The Smallest Pair Problem Code: SMPAIR

You are given a sequence a_1 , a_2 , ..., a_N . Find the smallest possible value of $a_i + a_j$, where $1 \le i < j \le N$.

Input

The first line of the input contains an integer **T** denoting the number of test cases. The description of **T** test cases follows.

The first line of each description consists of a single integer N.

The second line of each description contains **N** space separated integers - a_1 , a_2 , ..., a_N respectively.

Output

For each test case, output a single line containing a single integer - the smallest possible sum for the corresponding test case.

Constraints

- $T = 10^5$, N = 2: 13 points.
- $T = 10^5$, $2 \le N \le 10$: 16 points.
- $T = 1000, 2 \le N \le 100 : 31 \text{ points}.$
- $T = 10, 2 \le N \le 10^5 : 40 \text{ points.}$
- $1 \le a_i \le 10^6$

Example

Input:

1

4

5 1 3 4

Output:

4

Explanation

Here we pick \mathbf{a}_2 and \mathbf{a}_3 . Their sum equals to 1 + 3 = 4.