

HLW8032 用户手册

REV 1.3

通讯地址:深圳市福田区八卦四路中厨大厦6号楼4楼

邮 编: 518028

公司网址: <u>www.hiliwi.com</u> 公司电话: 0755-29650970 公司传真: 0755-86968790

1/16

单相计量 IC

HLW8032

应用领域

- 智能家电产品
- 计量插座
- 智能 WIFI 插座
- 电动车充电桩
- PDU 设备
- LED 照明
- 路灯控制

特性

- ✓ 可以测量有功功率、视在功率、电流和电压有效值
- ✓ 有功电能脉冲 PF 管脚输出
- ✓ 在 1000: 1 的动态范围内, 有功功率的测量误差达到 0.2%
- ✓ 在1000: 1的动态范围内,有效电流的测量误差达到 0.5%
- ✓ 在 1000: 1 的动态范围内,有效电压的测量误差达到 0.5%
- ✓ 内置频率振荡器
- ✓ 内置电压参考源
- ✓ 内置电源监控电路
- ✓ UART 通讯方式
- ✓ SOP8 封装型式

概述

HLW8032 是一款高精度的电能计量 IC, 它采用 CMOS 制造工艺, 主要用于单相应用。它能够测量线电压和电流, 并能计算有功功率, 视在功率和功率因素。

该器件内部集成了两个 Σ – Δ 型 ADC 和一个高精度的电能计量内核。HLW8032 可以通过 UART 口进行数据通讯,HLW8032 采用 5V 供电,内置 3.579M 晶振,8PIN 的 SOP 封装。

HLW8032 具有精度高、功耗小、可靠性高、适用环境能力强等优点,适用于单相两线制电力用户的电能计量。

功能框图

图 1 芯片功能框图

REV 1.3

3/16

目录

应用领域	2
特性	3
概述	3
功能框图	3
修订历史	5
引脚配置和功能描述	6
技术规格	6
推荐工作条件	6
模拟特性	7
内置参考电压	7
数字特性	8
极限额定值	8
UART 通讯接口	9
寄存器说明	10
寄存器列表	10
状态寄存器(State REG)	11
检测寄存器(Check REG)	11
电压参数寄存器(Voltage Parameter REG)	11
电压寄存器(Voltage REG)	11
电流参数寄存器(Current Parameter REG)	12
电流寄存器(Current REG)	12
功率参数寄存器(Power Parameter REG)	12
功率寄存器(Power REG)	12
数据更新寄存器(Data Updata REG)	12
PF 寄存器(PF REG)	13
校验和寄存器(CheckSum REG)	13
工作原理及典型应用	13
典型应用电路	13
电压有效值计算	14
电流有效值的计算	14
有功功率的计算	14
视在功率的计算	14
功率因数的计算	15
电量计算	15
HLW8032 封装	16

修订历史

时间	修改记录	版本
2015-9-26	初始版本	REV 1.0
2016-7-18	修改目录	REV 1.1
2016-9-20	修改 State REG 寄存器	REV 1.2
2017-3-11	修改电量统计方法	REV 1.3

REV 1.3

引脚配置和功能描述

图 2 芯片引脚图

表 1 引脚功能描述

引脚序号	引脚名称	输入/输出	说明
1	VDD	芯片电源	芯片电源
2	IP	模拟输入	电流差分信号正输入端,最大差分输入电压有效值是
			±30.9mV
3	IN	模拟输入	电流差分信号负输入端,最大差分输入电压有效值是
			±30.9mV
4	VP	模拟输入	电压信号正输入端,最大输入电压有效值是±495mV
5	GND	芯片地	芯片地
6	TX	数字输出	UART 数据输出口
7	PF	输出	输出有功高频方波脉冲,占空比 50%
8	RX	数字输入	UART 数据输入口(保留端口,用户不需使用)

技术规格

推荐工作条件

参数	符号	最小值	典型值	最大值	单位
正电源	VDD	4.5	5.0	5.5	٧
温度范围	T _A	-40	-	+85	°C

模拟特性

除非另有说明,VDD= 5.0V,GND= 0V,片内基准电压,片内振荡器,T_{MIN} 至 T_{MAX} = -40℃至 85℃

	参数	符号	最小值	典型值	最大值	单位
精度						
有功功率	全增益范围	D		±0.2		%
	输入范围 0.1%~100%	P _{Active}	-	±0.2	-	70
电流有效值	全增益范围			10.5		%
	输入范围 0.2%~100%	I _{RMS}	-	±0.5	-	%
电压有效值	全增益范围			±0.5		0/
	输入范围 0.2%~100%	V_{RMS}	-	±0.5	-	%
模拟输入(所有	通道)					
共模信号			-1	-	1	V
模拟输入						
满量程时对电压	通道的串扰 (50,60Hz)		-	-100	-	dB
输入电容		IC	-	6.4	-	pF
等效输入阻抗	电流通道	FII		500		kΩ
	电压通道	EII		6	-	МΩ
等效输入噪声	电流通道	N	-	-	2	μVrms
	电压通道	N _I	-	-	20	μVrms
电源供给						
电流消耗	IA+ID			4	-	mA
功耗	(VDD = 5 V)	PC	-	25		mW
掉电检测低压阈	PMLO	-	4	-	V	
掉电检测高压阈	值	PMHI	-	4.3	-	V

内置参考电压

参数	符号	最小值	典型值	最大值	单位
基准电压	VREF	+2.3	+2.43	+2.55	V
温漂	TC_{VREF}	-	25	-	ppm/°C

REV 1.3 7/16

数字特性

除非另有说明, VDD= 5.0V, GND= 0V, 片内基准电压, 片内振荡器, T_{MIN}至 T_{MAX} = -40℃至 85℃

参数	符号	最小值	典型值	最大值	单位
主时钟					
主时钟频率	MCLK	3.04	3.579	4.12	MHz
主时钟占空比		30	50	70	%
滤波器					
输入采样速率(DCLK=MCLK/K)		-	MCLK/4	-	Hz
数字滤波器输出码率	OM/D		MCLK/1		U-
	OWR	-	28	-	Hz
高通滤波器转折(-3dB)频率		-	0.543	-	Hz
输入输出					
高电平输入电压 VDD=5V	V _{IH}	0.8VDD	-	-	V
低电平输入电压 VDD=5V,	V _{IL}	-	ı	0.8	V
高电平输出电压 lout = +5 mA	V _{OH}	VDD-0.5	ı	-	V
低电平输出电压 lout=-5 mA	V _{OL}	-	-	0.5	V
输入漏电流	l _{in}	-	±10	-	μΑ
数字输出引脚电容	C _{OUT}	-	5	-	pF

极限额定值

参数	符号	最小值	典型值	最大值	单位
数字电源	VDD	-0.3	-	+6.0	٧
模拟电源	VDD	-0.3	-	+6.0	V
VDD to GND		-0.3	-	+6.0	V
V1P, V1N, V2P		-2		+2	٧
模拟输入电压	V _{INA}	-0.3	-	VDD+0.3	V
数字输入电压	V _{IND}	-0.3	-	VDD+0.3	V
数字输出电压	V _{OUTD}	-0.3	-	VDD+0.3	٧
工作环境温度	T _A	-40	-	85	°C
存储温度	T _{stg}	-65	-	150	°C

UART 通讯接口

HLW8032 具有一个简单的 UART 接口,采用异步串行通讯方式,允许用两个单向引脚进行数据通讯。UART 接口只需要一个低成本光电藕合器,就可以实现隔离通信。UART 接口以 4800 bps 的固定频率工作,发送数据的间隔时间是 50mS,适合低速设计。

HLW8032 的 UART 使用两个引脚,TX 引脚用于从 HLW8032 发送数据,数据以低位(LSB)优先发送,RX 引脚用于来接收来自微控制器的数据。

UART 数据格式

图 3 UART 帧数据

REV 1.3 9/16

寄存器说明

寄存器列表

序号	数据类型	数据长度(Byte)	描述
1	状态寄存器	1	数据状态的指示
1	(State REG)	1	数据状态的相外
2	检测寄存器	1	默认值
2	(Check REG)	1	
3	电压参数寄存器	3	默认值
3	(Voltage parameter REG)	3	
4	电压寄存器	3	
7	(Voltage REG)	3	
5	电流参数寄存器	3	默认值
<i>J</i>	(Current Parameter REG)		WIND THE
6	电流寄存器	3	
0	(Current REG)	3	
7	功率参数寄存器	3	默认值
,	(Power parameter REG)	<i></i>	
8	功率寄存器	3	
0	(Power REG)	3	
9	数据更新寄存器	1	 功率、电压、电流状态指示
	(Data Updata REG)	1	为牛、屯压、屯加州心油小
10	PF 寄存器	2	PF 脉冲个数,配合状态寄存器使用,掉
10	(PF REG)	<u> </u>	电后不保存
11	校验和寄存器	1	数据校验和,用于通讯时验证数据包是
11	(CheckSum REG)	1	否完整

HLW8032 每发送一次完整数据是 24byte; 从寄存器 1(State REG)开发发送,到寄存器 11(CheckSum REG)结束一组数据,一共 11 个寄存器,24 byte 数据。

状态寄存器(State REG)

	8bit	功能	描述
	Bit7	保留	1, 默认值
	Bit6	保留	1, 默认值
	Bit5	保留	1,默认值
	Bit4	保留	1,默认值
	Bit3	电压寄存器状态位	0: 正常
State REG	סונס	电压可付备	1: 电压寄存器溢出
State NLG	Bit2	电流寄存器状态位	0: 正常
	DILZ	电 侧可付船 <u></u> 仍态型	1: 电流寄存器溢出
	Bit1	功率寄存器状态位	0: 正常
	BILL	切学可付命 似	1: 功率寄存器溢出
		电压参数寄存器、电流	0: 正常
	Bit0	参数寄存器和功率参数	1: 电压参数寄存器、电流参数寄存器
		器寄存器状态位	和功率参数器寄存器不能使用

- 1、当 State REG = 0xaa 时,芯片误差修正功能失效,此时电压参数寄存器、电流参数寄存器和功率参数寄存器不可用;
- 2、当 State REG = 0x55 时,芯片误差修正功能正常,此时电压参数寄存器、电流参数寄存器和功率参数寄存器可用,且电压寄存器、电流寄存器和功率寄存器未溢出;
- 3、当 State REG = 0xfx 时,芯片误差修正功能正常,此时电压参数寄存器、电流参数寄存器和功率参数寄存器可用, State REG 的相应位为 1 时表示相应的寄存器溢出,溢出表示电流、电压或功率值非常小,接近 0;

检测寄存器(Check REG)

Check REG	十六进制	描述
8bit	0x5A	默认值

电压参数寄存器(Voltage Parameter REG)

U Parameter REG	High Byte	Middle Byte	Low Byte
24bit	8bit	8bit	8bit

数据发送顺序:高 8bit-->中 8bit-->低 8bit

此寄存器是默认值

电压寄存器(Voltage REG)

Voltage REG	High Byte	Middle Byte	Low Byte
24bit	8bit	8bit	8bit

数据发送顺序:高 8bit-->中 8bit-->低 8bit

REV 1.3 11/16

HLW8032

电流参数寄存器(Current Parameter REG)

Current Parameter	High Byte	Middle Byte	Low Byte
REG			
24bit	8bit	8bit	8bit

数据发送顺序:高 8bit-->中 8bit-->低 8bit

此寄存器是默认值

电流寄存器(Current REG)

Current REG	High Byte	Middle Byte	Low Byte
24bit	8bit	8bit	8bit

数据发送顺序:高 8bit-->中 8bit-->低 8bit

功率参数寄存器(Power Parameter REG)

Power Parameter REG	High Byte	Middle Byte	Low Byte
24bit	8bit	8bit	8bit

数据发送顺序:高 8bit-->中 8bit-->低 8bit

此寄存器是默认值

功率寄存器(Power REG)

Power REG	High Byte	Middle Byte	Low Byte
24bit	8bit	8bit	8bit

数据发送顺序:高 8bit-->中 8bit-->低 8bit

数据更新寄存器(Data Updata REG)

	8bit	功能	描述
	Bit7	PF 寄存器进位标志位	当 PF 寄存器溢出时,bit7 取反一次
	Bit6	电压寄存器状态标志位	0:电压寄存器数据未更新完成
			1:电压寄存器数据己更新
	Bit5	电流寄存器状态标志位	0:电流寄存器数据未更新完成
Data Updata REG			1:电流寄存器数据己更新
	Bit4	功率寄存器状态标志位	0:功率寄存器数据未更新完成
	БП4	· 切竿可付船\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\	1:功率寄存器数据己更新
	Bit3	保留	
	Bit2	保留	
	Bit1	保留	
	Bit0	保留	

- 1、当 bit6 = 1 时,表示电压寄存器的数据状态己更新;
- 2、当 bit5 = 1 时,表示电流寄存器的数据状态己更新;
- 3、当 bit4 = 1 时,表示功率寄存器的数据状态己更新;

REV 1.3 12/16

3、 当 bit4 = 1 时,

PF 寄存器(PF REG)

PF REG	High Byte	Low Byte
16bit	8bit	8bit

数据发送顺序:高 8bit -->低 8bit

PF 寄存器用来累计脉冲信号,当 16 位寄存器数据溢出时,数据更新寄存器(Data Updata REG)的 bit7 位会进行一次取反,PF 寄存器(PF REG)清零。

校验和寄存器(CheckSum REG)

CheckSum REG	十六进制	描述	
8bit	0xXX	CHECKSUM	
		除状态寄存器(State REG)、检测寄存器(Check	
		REG)和校验和寄存器(CheckSum REG)	
		之外的寄存器的数据之和的低 8bit	

当 CheckSum REG 数据不等于除状态寄存器(State REG)、检测寄存器(Check REG)和校验和寄存器 (CheckSum REG)之外的寄存器的数据之和的低 8bit 时,此次数据丢弃

工作原理及典型应用

典型应用电路

如图 4 所示,在 HLW8032 的电源端,应并联两个小电容,以滤除来自电网高频及低频噪声。电流信号通过锰铜电阻采样后接入 HLW8032,电压信号则通过电阻网络后输入到 HLW8032。PF、TX 直接接入到 CPU 的输入端,通过公计算计算出电压有效值、电压流效值和有功功率值的大小。

REV 1.3 13/16

图 4 HLW8032 典型应用电路

电压有效值计算

有效电压 =
$$\frac{$$
电压参数寄存器 \times 电压系数 电压寄存器

电压系数:电压通道的电阻分压系数,以图 3 为例,电压采样信号经过 4 个 470K 的电阻和 1K 电阻进行分压,则电压系数 = $\frac{470 \text{K} \times 4}{1 \text{K} \times 1000} = \frac{1880 \text{K}}{1000 \text{K}} = 1.88$;

电流有效值的计算

有效电流 =
$$\frac{e_{\hat{n}} \otimes y \otimes f \wedge F \otimes F}{e_{\hat{n}} \otimes f \otimes F \otimes F} \times e_{\hat{n}}$$
 x 电流系数

电流系数:电流通道的电阻系数,以图 3 为例,采样电阻为 $R = 0.001 \Omega$,

则电流系数 =
$$\frac{1}{R \times 1000} = \frac{1}{0.001 \times 1000} = 1$$
;

有功功率的计算

有功功率 =
$$\frac{\text{功率参数寄存器}}{\text{功率寄存器}} \times \text{电压系数} \times \text{电流系数}$$

视在功率的计算

REV 1.3 14/16

视在功率 = 有效电压×有效电流

功率因数的计算

电量计算

脉冲信号数量统计表 5 是与脉冲信号相关 的寄存器,包括数据更 新寄存器(Data Updata REG)和 PF 寄存器(PF REG)。 脉冲信号相关寄存器	数据更新寄存器 (Data Updata REG) bit7	PF 寄存器(PF REG)	
7441 11 3 11 7 H 11 HI	High Byte	Middle Byte	Low Byte
17bit	1bit	8bit	8bit

1、脉冲数量统计

PF 寄存器(PF REG)表示 PF 的脉冲个数,当 PF 寄存器(PF REG)发生溢出时,数据更新寄存器 (Data Updata REG)的 bit7 会进行取反, PF 寄存器(PF REG)会同时清 0,所以,脉冲信号数量等于

$$PF_{cnt} = k * 65536 + n$$

- k 是数据更新寄存器(Data Updata REG)的 bit7 的取反次数;
- n 是 PF 寄存器(PF REG)的寄存器值
- 2、1度电对应脉冲数量

1 度电的脉冲数量 =
$$\frac{1}{\text{功率参数寄器}} \times \frac{1}{\text{电压系数} \times \text{电流系数}} \times 10^9 \times 3600$$

当 PF_{cnt} 的个数等于 1 度电的脉冲数量时,表示己累计统计 1 度电量(KW.h); 当前电量(KW.h) = $PF_{cnt}/1$ 度电的脉冲个数

HLW8032 封装

HLW8032 使用 SOP8 封装,具体封装信息如下图所示:

图 5 HLW8032 封装尺寸图

REV 1.3 16/16