conical-concrete-bucket-central-unloading-rubber-

hose-capacity-3900-kg.html

[Accessed 2024 April 23].

Rollaway Container, n.d. Conical concrete bucket with central unloading capacity up to 7800 kg.

[Online]

Available at: https://www.rollawaycontainer.com/conical-concrete-bucket-central-unloading-

capacity-7800-kg.html

[Accessed 20 April 2024].

Rope Services UK, n.d. 18mm Orange Polypropylene Rope 220 Metre Coil. [Online]

Available at: https://www.ropeservicesuk.com/product/18mm-orange-polypropylene-rope-220-

metre-coil/?gad_source=1&gclid=CjwKCAjwjeuyBhBuEiwAJ3vuoReKYwyH_w1cbd-

QI5dnTkH294ug4QObdJ3ey nVivxENoiRS4c0mRoCF7kQAvD BwE

[Accessed 30 May 2024].

RTA, 2021. Road Traffic Act 1988. [Online]

Available at: https://www.legislation.gov.uk/ukpga/1988/52/contents/2021-08-09

[Accessed 15 April 2024].

Safety Signs and Notices, n.d. *Harmful substance*. [Online]

Available at: https://www.safetysignsandnotices.co.uk/harmful-substance-

wm17c&variantid=1078?gad_source=1&gclid=Cj0KCQjw6uWyBhD1ARIsAIMcADryN6c5yzixGAgylwy2

IfvNu2DUy8gQl DKpeS6NoqKvlyl0ec8P1MaAtqmEALw wcB

[Accessed 28 May 2024].

Schultz, D., 2021. Powders and Bulk Solids: Behavior, Characterization, Storage and Flow. 2nd ed.

s.l.:Springer Cham.

Sergio Alvarez, A. C.-P. I. M.-M. A. R., 2016. Strengths-Weaknesses-Opportunities-Threats Analysis of

Carbon Footprint Indicator. Journal of Cleaner Production, 121(0959-6526), pp. 238-247.

Seton, n.d. Danger Hazardous Substances/See Data Sheets Signs. [Online]

Available at: https://www.seton.co.uk/danger-hazardous-substances-see-data-sheets-

signs.html#MM028AESAV

[Accessed 28 May 2024].

the Ratchetshop, n.d. 8mm (8000kg) Lowloader. [Online]

Available at: https://www.theratchetshop.com/lashing-towing-equipment/lowloader-chains/8mm-8-

000kg-lowloader-chain/8mm-8000kg-lowloader.html

[Accessed 24 May 2024].

TRVR, 1986. The Road Vehicles (Construction and Use) Regulations 1986, s.l.: s.n.

Ulrich, K., Eppinger, S. D. & Yang, M. C., 2020. Chapter Seven: Product Architecture. In: *Product Design and Development*. s.l.:New York, New York : McGraw-Hill Education .

Ulrich, K., Eppinger, S. D. & Yang, M. C., 2020. *Product Design and Development.* 7th ed. s.l.:New York, New York: McGraw-Hill Education.

WebEX Supply, n.d. 4 Ton Double "J" Hook Ratchet Strap. [Online]

Available at: https://webexltd.co.uk/shop/4-ton-double-j-hook-ratchet-tie-down-strap/ [Accessed 30 May 2024].

Appendices

Appendices A: Group Business and Design Project (GBDP) Brief – Project Anaconda

Group Business Design Project 2024

Unit code: ME30068/40228

Group 3 - MEng

Academic supervisor: Andrew Avent aa2235@bath.ac.uk

Company sponsor: N/A

Business mentor: Dr Ali Hadavizadeh ah870@bath.ac.uk

Project title: Anaconda: Concrete placement system for construction sites with restricted access.

Project description

The options available to small and medium sized construction sites to precisely deliver controlled amounts of concrete into (sometimes) complex formwork and reinforcement are limited. The option of hiring in huge (expensive) mobile concrete pumps and accommodating large volumes of premixed concrete on site is often difficult to justify, especially on a multi-phase pour which may happen over several days or even weeks. Conveyors are often too short, not suitable (no camber) and are difficult to hire (hire companies are reluctant to have their equipment used for concrete). The client is looking for an easily deployed, small to medium scale transport system which comes apart for cleaning and can be used to accurately place concrete over distances up to 12m (16m preferable) straight from a standard ready-mix lorry of 8m3 capacity. The chute (3m max) on these lorries is approximately 1.8m from grade and so offers little opportunity to use gravity over 16m distances.

Technical elements of the proposed project

Structural analysis, material analysis, drive/power systems, control systems, overall design integration, business opportunity, etc.

Commercial elements of the proposed project

Aiming to commercialise the output from this project, so a sound design, strong business case and marketing plan needed.

Appendices B: Customer Needs

Customer Needs Analysis							
Reference	Demand/Wish	Description					
No.	(D/W)						

1	D	Develops a minimum average flow rate of 8m³/ 45mins, including
		stoppage for manoeuvring system (i.e. with 22.5mins of of
		stoppage, instantaneous flow rate is up to 16m^3/45mins)
2	D	Capable of handling intermittent input flows, from concrete lorries
3	D	Deploy fresh concrete with a maximum drop of 500mm
4	D	Raise concrete over inclines and declines of up to 1 in 7 (~8.15deg)
5	D	Accurately target concrete at a point in 3D space with a minimum
		precision of 500mm in each axis
6	W	Capable of delivering concrete without stoppage in potentially
		muddy, wet, windy weather, in dry or humid, cold or warm climates
_	_	
7	D	Capable of traversing/spanning Complex Formworks with irregularly
		spaced and dimensioned trenches
8	D	Able to deliver a precise amount of concrete
9	W	Able to receive concrete between 0-3m (preferably 0-1.8m) above
		grade, directly from a mixer truck
10	D	Fits into a footprint of 6x4m, with the long axis along the line of the
		mixer truck
11	w	In the worst case, could be able to use outrigger trucks across the
		site, outside of 12/16m-key-dimension workspace)
12	D	Capable of pouring at least C20 concrete with negligible segregation
13	D	Capable of delivering concrete to a depth of 2m below grade
14	D	Capable of pouring up to 30m^3 of concrete in 1 day
	_	
15	D	Capable of pouring concrete for footings and Slab on Grade (SoG)
		projects
16	D	Ideally has versatile power options, with a maximum electrical
		power of 8kW

17	W	Ideally targets low slump and reduced-retarder concretes
18	D	Capable of supporting itself on subsoil without destabilising soil or
		nearby formwork
19	D	Able to access sites that a concrete mixer can
20	D	Capable of delivering concrete up to 12 (preferably 16) metres from
		the rear of the mixer truck – where 16m is diagonal
21	D	Economically attractive compared to worker(s) with shovel and
		wheelbarrow, and excavator which is probably already on site
22	w	Ergonomically attractive to use in most, the same or more
		situations than a wheelbarrow and worker (Consider terrain,
		weather, etc.)
23	w	Easy to return to storage/vendor cleaned of concrete
24	D	Safe for humans and environment in Normal Operations, transport,
		and Failsafe for humans at LEAST
25	D	Deployable, operable, cleanable and stowable by 4 people - 1 ingest
		operator, 1 manouevring operator, 1 delivery operator, and 1
		manager/foreman
26	D	Can be transported and deployed anywhere a concrete truck can be
27	D	Cleanable on site of construction, within the same day as the
		concrete pour
28	D	Must be compatible with existing standards(power, equipment,
		communication)
29	D	Should be able to be repaired with standard equipment and parts
30	w	Rental price is attractive to vendor and recipient for less than
		£1,000 to hire for a day

31	W	Must sell for less than £60,000. Most small towable pumps in the
		UK go for £30k+ (used) and £70k+ (new) with no tubing but truck
		mounted pumps go for £150k+ (used) or £300k+ (new).
32		Aesthetics must be oriented towards Customer (owner of
		anaconda) and operator (renter/owner's operator)
33		Usability must be oriented towards operator and user (construction
		worker)
34		Must be compliant with existing legal standards where relevant

Appendix C: Target specifications

(A note to the reader)

While viewing this document, it is worth keeping the following points in mind.

Firstly, the target specifications shown in this appendix were made using the methodology outlined by Ulrich (Ulrich, et al., 2020) as a guide. Certain features, such as referencing the Customer Needs document directly, were omitted, as the target specifications were iterated upon. The reason for this is that as the document evolved, this feature gradually became vestigial, and was consequently removed. If the reader is interested in viewing these, contact any member of the team, starting with the email skw43@bath.ac.uk.

Secondly, the Target specifications served as an active, working document throughout the design process. As such, detailed in this appendix is the **latest version of said document.** As the value of target specifications lies predominantly in communicating within the product design team, certain colloquial comments and notes remain, such as to inform the team if the project were revisited at a later date.

With that, the rest of this appendix contains the most recent iteration of target specifications.

A.C.1. Nomenclature and Diagrams

A.C.1.1. Workspace

A.C.1.2. Operation Cycle

Typically one day's work. Consists of (an optional) deployment from stowed configuration, loading the first concrete load, potentially including a priming, deploying between 4 and 30m³ of concrete intermittently, cleaning, and re-stowing. If the system is left on site overnight, and is capable of overnighting

whilst deployed, then the deployment and/or stowage stages of the cycle can be omitted, but they must bookend a series of operational cycles on a single job site.

A.C.1.3. Concrete

Slump – The distance whilst concrete falls from its initial height when placed into a slump cup, inverted and the cup is removed from above it.

A.C.2. Target Specifications

No.	Demand/Wish	Requirement	Responsible	Source Document	Changes		
1.	Concrete Handling						
1.1	D	Anaconda shall load concrete	AA	Brief			
		directly from mixer trucks	02/02/24				

D	Anaconda shall be capable of	AA	Implicit from Brief
	loading concrete intermittently	02/02/24	
	with at maximum one priming per	-	
	cleaning during an operation		
	cycle		
D	Anaconda shall not allow the	AA	Implicit from Brief and common understanding of "place concrete"
	concrete to cure whilst it is	02/02/24	referring to fresh concrete
	transporting it		
W	Anaconda shall not allow	AEM	
	concrete to cure whilst it is	06/02/24	
	containing it during extended		
	periods of non-operation (not		
	manoeuvring system or pouring)		
D	Anaconda shall not segregate the	AA	All Meeting Notes: Meeting Minutes 08/02/2024
	concrete it transports	08/02/24	
W	Anaconda shall be capable of	МН	
	accommodating concretes made	14/02/24	
	with Supplementary		
	Cementitious Materials (SCM)		
D	Anaconda shall deliver concrete	KJ 09/02/24	Ideal implication from All Meeting Notes: Meeting Minutes
	at an average rate of 8m³ per 45		08/02/2024
	minutes, including stoppages		
	D W	loading concrete intermittently with at maximum one priming per cleaning during an operation cycle D Anaconda shall not allow the concrete to cure whilst it is transporting it W Anaconda shall not allow concrete to cure whilst it is containing it during extended periods of non-operation (not manoeuvring system or pouring) D Anaconda shall not segregate the concrete it transports W Anaconda shall be capable of accommodating concretes made with Supplementary Cementitious Materials (SCM) D Anaconda shall deliver concrete at an average rate of 8m³ per 45	loading concrete intermittently with at maximum one priming per cleaning during an operation cycle D Anaconda shall not allow the concrete to cure whilst it is variantee to cure whilst it is concrete to cure whilst it is containing it during extended periods of non-operation (not manoeuvring system or pouring) D Anaconda shall not segregate the concrete it transports O8/02/24 W Anaconda shall be capable of accommodating concretes made with Supplementary Cementitious Materials (SCM) D Anaconda shall deliver concrete at an average rate of 8m³ per 45

1.8	D	Whilst properly maintained,	KJ 09/02/24		
		Anaconda shall not fail from wear			
		and tear (for example, but not			
		limited to cracking or corrosion)			
		within its design life from			
		concrete exposure			
1.9	D	Anaconda shall not change the	KJ 09/02/24		
		composition of the concrete (for			
		example, but not limited to			
		crushing of large aggregate)			
1.10	D	Anaconda shall be capable of	AA	All Meeting Notes: Meeting Minutes 08/02/2024	
		·	08/02/24		
4.44		_			
1.11	W			All Meeting Notes: Meeting Minutes 08/02/2024	
		accommodating low slump	09/02/24		
		concretes			
1.12	W	Anaconda shall be capable of	МН	Requirements and Spec	
		accommodating fibre concretes	12/02/24		
1.13	W	Anaconda shall be capable of	KJ 06/02/24		
		switching concrete type mid-			
		operation cycle			
2.		<u>'</u>	Dimensi	ons, Precisions and Tolerances	

2.1	D	Anaconda shall be able to load	AA	Brief	
		concrete at an elevation below	04/02/24		
		3000mm			
2.2	W	Anaconda shall be able to load	AA	Brief	
		concrete at an elevation below	04/02/24		
		1800mm			
2.3	D	Anaconda shall pour concrete	AA	All Meeting Notes: Meeting Minutes 08/02/2024	
		from a maximum Z+ displacement	08/02/24		
		of 500mm from the 3D Target			
2.4	D	Anaconda shall have a spatial	AA	All Meeting Notes: Meeting Minutes 08/02/2024	
		resolution of 500mm in X and Y	08/02/24		
2.5	W	Anaconda shall have a spatial	KJ, TD	Implication of All Meeting Notes: Meeting Minutes 08/02/2024 and	100 to 250mm
		resolution of 250mm in X and Y	12/02/24	goal of preventing pouring up against formwork	(less precision
		and Z			is truly
					required)
2.6	D	Anaconda shall have a volumetric	AA	All Meeting Notes: Meeting Minutes 12/02/2024	
		resolution of 1 cubic foot (28.3L,	12/02/24		
		0.283m³)			
2.7	D	Anaconda shall deliver concrete	AA	Brief	
		up to 12000mm from the	04/02/24		
		boundary of the workspace			
			l .	1	1

W	Anaconda shall deliver concrete	AA	Brief	
	up to 16000mm from the	04/02/24		
	boundary of the workspace			
W	Inlet of Anaconduit shall not have	AA	All Meeting Notes: Meeting Minutes 12/02/2024	
	to be moved whilst pours are	08/02/24		
	being made within the target site			
D	Anaconda shall be able to pour at	AA	All Meeting Notes: Meeting Minutes 12/02/2024	No upper
	least 30m³ of concrete per day	08/02/24		bound
D	Anaconda shall fit into a space	AA	All Meeting Notes: Meeting Minutes 12/02/2024	
	4000mm by 6000mm, with the	08/02/24		
	large axis parallel to the axis of			
	the concrete mixer truck.			
D	Anaconda shall be able to deliver	AA	All Meeting Notes: Meeting Minutes 08/02/2024	
	concrete to a point 2000mm	08/02/24		
	below the local grade.			
W	Anaconda shall be able to deliver	AEM	All Meeting Notes: As a recommendation of Civil Engineering	
	concrete to a point 15000mm	13/02/24	undergraduate	
	below the local grade.			
W	Anaconda shall be able to deliver	AA	All Meeting Notes: Meeting Minutes 08/02/2024	Grade can be
	concrete over an increasing or	08/02/24		up or down
	decreasing grade of 14.2%			
	(equivalent to 1 in 7, 8.14°)			
	D D	up to 16000mm from the boundary of the workspace W Inlet of Anaconduit shall not have to be moved whilst pours are being made within the target site D Anaconda shall be able to pour at least 30m³ of concrete per day D Anaconda shall fit into a space 4000mm by 6000mm, with the large axis parallel to the axis of the concrete mixer truck. D Anaconda shall be able to deliver concrete to a point 2000mm below the local grade. W Anaconda shall be able to deliver concrete to a point 15000mm below the local grade. W Anaconda shall be able to deliver concrete over an increasing or decreasing grade of 14.2%	up to 16000mm from the boundary of the workspace W Inlet of Anaconduit shall not have to be moved whilst pours are being made within the target site D Anaconda shall be able to pour at least 30m³ of concrete per day D Anaconda shall fit into a space 4000mm by 6000mm, with the large axis parallel to the axis of the concrete mixer truck. D Anaconda shall be able to deliver concrete to a point 2000mm below the local grade. W Anaconda shall be able to deliver concrete to a point 15000mm below the local grade. W Anaconda shall be able to deliver concrete to a point 15000mm 13/02/24 below the local grade. W Anaconda shall be able to deliver concrete over an increasing or decreasing grade of 14.2%	up to 16000mm from the boundary of the workspace W inlet of Anaconduit shall not have to be moved whilst pours are being made within the target site D Anaconda shall be able to pour at least 30m³ of concrete per day 08/02/24 D Anaconda shall fit into a space 4000mm by 6000mm, with the large axis parallel to the axis of the concrete mixer truck. D Anaconda shall be able to deliver concrete to a point 2000mm 08/02/24 D Anaconda shall be able to deliver concrete to a point 2000mm 08/02/24 D Anaconda shall be able to deliver below the local grade. W Anaconda shall be able to deliver concrete to a point 15000mm 13/02/24 D Anaconda shall be able to deliver concrete to a point 15000mm 13/02/24 D Anaconda shall be able to deliver concrete to a point 15000mm 13/02/24 D Anaconda shall be able to deliver concrete to a point 15000mm 13/02/24 D Anaconda shall be able to deliver concrete to a point 15000mm 13/02/24 D Anaconda shall be able to deliver concrete to a point 15000mm 13/02/24 D Anaconda shall be able to deliver concrete over an increasing or decreasing grade of 14.2% All Meeting Notes: Meeting Minutes 08/02/2024 All Meeting Notes: As a recommendation of Civil Engineering undergraduate D Anaconda shall be able to deliver concrete over an increasing or decreasing grade of 14.2%

2.15	D	Whilst deployed, any outriggers		
		used by the system shall only		
		contact the ground outside of the		
		workspace		
2.16	D	Any outriggers used shall have a AA	,	All Meeting Notes: Meeting Minutes 12/02/2024
		maximum contact patch of 12/0	02/24	
		2000mm by 2000mm		
2.17	W	Anaconda shall be able to AEM	/1 I	https://rapidreadymix.co.uk/2020/11/23/how-much-does-concrete-
		transport concrete through a 14/0	02/24	pump-hire-cost/
		standard sized doorway (1981mm		
		x 762mm)		
2.18	D	Anaconda shall not slide concrete AA	Ç	Should be in meeting notes, but this was not written — 1 in 40 is
		down a grade of greater than 1 in 12/0	02/24	sewer grade to prevent solid-liquid segregation
		40 without appropriate		
		segregation-reduction measures		
3.				Legal/Safety
3.1	D	Anaconda shall comply with KJ 13	3/02/24	
		environmental regulations		
3.2	D	Anaconda shall comply with KJ 13	3/02/24	
		worker safety regulations		

3.3	D	Anaconda shall conform to	KJ 13/02/24		
		relevant standards for the			
		handling of concrete			
3.4	D	When practicable, Anaconda shall	KJ 13/02/24		
		integrate standard components			
		to interface with other machines,			
		devices and to promote user			
		repair			
3.5	D	Anaconda's design shall not	KJ 13/02/24		
		infringe upon intellectual			
		property rights			
3.6	D	Anaconda shall comply with	TD		
		transportation regulations	14/02/24		
3.7	D	During Anaconda's operating	KJ 14/02/24		
		cycle, the loads, temperatures			
		and noise levels that users are			
		exposed to shall be below limits			
		set in legislation.			
4.				Human Ergonomics	
4.1	D	If anaconda jams it shall be safe	KJ,TD		Better
		and quick to repair.	15/02/24		phrasing

4.2	D	While in operation, Anaconda	KJ 12/02/24	
		shall be easy to stop safely and		
		quickly by any on-site personnel.		
4.3	D	Anaconda shall be able to be	AA	All Meeting Notes: Meeting Minutes 08/02/2024
		operated by a crew of 4 people	08/02/24	
		NB: One person handling the		
		output, one person handling		
		input, one person handling		
		position control, and one person		
		overseeing the entire process		
4.4	W	Anaconda shall be able to be	TD	
		operated by a crew of 3 people	15/02/24	
4.5	W	Anaconda shall not need special	KJ/AA	
		training to operate	08/02/24,	
			АН	
			12/02/24	
4.6	D	While operating, it shall be audio-	KJ 12/02/24	
		visually obvious that Anaconda is		
		operating.		
4.7	D	When traversing the workspace,	KJ 12/02/24	
		Anaconda shall prevent itself		

		from making physical contact			
		humans			
4.8	W	Anaconda shall be divisible into	KJ,MH,AEM,		
		modular sections which can	АН		
		combine to extend Anaconda's	08/02/24		
		capabilities.			
4.9	D	Anaconda shall be controllable by	KJ 13/02/24		
		human operators			
4.10	D	Anaconda shall have simple,	KJ 13/02/24		TD 15/02/24 -
		intuitive control systems			W->D
4.11	W	Anaconda's deployment and	KJ 14/02/24	Formative statement	
		stowage actions within its			
		operating cycle shall take no			
		more than 30 minutes each			
4.12	D	Anaconda's deployment and	KJ 14/02/24		TD 15/02/24 -
		stowage actions within its			W->D
		operating cycle shall be tolerant			
		of user error			
4.13	W	Whilst operating under the worst	KJ 14/02/24	Pulled number from thin air	
		expected operating conditions,			
		Anaconda's cycle of operation			

		shall be slowed by no more than			
		20%.			
4.14	D	Anaconda shall reduce the physical load on workers compared to similar or lower priced competitors	KJ 14/02/24		
5.		priced competitors		Dougettrain	
			T	Powertrain	
5.1	W		KJ 12/02/24		
		swappable on request to leverage			
		different common power systems			
		on a construction site			
5.1.1	W	The powertrain shall optionally	KJ 12/02/24,	All Meeting Notes: Meeting Minutes 08/02/2024	
		run on auxiliary hydraulics on a 4	AA	Example https://www.takeuchi-mfg.co.uk/compact-	
		ton or smaller excavator	08/02/24	excavators/tb240-compact-excavator/	
		e.g. 22kW Primary Auxiliary			
		Hydraulics			
5.1.2	W	The powertrain shall optionally	KJ 12/02/24		
		run via mechanical linkage from			
		one or more powerplants			
5.1.3	W	The powertrain shall optionally	AA	All Meeting Notes: Meeting Minutes 08/02/2024	
		run off a distributed electrical	08/02/24		

		power system, with a maximum			
		power of 8kW			
5.2	D	The powertrain shall be sufficient	KJ 12/02/24	Brief (effectively)	
		to transport concrete under all			
		stated loading conditions (for			
		example, but not limited to: high			
		grade, high flow rate, high winds)			
6.			Life Cy	cle and Operating Conditions	
6.1	D	Whilst properly maintained,	TD		Added lifetime
		Anaconda shall not fail from wear	19/02/24		estimate
		and tear (for example, but not			
		limited to cracking or corrosion)			
		within its design life of 10,000 hrs			
		from its operating environment			
		(Temperature, weather).			
6.2	D	Anaconda shall have an expected			
		duty cycle of 8 hours of operation			
		per day			
6.3	D	Anaconda shall be expected to be			
		traversing the workspace on a			
		duty cycle of 2 hours per day			
		I .	1		1

6.4	D	Anaconda shall be able to be (AA [08 AND	All Meeting Notes: Meeting Minutes 08/02/2024, All Meeting Notes:	
		cleaned on-site within 2hrs of the 1	12]/02/24)	Meeting Minutes 12/02/2024	
		final pouring stage			
6.5	W	Anaconda shall have easy			
		disassembly for cleaning.			
6.6	D	Anaconda shall be capable of	ΓD		
		operating across complex spaces			
		and formworks.			
6.7	D	Anaconda shall be able to support			
		itself on subsoil without			
		destabilising soil or nearby			
		formworks.			
6.8	D	Anaconda's core functions and	KJ 15/02/24		Took
		reliability shall not be significantly			responsibility,
		altered due to its operating			TD,KJ
		environment, for example but not			reworded
		limited to muddy, wet, windy			
		weather, or dry, humid, cold or			
		warm climates			
6.9	W	Anaconda shall be able to adapt			
		to environment to maintain a			
		consistent operating condition			

		(e.g., flow rate change due to		
		temperature changes impacting		
		concrete).		
6.10	W	Capable of delivering concrete at		
		an assured, high level of reliability		
6.11	D	Anaconda must be capable of	KW	
		being kept overnight on-site, in	5/02/24	
		between cycles while not in use,		
		without affecting performance on		
		the consequent days		
7.	Environmenta	l Factors and Maintainability		
7.1	W	Anaconda shall be constructed so	D	
		that its constituent parts are		
		commonly recyclable		
7.2	W	Anaconda shall have high	D	
		mechanical and electrical		
		efficiency		
7.3	W	Anaconda shall save more	D	Reworded by KJ
		concrete CO₂ emissions via	5/02/24	and TD
		efficient placement than it emits		
		during operation		

7.4	W	Anaconda shall be readily usable	SKW		Reworded KJ,
		on a typical building site, without	15/02/24		TD
		prior preparation for its arrival			
7.5	W	Anaconda shall be constructed	SKW,KJ		
		out of materials which are	15/02/24		
		sustainable, and easily recyclable			
8			Pric	ing, Business, and Logistics	
8.1	W	If any parts of Anaconda is made	AA	https://www.landrover.co.uk/defender/defender/specifications.html	
		to be road legal, such parts shall	08/02/24		
		fit into the wheelbase of the Land			
		Rover Defender 130 Wheelbase			
		(2,587 to 3,022 mm).			
8.2	W	Anaconda shall be sufficiently	KJ 12/02/24		Reworded by
		versatile to be minorly redesigned			KJ,TD
		for other industries, for example			
		but not limited to moving other			
		bulk materials.			
8.3	W	Anaconda will not require the	AEM	https://www.singhconcrete.com/concrete-pump-cost/	
		hiring of specialised personnel			
		that charge £150-£250 a day			
8.4	D	Anaconda's projected rental price	AEM	Source: Andrew and https://www.singhconcrete.com/concrete-	
		shall be less than £1,000 /		pump-cost/ Big pumps cost £1k per 8m^3 concrete truck.	

		expected time required to deliver			
		8 cubic meters of concrete.			
		i.e. Which is £90 to £120 / cubic			
		metre.			
		For reference:			
		MINIMUM (cheap boom pump, 4			
		cubic metres) would be £360,			
		MAXIMUM (expensive boom			
		pump, 30 cubic metres) would be			
		£3,600.			
8.5	W	Anaconda's expected rental price	AEM	Local American DIY projects that use mini concrete pumps cost £400-	
		shall be less than £500/day (4-30		£628 to rent a day.	
		cubic metres).		https://expressconcreteltd.com/how-much-does-concrete-pump-	
				hire-cost/	
8.6	D	Anaconda's unit production cost	AEM	(Most small towable line pumps in the UK go for £30k+ (used) and	
		shall be less than £70,000.	14/02/24	£70k+ (new) with no tubing but truck mounted boom pumps go for	
				£150k+ (used) or £300k+ (new).)	
8.7	W	Anaconda's unity production cost	TD	Formative value	
		shall be less than £20,000	15/02/24		

8.8	D	Anaconda will be easily available Al	EM		
8.9	W	Anaconda will be accessible to Al people in remote areas	EM		
8.10	W	Anaconda shall be able to be St brought from storage to a remote 15 site within a working day	KW 5/02/24		
8.11	D	Anaconda shall be able to service Aldifficult to reach foundations	EM		
8.12	D	Anaconda will reach a flow rate of Al 0.3m^3/minute, competing with the smallest, cheapest line pumps.	EM	https://www.aliexpress.com/item/1005006077605823.htm	
8.13	W	Anaconda will reach a flow rate of Al 2.67m^3/minute, able to directly compete with the largest boom pumps and expand into the pile driver market.	EM	https://www.heidelbergmaterials.co.uk/en/ready-mixed-concrete/technical-information/concrete-pump-faqs	
8.14	D	Anaconda will be discoverable by Al concrete companies which would want to purchase Anaconda for their own private hiring business.	EM	Book: The Personal MBA, Josh Kaufman	

8.15	W	Anaconda shall look powerful and	AEM	The Personal MBA	
8.16	W	versatile Anaconda shall be available for pre-order by large concrete businesses	AEM	The Personal MBA	
8.17	W	Anaconda shall be available for free/cheap test-runs by large concrete businesses (lifetime customers) to encourage purchases	AEM	The Personal MBA	
8.18	D	Any form of market research is conducted before Anaconda manufacture to determine that a demand exists	AEM	The Personal MBA	
8.19	W	Professional market research is conducted to determine exact level of demand and yearly earnings	AEM	The Personal MBA	
8.20	D	A 1-year business plan is created with basic monthly costs and estimated monthly income.	AEM	The Personal MBA	

8.21	W	A detailed business 5-year	AEM	The Personal MBA	
		business plan must be created,			
		accounting for all accumulated			
		costs, estimated investments,			
		estimated debt, estimated			
		income (and income timeline)			
		along with other variables.			
8.21	W	The business plan provided with	SKW		
		Anaconda could have	14/02/24		
		contingencies included to account			
		for a recession/weakening			
		economy			
8.22	D	Anaconda must be able to be	SKW		
		used in parallel with other	14/02/24		
		standard equipment, such as			
		diggers, cement trucks, etc.			
8.23	D	Anaconda must be provided with	SKW		
		a pamphlet/booklet with	14/02/24		
		investment costs/fees attached			
8.24	W	Anaconda shall be able to be	SKW		
		adapted for the abide by	14/02/24		

		regulations in countries other			
		than the United Kingdom			
8.25	W	Anaconda shall be able to	KJ, SKW		TD , KJ Split
		accommodate construction	15/02/24		into legal and
		practises common in countries			technical 8.24,
		other than the United Kingdom			8.25
8.26	D	Anaconda must be able to be	SKW		
		stored within reasonable storage	14/02/24		
		conditions i.e. no need for a			
		specialised storage space			
8.27	W	Anaconda could be able to be	SKW		
		maintained with standard	14/02/24		
		cleaning/repair equipment			
8.28	D	Anaconda must be made of	SKW		
		standard parts where possible,	14/02/24		
		such as to reduce cost of			
		production, and reduce new			
		manufacturing processes			
8.29	D	Anaconda should have a lifetime	TD	https://thompsontractor.com/blog/average-lifespan-of-common-	Added
		of 10,000 hours of working time if	19/02/24	construction-equipment/	19/02/24
		properly maintained.			

8.30	W	Anaconda will have a lifetime of	TD	https://www.reactpower.com/blog/the-life-expectancy-of-your-	Added
		15,000 hours of working time if	19/02/24	diesel-generator/	19/02/24
		properly maintained			

Appendix D: Hand calculations of hopper height

Appendix E: Detailed hopper selection

							Model				
			50		51			52		53	
Parameter	Benchmark	BC80N	BC99N	вст80	вст99	SBB 7	SBB-10	SBB-12	BB-7	BB-10	BB-12
Outlet diameter	≥ 80mm	308	321	200	200	405	405	405	405	405	405
Hopper half angle	60 ± 5 degrees	62	62	55	55	50	50	50	50	50	50
Height	≤1.5 m	1.14	1.26	1.12	1.16	1090	1170	1295	1250	1475	1475
Weight	Minimise (kg)	165	225	180	195	190	250	270	115	140	145
Product specified holding volume (m³)	0.5 m ³	0.8	1.0	0.8	1.0	0.6	0.8	1.0	0.6	0.8	1.0
Cost (£)	Minimise	1102.79	1153.44	1115.59	1153.15	Awaiting	Awaiting	Awaiting	Awaiting	Awaiting	Awaiting
						quote	quote	quote	quote	quote	quote
Material	-	Painted steel	Painted steel	Painted steel	Painted steel	Painted steel	Painted steel	Painted steel	Aluminium	Aluminium	Aluminium
Embodied carbon ⁵⁴	Minimise (kg.CO ₂)	330	450	360	390	380	500	540	1380	1680	1740
Embodied Energy (MJ)	Minimise	5610	7650	6120	6630	6460	8500	9180	24150	29400	30450
Notes		Outlet diameter	Weight		Weight	Weight		Weight	Environment	Environment	Environment

https://www.rollawaycontainer.com/conical-concrete-bucket-central-unloading-capacity-7800-kg.html https://www.rollawaycontainer.com/conical-concrete-bucket-central-unloading-rubber-hose-capacity-3900-kg.html

https://mandbmag.ca/index.php/concrete-buckets/steel-buckets/upright-steel-buckets/

https://mandbmag.ca/index.php/concrete-buckets/aluminum-buckets/upright-aluminum-buckets/

⁵⁴ Approximated using embodied carbon values from textbook 'Data, Statistics, and Useful Numbers for Environmental Sustainability' (Benoit & Cremonini, 2021)

Appendix F: Detailed Trailer Selection

		Model						
Parameter	Constraint	35 PC Plant	35BB platform	35 TP hydraulic	Heavy duty rub	HT6010UST-030 ⁵⁹	35MD Plant	
		Trailer ⁵⁵	tipping trailer ⁵⁶	plant trailer ⁵⁷	trailer ⁵⁸		trailer ⁶⁰	
Length	≤7000 mm	-	5000	4650	2500	4318	4650	
Width	≥1300 mm	-	2100	2160	1250	1422	2160	
	≤2500 mm							
Bed height	≥160 mm		600	450	720	1270	380	
Maximum laden weight while in transport	≤3500 kg	3500	3500	3500	-	-	3500	
Unladen weight	Minimise (kg)	600	820	795	500	570	725	
Load capacity	≥1720 kg	2800	2680	2750	3000	930	2750	
Cost	Minimise (£)	3925 ext. VAT	4250 ext. VAT	4725 ext. VAT	2682	Unavailable	3950	

⁵⁵ https://www.batesontrailers.com/shop/plant-trailers/35pc-plant-chassis/

https://www.batesontrailers.com/shop/transporter-trailers/355b-platform-tipping-trailers/

⁵⁷ https://www.batesontrailers.com/shop/hydraulic-tilt-trailers/35tp-general-purpose/

⁵⁸ https://trolleysandtrailers.co.uk/i.aspx?i=103732&c=5701&pos=0,1900

https://trailermantrailers.net/product/tube-top-utility/

⁶⁰ https://www.batesontrailers.com/shop/plant-trailers/35md-general-purpose-digger-plant/

Material	Minimise	Galvanised steel	Galvanised steel	Galvanised steel	Timber and steel	Lumber and Steel	Galvanised steel
	(kg.CO₂)						
Notes		Not open-top			Not suitable for	Bearing capacity too	
					road	low	

(Detailed Trailer Selection: continued)

				Model	
		61	62	63	64
Parameter	Constraint	26 MD Plant Trailer	1264 General Purpose	0854 General Purpose	1064 General Purpose Trailer
			Trailer	Trailer	
Length (mm)	≤7000	4220	5010	2500	4410
Width (mm)	≥1300	1760	2300	1500	2300
	≤2500				
Bed height (mm)	≥160	450	420	450	450
Maximum laden weight while	≤3500	2600	2600	2000	2600
in transport (kg)					
Unladen weight (kg)	Minimise	500	545	400	490
Load capacity (kg)	≥1720	2100	2055	1600	2110
Cost (£)	Minimise	3050	3100	2600	3000
Material	-	Galvanised Steel	Steel	Galvanised Steel	Galvanised Steel

⁶¹ https://www.batesontrailers.com/shop/plant-trailers/26md-general-purpose-digger-plan/

⁶² https://www.batesontrailers.com/shop/general-purpose-builders-trailer-mower/1264-general-purpose-trailer-12-x-6/

⁶³ https://www.batesontrailers.com/shop/general-purpose-builders-trailer-mower/0854-general-purpose/

⁶⁴ https://www.batesontrailers.com/shop/general-purpose-builders-trailer-mower/1064-general-purpose/

Embodied carbon 65	Minimise	2000	1090	1600	980
	(kg.CO ₂)				
Embodied Energy	Minimise (MJ)	16000	17440	12800	15680
Notes				Load capacity	

_

⁶⁵ Approximated using embodied carbon values from textbook 'Data, Statistics, and Useful Numbers for Environmental Sustainability' (Benoit & Cremonini, 2021)

Appendix G: Hand calculations for outrigger selection

=D WHEN CONCING, ASSUME MINIMUM BEARIES

LOAD OF LEST (16 tons)

SEFERY FACION OF 2

Lb 3.2 tonnes

Appendix H: Detailed outrigger selection

		Model									
			66	.67	58						
Parameter	Constraint	HYDRAULIC OUTRIGGER	HYDRAULIC OUTRIGGER	Semi-trailer	2010-	2012-	2014-	2027-	3510000108	3510000265	
		SYSTEMS FOR WORK TRUCKS	SYSTEMS FOR WORK TRUCKS	outrigger	18	25	18	18			
		– round legs < 14000 lbs.	– square legs < 14000 lbs.	SQ2819F-G1							
Weight		75	60	100 per leg	33.11	41.73	24.49	34.02	38.56	47.63	
Bearing capacity	≥32 kN per	62.3 kN	62.3 kN	25 tons per leg 71 kN		71 kN	71 kN	71 kN	71 kN	71 kN	
	leg			lifting							
				50 tons static							
Height from	≥140 mm	535	429	430	0	0	0	0	0	0	
fixing to											
retracted base											
Extended length		1173	1334	840	457	635	457	457	457	635	
Span (if		2081	2081	-	-	-	-	-	-	-	
relevant)											
Cost (£)	Minimise			90 per leg			Asked	for quote	, no reply		
Material				Steel							

⁶⁶ https://www.powerpackerus.com/hydraulic-cylinders/stabilization-truck-outriggers/hydraulic-outrigger-stabilizers/

⁶⁷ https://www.alibaba.com/product-detail/Truck-Trailer-Parts-Heavy-Duty-StLanding_1601122119796.html

⁶⁸ https://www.powerpackerus.com/hydraulic-cylinders/stabilization-truck-outriggers/standard-hydraulic-stabilization-legs/

Embodied	Minimise	375	300	500	165	210	125	170	195	235
carbon ⁶⁹	(kg.CO₂)									
Embodied	Minimise	6600	5280	8800	2904	3696	2200	2992	3393	4191
Energy (MJ)										
Notes		Bottom mounted, ISO9000	Bottom mounted, ISO9000	Side mounted	Side Mounted, ISO 9001 certified					
		certified	certified	ECE ⁷⁰ certified						

⁶⁹ Approximated using embodied carbon values from textbook 'Data, Statistics, and Useful Numbers for Environmental Sustainability' (Benoit & Cremonini, 2021) ⁷⁰ Economic Commission of Europe (Economic Commission for Europe, n.d.)

Appendix I: Calculation for outrigger pad selection using 75 kPa limit

Assume total weight born by pads is 4000 kg

Assume ground pressure limit of 75 kPa

 $A_{min} = (Weight \times 9.81)/(75 \times 10^3)$

For four outriggers:

 $A_{min} = ((4000 \text{kg}/4) \times 9.81)/(75 \times 10^3) = 0.1308$

Let us include a safety factor of 2

 $A_{min} = 0.26 \text{ m}^2$

Similiarly, for a ground pressure limit of 150 kPa

 $A_{min} = 0.13 \text{ m}^2$

However, as 75 kPa is more stringent, that will be the constraint used in outrigger selection

Appendix J: Detailed outrigger Pad selection

		Model						
		71	72	73	74	75	76	CUTTALESSER<277
Parameter	Constraint	500 x 500: IP-72001	500 x 500: IP-72002	500 x 500: IP-57096	1000 x 1000: IP-59001	800 x 800: IP-57668	Recessed 750 x 750: IP-	300 x 300:
							72037	
Bearing	≥4	15	15	15	42	42	28	5
capacity								
(tonnes)								
Area (m²)	≥0.25	0.25	0.25	0.25	1.00	0.64	0.57	0.09
i.e. square	≥0.5 m	0.5	0.5	0.5	1.00	0.8	0.75	0.3
of length								
Height (m)	Minimise	0.04	0.04	0.04	0.04	0.05	0.08	0.03
Weight (kg)	Minimise	9.90	9.90	10.50	38.40	31.50	21.00	2.8
Cost (£)	Minimise	65.77	80.26	76.76	185.00	194.50	202.95	20.97
Material	-	High mol weight	High mol weight	Heavy duty UHMW	heavy duty UHMW	heavy duty UHMW polyethylene	high density polyethylene	HMW polyethylene
		polyethylene	polyethylene	polyethylene	polyethylene		(HDPE)	

⁷¹ https://www.outriggerpads.co.uk/product/500x500x40-eco-lift-outrigger-pad/

https://www.outriggerpads.co.uk/product/500x500x40-hi-viz-outrigger-pad/

https://www.outriggerpads.co.uk/product/500x500x40-premium-outrigger-pad/

https://www.outriggerpads.co.uk/product/1000x1000x40-premium-outrigger-pad/

⁷⁵ https://www.outriggerpads.co.uk/product/800x800x50-premium-outrigger-pad/

https://www.outriggerpads.co.uk/product/750x750x40-hi-pro-recessed-outrigger-pad/

https://www.multimatts.co.uk/temporary-access-mats/outrigger-pads/eco-lift-outrigger-pad-300mm-x-300-mm-x-30mm-2.8kg

Embodied	Minimise	29.7	29.7	31.5	115.2	94.5	24	8.4
carbon								
(kg.CO ₂) ⁷⁸								
Embodied	Minimise	544.5	544.5	577.5	2117.5	1732.5	1155	154
Energy (MJ)								
Notes					Overspec'ed, expensive,	Overspec'ed, expensive, too	Weight, embodied energy	Underspec'd
					too much embodied	much embodied carbon		
					carbon			

Detailed Outrigger Pad Selection: continued)

		Model		
		79	OU ME (GO PINS PARIS)	CUTRESSER PLOS
Parameter	Constraint	High Viz 300 x 300	Recessed 400 x 400	Standard 400 x 400
Bearing capacity (tonnes)	≥4	5	12	12
Area (m²)	≥0.25	0.09	0.16	0.16
i.e. square of length	≥0.5 m	0.3	0.4	0.4

⁷⁸ Approximated using embodied carbon values from textbook 'Data, Statistics, and Useful Numbers for Environmental Sustainability' (Benoit & Cremonini, 2021)

⁷⁹ https://www.multimatts.co.uk/temporary-access-mats/outrigger-pads/hi-viz-outrigger-pad-300mm-x-300mm-x-30mm-2.8kg

⁸⁰ https://www.multimatts.co.uk/temporary-access-mats/outrigger-pads/recessed-eco-lift-outrigger-pad-400mm-x-400mm-x-40mm-6kg

⁸¹ https://www.multimatts.co.uk/temporary-access-mats/outrigger-pads/eco-lift-outrigger-pad-400mm-x-400mm-x-40mm-6.3kg

Height (m)	Minimise	0.03	0.04	0.04
Weight (kg)	Minimise	2.8	6	6.3
Cost (£)	Minimise	25.75	53.25	48.97
Material	-	HMW polyethylene	HMW polyethylene	HMW polyethylene
Embodied	Minimise	8.4	18	18.9
carbon				
(kg.CO ₂) ⁸²				
Embodied	Minimise	154	330	346.5
Energy (MJ)				
Notes		Underspec'd	Underspec'd	Underspec'd

⁸² Approximated using embodied carbon values from textbook 'Data, Statistics, and Useful Numbers for Environmental Sustainability' (Benoit & Cremonini, 2021)

Appendix K: Detailed costing spreadsheet

NOTE: to view this table in full form including notes, refer to this <u>link</u>. Notes include details such as: assumptions used for embodied carbon and embodied energy.

In regards to the 'source of cost' section in this table, this highlights where estimated cost values have been obtained. Some values are based on common rates found through internet search, whilst others have been directly obtained from the retailer of the selected component. Where the retailer has not provided cost, an average was made using similar products on the market, which was then used as the final estimate.

TOTAL SUBSYSTEM COST	
Monetary (£)	6316.67
Embodied Carbon (kg.CO2)	3041.18
Embodied energy (MJ)	34464.94

Key
Provided directly by retailer
Accurate value not available, average calculated and taken as estimate

				Cost Estimation

Component	Description / model	Quantity	Total cost	£ per unit	Unit	Total Embodied Carbon (kg.CO2)	Total Embodied Energy (MJ)		Exact value available	formative	Average	Values from market			
	Main components														
Hopper	BCT80	1	1115.59	1115.59	-	360	6120		<u>1115.59</u>						
Trailer	Bateson 26MD Plant <u>Trailer</u>	1	3050.00	3050.00	-	2000	16000		3050.00						
Outriggers	Power-Packer standard outrigger: 2010-18	4	862.67	215.67	-	660	11616				215.67	98.00	157.00	392.00	
Total			5028.26			3020	33736								
								BREAK							
	Joints and processes														
Hopper- Trailer	Lashing chains	3	228.72	<u>76.24</u>	-	1	19		<u>76.24</u>						
Outrigger- Trailer	Nut and bolt	4	152.00	38.00	hour	negligible	negligible			38.00					
Pump to trailer	Nut and bolt	6	228.00	38.00	hour	negligible	negligible			38.00					
Total			608.72			1	19								

	Transport and work- site components						
Outrigger Pads	<u>IP-72002</u>	4	321.04	80.26	-	119	2178
Tarp	-	1	129.69	129.69	-	negligible	negligible
Tie down ratchets	-	4	28.17	7.04	-	negligible	negligible
Rope	-	40	100.80	2.52	m	20.00	710.00
Total			579.70			20.00	710.00
	Signs and displays						
	e.g.io ana aiopiayo						
	-	5	100.00	20.00	No. signs	negligible	negligible
Total			100.00				

Appendix L: Commercial viability timeline

Date of Monday	Week	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
11-Mar	6			Report structure		Commercial viability report granularized and distributed to members		
		Design specification		Hopper and interface selected	Complete hopper section	Ground supports selected		
18-Mar	7		Conversation template completed, list of contacts made	Calls to clients			Pause to Commercial viability research	
					Mid term revi	ew		
25-Mar	8				viability to summer, cla costing. Be of	up of commercial individuals for the arify how to insert clear at a high level will have to do for report		Inform of what info we will need to do section 2 and 3, and when we wil need it by, so can work on it for ISB

01-Apr	ISB	Unavailable	Unavailable	Unavailable	Unavailable	Unavailable	Unavailable	Unavailable
08-Apr	ISB				election for all physic	cal components, mercial viability		
15-Apr	10				structural analysis, F commercial viab	inal dimensions bility COMPLETE		
22-Apr	11	Manufacturing considerations (joints, forming, finishing)	Detailed costing,	both for technical a viability	and commercial			FINAL CAD MODEL FOR FLOW SIMULATIONS
						All information neede	ed for section 2 in available	n commercial should be
29-Apr	12		Concrete simula	tions, Experiments	with prototype?	, Cleaning method sele	ected and verified	ı

	Research into business strategies, section 2 should be being written up at this point		CAD model images created and inserted into commercial viability		Cost of our design should be done, and placed in reference and appendix	Section 2 COMPLETE	
06-May	Commercial viabilit	y report SPRINT: E		costing	nces fully fleshed, only section 3 in report	tweaks after this	s should be to detail
13-May	All info for technical report should have been obtained	Individual technic	•	Filling in gaps of mpleted	everything that was		
		Proofreading, references, tweaking					
20-May	Conclusion and summary	Abstract and introduction	Proofreading		Report hand in		

27-May		Presentation]
					ı

Appendix M: Detailed granularization of business related tasks

Numerical		Mandarint	Difficulty			Person			
order	Section	Wordcount	(1-5)	Status	Notes	responsible	Proofreading	Deadline	Dependencies
	Problem statement	<100		Incomplete		Tim	Everyone	After ISB	
		<200			Types of				
					research				
SECTION 1					that we did,				
- To be	Research methodology			Incomplete	order	Kai	Max	After ISB	
COMPLETED,		100-300			Prioritise				
aside from	Market sizing: number				ease of				
proofreading,	of dwellings		4	Incomplete	reading	Tim	Kai	After ISB	
by the end of		200-400			Prioritise				
ISB	Market sizing: Bottom				ease of				
- First round	up sizing		4	Incomplete	reading	Katie	Kai + Max	After ISB	
of		100-200			Prioritise				
proofreading	Flow of authority /				ease of				
to be	stakeholders			Incomplete	reading	Kai	Alexander	After ISB	
discussed	Summary of market	100-200							Previous
later	opportunity			Incomplete		Katie	Kai	After ISB	sections
- WC: 1600	Target customer				End user,				Mild
	profiles	50-100		Incomplete	client, site	Alexander	Kai + Max	After ISB	dependency

					manager,				on flow of
					and any that				authority
					feel relevant				
					Not many				
					words, but				
		<100			EXTREMELY				
	Existing solutions:				dense with				
	Competitor matrix		3	Incomplete	info	Alexander?	Max	After ISB	
									Target
	Existing solutions:								customer
	Competitor mapping		5	Incomplete		Max	Alexander	After ISB	profiles
	USP, identification of	<100							
	gap within market	100	1-2 ish	Incomplete		Max?	Alexander	After ISB	
	Target niche	<100					Alexander		
	(clientel/stakeholders)	100	1	Incomplete		Tim	and Kai	After ISB	
				ALL SUBSYS	TEM COSTINGS	S MUST BE COMPL	ETE FOR THE F	IRST WEEK I	BACK AFTER ISB
SECTION 2:								Week	
<u>Proposed</u>		50						starting	
<u>solution</u>		00						29th	
- Organisation	50 word pitch			Incomplete		Katie	Tim	April	Write last

and structure	Descrtiption and				Annotation				
to be set up	(comparitative)	100			of CAD				
over ISB, filled	specifications			Incomplete	model	Katie	Tim		Costing
in on second								Week	
week back		50						starting	Target
WC: 500	Meeting customer	50						29th	customer
	specs			Incomplete		Katie	Tim	April	profiles
								Week	
	Estimated cost: both							starting	
	individual, and how it							29th	
	scales			Incomplete		Everyone costs		April	
						Max (and			
						Alexander?)			
		300-500				makes		Week	
		300-300				structure, ALL		starting	
						REST		29th	
	Value model		5	Incomplete		RESEARCHING	Alexander	April	
Road to	Timeline			Incomplete	Split up into				
product	Budget, investment,				groups,				
WC: 500	stakeholders, etc.			Incomplete	while Max				

Road to				and othe
<u>market</u>	_			complete
WC: 500, to				value
be cut down				model,
later	Explored strategy		Incomplete	others
				research
	Proposed strategy		Incomplete	this
Conclusion		100-200		
WC: 200	Written at end		Incomplete	
	Everyone keep track of			
	what they used in their			
	own document, will			
References	merge all of them later		Incomplete	