

Python Brasil 2021

Grupo de Estudos em Data Science (GEDS)

Angelica Custodio Estatista

Deborah Foroni Atuaria

Laryssa Kato Física

Mariana Guilardi Bióloga

Priscila Agostinho Eng. Telecom.

Materiais do grupo

O'REILLY"

"Hands on Machine Learning with Scikit-Learn & TensorFlow"

Estrutura da Apresentação

Machine Learning

Seis passos para um projeto de ML

Conclusões

e para

saber mais

Machine Learning

Machine Learning é a ciência (e arte) de programar computadores para que eles possam aprender com os dados.

T = tarefa

P = performance

E = experiência

(Mitchell, 1997)

Olhar para o problema

Qual o problema que deseja resolver?

- Como você espera usar e se beneficiar deste modelo?
- Qual a solução no momento (se houver)?
- Oual o modelo você usará?

CRISP-DM Methodology

- Quais métricas você usará para medir o desempenho do modelo?
- Quais hipóteses foram feitas até agora (por você ou por outros)?

Obter e visualizar os dados

- Download dos dados
- Verificar a estrutura dos dados
- Criar um conjunto de teste para evitar viéses pré-análises

Visualizar os dados

- Visualizar os dados graficamente para identificar padrões
- Buscar correlações entre cada par de atributos
- Experimentando combinações de atributos

Preparar os dados para os algoritmos

- Criar funções para limpar os dados para otimização das tarefas.
- Manipular textos e transformar textos em atributos categóricos.
- Customizar transformadores: combinação de variáveis.
- Escalonar características (normalizar os dados).

Data Understanding

> Data Preparation

CRISP-DM Methodology

Preparar os dados para os algoritmos

Pipelines de transformação de dados?

Há muitas etapas de transformação de dados que precisam ser executadas na ordem certa, mas por sorte, o sckit-learn tem a classe *Pipeline* que ajuda com todas as transformações que precisamos fazer.

Conseguimos fazer transformações de:

- Dados Nulos
- Dados Categoricos
- Customizar a transformação
- Padronização e Normalização dos dados

Identificar qual o tipo de problema e avaliar algoritmos no conjunto de treino

1a Etapa
Conjuntos de
Treino do Modelo

Problema é de classificação, regressão ou não supervisionado

2a Etapa

Técnicas avaliadas:

- Árvore de decisão
- Regressão Logistica
- Random Forest
- Regressão Logística

3a Etapa

Definição das métricas de qualidade de ajuste do seu modelo

4a Etapa

Tabela resumo com as medidas de acurácia de cada modelo

Exemplo: Classificação de e-mails Spam ou não Spam

Exemplo: Classificação de e-mails Spam ou não Spam

2a Etapa

- Árvore de decisão
- Regressão Logistica
- Random Forest

3a Etapa

Não queremos que um e-mail importante seja classificado como Spam

3a Etapa: Não queremos que um e-mail importante seja classificado como Spam

Predito

Observado

1100110		
	Não Spam	Spam
Não Spam	Verdadeiro Negativo	Falso Positivo
Spam	Falso Negativo	Verdadeiro Positivo

Medidas de Avaliação do Modelo de Classificação

Acurácia: conta verdadeiros positivos e negativos/total

Recall: conta falsos negativos e verdadeiros positivos

Precisão: conta falsos positivos e verdadeiros positivos

3a Etapa

Exemplo: Classificação de e-mails Spam ou não Spam

1a Etapa

Spam Non-Spam

2a Etapa

- Árvore de decisão
- Regressão Logistica e-mail importante seja
- Random Forest

classificado como Spam

Não queremos que um

4a Etapa

Modelo	Precisão
Modelo 1	0.85
Modelo 2	0.86
Modelo 3	0.91

 Possibilidade de reavaliar modelo com a Validação-Cruzada a depender do problema avaliado.

Erro médio de validação = (Erro 1 + ... + Erro 5)/5

dataml.com.br

Refinar seu modelo

Com os algoritmos escolhidos, é hora de refinar seus resultados considerando o conjunto de validação.

Hiperparâmetros

- Ajuste dos hiperparâmetros do modelo: Gridsearch, Randomizedsearch, Bayes search.
- Análise do melhor modelo e os erros no conjunto de validação.

Refinar seu modelo

- Análise dos viéses do seu modelo
 - Interpretabilidade de Modelos Opacos
 - Importância de variáveis, PDP, ICE, ALE, LIME, Shapley Values
 - Análise da acurácia do Modelo por variáveis-chave

Refinar seu modelo

Avalie seu modelo no conjunto de teste.

• Traduzir para o contexto do problema!

- Traduzir para o contexto do problema!
- Divida o seu processo:
 - O que você aprendeu?
 - O que funcionou? O que não funcionou?
 - Quais as limitações?

- Traduzir para o contexto do problema!
- Divida o seu processo:
 - O que você aprendeu?
 - O que funcionou? O que não funcionou?
 - Quais as limitações?
- Dividir os resultados de forma clara, objetiva e utilizar recursos de visualização!

Utilização do modelo?

Imagem retirada do livro Hands On Machine Learning - Aurelién Géron

 Deploy, Monitoramento do Modelo e suas variáveis, Manutenção

Seis passos para um projeto de ML

Olhar para o problema

Entender qual o problema que devemos solucionar em conjunto com a área de negócios. Obter e visualizar dos dados

Explorar bem os dados obtidos.

Preparar os dados para os algoritmos

Tratar e manipular os dados para a etapa de modelagem

Seis passos para um projeto de ML

Treinar um modelo

Identificar qual o tipo de problema e avaliar algoritmos no conjunto de treino. Refinar seu modelo

Refinar seu modelo considerando o conjunto de validação. Apurar resultados na base de teste. Apresentar solução

Dividir os resultados de forma clara, objetiva, trazendo para o contexto do problema.

+ monitoramento do sistema

Para saber mais

- Livro Hands On Machine Learning Aurelién Géron e seu notebook de cada capítulo
- Livro <u>Aprendizado de Máquina</u> (em linguagem R) sobre modelos
- Algoritmos de Destruição em Massa Cathy O'Neil

Perguntas?

Notebook com Análise House Pricing

Essa apresentação foi criada por Slidesgo, incluindo ícones de por Flaticon e infográficos e imagens por Feepik