Lecture 5 Binary BCH Codes

BCH (Bose-Chauduri-Hoquenghem) codes form a large class of cyclic codes for correcting multiple random errors. This class of codes was first discovered by Hocquenhem in 1959 [1] and independently by Bose and Chaudhuri in 1960 [2]. The first algorithm for decoding binary BCH codes was devised by Peterson in 1960 [3]. Since then, Petersons decoding algorithm was improved and generalized by others. The most efficient algorithm for decoding BCH codes is the Berlekamp-Massey algorithm [4, 5]. A good coverage of BCH codes can be found in [6]. In this lecture, we focus in binary BCH codes. Non-binary BCH codes will be discussed in next lecture.

5.1 Primitive BCH Codes

• For any positive integer $m \ge 3$ and $t < 2^{m-1}$, there exists a binary cyclic BCH code with the following parameters:

Length: $n = 2^m - 1$

Number of parity-check bits: $n-k \leq mt$

Minimum distance: $d_{min} \geq 2t + 1$.

- This code is capable of correcting t or fewer random errors over a span of 2^m-1 bit positions and hence called a t-error-correcting BCH code, denoted $C_{bch,t}$.
- The parameters t is called the **designed error-correcting capability** and the parameters 2t + 1 is called the **designed minimum distance**.
- For example, for m=6 and t=3, there exists a triple-error-correcting BCH code with $n=2^6-1=63, n-k=6\times 3=18, d_{min}=2\times 3+1=7.$

5.2 Generation of Binary Primitive BCH Codes

- Let α be a primitive element of $GF(2^m)$, an extension field of GF(2).
- The order of α is $2^m 1$ and its minimal polynomial is a primitive polynomial of degree m over GF(2).
- The generator polynomial $\mathbf{g}(X)$ of a binary primitive BCH code of length $n=2^m-1$ is the polynomial over GF(2) of the smallest degree that has the following **consecutive powers** of α ,

$$\alpha, \, \alpha^2, \, \dots, \, \alpha^{2t} \tag{5.1}$$

as roots.

• It follows from **Theorem 2.2** in Lecture 2 (or **Theorem 2.11** in Lin/Costello) that $\mathbf{g}(X)$ also has all the conjugates of $\alpha, \alpha^2, \dots, \alpha^{2t}$ as roots.

- For $1 \le i \le 2t$, let ϕ_i be the minimal polynomial of α^i .
- Then, it follows from the definition of g(X) that

$$\mathbf{g}(X) = LCM\{\phi_1(X), \phi_2(X), \dots, \phi_{2t}(X)\}. \tag{5.2}$$

• Suppose i is even. Then i can be expressed a product of an odd integer i' and a power of 2, say 2^l , as follows:

$$i = i'2^l, (5.3)$$

Consider

$$\alpha^{i} = \alpha^{i'2^{l}} = (\alpha^{i'})^{2^{l}}. (5.4)$$

This says that every even power α^i of α in the sequence of (5.1) is a conjugate of some preceding odd power $\alpha^{i'}$ of α in the sequence of (5.1).

• Therefore, α^i and $\alpha^{i'}$ have the same minimal polynomial, i.e.,

$$\phi_i(X) = \phi_{i'}(X).$$

• Consequently, we can remove all the minimal polynomials with even subscripts from the expression (5.2). This result in the following expression of g(X):

$$\mathbf{g}(X) = LCM\{\phi_1(X), \phi_3(X), \dots, \phi_{2t-1}(X)\}. \tag{5.5}$$

- Since every minimal polynomial $\phi_i(X)$ in (5.5) has degree m or less and there are at most t different minimal polynomial in (5.5), the degree of $\mathbf{g}(X)$ is at most mt.
- Since every minimal polynomial $\phi_i(X)$ in (5.5) divides $X^{2^m-1}+1$, $\mathbf{g}(X)$ divides $X^{2^m-1}+1$.
- Since the minimal polynomial $\phi_1(X)$ of α (a primitive element) is a primitive polynomial of degree m, $2^m 1$ is the smallest positive integer such that $\phi_1(X)$ divides $X^{2^m-1} + 1$.
- Therefore, $2^m 1$ is the smallest positive integer for which $\mathbf{g}(X)$ divides $X^{2^m 1} + 1$.

- The binary BCH code generated by $\mathbf{g}(X)$ is a cyclic code $C_{bch,t}$ of length 2^m-1 with no more than mt parity-check bits, i.e., its dimension k is at least 2^m-mt-1 . It will be proved that the minimum distance of $C_{bch,t}$ is at least 2t+1.
- The field $GF(2^m)$ is called the code construction field.
- For t = 1,

$$\mathbf{g}(X) = \phi_1(X). \tag{5.6}$$

Since $\phi_1(X)$ is a primitive polynomial of degree m, $\mathbf{g}(X)$ generate a single-error-correcting BCH code $C_{bch,1}$ with

$$n = 2^m - 1,$$
 $n - k = m,$ $d_{min} = 3.$

This single-error-correcting BCH code is simply a **Hamming code** in cyclic form.

• Example 5.1: Let m=4 and t=3. Let α be a primitive element of $GF(2^4)$ that is constructed based on the primitive polynomial $p(X)=X^4+X+1$ (see Table 2.6 of Lecture-2 or Table 2.8 of the text book). Suppose we want to construct a triple-error-correcting binary BCH code of length $n=2^4-1$. Then the generator polynomial $\mathbf{g}(X)$ of this BCH code is the smallest degree polynomial $\mathbf{g}(X)$ over GF(2) that has

$$\alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6,$$

and their conjugates as roots.

• Using Table 2.6, we find that the minimal polynomials of α , α^3 and α^5 are:

$$\phi_1(X) = 1 + X + X^4,$$

$$\phi_3(X) = 1 + X + X^2 + X^3 + X^4,$$

$$\phi_5(X) = 1 + X + X^2.$$

• It follows from (5.5) that

$$\mathbf{g}(X) = LCM\{\phi_1(X), \phi_3(X), \phi_5(X)\}$$

$$= \phi_1(X)\phi_3(X)\phi_5(X)$$

$$= 1 + X + X^2 + X^4 + X^5 + X^8 + X^{10}.$$

• The cyclic code generated by g(X) is a binary (15, 5) BCH code.

Table 2.6: GF(2^4) generated by the primitive polynomial $p(X) = 1 + X + X^4$.

Power	Polynomial							Vector
representation		representation						representation
0	0							(0 0 0 0)
1	1							$(1\ 0\ 0\ 0)$
lpha			α					$(0\ 1\ 0\ 0)$
$lpha^2$					$lpha^2$			(0 0 1 0)
$lpha^3$							$lpha^3$	$(0\ 0\ 0\ 1)$
$lpha^4$	1	+	α					$(1\ 1\ 0\ 0)$
$lpha^5$			α	+	$lpha^2$			(0 1 1 0)
$lpha^6$					$lpha^2$	+	$lpha^3$	$(0\ 0\ 1\ 1)$
$lpha^7$	1	+	lpha			+	$lpha^3$	$(1\ 1\ 0\ 1)$
$lpha^8$	1			+	$lpha^2$			(1 0 1 0)
$lpha^9$			α			+	$lpha^3$	(0 1 0 1)
$lpha^{10}$	1	+	lpha	+	$lpha^2$			(1 1 1 0)
$lpha^{11}$			α	+	$lpha^2$	+	$lpha^3$	(0 1 1 1)
$lpha^{12}$	1	+	α	+	$lpha^2$	+	$lpha^3$	$(1\ 1\ 1\ 1)$
$lpha^{13}$	1			+	$lpha^2$	+	$lpha^3$	(1 0 1 1)
$lpha^{14}$	1					+	$lpha^3$	(1 0 0 1)

5.3 Structural Properties

• Consider a binary t-error-correcting primitive BCH code $C_{bch,t}$ of length $n=2^m-1$ with generator polynomial $\mathbf{g}(X)$ that has $\alpha,\alpha^2,\ldots,\alpha^{2t}$ as roots, i.e.,

$$\mathbf{g}(\alpha^i) = 0,$$

for $1 \leq i \leq 2t$.

• Since a code polynomial

$$\mathbf{v}(X) = v_0 + v_1 X + v_2 X^2 + \ldots + v_{n-1} X^{n-1}$$
 (5.7)

in a cyclic code is a multiple of its generator polynomial $\mathbf{g}(X)$, $\mathbf{v}(X)$ also has $\alpha, \alpha^2, \dots, \alpha^{2t}$ as roots, i.e.,

$$\mathbf{v}(\alpha^i) = 0, \tag{5.8}$$

for 0 < i < 2t.

- Conversely, if a polynomial $\mathbf{v}(X) = v_0 + v_1 X + \cdots + v_{n-1} X^{n-1}$ over GF(2) with degree n-1 or less has $\alpha, \alpha^2, \ldots, \alpha^{2t}$ as roots, then $\mathbf{v}(X)$ must be divisible by $\mathbf{g}(X)$ and hence a code polynomial in $C_{bch,t}$.
- Summarizing the above results, we have Theorem 5.1.
- Theorem 5.1: Let α be a primitive element of $GF(2^m)$. A polynomial $\mathbf{v}(X)$ of degree $2^m 2$ over GF(2) is a code polynomial in the binary t-error-correcting primitive BCH code $C_{bch,t}$ of length $2^m 1$ if and only if it has $\alpha, \alpha^2, \ldots, \alpha^{2t}$ as roots.
- It follows from (5.7) and (5.8) that for $1 \le i \le 2t$,

$$\mathbf{v}(\alpha^{i}) = v_{0} + v_{1}\alpha^{i} + v_{2}\alpha^{2i} + \dots + v_{n-1}\alpha^{(n-1)i}$$

$$= 0.$$
(5.9)

• The equality of (5.9) can be expressed as the follow matrix product

$$\begin{bmatrix} v_0, v_1, \dots, v_{n-1} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ \alpha^i \\ \alpha^{2i} \end{bmatrix} = 0, \tag{5.10}$$

$$\vdots$$

$$\alpha^{(n-1)i}$$

for $0 \le i \le 2t$.

• Eq. (5.10) simply says that the inner product of the code word $\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$ and $(1, \alpha^i, \alpha^{2i}, \dots, \alpha^{(n-1)i})$ over $GF(2^m)$ is equal to 0.

• Form the following $2t \times n$ matrix over $GF(2^m)$:

$$\mathbf{H} = \begin{bmatrix} 1 & \alpha & \alpha^{2} & \dots & \alpha^{n-1} \\ 1 & \alpha^{2} & (\alpha^{2})^{2} & \dots & (\alpha^{2})^{n-1} \\ 1 & \alpha^{3} & (\alpha^{3})^{2} & \dots & (\alpha^{3})^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & \alpha^{2t} & (\alpha^{2t})^{2} & \dots & (\alpha^{2t})^{n-1} \end{bmatrix}$$
(5.11)

• It follow from (5.10) that for every code word $\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$ in the binary t-error-correcting primitive BCH code $C_{bch,t}$, the following condition holds:

$$\mathbf{v} \cdot \mathbf{H}^T = \mathbf{0}.$$

where $\mathbf{0} = (0, 0, \dots, 0)$ is a zero 2t-tuple.

- On the other hand, if an n-tuple $\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$ over GF(2) satisfies the condition of (5.12), then it follows form (5.9) and (5.10) that its corresponding polynomial $\mathbf{v}(X) = v_0 + v_1 X + \dots + v_{n-1} X^{n-1}$ has $\alpha, \alpha^2, \dots, \alpha^{2t}$ as roots. Consequently, $\mathbf{v}(X)$ is divisible by the generator polynomial $\mathbf{g}(X)$ of the t-error-correcting BCH code $C_{bch,t}$ of length $n = 2^m 1$ and hence a code polynomial.
- Hence, the t-error-correcting BCH code $C_{bch,t}$ generated by $\mathbf{g}(X)$ given by (5.5) is the null space of \mathbf{H} ; and \mathbf{H} is a parity-check matrix of the code.
- Theorem 5.2: Let $n = 2^m 1$. An n-tuple \mathbf{v} over GF(2) is code word in the t-error-correcting BCH code generated by $\mathbf{g}(X)$ given by (5.5) if and only if

$$\mathbf{v} \cdot \mathbf{H}^T = \mathbf{0}. \tag{5.12}$$

- **H** is a parity-check matrix of $C_{bch,t}$ over $GF(2^m)$. If each entry of **H** is represented by an m-tuple over GF(2) in column form, we obtain a binary parity-check matrix \mathbf{H}_b of $C_{bch,t}$.
- For decoding the BCH code $C_{bch,t}$, the parity-check matrix **H** over $GF(2^m)$ given by (5.11) is used.

5.4 Minimum Distance

- Now we are ready to prove that the minimum distance of BCH code $C_{bch,t}$ generated by $\mathbf{g}(X)$ of (5.5) is at least 2t + 1. All we need to do is show that no nonzero code word of $C_{bch,t}$ has weight less than 2t + 1.
- Let $\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$ be a nonzero code word in $C_{bch,t}$ whose nonzero components are $v_{j_1}, v_{j_2}, \dots, v_{j_{\delta}}$, i.e.

$$v_{j_1} = v_{j_2} = \dots = v_{j_\delta} = 1.$$

Hence, the Hamming weight of \mathbf{v} is δ .

- **Hypothesis**: Suppose that $\delta \leq 2t$.
- If we can prove that the above hypothesis is invalid, then the weight of any nonzero code word in $C_{bch,t}$ is at least 2t + 1. This implies that the minimum distance of the code is at least 2t + 1.

• It follows from (5.11) and (5.12) that

$$\mathbf{0} = \mathbf{v} \cdot \mathbf{H}^{T}
= (v_{0}, v_{1}, \dots, v_{n-1}) \begin{bmatrix}
1 & 1 & \dots & 1 \\
\alpha & \alpha^{2} & \dots & \alpha^{2t} \\
\alpha^{2} & (\alpha^{2})^{2} & \dots & (\alpha^{2t})^{2} \\
\alpha^{3} & (\alpha^{2})^{3} & \dots & (\alpha^{2t})^{3} \\
\vdots & \vdots & & \vdots \\
\alpha^{n-1} & (\alpha^{2})^{n-1} & \dots & (\alpha^{2t})^{n-1}
\end{bmatrix}
= (v_{j_{1}}, v_{j_{2}}, \dots, v_{j_{\delta}}) \begin{bmatrix}
\alpha^{j_{1}} & (\alpha^{2})^{j_{1}} & \dots & (\alpha^{2t})^{j_{1}} \\
\alpha^{j_{2}} & (\alpha^{2})^{j_{2}} & \dots & (\alpha^{2t})^{j_{2}} \\
\vdots & \vdots & & \vdots \\
\alpha^{j_{\delta}} & (\alpha^{2})^{j_{\delta}} & \dots & (\alpha^{2t})^{j_{\delta}}
\end{bmatrix}
= (v_{j_{1}}, v_{j_{2}}, \dots, v_{j_{\delta}}) \begin{bmatrix}
\alpha^{j_{1}} & (\alpha^{j_{1}})^{2} & \dots & (\alpha^{j_{1}})^{2t} \\
\alpha^{j_{2}} & (\alpha^{j_{2}})^{2} & \dots & (\alpha^{j_{2}})^{2t} \\
\vdots & \vdots & & \vdots \\
\alpha^{j_{\delta}} & (\alpha^{j_{\delta}})^{2} & \dots & (\alpha^{j_{\delta}})^{2t}
\end{bmatrix}$$
(5.13)

• Eq.(5.13) implies that

$$\mathbf{0} = (v_{j_1}, v_{j_2}, \dots, v_{j_{\delta}}) \begin{bmatrix} \alpha^{j_1} & (\alpha^{j_1})^2 & \dots & (\alpha^{j_1})^{\delta} \\ \alpha^{j_2} & (\alpha^{j_2})^2 & \dots & (\alpha^{j_2})^{\delta} \\ \vdots & \vdots & & \vdots \\ \alpha^{j_{\delta}} & (\alpha^{j_{\delta}})^2 & \dots & (\alpha^{j_{\delta}})^{\delta} \end{bmatrix}$$
(5.14)

• Note that all the components of $(v_{j_1}, v_{j_2}, \ldots, v_{j_{\delta}})$ are nonzero, in fact equal to 1. For the equality of (5.14) to hold, the determinant of the $\delta \times \delta$ matrix must be equal zero, i.e,

$$\begin{vmatrix} \alpha^{j_1} & (\alpha^{j_1})^2 & \dots & (\alpha^{j_1})^{\delta} \\ \alpha^{j_2} & (\alpha^{j_2})^2 & \dots & (\alpha^{j_2})^{\delta} \\ \vdots & \vdots & & \vdots \\ \alpha^{j_{\delta}} & (\alpha^{j_{\delta}})^2 & \dots & (\alpha^{j_{\delta}})^{\delta} \end{vmatrix} = 0$$

• The above determinant can be simplified as follows:

$$\alpha^{j_1+j_2+\dots+j_{\delta}} \begin{vmatrix} 1 & \alpha^{j_1} & \dots & (\alpha^{j_1})^{\delta-1} \\ 1 & \alpha^{j_2} & \dots & (\alpha^{j_2})^{\delta-1} \\ \vdots & \vdots & & \vdots \\ 1 & \alpha^{j_{\delta}} & \dots & (\alpha^{j_{\delta}})^{\delta-1} \end{vmatrix} = 0$$
 (5.15)

• The equality of (5.15) implies that the determinant

$$\Delta = \begin{vmatrix} 1 & \alpha^{j_1} & \dots & (\alpha^{j_1})^{\delta-1} \\ 1 & \alpha^{j_2} & \dots & (\alpha^{j_2})^{\delta-1} \\ \vdots & \vdots & & \vdots \\ 1 & \alpha^{j_\delta} & \dots & (\alpha^{j_\delta})^{\delta-1} \end{vmatrix} = 0$$

• Note that Δ is a **Vandermonde determinant** and

$$\Delta = \prod_{j_i \neq j_k} (\alpha^{j_i} - \alpha^{j_k}) \neq 0. \tag{5.16}$$

• Hence, $\mathbf{vH}^T \neq \mathbf{0}$. This is a contradiction to **Theorem 5.2** which says that a code word \mathbf{v} in $C_{bch,t}$ satisfies the condition, $\mathbf{vH}^T = \mathbf{0}$. Therefore, our hypothesis that $\delta \leq 2t$ is invalid.

• As a result, we must have

$$d \ge 2t + 1. \tag{5.17}$$

- Summarizing the above results, we conclude that the minimum distance of the BCH code generated by $\mathbf{g}(X)$ of (5.5) has minimum distance d_{min} at least 2t+1.
- The number 2t + 1 is a lower bound on the minimum distance of a t-error-correcting BCH code. This bound is referred to as the BCH bound.
- This bound is actually based on the fact that the generator polynomial $\mathbf{g}(X)$ has 2t consecutive powers of a primitive element α in $GF(2^m)$.

5.5 Syndrome Computation and Error Dectection

- Consider a t-error-correcting BCH code $C_{bch,t}$ of length $n=2^m-1$ with generator polynomial $\mathbf{g}(X)$ given by (5.5).
- Suppose a code polynomial

$$\mathbf{v}(X) = v_0 + v_1 X + v_2 X^2 + \dots + v_{n-1} X^{n-1}$$

is transmitted.

• Let

$$\mathbf{r}(X) = r_0 + r_1 X + r_2 X^2 + \dots + r_{n-1} X^{n-1}$$

be the received polynomial. Then

$$\mathbf{r}(X) = \mathbf{v}(X) + \mathbf{e}(X) \tag{5.18}$$

where

$$\mathbf{e}(X) = e_0 + e_1 X + e_2 X^2 + \dots + e_{n-1} X^{n-1}$$

is the error pattern caused by the channel noise and/or interferences.

- Error detection is to check whether $\mathbf{r}(X)$ is a code polynomial. To accomplish this, we simply check whether $\mathbf{r}(X)$ has $\alpha, \alpha^2, \dots, \alpha^{2t}$ as roots.
- Therefore, error detection can be done by computing

$$S_i = \mathbf{r}(\alpha^i)$$

= $r_0 + r_1\alpha^i + r_2\alpha^{2i} + \dots + r_{n-1}\alpha^{(n-1)i}$, (5.19)

for $1 \leq i \leq 2t$.

• The 2t-tuple over $GF(2^m)$

$$\mathbf{S} = (S_1, S_2, \dots, S_{2t}) \tag{5.20}$$

is called the **syndrome** of $\mathbf{r}(X)$ and S_1, S_2, \dots, S_{2t} are the syndrome components.

- If $S \neq 0 = (0, 0, ..., 0)$, $\mathbf{r}(X)$ is **not** a code polynomial and the **presence of** errors is being detected.
- If S = 0 = (0, 0, ..., 0), then r(X) is a code polynomial. In this case, we assume that r(X) is **error-free** and deliver it to the user. In the event that r(X) contains an **undetectable error pattern**, a decoding error is committed.
- In Lecture 2, we showed that for a polynomial f(X) over GF(2),

$$[f(X)]^2 = f(X^2).$$

• Since the received polynomial $\mathbf{r}(X)$ is a polynomial over $\mathrm{GF}(2)$, we have

$$[\mathbf{r}(X)]^2 = \mathbf{r}(X^2).$$

• Substituting X with α^i in $\mathbf{r}(X)$, we have

$$[\mathbf{r}(\alpha^i)]^2 = \mathbf{r}(\alpha^{2i}).$$

• From the above equality, we find that

$$S_{2i} = S_i^2. (5.21)$$

• Equality (5.21) says that to compute the syndrome $\mathbf{S} = (S_1, S_2, \dots, S_{2t})$, we only need to compute the syndrome components with odd subscripts, i.e., $S_1, S_3, \dots, S_{2t-1}$.

- **Example 6.2**: Consider the triple-error-correcting (15, 5) BCH code $C_{bch,3}$ given in Example 6.1. The generator polynomial $\mathbf{g}(X)$ has $\alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5$ and α^6 as roots.
- Suppose a code polynomial $\mathbf{v}(X)$ is transmitted and

$$\mathbf{r}(X) = X^3 + X^5 + X^{12}$$

is received.

• The syndrome of $\mathbf{r}(X)$ is a 6-tuple $\mathbf{S} = (S_1, S_2, S_3, S_4, S_5, S_6)$. Using the field $GF(2^4)$ given by Table 2.6 of Lecture 2 (Table 2.8 of Lin/Costello), we compute the syndrome components with odd subscripts,

$$S_1 = \mathbf{r}(\alpha) = \alpha^3 + \alpha^5 + \alpha^{12} = 1,$$

 $S_3 = \mathbf{r}(\alpha^3) = \alpha^9 + \alpha^{15} + \alpha^{36} = \alpha^9 + 1 + \alpha^6 = \alpha^{10},$
 $S_5 = \mathbf{r}(\alpha^5) = \alpha^{15} + \alpha^{25} + \alpha^{60} = 1 + \alpha^{10} + 1 = \alpha^{10},$

• Using (2.21), we find the syndrome components with even subscripts,

$$S_2 = S_1^2 = 1, S_4 = S_2^2 = 1, S_6 = S_3^2 = \alpha^{20} = \alpha^5.$$

• Hence, the syndrome is $\mathbf{S} = (1, 1, \alpha^{10}, 1, \alpha^{10}, \alpha^5) \neq \mathbf{0}$ and the presence of errors in $\mathbf{r}(X)$ is being detected.

5.6 Syndrome and Error Pattern

• Since $\mathbf{r}(X) = \mathbf{v}(X) + \mathbf{e}(X)$, then

$$S_i = \mathbf{r}(\alpha^i) = \mathbf{v}(\alpha^i) + \mathbf{e}(\alpha^i)$$

$$= \mathbf{e}(\alpha^i), \qquad (5.22)$$

For $1 \le i \le 2t$. Equality (5.22) gives a relationship between the syndrome $\mathbf{S} = (S_1, S_2, \dots, S_{2t})$ and the error pattern $\mathbf{e}(X)$.

• Suppose $\mathbf{e}(X)$ has ν errors at the locations $X^{j_1}, X^{j_2}, \dots, X^{j_{\nu}}$. Then

$$\mathbf{e}(X) = X^{j_1} + X^{j_2} + \dots + X^{j_{\nu}}, \tag{5.23}$$

where $0 \le j_1 < j_2 < \ldots < j_{\nu} < n$.

• From (5.22) and (5.23), we have the following 2t equations that relate the error locations to the computed syndrome components:

$$S_{1} = \mathbf{e}(\alpha) = \alpha^{j_{1}} + \alpha^{j_{2}} + \dots + \alpha^{j_{\nu}}$$

$$S_{2} = \mathbf{e}(\alpha^{2}) = (\alpha^{j_{1}})^{2} + (\alpha^{j_{2}})^{2} + \dots + (\alpha^{j_{\nu}})^{2}$$

$$\vdots$$

$$S_{2t} = \mathbf{e}(\alpha^{2t}) = (\alpha^{j_{1}})^{2t} + (\alpha^{j_{2}})^{2t} + \dots + (\alpha^{j_{\nu}})^{2t}.$$

$$(5.24)$$

- If we can solve these 2t equations, we can determine $\alpha^{j_1}, \alpha^{j_2}, \ldots, \alpha^{j_{\nu}}$ whose exponents $j_1, j_2, \ldots, j_{\nu}$ give the locations of errors in the error pattern $\mathbf{e}(X)$.
- Since the elements $\alpha^{j_1}, \alpha^{j_2}, \dots, \alpha^{j_{\nu}}$ give the location of errors, they are called **error-location numbers**.

 \bullet To simplify the notations of (5.24), we define

$$\beta_l = \alpha^{j_l}, \tag{5.25}$$

With $1 \leq l \leq \nu$.

 \bullet Then, the 2t equations can be simplified as follows:

$$S_{1} = \beta_{1} + \beta_{2} + \dots + \beta_{\nu}$$

$$S_{2} = \beta_{1}^{2} + \beta_{2}^{2} + \dots + \beta_{\nu}^{2}$$

$$\vdots$$

$$S_{2t} = \beta_{1}^{2t} + \beta_{2}^{2t} + \dots + \beta_{\nu}^{2t}$$

$$(5.26)$$

• The equations of (5.26) are known as the **power-sum symmetric functions**. They are nonlinear equations.

5.7 Error-Location Polynomial

Define

$$\sigma(X) = (1 + \beta_1 X)(1 + \beta_2 X) \cdots (1 + \beta_{\nu} X)
= \sigma_0 + \sigma_1 X + \sigma_2 X^2 + \cdots + \sigma_{\nu} X^{\nu}$$
(5.27)

Where $\sigma_0 = 1$.

- From (5.27), we see that $\sigma(X)$ has $\beta_1^{-1}, \beta_2^{-1}, \dots, \beta_{\nu}^{-1}$ (the reciprocals (or inverses) of the location numbers) as roots.
- This polynomial $\sigma(X)$ is called the **error-location polynomial**.
- If we can determine $\sigma(X)$ from the syndrome $\mathbf{S} = (S_1, S_2, \dots, S_{2t})$, then the roots of $\sigma(X)$ gives the error-location numbers, and the error-pattern $\mathbf{e}(X)$ can be determined.

• From (5.27), we find the following ν equalities that relate the coefficients of the error-location polynomial $\sigma(X)$ and the ν error-location numbers:

$$\sigma_{1} = \beta_{1} + \beta_{2} + \dots + \beta_{\nu}$$

$$\sigma_{2} = \beta_{1}\beta_{2} + \beta_{1}\beta_{3} + \dots + \beta_{\nu-1}\beta_{\nu}$$

$$\sigma_{3} = \beta_{1}\beta_{2}\beta_{3} + \beta_{1}\beta_{2}\beta_{4} + \dots + \beta_{\nu-2}\beta_{\nu-1}\beta_{\nu}$$

$$\vdots$$

$$\sigma_{\nu} = \beta_{1}\beta_{2} \dots \beta_{\nu}$$

$$(5.28)$$

and $\sigma_0 = 1$.

• The above equalities are called the **elementary-symmetric functions**.

• From (5.26) and (5.28), we can derive the following equations that relate the coefficients of the error-location polynomial $\sigma(X)$ and the computed syndrome components:

$$S_{1} + \sigma_{1} = 0$$

$$S_{2} + \sigma_{1}S_{1} + 2\sigma_{2} = 0$$

$$S_{3} + \sigma_{1}S_{2} + \sigma_{2}S_{1} + 3\sigma_{3} = 0$$

$$\vdots$$

$$S_{\nu} + \sigma_{1}S_{\nu-1} + \sigma_{2}S_{\nu-2} + \dots + \sigma_{\nu-1}S_{1} + \nu\sigma_{\nu} = 0$$

$$S_{\nu+1} + \sigma_{1}S_{\nu} + \sigma_{2}S_{\nu-1} + \dots + \sigma_{\nu-1}S_{2} + \sigma_{\nu}S_{1} = 0$$

$$\vdots$$

• Note 1 + 1 = 0. Then

$$i\sigma_i = \begin{cases} \sigma_i, & \text{for odd } i; \\ 0, & \text{for even } i. \end{cases}$$

- The identities of (5.29) are referred to as the **Newton's identities**.
- If we can determine the coefficients $\sigma_1, \sigma_2, \ldots, \sigma_{\nu}$ of the error-location polynomial from the Newton's identities, then we can determine the error-location numbers, $\beta_1, \beta_2, \ldots, \beta_{\nu}$, of the error pattern $\mathbf{e}(X)$ by finding the roots of $\sigma(X)$.

5.8 A Procedure for Decoding BCH Codes

- Based on the developments given in Sections 5.6 and 5.7, a procedure for decoding a binary *t*-error-correcting BCH code can be formulated into the following steps:
 - (1) Compute the syndrome $\mathbf{S} = (S_1, S_2, \dots, S_{2t})$ from the received polynomial $\mathbf{r}(X)$.
 - (2) Determine the error-location polynomial $\sigma(X)$ form the Newton's identity.
 - (3) Find the roots, $\beta_1^{-1}, \beta_2^{-1}, \dots, \beta_{\nu}^{-1}$, of $\sigma(X)$ in GF(2^m). Take the inverses of these roots to obtain the error-location numbers, $\beta_1 = \alpha^{j_1}$, $\beta_2 = \alpha^{j_2}, \dots, \beta_{\nu} = \alpha^{j_{\nu}}$. Then the error pattern is $\mathbf{e}(X) = X^{j_1} + X^{j_2} + \dots + X^{j_{\nu}}$.
 - (4) Perform the error correction by adding $\mathbf{e}(X)$ to $\mathbf{r}(X)$. This gives the decoded code word, $\mathbf{v}(X) = \mathbf{r}(X) + \mathbf{e}(X)$.

- Steps (1), (3) and (4) can be carried out easily, however, Step 2 involves in solving the Newton's identities.
- There are in general more than one error pattern for which the coefficients of its error-location polynomial satisfy the Newton's identities.
- To minimize the probability of a decoding error, we need to find the most probable error pattern for error correction.
- For BSC, finding the most probable error pattern is to determine the error-location polynomial of the **minimum degree** whose coefficients satisfy the Newton's identities.

5.9 Berlekamp-Masey Iterative Algorithm for Finding Error-Location Polynomial

- The error-location polynomial $\sigma(X)$ can be computed iteratively with 2t steps.
- At the μ -th step, we determine a minimum-degree polynomial

$$\sigma^{(\mu)}(X) = 1 + \sigma_1^{(\mu)} X + \sigma_2^{(\mu)} X^2 + \dots + \sigma_{l_\mu}^{(\mu)} X_\mu^l, \tag{5.30}$$

whose coefficients satisfy the first μ Newton's identities.

- At the $(\mu + 1)$ -th step, we find the next minimum-degree polynomial $\sigma^{(\mu+1)}(X)$ whose coefficients satisfy the first $\mu + 1$ Newton's identities based on $\sigma^{(\mu)}(X)$.
- First, we check whether the coefficients of $\sigma^{(\mu)}$ also satisfy the $(\mu+1)$ -th Newton's identity.
- If yes, $\sigma^{(\mu+1)}(X) = \sigma^{(\mu)}(X)$ is the minimum-degree polynomial whose coefficients satisfy the first $\mu+1$ Newton's identities.

- If not, a **correction term** is added to $\sigma^{(\mu)}(X)$ to form next solution $\sigma^{(\mu+1)}(X)$ whose coefficients satisfy the first $\mu+1$ Newton's identities.
- To test whether the coefficients of $\sigma^{(\mu)}$ satisfy the $(\mu+1)$ -th Newton's identity, we compute

$$d_{\mu} = S_{\mu+1} + \sigma_1^{(\mu)} S_{\mu} + \sigma_2^{(\mu)} S_{\mu-1} + \dots + \sigma_{l_u}^{(\mu)} S_{\mu+1-l_{\mu}}.$$
 (5.31)

This quantity is called the μ -th **discrepancy**. The sum of the right-hand side of (5.31) is actually the left-hand side of the (μ + 1)-th Newton's identity.

• If $d_{\mu} = 0$, then the coefficients of $\sigma^{(\mu)}(X)$ satisfy the $(\mu + 1)$ -th Newton's identity. In this case, we set

$$\sigma^{(\mu+1)}(X) = \sigma^{(\mu)}(X),$$

i.e., the current solution $\sigma^{(\mu)}(X)$ is also the next solution $\sigma^{(\mu+1)}(X)$.

- If $d_{\mu} \neq 0$, then $\sigma^{(\mu)}(X)$ needs to be adjusted to obtain a new minimum-degree polynomial $\sigma^{(\mu+1)}(X)$ whose coefficients satisfy the first $\mu + 1$ Newton's identities.
- Correction: Go back to the steps prior the μ -th step and determine a step ρ at which the partial solution is $\sigma^{(\rho)}(X)$ such that $d_{\rho} \neq 0$ and ρl_{ρ} has the largest value, where l_{ρ} is the degree of $\sigma^{(\rho)}(X)$. Then the solution at the $(\mu + 1)$ -th step of the iteration process for finding the error-location polynomial $\sigma(X)$ is

$$\sigma^{(\mu+1)}(X) = \sigma^{(\mu)}(X) + d_{\mu}d_{\rho}^{-1}X^{(\mu-\rho)}\sigma^{(\rho)}(X), \tag{5.32}$$

where

$$d_{\mu}d_{\rho}^{-1}X^{(\mu-\rho)}\sigma^{(\rho)}(X) \tag{5.33}$$

is the correction term with degree $\mu - (\rho - l_{\mu})$.

• Since ρ is chosen to maximize $\rho - l_{\mu}$, this choice of ρ is equivalent to minimize the degree $\mu - (\rho - l_{\rho})$ of the correction term.

ullet repeating the above testing and correction process until we reach the 2t-th step. Then

$$\sigma(X) = \sigma^{(2t)}(X). \tag{5.34}$$

- The above iteration method for finding error-location polynomial $\sigma(X)$ applies to both binary and non-binary BCH codes.
- From the first Newton's identity, we readily see that

$$\sigma^{(1)}(X) = 1 + S_1 X. \tag{5.35}$$

Execution of the Iteration Process

• To carry out the iteration process to find the error-location polynomial $\sigma(X)$, we set up a table as below:

Table 5.1: Berlekamp-Massey iterative procedure for finding the error-location polynomial of a BCH code.

Step	Partial solution	Discrepancy	Degree	Step/degree difference
μ	$\sigma^{(\mu)}(X)$	d_{μ}	l_{μ}	$\mu-l_{\mu}$
-1	1	1	0	-1
0	1	S_1	0	0
1	$1 + S_1X$			
2				
:				
2t				

• Fill the table.

• Example 5.3: Consider the triple-error-correcting (15,5) BCH code given in Example 5.1 whose generator polynomial $\mathbf{g}(X)$ has $\alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5$, and α^6 as roots where α is a primitive element of $GF(2^4)$ (see Table 2.6 of Lecture 2). Suppose the all-zero code word

is transmitted and

$$\mathbf{r} = (0\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0)$$

is received.

• Then the received polynomial is $\mathbf{r}(X) = X^3 + X^5 + X^{12}$. From the computations given in Example 5.2, we find that the syndrome is

$$\mathbf{S} = (S_1, S_2, S_3, S_4, S_5, S_6),$$

With
$$S_1 = 1, S_2 = 1, S_3 = \alpha^{10}, S_4 = 1, S_5 = \alpha^{10}$$
 and $S_6 = \alpha^5$.

• Iterative process results in the following table:

Table 5.2: Steps for finding the error-location polynomial of the (15, 5) BCH given in Example 5.3.

μ	$\sigma^{(\mu)}(X)$	d_{μ}	l_{μ}	$\mu-l_{\mu}$
-1	1	1	0	-1
0	1	1	0	0
1	1+X	0	1	$0(\rho=-1)$
2	1 + X	$lpha^5$	1	1
3	$1 + X + \alpha^5 X^2$	0	2	$1 (\rho = 0)$
4	$1 + X + \alpha^5 X^2$	$lpha^{10}$	2	2
5	$1 + X + \alpha^5 X^3$	0	3	$2 (\rho = 2)$
6	$1 + X + \alpha^5 X^3$			

• The error-location polynomial is

$$\sigma(X) = 1 + X + \alpha^5 X^3.$$

• Substituting the variable X of $\sigma(X)$ with the elements, $\alpha^0, \alpha, \ldots, \alpha^{14}$ of $GF(2^4)$ in turns, we find that

$$\sigma(\alpha^3) = \sigma(\alpha^{10}) = \sigma(\alpha^{12}) = 0.$$

Hence, α^3 , α^{10} and α^{12} are the roots of $\sigma(X)$.

- The inverses of these three roots of $\sigma(X)$ are: $\alpha^{-3} = \alpha^{12}$, $\alpha^{-10} = \alpha^{5}$ and $\alpha^{-12} = \alpha^{3}$, which give the error-location numbers. The power of these three locations numbers are 12, 5 and 3.
- Consequently, the error pattern is

$$e(X) = X^3 + X^5 + X^{12}$$

which has three errors within the error correction capability of the code, t=3.

• Removing e(X) from the received polynomial r(X), we obtain the decoded code polynomial,

$$\mathbf{v}(X) = \mathbf{r}(X) + \mathbf{e}(X) = 0$$
 (zero polynomial),

which is identical to the transmitted code polynomial.

• Hence, decoding is correct.

2.10 Simplification of Decoding Binary BCH Codes

- For decoding binary BCH code, we can prove that if the first, third, ..., (2t-1)-th Newton's identities hold, then the second, fourth, ..., 2t-th Newton's identities also hold.
- This implies that with the iterative algorithm for finding the error-location polynomial $\sigma(X)$, the solution $\sigma^{(2\mu-1)}(X)$ at the $(2\mu-1)$ -th step of iteration is also the solution $\sigma^{(2\mu)}(X)$ at the 2μ -th step of iteration, i.e.,

$$\sigma^{(2\mu)}(X) = \sigma^{(2\mu-1)}(X). \tag{5.36}$$

for $1 \le \mu \le t$.

- This fact is demonstrated in Table 5.2.
- This suggest that the $(2\mu 1)$ and 2μ steps of iteration can be combined into one step. As a result, the forgoing algorithm for finding the error-location polynomial $\sigma(X)$ can be reduced to t steps. This simplification only applies to decoding of binary BCH codes (not to decoding of non-binary codes).

• The simplified algorithm for finding the error-location polynomial in decoding of a binary BCH code can be carried out by filling a table with only t steps as shown in Table 5.3.

Table 5.3: A simplified Berlekamp-Massey iterative procedure for finding the error-location polynomial of a binary BCH code.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Step	Partial solution	Discrepancy	Degree	Step/degree difference
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	μ	$\sigma^{(\mu)}(X)$	d_{μ}	l_{μ}	$2\mu - l_{\mu}$
$0 \qquad \qquad 1 \qquad \qquad S_1 \qquad \qquad 0 \qquad \qquad 0$	$-\frac{1}{2}$	1	1	0	-1
_	0	1	S_1	0	0

1

2

•

t

- Suppose we have filled out all the rows up to and including the μ -th row, we fill out the $(\mu + 1)$ -th row as follows:
 - (1) If $d_{\mu} = 0$, then we set

$$\sigma^{(\mu+1)}(X) = \sigma^{(\mu)}(X).$$

(2) If $d_{\mu} \neq 0$, we find a row prior to the μ -th row, say the ρ -th row, with partial solution $\sigma^{(\rho)}(X)$ such that $d_{\rho} \neq 0$ and $2\rho - l_{\mu}$ is the largest. Then

$$\sigma^{(\mu+1)}(X) = \sigma^{(\mu)}(X) + d_{\mu}d_{\rho}^{-1}X^{2(\mu-\rho)}\sigma^{(\rho)}(X). \tag{5.37}$$

(3) Compute the discrepancy

$$d_{\mu+1} = S_{2\mu+3} + \sigma_1^{(\mu+1)} S_{2\mu+2} + \sigma_2^{(\mu+1)} S_{2\mu+1} + \dots + \sigma_{l_{\mu+1}}^{(\mu+1)} S_{2\mu+3-l_{\mu+1}}.$$
(5.38)

where $l_{\mu+1}$ is degree of $\sigma^{(\mu+1)}(X)$.

- Note that with the simplified algorithm, the computation required to find the error-location polynomial $\sigma(X)$ is **half** of the computation required by the general algorithm for decoding both binary and non-binary BCH codes.
- Example 5.4: Using the simplified algorithm for finding the error-location polynomial, Table 5.2 given in Example 5.3 is reduced to Table 5.4.

Table 5.4: Steps for finding the error-location polynomial of the binary (15,3) BCH code given in Example 5.1

μ	$\sigma^{(\mu)}(X)$	d_{μ}	l_{μ}	$2\mu - l_{\mu}$
$-\frac{1}{2}$	1	1	0	-1
0	1	$S_1 = 1$	0	0
1	1+X	$lpha^5$	1	$1 \ (\rho = -\frac{1}{2})$
2	$1 + X + \alpha^5 X^2$	$lpha^{10}$	2	$2 (\rho = 0)$
3	$1 + X + \alpha^5 X^3$	_	_	

2.11 Finding the Roots of the Error-Location Polynomial

- The roots of the error-location polynomial $\sigma(X)$ can be determined by substituting the variable X with the elements of $GF(2^m)$, $\alpha^0, \alpha, \ldots, \alpha^{2^m-2}$, in turn.
- For $0 \le i < 2^m 1$, if $\sigma(\alpha^i) = 0$, then α^i is a root of $\sigma(X)$. In this case, $\alpha^{2^m 1 i}$ is an error-location number and there is an error at the location $2^m 1 i$ of $\mathbf{r}(X)$, i.e., $e_{2^m 1 i} = 1$.

Reference

- [1] A. Hocquenghem, "Codes corecteurs d'erreurs," Chiffres, 2: 147-156, 1959.
- [2] R. C. Bose and D. K. Ray-Chaudhuri, "On a class of error correcting binary group codes," Inform. Control, 3: 68-79, March 1960.
- [3] W. W. Peterson, "Encoding and error-correction procedures for Bose-Chaudhuri code," IRE Trans. Inform. Theory, IT-6: 459-470, Sept. 1960.
- [4] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.
- [5] J. L. Massey, "Shift-register synthesis and BCH decoding," IEEE Trans. Inform. Theory, IT-15, pp. 122-127, Jan. 1969.
- [6] S. Lin and D. J. Costello, Jr., Error Control Coding, Pearson Prentice-Hall, second edition, Upper Saddle River, NJ, 2004.

- Solution at the M-th step $\sigma^{(\mu)}(X) = 1 + \sigma_{1}^{(\mu)}X + \sigma_{2}^{(\mu)}X^{2} + \dots + \sigma_{m}^{(\mu)}X^{k}u$ $d_{\mu} = 5_{\mu+1} + \sigma_{1}^{(\mu)}5_{\mu} + \sigma_{2}^{(\mu)}5_{\mu-1} + \dots + \sigma_{m}^{(\mu)}5_{\mu+1-k}u$
 - If $d_{\mu} = 0$, $\sigma^{(\mu+1)}(x) = \sigma^{(\mu)}(x)$.
- If $d_{\mu} \neq 0$, find $p < \mu$ such that $d_{p} \neq 0$ and $p l_{p}$ is the largest where l_{p} is the degree of the solution $\sigma^{(p)}(x)$ at the p-th step. Then

 $\sigma^{(\mu+1)}(x) = \sigma^{(\mu)}(x) + d_{\mu}d_{\rho}^{-1}x^{(\mu-\rho)}\sigma^{(\rho)}(x)$

(1)
$$\mu = 0$$
, $\sigma^{(0)}(x) = 1$ and $d_0 = 1 \neq 0$.

 $Take \ \rho = -1$. $\sigma^{(-1)}(x) = 1$.

 $\sigma^{(1)}(x) = \sigma^{(0)}(x) + d_0 d_1^{-1} \times^{(0 - (-1))} \sigma^{(-1)}(x)$
 $= 1 + x$.

 $d_1 = S_2 + \sigma_1^{(1)} S_1 = 1 + 1 = 0$.

(2) $\mu = 1$, $\sigma^{(1)}(x) = 1 + x$ and $d_1 = 0$.

 $\sigma^{(2)}(x) = \sigma^{(1)}(x) = 1 + x$.

 $d_2 = S_3 + \sigma_1^{(2)} S_2 = \alpha^{10} + 1 = \alpha^5 \neq 0$.

(3) $\mu = 2$, $\sigma^2(x) = 1 + x$, $d_2 \neq 0$.

Take $\rho = 0$. $\sigma^{(0)}(x) = 1$.

 $\sigma^{(3)}(x) = \sigma^{(2)}(x) + d_2 d_0^{-1} \times^{(2 - 0)} \sigma^{(0)}(x)$
 $= 1 + x + \alpha^5 x^2$
 $d_3 = S_4 + \sigma_1^{(3)} S_3 + \sigma_2^{(3)} S_2 = 1 + \alpha^{10} + \alpha^5 = 0$.

(4)
$$\mu = 3$$
, $\nabla^{(3)}(x) = 1 + x + \alpha^{5} x^{2}$, $d_{3} = 0$.

$$\nabla^{(4)}(x) = \nabla^{(3)}(x) = 1 + x + \alpha^{5} x^{2}$$
.
$$d_{4} = S_{5} + \nabla_{1}^{(3)}S_{4} + \nabla_{2}^{(3)}S_{3}$$

$$= \alpha^{10} + 1 + \alpha^{5} \cdot \alpha^{10} = \alpha^{10}$$
.
(5) $\mu = 4$, $\nabla^{(4)}(x) = 1 + x + \alpha^{5} x^{2}$, $d_{4} = \alpha^{10}$.

Take $\rho = 2$. $\nabla^{(2)}(x) = 1 + x$.
$$\nabla^{(5)}(x) = \nabla^{(4)}(x) + d_{4} d_{2}^{-1} x^{(4-2)} \nabla^{(2)}(x)$$

$$= 1 + x + \alpha^{5} x^{2} + \alpha^{10} \alpha^{-5} x^{2} (1 + x)$$

$$= 1 + x + \alpha^{5} x^{2} + \alpha^{5} (x^{2} + x^{3})$$

$$= 1 + x + \alpha^{5} x^{3}$$

$$d_{5} = S_{6} + \nabla_{1}^{(5)}S_{5} + \nabla_{2}^{(5)}S_{4} + \nabla_{3}^{(5)}S_{3}$$

$$= \alpha^{5} + \alpha^{10} + \alpha^{5} \alpha^{10} = 1 + \alpha^{5} + \alpha^{10} = 0$$
.
(6) $\nabla^{(6)}(x) = \nabla^{(5)}(x) = 1 + x + \alpha^{5} x^{3}$.