Projet de conception d'une application au service de la santé publique

Cyril REGAN

 ${\sf Base \ de \ donn\'ees:} \\ {\sf https://static.openfoodfacts.org/data/en.openfoodfacts.org.products.csv}$

10 mars 2020

Table of Contents

Problématique et jeu de données

Sélection des données

Train Validation et Test

Analyse des données

Tests

Tests de Kolmogoro Classification

Test de Khi2 Test d'ANOV/

Test de Student

ACP

Eboulis des valeurs propres

Cercles et projection sur (F1, F2)

F4)

Construction du modèle

putation des variables Normalisation et réductio

Combinaisons de knn

Outliers multivariées :

Evaluation du modèle re-

tenu :

Construction de la fonction :

Conclusion

Problématique

Appel à projets pour trouver des idées innovantes d'applications en lien avec l'alimentation.

Construire une fonction qui prédit le nutriscore en fonction de caractéristiques partielles

Investigate, evaluate, protect

Données brutes : Tableau de 1113279 lignes \times 178 colonnes (2.3 Go).

le nutriscore est calculé suivant 10 variables :

Augmente le nutriscore :	Valeur éner- gétique	Acides gras saturés	Sucres	Sodium
Baisse le nutriscore :		Fibres	Fruits Légumes / Fruits à coque	Protéines

Table of Contents

Problématique et ieu de données

Sélection des données Nettoyage des données Train Validation et Test

Analyse des données

Tests

Tests de Kolmogorov Classification Test de Khi?

Test d'ANOVA

Test de Studen

ACP

Eboulis des valeurs propres

Cercles et projection sur (F1, F2) Cercles et projection sur (F3,

Construction du modèle

mputation des variables Normalisation et réduction

Construction du nutriscore

Outliers multivariées : Identification des modèles

tenu :

tenu :

Construction de la fonction :

Conclusion

Nettoyage des données

Les variables retenues sont :

product_name nutriscore_se	core energy_100g
saturated_fat_100g sugars_100g	fiber_100g
proteins_100g sodium_100	g Fruits(+ de 99% NaN)

$$\begin{array}{l} X = NaN \ pour \ X \in [saturated_fat_100g, \ sugars_100g, \\ fiber_100g, \ proteins_100g, \ sodium_100g \] \ tel \ que : \\ X > 100 \ ou < 0 \end{array}$$

et energy_100g = NaN pour le 1^{er} et le dernier centile.

Entrainement Validation et Test

Nettoyage et outliers	DATA Data with NaN			Data complete		
Analyse Statis- tique				Data com	plete	
Construction Imputation non nutri		NaN _{∉ nutri}	Train -	+ validation		
modèles =>	Prediction nutri	Train +	validation			
Test final					Test	

Table of Contents

Analyse des données

Tests

ACP

Tests de Kolmogorov : normalité

p-valeur : plus petite valeur du niveau de test α conduisant au rejet de l'hypothèse nulle H0 :

Rejet de H0 au niveau de test $\alpha \iff p$ -valeur $< \alpha$

=> H0 : la distribution est normale

nutriscore_100g p-valeur = 0 : H0 est rejetée.

energy_100gp-valeur = 0 : H0 est rejetée.

Classification

Classification des variables qui augmentent le nutriscore selon

Investigate, evaluate, protect

energy_100g	saturated_fat_100g	sugars_100g	sodium_100g
	Classe	0	
1005	3	13.5	0.27
	Classe	3	
2345	7	31	0.63
	Classe	7	

Classification des variables qui diminuent le nutriscore selon

fiber_100g	proteins_100g				
Classe 0					
1.9	3.0				
Classe 2					
3.7	6.4				
Classe 4					

Test de Khi2 : indépendance des classes proteins_100g et energy 100g

=> H0 : les deux variables proteins_100g et energy_100g sont indépendantes.

proteins_100g energy_100g	0	2	4	Total
0	19398	16134	15039	50571
3	3922	11968	31677	47567
7	1492	619	4267	6378
Total	24812	28721	50983	104516

Tableau de contingence

La p-valeur = 0.0 : l'hypothèse nulle est rejetée

Test d'analyse de la variance (ANOVA)

=> H0 (multifactoriel) : les distributions du nutri_score suivent la même loi normale suivant les modalités des facteurs sugars 100g et fiber 100g ou leur combinaison

Ensembles des groupes ci dessous :

sugars_100g	fiber_100g	N > 10	pval Kolmogorov
	0	26580	p = 0
0	2	7328	p = 6.63272e-91
	4	4488	p = 4.82879e-85
	0		p = 0
3	2	9731	p = 0
	4	14961	p = 0
	0	14480	p = 0
7	7 2		p = 6.63272e-91
	4	6402	p = 4.82879e-85

Résultats de l'ANOVA:

	sum_sq	df	F	PR(>F)
C(sugars 100g)	3.525e+06	2.0	42159.100	0.0
C(fiber 100g)	5.348e + 05	2.0	6395.308	0.0
C(sugars 100g) :C(fiber 100g)	8.343e+04	4.0	498.867	0.0
Residual	4.369e+06	104507.0	NaN	NaN

Sous l'hypothèse de normalité des groupes (non satisfaite) :

L'hypothèse nulle rejetée : le nutri_score n'a pas la même loi normale suivant les modalités des facteurs sugars_100g ou fiber 100g ou leur combinaison.

Test de Student : Comparaison de 2 moyennes

=> **HO** : les moyennes du nutri_score sont égales dans les deux groupes('0') et ('3') de energy 100g

Hypothèse pour le test de Student : Distribution normale des 2 groupes.

('0')
$$p = 0$$
 HO Kolmogorov est rejetée ('3') $p = 0$ HO Kolmogorov est rejetée

Test de Kolmogorov

Sous l'hypothèse de normalité des groupes (non satisfaite) :

TTest p = 0 H0 Student est rejetée.

Analyse par Composantes Principales (ACP) : Eboulis des valeurs propres

Cercles des corrélations et projection des individus sur (F1, F2)

Cercles des corrélations et projection des individus sur (F3, F4)

Problématique et ieu de données

Sélection des données

Nettoyage des données Train Validation et Test

Analyse des données

Tests

Tests de Kolmogorov Classification Test de Khi2 Test d'ANOVA Test de Student

ACP

Eboulis des valeurs propres

Cercles et projection sur (F1, F2)

Construction du modèle Imputation des variables

Normalisation et réduction Combinaisons de knn

Construction du nutriscore

Outliers multivariées : Identification des modèles Evaluation du modèle retenu :

Conclusion

Imputation des variables : Normalisation et réduction des variables [energy_100g : sodium_100g] par une moyenne = 0 et une variance = 1.

Combinaisons de knn

- L'imputation automatique par KNNImputer de sklearn impossible (Pb memoire).
- ⇒ Choix d'algorithme des k plus proches voisins (k-nearest neighbors algorithm : knn) successifs.

Pour chaque variable : imputation par knn (avec optimisation de lhyperparamètre k) en fonction des données completes des combinaisons des autres variables.

Valeurs présentes après imputation :

Construction du modèle nutriscore : détection des valeurs abhérantes multivariées :

Si la masse de :

$$\sum$$
 (saturated_fat_100g + sugars_100g + fiber_100g + proteins_100g + sodium_100g) $> 100~ou < 0$

=> on supprime l'individu.

Identification des modèles d'imputation du nutriscore :

Modèle d'apprentissage supervisé de regression

Sans ACP: [energy_100g: sodium 100g]

avec ACP :

OII

[F1:F6]

Coéficient de détermination : R2 =

Root Mean Square Error RMSE = Mean Absolute Frror :

MAE =

 $1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y_i})^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$

 $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$

 $\frac{1}{n}\sum_{i=0}^{n-1}|y_i-\hat{y}_i|.$

Modèle supervisé de regression retenu : knn avec ACP

Evaluation du modèle retenu avec l'échantillon test (Schéma =>):

Construction de la fonction nutriscore :

Utilisation:

• Entrée : [energy_100g :sodium_100g]

Sortie : le nutriscore

Fonctionnement:

- Imputation des variables manquantes avec KNNImputer de sklearn
- Réduction et normalisation des variables
- Projection sur les composantes principales
- Prediction du nutriscore avec le modèle retenu (knn avec ACP)

Test de la fonction sur des aliments de nutriscore élevé et faible. Données issues de l'échantillon de test :

product_name	ⁿ utrisco _{re}	$^{-SCOre}_{ m C}$	Saturated f.	$su_{\mathcal{B}}$ are $su_{\mathcal{B}}$ and $su_{\mathcal{B}}$	$^{fiber}_{-100_{oldsymbol{arrho}}}$	broteins 100	Soolum 100g
White Chocolate	28	2406.	25.	50.	0.0	7.5	0.1016
Fat Free Skim Milk	-1	138.0	0.0	4.58		3.33	0.0508

White Chocolate de nutriscore = 28 :

```
      calculNutriACP( 2406.0, 25.0, 50.0, 0.0, 7.5, 0.1016)
      =
      28

      calculNutriACP( 2406.0, 25.0, 50.0, 0.0, 7.5, np.nan)
      =
      28

      calculNutriACP( 2406.0, 25.0, 50.0, 0.0, np.nan, np.nan, np.nan)
      =
      28

      calculNutriACP( 2406.0, 25.0, 50.0, np.nan, np.nan, np.nan, np.nan)
      =
      27

      calculNutriACP( 2406.0, 25.0, np.nan, np.n
```

Fat Free Skim Milk = -1:

```
      calculNutriACP(138.0, 0.0, 4.58, 0.0, 3.33, 0.0508)
      =

      calculNutriACP(138.0, 0.0, 4.58, 0.0, 3.33, np.nan)
      =

      calculNutriACP(138.0, 0.0, 4.58, 0.0, np.nan, np.nan)
      =

      calculNutriACP(138.0, 0.0, 4.58, np.nan, np.nan, np.nan, np.nan)
      =

      calculNutriACP(138.0, 0.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan)
      =

      calculNutriACP(138.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan)
      =
```


-1

-1

-1

-1

0

Table of Contents

Problématique et jeu de données

Sélection des données

Train Validation et Test

Analyse des données

Tests

Tests de Kolmogoro

Test de Khi2

Test de Studen

ACP

Eboulis des valeurs propres

Cercles et projection sur (F1,

Cercles et projection sur (F3

Construction du modèle

Imputation des variables

Normalisation et réduction

Construction du nutriscore

Outliers multivariées :

Evaluation du modèle re-

tenu :

Construction de la fonction :

Conclusion

Conclusion

- Analyse des données : échantillons \neq loi normale
- ⇒ tous les tests (Khi2/ANOVA/Student) rejettent l'hypothèse nulle d'indépendance des variables
 - Projection sur les composantes principales (ACP)
- \Rightarrow Corrélations entre (energy_100g et saturated_fat_100g),
- ⇒ Anticorrélation entre (proteins_100g et sugars_100g) et (entre fiber_100g, sodium_100g).
 - Construction du modèle du nutriscore
- ⇒ knn avec ACP est retenu. L'ACP améliore peu les résultats (dû au fait du faible nombre de variables).
- Fonction calcul du nutriscore avec données partielles
- ⇒ Résultats cohérents pour produits de nutriscore élevé et faible

Perspectives

• Contacter les developpeurs d'appli comme Yuka pour améliorer notre outil et potentiellement leur service.

Merci de votre attention

ANNEXES

Combinaisons de knn

- L'imputation automatique par KNNImputer de sklearn impossible (Pb memoire).
- ⇒ Choix d'algorithme des k plus proches voisins (k-nearest neighbors algorithm : knn) successifs :

Exemple : imputation des 40059 NaN de energy 100g

- 1. Imputation avec les variables d'entrainement et de test :
 - $\underline{trainTest} =$
 - (1) saturated_fat_100g
 - (2) sugars_100g
 - (3) fiber_100g
 - (4) proteins_100g
 - (5) **sodium_100g**
- Echantillon d'entrainement et de test :

```
[fit] = dropNaN(energy_100g + trainTest) (264486 ind)
```

Echantillon de prédiction :

```
[Prediction] = dropNaN(trainTest) - dropNaN(energy_100g + trainTest) (5257 ind)
```


• si [Prediction] \neq [] : On choisi k tel que knn.score([fit]) soit le plus petit possible :

- On impute [Prediction].energy 100g avec knn.predict()
- ⇒ Le nombre de NaN de la variable energy_100g restant = 34802 : L'imputation est incomplete

- 2. Imputation d'energy_100g avec les variables d'entrainement et de test (1) (2) (3) (4) :
 - (1) saturated fat 100g
 - (2) sugars_100g
 - (3) fiber_100g
 - (4) proteins_100g
- \Rightarrow NaN d'energy_100g restant = 34734
- 3. Imputation avec [(1) (2) (3) (5)], [(1) (2) (4) (5)], ...
- 4. Imputation avec [(1) (2) (3)], [(1) (2) (4)], ..., [(1) (2)], ..., [(1)], ...

30 knn plus tard... energy_100g est completement imputée. Le même algo est appliquée pour les autres variables. Infine :

