Binary Probability Model for Learning Based Image Compression

Paper ID: 1415

Théo LADUNE^{1,2}, Pierrick PHILIPPE¹, Wassim HAMIDOUCHE², Lu ZHANG², Olivier DÉFORGES²

Orange Labs, France — ²INSA Rennes, France theo.ladune@orange.com

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 2020

Introduction

Context

- Learned image coding competitive is now with BPG (HEVC-based image coding method)
- Improvements mainly due to a better estimate of the latents probability distribution leading to better entropy coding

Purpose

- Propose a richer probability distribution to better model the latents
- Improve **entropy coding** performances

Results

- -9 % rate in comparison to gaussian-based state-of-the-art systems
- Perform on par with state-of-the-art systems with around 10x less weights

Learned Image Compression

- Learned Image Compression
 - Encoding input image x into (quantized) latents ŷ
 - **2** Entropy Coding (EC) with a probability model $\mathbb{P}_{\hat{\mathbf{y}}}$
 - **Operating** \hat{y} to reconstruct input image \hat{x}

Rate-distortion loss function

$$\mathcal{L}(\lambda) = \mathrm{D}(\mathbf{x}, \hat{\mathbf{x}}) + \lambda \mathrm{R}(\hat{\mathbf{y}}).$$

Entropy Coding

• Latents \hat{y} are sent using an **entropy coding** method, their rate is

$$\mathrm{R}(\hat{\mathbf{y}}) = \underbrace{\mathbb{E}_{\hat{\mathbf{y}} \sim m}[-\log_2 \underbrace{\mathbb{P}_{\hat{\mathbf{y}}}(\hat{\mathbf{y}})}]}^{\text{Unknown}}$$

• Rate is the cross entropy between an **unknown** distribution m and the probability model $\mathbb{P}_{\hat{y}}$.

$$\mathrm{R}(\hat{\mathbf{y}}) = \mathrm{H}(m, \ \mathbb{P}_{\hat{\mathbf{y}}}) = \underbrace{\mathrm{H}(m)}_{\mathsf{Encoder}} + \underbrace{D_{\mathsf{KL}}(m \mid\mid \mathbb{P}_{\hat{\mathbf{y}}})}_{\mathsf{Probability}} \geq \mathrm{H}(m)$$

ullet This work aims to lower $D_{\mathit{KL}}(m \mid\mid \mathbb{P}_{\hat{\mathbf{y}}})$ through a more suited $\mathbb{P}_{\hat{\mathbf{y}}}$

Entropy coding

Previous works assume independence for each latent

$$\mathbb{P}_{\hat{\mathbf{y}}}(\hat{\mathbf{y}}) = \prod_i \mathbb{P}_{\hat{y}_i}(\hat{y}_i)$$

- ullet Each $\mathbb{P}_{\hat{y_i}}$ results from a Gaussian^{1,2} or Laplace³ distribution
- Each latent PDF parameters $\Psi_i = \{\mu_i, \sigma_i\}$ are decoded from side-information and/or previously received latents.

¹Ballé, et al., Variational image compression with a scale hyperprior, ICLR 2018

²Minnen, et al., Joint Autoregressive and Hierarchical Priors for Learned Image Compression, NeurIPS 2018

³Zhou, et al., Variational autoencoder for low bit-rate image compression, CVPR 2018

Underlying distribution m_i of the i-th latent

 $\mathbb{P}_{\hat{y}_i}$ is modeled through p_{y_i} , a gaussian PDF for y_i

 p_{y_i} is integrated in each quantization bin to obtain $\mathbb{P}_{\hat{y}_i}$

 p_{y_i} is integrated in each quantization bin to obtain $\mathbb{P}_{\hat{y}_i}$

 p_{y_i} is integrated in each quantization bin to obtain $\mathbb{P}_{\hat{y}_i}$

 p_{y_i} is integrated in each quantization bin to obtain $\mathbb{P}_{\hat{y}_i}$

 p_{y_i} is integrated in each quantization bin to obtain $\mathbb{P}_{\hat{y}_i}$

 p_{y_i} is integrated in each quantization bin to obtain $\mathbb{P}_{\hat{y}_i}$

- Mismatch $D_{\mathit{KL}}(m \mid\mid \mathbb{P}_{\hat{\mathbf{y}}})$ is important
- Rate $R(\hat{\mathbf{y}}) = H(m) + D_{KL}(m \mid\mid \mathbb{P}_{\hat{\mathbf{y}}})$ is high

Binary Probability Model:

- Relax the entropy model to reduce the mismatch $D_{KL}(m \mid\mid \mathbb{P}_{\hat{\mathbf{y}}})$
- As in classical video codecs, binary flags are used to freely set the probability of the 3 most frequent quantization bins $(\mu, \mu-1, \mu+1)$
- \bullet This allows to represent all symetrical distributions in the interval $[\mu-1,\mu+1]$
- Rely on a parametric PDF (Laplace distribution) for all other quantization bins

Required parameters:

Underlying distribution m_i of the i-th latent

• Required parameters: μ_i

 μ_i is used before quantization to center latent: $\hat{y}_i = Q(y_i - \mu_i)$

• Required parameters: μ_i

 μ_i is used before quantization to center latent: $\hat{y}_i = Q(y_i - \mu_i)$

ullet Required parameters: μ_i , $P_{G_{0_i}}$

Probability $(1 - P_{G_{0_i}})$ of being in the 1st quantization bin is explicitly used

ullet Required parameters: μ_i , $P_{{G_0}_i}$, $P_{{G_1}_i}$

Probability $(1 - P_{G_{1_i}})$ of being in the 2^{nd} quantization bin is explicitly used

Other quantization bins are modeled as in previous works using $\mathcal{L}(0,\sigma_i)$

Other quantization bins are modeled as in previous works using $\mathcal{L}(0, \sigma_i)$

Other quantization bins are modeled as in previous works using $\mathcal{L}(0, \sigma_i)$

Symetrical distribution is assumed: $\mathbb{P}_{\hat{y}_i}(k) = \mathbb{P}_{\hat{y}_i}(-k)$

- This example is for one latent, the same is done for all latents
- The most frequent quantization bin probabilities are explicitely set
- This allows to **better fit** $m \to \text{Reduce } D_{\mathsf{KL}}(m \mid\mid \mathbb{P}_{\hat{\mathbf{y}}})$
- Rate $R(\hat{\mathbf{y}}) = H(m) + D_{KL}(m \mid\mid \mathbb{P}_{\hat{\mathbf{y}}})$ is lower

Network architecture

 The proposed binary probability model is implemented using the exact same architecture than previous works

Parametric PDF systems

Network architecture

 The proposed binary probability model is implemented using the exact same architecture than previous works

Binary Probability Model systems – 2 supplementary parameters to convey

Training

- During training, **continuous** \tilde{y} replaces discrete \hat{y}
- Since R uses P_{G_0} and P_{G_1} , it is only defined for integers. An interpolation \tilde{R} is designed

$$\tilde{\mathbf{R}}(\tilde{\mathbf{y}}) = \alpha \mathbf{R}(\lfloor \tilde{\mathbf{y}} \rfloor) + (1 - \alpha) \mathbf{R}(\lfloor \tilde{\mathbf{y}} \rfloor + 1), \ \alpha = \Gamma(|\tilde{\mathbf{y}}|)$$

Experimental Results – Test conditions

- The proposed probability model is evaluated under the Challenge on Learned Image Compression CLIC 2019 test conditions
 - 330 images
 - Best PSNR at 0.15 bits per pixel (bpp)
- The proposed binary probability model is compared to 2 parametric models: a Gaussian^{1,2} and Laplace³ distributions
- All probability models are assessed in 2 configurations
 - Lightweight (Around 1 million weights)
 - Standard (Around 9 million weights)

¹Ballé, et al., Variational image compression with a scale hyperprior, ICLR 2018

²Minnen, et al., Joint Autoregressive and Hierarchical Priors for Learned Image Compression, NeurIPS 2018

³Zhou, et al., Variational autoencoder for low bit-rate image compression, CVPR 2018

Experimental Results – Performances

- PSNR 0.2 dB higher \leftrightarrow -9 % rate for the same quality compared to Gaussian systems
- Same performance than Gaussian systems with almost 10 times less weights

Illustrations

Input image to be coded

Two feature maps $\hat{\mathbf{y}}$ to entropy code

Latent feature maps $\hat{\mathbf{y}}$ Probability of greater than 0 P_{G_0}

Latent feature maps $\hat{\mathbf{y}}$ Probability of greater than 1 P_{G_1}

Latent feature maps $\hat{\mathbf{y}}$ σ for Laplace distribution

Conclusion

- We propose to reduce the mismatch between the unknown latents distribution and the probability model used for entropy coding
- This is achieved by adding two parameters to previous probability model: P_{G_0} and P_{G_1}
- This results in a more flexible probability model and a better entropy coding
- -9 % rate compared to a state-of-the-art gaussian model
- Binary Probability Model achieves performances competitive with gaussian model while using 10x less weights

Binary Probability Model for Learning Based Image Compression

Paper ID: 1415

Théo LADUNE^{1,2}, Pierrick PHILIPPE¹, Wassim HAMIDOUCHE², Lu ZHANG², Olivier DÉFORGES²

Orange Labs, France — ²INSA Rennes, France theo.ladune@orange.com

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 2020

