CS61B Lectures #28

Today:

- Selection sorts, heap sort
- Merge sorts
- Quicksort

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Last modified: Tue Jan 21 15:10:37 2020

Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.

- Really bad idea on a simple list or vector.
- But we've already seen it in action: use heap.
- Gives $O(N \lg N)$ algorithm (N remove-first operations).
- Since we remove items from end of heap, we can use that area to accumulate result:

original: 19 0 -1 7 23 2 42
heapified: 42 23 19 7 0 2 -1
23 7 19 -1 0 2 42
Heap part 19 7 2 -1 0 23 42
Sorted part 7 0 2 -1 19 23 42
2 0 -1 7 19 23 42
0 -1 0 2 7 19 23 42
-1 0 2 7 19 23 42

Last modified: Tue Jan 21 15:10:37 2020

CS61B: Lectures #28 2

Sorting By Selection: Initial Heapifying

CS61B: Lectures #28 1

- When covering heaps before, we created them by insertion in an initially empty heap.
- When given an array of unheaped data to start with, there is a faster procedure (assume heap indexed from 0):

- \bullet Looks like the procedure for re-inserting an element after the top element of the heap is removed, repeated N/2 times.
- But instead of being $\Theta(N \lg N)$, it's just $\Theta(N)$.

Last modified: Tue Jan 21 15:10:37 2020 CS61B: Lectures #28 3

Cost of Creating Heap

 $1\,\text{node}\times3\,\text{steps down}$

 $2 \text{ nodes} \times 2 \text{ steps down}$

4 nodes \times 1 step down

ullet In general, worst-case cost for a heap with h+1 levels is

$$2^{0} \cdot h + 2^{1} \cdot (h - 1) + \dots + 2^{h-1} \cdot 1$$

$$= (2^{0} + 2^{1} + \dots + 2^{h-1}) + (2^{0} + 2^{1} + \dots + 2^{h-2}) + \dots + (2^{0})$$

$$= (2^{h} - 1) + (2^{h-1} - 1) + \dots + (2^{1} - 1)$$

$$= 2^{h+1} - 1 - h$$

$$\in \Theta(2^{h}) = \Theta(N)$$

 \bullet Alas, since the rest of heapsort still takes $\Theta(N\lg N)$, this does not improve its asymptotic cost.

Last modified: Tue Jan 21 15:10:37 2020

CS61B: Lectures #28 4

Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge results

- Already seen analysis: $\Theta(N \lg N)$.
- Good for external sorting:
 - First break data into small enough chunks to fit in memory and sort.
 - Then repeatedly merge into bigger and bigger sequences.
- \bullet Can merge K sequences of $\mbox{\it arbitrary size}$ on secondary storage using $\Theta(K)$ storage:

```
Data[] V = new Data[K];
For all i, set V[i] to the first data item of sequence i;
while there is data left to sort:
   Find k so that V[k] is smallest;
   Output V[k], and read new value into V[k] (if present).
```

Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate:

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

Last modified: Tue Jan 21 15:10:37 2020

CS61B: Lectures #28 6

Quicksort: Speed through Probability

Idea:

- Partition data into pieces: everything > a pivot value at the high end of the sequence to be sorted, and everything < on the low end.
- Repeat recursively on the high and low pieces.
- For speed, stop when pieces are "small enough" and do insertion sort on the whole thing.
- Reason: insertion sort has low constant factors. By design, no item will move out of its will move out of its piece [why?], so when pieces are small, #inversions is, too.
- Have to choose pivot well. E.g.: *median* of first, last and middle items of sequence.

Example of Quicksort

- \bullet In this example, we continue until pieces are size ≤ 4 .
- Pivots for next step are starred. Arrange to move pivot to dividing line each time.
- Last step is insertion sort.

16	10	13	18	-4	-7	12	-5	19	15	С) ;	22	29	34	-	-1*	
-4	-5	-7	-1	18	13	12	10) 19) 1	5	0	22	29	9 3	84	16*	
-4	-5	-7	-1	15	13	12*	10) (16	19'	* 2	2	29	34	18	3
-4	-5	-7	-1	10	0	12		15	13	16][:	18	19	2	29	34	22

• Now everything is "close to" right, so just do insertion sort:

-7	-5	-4	-1	0	10	12	13	15	16	18	19	22	29	34

 Last modified: Tue Jan 21 15:10:37 2020

CS61B: Lectures #28 8

Performance of Quicksort

- Probabalistic time:
 - If choice of pivots good, divide data in two each time: $\Theta(N\lg N)$ with a good constant factor relative to merge or heap sort.
 - If choice of pivots bad, most items on one side each time: $\Theta(N^2)$.
 - $\Omega(N\lg N)$ in best case, so insertion sort better for nearly ordered input sets.
- Interesting point: randomly shuffling the data before sorting makes $\Omega(N^2)$ time \emph{very} unlikely!

Quick Selection

The Selection Problem: for given k, find $k^{\dagger h}$ smallest element in data.

- ullet Obvious method: sort, select element #k, time $\Theta(N \lg N)$.
- If k < some constant, can easily do in $\Theta(N)$ time:
 - Go through array, keep smallest k items.
- Get probably $\Theta(N)$ time for all k by adapting quicksort:
 - Partition around some pivot, p, as in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index m, all elements \leq pivot have indicies $\leq m.$
 - If m=k , you're done: p is answer.
 - If m>k, recursively select $k^{\mbox{th}}$ from left half of sequence.
 - If m < k , recursively select $(k-m-1)^{\mbox{th}}$ from right half of sequence.

Last modified: Tue Jan 21 15:10:37 2020

CS61B: Lectures #28 9

Last modified: Tue Jan 21 15:10:37 2020

CS61B: Lectures #28 10

Selection Example

Problem: Find just item #10 in the sorted version of array:

Looking for #6 to right of pivot 4:

-4 | 0 | 2 | 4 | 37 | 13 | 11 | 10 | 39 | 21 | 31* | 40 | 59 | 51 | 49 | 46 | 60 |

4

 Just two elements; just sort and return #1:

 $-4 \mid 0 \mid 2 \mid | 4 \mid | 21 \mid 13 \mid 11 \mid 10 \mid | 31 \mid | 37 \mid 39 \mid | 40 \mid | 59 \mid 51 \mid 49 \mid 46 \mid 60 \mid 9$

Result: 39

Selection Performance

 \bullet For this algorithm, if m roughly in middle each time, cost is

$$\begin{split} C(N) &= \left\{ \begin{aligned} 1, & \text{if } N = 1, \\ N + C(N/2), & \text{otherwise.} \end{aligned} \right. \\ &= N + N/2 + \ldots + 1 \\ &= 2N - 1 \in \Theta(N) \end{split}$$

- ullet But in worst case, get $\Theta(N^2)$, as for quicksort.
- \bullet By another, non-obvious algorithm, can get $\Theta(N)$ worst-case time for all k (take CS170).

 Last modified: Tue Jan 21 15:10:37 2020

CS61B: Lectures #28 12