25 Jan 2021

Tut 1 - Apriori Algorithm 11T2018179 - Mohammed Andil

(1) Generating C, & L1 (1- itemset frequent):

Himset	Sup-Count		Itemset	Sup-Count
El, 3	6	Company	£1,3	6
{ l23	7	Compose with min	{ l23	7
{ l33	6	support	{ l33	6
{ ly3	2		ક ૧૫૩	2
ર 15 ^y	2		2 lsy	2

C₁

L1

(ii) Generating C2 & L2 (2-itemset frequent):

	Itemset	Sup				
	$\{l_1,l_2\}$	4				
	{ l, , l33	4		Itemset	Sup	
	{ l, , l, 3)	C marks with	{l,,l,3	4	
	{ l, , l, 3	2	Compare with min support count	$\{l_1,l_3\}$	4	
	{ l ₂ , l ₃ ²	4	$\overline{}$	{ l, , l ₅ }	2	
	{ l2, l43	2		{ l2, l33	4	
	{ l2, l53	2		{l ₂ ,l ₄ 3	2	
	{ l3, l43	O		{l2, l5 }	2	
	{ ls, ls }	1		1		
	8 ly, 154	0		ا	2	

 C_2

(jii)	Grenexuling	C3 & L3	(3-itemsel frequent)

Hemset Suprount {l,,l2,l3} 2 {l,,l2,l4} 1 Compare Jemset Suprount	
SILLS A COMPARE GLAND SUP.	
Eli, lz, ly3 1 Compare Stemset Sugarna Support	nt
$\{l_1, l_2, l_5\} \qquad 2 \qquad \xrightarrow{\text{count}} \qquad \{l_1, l_2, l_3\} \qquad 2$	
$\{l_{1}, l_{3}, l_{5}\}$ 1 $\{l_{1}, l_{2}, l_{5}\}$ 2	
{l ₂ ,l ₃ ,l _u ³ 0	
{l ₂ , l ₃ , l ₅ } 1	
{l ₂ , l ₁ , l ₅ } O	

(iv) Grenerating Cu & Ly (4-itemset frequent):

$$C_{4} = \{l_{1}, l_{2}, l_{3}, l_{5}\} = 1$$

(V) Generating Association Rules using L3:

for set { l, , l2 , l3 }

RULES	Confidence
$l_1 \rightarrow l_2 \wedge l_3$	$SC\{l_1,l_2,l_3\}/SC\{l_1\}=2/6=33.3\%$
l ₂ → l ₁ ∧l ₃	$sc\{l_1,l_2,l_3\}/sc\{l_2\}=2/7\approx 30\%$
l ₃ → l ₁ ∧l ₂	$SC\{l_1,l_2,l_3\}/SC\{l_3\}$ = 2/6 = 33-3%.
$l_1 \wedge l_2 \rightarrow l_3$	$SC\{l_1,l_2,l_3\}/SC\{l_1,l_2\}=2/4=50\%$
l, ^l ₃ → l ₂	$sc{l_1,l_2,l_3}/sc{l_1,l_3}=2/4=50\%$
l ₂ ∧l ₃ → l ₁	$SC\{l_1,l_2,l_3\}/SC\{l_2,l_3\}=2/4=50\%$

None of the rules have confidence more than 70%.

for set &1, 12, 15 }

RULES	Confidence
l, -> lznls	$sc\{l_1,l_2,l_3/sc\{l_1\}=2/6=33.3\%$
$\ell_2 \longrightarrow \ell_1 \wedge \ell_5$	$sc\{l_1,l_2,l_5\}/sc\{l_2\}=2/7\approx30\%$
l ₅ → l ₁ ∧l ₂	sc{l,l2,l5}/8c{l5} 2/2 = 100%
$l_1 \wedge l_2 \rightarrow l_5$	Sc{l,l2,l5}/3c{l,l2}=2/4=50%
l, ^l ₅ → l ₂	Sc{l,l2,l5}/sc{l,l5}=2/2=(00%)
l ₂ ^ l ₅ -> l ₁	sc{l,l2,l5}/sc{l2,l5}=2/2=(100%)

3 rules are selected:

$$R_{12}$$
 $l_{5} \rightarrow l_{1} \wedge l_{2}$

$$\therefore \frac{X}{5} = u0 \Rightarrow X = 2 = min_{suppost} count$$

(ii) Generating C1 & L1:

Itemst	SC		Itemst	SC
{ A }	5	Compare	{A}	5
{ B }	3	min_support count	{ B }	3
{ c }	5		{ c }	5
{ D3	4		{ D3	4
{E3	2		{E3	2

(iii) Generating C2 & L2

Hemset Suproblement Stranger	SC
{A,B} 3 {A,B}	3
{A,C } 5 {A,C }	3 5
	3 4
{A, E 3 2 Compare {A, E	3 2
<u> </u>	3
{B,D} 2 {B,D	3 2
$\{B, \in \mathcal{G} \mid 1 \mid \{C, D\}\}$	3 4
{C, D3 4 {C, €	3 2
{C, ∈ 3 2 {D, €	3 2
{D,G3 2	

 C_2

(iv) Grenerating C3 & L3

	gremset	SC				
	{A,B,C}	3				
	{A,B,D3	2	Commanda va	Hemsel	SC	
	{A,B, ∈ 3	1	Compare min_support	{A,B, C }	3	
	{A,C,P }	4	count	{A,B,D3	2	
	{A, C, € 3	2		{A,C,P 3	4	
	{A,D,€ 3	2		{A, C, ∈ 3	2	
	{B,c,D }	2		{A, D, € 3	2	
	{B, C, ∈ }	1		{B,c,D, }	2	
	{B, D, ∈ }	1		{C,D, € }	2	
	{ C, D, ∈ }	2				•
		,	•			

C3

(V)	Greneraling Cy & Ly:				
		Ī			
	Hemset SC				
	{A,B,C,D} 2	Compare	Γ		
	{A,B,c,∈3 1	min_support_ 	Hemsel	SC	
	{A,B,D,∈3 1	,	{A,B,C,D3		
	{A, c, D, ∈ 3 2		{A,C,D,6}	2	
	{B,C,D,€ } 1				
			L4		
	Cy				
(vi)	Generating C58 L5				
	C5 = { A, B, C, D, E3 8 SC=1				
		- 			
	L5 = 0				
(vii)	Generating Association	n Rules usin	101 \ (
	33300.1 0.1	2 (3000)	J =		
	There are 2 sets we	et en llim			
	generate the rules	30 00 000			
	0-10-10-10-10-10-10-10-10-10-10-10-10-10				
	S1 = { A, B, C, D}				
	82 = { A, C, D, E}				
	Taking subsets of both	sets individ	······································		
	1.32.13		many		

fer S1 = { A, B, C, D}

•	RULES	Confidence
	A -> BACAD	Sc{A,B,C,D}/SC{A} = 2/5 = 40%
	B → ANCND	$SC\{A,B,C,D\}/SC\{B\} = 2/3 = 66.6\%$
	C -> ANBND	Sc{A,B,C,D}/SC{C} = 2/5 = 40%
	D -> ANBNC	Sc{A,B,C,D}/SC{P} = 2/4 = 50%
	ANB -> CND	$SC\{A,B,C,D\}/SC\{A,B\} = 2/3 = 66.6\%$
	ANC -> BND	Sc{A,B,C,D}/SC{A,C} = 2/5 = 40%
	AND -> BNC	Sc{A,B,C,D}/SC{A,D} = 2/4 = 50 %.
	BNC -> AND	Sc{A,B,C,D}/SC{B,C} = 2/3 = 66.6%
	BND → ANC	$SC\{A,B,C,D\}/SC\{B,D\} = 2/2 = (00\%)$
	CND -> ANB	Sc{A,B,C,D}/Sc{C,D} = 2/4 = 50%.
	ANBAC -> P	Sc{A,B,C,D}/Sc{A,B,C} = 2/3 = 66.6%
	ANBND -> C	Sc{A,B,C,D}/SC{A,B,D}= 2/2 = 100 %.
	ANCAD -> B	Sc{A,B,C,D}/Sc{A,C,D}= 2/4 = 50%
	BACAD -> A	Sc{A,B,C,D}/SC{B,C,D}= 2/2 = 100%

All the rules have more than 40% confidence.

NOTE: We skipped [ANBACAD -> \$\phi\$ and [0 -> ANBACAD] as
they both have null values-

	i i
RULES	Confidence
A -> CADAG	$SC\{A,C,P,E\}/SC\{A\} = 2/5 = 40 \%$
C -> Andre	sc{A,c,p,e}/sc{c} = 2/5 = 40 %.
D - Anche	sc{A,C,P,E}/SC{D} = 2/4 = 50 %
€ → ANCND	$SC_{A,C,P,E_{J}}/SC_{E_{J}} = 2/2 = 100 \%$
Anc -> DNG	sc{A,C,P,E}/sc{A,C} = 2/5 = 40 %
AND -> CNE	SC{A,C,P,E}/SC{A,D}= 2/4 = 50 %.
ANE -> CND	SC{A,C,P,E}/SC{A,E} = 2/2 = 100%
CND - ANG	SC{A,C,P,E}/SC{C,D} = 2/4 = 50%
CNE -> AND	SC{A,C,P,E}/SC{C,E}= 2/2 = 100 %
DNG -> ANC	$SC\{A,C,D,E\}/SC\{D,E\} = 2/2 = 100\%$
ANCAD -> E	sc{A,c,p,e}/sc{A,e,p} = 2/4 = 50 %
ANCNE -> D	sc{A,C,D,E}/SC{A,C,E}=2/2 = 100%
ANDNE -> C	SC{A,C,D,E}/SC{A,D,E}=2/2 = 100%
cnonf - A	SC{A,C,D,E}/SC{C,D,E} = 2/2 = 100%.
	-

All the rules have more than 40% confidence.

NOTE: We skipped [ANCNDRE -> \$\phi\$] and [\$\phi -> ANCNDRE] as they both have null values-

Finally, All the rules generated from S1 & S2 are valid