El Modelo Relacional:

Lenguajes de Manipulación de Datos

Lenguajes de Manipulación de Datos

- Son lenguajes que el usuario utiliza para consultar y modificar la base de datos.
 - Procedimentales:
 - Se instruye al sistema para llevar a cabo una serie de operaciones en la BD para calcular el resultado (Álgebra Relacional)
 - No Procedimentales:
 - Se describe la información deseada sin establecer el procedimiento para obtenerla (Cálculo Relacional)

Lenguajes de Manipulación de Datos – Evolución histórica

Década del 70

- Junio 1970 E. Codd "A relational Model of data for large shared databanks"
- 1974 SEQUEL (laboratorios de IBM)
- 1976 SQL (SEQUEL 2)

Década del 80

- Se comercializan productos basados en SQL
- SQL/86, SQL/89

Siglo XXI

• Uso conjunto de XML y SQL

Década del 90

 SQL/92 Estándares ANSI;
 SQL/99 para soporte de datos de naturaleza compleja

Álgebra Relacional

Es un lenguaje de procedimientos de alto nivel que permite, mediante el uso de ciertos operadores, derivar las tablas deseadas desde las tablas base del modelo relacional.

Consta de un conjunto de operadores que toman como entrada una o dos relaciones y producen como resultado una nueva relación.

El Algebra Relacional en el DBMS

DBMS

Álgebra Relacional

Operaciones fundamentales

- Selección,
- Proyección,
- Unión,
- Diferencia,
- Producto Cartesiano y
- Renombramiento

Otras operaciones, definidas en términos de las operaciones fundamentales:

- Intersección,
- Reunión natural (JOIN) y
- División

SELECCIÓN

Extrae tuplas de una relación dada que satisfacen una condición específica.

Símbolo: σ (sigma)

Término Común: (Select)

Notación: σ condición (Relación)

SELECCIÓN

Prestamo

N_Sucursal	#Prestamo	\$Importe
Miraflores	P-17	200,000
La Aurora	P-23	400,000
Lima Cercado	P-15	300,000
Chacarilla	P-14	300,000
Primavera	P-93	100,000
Surquillo	P-11	180,000
La Molina	P-16	260,000

 $\sigma_{N \text{ Sucursal} = \langle Miraflores \rangle}$ (Prestamo)

N_Sucursal	#Prestamo	\$Importe
Miraflores	P-17	200,000

PROYECCIÓN

Extrae atributos específicos de una relación dada

Símbolo: Π

Término Común: PROJECT

Notación: $\Pi_{\text{atributo 1, atributo 2, ... Atributo n}}$ (Relación)

PROYECCIÓN

Π_{# Préstamo}, \$ Importe (Préstamo)

#Prestamo	\$Importe
P-17	200,000
P-23	400,000
P-15	300,000
P-14	300,000
P-93	100,000
P-11	180,000
P-16	260,000

Composición de Operaciones Relacionales

El resultado de una operación relacional es una relación

Las operaciones relacionales se pueden componer para formar una *expresión del álgebra relacional* (igual que las expresiones aritméticas)

Ejemplo: Mostrar el atributo #préstamo de aquellas sucursales cuyo nombre es Miraflores de la relación Préstamo.

$$\Pi_{\text{#Préstamo}} (\sigma_{\text{N Sucursal} = < \text{Miraflores}})$$
 (Prestamo))

UNIÓN

Notación: R1 ∪ **R2**

Construye una relación formada por todas las tuplas que aparecen en cualquiera de dos relaciones especificas, eliminándose las duplicadas

Símbolo: ∪

Término Común: UNION

Las relaciones deben ser **Compatibles**: la misma cantidad de atributos, y los atributos correspondientes deben provenir del mismo dominio

EJEMPLO:

Se desea averiguar todos los clientes que tienen una cuenta, un préstamo o ambos:

Titular_cuenta

N_Cliente	#Cuenta
Santos	C-101
Gómez	C-215
López	C-102
Abril	C-305
González	C-201
Santos	C-217
Rodríguez	C-222

Prestatario

N_Cliente	#Prestamo
Santos	P-17
Gómez	P-23
López	P-15
Soto	P-14
Pérez	P-93
Gómez	P-11
Fernández	P-16

UNION

Se desea averiguar todos los clientes que tienen una cuenta, un préstamo o ambos:

 $\Pi_{\text{N Cliente}}$ (Titular_cuenta) $\cup \Pi_{\text{N Cliente}}$ (Prestatario)

N_Cliente
González
Santos
Rodríguez
López
Abril
Soto
Pérez
Gómez
Fernández

DIFERENCIA

R1

Notación: R1 – R2

Dadas dos relaciones específicas, construye una tercera relación formada por todas las tuplas de la primera relación que no aparecen en la segunda.

Símbolo: —

Término Común: MINUS

Las relaciones deben ser *Compatibles*

DIFERENCIA

Se desea averiguar todos los clientes que tienen abierta una cuenta, pero que no tienen concedido ningún préstamo:

$$\Pi_{\text{N Cliente}}$$
 (Titular_cuenta) – $\Pi_{\text{N Cliente}}$ (Prestatario)

N_Cliente
González

Rodríguez

Abril

PRODUCTO CARTESIANO

Dadas dos relaciones específicas, construye una tercera relación que contiene todas las combinaciones posibles de tuplas, una de cada una de las relaciones.

Símbolo: X

Término Común: TIMES

RENOMBRAMIENTO

Los resultados de las expresiones de álgebra relacional no tienen nombre, a pesar de ser relaciones.

Dada una expresión E, la expresión

$$\rho_x(E)$$

devuelve el resultado de la expresión E con el nombre X

Símbolo: p (ro)

Término Común: RENAME

RENOMBRAMIENTO

También es útil para renombrar los atributos de una relación:

La expresión

$$\rho_{X(A1,A2,...,An)}(E)$$

devuelve el resultado de la expresión E con el nombre X y con los atributos con el nombre cambiado a A1, A2,, An

• RENOMBRAMIENTO - Ejemplo

"Buscar el máximo saldo de la cuenta de un banco"

Cuenta

Sucursal	cuenta	saldo
Miraflores	C-101	100,000
La Aurora	C-215	140,000
Lima Cercado	C-102	80,000

- ☆ Calcular primero una relación intermedia con los saldos que *no son* el máximo.
- $^{\circ}$ Realizar la diferencia entre Π_{saldo} (Cuenta) y la relación intermedia calculada.

- RENOMBRAMIENTO Ejemplo
- ☆ Calcular una relación intermedia con los saldos que no son el máximo:
 - Calcular el producto cartesiano Cuenta x Cuenta
 - Formar una selección sobre el resultado, comparando los valores de los saldos que aparecen en una tupla

 $\Pi_{\text{cuenta.saldo}}$ ($\sigma_{\text{cuenta.saldo} < \text{d.saldo}}$ (Cuenta x ρ_d (Cuenta))

Renombramiento - Ejemplo

Cuenta x ρ_d (Cuenta)

Cuenta.	Cuenta.	Cuenta.	d.	d.	d.
Sucursal	cuenta	saldo	sucursal	cuenta	saldo
Miraflores	C101	100,000	Miraflores	C101	100,000
Miraflores	C101	100,000	La Aurora	C215	140,000
Miraflores	C101	100,000	Lima Cercado	C102	80,000
La Aurora	C215	140,000	Miraflores	C101	100,000
La Aurora	C215	140,000	La Aurora	C215	140,000
La Aurora	C215	140,000	Lima Cercado	C102	80,000
Lima Cercado	C102	80,000	Miraflores	C101	100,000
Lima Cercado	C102	80,000	La Aurora	C215	140,000
Lima Cercado	C102	80,000	Lima Cercado	C102	80,000

Seleccion - Ejemplo

$\sigma_{\text{ cuenta.saldo}} < \text{d.saldo} \left(\text{Cuenta } x \; \rho_{d} \left(\text{Cuenta} \right) \right)$

Cuenta.	Cuenta.	Cuenta.	d. sucursal	d. cuenta	d. saldo
Sucursal	cuenta	saldo			
Miraflores	C101	100,000	La Aurora	C215	140,000
Lima Cercado	C102	80,000	Miraflores	C101	100,000
Lima Cercado	C102	80,000	La Aurora	C215	140,000

Renombramiento - Ejemplo

$$\Pi_{\text{ cuenta.saldo}} \left(\sigma_{\text{ cuenta.saldo}} \left(\sigma_{\text{ d.saldo}} \left(\text{Cuenta } x \; \rho_{d} \left(\text{Cuenta} \right) \right) \right)$$

Cuenta.saldo

100,000

80,000

Renombramiento - Ejemplo

 $^{\circ}$ Realizar la diferencia entre Π_{saldo} (Cuenta) y la relación intermedia calculada.

$$\Pi_{\text{ saldo}}\left(\text{Cuenta}\right) - \Pi_{\text{ cuenta.saldo}}\left(\sigma_{\text{ cuenta.saldo}} < \sigma_{\text{ clenta.saldo}}\right) \\ \left(\text{Cuenta } x \; \rho_{d} \left(\text{Cuenta}\right)\right)$$

1.1				
saldo		saldo		saldo
100,000		100 000		Salao
100,000	_	100,000	=	140,000
140,000		80,000		110/000
110,000		00,000		
90,000				

INTERSECCIÓN

Dadas dos relaciones *Compatibles* específicas, construye una tercera relación formada por todas las tuplas que aparecen en ambas relaciones.

Símbolo: ∩

Término Común: INTERSECT

Notación: R1 ∩ R2

Equivalencia: $R1 \cap R2 = R1 - (R1 - R2)$

INTERSECCIÓN

Resultado:

Cabecera - idéntica a la de R1 ó R2

Cuerpo - todas las tuplas que aparecen en R1 y en R2 a la vez.

• INTERSECCIÓN - Ejemplo

Averiguar los clientes que tienen un préstamo concedido y una cuenta abierta

 $\Pi_{\text{N Cliente}}$ (Prestatario) $\cap \Pi_{\text{N Cliente}}$ (Titular-cuenta)

Titular_cuenta

N_Cliente	#Cuenta
Santos	C-101
Gómez	C-215
López	C-102
Abril	C-305
González	C-201
Santos	C-217
Rodríguez	C-222

Prestatario

N_Cliente	#Prestamo
Santos	P-17
Gómez	P-23
López	P-15
Soto	P-14
Pérez	P-93
Gómez	P-11
Fernández	P-16

• INTERSECCIÓN - Ejemplo

 $\Pi_{\text{ N Cliente}}$ (Prestatario) $\cap \Pi_{\text{ N Cliente}}$ (Titular-cuenta)

N_Cliente

Santos

Gómez

López

FUSIÓN (JOIN) o Reunión Natural

Dadas dos relaciones específicas, construye una tercera relación que combina ciertas selecciones, proyección y un producto cartesiano en una sola operación.

Término Común: JOIN

Notación: R1 Θ R2

• FUSIÓN (JOIN) - Ejemplo

"Averiguar los nombres de todos los clientes que tienen concedido un préstamo, el importe de éste y la sucursal donde se lo otorgaron"

(Prestatario Θ Préstamo)

N_Cliente	#Prestamo
Santos	P-17
Gómez	P-23
López	P-15
Soto	P-14
Pérez	P-93
Gómez	P-11
Fernández	P-16

N_Sucursal	#Prestamo	\$Importe	
Miraflores	P-17	200,000	
La Aurora	P-23	400,000	
Lima Cercado	P-15	300,000	
Chacarilla	P-14	300,000	
Primavera	P-93	100,000	
Surquillo	P-11	180,000	
La Molina	P-16	260,000	

• FUSIÓN (JOIN) - Ejemplo

Procedimiento:

☆ Calcular el producto cartesiano de las relaciones Prestatario y Préstamo:

Prestatario x Préstamo

① Seleccionar las tuplas correspondientes al mismo numero-préstamo:

σ prestatario.# Préstamo = préstamo.# Préstamo (Prestatario x Préstamo)

- FUSIÓN (JOIN) Ejemplo
- Préstamo e importe de la relación resultante (eliminando así la doble ocurrencia del # Préstamo):

```
\Pi_{N \ Cliente, \ N \ Sucursal, \ pr\'estamo.\# \ pr\'estamo, \ importe} (\sigma_{prestatario.\# \ pr\'estamo = pr\'estamo.\# \ pr\'estamo}) (Prestatario x Pr\'estamo))
```

Prestatario O Préstamo

• FUSIÓN (JOIN) – Ejemplo

(Prestatario Préstamo)

N_Cliente	N_Sucursal	#Prestamo	\$Importe
Santos	Miraflores	P-17	200,000
Gómez	La Aurora	P-23	400,000
López	Lima Cercado	P-15	300,000
Soto	Chacarilla	P-14	300,000
Pérez	Primavera	P-93	100,000
Gómez	Surquillo	P-11	180,000
Fernández	La Molina	P-16	260,000

DIVISIÓN

Dadas R1 y R2, donde R2 ⊂ R1 (la cabecera de R2 es un subconjunto de la cabecera de R1), Se construye una nueva relación formada por los atributos de R1 que no están en R2, donde los valores de los otros atributos concuerdan con todos los valores de la relación R2.

Símbolo: ÷

Término Común: DIVIDE BY

Notación: R1 ÷ R2

Equivalencia:
$$\rho_{T1} (\Pi_b (R1))$$

$$\rho_{T2} (\Pi_b (R2 \times T1) - R1)$$

$$T1 - T2$$

DIVISIÓN

Sean R1 =
$$(X_1, X_2, ..., X_M, Y_1, Y_2, ..., Y_N)$$

R2 = $(Y_1, Y_2, ..., Y_N)$

Consideremos $(X_1, ..., X_M)$ y $(Y_1, ..., Y_N)$ como si fueran atributos compuestos X e Y. Entonces

La relación resultante de R1 ÷ R2 es como sigue:

Cabecera: X

Cuerpo: tuplas (X:x) tales que \exists (X:x, Y:y) en R1 para todas las tuplas (Y:y) en R2

$$R1 \div R2 = X$$
 y (X x R2) subconjunto de R1

DIVISIÓN - Ejemplo

"Hallar todos los clientes que tengan abierta una cuenta en todas las sucursales de Surco"

Sucursal N_Sucursal N_Distrito

Titular-cuenta (1) N_Cliente Cuenta

Cuenta (1) N_Sucursal Cuenta Saldo

Sucursal

N_Sucursal	N_Distrito
Miraflores	Miraflores
La Aurora	Surquillo
Lima Cercado	Lima
Chacarilla	Surco
Primavera	Surco
Surquillo	Surquillo
La Molina	La Molina
Barrios Altos	Lima

Titular-cuenta (1) Barrios Al

N_Cliente	Cuenta
González	C-101
Gómez	C-215
López	C-102
Abril	C-305
González	C-201
Santos	C-217
Rodríguez	C-222

Cuenta (1)

N_Sucursal	Cuenta	Saldo
Chacarilla	C-101	100,000
La Aurora	C-215	140,000
Lima Cercado	C-102	80,000
Chacarilla	C-305	70,000
Primavera	C-201	180,000
Surquillo	C-222	140,000
La Molina	C-217	150,000

DIVISIÓN - Ejemplo

"Hallar todos los clientes que tengan abierta una cuenta en todas las sucursales de Surco"

☆ Obtener todas las sucursales de Surco:

$$R1 = \prod_{\text{N sucursal}} (\sigma_{\text{Distrito} = \text{Surco}} (\text{Sucursal}))$$

N_Sucursal

Chacarilla

Primavera

DIVISIÓN - Ejemplo

"Hallar todos los clientes que tengan abierta una cuenta en todas las sucursales de Surco"

① Encontrar todos los pares (nombre-cliente, nombre-sucursal) para los que el cliente tiene una cuenta en una sucursal:

$$R2 = \prod_{\text{N cliente, N sucursal}} (\text{Titular-cuenta } \Theta \text{ Cuenta})$$

N_Cliente	N_Sucursal
González	Chacarilla
Gómez	La Aurora
López	Lima Cercado
Abril	Chacarilla
González	Primavera
Santos	La Molina
Rodríguez	Surquillo

DIVISIÓN - Ejemplo

"Hallar todos los clientes que tengan abierta una cuenta en todas las sucursales de Surco"

Hallar los clientes que aparecen en R2 con los nombres de todas las sucursales de R1:

$$\Pi_{\text{N cliente, N sucursal}}$$
 (Titular-cuenta Θ Cuenta) \div $\Pi_{\text{N sucursal}}$ ($\sigma_{\text{N Distrito = Surco}}$ (Sucursal))

N_Cliente

González

Precedencia de Operadores Relacionales

El producto cartesiano y el join son asociativos y conmutativos

Considere el siguiente esquema relacional:

```
CLIENTE: (<u>C_cliente</u>, N_cliente, T_cli_direccion, Npais, $SaldoIni, $SaldoAct)
```

VENDEDOR: (<u>C_vendedor</u>, N_vendedor, C_jefe, N_oficina, %Comision)

PRODUCTO: (<u>C_producto</u>, N_producto, C_fabricante, \$Costo, \$Precio)

FABRICANTE: (<u>C fabricante</u>, N_fabricante, T_fab_direccion, N_pais)

VENTA: (<u>D_venta</u>, <u>C_cliente</u>, <u>C_vendedor</u>, <u>C_producto</u>, <u>Q_unidades</u>)

C_vendedor	N_vendedor	C_jefe	N_oficina	%Comision
10	Rodney Jones	27	Chicago	10
14	Masaji Matsu	44	Tokyo	11
23	Francoise Moire	35	Bruselas	9
37	Elena Horna	12	Bs. Aires	13
39	Goro Azuma	44	Tokyo	10
27	Terry Cardoso		Chicago	15
44	Albert Ige	27	Tokyo	12
35	Brigit Bovary	27	Bruselas	11
12	Bruno Sánchez	27	Bs. Aires	10

Si consideramos:

Vendedor_subordinado: todos aquellos que tienen un jefe

Vendedor_jefe: todos aquellos que son jefe de alguien

Vendedor = Vendedor_subordinado ∪ Vendedor_jefe

Ejemplos de Operaciones Relacionales Intersección

Jefes de nivel intermedio: Vendedor_subordinado ∩ Vendedor_jefe

C_VENDEDOR	N_VENDEDOR	C_JEFE	OFICINA	%_COMISION
44	Albert Ige	27	Tokyo	12
35	Brigit Bovary	27	Bruselas	11
12	Bruno Sánchez	27	Bs. Aires	10

Ejemplos de Operaciones Relacionales Diferencia

Jefes de mayor nivel: Vendedor_jefe – Vendedor_subordinado

C_VENDEDOR	N_VENDEDOR	C_JEFE	OFICINA	%_COMISION
27	Terry Cardoso		Chicago	15

Ejemplos de Operaciones Relacionales Selección

Vendedores de Tokyo:

C_VENDEDOR	N_VENDEDOR	C_JEFE	OFICINA	%_COMISION
14	Masaji Matsu	44	Tokyo	11
39	Goro Azuma	44	Tokyo	10
44	Albert Ige	27	Tokyo	12

Ejemplos de Operaciones Relacionales Selección

Información de los vendedores de la oficina de Tokyo que tienen una comisión mayor a 11%

σ oficina="Tokyo"and %_comision > 11 (Vendedor)

C_VENDEDOR	N_VENDEDOR	C_JEFE	OFICINA	%_COMISION
44	Albert Ige	27	Tokyo	12

Ejemplos de Operaciones Relacionales Proyección

Nombres de los vendedores que tienen una comisión menor que 11 %

 $\Pi_{N_Vendedor}$ ($\sigma_{M_comision < 11}$ (Vendedor))

N_VENDEDOR
Rodney Jones
Francois Moire
Goro Azuma
Bruno Sánchez

Ejemplos de Operaciones Relacionales Fusión (Join)

Nombres de los clientes que han comprado el producto 2518

$$\Pi_{\text{N_Cliente}}$$
 (($\sigma_{\text{C_producto}=2518}$ (Venta)) Θ (Cliente))

Muestre los nombres de los vendedores cuyos jefes obtienen una tasa de comisión mayor al 11 %

✓ Multiplicar Vendedor por sí mismo:

✓ Seleccionar las filas donde la primera ocurrencia de Id_jefe coincide con la segunda ocurrencia de C vendedor:

$$\sigma_{\text{Vendedor.C_jefe} = d.C_{\text{vendedor}}}(\rho_d \text{ (Vendedor) } X)$$

$$\text{Vendedor)}$$

Muestre los nombres de los vendedores cuyos jefes obtienen una tasa de comisión mayor al 11 %

- ✓ Renombramos esta expresión, como R:
- ρ_{R} ($\sigma_{Vendedor,C_jefe = d.C_vendedor}$ (ρ_{d} (Vendedor))

 X Vendedor))
- ✓ Seleccionar las filas donde la comisión del jefe sea mayor a 11, y proyectamos el nombre del vendedor:

$$\Pi_{\text{N Vendedor}}(\sigma_{\text{d.\%comisión}})$$

Muestre los nombres de los vendedores cuyos jefes obtienen una tasa de comisión mayor al 11 %

N_VENDEDOR
Rodney Jones
Masaji Matsu
Goro Azuma
Albert Ige
Brigit Bovary
Buster Sánchez

Resumen

- El álgebra relacional es un lenguaje *procedimental* de manipulación de datos.
- Proporciona un fundamento formal para las operaciones sobre las relaciones del modelo relacional
- Es la base de los lenguajes SQL incorporados en los diversos motores de bases de datos relacionales
- Su conocimiento es importante porque aporta a la comprensión de los procedimientos alternativos que emplean los optimizadores de consultas de los DBMS