Review TADA

Extended

Mode

Autism dat

Schizophren

data

Data

Results:includeEXAC

Risk genes Itersect with

gene sets

Intersect wit

May, 2015

May 2, 2016

Schizophre

Data
Methods
Results:includeEXAC
Risk genes
Itersect with

gene sets Results:NotEXAC Risk genes Intersect with Review exTADA (Transmission And De novo Association) model.

- Test exTADA on autism data.
- Apply exTADA to schizophrenia data.
  - Estimate the proportion of risk genes.
  - Test results on gene sets.

#### Review TADA

Extendo TADA Model

Autism data

Schizophre

Data

Results:includeEXAC

Itersect with gene sets

Results:NotEX/

Risk genes Intersect with gene sets



PLoS Genet. 2013;9(8):e1003671. doi: 10.1371/journal.pgen.1003671. Epub 2013 Aug 15.

Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes.

He X1, Sanders SJ, Liu L, De Rubeis S, Lim ET, Sutcliffe JS, Schellenberg GD, Gibbs RA, Daly MJ, Buxbaum JD, State MW, Devlin B, Roeder K.

Schizophrenia
data
Data
Methods
Results:includeEXAC
Risk genes
Itersect with
gene sets
Results:NotEXAC

## **Original TADA**

- Use only LoF de novo mutations => the proportion of risk genes  $(\pi)$  \*\*
- Use known risk genes AND \*\* to infer other information of other categories.

#### **Extended TADA**

- Estimate simultaneously all parameters of all annotations (e.g., LoF, missense damaging) including  $\pi$
- Do not use known risk genes (it can be used, but not necessary).

# **ExTADA**

Review TADA

Extend TADA Model

Autism data

Schizophrer

Methods

Results:includeEXAC Risk genes

Itersect with gene sets

Results:NotEXA

Intersect with



Schizophrenia
data
Data
Methods
Results:includeEXAC
Risk genes
Itersect with
gene sets
Results:NotEXAC

#### Main work

- De novo mutations: the same as original TADA.
- Inherited/Case-control: use an approximate model as original TADA in the estimation process <sup>1</sup>.
- Estimate all parameters using a MCMC method (known risk genes are not necessary).

## Model: Internal product

```
P(x|\textit{parameters}) = \prod_{i=1}^{m} \left[ \pi P(x_{i_{LOF}}|H_1) P(x_{i_{mis3}}|H_1) + (1-\pi) P(x_{i_{LOF}}|H_0) P(x_{i_{mis3}}|H_0) \right]
```



<sup>&</sup>lt;sup>1</sup>Idea of changing case-control model is from Xin He

Schizophre

Data Methods

Methods
Results:includeEXAC

Itersect with gene sets
Results:NotEXA

Intersect wit

# Autism Data

Use **non-information priors** => similar results as TADA (based on known risk genes)



# Schizophrenia data

Review TADA

Extended TADA Model

Autism data

Data
Methods

Methods
Results:includeEXAC
Risk genes
Itersect with
gene sets

Results:NotEXA Risk genes Intersect with gene sets Sample sizes from different studies.

| Source                 | De novo | Non/Transmitted | Case | Control |
|------------------------|---------|-----------------|------|---------|
| Fromer et al. (2014)   | 617     | 617             |      |         |
| Girard et al. (2011)   | 14      |                 |      |         |
| Gulsuner et al. (2013) | 105     |                 |      |         |
| McCarthy et al. (2014) | 57      |                 |      |         |
| Xu et al. (2012)       | 231     |                 |      |         |
| Giulio et al. (2016)   |         |                 | 4954 | 6239    |
| Total                  | 1024    | 617             | 4954 | 6239    |

Schizophrenia
data
Data
Methods
Results:includeEXAC
Risk genes
Itersect with
gene sets
Results:NotEXAC

#### Focused on:

• De novo (DN) + Transmitted (Trans) + Case-Control (CC).

#### Also tested:

- De novo (DN) + Transmitted (Trans).
- De novo (DN) + Case-Control (CC).
- De novo (DN).

Categories: LoF and missense damaging (7 methods from Giulio). Private (Not in Exac) or Non-private (include Exac).

Schizophre

Data
Methods
Results:includeEXAC
Risk genes
Itersect with
gene sets
Results:NotEXAC
Risk genes

Previous studies (The unseen species problem):

- Xu et al (2012): **868 genes** based on 231 parent-proband trios and 34 unaffected trios.
- Fromer et al (2014): 4000 to 12000 genes based on 623 schizophrenia trios (use LoF and NS mutations).

# How many risk genes from exTADA?

Singleton data + NOT private.

Review TADA

Extende TADA Model

Autism dat

Schizophrer

Data

Results:includeEXAC
Risk genes

Itersect with gene sets

gene sets Results:NotEXA Risk genes



data

Data Methods

Results:includeEXAC
Risk genes
Itersect with

Results:NotEX

Risk genes
Intersect with
gene sets



Schizophrer

data Data

Results:includeEXAC Risk genes

gene sets
Results:NotEXA

Risk genes
Intersect with

# $\mathsf{DN} + \mathsf{Case}/\mathsf{Control}$



Schizophreni data

Methods Results:includeEXAC

Risk genes

gene sets

Risk genes
Intersect with

#### DN + Trans



view TADA DN

Extende TADA

Autism dat

Schizophre

Data

Results:includeEXAC

Risk genes

gene sets

Results:NotEX

Intersect wi



Results:includeEXAC

Itersect with

# Intersect with known gene sets



data
Data
Methods

Results:includeEXAC
Risk genes
Itersect with
gene sets
Results:NotEXAC
Risk genes

# Calculate p value for each gene set (N genes)

- Count the number of genes overlapping between the *IGene* genes and the gene set, nG.
- For i from 1 to K (times)
  - Randomly choose a set of N genes from all genes (>20000 genes).
  - Count the number of genes overlapping between the *IGene* genes and the random gene set,  $M_i$ .
  - pValue = (length(vM[vM >= nG]) + 1)/(K + 1)with  $vM = c(M_1, M_2, ...M_K)$

#### Review TADA

Extende TADA Model

Autism data

#### Schizophren

Data

Methods
Results:includeEXAC

Risk genes Itersect with gene sets

Results:NotEXA Risk genes

Intersect with gene sets

#### DN + Trans + CC



10 15

Gene count

Gene count

Gene count

3

Gene count

#### Review TADA

Extended TADA Model

Autism data

#### Schizophren

Data

Methods
Results:includeFXAC

Risk genes Itersect with

gene sets
Results:NotEXA(

Intersect with gene sets

## **DN** + Trans



#### Paviou TADA

Extended TADA Model

Autism data

#### Schizophren

Data

Methods
Results:includeEXAC

Risk genes Itersect with

gene sets
Results:NotEXA

Intersect with gene sets

# DN + Trans + CC









Gene count































# Top 100 Genes

#### Review TADA

Extended TADA Model

Autism data

#### Schizophren

Data

Methods
Results:includeEXAC

Risk genes
Itersect with

gene sets
Results:NotEXAC

Risk genes
Intersect with

## DN + Trans



Results:includeFXAC

Results: NotEXAC

 Remove all variants in EXAC (= Private variants) => lose 1 LoF double-hit gene.

Use the same mutation rates. <sup>2</sup>



<sup>&</sup>lt;sup>2</sup>Re-calculating mutation rates by removing all Exac variants ←□ → ←② → ←② → ←② → ◆② → ◆② ←



# Not EXAC

Review TADA

Extende TADA

Autism data

Schizophren

data

Methods

Results:includeEXAC

Risk genes

gene sets

Risk genes

Intersect with

# Proportion of risk genes not high



# Not EXAC

Review TADA

Extended

Autism dat

Schizophreni data

Data

Results:includeEXAC

Itersect with gene sets

Results:NotEXA

Intersect wit



Schizophren

Data

Results:includeEXAC Risk genes Itersect with

gene sets
Results:NotEXA

Intersect with



Results:includeFXAC

Intersect with gene sets



Results:includeEXAC

Intersect with gene sets

# Private and Not private

Overlapping genes with different thresholds:

Include Exac FDR < 0.3 FDR < 0.1 Include Exac Not Exac Not Exac Include ExacNot Exa Top 100

data

Methods Results:includeEXAC Risk genes

Itersect with gene sets
Results:NotEXA

Intersect with gene sets

Overlapping genes: FDR < 0.1

Both LoF de novos of TAF13 are in Exac variants.

| -      |            |         |  |
|--------|------------|---------|--|
| Gene   | NotPrivate | Private |  |
| ADCY6  | 1          | 0       |  |
| BLNK   | 1          | 0       |  |
| EPHA5  | 1          | 0       |  |
| HEATR2 | 1          | 0       |  |
| MARK4  | 1          | 0       |  |
| MPO    | 1          | 0       |  |
| PRRC2A | 1          | 0       |  |
| ROBO1  | 1          | 0       |  |
| TAF13  | 1          | 0       |  |
| RB1CC1 | 1          | 1       |  |
| SETD1A | 1          | 1       |  |

Intersect with gene sets

# Working on:

- Simulation data.
- Private variants with new mutation rates.

Should test other gene sets?

THANK YOU!!!!!