Pedro L. C. Rodrigues Alexandre Wendling pedro.rodrigues@inria.fr

alexandre.wendling@univ-grenoble-alpes.fr

TD 1: Exercises on multivariate statistics and regression

► Exercise 1

Let U and V be two independent random variables with uniform distribution over [0,1].

Let X = U + V and Y = U - V.

- (a) Compute the expectation and covariance matrix of $Z=\left(\begin{array}{cc} X & Y\end{array}\right)^T$.
- (b) Prove that X and Y are uncorrelated but not independent.

▶ Exercise 2

Let $Z = \begin{pmatrix} X & Y \end{pmatrix}^T$ be a Gaussian vector with mean $\mu = \begin{pmatrix} 1 & 2 \end{pmatrix}^T$ and covariance $\Sigma = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$.

- (a) Compute the probability density function of Z.
- (b) Using

$$f_{Y|X=x}(y) = \frac{f_{(X,Y)}(x,y)}{f_{X}(x)}$$

compute the distribution of Y given X = x.

(c) What is the best prediction of Y given X = x?

► Exercise 3

Consider the regression problem discussed in class: we want to determine a function μ that takes a predictor X as input and gives the best estimate in terms of mean squared error for the observed variable Y.

In mathematical terms, we have an optimization problem defined as

$$\mu = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathbb{E}_{(X,Y)} \left[\left(Y - f(X) \right)^2 \right]$$

where \mathcal{F} is a space of functions with finite squared norm.

Show that the solution is $\mu(x) = \mathbb{E}_{Y|X} [Y \mid X = x]$

▶ Exercise 4

Consider the Gaussian simple linear regression model presented in class

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$
 with $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

The estimates for the parameters of the model, $\hat{\beta}_0$ and $\hat{\beta}_1$, are obtained N paired samples (x_i, y_i) .

- (a) Show that the estimated parameters are unbiased.
- (b) Show that

$$\operatorname{Var}(\hat{\beta}_1) = \frac{\sigma^2}{N} \frac{1}{s_X^2}$$
 and $\operatorname{Var}(\hat{\beta}_0) = \frac{\sigma^2}{N} \left(1 + \frac{\bar{X}^2}{s_X^2} \right)$

where
$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 and $s_X^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{X})^2$.

Using the estimated parameters, we can predict that for a given arbitrary value of X, say x (sometimes called the operation point), we have that on average Y will be

$$\hat{m}(x) = \hat{\beta}_0 + \hat{\beta}_1 x$$

(c) Show that

$$\mathbb{E}\big[\hat{m}(x)\big] = \beta_0 + \beta_1 x$$

(d) Show that the variance of $\hat{m}(x)$ conditioned on a given choice of datapoints x_1, \dots, x_N can be written as per

$$\operatorname{Var}_X\left(\hat{m}(x)\right) = \frac{\sigma^2}{N}\left(1 + \frac{(x - \bar{X})^2}{s_X^2}\right)$$

Describe how the variance changes for different choices of the operation point.