2099 年普通高等学校招生全国统一考试

数学

本试卷共 4 页, 22 题. 全卷满分 150 分, 考试用时 120 分钟.

– 、	选择题:	本题共 1	2 小题,	每小题 5	5分,	共	60 分.	在每小题给出的四个选项中,	只有一项是
	符合题目]要求的							

	HUELYND								
1.	设 $\{a_n\}$ 是等差数列, a_n	$a_1 = 1, \ a_2 = 101. \ \ \mathbb{M} \ a_1$	=						
	A. 101	B. 100	C. 2	D. 1					
2.	设函数 $f(x,y) = x^2 - x^2$	=							
	Α. π	B. 1	C. 0	D. +∞					
3.		彩球的袋子,袋子里有 个球,则这个球是白球的		个绿球,1 个紫球和 96					
	A. 0	B. 1%	C. 96%	D. 1					
4.		l识与互不相识两种状态. 数 n 为 $R(p,q)$,则 $R(2$		定有 p 个人相识或 q 个					
	A. 1	B. 2	C. 6	D. 18					
5.	下列各个说法中,正确的一项是								
	A. 此题有且仅有 1 个	答案	B. 此题有且仅有 2 个答案						
	C. 此题没有答案		D. 以上说法均不正确						
6.	定义阶乘运算为 $n! = n \times (n-1) \times \cdots \times 2 \times 1$, 据此计算 $30! =$								
	A. 0		B. 1						
	C. 30		D. 26525285981219105	58636308480000000					
7.	设椭圆 E 的方程为 Aa 误的一项是	椭圆 E 的方程为 $Ax^2+Bxy+Cy^2+Dx+Ey+F=0$,则下列关于椭圆 E 的说法中,错的一项是							
	A. 椭圆不属于圆锥曲线								
	B. 椭圆 E 的中心坐标为 $\left(\frac{BE-2CD}{4AC-B^2}, \frac{BD-2AE}{4AC-B^2}\right)$								
	C. 椭圆 <i>E</i> 的长轴倾角	为 $\frac{1}{2}$ arctan $\frac{B}{A-C}$							
	D. 设椭圆 E 的中心坐	标为 (X_c,Y_c) ,则其长当	半轴长为 $\sqrt{\frac{2(AX_c^2+C)}{A+C+\sqrt{A+C+C}}}$	$\frac{(Y_c^2 + BX_cY_c - 1)}{\sqrt{(A-C)^2 + B^2}}, $					

半轴长为 $\sqrt{\frac{2\left(AX_{c}^{2}+CY_{c}^{2}+BX_{c}Y_{c}-1\right)}{A+C-\sqrt{(A-C)^{2}+B^{2}}}}$

8. 假设有 2 堆石头, 分别含有 1 个和 2 个石头. 甲、乙两人轮流取走任意一堆的任意个石头, 但 不能不取,取走最后一个石头的人获胜. 假设两人充分理性,即每个人在某一确定状态作出的 决策只与当前的状态有关, 而与此人无关, 则此游戏 A. 先手必败 B. 先手必胜 C. 胜负情况确定, 但不可计算 D. 胜负情况不确定 9. 令 $x = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}}$, 注意到方程 $\frac{1}{1 + x} = x$ 成立,从而求得 $x = \frac{1}{1 + \frac{1}{1 + \cdots}}$ A. $\frac{\pm\sqrt{5}-1}{2}$ B. $\frac{\sqrt{5}\pm1}{2}$ C. $\frac{\sqrt{5}+1}{2}$ D. $\frac{\sqrt{5}-1}{2}$ 10. 下列四种图形中,不属于二次曲面的一项是 C. 抛物线 D. 椭球面 A. 单叶双曲面 B. 圆柱面 11. 任意给定一串字符,可以通过寻找重复模式将其压缩为较短的字符串,并通过一定规则解压缩 得到原字符串. 例如对于字符串 ABCCBCCBCCD, 注意到 BCC 在其中反复出现, 因此可以将 其压缩为 A (3BCC) D. 注意到 BCC 内部也有重复模式, 因此可以进一步压缩为 A (3B(2C)) D. 仿照上述规则,解压缩 〈2A 〈3C〉 A〉 CA 〈2 〈2A〉 C〉 的结果为 A. ACCCAACCACCAAACAAC B. ACCCAACCCACAAAACAC C. ACCCAACCCACAAACAAC D. ACAACCAACACAAACAAC 12. 记 $\triangle ABC$ 中 $\angle A$, $\angle B$, $\angle C$ 的对边分别为 a, b, c, 且有 a = 3, b = 4, c = 5. 则下列说法中, 错误的一项是 A. $\triangle ABC$ 的面积为 6 B. $\tan C = 1$ C. 设 M 为 AB 上一点,且 CM 是 $\angle C$ 的平分线,则 $\frac{CA}{CB} = \frac{MA}{MB}$ D. 以 $\triangle ABC$ 的三条边为边,向外构造三个等边三角形,则这三个等边三角形的外接圆中心 恰为另一个等边三角形的顶点 二、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分 13. 0 个男生和 1 个女生排成一圈,则一共有 种不同的排法. 14. 某人将 100 元存入银行, 定期 70 年, 年利率 -200%, 一年支付 2 次利息. 假设按复利计算, 则 70 年期满后,此人可以从银行取出 元.

16. 微分方程 y + 2y' = y' + y 的通解是

三、解答题: 本题共 6 小题,共 70 分. 解答应写出文字说明、证明过程或者演算步骤

17. (10 分) 某加工厂用一台包装机包装其产品,额定重量每袋 500 克. 这台包装机存在随机误差,正常情况下它包装出来的产品重量服从正态分布 $N(500,15^2)$. 某日开工后,随机抽取它包装的 1 袋产品,称得其重量为 0.02 克,问: 这天包装机工作是否正常?

18. (12 分) 已知两个 1×1 矩阵 A = [2], B = [3].

- (1) RA + B;
- (2) 证明: AB = BA.

19. (12 分) 设集合 $A = \{e,a,b,c\}$, 在 A 中定义乘法。如下:

例如 $e \circ a = a$, $a \circ b = c$.

- (1) <math><math>a o $(e \circ (b \circ c)) ;$
- (2) 证明: 对于任意 $x,y \in A$, 均有 $x \circ y \in A$.

- 20. (12 分) Curry 悖论是一种利用自指条件命题证明任意结论的悖论,例如下列过程是对命题 0=1 的证明(下列公式中 $\alpha \to \beta$ 的含义是"如果 α 成立,那么 β 成立"):
 - 定义命题 p 为 $p \to (0 = 1)$,其含义是"如果 p 自身成立,那么 0 = 1". 值得注意的是, p 只是一个命题,并不知道其正确性;
 - 定义命题 p_1 为 $p \to p$,其含义是"如果 p 为真,那么 p 为真",显然 p_1 是恒成立的.将命题 p_1 的第二个 p 展开为 $p \to (0=1)$,得到命题 p_2 为 $p \to (p \to (0=1))$.由于这是一个等价替换,因此命题 p_2 也自然是恒成立的;
 - 事实上,命题 p_2 等价于 $(p \to p) \to (p \to (0 = 1))$,其含义是"如果 $p \to p$ 成立,那么 $p \to (0 = 1)$ 成立".因此,由 $p_1: p \to p$ 以及 $p_2: (p \to p) \to (p \to (0 = 1))$ 可以推出 $p_3: p \to (0 = 1)$.由于 p_1 和 p_2 都是恒成立的,所以 p_3 也是恒成立的;
 - 注意到 p_3 等价于 p,所以可以断言 p 为真,即 $p \to (0=1)$ 恒成立. 由于 $p \to (0=1)$ 的 含义是 "如果 p 成立,那么 0=1",并且之前证明了 p 恒成立,所以 0=1 自然成立. 请仿照上述流程,证明命题 $0 \ne 1$.

- 21. (12 分) 设 $\mathscr{A} = \{A_1, A_2, \cdots, A_n\}$, 其中 A_1, A_2, \cdots, A_n 是 n 个集合.
 - $(1) \ \, {\not\! E} \,\, n=3 \,, \ \, {\not\! L} \,\, A_1=\{0,1\}, \,\, A_2=\{1,2\}, \,\, A_3=\{0,2\}. \ \, {\not\! R} \,\, A=A_1 \cup A_2 \cup A_3 \,;$
 - $(2) \ \ \mathcal{U} \ A = A_1 \cup A_2 \cup \cdots \cup A_n, \ \ \text{且对于任意} \ A_i, A_j \in \mathscr{A} \ \ \text{都有} \ A_i \cup A_j \in \mathscr{A}. \ \ \text{证明:} \ \ \text{存在一个}$ 元素 $a \in A$,这个元素包含在 \mathscr{A} 的至少 $\frac{n}{2}$ 个集合中.

- 22. (12 分) 若 $n \times n$ 的矩阵 H,其元素只取 1 或 -1,且 $HH^{\rm T}=nI_n$,则称 H 是一个 n 阶 Hadamard 矩阵.
 - (1) 证明: $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ 是一个 2 阶 Hadamard 矩阵;
 - (2) 证明: 对于任意正整数 n, 存在 4n 阶的 Hadamard 矩阵.