

(iii) Ios vs Vos, Parametric Sweep Vos from 0 -> 0.8V (Voo) w/ 0.1V step size

(iv) log(Jos) us Vos, Parametric sweep VGS from OV to 0-8V (VDD) w/ 0.1V step size

(iii) Ios vs Vos, Parametric Sweep Vos from 0 -> 0.8V (Voo) w/ 0.1V step 8ize

(iv) log(Jos) us Vos, Parametric sweep VGS from OV to 0-8V (VDD) w/ 0.1V step size

Problem 2. (i) Finding α IDS \propto $(V_{GS} - V_{TH}) V_{DS} - \frac{\alpha V_{DS}^2}{2}$ in the triode region

To find α we can take the derivative of both sides which will give us: $\frac{\partial I_{DS}}{\partial V_{DS}} \propto (V_{GS} - V_{TH}) - \alpha V_{DS} \rightarrow \frac{\partial I_{DS}}{\partial V_{DS}} = C \left[(V_{GS} - V_{TH}) - \alpha V_{DS} \right] = C \left(V_{GS} - V_{TH} \right) - C \alpha V_{DS}$ Taking a 2nd derivative: $\frac{\partial^2 I_{DS}}{\partial V_{DS}} = -C V_{DS}$; are the y-intercept of the first derivative: $\frac{\partial I_{DS}}{\partial V_{DS}} \mid_{V_{DS}=0} = C \left(V_{GS} - V_{TH} \right)$

To eliminate C: # let
$$m = 8lope$$

$$\frac{M}{\sqrt{\frac{\partial Ios}{\partial Vos}|_{Vos=0}}} = \frac{-Cd}{C \cdot (Vos - V_{TH})} \Rightarrow \chi = -m \cdot \frac{Vos - V_{TH}}{Gos_{10}}$$
Let this be
$$Gos_{10} = \frac{Gos_{10} - m \cdot Vos_{10}}{Vos_{10} - Vos_{10}}$$

$$\frac{Gos_{10} - m \cdot Vos_{10}}{Vos_{10} - Vos_{10}}$$

Using the first derivative plot of IDS vs. VPS

(AIDS vs. VPS)

and VTH = 0.3804 V

VGS = 0.8 V

For our case:

GDS,1 = 372.9794 W, GDS,2 = 329.55W

VDS,1 = 0.008V, VDS,2 = 0.040094V

Plug in our values:

A Ips

When the state of the st

$$qN = \frac{(329.55 - 312.9794) \times 10^{-6} \text{ S}}{0.040094 - 0.008}$$

$$\approx -1.3532 \times 10^{-3} \frac{s}{V}$$

$$Q = -M \cdot \frac{\sqrt{68 - \sqrt{141}}}{605.0} = -(-1.3532 \times 10^{-3}) \cdot \frac{(0.8 - 0.3838 \times 10^{-3})}{0.3838 \times 10^{-3}}$$

Problem 2 (ii) Finding n, sub-threshold slope

I using the same approach we took to find a from the previous quescion, we take the first derivative of In (IDS) with respect to VGS =

 $\frac{\partial}{\partial V_g}$ ln(IDS) $\angle \frac{1}{n\phi_t}$, and let $\phi_t = 25.8 \,\text{mV}$ at 298 k.

Slope, m

 $\rightarrow n: (m \cdot \phi_{\epsilon})^{-1}$

Taking two poines of the plox to find the slope we have:

$$\frac{-15.489 - (-19.459)}{212.7 - 58.59668} \times \frac{1000}{mV} = 25.762 \approx 25.76$$

ploe of log(IDS) VS VGS and ln(IDS) VS VGS

Green Blue

Problem 2(111) Finding V, The body effect Coefficient

 $V_T = V_{10} + \gamma \sqrt{2\phi_F} + V_{SB} - \sqrt{2\phi_F}$ To solve this problem we must first rebuild the NMOS circuit to include VSB, and parametric sweep it as a pare of data collection to find differenc VIHs.

Solving for a system of equations $\phi_F = 0.7V$ we would be able to find Y:

NMOS Circuit W/ VSB

_ vsb	OP("/M0","vth") (V)
1 -800.0E-3	491.8E-3
2 -700.0E-3	476.4E-3
3 -600.0E-3	460.4E-3
4 -500.0E-3	443.9E-3
5 -400.0E-3	426.8E-3
6 -300.0E-3	409.0E-3
7 -200.0E-3	390.5E-3
8 -100.0E-3	371.1E-3
9 -138.8E-18	350.6E-3

VTHS of different VSBS,

$$\Delta V_{TH} = \gamma \left[\sqrt{2\phi_F + 0.8} - \sqrt{2\phi_F + 0.7} \right] = 0.0154 V$$

$$\Rightarrow \gamma = \frac{1}{\sqrt{24 + 0.8 - \sqrt{24 + 0.9}}} = \frac{0.0154}{\sqrt{2.2 - \sqrt{2.1}}} = 0.45 \, \text{V}^{\frac{1}{2}}$$

$$I_{DS} \propto \left(\left[+ \lambda V_{DS} \right], \quad I_{OS} = I_{D'} \left(\left[+ \lambda V_{OS} \right), \quad I_{D'} = \frac{I_{DS}}{\left(+ \lambda V_{OS} \right)} \right)$$

If we take the first derivative of IDS with respect to Vos we have: $\frac{\partial IDS}{\partial VOS} = ID' \lambda = \frac{IDS}{(H \times VOS)}$.

Given that ro is
$$\frac{1}{9ds}$$
 or $(\frac{\partial I_{OS}}{\partial V_{OS}})^{-1}$ we get:
 $ro = \frac{1}{9ds} = \frac{1 + xV_{OS}}{xI_{DS}}$, substitute: $a = \frac{1}{V_{A}} \Rightarrow ro = \frac{1 + (\frac{V_{OS}}{V_{A}})}{\frac{I_{DS}}{V_{A}}} = \frac{V_{A} + V_{DS}}{I_{PS}}$

we use the plac of Ips vs. VDS with Vos of 0.8V.

Take the reciprocal of its first derivative to get ro.

IDS: 70-173 WA

Plot of Ios us Vos and dIos ne Vos = 0.8V

$$V_A \approx (J_{DS}, r_o) - V_{DS}$$

Problem 2(V) Estimating specific current Ispec

plouting gm/IDS vs. IDS in log-log space; we take and estimate

2 lines from the curve and find its intersection point.

Points and equation:

Line 1:
$$1.286055 - 1.3696$$
 $-6.006221 - (-7.501)$
 $-0.05589120532X$

Intercept = $\frac{1}{2}$ = 1.3298295

$$-4.25 - (-4.50594)$$
 $-0.9466822849x$
intercepe: $72 + m(22) = 5.002985311$

0.497655 - 0.7397983

Line 2:

Lab 1 Scraps Page 3

Problem 2 (V): Transic frequency, for

 $f_1 = \frac{g_M}{2\pi (C_{GS} + C_{GP})}$

we use the calculator tool
to get the constant value of
capacitances, and derivative function
to get gm.

