本次课程提纲:图的基本概念

- 几种典型的图
- 握手定理
- 度序列

完全图

- n 个顶点的完全图: n 阶完全图, 用 K_n 表示
- K_n 的边数为 n(n-1)/2

偶图 (二部图)

- 点集可以分解为两个子集X和Y,使得每条边的一个端点在X中,另一个在Y中
- 偶图中没有环与三角形, 可以有重边

简单图的补图

- 对于一个简单图 G = (V, E), 令集合 $E_1 = \{uv | u \neq v, u, v \in V\}$
- 称图 $H = (V, E_1 \setminus E)$ 为 G 的补图

补图

- 只有简单图才能定义补图
- 图和其补图顶点集合相同
- 任意一对顶点相邻的充分必要条件是它们在补图中不相邻
- n 阶简单图边数与其补图边数之和等于 K_n 的边数
 - n(n-1)/2

自补图

- 如果 G 与其补图同构,则称 G 为自补图
 - 五边形与五角星

• 并不是任意一个简单图都是自补图

定理

若n 阶图 G 是自补图,则有n = 4k 或 4k + 1

自补图

- 如果 G 与其补图同构,则称 G 为自补图
 - 五边形与五角星

• 并不是任意一个简单图都是自补图

定理

若n 阶图 G 是自补图,则有n = 4k 或 4k + 1

证明

利用n阶图边数与其补图边数之和为 K_n 的边数

自补图

习题

在 10 个顶点以下的单图中,哪些阶数的图可能为自补图?

- 1、4、5、8、9 阶图可能为自补图
- 1 阶图自补图是本身
- 4 阶图的自补图只有一个
- 5 阶图的自补图有 2 个
- 8 阶自补图有 10 个
- 9 阶以上的图的自补图构建很复杂 (9 阶的图有 36 个)

顶点的度

- G 的顶点v 的度 d(v) 是指 G 中与v 关联的边的数目
 - 每个环计算两次
 - 顶点度描述图的局部结构
- 分别用 $\delta(G)$ 和 $\Delta(G)$ 表示图 G 的最小与最大度
- 奇数度的顶点称为奇点, 偶数度的顶点称偶点
- 设G = (V, E) 为简单图,如果对所有节点v 有d(v) = k,称G 为k 正则图

握手定理

图论第一定理,握手定理,由欧拉提出

任意图中所有顶点的度的和等于边数的 2 倍

推论

- 任何图中, 奇点个数为偶数
- 正则图的阶数和度数不同时为奇数

习题

 $\delta(G)$ 和 $\Delta(G)$ 是简单图 G 的最大与最小度,m 与 n 为顶点和边数,求证 $\delta \leq 2m/n \leq \Delta$

握手定理

习题

已知具有n个度数都为3的结点的简单图G有m条边

- 若 m = 3n 6,证明 G 在同构意义下唯一
- 若 n = 6, 证明 G 在同构意义下不唯一

握手定理

习题

已知具有n个度数都为3的结点的简单图G有m条边

- 若 m = 3n 6, 证明 G 在同构意义下唯一
- 若 n=6, 证明 G 在同构意义下不唯一

解答

- 由握手定理, 3n = 2m, 因为 m = 3n 6, 所以 n = 4, m = 6, $G \not\in K_4$
- 由握手定理, *m* = 9

图的度序列

• 图 G 的各个点的度 d_1, d_2, \cdots, d_n 构成的非负整数组 (d_1, d_2, \cdots, d_n) 称为 G 的度序列

- 一个图的度序列与序列中元素排列无关
- 每个图对应唯一一个度序列
- 同构的图具有相同的度序列

顶点的度

度序列判别定理

非负整数组 (d_1, d_2, \cdots, d_n) 是图的度序列的充分必要条件是序列中元素总和为偶数

顶点的度

度序列判别定理

非负整数组 (d_1, d_2, \cdots, d_n) 是图的度序列的充分必要条件是序列中元素总和为偶数

证明

- 必要性: 由握手定理立即得到
- 充分性: 构造对应度序列的图
 - 数组中为奇数的数字个数必为偶数
 - 若 d_i 为偶数,则在与之对应的点作 $d_i/2$ 个环
 - 对于剩下的偶数个奇数,两两配对后分别在每配对点间先连一条边,然后在每个顶点做环

(0, 1, 3, 4, 6)

图序列

- 一个非负整数组如果是某简单图的度序列,我们称它为可图序列,简称 图序列
- 关于图序列问题, 主要关注如下三点
 - 存在问题: 什么样的非负整数组是图序列?
 - 计数问题: 一个图序列对应多少不同构的图?
 - 构造问题:如何画出图序列对应的所有不同构图?
 - 存在问题彻底解决了, 计数问题解决得不好, 构造问题没有解决

图序列

- 一个非负整数组如果是某简单图的度序列,我们称它为可图序列,简称 图序列
- 关于图序列问题, 主要关注如下三点
 - 存在问题: 什么样的非负整数组是图序列?
 - 计数问题: 一个图序列对应多少不同构的图?
 - 构造问题:如何画出图序列对应的所有不同构图?
 - 存在问题彻底解决了,计数问题解决得不好,构造问题没有解决

图序列判别定理,Havel-Hakimi 定理

非负整数组 (d_1, d_2, \dots, d_n) , $d_1 \ge d_2 \ge \dots \ge d_n$, 是图序列的充分必要条件是 $(d_2 - 1, d_3 - 1, \dots, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_n)$ 是图序列

- (6,5,4,3,2,2,2) 是否为图序列
- $(6, 5, 4, 3, 2, 2, 2) \leftarrow (4, 3, 2, 1, 1, 1) \leftarrow (2, 1, 0, 0, 1)$

图序列

度的性质

定理

一个简单图 G 的 n 个点的度不能互不相同,也就是必有两个点度数相等

在任何两个或两个以上人的组内,存在两个人在组内有相同个数的朋友

度的性质

定理

一个简单图 G 的 n 个点的度不能互不相同,也就是必有两个点度数相等

在任何两个或两个以上人的组内,存在两个人在组内有相同个数的朋友

证明

- 因为G为简单图,所以 $\Delta \le n-1$
- 情形 1: 若 G 没有孤立点,则 $1 \le d(v) \le n-1$
 - 由鸽笼原理,必有两顶点度数相同
- 情形 2: 若 G 只有一个孤立点,设 G_1 表示 G 去掉孤立点后的部分,则 $1 \le d(v) \le n-2$
 - 由鸽笼原理: G1 里必有两顶点度数相同
- •情形 3: 若 G 只有两个以上的孤立点,则定理显然成立