Neuroimaging advances in Parkinson's Disease; The application of Ultra-High Field MRI

Stijn Michielse PhD
Department of Neurosurgery
Maastricht University
@stijnimaging

UTAP

- Understanding
 - 9.4T post-mortem
- Tracking
 - TRACK-PD, 7T
- Adjustment
 - sensors and adaptive DBS
- Parkinson's Disorder

Background UTAP

- ➤ Early diagnosis of Parkinson's Disease (PD)
 - Challenging / often not immediately recognised (1)
 - Heterogeneous disorder (2, 3)
 - The underlying aetiology is poorly understood (4)

1. Hughes et al. (2002); 2. Berg et al. (2014); 3. Lewis et al. (2005); 4. Thenganatt et al. (2014)

Early biomarker; swallow-tail disappears

Dorsolateral Substantia Nigra pars compacta

Work Package 1 – Understand PD

- Focus on changes in the microcircuit of the basal ganglia and brainstem
- Diffusion Weighted Imaging
- White matter visualisation and quantification
- Quantitative T2 mapping

Brain container - development

Brain container

Brain samples

- ➤ Post-mortem PD
- > Fluorinert
- ➤ Brains from UK biobank
 - > 2-3 years old, fixed in formaldehyde PBS solution

MRI protocol

- **❖**T2
 - 0.25mm isotropic GRadient Echo; entire hemisphere
 - Six echo's
 - 4 6.98ms, 11ms, 16.21ms, 20.23ms 24.46ms and 30ms
- Diffusion Weighted Imaging
 - 1mm isotropic; entire hemisphere
 - 48 random directions b-value 5009s/mm²
 - ❖ 5 low b-value volumes at 279s/mm²
 - ❖ Field of view; 144x132x180mm, TR=450ms

Shimming

- Field inhomogeneities (B0)
- ❖ Material introduced → disturbances
- Higher field strength=more inhomogeneities
- Affects image quality
- ❖B1 shim for optimal tissue flip angle
- Complex procedure at 9.4T
- Offline kT-points 3th order shim

Field inhomogeneities T2 (short echo)

Scanning

- T2 weighted; 3h (2x)
- Low b-value diffusion; 20min (5x)
- 2h per set of four directions (12x)
- Total 32h (including scan cooldowns)
- Raw data reconstruction (500Gb of data)
- Berkeley Advanced Reconstruction Toolbox (BART) in MatLab

T2 weighted – 250µm resolution

T2 weighted – 250μm resolution

Quantitative T2* map

Diffusion Weighted Imaging

- Create contrast, based on b-values (gradient strength)
- Goal; white matter quantification
- ❖White matter tracking → tractography
- Focus on limbic system and basal ganglia

White matter bundles

Terms used

- Diffusion weighted imaging
 - DWI → the MRI acquisition
- Diffusion tensor imaging
 - DTI → tensors, the smallest element
- Tractography
 - Connecting the tensors; create fibers
- Anisotropic diffusion
 - Diffusion equal to all sides

Diffusion Weighted Imaging

Noisy data

Directional dependence

Strong gradients

Multiple directions

■ B0 image → bright

DTI – color coding

Standard DTI color coding

X = red; medio-lateral

Y = green; anterior-posterior

Z = blue; inferior-superior

Reconstruct tensor

- >Smallest unit that can be measured
- ➤ Directional dependence

Isotropic movement

vs Anisotropic

2D image of tractography

Fiber tracking

Fiber tracking (2)

Pre and post central gyrus

Motor cortex

Sensory cortex

Use of the brain shell - dedicated coil

Thanks for your attention

Credits to:

Yasin Temel

Ali Jahanshahianyar

Alard Roebroeck

Jackson Boonstra

Mark Kuijf

Albert Leentjens

Amée Wolters

Margot Heijmans

Ben Poser

Heidi Jacobs

Collaborators:

Nikos Priovoulos

Koen Schruers

Liesbet Goossens

Samantha Baldi

Arash Aghamohammadi Sereshki

Stanislau Hrybouski

Wojciech Pietrasik

Nikolai Malykhin

Peter Seres

Graham Murray

Iris Lange

Jindra Bakker

Wolfgang Viechbauer

Machteld Marcelis

Jim van Os

Therese van Amelsvoort

