

UC Berkeley EECS
Lecturer SOE
Dan Garcia

CS10: The Beauty and Joy of Computing

Lecture #22 Limits of Computing

2012-04-16

You'll have the opportunity for extra credit on your project! After you submit it, you can make a ≤ 5min YouTube video.

Researchers at Facebook and the University of Milan found that the avg # of "friends" separating any two people in the world was < 6.

Computer Science ... A UCB view

CS research areas:

- Artificial Intelligence
- Biosystems & Computational Biology
- Database Management Systems
- Graphics
- Human-Computer Interaction
- Networking
- Programming Systems
- Scientific Computing
- Security
- Systems
- Theory
 - Complexity theory

Let's revisit algorithm complexity

Problems that...

- are tractable with efficient solutions in reasonable time
- are intractable
- are solvable approximately, not optimally
- have no known efficient solution
- are not solvable

Tractable with efficient sols in reas time

- Recall our algorithm complexity lecture, we've got several common orders of growth
 - Constant
 - Logarithmic
 - Linear
 - Quadratic
 - Cubic
 - Exponential

- Order of growth is polynomial in the size of the problem
- E.g.,
 - Searching for an item in a collection
 - Sorting a collection
 - Finding if two numbers
 in a collection are same
- These problems are called being "in P" (for polynomial)

Intractable problems

- Problems that can be solved, but not solved fast enough
- This includes exponential problems
 - E.g., $f(n) = 2^n$
 - as in the image to the right
- This also includes poly-time algorithm with a huge exponent

$$^{\Box}$$
 E.g, $f(n) = n^{10}$

Imagine a program that calculated something important at each of the bottom circles. This tree has height n, but there are 2ⁿ bottom circles!

Only solve for small n

Peer Instruction

What's the most you can put in your knapsack?

- a) \$10
- b) \$15
- c) \$33
- d) \$36
- e) \$40

Knapsack Problem

You have a backpack with a weight limit (here 15kg), which boxes (with weights and values) should be taken to maximize value?

(any # of each box is available) Farcia, Spring 2012

Solvable approximately, not optimally in reas time

- A problem might have an optimal solution that cannot be solved in reasonable time
- BUT if you don't need to know the perfect solution, there might exist algorithms which could give pretty good answers in reasonable time

Knapsack Problem

You have a backpack with a weight limit (here 15kg), which boxes (with weights and values) should be taken to maximize value?

Garcia, Fall 2011

Have no known efficient solution

- Solving one of them would solve an entire class of them!
 - We can transform one to another, i.e., reduce
 - A problem P is "hard" for a class C if <u>every</u> element of C can be "reduced" to P
- If you're "in NP" and "NP-hard", then you're "NP-complete"

-2 -3 15 14 7 -10

Subset Sum Problem

Are there a handful of these numbers (at least 1) that add together to get 0?

- If you guess an answer, can I verify it in polynomial time?
 - Called being "in NP"
 - Non-deterministic (the "guess" part) Polynomial

imgs.xkcd.com/comics/np_complete.png

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

١			
	- APPETIZER	2.15 2.75 3.35 3.55 3.55 4.20 ATE 5.80	
1	MIXED FRUIT	2.15	ı
	FRENCH FRIES	2.75	
	SIDE SALAD	3.35	
	HOT WINGS	3.55	
	Mozzarella Sticks	4.20	
	SAMPLER PLATE	5.80	
	- SANDWICHES	\sim	
	RARRECUE	6 55	

The fundamental question. Is P = NP?

- This is THE major unsolved problem in Computer Science!
 - One of 7 "millennium prizes" w/a \$1M reward
- All it would take is solving ONE problem in the NP-complete set in polynomial time!!
 - Huge ramifications for cryptography, others

If $P \neq NP$, then

- Other NP-Complete
 - Traveling salesman who needs most efficient route to visit all cities and return home

imgs.xkcd.com/comics/travelling_salesman_problem.png

BRUTE-FORCE 50LUTION:

O(ui)

DYNAMIC
PROGRAMMING
ALGORITHMS:

O (n²2ⁿ)

SELUNG ON EBAY:

STILL WORKING ON YOUR ROUTE?

Garcia, Spring 2012

Problems NOT solvable

- Decision problems
 answer YES or NO for
 an infinite # of inputs
 - E.g., is N prime?
 - E.g., is sentence S grammatically correct?
- An algorithm is a <u>solution</u> if it correctly answers YES/NO in a finite amount of time
- A problem is <u>decidable</u>
 if it has a solution

June 23, 2012 will be his 100th birthday celebration!!

Alan Turing
He asked:
"Are all problems decidable?"
(people used to believe this was true)
Turing proved it wasn't for CS!

Garcia, Fall 2011

Review: Proof by Contradiction

- Infinitely Many Primes?
- Assume the contrary, then prove that it's impossible
 - Only a finite # of primes
 - Number them p₁, p₂, ..., p_n
 - Consider the number q
 - $q = (p_1 * p_2 * ... * p_n) + 1$
 - Dividing q by any prime would give a remainder of 1
 - So q isn't composite, q is prime
 - But we said p_n was the biggest,
 and q is bigger than p_n

Euclid

www.hisschemoller.com/wp-content/uploads/2011/01/euclides.jpg

Garcia, Fall 2011

Turing's proof: The Halting Problem

- Given a program and some input, will that program eventually stop? (or will it loop)
- Assume we could write it, then let's prove a contradiction
 - 1. write Stops on Self?
 - 2. Write Weird
 - 3. Call Weird on itself

```
Weird Weird
```


Conclusion

- Complexity theory important part of CS
- If given a hard problem, rather than try to solve it yourself, see if others have tried similar problems
- If you don't need an exact solution, many approximation algorithms help

P=NP question even made its way into popular culture, here shown in the Simpsons 3D episode!

