Balking Systems

Rushil Chugh Nikhil Khatu CSC 777

•

Terminology used

- Traffic intensity (A)
- •Inter arrival time (λ)
- •Service time (µ)
- •Impatience time (α)
- Balking probability (p)

.

Correlation to what has been covered

- •Full availability system Customer finds the server idle and is serviced without going into the queue (a<1)
- •Limited Availability Customer finds the server busy and waits in the queue (a>1)
- •The latter scenario is where the concept of Balking is so evident in the real world scenario

Balking Systems - Introduction

- •What are Balking Systems?
- •Example Customer care scenario
- Difference between balking and reneging

•

Why study Balking Systems?

- •Why do customers balk?
- •Impatience from customers
- •Does impatience affect performance?
- •It contributes to an increase in response time, thus depreciating performance
- •So, why study balking systems?
- •Use in Telecommunication systems, Call Centers

.

Scenarios

- •No Balking, no impatience
- ·Balking, no impatience
- •No Balking, Impatience
- •There can be more scenarios as well where a combination of the above can happen

.

Metrics affecting performance

- Inter arrival time
- Service time
- Reneging times
- Balking probability
- Retrial inter arrival times

.

Other results

N= $(1/c\mu)[\alpha+\lambda p (1-p) \sum_{n=c}^{\infty} P_n]$

 $A = (1/c\mu) \left[\sum_{n=0}^{c} \lambda P_n + \sum_{n=c+1}^{\infty} \lambda p P_n \right]$

Where N represents the average number of customers lost

And A represents the average number of customers attended

.

Balking in M/M/s

 $P_n = [(1/n!)(\lambda/\mu)^n] P_0$ (Result from Birth Death Processes) n<=

Putting P_{c-1} and P_c and using BD process derivation equations: $P_{c+1} = [(1/c!)(\lambda/\mu)^c (\lambda p/c\mu + \alpha)]P_0; \qquad n=c+1$ $P_{c+2} = [(1/c!)(\lambda/\mu)^c ((\lambda p)^2/(c\mu + \alpha)(c\mu + 2\alpha)]P_0$

Generalizing, we get:

Where Pn denotes the transient state probability that there are n customers in the system.

Considerations for Algorithm

- •Followed the algorithm for a regular M/M/s queue
- •Response time was calculated by taking inter arrival time, service time, impatient time and retrial times for all individual calls into consideration.
- •Buffer had a finite value
- All the aforementioned times are mutually independent.
- •Customer reneges if the waiting time is above a particular threshold value
- •Retrial inter arrival times assumed to be exponential

Considerations for Simulation

- Service rate was kept fixed at 1 customer per 1 ms.
- Number of buffers were fixed at 10
- Number of servers and arrival rate was varied to obtain respective response times.
- •The customer balks with a probability of 0.2

Results of Simulation for number of servers=3

Response time vs Lambda	No. of servers = 3
Response Time (ms)	Lambda (Customers per ms)
0.275615	0.2
0.517	0.3
1.30433	0.4
1.51234	0.5
1.75072	0.6
2.16763	0.7
2.37624	0.8
2.45622	0.9
2.54721	1
2.64682	1.2
2.75313	1.4
2.83562	1.6
2.94453	1.8
3.008	2

Results of Simulation for number of servers=4

Response time vs Lambda	No. of servers = 4
Response Time (ms)	Lambda (Customers per ms)
0.24307	0.2
0.46532	0.3
1.03064	0.4
1.50169	0.5
1.55284	0.6
2.07193	0.7
2.18843	0.8
2.33869	0.9
2.40513	1
2.52783	1.2
2.64623	1.4
2.75441	1.6
2.84671	1.8
2.89864	2

Results of Simulation for number of servers=10

Response time vs Lambda	No. of servers = 10
Response Time (ms)	Lambda (Customers per ms
0.093043	0.2
0.365216	0.3
0.930796	0.4
1.351521	0.5
1.617698	0.6
1.864737	0.7
2.0790085	0.8
2.2217555	0.9
2.2848735	1
2.4014385	1.2
2.5139185	1.4
2.6166895	1.6
2.7043745	1.8
2.753708	2

/

References

- Finite-source M/M/S retrial queue with search for balking and impatient customers from the orbit Patrick Wüchner, János Sztrik, Hermann de Meer
- On a multiserver markovian queueing system with balking and reneging
 - A. Montazer-Haghighi, J. Medhi, S.G. Mohanty
- On the impact of customer balking, impatience and retrials in telecommunication systems
 J.R. Artalejo , V. Pla
- ECE 777 Dr. Dutta's class lectures

Test your comprehension

- Can a customer both balk and renege? How?
- Which out of balking and reneging is worse for performance and why?
- Does balking mitigate loss?