Distribution	PDF	Support	Mean	Variance	MGF
Discrete Distributions					
Bernoulli	$p^x(1-p)^{1-x}$	$x \in \{0, 1\}$	p	p(1-p)	$(1-p) + pe^t$
Binomial	$\binom{n}{x}p^x(1-p)^{n-x}$	$0 \le x \le n$	np	np(1-p)	$\left[(1-p) + pe^t \right]^n$
Geometric (Failures, "before")	$p(1-p)^x$	$x \ge 0$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{p}{(1-(1-p)e^t)}, t < -\ln(1-p)$
Geometric (Trails, "until")	$p(1-p)^{x-1}$	$x \ge 1$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{(1-(1-p)e^t)}, t < -\ln(1-p)$
Negative Binomial (Failures, "before")	$\binom{x+r-1}{r-1}p^r(1-p)^x$	$x \ge 0$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{p}{(1-(1-p)e^t)}\right]^r, t < -\ln(1-p)$
Negative Binomial (Trails, "until")	$\binom{x-1}{r-1} p^r (1-p)^{x-r}$	$x \ge r$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\left[\frac{pe^t}{(1-(1-p)e^t)} \right]^r, t < -\ln(1-p) \right]$
Hypergeometric	$\frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}$	$\max(0, n - N + k) \le x \le \min(n, k)$	$\frac{nk}{N}$	$\frac{nk(N-k)(N-n)}{N^2(N-1)}$	
Poisson	$\frac{\lambda^x e^{-\lambda}}{x!}$	$x \ge 0$	λ	λ	$e^{\lambda(e^t-1)}$
Uniform Discrete	$\frac{1}{n}$	$a \le x \le b$	$\frac{a+b}{2}$	$\frac{n^2-1}{12}$	$\frac{e^{at} - e^{(b+1)t}}{n(1 - e^t)}$
Continuous Distributions					
Normal	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$	$-\infty \le x \le \infty$	μ	σ^2	$e^{\mu t + \frac{\sigma^2 t^2}{2}}$
Exponential (Gamma with $\alpha = 1$)	$\lambda e^{-\lambda x}$	$x \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{1}{1-\frac{t}{\lambda}}, t < \lambda$
Gamma	$\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-\lambda x}$	$x \ge 0$	$\alpha\beta$	$\alpha \beta^2$	$\left[\frac{1}{1-\frac{t}{\lambda}}\right]^{\alpha}, t < \lambda$
Uniform Continuous	$\frac{1}{b-a}$	$a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$
Beta	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$x \in \{0, 1\}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Chi-square (Gamma, $\alpha = \frac{1}{2}, \beta = 2$)	$\frac{1}{\Gamma(\frac{\upsilon}{2})2^{\frac{\upsilon}{2}}}x^{\frac{\upsilon}{2}-1}e^{-\frac{x}{2}}$	$x \ge 0$	v	2v	$(1-2t)^{-\frac{v}{2}}, t < \frac{1}{2}$