# heaps and Huffman codes

#### priority queues: motivation

dynamically changing list of events with dates want to find next event quickly

list of running programs, some more important (e.g. what user will notice being slow)

choose most important to run first want to find most important quickly

list of connections, some interactive (video call), some not (download)

want quick way to choose which one to service

data structure: priority queue

#### priority queue ADT

```
insert(priority, item)
findMin() — return item with lowest (first) priority
deleteMin() — remove item with lowest (first) priority
```

# priority queue implementations

| structure             | insert                  | findMin          | deleteMin                  |
|-----------------------|-------------------------|------------------|----------------------------|
| unsorted vector       | $\Theta(1)$ (amortized) | $\Theta(n)$      | $\Theta(n)$                |
| unsorted linked list  | $\Theta(1)$             | $\Theta(n)$      | $\Theta(n)$                |
| sorted vector         | $\Theta(n)$             | $\Theta(1)$      | $\Theta(1)$                |
| sorted linked list    | $\Theta(n)$             | $\Theta(1)$      | $\Theta(1)$                |
| balanced tree         | $\Theta(\log n)$        | $\Theta(\log n)$ | $\Theta(\log n)$           |
| binary heap           | $\Theta(\log n)$        | $\Theta(1)$      | $\Theta(\log n)$           |
| Fibannoci heap        | amortized $\Theta(1)$   | $\Theta(1)$      | amortized $\Theta(\log n)$ |
| strict Fibannoci heap | $\Theta(1)$             | $\Theta(1)$      | $\Theta(\log n)$           |

# priority queue implementations

| structure             | insert                  | findMin          | deleteMin                  |
|-----------------------|-------------------------|------------------|----------------------------|
| unsorted vector       | $\Theta(1)$ (amortized) | $\Theta(n)$      | $\Theta(n)$                |
| unsorted linked list  | $\Theta(1)$             | $\Theta(n)$      | $\Theta(n)$                |
| sorted vector         | $\Theta(n)$             | $\Theta(1)$      | $\Theta(1)$                |
| sorted linked list    | $\Theta(n)$             | $\Theta(1)$      | $\Theta(1)$                |
| balanced tree         | $\Theta(\log n)$        | $\Theta(\log n)$ | $\Theta(\log n)$           |
| binary heap           | $\Theta(\log n)$        | $\Theta(1)$      | $\Theta(\log n)$           |
| Fibannoci heap        | amortized $\Theta(1)$   | $\Theta(1)$      | amortized $\Theta(\log n)$ |
| strict Fibannoci heap | $\Theta(1)$             | $\Theta(1)$      | $\Theta(\log n)$           |

# priority queue implementations

| structure             | insert                  | findMin          | deleteMin                  |
|-----------------------|-------------------------|------------------|----------------------------|
| unsorted vector       | $\Theta(1)$ (amortized) | $\Theta(n)$      | $\Theta(n)$                |
| unsorted linked list  | $\Theta(1)$             | $\Theta(n)$      | $\Theta(n)$                |
| sorted vector         | $\Theta(n)$             | $\Theta(1)$      | $\Theta(1)$                |
| sorted linked list    | $\Theta(n)$             | $\Theta(1)$      | $\Theta(1)$                |
| balanced tree         | $\Theta(\log n)$        | $\Theta(\log n)$ | $\Theta(\log n)$           |
| binary heap           | $\Theta(\log n)$        | $\Theta(1)$      | $\Theta(\log n)$           |
| Fibannoci heap        | amortized $\Theta(1)$   | $\Theta(1)$      | amortized $\Theta(\log n)$ |
| strict Fibannoci heap | $\Theta(1)$             | $\Theta(1)$      | $\Theta(\log n)$           |

## additional, optional operations

not necessary to have a priority queue, but useful...

decreaseKey — change value of key given index/pointer remove — remove value with given index/pointer

| structure             | decreaseKey           | remove                |
|-----------------------|-----------------------|-----------------------|
| unsorted vector       | $\Theta(1)$           | $\Theta(n)$           |
| unsorted linked list  | $\Theta(1)$           | $\Theta(n)$           |
| sorted vector         | $\Theta(n)$           | $\Theta(n)$           |
| sorted linked list    | $\Theta(n)$           | $\Theta(1)$           |
| balanced tree         | $\Theta(\log n)$      | $\Theta(\log n)$      |
| binary heap           | $\Theta(\log n)$      | $\Theta(\log n)$      |
| Fibannoci heap        | amortized $\Theta(1)$ | amortized $\Theta(1)$ |
| strict Fibannoci heap | $\Theta(1)$           | $\Theta(1)$           |

## additional, optional operations

not necessary to have a priority queue, but useful...

decreaseKey — change value of key given index/pointer
remove — remove value with given index/pointer

| structure             | decreaseKey           | remove                |
|-----------------------|-----------------------|-----------------------|
| unsorted vector       | $\Theta(1)$           | $\Theta(n)$           |
| unsorted linked list  | $\Theta(1)$           | $\Theta(n)$           |
| sorted vector         | $\Theta(n)$           | $\Theta(n)$           |
| sorted linked list    | $\Theta(n)$           | $\Theta(1)$           |
| balanced tree         | $\Theta(\log n)$      | $\Theta(\log n)$      |
| binary heap           | $\Theta(\log n)$      | $\Theta(\log n)$      |
| Fibannoci heap        | amortized $\Theta(1)$ | amortized $\Theta(1)$ |
| strict Fibannoci heap | $\Theta(1)$           | $\Theta(1)$           |

## additional, optional operations

not necessary to have a priority queue, but useful...

decreaseKey — change value of key given index/pointer
remove — remove value with given index/pointer

| structure             | decreaseKey           | remove                |
|-----------------------|-----------------------|-----------------------|
| unsorted vector       | $\Theta(1)$           | $\Theta(n)$           |
| unsorted linked list  | $\Theta(1)$           | $\Theta(n)$           |
| sorted vector         | $\Theta(n)$           | $\Theta(n)$           |
| sorted linked list    | $\Theta(n)$           | $\Theta(1)$           |
| balanced tree         | $\Theta(\log n)$      | $\Theta(\log n)$      |
| binary heap           | $\Theta(\log n)$      | $\Theta(\log n)$      |
| Fibannoci heap        | amortized $\Theta(1)$ | amortized $\Theta(1)$ |
| strict Fibannoci heap | $\Theta(1)$           | $\Theta(1)$           |

#### aside: min v max

can also have ADT with findMax/etc. *instead of* findMin/etc. same complexities, etc. (use different comparisons) terms for heaps: "min-heap" (findMin version) or "max-heap" (findMax version)

#### binary heaps

binary heap is a binary tree

binary tree is not a binary search tree

structure: almost a perfect tree

ordering: parent < child (everywhere in tree)

# perfect binary trees



a binary tree is perfect or complete if all leaves have same depth all nodes have zero children (leaf) or two children

exactly the trees that achieve  $2^h - 1$  nodes

# almost perfect/complete binary trees



heaps are almost complete trees

only missing bottom-rightmost slots

# almost perfect/complete binary trees



heaps are almost complete trees

only missing bottom-rightmost slots

# almost complete formally

single node tree is almost complete

otherwise: almost complete if either

left child is complete with height h and right child almost complete with height h; OR

left child is almost complete with height h and right child is complete with height h-1



# trees as arrays



| node                               |   | Α | В | С | D | Ε | F | G | Н | I | J  |    |    |    |    |    |    |
|------------------------------------|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| index                              | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| string theTree[17] = {"" "A" "B" } |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

#### trees as arrays





#### trees as arrays





# why arrays

single array — less storage/memory allocation represent tree as single vector

# the heap property



 $\mbox{heap property: parent} \leq \mbox{any of its children}$ 

# a non-heap



## heap code

```
linked off slides page of repo
class binary_heap {
private:
    // heap[1] is root
        // leftChildIndex = index * 2
        // rightChildIndex = index * 2 + 1
        // parentIndex = index / 2
    vector<int> heap;
    int heap size;
```

add new node as leaf node

add new node as leaf node



add new node as leaf node



add new node as leaf node



add new node as leaf node



# insert(int)

```
void binary_heap::insert(int x) {
    ++heap_size;
    heap.push_back(x);
    percolateUp(x);
}
```

# percolateUp(int)

```
void binary_heap::percolateUp(int index) {
    int newValue = heap[index];
    // while not at root and
    // less than parent...
   while (index > 1 && newValue < heap[index / 2]) {</pre>
        // move parent down
        heap[index] = heap[index / 2];
        // advance up the tree
        index /= 2;
    heap[index] = newValue;
```

#### insert runtime

worst case:  $\log_2 N$  nodes changed

#### insert average case?

average case is better assuming random keys:

intuition: leafs have bottom half of values (on average)

...so usually don't need to move up

...and if we do, parents of leafs have 25th to 50th percentile of values

...so need to move up two steps even less

about 2 steps moved up on average

replace root with last leaf node

replace root with last leaf node



replace root with last leaf node



replace root with last leaf node



replace root with last leaf node



### heap deleteMin

replace root with last leaf node

while node greater than children: swap with smallest child



#### deleteMin code

### precolateDown code

```
int binary_heap::percolateDown(int index) {
    int value = heap[index];
    // while left child exists
    while (index * 2 <= heap_size) {</pre>
        int left = index * 2, right = index * 2 + 1;
        // set child to smallest child that exists
        int child = left;
        if (right <= heap_size && heap[right] < heap[left])</pre>
            child = right;
        // if less than smallest, done
        if (value < heap[child]) break;</pre>
        // otherwise:
        heap[index] = heap[child]; // move child up
        index = child;
                                     // and traverse down
    heap[index] = value;
```

#### deleteMin runtime

worst case  $\Theta(\log N)$  — move nodes from root to leaf

#### last time

priority queue: insert, find/remove first quickly

one fast implementation: binary heap

almost complete binary tree filled in from top to bottom, left to right formally: left complete

#### other heap operations?

#### decreaseKey/increaseKey

```
change value, then percolateUp/Down slow (\Theta(N)) if you have to find the value fast (\Theta(\log N)) if you already know where value is (one method: keep track of its index) faster (amortized \Theta(1)/\Theta(1)) in Fibanocci/strict Fibanocci heaps
```

#### remove

decreaseKey, then deleteMin

#### core heap operations

findMin —  $\Theta(1)$ 

insert —  $\Theta(\log N)$  worst case, better on "average"  $\operatorname{deleteMin} - \Theta(\log N)$ 

### heap sort

```
void heapSort(vector<T>& values) {
    binary_heap<T> heap;
    for (T x : values)
        heap.insert(x);
    values.clear();
    while (!heap.empty()) {
        values.push back(heap.deleteMin());
\Theta(N \log N) sort
can be done in place with more careful implementation
    (use values as the max-heap's array,
    place sorted elements starting at end)
```

mostly not as fast in practice as comparable unstable sorts

#### compression

compression

50KB webpage as 5KB download (a lot faster!)

100MB of machine code as 50MB download?

movie of 24 1MB pictures/second into 10MB/minute file?

...

#### lossy compression

for audio, pictures, video, *lossy compression* is common intuition: you won't notice if we make the pixel 0.25% darker ...and it had "noise" from camera sensor, etc. anyways idea: model human perception

write down most important parts of audio/image/etc.

important = noticed by humans

### lossless compression

lossless compression — reproduce original file rely on patterns

example: text file has many more 'e's than '!'s ...so choose shorter encoding for 'e' than '!'

example: computer-drawn images have lots of white space ...so have a way to represent "a big white rectangle" (instead of specifying each pixel)

### typical compression results

```
ratio = original size:final size
note: usually a compression ratio/speed tradeoff (not shown)
lossless:
     for English text or source code: about 4:1
     for CD-quality audio: about 2:1
     for photographs: about 2:1
     for computer-drawn diagrams: about 5:1 to 20:1
lossy: (making a guess at what is "close enough" in quality)
     for CD-quality audio: about 4:1
     for standard definition TV video+audio: about 1:40
```

# a prefix code

| letter | <u>code</u> |
|--------|-------------|
| а      | 0           |
| b      | 100         |
| С      | 101         |
| d      | 11          |

### a prefix code

| letter | code |
|--------|------|
| a      | 0    |
| b      | 100  |
| С      | 101  |
| d      | 11   |

prefix code no code is prefix of another (no ambiguity) shorter codes for more frequent values (hopefully)

### a prefix code

| letter | code |
|--------|------|
| a      | 0    |
| b      | 100  |
| С      | 101  |
| d      | 11   |

prefix code no code is prefix of another (no ambiguity) shorter codes for more frequent values (hopefully)



### prefix codes as trees

| letter | code |
|--------|------|
| а      | 0    |
| b      | 100  |
| С      | 101  |
| d      | 11   |



### prefix code cost

| letter | code | frequency |
|--------|------|-----------|
|--------|------|-----------|

| ·ccc. | coac |      |
|-------|------|------|
| а     | 0    | 5/12 |
| b     | 100  | 1/6  |
| С     | 101  | 1/12 |
| d     | 11   | 1/3  |

$$cost = \sum_{i} p_{i} r_{i} = \frac{5}{12} \cdot 1 + \frac{1}{6} \cdot 3 + \frac{1}{12} \cdot 3 + \frac{1}{3} \cdot 2 = \frac{11}{6} \text{ (bits per symbol)}$$

 $p_i$ : probability symbol i occurs

 $r_i$ : length of code for i

### prefix code cost

| letter | code | frequency |
|--------|------|-----------|
|--------|------|-----------|

| ictt. | CCGC |      |
|-------|------|------|
| а     | 0    | 5/12 |
| b     | 100  | 1/6  |
| С     | 101  | 1/12 |
| d     | 11   | 1/3  |

$$cost = \sum_{i} p_i r_i = \frac{5}{12} \cdot 1 + \frac{1}{6} \cdot 3 + \frac{1}{12} \cdot 3 + \frac{1}{3} \cdot 2 = \frac{11}{6} \text{ (bits per symbol)}$$

 $p_i$ : probability symbol i occurs

 $r_i$ : length of code for i

versus a=00,b=01,c=10,d=11: cost = 2 (bits per symbol) how to find minimum cost prefix code (given frequencies)?

### high-level compression steps

read file, find symbol frequencies

choose best prefix code (called *Huffman code*) based on frequencies best = assuming each code maps to one symbol

write prefix code to output

read file, convert to preifx code, write to output

input file chosen prefix code input file using prefix code

### high-level compression steps

read file, find symbol frequencies

choose best prefix code (called *Huffman code*) based on frequencies best = assuming each code maps to one symbol

write prefix code to output

read file, convert to preifx code, write to output

input file chosen prefix code input file using prefix code

### finding the best prefix code

build prefix code tree from bottom up

intuition 1: least frequent thing at bottom ightarrow use it first use case for a priority queue

intuition 2: combine less frequent symbols into more frequent group work with partial prefix trees

### running example and frequencies

if it is to be, it is up to me

| symbol | frequency | symbol                | frequency |
|--------|-----------|-----------------------|-----------|
| b      | 1         | р                     | 1         |
| е      | 2         | S                     | 2         |
| f      | 1         | t                     | 4         |
| i      | 5         | u                     | 1         |
| m      | 1         | , (comma)             | 1         |
| 0      | 2         | ,(comma)<br>」 (space) | 9         |

### building the Huffman tree (1)



list of partial prefix trees labelled with total frequency of contained symbols goal: combine these into one prefix tree

### building the Huffman tree (1)



# building the Huffman tree (1)



# building the Huffman tree (2)



#### building the Huffman tree: alternatives



multiple choices of what to combine proof not shown: produce same quality prefix tree

# building the Huffman tree (3)



# building the Huffman tree (4)



# building the Huffman tree (5)



# building the Huffman tree (6)



# building the Huffman tree (7)



### the final Huffman tree



| letter | code  |
|--------|-------|
|        | 00    |
| u      | 01000 |
| ,      | 01001 |
| m      | 01010 |
| р      | 01011 |
| t      | 011   |
| b      | 10000 |
| f      | 10001 |
| е      | 1001  |
| 0      | 1010  |
| S      | 1011  |
| i      | 11    |

### tree-building pseudocode

```
class PrefixTree {
    PrefixTree(char c, int frequency);
    PrefixTree(PrefixTree rightSide, PrefixTree leftSide);
    PrefixTree(const PrefixTree &other);
};
  PriorityQueue<PrefixTree> queue;
  for (char c, frequency f in inputFile) {
      queue.insert(PrefixTree(c, f));
 while (queue.size() > 1) {
      PrefixTree first = queue.deleteMin();
      PrefixTree second = queue.deleteMin();
      queue.insert(PrefixTree(first, second));
  return queue.deleteMin();
```

### storing the prefix code

#### file format for the lab:

```
space 00
u 01000
, 01001
m 01010
p 01011
t 011
b 10000
f 10001
e 1001
o 1010
s 1011
i 11
```

#### real format?

does this save space?

probably if input file is big enough...

but real compression formats use a more compact encoding not having you do in lab to ease debugging/etc.

#### what about the data?

in lab: the text 01111110011110... obviously wastes a lot of space...

real compression: sequence of bytes, 8 bits per extra work to extract bit-by-bit, match with prefix code

### decoding

```
load the code into a prefix code tree
then, read bits, traversing tree until leaf
psuedocode:
    while (there are more bits) {
        PrefixTreeNode *current = root;
        while (current is not a leaf) {
             if (next bit is 0)
                 current = current->left;
             else
                 current = current->right;
        output(current->symbol);
```

|       |     |     |           |    | - ( | <b>)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|-----|-----|-----------|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lette | r   | cod | <u>le</u> |    |     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| a     |     | 0   |           |    | 0   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| b     |     | 10  | 0         | a  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| С     |     | 10  | 1         |    |     | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| d     |     | 11  |           |    |     | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |     |     |           |    | >   | \( \text{\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\texitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texititt{\$\text{\$\text{\$\texititit{\$\text{\$\texitt{\$\text{\$\text{\$\text{\$\tex{ |
|       |     |     |           |    | 0   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |     |     |           | (b |     | ( <b>c</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11    | 100 | 0   | 101       | 0  | 0   | 11 = dba:w caad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| letter        | code           |                               |
|---------------|----------------|-------------------------------|
| a             | 0              | o l                           |
| b             | 100            | (a) ()                        |
| С             | 101            | 0 1                           |
| d             | 11             | d                             |
|               |                | 0 1                           |
|               |                | b c                           |
| <b>1</b> 1 10 | <b>90 0 10</b> | $1 \ 0 \ 0 \ 11 = dba:w caad$ |

| letter       | code    |                                |
|--------------|---------|--------------------------------|
| а            | 0       | o i                            |
| b            | 100     | (a) ()                         |
| С            | 101     | 0 1                            |
| d            | 11      | (d)                            |
|              |         |                                |
|              |         | 0 1                            |
|              |         | (b) (c)                        |
| 1 <b>1</b> 1 | 00 0 10 | $01 \ 0 \ 0 \ 11 = dba:w caad$ |

|       |     |     |           |    | - ( | <b>)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|-----|-----|-----------|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lette | r   | cod | <u>le</u> |    |     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| a     |     | 0   |           |    | 0   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| b     |     | 10  | 0         | a  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| С     |     | 10  | 1         |    |     | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| d     |     | 11  |           |    |     | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |     |     |           |    | >   | \( \text{\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\texitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texititt{\$\text{\$\text{\$\texititit{\$\text{\$\texitt{\$\text{\$\text{\$\text{\$\tex{ |
|       |     |     |           |    | 0   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |     |     |           | (b |     | ( <b>c</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11    | 100 | 0   | 101       | 0  | 0   | 11 = dba:w caad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| lette | r   | CO | <u>de</u> |     | > | _               |
|-------|-----|----|-----------|-----|---|-----------------|
| а     |     | 0  |           |     | 0 | 1_              |
| b     |     | 10 | 0         | a   |   |                 |
| С     |     | 10 | 1         |     |   | 0 1             |
| d     |     | 11 |           |     |   | $\frac{d}{d}$   |
|       |     | •  |           |     | 0 | 1               |
|       |     |    |           |     | * | <b>1</b>        |
|       |     |    |           | ( b |   | (c)             |
| 11    | 100 | 0  | 101       | 0   | 0 | 11 = dba:w caad |

|        |        | /                                 |
|--------|--------|-----------------------------------|
| letter | code   |                                   |
| a      | 0      | 0 1                               |
| b      | 100    | (a) ()                            |
| С      | 101    | 0 1                               |
| d      | 11     | $\begin{pmatrix} d \end{pmatrix}$ |
|        |        | 0 1                               |
|        |        | (b) (c)                           |
| 11 10  | 0 0 10 | $1 \ 0 \ 0 \ 11 = dba:w caad$     |

|              |                   |    |           |     | ( |                      |
|--------------|-------------------|----|-----------|-----|---|----------------------|
| <u>lette</u> | r                 | CO | <u>de</u> |     | > | 1                    |
| a            |                   | 0  |           |     | 0 | 1                    |
| b            |                   | 10 | 0         | a   |   |                      |
| С            |                   | 10 | 1         |     |   | 0 1                  |
| d            |                   | 11 |           |     |   | $\frac{1}{\sqrt{d}}$ |
|              |                   | •  |           |     | > | 1                    |
|              |                   |    |           |     | ₹ | 1                    |
|              |                   |    |           | ( b | ) | ( c )                |
| 11           | 10 <mark>0</mark> | 0  | 101       | 0   | 0 | 11 = dba:w caad      |

|       |     |     |           |    | - ( | <b>)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|-----|-----|-----------|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lette | r   | cod | <u>le</u> |    |     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| a     |     | 0   |           |    | 0   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| b     |     | 10  | 0         | a  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| С     |     | 10  | 1         |    |     | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| d     |     | 11  |           |    |     | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |     |     |           |    | >   | \( \text{\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\texitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texititt{\$\text{\$\text{\$\texititit{\$\text{\$\texitt{\$\text{\$\text{\$\text{\$\tex{ |
|       |     |     |           |    | 0   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |     |     |           | (b |     | ( <b>c</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11    | 100 | 0   | 101       | 0  | 0   | 11 = dba:w caad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|       |     |    |     |    | - (      |                 |
|-------|-----|----|-----|----|----------|-----------------|
| lette | r   | co | de  |    | >        | ~               |
| a     |     | 0  |     |    | <u>o</u> | 1               |
| b     |     | 10 | 0   | (a |          |                 |
| С     |     | 10 | 1   |    |          | 0 1             |
| d     |     | 11 |     |    |          | (d)             |
|       |     |    |     |    | 0        | 1               |
|       |     |    |     | b  |          | C               |
| 11    | 100 | 0  | 101 | 0  | 0        | 11 = dba:w caad |

## lab preview

pre-lab: compression

in-lab: decompression

post-lab report

#### pre-lab

write a program to...

calculate letter frequencies of input
use binary heap to build huffman tree
output encoding mapping (format specified in lab)
output encoded message

#### pre-lab tools

heap code supplied in slides

file I/O code provided (fileio.cpp)

or see getWordInTable.cpp from lab 6

or see http://www.cplusplus.com/doc/tutorial/files/
or see ifstream documentation

#### a note on ASCII

the American standard character codes
7-bit charcters (extra bit left over in bytes)
ASCII or superset used to represent English text

128 characters (95 printable, 33 non-printable)

Wikipedia article as table/details

#### **ASCII** codes

for lab: only worry about "printable" ASCII characters byte values 0x20 to 0x7e

special case: 0x20 = 'space'

no other whitespace characters used (output character in table as itself...)

### heap example

linked off slides page as
binary\_heap.h
binary\_heap.cpp

you may use for lab

## heap declaration: public

```
class binary_heap {
public:
    binary_heap();
    binary heap(vector<int> vec);
    ~binary heap();
    void insert(int x);
    int findMin();
    int deleteMin();
    unsigned int size();
    void makeEmptv();
    bool isEmpty();
    void print();
    . . .
```

### heap declaration: private

```
class binary_heap {
    ...
private:
    vector<int> heap;
    unsigned int heap_size;
    void percolateUp(int hole);
    void percolateDown(int hole);
};
```

### vector heap

```
vector<int> heap — vector representing binary tree, using rules
shown before
   heap[0] is unused
   heap[1] is root
   heap[i * 2] is left child of node i
   heap[i * 2 + 1] is right child of node i

int heap_size is its size
   (even though heap.size() - 1 could have been used instead...)
```

## binary\_heap::binary\_heap(vec)

constructor to initialize from *unsorted* vector equivalent to repeated insertion...

## binary\_heap::binary\_heap(vec)

```
constructor to initialize from unsorted vector
equivalent to repeated insertion...
recall: in-place heap sort — similar to what's happening here...
binary_heap::binary_heap(vector<int> vec) :
        heap size(vec.size()) {
    heap = vec;
    heap.push back(heap[0]);
    heap[0] = 0;
    for ( int i = heap_size/2; i > 0; i— )
        percolateDown(i);
```

## findMin/size/etc.

```
int binary_heap::findMin() {
    if ( heap size == 0 )
        throw "findMin()_called_on_emptv_heap";
    return heap[1];
```

unsigned int binary heap::size() { return heap\_size;

return heap size == 0;

bool binary\_heap::isEmpty() {

void binary heap::makeEmpty() {  $heap_size = 0;$ 

#### print

```
void binary heap::print() {
    cout << "(" << heap[0] << ")_";
    for ( int i = 1; i <= heap size; i++ ) {
        cout << heap[i] << "_";
        // next line from from http://tinyurl.com/mf9tbqm
        bool isPow2 = (((i+1) \& \sim(i))==(i+1))? i+1 : 0;
        if ( isPow2 )
            cout << endl << "\t";</pre>
    cout << endl;
```