Stručné shrnutí semináře 3

Pravděpodobnost je reálné číslo v intervalu (0,1) vyjadřující míru očekávatelnosti výskytu daného jevu. Lze ji definovat např. pomocí četnosti X: $\lim_{n\to\infty} X$

nebo axiomaticky: (i) $P(\Omega) = 1$

(ii)
$$A \subset \Omega \Rightarrow P(A) \ge 0$$

(iii)
$$A \cap B = 0 \Rightarrow P(A \cup B) = P(A) + P(B)$$

Rozdělení pravděpodobnosti poskytuje úplný popis chování náhodné veličiny, formou předpisu pravděpodobností pro všechny možné hodnoty náhodné veličiny. Rozdělení pravděpodobnosti musí splňovat normovací podmínku (celková pravděpodobnost = 1).

V případě spojité náhodné veličiny x používáme analogický koncept hustoty pravděpodobnosti f(x).

Distribuční funkce v bodě x vyjadřuje kumulativní pravděpodobnost pro hodnoty veličiny menší než x:

$$F(x) \equiv \int_{-\infty}^{x} f(t) dt$$

Distribuční funkce tak slouží zejména pro praktický výpočet pravděpodobnosti, že se náhodná veličina nachází v intervalu $\langle a,b\rangle$: $p=\int_a^b f(x)\mathrm{d}x=F(b)-F(a)$

Rovnoměrné rozdělení – každý výsledek je na daném intervalu stejně pravděpodobný, všude mimo interval je pravděpodobnost nulová.

Histogram je reprezentace výsledků náhodné proměnné, kde N výsledků proměnné x je rozděleno do intervalů (binů) s šířkou Δ , a na svislé ose vynášíme pro každý bin četnost případů, že x se nachází v daném binu. Pro dostatečné velké N a odpovídající Δ **normovaný histogram** aproximuje rozdělení/hustotu pravděpodobnosti náhodné veličiny x.

Počet hodnot N = 1000Šířka binu $\Delta = 0.02$ Počet binů m = 100