A Branch-and-Cut Approach for Simple Graph Partitioning on Sparse Graphs

Demetrios V. Papazaharias

Jose L. Walteros

Group for Applied Mathematical Modeling and Analytics Department of Industrial & Systems Engineering University at Buffalo, SUNY

November 10, 2020

Contents

- 1. Introduction
- 2. Node-Based Formulations
- 3. Extended Formulations
- 4. Characterization on Trees
- 5. Dynamic Program on Trees
- 6. Computational Results

Contents

- 1. Introduction

Problem Description

ullet The problem of graph partitioning refers to finding a partition of V such that the weight of the edges within each partition is maximized

- Several versions of this problem arise by imposing constraints on the size, weight and number of partitions
- "Simple" graph partitioning refers to placing an upper bound on the weight of each partition

Motivation - Sparse Graphs

· Web graphs and social networks are sparse or locally dense

$$D = \frac{2|E|}{|V|(|V| - 1)}$$

Name	Nodes	Edges	Density
LiveJournal	4.00E+06	3.47E+07	2.17E-06
Friendster	6.56E+07	1.81E + 09	4.20E-07
Orkut	3.07E+06	1.17E + 08	1.24E-05
Youtube	1.13E+06	2.99E + 06	2.32E-06
DBLP	3.17E+05	1.05E + 06	1.04E-05
Amazon	3.35E+05	9.26E + 05	8.26E-06

 $^{^1\}mathsf{SNAP}$: A General-Purpose Network Analysis and Graph-Mining Library

Contents

- 1. Introduction
- 2. Node-Based Formulations
- 3. Extended Formulations
- 4. Characterization on Trees
- 5. Dynamic Program on Trees
- 6. Computational Results

Δ -Inequalities

$$x_{ij} = \begin{cases} 1 & \text{if } i,j \text{ in the same partition} \\ 0 & \text{otherwise} \end{cases}$$

$$\max \sum c_e x_e$$

s.t
$$x_{ij} + x_{jk} - x_{ik} \le 1$$

$$\sum_{j \in V \setminus \{i\}} w_j x_{ij} \le r - w_i$$

$$x_{ij} \in \{0, 1\}$$

$$x_{ij} \in [0, 1]$$

$$c_e$$
 - weight of edge e
 w_i - weight of vertex i
 r - partition capacity

$$i, j, k \in \binom{V}{3}$$
$$i \in V$$
$$\{i, j\} \in E$$
$$\{i, j\} \notin E$$

Node-to-Cluster Formulation

$$y_e = \begin{cases} 1 & \text{if } e \text{ is in the edge cut } \delta(V_1, \dots, V_K) \\ 0 & \text{otherwise} \end{cases}, \quad z_i^k = \begin{cases} 1 & \text{if } i \text{ is in cluster } k \\ 0 & \text{otherwise} \end{cases}$$

$$w_i - \text{ the weight of vertex } i$$

$$\min \quad \sum_{e \in E} c_e y_e$$

$$\text{s.t.} \quad \sum_{k=1}^K z_i^k = 1 \qquad \qquad i \in V$$

$$\sum_{k=1}^K w_i z_i^k \leq r \qquad \qquad k = 1, \dots, K$$

$$y_{ij} \geq \sum_{k \in K_1} z_i^k - \sum_{k \in K_1} z_j^k \qquad K_1 \subseteq \{1, \dots, K\}, \quad (i, j) \in E$$

$$y_{ij} \in \{0, 1\} \qquad \qquad \{i, j\} \in E$$

$$z_i^k \in \{0, 1\} \qquad \qquad i \in V, k = 1, \dots, K$$

Issues with Node-Based Formulations

• Consider the constraint set from the Δ -Inequalities

$$x_{ij} + x_{jk} - x_{ik} \le 1$$
 $i, j, k \in \binom{V}{3}$

- \bullet Though a compact $O(n^3)$ formulation, the classic partitioning formulation assumes a complete graph
- The node-to-cluster formulation is highly symmetric and as a result performs poorly during branch and bound
- We seek a formulation which is capable of exploiting the structure of sparse graphs
- We introduce several extended formulations and study their projection

Contents

- 1. Introduction
- 2. Node-Based Formulations
- 3. Extended Formulations
- 4. Characterization on Trees
- 5. Dynamic Program on Trees
- 6. Computational Results

Max Flow - Formulation

- Given cut edge solution $\bar{\mathbf{y}},$ we wish to maximize the flow on the arcs leaving node k

$$\begin{split} MF(k,\bar{\mathbf{y}}) &= \max \quad \sum_{(k,i) \in A} f_{ki}^k + \sum_{(k,i) \in A'} 0 \cdot f_{ki}^k - \sum_{(i,j) \in A} f_{ij}^k \bar{y}_e \\ \text{s.t.} \quad \sum_{(k,i) \in A} f_{ki}^k + \sum_{(k,i) \in A'} f_{ki}^k = \sum_{i \in V \backslash \{k\}} w_i \\ f_{ki}^k - \sum_{j: (i,j) \in A} f_{ij}^k + \sum_{j: (j,i) \in A} f_{ji}^k = w_i \qquad \qquad i \in V \backslash \{k\} \\ f_{ij}^k \geq 0 \qquad \qquad (i,j) \in A \cup A' \end{split}$$

Max Flow

- Let $\mathsf{MF}(k,\bar{\mathbf{y}})$ represent the optimal solution for the max flow problem at node k
- For $k \in V$, if $\mathsf{MF}(k,\bar{\mathbf{y}}) \leq r w_k$, then the $\bar{\mathbf{y}}$ is a feasible edge cut
- We can utilize $\mathsf{MF}(k,\mathbf{y})$ as inner problem, and take its dual in order to obtain the single level optimization model

$$\begin{aligned} &\min && \sum_{e \in E} c_e y_e \\ &\text{s.t.} && \mathsf{MF}(k,\mathbf{y}) \leq r - w_k \\ && y_e \in \{0,1\} \end{aligned} \qquad k \in V$$

Max Flow

- Let $\mathsf{MF}(k,\bar{\mathbf{y}})$ represent the optimal solution for the max flow problem at node k
- For $k \in V$, if $\mathsf{MF}(k, \bar{\mathbf{y}}) \leq r w_k$, then the $\bar{\mathbf{y}}$ is a feasible edge cut
- We can utilize $\mathsf{MF}(k,\mathbf{y})$ as inner problem, and take its dual in order to obtain the single level optimization model

$$\begin{array}{ll} \min & \sum_{e \in E} c_e y_e \\ \text{s.t.} & \sum_{i \in V \setminus \{k\}} w_i \alpha_i^k \leq r - w_k \\ & \alpha_i^k + y_e \geq 1 \\ & \alpha_i^k - \alpha_j^k + y_e \geq 0 \\ & \alpha_j^k - \alpha_i^k + y_e \geq 0 \\ & \alpha_i^k \geq 0 \\ & \alpha_i^k \geq 0 \\ & y_e \in \{0, 1\} \end{array} \qquad \begin{array}{ll} k \in V, \ i \in N(k) \\ & e = \{i, j\} \in E, k \in V \setminus \{i, j\} \\ & e = \{i, j\} \in E, k \in V \setminus \{i, j\} \\ & e \in E \end{array}$$

Max Flow

- Let $\mathsf{MF}(k,\bar{\mathbf{y}})$ represent the optimal solution for the max flow problem at node k
- For $k \in V$, if $\mathsf{MF}(k,\bar{\mathbf{y}}) \leq r w_k$, then the $\bar{\mathbf{y}}$ is a feasible edge cut
- We can utilize $\mathsf{MF}(k,\mathbf{y})$ as inner problem, and take its dual in order to obtain the single level optimization model

$$\begin{aligned} & \min \quad \sum_{e \in E} c_e y_e \\ & \text{s.t.} \quad \sum_{i \in V \setminus \{k\}} w_i \alpha_i^k \leq r - w_k \\ & \quad \alpha_i^k + y_e \geq 1 \\ & \quad \rightarrow \alpha_i^k - \alpha_j^k + y_e \geq 0 \\ & \quad \rightarrow \alpha_j^k - \alpha_i^k + y_e \geq 0 \\ & \quad \alpha_i^k \geq 0 \\ & \quad \alpha_i^k \geq 0 \\ & \quad y_e \in \{0, 1\} \end{aligned} \qquad \begin{aligned} & k \in V, \ i \in N(k) \\ & e = \{i, j\} \in E, k \in V \setminus \{i, j\} \\ & e \in \{i, j\} \in E, k \in V \setminus \{i, j\} \\ & k \in V, \ i \in V \setminus \{k\} \end{aligned}$$

Path Formulation

$$x_{ij} = \begin{cases} 1 & \text{if vertices } i,j \text{ remain connected in the edge cut} \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{aligned} & \min \quad \sum_{e \in E} c_e y_e \\ & \text{s.t.} \quad x_{ij} + \sum_{e \in P^{ij}} y_e \geq 1 \\ & \quad \sum_{j \in V \setminus \{i\}} w_j x_{ij} \leq r - w_i \\ & \quad y_{ij} \in [0,1] \end{aligned} \qquad i, j \in \binom{V}{2}, P^{ij} \in \mathcal{P}$$

$$i \in V$$

$$i \in V$$

$$i, j \in \binom{V}{2}$$

- The size of the path inequalities is exponential but for sparse graphs only a fraction are necessary in the optimal solution
- We can perform lazy and fractional separation of these inequalities via Dijkstra's with min heap

Studying the Projection of PATH and MF

- The projection of (PATH) into the space of the edges produces similar extreme points to that of (MF)
- Consider the following graph with $w_i = 1$ for $i \in V$ and r = 3.

• It turns out that the strength of the relaxation of (PATH) is just as strong as that of (MF) and as a result of equivalent strength to (Δ)

Contents

- 1. Introduction
- 2. Node-Based Formulations
- 3. Extended Formulations
- 4. Characterization on Trees
- 5. Dynamic Program on Trees
- 6. Computational Results

SGPP on Trees

Definition

A tree T is a minimal tree cover if w(T) > r, but $w(T - \{e\}) \le r$ for $e \in E(T)$. Let Ω_T represent the set of minimal tree covers for an instance SGPP(r)

Theorem

An edge-cut $S\subseteq E$ is a feasible solution for SGPP(r) if and only if for all $T\in\Omega_T$, $S\cap E(T)\neq\emptyset$

• Therefore, the following set cover formulation is valid for SGPP

$$\begin{array}{ll} & \min & \sum_{e \in E} c_e y_e \\ \text{(SGPP-T)} & \text{s.t.} & \sum_{e \in E(T)} y_e \geq 1 \quad T \in \Omega_T \\ & y_e \in \{0,1\} \quad e \in E \end{array}$$

Properties of (SGPP-T)

Theorem

Given a simple, nonempty, connected graph G = (V, E), a weight vector $\mathbf{w} \in \mathbb{Z}_+^n$, edge cut cost $\mathbf{c} \in \mathbb{R}_+^m$ and a scalar integer r such that $w_i + w_i \leq r$ for all $\{i, j\} \in E$, the following statements are true:

- 1. \mathcal{P} is full-dimensional
- 2. The trivial inequality $y_e \leq 1$ is a facet
- 3. Let e be represented by the node pair $\{i,j\}$. Then $y_e \geq 0$ is a facet if and only if for all $k \in N(i) \cup N(j) \setminus \{i, j\}$, $w_i + w_j + w_k \leq r$.
- 4. Given minimal cover tree $T \in \Omega_T(r)$, the corresponding minimal cover tree inequality $\sum_{e \in E(T)} y_e \ge 1$ induces a facet of (\mathcal{P}) if and only if:
 - 4.1 there exists no edge $e \in E$ such that if added to T, completes a cycle in G with |V(T)| nodes
 - 4.2 there exists no edge $e \in E$ containing node $k \notin V(T)$ that is incident to an internal node $v \in V(T)$ such that the tree rooted at v does not have a branch B such that $w(T) + w_k - w(B) \le r$

Separating the Minimum Cover Tree Inequalities

- The projections of (Δ) , (MF) and (PATH) are incapable of producing the minimal tree cover inequalities
- The size of Ω_T grows prohibitively large as G increases in size and density

Theorem

Given a cut-edge solution y, separating the minimal cover tree inequalities is:

- 1. NP-Hard if $\bar{\mathbf{y}} \in [0,1]^m$
- 2. solvable in O(n+m) if $\bar{\mathbf{y}} \in \{0,1\}^m$.
- We introduce a dynamic programming algorithm whose linear programming extension provides a separation algorithm for generating tree inequalities

Contents

- 1. Introduction
- 2. Node-Based Formulations
- 3. Extended Formulations
- 4. Characterization on Trees
- 5. Dynamic Program on Trees
- 6. Computational Results

Dynamic Program on Trees

- \bullet We develop an $O(nr^2)$ dynamic programming algorithm to solve the SGPP on trees
- We are not the first to develop such an algorithm for partitioning trees (Lukes, J.A. 1974)
- However, our DP is extensible to a linear program while still maintaining the same complexity
- Our goal is to utilize the extreme rays of this linear program as a separation procedure for generating tree inequalities
- For the purpose of simplicity, we will describe the cardinality version of the DP and show its weighted version after

- Let T be a tree rooted at vertex v
- We say that T_i represents the subtree rooted at vertex i
- We say the closed neighborhood of i, contains itself and all of the vertices in T_i which are connected to i
- We denote the closed neighborhood of i as o_i

- Let T be a tree rooted at vertex v
- We say that T_i represents the subtree rooted at vertex i
- We say the closed neighborhood of i, contains itself and all of the vertices in T_i which are connected to i
- We denote the closed neighborhood of i as o_i

- Let f(i,o) represent the minimum number of edges to be removed such that the closed neighborhood of i contains o nodes, and the largest component in $T_i \setminus o_i$ has size at most r
- Suppose r=3

- Base Case:
 - f(i,1) = 0 if i is a leaf
 - $f(i, o) = \infty$ if $o > |T_i|$
 - $f(i,0) = \infty$

- Suppose vertex i has s children
- Let $g(i_i, o)$ represent the minimum number of edges cut from T_{i_1}, \ldots, T_{i_i} and $(i, i_1), \ldots, (i, i_j)$ such that the closed neighborhood of i is o, and the largest component in $T_{i_1} \setminus o_{i_1}, \dots, T_{i_j} \setminus o_{i_j}$ has size at most r

• When j = s it follows that:

$$f(i, o) = g(i_s, o)$$

Dynamic Program on Trees

$$\begin{split} f(i,o) &= g(i_s,o) \\ g(i_1,1) &= 1 + \min_{k=1}^r \{f(i_1,k)\} \\ g(i_j,1) &= 1 + g(i_{j-1},1) + \min_{k=1}^r \{f(i_j,k)\} \\ g(i_1,o) &= f(i,o-1) \\ g(i_j,o) &= \min \begin{cases} 1 + g(i_{j-1},o) + \min_{k=1}^r \{f(i_j,k)\} \\ \min_{k=1}^o \{g(i_{j-1},k) + f(i_j,o-k)\} \end{cases} \end{split}$$

- Space complexity: f = O(nr), g = O(nr)
- Time complexity: $O(nr^2)$

Linear Programming Formulation

```
I — the set of interior nodes (i.e. V without leaves) S(i) — the children of node i f_{io} — a representation of f(i,o) g_{ijo} — a representation of g(i_j,o)
```

```
\begin{array}{lll} \max & z \\ \text{s.t.} & z \leq f_{vo} & v - \mathsf{root}, o = 1, \dots, r \\ & f_{io} = g_{iso} & i \in I, o = 1, \dots, r \\ & g_{ijo} \leq 1 + g_{ij-1o} + f_{ijk} & i \in I, j \in S(i), o = 1, \dots, r, k = 1, \dots, r \\ & g_{ijo} \leq g_{ij-1k} + f_{ijo-k} & i \in I, j \in S(i), o = 1, \dots, r, k = 1, \dots, o \\ & f_{io} \geq 0, & g_{ijo} \geq 0 \end{array}
```

Linear Programming Separation

 We can separate a fractional solution SGPP formulation with the modified LP

$$\begin{array}{lll} \max & z - \sum_{e \in E} \overline{y}_e h_e \\ \text{s.t.} & z \leq f_{vo} & v - \mathsf{root}, o = 1, \dots, r \\ & f_{io} = g_{i_so} & i \in I, o = 1, \dots, r \\ & g_{i_jo} \leq 1 + g_{i_{j-1}o} + f_{i_jk} + h_e & i \in I, j \in S(i), o = 1, \dots, r, k = 1, \dots, r \\ & g_{i_jo} \leq g_{i_{j-1}k} + f_{i_jo-k} & i \in I, j \in S(i), o = 1, \dots, r, k = 1, \dots, o \\ & f_{io} \geq 0, & g_{i_jo} \geq 0, & h_e \geq 0 \end{array}$$

- For a given $\bar{\mathbf{y}}$, if this formulation is unbounded, then there is a violating tree in our current solution
- The extreme direction produced by this unbounded solution is used to generate a cut in the form

$$\sum_{e} \bar{h}_e y_e \ge \bar{z}$$

Contents

- 1. Introduction
- 2. Node-Based Formulations
- 3. Extended Formulations
- 4. Characterization on Trees
- 5. Dynamic Program on Trees
- 6. Computational Results

Computational Study

- The computational study was performed on a computing cluster with 12 nodes, each featuring a 12-core Intel Xeon[®] E5-2620 v3 2.4 GHz processor, 128 GB of RAM, and running Linux x86_64, Cent0S 7.2
- All formulations and algorithms were implemented in C++, compiled with GCC 7.3.0 and solved using Gurobi 9.0.0
- Instances are selected from real social networks and randomly generated networks (ERG, BA, WS)
- Weighted instances were generated by selecting $w_i \sim U(5,15)$ for $i \in V$
- Parameter r was selected as 10, 20, and 30 percent of |V| or $\sum_{i \in V} w_i$

WS-Unweighted, 30 Nodes

				Time				Gap	
n	m	r	Triangle	Flow	Path	obj	Triangle	Flow	Path
30	60	3	0.27	0.18	0.21	32	0.00	0.00	0.00
30	60	3	0.41	0.17	0.12	34	0.00	0.00	0.00
30	60	3	0.25	0.19	0.16	33	0.00	0.00	0.00
30	60	6	0.52	0.34	0.34	18	0.00	0.00	0.00
30	60	6	1.02	0.47	0.35	21	0.00	0.00	0.00
30	60	6	1.04	0.62	0.39	20	0.00	0.00	0.00
30	60	9	1.74	0.34	0.19	14	0.00	0.00	0.00
30	60	9	1.47	0.19	0.77	16	0.00	0.00	0.00
30	60	9	3.79	1.59	0.93	16	0.00	0.00	0.00
30	90	3	0.34	0.23	1.03	61	0.00	0.00	0.00
30	90	3	0.96	0.83	0.79	62	0.00	0.00	0.00
30	90	3	0.46	0.34	0.52	61	0.00	0.00	0.00
30	90	6	1.43	0.85	1.04	38	0.00	0.00	0.00
30	90	6	3.31	1.80	4.47	41	0.00	0.00	0.00
30	90	6	2.71	1.59	0.82	38	0.00	0.00	0.00
30	90	9	5.80	3.64	5.78	31	0.00	0.00	0.00
30	90	9	3.63	1.89	3.00	32	0.00	0.00	0.00
30	90	9	3.64	2.36	1.32	29	0.00	0.00	0.00
30	180	3	0.17	0.19	0.79	150	0.00	0.00	0.00
30	180	3	0.16	0.19	0.62	150	0.00	0.00	0.00
30	180	3	0.17	0.19	1.09	150	0.00	0.00	0.00
30	180	6	3.19	3.93	36.91	111	0.00	0.00	0.00
30	180	6	5.45	4.07	45.46	113	0.00	0.00	0.00
30	180	6	3.07	3.96	47.82	110	0.00	0.00	0.00
30	180	9	19.09	20.16	136.97	89	0.00	0.00	0.00
30	180	9	16.03	17.95	112.50	90	0.00	0.00	0.00
30	180	9	11.21	17.61	50.75	87	0.00	0.00	0.00

WS-Weighted, 30 Nodes

				Time				Gap	
n	m	r	Triangle	Flow	Path	obj	Triangle	Flow	Path
30	60	25	0.87	0.41	0.15	36	0.00	0.00	0.00
30	60	25	0.74	0.42	0.22	38	0.00	0.00	0.00
30	60	25	1.00	0.41	0.33	38	0.00	0.00	0.00
30	60	50	3.25	1.24	0.54	20	0.00	0.00	0.00
30	60	50	5.06	2.07	1.49	23	0.00	0.00	0.00
30	60	50	2.16	0.56	0.51	21	0.00	0.00	0.00
30	60	75	0.75	0.32	0.22	14	0.00	0.00	0.00
30	60	75	3.59	1.79	0.72	17	0.00	0.00	0.00
30	60	75	3.41	1.84	1.33	16	0.00	0.00	0.00
30	90	25	0.93	0.93	0.17	63	0.00	0.00	0.00
30	90	25	2.15	1.33	0.86	64	0.00	0.00	0.00
30	90	25	1.46	1.00	0.51	64	0.00	0.00	0.00
30	90	50	6.51	4.88	20.51	41	0.00	0.00	0.00
30	90	50	17.46	13.28	23.50	44	0.00	0.00	0.00
30	90	50	6.38	4.40	8.18	41	0.00	0.00	0.00
30	90	75	7.65	3.59	4.58	31	0.00	0.00	0.00
30	90	75	4.22	2.61	0.77	32	0.00	0.00	0.00
30	90	75	7.98	4.24	5.03	30	0.00	0.00	0.00
30	180	25	17.69	13.99	34.79	151	0.00	0.00	0.00
30	180	25	13.82	14.24	18.48	151	0.00	0.00	0.00
30	180	25	7.35	8.52	10.64	151	0.00	0.00	0.00
30	180	50	43.31	34.71	379.84	114	0.00	0.00	0.00
30	180	50	315.60	84.39	4324.67	116	0.00	0.00	0.00
30	180	50	89.83	63.73	2783.36	115	0.00	0.00	0.00
30	180	75	27.18	29.05	228.73	89	0.00	0.00	0.00
30	180	75	62.95	66.15	5676.66	92	0.00	0.00	0.00
30	180	75	27.53	24.72	247.32	89	0.00	0.00	0.00

WS-Unweighted, 60 Nodes

				Time			Gap				
n	m	r	Triangle	Flow	Path	obj	Triangle	Flow	Path		
60	120	6	52.03	8.86	53.04	41	0.00	0.00	0.00		
60	120	6	477.03	11.68	43.62	45	0.00	0.00	0.00		
60	120	6	79.48	11.53	10.64	40	0.00	0.00	0.00		
60	120	12	7200.04	44.17	33.22	26	0.01	0.00	0.00		
60	120	12	2709.17	23.51	33.65	29	0.00	0.00	0.00		
60	120	12	135.77	1.51	4.83	23	0.00	0.00	0.00		
60	120	18	7200.01	10.86	17.85	18	0.01	0.00	0.00		
60	120	18	7200.04	65.94	198.35	24	0.04	0.00	0.00		
60	120	18	7200.02	18.04	14.56	19	0.01	0.00	0.00		
60	180	6	20.38	6.14	27.93	77	0.00	0.00	0.00		
60	180	6	171.11	35.63	117.55	82	0.00	0.00	0.00		
60	180	6	26.61	9.17	55.59	78	0.00	0.00	0.00		
60	180	12	1011.38	50.40	119.55	49	0.00	0.00	0.00		
60	180	12	1261.06	261.55	59.53	53	0.00	0.00	0.00		
60	180	12	2504.33	344.06	205.16	51	0.00	0.00	0.00		
60	180	18	7200.01	305.80	416.37	38	0.02	0.00	0.00		
60	180	18	7200.03	414.78	878.62	44	0.02	0.00	0.00		
60	180	18	3784.12	229.35	433.17	39	0.00	0.00	0.00		
60	360	6	1567.61	175.17	7207.22	228	0.00	0.00	0.04		
60	360	6	1698.36	197.19	7206.29	229	0.00	0.00	0.01		
60	360	6	591.47	124.63	7204.17	225	0.00	0.00	0.03		
60	360	12	198.82	130.12	30.93	144	0.00	0.00	0.00		
60	360	12	700.59	165.82	483.61	149	0.00	0.00	0.00		
60	360	12	164.56	18.44	163.56	142	0.00	0.00	0.00		
60	360	18	7200.03	3811.82	7206.36	117	0.03	0.00	0.04		
60	360	18	7200.02	4124.89	7202.84	120	0.03	0.00	0.04		
60	360	18	7200.01	5124.41	7207.26	116	0.03	0.00	0.07		

WS-Weighted, 60 Nodes

				Time			Gap			
n	m	r	Triangle	Flow	Path	Obj	Triangle	Flow	Path	
60	120	54	128.66	26.82	25.57	41	0.00	0.00	0.00	
60	120	54	2094.27	181.15	743.11	47	0.00	0.00	0.00	
60	120	54	542.26	42.60	86.73	43	0.00	0.00	0.00	
60	120	108	376.11	25.65	68.73	25	0.00	0.00	0.00	
60	120	108	7200.01	138.27	149.35	31	0.02	0.00	0.00	
60	120	108	3867.57	37.12	72.53	26	0.00	0.00	0.00	
60	120	162	735.12	15.72	7.62	17	0.00	0.00	0.00	
60	120	162	3438.90	24.11	96.58	23	0.00	0.00	0.00	
60	120	162	4837.30	25.68	24.92	19	0.00	0.00	0.00	
60	180	54	3061.14	700.48	1234.59	81	0.00	0.00	0.00	
60	180	54	7200.02	1950.51	2902.86	85	0.01	0.00	0.00	
60	180	54	591.84	166.72	795.84	82	0.00	0.00	0.00	
60	180	108	7200.01	1182.03	791.13	51	0.02	0.00	0.00	
60	180	108	7200.01	920.85	494.54	56	0.01	0.00	0.00	
60	180	108	7200.02	902.57	844.57	53	0.02	0.00	0.00	
60	180	162	4728.82	211.50	120.69	37	0.00	0.00	0.00	
60	180	162	5553.63	237.51	815.36	43	0.00	0.00	0.00	
60	180	162	5995.95	270.65	219.90	40	0.00	0.00	0.00	
60	360	54	7200.03	7200.05	7208.53	-	0.05	0.02	0.03	
60	360	54	7200.05	7200.05	7220.43	-	0.06	0.02	0.04	
60	360	54	7200.05	7200.05	7225.59	-	0.08	0.05	0.05	
60	360	108	2936.37	1129.04	3387.42	148	0.00	0.00	0.00	
60	360	108	7200.05	4004.85	7210.35	153	0.01	0.00	0.03	
60	360	162	7200.03	2744.07	7203.16	117	0.03	0.00	0.03	
60	360	162	7200.02	6972.54	7202.78	120	0.03	0.00	0.06	

BA-Unweighted, 30 Nodes

				Time				Gap	
n	m	r	Triangle	Flow	Path	Optimal	Triangle	Flow	Path
30	56	3	0.15	0.10	0.07	37	0.00	0.00	0.00
30	56	3	0.37	0.16	0.17	36	0.00	0.00	0.00
30	56	3	0.41	0.14	0.05	36	0.00	0.00	0.00
30	56	6	3.50	0.37	0.34	26	0.00	0.00	0.00
30	56	6	7.08	1.19	0.44	26	0.00	0.00	0.00
30	56	6	3.39	0.60	0.35	26	0.00	0.00	0.00
30	56	9	6.45	1.25	1.69	21	0.00	0.00	0.00
30	56	9	2.92	0.36	0.69	20	0.00	0.00	0.00
30	56	9	6.74	1.64	0.86	22	0.00	0.00	0.00
30	81	3	0.49	0.27	0.19	57	0.00	0.00	0.00
30	81	3	1.39	0.37	0.43	57	0.00	0.00	0.00
30	81	3	1.02	0.30	0.24	56	0.00	0.00	0.00
30	81	6	7.81	1.68	1.60	44	0.00	0.00	0.00
30	81	6	5.49	1.09	2.21	43	0.00	0.00	0.00
30	81	6	12.25	1.92	6.18	44	0.00	0.00	0.00
30	81	9	6.31	2.20	2.10	35	0.00	0.00	0.00
30	81	9	10.75	4.29	3.72	35	0.00	0.00	0.00
30	81	9	14.72	2.89	12.54	36	0.00	0.00	0.00
30	176	3	0.31	0.18	0.43	146	0.00	0.00	0.00
30	176	3	0.20	0.46	0.60	146	0.00	0.00	0.00
30	176	3	0.19	0.45	1.00	146	0.00	0.00	0.00
30	176	6	5.34	3.01	55.13	118	0.00	0.00	0.00
30	176	6	11.91	7.38	89.08	116	0.00	0.00	0.00
30	176	6	27.58	6.77	78.67	118	0.00	0.00	0.00
30	176	9	17.33	8.27	44.04	99	0.00	0.00	0.00
30	176	9	303.59	84.61	4230.98	100	0.00	0.00	0.00
30	176	9	291.08	61.64	821.22	101	0.00	0.00	0.00

BA-Weighted, 30 Nodes

				Time				Gap	
n	m	r	Triangle	Flow	Path	Obj	Triangle	Flow	Path
30	56	25	0.66	0.21	0.15	38	0.00	0.00	0.00
30	56	25	0.74	0.32	0.16	37	0.00	0.00	0.00
30	56	25	1.11	0.47	0.22	39	0.00	0.00	0.00
30	56	50	8.93	0.30	0.35	26	0.00	0.00	0.00
30	56	50	18.35	2.14	1.96	27	0.00	0.00	0.00
30	56	50	4.56	0.77	0.44	27	0.00	0.00	0.00
30	56	75	7.80	1.46	0.89	21	0.00	0.00	0.00
30	56	75	6.76	1.35	0.92	21	0.00	0.00	0.00
30	56	75	7.97	1.65	0.79	22	0.00	0.00	0.00
30	81	25	2.04	0.56	0.36	59	0.00	0.00	0.00
30	81	25	2.70	1.44	0.34	58	0.00	0.00	0.00
30	81	25	3.46	1.37	0.62	60	0.00	0.00	0.00
30	81	50	21.93	3.17	5.38	45	0.00	0.00	0.00
30	81	50	23.20	3.73	7.08	44	0.00	0.00	0.00
30	81	50	16.84	2.16	5.92	44	0.00	0.00	0.00
30	81	75	12.54	2.27	2.01	35	0.00	0.00	0.00
30	81	75	34.25	7.11	33.75	36	0.00	0.00	0.00
30	81	75	20.54	3.50	22.37	36	0.00	0.00	0.00
30	176	25	2.88	3.15	2.07	148	0.00	0.00	0.00
30	176	25	9.45	10.20	11.37	148	0.00	0.00	0.00
30	176	25	3.53	4.25	3.65	148	0.00	0.00	0.00
30	176	50	41.52	18.38	254.36	119	0.00	0.00	0.00
30	176	50	282.20	97.42	2558.82	119	0.00	0.00	0.00
30	176	50	862.98	336.87	7213.74	121	0.00	0.00	0.02
30	176	75	51.41	26.98	368.15	100	0.00	0.00	0.00
30	176	75	188.47	104.02	3828.51	100	0.00	0.00	0.00
30	176	75	822.35	167.31	7216.76	102	0.00	0.00	0.02

BA-Unweighted, 60 Nodes

				Time				Gap	
n	m	r	Triangle	Flow	Path	Obj	Triangle	Flow	Path
60	116	6	2094.86	7.90	26.64	59	0.00	0.00	0.00
60	116	6	3327.02	10.77	79.21	60	0.00	0.00	0.00
60	116	6	888.88	3.90	13.34	60	0.00	0.00	0.00
60	116	12	7200.01	25.17	127.35	44	0.03	0.00	0.00
60	116	12	7200.01	26.93	200.21	44	0.04	0.00	0.00
60	116	12	7200.01	20.61	81.05	45	0.01	0.00	0.00
60	116	18	7200.01	62.11	396.65	36	0.04	0.00	0.00
60	116	18	7200.03	56.43	350.51	36	0.03	0.00	0.00
60	116	18	7200.01	58.13	229.43	38	0.05	0.00	0.00
60	171	6	4570.05	15.23	1611.19	101	0.00	0.00	0.00
60	171	6	6693.56	24.12	5973.93	99	0.00	0.00	0.00
60	171	6	7200.04	51.77	7200.68	100	0.03	0.00	0.02
60	171	12	7200.03	321.15	2917.14	77	0.02	0.00	0.00
60	171	12	7200.02	559.21	7202.85	78	0.04	0.00	0.08
60	171	12	7200.02	164.27	5120.93	76	0.02	0.00	0.00
60	171	18	7200.03	1116.33	7200.08	65	0.06	0.00	0.03
60	171	18	7200.03	611.45	2569.33	62	0.03	0.00	0.00
60	171	18	7200.04	3316.31	7200.90	65	0.06	0.00	0.05
60	371	6	7200.03	7200.04	7206.76	-	0.16	0.04	0.05
60	371	6	7200.08	7200.03	7203.87	-	0.13	0.03	0.03
60	371	6	7200.06	7200.02	7207.71	-	0.11	0.03	0.04
60	371	12	7200.01	7200.01	7203.60	-	0.15	0.07	0.16
60	371	12	7200.05	7200.04	7201.93	-	0.17	0.05	0.18
60	371	12	7202.76	7200.03	7203.04	-	0.14	0.05	0.13
60	371	18	7200.06	7200.06	7201.08	-	0.17	0.07	0.18
60	371	18	7200.06	7200.01	7200.60	-	0.15	0.08	0.29
60	371	18	7200.02	7200.01	7200.86	-	0.12	0.07	0.21

BA-Weighted, 60 Nodes

				Time	Gap				
n	m	r	Triangle	Flow	Path	Obj	Triangle	Flow	Path
60	116	54	3887.85	15.22	44.97	59	0.00	0.00	0.00
60	116	54	7200.07	198.33	128.32	60	0.04	0.00	0.00
60	116	54	2943.12	17.43	29.73	60	0.00	0.00	0.00
60	116	108	7200.03	53.46	148.06	44	0.04	0.00	0.00
60	116	108	7200.03	62.47	391.35	45	0.04	0.00	0.00
60	116	108	7200.03	66.24	163.66	46	0.04	0.00	0.00
60	116	162	7200.01	122.66	466.90	36	0.04	0.00	0.00
60	116	162	7200.03	40.94	326.74	36	0.03	0.00	0.00
60	116	162	7200.01	76.71	278.03	38	0.04	0.00	0.00
60	171	54	7200.10	4092.24	7202.80	104	0.06	0.00	0.04
60	171	54	7200.02	1231.54	7200.17	100	0.04	0.00	0.04
60	171	54	7200.04	3098.09	7203.11	102	0.06	0.00	0.05
60	171	108	7200.03	595.54	7202.15	79	0.03	0.00	0.05
60	171	108	7200.02	1328.73	7203.44	79	0.07	0.00	0.08
60	171	108	7200.01	5899.18	7205.47	78	0.05	0.00	0.06
60	171	162	7200.01	1312.88	7201.26	66	0.07	0.00	0.06
60	171	162	7200.01	1464.85	5133.43	63	0.04	0.00	0.00
60	171	162	7200.01	1761.78	7206.11	65	0.07	0.00	0.06
60	371	54	7200.03	7200.05	7219.02	277*	0.18	0.09	0.06

Closing Remarks and Future Work

- Conclusion
 - We develop several new mathematical programming approaches for solving SGPP on sparse graphs
 - We characterize the problem over the trees of the G
 - In general, the path formulation performs better on sparse instances while the flow formulation performs better on denser instances
- Future work
 - Describe necessary and sufficient conditions for when inequalities on larger trees form facets
 - Develop a heuristic separation for the minimal cover tree inequalities and for larger trees

Q&A

Thank you for attending!

GAMMA

dvpapaza@buffalo.edu