

Aura OMI observations of global SO₂ **3** and NO₂ pollution from 2005 to 2013

Nickolay Krotkov¹, Can Li ^{1,2}, Lok Lamsal^{1,3}, Edward Celarier^{1,3}, Sergey Marchenko⁴, William H. Swartz⁵, Eric Bucsela⁶, Vitali Fioletov⁷, Chris McLinden⁷, Joanna Joiner¹, Pawan K. Bhartia¹, Bryan Duncan¹, Russ Dickerson⁸

¹NASA Goddard Space Flight Center, ² ESSIC, University of Maryland College Park, ³GESTAR, University Space Research Association, ⁴ Science Systems and Applications, Inc., ⁵ Applied Physics Laboratory, John Hopkins University, ⁶ SRI International, ⁷Environment Canada, Ontario CA, ⁸ Department of Atmospheric and Oceanic Science, University of Maryland College Park

> Aura STM College Park, MD 18 September 2014

Key improvements in OMI NO₂ and SO₂

- Significant improvements in retrieval quality
 - Improved spectral fitting of OMI NO₂ removes 20%- 40% of the stratospheric biases with other satellite measurements. New NO₂ version planned for release next year
 - New PCA SO₂ algorithm uses full spectral content from OMI, reduces noise by half and removes biases (artifacts)
 - New Version 2 OMI SO₂ dataset will be released this fall
- Maximal data continuity between instruments
 - Both OMI NO₂ and SO₂ algorithms can benefit new missions:
 SNPP/ OMPS, TROPOMI, GEMS and TEMPO
 - no need to develop instrument-specific radiance data correction schemes
- Maximal sensitivity -
 - PCA SO₂ detection limit for point sources is half the current PBL algorithm
- Flexibility
 - PCA SO₂ fitting window can be easily adjusted to optimize sensitivity under different conditions: from small anthropogenic signals to largest volcanic plumes.
 - NO₂ fitting window can be expanded to UV wavelengths (OMPS)

Regional trends in OMI new SO₂ and NO₂: 2005-2013

OMI SO₂ and NO₂ time series

- SZA < 70°
- Cross-track CCD rows 6-23 (excluding row anomaly for all years);
- Snow-free observations (according to the IMS data* product);
- SCD-O₃<1500 DU, VCD_SO₂<15 DU
- Additional volcanic filtering: all days removed which, over that region and considering all years, had a daily 99.9th percentile value greater than X,
 - where X=5 DU for Eastern North America,
 8 DU for Eastern Europe and India,
 10 DU for China –

these thresholds are obtained using the 99.9 percentile daily regional time series.

For consistency removed the same volcanic days in NO₂ product

^{*} Interactive multi-sensor snow and ice product, http://www.natice.noaa.gov/ims/

Eastern US

Eastern Europe 2005-2007 2011-2013 50° 50°_N 10° N 40° 40° E 40° E 20[°]E 20° E 30[°] E 30 E 10 5 15 5 10 15 Vertical Column Density [10¹⁵ cm⁻²] Vertical Column Density [10¹⁵ cm⁻²]

Eastern Europe: Time series for Maritsa Iztok

Time series: India (Chhattisgarh) 0.4 100 80 Chnage in SO_2 [%] 0.3 so₂ [DU] 60 40 0.1 20 2005 2006 2007 2012 2013 2012 2013 2008 2009 2010 2011 2005 2006 2007 2008 2009 2010 2011 Year Year 0.2 40 Trop. NO₂ [DU] 0.15 30 0.1 20 0.05 10 2006 2007 2008 2009 2010 2011 2012 2013 2005 2006 2007 2008 2009 2010 2011 2012 2013 Year Year

Eastern Asia 2005-2007 2011-2013 50° 50°N 40° N 40° N 30°_N 30° 130° E 130° E 120° ₽ 110°E 110°E 120[°] E 0 Vertical Column Density [DU] **Vertical Column Density [DU]** Volcano

Eastern Asia

Eastern China: Time series

2006 2007 2008 2009 2010 2011 2012 2013

Year

2006 2007

2008

2009

Year

2010 2011

Summary

