The Hardware/Software Interface

Chapter 2

Instructions: Language of the Computer

Instruction Set

- The collection of instructions of a computer
- Different computers have different instruction sets
 - But with many aspects in common
- Early computers had very simple instruction sets
 - Simplified implementation
- Many modern computers also have simple instruction sets

The MIPS* Instruction Set

- Used as the example throughout the book
- Stanford MIPS commercialized by MIPS Technologies (<u>www.mips.com</u>)
- Large share of embedded core market
 - Applications in consumer electronics, network/storage equipment, cameras, printers, ...
- Typical of many modern ISAs
 - See MIPS Reference Data tear-out card, and Appendixes B and E

^{*}Originally acronym for Microprocessor without Interlocked Pipeline Stages

Arithmetic Operations

- Add and subtract, three operands
 - Two sources and one destination
 - add a, b, c # a gets b + c
- All arithmetic operations have this form
- Design Principle 1: Simplicity favours regularity
 - Regularity makes implementation simpler
 - Simplicity enables higher performance at lower cost

Arithmetic Example

C code:

```
f = (g + h) - (i + j);
```

Compiled MIPS code:

```
add t0, g, h # temp t0 = g + h add t1, i, j # temp t1 = i + j sub f, t0, t1 # f = t0 - t1
```

Register Operands

- Arithmetic instructions use register operands
- MIPS has 32 32-bit registers
 - Use for frequently accessed data
 - Numbered 0 to 31
 - 32-bit data called a "word"
- Assembler names
 - \$t0, \$t1, ..., \$t9 for temporary values
 - \$s0, \$s1, ..., \$s7 for saved variables
- Design Principle 2: Smaller is faster
 - Not a large number of registers

Register Operand Example

C code:

```
f = (g + h) - (i + j);

• f, ..., j in $s0, ..., $s4
```

Compiled MIPS code:

```
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1
```

Memory Operands

- Main memory used for composite data
 - Arrays, structures, dynamic data
- To apply arithmetic operations
 - Load values from memory into registers
 - Store result from register to memory
- Memory is byte addressed
 - Each address identifies an 8-bit byte
- Words are aligned in memory
 - Address must be a multiple of 4
- MIPS is Big Endian
 - Most-significant byte at least address of a word
 - c.f. Little Endian: least-significant byte at least address

Memory Operand Example 1

C code:

```
g = h + A[8];
```

- g in \$s1, h in \$s2, base address of A in \$s3
- Compiled MIPS code:
 - Index 8 requires offset of 32
 - 4 bytes per word

```
lw $t0, 32($$3) # load word add $$1, $$2, $$t0
```

Memory Operand Example 2

C code:

```
A[12] = h + A[8];
```

- h in \$s2, base address of A in \$s3
- Compiled MIPS code:
 - Index 8 requires offset of 32

```
lw $t0, 32($s3)  # load word
add $t0, $s2, $t0
sw $t0, 48($s3)  # store word
```

Registers vs. Memory

- Registers are faster to access than memory
- Operating on memory data requires loads and stores
 - More instructions to be executed
- Compiler must use registers for variables as much as possible
 - Only spill to memory for less frequently used variables
 - Register optimization is important!

Immediate Operands

- Constant data specified in an instruction addi \$s3, \$s3, 4
- No subtract immediate instruction
 - Just use a negative constant addi \$s2, \$s1, -1
- Design Principle 3: Make the common case fast
 - Small constants are common
 - Immediate operand avoids a load instruction

The Constant Zero

- MIPS register 0 (\$zero) is the constant 0
 - Cannot be overwritten
- Useful for common operations
 - E.g., move between registers
 - add \$t2, \$s1, \$zero

Unsigned Binary Integers

Given an n-bit number

$$x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_12^1 + x_02^0$$

- Range: 0 to +2ⁿ 1
- Example
 - 0000 0000 0000 0000 0000 0000 0000 1011₂

$$= 0 + ... + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

$$= 0 + ... + 8 + 0 + 2 + 1 = 11_{10}$$

- Using 32 bits
 - 0 to +4,294,967,295

2s-Complement Signed Integers

Given an n-bit number

$$x = -x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \cdots + x_12^1 + x_02^0$$

- Range: -2ⁿ⁻¹ to +2ⁿ⁻¹ 1
- Example
- Using 32 bits
 - -2,147,483,648 to +2,147,483,647

2s-Complement Signed Integers

- Bit 31 is sign bit
 - 1 for negative numbers

- 0 for non-negative numbers
- –(–2ⁿ⁻¹) can't be represented
- Non-negative numbers have the same unsigned and 2s-complement representation
- Some specific numbers
 - **0**: 0000 0000 ... 0000
 - **■ -1**: 1111 1111 ... 1111
 - Most-negative: 1000 0000 ... 0000
 - Most-positive: 0111 1111 ... 1111

Signed Negation

- Complement and add 1
 - Complement means 1 → 0, 0 → 1

$$x + \bar{x} = 1111...111_{2} = -1$$

 $\bar{x} + 1 = -x$

Example: negate +2

$$-2 = 1111 \ 1111 \ \dots \ 1101_2 + 1$$

= 1111 \ 1111 \ \dots \ 1110_2

Sign Extension

- Representing a number using more bits
 - Preserve the numeric value
- In MIPS instruction set
 - addi: extend immediate value
 - lb, lh: extend loaded byte/halfword
 - beq, bne: extend the displacement
- Replicate the sign bit to the left
 - c.f. unsigned values: extend with 0s
- Examples: 8-bit to 16-bit
 - +2: 0000 0010 => 0000 0000 0000 0010
 - -2: 1111 1110 => 1111 1111 1111 1110

Representing Instructions

- Instructions are encoded in binary
 - Called machine code
- MIPS instructions
 - Encoded as 32-bit instruction words
 - Small number of formats encoding operation code (opcode), register numbers, ...
 - Regularity!
- Register numbers
 - \$t0 \$t7 are reg's 8 15
 - \$t8 \$t9 are reg's 24 25
 - \$s0 \$s7 are reg's 16 23

MIPS R-format Instructions

ор	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

- Instruction fields
 - op: operation code (opcode)
 - rs: first source register number
 - rt: second source register number
 - rd: destination register number
 - shamt: shift amount (00000 for now)
 - funct: function code (extends opcode)

R-format Example

ор	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

add \$t0, \$s1, \$s2

special	\$s1	\$s2	\$t0	0	add
0	17	18	8	0	32
	10001	10010	0.4.0.0.0		40000
000000	10001	10010	01000	00000	100000

 $00000010001100100100000000100000_2 = 02324020_{16}$

Hexadecimal

- Base 16
 - Compact representation of bit strings
 - 4 bits per hex digit

0	0000	4	0100	8	1000	С	1100
1	0001	5	0101	9	1001	d	1101
2	0010	6	0110	а	1010	е	1110
3	0011	7	0111	b	1011	f	1111

- Example: eca8 6420
 - 1110 1100 1010 1000 0110 0100 0010 0000

MIPS I-format Instructions

ор	rs	rt constant or address	
6 bits	5 bits	5 bits	16 bits

- Immediate arithmetic and load/store instructions
 - rt: destination or source register number
 - Constant: -2¹⁵ to +2¹⁵ 1
 - Address: offset added to base address in rs
- Design Principle 4: Good design demands good compromises
 - Different formats complicate decoding, but allow 32-bit instructions uniformly
 - Keep formats as similar as possible first three fields have same name and format for R and I

Stored Program Computers

The BIG Picture

- Instructions represented in binary, just like data
- Instructions and data stored in memory
- Programs can operate on programs
 - e.g., compilers, linkers, ...
- Binary compatibility allows compiled programs to work on different computers
 - Standardized ISAs

Logical Operations

Instructions for bitwise manipulation

Operation	С	Java	MIPS	
Shift left	<<	<<	sll	
Shift right	>>	>>>	srl	
Bitwise AND	&	&	and, andi	
Bitwise OR			or, ori	
Bitwise NOT	~	~	<mark>no r</mark>	

 Useful for extracting and inserting groups of bits in a word

Shift Operations

- shamt: how many positions to shift
- Shift left logical
 - Shift left and fill with 0 bits
 - sll by i bits multiplies by 2i
- Shift right logical
 - Shift right and fill with 0 bits
 - srl by i bits divides by 2i (unsigned only)

AND Operations

- Useful to mask bits in a word
 - Select some bits, clear others to 0

```
and $t0, $t1, $t2
```

```
$t2 | 0000 0000 0000 0000 00<mark>00 11</mark>01 1100 0000
```

\$t0 | 0000 0000 0000 00<mark>00 11</mark>00 0000 0000

OR Operations

- Useful to include bits in a word
 - Set some bits to 1, leave others unchanged

```
or $t0, $t1, $t2
```

```
$t2 | 0000 0000 0000 0000 00<mark>00 11</mark>01 1100 0000
```

\$t0 | 0000 0000 0000 000<mark>11 11</mark> 01 1100 0000

NOT Operations

- Useful to invert bits in a word
 - Change 0 to 1, and 1 to 0
- MIPS has NOR 3-operand instruction
 - a NOR b == NOT (a OR b)

```
nor $t0, $t1, $zero ←
```

Register 0: always read as zero

```
$t1 | 0000 0000 0000 0001 1100 0000 0000
```

\$t0 | 1111 1111 1111 1111 1100 0011 1111 1111

Conditional Operations

- Branch to a labeled instruction if a condition is true
 - Otherwise, continue sequentially
- beq rs, rt, L1
 - if (rs == rt) branch to instruction labeled L1;
- bne rs, rt, L1
 - if (rs != rt) branch to instruction labeled L1;
- j L1
 - unconditional jump to instruction labeled L1

Compiling If Statements

C code:

```
if (i==j) f = g+h;
else f = g-h;
```

- f, g, ... in \$s0, \$s1, ...
- Compiled MIPS code:


```
bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit
Else: sub $s0, $s1, $s2
```

Assembler calculates addresses

Exit: *...

Compiling Loop Statements

C code:

```
while (save[i] == k) i += 1;
```

- i in \$s3, k in \$s5, base address of save in \$s6
- Compiled MIPS code:

```
Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop
Exit: ...
```

Basic Blocks

- A basic block is a sequence of instructions with
 - No embedded branches (except at end)
 - No branch targets (except at beginning)

- A compiler identifies basic blocks for optimization
- An advanced processor can accelerate execution of basic blocks

More Conditional Operations

- Set result to 1 if a condition is true
 - Otherwise, set to 0
- slt rd, rs, rt (Set on Less Than)
 - if (rs < rt) rd = 1; else rd = 0;</pre>
- slti rt, rs, constant
 - if (rs < constant) rt = 1; else rt = 0;</p>
- Use in combination with beq, bne

```
slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L</pre>
```

Branch Instruction Design

- Why not blt, bge, etc?
- Hardware for <, ≥, ... slower than =, ≠</p>
 - Combining with branch involves more work per instruction, requiring a slower clock
 - All instructions penalized!
- beq and bne are the common case
- This is a good design compromise

Signed vs. Unsigned

- Signed comparison: slt, slti
- Unsigned comparison: sltu, sltui
- Example

 - \$1 = 0000 0000 0000 0000 0000 0000 0001
 - slt \$t0, \$s0, \$s1 # signed
 -1 < +1 ⇒ \$t0 = 1</pre>
 - sltu \$t0, \$s0, \$s1 # unsigned
 - $-4,294,967,295 > +1 \Rightarrow $t0 = 0$

Procedure Calling

- Steps required
 - Place parameters in registers
 - 2. Transfer control to procedure
 - 3. Acquire storage for procedure
 - 4. Perform procedure's operations
 - 5. Place result in register for caller
 - Return to place of call

Register Usage

- \$a0 \$a3: arguments (reg's 4 7)
- \$v0, \$v1: result values (reg's 2 and 3)
- \$t0 \$t9: temporaries
 - Can be overwritten by callee
- \$s0 \$s7: saved
 - Must be saved/restored by callee
- \$gp: global pointer for static data (reg 28)
- \$sp: stack pointer (reg 29)
- \$fp: frame pointer (reg 30)
- \$ra: return address (reg 31)

Procedure Call Instructions

- Procedure call: jump and link jal ProcedureLabel
 - Address of following instruction put in \$ra
 - Jumps to target address
- Procedure return: jump register ir \$ra
 - Copies \$ra to program counter
 - Can also be used for computed jumps
 - e.g., for case/switch statements

Leaf Procedure Example

C code:

```
int leaf_example (int g, h, i, j)
{ int f;
    f = (g + h) - (i + j);
    return f;
}
```

- Arguments g, ..., j in \$a0, ..., \$a3
- f in \$s0 (hence, need to save \$s0 on stack)
- Result in \$v0

Leaf Procedure Example

MIPS code:

leaf ex	cample	e:		
addi	\$sp,	\$sp,	- 4	
SW	\$s0,	0(\$5)	o)	
add	\$t0,	\$a0,		
add	\$t1,	•		
sub	\$s0,	\$t0,	\$t1	
add	\$v0,	\$s0,	\$zero	
lw	\$s0,	0(\$5)	o)	
addi	\$sp,	\$sp,	4	
jr	\$ra			

Save \$s0 on stack

Procedure body

Result

Restore \$s0

Return

Non-Leaf Procedures

- Procedures that call other procedures
- For nested call, caller needs to save on the stack:
 - Its return address
 - Any arguments and temporaries needed after the call
- Restore from the stack after the call

Non-Leaf Procedure Example

C code:

```
int fact (int n)
{
   if (n < 1) return f;
   else return n * fact(n - 1);
}</pre>
```

- Argument n in \$a0
- Result in \$v0

Non-Leaf Procedure Example

MIPS code:

```
fact:
   addi $sp, $sp, -8
                       # adjust stack for 2 items
   sw $ra, 4($sp)
                        # save return address
   sw $a0, 0($sp)
                        # save argument
   slti $t0, $a0, 1
                        # test for n < 1
   beq $t0, $zero, L1
   addi $v0, $zero, 1 # if so, result is 1
   addi $sp, $sp, 8
                        # pop 2 items from stack
                        # and return
   jr $ra
L1: addi $a0, $a0, -1
                        # else decrement n
   jal fact
                        # recursive call
   lw $a0, 0($sp)
                        # restore original n
                        # and return address
   lw $ra, 4($sp)
   addi $sp, $sp, 8
                        # pop 2 items from stack
                        # multiply to get result
   mul $v0, $a0, $v0
                        # and return
        $ra
   jr
```

Local Data on the Stack

- Local data allocated by callee
 - e.g., C automatic variables
- Procedure frame (activation record)
 - Used by some compilers to manage stack storage

Memory Layout

- Text: program code
- Static data: global variables
 - e.g., static variables in C, constant arrays and strings
 - \$gp initialized to address allowing ±offsets into this segment
- Dynamic data: heap
 - E.g., malloc in C, new in Java
- Stack: automatic storage

Character Data

- Byte-encoded character sets
 - ASCII: 128 characters
 - 95 graphic, 33 control
 - Latin-1: 256 characters
 - ASCII, +96 more graphic characters
- Unicode: 32-bit character set
 - Used in Java, C++ wide characters, ...
 - Most of the world's alphabets, plus symbols
 - UTF-8, UTF-16: variable-length encodings

Byte/Halfword Operations

- Could use bitwise operations
- MIPS byte/halfword load/store
 - String processing is a common case

```
lb rt, offset(rs) lh rt, offset(rs)
```

Sign extend to 32 bits in rt

```
lbu rt, offset(rs) lhu rt, offset(rs)
```

Zero extend to 32 bits in rt

Store just rightmost byte/halfword

String Copy Example

- C code (naïve):
 - Null-terminated string

```
void strcpy (char x[], char y[])
{ int i;
    i = 0;
    while ((x[i]=y[i])!='\0')
        i += 1;
}
```

- Addresses of x, y in \$a0, \$a1
- i in \$s0

String Copy Example

MIPS code:

```
strcpy:
   addi $sp, $sp, -4
                         # adjust stack for 1 item
        $s0, 0($sp)
                         # save $s0
   SW
   add \$s0, \$zero, \$zero # i = 0
L1: add $t1, $s0, $a1  # addr of y[i] in $t1
   lbu $t2, 0($t1) # $t2 = y[i]
   add $t3, $s0, $a0 # addr of x[i] in $t3
   sb $t2, 0($t3)
                         \# x[i] = y[i]
   beq $t2, $zero, L2
                         # exit loop if y[i] == 0
   addi $s0, $s0, 1
                         # i = i + 1
        L1
                         # next iteration of loop
L2: lw $s0, 0($sp)
                         # restore saved $s0
   addi $sp, $sp, 4
                         # pop 1 item from stack
                         # and return
        $ra
   jr
```

32-bit Constants

- Most constants are small
 - 16-bit immediate is sufficient
- For the occasional 32-bit constant lui rt, constant
 - Copies 16-bit constant to left 16 bits of rt
 - Clears right 16 bits of rt to 0

```
lui $s0, 61
```

0000 0000 0111 1101 0000 0000 0000 0000

ori \$s0, \$s0, 2304

0000 0000 0111 1101 0000 1001 0000 0000

Branch Addressing

- Branch instructions specify
 - Opcode, two registers, target address
- Most branch targets are near branch
 - Forward or backward

- PC-relative addressing
 - Target address = PC + offset × 4
 - PC already incremented by 4 by this time

Jump Addressing

- Jump (j and jal) targets could be anywhere in text segment
 - Encode full address in instruction

ор	address
6 bits	26 bits

- (Pseudo)Direct jump addressing
 - Target address = PC_{31...28}: (address × 4)

Target Addressing Example

- Loop code from earlier example
 - Assume Loop at location 80000

Loop:	sll	\$t1,	\$s3,	2	80000	0	0	19	9	4	0
	add	\$t1,	\$t1,	\$s6	80004	0	9	22	9	0	32
	lw	\$t0,	0(\$t	1)	80008	35	9	8		0	
	bne	\$t0,	\$s5,	Exit	80012	5	8	21	*****	2	
	addi	\$s3,	\$s3,	1	80016	8	19	19	N N N N N N N N N N N N N N N N N N N	1	
	j	Loop			80020	2	*****	***	20000		
Exit:					80024						

Branching Far Away

- If branch target is too far to encode with 16-bit offset, assembler rewrites the code
- Example

```
beq $s0,$s1, L1

↓
bne $s0,$s1, L2

j L1

j L1

L2:
```

Addressing Mode Summary

C Sort Example

- Illustrates use of assembly instructions for a C bubble sort function
- Swap procedure (leaf)
 void swap(int v[], int k)
 {
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
 }
 - v in \$a0, k in \$a1, temp in \$t0

The Procedure Swap

The Sort Procedure in C

Non-leaf (calls swap) void sort (int v[], int n) int i, j; for (i = 0; i < n; i += 1) { for (j = i - 1;j >= 0 && v[j] > v[j + 1];i -= 1) { swap(v,j);v in \$a0, n in \$a1, i in \$s0, j in \$s1

The Procedure Body

```
move $s2, $a0
                             # save $a0 into $s2
                                                               Move
        move $s3, $a1  # save $a1 into $s3
                                                               params
                             \# i = 0
        move $s0, $zero
                                                               Outer loop
for 1 tst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 \ge $s3 (i \ge n)
        beg $t0, $zero, exit1 # go to exit1 if $s0 \ge $s3 (i \ge n)
        addi \$\$1, \$\$0, -1 # j = i - 1
for2tst: slti $t0, $s1, 0  # $t0 = 1 if $s1 < 0 (j < 0)
        bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)
        sll $t1, $s1, 2 # $t1 = i * 4
                                                               Inner loop
        add $t2, $s2, $t1 # $t2 = v + (j * 4)
        lw $t3, 0($t2) # $t3 = v[j]
        lw $t4, 4($t2) # $t4 = v[i + 1]
        slt $t0, $t4, $t3 # $t0 = 0 if $t4 \ge $t3
        beq $t0, $zero, exit2 # go to exit2 if $t4 \ge $t3
        move $a0, $s2 # 1st param of swap is v (old $a0)
                                                               Pass
        move $a1, $s1  # 2nd param of swap is j
                                                               params
        jal swap # call swap procedure
                                                               & call
        addi $s1, $s1, -1 # j -= 1
                                                               Inner loop
            for2tst
                             # jump to test of inner loop
                             # i += 1
exit2:
        addi $s0, $s0, 1
                                                               Outer loop
            for1tst
                             # jump to test of outer loop
```

The Full Procedure

```
sort:
        addi $sp,$sp, -20
                            # make room on stack for 5 registers
                            # save $ra on stack
        sw $ra, 16($sp)
        sw $s3,12($sp)
                            # save $s3 on stack
        sw $s2, 8($sp)  # save $s2 on stack
        sw $s1, 4($sp)  # save $s1 on stack
        sw $s0, 0($sp)
                            # save $s0 on stack
                            # procedure body
        exit1: lw $s0, 0($sp) # restore $s0 from stack
       lw $s1, 4($sp) # restore $s1 from stack
       lw $s2, 8($sp) # restore $s2 from stack
        lw $s3,12($sp) # restore $s3 from stack
        lw $ra,16($sp) # restore $ra from stack
        addi $sp,$sp, <u>20</u>
                            # restore stack pointer
                            # return to calling routine
        jr $ra
```

The Intel x86 ISA

- Evolution with backward compatibility
 - 8080 (1974): 8-bit microprocessor
 - Accumulator, plus 3 index-register pairs
 - 8086 (1978): 16-bit extension to 8080
 - Complex instruction set (CISC)
 - 8087 (1980): floating-point coprocessor
 - Adds FP instructions and register stack
 - 80286 (1982): 24-bit addresses, Memory Management Unit
 - Segmented memory mapping and protection
 - 80386 (1985): 32-bit extension (now IA-32)
 - Additional addressing modes and operations
 - Paged memory mapping as well as segments

The Intel x86 ISA

- Further evolution...
 - i486 (1989): pipelined, on-chip caches and FPU
 - Compatible competitors: AMD, Cyrix, ...
 - Pentium (1993): superscalar, 64-bit datapath
 - Later versions added MMX (Multi-Media eXtension) instructions
 - The infamous FDIV bug
 - Pentium Pro (1995), Pentium II (1997)
 - New microarchitecture (see Colwell, The Pentium Chronicles)
 - Pentium III (1999)
 - Added SSE (Streaming SIMD Extensions) and associated registers
 - Pentium 4 (2001)
 - New microarchitecture
 - Added SSE2 instructions

The Intel x86 ISA

- And further...
 - AMD64 (2003): extended architecture to 64 bits
 - EM64T Extended Memory 64 Technology (2004)
 - AMD64 adopted by Intel (with refinements)
 - Added SSE3 instructions
 - Intel Core (2006)
 - Added SSE4 instructions, virtual machine support
 - AMD64 (announced 2007): SSE5 instructions
 - Intel declined to follow, instead...
 - Advanced Vector Extension (announced 2008)
 - Longer SSE registers, more instructions
- If Intel didn't extend with compatibility, its competitors would!
 - Technical elegance ≠ market success

Basic x86 Registers

Basic x86 Addressing Modes

Two operands per instruction

Source/dest operand	Second source operand		
Register	Register		
Register	Immediate		
Register	Memory		
Memory	Register		
Memory	Immediate		

Memory addressing modes

- Address in register
- Address = R_{base} + displacement
- Address = R_{base} + 2^{scale} × R_{index} (scale = 0, 1, 2, or 3)
- Address = R_{base} + 2^{scale} × R_{index} + displacement

Fallacies

- Powerful instruction ⇒ higher performance
 - Fewer instructions required
 - But complex instructions are hard to implement
 - May slow down all instructions, including simple ones
 - Compilers are good at making fast code from simple instructions
- Use assembly code for high performance
 - But modern compilers are better at dealing with modern processors
 - More lines of code ⇒ more errors and less productivity

Pitfalls

- Sequential words are not at sequential addresses
 - Increment by 4, not by 1!
- Keeping a pointer to an automatic variable after procedure returns
 - e.g., passing pointer back via an argument
 - Pointer becomes invalid when stack popped

Concluding Remarks

- Design principles
 - Simplicity favors regularity
 - Smaller is faster
 - 3. Make the common case fast
 - 4. Good design demands good compromises
- Layers of software/hardware
 - Compiler, assembler, hardware
- MIPS: typical of RISC ISAs
 - c.f. x86
- RISC vs. CISC

Concluding Remarks

- Measure MIPS instruction executions in benchmark programs
 - Consider making the common case fast
 - Consider compromises

Instruction class	MIPS examples	SPEC2006 Int	SPEC2006 FP	
Arithmetic	add, sub, addi	16%	48%	
Data transfer	lw, sw, lb, lbu, lh, lhu, sb, lui	35%	36%	
Logical	and, or, nor, andi, ori, sll, srl	12%	4%	
Cond. Branch	beq, bne, slt, slti, sltiu	34%	8%	
Jump	j, jr, jal	2%	0%	

Sections to Read from the Book

- 5th Edition Sections to read
 - **2.1**, 2.2, 2.3, 2.4, 2.5, 2.6
 - 2.7 (Except Case/Switch)
 - **2.8**
 - 2.9 (Except Characters and Strings in Java)
 - 2.10 (Except Decoding Machine Language)
 - **2.13**
 - 2.17 (Only what was covered in the Class on August 25, 2022)
 - **2.19**
 - **2.20**

