Verifica Trave SLU D.M. 2008 CAP.7

1.Caratteristiche dei materiali impiegati

		1
Classe di resistenza del calcestruzzo	C25/30	
Tipo Acciaio	Fe B450C	
Modulo elastico dell'acciaio Es	210000	N

N/mm²

2.Dimensioni della trave e della sezione

			_
Larghezza della sezione	В	300	[mm]
Altezza della sezione	Н	600	[mm]
Lunghezza della trave	L	6	[m]
Spessore copriferro	d'	30	[mm]
Altezza utile	d	560	[mm]

Rck	30	N/mm²
fctm	2,56	N/mm ²
fctk	1,79	N/mm ²
fbd	2,69	N/mm ²
fck	24,90	N/mm ²
fcd	16,60	N/mm ²
fyd	391,30	N/mm ²

3.Classe di duttilità

Classe di duttilità alta CD"A"	

4. Sollecitazioni e pesi gravanti sulla trave in valore assoluto

momente enneggie gr	inf	150,0	[kNm]
momento appoggio sx.	sup	160,0	[kNm]
momento campata	max	232,0	[kNm]
momentoenneggie dy	inf	150,0	[kNm]
momentoappoggio dx	sup	180,0	[kNm]
			_
Carico permanente strutturale	G1	20,00	[kN/m]
Carico permanente nonstrutturale	G 2	10,00	[kN/m]
Carico variabile	Qk	12,84	[kN/m]

5.Limitazione geometrica della trave B/H ≥0,25; B ≥ 200 mm:

verificato

6.Lunghezza della zona critica:

CD A

900 [mm]

7. Progetto a flessione

						IN	PUT							PER LA ZONA CRITICA
zono di o	valanla	Msd	As,min	ba	rre	ba	arre	ba	arre	As	Mrd	Mrd > Mcd	1 4/frdy < 0 < 000mm + 2 5/frdy	acomp > 0 F a
zona di c	aicoio	kNm	mm²	n°	ф	n°	ф	n°	ф	mm²	kNm	IVII u z IVISu	$1,4/fyk \le \rho \le \rho comp + 3,5/fyk$	ρcomp ≥ 0,5 ρ
onnoggio sv	inf	150,00	760,58	2	16	3	16	0	0	1005,31	198,26	verificato	verificato	verificato
appoggio sx.	sup	160,00	811,29	2	16	3	16	1	14	1159,25	228,62	verificato	verilicato	vernicato
campata	max	232,00	1176,37	2	16	4	18	0	0	1420,00	280,05	verificato	verificato	verificato
annogojo dv	inf	150,00	760,58	2	16	3	16	0	0	1005,31	198,26	verificato	verificate	vovificato
appoggio dx	sup	180,00	912,70	2	16	3	16	1	14	1159,25	228,62	verificato	verificato	verificato
		-		CORF	RENTE	INTEG	RATIVA	INTEG	RATIVA			-		

• L'armatura superiore, disposta per il momento negativo alle estremità delle travi, deve essere contenuta, per almeno il 75%, entro la larghezza dell'anima e comunque, per le sezioni a T o ad L, entro una fascia di soletta pari rispettivamente alla larghezza del pilastro, od alla larghezza del pilastro aumentata di 2 volte lo spessore della soletta da ciascun lato del pilastro, a seconda che nel nodo manchi o sia presente una trave ortogonale.

• Almeno ½ della suddetta armatura deve essere mantenuta per tutta la lunghezza della trave.

Le armature longitudinali delle travi, sia superiori che inferiori, devono attraversare, di regola, i nodi senza ancorarsi o giuntarsi per sovrapposizione in essi.

8.Lunghezze di ancoraggio

Lungh	ezza di ancorag	ggio
barr	·a	Ι _b (m)
ф	14	0,51
ф	16	0,58
ф	18	0,66
ф	20	0,73
ф	22	0,80

9.Progetto a Taglio

γrd	1,2	CD A	
	<u> </u>		
Lunghezza e	L [m]	Gk [kN]	Qk [kN]
carico Trave	6	30,00	12,84

Momenti	Appoggi	o Sinistro	Appoggi	io Destro
resistenti	Mr,sup	Mr,inf [kNm]	Mr,sup	Mr,inf [kNm]
della Trave	[kNm]	100.20	[kNm]	100.20
	228,62	198,26	228,62	198,26

9.1 Taglio sollecitante secondo la gerarchia delle resistenze

Та	glio sollecitant	te valori massi	mi
Vsd A+	Vsd A-	Vsd B+	Vsd B-
186,93	-46,86	-4,62	-186,93

9.2 Verifica sulle sollecitazioni taglianti

Travi - Verifiche di resistenza - flessione

• Se nelle zone critiche il rapporto tra il taglio minimo e quello massimo risulta inferiore a -0,5, e se il maggiore tra i valori assoluti dei due tagli supera il valore:

dove b_w è la larghezza dell'anima della trave e d è l'altezza utile della sua sezione, allora nel piano verticale di inflessione della trave devono essere disposti due ordini di armature diagonali, l'uno inclinato di +45° e l'altro di -45° rispetto all'asse della trave.

Vsd A-/Vsd A+	0,25	verificato
VR1	4147	verificato

Vsd B-/Vsd B+	0,02	verificato
VR1	4682	verificato

9.3 Progetto dell'armatura

*Il progetto dell'armatura sagomata non è integrato

9.3.1 Progetto dell'armatura in zona critica

	INPUT									
staffe		PASSO	Ved	٩	VERIFICA CUECK COLLASCO		V_{Rtd}	verifica	Verifica limiti di armatura	
(ф)	n. braccia	(cm)	[kN]	ש	cotan(ϑ) di calcolo	VRtd <vrcd< td=""><td>CHECK COLLASSO</td><td>(kN)</td><td>VEd<vrsd< td=""><td>in ZONA CRITICA</td></vrsd<></td></vrcd<>	CHECK COLLASSO	(kN)	VEd <vrsd< td=""><td>in ZONA CRITICA</td></vrsd<>	in ZONA CRITICA
8	2	8	186,93	0,179	1,0	0,48	COLLASSO LATO ACCIAIO	247,83	verificato	verificato

9.3.2 Progetto dell'armatura fuori dalla zona critica

Armatura trasversale m	Armatura trasversale minima fuori zona critica			
Ast ≤ 1,5 B	45,0	cm	verificato	
0,8 d	44,8	cm		
3 staffe/metro	33,3	cm		

	INPUT											
staffe	PASSO	Ved			VERIFICA		V_{Rtd}	verifica				
(ф)	n. braccia	(cm)	[kN]	ਰ	cotan(v) di calcolo	ϑ cotan(ϑ) di calcolo	VRtd <vrcd check="" collasso<="" td=""><td>CHECK COLLASSO</td><td>CHECK COLLASSO</td><td>(kN)</td><td>VEd<vrsd< td=""><td>Verifica limiti di armatura</td></vrsd<></td></vrcd>	CHECK COLLASSO	CHECK COLLASSO	(kN)	VEd <vrsd< td=""><td>Verifica limiti di armatura</td></vrsd<>	Verifica limiti di armatura
8	2	25	130,85	0,124	2,5	0,49	COLLASSO LATO ACCIAIO	619,58	verificato	verificato		

2 braccia

 $2V_{Ed}$

10.Traslazione del momento flettente

La traslazione del momento flettente è dovuta alla fessurazione della trave, si deve predisporre un'armatura extra per assorbire questa sollecitazione di trazione.

In genere questi sforzi si possono attribuire alle barre di parete

	inț	out		_
As,par	Ferri		As	
mm²	n°	ф	mm²	
239	2	14	308	verificato

11. Disposizione Armatura

/ 8cm

staffa

/ 25cm

2 braccia

staffa:

Verifica Trave SLE D.M. 2008 CAP.4 (§ 4.1.2.2)

1-Momenti sollecitanti per le varie combinazioni per la sezione di mezzeria

Med combinazione caratteristica	166,00	kN/m²
Med combinazione frequente	149,00	kN/m²
Med combinazione quasi permanente	134,00	kN/m ²
La condizione ambientale à:	csive	

2-Ferri utilizzati per la sezione di mezzeria

Armatura Superiore	ф 16 2			As, inserita 402,1 mm²
	ф 16	ф 18	ф0	As, inserita
Armatura Inferiore	2	4	0	1420,0 mm²

3-Resoconto dati inseriti

30,0 cm

	402,1 mm²
Asse neutro, sle cls giovane 155 mm	
	1680 cm²
Asse neutro, sle cls vecchio 241 mm	
	1420,0 mm²
	20.0

30,0 cm

Lunghezza trave: 6,00 m

Rck	<i>30</i>	N/mm²
fctm	2,56	N/mm ²
fctk	1,79	N/mm ²
fbd	2,69	N/mm ²
fck	24,90	N/mm ²
fcd	16,60	N/mm ²
fyd	391,30	N/mm ²

4-Verifiche allo stato limite di esercizio

Si effettuano le seguenti verifiche, per la sezione di mezzeria:

I-Verifica di deformabilità

II-Verifica delle tensioni di esercizio

III-Verifica di fessurazione

56,0 cm

4.1-Sezione Totalmente Reagente

	1			
e.	n	6,7	-	
<u>t</u>	x	310	mm	
nuovo, sezione totalmente reagente	Ec	31447	Мра	
<u>=</u>	J ₁	625310	cm ⁴	
<u>5</u>	W 1	2020	cm³	
ا و	P,sle carat.	42,84	kN/m	
jo o	Med	166,00	kNm	
ez	Mcr	66,09	kNm	
ge. S	f ₁	3,7	mm	
ovo, sezi reagente	f	3,7	mm	
ا ۾ ت	fmax	24,0	mm	
	f ≤ f _{max}	verificat	o 1/250	
ZZ	σα	-8,22	Мра	
ļ t	σ c ≤ 0,6 f ck	VERIFI	CATO	
S S	σs	-46,17	Мра	
Calcestruzzo	LA SEZIONE SI FESSURA (STADIO 2)			

4.2-Verifiche per il calcestruzzo Giovane, in combinazione caratteristica

	n	6,7	_		
	P,sle carat.	42,84	kN/m		
	Med	166,00	kNm		
	J ₁	625310	cm⁴		
	Mcr	66,09	kNm		
	x	155	mm		
Q	d ,virt	451	mm		
8	As,virt	402	mm²		
Calcestruzzo nuovo	Ec	31447	Mpa		
0	J2	204748	cm⁴		
ZZI	f1	3,7	mm		
7.	f2	11,2	mm		
est	f	10,0	mm		
<u>5</u>	fmax	24	mm		
පු	f ≤ f _{max}	verificat	to 1/250		
	σα	-12,56	Mpa		
	σ c ≤ 0,6 fck VERI		FICATO		
	σs	224,72	Мра		
	σ s ≤ 0,8 fyk	VERIF	ICATO		
	LA SEZIONE SI FESSURA (STADIO 2)				
FESSURAZIONE IMPOSTA I	OSTA NELLA SEZIONE GIOVANE: NO				

4.2-Verifiche per il calcestruzzo Giovane, in combinazione frequente

	n	6,7	-		
	P,sle freq	36,42	kN/m		
	Med	149,00	kNm		
0	J1	625310	cm⁴		
Š	Mcr	66,09	kNm		
nuovo	x	155	mm		
	d ,virt	451	mm		
0	A s,virt	402	mm²		
27	Ec	31447	Мра		
l	J2	204748	cm⁴		
Calcestruzzo	σ c	-11,27	Мра		
<u>3</u>	σs	201,71	Мра		
<u> </u>	wk	0,13	mm		
	Wlim	0,30	mm		
	wk ≤ wlim	wk ≤ wlim VERIFICATO			
	LA SEZIONE SI FESSURA (STADIO 2)				
FESSURAZIONE IMPOSTA	NO				

4.3-Verifiche per il calcestruzzo Vecchio, in combinazione quasi permanente

	n	22,7	-
	P,sle quas. Perm	33,85	kN/m
	Med	134,00	kNm
	J ₁	625310	cm⁴
	Mcr	66,09	kNm
	x	241	mm
	d ,virt	451	mm
<u>o</u>	As, virt	1822	mm²
'	Ec,vec	9249	Мра
))	J2	529600	cm⁴
5	f1	9,9	mm
02	f2	11,7	mm
l Zn	f	11,4	mm
<u> </u>	fmax	24	mm
Calcestruzzo vecchio	f ≤ f _{max}	f ≤ f _{max} verificat	
<u> </u>	σ c,nuovo	-10,14	Мра
Ö	σ c ≤ 0,45 fck	VERIF	ICATO
	σs, nuovo	181,40	Mpa
	σ s ≤ 0,8 fy k	VERIF	ICATO
	wk	0,11	mm
	Wlim	0,20	mm
	wk ≤ wlim	VERIF	ICATO
	LA SEZ	IONE SI FESSURA (STA	ADIO 2)
FESSURAZIONE IMPOSTA	NO		

4.4-Cenni Teorici

Si riportano le verifiche condotte per ogni stato limite di esercizio, in particolare:

Combinazione Rara: Verifica alle tensioni e Verifica alle frecce istantanee;

Combinazione Frequente: Verifica all'apertura delle lesioni;

Combinazione Quasi Permanente: Verifica alle tensioni, Verifica all'apertura delle lesioni e Verifica delle frecce differite.

Si riportano anche valori tensionali di interesse progettuale e i valori del momento d'inerzia di tutte le sezioni in relazione allo stadio di esercizio, per la combinazione rara.

La verifica delle tensioni consiste nel confrontare le tensioni che si attingono nei materiali in condizioni di esercizio con i valori limite fissati dalla normativa per contenere i fenomeni di microfessurazione e di viscosità nel calcestruzzo compresso e lo snervamento dell'acciaio. Al fine di preservare la durabilità strutturale nelle condizioni ambientali maggiormente onerose le NTC prescrivono che la massima tensione di compressione nel calcestruzzo debba rispettare:

combinazione rara
$$\sigma_{c,max} \leq 0,60 f_{ck}$$

combinazione quasi permanente $\sigma_{c,max} \leq 0.45 f_{ck}$

Per quanto attiene la massima trazione nell'acciaio:

$$\sigma_s \leq 0.80 f_{vk}$$

Le massime tensioni sono state calcolate con la teoria elastica.

Il calcolo tecnico dell'apertura delle fessure viene eseguito per la combinazione frequente e quasi permanente.

Il valore di calcolo dell'apertura delle fessure wd può essere ottenuto con l'espressione:

$$\begin{split} w_d &= \varepsilon_{sm} \; \Delta_{smax} \\ \varepsilon_{sm} &= \frac{\sigma_s - k_t \frac{f_{ctm}}{\rho_{eff}} (1 + \alpha_e \rho_{eff})}{E_s} \geq 0.6 \frac{\sigma_s}{E_s} \end{split}$$

Si fa l'ipotesi che l'armatura sia disposta con una spaziatura non superiore a $5(c + \phi/2)$, in cui il diametro nel caso fossero presenti tondi diversi, è stabilito attraverso una media pesata.

$$\Delta_{smax} = k_3 c + k_1 k_2 k_4 \frac{\Phi}{\rho_{eff}}$$

Cumpi di	Condizioni ambientali	Combinazione di azioni	Armatura			
Gruppi di esigenze			Sensibile		Poco sensibile	
esigenze			Stato limite	$\mathbf{w}_{\mathbf{d}}$	Stato limite	$\mathbf{w_d}$
a	Ordinarie	frequente	ap. fessure	\leq W ₂	ap. fessure	\leq W ₃
		quasi permanente	ap. fessure	\leq W ₁	ap. fessure	\leq W ₂
b	Aggressive	frequente	ap. fessure	$\leq w_1$	ap. fessure	\leq W ₂
		quasi permanente	decompressione	-	ap. fessure	\leq W ₁
С	Molto aggressive	frequente	formazione fessure	-	ap. fessure	$\leq w_1$
		quasi permanente	decompressione	-	ap. fessure	\leq W ₁

W1	0,2 mm		
W2	0,3 mm		
W 3	0,4 mm		

Dall' EC2 2004, La freccia massima si calcola:

$$f = f_1 \beta \left(\frac{M_{cr}}{M_{sd}} \right)^2 + f_2 \left[1 - \beta \left(\frac{M_{cr}}{M_{sd}} \right)^2 \right]$$

f₁ è la freccia massima calcolata per la trave appoggiata nella condizione di sezione totalmente reagente, stadio 1. Nell'ipotesi che il calcestruzzo sia giovane f₂ è la freccia massima calcolata per la trave appoggiata nella condizione di sezione parzializzata, stadio 2. Nell'ipotesi che il calcestruzzo sia giovane

$$f_1 = \frac{5}{384} \frac{q l^4}{E_c J_1}$$
 $f_2 = \frac{5}{384} \frac{q l^4}{E_c J_2}$ $M_{cr} = \frac{1.2 f_{ctm} J_1}{h - x}$

 M_{cr} è il momento di prima fessurazione si calcola con la teoria elastica una volta attinta la tensione massima a trazione del calcestruzzo maggiorata del 20% . β è un coefficiente che tiene conto dei carichi di lunga durata (vale 1 per carichi di breve durata e 0,5 per carichi di lunga durata o ciclici).

Nel caso di mensole la freccia massima si calcola con la stessa relazione considerando però il doppio della lunghezza dello sbalzo.

Lo stesso calcolo viene eseguito considerando i fenomeni lenti del calcestruzzo, aggiornando il modulo elastico con il coefficiente di viscosità. Questa verifica è condotta per lo stato limite di esercizio quasi permanente.

$$E_{c,eff} = \frac{E_c}{1+\varphi} \qquad \qquad \varphi = 2.4$$

La verifica è soddisfatta se il rapporto freccia luce è minore di 1/250. **x** Indica la posizione dell'asse neutro, mentre J rappresenta il momento d'inerzia della sezione.

I pedici 1 e 2 indicano rispettivamente sezione reagente e parzializzata. **n** è il coefficiente di omogeneizzazione della sezione.