IN THE CLAIMS:

Please cancel claim 24 without prejudice. Please amend the claims as follows, substituting any amended claim(s) for the corresponding pending claim(s):

1. (Currently Amended) An M-bit adder capable of receiving a first M-bit argument, a second M-bit argument, and a carry-in (CI) bit comprising:

M adder cells arranged in R rows, wherein a least significant adder cell in a first one of said rows of adder cells is operable to:

receive a first data bit, A_X , from said first M-bit argument and a first data bit, B_X , from said second M-bit argument,

generate both a first conditional carry-out bit, $C_X(1)$, and a second conditional carry-out bit, $C_X(0)$,

provide the first and second conditional carry-out bits $C_X(1)$ and $C_X(0)$ to a second one of said adder cells, and

wherein said $C_X(1)$ bit is calculated assuming a row carry-out bit from a second row of adder cells preceding said first row is a 1 and said $C_X(0)$ bit is calculated assuming said row carry-out bit from said second row is a 0; and

wherein said second one of said adder cells within said first one of said rows is operable to:

receive a first data bit, A_{X+1} , from said first M-bit argument and a first data bit, B_{X+1} , from said second M-bit argument,

receive both said first conditional carry-out bit,[[,]] $C_X(1)$ and said second conditional carry-out bit[[,]] $C_X(0)$ [[;]],

PATENT

generate both a first conditional carry-out bit, $C_{X+1}(1)$, and a second conditional

carry-out bit, $C_{X+1}(0)$, by propagating said first conditional carry-out bit[[,]] $C_X(1)$ and

said second conditional carry-out bit [[,]] $C_X(0)$ through a first pass gate and a second pass

gate, respectively, when said first data bit A_{X+1} and said second data bit B_{X+1} are not

equal, and

output said first and second conditional carry-out bits $C_{X+1}(1)$ and $C_{X+1}(0)$ to other

circuitry, and

wherein said second adder cell further comprises:

a first inverter operable for inverting said first conditional carry-out bit C_X(1)

transmitted through said first pass gate prior to outputting said first conditional carry-out

bit $C_X(1)$; and

a second inverter operable for inverting said second conditional carry-out bit

C_X(0) transmitted through said second pass gate prior to outputting said second

conditional carry-out bit $C_X(0)$.

DOCKET NO. 00-C-050 (STMI01-00050)

U.S. SERIAL NO. 09/667,164

PATENT

2. (Original) The M-bit adder as set forth in Claim 1 wherein said least significant adder

cell generates a first conditional sum bit, $S_X(1)$, and a second conditional sum bit, $S_X(0)$.

3. (Original) The M-bit adder as set forth in Claim 2 wherein said $S_X(1)$ bit is calculated

assuming said row carry-out bit from said second row is a 1 and said S_X(0) bit is calculated

assuming said row carry-out bit from said second row is a 0.

4. (Original) The M-bit adder as set forth in Claim 3 wherein said row carry-out bit selects

one of said $S_X(1)$ bit and said $S_X(0)$ bit to be output by said least significant adder cell.

5. (Previously Presented) The M-bit adder as set forth in Claim 4 wherein said other

circuitry comprises:

a third adder cell in said first one of said rows of adder cells, and wherein said third adder

cell receives a third data bit, A_{X+2} , from said first M-bit argument and a third data bit, B_{X+2} , from

said second M-bit argument, and receives from said second adder cell said C_{X+1}(1) bit and said

 $C_{X+1}(0)$ bit.

Claims 6-7 (Canceled).

PATENT

8. (Previously Presented) The M-bit adder as set forth in Claim 4 wherein said second

adder cell generates a first conditional sum bit, $S_{X+1}(1)$, wherein said $S_{X+1}(1)$ bit is generated

from said A_{X+1} data bit, said B_{X+1} data bit, and said $C_X(1)$ bit from said least significant adder

cell.

9. (Original) The M-bit adder as set forth in Claim 8 wherein said second adder cell

generates a second conditional sum bit, $S_{X+1}(0)$, wherein said $S_{X+1}(0)$ bit is generated from said

 A_{X+1} data bit, said B_{X+1} data bit, and said $C_X(0)$ bit from said least significant adder cell.

10. (Original) The M-bit adder as set forth in Claim 9 wherein said row carry-out bit selects

one of said $S_{X+1}(1)$ bit and said $S_{X+1}(0)$ bit to be output by said second adder cell.

11. (Original) The M-bit adder as set forth in Claim 1 wherein said first row of adder cells

contains N adder cells and said second row of adder cells preceding said first row contains less

than N adder cells.

12. (Currently Amended) A data processor comprising:

an instruction execution pipeline comprising N processing stages, each of said N

processing stages capable of performing one of a plurality of execution steps associated with a

pending instruction being executed by said instruction execution pipeline, wherein at least one of

said N processing stages comprises an M-bit adder capable of receiving a first M-bit argument, a

second M-bit argument, and a carry-in (CI) bit, said M-bit adder comprising:

M adder cells arranged in R rows, wherein a least significant adder cell in a first

one of said rows of adder cells is operable to:

receive a first data bit, A_X , from said first M-bit argument and a first data bit, B_X , from said second M-bit argument,

generate both a first conditional carry-out bit, $C_X(1)$, and a second conditional carry-out bit, $C_X(0)$,

provide the first and second conditional carry-out bits $C_X(1)$ and $C_X(0)$ to a second one of said adder cells, and

wherein said $C_X(1)$ bit is calculated assuming a row carry-out bit from a second row of adder cells preceding said first row is a 1 and said $C_X(0)$ bit is calculated assuming said row carry-out bit from said second row is a 0; and

wherein said second one of said adder cells in said first one of said rows is operable to:

receive a first data bit, A_{X+1} , from said first M-bit argument and a first data bit, B_{X+1} , from said second M-bit argument,

receive both said first conditional carry-out bit[[,]] $C_X(1)$ and said second conditional carry-out bit[[,]] $C_X(0)$;

generate both a first conditional carry-out bit, $C_{X+1}(1)$, and a second conditional carry-out bit, $C_{X+1}(0)$, by propagating said first conditional carry-out bit[[,]] $C_X(1)$ and said second conditional carry-out bit[[,]] $C_X(0)$ through a first pass gate and a second pass gate, respectively, when said first data bit A_{X+1} and said second data bit B_{X+1} are not equal, and

output said first and second conditional carry-out bits $C_{X+1}(1)$ and $C_{X+1}(0)$, and

PATENT

wherein said second adder cell further comprises:

a first inverter operable for inverting said first conditional carry-out bit $C_X(1)$

transmitted through said first pass gate prior to outputting said first conditional carry-out

bit $C_X(1)$; and

a second inverter operable for inverting said second conditional carry-out bit

C_X(0) transmitted through said second pass gate prior to outputting said second

conditional carry-out bit $C_X(0)$.

13. (Original) The data processor as set forth in Claim 12 wherein said least significant

adder cell generates a first conditional sum bit, $S_X(1)$, and a second conditional sum bit, $S_X(0)$.

14. (Original) The data processor as set forth in Claim 13 wherein said $S_X(1)$ bit is calculated

assuming said row carry-out bit from said second row is a 1 and said $S_X(0)$ bit is calculated

assuming said row carry-out bit from said second row is a 0.

15. (Original) The data processor as set forth in Claim 14 wherein said row carry-out bit

selects one of said $S_X(1)$ bit and said $S_X(0)$ bit to be output by said least significant adder cell.

PATENT

16. (Previously Presented) The data processor as set forth in Claim 15 wherein said other

circuitry comprises:

a third adder cell in said first one of said rows of adder cells, and wherein said third adder

cell receives a third data bit, A_{X+2}, from said first M-bit argument and a third data bit, B_{X+2}, from

said second M-bit argument, and receives from said second adder cell said C_{X+1}(1) bit and said

 $C_{X+1}(0)$ bit.

Claims 17-18 (Canceled).

19. (Previously Presented) The data processor as set forth in Claim 15 wherein said second

adder cell generates a first conditional sum bit, $S_{X+1}(1)$, wherein said $S_{X+1}(1)$ bit is generated

from said A_{X+1} data bit, said B_{X+1} data bit, and said $C_X(1)$ bit from said least significant adder

cell.

20. (Original) The data processor as set forth in Claim 19 wherein said second adder cell

generates a second conditional sum bit, $S_{X+1}(0)$, wherein said $S_{X+1}(0)$ bit is generated from said

 A_{X+1} data bit, said B_{X+1} data bit, and said $C_X(0)$ bit from said least significant adder cell.

21. (Original) The data processor as set forth in Claim 20 wherein said row carry-out bit

selects one of said $S_{X+1}(1)$ bit and said $S_{X+1}(0)$ bit to be output by said second adder cell.

22. (Original) The data processor as set forth in Claim 12 wherein said first row of adder cells contains N adder cells and said second row of adder cells preceding said first row contains

less than N adder cells.

23. (Currently Amended) A method of adding a first M-bit argument and a second M-bit

argument in an M-bit adder, the M-bit adder comprising M adder cells arranged in R rows, the

method comprising the steps of:

receiving a first data bit, A_X, from the first M-bit argument and a first data bit, B_X, from

the second M-bit argument in a least significant adder cell in a first one of the rows of adder

cells;

calculating in the least significant adder cell a first conditional carry-out bit, $C_X(1)$,

assuming a row carry-out bit from a second row of adder cells preceding the first row is a 1;

calculating in the least significant adder cell a second conditional carry-out bit, $C_X(0)$,

assuming the row carry-out bit from the second row is a 0;

calculating in the least significant adder cell a first conditional sum bit, $S_X(1)$, assuming

the row carry-out bit from the second row is a 1;

calculating in the least significant adder cell a second conditional sum bit, $S_X(0)$,

assuming the row carry-out bit from the second row is a 0;

propagating the $C_X(1)$ bit and the $C_X(0)$ bit to a second adder cell in the first row of adder

cells;

selecting one of the $S_X(1)$ bit and the $S_X(0)$ bit to be output from the least significant

adder cell according to a value of the row carry-out bit from the second row; and

receiving a first data bit, A_{X+1} , from the first M-bit argument and a first data bit, B_{X+1} ,

from the second M-bit argument in the second adder cell in said first one of said rows of adder cells;

generating in said second adder cell both a first conditional carry-out bit, $C_{X+1}(1)$, and a second conditional carry-out bit, $C_{X+1}(0)$, by propagating said first conditional carry-out bit $C_X(1)$ and said second conditional carry-out bit $C_X(0)$ through a first pass gate and a second pass gate, respectively, when said first data bit A_{X+1} and said second data bit B_{X+1} are not equal[[,]] and

outputting said first and second conditional carry-out bits $C_{X+1}(1)$ and $C_{X+1}(0)$ to other circuitry;

using a first inverter within said second adder cell, inverting said first conditional carryout bit $C_X(1)$ transmitted through said first pass gate prior to outputting said first conditional carry-out bit $C_X(1)$; and

using a second inverter within said second adder cell, inverting said second conditional carry-out bit $C_X(0)$ transmitted through said second pass gate prior to outputting said second conditional carry-out bit $C_X(0)$.

Claim 24. (Canceled)

25. (Currently Amended) The An M-bit adder as set forth in Claim 1 capable of receiving a first M-bit argument, a second M-bit argument, and a carry-in (CI) bit comprising:

M adder cells arranged in R rows, wherein a least significant adder cell in a first one of said rows of adder cells is operable to:

receive a first data bit, A_X , from said first M-bit argument and a first data bit, B_X , from said second M-bit argument,

generate both a first conditional carry-out bit, $C_X(1)$, and a second conditional carry-out bit, $C_X(0)$,

provide the first and second conditional carry-out bits $C_X(1)$ and $C_X(0)$ to a second one of said adder cells, and

wherein said $C_X(1)$ bit is calculated assuming a row carry-out bit from a second row of adder cells preceding said first row is a 1 and said $C_X(0)$ bit is calculated assuming said row carry-out bit from said second row is a 0; and

wherein said second one of said adder cells within said first one of said rows is operable to:

receive a first data bit, A_{X+1} , from said first M-bit argument and a first data bit, B_{X+1} , from said second M-bit argument,

receive both said first conditional carry-out bit $C_X(1)$ and said second conditional carry-out bit $C_X(0)$,

generate both a first conditional carry-out bit, $C_{X+1}(1)$, and a second conditional carry-out bit, $C_{X+1}(0)$, by propagating said first conditional carry-out bit[[,]] $C_X(1)$ and said second conditional carry-out bit[[,]] $C_X(0)$ through a first pass gate and a second pass gate, respectively, when said first data bit A_{X+1} and said second data bit B_{X+1} are not equal, and

PATENT

output said first and second conditional carry-out bits $C_{X+1}(1)$ and $C_{X+1}(0)$ to other

circuitry,

wherein said second adder cell further comprises:

a first inverter operable for inverting said received conditional carry-out bit $C_X(1)$

prior to transmission through said first pass gate; and

a second inverter operable for inverting said received second conditional carry-out

bit $C_X(0)$ prior to transmission through said second pass gate.

26. (Previously Presented) The M-bit adder as set forth in Claim 1 wherein said other

circuitry comprises:

a row multiplexer, wherein said row carry-out bit from said second row of adder cells

preceding said first row selects one of said $C_{X+1}(1)$ bit and said $C_{X+1}(0)$ bit to be output by said

row multiplexer.

27. (Currently Amended) The M-bit adder as set forth in Claim 9 wherein said first adder

cell comprises[[:]] a first multiplexer operable for receiving said first conditional sum bit[[,]]

 $S_X(1)$ and said second conditional sum bit $S_X(0)$, wherein said row carry-out bit selects one of

said $S_X(1)$ bit and said $S_X(0)$ bit to be output by said first adder cell[[;]], and said second adder

cell comprises[[:]] a second multiplexer operable for receiving said second conditional sum bit

 $S_{X+1}(1)$ and said second conditional sum bit $S_{X+1}(0)$, wherein said row carry-out bit selects one of

said $S_{X+1}(1)$ bit and said $S_{X+1}(0)$ bit to be output by said second adder cell.

PATENT

28. (Previously Presented) The data processor as set forth in Claim 12 wherein said second

adder cell further comprises:

a first inverter operable for inverting said first conditional carry-out bit $C_X(1)$ transmitted

through said first pass gate prior to outputting said first conditional carry-out bit C_X(1); and

a second inverter operable for inverting said second conditional carry-out bit $C_X(0)$

transmitted through said second pass gate prior to outputting said second conditional carry-out

bit $C_X(0)$.

29. (Previously Presented) The data processor as set forth in Claim 12 wherein said second

adder cell further comprises:

a first inverter operable for inverting said received conditional carry-out bit $C_X(1)$ prior to

transmission through said first pass gate; and

a second inverter operable for inverting said received second conditional carry-out bit

C_X(0) prior to transmission through said second pass gate.

30. (Previously Presented) The data processor as set forth in Claim 12 wherein said other

circuitry comprises:

a row multiplexer, wherein said row carry-out bit from said second row of adder cells

preceding said first row selects one of said $C_{X+1}(1)$ bit and said $C_{X+1}(0)$ bit to be output by said

row multiplexer.

PATENT

31. (Currently Amended) The data processor as set forth in Claim 20 wherein said first adder

cell comprises[[:]] a first multiplexer operable for receiving said first conditional sum bit[[,]]

 $S_X(1)$ and said second conditional sum bit $S_X(0)$, wherein said row carry-out bit selects one of

said $S_X(1)$ bit and said $S_X(0)$ bit to be output by said first adder cell; and said second adder cell

comprises[[:]] a second multiplexer operable for receiving said second conditional sum bit

 $S_{X+1}(1)$ and said second conditional sum bit $S_{X+1}(0)$, wherein said row carry-out bit selects one of

said $S_{X+1}(1)$ bit and said $S_{X+1}(0)$ bit to be output by said second adder cell.