¹H(³⁴Si,p):from IAR **2012Im01**

(p,p) elastic scattering on 0^{+} $^{34}\mathrm{Si}$ g.s. in inverse kinematics.

2012Im01: A 34 Si beam at $^{7*}10^4$ pps and a purity of 97% was produced by the projectile fragmentation of a 63-MeV/nucleon 40 Ar primary beam and separated by the RIPS separator at RIKEN. The secondary target was a 10.9(5) mg/cm² polyethylene film. An incident energy of 4.4(12) MeV/nucleon for the 34 Si beam was determined by the timing difference between a plastic scintillator and two PPACs placed upstream of the target. The PPACs also record the positions and angles of the projectiles incident upon the target. Outgoing particles were detected and identified by a three-layer ΔΕ-E telescope consisting of 0.5-mm DSSD, 1.5-mm silicon, and 1.5-mm silicon detectors mounted at 0° with an E_{lab} resolution σ =130 keV . Measured excitation functions of proton elastic scattering on 34 Si for $\theta_{lab} < 10^\circ$ using thick target inverse kinematics. Deduced E_R , L-transfer, Γ_P , and Γ from R-matrix analysis for 8 resonances in the highly excited states in 35 P, which are isobaric analog states of 35 Si states. IARs observed by 2012Im01 in 35 P are related to the corresponding β -decay parent states in 35 Si.

³⁵Si Levels

Relationship between IAR in ^{35}P and corresponding β^- -decay parent states in ^{35}Si : $E_x(^{35}P)=E_x(^{35}Si)+Q_{\beta^-}(^{35}Si)+\Delta_c-\delta_{pn}$, with $E_x(^{35}P)=E_R(c.m.)+S(p)(^{35}P)$; Δ_c and δ_{pn} the Coulomb displacement energy and the mass difference between proton and neutron, $\Delta_c-\delta_{pn}=4623$ keV; $S(p)(^{35}P)=12190$ 14 and $Q_{\beta^-}(^{35}Si)=10500$ 40 from 2012Wa38.

E(level) [†]	Jπ‡	Comments
0	7/2-	E(level): IAR resonance energy in ³⁵ P: E _R (c.m.)=3006 2, corresponding to IAR state in ³⁵ P at 15196 14 (2012Im01).
910	3/2-	E(level): 984 36 from IAR resonance energy in 35 P: $E_R(c.m.)=3990$ 36, corresponding to IAR state in 35 P at 16180 39 (2012Im01).
974	3/2+	E(level): 803 18 from IAR resonance energy in 35 P: $E_R(c.m.)=3809$ 18, corresponding to IAR state in 35 P at 15999 23 (2012Im01).
1444?	$(1/2^+)$	E(level): rounded value of 1444 44 from IAR resonance energy in 35 P: $E_R(c.m.)=4450$ 44, corresponding to possible IAR state in 35 P at 16640 46 (2012Im01).
2168	5/2+	E(level): 2093 12 from IAR resonance energy in 35 P: $E_R(c.m.)=5099$ 12, corresponding to IAR state in 35 P at 17289 18 (2012Im01).
2194?	$(1/2^-,3/2^-)$	E(level): rounded value of 2194 15 from IAR resonance energy in 35 P: $E_R(c.m.)=5200$ 15, corresponding to possible IAR state in 35 P at 17390 21 (2012Im01).

 $^{^{\}dagger}$ Rounded values from Adopted Levels, unless otherwise noted. Values deduced from difference of measured IAR resonance energy $E_{R}(c.m.)$ for ^{35}P in 2012Im01 are given as comments.

1

[‡] R-Matrix assumed J=L+1/2 when fitting the measured excitation functions of the proton elastic scattering (2012Im01).