Causal Analysis: A Quick Intro

Day 2: Introduction to Machine Learning for Causal Analysis using Observational Data

CAUSAL ANALYSIS USING DATA FROM OBSERVATIONAL STUDIES

- > We want to estimate the *causal effect* of treatment or social exposure *T* on outcome *Y*
 - > Causal effect is policy-relevant: what benefits accrue if we intervene to change *T*?
 - > Treatment must be *modifiable* for this to make sense otherwise, what's the point??

- > We have data from an **observational** study where *T* and *Y* are measured
 - > How were the individual units in the data set collected?
 - > Which population were these units drawn from?
 - > Temporal ordering: are we sure treatment was determined before outcome? **If not, game over!**

REGRESSION ESTIMATION

- > Linear regression is workhorse for effect estimation
 - > For subject i, we observe their treatment t_i and outcome y_i and fit the model

$$y_i = a + bt_i + e_i$$

where we focus on binary treatment

$$t_i = \begin{cases} 1 & \text{if } i \text{ received treatment} \\ 0 & \text{control} \end{cases}$$

- > Coefficient *b* is the difference between the mean outcomes in the treatment and control groups
- > Usually estimate using ordinary least squares or maximum likelihood

Note: Can elaborate regression model if treatment is continuous

e.g. Add t_i^2 , t_i^3 , t_i^4 , etc. terms (curvilinear) or use dummy variables (stepwise linear) to capture more complex relationships in a limited way

CONFOUNDING IN OBSERVATIONAL STUDIES

- > Regression coefficient b is a measure of association between T and Y
 - > Would equal *causal effect* if RCT data (randomised controlled trial) where T was randomized

- > But T not randomised: treatment selected **in a way that could depend (indirectly**) on Y
 - > Same 'type' of person who chooses treatment is also the sort who has high outcome (& vice versa)
 - > Banks give loans to people more likely to successfully pay off their loans
 - > Children from wealthier families more likely to attend private school and have better post-school outcomes
- > Would have done better anyway: association *confounds* this with the true effect of treatment

1. Graph for association

ROLE OF BASELINE VARIABLES

> Suppose study measures many other variables $X = (X_1, X_2, ..., X_p)$

- > Throw away those we know happened after the treatment was chosen
 - > Not a baseline variable if so!
 - > We need to be sure we have a quasi-experimental study

> Distribution of *X* generally different for treated and untreated in observational study

$\hat{b} = ATE$ RANDOMISED CONTROLLED TRIAL Baseline variables Moderation/ X Interaction Follow-up

CAUSAL EFFECT: THE AVERAGE TREATMENT EFFECT (ATE)

> Potential outcomes

> For subject i, we observe their treatment t_i and outcome y_i and fit the model \mathcal{Y}_i^0 , \mathcal{Y}_i^1

where we observe only one

$$y_i = \begin{cases} \mathcal{Y}_i^1 & \text{if } i \text{ received treatment} \\ \mathcal{Y}_i^0 & \text{control} \end{cases}$$

> The average/mean of $\mathcal{Y}_i^1-\mathcal{Y}_i^0$ across everyone in the *target population* ATE = $E\big[\mathcal{Y}_i^1-\mathcal{Y}_i^0\big]$

Notes: If treatment T is polytomous or continuous then y_i^t is a set of values so need model for effect of treatment as many different ways of measuring treatment effect

Implicitly assume stable unit treatment value assumption (SUTVA): potential outcomes don't depend on what other units get

IGNORABLE SELECTION

Independent/Uncorrelated

> Treatment selection is (strongly) ignorable if

$$\begin{pmatrix} y_i^1 \\ y_i^0 \end{pmatrix} \mathbb{1} t_i x_i$$

- > Differences between treated and untreated among those subjects characterized by same *X* are **random**
- > Referred to as **no unobserved confounding** or **no omitted variables** assumption
- > The challenges now are
 - > Verifying this condition is true [clue: you can't! Doing what you can to mitigate confounding]
 - > Adjusting the estimate of *b* to account for these effects [today's focus!]

Other approaches needed if there is unobserved confounding (e.g. instrumental variables) but beyond scope

Weakly ignorable $\mathcal{Y}_i^0 \perp t_i | x_i$ --- generally estimate ATE among the treated: ATT = $E[\mathcal{Y}_i^1 - \mathcal{Y}_i^0 | t_i = 1]$

REGRESSION ADJUSTMENT

> Include *X* variables in the regression model

$$y_i = a + bt_i + cx_i + e_i$$

where $cx_i = c_1x_{1i} + \cdots + c_px_{pi}$ is linear combination of the confounding variables

> This models mean of the untreated potential outcomes as linear model

$$\mu_0(x_i) = E[\mathcal{Y}_i^0 | x_i] = E[y_i | x_i, t_i = 0] = a + cx_i$$

- > Fit driven entirely by data on untreated subjects
- > Assumes causal effects are **homogeneous**
- > Usually performs well with small number of *X* variables (especially if categorical)
- > Extrapolates if no overlap are allowed (but predicted under the model)

Homogeneous effects if **Conditional** ATE CATE $(x_i) = E[y_i^1 - y_i^0 | x_i] = ATE$

No overlap for e.g. x = (young, male, low SEP, unhealthy) either if all units are treated or all units are untreated

INVERSE PROBABILITY WEIGHTING

> Specify (marginal) structural model for treatment (it excludes *X*)

$$y_i = a + bt_i + e_i$$

> But these have to go somewhere — into the *selection propensities*

$$\Pr[t_i = 1 | x_i = x] = e(x)$$

- > No longer assume homogeneous effects
- e(x) = 0 or 1 implies **no overlap**: makes clear we cannot estimate CATE(x)
- > IPW estimator weighted regression using (weighted sample is 'balanced')

$$w_i = \frac{t_i}{\hat{e}(x_i)} + \frac{1 - t_i}{1 - \hat{e}(x_i)}$$

Note. Ignorable assumption needed to ensure that $\Pr[t_i = 1 | \mathcal{Y}_i^0, \mathcal{Y}_i^1, x_i = x] = \Pr[t_i = 1 | x_i = x]$

Selection propensities can also play a key role for matching estimators (to estimate 'counterfactual' $\mathcal{Y}_i^{1-t_i}$ to match 'factual' y_i)

IPW estimator is not fully efficient but Robins's **doubly robust** estimator is, and also robust to mis-specification of either propensity or structural model (but not both)

(SUPERVISED) MACHINE LEARNING (RECAP)

- > Algorithms that learn the true relationship between *input variables* and *output variables*
 - > Set up to accurately predict outputs/outcomes
 - > We call different ML algorithms *base learners* or just *learners*
 - > Yesterday looked at regression classification, decision trees, random forests

> Differences

- > Move away from parametric models $Y = f(X; \theta)$, just $f: X \to Y$
- > Move from statistical model selection to *train* and *test* (incl. setting *meta-parameters*)
- > Results in predicted outcomes rather than parameter estimates

META-ALGORITHMS FOR ESTIMATING ATE: S-, T- AND X-LEARNERS

- > Use the power of learners from ML to estimate causal effects more accurately
- > Target the Conditional Average Treatment Effect (CATE)

CATE
$$(x_i) = E[\mathcal{Y}_i^1 - \mathcal{Y}_i^0 | x_i] = \mu_1(x_i) - \mu_0(x_i)$$

where

$$\mu_t(x_i) = E[\mathcal{Y}_i^t | x_i]$$

- > Different estimation strategies: S single, T two-estimator strategy, X hybrid strategy
- > Then take average, e.g.

$$ATE = \frac{1}{N} \sum_{i=1}^{N} CATE(x_i)$$

S-LEARNERS

> Learn single structural model from **all available data**

$$\mu(t,x) = E[y_i|t_i = t, x_i = x] \blacktriangleleft$$

> Then estimate

CATE
$$(x_i) = \mu(1, x_i) - \mu(0, x_i),$$

- > Compared with linear regression:
 - > Not limited to linear model for $\mu_0(x_i) = E[\mathcal{Y}_i^0 | x_i]$
 - > Allows heterogenous treatment effects

We'll use random forest regression /

ANOTHER S-ESTIMATOR: 'DOUBLY ROBUST' IPW ESTIMATION

Random forest classifier

- > Learn propensity model $Pr[t_i = 1 | x_i = x] = e(x)$
 - > Simply fit **weighted** regression of *Y* on *T* using $w_i = t_i/\hat{e}(x_i) + (1-t_i)/(1-\hat{e}(x_i))$ -- classical IPW

- > Alternative approach: Stage 2: Learn structural model for $\mu(t,x)$
 - > Use **weighted** random forest regression with same weights as above
- > This is 'doubly robust' compared with IPW:
 - > Errors in structural model reduced through use of selection-propensity adjustment
 - > " in selection propensity " structural model X-adjustment

EARLY APPROACHES: S- and T-LEARNERS

> S: Learn single model from all available data

$$\mu(t,x) = E[y_i|t_i = t, x_i = x] \blacktriangleleft$$

> Then estimate

CATE
$$(x_i) = \mu(1, x_i) - \mu(0, x_i),$$

> T: Learn two models, one for treated, one for untreated:

- > From treated units, learn $\mu_1(x_i) = E[y_i|t_i = 1, x_i]$
- > From control units, learn $\mu_0(x_i) = E[y_i|t_i = 0, x_i]$
- > Combine: CATE $(x_i) = \mu_1(x_i) \mu_0(x_i)$

Random forest regression

META-ALGORITHMS: X-LEARNER

- > Today's focus
- > Simply combine learner predictions with observed data:
- > As with T-learner:
 - > Learn $\mu_1(x_i) = E[y_i|t_i = 1, x_i]$ (from treated units)
 - > Learn $\mu_0(x_i) = E[y_i|t_i = 0, x_i]$ (from untreated units)
- > 'Impute' individual treatment effects

$$D_i = \begin{cases} D_i^1 \coloneqq y_i - \hat{\mu}_0(x_i) & \text{if } i \text{ is treated} \\ D_i^0 \coloneqq \hat{\mu}_1(x_i) - y_i & \text{if } i \text{ is untreated} \end{cases}$$

Learn
$$\hat{\tau}_0(x) = E[D_i^0 | x_i = x]$$
 and $\hat{\tau}_1(x) = E[D_i^1 | x_i = x]$
Calculate $\hat{\tau}(x) = \hat{\tau}_0(x)(1 - e(x)) + \hat{\tau}_1(x)e(x)$

Fig. 1. Intuition behind the X-learner with an unbalanced design. (A) Observed outcome and first-stage base learners. (B) Imputed treatment effects and second-stage base learners. (C) ITEs and CATE estimators.

From Kuntzel at al. (2019) Metalearners for estimating heterogeneous treatment effects using machine learning.

SOME REFERENCES AND FURTHER READING

- Wager and Athey (2018) [identifying heterogenous treatment effects with random forests] https://doi.org/10.1080/01621459.2017.1319839
- Econ-ML repository [research papers on ML in economics there's a lot of work going on!]

 http://econ-neural.net/
- Hernan and Robins (2020) [exhaustive book on causal analysis]

 https://cdn1.sph.harvard.edu/wp-content/uploads/sites/1268/2020/02/ci_hernanrobins_21feb20.pdf
- Kuntzel et al (2019) [X-learners vs S- and T-learners] https://doi.org/10.1073/pnas.1804597116
- Xu et al (2020) [where the computer scientists are headed...]

https://arxiv.org/abs/2006.16789

Now to the practical bit

But first, any questions...?