

Q8. Expand & sing at & (1) upto 3 degree Shif(x,y)=exing Here, (-1, 1) -> a=-1, b= 17/4 (x+1) (y-17/4) $f(x,y) = f(-1)\pi(x) + \frac{1}{2}(x+1)f(x+1)f(y-1)f(x+1)f(x+1)f(y-1)f(x+1)f(x+1)f(y-1)f(x+1)f(x+1)f(y-1)f(x+1)f(x+1)f(y-1)f(x+1)f$ Here- $f(-1,T) = e^{-1}\sin(\pi/4) = 1$ $e^{-1}\int_{\mathcal{X}} f(-1,T) = e^{-1}\sin(\pi/4) = e^{-1}\int_{\mathcal{X}} f(-1,T) = e^{-1}\cos(\pi/4) = e^{-1}\int_{\mathcal{X}} f(-1,T) = e^{-1}\int_$ of fix = de(exing) = exing = e'sin(4) = exa fr = de(exosy) = E - e'sing = -e'sin(4) = eva 2 | fixy = dix (excosy) = e'cosy = e'cos(11/4) = eva $\frac{e^{x}\sin y}{e^{y}} = \frac{1}{4} + \frac{1$

[Jq. Expand
$$x^{3}$$
 at $(1,1)$ upto 1^{st} degree

Sd: $-f(x,y) = x^{3}$ How, $(1,1) \rightarrow a = 1$, $b = 1$

Here: $-f(x,y) = f(1,1) + 1 \cdot [(x-1)f_{x} + (y-1)f_{y}]$

Hose: $-f(1,1) = 1^{1} = 41$
 $-f(x,y) = f(1,1) + f(x,y) = f(1,y) = 1$
 $-f(x,y) = x^{3} = 1 \cdot x^{1} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$
 $-f(x,y) = x^{3} + 1 \cdot x^{2} = 1$