

and then the duel problem of LASSO is:

man property

with $Q = \frac{1}{2} I_{\nu}$ $A = \begin{pmatrix} X^{T} \\ -X^{T} \end{pmatrix}$

P= y7

2) we want to helve the problem min vtav+ ptv

A. L AV - 500

There is no equality constraints; the associated contening protein is.

min $t(v^T Q V + P^T V) - \sum_{i=1}^{2d} \log(b_i - A_i V)$

where A; is the inthe row of A.

we denote $\phi(v) := -\frac{ed}{2}\log(b_1 - A_2 v)$, and $g_{\epsilon}(v) = t(v \circ v + e^{\tau}v) + \phi(v)$

 $\nabla \phi(v) = \frac{2d}{i=1} \frac{A_i^T}{b_i - A_i v} \Rightarrow \nabla g(v) = t((Q + Q^T) v + P) + \frac{2d}{i=1} \frac{A_i^T}{b_i - A_i v}$

 $\nabla^2 \phi(v) = \sum_{i=1}^{2d} \frac{A_i^T A_i}{(A_i v - b_i)^2} \Rightarrow \nabla^2 g(v) = t(0 + 0^T) + \sum_{i=1}^{2d} \frac{A_i^T A_i}{(A_i v - b_i)^2}$

We use Newton's method for uncontrained extimization to solve min give

E) we observe that when μ is small (μ =2), we do small centering steps and it takes a lot of Newton iterations to get to a solution with precision ε .

For higher values of μ , we do songer steps on the central path and the total number of Newton iterations is much less than in the case with a small μ . We also notice that the number of Newton iterations for μ > 10 stays fairly constant when we irrepease μ . Thus, it's sufficient to choose μ =10

Here is the figure obtained for a precision $\epsilon\text{=}10^{\text{-}6},$ for different values of μ

