Shelter in Place Triggers

Chris Hoover 6/4/2020

Purpose

Evaluate potential triggers to intervene on COVID transmission (e.g. shelter in place or other method to reduce contact and transmission) from signals in testing data.

Testing

Warning: Removed 12 rows containing missing values (geom_path).

Model

We use a slight tweak to LEMMA to add an explicit deaths compartment in order to fit to deaths data in addition to hospitalizations

Table 1: Best fit model parameters

	Value	Definition
\overline{N}	883305	population size
t.sim	113	time to run simulation
E_0	5.921	starting number of exposed
c_r	1	Relative contact rate between S and Ir
c_h	1	Relative contact rate between S and Ih
σ	0.333	1/serial interval
α	0.039	proportion severely symptomatic (will be hospitalized)
ρ	0.25	time between symptom onset and hospitalization
γ_r	0.2	1/time to recovery (non-infectiousness) for mildly symptomatic
γ_h	0.083	1/time hospitalized
μ	0.112	proportion of hospitalized cases who die

$$\dot{S} = -\beta S(I_R + I_H)/N$$

$$\dot{E} = \beta S(I_R + I_H)/N - \sigma E$$

$$\dot{I}_R = \sigma (1 - \alpha)E - \gamma_R I_R$$

$$\dot{I}_H = \sigma \alpha E - \rho I_H$$

$$\dot{H} = \rho I_H - \gamma_H H$$

$$\dot{D} = \gamma_H \mu H$$

$$\dot{R} = \gamma_R I_R \gamma_H (1 - \mu) H$$

Model fit

Warning: Removed 22 rows containing missing values (position_stack).

Warning: Removed 6 rows containing missing values (position_stack).

Model fit to SF deaths

Warning: Removed 1 rows containing missing values (geom_path).

Best fit effective reproduction number

Comparison to testing data

Warning: Removed 13 rows containing missing values (geom_path).

Warning: Removed 16 rows containing missing values (geom_path).

SF COVID testing and model

Match modeled testing to observed testing

Assume all new hospitalized cases are tested and confirmed positive, then assume remaining tests are allocated to non-hospitalized population. In the model, this is equivalent to a sample of S, E, and $I_r + I_h$. In reality, lots of nuance in the E and R compartments with regard to testing, but for simplicity, we'll assume positive tests from this sample only come from $I_r + I_h$ and Rs are not tested. So want to solve for sampling bias, \mathcal{B} , from:

$$\frac{+Tests - H_{new}}{Tests - H_{new}} = \frac{\mathcal{B}(I_r + I_h)}{S + E + I_r + I_h}$$

Warning: Removed 8 rows containing missing values (geom_path).

Figure 1: Distribution of estimated sampling bias since end of April

Model forecast

 $\mathcal{R}_e \to 1.4$

Warning: Removed 22 rows containing missing values (position_stack).

Projected Hospital Census with Re reaching 1.4 in 7 days and remaining until 2020–08–01

Date

Projected Hospital Admissions with Re reaching 1.4 in 7 days and remaining until 2020–08–01

Simulations of potential SiP Triggers

Assuming 1600 tests per day, B=45, Re=1.4 by June 15 Blue–positive tests, Red–Hospital admissions

Warning: Removed 2 rows containing missing values (geom_path).

