

Contrôle mécanique du solide Cinétique

1 – Cône d'épaisseur mince de rayon R et de hauteur H

- 1) Par calcul intégral, déterminer la surface et la masse m_0 d'un cône à **paroi mince** de rayon R, de hauteur H et de masse σ par unité de surface.
- On démontrera que cette masse vaut : $m_0 = \sigma .\pi .R .\sqrt{R^2 + H^2}$
- 2) Par calcul intégral, déterminer la position du centre de masse G₀
- 3) Préciser en la justifiant la forme de la matrice d'inertie dans le repère $(0, \vec{x}, \vec{y}, \vec{z})$
- 4) Par calcul intégral, déterminer tous les termes de la matrice d'inertie dans le repère $(0, \vec{x}, \vec{y}, \vec{z})$

On démontrera que $I_{oz} = m_0 \frac{R^2}{2}$ et que par rapport au plan xy on a : $I_{xy} = \int z^2 dm = m_0 \frac{H^2}{2}$. Pour le calcul intégral on prendra l'élément de surface :

 $ds = r.d\vartheta. \frac{dz}{\cos\alpha}$ avec α demi-angle au sommet du cône

2 – Tronc de cône d'épaisseur mince

- 5) Déterminer la surface et la masse m_1 d'un tronc de cône à **paroi mince** de rayon 2R et R, de hauteur H et de masse σ par unité de surface.
- 6) Par calcul intégral, déterminer la position du centre de masse G_1 On démontrera que $Z_{G_1} = \frac{5}{9}H$
- 7) Préciser en la justifiant la forme de la matrice d'inertie dans le repère $(0, \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$
- 8) Par calcul intégral, déterminer tous les termes de la matrice d'inertie dans le repère $(0, \vec{x}, \vec{y}, \vec{z})$

On démontrera que $I_{oz} = \frac{5}{2} m_1 R^2$ et que par rapport au plan xy on a : $I_{xy} = \int z^2 dm = \frac{7}{18} m_1 H^2$

3 - Cylindre rayon R₁ hauteur h et demi-sphère rayon R₁ pleins

- 9) Déterminer le volume et la masse de cet ensemble cylindre + $\frac{1}{2}$ sphère (masse volumique p)
- 10) Déterminer la position du centre de masse G₂ de cet ensemble
- 11) Préciser en la justifiant la forme de la matrice d'inertie dans le repère $(0, \vec{x}, \vec{y}, \vec{z}')$
- 12) Par calcul intégral, déterminer tous les termes de la matrice d'inertie dans le repère $(0, \vec{x}, \vec{y}, \vec{z})$

Coordonnées sphériques

Pour le cylindre de rayon R et de longueur L, la matrice d'inertie exprimée en son centre de gravité est :

$$I_{G,S/R} = \begin{bmatrix} \frac{m}{4} (R^2 + \frac{L^2}{3}) & 0 & 0 \\ 0 & \frac{m}{4} (R^2 + \frac{L^2}{3}) & 0 \\ 0 & 0 & \frac{m.R^2}{2} \end{bmatrix}_{(\vec{x}, \vec{y}, \vec{z}')}$$

Pour une demi-sphère pleine de rayon R

$$I_{0,S/R} = \begin{bmatrix} \frac{2m}{5}R^2 & 0 & 0\\ 0 & \frac{2m}{5}R^2 & 0\\ 0 & 0 & \frac{2m}{5}R^2 \end{bmatrix}_{(\vec{x}; \vec{y}; \vec{z}')}$$

Position du centre de gravité : $Z_G = \frac{3}{8} R$

