

ESC201: Introduction to Electronics

Module 4: Non-Linear Elements

Dr. Shubham Sahay,
Assistant Professor,
Department of Electrical Engineering,
IIT Kanpur

Summary: approximations

Power supply: block diagram

Filtered output

Output has a ripple

Diode inverse voltage

In practice, we must also look at diode specifications: can the diode tolerate the current and voltage?

Let the input voltage after step-down transformer is

$$V_m = 12.7 \text{ V}$$

$$V_{\gamma} = 0.7 \text{ V}$$

$$PIV = V_M + V_m$$

= $2V_M + V_{\gamma}$
= $12+12.7 = 24.7 \text{ V}$

DC Power Supply using Half Wave Rectifier

- How much current and voltage diode can handle?
- Let us calculate the maximum diode current in forward bias

forward reverse bias bias

period

period

$$i_D = C \times \frac{dv_O}{dt} + \frac{v_O}{R_L}$$

$$t = -\Delta t$$
 $t = 0$

Charging period Forward Bias

Approximation:

 v_o follows input voltage when D is forward biased

Substituting: $v_o \approx V_M \cos(\omega t)$

$$i_D = C \times \frac{dv_O}{dt} + \frac{v_O}{R_L}$$

$$i_D(t) \approx -CV_M \omega \sin(\omega t) + \frac{V_M \cos(\omega t)}{R_L}$$

Assuming a short ripple,

the charging interval $(-\Delta t, 0)$ is a small interval near t = 0.

In this interval, $\sin(\omega t) \approx \omega t$, and $\cos(\omega t) \approx 1 - \frac{(\omega t)^2}{2}$

$$i_D(t) \approx -CV_M \omega^2 t + \frac{V_M}{R_L} \left(1 - \frac{(\omega t)^2}{2} \right) \approx -CV_M \omega^2 t + \frac{V_M}{R_L}$$

$$t = -\Delta t$$
 $t = 0$

$$i_D(t) \approx -CV_M \omega^2 t + \frac{V_M}{R_L}$$

Diode current is maximum near $t = -\Delta t$

$$i_{D,\text{max}} \approx CV_M \omega^2 \Delta t + \frac{V_M}{R_L}$$

$$i_{D,\text{max}} \approx C V_M \omega \sqrt{\frac{2V_r}{V_M}} + \frac{V_M}{R_L}$$

Recall $v_o \approx V_M \cos(\omega t)$

$$V_L \approx V_M \cos(\omega \Delta t) \approx V_M \left(1 - \frac{(\omega \Delta t)^2}{2}\right)$$

$$\Rightarrow \omega \Delta t = \sqrt{\frac{2(V_M - V_L)}{V_M}} \qquad = \sqrt{\frac{2V_r}{V_M}}$$

$$t = -\Delta t$$
 $t = 0$

$$i_{D,\text{max}} \approx C V_M \omega \sqrt{\frac{2V_r}{V_M}} + \frac{V_M}{R_L}$$

• Recall that $V_r \approx \frac{V_M}{fR_LC}$

$$i_{D,\text{max}} \approx \frac{V_M}{R_L} \left(1 + 2\pi \sqrt{2fCR_L} \right)$$

$$i_{D,\text{max}} \approx \frac{V_M}{R_L} \left(1 + 2\pi \sqrt{\frac{2V_M}{V_r}} \right)$$

	Ripple Voltage	Max diode current
High Cap	low	high
Low Cap	high	low

Full-wave rectifier

Strategy 2

Ripple Voltage

Recall the ripple voltage is

$$V_r = V_M - V_L = V_M \times \left(1 - e^{-\frac{t_1}{R_L C}}\right)$$

$$V_r \cong V_M \times \left(1 - \left(1 - \frac{t_1}{R_L C}\right)\right) = \frac{V_M t_1}{R_L C}$$

 t_1 is the discharging time

$$t_1 \approx \frac{T}{2}$$

$$V_r = \frac{V_M t_1}{R_L C} \cong \frac{V_M T}{2R_L C}$$

Comparison

Max. diode current

• All steps of the earlier derivation remain the same

$$\omega \Delta t \approx \sqrt{\frac{2V_r}{V_M}}$$
 $i_D(\Delta t) \approx -CV_M \omega^2 \Delta t + \frac{V_M}{R_L}$

• Except the value of V_r is halved

$$i_{D,\text{max}} \approx \frac{V_M}{R_L} (1 + 2\pi \sqrt{fCR_L})$$

• Therefore a reduction in $i_{D,\max}$

Peak inverse voltage

$$V_n + VD + V_n - V_{\gamma} = 0$$

$$PIV = 2V_n - V_{\gamma}$$

Bridge rectifier

Dr. Shubham Sahay ESC201

18

Bridge rectifier

Power supply using full wave Bridge Rectifier

$$V_r \cong \frac{V_M}{2fR_LC}$$

Peak Inverse Voltage

Advantage: lower PIV

$$PIV = 2V_m - V_{\gamma}$$

$$PIV = V_m - V_{\gamma}$$

Example

Given
$$V_Z = 5.6V$$

 $r_Z = 0\Omega$

Find a value for R such that the current through the diode is limited to 3mA

Example (continued)

$$R = \frac{V_{PS} - V_{Z}}{I} = \frac{10V - 5.6V}{3mA} = 1.47k\Omega$$

Zener diode: Important Characteristics

Voltage Reference Circuit

Power Supply with Regulator Power Supply With Regulator

Combine:
Power Supply and Voltage Regulator

Zener Diode as Voltage Regulator

Earlier circuit without Zener

Regulated supply

Zener diode regulates supply

