Sayısal İntegral

10 April 2024

Trapez (Yamuk) Yönteni

İntegralini n=4 alarak Trapez yöntemi ile hesaplayınız.

$$x_0 = 0$$
 $x_n = 1$ $h = (1 - 0)/4 = 0.25$

	x		f(x)
x0	0	+0,25	1
x1	0,25	+0,25	0,94118
x2	0,5	+0,25	0,8
х3	0,75	+0,25	0,64
x4	1		0.5

$$S = 0.25 \left[\frac{1+0.5}{2} + (0.9412 + 0.8 + 0.64) \right]$$

$$S = 0.78279 \text{ br}^2$$

Simpson 1/2 Kundi (integrale parabol wydurma)

$$S = \frac{h}{3} \left[f(x_0) + f(x_n) + 4 \sum_{k=1,3,5}^{n-1} f(x_0 + k * h) + 2 \sum_{i=2,4,6}^{n-2} f(x_0 + i * h) \right]$$

 $S = \frac{h}{3} \left[f(x_0) + f(x_n) + 4 \sum_{k=1,3,5}^{n-1} f(x_0 + k * h) + 2 \sum_{i=2,4,6}^{n-2} f(x_0 + i * h) \right]$ $f(x) = b \cdot f(x_0) + f(x_n) + 4 f(3) + f(6)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(x_0) + f(6)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(6)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(6)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(6)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(6)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(6)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(6)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(6)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(6)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(6)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(6)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(6)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(6)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(6)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(6)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(6)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(x_0) + f(x_0)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(x_0) + f(x_0)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(x_0)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0) + f(x_0)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0)$ $f(x) = b \cdot f(x_0) + f(x_0) + f(x_0)$ $f(x) = b \cdot f(x_0) + f(x_0)$ $f(x) = b \cdot f(x_0) + f(x_0)$ $f(x) = b \cdot f(x_0) + f(x_0)$ $f(x) = b \cdot f(x_0) + f(x_0)$ $f(x) = b \cdot f(x_0) + f(x_0)$ $f(x) = b \cdot f(x_0) + f(x_0)$ $f(x) = b \cdot f(x_0) + f(x_0)$ $f(x) = b \cdot f(x_0) + f(x_0)$ $f(x) = b \cdot f(x_0)$ $f(x) = f(x_0)$ $f(x) = f(x_0)$ $f(x) = f(x_0)$ $f(x) = f(x_0)$ $f(x) = f(x_0)$ $f(x) = f(x_0)$ $f(x) = f(x_0)$ $f(x) = f(x_0)$ f(

Simpson 3/8 Kurali

$$\int_{0}^{6} \frac{1}{1+x^{4}} = 6 \cdot \frac{f(0) + 3f(x) + 3f(4) + f(6)}{8}$$