Вопрос:

в каком алфавите больше букв: в греческом или в английском?

Вопрос

Пусть S — множество квадратов натуральных чисел,

т. е. $S = \{1, 4, 9, 16, 25, 36, 49, \dots\}.$

Где больше чисел: в S или в \mathbb{N} ?

Вопрос:

в каком алфавите больше букв: в греческом или в английском?

Вопрос

Пусть S — множество квадратов натуральных чисел,

т. е.
$$S = \{1, 4, 9, 16, 25, 36, 49, \dots\}.$$

Где больше чисел: в S или в \mathbb{N} ?

§12. Понятие о равномощных и счётных множествах

Определение

Множества A и B называются равномощными, если существует биекция вида $f:A\to B$.

Важные свойства:

- любые два конечных множества с одинаковым числом элементов равномощны;
- любое множество равномощно самому себе;
- для любых A и B:
 если A равномощно B, то B равномощно A;
- для любых A, B, C:
 если A равномощно B, a B равномощно C,
 то A равномощно C.

Пример 1:

Множество S квадратов натуральных чисел равномощно множеству $\mathbb N$ натуральных чисел. (Биекция — $\sqrt{n^2}$.)

Пример 2:

Пусть a, b — действительные числа, a < b.

Множество чисел интервала (a,b) равномощно множеству \mathbb{R} ,

т. е. множеству всех действительных чисел.

Отобразим параллельным переносом каждое число интервала (a,b) в точку на дуге AB.

 \Im то отображение обозначим f .

Отметим, что f — биекция.

Каждую точку на дуге AB отобразим в точку на числовой прямой \mathbb{R} .

 \exists то отображение обозначим g. Оно тоже биективно.

Композиция $g \circ f$ и есть искомая биекция между интервалом (a,b) и множеством \mathbb{R} .

Определение

Множество A называется счётным, если оно равномощно множеству натуральных чисел \mathbb{N} .

Таким образом, множество A называется счётным, если существует биекция вида $f:A\to\mathbb{N}$.

Эта биекция часто называется нумерацией элементов множества A.

Примеры счётных множеств

- множество натуральных чисел счётно;
- множество чётных натуральных чисел счётно;
- множество нечётных натуральных чисел счётно;
- да и вообще, любое бесконечное подмножество счётного множества счётно;
- множество $\mathbb{N}_0 = \mathbb{N} \cup 0$ расширенное множество натуральных чисел счётно;
- множество целых чисел счётно.

• Множество $\mathbb Z$ равномощно множеству $\mathbb N.$

Одна из возможных нумераций:

\mathbb{N} :									
			\mathbb{Z} :						

\mathbb{N} :				
\mathbb{Z} :				

Пример несчётного множества

- Двоичным или бинарным упорядоченным набором длины n называется упорядоченный набор $(\alpha_1,\alpha_2,\ldots,\alpha_n)$, такой что $\alpha_i\in\{0,1\}$ для любого $i=1,2,\ldots,n$.
- Рассмотрим множество всех бесконечных бинарных наборов:

$$A = \{ (\alpha_1, \alpha_2, \dots, \alpha_n, \dots) \mid \alpha_i \in \{0, 1\}$$
 для каждого $i \in \mathbb{N} \}$

Пример несчётного множества

$$\mathcal{A}=\{\,ig(lpha_1,lpha_2,\ldots,lpha_n,\ldotsig)\mid lpha_i\in\{0,1\}$$
 для каждого $i\in\mathbb{N}\}$

Утверждение

Множество А не является счётным.

Доказательство

От противного.

 Предположим, что A счётно,
 т. е. что все последовательности во множестве A можно занумеровать:

$$A = \{a_1, a_2, \ldots, a_k, \ldots\}.$$

• Выпишем их компоненты в таблицу:

• Рассмотрим бесконечную бинарную последовательность $a' = (\alpha_{1,1}, \alpha_{2,2}, \dots, \alpha_{k,k}, \dots).$

Доказательство

$$a' = (\alpha_{1,1}, \alpha_{2,2}, \dots, \alpha_{k,k}, \dots)$$

- На самом деле, рассмотрим бесконечную бинарную последовательность $b=(1-lpha_{1,1},1-lpha_{2,2},\ldots,1-lpha_{k,k},\ldots).$
- Заметим, что $b \in A$.
- По предположению все элементы A занумерованы, в том числе b.
- ullet Пусть b имеет номер $m \in \mathbb{N}$. Тогда $b = a_m$.
- Это означает, что \emph{m} -я компонента последовательности \emph{b} равна $\alpha_{\emph{m},\emph{m}}$.
- В то же время по построению \emph{m} -я компонента последовательности \emph{b} равна $1-\alpha_{\emph{m},\emph{m}}$, т. е. отлична от $\alpha_{\emph{m},\emph{m}}$.

Доказательство

- Противоречие.
- Следовательно, наше предположение неверно,
- а значит, множество А не является счётным.

Утверждение

Множество А всех бесконечных бинарных наборов, т е.

$$\mathit{A} = \{\, (lpha_1, lpha_2, \ldots, lpha_n, \ldots) \mid lpha_i \in \{0,1\} \,$$
 для каждого $i \in \mathbb{N}\}$

равномощно множеству $2^{\mathbb{N}}$ — множеству всех подмножеств множества натуральных чисел.

The leady wider deviage temperature.

- Пусть $a \in A$, то есть $a = (\alpha_1, \alpha_2, \dots, \alpha_n, \dots)$, $a_i \in \{0, 1\}$ для каждого $i \in \mathbb{N}$.
- По последовательности *а* построим множество $S(a) \subseteq \mathbb{N}$ следующим образом: $S(a) = \{k \mid \alpha_k = 1\}.$
- Это правило задаёт отображение, более того биективное.

Определение

Множество A называется континуальным, если оно равномощно множеству действительных чисел \mathbb{R} .

Примеры:

- открытый интервал (0,1) континуальное множество;
- отрезок [0,1] континуальное множество;
- множество $2^{\mathbb{N}}$ континуальное (но это доказывать мы не будем).

Утверждение

Множество действительных чисел отрезка [0,1] равномощно множеству действительных чисел отрезка (0,1).

- Способ доказательства 1: построить биекцию (можно спрятать конечное в счётном!)
- Способ доказательства 2: в следующем подразделе!

Теорема Кантора — Бернштейна (— Шрёдера (— Дедекинда))

Пусть А, В — два множества.

Если

А равномощно некоторому подмножеству множества В, а В равномощно некоторому подмножеству множества А, то А и В равномощны.

Пример:

- ullet (0,1) равномощно (0,1), но $(0,1)\subseteq [0,1]$
- [0,1] равномощно $[\frac{1}{3},\frac{2}{3}]$, но $[\frac{1}{3},\frac{2}{3}]\subseteq (0,1)$
- По теореме Кантора Бернштейна,
 [0,1] и (0,1) равномощны.