Analisi Matematica III

Appunti (non rivisti) delle lezioni del professor Paolo Acquistapace

un progetto di

www.eigenlab.org

a cura di

Francesco Cicciarella

Note legali

Copyright © 2011-2012 di Francesco Cicciarella

Appunti di Analisi Matematica 3

è rilasciato sotto i termini della licenza

Creative Commons Attribuzione - Non commerciale - Condividi allo stesso modo 3.0 Italia.

Per visionare una copia completa della licenza, visita

http://creativecommons.org/licenses/by-nc-sa/3.0/it/legalcode

Liberatoria, mantenimento e segnalazione errori

Questo documento viene pubblicato, in formato elettronico, senza alcuna garanzia di correttezza del suo contenuto. Il testo, nella sua interezza, è opera di

Francesco Cicciarella
<f[DOT]cicciarella[AT]inventati[DOT]org>

e viene mantenuto dallo stesso, a cui possono essere inviate eventuali segnalazioni di errori.

Pisa, 10 Ottobre 2012

Indice

T	Equ	azioni dinerenzian			
	1.1	Introduzione			
	1.2	Teorema di esistenza e unicità locale delle soluzioni di un'equazione differenziale			
	1.3	Equazioni differenziali del primo ordine			
		1.3.1 Equazioni differenziali del primo ordine a variabili separabili			
		1.3.2 Equazioni differenziali riconducibili a variabili separabili			
		1.3.3 Equazioni del tipo $y' = f(ax + by)$			
		1.3.4 Equazioni lineari del primo ordine			
		1.3.5 Equazione di Bernoulli			
2	Sistemi lineari del primo ordine				
	2.1	Introduzione			
	2.2	Matrice Wronskiana			
	2.3	Metodo di variazione delle costanti			
	2.4	Sistemi lineari a coefficienti costanti			
		2.4.1 Caso I			
		2.4.2 Caso II			
		2.4.3 Caso III			
		2.4.4 Sistemi di Eulero			
3	Equazioni differenziali di ordine n				
•	3.1	Problema di Cauchy			
	3.2	Equazioni differenziali di ordine n a coefficienti costanti			
4	Der	ivate parziali e differenziabilità			
•	4.1	Derivate parziali			
	4.2	Differenziabilità			
	4.3	Derivate successive			
	4.4	Forme quadratiche			
	4.5	Operatore di Laplace in due dimensioni			
5	Funzioni implicite 3				
		Caso bidimensionale			
	5.2	Contrazioni			
	5.3	Caso generale			
	5.4	Funzioni invertibili			
	5.5	Massimi e minimi vincolati			
	5.6	Metodo dei moltiplicatori di Lagrange			

6	Integrale di Lebesgue				
	6.1	Compattezza in spazi metrici	47		
	6.2	Misura di Lebesgue	49		
		6.2.1 Classe dei misurabili	52		
	6.3	Funzioni misurabili	60		
	6.4	Integrale di Lebesgue per funzioni semplici	64		
	6.5	Integrale di Lebesgue per funzioni misurabili	65		
	6.6	Calcolo degli integrali multipli	74		
	6.7	Cambiamento di variabili	78		
	6.8	Cambiamento di variabili in coordinate polari	80		
	6.9	Cambiamento di variabili in coordinate cilindriche	81		
	6.10	Volume del solido di rotazione	82		
	6.11	Cambiamento di variabili in coordinate sferiche	83		
	6.12	Curve e lunghezza di una curva	83		
7	Integrale curvilineo e di superficie 8				
	7.1	Integrale curvilineo	87		
	7.2	Integrale di superficie	87		
8	Campi vettoriali 8				
	8.1	Campi vettoriali e linee di forza	89		
	8.2	Integrazione di un campo vettoriale	89		
	8.3	Formule di Gauss-Green			
	8.4	Divergenza, rotore e teorema di Stokes	95		

Capitolo 1

Equazioni differenziali

1.1 Introduzione

Un'equazione differenziale è un'identità che lega fra di loro, per ogni valore della variabile x in un dato insieme, i valori della funzione incognita u(x) e quelli delle sue derivate $u'(x), u''(x), \ldots$ Un'equazione differenziale si presenta nella forma:

$$f((x, u(x), \dots, u^{(m)}(x)) = 0, \quad \forall x \in I,$$
 (1.1.1)

dove m è detto ordine dell'equazione.

Definizione 1.1.1. Un'equazione differenziale di ordine m si dice in forma normale se è della forma:

$$u^{(m)}(x) = g(x, u(x), u'(x), \dots, u^{(m-1)}(x)), \qquad (1.1.2)$$

Accanto alle equazioni si considerano anche i sistemi differenziali di prim'ordine:

$$\mathbf{f}(x, \mathbf{u}(x), \mathbf{u}'(x)) = 0, \qquad x \in I, \qquad (1.1.3)$$

e in forma normale:

$$\mathbf{u}'(x) = \mathbf{g}(x, \mathbf{u}(x)), \qquad \mathbf{g}: I \to \mathbb{R}^m.$$
 (1.1.4)

Proposizione 1.1.1. Un'equazione differenziale di ordine m è sempre equivalente ad un sistema differenziale del prim'ordine in m equazioni.

Dimostrazione. Se $y \in C^m(I)$ risolve l'equazione $f(x, y, y', \dots, y^{(m)}) = 0$, introducendo le m funzioni:

$$u_0(x) = y(x) , \quad u_1(x) = y'(x) , \quad \dots , \quad u_{m-1}(x) = y^{(m-1)}(x) ,$$
 (1.1.5)

si ottiene una funzione $\mathbf{u} = (u_0, u_1, \dots, u_{m-1}) \in C^1(I, \mathbb{R}^m)$ che risolve il sistema differenziale:

$$\begin{cases}
 u'_0 = u_1, \\
 u'_1 = u_2, \\
 \dots \\
 u'_{m-2} = u_{m-1}, \\
 u'_{m-1} = u_m = g(x, u_0, u_1, \dots, u_{m-1}),
\end{cases}$$
(1.1.6)

che è un sistema differenziale del primo ordine in m equazioni.

1.2 Teorema di esistenza e unicità locale delle soluzioni di un'equazione differenziale

Consideriamo il sistema:

$$\mathbf{u}' = \mathbf{g}(x, \mathbf{u}) , \qquad x \in I , \tag{1.2.1}$$

sotto le seguenti ipotesi:

- 1. $\mathbf{g}: A \to \mathbb{R}^m$ è un'assegnata funzione continua, definita su un aperto $A \subseteq \mathbb{R}^{m+1}$;
- 2. **g** è localmente Lipschitziana in A rispetto alla variabile vettoriale **u** e uniformemente rispetto alla variabile x, ossia per ogni compatto $K \subset A$, $\exists H_K \geq 0$ tale che:

$$|\mathbf{g}(x,\mathbf{y}) - \mathbf{g}(x,\mathbf{u})|_m \le H_K |\mathbf{y} - \mathbf{u}|_m, \quad \forall (x,\mathbf{y}), (x,\mathbf{u}) \in K.$$
 (1.2.2)

Fissiamo un punto $(x_0, \mathbf{u}_0) \in A$ e consideriamo il problema di Cauchy:

$$\begin{cases} \mathbf{u}' = \mathbf{g}(x, \mathbf{u}) ,\\ \mathbf{u}(x_0) = \mathbf{u}_0 . \end{cases}$$
 (1.2.3)

Dato che A è un aperto, esisterà un 'cilindro' (m+1)-dimensionale compatto, che denotiamo R, di centro (x_0, \mathbf{u}_0) , strettamente contenuto in A. Esso sarà della forma:

$$R = \{|x - x_0| \le a, |\mathbf{u} - \mathbf{u}_0|_m \le b, \operatorname{con}(x, \mathbf{u}) \in \mathbb{R} \times \mathbb{R}^m\} . \tag{1.2.4}$$

Poiché **g** è continua nel compatto R, per il teorema di Weierstrass $\exists M \geq 0$ tale che:

$$|\mathbf{g}(x, \mathbf{u})|_m \le M$$
, $\forall (x, \mathbf{u}) \in R$. (1.2.5)

Inoltre, poiché R è compatto, per l'ipotesi 2 si ha che $\exists H \geq 0$ tale che:

$$|\mathbf{g}(x,\mathbf{y}) - \mathbf{g}(x,\mathbf{u})|_m \le H|\mathbf{y} - \mathbf{u}|_m, \quad \forall (x,\mathbf{y}), (x,\mathbf{u}) \in R.$$
 (1.2.6)

Teorema 1.2.1 (Esistenza ed unicità locale della soluzione di un'equazione differenziale). Nelle ipotesi siffatte, $\exists J = [x_0 - h, x_0 + h] \ con \ 0 < h \leq a \ e \ \exists ! \ \mathbf{u} : J \to \mathbb{R}^m \ di \ classe \ C^1 \ tali \ che:$

$$\begin{cases}
\mathbf{u}' = \mathbf{g}(x, \mathbf{u}), & \forall x \in J, \\
\mathbf{u}(x_0) = \mathbf{u}_0,
\end{cases}$$
(1.2.7)

e inoltre:

$$|\mathbf{u}(x) - \mathbf{u}_0|_m \le b$$
, $\forall x \in J$. (1.2.8)

Dimostrazione. (Esistenza). Trasformiamo il problema di Cauchy in un sistema di equazioni integrali, cioè dimostriamo che:

$$\begin{cases}
\mathbf{u}' = \mathbf{g}(x, \mathbf{u}) & \forall x \in J, \\
& \text{con } \mathbf{u} \in C^1(J, \mathbb{R}^m), \\
\mathbf{u}(x_0) = \mathbf{u}_0,
\end{cases} (1.2.9)$$

e:

$$\mathbf{u}(x) = \mathbf{u}_0 + \int_{x_0}^x \mathbf{g}(t, \mathbf{u} \, \mathrm{d}t \,, \qquad \text{con } x \in J, \mathbf{u} \in C^0(J, \mathbb{R}^m) \,, \tag{1.2.10}$$

sono equivalenti. Infatti, sia **u** soluzione del problema (1.2.9). Integrando a membro a membro da x_0 e $x \in J$:

$$\int_{x_0}^x \mathbf{u}'(t) dt = \int_{x_0}^x \mathbf{g}(t, \mathbf{u}) dt \qquad \Longleftrightarrow \qquad \mathbf{u}(x) - \mathbf{u}(x_0) = \int_{x_0}^x \mathbf{g}(t, \mathbf{u}) dt. \qquad (1.2.11)$$

Da cui, ricordando che $\mathbf{u}(x_0) = \mathbf{u}_0$, segue:

$$\mathbf{u}(x) = \mathbf{u_0} + \int_{x_0}^{x} \mathbf{g}(t, \mathbf{u}) \, \mathrm{d}t \,, \tag{1.2.12}$$

e quindi \mathbf{u} è soluzione del problema (1.2.10). Viceversa, sia $\mathbf{u} \in C^0(J, \mathbb{R}^m)$ soluzione del problema (1.2.10), allora:

$$\mathbf{u}(x) = \mathbf{u}_0 + \int_{x_0}^x \mathbf{g}(t, \mathbf{u}) \, \mathrm{d}t . \qquad (1.2.13)$$

Ma per ipotesi, \mathbf{u}_0 e $\int_{x_0}^x \mathbf{g}(t, \mathbf{u}) dt$ sono di classe C^1 , quindi automaticamente anche $\mathbf{u}(x) \in C^1$, quindi, derivando ambo i membri, si ottiene:

$$\mathbf{u}'(x) = \mathbf{g}(x, \mathbf{u}) ,$$

$$\mathbf{u}(x_0) = \mathbf{u}_0 ,$$
(1.2.14)

da cui segue che ${\bf u}$ è soluzione del problema (1.2.9). Dimostrata l'equivalenza, risolviamo il problema (1.2.10):

$$\begin{cases}
\mathbf{u} \in C^0(J, \mathbb{R}^m), \\
\mathbf{u}(x) = \mathbf{u}_0 + \int_{x_0}^x \mathbf{g}(t, \mathbf{u}) \, dt.
\end{cases}$$
(1.2.15)

Posto $h = \min\{a, b/M, 1/H\}$, usiamo il *metodo delle approssimazioni successive*. Definiamo la successione $\{\mathbf{u}_n(x)\} \in C^1(J, \mathbb{R}^m) \ \forall n$ per ricorrenza:

$$\begin{cases}
\mathbf{u}_0(x) = \mathbf{u}_0 & \forall x \in J, \\
\mathbf{u}_{n+1}(x) = \mathbf{u}_0 + \int_{x_0}^x \mathbf{g}(t, \mathbf{u}_n) \, dt & \forall n \in \mathbb{N}.
\end{cases}$$
(1.2.16)

Valgono le seguenti relazioni:

$$\sup_{x \in I} |\mathbf{u}_n(x) - \mathbf{u}_0|_m \le b \qquad \forall n \in \mathbb{N} , \qquad (1.2.17)$$

$$|\mathbf{u}_{n+1}(x) - \mathbf{u}_n(x)|_m \le M \frac{H^n}{(n+1)!} |x - x_0|^{n+1}$$
 (1.2.18)

Dimostriamo la (1.2.17) per induzione su n. Per n=0 è banalmente vera, dimostriamo quindi che $n \Longrightarrow n+1$.

$$|\mathbf{u}_{n+1}(x) - \mathbf{u}_0|_m = \left| \int_{x_0}^x \mathbf{g}(t, \mathbf{u}_n) \, \mathrm{d}t \right|_m \le \left| \int_{x_0}^x |\mathbf{g}(t, \mathbf{u}_n) \, \mathrm{d}t|_m \right| . \tag{1.2.19}$$

Poiché $(t, \mathbf{u}_n(t)) \in R$, per ipotesi si ha:

$$|\mathbf{u}_{n+1}(x) - \mathbf{u}_0|_m \le \left| \int_{x_0}^x M \ dt \right| = M|x - x_0| \le M \cdot h \le M \frac{b}{M} = b \ .$$
 (1.2.20)

Dimostriamo anche la (1.2.18) per induzione su n. Per n=0:

$$|\mathbf{u}_{1}(x) - \mathbf{u}_{0}|_{m} = \left| \int_{x_{0}}^{x} \mathbf{g}(t, \mathbf{u}_{0}) \, dt \right|_{m} \le \left| \int_{x_{0}}^{x} |\mathbf{g}(t, \mathbf{u}_{0})|_{m} \, dt \right| \le M|x - x_{0}| = M \frac{H^{0}}{1!} |x - x_{0}|^{0+1},$$
(1.2.21)

la proposizione è vera. Dimostriamo che $n \Longrightarrow n+1$:

$$|\mathbf{u}_{n+2}(x) - \mathbf{u}_{n+1}(x)|_{m} = \left| \int_{x_{0}}^{x} \mathbf{g}(t, \mathbf{u}_{n+1}) \, \mathrm{d}t - \int_{x_{0}}^{x} \mathbf{g}(t, \mathbf{u}_{n}) \, \mathrm{d}t \right|_{m}$$

$$\leq \left| \int_{x_{0}}^{x} |\mathbf{g}(t, \mathbf{u}_{n+1}) - \mathbf{g}(t, \mathbf{u}_{n})|_{m} \, \mathrm{d}t \right|. \tag{1.2.22}$$

Per l'ipotesi di locale Lipschitzianità, si ha:

$$|\mathbf{u}_{n+2}(x) - \mathbf{u}_{n+1}(x)|_m \le H \left| \int_{x_0}^x |\mathbf{u}_{n+1}(t) - \mathbf{u}_n(t)|_m \, dt \right|$$
 (1.2.23)

Per l'ipotesi induttiva, segue che:

$$|\mathbf{u}_{n+2} - \mathbf{u}_{n+1}(x)|_{m} \le H \left| \int_{x_{0}}^{x} \frac{MH^{n}}{(n+1)!} |t - x_{0}|^{n+1} dt \right| = M \frac{H^{n+1}}{(n+1)!} \int_{x_{0}}^{x} |t - x_{0}|^{n+1} dt$$

$$= M \frac{H^{n+1}}{(n+1)!} \frac{|x - x_{0}|^{n+2}}{n+2} = M \frac{H^{n+1}}{(n+2)!} |x - x_{0}|^{n+2} . \tag{1.2.24}$$

Dalla seconda relazione appena dimostrata segue che:

$$\sup_{x \in I} |\mathbf{u}_{n+1}(x) - \mathbf{u}_n(x)|_m \le \frac{MH^n}{(n+1)!} h^{n+1} . \tag{1.2.25}$$

Allora $\forall \epsilon > 0 \; \exists \nu_{\epsilon}$ tale che $\forall p, n > \nu_{\epsilon}, p > n$ si abbia:

$$\sup_{x \in J} |\mathbf{u}_p(x) - \mathbf{u}_n(x)|_m \le \sum_{i=n}^{p-1} \sup_{x \in J} |\mathbf{u}_{i+1}(x) - \mathbf{u}_i(x)|_m \le M \sum_{i=n}^{p-1} \frac{H^i h^{i+1}}{(i+1)!} < \epsilon.$$
 (1.2.26)

Concludiamo che $\forall x \in J$ la successione $\{\mathbf{u}_n(x)\}_{n \in \mathbb{N}}$ è di Cauchy in \mathbb{R}^m , quindi esiste:

$$\lim_{n \to +\infty} \mathbf{u}_n(x) = \mathbf{u}(x) \qquad \forall x \in J , \qquad (1.2.27)$$

e inoltre, $\forall n > \nu_{\epsilon}$ si ha:

$$\sup_{x \in J} |\mathbf{u}_n(x) - \mathbf{u}(x)|_m < \epsilon . \tag{1.2.28}$$

Quindi la successione $\{\mathbf{u}_n(x)\}$ converge uniformemente a $\mathbf{u}(x)$ in J. Eseguendo il limite per $n \to +\infty$ nella relazione:

$$\mathbf{u}_{n+1}(x) = \mathbf{u}_0 + \int_{x_0}^x \mathbf{g}(t, \mathbf{u}_n) dt$$
, (1.2.29)

si ha $\mathbf{u}_{n+1}(x) \to \mathbf{u}(x)$, mentre:

$$\left| \int_{x_0}^x \mathbf{g}(t, \mathbf{u}_n) \, \mathrm{d}t - \int_{x_0}^x \mathbf{g}(t, \mathbf{u}) \, \mathrm{d}t \right|_{x} \le \left| \int_{x_0}^x |\mathbf{g}(t, \mathbf{u}_n) - \mathbf{g}(t, \mathbf{u})|_{x} \, \mathrm{d}t \right| . \tag{1.2.30}$$

Per l'ipotesi di locale Lipschitzianità si ha:

$$\left| \int_{x_0}^x \mathbf{g}(t, \mathbf{u}_n) \, \mathrm{d}t - \int_{x_0}^x \mathbf{g}(t, \mathbf{u}) \, \mathrm{d}t \right|_m \le H \left| \int_{x_0}^x |\mathbf{u}_n(t) - \mathbf{u}(t)|_m \, dt \right| \le H h \epsilon , \qquad (1.2.31)$$

per ogni $n > \nu_{\epsilon}$. Si conclude pertanto che:

$$\lim_{n \to +\infty} \int_{x_0}^x \mathbf{g}(t, \mathbf{u}_n) \, \mathrm{d}t = \int_{x_0}^x \mathbf{g}(t, \mathbf{u}) \, \mathrm{d}t \,, \tag{1.2.32}$$

che dimostra l'esistenza. \Box

Dimostrazione. (Unicità). Siano $\mathbf{u}, \mathbf{v} \in C^0(J, \mathbb{R}^m)$ che risolvono il problema (1.2.18) con $\mathbf{u} \neq \mathbf{v}$ e che soddisfano:

$$|\mathbf{u}(t) - \mathbf{u}_0|_m \le b , \qquad |\mathbf{v}(t) - \mathbf{v}_0|_m \le b . \qquad (1.2.33)$$

Siano $h' < h, J' = [x_0 - h', x_0 + h']$ e $x \in J'$. Allora:

$$|\mathbf{u}(x) - \mathbf{v}(x)|_{m} = \left| \int_{x_{0}}^{x} (\mathbf{g}(t, \mathbf{u}) - \mathbf{g}(t, \mathbf{v})) \, \mathrm{d}t \right|_{m} \le H \left| \int_{x_{0}}^{x} |\mathbf{u}(t) - \mathbf{v}(t)|_{m} \, \mathrm{d}t \right|$$

$$\le H h' \sup_{x \in J'} |\mathbf{u}(x) - \mathbf{v}(x)|_{m}, \qquad (1.2.34)$$

da cui segue:

$$\sup_{x \in J'} |\mathbf{u}(x) - \mathbf{v}(x)|_m \le Hh' \sup_{x \in J'} |\mathbf{u}(x) - \mathbf{v}(x)|_m. \tag{1.2.35}$$

Ma Hh' < 1, e quindi la diseguaglianza è assurda. Allora $\mathbf{u} \equiv \mathbf{v}$ su tutto J' per ogni $J' \subset J$ e quindi su tutto J. Il che dimostra l'unicità.

Osservazione 1.2.1. La soluzione di un'equazione differenziale può essere prolungata fino alla frontiera di un qualunque rettangolo contenuto nell'aperto.

Proposizione 1.2.1 (Dipendenza continua dal dato iniziale). *Consideriamo i problemi di Cauchy:*

Sia $J \cap J' = J'' = [x_0 - h, x_0 + h]$. Allora $\exists c > 0$ tale che:

$$\sup_{x \in J''} |\mathbf{u}(x) - \mathbf{v}(x)|_m \le c|\mathbf{u_0} - \mathbf{v_0}|_m.$$
(1.2.37)

Dimostrazione. Siano:

$$\mathbf{u}(x) = \mathbf{u}_0 + \int_{x_0}^x \mathbf{g}(t, \mathbf{u}) \, \mathrm{d}t \,, \qquad x \in J'' \,,$$

$$\mathbf{v}(x) = \mathbf{v}_0 + \int_{x_0}^x \mathbf{g}(t, \mathbf{v}) \, \mathrm{d}t \,, \qquad x \in J'' \,. \tag{1.2.38}$$

Allora:

$$|\mathbf{u}(x) - \mathbf{v}(x)|_{m} \leq |\mathbf{u}_{0} - \mathbf{v}_{0}|_{m} + \left| \int_{x_{0}}^{x} [\mathbf{g}(t, \mathbf{u}) - \mathbf{g}(t, \mathbf{v})] \, dt \right|_{m}$$

$$\leq |\mathbf{u}_{0} - \mathbf{v}_{0}|_{m} + \left| \int_{x_{0}}^{x} |\mathbf{g}(t, \mathbf{u}) - \mathbf{g}(t, \mathbf{v})|_{m} dt \right|. \tag{1.2.39}$$

Per l'ipotesi di Lipschitzianità, segue:

$$|\mathbf{u}(x) - \mathbf{v}(x)|_m \le |\mathbf{u}_0 - \mathbf{v}_0|_m + H \left| \int_{x_0}^x |\mathbf{u}(t) - \mathbf{v}(t)|_m \, dt \right| .$$
 (1.2.40)

Maggiorando l'integrale con il sup, si ottiene:

$$|\mathbf{u}(x) - \mathbf{v}(x)|_m \le |\mathbf{u}_0 - \mathbf{v}_0|_m + hH \sup_{x \in J''} |\mathbf{u}(x) - \mathbf{v}(x)|_m,$$
 (1.2.41)

da cui si ha:

$$\sup_{x \in J''} |\mathbf{u}(x) - \mathbf{v}(x)|_m \le |\mathbf{u}_0 - \mathbf{v}_0|_m + hH \sup_{x \in J''} |\mathbf{u}(x) - \mathbf{v}(x)|_m, \qquad (1.2.42)$$

cioè:

$$\sup_{x \in J''} |\mathbf{u}(x) - \mathbf{v}(x)|_m \le \frac{1}{1 - hH} |\mathbf{u}_0 - \mathbf{v}_0|_m.$$
 (1.2.43)

Posto c = 1/(1 - hH), si ottiene la tesi per J'' sufficientemente piccolo.

Definizione 1.2.1. Sia $\mathfrak{I}(x_0, \mathbf{u_0})$ la famiglia di tutti gli intervalli J di centro x_0 tali che il problema di Cauchy abbia soluzione \mathbf{u}_J definita su J. L'intervallo:

$$J_0 = \bigcup_{J \in \mathfrak{I}(x_0, \mathbf{u_0})} J , \qquad (1.2.44)$$

si definisce intervallo massimale di esistenza della soluzione. La soluzione massimale sarà:

$$\begin{cases}
\mathbf{u}(x) = \mathbf{u}_J(x) & \forall x \in J, \\
\mathbf{u}_{J'}(x) = \mathbf{u}_J(x) & \forall x \in J \cap J'.
\end{cases}$$
(1.2.45)

Osservazione 1.2.2. Sia $A = [c, d] \times \mathbb{R}^m$. Supponiamo che **g** sia globalmente Lipschitziana in A, cioè che $\exists H > 0$ tale che per ogni $x \in [c, d]$ e per ogni $\mathbf{u}, \mathbf{v} \in \mathbb{R}^m$ si abbia:

$$|\mathbf{g}(x,\mathbf{u}) - \mathbf{g}(x,\mathbf{v})|_m \le H|\mathbf{u} - \mathbf{v}|_m. \tag{1.2.46}$$

Sia infine:

$$M_0 = \sup_{x \in [c,d]} |\mathbf{g}(x, \mathbf{u}_0)|_m$$
 (1.2.47)

Fissata una palla di centro \mathbf{u}_0 e raggio b, si ha che:

$$|\mathbf{g}(x,\mathbf{u})|_m \le Hb + M_0$$
, $\forall (x,\mathbf{u}) \in [c,d] \times B(\mathbf{u}_0,b)$. (1.2.48)

Sia $h = \min\{(d-c), 1/H, 1/(H+M_0)\}$. Allora è possibile, prendendo intervalli di ampiezza h, estendere la soluzione dell'equazione differenziale a tutta la striscia A.

1.3 Equazioni differenziali del primo ordine

1.3.1 Equazioni differenziali del primo ordine a variabili separabili

Definizione 1.3.1. Un'equazione differenziale del primo ordine a variabili separabili si presenta nella forma:

$$y' = f(x)g(y)$$
, (1.3.1)

con $f: I \to \mathbb{R}, g: J \to \mathbb{R}$ funzioni di classe C^1 e quindi $g: I \to J$.

Risoluzione

Passo I - Ricerca di soluzioni costanti

Ogni y_0 tale che $g(y_0) = 0$ è una soluzione costante. Se $y_0 \in J$ allora $J = J' \cup J'' \cup \{y_0\}$.

Passo II - Ricerca di soluzioni non costanti

Escludendo y_0 , si ha che $g(y) \neq 0 \quad \forall y \in J' \cup J''$, dunque posso dividere per g(y), ottenendo:

$$\frac{y'}{g(y)} = f(x)$$
 (1.3.2)

Siano F(x) una primitiva di f(x) e $\gamma(y)$ una primitiva di 1/g(y). Allora:

$$\gamma'(y)y'(x) = f(x) \iff D(\gamma(y(x))) = f(x)$$
. (1.3.3)

Integrando ambo i membri:

$$\gamma(y(x)) = F(x) + C. \tag{1.3.4}$$

Poiché g(y) è sempre positiva o negativa, allora γ ha derivata di segno costante, dunque è monotona e quindi invertibile. Allora si avrà:

$$y = \gamma^{-1}(F(x) + C) . (1.3.5)$$

1.3.2 Equazioni differenziali riconducibili a variabili separabili

Consideriamo l'equazione:

$$y' = f\left(\frac{y}{x}\right) . {(1.3.6)}$$

È un'equazione omogenea. Poniamo u(x) = y(x)/x, da cui segue che:

$$u'(x) = \frac{y'(x)x - y(x)}{x^2} = \frac{f\left(\frac{y}{x}\right)x - y(x)}{x^2} = \frac{x[f(u) - u]}{x^2},$$
 (1.3.7)

cioè:

$$u'(x) = \frac{f(u) - u}{x} , \qquad (1.3.8)$$

ossia un'equazione differenziale a variabili separabili nell'incognita u(x). Nota u, si ha che $y(x) = u(x) \cdot x$.

1.3.3 Equazioni del tipo y' = f(ax + by)

Consideriamo l'equazione:

$$y' = f(ax + by). (1.3.9)$$

Poniamo u(x) = ax + by, da cui u'(x) = a + by' = a + bf(u). Quindi l'equazione diventa:

$$u'(x) = a + bf(u), (1.3.10)$$

ossia un'equazione differenziale a variabili separabili nell'incognita u(x). Nota u, si ha che:

$$y(x) = \frac{u(x) - ax}{b} \,. \tag{1.3.11}$$

1.3.4 Equazioni lineari del primo ordine

Definizione 1.3.2. Un'equazione differenziale lineare del primo ordine si presenta nella forma:

$$y' = \alpha(x)y + \beta(x) , \qquad (1.3.12)$$

con α, β continue su un intervallo $J \in \beta(x) \neq 0 \quad \forall x \in J$.

Risoluzione

Sia A(x) una qualunque primitiva di $\alpha(x)$. Moltiplichiamo l'equazione per $e^{-A(x)}$, ottenendo:

$$e^{-A(x)}y' = e^{-A(x)}\alpha(x)y + e^{-A(x)}\beta(x) ,$$

$$e^{-A(x)}y' - e^{-A(x)}\alpha(x)y = e^{-A(x)}\beta(x) .$$
(1.3.13)

Ma $e^{-A(x)}y' - e^{-A(x)}\alpha(x)y = D[e^{-A(x)}y]$. Allora, integrando membro a membro la (1.3.13):

$$e^{-A(x)}y = \int_{a}^{x} e^{-A(t)}\beta(t) dt + C, \qquad a \in J \setminus \{0\},$$
 (1.3.14)

da cui:

$$y(x) = c \cdot e^{A(x)} + \int_{a}^{x} e^{A(x) - A(t)} \beta(t) dt.$$
 (1.3.15)

Posto:

$$A(x) = \int_{a}^{x} \alpha(s) \, \mathrm{d}s \,, \tag{1.3.16}$$

si ha:

$$y(x) = c \cdot \exp\left(\int_{a}^{x} \alpha(s) \, ds\right) + \int_{a}^{x} \exp\left(\int_{t}^{x} \alpha(s) \, ds\right) \beta(t) \, dt . \tag{1.3.17}$$

Osservazione 1.3.1. Lo spazio vettoriale delle soluzioni di un'equazione differenziale non omogenea è affine allo spazio delle soluzioni dell'equazione omogenea.

1.3.5 Equazione di Bernoulli

L'equazione di Bernoulli è:

$$y' = \alpha(x)y + \beta(x)y^{\gamma}, \qquad (1.3.18)$$

con $\alpha(x), \beta(x)$ continue e $\gamma \in \mathbb{R}$. Cerchiamo per semplicità soluzioni y(x) > 0. Notiamo che se $\gamma = \{0,1\}$, l'equazione è lineare non omogenea. Per $\gamma \neq \{0,1\}$, poniamo $u(x) = y^{1-\gamma}(x)$. Dunque:

$$u'(x) = (1 - \gamma)y^{-\gamma}(x)y'(x) = (1 - \gamma)y^{-\gamma}(\alpha(x)y + \beta(x)y^{\gamma})$$

= $(1 - \gamma)\alpha(x)y^{1-\gamma} + (1 - \gamma)\beta(x) = (1 - \gamma)u(x) + (1 - \gamma)\beta(x)$, (1.3.19)

che è un'equazione differenziale lineare del primo ordine nella variabile u. Trovata u, si ha che $y=u^{1/(1-\gamma)}$.

Capitolo 2

Sistemi lineari del primo ordine

2.1 Introduzione

Un sistema lineare differenziale del primo ordine si presenta nella forma:

$$\mathbf{u}'(t) = A(t)\mathbf{u}(t) + \mathbf{f}(t) , \qquad (2.1.1)$$

con $t \in I$ intervallo, $\mathbf{u} \in C^1(I, \mathbb{C}^n)$, $A(t) \in M(n)$ e $\mathbf{f} : I \to \mathbb{C}^n$ continua.

Osservazione 2.1.1 (Principio di sovrapposizione). Se u, v risolvono i sistemi lineari:

$$\begin{cases}
\mathbf{u}' = A\mathbf{u} + \mathbf{f}(t), \\
\mathbf{u}(t_0) = \mathbf{u}_0,
\end{cases} \qquad \qquad \begin{cases}
\mathbf{v}' = A\mathbf{v} + \mathbf{g}, \\
\mathbf{v}(t_0) = \mathbf{v}_0.
\end{cases}$$
(2.1.2)

Allora $\forall \lambda, \mu \in \mathbb{C}$, la funzione $\lambda \mathbf{u} + \mu \mathbf{v}$ risolve il sistema lineare:

$$\begin{cases} \lambda \mathbf{u}' + \mu \mathbf{v}' = A(\lambda \mathbf{u} + \mu \mathbf{v}) + \lambda \mathbf{f} + \mu \mathbf{g} ,\\ (\lambda \mathbf{u} + \mu \mathbf{v})(t_0) = \lambda \mathbf{u}_0 + \mu \mathbf{v}_0 . \end{cases}$$
(2.1.3)

Proposizione 2.1.1. Sia:

$$V_0 = \{ \mathbf{u} \in C^1(I, \mathbb{C}^n) \mid \mathbf{u}' = A\mathbf{u} \},$$
 (2.1.4)

lo spazio vettoriale delle soluzioni del sistema lineare omogeneo. Allora:

$$V_f = \{ \mathbf{u} \in C^1(I, \mathbb{C}^n) \mid \mathbf{u}' = A\mathbf{u} + \mathbf{f} \}, \qquad (2.1.5)$$

è uno spazio affine, cioè se $\mathbf{z} \in V_f$ allora $V_0 + \mathbf{z} = V_f$.

Dimostrazione. (\subseteq) Sia $\mathbf{u} \in V_0$. Allora, per il principio di sovrapposizione, segue immediatamente che $\mathbf{u} + \mathbf{z} \in V_f$, e quindi $V_0 + \mathbf{z} \subseteq V_f$.

Dimostrazione. (\supseteq) Sia $\mathbf{w} \in V_f$. Cerchiamo $\mathbf{u} \in V_0$ tale che $\mathbf{u} + \mathbf{z} = \mathbf{w}$. Consideriamo $\mathbf{w} - \mathbf{z}$. Per il principio di sovrapposizione, $\mathbf{w} - \mathbf{z} \in V_0$. Posto $\mathbf{u} = \mathbf{w} - \mathbf{z}$, segue che ogni $\mathbf{w} \in V_f$ è scrivibile come somma di una certa $\mathbf{u} \in V_0$ e \mathbf{z} e dunque $V_f \subseteq V_0 + \mathbf{z}$.

Proposizione 2.1.2. dim $V_0 = n$.

Dimostrazione. Sia $\mathbf{S}: \mathbb{C}^n \to V_0$ un'applicazione lineare definita da $\mathbf{S}(\mathbf{x}) = \mathbf{u}_x$ tale che:

$$\begin{cases}
\mathbf{u}_x'(t) = A\mathbf{u}_x(t) , \\
\mathbf{u}(t_0) = \mathbf{x} .
\end{cases}$$
(2.1.6)

Per il teorema di esistenza ed unicità, \mathbf{u}_x è unica. Notiamo che:

- se $\mathbf{x} \equiv \mathbf{0}$ allora $\mathbf{S}(\mathbf{x}) = \mathbf{0}$. Quindi, per l'unicità, ogni $\mathbf{x} \in \mathbb{C}^n$ che risolve $\mathbf{S}(\mathbf{x}) = \mathbf{0}$ è identicamente nullo, dunque S è iniettiva;
- sia $\mathbf{x} = \mathbf{v}(t_0)$. Allora \mathbf{u}_x e \mathbf{v} risolvono lo stesso sistema lineare. Dunque, nuovamente per l'unicità, $\mathbf{u}_x \equiv \mathbf{v}$, da cui segue che **S** è surgettiva.

Poiché S è contemporaneamente iniettiva e surgettiva, S è un isomorfismo, pertanto:

$$\dim \mathbb{C}^n = n = \dim V_0 \ . \tag{2.1.7}$$

2.2Matrice Wronskiana

Definizione 2.2.1. Siano $\mathbf{u}_1, \dots, \mathbf{u}_n \in V_0$. Si definisce matrice Wronskiana la matrice W(t)data da

$$W(t) = \begin{pmatrix} u_1^1(t) & \cdots & u_n^1(t) \\ \vdots & \ddots & \vdots \\ u_1^n(t) & \cdots & u_n^n(t) \end{pmatrix} . \tag{2.2.1}$$

Proposizione 2.2.1. Siano $\mathbf{u}_1, \dots, \mathbf{u}_n \in V_0$. Allora la loro matrice Wronskiana verifica:

$$W'(t) = A(t)W(t), t \in I.$$
 (2.2.2)

Inoltre, sono fatti equivalenti:

- 1. $\mathbf{u}_1, \ldots, \mathbf{u}_n$ sono linearmente indipendenti in V_0 ;
- 2. $\exists t_0 \in I \text{ tale che } \det W(t_0) \neq 0$;
- 3. $\forall t \in I \text{ si } ha \det W(t) \neq 0.$

Dimostrazione. Indicando con $w_{ij}(t)$ e $a_{ij}(t)$ i coefficienti rispettivamente di W(t) e A(t) si ha:

$$\frac{\mathrm{d}w_{ij}}{\mathrm{d}t}(t) = \frac{d}{dt}u_j^i(t) = \sum_{k=1}^n a_{ik}(t)u_j^k(t) = \sum_{k=1}^n a_{ik}(t)w_{kj}(t). \tag{2.2.3}$$

 $Dimostrazione. (1) \Longrightarrow (3)$

Siano $\mathbf{u}_1, \dots, \mathbf{u}_n \in V_0$ linearmente indipendenti. Supponiamo per assurdo che $\exists t_0 \in I$ tale che $\det W(t_0)=0$, allora le colonne di $W(t_0)$ sarebbero linearmente dipendenti, quindi $\exists c_1, \ldots, c_n \in \mathbb{C}^n$ non tutti nulli tali che:

$$\sum_{k=1}^{n} c_k \mathbf{u}_k(t_0) = 0. (2.2.4)$$

Sia:

$$\mathbf{v}(t) = \sum_{k=1}^{n} c_k \mathbf{u}_k(t) , \qquad (2.2.5)$$

si ha che $\mathbf{v} \in V_0$ e quindi risolve il sistema lineare:

$$\begin{cases} \mathbf{v}'(t) = A(t)\mathbf{v}(t) \\ \mathbf{v}(t_0) = \mathbf{0} \end{cases}$$
 (2.2.6)

Ma $\mathbf{v} \equiv \mathbf{0}$ è anch'essa soluzione del sistema. Allora, per l'unicità segue che:

$$\mathbf{v}(t) = \sum_{k=1}^{n} c_k \mathbf{u}_k(t) \equiv \mathbf{0} . \tag{2.2.7}$$

Poiché le \mathbf{u}_k sono linearmente indipendenti, si avrà $c_k = 0$ per ogni k, il che contraddice l'ipotesi che le colonne di $W(t_0)$ siano linearmente dipendenti per un certo t_0 , e dunque è un assurdo. \square

 $Dimostrazione. (2) \Longrightarrow (1)$

Sia det $W(t_0) \neq 0$ per certe $\mathbf{u}_1, \dots, \mathbf{u}_n \in V_0$. Se per assurdo, $\mathbf{u}_1, \dots, \mathbf{u}_n$ fossero linearmente dipendenti in V_0 , allora $\exists c_1, \dots, c_n \in \mathbb{C}$ non tutti nulli tali che:

$$\sum_{k=1}^{n} c_k \mathbf{u}_k = 0. (2.2.8)$$

Allora $\forall t \in I$ i vettori $\mathbf{u}_1(t), \dots, \mathbf{u}_n(t)$ sarebbero linearmente dipendenti anche in \mathbb{C}^n . In particolare, det $W(t) = 0 \quad \forall t \in I$, il che contraddice l'ipotesi e dunque costituisce un assurdo.

Definizione 2.2.2. Una base $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ di V_0 si dice *sistema fondamentale* di soluzioni. Si ha inoltre:

$$V_0 = \{c_1 \mathbf{u}_1 + \ldots + c_n \mathbf{u}_n, c_1, \ldots, c_n \in \mathbb{C}\} = \{W(\cdots)\mathbf{z}, \mathbf{z} \in \mathbb{C}^n\} .$$
 (2.2.9)

Osservazione 2.2.1. È un sistema fondamentale di soluzioni la famiglia $\mathbf{u}_1, \dots, \mathbf{u}_n$ tali che:

$$\mathbf{u}_{j}$$
 è soluzione di
$$\begin{cases} \mathbf{u}'_{j}(t) = A(t)\mathbf{u}_{j}(t) \\ \\ \mathbf{u}_{j}(t_{0}) = e_{j} \end{cases}$$
 (2.2.10)

2.3 Metodo di variazione delle costanti

Sia $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ un sistema fondamentale di soluzioni e $W(t)\mathbf{z} \in V_0$. Facciamo variare $\mathbf{z} \equiv \mathbf{z}(t)$. Sia $\mathbf{v}(t) = W(t)\mathbf{z}(t)$. Impongo che $\mathbf{v} \in V_f$, cioè:

$$\mathbf{v}'(t) = A(t)\mathbf{v}(t) + \mathbf{f}(t)$$

Si ha, per costruzione,

$$\mathbf{v}'(t) = (W(t)\mathbf{z}(t))' = W'(t)\mathbf{z}(t) + W(t)\mathbf{z}'(t) = A(t)W(t)\mathbf{z}(t) + W(t)\mathbf{z}'(t)$$
$$= A(t)\mathbf{v}(t) + W(t)\mathbf{z}'(t) . \tag{2.3.1}$$

Da cui quindi segue:

$$A(t)\mathbf{v}(t) + W(t)\mathbf{z}'(t) = A(t)\mathbf{v}(t) + \mathbf{f}(t). \tag{2.3.2}$$

Dall'uguaglianza, otteniamo:

$$\mathbf{f}(t) = W(t)\mathbf{z}'(t) . \tag{2.3.3}$$

Il Wronskiano è invertibile, quindi:

$$\mathbf{z}'(t) = W^{-1}(t)\mathbf{f}(t) , \qquad (2.3.4)$$

e di conseguenza:

$$\mathbf{z}(t) = \int_{t_0}^t W^{-1}(s)\mathbf{f}(s) \, ds \in V_f, \qquad W(t_0) = I.$$
 (2.3.5)

In definitiva, si ha:

$$\mathbf{v}(t) = W(t) \int_{t_0}^t W^{-1}(s) \mathbf{f}(s) \, \mathrm{d}s \in V_f , \qquad (2.3.6)$$

$$V_f = V_0 + \mathbf{v} = \left\{ \mathbf{c} \cdot W(t) + W(t) \int_{t_0}^t W^{-1}(s) \mathbf{f}(s) \, \mathrm{d}s, \, \mathbf{c} \in \mathbb{C}^n \right\} . \tag{2.3.7}$$

2.4 Sistemi lineari a coefficienti costanti

Un sistema lineare a coefficienti costanti è della forma:

$$\mathbf{u}'(t) = A\mathbf{u}(t), \qquad A \in M(n, \mathbb{C}).$$
 (2.4.1)

A ha autovalori $\lambda_1, \ldots, \lambda_r$ di molteplicità rispettivamente k_1, \ldots, k_r tali che:

$$\sum_{i=1}^{r} k_i = n \ . \tag{2.4.2}$$

2.4.1 Caso I

Siano $\lambda_1, \ldots, \lambda_n \in C$ gli autovalori di A. Cerchiamo una soluzione del tipo $\mathbf{u} = \mathbf{v}e^{\lambda t}$. Si ha quindi:

$$\mathbf{u}' = \lambda \mathbf{v} e^{\lambda t} = A \mathbf{v} e^{\lambda t} \Longleftrightarrow A \mathbf{v} = \lambda \mathbf{v} ,$$
 (2.4.3)

quindi λ è autovalore relativo all'autovettore \mathbf{v} . Quindi le soluzioni saranno del tipo $\{\mathbf{v}_1e^{\lambda t}, \dots, \mathbf{v}_ne^{\lambda t}\}$. Verifichiamo la lineare indipendenza costruendo il Wronskiano:

$$Y(t) = (e^{\lambda_1 t} \mathbf{v}_1 | \dots | e^{\lambda_n t} \mathbf{v}_n).$$
(2.4.4)

Si ha dunque:

$$\det Y(t) = e^{\lambda_1 + \dots + \lambda_n} \cdot \det(\mathbf{v}_1 | \dots | \mathbf{v}_n) \neq 0, \qquad (2.4.5)$$

in quanto $\mathbf{v}_1, \dots, \mathbf{v}_n$ sono autovettori appartenenti ad autospazi distinti. Allora possiamo caratterizzare V_0 :

$$V_0 = \left\{ \mathbf{z}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \dots + c_n \mathbf{v}_n e^{\lambda_n t}, \ c_1, \dots, c_n \in \mathbb{C} \right\} . \tag{2.4.6}$$

2.4.2 Caso II

Sia λ_0 un autovalore di molteplicità algebrica $\mu_a(\lambda_0) = r > 1$ e molteplicità geometrica $\mu_g(\lambda_0) = r$. In corrispondenza di λ_0 trovo r soluzioni $\{e^{\lambda_0 t}\mathbf{v}_1, \dots, e^{\lambda_0 t}\mathbf{v}_r\}$ con $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ base di $\ker(A - \lambda_0 I)$. Aggiungendo le soluzioni proveniente dagli altri autospazi, trovo una base di V_0 .

2.4.3 Caso III

Sia λ_0 un autovalore di molteplicità algebrica $\mu_a(\lambda_0) = r > 1$ e molteplicità geometrica $\mu_g(\lambda_0) = s < r$. In corrispondenza di λ_0 troviamo solamente s soluzioni del tipo $\{e^{\lambda_0 t} \mathbf{v}_1, \dots, e^{\lambda_0 t} \mathbf{v}_s\}$, con $\{\mathbf{v}_1, \dots, \mathbf{v}_s\}$ base di $\ker(A - \lambda_0 I)$. Le restanti r - s soluzioni le scegliamo nella forma:

$$\mathbf{p}_1(t)e^{\lambda_0 t}, \dots, \mathbf{p}_{r-s}(t)e^{\lambda_0 t}, \qquad (2.4.7)$$

con deg $\mathbf{p}_j \leq j$. In questo modo, riusciamo nuovamente a trovare un sistema fondamentale di soluzioni.

2.4.4 Sistemi di Eulero

Un sistema di Eulero è della forma:

$$\mathbf{u}'(t) = \frac{A\mathbf{u}(t)}{t}, \qquad t > 0.$$
 (2.4.8)

Posto $\mathbf{v}(s) = \mathbf{u}(e^s)$ si ha:

$$\mathbf{v}'(s) = \mathbf{u}'(e^s) \cdot e^s = \frac{A\mathbf{u}(e^s) \cdot e^s}{e^s} = A\mathbf{u}(e^s) = A\mathbf{v}(s) , \qquad (2.4.9)$$

 $\operatorname{con} \mathbf{u}(t) = \mathbf{v}(\log t).$

Capitolo 3

Equazioni differenziali di ordine n

Un'equazione differenziale di ordine n si presenta nella forma:

$$u^{(n)}(t) = \sum_{k=0}^{n-1} a_k(t)u^{(k)}(t) + f(t) , \qquad (3.0.1)$$

con $t \in J$, $a_k, f \in C^1(J, \mathbb{C})$ e $u \in C^n(J, \mathbb{C}^n)$.

3.1 Problema di Cauchy

Consideriamo il problema di Cauchy:

$$\begin{cases}
 u^{(n)} = \sum_{k=0}^{n-1} a_k(t) u^{(k)} + f(t) \\
 u(t_0) = u_1 \\
 u'(t_0) = u_2 \\
 \dots \\
 u^{(n-1)}(t_0) = u_n
\end{cases} ,$$
(3.1.1)

con $u_1, \ldots, u_n \in V_0$. Costruiamo il Wronskiano di $\{u_1, \ldots, u_n\}$:

$$W(t) = \begin{pmatrix} u_1(t) & \cdots & u_n(t) \\ u'_1(t) & \cdots & u'_n(t) \\ \vdots & \vdots & \vdots \\ u_n^{(n-1)}(t) & \cdots & u_n^{(n-1)}(t) \end{pmatrix}$$
(3.1.2)

Si ha ovviamente che det $W(t) \equiv 0 \vee \det W(t) \neq 0 \ \forall t \in J$. Cerchiamo una $u_f \in V_f$. Sia:

$$\mathbf{v}_f = (u_f, u'_f, \dots, u_f^{(n-1)}). \tag{3.1.3}$$

Allora si ha:

$$u_f \in V_f \qquad \Longleftrightarrow \qquad \mathbf{v}_f' = A\mathbf{v}_f + \mathbf{F} , \qquad (3.1.4)$$

dove $\mathbf{F} = (0, \dots, 0, f(t))$. Da ciò segue che:

$$\mathbf{v}_f = W(t)\mathbf{z}(t) , \qquad (3.1.5)$$

$$\mathbf{z}'(t) = W^{-1}(t) \begin{pmatrix} 0 \\ \vdots \\ f(t) \end{pmatrix}$$
 (3.1.6)

$$W^{-1}(t) = \frac{1}{\det W(t)} \left(\left\{ (-1)^{i+j} \det W_{ij} \right\} , \qquad (3.1.7)$$

da cui si ottiene:

$$\mathbf{z}'(t) = \frac{f(t)}{\det W(t)} \cdot \begin{pmatrix} (-1)^{n+1} \det W_{n1}(t) \\ \vdots \\ (-1)^{n+n} \det W_{nn}(t) \end{pmatrix} , \qquad (3.1.8)$$

e quindi:

$$\mathbf{z}(t) = \int_{a}^{t} \frac{f(s)}{\det W(s)} \cdot \begin{pmatrix} (-1)^{n+1} \det W_{n1}(s) \\ \vdots \\ (-1)^{n+n} \det W_{nn}(s) \end{pmatrix} ds .$$
 (3.1.9)

Si conclude pertanto che:

$$u_f(t) = \langle \mathbf{v}_f(t), e_1 \rangle_{\mathbb{C}^n} = (W(t)\mathbf{z}(t))_1 . \tag{3.1.10}$$

3.2 Equazioni differenziali di ordine n a coefficienti costanti

Nel caso di un'equazione differenziale di ordine n a coefficienti costanti:

$$u^{(n)} = \sum_{k=0}^{n-1} a_k u^{(k)} \qquad (+f(t)) , \qquad (3.2.1)$$

cerchiamo soluzioni del tipo $u_{\lambda}(t) = t^h e^{\lambda t}$. Definiamo il polinomio caratteristico associato $p(\lambda)$ come:

$$p(\lambda) = \lambda^n - \sum_{k=0}^{n-1} a_k \lambda^k . \tag{3.2.2}$$

Osserviamo che:

$$p\left(\frac{d}{dt}\right)(t^h e^{\lambda t}) = p\left(\frac{d}{dt}\right)\left(\frac{d^h}{d\lambda^h}\right)e^{\lambda t} = \frac{d^h}{d\lambda^h}p\left(\frac{d}{dt}\right)e^{\lambda t} = \frac{d^h}{d\lambda^h}p(\lambda)e^{\lambda t} = 0.$$
 (3.2.3)

Allora $u_{\lambda}(t)$ è soluzione se e solo se $\frac{d^h}{d\lambda^h}p(\lambda)e^{\lambda t}=0$ cioè $p^{(h)}(\lambda)=0$. p è un polinomio con r radici $\lambda_1,\ldots,\lambda_r$ di molteplicità k_1,\ldots,k_r tali che $k_1+\cdots+k_r=n$. Si osserva che:

$$u = e^{\lambda t}$$
 è soluzione $\implies p(\lambda) = 0$,
 $u = te^{\lambda t}$ è soluzione $\implies p(\lambda), p'(\lambda) = 0$. (3.2.4)

In generale, dunque, le soluzioni saranno:

$$\begin{cases}
e^{\lambda_1 t}, t e^{\lambda_1 t}, \dots, t^{k_1 - 1} e^{\lambda_1 t} \\
\vdots \\
e^{\lambda_r t}, t e^{\lambda_r t}, \dots, t^{k_f - 1} e^{\lambda_r t}
\end{cases}$$
(3.2.5)

Se $f(t)=P(t)e^{\beta t}$ con P(t) polinomio e $\beta\in\mathbb{C}$, allora la soluzione particolare è del tipo:

$$u_f(t) = t^m Q(t)e^{\beta t} , \qquad (3.2.6)$$

dove $m = \mu_a(\beta)$ come radice di P(t) e deg $Q(t) \leq \deg P(t)$.

Capitolo 4

Derivate parziali e differenziabilità

4.1 Derivate parziali

Siano $A \subseteq \mathbb{R}^N$ un aperto, $f: A \to \mathbb{R}$ e $\mathbf{x}_0 \in A$. Sia inoltre $\{e_1, \dots, e_N\}$ la base canonica di \mathbb{R}^N .

Definizione 4.1.1. Si dice che f ha in \mathbf{x}_0 la derivata parziale i-esima se:

$$\exists \lim_{t \to 0} \frac{f(\mathbf{x}_0 + t\mathbf{e}_i) - f(\mathbf{x}_0)}{t} \in \mathbb{R} , \qquad (4.1.1)$$

e si denota con:

$$\frac{\partial f}{\partial x^i}(\mathbf{x}_0), \quad f_{x^i}(\mathbf{x}_0), \quad D_i f(\mathbf{x}_0)$$
 (4.1.2)

Osservazione 4.1.1. Se una funzione f ha tutte le derivate parziali in un punto \mathbf{x}_0 , non è detto che sia continua in \mathbf{x}_0 .

4.2 Differenziabilità

Siano $A \subseteq \mathbb{R}^N$ un aperto, $f: A \to \mathbb{R}$ e $\mathbf{x}_0 \in A$.

Definizione 4.2.1. Si dice che f è differenziabile in \mathbf{x}_0 se $\exists \mathbf{a} \in \mathbb{R}^N$ tale che:

$$\lim_{|\mathbf{h}|_N \to 0} \frac{f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - \langle \mathbf{a}, \mathbf{h} \rangle_N}{|\mathbf{h}|_N} = 0.$$
 (4.2.1)

Proposizione 4.2.1. Se f è differenziabile in un punto \mathbf{x}_0 , allora:

1. $f \ \dot{e} \ continua \ in \ \mathbf{x}_0;$

2.
$$\exists D_i f(\mathbf{x}_0) \ \forall i \ e \ D_i f(\mathbf{x}_0) = a^i, \ cio \grave{e} \ \mathbf{a} = \nabla f(\mathbf{x}_0).$$

Dimostrazione. 1

Bisogna dimostrare che:

$$\lim_{\mathbf{h} \to \mathbf{0}} [f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0)] = 0.$$
 (4.2.2)

Si ha:

$$f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) = [f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - \langle \mathbf{a}, \mathbf{h} \rangle_N] + \langle \mathbf{a}, \mathbf{h} \rangle_N.$$
 (4.2.3)

Ma:

$$f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - \langle \mathbf{a}, \mathbf{h} \rangle_N \to 0 \quad \text{per} \quad |\mathbf{h}|_N \to 0 ,$$
 (4.2.4)

poiché f è per ipotesi differenziabile in \mathbf{x}_0 . Inoltre:

$$\langle \mathbf{a}, \mathbf{h} \rangle_N \le |\mathbf{a}|_N \cdot |\mathbf{h}|_N \to 0 \quad \text{per} \quad |\mathbf{h}|_N \to 0 .$$
 (4.2.5)

Da queste due relazioni, si ottiene la tesi.

Dimostrazione. 2

Fissato $\mathbf{h} = t\mathbf{e}_i$, per ipotesi di differenziabilità si ha:

$$\lim_{t \to 0} \frac{f(\mathbf{x}_0 + t\mathbf{e}_i - f(\mathbf{x}_0) - \langle \mathbf{a}, t\mathbf{e}_i \rangle_N}{|t|} = 0.$$
 (4.2.6)

Moltiplicando per $|t|/t = \pm 1$, il limite rimane inalterato, dunque si ottiene:

$$\lim_{t \to 0} \frac{f(\mathbf{x}_0 + t\mathbf{e}_i - f(\mathbf{x}_0) - \langle \mathbf{a}, t\mathbf{e}_i \rangle_N}{t} = 0 , \qquad (4.2.7)$$

da cui, spezzando la frazione, si ha:

$$\lim_{t \to 0} \frac{f(\mathbf{x}_0 + t\mathbf{e}_i) - f(\mathbf{x}_0)}{t} = \langle \mathbf{a}, \mathbf{e}_i \rangle_N.$$
 (4.2.8)

Dunque si conclude, per la definizione di derivata parziale, che:

$$\exists D_i f(\mathbf{x}_0) = \langle \mathbf{a}, \mathbf{e}_i \rangle_N = a^i , \qquad (4.2.9)$$

e di conseguenza:

$$\mathbf{a} = \nabla f(\mathbf{x}_0) \ . \tag{4.2.10}$$

Definizione 4.2.2. Si chiama piano N-dimensionale tangente al grafico di f in $(\mathbf{x}_0, f(\mathbf{x}_0))$ il piano di equazione:

$$X^{N+1} = f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle_N.$$
 (4.2.11)

Definizione 4.2.3 (Derivata direzionale). Sia $\mathbf{v} \in \mathbb{R}^N$ tale che $|\mathbf{v}|_N = 1$. Si definisce derivata direzionale di f in \mathbf{x}_0 nella direzione \mathbf{v} il limite (qualora esista finito):

$$\lim_{t \to 0} \frac{f(\mathbf{x}_0 + t\mathbf{v}) - f(\mathbf{x}_0)}{t} , \qquad (4.2.12)$$

e si denota:

$$\frac{\partial f}{\partial \mathbf{v}}(\mathbf{x}_0), \quad f_{\mathbf{v}}(\mathbf{x}_0), \quad D_{\mathbf{v}}f(\mathbf{x}_0) .$$
 (4.2.13)

Proposizione 4.2.2. Se f è una funzione differenziabile in un punto \mathbf{x}_0 , allora $\exists D_{\mathbf{v}} f(\mathbf{x}_0)$ per ogni direzione \mathbf{v} e inoltre si ha:

$$D_{\mathbf{v}}f(\mathbf{x}_0) = \langle \nabla f(\mathbf{x}_0), \mathbf{v} \rangle_N . \tag{4.2.14}$$

Dimostrazione. Fissato $\mathbf{h} = t\mathbf{v}$, si ha, per l'ipotesi di differenziabilità:

$$\lim_{t \to 0} \frac{f(\mathbf{x}_0 + t\mathbf{v}) - f(\mathbf{x}_0) - \langle \nabla f(\mathbf{x}_0), t\mathbf{v} \rangle_N}{t} = 0, \qquad (4.2.15)$$

da cui, spezzando la frazione, si ottiene:

$$\lim_{t \to 0} \frac{f(\mathbf{x}_0 + t\mathbf{v}) - f(\mathbf{x}_0)}{t} = \frac{t\langle \nabla f(\mathbf{x}_0), \mathbf{v} \rangle_N}{t} = \langle \nabla f(\mathbf{x}_0), \mathbf{v} \rangle_N , \qquad (4.2.16)$$

da cui si conclude che $\exists D_{\mathbf{v}} f(\mathbf{x}_0) = \langle \nabla f(\mathbf{x}_0), \mathbf{v} \rangle_N$.

Definizione 4.2.4. Si definisce differenziale della funzione f nel punto \mathbf{x}_0 l'applicazione φ : $\mathbb{R}^N \to \mathbb{R}$ data da:

$$\varphi(\mathbf{v}) = \langle \nabla f(\mathbf{x}_0), \mathbf{v} \rangle_N \qquad \forall \mathbf{v} \in \mathbb{R}^N ,$$
 (4.2.17)

e si denota con $\varphi \equiv df(\mathbf{x}_0)$.

Teorema 4.2.1 (del differenziale totale). Siano $A \subseteq \mathbb{R}^N$ un aperto, $f: A \to \mathbb{R}$ $e \mathbf{x}_0 \in A$. Supponiamo che:

- 1. $\exists D_i f(\mathbf{x}) \quad \forall i \ e \ \forall \mathbf{x} \in B(\mathbf{x}_0, r) \subseteq A;$
- 2. le derivate parziali siano continue in \mathbf{x}_0 .

Allore f è differenziabile in \mathbf{x}_0 .

Dimostrazione. (N=2)

Siano $\mathbf{x}_0 = (x_0, y_0)$ e $\mathbf{h} = (h, k)$. Bisogna dimostrare che:

$$\lim_{\substack{(h,k)\to(0,0)}} \frac{f(x_0+h,y_0+k) - f(x_0,y_0) - f_x(x_0,y_0)h - f_y(x_0,y_0)k}{\sqrt{h^2+k^2}} = 0.$$
 (4.2.18)

Consideriamo:

$$f(x_0+h,y_0+k)-f(x_0,y_0) = [f(x_0+h,y_0+k)-f(x_0,y_0+k)]+[f(x_0,y_0+k)-f(x_0,y_0)].$$
(4.2.19)

L'applicazione:

$$\mathbf{x} \longmapsto f(x, y_0 + k) \,, \tag{4.2.20}$$

è continua e derivabile rispetto a x in $B(\mathbf{x}_0, r) \subset A$. Allora, per il teorema di Lagrange, $\exists \xi \in]x_0, x_0 + h[$ tale che:

$$f(x_0 + h, y_0 + k) - f(x_0, y_0 + k) = f_x(\xi, y_0 + k) \cdot h.$$
(4.2.21)

L'applicazione:

$$\mathbf{y} \longmapsto f(x_0, y) ,$$
 (4.2.22)

è continua e derivabile rispetto a y in $B(\mathbf{x}_0, r) \subset A$. Allora, per il teorema di Lagrange, $\exists \eta \in]y_0, y_0 + k[$ tale che:

$$f(x_0, y_0 + k) - f(x_0, y_0) = f_y(x_0, \eta) \cdot k . (4.2.23)$$

Dunque il numeratore della (4.2.18) diventa:

$$[f_x(\xi, y_0 + k) - f_x(x_0, y_0)]h - [f_y(x_0, \eta) - f_y(x_0, y_0)]k.$$
(4.2.24)

Se $\sqrt{h^2 + k^2}$ è sufficientemente piccolo, per la continuità di f_x e f_y in \mathbf{x}_0 si ha che $\forall \epsilon > 0 \ \exists B(\mathbf{x}_0, r)$ tale che $\forall \mathbf{x} \in B(\mathbf{x}_0, r)$ si abbia:

$$[f_x(\xi, y_0 + k) - f_x(x_0, y_0)]h < \epsilon |h| \qquad [f_y(x_0, \eta) - f_y(x_0, y_0)]k < \epsilon |k| , \qquad (4.2.25)$$

ed inoltre:

$$\epsilon(|h|+|k|) \le 2\epsilon\sqrt{h^2+k^2} \ . \tag{4.2.26}$$

Quindi:

$$\frac{f(x_0 + h, y_0 + k) - f(x_0, y_0) - f_x(x_0, y_0)h - f_y(x_0, y_0)k}{\sqrt{h^2 + k^2}} < \frac{\epsilon(|h| + |k|)}{\sqrt{h^2 + k^2}}
\leq \frac{2\epsilon\sqrt{h^2 + k^2}}{\sqrt{h^2 + k^2}}
= 2\epsilon,$$
(4.2.27)

che è esattamente la definizione di limite uguale a zero.

Teorema 4.2.2 (Differenziabilità di funzioni composte). Sia $A \subseteq \mathbb{R}^N$ un aperto, $\mathbf{u} : [a,b] \to A$, $f : A \to \mathbb{R}$. Se \mathbf{u} è derivabile in $t_0 \in [a,b]$ e f è differenziabile in $\mathbf{x}_0 = \mathbf{u}(t_0)$, allora $f \circ \mathbf{u} : [a,b] \to \mathbb{R}$ è derivabile in t_0 e si ha:

$$D(f \circ \mathbf{u})(t_0) = \langle \nabla f(\mathbf{u}(t_0)), \mathbf{u}'(t_0) \rangle_N. \tag{4.2.28}$$

Dimostrazione. Sia $k \in \mathbb{R}$ tale che $t_0 + k \in [a, b]$. Poiché **u** è derivabile in t_0 , si ha:

$$\mathbf{u}(t_0 + k) - \mathbf{u}(t_0) = \mathbf{u}'(t_0) \cdot k + \boldsymbol{\omega}(k) \cdot k, \qquad \lim_{k \to 0} \boldsymbol{\omega}(k) = 0.$$
 (4.2.29)

Se $|\mathbf{h}|_N$ è sufficientemente piccola, poiché f è differenziabile in \mathbf{x}_0 , si ha:

$$f(\mathbf{x}_0 + \mathbf{h}) = f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0), \mathbf{h} \rangle_N + \eta(\mathbf{h}) \cdot |\mathbf{h}|_N, \qquad \lim_{|\mathbf{h}|_N \to 0} \eta(\mathbf{h}) = 0.$$
 (4.2.30)

Scelto $\mathbf{h} = \mathbf{u}(t_0 + k) - \mathbf{u}(t_0)$ si ha $k \to 0 \Longrightarrow |\mathbf{h}|_N \to 0$ e dunque:

$$\mathbf{x}_0 + \mathbf{h} = \mathbf{u}(t_0 + k) , \qquad (4.2.31)$$

da cui segue:

$$f(\mathbf{u}(t_0+k)) - f(\mathbf{u}(t_0)) = \langle \nabla f(\mathbf{u}(t_0)), \mathbf{u}(t_0+k) - \mathbf{u}(t_0) \rangle_N$$

+ $|\mathbf{u}(t_0+k) - \mathbf{u}(t_0)|_N \cdot \eta((\mathbf{u}(t_0+k) - \mathbf{u}(t_0))$. (4.2.32)

Il secondo addendo è infinitesimo di ordine superiore a k, dunque può essere trascurato. Si ottiene quindi:

$$f(\mathbf{u}(t_0+k)) - f(\mathbf{u}(t_0)) = \langle \nabla f(\mathbf{u}(t_0)), \mathbf{u}'(t_0) \rangle_N \cdot k + \langle \nabla f(\mathbf{u}(t_0)), \boldsymbol{\omega}(k) \rangle_N \cdot k . \tag{4.2.33}$$

In definitiva, si ha:

$$\lim_{k \to 0} \frac{f(\mathbf{u}(t_0 + k)) - f(\mathbf{u}(t_0))}{k} = \lim_{k \to 0} \left[\langle \nabla f(\mathbf{u}(t_0)), \mathbf{u}'(t_0) \rangle_N + \langle \nabla f(\mathbf{u}(t_0)), \boldsymbol{\omega}(k) \rangle_N \right], \quad (4.2.34)$$

poiché $\omega(k)$ è un infinitesimo di ordine superiore a k, segue:

$$\lim_{k \to 0} \frac{f(\mathbf{u}(t_0 + k)) - f(\mathbf{u}(t_0))}{k} = \langle \nabla f(\mathbf{u}(t_0)), \mathbf{u}'(t_0) \rangle_N.$$

$$(4.2.35)$$

Teorema 4.2.3. Siano $A \subseteq \mathbb{R}^N$ e $B \subseteq \mathbb{R}^P$ aperti, $\mathbf{g} : B \to A$ e $f : A \to \mathbb{R}$ tali che $\mathbf{g}(x) = (g^1(x), \dots, g^N(x))$ sia differenziabile in un punto $\mathbf{x}_0 \in B$ e f sia differenziabile in $\mathbf{g}(\mathbf{x}_0) = \mathbf{y}_0 \in A$, allora $f \circ \mathbf{g} : B \to \mathbb{R}$ è differenziabile in \mathbf{x}_0 e si ha:

$$D_i(f \circ \mathbf{g})(\mathbf{x}_0) = \sum_{j=1}^N D_j f(\mathbf{y}_0) D_j \mathbf{g}(\mathbf{x}_0) = \langle \nabla f(\mathbf{y}_0), D_i \mathbf{g}(\mathbf{x}_0) \rangle_N.$$
 (4.2.36)

Teorema 4.2.4 (Lagrange N-dimensionale). Sia $A \subseteq \mathbb{R}^N$ aperto, $f: A \to \mathbb{R}$ differenziabile in A. Siano $\mathbf{x}, \mathbf{y} \in A$ e:

$$I = \{(1-t)\mathbf{x} + t\mathbf{y}, t \in [0,1]\} \subset A.$$
(4.2.37)

Allora $\exists \mathbf{v} \in I \text{ tale che:}$

$$f(\mathbf{y}) - f(\mathbf{x}) = \langle \nabla f(\mathbf{v}), \mathbf{y} - \mathbf{x} \rangle_N$$
 (4.2.38)

22

Dimostrazione. $\forall t \in [0,1]$ definisco $F(t) = f((1-t)\mathbf{x} + t\mathbf{y})$. Si ha dunque:

$$F'(t) = \langle \nabla f((1-t)\mathbf{x} + t\mathbf{y}), \mathbf{y} - \mathbf{x} \rangle_N.$$
 (4.2.39)

Per il teorema di Lagrange unidimensionale, $\exists \xi \in [0,1]$ tale che:

$$F'(\xi) = \frac{F(1) - F(0)}{1 - 0} , \qquad (4.2.40)$$

cioè:

$$f(\mathbf{y}) - f(\mathbf{y}) = \langle \nabla f((1 - \xi)\mathbf{x} - \xi\mathbf{y}), \mathbf{y} - \mathbf{x} \rangle_N.$$
 (4.2.41)

Posto $\mathbf{v} = (1 - \xi)\mathbf{x} + \xi\mathbf{y}$, otteniamo la tesi.

4.3 Derivate successive

Se una funzione $f: A \to \mathbb{R}$ è differenziabile nell'aperto A, allora $\exists D_i f: A \to \mathbb{R}, i = 1, ..., N$. Se le derivate parziali sono a loro volta differenziabili in A, allora $\exists D_i D_j f(\mathbf{x}), \forall i, j = 1, ..., N$.

Definizione 4.3.1. Una funzione f si dice di *classe* k in A e si denota $f \in C^k(A)$, se esistono continue tutte le derivate parziali di ordine k.

Osservazione 4.3.1. $C^0(A) = f$ continue su A.

Osservazione 4.3.2.

$$C^{\infty}(A) = \bigcap_{k \in \mathbb{N}} C^k(A) . \tag{4.3.1}$$

Teorema 4.3.1 (Schwartz bidimensionale). Sia $f \in C^2(A)$, allora $D_iD_jf = D_jD_if \quad \forall i, j = 1, 2$.

Dimostrazione. Sia $(x_0, y_0) \in A$ e (h, k) un incremento sufficientemente piccolo. Definiamo la quantità:

$$\Delta(h,k) = f(x_0 + h, y_0 + k) - f(x_0 + h, y_0) - f(x_0, y_0 + k) + f(x_0, y_0). \tag{4.3.2}$$

Possiamo considerare $\Delta(h, k)$ come l'incremento della funzione:

$$x \longmapsto f(x, y_0 + k) - f(x, y_0) . \tag{4.3.3}$$

Allora per il teorema di Lagrange unidimensionale, $\exists \xi \in]x_0, x_0 + h[$ tale che:

$$\Delta(h,k) = h(f_x(\xi, y_0 + k) - f_x(\xi, y_0)). \tag{4.3.4}$$

Possiamo inoltre considerare $\Delta(h, k)$ come l'incremento delle funzione:

$$y \longmapsto f(x_0 + h, y) - f(x_0, y)$$
 (4.3.5)

Allora, sempre per il teorema di Lagrange unidimensionale, $\exists \eta \in]y_0, y_0 + k[$ tale che:

$$\Delta(h,k) = k(f_y(x_0 + h, \eta) - f_y(x_0, \eta)). \tag{4.3.6}$$

La quantità espressa nella (4.3.4) è l'incremento della funzione f_x fra y_0 e y_0+k . Per ipotesi, f_x è continua e derivabile. Dunque, applicando nuovamente il teorema di Lagrange unidimensionale si ha che $\exists \omega \in]y_0, y_0 + k[$ tale che:

$$h(f_x(\xi, y_0 + k) - f_x(\xi, y_0)) = hk f_{xy}(\xi, \omega) . \tag{4.3.7}$$

La quantità espressa nella (4.3.6) è invece l'incremento della funzione f_y fra x_0 e $x_0 + h$. Per ipotesi, f_y è continua e derivabile. Dunque, applicando nuovamente il teorema di Lagrange unidimensionale, si ha che $\exists \tau \in]x_0, x_0 + h[$ tale che:

$$k(f_y(x_0 + h, \eta) - f_y(x_0, \eta)) = kh f_{yx}(\tau, \eta) .$$
(4.3.8)

Pertanto, per la continuità delle derivate parziali di ordine due si ha:

$$\lim_{(h,k)\to(0,0)} \frac{\Delta(h,k)}{hk} = \begin{cases} f_{xy}(x_0, y_0) \\ f_{yx}(x_0, y_0) \end{cases}$$
 (4.3.9)

Per l'unicità del limite, si conclude che:

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$$
 (4.3.10)

Definizione 4.3.2. Si definisce matrice Hessiana di una funzione f la matrice:

$$[H_f(\mathbf{x})]_{ij} = D_i D_j f(\mathbf{x}) . \tag{4.3.11}$$

Lemma 4.3.1. $\forall n, k \in \mathbb{N}$ tali che n > k si ha:

$$\sum_{i=k}^{n} \binom{i}{k} = \binom{n+1}{k+1}. \tag{4.3.12}$$

Dimostrazione. (per induzione su n)

Per n = k è banalmente vero. Dimostriamo che $n \Longrightarrow n + 1$:

$$\sum_{i=k}^{n+1} \binom{i}{k} = \binom{n+1}{k} + \sum_{i=k} n \binom{i}{k} . \tag{4.3.13}$$

Per l'ipotesi induttiva, si ottiene:

$$\sum_{i=k}^{n+1} {i \choose k} = {n+1 \choose k} + {n+1 \choose k+1} = {n+2 \choose k+1}, \qquad (4.3.14)$$

dove abbiamo usato la formula di Stiefel.

Proposizione 4.3.1. Il numero di elementi distinti della matrice Hessiana di ordine k è:

$$\binom{N+k-1}{k} \qquad \forall k \in \mathbb{N} . \tag{4.3.15}$$

Dimostrazione. $\forall k \geq 2$, il numero di derivate distinte di ordine k è dato da:

$$\sum_{i_{k}=1}^{N} \sum_{i_{k-1}=1}^{i_{k}} \dots \sum_{i_{2}=1}^{i_{3}} \sum_{i_{1}=1}^{i_{2}} 1 = \sum_{i_{k}=1}^{N} \sum_{i_{k-1}=1}^{i_{k}} \dots \sum_{i_{2}=1}^{i_{3}} \binom{i_{2}}{1}. \tag{4.3.16}$$

La sommatoria più interna, per il lemma, diventa:

$$\sum_{i_{k}=1}^{N} \sum_{i_{k-1}=1}^{i_{k}} \dots \sum_{i_{2}=1}^{i_{3}} {i_{2} \choose 1} = \sum_{i_{k}=1}^{N} \sum_{i_{k-1}=1}^{i_{k}} \dots \sum_{i_{3}=1}^{i_{4}} {i_{3}+1 \choose 2}.$$
 (4.3.17)

Iterando il procedimento, si ottiene:

$$\sum_{i_k=1}^{N} \sum_{i_{k-1}=1}^{i_k} \dots \sum_{i_2=1}^{i_3} \sum_{i_1=1}^{i_2} 1 = \binom{N-k+1}{k} . \tag{4.3.18}$$

Definizione 4.3.3. Si definisce multi-indice una n-upla $\mathbf{p} = (p_1, \dots, p_N) \in \mathbb{N}^N$ con le seguenti proprietà:

•
$$|\mathbf{p}| = \sum_{i=1}^{N} p_i;$$

$$\bullet \mathbf{p}! = \prod_{i=1}^{N} p_i!;$$

- $\mathbf{q} < \mathbf{p} \iff q_i < p_i \quad \forall i;$
- $D^{\mathbf{p}}f(\mathbf{x}) = D_1^{p_1} \cdots D_N^{p_N} f(\mathbf{x});$

$$\bullet \ \begin{pmatrix} \mathbf{p} \\ \mathbf{q} \end{pmatrix} = \prod_{i=1}^{N} \binom{p_i}{q_i};$$

$$\bullet \ \mathbf{x}^{\mathbf{p}} = x_1^{p_1} \cdots x_N^{p_N}.$$

Teorema 4.3.2 (Formula di Taylor N-dimensionale). Sia $A \subseteq \mathbb{R}^N$ aperto, $f : A \to \mathbb{R}$, $f \in C^k(A)$ e $\mathbf{x}_0 \in A$. Allora esiste uno e un solo polinomio $P_k(x)$ di grado minore o uguale a k tale che, per $\mathbf{x} \to \mathbf{x}_0$:

$$f(\mathbf{x}) - P_k(\mathbf{x}) = o\left(|\mathbf{x} - \mathbf{x}_0|_N^k\right) , \qquad (4.3.19)$$

con:

$$P_k(\mathbf{x}) = \sum_{|\mathbf{p}| < k} \frac{D^{\mathbf{p}} f(\mathbf{x}_0)}{\mathbf{p}!} (\mathbf{x} - \mathbf{x}_0)^{\mathbf{p}}.$$
 (4.3.20)

Dimostrazione. (esistenza) $k \ge 1$

Sia $\mathbf{v} \in \mathbb{R}^N$ di norma unitaria. Definiamo $F(t) = f(\mathbf{x}_0 + t\mathbf{v}), t \in [-\delta, \delta]$ con $B(\mathbf{x}_0, \delta) \subset A$. Allora:

$$F'(t) = \langle \nabla f(\mathbf{x}_0 + t\mathbf{v}), \mathbf{v} \rangle_N = \sum_{i=1}^N D_i f(\mathbf{x}_0 + t\mathbf{v}) v_i , \qquad (4.3.21)$$

$$F''(t) = \sum_{i,j=1}^{N} D_j D_i f(\mathbf{x}_0 + t\mathbf{v}) v_j v_i = \sum_{j=1}^{N} \left(\sum_{i=1}^{N} D_j D_i f(\mathbf{x}_0 + t\mathbf{v}) v_i \right) v_j$$
$$= \sum_{|\mathbf{p}|=2} \frac{2!}{\mathbf{p}!} D^{\mathbf{p}} f(\mathbf{x}_0 + t\mathbf{v}) \mathbf{v}^{\mathbf{p}} , \qquad (4.3.22)$$

$$F^{(k)}(t) = \sum_{|\mathbf{p}|=k} \frac{k!}{\mathbf{p}!} D^{\mathbf{p}} f(\mathbf{x}_0 + t\mathbf{v}) \mathbf{v}^{\mathbf{p}} . \tag{4.3.23}$$

Applicando la formula di Taylor unidimensionale a F(t) si ha, per $t \to 0$:

$$F(t) = \sum_{h=0}^{k} \frac{F^{(h)}(0)}{h!} t^h + o(|t|^k) , \qquad (4.3.24)$$

cioè, sostituendo:

$$f(\mathbf{x}_0 + t\mathbf{v}) = \sum_{h=0}^k \frac{1}{h!} \sum_{|\mathbf{p}|=h} \frac{h!}{\mathbf{p}!} D^{\mathbf{p}} f(\mathbf{x}_0) t^h \mathbf{v}^{\mathbf{p}} + o(|t|^k)$$
$$= \sum_{|\mathbf{p}| \le k} \frac{1}{\mathbf{p}!} D^{\mathbf{p}} f(\mathbf{x}_0) (t\mathbf{v})^{\mathbf{p}} + o(|t\mathbf{v}|_N^k) . \tag{4.3.25}$$

Fissato \mathbf{x} , prendiamo $\mathbf{v} = (\mathbf{x} - \mathbf{x}_0)/|\mathbf{x} - \mathbf{x}_0|_N$ con $|\mathbf{x} - \mathbf{x}_0|_N < \delta$, da cui segue $t = |\mathbf{x} - \mathbf{x}_0|_N$. Sostituendo nella (4.3.25) si ottiene:

$$f(\mathbf{x}) = \sum_{|\mathbf{p}| \le k} \frac{1}{\mathbf{p}!} D^{\mathbf{p}} f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0)^{\mathbf{p}} + o(|\mathbf{x} - \mathbf{x}_0|_N^k) . \tag{4.3.26}$$

Dimostrazione. (unicità)

Supponiamo per assurdo che $\exists Q(\mathbf{x})$ di grado al più k tale che per $\mathbf{x} \to \mathbf{x}_0$ si abbia:

$$f(\mathbf{x}) - Q(\mathbf{x}) = o(|\mathbf{x} - \mathbf{x}_0|_N^k). \tag{4.3.27}$$

Allora:

$$P_k(\mathbf{x}) - Q(\mathbf{x}) = \sum_{|\mathbf{p}| \le k} c_{\mathbf{p}}(\mathbf{x} - \mathbf{x}_0)^{\mathbf{p}} = o(|\mathbf{x} - \mathbf{x}_0|_N^k).$$
 (4.3.28)

Dunque si ha:

$$\frac{P_k(\mathbf{x}_0 + t\mathbf{v}) - Q(\mathbf{x}_0 + t\mathbf{v})}{t^k} = \sum_{|\mathbf{p}| \le k} c_{\mathbf{p}} t^{|\mathbf{p}| - k} \mathbf{v}^{\mathbf{p}} \to 0 \quad \text{per} \quad t \to 0.$$
 (4.3.29)

Ma la somma può essere riscritta nella forma:

$$\sum_{|\mathbf{p}| \le k} c_{\mathbf{p}} t^{|\mathbf{p}| - k} \mathbf{v}^{\mathbf{p}} = \sum_{h=0}^{k} t^{h-k} \left(\sum_{|\mathbf{p}| = h} c_{\mathbf{p}} \mathbf{v}^{\mathbf{p}} \right) . \tag{4.3.30}$$

Questa deve tendere a zero, ciò di conseguenza implica che:

$$\sum_{|\mathbf{p}|=h} c_{\mathbf{p}} \mathbf{v}^{\mathbf{p}} = 0 \qquad \forall h \le k \ . \tag{4.3.31}$$

Moltiplicando per un'opportuna costante, si ottiene:

$$\sum_{|\mathbf{p}|=h} c_{\mathbf{p}} \mathbf{x}^{\mathbf{p}} = 0 \qquad \forall \mathbf{x} \in \mathbb{R}^{N} . \tag{4.3.32}$$

Se $|\mathbf{q}| = h$ allora:

$$D^{\mathbf{q}}\left(\sum_{|\mathbf{p}|=h} c_{\mathbf{p}} \mathbf{x}^{\mathbf{p}}\right) = \mathbf{q}! c_{\mathbf{q}} = 0.$$
 (4.3.33)

Ma $\mathbf{q}! \neq 0$ per ipotesi, dunque si ha $c_{\mathbf{q}} = 0$ e di conseguenza $Q(\mathbf{x}) = P_k(\mathbf{x})$.

Teorema 4.3.3 (Formula di Taylor con resto di Lagrange). Sia $A \subseteq \mathbb{R}^N$ aperto, $f: A \to \mathbb{R}$, $f \in C^{k+1}(A)$ e $\mathbf{x}_0 \in A$. Allora, per $\mathbf{x} \to \mathbf{x}_0$ si ha che $\exists \boldsymbol{\xi} \in I = \{\mathbf{x}_0 + t(\mathbf{x} - \mathbf{x}_0), t \in [0, 1]\}$ tale che:

$$f(\mathbf{x}) - P_k(\mathbf{x}) = \sum_{|\mathbf{p}| = k+1} \frac{D^{\mathbf{p}} f(\boldsymbol{\xi})}{\mathbf{p}!} (\mathbf{x} - \mathbf{x}_0)^{\mathbf{p}}.$$
 (4.3.34)

Basta scrivere il resto di Lagrange di $F(t) = f(\mathbf{x}_0 + t\mathbf{v})$.

Definizione 4.3.4. Un insieme A si dice connesso se $\forall \mathbf{x}_0, \mathbf{x}_1 \in A \exists \mathbf{f} : [0, 1] \to A$ continua tale che:

$$\mathbf{f}(0) = \mathbf{x}_0 \qquad \mathbf{f}(1) = \mathbf{x}_1 \ . \tag{4.3.35}$$

Teorema 4.3.4. Sia $A \subseteq \mathbb{R}^N$ un aperto connesso $e \ f : A \to \mathbb{R}$, $f \in C^1(A)$ tale che $\nabla f \equiv \mathbf{0}$ in A. Allora $f \ \hat{e}$ costante in A.

Dimostrazione. Sia $\mathbf{x}_0 \in A$ e sia $C = \{\mathbf{x} \in A \mid f(\mathbf{x}) = f(\mathbf{x}_0)\}$. C è non vuoto e chiuso. Inoltre si ha, fissato $\mathbf{x} \in C$ e $\delta > 0$ e $\mathbf{y} \in B(\mathbf{x}, \delta)$:

$$f(\mathbf{x}) - f(\mathbf{y}) = \langle \nabla f(\boldsymbol{\xi}), \mathbf{x} - \mathbf{y} \rangle_N,$$
 (4.3.36)

dove si è usato il resto di Lagrange di ordine 1. Ricordando che $\nabla f \equiv \mathbf{0}$, segue che:

$$f(\mathbf{y}) = f(\mathbf{x}) = f(\mathbf{x}_0) , \qquad (4.3.37)$$

poiché $\mathbf{x} \in C$. Allora $f(\mathbf{y}) = f(\mathbf{x}_0) \Longrightarrow \mathbf{y} \in C$, da cui segue che C è aperto. Si ha perciò:

$$A = C \cup (A \cap C^C) . \tag{4.3.38}$$

Quindi A sarebbe non connesso, il che contraddice l'ipotesi e dunque costituisce un assurdo. Pertanto, uno tra C e $A \cap C^C$ deve essere vuoto. Per costruzione, C è non vuoto, dunque $A \cap C^C \equiv \emptyset$, ma ciò implica $C \equiv A$ e quindi f è costante su tutto A.

Teorema 4.3.5 (Formula di Leibniz). Siano $f, g \in C^k(A)$, $A \subseteq \mathbb{R}^N$ aperto $e |\mathbf{p}| \leq k$. Allora:

$$D^{\mathbf{p}}(f \cdot g) = \sum_{\mathbf{h} < \mathbf{p}} {\mathbf{p} \choose \mathbf{h}} D^{\mathbf{h}} f \cdot D^{\mathbf{p} - \mathbf{h}} g . \tag{4.3.39}$$

Dimostrazione.

$$D^{\mathbf{p}}(fg) = D_N^{p_N} D_{N-1}^{p_{N-1}} \dots D_2^{p_2} D_1^{p_1}(fg) . \tag{4.3.40}$$

Possiamo applicare alla derivata più interna la formula di Leibniz unidimensionale, ottenendo:

$$D^{\mathbf{p}}(fg) = D_N^{p_N} D_{N-1}^{p_{N-1}} \dots D_2^{p_2} \left(\sum_{h_1=0}^{p_1} \binom{p_1}{h_1} D_1^{h_1} f \cdot D_1^{p_1-h_1} g \right) . \tag{4.3.41}$$

Iterando il procedimento per tutte le N variabili, otteniamo:

$$D^{\mathbf{p}}(fg) = \sum_{h_1=0}^{p_1} \cdots \sum_{h_N=0}^{p_N} {p_1 \choose h_1} \cdots {p_N \choose h_N} \left[(D_N^{h_N} \cdots D_1^{h_1} f) (D_N^{p_N - h_N} \cdots D_1^{p_1 - h_1} g) \right]$$

$$= \sum_{|\mathbf{h}| \le |\mathbf{p}|} {\mathbf{p} \choose \mathbf{h}} D^{\mathbf{h}} f D^{\mathbf{p} - \mathbf{h}} g . \tag{4.3.42}$$

Definizione 4.3.5. Una funzione f si dice omogenea di grado $\alpha \in \mathbb{R}$ se $\forall t > 0$ si ha:

$$f(t\mathbf{x}) = t^{\alpha} f(\mathbf{x}) \qquad \forall \mathbf{x} \in \mathbb{R}^{N}$$
 (4.3.43)

Teorema 4.3.6 (Eulero). Sia $A \subseteq \mathbb{R}^N$ aperto $ef: A \to \mathbb{R}$ omogenea di grado α e differenziabile in A. Allora le derivate parziali sono omogenee di grado $\alpha - 1$ e si ha:

$$\sum_{i=1}^{N} \frac{\partial f}{\partial x_i} x_i = \langle \nabla f(\mathbf{x}), \mathbf{x} \rangle_N = \alpha f(\mathbf{x}) . \tag{4.3.44}$$

Dimostrazione. Fissato t > 0 definisco $F(\mathbf{x}) = f(t\mathbf{x})$. Allora:

$$D_i F(\mathbf{x}) = \sum_{j=1}^{N} D_j f(t\mathbf{x}) \cdot \delta_{ij} t = D_i f(t\mathbf{x}) t.$$
 (4.3.45)

Inoltre:

$$D_i F(\mathbf{x}) = D_i (t^{\alpha} f(\mathbf{x})) = t^{\alpha} D_i f(\mathbf{x}) , \qquad (4.3.46)$$

da cui segue:

$$tD_i f(t\mathbf{x}) = t^{\alpha} f(\mathbf{x}) \iff D_i f(t\mathbf{x}) = t^{\alpha - 1} D_i f(\mathbf{x}),$$
 (4.3.47)

che dimostra la prima parte del teorema. Consideriamo adesso l'identità:

$$\frac{\partial}{\partial t} \frac{f(t\mathbf{x})}{t^{\alpha}} = 0. \tag{4.3.48}$$

Svolgendo la derivata si ottiene:

$$\frac{\left(\sum_{i=1}^{N} D_i f(t\mathbf{x}) x_i\right) t^{\alpha} - f(t\mathbf{x}) \alpha \cdot t^{\alpha-1}}{t^{2\alpha}} = 0.$$
 (4.3.49)

Per ipotesi, t > 0, quindi possiamo semplificare il denominatore e dividere il numeratore per $t^{\alpha-1}$, ottenendo:

$$t\sum_{i=1}^{N} D_i f(t\mathbf{x}) x_i - \alpha f(t\mathbf{x}) = 0 \iff t\sum_{i=1}^{N} D_i f(t\mathbf{x}) x_i = \alpha f(t\mathbf{x}) , \qquad (4.3.50)$$

da cui segue:

$$\langle \nabla f(t\mathbf{x}), \mathbf{x} \rangle_N = \alpha f(t\mathbf{x}) ,$$
 (4.3.51)

poiché l'identità vale $\forall t > 0$, posto t = 1 si ottiene:

$$\langle \nabla f(\mathbf{x}), \mathbf{x} \rangle_N = \alpha f(\mathbf{x}) . \tag{4.3.52}$$

4.4 Forme quadratiche

Definizione 4.4.1. Sia $A \in M(n, \mathbb{R})$ simmetrica con $A = \{a_{ij}\}$. Si definisce forma quadratica associata alla matrice A:

$$\phi(\mathbf{x}) = \langle A\mathbf{x}, \mathbf{x} \rangle_N = \sum_{i,j=1}^N a_{ij} x_i x_j . \tag{4.4.1}$$

La forma quadratica associata ad una matrice è un polinomio omogeneo di grado 2.

28

Osservazione 4.4.1. $\phi \in C^{\infty}(\mathbb{R}^N)$.

Osservazione 4.4.2. $\nabla \phi(\mathbf{x}) = 2A\mathbf{x}$.

Dimostrazione.

$$\sum_{k=1}^{N} D_k \phi(\mathbf{x}) = \sum_{k=1}^{N} \left(\sum_{j=1}^{N} a_{kj} x_j + \sum_{i=1}^{N} a_{ik} x_i \right) = 2 \sum_{k,j=1}^{N} a_{kj} x_j = 2A\mathbf{x} , \qquad (4.4.2)$$

poiché A è simmetrica.

Definizione 4.4.2. Una forma quadratica si dice:

- definita positiva se $\phi(\mathbf{x}) > 0 \quad \forall \mathbf{x} \in \mathbb{R}^N$;
- definita negativa se $\phi(\mathbf{x}) < 0 \quad \forall \mathbf{x} \in \mathbb{R}^N$;
- semidefinita positiva se $\phi(\mathbf{x}) \geq 0 \quad \forall \mathbf{x} \in \mathbb{R}^N$;
- semidefinita negativa se $\phi(\mathbf{x}) \leq 0 \quad \forall \mathbf{x} \in \mathbb{R}^N$;
- indefinita se $\phi(\mathbf{x})$ assume valori positivi e negativi.

Osservazione 4.4.3. Sia $\Gamma = \{\mathbf{x} \in \mathbb{R}^N \mid |\mathbf{x}|_N = 1\}$. Allora, poiché ϕ è continua, assumerà massimo M_0 e minimo m_0 su Γ . Supponiamo che $\phi(\mathbf{v}_0) = m_0$ e $\phi(\mathbf{w}_0) = M_0$ con $\mathbf{v}_0, \mathbf{w}_0 \in \Gamma$. Allora:

$$m_0 \le \phi(\mathbf{v}) \le M_0 \qquad \forall \mathbf{v} \in \Gamma \ .$$
 (4.4.3)

Per omogeneità, possiamo scrivere:

$$\phi(\mathbf{x}) = |\mathbf{x}|_N^2 \cdot \phi\left(\frac{\mathbf{x}}{|\mathbf{x}|_N}\right) \quad \forall \mathbf{x} \in \mathbb{R}^N . \tag{4.4.4}$$

Dunque si avrà:

$$m_0 |\mathbf{x}|_N^2 \le \phi(\mathbf{x}) \le M_0 |\mathbf{x}|_N^2 \qquad \forall \mathbf{x} \in \mathbb{R}^N$$
 (4.4.5)

Proposizione 4.4.1. m_0 e M_0 sono rispettivamente il minimo ed il massimo autovalore di A.

Dimostrazione. Definiamo:

$$F(\mathbf{x}) = \frac{\phi(\mathbf{x})}{|\mathbf{x}|_N^2} \qquad \forall \mathbf{x} \in \mathbb{R}^N \setminus \{\mathbf{0}\} . \tag{4.4.6}$$

Si ha dunque:

$$F(\mathbf{v}_0) = m_0 \le F(\mathbf{x}) \le M_0 = F(\mathbf{w}_0) \quad \forall \mathbf{x} \in \mathbb{R}^N \setminus \{\mathbf{0}\}$$
 (4.4.7)

Nei punti \mathbf{v}_0 e \mathbf{w}_0 il gradiente di F deve essere nullo; infatti, posto:

$$g(t) = F(\mathbf{v}_0 + t\mathbf{x}) \qquad t \in [-\delta, \delta], \forall \mathbf{x} \in \mathbb{R}^N ,$$
 (4.4.8)

si osserva che g ha un minimo per t=0, dunque:

$$g'(0) = \langle \nabla F(\mathbf{v}_0), \mathbf{x} \rangle_N = 0 \Longrightarrow \nabla F(\mathbf{v}_0) = 0.$$
 (4.4.9)

Allo stesso modo si dimostra che il gradiente di F è nullo in \mathbf{w}_0 . Calcoliamo dunque il gradiente di F:

$$D_k F(\mathbf{x}) = \frac{D_k \phi(\mathbf{x}) |\mathbf{x}|_N^2 - \phi(\mathbf{x}) \cdot 2x_k}{|\mathbf{x}|_N^4} = \frac{D_k \phi(\mathbf{x})}{|\mathbf{x}|_N^2} - \frac{2\phi(\mathbf{x})x_k}{|\mathbf{x}|_N^4}, \qquad (4.4.10)$$

da cui:

$$\nabla F(\mathbf{x}) = \sum_{k=1}^{N} D_k F(\mathbf{x}) = \frac{\nabla \phi(\mathbf{x})}{|\mathbf{x}|_N^2} - \frac{2\phi(\mathbf{x})\mathbf{x}}{|\mathbf{x}|_N^4}$$
$$= \frac{2A\mathbf{x}}{|\mathbf{x}|_N^2} - \frac{2\phi(\mathbf{x})\mathbf{x}}{|\mathbf{x}|_N^4} = \frac{2}{|\mathbf{x}|_N^2} (A\mathbf{x} - F(\mathbf{x})\mathbf{x}) . \tag{4.4.11}$$

Allora:

$$\nabla F(\mathbf{v}_0) = 2(A\mathbf{v}_0 - F(\mathbf{v}_0)\mathbf{v}_0) = 0. \tag{4.4.12}$$

Ma $F(\mathbf{v}_0) = m_0$, dunque si ha:

$$A\mathbf{v}_0 = m_0 \mathbf{v}_0 \ . \tag{4.4.13}$$

Ossia \mathbf{v}_0 è autovettore relativo all'autovalore m_0 . Analogamente, si ha:

$$A\mathbf{w}_0 = M_0\mathbf{w}_0. \tag{4.4.14}$$

Cioè \mathbf{w}_0 è autovettore relativo all'autovalore M_0 . Se λ è autovalore per A con autovettore $\mathbf{v} \in \Gamma$ allora:

$$\phi(\mathbf{v}) = \langle A\mathbf{v}, \mathbf{v} \rangle_N = \lambda |\mathbf{v}|_N^2 = \lambda . \tag{4.4.15}$$

Ma, poiché m_0 e M_0 sono il minimo ed il massimo di ϕ su Γ , si avrà:

$$m_0 \le \lambda \le M_0 \tag{4.4.16}$$

da cui segue che m_0 è il minimo autovalore e M_0 è il massimo autovalore.

Osservazione 4.4.4. Sia $A \in M(\mathbb{R}, N)$ simmetrica.

$$\det(A - \lambda I) = \prod_{i=1}^{N} (\lambda - \lambda_i) = \lambda^N + a_1 \lambda^{N-1} + \dots + a_{N-1} \lambda + a_N.$$
 (4.4.17)

Per la regola di Cartesio, si ha che;

- ϕ è definito negativo \iff l'equazione presenta N permanenze di segno;
- ϕ è definito positivo \iff l'equazione presenta N variazioni di segno;
- ϕ è semidefinito negativo \iff l'equazione presenta N-r permanenze di segno e r coefficienti nulli;
- ϕ è semidefinito positivo \iff l'equazione presenta N-r variazioni di segno e r coefficienti nulli;
- ϕ è indefinito negli altri casi.

Definizione 4.4.3. Sia $f: A \to \mathbb{R}$ una funzione definita su $A \subseteq \mathbb{R}^N$ e $\mathbf{x}_0 \in A$.

- Si dice che \mathbf{x}_0 è un punto di massimo locale per f se $\exists B(\mathbf{x}_0, \delta) \subseteq A$ tale che $f(\mathbf{x}) \leq f(\mathbf{x}_0) \quad \forall \mathbf{x} \in B$;
- si dice che \mathbf{x}_0 è un punto di *minimo locale* per f se $\exists B(\mathbf{x}_0, \delta) \subseteq A$ tale che $f(\mathbf{x}) \ge f(\mathbf{x}_0) \quad \forall \mathbf{x} \in B$.

Teorema 4.4.1. Sia $f \in C^2(A)$, $\mathbf{x}_0 \in A$ e $\phi(\mathbf{x}) = \langle H_f(\mathbf{x}_0)\mathbf{x}, \mathbf{x} \rangle_N$. Allora

1. \mathbf{x}_0 è punto di massimo relativo per $f \Longrightarrow \nabla f(\mathbf{x}_0) = \mathbf{0}$ e ϕ è semidefinito negativo;

- 2. \mathbf{x}_0 è punto di minimo relativo per $f \Longrightarrow \nabla f(\mathbf{x}_0) = \mathbf{0}$ e ϕ è semidefinito positivo;
- 3. $\nabla f(\mathbf{x}_0) = \mathbf{0}$ e ϕ è definito negativo $\Longrightarrow \mathbf{x}_0$ è punto di massimo relativo;
- 4. $\nabla f(\mathbf{x}_0) = \mathbf{0}$ e ϕ è definito positivo $\Longrightarrow \mathbf{x}_0$ è punto di minimo relativo;
- 5. $\nabla f(\mathbf{x}_0) = \mathbf{0} \ e \ \phi \ \dot{e} \ indefinito \Longrightarrow \mathbf{x}_0 \ \dot{e} \ punto \ di \ sella.$

Premessa

(a) Se $\mathbf{x} \in B(\mathbf{x}_0, \delta) \subseteq A$, $\forall t \in [0, 1]$ definiamo $F(t) = f(\mathbf{x}_0 + t(\mathbf{x} - \mathbf{x}_0))$. Si ha dunque:

$$F'(t) = \langle \nabla f(\mathbf{x}_0 + t(\mathbf{x} - \mathbf{x}_0))(\mathbf{x} - \mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle_N,$$

$$F''(t) = \langle H_f(\mathbf{x}_0 + t(\mathbf{x} - \mathbf{x}_0))(\mathbf{x} - \mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle_N.$$
(4.4.18)

(b) $\forall \mathbf{x} \in B(\mathbf{x}_0, \delta) \subseteq A \ \exists \xi \in]0,1[$ tale che:

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle_N + \frac{1}{2} \langle H_f(\mathbf{x}_0 + \xi(\mathbf{x} - \mathbf{x}_0))(\mathbf{x} - \mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle_N.$$
(4.4.19)

Dimostrazione. (1)

Dalla dimostrazione precedente, sappiamo che se \mathbf{x}_0 è punto di massimo relativo per f, allora $\nabla f(\mathbf{x}_0) = \mathbf{0}$. Inoltre, F ha un massimo in corrispondenza di t = 0, dunque dovrà essere $F''(0) \leq 0$ cioè:

$$\langle H_f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle_N \le 0$$
 (4.4.20)

Posto $\mathbf{x} - \mathbf{x}_0 = \mathbf{v}$ segue:

$$\langle H_f(\mathbf{x}_0)\mathbf{v}, \mathbf{v}\rangle_N = \phi(\mathbf{v}) \le 0 \qquad \forall \mathbf{v} \in A.$$
 (4.4.21)

(2) si dimostra come (1)

Dimostrazione. (3)

Sia $\nabla f(\mathbf{x}_0) = \mathbf{0}$ e ϕ definito negativo. Allora gli autovalori di $H_f(\mathbf{x}_0)$ sono tutti negativi. Sia $-\delta$ il massimo autovalore. Ne segue:

$$\langle H_f(\mathbf{x}_0)\mathbf{v}, \mathbf{v}\rangle_N \le -\delta |\mathbf{v}|_N^2 \quad \forall \mathbf{v} \in \mathbb{R}^N$$
 (4.4.22)

Dimostriamo che:

$$\langle H_f(\mathbf{x})\mathbf{v}, \mathbf{v}\rangle_N \le -\frac{\delta}{2}|\mathbf{v}|_N^2$$
 (4.4.23)

 $\forall \mathbf{v} \in \mathbb{R}^N \text{ e } \forall \mathbf{x} \in B(\mathbf{x}_0, r) \text{ con } r \text{ sufficientemente piccolo. Abbiamo allora:}$

$$\langle H_f(\mathbf{x})\mathbf{v}, \mathbf{v} \rangle_N = \langle H_f(\mathbf{x})\mathbf{v}, \mathbf{v} \rangle_N - \langle H_f(\mathbf{x}_0)\mathbf{v}, \mathbf{v} \rangle_N + \langle H_f(\mathbf{x}_0)\mathbf{v}, \mathbf{v} \rangle_N$$

= $\langle [H_f(\mathbf{x}) - H_f(\mathbf{x}_0)]\mathbf{v}, \mathbf{v} \rangle_N + \langle H_f(\mathbf{x}_0)\mathbf{v}, \mathbf{v} \rangle_N$. (4.4.24)

Maggioriamo il primo addendo usando la diseguaglianza di Cauchy-Schwarz e il secondo addendo usando l'ipotesi (4.4.22):

$$\langle H_f(\mathbf{x})\mathbf{v}, \mathbf{v} \rangle_N \le |H_f(\mathbf{x}) - H_f(\mathbf{x}_0)]\mathbf{v}|_N \cdot |\mathbf{v}_N - \delta|\mathbf{v}|_N^2$$

$$= |[H_f(\mathbf{x}) - H_f(\mathbf{x}_0)|_{M(N)} \cdot |\mathbf{v}|_N^2 - \delta|\mathbf{v}|_N^2. \tag{4.4.25}$$

Per la continuità delle derivate seconde, $\forall \mathbf{x} \in B(\mathbf{x}_0, r)$ si ha:

$$\frac{\partial^2}{\partial x_i \partial x_j} f(\mathbf{x}) - \frac{\partial^2}{\partial x_i \partial x_j} f(\mathbf{x}_0) < \frac{\delta}{2} \quad \forall i, j , \qquad (4.4.26)$$

e dunque:

$$\langle H_f(\mathbf{x})\mathbf{v}, \mathbf{v}\rangle_N \le \frac{\delta}{2}|\mathbf{v}|_N^2 - \delta|\mathbf{v}|_N^2 = -\frac{\delta}{2}|\mathbf{v}|_N^2.$$
 (4.4.27)

Quindi ϕ è definito negativo. Sviluppiamo f in serie di Taylor $\forall \mathbf{x} \in \mathbb{R}^N$ tale che $|\mathbf{x} - \mathbf{x}_0|_N < r_\delta$, con r_δ opportunamente piccolo:

$$f(\mathbf{x}) - f(\mathbf{x}_0) = \langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle_N + \frac{1}{2} \langle H_f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle_N.$$
 (4.4.28)

Ma per ipotesi $\nabla f \equiv \mathbf{0}$ e $\langle H_f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle_N \leq -\delta |\mathbf{x} - \mathbf{x}_0|_N^2$, dunque:

$$f(\mathbf{x}) - f(\mathbf{x}_0) \le -\frac{\delta}{2} |\mathbf{x} - \mathbf{x}_0|_N^2 \le 0$$
 (4.4.29)

Da questo segue che $f(\mathbf{x}) \leq f(\mathbf{x}_0) \quad \forall \mathbf{x} \in B(\mathbf{x}_0, r_\delta)$, cioè \mathbf{x}_0 è un punto di massimo relativo. \square (4) si dimostra come (3) con stime invertite.

4.5 Operatore di Laplace in due dimensioni

Definizione 4.5.1. Sia $u(x,y) \in C^2(I)$. Il laplaciano di u è definito:

$$\nabla^2 u(x,y) = u_{xx}(x,y) + u_{yy}(x,y) . (4.5.1)$$

In coordinate polari, posti $x = \rho \cos \theta$ e $y = \rho \sin \theta$ si ha:

$$v(\rho, \theta) = u(\rho \cos \theta, \rho \sin \theta) . \tag{4.5.2}$$

Le derivate parziali di ordine 1 sono:

$$v_{\rho} = u_x \cos \theta + u_y \sin \theta,$$
 $v_{\theta} = -u_x \rho \sin \theta + u_y \rho \cos \theta.$ (4.5.3)

Le derivate parziali di ordine 2 non miste sono invece:

$$v_{\rho\rho} = u_{xx}\cos^2\theta + 2u_{xy}\sin\theta\cos\theta + u_{yy}\sin^2\theta , \qquad (4.5.4)$$

$$v_{\theta\theta} = u_{xx}\rho^2 \sin^2\theta - 2u_{xy}\rho^2 \sin\theta \cos\theta + u_{yy}\rho^2 \cos^2\theta - u_x\rho \cos\theta - u_y\rho \sin\theta. \tag{4.5.5}$$

Si ha quindi:

$$v_{\rho\rho} + \frac{1}{\rho^2} v_{\theta\theta} = u_{xx} + u_{yy} - \frac{1}{\rho} v_{\rho} = \nabla^2 u(x, y) - \frac{1}{\rho} v_{\rho} , \qquad (4.5.6)$$

da cui:

$$\nabla^2 v(\rho, \theta) = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} v(\rho, \theta) \right) + \frac{1}{\rho^2} \frac{\partial^2}{\partial \theta^2} v(\rho, \theta) . \tag{4.5.7}$$

Capitolo 5

Funzioni implicite

5.1 Caso bidimensionale

Teorema 5.1.1 (Funzioni implicite o del Dini). Sia $F \in C^1(A)$, con A aperto di \mathbb{R}^2 . Sia $Z = \{(x,y) \in A \mid F(x,y) = 0\}$. Sia $(x_0,y_0) \in Z$. Se in (x_0,y_0) si ha $\nabla F(x_0,y_0) \neq \mathbf{0}$ allore esiste un intorno $U \times V$ del punto (x_0,y_0) tale che $Z \cap (U \times V)$ è grafico di una funzione di classe C^1 . In particolare, se $F_y(x_0,y_0) \neq 0$, allora $\exists g : U \to V$ di classe C^1 , tale che:

$$(x,y) \in U \times V, \quad F(x,y) = 0 \qquad \Longleftrightarrow \qquad y = g(x).$$
 (5.1.1)

Inoltre $g(x_0) = y_0$ e:

$$g'(x) = -\frac{F_x(x, g(x))}{F_y(x, g(x))} \quad \forall x \in U.$$
 (5.1.2)

Se inoltre $F \in C^k$ allora la funzione implicita $g \ e$ di classe C^k .

Dimostrazione. Sia $U_0 \times V$ un rettangolo contenuto in A e centrato nel punto (x_0, y_0) tale che $F_x(x, y) > 0 \quad \forall (x, y) \in U_0 \times V$. Siano:

$$U_0 = [x_0 - h_0, x_0 + h_0],$$
 $V = [y_0 - k, y_0 + k].$ (5.1.3)

Avremo $F(x_0, y_0 + k) > 0$ e $F(x_0, y_0 - k) < 0$. Allora, per la continuità di F:

$$\exists U \subseteq U_0 \text{ tale che} \begin{cases} F(x, y_0 + k) > 0 \\ \forall x \in U \end{cases}$$

$$(5.1.4)$$

Fissato $x \in U$, consideriamo la funzione $y \mapsto F(x,y)$. Per il teorema di esistenza degli zeri delle funzioni continue e per la monotonia della derivata prima, $\exists ! y \in V$ tale che F(x,y) = 0. Definiamo $y \equiv g(x)$. Si avrà allora:

$$(x,y) \in U \times V, \quad F(x,y) = 0 \qquad \Longleftrightarrow \qquad y = g(x) .$$
 (5.1.5)

In particolare, $F(x, g(x)) = 0 \quad \forall x \in U$. Siano $x, x' \in U$, allora si avrà:

$$0 = F(x, g(x)) - F(x', g(x')), (5.1.6)$$

 $\forall t \in [0,1]$ definiamo:

$$G(t) \equiv F(x + t(x' - x), g(x) + t(g(x') - g(x))). \tag{5.1.7}$$

Si ha evidentemente:

$$F(x,g(x)) - F(x',g(x')) = G(1) - G(0).$$
(5.1.8)

Per il teorema di Lagrange, $\exists \xi \in]0,1[$ tale che:

$$G(1) - G(0) = G'(\xi)(1 - 0) = G'(\xi). \tag{5.1.9}$$

Esplicitando la derivata prima di G in ξ :

$$G'(\xi) = F_x(x_{\xi}, y_{\xi})(x' - x) + F_y(x_{\xi}, y_{\xi})(g(x') - g(x)) = 0, \qquad (5.1.10)$$

da cui segue:

$$g(x') - g(x) = -\frac{F_x(x_{\xi}, y_{\xi})}{F_y(x_{\xi}, y_{\xi})}(x' - x) .$$
 (5.1.11)

Per il teorema di Weierstrass:

$$\exists m = \min_{U_0 \times V} F_y(x, y) > 0, \qquad \exists M = \max_{U_0 \times V} |F_x(x, y)|, \qquad (5.1.12)$$

allora:

$$|g(x') - g(x)| = -\left| \frac{F_x(x_{\xi}, y_{\xi})}{F_y(x_{\xi}, y_{\xi})} \right| |x' - x| \le \frac{M}{m} |x' - x| , \qquad (5.1.13)$$

dunque g è localmente Lipschitziana e quindi continua. Inoltre, per $x' \to x$ si ha:

$$x_{\xi} \to x, \qquad y_{\xi} \to g(x) , \qquad (5.1.14)$$

da cui segue:

$$\lim_{x' \to x} \frac{g(x') - g(x)}{x' - x} = -\frac{F_x(x, g(x))}{F_y(x, g(x))}, \qquad (5.1.15)$$

per cui g è derivabile e in più la derivata prima è continua in quanto composizione di funzioni continue per ipotesi. Quindi $g \in C^1(U \times V)$. Inoltre:

$$F \in C^k \implies F_x, F_y \in C^{k-1} \implies g' \in C^{k-1} \Longrightarrow g \in C^k$$
 (5.1.16)

5.2 Contrazioni

Definizione 5.2.1. Sia (X, d) uno spazio metrico. Una *contrazione* su X è un'applicazione $F: X \to X$ per la quale $\exists \lambda \in [0, 1[$ tale che:

$$d(F(x), F(x')) \le \lambda d(x, x') \qquad \forall x, x' \in X. \tag{5.2.1}$$

Teorema 5.2.1 (delle contrazioni). Sia (X, d) uno spazio metrico completo e sia $F: X \to X$ una contrazione. Allora F ha un unico punto fisso, cioè $\exists ! \overline{x} \in X$ tale che $F(\overline{x}) = \overline{x}$.

Dimostrazione. (esistenza)

Per ipotesi, $\exists \lambda \in [0, 1]$ tale che:

$$d(F(x), F(x')) < \lambda d(x, x') \qquad \forall x, x' \in X.$$
 (5.2.2)

Sia $x^* \in X$. Definiamo per ricorrenza la successione:

$$\begin{cases} x_0 = x^* \\ x_{n+1} = F(x_n) & n \in \mathbb{N} \end{cases}$$
 (5.2.3)

Osserviamo che:

$$d(x_{n+1}, x_n) = d(F(x_n), F(x_{n-1})) \le \lambda d(x_n, x_{n-1}),$$
(5.2.4)

e quindi:

$$d(x_{n+1}, x_n) \le \lambda d(x_n, x_{n-1}) \le \dots \le \lambda^n d(x_1, x_0) . \tag{5.2.5}$$

Applicando la diseguaglianza triangolare, se m > n si ha:

$$d(x_m, x_n) \le \sum_{h=n}^{m-1} d(x_{h+1}, x_h) \le \sum_{h=n}^{m-1} \lambda^h d(x_1, x^*).$$
 (5.2.6)

Poiché la serie $\sum \lambda^h$ è convergente, la successione $\{x_n\}$ è di Cauchy in X. Dato che X è completo, essa converge ad un elemento $\overline{x} \in X$. Proviamo che \overline{x} è un punto fisso per F:

$$d(\overline{x}, F(\overline{x})) \le d(\overline{x}, x_{n+1}) + d(x_{n+1}, F(\overline{x})) = d(\overline{x}, x_{n+1}) + d(F(x_n), F(\overline{x}))$$

$$\le d(\overline{x}, x_{n+1}) + \lambda d(x_n, F(\overline{x})), \qquad (5.2.7)$$

da cui, per $n \to \infty$, otteniamo $d(\overline{x}, F(\overline{x})) = 0$ cioè $F(\overline{x}) = \overline{x}$.

Dimostrazione. (unicità)

Se $x \in X$ è un altro punto fisso per F, si ha:

$$d(\overline{x}, x) = d(F(\overline{x}), F(x)) < \lambda d(\overline{x}, x) , \qquad (5.2.8)$$

ma, essendo $\lambda < 1$, ciò risulta impossibile se $\overline{x} \neq \underline{x}$. Si conclude dunque che $\overline{x} = \underline{x}$.

Teorema 5.2.2 (delle contrazioni dipendenti da parametro). Siano (B, δ) uno spazio metrico, (X, d) uno spazio metrico completo e $T: B \times X \to X$ un'applicazione continua. Supponiamo che $\exists \lambda \in [0, 1[$ tale che:

$$d(T(b,x),T(b,x')) \le \lambda d(x,x') \qquad \forall x,x' \in X, \quad \forall b \in B.$$
 (5.2.9)

Allora, $\forall b \in B \exists ! x_b \in X \text{ tale che } T(b, x_b) = x_b \text{ e inoltre la funzione:}$

$$\beta: \begin{array}{ccc} B & \to & X \\ b & \mapsto & x_b \end{array} \tag{5.2.10}$$

è continua.

Dimostrazione. $\forall b \in B$ il punto fisso esiste unico per il teorema precedente. Inoltre posso scrivere $\forall a, b \in B$:

$$d(x_a, x_b) = d(T(a, x_a), T(b, x_b)) \le d(T(a, x_a), T(b, x_a)) + d(T(b, x_a), T(b, x_b))$$

$$\le d(T(a, x_a), T(b, x_a)) + \lambda d(x_a, x_b),$$
(5.2.11)

da cui segue:

$$d(x_a, x_b) \le \frac{1}{1 - \lambda} d(T(a, x_a), T(b, x_b)) \qquad \forall a, b \in B.$$
 (5.2.12)

Tenuto fisso $a \in B$, fissiamo $\epsilon > 0$. Per la continuità di T nel punto (a, x_a) , $\exists \eta > 0$ tale che $\forall b \in B$ soddisfacenti $\delta(a, b) < \eta$ si ha:

$$d(T(a, x_a), T(b, x_b)) < (1 - \lambda)\epsilon$$
 (5.2.13)

Da ciò segue che, se $\delta(a,b) < \eta$:

$$d(x_a, x_b) < \epsilon . (5.2.14)$$

5.3 Caso generale

Definizione 5.3.1. Sia $\mathbf{F}: \mathbb{R}^N \to \mathbb{R}^M$ una funzione data da $\mathbf{y} = \mathbf{F}(\mathbf{x})$. Le M componenti del vettore $\mathbf{F}(\mathbf{x})$ sono funzioni reali delle N variabili x_1, \ldots, x_N . Le derivate parziali (se esistono) possono essere organizzate in una matrice $M \times N$, detta Jacobiana di \mathbf{F} nel modo seguente:

$$D\mathbf{F}(\mathbf{x}) = \begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_N} \\ \vdots & \vdots & \vdots \\ \frac{\partial F_M}{\partial x_1} & \cdots & \frac{\partial F_M}{\partial x_N} \end{pmatrix} . \tag{5.3.1}$$

Inoltre, se M = N la Jacobiana di \mathbf{F} è una matrice quadrata, lo *Jacobiano* di \mathbf{F} è definito come il determinante della matrice Jacobiana.

Teorema 5.3.1 (del Dini, caso generale). Sia $\mathbf{F}: A \subseteq \mathbb{R}^N \to \mathbb{R}^K$ di classe C^1 , con N = r + K > K e $Z = \{\mathbf{x} \in A \mid \mathbf{F}(\mathbf{x}) = \mathbf{0}\}$. Se $\mathbf{z}_0 \in Z$ è tale che $D\mathbf{F}(\mathbf{z}_0)$ abbia rango massimo K, allora esiste un intorno $U \subseteq A$ di \mathbf{z}_0 tale che $Z \cap U$ è grafico di una funzione \mathbf{f} definita su un aperto di \mathbb{R}^r in \mathbb{R}^K di classe C^1 . Più precisamente, posti:

$$\mathbf{z} = (\mathbf{x}, \mathbf{y}), \qquad \mathbf{x} \in \mathbb{R}^r, \mathbf{y} \in \mathbb{R}^k,$$
 (5.3.2)

$$D\mathbf{F}(\mathbf{x}, \mathbf{y}) = (D_x \mathbf{F}(\mathbf{x}, \mathbf{y}) | D_y \mathbf{F}(\mathbf{x}, \mathbf{y})), \qquad (5.3.3)$$

supponendo $\mathbf{F}(\mathbf{x}_0, \mathbf{y}_0) = 0$ e det $D\mathbf{F}_y(\mathbf{x}_0, \mathbf{y}_0) \neq 0$, allora esistono V intorno di \mathbf{x}_0 e W intorno di \mathbf{y}_0 chiusi, $V \times W \subseteq A$ ed esiste $\mathbf{f}: V \to W, \mathbf{f} \in C^1$ tali che:

$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = 0 \iff \mathbf{y} = \mathbf{f}(\mathbf{x}), \quad (\mathbf{x}, \mathbf{y}) \in Z \cap (V \times W) .$$
 (5.3.4)

Inoltre:

$$D\mathbf{f}(\mathbf{x}) = -[D_y \mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))]^{-1} [D_x \mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))] \quad \forall \mathbf{x} \in V .$$
 (5.3.5)

Dimostrazione. Essendo \mathbf{F} per ipotesi differenziabile in $(\mathbf{x}_0, \mathbf{y}_0)$ e $\mathbf{F}(\mathbf{x}_0, \mathbf{y}_0) = 0$, possiamo scrivere:

$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = D_x \mathbf{F}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{x} - \mathbf{x}_0) + D_y \mathbf{F}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{y} - \mathbf{y}_0) + \mathbf{v}(\mathbf{x}, \mathbf{y}), \qquad (5.3.6)$$

dove \mathbf{v} è una funzione di classe $C^1(A, \mathbb{R}^k)$ tale che:

$$\frac{\mathbf{v}(\mathbf{x}, \mathbf{y})}{\sqrt{|\mathbf{x} - \mathbf{x}_0|_r^2 + |\mathbf{y} - \mathbf{y}_0|_k^2}} \to \mathbf{0} \quad \text{per} \quad \sqrt{|\mathbf{x} - \mathbf{x}_0|_r^2 + |\mathbf{y} - \mathbf{y}_0|_k^2} \to 0 . \tag{5.3.7}$$

Dato che, per ipotesi, la matrice $D_y \mathbf{F}(\mathbf{x}_0, \mathbf{y}_0)$ è invertibile, dalla relazione (5.3.6) ricaviamo:

$$\mathbf{y} = \mathbf{y}_0 + B\mathbf{F}(\mathbf{x}, \mathbf{y}) - Q(\mathbf{x} - \mathbf{x}_0) - B\mathbf{v}(\mathbf{x}, \mathbf{y}) \quad \forall (\mathbf{x}, \mathbf{y}) \in A,$$
 (5.3.8)

dove:

$$B = [D_u \mathbf{F}(\mathbf{x}_0, \mathbf{y}_0)]^{-1}, \qquad Q = [D_u \mathbf{F}(\mathbf{x}_0, \mathbf{y}_0)]^{-1} [D_x \mathbf{F}(\mathbf{x}_0, \mathbf{y}_0)]. \qquad (5.3.9)$$

Posti:

$$\mathbf{g}(\mathbf{x}) = \mathbf{y}_0 - Q(\mathbf{x} - \mathbf{x}_0) \qquad \forall \mathbf{x} \in \mathbb{R}^r , \qquad (5.3.10)$$

$$G(x, y) = Bv(x, y) \qquad \forall (x, y) \in A, \qquad (5.3.11)$$

si ha che \mathbf{g} è un'applicazione affine di \mathbb{R}^r in \mathbb{R}^k , mentre $\mathbf{G} \in C^1(A, \mathbb{R}^k)$ con:

$$|\mathbf{G}(\mathbf{x}, \mathbf{y})|_k \le ||B||_{M_k} |\mathbf{v}(\mathbf{x}, \mathbf{y})|_k , \qquad (5.3.12)$$

ed in particolare **G** è nulla in $(\mathbf{x}_0, \mathbf{y}_0)$ con differenziale nullo. Per $(\mathbf{x}, \mathbf{y}) \in A$ si ha:

$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = \mathbf{0} \Longleftrightarrow \mathbf{y} = \mathbf{g}(\mathbf{x}) - \mathbf{G}(\mathbf{x}, \mathbf{y}). \tag{5.3.13}$$

Bisogna trovare un intorno $U \subseteq \mathbb{R}^r$ di \mathbf{x}_0 ed un intorno compatto $V \subseteq \mathbb{R}^k$ di \mathbf{y}_0 tali che $\forall \mathbf{x} \in U$ l'applicazione:

$$\mathbf{T}_x(\mathbf{y}) = \mathbf{g}(\mathbf{x}) - \mathbf{G}(\mathbf{x}, \mathbf{y}) , \qquad (5.3.14)$$

trasformi V in V e sia una contrazione. Per il teorema delle contrazioni, seguirà allora che $\forall \mathbf{x} \in U \ \exists ! \mathbf{y} = \mathbf{f}(\mathbf{x}) \in V$ tale che $\mathbf{T}_x(\mathbf{y}) = \mathbf{y}$, cioè $\mathbf{F}(\mathbf{x}, \mathbf{y}) = 0$. Per $\rho > 0$ siano V_{ρ} la palla di centro \mathbf{x}_0 in \mathbb{R}^r e W_{ρ} la palla di centro \mathbf{y}_0 in \mathbb{R}^k di raggio ρ ed osserviamo che, essendo $\nabla \mathbf{G}(\mathbf{x}_0, \mathbf{y}_0) = \mathbf{0}$, si ha, posto $(\boldsymbol{\xi}_t, \boldsymbol{\eta}_t) = ((1-t)\mathbf{x} + t\mathbf{x}', (1-t)\mathbf{y} + t\mathbf{y}')$:

$$|\mathbf{G}(\mathbf{x}, \mathbf{y}) - \mathbf{G}(\mathbf{x}', \mathbf{y}')|_{k} = \left| \int_{0}^{1} \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{G}(\boldsymbol{\xi}_{t}, \boldsymbol{\eta}_{t}) \mathrm{d}t \right|_{k}$$

$$\leq \left| \int_{0}^{1} \left[(\mathbf{G}_{x}(\boldsymbol{\xi}_{t}, \boldsymbol{\eta}_{t} - \mathbf{G}_{x}(\mathbf{x}_{0}, \mathbf{y}_{0}))(\mathbf{x} - \mathbf{x}') + (\mathbf{G}_{y}(\boldsymbol{\xi}_{t}, \boldsymbol{\eta}_{t}) - \mathbf{G}_{y}(\mathbf{x}_{0}, \mathbf{y}_{0}))(\mathbf{y} - \mathbf{y}') \right] \mathrm{d}t \right|_{k}. \quad (5.3.15)$$

Esiste dunque $\rho_0 > 0$ tale che :

$$|\mathbf{G}(\mathbf{x}, \mathbf{y}) - \mathbf{G}(\mathbf{x}', \mathbf{y}')|_k \le \frac{1}{2}(|\mathbf{x} - \mathbf{x}'|_r + |\mathbf{y} - \mathbf{y}'|_k) \qquad \forall \mathbf{x}, \mathbf{x}' \in V_{\rho_0}, \forall \mathbf{y}, \mathbf{y}' \in W_{\rho_0}, \quad (5.3.16)$$

ed in particolare:

$$|\mathbf{G}(\mathbf{x}, \mathbf{y})|_k \le \frac{1}{2}(|\mathbf{x} - \mathbf{x}_0|_r + |\mathbf{y} - \mathbf{y}_0|_k) \qquad \forall \mathbf{x} \in V_{\rho_0}, \forall \mathbf{y} \in W_{\rho_0}.$$
 (5.3.17)

Fissiamo $\rho_1 \in]0, \rho_0[$. Si osserva che per $\mathbf{x} \in V_{\rho_1}$ l'applicazione \mathbf{T}_x manda W_{ρ_0} in se stesso, a patto che ρ_1 sia sufficientemente piccolo; infatti:

$$|\mathbf{T}_{x}(\mathbf{y} - \mathbf{y}_{0})|_{k} = |\mathbf{g}(\mathbf{x}) - \mathbf{G}(\mathbf{x}, \mathbf{y}) - \mathbf{y}_{0}|_{k}$$

$$\leq ||Q||_{M_{k,r}}||\mathbf{x} - \mathbf{x}_{0}|_{r} + \frac{1}{2}(|\mathbf{x} - \mathbf{x}_{0}|_{r} + |\mathbf{y} - \mathbf{y}_{0}|_{k})$$

$$\leq \left(||Q||_{M_{k,r}} + \frac{1}{2}\right)\rho_{1} + \frac{\rho_{0}}{2} \leq \rho_{0}, \qquad (5.3.18)$$

pur di scegliere:

$$\rho_1 \le \frac{\rho_0}{2||Q||_{M_{k,r}} + 1} \,. \tag{5.3.19}$$

Inoltre, per $\mathbf{x} \in V_{\rho_1}$ la \mathbf{T}_x è una contrazione in W_{ρ_0} ; infatti:

$$|\mathbf{T}_x(\mathbf{y}) - \mathbf{T}_x(\mathbf{y}')|_k = |\mathbf{G}(\mathbf{x}, \mathbf{y})|_k \le \frac{1}{2}|\mathbf{y} - \mathbf{y}'|_k \qquad \forall \mathbf{y}, \mathbf{y}' \in W_{\rho_0}.$$
 (5.3.20)

Essendo W_{ρ_0} uno spazio metrico con la distanza indotta dalla norma euclidea di \mathbb{R}^k , si conclude che $\forall \mathbf{x} \in V_{\rho_1} \exists ! \mathbf{f}(\mathbf{x}) \in W_{\rho_0}$ tale che $\mathbf{T}_x(\mathbf{f}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$, il che significa, per quanto detto, $\mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x})) = \mathbf{0}$. Si ha, in particolare, $\mathbf{f}(\mathbf{x}_0) = \mathbf{y}_0$. Abbiamo così costruito la funzione implicita:

$$\mathbf{f}: V_{\rho_1} \to W_{\rho_0} ,$$
 (5.3.21)

che, per il teorema delle contrazioni dipendenti da parametro, è continua. Quindi anche la funzione:

$$\mathbf{x} \mapsto \det[D_y \mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))],$$
 (5.3.22)

è continua in V_{ρ_1} ; allora, essendo $\det[D_y \mathbf{F}(\mathbf{x}_0, \mathbf{y}_0)] \neq 0$, avremo:

$$\det[D_y \mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))] \neq 0 \qquad \forall \mathbf{x} \in V_{\rho_1} . \tag{5.3.23}$$

Proviamo che \mathbf{f} è differenziabile in V_{ρ_1} . Sia $\mathbf{x}' \in V_{\rho_1}$. Poiché \mathbf{F} è differenziabile in $(\mathbf{x}', \mathbf{f}(\mathbf{x}')) \in V_{\rho_1} \times W_{\rho_0}$ si ha:

$$\mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x})) - \mathbf{F}(\mathbf{x}', \mathbf{f}(\mathbf{x}')) = D_x \mathbf{F}(\mathbf{x}', \mathbf{f}(\mathbf{x}'))(\mathbf{x} - \mathbf{x}') + D_y \mathbf{F}(\mathbf{x}', \mathbf{f}(\mathbf{x}'))(\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}') + o(\mathbf{x}, \mathbf{f}(\mathbf{x})) = \mathbf{0},$$
(5.3.24)

con:

$$\frac{\mathbf{o}(\mathbf{x}, \mathbf{y})}{\sqrt{|\mathbf{x} - \mathbf{x}'|_r^2 + |\mathbf{y} - \mathbf{f}(\mathbf{x}')|_k^2}} \to \mathbf{0} \quad \text{per} \quad \sqrt{|\mathbf{x} - \mathbf{x}'|_r^2 + |\mathbf{y} - \mathbf{f}(\mathbf{x}')|_k^2} \to 0. \quad (5.3.25)$$

Dunque si ha, ricavando $\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}')$, dividendo per $|\mathbf{x} - \mathbf{x}'|_r$ e facendo il limite per $\mathbf{x} \to \mathbf{x}'$:

$$D\mathbf{f}(\mathbf{x}') = -[D_y \mathbf{F}(\mathbf{x}', \mathbf{f}(\mathbf{x}'))]^{-1} \cdot [D_x \mathbf{F}(\mathbf{x}', \mathbf{f}(\mathbf{x}'))] \qquad \forall \mathbf{x}' \in V_{\rho_1}.$$
 (5.3.26)

5.4 Funzioni invertibili

Definizione 5.4.1. Una funzione $\mathbf{F}: A \subseteq \mathbb{R}^N \to \mathbb{R}^N$ si dice *localmente invertibile* in $\mathbf{x}_0 \in A$ se $\exists U \subseteq A$ intorno di \mathbf{x}_0 e $\exists V$ intorno di $\mathbf{F}(\mathbf{x}_0)$ tali che $\mathbf{F}: U \to V$ sia bigettiva.

Teorema 5.4.1 (Invertibilità locale). Siano $\mathbf{F}: A \subseteq \mathbb{R}^N \to \mathbb{R}^N$ di classe $C^1(A)$ e $\mathbf{x}_0 \in A$ tale che $\det[D\mathbf{F}(\mathbf{x}_0)] \neq 0$. Allora \mathbf{F} è localmente invertibile in \mathbf{x}_0 e la funzione inversa \mathbf{F}^{-1} è di classe C^1 in un intorno V di $\mathbf{y}_0 = \mathbf{F}(\mathbf{x}_0)$. Si ha inoltre:

$$D\mathbf{F}^{-1}(\mathbf{y}) = [D\mathbf{F}(\mathbf{F}^{-1}(\mathbf{y}))]^{-1} \quad \forall \mathbf{y} \in V.$$
 (5.4.1)

Dimostrazione. $\forall (\mathbf{x}, \mathbf{y}) \in A \times \mathbb{R}^N$ definisco la funzione $\mathbf{G} : A \times \mathbb{R}^N \to \mathbb{R}^N$ data da:

$$G(x, y) = y - F(x). (5.4.2)$$

Si vede immediatamente che G è composizione di funzioni di classe C^1 e dunque anch'essa sarà di classe C^1 , e la sua matrice Jacobiana sarà data da:

$$D\mathbf{G}(\mathbf{x}, \mathbf{y}) = (-D\mathbf{F}(\mathbf{x}) \mid I_N). \tag{5.4.3}$$

Si osserva che per ipotesi $\mathbf{G}(\mathbf{x}_0, \mathbf{y}_0) = \mathbf{0}$ e inoltre si ha $\det[\mathbf{G}_x(\mathbf{x}_0, \mathbf{y}_0)] = (-1)^N \det[D\mathbf{F}(\mathbf{x}_0)] \neq 0$ sempre per ipotesi. Allora la funzione \mathbf{G} soddisfa le ipotesi del teorema del Dini, pertanto esisteranno U intorno di \mathbf{x}_0 , V intorno di \mathbf{y}_0 e una funzione $\mathbf{g}: U \to V$ di classe C^1 tali che:

$$\mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{0} \qquad \Longleftrightarrow \qquad \mathbf{x} = \mathbf{g}(\mathbf{y}) \ . \tag{5.4.4}$$

che, per definizione di G, equivale a dire:

$$\mathbf{y} = \mathbf{F}(\mathbf{x}) \iff \mathbf{x} = \mathbf{g}(\mathbf{y}) .$$
 (5.4.5)

Da questa relazione otteniamo l'identità $\mathbf{y} = \mathbf{F}(\mathbf{g}(\mathbf{y}))$, da cui si deduce che $\mathbf{g} = \mathbf{F}^{-1}$. Abbiamo dunque dimostrato la prima parte del teorema, trovando appunto la funzione inversa \mathbf{g} per la quale, sempre per il teorema del Dini, vale:

$$D\mathbf{g}(\mathbf{y}) = -[\mathbf{G}_x(\mathbf{g}(\mathbf{y}), \mathbf{y})]^{-1} \cdot [\mathbf{G}_y(\mathbf{g}(\mathbf{y}), \mathbf{y})] = -[-D\mathbf{F}(\mathbf{g}(\mathbf{y}))]^{-1} \cdot I_N = [D\mathbf{F}(\mathbf{g}(\mathbf{y}))]^{-1}. \quad (5.4.6)$$

Sostituendo $\mathbf{g} = \mathbf{F}^{-1}$ infine, otteniamo:

$$D\mathbf{F}^{-1}(\mathbf{y}) = [D\mathbf{F}(\mathbf{F}^{-1}(\mathbf{y}))]^{-1}.$$
 (5.4.7)

Teorema 5.4.2 (Rango). Siano $\mathbf{F}: A \subseteq \mathbb{R}^N \to \mathbb{R}^N$, con N = k + r > k e $\mathbf{x}_0 \in A$. Se la matrice $D\mathbf{F}(\mathbf{x}_0)$ ha rango massimo k, ad esempio:

$$\det \left\{ \frac{\partial F_i}{\partial x^j}(\mathbf{x}_0) \right\}_{i,j=1,\dots,k} \neq 0 , \qquad (5.4.8)$$

allora $\exists U \subseteq A$ intorno di \mathbf{x}_0 ed $\exists V$ intorno di $(F_1(\mathbf{x}_0), \dots, F_k(\mathbf{x}_0))$ tale che $\mathbf{F}(U)$ è grafico di una funzione $\mathbf{h}(y^1, \dots, y^k) : V \to \mathbb{R}^r$ di classe C^1 . Il piano k-dimensionale tangente a $\mathbf{F}(U)$ nel punto $(\mathbf{x}_0, \mathbf{h}(\mathbf{y}_0)) = \mathbf{F}(\mathbf{x}_0)$ è il piano passante per $\mathbf{F}(\mathbf{x}_0)$ generato dai vettori $\partial F_i/\partial x_i$, $i = 1, \dots, k$ di equazione parametrica:

$$\mathbf{u} = \mathbf{F}(\mathbf{x}_0) + D\mathbf{F}(\mathbf{x}_0) \cdot \mathbf{t}, \quad \mathbf{t} \in \mathbb{R}^k ,$$
 (5.4.9)

cioè:

$$\mathbf{u} = \mathbf{F}(\mathbf{x}_0) + \sum_{i=1}^k \frac{\partial \mathbf{F}}{\partial x^i}(\mathbf{x}_0)t^i . \tag{5.4.10}$$

Dimostrazione. Scriviamo $\mathbf{u} \in \mathbb{R}^N$ come $\mathbf{u} \equiv (\mathbf{y}, \mathbf{z}), \mathbf{y} \in \mathbb{R}^k, \mathbf{z} \in \mathbb{R}^r$ e $\mathbf{F} \equiv (\mathbf{f}, \mathbf{g}), \mathbf{f} = (F_1, \dots, F_k), \mathbf{g} = (F_{k+1}, \dots, F_N)$. I punti di $\mathbf{F}(A)$ sono $\mathbf{u} = (\mathbf{y}, \mathbf{z})$ con:

$$\begin{cases} y^{i} = f_{i}(x^{1}, \dots, x^{k}) \\ z^{j} = g_{j}(x^{k+1}, \dots, x^{N}) \end{cases}$$
(5.4.11)

Per ipotesi, si ha $\det[D\mathbf{f}(\mathbf{x}_0)] \neq 0$, dunque per il teorema di invertibilità locale esisteranno U intorno di \mathbf{x}_0 , V intorno di \mathbf{y}_0 e $\mathbf{f}^{-1}: V \to U$ di classe C^1 . Si può dunque scrivere:

$$\begin{cases} x^{i} = (f^{-1})_{i}(y^{1}, \dots, y^{k}) \\ z^{j} = g_{j}(\mathbf{f}^{-1}(y^{1}, \dots, y^{k})) \end{cases}$$

$$(5.4.12)$$

Allora:

$$\mathbf{F}(U) = \left\{ (\mathbf{y}, \mathbf{z}) \in \mathbb{R}^N \mid \mathbf{y} \in V, \mathbf{z} = \mathbf{g}(\mathbf{f}^{-1}(\mathbf{y})) \right\}. \tag{5.4.13}$$

Posto $\mathbf{g} \circ \mathbf{f}^{-1} \equiv \mathbf{h}(y^1, \dots, y^k) : V \to \mathbb{R}^r$, l'equazione del piano tangente a $\mathbf{F}(U)$ sarà:

$$\begin{cases} \mathbf{y} = \mathbf{y} \\ \mathbf{z} = \mathbf{h}(\mathbf{y}_0) + D\mathbf{h}(\mathbf{y}_0)(\mathbf{y} - \mathbf{y}_0) \end{cases}$$
(5.4.14)

ovvero:

$$\begin{cases} \mathbf{y} = \mathbf{y} \\ \mathbf{z} = \mathbf{z}_0 + D\mathbf{g}(\mathbf{f}^{-1}(\mathbf{y}_0))(\mathbf{y} - \mathbf{y}_0) = \mathbf{z}_0 + D\mathbf{g}(\mathbf{x}_0) \cdot [D\mathbf{f}(\mathbf{x}_0)]^{-1}(\mathbf{y} - \mathbf{y}_0) \end{cases}$$
in vettoriale:

In forma vettoriale:

$$\begin{pmatrix} \mathbf{y} - \mathbf{y}_0 \\ \mathbf{z} - \mathbf{z}_0 \end{pmatrix} = \begin{pmatrix} D\mathbf{f}(\mathbf{x}_0) \\ D\mathbf{g}(\mathbf{x}_0) \end{pmatrix} \left[D\mathbf{f}^{-1}(\mathbf{x}_0)(\mathbf{y} - \mathbf{y}_0) \right] . \tag{5.4.16}$$

Posti:

$$\begin{pmatrix} \mathbf{y} - \mathbf{y}_0 \\ \mathbf{z} - \mathbf{z}_0 \end{pmatrix} = \mathbf{u} - \mathbf{F}(\mathbf{x}_0) ,$$

$$\begin{pmatrix} D\mathbf{f}(\mathbf{x}_0) \\ D\mathbf{g}(\mathbf{x}_0) \end{pmatrix} = D\mathbf{F}(\mathbf{x}_0) ,$$

$$D\mathbf{f}^{-1}(\mathbf{x}_0)(\mathbf{y} - \mathbf{y}_0) = \mathbf{t} \in \mathbb{R}^k ,$$
(5.4.17)

si ottiene:

$$\mathbf{u} = \mathbf{F}(\mathbf{x}_0) + D\mathbf{F}(\mathbf{x}_0) \cdot \mathbf{t}, \quad \mathbf{t} \in \mathbb{R}^k$$
 (5.4.18)

Massimi e minimi vincolati 5.5

Definizione 5.5.1. Sia $A \subseteq \mathbb{R}^N$ aperto, sia $f \in C^1(A)$ e sia K una varietà r-dimensionale (r < N) di classe C^1 contenuta in A. Un punto $\mathbf{x}_0 \in A$ si dice punto stazionario per f su K se $\mathbf{x}_0 \in K$ e il vettore $\nabla f(\mathbf{x}_0)$ è ortogonale all'iperpiano r-dimensionale tangente a K in \mathbf{x}_0 .

Teorema 5.5.1. Sia $A \subseteq \mathbb{R}^N$ aperto, sia $f \in C^1(A)$ e sia K una varietà r-dimensionale (r < N) di classe C^1 contenuta in A. Se $\mathbf{x}_0 \in K$ è punto di massimo o di minimo relativo per $f|_{K}$, allora \mathbf{x}_{0} è un punto stazionario vincolato per f su K.

Dimostrazione. Supponiamo che K sia della forma $K = \mathbf{g}(U)$, con $U \subseteq \mathbb{R}^r$ aperto e \mathbf{g} di classe C^1 con matrice Jacobiana di rango r per ogni punto di U. Sarà in particolare $\mathbf{x}_0 = \mathbf{g}(\mathbf{y}_0), \mathbf{y}_0 \in$ U. Per ipotesi, si ha che \mathbf{y}_0 è un punto di massimo o di minimo locale per la funzione composta $F(\mathbf{y}) = f(\mathbf{g}(\mathbf{y})), \mathbf{y} \in U$. Quindi deve essere:

$$D_i F(\mathbf{y}_0) = \sum_{j=1}^{N} D_j f(\mathbf{g}(\mathbf{y}_0)) D_i g_j(\mathbf{y}_0) = 0 \qquad i = 1, \dots, r,$$
 (5.5.1)

ossia:

$$\langle \nabla f(\mathbf{x}_0), D_i \mathbf{g}(\mathbf{y}_0) \rangle_N = 0 \qquad i = 1, \dots, r.$$
 (5.5.2)

Ciò significa che $\nabla f(\mathbf{x}_0)$ è ortogonale ai vettori $D_1\mathbf{g}(\mathbf{y}_0), \dots, D_r\mathbf{g}(\mathbf{y}_0)$, i quali, per il teorema del rango, sono i generatori del piano r-dimensionale tangente a K nel punto \mathbf{x}_0 . Ciò prova che in \mathbf{x}_0 il vettore $\nabla f(\mathbf{x}_0)$ è ortogonale a K, ottenendo così la tesi.

5.6 Metodo dei moltiplicatori di Lagrange

Teorema 5.6.1. Sia $A \subseteq \mathbb{R}^N$ aperto, sia $f \in C^1(A)$ e sia:

$$K = \{ \mathbf{x} \in A \mid \mathbf{G}(\mathbf{x}) = \mathbf{0} \}, \tag{5.6.1}$$

dove $\mathbf{G}: A \to \mathbb{R}^k$ (k < N) è una funzione di classe C^1 con matrice Jacobiana $D\mathbf{G}(\mathbf{x})$ di rango massimo $k \ \forall \mathbf{x} \in K$. Allora $\mathbf{x}_0 \in A$ è un punto stazionario vincolato per f su K se e solo se esiste $\mathbf{m}_0 \in \mathbb{R}^k$ tale che $(\mathbf{x}_0, \mathbf{m}_0)$ è punto stazionario libero in $A \times \mathbb{R}^k$ per la funzione Lagrangiana:

$$L(\mathbf{x}, \mathbf{m}) = f(\mathbf{x}) - \langle \mathbf{m}, \mathbf{G}(\mathbf{x}) \rangle_k.$$
 (5.6.2)

 $Dimostrazione. \iff$

Nelle ipotesi fatte, posto r = N - k, K è una varietà r-dimensionale di classe C^1 , in virtù del teorema del Dini. Sia $\mathbf{x}_0 \in K$ un punto stazionario vincolato per f: allora si ha $\mathbf{G}(\mathbf{x}_0) = \mathbf{0}$ e, per il teorema precedente, il vettore $\nabla f(\mathbf{x}_0)$ deve essere ortogonale al piano r-dimensionale tangente a K in \mathbf{x}_0 . Ma, essendo K una curva di livello della funzione \mathbf{G} , i vettori normali a K in \mathbf{x}_0 sono le righe della matrice Jacobiana $D\mathbf{G}(\mathbf{x}_0)$, ossia i vettori $\nabla G_1(\mathbf{x}_0), \ldots, \nabla G_k(\mathbf{x}_0)$. Quindi $\nabla f(\mathbf{x}_0)$ è combinazione lineare di tali vettori, e dunque esistono m_1, \ldots, m_k (detti moltiplicatori) tali che:

$$\nabla f(\mathbf{x}_0) - \sum_{i=1}^k m_i \nabla G_i(\mathbf{x}_0) = \mathbf{0} . \qquad (5.6.3)$$

In altre parole, il punto \mathbf{x}_0 verifica le condizioni:

$$\begin{cases}
D_{j} f(\mathbf{x}_{0}) - \sum_{i=1}^{k} m_{i} D_{j} G_{i}(\mathbf{x}_{0}) = 0 & j = 1, \dots, N \\
-G_{i}(\mathbf{x}_{0}) = 0 & i = 1, \dots, k
\end{cases} ,$$
(5.6.4)

le quali equivalgono, per definizione della Lagrangiana L e ponendo $\mathbf{m}_0 \equiv (m_1, \dots, m_k)$ all'annullarsi del gradiente di L in $(\mathbf{x}_0, \mathbf{m}_0)$ rispetto alle coordinate x_i e m_i .

 $Dimostrazione. \iff$

Se un punto $(\mathbf{x}_0, \mathbf{m}_0) \in A \times \mathbb{R}^k$ è stazionario per la Lagrangiana, ossia soddisfa il sistema sopra scritto, allora il secondo gruppo di equazioni ci dice che $\mathbf{x}_0 \in K$, mentre il primo gruppo esprime la lineare dipendenza di $\nabla f(\mathbf{x}_0)$ dai vettori normali a K in \mathbf{x}_0 . Ciò prova che \mathbf{x}_0 è punto stazionario vincolato per f su K.

Capitolo 6

Integrale di Lebesgue

6.1 Compattezza in spazi metrici

Definizione 6.1.1. Sia (X, d) uno spazio metrico. $K \subseteq X$ si dice *compatto* se ogni ricoprimento aperto di K, cioè ogni famiglia di aperti $\{U_i\}_{i\in I}$ tale che $\bigcup_{i\in I} U_i \supseteq K$, contiene un sottoricoprimento finito, cioè $\exists i_1, \ldots, i_m \in I$ tali che:

$$\bigcup_{k=1}^{m} U_{i_k} \supseteq K . \tag{6.1.1}$$

Definizione 6.1.2. Sia (X, d) uno spazio metrico. $K \subseteq X$ si dice *compatto per successioni* se ogni successione $\{x_n\}_{n\in\mathbb{N}}\subseteq K$ contiene una sottosuccessione che converge ad un elemento $x\in K$.

Proposizione 6.1.1. Sia (X, d) uno spazio metrico e $K \subseteq X$. Allora K è compatto se e solo se K è compatto per successioni.

 $Dimostrazione. \iff$

Sia $\{x_n\} \subseteq K$ compatto. Sia S l'insieme dei valori assunti da $\{x_n\}$. Si ha $S \subseteq K$. Se S è finito, esisterà sicuramente una sottosuccessione costante che dunque converge ad un elemento di $S \subseteq K$. Se invece S è infinito, dico che $\exists \overline{x} \in K$ tale che ogni intorno di \overline{x} contiene infiniti punti di S. Se per assurdo così non fosse, allora $\forall y \in K \exists B_y$ tale che $B_y \cap S$ è un insieme finito. Consideriamo $\{B_y\}_{y \in K} \supseteq K$. Per ipotesi di compattezza, $\exists y_1, \ldots, y_m \in K$ tali che:

$$\bigcup_{i=1}^{m} B_{y_i} \supseteq K . (6.1.2)$$

Allora si avrebbe:

$$S \subseteq \bigcup_{i=1}^{m} (B_{y_i} \cap S) . \tag{6.1.3}$$

Ma S è infinito, mentre $\bigcup_{i=1}^{m} (B_{y_i} \cap S)$ è finito, quindi l'inclusione è assurda. Allora avremo che:

$$\forall k \; \exists x_{n_k} \in B\left(\overline{x}, \frac{1}{k}\right) \;, \tag{6.1.4}$$

cioè:

$$\lim_{k \to \infty} x_{n_k} = \overline{x} \in K \ . \tag{6.1.5}$$

Per dimostrare la seconda implicazione, ci avvarremo della seguente definizione e del seguente lemma.

Definizione 6.1.3. Sia (X, d) uno spazio metrico, $K \subseteq X$ e $\{U_i\}_{i \in I}$ un ricoprimento aperto di K. Allora si definisce numero di Lebesgue del ricoprimento $u = \{U_i\}_{i \in I}$ la quantità:

$$\epsilon(u) \equiv \begin{cases} \sup\{\delta > 0 \mid \forall x \in K \ \exists i \in I : \overline{B(x, \delta)} \subseteq U_i \} \\ 0 \quad \text{se l'insieme sopra è vuoto} \end{cases}$$
(6.1.6)

Si ha evidentemente $\epsilon(u) \geq 0$.

Osservazione 6.1.1. Si ha $\epsilon(u) > 0$ se e solo se $\exists \delta > 0$ tale che $\forall x \in K \ \exists i \in I$ tale che $\overline{B(x,\delta)} \subseteq U_i$.

Lemma 6.1.1. Sia K un insieme compatto per successioni. Allora per ogni ricoprimento $u = \{U_i\}_{i \in I}$ di K si ha $\epsilon(u) > 0$.

Dimostrazione. $\forall x \in K$ consideriamo la quantità $\epsilon(x) = \sup\{\delta > 0 \mid \exists i \in I : \overline{B(x,\delta)} \subseteq U_i\}$. Si ha $\epsilon(x) > 0 \quad \forall x \in K$ e inoltre $\epsilon(u) = \inf_{x \in K} \epsilon(x)$. Infatti, in generale, si ha $\epsilon(u) \leq \epsilon(x) \quad \forall x \in K$ e in particolare $\epsilon(u) \leq \inf_{x \in K} \epsilon(x)$. Inoltre se δ è un numero reale tale che $0 < \delta < \inf_{x \in K} \epsilon(x)$, allora si verifica che $\delta \leq \epsilon(u)$. Pertanto, non vi è alcun numero reale compreso tra $\epsilon(u)$ e $\epsilon(x)$ e dunque $\epsilon(u) = \inf_{x \in K} \epsilon(x)$. Allora bisogna dimostrare che $\epsilon_0 = \inf_{x \in K} \epsilon(x) > 0$. Sappiamo che $\exists \{x_n\} \subseteq K$ tale che $\epsilon(x_n) \to \epsilon_0$. Per ipotesi di compattezza per successioni, $\exists \{x_{n_k}\}_{k \in \mathbb{N}} \subseteq \{x_n\}_{n \in \mathbb{N}}$ che converge ad un punto $x^* \in K$. Si ha evidentemente $\epsilon(x^*) > 0$. Per definizione di limite, $\exists k_0$ tale che $\forall k \geq k_0$ si ha definitivamente:

$$d(x_{n_k}, x^*) < \frac{1}{4}\epsilon(x^*) . {(6.1.7)}$$

Si verifica che:

$$B\left(x_{n_k}, \frac{1}{4}\epsilon(x^*)\right) \subseteq B\left(x^*, \frac{1}{2}\epsilon(x^*)\right) . \tag{6.1.8}$$

Infatti, sia $z \in B\left(x_{n_k}, \frac{1}{4}\epsilon(x^*)\right)$. Allora:

$$d(z, x^*) \le d(z, x_{n_k}) + d(x_{n_k}, x^*) < \frac{1}{4}\epsilon(x^*) + \frac{1}{4}\epsilon(x^*) = \frac{1}{2}\epsilon(x^*) \Longrightarrow z \in B\left(x^*, \frac{1}{2}\epsilon(x^*)\right) . \tag{6.1.9}$$

Pertanto, $\forall k \geq k_0$ e per un certo i_0 segue, per definizione di $\epsilon(x)$:

$$B\left(x^*, \frac{1}{2}\epsilon(x^*)\right) \subseteq U_{i_0} , \qquad (6.1.10)$$

e quindi:

$$\frac{1}{4}\epsilon(x^*) \le \epsilon(x_{n_k}) \quad \forall k \ge k_0 \ . \tag{6.1.11}$$

Passando al limite per $k \to \infty$ si ottiene:

$$0 \le \frac{1}{4}\epsilon(x^*) \le \epsilon_0 = \inf_{x \in K} \epsilon(x) . \tag{6.1.12}$$

 $Dimostrazione. \ (\Longleftrightarrow)$

Sia K compatto per successioni. Bisogna dimostrare che K è compatto. Sia $u = \{U_i\}_{i \in I}$ un ricoprimento di K e $\epsilon(u) > 0$. Supponiamo per assurdo che u non abbia sottoricoprimenti finiti. Allora $\forall \epsilon \in]0, \epsilon(u)[$ il ricoprimento $\{B(x,\epsilon)\}_{x \in K}$ non ha sottoricoprimenti finiti. Fissato $x_1 \in K$, si ha che $B(x_1,\epsilon)$ non ricopre K, dunque $\exists x_2 \in K \setminus B(x_1,\epsilon)$. $\{B(x_1,\epsilon), B(x_2,\epsilon)\}$ non ricopre K e dunque $\exists x_3 \in K \setminus \bigcup_{i=1}^2 B(x_i,\epsilon)$. Induttivamente, si costruisce:

$$x_n \in K \setminus \bigcup_{i=1}^{n-1} B(x_i, \epsilon) . \tag{6.1.13}$$

 $\{x_n\} \subseteq K$ è una successione che non ha sottosuccessioni convergenti, poiché $d(x_n, x_m) > \epsilon$ se n > m. Ma ciò costituisce un assurdo in quanto per ipotesi K è compatto per successioni. Quindi risulta che $\{U_i\}_{i\in I}$ ha un sottoricoprimento finito di K e dunque K è compatto. \square

6.2 Misura di Lebesgue

Sia \mathfrak{M}_N la classe degli insiemi misurabili di \mathbb{R}^N , $\mathfrak{M}_N \subset \mathcal{P}(\mathbb{R}^N)$. Definiamo i parallelepipedi N-dimensionali P come:

$$P \equiv \prod_{i=1}^{N} \,]a_i, b_i[\, , \tag{6.2.1}$$

e denotiamo con \mathcal{P}_N l'insieme dei parallelepipedi N-dimensionali.

Definizione 6.2.1. Si definisce volume N-dimensionale di un parallelepipedo $P \in \mathcal{P}_N$ la quantità:

$$V_N(P) \equiv \prod_{i=1}^{N} (b_i - a_i) , \qquad (6.2.2)$$

con la convenzione che $0 \cdot \infty = 0$.

Definizione 6.2.2. $\forall E \subseteq \mathbb{R}^N$ si definisce *misura esterna* la quantità:

$$m_N^*(E) = \inf \left\{ \sum_{k \in \mathbb{N}} V_N(P_k), P_k \in \mathcal{P}_N \text{ aperti } | \bigcup_{k \in \mathbb{N}} P_k \supset E \right\}$$
 (6.2.3)

Definizione 6.2.3. Sia $A \subseteq \mathbb{R}^N$. Si definisce *chiusura* di A l'insieme:

$$\overline{A} = A \cup \partial A \,, \tag{6.2.4}$$

dove ∂A indica la frontiera di A.

Definizione 6.2.4. Sia $A \subseteq \mathbb{R}^N$. Si definisce parte interna di A l'insieme:

$$\overset{\circ}{A} = A \setminus \partial A \ . \tag{6.2.5}$$

Proposizione 6.2.1 (Proprietà della misura esterna). 1. $\forall E \subseteq \mathbb{R}^N, \quad m_N^*(E) \geq 0;$

- 2. $m_N^*(\emptyset) = 0$, $m_N^*(\{\mathbf{x}\}) = 0$;
- 3. m_N^* è monotona crescente rispetto all'inclusione;
- 4. m_N^* è invariante per traslazione;

5. $m_N^* = V_N$ sulla classe \mathcal{P}_N dei parallelepipedi;

6. m_N^* è numerabilmente subadditiva, cioè se $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{P}(\mathbb{R}^N)$, allora

$$m_N^* \left(\bigcup_{n=1}^{\infty} E_n \right) \le \sum_{n=1}^{\infty} m_N^*(E_n)$$
 (6.2.6)

Lemma 6.2.1. Sia $P \in \mathcal{P}_N$. Se $j \in \{1, ..., N\}$ e $c \in \mathbb{R}$, posti:

$$P_1 = P \cap \{x \mid x_j \le c\},$$
 $P_2 = \{x \mid x_j \ge c\},$ (6.2.7)

allora:

$$V_N(P) = V_N(P_1) + V_N(P_2) . (6.2.8)$$

Dimostrazione. Sia $P = \prod_{i=1}^{N} a_i, b_i$. Sezioniamo P con un piano della forma $x_j = c$, con $a_j < c < b_j$. Si ha $P = P_1 \cup P_2$ dove:

$$P_1 =]a_1, b_1[\times \cdots \times]a_j, c[\times \cdots \times]a_N, b_N[,$$

$$P_2 =]a_1, b_1[\times \cdots \times]c, b_j[\times \cdots \times]a_N, b_N[.$$

$$(6.2.9)$$

Allora:

$$V_N(P) = \prod_{i=1}^N (b_i - a_i) = (b_j - a_j) \prod_{i \neq j} (b_i - a_i) = (b_j - c + c - a_j) \prod_{i \neq j} (b_i - a_i)$$

$$= (c - a_j) \prod_{i \neq j} (b_i - a_i) + (b_j - c) \prod_{i \neq j} (b_i - a_i) = V_N(P_1) + V_N(P_2) . \tag{6.2.10}$$

Lemma 6.2.2. Se $P \in \mathcal{P}_N$, $P = \bigcup_{i=1}^k P_i$, con $P_i \in \mathcal{P}_N$ e $\stackrel{\circ}{P_i} \cap \stackrel{\circ}{P_j} = \{0\}$ allora:

$$V_N = \sum_{i=1}^k V_N(P_i) . (6.2.11)$$

Dimostrazione. (proprietà 5) Sia $P \in \mathcal{P}_N$. Distinguiamo tre casi:

$$V_N(P) = \begin{cases} 0 \\ \in \mathbb{R}^+ \\ \infty \end{cases}$$
 (6.2.12)

Se $V_N = 0$, l'uguaglianza è ovvia. Supponiamo dunque $0 < V_N < \infty$ e P aperto. Allora P è un ricoprimento di se stesso e quindi, per definizione di misura esterna si ha $m_N^*(P) \le V_N(P)$. Se P non è aperto, si ha:

$$\prod_{i=1}^{N} |a_i, b_i| \subseteq P \subseteq \prod_{i=1}^{N} [a_i, b_i] , \qquad (6.2.13)$$

e inoltre, $\forall \epsilon > 0$ si ha:

$$P \subseteq \prod_{i=1}^{N} \left[a_i - \epsilon, b_i + \epsilon \right]. \tag{6.2.14}$$

Si tratta di un ricoprimento di P, quindi segue:

$$m_N^*(P) \le V_N(P_\epsilon) = \prod_{i=1}^N (b_i - a_i + 2\epsilon) \le V_N(P) + \epsilon C$$
, (6.2.15)

dunque anche in questo caso $m_N^*(P)$ è un minorante. Dimostriamo adesso la diseguaglianza inversa. Sia $\{P_k\}$ un ricoprimento di P, con $P_k \in \mathcal{P}_N \quad \forall k$. Supponiamo P chiuso e limitato, dunque compatto. Per definizione di compattezza, è possibile estrarre un sottoricoprimento finito di P da $\{P_k\}$, cioè $\exists P_{k_1}, \ldots, P_{k_m}$ tali che:

$$P \subseteq \bigcup_{i=1}^{m} P_{k_i} \subseteq \bigcup_{k \in \mathbb{N}} P_k . \tag{6.2.16}$$

Allora:

$$\sum_{i=1}^{m} V_N(P_{k_i}) \le \sum_{k \in \mathbb{N}} V_N(P_k) . \tag{6.2.17}$$

Consideriamo gli insiemi $Q_{k_i} = P_{k_i} \cap P \in \mathcal{P}_N$. Si ha ovviamente che $\bigcup_{i=1}^m Q_{k_i} = P$ ed inoltre:

$$\sum_{i=1}^{m} V_N(Q_{k_i}) \le \sum_{i=1}^{m} V_N(P_{k_i}) . \tag{6.2.18}$$

Consideriamo le sovrapposizioni dei Q_{k_i} come parallelepipedi a sé stanti. Allora, avendo contato le intersezioni una sola volta, l'unione di tutte le divisioni di $V_N(P)$ così create verifica, per il lemma:

$$V_N(P) \le \sum_{i=1}^m V_N(Q_{k_i}) \le \sum_{i=1}^m V_N(P_{k_i}) \le \sum_{k \in \mathbb{N}} V_N(P_k) , \qquad (6.2.19)$$

e, in particolare:

$$V_N(P) \le \inf \left\{ \sum_{k \in \mathbb{N}} V_N(P_k) \mid \bigcup_{k \in \mathbb{N}} P_k \supseteq P \right\} = m_N^*(P) . \tag{6.2.20}$$

Se invece $0 < V_N(P) < \infty$ e P non è compatto, allora \overline{P} è compatto e dunque, per quanto visto:

$$V_N(P) = V_N(\overline{P}) = m_N^*(\overline{P}) = m_N^*(P \cup \partial P) \le m_N^*(P) + m_N^*(\partial P)$$
. (6.2.21)

Ma per definizione, $m_N^*(\partial P) = 0$, dunque si ottiene:

$$V_N(P) \le m_N^*(P) \ . \tag{6.2.22}$$

Se $V_N(P) = \infty$, sia $Q_n = [-n, n]^N$. Allora:

$$V_N(P \cap Q_n) \le V_N(P) = \infty . (6.2.23)$$

Facendo tendere $n \to \infty$ si ha:

$$\lim_{n \to \infty} V_N(P \cap Q_n) = \infty = V_N(P) . \tag{6.2.24}$$

Consideriamo $P \cap Q_n \in \mathcal{P}_N$. Per ipotesi e per monotonia della misura esterna $(P \cap Q_n \subseteq P)$ si ha:

$$V_N(P \cap Q_n) \le m_N^*(P \cap Q_n) \le m_N^*(P)$$
 (6.2.25)

Facendo tendere $n \to \infty$, per il teorema del confronto, si ha $m_N^*(P) \to \infty$ e dunque $m_N^*(P) = V_N(P)$.

Dimostrazione. (Proprietà 6)

 $\forall n \text{ sia } E_n \subseteq \mathbb{R}^N, \text{ con } E = \bigcup_{n \in \mathbb{N}} E_n.$ Sappiamo che $\forall \epsilon \in \forall n, \exists \{P_{kn}\}$ ricoprimento aperto di E_n tale che:

$$\sum_{n=1}^{\infty} V_N(P_{kn}) < m_N^*(E_n) + \frac{\epsilon}{2^n} . \tag{6.2.26}$$

Poiché $E \subseteq \bigcup_{k,n\in\mathbb{N}} P_{kn}$, segue che:

$$m_N^*(E) \le \sum_{k,n=1}^{\infty} V_N(P_{kn}) = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} V_N(P_{kn}) \right) \le \sum_{n=1}^{\infty} m_N^*(E_n) + \epsilon \sum_{n=1}^{\infty} \frac{1}{2^n}$$
 (6.2.27)

La seconda serie converge a 1, dunque si ottiene:

$$m_N^*(E) \le \sum_{n=1}^{\infty} m_N^*(E_n) + \epsilon$$
 (6.2.28)

6.2.1 Classe dei misurabili

Definizione 6.2.5. Si definisce classe dei misurabili l'insieme:

$$\mathfrak{M}_N \equiv \left\{ E \subseteq \mathbb{R}^N \mid m_N^*(A) = m_N^*(A \cap E) + m_N^*(A \cap E^c), \forall A \subseteq \mathbb{R}^N \right\} . \tag{6.2.29}$$

Osservazione 6.2.1. $\mathfrak{M}_N \neq \{0\}$.

Osservazione 6.2.2. Per dimostrare che $E \in \mathfrak{M}_N$, è sufficiente dimostrale la diseguaglianza \geq , in quanto la diseguaglianza \leq discende immediatamente dalla proprietà (6) della misura esterna.

Osservazione 6.2.3. Se $m_N^*(E) = 0$, allora $E \in \mathfrak{M}_N$.

Dimostrazione. Sia $A \in \mathbb{R}^N$. Poiché $A \cap E^c \subseteq A$, per monotonia della misura esterna segue che $m_N^*(A \cap E^c) \leq m_N^*(A)$. Inoltre, poiché $A \cap E \subseteq E$, si ha $0 \leq m_N^*(A \cap E) \leq m_N^*(E) = 0$ da cui segue $m_N^*(A \cap E) = 0$. Allora si ottiene:

$$m_N * (A \cap E^c) + m_N^*(A \cap E) \le m_N^*(A) + m_N^*(E) = m_N^*(A)$$
 (6.2.30)

Proposizione 6.2.2. \mathfrak{M}_N è una σ -algebra, cioè è chiusa per unione e passaggio al complementare.

Lemma 6.2.3. Siano $E, F \in \mathfrak{M}_N$. Allora $E \cup F \in \mathfrak{M}_N$.

Dimostrazione. Sia $A \subseteq \mathbb{R}^N$. Poiché $E \in \mathfrak{M}_N$, si ha:

$$m_N^*(A) = m_N^*(A \cap E) + m_N^*(A \cap E^c)$$
 (6.2.31)

Usiamo l'insieme $A \cap E^c$ come test per F:

$$m_N^*(A) = m_N^*(A \cap E) + m_N^*((A \cap E^c) \cap F) + m_N^*((A \cap E^c) \cap F^c).$$
(6.2.32)

Valgono le relazioni $A \cap E^c \cap F = A \cap (F \setminus E)$, $A \cap E^c \cap F^c = A \cap (E \cup F)^c$ e $E \cup F \setminus E = E \cup F$, da cui $A \cap (E \cup (F \setminus E)) = A \cap (E \cup F)$. Dunque, per subadditività:

$$m_N^*(A) \ge m_N^*((A \cap E) \cup (A \cap F \setminus E)) + m_N^*(A \cap (E \cup F)^c)$$

$$= m_N^*(A \cap (E \cup F \setminus E)) + m_N^*(A \cap (E \cup F)^c)$$

$$= m_N^*(A \cap (E \cup F)) + m_N^*(A \cap (E \cup F)^c), \qquad (6.2.33)$$

da cui segue che $E \cup F \in \mathfrak{M}_N$.

Corollario 6.2.0.1. Siano $E, F \in \mathfrak{M}_N$. Allora $E \setminus F, E \cap F \in \mathfrak{M}_N$.

Dimostrazione. Se $E, F \in \mathfrak{M}_N$, allora per definizione $E^c, F^c \in \mathfrak{M}_N$. Poiché \mathfrak{M}_N è chiusa per unione e passaggio al complementare, si ha:

$$(E^c \cup F^c)^c = E \cap F \in \mathfrak{M}_N . \tag{6.2.34}$$

Poiché $E \setminus F = E \cap F^c$, per quanto visto si ha immediatamente che $E \setminus F \in \mathfrak{M}_N$.

Lemma 6.2.4 (Finita additività dei disgiunti). Siano $E_1, \ldots, E_n \in \mathfrak{M}_N$ disgiunti. Allora:

$$m_N^* \left(A \cap \bigcup_{i=1}^n E_i \right) = \sum_{i=1}^n m_N^* (A \cap E_i) .$$
 (6.2.35)

Dimostrazione. (per induzione su n)

Se n=1, è banalmente vero. Dimostriamo che $n \Longrightarrow n+1$. Consideriamo $E_1, \ldots, E_{n+1} \in \mathfrak{M}_N$ disgiunti e applichiamo la definizione dei misurabili a E_{n+1} prendendo come test $A \cap \bigcup_{i=1}^{n+1} E_i$:

$$m_N^* \left(A \cap \bigcup_{i=1}^{n+1} E_i \right) = m_N^* \left(A \cap \bigcup_{i=1}^{n+1} E_i \cap E_{n+1} \right) + m_N^* \left(A \cap \bigcup_{i=1}^{n+1} E_i \cap E_{n+1}^c \right) . \tag{6.2.36}$$

Si ha $\bigcup_{i=1}^{n+1} E_i \cap E_{n+1} = E_{n+1}$ e $\bigcup_{i=1}^{n+1} E_i \cap E_{n+1}^c = \bigcup_{i=1}^n E_i$, dunque si ottiene:

$$m_N^* \left(A \cap \bigcup_{i=1}^{n+1} E_i \right) = m_N^* (A \cap E_{n+1}) + m_N^* \left(A \cap \bigcup_{i=1}^n E_i \right) .$$
 (6.2.37)

Applicando l'ipotesi induttiva al secondo addendo, segue che:

$$m_N^* \left(A \cap \bigcup_{i=1}^{n+1} E_i \right) = m_N^* (A \cap E_{n+1}) + \sum_{i=1}^n m_N^* (A \cap E_i) = \sum_{i=1}^{n+1} m_N^* (A \cap E_i) . \tag{6.2.38}$$

Proposizione 6.2.3. Sia $\{E_n\} \subseteq \mathfrak{M}_N$ e $E = \bigcup_{n \in \mathbb{N}} E_n$. Allora $E \in \mathfrak{M}_N$.

Dimostrazione. $\forall n$ definisco la successione $\{F_n\}$ nel seguente modo:

$$\begin{cases}
F_0 = E_0 \\
F_{n+1} = E_{n+1} \setminus \bigcup_{k=0}^n F_k
\end{cases}$$
(6.2.39)

 $\forall n$ si ha $\bigcup_{k=0}^n F_k = \bigcup_{k=0}^n E_k$. Inoltre gli F_k sono disgiunti e numerabili. Posto $E = \bigcup_{k=0}^\infty F_k$ si ha:

$$m_N^*(A) = m_N^* \left(A \cap \bigcup_{k=0}^n F_k \right) + m_N^* \left(A \cap \left(\bigcup_{k=0}^n F_k \right)^c \right)$$
 (6.2.40)

Usando il lemma precedente, il secondo membro diventa:

$$m_N^*(A) = \sum_{k=0}^n m_N^*(A \cap F_k) + m_N^* \left(A \cap \bigcap_{k=0}^n F_k^c \right)$$

$$\geq \sum_{k=0}^\infty m_N^*(A \cap F_k) + m_N^* \left(A \cap \bigcap_{k=0}^\infty F_k^c \right)$$

$$= \sum_{k=0}^\infty m_N^*(A \cap F_k) + m_N^*(A \cap E^c) \geq m_N^*(A \cap E) + m_N^*(A \cap E^c) . \tag{6.2.41}$$

Dove l'ultima minorazione segue dalla proprietà di subadditività della misura esterna.

Proposizione 6.2.4 (Numerabile additività su disgiunti misurabili). Se $\{E_n\} \in \mathfrak{M}_N$ sono disgiunti, allora:

$$m_N^* \left(\bigcup_{n \in \mathbb{N}} E_n \right) = \sum_{n \in \mathbb{N}} m_N^*(E_n) . \tag{6.2.42}$$

Dimostrazione. La diseguaglianza \leq discende immediatamente dalla proprietà di subadditività della misura esterna. Sappiamo, dalla proposizione precedente che $\forall n$ si ha:

$$m_N^* \left(\bigcup_{i=1}^n E_i \right) = \sum_{i=1}^n m_N^*(E_i) .$$
 (6.2.43)

Per la monotonia della misura esterna, si ha:

$$m_N^* \left(\bigcup_{i=1}^{\infty} E_i \right) \ge m_N^* \left(\bigcup_{i=1}^n E_i \right) = \sum_{i=1}^n m_N^*(E_i) ,$$
 (6.2.44)

per $n \to \infty$, si ottiene:

$$m_N^* \left(\bigcup_{i=1}^{\infty} E_i \right) \ge \sum_{i=1}^{\infty} m_N^*(E_i)$$
 (6.2.45)

Proposizione 6.2.5. Se $P \in \mathcal{P}_N$, allora $P \in \mathfrak{M}_N$.

Dimostrazione. Possiamo supporre P aperto. Sia $A \subseteq \mathbb{R}^N$, dimostriamo che $m_N^*(A) \ge m_N^*(A \cap P) + m_N^*(A \cap P^c)$. Fissato $\epsilon > 0$, $\exists \{P_n\} \subseteq \mathcal{P}_N, P_n$ aperti, che ricopre A tale che:

$$\sum_{n\in\mathbb{N}} V_N(P_n) \le m_N^*(A) + \epsilon \quad \text{cioè} \quad m_N^*(A) \ge -\epsilon + \sum_{n\in\mathbb{N}} V_N(P_n) . \tag{6.2.46}$$

Osserviamo che $\forall n, P_n \cap P$ è un parallelepipedo aperto, $P_n \setminus \overline{P}$ è unione finita aperta di parallelepipedi. Sia $P_n \setminus \overline{P} = \bigcup_{j=1}^{h_n} R_{jn}$, con $R_{jn} \in \mathcal{P}_N$ privi di punti interni comuni. Allora:

$$V_N(P) = V_N(P_n \cap P) + \sum_{j=1}^{h_n} V_N(R_{jn}) , \qquad (6.2.47)$$

e dunque:

$$m_N^*(A) \ge -\epsilon + \sum_{n \in \mathbb{N}} \left[V_N(P_n \cap P) + \sum_{j=1}^{h_n} V_N(R_{jn}) \right]$$
 (6.2.48)

Per definizione di misura esterna, $m_N^*(A \cap P) \leq \sum_{n \in \mathbb{N}} V_N(P_n \cap P)$, pertanto:

$$m_N^*(A) \ge -\epsilon + m_N * (A \cap P) + \sum_{n \in \mathbb{N}} \sum_{i=1}^{h_n} V_N(R_{jn})$$
 (6.2.49)

Si ha inoltre $A \setminus \overline{P} \subseteq \bigcup_{n \in \mathbb{N}} (P_n \setminus \overline{P}) = \bigcup_{n \in \mathbb{N}} \bigcup_{j=1}^{h_n} R_{jn}$, dunque per monotonia, $m_N^*(A \setminus \overline{P}) \le m_N^* \left(\bigcup_{n \in \mathbb{N}} (P_n \setminus \overline{P}) = m_N^* \left(\bigcup_{n \in \mathbb{N}} \bigcup_{j=1}^{h_n} R_{jn}\right) \le \text{(subadditività)} \le \sum_{n \in \mathbb{N}} m_N^* \left(\bigcup_{j=1}^{h_n} R_{jn}\right) = \text{(finita additività dei disgiunti)} = \sum_{n \in \mathbb{N}} \sum_{j=1}^{h_n} m_N^*(R_{jn}) = \text{(proprietà 5 della misura esterna)} = \sum_{n \in \mathbb{N}} \sum_{j=1}^{h_n} V_N(R_{jn})$. Dunque si ottiene:

$$m_N^*(A) \ge -\epsilon + m_N^*(A \cap P) + m_N^*(A \setminus \overline{P}). \tag{6.2.50}$$

Ma $A \setminus \overline{P} \subseteq A \setminus P = (A \setminus \overline{P}) \cup (A \cap \partial P)$, da cui: $m_N^*(A \setminus \overline{P}) \leq m_N^*(A \setminus P) \leq m_N^*(A \setminus \overline{P}) + m_N^*(A \cap \partial P)$. Poiché $m_N^*(A \cap \partial P) = 0$, si ottiene $m_N^*(A \setminus P) = m_N^*(A \setminus \overline{P})$ e quindi:

$$m_N^*(A) \ge -\epsilon + m_N^*(A \cap P) + m_N^*(A \setminus P) = -\epsilon + m_N^*(A \cap P) + m_N^*(A \cap P^c)$$
. (6.2.51)

Definizione 6.2.6. Sia $E \subseteq \mathbb{R}^N$. Si definisce distanza di un punto $\mathbf{x} \in \mathbb{R}^N$ da E la quantità:

$$d(\mathbf{x}, E) := \inf\{|\mathbf{x} - \mathbf{y}|_N \mid \mathbf{y} \in E\}.$$
(6.2.52)

Vale la proprietà:

$$|d(\mathbf{x}, E) - d(\mathbf{x}', E)| \le |\mathbf{x} - \mathbf{x}'|_{N}. \tag{6.2.53}$$

Ciò implica che d è continua.

Proposizione 6.2.6 (Misurabilità degli aperti). $\forall A \subseteq \mathbb{R}^N$ aperto $\exists \{P_n\} \subseteq \mathcal{P}_N$ tale che $A = \bigcup_{n \in \mathbb{N}} P_n$ e quindi $A \in \mathfrak{M}_N$.

Dimostrazione. $\forall n \in \mathbb{N}$ definiamo l'insieme K_n nel seguente modo:

$$K_n \equiv \begin{cases} \left\{ \mathbf{x} \in A \mid d(\mathbf{x}, \partial A) \ge \frac{1}{n} \right\} & A \text{ limitato} \\ K_n \cap \overline{B(\mathbf{0}, n)} & A \text{ non limitato} \end{cases}$$
(6.2.54)

Si ha $\forall n, K_n \subseteq K_{n+1} \subseteq A$ e $\bigcup_{n \in \mathbb{N}} K_n = A$. Evidentemente, $\forall n \ \exists Q (\mathbf{x}, 1/n)$ cubo aperto inscritto in $B(\mathbf{x}, 1/n)$ tale che:

$$K_n \subseteq \bigcup_{\mathbf{x} \in K_n} Q\left(\mathbf{x}, \frac{1}{n}\right) ,$$
 (6.2.55)

dunque abbiamo un ricoprimento del compatto K_n . Per definizione di compattezza, $\exists Q_1^{(n)}, \dots, Q_{h_n}^{(n)} \subseteq \{B\left(\mathbf{x}, \frac{1}{n}\right)\}$ tali che:

$$K_n \subseteq \bigcup_{i=1}^{h_n} Q_i^{(n)} . \tag{6.2.56}$$

Da ciò segue che:

$$A \subseteq \bigcup_{n=1}^{\infty} \bigcup_{i=1}^{h_n} Q_i^{(n)} \subseteq A \Longrightarrow A = \bigcup_{n=1}^{\infty} \bigcup_{i=1}^{h_n} Q_i^{(n)}. \tag{6.2.57}$$

Definizione 6.2.7. Si definisce \mathfrak{B}_N la σ -algebra dei boreliani, cioè la minima σ -algebra che contiene gli aperti, o equivalentemente la σ -algebra generata dagli aperti.

Definizione 6.2.8. Sia X un insieme e $\mathfrak{M} \subseteq \mathcal{P}(X)$. \mathfrak{M} si definisce σ -algebra se:

- 1. $\emptyset, X \in \mathfrak{M};$
- 2. $E \in \mathfrak{M} \Longrightarrow E^c \in \mathfrak{M}$;
- 3. ${E_n}_{n\in\mathbb{N}}\subseteq\mathfrak{M}\Longrightarrow\bigcup_{n\in\mathbb{N}}E_n\in\mathfrak{M}$.

Proposizione 6.2.7. Se \mathfrak{M}_i è una σ -algebra, $\mathfrak{M}_i \subseteq \mathcal{P}(X), i \in I$, allora $\bigcap_{i \in I} \mathfrak{M}_i$ è ancora una σ -algebra.

Osservazione 6.2.4. Sia $\{\mathcal{C} \subseteq \mathcal{P}(\mathbb{R}^N) \mid \mathcal{C} \text{ è una } \sigma\text{-algebra che contiene gli aperti}\}$. Allora:

$$\mathfrak{M}_N \cap \mathcal{C} = \mathfrak{B}_N \,, \tag{6.2.58}$$

e dunque $\mathfrak{B}_N \subseteq \mathfrak{M}_N$ (in particolare, $\mathfrak{B}_N \subset \mathfrak{M}_N$).

Definizione 6.2.9 (Insieme ternario di Cantor).

$$C_3 := [0,1] \setminus \bigcup_{n=1}^{\infty} \bigcup_{j=1}^{2^{n-1}} I_{jn} ,$$
 (6.2.59)

dove $l(I_{jn}) = \frac{1}{3^n}$.

Osservazione 6.2.5. Poiché $[0,1] \setminus C_3$ è l'unione di intervalli aperti e disgiunti, si ha:

$$m_1^*([0,1] \setminus C_3) = \sum_{n=1}^{\infty} \sum_{i=1}^{2^{n-1}} \frac{1}{3^n} = \sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n} = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n = \frac{1}{2} \cdot \frac{2/3}{1 - 2/3} = 1,$$
 (6.2.60)

da cui segue $m_1^*(C_3) = 0$. In generale, $\forall \lambda \in]0,1[$:

$$C_{1/\lambda} = [0, 1] \setminus \bigcup_{n=1}^{\infty} \bigcup_{j=1}^{2^{n-1}} I_{jn} ,$$
 (6.2.61)

con $l(I_{jn}) = \lambda^n$. Quindi:

$$m_1^*([0,1] \setminus C_{1/\lambda}) = \frac{\lambda}{1-2\lambda} < 1,$$

 $m_1^*(C_{1/\lambda}) = 1 - \frac{\lambda}{1-2\lambda}.$ (6.2.62)

Osservazione 6.2.6. C_3 può essere definito anche nel seguente modo:

$$C_3 := \{x \in [0,1] \mid \text{esiste uno sviluppo ternario in cui non figura la cifra 1} \}.$$
 (6.2.63)

Osservazione 6.2.7. Sia $f \in \mathcal{R}(a,b)$ (Riemann-integrabile), f > 0. Fissato n, definiamo:

$$I_{i} = \left[a + i \frac{b - a}{n}, a + (i + 1) \frac{b - a}{n} \right], \qquad i = 1, \dots, n - 1,$$

$$P_{i}^{n} = \left[a + i \frac{b - a}{n}, a + (i + 1) \frac{b - a}{n} \right] \times \left[0, \inf_{x \in I_{i}} f(x) \right]. \tag{6.2.64}$$

Allora:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = m_{2}^{*} \left(\bigcup_{n=1}^{\infty} \bigcup_{i=0}^{n-1} P_{i}^{n} \right) = m_{2}^{*} (\{(x,y) \mid x \in [a,b], 0 \le y \le f(x)\}) \,. \tag{6.2.65}$$

Il grafico Γ di f dato da $\Gamma_f = \{(x,y) \mid x \in [a,b], y = f(x)\}$ è misurabile, e si ha $m_2^*(\Gamma_f) = 0$. Osservazione 6.2.8. Sia $E \subseteq \mathbb{R}^N$ aperto e $t \in \mathbb{R}$. Definiamo $tE := \{t\mathbf{x} \mid \mathbf{x} \in E\}$. Allora si ha: $m_N^*(tE) = |t|^N m_N^*(E)$.

Definizione 6.2.10 (Misura di Lebesgue). Si definisce *misura di Lebesgue* la quantità:

$$m_N \equiv m_N^* |_{\mathfrak{M}_N} \,, \tag{6.2.66}$$

cioè la misura esterna ristretta alla classe dei misurabili.

Proposizione 6.2.8. Siano $E, F \in \mathfrak{M}_N$. Allora:

$$m_N(E \cup F) + m_N(E \cap F) = m_N(E) + m_N(F)$$
 (6.2.67)

Dimostrazione. $E \cup F = (E \cap F) \cup (E \setminus F) \cup (F \setminus E)$. Per l'additività sui disgiunti misurabili:

$$m_N(E \cup F) = m_N(E \cap F) + m_N(E \setminus F) + m_N(F \setminus E)$$

= $m_N(E \cap F) + m_N(E \setminus (E \cap F)) + m_N(F \setminus (E \cap F))$. (6.2.68)

Per l'additività, $m_N(E \cap F) + m_N(E \setminus (E \cap F)) = m_N((E \cap F) \cup (E \setminus (E \cap F))) = m_N(E)$. Allora:

$$m_N(E \cup F) = m_N(E) + m_N(F \setminus (E \cap F)). \tag{6.2.69}$$

Aggiungendo ad ambo i membri la quantità $m_N(E \cap F)$ si ha:

$$m_N(E \cup F) + m_N(E \cap F) = m_N(E) + m_N(F \setminus (E \cap F)) + m_N(E \cap F)$$
 (6.2.70)

Applicando il medesimo ragionamento precedente agli ultimi due addendi del secondo membro, si ottiene:

$$m_N(E \cup F) + m_N(E \cap F) = m_N(E) + m_N(F)$$
 (6.2.71)

Proposizione 6.2.9. Sia $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathfrak{M}_N$. Allora:

1. $E_n \subseteq E_{n+1} \quad \forall n \Longrightarrow \lim_{n \to \infty} m_N(E_n) = m_N\left(\bigcup_{n \in \mathbb{N}} E_n\right);$

2.
$$E_n \supseteq E_{n+1} \quad \forall n \ e \ \exists n_0 \ tale \ che \ m_N(E_{n_0}) < \infty \ allora \ \lim_{n \to \infty} m_N(E_n) = m_N \left(\bigcap_{n \in \mathbb{N}} E_n \right).$$

Dimostrazione. (1)

Costruiamo una successione $\{F_n\}$ data da:

$$\begin{cases}
F_0 = E_0 \\
F_n = E_n \setminus E_{n-1}
\end{cases}$$
(6.2.72)

Si ha che $E_n = \bigcup_{k=0}^n F_k$, $\bigcup_{n \in \mathbb{N}} E_n = \bigcup_{n \in \mathbb{N}} F_n$ e gli F_k sono disgiunti. Allora, per la numerabile additività dei disgiunti:

$$m_N(E_n) = \sum_{k=0}^n m_N(F_k) ,$$
 (6.2.73)

che per $n \to \infty$ diventa:

$$m_N(E_n) = \sum_{n=0}^{\infty} m_N(F_n) = m_N \left(\bigcup_{n \in \mathbb{N}} F_n \right) = m_N \left(\bigcup_{n \in \mathbb{N}} E_n \right) . \tag{6.2.74}$$

Dimostrazione. (2)

Evidentemente, si ha:

$$\bigcap_{n\in\mathbb{N}} E_n = \bigcap_{n=n_0}^{\infty} E_n . \tag{6.2.75}$$

Consideriamo la successione $\{E_{n_0} \setminus E_n\}_{n \in \mathbb{N}}$. Essa è monotona crescente per inclusione, quindi per la dimostrazione precedente, si ha:

$$\lim_{n \to \infty} m_N(E_{n_0} \setminus E_n) = m_N \left(\bigcup_{n=n_0}^{\infty} (E_{n_0} \setminus E_n) \right) = m_N \left(E_{n_0} \setminus \bigcap_{n=n_0}^{\infty} E_n \right) . \tag{6.2.76}$$

Ricordando che, se $A \supseteq B$, allora $m_N(A \setminus B) = m_N(A) - m_N(B)$, si ottiene:

$$m_N(E_{n_0}) - \lim_{n \to \infty} m_N(E_n) = m_N(E_{n_0}) - m_N \left(\bigcap_{n=n_0}^{\infty} E_n\right),$$
 (6.2.77)

da cui segue:

$$\lim_{n \to \infty} m_N(E_n) = m_N \left(\bigcap_{n=n_0}^{\infty} E_n \right) = m_N \left(\bigcap_{n \in \mathbb{N}} E_n \right) . \tag{6.2.78}$$

6.3 Funzioni misurabili

Proposizione 6.3.1. Sia $f: D \to \overline{\mathbb{R}}, D \in \mathfrak{M}_N$. Sono fatti equivalenti:

1.
$$\{x \in D \mid f(x) > \alpha\} \in \mathfrak{M}_N \qquad \forall \alpha \in \mathbb{R};$$

2.
$$\{x \in D \mid f(x) \ge \alpha\} \in \mathfrak{M}_N \quad \forall \alpha \in \mathbb{R};$$

3.
$$\{x \in D \mid f(x) < \alpha\} \in \mathfrak{M}_N \quad \forall \alpha \in \mathbb{R};$$

4.
$$\{x \in D \mid f(x) \le \alpha\} \in \mathfrak{M}_N \quad \forall \alpha \in \mathbb{R}.$$

 $Dimostrazione. (1) \Longrightarrow (2)$

Si ha:

$$\{f \ge \alpha\} = \bigcap_{n \in \mathbb{N}} \left\{ f > \alpha - \frac{1}{n} \right\} . \tag{6.3.1}$$

Dato che per ipotesi $\{f > \alpha - 1/n\} \in \mathfrak{M}_N \ \forall n$, per le proprietà di σ -algebra, si ha che $\bigcap_{n \in \mathbb{N}} \{f > \alpha - 1/n\} \in \mathfrak{M}_N$, e quindi si ottiene la tesi.

53

Dimostrazione. (2) \Longrightarrow (3)

Si ha che:

$$\{f < \alpha\} = \{f \ge \alpha\}^c . \tag{6.3.2}$$

Poiché $\{f \geq \alpha\} \in \mathfrak{M}_N$ per ipotesi, e \mathfrak{M}_N è chiusa per passaggio al complementare, si conclude che $\{f < \alpha\} \in \mathfrak{M}_N$.

Dimostrazione. (3) \Longrightarrow (4)

Si dimostra come (1)
$$\Longrightarrow$$
 (2), ponendo $\{f \leq \alpha\} = \bigcap_{n \in \mathbb{N}} \{f < \alpha + 1/n\}.$

 $Dimostrazione. (4) \Longrightarrow (1)$

Si dimostra come (2)
$$\Longrightarrow$$
 (3), osservando che $\{f > \alpha\} = \{f \leq \alpha\}^c$.

Definizione 6.3.1. Una funzione f si dice *misurabile* se vale una delle suddette proprietà (e quindi tutte).

Proposizione 6.3.2. Se f è una funzione continua, allora è misurabile.

Dimostrazione. Si ha
$$\{f > \alpha\} = f^{-1}([\alpha, +\infty[)])$$
 che è un aperto, e quindi è misurabile.

Proposizione 6.3.3. La funzione indicatrice di un insieme D è misurabile se e solo se D è misurabile.

Dimostrazione. La funzione indicatrice di un insieme D è definita da:

$$I_D(x) = \begin{cases} 1, & x \in D \\ 0, & x \notin D \end{cases}$$

$$(6.3.3)$$

Quindi:

$$\{I_D(x) > \alpha\} = \begin{cases} \emptyset & \alpha \ge 1 \\ D & 0 \le \alpha < 1 \end{cases}$$

$$\mathbb{R}^N & \alpha < 0$$

$$(6.3.4)$$

 \emptyset e \mathbb{R}^N sono sempre misurabili, mentre nel secondo caso $\{I_D(x) > \alpha\}$ è misurabile se e solo se D è misurabile.

Proposizione 6.3.4. Le funzioni semplici sono misurabili.

Dimostrazione. Sia φ una funzione semplice data da:

$$\varphi(x) = \sum_{i=1}^{p} \alpha_i I_{D_i}(x), \quad D_i \in \mathfrak{M}_N \,\forall i \,. \tag{6.3.5}$$

Se φ assume i valori distinti $\lambda_1, \ldots, \lambda_p$, posto, $\forall i \ B_i = \{\varphi = \lambda_i\}$, si ha che i B_i sono misurabili e disgiunti e la rappresentazione canonica di φ è:

$$\varphi(x) = \sum_{i=1}^{p} \lambda_i I_{B_i}(x) . \qquad (6.3.6)$$

Proposizione 6.3.5. Siano $f, g: D \to \overline{R}$ due funzioni misurabili. Allora:

- 1. $\lambda f \ \dot{e} \ misurabile \ \forall \lambda \in \mathbb{R};$
- 2. f + g è misurabile purché sia ben definita;
- 3. $f \cdot g \ e$ misurabile.

Dimostrazione. (1) ovvia.

Dimostrazione. (2)

$$\{f + g < \alpha\} = \{f = -\infty\} \cup \{g = -\infty\} \cup \{-\infty < f + g < \alpha\}. \tag{6.3.7}$$

Si osserva che $\{f = -\infty\} = \bigcap_{n \in \mathbb{N}} \{f < -n\}$ e quindi è misurabile. Vale lo stesso discorso per $\{g = -\infty\}$. Resta da dimostrare che $\{-\infty < f + g < \alpha\}$ è misurabile:

$$\{-\infty < f + g < \alpha\} = \{-\infty < f < \alpha - g < +\infty\}$$

$$= \bigcup_{r \in \mathbb{Q}} \{-\infty < f < r < \alpha - g < +\infty\}$$

$$= \bigcup_{r \in \mathbb{Q}} [\{-\infty < f < r\} \cap \{-\infty < g < \alpha + r\}] .$$

$$(6.3.8)$$

Entrambi sono insiemi misurabili, dunque la loro intersezione sarà misurabile ed infine l'unione della loro intersezione sarà ancora misurabile.

Dimostrazione. (3)

Si ha:

$$fg = \frac{1}{2} (f^2 + g^2 - (f - g)^2)$$
 (6.3.9)

Dimostriamo che se f è misurabile, anche f^2 lo è (e allo stesso modo per g^2):

$$\{f^2 > \alpha\} = \begin{cases} \mathbb{R}^N, & \alpha < 0 \\ \{f < -\sqrt{\alpha}\} \cup \{f > \sqrt{\alpha}\}, & \alpha \ge 0 \end{cases}$$
 (6.3.10)

Poiché \mathbb{R}^N è misurabile in quanto aperto e f è misurabile per ipotesi, si ha che tutti gli insiemi che definiscono f^2 sono misurabili. Questo implica che f^2 è misurabile. Allo stesso modo, si deduce che g^2 è misurabile. Infine, per la dimostrazione (2), si ha che f - g è misurabile e, per quanto appena visto, anche $(f - g)^2$ sarà misurabile. Dunque si avrà che fg è misurabile. \square

Proposizione 6.3.6. Se f è misurabile, $f \neq 0$, allora 1/f è misurabile.

Dimostrazione.

$$\left\{ \frac{1}{f} > \alpha \right\} = \begin{cases}
\left\{ f < \frac{1}{\alpha} \right\}, & \alpha > 0 \\
\left\{ f > 0 \right\}, & \alpha = 0 \\
\left\{ f > 0 \right\} \cup \left\{ f < 0 \right\} \cup \left\{ f < \frac{1}{\alpha} \right\}, & \alpha < 0
\end{cases}$$
(6.3.11)

Per quanto visto, sono tutti insiemi misurabili.

Proposizione 6.3.7. Se $\{f_n\}_{n\in\mathbb{N}}$ è una sottosuccessione di funzioni misurabili, allora le successioni:

$$\sup_{n \in \mathbb{N}} f_n(x), \qquad \qquad \inf_{n \in \mathbb{N}} f_n(x) , \qquad (6.3.12)$$

sono misurabili.

Dimostrazione.

$$\left\{ \sup_{n \in \mathbb{N}} f_n(x) > \alpha \right\} = \bigcup_{n \in \mathbb{N}} \left\{ f_n > \alpha \right\},
\left\{ \inf_{n \in \mathbb{N}} f_n(x) < \alpha \right\} = \bigcup_{n \in \mathbb{N}} \left\{ f_n < \alpha \right\}.$$
(6.3.13)

Entrambi sono unioni numerabili di insiemi misurabili, dunque saranno anch'essi misurabili.

Definizione 6.3.2. Sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzioni misurabili; si definisce massimo limite della successione $\{f_n\}$, e si indica con $\max\lim_{n\to\infty}$ oppure $\lim\sup_{n\to\infty}$ la quantità:

$$\lim_{n \to \infty} \sup f_n(x) = \inf_{n \in \mathbb{N}} \sup_{m \ge n} f_m(x) . \tag{6.3.14}$$

Definizione 6.3.3. Si definisce minimo limite della successione $\{f_n\}$, e si indica con min $\lim_{n\to\infty}$ oppure $\lim_{n\to\infty}$ la quantità:

$$\liminf_{n \to \infty} f_n(x) = \sup_{n \in \mathbb{N}} \inf_{m \ge n} f_m(x) .$$
(6.3.15)

Proposizione 6.3.8. Sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzioni misurabili tali che:

$$\exists \lim_{n \to \infty} f_n(x) = f(x) . \tag{6.3.16}$$

Allora f(x) è misurabile.

Dimostrazione. Poiché inf e sup sono misurabili, anche la loro unione, cioè il limite, sarà misurabile.

Proposizione 6.3.9. $f: D \to \overline{\mathbb{R}}$ è misurabile se e solo se esiste una successione di funzioni semplici $\{\varphi_n\}$ misurabili tale che $\varphi_n(x) \to f(x)$ per $n \to \infty, \forall x \in D$.

 $Dimostrazione. \iff$ già vista.

 $Dimostrazione. \iff$

Costruiamo la successione $\{\varphi_n\}$ nel seguente modo:

$$\varphi_n(x) = \begin{cases}
n, & f(x) > n \\
0, & f(x) = 0 \\
\frac{k-1}{2^n}, & \frac{k-1}{2^n} < f(x) \le \frac{k}{2^n}, & k = 1, \dots, n2^n \\
\frac{k}{2^n}, & \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n}, & k = 0, -1, \dots, -n2^{n+1} \\
-n, & f(x) < -n
\end{cases}$$
(6.3.17)

 φ_n è evidentemente semplice. Se $f(x) = \pm \infty$, allora $\varphi_n(x) = \pm n$ che per $n \to \infty$ tende a f(x). Se $f(x) \in \mathbb{R}$, per |f(x)| < n si ha:

$$|\varphi_n - f(x)| < \frac{1}{2^n}$$
 (6.3.18)

Si ha inoltre $|\varphi_n(x)| \leq |\varphi_{n+1}(x)| \leq |f(x)|$, cioè φ_n cresce comunque in modulo. Dunque la distanza $|\varphi_n - f(x)|$ tende a zero e di conseguenza $\varphi_n(x) \to f(x)$.

6.4 Integrale di Lebesgue per funzioni semplici

Definizione 6.4.1. Sia $\varphi = \sum_{i=1}^{p} \alpha_i I_{A_i}$ una funzione semplice espressa in forma canonica. Allora:

$$\int_{\mathbb{R}^N} \varphi \, \mathrm{d}x := \sum_{i=1}^p \alpha_i m_N(A_i) . \tag{6.4.1}$$

Proposizione 6.4.1 (Monotonia dell'integrale). Siano φ, ψ due funzioni semplici tali che $\varphi \leq \psi$. Allora:

$$\int_{\mathbb{R}^N} \varphi \, \mathrm{d}x \le \int_{\mathbb{R}^N} \psi \, \mathrm{d}x \,. \tag{6.4.2}$$

Dimostrazione. Siano:

$$\varphi = \sum_{i=1}^{p} \alpha_i I_{A_i}, \qquad A_0 = \mathbb{R}^N \setminus \bigcup_{i=1}^{p} A_i, \qquad (6.4.3)$$

$$\psi = \sum_{j=1}^{q} \beta_j I_{B_j}, \qquad B_0 = \mathbb{R}^N \setminus \bigcup_{j=1}^{q} B_j, \qquad (6.4.4)$$

con $\alpha_0, \beta_0 = 0$. Sia $x \in A_i \cap B_j$, allora $\alpha_i \le \varphi \le \psi \le \beta_j$. Dunque:

$$\int_{\mathbb{R}^{N}} \varphi \, dx = \sum_{i=0}^{p} \alpha_{i} m_{N}(A_{i}) = \sum_{i=0}^{p} \alpha_{i} \sum_{j=0}^{q} m_{N}(A_{i} \cap B_{j})$$

$$= \sum_{j=0}^{q} \sum_{i=0}^{p} \alpha_{i} m_{N}(A_{i} \cap B_{j}) \leq \sum_{j=0}^{q} \sum_{i=0}^{p} \beta_{j} m_{N}(A_{i} \cap B_{j})$$

$$= \sum_{j=0}^{q} \beta_{j} \sum_{i=0}^{p} m_{N}(A_{i} \cap B_{j}) = \sum_{j=0}^{q} \beta_{j} m_{N}(B_{j}) = \int_{\mathbb{R}^{N}} \psi \, dx .$$
(6.4.5)

Proposizione 6.4.2 (Linearità dell'integrale). Siano φ, ψ due funzioni semplici. Allora, $\forall \lambda, \mu \in \mathbb{R}$:

$$\int_{\mathbb{R}^N} (\lambda \varphi + \mu \psi) dx = \lambda \int_{\mathbb{R}^N} \varphi \, dx + \mu \int_{\mathbb{R}^N} \psi \, dx \,. \tag{6.4.6}$$

Dimostrazione.

$$\int_{\mathbb{R}^{N}} (\lambda \varphi + \mu \psi) dx = \sum_{i,j} (\lambda \alpha_{i} + \mu \beta_{j}) m_{N} (A_{i} \cap B_{j})$$

$$= \sum_{i,j} \lambda \alpha_{i} m_{N} (A_{i} \cap B_{j}) + \sum_{i,j} \mu \beta_{j} m_{N} (A_{i} \cap B_{j})$$

$$= \lambda \sum_{i=0}^{p} \alpha_{i} \sum_{j=0}^{q} m_{N} (A_{i} \cap B_{j}) + \mu \sum_{j=0}^{q} \beta_{j} \sum_{i=0}^{p} m_{N} (A_{i} \cap B_{j})$$

$$= \lambda \sum_{i=0}^{p} \alpha_{i} m_{N} (A_{i}) + \mu \sum_{j=0}^{q} \beta_{j} m_{N} (B_{j})$$

$$= \lambda \int_{\mathbb{R}^{N}} \varphi dx + \mu \int_{\mathbb{R}^{N}} \psi dx . \tag{6.4.7}$$

6.5 Integrale di Lebesgue per funzioni misurabili

Definizione 6.5.1. Sia $f: \mathbb{R}^N \to \overline{\mathbb{R}}$ una funzione misurabile non negativa. Allora:

$$\int_{\mathbb{R}^N} f \, d\mathbf{x} \equiv \sup \left\{ \int_{\mathbb{R}^N} \varphi \, d\mathbf{x} \mid \varphi \in S, 0 \le \varphi \le f \right\} , \qquad (6.5.1)$$

dove S è l'insieme delle funzioni semplici.

Definizione 6.5.2. Se f cambia segno, consideriamo:

$$f^{+} = \max\{f(\mathbf{x}), 0\}, \qquad f^{-} = -\min\{f(\mathbf{x}), 0\}.$$
 (6.5.2)

 f^+,f^- sono entrambe positive e soddisfano le seguenti relazioni:

$$f(\mathbf{x}) = f^{+}(\mathbf{x}) - f^{-}(\mathbf{x}), \qquad |f(\mathbf{x})| = f^{+}(\mathbf{x}) + f^{-}(\mathbf{x}).$$
 (6.5.3)

Allora f si dice integrabile se almeno uno tra:

$$\int_{\mathbb{R}^N} f^+ \, \mathrm{d}\mathbf{x}, \qquad \qquad \int_{\mathbb{R}^N} f^- \, \mathrm{d}\mathbf{x} \,, \qquad (6.5.4)$$

esiste finito. In tal caso, si ha:

$$\int_{\mathbb{R}^N} f \, d\mathbf{x} = \int_{\mathbb{R}^N} f^+ \, d\mathbf{x} - \int_{\mathbb{R}^N} f^- \, d\mathbf{x} . \tag{6.5.5}$$

Definizione 6.5.3. Una funzione f si dice sommabile su \mathbb{R}^N se:

$$\int_{\mathbb{R}^N} f \, d\mathbf{x} \in \overline{\mathbb{R}} \,. \tag{6.5.6}$$

Definizione 6.5.4. Una funzione $f: \mathbb{R}^N \to \overline{\mathbb{R}}$ misurabile è integrabile su $E \subseteq \mathbb{R}^N$ se $f \cdot I_E$ è integrabile su \mathbb{R}^N . In tal caso:

$$\int_{E} f \, d\mathbf{x} = \int_{\mathbb{R}^{N}} f I_{E} \, d\mathbf{x} . \tag{6.5.7}$$

Definizione 6.5.5. Una funzione $f:D\to \overline{\mathbb{R}}$ misurabile, definita su $D\subseteq \mathbb{R}^N$ misurabile è integrabile su ogni sottoinsieme $E\subseteq D$ misurabile se la funzione f^* data da:

$$f^*(\mathbf{x}) = \begin{cases} f(\mathbf{x}), & \mathbf{x} \in D \\ 0, & \mathbf{x} \notin D \end{cases}$$
(6.5.8)

è integrabile su E nel senso della definizione precedente.

Proposizione 6.5.1. Sia f integrabile su $E \in \mathfrak{M}_N$. Sia $\{E_n\}_{n \in \mathbb{N}} \subseteq \mathfrak{M}_N$ una successione di insiemi disgiunti tali che $E = \bigcup_{n \in \mathbb{N}} E_n$. Allora:

$$\int_{E} f \, d\mathbf{x} = \sum_{n=0}^{\infty} \int_{E_n} f \, d\mathbf{x} . \tag{6.5.9}$$

Dimostrazione. $(f = I_A \text{ con } A \text{ qualsiasi})$

Si ha in questo caso:

$$\int_{E} I_{A} d\mathbf{x} = m_{N}(A \cap E) = \sum_{n=0}^{\infty} m_{N}(A \cap E_{n}) = \sum_{n=0}^{\infty} \int_{E_{n}} I_{A} d\mathbf{x}.$$
 (6.5.10)

Dimostrazione. (f semplice)

In questo caso, $f = \sum_{i=1}^{p} \alpha_1 I_{A_i}$ e dunque:

$$\int_{E} f \, d\mathbf{x} = \sum_{i=1}^{p} \alpha_{i} m_{N}(A_{i} \cap E) = \sum_{n=0}^{\infty} \sum_{i=1}^{p} \alpha_{i} m_{N}(A_{i} \cap E_{n}) = \sum_{n=0}^{\infty} \int_{E_{n}} f \, d\mathbf{x} . \tag{6.5.11}$$

Dimostrazione. (f misurabile, non negativa)

 $\forall n \in \forall \epsilon > 0$ esiste φ_n semplice, $0 \leq \varphi_n \leq fI_{E_n}$ tale che:

$$\int_{E_n} \varphi_n \, d\mathbf{x} > \int_{E_n} f \, d\mathbf{x} - \frac{\epsilon}{2^n} \,. \tag{6.5.12}$$

Sommando su n, si ottiene:

$$\sum_{n=1}^{\infty} \int_{E_n} \varphi_n \, d\mathbf{x} > \left(\sum_{n=1}^{\infty} \int_{E_n} f \, d\mathbf{x}\right) - \epsilon . \tag{6.5.13}$$

Consideriamo adesso la successione crescente $\psi_m = \sum_{k=1}^m \varphi_k$. Si ha $0 \le \psi_m \le fI_E$. Allora:

$$\int_{E} f \, d\mathbf{x} \ge \int_{E} \psi_{m} \, d\mathbf{x} = \sum_{n=1}^{m} \int_{E} \varphi_{n} \, d\mathbf{x} > \sum_{n=1}^{m} \int_{E_{n}} \varphi_{n} \, d\mathbf{x} > \sum_{n=1}^{m} \int_{E_{n}} f \, d\mathbf{x} - \epsilon . \quad (6.5.14)$$

Per $m \to \infty$ si ottiene:

$$\int_{E} f \, d\mathbf{x} \ge \left(\sum_{n=1}^{\infty} \int_{E_{n}} f \, d\mathbf{x}\right) - \epsilon , \qquad (6.5.15)$$

che prova la diseguaglianza \geq . Per provare la diseguaglianza \leq , osserviamo che $\forall \epsilon > 0$ esiste φ semplice, con $0 \leq \varphi \leq fI_E$ tale che:

$$\int_{\mathbb{R}^N} \varphi \, d\mathbf{x} > \int_E f \, d\mathbf{x} - \epsilon . \tag{6.5.16}$$

Allora:

$$\sum_{n=1}^{\infty} \int_{E_n} f \, d\mathbf{x} \ge \sum_{n=1}^{\infty} \int_{E_n} \varphi \, d\mathbf{x} = \int_{E} \varphi \, d\mathbf{x} = \int_{\mathbb{R}^N} \varphi \, d\mathbf{x} > \int_{E} f \, d\mathbf{x} - \epsilon \,. \tag{6.5.17}$$

Dimostrazione. (f cambia segno)

Consideriamo f^+ e f^- , entrambe positive, a cui applico il risultato della precedente dimostrazione, ottenendo due relazioni:

$$\int_{E} f^{+} d\mathbf{x} = \sum_{n=1}^{\infty} \int_{E_{n}} f^{+} d\mathbf{x} ,$$

$$\int_{E} f^{-} d\mathbf{x} = \sum_{n=1}^{\infty} \int_{E_{n}} f^{-} d\mathbf{x} .$$

$$(6.5.18)$$

Sottraendole membro a membro si trova:

$$\int_{E} (f^{+} - f^{-}) d\mathbf{x} = \sum_{n=1}^{\infty} \int_{E_{n}} (f^{+} - f^{-}) d\mathbf{x} , \qquad (6.5.19)$$

cioè:

$$\int_{E} f \, d\mathbf{x} = \sum_{n=1}^{\infty} \int_{E_n} f \, d\mathbf{x} . \tag{6.5.20}$$

Proposizione 6.5.2. Sia f non negativa, definita su un insieme D misurabile. Sia $\{D_n\}_{n\in\mathbb{N}}$ una successione di insiemi misurabili contenuta in D tale che $\bigcup_{n=1}^{\infty} D_n = D$. Allora si ha:

$$\int_{D} f \, d\mathbf{x} \le \sum_{n \in \mathbb{N}} \int_{D_{n}} f \, d\mathbf{x} . \tag{6.5.21}$$

Dimostrazione. Se i D_n sono disgiunti, la tesi segue dalla proposizione precedente. Altrimenti, costruiamo la successione $\{F_n\}$ data da:

$$\begin{cases}
F_0 = D_0 \\
F_n = D_n \setminus \bigcup_{k=0}^{n-1} D_k
\end{cases}$$
(6.5.22)

Gli F_k sono misurabili e disgiunti e si ha ancora $\bigcup_{n\in\mathbb{N}} F_n = D$. Essendo $f \geq 0$, possiamo scrivere:

$$\int_{D} f \, d\mathbf{x} = \sum_{n=0}^{\infty} \int_{F_n} f \, d\mathbf{x} \le \sum_{n=0}^{\infty} \int_{D_n} f \, d\mathbf{x} . \tag{6.5.23}$$

Proposizione 6.5.3. Siano f, g integrabili definite su $D \subseteq \mathbb{R}^N$ misurabile. Allora:

- 1. $f \leq g \implies \int_D f \, d\mathbf{x} \leq \int_D g \, d\mathbf{x};$
- 2. $\int_D \alpha f \, d\mathbf{x} = \alpha \int_D f \, d\mathbf{x}, \quad \forall \alpha \in \mathbb{R};$
- 3. se gli integrali non risultano infiniti di segno opposto, si ha $\int_D (f+g) d\mathbf{x} = \int_D f d\mathbf{x} + \int_D g d\mathbf{x}$.

Dimostrazione. (1)

 $f \leq g$ implica $f^+ \leq g^+$ e $f^- \geq g^-$, quindi:

$$\int_{D} f^{+} d\mathbf{x} \leq \int_{D} g^{+} d\mathbf{x} ,$$

$$\int_{D} f^{-} d\mathbf{x} \geq \int_{D} g^{-} d\mathbf{x} \implies -\int_{D} f^{-} d\mathbf{x} \leq -\int_{D} g^{-} d\mathbf{x} .$$
(6.5.24)

Sommando le relazioni membro a membro si ottiene:

$$\int_{D} (f^{+} - f^{-}) \, d\mathbf{x} \le \int_{D} (g^{+} - g^{-}) \, d\mathbf{x} \quad \Longleftrightarrow \quad \int_{D} f \, d\mathbf{x} \le \int_{D} g \, d\mathbf{x} . \tag{6.5.25}$$

Dimostrazione. (2)

Sia $\alpha \geq 0$, allora $(\alpha f)^+ = \alpha f^+$, $(\alpha f)^- = \alpha f^-$, e quindi si ottiene la tesi per tutte le funzioni. Sia $\alpha = -1$. Da $(-f)^+ = f^-$ e $(-f)^- = f^+$ segue:

$$\int_{D} (-f) d\mathbf{x} = \int_{D} f^{-} d\mathbf{x} - \int_{D} f^{+} d\mathbf{x} = -\int_{D} (f^{+} - f^{-}) d\mathbf{x} = -\int_{D} f d\mathbf{x}.$$
 (6.5.26)

Se $\alpha < 0$, combino i due casi precedenti.

Dimostrazione. (3)

(a) Se $f, g \ge 0$, si ha che f+g è integrabile. Siano $\varphi, \psi \in S_0$ con $0 \le \varphi \le fI_D$ e $0 \le \psi \le gI_D$; allora $0 \le \varphi + \psi \le (f+g)I_D$ e dunque:

$$\int_{D} \varphi \, d\mathbf{x} + \int_{D} \psi \, d\mathbf{x} = \int_{D} (\varphi + \psi) \, d\mathbf{x} \le \int_{D} (f + g) \, d\mathbf{x} . \tag{6.5.27}$$

Per l'arbitrarietà di φ, ψ si ottiene:

$$\int_{D} f \, d\mathbf{x} + \int_{D} g \, d\mathbf{x} \le \int_{D} (f+g) \, d\mathbf{x} . \tag{6.5.28}$$

Per provare la diseguaglianza opposta, introduciamo gli insiemi misurabili:

$$D^{m} = \{\mathbf{x} \in D \mid m \leq f(\mathbf{x}) + g(\mathbf{x}) \leq m+1\}, \quad m \in \mathbb{N}^{+},$$

$$D^{\infty} = \{\mathbf{x} \in D \mid f(\mathbf{x}) + g(\mathbf{x}) = +\infty\},$$

$$D_{m} = \left\{\mathbf{x} \in D \mid \frac{1}{m+1} \leq f(\mathbf{x}) + g(\mathbf{x}) \leq \frac{1}{m}\right\}, \quad m \in \mathbb{N}^{+},$$

$$D_{\infty} = \{\mathbf{x} \in D \mid f(\mathbf{x}) + g(\mathbf{x}) = 0\}.$$

$$(6.5.29)$$

Fissato $\beta \in]0,1[$, scegliamo $\varphi \in S_0$ tale che $0 \leq \varphi \leq \beta(f+g)I_D$. Siano poi $\{\varphi_n\}$ e $\{\psi_n\}$ due successioni di funzioni semplici convergenti puntualmente a fI_D e gI_D rispettivamente. Poiché:

$$(f+g) - \varphi \ge (1-\beta)(f+g) \ge (1-\beta)m \quad \text{in } D^m ,$$

$$(f+g) - \varphi \ge (1-\beta)(f+g) \ge \frac{1-\beta}{m+1} \quad \text{in } D_m ,$$

$$\varphi < f+g = +\infty \quad \text{in } D^\infty ,$$

$$\varphi = f+g = 0 \quad \text{in } D_\infty ,$$

$$(6.5.30)$$

allora $\forall m \in \mathbb{N}^+ \cup \{\infty\}$ esiste $\nu_m \in \mathbb{N}$ tale che $\forall n > \nu_m$ si ha:

$$\varphi \leq (f+g) - (1-\beta)m \leq \varphi_n + \psi_n \leq f+g \quad \text{in } D^m ,$$

$$\varphi \leq (f+g) - \frac{1-\beta}{m+1} \leq \varphi_n + \psi_n \leq f+g \quad \text{in } D_m ,$$

$$\varphi \leq \varphi_n + \psi_n \leq +\infty = f+g \quad \text{in } D^\infty ,$$

$$\varphi = \varphi_n + \psi_n = 0 = f+g \quad \text{in } D_\infty .$$

$$(6.5.31)$$

Posto $E = \{\varphi > 0\}$, si ha $m_N(E) < \infty$. Inoltre, $\forall n \geq \nu_m$:

$$\varphi \leq \varphi_n I_E + \psi_n I_E \leq f + g \quad \text{in } D^m ,
\varphi \leq \varphi_n I_E + \psi_n I_E \leq f + g \quad \text{in } D_m ,
\varphi \leq \varphi_n I_E + \psi_n I_E \leq +\infty = f + g \quad \text{in } D^\infty ,
\varphi = \varphi_n I_E + \psi_n I_E = 0 = f + g \quad \text{in } D_\infty .$$
(6.5.32)

Essendo $0 \le \varphi_n I_E \le f I_D$ e $0 \le \psi_n I_E \le g I_D$, $\forall n > \nu_m$ si ha:

$$\int_{D^m} \varphi \, d\mathbf{x} \le \int_{D^m} (\varphi_n + \psi_n) d\mathbf{x} = \int_{\mathbb{R}^N} (\varphi_n + \psi_n) I_{D^m \cap E} \, d\mathbf{x}
= \int_{\mathbb{R}^N} \varphi_n I_{D^m \cap E} \, d\mathbf{x} + \int_{\mathbb{R}^N} \psi_n I_{D^m \cap E} \le \int_{D^m} f \, d\mathbf{x} + \int_{D^m} g \, d\mathbf{x} ,$$
(6.5.33)

e similmente:

$$\int_{D_m} \varphi \, d\mathbf{x} \le \int_{D_m} f \, d\mathbf{x} + \int_{D_m} g \, d\mathbf{x} . \tag{6.5.34}$$

Dato che $D = \left(\bigcup_{m \in \mathbb{N}^+} D^m\right) \cup \left(\bigcup_{m \in \mathbb{N}^+} D_m\right) \cup D^{\infty} \cup D_{\infty}$, sommando su m si trova:

$$\int_{\mathbb{R}^N} \varphi \, d\mathbf{x} = \int_D \varphi \, d\mathbf{x} \le \int_D f \, d\mathbf{x} + \int_D g \, d\mathbf{x} . \tag{6.5.35}$$

Per l'arbitrarietà di φ e ψ , si ottiene:

$$\beta \int_{D} (f+g) \, d\mathbf{x} \le \int_{D} f \, d\mathbf{x} + \int_{D} g \, d\mathbf{x} , \qquad (6.5.36)$$

per $\beta \to 1$, otteniamo la tesi.

- (b) Se $f, g \leq 0$, la dimostrazione in tal caso è speculare a quella del caso (a).
- (c) Se $f \ge 0, g \le 0$, definiamo gli insiemi misurabili:

$$S^{+} = \{ (f+g)I_D > 0 \}, \qquad S^{-} = \{ (f+g)I_D < 0 \}, \qquad (6.5.37)$$

gli integrali di f + g in S^+ e S^- sono ben definiti. Per quanto visto, si ha:

$$\int_{S^{+}} f \, d\mathbf{x} = \int_{\mathbb{R}^{N}} f I_{S^{+}} \, d\mathbf{x} = \int_{\mathbb{R}^{N}} [(f+g)I_{S^{+}} + (-g)I_{S^{+}}] \, d\mathbf{x}
= \int_{\mathbb{R}^{N}} (f+g)I_{S^{+}} \, d\mathbf{x} + \int_{\mathbb{R}^{N}} (-g)I_{S^{+}} \, d\mathbf{x}
= \int_{S^{+}} (f+g) \, d\mathbf{x} - \int_{S^{+}} g \, d\mathbf{x} ,$$
(6.5.38)

e analogamente:

$$\int_{S^{-}} g \, d\mathbf{x} = \int_{S^{-}} (f+g) \, d\mathbf{x} - \int_{S^{-}} f \, d\mathbf{x} . \qquad (6.5.39)$$

Per ipotesi, non risulta mai $\int_D f \, d\mathbf{x} = -\int_D g \, d\mathbf{x} = +\infty$ e dunque almeno uno tra i due deve essere finito. Se ne deduce:

$$\int_{S^{+}} f \, d\mathbf{x} + \int_{S^{+}} g \, d\mathbf{x} = \int_{S^{+}} (f+g) \, d\mathbf{x} = \int_{D} (f+g)^{+} \, d\mathbf{x} , \qquad (6.5.40)$$

e analogamente:

$$\int_{S^{-}} f \, d\mathbf{x} + \int_{S^{-}} g \, d\mathbf{x} = \int_{S^{-}} (f+g) \, d\mathbf{x} = \int_{D} (f+g)^{-} \, d\mathbf{x} . \tag{6.5.41}$$

Sommando le due relazioni, si ottiene la tesi.

(d) Se f, g sono di segno qualunque, poniamo:

$$F^{+} = \{ fI_{D} \ge 0 \},$$
 $F^{-} = \{ fI_{D} \le 0 \},$ $G^{+} = \{ gI_{D} \ge 0 \},$ $G^{-} = \{ gI_{D} \le 0 \}.$ (6.5.42)

Allora $F^+ \cap G^+$, $F^+ \cap G^-$, $F^- \cap G^+$, $F^- \cap G^-$ sono insiemi misurabili, la cui unione è D e su ognuno di essi la tesi è vera in virtù dei tre punti precedenti. Sommando le quattro diseguaglianze si ottiene la tesi per D.

Definizione 6.5.6. Sia D un sottoinsieme misurabile di \mathbb{R}^N . Si dice che una proprietà $p(\mathbf{x})$ è vera quasi ovunque in D (abbreviato q.o. in D) se, posto $P = {\mathbf{x} \in D \mid p(\mathbf{x})}$, l'insieme $D \setminus P$ è misurabile, con $m_N(D \setminus P) = 0$.

Teorema 6.5.1 (Beppo Levi). Sia D un sottoinsieme misurabile di \mathbb{R}^N e sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzioni misurabili definite su D, tali che $0 \le f_n \le f_{n+1}$ q.o. in D. Allora il limite puntuale:

$$f(\mathbf{x}) = \lim_{n \to \infty} f_n(\mathbf{x}) , \qquad (6.5.43)$$

esiste q.o. in D e si ha:

$$\lim_{n \to \infty} \int_D f_n \, d\mathbf{x} = \int_D f \, d\mathbf{x} . \tag{6.5.44}$$

Dimostrazione. Posti $P_n = \{f_n < 0\}$ e $Q_n = \{f_{n+1} < f_n\}$, si ha che gli insiemi P_n, Q_n hanno misura nulla per ipotesi, quindi anche $P = \bigcup_{n \in \mathbb{N}} (P_n \cup Q_n)$ ha misura nulla e di conseguenza il limte puntuale f è ben definito e non negativo in $D \setminus P$. Possiamo estendere f a tutto D ponendola uguale a zero in P, preservando così la misurabilità e non alternando il valore dell'integrale, cioè:

$$\int_{D} f \, d\mathbf{x} = \int_{D \setminus P} f \, d\mathbf{x} \,. \tag{6.5.45}$$

Il limite degli integrali su D di f_n esiste certamente, poiché:

$$\int_{D} f_n \, d\mathbf{x} = \int_{D \setminus P} f_n \, d\mathbf{x} \le \int_{D \setminus P} f_{n+1} \, d\mathbf{x} = \int_{D} f_{n+1} \, d\mathbf{x} , \qquad (6.5.46)$$

ed anzi si ha:

$$\lim_{n \to \infty} \int_D f_n \, d\mathbf{x} \le \int_D f \, d\mathbf{x} . \tag{6.5.47}$$

Proviamo ora la diseguaglianza opposta. Sia $\beta \in]0,1[$ e $\psi \in S_0$ tale che $0 \leq \psi \leq f$. Posto $A_n = \{f_n > \beta \psi\}$, si ha che gli A_n sono misurabili, definitivamente non vuoti, nonché crescenti rispetto all'inclusione; inoltre, dato che $f_n \to f$ per $n \to \infty$, risulta $D = \bigcup_{n \in \mathbb{N}} A_n$. Costruiamo adesso la successione B_n , data da:

$$\begin{cases}
B_0 = A_0 \\
B_n = A_n \setminus A_{n-1}, \quad n \ge 1
\end{cases}$$
(6.5.48)

Si ha allora:

$$\beta \int_{A_n} \psi \, d\mathbf{x} \le \int_{A_n} f_n \, d\mathbf{x} \le \lim_{n \to \infty} \int_D f_n \, d\mathbf{x} . \tag{6.5.49}$$

Essendo A_n l'unione disgiunta di B_0, \ldots, B_n , si ha:

$$\beta \sum_{k=0}^{n} \int_{B_k} \psi \, d\mathbf{x} \le \lim_{n \to \infty} \int_{D} f_n \, d\mathbf{x} \qquad \forall n \in \mathbb{N} .$$
 (6.5.50)

Poiché $D = \bigcup_{k \in \mathbb{N}} B_k$, ne segue:

$$\beta \int_{D} \psi \, d\mathbf{x} = \beta \sum_{k=0}^{\infty} \int_{B_{k}} \psi \, d\mathbf{x} \le \lim_{n \to \infty} \int_{D} f_{n} \, d\mathbf{x} . \tag{6.5.51}$$

Per l'arbitrarietà di ψ , possiamo scrivere:

$$\beta \int_{D} f \, d\mathbf{x} \le \lim_{n \to \infty} \int_{D} f_n \, d\mathbf{x} \,, \tag{6.5.52}$$

per $\beta \to 1$, si ottiene la tesi.

Lemma 6.5.1 (Fatou). Sia $D \subseteq \mathbb{R}^N$ misurabile e sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzioni misurabili definite su D e q.o. non negative. Posto:

$$f(\mathbf{x}) = \liminf_{n \to \infty} f_n(\mathbf{x}), \qquad \mathbf{x} \in D,$$
 (6.5.53)

si ha:

$$\int_{D} f \, d\mathbf{x} \le \liminf_{n \to \infty} \int_{D} f_n \, d\mathbf{x} . \tag{6.5.54}$$

Dimostrazione. La successione $\{g_n\}_{n\in\mathbb{N}}$, data da:

$$g_n = \inf_{m > n} f_m , \qquad (6.5.55)$$

è crescente q.o. non negativa. Per definizione di minimo limite, segue:

$$f(\mathbf{x}) = \lim_{n \to \infty} g_n(\mathbf{x}) . \tag{6.5.56}$$

Per il teorema di Beppo Levi, $\forall \mathbf{x} \in D$ si ha:

$$\int_{D} f \, d\mathbf{x} = \lim_{n \to \infty} \int_{D} g_n \, d\mathbf{x} , \qquad (6.5.57)$$

d'altra parte, essendo $g_n \leq f_m$ in $D \ \forall m \geq n$, integrando su D troviamo:

$$\int_{D} g_n \, d\mathbf{x} \le \int_{D} f_m \, d\mathbf{x} \qquad \forall m \ge n \;, \tag{6.5.58}$$

ovvero:

$$\int_{D} g_n \, \mathrm{d}\mathbf{x} \le \inf_{m \ge n} \int_{D} f_m \, \mathrm{d}\mathbf{x} \,. \tag{6.5.59}$$

Pertanto, ancora per definizione di minimo limite:

$$\int_{D} f \, d\mathbf{x} = \lim_{n \to \infty} \int_{D} g_n \, d\mathbf{x} \le \liminf_{n \to \infty} \int_{D} f_n \, d\mathbf{x} . \tag{6.5.60}$$

Teorema 6.5.2 (Lebesgue). Sia D un sottoinsieme misurabile di \mathbb{R}^N e sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzioni misurabili definite su D tali che:

- $f_n(\mathbf{x}) \to f(\mathbf{x})$ q.o. in D;
- $|f_n(\mathbf{x})| \leq g(\mathbf{x})$ q.o. in $D \ \forall n \in \mathbb{N}$;

dove g è una fissata funzione sommabile e non negativa su D. Allora si ha:

$$\lim_{n \to \infty} \int_D f_n \, d\mathbf{x} = \int_D f \, d\mathbf{x} \,, \tag{6.5.61}$$

ed anzi:

$$\lim_{n \to \infty} \int_D |f_n - f| \, \mathrm{d}\mathbf{x} = 0 \,. \tag{6.5.62}$$

Dimostrazione. Consideriamo le successioni $\{g - f_n\}_{n \in \mathbb{N}}$ e $\{g + f_n\}_{n \in \mathbb{N}}$, entrambe costituite da funzioni q.o. non negative e convergenti puntualmente q.o. in D rispettivamente a g - f e g + f. Per il lemma di Fatou, si ha:

$$\int_{D} (g - f) d\mathbf{x} \leq \liminf_{n \to \infty} \int_{D} (g - f_n) d\mathbf{x} = \int_{D} g d\mathbf{x} - \limsup_{n \to \infty} \int_{D} f_n d\mathbf{x} ,$$

$$\int_{D} (g + f) d\mathbf{x} \leq \liminf_{n \to \infty} \int_{D} (g + f_n) d\mathbf{x} = \int_{D} g d\mathbf{x} + \liminf_{n \to \infty} \int_{D} f_n d\mathbf{x} .$$
(6.5.63)

Essendo g sommabile, possiamo semplificarne l'integrale, ottenendo:

$$\limsup_{n \to \infty} \int_{D} f_n \, d\mathbf{x} \le \int_{D} f \, d\mathbf{x} \le \liminf_{n \to \infty} \int_{D} f_n \, d\mathbf{x} , \qquad (6.5.64)$$

che prova la prima parte della tesi. La seconda parte segue applicando quanto appena dimostrato alla successione $\{|f_n - f|\}$, il che è lecito poiché:

$$|f_n(\mathbf{x}) - f(\mathbf{x})| \to 0$$
 q.o. in D ,
 $|f_n(\mathbf{x}) - f(\mathbf{x})| \le 2g(\mathbf{x})$, q.o. in D , $\forall n \in \mathbb{N}$. (6.5.65)

Teorema 6.5.3 (Assoluta continuità dell'integrale). Sia D un sottoinsieme misurabile di \mathbb{R}^N . Se f è una funzione sommabile su D, allora $\forall \epsilon > 0$ esiste $\delta > 0$ per il quale risulta:

$$\int_{E} |f| \, d\mathbf{x} < \epsilon, \quad \forall E \subseteq D, m_{N}(E) < \delta . \tag{6.5.66}$$

Dimostrazione. Per assurdo supponiamo che $\exists \epsilon_0 > 0$ tale che $\forall n \in \mathbb{N}$, scelto $\delta = 2^{-n}$, si può trovare un insieme misurabile $E_n \subseteq D$ tale che:

$$\int_{E_n} |f| \, d\mathbf{x} \ge \epsilon_0, \quad m_N(E_n) < 2^{-n} . \tag{6.5.67}$$

Ponendo allora:

$$F_n = \bigcup_{k=n}^{\infty} E_k, \qquad F = \bigcup_{n=0}^{\infty} F_n , \qquad (6.5.68)$$

abbiamo:

$$m_N(F_n) \le \sum_{k=n}^{\infty} 2^{-k} = 2^{1-n} \implies m_N(F) = 0.$$
 (6.5.69)

Dunque $\int_F |f| d\mathbf{x} = 0$. Osservando che la successione di funzioni sommabili $\{|f|I_{F_n}\}$ converge puntualmente in modo decrescente a $|f|I_F$, il teorema di Lebesgue ci assicura che:

$$0 = \int_{F} |f| \, d\mathbf{x} = \lim_{n \to \infty} \int_{F_n} |f| \, d\mathbf{x} \ge \liminf_{n \to \infty} \int_{E_n} |f| \, d\mathbf{x} > \epsilon_0 , \qquad (6.5.70)$$

il che è assurdo e quindi la tesi risulta vera.

6.6 Calcolo degli integrali multipli

Lemma 6.6.1. Fissati $k, h \in \mathbb{N}^+$, siano $E \subseteq \mathbb{R}^k$ e $F \subseteq \mathbb{R}^h$ insiemi misurabili. Allora $E \times F$ è misurabile in \mathbb{R}^{k+h} e si ha $m_{k+h}(E \times F) = m_k(E)m_h(F)$, con la convenzione $0 \cdot \infty = 0$.

Dimostrazione. La tesi è ovvia se E, F sono rettangoli, dato che in tal caso $E \times F$ è ancora un rettangolo. Se E, F sono plurirettangoli, sarà allora:

$$E = \bigcup_{j=1}^{p} R_j,$$
 $F = \bigcup_{i=1}^{q} S_i,$ (6.6.1)

con R_j , S_i rettangoli disgiunti. Dunque:

$$E \times F = \bigcup_{j=1}^{p} \bigcup_{i=1}^{q} (R_j \times S_i) , \qquad (6.6.2)$$

con $R_j \times S_i$ rettangoli disgiunti. Per l'additività:

$$m_{k+h}(E \times F) = \sum_{j=1}^{p} \sum_{i=1}^{q} m_{k+h}(R_j \times S_i) = \sum_{j=1}^{p} \sum_{i=1}^{q} m_k(R_j) m_h(S_i)$$
$$= m_k(E) m_h(F) . \tag{6.6.3}$$

Se E, F sono aperti, esistono due successioni di plurirettangoli $\{R_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}^k$ e $\{S_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}^k$ tali che $R_n\subseteq R_{n+1}\subseteq E,\ S_n\subseteq S_{n+1}\subseteq F$ e:

$$\lim_{n \to \infty} m_k(R_n) = m_k(E), \qquad \lim_{n \to \infty} m_h(S_n) = m_h(F). \qquad (6.6.4)$$

Possiamo supporre che:

$$E = \bigcup_{n=0}^{\infty} R_n, \qquad F = \bigcup_{n=0}^{\infty} S_n , \qquad (6.6.5)$$

da cui:

$$R_n \times S_n \subseteq R_{n+1} \times S_{n+1} \subseteq E \times F = \bigcup_{n=0}^{\infty} (R_n \times S_n) , \qquad (6.6.6)$$

dunque:

$$m_{k+h}(E \times F) = \lim_{n \to \infty} m_{k+h}(R_n \times S_n) = \lim_{n \to \infty} m_k(R_n) m_h(S_n) = m_k(E) m_h(F)$$
. (6.6.7)

Se E, F sono compatti, esistono due successioni di plurirettangoli $\{R_n\} \subseteq \mathbb{R}^k$ e $\{S_n\} \subseteq \mathbb{R}^h$ tali che:

$$R_{n} \supseteq R_{n+1} \supseteq E = \bigcap_{n=0}^{\infty} R_{n}, \qquad S_{n} \supset S_{n+1} \supset F = \bigcap_{n=0}^{\infty} S_{n} ,$$

$$\lim_{n \to \infty} m_{k}(R_{n}) = m_{k}(E), \qquad \lim_{n \to \infty} m_{h}(S_{n}) = m_{h}(F) . \qquad (6.6.8)$$

Quindi:

$$R_n \times S_n \supseteq R_{n+1} \times S_{n+1} \supset E \times F = \bigcap_{n=0}^{\infty} (R_n \times S_n) , \qquad (6.6.9)$$

e ancora:

$$m_{k+h}(E \times F) = \lim_{n \to \infty} (R_n \times S_n) = \lim_{n \to \infty} m_k(R_n) m_h(S_n) = m_k(E) m_h(F)$$
 (6.6.10)

Se E, F sono misurabili e limitati, esistono due successioni di aperti $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}^k$ e $\{B_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}^k$ e due successioni di compatti $\{K_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}^k$ e $\{H_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}^k$ tali che:

$$A_n \supseteq E \supseteq K_n, \qquad B_n \supseteq F \supseteq H_n ,$$

$$\lim_{n \to \infty} m_k(A_n) = \lim_{n \to \infty} m_k(K_n) = m_k(E) , \qquad \lim_{n \to \infty} m_h(B_n) = m_k(E)m_h(F) . \qquad (6.6.11)$$

Utilizzando gli A_n e i B_n si trova:

$$\overline{m}_{k+h}(E \times F) \le \lim_{n \to \infty} m_k(A_n) m_h(B_n) = m_k(E) m_h(F) . \tag{6.6.12}$$

Utilizzando i K_n e gli H_n invece:

$$\underline{m}_{k+h}(E \times F) \ge \lim_{n \to \infty} m_k(K_n) m_h(H_n) = m_k(E) m_h(F) . \tag{6.6.13}$$

Ne segue che $m_{k+h}(E \times F) = m_k(E)m_h(F)$.

Infine, se E, F sono misurabili non necessariamente limitati, indicando con Q_r^m il cubo di centro l'origine e lato 2r in \mathbb{R}^m si ha:

$$m_k(E) = \lim_{r \to \infty} m_k(E \cap Q_r^m), \qquad m_h(F) = \lim_{r \to \infty} m_h(F \cap Q_r^m). \qquad (6.6.14)$$

Essendo $Q_r^{k+h} = Q_r^k \times Q_r^h$, si ottiene:

$$(E \times F) \cap Q_r^{k+h} = (E \cap Q_r^k) \times (F \cap Q_r^h) \quad \forall r > 0.$$

$$(6.6.15)$$

Dunque $E \times F$ è misurabile in \mathbb{R}^{k+h} e si ha:

$$m_{k+h}(E \times F) = \lim_{r \to \infty} m_k(E \cap Q_r^k) m_h(F \cap Q_r^h) = m_k(E) m_h(F)$$
 (6.6.16)

Proposizione 6.6.1. Siano $k, h \in \mathbb{N}^+$ e sia E un sottoinsieme misurabile di \mathbb{R}^{k+h} . Per ogni $\mathbf{x} \in \mathbb{R}^k$ e per ogni $\mathbf{y} \in \mathbb{R}^h$, consideriamo le sezioni verticali ed orizzontali di E, rispettivamente date da:

$$E_{\mathbf{x}} = \{ \mathbf{y} \in \mathbb{R}^h \mid (\mathbf{x}, \mathbf{y}) \in E \}, \qquad E^{\mathbf{y}} = \{ \mathbf{x} \in \mathbb{R}^k \mid (\mathbf{x}, \mathbf{y}) \in E \}.$$
 (6.6.17)

Allora valgono i sequenti fatti:

- 1. $E_{\mathbf{x}}$ è misurabile in \mathbb{R}^h per q.o. $\mathbf{x} \in \mathbb{R}^k$ e $E^{\mathbf{y}}$ è misurabile in \mathbb{R}^k per q.o. $\mathbf{y} \in \mathbb{R}^h$;
- 2. la funzione $\mathbf{x} \longmapsto m_h(E_{\mathbf{x}})$ è misurabile in \mathbb{R}^k e la funzione $\mathbf{y} \longmapsto m_k(E^{\mathbf{y}})$ è misurabile in \mathbb{R}^h ;
- 3. risulta:

$$m_{k+h}(E) = \int_{\mathbb{R}^k} m_h(E_{\mathbf{x}}) \, d\mathbf{x} = \int_{\mathbb{R}^h} m_k(E^{\mathbf{y}}) \, d\mathbf{y} . \qquad (6.6.18)$$

Dimostrazione. (a) Se E è un rettangolo, allora $E=P_1\times P_2,$ con $P_1\subseteq\mathbb{R}^k$ e $P_2\subseteq\mathbb{R}^h$. Dunque:

$$E_{\mathbf{x}} = \begin{cases} P_2, & \mathbf{x} \in P_1 \\ & , \\ \emptyset, & \mathbf{x} \notin P_1 \end{cases}$$

$$(6.6.19)$$

cosicché $E_{\mathbf{x}}$ è misurabile per ogni $\mathbf{x} \in \mathbb{R}^k$ e $m_h(E_{\mathbf{x}}) = m_h(P_2)I_{P_1}(\mathbf{x})$. In particolare, si evince che $\mathbf{x} \longmapsto m_h(E_{\mathbf{x}})$ è una funzione semplice e dunque misurabile. Inoltre, per il lemma:

$$\int_{\mathbb{R}^k} m_h(E_{\mathbf{x}}) \, d\mathbf{x} = m_h(P_2) m_k(P_1) = m_{k+h}(E) . \tag{6.6.20}$$

(b) Se E è aperto, esiste una successione $\{P_n\} \subseteq \mathcal{P}_{k+h}$ di disgiunti tale che:

$$P_n \subseteq P_{n+1} \subseteq E,$$

$$\bigcup_{n \in \mathbb{N}} P_n = E. \tag{6.6.21}$$

Allora $E_{\mathbf{x}} = \bigcup_{n=1}^{\infty} (P_n)_{\mathbf{x}}$ è misurabile e, per quanto già provato, $m_h(E_{\mathbf{x}}) = \lim_{n \to \infty} m_h((P_n)_{\mathbf{x}})$ è una funzione misurabile. Per il teorema di Beppo Levi, si ha pertanto:

$$m_{k+h}(E) = \lim_{n \to \infty} m_{k+h}(P_n) = \lim_{n \to \infty} \int_{\mathbb{R}^k} m_h((P_n)_{\mathbf{x}}) \, d\mathbf{x} = \int_{\mathbb{R}^k} m_h(E_{\mathbf{x}}) \, d\mathbf{x} . \tag{6.6.22}$$

(c) Se E è chiuso, con $m_{k+h}(E) < \infty$, allora $\exists A \subseteq E$ aperto con $m_{k+h}(A) < \infty$. Scrivo $E = A \setminus (A \setminus E)$, dunque $E_{\mathbf{x}} = A_{\mathbf{x}} \setminus (A \setminus E)_{\mathbf{x}}$. $A_{\mathbf{x}}$ e $(A \setminus E)_{\mathbf{x}}$ sono entrambi aperti e pertanto sono misurabili. Di conseguenza, anche la loro differenza, cioè $E_{\mathbf{x}}$, è misurabile. Inoltre, $m_h(E_{\mathbf{x}}) = m_h(A_{\mathbf{x}} \setminus (A \setminus E)_{\mathbf{x}}) = m_h(A_{\mathbf{x}}) - m_h((A \setminus E)_{\mathbf{x}})$, che sono tutte funzioni misurabuli, dunque anche $m_h(E_{\mathbf{x}})$ risulta misurabile. Infine:

$$\int_{\mathbb{R}^k} m_h(E_{\mathbf{x}}) \, d\mathbf{x} = \int_{\mathbb{R}^k} m_h(A_{\mathbf{x}}) \, d\mathbf{x} - \int_{\mathbb{R}^k} m_h((A \setminus E)_{\mathbf{x}}) \, d\mathbf{x}$$

$$= m_{k+h}(A) - m_{k+h}(A \setminus E)$$

$$= m_{k+h}(A) - m_{k+h}(A) + m_{k+h}(E)$$

$$= m_{k+h}(E) .$$
(6.6.23)

Se E è chiuso e $m_{k+h}(E) = \infty$, scriviamo E come:

$$E = \bigcup_{n \in \mathbb{N}} (C \cap Q_n) , \qquad (6.6.24)$$

dove i Q_n sono chiusi, misurabili e con misura finita. Per ogni n, si ha che $C \cap Q_n$ è chiuso e misurabile, con misura finita. Allora, in virtù del caso precedente si ha che:

$$E_{\mathbf{x}} = \bigcup_{n \in \mathbb{N}} (E \cap Q_n)_{\mathbf{x}} , \qquad (6.6.25)$$

è misurabile. Inoltre:

$$m_h(E_{\mathbf{x}}) = m_h \left(\bigcup_{n \in \mathbb{N}} (E \cap Q_n)_{\mathbf{x}} \right) = \sum_{n=1}^{\infty} m_h((E \cap Q_n)_{\mathbf{x}}) , \qquad (6.6.26)$$

che sono tutte funzioni misurabili. Infine:

$$\int_{\mathbb{R}^k} m_h(E_{\mathbf{x}}) \, d\mathbf{x} = \int_{\mathbb{R}^k} \sum_{n=1}^{\infty} m_h((E \cap Q_n)_{\mathbf{x}}) \, d\mathbf{x} = \sum_{n=1}^{\infty} \int_{\mathbb{R}^k} m_h((E \cap Q_n)_{\mathbf{x}}) \, d\mathbf{x}$$

$$= \sum_{n=1}^{\infty} m_{k+h}(E \cap Q_n) = m_{k+h} \left(\bigcup_{n \in \mathbb{N}} (E \cap Q_n) \right)$$

$$= m_{k+h}(E) . \tag{6.6.27}$$

- (d) Ogni intersezione numerabile di aperti e ogni unione numerabile di chiusi verifica (1), (2), (3).
- (e) Se $E \in \mathfrak{M}_N$, allora verifica (1) per q.o. $\mathbf{x} \in \mathbb{R}^k$, (2), (3). Sia E misurabile con misura finita. Allora esistono $A, B \in \mathfrak{B}_N$ tali che $B \subseteq E \subseteq A$ e $m_{k+h}(A \setminus B) = 0$. Dunque si ha anche $B_{\mathbf{x}} \subseteq E_{\mathbf{x}} \subseteq A_{\mathbf{x}}$. Inoltre:

$$0 = m_{k+h}(A \setminus B) = m_{k+h}(A) - m_{k+h}(B) = \int_{\mathbb{R}^k} (m_h(A_{\mathbf{x}}) - m_h(B_{\mathbf{x}})) \, d\mathbf{x} , \qquad (6.6.28)$$

da cui segue che $m_h(A_{\mathbf{x}}) = m_h(B_{\mathbf{x}})$ q.o. in \mathbb{R}^k e quindi $m_h^*(E_{\mathbf{x}}) = m_h(A_{\mathbf{x}}) = m_h(B_{\mathbf{x}})$ q.o. in \mathbb{R}^k . Scrivendo $E_{\mathbf{x}} = A_{\mathbf{x}} \setminus (A_{\mathbf{x}} \setminus E_{\mathbf{x}})$, si ha che $A_{\mathbf{x}} \in \mathfrak{M}_h$ e $A_{\mathbf{x}} \setminus E_{\mathbf{x}}$ ha per costruzione misura nulla, perciò segue che $E_{\mathbf{x}} \in \mathfrak{M}_h$ per q.o. $\mathbf{x} \in \mathbb{R}^k$ e $m_h(E_{\mathbf{x}}) = m_h(A_{\mathbf{x}}) = m_h(B_{\mathbf{x}})$. Infine:

$$\int_{\mathbb{R}^k} m_h(E_{\mathbf{x}}) \, d\mathbf{x} = \int_{\mathbb{R}^k} m_h(A_{\mathbf{x}}) \, d\mathbf{x} = m_{k+h}(A) = m_{k+h}(E) .$$
 (6.6.29)

Teorema 6.6.1 (Tonelli). Sia $f: \mathbb{R}^{k+h} \to \overline{\mathbb{R}}$ una funzione misurabile e non negativa. Allora si ha che:

- 1. la funzione $f(\cdot, \mathbf{y})$ è misurabile in \mathbb{R}^k per q.o. $\mathbf{y} \in \mathbb{R}^h$ e la funzione $f(\mathbf{x}, \cdot)$ è misurabile in \mathbb{R}^h per q.o. $\mathbf{x} \in \mathbb{R}^k$;
- 2. la funzione $\int_{\mathbb{R}^h} f(\cdot, \mathbf{y}) d\mathbf{y}$ è misurabile in \mathbb{R}^k e la funzione $\int_{\mathbb{R}^k} f(\mathbf{x}, \cdot) d\mathbf{x}$ è misurabile in \mathbb{R}^h :
- 3. risulta:

$$\int_{\mathbb{R}^{k+h}} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{x} d\mathbf{y} = \int_{\mathbb{R}^k} \left[\int_{\mathbb{R}^h} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{y} \right] d\mathbf{x} = \int_{\mathbb{R}^h} \left[\int_{\mathbb{R}^k} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{x} \right] d\mathbf{y} . \quad (6.6.30)$$

Dimostrazione. Se $f = I_E$, con $E \subseteq \mathbb{R}^{k+h}$ misurabile, la tesi è fornita dalla proposizione precedente. Se f è una funzione semplice, la tesi segue per linearità. Nel caso generale, grazie alla non negatività di f, esiste una successione di funzioni semplici $\{\varphi_n\}_{n\in\mathbb{N}}$ che converge puntualmente a f in modo crescente. La proprietà (1) è vera perché $f(\cdot, \mathbf{y})$ e $f(\mathbf{x}, \cdot)$ sono limiti puntuali di funzioni misurabili; (2) e (3) si ottengono appolicando il teorema di Beppo Levi. Se f è di segno variabile e in più integrabile, allora basta scrivere il risultato per f^+ e f^- e poi sottrarre, il che è lecito in quanto almeno uno tra gli integrali è finito.

Teorema 6.6.2 (Fubini). Sia $f: \mathbb{R}^{k+h} \to \overline{\mathbb{R}}$ una funzione sommabile. Allora si ha che:

- 1. la funzione $f(\cdot, \mathbf{y})$ è sommabile su \mathbb{R}^k per q.o. $\mathbf{y} \in \mathbb{R}^h$ e la funzione $f(\mathbf{x}, \cdot)$ è sommabile su \mathbb{R}^h per q.o. $\mathbf{x} \in \mathbb{R}^k$;
- 2. la funzione $\int_{\mathbb{R}^h} f(\cdot, \mathbf{y}) d\mathbf{y}$ è sommabile su \mathbb{R}^k e la funzione $\int_{\mathbb{R}^k} f(\mathbf{x}, \cdot) d\mathbf{x}$ è sommabile su \mathbb{R}^h ;
- 3. risulta:

$$\int_{\mathbb{R}^{k+h}} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{x} d\mathbf{y} = \int_{\mathbb{R}^{k}} \left[\int_{\mathbb{R}^{h}} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{y} \right] d\mathbf{x} = \int_{\mathbb{R}^{h}} \left[\int_{\mathbb{R}^{k}} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{x} \right] d\mathbf{y} . \quad (6.6.31)$$

Dimostrazione. La tesi segue applicando il teorema di Tonelli alle funzioni non negative f^+, f^- ; gli integrali risultanti sono entrambi finiti, in quanto $f^+, f^- \leq |f|$ e |f| è sommabile. Il risultato si ottiene per differenza.

6.7 Cambiamento di variabili

Definizione 6.7.1. Siano $A, B \subseteq \mathbb{R}^N$ aperti. Una funzione $\mathbf{g}: A \to B$ si dice diffeomorfismo se:

- g è bigettiva;
- $\mathbf{g} \in C^1(A)$;
- $\mathbf{g}^{-1} \in C^1(B)$.

Osservazione 6.7.1. Se \mathbf{g} è un diffeomorfismo, allora $J_{\mathbf{g}}(\mathbf{x}) = \det\{D\mathbf{g}(\mathbf{x})\} \neq 0 \ \forall \mathbf{x}$.

Teorema 6.7.1 (Misurabilità). Siano $\mathbf{g}:A\to B$ un diffeomorfismo e $E\subseteq A$ misurabile. Allora $\mathbf{g}(E)$ è misurabile e si ha:

$$m_N(\mathbf{g}(E)) = \int_E |J_{\mathbf{g}}(\mathbf{x})| \, d\mathbf{x} . \qquad (6.7.1)$$

Teorema 6.7.2 (Formula del cambiamento di variabili). Sia $\mathbf{g}: A \to B$ un diffeomorfismo. Siano $F \subseteq B$ misurabile e \mathbf{f} integrabile su F. Allora si ha:

$$\int_{F} \mathbf{f}(\mathbf{y}) \, d\mathbf{y} = \int_{\mathbf{g}^{-1}(F)} \mathbf{f}(\mathbf{g}(\mathbf{x})) |J_{\mathbf{g}}(\mathbf{x})| d\mathbf{x} . \qquad (6.7.2)$$

Esempio 6.7.1. Dato $F = \{(x, y) | x \le y \le 2x, 1 \le xy \le 3\}$, calcolare $m_2(F)$.

Osserviamo che i vincoli possono essere scritti nel seguente modo:

$$1 \le \frac{y}{x} \le 2,$$
 $1 \le xy \le 3.$ (6.7.3)

Allora, poniamo:

$$\begin{cases} u = \frac{y}{x} \\ v = xy \end{cases}$$
(6.7.4)

da cui, invertendo le relazioni, si ottiene:

$$\begin{cases} x = v^{1/2}u^{-1/2} \\ y = v^{1/2}u^{1/2} \end{cases} , \tag{6.7.5}$$

che definisce la funzione g. Allora si ha $F = g([1,2] \times [1,3])$. La matrice Dg(u,v) sarà:

$$Dg(u,v) = \begin{pmatrix} -\frac{v^{1/2}u^{-3/2}}{2} & \frac{v^{-1/2}u^{-1/2}}{2} \\ \frac{v^{1/2}u^{-1/2}}{2} & \frac{v^{-1/2}u^{1/2}}{2} \end{pmatrix} \Longrightarrow J_g(u,v) = -\frac{1}{2u} . \tag{6.7.6}$$

Allora si ha:

$$m_2(F) = \int_1^2 \int_1^3 \frac{1}{2u} \, dv du = \int_1^2 \frac{1}{2u} [v]_1^3 \, du = \int_1^2 \frac{du}{u} = [\ln u]_1^2 = \ln 2 \,.$$
 (6.7.7)

Esemplo 6.7.2. Sia $E = \{(x, y) \mid 1 \le x + y \le 3, x \le y \le 2x\}$. Calcolare:

$$\int_{E} x^2 \, \mathrm{d}x \mathrm{d}y \ . \tag{6.7.8}$$

Effettuiamo il cambiamento di variabili ponendo:

$$\begin{cases} u = x + y \\ v = \frac{y}{x} \end{cases}$$
 (6.7.9)

Invertendo le relazioni, si ottiene:

$$\begin{cases} x = \frac{u}{1+v} \\ y = \frac{uv}{1+v} \end{cases}$$
 (6.7.10)

La matrice delle derivate sarà:

$$Dg(u,v) = \begin{pmatrix} \frac{1}{1+v} & -\frac{u}{(1+v)^2} \\ \frac{v}{1+v} & \frac{u}{(1+v)^2} \end{pmatrix} \implies J_g(u,v) = \frac{u}{(1+v)^2} . \tag{6.7.11}$$

Allora:

$$(u, v) \in [1, 3] \times [1, 2],$$
 $E = g([1, 3] \times [1, 2]).$ (6.7.12)

E perciò:

$$\int_{E} x^{2} dxdy = \int_{1}^{3} \frac{u^{2}}{(1+v)^{2}} \frac{u}{(1+v)^{2}} dvdu = \int_{1}^{3} u^{3} du \int_{1}^{2} \frac{1}{(1+v)^{4}} dv$$

$$= \left[\frac{u^{4}}{4}\right]_{1}^{3} \cdot \left[-\frac{1}{3(1+v)^{3}}\right]_{1}^{2} = \frac{95}{162}.$$
(6.7.13)

6.8 Cambiamento di variabili in coordinate polari

Le coordinate polari (r, θ) sono legate a quelle cartesiane da:

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases} \tag{6.8.1}$$

Sia $g(r, \theta)$ la funzione data da:

$$g(r,\theta):]0, +\infty[\times]0, 2\pi[\to \mathbb{R}^2 \setminus \{(x,0), x>0\}].$$
 (6.8.2)

Così definita, g è bigettiva. Inoltre l'insieme $\{(x,0), x>0\}$ che abbiamo tolto da \mathbb{R}^2 ha misura nulla, dunque non viene alterato niente ai fini del calcolo. Ricavando le coordinate polari in funzione di quelle cartesiane si ottiene:

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \arctan\left(\frac{y}{x}\right) \end{cases}$$
 (6.8.3)

La matrice delle derivate sarà pertanto:

$$Dg(r,\theta) = \begin{pmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{pmatrix} \implies J_g(r,\theta) = r.$$
 (6.8.4)

Proposizione 6.8.1. Se $E \subseteq \mathbb{R}^2$ è misurabile e $E' = \{(r, \theta) \mid (r \cos \theta, r \sin \theta) \in E\}$, allora E' è misurabile e per ogni funzione f integrabile su E vale:

$$\int_{E} f(x,y) \, dxdy = \int_{E'} f(r\cos\theta, r\sin\theta) r \, drd\theta . \qquad (6.8.5)$$

Esempio 6.8.1. Sia $C = \{(x,y) \mid 1 \le x^2 + y^2 \le 4, x/\sqrt{3} \le y \le \sqrt{3}x\}$, calcolare:

$$\int_C x \, \mathrm{d}x \mathrm{d}y \ . \tag{6.8.6}$$

In coordinate polari, si ha:

$$C' = \left\{ (r, \theta) \mid 1 \le r \le 2, \frac{\pi}{6} \le \theta \le \frac{\pi}{3} \right\} . \tag{6.8.7}$$

Segue che:

$$\int_{C} x \, dx dy = \int_{1}^{2} \int_{\pi/6}^{\pi/3} r \cos \theta \, r d\theta dr = \int_{1}^{2} r^{2} \, dr \int_{\pi/6}^{\pi/3} \cos \theta \, d\theta$$

$$= \left[\frac{r^{3}}{6} \right]_{1}^{2} \left[\sin \theta \right]_{\pi/6}^{\pi/3} = \frac{7}{6} \left(\frac{\sqrt{3} - 1}{2} \right) . \tag{6.8.8}$$

Esempio 6.8.2. Calcolare:

$$I = \int_0^{+\infty} e^{-x^2} \, \mathrm{d}x \,. \tag{6.8.9}$$

Facendo il quadrato dell'integrale e applicando il teorema di Tonelli si ottiene:

$$I^{2} = \int_{0}^{+\infty} e^{-x^{2}} dx \cdot \int_{0}^{+\infty} e^{-y^{2}} dy = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-(x^{2}+y^{2})} dx dy.$$
 (6.8.10)

Passando in coordinate polari:

$$\sqrt{x^2 + y^2} = r \in [0, +\infty[, \qquad \arctan\left(\frac{y}{r}\right) = \theta \in \left[0, \frac{\pi}{2}\right], \qquad (6.8.11)$$

si ha:

$$I^{2} = \int_{0}^{+\infty} \int_{0}^{\pi/2} e^{-r^{2}} r \, d\theta dr = \int_{0}^{\pi/2} d\theta \int_{0}^{\infty} r e^{-r^{2}} \, dr = \frac{\pi}{2} \left[\frac{e^{-r^{2}}}{2} \right]_{0}^{+\infty} = \frac{\pi}{4} . \tag{6.8.12}$$

Dunque:

$$I = \int_0^{+\infty} e^{-x^2} dx = \sqrt{\frac{\pi}{4}} = \frac{\sqrt{\pi}}{2}.$$
 (6.8.13)

6.9 Cambiamento di variabili in coordinate cilindriche

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases},$$

$$z = z$$

$$g(r, \theta, z) : [0, +\infty[\times [0, 2\pi[\times \mathbb{R} \to \mathbb{R}^3 \setminus \{(x, y, z) \mid y = 0, x \ge 0\} ,$$
 (6.9.1)

dove l'insieme che togliamo da \mathbb{R}^3 ha misura nulla. La matrice delle derivate sarà:

$$Dg(r,\theta,z) = \begin{pmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix} \implies J_g(r,\theta,z) = r.$$
 (6.9.2)

Proposizione 6.9.1. Se $E \subseteq \mathbb{R}^3$ è misurabile e $E' = \{(r, \theta, z) \mid (r \cos \theta, r \sin \theta, z) \in E\}$, allora si ha:

$$\int_{E} f(x, y, z) \, dx dy dz = \int_{E'} f(r \cos \theta, r \sin \theta, z) r \, dr d\theta dz . \qquad (6.9.3)$$

6.10 Volume del solido di rotazione

Sia $D \in \mathbb{R}^2_{xz}$ e E la rotazione di D rispetto all'asse z data da:

$$E = \{(x, y, z) \mid (\sqrt{x^2 + y^2}, z) \in D\}.$$
(6.10.1)

Passando in coordinate cilindriche si ha:

$$E' = \{ (r, \theta, z) \mid \theta \in [0, 2\pi], (r, z) \in D \}.$$
(6.10.2)

Allora il volume del solido di rotazione, equivalente alla sua misura tridimensionale, sarà:

$$m_3(E) = \int_E \mathrm{d}x \mathrm{d}y \mathrm{d}z = \int_{E'} r \,\mathrm{d}r \mathrm{d}\theta \mathrm{d}z = \int_0^{2\pi} \int_D r \,\mathrm{d}r \mathrm{d}z \mathrm{d}\theta = \int_D 2\pi r \,\mathrm{d}r \mathrm{d}z \,. \tag{6.10.3}$$

Questo procedimento è detto integrazione per circonferenze.

Esempio 6.10.1 (Volume del toro). Sia r il raggio della sezione del toro T e R la sua distanza dall'asse z di rotazione, con r < R. Allora si ha:

$$m_3(T) = 2\pi \int_{B((R,0),r)} x \, dx dz$$
 (6.10.4)

Passando in coordinate cilindriche ρ, θ :

$$\begin{cases} x - R = \rho \cos \theta \\ , & \rho \in [0, r], \ \theta \in [0, 2\pi] \ , \end{cases}$$

$$z = \rho \sin \theta$$

$$(6.10.5)$$

si ottiene:

$$m_3(T) = 2\pi \int_0^r \int_0^{2\pi} (R + \rho \cos \theta) \rho \, d\theta d\rho = 2\pi \cdot 2\pi \int_0^r R \rho \, d\rho$$
$$= 4\pi^2 R \frac{r^2}{2} = (2\pi R)(\pi r^2) . \tag{6.10.6}$$

6.11 Cambiamento di variabili in coordinate sferiche

$$\begin{cases} x = r \sin \theta \cos \varphi \\ y = r \sin \theta \sin \varphi \end{cases}, \qquad (6.11.1)$$

$$z = r \cos \theta$$

con $r \in [0, +\infty[, \theta \in [0, \pi], \varphi \in [0, 2\pi]$. La matrice delle derivate sarà:

$$Dg(r,\theta,\varphi) = \begin{pmatrix} \sin\theta\cos\varphi & r\cos\theta\cos\varphi & -r\sin\theta\sin\varphi\\ \sin\theta\sin\varphi & r\cos\theta\sin\varphi & r\sin\theta\cos\varphi\\ \cos\theta & -r\sin\theta & 0 \end{pmatrix} ,$$

$$J_q(r,\theta,\varphi) = r^2\sin\theta . \tag{6.11.2}$$

Proposizione 6.11.1. Se $E \subseteq \mathbb{R}^3$ è misurabile ed $E' = \{(r, \theta, \varphi) \mid (r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta) \in E\}$, allora:

$$\int_{E} f(x, y, z) \, dx dy dz = \int_{E'} f(r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta) r^{2} \sin \theta \, dr d\theta d\varphi . \tag{6.11.3}$$

Esempio 6.11.1. Sia $A = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1, 0 \le z \le \sqrt{x^2 + y^2}\}$. Calcolare:

$$\int_{A} (x^2 + y^2 + z^2)^2 \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \ . \tag{6.11.4}$$

In coordinate sferiche, si ha:

$$A' = \left\{ (r, \theta, \varphi) \mid r \in [0, 1], \ \theta \in \left[\frac{\pi}{4}, \frac{\pi}{2} \right], \ \varphi \in [0, 2\pi] \right\}$$
 (6.11.5)

Dunque:

$$\int_{A} (x^{2} + y^{2} + z^{2})^{2} dxdydz = \int_{0}^{2\pi} \int_{\pi/4}^{\pi/2} \int_{0}^{1} r^{4}r^{2} \sin\theta drd\theta d\varphi$$

$$= 2\pi \int_{\pi/4}^{\pi/2} \sin\theta d\theta \int_{0}^{1} r^{6} dr = 2\pi [-\cos\theta]_{\pi/4}^{\pi/2} \left[\frac{r^{7}}{7}\right]_{0}^{1} \qquad (6.11.6)$$

$$= \frac{\pi\sqrt{2}}{7} . \qquad (6.11.7)$$

6.12 Curve e lunghezza di una curva

Definizione 6.12.1. Si definisce curva un'applicazione $\varphi: I \to \mathbb{R}^N$ continua, con I intervallo. Si definisce inoltre sostengo di una curva l'insieme:

$$\Gamma = \varphi(I) = \{ \mathbf{x} = \varphi(t), t \in I \}. \tag{6.12.1}$$

Definizione 6.12.2. Una curva φ si dice regolare se $\varphi \in C^1$ e $\varphi \neq 0$.

Sia $\varphi: I \to \mathbb{R}^N$ una curva di classe C^1 , con I non necessariamente limitato. Fissata una partizione di I $\sigma: \inf I \leq t_0 < t_1 < \ldots < t_{k-1} < t_k \leq \sup I$, consideriamo la spezzata unione dei segmenti di estremi $\varphi(t_{i-1}), \varphi(t_i), i = 1, \ldots, k$. La lunghezza della spezzata S_{σ} sarà:

$$l(S_{\sigma}) = \sum_{i=1}^{k} |\varphi(t_i) - \varphi(t_{i-1})|_{N}.$$
(6.12.2)

Definizione 6.12.3. Si definisce lunghezza di una curva φ la quantità:

$$l(\varphi) = \sup_{\sigma} l(S_{\sigma}) , \qquad (6.12.3)$$

al variare delle partizioni σ .

Teorema 6.12.1. Sia $\varphi: I \to \mathbb{R}^N$ una curva di classe C^1 . Allora si ha:

$$l(\varphi) = \int_{I} |\varphi'(t)|_{N} dt. \qquad (6.12.4)$$

Dimostrazione. (\leq)

Per ogni suddivisione σ di I si ha:

$$l(S_{\sigma}) = \sum_{i=1}^{k} |\varphi(t_{i}) - \varphi(t_{i-1})|_{N} = \sum_{i=1}^{k} \left| \int_{t_{i-1}}^{t_{i}} \varphi'(t) \, \mathrm{d}t \right|_{N}$$

$$\leq \sum_{i=1}^{k} \int_{t_{i-1}}^{t_{i}} |\varphi'(t)|_{N} \, \mathrm{d}t = \int_{t_{0}}^{t_{k}} |\varphi'(t)|_{N} \, \mathrm{d}t$$

$$\leq \int_{I} |\varphi'(t)|_{N} \, \mathrm{d}t . \tag{6.12.5}$$

Passando al sup si ottiene:

$$l(\varphi) = \sup_{\sigma} l(S_{\sigma}) \le \int_{I} |\varphi'(t)|_{N} dt.$$
 (6.12.6)

Dimostrazione. (\geq)

Sia $[a, b] \subseteq I$ e $\epsilon > 0$. La funzione $\varphi'(t)$ è uniformemente continua nelle sue componenti, allora $\exists \delta > 0$ tale che $\forall \tau, t \in [a, b]$ con $|\tau - t| < \delta$ si abbia $|\varphi'(\tau) - \varphi'(t)|_N < \epsilon$. Sia σ una suddivisione di [a, b] con $a = t_0 < t_1 < \ldots < t_k = b$ e $t_i - t_{i-1} < \delta \ \forall i$. Fissato i, considero:

$$\int_{t_{i-1}}^{t_i} |\varphi'(t)|_N dt = \int_{t_{i-1}}^{t_i} |\varphi'(t) - \varphi'(t_i) + \varphi'(t_i)|_N dt
\leq \int_{t_{i-1}}^{t_i} |\varphi'(t) - \varphi'(t_i)|_N dt + \int_{t_{i-1}}^{t_i} |\varphi'(t_i)|_N dt .$$
(6.12.7)

Ma:

$$\int_{t_{i-1}}^{t_i} |\varphi'(t_i)|_N \, \mathrm{d}t = |\varphi'(t_i)|_N (t_i - t_{i-1}) \ . \tag{6.12.8}$$

Poiché $t_i - t_{i-1} > 0$ per costruzione, si ha:

$$\int_{t_{i-1}}^{t_i} |\varphi'(t_i)|_N dt = |\varphi'(t_i)(t_i - t_{i-1})|_N = \left| \int_{t_{i-1}}^{t_i} \varphi'(t_i) dt \right|_N.$$
 (6.12.9)

Sostituiamo quanto trovato nella relazione precedente, aggiungiamo e sottraiamo al secondo integrando $\varphi'(t)$ e applichiamo la diseguaglianza triangolare, ottenendo così:

$$\int_{t_{i-1}}^{t_{i}} |\varphi'(t) - \varphi'(t_{i})|_{N} dt + \int_{t_{i-1}}^{t_{i}} |\varphi'(t_{i})|_{N} dt
\leq \int_{t_{i-1}}^{t_{i}} |\varphi'(t) - \varphi'(t_{i})|_{N} dt + \int_{t_{i-1}}^{t_{i}} |\varphi'(t_{i}) - \varphi'(t)|_{N} dt + \left| \int_{t_{i-1}}^{t_{i}} \varphi'(t) dt \right|_{N}
= 2 \int_{t_{i-1}}^{t_{i}} |\varphi'(t) - \varphi'(t_{i})|_{N} dt + \left| \int_{t_{i-1}}^{t_{i}} \varphi'(t) dt \right|_{N}
\leq 2\epsilon(t_{i} - t_{i-1}) + |\varphi(t_{i}) - \varphi(t_{i-1})|_{N}.$$
(6.12.10)

Allora:

$$\int_{a}^{b} |\varphi'(t)|_{N} dt = \sum_{i=1}^{k} \int_{t_{i-1}}^{t_{i}} |\varphi'(t)|_{N} dt \le 2\epsilon \sum_{i=1}^{k} (t_{i} - t_{i-1}) + l(S_{\sigma})$$

$$= 2\epsilon (b - a) + l(S_{\sigma}) \le 2\epsilon (b - a) + l(\varphi) .$$
(6.12.11)

Per l'arbitrarietà di ϵ , per ogni intervallo $[a,b]\subseteq I$ si ha dunque:

$$\int_{a}^{b} |\varphi'(t)|_{N} dt \le l(\varphi) , \qquad (6.12.12)$$

da cui segue:

$$\int_{I} |\varphi'(t)|_{N} dt \le l(\varphi) . \tag{6.12.13}$$

Definizione 6.12.4. Una curva $\varphi:I\to\mathbb{R}^N$ si definisce $regolare\ a\ tratti$ se è possibile decomporre I in sottoinsiemi adiacenti I_1, \ldots, I_k tali che $\forall i = 1, \ldots, k \ \boldsymbol{\varphi}|_{I_i}$ sia regolare semplice.

Osservazione 6.12.1. La lunghezza di una curva φ regolare a tratti sarà:

$$l(\boldsymbol{\varphi}) = \sum_{i=1}^{k} l(\boldsymbol{\varphi}|_{I_i}) . \qquad (6.12.14)$$

Definizione 6.12.5. Data una curva $\varphi : [a, b] \to \mathbb{R}^N$ regolare data da $\mathbf{x} = \varphi(t), t \in [a, b],$ definiamo:

$$s = \lambda(t) = \int_a^t |\varphi'(\tau)|_N d\tau, \qquad s \in [0, l(\varphi)].$$
 (6.12.15)

Poiché l'integrando è sempre positivo, $\lambda(t)$ sarà strettamente crescente. Esisterà dunque $\lambda'(t)$ $|\varphi'(t)|_N > 0$. Di conseguenza, $\lambda(t)$ sarà invertibile e la sua inversa sarà data da:

$$t = \lambda^{-1}(s) : [0, l(\varphi)] \to [a, b],$$
 (6.12.16)

e la sua derivata prima sarà:

$$(\lambda^{-1})'(s) = \frac{1}{|\varphi'(\lambda^{-1}(s))|_N}$$
 (6.12.17)

Si definisce ascissa~curvilinea della curva $\boldsymbol{\varphi}$ la funzione:

$$\boldsymbol{\alpha}(s) = \boldsymbol{\varphi}((\lambda^{-1}(s)) : [0, l(\boldsymbol{\varphi})] \to \Gamma = \{ \mathbf{x} = \boldsymbol{\alpha}(s), s \in [0, l(\boldsymbol{\varphi})] \}. \tag{6.12.18}$$

Osservazione 6.12.2. L'ascissa curvilinea percorre la curva con velocità unitaria. Infatti:

$$\alpha'(s) = \varphi'(\lambda^{-1}(s))(\lambda^{-1})'(s) = \frac{\varphi'(\lambda^{-1}(s))}{|\varphi'(\lambda^{-1}(s))|_N}, \qquad (6.12.19)$$

che è appunto un vettore unitario.

Capitolo 7

Integrale curvilineo e di superficie

7.1 Integrale curvilineo

Definizione 7.1.1. Siano $\Gamma \subseteq \mathbb{R}^N$ e $f: A \subseteq \mathbb{R}^N \to \mathbb{R}$, con A aperto e $\Gamma \subseteq A$. Allora:

$$\int_{\Gamma} f \, ds = \int_{a}^{b} f(\boldsymbol{\varphi}(t)) |\boldsymbol{\varphi}'(t)|_{N} \, dt . \qquad (7.1.1)$$

Osservazione 7.1.1. L'integrale curvilineo rispetta le proprietà di monotonia e linearità. In più, vale l'additività su funzioni regolari a tratti.

7.2 Integrale di superficie

Definizione 7.2.1. Si definisce superficie una funzione $\sigma: D \subseteq \mathbb{R}^2 \to \mathbb{R}^3$, dove $D = \overline{A}$ con A aperto connesso, σ continua su D, di classe C^1 e iniettiva su A. La superficie si dice regolare se la matrice delle derivate:

$$D\boldsymbol{\sigma}(u,v) = \begin{pmatrix} (\sigma_1)_u & (\sigma_1)_v \\ (\sigma_2)_u & (\sigma_2)_v \\ (\sigma_3)_u & (\sigma_3)_v \end{pmatrix}$$
(7.2.1)

ha rango 2. Indicando con $\Sigma = \boldsymbol{\sigma}(D)$ il sostegno della superficie, si osserva che i vettori $\boldsymbol{\sigma}_u(u,v), \boldsymbol{\sigma}_v(u,v)$ sono vettori non nulli tangenti a Σ nel punto $\boldsymbol{\sigma}(u,v)$ e tra loro linearmente indipendenti. Se $\boldsymbol{\sigma}$ è regolare, allora Σ ha piano tangente nel punto $\boldsymbol{\sigma}(u,v)$ dato dall' equazione:

$$\mathbf{x} = \boldsymbol{\sigma}(u, v) + s\boldsymbol{\sigma}_u(u, v) + t\boldsymbol{\sigma}_v(u, v), \qquad (s, t) \in \mathbb{R}^2.$$
 (7.2.2)

Definizione 7.2.2. Sia R il rettangolo $R = [u, u + h] \times [v, v + k] \subseteq D$. Si ha che $\sigma(R)$ è il parallelogrammo generato da $\sigma_u(u, v)$ e $\sigma_v(u, v)$, e la sua area sarà data da:

$$|k\boldsymbol{\sigma}_{u}(u,v)|_{3}|h\boldsymbol{\sigma}_{v}(u,v)|_{3}\sin\theta = |hk||(\boldsymbol{\sigma}_{u}\times\boldsymbol{\sigma}_{v})(u,v)|_{3}.$$
(7.2.3)

Per $(h, k) \rightarrow (0, 0)$ si ha:

$$dS = |(\boldsymbol{\sigma}_u \times \boldsymbol{\sigma}_v)(u, v)|_3 \, du dv . \tag{7.2.4}$$

L'area di $\Sigma = \sigma(D)$ sarà allora:

$$a(\Sigma) = \int_{D} |(\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v})(u, v)|_{3} \, du dv . \qquad (7.2.5)$$

Esempio 7.2.1 (Area della superficie sferica).

$$\begin{cases} x = r \sin \theta \cos \varphi \\ y = r \sin \theta \sin \varphi \end{cases} \qquad r \text{ costante, } \theta \in [0, \pi], \varphi \in [0, 2\pi] . \tag{7.2.6}$$
$$z = r \cos \theta$$

La matrice delle derivate sarà:

$$D\sigma(\theta,\varphi) = \begin{pmatrix} r\cos\theta\cos\varphi & -r\cos\theta\sin\varphi\\ r\cos\theta\sin\varphi & r\sin\theta\cos\varphi\\ -r\sin\theta & 0 \end{pmatrix}. \tag{7.2.7}$$

Dunque:

$$|\sigma_{\theta} \times \sigma_{\varphi}|_{3} = \sqrt{(r^{4}\cos^{2}\theta\sin^{2}\theta + r^{4}\sin^{4}\theta)} = r^{2}\sin\theta.$$
 (7.2.8)

Allora:

$$a(\Sigma) = \int_0^{\pi} \int_0^{2\pi} r^2 \sin\theta \, d\varphi d\theta = 2\pi r^2 [-\cos\theta]_0^{\pi} = 4\pi r^2 .$$
 (7.2.9)

Capitolo 8

Campi vettoriali

8.1 Campi vettoriali e linee di forza

Definizione 8.1.1. Si definisce *campo vettoriale* una funzione $\mathbf{F}: A \subseteq \mathbb{R}^N \to \mathbb{R}^N$ continua.

Definizione 8.1.2. Le linee di forza di un campo vettoriale F sono definite da:

$$\begin{cases} \mathbf{u}'(t) = \mathbf{F}(\mathbf{u}(t)) \\ \mathbf{u}(0) = \mathbf{x} \end{cases}$$
 (8.1.1)

8.2 Integrazione di un campo vettoriale

Definizione 8.2.1. L'integrale di un campo vettoriale \mathbf{F} su una curva orientata $\Gamma \subseteq A$ è dato da:

$$\int_{\Gamma} \langle \mathbf{F}, \boldsymbol{\tau} \rangle_N \, \mathrm{d}s \,, \tag{8.2.1}$$

dove τ è il versore tangente alla curva. Equivalentemente, parametrizzando la curva come:

$$\Gamma = \{ \mathbf{x} = \boldsymbol{\varphi}(t), \ t \in [a, b] \}, \tag{8.2.2}$$

si ha:

$$\int_{\Gamma} \langle \mathbf{F}, \boldsymbol{\tau} \rangle_{N} \, \mathrm{d}s = \int_{a}^{b} \left\langle \mathbf{F}(\boldsymbol{\varphi}(t)), \frac{\boldsymbol{\varphi}'(t)}{|\boldsymbol{\varphi}'(t)|_{N}} \right\rangle_{N} |\boldsymbol{\varphi}'(t)|_{N} \, \mathrm{d}t = \int_{a}^{b} \langle \mathbf{F}(\boldsymbol{\varphi}(t)), \boldsymbol{\varphi}'(t) \rangle_{N} \, \mathrm{d}t . \quad (8.2.3)$$

Se è $\varphi(t) \equiv (x_1(t), \dots, x_N(t))$, allora possiamo ancora scrivere:

$$\int_{\Gamma} \langle \mathbf{F}, \boldsymbol{\tau} \rangle ds = \sum_{i=1}^{N} \int_{a}^{b} F_{i}(x_{1}(t), \dots, x_{N}(t)) x'_{i} dt.$$
 (8.2.4)

Definizione 8.2.2 (Forme differenziali lineari). Una forma differenziale lineare è un'applicazione $\omega: A \subseteq \mathbb{R}^N \to (\mathbb{R}^N)'$ (duale) data da:

$$\omega(\mathbf{x}) = \sum_{i=1}^{N} \omega_i(\mathbf{x}) dx_i ,$$

$$\mathbf{h} \longmapsto \sum_{i=1}^{N} \omega_i(\mathbf{x}) h_i .$$
(8.2.5)

Consideriamo:

$$\mathbf{F}(\mathbf{x}) = \sum_{i=1}^{N} F_i(\mathbf{x}) \mathbf{e}_i ,$$

$$\mathbf{F} \longmapsto \omega = \sum_{i=1}^{N} F_i dx_i ,$$

$$\mathbf{h} \longmapsto \omega(\mathbf{h}) = \langle \mathbf{F}, \mathbf{h} \rangle_N .$$
(8.2.6)

Allora:

$$\int_{\Gamma} \langle \mathbf{F}, \boldsymbol{\tau} \rangle_N \, \mathrm{d}s = \int_{+\Gamma} \sum_{i=1}^N F_i(\mathbf{x}) \, \mathrm{d}x_i \,. \tag{8.2.7}$$

Osservazione 8.2.1. L'integrale di un campo vettoriale \mathbf{F} su una curva orientata $\Gamma \subseteq A$, ovvero l'integrale della forma differenziale $\omega = \sum_{i=1}^{N} F_i(\mathbf{x}) \, \mathrm{d} x_i$ su Γ può essere scritto come:

$$\int_{+\Gamma} \sum_{i=1}^{N} F_i(\mathbf{x}) \, dx_i = \int_{+\Gamma} \omega = \int_{\Gamma} \langle \mathbf{F}, \boldsymbol{\tau} \rangle_N = \sum_{i=1}^{N} \int_a^b F_i(\boldsymbol{\varphi}(t)) \varphi_i'(t) \, dt .$$
 (8.2.8)

Definizione 8.2.3. Un campo vettoriale $\mathbf{F}: A \subseteq \mathbb{R}^N \to \mathbb{R}^N$ continuo si dice *conservativo* se esiste una funzione scalare $f \in C^1(A)$ tale che $\nabla f(\mathbf{x}) = \mathbf{F}(\mathbf{x})$ per ogni $\mathbf{x} \in A$.

Osservazione 8.2.2. Se **F** è un campo vettoriale conservativo di classe C^1 , allora $D_i f = F_i$ e, per il teorema di Schwartz, vale:

$$D_j D_i f = \frac{\partial F_i}{\partial x_i} = \frac{\partial F_j}{\partial x_i} = D_i D_j f . \tag{8.2.9}$$

Osservazione 8.2.3. La forma differenziale lineare ω associata al campo vettoriale \mathbf{F} verifica $omega(\mathbf{x}) = df(\mathbf{x})$. In questo caso, la forma ω si dice esatta.

Teorema 8.2.1. Sia $A \subseteq \mathbb{R}^N$ aperto e $\mathbf{F} \in C^0(A, \mathbb{R}^N)$ un campo vettoriale. Sono fatti equivalenti:

- 1. \mathbf{F} è conservativo, cioè ω è esatta;
- 2. per ogni curva chiusa $\Gamma \subseteq A$ di classe C^1 a tratti si ha:

$$\int_{\pm\Gamma} \omega = 0 \; ; \tag{8.2.10}$$

3. $\forall \Gamma_1, \Gamma_2 \subseteq A$ curve di classe C^1 a tratti aventi gli stessi estremi, si ha:

$$\int_{+\Gamma_1} \omega = \int_{+\Gamma_2} \omega . \tag{8.2.11}$$

 $Dimostrazione. (1) \Longrightarrow (2)$

Sia Γ una curva chiusa contenuta in A, parametrizzata da $\Gamma = \{\mathbf{x} = \boldsymbol{\varphi}(t), t \in [a, b]\}$. Allora:

$$\int_{+\Gamma} \omega = \sum_{i=1}^{N} \int_{+\Gamma} D_i f(\mathbf{x}) dx_i = \sum_{i=1}^{N} \int_a^b D_i f(\boldsymbol{\varphi}(t)) \varphi_i' dt.$$
 (8.2.12)

Osservando che l'ultimo integrando è la derivata di funzione composta, otteniamo:

$$\int_{+\Gamma} \omega = \int_{a}^{b} \frac{\mathrm{d}}{\mathrm{d}t} f(\boldsymbol{\varphi}(t)) \, \mathrm{d}t = f(\boldsymbol{\varphi}(b)) - f(\boldsymbol{\varphi}(a)) . \tag{8.2.13}$$

Poiché per ipotesi la curva Γ è chiusa, si ha $\varphi(b) = \varphi(a)$ e quindi l'integrale risulta nullo.

Dimostrazione. (2) \Longrightarrow (3)

Siano Γ_1, Γ_2 come da ipotesi, parametrizzate da:

$$\Gamma_1 = \{ \mathbf{x} = \varphi_1(t), t \in [a_1, b_1] \}, \qquad \Gamma_2 = \{ \mathbf{x} = \varphi_2(t), t \in [a_2, b_2] \}.$$
 (8.2.14)

Definiamo:

$$\varphi(t) = \begin{cases} \varphi_1(t), & t \in [a_1, b_1] \\ \varphi_2(-t + b_1 + b_2), & t \in [b_1, b_1 + b_2 - a_2] \end{cases}$$
(8.2.15)

Allora $\varphi:[a_1,b_1+b_2-a_2]\to A$ è una curva chiusa che ha come immagine $+\Gamma_1\cup(-\Gamma_2)$. Dunque:

$$0 = \int_{+\Gamma_1 \cup (-\Gamma_2)} \omega = \int_{a_1}^{b_1 + b_2 - a_2} \sum_{i=1}^{N} F_i(\boldsymbol{\varphi}(t)) \varphi_i' \, dt$$

$$= \int_{a_1}^{b_1} \sum_{i=1}^{N} F_i(\boldsymbol{\varphi}_1(t)) \varphi_{1i}'(t) dt - \int_{b_1}^{b_1 + b_2 - a_2} \sum_{i=1}^{N} F_i(\boldsymbol{\varphi}_2(-t + b_2 + b_1)) \varphi_{2i}'(-t + b_2 + b_1) dt$$
(8.2.16)

Posto $s = -t + b_1 + b_2$ e ds = -dt si ottiene:

$$0 = \int_{a_1}^{b_1} \sum_{i=1}^{N} F_i(\boldsymbol{\varphi}_1(t)) \varphi'_{1i}(t) dt - \int_{a_2}^{b_2} \sum_{i=1}^{N} F_i(\boldsymbol{\varphi}_2(s)) \varphi'_{2i}(s) ds = \int_{+\Gamma_1} \omega - \int_{+\Gamma_2} \omega . \quad (8.2.17)$$

Da cui:

$$\int_{+\Gamma_1} \omega = \int_{+\Gamma_2} \omega . \tag{8.2.18}$$

 $Dimostrazione. (3) \Longrightarrow (1)$

Sia $\mathbf{x}_0 \in A$ fisso e $\mathbf{x} \in A$ congiungibile a \mathbf{x}_0 con una curva C^1 a tratti contenuta in A. Definiamo:

$$f(\mathbf{x}) = \int_{+\Gamma_{\mathbf{x}_0, \mathbf{x}}} \omega , \qquad (8.2.19)$$

dove $\Gamma_{\mathbf{x}_0,\mathbf{x}}$ è una qualunque curva che ha per estremi \mathbf{x}_0 e \mathbf{x} . Sia $h \in \mathbb{R}$ non nullo e sufficientemente piccolo. Allora:

$$\frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x})}{h} = \frac{1}{h} \left[\int_{+\Gamma_{\mathbf{x}_0, \mathbf{x} + h\mathbf{e}_i}} \omega - \int_{+\Gamma_{\mathbf{x}_0, \mathbf{x}}} \omega \right]. \tag{8.2.20}$$

Poniamo $T_{\mathbf{x},\mathbf{x}+h\mathbf{e}_i}$ la curva $+\Gamma_{\mathbf{x}_0,\mathbf{x}+h\mathbf{e}_i} - \Gamma_{\mathbf{x}_0,\mathbf{x}}$, allora:

$$\frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{e}_i)}{h} = \frac{1}{h} \int_{T_{i-1}, t} \omega.$$
 (8.2.21)

Parametrizziamo ω con $\varphi(t) = \mathbf{x} + th\mathbf{e}_j, \ t \in [0, 1]$:

$$\frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x})}{h} = \frac{1}{h} \int_0^1 \sum_{i=1}^N F_j(\mathbf{x} + th\mathbf{e}_j) \delta_{ij} h \, dt = \int_0^1 F_i(\mathbf{x} + th\mathbf{e}_i) \, dt .$$
 (8.2.22)

Per $h \to 0$:

$$\int_0^1 F_i(\mathbf{x} + th\mathbf{e}_i) \, dt \to F_i(\mathbf{x}) . \tag{8.2.23}$$

Dunque per ogni i esiste continua la derivata parziale rispetto all'i-esima componente di f e vale $D_i f = F_i$. Per il teorema del differenziale totale, segue che f è differenziabile e $\nabla f = \mathbf{F}$.

Definizione 8.2.4. Una forma differenziale $\omega = \sum_{i=1}^{N} F_i \, dx_i$ si dice *chiusa* se $\mathbf{F} \in C^1$ e $D_i F_j = D_j F_i$.

Osservazione 8.2.4. Se ω è esatta allora è chiusa. Il viceversa non è sempre vero.

Definizione 8.2.5. Un aperto A si definisce semplicemente connesso se:

- A è connesso;
- ullet ogni curva chiusa contenuta in A può essere deformata con continuità ad un punto senza uscire da A.

Osservazione 8.2.5. Se ω è una forma differenziale lineare chiusa su un aperto A semplicemente connesso, allora ω è esatta.

8.3 Formule di Gauss-Green

Sia $A \subseteq \mathbb{R}^2$ un aperto limitato con ∂A di classe C^1 . $\forall \mathbf{x}_0 \in \partial A$ esiste un intorno $U \subseteq \mathbb{R}^2$ di \mathbf{x}_0 tale che $U \cap \partial A$ è grafico di una funzione C^1 . In tal caso si avrà:

$$\overline{A} = \bigcup_{i=1}^{k} A_i \,, \tag{8.3.1}$$

con gli A_i privi di punti interni comuni ed insiemi normali rispetto a uno degli assi. Denotiamo con $+\partial A$ il verso antiorario.

Teorema 8.3.1 (Gauss-Green). Sia $A \subseteq \mathbb{R}^2$ soddisfacente le condizioni di cui sopra e sia $f \in C^1(\overline{A})$. Allora:

1.

$$\int_{A} \frac{\partial f}{\partial x} \, dx dy = \int_{+\partial A} f \, dy = \int_{\partial A} f \, n_1 \, ds ; \qquad (8.3.2)$$

2.

$$\int_{A} \frac{\partial f}{\partial y} \, dx dy = \int_{-\partial A} f \, dx = \int_{\partial A} f \, n_2 \, ds ; \qquad (8.3.3)$$

dove $\mathbf{n} = (n_1, n_2)$ è il vettore normale esterno alla frontiera.

Dimostrazione. Possiamo ridurci (non è restrittivo) al caso in cui A sia un insieme normale, dato da:

$$A = \{(x, y) \in \mathbb{R}^2 \mid x \in [a, b], y \in [\alpha(x), \beta(x)], \alpha, \beta \in C^1([a, b]), \alpha \le \beta\} . \tag{8.3.4}$$

Siano $\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4$ i quattro pezzi della frontiera di A, parametrizzati da:

$$\Gamma_{1} = \begin{cases}
x = a \\
y = y
\end{cases}, \quad y \in [\alpha(a), \beta(a)], \quad \mathbf{n} = (-1, 0), \\
y = y$$

$$\Gamma_{2} = \begin{cases}
x = x \\
y = \alpha(x)
\end{cases}, \quad x \in [a, b], \quad \mathbf{n} = (\alpha'(x), -1), \\
y = \alpha(x)
\end{cases}, \quad y \in [\alpha(b), \beta(b)], \quad \mathbf{n} = (1, 0), \\
y = y$$

$$\Gamma_{4} = \begin{cases}
x = x \\
y = \beta(x)
\end{cases}, \quad x \in [a, b], \quad \mathbf{n} = (-\beta'(x), 1). \quad (8.3.5)$$

Il secondo membro della seconda uguaglianza diventa allora:

$$\int_{\partial A} f n_2 \, ds = -\int_a^b f(x, \alpha(x)) \, dx + \int_a^b f(x, \beta(x)) \, dx = \int_a^b \left[f(x, \beta(x)) - f(x, \alpha(x)) \right] dx \,. \tag{8.3.6}$$

Mentre il primo membro diventa:

$$\int_{A} \frac{\partial f}{\partial y} dx dy = \int_{a}^{b} \int_{\alpha(x)}^{\beta(x)} \frac{\partial f}{\partial y} dy dx.$$
 (8.3.7)

Per il teorema fondamentale del calcolo integrale, segue:

$$\int_{A} \frac{\partial f}{\partial y} dx dy = \int_{a}^{b} \left[f(x, \beta(x)) - f(x, \alpha(x)) \right] dx , \qquad (8.3.8)$$

che dimostra la seconda uguaglianza. Per la prima invece, a secondo membro si ha:

$$\int_{A} f n_{1} ds = \int_{\alpha(a)}^{\beta(a)} -f(a, y) dy + \int_{a}^{b} f(x, \alpha(x)) \alpha'(x) dx
+ \int_{\alpha(b)}^{\beta(b)} f(b, y) dy + \int_{a}^{b} -f(x, \beta(x)) \beta'(x) dx.$$
(8.3.9)

Mentre a primo membro:

$$\int_{A} \frac{\partial f}{\partial x} \, \mathrm{d}x \mathrm{d}y = \int_{a}^{b} \int_{\alpha(x)}^{\beta(x)} \frac{\partial f}{\partial x} \, \mathrm{d}x \mathrm{d}y \; . \tag{8.3.10}$$

Consideriamo le funzioni:

$$G(x) = \int_{\alpha(x)}^{\beta(x)} f(x, y) \, dy, \qquad F(u, v, x) = \int_{u}^{v} f(x, y) \, dy. \qquad (8.3.11)$$

Avremo allora:

$$F_{v} = f(x, v) ,$$

$$F_{u} = -f(x, u) ,$$

$$F_{x} = \int_{u}^{v} \frac{\partial f}{\partial x}(x, y) dy .$$
(8.3.12)

Inoltre, $G(x) = F(\alpha(x), \beta(x), x)$. Dunque G è composizione di funzioni di classe C^1 , e dunque anch'essa sarà di classe C^1 . In virtù di ciò, possiamo riscrivere le derivate parziali come:

$$F_{v} = f(x, \beta(x))\beta'(x) ,$$

$$F_{u} = -f(x, \alpha(x))\alpha'(x) ,$$

$$F_{x} = \int_{\alpha(x)}^{\beta(x)} \frac{\partial f}{\partial x} dy .$$
(8.3.13)

Pertanto, si ottiene:

$$\int_{\alpha(x)}^{\beta(x)} \frac{\partial f}{\partial x} dy = \frac{d}{dx} \left[\int_{\alpha(x)}^{\beta(x)} f(x,y) dy \right] - f(x,\beta(x))\beta'(x) + f(x,\alpha(x))\alpha'(x) . \tag{8.3.14}$$

Sostituendo l'espressione appena trovata nella (8.3.10), otteniamo:

$$\int_{A} \frac{\partial f}{\partial x} dx dy = \int_{a}^{b} \frac{d}{dx} \left[\int_{\alpha(x)}^{\beta(x)} f(x, y) dy \right] dx - \int_{a}^{b} f(x, \beta(x)) \beta'(x) dx + \int_{a}^{b} f(x, \alpha(x)) \alpha'(x) dx.$$
(8.3.15)

Dal teorema fondamentale, segue che:

$$\int_{A} \frac{\partial f}{\partial x} dx dy = \int_{\alpha(b)}^{\beta(b)} f(b, y) dy - \int_{\alpha(a)}^{\beta(a)} f(a, y) dy
+ \int_{a}^{b} f(x, \alpha(x)) \alpha'(x) dx - \int_{a}^{b} f(x, \beta(x)) \beta'(x) dx.$$
(8.3.16)

Esempio 8.3.1. Sia $A \subseteq \mathbb{R}^2$ un aperto limitato, con $\partial A \in C^1$. Allora:

$$m_2(A) = \int_{+\partial A} x \, dy = \int_{-\partial A} y \, dx = \frac{1}{2} \int_{+\partial A} (x \, dy - y \, dx) .$$
 (8.3.17)

Esempio 8.3.2. Consideriamo la cicloide $\varphi(t) = (t \sin t, 1 - \cos t), t \in [0, 2\pi]$ e sia $\partial A = \varphi([0, 2\pi])$. Allora, per il teorema di Gauss-Green, si ha:

$$m_2(A) = -\int_0^{2\pi} (t - \sin t) \sin t \, dt = -\int_0^{2\pi} t \sin t \, dt + \int_0^{2\pi} \sin^2 t \, dt = 2\pi + \pi = 3\pi . \quad (8.3.18)$$

8.4 Divergenza, rotore e teorema di Stokes

Definizione 8.4.1. Sia $\mathbf{F} = (f, g)$ un campo vettoriale di classe C^1 . Si definisce divergenza di \mathbf{F} la quantità:

$$\operatorname{div} \mathbf{F} \equiv \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \,. \tag{8.4.1}$$

Teorema 8.4.1 (della divergenza). Sia $\mathbf{F}(f,g)$ un campo vettoriale di classe $C^1(A,\mathbb{R}^2)$, con $A \subseteq \mathbb{R}^2$ aperto e limitato, avente frontiera ∂A di classe C^1 . Allora:

$$\int_{A} \operatorname{div} \mathbf{F} \, \mathrm{d}x \mathrm{d}y = \int_{\partial A} \langle \mathbf{F}, \mathbf{n} \rangle_{2} \, \mathrm{d}s \,. \tag{8.4.2}$$

Dimostrazione. Dalla definizione di divergenza, si ha:

$$\int_{A} \operatorname{div} \mathbf{F} \, \mathrm{d}x \mathrm{d}y = \int_{A} \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) \mathrm{d}x \mathrm{d}y = \int_{A} \frac{\partial f}{\partial x} \, \mathrm{d}x \mathrm{d}y + \int_{A} \frac{\partial g}{\partial y} \, \mathrm{d}x \mathrm{d}y . \tag{8.4.3}$$

Applicando il teorema di Gauss-Green, si ottiene:

$$\int_{A} \operatorname{div} \mathbf{F} \, \mathrm{d}x \mathrm{d}y = \int_{\partial A} f n_{1} \, \mathrm{d}s + \int_{\partial A} g n_{2} \, \mathrm{d}s = \int_{\partial A} (f n_{1} + g n_{2}) \mathrm{d}s = \int_{\partial A} \langle \mathbf{F}, \mathbf{n} \rangle_{2} \, \mathrm{d}s . \tag{8.4.4}$$

Teorema 8.4.2 (Stokes). Siano $A \subseteq \mathbb{R}^3$ aperto, $\mathbf{F}: A \to \mathbb{R}^3$ un campo vettoriale di classe C^1 e Σ una superficie orientata, dotata di bordo Γ orientato in modo coerente. Allora:

$$\int_{\Sigma} \langle \operatorname{rot} \mathbf{F}, \mathbf{n} \rangle_{3} \, d\sigma = \int_{\Gamma} \langle \mathbf{F}, \boldsymbol{\tau} \rangle_{3} \, ds , \qquad (8.4.5)$$

dove τ è il versore tangente a Γ , \mathbf{n} è il versore normale a Σ e:

$$\operatorname{rot} \mathbf{F} \equiv \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ D_x & D_y & D_z \\ F_1 & F_2 & F_3 \end{pmatrix} = \begin{pmatrix} (F_3)_y - (F_2)_z \\ (F_1)_z - (F_3)_x \\ (F_2)_x - (F_1)_y \end{pmatrix} . \tag{8.4.6}$$

Dimostrazione. Poniamo $\Sigma = \boldsymbol{\sigma}(T), T \subseteq \mathbb{R}^2$ e $\boldsymbol{\sigma} \in C^2$, con $\partial T = \boldsymbol{\gamma}([a,b])$, essendo $\boldsymbol{\sigma}, \boldsymbol{\gamma}$ date

$$\sigma(u, v) = (x(u, v), y(u, v), z(u, v)), \qquad \gamma(t) = (\xi(t), \eta(t)). \qquad (8.4.7)$$

Supponiamo inoltre $\Gamma = \sigma(\partial T)$ (non è restrittivo). Sia $\mathbf{F} = (P,Q,R)$, con P,Q,R funzioni scalari. Definiamo:

$$\overline{\mathbf{F}} = \mathbf{F}(\boldsymbol{\sigma}(u, v)), \qquad \qquad \hat{\mathbf{F}} = \mathbf{F}(\boldsymbol{\sigma}(\boldsymbol{\gamma}(t))), \qquad (8.4.8)$$

da cui segue che $\hat{\mathbf{F}} = \overline{\mathbf{F}} \circ \boldsymbol{\gamma}$. Essendo $\Gamma = \{\boldsymbol{\sigma}(\boldsymbol{\gamma}(t)), t \in [a, b]\}$, si ha:

$$\int_{\Gamma} \langle \mathbf{F}, \boldsymbol{\tau} \rangle_{3} \, \mathrm{d}s = \int_{a}^{b} \langle \hat{\mathbf{F}}, (\boldsymbol{\sigma} \circ \boldsymbol{\gamma})' \rangle_{3} \, \mathrm{d}t$$

$$= \int_{a}^{b} \left[\hat{P}(x_{u}\xi' + x_{v}\eta') + \hat{Q}(y_{u}\xi' + y_{v}\eta') + \hat{R}(z_{u}\xi' + z_{v}\eta') \right] \, \mathrm{d}t . \tag{8.4.9}$$

Il vettore tangente esterno a T normalizzato è:

$$\boldsymbol{\nu} = \frac{(\eta', -\xi')}{|\boldsymbol{\gamma}'|_2} \ . \tag{8.4.10}$$

Sostituendo nella (8.4.9), si ottiene:

$$\int_{\Gamma} \langle \mathbf{F}, \boldsymbol{\tau} \rangle_{3} \, \mathrm{d}s = \int_{a}^{b} \left[\hat{P}(-x_{u}\nu_{2} + x_{v}\nu_{1}) + \hat{Q}(-y_{u}\nu_{2} + y_{v}\nu_{1}) + \hat{R}(-z_{u}\nu_{2} + z_{v}\nu_{1}) \right] \boldsymbol{\gamma}'|_{2} \, \mathrm{d}t$$

$$= \int_{a}^{b} \left[\nu_{1}(\hat{P}x_{v} + \hat{Q}y_{v} + \hat{R}z_{v}) - \nu_{2}(\hat{P}x_{u} + \hat{Q}y_{u} + \hat{R}z_{u}) \right] \boldsymbol{\gamma}|_{2} \, \mathrm{d}t$$

$$= \int_{\partial T} \left(\langle \hat{\mathbf{F}}, \boldsymbol{\sigma}_{v} \circ \boldsymbol{\gamma} \rangle_{3} \nu_{1} - \langle \hat{\mathbf{F}}, \boldsymbol{\sigma}_{u} \circ \boldsymbol{\gamma} \rangle_{3} \nu_{2} \right) \, \mathrm{d}s . \tag{8.4.11}$$

Dal teorema della divergenza, segue che:

$$\int_{\Gamma} \langle \mathbf{F}, \boldsymbol{\tau} \rangle_{3} ds = \int_{T} \left(\frac{\partial}{\partial u} \langle \overline{\mathbf{F}}, \boldsymbol{\sigma}_{v} \rangle_{3} - \frac{\partial}{\partial v} \langle \overline{\mathbf{F}}, \boldsymbol{\sigma}_{u} \rangle_{3} \right) du dv$$

$$= \int_{T} \left[\langle \mathbf{F}_{x} x_{u} + \mathbf{F}_{y} y_{u} + \mathbf{F}_{z} z_{u}, \boldsymbol{\sigma}_{v} \rangle_{3} + \langle \overline{\mathbf{F}}, \boldsymbol{\sigma}_{uv} \rangle_{3} - \langle \overline{\mathbf{F}}, \boldsymbol{\sigma}_{vu} \rangle_{3} - \langle \overline{\mathbf{F}}, \boldsymbol{\sigma}_{vu} \rangle_{3} \right] du dv .$$
(8.4.12)

Poiché $\sigma \in C^2$, allora per il teorema di Schwartz $\sigma_{uv} = \sigma_{vu}$ e quindi i termini contenenti le derivate seconde miste risultano opposti e si elidono. Sviluppando infine i prodotti scalari, si ha:

$$\int_{\Gamma} \langle \mathbf{F}, \boldsymbol{\tau} \rangle_{3} ds = \int_{T} \left[(\overline{P}_{x} x_{u} + \overline{P}_{y} y_{u} + \overline{P}_{z} z_{u}) x_{v} + (\overline{Q}_{x} x_{u} + \overline{Q}_{y} y_{u} + \overline{Q}_{z} z_{u}) y_{v} \right. \\
+ (\overline{R}_{x} x_{u} + \overline{R}_{y} y_{u} + \overline{R}_{z} z_{u}) z_{v} - (\overline{P}_{x} x_{v} + \overline{P}_{y} y_{v} + \overline{P}_{z} z_{v}) x_{u} \\
- (\overline{Q}_{x} x_{v} + \overline{Q}_{y} y_{v} + \overline{Q}_{z} z_{v}) z_{u} - (\overline{R}_{x} x_{v} + \overline{R}_{y} y_{v} + \overline{R}_{z} z_{u}) \right] du dv \\
= \int_{T} \left[(\overline{Q}_{x} - \overline{P}_{y}) (x_{u} y_{v} - x_{v} y_{u}) + (\overline{P}_{z} - \overline{R}_{x}) (z_{u} x_{v} - z_{v} x_{u}) + (\overline{R}_{y} - \overline{Q}_{z}) (y_{u} z_{v} - y_{v} z_{u}) \right] du dv \\
+ (\overline{R}_{y} - \overline{Q}_{z}) (y_{u} z_{v} - y_{v} z_{u}) \right] du dv = \int_{T} \langle \operatorname{rot} \mathbf{F}, \boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} \rangle_{3} du dv . \tag{8.4.13}$$

Poiché:

$$\mathbf{n} = \frac{\boldsymbol{\sigma}_u \times \boldsymbol{\sigma}_v}{|\boldsymbol{\sigma}_u \times \boldsymbol{\sigma}_v|_3}, \qquad d\sigma = du dv |\boldsymbol{\sigma}_U \times \boldsymbol{\sigma}_v|_3, \qquad (8.4.14)$$

si ottiene:

$$\int_{\Gamma} \langle \mathbf{F}, \boldsymbol{\tau} \rangle_3 ds = \int_{\Sigma} \langle \operatorname{rot} \mathbf{F}, \mathbf{n} \rangle_3 d\sigma . \qquad (8.4.15)$$

Teorema 8.4.3 (della divergenza in tre dimensioni). Siano $A \subseteq \mathbb{R}^3$ aperto e limitato con $\partial A \in C^1$ e $\mathbf{F} \in C^1(A, \mathbb{R}^3)$ un campo vettoriale. Allora:

 $\int_{A} \operatorname{div} \mathbf{F} \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = \int_{\partial A} \langle \mathbf{F}, \mathbf{n} \rangle_{3} \, \mathrm{d}s \,, \tag{8.4.16}$

dove n è il vettore normale esterno.