

Norwegian University of Science and Technology Deptartment of Mathematical Sciences TMA4190 Introduction to Topology Spring 2018

Exercise set 10

1 Prove the Theorem of Perron-Frobenius: An $n \times n$ -matrix A with only nonnegative entries, must have a real nonnegative eigenvalue.

(Hint: It suffices to assume A nonsingular, otherwise O is an eigenvalue. Let A also denote the associated linear map of \mathbb{R}^n , and consider the map $v \to Av/|Av|$ restricted to $S^{n-1} \to S^{n-1}$. Show that this maps the first quadrant

$$Q = \{(x_1, \dots, x_n) \in S^{n-1} : \text{ all } x_i \ge 0\}$$

into itself. Now use the fact that there is a homeomorphism $B^{n-1} \to Q$, to get a continuous map $B^{n-1} \to B^{n-1}$.)

- 2 Let X and Y be submanifolds of \mathbb{R}^N . Show that for almost every $a \in \mathbb{R}^N$ the translate X + a intersects Y transversally.
- a) Let Y be a compact submanifold of \mathbb{R}^M , and $w \in \mathbb{R}^M$. Show that there exists a (not necessarily unique) point $y \in Y$ closest to w, and prove that $w y \in N_y(Y)$. (Hint: If c(t) is a curve on Y with c(0) = y, then the smooth function $|w c(t)|^2$ has a minimum at 0. Now use that we have shown on Exercise Set 2 that there is a unique correspondence between tangent vectors at y and velocity vectors at 0 of curves $c: (-a, a) \to Y$ with c(0) = y.)
 - b) Use the previous point to show: Let Y be a compact submanifold of \mathbb{R}^M , and $w \in \mathbb{R}^M$. Let $h \colon N(Y) \to \mathbb{R}^M$, h(y,v) = y+v, be the map used in the proof of the ϵ -Neighborhood Theorem in the lecture. We know that h maps a neighborhood of Y in N(Y) diffeomorphically onto $Y^{\epsilon} \subset \mathbb{R}^M$, where $\epsilon > 0$ is constant. Prove that if $w \in Y^{\epsilon}$, then $\pi(w)$ is the unique point of Y closest to w, where $\pi = \sigma \circ h^{-1}$.
- 4 Let X be a submanifold of \mathbb{R}^N . Show that "almost every" vector space V of any fixed dimension k in \mathbb{R}^N intersects X transversally, i.e.

$$V + T_x(X) = \mathbb{R}^N$$
 for every $x \in X$.

(Hint: Use the fact that the set $S \subset (\mathbb{R}^N)^k$ consisting of all linearly independent k-tuples of vectors in \mathbb{R}^N is open in R^{Nk} . Show that the map $\mathbb{R}^k \times S \to \mathbb{R}^N$ defined by

$$((t_1,\ldots,t_k),v_1,\ldots,v_k)\mapsto t_1v_1+\cdots+t_kv_k$$

is a submersion, and apply the results of the lecture.)

- [5] This is a harder problem, but it is an interesting application of the Transversality Theorem and ϵ -neighborhoods. So try it!
 - a) Suppose that $f: \mathbb{R}^n \to \mathbb{R}^n$ is a smooth map with n > 1, and let $K \subset \mathbb{R}^n$ be compact and $\epsilon > 0$. Show that there exists a map $g: \mathbb{R}^n \to \mathbb{R}^n$ such that dg_x is never 0, and $|f(x) g(x)| < \epsilon$ for all $x \in K$.

 (Hint: Let M(n) be the space of $n \times n$ -matrices. Show that the map $F: \mathbb{R}^n \times M(n) \to M(n)$, defined by $F(x, A) = df_x + A$, is a submersion. Pick A so that $F_A \to \{0\}$ for $F_A: x \mapsto (x, A)$ as in the lecture. Now use this knowledge to construct g. At some point along this way you will have used n > 1. Make sure you see where and how it has been used.)
 - **b)** Show that this result is false for n=1 (i.e. find $f, \epsilon, K \subset \mathbb{R}$ such that we cannot find such a g).

(Hint: You could contemplate on the Mean Value Theory.)