- 一、简答题
- **3**. **4(a)**: 可设 t 秒内新计算机的输入规模为 m , $T(n)=3*2^n*64=3*2^m$ 。根据方程可解得 m=3*n 。
- **3.8(b)**: 对于上限,若 n>1 , 有 $c_2n^3+c_3\leqslant (c_2+c_3)$ n^3 ,取 $c=c_2+c_3$, $n_0=1$,有 T(n) $\leqslant cn^3$;

对于下线, 若 $n \ge 1$, 有 $c_2 n^3 + c_3 \ge c_2 n^3$,取 $c = c_2$, $n_0 = 1$,有 $T(n) \ge c n^3$ 。

3. 12

- (a). Θ (1) 该语句执行时间为常数级的,故时间代价为 Θ (1)
- (b). Θ (n) 第一条语句的时间代价为 Θ (1) for循环是一个双重循环,内层for循环总是循环 n 次,外层循环 3 次,根据化简法则 4 和法则 2,for 循环的总时间代价为 n。根据法则 3,整个程序的代价为 Θ (n)
- (c). Θ (n^2) 第一条语句的时间代价为 Θ (1) for循环的时间代价为 n^2 。根据法则 3,整个程序的时间代价 Θ (n^2)
- (d). Θ (n²)。for 循环的时间代价Θ (n²),执

行tmp = A[i][j]; A[i][j] = A[j][i]; A[j][i] = tmp; 需要的时间为一个常数,记为C1, 内层循环执行

(n-i-1) 次,根据法则 4 时间开销为

- C1 (n-i-1) ,外层循环 (n-1) 次,但是每一次内层循环开销都因为i 的变化而不同。因此,总的时间开销是从1 累加到 (n-1) 在乘以C1。可以得出时间代价 Θ (n^2) 。
- (e). Θ (nlogn) 第一个语句所需时间为一个常数。内层循环的需要的时间为: Σ (i=1, logn) n, 外层循环需要时间为 n。根据法则 4、法则 3 和法则 2, 整个程序的时间代价 Θ (nlogn)
- (f). Θ (nlogn) 第一个语句所需时间为一个常数。内层循环需要的时间为 Σ (i=1, logn) n,外层循环需要的时间为 n,根据法则 4,for 循环需要的时间为 nlogn。很具法则3,整个程序的时间代价 Θ (nlogn)
- (g). Θ (n21ogn) 内层循环语句A[i] = Random(n); 花的时间值为常数,sort(A, n); 花的时间值为nlogn, 因此,根据法则3,两个语句的时间大家为 Θ (nlogn) 内层for循环所需时间为<math>n, 外层循环所需时间为n。因此,根据法则4,整个程序的时间代价
 - Θ (n2logn)
- (h). n2。第一个语句所需时间为一个常数。内层循环所需时间为 n, 外层循环所需时间为 n, 根据法则4 for循环的时间代价为 n2。因此,根据法则 3,总的时间代价为 n20 (n20)

(i). Θ (n)。第一个语句所需时间为一个常数。If 语句中所需最大的时间代价为 n。因此,根据法则 4,总的时间代价 Θ (n)。