CSCE 625 Homework #2 (2024 Spring)

Game Playing; Logic and Theorem Proving

Total 100 points See Canvas for submission details.

Game Playing

1.1 **Minmax Search**

Problem 1 (5 pts, written): Using the following figure 1, use minmax search to assign utility values for each internal node (i.e., non-leaf node) and indicate which path is the optimal solution for the MAX node at the root of the tree. Assume you explore the successors from left to right.

Figure 1: Game Tree. Solve using minmax search. Note: \triangle is the MAX node, ∇ is the MIN node.

1.2 $\alpha - \beta$ pruning

Problem 2 (10 pts, written): Using the following figure 2, use $\alpha - \beta$ pruning to (1) assign utility values for each internal node (i.e., non-leaf node) and indicate which path is the optimal solution for the MAX node at the root of the tree. (2) For each node, indicate the final α and β values. (Note that initial values at the root are $\alpha = -\infty$, $\beta = \infty$.) (3) For each cut that happens, draw a line to cross out that subtree.

Hint: There are 4 places that need to be cut (see how to count cuts: figure 3).

Figure 2: **Game Tree.** Solve using $\alpha - \beta$ pruning. This tree is the same as figure 1. Note: \triangle is the MAX node, ∇ is the MIN node.

Figure 3: Game Tree. Counting cuts

Problem 3 (5 pts, written): In Minmax search, we used a depth-first exploration through the use of recursion. We know that Minmax gives an optimal solution, however, we also know that depth-first search is suboptimal. Explain why Minmax gives an optimal solution even when it is using a depth-first exploration.

Problem 4 (14 pts, programming): Implement and test the alpha-beta pruning algorithm. The **min-max.ipynb** file in the hw2 folder implements the minmax algorithm. You can browse this to get an idea on how to represent the game tree and do a recursive search. Test it on the problem in Figure 1.

2 Propositional Logic

In this section, assume P, Q, R, S, T, U, V, W are atoms (propositions).

2.1 Inference rule

Problem 5 (5 pts, written): Using a truth table, show that the resolution inference rule is valid (if the premises are true, the conclusion is also true, or, $((P \lor S) \land (\neg S \lor Q)) \rightarrow (P \lor Q)$ is valid). Note: valid means "true under all interpretations".

$$\frac{P \vee S, \ \neg S \vee Q}{P \vee Q}$$

P	Q	S	$(P \vee S)$	$(\neg S \lor Q)$	$(P \vee S) \wedge (\neg S \vee Q)$	$(P \lor Q)$	$((P \lor S) \land (\neg S \lor Q)) \to (P \lor Q)$
T	T	T					
T	T	F					
T	F	T					
T	F	F					
F	T	T					
F	T	F					
F	F	Т					
F	F	F					

2.2 Normal forms

In all of the problems in this section, show each step of the derivation and indicate which law (or other rules) you used: For example, *distributive law, by definition, etc.*

Problem 6 (10 pts, written):

- (1) Convert $(Q \land \neg P) \lor (Q \land R) \lor S$ into conjunctive normal form.
- (2) Convert $\neg(\neg P \lor Q) \lor R$ into conjunctive normal form.
- (3) Convert $\neg((\neg P \to Q) \land (R \lor S))$ into disjunctive normal form.

2.3 Theorem proving

Using resolution, show that $Q \vee W$ is a logical consequence of the following premises:

- 1. $R \to W$
- 2. $R \vee (\neg P \wedge S)$
- 3. $S \to (P \lor Q)$
- 4. $S \vee R$

Problem 7 (10 pts, written): Transform the above problem into a set of clauses (premises and the conclusion), suitable for resolution-based theorem proving.

- Turn each axiom in the list of premises above into conjunctive normal form.
 - One premise may result in multiple clauses.
 - For example, a premise $\neg((P \land \neg R) \lor S)$ will convert to CNF as $(\neg P \lor R) \land \neg S$, which results in two clauses:
 - * Clause 1: $\neg P \lor R$
 - * Clause 2: $\neg S$
- Don't forget to negate the conclusion $(Q \vee W)$, before adding to the clause list. Multiple clauses may (or may not) result from the negated conclusion.

Write your resulting clauses in the following format:

C1:

C2:

C3:

C4:

C5:

C6:

...

Problem 8 (10 pts, written): Use resolution to derive False. Show every step. DO NOT USE any other infernce rule.

3 First Order Logic (Basics)

Important: In this section, assume that w, x, y, z are variables; A, B, C, D are constants; and $f(\cdot), g(\cdot), h(\cdot)$ are functions; and $P(\cdot), Q(\cdot), R(\cdot)$ are predicates.

Problem 9 (6 pts, written): Convert to prenex normal form (2 points each):

- 1. $\neg \forall x ((\exists y \ Q(x,y)) \rightarrow P(x))$
- 2. $\forall x \neg (\exists y \ Q(x,y) \land \neg R(x))$
- 3. $\neg \exists x (\neg (\forall y \ Q(x,y)) \lor \neg P(x))$

Problem 10 (5 pts, written): Skolemize the expressions (1 point each):

- 1. $\exists x P(x)$
- 2. $\forall x \exists y P(x,y)$
- 3. $\exists x \exists y \forall z P(x,y) \land Q(y,z)$
- 4. $\forall x \exists y \exists z P(x, y, z) \land Q(y, z)$

5. $\forall x \forall y \exists z P(x,y) \land Q(x,y,z)$

Problem 11 (9 pts, written): Convert the following into a standard form (prenex, CNF, skolemization: 3pt each):

$$\forall x \left[\neg (\exists z (P(z) \land Q(x,z))) \rightarrow \exists y R(x,y) \right]$$

Problem 12 (3 pts, written): Apply the following substitutions to the expressions (1 point each);

- 1. Apply $\{x/f(A)\}$ to $P(x,y) \vee Q(x)$.
- 2. Apply $\{x/A, y/f(z)\}$ to $P(x, y) \vee Q(x)$.
- 3. Apply $\{y/x\}$ to $P(x,y) \vee Q(x)$.

Problem 13 (8 pts, written): For each of the following, (1) find the unifier, and (2) show the unified expression. For example, given P(A) and P(x), the unifier would be $\{x/A\}$, and the unified expression P(A). If the pair of expressions is not unifiable, indicate so. (3 points each):

- 1. P(x, f(x), y) and P(A, f(g(w)), z)
- 2. P(x, A) and P(y, y)
- 3. P(x, f(g(x)), g(A), w) and P(A, f(y), y, y)
- 4. P(x, f(x)) and P(A, f(B))

Full-size print of the game tree, for practice, etc. (copy 1)

Full-size print of the game tree, for practice, etc. (copy 2)

